MODEL SPECIFICATION

TODAY

- Dummy variables
 - Intercept
 - Slopes
- · Polynomials simple non-linear modeling
- Logarithms elastic modeling

DUMMIES...

When things are not numeric

DUMMIES - DEFINITION

Qualitative attributes not easily measured as a number

Male/female

Region

Examples:

Likert scale

Industry type

No just 0/1 variables

DUMMIES - INTERCEPT

Easiest case:

Only two categories

Dummy moves intercept

BASIC SET-UP

$$Y = \beta_0 + \beta_1 \times_1 + \beta_2 \times_2 + \epsilon$$

X_I: Continuous variable

X₂: Dummy variable

 $X_2 = 1$ if condition true

 $X_2 = 0$ if condition false

Interpretation of β_2 : The effect of condition true **RELATIVE to condition false/omitted category**, holding X_1 constant

Y

$$\beta_1 > 0, \beta_0 > 0$$

If $X_2 = 1$

$$\beta_2 < 0, \beta_1 > 0, \beta_0 > 0$$

 β_0

$$\beta_0 + \beta_2$$

Y

$$\beta_2 > 0, \beta_1 > 0, \beta_0 > 0$$

If $X_2 = 1$

If
$$X_2 = 0$$

$$\beta_1 > 0, \beta_0 > 0$$

 $\beta_0 + \beta_2$

 β_0

EXAMPLE: INCOME BY SEX

Dummy moves intercept

Income =
$$\beta_0 + \beta_1$$
 female + β_2 educ
+ β_3 age + β_4 hours + ϵ

What is excluded category?

Men

WITHOUT DUMMIES

```
Call:
lm(formula = inc_1000 \sim educ + age + hrs, data = gss)
Residuals:
   Min
       1Q Median 3Q
                                Max
-83.597 -19.122 -6.098 9.248 193.651
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -86.85764 7.51076 -11.564 < 2e-16 ***
educ 5.32744 0.39478 13.495 < 2e-16 ***
     0.58032 0.09291 6.246 6.33e-10 ***
age
hrs 0.78317 0.07867 9.955 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 34.28 on 952 degrees of freedom
  (709 observations deleted due to missingness)
Multiple R-squared: 0.2536, Adjusted R-squared: 0.2513
F-statistic: 107.8 on 3 and 952 DF, p-value: < 2.2e-16
```

DUMMIES - INTERCEPT

```
Call:
lm(formula = inc_1000 ~ female + educ + age + hrs, data = gss)
Residuals:
  Min 1Q Median 3Q Max
-89.56 -18.78 -5.61 10.21 184.07
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) -75.24235
                      7.52224 -10.003 < 2e-16 ***
femaleTRUE -15.60004
                      2.25500 -6.918 8.41e-12 ***
                      0.38598 14.179 < 2e-16 ***
educ
       5.47291
                      0.09071 6.291 4.80e-10 ***
   0.57069
age
     0.64031 0.07953 8.051 2.44e-15 ***
hrs
Signif. codes: 0 '***'
                     0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

DUMMIES - PREDICTIONS

For a male:

0×-15.60				
$+ 12 \times 5.47$				
$+ 45 \times 0.57$				
$+ 40 \times 0.64$				
- 75.24				

$$= 41.65$$

For a female:

$$1 \times -15.60$$

+ 12×5.47
+ 45×0.57
+ 40×0.64
- 75.24

$$= 26.05$$

DUMMIES - INTERCEPT - AGAIN

More complicated case:

More than two categories

Dummy moves intercept

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 C_2 + \beta_3 C_3 + \epsilon$$

C₂: Category 2

C₃: Category 3

 $C_2 = 1$ if in category 2

 $C_2 = 0$ if not in category 2

 $C_3 = 1$ if in category 3

 $C_3 = 0$ if not in category 3

Interpretation of β_2 : The effect of being in category 2 RELATIVE to being in category I, holding X_1 constant

Interpretation of β_3 : The effect of being in category 3 RELATIVE to being in category I, holding X_1 constant

DUMMIES - SLOPE

Dummy moves:

intercept

and

slope

BASIC SET-UP

$$Y = \beta_0 + \beta_1 \times_1 + \beta_2 \times_2 + \beta_3 \times_1 * \times_2 + \epsilon$$

X_I: Continuous variable

X₂: Dummy variable

 $X_1 * X_2$: Interaction

Interpretation of β_3 : The extra effect on slope RELATIVE to condition false/omitted category

EXAMPLE - SLOPE

Same example: Income of men and women

Income =
$$\beta_0 + \beta_1$$
 female + β_2 educ
+ β_3 female X educ
+ β_4 age + β_5 hours + ϵ

DUMMIES - SLOPE

