Combinatorial Optimization

Dozent: Stephan Held

October 25, 2022

Contents

0	Org	anization	2
1	Mat	tchings	2
	1.1	Introduction	2
	1.2	Bipartite Matching	4
	1.3	The Tutte Matrix & Randomized Matching	5
	1.4	Tutte's Matching Theorem	6
	1.5	Ear Decompositions of Factor-Critical Graphs	8

0 Organization

- Prerequisites
 - Basic knowledge of graph algorithms
 - Linear Programming (LP Duality)
 - Programming skills in C++

• Exam

- Qualification requires 50% of the points in theoretical & programming exercises
- Oral exam
- Books
 - "Combinatorial Optimization", Korte & Vygen
 - "Understanding & Using Linear Programming", B. Gärtner, J. Matouset
 - Skript (theorems & definitions)
 - Further book recommendations are on the website

1 Matchings

1.1 Introduction

Definition 1.1.

- 1. A matching M in a graph G = (V, E) is a set of pairwise disjointed edges, i.e. they don't have a common endpoint.
 - $\nu(G) := \max$ cardinality of a matching in G
- 2. An edge cover C of a graph G = (V, E) is a subset of E s.t. $V = \bigcup_{e \in C} e$. $\zeta(G) := \min$ cardinality of an edge cover in G
- 3. A matching is called *perfect* (or 1-factor) if it is an edge cover
- 4. $v \in V$ with $v \in e \in M$ is called M-covered
- 5. $v \in V$ is called *M-exposed* if it is not *M*-covered

Definition 1.2.

- 1. A stable set (independent set) S is a set of pairwise non-adjacent vertices.
 - $\alpha(G) := \max$ cardinality of a stable set

2. A vertex cover C is a subset of V s.t. $E = \bigcup_{\{x,y\} \in E, x \in G} \{x,y\}$ $\tau(G) := \min$ cardinality of a vertex cover

Lemma 1.3.

1.
$$\alpha(G) + \tau(G) = |V|$$

- 2. $\nu(G) + \zeta(G) = |V|$ if G has no isolated vertices
- 3. $\zeta(G) = \alpha(G)$ if G is bipartite and has no isolated vertices

Problem. Cardinalty Matching Problem

Input: Graph G = (V, E)

Task: Find a maximum cardinality matching

Problem. Maximum Weight Matching Problem (MWMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a matching M maximizing c(M)

Problem. Minimum Weight Perfect Matching (MWPMP)

Input: Graph $G, c: E \to \mathbb{R}$

Task: Find a perfect matching of minimum weight or decide that no perfect matching exists in G

Lemma 1.4. The MWMP is equivalent to the MWPMP (i.e. there exists a transformation with linear complexity)

Proof. Given a MWPMP instance (G, c), define c' := K - c $(K := 1 + \sum_{e \in E} |c(e)|)$.

- \Rightarrow Any maximum weight matching is a maximum cardinality matching Given a MVMP instance (G, c), define G' as 2 copies of G where the 2 copies of a vertex are joined by an edge.
- \Rightarrow G' has a perfect matching. Define:

$$c'(e) := \begin{cases} -c(e) & \text{if } e \text{ is in the first copy} \\ 0 & \text{else} \end{cases}$$

A minimum weight perfect matching in G' gives us a maximum weight matching in G.

Definition 1.5. Let G = (V, E) be a graph and $M \subseteq E$ a matching in G. A path P is M-alternating if its edges are alternatingly in and not in M. If both end points of this path are M-exposed, P is an M-augmenting path.

Lemma 1.6. Given a matching M in G and an inclusion-wise maximal M-alternating path P,

$$M\Delta P \coloneqq M \setminus P \cup P \setminus M$$

is a matching. If P is M-augmenting, then $|M\Delta P| = |M| + 1$.

Figure 1: Example of the construction in Theorem 1.8

Theorem 1.7 (Petersen 1891, Berge 1957). Augmenting Path Theorem Given a graph G = (V, E) and a matching M in G:

$$|M| = \nu(G) \Leftrightarrow \not\exists M$$
-augmenting path P in G

Proof.

"⇒": Clear

"\(\phi\)": Assume there exists a matching M' with |M'| > |M|. Let $G' := (V, M\Delta M')$.

 $\Rightarrow |\delta_{G'}(v)| \leq 2 \ \forall v \in V$

 $\Rightarrow G'$ is the union of disjoint circuits and paths

 \Rightarrow all circuits are even and have the same number of edges from M and M'

 $\Rightarrow \exists$ a path P in G' starting and ending with an edge in M'

 $\Rightarrow P$ is an alternating path

1.2 Bipartite Matching

Theorem 1.8 (König 1931). If G is bipartite, then $\nu(G) = \tau(G)$

Proof. Add vertices s and t edges between them to all vertices of the respective partition. Direct all edges from s to t. Then $\nu(G)$ is maximum number of disjoint s-t-paths. Menger \Rightarrow This is equal to the minimum number of vertices that disconnect t from s.

