Fuzzy Sets

Murat Osmanoglu

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

• $a \in A$, $b \in A$, $c \notin A$

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

- $a \in A, b \in A, c \notin A$
- $\mu_A: X \rightarrow \{0,1\}$ membership function

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

- $a \in A, b \in A, c \notin A$
- $\mu_A: X \rightarrow \{0,1\}$ membership function

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

- $a \in A$, $b \in A$, $c \notin A$
- $\mu_A: X \rightarrow \{0,1\}$ membership function

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

 X denotes the universal set, contains all possible elements under the consideration

• $Z = \{..., -2, -1, 0, 1, 2, ...\}, N = \{0, 1, 2, ...\}$

Definition: collection of well-defined objects

- $a \in A, b \in A, c \notin A$
- $\mu_A: X \rightarrow \{0,1\}$ membership function

$$\mu_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$$

- X denotes the universal set, contains all possible elements under the consideration
- Ø denotes the empty set, contains no element

• A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i

- A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i
- If every element of set A is also an element of set B, then A is called a subset of B,

$$A \subseteq B$$

- A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i
- If every element of set A is also an element of set B, then A is called a subset of B,

$$A \subseteq B$$

• If $A \subseteq B$ and $B \subseteq A$, then A = B

- A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i
- If every element of set A is also an element of set B, then A is called a subset of B,

$$A \subseteq B$$

- If $A \subseteq B$ and $B \subseteq A$, then A = B
- P(A), the power set of A, that contains all subsets of A

- A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i
- If every element of set A is also an element of set B, then A is called a subset of B,

$$A \subseteq B$$

- If $A \subseteq B$ and $B \subseteq A$, then A = B
- P(A), the power set of A, that contains all subsets of A
- The number of members of a finite set A is called cardinality of A,

IAI

- A = $\{A_1, A_2, ..., A_n\}$, a family of sets, that contains sets as elements A = $\{A_i \mid i \in I\}$ where I is called the index set that reference the corresponding set A_i
- If every element of set A is also an element of set B, then A is called a subset of B,

$$A \subseteq B$$

- If $A \subseteq B$ and $B \subseteq A$, then A = B
- P(A), the power set of A, that contains all subsets of A
- The number of members of a finite set A is called cardinality of A,

IAI

• The cardinality of power set of a given set A,

$$IP(A)I = 2^{|A|}$$

Operations on Sets

• Complement, $\neg A = \{x \in X \mid x \notin A\}$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\cap_{i \text{ in } I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\cap_{i \text{ in } I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$
- Fundamental characteristis of set operations,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\bigcap_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$
- Fundamental characteristis of set operations,

$$\neg(\neg A) = A$$
, $\neg X = \emptyset$, $\neg \emptyset = X$, $A \cup \neg A = X$, $A \cap \neg A = \emptyset$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\cap_{i \text{ in } I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$
- Fundamental characteristis of set operations,

$$\neg(\neg A) = A$$
, $\neg X = \emptyset$, $\neg \emptyset = X$, $A \cup \neg A = X$, $A \cap \neg A = \emptyset$, $A \cup X = X$, $A \cup \emptyset = A$, $A \cap X = A$, $A \cap \emptyset = \emptyset$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\bigcap_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$
- Fundamental characteristis of set operations,

$$\neg(\neg A) = A$$
, $\neg X = \emptyset$, $\neg \emptyset = X$, $A \cup \neg A = X$, $A \cap \neg A = \emptyset$, $A \cup X = X$, $A \cup \emptyset = A$, $A \cap X = A$, $A \cap \emptyset = \emptyset$, $A \cup B = B \cup A$, $A \cap B = B \cap A$,

- Complement, $\neg A = \{x \in X \mid x \notin A\}$,
- Intersection, $A \cap B = \{x \in X \mid x \in A \text{ and } x \in B\}$,
- Union, $A \cup B = \{x \in X \mid x \in A \text{ or } x \in B\}$,
- Set Difference, $A B = \{x \in X \mid x \in A \text{ and } x \notin B\}$,
- $\bigcup_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for some } i \in I \}$
- $\bigcap_{i \in I} A_i = \{x \in X \mid x \in A_i \text{ for all } i \in I \}$
- Fundamental characteristis of set operations,

$$\neg(\neg A) = A$$
, $\neg X = \emptyset$, $\neg \emptyset = X$, $A \cup \neg A = X$, $A \cap \neg A = \emptyset$, $A \cup X = X$, $A \cup \emptyset = A$, $A \cap X = A$, $A \cap \emptyset = \emptyset$, $A \cup B = B \cup A$, $A \cap B = B \cap A$, $\neg(A \cup B) = \neg A \cap \neg B$, $\neg(A \cap B) = \neg A \cup \neg B$

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

• a set A in \mathbb{R}^n is convex iff, for every pair of points x and y in A, all the points lie in the line segment connecting x and y are also in A

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

• a set A in \mathbb{R}^n is convex iff, for every pair of points x and y in A, all the points lie in the line segment connecting x and y are also in A

