

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задача 9_1_2 »

С тудент группы	ИКБО-27-21	Шевелёв И.А.
Руководитель практики	Ассистент	Морозов В.А.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	8
Описание алгоритма	10
Блок-схема алгоритма	14
Код программы	17
Тестирование	19
ЗАКЛЮЧЕНИЕ	20
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	2.1

введение

Постановка задачи

Перегрузка побитовых логических операции

Задан элемент, состоящий из ячейки памяти данных объемом один байт и шаблона активных битов (размер также равен 1 байту). Между данными из ячеек памяти двух элементов можно выполнить побитовые логические операции умножения и сложения. От каждого элемента в операциях участвуют только те биты данных, которые соответствуют шаблону активных битов элемента.

Работа с элементами выполняется следующим образом. Первоначально создаём элементы, определяем для них содержимое ячейки памяти и значение шаблона в шестнадцатеричной системе счисления. Далее описываем логические выражения, включающие эти элементы.

Написать программу, которая моделирует работу с элементами.

- В основной программе реализовать алгоритм:
- 1. Ввод количества элементов n.
- 2. В цикле для каждого элемента вводится исходное значение ячейки памяти и значение шаблона активных битов. Далее создается объект, в конструктор которого передаются значения памяти и шаблона. Каждому объекту присваивается свой номер от 1 до п.
- 3. В цикле, последовательно и построчно, вводится «номер первого объекта» «символ логической операции & или |» «номер второго объекта»
- 4. После каждого нового ввода логического выражения выполняется логическая операция, результат записывается в ячейку памяти первого элемента (объекта).
- 5. Цикл завершается в тот момент, когда на ввод больше нет данных.
- 6. Выводится результат последней операции в шестнадцатеричном формате.

Количество элементов больше или равно 2. Использовать перегрузку логических побитовых операций, реализовав в составе описания класса.

Пояснения.

Значения в пояснении заданы в шестнадцатеричной системе счисления. Значение логической единицы (1) в шаблоне задаёт активный бит значения из ячейки памяти. Если значение шаблона равно 15, то активными будут 2-й биты 4-й, И 0-й значения из ячейки считаться памяти. В логической операции между двумя элементами участвуют только те активные биты ячеек памяти, позиции которых совпадают у обоих элементов (находятся на пересечении). Например, если значение шаблона одного элемента равно 0F, а другого 0C, то в логической операции участвуют только 3-й и 2-й биты обоих значений. Соответственно, при записи результата в первый элемент изменениям подвергаются только те биты, которые участвовали В операции.

шаблона 0F. Первый e1: 8F. элемент значение памяти значение e2: 02, шаблона 01. элемент значение памяти значение Операция **e**1 & e2. Значение первого равно 8E, элемента

шаблона 0F. Первый элемент e1: значение памяти 8F, значение 02, шаблона F0. Второй элемент e2: значение памяти значение Операция e1 & e2. Значение первого элемента равно 8F,

Описание входных данных

Первая строка содержит значение количества элементов n: «Натуральное значение»

Далее n строк содержат

«Шестнадцатеричное значение» «Шестнадцатеричное

значение»

Начиная с n + 2 строки:

«Натуральное значение» «Знак операции» «Натуральное

значение»

Описание выходных данных

«Шестнадцатеричное значение»

Метод решения

Основная программа:
Целочисленный тип данных
Символьный тип данных
Объекты ввода/вывода потока данных (cin/cout библиотеки <iostream>)</iostream>
Цикл while, for
Условный оператор if
Вектор библиотеки <vector></vector>
Класс Нех:
Модификатор доступа public, private
Символьный тип данных
Конструктор - для возможности объявления объекта
Параметризированный конструктор - для передачи значений в свойства объекта
Побитовые операторы &,
Методы getId, operator &=, operator = - перегрузка побитовых операций &=, =, и метод перевода в целочисленный тип данных

Номер класса	Класс	Модификатор доступа	Описание	Номер	Коментарий
1	Hex	DUDIIC	Перегрузка побитовых операций		

Описание алгоритма

разработки, необходимого Согласно после определения этапам инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Класс объекта: Нех

Модификатор доступа: public

Метод: operator &=

Функционал: Выполнение побитовой операции &

Параметры: Hex& other

Возвращаемое значение: Hex&, *this

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода operator &= класса Hex

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инцилизация символьного типа данных templ1 с значением base, templ2 с значение other.base	2	
2		Инцилизация символьного типа данных tmp с значение templ & other.templ	3	
3		Присвоение templ1 значение templ1 & tmp	4	
4		Присвоение templ2 значение templ2 & tmp	5	
5		Присвоение templ2 значение	6	

	templ2 & templ1		
6	Присвоение base значение base & ~tmp	7	
7	Присвоение base значение base templ2	8	
8	Возрат *this	Ø	

