Một số kĩ thuật tối ưu quy hoạch động

Sinh viên: Nguyễn Quang Quý - 20153108

Nội dung trình bày

- 1. Kĩ thuật bao lồi
- 2. Kĩ thuật chia để trị

1. Kĩ thuật bao lồi

Lớp bài toán áp dụng: $dp[i] = min_{j < i} (dp[j] + b[j] * a[i])$

Với điều kiện: $b[j] \geq b[j+1]$

Bài toán: Cho một tập n đường thẳng $D = \{d_1, d_2, \dots, d_n\}$ trong đó (d_i) $y_i = a_i x + b_i, a_i \ge 0$ và k điểm trên trục Ox: p_1, p_2, \dots, p_k . Tìm q_1, q_2, \dots, q_k trong đó mỗi giá trị q_ℓ được định nghĩa như sau:

$$q_{\ell} = \min_{1 \le i \le n} (a_i \cdot p_{\ell} + b_i)$$

Ví dụ: D gồm 4 đường:

- $(d_1) x + y = 3$
- $(d_2) x + 2y = 4$
- $(d_3) x + 6y = 16$
- $(d_4) 4x + 5y = 20$

Nhận xét:

- Tồn tại một số đường thẳng dư thừa trong D
- 2. Đi từ trái sang phải, hệ số góc của các đường thuộc bao lồi giảm dần
- 3. Biểu diễn các bao lồi bằng các khoảng giá trị và đoạn thẳng tương ứng

Ý tưởng:

- 1. Sắp xếp các đường trong D giảm dần theo hệ số góc
- 2. Thêm lần lượt các đường vào Stack, mỗi đường thêm vào sẽ kiểm tra khả năng thay thế với các đường trong Stack

Trường hợp D không tồn tại cặp song song

Trường hợp D tồn tại cặp song song

Độ phức tạp O(nlogn)

```
FINDHULL(d_1, d_2, \ldots, d_n):
sort \{d_1, d_2, \dots, d_n\} by decreasing order of slope
Stack S \leftarrow \emptyset
S.\operatorname{push}(d_1)
I_1 \leftarrow [-\infty, +\infty]
m \leftarrow 1
for i \leftarrow 2 to n
    d \leftarrow S.\text{peek()}
                                    [[examine the top element]]
    x_p \leftarrow \text{FindIntersectionX}(d, d_i)
    while x_p \leq \operatorname{left}(I_m)
                                               [[found a redundant line]]
       S.pop()
       m \leftarrow m-1
       d \leftarrow S.\text{peek()}
       x_p \leftarrow \text{FindIntersectionX}(d_i, d)
    S.\operatorname{push}(d_i)
    I_m \leftarrow [\operatorname{left}(I_m), x_p]
    I_{m+1} \leftarrow [x_p, +\infty]
    associate I_{m+1} with d_i
    m \leftarrow m+1
```

Sắp xếp các đường thẳng theo độ dốc giảm dần, ta được:

$$+ (d_1) -x + y = 3$$

$$+ (d_2) - 4x + 5y = 20$$

$$+ (d_3) -x + 2y = 4$$

$$+ (d_{\Delta}) -x + 6y = 16$$

Khởi tạo:

$$+ S = \{d_1\}$$

$$+ \mid = \mid \mid \mid_{0} \mid$$

$$v\acute{O}il_0 = [-\infty, +\infty]$$

Loop 1: Kiểm tra d₂

$$+ S = \{d_1, d_2\}$$

$$+ | = \{ |_{0}, |_{1} \}$$

$$\forall \acute{o}i \mid_{0} = [-\infty, x_{p1}], \mid_{1} = [x_{p1}, +\infty]$$

Loop 2: Kiểm tra d₃

$$+ S = \{d_1, d_3\}$$

$$+ | = {|_{0}, |_{1}}$$

$$\forall \acute{o}i \mid_{0} = [-\infty, x_{p2}], \mid_{1} = [x_{p2}, +\infty]$$

