

Traitement d'images TP5 : modélisation du bruit

Benoît Naegel, Gregory Apou

1 Bruit synthétique

1.1 Bruit impulsionnel

Écrire une fonction permettant d'ajouter du bruit impulsionnel (ou poivre et sel) à une image. La probabilité p qu'un pixel de l'image soit corrompu, avec $0 \le p \le 1$, sera passée en paramètre. Chaque pixel corrompu peut être blanc (valeur 255) ou noir (valeur 0) avec une probabilité 0.5 (une chance sur deux).

1.2 Bruit gaussien

Écrire une fonction permettant d'ajouter du bruit gaussien à une image de moyenne μ et d'écart-type σ . Dans ce modèle de bruit, tous les pixels de l'image sont corrompus : la nouvelle valeur d'un pixel est calculée en ajoutant à sa valeur originale une valeur aléatoire qui suit la loi de probabilité gaussienne $\mathcal{N}(\mu, \sigma^2)$. On effectue une troncature sur l'image bruitée : si un pixel a une valeur négative, on la ramène à 0; si un pixel a une valeur qui dépasse 255, on la ramène à 255 Vous pourrez utiliser la classe std::normal_distribution du C++ 11.

2 Programmes de test

Écrire les tests suivants :

- 1. Génération d'un bruit impulsionnel de 15% puis application d'un filtre médian de taille 3;
- 2. Génération d'un bruit impulsionnel de 40% puis application d'un filtre médian de taille 5;
- 3. Génération d'un bruit gaussien de moyenne $\mu=0$ et d'écart-type $\sigma=15$ puis application d'un filtre médian de taille 5;
- 4. Génération d'un bruit gaussien de moyenne $\mu=0$ et d'écart-type $\sigma=15$ puis application de filtres de lissage (filtre moyenneur, filtre gaussien, ...);
- 5. Programme qui génère N versions différentes d'une même image passée en paramètre avec du bruit gaussien d'écart-type σ puis calcule la moyenne de ces images (moyenne point à point). Tester par exemple avec N=100 et $\sigma=50$.