СИНТЕЗ ПРОИЗВОДНЫХ ИМИДАЗО[1,2-а]ПИРИДИНА МЕТОДОМ ПРЯМОЙ С-Н ФУНКЦИОНАЛИЗАЦИИ

Андреева Д.А.⁽¹⁾, Тресцова М.А.^(1,2), Утепова И.А.^(1,2), Чупахин О.Н.^(1,2)
⁽¹⁾ Уральский федеральный университет
620002, г. Екатеринбург, ул. Мира, д. 19
⁽²⁾ Институт органического синтеза УрО РАН
620137, г. Екатеринбург, ул. С. Ковалевской, д. 22

Среди различных производных имидазопиридина фрагмент имидазо[1,2-a]пиридина является наиболее часто встречающимся в составе природных соединений и фармацевтических препаратов. Повышенный интерес к синтезу производных имидазо[1,2-a]пиридина обусловлен их разнообразными биологическими свойствами (противоопухолевое, противовирусное, седативное, снотворное, противовоспалительное и противоязвенное).

В последние годы найдены лекарственные препараты, одобренные для клинического применения, которые имеют в своей структуре имидазо[1,2-a]пиридиновый фрагмент и применяются для лечения различных заболеваний (Сарипидем, Олпринон, Сорапразан).

Нами была осуществлена прямая С-Н функционализация 5-замещенных 1,2,5-оксадиазоло[3,4-b]пиразинов имидазо[1,2-a]пиридинами в условиях аэробного окисления при использовании наноразмерного TiO_2 в качестве фотокатализатора (см. схему).

$$R^{1}$$
 — R^{2} — R^{2} — R^{3} — R^{3} — R^{3} — R^{2} — $R^{$

С-Н функционализация оксодиазолопиразинов имидазо[1,2-а]пиридинами

В результате проведения реакции были получены азинилпроизводные имидазо[1,2-а]пиридинов. Полученные соединения являются перспективными объектами для исследований биологической активности.

Работа выполнена при финансовой поддержке РНФ, проект № 22-13-00298.