```
Call:
lm(formula = inc_1000 ~ female * educ + age + hrs, data = gss)
Residuals:
   Min
         1Q Median 3Q
                                  Max
-93.895 -18.859 -5.598 10.326 188.140
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                           8.76488
(Intercept)
               -86.57879
                                    -9.878 < 2e-16 ***
femaleTRUE
                11.46854
                           11.05527
                                     1.037
                                             0.2998
educ
                 6.30567
                           0.50897
                                    12.389
                                            < 2e-16 ***
                           0.09049 6.244 6.42e-10 ***
                 0.56505
age
                 0.64352
                           0.07932
                                     8.113 1.52e-15 ***
hrs
femaleTRUE:educ -1.94460
                            0.77760 - 2.501
                                             0.0126 *
                       0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
Signif. codes:
```

DUMMIES - PREDICTIONS

For a male:

For a female:

0 x | 1.47 + | 12 x 6.3 | - 0 x | 1.94 + | 45 x 0.57 + | 40 x 0.64 - | 86.58 female educ femaleXedu age hours constant

| x | 1.47 + | 2 × 6.3 | - | 2 × | 1.94 + 45 × 0.57 + 40 × 0.64 - 86.58

= 40.51

= 28.7

POLYNOMIALS

Simple non-linear modeling

PROBLEM

So far: Everything linear (in parameters)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

Problem: a lot of effects are not linear

MODELVALIDATION

SOLUTIONS

Polynomial models

Double log and semi-log

POLYNOMIALS

Simplest model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

If effect of X₁ not linear

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \epsilon$$

REAL MODELS HAVE CURVES

$$\beta_1 > 0$$
, $\beta_2 < 0$

$$\beta_1$$
<0, β_2 >0

Remember: Holding X₂ constant

INCOME AND AGE

Question: how does age affect income?

Expected effect?

Data: General Social Survey

Sample: White women aged 20 to 60

SUMMARY STATISTICS

<pre>> summary(gss_women[c("age", "educ", "income", "hrs")])</pre>				
age	educ	income	hrs	
Min. :20.00	Min. : 2.00	Min. : 500	Min. : 1.00	
1st Qu.:32.00	1st Qu.:12.00	1st Qu.: 13750	1st Qu.:35.00	
Median :42.00	Median :14.00	Median : 27500	Median :40.00	
Mean :41.14	Mean :13.95	Mean : 34623	Mean :38.76	
3rd Qu.:51.00	3rd Qu.:16.00	3rd Qu.: 45000	3rd Qu.:44.75	
Max. :60.00	Max. :20.00	Max. :200000	Max. :80.00	
		NA's :194	NA's :207	

LINEAR MODEL

```
Call:
lm(formula = inc_1000 ~ educ + age + hrs, data = gss_women)
Residuals:
   Min 1Q Median 3Q
                            Max
-53.718 -14.491 -3.522 8.534 174.162
Coefficients:
         Estimate Std. Error t value Pr(>|t|)
educ
     4.1344 0.5271 7.843 7.70e-14 ***
    age
    0.6008 0.1237 4.859 1.91e-06 ***
hrs
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 24.54 on 301 degrees of freedom
 (272 observations deleted due to missingness)
Multiple R-squared: 0.2411, Adjusted R-squared: 0.2336
F-statistic: 31.88 on 3 and 301 DF, p-value: < 2.2e-16
```

POLYNOMIAL MODEL

