Homework: C Loops

This document defines the homework assignments from the "C Programming" Course @ Software University. Please submit as homework a single zip / rar / 7z archive holding the solutions (source code) of all below described problems.

Problem 1. Numbers from 1 to N

Write a program that enters from the console a positive integer n and prints all the numbers from 1 to n, on a single line, separated by a space. Examples:

n	output		
3	1 2 3		
5	1 2 3 4 5		

Problem 2. Numbers Not Divisible by 3 and 7

Write a program that enters from the console a positive integer n and prints all the numbers from 1 to n not divisible by 3 and 7, on a single line, separated by a space. Examples:

n	output		
3	1 2		
10	1 2 4 5 8 10		

Problem 3. Min, Max, Sum and Average of N Numbers

Write a program that reads from the console a sequence of n integer numbers and returns the minimal, the maximal number, the sum and the average of all numbers (displayed with 2 digits after the decimal point). The input starts by the number n (alone in a line) followed by n lines, each holding an integer number. The output is like in the examples below. Examples:

input	output			
3	min = 1.00			
2	max = 5.00			
5	sum = 8.00			
1	avg = 2.67			

input	output			
2	min = -1.00			
-1	max = 4.00			
4	sum = 3.00			
	avg = 1.50			

Problem 4. Print a Deck of 52 Cards

Write a program that generates and prints all possible cards from a standard deck of 52 cards (without the jokers). The cards should be printed using the classical notation (like 5S (♠), AH (♥), 9C (♣) and KD (♦)). The card faces should start from 2 to A. Print each card face in its four possible suits: clubs, diamonds, hearts and spades. Use 2 nested **for**-loops and a **switch-case** statement.

output			
2C 3C	2D 3D		2S 3S
 KC	KD	KH	KS

Problem 5. Calculate $1 + 1!/X + 2!/X^2 + ... + N!/X^N$

Write a program that, for a given two integer numbers **n** and **x**, calculates the sum $S = 1 + 1!/x + 2!/x^2 + ... + n!/x^n$. Use only one loop. Print the result with 5 digits after the decimal point.

n	х	S
3	2	2.75000
4	3	2.07407
5	-4	0.75781

Problem 6. Calculate N! / K!

Write a program that calculates n! / k! for given n and k (1 < k < n < 100). Use only one loop. Examples:

n	k	n! / k!
5	2	60
6	5	6
8	3	6720

Problem 7. Calculate N! / (K! * (N-K)!)

In combinatorics, the number of ways to choose k different members out of a group of n different elements (also known as the number of **combinations**) is calculated by the following formula:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

For example, there are 2598960 ways to withdraw 5 cards out of a standard deck of 52 cards. Your task is to write a program that calculates n! / (k! * (n-k)!) for given n and k (1 < k < n < 100). Try to use only two loops. Examples:

n	k	n! / (k! * (n-k)!)	
3	2	3	
4	2	6	
10	6	210	
52	5	2598960	

Problem 8. Catalan Numbers

In combinatorics, the <u>Catalan numbers</u> are calculated by the following formula:

$$C_n = \frac{1}{n+1} {2n \choose n} = \frac{(2n)!}{(n+1)! \, n!} = \prod_{k=2}^n \frac{n+k}{k}$$
 for $n \ge 0$.

Write a program to calculate the n^{th} Catalan number by given n (1 < n < 100). Examples:

n	Catalan(n)
0	1
5	42
10	16796

Problem 9. Matrix of Numbers

Write a program that reads from the console a positive integer number \mathbf{n} ($1 \le \mathbf{n} \le 20$) and **prints a matrix** like in the examples below. Use two nested loops. Examples:

n	matrix		
2	1 2 2 3		

n	matrix				
3	1 2 3 2 3 4 3 4 5				

n	matrix			
4	1	2	3	4
	2	3	4	5
	3	4	5	6
	4	5	6	7

Problem 10. Odd and Even Product

You are given **n** integers (given in a single line, separated by a space). Write a program that checks whether the product of the odd elements is equal to the product of the even elements. Elements are counted from **1** to **n**, so the first element is odd, the second is even, etc. Examples:

numbers	result	
2 1 1 6 3	yes product = 6	
3 10 4 6 5 1	yes product = 60	
4 3 2 5 2	no odd_product = 16 even_product = 15	

Problem 11. Random Numbers in Given Range

Write a program that enters 3 integers n, min and max ($min \le max$) and prints n random numbers in the range [min...max]. Examples:

n	min	max	random numbers		
5	0	1	1 0 0 1 1		
10	10	15	12 14 12 15 10 12 14 13 13 11		

Note that the above output is just an example. Due to randomness, your program most probably will produce different results.

Problem 12.* Randomize the Numbers 1...N

Write a program that enters in integer **n** and prints the numbers 1, 2, ..., **n** in random order. Examples:

n	randomized numbers 1n				
3	2 1 3				
10	3 4 8 2 6 7 9 1 10 5				

Note that the above output is just an example. Due to randomness, your program most probably will produce different results. You might need to use <u>arrays</u>.

Page 3 of 5

Problem 13. Binary to Decimal Number

Using loops write a program that converts a <u>binary integer</u> number to its decimal form. The input is entered as **string**. The output should be a variable of type **long**. Do not use the built-in .NET functionality. Examples:

binary	decimal
0	0
11	3
10101010101011	43691
1110000110000101100101000000	236476736

Problem 14. Decimal to Binary Number

Using loops write a program that converts an integer number to its <u>binary representation</u>. The input is entered as **long**. The output should be a variable of type **string**. Do not use the built-in .NET functionality. Examples:

decimal	binary		
0	0		
3	11		
43691	10101010101011		
236476736	1110000110000101100101000000		

Problem 15. Hexadecimal to Decimal Number

Using loops write a program that converts a <u>hexadecimal integer</u> number to its decimal form. The input is entered as **string**. The output should be a variable of type **long**. Do not use the built-in .NET functionality. Examples:

hexadecimal	decimal	
FE	254	
1AE3	6883	
4ED528CBB4	338583669684	

Problem 16. Decimal to Hexadecimal Number

Using loops write a program that converts an integer number to its hexadecimal representation. The input is entered as **long**. The output should be a variable of type **string**. Do not use the built-in .NET functionality. Examples:

decimal	hexadecimal	
254	FE	
6883	1AE3	
338583669684	4ED528CBB4	

Problem 17.* Calculate GCD

Write a program that calculates the <u>greatest common divisor</u> (**GCD**) of given two integers **a** and **b**. Use the **Euclidean algorithm** (find it in Internet). Examples:

а	b	GCD(a, b)
3	2	1
60	40	20
5	-15	5

Problem 18.* Trailing Zeroes in N!

Write a program that calculates with how many zeroes the factorial of a given number **n** has at its end. Your program should work well for very big numbers, e.g. n=100000. Examples:

n	trailing zeroes of n!	explaination
10	2	36288 00
20	4	243290200817664 0000
100000	24999	think why

Problem 19. Spiral Matrix**

Write a program that reads from the console a positive integer number n ($1 \le n \le 20$) and prints a matrix holding the numbers from $\mathbf{1}$ to $\mathbf{n}^*\mathbf{n}$ in the form of square spiral like in the examples below. Examples:

n	matrix		
2	1 2 4 3		

n	matrix			
3	1 2 3 8 9 4 7 6 5			

n	matrix			
·	1	2	3	4
4	12	13 16	14	5
4	11	16	15	6
	10	9	8	7

