∞-Category seminar – Straightening and unstraightening Rafah Hajjar, March 4, 2025

These notes are based on Markus Land's book Introduction to Infinity-Categories, section 3.3.

Last week we defined the notion of a cartesian and cocartesian fibrations of ∞ -categories. We will focus on cocartesian fibrations for the purposes of this talk, but keep in mind that all statements can be dualized to cartesian fibrations. We briefly recall the notion:

Definition. A morphism of ∞ -categories $p:\mathcal{E}\to\mathcal{C}$ is a *cocartesian fibration* if every lifting problem

$$\Delta^{\{0\}} \longrightarrow \mathcal{E}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\Delta^1 \longrightarrow \mathcal{C}$$

has a solution $f: \Delta^1 \to \mathcal{E}$ which is *p-cocartesian*, meaning that the lifting problems

can be solved for all $n \geq 2$.

Remark. Note that left fibrations are cocartesian, and in fact are those in which every edge of \mathcal{E} is p-cocartesian.

The goal of this talk is to show that there is an equivalence of ∞ -cateogries

$$\operatorname{CoCar}(\mathfrak{C}) \xrightarrow{\sim} \operatorname{Fun}(\mathfrak{C}, \mathbf{Cat}_{\infty})$$

this is, giving a cocartesian fibration over \mathcal{C} corresponds to giving a functor from \mathcal{C} to the ∞ -category of ∞ -categories. (This equivalence translates existence data into coherence data.)

Definition. Given a cocartesian fibration $p: \mathcal{E} \to \mathcal{C}$ and an object $x \in \mathcal{C}$, we denote by $\mathcal{E}_x = \mathcal{E} \times_{\mathcal{C}} \{x\} \in \mathbf{Cat}_{\infty}$ and call it the *fiber* of x in \mathcal{E}

Proposition 1. There is a functorial association $f \to f_!$ that sends a 1-morphism $f: \Delta_1 \to \mathcal{E}$ given by $f: x \to y$ on objects $x, y \in E$ to a map of ∞ -categories $f_!: \mathcal{E}_x \to \mathcal{E}_y$. (Functorial in the sense that given $h \simeq gf$, we have $h_! \simeq g_!f_!$)

Construction and sketch of proof. We start with the following lemma:

Lemma. Denote by $\operatorname{Fun}_{\sigma}^{cc}(K,\mathcal{E})$ the simplicial set of K-simplices of \mathcal{E} over a fixed $\sigma: K \to \mathcal{C}$ whose edges are all p-cocartesian. If $i: L \to K$ is left anodyne, then

$$\operatorname{Fun}_{\sigma}^{cc}(K,\mathcal{E}) \to \operatorname{Fun}_{\sigma^i}^{cc}(L,\mathcal{E})$$

The simplicial set $\operatorname{Fun}_f^{cc}(\Delta^1,\mathcal{E})$ consists of all cocartesian edges of \mathcal{E} over f. The canonical

map $\operatorname{Fun}_f^{cc}(\Delta^1, \mathcal{E}) \to \mathcal{E}_x$ given by restriction to the source is a trivial fibration (this is the lemma applied to the left anodyne map Δ), so we can choose a section to produce the composite

$$f_!: \mathcal{E}_x \to \operatorname{Fun}_f^{cc}(\Delta^1, \mathcal{E}) \to \mathcal{E}_y,$$

where the second map is given by restriction to the target. Given a 2-simplex $\sigma: \Delta^2 \to \mathbb{C}$, $\sigma = (g, h, f)$, functoriality follows from the lemma applied to the restrictions

$$\operatorname{Fun}^{cc}_{\sigma}(\Delta^2,\mathcal{E}) \xrightarrow{\sim} \operatorname{Fun}^{cc}_{f}(\Delta^{\{0,1\}},\mathcal{E}), \quad \operatorname{Fun}^{cc}_{\sigma}(\Delta^2,\mathcal{E}) \xrightarrow{\sim} \operatorname{Fun}^{cc}_{h}(\Delta^{\{0,2\}},\mathcal{E})$$

Let $\Delta_{/\mathcal{C}}^{\text{op}}$ be the category of simplicial objects of \mathcal{C} , and denote by $W_{\mathcal{C}}$ the set of morphisms that fix the vertex 0.

Proposition 2. To a cocartesian fibration $p: \mathcal{E} \to \mathcal{C}$ one can associate a functor $\Theta_p: \Delta_{/\mathcal{C}}^{\mathrm{op}} \to \mathbf{sSet}$, which sends any morphism in $W_{\mathcal{C}}$ to a Joyal equivalence. In particular, this localizes to a functor:

$$N(\Delta_{/\mathcal{C}}^{\mathrm{op}})[W_{\mathcal{C}}^{-1}] \to \mathbf{sSet}[\mathrm{Joy}^{-1}] \xrightarrow{\sim} \mathbf{Cat}_{\infty}$$

Proof. The functor Θ_p is defined by sending a simplicial object $\sigma: \Delta^n \to \mathcal{C}$ to the simplicial set $\operatorname{Fun}_{\sigma}^{cc}(\Delta^n,\mathcal{C})$. A morphism in $\Delta^{\operatorname{op}}_{/\mathcal{C}}$ is just a composite $\Delta^n \xrightarrow{f} \Delta^m \to \mathcal{C}$, and by definition $f \in W_{\mathcal{C}}$ iff f maps the vertex $0 \in \Delta^n$ to $0 \in \Delta^m$. For such an f, the diagram

$$\operatorname{Fun}_{\sigma}^{cc}(\Delta^{m}, \mathcal{E}) \xrightarrow{\Theta_{p}(f)} \operatorname{Fun}_{\sigma f}^{cc}(\Delta^{n}, \mathcal{E})$$

$$\operatorname{Fun}_{x}^{cc}(\Delta^{0}, \mathcal{E})$$

commutes, and both diagonal maps are trivial fibrations again by the lemma, so $\Theta_p(f)$ is a Joyal equivalence.

