# Data Link Control

#### Data Link Control:

- Requirements for Effective Data Communication:
  - Frame Synchronization
  - Flow control

Enables a receiver to regulate the flow of data from a sender so that the receivers buffers do not overflow

- Error control
  - Detection: Detects the errors in received data the receiver.
  - Error Control: If error, retransmission of damaged frames
- Control Information and data on same link
- Link Management

## **Framing**

- Data link layer needs to pack bits into frames, so that each frame is distinguishable from another
- Separate a message from one source to a destination, or from other messages to other destinations, by adding a sender address and a destination address
- Fixed-size framing: ATM
- Variable-size framing
  - Need a way to define the end of the frame and the beginning of the next
  - Character-oriented approach and bit-oriented approach

#### **Character-Oriented Protocols**



• Byte stuffing: process of adding 1 extra byte whenever there is a flag or escape character in the text



#### **Bit-Oriented Protocols**

Prame structure

Data from upper layer

Variable number of bits

O1111110 Header O1111010110 ••• 11011110 Trailer O1111110

Flag Flag

• Bit stuffing: process of adding one extra 0 whenever five consecutive 1s follow a 0 in the data



#### Flow Control:

- Ensuring the sending entity does not overload the receiving entity with data
  - Preventing buffer overflow
- Transmission time
  - Time taken to transmit all bits into medium
- Propagation time
  - Time for a bit to traverse the link

## Stop and Wait:

- Source transmits frame
- Destination receives frame and replies with acknowledgement
- Source waits for ACK before sending next frame
- Destination can stop flow by not sending ACK
- Works well when message is sent in a few large frames

## Sliding Windows Flow Control:

- Allow multiple frames to be in transit
- Receiver has buffer W long
- Transmitter can send up to W frames without ACK
- Each frame is numbered
- ACK includes number of next frame expected
- Sequence number bounded by size of field (k bits)
  - Frames are numbered as 2k
  - Actual window size: 2<sup>k</sup> 1

## Example Sliding Window:



## Sliding Window Enhancements:

- Receiver can acknowledge frames without permitting further transmission (Receive Not Ready)
- Must send a normal acknowledge to resume
- If duplex, use piggybacking
  - If no data to send, use acknowledgement frame
  - If data but no acknowledgement to send, send last acknowledgement number again.

#### Error Detection:

- Additional bits added by transmitter for error detection code
- Parity
  - Value of parity bit is such that character has even (even parity) or odd (odd parity) number of ones
  - Even number of bit errors goes undetected

## Cyclic Redundancy Check (CRC):

- For a block of k bits transmitter generates n bit sequence
- Transmit n bits which is exactly divisible by some number
- Receiver divides frame by that number
  - If no remainder, assume no error

## **Error Control:**

- Automatic Repeat Request
  - Error detection
  - Positive acknowledgment
  - Retransmission after timeout
  - Negative acknowledgement and retransmission

## Automatic Repeat Request (ARQ):

- Stop and wait
- Go back N
- Selective reject (selective retransmission)

## Stop and Wait:

- Source transmits single frame
- Wait for ACK
- If received frame damaged, discard it
  - Transmitter has timeout
  - If no ACK within timeout, retransmit
- If ACK damaged, transmitter will not recognize it
  - Transmitter will retransmit
  - Receive gets two copies of frame
  - Use ACK0 and ACK1

## Stop and Wait:



Simple but Inefficient

#### Go Back N:

- Based on sliding window
- Retransmit all the frames from the frame with error



## Selective Reject:

- Also called selective retransmission
- Only rejected frames are retransmitted
- Subsequent frames are accepted by the receiver and buffered
- Minimizes retransmission
- Receiver must maintain large enough buffer
- More complex

## Selective Reject:

