

MIERNIK PARAMETRÓW SIECI ND10

INSTRUKCJA OBSŁUGI

Spis treści

1 PRZEZNACZENIE	3
2 ZESTAW MIERNIKA	
3 WYMAGANIA PODSTAWOWE, BEZPIECZEŃSTWO UŻYTKOWANIA	∠
4 MONTAŻ	∠
5 OPIS PRZYRZĄDU	5
5.1 Wejścia prądowe	5
5.2 Wejścia napięciowe	6
5.3 Schematy podłączeń	6
6 PROGRAMOWANIE ND10	9
6.1 Panel przedni	9
6.2 Komunikaty po włączeniu zasilania	10
6.3 Podgląd parametrów	
6.4 Tryby pracy	
6.5 Ustawienia parametrów	15
6.5.1 Ustawianie parametrów miernika	
6.5.2 Ustawianie parametrów wyjść	17
6.5.3 Ustawianie parametrów alarmów	
6.5.4 Ustawianie daty i czasu	
7 UAKTUALNIANIE OPROGRAMOWANIA	
8 INTERFEJS RS-485	
9 KODY BŁĘDÓW	
10 DANE TECHNIÇZNE	
11 KOD WYKONAŃ	43

1 PRZEZNACZENIE

ND10 tablicowym cyfrowym jest przyrządem Miernik do pomiaru parametrów przeznaczonym sieci programowalnym energetycznych trójfazowych 4przewodowych układach W symetrycznych i niesymetrycznych z jednoczesnym wyświetlaniem mierzonych wielkości i cyfrową transmisję ich wartości. Umożliwia sterowanie i optymalizację działania urządzeń energoelektronicznych, systemów i instalacji przemysłowych.

Zapewnia pomiar: wartości skutecznej napięcia i prądu, mocy czynnej, biernej i pozornej, energii czynnej i biernej, współczynników mocy, częstotliwości, mocy czynnej średniej 15, 30, 60 minutowej, THD. Dodatkowo / z wektorów prądów fazowych / wyliczana jest wartość skuteczna prądu w przewodzie neutralnym. Napięcia i prądy mnożone są przez zadawane przekładnie napięciowe i prądowe przekładników pomiarowych. Wskazania mocy i energii uwzględniają wartości zaprogramowanych przekładni. Wartość każdej z mierzonych wielkości może być przesłana do systemu nadrzędnego interfejsem RS-485. Wyjścia alarmowe sygnalizują przekroczenie wybranych wielkości, a wyjście impulsowe może być wykorzystane do kontroli zużycia 3–fazowej energii czynnej. Miernik ma detekcję i sygnalizację niepoprawnej kolejności faz.

Miernik zasilany jest z obwodu pomiarowego – wejścia napięciowego. Miernik ma separację galwaniczną pomiędzy poszczególnymi blokami:

- wejściami napięciowymi i prądowymi,
- wyjściem RS-485,
- wyjściem impulsowym.

2 ZESTAW MIERNIKA

W skład zestawu wchodzą:

- miernik ND10	1 szt.
 skrócona instrukcja obsługi 	1 szt.
- karta gwarancyjna	1 szt.
- uszczelka	1 szt.
- uchwyt do mocowania w tablicy	4 szt.

3 WYMAGANIA PODSTAWOWE, BEZPIECZEŃSTWO UŻYTKOWANIA

W zakresie bezpieczeństwa użytkowania odpowiada wymaganiom normy PN-EN 61010-1.

Uwagi dotyczące bezpieczeństwa:

- Instalacji i podłączeń miernika powinien dokonywać wykwalifikowany personel. Należy wziąć pod uwagę wszystkie dostępne wymogi ochrony.
- Przed włączeniem miernika należy sprawdzić poprawność połączeń.
- Zdjęcie obudowy miernika w trakcie trwania umowy gwarancyjnej powoduje jej unieważnienie.
- Miernik spełnia wymagania dotyczące kompatybilności elektromagnetycznej w środowisku przemysłowym.
- W instalacji budynku powinien być wyłącznik lub wyłącznik automatyczny, umieszczony w pobliżu urządzenia, łatwo dostępny dla operatora i odpowiednio oznakowany.

4 MONTAŻ

Miernik jest przystosowany do zamocowania w tablicy za pomocą uchwytów według rys.1. Obudowa miernika jest wykonana z tworzywa sztucznego.

Wymiary obudowy 96 x 96 x 77 mm. Na zewnątrz miernika znajdują się listwy rozłączne zaciskowe, śrubowe które umożliwiają przyłączenie przewodów zewnętrznych o przekroju do 2,5 mm².

W tablicy należy przygotować otwór o wymiarach 92,5^{+0.6} x 92,5^{+0.6} mm. Grubość materiału z którego wykonano tablicę nie powinna przekraczać 15 mm. Miernik należy wkładać od przodu tablicy z odłączonym napięciem zasilania . Po włożeniu do otworu, miernik umocować za pomocą uchwytów.

Rys. 1. Mocowanie miernika

Rys.2. Gabaryty miernika

5 OPIS PRZYRZĄDU

5.1 Wejścia prądowe

Wszystkie wejścia prądowe są izolowane galwanicznie (wewnętrzne przekładniki prądowe). Miernik przystosowany jest do współpracy z zewnętrznymi przekładnikami prądowymi pomiarowymi. Wyświetlane wartości prądów i wielkości pochodnych automatycznie przeliczane są o wielkość wprowadzonej przekładni zewnętrznego przekładnika. Wejścia prądowe określane są w zamówieniu jako 1 A lub 5 A.

5.2 Wejścia napięciowe

Wielkości na wejściach napięciowych są automatycznie przeliczane o wielkość wprowadzonej przekładni zewnętrznego przekładnika napięciowego. Wejścia napięciowe określane są w zamówieniu jako 3 x 57.7/100 V ,3 x 230/400 V, 3 x 290/500 V.

5.3 Schematy podłączeń

Uwaga: do wykonania połączenia komputer - mierniki ND10 (RS-485) zalecana jest skrętka w ekranie. Ekran połączyć z uziemieniem w jednym punkcie. Ekranowanie jest konieczne kiedy środowisko jest bardzo zakłócone.

Rys 4. Schematy podłączeń miernika w sieci czteroprzewodowej.

6 PROGRAMOWANIE ND10

6.1 Panel przedni

Rys 5. Panel przedni

Opis panelu przedniego:

- 1 przycisk rezygnacji ESC
- 2 przycisk przesunięcia w lewo
- 3 przycisk zmniejszania wartości
- 4 przycisk zwiększania wartości
- 5 przycisk przesunięcia w prawo
- 6 przycisk akceptacji ENTER
- 7 symbole cyfrowej transmisji danych
- 8 symbole załączenia / wystąpienia alarmu
- 9 jednostka przy wyświetlaniu THD i strażnika mocy
- 10 symbole wyświetlania wartości THD
- 11 symbol wyświetlania współczynnika mocy i tangensa mocy

- 12 symbol wyświetlania wartości mocy czynnej uśrednionej
- 13 symbol zabezpieczenia menu
- 14 jednostki wyświetlanych wartości
- 15 symbol wyświetlania wielkości 3fazowych
- 16 mnożniki wartości podstawowych
- 17 pole wyświetlania wielkości podstawowych, energii, THD, daty, wartości średnich, częstotliwości, czasu, strażnika mocy
- 18 symbole min / max wielkości
- 19 symbole przynależności wielkości do poszczególnych faz
- 20 symbole charakteru mocy, energi

6.2 Komunikaty po włączeniu zasilania

Po załączeniu wejść napięciowych miernik wykonuje test wyświetlacza i wyświetla nazwę miernika ND10, wykonanie oraz aktualną wersję programu.

gdzie: r n.nn jest numerem aktualnej wersji programu lub numerem wykonania specjalnego.

b n.nn jest numerem wersji bootloadera

Rys 6. Komunikaty po uruchomienia miernika

Uwaga! Jeżeli na wyświetlaczach pojawi się komunikat Err Cal lub Err EE należy skontaktować się z serwisem.

