

Universidade Federal Rural do Semi-Árido - UFERSA

CENTRO MULTIDISCIPLINAR DE PAU DOS FERROS – CMPF CURSO: BACHARELADO EM CIÊNCIA E TECNOLOGIA – BCT COMPONENTE CURRICULAR: LABORATÓRIO DE ONDAS E TERMODINÂMICA PROFESSOR: SHARON DANTAS DA CUNHA

PRÁTICA 14 – TRANSFORMAÇÃO ISOTÉRMICA - LEI DE BOYLE

1. OBJETIVO GERAL

Estimar o volume inicial do conjunto gaseológico Emília com manômetro através da Lei de Boyle.

2. FUNDAMENTAÇÃO TEÓRICA

Em um sistema composto de uma quantidade fixa de um gás, em uma dada temperatura (constante), observa-se que a pressão do sistema é inversamente proporcional ao volume ocupado pelo gás. Esta lei foi descoberta por Robert Boyle em 1662 e também verificada por Edme Mariotte, 17 anos depois. Ela pode ser enunciada como: "O produto entre a pressão e o volume de uma massa fixa de um gás é constante, para uma determinada temperatura". Matematicamente descrito pela equação 01, onde c é uma constante.

$$PV = c (01)$$

Para gases ideais a constante c assume o valor do produto entre o número de moles n, a constante dos gases R (de valor aproximadamente 8,31 J/mol.K) e T a temperatura em que se encontra este gás, como pode ser visto na equação 02:

$$PV = nRT (02)$$

Para transformações isotérmicas, ou seja, processos termodinâmicos a temperatura constante, em um sistema fechado, a massa do gás é constante e ocupa um volume V₀ a uma pressão P₀, se a pressão variar para uma nova pressão P₁ sem variação de temperatura, então seu volume mudará para um novo volume V₁. Como o produto nRT permanece constante, para N voltas, obtémse a equação 03.

$$P_0 V_0 = P_N V_N \tag{03}$$

3. MATERIAL UTILIZADO

Conjunto gaseológico Emília com manômetro da CIDEPE

4. PROCEDIMENTO EXPERIMENTAL (Valor = 0,4)

- 4.1. Teste de vedação
 - 1) Feche a válvula de saída, confinando um volume inicial de ar, e gire o manípulo até a pressão de 0,5 kgf/cm².
 - Aguarde 60 segundos
 - 3) Se a pressão se mantiver, prossiga o experimento, caso contrário, peçam a substituição do conjunto Emília.
- 4.2. Equivalência de escala de pressão

 $1 \text{kgf/cm}^2 = 97800 \text{ Pa}$

100 Pa = 1 hPa

 $1 \text{ atm} = 1,01 \times 10^5 \text{ Pa}$

4.3. Determinação da pressão atmosférica local ($P_{atm}=P_0$)

Alguns smartphones possuem sensor de pressão, e na Play Store ou no App Stores, existe alguns aplicativos que fornecem a pressão atmosférica local. Um aplicativo bem interessante é o Phyphox, pois através dele é possível fazer alguns experimentos de

física. Caso o seu smaRtphone não tenha o sensor de pressão, obtenha a pressão atmosférica local através da função linear obtida da regressão linear dos dados abaixo. A cidade de Pau dos Ferros não possui estação Meteorológica de Observação de Superfície automática. Como a pressão atmosférica é função da altitude, a tabela abaixo mostra os dados e o gráfico da pressão atmosférica para estações do nosso estado e de uma cidade da Paraíba versus altitude.

Altitude (m)	Pressão Atmosférica (hPa)	Localização	Pressão versus Altitude
10	1012,3	Touros – Calcanhar	1.010
17	1011,3	Macau	(a) 1,005
47	1008,5	Natal	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
131	998,8	Apodi	092 995
171	994,7	Caicó	8 1 990 -
227	988,6	Santa Cruz	985
237	987,4	São Gonçalo (Sousa) – PB	0 50 100 150 200 250 Altitude (m)

Faça uma regressão linear com a calculadora, e com os coeficientes obtidos, faça uma interpolação para encontrar a pressão atmosférica em hPa para a UFERSA-Pau dos Ferros que está a uma altitude de 249 m. Anote o valor da pressão obtida em hPa (10²Pa)

Patm_UFERSA_PDF = _____

Determinação da pressão atmosférica local

4.4. Execução Experimental

4.4.1. Ajustes iniciais

- 1) Abra a válvula de saída;
- 2) Gire o manípulo até tirar as folgas
- 3) Eleve o manípulo com indicado de leitura, e olhando de cima, gire a escala espelhada de modo que a imagem da "seta 0" do indicador de leitura fique sob a mesma;
- 4) Feche a válvula de saída;

4.4.2. Pressão Interna P_N

Quando o experimento é iniciado, válvula de saída fechada, logo a pressão no interior é a pressão atmosférica. Assim, P_{atm}=P₀. Ao completar N voltas, a pressão absoluta no interior do conjunto é dada pela equação 04:

$$P_N = P_0 + P_{N MAN} \tag{04}$$

em que P_{N_MAN} é a pressão obtida no manômetro. Observe que a pressão manométrica (P_{N_MAN}) está em kgf/cm², logo é necessário que a pressão atmosférica (P_0) e P_{N_MAN} esteja com a mesma unidade física, logo é mais interessante transformar as pressões para P_0 , unidade física de pressão no sistema internacional. Observe que a pressão no interior aumenta devido a compressão produzida pelo giro do manípulo.

