

× ER

1.a)
$$\vec{f}(t) = (t-1, t^2)$$
, $t \in \mathbb{R}$.

$$\begin{cases} x = t-1 \\ y = t^2 \end{cases} = x+1$$

$$\begin{cases} y = (x+1)^2 \\ \end{cases}$$
Perebola com a conceudade

$$\begin{cases} y = (x+1)^2 \\ \end{cases}$$
Verade peraco celue e ventice em $(-1,0)$

b)
$$f(t) = (1-2t^2, t+1)$$
, $t \in \mathbb{R}$
 $\begin{cases} 1 & \text{if } t = 1-2t^2 \\ 1 & \text{if } t = y-1 \end{cases}$

$$x = 1 - 2(y - 1)^{2}$$
 $x = 1 = 1 - 2(y - 1)^{2}$

 $\frac{1}{1+\sqrt{2}}$ $\frac{1}{1+\sqrt{2}}$

c)
$$\vec{p}(t) = (1+2t)\vec{e}_1 + (3-4t)\vec{e}_2$$
, $t \in \mathbb{R}$.
 $1 \times (2-1+2t)$, $t \in \mathbb{R}$ $\rightarrow \text{ Recte que posse leu } (1,3)$
 $1 \times (2-4)$ com a director de recter $(2,-4)$ or $(2,$

d)
$$\vec{f}(t) = (1+zt)\vec{e}_1 + (3-4t)\vec{e}_2 + 5\vec{e}_3$$
, $t \in \mathbb{R}$.
 \vec{f} a necte antenier eves no place \vec{f} = 5.

e)
$$\sqrt{y=1-t}$$
, $t \in [1,2]$

$$t \in [1,2]$$

to segmente de necte com enicio no pante $\begin{cases} t = 1 \implies \begin{cases} x = -1 - 1 = -2 \\ y = 2 - 1 = 1 \end{cases}$ (-2,1)

e flue to ponte

$$t=2 = 3 / x=-3$$
 (-3,-1)
 $y=-1$

$$t = 0 \Rightarrow \begin{cases} x = 0 \\ y = 2 \end{cases} \quad (0,2)$$

Raio 2, centrado ese
$$(0,c)$$
.
 $t=\overline{11} \Rightarrow /x = 2 \text{ sen } \overline{11} = 0$ $(0,-2)$
 $y = 2 \text{ cos } \overline{11} = -2$

$$t = \overline{1} \Rightarrow / x = 0 \quad (0,2)$$

$$1 = 2$$

cinemperahere contrado em (-1,2) e naio 2

pereonnido lo sentedo indicado

h) $\vec{f}(t) = (-1+2\cos(\frac{\pi}{2}t), 4, 2+2\sin(\frac{\pi}{2}t))$, $t \in [0, 2\pi]$

Hermo ememference que a onterior euros no placo Vertical y = y e perconnido com outro velber dade, no emesmo sentid

i) $f'(t) = (2 \text{ sent, cost}) \rightarrow \text{elipse contacts acci(0,0)}$

 $f(t) = (2 \operatorname{Sen}(T + t)), 1 + \operatorname{eos}(T + t)) \quad t \in \mathbb{R}, \text{ elipse}$ Centrade seur (0,1)

k) / x = lnt $/ y = t , t \in [1,2]$

 $x = \ln y$, com $y \in [1,2]$ $y = e^{x}$

 $y = e^{x}$, $t \in \mathbb{R}$ $y = e^{x}$, $x \in \mathbb{R}$

 $y = t^3$, $t \in (0, 4)$

Cornesperale $\sqrt{y=(x-1)^3}$ de cenus $\sqrt{z=5}$

-> he place horizontal 2=5

$$(x) = (x) = (x)$$

 $y = (x+1)^{20}$, $x \in [-6,4]$

Pt° inicial
$$t = -5 \Rightarrow \sqrt{n = -6}$$
 (-6,25)

Pto final (above)

$$t=5=3/x=4$$
 (4,25)
 $y=25$

$$\begin{cases} x = \cos t - 1 & t \in [0, 2\pi[]] \\ y = \cos^2 t & \Rightarrow y = (\pi + 1)^2, \quad \pi \in [-1, 0] \end{cases}$$

2

Pto enicial
$$t=0 \Rightarrow / x=0$$

$$/ y=1 \rightarrow (0,1)$$

t=211 =) / x=0

Este cermo micro o seu percense em (0,1) e voi âte ao pento (-2,1) (quado t=T) e depois volte regresse ao pento (0,1).