6.3 Podgląd parametrów

W trybie pomiarowym wielkości wyświetlane są wg ustalonych tablic. Naciśnięcie przycisku (lewo) lub (prawo) powoduje przejście pomiędzy wyświetlanymi wielkościami podstawowymi (tablica 1). Naciśnięcie przycisku (dół) powoduje podgląd wartości minimalnej, natomiast naciśnięcie przycisku (góra) powoduje podgląd wartości maksymalnej. W trakcie podglądu tych wartości naciśnięcie przycisku (ESC) kasuje wszystkie wartości odpowiednio minimalne lub maksymalne. Podczas przytrzymania jednocześnie przycisków i wyświetlane są odpowiednie wartości średnie, trójfazowe wraz z ich wartościami minimalnymi i maksymalnymi (tablica 2).

Poprzez interfejs RS-485 można ustawić wartości, które mają być dostępne w podglądzie.

Wyświetlanie błędów opisane zostało w punkcie 8.

Przy wyświetlaniu mocy biernej wyświetlany jest znacznik wskazujący charakter obciążenia pojemnościowy (+) lub indukcyjny (-).

Wielkości podstawowe wyświetlane w polu 17 (rys. 5.). Podany w tablicy 1 parametr opcja (wyświetlanie) oznacza, że wyświetlanie tego parametru może zostać wyłączone poprzez RS485 w rejestrze 4056. Wyłączenie parametru z wyświetlania (od U do tg) uniemożliwia wyświetlenie odpowiadających im wartości średnich / trójfazowych.

Tablica 1

Wyświe symb		L ₁ ,V L ₂ , L ₃	L ₁₂ ,V L ₂₃ , L ₃₁	L ₁ ,A L ₂ , L ₃	L ₁ , W L ₂ , L ₃	L ₁ ,Va r L ₂ , L ₃	L ₁ ,VA L ₂ , L ₃	L ₁ ,P F L ₂ , L ₃	L ₁ ,tg L ₂ , L ₃	kWh
	wiersz 1	U1	U12	11	P1	Q1	S1	PF1	tg1	Enorgia
Wartości wyświetlan	wiersz 2	U2	U23	12	P2	Q2	S2	PF2	tg2	Energia czynna
е	wiersz 3	U3	U31	13	P3	Q3	S3	PF3	tg3	pobierana
Wyświe	tlanie	stał e	opcj a	stał e	stał e	opcja	opcja	opcj a	opcj a	opcja

Wyświe symb		-, kWh	-- kVarh	-I⊦ kVarh	L ₁ , THD U L ₂ , L ₃	L ₁ , THD I L ₂ , L ₃ ,
	wiersz 1		Energia bierna	Energia bierna	THD U1 %	THD I1 %
Wartości wyświetlan	wiersz 2	Energia czynna oddawan a bierna dodatnia	pojemnościo wa /	THD U2 %	THD I1 %	
е	wiersz 3		bierna	Energia bierna ujemna	THD U3 %	THD I1 %
Wyświetlanie		opcja	opcja	opcja	opcja	opcja

	Wyświetlane symbole		3L, W P _{AVG}	А	%	Data/czas
Wartości wyświetla	wiersz 1	f(L3)	ΣP _{3faz} (15, 30 lub 60 minut)	l _(N)	Wykorzystani e mocy zamówionej	Rok
ne	wiersz 2	min	min	min	(w czasie 15, 30 lub 60	Miesiąc.dzień
	wiersz 3	max	ax max max minut)		Godzina : minuty	
Wyświetlanie		opcj a	opcja	opcja	opcja	opcja

Wielkości średnie oraz ich wartości minimalne i maksymalne (przyciśnięcie \longrightarrow na pierwszych 8 ekranach wielkościach podstawowych, podświetlone są znaczniki 3L, \triangle , ∇).

Tablica 2

Wyświe		3L,	3L,	3L,	3L,	3L,	3L,	3L,	3L,
symb	ole	V	V	Α	W	Var	VA	PF	tg
	wiersz 1	U _{LNśr}	U _{LLśr}	l _{śr}	Р	Q	S	PF	tg
Wartości	•	3faz	3faz	3faz					
wyświetla ne	wiersz 2	min	min	min	min	min	min	min	min
	wiersz 3	max	max	max	max	max	max	max	ma x

Przekroczenie górnego zakresu wskazań sygnalizowane jest na wyświetlaczu górnymi poziomymi kreskami, natomiast przekroczenie dolnego zakresu sygnalizowane jest dolnymi poziomymi kreskami. W przypadku pomiaru mocy uśrednionej $\Sigma P_{3\text{faz}}$ pojedyncze pomiary wykonywane są z kwantem 15 sekundowym. Odpowiednio do wyboru: 15 min, 30 min, 60 min uśrednianych jest 60, 120 lub 240 pomiarów. Po uruchomieniu miernika lub wykasowaniu mocy, pierwsza wartość zostanie wyliczona po 15 sekundach od włączenia miernika lub wykasowania. Do czasu uzyskania wszystkich próbek mocy czynnej, wartość mocy uśrednionej wyliczana jest z próbek już zmierzonych.

Prąd w przewodzie neutralnym $I_{(N)}$ jest wyliczany z wektorów prądów fazowych.

Załączenie alarmów sygnalizowane jest świeceniem odpowiednio napisów A1 i/lub A2. Zakończenie trwania alarmów przy włączonym podtrzymaniu sygnalizacji alarmu, wskazywane jest przez pulsowanie odpowiednio napisu A1 i/lub A2.

6.4 Tryby pracy

Rys 7. Tryby pracy miernika ND10

6.5 Ustawienia parametrów

Do konfiguracji mierników ND10 przeznaczone jest bezpłatne oprogramowanie LPCon dostępne na stronie <u>www.lumel.com.pl</u>.

Rys 8. Menu setup

Wejście w tryb programowania odbywa się poprzez naciśnięcie i przytrzymanie przycisku przez około 3 sekundy. Wejście w tryb programowania chronione jest kodem dostępu. W przypadku braku kodu, program przechodzi w opcje programowania. Wyświetlany jest napis **SET** (w pierwszym wierszu) oraz pierwsza grupa parametrów **PAr**. Podgląd parametrów jest zawsze dostępny poprzez naciśnięcie i przytrzymanie przycisku przez około 3 sekundy.

6.5.1 <u>Ustawianie parametrów miernika</u>

W opcjach wybrać tryb **PAr** (przyciskami **I** lub **I**) i wybór zatwierdzić przyciskiem **I**.

Lp.	Nazwa parametru	Oznaczenie	Zakres	Uwagi / opis	Wartość fabryczna
1	Wprowadzani e kodu dostępu	SEC	oFF, 1 60000	0 – bez kodu	0

2	Przekładnia przekładnika	tr_I	1 10000		1
	prądowego				
3	Przekładnia przekładnika napięciowego	tr_U	0,1 4000,0		1
4	Synchronizacj a mocy czynnej średniej	Syn	15, c_15, c_30, c_60	Synchronizacja mocy czynnej średniej: 15 - okno kroczące 15 minutowe c_15 – pomiar synchr. z zegarem co 15 minut, c_30 – pomiar synchr. z zegarem co 30 minut, c_60 – pomiar synchr. z zegarem co 60 minut,	15
5	Zapamiętywa nie wartości minimalnych i maksymalnyc h z błędami	erLi	oFF, on	oFF – zapamiętanie tylko wartości prawidłowych (z zakresu pomiarowego), on – zapamiętywanie również wystąpienia błędów w pomiarach (wartości w rejestrach 1e20 i -1e20)	on
6	Sposób liczenia energii biernej	En_q	cAP, sIGn	cAP – energia indukcyjna i pojemnościowa sIGn – energia dodatnia i ujemna	cAP
7	Podświetlenie wyświetlacza	diSP	oFF,1 60, on	off – wyłączone, on – włączone, 160 – czas w sekundach podtrzymania podświetlenia od naciśnięcia przycisku	on
8	Kasowanie liczników energii	En_0	no, EnP, Enq, ALL	no – brak czynności, EnP – kasowanie energii czynnej, Enq – kasowanie energii biernej, ALL – kasowanie wszystkich energii	no
9	Kasowanie mocy czynnej uśrednionej	PA_0	no, yES	yES – wykasuj moc	no
10	Moc zamówiona	PAor	0144,0	Moc zamówiona do prognozowania zużycia mocy w % wartości znamionowej	100
11	Parametry fabryczne	dEf	no, yES	przywrócenie parametrów fabrycznych grupy	no

