Higher Rank Abelian Smooth Action with Hyperbolicity (Spring 2022, Disheng Xu)

Yuxiang Jiao

Contents

1	May 13	1
2	May 20	3
3	June 3	4
4	June 9	7
5	June 22	8

§1 May 13

For classical dynamical systems, we consider about discrete dynamics or flows. It consists of a space X and a family of maps $X \to X$,

$$\{f^{(n)}:n\in\mathbb{Z}\}\quad\text{or}\quad\{f^t:t\in\mathbb{R}\},$$

satisfying the group conditions.

We will consider a more general settings: an abelian group action on X. The settings are

- X a manifold.
- A family of maps $\{f^t \in \operatorname{Homeo}(X) : t \in \mathbb{Z}^l\}$, satisfies $f^t \circ f^s = f^{t+s}$.

Or, we can rewrite the second condition as a group homomorphism

$$\alpha: \mathbb{Z}^l \to \operatorname{Homeo}(X)$$
.

Example 1.1

A non-invertible example, i.e. lpha is just a semi-group homomorphism

$$\alpha: \mathbb{N}^2 \to C^0(\mathbb{T}, \mathbb{T}), \quad (m, n) \mapsto (\times 2)^m (\times 3)^n.$$

Furstenberg showed that the orbit of this action is either finite or dense. This is an example of a hyperbolic setting.

1 May 13 Ajorda's Notes

Example 1.2

Let R_{α} be the α -rotation on \mathbb{T} . We can consider the action

$$\alpha:(m,n)\to \operatorname{Homeo}(\mathbb{T}),\quad (m,n)\to R_{\alpha}^mR_{\beta}^n.$$

This is an example of a non hyperbolic setting.

Remark 1.3 — Fayad-Kanin showed that if $f,g:\mathbb{T}\to\mathbb{T}, R(f)=\alpha, R(g)=\beta$ and (α,β) satisfies some number-theoretic conditions, then $\exists \varphi\in C^\infty(\mathbb{T},\mathbb{T})$ such that $\varphi\circ f\circ \varphi^{-1}=R_\alpha$ and $\varphi\circ g\circ \varphi^{-1}=R_\beta.$

For a hyperbolic setting, we consider a baby case. Let $A\in \mathrm{SL}(n,\mathbb{C})$ be a diagonalizable matrix, assume

$$A \sim \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix},$$

and $|\lambda_j| \neq 1$ for every j, then we call A to be a hyperbolic matrix. Let $\sigma_j = \log |\lambda_j|$, then "hyperbolicity" means $\sigma_i \neq 0$.

Example 1.4

 $A = \left[egin{smallmatrix} 2 & 1 \\ 1 & 1 \end{smallmatrix}
ight] \wedge \mathbb{T}^2,$ a classical Anosov map.

Proposition 1.5 (C^0 -Rigidity of Anosov Map)

For an Anosov map $f \in \mathrm{Diff}^\infty(X)$, if another map $g \in \mathrm{Diff}^\infty(X)$ is C^1 -closed to f, then $\exists h \in \mathrm{Homeo}(X)$ such that $h \circ g \circ h^{-1} = f$.

Remark 1.6 — In general, the regularity of h cannot be C^1 . Because a C^1 conjugacy preserves the derivates of fixed points.

Question 1.7. If we have higher rank action with at least one Anosov element, can we have the similar result?

Example 1.8

A baby case: for f_1, f_2 commutes with each other, consider the action

$$\alpha: \mathbb{Z}^2 \to \mathrm{Diff}^\infty(\mathbb{T}^2), \quad (m,n) \to f_1^m f_2^n.$$

Assume there exists $(m,n)\in\mathbb{Z}^2$ such that $f_1^mf_2^n$ is Anosov. Then we perturb (f_1,f_2) to $(\widetilde{f}_1,\widetilde{f}_2)$ a little bit such that $\widetilde{f}_1\widetilde{f}_2=\widetilde{f}_2\widetilde{f}_1$ still holds. Then there exists h such that $h\widetilde{f}_1h^{-1}=f_1$ and $h\widetilde{f}_2h^{-1}=f_2$.

2

2 May 20 Ajorda's Notes

Question 1.9. Can the conjugate h be more regular?

It is easy to construct a counter example such that h could not be C^1 . For example, we can regard a \mathbb{Z}^1 -action as a "degenerated" \mathbb{Z}^2 -action.

