

RW3D-Rx User Guide

Daniel Fernàndez-Garcia and Christopher V. Henri

Grup d'Hidrologia Subterrània UNIVERSITAT POLITÈCNICA DE CATALUNYA

Universitat Politècnica de Catalunya

Department of Civil and Environmental Engineering Associated Unit: Hydrogeology Group (UPC-CSIC) C/ Jordi Girona 1-3, Ed. D2/004 08034 Barcelona, Spain

contact: christopher.henri@upc.edu

last update: July 12, 2017

Contents

Re	lated	l Publications	1
Inp	out Fi	iles	2
Α	Nam	ne File	2
В	Parameter File		
	B.1	General Options	3
	B.2	Geometry	3
	B.3	Time Discretization	4
	B.4	Advection Package	5
	B.5	Dispersion Package	6
	B.6	Mass Transfer Package	6
	B.7	Reaction Package	10
		B.7.1 Sortion	10
		B.7.2 First-order decay reaction network	10
		B.7.3 Bimolecular reactions	11
	B.8	Control Surfaces Package	12
	B.9	Injections of Particles	13
	B.10	Recirculation	17
	B.11	Post-Processing and Output Options	17

Related Publications

Conceptual development

Fernàndez-Garcia, D., Illangasekare, T. H., and Rajaram, H. (2005), Differences in the scale-dependence of dispersivity estimated from temporal and spatial moments in physically and chemically heterogeneous porous media, *Advances in Water Resources* (ISSN 0309-1708), 28, 745-759.

Salamon, P., Fernàndez-Garcia, D., and J. J. Gómez-Hernández (2006), A review and numerical assessment of the random walk particle tracking method, *Journal of Contaminant Hydrology* (ISSN 01697722), 86, 277-305.

Salamon, P., Fernàndez-Garcia, D., and J. J. Gómez-Hernández (2006), Modeling mass transfer processes using random walk particle tracking, *Water Resources Research* (ISSN 0043-1397), 42, W11417.

Henri, C.V., and Fernàndez-Garcia, D. (2014), Toward efficiency in heterogeneous multispecies reactive transport modeling: A particle-tracking solution for first-order network reactions, *Water Resources Research*, 50, 7206-7230.

Henri, C.V., and Fernàndez-Garcia, D. (2015), A random walk solution for modeling solute transport with network reactions and multi-rate mass transfer in heterogeneous systems: Impact of biofilms, *Advances in Water Resources*, 86, Part A, 119-132.

Benson, D.A., and Meerschaert, M.M. (2008), Simulation of chemical reaction via particle tracking: Diffusion-limited versus thermodynamic rate-limited regimes, *Water Resources Research*, 44, W12201.

Field applications

Salamon, P., Fernàndez-Garcia, D., J. J. Gómez-Hernández (2007), Modeling tracer transport at the MADE site: The importance of heterogeneity, *Water Resour. Res.* (ISSN 0043-1397), 43, W08404.

Riva, M., A. Guadagnini, D. Fernàndez-Garcia, X. Sánchez-Vila, (2008), Relative importance of geostatistical and transport models in describing heavily tailed breakthrough curves at the Lauswiesen site, *Journal of Contaminant Hydrology* (ISSN 01697722), 101, 1-13, 2008.

Input Files

Name file	File with names for output files (by default: rw3d.nam)
Parameter file	File with parameters (to be defined in the name file)

Those are the only two mandatory input files for RW3D to run. The code reads these files line by line. We describe in the following sections the

A Name File

	\/ADIADIE	DESCRIPTION
LINE	VARIABLE	DESCRIPTION
1	Text	
2	Text	
3	Text	
4	Text	
5	File name	Parameter file
6	Text	
7	Text	
8	Text	
9	File name	Output histogram (pdf) of particle arrival times (btcs)
10	File name	Output with cumulative pdf particle arrival times (cbtcs)
11	File name	Output with particle snapshots with time
12	File name	Output with particle paths
13	File name	Output with cartesian spatial moments
14	File name	Output with spatial moments of particle position
15	File name	Output with particle position at control planes
16	File name	Output with dilution index of kitanidis (option disable)
17	File name	Output with radial spatial moments
18	File name	Output with temporal moments of breakthrough curves
19	File name	Output with dispersivities from control planes break- thrus
20	File name	Output with residence times in zonal regions
21	File name	Output with velocity field (for idebug ≥ 1)
22	File name	Output with derivative of BTC in double log

