Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Высшая школа прикладной математики и физики

Математическая статистика Отчёт по лабораторным работам №5-8

Выполнил:

Студент: Золин Иван Группа: 5030102/00201

Принял:

к. ф.-м. н., доцент

Баженов Александр Николаевич

СОДЕРЖАНИЕ

Содержание

1	Постановка задачи	4
2	Теория	5
	2.1 Представление данных	5
	2.2 Линейная регрессия	
	2.2.1 Описание модели	
	2.2.2 Метод наименьших модулей	5
	2.3 Предварительная обработка данных	
	2.4 Коэффициент Жаккара	6
	2.5 Процедура оптимизации	6
3	Реализация	6
	3.1 Описание	6
	3.2 Ссылка на репозиторий	6
4	Результаты	7
5	Обсуждение	9
Л:	итература	10

Список иллюстраций

1	Схема установки для исследования фотоэлектрических характеристик
2	Исходные данные из экспериментов
3	Интервальное представление исходных данных
4	Линейная модель дрейфа данных
5	Гистограммы значений множителей коррекции w
6	Скорректированные модели данных
7	Гистограммы скорректированных данных
8	Значение коэффициента Жаккара от калибровочного множителя от R_{21}
9	Гистограмма объединнённых данных при оптимальном значении R_{21}

СПИСОК ТАБЛИЦ 3

Список таблиц

1 Постановка задачи

Постановка задачи. Исследование из области солнечной энергетики [1]. На рис 1 показана схема установки для исследования фотоэлектрических характеристик.

Рис. 1: Схема установки для исследования фотоэлектрических характеристик.

Калибровка датчика ФП1 производится по эталону ФП2. Зависимость между квантовыми эффективностями датчиков предполагается одинаковой для каждой пары измерений

$$QE_2 = \frac{I_2}{I_1} * QE_1 \tag{1}$$

QE - квантове эффективности эталонного и исследуемого датчиков, I - измеренные токи.

Исходные данные. Имеется 2 выборки данных с интервальной неопределенностью. Одна из них относится к эталонному датчику $\Phi\Pi2$, другая - к исследуемому датчику $\Phi\Pi1$.

Задача. Треубется определить коэффициент калибровки

$$R_{21} = \frac{I_2}{I_1} \tag{2}$$

при помощи линейной регрессии на множестве интервальных данных и коэффициента Жаккара.

2 Теория

2.1 Представление данных

В первую очередь прдставим данные таким образом, чтобы применить понятия статистики данных с интервальной неопределенностью.

Один из распространённых способов получения интервальных результатов в первичных измерениях - это "обинтерваливание" точечных значений, когда к точечному базовому зачению x_0 , которое считывается по показаниям измерительного прибора, прибавляется интервал погрешности ϵ :

$$\mathbf{x} = \dot{x} + \epsilon \tag{3}$$

Интервал погрешности зададим как

$$\epsilon = [-\epsilon; \epsilon]$$

В конкретных измерениях примем $\epsilon = 10^{-4} \text{ мВ}.$

Согласно терминологии интервального анализа, рассматриваемая выборка - это вектор интервалов, или интервальный вектор $x = (x_1, x_2, ..., x_n)$.

2.2 Линейная регрессия

2.2.1 Описание модели

Линейная регрессия - регрессионная модель зависимости одной переменной от другой с линейной функцией зависимости:

$$y_i = X_i b_i + \epsilon_i$$

где X - заданные значения, у - параметры отклика, ϵ - случайная ошибка модели. В случае, если у нас y_i зависит от одного параметра x_i , то модель выглядит следующим образом:

$$y_i = b_0 + b_1 * x_i + \epsilon_i \tag{4}$$

В данной можели мы пренебрегаем прогрешностью и считаем, что она получается при измерении y_i .

2.2.2 Метод наименьших модулей

Для наиболее точного приближения входных с фотоприемников данных y_i линейной регрессией $f(x_i)$ используется метод наименьших модулей. Этот метот основывается на минимизации нормы разности последовательности:

$$||f(x_i) - y_i||_{l^1} \to min \tag{5}$$

В данном случае ставится задача линейного программирования, решение которой дает нам коэффициенты b_0 и b_1 , а также вектор множителей коррекции данных w. По итогу получается следующая задача линейного программирования

$$\sum_{i=1}^{n} |w_i| \to min \tag{6}$$

$$b_0 + b_1 * x_i - w_i * \epsilon \le y_i, i = 1..n \tag{7}$$

$$b_0 + b_1 * x_i + w_i * \epsilon \le y_i, i = 1..n \tag{8}$$

$$1 \le w_i, i = 1..n \tag{9}$$

2.3 Предварительная обработка данных

Для оценки постоянной, как можно будет увидет далее, необходима предварительная обработка данных. Займемся линейной моделью дейфа.

$$Lin(n) = A + B * n, n = 1, 2, ...N$$
 (10)

