The Orbit-Shuffler Theorem

Spencer T. Parkin

March 21, 2017

We work here to prove a generalization of the Orbit-Stabilizer Theorem. Let G be a finite permutation group with each $g \in G$ defined over the set Ω . We say that G is a subgroup of the symmetric group of Ω . Given a non-trivial subset P of Ω , we define, for any $g \in G$,

$$P^g = \{ p^g | p \in P \}.$$

We also define

$$G^P = \{ g \in G | P^g = P \},$$

and call this the shuffler of P in G. Of course, when P is a singleton set, this is the stabilizer of the sole member of P in G.

Lemma 0.1. G^P is a subgroup of G.

Proof. Closure being trivial, we need only show that for any $a \in G^P$, we also have $a^{-1} \in G^P$. To do this, we must convince ourselves that since a is a bijection, we must have $P^a = P$ if and only if $P = P^{a^{-1}}$.

Lemma 0.2. For any pair of elements $a, b \in G$, we have

$$P^a = P^b \implies P^{ab^{-1}} = P.$$

Proof. If $p \in P$, then $p^b \in P^b = P^a$ means there exists $q \in P$ such that $p^b = q^a$. Then $q^{ab^{-1}} = p \implies p \in P^{ab^{-1}}$. On the other hand, let $p \in P^{ab^{-1}}$. So there exists $q \in P$ such that $q^{ab^{-1}} = p$. Now $q^a \in P^a = P^b \implies p^b \in P^b$. So there is $r \in P$ such that $p^b = r^b \implies p = r \in P$.

We now define

$$P^G = \{ P^g | g \in G \},$$

and say that P^G is the orbit of P in G. We can now prove the following theorem.

Theorem 0.1 (Orbit-Shuffler Theorem). A relationship between |G|, $|G^P|$ and $|P^G|$ is given by

$$|G| = |G^P||P^G|.$$

Proof. Letting T be a right-transversal of G^P in G, we simply find a bijection between T and P^G . Map $t \in T$ to P^t . Let $a,b \in T$ such that $P^a = P^b$. It follows that $P^{ab^{-1}} = P$, and therefore, $ab^{-1} \in G^P$. In turn, we have $G^P a = G^P b \implies a = b$, since a and b are taken from T.

Defining

$$G^{[P]} = \{ g \in G | p^g = p \text{ for all } p \in P \},$$

it is worth noting where the proof of our theorem would fail if we replaced G^P with $G^{[P]}$. Where we run in to trouble is the implication

$$P^{ab^{-1}} = P \implies ab^{-1} \in G^{[P]}.$$