SBML Model Report

Model name: "Wang1996_Synaptic-Inhibition_Two_Neuron"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by Lukas Endler¹ at January 24th 2011 at 0:42 a.m. and last time modified at April eighth 2016 at 4:57 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	0
events	0	constraints	0
reactions	0	function definitions	0
global parameters	45	unit definitions	6
rules	31	initial assignments	5

Model Notes

This is a model of one presynaptic and one postsynaptic cell, as described in the article: **Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model.** Wang XJ, Buzski G. J Neurosci. 1996 Oct 15;16(20):6402-13. PMID:8815919; Abstract:

Fast neuronal oscillations (gamma, 20-80 Hz) have been observed in the neocortex and hip-pocampus during behavioral arousal. Using computer simulations, we investigated the hypoth-

¹EMBL-EBI, lukas@ebi.ac.uk

esis that such rhythmic activity can emerge in a random network of interconnected GABAergic fast-spiking interneurons. Specific conditions for the population synchronization, on properties of single cells and the circuit, were identified. These include the following: (1) that the amplitude of spike afterhyperpolarization be above the GABAA synaptic reversal potential; (2) that the ratio between the synaptic decay time constant and the oscillation period be sufficiently large; (3) that the effects of heterogeneities be modest because of a steep frequency-current relationship of fast-spiking neurons. Furthermore, using a population coherence measure, based on coincident firings of neural pairs, it is demonstrated that large-scale network synchronization requires a critical (minimal) average number of synaptic contacts per cell, which is not sensitive to the network size. By changing the GABAA synaptic maximal conductance, synaptic decay time constant, or the mean external excitatory drive to the network, the neuronal firing frequencies were gradually and monotonically varied. By contrast, the network synchronization was found to be high only within a frequency band coinciding with the gamma (20-80 Hz) range. We conclude that the GABAA synaptic transmission provides a suitable mechanism for synchronized gamma oscillations in a sparsely connected network of fast-spiking interneurons. In turn, the interneuronal network can presumably maintain subthreshold oscillations in principal cell populations and serve to synchronize discharges of spatially distributed neurons.

The presynaptic and postsynaptic cell have identical parameters and the variables in each cell are identified by using _pre or _post as a postfix to their names. The presynaptic cell influences the postsynaptic one via the synapse (variables and parameters: I_syn, E_syn, g_syn, F, theta_syn, alpha, beta). The applied current to the presynaptic cell, I_app_pre, is set to 2 microA/cm² for 10 ms as in figure 1C of the article. The dependence of the postsynaptic cell on directly applied current can be investigated in isolation by setting I_app_pre to 0 and altering I_app_post.

Originally created by libAntimony v1.4 (using libSBML 3.4.1)

2 Unit Definitions

This is an overview of ten unit definitions of which four are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name ms

Definition ms

2.2 Unit per_ms

Name per_ms

Definition ms⁻¹

2.3 Unit mV

Name mV

Definition mV

2.4 Unit uA_per_cm2

Name microA_per_cm2

Definition $\mu A \cdot cm^{-2}$

2.5 Unit uF_per_cm2

Name uF_per_cm2

Definition $\mu F \cdot cm^{-2}$

2.6 Unit mS_per_cm2

Name mS_per_cm2

Definition $mS \cdot cm^{-2}$

2.7 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.8 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.9 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.10 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
pre_synaptic_cell post_synaptic_cell		0000290 0000290	3 3	1 1	litre litre	1	

3.1 Compartment pre_synaptic_cell

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

3.2 Compartment post_synaptic_cell

This is a three dimensional compartment with a constant size of one litre.

SBO:0000290 physical compartment

4 Parameters

This model contains 45 global parameters.

