FÍSICA CALOR Y ONDAS CON PYTHON

Profesor: Alberto Patiño Vanegas

TEMA: Oscilaciones libres en un sistema masa resorte sin amortiguamiento.

Considere un sistema masa-resorte como el mostrado en la figura 1, donde la fuerza de fricción se puede controlar con un carril de aire. La constante de elasticidad del resorte es k y el objeto tiene masa m. La fuerza elástica cumple con la ley de Hooke y la fuerza de fricción entre las superficies del objeto y el carril es proporcional a la velocidad, donde b es la constante de proporcionalidad (factor de amortiguamiento). Se desea estudiar la posición x del punto P, donde está unida la masa al resorte respecto a la posición de equilibrio. Se considera que en la posición de equilibrio el resorte no está deformado y así la posición del punto P es x=0. El sistema se pone a oscilar de tal forma que en t=0, se coloca el punto en la posición x_0 y se le imprime una velocidad y_0 .

TAREA: Escriba un programa en Python que ayude a un usuario a analizar las oscilaciones de las variables físicas en el sistema-masa resorte sin amortiguamiento (b = 0).

ENTRADA DE USUARIO:

- Parámetros del sistema: k y m
- Condiciones iniciales: $x_0 y v_0$
- Intervalo de tiempo de observación de las oscilaciones: t_i y t_f .
- Paso de la discretización del tiempo: Δt

SALIDA PROGRAMA:

- 1. Los valores de:
 - Frecuencia angular, el periodo, la frecuencia temporal
 - La amplitud A de la oscilación en metros y la fase inicial ϕ en radianes.
 - La velocidad máxima
 - La aceleración máxima
 - La energía total
- 2. Una gráfica en función del tiempo en el intervalo especificado por el usuario de:
 - La posición x(t).
 - La velocidad v(t).
 - La aceleración a(t).
 - La energía cinética $E_c(t)$.
 - La energía potencial U(t).