

Лекция 2 Базы данных и основы SQL

Tinkoff.ru

Оглавление

- ➤ Модель хранилища данных
- ➤ Основы SQL
- ≻Описание витрин в базе

Откуда берутся данные?

Каждая система в рамках бизнес процесса выполняет свою роль и как следствие собирает свои собственные данные. При аналитике может потребоваться обращаться к данным с разных систем, для этого нужно понимать откуда их взять. А для ускорения работы и уменьшения нагрузки на эти системы, лучше их скопировать и положить в хранилище

данных.

Хранение данных

Данные удобно воспринимать в формате таблиц — это достаточно наглядно, так как в рамках процесса зачастую происходят схожие "явления", просто каждая со своим набором параметров.

Сроки таблицы – они же записи, разделяют эти "явления"

Столбцы таблицы – они же поля, служат описанием параметров этого "явления"

	4	Поля	_		
	order_id ↓∑∇+	customer_id ↓∑∇中	product_id ↓ Σ ▽ 中	order_dttm ▽中	volume_amt ↓ ∑ ▽ 中
	21454279	130849138	78321383	2016-03-18 00:0	5
	23417066	33728505	79587792	2016-04-15 00:0	52
Записи	21141517	556757	78901430	2016-03-30 00:0	219
	1588009	2903087	3393773	2011-06-17 00:0	204
	21492701	131091302	78571781	2016-03-23 00:0	16
	2871788	5117420	5722434	2012-06-01 00:0	139
	21193031	20751639	82231929	2016-05-30 00:0	234
	11386045	112898869	58546918	2014-07-05 00:0	97
	23114353	115711210	78155977	2016-03-19 00:0	335

Модель данных

Модель данных - модель «сущность-связь» (ER-модель), описывающая набор взаимосвязанных сущностей, которые отражают потребности бизнеса в аналитике и отчетности.

Модель данных

А еще модель данных может выглядеть вот так

Первичные и вторичные ключи

- ✓ Первичный ключ поле или набор полей, идентифицирующих строку в таблице:
 - недопустимо отсутствие значения;
 - все значения уникальны.

 Внешний ключ – поле или набор полей, устанавливающих связь между данными в двух таблицах. В общем случае не имеет логических ограничений, как первичный ключ.

Почти случайные логотипы

Почти случайные логотипы

Почти случайные логотипы

Тинькофф Квест (легенда)

Давайте предположим, что мы запускаем проект "Тинькофф Квест".

- Открываем квесты во всей стране по франшизной системе, то есть, каждой локацией по факту владеем не мы, а наши партнеры. Каждая локация принадлежит только одному партнеру.
- Локация это по сути помещение, при этом на одной локации может проводиться несколько квестов, если наш партнер сможет их все уместить, естественно с соблюдением всех норм и правил безопасности.
- В рамках нашего проекта, партнеры в праве продавать легенды (сценарии) своих квестов другим участникам проекта. Мы даже наняли несколько креативных агентств, которые нам написали несколько базовых легенд для квестов.
- Игрой будем называть слот в расписании. Так вот, в рамках каждой отдельной игры, команде участников будет предложено пройти квест за 50 минут, кто-то справляется быстрее, а кто-то наоборот не успевает пройти. Бывает и такое, что игра может не состояться, если на нее никто не записался.
- В ходе прохождения игры, участникам будет помогать оператор.

P.S. Данная история целиком и полностью вымышленная, все совпадения с реальными личностями случайны ☺

Тинькофф Квест (модель)

У нас модель хранилища данных будет выглядеть вот так (но это не точно)

Calendar
calendar_dt
year_no
month_nm
day_of_month_no
day_of_week_nm
holiday_flg

Оглавление

- > Модель хранилища данных
- **≻**Основы SQL
- ≻Описание витрин в базе

Подключаемся к базе

- Устанавливаем pgAdmin4
 https://www.pgadmin.org/download/
- Создаем новое подключение к серверу
- ✓ Задаем любое имя на вкладке General
- ✓ Переходим на вкладку Connection
- ✓ Хост 82.148.21.106
- ✓ Порт 8432
- Database postgres
- ✓ Пользователь student
- ✓ Пароль Bahz3loDieta

Create - Server		×
General Connect	ion SSL SSH Tunnel Advanced	
Host name/address	82.148.21.106	
Port	8432	
Maintenance database	postgres	
Username	student	
Password		
Save password?		

Подключаемся к базе

После этого, у вас будет доступ к данным, которые будут лежать в схеме *msu_analytics*. Открываем окно для написания запросов и вперед.

SQL - запрос

Первый закон аналитики: "прежде чем начать анализировать данные, их нужно собрать".

