BLATT 13

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

(23.01.2017)

Aufgabe 1

(a) Sei ϕ eine \mathcal{L} -Formel und sei die \mathcal{L}^* -Aussage ϕ^* eine Skolem'sche Normalform von ϕ . Zeigen Sie

$$\models (\phi^* \to \phi)$$

(b) Sei ϕ eine \mathcal{L} -Aussage und die \mathcal{L}^* -Aussage ϕ_* sei eine Herbrand'sche Normalform von ϕ . Zeigen Sie

$$\models (\phi \rightarrow \phi_*)$$

Zur Erinnerung: Für Aussagen gilt $\models (\phi \rightarrow \psi)$ genau dann, wenn für alle Modelle \mathfrak{M} gilt $\mathfrak{M} \models \phi \Rightarrow \mathfrak{M} \models \psi$.

Aufgabe 2

Sei e eine Konstante und \circ ein zweistelliges Funktionszeichen, $\mathcal{L} = \{e, \circ\}$ und γ die \mathcal{L} -Aussage

$$(\forall v_0 \forall v_1 \forall v_2 \, (v_0 \circ v_1) \circ v_2 \doteq v_0 \circ (v_1 \circ v_2) \, \wedge \, \forall v_0 \, v_0 \circ e \doteq v_0 \, \wedge \, \forall v_0 \, e \circ v_0 \doteq v_0 \, \wedge \, \forall v_0 \, v_0 \circ v_0 \doteq e)$$

wobei wir aufgrund der besseren Lesbarkeit auf eine genaue prädikatenlogische Notation verzichten wollen, d.h. wir schreiben o zwischen den Zeichen, auf die o wirkt, und es ist auch erlaubt, zusätzliche Klammern einzufügen.

- (a) Ermitteln Sie eine Skolemsche Normalform ϕ^* der Formel $\phi = (\gamma \land \neg \forall v_0 \forall v_1 \ v_0 \circ v_1 \doteq v_1 \circ v_0)$.
- (b) Zeigen Sie mit der Herband'schen Methode, dass ϕ^* widersprüchlich ist, d.h. finden Sie variablenfreie \mathcal{L}^* -Terme τ_{ij} so, dass $\psi(\tau_{11}, \tau_{12}, \dots) \wedge \dots \wedge \psi(\tau_{n1}, \tau_{n2}, \dots)$ widersprüchlich ist.
- (c) Aus (a) und (b) folgt $\{\gamma\} \models \forall v_0 \forall v_1 v_0 \circ v_1 \doteq v_1 \circ v_0$. Was bedeutet dieses Ergebnis in "mathematischer Umgangsprache" (Beachten Sie, dass jedes Modell von γ eine Gruppe ist, da das letzte Konjunktionsglied die Existenz von Inversen beinhaltet)?

Hinweis zu (a): Ziehen Sie zuerst die Existenzquantoren nach vorne, damit Sie in den nächsten Aufgaben weniger zu schreiben haben (es kommen nur neue Konstantenzeichen dazu und keine neuen Funktionszeichen).

Hinweis zu (b): ϕ ist genau dann widersprüchlich, wenn $\neg \phi$ allgemeingültig ist.

Aufgabe 3

Es sei c ein Konstantenzeichen, h ein- und f,g zweistellige Funktionszeichen. Unifizieren Sie, falls möglich, folgende Terme (unter Angabe des Unifikators):

- (a) $gv_0ghcgv_2v_3$ und $gggv_5v_1hv_4ghcv_0$
- (b) $gv_4ggfgv_1v_6fv_5v_{12}gfv_{10}cv_2fv_7v_8$ und $gffv_3v_9fv_{11}v_{11}ggv_2gfv_{10}cfv_6v_0v_4$

Aufgabe 4

Sei $A = \{0, \dots, n-1\}$ mit n > 1 und A^* die Menge der endlichen Tupel mit Elementen aus A. Zeigen Sie, dass die Abbildung

Dozent: PD Dr. Markus Junker

Assistent: Andreas Claessens

$$f: A^* \to \mathbb{N}, \ (w_0, \cdots, w_l) \mapsto \sum_{i=0}^l (w_i + 1) \cdot n^i$$

eine Bijektion ist.

Bonusaufgabe

Es sei c ein Konstantenzeichen, T ein dreistelliges Relationszeichen und

$$\Phi = \left\{ \forall v_0 \exists v_1 \, Tv_0 v_1 c \,, \, \forall v_0 \, Tv_0 c v_0 \,, \, \forall v_0 \forall v_1 \exists v_2 Tv_0 v_1 v_2 \,, \\
\forall v_0 ... \forall v_5 \left((Tv_0 v_1 v_3 \wedge Tv_1 v_2 v_4 \wedge Tv_3 v_2 v_5) \to Tv_0 v_4 v_5 \right), \\
\forall v_0 ... \forall v_5 \left((Tv_0 v_1 v_3 \wedge Tv_1 v_2 v_4 \wedge Tv_0 v_4 v_5) \to Tv_3 v_2 v_5 \right) \right\}$$

und

$$\phi = \forall v_0 \, Tcv_0 v_0$$

Wir wollen mit nachfolgender Methode zeigen, dass $\Phi \models \phi$, was gleichbedeutend damit ist, dass $\Psi = \Phi \cup \{\neg \phi\}$ widersprüchlich ist .

- ullet Bringen Sie die Aussagen in Ψ in Skolemsche Normalform.
- Bringen Sie die quantorenfreien Teile in konjunktive Normalform.
- Setzen Sie geeignete Terme ein und wenden Sie dann die Resolutionsmethode auf die entstehenden Klauseln an.

Bemerkung: Interpretiert man T als den Graphen einer Funktion \circ , d. h. $Tabc \iff a \circ b = c$, bedeutet dies, dass bei Assoziativität und Existenz von Rechtsinversen ein rechtsneutrales Element auch linksneutral ist.