Generating the Mandelbrot set in 3D

Pierre-Olivier Parisé

Work supervised by M. Dominic Rochon Département de mathématiques et d'informatique Université du Québec à Trois-Rivières Financial support from CRSNG

Colloque panquébécois des étudiants de l'ISM 28 octobre 2015

Sommaire

- Introduction
- Preliminaries
- Multibrot
- Conclusion
- Table of imaginary units

Beginning and further

- Benoît Mandelbrot (1924 2010) : his 80's set.
- Further explorations done on the basis of Mandelbrot set.
- People tried the third dimension with quaternions.

(a) \mathcal{M}^2 set from z^2+c

(b) Quaternionic \mathcal{M}^2 set

FIGURE: Complex and quaternionic versions

Sommaire

- Introduction
- Preliminaries
 - Bicomplex Numbers
 - Tricomplex numbers
 - Important remarks
- Multibrot
- Conclusion
- 5 Table of imaginary units

Bicomplex numbers

Definition 1 ($\mathbb{M}(2)$ or \mathbb{C}_2 space)

Let $z_1=x_1+x_2\mathbf{i_1}$, $z_2=x_3+x_4\mathbf{i_1}$ be two complex numbers $\mathbb{M}(1)\simeq\mathbb{C}$ with $\mathbf{i_1^2}=-1$. A bicomplex number ζ is defined as

$$\zeta = z_1 + z_2 \mathbf{i}_2 \tag{1}$$

where $i_2^2 = -1$.

Various representations:

- In terms of four real numbers : $\zeta = x_1 + x_2 \mathbf{i_1} + x_3 \mathbf{i_2} + x_4 \mathbf{j_1}$
- In terms of two idempotent elements :

$$\zeta = (z_1 - z_2 \mathbf{i_1}) \gamma_1 + (z_1 + z_2 \mathbf{i_1}) \overline{\gamma}_1$$

where $\gamma_1=\frac{1+\mathbf{j_1}}{2}$ and $\overline{\gamma}_1=\frac{1-\mathbf{j_1}}{2}.$

Operations on Bicomplex numbers

Let $\zeta_1 = z_1 + z_2 \mathbf{i_2}$ and $\zeta_2 = z_3 + z_4 \mathbf{i_2}$.

- 1) Equality : $\zeta_1 = \zeta_2 \iff z_1 = z_3 \text{ and } z_2 = z_4.$
- 2) Addition : $\zeta_1 + \zeta_2 := (z_1 + z_3) + (z_2 + z_4)\mathbf{i}_2$.
- 3) Multiplication : $\zeta_1 \cdot \zeta_2 := (z_1 z_3 z_2 z_4) + (z_2 z_3 + z_1 z_4) \mathbf{i}_2$.
- 4) Modulus : $\|\zeta_1\|_2 := \sqrt{|z_1|^2 + |z_2|^2} = \sqrt{\sum_{i=1}^4 x_i^2}$
- 5) Cartesian subset : if $X \subset \mathbb{M}(2)$, $X_1 \subset \mathbb{M}(1)$ and $X_2 \subset \mathbb{M}(1)$, then

$$X = X_1 \times_{\gamma_1} X_2 := \left\{ \zeta \in X \, | \, \zeta = u_1 \gamma_1 + u_2 \overline{\gamma}_1 \, , \ u_1 \in X_1 \text{ and } u_2 \in X_2 \right\}.$$

Remark:

- $(M(2), +, \cdot)$ forms a commutative ring with unity and zero divisors.
- $(\mathbb{M}(2), +, \cdot, \|\cdot\|_2)$ forms a Banach space.

Tricomplex numbers

Definition 2 (M(3) or \mathbb{C}_3 space)

Let $\zeta_1=z_1+z_2\mathbf{i_2}$, $\zeta_2=z_3+z_4\mathbf{i_2}$ be two bicomplex numbers. A tricomplex number η is defined as

$$\eta = \zeta_1 + \zeta_2 \mathbf{i_3} \tag{2}$$

where $i_3^2 = -1$.