Example 1.10

Let $T_A, T_B: \mathbb{T}^2 o \mathbb{T}^2$ be two hyperbolic matrices. We consider

$$\alpha:(m,n)\to T^m_{A\times\mathrm{Id}}T^n_{\mathrm{Id}\times B},$$

a \mathbb{Z}^2 -action on \mathbb{T}^2 . The conjugate h in general still cannot be C^1 .

This counter example is a non degenerated \mathbb{Z}^2 -action, but is somehow not "genuinely higher rank". So, we need a "genuinely higher rank assumption".

Question 1.11. Let $\alpha_0:\mathbb{Z}^2\to \mathrm{SL}(d,\mathbb{Z})\subset \mathrm{Diff}^\infty(\mathbb{T}^d)$ be an action such that there exists (m,n), $\alpha_0(m,n)$ is Anosov (i.e. a hyperbolic matrix). Then for a C^1 -perturbation α of $\alpha_0,$ $\alpha:\mathbb{Z}^2\to\mathrm{Diff}^\infty(\mathbb{T}^d)$, can we show that $\exists h\in\mathrm{Diff}^\infty(\mathbb{T}^d)$ such that $h\circ\alpha\circ h^{-1}=\alpha_0$?

To avoid the rank-one case, we need an additional assumption.

"Totally ergodic ergodic assumption": $\forall (m,n) \neq (0,0), \alpha_0(m,n)$ is ergodic with respect to the Lebesgue measure on \mathbb{T}^d .

§2 May 20

Conjecture 2.1 (\mathbb{Z}^l version of Karok-Spatzier's Conjecture)

Let $\alpha:\mathbb{Z}^l\to \mathrm{Diff}^\infty(M)$ be an action such that there exists $a\neq 0\in\mathbb{Z}^l,\,\alpha(a)$ is Anosov. Then under some suitable "higher rank" assumption (no rank-one factor), α is C^∞ conjugate to an "algebraic-defined" model.

As a contrast, we consider a famous conjecture of Smale and Borel in the case of rank-one.

Conjecture 2.2 (Smale-Borel)

If f is Anosov, then f is C^0 -conjugate to a \mathbb{T}^d automorphism.

This conjecture in general is False, for Borel have constructed an Anosov diffeomorphism on a nil-manifold. Later, there has been constructed an example of Anosov diffeomorphism on an infra-nil-manifold.

Theorem 2.3 (Franks-Manning)

Suppose $f \in \mathrm{Diff}^1(M)$ is Anosov, where M is a nil-manifold. Then f is C^0 -conjugate to an affine map on M.

3 June 3 Ajorda's Notes

Corollary 2.4

Assume $f,g \in \mathrm{Diff}^1(M)$ are Anosov, where M is a nil-manifold. Then there exists $h \in \mathrm{Homeo}(M)$ such that $hfh^{-1} = f_0, hgh^{-1} = g_0$ where f_0, g_0 are affine maps on M.

Theorem 2.5 (Hertz-Z.Wang, 2014)

Consider the action $\alpha: \mathbb{Z}^k \to \mathrm{Diff}^\infty(\mathbb{T}^d)$ which is homotopic to $\alpha_0: \mathbb{Z}^k \to \mathrm{GL}(d,\mathbb{Z})$, if α is Anosov (in the sense that $\exists a \in \mathbb{Z}^k \setminus \{0\}, \, \alpha(a)$ is Anosov). Assume that $\exists \mathbb{Z}^2 \subseteq \mathbb{Z}^k$ such that $\alpha_0|_{\mathbb{Z}^2}$ is totally ergodic, then α is C^∞ -conjugate to an affine action.

Theorem 2.6 (Fisher-Kalinin-Spatzier, 2013)

The same result (as Theorem 2.5) holds under a stronger assumption that α has "many" Anosov elements.

