MATA54 - Estruturas de Dados e Algoritmos II Hashing - Endereçamento Aberto

Flávio Assis Versão gerada a partir de slides do Prof. George Lima

IC - Instituto de Computação

Salvador, agosto de 2021

Hashing com Endereçamento Aberto

- ► Motivação: aproveitamento de espaço
- ► Uma função hash é usada para encadeamento
- ► Ponteiros explícitos não são necessários

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	
0:		
1:		
2:		
3:		
4:		
5:		
6:		
7:		
8:		
9:		
10:		

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	End	Reg.
0:		0:	
1:		1:	
2:		2:	
3:		3:	
4: 5:		4:	
		5:	27
6:		6:	
7:		7:	
8:		8:	
9:		9:	
10:		10:	

- Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	
1:		1:		1:	
2:		2: 3:		2:	
3:		3:		3:	
4:		4:		4:	
1: 2: 3: 4: 5:		5: 6:	27	1: 2: 3: 4: 5: 6:	27
		6:		6:	
7:		7:		7:	18
8:		8:		8: 9:	
9:		9:		9:	
10:		10:		10:	

- Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End 0:	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
1:		1:		1:		1:	
2:		2:		2: 3:		2:	
3:		3:		3:		3:	
4:		4:		4:		4:	
5:		5:	27	5:	27	5:	27
6:		6:		6:		6:	
7:		7:		7:	18	7:	18
8:		8:		8:		8:	29
9:		9:		9:		9:	
10:		10:		10:		10:	

- Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End 0:	Reg.								
1:		1:		1:		1:		1:	
2:		2:		2:		2:		2:	
3:		3:		3:		3:		3:	
4:		4:		4:		4:		4:	
5:		5:	27	5:	27	5:	27	5:	27
6:		6:		6:		6:		6:	
7:		7:		7:	18	7:	18	7:	18
8:		8:		8:		8:	29	8:	29
9:		9:		9:		9:		9:	
10:		10:		10:		10:		10:	43

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	
0:	77	
1:		
2:		
3:		
4:		
5:	27	
6:		
7:	18	
8:	29	
9:		
10:	43	

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	End	Reg.
0:	77	0:	77
1:		1:	
2:		2:	
3:		3:	
4:		4:	
5:	27	5:	27
6:		6:	16
7:	18	7:	18
8:	29	8:	29
9:		9:	
10:	43	10:	43

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	End	Reg.	End	Reg.
0:	77	0:	77	0:	77
1:		1:		1:	
2:		2: 3:		2:	
2: 3: 4:				3:	
4:		4:		4:	
5: 6:	27	5:	27	5:	27
		6:	16	6:	16
7:	18	7:	18	7:	18
8:	29	8:	29	8:	29
9:		9:		9:	40
10:	43	10:	43	10:	43

- ► Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End	Reg.	End	Reg.	End	Reg.	End	Reg.
0:	77	0:	77	0:	77	0:	77
1:		1:		1:		1:	49
2:		2:		2:		2:	
3:		3:		3:		3:	
4:		4:		4:		4:	
5:	27	5:	27	5:	27	5:	27
6:		6:	16	6:	16	6:	16
7:	18	7:	18	7:	18	7:	18
8:	29	8:	29	8:	29	8:	29
9:		9:		9:	40	9:	40
10:	43	10:	43	10:	43	10:	43

- Caso haja colisão, insere-se o registro na primeira posição vazia, considerando o arquivo como uma estrutura circular
- Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11; $h(k) = k \mod 11$

End 0:	Reg.								
1:		1:		1:		1:	49	1:	49
2:		2:		2:		2:		2:	5
3:		3:		3:		3:		3:	
4:		4:		4:		4:		4:	
5:	27	5:	27	5:	27	5:	27	5:	27
6:		6:	16	6:	16	6:	16	6:	16
7:	18	7:	18	7:	18	7:	18	7:	18
8:	29	8:	29	8:	29	8:	29	8:	29
9:		9:		9:	40	9:	40	9:	40
10:	43	10:	43	10:	43	10:	43	10:	43