Поставив и решив задачу линейного программирования, найдем коэффициенты A, B и вектор w множителей коррекции данных для каждого из фотоприемников ФП1 и ФП2: для данных с первого фотоприемника $A=4.74835,\,B=9.17308*10^{-6},\,a$ для данных со второго - $A=5.18171,\,B=1.10476*10^{-5}.\,B$ последствии множитель коррекции данных необходимо применить к погрешностям выборки, чтобы получить данные, которые согласовывались с линейной моделью дрейфа:

$$I^{f}(n) = \dot{x}(n) + \epsilon * w(n), n = 1, 2, ...N$$
(11)

По итоге необходимо построить "спрямленные" данные выборки: получить их можно путем вычитания из исходных данных линейную компоненту:

$$I^{c}(n) = I^{f}(n) - B * n, n = 1, 2, ...N$$
(12)

2.4 Коэффициент Жаккара

Коэффициент Жаккара - мера сходства множеств. В интервальных данных рассматривается некоторая модификация этого коэффициента: в качестве меры множества (в данном случае интервала) рассматривается его длина, а в качестве пересечения и оъединения - взятие минимума и максимума по включению двух величин в интервальной арифметике Каухера соответственно. Можно заметить, что в силу возможности минимума по включению быть неправильным инервалом, коэффициент Жаккара может достишать значения только в интервале [-1; 1].

$$JK(x) = \frac{wid(\wedge x_i)}{wid(\vee x_i)} \tag{13}$$

2.5 Процедура оптимизации

Чтоб найти оптимальный параметр калиброфки R_21 необходимо поставить и решить задачу максимизации коэффициента Жаккара, зависящего от парамертра калибровки:

$$JK(I_1^c(n) * R \cup I_2^c(n)) = \rightarrow max \tag{14}$$

где I_1^c и I_2^c - полученные спрямленные выборки, а R - параметр калибровки. Найденный таким образом R и будет искомым оптимальным R_{21} в силу наибольшего совпадения, оцененного коэффицентом Жаккара.

3 Реализация

3.1 Описание

Данная лабораторная работа была выполнена с использованием языка программирования Python 3.10 в среде разработки PyCharm с использованием следующих библиотек:

- math использование математических функций
- matplotlib версии 3.7.1 построение графиков
- питру версии 1.24.2 использование многомерных массивов
- prettytable версии 3.6.0 вывод таблиц в консоли
- scipy версии 1.10.1 статические распределения и функции
- seaborn версии 0.12.2 посроение графиков, визуализация
- statsmodels дополнение к scipy, использование статистических вычислений, включая описательную статистику, оценку и вывод статистических моделей

Отчёт подготовлен с помощью языка LaTEX в редакторе TexStudio.

3.2 Ссылка на репозиторий

https://github.com/IMZolin/Math-statistics-labs - GitHub репозиторий

4 Результаты

Рис. 2: Исходные данные из экспериментов

Рис. 3: Интервальное представление исходных данных

Рис. 4: Линейная модель дрейфа данных

Рис. 5: Гистограммы значений множителей коррекции w

Рис. 6: Скорректированные модели данных

Рис. 7: Гистограммы скорректированных данных

Рис. 8: Значение коэффициента Жаккара от калибровочного множителя от R_{21}

Рис. 9: Гистограмма объединнённых данных при оптимальном значении R_{21}

5 Обсуждение

Множители коррекции w. На гистограммах значений множителей коррекции (Рис.5), видно, что половина (для эталлоного фотопередатчика даже больше) не требует коррекции. Это означает, что линейная модель дрейфа данных является разумным приближением.

Коэффициент Жаккара На рис.8 видно, что оптимальным множителем R_{21} является число, равное 1.0912670309. Однако видно, что коэффициент Жаккара при оптимальном значении едва-едва превышает 0, а интервал, при котором $JK \ge 0$, соизмерим с точкой (длина интервала оценивается $10^{-9}-10^{-10}$). Это показывает на то, что исходные данные имеют ряд неточностей, которые сложно устранить. Это же можно было и заметить на Рис.3, иллюстрирующий входные данные. Однако, как будет далее видно, подобранный коэффициент R_{21} приблизит данные первого фотоприемника к данным второго фотоприемника.

Гистограмма объединённых данных при оптимальном значении R. Сравнивая гистограмму объединённых данных при оптимальном значении R_{21} (Рис. 9) с гистограммами скорректированных данных (Рис. 7), видно, что гистограмма объединённых данных повторяет форму гистограммы входных данных с $\Phi\Pi1$, однако пик гистограммы смещен в сторону значения пика на гистограмме $\Phi\Pi2$.

Список литературы

- [1] Histogram. URL: https://en.wikipedia.org/wiki/Histogram
- [2] Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. Спб.: «Иван Федоров», 2001.-592 с., илл.
- [3] Box plot. URL: https://en.wikipedia.org/wiki/Box_plot
- [4] Анатольев, Станислав (2009) «Непараметрическая регрессия», Квантиль, №7, стр. 37-52.
- [5] М.З.Шварц. Данные технологических испытаний оборудования для калибровки фотоприемников солнечного излучения. 2022.