Weyl Chamber picture

The Lyapunov exponent for a matrix is $\sigma_i = \log |\lambda_i|$, where λ_i is an eigenvalue of A. Then

$$A \sim \begin{bmatrix} \Box & & & \\ & \Box & & \\ & & \ddots & \\ & & & \end{bmatrix},$$

where each \square is a block with all the same eigenvalues. Then we can get a coarse decomposition of \mathbb{R}^d corresponding to different Lyapunov exponents. Denotes this splitting by

$$\mathbb{R}^d = V_1 \oplus V_2 \oplus \cdots \oplus V_r,$$

then V_i is A-invariant. Moreover, for every B commutes with A,B also preserves each V_i . Hence for a \mathbb{Z}^k action of $\mathrm{GL}(d,\mathbb{Z})$, we can split \mathbb{R}^d into a direct sum of finite many subspaces $\{V_i\}$. Such that, for every $A \in \alpha(\mathbb{Z}^k)$, $A|_{V_i}$ has a constant Lyapunov exponent. Then we can define the Lyapunov functionals $\lambda_i: A \mapsto \sigma(A|_{V_i})$, these functionals will induce linear functionals $\mathbb{Z}^k \to \mathbb{R}$.

§3 June 3

Today, we are going to show the idea of the proof of Theorem 2.6. For a references, for example, see here.

Consider actions

$$\alpha_0: \mathbb{Z}^2 \to \operatorname{Aut}(\mathbb{T}^d), \quad \alpha: \mathbb{Z}^2 \to \operatorname{Diff}^1(\mathbb{T}^d)$$

which are homotopic. Assume that for every $a \neq \mathrm{Id}$, $\alpha_0(a)$ is ergodic. We want to show under some conditions ("many Anosov elements"), α is C^{∞} -conjugate to α_0 .

Aim 3.1. Find a way to state the "many Anosov elements" condition formally.

3 June 3 Ajorda's Notes

Recall the Lyapunov functionals introduced in last lecture. It corresponds to a Lyapunov (or Oseledec) decomposition $\mathbb{R}^d=\bigoplus_{i=1}^k V^i$, such that for every $v\neq 0\in V^i$,

$$\lim_{n \to \infty} \frac{1}{n} \log \|\alpha_0(na)v\| = \lambda_i(a).$$

Now we introduce the Weyl chamber picture. Consider the kernel of each λ_i , which is a line in \mathbb{Z}^2 . Then these lines divide the plane into several connected components. Each connected component is called a Weyl chamber. Let $\mathscr C$ be a Weyl chamber, then the signs of $\lambda_i(a)$'s are the same for every $a \in \mathscr C$. Hence for each Weyl chamber $\mathscr C$, we can use k signs $(\operatorname{sgn} \lambda_1(a), \cdots, \operatorname{sgn} \lambda_k(a)), a \in \mathscr C$, to denote it.

Weyl chamber picture for non-linear settings

Recall Oseledec's theorem. For the case of \mathbb{Z}^1 -action, let

$$f:(X,\mu)\to(X,\mu)$$

be a ergodic maps. Let

$$F: X \times \mathbb{R}^d \to X \times \mathbb{R}^d, \quad (x, v) \mapsto (f(x), F_x v)$$

be a linear cocycle over f, where $F_x \in \mathrm{GL}(d,\mathbb{R})$ for every $x \in X$ and

$$\int_{X} ||F_x|| \mathrm{d}\mu(x) < \infty.$$

Oseledec's theorem tells us there exists an (μ -a.e.) F-invariant splitting of $X \times \mathbb{R}^d = \bigoplus V_x^i$ and k Lyapunov exponents $\lambda_1 > \lambda_2 > \cdots > \lambda_k$ such that

$$\lim_{n \to \infty} \frac{1}{n} \log ||F_x^n v|| = \lambda_i, \quad \forall v \in V_x^i \setminus \{0\}.$$

For a \mathbb{Z}^2 -action case, let

$$f_{(m,n)}: (X,\mu) \to (X,\mu), \quad (m,n) \in \mathbb{Z}^2$$

be ergodic maps satisfying group conditions. Let

$$\{F_{(m,n,x)} \in \mathrm{GL}(d,\mathbb{R}) : (m,n,x) \in \mathbb{Z}^2 \times X\}$$

be a family of linear maps satisfying the cocycle condition

$$F_{(m+m',n+n',x)} = F_{(m',n',f_{m,n}(x))} \circ F_{(m,n,x)}.$$

Then there exists linear functions $\lambda_i:\mathbb{Z}^2 o\mathbb{R}$ and a splitting

$$\mathbb{R}^d = \bigoplus V^i_{(m,n,x)}, \quad (m,n,x) \in \mathbb{Z}^2 \times X.$$

which is (μ -a.e.) cocycle-invariant. Such that for μ - a.e. $x \in X$, for every $(m, n) \in \mathbb{Z}^2$,

$$\lim_{l \to \infty} \frac{1}{l} \log \|F_{(lm,ln,x)}v\| = \lambda_i(m,n), \quad \forall v \in V^i_{(m,n,x)} \setminus \{0\}.$$

