Class 17: Analyzing sequencing data in the cloud

Melissa Guereca PID:A16511023

Downstream analysis

With each sample having its own directory containing the Kallisto output, we can import the transcript count estimates into R using:

```
library(tximport)
  # setup the folder and filenames to read
  folders <- dir(pattern="SRR21568*")</pre>
  samples <- sub("_quant", "", folders)</pre>
  files <- file.path( folders, "abundance.h5" )
  names(files) <- samples</pre>
  txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE)</pre>
1 2 3 4
  head(txi.kallisto$counts)
                 SRR2156848 SRR2156849 SRR2156850 SRR2156851
ENST00000539570
                                            0.00000
ENST00000576455
                                            2.62037
ENST00000510508
                                           0.00000
ENST00000474471
                          0
                                            1.00000
ENST00000381700
                          0
                                      0
                                           0.00000
                                                              0
ENST00000445946
                                            0.00000
```

We now have our estimated transcript counts for each sample in R. We can see how many transcripts we have for each sample:

```
colSums(txi.kallisto$counts)
```

```
SRR2156848 SRR2156849 SRR2156850 SRR2156851
2563611 2600800 2372309 2111474
```

And how many transcripts are detected in at least one sample:

```
sum(rowSums(txi.kallisto$counts)>0)
```

[1] 94561

Before subsequent analysis, we might want to filter out those annotated transcripts with no reads:

```
to.keep <- rowSums(txi.kallisto$counts) > 0
kset.nonzero <- txi.kallisto$counts[to.keep,]</pre>
```

And those with no change over the samples:

```
keep2 <- apply(kset.nonzero,1,sd)>0
x <- kset.nonzero[keep2,]</pre>
```

##Principal Component Analysis

Now we compute the principal components, centering and scaling each transcript's measured levels so that each feature contributes equally to the PCA:

```
pca <- prcomp(t(x), scale=TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1 PC2 PC3 PC4
Standard deviation 183.6379 177.3605 171.3020 1e+00
Proportion of Variance 0.3568 0.3328 0.3104 1e-05
Cumulative Proportion 0.3568 0.6895 1.0000 1e+00
```

Now we can use the first two principal components as a co-ordinate system for visualizing the summarized transcriptomic profiles of each sample:

Q. Use ggplot to make a similar figure of PC1 vs PC2 and a seperate figure PC1 vs PC3 and PC2 vs PC3.

```
library(ggplot2)
library(ggrepel)

# Make metadata object for the samples
colData <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(colData) <- colnames(txi.kallisto$counts)

# Make the data.frame for ggplot
y <- as.data.frame(pca$x)
y$Condition <- as.factor(colData$condition)

ggplot(y) +
   aes(PC1, PC2, col=Condition) +
   geom_point() +</pre>
```

geom_text_repel(label=rownames(y)) +
theme_bw()

OPTIONAL: Differential-expression analysis

We can use DESeq2 to complete the differential-expression analysis that we are already familiar with:

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, aperm, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min

Attaching package: 'S4Vectors'

The following object is masked from 'package:utils':

findMatches

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Loading required package: GenomicRanges

 ${\tt Loading\ required\ package:\ GenomeInfoDb}$

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

```
The following objects are masked from 'package:matrixStats':
```

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods, rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedMedians, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
sampleTable <- data.frame(condition = factor(rep(c("control", "treatment"), each = 2)))
rownames(sampleTable) <- colnames(txi.kallisto$counts)</pre>
```

```
dds <- DESeqDataSetFromTximport(txi.kallisto,</pre>
                                   sampleTable,
                                   ~condition)
using counts and average transcript lengths from tximport
  dds <- DESeq(dds)
estimating size factors
using 'avgTxLength' from assays(dds), correcting for library size
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
-- note: fitType='parametric', but the dispersion trend was not well captured by the
   function: y = a/x + b, and a local regression fit was automatically substituted.
   specify fitType='local' or 'mean' to avoid this message next time.
final dispersion estimates
fitting model and testing
  res <- results(dds)</pre>
  head(res)
log2 fold change (MLE): condition treatment vs control
Wald test p-value: condition treatment vs control
DataFrame with 6 rows and 6 columns
                 baseMean log2FoldChange
                                              lfcSE
                                                         stat
                                                                 pvalue
                <numeric>
                               <numeric> <numeric> <numeric> <numeric>
```

NA

NA

3.155061 4.86052 0.6491203 0.516261

NA

NA

ENST00000539570 0.000000

ENST00000576455 0.761453

ENST00000510508	0.000000	NA	NA	NA	NA	
ENST00000474471	0.484938	0.181923	4.24871	0.0428185	0.965846	
ENST00000381700	0.000000	NA	NA	NA	NA	
ENST00000445946	0.000000	NA	NA	NA	NA	
	padj					
	<numeric></numeric>					
ENST00000539570	NA					
ENST00000576455	NA					
ENST00000510508	NA					
ENST00000474471	NA					
ENST00000381700	NA					
ENST00000445946	NA					