Module : Analyse 1

Chapitre 1 : Nombres réels et suites

Première Année Du Cycle Universitaire

Réalisé Par : Youssef MIGROUNE

Prof de maths au lycée

Béni Méllal

YouTube / MIGROUNE Math

0708218434

for de Maths au

Instagram / MIGROUNE Math TikTok / MIGROUNE Math Facebook / Migroune Math

- 1 Nombres réels
 - a Borne supérieure et borne inférieure

Définitions

Soit A une partie de \mathbb{R} et $x \in \mathbb{R}$, on dit que :

- 1 x est un majorant de A si, et seulement si, pour tout $a \in A$; $x \ge a$
- 2 x est le plus grand élément de A si, et seulement si, $x \in A$ et pour tout $a \in A$; $x \ge a$
- 3 x est un minorant de A si, et seulement si, pour tout $a \in A$; $x \le a$
- 4 x est le plus petit élément de A si, et seulement si, $x \in A$ et pour tout $a \in A$; $x \le a$
- 5 x est la borne supérieure de A (noté : sup(A)) si, et seulement si, x est le plus petit élément de l'ensemble des majorants de A
- 6 x est la borne inférieure de A (noté : inf(A)) si, et seulement si, x est le plus grand élément de l'ensemble des minorants de A

Remarques:

- sup(A) et inf(A) n'appartiennent pas nécessairement à A
- Si la borne supérieure (resp. inférieure) d'un ensemble existe alors, elle est unique

Caractérisation

$$x = \sup(A) \Leftrightarrow \begin{cases} \forall a \in A; x \geqslant a \\ \left(\forall \epsilon > 0 \right) \left(\exists b \in A \right); x - \epsilon < b \end{cases}$$

$$x = \inf(A) \Leftrightarrow \begin{cases} \forall a \in A; x \leqslant a \\ \left(\forall \epsilon > 0 \right) \left(\exists b \in A \right); b < x + \epsilon \end{cases}$$

Théorème

- 1 Toute partie A de \mathbb{R} , non vide et majorée, admet la borne supérieure
- 2 Toute partie A de \mathbb{R} , non vide et minorée, admet la borne inférieure

Une partie non vide à la fois majorée et minorée est dite bornée

90 Q

Intervalles de $\mathbb R$

ullet I est un intervalle de $\mathbb R$ si, et seulement si :

$$a \in I$$
 et $b \in I$ et $a \le x \le b$ alors $x \in I$

Un intervalle ouvert est de la forme :

$$]a; b[= \{ x \in \mathbb{R} : a < x < b \}]$$

Un intervalle fermé ou segment est de la forme :

$$[a;b] = \{x \in \mathbb{R} \ ; \ a \le x \le b\}$$

- L'intervalle $]x_0 h; x_0 + h[$ où h > 0 est dit intervalle ouvert de centre x_0
- Une partie V de ℝ est un voisinage d'un point x₀ de ℝ si, et seulement s'il existe h > 0 tel que :]x₀ h; x₀ + h[⊂ V c-à-d qu'il contient un intervalle ouvert de centre x₀

Définition : R est archimédien

$$\left(\forall x \in \mathbb{R}_+^*\right) \left(\forall y \in \mathbb{R}\right) \left(\exists n \in \mathbb{N}\right); \ nx > y$$

Conséquence :
$$(\forall \epsilon > 0) \ (\exists n \in \mathbb{N}^*); \frac{1}{n} < \epsilon$$

Fonction partie entière

Définition

Soit x un nombre réel

La partie entière de x est le plus grand entier relatif k qui est inférieur où égal à x. On la note : E(x) ou [x]

Soit $x \in \mathbb{R}$ et $k \in \mathbb{Z}$

$$E(x) = k \Leftrightarrow k \leqslant x < k+1$$

Proposition + Démonstration

- Pour tout $x \in \mathbb{R}$: $E(x) \le x < E(x) + 1$ et $x 1 < E(x) \le x$
- Pour tout $x \in \mathbb{R}$: $E(x) = x \Leftrightarrow x \in \mathbb{Z}$
- Pour tout $x \in \mathbb{R}$ et pour tout $n \in \mathbb{Z}$: E(x+n) = E(x) + n

- 2 Suites de nombres réels (numérique)
- a Définitions + Suite extraite

Définitions

On appelle suite numérique toute fonction U de \mathbb{N} (ou une partie I de \mathbb{N}) à valeurs dans \mathbb{R} .

