# Jon Krohn

Home

**Fresh Content** 

Courses

Resources

**Podcast** 

**Talks** 

Publications

Sponsorship

Testimonials

Contact

# Linear Algebra for Machine Learning: Complete Math Course on YouTube

May 10, 2021

My Machine Learning Foundations curriculum provides a comprehensive overview of all of the subjects — across mathematics, statistics, and computer science — that underlie contemporary machine learning approaches. You can check out the full curriculum and all of the open-source Python code (featuring the NumPy, TensorFlow, and PyTorch libraries) in GitHub here.

At a high level, my *ML Foundations* content can be broken into four subject areas: linear algebra, calculus, probability/stats, and computer science. The first quarter of the content, on linear algebra, stands alone as its own discrete course and is now available on YouTube.

The playlist for my complete *Linear Algebra for Machine Learning* course is on YouTube here. There are a total of 48 videos partitioned into five thematic segments, as detailed below. Each video in the list has its duration shown alongside it in parentheses.

#### Segment 1: Data Structures for Algebra

The first segment introduces tensors, the fundamental data structure of linear algebra.

- 1. What Linear Algebra Is (24:04)
- 2. Plotting a System of Linear Equations (9:19)
- 3. Linear Algebra Exercise (2:05)
- 4. Tensors (2:34)
- 5. Scalars (13:05)
- 6. Vectors and Vector Transposition (12:19)
- 7. Norms and Unit Vectors (15:10)
- 8. Basis, Orthogonal, and Orthonormal Vectors (4:30)
- 9. Matrix Tensors (8:24)
- 10. Generic Tensor Notation (6:44)
- 11. Exercises on Algebra Data Structures (0:42)

Total runtime for Segment 1 is an hour and 41 minutes.



Home

**Fresh Content** 

Courses

Resources

**Podcast** 

**Talks** 

Publications

Sponsorship

Testimonials

Contact



#### **Segment 2: Tensor Operations**

This segment covers the critical operations we can perform on tensors.

- 1. Segment Intro (1:20)
- 2. Tensor Transposition (3:53)
- 3. Basic Tensor Arithmetic, incl. the Hadamard Product (6:13)
- 4. Tensor Reduction (3:32)
- 5. The Dot Product (5:14)
- 6. Exercises on Tensor Operations (0:57)
- 7. Solving Linear Systems with Substitution (4:04)
- 8. Solving Linear Systems with Elimination (5:52)
- 9. Visualizing Linear Systems (11:00)

Total runtime for the second segment is 42 minutes.

$$\begin{bmatrix} \chi_{1,1} & \chi_{1,2} \\ \chi_{2,1} & \chi_{2,2} \\ \chi_{3,1} & \chi_{3,2} \end{bmatrix}^{\mathsf{T}} = \begin{bmatrix} \chi_{1,1} & \chi_{2,1} & \chi_{3,1} \\ \chi_{1,2} & \chi_{2,2} & \chi_{3,2} \end{bmatrix}$$

#### **Segment 3: Matrix Properties**

This segment details the most important properties and classes of matrix tensors.

- 1. Segment Intro (2:06)
- 2. The Frobenius Norm (5:02)
- 3. Matrix Multiplication (25:00)
- 4. Symmetric and Identity Matrices (4:42)
- 5. Matrix Multiplication Exercises (0:52)
- 6. Matrix Inversion (17:07)
- 7. Diagonal Matrices (3:26)
- 8. Orthogonal Matrices (5:50)
- 9. Orthogonal Matrix Exercises (2:11)

Total runtime for Segment 3 is an hour and six minutes.

# Jon Krohn

Home Fresh Content Courses

Resources

**Podcast** 

Talks

Publications Sponsorship

Testimonials

Contact



## **Segment 4: Eigenvectors and Eigenvalues**

This segment introduces eigenvectors and eigenvalues, special tensors that are associated with any given matrix and that enable countless ML applications.

- 1. Segment Intro (17:53)
- 2. Applying Matrices (7:31)
- 3. Affine Transformations (18:53)
- 4. Eigenvectors and Eigenvalues (26:47)
- 5. Matrix Determinants (8:05)
- 6. Determinants of Larger Matrices (8:42)
- 7. Determinant Exercises (1:28)
- 8. Determinants and Eigenvalues (16:17)
- 9. Eigendecomposition (12:49)
- 10. Eigenvector and Eigenvalue Applications (13:02)

Total runtime for Segment 4 is two hours and 11 minutes.



### **Segment 5: Matrix Operations for Machine Learning**

This segment ties all of the preceding segments together, enabling us to use linear algebra alone to perform powerful ML techniques such as data compression, regression, and clustering.

- 1. Segment Intro (3:22)
- 2. Singular Value Decomposition (10:50)
- 3. Data Compression with SVD (11:33)
- 4. The Moore-Penrose Pseudoinverse (12:23)
- 5. Regression with the Pseudoinverse (18:57)

- 6. The Trace Operator (4:37)
- 7. Principal Component Analysis (8:27)
- 8. Linear Algebra Resources (6:11)

Total runtime for Segment 5 is an hour and 16 minutes.

Total runtime for all five segments — that is, the entire *Linear Algebra for Machine Learning* course — is 7 hours and 9 minutes. I hope you enjoy every minute of it!

Jon Krohn

Tags mathematics, linear algebra, Machine Learning, Data science, YouTube, videos, course

Home

Fresh Content

Courses

Resources

**Podcast** 

Talks

Publications

Sponsorship

Testimonials

Contact

← Newer: Intro to Differential Calculus

Older: The History of Data  $\rightarrow$