

Eng. Mecatronica, Mecanica e computação

Gerador CC

Prof. Msc. Alexsandro M. Carneiro

www.ucdb.br/docentes/alexsandro Eng. Mecatronica, Mecanica e Computação

2010

- 1. Equação da Reta
- 2. Gerador CC:
 - Definição de gerador
 - Gerador Ideal
 - Gerador Real
 - Curva Característica
 - Max. Transferência de potência

Reta

$$Y = ax + b$$

Ordenada

$$Tg = \frac{OP}{ADJ} = \frac{seno}{\cos eno}$$

$$Sn = \frac{OP}{Hip}$$

$$Cos = \frac{ADJ}{Hip}$$

Definição

- Dispositivos que convertem algum tipo de energia em energia elétrica.
 - Química em Elétrica
 - Pilhas
 - Mecânica em Elétrica
 - Grupo gerador

Fonte DC(Contínua)

• Fonte AC(alternada)

Geradores

- Classificação:
 - Tensão (V)
 - Corrente (I)
- Para conhece-los precisamos:
 - 1. Definir o modelo de Gerador Ideal
 - 2. Impor as condições para que o mundo real aproxime-se do ideal.

Fornece sempre o mesmo valor

- E: F.E.M(força eletro Motriz) do gerador
- **Pelo gráfico**, qualquer que seja I(A) que está percorrendo entre os pólos de E, a tensão é a mesma.

- Pm= E* I
- Pe= U*I

Ger. Ideal

Pot elétrica Fornecida ao circ. Externo.

$$Pe = U *I$$

$$Pm = E *I$$

Pot do gerador(faz o ger. funcionar, sua origem não é elétrica.

Logo rendimento significa
$$\eta = \frac{Pe}{Pm} * 100$$

Gerador Ideal

Ger. Ideal

Características:

- 1. $\eta = 1 = 100\%$, sem perdas
- 2. A R_{int} não rouba nada de V(v) a ser enviada para carga
- 3. Gráfico perfeito para qualquer I(A)

Gerador Real

Características:

- Apresenta perdas (η<1)
 - Possui uma resistência interna (dissipação)
 - A I(A) que percorre o circ. vai alterar a Vr.

- Características:
 - Curva característica do gerador (gráfico)
 - Resistência interna de uma pilha:

- Características:
 - 4. Curva característica do gerador (gráfico)
 - 02 condições: Circ. em curto e aberto

- Equação: na Malha aberta
 - Ou seja I(A) = 0

 $U = E - R_{Interna} * I_{total}$

Equação: na Malha em Curto Circuito

$$-$$
 Ou seja $I(A) = 0$

- Equação e dados do gerador(resumo)
 - Malha aberta: I=0, E=Vs, R=∞
 - Curto Circuito: Vs=0, R=0 e I= Icc

CURVA DO GERADOR (RETA)

Potencia

$$P = V *I$$

$$V = R *I$$

$$P = \frac{V^2}{R}$$

$$P = I^2 *R$$

$$P = V *I$$

Características:

5. Potencia no Gerador

- Lembre-se que P = V * I e V= R * I
- Multiplique a equação do gerador por I(A)

- Características:
 - 6. Rendimento (η)

$$\eta = \frac{Pe}{Pm} * 100$$

Exercícios

Exe 01

- 1. Dado um E= 20v, $R_{interna} = 3\Omega$ com $R_L = 17 \Omega$, calcule:
 - It, Pm, Pe e η.

Exe 02

2. Dado a curva do gerador, encontre:

- a) E e R_{interna}
- $\mathbf{V}(\mathbf{v})$
- b) η quando ligado há uma $R_L = 40\Omega$
- c) Pot. Dissipada no gerador com $R_L = 40\Omega$
- d) Det. Graficamente a V(v) nos terminais do gerador, quando I(A) que o percorre é de 1,5 A.

$$U = R_L *I$$

$$U = R_L * \frac{E}{R_L + R_i}$$

$$U = \frac{R_L *E}{R_L + R} = Uq$$

A intersecção (ponto Q) define Iq & Uq satisfazendo as equações abaixo.

$$Uq = E - R_{Interna} * Iq$$

$$Uq = R_{I} * Iq$$

Máxima Transferência de Potencia

Potencia

- Definição
 - Capacidade de realizar trabalho
 - Exemplos
 - Motores: HP ou CV, 1 CV = 746 W
 - Lâmpada: Quantidade de energia fornecida no material para deslocar eletrons.
 - Etc...

$$P = V *I$$

$$V = R *I$$

$$I = \frac{V}{R}$$

$$P = \frac{V^2}{R}$$

$$P = I^2 *R$$

$$P = V *I$$

UCDB Max. Transf. de Pot.

1. Pot. Dissipada na R_{interna}

$$Pd = R_{interna} * I^2$$

2. Pot. Utilizada na ${
m R_L}$

$$Pu = R_{Load} * I^2$$

3. Pot. Gerada na fonte

$$Pg = E * I$$

Com isso temos

$$Pg = Pd + Pu$$

$$Pu = Pg - Pd$$

$$Pu = E*I - R_{interna}*I^2$$

Max. Transf. de Pot. Circ. Aberto

Max. Transf. de Pot. Circ. Curto

Pu = PuMAx entre os terminais da Fonte

- Como achar o ponto IDEAL?
 - Cálculo Diferencial (Volumes)
 - Deriva uma vez e iguala a zero(pto de máximo)
 - Deriva a segunda vez e verifica o ponto de mínimo
 - Para Gerador CC (Não existe).

lax. Transf. de Pot.