С этим легко можно справиться при помощи SQL запроса.

Структура SQL запроса проста:

- > Select
- > From
- Where
- Group by
- Having
- > Order by
- ➤ Limit

Операторы Select и From

Oператор Select отвечает за то, какие поля мы выводим в результат, в то время как оператор From – какие таблицы мы используем. Они должны быть в каждом запросе.

```
Select distinct

quest_rk

From

cource_analytics.game

Select

*

From

cource_analytics.employee
```

Если в операторе Select написать "*", то будут выведены все поля, а если приписать distinct, то из всех одинаковых записей останется только одна.

Если в операторе Select писать только агрегирующие функции, то он выдаст единственную строку с агрегатом по всей таблице. В данном случае число строк таблицы и среднее значение времени (по тем строкам, где оно заполнено)

Приписка as позволяет поля переименовывать.

Оператор Where

Оператор Where позволяет оставить только нужные записи.

Select

count(*) as cnt

From

cource_analytics.employee

Where

gender cd = 'f'

Теперь мы считаем количество не всех строк, а только тех, в которых $gender_cd = f'$, что в нашем случае значит — посчитать количество девушек сотрудниц

В операторе Where можно использовать любые логические связки с использованием and, or, not

Select

count(*) as cnt

From

cource_analytics.employee

Where

gender_cd = 'm'

and first_name = 'Tom'

Операторы Group by и Having

Оператор Group by позволяет данные группировать

Select

From

```
gender_cd
,count(*) as cnt
```

cource analytics.employee

Group by

gender cd

Having — это фильтрация после группировки. В данном случае, мы оставим только те записи, в которых значение поля *cnt* будет больше 35.

Теперь в выводе мы увидим не 1 запись как ранее, а 2. Одна будет говорить сколько у нас сотрудников мужчин, а вторая - сколько сотрудниц женщин.

```
Select
```

```
gender_cd
,count(*) as cnt
```

From

cource analytics.employee

Group by

gender_cd

Having

count(*) > 35

Оператор Order by

Оператор Order by отвечает за сортировку выводимого результата

Select

```
gender_cd
,count(*) as cnt

From

cource_analytics.employee

Group by

1

Order by

2 desc, 1
```

Для начала заметим, что в операторе Group by мы использовали число — это порядковый номер поля в операторе Select, то есть сгруппировали мы по полю gender_cd.

Сортировка же отработает по второму полю, то есть по полю *cnt*, приписка desc же означает, что сортировка будет произведена в обратном порядке (от большего к меньшему)

В операторах Group by и Order by можно использовать несколько полей, в этом случае их нужно перечислить через запятую.

Join

Join позволяет нам связывать записи из разных таблиц между собой

Select

a.employee_rk
,count(*) as cnt

From

cource_analytics.employee a
inner join cource_analytics.game b
 on a.employee_rk = b.employee_rk

Group by

1

Order by

2 desc

Inner join к каждой записи первой таблицы, которую мы обозначили за **a**, подставляет записи из таблицы, которую мы обозначили за **b** подходящие под условия после on, при этом, на 1 запись первой таблицы может прийтись несколько записей из второй, в этом случае создастся запись на каждую комбинацию.

Если на запись из первой таблицы не нашлось записи из второй, то запись первой таблицы выфильтровывается.

Если бы мы использовали left join, то такая запись первой таблицы дополнилась бы пустой строкой из второй таблицы.

Как результат мы получили таблицу, в которой на каждого сотрудника указано на сколько игр он провел, а результат отсортирован от большего числа игр к меньшему.

Join

Join

Можно использовать несколько Join подряд.

```
Select
```

```
a.partner_rk
     ,a.partner_nm
     ,b.partner_nm as b_name
     ,c.partner_nm as c_name
From
     cource_analytics.partner a
     inner join cource_analytics.partner b
          on a.partner_rk = b.cpartner_rk
     left join cource_analytics.partner c
          on a.partner_rk = c.partner_rk
          and c.partner_rk % 2 = 1
```

Подзапросы

Подзапросы позволяют нам "создавать" таблицы и сразу к ним обращаться.

```
Select
     date trunc('month', a.dt):: date as month
     ,avg(a.cnt) as avg
From
     Select
          game dttm::date as dt
          ,count(*) as cnt
     From
          cource_analytics.game
     Group by 1
     ) a
Group by 1
```

В такой реализации мы сначала для каждого дня посчитали количество игр в расписании этого дня.

А затем усреднили это число в рамках месяца.

Достаточно часто такая конструкция используется, если нам нужно проводить несколько агрегаций подряд.

Промежуточные таблицы

Иногда удобнее создать таблицы иным способом

Сейчас мы создали таблицу test_table и теперь можем к ней обращаться неограниченное количество раз.

