I NOMBRES REELS

Tout un chacun connaît intuitivement les ensembles de nombres, l'ensemble des entiers naturels \mathbb{N} (compter sur ses doigts), l'ensemble des entiers relatifs \mathbb{Z} (je dois 5 euros à mon ami, donc j'ai -5 euros) et l'ensemble des nombres rationnels \mathbb{Q} (je dois couper un gâteau en 8 parts).

Mais très vite les mathématiciens, grecs notamment, se sont rendus compte que ces ensembles \mathbb{N} , \mathbb{Z} , et \mathbb{Q} étaient très insuffisants pour refléter la réalité du monde : la géométrie introduit la "quantité" $\sqrt{2}$ comme la diagonale d'un carré de longueur 1 (théorème de Pythagore) et Aristote fournit très tôt la démonstration du fait que $\sqrt{2}$ n'est pas le quotient de deux entiers.

De même la "quantité" π définie comme le rapport de la circonférence d'un cercle à son diamètre n'est pas non plus le quotient de deux entiers. D'où la nécessité "d'inventer" un autre ensemble de nombres, appelés réels, qui a le mérite de combler ces lacunes et aussi d'englober les ensembles \mathbb{N} , \mathbb{Z} , et \mathbb{Q} avec des règles de calculs identiques.

1. Corps totalement ordonné - Borne supérieure

1.1 Définition

On appelle corps commutatif un ensemble non vide \mathbb{K} muni de deux opérations nommées addition (notée +) et multiplication (notée .) vérifiant les conditions suivantes :

- 1. K muni de l'addition est un groupe commutatif, i.e
 - (a) \mathbb{K} est stable pour l'addition : $\forall x, y \in \mathbb{K}, x + y \in \mathbb{K}$
 - (b) l'addition est commutative : $\forall x, y \in \mathbb{K}, x + y = y + x$
 - (c) l'addition est associative : $\forall x, y, z \in \mathbb{K}, x + (y + z) = (x + y) + z$
 - (d) il existe un élément $0_{\mathbb{K}} \in \mathbb{K}$ vérifiant $\forall x \in \mathbb{K}, \ x + 0_{\mathbb{K}} = x : 0_{\mathbb{K}}$ est appelé élément neutre pour l'addition
 - (e) pour tout $x \in \mathbb{K}$, il existe $y \in \mathbb{K}$ tel que $x + y = 0_{\mathbb{K}}$: cet élément y est noté -x et est appelé opposé de x.
- 2. La multiplication vérifie les propriétés suivantes
 - (a) \mathbb{K} est stable pour la multiplication : $\forall x, y \in \mathbb{K}, x.y \in \mathbb{K}$
 - (b) la multiplication est commutative : $\forall x, y \in \mathbb{K}, x.y = y.x$
 - (c) la multiplication est associative: $\forall x, y, z \in \mathbb{K}, \ x.(y.z) = (x.y).z$
 - (d) il existe un élément $1_{\mathbb{K}} \in \mathbb{K}$ vérifiant $\forall x \in \mathbb{K}, \ x.1_{\mathbb{K}} = x : 1_{\mathbb{K}}$ est appelé élément neutre pour la multiplication
 - (e) pour tout $x \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$, il existe $y \in \mathbb{K} \setminus \{0_{\mathbb{K}}\}$ tel que $x.y = 1_{\mathbb{K}}$: cet élément y est noté x^{-1} et est appelé inverse de x.
- 3. La multiplication est distributive par rapport à l'addition, i.e.

$$\forall x, y, z \in \mathbb{K}, \ x.(y+z) = x.y + x.z$$

1.2 Exemples

- (a) \mathbb{Q} est un corps commutatif.
- (b) \mathbb{Z} n'est pas un corps commutatif : l'élément 2 ne possède pas d'inverse dans \mathbb{Z} .

1.3 Définition

On appelle relation d'ordre sur un ensemble E une relation entre deux éléments de E notée \leq vérifiant

- 1. la relation est réflexive : $\forall x \in E, x \leq x$
- 2. la relation est antisymétrique : $\forall x, y \in E, x \leq y$ et $y \leq x$ entraine x = y
- 3. la relation est transitive : $\forall x, y, z \in E, x \leq y$ et $y \leq z$ entraine $x \leq z$.

On note habituellement x < y pour $x \le y$ et $x \ne y$.

On dit que (E, \leq) est totalement ordonné (ou que la relation \leq est une relation d'ordre total sur E) si pour tous $x, y \in E$, on a $x \leq y$ ou $y \leq x$.