L'image d'un entier n de \mathbb{N} (ou de I) par la suite U est notée U_n Le nombre U_n s'appelle le terme général de la suite U; c'est aussi le terme de rang n de la suite U

Suite extraite

On appelle suite extraite (ou sous suite) de (U_n) toute suite (V_n) définie par $V_n = U_{\varphi(n)}$ où φ est une application strictement croissante de $\mathbb N$ dans $\mathbb N$. Avec $\varphi(0) < \varphi(1) < ... < \varphi(n) < ...$

b

Suite majorée - suite minorée - suite bornée

Soit n_0 un entier naturel. On pose $I = \{n \in \mathbb{N}/n \ge n_0\}$ et on considère la suite numérique $(U_n)_{n \ge n_0}$

Définitions : Suite majorée - suite minorée - suite bornée

- On dit que la suite (U_n)_{n≥n0} est majorée s'il existe un réel M tel que : (∀n ∈ I); U_n ≤ M
- On dit que la suite (U_n)_{n≥n0} est minorée s'il existe un réel m tel que : (∀n ∈ I); m ≤ U_n
- On dit que la suite (U_n)_{n≥n0} est bornée si elle est à la fois majorée et minorée

Monotonie d'une suite numérique

Soit n_0 un entier naturel. On pose $I = \{n \in \mathbb{N}/n \ge n_0\}$ et on considère la suite numérique $(U_n)_{n \ge n_0}$

Définition

- On dit que la suite $(U_n)_{n \geqslant n_0}$ est croissante si : $(\forall (n,m) \in I^2)$; $(m > n \Rightarrow U_m \geqslant U_n)$
- On dit que la suite $(U_n)_{n \ge n_0}$ est décroissante si : $\Big(\forall (n,m) \in I^2\Big)$; $\Big(m > n \Rightarrow U_m \leqslant U_n\Big)$

Remarques:

- 1 Si la suite $(U_n)_{n \ge n_0}$ est croissante alors : $(\forall n \in I)$; $U_n \ge U_{n_0}$
- 2 Si la suite $(U_n)_{n \ge n_0}$ est décroissante alors : $(\forall n \in I)$; $U_n \le U_{n_0}$
- 3 On définit de même une suite strictement croissante et strictement décroissante. Il suffit de remplacer dans la définition précédente, les symboles : ≤ et ≥ par les symboles : < et >

Proposition

- 1 La suite $(U_n)_{n \ge n_0}$ est croissante si,et seulement si : $(\forall n \in I)$; $U_{n+1} U_n \ge 0$
- 2 La suite $(U_n)_{n \ge n_0}$ est strictement croissante si,et seulement si : $(\forall n \in I)$; $U_{n+1} U_n > 0$
- 3 La suite $(U_n)_{n \ge n_0}$ est décroissante si, et seulement si : $(\forall n \in I)$; $U_{n+1} U_n \le 0$
- 4 La suite $(U_n)_{n \ge n_0}$ est strictement décroissante si,et seulement si : $(\forall n \in I)$; $U_{n+1} U_n < 0$
- 5 La suite $(U_n)_{n \ge n_0}$ est constante si, et seulement si : $(\forall n \in I)$; $U_{n+1} = U_n$
- 6 La suite $(U_n)_{n \ge n_0}$ est monotone si, et seulement si, elle est croissante ou décroissante

Convergence d'une suite numérique

Définition

Une suite (U_n) est dite convergente si, et seulement s'il existe $\ell \in \mathbb{R}$ tel que :

$$(\forall \epsilon > 0) (\exists N \in \mathbb{N}); (\forall n \geq N \Rightarrow |U_n - \ell| < \epsilon)$$

