Algebra I Blatt 2

Thorben Kastenholz Jendrik Stelzner

1. Mai 2014

Aufgabe 1

Wir gehen im Folgenden davon aus, dass kG-Moduln als unitär verstanden werden, da die Aussage sonst offenbar nicht stimmt.

Es sei $\pi:G\times V\to V$ eine lineare Gruppenwirkung auf V. Diese entspricht einem Gruppenhomomorphismus $\tilde{\pi}:G\to \mathrm{GL}(V),g\mapsto \pi_g$ mit $\pi_g:v\mapsto g.v$. Wir können diesen zu einer Abbildung $\bar{\pi}:G\to \mathrm{End}(V),g\mapsto \pi_g$ ergänzen. Da der zugrundelegende k-Vektorraum von kG der freie k-Vektorraum über G ist, lässt sich $\bar{\pi}$ durch die universelle Eigenschaft des freien Vektorraums zu einer linearen Abbildung $\tau:kG\to \mathrm{End}(V)$ ergänzen, d.h. für alle $\sum_{g\in G}a_gg\in kG$ ist

$$\tau\left(\sum_{g\in G} a_g g\right) = \sum_{g\in G} a_g \bar{\pi}(g) = \sum_{g\in G} a_g \pi_g.$$

Da G eine k-Basis von kG ist, und τ auf dieser Basis multiplikativ ist (denn $\tau_{|G}=\bar{\pi}$), ist τ auch ein Ringhomomorphismus, d.h. für alle $\sum_{g\in G}a_gg,\sum_{h\in G}b_hh\in kG$ ist

$$\begin{split} \tau\left(\left(\sum_{g\in G}a_gg\right)\cdot\left(\sum_{h\in G}b_hh\right)\right) &= \tau\left(\sum_{g,h\in G}a_gb_hgh\right)\\ &= \sum_{g,h\in G}a_gb_h\pi_{gh} = \sum_{g,h\in G}a_gb_h\pi_g\pi_h = \left(\sum_{g\in G}a_g\pi_g\right)\left(\sum_{h\in G}b_h\pi_h\right)\\ &= \tau\left(\sum_{g\in G}a_gg\right)\tau\left(\sum_{h\in G}b_hh\right). \end{split}$$

Da auch $\tau(1_{kG})=\tau(e)=\pi_e=1_{\mathrm{End}(V)}$ ist $\tau:kG\to\mathrm{End}(V)$ ein unitaler k-Algebrahomomorphismus. Bekanntermaßen entspricht τ einer kG-Modulstruktur auf V via

$$\begin{split} \left(\sum_{g \in G} a_g g\right) \cdot v := \tau \left(\sum_{g \in G} a_g g\right)(v) &= \left(\sum_{g \in G} a_g \pi_g\right)(v) \\ &= \sum_{g \in G} a_g \pi_g(v) = \sum_{g \in G} a_g(g.v). \end{split}$$

Andererseits entspricht eine kG-Modulstruktur auf V einem unitären k-Algebrahomomorphismus $\Phi: kG \to \operatorname{End}(V), x \mapsto (v \mapsto x \cdot v)$. Insbesondere ist Φ ein unitärer Ringhomomorphismus, und induziert daher einen Gruppenhomomorphismus der Einheitengruppen

 $\tilde{\phi}: (kG)^{\times} \to (\operatorname{End}(V))^{\times} = \operatorname{GL}(V).$

Da $G \subseteq (kG)^{\times}$ eine Unterguppe ist (denn g hat in kG das Inverse g^{-1}) beschränkt sich $\tilde{\phi}$ zu einem Gruppenhomomorphismus $\phi: G \to \operatorname{GL}(V)$. ϕ entspricht einer linearen G-Gruppenwirkung auf V via $g.v = \phi(g)(v)$ für alle $g \in G, v \in V$.

Die beiden Konstruktionen sind invers zueinander: Es sei $\pi:G\times V\to V$ eine lineare Gruppenwirkung auf $V,\,\tilde{\tau}:kG\to \operatorname{End}(V)$ der entsprechende k-Algebrahomomorphismus, wie oben konstruiert, und $\pi':G\to\operatorname{GL}(V)$ der Gruppenhomomorphismus, der wie oben durch Einschränkung von τ auf G entsteht. Da für alle $g\in G,v\in V$

$$\pi'(g)(v) = \tau(g)(v) = \pi_g(v) = g.v$$

ist die lineare Gruppenaktion, die π' entspricht, genau π .