B Parameter File

B.1 General Options

LINE	VARIABLE	DESCRIPTION
1-9	Text	
10	idebug	$\begin{array}{l} \textit{idebug} \colon \text{Integer defining degree of debugging as written in rw3d_general.dbg} \\ \text{OPTIONS:} \\ \bullet \ \ \text{idebug} > 0 \rightarrow \text{write} \ \alpha_L, \alpha_{TH}, \alpha_{TV} \ \text{arrays} \\ \bullet \ \ \text{idebug} > 2 \rightarrow \text{write} \ q_x, q_y, q_z \ \text{in gslib format} \end{array}$
11	$nspe_{aq}, nspe_{min}$	Number of aqueous and mineral species
12	$name_{aq}^{^\intercal}$	Name of aqueous species (empty line if $nspe_{aq}=0$)
13	$name_{min}^{-1}$	Name of mineral species (empty line if $nspe_{min}=0$)
14	tsim	Simulation time

B.2 Geometry

LINE 15 16 17	VARIABLE Text Text Text	DESCRIPTION
18	nx, ny, nz	Number of cells in x,y,z directions
19 20 21	dx [read as a real array] dy [read as a real array] dz [read as a real array]	Cell size in x-direction Cell size in y-direction Cell size in z-direction

COMMENT:

- dz is not allowed to vary arbitrarily in x or y, i.e. same cell thickness on a given layer; 3D cartesian grid will be soon implemented.
- if an input file is used to defined dx, dy or dz, use ny=1 and nz=1 to define the dx gslib array. Same for dy (nx=1, nz=1) and dz (nx=1, ny=1).

22	file, const, ivar, flag	file: file name with array defining inactive cells (IBOUND variable)
		const: after reading the array, all values are multiplied by const
		ivar: column variable in the GSLIB file
		flag: integer defining the way to read the array

OPTIONS:

- flag = 0: The array is not read from file.
- flag = 1: The array is read from file named FILE. This file has GSLIB format such that: IBOUND \neq 0: active cell
 - $\textbf{IBOUND} = \textbf{0} : inactive cell} \rightarrow \textbf{particles reflect at cell boundaries}$
- flag = 2: Option specific for reading IBOUND from MODFLOW external file format.
- flag = 3: Specific for IBOUND array. This reads specific inactive cells from the external file named file. The format of this external file is:
- 1. number of inactive cells [Integer]

for each inactive cell:

2. column, row, layer (in GSLIB format)

B.3 Time Discretization

LINE	VARIABLE	DESCRIPTION
24	Text	
25	Text	
26	Text	
27	string	Method to calculate the time step used to move all particles of the plume at a given time.

OPTIONS:

23

- ullet string = CONSTANT_DT or CONSTANT_TIME: The time step Δt is fixed: standard random walk
- string = CONSTANT_CU: The time step is estimated from

$$\Delta t = Cu \times tc_{ADV}$$
,

where Cu is the grid-Curant number (given in next line), and tc_{ADV} is the advective characteristic time, i.e.:

$$tc_{\text{ADV}} = \frac{\Delta s}{\min_{v_1, v_2, v_3} \{v_i / R\}},$$

where Δs is the characteristic size of a cell, v_i is the particle velocity component in the ith direction, and R is the retardation coefficient associated.

• string = CONSTANT_DaMT: The time step is estimated from

$$\Delta t = Da_{MT} \times tc_{MT}$$

where Da_{MT} is the grid-Damkholer number based on Mass Transfer process (given in next line), and tc_{MT} is the characteristic time for mass transfer, i.e.:

$$tc_{\mathsf{MT}}$$
 = $\max \frac{1}{\alpha_k \times \beta_k} \quad \forall k = 1, \dots, N_{im}$,

where α_k and β_k are respectively the mass transfer coefficient and the field capacity coefficient associated to the kth immobile domain, and N_{im} is the number of immobile zones.

• string = CONSTANT_DadeCAY: The time step is estimated from:

$$\Delta t = Da_{DECAY} \times tc_{K}$$

where Da_{DECAY} is the grid-Damkholer number based on first-order decay process (given in next line), and tc_K is the characteristic time for first-order decay, i.e. $tc_K = \frac{R}{k}$ where k is the first-order decay rate.

• string = OPTIMUM_DT: Estimates the time step from grid Curant number, Pecklet number and Damkholer number based on kinetic reaction; and pick the more restrictive one, i.e.

$$\Delta t = \min\{ Cu \times tc_{ADV}, Pe \times tc_{DISP}, Da_{KINETIC} \times tc_{KINETIC} \},$$

where T_{esc} is the advective travel time of the particle in the cell.