On dit alors que ℓ est la limite de (U_n) , $\ell = \lim_{n \to +\infty} U_n$

Remarque (U_n) est convergente de limite ℓ si, et seulement si tout intervalle ouvert $\mathbf{I}_{\epsilon} =]\ell - \epsilon; \ell + \epsilon[$ contient tous les termes de la suite (U_n) à partir d'un certain rang N

Proposition + Démonstration

Si la suite (U_n) est convergente, alors sa limite est unique

Proposition

Si la suite (U_n) est convergente , alors toute suite extraite de (U_n) est convergente et a la même la limite que (U_n)

Remarque : Une suite divergente peut admettre une suite extraite convergente

La suite (U_n) définie par $U_n = (-1)^n$ est divergente, ses deux suites extraites U_{2n} et U_{2n+1} sont convergentes

Proposition + Démonstration

Toute suite convergente est bornée

Remarque : Une suite bornée n'est pas toujours convergente

Exemple: $U_n = (-1)^n$

Théorème + Démonstration

Toute suite (réelle) monotone croissante (resp. décroissante) et majorée (resp. minorée) est convergente

Proposition + Démonstration

Soient (U_n) et (V_n) deux suites convergentes, alors :

$$\lim_{n\to+\infty} \left(U_n+V_n\right) = \lim_{n\to+\infty} \left(U_n\right) + \lim_{n\to+\infty} \left(V_n\right)$$

$$\lim_{n\to+\infty} \left(\lambda U_n\right) = \lambda \cdot \lim_{n\to+\infty} \left(U_n\right); \ \forall \lambda \in \mathbb{R}$$

$$\lim_{n\to+\infty} \left(U_n V_n\right) = \lim_{n\to+\infty} \left(U_n\right) \cdot \lim_{n\to+\infty} \left(V_n\right)$$

4 Si
$$\lim_{n \to +\infty} U_n \neq 0$$
 alors $\lim_{n \to +\infty} \left(\frac{1}{U_n}\right) = \frac{1}{\lim_{n \to +\infty} U_n}$

5 Si
$$U_n \le V_n$$
 pour tout $n \ge n_0$, alors $\lim_{n \to +\infty} \left(U_n \right) \le \lim_{n \to +\infty} \left(V_n \right)$

6 Si (U_n) et (V_n) convergent vers la limite ℓ et si on a $U_n \leq W_n \leq V_n$ pour tout $n \ge n_0$, alors la suite (W_n) est convergente vers ℓ

Suites divergentes

- Une suite (U_n) est dite divergente si elle n'est pas convergente
- (U_n) divergente \Leftrightarrow $(\forall \ell \in \mathbb{R})$ $(\exists \epsilon > 0)$ $(\forall N \in \mathbb{N})$ $(\exists n > p)$; $|U_n \ell| \geqslant \epsilon$
- (U_n) est diverge vers $+\infty$ $\left(\lim_{n\to +\infty} U_n = +\infty\right)$ si, et seulement si : $\left(\forall A>0\right)\left(\exists N\in\mathbb{N}\right); \left(\forall n\geqslant N\Rightarrow U_n>A\right)$
- (U_n) est diverge vers $-\infty$ $\left(\lim_{n\to+\infty}U_n=-\infty\right)$ si, et seulement si : $\left(\forall A>0\right)\left(\exists N\in\mathbb{N}\right); \left(\forall n\geqslant N\Rightarrow U_n<-A\right)$

Proposition + Démonstration

- 1 Toute suite croissante non majorée tend vers $+\infty$
- 2 Toute suite décroissante non minorée tend vers $-\infty$

Suites de Cauchy

Définition

On appelle suite de Cauchy toute (U_n) vérifiant le critère de Cauchy suivant :

$$(\forall \epsilon > 0) \ (\exists N \in \mathbb{N}); \ (\forall p \geqslant N \text{ et } \forall q \geqslant N \Rightarrow |U_p - U_q| < \epsilon)$$

Théorème + Démonstration

Une suite réelle (U_n) est convergente si, et seulement si, elle vérifie le critère de Cauchy

Suites adjacentes

Définition

Deux suites (U_n) et (V_n) sont dites adjacentes si, et seulement si :

