import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
import seaborn as sns
import warnings
warnings.simplefilter("ignore")

data=pd.read_csv("/content/iris.csv")

data

	Sr No.	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species	Unnamed: 6
0	1	5.1	3.5	1.4	0.2	setosa	NaN
1	2	4.9	3.0	1.4	0.2	setosa	NaN
2	3	4.7	3.2	1.3	0.2	setosa	NaN
3	4	4.6	3.1	1.5	0.2	setosa	NaN
4	5	5.0	3.6	1.4	0.2	setosa	NaN
145	146	6.7	3.0	5.2	2.3	setosa	NaN
146	147	6.3	2.5	5.0	1.9	setosa	NaN
147	148	6.5	3.0	5.2	2.0	setosa	NaN
148	149	6.2	3.4	5.4	2.3	setosa	NaN
149	150	5.9	3.0	5.1	1.8	setosa	NaN

150 rows × 7 columns

Distributions

Time series

```
data.isnull().sum()
     Sr No.
     Sepal.Length
     Sepal.Width
                      0
     Petal.Length
                      0
     Petal.Width
                      0
     Species
                      0
     Unnamed: 6
                    150
     dtype: int64
data.columns
     Index(['Sr No.', 'Sepal.Length', 'Sepal.Width', 'Petal.Length', 'Petal.Width',
            'Species', 'Unnamed: 6'],
           dtype='object')
      5 4 ]
                              IAIVMAMA, II AIWI
                                                                        š --- I
                                                                                                 (WIAIMINALL LA...I
top_data=data.head(6)
print(top_data)
        Sepal.Length Sepal.Width Petal.Length Petal.Width Species Unnamed: 6
     0
                 5.1
                             3.5
                                           1.4
                                                        0.2 setosa
                                                                            NaN
                4.9
     1
                             3.0
                                           1.4
                                                        0.2 setosa
                                                                            NaN
                4.7
                                                        0.2 setosa
     2
                             3.2
                                           1.3
                                                                            NaN
     3
                4.6
                             3.1
                                           1.5
                                                        0.2 setosa
                                                                            NaN
     4
                5.0
                             3.6
                                           1.4
                                                        0.2 setosa
                                                                            NaN
     5
                5.4
                             3.9
                                           1.7
                                                        0.4 setosa
                                                                            NaN
data.describe()
```

	Sr No.	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Unnamed: 6
count	150.000000	150.000000	150.000000	150.000000	150.000000	0.0
mean	75.500000	5.843333	3.057333	3.758000	1.199333	NaN
std	43.445368	0.828066	0.435866	1.765298	0.762238	NaN
min	1.000000	4.300000	2.000000	1.000000	0.100000	NaN
25%	38.250000	5.100000	2.800000	1.600000	0.300000	NaN
50%	75.500000	5.800000	3.000000	4.350000	1.300000	NaN
75%	112.750000	6.400000	3.300000	5.100000	1.800000	NaN
max	150.000000	7.900000	4.400000	6.900000	2.500000	NaN

Values

Distributions

Sepal.Length

Sepal.Width

2-d distributions

0

40

20

60

80

100

120

140

y=data.iloc[:,:4] y=data.iloc[:,4] | print(x)

print(y)

	C a Na	Canal Lanath	ما لم المعامل	Dotol Longth
	Sr No.	Sepal.Lengtn	Sepal.wlath	Petal.Length
0	1	5.1	3.5	1.4
1	2	4.9	3.0	1.4
2	3	4.7	3.2	1.3
3	4	4.6	3.1	1.5
4	5	5.0	3.6	1.4
				• • •
145	146	6.7	3.0	5.2
146	147	6.3	2.5	5.0
147	148	6.5	3.0	5.2
148	149	6.2	3.4	5.4
149	150	5.9	3.0	5.1

```
[150 rows x 4 columns]
           0.2
           0.2
           0.2
           0.2
           0.2
     145
          2.3
     146
          1.9
          2.0
     147
           2.3
     148
     149
           1.8
     Name: Petal.Width, Length: 150, dtype: float64
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x,y,random_state=0)
from sklearn.linear_model import LogisticRegression
prateek_iris_act2=LogisticRegression()
# Create an instance of the DecisionTreeClassifier
prateek_iris_act2 = DecisionTreeClassifier()
# Fit the model to the training data
prateek_iris_act2.fit(x_train, y_train)
     ▼ DecisionTreeClassifier
     DecisionTreeClassifier()
y_prediction=prateek_iris_act2.predict(x_test)
y_prediction
     array(['setosa', 'setosa', 'setosa', 'setosa', 'setosa',
            'setosa', 'setosa', 'setosa', 'setosa', 'setosa',
            'setosa', 'setosa', 'setosa', 'setosa', 'setosa',
```

```
'setosa', 'setos
```

from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
confusion_matrix(y_test,y_prediction)

```
array([[38]])
```

```
from sklearn.metrics import accuracy score, classification report, confusion matrix
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.tree import DecisionTreeClassifier
# Import your specific model
# Create and train the model
model = DecisionTreeClassifier()
model.fit(x_train, y_train)
# Make predictions
y_pred = model.predict(x_test)
accuracy = accuracy_score(y_test, y_pred) * 100
print(f"Accuracy: {accuracy}")
classification_rep = classification_report(y_test, y_pred)
print(f"Classification Report:\n{classification rep}")
conf_matrix = confusion_matrix(y_test, y_pred)
sns.heatmap(conf_matrix, annot=True, fmt='d')
plt.xlabel('--- Predicted ---')
plt.ylabel('--- True ---')
plt.show()
```

Accuracy: 100.0

Classification Report:

	precision	recall	f1-score	support
setosa	1.00	1.00	1.00	38
accuracy			1.00	38
macro avg	1.00	1.00	1.00	38
weighted avg	1.00	1.00	1.00	38

