Lema de Pumping y propiedades de lenguajes regulares

Sebastián Taboh

6 de mayo de 2020

¿Cómo demostramos?

▶ ¿Cómo probamos que un lenguaje es regular?

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - ightharpoonup damos un AFD o un AFND o un λ -AFND que lo genere

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - ightharpoonup damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - lacktriangle damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere
 - damos una gramática regular que lo genere

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - ightharpoonup damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere
 - damos una gramática regular que lo genere
 - usamos propiedades de los lenguajes regulares

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - ightharpoonup damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere
 - damos una gramática regular que lo genere
 - usamos propiedades de los lenguajes regulares
- ¿Cómo probamos que un lenguaje no es regular?

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - lacktriangle damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere
 - damos una gramática regular que lo genere
 - usamos propiedades de los lenguajes regulares
- ¿Cómo probamos que un lenguaje no es regular?
 - usamos el Lema de Pumping para lenguajes regulares

¿Cómo demostramos?

- ¿Cómo probamos que un lenguaje es regular?
 - lacktriangle damos un AFD o un AFND o un λ -AFND que lo genere
 - damos una expresión regular que lo genere
 - damos una gramática regular que lo genere
 - usamos propiedades de los lenguajes regulares
- ¿Cómo probamos que un lenguaje no es regular?
 - usamos el Lema de Pumping para lenguajes regulares
 - usamos propiedades de los lenguajes regulares

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

▶ $L_1 \cup L_2$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular
- $ightharpoonup L_1^*$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular
- $ightharpoonup L_1^*$ es regular
- $ightharpoonup L_1{}^c = \Sigma^* L_1$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular
- $ightharpoonup L_1^*$ es regular
- $ightharpoonup L_1{}^c = \Sigma^* L_1$ es regular
- ▶ $L_1 \cap L_2$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular
- $ightharpoonup L_1^*$ es regular
- $ightharpoonup L_1{}^c = \Sigma^* L_1$ es regular
- ▶ $L_1 \cap L_2$ es regular
- $ightharpoonup L_1 L_2$ es regular

Propiedades de los lenguajes regulares

Sean L_1 y L_2 lenguajes regulares, L_1 definido sobre el alfabeto Σ .

- $ightharpoonup L_1 \cup L_2$ es regular
- $ightharpoonup L_1L_2$ es regular
- $ightharpoonup L_1^*$ es regular
- $ightharpoonup L_1{}^c = \Sigma^* L_1$ es regular
- ▶ $L_1 \cap L_2$ es regular
- $ightharpoonup L_1 L_2$ es regular
- $ightharpoonup L_1^+$ es regular

Más propiedades de los lenguajes regulares

- ▶ Sean $n \in \mathbb{N}$ y L_1, \ldots, L_n lenguajes regulares.

Más propiedades de los lenguajes regulares

- ▶ Sean $n \in \mathbb{N}$ y L_1, \ldots, L_n lenguajes regulares.

NO vale para todas las uniones infinitas

Más propiedades de los lenguajes regulares

- ▶ Sean $n \in \mathbb{N}$ y L_1, \ldots, L_n lenguajes regulares.

NO vale para todas las uniones infinitas

 $ightharpoonup \bigcap_{i=1}^n L_i$ es regular

Más propiedades de los lenguajes regulares

- ▶ Sean $n \in \mathbb{N}$ y L_1, \ldots, L_n lenguajes regulares.

NO vale para todas las uniones infinitas

 $ightharpoonup \bigcap_{i=1}^n L_i$ es regular

NO vale para todas las intersecciones infinitas

Más propiedades de los lenguajes regulares

- ▶ Sean $n \in \mathbb{N}$ y L_1, \ldots, L_n lenguajes regulares.

NO vale para todas las uniones infinitas

 $ightharpoonup \bigcap_{i=1}^n L_i$ es regular

NO vale para todas las intersecciones infinitas

► Teorema: Todo lenguaje finito es regular.

Lema de Pumping

Lema de Pumping:

Si L es un lenguaje regular definido sobre Σ entonces existe $n \in \mathbb{N}$ tal que

$$\forall \ \alpha \in L$$

$$\left(|\alpha| \geq n \Rightarrow \exists x, y, z \in \Sigma^* \ \left(\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \land \forall \ i \in \mathbb{N}_0 \ (xy^iz \in L)\right)\right)$$

Enunciado (Ejercicio 2 de la Práctica 5 del 1C de 2020)

$$\mathsf{Dado}\ L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

Enunciado (Ejercicio 2 de la Práctica 5 del 1C de 2020)

$$\mathsf{Dado}\ L = \{0^i 1^j \mid i > j \lor i \ \mathsf{es} \ \mathsf{par}\}$$

a) Demostrar que L cumple

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge 2) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