```
Call:
lm(formula = inc_1000 ~ educ + age + I(age^2) + hrs, data = gss_women)
Residuals:
   Min 1Q Median 3Q Max
-57.081 -13.581 -3.895 8.195 171.262
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -113.67791 20.70894 -5.489 8.60e-08 ***
educ
      3.99177
                       0.52434 7.613 3.51e-13 ***
      3.17586
                       1.01598 3.126 0.00195 **
age
I(age^2)
            -0.03358
                       0.01241 -2.705 0.00721 **
                       0.12265 4.720 3.62e-06 ***
hrs
             0.57890
```

PREDICTED INCOME

PREDICTED INCOME

WHICH IS BETTER?

Polynomial more theoretically appealing

Adjusted R² higher for polynomial (24.93 vs 23.36)

Coefficient for Age² statistically significant

Linear model is easier to interpret

EDUCATION AND FERTILITY

Question: What is the effect of education on fertility?

Data: General Social Survey

Sample: women aged 46 to 55 (no more births)

DESCRIPTIVE STATISTICS

```
summary(gss_kids[c("childs", "educ")])
   childs
                educ
Min. :0.000 Min. : 2.00
Median :2.000 Median :14.00
Mean :2.157
            Mean :13.78
3rd Qu.:3.000 3rd Qu.:16.00
Max. :8.000 Max. :20.00
NA's :1
```

LINEAR MODEL

```
Call:
lm(formula = childs ~ educ, data = gss_kids)
Residuals:
   Min 1Q Median 3Q
                                Max
-3.1026 -1.1195 -0.1195 0.7167 5.5528
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.41344 0.49364 8.941 < 2e-16 ***
      -0.16385 0.03504 -4.677 5.07e-06 ***
educ
```

POLYNOMIAL MODEL

```
Call:
lm(formula = childs ~ educ + I(educ^2), data = gss_kids)
Residuals:
   Min 1Q Median 3Q
                                 Max
-3.3680 -1.0202 -0.0740 0.7415 5.6479
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.680952
                      1.289424 5.181 4.97e-07 ***
educ
     -0.520875  0.190945  -2.728  0.00689 **
I(educ<sup>2</sup>) 0.013345
                     0.007017 1.902 0.05852 .
```

PREDICTED NUMBER OF KIDS

PREDICTED NUMBER OF KIDS

WHICH IS BETTER?

Polynomial more theoretically appealing

Adjusted R² higher for polynomial (9.66 vs 8.59)

Coefficient for Educ² statistically significant (at 10%)

Linear model is easier to interpret

If remove 5 lowest educated women: Effect of Educ² very small

DROP 5 LEAST EDUCATED

```
Call:
lm(formula = childs ~ educ + I(educ^2), data = gss_kids_small)
Residuals:
   Min 1Q Median 3Q Max
-2.9089 - 1.0790 - 0.0790 0.6597 5.6597
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.230589 2.501287 1.691
                                       0.0922 .
educ -0.180591 0.353676 -0.511
                                       0.6101
I(educ<sup>2</sup>) 0.001922
                      0.012215 0.157
                                       0.8751
```

CONSIDERATIONS

Interpretation: Both X and X² change at the same time!

Transformation of X or X² to ease readability (divide by, say, 100)

LOGARITHMS

And the economists who love them

SEMI-LOG - WHEN?

Ln of Y:Y changes in percent for a change in X

Wages and education

Ln of X:Y changes less and less for a change in X

Demand

Diminishing marginal returns

INTERPRETATION OF SEMI-LOGS

$$ln(Y) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$$

 β_1*100 : The percent change in Y for a unit change in X_1 (approximately)

 β_2 * 100: The percent change in Y for a unit change in X_2 (approximately)

SEMI-LOG - RETURNS TO EDUCATION

