CS/ECE 374 FALL 2018
Homework 2 Problem 2

Zhe Zhang (zzhan157@illinois.edu) Ray Ying (xinruiy2@illinois.edu) Anqi Yao (anqiyao2@illinois.edu)

3.In Lab 3 we considered the language $delete1(L) = \{xy \mid x1y \in L\}$. Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L by deleting exactly one 1. For example, if $L = \{101101, 00, \varepsilon\}$, then $delete1(L) = \{01101, 10101, 10110\}$. We argued that if L is regular then delete1(L) is also regular and the proof strategy was as follows: given a DFA M such that L = L(M), construct an NFA N such that L(N) = delete1(L). Here we consider a different proof technique. Let r be a regular expression. We will develop an algorithm that given r constructs a regular expression r' such that L(r') = delete1(L(r)). Assume $\Sigma = \{0,1\}$.

- 1. For each of the base cases of regular expressions \emptyset , ϵ and $\{a\}$, $a \in \Sigma$ describe a regular expression for $delete_{\mathbf{1}}(L(r))$.
- 2. Suppose r_1 and r_2 are regular expressions, and r_1' and r_2' are regular expressions for the languages $delete\mathbf{1}(L(r_1))$ and $delete\mathbf{1}(L(r_2))$ respectively. Describe a regular expression for the language $delete\mathbf{1}(L(r_1+r_2))$ using r_1, r_2, r_1', r_2' . Briefly justify the correctness of your construction. The argument should take the form of proving $L_1 = L_2$ by showing that $L_1 \subseteq L_2$ and $L_2 \subseteq L_1$.
- 3. Same as the previous part but now consider $L(r_1r_2)$. This is a bit more tricky than the previous part.
- 4. Same as the previous part but now consider $L((r_1)^*)$.
- 5. Apply your construction to the regular expression $r = 0^* + (01)^* + 011^*0$ to obtain a regular expression for the language $delete_{\mathbf{L}}(L(r))$.

Solution: \vee

- 1. (a) Suppose r is empty set \emptyset so that r represents the empty language. Deleting exactly one 1 from the empty set results in an empty set. Thus $delete_{\mathbf{1}}(L(r))$ is represented with \emptyset .
 - (b) Suppose $r = \epsilon$ then deleting exactly one 1 from the empty string results in an empty set. Thus $delete_{\mathbf{1}}(L(r))$ is represented with \emptyset .
 - (c) Suppose r=a then there are two possibilities: a=0 and a=1. If a=0 then deleting exactly one 1 from 0 results in an empty set. If a=1 then deleting exactly one 1 results in an empty string. Thus $delete_{\mathbf{1}}(L(r))$ is represented with \emptyset when a=0 and ϵ when a=1.
- 2. Since r_1 and r_2 are regular expressions, $r = r_1 + r_2$ is also a regular expression and denotes $L(r) = L(r_1) \cup L(r_2)$. Since r_1' and r_2' are regular expressions for the languages $delete_1(L(r_1))$ and $delete_1(L(r_2))$, we have $r' = r_1' + r_2'$. For every string $w \in L(r)$, then $w \in L(r_1)$ or $w \in L(r_2)$. If we delete exactly one 1 from the string w, the new string is in either $L(r_1')$ or $L(r_2')$. Hence $L(r_1' + r_2') \subseteq delete_1(L(r_1 + r_2))$ (A)

Now let's think from the other side. Let the string $w' \in delete \mathbf{1}(L(r))$, then there exists the string $w \in L(r)$ such that w' is the result of deleting exactly one 1 from the string w. Since $r = r_1 + r_2$, $(w \in L(r_1))$ so that $w' \in L(r_1')$ or $(w \in L(r_2))$ so that $w' \in L(r_2')$. In both cases, $w' \in L(r_1' + r_2')$ so that $delete \mathbf{1}(L(r_1 + r_2)) \subseteq L(r_1' + r_2')$ (B)

Based on the equations (A) and (B), we conclude that $delete \mathbf{1}(L(r)) = L(r'_1 + r'_2)$. Thus $delete \mathbf{1}(L(r_1 + r_2))$ is represented with the regular expression $r'_1 + r'_2$.

