21/08/2025 - Matematicas Discretas

1. Repaso Clase anterior

- * Operadores logicos: Sean Py & proposiciones:
 - 1. Negación (ho):

78

P	J P
F	>
٧	7

2. Conjuncion (y)

PAQ

P	Q	PNQ
F	¥	É
7	>	F
V	F	F
V	>	\

3. Disyuncion (inclusiva)

PVQ

4. Disyuncion (exclusiva) (o)

P + Q

_ P	Q	D D Q
F	Т	, F
F	>	V
V	F	V
\sim	V	†

P -> Q Antec. Consec. Hypotesis Tesis Premise conclusion

þ	Q	D - Q
Ĕ	F	, >
7	>	∨
V	F	F
\sim	>	V

6. Bicondicional (Equivalencia) (... si y solo si ...)

P WQ

_ P	Q	P Co
F	Ī	7
٢	>	۴
V	۴	₹
\sim	>	V

Resumen sobre los tipos de enunciados declarativos

Sobre el enunciado declarativo	: Sean P y Q dos enunciados declarativos cualquiera (simples o compuestos)	
Tipo	Enunciados	
	• PyQ	
	• P, pero Q	
	Paún Q	
	P también Q	
Conjuntivo	P todavía Q	
\wedge	P, aunque Q	
	P sin embargo Q	
	P además Q	
	P no obstante Q	
	• PoQ	
	P, a menos que Q	
Disyuntivo	Al menos una entre P y Q.	
Disjunction		
\checkmark	Nota: Interprétese a menos que como si una proposición no es verdadera, la otra	
	es, o será, verdadera, en este caso: si Q fuera falsa, le correspondería a P ser cierta	
Sobre el enunciado declarativo	condicional: En este caso P representa al antecedente y Q el consecuente.	
	Si P entonces Q	
	• Si P, Q	
	• Q si P	
	• P sólo si Q	
	Para P, es necesario Q	
Condicionales (Hipotéticos)	Es suficiente P para Q	
	Q en caso de que P	
	Q siempre que P	
	Como P, Q	
	Q cuando P	
	P implica que Q	
	Cuando P, Q	
Bicondicionales	P si, y solo si, Q	
	P es suficiente y necesario para Q	
Dicondicional S	P es equivalente a Q	
	P y Q son equivalentes	

Pass para traducir del lenguaje Formal al lenguaje Proposicional

- 1. Leer y comprander el enunciado
- 2. Identificar las proposiciones simples (atomicas) ho negados
 3. Asignar los simbolos a cada proposición
- 4. Detector conectores logicos en el enunciado
- 5. Construir la expresión logica.

Proposiciones simples:

ON: El automovil arrance

GAS: El tanque tiere gassima

CHARGE: La Bateria tiere carga

Proposiciones:

-M: Estudio Matematicas para la computarion

-T: Itago la tarea de fundamentos -R: Reprodure el semestro -P: Podre ir a pasear

JM J JT

((=nsermente) (Anteregente)

Para la proxima clase: (Tavea)

- 1. No puedes subir a la montaña rusa si mides menos de 1.2 metros, a menos que tengas mas de 16 años.
- 2. Puedes acceder a internet dasde el compus sola si estudias ciencials de la computación o no eves estudiante del primer a70.