Theorem 1.9 (Hall 1935). Let $G = (A \dot{\cup} B, E)$ be a bipartite graph. Then:

G has a matching covering $A \Leftrightarrow |\Gamma(X)| \geq |X| \quad \forall X \subseteq A$

Corollary 1.10. Marriage Theorem

 $|\Gamma(X)| \ge |X| \ \forall X \subseteq A \ and \ |A| = |B| \Leftrightarrow G \ has \ a \ perfect \ matching$

Definition 1.12. The MWPMP for bipartite graphs is called *Assignment Problem*.

Theorem 1.13. The Assignment Problem can be solved in time $O(nm + n^2 \log m)$.

Proof. Use the Successive Shortest Paths algorithm in an auxiliary graph.

1.3 The Tutte Matrix & Randomized Matching

Definition 1.14. Let G be a simple, undirected graph. Let G' be an orientation of G and $(X_e)_{e \in E(G)}$. The *Tutte matrix* is defined as

$$T_G(X) := (T_{vw}^*)_{v,w \in V(G)}$$

where

$$t_{vw}^* := \begin{cases} X_{\{v,w\}} & \text{if } (v,w) \in E(G) \\ -X_{\{v,w\}} & \text{if } -(v,w) \in E(G) \\ 0 & \text{else} \end{cases}$$

Remark 1.15. $T_G(X)$ is shew-symmetric (i.e. $T_G(X) = -(T_G(X))^t$). rank $(T_G(X))$ is independent of the orientation of G. $\det(T_G(X))$ is a polyomial in X.

Theorem 1.16 (Tutte). A simple graph G has a perfect matching $\Leftrightarrow \det(T_G(X)) \neq 0$

Proof. Let $V(G) = \{v_1, \dots, v_n\}$ and S_n be the permutation group.

$$\det T_G(X) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \cdot \prod_{i=1}^n t_{v_i, v_{\pi(i)}}^*$$

Let $S'_n := \{ \pi \in S_n \mid \prod_{i=1}^n t^*_{v_i, v_{\pi_i}} \neq 0 \}$. Each $\pi \in S_n$ corresponds to a digraph $H_{\pi} := (V(G), \{(v_i, v_{\pi(i)}) \mid i \in [n]^1\})$. We have $|\delta^+(v) = 1 = |\delta^-(v)|| \quad \forall v \in V(H_{\pi}) \Rightarrow H_{\pi}$ is the union of disjoint circuits. If $\pi \in S'_n$, then $H_{\pi} \subset G'$.

If there exists $\pi \in S'_n$ s.t. H_{π} is a collection of even circuits, then this immediately yields a perfect matching in G (using every second edge of each circuit).

Otherwise, $\forall \pi \in S'_n$, H_{π} contains an odd circuit. Let $r(\pi) \in S'_n$ arise from π by reversing edges on the unique odd circuit containing a vertex with minimum index $\Rightarrow r(r(\pi)) = \pi$ and $\operatorname{sgn}(\pi) = \operatorname{sgn}(r(\pi))$. The second part is true since for reversing an odd cycle, we need an even number of swaps. Let $v_{i_1}, \ldots, v_{i_{2k+1}}$ be the "first" odd circuit. Then $r(\pi)$ is attained by 2k swaps: For $j = 1, \ldots, k$ swap $(\pi(i_{2j-1}), \pi(i_{2k}))$ and $(\pi(i_{2j}), \pi(i_{2k+1}))$.

¹This is an abbreviation for $\{1, \ldots, n\}$.

 $\prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = -\prod_{i=1}^n t_{v_i v_{r(\pi(i))}}^*$ since there is an odd number of sign changes to t^* . $\Rightarrow \det(T_G(X)) = 0$. We have shown that if G has no perfect matching, then $\det T_G(X) = 0$.

Assume that G has a perfect matching M. Define π as $\pi(i) = j, \pi(j) = i$ where $\{i, j\} \in M$. $\Rightarrow \prod_{i=1}^n t_{v_i v_{\pi(i)}}^* = \prod_{e \in M} -X_e^2$ cannot be canceled out. In particular, $\det T_G(X) \neq 0$.