Sondagem Linear

Média de acessos ao arquivo para este conjunto de chaves:

$$\tfrac{1+1+2+1+1+2+3+6+9}{9}=2,9$$

- Qual seria a média de acessos para o caso de encadeamento explícito?
- Sondagem linear tem um desempenho ruim gera clusterização primária

Sondagem Linear: Remoção de Registros

- Como remover registros? Marcando registros como logicamente apagados
- Remoção do 43:

End	Reg.	
0:	77	
1:	49	
2:	5	
3:		
4:		
5:	27	
6:	16	
7:	18	
8:	29	
9:	40	
10:	*	

O marcador * indica que a posição está livre, mas já foi ocupada. A busca por uma chave não deve parar nesta posição.

Como tentar melhorar?

Hashing Duplo

- Espalhar as chaves na ocorrência de colisão
- Uma função hash é usada para encadeamento

$$h(k,i)=(h_1(k)+i\ h_2(k))\ \mathrm{mod}\ m$$
 $h_2(k)=\mathrm{depende}\ \mathrm{do}\ \mathrm{m\'etodo}$

i é o número de sondagens já realizadas

Ex:

- Sondagem linear: $h_1(k) = k \mod m$ e $h_2(k) = 1$
- Hashing duplo:

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

Sondagem linear

Busca sequencial caso haja colisão

 \triangleright Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11

$$h_1(k) = k \mod m$$
 e $h_2(k) = 1$

End	Reg.
0:	77
1:	49
2:	5
3:	
4:	
5:	27
6:	16
7:	18
8:	29
9:	40
10:	43

Busca com saltos caso haja colisão (espalhamento das chaves)

 \triangleright Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	
0:		
1:		
2:		
3:		
4:		
5:		
6:		
7:		
8:		
9:		
10:		

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	End	Reg.
0:		0:	
1:		1:	
2:		2:	
3:		3:	
4:		4:	
1: 2: 3: 4: 5:		3: 4: 5: 6:	27
7: 8:		7:	
		8:	
9:		9:	
10:		10:	

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	
1:		1:		1:	
2:		2:		2:	
3:		3:		3:	
4:		4:		4:	
1: 2: 3: 4: 5: 6: 7: 8: 9:		1: 2: 3: 4: 5: 6: 7: 8:	27	1: 2: 3: 4: 5: 6:	27
6:		6:		6:	
7:		7:		7: 8:	18
8:		8:		8:	
9:		9:		9:	
10:		10:		10:	

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End 0:	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
1:		1:		1:		1:	
2: 3:		2:		2:		2:	
3:		3:		3:		3:	
4:		4:		4:		4:	
5:		5:	27	5:	27	5:	27
6:		6:		6:		6:	
7:		7:		7:	18	7:	18
8:		8:		8:		8:	
9:		9:		9:		9:	29
10:		10:		10:		10:	

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End 0:	Reg.								
1:		1:		1:		1:		1:	
2:		2:		2:		2:		2:	
3:		3:		3:		3:		3:	
4:		4:		4:		4:		4:	
5:		5:	27	5:	27	5:	27	5:	27
6:		6:		6:		6:		6:	
7:		7:		7:	18	7:	18	7:	18
8:		8:		8:		8:		8:	
9:		9:		9:		9:	29	9:	29
10:		10:		10:		10:		10:	43

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	
0:	77	
1:		
2:		
3:		
4:		
5:	27	
6:		
7:	18	
8:		
9:	29	
10:	43	

Busca com saltos caso haja colisão (espalhamento das chaves)

 \triangleright Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	End	Reg.
0:	77	0:	77
1:		1:	
2:		2:	
3: 4: 5:		3:	
4:		4:	
5:	27	5:	27
6:		6:	16
7:	18	7:	18
8:		8:	
9:	29	9:	29
10:	43	10:	43

