Rohan Nyati

500075940

R177219148

Batch - 5 (Ai & MI)

What is XGBoost?

XGBoost is a decision-tree-based ensemble Machine Learning algorithm that uses a gradient boosting framework. In prediction problems involving unstructured data (images, text, etc.) artificial neural networks tend to outperform all other algorithms or frameworks. However, when it comes to small-to-medium structured/tabular data, decision tree based algorithms are considered best-in-class right now.

→ XGBoost

▼ Importing the libraries

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
```

Importing the dataset

```
dataset = pd.read_csv('Data.csv')
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:, -1].values
```

Splitting the dataset into the Training set and Test set

```
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state =
```

Training XGBoost on the Training set

Making the Confusion Matrix

```
from sklearn.metrics import confusion_matrix, accuracy_score
y_pred = classifier.predict(X_test)
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)

[[84    3]
      [ 0   50]]
      0.9781021897810219
```

▼ Applying k-Fold Cross Validation

```
from sklearn.model_selection import cross_val_score
accuracies = cross_val_score(estimator = classifier, X = X_train, y = y_train, cv = 10)
print("Accuracy: {:.2f} %".format(accuracies.mean()*100))
print("Standard Deviation: {:.2f} %".format(accuracies.std()*100))

Accuracy: 96.53 %
    Standard Deviation: 2.07 %
```

X