```
Call:
lm(formula = log(income) ~ female + educ + age + hrs, data = gss)
Residuals:
   Min 1Q Median 3Q Max
-4.3863 -0.3269 0.1118 0.4981 2.7369
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
            6.957859
                      0.195073 35.668 < 2e-16 ***
femaleTRUE
          -0.259098
                      0.058479 -4.431 1.05e-05 ***
                      0.010010 12.682 < 2e-16 ***
educ
            0.126939
                      0.002352 7.701 3.38e-14 ***
            0.018117
age
hrs
                      0.002062 10.786 < 2e-16 ***
            0.022245
```

SEMI-LOG - INTERPRETATION

Women earn 25.9% less than a similar male, holding everything else constant

A year of education increases your income by 12.7%, holding everything else constant

SEMI-LOG - PREDICTIONS

Same male as above

$$0 \times -0.259$$

+ 12×0.127
+ 45×0.018
+ 40×0.022
+ 6.96

= 10.174

Income (\$): $e^10.174 = 26,212$

GRAPHS OF PREDICTIONS

GRAPHS OF PREDICTIONS

INTERPRETATION OF SEMI-LOGS

$$Y = \beta_0 + \beta_1 \ln(X_1) + \beta_2 X_2 + \epsilon$$

 β_1 : An increase of I in the log of X_1 increases Y by β_1 (not very interesting)

Better: A 1% increase in X_1 increases Y by $\beta_1/100$

ELASTICITIES - DOUBLE-LOG

Elasticity: Percent change in Y for a I percent change in X

Elasticity constant for all X

Production functions

DOUBLE-LOG - EXAMPLE

Relation between income and education

In income = $\beta_0 + \beta_1$ In educ + ... + ϵ

LINEAR VERSION

```
Call:
lm(formula = log(income) ~ female + log(educ) + age + hrs, data = gss)
Residuals:
        1Q Median 3Q
   Min
                              Max
-4.3774 -0.3397 0.1085 0.5070 2.7230
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      0.355121 13.637 < 2e-16 ***
           4.842802
femaleTRUE -0.260374
                      0.059111 -4.405 1.18e-05 ***
log(educ) 1.485014
                      0.126480 11.741 < 2e-16 ***
                      0.002377 7.702 3.36e-14 ***
        0.018306
age
            0.022187
hrs
                      0.002084 10.646 < 2e-16 ***
```

DOUBLE-LOG -INTERPRETATION

A one percent increase in education is associated with a 1.5 percent increase in income

COMBINING EXAMPLES

Does the return to education vary by sex?

How would you estimate this?

COMBINING EXAMPLES

```
Call:
lm(formula = log(income) ~ female * educ + age + hrs, data = gss)
Residuals:
    Min
            1Q Median 3Q Max
-4.3992 -0.3410 0.1211 0.5034 2.7655
Coefficients:
                Estimate Std. Error t value Pr(>|t|)
(Intercept)
                6.878030
                          0.227990 30.168 < 2e-16 ***
femaleTRUE
               -0.068487
                          0.287568
                                    -0.238
                                             0.812
educ
                                           < 2e-16 ***
                0.132803
                          0.013239 10.031
                0.018077
                          0.002354 7.680 3.96e-14 ***
age
                          0.002063 10.792 < 2e-16 ***
                0.022268
hrs
femaleTRUE:educ -0.013693
                                             0.499
                          0.020227
                                    -0.677
```

INTERPRETATION - RETURN BY SEX

Men: Extra year of education ~ 13.3% increase in income

Women: Extra year of education ~ 11.9% increase in income

Note: not statistically significant different

Q&A ON CASE STUDY