COMMENT:

• all characteristic times are calculated for each particle of the plume and the more restrictive ones are chosen to compute the time step.

28	Δt , Cu, Pe, Da _{KINETIC} Da _{DECAY} , Da _{MT}	$\Delta t \rightarrow$ fixed time step $Cu \rightarrow \text{grid-Courant number}$ $Pe \rightarrow \text{grid-Pecklet number}$ $Da_{\text{DECAY}} \rightarrow \text{grid-Damkholer number for first-order decay process}$ $Da_{\text{KINETIC}} \rightarrow \text{grid-Damkholer number for kinetic reaction}$

B.4 Advection Package

LINE	VARIABLE	DESCRIPTION
29	Text	
30	Text	
31	Text	
32	Logical Flag	True (T) if package is active
33	method	Character variable specifying computation of the advection displacement of a particle.

OPTIONS:

• method = EULERIAN: Standard Random Walk with Eulerian integration of the velocity:

$$\Delta \mathbf{X}_{p,adv} = \int v(\tau) d\tau \approx v(\mathbf{X}_p, t) \Delta t$$
,

where $\mathbf{X}_{p,adv}$ is the advective motion of a particle, and v is the pore velocity.

• method = EXPONENTIAL: Pollock Method to integrate the velocity from finite-difference flow models:

$$\begin{split} \Delta \mathbf{X}_{p,adv} &= \int v(\tau) d\tau \approx \frac{v_i(\mathbf{X}_p,t)}{A_i\,R} (\exp(A_i\,\Delta t) - 1) \text{, with} \\ A_i &= \frac{v_{i,face(2)} - v_{i,face(1)}}{\Delta x_i}. \end{split}$$

34	file, const, ivar, flag	file : file name with array of cell-by-cell Darcy velocity in the x -direction, q_x
		const: after reading the array, all values are multiplied by const
		ivar: column variable in the GSLIB file
		flag: integer defining the way to read the array

OPTIONS

- flag = 0: The array is not read from file: q_x is defined by const.
- flag = 1: The array is read from file named FILE. This file is in GSLIB format.
- flag = 2: Use Modflow binary cell-by-cell flux file (output of virtually any Modflow versions should be accepted; contact us if you are experiencing issues).

35	file, const, ivar, flag	Darcy velocity in the y -direction, q_y : follow same instructions than for q_x (line 34)
36	file, const, ivar, flag	Darcy velocity in the z-direction, q_z : follow same instructions than for q_x (line 34)
37	poro [read as a real array]	Porosity for the Mobile Zone
38	NPER	Number of velocity stress period (as defined in Modflow if binary Modflow output file is used)

for each s 39	stress period: PERLEN, NSTP, TSMULT, SS/TR	PERLEN: length period
		NSTP: number of time step TSMULT: multiplier SS/TR: specify either SS for steady state or TR for transient
40	Logical Flag	True (T) if the MF fluxes are looped until tsim

B.5 Dispersion Package

LINE 41	VARIABLE Text	DESCRIPTION
42	Text	
43	Text	
44	Logical Flag	True (T) if package is active
45	a_L [read as a real array]	Longitudinal dispersivity
46	a_{TH} [read as a real array]	Transverse dispersivity in horizontal plane
47	a_{TV} [read as a real array]	Transverse dispersivity in vertical plane
48	Dm_L [read as a real array]	Longitudinal molecular diffusion
49	Dm_{TH} [read as a real array]	Transverse molecular diffusion in horizontal plane
50	Dm_{TV} [read as a real array]	Transverse molecular diffusion in vertical plane
51	MULTa	Multiplier of dispersivity coefficients for each species (on a single line)
52	MULTD	Multiplier of diffusion coefficients for each species (on a single line)

B.6 Mass Transfer Package

LINE 53 54	VARIABLE Text Text	DESCRIPTION			
55	Logical Flag	True (T) if package is active			
56	Model	Type of mass transfer model			
model	OPTIONS: ● model = MULTIRATE: discrete series of mass transfer rates				
	define input parameters?				
57	N_{im}	number of immobile zones			
for each 2	zone:				
58	$\phi_{k=1}$ [read as a real array]	porosity in the 1^{st} immobile zone			
59	$\alpha_{k=1}'$ [read as a real array]	first-order mass transfer rate associated with the 1^{st} immobile zone			
:	ϕ_k [read as a real array] $lpha_k'$ [read as a real array]	porosity in the k th immobile zone first-order mass transfer rate associated with the k th immobile zone			
		IIIIIIODIIE 2011E			

• model = SPHERICAL_DIFFUSION or LAYERED_DIFFUSION or CYLINDRICAL_DIFFUSION: diffusion geometry How to define input parameters?

