Dataset

100 Sports Classes, 13572 Training Samples, 500 Validation Samples, 500 Test Samples, 224x224 RGB images.

Initial Model

An initial model is run with 5 Conv layers, 5 Max Pooling layers, 2 Fully Connected layers, and 1 Output layer. The total number of trainable parameters: 56,660,644

44 - d - 3	 			 -1	
Mode1	se	auı	em	aΙ	

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 224, 224, 32)	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 112, 112, 32)	0
conv2d_1 (Conv2D)	(None, 112, 112, 64)	18496
<pre>max_pooling2d_1 (MaxPooling 2D)</pre>	(None, 56, 56, 64)	0
conv2d_2 (Conv2D)	(None, 56, 56, 128)	73856
<pre>max_pooling2d_2 (MaxPooling 2D)</pre>	(None, 28, 28, 128)	0
conv2d_3 (Conv2D)	(None, 28, 28, 256)	295168
<pre>max_pooling2d_3 (MaxPooling 2D)</pre>	(None, 14, 14, 256)	0
conv2d_4 (Conv2D)	(None, 14, 14, 256)	590080
<pre>max_pooling2d_4 (MaxPooling 2D)</pre>	(None, 7, 7, 256)	0
flatten (Flatten)	(None, 12544)	0
dense (Dense)	(None, 4096)	51384320
dense_1 (Dense)	(None, 1024)	4195328
dense_2 (Dense)	(None, 100)	102500
Total params: 56,660,644 Trainable params: 56,660,644 Non-trainable params: 0		

Loss: Categorical-Crossentropy

Optimizer: RMSprop with a learning rate of 0.0001

Metric: Categorical Accuracy

Train Batch Size: 64, Validation Batch Size: 32

Network Architecture

Train and Validation Accuracy

Train and Validation Loss

Observation & Conclusion

After ~5-6 epochs, the model starts overfitting. The model did very well on the training dataset (~99.7% accuracy) but couldn't generalize well on the validation set (On average ~50% accuracy). The reason for such severe overfitting is that the model is too complex for the given dataset.

Solution

Solutions for overfitting:

- Add more data to the training dataset
- Data Augmentation
- Reduce the complexity of the model
- Add Dropout regularization
- Add L2 Regularization
- Use other architectures.

For convolutional neural networks, data augmentation, dropout, and using other architectures are the most practical ways of reducing overfitting. Augmenting and adding dropout regularization are the first things to try.