Corrigé du Partiel

Durée : trois heures

Documents et calculatrices non autorisés

Exercice 1 (2 points)

Soit (u_n) une suite réelle.

- 1. (u_n) bornée : $\exists M, m \in \mathbb{R}, \forall n \in \mathbb{N}, m \leqslant u_n \leqslant M$ (u_n) n'est pas bornée : $\forall M, m \in \mathbb{R}, \exists n \in \mathbb{N}, u_n < m \text{ ou } u_n > M$
- 2. (u_n) est monotone : $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$ ou $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$

Exercice 2 (3 points)

Soit (u_n) une suite réelle telle que : (u_{2n}) converge vers un réel l et (u_{3n}) converge vers un réel l'.

- 1. $(u_{6n})=(u_{2(3n)})$ est une suite extraite de (u_{2n}) donc (u_{6n}) converge vers l. $(u_{6n})=(u_{3(2n)})$ est une suite extraite de (u_{3n}) donc (u_{6n}) converge vers l'. On en conclut que l=l'
- 2. Au delà de n'importe quel rang, on peut trouver des termes de (u_n) qui n'appartiennent ni à (u_{2n}) ni à (u_{3n}) (en particulier les termes de la suite (u_{6n+1})) donc on ne peut pas conclure sur la convergence de (u_n) .

Exercice 3 (2 points)

On considère une suite $(u_n)_{n\in\mathbb{N}}$ qui vérifie la relation de récurrence $u_{n+1}=10u_n+27$.

- 1. $u_0 = 10u_0 + 27 \Leftrightarrow u_0 = -3$. La suite est constante si $u_0 = -3$
- 2. $\forall n \in \mathbb{N}, v_{n+1} = u_{n+1} + 3 = 10u_n + 27 + 3 = 10(u_n + 3) = 10v_n$ donc (v_n) est géométrique de raison 10.
- 3. $u_0 = 1 \Longrightarrow v_0 = 1 + 3 = 4$ donc $v_n = 4.10^n$ et $u_n = v_n 3 = 4.10^n 3$

Exercice 4 (2 points)

Soient
$$(u_n)_{n\in\mathbb{N}^*}$$
 et $(v_n)_{n\in\mathbb{N}^*}$ définies pour tout $n\in\mathbb{N}^*$ par $u_n=\sum_{k=0}^n\frac{1}{k!}$ et $v_n=\frac{1}{n!}+\sum_{k=0}^n\frac{1}{k!}$

$$u_{n+1} - u_n = \frac{1}{(n+1)!} > 0 \text{ donc } (u_n) \text{ est croissante.}$$

$$v_{n+1} - v_n = \frac{1}{(n+1)!} + \frac{1}{(n+1)!} - \frac{1}{n!} = \frac{2 - (n+1)}{(n+1)!} \le 0 \text{ car } n \ge 1 \text{ donc } (v_n) \text{ est décroissante.}$$

$$v_n - u_n = \frac{1}{n!} \xrightarrow[+\infty]{} 0.$$

 (u_n) et (v_n) sont adjacentes.

Exercice 5 (4,5 points)

Soit (u_n) la suite réelle définie par récurrence par : $u_0 \in \mathbb{R}_+$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$ où $f(x) = \frac{x^2 + 8}{6}$.

1.
$$u_n$$
 est constante ssi $u_0 = \frac{{u_0}^2 + 8}{6} \iff {u_0}^2 - 6u_0 + 8 = 0 \iff (u_0 - 2)(u_0 - 4) = 0 \iff u_0 = 2$ ou $u_0 = 4$.

2. On établit le tableau de variation de f.

	0		2		4		$+\infty$
f'	0	+		+		+	
f	4/3		2		4		+∞

On voit que $f(I_1) = \left[\frac{4}{3}, 2\right] \subset I_1$, $f(I_2) = \left[\frac{4}{3}, 4\right] = I_2$ et $f(I_3) = \left[\frac{4}{3}, +\infty\right] = I_3$ donc I_1 , I_2 et I_3 sont stables par f. Si u_0 appartient à un de ces intervalles I.