Automatyczne kasowanie energii wykonywane jest:

- dla energii czynnej przy zmianie: przekładni napięciowej lub prądowej;

- dla energii biernej przy zmianie: przekładni napięciowej lub prądowej, sposobu liczenia energii biernej;

Przyciskami i ustawiane są wartości, natomiast przyciskami wybierana jest pozycja ustawianej cyfry. Aktywna pozycja sygnalizowana jest kursorem. Wartość akceptuje się przyciskiem lub rezygnuje się przez naciśnięcie przycisku lub. Podczas akceptacji sprawdzane jest czy wartość mieści się w zakresie. W przypadku ustawienia wartości poza zakresem, miernik pozostaje w trybie edycji parametru, natomiast wartość zostaje ustawiona na wartość maksymalną (przy zbyt dużej wartości) lub na minimalną (przy zbyt małej wartości).

6.5.2 <u>Ustawianie parametrów wyjść</u>

W opcjach wybrać tryb **out** i wybór zatwierdzić przyciskiem —.

Lp.	Nazwa parametru	Oznaczenie	zakres	Uwagi / opis	Wartość fabryczna
1	llość impulsów	lo_n	5000 20000	ilość impulsów na kWh	5000
2	Adres w sieci MODBUS	Adr	1247		1
3	Tryb transmisji	trYb	8n2, 8e1, 8o1, 8n1		8n2
4	Prędkość transmisji	bAUd	4.8 k, 9.6 k, 19.2 k, 38.4 k		9,6 k
5	Parametry fabryczne	dEf	no, yES	przywrócenie parametrów fabrycznych grupy	No

6.5.3 <u>Ustawianie parametrów alarmów</u>

W opcjach wybrać odpowiednio tryb **ALr1** lub **ALr2** i wybór zatwierdzić przyciskiem —.

				Id	blica 5
Lp.	Nazwa parametru	Oznaczenie	Zakres	Uwagi / opis	Wartość fabryczna
1	Wielkość na wyjściu alarmowym (kod wg tab.6)	A1_n, A2_n	tablica 6		Р
2	Typ alarmu	A1_t, A2_t	n-on, n- oFF, on,oFF, H- on, H-oFF	Rys .9.	n-on
3	Dolna wartość zakresu wejściowego	A1oF, A2oF	-144,0 144,0	w % wartości znamionowej wielkości	99,0
4	Górna wartość zakresu wejściowego	A1on, A2on	-144,0 144,0	w % wartości znamionowej wielkości	101,0
5	Opóźnienie czasowe reakcji przełączenia	A1dt, A2dt	0 900	w sekundach (dla wielkości A1_n = P_ord, opóźnienie jest tylko przy załączeniu alarmu)	0
6	Podtrzymanie sygnalizacji wystąpienia alarmu	A1_S , A2_S ,	oFF, on	W sytuacji gdy funkcja podtrzymania jest załączona, po ustąpieniu stanu alarmowego symbol alarmu nie jest wygaszany, tylko zaczyna pulsować. Sygnalizacja jest do momentu wygaszenia jej za pomocą kombinacji przycisków i (przez 3 sek). Funkcja dotyczy tylko i wyłącznie sygnalizacji	oFF

				alarmu, a więc styki przekaźnika będą działały bez podtrzymania zgodnie z wybranym typem alarmu.	
7	Blokada ponownego	A1_b,	0900	w sekundach	0
	załączenia alarmu	A2_b,			
8	Parametry	dEf	no, yES	przywrócenie parametrów	no
	fabryczne			fabrycznych grupy	

Wpisanie wartości ALon mniejszej niż ALoF wyłącza alarm.

Wybór wielkości monitorowanej:

			Tablica 0
Lp / wartość w rejestrze 4015	Parametr wyświetlany	Rodzaj wielkości	Wartość do przeliczeń procentowych wartości alarmów i wyjść (100 %)
00	oFF	brak wielkości /alarm wyłączony/	brak
01	U_1	napięcie fazy L1	Un [V] *
02	I_1	prąd w przewodzie fazowym L1	In [A] *
03	P_1	moc czynna fazy L1	Un x In x cos(0°) [W] *
04	q_1	moc bierna fazy L1	Un x In x sin(90°) [var] *
05	S_1	moc pozorna fazy L1	Un x In [VA] *
06	PF1	współczynnik mocy czynnej fazy L1	1
07	tg1	współczynnik tgφ fazy L1	1
08	U_2	napięcie fazy L2	Un [V] *
09	I_2	prąd w przewodzie fazowym L2	In [A] *
10	P_2	moc czynna fazy L2	Un x In x cos(0°) [W] *
11	q_2	moc bierna fazy L2	Un x In x sin(90°) [var] *
12	S_2	moc pozorna fazy L2	Un x In [VA] *
13	PF2	współczynnik mocy czynnej fazy L2	1
14	tg2	współczynnik tgφ fazy L2	1
15	U_3	napięcie fazy L3	Un [V] *
16	I_3	prąd w przewodzie fazowym L3	In [A] *
17	P_3	moc czynna fazy L3	Un x In x cos(0°) [W] *

18	q_3	moc bierna fazy L3	Un x In x sin(90°) [var]
19	S 3	moc pozorna fazy L3	Un x In [VA] *
20	PF3	współczynnik mocy czynnej fazy L3	1
21	tg3	współczynnik tgφ fazy L3	1
22	U_A	napięcie 3-fazowe średnie	Un [V] *
23	I_A	prąd trójfazowy średni	In [A] *
24	P	moc czynna trójfazowa (P1+P2+P3)	3 x Un x In x cos(0°) [W] *
25	q	moc bierna trójfazowa (Q1+Q2+Q3)	3 x Un x In x sin(90°) [var] *
26	S	moc pozorna trójfazowa (S1+S2+S3)	3x Un x In [VA] *
27	PF_A	współczynnik mocy czynnej 3- fazowej	1
28	tg_A	współczynnik tgφ 3-fazowy	1
29	FrEq	częstotliwość	100 [Hz]
30	U12	napięcie międzyfazowe L1-L2	$\sqrt{3}$ Un [V] *
31	U23	napięcie międzyfazowe L2-L3	√3 Un [V] *
32	U31	napięcie międzyfazowe L3-L1	√3 Un [V] *
33	U4_A	napięcie międzyfazowe średnie	√3 Un [V] *
34	P_At	moc czynna średnia	3 x Un x In x cos(0°) [W] *
35	P_ord	wykorzystany procent mocy czynnej zamówionej (wykorzystana energia)	100 [%]
36	I_ne	prąd w przewodzie neutralnym	In [A] *

^{*}Un, In – wartości znamionowe napięć i prądów

<u>d)</u> **OFF**

Rys 9. Typy alarmów (x – numer alarmu): a), b) normalny c) wyłączony d) włączony.

Pozostałe typy alarmu:

- H-on zawsze załączony;
- H-oFF zawsze wyłączony.

Przykład nr 1 ustawienia alarmu:

Ustawić alarm typu **n-on** dla wielkości monitorowanej P – mocy czynnej 3 – fazowej,

Wykonanie 5 A; 3 x 230/400 V. Załączenie alarmu po przekroczeniu 3800 W, wyłączenie alarmu po obniżeniu 3100 W.

Obliczamy: moc czynna znamionowa 3 - fazowa: P = 3 x 230 V x 5 A = 3450 W

3450 W - 100 % 3450 W - 100 % 3800 W - A1on % 3100 W - A1oF % Stąd: A1on = 110,0 % A1oF = 90,0 %

Ustawić: Wielkość monitorowana: P; Rodzaj alarmu: n-on, A1on 110,0, A1oF 90,0.