Cerus b) 1 x=1+2t $\begin{cases} x = 1 + 2 \cosh t \\ y = 3 - 4 \cosh t \end{cases}, t \in \mathbb{R}.$ Recte y = 5-2x y = 5-2x, mes como cosht >1, enter Cosht = 2-1 2/1 (a) 21-12/2 > Seein-recto que peropriso ; inich peropriso ; con o sentio 4 = 2 8 cn (₹+t) , + ∈ [0, 21] $e)/x=z\cos t$, t ∈ [0, zn [Accides forces porte de checuperdica contado cesi (0,0) e naio 2. Has a 1º pp inicial 2. A 2º 1 t=0 =) A / x=0 (2,0) (2,0))2 > et $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1}$ pereamida una mez pereornido en les. , te [0, 211[Pto inicial $A \begin{cases} x=1 \\ y=1 \end{cases}$ personnida les us to sentido indicado

d)
$$y = -1 + 2\cos(\overline{11} - 3t)$$
, $t \in [0, \overline{11}($

Servi-elipse perconnido entre o pto enicial A/ == 3 (3,1) e o pento B (1,1) ha sentido indicado

e)
$$\int x = 1 + 2t$$
, $t \in [0, 2[$

são dues perametrizações diferentes do

y = 7 - 421t=0 => Aw (1,3) -> pt energl 及=1=) A-0(1,3)-)bt t=2 30(5,-5) pt feval le = 3 => Bro (5-1) pto

3.a)
$$\vec{R}(t) = (t-1, t^2)$$

$$\overrightarrow{R}'(t) = (1, 2t)$$
 $\longrightarrow \overrightarrow{R}'(z) = (1, 4) \rightarrow \text{Vector-teyente}$

$$\vec{R}^{(1)}(t) = (3t^2e^{t^3}) \frac{1}{t+1} - 3t^2$$

$$\overrightarrow{R}^{(1)} = (3e, \frac{1}{2} - 3) = (3e, -\frac{5}{2}) \rightarrow \text{vector tergente}$$

$$(214) = \vec{R}(1) + t\vec{R}(1)$$
, ter

$$(714) = (2, ln2-1) + t(3e, -5)$$

c)
$$\vec{R}(t) = \left(\frac{t^2-1}{t+2}, tent\right)$$
 to =0.

$$R^{3}(t) = \left(\frac{t^{2}+4t+1}{(t+2)^{2}}, \frac{1}{\cos^{2}t}\right)$$

$$R'(c) = (\frac{1}{4}, 1)$$
 rueden tengente

$$R^{3}(t) = \left(\frac{1}{2\sqrt{t-1}}, 12t^{3}\right)$$

$$(3) = (\frac{1}{2\sqrt{2}}, 324) \rightarrow \text{vector terperto}$$

Roche levgente:

4. O weater tergente à cenue
$$R(t) = (t^2-1, t^2+t)$$
, $t \in \mathbb{R}$ en code enstente, doch for

$$R^{(t)} = (3t^2, 2t+1)$$

se ele deue ser perdeb à neate / n=-1+3t, ter.

deue ser perdeb 00 weder (3,-1)

$$R'(t) = (3t^2, 2t+1) = (3,-1)$$

 $\begin{cases} 3t^2 = 3 \\ 2t+1 = -1 \end{cases}$ $\begin{cases} t^2 = 1 \\ 2t = -2 \end{cases}$ $\begin{cases} t = -1 \end{cases}$

Greendo t=-1, R'(-1) é perdelo co mede (3,-1).

5.
$$R(t) = (est, t^2 + t)$$
, ter a vecler tendente a cenno $R'(t) = (-sent, 2t - 1)$, ter s vecler tendente a $R(t)$.

5. a) Vecter tergente à cerus é verticel quardo

$$\mathbb{R}^{n}(t) = (0, k)$$

logo -sent = 0 (=) t = kit, k (= 2/

b) vector terpente à censa é haisentel que cob

a 2º coordenada é ruela. Y

6.
$$R(t) = \left(\frac{t^4}{4} + \frac{t^3}{3} + 1, \frac{t^3}{3} + 2t - 1\right)$$

 $R(t) = \left(t^3 + t^2, t^2 + 2\right)$

$$\vec{u}(t) = \left(\frac{t^4}{4} + t - 1, \frac{t^2}{2} + 2t\right)$$

$$\vec{u}(t) = \left(t^3 + 1, t + 2\right)$$

$$a) \quad \overrightarrow{R}'(t) / / \overrightarrow{u}'(t)$$

$$R'(t) = k \vec{u}'(t)$$

$$\frac{t^3+t^2}{t^3+1} = \frac{t^2+2}{t+2}$$
 (=)

 $(t^3+t^2)(t+z) = (t^3+1)(t^2+z)$, $t \neq -2 \land t \neq -1$. $-t^5+t^4+t^3+t^2-z = 0 \rightarrow t = 1$ equação equação

, KER

logo quado t=1, os makes são perdebs.

$$(n,y) = \overrightarrow{R}(1) + t\overrightarrow{R}'(1)$$
, ter

$$(A,y) = (\frac{1}{4} + \frac{1}{3} + 1, \frac{1}{3} + 2 - 1) + t(2,3), t \in \mathbb{R}$$

$$(n_{19}) = \left(\frac{19}{12}\right) \frac{4}{3} + t(2_{13})$$
, ter.

Eq. de neete tergente à cenue Il (+) vo ponte Il (1)

$$(213) = (\frac{1}{4} + 1 - 1) + (213)$$
, terr.