On dit qu'un corps K est ordonné s'il est muni d'une relation d'ordre ≤ vérifiant

$$\forall x, y \in \mathbb{K}, 0_{\mathbb{K}} \leq x \text{ et } 0_{\mathbb{K}} \leq y \Longrightarrow 0_{\mathbb{K}} \leq x.y$$

1.4 Exemples

(a) la relation \leq définie sur \mathbb{Z} par

$$\forall x, y \in \mathbb{Z}, \ x \le y \Longleftrightarrow y - x \in \mathbb{N}$$

est une relation d'ordre total sur \mathbb{Z} .

(b) la relation d'inclusion sur l'ensemble $\mathcal{P}(E)$ des parties d'un ensemble E est une relation d'ordre sur $\mathcal{P}(E)$ mais elle n'est pas totale.

1.5 Définition

Soit A une partie non vide d'un ensemble totalement ordonné (E, \leq) .

- (a) On dit qu'un élément a de E est un majorant de A (ou majore A) si $\forall x \in A, x \leq a$.
- (b) On dit qu'un élément a de E est un minorant de A (ou minore A) si $\forall x \in A, a \leq x$.
- (c) On dit que A est majorée si A admet un majorant ; de même on dit que A est minorée si A admet un minorant.
- (d) On dit A est bornée si A est à la fois minorée et majorée.

1.6 Exemples

- (a) l'ensemble $A = \{\frac{1}{n} / n \in \mathbb{N}^*\}$ est une partie bornée de \mathbb{Q} : elle admet 0 pour minorant et 1 pour majorant et on constate que ce majorant appartient à A.
- (b) l'ensemble $B = \{n+1 \mid n \in \mathbb{N}\}$ admet 1 comme minorant et on constate que ce minorant appartient à B; mais B n'est pas majoré.

1.7 Définition et proposition

Soit A une partie non vide d'un ensemble totalement ordonné (E, \leq) .

- (a) Si A est majorée, on dit que A admet un plus grand élément s'il existe un majorant a de A qui appartient à A: a est alors unique et on l'appelle le plus grand élément de A ou maximum de A, et on le note $a = \max(A)$.
- (b) Si A est minorée, on dit que A admet un plus petit élément s'il existe un minorant a de A qui appartient à A: a est alors unique et on l'appelle le plus petit élément de A ou minimum de A et on le note $a = \min(A)$.

Preuve:

(a) si a et b sont deux plus grands éléments de A, alors comme $a \in A$ et b est un majorant de A, on a $a \leq b$ et de même on a $b \leq a$ puisque $b \in A$ et a est un majorant de A, d'où a = b.

1.8 Exemples

(a) l'ensemble $A=\{\frac{1}{n}\ /\ n\in\mathbb{N}^*\}$ a pour plus grand élément 1 mais ne possède pas de plus petit élément bien qu'il soit minoré. En effet, si A possède un plus petit élément a, alors a est de la forme $\frac{1}{m}$ pour un certain entier $m\in\mathbb{N}^*$ puisque $a\in A$, et $a=\frac{1}{m}$ minore A i.e

$$\forall n \in \mathbb{N}^*, \ \frac{1}{m} \le \frac{1}{n}$$

d'où

$$\forall n \in \mathbb{N}^*, \ m > n$$

et ainsi m est un majorant de \mathbb{N}^* , ce qui est impossible.

(b) l'ensemble $B = \{n+1 \mid n \in \mathbb{N}\}$ admet 1 comme plus petit élément.

1.9 Définition et proposition

Soit A une partie non vide d'un ensemble totalement ordonné (E, \leq) .

- (a) Si A est majorée et si l'ensemble des majorants de A admet un plus petit élément a, alors a est appelé borne supérieure de A et est noté sup A; ainsi $a = \sup A$ signifie
- (i) a est un majorant de $A: \forall x \in A, x \leq a$

et

(ii) a est le plus petit majorant de A:

$$\forall t \in E, \ t < a \Longrightarrow t \text{ n'est pas un majorant de } A, \ i.e \ \exists \ x \in A, \ t < x.$$

- Si A admet une borne supérieure, celle-ci est unique. De plus, A admet un plus grand élément si A admet une borne supérieure et si sup $A \in A$.
- (b) Si A est minorée et si l'ensemble des minorants de A admet un plus grand élément a, alors a est appelé borne inférieure de A et est noté inf A; ainsi $a = \inf A$ signifie

3

- (i) a est un minorant de $A: \forall x \in A, \ a \leq x$ et
- (ii) a est le plus grand minorant de A:

$$\forall t \in E, \ a < t \Longrightarrow t \text{ n'est pas un minorant de } A, \ i.e \ \exists \ x \in A, \ x < t.$$

Si A admet une borne inférieure, celle-ci est unique. De plus, A admet un plus petit élément si A admet une borne inférieure et si inf $A \in A$.

