קווים כלליים לפתרון תרגיל בית 1

22: 00 עד שעה 23/3/2014, אריך הגשה: יום ראשון,

<u>: שאלה</u>

אי-רציונלי. הוכיחו כי $\sqrt[3]{9} + \sqrt[3]{3}$ אי-רציונלי.

נסמן ($1-\sqrt[3]{3}$) בסמן ($1+\sqrt[3]{3}$) והעברת, ונניח בשלילה כי מספר זה רציונלי. על ידי הכפלה ב- ($1-\sqrt[3]{3}$) והעברת ק $1-\sqrt[3]{3}$ באופן דומה להוכחת על ארציונלי ניתן לקבל גם כי $1-\sqrt[3]{3}$ אינו רציונלי, אבל אם $1-\sqrt[3]{3}$ באופן דומה להוכחת $1-\sqrt[3]{3}$ לא רציונלי ניתן לקבל גם כי $1-\sqrt[3]{3}$ אינו רציונלי, אבל אם $1-\sqrt[3]{3}$ רציונלי (מסגירות לחיבור, כפר וחילוק בשדה, ונשים לב כי $1+\sqrt[3]{3}$ (אולכן $1-\sqrt[3]{3}$), ולכן $1-\sqrt[3]{3}$ רציונלי סתירה

- ב. יהיו היו אי-רציונליים, אי-רציונליים המספרים המספרים מספרים, אי-רציונליים או $q\in\mathbb{Q}$, r_1 , $r_2\in\mathbb{R}\backslash\mathbb{Q}$ שלא ניתן לקבוע? הוכיחו טענותיכם.
 - $r_1 + r_2$ (2

 $r_1 + q$ (1)

 $.q \neq 0$ כאשר r_1q (4

- r_1r_2 (3
- (מסגירות הרציונליים לחיבור) אי-רציונלי $r_1=(r_1+q)-q$ אחרת אי-רציונליים רציונליים לחיבור)
- $\sqrt{2} + \left(-\sqrt{2}\right) = 0 \in \mathbb{Q}$ לא ניתן לקבוע. למשל: $\sqrt[3]{3} + \sqrt[3]{9}$ אי-רציונלי, כפי שהוכח בסעיף קודם, אך (2
 - . $\sqrt{2}\cdot\sqrt{3}\notin\mathbb{Q}$ אך אך $\sqrt{2}\cdot\sqrt{2}=2\in\mathbb{Q}$. לא ניתן לקבוע, למשל
 - .(1) מסגירות רציונלים לכפל, כמו ב $r_1 q \notin \mathbb{Q}$ (4)

<u>: 2 שאלה</u>

אז למשוואה $b^2-4ac>0$ הוכיחו אם $a\neq 0$ כאשר, כאשר, $a\neq 0$ אז למשוואה .

יש שני פתרונות ממשיים שונים. $ax^2 + bx + c = 0$

. נקבל, נקבל לריבוע, אחרת בהשלמה נעביר את כל המחוברים אגף. נשתמש האחרת לריבוע, אחרת להניח a>0

אם
$$\sqrt{a}x+\frac{b}{2\sqrt{a}}=\pm\frac{b^2-4ac}{4a}$$
 נותן לנו: $ax^2+bx+c=0$ אם , $ax^2+bx+c=\left(\sqrt{a}x+\frac{b}{2\sqrt{a}}\right)^2-\frac{b^2-4ac}{4a}$. $ax^2+bx+c=\left(\sqrt{a}x+\frac{b}{2\sqrt{a}}\right)^2-\frac{b^2-4ac}{4a}$. $ax^2+bx+c=0$ זה נותן 2 פתרונות שונים עבור

לכל $a_i,b_i\in\mathbb{R}$ את הפולינום הריבועי $p(x)=\sum_{i=1}^n \left(a_ix+b_i\right)^2$ את הפולינום הריבועי p(x)

p(x)=0 - אינם כולם אפס, אז ל a_1,\dots,a_n , אינם משט הראו שאם ווער הראו שאם ווער ממשי אחד. ווער פתרון ממשי אחד.

