姓名	学号 <u>_20</u>	
[说明] (1)第一、二、三、	四、五题的答案直接填在试题纸上 解题过程和结果写在试题纸上;卷	:
(3) 除非特别说明,	计算结果至少保留4位有效数字,	例如: 2.019, 2.019×10 ⁻³ , 201900等
(4) 考试时间为 120	分钟	
1. $(6 分)$ 函数 $f(x)$	$=e^{2x-\sin x}$,考虑积分 $\int_0^1 f(x)dx$,	利用节点 $x_k = \frac{k}{4}(k = 0, 1, 2, 3, 4)$ 用复合辛普
森公式求得积分的近似	以值为; 若以 x ₀	$_{_{0}}$, $_{x_{2}}$, $_{x_{4}}$ 为插值节点,那么函数 $f(x)$ 的二次
插值多项式 <i>P(x)</i> =		$\int_{0}^{2} P(x) dx = $
2.(6 分)考虑如下的	常微分方程初值问题: $\begin{cases} y' = -y^2 \\ y(0) \end{cases}$	+2x+1 ,取步长 $h=0.2$,利用改进欧拉沙
计算 $y(1)$ 的近似值为	y ⁽¹⁾ =, 若将步长减半,	即选取步长 $h=0.1$,利用改进欧拉法计算
$y(1)$ 的近似值为 $y^{(2)}$,	如此步长逐步减半细分下去,当火	$ x^{(k)} - y^{(k-1)} < 10^{-3}$ 时停止,则此时 $k = $
利用 ode23 命令,取绡	色对误差限为 10^{-3} ,得到 $yig(1ig)$ 的近	似值为。
3. (8 分)主对角线元	元素均为 4,两个次对角线元素分别	川为 2 和 1 的矩阵 $A = \begin{bmatrix} 4 & 2 & & \\ 1 & 4 & 2 & \\ & \ddots & \ddots & \vdots \\ & & 1 & 4 \end{bmatrix}_{n \times n}$,
b为 A 的行和构成的 I	n维列向量。求 $n = 50$ 时的∞范数	条件数 $\mathit{cond}_{\scriptscriptstyle{\infty}}(A)$ =,用高
斯-赛德尔迭代法求解	方程组 $Ax = b$,若初值 $x^{(0)}$ 取 0 向	向量,则第 8 步迭代解 $x^{(8)}$ 的第 4,12,20 个分
量依次为	,此时	对残差的 2 范数 $\left\ \boldsymbol{A} \boldsymbol{x}^{(8)} - \boldsymbol{b} \right\ _2 =$
	方程组精确解的绝对误差为	
4. (4分)用 fminunc	命令计算 $\min f(x_1, x_2) = x_1^2 + 3.$	$x_2^2 - 2x_1x_2 + 5x_1 - 6x_2$ 的局部极小值,初值
$ \mathbb{R} \begin{pmatrix} 0 \\ 0 \end{pmatrix}, 搜索方向选 $	用最速下降法,自变量与函数	收值的精度设定都取 10 ⁻³ ,此时近似解
x * =	,用最速下降法相邻两次	搜索方向的关系是

5. (8分)对一批产品抽样,测得质量指标分别为 9.23, 8.72, 10.31, 9.64, 9.51, 9.34, 9.08, 9.95, 总体分

布服从 $N(\mu,\sigma^2)$, σ^2 未知。写出参数 μ 的置信水平为 0.90 的置信区间	_,写出标
准差 σ 的置信水平为 0.95 的置信区间。对参数 μ 做假设	殳检验,
$H_0: \mu = 9.75, H_1: \mu \neq 9.75$,以样本均值为检验统计量,该检验的 ${\bf p}$ 值为	,若
使显著性水平 $\alpha = 0.05$ 下接受原假设的 \bar{x} 取值范围不超过 0.1 ,样本容量 n 应满足	0

6. (18 分)某电影院调查两类广告费用(电视广告费用和网络广告费用)对每周收入的影响,得到下面的数据(单位:万元)。

	每周收入 y	192	180	190	184	190	190	188	188
	电视广告费用 🔏	3.0	4.2	3.0	5.0	6.6	4.6	8.4	5.0
ſ	网络广告费用 X2	10.0	4.2	8.0	5.0	6.0	7.0	5.0	6.0

- (1) 确定线性回归模型 $y = a_0 + a_1 x_1 + a_2 x_2$ 的系数 a_0, a_1, a_2 ,并检验模型的有效性。(取显著性水平为 0.025)
- (2) 取显著性水平为 0.025, 上述数据中是否有异常数据? 如有,请指出来并将异常数据去掉后重新计算。
- (3) 以(2)中的模型为基础,若该电影院某周广告费预算不能超过 10 万元,且要求任何一类广告费用不得超过另一类广告费用的两倍,请问该预算应该如何分配给电视广告和网络广告?最大收入为多少?
- (4)继续(3)的讨论:如果广告费的最小单位为 1000 元(即广告费应为 1000 元的整数倍),请建立相应的优化模型(不要求求解)。