Continuum Mechanics

Lecture 2 - Tensor Algebra

Dr. Nicholas Smith

Wichita State University, Department of Aerospace Engineering

August 20, 2020

schedule

- 20 Aug Tensor Algebra
- 25 Aug Tensor Calculus, HW1 Due
- 27 Aug Material Derivative
- 1 Sep Conservation and Compatibility, HW2 Due

symmetry

- Symmetry can be a very powerful tool
- Here we define some useful forms of symmetry in index notation
- Symmetric

- Anti-symmetric (skew symmetric)

- Useful identity
 - If \(a_{ij...m...n...k}\) is symmetric in \(mn\)
 and \(b_{pq...m...n..r}\) is antisymmetric in
 \(mn\), then the product is zero
 [a {ij...m...n...k}b {pq...m...n...r} = 0]
- We can also write any tensor as the sum of its
 symmetric and anti-symmetric parts [a_{ij} =
 \frac{1}{2} (a_{ij} + a_{ji}) +
 \frac{1}{2} (a {ij} a {ji})]
- This textbook uses a special shortcut notation (S and A superscript) for the symmetric and anti-symmetric portions of a tensor

linear transformation

- Let us consider some transformation, \(\textbf{T}\\), which transforms any vector into another vector
- If we transform \(\textbf{Ta} = c\) and \(\textbf{Tb} = d\)
- We call \(\textbf{T}\) a linear transformation
 (and a tensor) if [\begin{aligned}
 \textbf{T}(\textbf{a} + \textbf{b}) &=
 \textbf{Ta} + \textbf{Tb}\
 \textbf{T}(\alpha \textbf{a}) =
 \alpha\textbf{Ta} \end{aligned}]
- Where \(\alpha\) is any arbitrary scalar and \(\textbf{a}\), \(\textbf{b}\) are arbitrary vectors

coordinate transformation in two dimensions

Figure 1: 2d coordinate transformation example with vector pointing from (0,0) to (1,1)

coordinate transformation in two dimensions

- The vector, \(\(\v\\)\), remains fixed, but we transform our coordinate system
- In the new coordinate system, the \(x_2^\prime\) portion of \(v\) is zero.
- To transform the coordinate system, we first define some unit vectors.

coordinate transformation in two dimensions

Figure 2: 2d coordinate transformation from previous figure with unit vectors drawn along the x and y axes

coordinate transformation in two dimensions

```
- For this example, let us assume \(v = \langle
2, 2 \rangle\) and \(\theta = 45^\circ\)
```

- We can write the transformed unit vectors, \(\hat{e}_1^\prime\) and \(\hat{e}_2^\prime\) in terms of \(\hat{e}_1\), \(\hat{e}_2\) and the angle of rotation, \(\theta\). [\begin{aligned} \hat{e}_1^\prime \delta= \langle \hat{e}_1 \\cos \theta , \hat{e}_2 \sin \\theta\rangle\ \hat{e}_2^\prime \delta= \langle -\hat{e}_1 \\sin \theta , \hat{e}_2 \\cos \\theta \rangle \\end{aligned}]

coordinate transformation in two dimensions

- We can write the vector, \(v\), in terms of the unit vectors describing our axis system
- $(v = v_1 \hat{e}_1 + v_2 \hat{e}_2)$
- (note: \(\hat{e}_1=\langle 1, 0 \rangle\)
 and \(\hat{e}_2 = \langle 0,1 \rangle\))
- \(v = \langle 2, 2 \rangle = 2 \langle
 1, 0 \rangle + 2 \langle 0,1 \rangle\)

coordinate transformation in two dimensions

- When expressed in the transformed coordinate system, we refer to \(v^\prime\)
- \(v^\prime = \langle v_1 \cos \theta +
 v_2 \sin \theta, -v_1 \sin \theta + v_2
 \cos \theta \rangle\)
- \(v^\prime = \langle 2\sqrt{2}, 0
 \rangle\)
- We can recover the original vector from the transformed coordinates:
- \(v = v_1^\prime \hat{e}_1^\prime +
 v_2^\prime \hat{e}_2^\prime\)
- (note: [\hat{e}_1^\prime=\langle
 \frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2}
 \rangle] and [\hat{e}_2^\prime = \langle

