Test Date	Tuesday, July 21, 2020
Test Wavelength	1550 nm
Free Spectral Range	115 nm
Finesse	2293
Bandwidth(C)	0.049 nm (49.0 pm)
Insertion Loss ₁ (C)	0.89 dB
Insertion Loss ₂ (C)	1.07 dB
Insertion Loss ₃ (C)	1.31 dB
Tuning Voltage/FSR	~12 V
Package Type	Mini
Fiber Reinforcement	900μ
Temperature Test	-20 to 80 C

Notes:

Conformance Statement

Micron Optics, Inc., confirms that the following Fiber Fabry-Perot Filter has been manufactured using fully qualified, consistent, procedures and materials. The proof of conformance is presented in the above serialized data sheet.

Maximum Optical Input Power

- 1. The maximum optical input power is inversely proportional to finesse in a nonlinear manner.
- 2. A low finesse filter can accommodate a higher maximum optical input power than a filter of higher finesse. For example, a filter with a finesse of 2000 can accommodate an optical input power of 15mw, a filter with finesse of 1000 can accommodate an optical input power of 30mw, while a filter with a finesse of 200 can accommodate an optical input power of 100mw. Please contact Micron Optics for the maximum allowable input power for this particular filter.

Handling

- 1. Before using/installing the device carefully remove the metal shorting wire, if present, used for transportation.
- 2. Any FFP product must be handled *carefully*. As with all high performance Fabry-Perot devices, mirrors are aligned to nanometer tolerance. If the FFP is subjected to excessive shock the mirrors will become misaligned and the filter performance will degrade.

Connectorization

Do not hold sheath and pull fiber; breakage could occur as a result.

- 1. Pigtails contain loose buffered fiber so special connectorization procedures are required.
- 2. Chemical stripping of the fiber is preferred.
- 3. To mechanically strip the fiber, wrap 6 to 8 turns of buffered fiber around a 1 inch diameter mandrel to transfer tensile load from fiber to buffer. Gently strip fiber.
- 4. Minimize residual compressive load on fiber relative to sheath when inserting ferrule.
- 5. Follow remaining standard connectorization procedures.

Micron Optics, Inc.

1852 Century Place NE Atlanta, Georgia, 30345, USA Tel. (404)325-0005 Fax. (404)325-4082

email: moi@micronoptics.com internet: www.micronoptics.com