Lemma. There is a canonical map $N(\Delta_{/\mathcal{C}}^{\text{op}}) \to \mathcal{C}$ which sends $W_{\mathcal{C}}$ to degenerate edges. The induced functor of localizations

$$N(\Delta_{/\mathcal{C}}^{\mathrm{op}})[W_{\mathcal{C}}^{-1}] \xrightarrow{\sim} \mathcal{C}$$

is a Joyal equivalence.

Idea of proof. The map is defined by sending a k-simplex of $N(\Delta_{/\mathbb{C}}^{\text{op}})$, which is given by a diagram:

$$\Delta^{n_0} \xrightarrow{\alpha_1} \Delta^{n_1} \xrightarrow{\alpha_2} \cdots \xrightarrow{\alpha_k} \Delta^{n_k} \to \mathcal{C}$$

to the k-simplex $\Delta^k \xrightarrow{\alpha} \Delta^{n_k} \to \mathbb{C}$, where the map α sends the vertex $i \in [k]$ to $\alpha(i) := \alpha_k \circ \cdots \circ \alpha_{k-i+1}(0)$. By definition, all morphisms of $W_{\mathbb{C}}$ are sent to a degenerate edge of \mathbb{C} , which are equivalences. The theorem is proven by showing that the composition

$$\mathcal{C} \to N(\Delta^{\mathrm{op}}_{/\mathcal{C}})[W_{\mathcal{C}}^{-1}] \to \mathcal{C}[\deg^{-1}] \simeq \mathcal{C}$$

preserves colimits and monomorphisms

Theorem 1. By inverting the above equivalence we get a functor

$$\mathcal{C} \stackrel{\sim}{\leftarrow} N(\Delta_{/\mathcal{C}}^{\mathrm{op}})[W_{\mathcal{C}}^{-1}] \to \mathbf{Cat}_{\infty}$$

called the *straightening* of the cocartesian fibration $p:\mathcal{E}\to\mathcal{C}$. This construction extends to an equivalence

$$\operatorname{CoCar}(\mathfrak{C}) \xrightarrow{\sim} \operatorname{Fun}(\mathfrak{C}, \mathbf{Cat}_{\infty})$$

which sends a cocartesian fibration $p:\mathcal{E}\to\mathcal{C}$ to its corresponding straightening functor.

There is a universal CoCartesian fibration $(\mathbf{Cat}_{\infty})_{*//} \to \mathbf{Cat}_{\infty}$ corresponding to the identity functor $id \in \mathrm{Fun}(\mathbf{Cat}_{\infty}, \mathbf{Cat}_{\infty})$. There is a way to define the pullback of a cocartesian fibration $\mathcal{E} \to \mathcal{D}$ along a map $F : \mathcal{C} \to \mathcal{D}$, which allows to express the inverse of the above equivalence (i.e. the *unstraightening*) as taking the pullback of $(\mathbf{Cat}_{\infty})_{*//} \to \mathbf{Cat}_{\infty}$ along $F : \mathcal{C} \to \mathbf{Cat}_{\infty}$:

$$\begin{array}{ccc} \mathcal{E} & \longrightarrow (\mathbf{Cat}_{\infty})_{*//} \\ \downarrow & & \downarrow \\ \mathcal{C} & \longrightarrow \mathbf{Cat}_{\infty} \end{array}$$

The functor $\operatorname{Fun}(\mathcal{C} \to \operatorname{\mathbf{Spc}}) \to \operatorname{Fun}(\mathcal{C}, \operatorname{\mathbf{Cat}}_{\infty})$ is fully faithful $(\operatorname{\mathbf{Spc}} \to \operatorname{\mathbf{Cat}}_{\infty})$ is and $\operatorname{Fun}(K, -)$ preserves fully faithfulness). We have:

Theorem 2. The straightening-unstraightening equivalence restricts to an equivalence

$$LFib(\mathcal{C}) \to Fun(\mathcal{C}, \mathbf{Spc})$$

Proof. Left fibrations are cocartesian fibrations where all fibres are ∞ -groupoids.

Theorem 3. For an ∞ -groupoid X, $\mathrm{LFib}(X) \simeq \mathbf{Spc}_{/X}$, so the previous equivalence reads as

$$\mathbf{Spc}_{/X} \to \mathrm{Fun}(X,\mathbf{Spc})$$

Proof. Since X is an ∞ -groupoid, any left fibration $\mathcal{E} \to X$ is a Kan fibration, and hence \mathcal{E} is a Kan complex, so we have a natural map

$$LFib(X) \to \mathbf{Spc}_{/X}$$

One can show that this is fully faithful and essentially surjective, hence an equivalence \Box