Класс объекта: Нех

Модификатор доступа: public

Метод: operator |=

Функционал: Выполнение побитовой операции |

Параметры: Hex& other

Возвращаемое значение: Hex&, *this

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода operator |= класса Hex

N₂	Предикат	Действия	№ перехода	Комментарий
1		Присвоение свойству base значение base (other.base & (templ & other.templ))	2	
2		Возрат *this	Ø	

Класс объекта: Нех

Модификатор доступа: public

Метод: getId

Функционал: Возрат значение в типе int

Параметры: нет

Возвращаемое значение: int, Целое число

Алгоритм метода представлен в таблице 4.

Таблица 4. Алгоритм метода getId класса Hex

N₂	Предикат	Действия	№ перехода	Комментарий
1		return static_cast <int>(base)</int>	Ø	

Функция: main

Функционал: Главная функция программы

Параметры: нет

Возвращаемое значение: int, Код возрата

Алгоритм функции представлен в таблице 5.

Таблица 5. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Объявление целочисленных переменных n, num1, num2, num_obj1, num_obj2	2	
2		Объявление переменной symbol символьного типа данных	3	
3		Ввод значения п	4	
4		Вызов метода unsetf(ios::dec) объекта cin	5	
5		Вызов метода setf(ios::hex) объекта cin	6	
6		Объявление объекта mas класса vector	7	
7	i < n	Инкремент і	8	

			10	
8		Ввод значений num1, num2	9	
9		Присвоение элементу массива mas[i] объект Hex(num1, num2)	7	
10	cin.get() != EOF		11	
			13	
11		Ввод значений num_obj1, symbol, num_obj2	12	
12	symbol == '&'	Присвоение элементу массива mas[num_obj1-1] значение &= mas[num_obj2-1]	10	
12	symbol == ' '	Присвоение элементу массива mas[num_obj1-1] значение = mas[num_obj2-1]	10	
13		Вызов метода unsetf(ios::dec) объекта cin	14	
14		Вызов метода setf(ios::hex ios::uppercase) объекта cin	15	
15		Вызов метода fill('0') объекта cin	16	
16		Вызов метода width('2') объекта cin	17	
17		Вывод значение метода getId объекта элемента массива mas[num_obj1-1]	Ø	

Блок-схема алгоритма

Рис. 1. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл hex.cpp

```
#include "hex.h"
int Hex::getId(){
        return static_cast<int>(base);
}
Hex& Hex::operator &=(Hex& other){
        unsigned char templ1 = base, templ2 = other.base;
        unsigned char tmp = templ & other.templ;
        templ1 &= tmp;
        templ2 &= tmp;
        templ2 &= templ1;
        base &= ~tmp;
        base |= templ2;
        return *this;
Hex& Hex::operator |=(Hex& other){
        base = base | (other.base & (templ & other.templ));
        return *this;
}
```

Файл hex.h

```
#ifndef HEX H
#define HEX H
#include <iostream>
#include <vector>
#include <stdlib.h>
#include <stdio.h>
using namespace std;
class Hex{
private:
        unsigned char templ, base;
public:
        int getId();
        Hex() {};
        Hex(int base, int templ) : base(static_cast<unsigned char>(base)),
templ(static_cast<unsigned char>(templ)){};
        Hex& operator &=(Hex& other);
        Hex& operator |=(Hex& other);
```

```
};
#endif
```

Файл main.cpp

```
#include "hex.h"
int main()
        // program here
        int n, num1, num2, num_obj1, num_obj2;
        char symbol;
        cin >> n;
        cin.unsetf(ios::dec);
        cin.setf(ios::hex);
        vector<Hex> mas(n);
        for(int i = 0; i < n; ++i){
                cin >> num1 >> num2;
                mas[i] = Hex(num1, num2);
        while(cin.get() != EOF){
                cin >> num_obj1 >> symbol >> num_obj2;
                if(symbol == '&'){
                         mas[num_obj1-1] &= mas[num_obj2-1];
                }else if(symbol == '|'){
                         mas[num_obj1-1] |= mas[num_obj2-1];
        }
        cout.unsetf(ios::dec);
        cout.setf(ios::hex | ios::uppercase);
        cout.fill('0');
        cout.width(2);
        cout << mas[num_obj1-1].getId();</pre>
        return(0);
}
```

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
4 0F 14 AFD 8F 12 4D AF DB0 1 & 2 2 3 4 & 2	AF	AF
3 0F 14 AFD 8F 12 4D 1 & 2 2 3 3 & 1	12	12
2 0F 14 AFD 8F 1 & 2 2 & 1 1 2	0F	0F

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).