Enunciado (Ejercicio 2 de la Práctica 5 del 1C de 2020)

$$\mathsf{Dado}\ L = \{0^i 1^j \mid i > j \lor i \ \mathsf{es} \ \mathsf{par}\}$$

a) Demostrar que L cumple

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge 2) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

b) Demostrar que L no es regular.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

1. α empieza con cero 0s.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.
- 3. α empieza con al menos dos 0s, y hay 2 casos:

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \leq 2 \land |y| \geq 1 \land \forall \; i \; (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

Valen $\alpha = xyz$,

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

Valen $\alpha = xyz$, $|xy| \leq 2$,

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$

8/36

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha = 1^b$$
 para algún $b \ge 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

Valen
$$\alpha = xyz$$
, $|xy| \le 2$, $|y| \ge 1$ y

$$\forall i (xy^iz = 1^{2i+(b-2)} = 0^01^{2i+(b-2)} \in L)$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

1. α empieza con cero 0s.

$$\alpha=1^b$$
 para algún $b\geq 2$

Sean

$$x = \epsilon \qquad y = 1^2 \qquad z = 1^{b-2}$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$ y

$$\forall i (xy^iz = 1^{2i+(b-2)} = 0^01^{2i+(b-2)} \in L)$$

Obs.: hay más descomposiciones pero una alcanza.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \leq 2 \land |y| \geq 1 \land \forall \; i \; (xy^iz \in L)\right)$$

$$\alpha = 0^1 1^j$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

$$\alpha = 0^1 1^j \implies_{\alpha \in L} j = 0$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

$$\alpha = 0^1 1^j \implies j = 0 \implies \alpha = 0$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

$$\alpha = 0^1 1^j \implies j = 0 \implies \alpha = 0 \implies |\alpha| = 1 < 2$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

2. α empieza con sólo un 0.

$$\alpha = 0^1 1^j \implies j = 0 \implies \alpha = 0 \implies |\alpha| = 1 < 2$$

La implicación vale trivialmente.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un 0.
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.I. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.1. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.1. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

Sean

$$x = \epsilon \qquad y = 0^2 \qquad z = 0^{a-2} 1^b$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.1. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

Sean

$$x = \epsilon \qquad y = 0^2 \qquad z = 0^{a-2} 1^b$$

Valen $\alpha = xyz$,

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.I. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

Sean

$$x = \epsilon \qquad y = 0^2 \qquad z = 0^{a-2} 1^b$$

Valen $\alpha = xyz$, $|xy| \leq 2$,

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.I. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

Sean

$$x = \epsilon \qquad y = 0^2 \qquad z = 0^{a-2} 1^b$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.I. α empieza con al menos dos 0s y la cantidad de 0s es par.

$$\alpha = 0^a 1^b \text{ con } a = 2a', \ a' \ge 1 \text{ y } b \ge 0$$

Sean

$$x = \epsilon \qquad y = 0^2 \qquad z = 0^{a-2} 1^b$$

Valen
$$\alpha = xyz$$
, $|xy| \le 2$, $|y| \ge 1$ y

$$\forall i (xy^iz = 0^{2i}0^{a-2}1^b = 0^{2(i+a'-1)}1^b \in L)$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un θ .
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \land |\alpha| \ge 2\right) \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

3.II. lpha empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$,

14/36

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$, $|xy| \leq 2$,

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$ y

14/36

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$ y

▶ si i = 0, la cantidad de 0s de xy^iz pasa a ser par:

$$xy^{i}z = xz = \epsilon \ 0^{a-1}1^{b} = 0^{(2a'+1)-1}1^{b} = 0^{2a'}1^{b} \in L$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$ y

▶ si i = 0, la cantidad de 0s de xy^iz pasa a ser par:

$$xy^{i}z = xz = \epsilon \ 0^{a-1}1^{b} = 0^{(2a'+1)-1}1^{b} = 0^{2a'}1^{b} \in L$$

▶ si $i \ge 1$ (i = i' + 1 con $i' \ge 0$), sigue habiendo más 0s que 1s:

$$xy^{i}z = \epsilon \ 0^{i} \ 0^{a-1}1^{b} = 0^{a+i-1}1^{b} = 0^{a+i'}1^{b} \in L$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\left(\alpha \in L \wedge |\alpha| \geq 2\right) \Rightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \wedge |xy| \leq 2 \wedge |y| \geq 1 \wedge \forall \; i \; (xy^iz \in L)\right)$$

3.II. α empieza con al menos dos 0s y la cantidad de 0s es impar.

$$\alpha = 0^a 1^b \text{ con } a = 2a' + 1, \ a' \ge 1 \text{ y } a > b$$

Sean

$$x = \epsilon \qquad y = 0 \qquad z = 0^{a-1} 1^b$$

Valen $\alpha = xyz$, $|xy| \le 2$, $|y| \ge 1$ y $\forall i (xy^iz \in L)$:

ightharpoonup si i=0, la cantidad de 0s de xy^iz pasa a ser par:

$$xy^{i}z = xz = \epsilon \ 0^{a-1}1^{b} = 0^{(2a'+1)-1}1^{b} = 0^{2a'}1^{b} \in L$$

▶ si $i \ge 1$ (i = i' + 1 con $i' \ge 0$), sigue habiendo más 0s que 1s:

$$xy^iz = \epsilon \ 0^i \ 0^{a-1}1^b = 0^{a+i-1}1^b = 0^{a+i'}1^b \in L$$

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un θ .
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

$$\alpha \in L$$

- 1. α empieza con cero 0s.
- 2. α empieza con sólo un θ .
- 3. α empieza con al menos dos 0s, y hay 2 casos:
 - I. la cantidad de 0s es par.
 - II. la cantidad de 0s es impar.