57 58	N_{im} ϕ_{im} [read as a real array]	number of immobile zones porosity in the immobile domain
59	D_p/a^2 [read as a real array]	effective pore diffusion coefficient, related to apparent pore diffusion coefficient D_a/a^2 by $D_a = D_p/R_{im}$. $D_p = [L^2/T]$ is the diffusivity coefficient, $a^2 = [L^2]$ is the radius of the blocks. The multirate series for diffusion models is given in Table 1.

• model = POWER_LAW: power law memory function

How to define input parameters?

57	N_{im}	number of immobile zones
58	eta_{tot} [read as a real array]	total capacity ratio of all immobile zones
59	A_{min} [read as a real array]	minimum apparent mass transfer coefficient
60	A_{max} [read as a real array]	maximum apparent mass transfer coefficient
61	power [read as a real array]	exponent of the power law density function of first-
		order rate coefficient

• model = LOGNORMAL_LAW: lognormal law memory function

How to define input parameters?

57	N_{im}	number of immobile zones
58	β_{tot} [read as a real array]	total capacity ratio of all immobile zones
59	mean [read as a real array]	mean of the natural log of mass transfer coefficient
60	stdv [read as a real array]	standard deviation of the natural log of mass transfer
		coefficient

• model = COMPOSITE_MEDIA: mixture of geometries

How to define input parameters?

57	$N_{mrate}, N_{sph}, N_{cyl}, N_{lay}$	number of immobile zones for the multirate model
		(N_{mrate}) , the spherical diff. model (N_{sph}) , the cylindri-
		cal diff. model (N_{cyl}) and the cylindrical diff. model
		(N_{lay})

for each zone of each mass transfer model:

58	$Fmrate_1$	fraction of the 1^{st} zone associated to the multirate model
•••	$Fmrate_k$	fraction of the k^{th} zone associated to the multirate model
59	$Fsph_1$	fraction of the 1^{st} zone associated to the sph. diff. model
	$Fsph_k$	fraction of the k^{th} zone associated to the sph. diff. model
60	Fcy_1	fraction of the 1^{st} zone associated to the cyl. diff. model
•••	Fcy_k	fraction of the k^{th} zone associated to the cyl. diff. model
61	$Flay_1$	fraction of the 1^{st} zone associated to the lay. diff. model
	$Flay_k$	fraction of the \mathbf{k}^{th} zone associated to the lay. diff. model

parameters for the multirate model:

62	$\phi_{k=1}$ [read as a real array]	porosity in the 1^{st} imm. zone
63	$\alpha'_{k=1}$ [read as a real array]	first-order mass transfer rate associated with the 1^{st}
		imm. zone
	$\phi_{m k}$ [read as a real array]	porosity in the k^{th} imm. zone
:	α_k' [read as a real array]	first-order mass transfer rate associated with the k^{th}

imm. zone

parameters for the sph. diff model:

64 ϕ_{im} [read as a real array] porosity in the immobile domain 65 D_p/a^2 [read as a real array] effective pore diffusion coefficient

parameters for the cyl. model:

66 ϕ_{im} [read as a real array] porosity in the immobile domain 67 D_p/a^2 [read as a real array] effective pore diffusion coefficient

parameters for the lay. model:

 $\begin{array}{ll} 68 & \phi_{im} \left[\textit{read as a real array} \right] & \textit{porosity in the immobile domain} \\ 69 & D_p/a^2 \left[\textit{read as a real array} \right] & \textit{effective pore diffusion coefficient} \end{array}$

COMMENT:

- it is required to specify a model type and associated parameters even if the logical flag is False
- if the logical flag is *False*, define 0 immobile zones to avoid specifying parameters; if the number of immobile zone is larger than 0, define parameters accordingly.

