13.	– (– ;	x) is same as						
	(a)	- x	(b)	X	(c)	$\frac{1}{x}$	(d)	$\frac{-1}{x}$
14.	The multiplicative inverse of $-1\frac{1}{7}$ is							
	(a)	$\frac{8}{7}$	(b)	$\frac{-8}{7}$	(c)	$\frac{7}{8}$	(d)	7 -8
15.	If x be any rational number then $x + 0$ is equal to							
	(a)	X	(b)	0	(c)	- x	(d)	Not defined
16.	The	reciprocal of	1 is					
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
17 .	The reciprocal of -1 is							
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
18.	The reciprocal of 0 is							
	(a)	1	(b)	-1	(c)	0	(d)	Not defined
19.	The	reciprocal of	any	rational num	ber	$rac{p}{q}$, where p a	ndq	are integers

and $q \neq 0$, is

(a)

(b) 1

(c) 0

102. Using suitable rearrangement and find the sum:

(a)
$$\frac{4}{7} + \left(\frac{-4}{9}\right) + \frac{3}{7} + \left(\frac{-13}{9}\right)$$

(b)
$$-5 + \frac{7}{10} + \frac{3}{7} + (-3) + \frac{5}{14} + \frac{-4}{5}$$

- **17.** The solution of the equation 3x 4 = 1 2x is _____.
- **18.** The solution of the equation $2y = 5y \frac{18}{5}$ is _____.
- **19.** Any value of the variable which makes both sides of an equation equal is known as a _____ of the equation.
- **20.** $9x \underline{\hspace{1cm}} = -21$ has the solution (-2)
- **21.** Three consecutive numbers whose sum is 12 are _____, ____ and _____.
- **22.** The share of A when Rs 25 are divided between A and B so that A gets Rs. 8 more than B is _____.
- **23.** A term of an equation can be transposed to the other side by changing its _____.
- **24.** On subtracting 8 from x, the result is 2. The value of x is ______.
- **25.** $\frac{x}{5} + 30 = 18$ has the solution as _____.

27.
$$\left(\frac{1}{10}\right)^0$$
 is equal to

(a) 0

(b) $\frac{1}{10}$

(c) 1

(d) 10

28.
$$\left(\frac{3}{4}\right)^5 \div \left(\frac{5}{3}\right)^5$$
 is equal to

- (a) $\left(\frac{3}{4} \div \frac{5}{3}\right)^5$ (b) $\left(\frac{3}{4} \div \frac{5}{3}\right)^1$ (c) $\left(\frac{3}{4} \div \frac{5}{3}\right)^0$ (d) $\left(\frac{3}{4} \div \frac{5}{3}\right)^{10}$
- **29.** For any two non-zero rational numbers x and y, $x^4 \div y^4$ is equal to
 - (a) $(x \div y)^0$

- (b) $(x \div y)^1$ (c) $(x \div y)^4$
- (d) $(x \div y)^8$
- **30.** For a non-zero rational number p, $p^{13}
 div p^8$ is equal to
 - (a) p^5

(b) p^{21}

(c) p^{-5}

- (d) p^{-19}
- **31.** For a non-zero rational number z, $(z^{-2})^3$ is equal to
 - (a) z^6

(b) z^{-6}

 $(c)z^1$

(d) z^4

- **32.** Cube of $-\frac{1}{2}$ is
 - (a) $\frac{1}{8}$