Content

- Ranked retrieval
- Scoring documents
- Term frequency (in each document)
- Collection statistics
- tf-idf
- Weighting schemes
- Vector space scoring

Boolean retrieval

- Thus far, our queries have all been Boolean:
 - documents either match or don't
- Good for expert users with precise understanding of their needs and the collection
- Also good for applications: applications can easily consume 1000s of results
- Not good for the majority of users
 - Most users incapable of writing Boolean queries (or they are, but they think it's too much work)
 - Most users don't want to wade through 1000s of results
 - This is particularly true of web search.

Problem with Boolean search: feast or famine

- Boolean queries often result in **either too few** (=0) **or too many** (1000s) **results**
- Query 1: "standard user dlink 650" → 200,000 hits
- Query 2: "standard user dlink 650 no card found": 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits
- AND gives too few; OR gives too many.

Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in ranked retrieval models, the system returns an ordering over the (top) documents in the collection with respect to a query
- Free text queries: Rather than a query language of operators and expressions, the user's query is just one or more words in a human language
- □ In principle, there are two separate choices here
 - the query language and the retrieval model
 - but in practice, ranked retrieval models have normally been associated with free text queries.

Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top k (\approx 10) results
 - We don't overwhelm the user
 - Premise: the ranking algorithm works

Do you really agree with that?

Scoring as the basis of ranked retrieval

- We wish to return in **order** the documents most likely to be useful to the searcher
- How can we rank-order the documents in the collection with respect to a query?
- □ Assign a score say in [0, 1] to each document
- This score measures how well document and query "match".

Query-document matching scores

- We need a way of assigning a score to a query/ document pair
- Let's start with a one-term query
- If the query term does not occur in the document:
 - The score should be 0
 - Why? Can we do better?
- The more frequent the query term in the document, the higher the score (should be)
- □ We will look at a number of alternatives for this.

Take 1: Jaccard coefficient

- A commonly used measure of overlap of two sets A and B
- \square jaccard $(A,B) = |A \cap B| / |A \cup B|$
- \Box jaccard(A,A) = 1
- \square jaccard(A,B)=0 if $A\cap B=0$

- Always assigns a number between 0 and 1
- We saw that in the context of k-gram overlap between two words.

Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
- Query: ides of march
- Document 1: caesar died in march
- Document 2: the long march
- \square jaccard $(Q,D) = |Q \cap D| / |Q \cup D|$
- □ jaccard(Query, Document1) = 1/6
- □ jaccard(Query, Document2) = 1/5

Issues with Jaccard for scoring

- Match score decreases as document length grows
- We need a more sophisticated way of normalizing for length
- lacksquare Later in this lecture, we'll use $|A \cap B|/\sqrt{|A \cup B|}$
 - . . . instead of $|A \cap B|/|A \cup B|$ (Jaccard) for length normalization.
- 1) It doesn't consider *term frequency* (how many times a term occurs in a document)
 - For J.C. documents are set of words not bag of words
- 2) Rare terms in a collection are more informative than frequent terms - Jaccard doesn't consider this information.

Recall (Part 2): Binary term-document incidence matrix

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	1	1	0	0	0	1
Brutus	1	1	0	1	0	0
Caesar	1	1	0	1	1	1
Calpurnia	0	1	0	0	0	0
Cleopatra	1	0	0	0	0	0
mercy	1	0	1	1	1	1
worser	1	0	1	1	1	0

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$.

Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a count vector in N^v: a column below

	Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
Antony	157	73	0	0	0	1
Brutus	4	157	0	1	0	0
Caesar	232	227	0	2	1	1
Calpurnia	0	10	0	0	0	0
Cleopatra	57	0	0	0	0	0
mercy	2	0	3	5	5	1
worser	2	0	1	1	1	0

Bag of words model

- Vector representation doesn't consider the ordering of words in a document
- "John is quicker than Mary" and "Mary is quicker than John" have the same vectors
- This is called the <u>bag of words</u> model
- In a sense, this is a step back: the positional index was able to distinguish these two documents
- We will look at "recovering" positional information later in this course
- For now: bag of words model.

Term frequency tf

- The term frequency tf_{t,d} of term t in document d is defined as the number of times that t occurs in d
- We want to use tf when computing querydocument match scores - but how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term
 - But not 10 times more relevant
- Relevance does not increase proportionally with term frequency.
 frequency in IR = count

Fechner's Project

 Gustav Fechner (1801 - 1887) was obsessed with the relation of mind and matter

- Variations of a physical quantity (e.g. energy of light) cause variations in the intensity or quality of the subjective experience
- Fechner proposed that for many dimensions the function is **logarithmic**
 - An increase of stimulus intensity by a given factor (say 10 times) always yields the same increment on the psychological scale
- □ If raising the frequency of a term from 10 to 100 increases relevance by 1 then raising the frequency from 100 to 1000 also increases relevance by 1.

