A 股投资者忽视扣非业绩 信息的异象研究

崔宸瑜 何贵华 谢德仁

管理世界, 2022.39(08)

解读人: 陈泽理 2022/10/13

目录

- 介绍
- 数据与方法
- 实证结果分析
- 结论

背景

- 为了督促上市公司聚焦主业,遏制上市公司利用非经常性项目操纵财务业绩的机会主义行为,1999年起,证监会强制要求上市公司在财务报告中披露非经常性损益,并以扣除非经常性损益后的净利润作为反映上市公司财务业绩,引导资源配置的核心财务指标。
- 现阶段,扣非后净利润已广泛应用在IPO、股权再融资、股票交易特殊处理、退市以及股权激励方案等需要考核上市公司业绩的各项监管规定中。
- 扣非后净利润的强制披露为A股市场各项监管政策的精准实施提供了量化依据,也为投资者提供了既能便利获取,又有望比传统报表净利润更能反映企业核心盈利能力的业绩指标。

动机

- 鲜有文献关注投资者如何运用扣非业绩指标。
- 投资者缺乏财务分析的能力(Hirshleifer and Teoh, 2003; Rouen et al., 2021),容易被低质量的业绩信息误导(Sloan, 1996; Luo et al., 2018)
- 一个例子: 开能健康(300272)2019年1季报在"主要会计数据和财务指标"部分披露了"相互矛盾"的业绩信息。净利润同比下滑96.23%,但扣非后净利润却出现了大幅上涨。公司股价在1季报发布日下跌9.94%(超额收益-5.90%),说明投资者认为公司业绩出现了滑坡而不是取得了

改善。

研究问题

两种解释: 1.市场有效,扣非后净利润没有投资价值,因此关注报表净利润是投资者的正确选择; 2.扣非后净利润更能反映公司真实的盈利能力,却未被投资者使用,并因此造成了股票的错误定价。

- ▶ 在市场整体层面,备受我国监管机构推崇的扣非后净利润是不是更有投资价值的业绩指标?
- 对报表净利润和扣非后净利润的投资价值进行回归对比。
- 如果是,扣非业绩指标是否得到了投资者的重视和关注?
- 投资组合分析、更注重净利润、弃优用劣异象。

文献综述: 扣非后净利润的投资价值更高

- 尽管会计利润是企业经营成果的综合汇总,但由于其成分复杂,包含了很多不具有持续性的损益,故在很多时候,会计利润并不能作为企业核心盈利能力的准确度量。
- 投资者对报表利润的直接套用常常是造成投资损失和定价错误的重要原因(Sloan, 1996; Luo et al., 2018)。
- 我国上市公司在早先年度利用非经常性损益操纵业绩的问题非常严重(蒋义宏、王丽琨,2003;魏涛等,2007)。
- 证监会从1999年就开始探索如何从上市公司的会计利润中分离出非经常性损益,并在2001年颁布"1号文件",逐渐形成一套完善的方法体系。 扣非后净利润与报表净利润在定期报告的瞩目位置同步披露。

文献综述: 投资者弃优用劣异象存在

- 尽管投资者很多时候也会意识到因为非经常性项目的存在,基本面分析不能只关注会计利润的数额,但由于精力有限,信息难以搜集,以及财务知识不足等多方面原因,投资者并不一定有能力根据公开披露的财务信息从会计利润中"去除糟粕,汲取精华"(Sloan,1996; Luo et al., 2018; Rouen et al., 2021)。
- 类似于"企业取得子公司、联营企业及合营企业的投资成本小于取得投资时应享有被投资单位可辨认净资产公允价值产生的收益"等非经常性项目,投资者至少要具备高级财务会计的知识水平才有可能理解这些业务及其会计处理的确切含义,从而区分其与经常性项目的不同。可见,投资者几乎不可能自制一个比扣非后净利润更好的业绩指标。

贡献

- 对投资者如何获取,处理以及使用信息的研究问题提出了新的思考。已有文献的一般观点是投资者容易因为精力有限或信息处理成本高昂而错过有价值的信息。然而 A 股上市公司按规定要在财报的瞩目位置同步披露报表净利润和扣非后净利润,意味着投资者无需为获取和使用扣非业绩信息付出额外的时间和精力,但我们仍然发现市场主要关注报表净利润而不是投资价值更高的扣非后净利润。可见,弃优用劣异象背后很可能还有被我们忽视,甚至尚且未知的行为偏误。
- 本文的研究发现表明,**扣非业绩信息强制披露政策不但能为政策监管提供更好的业绩标尺,也为投资者提供了更有投资价值的盈利信息**,然而令人感到意外和遗憾的是,大部分投资者可能并未从中受益。本文是对一系列研究扣非财务指标信息含量文献的拓展和补充,也让我们对相关信息披露制度的实施效果有了更加全面的认识。

数据来源

- 2002~2019年A股非金融行业上市公司的季度数据。由于A股上市公司从 2002年起披露季度财务报告,因此本文的样本期间起始于 2002年。在各实证检验中,部分变量的计算需要使用之前或未来几个季度的财务数据,因此不同检验的样本跨度可能有所不同。
- 扣除非经常性损益后的净利润来自WIND 数据库。
- 高频交易数据来自 RESSET 数据库(时间跨度为 2002~2018 年)。
- 分析师盈余预测数据和其他财务数据来自 CSMAR 数据库。