Table 3: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
Cm		0000258	1.0	$\mu F \cdot cm^{-2}$	
gL		0000257	0.1	$\text{mS}\cdot\text{cm}^{-2}$	
gK		0000257	9.0	$\text{mS}\cdot\text{cm}^{-2}$	
gNa		0000257	35.0	$\text{mS}\cdot\text{cm}^{-2}$	
E_K		0000259	-90.0	mV	
E_L		0000259	-65.0	mV	
E_Na		0000259	55.0	mV	
phi			5.0	dimensionless	
tau_0			0.0	ms	
I_app_post			0.0	$\mu A \cdot cm^{-2}$	
$I_{ m Na_post}$			0.0	$\mu A \cdot cm^{-2}$	
${\tt m_inf_post}$			0.0	dimensionless	
h_{post}			0.0	dimensionless	
${ t V}_{-}{ t post}$		0000259	-64.0	mV	

Id	Name	SBO	Value	Unit	Constant
alpha_m_post			0.0	ms ⁻¹	
beta_m_post			0.0	$\mathrm{m}\mathrm{s}^{-1}$	\Box
alpha_h_post			0.0	ms^{-1}	\Box
beta_h_post			0.0	ms^{-1}	\Box
I_K_post			0.0	$\mu A \cdot cm^{-2}$	\Box
n_{post}			0.0	dimensionless	\Box
$alpha_n_post$			0.0	$\mathrm{m}\mathrm{s}^{-1}$	\Box
beta_n_post			0.0	$\mathrm{m}\mathrm{s}^{-1}$	
I_L_{post}			0.0	$\mu A \cdot cm^{-2}$	
Isyn			0.0	$\mu A \cdot cm^{-2}$	\Box
g_syn		0000257	0.1	$\text{mS}\cdot\text{cm}^{-2}$	
S			0.0	dimensionless	
E_{-} syn			-75.0	mV	
alpha			12.0	$\mathrm{m}\mathrm{s}^{-1}$	$ \overline{\mathbf{Z}} $
F			0.0	dimensionless	
beta			0.1	ms^{-1}	
$V_{ extsf{-}}$ pre		0000259	-64.0	mV	
${ t theta_syn}$			0.0	mV	
I_app_pre			0.0	$\mu A \cdot cm^{-2}$	
I_Na_pre			0.0	$\mu A \cdot cm^{-2}$	
${\tt m_inf_pre}$			0.0	dimensionless	
$h_\mathtt{pre}$			0.0	dimensionless	\Box
$\mathtt{n}_{-}\mathtt{pre}$			0.0	dimensionless	\Box
alpha_n_pre			0.0	$\mathrm{m}\mathrm{s}^{-1}$	
beta_n_pre			0.0	$\mathrm{m}\mathrm{s}^{-1}$	
alpha_h_pre			0.0	$\mathrm{m}\mathrm{s}^{-1}$	
beta_h_pre			0.0	$\mathrm{m}\mathrm{s}^{-1}$	
${\tt alpha_m_pre}$			0.0	ms^{-1}	
beta_m_pre			0.0	ms^{-1}	\Box
I_K_pre			0.0	$\mu A \cdot cm^{-2}$	\Box
I_L_pre			0.0	$\mu A \cdot cm^{-2}$	

5 Initialassignments

This is an overview of five initial assignments.

5.1 Initialassignment h_post

Derived unit dimensionless

 $\begin{tabular}{ll} \textbf{Math} & & & & & & \\ \hline \textbf{beta_h_post} + & & & & \\ \hline \textbf{beta_h_post} + & & & \\ \hline \end{tabular}$

5.2 Initialassignment n_post

Derived unit dimensionless

5.3 Initialassignment s

Derived unit dimensionless

5.4 Initialassignment h_pre

Derived unit dimensionless

$$\label{eq:math_pre} \textbf{Math} \ \ \frac{alpha_h_pre}{beta_h_pre+alpha_h_pre}$$

5.5 Initialassignment n_pre

Derived unit dimensionless

$$\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll} & alpha_n_pre \\ \hline & beta_n_pre+alpha_n_pre \\ \end{tabular}$$

6 Rules

This is an overview of 31 rules.

