COL 351: Analysis and Design of Algorithms

Lecture 7

Graph Traversals

Process of visiting vertices of a graph (directed/undirected).

Standard Types SFS (Breadth First Search) — O(m+n) Queues.

OFS (Depth First Search) — O(m+n) Stacks

DFS Applications

Solving Mazes

Strongly connected components

Bridge edges

Bridge Edges

Def": An edge (x,y) is Bridge-edge if there is NO path from x to y in Gi-(x,y).

$$O(m^2)$$
 - Naive
 $O(m \cdot n)$ - Easy
 $Aim : O(m+n)$ time

Sketch of O(m.n) line algo:

1. Compute a spanning forest of Gin O(m+n) time.

2. Let X = set of edges in spanning forest

3. $Y = \emptyset$ 4. For $e = (a,b) \in X$:
Add e to Y iff there is no amb path in

Time = $O(m|x|) = O(m \cdot n)$ H.W.: Prove correctness

5. Return y

DFS Traversal

Preprocessing:
For each $v \in V(G_1)$:
Set VISITEO(U) = False

DFS(x)

- 1. Let V(S)TED(x) = True
- 2. For each $y \in N(x)$:

Edges in --- (non-tree edges) have ancestor-descendant relationship

Property

Lemma: Let G be a undirected, connected graph and T = DFS(G).
Then for any edge (2,y) in G, x &y have ANCESTOR-DESCENDANT
relationship in T

Lemma: Let G be a underected connected graph and T = DFS(G1). Then for any edge (2,y) in G, 2 Ly have ANCESTOR-DESCENDANT relationship in T

Proof Sketch:

We need to show $y \in T(n)$. Suppose n is visited before y.

Claim 1: Vertices
$$=$$
 vertices visited in $T(n)$ $=$ in $OFS(n)$

Claim 2: $DFS(n)$ should visit y .

Claim 1: 4 claim $2 \Rightarrow y \in T(n)$

Claim 1 4 claim 2 =>
$$y \in T(n)$$

High Point of a vertex

High-point(x):

The level of the highest ancestor of x to which there is a non-tree edge from subtree T(x).

How to compute High-point for all vertices of G?

$$H.P.(x) =$$
 $min\left(\min_{y_i=didd(x)} H.P.(y_i)\right)$
 $gin(x)$
 $gin(x)$
 $gin(x)$

Level = 0 Level = 1 Level = 2 Tevel = 3

#Time to process one verten = O (degree)

In above example HP(x)=1

#Time to compute high point of = O(m+n)All vertices in Bottom-up manner

Theorem

Theorem: A tree edge (x, y), with x being parent of y in DFS tree, is a **bridge** edge iff $High-point(y) \ge Level(y).$

Proof: If
$$HP(y) \ge Lend(y)$$
 (=) I no edge from subtree $T(y)$ to ancestors of y , other than (x,y)

Reasoning: All non-tree edges \

If OFS have ancestor descendant relationship)

CHALLENGE PROBLEM

Definition(Articulation point):

A vertex x is said to be articulation point if there are u,v different from x, such that u and v are disconnected in $G\xspace x$.

Exercise: Design an O(m+n) time algorithm to find all the articulation points of a graph.