Una introducción a la caja de herramientas DUNE Numerics para la solución de modelos matemáticos

Webinar 13 de Julio de 2021

Elaborado por: John Jairo Leal Gómez Universidad Nacional de Colombia Carlos Alonso Aznarán Laos Universidad Nacional de Ingeniería, Perú

Presentación del libro

Sede Palmira

Las matemáticas en la vida real Introducción básica al modelamiento matemático

John Jairo Leal Gómez / Juan Pablo Cardona Guío

Capítulos:

- 1. Introducción a los números reales \mathbb{R} .
- 2. Introducción a las funciones.
- 3. La derivada.
- 4. Modelamiento matemático.
- **5.** Anexos.

Serie CIENCIAS BÁSICAS

Presentación del libro

4.3 Situaciones cotidianas

En primer lugar, se muestran "expresiones" de situaciones cotidianas con sus respectivas representaciones como funciones y sus derivadas.

4.3.1 Encender la luz

Figura 4.3. Encender la luz

La acción de encender la luz, como en la figura 4.3, se puede escribir matemáticamente como el cambio en la posición del switch P como variable independiente o causa del fenómeno, y el efecto se puede ver en el cambio de la intensidad lumínica I. Esto quiere decir que la intensidad lumínica es una función de la posición del switch I(P). La variación se puede escribir como:

 $\frac{dI}{dP}$

ariación s

4.1

DUNE Numerics Project

Introducción

Distributed and Unified Numerics Environment (DUNE)

- Software de código abierto bajo la licencia GNU General Public Licence 2
 - · Disponible en macOS, Debian 🧟, Ubuntu 🤨, openSUSE <table-cell-rows>
- Conjunto de bibliotecas C++ con enlaces a Python.
- Utilizado en la resolución de ecuaciones diferenciales parciales e implementación de métodos basados en mallas, por ejemplo diferencias finitas, elementos finitos o volúmenes finitos.

Figura: Tomado de https://dune-project.org.

DUNE Numerics Project Introducción

Proyectos que emplean DUNE

- https://dune-project.org/about/dune
- https://dumux.org
- https://opm-project.org
- https://precice.org
- https://www.zib.de/projects/ kaskade7-finite-element-toolbox

Figura: Tomado de https://dune-project.org.

El DUNE verso: módulos

https://dune-project.org/groups/core

Figura: Tomado de

https://gitlab.com/dune-archiso/repository/dune-archiso-repository-pdelab-git/-/pipelines

dune-common Clases fundamentales e infraestructura para la construcción del sistema.

dune-geometry Elementos de referencia, métodos de cuadraturas y transformaciones geométricas.

dune-grid Interfaces con las mallas (ALUGrid, UGGrid, AlbertaGrid, YaspGrid), construcción y visualización.

dune-istl Biblioteca de solucionadores iterativas de plantillas, clases genéricas de matrices/vectores dispersos, solucionadores

dune-localfunctions Interface genérica para funciones de elementos finitos.

El DUNE verso: módulos

Dependencias de algunos módulos

Curso de DUNE/PDELab 2021 https://dune-pdelab-course.readthedocs.io

Snippet en C++

Listado: Programa dune-basics.cc.

```
#ifdef HAVE CONFIG H
#include "config.h"
#endif
#include <iostream>
#include <dune/common/parallel/mpihelper.hh> // An initializer of MPI
#include <dune/common/exceptions.hh>
                                        // We use exceptions
int main(int argc, char **argv)
  try
   // Maybe initialize MPI
   Dune::MPIHelper &helper = Dune::MPIHelper::instance(argc, argv);
   std::cout << "Hello World! This is dune-basics." << std::endl;</pre>
   if (Dune::MPIHelper::isFake)
      std::cout << "This is a sequential program." << std::endl:
   else
      std::cout << "I am rank " << helper.rank() << " of " << helper.size()
                << " processes!" << std::endl;</pre>
    return 0;
  catch (Dune:: Exception &e)
   std::cerr << "Dune reported error: " << e << std::endl;
 catch ( ... )
   std::cerr << "Unknown exception thrown!" << std::endl;</pre>
```


Snippet en Python

```
☐ Grid Views: Adaptivity and Moving
  Domains

⊞ Dynamic Local Grid Refinement and

    Coarsening
 □ Evolving Domains
       Mean Curvature Flow
  Using C++ Code Snippets
  Discontinuous Galerkin Methods:
  DUNE-FEM-DG Module
  HP adaptive DG scheme for twophase
  flow problem
  Virtual Finite Elements: the DUNE-VEM
  module
  Information for C++ Developers
  How to showcase your own project
  Notebooks and Scripts
  Mesh Files used in the Examples
  Citing this project
  List of things that need doing...
```

```
[1]: import matplotlib
matplotlib.rc( 'image', cmap='jet' )
import math

from ufl import *
   from dune.ufl import Constant, DirichletBC
import dune.ufl
import dune.gemetry as geometry
import dune.fem as fem
   from dune.fem.plotting import plotPointData as plot
import matplotlib.pyplot as pyplot
```

set up polynomial order and radius of reference surface

```
[2]: order = 2
R0 = 2.
```