6.1 Rule tau_0

Rule tau_0 is an assignment rule for parameter tau_0:

$$tau_0 = \frac{Cm}{gL} \tag{1}$$

Derived unit $\mu F \cdot mS^{-1}$

6.2 Rule I_Na_post

Rule I_Na_post is an assignment rule for parameter I_Na_post:

$$I_{-}Na_{-}post = gNa \cdot m_{-}inf_{-}post^{3} \cdot h_{-}post \cdot (V_{-}post - E_{-}Na)$$
(2)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.3 Rule m_inf_post

Rule m_inf_post is an assignment rule for parameter m_inf_post:

$$m_inf_post = \frac{alpha_m_post}{alpha_m_post + beta_m_post}$$
 (3)

Derived unit dimensionless

6.4 Rule h_post

Rule h_post is a rate rule for parameter h_post:

$$\frac{d}{dt}h_post = phi \cdot (alpha_h_post \cdot (1 - h_post) - beta_h_post \cdot h_post)$$
 (4)

6.5 Rule V_post

Rule V_post is a rate rule for parameter V_post:

$$\frac{d}{dt}V_{-post} = \frac{I_{-app_post} - (I_{-Na_post} + I_{-K_post} + I_{-LL_post} + I_{-syn})}{Cm}$$
 (5)

Derived unit $\mu A \cdot \mu F^{-1}$

6.6 Rule alpha_m_post

Rule alpha_m_post is an assignment rule for parameter alpha_m_post:

$$alpha_m_post = \frac{-0.1 \cdot (V_post + 35)}{exp(-0.1 \cdot (V_post + 35)) - 1}$$
(6)

6.7 Rule beta_m_post

Rule beta_m_post is an assignment rule for parameter beta_m_post:

$$beta_m_post = 4 \cdot exp\left(\frac{(V_post + 60)}{18}\right)$$
 (7)

6.8 Rule alpha_h_post

Rule alpha_h_post is an assignment rule for parameter alpha_h_post:

$$alpha_h_post = 0.07 \cdot exp\left(\frac{(V_post + 58)}{20}\right) \tag{8}$$

6.9 Rule beta_h_post

Rule beta_h_post is an assignment rule for parameter beta_h_post:

beta_h_post =
$$\frac{1}{\exp(-0.1 \cdot (V_post + 28)) + 1}$$
 (9)

6.10 Rule I_K_post

Rule I_K_post is an assignment rule for parameter I_K_post:

$$I_K_post = gK \cdot n_post^4 \cdot (V_post - E_K)$$
(10)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.11 Rule n_post

Rule n_post is a rate rule for parameter n_post:

$$\frac{d}{dt}n_post = phi \cdot (alpha_n_post \cdot (1 - n_post) - beta_n_post \cdot n_post)$$
 (11)

6.12 Rule alpha_n_post

Rule alpha_n_post is an assignment rule for parameter alpha_n_post:

$$alpha_n_post = \frac{-0.01 \cdot (V_post + 34)}{exp(-0.1 \cdot (V_post + 34)) - 1}$$
(12)

6.13 Rule beta_n_post

Rule beta_n_post is an assignment rule for parameter beta_n_post:

$$beta_n_post = 0.125 \cdot exp\left(\frac{(V_post + 44)}{80}\right)$$
 (13)

6.14 Rule I_L_post

Rule I_L_post is an assignment rule for parameter I_L_post:

$$I_L_post = gL \cdot (V_post - E_L)$$
 (14)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.15 Rule I_syn

Rule I_syn is an assignment rule for parameter I_syn:

$$I_{syn} = g_{syn} \cdot s \cdot (V_{post} - E_{syn})$$
 (15)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.16 Rule s

Rule s is a rate rule for parameter s:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{s} = \mathrm{alpha} \cdot \mathbf{F} \cdot (1 - \mathbf{s}) - \mathrm{beta} \cdot \mathbf{s} \tag{16}$$

6.17 Rule F

Rule F is an assignment rule for parameter F:

$$F = \frac{1}{1 + \exp\left(\frac{(V_{pre-theta_syn})}{2}\right)}$$
 (17)

6.18 Rule V_pre

Rule V_pre is a rate rule for parameter V_pre:

$$\frac{d}{dt}V_{pre} = \frac{I_{app_pre} - (I_{Na_pre} + I_{K_pre} + I_{L_pre})}{Cm}$$
(18)

