DAIICT

Assignment 1

Advanced Image Processing

Kishan Vaishnani - 202011004 Dhyanil Mehta - 202011032

Date: 29-1-2021

Table of Contents

Task 1.		2
Prob	lem Statement	2
Libra	ıry Used	2
Meth	od	2
1.	Up & Down Sampling	2
2.	Quantization level	2
Obse	rvation	2
1.	Up-Sample & Down-Sample	2
2.	Effect of different quantization levels	3
Conc	lusion	4
Prob	lem Statement	5
Library Used		5
	od	
1.	Computing Mean	5
2.	Computing Variance	
Obse	rvation	
1.	Effect of white gaussian noise of mean 0 and standard deviation 20	5
2.	Some noisy images of fig1 and average image of all of them	
Conc	lusion	
Problem Statement		8
Library used		
Method		8
1.	Converting a grayscale image into Binary Image	
2.	Finding Connected Components	
	rvation	
Conclusion		9

Task 1

Problem Statement

Up-sample and down-sample the image of Figure 1 by scale factor 4. Discuss the effect of changing sampling rate. Also observe the effect of different quantization levels (L = 2, 4, 8, 16, 32, 64, 128, 256) for this image. (Figure 1 image: fig1.jpg)

Library Used: PIL

Method

1. Up & Down Sampling

PIL.Image.Image.resize((Width * Scaling factor, Height * Scaling factor))

We have used the PIL library's resize function for sampling the image, which by default uses Bicubic Interpolation.

For up-sampling, scaling factor = 4 and,

For Down-sampling, scaling factor = $\frac{1}{4}$

2. Quantization level

PIL.Image.Image.quantize(L)

Return new image with applied quantization level L where $L = 2^k$, k = Bits

Observation

1. Up-Sample & Down-Sample Up-sample size: (2136, 1600), Down-sample size: (133, 100)

2. Effect of different quantization levels

Observation: By increasing level we have observed image appears clearer than last level.

Conclusion

- <u>Up-sampling</u> the image increases its size by the sampling factor, and the image becomes zoomed, but the quality is reduced.
- <u>Down-sampling</u> decreases its size by the sampling factor and the image becomes more blurred, and quality is significantly reduced.

Task 2

Problem Statement

Compute the mean and variance of Figure 2. Compute the same parameters for Figure 1. Then add additive white Gaussian noise of mean 0 and standard deviation 20 to both the images and compute the means and variances. Explain your observations. Further, generate several such noisy images from Figure 1 and average all of them. Does the averaged image have a less noisy artifact? (Figure 2 image: baboon.jpg)

Library Used: NumPy

Method

- Computing Mean numpy.mean(image_array)
- Computing Variance numpy.var(image_array)

Here PIL Image object is converted to a NumPy array, and then the mean and variance are computed.

Observation

1. Effect of white gaussian noise of mean 0 and standard deviation 20 **Observation**: By adding noise to an image, it appears with white and random colored spots and gets little bit unclear. Also, their mean and variance gets increased.

Without noise: Mean: 128.96, Variance:

1820.05

With noise: Mean: 129.12, Variance: 2206.51

Without noise: Mean: 112.94, Variance:

2133.13

With noise: Mean: 116.15, Variance: 2512.29

2. Some noisy images of fig1 and average image of all of them **Observation:** Averaging more noisy images gives an image with even less noisy artifacts.

Average of noisy images

Conclusion

- As the <u>quantization level</u> increases, the image can use more values to display the image, and thus more and more fine details can be seen.
- The <u>mean</u> and <u>variance</u> of the image <u>increases</u> as the image becomes <u>noisier</u> as the noise are merely random values.
- The image quality is <u>improved</u> by averaging its noisy images together.

Task 3

Problem Statement

Find out the number of objects from Figure 3. Label distinct objects with distinct colors. [Use the algorithm of finding out connected components.] (Figure 3 image: cc.jpg)

Library used: OpenCV

Method

1. Converting a grayscale image into Binary Image

cv2.threshold(a,b,c,d)

- a. Greyscale image to be convert
- b. A threshold value is used to classify the pixel values.
- c. maxValue will assign to a pixel if the pixel value is more/less than the threshold value.
- d. Different types of thresholding function.

cv2.THRESH BINARY

This thresholding function will specify the threshold to be converted into pixel values.

Source: https://opency-python-tutroals.readthedocs.io/

2. Finding Connected Components

cv2.connectedComponentsWithStats(BinaryImage, Connectivity)

This method will return following Parameters.

- a. Total number of labels it had generated
- b. A labeled set similar size to Binary Image

Observation

Conclusion

• By converting the image to a <u>binary image</u> (i.e., L = 2), we can easily find connected components in the image.