SIPMOS ® Power Transistor

- P channel
- Enhancement mode
- Avalanche rated

Pin 1	Pin 2	Pin 3
G	D	S

Туре	V _{DS}	I _D	R _{DS(on)}	Package	Ordering Code
BUZ 172	-100 V	-5.5 A	0.6 Ω	TO-220 AB	C67078-S1451-A2

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	I _D		Α
$T_{\rm C}$ = 37 °C		-5.5	
Pulsed drain current	/ _{Dpuls}		
$T_{\rm C}$ = 25 °C		-22	
Avalanche energy, single pulse	E _{AS}		mJ
$I_{\rm D} = -5.5 \; {\rm A}, \; V_{\rm DD} = -25 \; {\rm V}, \; R_{\rm GS} = 25 \; {\rm \Omega}$			
$L = 8.4 \text{ mH}, T_j = 25 \text{ °C}$		170	
Gate source voltage	V_{GS}	± 20	V
Power dissipation	P _{tot}		W
$T_{\rm C}$ = 25 °C		40	
Operating temperature	$T_{\rm j}$	-55 + 150	°C
Storage temperature	$T_{ m stg}$	-55 + 150	
Thermal resistance, chip case	R _{thJC}	≤ 3.1	K/W
Thermal resistance, chip to ambient	R _{thJA}	≤ 75	
DIN humidity category, DIN 40 040		Е	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = -0.25 mA, $T_{\rm j}$ = 25 °C		-100	-	-	
Gate threshold voltage	V _{GS(th)}				
$V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$		-2.1	-3	-4	
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS}$ = -100 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	-0.1	-1	
$V_{\rm DS}$ = -100 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	-10	-100	
Gate-source leakage current	I _{GSS}				nA
V_{GS} = -20 V, V_{DS} = 0 V		-	-10	-100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{GS} = -10 \text{ V}, I_D = -3.7 \text{ A}$		-	0.4	0.6	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	<i>g</i> fs				S
$V_{\rm DS} \ge 2 * I_{\rm D} * R_{\rm DS(on)max}, I_{\rm D} = -3.7 \text{ A}$		1	2	-	
Input capacitance	C_{iss}				pF
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	800	1200	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, V_{DS} = -25 \text{ V}, f = 1 \text{ MHz}$		-	220	330	
Reverse transfer capacitance	C_{rss}				
$V_{GS} = 0 \text{ V}, \ V_{DS} = -25 \text{ V}, \ f = 1 \text{ MHz}$		-	90	140	
Turn-on delay time	$t_{d(on)}$				ns
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.8 A					
$R_{\rm GS} = 50 \ \Omega$		-	20	30	
Rise time	t_{r}				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.8 A					
$R_{\rm GS} = 50 \ \Omega$		-	120	180	
Turn-off delay time	$t_{d(off)}$				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.8 A					
$R_{\rm GS} = 50 \ \Omega$		-	70	90	
Fall time	<i>t</i> _f				
$V_{\rm DD}$ = -30 V, $V_{\rm GS}$ = -10 V, $I_{\rm D}$ = -2.8 A					
$R_{\rm GS}$ = 50 Ω		-	55	75	

Electrical Characteristics, at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				Α
<i>T</i> _C = 25 °C		-	-	-5.5	
Inverse diode direct current,pulsed	/ _{SM}				
<i>T</i> _C = 25 °C		-	-	-22	
Inverse diode forward voltage	V _{SD}				V
$V_{GS} = 0 \text{ V}, I_{F} = -11 \text{ A}$		-	-1	-1.3	
Reverse recovery time	t _{rr}				ns
$V_{\rm R}$ = -30 V, $I_{\rm F} = I_{\rm S}$, $di_{\rm F}/dt$ = 100 A/ μ s		-	200	-	
Reverse recovery charge	Q _{rr}				μC
V_{R} = -30 V, $I_{F}=I_{S_{,}} dI_{F}/dt$ = 100 A/ μ s		-	0.75	-	

Power dissipation

$$P_{\mathsf{tot}} = f(T_{\mathsf{C}})$$

Drain current

 $I_{\mathsf{D}} = f(T_{\mathsf{C}})$

parameter: $V_{GS} \ge -10 \text{ V}$

Safe operating area

$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter: D = 0.01, $T_C = 25$ °C

Transient thermal impedance

$$Z_{\mathsf{th\ JC}} = f(t_{\mathsf{p}})$$

parameter: $D = t_p / T$

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80~\mu{\rm s}$

Typ. transfer characteristics $I_D = f(V_{GS})$

parameter: $t_p = 80 \mu s$ $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Typ. drain-source on-resistance

 $R_{\text{DS (on)}} = f(I_{\text{D}})$ parameter: V_{GS}

Typ. forward transconductance $g_{fs} = f(I_D)$

parameter: $t_p = 80 \mu s$, $V_{DS} \ge 2 \times I_D \times R_{DS(on)max}$

Drain-source on-resistance

 $R_{\rm DS~(on)} = f(T_{\rm j})$ parameter: $I_{\rm D}$ = -3.7 A, $V_{\rm GS}$ = -10 V

Gate threshold voltage

 $V_{\text{GS (th)}} = f(T_{\text{j}})$

parameter: $V_{GS} = V_{DS}$, $I_{D} = 1 \text{ mA}$

Typ. capacitances

 $C = f(V_{DS})$

parameter: $V_{GS} = 0V$, f = 1MHz

Forward characteristics of reverse diode

 $I_{\mathsf{F}} = f(V_{\mathsf{SD}})$

parameter: T_i , $t_p = 80 \mu s$

Avalanche energy $E_{AS} = f(T_j)$

parameter: $I_D = -5.5 \text{ A}$, $V_{DD} = -25 \text{ V}$ $R_{GS} = 25 \Omega$, L = 8.4 mH

Drain-source breakdown voltage

 $V_{(\mathsf{BR})\mathsf{DSS}} = f(T_{\mathsf{j}})$

Package Outlines

TO-220 AB

Dimension in mm

- 1) punch direction, burr max. 0.04
- 2) dip tinning
- 3) max. 14.5 by dip tinning press burr max. 0.05