Calculus I Quiz 1 solutions

George Sparling

Laboratory of Axiomatics University of Pittsburgh

University of Pittsburgh Friday 18th January 2019

Calculus I Quiz 1 solutions

George Sparling

Laboratory of Axiomatics University of Pittsburgh

University of Pittsburgh Friday 18th January 2019

Question 1

For x real, a function f(x) is given by the following formulas:

- If $x \le -2$, f(x) = 2x + 12,
- If -2 < x < 2, $f(x) = x^2 + 4$,
- If $x \ge 2$, f(x) = 12 2x.

Sketch the graph of the function and give its domain and range. Is the function f continuous? Discuss.

- The part of the graph for $x \le -2$, so y = 2x + 12 is a straight line of slope 2, crossing the *x*-axis at (-6,0) and ending at the point (-2,8), which is part of the graph.
- The part of the graph for $x \ge -2$, so y = 12 2x is a straight line of slope -2, crossing the x-axis at (6,0) and ending at the point (2,8), which is part of the graph.
- The part of the graph for -2 < x < 2, so $y = x^2 + 4$ is a concave up parabola, symmetrical about the *y*-axis, crossing the *y*-axis at (0,4) and ending at the points $(\pm 2,8)$, which are points of the straight line parts of the graph.

The plot

Assembling the three graphs, we get a continuous curve, defined for all x. The domain is all reals, the range is $(-\infty, 8]$.

Question 2

The vertical height y feet, above ground level, at time t seconds of a ball tossed in the air is given by the equation $v = -t^2 + 4t + 12$.

 At which times is the height zero? What is the maximum height of the ball and when does it occur? Sketch the trajectory of the ball.

The height is zero when $-t^2 + 4t + 12 = 0$, so when $0 = t^2 - 4t - 12 = (t - 6)(t + 2)$, so when t = 6 or t = -2 seconds.

The maximum height is then at the midpoint of the interval [-2,6], so when $t=\frac{6-2}{2}=\frac{4}{2}=2$. The height is then $y(2)=-2^2+4(2)+12=-4+8+12=16$ feet. Alternatively we can complete the square: $-t^2+4t+12=-(t^2-4t-12)=-((t-2)^2-16)=16-(t-2)^2$.

The maximum height is then when t - 2 = 0, so when t = 2 and the maximum height is 16 feet, as before.

The plot

The blue parabola is the trajectory. The slope of the red chord is -2 and gives the average velocity from t=2 to t=4. The slope of the green tangent line at (3,15) is also -2 and gives the instantaneous velocity at time t=3.

 Find the average velocity of the projectile over the period from t = 2 seconds to t = 4 seconds and determine the instantaneous velocity of the projectile at time t = 3 seconds.

We have $y = -t^2 + 4t + 12$. When t = 2, we have $y = -2^2 + 4(2) + 12 = -4 + 8 + 12 = 16$. When t = 4, we have $y = -4^2 + 4(4) + 12 = -16 + 16 + 12 = 12$. So the chord slope between (2, 16) and (4, 12) is:

$$\frac{\Delta y}{\Delta t} = \frac{12 - 16}{4 - 2} = \frac{-4}{2} = -2.$$

The instantaneous velocity at time t=3, where $y=-3^2+4(3)+12=-9+12+12=15$ is the limit: $\lim_{t\to 3} \frac{y(t)-y(3)}{t-3} = \lim_{t\to 3} \frac{-t^2+4t+12-15}{t-3} = \lim_{t\to 3} \frac{-t^2+4t-3}{t-3} = \lim_{t\to 3} \frac{-(t-3)(t-1)}{t-3} = \lim_{t\to 3} -(t-1) = -(3-1) = -2.$

Question 3a

Determine the following limits, or explain why the limit in question does not exist:

$$\bullet \lim_{x \to 5} \frac{x^2 - 2x - 15}{x - 5}.$$

We have:

$$\lim_{x \to 5} \frac{x^2 - 2x - 15}{x - 5} = \lim_{x \to 5} \frac{(x - 5)(x + 3)}{x - 5}$$
$$= \lim_{x \to 5} (x + 3) = 5 + 3 = 8.$$

Geometrically, this is the slope of the tangent line to the parabola $y = x^2 - 2x + 1$, or $y = (x - 1)^2$ at the point (5, 16): this line has the point-slope equation, y - 16 = 8(x - 5), or y = 8x - 24, so it crosses the x-axis, where y = 0 at x = 3.