Enunciado (Ejercicio 2 de la Práctica 5 del 2C de 2019)

$$\mathsf{Dado}\ L = \{0^i 1^j \mid i > j \lor i \ \mathsf{es} \ \mathsf{par}\}$$

a) Demostrar que L cumple

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge 2) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le 2 \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

b) Demostrar que L no es regular.

► ¿Sirve el Lema de Pumping?

► ¿Sirve el Lema de Pumping?

Lema de Pumping:

Si L es un lenguaje regular entonces existe n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

► ¿Sirve el Lema de Pumping?

Lema de Pumping:

Si L es un lenguaje regular entonces existe n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \ \exists y \ \exists z \ (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i \ (xy^iz \in L)) \right)$$

¡Sobre L seguro que no!

17/36

► ¿Sirve el Lema de Pumping?

Lema de Pumping:

Si L es un lenguaje regular entonces existe n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

ightharpoonup ¡Sobre L seguro que **no**!

En a) demostramos que vale el Lema para n=2.

► ¿Sirve el Lema de Pumping?

Lema de Pumping:

Si L es un lenguaje regular entonces existe n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \ \exists y \ \exists z \ (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i \ (xy^iz \in L)) \right)$$

- ¡Sobre L seguro que no!
 En a) demostramos que vale el Lema para n = 2.
- Es una implicación, no un si y sólo si.

Tenemos

$$L = \{0^i 1^j \mid i > j \vee i \text{ es par}\}$$

Tenemos

$$L = \{0^i 1^j \mid i > j \vee i \text{ es par}\}$$

▶ La intuición es que la "parte" no regular es i > j.

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

La intuición es que la "parte" no regular es i > j.
¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \ \dot{\cup} \ L_2$$

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \ \dot{\cup} \ L_2$$

 $L_1 := \{0^i 1^j \mid i > j \land i \text{ es impar}\}$

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \ \dot{\cup} \ L_2$$

$$L_1 := \{0^i 1^j \mid i > j \land i \text{ es impar}\}$$

$$L_2 := \{0^i 1^j \mid i \text{ es par}\}$$

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \ \dot{\cup} \ L_2$$

$$L_1 := \{0^i 1^j \mid i > j \land i \text{ es impar}\}$$

$$L_2 := \{0^i 1^j \mid i \text{ es par}\}$$

► L_2 es regular: $(00)^*1^*$

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \stackrel{.}{\cup} L_2$$

$$L_1 := \{0^i 1^j \mid i > j \land i \text{ es impar}\}$$

$$L_2 := \{0^i 1^j \mid i \text{ es par}\}$$

- ► L_2 es regular: $(00)^*1^*$
- $ightharpoonup L_1 = L L_2$ (la unión era disjunta)

Tenemos

$$L = \{0^i 1^j \mid i > j \lor i \text{ es par}\}$$

- La intuición es que la "parte" no regular es i>j. ¿Cómo incorporaríamos a un autómata la noción de "cantidad de 0s leídos"?
- Escribimos

$$L = L_1 \ \dot \cup \ L_2$$

$$L_1 := \{0^i 1^j \mid i > j \land i \text{ es impar}\}$$

$$L_2 := \{0^i 1^j \mid i \text{ es par}\}$$

- ▶ L_2 es regular: $(00)^*1^*$
- $ightharpoonup L_1 = L L_2$ (la unión era disjunta)
- ightharpoonup Si L fuera regular, L_1 también lo sería (regulares cerrados por resta)

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

ightharpoonup Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \ \exists y \ \exists z \ (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i \ (xy^iz \in L)) \right)$$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

lacktriangle Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\implies \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

• Sea $\alpha = 0^{2n+1}1^{2n}$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

lacktriangle Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\implies \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

Vale que 2n+1 es impar,

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

lacktriangle Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\implies \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

• Sea $\alpha = 0^{2n+1}1^{2n}$

Vale que 2n + 1 es impar, 2n + 1 > 2n

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

ightharpoonup Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\implies \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

• Sea $\alpha = 0^{2n+1}1^{2n}$

Vale que 2n+1 es impar, $2n+1>2n \Longrightarrow \alpha \in L_1$.

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

lacktriangle Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\implies \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

• Sea $\alpha = 0^{2n+1}1^{2n}$

Vale que 2n+1 es impar, $2n+1>2n \Longrightarrow \alpha \in L_1$.