In our case, we will consider the derivative cocycle, i.e. $f_{(m,n)}=\alpha(m,n)$ and $F_{(m,n,x)}=\mathrm{D}_x f_{(m,n)}$. Then there is a μ -a.e. defined α -invariant measurable splitting $T\mathbb{T}^d=\bigoplus V^i$, and each V^i corresponds to a Lyapunov functional $\lambda_i:\mathbb{Z}^2\to\mathbb{R}$. Besides, we can define the Weyl chamber picture similarly.

3 June 3 Ajorda's Notes

By Franks-Manning's theorem, α conjugates to an affine action. By passing to a finite index subgroup if necessary, we can assume that it conjugates an action on $\operatorname{Aut}(\mathbb{T}^d)$. That is, there exists a bi-Hölder map h such that $h\circ\alpha_0\circ h^{-1}=\alpha$ (α_0 is the linear model of α). Then $\nu=h_*(\operatorname{Leb}_{\mathbb{T}^d})$ is an α -invariant ergodic measure on \mathbb{T}^d .

Now, we need the "many Anosov" condition: for every Weyl chamber $\mathscr C$ of linear action α_0 , there exists $a\in\mathscr C$ such that $\alpha(a)$ is Anosov.

Proposition 3.2

For (α, ν) , it has exactly the same Weyl chamber picture as the linear model (α_0, Leb) .

Note that $\alpha_0(a)$ is a Anosov iff $a \notin \bigcup \ker \lambda_i$. Moreover, we can show that

Proposition 3.3

 $\alpha(a)$ is Anosov iff $\alpha_0(a)$ is Anosov.

Explanation. We have found sufficiently many Anosov elements a_1, a_2, \dots, a_s (each Weyl chamber of α_0 has at least one). We consider the stable/unstable foliation of each $\alpha(a_i)$.

Fact 3.4. If a_i, a_j in the same Weyl chamber, then they share the same $\mathcal{W}^{u/s}$.

Fact 3.5. Each $\mathcal{W}_{a_i}^{u/s}$ is invariant under \mathbb{Z}^2 -action α .

Fact 3.6. Any non-trivial intersection $\bigcap_{i \in \mathscr{I}} \mathcal{W}_{a_i}^{u/s}$ is α -invariant.

Let $\mathcal{W}^1,\mathcal{W}^2,\cdots,\mathcal{W}^n$ be (the finest) non-trivial intersections of these stable/unstable manifolds. Let $E^i=T\mathcal{W}^i$. Then $T\mathbb{T}^d=\bigoplus E^i$, which is a splitting possibly coarser than the Oseledec's splitting. Moreover, we can show that

Fact 3.7. Each E^i has the form $\bigoplus_{\lambda_j:\exists c>0,\lambda_j=c\lambda}V^j$ for a fixed Lyapunov functional λ .

Roughly speaking, this splitting is the finest splitting such that: for every E^i , for every $a \in \mathbb{Z}^2 \setminus \bigcup \ker \lambda_j$, $\alpha(a)$ contracts or expands E^i simultaneously. We call E^i the coarse Lyapunov distribution and \mathcal{W}^i the coarse Lyapunov foliation.

Fact 3.8.
$$h: \mathcal{W}_{\alpha_0}^i \to \mathcal{W}_{\alpha}^i$$
.

Then for every $a \notin \bigcup \ker \lambda_j$, let ν be an $\alpha(a)$ -invariant ergodic measure. Note that the Lyapunov exponents of $\alpha_0(a)$ on $\mathcal{W}^i_{\alpha_0}$ are bounded away from zero. Applying Pesin theory and the conjugacy is bi-Hölder, we can show that the Lyapunov exponents of $(\alpha(a), \nu)$ have the same sign and are bounded away from zero on each \mathcal{W}^i_{α} . It follows that $\alpha(a)$ is uniformly contracting or expanding along each \mathcal{W}^i_{α} , hence $\alpha(a)$ is Anosov. \square

Aim 3.9. To show h is C^{∞} .