- (U_n) est croissante
- (V_n) est décroissante
- $\bullet \lim_{n \to +\infty} \left(U_n V_n \right) = 0$

Cette définition implique que : $U_n \leq V_n$ pour tout $n \geq n_0$

Théorème + Démonstration

Deux suites adjacentes sont convergentes et ont la même limite

Soit A un partie non vide de \mathbb{R} Montre que si A admet un plus grand élément M (resp. un plus petit élément m), alors M (resp. m) est la borne supérieure (resp. borne inférieure) de A

Exercice 2

Soit B une partie non vide et bornée de \mathbb{R} Montrer que pour toute partie A no vide telle que $A \subset B$ on a :

$$inf(B) \leq inf(A) \leq sup(A) \leq sup(B)$$

On considère l'ensemble
$$A = \left\{ U_n = \frac{2n-1}{2n+1} / n \in \mathbb{N} \right\}$$

Montrer que A est bornée . Déterminer sa borne supérieure et sa borne inférieure et dire si elles appartiennent à A

Exercice 4

Soient A et B deux parties non vides et bornées de \mathbb{R} . Montrer que :

- $1 \quad sup(A+B) = sup(A) + sup(B)$
- $2 \inf(A+B) = \inf(A) + \inf(B)$
- $3 \quad sup(-A) = -inf(A)$

$$A + B = \{a + b/a \in A \text{ et } b \in B\} \text{ et } -A = \{-x/x \in A\}$$

On désigne par E(x) la partie entière d'un réel x

- 1 Montrer que $\forall (x; y) \in \mathbb{R}^2 : x \leq y \Rightarrow E(x) \leq E(y)$
- 2 Montrer que $\forall (x; y) \in \mathbb{R}^2$: $E(x) + E(y) \leq E(x + y) \leq E(x) + E(y) + 1$
- 3 Montrer que $\forall (x; y) \in \mathbb{R}^2 : E(x) + E(y) + E(x+y) \leq E(2x) + E(2y)$
- 4 a Montrer que si $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$: $nE(x) \leq E(nx) \leq nE(x) + n 1$
 - b En déduire que si $x \in \mathbb{R}$ et $n \in \mathbb{N}^*$: $E\left(\frac{E(nx)}{n}\right) = E(x)$
- Montrer que $\forall (x; y) \in \mathbb{R}^2$: $E(x) - E(y) - 1 \leq E(x - y) \leq E(x) - E(y)$
 - b Démontrer que pour tout $x \notin \mathbb{Z}$: E(-x) = -E(x) 1
- 6 a Démontrer que pour tout $x \in \mathbb{R}$: $E(2x) = E(x) + E\left(x + \frac{1}{2}\right)$
 - b En déduire que pour tout $x \in \mathbb{R}$:

$$\sum_{k=0}^{n} E\left(\frac{x+2^k}{2^{k+1}}\right) = E(x) - E\left(\frac{x}{2^{n+1}}\right)$$

Calculer les limites des suites définies par :

1
$$U_n = \prod_{k=1}^{n-1} \left(1 + \frac{1}{k+1} \right)$$

2
$$V_n = \prod_{k=1}^{n-1} \left(1 - \frac{1}{k+1} \right)$$

3
$$W_n = \sum_{k=1}^{n-1} log \left(1 - \frac{1}{(k+1)^2} \right)$$

Montrer les limites suivantes :

$$\lim_{n \to +\infty} \left(\sqrt{n+1} - \sqrt{n} \right) = 0$$

$$\lim_{n \to +\infty} \frac{\binom{n!}{2}}{\binom{2n}{!}} = 0$$

$$\lim_{n \to +\infty} \frac{\left(n!\right)^2}{\left(n^2\right)!} = 0$$

$$\lim_{n \to +\infty} \left(\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{2n}} + \frac{1}{\sqrt{3n}} + \dots + \frac{1}{\sqrt{n^2}} \right) = 2$$

Étudier la nature des suites définies dans N* par :

1
$$U_n = 1 + \frac{1}{1.2} + \frac{1}{2.2^2} + \dots + \frac{1}{n.2^n}$$

2
$$V_n = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2}$$

On pourra d'abord montrer que : $\frac{1}{n^2} < \frac{1}{n-1} - \frac{1}{n}$ pour $n \ge 2$