También vale $|\alpha| \geq n$.

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

lacktriangle Si L_1 fuera regular, por el Lema de Pumping existiría n tal que

$$\forall \alpha \left((\alpha \in L \land |\alpha| \ge n) \right.$$

$$\Longrightarrow \exists x \exists y \exists z (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall i (xy^i z \in L)) \right)$$

- Sea $\alpha = 0^{2n+1}1^{2n}$
 - Vale que 2n+1 es impar, $2n+1>2n \Longrightarrow \alpha \in L_1$.
 - También vale $|\alpha| \geq n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L))$$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

- ▶ Sea $\alpha = 0^{2n+1}1^{2n} \in L_1$, vale $|\alpha| \ge n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L)\right)$$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

- ▶ Sea $\alpha = 0^{2n+1}1^{2n} \in L_1$, vale $|\alpha| \ge n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L)\right)$$

▶ Como $|xy| \le n$ y $|y| \ge 1$, x sólo puede tener 0s e $y = 0^m$ con $m \ge 1$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

- ▶ Sea $\alpha = 0^{2n+1}1^{2n} \in L_1$, vale $|\alpha| \ge n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L)\right)$$

- $lackbox{\ }$ Como $|xy| \leq n$ y $|y| \geq 1$, x sólo puede tener 0s e $y = 0^m$ con $m \geq 1$
- ▶ Si i = 0, $xy^iz = xz$ es como α pero con al menos un 0 menos:

$$xz = 0^{|x|} 0^{2n+1-|x|-m} 1^{2n} = 0^{2n+1-m} 1^{2n}$$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

- ▶ Sea $\alpha = 0^{2n+1}1^{2n} \in L_1$, vale $|\alpha| \ge n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L)\right)$$

- $lackbox{\ }$ Como $|xy| \leq n$ y $|y| \geq 1$, x sólo puede tener 0s e $y = 0^m$ con $m \geq 1$
- ▶ Si i = 0, $xy^iz = xz$ es como α pero con al menos un 0 menos:

$$xz = 0^{|x|} 0^{2n+1-|x|-m} 1^{2n} = 0^{2n+1-m} 1^{2n}$$

ightharpoonup Como $m \ge 1$, $|xz|_0 = 2n + 1 - m \le 2n = |xz|_1 \Rightarrow xz \notin L_1$

Mostramos que $L_1 = \{0^i 1^j \mid i > j \land i \text{ es impar}\}$ no es regular:

- ▶ Sea $\alpha = 0^{2n+1}1^{2n} \in L_1$, vale $|\alpha| \ge n$.
- Entonces

$$\exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L)\right)$$

- $lackbox{\ }$ Como $|xy| \leq n$ y $|y| \geq 1$, x sólo puede tener 0s e $y = 0^m$ con $m \geq 1$
- ▶ Si i = 0, $xy^iz = xz$ es como α pero con al menos un 0 menos:

$$xz = 0^{|x|} 0^{2n+1-|x|-m} 1^{2n} = 0^{2n+1-m} 1^{2n}$$

- ▶ Como $m \ge 1$, $|xz|_0 = 2n + 1 m \le 2n = |xz|_1 \Rightarrow xz \notin L_1$
- ▶ Se concluye que L_1 no es regular y por tanto L tampoco.

Enunciado (Ejercicio 1)o) de la Práctica 5 del 1C de 2020)

Sea
$$\Sigma = \{a, b, c\}.$$

Determinar si el lenguaje

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

definido sobre el alfabeto Σ es regular o no.

Si es regular, dar un AF o una ER que lo defina. Si no, demostrarlo.

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

La unión es disjunta.

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

- La unión es disjunta.
- $\{c^{3p} \mid p \ge 0\}$ es claramente regular: $(ccc)^*$

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

- La unión es disjunta.
- $\{c^{3p} \mid p \ge 0\}$ es claramente regular: $(ccc)^*$
- ▶ La intuición es que $\{a^ib^j \mid i, j \ge 0 \land i \ne j\}$ no es regular.

Si tenemos un autómata, cuando empiezan las b, ¿cómo sabemos cuántas a leímos?

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

- La unión es disjunta.
- $\{c^{3p} \mid p \ge 0\}$ es claramente regular: $(ccc)^*$
- ▶ La intuición es que $\{a^ib^j \mid i, j \ge 0 \land i \ne j\}$ no es regular.

Si tenemos un autómata, cuando empiezan las $b,\, {\it i}$ cómo sabemos cuántas a leímos?

► Si L fuera regular,

$$L - \{c^{3p} \mid p \ge 0\} = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

sería regular por ser resta de lenguajes regulares.

$$L = \{a^i b^j \mid i, j \ge 0 \land i \ne j\} \cup \{c^{3p} \mid p \ge 0\}$$

- La unión es disjunta.
- ▶ $\{c^{3p} \mid p \ge 0\}$ es claramente regular: $(ccc)^*$
- ▶ La intuición es que $\{a^ib^j \mid i, j \ge 0 \land i \ne j\}$ no es regular.

