Programa de formación MLDS

Ben Chams - Fotolia

Módulo BIG DATA

Procesamiento y Almacenamiento de Grandes Volúmenes de Datos

Introducción

Por

Ing. Elizabeth León Guzmán, Ph.D.

Agenda

Introducción

Definición

Aplicaciones

https://www.eweek.com/blogs/storage-station/toshiba-demonstrates-scale-out-big-data-storage-system

Un dato es una representación simbólica de un atributo o variable cuantitativa o cualitativa.

Temperatura valores: 17, 28, 15

Ciudad valores: Bogotá, Cartagena

Fecha valores: Julio 20 2015, Julio 20 2016

variables

Un dato es una representación simbólica de un atributo o variable cuantitativa o cualitativa.

http://www.datanami.com/

Datos almacenados en "bases de datos"

Datos estructurados y relacionados "Información"

Conocimiento

Información

Datos

Conocimiento

Análisis exploratorio Minería de Datos OLAP

Información

Bases de datos Bodegas de datos

Datos

Son el centro de la futura sociedad de la economía del conocimiento

MLDS - Módulo Big Data - Universidad Nacional de Colombia

No hay una definición estándar

"Big Data" es una colección de datos complejos muy grande, muy difícil de procesar a través de herramientas de gestión y procesamiento de datos tradicionales

"Big Data" son datos cuyo volumen, diversidad y complejidad requieren nueva arquitectura, técnicas, algoritmos y análisis para gestionar y extraer valor y conocimiento oculto en ellos ...

Fuente: Enterprise strategy group 2011 8

"Big Data" son todos los datos

Volumen

Peta bytes
Zetta bytes
Tablas, archivos

Variedad

- Datos
 Estructurados
- Datos No Estructurados
- Imágenes, texto, multimedia

Velocidad

- Flujos (streams)
- Real time
- Batch

Veracidad

- Autenticidad
- Integridad
- Integración
- Confiabilidad
- Ruido, inconsistencia s, vagos, errores, etc.

Valor

Conocimiento Análisis

1 V: Volumen

The Digital Universe 2009-2020

Crecimiento exponencial

En los últimos dos años se ha generado el 90% de los datos

Almacenamiento por compañías promedio (ahora)

Terabytes Petabytes Exabytes Zettabytes

 $1TB = 10^{12} \text{ bytes (un billón)}$ $1PB = 10^{15} \text{ bytes} \sim 1000^5$

 $1EB = 10^{18} \text{ bytes } \sim 1024^6$

 $1ZB = 10^{21} \text{ bytes} \sim 1000^7$

1 V: Volumen

- Búsquedas web: más de la mitad de las búsquedas se realizan por teléfono
- 40.000 búsquedas cada Segundo (2016)
- 5 billones de búsquedas por día (todos los buscadores)

Fuente: https://iobint.com/effective-web-search-engine-marketing-tips/

1 V: Volumen

Según Data Never Sleeps 5.0 report cada minuto en 2017:

- Usuarios de Snapchat comparten 527,760 fotos
- Mas de 120 profesionales se unen a LinkedIn
- Se ven 4,146,600 videos en YouTube
- Se envían 456,000 tweets en Twitter
- Usuarios de Instagram comparten 46,740 fotos

How much data is generated every minute?

How much data is generated every minute?

1 V: Volumen

 CERN's Large Hydron Collider (LHC) alcanzó
 200 petabytes de datos almacenados en cinta (Junio de 2017)

https://home.cern/news/news/computing/cern-data-centre-passes-200-petabyte-milestone

1 V: Volumen

2 V: Velocidad

- Datos se generan muy rápido y necesitan ser procesados y analizados rápidamente.
- Algunas veces, no es posible almacenar los datos: "Online Data Analytics"

Decisiones tardías

oportunidades perdidas

Ejemplos:

- E-Promociones: Posición actual e historial de compra → envío de promociones
- Monitoreo: En medicina, monitoreo sensorial de las actividades del cuerpo → medida anormal requiere reacción inmediata

2 V: Velocidad

Decisiones tardías

oportunidades perdidas

Twitter

 Análisis de sentimientos en campañas presidenciales. Toma de decisiones de campaña.

Análisis de Imágenes (Solares)

 Detectar "solar loops" temprano para evitar daños en las telecomunicaciones

https://www.theverge.com/2013/2/22/4017464/fiery-coronal-rain-loops-onto-suns-surface

3 V: Variedad

Múltiples formatos y estructuras:
 Texto, numéricos, imágenes, audio, video, secuencias, grafos, series temporales, etc.

¿Qué es Big Data? 3 V : Variedad

Source: Forrester Webmar: Big Data: Gold Rush or Illusion?, Sept. 19, 2013.

