

Artisan Dark Chocolate Bar Ratings Predictor

Team Candy
Bruce Jilek, Tahereh Javaheripour, Yan Kin Pang, Travis Loseke

Topic Selection

Predicting Artisan chocolate bar ratings from variables such as:

Chocolatier

Bean Type

Bean Source

Cocoa Percent

Reason for Topic Selection

- Chocolate was universally loved by the team
- Dataset was expansive enough to cover final project requirement
- Team became genuinely interested in if cocoa bean types and their source drive chocolate quality
- Intriguing documentary on the dark side of the cocoa bean market

Data sources

- Kaggle- <u>Chocolate Bar ratings</u>
- Kaggle Countries and States Lat Long
- Flavors of Cacao website
- UN FAO Database

Questions to answer

- Can we predict which chocolate bars will be rated in the top 15% (i.e. Rating >= 3.75, one SD above the Mean), based on:
 - Review date
 - Cocoa Percent
 - Bean Type: Criollo, Trinitario, or Forastero
 - Broad Bean Origin: Cocoa beans source country
- Where are the best cocoa beans grown?
- Which countries produce the highest-rated bars?
- What's the relationship between cocoa solids percentage and rating?

Data exploration phase

- Pandas, Matplotlib, and Seaborn libraries were used to review, evaluate and clean datasets
 - Examine null counts
 - Data continuity
 - Data types
- Tableau was used to make initial map plots to look at geographic distribution issues related to typographical errors and level of detail

EDA distributions

Data Preprocessing and Cleaning

- Corrected Typos (Countries)
- Formatted numerical values
- Add Continent/Region and joined Ingredients, and Most Memorable columns
- Handled outliers in Review
 Data and Cocoa Percent
- Dropped or replace null values

```
#Converting String Cocoa_Percent column into Integers
df_chocolate["Cocoa_Percent"] = df_chocolate["Cocoa_Percent"].str.replace('%', '')
df_chocolate['Cocoa_Percent'] = df_chocolate['Cocoa_Percent'].str.replace('.', '')
df_chocolate["Cocoa_Percent"] = df_chocolate["Cocoa_Percent"].astype(float)
df_chocolate["Cocoa_Percent"].value_counts()
```


Data Analysis phase

- Pandas and Matplot lib were used to review, evaluate and clean datasets
 - Initial plots of rating trends vs other features
 - Examine plots to look for skewness in the features and dataset
 - Quicklook plots for any trends or significant outlier anomalies
- Tableau was used to make initial map plots to look at geographic distribution of cocoa bean sources and data bias in geographic space

Analysis Example: Does Cocoa % lead to better bar rating

Rating peak near ~70% cocoa and fall off at higher and lower values

Chocolates global trade

Chocolate Artisan Countries and their bean sources

Machine Learning Model

1.	Binary Classifier	Multi Classifier			
	Random Forest/Balanced Random Forest	Random Forest			
	Logistic Regression	Extra Trees			
	SVM	Neural Net			
	Neural Net				

- 2. Review model weighting and confusion matrices desired to focus on recall and f1 score
- 3. Model selection preferred combination of high recall with explanation of results
- 4. Balanced RandomForest Classifier was selected as it had the best balance of recall and f1 score of the models.

Machine Learning

Model	Precision	Recall	F1 Score	Notes
Logistic Regression	0.44	0.40	0.42	Used Train_scaled, lbfgs
Random Forest	0.37	0.43	0.40	Used SMOTEENN resampling, entropy
Balanced Random Forest	0.30	0.80	0.44	Used Train_scaled, entropy
SVM	0.52	0.18	0.27	
Gradient Boost	0.55	0.18	0.28	
	Accuracy	Loss		
Neural Network	0.76	2.82		

Database Structure

- Cleaned data to S3 Bucket
- PGAdmin to AWSRDS PostGresSql
- SQL Alchemy connection to Python for ML

ean_flavors_table			location_table
ompany	VARCHAR		country_code
n_Origin_or_Bar_Name	VARCHAR		latitude
EF.	INT		longitude
eview_Date	VARCHAR	\prec	broad_bean_origin_country
ocoa_Percent	FLOAT		
ompany_Location	VARCHAR		
ating	FLOAT		
ean_Types	VARCHAR		
road_Bean_Origin_Country	VARCHAR	+	
эу	VARCHAR		
gredients	VARCHAR		
ost_memorable_characteristics	VARCHAR		
ontinent	VARCHAR		