Idea Try to apply the philosophy of Journé lemma (see here).

4 June 9 Ajorda's Notes

Proposition 3.10 (A regularity result)

Let $u \in L^1(\mathbb{T}^d)$ and $\mathcal{W}^1, \dots, \mathcal{W}^k$ be strongly absolutely continuous foliations with C^{∞} leaves such that $T\mathcal{W}_1 \oplus \dots \oplus T\mathcal{W}_k = T\mathbb{T}^d$. If for every $\varepsilon > 0$ small enough,

$$|\langle D_{\mathcal{W}^i}^{\beta}u,\varphi\rangle| \leq C(\alpha,\varepsilon) \|\varphi\|_{\varepsilon}, \quad \forall i, \forall \varphi \in C^{\infty}(\mathbb{T}^d),$$

where $\|\cdot\|_{\varepsilon}$ is the ε -Hölder norm $\|\varphi\|_{\varepsilon}\coloneqq \sup \frac{|\varphi(x)-\varphi(y)|}{d(x,y)^{\varepsilon}}+\|\varphi\|_{\infty}$. Then u is C^{∞} .

Aim 3.11. To estimate
$$|\langle D_{\mathcal{W}^i}^{\alpha}(h-\mathrm{Id}), \varphi \rangle|$$
.

We need a dynamical view to show this fact. More precisely, α -action is exponentially mixing with respect to $h_*(\mathrm{Leb}_{\mathbb{T}^d})$.

§4 June 9

Recall the last lecture:

- 1. We can define Weyl chamber picture for linear action α_0 .
- 2. Use Weyl chamber picture of α_0 , we can define "many" Anosov elements of α .
- 3. Under the "many Anosov" assumption, we can show that $\alpha_0(m,n)$ is Anosov iff $\alpha(m,n)$ is Anosov. See Proposition 4.3.

For our proof, we assume acting manifold is standard torus \mathbb{T}^d . In FKS's original proof, a priori α can act on exotic \mathbb{T}^d , but they show that this case cannot happen because of the following two facts.

Fact 4.1. Exotic \mathbb{T}^d (d > 4) is finitely covered by standard \mathbb{T}^d .

Fact 4.2. d = 3, 4, by a measurable normal form theorem.

Proposition 4.3

Let M be a C^{∞} closed manifold and $f_1, f_2 \in \mathrm{Diff}^2(M)$. Let \mathcal{F}_i (i=1,2) be an f_i -invariant topological foliation with C^2 -leaves. If there exists a bi-Hölder homeomorphism h such that $hf_1h^{-1}=f_2$, and $f_1|_{\mathcal{F}_1}$ is expanding, then $f_2|_{\mathcal{F}_2}$ is expanding.

Remark 4.4 — (f_1, M) is uniformly hyperbolic does **not** imply (f_2, M) is uniformly hyperbolic. There exists an example that (f_1, M) is Anosov but not (f_2, M) .

Now, we back to our aim 3.11, where the pair $\langle \, \cdot \, , \, \cdot \, \rangle$ means integral with respect to a smooth volume. Let $h \circ \alpha_0 \circ h^{-1} = \alpha$, we want to show h is C^{∞} . Let $\mu = h_*(\mathrm{Leb}_{\mathbb{T}_d})$, then α preserves μ .

Proposition 4.5 (Journé Lemma)

Let $\mathcal{F}_1, \mathcal{F}_2$ be two topological leaves with uniformly C^r -leaves of M such that $T\mathcal{F}_1 \oplus T\mathcal{F}_2 = TM$. Let $1 \leqslant s \leqslant r$ and $h: M \to \mathbb{R}$ be a function which is uniformly C^s along \mathcal{F}_i . Then h is a C^{s-} function. Moreover, if s is not an integer or $s=\infty$, then h is C^s .

5 June 22 Ajorda's Notes

Proposition 4.6

 μ is a smooth measure on \mathbb{T}^d .