变量构造

- $E_{i,q}$ 、 $CoreE_{i,q}$ 、 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 是文章的 4 个主要变量,下标 i 代表公司,q 代表季度。
- $E_{i,q}$ 和 $CoreE_{i,q}$ 分别表示股票 i 在 q 季度的报表净利润和扣非后净利润, $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别表示股票 i 在 q 季度的报表净利润同比增长和扣非后净利润同比增长。
- 四个变量都使用归属于上市公司股东的计量口径,且都除以 q-4 季度末的总资产以消除规模的影响。
- 由于我们需要在多个实证检验中将 $E_{i,q}$ 和 $CoreE_{i,q}$ ($\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$)相对比,为了使 $E_{i,q}$ 和 $CoreE_{i,q}$ ($\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$)的回归系数可以直接比较,文章在每个季度都按百分位数,将变量的取值范围归一化至[0,1]。

实证模型:报表净利润和扣非后净利润的质量对比

 $Perf_{i,q+j} = \alpha + \beta_1 E_{i,q} + \beta_2 Core E_{i,q} + IND + Year - Quarter + \varepsilon_{i,q}$

 $\Delta Perf_{i,q+j} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + IND + Year - Quarter + \varepsilon_{i,q}$

- 借鉴 Bentley 等(2018)和 Rouen 等(2021)的研究方法,文章以业绩指标对公司未来业绩的信息含量(Informativeness)衡量其投资价值。式中 $Perf_{i,q+j}$ ($\Delta Perf_{i,q+j}$)表示公司 i 在 j 个季度后的业绩(同比增长)。
- 文章分别以 $E_{i,q+j}$ 、 $CoreE_{i,q+j}$ ($\Delta E_{i,q+j}$ 和 $\Delta CoreE_{i,q+j}$)和经营活动现金 净流量 $CFO_{i,q+j}$ ($\Delta CFO_{i,q+j}$)作为 $Perf_{i,q+j}$ ($\Delta Perf_{i,q+j}$)的代理变量, 以增强实证检验结果的可靠性。
- 考虑到公司的经营活动可能存在季节性,文章分别检验未来 1~4 季度的业绩情况,并在回归中控制了 Year-Quarter 固定效应。
- 控制了 IND 行业固定效应,为了确保研究结果稳健可靠,文章同时在公司和季度(Year-Quarter)层面对标准误进行了聚类处理。

实证模型:投资者对报表净利润和扣非后净利润的关注情况

 $EA_CAR_{i,q} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + \delta' X + IND + Year - Quarter + \varepsilon_{i,q}$

- 借鉴 Bhattacharya(2001),Bhattacharya 等(2003,2007)的研究方法, 我们通过盈余公告日的市场反应和交易行为检验投资者主要关注报表净 利润还是扣非后净利润。
- 通过检验盈余公告日的市场反应 $EA_CAR_{i,q}$ 与基于报表净利润的业绩信息 $\Delta E_{i,q+j}$ 和基于扣 非后净利润的业绩信息 $\Delta CoreE_{i,q+j}$ 之间的关系。当把 $\Delta E_{i,q+j}$ 和 $\Delta CoreE_{i,q+j}$ 同时放入回归模型时,更被投资者关注的 财务指标 应对 $EA_CAR_{i,q}$ 有更强的解释能力。
- *EA_CAR_{i,q}*表示盈余公告[-1,1]窗口经规模调整的买入并持有超额回报。*X* 代表一系列与盈余公告日股票回报相关的控制变量,包括规模 Ln*Size* 和账面市值比 Ln*BM*,股票从 12 个月之前买入持有至上月末的累计收益率 *Ret*,换手率 *Turnover* 和股价波动率 *RetVol*。

实证模型:投资者对报表净利润和扣非后净利润的关注情况

 $ABSI_{i,q} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + \delta' X + IND + Year - Quarter + \varepsilon_{i,q}$

- 借鉴 Bhattacharya(2001)、Battalio 和 Mendenhall(2005)等的研究方法,投资者在盈余公告日关注报表净利润还是扣非后净利润,还体现在哪一指标更能引导投资者的交易行为。
- $ABSI_{i,q}$ 代表投资者在盈余公告[-1,1]窗口的异常净买入。计算方式为: [-1,1]窗口的净买入 $BSI_{i,q}$ 减去盈余公告前的 3 个窗口([-12, -10]、[-15, -13]和 [-18, -16])和盈余公告后的 3 个窗口([10,12]、[13,15]和 [16,18])净买入的平均值。
- $BSI_{i,q} = (BuyVol_{i,q} SellVol_{i,q})/(BuyVol_{i,q} + SellVol_{i,q})$
- 借鉴 Lee(1992)的思路,交易额小于 10 万元的交易由散户发起,大于 20 万元的交易由机构投资者发起。构造散户投资者异常净买入 Retail_ $ABSI_{i,q}$ 及机构投资者异常净买入 $Institutional_ABSI_{i,q}$ 。

