

STH310N10F7-2, STH310N10F7-6

N-channel 100 V, 1.9 mΩ typ.,180 A, STripFET™ F7 Power MOSFETs in H²PAK-2 and H²PAK-6 packages

Datasheet - production data

Figure 1: Internal schematic diagram

Features

Order code	V _{DS}	R _{DS(on)} max.	lσ
STH310N10F7-2	100 V	2.3 mO	100 A
STH310N10F7-6	100 V	2.5 11112	180 A

- Among the lowest R_{DS(on)} on the market
- Excellent figure of merit (FoM)
- Low C_{rss}/C_{iss} ratio for EMI immunity
- High avalanche ruggedness

Applications

Switching applications

Description

These N-channel Power MOSFETs utilize STripFET™ F7 technology with an enhanced trench gate structure that results in very low onresistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

Table 1: Device summary

Order code	Marking	Package	Packing
STH310N10F7-2	24004057	H ² PAK-2	Tana and real
STH310N10F7-6	310N10F7	H ² PAK-6	Tape and reel

Contents

1	Electric	al ratings	3
2		al characteristics	
	2.1		
3	Test cir	cuits	8
4	Packag	e information	9
	4.1	H2PAK-2 package information	10
	4.2	H2PAK-6 package information	13
	4.3	Packing information	16
5	Revisio	n history	18

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{DS}	Drain-source voltage	100	V
V_{GS}	Gate-source voltage	± 20	V
Ip ⁽¹⁾	Drain current (continuous) at T _C = 25 °C	180	Α
ID(*)	Drain current (continuous) at T _C = 100 °C	180	Α
I _D ⁽²⁾	Drain current (pulsed)	720	Α
Ртот	Total dissipation at $T_C = 25$ °C	315	W
Eas ⁽³⁾	Single pulse avalanche energy ($T_J = 25$ °C L = 0.55 mH, $I_{AS} = 65$ A)	1	J
TJ	Operating junction temperature	-55 to 175	°C
T _{stg}	Storage temperature	-00 10 175	°C

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.48	°C/W
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb	35	°C/W

Notes:

⁽¹⁾When mounted on FR-4 board of 1 inch², 2 oz Cu

⁽¹⁾Current limited by package

⁽²⁾Pulse width limited by safe operating area

 $^{^{(3)}}Starting~T_J = 25~^{\circ}C,~I_D = 60~A,~V_{DD} = 50~V$

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Table 4: On/off-state

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage (V _{GS} = 0)	I _D = 250 μA	100			V
1	Zero gate voltage drain	V _{DS} = 100 V			1	μΑ
current (V _{GS} = 0)	current (V _{GS} = 0)	V _{DS} = 100 V; T _C = 125 °C			100	μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = 20 V			100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 250 \mu A$	2.5	3.5	4.5	V
R _{DS(on)}	Static drain-source on- resistance	V _{GS} = 10 V, I _D = 60 A		1.9	2.3	mΩ

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance			12800		pF
Coss	Output capacitance	$V_{DS} = 25 \text{ V}, f = 1 \text{ MHz},$		3500		pF
Crss	Reverse transfer capacitance	V _{GS} = 0	_	170	_	pF
Qg	Total gate charge	$V_{DD} = 50 \text{ V}, I_D = 180 \text{ A}$		180		nC
Qgs	Gate-source charge	V _{GS} = 10 V		78		nC
Q_gd	Gate-drain charge	See Figure 14: "Gate charge test circuit"		34		nC

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	$V_{DD} = 50 \text{ V}, I_D = 90 \text{ A},$		62		ns
tr	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$		108		ns
t _{d(off)}	Turn-off delay time	See Figure 13: "Switching times test circuit for	-	148	-	ns
t _f	Fall time	resistive load"		40		ns

Table 7: Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current				180	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)				720	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 60 A, V _{GS} = 0	-		1.5	٧
t _{rr}	Reverse recovery time	I _{SD} = 180 A,		85		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs,		200		nC
I _{RRM}	Reverse recovery current	$V_{DD} = 80 \text{ V}, T_j = 150 ^{\circ}\text{C}$		4.7		Α