Przykład nr 2 ustawienia alarmu:

Wartość wykorzystania mocy zamówionej może być użyta do wcześniejszego ostrzegania przed przekroczeniem mocy zamówionej i uniknięcia kar z tym związanych. Zużycie mocy zamówionej wyliczane jest w oparciu o przedział czasowy ustawiony dla synchronizacji mocy czynnej uśrednionej oraz wartość mocy zamówionej. Należy ustawić alarm wcześniejszego ostrzeżenia o możliwości przekroczenia mocy zamówionej 1MW na poziomie 90 % przy rozliczeniu piętnastominutowym (900 s). Przekładnik prądowy pomiarowy 2500 : 5A, napięcie 230 V. Chwilowy pobór maksymalny mocy 1,5 MW.

Obliczamy:

moc czynna znamionowa 3–fazowa miernika ND10: P = 3 x k_U x U_n x k_I x I_n = 3 x 1 x 230 V x 500 x 5A = 1,725 MW \rightarrow 100 %.

Stosunek mocy zamówionej / mocy znamionowej = 1 MW / 1,725 MW ≈ **57,97** % wartości znamionowej miernika (zaokraglając w dół) - **Pord**;

Histereza pracy alarmu: załączenie alarmu ma być dla 90 % mocy zamówionej (A1on), wyłączenie np.: o 1 % niższe 89 % (A1of).

Optymalizacja pracy funkcji ograniczenia mocy (zwłoka przy załączeniu alarmu):

opóźnienie załączenia alarmu
$$t_o = 10 \% * \left[\frac{1 MW * 900 s}{1.5 MW} \right] = 60 s$$
 (A1dt).

Rys. 10. Pomiar wykorzystania mocy czynnej zamówionej 15 minutowej synchronizowanej z zegarem z alarmem ustawionym na 90 % wykorzystania

Na rysunku 10 przedstawiono przykład użycia wartości parametru wykorzystanej mocy czynnej zamówionej do włączenia alarmu. Czas opóźnienia ustawiony jest na 0 sekund (A1dt). W wyliczonym przykładzie dla pozostałych 10 % mocy zamówionej przy maksymalnym poborze mocy, urządzenia mogłyby pracować ieszcze 60 sekund, bez narażenia odbiorcy na kary. Przy ustawieniu czasu opóźnienia A1dt na 60 sekund. alarm nie zostałby załączony.

Ustawić w alarmie: wielkość monitorowana: A1_n = P_ord; rodzaj alarmu: A1_t = n-on; A1on = 90,0, AL1oF = 89,9; opóźnienie czasowe A1dt = 0 lub 60 s; A1_s = 0; A1_b = 0. W parametrach ustawić tr_l = 500; Syn = 15 lub c_15, oraz Pord = 57,9.

6.5.4 <u>Ustawianie daty i czasu</u>

W opcjach wybrać tryb **dAtE** i wybór zatwierdzić przyciskiem —. Sekundy są zerowane po ustawieniu wartości godzin i minut.

Tablica 7

Lp.	Nazwa	Oznaczenie	Zakres	Wartość
	parametru			fabryczna
1	Godzina, minuta	t_H	023, 059	00,00
2	Miesiąc, dzień	t_d	112, 131	1,01
3	Rok	t y	2001 2100	2001

7 UAKTUALNIANIE OPROGRAMOWANIA

W mierniku ND10 (w wykonaniu z wyjściem cyfrowym) zaimplementowano funkcję umożliwiającą uaktualnienie oprogramowania z komputera PC z oprogramowaniem LPCon. Bezpłatne oprogramowanie LPCon oraz pliki aktualizacyjne są dostępne na stronie www.lumel.com.pl. Do uaktualnienia wymagany jest podłączony do komputera konwerter RS485 na USB, np.: konwerter PD10.

b)

a)

Rys. 11. Widok okna programu: a) LPCon, b) uaktualniania oprogramowania

Uwaga! Po uaktualnieniu oprogramowania ustawiane są automatycznie nastawy fabryczne miernika, dlatego zalecane jest wstępne zachowanie parametrów miernika przed uaktualnieniem przy użyciu oprogramowania LPCon.

Po uruchomieniu programu LPCon należy ustawić w *Opcjach* port szeregowy, prędkość, tryb i adres miernika. Następnie wybrać miernik ND10 z menu Urządzenia i kliknąć w ikonę Odczyt aby odczytać wszystkie ustawione parametry (potrzebne do późniejszego ich przywrócenia). Po wybraniu z menu Aktualizacja opcji Aktualizacja oprogramowania urządzeń otworzone zostanie okno Lumel Updater (LU) - Rys. 11 b. Wcisnąć Connect. W oknie informacyjnym Messages sa umieszczane o przebiegu procesu informacje aktualizacji. Przy prawidłowo otwartym porcie wyświetlony jest napis Port opened. W mierniku wejście w tryb uaktualniania wykonywane jest na dwa sposoby: zdalnie przez LU (na podstawie ustawień w LPCon – adres, tryb, prędkość, port COM) oraz poprzez załączenie zasilania miernika przy wciśniętym przycisku (przy wejściu w tryb bootloadera przyciskiem, do uaktualnienia są ustawiane fabryczne parametry komunikacyjne miernika). Na wyświetlaczu miernika jest napis boot oraz wersja programu, natomiast w programie LU wyświetlony zostaje komunikat *Device found* oraz nazwa i wersja programu podłączonego urządzenia. Należy wcisnąć przycisk ... i wskazać plik aktualizacyjny miernika. Przy prawidłowo otwartym pliku pojawia się informacja File opened. Należy wcisnąć przycisk Send. zakończonym pozytywnie uaktualnieniu, miernik przywraca nastawy fabryczne i przechodzi do normalnej pracy, natomiast w oknie informacyjnym pojawia się napis Done oraz czas trwania aktualizacji. Po zamknięciu okna LU, należy wcisnąć ikonę Zapis aby zapisać odczytane na początku ustawione parametry. Aktualną oprogramowania można również sprawdzić wersję poprzez odczytanie *Informacji o urządzeniu* z programu LPCon.

Uwaga! Wyłączenie zasilania w trakcie uaktualniania oprogramowania może skutkować trwałym uszkodzeniem miernika!

8 INTERFEJS RS-485

Zestawienie parametrów łącza szeregowego miernika ND10:

identyfikator	0xCB
 adres miernika 	1247
 prędkość transmisji 	4.8, 9.6, 19.2, 38.4 kbit/s,
tryb pracy	Modbus RTU,
 jednostka informacyjna 	8N2, 8E1, 8O1, 8N1,
 maksymalny czas odpowiedzi 	750 ms.

maksymalna ilość odczytanych rejestrów w jednym zapytaniu

40 rejestrów – 4 bajtowych,80 rejestrów – 2 bajtowych,

zaimplementowane funkcje - 03,04,06,16, 17,

- 03,04 odczyt rejestrów,- 06 zapis 1-go rejestru,- 16 zapis rejestrów,

- 10 Zapis rejestiow,

- 17 identyfikacja urządzenia,

Ustawienia fabryczne: adres 1, prędkość 9.6 kbit/s, tryb RTU 8N2,

Mapa rejestrów miernika ND10

W mierniku ND10 dane umieszczone są w rejestrach 16 i 32 bitowych. Zmienne procesowe i parametry miernika umieszczone są w przestrzeni adresowej rejestrów w sposób zależny od typu wartości zmiennej. Bity w rejestrze 16 bitowym numerowane są od najmłodszego do najstarszego(b0-b15). Rejestry 32- bitowe zawierają liczby typu float w standardzie IEEE-754. Kolejność bajtów 3210 – najstarszy jest wysyłany pierwszy.

