

TD 3: Théorèmes

Théorème de superposition

1)
$$E_1=10~V$$
; $R_1=2~k\Omega$
 $E_2=20~V$; $R_2=5~k\Omega$
 $R_3=10~k\Omega$

Déterminer l'expression littérale, puis la valeur numérique de $\it U$.

2)
$$E_1=20\,V$$
; $R_1=200\,\Omega$ $I_0=0.2\,A$; $R_2=100\,\Omega$ $R_3=500\,\Omega$ $R_4=400\,\Omega$

Déterminer l'expression littérale, puis la valeur numérique de I_1 et I_3 .

Théorème de Thévenin

1)
$$E=20 V$$
; $R_1=10 k\Omega$
 $R_2=15 k\Omega$
 $R_3=10 k\Omega$
 $R_4=4 k\Omega$

Déterminer le générateur de Thévenin "vu" par ${\cal R}_4$ et en déduire ${\cal U}.$

2)
$$E_1 = 10 V$$
; $R_1 = 3 k\Omega$; $R_2 = 3 k\Omega$
 $E_2 = 10 V$ $R_3 = 6 k\Omega$; $R_4 = 10 k\Omega$
 $R_5 = 2 k\Omega$

Déterminer le générateur de Thévenin "vu" par R_C .

Calculer R_C pour que U = 2 V.

3) Déterminer le générateur de Thévenin vu par R_2 . On prendra $R_1=R_2=R_3=R_4=R$. En déduire l'expression de la tension aux bornes de R_4 .

- 4) a) Déterminer le générateur de Thévenin "vu" par la résistance R_2 de droite.
- b) Si l'onuppose que R_2 varie, pour quelle valeur de cette résistance (par rapport à R_1) la tension U est-elle maximum ?

5) a) Déterminer la tension E_{Th} du générateur de Thévenin "vu" par R_C et en déduire la relation qui doit exister entre les 4 résistances R_1 à R_4 pour que le courant soit nul dans R_C quelle que soit la valeur de cette résistance.

b) Déterminer l'expression de R_{Th} .

Théorème de Norton

1)
$$E = 10 V$$
 $R_1 = 100 \Omega$ $R_2 = 200 \Omega$ $R_3 = 300 \Omega$ $R_C = 100 \Omega$

Déterminer le générateur de Norton "vu" par R_C et en déduire U et I.

2)
$$E_1 = 10 V$$
 $R_1 = 2 k\Omega$ $R_2 = 6 k\Omega$ $I_2 = 13 mA$ $R_C = 10,5 k\Omega$

Déterminer le générateur de Norton "vu" par R_C et en déduire U et I.

3)
$$E_1 = 10 V$$
 $R_1 = 4 k\Omega$ $R_C = 2 k\Omega$ $E_2 = 9 V$ $R_2 = 3 k\Omega$ $E_3 = 15 V$ $R_3 = 6 k\Omega$

Déterminer le générateur de Norton "vu" par $R_{\mathcal{C}}$ et en déduire I.

4)
$$E_1 = 10 V$$
 $R_1 = R_2 = 10 \Omega$
 $I_3 = 5 A$ $R_3 = 3 \Omega, R_4 = 2 \Omega$
 $R_C = 8.4 \Omega$

Déterminer l'expression littérale, puis la valeur numérique de $\it I$.

Théorème de Millman

1)
$$E = 15V$$

 $R_1 = 200\Omega$

Donner l'expression, puis la valeur de $\it U$.

$$R_2 = 100\Omega$$
$$I_1 = 0.1A$$

2) En utilisant le théorème de Millman, déterminer l'expression de la tension U en fonction de E_1 , E_2 , E_4 , I_0 et des résistances R_i .

3) Déterminez l'expression de la tension U.

Synthèse:

En utilisant la méthode de votre choix, déterminer l'expression de la tension aux bornes de la résistance R_1 en fonction de E, I, R et R_1 .