Select *

From test_table

Промежуточные таблицы

Их тоже можно создавать несколько

```
With test_table as
     Select *
     From cource_analytics.employee
     Where gender_cd = 'f'
test_table_2 as
     Select *
     From cource_analytics.employee
     Where gender_cd = 'm'
Select *
From test_table
```

Оконные функции

Подзапросы позволяют нам "создавать" таблицы и сразу к ним обращаться.

Select

```
partner_rk
,location_rk
,row_number() over (partition by partner_rk order by location_rk) as num
From cource_analytics.location
```

Оконные функции не изменяют количество строк в select-e, но все равно может обогатить записи информацией об агрегатах.

Over – создает оконную функцию

В рамках этого окна, он группирует значения по partition by

И сортирует по order by

В нашем случае мы пронумеровали для каждого партнера все его локации.

Но так можно использовать и обычные агрегирующие функции вроде sum(). Или более хитрые.

Пара полезных советов

Select *

From cource_analytics.game
Limit 10

Limit позволяет выводить только часть результата, пишется он в самом конце

Аккуратно сравнивайте поля в разных форматах.

Особенно это касается даты и даты - времени

Game_dttm <= '2018-02-01' Эквивалентно Game_dttm <= '2018-02-01:00:00'

Домашнее задание

- 1) Со сколькими креативными агентствами мы работаем? Креативное агентство это партнер без единой локации, но имеющий патент на хотя бы одну легенду.
- У какого квеста (выпишите его quest_nm) разница доли состоявшихся квестов в январе и в феврале наибольшая по модулю? Долей считать количество состоявшихся квестов деленное на количество заявленных. В случае наличия нескольких квестов, подходящих под условие, требуется вывести тот, у которого значение quest_rk больше.
- 3) В каждом городе провели награждение 3х сотрудников, в чью смену среди пройденных игр оказалось самое низкое среднее время прохождения. Выпишите имена и фамилии награжденных серебряными медалями девушек.

Оглавление

- > Модель хранилища данных
- ➤ Основы SQL
- ≻Описание витрин в базе

Тинькофф Квест (модель)

У нас модель хранилища данных будет выглядеть вот так (но это не точно)

Calendar
calendar_dt
year_no
month_nm
day_of_month_no
day_of_week_nm
holiday_flg

Partner

Витрина содержит информацию о наших бизнес партнерах

Название поля	Описание
Partner_rk	Ключ партнера в хранилище данных
Partner_nm	Название партнера

Location

Витрина содержит информацию о тех локациях, на которых проходят квесты нашей франшизы

Название поля	Описание
Location_rk	Ключ локации в хранилище данных
Partner_rk	Ключ партнера, которому принадлежит эта локация
City_nm	Название города, в котором расположена локация
Metro_nm	Название ближайшей станции метро к локации

Legend

Витрина содержит информацию о легендах (сценариях/сюжетах) конкретных квестов.

Название поля	Описание
Legend_rk	Ключ легенды в хранилище данных
Partner_rk	Ключ партнера, которому принадлежит авторское право на эту легенду
Legend_nm	Запатентованное название сюжета
Complexity	Сложность квеста, идущего по данному сюжету

Quest

Витрина содержит информацию о квестах, в которые могут играть наши клиенты.

Название поля	Описание
Quest_rk	Ключ квеста в хранилище данных
Legend_rk	Ключ легенды, в рамках которой играется квест
Location_rk	Ключ локации, на которой квест располагается
Quest_nm	Название квеста

Employee

Витрина содержит информацию о сотрудниках, которые проводят игры и помогают командам.

Название поля	Описание
Employee_rk	Ключ сотрудника в хранилище данных
First_name	Имя сотрудника
Last_name	Фамилия сотрудника
Gender_cd	Пол сотрудника

Game

Витрина с расписанием запланированных и состоявшихся игр (отдельных прохождений и просто слотов в расписании по играм)

Название поля	Описание
Game_rk	Ключ отдельной игры в хранилище данных
Quest_rk	Ключ квест, в рамках которого проходила игра
Employee_rk	Ключ сотрудника, который проводил игру
Game_dttm	Дата-время запланированного начала игры
Price	Стоимость игры
Game_flg	Флаг того, что игра состоялась
Finish_flg	Флаг того, что состоявшуюся игру удалось пройти
Time	Время прохождения игры

Calendar

Витрина с календарем

Название поля	Описание
Calendar_dt	День календаря
Year_no	Год
Month_nm	Название месяца
Day_of_month_no	Номер дня внутри месяца
Day_of_week_nm	Название дня недели
Holiday_flg	Флаг выходного или праздничного дня