ADLxMLDS2017 HW3 report

姓名:徐有慶

學號:R05922162

1. Model description

Policy Gradient

Hyperparameters

Gamma = 0.99

■ Model Architecture

Input image = (80, 80, 1)

Conv2d, out_channels=16, kernel_size=[8,8], stride=4, activation=relu

Conv2d, out_channels=32, kernel_size=[4,4], stride=2, activation=relu

Dense, neurons=128, activation=tanh

Dense, neurons=actions number, activation=softmax

Optimizer

RMSprop, Ir=1e-4, decay=0.9

■ Comment

原先有 6 個 actions number,把它降為 3 個 actions number(左、右和停止)。 丟入 model 的 observation 會先經過助教提供的前處理方法,轉成 (80,80,1)的圖片。助教提供的三個 tips 也都有用上

Deep Q Learning

Hyperparameters

Environment step: 沒限制,直到它 train 起來

Experience replay size: 10000

Learning start step: 10000

Target network update frequency: 1000

Online network update frequency: 4

Gamma: 0.99

Batch size: 32

Exploration rate: 1 to 0.05 in the first 1e6 env step

■ Model Architecture

Conv2d, out_channels=32, kernel_size=[8,8], stride=4, activation=relu Conv2d, out_channels=64, kernel_size=[4,4], stride=2, activation=relu Conv2d, out_channels=64, kernel_size=[3,3] stride=1, activation=relu Dense, neurons=512, activation=leaky_relu

Dense, neurons=actions number, activation=leaky_relu

■ Optimizer

RMSprop, Ir=1e-4, decay=0.99

■ Comment

和 PG 一樣,原先有 4 個 action numbers,把它降為只有 2 個 action numbers

2. Learning curve of Policy Gradient on Pong

X 軸為第幾個 episodes

Y 軸為當前 episode 的前 30 個 episodes 的平均 reward

3. Learning curve of Deep Q Learning on Breakout

X 軸為當第幾個 episodes

Y 軸為當前 episode 的前 100 個 episodes 的平均 reward

4. Experimenting with DQN hyperparameters

以 model description 中描述的參數及架構當作 base,再對其他的參數做調整,總共做了三個不同的實驗

Test1

將 Experience replay size 及 Learning start step 降低為 5000,看到有人說調大了 Experience replay size 就 train 起來了,所以想試試看在 batch size 不變的情況下,Experience replay size 對於 training 會不會有影響,而 Learning start step 感覺是跟 Experience replay size 綁定的,所以一起降低

Test2

Target network update frequency 調到 3000,target network 的做用就是算出Q target,當它更新頻率下降時,也就表示和 online network 算出的Q eavl 差距會越來越大,因為裡面存的參數是比較久遠的,想試試看這樣會不會降低收斂的速度

• Test3

調整 exploration rate 降低的速度,Exploration rate: 1 to 0.05 in the first 500000 env step,exploration rate 降低的速度變快,代表的就是更早讓 random 的機率降低,提早讓每次動作是根據 online network 出來的 Q 值做 決定,想看看這樣子的收斂速度會不會快一點

Learning Curve

X 軸一樣是第幾個 episode

Y 軸更改為當前 episode 的前 1000 個 episodes 的平均 reward 這樣會讓圖形看得比較清楚一點,如果只取前 100 個的話,圖形會震盪的很嚴重,而每條線幾乎都會疊在一起

Analysis

由 learning curve 來分析的話

■ Test1

memory size 確實會影響到 training 出來的結果,雖然在前 15000 個 episodes 看起來差異不大,但隨著時間推進,較大的 memory size 可以 得到較佳的 average reward

■ Test2

Target network update frequency 的影響看起來是時好時壞,感覺如果再將 target network update frequency 的值調高一點可能比較能看出差異,如:5000, 1000

■ Test3

調整 exploration rate 降低的速度,確實能讓收斂速度快一點,但隨著時間的推進,好像也不會比原先的結果還要佳