Loop 3: Kiểm tra d₄

$$+ S = \{d_1, d_3, d_4\}$$

$$+ | = {|_{0}, |_{1}, |_{2}}$$

$$\forall \dot{0} \mid _{0} = [-\infty, x_{p2}], |_{1} = [x_{p2}, x_{p3}]$$

$$I_2 = [x_{p3}, +-\infty]$$

Kết thúc:

$$+ S = \{d_1, d_3, d_4\}$$

$$+ | = {|_{0}, |_{1}, |_{2}}$$

$$\forall \dot{0} \mid \mathbf{1}_{0} = [-\infty, \mathbf{x}_{p2}], \mathbf{1}_{1} = [\mathbf{x}_{p2}, \mathbf{x}_{p3}]$$

$$I_2 = [x_{p3}, +-\infty]$$

Đề bài: Cho $n \leq 300000$ cặp số (x,y) $(1 \leq x,y \leq 1000000)$. Ta có thể nhóm một vài cặp số lại thành một nhóm. Việc nhóm này sẽ mất một chi phí. Giả sử một nhóm gồm các cặp số a_1, a_2, \ldots, a_m thì chi phí cho nhóm này sẽ là $max(x_{a_1}, x_{a_2}, \ldots, x_{a_m}) * max(y_{a_1}, y_{a_2}, \ldots, y_{a_m})$. Yêu cầu: Tìm cách phân nhóm sao cho tổng chi phí là nhỏ nhất.

- Hạn chế thời gian: 0.661 giây
- Hạn chế bộ nhớ: 1536Mb

	0.5
group.inp	group.out
4	500
100 1	
15 15	
20 5	
1 100	

Nhận xét: Với hai cặp số (x_1, y_1) và (x_2, y_2) mà $x_1 > x_2$ và $y_1 > y_2$ thì ta nói (x_2, y_2) là dư thừa vì ta có thể thêm nó vào nhóm với cặp (x_1, y_1) mà không làm ảnh hưởng tới chi phí.

+ C[i] - chi phí cực tiểu để phân nhóm được i cặp đầu tiên

Nhận xét:

- + Hệ số góc đã được sắp xếp giảm dần
- + Điểm truy vấn được sắp xếp theo thứ tự tăng dần

Trong thủ tục tìm kiếm interval cho x_i sẽ không cần xem xét tới các interval nằm bên trái x_{i-1}

Nhận xét:

- + Hệ số góc đã được sắp xếp giảm dần
- + Điểm truy vấn được sắp xếp theo thứ tự tăng dần

Trong thủ tục tìm kiếm interval cho x_i sẽ không cần xem xét tới các interval nằm bên trái x_{i-1}

Cài đặt:

- B là mảng lưu các hệ số góc,
- A là mảng lưu các điểm truy vấn

Độ phức tạp: Trong thủ tục cài đặt quy hoạch động:

- Tìm interval trong thời gian O(n)
- Loại bỏ đường dư thừa O(n)

Tổng thời gian: O(nlogn)

```
FASTFASTDYNAMIC(A[1,2,\ldots,n],B[1,2,\ldots,n]):
d_1 \leftarrow B[1]x + C[1]
Stack S \leftarrow \emptyset
 S.\mathsf{push}(d_1)
 I_1 \leftarrow [-\infty, +\infty]
 associate I_1 with A[1]
 m \leftarrow 1
 for i \leftarrow 2 to n
    I_i \leftarrow the interval associated with A[i-1]
    \ell \leftarrow i-1
     while I = \emptyset
        \ell \leftarrow \ell + 1
       if A[i] \in I[\ell]
    d \leftarrow the line associated with I
    C[i] \leftarrow a \cdot A[i] + b
                                              [[assuming (d) y = ax + b]]
    d_i \leftarrow B[i]x + C[i]
    d \leftarrow S.\mathsf{peek}()
                                     [[examine the top element]]
    x_p \leftarrow \texttt{FINDINTERSECTIONX}(d, d_i)
    while x_p \leq \operatorname{left}(I_m)
                                               [[found a redundant line]]
        S.pop()
        m \leftarrow m-1
        d \leftarrow S.\mathsf{peek}()
        x_p \leftarrow \mathsf{FINDINTERSECTIONX}(d_i, d)
    S.\mathsf{push}(d_i)
    I_m \leftarrow [\operatorname{left}(I_m), x_p]
    I_{m+1} \leftarrow [x_n, +\infty]
                        [[the line associated with I_{\ell} is not redundant]]
    if \ell < m
        associate I_{\ell} with A[i]
    else
        \mathsf{if}\ A[i] \in I_m
            associate I_m with A[i]
         else
            associate I_{m+1} with A[i]
    associate I_{m+1} with d_i
    m \leftarrow m + 1
 return C[n]
```

