Série 3 : Dipôle RC

EXERCICE 1:

Deux condensateurs sont préalablement chargés, séparément sous la même tension E. On décharge chacun de ses condensateurs à travers des conducteurs ohmiques de même résistance R.

La capacité de l'un de ses condensateurs est notée C, celle de l'autre est C'.

Un montage approprié a conduit à l'obtention de la figure suivante où a-correspond à C et b-à C'.

5- Exprimer
$$C'$$
 en fonction de C .

6- A quelle date
$$t$$
 comptée à partir du début de la décharge; la tension $u_{\mathcal{C}}$ vaut la moitié de $u_{\mathcal{C}'}$?

EXERCICE 2:

On considère le circuit électrique de la figure (1), composé des éléments suivants :

On ferme le circuit à un instant pris comme origine des dates t=0, et ou visualise sur l'écran d'un oscilloscope la tension u_{AB} en fraction du temps figure (2).

On donne : $R = 300\Omega$.

3.1- Montrer que
$$\tau = (R + r)C$$

3.2- Etablir que l'expression de la tension $u_{AB}(t)$

s'écrit sous la forme :

$$u_{AB}(t) = E\left(1 - \frac{R}{R+r}e^{-\frac{t}{\tau}}\right)$$

3.3- En exploitant la figure 2:

- a-Déterminer E.
- b- Exprimer r en fonction de R.
- 3.4- Montrer que la date t_M correspondant au point M sur la figure 2, est telle que $t_M = \tau$.
- 3.5- En déduire la valeur de la capacité C.
- 4 Etablir que $u_c(t) = E\left(1 e^{-\frac{t}{\tau}}\right)$.

EXERCICE 3: Détermination de la capacité du condensateur :

Le condensateur initialement non chargé, on ferme l'interrupteur K (figure 1) à un instant considéré comme origine des dates (t = 0). Le condensateur se charge par un générateur de f.e.m E = 6 V, ainsi à travers le résistor de résistance R = 100Ω On visualise, à l'aide d'un oscilloscope à mémoire, les variations de la tension u_C aux bornes du condensateur. On obtient la courbe modélisée par la figure 2 .

3. La droite (T) représente la tangente à la courbe $u_C = f(t)$ à t = 0. En déduire à partir du graphe de la figure 2, la valeur

Le condensateur est utilisé dans la fabrication de beaucoup d'appareils électriques, en particulier le récepteur d'ondes électromagnétiques.

Le but de cet exercice est d'étudier la charge d'un condensateur.

On réalise le circuit de la figure 1, constitué de :

- (G): Générateur idéal de fem E:
- (*D*): Résistor de résistance $R = 100\Omega$;
- (c): Condensateur de capacité C;
- (*K*): Interrupteur Figure 1

Le condensateur non chargé, on ferme l'interrupteur à un instant t=0.

- 2. La solution de cette équation s'écrit sous la forme : $u_C(t) = A \cdot (1 e^{-t/\tau})$, où A est une constante positive et τ la constante de temps du circuit RC.
- 3. Montrer que : $\ln (E u_C) = -\frac{1}{\tau} \cdot t \ln (E)$
- 4. La courbe représentée par la figure 2 traduit les variations de la grandeur Ln $(E-u_C)$ en fonction du temps. En exploitant cette courbe, trouver la valeur de E et celle de τ .
- 5. On désigne par E_e l'énergie emmagasinée dans le condensateur à l'instant $t=\tau$, et par $E_{\rm emax}$ à sa valeur maximale.

Calculer la valeur du rapport $\frac{E_e}{E_{\rm emax}}$

6.	Calculer la capacité C'du condensateur (c') qu'on doit monter avec le condensateur (C) dans le circuit précédent, pour que la constante de temps devienne $\tau' = \frac{\tau}{3}$, en indiquent le type de montage
	(série ou parallèle).
	3
	<u>www.physiquetous.com</u>