Ist andererseits $\Phi:kG\to \operatorname{End}(V)$ ein unitärer k-Algebrahomomorhismus, $\pi:G\to \operatorname{GL}(V)$ der wie oben beschriebene, durch Einschränkung entstehende Gruppenhomomorphismus, und $\Psi:kG\to \operatorname{End}(V)$ der aus π entstehende k-Algebrahomomorphismus. Es ist klar, dass Φ und Ψ auf $G\subseteq kG$ übereinstimmen. Da Geine k-Basis von kG ist, ist daher $\Phi=\Psi.$

Aufgabe 2

Es bezeichnen $\pi:G\times V\to V$ und $\tau:G\times W\to W$ die entsprechenden G-Wirkungen, sowie für alle $g\in G$

$$\pi_q: V \to V, g \mapsto g.v \text{ und } \tau_q: W \to W, g \mapsto g.w.$$

Da π und τ lineare Gruppenwirkungen sind, sind π_g und τ_g k-linear für alle $g \in G$

(a)

Die gewöhnliche G-Wirkung auf Maps(W, V) ist definiert als

$$g.f = \pi_g \circ f \circ \tau_{g^{-1}}$$
. für alle $f \in \operatorname{Maps}(W, V), g \in G$.

 $\operatorname{Hom}_k(W,V)$ ist unter dieser Gruppenaktion abgeschlossen, da für jede k-lineare Abbildung $f:W\to V$ und alle $g\in G$ auch $\pi_g\circ f\circ \tau_{g^{-1}}:W\to V$ k-linear ist. Also induziert die G-Wirkung auf $\operatorname{Maps}(W,V)$ eine G-Wirkung

$$\sigma: G \times \operatorname{Hom}_k(W, V) \to \operatorname{Hom}_k(W, V).$$

Da für alle $g \in G$ die Abbildung

$$\sigma_g: \operatorname{Hom}_k(W,V) \to \operatorname{Hom}_k(W,V), f \mapsto \pi_g \circ f \circ \tau_{g^{-1}}$$

k-linear in f ist, wirkt σ linear auf $\operatorname{Hom}_k(W,V)$. Das zeigt, dass $\operatorname{Hom}_k(W,V)$ vermöge σ eine Darstellung von G ist.

Im Falle V=k hat σ die Form

$$\sigma_q: W^* \to W^*, f \mapsto f \circ \tau_{q^{-1}}.$$

Dies entspricht offenbar genau der dualen Darstellung von G.

(b)

Da V und W endlichdimensional sind, ist

$$\varphi: V \otimes_k W^* \to \operatorname{Hom}_k(W, V), v \otimes \lambda \mapsto (w \mapsto \lambda(w) \cdot v)$$

bekanntermaßen ein Isomorphismus von k-Vektorräumen. φ ist auch G-äquivariant, da für alle $g\in G, v\in V, \lambda\in W^*, w\in W$

$$\varphi(g.(v \otimes \lambda))(w) = \varphi((g.v) \otimes (g.\lambda))(w) = (g.\lambda)(w) \cdot (g.v)$$
$$= \lambda(g^{-1}.w) \cdot (g.v)$$

und

$$(g.\varphi(v \otimes \lambda))(w) = (\pi_g \circ \varphi(v \otimes \lambda) \circ \tau_{g^{-1}})(w)$$

$$= g.(\varphi(v \otimes \lambda)(g^{-1}.(w)))$$

$$= g.(\lambda(g^{-1}.w) \cdot v) = \lambda(g^{-1}.w) \cdot (g.v),$$

also $\varphi(g.(v\otimes\lambda))=g.\varphi(v\otimes\lambda)$ für alle $g\in G,v\in V,\lambda\in W^*$, und deshalb $\varphi(g.x)=g.\varphi(x)$ für alle $g\in G,x\in V\otimes_k W^*$. (Die Elementartensoren $v\otimes\lambda$ mit $v\in V$ und $\lambda\in W^*$ sind ein Erzeugendensystem von $V\otimes_k W^*$, wegen der Linearität von $g.\varphi(x)$ und $\varphi(g.x)$ in x genügt es daher die Gleichheit der beiden Funktionen für Elementartensoren zu überprüfen.)

(c)

(i)

Es ist klar, dass die Abbildung

$$\varphi: k \to \operatorname{End}_k(V), x \mapsto x \operatorname{id}_V$$

k-linear ist. Sie ist auch q-äquivariant, da für alle $q \in G, \lambda \in k, v \in V$

$$(g.\varphi(\lambda))(v) = (\pi_g \circ \varphi(\lambda) \circ \pi_{g^{-1}})(v) = g.(\varphi(\lambda)(g^{-1}.v)) = g.(\lambda(g^{-1}.v))$$
$$= \lambda(g.g^{-1}.v) = \lambda v = \varphi(\lambda)(v) = \varphi(g.\lambda)(v),$$

also $g.\varphi(\lambda) = \varphi(g.\lambda)$ für alle $g \in G, \lambda \in k$.