We begin by setting up reference domain Γ_0 (<code>grid</code>), and the space on Γ_0 that describes $\Gamma(t)$ (<code>space</code>). From this we interpolate the non-spherical initial surface <code>positions</code> , and, then reconstruct <code>space</code> for the discrete solution on $\Gamma(t)$.

grid construction; dune grid format file

```
[3]: from dune.fem.view import geometryGridView
from dune.fem.space import lagrange as solutionSpace
from dune.alugrid import aluConformGrid as leafGridView
```


C++ review DUNE

Una organización donde compartir notas acerca de C++ con pdfs escritos en LaTeX

nned repositories		Customize pinned repositori
introductory-review Un repositorio donde compartir notas acerca de C++ con pdfs escritos en LaTeX.	☐ hdnum (Template) #	☐ dune-basics Template ## An example module that says Hello World.
● Dockerfile ☆ 1	● C++	●TeX
github-starter-course (Template) ;; github-starter-course created by Github Classroom	☐ cpp-examples Template ☐ Forked from igormocelho-learning/autograding-example-cpp-catch Example of C/C++ autograding with Catch2 library - Gilthub Classroom C++	sandbox (Template) :: Forked from comeliusludmann/gitpod-playground This repository intentionally left empty. It merely serves as an entry point for personal Gitpod experiments.
⊋ Find a repository	Type • Language • Sort •	☐ P New
results for repositories written in C++ sorted by las	t updated S Clear filter	Top languages
		● C++ ● TeX ● Python
study-scientific-programming		Jupyter Notebook Dockerfile

This is a live USB containing a full operating system that can be booted, this means that you can use a USB stick to burn this image or virtualize it to Linux-KVM, QEMU, Virtualbox, VMWare, Hyper-V. We included the following repositories:

Share This

- Arch Linux Core [Official]
- Arch Linux Core [Official]
- Arch Linux Community [Official]

Download

- Arch Linux Multilib [Official]
- Arch4Edu [Third-party]
- Cyber [Third-party]
- Dune-archiso-repository-core [Third-party]
- Dune-archiso-repository-extra [Third-party]

 $Enjoy.\ I\ don't\ belong\ to\ dune-project.\ All\ the\ blame\ falls\ on\ me\ (github.com/carlosal\ 1015).$

Get Updates

.

Referencias

▶ Libros

Oliver Sander. *DUNE* — *The Distributed and Unified Numerics Environment*. First. Lecture Notes in Computational Science and Engineering 140. Springer International Publishing, 2020. ISBN: 978-3-030-59701-6. DOI: 10.1007/978-3-030-59702-3.

Artículos

Andreas Dedner, Robert Klöfkorn y Martin Nolte. "The DUNE-ALUGrid Module". En: CoRR abs/1407.6954 (2014). URL: http://arxiv.org/abs/1407.6954.

Andreas Dedner y Martin Nolte. "The Dune Python Module". En: CoRR abs/1807.05252 (2018). eprint: 1807.05252. URL: http://arxiv.org/abs/1807.05252.

Peter Bastian y col. "The Dune framework: Basic concepts and recent developments". En: Computers & Mathematics with Applications 81.1 (1 de ene. de 2021). Development and Application of Open-source Software for Problems with Numerical PDEs, págs. 75-112. ISSN: 0898-1221. DOI: https://doi.org/10.1016/j.camwa.2020.06.007.

Referencias

Sitios web

- Oliver Sander. The Distributed and Unified Numerics Environment (DUNE). 12 de abr. de 2016. URL: http://congress.cimne.com/icme2016/admin/files/filepaper/p72.pdf (visitado 12-07-2021).
- Alexander Jaust. Coupling fluid flows with DuMuX, preCICE workshop 2020. 19 de feb. de 2020. URL: https://precice.org/precice-workshop-2020.html (visitado 12-07-2021).
- Simon Praetorius. *AMDiS Workshop 2021*. 12 de jul. de 2020. URL: http://wwwpub.zih.tu-dresden.de/~praetori/amdis/workshop2021 (visitado 12-07-2021).
- Dune Course Team. *Dune/PDELab Course*. 22 de oct. de 2020. URL: https://dune-pdelab-course.readthedocs.io (visitado 26-06-2021).

Agradecimientos

¡Muchas gracias!

Presentación disponible en:

https://cpp-review-dune.github.io/webinar/slides.pdf

Grabación disponible en:

https://player.vimeo.com/video/572717824

Dudas, sugerencias o preguntas a:

jlealgom@unal.edu.co caznaranl@uni.pe