### Complex Genetic Architecture of the Chicken Genome An Example of *Growth1* QTL Region

### Jen-Hsiang Ou, Tilman Rönneburg, Carl-Johan Rubin

Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden

### **ABSTRACT**

Chicken body weight is an essential trait in both commercial and research, and it is known to be controlled by multiple effects. Virginia Chicken Lines were introduced with bi-directional selected lines (high-weight, HWS / low-weight, LWS) and as advanced intercrossed lines generated from the 41<sup>st</sup> generation of HWS and LWS. While accumulating recombination in each generation, extending generation to F18 provided a higher resolution for GWAS and variance-heterogeneity GWAS. This research discovered that haplotype and epistasis effects caused the complex genetic architecture in the *Growth1* QTL region. Two major peaks were detected from GWAS, and the haplotype-based association study carried out similar results while providing a more vital significance. Statistical epistasis results suggested that there is a local interaction network in which interaction effects play an essential role in this region.

## Stage A Stage B Stage C Stage D Stage E White Plymouth Rock Black Cockin Barridge Cockin Black Ninorca Black Loya Langdhan 1800s 1900s 1957

- Stage A: Chicken domestication from the wild ancestor, the Red Jungle Fowl.
- Stage B: Formation of endogenous and historical breeds independently in Europe and Asia.
- **Stage C**: Migration and admixture events started to create modern chicken breeds for meat and egg production in the USA.
- Stage D: The work at Virginia Polytechnic Institute starts to generate the experimental population with multiple inbred lines from the White Plymouth Rock breeds.
- Stage E: Siegel and his co-workers started the bidirectional single trait selection experiment 1957.

### **ASSOCIATION STUDIES (SNP & HAPLOTYPE)**

Genome-wide Association Study

$$\mathbf{y} = \mathbf{1}\mu + S\boldsymbol{\beta}_S + g\boldsymbol{\beta}_g + A_j\boldsymbol{a}_j + \boldsymbol{\varepsilon}$$

• Single marker association study. Marker effect:  $a_j$ .





### Haplotype-based association study



# Variance-Heterogeneity GWAS (vGWAS) Interactions and haplotypes (Forsberg et at. 2015) Brown-Forsythe test: ANOVA based on the spread in each group. $y_{ij} = |y_{ij} - \bar{y}_j|$ (B) 174 172v 1



### CONCLUSION

- Variants annotated by NCBI annotation release 105
- PhyloP scores was from



