Homework 4

Due date: 8th, NOV.

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. For the circuit below, the switch has been open for a long time. The switch is closed at t = 0s immediately. Given $\mathbf{V}\mathbf{s} = 10\mathbf{V}$, $\mathbf{R}_1 = 2\Omega$, $\mathbf{R}_2 = 3\Omega$, $\mathbf{R}_3 = 1\Omega$, $\mathbf{L} = 4\mathbf{H}$, $\mathbf{C} = 2\mathbf{F}$, please find $\mathbf{v}_C(0^+)$, $d\mathbf{v}_C(0^+)/d\mathbf{t}$, $i_L(0^+)$, $di_L(0^+)/d\mathbf{t}$. (Hint: remember to assign units for your answers)

2. Determine $v_c(t)$, $i_L(t)$, and $i_{R2}(t)$ in the circuit for $t \ge 0$, given that $V_0 = 12V$, $R_1 = 2$ Ω , $R_2 = 2$ Ω , L = 0.25 H and C = 0.5 F. Note that the switch has been open for a long time before t = 0s

3. In the circuit below, $R_1 = 10\Omega$, $R_2 = 5\Omega$, L = 4 mH, C = 10 mF, $U_1 = 5 \text{V}$, and $U_2 = 12 \text{V}$. When t = 0 s, the switch changes from node a to node b immediately. Assume that the circuit reaches steady state before t = 0. Determine the expression for $v_C(t)$ and $i_x(t)$ when $t \ge 0 \text{s}$.

4. In the following circuit, the switch was closed at t = 0s and re-opened at t = 0.5s. Determine the response $i_L(t)$ for $t \ge 0$, and there's no energy stored in the inductor and capacitor before t = 0s.

Assume that $V_S = 18V$, $R_S = 1\Omega$, $R_1 = 5\Omega$, $R_2 = 2\Omega$, L = 2H and $C = \frac{1}{17}F$.

5. For the following circuit, $R_1 = 1\Omega$, $R_2 = 2\Omega$, $C_1 = 3F$, $C_2 = 2F$, $V_0 = 20V$, and the coefficient $\alpha = 1$. The switch closes at t = 0s immediately. Please find the voltage on the capacitors $v_{CI}(t)$ and $v_{C2}(t)$ for t > 0s, respectively. Note that the switch has been open for a long time before t = 0s.

