Model Documentation of the 'Missile autopilot'

1 Nomenclature

1.1 Nomenclature for Model Equations

- x state vector
- u control input vector
- w noise vector
- z regulated output vector
- y measurement vector

2 Model Equations

State Vector and Input Vector:

$$x \in \mathbb{R}^4 u$$
 $\in \mathbb{R}^1 w \in \mathbb{R}^2 z$ $\in \mathbb{R}^2 y \in \mathbb{R}^2$

System Equations:

$$\dot{x}(t) = Ax(t) + B_1 w(t) + Bu(t) \tag{1a}$$

$$z(t) = C_1 x(t) + D_{11} w(t) + D_{12} u(t)$$
(1b)

$$y(t) = Cx(t) + D21w(t) \tag{1c}$$

Outputs: z

2.1 Exemplary parameter values

Symbol	Value
A	$\begin{bmatrix} -0.876 & 1.0 & -0.1209 & 0 \end{bmatrix}$
	$\begin{bmatrix} 8.9117 & 0 & -130.75 & 0 \end{bmatrix}$
	0 0 -150.0 0
	$\begin{bmatrix} -1.0 & 0 & 0 & -0.05 \end{bmatrix}$
B	
	150.0
	0
B_1	F 0 4
	0
	150.0
C_1	$\begin{bmatrix} -0.25 & 0 & 0 & 3.487 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & -3.0 & 0 \end{bmatrix}$
C	$\begin{bmatrix} -1.0 & 0 & 0 & 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & -1.0 & 0 & 0 \end{bmatrix}$
D_{11}	[0 0.25]
	0 0
D_{12}	[0]
	3.0
D_{21}	$\begin{bmatrix} 0 \\ 1.0 \end{bmatrix}$
	0.01 0

3 Derivation and Explanation

This model is part of the "'COMPleib"' - library and was automatically imported into ACKREP.

The original description was:

AC4 Missile autopilot ehemals MA1 B. Fares, P. Apkarian and D. Noll, "An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory", 2000, IJOC, Vol. 74, Nr. 4, pp. 348-360

4 Simulation

Figure 1: Simulation of the Missile autopilot.

References

[1] . Fares, P. Apkarian and D. Noll, "An Augmented Lagrangian Method for a Class of LMI-Constrained Problems in Robust Control Theory", 2000, IJOC, Vol. 74, Nr. 4, pp. 348-360