Date: • User: Customer Job Number P.O. Number This Issue Prsht Rev. First Issue **Previous Run** Written By Comment Job Number: Seq. #: 1.0 3.0

Friday, 09/03/2007 2:26:24 PM Linda Lacelle **Process Sheet** : BRACKET **Drawing Name** : CU-DAR001 Dart Helicopters Services : 31156 : 10810 **Estimate Number** : D3177041 : NA Part Number S.O. No. : NA . D3177 REV B2 : 09/03/2007 **Drawing Number Project Number** : N/A : MACHINED PARTS : B2 **Drawing Revision** Type : NA : 24923 Material : 16/03/2007 Qty: 2 Um: Each **Due Date** Checked & Approved By : Est Rev:B 03.01.27 Added Step 12 KJ/RF **Additional Product** Description: **Machine Or Operation:** M6061T6B1000X12000 6061-T6 Bar 1.0" x 12.6 Comment: Qty.: 2.0747 f(s)/Unit Total: Material: 6061-T6 (QQ-A-200/8) or (QQ/A-250/11) 1.00" hick(Ms061T6B1.000x12.000 or M6061T6S1.000) Batch: <u>M9601</u> BAND SAW BAND SAW Comment: BAND SAW Cut blank: 47.40" x (12.000" +0.100/-0.000) HAAS CNC VERTICAL MACHINING #1 HAAS1 Comment: HAAS CNC VERTICAL MACHINING #1 1-Machine part as per Folio FA291 and Dwg D3177 2-Deburr INSPECT PARTS AS THEY COME OFF MACHINE 4.0 QC2 Comment: INSPECT PARTS AS THEY COME OFF MACHINE SECOND CHECK 5.0 QC8 Comment: SECOND CHECK

Page 1

Dart Aerospace Ltd

W/Q:		WORK ORDER CHANGES						
DATE	STEP	PROCEDURE CHANGE		Date	Qty	Approval Chief Eng / Prod Mgr	Approva QC Inspector	
							i	
							:	
		·						

Part No:	PAR #:	Fault Category:	NCR: Yes No	DQA:	Date:
			QA: N/C C	losed:	Date:

NCR:		WORK ORDER NON-CONFORMANCE (NCR)							
		Description of NC		Corrective Action Section B			Approval		
DATE	STEP	Section A	Initial Action Description Sign & Chief Eng Date		Sign & Date	Verification Approv. Section C Chief Eng			
070.22	30	Parts are under size à under tolerance.	US,	Scravi des traj, No replace. See Astropoled e-mail.	M.				
			07/03/27	Sea Attatilede-mail.	61 03 23	0703-22		107-13-27	
							Y		

NOTE: Date & initial all entries

r Date: Friday, 09/03/2007 2:26:24 PM User: Linda Lacelle **Process Sheet Drawing Name: BRACKET** Customer: CU-DAR001 Dart Helicopters Services Job Number: 31156 Part Number: D3177041 Job Number: Seq. #: Description: **Machine Or Operation:** HAND FINISHING RESOURCE #1 HAND FINISHING1 6.0 Comment: HAND FINISHING RESOURCE #1 Chemical Conversion Coat as per QSI 005 4.1 7.0 D31775 Spacer Comment: Qty.: 8.0000 Each(s) 4.0000 Each(s)/Unit Total: Pick: **Qty Part Number** Description Batch 4 D3177-5 Spacer SMALL & MEDIUM FAB RESOURCE 1 SMALL FAB 1 8.0 Comment: SMALL & MEDIUM FAB RESOURCE 1 1-Press D3177-5 Spacers as shown on Dwg D3177 POWDER COATING 9.0 **Comment: POWDER COATING** Powder Coat White Gloss (Ref: 4.3.5.1) as per QSI 005 4.3 INSPECT POWDER COAT/CHEMICAL CONVERSION QC3 10.0 Comment: INSPECT POWDER COAT/CHEMICAL CONVERSION 11.0 D26906 Lanyard Comment: Qty.: 2.0000 Each(s) 1.0000 Each(s)/Unit Total: Pick: **Qty Part Number** Description Batch 1 D2690-6 Lanyard AN960JD10 Washer 12.0 Comment: Qty.: 3.0000 Each(s)/Unit Total: 6.0000 Each(s) Pick: **Qty Part Number** Description Batch 3 AN960JD10 Washer

