Non-Parametric Methods: nearest neighbor rule

CS 189

Alexei Efros

Fall 2015

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

• Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)

Key idea: Just store all training examples $\langle x_i, f(x_i) \rangle$

Nearest neighbor:

• Given query instance x_q , first locate nearest training example x_n , then estimate $\hat{f}(x_q) \leftarrow f(x_n)$

k-Nearest neighbor:

- Given x_q , take vote among its k nearest neighbors (if discrete-valued target function)
- Take mean of f values of k nearest neighbors (if real-valued)

$$\hat{f}(x_q) \leftarrow \frac{1}{k} \sum_{i=1}^k f(x_i)$$

Nearest-Neighbor Rule

- Also known as:
 - instance-based learning
 - memory-based learning
 - exemplar-based learning
 - lazy learning

- What do you do at training time?
 - Nothing! The only O(0) algorithm in this class!

• A type of non-parametric method

Parametric vs. Non-Parametric

- Parametric: # parameters is independent of N
- Non-parametric: # parameters grows with N

- Studied so far:
 - Logistic Regression?
 - Parzen Windows?
 - Linear Discriminate Analysis?
 - k-Nearest Neighbor
 - Kernel SVM?

Analogy: Legal Systems

- Civil Law
 - Codified / Continental Law
 - "organized laws that attempt to cover exhaustively the various legal domains"
- Common Law
 - Case / Precedent Law

Linear Classifier

1-Nearest Neighbor

15-Nearest Neighbor

What's the decision region for NN?

closest post-office

• all homes with the same post-office (ZIP code)

Voronoi Diagram

S: Training set

Voronoi cell of $\mathbf{x} \in S$:

All points closer to \mathbf{x} than to any other instance in S

Region of class C:

Union of Voronoi cells of instances of C in S

1 vs. 2 nearest neighbors

(left) Voronoi tesselation for five exemplars. (middle) Taking the two nearest exemplars into account leads to a further subdivision of each Voronoi cell. (right) The shading indicates which exemplars contribute to which cell.

Behavior at the limit

• Cover and Hart (1967)

 $\epsilon^*(\mathbf{x})$: Error of optimal prediction

 $\epsilon_{NN}(\mathbf{x})$: Error of nearest neighbor

Theorem: $\lim_{n\to\infty} \epsilon_{NN} \leq 2\epsilon^*$

• For k-NN:

Theorem: $\lim_{n\to\infty, k\to\infty, k/n\to 0} \epsilon_{kNN} = \epsilon^*$

Advantages and Disadvantages

Advantages:

- Training is very fast
- Learn complex target functions easily
- Don't lose information

Disadvantages:

- Slow at query time
- Lots of storage
- Easily fooled by irrelevant attributes

"Everything is Miscellaneous"

Weinberger, "Everything Is Miscellaneous: The Power of the New Digital Disorder", 2008

Classes/Categories are Overrated

Delayed/Lazy categorization

Label Transfer

Tags: Sky, Water, Beach, Sunny, ...
Time: 1pm, August, 2006, ...
Location: Italy, Greece, Hawaii ...
Photographer: Flickrbug21, Traveller2

im2GPS (using 6 million GPS-tagged Flickr images)

Query Photograph

im2GPS (using 6 million GPS-tagged Flickr images)

Query Photograph

Visually Similar Scenes

Bangkok

Italy

USA

SouthDakota

Lazy label transfer

Elevation gradient = 112 m / km

Elevation gradient magnitude ranking

Population density map

Figure 2. Global population density map.

Population density ranking

Curse of Dimensionality

- Nearest Neighbor is easily mislead in high dimensions
- Easy problems in low-D are hard in High-D
 - "If we could see in high dimension, there would be no need for Machine Learning"
- Low-D intuitions don't apply to High D
 - Everything is far from everything else
- Examples:
 - Points on hyper-grid
 - Hypersphere
 - Hypercube vs. hypersphere
 - High-dimensional Gaussian

Hypersphere / Hypercube ratio