Si tenemos un autómata, cuando empiezan las b, ¿cómo sabemos cuántas a leímos?

► Si L fuera regular,

$$L - \{c^{3p} \mid p \ge 0\} = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

sería regular por ser resta de lenguajes regulares.

Veamos que no es así mediante 2 soluciones distintas.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

Quiero ver que no existe n tal que

$$\forall \alpha \in L$$

$$|\alpha| \ge n \Rightarrow \exists x \ \exists y \ \exists z \ (\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L))$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

Quiero ver que no existe n tal que

$$\forall \ \alpha \in L$$
$$|\alpha| \ge n \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

O sea, quiero ver que para todo n

$$\exists \alpha \in L /$$

$$|\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z \notin L \right) \right)$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

Quiero ver que no existe n tal que

$$\forall \ \alpha \in L$$
$$|\alpha| \ge n \Rightarrow \exists x \ \exists y \ \exists z \ \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \ i \ (xy^iz \in L)\right)$$

O sea, quiero ver que para todo n

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

Es muy importante no equivocarse al negar la fórmula.

Solución 1: Intento 1

Sea n un natural cualquiera. Quiero ver que

$$\exists \ \alpha \in L \ /$$
$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

 Aclaración: el procedimiento que sigue no es válido como procedimiento general.

Solución 1: Intento 1

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists i (xy^i z \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).

Solución 1: Intento 1

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists i (xy^i z = a^l b^l) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists i (xy^i z = a^l b^l) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- $ightharpoonup \alpha \in L$ significa $\alpha = a^i b^j$, $i \neq j$.

Sea n un natural cualquiera. Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- lacktriangledown $lpha \in L$ significa $lpha = a^i b^j, \ i \neq j.$ Tomo $lpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ► Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j. Si los primeros n caracteres son a, no tengo que separar en casos para analizar todas las posibles descomposiciones válidas:

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- ▶ Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sean
$$n_0:=|xy|\leq n$$
 y $m:=|y|\geq 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^j$$

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- ▶ Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sean
$$n_0:=|xy|\le n$$
 y $m:=|y|\ge 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^j=a^{n_0-m}a^{mi}a^{n-n_0}b^j$$

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sean
$$n_0:=|xy|\leq n$$
 y $m:=|y|\geq 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^j=a^{n_0-m}a^{mi}a^{n-n_0}b^j$$

$$=a^{n-m}a^{im}b^j$$

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Si los primeros n caracteres son a, no tengo que separar en casos para analizar todas las posibles descomposiciones válidas:

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$
$$xy^i z = a^{n_0 - m} (a^m)^i a^{n - n_0} b^j = a^{n_0 - m} a^{mi} a^{n - n_0} b^j$$
$$= a^{n - m} a^{im} b^j$$

lackbox O sea que no depende de qué subcadenas sean x e y, sólo depende de la longitud de y.

6 de mayo de 2020

$$\exists \alpha \in L /$$

$$|\alpha| \geq n \land \forall \ x,y,z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \neq n$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^j$$

$$\exists \alpha \in L /$$

$$|\alpha| \geq n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^iz = a^{n-m}a^{im}b^{n-m}b^{j-(n-m)}$$

Sea n un natural cualquiera. Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x,y,z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

ightharpoonup m = n: $\exists i_n / i_n \ n = j \iff n \mid j$

$$\exists \alpha \in L /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

- $m = n-1: \exists i_{n-1} / i_{n-1} (n-1) = j-1 \iff n-1 | j-1$
- **.**...

$$\exists \alpha \in L /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

- $m = n-1: \exists i_{n-1} / i_{n-1} (n-1) = j-1 \iff n-1 | j-1$
- **.**...

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

- ▶ m = n 1: $\exists i_{n-1} / i_{n-1} (n-1) = j 1 \iff n 1 | j 1$
- **...**
- Para cualquier n existe j así? ¿Quién es?

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L /$$

$$|\alpha| \geq n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- Aclaración: procedimiento no válido como procedimiento general.
- ▶ Tomo $\alpha = a^n b^j$ con $j \ge n-1$ y ahora vamos a ver quién es j.

Sean
$$n_0 := |xy| \le n$$
 y $m := |y| \ge 1$

$$xy^i z = a^{n-m} a^{im} b^{n-m} b^{j-(n-m)}$$

- ▶ m = n 1: $\exists i_{n-1} / i_{n-1} (n-1) = j 1 \iff n 1 | j 1$
- **...**
- Para cualquier n existe j así? ¿Quién es? Ni idea.

Sea n un natural cualquiera. Quiero ver que

$$\exists \ \alpha \in L \ / \\ |\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

Aclaración: el procedimiento que sigue no es válido como procedimiento general.

$$\exists \ \alpha \in L \ / \\ |\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).