general coordinate transformation

- Coordinate transformation can become much more complicated in three dimensions, and with higher-order tensors
- We define \(Q_{ij}\) as the cosine of the angle between the \(x_i^\prime\) axis and the \(x_j\) axis.
- This is also referred to as the "direction cosine" [Q_{ij} = \cos (x_i^\prime, x_j)]
- health warning the direction cosine can also be defined inversely (\(Q_{ij} = \cos (x_i, x_j^\prime)\)), and the indexes are switched in the transformation law

general coordinate transformation

- We can use this form on our 2D transformation example [\begin{aligned} Q_{ij} &= \cos (x_i^\prime, x_j)\ &= \begin{bmatrix} \cos (x_1^\prime, x_1) & \cos (x_1^\prime, x_2)\ \cos (x_2^\prime, x_1) & \cos (x_2^\prime, x_2)\ \end{bmatrix}\ &= \begin{bmatrix} \cos \theta & \cos (90-\theta)\ \cos \90+\theta) & \cos \theta \end{bmatrix}\ &= \begin{bmatrix} \cos \theta & \sin \theta \ -\sin \theta & \cos \theta \end{bmatrix}\ \end{aligned}]

general coordinate transformation

- We can transform any-order tensor using \(Q {ij}\)
- Vectors (first-order tensors): \(v^\prime_i =
 Q_{ij}v_j\)
- Matrices (second-order tensors):

```
[\sigma_{mn}^\prime
=Q_{mi}Q_{nj}\sigma_{ij}]
```

- Fourth-order tensors: [C_{ijkl}^\prime =
 Q_{im}Q_{jn}Q_{ko}Q_{lp}C_{mnop}]

1

general coordinate transformation

- We can similarly use \(Q_{ij}\) to find tensors in the original coordinate system
- Vectors (first-order tensors): \(v_i = Q_{ji}v_j^\prime\)
- Matrices (second-order tensors): \(\sigma_{mn}\)
 =Q_{im}Q_{jn}\sigma_{ij}^\prime\)
- Fourth-order tensors: \(C_{ijkl} =
 Q_{mi}Q_{nj}Q_{ok}Q_{pl}C_{mnop}^\prime\)

general coordinate transformation

- We can derive some interesting properties of the transformation tensor, \(Q {ij}\)
- We know that $(v_i = Q_{ji}v_j^\pi)$ and that $(v^\pi) = Q_{ij}v_j^\pi$
- If we substitute (changing the appropriate indexes) we find: [v_i = Q_{ji}Q_{jk}v_k]
- We can now use the Kronecker Delta to substitute
 \(v_i = \delta_{ik}v_k\) which gives
 [\delta_{ik}v_k = Q_{ji}Q_{jk}v_k]

example

Figure 3: 3d coordinate system to start general transformation example

Figure 4: 3d illustration of first transformation

Figure 5: 3d illustration of second transformation (about the axes of the first)

```
-\(Q_{ij}^1 = \cos (x_i^\prime,x_j)\)
-\(Q_{ij}^2 = \cos (x_i^{\prime},x_j^\prime)\)
[Q_{ij}^1 = \begin{bmatrix} \cos 60 & \cos 90 & \cos 30 & \cos 90 & \cos 60 & \end{bmatrix}] [Q_{ij}^2 = \begin{bmatrix} \cos 30 & \cos 60 & \cos 90 & \cos 30 & \cos 60 & \cos 90 & \cos 30 & \cos 60 & \cos 90 & \cos 30 & \cos 60 & \cos 90 & \cos 30 & \cos 60 & \cos 90 &
```

- We now use \(Q_{ij}\) to find
 \(\hat{e}_i^\prime\) and
 \(\hat{e}_i^{\prime \prime}\)
- First, we need to write \(\hat{e}_i\) in a manner more consistent with index notation
- We will indicate axis direction with a superscript, e.g. \(\hat{e} 1 = e i^1\)
- $(e_i^p) = Q^1_{ij} e_j$
- \(e_i^{\prime\prime} = Q^2_{ij}\)
 e j^\prime\)

```
- \(e_i^{\prime\prime} = Q^2_{ij}
Q^1 {jk} e k\)
```

principal values

- In the 2D coordinate transformation example, we were able to eliminate one value from a vector using coordinate transformation
- For second-order tensors, we desire to find the "principal values" where all non-diagonal terms are zero
- The direction determined by the unit vector,
 \(n_j\), is said to be the principal direction or
 eigenvector of the symmetric second-order tensor,
 \(a_{ij}\) if there exists a parameter,
 \(\lambda\), such that [a_{ij} n_j =
 \lambda n_i]
- Where \(\\lambda\\) is called the principal value or eigenvalue of the tensor

principal values

- This system of equations has a non-trivial solution if and only if \(\det [a_{ij} - \lambda \delta_{ij}] = 0\)
- This equation is known as the characteristic equation, and we solve it to find the principal values of a tensor

