Basisprüfung D-ITET

Prof. J. W. Kolar

## Name, Vorname:

Matrikel-Nr.:

## Aufgabe NUS I-3: Temperaturmessung

## 20 Punkte

Mit der in Fig. 3 dargestellten Brückenschaltung soll ein Temperaturmessgerät aufgebaut werden. Zur Anzeige wird ein Spannungsmessinstrument verwendet, das die Brückenspannung  $U_{\rm m}$  abgreift. Für das Spannungsmessinstrument kann ein unendlicher Innenwiderstand angenommen werden. Die Temperaturmessung soll in einem Bereich von  $-20\,^{\circ}$ C bis 50  $^{\circ}$ C einsetzbar sein. Als Temperatursensor wird ein temperaturabhängiger Widerstand  $R(\vartheta)$  eingesetzt, dessen Widerstands Temperatur Kennlinie durch

$$R(\vartheta) = R_0(1 + \alpha(\vartheta - \vartheta_0))$$

mit den Parametern

 $R_0 = 1 \, \mathrm{k}\Omega$  Widerstand bei  $\vartheta_0$   $\vartheta_0 = 20 \, ^{\circ}\mathrm{C}$  Referenztemperatur  $\alpha = 5 \cdot 10^{-3} \; \mathrm{K}^{-1}$  Temperaturkoeffizient

beschreiben wird. Ausserdem gilt  $R_1 = 1 \text{ k}\Omega$ .



Fig. 3: Brückenschaltung zur Temperaturmessung.

a) Geben Sie zunächst die Spannung  $U_{R\vartheta}$  und die Leistung  $P_{R\vartheta}$  am Widerstand  $R(\vartheta)$  algebraisch als Funktion von  $U_{\rm e}$  an. Bei welcher Temperatur tritt an  $R(\vartheta)$  die höchste Verlustleistung auf und welchen Wert weist  $R(\vartheta)$  bei dieser Temperatur auf? Bestimmen Sie die Spannung  $U_{\rm e}$  so, dass die im Messbereich maximal auftretende Verlustleistung am Messwiderstand  $R(\vartheta)$  den Wert  $P_{\rm max} = 50\,{\rm mW}$  erreicht.

(7 Pkt.)

Für alle weiteren Teilaufgaben gelte nun  $U_e = 12 \,\mathrm{V}$ .

b) Das Spannungsmessinstrument soll bei einer Temperatur von  $\vartheta_0 = 0$  °C einen Wert von  $U_0 = 0$  V anzeigen. Gleichzeitig soll die Verlustleistung der beiden Widerstände  $R_2$  und  $R_3$  zusammen einen Wert von  $P_{(R_2,R_3)} = 10 \,\mathrm{mW}$  nicht überschreiten  $(P_{R_2} + P_{R_3} = 10 \,\mathrm{mW})$ . Berechnen Sie  $R_2$  und  $R_3$ .

(6 Pkt.)

Verwenden Sie für die folgende Teilaufgabe  $R_2 = 22737 \Omega$  und  $R_3 = 20463 \Omega$ .

c) Die Widerstände  $R_1$ ,  $R_2$  und  $R_3$  weisen bauartbedingt jeweils eine Toleranz von  $\pm 1\%$  auf. Wie gross ist der maximal auftretende Temperaturmessfehler aufgrund dieser Widerstandstoleranz und bei welcher Temperatur tritt dieser auf? Beachten Sie, dass alle Widerstände gleichzeitig Abweichungen aufweisen können.

(7 Pkt.)