Dart Ae	rospace	Ltd							
W/O:		· · · · · · · · · · · · · · · · · · ·	W	ORK ORDER CHANGES					
DATE	STEP	PRO	PROCEDURE CHANGE By		Ву	Date	Qty	Approval Chief Eng / Prod Mgr	Approval QC Inspector
		· · · · · · · · · · · · · · · · · · ·							
Part No		PAR #:	Fault Cate	gory: NO	CR: Yes	No DQ	A:	Date: _	
					QA: N	I/C Close	d:	Date: _	· ·
NCR:		V	VORK ORD	ER NON-CONFORMANC	E (NCF	₹)			
		Description of NC Corrective Action Section E			Section B Ve			Approval	Approval
DATE	STEP	Section A	Initial Chief Eng	Action Description Chief Eng	Sign 8	Secti	on C	Chief Eng	QC Inspector
								1	

NOTE: Date & initial all entries

Date: Friday, 09/03/2007 2:26:24 PM Linda Lacelle User: **Process Sheet Drawing Name: BRACKET** Customer: CU-DAR001 Dart Helicopters Services Part Number: D3177041 Job Number: 31156 Job Number: **Description:** Seq. #: **Machine Or Operation:** Pip Pin 13.0 BLRS010 Comment: Qty.: 1.0000 Each(s)/Unit Total: 2.0000 Each(s) Pick: **Qty Part Number** Description Batch 1 BLRS-010 Pip Pin MS21042L3 Nut 14.0 Comment: Qty.: 1.0000 Each(s)/Unit Total: 2.0000 Each(s) Pick: **Qty Part Number** Description Batch 1 MS21042L3 Nut (or -3) _ 15.0 MS27039111 Screw 2.0000 Each(s) 1.0000 Each(s)/Unit Total: Comment: Qty.: Pick: **Qty Part Number** Description Batch 1 MS27039-1-11 Screw _ SMALL & MEDIUM FAB RESOURCE 1 16.0 SMALL FAB 1 Comment: SMALL & MEDIUM FAB RESOURCE 1 Assemble as per Dwg D3177 INSPECT WORK TO CURRENT STEP 17.0 QC5

Comment: INSPECT WORK TO CURRENT STEP

PACKAGING 1 18.0

PACKAGING RESOURCE #1

Comment: PACKAGING RESOURCE #1

Identify and Stock Location:

Date:

Friday, 09/03/2007 2:26:25 PM

User:

Linda Lacelle

Process Sheet

Customer: CU-DAR001 Dart Helicopters Services

Drawing Name: BRACKET

Job Number: 31156

Part Number: D3177041

Job Number:

Seq. #:

Machine Or Operation:

Description:

19.0

FINAL INSPECTION/W/O RELEASE

Comment: FINAL INSPECTION/W/O RELEASE

Job Completion

D3065-5DART AEROSPACE LTD	Work Order:	31150
Description: Bracket	Part Number:	D3177-1
Inspection Dwg: D3177 Rev: B2		Page 1 of 1

FIRST ARTICLE INSPECTION CHECKLIST

X First Article Prototype							
Drawing Dimension	Tolerance	Actual Dimension	Accept	Reject	Method of Inspection	Comments	
0.970	+0.010/-0.000						
R0.125	+/-0.010	1.125					
0.700	+0.010/-0.000	708	/				
0.188	+0.010/-0.000	1152					
0.300	+/-0.010						
10.776	+/-0.005	300	/				
R0.625	+/-0.010	R 0,625	/				
Ø0.261	+0.005/-0.000	0,261	/				
0.200	+/-0.010	=158					
0.970	+0.010/-0.000				The second secon		
Ø0.203	+/-0.005	0,203					
Ø0.625	+0.001/-0.000	0.625	/				
3.733	+0.000/-0.005	3.732	/				
0.970	+0.0101-0.000						
10:100	40.010/-0.000	/ /					_
							\dashv
			-				
							4
							_
					·		_