Bộ test:

- 1 test với n = 5000 cho trường hợp các cặp số có cùng giá trị y, còn gía trị x được sinh ngẫu nhiên (trường hợp tất cả các đường thẳng đều song song với nhau)
- 1 test với n = 20 cho trường hợp tất cả các cặp số đều giống nhau
- 1 test với n = 30000, trong đó các cặp số được sắp xếp giảm dần theo x
- 5 test với n nằm trong khoảng 3000 5000
- 5 test với n nằm trong khoảng 6000 10000
- 10 test với n nằm trong khoảng 10000 29999

Themis

SPOJ - Problem GROUP/ACQUIRE(USACO 2007)

ID	GIỜ NỘP	Tài khoản:	PROBLEM	RESULT	TIME	MEM	NGÔN NGỮ
22907082	2018-12-19 11:39:08	Zoe2i	Phân nhóm	accepted edit run	0.20	29M	CPP14

2. Kĩ thuật chia để trị

Lớp bài toán áp dụng: $dp[i][j] = min_{k < j} dp[i-1][k] + C[k][j]$

Với điều kiện:
$$R[i][j] \leq R[i][j+1]$$

R[i][j] - điểm chia k để đạt được tối ưu trong công thức tính dp[i][j].

Đề bài: n người trong hàng đợi lên máy bay có k khoang. Cần sắp xếp mọi người vào các khoang sao cho:

- Mỗi khoang có ít nhất 1 người
- Chi phí sắp xếp ít nhất
- + Chi phí tổng mức độ khó chịu trong k khoang.
- + Mức độ khó chịu trong một khoang mức độ khó chịu giữa mỗi người với nhau trong khoang đó.
- + Ma trận đối xứng A A[i][j] là mức độ khó chịu giữa người i với j.
- + Ràng buộc: $1 \le n \le 4000$, $1 \le k \le \min(n, 800)$, $0 \le A[i][j] \le 9$

Ví dụ: Khoang 1: {1, 2}, Khoang 2: {3}.

ciel_gondolas.inp	ciel_gondolas.out
3 2	2
0 2 0	
2 0 3	
0 3 0	

Phân tích

+ C[i][j] - Chi phí để xếp j người đầu vào i khoang đầu

$$C[i][j] = \begin{cases} 0, & i = j \\ \min_{i \le \ell < j} C[i-1, \ell] + D[\ell+1, j], & i < j \end{cases}$$

+ D[i][j] - Chi phí để xếp người thứ i tới người thứ j vào cùng một khoang

$$D[i][j] = \sum_{i$$

Phân tích

+ R[i][j] - Điểm chia trong công thức

$$R[i][j] = argmin_{i \le l < j}(C[i-1,\ell] + D[\ell+1,j])$$

Chứng minh được: $R[i][j] \le R[i][j+1]$

Nhận xét: Điểm chia của C[i][j] nằm trong khoảng R[i][j-1] tới R[i][j+1]

```
\frac{\mathsf{FastDynamicProgram}}{\mathsf{ComputeDisimilarity}}(A[1,2,\ldots,n][1,2,\ldots,n]) : \\ \mathsf{ComputeDisimilarity}(A[1,2,\ldots,n][1,2,\ldots,n]) \\ \mathsf{for}\ i \leftarrow 1\ \mathsf{to}\ k \\ R[i,i] \leftarrow i \\ R[i,n] \leftarrow \mathsf{ComputeR}(i,n,i,n) \\ \mathsf{DivConDynamic}(i,i+1,n-1,i,R[i,n]) \\ \mathsf{return}\ C[k,n] \end{aligned}
```

