Algorytmy i struktury danych

Sprawozdanie z zadania w zespołach nr. 1 prowadząca: dr hab. inż. Małgorzata Sterna, prof PP

Algorytmy sortujące

autorzy:

Piotr Więtczak nr indeksu 132339, Tomasz Chudziak nr indeksu 136691

22 marca 2018

1 Implementacja algorytmów sortujących

Do implementacji metod sortowania posłużyliśmy się językiem C++, każda metoda została napisana w odrębnej funkcji, która za parametry przyjmuje kolejno: wskaźnik na tablicę, rozmiar sortowanej tablicy oraz jako ostatni wartość opcjonalną "reverse" typu bool, która odpowiada za to czy tablica będzie posortowana malejąco. Do mierzenia czasu poszczególnych metod użyliśmy klasy $std:chrono:high::resolution_clock$ z biblioteki chrono.

2 Badana zależność czasu obliczeń t[s] od liczby sortowanych elementów n.

W celu lepszego przedstawienia otrzymanych danych podzieliliśmy metody na dwie grupy, "wolne" (Insertion Sort, Selection Sort, Bubble Sort) i śzybkie" (Counting Sort, Quick Sort, Merge Sort, Heap Sort).

2.1 Metody "wolne"

2.1.1 Opis algorytmów "wolnych"

Insert Sort

Zalety:

- działa w miejscu
- stabilny

Wady:

•

Inne cechy:

• zachowanie naturalne

Tabela przedstawiająca złożoność obliczeniową dla przypadków optymistycznego, średniego i pesymistycznego

	złożoność obliczeniowa	złożoność obliczeniowa	złożoność obliczeniowa
	dla przypadku	dla przypadku	dla przypadku
	optymistycznego	średniego	pesymistycznego
Insert Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Tablica 1: Tablica złożoności obliczeniowej dla metody Insert Sort

Selection Sort

Zalety:

- działa w miejscu
- stabilny

Wady:

•

Inne cechy:

• zachowanie naturalne

Tabela przedstawiająca złożoność obliczeniową dla przypadków optymistycznego, średniego i pesymistycznego

	złożoność obliczeniowa	złożoność obliczeniowa	złożoność obliczeniowa
	dla przypadku	dla przypadku	dla przypadku
	optymistycznego	średniego	pesymistycznego
Insert Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Tablica 2: Tablica złożoności obliczeniowej dla metody Selection Sort

Bubble Sort

Zalety:

- działa w miejscu
- stabilny

Wady:

•

Inne cechy:

• zachowanie naturalne

Tabela przedstawiająca złożoność obliczeniową dla przypadków optymistycznego, średniego i pesymistycznego

	złożoność obliczeniowa	złożoność obliczeniowa	złożoność obliczeniowa
	dla przypadku	dla przypadku	dla przypadku
	optymistycznego	średniego	pesymistycznego
Insert Sort	$O(n^2)$	$O(n^2)$	$O(n^2)$

Tablica 3: Tablica złożoności obliczeniowej dla metody Bubble Sort

Tabela ilustrująca zależności czasu sortowania od ilości elementów dla metod "wolnych", zakres liczb [1,n].

Insertion Sort Selection Sort Bubble	Sort
--	------

Tablica 4: Wyniki badań zależności czasu od iloci elementów dla metod "wolnych"

Wykres ilustrujący zależności czasu sortowania od ilości elementów dla metod "wolnych", zakres liczb [1,n].

2.2 Metody "szybkie"

Spis treści

1	1 Implementacja algorytmów sortujących				
2	Bada	ana zależność czasu obliczeń $t[s]$ od liczby sortowanych elementów n .	1		
	2.1	Metody "wolne"	1		
		2.1.1 Opis algorytmów "wolnych"	1		
	2.2	Metody "szybkie"	3		