4.4.3. Volume no interior do conjunto

O volume inicial V_0 do gás confinado (ar) é aquele contido no interior do conjunto formado pelo manômetro, tubo de conexão, válvula e reservatório quando se inicia o experimento. A cada volta completa, o volume reduz $\Delta V = 0.45$ ml por volta completa. Esse valor é fornecido pelo fabricante do conjunto, e também pode ser confirmado observando a variação de volume para 10 voltas. Para ficar mais fácil no momento de fazer os cálculos, transforme esse valor para m³.

ΔV = _____

Assim, ao girar o manípulo com indicador de leitura N voltas, o volume é reduzido ΔV , de tal forma que o novo volume V_N será dado pela equação 05:

$$V_N = V_0 - N\Delta V \tag{05}$$

4.5. Obtenção dos dados

Execute o experimento para N voltas, faça as transformações necessárias e preencha o quadro 01:

Quadro 01: Dados obtidos com o experimento.

Número de voltas N	Pressão manométrica P _{n_man} (Pa)	

4.6. Análise teórica do Experimento

Através da mudança no ponteiro do manômetro, observe que a pressão no interior também é modificada (equação 04), e considerando que a Lei de Boyle é válida, equação 03, substituindo as equações 04 e 05 em 03 obtém-se:

$$P_0 V_0 = (P_0 + P_{N MAN})(V_0 - N\Delta V)$$
(06)

Manipulando a expressão 06, obtém-se a expressão 07:

$$P_0 N \Delta V = P_{N MAN} (V_0 - N \Delta V) \tag{07}$$

Para fazer uma regressão linear utilizando os dados medidos no experimento [2], é necessário fazer uma linearização em 07. Manipulando-a, obtém-se a expressão 08:

$$\frac{1}{P_{N_{-}MAN}} = \frac{V_0}{P_0 \Delta V} \frac{1}{N} - \frac{1}{P_0} \tag{08}$$

Considerando as variáveis X = 1 /N e Y=1/P_{N MAN}, e substituindo na expressão 08, obtém-se a expressão 09:

$$Y = \frac{V_0}{P_0 \Delta V} X - \frac{1}{P_0} \tag{09}$$

Na regressão linear é obtida uma função linear (Y=aX+b) que melhor se ajusta aos dados experimentais, logo o relacionando a função linear com a expressão 09, obtém-se a relação entre os termos da função linear, o coeficiente angular **a** (equação 10), e o coeficiente linear ou intercepto **b** (equação 11):

$$a = \frac{V_0}{P_0 \Delta V} \tag{10}$$

$$b = -\frac{1}{P_0} \tag{11}$$

4.7. Análise dos dados experimentais

- 4.7.1. Com os dados da tabela acima, faça o gráfico da $1/P_{N_MAN}$ versus 1/N e a regressão linear.
- 4.7.2. Usando a equação 11, obtenha o valor de Po, que é a pressão atmosférica local, e seu erro respectivo erro.
- 4.7.3. Calcule o erro relativo percentual da pressão P₀, considerando o valor de referência a pressão obtida na subseção 4.3. Observe que no cálculo do erro é necessário usar a técnica de propagação de erros.
- 4.7.4. Usando a equação 10, obtenha o volume V_0 e seu respetivo erro padrão. Observe que no cálculo do erro é necessário usar a técnica de propagação de erros, e que apenas ΔV não possui erro.

5. BIBLIOGRAFIA

[1] HALLIDAY, David; RESNICK, Robert; WALKER, Jearl. Fundamentos de Física - Gravitação, Ondas e Termodinâmica - Volume 2. São Paulo: Grupo GEN, 2023. E-book. ISBN 9788521638568. Disponível em:

https://app.minhabiblioteca.com.br/#/books/9788521638568/. Acesso em: 17 abr. 2024...

[2] Vertchenko, L., Dickman, A. G. Verificando a lei de Boyle em um laboratório didático usando grandezas estritamente mensuráveis. Revista Brasileira de Ensino de Física, v. 34, n. 4, 4312 (2012). Disponível em: https://doi.org/10.1590/S1806-11172012000400012