הוא סכום של ביטויים אי-שליליים, ולכן יכול להיות שווה ל- 0 אם ורק אם כל אחד מהביטויים בנפרד שווה p(x) , $a_1x+b_1=0$ לכל $a_ix+b_i=0$ הוא הפיתרון היחיד של $a_ix+b_i=0$ ל-0, כלומר $a_ix+b_i=0$ לכל היותר פתרון של $a_ix+b_i=0$ לכן ל- a_ix+a_i יש לכל היותר פתרון אחד.

-ג. יהיו אי העוויון הבא, הנקרא אי שוויון קושי . a_1, \dots, a_n , $b_1, \dots, b_n \in \mathbb{R}$ ג. יהיו שוורץ :

$$\left(\sum_{i=1}^{n} a_i b_i\right)^2 \leq \left(\sum_{i=1}^{n} a_i^2\right) \left(\sum_{i=1}^{n} b_i^2\right)$$

ניעזר בסעיפים קודמים : עבור $p(x)=\sum (a_ix+b_i)^2=\left(\sum a_i^2\right)x^2+2(\sum a_ib_i)x+\sum b_i^2$ מסעיף ב' חייב להתקיים $b^2-4ac\leq 0$ (כאשר a,b,c כפי שהוגדרו בסעיף א), אחרת ל- p(x) היו שני פתרונות ממשיים שונים. (נשים לב כי נוכל להניח שלא כל ה- $a_i=0$, אחרת אי השוויון טריוויאלי מכיוון שאגף ימין אי-שלילי). לכן צריך להתקיים : $4(\sum a_ib_i)^2\leq 4(\sum a_i^2)(\sum b_i^2)$, וסיימנו.

<u>שאלה 3:</u>

הוכיחו באינדוקציה או בכל דרך אחרת את הנוסחאות הבאות:

א. אם $\sum_{i=1}^n a_i = \frac{(a_1 + a_n)n}{2}$: או מתקיים $a_n + d$ (זהו סכום , a_1 , $d \in \mathbb{R}$ א. אם סדרה חשבונית).

 $\sum_{i=1}^{n+1}a_i=\sum_{i=1}^na_i+a_{n+1}=rac{(a_1+a_n)n}{2}+$: עבור a_1 בור a_1 ביו מתקיים עבור a_1 ביו מתקיים עבור a_1 ביו מתקיים עבור $a_1+nd=a_{n+1}$ כי $a_1+nd=a_{n+1}+a_{n+1}-nd$ ביי מתקיים עבור $a_1+nd=a_{n+1}$ כי $a_1+nd=a_{n+1}$ ביי מתקיים עבור $a_1+nd=a_{n+1}$ ביי מתקיים ביי מתק

$$\sum_{i=1}^n a_i = rac{a_1ig(q^n-1ig)}{q-1}$$
 : ב. אם $a_1,q\in\mathbb{R}$ ונגדיר $a_1,q=a_1q^n$ ונגדיר $a_1,q\in\mathbb{R}$ ב. אם $a_1,q\in\mathbb{R}$ ונגדיר $a_1,q\in\mathbb{R}$ (זהו סכום סדרה הנדסית).

$$\sum_{i=1}^{n+1}a_i=\sum_{i=1}^na_i+a_{n+1}=rac{a_1(q^n-1)}{q-1}+$$
: עבור $a_1=a_1$ נניח כי מתקיים עבור $a_1=a_1$ נניח כי מתקיים עבור $a_1=a_1$ נניח $a_1=a_1$ נניח כי מתקיים עבור $a_1q^n=rac{a_1(q^n-1)+(q-1)a_1q^n}{q-1}=rac{a_1(q^{n+1}-1)}{q-1}$