	eta_j	$\left[1 - \sum_{j=1}^{N_{im}-1} \frac{8}{(2j-1)^2 \pi^2}\right] \beta_{tot}$	$\left[1 - \sum_{j=1}^{N_{im}-1} \frac{4}{r_{0,j}^2}\right] \beta_{tot}$	$\left[1 - \sum_{j=1}^{N_{im}-1} \frac{6}{j^2 \pi^2}\right] \beta_{tot}$
Table 1: Multirate series for diffusion Multirate series a	for j= N_{im} α_j	$3 \left(D_a / a^2 \right)_i \left[1 - \sum_{j=1}^{N_{im} - 1} \frac{8}{(2j - 1)^2 \pi^2} \right]$ $1 - \sum_{j=1}^{N_{im} - 1} \frac{96}{(2j - 1)^4 \pi^4}$	$8 \left(D_a/a^2 \right)_i \left[1 - \sum_{j=1}^{N_{im}-1} \frac{4}{r_{0,j}^2} \right]$ $1 - \sum_{j=1}^{N_{im}-1} \frac{32}{r_{0,j}^2}$	$15 \left(D_a/a^2 \right)_i \left[1 - \sum_{j=1}^{N_{im}-1} \frac{6}{j^2 \pi^2} \right]$ $1 - \sum_{j=1}^{N_{im}-1} \frac{90}{j^4 \pi^4}$
Table 1: Multira	$_m$ -1 eta_j	$\frac{8}{(2j-1)^2\pi^2}\beta_{tot}$	$\frac{4}{r_{0,j}^2}\beta_{tot}$	$\frac{6}{j^2\pi^2}\beta_{tot}$
	for j=1,, N_{im} -1 $lpha_j$	$\frac{(2j-1)^2\pi^2}{4}(D_a/a^2)_i$	$r_{0,j}^2(D_a/a^2)_i$	$j^2\pi^2(D_a/a^2)_i$
	Diffusion geometry	Layered diffusion	$Cylindricaldiffusion^a$	Spherical diffusion b

 a Where $r_{0,j}$ is the jth root of $J_0(x)$ where J_0 is the zero-order Bessel function of the first kind. b Where $(\beta_{tot})_i = \frac{\phi_{im} R_i^{im}}{\phi_m R_i^m}$ is the capacity ratio for a specie i.

B.7 Reaction Package

LINE 61	VARIABLE Text	DESCRIPTION
62	Text	
63	Text	
B.7.1 9	Sortion	
63	Text	
64 65	Text Logical Flag	True (T) if package is active
66	model	Type of sorption
OPTION •		ar sorption isotherm (retardation)
	h species:	
67	$R_{i=1}$ [read as a real array]	retardation coefficient for the 1^{st} species
•••	R_i [read as a real array]	retardation coefficient for the i^{th} species
	TRANSFER:	
	ransfer type = MULTIRATE	
for eaci	h species, for each zone: $Rim_{i=1,k=1}$ [read as a real	retardation for the 1^{st} species in the 1^{st} immobile
00	[array]	zone
•••	$Rim_{i=1,k}$ [read as a real array]	retardation for the 1^{st} species in the \mathbf{k}^{th} immobile zone
69	$Rim_{i,k=1}$ [read as a real array]	retardation for the \mathbf{i}^{th} species in the 1^{st} immobile zone
	$Rim_{i,k}$ [read as a real array]	retardation for the i^{th} species in the k^{th} immobile zone
		OWER_LAW or LOGNORMAL_LAW:
	h species:	
70	$Rim_{i=1}$ [read as a real array]	retardation for the 1^{st} species in the immobile domain
	Rim_i [read as a real array]	retardation for the \mathbf{i}^{th} species in the immobile domain
• mode	el = CHTM: linear sorption solve	ed by Contineous History Time Method
	only available fo	r a single species and no mass transfer
67	bd [read as a real array]	bulk density
68	kf [read as a real array]	forward mass transfer coefficient
69	kb [read as a real array]	backward mass transfer coefficient
B.7.2 F	First-order decay reaction net	work
68	Text	
69	Text	
70	Text	
71	Logical Flag	True (T) if package is active
72	model	Type of network reaction

OPTIONS:

- model = SERIAL: for a serial reaction network: $A \rightarrow B \rightarrow C \rightarrow \dots$
- model = SERIAL_MOMENT: for a serial reaction network with motion solved by calculating the first and second spacial moments
- model = GENERIC: for a generic network reaction

for each species:

73 	$k_{i=1}$ [read as a real array] k_i [read as a real array]	first-order decay rate for the 1^{st} species first-order decay rate for the i^{th} species
74	$y_{i=1}$ [read as a real array]	yield coefficient for the 1^{st} species

 $y_{i=1}$ [read as a real array] yield coefficient for the 1^{ω} species y_i [read as a real array] yield coefficient for the i^{th} species

IF MASS TRANSFER:

mass transfer type = MULTIRATE for each species, for each zone:

75 $kim_{i=1,k=1}$ [read as a real first-order decay rate for the $\mathbf{1}^{st}$ species in the $\mathbf{1}^{st}$ immobile zone $kim_{i=1,k}$ [read as a real ar-first-order decay rate for the $\mathbf{1}^{st}$ species in the \mathbf{k}^{th} immobile zone

ray] mobile zone

76 $kim_{i,k=1}$ [read as a real ar-first-order decay rate for the ith species in the 1st immobile zone

... $kim_{i,k}$ [read as a real array] first-order decay rate for the ith species in the kth immobile zone

mass transfer type = _DIFFUSION or POWER_LAW or LOGNORMAL_LAW: for each species:

75 $kim_{i=1}$ [read as a real array] first-order decay rate for the 1st species in the immo-

bile domain

 \ldots kim_i [read as a real array] first-order decay rate for the i th species in the immo-

bile domain

B.7.3 Bimolecular reactions

68 Text 69 Text

70 Text

71 Logical Flag
 72 NREACT
 73 True (T) if package is active
 74 Number of chemical reactions

for each reaction:

73 [REAC + REAC + ... -> Description of the reaction PROD + PROD + ...]

for each reaction:

74 K_f [read as a real array] Reaction rate

COMMENT:

- A reaction is always described between brackets;
- The name of the reactants and products must correspond to the name given in line 12 and 13;

B.8 Control Surfaces Package

LINE 73 74 75	VARIABLE Text Text Text	DESCRIPTION
76 76	N_{well}	Number of wells
for each	well·	
77	WellID, Xwell, Ywell,	WellID: Name given to the well
	Rwell, Zbot, Ztop, Flag,	Xwell, Ywell: X, Y well coordinates
	Save	Rwell: well radius
		Zbot: well bottom (z coordinate)
		Ztop: well top (z coordinate)
		Flag: integer defining particle behavior after passing thru the well OPTIONS: • flag = $0 \rightarrow$ The particle passes thru the well but does not exit the system • flag = $1 \rightarrow$ The particle exits the system when crosses the well
		Save: True (T) is (C)BTC is saved and printed
78	N_{plane}	Number of control plane
for each OPTION • For place 67		to axes Dist: Distance of the control plane with respect to the x,y or z coordinate axis Type: type of plane which can be: • type = XX → plane parallel to the x coordinate • type = YY → plane parallel to the y coordinate • type = ZZ → plane parallel to the z coordinate Flag: Integer that can be: • flag = 0 → The particle passes through the well but does not exit the system • flag = 1 → The particle exits the system when crosses the well
• For pla		The plane is described by the equation of a plane: $ +By+Cz+D=0 \label{eq:baryone}$
67	A, B, C, D, Flag	 Flag: Integer that can be: flag = 0 → The particle passes thru the well but does not exit the system flag = 1 → The particle exits the system when crosses the well

B.9 Injections of Particles

LINE 68 69 70	VARIABLE Text Text Text	DESCRIPTION
70 71	N_{inj}	Number of injections NOTE: This version considers the injections to be independent from one another. Another approach is to use multiple injections to more complicated initial conditions: particles associated with different geometries, zones or species. This can easily be accommodated if requested.
for each 72	injection: Namelnj, Typelnj	Name and type of the injection

OPTIONS FOR NameInj:

• Namelnj = POINT

point injection \rightarrow all particles start the simulation from the same point position.

73 Pmass, Zone, Specie Pmass: Mass of a single particle

Zone: Zone which the particles belongs initially (0 =

nobile)

Specie: Specie which the particles belongs initially

74 xinj, yinj, zinj x, y, z point coordinates

• Namelnj = LINE

vertical line injection \rightarrow particles randomly uniformly distributed in a vertical line.

73 Pmass, Zone, Specie see point injection

74 xinj, yinj, zbot, ztop xinj, yinj: x, y coordinates vertical line

zbot: z line bottom vertical position ztop: z line top vertical position

• Namelnj = BLOCK

block injection \rightarrow particles uniformly distributed, equidistantly, in a block defined by lower grid-cell and upper grid-cell index.

73 Pmass, Zone, Specie see point inje	ection
---------------------------------------	--------

74 idwn, jdwn, kdwn, idwn, jdwn, kdwn: lower left cell number in x, y, z direction iup, jup, kup iup, jup, kup: top right cell number in x, y, z direction

• Namelnj = CIRCLE

circle injection \rightarrow particles uniformly distributed (randomly) within a vertical cylinder.

73 Pmass, Zone, Specie see point injection

x0, y0, zbot, ztop, rcyr x0, y0: coordinates origin cylinder

zbot: z bottom position cylinder ztop: z top position cylinder

rcyr: cylinder radius

• Namelnj = RADIAL

radial injection \rightarrow particles uniformly distributed (randomly) on the surface of a vertical cylinder.