Alors, $u_0 \in I$ et $\forall n \in \mathbb{N}, u_n \in I \Longrightarrow u_{n+1} = f(u_n) \in I$ donc par récurrence, $\forall n \in \mathbb{N}, u_n \in I$.

3. $u_0 \in I_2$ donc, d'après 2., $\forall n \in \mathbb{N}, u_n \in I_2$. $u_{n+1} - u_n = \frac{{u_n}^2 - 6u_n + 8}{6} < 0 \text{ car } u_n \text{ est compris entre les deux racines du polynôme.}$

 (u_n) est bornée et décroissante donc convergente.

Soit l sa limite. On sait que f(l) = l donc l = 2 ou l = 4.

Comme (u_n) est décroissante : $\forall n \in \mathbb{N}, 2 < u_n \leqslant u_0 < 4 \Longrightarrow 2 \leqslant l \leqslant u_0 < 4$ donc l = 2.

Exercice 6 (3 points)

1. En utilisant l'algorithme d'Euclide, déterminer une solution particulière de l'équation (E): 329x - 217y = 21.

\mathbf{q}	r	u	v	
	329	1	0	
	217	0	1	
1	112	1	-1	Donc $329 \wedge 217 = 7$ et $(E_p): 329 \times 2 - 217 \times 3 = 329 \times 10^{-2}$
1	105	-1	2	
1	7	2	-3	
15	0			

En divisant tout par 7, on obtient : (E) \Longleftrightarrow 47x - 31y = 3 avec $47 \wedge 31 = 1$

 $(E_p) \Longleftrightarrow 47 \times 2 - 31 \times 3 = 1 \Longleftrightarrow 47 \times 6 - 31 \times 9 = 3$

Une solution particulière de (E) est (6,9).

2. En soustrayant (E_p) à (E) on a : $(E) \Longleftrightarrow 47(x-6) = 31(y-9)$

Donc : $47 \mid 31(y-9)$ et $47 \land 31 = 1 \Longrightarrow$ (d'après le théorème de Gauss) $47 \mid (y-9) \Longleftrightarrow \exists k \in \mathbb{Z}, y-9 = 47k$ En remplaçant dans (E) on obtient : $47(x-6) = 31 \times 47k \Longrightarrow x-6 = 31k$.

On vérifie que toutes les paires d'entiers du type $(6+31k,9+47k), k \in \mathbb{Z}$ sont solution de (E):

$$47(6+31k) - 31(9+47k) = 47 \times 6 - 31 \times 9 = 3$$

 $S = \{ (6+31k, 9+47k), k \in \mathbb{Z} \}$

Exercice 7 (2 points)

En utilisant les critères de divisibilité, on obtient :

$$A = 12825 = 19 \times 5^2 \times 3^3$$

$$B = 9240 = 11 \times 7 \times 5 \times 3 \times 2^{3}$$
.

On en déduit que le pgcd de A et B est : 15.

Mathématiques Partiel – janvier 2020 S1 2019 Epita

Exercice 8 (1,5 points)

Déterminer le reste de la division euclidienne de 751^{157} par 11.

Grâce aux critères de divisibilité ou grâce à une division euclidienne, on obtient : $751 \equiv 3[11]$. Comme 11 est premier, d'après le petit théorème de Fermat : $751^{(11-1)} \equiv 1[11]$ soit $751^{10} \equiv 1[11]$. Ainsi $751^{157} = 751^{150} \times 751^7 \equiv 1 \times 3^7[11]$. Or $3^5 \equiv 1[11]$ donc $751^{157} \equiv 3^5 \times 3^2[11] \equiv 9[11]$. Comme $0 \leq 9 < 11$, on conclut que le reste de la division de 751^{157} par 11 est 9.