Various representations:

- In terms of four complex numbers : $\eta = z_1 + z_2 \mathbf{i_2} + z_3 \mathbf{i_3} + z_4 \mathbf{j_3}$
- In terms of eight real numbers :

$$\eta = x_1 + x_2 \mathbf{i_1} + x_3 \mathbf{i_2} + x_4 \mathbf{i_3} + x_5 \mathbf{i_4} + x_6 \mathbf{j_1} + x_7 \mathbf{j_2} + x_8 \mathbf{j_3}$$

Tricomplex numbers

Various representations (continuing):

In terms of two idempotent elements :

$$\eta = (\zeta_1 - \zeta_2 \mathbf{i_2}) \gamma_2 + (\zeta_1 + \zeta_2 \mathbf{i_2}) \overline{\gamma}_2$$

where
$$\gamma_2 = \frac{1+\mathbf{j_3}}{2}$$
 and $\overline{\gamma}_2 = \frac{1-\mathbf{j_3}}{2}$.

In terms of four idempotent elements :

$$\eta = w_1 \cdot \gamma_1 \gamma_2 + w_2 \cdot \gamma_1 \overline{\gamma}_2 + w_3 \cdot \overline{\gamma}_1 \gamma_2 + w_4 \cdot \overline{\gamma}_1 \overline{\gamma}_2$$

where $w_i \in \mathbb{M}(1)$ for i = 1, 2, 3, 4 and

$$w_1 = (z_1 + z_4) - (z_2 - z_3)\mathbf{i}_1$$
 $w_3 = (z_1 - z_4) - (z_2 + z_3)\mathbf{i}_1$

$$w_2 = (z_1 + z_4) + (z_2 - z_3)\mathbf{i}_1$$
 $w_4 = (z_1 - z_4) + (z_2 + z_3)\mathbf{i}_1.$

Operations on Tricomplex Numbers

Let $\eta_1 = \zeta_1 + \zeta_2 \mathbf{i_2}$ and $\eta_2 = \zeta_3 + \zeta_4 \mathbf{i_2}$.

- 1) Equality : $\eta_1 = \zeta_2 \iff \zeta_1 = \zeta_3$ and $\zeta_2 = \zeta_4$.
- 2) Addition : $\eta_1 + \zeta_2 := (\zeta_1 + \zeta_3) + (\zeta_2 + \zeta_4)\mathbf{i}_2$.
- 3) Multiplication : $\eta_1 \cdot \eta_2 := (\zeta_1 \zeta_3 \zeta_2 \zeta_4) + (\zeta_2 \zeta_3 + \zeta_1 \zeta_4) \mathbf{i}_2$.
- 4) Modulus : $\|\eta_1\|_3 := \sqrt{\|\zeta_1\|_2^2 + \|\zeta_2\|_2^2} = \sqrt{\sum_{i=1}^4 |z_i|^2} = \sqrt{\sum_{i=1}^8 x_i^2}$
- 5) Cartesian subset : if $X \subset \mathbb{M}(3)$, $X_1 \subset \mathbb{M}(2)$ and $X_2 \subset \mathbb{M}(2)$, then

$$X = X_1 \times_{\gamma_2} X_2 := \{ \eta \in X \mid \eta = u_1 \gamma_2 + u_2 \overline{\gamma}_2 \,, \ u_1 \in X_1 \text{ and } u_2 \in X_2 \} \,.$$

Remark:

- $(\mathbb{M}(3), +, \cdot)$ forms a commutative ring with unity and zero divisors.
- $(\mathbb{M}(3), +, \cdot, \|\cdot\|_3)$ forms a Banach space.
- Since $X_1 \subset \mathbb{M}(2)$ and $X_2 \subset \mathbb{M}(2)$, X can be expressed as a cartesian product of four subsets of $\mathbb{M}(1) \simeq \mathbb{C}$.

Some viewpoints

Bicomplex numbers:

- as a pair of complex variables (z_1, z_2) ;
- as a quadruple of real numbers (x_1, x_2, x_3, x_4) .

Tricomplex numbers:

- as a pair of bicomplex numbers (ζ_1, ζ_2) ;
- as a quadruple of complex numbers (z_1, z_2, z_3, z_4) ;
- as a octuple of real numbers $(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$.

So, with bicomplex and tricomplex numbers, we can divide vectors in a certain way.