25

- Find the principal values of the tensor [A_{ij} =
 \begin{bmatrix} 1 & 2\ 2 & 4
 \end{bmatrix}]
- From the characteristic equation, we know that
 \(\det [A_{ij} \lambda \delta_{ij}] =
 0\), or [\begin{vmatrix} 1-\lambda &
 2\ 2 & 4 \lambda \end{vmatrix} =
 0]

- Calculating the determinant gives
 [(1-\lambda)(4-\lambda) 4 = 0]
- Multiplying out and simplifying, we find
 [\lambda^2 5\lambda =
 \lambda(\lambda-5) = 0]
- This has the solution $(\lambda = 0, 5)$

2

invariants

- Every tensor has some invariants which do not change with coordinate transformation
- These are known as fundamental invariants
- The characteristic equation for a tensor in 3D can be written in terms of the invariants [\det [a_{ij} \lambda \delta_{ij}] = -\lambda^3 + I_\alpha \lambda^2 II_\alpha \lambda
 - + III \alpha = 0]

- The invariants can be found by the following equations [\begin{aligned} I_\alpha &= &= a_{ii}\ II_\alpha &= \frac{1}{2}(a_{ii} a_{jj} - a_{ij}a_{ij})\ III_\alpha &= \det [a_{ij}] \end{aligned}]

20

invariants

```
- Since invariants do not change with coordinate systems, we can also write the invariants as [\begin{aligned} I_\alpha &= \lambda_1 + \lambda_2 + \lambda_2 + \lambda_2 \lambda_3 \lambda_1 \lambda_1 \lambda_3 \lambda_1 \lambda_1 \lambda_1 \lambda_2 \lambda_3 \end{aligned}]
```

principal directions

- We defined principal directions earlier [(a_{ij} -\lambda \delta_{ij})n_j = 0]
- \(\lambda\) are the principal values and \(n_j\) are the principal directions
- For each eigenvalue there will be a principal direction
- We find the principal direction by substituting the solution for \(\lambda\) back into this equation

example

 Find the principal directions for the earlier principal values example

- This gives [\begin{bmatrix} -4 & 2\
2 & -1 \end{bmatrix} \begin{Bmatrix}
n_1 \ n_2 \end{Bmatrix} = 0]

- We proceed to solve the equations using
 row-reduction, but we find [\begin{bmatrix}
 2 & -1\ 0 & 0 \end{bmatrix}
 \begin{Bmatrix} n_1 \ n_2
 \end{Bmatrix} = 0]
- This means we cannot uniquely solve for (n_j)
- We are only concerned with the direction, magnitude is not important
- Choose $(n_2 = 1)$, solve for (n_1)
- \(n^{(1)} = \langle \frac{1}{2}, 1
 \rangle\)

- Similarly, for \(\lambda_2 = 0\), we find
 [\begin{bmatrix} 1 & 2\ 2 & 4
 \end{bmatrix} \begin{Bmatrix} n_1 \
 n_2 \end{Bmatrix} = 0]
- Which, after row-reduction, becomes
 [\begin{bmatrix} 1 & 2 \ 0 & 0
 \end{bmatrix} \begin{Bmatrix} n_1 \
 n_2 \end{Bmatrix} = 0]
- If we choose $\ (n_2 = 1)$, we find $\ (n_1 = -2)$
- This gives \(n^{(2)} = \langle -2, 1
 \rangle\)

- We can assemble a transformation matrix,
 \(Q_{ij}\), from the principal directions
 First we need to normalize them to unit vectors
 \(||n^{(1)}|| = \sqrt{\frac{5}{4}}\)
 \(\hat{n}^{(1)} = \frac{2}{\sqrt{5}}\)
 \langle \frac{1}{2}, 1 \rangle =
 \langle \frac{1}{\sqrt{5}},
 \frac{2}{\sqrt{5}} \rangle\)
- $(||n^{(2)}|| = \sqrt{5})$
- \(\hat{n}^{(2)} = \langle \frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \rangle\)

example

- And we find [A_{mn}^\prime =
 Q_{mi}Q_{nj}A_{ij}] [A_{ij}^\prime =
 \begin{bmatrix} 5 & 0 \ 0 & 0
 \end{bmatrix}]

- Find principal values, principal directions, and
invariants for the tensor [c_{ij} =
 \begin{bmatrix} 8 & 0 & 0 \ 0 &
 3 & 1 \ 0 & 1 & 3 \end{bmatrix}]

. .