4 V: Veracidad

BIG DATA DASHBOARD

- Autenticidad
- Integración: Bodegas de datos (agiles)
- Ruido, inconsistencias,
 vagos, errores, etc.

5 V: Valor

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS

Generación de "Big data"

Grandes volúmenes de información en cortos periodos de tiempo

Redes sociales y multimedia

Consolas de juego, GPS

Redes de sensors

Smart Phones, tables

Proveedores de Internet

Web - películas

Generación de "Big data"

Compañias de tarjetas de crédito

Facturas

Facturas de hotel

Astronomía

- · Astronomical sky surveys
- · 120 Gigabytes/week
- · 6.5 Terabytes/year

Transacciones de tarjetas de crédito

- 47.5 billion transactions in 2005 worldwide
- 115 Terabytes of data transmitted to <u>VisaNet</u> data processing center in 2004

Genómica

- · 25,000 genes in human genome
- · 3 billion bases
- · 3 Gigabytes of genetic data

Tráfico en Internet

Traffic in a typical router:

- · 42 kB/second
- 3.5 Gigabytes/day
- · 1.3 Terabytes/year

Telefonía

- 250M calls/day
- · 60G calls/year
- · 40 bytes/call
- · 2.5 Terabytes/year

Procesamiento de información WEB

- 25 billion pages indexed
- 10kB/Page
- · 250 Terabytes of indexed text data
- "Deep web" is supposedly 100 times as large

Hospitales/medicina

Farmacias

Laboratorios

Centros de imagenes

Servicios de medicina de emergencia (EMS)

Sistemas de información de hospitales

Doc-in-a-Box

Registros medicos electrónicos

Bancos de sangre

Registros de nacimiento y muerte

- Tratamientos más efectivos para condiciones particulares
- Identificar patrones relacionados con los efectos de los fármacos
- Reducir costos
- Análisis mHealth, eHealth: registros medicos electrónicos, imagenes
- Mapeo de datos de salud con geografía (salud pública)

Análisis de clientes

- Comportamientos y preferencias
- Extender datos tradicionales con datos de redes sociales, "browser logs", análisis de texto, imagenes, datos de sensores

- Empresas de telecomunicaciones: predecir perdida de clientes
- Compañias de seguros de carros: describir los comportamientos de conducción de los clientes
- Target (compañia de vta EU): predecir cuando los clientes van a tener bebé.

A BIG DATA GUIDE TO UNDERSTANDING CLIMATE CHANGE:

The Case for Theory-Guided Data Science

James H. Faghmous and Vipin Kumar

Department of Computer Science and Engineering,

The University of Minnesota–Twin Cities

Minneapolis, Minnesota

Big Data, Vol.2, 3, 2014

- Tráfico
 - Visualización del tráfico
 - Análisis de los patrones de desplazamiento
 - Rutas de congestión
 - Planificación urbana
 - Uso de las carreteras

Visualización de tráfico

Slow

Medium

Fast

- Patrones en Tráfico
 - Flujo del tráfico (días habiles/festivos, horas pico)
 - Lugares donde se origina el tráfico
 - Lugares destinos
 - Rutas más frecuentes
 - Planeación, asignación de recursos

Detección de tráfico

[Hull, Madden, Balakrishnan 2006]

Modelamiento:

- GPS en automoviles:
 - capturan velocidad, paradas
 - solución fácil
- Sensores en el asfalto
 - Flujo
 - Solución costosa

• Singapur

Visualización del tráfico

- What are origins/destinations?
 - GPS coordinates, street addresses, regions...

BBVA – Análisis viual de las transacciones de tarjetas de crédito

http://www.centrodeinnovacionbbva.com/noticias/ejemplos-reales-del-uso-de-big-data

https://youtu.be/Zel6wych9p0 http://mwcimpact.com

Google Knowledge Graph

https://www.google.com/intl/es419/insidesear ch/features/search/knowledge.html

- Deportes: seguimientos al rendimiento de cada jugador (analisis de videos), tecnología de sensores (cestas, mallas, etc.) usando telefonos inteligentes y servicios de la nube.
- NBA -> preparación de partidos
- NFL (National Football League)
 https://www.nfl.com/now

https://youtu.be/aztUUcZfXb8 (optimización de las agendas de los partidos usando IBM tool)

Análisis de Redes Sociales

- Campaña presidencial Obama Reelección 2012
 20 personas centrados en la interpretación de los datos recibidos:
 - registro (recoger datos de los votantes convencidos),
 - persuasión (dirigirse a los dudosos de una forma eficaz)
 - voto del electorado (asegurarse de que los partidarios fueran a ejercer el voto sí o sí).
- Análisis de sentimientos

A Sentiment Analysis Model of Spanish Tweets. Case Study: Colombia 2014 Presidential Election [6 Ceron, León]

Performance Evaluation

Overall accuracy of 92.62%, TPR of 93.02%, and FPR of 7.78%.

