

State-value Function
$$V_{\pi}(s) = \mathbb{E}^{\pi} [Gt | St = s]$$

$$= \mathbb{E}^{\pi} [\sum_{t=0}^{\infty} \gamma^{t} R_{t+t+1} | St = s]$$
We consider a time-homogeneous MDP

action-value Function

$$q_{TT}(s,a) = \mathbb{F}^{TT} \left[\begin{array}{c} Gt \mid St=s, & At=a \end{array} \right]$$

$$= \mathbb{E}^{TT} \left[\begin{array}{c} \sum_{t=0}^{\infty} \gamma^{t} Rt+t+1 \mid St=s \end{array} \right]$$

-> Goal: derive recursive relation with Gn(s,a)/Vn(s) Bellman Equation (Bellman Equation) Derivation: $V_{\pi}(s) = \mathbb{E}^{\pi} [Gt | St = 5] = \sum_{\alpha} \pi(\alpha | s) \cdot g_{\pi}(s, \alpha)$ = E"[R++1 S+=5]+ YE"[\$\sum Y R+++2 \ St=5] $= b(\pi)_{S} + \chi \sum_{S'} P(\pi)_{SS'} \cdot V_{\pi}(S')$ b(π)s:= E"[R++|S+=s] = Σπ(a|s). Σ p(s',r|s,a). γ P(n) ss' = P"(StH=S' | St=S) = 5 T(als) P(St+1=s'| St=s, At=a) = \(\tals) \cdot \(\tals \) p(s\(r \) s, \(\talpha \) @ qn(s,a) = ["[Gt | St=s, At=a] = \(\tau \rangle \text{g'} \rangle \text{g'} \rangle \text{g'} \rangle \text{T' Rtter2 | s.a.} \) = $\sum_{s,r} p(s,r|s,a) \cdot r + \sum_{s'} p(s'|s,a) \cdot V_{\pi}(s')$ = \(\text{p(s'r|s,a)} \(\text{r+} \text{V\(\pi\(s')} \) Rmk: $V_{\pi} = b(\pi) + \gamma \cdot P(\pi) \cdot V_{\pi}$ $\Rightarrow V_{\pi} = (I - \gamma P(\pi))^{-1} b(\pi)$

idea: whom we have	{ P(s,r s,a)		
<u>idea:</u> when we have	policy TT(als)	, then we can	
compute for $V_{\pi}(s)$ &	gπ (s,a)	yse S and yae A	
Policy Comparison	(POSET) partial order	not necessary happen Property	
Defn: T'>T	partial order	$\begin{cases} 0 \ge a \\ a \ge b \ b \le a \implies a = \\ a \ge b \ b \ge c \implies a = \end{cases}$	=k
$\Leftrightarrow V_{\pi'}(s) \geqslant V_{\pi}(s)$	A 2 e 2	la>b b>c ⇒ a=	3 (
A trivial question: optimal	policy exists or	- not	
Bellman Optimality Introduced	uniques	or not!	
Outline: (1) Police	cy Improvement		
\longrightarrow if $\sum_{\alpha} \pi'(\alpha t)$	s)· q ₁₁ (s,a) >	5 π(als) gπ (s,a)	
		$= V_{\pi}(s) \forall s \in S$	
	VIII (S) 8	Man ()	
Rmk: Give us the	motivation of p	policy iteration	
Rmk: Give us the (2) Necessary C	condition for Opti	mal Policy	

(a) a natural chaice to improve policy is:

$$\pi'(a|s) = \begin{cases} 1 & a= avgnex \ f_{\pi}(s, a) \\ 0 & o | w \end{cases}$$

$$\frac{1}{2} \text{ Bellman Optimality Condition}$$

$$\pi^*(a|s) \text{ is an optimal policy}$$

$$\Rightarrow \text{ if } \pi^*(a|s) \text{ is an optimal policy}$$

$$\Rightarrow \text{ then } a \in avgnex \ f_{\pi^*}(a', s)$$

$$a' \Rightarrow \text{ where } f_{\pi^*}(a|s) \text{ is an optimal policy}$$

$$\Rightarrow \text{ if } \pi^*(a|s) = \max_{a \in S, r} f(s', r|s, a) (r+\gamma) \text{ } V_{\pi^*}(s')$$

$$\Rightarrow \text{ for a policy } f_{\pi^*}(s, a) = \sum_{s,r} f(s', r|s, a) (r+\gamma) \text{ } V_{\pi^*}(s')$$

$$\Rightarrow \text{ for a policy } f_{\pi^*}(a|s) \Rightarrow \text{ for a pol$$