Sea n un natural cualquiera. Quiero ver que

$$\exists \ \alpha \in L \ / \\ |\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).
- $ightharpoonup \alpha \in L$ significa $\alpha = a^i b^j$, $i \neq j$.

Sea n un natural cualquiera. Quiero ver que

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists i (xy^i z \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).
- $\alpha \in L$ significa $\alpha = a^i b^j$, $i \neq j$.

 O sea.

$$\exists \ \alpha \in L \ / \\ |\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).
- $\alpha \in L$ significa $\alpha = a^i b^j$, $i \neq j$.

 O sea.

$$\exists \ \alpha \in L \ / \\ |\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- Aclaración: el procedimiento que sigue no es válido como procedimiento general.
- Fijo que $xy^iz \notin L$ signifique $xy^iz = a^lb^l$ para algún l (no fijo).
- $ightharpoonup lpha \in L ext{ significa } lpha = a^i b^j, \ i
 eq j.$
 - O sea,

 - \triangleright o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- \le i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.

Quiero ver que

$$\exists \alpha \in L /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Quiero ver que

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right)$$

- ▶ Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- \le i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ► Tomo $\alpha = a^n b^{\dots}$. Si los primeros n caracteres son a, no tengo que separar en casos para analizar todas las posibles descomposiciones válidas:

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- \le i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Sean
$$n_0 := |xy| \le n \text{ y } m := |y| \ge 1$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x,y,z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- < i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Sean
$$n_0:=|xy|\leq n$$
 y $m:=|y|\geq 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^{\dots}$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x,y,z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- \le i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Sean
$$n_0:=|xy|\le n$$
 y $m:=|y|\ge 1$
$$xy^iz=a^{n_0-m}\ (a^m)^i\ a^{n-n_0}b^{\dots}$$

$$=a^{n_0-m}a^{mi}a^{n-n_0}b^{\dots}$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ x,y,z \ \left((\alpha = xyz \land |xy| \leq n \land |y| \geq 1 \right) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- \le i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Sean
$$n_0:=|xy|\le n$$
 y $m:=|y|\ge 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^{\dots}$$

$$=a^{n_0-m}a^{mi}a^{n-n_0}b^{\dots}$$

$$=a^{n+(i-1)m}b^{\dots}$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

- ► Tengo $\alpha = a^i b^{i-k^-}$ con $0 < k^- < i$ o $\alpha = a^i b^{i+k^+}$ con $0 < k^+$.
- ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Si los primeros n caracteres son a, no tengo que separar en casos para analizar todas las posibles descomposiciones válidas:

Sean
$$n_0:=|xy|\le n$$
 y $m:=|y|\ge 1$
$$xy^iz=a^{n_0-m}\;(a^m)^i\;a^{n-n_0}b^{\dots}$$

$$=a^{n_0-m}a^{mi}a^{n-n_0}b^{\dots}$$

$$=a^{n+(i-1)m}b^{\dots}$$

ightharpoonup O sea que no depende de qué subcadenas sean x e y, sólo depende de la longitud de y. 4 D > 4 A > 4 B > 4 B >

Lema de Pumping y propiedades de lenguajes regulares

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists \ i \ (xy^iz = a^lb^l) \right)$$

▶ Tomo $\alpha = a^n b^{\dots}$.

Si los primeros n caracteres son a, no tengo que separar en casos para analizar todas las posibles descomposiciones válidas:

Sea
$$m := |y|$$
, $1 \le m \le n$

$$xy^i z = a^{n+(i-1)m}b^{\dots}$$

 $lackbox{ O sea que no depende de qué subcadenas sean } x \ {\rm e} \ y, \ {\rm s\'olo} \ {\rm depende} \ {\rm de} \ {\rm langitud} \ {\rm de} \ y.$

Quiero ver que

$$\exists \alpha \in L / \\ |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i \left(xy^i z = a^l b^l \right)$$

ightharpoonup Tomo $\alpha = a^n b^{\dots}$.

Sea
$$m := |y|$$
, $1 \le m \le n$

$$xy^iz = a^{n+(i-1)m}b^{\dots}$$

- O sea que no depende de qué subcadenas sean x e y, sólo depende de la longitud de y.
- ► Entonces, quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \geq n \land \forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \\ \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \exists \ i_m \ / \ a^{n+(i_m-1)m}b^{n-k^-} = a^lb^l$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo
$$\alpha = a^n b^{n-k^-}$$
 con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ / \ a^{n + (i_m - 1)m} b^{n - k^-} = a^l b^l$$

$$\equiv \ \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ / \ n + (i_m - 1) \ m = n - k^-$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo
$$\alpha = a^n b^{n-k^-}$$
 con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \exists \ i_m \ / \ a^{n+(i_m-1)m}b^{n-k^-} = a^lb^l$$

$$\equiv \ \forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \exists \ i_m \ / \ n+(i_m-1) \ m=n-k^-$$

$$\equiv \ \forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \exists \ i_m \ / \ (i_m-1) \ m=-k^-$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo
$$\alpha = a^n b^{n-k^-}$$
 con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall m \in \mathbb{N}, 1 \leq m \leq n, \exists i_m / (i_m - 1) m = -k^-$$