Tablica 8

Zakres adresów	Typ wartości	Opis
4000 – 4057	Integer (16 bitów)	Wartość umieszczana w jednym rejestrze 16 bitowym. Opis rejestrów zawiera tablica 9. Rejestry do zapisu i odczytu.
6000 – 6319	Float (2x16 bitów)	Wartość umieszczana w dwóch kolejnych rejestrach 16 bitowych. Rejestry zawierają te same dane, co rejestry 32 bitowe z obszaru 7500 – 7659. Rejestry do odczytu. Kolejność bajtów (1-0-3-2)

7000 – 7319	Float (2x16 bitów)	Wartość umieszczana w dwóch kolejnych rejestrach 16 bitowych. Rejestry zawierają te same dane, co rejestry 32 bitowe z obszaru 7500 – 7659. Rejestry do odczytu. Kolejność bajtów (3-2-1-0)
7500 – 7659	Float (32 bity)	Wartość umieszczana w jednym rejestrze 32 bitowym. Opis rejestrów zawiera tablica 10. Rejestry do odczytu.

Adres rejestru	Operacje	Zakres	Opis	Domyślnie
4000	RW	060000	Zabezpieczenie - hasło	0
4001			zarezerwowane	
4002	RW	01200 [°/ _{••}]	Moc zamówiona średnia *10 sygnałów nominalnych	1000
4003	RW	110000	Przekładnia przekładnika prądowego	1
4004	RW	140000	Przekładnia przekładnika napięciowego *10	10
4005	RW	03	Synchronizacja mocy czynnej średniej: 0 - okno kroczące 15 minutowe 1 – pomiar synchronizowany z zegarem co 15 minut, 2 – pomiar synchronizowany z zegarem co 30 minut, 3 – pomiar synchronizowany z zegarem co 60 minut,	0
4006			zarezerwowane	
4007	RW	0,1	Sposób zapamiętywania wartości minimalnej i maksymalnej: 0 – bez błędów, 1 – z błędami	0
4008			zarezerwowane	

4009	RW	0,1	Sposób liczenia energii biernej: 0 – energia indukcyjna i pojemnościowa 1 – energia dodatnia i ujemna	0
4010	RW	061	Podświetlenie wyświetlacza: 0 – wyłączone, 1-60 – czas podświetlenia w sekundach od naciśnięcia przycisku, 61 – zawsze włączone	61
4011	RW	03	Kasowanie liczników energii: 0 – bez zmian, 1- kasuj energie czynne, 2 – kasuj energie bierne, 3 – kasuj wszystkie energie	0
4012	RW	0,1	Kasowanie mocy czynnej średniej P _{AV}	0
4013			zarezerwowane	
4014	RW	0,1	Kasowanie min i max	0
4015	RW	0,135	Wielkość na wyjściu przekaźnikowym alarmu 1 (kod wg tablicy 6)	24
4016	RW	05	Typ wyjścia 1 : 0 – n-on, 1– n-oFF, 2 – on, 3 – oFF, 4 – H-on, 5 – H-oFF	0
4017	RW	-144001440 [°/ _∞]	Dolna wartość przełączenia alarmu 1 zakresu znamionowego wejścia	990
4018	RW	-144001440 [°/ _{••}]	Górna wartość przełączenia alarmu 1 zakresu znamionowego wejścia	1010
4019	RW	0900 s	Opóźnienie przełączenia alarmu 1 (dla wielkości AL_n = P_ord – rejestr 4015 = 35, opóźnienie jest tylko przy załączeniu alarmu)	0
4020	RW	0,1	Podtrzymanie sygnalizacji alarmu 1	0
4021	RW	0900 s	Blokada ponownego załączenia alarmu 1	0
4022	RW	0,135	Wielkość na wyjściu przekaźnikowym alarmu 2 (kod wg tablicy 6)	24
4023	RW	05	Typ wyjścia 1 : 0 – n-on, 1– n-oFF, 2 – on, 3 – oFF, 4 – H-on, 5 – H-oFF	0

4024	RW	-144001440 [°/ _{••}]	Dolna wartość przełączenia alarmu 2 zakresu znamionowego wejścia	990
4025	RW	-144001440 [°/ ₀₀]	Górna wartość przełączenia alarmu 2 zakresu znamionowego wejścia	1010
4026	RW	0900 s	Opóźnienie przełączenia alarmu 2 (dla wielkości AL_n = P_ord – rejestr 4015 = 35, opóźnienie jest tylko przy załączeniu alarmu)	0
4027	RW	0,1	Podtrzymanie sygnalizacji alarmu 2	0
4028	RW	0900 s	Blokada ponownego załączenia alarmu 2	0
4029	RW	5000 20000	llość impulsów dla wyjścia impulsowego	5000
4030	RW	1247	Adres w sieci MODBUS	1
4031	RW	03	Tryb transmisji: 0->8n2, 1->8e1, 2- >8o1, 3->8n1	0
4032	RW	03	Prędkość transmisji: 0->4800, 1- >9600 2->19200, 3->38400	1
4033	RW	0,1	Uaktualnij zmianę parametrów transmisji	0
4034	RW	02359	Godzina *100 + Minuty	0
4035	RW	1011231	Miesiąc * 100 + dzień	101
4036	RW	20092100	Rok	2009
4037	RW	0,1	Zapis parametrów standardowych (wraz w wyzerowaniem energii oraz min, max, i mocy uśrednionej)	0
4038	RW	015258	Energia czynna pobierana, dwa starsze bajty	0
4039	RW	065535	Energia czynna pobierana, dwa młodsze bajty	0
4040	RW	015258	Energia czynna oddawana, dwa starsze bajty	0
4041	RW	065535	Energia czynna oddawana, dwa młodsze bajty	0
4042	RW	015258	Energia bierna indukcyjna, dwa starsze bajty	
4043	R	065535	Energia bierna indukcyjna, dwa młodsze bajty	

4044	R	015258	Energia bierna pojemnościowa, dwa starsze bajty	0
4045	R	065535	Energia bierna pojemnościowa, dwa młodsze bajty	0
4046			zarezerwowane	
4047			zarezerwowane	
4048			zarezerwowane	
4049			zarezerwowane	
4050	R	065535	Rejestr Statusu – opis poniżej	0
4051	R	065535	Rejestr Statusu 2– opis poniżej	0
4052			zarezerwowane	
4053	R	065535	Numer seryjny dwa starsze bajty	-
4054	R	065535	Numer seryjny dwa młodsze bajty	-
4055	R	065535	Wersja programu (*100)	-
4056	RW	065535	Wyświetlane parametry wielkości	0xFFFF
4057			zarezerwowane	

W nawiasach [] umieszczona jest odpowiednio: rozdzielczość lub jednostka.

Energie są udostępniane w setkach watogodzin (varogodzin) w podwójnych rejestrach 16-bitowych, dlatego przy przeliczaniu wartości poszczególnych energii z rejestrów należy podzielić je przez 10 tj.:

Energia czynna pobierana = (wartość rej.4038 x 65536 + wartość rej. 4039) / 10 [kWh] Energia czynna oddawana = (wartość rej.4040 x 65536 + wartość rej. 4041) / 10 [kWh] Energia bierna indukcyjna = (wartość rej.4042 x 65536 + wartość rej. 4043) / 10 [kVarh] Energia bierna pojemnościowa = (wartość rej.4044 x 65536 + wartość rej. 4045) / 10 [kVarh]

Rejestr Statusu (adres 4050, R):

Bit 15 – "1" – uszkodzenie pamięci nieulotnej

Bit 14 – "1" – brak kalibracji lub błędna kalibracja

Bit 13 – "1" – błąd wartości parametrów

Bit 12 – "1" – błąd wartości energii

Bit 11 – "1" – błąd kolejności faz

Bit 7 – "1" – nie upłynął interwał uśredniania mocy

Bit 6 – "1" – częstotliwość do wyliczania THD spoza przedziałów:

48 – 52 dla częstotliwości 50 Hz,

58 – 62 dla częstotliwości 60 Hz

Bit 5 – "1" – za niskie napięcie do pomiaru

częstotliwości

Bit 4 – "1" – za małe napięcie fazy L3

Bit
$$10-z$$
akres prądowy "0" -1 A \sim ; 1" $-$ Bit $3-$ "1" $-$ za małe napięcie fazy L2 5 A \sim Bit Bit zakres Bit $2-$ "1" $-$ za małe napięcie fazy L1 9 8 napięciowy Bit $1-$ "1" $-$ zużyta bateria czasu RTC 0 0 57,7 V \sim Bit $0-$ stan wyjścia przekaźnika "1" $-$ On, 0 1 230 V \sim "0" $-$ off

