T-test Code -

Bibek Sapkota

task 1: Load built-in sleep data set

Hide

Hide

sleep

sleep_wide

	group <fctr></fctr>	ID <fctr></fctr>
0.7	1	1
-1.6	1	2
-0.2	1	3
-1.2	1	4
-0.1	1	5
3.4	1	6
3.7	1	7
0.8	1	8
0.0	1	9
2.0	1	10
1-10 of 20 rows		Previous 1 2 Next

task 2:Making a wide version of the sleep data; below we'll see how to work with data in both long and wide formats

sleep_wide <- data.frame(
 ID=1:10,
 group1=sleep\$extra[1:10],
 group2=sleep\$extra[11:20]
)</pre>

ID group1 group2 <int> <dbl> <dbl> 1 0.7 1.9 2 -1.6 8.0 3 -0.2 1.1 4 -1.2 0.1 5 -0.1 -0.1

ID <int></int>	group1 <dbl></dbl>	group2 <dbl></dbl>
6	3.4	4.4
7	3.7	5.5
8	0.8	1.6
9	0.0	4.6
10	2.0	3.4
1-10 of 10 rows		

Compare two samples using T-test

task 1:Welch t-test

Hide

```
t.test(extra ~ group, sleep)
```

```
Welch Two Sample t-test

data: extra by group

t = -1.8608, df = 17.776, p-value = 0.07939

alternative hypothesis: true difference in means between group 1 and group 2 is not equal to

0

95 percent confidence interval:

-3.3654832 0.2054832

sample estimates:

mean in group 1 mean in group 2

0.75 2.33
```

task 2: Student t-test

Hide

```
t.test(extra ~ group, sleep, var.equal=TRUE)
```

```
Two Sample t-test

data: extra by group

t = -1.8608, df = 18, p-value = 0.07919

alternative hypothesis: true difference in means between group 1 and group 2 is not equal to 0

95 percent confidence interval:

-3.363874 0.203874

sample estimates:

mean in group 1 mean in group 2

0.75 2.33
```

Q1:What is the p-value of the t-test?

0.s- The p value of t-test is 0.07919

Q2:If significance level (∝) equals 0.05, do you accept alternative hypothesis (or reject null hypothesis)

Ans- If the p-value is less than or equal to 0.05, you reject the null hypothesis and accept the alternative hypothesis, indicating statistical significance. If the p-value is greater than 0.05, you do not reject the null hypothesis, meaning there isn't enough evidence to support the alternative hypothesis.