Exercice 9

Déterminer la nature et la limite éventuelle des deux suites définies dans $\mathbb N$ par :

a
$$U_n = \left(-1\right) \frac{n(n+1)}{2}$$

b
$$V_n = \sqrt{12 + V_{n-1}}$$
 pour $n \in \mathbb{N}^*$ et $V_0 = 1$

- 1 Montrer que toute suite croissante non majorée (resp. décroissante non minorée) tend vers $+\infty$ (resp. vers $-\infty$)
- 2 On considères les deux suites (U_n) et (V_n) définies par

$$U_n = 1 + \frac{1}{\sqrt{1.2}} + \frac{1}{\sqrt{2.3}} + \dots + \frac{1}{\sqrt{(n-1).n}} \text{ pour } n \ge 2$$

avec
$$U_1=1$$
 et $V_n=1+rac{1}{2}+...+rac{1}{n}$ pour $n\in\mathbb{N}^*$

- a Montrer que $U_n \geqslant V_n$; $\forall n \in \mathbb{N}^*$
- b Montrer que la suite (V_n) est divergente en utilisant la critère de Cauchy
- c En déduire que $\lim_{n\to+\infty}U_n=+\infty$

On considère la suite de terme général : $V_n = U_1 + U_2 + ... + U_n$ où $U_n = \frac{1}{n(n+2)(n+4)}$ pour $n \in \mathbb{N}^*$

1 Montrer qu'il existe trois réels a, b et c tel que :

$$U_n = \frac{a}{n} + \frac{b}{n+2} + \frac{c}{n+4}$$

2 Calculer V_n en fonction de n. En déduire sa limite

Exercice 12

On considère la suite (U_n) définie par : $U_0=1$ et $U_{n+1}=1+\frac{6}{U_n}$ pour $n\in\mathbb{N}$

- 1 Montrer que :
 - a Si $U_n > 3$ alors $U_{n+2} > 3$ et si $U_n < 3$ alors $U_{n+2} < 3$
 - b Si $U_n > 3$ alors $U_{n+2} < U_n$ et si $U_n < 3$ alors $U_{n+2} > U_n$
- 2 En étudiant les deux suites extraites (U_{2p}) et (U_{2p+1}) montrer que la suite (U_n) est convergente vers la limite commune à (U_{2p}) et (U_{2p+1})

On considère la suite
$$(U_n)$$
 définie par :
$$\begin{cases} U_0 = 1 \\ U_n = \frac{U_{n-1}}{3} + \frac{2}{U_{n-1}} \end{cases} ; n \in \mathbb{N}^*$$

- 1 Montrer que pour tout $n \in \mathbb{N}^*$ on a : $1 < U_n < 3$ et $\frac{1}{5} < \frac{1}{U_n \cdot U_{n-1}} < \frac{1}{2}$
- 2 Montre que $|U_{n+1} U_n| < \frac{2}{3} |U_n U_{n-1}|$ et en déduire que : $|U_{n+1} U_n| < \left(\frac{2}{3}\right)^n |U_1 U_0|$
- 3 Démontrer que la suite (U_n) est convergente et calculer sa limite

Montrer que la suite (réelle) (U_n) définie par : $U_0=1$ et $U_{n+1}=\frac{1+U_n}{3+U_n}$ pour $n\in\mathbb{N}$ (resp. $U_0=0$ et $U_{n+1}=\sqrt{5+U_n}$), est convergente et calculer sa limite

Exercice 14

Montrer que les suites définies par :

$$U_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}$$
 et $V_n = U_n + \frac{1}{n}$

sont convergentes et ont la même limite

Soit
$$(U_n)_{n\geqslant 1}$$
 la suite définie par : $U_n=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}$

- 1 Montrer que pour tout $n \in \mathbb{N}^*$; $U_n \ge \sqrt{n}$
- 2 Préciser la limite de la suite $(U_n)_{n\geq 1}$

Exercice 16

Soit
$$(U_n)_{n\geqslant 1}$$
 la suite définie par : $U_n=1+\frac{1}{4}+\frac{1}{9}+...+\frac{1}{n^2}$