1.10 Exemples

- (a) Considérons l'ensemble $A = \{1 \frac{1}{n} / n \in \mathbb{N}^*\}$; 1 est clairement un majorant de A, on va montrer que $\sup A = 1$: Soit t un rationnel tel que t < 1, alors 1 t > 0 donc si on choisit un entier n tel que $n > \frac{1}{1-t}$, alors on a $t < 1 \frac{1}{n}$ donc t n'est pas un majorant de A. On a donc $\sup A = 1$. Donc A n'admet pas de plus grand élément puisque $1 \notin A$.
- (b) Dans \mathbb{Q} , l'ensemble $A=\{x\in\mathbb{Q}\ /\ x^2<2\}$ pour tant majoré, n'admet pas de borne supérieure. (cf. exercice)

2. Corps des nombres réels

2.1 Définition et proposition

On obtient \mathbb{R} , appelé ensemble des nombres réels, à l'aide des trois axiomes suivants :

- 1. \mathbb{R} est un corps commutatif totalement ordonné.
- 2. \mathbb{R} contient \mathbb{Q} .
- 3. \mathbb{R} vérifie la propriété dite de la borne supérieure : toute partie non vide majorée de \mathbb{R} admet une borne supérieure.

On peut montrer "l'unicité" d'un tel ensemble, à savoir que si on construit par des méthodes différentes deux ensembles vérifiant ces trois axiomes, il existe un procédé d'identification "naturel" des éléments de ces deux ensembles.

D'autre part, comme \mathbb{R} vérifie la propriété dite de la borne supérieure, il vérifie aussi la propriété dite de la borne inférieure : toute partie A non vide minorée de \mathbb{R} admet une borne inférieure (il suffit de considérer l'ensemble $A' = \{-x \mid x \in A\}$ qui est non vide majoré et alors $-\sup A' = \inf A$).

2.2 Proposition

- (a) N est bien ordonné, i.e toute partie non vide de N admet un plus petit élément;
- (b) Toute partie non vide majorée de Z admet un plus grand élément.
- (c) Toute partie non vide minorée de Z admet un plus petit élément.

Preuve:

- (a) cf. cours de Fondement des maths.
- (b) Soit A une partie non vide majorée de \mathbb{Z} : alors l'ensemble B des majorants de A dans \mathbb{Z} est non vide.

1er cas : on suppose $A \cap \mathbb{N} \neq \emptyset$, alors l'ensemble B des majorants de A est contenu dans \mathbb{N} , donc B possède un plus petit élément m d'après a) : on va montrer que $m \in A$.

Supposons que $m \notin A$, alors, comme m est un majorant de A, on a $\forall n \in A, n < m$, donc $m \geq 1$, sinon on aurait $\forall n \in A, n < 0$, ce qui est impossible puisqu'on a supposé $A \cap \mathbb{N} \neq \emptyset$. Alors, $\forall n \in A, n \leq m-1$ puisque n et $m \in \mathbb{Z}$, et ainsi m-1 est un majorant de A donc $m-1 \in B$, ce qui est impossible puisque m est le plus petit élément de B. On en déduit que $m \in A$, et ainsi m est le plus grand élément de A.

2ème cas : on suppose $A \subset \mathbb{Z}^-$, alors l'ensemble $A' = \{-n \ / \ n \in A\}$ est inclus dans \mathbb{N} et est minoré puisque A est majorée, donc d'après a), A' possède un plus petit élément m, et ainsi -m est le plus grand élément de A.

(c) On applique (b) à l'ensemble $A' = \{-n \ / \ n \in A\}.$

2.3 Définition

Une partie non vide I de \mathbb{R} est appelée intervalle si et seulement si, pour tous a et $b \in I$ tels que $a \leq b$, on a

$$\forall x \in \mathbb{R}, a < x < b \Longrightarrow x \in I.$$

2.4 Proposition

On recense 9 types d'intervalles dans \mathbb{R} ; on a quatre types d'intervalles bornés : si a et b sont des réels tels que a < b