Busca com saltos caso haja colisão (espalhamento das chaves)

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	End	Reg.	End	Reg.
0:	77	0:	77	0:	77
1:		1:		1:	
2: 3:		2:		2:	40
3:		3:		3:	
4:		4:		4:	
5:	27	5:	27	5:	27
6:		6:	16	6:	16
7:	18	7:	18	7:	18
8:		8:		8:	
9:	29	9:	29	9:	29
10:	43	10:	43	10:	43

Busca com saltos caso haja colisão (espalhamento das chaves)

 \triangleright Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End	Reg.	End	Reg.	End	Reg.	End	Reg.
0:	11	0:	77	0:	77	0:	77
1:		1:		1:		1:	
2:		2:		2:	40	2:	40
3:		3:		3:		3:	49
4:		4:		4:		4:	
5:	27	5:	27	5:	27	5:	27
6:		6:	16	6:	16	6:	16
7:	18	7:	18	7:	18	7:	18
8:		8:		8:		8:	
9:	29	9:	29	9:	29	9:	29
10:	43	10:	43	10:	43	10:	43

Busca com saltos caso haja colisão (espalhamento das chaves)

 \triangleright Ex.: 27, 18, 29, 43, 77, 16, 40, 49 e 5; m = 11

$$h_1(k) = k \mod m$$
 e $h_2(k) = \begin{cases} 1 & \text{se } k < m \\ \lfloor \frac{k}{m} \rfloor & \text{se } k \ge m \end{cases}$

End 0:	Reg.								
1:		1:		1:		1:		1:	
2:		2:		2:	40	2:	40	2:	40
3:		3:		3:		3:	49	3:	49
4:		4:		4:		4:		4:	
5:	27	5:	27	5:	27	5:	27	5:	27
6:		6:	16	6:	16	6:	16	6:	16
7:	18	7:	18	7:	18	7:	18	7:	18
8:		8:		8:		8:		8:	5
9:	29	9:	29	9:	29	9:	29	9:	29
10:	43	10:	43	10:	43	10:	43	10:	43

Média de acessos ao arquivo para este conjunto de chaves:

$$\frac{1+1+2+1+1+2+3+6+4}{9} = 2,3$$

Hashing Duplo: Remoção de Registro

- A remoção é análoga à de sondagem linear: marcação de registro
- ► Remoção do 39:

End	Reg.	
0:	77	
1:		
2:	13	
3:	49	
4:		
5:	27	
6:	39	
7:	18	
8:	5	
9:	29	
10:	43	

Hashing Duplo: Remoção de Registro

- A remoção é análoga à de sondagem linear: marcação de registro
- ► Remoção do 39:

End	Reg.	End	Reg.
0:	77	0:	77
1:		1:	
2:	13	2:	13
3:	49	3:	49
4:		4:	
5:	27	5:	27
6:	39	6:	*
7:	18	7:	18
8:	5	8:	5
9:	29	9:	29
10:	43	10:	43

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

End	Reg.
0:	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.
0:		0:	
1:		1:	
2:		2:	
3:		3:	
4:		4:	
2: 3: 4: 5:		5:	16
6:		6:	
7:		7:	
8:		8:	
9:		9:	
10:		10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m = 11 e $h(k) = k \mod m$, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	
1:		1:		1:	
2:		2: 3: 4:		2: 3: 4:	
3:		3:		3:	
4:		4:		4:	
1: 2: 3: 4: 5: 6: 7: 8: 9:		5:	16	5:	16
6:		6:		6: 7: 8:	
7:		7: 8:		7:	
8:		8:		8:	19
9:		9:		9:	
10:		10:		10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m = 11 e $h(k) = k \mod m$, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.	End	Reg.	End	Reg.
0:		0:		0:		0:	
1:		1:		1:		1:	
2: 3:		2:		2:		2:	
3:		3:		3:		3:	
4:		4:		4:		4:	
5:		5:	16	5:	16	5:	16
6:		6:		6:		6:	27
7:		7:		7:		7:	
8:		8:		8:	19	8:	19
9:		9:		9:		9:	
10:		10:		10:		10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m = 11 e $h(k) = k \mod m$, após a inserção da seguinte sequência de chaves:

End 0:	Reg.								
1:		1:		1:		1:		1:	
2:		2:		2:		2:		2:	
3:		3:		3:		3:		3:	
4:		4:		4:		4:		4:	
5:		5:	16	5:	16	5:	16	5:	16
6:		6:		6:		6:	27	6:	27
7:		7:		7:		7:		7:	
8:		8:		8:	19	8:	19	8:	19
9:		9:		9:		9:		9:	41
10:		10:		10:		10:		10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

16, 19, 27, 41, 40, 5, 29, 13

End	Reg.
0:	
1:	
2:	
3:	
4:	
5:	16
6:	27
7:	40
8:	19
9:	41
10:	

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

16, 19, 27, 41, 40, 5, 29, 13

End	Reg.	End	Reg.
0:		0:	
1:		1:	
2:		2:	
2: 3: 4:		3:	
4:		4:	
5:	16	5:	16
6:	27	6:	27
7:	40	7:	40
8:	19	8:	19
9:	41	9:	41
10:		10:	5

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	29
1:		1:		1:	
1: 2: 3: 4: 5:		2: 3:		2:	
3:		3:		3:	
4:		4:		4:	
5:	16	5:	16	5:	16
6:	27	6:	27	6:	27
7:	40	7:	40	7:	40
8:	19	8:	19	8:	19
9:	41	9:	41	9:	41
10:		10:	5	10:	5

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	29	0:	29
1:		1:		1:		1:	
2: 3:		2:		2:		2:	13
3:		3:		3:		3:	
4:		4:		4:		4:	
5:	16	5:	16	5:	16	5:	16
6:	27	6:	27	6:	27	6:	27
7:	40	7:	40	7:	40	7:	40
8:	19	8:	19	8:	19	8:	19
9:	41	9:	41	9:	41	9:	41
10:		10:	5	10:	5	10:	5

Qual seria o estado final de um arquivo usando **sondagem linear** com m=11 e h(k)=k **mod** m, após a inserção da seguinte sequência de chaves:

End 0:	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
1:		1:		1:		1:	
2:		2:		2:		2:	13
3:		3:		3:		3:	
4:		4:		4:		4:	
5:	16	5:	16	5:	16	5:	16
6:	27	6:	27	6:	27	6:	27
7:	40	7:	40	7:	40	7:	40
8:	19	8:	19	8:	19	8:	19
9:	41	9:	41	9:	41	9:	41
10:		10:	5	10:	5	10:	5

Média de acessos: $\frac{1+1+2+2+1+6+5+1}{8} = 2,38$

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End	Reg.
0:	
1:	
2:	
3:	
4:	
5:	
6:	
7:	
8:	
9:	
10:	

End	Reg.	End	Reg.
0:		0:	
1:		1:	
2:		2:	
3:		3:	
4:		4:	
2: 3: 4: 5:		5:	16
6:		6:	
7:		7:	
8:		8:	
9:		9:	
10:		10:	

End	Reg.	End	Reg.	End	Reg.
0:		0:		0:	
1:		1:		1:	
2: 3: 4: 5: 6:		2:		1: 2: 3: 4: 5: 6: 7: 8:	
3:		3:		3:	
4:		4:		4:	
5:		2: 3: 4: 5: 6:	16	5:	16
6:		6:		6:	
7:		7:		7:	
8:		8:		8:	19
9:		9:		9:	
10:		10:		10:	