Tính toán mảng D trong thời gian $O(n^2)$

```
\begin{array}{l} \underline{\mathsf{ComputeDissimilarity}}(A[1,2,\ldots,n][1,2,\ldots,n]) \colon \\ \mathbf{for}\ i \leftarrow 1\ \mathsf{to}\ n \\ D[i,i] \leftarrow 0 \\ B[i,i] \leftarrow 0 \\ \mathbf{for}\ d \leftarrow 1\ \mathsf{to}\ n-1 \\ \mathbf{for}\ i \leftarrow 1\ \mathsf{to}\ n-d \\ B[i,i+d] \leftarrow B[i+1,i+d] + A[i,i+d] \quad [[B[i,j] = \sum_{i \leq \ell < j} A[\ell,j]]] \\ D[i,i+d] \leftarrow D[i,i+d-1] + B[i,i+d] \end{array}
```

ComputeR - tính C[i][j] và trả về R[i][j] trong thời gian O(R-L)

```
\begin{aligned} & \underline{\mathsf{COMPUTER}}(i,j,L,R) \colon \\ & \mathsf{tmp} \leftarrow +\infty \\ & p \leftarrow L \\ & \mathbf{for} \ \ell \leftarrow L \ \mathsf{to} \ R \\ & \mathsf{tmp} \leftarrow \min \{ \ \mathsf{tmp}, C[i-1,\ell] + D[\ell+1,j] \} \\ & p \leftarrow \ell \\ & C[i,j] \leftarrow \mathsf{tmp} \\ & \mathsf{return} \ p \end{aligned}
```

DivConDynamic - tính C[i][x], ..., C[i][y]

```
\begin{array}{l} \underline{\text{DivConDynamic}}(i,x,y,L,R) : \\ \textbf{if } y-x \leq 2 \\ \text{use bruteforce} \\ \textbf{else} \\ m \leftarrow \lfloor \frac{x+y}{2} \rfloor \\ R[i,m] \leftarrow \text{ComputeR}(i,m,L,R) \\ \text{DivConDynamic}(i,x,m-1,L,R[i,m]) \\ \text{DivConDynamic}(i,m+1,y,R[i,m],R) \end{array}
```

Độ phức tạp thuật toán

T(n, m) - thời gian tính của DivConDynamic(i, x, y, L, R) với n = y - x và m = R - L

$$T(n,m) = \begin{cases} O(n), & \text{if } m = O(1) \\ O(m), & \text{if } n = O(1) \\ T(\frac{n}{2}, k) + T(\frac{n}{2}, m - k) + O(m), & \text{otherwise} \end{cases}$$

Kết luận: Độ phức tạp thuật toán là $O(n^2 + knlogn)$

Bộ test:

- 1 test với n trong khoảng 10 50 và k = n+1
- 5 test với n trong khoảng 100 500 và k trong khoảng 1 20
- 5 test với n trong khoảng 300 500 và k trong khoảng 100 n/2
- 5 test với n trong khoảng 1000 2000, k trong khoảng 1 200
- 5 test với n trong khoảng 2000 3999, k trong khoảng 200 800\$
- 2 test với n = 4000 với k trong khoảng 1 100 và k trong khoảng 500 800

Themis

Codeforces Round #190 (Div. 1) Problem E. Ciel and Gondolas

General							•			
#	Author	Problem	Lang	Verdict	Time	Memory	Sent	Judged		
47160065	Practice: zoe2i	<u>321E</u> - 1 9	GNU C++11	Accepted	872 ms	200964 KB	2018-12-17 12:16:52	2018-12-17 12:16:52		Compare