Notes:

⁽¹⁾Pulse width limited by safe operating area

 $^{^{(2)}\}text{Pulsed:}$ pulse duration = 300 $\mu\text{s,}$ duty cycle 1.5%

2.1 Electrical characteristics (curves)

Figure 8: Normalized V(BR)DSS vs temperature AM14742v1 V(BR)DSS (norm) ID = 1m A 1.04 1.02 1.00 0.98 0.96 0.94 **-**75 -25 25 75 125 TJ(°C)

Figure 10: Source-drain diode forward characteristics AM14739v1 VsD (V) 1.05 TJ=-50°C 0.95 0.85 TJ=25°C 0.75 0.65 TJ=150°C 0.55 0.45 40 80 120 160 ISD(A)

3 **Test circuits**

Figure 13: Switching times test circuit for resistive load 2200 µF 3.3 Vdd

Figure 14: Gate charge test circuit I_G = CONST 2200 µF AM01469v1

Figure 15: Test circuit for inductive load switching and diode recovery times E L=100 μH

AM01468v1

1000 μF VDD AM01470v1

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

4.1 H2PAK-2 package information

Figure 19: H²PAK-2 package outline

Table 8: H²PAK-2 package mechanical data

Dim		mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	4.98		5.18
Е	0.50		0.90
F	0.78		0.85
Н	10.00		10.40
H1	7.40		7.80
L	15.30	-	15.80
L1	1.27		1.40
L2	4.93		5.23
L3	6.85		7.25
L4	1.5		1.7
M	2.6		2.9
R	0.20		0.60
V	0°		8°

Figure 20: H²PAK-2 recommended footprint

4.2 H2PAK-6 package information

Figure 21: H²PAK-6 package outline

Table 9: H²PAK-6 package mechanical data

	Table 9. 11-1 AR-0 paci	mm	
Dim.	Min.	Тур.	Max.
А	4.30		4.80
A1	0.03		0.20
С	1.17		1.37
е	2.34		2.74
e1	4.88		5.28
e2	7.42		7.82
E	0.45		0.60
F	0.50		0.70
Н	10.00		10.40
H1	7.40	-	7.80
L	14.75		15.25
L1	1.27		1.40
L2	4.35		4.95
L3	6.85		7.25
L4	1.5		1.75
М	1.90		2.50
R	0.20		0.60
V	0°		8°

Figure 22: H²PAK-6 recommended footprint

Dimensions are in mm.

16/19

4.3 Packing information

Figure 23: Tape outline

Figure 24: Reel outline

Table 10: Tape and reel mechanical data

Таре				Reel		
Dim.	n	nm	Dim.	mm		
Dim.	Min.	Max.	Dilli.	Min.	Max.	
A0	10.5	10.7	А		330	
В0	15.7	15.9	В	1.5		
D	1.5	1.6	С	12.8	13.2	
D1	1.59	1.61	D	20.2		
E	1.65	1.85	G	24.4	26.4	
F	11.4	11.6	N	100		
K0	4.8	5.0	Т		30.4	
P0	3.9	4.1				
P1	11.9	12.1	Base q	uantity	1000	
P2	1.9	2.1	Bulk qu	uantity	1000	
R	50					
Т	0.25	0.35				
W	23.7	24.3				

5 Revision history

Table 11: Document revision history

Date	Revision	Changes
10-Dec-2012	1	Initial release. Part number(s) previously included in datasheet ID02287
23-Jul-2013	2	 Document status promoted from preliminary to production data Modified: I_{DSS} and V_{GS} value in table 4 Added: E_{AS} value in table 2 Minor text changes
27-Nov-2014	3	 Updated: H²PAK-6 package information. Updated the title, features and description. Minor text changes.
29-Jul-2015	4	Updated Table 2: "Absolute maximum ratings".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