Sommaire

- Introduction
- 2 Preliminaries
- Multibrot
 - Mandelbrot sets
 - Bicomplex Multibrot sets
 - Tricomplex Multibrot sets
 - Multibrot in images
- Conclusion
- 5 Table of imaginary unit

Multibrot sets: extension of the Mandelbrot set

Definition 3

Set $p \ge 2$ an integer. Let $Q_{p,c}(z) = z^p + c$ where z, c are complex numbers. A *multibrot* set is defined as

$$\mathcal{M}_{1}^{p} := \left\{ c \in \mathbb{C} \mid \left\{ Q_{p,c}^{m}(0) \right\}_{m=1}^{\infty} \text{ is bounded } \right\}. \tag{3}$$

Examples:

$$c = 0 \Rightarrow \{0, 0, 0, 0, \ldots\}.$$

$$c = 1 \Rightarrow \{1, 2, 2(2^{p-1} + 1), \ldots\}.$$

Remarks:

- $\mathcal{M}_1^p \subset \overline{D}(0, 2^{\frac{1}{p-1}})$.
- Equivalence : $c \in \mathcal{M}_1^p \iff |Q_{p,c}^m(0)| \le 2^{\frac{1}{p-1}} \ \forall m \in \mathbb{N}.$
- \bullet \mathcal{M}_1^p are closed sets.

Some examples of \mathcal{M}^p set

Bicomplex multibrot sets: Definition

D. Rochon [4] used the Bicomplex numbers to give a 4D version of the Mandelbrot set. Here, we give the definition for multibrot sets.

Definition 4

Set $p \ge 2$ an integer. Let $Q_{p,c}(\zeta) = \zeta^p + c$ where $\zeta, c \in \mathbb{M}(2)$. A bicomplex multibrot set is defined as

$$\mathcal{M}_2^{\it p} := \left\{ c \in \mathbb{M}(2) \, | \, \left\{ \mathit{Q}_{\it p,c}^{\it m}(0)
ight\}_{\it m=1}^{\infty} \, ext{ is bounded }
ight\}.$$

Remarks:

- D. Rochon made a 3D slice of the \mathcal{M}_2^2 which he had called it the *Tetrabrot*.
- $\mathcal{M}_2^p \subset \overline{B_2}(0, 2^{\frac{1}{p-1}}).$
- Bicomplex cartesian product : $\mathcal{M}_2^p = \mathcal{M}_1^p \times_{\gamma_1} \mathcal{M}_1^p$.

Bicomplex multibrot sets: Definition

FIGURE: Tetrabrot : $\mathcal{T}^2(1, i_1, i_2)$

Tricomplex Multribrot sets: Definition

Rochon and Garrant-Pelletier [2] generalized the approach using $\mathbb{M}(3)$. Here we give the analogue definition for multibrot sets.

Definition 5

Set $p \ge 2$ an integer. Let $Q_{p,c}(\eta) = \eta^p + c$ where $\eta, c \in \mathbb{M}(3)$. A Tricomplex multibrot set is defined as

$$\mathcal{M}_3^{\textit{p}} := \left\{ c \in \mathbb{M}(3) \, | \, \left\{ \mathit{Q}_{\textit{p},\textit{c}}^{\textit{m}}(0) \right\}_{\textit{m}=1}^{\infty} \text{ is bounded } \right\}.$$

Remarks:

- $\mathcal{M}_3^p \subset \overline{B_3}(0, 2^{\frac{1}{p-1}}).$
- Characterization : $c \in \mathcal{M}_3^p \iff \|Q_{p,c}^m(0)\|_3 \leq 2^{\frac{1}{p-1}} \ \forall m \in \mathbb{N}.$
- \mathcal{M}_3^p is connected.

Tricomplex multibrot: Characterizations

Tricomplex multibrots can be characterized as a cartesian product :

- Bicomplex cartesian product : $\mathcal{M}_3^p = \mathcal{M}_2^p \times_{\gamma_2} \mathcal{M}_2^p$.
- Mixed cartesian product : $\mathcal{M}_3^p = (\mathcal{M}_1^p \times_{\gamma_1} \mathcal{M}_1^p) \times_{\gamma_2} (\mathcal{M}_1^p \times_{\gamma_1} \mathcal{M}_1^p)$.

So, $c \in \mathcal{M}_3^p$ if and only if

$$w_1, w_2, w_3$$
 and w_4 are in \mathcal{M}_1^p

where
$$c=w_1\cdot \gamma_1\gamma_2+w_2\cdot \gamma_1\overline{\gamma}_2+w_3\cdot \overline{\gamma}_1\gamma_2+w_4\cdot \overline{\gamma}_1\overline{\gamma}_2.$$

3D slices: Definition

To visualize \mathcal{M}_3^p in 3D, we need to define a 3D slice :

Definition 6

Choose different i_m , i_k , i_l from the set $\{1, i_1, i_2, i_3, i_4, j_1, j_2, j_3\}$. A 3D slice of \mathcal{M}_3^p is defined as

$$\mathcal{T}_3^p(\mathbf{i_m},\mathbf{i_k},\mathbf{i_l}) = \left\{c = c_1\mathbf{i_m} + c_2\mathbf{i_k} + c_3\mathbf{i_l} \mid \left\{Q_{p,c}^m(0)_{m=1}\right\}^{\infty} \text{ is bounded }\right\}.$$

Remark:

In term of the 3D space, we select the vector (c_1, c_2, c_3) where

$$c_1 \longleftrightarrow OX$$
 $c_2 \longleftrightarrow OY$
 $c_3 \longleftrightarrow OZ$.