Rejestr Statusu 2 – charakter mocy biernej (adres 4051, R):

Bity 15 12 - zarezerwowane	Bit 5 – "1" – pojemnościowy L2
Bit 11 – "1" – pojemnościowy 3L	maksimum
maksimum	Bit 4 – "1" – pojemnościowy L2
Bit 10 – "1" – pojemnościowy 3L	minimum
minimum	Bit 3 – "1" – pojemnościowy L2
Bit 9 – "1" – pojemnościowy 3L	Bit 2 – "1" – pojemnościowy L1
Bit 8 – "1" – pojemnościowy L3	maksimum
maksimum	Bit 1 – "1" – pojemnościowy L1
Bit 7 – "1" – pojemnościowy L3	minimum
minimum	Bit 0 – "1" – pojemnościowy L1
Bit 6 – "1" – pojemnościowy L3	

Rejestr konfiguracyjny wyświetlanych parametrów wielkości podstawowych (adres 4056, R/W):

Bit 15 – "1" – wyświetlanie daty i czasu

Bit 14 – "1" – wyświetlanie wykorzystania mocy zamówionej

Bit 13 – "1" – wyświetlanie prądu w przewodzie neutralnym

Bit 12 – "1" – wyświetlanie mocy czynnej uśrednionej

Bit 11 – "1" – wyświetlanie częstotliwości

Bit 10 – "1" – wyświetlanie THD napięcia

Bit 9 – "1" – wyświetlanie THD prądu Bit 8 – "1" – wyświetlanie energii biernej indukcyjnej

Bit 7 – "1" – wyświetlanie energii biernej pojemnościowej
Bit 6 – "1" – wyświetlanie energii czynnej oddawanej
Bit 5 – "1" – wyświetlanie energii czynnej pobieranej
Bit 4 – "1" – wyświetlanie tangensa mocy
Bit 3 – "1" – wyświetlanie współczynnika mocy
Bit 2 – "1" – wyświetlanie mocy pozornej
Bit 1 – "1" – wyświetlanie mocy biernej
Bit 0 – "1" – wyświetlanie napięcia międzyfazowego

Adres rejestrów 16 bit	Adres rejestru 32 bit	Operacje	Opis	Jednostka
6000/7000	7500	R	Napięcie fazy L1	V
6002/7002	7501	R	Prąd fazy L1	Α
6004/7004	7502	R	Moc czynna fazy L1	W
6006/7006	7503	R	Moc bierna fazy L1	var
6008/7008	7504	R	Moc pozorna fazy L1	VA
6010/7010	7505	R	Współczynnik mocy (PF) fazy L1	-
6012/7012	7506	R	Stosunek mocy biernej do czynnej fazy L1	-
6014/7014	7507	R	Napięcie fazy L2	V
6016/7016	7508	R	Prąd fazy L2	Α
6018/7018	7509	R	Moc czynna w fazie L2	W
6020/7020	7510	R	Moc bierna fazy L2	var
6022/7022	7511	R	Moc pozorna fazy L2	VA
6024/7024	7512	R	Współczynnik mocy czynnej fazy L2	-
6026/7026	7513	R	Stosunek mocy biernej do czynnej fazy L2	-
6028/7028	7514	R	Napięcie fazy L3	V

			,	
6030/7030		R	Prąd fazy L3	Α
6032/7032	7516	R	Moc czynna fazy L3	W
6034/7034		R	Moc bierna fazy L3	var
6036/7036	7518	R	Moc pozorna fazy L3	VA
6038/7038	7519	R	Współczynnik mocy (PF) fazy L3	-
6040/7040	7520	R	Stosunek mocy biernej do czynnej fazy L3	-
6042/7042	7521	R	Napięcie 3-fazowe średnie	V
6044/7044	7522	R	Prąd 3-fazowy średni	Α
6046/7046	7523	R	Moc 3-fazowa czynna (P1+P2+P3)	W
6048/7048	7524	R	Moc 3-fazowa bierna (Q1+Q2+Q3)	var
6050/7050	7525	R	Moc 3-fazowa pozorna (S1+S2+S3)	VA
6052/7052	7526	R	Współczynnik mocy (PF) średni	-
6054/7054	7527	R	Stosunek mocy biernej do czynnej średni	•
6056/7056	7528	R	Częstotliwość	Hz
6058/7058	7529	R	Napięcie międzyfazowe L ₁₋₂	V
6060/7060	7530	R	Napięcie międzyfazowe L ₂₋₃	V
6062/7062	7531	R	Napięcie międzyfazowe L ₃₋₁	V
6064/7064	7532	R	Napięcie międzyfazowe średnie	V
6066/7066	7533	R	Moc czynna trójfazowa 15, 30, 60 minutowa (P1+P2+P3)	W
6068/7068	7534	R	THD U1	%
6070/7070		R	THD U2	%
6072/7072		R	THD U3	%
6074/7074	7537	R	THD I1	%
6076/7076	7538	R	THD I2	%
6078/7078	7539	R	THD I3	%
6080/7080	7540	R	Cosinus kąta pomiędzy U1 i I1	-
6082/7082	7541	R	Cosinus kata pomiędzy U2 i I2	-
6084/7084	7542	R	Cosinus kata pomiędzy U3 i I3	-
6086/7086	7543	R	Cosinus 3-fazowy średni	-
6088/7088	7544	R	Kat pomiędzy U1 i I1	0
6090/7090	7545	R	Kat pomiędzy U2 i I2	0
6092/7092	7546	R	Kat pomiędzy U3 i I3	0
6094/7094	7547	R	Prąd w przewodzie neutralnym (wyliczany z wektorów)	Α
6096/7096	7548	R	Energia czynna pobierana 3-fazowa (ilość przepełnień rejestru 7549, zerowana po przekroczeniu 99999999,9 kWh)	100 MWh
6098/7098	7549	R	Energia czynna pobierana 3 –fazowa (licznik zliczający do 99999,9 kWh)	kWh
6100/7100	7550	R	Energia czynna oddawana 3-fazowa (ilość przepełnień rejestru 7551, zerowana po przekroczeniu 99999999,9 kWh)	100 MWh

			Energia ezypna oddowena 2 fazowa	
6102/7102	7551	R	Energia czynna oddawana 3 –fazowa (licznik zliczający do 99999,9 kWh)	kWh
6104/7104	7552	R	Energia bierna indukcyjna 3-fazowa (ilość przepełnień rejestru 7553, zerowana po przekroczeniu 99999999,9 kVarh)	100 Mvarh
6106/7106	7553	R	Energia bierna indukcyjna 3 –fazowa (licznik zliczający do 99999,9 kVarh)	kvarh
6108/7108	7554	R	Energia bierna pojemnościowa 3-fazowa (ilość przepełnień rejestru 7555, zerowana po przekroczeniu 99999999,9 kVarh)	100 Mvarh
6110/7110	7555	R	Energia bierna pojemnościowa 3 –fazowa (licznik zliczający do 99999,9 kVarh)	kvarh
6112/7112	7556		zarezerwowane	
6114/7114	7557		zarezerwowane	
6116/7116	7558		zarezerwowane	
6120/7118	7559		zarezerwowane	
6120/7120	7560	R	Czas – godziny, minuty	-
6122/7122	7561	R	Czas – miesiąc, dzień	-
6124/7124	7562	R	Czas - rok	-
6126/7126	7563	R	Moc zamówiona wykorzystana	%
6128/7128	7564	R	Napięcie L1 min	V
6130/7130	7565	R	Napięcie L1 max	V
6132/7132	7566	R	Napięcie L2 min	V
6134/7134	7567	R	Napięcie L2 max	V
6136/7136	7568	R	Napięcie L3 min	V
6138/7138	7569	R	Napięcie L3 max	V
6140/7140	7570	R	Prąd L1 min	Α
6142/7142	7571	R	Prąd L1 max	А
6144/7144	7572	R	Prąd L2 min	Α
6146/7146	7573	R	Prąd L2 max	Α
6148/7148	7574	R	Prąd L3 min	Α
6150/7150	7575	R	Prąd L3 max	Α
6152/7152	7576	R	Moc czynna L1 min	W
6154/7154	7577	R	Moc czynna L1 max	W
6156/7156	7578	R	Moc czynna L2 min	W
6158/7158	7579	R	Moc czynna L2 max	W
6160/7160	7580	R	Moc czynna L3 min	W
6162/7162	7581	R	Moc czynna L3 max	W
6164/7164	7582	R	Moc bierna L1 min	var
6166/7166	7583	R	Moc bierna L1 max	var
6168/7168		R	Moc bierna L2 min	var
6170/7170	7585	R	Moc bierna L2 max	var
6172/7172	7586	R	Moc bierna L3 min	var