Remark 1.17. Picking $X' \in [0,1]^{E(G)}$ at random, we almost surely have (since the zero set of a non-zero polynomial is a set of measure zero):

$$\det T_G(X') \neq 0 \Leftrightarrow G$$
 has a perfect matching

Theorem 1.18 (Lovász 1979). Let G be a simple graph and $X \in [0,1]^{E(G)}$ chosen randomly. Then almost surely $\operatorname{rank}(T_G(X)) = 2\nu(G)$.

1.4 Tutte's Matching Theorem

Let $X \subseteq V(G)$. G - X consists of even and odd (in terms of the number of vertices) connected components. We define $q_G(X)$ to be the number of odd components in G - X.

Definition 1.19. A graph G satisfies the Tutte Condition if $q_G(X) \leq |X|$ for all $X \subseteq V(G)$. $\emptyset \neq X \subseteq V(G)$ is called barrier if $q_G(X) = |X|$.

Proposition 1.20. For any graph G and any $X \subseteq V(G)$:

$$q_G(X) - |X| \equiv |V(G)| \mod 2$$

Definition 1.21. A graph G is factor-critical if G-v has a perfect matching for all $v \in V(G)$. A matching is called near-perfect if it covers |V(G)| - 1 vertices.

Proposition 1.22. If G is factor-critical, then it is connected.

Theorem 1.23 (Tutte 1947). A graph G has a perfect matching \Leftrightarrow Tutte Condition holds (i.e. $q_G(X) \leq |X| \ \forall X \subseteq V(G)$)

Proof.

"⇒": Clear

"\(= \)": We proceed by induction on |V(G)|. The case |V(G)| = 2 is clear.

Generally, if the Tutte Condition holds, then |V(G)| must be even (pick $X = \emptyset$). Proposition $1.20 \Rightarrow q_G(X) - |X|$ is even. Every $x \in V(G)$ induces a barrier $\{x\}$. Let X be a maximum barrier. Then G - X doesn't have any even components (since otherwise a single vertex of such a component could be added to X).

Claim: Each odd component is factor-critical.

Let C be an odd component in G-X, $v \in V(C)$. Assume that C-v does not have a perfect matching. Induction Hypothesis $\Rightarrow C-v$ violates Tutte Condition.

$$\begin{array}{l} \Rightarrow \exists Y \subseteq V(C-v): q_{C-v}(Y) > |Y| \\ \stackrel{1.20}{\Rightarrow} q_{C-v}(Y) \geq |Y| + 2 \\ \text{Observe } X \cap \{v\} = Y \cap \{v\} = X \cap Y = \emptyset: \end{array}$$

$$\begin{aligned} q_G(X \cup Y \cup \{v\}) &= q_G(X) - 1 + q_C(Y \cup \{v\}) \\ &= |X| - 1 + q_{C-v}(Y) \\ &\geq |X| - 1 + |Y| + 2 \\ &= |X \cup Y| + 1 \\ &= |X \cup Y \cup \{v\}| \end{aligned}$$

 $\Rightarrow X \cup Y \cup \{v\}$ is a barrier

 \Rightarrow Claim

Let G' arise from G by contracting each odd component into a single vertex. We have $V(G') = X \dot{\cup} Z$ and G' is bipartite. We have to show that G' has a perfect matching. If not, then $\exists A \subseteq Z : |\Gamma_{G'}(A)| < |A| \Rightarrow q_G(\Gamma_{G'}(A)) \geq |A| > |\Gamma_{G'}(A)|$ which contradicts the Tutte Condition.

Theorem 1.24 (Berge 1958).

$$|V(G)| = 2\nu(G) + \max_{X \subseteq V(G)} (q_G(X) - |X|)$$

Proof. For $X \subseteq V(G)$, any matching has at least $q_G(X) - |X|$ uncovered vertices, so " \geq " holds.

For the other inequality, add $k := \max_{X \subseteq V(G)} (q_G(X) - |X|)$ new vertices and connect them to all existing vertices, yielding a new graph H.

We claim that H has a perfect matching. This then implies:

$$2\nu(G) + k > 2\nu(H) - k = |V(H)| - k = |V(G)|$$

Assume that H does not have a perfect matching. Then by Tutte's Theorem, there exists $Y \subseteq V(H)$ with $q_H(Y) > |Y|$. By 1.20, $k \equiv |V(G)| \mod 2$, therefore |V(H)| is even, so $Y \neq \emptyset$. Y must contain all new vertices, otherwise H - Y would be connected² and $q_H(Y) \leq 1 \leq |Y|$.

$$\Rightarrow q_G(Y \cap |V(G)|) = q_H(Y) > |Y| = |Y \cap V(G)| + k$$

which is a contradiction to the choice of k.