Proof. Let $J_f x$ be the Jacobian of f at x. Because h is Hölder, then $\log J_{\alpha(a)}h(x)$ is a Hölder cocycle over α_0 . By Katok-Spatzier's rigidity theorem, a higher rank Hölder cocycle is homologous to a constant. That is, there exists $c: \mathbb{Z}^2 \to \mathbb{R}$ linear such that

$$\log J_{\alpha(a)}h(x) = c(a) + \Phi(\alpha_0(a)x) - \Phi(x).$$

Then $\log J_{\alpha(a)}x=c(a)+\Psi(\alpha(a)x)-\Psi(x)$. Hence the normalized measure of $e^{-\Psi} Leb$ is α -invariant. Denote this measure by μ' , take an Anosov element a, then μ' is the unique SRB measure of $\alpha(a)$. Again by the rigidity of cocycle, we know that the equilibrium state of $\log J^u$ coincides with the equilibrium state of constants which is the measure of maximal entropy. Then the SRB measure μ' is also MME, hence $\mu'=\mu$. Besides, μ is a invariant measure of an smooth Anosov diffeomorphism and absolutely continuous, hence the density of μ is C^{∞} .

Proposition 4.7 (Exponential mixing)

 α with respect to μ has exponential decay of matrix coefficients. More precisely, for every γ -Hölder functions φ_1, φ_2 , we have

$$\begin{split} & \left| \langle \alpha(m,n)\varphi_{1},\varphi_{2}\rangle - \int \varphi_{1}\mathrm{d}\mu \int \varphi_{2}\mathrm{d}\mu \right| \\ & \leqslant C(\alpha,\gamma)e^{-C(\alpha,\gamma)(m+n)}(\left\|\varphi_{1}\right\|_{\gamma}\left\|\varphi_{2}\right\|_{2} + \left\|\varphi_{1}\right\|_{2}\left\|\varphi_{2}\right\|_{\gamma}). \end{split}$$

§5 June 22

Recall the last lecture. We give some comments to the proof of proposition 4.6.

In the case of rank-one, recall the Livsic theorem. Let $X \to X$ be a Anosov diffeomorphism and $\varphi: X \to \mathbb{C}$ be a Hölder continuous function. We want to know when there exists $\psi: X \to \mathbb{C}$ such that

$$\varphi(x) = \psi(f(x)) - \psi(x) + c.$$

The Livsic theorem says that, such ψ exists if and only if for every k-periodic point p,

$$\frac{1}{k} \sum_{l=1}^{k} \varphi(f^l(p)) = c.$$

In summary, if we want to show φ is cohomologous to a constant, it suffices to check it at all periodic points.

But on a higher rank case, Katok-Spatzier shows that any Hölder continuous cocycle is cohomologous to a constant if the original action is "higher rank" with a uniform hyperbolicity.

If we want to upgrade the regularity of solution ψ , the result was demonstrated by Livsic in 1970s. Later, Amie Wilkinson showed a similar result for a partially hyperbolic case in 2010s.

Now back to our goal: to proof proposition 4.7. For a torus case, the result can be shown by Fourier analysis on torus. For a more general case on nil-manifolds, it was shown in *Exponential Mixing of Nilmanifold Automorphisms* by Gorodnik-Spatzier in 2015.

5 June 22 Ajorda's Notes

Idea To use trigonometric polynomials to approximate general Hölder functions.

Firstly, we consider the case of both φ_1, φ_2 are trigonometric polynomials. We can show that for (m,n) sufficiently large, we have

$$\int \alpha_0(m,n)\varphi_1 \cdot \varphi_2 dLeb = \int \varphi_1 dLeb \int \varphi_2 dLeb.$$

Lemma 5.1

For α_0 , there exists $r_0 > 1$ such that: for every $1 < r < r_0$ and $\forall l$ large enough, consider the cube

$$H_l := \left\{ z \in \mathbb{Z}^d : ||z||_{\infty} \leqslant r^l \right\}$$

and $a \in \mathbb{Z}^2$ such that ||a|| > l. We have $\tau(a)H_l \cap H_l = \{0\}$, where $\tau(a)$ is the induced action of $\alpha_0(a)$ on $\pi_1(\mathbb{T}^d)$.

Then we will approximate the Hölder functions by applying Fejér kernel

$$K_l(t) = \sum_{i=-l}^{l} \left(1 - \frac{|j|}{l+1}\right) e^{2\pi i j t}$$

on \mathbb{T}^1 , and

$$F_l(t_1, \cdots, t_d) = K_l(t_1) \cdots K_l(t_d)$$

on \mathbb{T}^d . For a θ -Hölder function φ on \mathbb{T}^d , we have an estimate of the convergence speed as

$$||F_l * \varphi - \varphi||_{\infty} \leq C(\theta) ||\varphi||_{\theta} m^{-\theta}.$$

Then we can show an exponentially mixing for α_0 for Hölder functions. By the conjugacy is Hölder regular, it also follows that α is exponentially mixing.