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

a set A in Rⁿ is convex iff, for every pair of points x and y in A, all
the points lie in the line segment connecting x and y are also in A

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

• a set A in \mathbb{R}^n is convex iff, for every pair of points x and y in A, all the points lie in the line segment connecting x and y are also in A

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

a set A in Rⁿ is convex iff, for every pair of points x and y in A, all
the points lie in the line segment connecting x and y are also in A

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

• a set A in \mathbb{R}^n is convex iff, for every pair of points x and y in A, all the points lie in the line segment connecting x and y are also in A

nonconvex

The cartesian product set of A and B

$$AXB = \{(a,b) \mid a \in A \text{ and } b \in B\}$$

IAXBI = IAI.IBI

Convex Set

• a set A in \mathbb{R}^n is convex iff, for every pair of points x and y in A, all the points lie in the line segment connecting x and y are also in A

• A is convex iff \forall a, b in A, \forall λ in [0,1], λ a + (1- λ)b in A

Fuzzy Sets

Fuzzy Sets

- $\mu_A: X \rightarrow [0,1]$ membership function
- indicates the degree of membership

- $\mu_A: X \rightarrow [0,1]$ membership function
- indicates the degree of membership

•
$$\mu_A(a) = 1$$
, $\mu_A(b) = 1$, $\mu_A(c) = 0$

- $\mu_A: X \rightarrow [0,1]$ membership function
- indicates the degree of membership

•
$$\mu_A(a) = 1$$
, $\mu_A(b) = 1$, $\mu_A(c) = 0$

•
$$\mu_A(d) = 0.3$$
, $\mu_A(e) = 0.7$

- $\mu_A: X \rightarrow [0,1]$ membership function
- indicates the degree of membership

•
$$\mu_A(a) = 1$$
, $\mu_A(b) = 1$, $\mu_A(c) = 0$

•
$$\mu_A(d) = 0.3$$
, $\mu_A(e) = 0.7$

• $A = \{(a,1), (b,1), (d,0.3), (e,0.7)\}$

- $\mu_A: X \rightarrow [0,1]$ membership function
- indicates the degree of membership

•
$$\mu_A(a) = 1$$
, $\mu_A(b) = 1$, $\mu_A(c) = 0$

•
$$\mu_A(d) = 0.3$$
, $\mu_A(e) = 0.7$

- $A = \{(a,1), (b,1), (d,0.3), (e,0.7)\}$
- A = 1/a + 1/b + 0.3/d + 0.7/e

• A = 'real numbers close to 0'

• A = 'real numbers close to 0'

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

• A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

$$\mu_{\rm B}(x) = 1 / (1 + x^2)$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

$$\mu_{\rm B}(x) = 1 / (1 + x^2)$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

$$\mu_{R}(x) = 1 / (1 + x^{2})$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

• B = 'real numbers very close to 0'

$$\mu_{R}(x) = 1 / (1 + x^{2})$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

• B = 'real numbers very close to 0'

$$\mu_{R}(x) = 1 / (1 + x^{2})$$

$$\mu_c(x) = (1 / (1 + x^2))^2$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

• B = 'real numbers very close to 0'

$$\mu_{R}(x) = 1 / (1 + x^{2})$$

$$\mu_c(x) = (1 / (1 + x^2))^2$$

A = 'real numbers close to 0'

$$\mu_A(x) = \begin{cases} x/4 + 1 & \text{if } x \text{ in } [-4,0] \\ 1 - x/4 & \text{if } x \text{ in } [0,4] \end{cases}$$

• B = 'real numbers very close to 0'

$$\mu_{R}(x) = 1 / (1 + x^{2})$$

C = 'real numbers very very close to 0'

$$\mu_c(x) = (1 / (1 + x^2))^2$$

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

Support(A) = {x∈X | μ_A(x) > 0}

• X = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• Support(A) = $\{x \in X \mid \mu_A(x) > 0\}$ Support(Cold) = $\{5, 10, 15\}$ Temp Support(Mild) = $\{15, 20, 25\}$ Support(Hot) = $\{25, 30, 35, 40, 45, 50\}$

• $A_a = \{x \in X \mid \mu_A(x) \ge \alpha\}, \alpha$ -cut set

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• Support(A) = $\{x \in X \mid \mu_A(x) > 0\}$ Support(Cold) = $\{5, 10, 15\}$ Temp Support(Mild) = $\{15, 20, 25\}$ • Support(Hot) = $\{25, 30, 35, 40, 45, 50\}$

A_α = {x∈X | µ_A(x) ≥ α}, α-cut set
 Cold_{0.5} = {5, 10, 15}
 Cold₁ = {5, 10}

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• Support(A) =
$$\{x \in X \mid \mu_A(x) > 0\}$$

Support(Cold) = $\{5, 10, 15\}$
Temp Support(Mild) = $\{15, 20, 25\}$

Support(Hot) = $\{25,30,35,40,45,50\}$

• $A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \ \alpha\text{-cut set}$ $Cold_{0.5} = \{5, 10, 15\}$ $Cold_{1} = \{5, 10\}$ $Mild_{0.5} = \{15, 20, 25\}$ $Mild_{1} = \{20\}$