(ii)

Da die Abbildung $V\times V^*\to k, (v,\lambda)\mapsto \lambda(v)$ offenbar k-bilinear ist, induziert sie eine lineare Abbildung

$$\varphi: V \otimes V^* \to k, v \otimes \lambda \mapsto \lambda(v).$$

Diese ist g-äquivariant, da für alle $g \in G, v \in V, \lambda \in V^*$

$$\varphi(g.(v \otimes \lambda)) = \varphi((g.v) \otimes (g.\lambda)) = (g.\lambda)(g.v)$$
$$= \lambda(g^{-1}.g.v) = \lambda(v) = g.\lambda(v) = g.\varphi(v \otimes \lambda).$$

Der Isomorphismus $V \otimes V^* \cong \operatorname{End}_k(V)$ ist durch

$$f: V \otimes V^* \to \operatorname{End}_{L}(V), v \otimes \lambda \mapsto (w \mapsto \lambda(w) \cdot v)$$

Abbildung 1: Die induzierte Abbildung ψ .

gegeben. Dieser induziert eine eindeutige Abbildung $\psi: \operatorname{End}_k(V) \to k$, so dass das Diagramm in Abbildung 1 kommutiert. Offenbar ist $\psi = \varphi f^{-1}$.

Es sei v_1,\ldots,v_n eine Basis von V und v_1^*,\ldots,v_n^* die entsprechende duale Basis von V^* . Dann ist $(v_i\otimes v_j^*)_{1\leq i,j\leq n}$ eine Basis von $V\otimes V^*$, und $(E_{ij})_{1\leq i,j\leq n}$ eine Basis von $End_k(V)$, wobei

$$E_{ij}(v_k) = \delta_{jk}v_i = \begin{cases} v_i & \text{falls } k = j, \\ 0 & \text{sonst.} \end{cases}$$

Da für alle $1 \le i, j, k \le n$

$$f(v_i \otimes v_j^*)(v_k) = v_j^*(v_k) \cdot v_i = \delta_{jk} v_i = E_{ij}(v_k)$$

ist $f(v_i \otimes v_j^*) = E_{ij}$ für alle $1 \leq i, j \leq n$. Für $A \in \operatorname{End}_k(V)$ mit $A = \sum_{i,j=1}^n a_{ij} E_{ij}$ ist daher

$$\psi(A) = \psi\left(\sum_{i,j=1}^{n} a_{ij} E_{ij}\right) = \sum_{i,j=1}^{n} a_{ij} \psi(E_{ij}) = \sum_{i,j=1}^{n} a_{ij} \varphi(f^{-1}(E_{ij}))$$
$$= \sum_{i,j=1}^{n} a_{ij} \varphi(v_i \otimes v_j^*) = \sum_{i,j=1}^{n} a_{ij} v_j^*(v_i) = \sum_{i,j=1}^{n} a_{ij} \delta_{ij} = \sum_{i=1}^{n} a_{ii} = \operatorname{tr}(A).$$

Es ist also $\psi = {\rm tr.}$

(d)

Bemerkung 1. Wir fixieren eine Gruppe G und einen Körper k. Es bezeichne \mathbf{Rep}_G^k die Kategorie, deren Objekte die Darstellungen von G über k sind, zusammen mit den Morphismen

$$\operatorname{Hom}_{\operatorname{\mathbf{Rep}}_G^k}(V,W) = \operatorname{Hom}_G(V,W)$$

für alle Darstellungen von V,W von G über k. Die Verknüpfung zweier Morphismen ist ihre Verknüpfung als Funktionen. (Es ist bekannt, dass \mathbf{Rep}_G^k tatsächlich eine Kategorie ist.)

Wir bemerken zunächst, dass für $V \in \mathbf{Rep}_G^k$

$$V^G = \{v \in V : g.v = v \text{ für alle } g \in G\}$$

eine Unterdarstellung von G ist, auf der G trivial wirkt.

Beweis. Sei $V \in \mathbf{Rep}_G^k$ beliebig aber fest. Bezeichnet $\pi: G \times V \to V$ die Gruppenwirkung auf V, so ist

$$\begin{split} V^G &= \bigcap_{g \in G} \{v \in V : g.v = v\} = \bigcap_{g \in G} \{v \in V : \pi_g(v) = v\} \\ &= \bigcap_{g \in G} \{v \in V : (\pi_g - \mathrm{id}_V)(v) = 0\} = \bigcap_{g \in G} \ker(\pi_g - \mathrm{id}_V) \end{split}$$

ein Untervektorraum von V. Dass G trivial auf V^G wirkt ist offensichtlich.

Als Nächstes bemerken wir, dass für $V,W\in \mathbf{Rep}_G^k$ jeder Homomorphismus von Darstellungen $f\in \mathrm{Hom}_G(V,W)$ durch Einschränkung einen Homomorphismus (von Darstellungen) $f^G:V^G\to W^G$ induziert.

