EVALUAREA NAȚIONALĂ PENTRU ABSOLVENȚII CLASEI a VIII-a

Anul şcolar 2017 - 2018

Matematică

BAREM DE EVALUARE ŞI DE NOTARE

Varianta 4

• Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I

- Se punctează doar rezultatul, astfel: pentru fiecare răspuns se acordă fie 5 puncte, fie 0 puncte.
- Nu se acordă punctaje intermediare.

SUBIECTUL al II-lea și SUBIECTUL al III-lea

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.

SUBIECTUL I (30 de puncte)

1.	6	5p
2.	20	5p
3.	[-3,4]	5p
4.	3	5p
5.	4	5p
6.	500	5p

SUBIECTUL al II-lea (30 de puncte)

1.	Desenează prisma dreaptă	4 p
	Notează prisma dreaptă	1p
2.	m = 6x, $n = 6y$ şi $(x, y) = 1$, unde m şi n sunt cele două numere naturale	2p
	Cum $mn = 108 \Rightarrow xy = 3$, obținem $m = 18$, $n = 6$ sau $m = 6$, $n = 18$, deci $m + n = 24$	3 p
3.	$\frac{2}{5} \cdot x + \frac{1}{2} \left(x - \frac{2}{5} \cdot x \right) + 2 + 7 = x$, unde x este lungimea traseului parcurs în cele trei zile	3p
	$x = 30 \mathrm{km}$	2 p
4.	a) Reprezentarea unui punct care aparține graficului funcției f	2p
	Reprezentarea altui punct care aparține graficului funcției f	2 p
	Trasarea graficului funcției f	1p
	b) $C(a,b)$ este situat pe graficul funcției $f \Rightarrow f(a) = b$	1p
	Distanța de la punctul C la axa Ox este egală cu 7, deci $b = -7$ sau $b = 7$	2p
	$b = -7 \Rightarrow a = -3$, care convine şi $b = 7 \Rightarrow a = \frac{5}{3}$, care nu convine	2p
5.	$E(x) = \left(\frac{7(x+1)}{(x+1)(x+2)} - \frac{5}{x-2} + \frac{6}{(x-2)(x+2)}\right) \cdot \frac{(x-2)(x+2)}{x-9} =$	3p
	$= \frac{7(x-2)-5(x+2)+6}{(x-2)(x+2)} \cdot \frac{(x-2)(x+2)}{x-9} = \frac{2x-18}{x-9} = 2, \text{ pentru orice } x \text{ număr real, } x \neq -2,$ $x \neq -1, \ x \neq 2 \text{ și } x \neq 9$	2p

SUBIECTUL al III-lea (30 de puncte)

1	•	a) $P_{ABCD} = 4AB =$	2p
		$= 4 \cdot 30 = 120 \mathrm{m}$	3p
		b) $m(\angle BAE) = 90^{\circ} + 60^{\circ} = 150^{\circ}$ și $m(\angle CDE) = 90^{\circ} + 60^{\circ} = 150^{\circ}$, deci $\angle BAE = \angle CDE$	2p
		Cum $BA = CD$ și $AE = DE$, obținem $\triangle ABE \equiv \triangle DCE \Rightarrow BE = CE$, deci $\triangle EBC$ este isoscel	3 p

Probă scrisă la matematică Barem de evaluare și de notare

Ministerul Educației Naționale Centrul Național de Evaluare și Examinare

	c) Punctul M este mijlocul laturii AD , deci $EM \perp AD$ şi punctul N mijlocul laturii BC , deci $EN \perp BC$ şi, cum $AD \parallel BC \Rightarrow E$, M şi N sunt coliniare	3p
	$BO = CO \Rightarrow ON \perp BC$, deci punctele E, M, O şi N sunt coliniare	2 p
2.	$\mathbf{a)} \ \mathcal{A}_{ABCD} = AB^2 = 144 \mathrm{cm}^2$	2 p
	$V_{VABCD} = \frac{1}{3} \cdot VO \cdot \mathcal{A}_{ABCD} = \frac{1}{3} \cdot 6\sqrt{3} \cdot 144 = 288\sqrt{3} \text{ cm}^3$	3p
	b) $MO \perp (ABC)$, $ON \perp BC$, $BC \subset (ABC) \Rightarrow MN \perp BC$, unde N este mijlocul laturii BC , şi, cum $OM = 2\sqrt{3}$ cm, obținem $MN = \sqrt{MO^2 + ON^2} = 4\sqrt{3}$ cm	3p
	$\mathcal{A}_{\Delta MBC} = \frac{BC \cdot MN}{2} = \frac{12 \cdot 4\sqrt{3}}{2} = 24\sqrt{3} \text{ cm}^2$	2p
	c) Cum $(MBC) \cap (VBC) = BC$, $MN \perp BC$, $MN \subset (MBC)$ și $VN \perp BC$, $VN \subset (VBC)$, obținem $m(\prec((MBC),(VBC))) = m(\prec(MN,VN)) = m(\prec(MNV))$	2p
	$\triangle VON$ dreptunghic, $m(\blacktriangleleft OVN) = 30^{\circ}$, $VM = MN = 4\sqrt{3}$ cm $\Rightarrow m(\blacktriangleleft MNV) = m(\blacktriangleleft OVN) = 30^{\circ}$	3 p