		Predicted		
		Spammer	Non-Spammer	
Actual	Spammer	253	19	
	Non-Spammer	21	249	

Table: Performance evaluation on the test set

A Sentiment Analysis Model of Spanish Tweets. Case Study: Colombia 2014 Presidential Election

Regression

Class	Precision	Recall	F1-score
Positive	0.65	0.43	0.52
Negative	0.62	0.74	0.67
Neutral	0.56	0.55	0.55

Table: Discriminative power of the system for each class

A Sentiment Analysis Model of Spanish Tweets. Case Study: Colombia 2014 Presidential Election

Voting Intention Inference

Candidate	Result	Polls	Twitter volume	Proposed method
Zuluaga	29.28%	27.53%	24.10%	29.21%
Santos	25.72%	28.99%	35.12%	28.34%
Ramírez	15.52%	9.43%	8.99%	9.23%
López	15.21%	10.56%	12.09%	10.15%
Peñalosa	8.27%	11.25%	8.13%	11.54%
Blank vote	5.98%	12.24%	11.65%	12.87%

Table: Results and voting inference per method in the first round election. Numbers in bold show the inference method with the lowest absolute error that correctly ranked a candidate

Tweets usados para un sistema de advertencias de terremotos

The United States Geological Survey Twitter busca incrementar el volumen de los mensajes sobre sismos y ser capaz de localizar terremotos con un 90% de precisión.

http://www.kurzweilai.net/tweets-used-as-earthquake-warning-system

 Internet fuente de datos considerada "Big Data" por lo que ha capturado la atención de la industria.

El progreso y la innovación no se ven obstaculizados solo por la capacidad de recopilar datos, sino por la capacidad de gestionar, analizar, sintetizar, visualizar, y descubrir el conocimiento de los datos recopilados de manera oportuna y en una forma escalable

 La competitividad en la productividad de los negocios y las tecnologías seguramente van a converger a las exploraciones en Big data[1 Philip Chen].

Oportunidad:

Toma de decisiones

Reto:

- Manejar inconsistencias, datos incompletos, escalabilidad, flujo de datos, problemas de seguridad.
- Se requieren nuevas tecnologías para: almacenamiento, operaciones de entrada/salida de datos, procesamiento y análisis.

[https://www.laprensagrafica.com/__export/1508349926661/sites/prensagrafica/img/2017/10/18/innovacixn_empresarial.jpg]

Internet de las cosas

[https://www.muycomputerpro.com/zona-transformacion-digital/iot-industrial-optimizacion-transformacion/]

- IpV6: todo objeto conectado (6,7 × 10¹⁷ direcciones por milímetro cuadrado)
- Dispositivos pequeños y baratos, GPS, todos los aparatos podrán tener su propia IP

[https://industrie4.0.gtai.de/INDUSTRIE40/Navigation/EN/Topics/The-internet-of-things/internet-ofthings-what-is-it.html]

"Autonomous things" (Cosas automáticas): robots, vehículos, drones, agentes.

Obliga a:

- Trabajar con mucha información privada y romper con los enfoques clásicos de seguridad de los datos.
- Manipular enormes cantidades de datos no estructurados.
- Mucho intercambio y cooperación internacional.
- Romper con el enfoque relacional de las bases de datos.
- Buscar nuevas alternativas para el procesamiento paralelo.

Referencias

- [1] Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. C.L. Philip Chen, Chun-Yang Zhang. Information Sciences 275 (2014) 314–347
- [2] Eric Savitz, Gartner: Top 10 Strategic Technology Trends for 2013, October 2012. http://www.forbes.com/sites/ericsavitz/2012/10/23/gartner-top-10-strategic-technology-trends-for-2013/>.
- [3] Eric Savitz, Gartner: 10 Critical Tech Trends for the Next Five Years, October 2012. http://www.forbes.com/sites/ericsavitz/2012/10/22/gartner-10-critical-tech-trends-for-the-next-five-years/
- [4] Richard T. Kouzes, Gordon A. Anderson, Stephen T. Elbert, Ian Gorton, Deborah K. Gracio, The changing paradigm of data-intensive computing, Computer 42 (1) (2009) 26–34.
- [5] Rus, Daniela. Tackling the Challenges of Big Data. MIT. 2016
- [6] A Sentiment Analysis Model of Spanish Tweets. Case Study: Colombia 2014 Presidential Election. Tesis de Maestría. 2016