Сравнения по модулю

- **Задача 1.** Докажите, что $a^n + b^n$ делится на a + b при любом нечётном натуральном n.
- **Задача 2.** а) Пусть p простое число и a не делится на p. Докажите, что числа $0, a, 2a, \ldots (p-1)a$ попарно не сравнимы. Переформулируйте этот результат на языке остатков.
- б) Докажите малую теорему Ферма: $a^{p-1} \equiv_p 1.(Указание: попробуйте как$ $то из предыдущего пункта получить выражение, содержащее <math>a^{(p-1)}$, ну и вспомнить тему занятия.)
- **Задача 3.** Пусть p простое число и a не делится на p. Докажите, что существует b, что $ab \equiv_p 1$.
- **Задача 4.** а) Пусть p простое число. Докажите, что $(a+b)^p \equiv_p a^p + b^p$. б) Докажите малую теорему Ферма: $a^p \equiv_p a$. (Указание: доказывайте по индукции, используйте предыдущий пункт при b=1)
- **Задача 5.** Докажите, что $1^n + 2^n + \ldots + (n-1)^n$ делится на n при любом нечётном n.
- **Задача 6.** Докажите, что $3^{100} 2^{100}$ делится на $3^{10} + 2^{10}$.
- **Задача 7.** Назовём число n удобным, если n^2+1 делится на 1000001. Докажите, что среди числе $1,2,\ldots,1000000$ чётное число удобных чисел.
- **Задача 8.** Докажите, что $(3^n+1)^n-2$ делится на 3^n-2 .
- **Задача 9.** а) Пусть p простое число. Докажите, что $(p-1)! \equiv_p -1$.
- б) Докажите, что если $(p-1)! \equiv_p -1$, то p простое число.

Теорема 1 (Теорема Вильсона). Число p является простым тогда и только тогда, когда $(p-1)! \equiv_p -1$.