End 0:	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
1:		1:		1:		1:	
		2:				2:	
2: 3:		3:		2: 3:		3:	
4:		4:		4:		4:	
5:		5:	16	5:	16	5:	16
6:		6:		6:		6:	
7:		7:		7:		7:	27
8:		8:		8:	19	8:	19
9:		9:		9:		9:	
10:		10:		10:		10:	

End 0:	Reg.								
1:		1:		1:		1:		1:	
2:		2:		2:		2:		2:	
3:		3:		3:		3:		3:	
4:		4:		4:		4:		4:	
5:		5:	16	5:	16	5:	16	5:	16
6:		6:		6:		6:		6:	
7:		7:		7:		7:	27	7:	27
8:		8:		8:	19	8:	19	8:	19
9:		9:		9:		9:		9:	
10:		10:		10:		10:		10:	

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End	Reg.
0:	41
1:	
2:	
3:	
4:	
5:	16
6:	
7:	27
8:	19
9:	
10.	40

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.
0:	41	0:	41
1:		1:	
2:		2:	
3:		3:	
4:		4:	
5:	16	5:	16
6:		6:	5
7:	27	7:	27
8:	19	8:	19
9:		9:	
10:	40	10:	40

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End	Reg.	End	Reg.	End	Reg.
0:	41	0:	41	0:	41
1:		1:		1:	
2: 3: 4:		2: 3:		2: 3:	
3:		3:		3:	
4:		4:		4:	
5: 6:	16	5:	16	5:	16
		6:	5	6:	5
7:	27	7:	27	7:	27
8:	19	8:	19	8:	19
9:		9:		9:	29
10:	40	10:	40	10:	40

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
0:	41	-	41		41		41
1:		1:		1:		1:	
2:		2:		2:		2:	13
3:		3:		3:		3:	
4:		4:		4:		4:	
5:	16	5:	16	5:	16	5:	16
6:		6:	5	6:	5	6:	5
7:	27	7:	27	7:	27	7:	27
8:	19	8:	19	8:	19	8:	19
9:		9:		9:	29	9:	29
10:	40	10:	40	10:	40	10:	40

Qual seria o estado final de um arquivo usando **hashing duplo** com m=11 e as funções $h_1(k)$ e $h_2(k)$ definidas anteriormente, após a inserção da seguinte sequência de chaves:

End 0:	Reg.	End 0:	Reg.	End 0:	Reg.	End 0:	Reg.
1:		1:		1:		1:	
2:		2:		2:		2:	13
3:		3:		3:		3:	
4:		4:		4:		4:	
5:	16	5:	16	5:	16	5:	16
6:		6:	5	6:	5	6:	5
7:	27	7:	27	7:	27	7:	27
8:	19	8:	19	8:	19	8:	19
9:		9:		9:	29	9:	29
10:	40	10:	40	10:	40	10:	40

Média de acessos: $\frac{1+1+2+2+2+2+1}{8} = 1,63$

Análise de Endereçamento Aberto

Referência: [Cormen et al.]

- ▶ Teorema 11.6: Dada uma tabela hash com fator de carga $\alpha = n/m < 1$, o número esperado de acessos à tabela em uma busca sem sucesso é, no máximo, $1/(1-\alpha)$, assumindo-se hashing uniforme.
- ▶ Corolário 11.7: Inserir um elemento em uma tabela hash com endereçamento aberto com fator de carga α requer no máximo $1/(1-\alpha)$ acessos em média, assumindo-se hashing uniforme.
- ▶ Teorema 11.8: Dada uma tabela hash com endereçamento aberto com fator de carga $\alpha < 1$, o número esperado de acessos à tabela em uma consulta com sucesso é, no máximo, $\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$ assumindo-se hashing uniforme e que todas as chaves da tabela possuem mesma probabilidade de serem consultadas.
 - Se a tabela estiver 90% cheia, o número esperado de acessos é menor que 2,559.