Classifying r/GRE and r/GMAT posts

An Application of Natural Language Processing and Machine Learning

By

Nnenna Isigwe

DSIR 927, 11/5/2021

Problem Statement

How can Manhattan Prep track what people are saying about their products on Reddit?

- The company would like to leverage NLP in improving UX.
- The aim is to remain a top choice for GRE and GMAT resources.

Data

	r/GRE	r/GMAT
Scraped	10,000 posts	8,500 posts
Unique Titles	9,523	8,149
Null values (self texts)	1,673	1,271
Final count (post-cleaning)	9,447 posts	8,072 posts

Data Cleaning

- Engineered word count variable for title and self text columns.
- Dropped entries where title word count > 60 words, self text word count > 1,700.
- Mean word counts did not differ significantly between both subreddits.
- For titles, 11 words and 10 words for r/GRE and r/GMAT, respectively. For self texts, 124 & 117 words for r/GRE and r/GMAT, respectively.
- Dropped duplicate titles, links, and replaced null self texts with corresponding entries in title column.

Preprocessing

- X = title, self text
- y = subreddit (1 = r/GRE; 0 = r/GMAT)
- Instantiated train/test split:
 - Stratify = y
 - Test size = 0.25
 - Random State= 42

• Instantiated Count Vectorizer :

- Stop words = "english"
- ngram range = (1,3) for titles & (1,6) for self texts
- Max df = 0.8 for both titles and self texts
- Min df = 0.02 for titles, 0.05 for self texts
- Count vectorized features = 133

EDA

EDA (2)

Model Summary Results

Baseline Accuracy

1 = 0.5392

0 = 0.4608

	Naïve Bayes	Random Forest	Logistic Regression
Parameters	$\alpha = 1.0$	Max_depth= 19 Max features = 'auto' Min samples leaf = 2 Min samples split = 4 No of estimators = 750	Max iter = 20,000 Penalty = 12 Solver = 'lbfgs'
Accuracy (Train Test)	0.89 0.90	0.90 0.90	0.91 0.90
Sensitivity	0.85	0.98	0.85
Specificity	0.94	0.79	0.94

Sentiment Analysis

- $X = self \ text$; y = subreddit (1 = r/GRE; 0 = r/GMAT)
- 1,288 posts where "manhattan" is mentioned at least once.
- Instantiated Count Vectorizer with same parameters.
- Instantiated Sentiment Intensity Analyzer with default parameters.
- "Sentiments" associated with Manhattan Prep in r/GRE & r/GMAT were neutral on average.

Compound Score	r/GRE	r/GMAT
Positive	504 posts	410 posts
Negative	164 posts	139 posts

Model Summary Results (2)

Baseline Accuracy for Manhattan Subsample

1 = 0.5512

0 = 0.4488

	Naïve Bayes	Random Forest	Logistic Regression	Logistic Regression (Manhattan Subsample)
Parameters	$\alpha = 1.0$	Max_depth= 19 Max features ='auto' Min samples leaf = 2 Min samples split = 4 No of estimators = 750	Max iter = 20,000 Penalty = 12 Solver = 'lbfgs'	Max iter = 10,000 Penalty = 12 Solver = 'lbfgs'
Accuracy (Train Test)	0.89 0.90	0.90 0.90	0.91 0.90	0.99 0.94
Sensitivity	0.94	0.98	0.94	0.93
Specificity	0.85	0.79	0.85	0.95

Conclusion & Recommendations

- Estimated 4 classification models, which have accuracy scores of approx. 90% in distinguishing between r/GRE and r/GMAT posts.
- Recommended model is Logistic Regression, due to better model performance in this case.
- All 4 models are low bias and low variance models.
- Sentiments associated with Manhattan Prep in both subreddits were **neutral** on average, and did not differ significantly between both subreddits.
- Deeper analysis should be carried out on posts where compound sentiment scores were negative.

References

- https://towardsdatascience.com/classifying-reddit-posts-with-natural-language-processing-and-machine-learning
- <u>695f9a576ecbhttps://towardsdatascience.com/classifying-reddit-posts-with-natural-language-processing-and-machine-learning-695f9a576ecb</u>
- https://stackoverflow.com/questions/66783488/code-efficiency-performance-improvement-in-pushshift-reddit-web-scraping-loop