- 1 Étudier la monotonie de la suite $(U_n)_{n\geqslant 1}$
- 2 a Vérifier que pour tout entier $k \ge 2$

$$\frac{1}{k(k-1)} = \frac{1}{k} - \frac{1}{k}$$
 et que $\frac{1}{k^2} < \frac{1}{k-1} - \frac{1}{k}$

- b En déduire que : $(\forall n \in \mathbb{N}^*)$; $2 \frac{1}{n} < U_n < 2$
- c Montrer que $(U_n)_{n\geq 1}$ est convergente

Soit $(U_n)_{n \ge 1}$ la suite définie par : $U_n = 1 + \frac{1}{2^3} + \frac{1}{3^3} + ... + \frac{1}{n^3}$

- 1 Montrer que la suite $(U_n)_{n\geq 1}$ est croissante
- 2 Montrer que : $(\forall n \in \mathbb{N}^*)$; $U_n \leq 2 \frac{1}{n}$
- 3 En déduire que la suite $(U_n)_{n\geq 1}$ est convergente

Exercice 18

Soit (U_n) une suite croissante et majorée

On pose pour tout
$$n \in \mathbb{N}^*$$
; $V_n = \frac{U_1 + U_2 + ... + U_n}{n}$

Montrer que la suite (V_n) est croissante et en déduire qu'elle est convergente

Soit $(U_n)_{n\geqslant 1}$ la suite définie par : $U_n=1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}$

- 1 Montrer que : $(\forall n \in \mathbb{N}^*)$; $U_{2n} \geqslant \frac{1}{2} + U_n$
- 2 Montrer que la suite $(U_n)_{n\geq 1}$ est strictement croissante
- 3 Montrer par l'absurde que $\lim_{n\to+\infty} U_n = +\infty$

On considères les suites (U_n) et (V_n) définies par :

$$\begin{cases} U_0 = a \\ U_{n+1} = \sqrt{U_n V_n} ; n \in \mathbb{N} \end{cases} \text{ et } \begin{cases} V_0 = 2a \\ V_{n+1} = \frac{U_n + V_n}{2} ; n \in \mathbb{N} \end{cases}$$

où a est un réel strictement positif

- 1 Montrer que pour tout $n \in \mathbb{N}$; $0 < U_n < V_n$
- 2 Montrer que la suite (U_n) est croissante et que la suite (V_n) est décroissante
- 3 Montrer que les suites (U_n) et (V_n) sont adjacentes

Exercice : Généralités sur les suites récurrentes $U_{n+1} = f(U_n)$

On considère un intervalle I de $\mathbb R$ et une fonction $f\colon \mathbb I\to \mathbb I$ continue sur I On considère la suite (U_n) définie par : $U_0\in \mathbb I$ et $U_{n+1}=f(U_n)$ pour tout $n\in \mathbb N$

- 1 Démontrer que : $(\forall n \in \mathbb{N})$; $U_n \in \mathbb{I}$
- 2 On suppose dans cette question que f est croissante sur I
 - a Démontrer que (U_n) est monotone $(U_0 \geqslant U_1 \text{ ou } U_1 \geqslant U_0)$
 - b On suppose que I est un segment, I = [a; b]. Démontrer que (U_n) est convergente et déterminer une équation satisfaite par sa limite ℓ
- On suppose dans cette question que f est décroissante sur I . On pose : $V_n = U_{2n}$ et $W_n = U_{2n+1}$. Démontrer que les suites (V_n) et (W_n) sont monotones et qu'elles ont des sens de variations contraires

Cas particulier des fonction homographiques : $f(x) = \frac{ax + b}{cx + d}$

- Si x = f(x) a une unique solution γ on prouve que la suite définie par $V_n = \frac{1}{U_n \gamma}$ est arithmétique
- Si x = f(x) a deux solutions α et β alors la suite définie par $V_n = \frac{U_n \alpha}{U_n \beta}$ est géométrique

On peut alors déterminer V_n , puis U_n en fonction de n, et en déduire la convergence (limite) de (U_n)