6174/7174	7587	R	Moc bierna L3 max	var
6176/7176		R	Moc pozorna L1 min	VA
6178/7178		R	Moc pozorna L1 max	VA
6180/7180		R	Moc pozorna L2 min	VA
6182/7182		R	Moc pozorna L2 max	VA
6184/7184		R	Moc pozorna L3 min	VA
6186/7186		R	Moc pozorna L3 max	VA
6188/7188		R	Współczynnik mocy (PF) L1 min	- -
6190/7190		R	Współczynnik mocy (PF) L1 max	_
6192/7192		R	Współczynnik mocy (PF) L2 min	_
6194/7194		R	Współczynnik mocy (PF) L2 max	
6196/7196		R	Współczynnik mocy (PF) L3 min	_
6198/7198		R	Współczynnik mocy (PF) L3 max	_
6200/7200		R	Stosunek mocy biernej do czynnej L1 min	_
6202/7202		R	Stosunek mocy biernej do czynnej L1 max	
6204/7204		R	Stosunek mocy biernej do czynnej L2 min	_
6206/7206		R	Stosunek mocy biernej do czynnej L2 max	_
6208/7208		R	Stosunek mocy biernej do czynnej L3 min	_
6210/7210		R	Stosunek mocy biernej do czynnej L3 max	_
6212/7212		R	Napięcie międzyfazowe L ₁₋₂ min	V
6214/7214		R	Napięcie międzyfazowe L ₁₋₂ max	V
6216/7216		R	Napięcie międzyfazowe L ₁₋₂ min	V
6218/7218		R	Napięcie międzyfazowe L ₂₋₃ max	V
6220/7220		R	Napięcie międzyfazowe L ₃₋₁ min	V
6222/7222		R	Napięcie międzyfazowe L ₃₋₁ max	V
6224/7224		R	Napięcie 3-fazowe średnie min	V
6226/7226		R	Napięcie 3-fazowe średnie max	V
6228/7228		R	Prąd 3-fazowy średni min	A
6230/7230			Prąd 3-fazowy średni max	A
6232/7232		R	Moc czynna 3-fazowa min	W
6234/7234		R	Moc czynna 3-fazowa max	W
6236/7236		R	Moc bierna 3-fazowa min	var
6238/7238		R	Moc bierna 3-fazowa max	var
6240/7240		R	Moc pozorna 3-fazowa min	VA
6242/7242		R	Moc pozorna 3-fazowa max	VA
6244/7244		R	Współczynnik mocy (PF) min	- V/ \
6246/7246		R	Współczynnik mocy (PF) max	-
			Stosunek mocy biernej do czynnej 3-fazowy	
6248/7248	7624	R	średni min	-
00-01-0		_	Stosunek mocy biernej do czynnej 3-fazowy	
6250/7250	7625	R	średni max	-
6252/7252	7626	R	Częstotliwość min	Hz
6254/7254		R	Częstotliwość max	Hz
5_0 _0 1			7 - 7 - 10 11	

6256/7256	7628	R	Napięcie międzyfazowe średnie min	V
6258/7258	7629	R	Napięcie międzyfazowe średnie max	V
6260/7260	7630	R	Moc czynna trójfazowa 15, 30, 60 minutowa min	W
6262/7262	7631	R	Moc czynna trójfazowa 15, 30, 60 minutowa max	W
6264/7264	7632	R	harmoniczna U1 / THD U1 min	V / %
6266/7266	7633	R	harmoniczna U1 / THD U1 max	V / %
6268/7268	7634	R	harmoniczna U2 / THD U2 min	V / %
6270/7270	7635	R	harmoniczna U2 / THD U2 max	V / %
6272/7272	7636	R	harmoniczna U3 / THD U3 min	V / %
6274/7274	7637	R	harmoniczna U3 / THD U3 max	V / %
6276/7276	7638	R	harmoniczna I1 / THD I1 min	A/%
6278/7278	7639	R	harmoniczna I1 / THD I1 max	A/%
6280/7280	7640	R	harmoniczna I2 / THD I2 min	A/%
6282/7282	7641	R	harmoniczna I2 / THD I2 max	A/%
6284/7284	7642	R	harmoniczna I3 / THD I3 min	A/%
6286/7286	7643	R	harmoniczna I3 / THD I3 max	A/%
6288/7288	7644	R	Cosinus kąta pomiędzy U1 i I1 min	-
6290/7290	7645	R	Cosinus kąta pomiędzy U1 i I1 max	
6292/7292	7646	R	Cosinus kąta pomiędzy U2 i I2 min	-
6294/7294	7647	R	Cosinus kąta pomiędzy U2 i I2 max	-
6296/7296	7648	R	Cosinus kąta pomiędzy U3 i I3 min	1
6298/7298	7649	R	Cosinus kąta pomiędzy U3 i I3 max	-
6300/7300	7650	R	Cosinus 3-fazowy średni min	ı
6302/7302	7651	R	Cosinus 3-fazowy średni max	ı
6304/7304	7652	R	Kąt pomiędzy U1 i I1 min	0
6306/7306	7653	R	Kąt pomiędzy U1 i I1 max	0
6308/7308	7654	R	Kąt pomiędzy U2 i I2 min	0
6310/7310	7655	R	Kąt pomiędzy U2 i I2 max	0
6312/7312	7656	R	Kąt pomiędzy U3 i I3 min	0
6314/7314	7657	R	Kąt pomiędzy U3 i I3 max	0
6316/7316	7658	R	Prąd w przewodzie neutralnym min	Α
6318/7318	7659	R	Prąd w przewodzie neutralnym max	Α

W przypadku przekroczenia dolnego wpisywana jest wartość -1e20, natomiast przy przekroczeniu górnym lub występującym błędzie wpisywana jest wartość 1e20.

9 KODY BŁĘDÓW

Podczas pracy miernika mogą pojawić się komunikaty o błędach. Niżej przedstawiono przyczyny błędów

- Err1 - gdy zbyt małe jest napięcie lub prąd przy pomiarze:

- PF _i , tgφ _i , cos, THD	poniżej 10% U _n ,
- PF _i , tgφ _i , cos	poniżej 1% I _n ,
- THD	poniżej 10% I _n ,
- f	poniżej 10% U _n ,
- I _{(N),}	poniżej 10% In;

- bAd Freq przy pomiarze THD, gdy wartość częstotliwości jest spoza przedziału 48 – 52 Hz dla 50Hz i 58 – 62 dla 60 Hz;
- Err bat wyświetlane gdy bateria od wewnętrznego zegara RTC jest zużyta. Pomiar wykonywany jest po włączeniu zasilania i codziennie o północy. Komunikat wyłączyć można przyciskiem .
 Wyłączony komunikat pozostanie nieaktywny do ponownego włączenia miernika;
- Err CAL, Err EE wyświetlane gdy pamięć w mierniku uległa uszkodzeniu. Miernik należy odesłać do producenta.
- Err PAr wyświetlane gdy parametry pracy w mierniku są nieprawidłowe. Należy przywrócić nastawy fabryczne (z poziomu menu lub przes RS-485). Komunikat wyłączyć można przyciskiem .
- Err Enrg wyświetlane gdy wartości energii w mierniku są nieprawidłowe. Komunikat wyłączyć można przyciskiem —.
 Nieprawidłowe wartości energii są zerowane.
- Err L3 L2 błąd kolejności faz, należy zamienić podłączenia fazy 2 z fazą 3. Komunikat wyłączyć można przyciskiem .
 Wyłączony komunikat pozostanie nieaktywny do ponownego włączenia miernika;

- przekroczenie dolne. Wartość mierzona mniejsza niż dolny zakres pomiarowy wartości.
- przekroczenie górne. Wartość mierzona większa niż górny zakres pomiarowy wartości lub błąd pomiaru.