73 Pmass, Zone, Specie see point injection

74 xinj, yinj, zbot, ztop, rcp xinj, yinj: coordinates origin cylinder

zbot: z bottom position cylinder ztop: z top position cylinder

rcp: cylinder radius

Namelnj = PLANE

plane injection \rightarrow particles uniformly distributed in a vertical plane perpendicular to x direction (not random, equidistant points).

73 Pmass, Zone, Specie see point injection

74 xdist, width, height xdist: x position of the vertical plane

width: width of the plane in the y direction height: height of the plane in the z direction

• Namelnj = PLANE_RANDOM

plane injection random \rightarrow particles uniformly distributed (randomly) in a vertical plane perpendicular to x direction.

Pmass, Zone, Specie see point injection
 xdist, width, height see plane injection

• NameInj = PLANE_FLUX_WEIGHTED

plane injection random \rightarrow particles in a vertical plane perpendicular to x direction, and proportionally to the Darcy velocity.

Pmass, Zone, Specie see point injection
 xdist, width, height see plane injection

• NameInj = LINE_BY_POINTS

line injection by points \rightarrow particles distributed uniformly (not random) in a line specified by points.

73 Pmass, Zone, Specie see point injection

x1, y1, z1, x2, y2, z2 x1, y1, z1: x,y,z coordinates of the first point

x2, y2, z2: x,y,z coordinates of the second point

• Namelnj = LINE FLUX WEIGHTED

line flux weighted \rightarrow particles are distributed proportional to the darcy velocity.

73 Pmass, Zone, Specie see point injection

74 x1, y1, z1, x2, y2, z2 see line_by_points injection

• NameInj = LINE_BY_POINT_RANDOM

line by point (random) \rightarrow particles are distributed randomly.

73 Pmass, Zone, Specie see point injection

74 x1, y1, z1, x2, y2, z2 see line_by_points injection

• NameInj = VERTICAL_LINE_FLUX_WEIGHTED

 $vertical\ line\ flux\ weighted \rightarrow particles\ distributed\ on\ a\ vertical\ line\ and\ proportionally\ to\ the\ Darcy\ velocity.$

73 Pmass, Zone, Specie see point injection

74 idwn, jdwn, kdwn, kup idwn, jdwn: cell x- and y-index (the injection line is located at

the center of the cell)

kdwn, kup: bottom cell and upper cell z-index

• Namelnj = READ_PARTICLE_FILE

read particle file \rightarrow particles location is read from an external file.

filename: name of the ascii file containing the particles

location

COMMENT:

• Only for Dirac injection;

• File format:

(I1) Header

(I2) Number of particles

for each particle:

(I3) x,y,z,Pmass,Zone,Specie: particle location (x,y,z), see point injection for basic particle properties

• Namelnj = READ CONCENTRATION FILE

read concentration file \rightarrow cell-by-cell concentrations are read from an external file.

73 Pmass, Zone, Specie see point injection

74 filename, const filename: name of the ascii file containing the cell-by-

cell concentration

const: multiplier of concentration read in filename

COMMENT:

• Only for Dirac injection;

• Particle location generate randomly within a given grid-cell;

• File format:

(I1) Header

(12 to ny*nz+1) concentration matrix in MODFLOW format (reversed y and z axis).

• Namelnj = VERTICAL_BLOCK_FLUX_WEIGHTED

vertical block flux weighted \rightarrow particles injected in a given cells of a vertical block (single i and j cell index), and proportionally to the Darcy velocity.

73 Pmass, Zone, Specie see point injection

74 idwn,jdwn,kdwn,kup idwn, jdwn: cell x- and y- index

kdwn, kup: bottom cell and upper cell z-index

• Namelni = CELLS FILE

cells file \rightarrow particles randomly injected in given cells.

73 Pmass, Zone, Specie see point injection

74 filename filename: name of the ascii file containing the cells

where particles are injected.

COMMENT:

• Particle location generate randomly within a given grid-cell;

• File format:

(I1) nblock: number of grid-cells

(I2) ivar: number of variable to be read (3 for ix,iy,iz)

(I3) text: "ix"

(I4) text: "iy"

(I5) text: "iz"

for each cell:

(I6) ix,iy,iz

• NameInj = CELL_FILE_FLUX_WEIGHTED

cell file flux weighted \rightarrow particles injected in given cells proportionally to their Darcy velocity.