Measured by: 5 0	Audited by:	Prototype Approval:	N/A
Date: 01,03:	Date:	Date:	N/A

Rev	Date	Change		11001000 107	Approved
Α	04.02.25	New Issue	P/O D3177-041/-043	KJ/RF	
· · · · · · · · · · · · · · · · · · ·				· ()	• •

	DESIGN (DRAWN BY	DART AEROSPA HAWKESBURY, ONTARIO,	
'	CHECKED	APPROVED A	DRAWING NO.	REV. B
	#	#	D3177	SHEET 3 OF 3
1	DATE		TITLE	SCALE
	03.01.07		BRACKET	1:1

D3177-7 rule

MATGRIAL: AISI 303 STAILMESS STEEL (M303 R1.000)

D3177-5

- 1) MATERIAL: 6061-T6 ALUMINUM BAR Ø1.000 (QQ-A-200/8 OR QQ-A-225/8)(REF DART SPEC. M6061T6R1.000)
- 2) BREAK ALL SHARP EDGES 0.005 TO 0.010
- FINISH: CHEMICAL CONVERSION COAT PER DART QSI 005 4.1
- 4) TOLERANCES ARE PER DART QSI 018 UNLESS OTHERWISE NOTED
- 5) ALL DIMENSIONS ARE IN INCHES

Copyright © 2002 by DART AEROSPACE LTD

THIS DOCUMENT IS PRIVATE AND CONFIDENTIAL AND IS SUPPLIED ON THE EXPRESS CONDITION THAT IT IS NOT TO BE USED FOR ANY PURPOSE OR COPIED OR COMMUNICATED TO ANY OTHER PERSON WITHOUT WRITTEN PERMISSION FROM DART AEROSPACE LTD.

Jason Murdoch

From:

S Shahbazian [sshahbazian@dartaero.com]

Sent:

Thursday, March 22, 2007 9:46 AM

To:

'Jason Murdoch'

Cc:

'L Lacelle'; 'C Bell'

Subject: RE: D3177 Parts not made to drawing

Jason,

Please scrap all D3177 parts.

Thanks Serge

From: David Shepherd [mailto:dshepherd@dartaero.com]

Sent: March 22, 2007 9:42 AM

To: 'C Bell'

Cc: 'S Shahbazian'; 'L Lacelle'; 'Jason Murdoch'; 'S Shahbazian'

Subject: RE: D3177 Parts not made to drawing

Chris,

I'm not sure I agree with your assessment. Besides, I don't have the authority to change the analysis. Therefore, the D3177-041/-043 parts that were cut to 0.945" should be scrapped.

David

From: C Bell [mailto:cbell@dartaero.com] Sent: Monday, March 19, 2007 12:25 PM

To: davids@dartaero.com

Cc: S Shahbazian

Subject: D3177 Parts not made to drawing

Hello,

Apparently, production has made a couple D3177-041 and D3177-043 Brackets with incorrect dimensions. The 0.970" thickness dimension was cut too short, to approximately 0.945". I've been punching the new number into the SR-D130-701-1 stress report to see if the brackets can still support the loaded basket.

Section C-C is the critical section for both parts. Using 0.945", and the method shown in SR-D130-701-1, the parts will yield (see Stress Analysis.pdf), so it looks like they are unacceptable, but I think the analysis is a little too conservative.

If you look at the calculations in Section 6.0 of the stress report you can see that 30" was used as the moment arm for Section C-C (distance from the section to the centroid of the bracket plus basket area), while Section A-A and Section B-B both used different (smaller) moment arms (from the section to the mounting hole). If you calculate the stress at Section C-C using a similar moment arm as A-A and B-B (from the section to the mounting hole, see Stress Analysis.pdf) the margin of safety is positive and acceptable. I don't see why a moment arm of 30" was used for Section C-C (except for being extra conservative) since the basket is not bending and the load on the part is actually applied to the mounting holes.

Do you think this deviation is acceptable or should the parts be scrapped?

Thanks,

Christopher Bell