<u>שאלה 4:</u>

: מתקיים חוכיחו באינדוקציה או בכל דרך אחרת כי לכל מתקיים א. הוכיחו באינדוקציה או בכל דרך אחרת בי לכל

.
$$1^2-2^2+3^2-4^2+\cdots+(-1)^{n+1}\cdot n^2=\frac{(-1)^{n+1}\cdot n\cdot (n+1)}{2}$$

 $:n+1$ נניח כי מתקיים עבור n , נבדוק עבור $n=1$: $n+1$ נקבל $n=1$: $n+1$ נניח כי מתקיים עבור $n=1$: $n+1$: $n=1$:

המעבר (*) מתקיים מהנחת האנדוקציה.

לכל $a_{n+2}=a_{n+1}+a_n$ -ו , $a_1=a_2=1$ לכל את סדרת פיבונציי מגדירים על ידי קביעת $n\geq 1$. $n\geq 1$

.
$$a_n = \frac{\left(\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n\right)}{\sqrt{5}}$$
 : הוכיחו באינדוקציה או בכל דרך אחרת כי למעשה מתקיים

עבור n=1 נקבל בהנחת האינדוקציה עד n, ונשתמש בהגדרת סדרת פיבונציי ובהנחת האינדוקציה נקבל n=1

$$\begin{split} a_{n+1} &= a_n + a_{n-1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^n - \left(\frac{1-\sqrt{5}}{2}\right)^n}{\sqrt{5}} + \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1}}{\sqrt{5}} = \\ &\frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \left(\left(\frac{1+\sqrt{5}}{2}\right) + 1 \right) - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \left(\left(\frac{1-\sqrt{5}}{2}\right) + 1 \right) \right) = \\ &\vdots \\ \vdots \\ &\frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \left(\frac{1+\sqrt{5}}{2}\right)^{n-1} \left(\frac{3+\sqrt{5}}{2}\right) - \left(\frac{1-\sqrt{5}}{2}\right)^{n-1} \left(\frac{3-\sqrt{5}}{2}\right) \right) \\ &\cdot \left(\frac{3+\sqrt{5}}{2}\right) = \left(\frac{1+\sqrt{5}}{2}\right)^2, \; \left(\frac{3-\sqrt{5}}{2}\right) = \left(\frac{1-\sqrt{5}}{2}\right)^2 \end{split}$$

: 5 שאלה

מייצג a_n .(כלומר, את שלילת הטענות הבאות, רשמו את הטענה ההפוכה לה הפוכה לכל אחת מהטענות הבאות, רשמו את הטענה החפוכה לכל איבר כללי של סדרה נתונה כלשהי.

- $a_n < M$ כך ש- $n \in \mathbb{N}$ קיים א לכל מספר ממשי
- $|a_n-L|<arepsilon$ מתקיים N>N מתקיים לכל מספר סבעי שלכל מספר אלכל פול לכל arepsilon>0
 - , m,n>N המקיימים m,n המספרים עני מספרים כך שלכל שני $\varepsilon>0$ המקיים. $|a_n-a_m|<\varepsilon$ מתקיים
 - $a_n \geq M$ מתקיים מספר ממשי M כך שלכל M מתקיים א.
 - $.|a_n-L|\geq \varepsilon$: מתקיים משלים n>Nהמקיים טבעי N קיים שלכל $\varepsilon>0$ ב. ב.
 - $|a_n a_m| \geq \varepsilon$ כך שלכל N כך שקיימים שני טבעיים n, m > N בעיים פולכל מכך שלכל $\varepsilon > 0$ כ

: שאלה 6 – לא להגשה

עבור כל אחד משני הביטויים הבאים, מצאו ביטוי שווה התלוי ב-n ובכל אחת מארבע פעולות החשבון האלמנטריות פעם אחת לכל היותר. הוכיחו את טענותיכם.

$$\sum_{k=2}^{n} \frac{1}{k(k-1)} \quad . \aleph$$

$$\prod_{j=2}^n \left(1 - \frac{1}{k^2}\right) \quad .$$