2012/2013Ficha 2

Derivadas

1. Calcule as derivadas (onde existirem) das funções definidas por

(a)
$$f(x) = e^{\sin x^2}$$
;

(a)
$$f(x) = e^{\sin x^2}$$
; (b) $g(x) = \sqrt{x^3} + (3x^3 - e^{x^2} + \cos\sqrt{x})^5$;

(c)
$$h(y) = e^y + y^e$$
:

(c)
$$h(y) = e^y + y^e$$
; (d) $j(y) = 3y^2 \sin 2y + y \cos \frac{y}{2}$;

(e)
$$m(u) = \cos(e^{u^2 + \log u});$$

(e)
$$m(u) = \cos(e^{u^2 + \log u});$$
 (f) $\ell(u) = \frac{1}{\sqrt{u^2 + \cos u}};$

(g)
$$o(z) = \sqrt{1 + \sqrt{z}}$$

(g)
$$o(z) = \sqrt{1 + \sqrt{z}}$$
; (h) $p(z) = \log(\sin^2 z + \sin z^2)$.

2. Indique, justificando, se cada uma das funções definidas a seguir é derivável no respectivo domínio. Nos pontos onde não existir derivada, averigue se existem as derivadas laterais.

(a)
$$f(x) = \begin{cases} x^2 & \text{se } x < 3, \\ 3x & \text{se } x \ge 3; \end{cases}$$
 (b) $g(x) = \begin{cases} \sqrt{x} & \text{se } x \ge 0, \\ 0 & \text{se } x < 0. \end{cases}$

(b)
$$g(x) = \begin{cases} \sqrt{x} & \text{se } x \ge 0, \\ 0 & \text{se } x < 0. \end{cases}$$

3. Considere as funções $f, h, i, j, k :]0, 1[\longrightarrow \mathbb{R}$ dadas a seguir pelos seus gráficos.

- (a) Indique as funções que são deriváveis.
- (b) Indique as funções que não são deriváveis em mais do que um ponto.

4. Considere a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ representada graficamente na figura seguinte

Indique os pontos onde f não é derivável, especificando se existem as derivadas laterais e indicando o seu sinal.

5. Esboce o gráfico da derivada da função $f: \mathbb{R} \longrightarrow \mathbb{R}$ representada na figura ao lado.

6. Defina duas funções $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ contínuas apenas num ponto $a\in\mathbb{R}$, para as quais exista f'(a) e não exista g'(a).

7. A figura em baixo à esquerda representa o gráfico de uma função f e da recta tangente no ponto (2,2). Sendo $g(x) = f(x^2 - 2)$, determine g'(2).

8. A figura em cima à direita representa o gráfico de uma função f e da recta perpendicular no ponto (4,2). Sendo $g(x) = f(5x - x^2)$, determine g'(1)?

9. Sejam $f,g:\mathbb{R}\longrightarrow\mathbb{R}$ funções deriváveis e considere a seguinte tabela que mostra alguns dos seus valores e das correspondentes derivadas. Determine h'(2) para:

\boldsymbol{x}	f(x)	g(x)	f'(x)	g'(x)
2	5	5	e	$\sqrt{2}$
5	2	8	π	7

(a)
$$h = f \circ g$$
;

(b)
$$h = g \circ f$$
;

(c)
$$h = f \circ f$$
.

10. Seja $k: \mathbb{R} \longrightarrow \mathbb{R}$ uma função derivável tal que k'(1) = 2. Determine a derivada de:

(a)
$$k(2x)$$
, para $x = 1/2$:

(b)
$$k(x+1)$$
, para $x = 0$;

2

(a)
$$k(2x)$$
, para $x = 1/2$; (b) $k(x+1)$, para $x = 0$; (c) $k(\frac{x}{4})$, para $x = 4$.

- 11. Usando o teorema de Rolle, mostre que a equação $x^2 = x \operatorname{sen} x + \cos x$ possui exactamente duas raízes reais.
- 12. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por $f(x) = 1 x^{2/3}$.
 - (a) Verifique que f(-1) = f(1) = 0.
 - (b) Mostre que f'(x) nunca se anula em]-1,1[.
 - (c) Exlique porque não há qualquer contradição com o teorema de Rolle.
- 13. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ a função definida por $g(x) = x e^{x-1}$.
 - (a) Verifique que g(1) = g'(1) = 0.
 - (b) Mostre que z = 1 é o único zero de g.
- 14. Diga, justificando devidamente, se existe alguma função derivável $g:[0,5] \longrightarrow \mathbb{R}$ tal que g(0) = -3, g(5) = 5 e $g'(x) \le 1$ para todo $x \in [0, 5[$.
- 15. Usando o teorema do valor médio de Lagrange, mostre que $e^x > 1 + x$, $\forall x \in \mathbb{R} \setminus \{0\}$. Sugestão: considere separadamente os casos x>0 e x<0.
- 16. Diga, justificando devidamente, se existe alguma função $f:[0,2] \longrightarrow \mathbb{R}$ tal que f'(x) = 0 para $x \in [0, 1]$ e f'(x) = 1 para $x \in [1, 2]$.
- 17. Calcule os seguintes limites, indicando, quando for o caso, o tipo de indeterminação presente:

(a)
$$\lim_{x \to 0} \frac{\sin x - x}{x \sin x}$$
;

(b)
$$\lim_{x \to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$$
;

(a)
$$\lim_{x\to 0} \frac{\sin x - x}{x \sin x}$$
; (b) $\lim_{x\to 0} \frac{e^x + e^{-x} - 2}{1 - \cos x}$; (c) $\lim_{x\to 0^+} \frac{\sqrt{x} - \sin^2 \sqrt{x}}{x}$;

(d)
$$\lim_{x\to 0^+} x^x$$

(d)
$$\lim_{x \to 0^+} x^x$$
; (e) $\lim_{x \to 0^+} \frac{\log(\sin 5x)}{\log(\sin 6x)}$; (f) $\lim_{x \to 0} \frac{\operatorname{ch} x - \cos x}{x^2}$;

(f)
$$\lim_{x\to 0} \frac{\operatorname{ch} x - \cos x}{x^2}$$

(g)
$$\lim_{x \to +\infty} \frac{x}{2x + \operatorname{sen} x}$$
;

(h)
$$\lim_{x\to 0^+} x^{\sin x}$$

(g)
$$\lim_{x \to +\infty} \frac{x}{2x + \operatorname{sen} x}$$
; (h) $\lim_{x \to 0^+} x^{\operatorname{sen} x}$ (i) $\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^x$;

(j)
$$\lim_{x \to 0} \frac{e^x - e^{\sin x}}{x^2}$$
; (k) $\lim_{x \to 0^+} x \log x$ (l) $\lim_{x \to +\infty} (e^x - x)^{1/x}$;

(k)
$$\lim_{x \to 0^+} x \log x$$

(l)
$$\lim_{x \to +\infty} (e^x - x)^{1/x}$$

18. Determine o polinómio de Taylor de ordem n da função f apresentada a seguir, em torno do ponto a indicado:

3

(a)
$$f(x) = e^x$$
, $x \in \mathbb{R}$, $n = 50$, $a = 0$;

(b)
$$f(x) = \sin x, \ x \in \mathbb{R}, \ n = 7, \ a = 0;$$

(c)
$$f(x) = \cos x, \ x \in \mathbb{R}, \ n = 8, \ a = 0;$$

(d)
$$f(x) = \log x, \ x \in \mathbb{R}^+, \ n = 5, \ a = 1;$$

19. Seja $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que o seu polinómio de Taylor de ordem 6 em torno de 0 é

$$P_{6,0}(x) = 3x - 4x^3 + 5x^6.$$

Determine $f(0), f'(0), f''(0), f'''(0), f^{(4)}(0), f^{(5)}(0)$ e $f^{(6)}(0)$.

- 20. Sejam $f, g \in C^{\infty}(\mathbb{R})$. Sabendo que P(x) = 2x + 1 coincide simultaneamente com o polinómio de Taylor de primeira ordem de f em torno do ponto 0 e com o polinómio de Taylor de segunda ordem de g em torno do ponto 1, determine f(0), f'(0), g(1), g'(1) e g''(1).
- 21. Seja $P(x)=2x^3+3x^2+1$ o polinómio de Taylor de terceira ordem em torno do ponto 1 de $f\in C^\infty(\mathbb{R})$. Determine o correspondente polinómio de Taylor de segunda ordem.
- 22. Seja $f \in C^{\infty}(\mathbb{R})$ tal que f(3) = 1, f'(3) = -2, f''(3) = 3 e f'''(3) = -5. Determine os polinómios de Taylor de ordens 2 e 3 da função f em torno do ponto 3. Use os dois polinómios para aproximar o valor de f(2,9).
- 23. Escreva o polinómio $x^3 15x^2 + 75x 120$ em potências de x 5.
- 24. Determine o polinómio do terceiro grau cujas derivadas de ordens $0,1,2\,$ e 3 no ponto 3 são todas iguais a 3.
- 25. Usando a fórmula de Taylor-Lagrange, mostre que se tem

$$\left| e^{-x} - \left(1 - x + \frac{x^2}{2} \right) \right| \le \frac{1}{6}, \quad \forall x \in [0, 1].$$

26. Apresente uma estimativa para o erro cometido ao usar o polinómio $P_{7,0}(x)$ para aproximar o valor de sen x no intervalo $\left]0,\frac{\pi}{4}\right[$.