Log-frequency weighting

□ The log frequency weight of term *t* in *d* is

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- $0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, etc.$
- Score for a document-query pair: sum over terms t in both q and d:

$$score(d,q) = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

- The score is 0 if none of the query terms is present in the document
- If q' ⊆ q then score(d,q') <= score(d,q) is this a problem?</p>

Normal vs. Sublinear tf scaling

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\ 0, & \text{otherwise} \end{cases}$$

- The above formula defined the sublinear tfscaling
- The simplest approach (normal) is to use the number of occurrences of the term in the document (frequency)
- But as discussed earlier sublinear tf should be better.

Properties of the Logarithms

- \Box y = $\log_a x$ iff x = a^y
- $\log_a 1 = 0$
- $log_a a = 1$
- $\square \log_a (xy) = \log_a x + \log_a y$
- $\square \log_a (x/y) = \log_a x \log_a y$
- $\Box \log_a(x^b) = b \log_a x$
- $\square \log_b x = \log_a x / \log_a b$
- \square log x is typically $\log_{10} x$
- □ $\ln x$ is typically $\log_e x$ (e = 2.7182... Napier or Euler number) Natural logarithm.

Document frequency

- Rare terms in the whole collection are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the (information need originating the) query arachnocentric
- → We want a high weight for rare terms like arachnocentric.

Document frequency, cont'd

- Generally frequent terms are less informative than rare terms
- Consider a query term that is frequent in the collection (e.g., high, increase, line)
- A document containing such a term is more likely to be relevant than a document that doesn't
- But consider a query containing two terms e.g.: high arachnocentric
- For a **frequent** term in a document, s.a., high, we want a positive weight but **lower** than for terms that are **rare** in the collection, s.a., arachnocentric
- We will use **document frequency** (df) to capture this.

idf weight

- df_t is the <u>document</u> frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t (the smaller the better)
 - $df_t \leq N$
- We define the idf (inverse document frequency) of *t* by

$$idf_t = log(N/df_t)$$

Is a function of tooly – does not depend on the document

• We use $log(N/df_t)$ instead of N/df_t to "dampen" the effect of idf.

idf example, suppose N = 1 million

term	df_t	idf_t
calpurnia	1	6
animal	100	4
sunday	1,000	3
fly	10,000	2
under	100,000	1
the	1,000,000	0

$$idf_t = log(N/df_t)$$

There is one idf value for each term *t* in a collection.

Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences in the same document
- Example:

Word	Collection frequency	Document frequency
insurance	10440	3997
try	10422	8760

Which word is (in general) a better search term (and should get a higher weight in a query like "try insurance")?

tf-idf weighting

The tf-idf weight of a term is the product of its tf weight and its idf weight:

$$\mathbf{w}_{t,d} = (1 + \log t \mathbf{f}_{t,d}) \times \log(N/d\mathbf{f}_t)$$

- Best known weighting scheme in information retrieval
 - Note: the "-" in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf
- 1. Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection.

Final ranking of documents for a query

Score(
$$d,q$$
) = $\sum_{t \in q \cap d} tf_{t,d} \times idf_t$

We will see some other options for computing the score ...

Effect of idf on ranking

- Can idf have an effect on ranking for one-term queries? E.g. like:
 - iPhone
- idf has no effect on ranking one term queries since there is one idf value for each term in a collection
 - idf affects the ranking of documents for queries with at least two terms
 - For the query capricious person, idf weighting makes occurrences of capricious count for much more in the final document ranking than occurrences of person.

Binary → **count** → **weight matrix**

		Antony and Cleopatra	Julius Caesar	The Tempest	Hamlet	Othello	Macbeth
S	Antony	5.25	3.18	0	0	0	0.35
\Box	Brutus	1.21	6.1	0	1	0	0
Sio	Caesar	8.59	2.54	0	1.51	0.25	0
en	Calpurnia	0	1.54	0	0	0	0
Ä	Cleopatra	2.85	0	0	0	0	0
ا ا	mercy	1.51	0	1.9	0.12	5.25	0.88
	worser	1.37	0	0.11	4.15	0.25	1.95

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$

Documents as vectors

- So we have a |V|-dimensional vector space
 - Terms are axes of the space
 - Documents are points or vectors in this space
- Very high-dimensional:
 - 400,000 in RCV1
 - tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors most entries are zero.

Queries as vectors

- Key idea 1: Do the same for queries: represent them as vectors in the space
- Key idea 2: Rank documents according to their proximity to the query in this space
- proximity = similarity of vectors
- □ proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you're-either-in-or-out Boolean model
- Instead: rank more relevant documents higher than less relevant documents.

Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.

Why distance is a bad idea

The Euclidean distance between q and d_2 is large even though the distribution of terms in the query q and the distribution of terms in the document d_2 are very similar.