The parabola and the tangent line

The blue curve is the parabola $y = (x - 1)^2$. The red line is the tangent line to the parabola at the point (5, 16), whose slope is 8.

Question 3b

$$\bullet \lim_{x\to 4}\frac{\sqrt{x}-2}{x-4}.$$

We use the factorization of the difference of two squares $a^2 - b^2 = (a - b)(a + b)$ to simplify the numerator:

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{x} - 2)(\sqrt{x} + 2)}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{\left((\sqrt{x})^2 - 2^2\right)}{(x - 4)(\sqrt{x} + 2)}$$
$$= \lim_{x \to 4} \frac{(x - 4)}{(x - 4)(\sqrt{x} + 2)} = \lim_{x \to 4} \frac{1}{(\sqrt{x} + 2)} = \frac{1}{(\sqrt{x} + 2)} = \frac{1}{4}.$$

Geometrically, this is the slope of the tangent line to the half-parabola $y = \sqrt{x}$ at the point (4,2): this line has the point-slope equation, $y - 2 = \frac{1}{4}(x - 4)$, or $y = \frac{x}{4} + 1$, so it crosses the *y*-axis, where x = 0 at y = 1.

Question 3b

$$\bullet \lim_{x\to 4}\frac{\sqrt{x}-2}{x-4}.$$

We can also evaluate this limit in a slightly different way. We use the fact that we can write x - 4 as the difference of two squares and then use the factorization $a^2 - b^2 = (a - b)(a + b)!$

$$x-4=(\sqrt{x})^2-2^2=(\sqrt{x}-2)(\sqrt{x}+2).$$

So we have:

$$\lim_{x \to 4} \frac{\sqrt{x} - 2}{x - 4} = \lim_{x \to 4} \frac{(\sqrt{x} - 2)}{(\sqrt{x} - 2)(\sqrt{x} + 2)}$$
$$= \lim_{x \to 4} \frac{1}{(\sqrt{x} + 2)} = \frac{1}{(\sqrt{4} + 2)} = \frac{1}{2 + 2} = \frac{1}{4}.$$

The half-parabola and the tangent line

The blue curve is the half-parabola $y = \sqrt{x}$. The red line is the tangent line to the parabola at the point (4,2), whose slope is $\frac{1}{4}$.

Question 4

Let $f(x) = 4 - x^2$, defined for any real x and $g(x) = \sqrt{x}$, defined for any real $x \ge 0$.

Give formulas for the compositions $f \circ f$, $f \circ g$, $g \circ f$ and $g \circ g$ and for each of these functions give its appropriate domain.

- $(f \circ f)(x) = f(f(x)) = 4 (f(x))^2 = 4 (4 x^2)^2 = 4 (16 + x^4 8x^2) = -x^4 + 8x^2 12$. This composition is defined for all real x, since f is.
- $(f \circ g)(x) = f(g(x)) = 4 (g(x))^2 = 4 (\sqrt{x})^2 = 4 x$. This composition is defined for all real $x \ge 0$, since these are the values for which g(x) is defined.
- $(g \circ f)(x) = g(f(x)) = \sqrt{f(x)} = \sqrt{4 x^2}$. This composition is defined for x real and $-2 \le x \le 2$ since we need $x^2 \le 4$, for $\sqrt{4 - x^2}$ to be well-defined.
- $(g \circ g)(x) = g(g(x)) = \sqrt{g(x)} = \sqrt{\sqrt{x}} = x^{\frac{1}{4}}$. This composition is defined for all real $x \ge 0$, since then both \sqrt{x} and $\sqrt{\sqrt{x}}$ are well-defined.