Now we begin to show the conjugate is C^∞ . Recall that we assume α and α_0 preserves a common fixed point at $0\in\mathbb{T}^d$ and h is bi-Hölder regular such that $h\circ\alpha\circ h^{-1}=\alpha_0$. Then we can lifts both $\alpha(a),\alpha_0(a),h$ to \mathbb{R}^n , we abbreviate these maps on \mathbb{R}^d to $\widetilde{a},A,\widetilde{h}$, respectively. We can assume that $\widetilde{h}(0)=0$ and it holds

$$\widetilde{h} \circ \widetilde{a} = A \circ \widetilde{h}, \quad \forall a \in \mathbb{Z}^2.$$

Let $\widetilde{h}=\mathrm{Id}+\phi,$ this identity can be written as

$$(\mathrm{Id} + \phi) \circ \widetilde{a} = A \circ (\mathrm{Id} + \phi),$$

or,

$$\phi(x) = A^{-1}(\widetilde{a}(x) - A(x)) + A^{-1}(\phi(\widetilde{a}(x))) = Q(x) + A^{-1}(\phi(\widetilde{a}(x))).$$

For every coarse Lyapunov foliation $\mathcal V$ of α , let V be the corresponding Lyapunov foliation (indeed a linear subspace) of α_0 . Let $\phi_V:\pi_V\circ\phi$, where π_V is the projection of $\mathbb R^d$ to V along an α_0 invariant direction. Then

$$\phi_V(x) = Q_V(x) + A_V^{-1}(\phi_V(\widetilde{a}(x))),$$

where Q_V is a smooth function. All we want is to find a well-chosen $a \in \mathbb{Z}^2$ to upgrade the regularity of ϕ_V .

Idea To show that the derivative of ϕ_V along each \mathcal{V}' is a distribution of Hölder functions.

5 June 22 Ajorda's Notes

A priori, we don't know ϕ_V is differentiable. Hence we consider it in \mathcal{D} , the space of distributions of smooth functions. Then the generalized derivative of ϕ_V is meaningful. And we will do some estimate to show that each derivative is indeed a distribution of Hölder functions.

A key method is write ϕ_V as a summation of series. By the former identity, we have

$$\phi_V(x) = \sum_{m=0}^{N-1} A_V^{-m}(\phi_V(\widetilde{a}^m(x))) + A_V^{-N}(\phi_V(\widetilde{a}^N(x))).$$

We can choose a such that A_V expands slowly, then $\left\|A_V^{-N}\right\|$ grows at most polynomial in N. Hence by the exponentially mixing,

$$\langle A_V^{-N}(\phi_V(\widetilde{a}^N(x))), f \rangle \to 0$$

for every Hölder function f with zero mean. Then

$$\phi_V = \sum_{m=0}^{\infty} A_V^{-m}(\phi_V(\widetilde{a}^m(x)))$$

in \mathcal{D}_0 , the space of distributions on Hölder functions. In particular, the convergence is in \mathcal{D} .

Remark 5.2 — Something subtle here is that, although the series is convergence in \mathcal{D}_0 , but we cannot do a derivative on \mathcal{D}_0 . Hence we need to consider these series in \mathcal{D} , do the derivatives and estimate it.

For another coarse Lyapunov foliation \mathcal{V}' , let $(\phi_V)^{k,\mathcal{V}'}$ be the k-th generalized derivative of ϕ_V along \mathcal{V}' . For a smooth test function f, by the exponentially mixing, we can bound

$$\left\langle (A_V^{-m}(\phi_V(\widetilde{a}^m)))^{k,\mathcal{V}'}, f \right\rangle = \left\langle A_V^{-m}(\phi_V(\widetilde{a}^m)), f^{k,\mathcal{V}'} \right\rangle$$

by some $Cr^{-m} \|f\|_{\theta}$, where r>1. In which we can always choose some a well to help us do the estimation. (In practice, we need to approximate a Hölder function by smooth functions. This need a little more delicate estimate.)

Remark 5.3 — Our notations is a little bit different with the original paper, in which ϕ and h are exchanged.

At the end, by the regularity result (proposition 3.10), the conclusion follows.