Database Structure

Query Editor Query History 4 CREATE TABLE location table (country_code VARCHAR NOT NULL, latitude FLOAT NOT NULL. longitude FLOAT NOT NULL, Broad_Bean_Origin_Country VARCHAR NOT NULL, PRIMARY KEY (Broad_Bean_Origin_Country) 12 CREATE TABLE clean_flavors_table (13 Company VARCHAR NOT NULL, Bean_Origin_or_Bar_Name VARCHAR NULL, "REF" INT NOT NULL, Review_Date VARCHAR NOT NULL, Cocoa Percent FLOAT NOT NULL, Company_Location VARCHAR NULL, Rating FLOAT NOT NULL, 19 Bean_Type VARCHAR NULL. Broad_Bean_Origin_Country VARCHAR NULL, 22 Ingredients VARCHAR NULL. 23 Most Memorable Characteristics VARCHAR NULL, 24 continent VARCHAR NULL, 25 FOREIGN KEY (Broad Bean Origin Country) REFERENCES location table (Broad Bean Origin Country) 26);

1. Table(s) creation

```
# Join the 2 tables together on broad_bean_origin_country, select the columns you want to view

sql = """ SELECT clean_flavors_table .*, location_table.country_code,location_table.longitude,
FROM clean_flavors_table

Notean_flavors_table broad_bean_origin_country = location_table.broad_bean_origin_country;

"""

**Store the joined tables in dataframe
    joined_tables = pd.read_sql(sql, con=connection)

# View the new dataframe combined from two sql tables
    joined_tables.head(10)
```

2. Create the join tables

3. Joined Master Table

company_location	rating	bean_type	broad_bean_origin_country	ngredients	most_memorable_characteristics	continent	country_code	longitude	latitude
France	3.75	missing	Sao Tome & Principe	4- B,S,C,L	sweet, chocolatey, vegetal	Africa	ST	6.613081	0.186360
France	2.75	missing	Togo	4- B,S,C,L	burnt wood, earthy, choco	Africa	TG	0.824782	8.619543
France	3.00	missing	Togo	4- B,S,C,L	roasty, acidic, nutty	Africa	TG	0.824782	8.619543
France	3.50	missing	Togo	4- B,S,C,L	mild profile, chocolaty, spice	Africa	TG	0.824782	8.619543
France	3.50	missing	Peru	4- B,S,C,L	grainy texture, cocoa, sweet	South America	PE	-75.015152	-9.189967
France	2.75	Criollo	Venezuela	Unknown	missing	South America	VE	-66.589730	6.423750
France	3.50	missing	Cuba	4- B,S,C,L	sligity dry, papaya	Caribbean	CU	-77.781167	21.521757
France	3.50	Criollo	Venezuela	Unknown	missing	South America	VE	-66.589730	6.423750
France	3.75	Criollo	Venezuela	Unknown	missing	South America	VE	-66.589730	6.423750
France	4.00	missing	Peru	4- B,S,C,L	delicate, hazelnut, brownie	South	PE	-75.015152	-9.189967

Dashboard Tableau Dashboard - Story Board

 Select Bar Manufacturer / Cocoa Bean Country to see where the flow of beans to bar throughout the world. Filter on brand or rating

 Examine Ratings relationship to Cocoa percentage....hint more is not necessarily better

- Review other controls on bar ratings, such as ingredients....the world loves sugar
- Chocolate critics narrow their voting over time and a general trend to increase the mean through time

Conclusions

 Cocoa percent is the biggest driver in choosing the best bar. 65-70% is the "sweet" spot

Chocolate is complex and each chocolatier has their own preparation recipe

Lots of hybridization of the beans means an ever growing chocolate portfolio

<u>Appendix</u>

Team Roles

- Square -(Bruce) Set up Repository and Branch structure
- Triangle (Tahereh) Build additional ML models to see initial accuracy
- Circle (Yan) Constructed EDR for PostGres SQL and begin building framework
- X- (Travis) Presentation and technology

Data Processing and Evaluation Workflow

EDA / Analysis Example: Best Chocolate Crafting Country

European and North America nations dominate the list of artisan chocolatiers

EDA / Analysis Example: Histogram of Bar Ratings

Slight left skew on the chocolate bar ratings

Review Date density increase through time

- Increase in number of rating through time
- Left skew

Feature correlation heatmap

 REF number is tied to date as stated in documentation

 Cocoa and Rating have the highest correlation of the features