(a) intervalle fermé borné (appelé aussi segment)

$$[a,b] = \{x \in \mathbb{R} / a \le x \le b\}$$

(b) intervalle borné semi-ouvert à droite

$$[a, b[= \{x \in \mathbb{R} / a \le x < b\}]$$

(c) intervalle borné semi-ouvert à gauche

$$[a, b] = \{x \in \mathbb{R} / a < x < b\}$$

(d) intervalle borné ouvert

$$|a, b| = \{x \in \mathbb{R} / a < x < b\}$$

et on a cinq types d'intervalles non bornés : si $a \in \mathbb{R}$

(e) intervalle fermé non majoré

$$[a, +\infty[= \{x \in \mathbb{R} / a < x\}]$$

(f) intervalle ouvert non majoré

$$a, +\infty = \{x \in \mathbb{R} / a < x\}$$

(g) intervalle fermé non minoré

$$]-\infty,a]=\{x\in\mathbb{R}\mid x\leq a\}$$

(h) intervalle ouvert non minoré

$$] - \infty, a [= \{ x \in \mathbb{R} / x < a \}$$

(i) droite réelle

$$]-\infty,+\infty[=\mathbb{R}$$

Preuve:

Traitons d'abord le cas des intervalles bornés : si I est un intervalle borné non réduit à un élément, il admet une borne inférieure a et une borne supérieure b tels que a < b. Alors tout élément x de I vérifie $a \le x \le b$.

Montrons maintenant que tout réel x vérifiant a < x < b appartient à I: comme a < x < b, x n'est ni un minorant, ni un majorant de I, donc il existe deux éléments y et z de I tels que y < x < z, ce qui entraı̂ne que $x \in I$ puisque I est un intervalle. On obtient alors les quatre types d'intervalles bornés, selon que a et b appartiennent ou pas à I.

Considérons maintenant un intervalle I minoré et non majoré de borne inférieure a, alors tout élément $x \in I$ vérifie $x \geq a$. Réciproquement, si x est un réel vérifiant x > a, alors x n'est pas un minorant de I donc il existe $y \in I$ tel que y < x, et comme I n'est pas majoré, il existe $z \in I$ tel que z > x, d'où $x \in I$ puisque I est un intervalle. On obtient alors les deux types d'intervalles non majorés, selon que a appartient ou pas à I. La démonstration est semblable pour les deux types d'intervalles non minorés.

Considérons enfin un intervalle I ni minoré, ni majoré, alors pour tout $x \in \mathbb{R}$ il existe deux éléments y et z de I tels que y < x < z donc $x \in I$, et ainsi $I = \mathbb{R}$.

2.5 Définition et proposition

Pour tout $x \in \mathbb{R}$, on appelle valeur absolue de x et on note |x| le réel positif défini par

$$|x| = \max\{x, -x\}$$

autrement dit

$$|x| = x \text{ si } x > 0 \text{ et } |x| = -x \text{ si } x < 0.$$

L'application valeur absolue vérifie les propriétés suivantes pour tous réels x et y

- (a) |-x| = |x|;
- (b) $|x| = 0 \iff x = 0$;
- (c) |xy| = |x|.|y|;

- (d) $|x + y| \le |x| + |y|$ (inégalité triangulaire);
- (d') $|x| |y| \le |x y|$.

De plus, une partie A de \mathbb{R} est bornée si seulement si il existe $M \in \mathbb{R}^+$ tel que

$$\forall x \in A, |x| \le M.$$

Preuve:

Soit $x \in \mathbb{R}$: si $x \ge 0$, on a clairement $x \ge -x$, donc |x| = x, de même si $x \le 0$, on a $x \le -x$, donc |x| = -x, donc dans tous les cas $|x| \ge 0$.

- (a) clair.
- (b) Soit $x \in \mathbb{R}$; si x = 0, alors -x = 0 donc $|x| = \sup\{x, -x\} = 0$; réciproquement, si $|x| = \max\{x, -x\} = 0$, alors x = 0 ou -x = 0, donc x = 0.
- (c) s'obtient par la "règle des signes" sur le produit.
- (d) Si $x \ge 0$ et $y \ge 0$ alors $x + y \ge 0$ donc |x + y| = x + y = |x| + |y|. Si $x \le 0$ et $y \le 0$, on applique ce qui précède à -x et -y en utilisant (a).

Si $x \ge 0$ et $y \le 0$, alors $-x \le x$ et $y \le -y$ donc $-(x+y) = -x - y \le x - y$ et $x+y \le x - y$ donc x-y est un majorant de -(x+y) et de x+y donc de |x+y|; or x-y=|x|+|y| d'où $|x+y| \le |x|+|y|$. Si $x \le 0$ et $y \ge 0$, on applique ce qui précède à -x et -y en utilisant (a).