29 / 36

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall m \in \mathbb{N}, 1 \leq m \leq n, \exists i_m / (i_m - 1) m = -k^-$$

► Si hay más *a*s que *b*s y quiero bombear y que queden en igual cantidad, tengo que **sacar** *a*s al bombear:

$$i_m = 0$$

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall m \in \mathbb{N}, 1 \leq m \leq n, \exists i_m / (i_m - 1) m = -k^-$$

Si hay más as que bs y quiero bombear y que queden en igual cantidad, tengo que **sacar** as al bombear:

$$i_{m} = 0$$

Esto también surge de $(i_m - 1)$ $m = -k^-$ sabiendo que 0 < m y $0 < k^-$.

29 / 36

4 D > 4 B > 4 B > 4 B >

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Tengo
$$\alpha = a^n b^{n-k^-}$$
 con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo
$$\alpha = a^n b^{n-k^-}$$
 con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall\ m\in\mathbb{N}\ , 1\leq m\leq n,\ m=k^-$$

29 / 36

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall\ m\in\mathbb{N}\ , 1\leq m\leq n,\ m=k^-$$

Esto sólo vale si n=1, pero n era un natural cualquiera.

29 / 36

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\ldots} = a^lb^l)$$

Tengo $\alpha = a^n b^{n-k^-}$ con $0 < k^- \le n$ o $\alpha = a^n b^{n+k^+}$ con $0 < k^+$.

Si tomo $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, quiero ver que

$$\forall\ m\in\mathbb{N}\ , 1\leq m\leq n,\ m=k^-$$

Esto sólo vale si n=1, pero n era un natural cualquiera.

Tomar $\alpha = a^n b^{n-k^-}$ con k^- fijo, $0 < k^- \le n$, no sirve.

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{...} = a^lb^l)$$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

Quiero ver que

$$\exists \ \alpha \in L \ /$$

$$|\alpha| \ge n \land \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ (a^{n+(i_m-1)m}b^{\dots} = a^lb^l)$$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / a^{n+(i_m-1)m} b^{n+k^+} = a^l b^l$$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall \ m \in \mathbb{N} \ , 1 \leq m \leq n, \exists \ i_m \ / \ a^{n+(i_m-1)m}b^{n+k^+} = a^lb^l$$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

Quiero ver que

$$\forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ / \ a^{n + (i_m - 1)m} b^{n + k^+} = a^l b^l$$

$$\equiv \ \forall \ m \in \mathbb{N} \ , 1 \le m \le n, \exists \ i_m \ / \ n + (i_m - 1) \ m = n + k^+$$

30 / 36

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N} , 1 \le m \le n, \exists i_m / a^{n+(i_m-1)m} b^{n+k^+} = a^l b^l$$

$$\equiv \forall m \in \mathbb{N} , 1 \le m \le n, \exists i_m / n + (i_m - 1) m = n + k^+$$

$$\equiv \forall m \in \mathbb{N} , 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

Tomo
$$\alpha = a^n b^{n+k^+}$$
 con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

Quiero ver que

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

 $ightharpoonup m = 1: \exists i_1 / (i_1 - 1) \ 1 = k^+ \iff 1 \mid k^+$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

- $m = 2: \exists i_2 / (i_2 1) \ 2 = k^+ \iff 2 \mid k^+$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

- $m = 2: \exists i_2 / (i_2 1) \ 2 = k^+ \iff 2 \mid k^+$
- **.**..

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

- $m = 2: \exists i_2 / (i_2 1) \ 2 = k^+ \iff 2 \mid k^+$
- **.**..
- ightharpoonup m = n: $\exists i_n / (i_n 1) \ n = k^+ \iff n \mid k^+$

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

- $m = 2: \exists i_2 / (i_2 1) \ 2 = k^+ \iff 2 \mid k^+$
- **.**..
- ightharpoonup m = n: $\exists i_n / (i_n 1) \ n = k^+ \iff n \mid k^+$
- ► Alcanza con un k⁺ que cumpla todo eso simultáneamente.