10 DANE TECHNICZNE

Zakresy pomiarowe i dopuszczalne błędy podstawowe

Tablica 11

Wielkość	Zakres wskazań	Zakres					Błąd
mierzona	*	pomiarowy	L1	L2	L3	Σ	podstaw
							owy
Prąd In 1 A 5 A	0,00 1,5 kA 0,00 60 kA	0,005 1,200 A~ 0,025 6,000 A~	•	•	•		±0,2% zak
Napięcie L-N 57,7 V 230 V 290 V		49 64 V~ 195 253 V~ 246 300 V~	•	•	•		±0,2% w.m
Napięcie L-L 100 V 400 V 500 V	0,0 440 kV 0,0 1,752 MV 0,0 2,000 MV	85 110 V~ 340 440 V~ 425 520 V~	•	•	•		±0,5% w.m
Częstotliwość	47,0 63,0 Hz	47,0 63,0 Hz	•	•	•		±0,2% w.m
Moc czynna	-9999 MW0,00 W 9999 MW	-1,52 kW1,0 W 1,52 kW	•	•	•	•	±0,5% zak
Moc bierna	-9999 Mvar0,00 var 9999 Mvar	-1,52 kvar1,0 var 1,52 kvar	•	•	•	•	±0,5% zak

Moc pozorna	0,00 VA 9999	1,0 VA 1,52			_		±0,5%
	MVA	kVA	•	•	•	•	zak
Współczynnik	-1 0 1	-1 0 1				•	±1 % zak
PF							1 /0 Zak
Tangens φ	-1,2 0 1,2	-1,2 0 1,2	•	•	•	•	±1 % zak
Cosinus φ	-1 1	-1 1	•	•	•	•	±1 % zak
φ	-180 180	-180 180					±0,5 %
							zak
Energia	099 999 999,9						±0,5 %
czynna	kWh					•	zak
pobierana							Zak
Energia	099 999 999,9						± 0,5 %
czynna	kWh					•	zak
oddawana							Zak
Energia	099 999 999,9						± 0,5 %
bierna	kVarh					•	
indukcyjną							zak
Energia	099 999 999,9						
bierna	kVarh						± 0,5 %
pojemnościo						•	zak
wa							
THD	0100%	0100 %	•	•	•		± 5 % zak

^{*}Zależnie od ustawionej przekładni tr_U (przekładnia przekładnika napięciowego: 0,1 .. 4000,0) oraz tr_I (przekładnia przekładnika prądowego: 1 .. 10000)

w.m - błąd względem wartości mierzonej

zak - błąd względem wartości zakresu

Uwaga! Dla prawidłowego pomiaru wymagana jest obecność napięcia o wartości większej od 0,85 Un na fazie L3.

Pobór mocy:

- w obwodzie napięciowym L1,L2 ≤ 0,05 VA

- w obwodzie napięciowym L3 ≤ 3 VA

- w obwodach prądowych ≤ 0,05 VA

Pole odczytowe dedykowany wyświetlacz LCD

3.5",

Wyjścia przekaźnikowe 2 przekaźniki, styki beznapięciowe

zwierne

obciążalność 250 V~/ 0,5 A~ (a.c.)

Interfejs szeregowy RS485: adres 1..247

tryb: 8N2, 8E1, 8O1,8N1

prędkość: 4.8, 9.6, 19.2, 38,4 kbit/s protokół transmisji: Modbus RTU

czas odpowiedzi: 750 ms

Wyjście impulsowe energii Wyjście typu OC (NPN), pasywne

klasy A wg PN-EN

62053-31; napięcie zasilania 18...27V,

prąd 10...27mA

Stała impulsów wyjścia

typu OC 5000 - 20000 imp./kWh

niezależnie od ustawionych przekładni

tr_U, tr_I

Stopień ochrony zapewniany przez obudowę

od strony czołowej IP 65 od części zatablicowej IP 20

Masa 0,3 kg

Wymiary 96 x 96 x 77 mm

Warunki odniesienia i znamionowe warunki użytkowania.

- napięcie zasilania /z obwodu pomiarowego fazy L3/:

195 .. 253 V a.c. lub 49 .. 64 V a.c. 47 ...63 Hz

- sygnał wejściowy: 0 .. <u>0,005..1,2I_n</u> dla prądu; <u>0,85..1,1U_n</u>

dla napięcia;

0 .. <u>0,01..1,2I_n</u>; 0..<u>0,85..1,1U_n</u>;

dla współczynników PF_i ,tφ_i

częstotliwość <u>47..63</u> Hz; sinusoidalny (THD ≤ 8%)

- współczynnik mocy <u>-1...0...1</u>

- temperatura otoczenia -25..23..+55 °C

- temperatura magazynowania -30..+70 °C

- wilgotność 25 ... 95 % (niedopuszczalne

skroplenia)

- dopuszczalny współczynnik szczytu:

natężenia prądu 2napięcia 2

- zewnętrzne pole magnetyczne 0...40 ...400 A/m

- przeciążalność krótkotrwała (5 s)

wejścia napięciowe 2 Un

wejścia prądowe 10 In

pozycja pracy dowolna

- czas nagrzewania 5 min.

Bateria zegara czasu rzeczywistego: CR2032

Błędy dodatkowe:

w % błędu podstawowego

od częstotliwości sygnałów wejściowych50%

od zmian temperatury otoczenia50 % / 10 °C

- dla THD > 8% < 100 %

Normy spełniane przez miernik

Kompatybilność elektromagnetyczna:

odporność na zakłócenia wg PN-EN 61000-6-2

emisja zakłóceń

wg PN-EN 61000-6-4

Wymagania bezpieczeństwa:

według normy PN-EN 61010-1

izolacja między obwodami: podstawowa,

• kategoria instalacji III,

• stopień zanieczyszczenia 2,

maksymalne napięcie pracy względem ziemi:

dla obwodów zasilania i pomiarowych: 300 V

– dla pozostałych obwodów: 50 V

wysokość npm
 < 2000m,

11 KOD WYKONAŃ

Kod wykonań miernika parametrów sieci ND10.

Tablica 12

MIERNIK PARAMETRÓW SIECI			Y	Х	xx	X	x
ND10			_	\			
Prąd wejściowy I _n							
1A (X/1)	•						
5A (X/5)		2					
Napięcie wejściowe							
(fazowe/międzyfazowe) U _n							
3x 57.7 / 100 V			1				
3x 230 / 400 V			2				
3x 290 / 500 V		,	3				
Wyjście cyfrowe							
z interfejsem RS485				1			
Rodzaj wykonania							
standardowe					00		
specjalne *					XX		
Wersja językowa							
polska						Р	
angielska						Ε	
inna						X	
Próby odbiorcze							•
z atestami kontroli technicznej							1
wg uzgodnień z odbiorcą *							X

^{*} numerację wykonania ustali producent,

PRZYKŁAD ZAMÓWIENIA: kod ND10 22100P1 - oznacza miernik o zakresie wejściowym 5 A, 3x 230/400 V, z interfejsem RS485, w wykonaniu standardowym, w polskiej wersji językowej, z atestem kontroli technicznej.

LUMEL S.A.

ul. Sulechowska 1, 65-127 Zielona Góra tel.: +48 68 45 75 100, fax +48 68 45 75 508 www.lumel.com.pl

Informacja techniczna:

tel.: (68) 45 75 306, 45 75 180 e-mail: sprzedaz@lumel.com.pl

Realizacja zamówień:

tel.: (68) 45 75 207, 45 75 209, 45 75 218, 45 75 341

fax.: (68) 32 55 650

Pracownia systemów automatyki:

tel.: (68) 45 75 228, 45 75 117

Wzorcowanie:

tel.: (68) 45 75 161

e-mail: laboratorium@lumel.com.pl