Visualization

The steps:

- 1) Choose a 3D slice $\mathcal{T}_3^p(\mathbf{i_m}, \mathbf{i_k}, \mathbf{i_l})$.
- 2) Compute the divergent layers for every c in a cube of $2 \cdot 2^{\frac{1}{p-1}}$ side length and for a maximum number of iterations M.
- 3) Draw the point on the image in a certain range of iterations (e.g. points that reach between 7 to 14 iterations).

But, we can make the image more attracting and more instructive. Set

$$c = w_1 \cdot \gamma_1 \gamma_2 + w_2 \cdot \gamma_1 \overline{\gamma}_2 + w_3 \cdot \overline{\gamma}_1 \gamma_2 + w_4 \cdot \overline{\gamma}_1 \overline{\gamma}_2.$$

Depending on the number of idempotent components in \mathcal{M}_1^p , we associate a color to this number.

Visualization (Continuing)

These colors are:

- 1. Grey : $w_i \in \mathcal{M}_1^p$ for all i = 1, 2, 3, 4.
- 2. Yellow: only one.
- 3. Red: only two.
- 4. Orange : only three.
- 5. Gradient from blue to green: None of all.

Family shooting : quadratic $\eta^2 + c$

Family shooting : cubic $\eta^3 + c$

Sommaire

- Introduction
- 2 Preliminaries
- Multibrot
- 4 Conclusion
- Table of imaginary units

Conclusion

What you should know:

- From [3], $\mathcal{M}_1^3 \cap \mathbb{R} = \left[-\frac{2}{3\sqrt{3}}, \frac{2}{3\sqrt{3}} \right]$.
- ullet From [2], there are only eight principal slices for \mathcal{M}_3^2 .
- From [3], there are only four (!) principal slices for \mathcal{M}_3^3 and the Perplexbric is an octahedron.

Further exploration:

- What is the set $\mathcal{M}_1^p \cap \mathbb{R}$ in general?
- What is the characterization of the slices of \mathcal{M}_3^p ?

Sommaire

- Introduction
- 2 Preliminaries
- Multibrot
- 4 Conclusion
- 5 Table of imaginary units

Table of imaginary units

	1	i_1	i_2	i ₃	i ₄	j ₁	j 2	j 3
1	1	i ₁	i ₂	iз	i ₄	j ₁	j 2	j 3
						$-i_2$		
i_2	i ₂	\mathbf{j}_1	- 1	j 3	$-\mathbf{j_2}$	$-i_1$	i ₄	$-i_3$
						i ₄		
i ₄	i ₄	$-\mathbf{j_3}$	$-\mathbf{j_2}$	$-\mathbf{j}_1$	- 1	iз	i_2	i_1
j ₁	j ₁	$-i_2$	$-i_1$	i ₄	i ₃	1	$-\mathbf{j}_3$	$-\mathbf{j_2}$
j 2	j 2	$-i_3$	i ₄	$-i_1$	i_2	$-\mathbf{j_3}$	1	$-\mathbf{j_1}$
j 3	j 3	i ₄	$-i_3$	$-i_2$	i_1	$-\mathbf{j_2}$	$-\mathbf{j_1}$	1

TABLE: Product of tricomplex imaginary units

References

- [1] Baley Price, G.: An Introduction to Multicomplex Spaces and Functions. *Monographs and textbooks on pure and applied mathematics* (1991)
- [2] Garant-Pelletier, V. & Rochon, D.: On a Generalized Fatou-Julia Theorem in Multicomplex spaces. *Fractals* **17**(3), 241-255 (2009)
- [3] Parisé, P.-O. & Rochon, D. : A Study of The Dynamics of the Tricomplex Polynomial $\eta^p + c$. Non Linear Dynam.. (To appear)
- [4] Rochon, D.: A Generalized Mandelbrot Set for Bicomplex Numbers. *Fractals.* **8**(4), 355-368 (2000)