Tillämpad matematik - Linjära system FMAF10

 $Emil Wihlander \\ dat 15 ewi@student.lu.se$

28januari2017

Kapitel 1: Svängningar och komplexa tal

1.1 a) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A \sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 3\sin(2t - 5) \Rightarrow \omega = 2$$

$$T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{2} = \pi$$

$$f = \frac{1}{T} \Rightarrow f = \frac{1}{\pi}$$

Svar: vinkelfrekvens: 2, period: π , frekvens: $\frac{1}{\pi}$

b) Allmänna funktionen för odämpad harmonisk svängning är $u(t) = A\sin(\omega t + \alpha)$ där ω är vinkelfrekvensen.

$$u(t) = 50\sin(100\pi t + 1) \Rightarrow \omega = 100\pi$$

$$T = \frac{2\pi}{\omega} \Rightarrow T = \frac{2\pi}{100\pi} = \frac{1}{50}$$

$$f = \frac{1}{T} \Rightarrow f = 50$$

Svar: vinkelfrekvens: 100π , period: $\frac{1}{50}$, frekvens: 50

- 1.2 a)
 - **b**)
 - $\mathbf{c})$
 - d)
 - $\mathbf{e})$
 - f)
 - 1.3 Använd regeln $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ från formelbladet.

$$\begin{split} u(t) = &6\sin(3t + \frac{\pi}{4}) = 6(\sin(3t)\cos(\frac{\pi}{4}) + \cos(3t)\sin(\frac{\pi}{4})) = \\ = &6\frac{1}{\sqrt{2}}\sin(3t) + 6\frac{1}{\sqrt{2}}\cos(3t) = 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t) \end{split}$$

Svar: $a = b = 3\sqrt{2}, \omega = 3 \Rightarrow 3\sqrt{2}\cos(3t) + 3\sqrt{2}\sin(3t)$

1.4 a) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = \sqrt{3}\cos(\omega t) - \sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = \sqrt{3} \\ A \cos \alpha = -1 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(\sqrt{3})^2 + (-1)^2} \Leftrightarrow \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4} \Rightarrow A\sqrt{1} = 2 \Leftrightarrow A = 2$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{\sqrt{3}}{-1} \Rightarrow$$
$$\Rightarrow \alpha = \arctan(-\frac{\sqrt{3}}{1}) + \pi = -\frac{\pi}{6} + \pi = \frac{2\pi}{3} \quad (+\pi \text{ ty } -4 < 0)$$

eller:

$$u(t) = \sqrt{3}\cos(\omega t) - \sin(\omega t) = 2(\frac{\sqrt{3}}{2}\cos(\omega t) - \frac{1}{2}\sin(\omega t)) =$$
$$= 2(\sin\frac{2\pi}{3}\cos(\omega t) + \cos\frac{2\pi}{3}\sin(\omega t)) = \sin(\omega t + \frac{2\pi}{3})$$

Svar: Amplitud: 2 och fasförskjutning: $\frac{2\pi}{3}$

1.4 b) låt $u(t) = A\sin(\omega t + \alpha) = A\sin\alpha\cos(\omega t) + A\cos\alpha\sin(\omega t) = -2\cos(\omega t) - 4\sin(\omega t)$ där A är amplituden och α är fasförskjutningen.

$$\begin{cases} A \sin \alpha = -2 \\ A \cos \alpha = -4 \end{cases} \Leftrightarrow \sqrt{(A \sin \alpha)^2 + (A \cos \alpha)^2} = \sqrt{(-2)^2 + (-4)^2} \Leftrightarrow \\ \Leftrightarrow \sqrt{A^2} \sqrt{\sin \alpha^2 + \cos \alpha^2} = \sqrt{4 + 16} \Rightarrow A\sqrt{1} = \sqrt{20} \Leftrightarrow A = 2\sqrt{5}$$

$$\tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{A \sin \alpha}{A \cos \alpha} = \frac{-2}{-4} \Rightarrow$$
$$\Rightarrow \alpha = \arctan \frac{1}{2} + \pi \ (+\pi \ \text{ty} \ -4 < 0)$$

Svar: Amplitud: $2\sqrt{5}$ och fasförskjutning: $\arctan \frac{1}{2} + \pi$

1.5 a) Eftersom $|a + bi| = \sqrt{a^2 + b^2}$.

$$|i| = \sqrt{0^2 + 1^2} = 1$$

Svar: |i| = 1

b) Eftersom $|a+bi| = \sqrt{a^2 + b^2}$.

$$|-i| = \sqrt{0^2 + (-1)^2} = 1$$

Svar: |-i| = 1

c) Eftersom $|e^{i\theta}| = 1$ oberoende av vad vinkeln θ är.

Svar: $|e^{5\pi i/7}| = 1$

1.6 a) låt $e^{i\theta}=e^{5\pi i/7} \Leftrightarrow \theta=\frac{5\pi}{7}$. Eftersom $\frac{\pi}{2}<\theta<\pi\Rightarrow e^{5\pi i/7}$ ligger i andra kvadranten.

Svar: andra kvadranten

b) Låt $e^{i\theta} = e^{-34\pi i/7} \Leftrightarrow \theta = -\frac{34}{7}\pi = -\frac{35}{7}\pi + \frac{1}{7}\pi = -6\pi + \pi + \frac{1}{7}\pi \Rightarrow \phi = \pi + \frac{1}{7}\pi$. Eftersom perioden är $2\pi \Rightarrow e^{i\theta} = e^{i\phi}$ vilket innebär $\pi < \phi < \frac{3}{2}\pi \Rightarrow e^{-34\pi i/7}$ ligger i tredje kvadranten.

Svar: tredje kvadranten

c) Låt $e^{i\theta}=e^{2000\pi i/13}\Leftrightarrow \theta=\frac{2000}{13}\pi=\frac{1989}{13}\pi+\frac{11}{13}\pi=152\pi+\pi+\frac{11}{13}\pi\Rightarrow \phi=\pi+\frac{11}{13}\pi.$ Eftersom perioden är $2\pi\Rightarrow e^{i\theta}=e^{i\phi}$ vilket innebär $\frac{3}{2}\pi<\phi<2\pi\Rightarrow e^{2000\pi i/13}$ ligger i fjärde kvadranten.

Svar: fjärde kvadranten