

Proof of Bonferroni Inequalities

Canonical name ProofOfBonferroniInequalities

Date of creation 2013-03-22 19:12:44 Last modified on 2013-03-22 19:12:44

Owner csguy (26054) Last modified by csguy (26054)

Numerical id 6

Author csguy (26054)

Entry type Proof

Classification msc 60A99

Definitions and Notation. A measure space is a triple (X, Σ, μ) , where X is a set, Σ is a σ -algebra over X, and $\mu \colon \Sigma \to [0, \infty]$ is a measure, that is, a non-negative function that is countably additive. If $A \in \Sigma$, the characteristic function of A is the function $\chi_A \colon X \to \mathbb{R}$ defined by $\chi_A(x) = 1$ if $x \in A$, $\chi_A(x) = 0$ if $x \notin A$. A unimodal sequence is a sequence of real numbers a_0, a_1, \ldots, a_n for which there is an index k such that $a_i \leq a_{i+1}$ for i < k and $a_i \geq a_{i+1}$ for $i \geq k$.

The proof of the following easy lemma is left to the reader:

Lemma 1. If $a_0 \le a_1 \le \ldots \le a_k \ge a_{k+1} \ge a_{k+2} \ge \ldots \ge a_n$ is a unimodal sequence of non-negative real numbers with $\sum_{i=0}^{n} (-1)^i a_i = 0$, then $\sum_{i=0}^{j} (-1)^i a_i \ge 0$ for even j and ≤ 0 for odd j.

Since the binomial sequence $\binom{a}{i}_{0 \le i \le n}$ with integer a > 0 and integer $n \ge a$ satisfies the hypothesis of Lemma ??, we have:

Corollary 1. If a is a positive integer, $\sum_{i=0}^{j} (-1)^{i} {a \choose i} \geq 0$ for even j and ≤ 0 for odd j.

Lemma 2. Let $(A_i)_{1 \leq i \leq n}$ be a sequence of sets and let $X = \bigcup_{1 \leq i \leq n} A_i$. For $x \in X$, let I(x) be the set of indices j such that $x \in A_j$. If $1 \leq k \leq n$,

$$\sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \chi_{A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k}}(x) = \binom{|I(x)|}{k}$$

for all $x \in X$.

Proof. $\chi_{A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}}(x) = 1$ if $\{i_1, i_2, \ldots, i_k\} \subseteq I(x)$, and = 0 otherwise. Therefore the sum equals the number of k-subsets of I(x), which is $\binom{|I(x)|}{k}$. \square

Theorem 1. Let (X, Σ, μ) be a measure space. If $(A_i)_{1 \le i \le n}$ is a finite sequence of measurable sets all having finite measure, and

$$S_j = \mu(A_1 \cup A_2 \cup \ldots \cup A_n) + \sum_{k=1}^j (-1)^k \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} \mu(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k})$$

then $S_j \geq 0$ for even j, and ≤ 0 for odd j. Moreover, $S_n = 0$ (Principle of Inclusion-Exclusion).

Proof. Let $Y = \bigcup_{1 \le i \le n} A_i$.

$$S_{j} = \int_{Y} d\mu + \sum_{k=1}^{j} (-1)^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \int_{Y} \chi_{A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}} d\mu$$
$$= \int_{Y} d\mu + \sum_{k=1}^{j} (-1)^{k} \int_{Y} (\sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} \chi_{A_{i_{1}} \cap A_{i_{2}} \cap \dots \cap A_{i_{k}}}) d\mu$$

By Lemma??,

$$S_{j} = \int_{Y} d\mu + \sum_{k=1}^{j} (-1)^{k} \int_{Y} {|I(x)| \choose k} d\mu$$
$$= \sum_{k=0}^{j} (-1)^{k} \int_{Y} {|I(x)| \choose k} d\mu$$
$$= \int_{Y} \sum_{k=0}^{j} (-1)^{k} {|I(x)| \choose k} d\mu$$

Since |I(x)| > 0 for $x \in Y$, it follows from Corollary ?? that, in the last integral, the integrand is ≥ 0 for even j and ≤ 0 for odd j. Therefore the same is true for the integral itself. In addition, the integrand is identically 0 for j = n, hence $S_n = 0$.

This proof shows that at the heart of Bonferroni's inequalities lie similar inequalities governing the binomial coefficients.