ECE 391 Discussion Week 13

Announcements & Reminders

- MP3.5 is due Sunday (Dec 4th) at 5:59:59pm in gitlab
- Final demo be on Sunday 4th night, Monday 5th and Tuesday 6th
 - Details will be posted later
 - All Team members *MUST* be present at final demo
- Final exam
 - Tuesday (Dec 13th) at 7:00pm to 10:00pm

MP3.5 Multiple Terminals

- Support 3 terminals (ALT+F# to switch between)
 - Initial bootup method: have all 3 terminals running shell
 - After bootup method: first time you press ALT+F2/ALT+F3, boot up terminal
 2/3
 - Should be able to switch as fast as possible no crashing!

Example coming up

MP3.5 Multiple Terminals

Support at least 6 processes total

- How to manage 6 processes? Up to you...
- Don't crash or page fault on the 7th

MP3.5 Multiple Terminals

- Separate input buffer per terminal, save current text screen/cursor position/anything relevant to your OS
- Exiting any shell does not exit other shells
- Exiting last shell: re-launch shell or prevent last one from being halted

Single Terminal

Three Terminals: Terminal 1 in use

What happens when you switch to another terminal?

Three Terminals: Terminal 1 -> Terminal 2

1. Save terminal 1 screen to video page assigned for it

Three Terminals: Terminal 1 -> Terminal 2

2. Restore terminal 2's screen to video memory

Three Terminals: Terminal 1 -> Terminal 2

3. Switch execution to terminal 2's user program

- Fixed/equal time slices with round-robin
- Use PIT (not RTC...why?)
 - Think about device priority and frequencies
- When typing, the characters should appear on the visible terminal (not the scheduled terminal)
- Test with counter, pingpong, fish
- Be mindful of timing/synchronization issues

using the PIT for the scheduler

using the RTC for the scheduler

- Utilize the kernel stack (think about what you did for
 - You will be using assembly to do the context switch
 - Switch ESP/EBP to next process' kernel stack
 - Restore next process' TSS
 - Flush TLB on process switch

Example coming up

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

1) Counter is executing

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

2) A PIT Interrupt occurs -> PIT handler executes -> Calls scheduling algorithm

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

3) Context switch to next program in scheduling queue

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

3) Context switch to next program in scheduling queue

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

3) Context switch to next program in scheduling queue

The same thing that's here. Why?

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

3) Context switch to next program in scheduling queue

Only one way to get out of a process - the scheduler!

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

3) Context switch to next program in scheduling queue

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

4) Return from PIT handler and execute fish

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

5) Another PIT interrupt occurs!

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

6) Context switch to pingpong

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

7) Return from PIT Handler and execute pingpong

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

8) Another PIT Interrupt occurs!

Setup:

Terminal 1: P0 shell -> P3 counter

Terminal 1: P1 shell -> P4 fish

Terminal 1: P2 shell -> P5 pingpong

9) Context switch to counter and execute it

Sounds hard right?

It is.
Use your 2 weeks wisely

But wait, there's more!

They have to work together

Implement
Scheduler and
Multiple
Terminals separately

Implement
Scheduler and
Multiple
Terminals together

MP3.5

- The current scheduled process DOES NOT have to be the one running on the current terminal
- If currently scheduled process is not visible, write to background, not to main video memory
- Be careful with vidmap!

Example coming up