Derived unit $\mu A \cdot \mu F^{-1}$

6.19 Rule I_app_pre

Rule I_app_pre is an assignment rule for parameter I_app_pre:

$$I_app_pre = \begin{cases} 2 & \text{if } (time \ge 10) \land (time \le 20) \\ 0 & \text{otherwise} \end{cases}$$
 (19)

6.20 Rule I_Na_pre

Rule I_Na_pre is an assignment rule for parameter I_Na_pre:

$$I_{na_pre} = gNa \cdot m_{inf_pre}^{3} \cdot h_{pre} \cdot (V_{pre} - E_{na})$$
(20)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.21 Rule m_inf_pre

Rule m_inf_pre is an assignment rule for parameter m_inf_pre:

$$m_{inf_pre} = \frac{alpha_m_pre}{alpha_m_pre + beta_m_pre}$$
(21)

Derived unit dimensionless

6.22 Rule h_pre

Rule h_pre is a rate rule for parameter h_pre:

$$\frac{d}{dt}h_pre = phi \cdot (alpha_h_pre \cdot (1 - h_pre) - beta_h_pre \cdot h_pre)$$
 (22)

6.23 Rule n_pre

Rule n_pre is a rate rule for parameter n_pre:

$$\frac{d}{dt}n_pre = phi \cdot (alpha_n_pre \cdot (1 - n_pre) - beta_n_pre \cdot n_pre)$$
 (23)

6.24 Rule alpha_n_pre

Rule alpha_n_pre is an assignment rule for parameter alpha_n_pre:

alpha_n_pre =
$$\frac{-0.01 \cdot (V_pre + 34)}{\exp(-0.1 \cdot (V_pre + 34)) - 1}$$
 (24)

6.25 Rule beta_n_pre

Rule beta_n_pre is an assignment rule for parameter beta_n_pre:

$$beta_n_pre = 0.125 \cdot exp\left(\frac{(V_pre + 44)}{80}\right)$$
 (25)

6.26 Rule alpha_h_pre

Rule alpha_h_pre is an assignment rule for parameter alpha_h_pre:

$$alpha_h_pre = 0.07 \cdot exp\left(\frac{(V_pre + 58)}{20}\right) \tag{26}$$

6.27 Rule beta_h_pre

Rule beta_h_pre is an assignment rule for parameter beta_h_pre:

beta_h_pre =
$$\frac{1}{\exp(-0.1 \cdot (V_pre + 28)) + 1}$$
 (27)

6.28 Rule alpha_m_pre

Rule alpha_m_pre is an assignment rule for parameter alpha_m_pre:

alpha_m_pre =
$$\frac{-0.1 \cdot (V_pre + 35)}{\exp(-0.1 \cdot (V_pre + 35)) - 1}$$
 (28)

6.29 Rule beta_m_pre

Rule beta_m_pre is an assignment rule for parameter beta_m_pre:

$$beta_m_pre = 4 \cdot exp\left(\frac{(V_pre + 60)}{18}\right)$$
 (29)

6.30 Rule I_K_pre

Rule I_K_pre is an assignment rule for parameter I_K_pre:

$$I_K_pre = gK \cdot n_pre^4 \cdot (V_pre - E_K)$$
(30)

Derived unit $mS \cdot cm^{-2} \cdot mV$

6.31 Rule I_L_pre

Rule I_L_pre is an assignment rule for parameter I_L_pre:

$$I_L_pre = gL \cdot (V_pre - E_L)$$
 (31)

Derived unit $mS \cdot cm^{-2} \cdot mV$

A Glossary of Systems Biology Ontology Terms

SBO:0000257 conductance: Measure of how easily electricity flows along a certain path through an electrical element. The SI derived unit of conductance is the Siemens

SBO:0000258 capacitance: Measure of the amount of electric charge stored (or separated) for a given electric potential. The unit of capacitance id the Farad

SBO:0000259 voltage: Difference of electrical potential between two points of an electrical network, expressed in volts

SBO:0000290 physical compartment: Specific location of space, that can be bounded or not. A physical compartment can have 1, 2 or 3 dimensions

SBML2LATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

 $[^]c$ European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany