```
Digital Logic Design :
```

Lecture 8

Binary Coded Decimal (BCD) code:

BCD code mean each decimal digit, o through 9, is represented by a binary code of flour bits.

Convert decimal number 135' to BCD:

3 5 1 1 = 0011 0101

Bed code for decimal '98' :

Converting BCD codes to decimal

1 1 1 1

Invalid codes in 13cD codes

* + Six combinations: 1010, 1011, 1100, 1101, 1110, 1111.

BED addition

a)
$$0011 + 0100$$

$$\begin{array}{r} 0011 \\ \hline 0100 \\ \hline 0111 \end{array} + \begin{array}{r} 3 \\ + 4 \\ \hline 7 \end{array}$$

9)
$$\frac{1001 \ 1001}{1000 \ 1000}$$
 $\frac{99}{188}$ $\frac{1000 \ 1000}{1000 \ 1000}$ \Rightarrow Invalid because carry generated $\frac{0001 \ 1000 \ 1000}{31 \ 8}$

The excess-3 code:

Excess-3 is a digital code related to BCD that is derived by adding 3 to each decimal digit and then converting the result of that addition to 4-bit binary.

The excess-3 code for decimal 5 is,

The excess 3 code for decimal 7 is,

Decimal	BCD	Excess-3
6	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	10 10
8	1000	10 11
9	1001	1100

six invalid combinations in excess-3 codes are 0000, 0001, 0010, 1101, 1110, 1111.

Convert decimal 928 to excess 3

Self complementing property of excess-3 code:

9's complement of 7 is 9-7=2.

Excess-3 code for 7 is 1010.

1's complement of 1010 is 0101.

Excess - 3 code for 2 is 0101.

usefulness of 9's compliment:

9's complement of 28 is 99-28=71

now, 51-28 = 23

 $\frac{1}{+71}$ $\frac{9}{5}$ complement of 28 $\frac{1}{22}$ $\frac{1}{23}$ $\frac{1}{4}$ carded $\frac{1}{23}$ $\frac{1}{4}$