73 Pmass, Zone, Specie see point injection

74 filename filename: name of the ascii file containing the cells

where particles are injected.

COMMENT

• Particle location in x and y generate randomly within a given grid-cell;

• File format:

(I1) nblock: number of grid-cells

(I2) ivar: number of variable to be read (3 for ix,iy,iz)

(I3) text: "ix"

(I4) text: "iv"

(I5) text: "iz"

for each cell:

(l6) ix,iy,iz

• NameInj = HORIZONTAL_PLANE_FLUX_WEIGHTED

horizontal plane flux weighted \rightarrow particles injected in a horizontal plane proportionally to the Darcy velocity.

73 Pmass, Zone, Specie see point injection

x1, y1, x2, y2, z1 x1, y1, z1: x,y,z coordinates of the plane corner

x2, y2: x,y,z coordinates of the second plane corner (same z)

.....

OPTIONS FOR TypeInj:

• TypeInj = DIRAC

 $\mbox{Dirac} \rightarrow \mbox{Instantaneous injection}.$

75 TimeStartInj Time at which particles are injected

76 Np Number of particles to inject (delete the line if

NameInj = READ_PARTICLE_FILE)

• Typelnj = GENERAL

General \rightarrow Injection time and mass fluxes specified in a TimeFunction file.

75 Filename, const Filename: Name of the ascii TimeFunction file;

const: multiplier (of mass fluxes specified in Time-

Function file)

COMMENT:

- TimeFunction file format:
- (I1) Header
- (I2) text: TimeFunction name
- (I3) Number of time steps

for each time step:

(I4) Time, Mass_flux

Time: Start time to apply given mass flux

Mass flux: Mass flux applied until next time step

RW3D User Guide

B.10 Recirculation

LINE 77 78 79	VARIABLE Text Text Text	DESCRIPTION
80	Logical Flag	True (T) if package is active
81	Nconnect	Number of connections between groups of wells
for each 82 83	connection: $[W1_{out} W2_{out}> W1_{in} \\ W2_{in}]$ Filename, const	Description of the connection between groups of wells (given by their <i>WellID</i> assigned in the Control Surfaces Package) Filename: Name of the ascii TimeFunction file;
03	i nename, const	const: multiplier (of mass fluxes specified in Time-Function file)

COMMENT:

- A connection is always described between brackets;
- Particles leaving a given well given at the left of the arrow are split and transferred into wells given at the right of the arrow;
- The name of the wells correspond to the name given in Control Surfaces Package.
- The TimeFunction is controlling when the recirculation framework is active.

B.11 Post-Processing and Output Options

LINE 84 85 86	VARIABLE Text Text Text	DESCRIPTION		
plume snapshots parameters				
87	Text			
88	Flag	Flag: 1 if Print Cartesian Spatial Moments at Snapshots defined bellow (0 otherwise)		
89	Flag	Flag: 1 if Print Particle Cloud at Snapshots defined bellow (0 otherwise)		
90	Tlen, Ntstep, Tmult	Tlen: Total elapsed time		
		Ntstep: Total number of shots		
		Tmult: Multiplier \rightarrow time shots are calculated as $dt(i+1) = Tmult \times dt(i)$		
breakthru curve parameters				
91	Text			
92	Flag	Flag: 1 if Print temporal moments of BTCs (0 otherwise)		

Flag, ngrid, method, bw, min,max Flag: 1 if Print BreakThrough Curves (BTCs) (0 otherwise) $ngrid: size of the grid used for pdf reconstruction \\ method: options \rightarrow BOX, TRIANGLE, GAUSS, PLUGING$

NOTE: The method PLUGIN optimizes the bandwidth with an iterative algorithm that minimizes the mean integrated squared error of the density function. In this case the resulting bandwidth is the standard deviation of the Gaussian density function. For most conditions works quite well.

	Works quite Well.	
		w: half bandwidth support for histogram evaluation bw $<$ 0 $ ightarrow$ bw estimated by the program
		in: minimum value of the histogram bin $\min < 0 \rightarrow \min$ estimated by the program
		<i>ax</i> : maximum value of the histogram bin max $< 0 \rightarrow$ max estimated by the program
92	Flag, Frequency	Flag: 1 if Print Cumulative BTCs (0 otherwise)
		Frequency: Frequency of printing particles = moves/prints
89	Flag, Frequency, Particle	Flag: 1 if Print particle path (0 otherwise)
		Frequency: Frequency of printing particles = moves/prints
		$\label{eq:particle} \textit{Particle}: \mbox{Number of particle to print. If <0 all particles are printed}$