2021 - 2022

ANALYSE DES STRUCUTRES

QUITTELIER Bernard

Question 3 : déterminer les efforts normaux dans les barres JD,IJ,DE,BG,LG et KF du treillis schématisé ci-dessous

Les efforts normaux doivent être exprimés en kN avec 3 chiffres après la virugule

Barre	N (kN) ***,***
JD	
IJ	
DE	
BG	
LG	
KF	

Question 4 : déteminer les moments d'inertie principaux centraux et les rayons de giration correspondant de la section suviante :

max	(cm ⁴)	** *
l min	(cm ⁴)	** *
i max	(cm)	* **
i _{min}	(cm)	* **

Questionnaire 1 page 5

RAG=40AN MAZ= 40+ 6,5x20. -120 RWM. 4 km/m. VA = 40 suid = 24 kr = 24 kr = 40 cord = 32 kr 3,2

N Mackon Than

Calculs des réactions d'appenis RAXEO RAG+ RBG - 30 AN -6 x (2+4+6+8+10)+10 hbg=0 -180+10 hbg=0 hbg=18kw hhg=12kn. 16kw 16 NoI RVSD. D NED. 12 RV SFX=0 NED+NJI + NJ B Cord = 0 SF1=0. 12-12 + NJD SUIX= 0 NJD=0 SHD7=0. -12x4+6x2-1,5NJI=0 NJI=-24 RN NEO= 24 RN.

Question 3 : déterminer les efforts normaux dans les barres JD,IJ,DE,BG,LG et KF du treillis schématisé ci-dessous

Les efforts normaux doivent être exprimés en kN avec 3 chiffres après la virugule

Barre	N (kN) ***,***
JD	O RN.
IJ	-24,000 RN.
DE	24,000 AN.
BG	0.
LG	
KF	-6 km

position du centre 5 Xy YG, 1 10cm² 0,5 5 2 9 cm 2 5,5 0,5 xg= 0,5x10+5,5x9 = 54,5= 2,868cm. $f_{G} = \frac{5 \times 10 + 0.5 \times 9}{19}$ = 2,868421 cm. $I_{\gamma} = \frac{10^{2} \times 1}{10} + 10 \times (5 - 2.868)^{2}$ + 138 + 9x (0,5-2,868)= 180,004366 cm? It= 12/0+ 10x (0,5-2,868)2 +9x(5.5-2.868)=179.7743321149.I17= +10x (0,5-2,868) (5-2,868) +9x(5,5-2,868)x(0,5-2,86P)= -106,57 8 gc 2 cm 4. Eard= 7 C = 180,00 4386. d=450. R= IYZ imer. 3. for. Imax = C+R = = 286,58 - cm 4 cinis: 1,9700. Imor = C-R= +3,48 cm9.

Question 4 : déteminer les moments d'inertie principaux centraux et les rayons de giration correspondant de la section suviante :

max	286,58	(cm ⁴)	*
min	73,43.	(cm ⁴)	*
max	3,88	(cm)	*
min	1.97	(cm)	*

Questionnaire 1 page 5

KHAYATI Nessim lundi 7 juin 2021

Examen d'analyse des structures

Question 1 : Tracer les diagrammes MNV de la poutre suivante :

Question 2: Tracer les diagrammes MVN du portique suivant :

8 m 2 m

Question 3 : déterminer les efforts nomaux dans les barres AC, AH,JD,JE,DE,JK et LB du treillis schématisé ci-dessous

Valeurs numériques

P: 4 kN

L: 3 m

Questioin 4 : déterminer les moments d'inertie principaux centraux et les rayons de giration correspondant de la section suivante :

Faites un schéma montrant clairement les directions principales

Solution

Données					
question 1	l1	3 m	R_{Ax}	10,3923048	kN
	12	3 m	R_{Ay}	12	kN
	13	6 m	M_{az}	99	kNm
	р	2 kN/m	N	10,3923048	kN
	Р	12 kN	V_1	12	kN
			V_2	6	kN
			M_1	-99	kNm
			M_2	-63	kNm
			M_3	-36	kNm
Question 2	h1	6 m	I _{CD}	10	m
	h2	6 m	R _{Ax}		kN
	l1	8 m	R_{Ay}	9,6	
	12	2 m	R _{By}	10,4	
	Р	4 kN	-,		
	p	2 kN/m	N_1	-9,6	kN
			N_2	-5,76	kN
			N_3	6,24	kN
			N_4	0	kN
			V_1	4	kN
			V_2	7,68	kN
			V_3	-8,32	kN
			V_4	-10,4	kN
			M_1	24	kNm
			x*	4,8	
			Mmax	42,432	
			M_2		kNm
			α	0,64350111	
			α	36,8698976	_
			\coslpha \sinlpha	0,8 0,6	
			3111 W	0,0	

Ρ 4 kN L 3 m $R_{\mathsf{A}\mathsf{x}}$ 50 kN R_{Ay} 20 kN R_{Bx} -50 kN -50 kN N_{AC} -20 kN N_{AH} N_{JD} 0 kN 14,1421356 kN N_{JE} N_{DE} -18 kN N_{JK} -42 kN -50 kN N_{LB}

Question 4

e 80 mm 8 cm

Aire 384 cm² 18,6666667 cm \mathbf{y}_{G} 5,33333333 cm \mathbf{z}_{G} 1706,66667 cm⁴ ly partie 1 568,888889 cm⁴ transport 1 lypartie2 341,333333 cm⁴ 2844,44444 cm⁴ transport 2 5461,33333 cm⁴ I_{GY} 42666,6667 cm⁴ Iz partie 1 568,888889 cm⁴ transport 1 341,333333 cm⁴ Iz partie 2 transport 2 2844,44444 cm⁴ 46421,3333 cm⁴ I_{Gz} -568,888889 cm⁴ lyz partie 1 -2844,44444 cm⁴ lyz partie 2 -3413,33333 cm⁴ I_{Gyz} $\mathsf{tg2}\alpha$ -0,16666667

α	-0,08257434 radians	-4,7311611 degrés
С	25941,3333 cm ⁴	
R	20762,4961 cm ⁴	
I_1	46703,8294 cm ⁴	
I_2	5178,83723 cm ⁴	
i ₁	11,0283524 cm	

Graphiques N(x) en bleu et V(x) en gris

Graphique M(x): (le signe de M a été changé)