3. Since r_1 and r_2 are regular expressions, $r = r_1 r_2$ is also a regular expression. Since r_1' and r_2' are regular expressions for the languages $delete \mathbf{1}(L(r_1))$ and $delete \mathbf{1}(L(r_2))$, we have $r' = r_1' r_2 + r_1 r_2'$. For every string $w = xy \in L(r)$, we assume that x corresponds to r_1 and y corresponds to r_2 then $x \in L(r_1)$ and $y \in L(r_2)$. If we delete exactly one 1 from the string w, it will delete from either the string x or string y. (1) If it delete from the string x, then w' = x'y where $x' \in L(r_1')$ so that $w' \in L(r_1'r_2)$. (2) If it delete from the string y, then w' = xy' where $y' \in L(r_2')$ so that $w' \in L(r_1r_2')$. According to these two conditions, it is safe to say that $w' \in L(r_1'r_2 + r_1r_2')$. Hence $delete \mathbf{1}(L(r_1r_2)) \subseteq L(r_1'r_2 + r_1r_2')$ (A)

Now let's think from the other side. Let the string $w' \in L(r_1'r_2 + r_1r_2')$, then either $w' \in L(r_1'r_2)$ or $w' \in L(r_1r_2')$. (1) If $w' \in L(r_1'r_2)$, then w' = x'y where $x' \in L(r_1')$ and $y \in L(r_2)$. w' is the result of deleting exactly one 1 from the string x, which is also the result of deleting exactly one 1 from the string w. (2) If $w' \in L(r_1r_2')$, then w' = xy' where $x \in L(r_1)$ and $y' \in L(r_2')$. w' is the result of deleting exactly one 1 from the string y, which is also the result of deleting exactly one 1 from the string w. Hence $L(r_1'r_2 + r_1r_2') \subseteq delete \mathbf{1}(L(r_1r_2))$ (B)

Based on the equations (A) and (B), we conclude that $delete\mathbf{1}(L(r)) = L(r_1'r_2 + r_1r_2')$. Thus $delete\mathbf{1}(L(r_1r_2))$ is represented with the regular expression $r_1'r_2 + r_1r_2'$.

4. Since r_1 is regular expressions, $r=r_1^*$ is also a regular expression. Since r_1' is regular expressions for the languages $delete \mathbf{1}(L(r_1))$, we have $r'=r_1^*r_1'r_1^*$. Let the string $w \in L(r_1^*)$, then there are strings $x_1, x_2, ..., x_n \in L(r_1)$ such that $w=x_1x_2...x_n$. $w'=x_1x_2...x_{i-1}x_i'x_{i+1}...x_n$ is the result of deleting exactly one 1 from the string w. Since $x_1x_2...x_{i-1} \in L(r_1^*)$, $x_i' L(r_1')$ and $x_{i+1}...x_n \in L(r_1^*)$, $w'=x_1x_2...x_{i-1}x_i'x_{i+1}...x_n \in L(r_1^*r_1'r_1^*)$. Hence $delete \mathbf{1}(L(r_1^*)) \subseteq L(r_1^*r_1'r_1^*)$ (A)

Now let's think from the other side. If $w' \in L(r_1^*r_1'r_1^*)$, then w' = xy'z where $x \in L(r_1^*)$, $y \in L(r_1')$ and $z \in L(r_1^*)$. The string y' is the result of deleting exactly one 1 from the string y where $y \in L(r_1^*)$ so that w' = xy'z is the result of deleting an exactly one 1 from y where y = xyz. Hence $y \in L(r_1^*r_1'r_1^*) \subseteq delete \mathbf{1}(L(r_1^*))$

Based on the equations (A) and (B), we conclude that $delete \mathbf{1}(L(r)) = L(r_1^*r_1'r_1^*)$. Thus $delete \mathbf{1}(L(r_1^*))$ is represented with the regular expression $r_1^*r_1'r_1^*$.

5.

$$delete_{1}(L(r)) = delete_{1}(L(0^* + (01)^* + 011^*0))$$
(1)

$$= delete_{1}(L(0^{*})) + delete_{1}(L((01)^{*})) + delete_{1}(L(011^{*}0))$$
(2)

$$= delete_{1}(L(0^{*})) + delete_{1}(L((01)^{*})) + delete_{1}(L(01 \times 1^{*}0))$$
(3)

$$= \emptyset + (01)^*0(01)^* + 01^*0 + 01(1^*1^*0 + \emptyset)$$
(4)

$$= (01)^*0(01)^* + 01^*0 + 011^*0$$
 (5)