• Equações:

- Para achar pontos de máximo e mínimo de uma função, derivamos e igualamos a zero.
- Max. Ou Min? Deriva de novo e checa o resultado com zero. Para Gerador CC sempre será o de mázimo.

1.
$$Pu = E *I - R_{int} *I^{2}$$

$$\frac{dPu}{dI} = E - 2R_{int} *I$$

$$E = \frac{3}{2} *I = 0$$

$$I = \frac{E}{2R_{int}} \longrightarrow I = \frac{1}{2} *I = \frac{I(A)}{R} = Icc$$

$$R_{Load}$$

$$R_{Load}$$

$$Ponto de Máximo$$

$$R_{Load}$$

2.
$$U = E - R_{\text{int}} * I$$

$$U = E - R_{\text{int}} * \frac{Icc}{2}$$

$$U = E - R_{\text{int}} * \frac{E}{R_{\text{int}}}$$

$$U = E - R_{\text{int}} * \frac{E}{2R_{\text{int}}}$$

$$U = E - \frac{E}{2}$$

$$U = \frac{E}{2}$$

Max. Transf. de Pot.

• Equações:

2. (cont)
$$U = R_L * I$$

$$Agora$$

$$\frac{E}{2} = R_L * \frac{1}{2}$$

 $isolando\left(R_{L}\right)$

$$R_L = \frac{E}{2} * \frac{2R_{\rm int}}{E}$$

$$R_L = R_{\rm int}$$

3. Quando será Pu_{Max}?

UCDB Max. Transf. de Pot.

Com isso o **Rendimento** pode ser calculado de uma das formas abaixo:

$$1. \eta = \frac{Pe}{Pm} = \frac{U * I}{E * I} = \frac{U}{E}$$

$$2. \eta = \frac{E - R_{\text{int}}I}{E}$$

3.
$$\eta = \frac{R_L * I}{(R_L + R_{int}) * I} = \frac{R_L}{(R_L + R_{int})}$$

Principais Equações

$$U = E - R_{Interna} * I_{total}$$

$$Pu = E*I - Rinterna *I^2$$

Pot. Dissipada na R_{interna}

$$Pd = R_{interna} * I^2$$

Pot. Utilizada na R_L

$$Pu = R_{Load} * I^2$$

Pot. Gerada na fonte

$$Pg = E * I$$

$$U = \frac{E}{2} \qquad I = \frac{E}{2R_{\text{int}}}$$

$$Pu_{Max} = \frac{E^2}{4R_{\text{int}}}$$

1.
$$\eta = \frac{Pe}{Pm} = \frac{U * I}{E * I} = \frac{U}{E}$$

2. $\eta = \frac{E - R_{\text{int}}I}{E}$

3. $\eta = \frac{R_L * I}{(R_L + R_{\text{int}}) * I} = \frac{R_L}{(R_L + R_{\text{int}})}$

Exercícios

Ex 1.

• Calcule: V6, V4,I_{total} e η

Ex2.

• Calcule: V1, V100,I_{total} e η

Ex3.

• A partir do circuito abaixo e obedecendo a tabela, monte o gráfico da curva (V x I) característica do gerador. Considere o potenciômetro como a resistência da tabela.

$R(\Omega)$	1Κ Ω	900 Ω	800 Ω	700 Ω	600 Ω	500 Ω	400 Ω	300 Ω	200 Ω	100 Ω
U(v)										
I(A)										

Ex4.

• Repita o ex3. adicionando a tabela a linha da potencia fornecida ao ciruito a tabela, com isso monte o gráfico da potencia útil máxima (Pu x I). Considere o potenciômetro como a resistência da tabela.

$R(\Omega)$	1ΚΩ	900 Ω	800 Ω	700 Ω	600 Ω	500 Ω	400 Ω	300 Ω	200 Ω	100 Ω
U(v)										
I(A)										
Pu (w)										
η%										

Pesquisa

 Procure nos livro base e responda as perguntas abaixo:

Como funciona um gerador de corrente Ideal?
 Observe seu circuito.

 Como é possível projetar um gerador de I(A) a partir de um gerador de V(v)?

- Desenvolver em sala a lista 02 (gerador CC).
 - Disponível no site da disciplina.
 - Site:
 - http://www.ucdb.br/docentes/alexsandro
 - Pasta: eletrônica I

- CHOUERI Jr, C.A; LOURENÇO, A.C. e CRUZ, E.C.A. Circuitos em Corrente Contínua. São Paulo. Érica, 1996.*
- GUSSOW, Milton. *Eletricidade Básica*. São Paulo: Schaun/McGraw-Hill, 1985.
- Notas de Aula. Mauro Conti Pereira. Disponível em http://www.ucdb.br/docentes/mauro. Acessado em 18/02/2010.