(d') On applique (d) à x et y - x:

$$|y| = |x + (y - x)| \le |x| + |y - x|$$

d'où

$$|y|-|x| \leq |y-x| = |x-y|$$

mais aussi, en échangeant les rôles de x et y,

$$|x| - |y| < |x - y|$$

donc |x-y| est un majorant de |x|-|y| et de -(|x|-|y|), d'où

$$||x| - |y|| < |x - y|.$$

Enfin soit A une partie de \mathbb{R} : si A est bornée, il existe m_1 et $m_2 \in \mathbb{R}$ tel que

$$\forall x \in A, \ m_1 \le x \le m_2$$

alors, si on pose $M = \max(|m_1|, |m_2|)$ on a

$$\forall x \in A, |x| < M.$$

Réciproquement, s'il existe $M \in \mathbb{R}^+$ tel que

$$\forall x \in A, |x| \leq M$$

alors on a

$$\forall x \in A, -M \le x \le M$$

et ainsi A est bornée.

2.6 Théorème \mathbb{R} est archimédien, i.e

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ tel que } n\varepsilon > x.$$

Preuve: Considérons $x \in \mathbb{R}$ et un réel $\varepsilon > 0$, et raisonnons par l'absurde:

supposons que $\forall n \in \mathbb{N}$ on a $n\varepsilon \leq x$, alors l'ensemble $E = \{n\varepsilon \mid n \in \mathbb{N}\}$ est non vide et majoré par x, donc admet une borne supérieure M; comme $M - \varepsilon$ n'est pas un majorant de E, il existe $n_0 \in \mathbb{N}$ tel que $M - \varepsilon < n_0 \varepsilon$ i.e $M < (n_0 + 1)\varepsilon$, ce qui est impossible puisque $(n_0 + 1)\varepsilon \in E$ et $M = \sup E$. Donc on a bien

$$\forall x \in \mathbb{R}, \forall \varepsilon > 0, \exists n \in \mathbb{N} \text{ tel que } n\varepsilon > x.$$

2.7 Proposition et définition

Pour tout réel x, il existe un unique entier relatif k tel que $k \le x < k+1$: cet entier est appelé partie entière de x et noté E(x).

 $Preuve : Considérons l'ensemble A = \{n \in \mathbb{Z} / n \le x\}.$

Comme \mathbb{R} est archimédien, il existe $n \in \mathbb{N}$ tel que n > -x i.e -n < x et ainsi $-n \in A$: A est donc non vide. De même il existe $m \in \mathbb{N}$ tel que m > x, et ainsi m majore A.

A est donc une partie non vide majorée de \mathbb{Z} donc admet un plus grand élément k d'après 2.2: cet élément k est ainsi l'unique entier relatif tel que $k \leq x < k+1$.

2.8 Théorème

(a) \mathbb{Q} est dense dans \mathbb{R} , i.e entre deux réels distincts, il existe un rationnel :

$$\forall x, y \in \mathbb{R}$$
 tels que $x < y, \exists \ r \in \mathbb{Q}$ tel que $x < r < y$.

(b) $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} i.e entre deux réels distincts, il existe un irrationnel :

$$\forall x, y \in \mathbb{R} \text{ tels que } x < y, \exists t \in \mathbb{R} \setminus \mathbb{Q} \text{ tel que } x < t < y.$$

Preuve:

(a) Soient x et y deux réels tels que x < y et considérons $\varepsilon = y - x : \varepsilon > 0$ donc, puisque \mathbb{R} est archimédien, il existe $n \in \mathbb{N}$ tel que $n\varepsilon > 1$, i.e ny - nx > 1. Considérons maintenant k = E(nx + 1), on a alors

$$k \le nx + 1 < k + 1$$

d'où

$$nx < k \le nx + 1 < ny$$

et ainsi

$$x < \frac{k}{n} < y$$

on a donc trouvé un rationnel $r = \frac{k}{n}$ strictement compris entre x et y.

(b) Soient x et y deux réels tels que x < y; alors d'après (a), il existe deux rationnels r et r' tels que

$$x < r < r' < y$$

posons $t = r + \frac{\sqrt{2}}{2}(r'-r): t \not\in \mathbb{Q}$ puisque $\sqrt{2} \not\in \mathbb{Q}$, et r < t < r' puisque $\frac{\sqrt{2}}{2} \in]0,1[$ d'où x < t < y.

2.9 Corollaire

Soit x un réel vérifiant $\forall \varepsilon > 0, \ |x| \le \varepsilon$, alors x = 0.

Preuve : Soit x un réel vérifiant : $\forall \varepsilon > 0$, $|x| \le \varepsilon$ et supposons que $x \ne 0$, alors |x| > 0 donc il existe un réel α tel que $0 < \alpha < |x|$ ce qui est impossible d'après l'hypothèse sur x, donc x = 0.