软件体系结构风格

软件体表	系结构风格	1
1. 管道	道和过滤器	2
1.1.	示意图	2
1.2.	思想	
1.3.	优点	
1.4.	缺点	2
2. 分原	昙系统	
2.1.	· 示意图	
2.2.	层次划分	
3. C2	· · · · · · · · · · · · · · · · · · ·	3
3.1.	· 示意图	3
3.2.	规则	4
4. 三层	层 C/S 结构风格	4
4.1.	表示层	4
4.2.	功能层	4
4.3.	数据层	
4.4.	优点	4
4.5.	不足	5
5. 公共	共对象请求代理体系结构	5
5.1.	示意图	5

软件体系结构风格是描述某一特定领域中系统组织方式的惯用手法

1. 管道和过滤器

思想, 优缺点

1.1.示意图

1.2. 思想

每个构件都有一组输入和输出,构件读输入的数据流,经过内部处理,然后产生输出数据流

1.3. 优点

- 1.使得软件具有良好的隐蔽性和高内聚, 低耦合的特点
- 2.允许设计者将整个系统的输入/输出行为看成多个过滤器的行为的简单合成
- 3.支持软件重用。
- 4.系统维护和增强系统性能简单
- 5.允许对一些如吞吐量, 死锁等属性的分析
- 6.支持并行执行

1.4.缺点

- 1.通常导致进程成为批处理的结构。(因为过滤器是独立的)
- 2.不适合处理交互式的应用
- 3.数据标准不统一, 会导致系统性能下降

2. 分层系统

怎么划分层, 各层特点

2.1.示意图

2.2. 层次划分

- 1.**用户系**统层
- 2.基本工具
- 3.核心层

3. C2风格

通过连接件绑定在一起按照一组规则运作的并行构件网络

3.1.示意图

3.2.规则

- 1.系统的构件和连接件都有一个顶部和底部
- 2.构件的顶部连接到某连接件的底部,构件的底部则连到某连接件的顶部,不允许构件之间 直连
- 3. 一个连接件可以和任意数目的其他构件和连接件相连
- 4. 当两个连接件进行直接连接时, 必须由其中一个的底部到另一个的顶部

4. 三层C/S 结构风格

哪三层, 优缺点

- 4.1.表示层
- 4.2. 功能层
- 4.3. 数据层

4.4. 优点

- 1.允许合理的划分三层结构的功能,是之在逻辑上保持相对独立性,从而使整个系统的逻辑结构清晰,能够提高系统软件的可维护性和可扩展性
- 2.允许更灵活有效的选用相应的平台和硬件系统,使之在处理负荷能力上与处理特性上分别适应结构清晰的三层;并且这些平台和各个组成部分可以具有良好的可升级性和开放性
- 3.各层允许并行开发,

4.充分利用功能层有效的隔离开表示层与数据层,增加系统安全系数

4.5. 不足

在通信效率不高的情况下,即使各层的硬件性能很强,其作为整体也达不到所要求的性能。对通信要求很高

5. 公共对象请求代理体系结构

图 3-15 P66

5.1.示意图