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• Support(A) =
$$\{x \in X \mid \mu_A(x) > 0\}$$

Support(Cold) = $\{5, 10, 15\}$
Temp Support(Mild) = $\{15, 20, 25\}$

Support(Hot) = $\{25,30,35,40,45,50\}$

•
$$A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \alpha$$
-cut set

$$Cold_{0.5} = \{5, 10, 15\}$$
 $Hot_{0.33} = \{25, 30, 35, 40, 45, 50\}$

$$Cold_1 = \{5, 10\}$$
 $Hot_{0.66} = \{30,35,40,45,50\}$

$$Mild_{0.5} = \{15, 20, 25\}$$
 $Hot_1 = \{35, 40, 45, 50\}$

$$Mild_1 = \{20\}$$

• X = {5, 10, 15, 20, 25, 30, 35, 40, 45, 50}

• Support(A) =
$$\{x \in X \mid \mu_A(x) > 0\}$$

Support(Cold) = $\{5, 10, 15\}$
Temp Support(Mild) = $\{15, 20, 25\}$
Support(Hot) = $\{25, 30, 35, 40, 45, 50\}$

• $A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \alpha$ -cut set

$$Cold_{0.5} = \{5, 10, 15\}$$
 $Hot_{0.33} = \{25, 30, 35, 40, 45, 50\}$

$$Cold_1 = \{5, 10\}$$
 $Hot_{0.66} = \{30,35,40,45,50\}$

$$Mild_{0.5} = \{15, 20, 25\}$$
 $Hot_1 = \{35, 40, 45, 50\}$

$$Mild_1 = \{20\}$$

• if u > v, then $A_u \subseteq A_v$

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

• Support(A) = $\{x \in X \mid \mu_A(x) > 0\}$ Support(Cold) = $\{5, 10, 15\}$ Temp Support(Mild) = $\{15, 20, 25\}$ • Support(Hot) = $\{25, 30, 35, 40, 45, 50\}$

- $A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \alpha$ -cut set
 - Cold_{0.5} The maximum membership value is called the height of the fuzzy set.

 $Mild_{0.5} = \{15, 20, 25\}$ $Hot_1 = \{35, 40, 45, 50\}$

 $Mild_1 = \{20\}$

• if u > v, then $A_u \subseteq A_v$

• $X = \{5, 10, 15, 20, 25, 30, 35, 40, 45, 50\}$

- Support(A) = $\{x \in X \mid \mu_A(x) > 0\}$ Support(Cold) = $\{5, 10, 15\}$ Temp Support(Mild) = $\{15, 20, 25\}$
 - Support(Hot) = $\{25,30,35,40,45,50\}$

• $A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \alpha$ -cut set

 $Mild_1 =$

- Cold_{0.5}
 Cold₁ =
 The maximum membership value is called the height of the fuzzy set.
 Mild_{0.5}
 If the height of a fuzzy set is 1, then it is called
 - If the height of a fuzzy set is 1, then it is called normalized.

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

Magnitude of Fuzzy Set

• Scalar Cardinality, $|A| = \sum \mu_A(x)$,

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

Magnitude of Fuzzy Set

• Scalar Cardinality, $|A| = \sum \mu_A(x)$, |Hot| = 0.33 + 0.66 + 1 + 1 + 1 + 1 = 5

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

- Scalar Cardinality, $|A| = \sum \mu_A(x)$, |Hot| = 0.33 + 0.66 + 1 + 1 + 1 + 1 = 5
- Relative Cardinality, ||A|| = |A| / |X|

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

- Scalar Cardinality, $|A| = \sum \mu_A(x)$, |Hot| = 0.33 + 0.66 + 1 + 1 + 1 + 1 = 5
- Relative Cardinality, ||A|| = |A| / |X|
 ||Hot|| = 5/10 = 0.5

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

- Scalar Cardinality, $|A| = \sum \mu_A(x)$, |Hot| = 0.33 + 0.66 + 1 + 1 + 1 + 1 = 5
- Relative Cardinality, ||A|| = |A| / |X|
 ||Hot|| = 5/10 = 0.5
- Fuzzy Cardinality, |A|_F = {(|A_u|,u)},

• A is a subset of B, $A \subseteq B$, if $\mu_A(x) \le \mu_B(x)$ for all x in X

Convex Fuzzy Set

• Let A be a fuzzy set. \forall a, b in A, if $\mu_A(\lambda a + (1-\lambda)b) \ge \min \{\mu_A(a), \mu_A(b)\}$ where λ in [0,1], then A is a convex fuzzy set

- Scalar Cardinality, $|A| = \sum \mu_A(x)$, |Hot| = 0.33 + 0.66 + 1 + 1 + 1 + 1 = 5
- Relative Cardinality, ||A|| = |A| / |X|
 ||Hot|| = 5/10 = 0.5
- Fuzzy Cardinality, |A|_F = {(|A_u|,u)},
 |Hot|_F = {(6,0.33), (5,0.66),(4,1)}