Годовое орбитальное движение Земли вызывает смещение луча света от светила в направлении движения планеты. Аберрации возникают также от движения всей солнечной системы относительно соседних звезд (со скоростью 19,5 км/с) — так называемая вековая аберрация и от вращения Земли — суточная аберрация. Первая появляется только у звезд и учитывается совместно с их собственным движением, вторая — менее 0,3", ее действием в МАЕ пренебрегают.

Аберрация света открыта в 1728 г. Брадлеем по смещению звезд в сторону движения Земли. В течение года на сфере образуется эллипс аберрационного смещения звезд (рис. 39). Годичная аберрация происходит вследствие того, что орбитальная скорость Земли ($v \approx 30$ км/с) сопоставима со скоростью распространения света ($c = 3 \cdot 10^5$ км/с — величина конечная и постоянная). Пусть наблюдатель на Земле направит центр телескопа A_1B_1 на звезду C (рис. 39) — луч света затратит на прохождение отрезка B_1A_1 (длины телескопа) промежуток времени ΔT . За это время наблюдатель сместится по орбите в точку \mathcal{I}_2 и луч света сместится из центра трубы. Чтобы видеть звезду в центре телескопа, трубу надо наклонить в положение A_1B_2 на угол y, величина которого определяется из $\Delta A_1B_2A_2$:

$$\frac{A_1 A_2}{\sin y} = \frac{B_2 A_2}{\sin u}$$
или

$$\sin y = \frac{A_1 A_2}{B_2 A_2} \sin u$$

где u – угол наклона оси телескопа к направлению движения.

Рис. 39

Но
$$A_1A_2 = v\Delta T$$
, а $B_2A_2 = c\Delta T$ и $\sin y = \frac{A_1A_2}{B_2A_2}\sin u$ или по малости угла
$$y'' = \frac{u}{c\ arc\ 1'}\sin u = k\sin u$$

где величина $k=\frac{u}{c\;arc\,\mathbf{1'}}$ называется постоянной аберрации и равна 20,5".

По величине y рассчитывают поправки координат $\Delta\alpha$ и $\Delta\delta$ светил за годичную аберрацию (они имеют величину до 1'). Эти поправки вводят в эфемериды всех светил.