Beweis. Für alle $v \in V^G$ ist

$$g.(f(v)) = f(g.v) = f(v)$$
 für alle $g \in G$,

also $f(v) \in W^G$ für alle $v \in V^G$. Daher ist

$$f^G: V^G \to W^G, v \mapsto f(v)$$

eine wohldefinierte k-lineare Abbildung. Dass f G-äquivariant ist, folgt direkt daraus, dass G trivial auf V^G und W^G wirkt. \Box

Zusammengefasst ergibt dies, dass $T: \mathbf{Rep}_G^k \to \mathbf{Rep}_G^k$ mit

$$T(V):=V^G \text{ für alle } V\in \mathbf{Rep}_G^k \text{ und}$$

$$T(f):=f^G \text{ für alle } f\in \mathrm{Hom}_G(V,W) \text{ mit } V,W\in \mathbf{Rep}_G^k$$

ein (kovarianter) Funktor ist.

Beweis. Es ist klar, dass $T(\mathrm{id}_V)=\mathrm{id}_V^V=\mathrm{id}_{T(V)}$ für alle $V\in \mathbf{Rep}_G^k$. Auch ist klar, dass T mit der Komposition verträglich ist, da es sich bei T(f) für $f\in \mathrm{Hom}_G(V,W)$ um die Einschränkung von f handelt.

Seien nun G und k wieder wie in der Aufgabe. Wir wissen, dass

$$\operatorname{Hom}_k(k,V) \in \operatorname{Rep}_G^k \text{ und } V \in \operatorname{Rep}_G^k.$$

Die Abbildung

$$\varphi: \operatorname{Hom}_k(k, V) \to V, f \mapsto f(1)$$

ist offenbar ein Isomorphismus von K-Vektorräumen. φ ist auch G-äquivariant, da für alle $g\in G$ und $f\in {\rm Hom}_k(k,V)$

$$\varphi(g.f) = (g.f)(1) = g.f(g^{-1}.1) = g.f(1) = g.\varphi(f).$$

Es ist also φ ein Isomorphismus von Darstellungen. Da T (definiert wie in der Bemerkung) ein Funktor ist, erhalten wir einen Isomorphismus von Darstellungen

$$\psi: (\operatorname{Hom}_k(k,V))^G \to V^G, f \mapsto f(1).$$

Da $(\operatorname{Hom}_k(k,V))^G = \operatorname{Hom}_G(k,V)$ zeigt dies die Aussage.

Aufgabe 3

Es bezeichne $\pi:G\times V\to V$ die G-Wirkung auf V und $\pi^*:G\times V^*\to V^*$ die duale G-Wirkung auf V^* .

Es sei

$$S := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Da $\det S=1\neq 0$ ist $S\in \mathrm{GL}_2(k).$ Für alle $A\in \mathrm{SL}_2(k)$ ist $SAS^{-1}=(A^{-1})^T,$ denn mit

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix},$$

ist $1 = \det A = ad - bc$, also

$$SAS^{-1} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} -b & a \\ -d & c \end{pmatrix}$$
$$= \begin{pmatrix} d & -c \\ -b & a \end{pmatrix} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}^{T} = (A^{-1})^{T}.$$

Bezüglich der kanonischen Basis e_1,e_2 von V und der dualen Basis e_1^*,e_2^* von V^* beschreibt S einen Vektorraumisomorphismus

$$\varphi: V \to V^* \text{ mit } \varphi(e_1) = e_2^* \text{ und } \varphi(e_2) = -e_1^*.$$

Wir behaupten, dass φ G-äquivariant. Hierzu bemerken wir, dass für alle $A \in G = \operatorname{SL}_2$ die darstellende Matrix von π_A bezüglich e_1, e_2 gerade A ist, und die darstellende Matrix von π_A^* bezüglich e_1^*, e_2^* damit, wie aus den Anwesenheitsaufgaben bekannt, $(A^{-1})^T$. φ hat bezüglich der Basen e_1, e_2 und e_1^*, e_2^* die darstellende Matrix S. Es ist daher

$$\begin{split} \varphi \text{ ist } G\text{-\"aquivariant } &\Leftrightarrow \pi_A^* \circ \varphi = \varphi \circ \pi_A \text{ für alle } A \in G \\ &\Leftrightarrow \left(A^{-1}\right)^T S = SA \text{ für alle } A \in \operatorname{SL}_2(k) \\ &\Leftrightarrow \left(A^{-1}\right)^T = SAS^{-1} \text{ für alle } A \in \operatorname{SL}_2(k). \end{split}$$

Das zeigt, dass φ ein Isomorphismus von Darstellungen ist.