Rapport de TER: Formalisation d'un système de types en Coq

Félix SASSUS BOURDA

14/04/2024

Table des matières

1. Présentation du résultat final	3
1.1. Syntaxe	3
1.1.1. Termes	3
1.1.2. Valeurs	3
2. Annexe	4

1. Présentation du résultat final

Le langage d'étude est une forme enrichie du $\lambda\text{-calcul}$ simplement typé.

1.1. Syntaxe

1.1.1. Termes

Un terme du langage est une expression. On a ausi et seulement si une construction de liste d'expression,

1.1.2. Valeurs

On définit inductivement les valeurs du langage:

2. Annexe

expr ≔	#x	$E_Var x$
	$\mid e_1 e_2 \mid$	E_App e_1 e_2
	$\int \operatorname{fun} x : t \Rightarrow e$	E_Fun $x \ t \ e$
	true	E_{-} True
	false	E_False
	if e_1 then e_2 else e_3	$\text{E_If } e_1 \ e_2 \ e_3$
	$ \text{ let } x = e_1 \text{ in } e_2$	E_Let $x \ e_1 \ e_2$
	$\mid z$	$E_Num z$
	$\mid e_1 - e_2 \mid$	E_Minus $e_1\ e_2$
	$\mid e_1 == e_2$	$\mathbf{E}_{-}\mathbf{Eq}\ e_{1}\ e_{2}$
	$\mid (e_1, e_2)$	E_Pair e_1 e_2
	first e	$E_First e$
	second e	E_Second e
	$ \{ l \}$	$\operatorname{E_Rec}l$
	e :: x	${\bf E_Rec_Access}~e~x$
	$\int fix e$	$E_Fix e$
	$\mid \mathrm{inl} < t_1 \mid t_2 > e$	E_In_Left $t_1\ t_2\ e$
	$ \operatorname{inr} < t_1 t_2 > e$	E_In_Right $t_1\ t_2\ e$
	$ \ \text{match} \ e \ \text{with} \ \ \text{inl} \Rightarrow e_l \ \ \text{inr} \Rightarrow e_r$	E_Match $e\ e_l\ e_r$
	unit	E_Unit
	$\mid x[e] \mid$	E_Sum_Constr x e
	$\mathbf{match_sum}\ e\ \mathbf{with}\ l:e_d\ \mathbf{end_sum}$	E_Sum_Match $e\ e_d\ l$
lsexpr ≔	nil	LSE_Nil
	$\mid x \coloneqq e_1 \ ; \ l$	LSE_Cons $x e_1 l$

Définition 1. – Syntaxe du langage, avec à gauche la syntaxe concrète et à droite représentation abstraite

$$(VTrue) \frac{}{\text{val true}} \qquad (VFalse) \frac{}{\text{val false}}$$

$$(VNum) \frac{}{\text{val } z} \qquad (VUnit) \frac{}{\text{val unit}}$$

$$(VFun) \frac{}{\text{val fun } x: t \Rightarrow e} \qquad (VPair) \frac{e_1 : \exp r \quad e_2 : \exp r}{\text{val } (e_1, e_2)}$$

$$(VRec) \frac{\text{val } v \quad \text{val}_{ls} \quad \text{tail}}{\text{val } \{ x := v \; ; \quad \text{tail } \}} \qquad (VInLeft) \frac{\text{val } v}{\text{val inl} < t_1 \mid t_2 > v}$$

$$(VInRight) \frac{\text{val } v}{\text{val inr} < t_1 \mid t_2 > v} \qquad (VSumConstr) \frac{\text{val } v}{\text{val } x[v]}$$

Définition 2. – Valeurs du langage