Use angle instead of distance

- Thought experiment: take a document d and append it to itself
- □ Call this document d'
- "Semantically" d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- If the tf_{t,d} representation is used then the angle between the two documents is 0, corresponding to maximal similarity
- Key idea: Rank documents according to angle with query.

From angles to cosines

- The following two notions are equivalent:
 - Rank documents in <u>increasing</u> order of the angle between query and document
 - Rank documents in <u>decreasing</u> order of cosine(query,document)
- Cosine is a monotonically decreasing function for the interval [0°, 180°]

From angles to cosines

■ But how – *and why* – should we be computing cosines?

Length normalization

A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L₂ norm:

$$\left\| \vec{x} \right\|_2 = \left| \vec{x} \right| = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L₂ norm makes it a unit (length) vector (on surface of unit hypersphere)
- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization
 - Long and short documents now have comparable weights.

cosine(query,document)

$$\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}||\vec{d}|} = \frac{\vec{q}}{|\vec{q}|} \cdot \frac{\vec{d}}{|\vec{d}|} = \frac{\sum_{i=1}^{|V|} q_i d_i}{\sqrt{\sum_{i=1}^{|V|} q_i^2} \sqrt{\sum_{i=1}^{|V|} d_i^2}}$$

 q_i is the tf-idf weight of term i in the query d_i is the tf-idf weight of term i in the document

 $\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d} .

Cosine for length-normalized vectors

For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

$$\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{|V|} q_i d_i$$

for q, d length-normalized.

Cosine similarity illustrated

Cosine similarity amongst 3 documents

How similar are the novels

SaS: Sense and

Sensibility

PaP: Pride and

Prejudice, and

WH: Wuthering

Heights?

term	SaS	PaP	WH
affection	115	58	20
jealous	10	7	11
gossip	2	0	6
wuthering	0	0	38

Term frequencies (counts)

Note: To simplify this example, we don't do idf weighting.

3 documents example contd.

term	SaS	PaP	WH
affection	3.06	2.76	2.30
jealous	2.00	1.85	2.04
gossip	1.30	0	1.78
wuthering	0	0	2.58

term	SaS	PaP	WH
affection	0.789	0.832	0.524
jealous	0.515	0.555	0.465
gossip	0.335	0	0.405
wuthering	0	0	0.588

 $cos(SaS,PaP) \approx$

 $0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0$

 ≈ 0.94

 $cos(SaS,WH) \approx 0.79$

 $cos(PaP,WH) \approx 0.69$

Computing cosine scores

of documents CosineScore(q)This array contains float Scores[N] = 0the vector lengths of float Length[N] all the documents 3 **for each** query term t **do** calculate $w_{t,q}$ and fetch postings list for t **for each** pair(d, tf_{t,d}) in postings list **do** $Scores[d] + = w_{t,d} \times w_{t,q}$ Read the array Length It is not computing the cosine because the score is not divided for each dby the query vector length **do** $Scores[d] = Scores[d]/Length[\overline{d}]$ **return** Top K components of Scores[] 10

Observations

- The inverted index used for Boolean queries is still important for retrieving top scoring documents
- It is not feasible to scan all the documents to compute the top K documents (more similar) for a given input query
- Queries are "normally" short documents

Request Entity Too Large

Your client issued a request that was too large.

Try with a long query!

tf-idf weighting has many variants

Term f	Term frequency		ent frequency	Normalization		
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1	
	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}$	
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log\frac{\mathit{N}-\mathrm{d}\mathrm{f}_t}{\mathrm{d}\mathrm{f}_t}\}$	u (pivoted unique)	1/u	
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}, \ lpha < 1$	
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$					

of chars in the document

Columns headed 'n' are acronyms for weight schemes.

Why is the base of the log in idf immaterial?

Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation ddd.qqq, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (I as first character), no idf, and cosine normalization
 A bad idea?
- Query: logarithmic tf (I in leftmost column), idf (t in second column), cosine normalization ...

tf-idf example: Inc.ltc

ddd.qqq

Document: car insurance auto insurance

Query: best car insurance

Term	Query						Document				Prod
	tf- raw	tf-wt	df	idf	wt	n'lize	tf-raw	tf-wt	wt	n'lize	
auto	0	0	5000	2.3	0	0	1	1	1	0.52	0
best	1	1	50000	1.3	1.3	0.34	0	0	0	0	0
car	1	1	10000	2.0	2.0	0.52	1	1	1	0.52	0.27
insurance	1	1	1000	3.0	3.0	0.78	2	1.3	1.3	0.68	0.53

Exercise: what is the value of *N*, i.e., the number of docs?

Doc length =
$$\sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92$$

Score =
$$0+0+0.27+0.53 = 0.8$$

Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., K = 10) to the user.