- Characteristic equation simplifies to
- \(-\lambda^3 + 14\lambda^2 -56 \lambda + 64 = 0\)
- Which has the solutions $(\lambda = 2, 4, 8)$

```
- To find the principal direction for \(\\lambda_1 = 8\\) [\begin{bmatrix} 8-8 & 0 & 0\\
0 & 3-8 & 1\\ 0 & 1 & 3-8\\end{bmatrix}\begin{Bmatrix} n_1 \\
n_2 \ n_3 \end{Bmatrix} = 0]
```

20

- After row-reduction, we find [\begin{bmatrix}
 0 & 0 & 0 \\ 0 & 0 & 6 -24 \\ -5 \end{bmatrix}\begin{Bmatrix} n_1
 \ n_2 \ n_3 \end{Bmatrix} = 0]
- This means that $(n_3 = 0)$ and, as a result, $(n_2 = 0)$.
- \(n_1\) can be any value, we choose \(n_1 =
 1\) to give a unit vector.
- $\langle (n^{(1)}) = \langle 1, 0, 0 \rangle$

```
- To find the principal direction for \(\\lambda_2 = 4\) [\begin{bmatrix} 8-4 & 0 & 0\\
0 & 3-4 & 1\\ 0 & 1 & 3-4\\end{bmatrix}\begin{Bmatrix} n_1 \\
n_2 \ n_3 \end{Bmatrix} = 0]
```

/.1

example

\rangle\) after normalization

```
- To find the principal direction for \(\\lambda_3 = 2\\) [\begin{bmatrix} 8-2 & 0 & 0\\
0 & 3-2 & 1\\ 0 & 1 & 3-2\\end{bmatrix}\begin{Bmatrix} n_1 \\
n_2 \ n_3 \end{Bmatrix} = 0]
```

43

- This means that $(n_1 = 0)$
- We also know that $(n_2 = -n_3)$, so we choose $(n_2 = 1)$ and $(n_1 = -1)$
- This gives \(n^{(3)} =
 \frac{1}{\sqrt{2}}\langle 0, 1, -1
 \rangle\) after normalization

```
- In summary, for \(c_{ij}\) we have:
- \(\lambda_1 = 8\) and \(n^{{1}} = \langle 1, 0, 0 \rangle\)
- \(\lambda_2 = 4\) and \(n^{{2}} = \frac{1}{\sqrt{2}}\langle 0, 1, 1 \rangle\)
- \(\lambda_3 = 2\) and \(n^{{3}} = \frac{1}{\sqrt{2}}\langle 0, 1, -1 \rangle\)
- We can assemble \(n^{{i}}\) into a transformation tensor [Q_{ij} = \frac{1}{\sqrt{2}}\begin{bmatrix} \sqrt{2} & 0 & 0 \ 0 & 1 & 1\ & 0 & 1 & -1 \rangle\)
```

```
- What is \(c_{ij}^\prime\)?
- \(c_{ij}^\prime = Q_{im}Q_{jn}c_{mn}\)
[c_{ij}^\prime = \begin{bmatrix} 8
8080\ 08480\ 08082
\end{bmatrix}]
```

```
- We can also find the invariants for [c_{ij} = \begin{bmatrix} 8 & 0 & 0 \ 0 & 3 & 1 \ 0 & 1 & 3 \end{bmatrix}]

- Recall: [\begin{aligned} I_\alpha &= a_{ii}\ II_\alpha &= \frac{1}{2}(a_{ii} a_{jj} - a_{ij}a_{ij})\ III_\alpha &= \det [a_{ij}] \end{aligned}]
```

```
- First invariant [I_\alpha = a_{ii} = 8 + 3 +
3 = 14]
- Second invariant [II_\alpha =
  \frac{1}{2}(a_{ii} a_{jj} -
  a_{ij}a_{ij})] [a_{ii} a_{jj} = 14
  \times 14] [a_{ij}a_{ij} = a_{11}a_{11}
  + a_{12}a_{12} + a_{13}a_{13} + ... +
  a_{33}a_{33}] [II_\alpha =
  \frac{1}{2}(196 - 84) = 56]
```

```
- Third invariant [III_\alpha = \det [
  a_{ij}]] [III_\alpha = 8 \times (3 \times 3 - 1 \times 1) = 64]
```