描述性统计: 1%-99%的缩尾处理。

• 所有回归模型均控制行业、时间固定效应,并在在公司和季度层面对标准误进行了聚类处理。

8	表	3 王多	足变重	描述作	生统计			
Variables	N	Mean	Std	P5	P25	P50	P75	P95
E	146799	0.008	0.019	-0.017	0.002	0.008	0.016	0.037
Core E	143071	0.007	0.019	-0.021	0.000	0.006	0.015	0.035
CFO	141946	0.011	0.041	-0.056	-0.009	0.010	0.031	0.079
ΔE	109690	-0.001	0.015	-0.023	-0.004	0.000	0.004	0.015
$\Delta CoreE$	97838	-0.001	0.012	-0.020	-0.004	0.000	0.004	0.014
ΔCFO	81246	-0.009	0.040	-0.081	-0.025	-0.004	0.011	0.047
EA_CAR	144911	-0.001	0.047	-0.070	-0.026	-0.004	0.020	0.080
Retail_ABSI	116650	0.016	0.204	-0.324	-0.104	0.013	0.134	0.370
$Institutional_ABSI$	84708	0.017	0.637	-1.103	-0.295	-0.002	0.286	0.993
LnSize	137991	14.822	1.245	12.792	13.986	14.824	15.600	16.910
Ln <i>BM</i>	136221	-1.261	0.823	-2.653	-1.721	-1.182	-0.704	-0.091
Ret	141070	0.185	1.721	-0.504	-0.253	-0.017	0.339	1.513
Turnover	135542	0.029	0.032	0.004	0.010	0.019	0.036	0.087
RetVol	135542	0.023	0.024	0.009	0.015	0.021	0.029	0.043
ForecastBias 1	15781	-0.011	0.173	-0.031	-0.009	-0.003	0.000	0.007
ForecastBias 2	15781	-0.019	0.175	-0.047	-0.018	-0.009	-0.004	0.003
LnCov	19460	1.974	0.897	0.693	1.099	1.946	2.708	3.434

表3 主要变量描述性统计

 $Perf_{i,q+j} = \alpha + \beta_1 E_{i,q} + \beta_2 Core E_{i,q} + IND + Year - Quarter + \varepsilon_{i,q}$

预测能力对比:净利润和扣非后净利润。

 $\Delta Perf_{i,q+j} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + IND + Year - Quarter + \varepsilon_{i,q}$

• 基于报表净利润和基于扣非后净利润的业绩指标都对上市公司的未来财务绩效有显著的预测能力。

表	5	报	走沿	+利	涯ラ	印扣非	后	争利	泪双	公言	1	来	业约	上的	预沙	则能	1:	单	变	量检	验
---	---	---	----	----	----	-----	---	----	----	----	---	---	----	----	----	----	----	---	---	----	---

Ranel A Ranel A Ranel Core Ranel A Ranel Core Ranel A Ranel A Ranel Core Ranel A							11110			
$E_{i,qj}$		(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)
$E_{i,q}$	Panel A	$E_{i,q}$	I CoreEiq分	·别对 Ei,q+j	回归		$\Delta E_{i,q}$ 和	$\Delta Core E_{i,q}$	分别对 ΔE_i	g+j 回归
$E_{i,q}$	$E_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =4	$\Delta E_{i,q+j}$	<i>j</i> =1	j=2	<i>j</i> =3	j=4
$Adj-R^2$ 0.332 0.290 0.255 0.395 $Adj-R^2$ 0.163 0.097 0.049 0.006 $CoreE_{Lq}$ 0.571*** 0.537*** 0.503*** 0.617*** (35.12) (42.08) (28.41) (39.63) $\Delta CoreE_{Lq}$ (39.73) (29.07) (21.05) (4.74) $\Delta dj-R^2$ 0.347 0.308 0.272 0.398 $\Delta dj-R^2$ 0.174 0.104 0.051 0.008 Panel B E_{Lq} 和 $CoreE_{Lq}$ 分別対 $CoreE_{Lqq}$ 回归 ΔE_{Lq} 和 $\Delta CoreE_{Lq}$ 分別対 $\Delta CoreE_{Lqq}$ 回归 ΔE_{Lq} 和 $\Delta CoreE_{Lq}$ 分別 $\Delta CoreE_{Lqq}$ 回归 ΔE_{Lq} 和 $\Delta CoreE_{Lq}$ 分別 $\Delta CoreE_{Lqq}$ 回归 ΔE_{Lq} 和		0.561***	0.521***	0.488***	0.618***		0.400***	0.305***	0.212***	-0.021*
$CoreE_{i,q}$	$\mathbf{L}_{i,q}$	(35.82)	(43.17)	(29.03)	(42.31)	$\Delta E_{i,q}$	(42.40)	(28.91)	(20.80)	(-1.84)
$CoreE_{i,q}$ (35.12) (42.08) (28.41) (39.63) $\Delta CoreE_{i,q}$ (39.73) (29.07) (21.05) (4.74) $Adj-R^2$ 0.347 0.308 0.272 0.398 $Adj-R^2$ 0.174 0.104 0.051 0.008 Panel B $E_{i,q}$ 和 $CoreE_{i,q}$ 分別对 $CoreE_{i,q,p}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分別对 $\Delta CoreE_{i,q,p}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分別对 $\Delta CoreE_{i,q,p}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分別对 $\Delta CoreE_{i,q,p}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q,p}$ $\Delta E_{i,q}$ 和 ΔE	$Adj-R^2$	0.332	0.290	0.255	0.395	$Adj-R^2$	0.163	0.097	0.049	0.006
Adj-R² 0.347 0.308 0.272 0.398 Adj-R² 0.174 0.104 0.051 0.008	C E	0.571***	0.537***	0.503***	0.617***	A.C E	0.409***	0.313***	0.215***	0.050***
Panel B $E_{i,q}$ 和 $CoreE_{i,q}$ 分别对 $CoreE_{i,q,p}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q,p}$ 到对 $\Delta CoreE_{i,q,p}$ 回归 $E_{i,q}$ E_{i,q	$Core E_{i,q}$	(35.12)	(42.08)	(28.41)	(39.63)	$\Delta Core E_{i,q}$	(39.73)	(29.07)	(21.05)	(4.74)
	$Adj-R^2$	0.347	0.308	0.272	0.398	Adj-R ²	0.174	0.104	0.051	0.008
$E_{i,q}$	Panel B	E _{i,q} 和 (CoreE _{i,q} 分另	以对 CoreEi,	_{g+j} 回归		$\Delta E_{i,q}$ 和 Δ	CoreE _{iq} 分为	別对 ∆ Core	E _{i,q+j} 回归
$AE_{i,q}$ (34.06) (44.33) (32.24) (42.28) $AE_{i,q}$ (47.10) (31.97) (22.44) (3.71) $Adj-R^2$ 0.354 0.317 0.282 0.415 $Adj-R^2$ 0.177 0.103 0.050 0.007 $CoreE_{i,q}$ (30.16) (43.60) (31.37) (57.14) $ACoreE_{i,q}$ (43.70) (31.00) (21.76) (-0.20) $Adj-R^2$ 0.387 0.358 0.316 0.472 $Adj-R^2$ 0.198 0.114 0.055 0.006 $Panel \ C E_{i,q}$ $CoreE_{i,q}$ C	$CoreE_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =4	$\Delta Core E_{i,q+j}$	<i>j</i> =1	j=2	<i>j</i> =3	j=4
$Adj-R^2$ 0.354 0.317 0.282 0.415 $Adj-R^2$ 0.177 0.103 0.050 0.007 $CoreE_{i,q}$ 0.610*** 0.586*** 0.549*** 0.679*** $\Delta CoreE_{i,q}$ 0.441*** 0.333*** 0.227*** -0.002 $\Delta CoreE_{i,q}$ 0.30.16) (43.60) (31.37) (57.14) $\Delta CoreE_{i,q}$ 0.198 0.114 0.055 0.006 Panel C $E_{i,q}$ 和 $CoreE_{i,q}$ 分别对 $CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CoreE_{i,q}$ 均别对 $\Delta CoreE_{i,q}$ 0.113*** 0.081*** 0.056*** 0.028*** $\Delta E_{i,q}$ 0.113*** 0.081*** 0.056*** 0.028*** $\Delta E_{i,q}$ 0.159*** 0.161*** 0.137*** 0.206*** $\Delta CoreE_{i,q}$ 0.121*** 0.084*** 0.058*** 0.029*** 0.159*** 0.161*** 0.137*** 0.206*** 0.206*** 0.121*** 0.084*** 0.058*** 0.029*** 0.161*** 0.137*** 0.206*** 0.121*** 0.084*** 0.058*** 0.029*** 0.161*** 0.137*** 0.206*** 0.121*** 0.084*** 0.058*** 0.029***	E	0.584***	0.551***	0.518***	0.638***	A.E.	0.421***	0.318***	0.216***	0.043***
$CoreE_{i,q}$ $0.610***$ $0.586***$ $0.549***$ $0.679***$ $0.679***$ $0.679***$ $0.610***$ $0.610***$ $0.586***$ $0.549***$ $0.679**$ $0.679**$	$E_{i,q}$	(34.06)	(44.33)	(32.24)	(42.28)	$\Delta E_{i,q}$	(47.10)	(31.97)	(22.44)	(3.71)
$CoreE_{i,q}$ (30.16) (43.60) (31.37) (57.14) $\Delta CoreE_{i,q}$ (43.70) (31.00) (21.76) (-0.20) $Adj-R^2$ 0.387 0.358 0.316 0.472 $Adj-R^2$ 0.198 0.114 0.055 0.006 $Panel \ C$ $E_{i,q}$ 和 $CoreE_{i,q}$ 分别对 $CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $E_{i,q}$ 0.147*** 0.148*** 0.122*** 0.198*** $E_{i,q}$ 0.113*** 0.081*** 0.056*** 0.028*** $E_{i,q}$ (9.94) (16.69) (13.69) (25.48) $\Delta E_{i,q}$ (20.56) (13.70) (9.97) (4.77) $E_{i,q}$ 0.159*** 0.161*** 0.137*** 0.206*** $E_{i,q}$ 0.121*** 0.084*** 0.058*** 0.029*** (11.68) (18.73) (15.18) (23.18) $E_{i,q}$ 0.121*** 0.084*** 0.058*** 0.029***	$Adj-R^2$	0.354	0.317	0.282	0.415	$Adj-R^2$	0.177	0.103	0.050	0.007
$Adj-R^2$ 0.387 0.358 0.316 0.472 $Adj-R^2$ 0.198 0.114 0.055 0.006 Panel C $E_{i,q}$ 和 $CoreE_{i,q}$ 分別对 $CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 0.147*** 0.148*** 0.122*** 0.198*** $\Delta E_{i,q}$ 0.113*** 0.081*** 0.056*** 0.028*** $E_{i,q}$ (9.94) (16.69) (13.69) (25.48) $\Delta E_{i,q}$ (20.56) (13.70) (9.97) (4.77) $\Delta E_{i,q}$ 0.159*** 0.161*** 0.137*** 0.206*** $\Delta E_{i,q}$ 0.121*** 0.084*** 0.058*** 0.029*** (11.68) (18.73) (15.18) (23.18) $\Delta CoreE_{i,q}$ (19.70) (14.25) (9.22) (4.72)	C F	0.610***	0.586***	0.549***	0.679***	A.C E	0.441***	0.333***	0.227***	-0.002
Panel C $E_{i,q}$ 和 $CoreE_{i,q}$ 分别对 $CFO_{i,q+j}$ 回归 $\Delta E_{i,q}$ 和 $\Delta CoreE_{i,q}$ 分别对 $\Delta CFO_{i,q+j}$ 回归 $CFO_{i,q+j}$ 可归 $CFO_{i,q+j}$ 可归 $CFO_{i,q+j}$ 可归 $CFO_{i,q+j}$ 可归 $CFO_{i,q+j}$ 可归 $CFO_{i,q+j}$ CFO_{i,q	$Core E_{i,q}$	(30.16)	(43.60)	(31.37)	(57.14)	$\Delta Core E_{i,q}$	(43.70)	(31.00)	(21.76)	(-0.20)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$Adj-R^2$	0.387	0.358	0.316	0.472	$Adj-R^2$	0.198	0.114	0.055	0.006
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel C	E _{i,q} 和	CoreE _{i,q} 分为	别对 CFO _{i,q}	,回归		$\Delta E_{i,q}$ 和 Δ	CoreE _{i,q} 分	别对△CF	D _{i,q+j} 回归
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$CFO_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	<i>j</i> =4	$\Delta CFO_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	j=4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	E	0.147***	0.148***	0.122***	0.198***	A.E.	0.113***	0.081***	0.056***	0.028***
$Core E_{i,q} \begin{vmatrix} 0.159^{***} & 0.161^{***} & 0.137^{***} & 0.206^{***} \\ (11.68) & (18.73) & (15.18) & (23.18) \end{vmatrix} \Delta Core E_{i,q} \begin{vmatrix} 0.121^{***} & 0.084^{***} & 0.058^{***} & 0.029^{***} \\ (19.70) & (14.25) & (9.22) & (4.72) \end{vmatrix}$	$\mathbf{L}_{i,q}$	(9.94)	(16.69)	(13.69)	(25.48)	$\Delta E_{i,q}$	(20.56)	(13.70)	(9.97)	(4.77)
$CoreE_{i,q}$ (11.68) (18.73) (15.18) (23.18) $\Delta CoreE_{i,q}$ (19.70) (14.25) (9.22) (4.72)	$Adj-R^2$	0.040	0.040	0.033	0.058	$Adj-R^2$	0.023	0.017	0.014	0.012
(11.68) (18.73) (15.18) (23.18) (19.70) (14.25) (9.22) (4.72)	CompE	0.159***	0.161***	0.137***	0.206***	A Comp E	0.121***	0.084***	0.058***	0.029***
$Adj-R^2$ 0.043 0.044 0.037 0.060 $Adj-R^2$ 0.024 0.017 0.014 0.012	CoreE _{i,q}	(11.68)	(18.73)	(15.18)	(23.18)	△ Core E _{i,q}	(19.70)	(14.25)	(9.22)	(4.72)
AND THE PROPERTY OF THE PROPER	$Adj-R^2$	0.043	0.044	0.037	0.060	$Adj-R^2$	0.024	0.017	0.014	0.012

预测能力对比: 赛马检验

- 扣非后净利润的系数 显著大于净利润,且 基本通过了F检验。
- Decline表示基于单个 回归检验,系数所下 降的比例。
- 说明扣非后净利润的 预测能力要比净利润 更强。

表	6 报表>	争利润和	扣非后次	争利润对	公司未来业约	责的预测	能力:赛	马检验	
1/2 	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)
Panel A	E _{i,q} 和	CoreE _{i,q}]时对E _{i,q+j}	回归		$\Delta E_{i,q}$ 和	$\Delta Core E_{i,q}$	同时对ΔI	Eigej回归
$E_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	j=4	$\Delta E_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	j=3	j=4
	0.229***	0.198***	0.183***	0.327***	[1] AE	0.196***	0.147***	0.101***	-0.180***
$[1] E_{i,q}$	(4.43)	(5.20)	(4.03)	(7.81)	$[1] \Delta E_{i,q}$	(13.54)	(10.13)	(10.07)	(-10.14)
% Decline	59.11%	61.94%	62.61%	47.17%	% Decline	50.94%	52.03%	52.54%	_
[2] C E	0.369***	0.359***	0.340***	0.329***		0.245***	0.190***	0.130***	0.196***
[2] $CoreE_{i,q}$	(7.30)	(9.35)	(7.58)	(8.15)	[2] $\Delta Core E_{iq}$	(17.30)	(15.19)	(15.20)	(12.46)
% Decline	35.48%	33.04%	32.41%	46.78%	% Decline	40.15%	39.16%	39.48%	_
F-test [1] = [2]	1.90	4.52**	3.17*	0.00	F-test [1] = [2]	3.33*	3.17*	3.93*	145.94***
$Adj-R^2$	0.357	0.314	0.277	0.418	$Adj-R^2$	0.185	0.110	0.054	0.018
Panel B	Eig和 C	CoreE _{i,q} 同由	対 CoreE	. _{g+j} 回归		$\Delta E_{i,q}$ 和 Δ	CoreE _{i,q} 同	时对ΔCon	reE _{i,q+j} 回归
$CoreE_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	j=4	$\Delta Core E_{iq+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	j=4
[1] E	0.190***	0.145***	0.149**	0.174***	[1] A.E.	0.171***	0.132***	0.089***	0.156***
$[1]$ $E_{i,q}$	(3.32)	(3.09)	(2.43)	(3.54)	$[1] \Delta E_{i,q}$	(21.75)	(10.99)	(9.87)	(11.46)
% Decline	67.41%	73.77%	71.17%	72.70%	% Decline	59.45%	58.54%	58.99%	-
[2] CE	0.442***	0.456***	0.415***	0.525***	[2] A.CE	0.295***	0.221***	0.152***	-0.132***
[2] $CoreE_{i,q}$	(7.12)	(9.50)	(6.73)	(10.93)	[2] $\Delta Core E_{iq}$	(24.19)	(17.25)	(13.95)	(-10.10)
% Decline	27.63%	22.20%	24.31%	22.73%	% Decline	33.03%	33.72%	32.97%	-
F-test [1] = [2]	4.52**	10.95***	4.73**	13.15***	F-test [1] = [2]	49.25***	15.78***	14.59***	149.72***
$Adj-R^2$	0.394	0.360	0.318	0.476	$Adj-R^2$	0.205	0.119	0.058	0.012
Panel C	$E_{i,q}$ 和 (CoreE _{i,q} 同日	付对 CFO _{i,}	_{r+j} 回归		$\Delta E_{i,q}$ 和 Δ	$\Delta Core E_{i,q}$	$]$ 时对 ΔCF	FO _{i,q+j} 回归
$CFO_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	<i>j</i> =3	j=4	$\Delta CFO_{i,q+j}$	<i>j</i> =1	<i>j</i> =2	j=3	j=4
[1] E	-0.005	0.005	-0.017	0.075***	[1] A.E.	0.025***	0.019*	0.015	0.004
[1] $E_{i,q}$	(-0.26)	(0.32)	(-1.16)	(4.42)	$[1] \Delta E_{i,q}$	(2.69)	(1.95)	(1.48)	(0.43)
% Decline	103.33%	96.75%	113.76%	61.95%	% Decline	78.20%	76.42%	73.58%	86.33%
[2] C E	0.167***	0.158***	0.153***	3*** 0.139***		0.101***	0.068***	0.044***	0.026***
[2] $CoreE_{i,q}$	(10.07)	(10.35)	(10.27)	(7.54)	[2] $\Delta Core E_{iq}$	(9.61)	(7.55)	(4.31)	(3.04)
% Decline	-5.02%	1.86%	-11.97%	32.57%	% Decline	16.68%	18.76%	24.09%	10.80%
F-test [1] = [2]	28.27***	28.09***	36.99***	3.42*	F-test [1] = [2]	16.54***	7.60***	2.24	1.90
$Adj-R^2$	0.044	0.044	0.037	0.061	$Adj-R^2$	0.024	0.018	0.014	0.012

投资者关注报表净利润还是扣非后净利润:来自盈余反应系数的证据

 $EA_CAR_{i,q} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + \delta' X + IND + Year - Quarter + \varepsilon_{i,q}$

- 同时将净利润和扣非后净利润加入回归模型后,扣非后净利润的回归系数大小显著下降,表明盈余公告日股价变动的解释被净利润大幅度吸收。
- 赛马检验的结果意味着尽管扣非 后净利润是更有投资价值的业绩 指标,但在盈余公告日却未被投 资者使用,投资者主要关注的依 然是报表净利润。

	盈余人	公告日的	市场反点	立		
"			EA_CA	$R_{i,q}$		
	(1)	(2)	(3)	VIF	(4)	VIF
[1] $\Delta E_{i,q}$	0.029*** (14.91)		0.022*** (10.29)	3.66	0.023*** (10.47)	3.69
[2] $\Delta CoreE_{i,q}$		0.027*** (15.55)	0.009*** (7.23)	3.66	0.009*** (7.06)	3.68
LnSize					0.000 (0.88)	1.82
LnBM					-0.000 (-0.59)	1.56
Ret[-12, -1]					-0.000 (-1.28)	1.09
Turnover					-0.069*** (-3.44)	2.00
RetVol					0.187*** (4.05)	1.86
F-test: [1] = [2]			22.02***		23.04***	
Year-Quarter	Yes	Yes	Yes	· ·	Yes	
Industry	Yes	Yes	Yes		Yes	
Observations	108927	97283	94586		90189	
$Adj-R^2$	0.035	0.032	0.038		0.042	

散户投资者关注报表净利润还是扣非后净利润:来自盈余公告日交易的证据

 $ABSI_{i,q} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + \delta' X + IND + Year - Quarter + \varepsilon_{i,q}$

- 同时将净利润和扣非后净利润加入回归模型后,扣非后净利润的回归系数大小及显著性显著下降,表明散户投资者使用的是报表净利润,而不是投资价值更高的扣非后净利润。
- 回归(5)以成交金额低于5万 作为散户交易的界定标准重新检 验,得到了与回归(4)高度一 致的实证发现。

散户投资者在盈余公告日的交易行为

		1	Ketaul_ABSI;	ig	
	(1)	(2)	(3)	(4)	(5)
[1] A.E.	0.040***		0.0421***	0.040***	0.032***
[1] $\Delta E_{i,q}$	(9.17)		(7.00)	(6.76)	(5.55)
[2] A.CE		0.029***	-0.005	-0.006	-0.007
[2] $\Delta Core E_{i,q}$		(7.46)	(-1.05)	(-1.27)	(-1.33)
I C.				0.010***	0.008***
LnSize				(3.05)	(2.73)
I DM				0.005**	0.007***
LnBM				(2.42)	(3.33)
n -[10 1]				-0.000	-0.000
Ret[-12, -1]				(-0.38)	(-0.19)
Tr.				-0.131	-0.107
Turnover				(-1.40)	(-1.27)
D.W.				0.583***	0.471**
RetVol				(2.66)	(2.27)
F-test: [1] = [2]	2		21.57***	20.74***	13.99***
Year-Quarter	Yes	Yes	Yes	Yes	Yes
Industry	Yes	Yes	Yes	Yes	Yes
Observations	89543	79841	77454	77159	76909
$Adj-R^2$	0.024	0.025	0.026	0.028	0.019

机构投资者关注报表净利润还是扣非后净利润:来自盈余公告日交易的证据

$$ABSI_{i,q} = \alpha + \beta_1 \Delta E_{i,q} + \beta_2 \Delta Core E_{i,q} + \delta' X + IND + Year - Quarter + \varepsilon_{i,q}$$

- 同时将净利润和扣非后净利润加入回归模型后,扣非后净利润的回归系数大小及显著性显著下降,表明机构投资者使用的是报表净利润,而不是投资价值更高的扣非后净利润。
- 回归(5)以成交金额高于50万 作为机构交易的界定标准重新检验,得到了与回归(4)高度一 致的实证发现。

	5-333 - 75	7.5			
		Insti	tutional_A	$BSI_{i,q}$	
	(1)	(2)	(3)	(4)	(5)
[4] A.B.	0.130***		0.118***	0.110***	0.129***
[1] $\Delta E_{i,q}$	(9.26)		(5.65)	(5.29)	(5.42)
[2] A.C. E		0.127***	0.032*	0.027	0.038
[2] $\Delta Core E_{iq}$	La.	(8.52)	(1.67)	(1.43)	(1.65)
T 01				0.017**	0.015*
LnSize				(2.03)	(1.87)
I - DM				-0.007	-0.009
Ln <i>BM</i>				(-1.47)	(-1.41)
p.f. 12 11				-0.002	-0.002
Ret[-12, -1]				(-1.14)	(-1.58)
T				-0.439	-0.497*
Turnover				(-1.64)	(-1.80)
RetVol				1.843***	1.810**
Retvot				(2.72)	(2.31)
F-test: [1] = [2]			5.55**	4.96**	4.46**
Year-Quarter	Yes	Yes	Yes	Yes	Yes
Industry	Yes	Yes	Yes	Yes	Yes
Observations	65686	60087	58669	58490	58281
$Adj-R^2$	0.026	0.026	0.027	0.028	0.026

弃优用劣异象

- 由于投资者使用的业绩指标是质量较差的报表净利润,因此当扣非前后的净利润差别很大时,投资者很可能对企业未来的盈利能力产生错误的预期。
- 按季或按月将 ΔCoreE 对 ΔE 回归(ΔCoreE 为因变量),以残差
 Uncorrelated Info 反映 ΔCoreE 和 ΔE 相异的程度, Uncorrelated Info 的绝对值越大, ΔE 对投资者的误导性越大。
- 当 *Uncorrelated Info*>0 时,投资者容易低估公司未来的盈利能力,而当 *Uncorrelated Info*<0 时,投资者容易高估公司的盈利前景。

弃优用劣: 股票错误定价

- 如果投资者的确因为忽视扣非业绩指标,在扣非前后净利润的相异程度较大时被投资价值较低的报表净利润误导,Uncorrelated Info 应在盈余公告后的月份对股票回报有显著的预测能力。
- Fama-MacBeth回归,且回归系数 显著为正。

表 10 投资者对未来盈余的 错误预期与股票回报

		$Ret_{i,i+1}$	
	(1)	(2)	(3)
II	0.386***	0.389***	0.387***
Uncorrelated Info _i ,	(2.79)	(6.63)	(6.80)
LnSize		-0.006***	-0.006***
LnSize		(-3.79)	(-4.05)
LnBM		0.001	0.002
Ln <i>BM</i>		(0.31)	(1.30)
D (10 1]		0.004	0.005*
Ret[-12, -1]		(1.59)	(1.92)
T.		-0.409***	-0.452***
Turnover		(-10.27)	(-9.07)
D .W.)		-0.190***	-0.220***
RetVol		(-2.78)	(-3.72)
Industry			Yes
Observations	287309	280805	280805
T	204	204	204
Ave $Adj-R^2$	0.006	0.090	0.1516

弃优用劣: 投资组合分析

- Fama-MacBeth回归的补充验证。
- 每个月根据*Uncorrelated Info* 从大 到小将股票分为**10**组,并构建多 空组合。
- 无论以均等权重配置股票,还是以市值权重配置股票,套利组合都能获得1%左右,显著为正的月收益率,风险调整后,超额收益仍然存在。

表 11	投资者对未来盈余的错误预期与投
	资组合收益

		Z TT L		
	(1)	(2)	(3)	(4)
	RAW	CAPM	FF-3	FF-5
	Panel	A 等权投	资组合	
Τ	0.010	0.002	-0.003	-0.003
Low	(1.32)	(0.43)	(-1.63)	(-1.15)
III. J	0.019***	0.011***	0.008***	0.005***
High	(2.74)	(3.47)	(4.16)	(2.68)
	0.009***	0.009***	0.011***	0.008***
High-Low	(3.75)	(4.15)	(4.49)	(2.99)
0	Panel B	市值加权	投资组合	20.
	0.003	-0.004*	-0.007***	-0.007***
Low	(0.51)	(-1.67)	(-3.55)	(-2.77)
TT: 1	0.014**	0.007***	0.007***	0.004
High	(2.23)	(2.60)	(2.66)	(1.60)
III: L I	0.011***	0.011***	0.014***	0.011***
High-Low	(3.45)	(3.59)	(4.63)	(3.20)

弃优用劣:未来盈余公告日的市场反应

- 投资者错误预期的纠正主要集中 在未来的盈余公告日。
- Uncorrelated Info与未来1和2季度盈余公告日的市场反应显著正相关,支持了市场的错误预期在未来盈余公告日修正的理论推断,为投资者忽视扣非后净利润提供了进一步的证据支持。
- 随着预测范围的拉长,业绩信息对公司未来基本面的预测能力逐渐下降,在公司披露 q+3 和 q+4 的盈余公告时,市场已经有充足的时间吸收 q 季度的盈利信息。

表 12 投资者对未来盈余的错误预期与未来盈余公告日的市场反应

	一一一		220.00	(4)
	(1)	(2)	(3)	(4)
	$EA_CAR_{i,q+1}$	$EA_CAR_{i,q+2}$	$EA_CAR_{i,q+3}$	EA_CARi,q+
Uncorrelated Info _{ig}	0.233***	0.097**	0.032	-0.020
Oncorretatea Injoin	(7.18)	(2.36)	(0.95)	(-0.68)
T . C:	0.002***	0.002***	0.002***	0.002***
LnSize	(5.98)	(6.07)	(5.57)	(5.50)
Ln <i>BM</i>	-0.003***	-0.004***	-0.003***	-0.004***
LnBM	(-4.87)	(-5.53)	(-5.19)	(-5.88)
D (10 1]	-0.000	-0.002***	-0.000	-0.002***
Ret[-12, -1]	(-1.53)	(-3.02)	(-1.67)	(-3.02)
T.	-0.086***	-0.085***	-0.095***	-0.097***
Turnover	(-4.37)	(-4.06)	(-4.19)	(-3.83)
D . W 1	0.194***	0.190***	0.202***	0.239***
RetVol	(3.78)	(3.46)	(3.75)	(4.29)
Year-Quarter	Yes	Yes	Yes	Yes
Industry	Yes	Yes	Yes	Yes
Observations	87435	84673	81960	79601
$Adj-R^2$	0.010	0.010	0.009	0.010

弃优用劣:分析师角度及可能成因

• 分析师角度:研究 *Uncorrelated Info* 与分析师盈余预测偏差之间的关系,发现分析师也忽略了扣非净利润。(具体则是将分析师预测偏差与UNInfo进行回归)。

• 成因:

- ➤ Shue 和 Townsend(2021)、Hartzmark 和 Solomon(2022): 长期接收有缺陷的信息会让投资者形成根深蒂固的错误观念。财经门户网站和交易系统一般会把重要的,代表性的财务指标以简报的形式摘录,而绝大多数简报只有净利润,并没有扣非后净利润。
- ▶ 非经常性损益信息披露制度是在证监会的推动下建立实施的,制度的 释义、解读、修订、完善也一直由证监会主导,扣非业绩指标也一直 为证监会在各项监管政策中使用,并未向投资者宣传此分析框架。
- ▶ 过度自信的投资者更愿意把估值误判归咎于其他因素,而不是反思自己是否使用了恰当的业绩指标。由于投资者并不容易发现报表净利润的缺陷,也就不会主动寻求更好的业绩指标,这或许是弃优用劣异象在A股市场长期存在的一个原因。

4.结论

- 上市公司依监管规定披露的扣非后净利润比报表净利润更能反映上市公司的盈利能力。
- 投资者弃优用劣的直接证据体现为在盈余公告日,报表净利润有比扣非 后净利润显著更大的盈余反应系数,且对投资者的交易行为有显著更强 的解释能力。
- 不当使用业绩指标会让投资者在扣非前后的业绩信息存在较大差异时错 判公司未来的盈利能力,造成股票的错误定价。
- 扣非后净利润增长与报表净利润增长的相异程度能够预测未来股票回报、 未来盈余公告的市场反应和分析师的盈余预测偏差,利用扣非前后净利 润增长的相异程度设计交易策略可以获得显著的α。
- 并非只有散户投资者忽视扣非业绩信息,机构投资者、分析师、财经门户和券商等专业人士可能也存在弃优用劣的非理性行为。