²Note that Y cannot contain all old vertices, since otherwise $q_H(Y) < |Y|$.

1.5 Ear Decompositions of Factor-Critical Graphs

Definition 1.25. Let G be a graph. An ear decomposition of G is a sequence r, P_1, \ldots, P_k with $G = (r, \emptyset) + P_1 + \ldots + P_k$ such that each P_i is either a path with exactly the endpoints located in $\{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$ or a circuit where exactly one of the vertices belongs to $\{r\} \cup \bigcup_{j \in [i-1]} V(P_j)$.

 P_1, \ldots, P_k are called *ears*. If $|V(P_1)| \geq 3$ and P_2, \ldots, P_k are paths we call it a *proper* ear decomposition.

Theorem 1.27 (Whitney 1932). Let G be an undirected graph. Then:

G 2-connected $\Leftrightarrow G$ has a proper ear decomposition

Definition 1.28. An ear decomposition is *odd* if every ear has odd length (in terms of the number of edges).

Theorem 1.29. Let G be an undirected graph. Then

G factor-critical $\Leftrightarrow G$ has an odd ear decomposition

The first vertex r of the ear decomposition can be chosen arbitrarily.

Proof.

- "\(\infty\)": Let G be a graph with an odd ear decomposition r, P_1, \ldots, P_k . P_1 is an odd circuit, so it is factor-critical. We use induction on the number of ears. Let P be the last ear and G' be G before adding P. By the induction hypothesis, G' is factor-critical. Given $v \in V(G)$, we have to show that G v has a perfect matching.
 - Case 1: $v \in V(G')$. Then G' v has a perfect matching. Adding every second edge of P (excluding the endpoints) to it, yields a perfect matching of G v.
 - Case 2: $v \in V(G) \setminus V(G')$. Let x, y be the endpoints of P. Without loss of generality let $P_{[v,x]}$ be even. There exists a perfect matching in G' x. Together with every second edge of $P_{[v,y]}$ and $P_{[v,x]}$ this is a perfect matching in G v.
- " \Rightarrow ": Let $r \in V(G)$ be any vertex. Let M be a perfect matching in G r. Suppose we have an odd ear decomposition for $G' \subseteq G$ with $r \in V(G')$ and $M \cap E(G')$ is a near-perfect matching in G' (i.e. all vertices in G' except for r are matched with other vertices in G').
 - If $G' \neq G$, there is an edge $\{x,y\} \in E(G) \setminus E(G')$ with $x \in V(G')$ (by Proposition 1.22). If $y \in V(G')$, then $\{x,y\}$ can be chosen as the next ear. Otherwise, construct an M-alternating odd ear, starting with $\{x,y\}$. Let N be a matching in G-y. $M\Delta N$ contains a y-r-path P. Let w be the first vertex in $P \cap V(G')$. w is M-exposed in $P_{[y,w]}$, y is

N-exposed in $P_{[y,w]}$. Therefore $P_{[y,w]}$ is even and together with $\{x,y\}$ it forms an M-alternating odd ear.

Inductively, this argument yields an odd ear decomposition.

Definition 1.30. Let G be factor-critical and M a near-perfect matching. An M-alternating ear decomposition is an odd ear decomposition such that each ear is an M-alternating path or circuit C with:

$$|E(C) \cap M| = |E(C) \setminus M| - 1$$

Corollary 1.31. For any factor-critical graph G and any near-perfect matching M in G, there exists in M-alternating ear decomposition of G.

Definition 1.32. Let G be factor-critical, M a near-perfect matching and r, P_1, \ldots, P_k an M-alternating ear decomposition of G. $\mu, \varphi : V(G) \to V(G)$ are associated with the ear decomposition if:

- $\{x,y\} \in M \Rightarrow \mu(x) = y$
- $\{x,y\} \in E(P_i) \setminus M \text{ and } x \notin \{r\} \cup \bigcup_{j \in [i]} V(P_j)$ $\Rightarrow \varphi(x) = y$
- $\mu(r) = \varphi(r) = r$

Proposition 1.33. Let G be a factor-critical graph and μ, φ functions associated with an M-alternating ear decomposition. Then this ear decomposition is unique up to the order of the ears. The Ear-Decomposition-Algorithm correctly determines an explicit list of the ears in linear time.

Proof. Step 3 determines ears uniquely. The algorithm clearly runs in linear time. $\hfill\Box$

Lemma 1.34. Let G be factor-critical and μ, φ associated with an M-alternating ear decomposition. Then the maximal path given by the initial sequence $x, \mu(x), \varphi(\mu(x)), \mu(\varphi(\mu(x))), \ldots$ defines an M-alternating x-r-path of even length.