Tomo $\alpha = a^n b^{n+k^+}$ con k^+ fijo, $0 < k^+$,

$$\forall m \in \mathbb{N}, 1 \le m \le n, \exists i_m / (i_m - 1) m = k^+$$

- $m = 2: \exists i_2 / (i_2 1) \ 2 = k^+ \iff 2 \mid k^+$
- **.**...
- \blacktriangleright m = n: $\exists i_n / (i_n 1) \ n = k^+ \iff n \mid k^+$
- ▶ Alcanza con un k⁺ que cumpla todo eso simultáneamente.
- ightharpoonup Elijo $k^+ = n!$

 $\blacktriangleright \ \mathsf{Tengo} \ L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$

- ▶ Tengo $L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$
- Quiero ver que para todo n

$$\exists \ \alpha \in L \ /$$
$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- ▶ Tengo $L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$
- ightharpoonup Quiero ver que para todo n

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1) \Rightarrow \exists i (xy^i z \notin L) \right)$$

ightharpoonup Tomo $\alpha = a^n b^{n+n!}$

- ▶ Tengo $L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$
- Quiero ver que para todo n

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i (xy^i z \notin L) \right)$$

- ightharpoonup Tomo $\alpha = a^n b^{n+n!}$
- $ightharpoonup |\alpha| = n+n+n! \ge n$ y $\alpha \in L$ dado que $n \ne n+n!$ cualquiera sea n.

- ▶ Tengo $L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$
- ightharpoonup Quiero ver que para todo n

$$\exists \ \alpha \in L \ /$$
$$|\alpha| \ge n \land \forall \ x, y, z \ \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists \ i \ (xy^iz \notin L) \right)$$

- ightharpoonup Tomo $\alpha = a^n b^{n+n!}$
- $ightharpoonup |\alpha| = n+n+n! \ge n$ y $\alpha \in L$ dado que $n \ne n+n!$ cualquiera sea n.
- lacktriangle Para cualquier descomposición válida x,y,z con m:=|y| tenemos que

$$xy^i z = a^{n+(i-1)m} b^{n+n!}$$

- ▶ Tengo $L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$
- Quiero ver que para todo n

$$\exists \alpha \in L / |\alpha| \ge n \land \forall x, y, z \left((\alpha = xyz \land |xy| \le n \land |y| \ge 1 \right) \Rightarrow \exists i (xy^i z \notin L) \right)$$

- ightharpoonup Tomo $\alpha = a^n b^{n+n!}$
- $ightharpoonup |\alpha| = n+n+n! \ge n$ y $\alpha \in L$ dado que $n \ne n+n!$ cualquiera sea n.
- lacktriangle Para cualquier descomposición válida x,y,z con m:=|y| tenemos que

$$xy^i z = a^{n+(i-1)m} b^{n+n!}$$

Siempre existe $i_m = \frac{n!}{m} + 1$ tal que

$$xy^iz = a^{n+(i-1)m}b^{n+n!} = a^{n+(\frac{n!}{m}+1-1)m}b^{n+n!} = a^{n+n!}b^{n+n!} \notin L$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

ightharpoonup L' es regular si y sólo si L'^c es regular.

32 / 36

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.

32 / 36

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.
- lacktriangle Supongo que $L^{\prime c}$ es regular. Por el Lema de Pumping, existe n tal que

$$\forall \ \alpha \in L'^c$$

$$\left(|\alpha| \ge n \Longrightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L'^c) \right) \right)$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.
- lacksquare Supongo que $L^{\prime c}$ es regular. Por el Lema de Pumping, existe n tal que

$$\forall \ \alpha \in L'^c$$

$$\left(|\alpha| \ge n \Longrightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L'^c) \right) \right)$$

▶ Tomo $\alpha = a^n b^n$:

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ▶ L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.
- Supongo que L'^c es regular. Por el Lema de Pumping, existe n tal que $\forall \ \alpha \in L'^c$

$$\left(|\alpha| \ge n \Longrightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L'^c) \right) \right)$$

 ${\color{red}\blacktriangleright} \ \, {\rm Tomo} \,\, \alpha = a^n b^n \colon |\alpha| = 2n \geq n \,\, {\rm y} \,\, \alpha \in L'^c \,\, {\rm porque} \,\, \alpha \not\in L'.$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.
- Supongo que L'^c es regular. Por el Lema de Pumping, existe n tal que $\forall \ \alpha \in L'^c$

$$\left(|\alpha| \ge n \Longrightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L'^c) \right) \right)$$

- ▶ Tomo $\alpha = a^n b^n$: $|\alpha| = 2n \ge n$ y $\alpha \in L'^c$ porque $\alpha \notin L'$.
- lacktriangle Para cualquier descomposición válida x,y,z con m:=|y| tenemos que

$$xy^{i_m}z = a^{n+(i_m-1)m}b^n$$

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular.
- ightharpoonup Veamos que L'^c no es regular por absurdo.
- Supongo que L'^c es regular. Por el Lema de Pumping, existe n tal que $\forall \ \alpha \in L'^c$

$$\left(|\alpha| \ge n \Longrightarrow \exists x \; \exists y \; \exists z \; \left(\alpha = xyz \land |xy| \le n \land |y| \ge 1 \land \forall \; i \; (xy^iz \in L'^c) \right) \right)$$

- ▶ Tomo $\alpha = a^n b^n$: $|\alpha| = 2n \ge n$ y $\alpha \in L'^c$ porque $\alpha \notin L'$.
- $lackbox{ Para cualquier descomposición válida } x,y,z \ {
 m con} \ m:=|y| \ {
 m tenemos} \ {
 m que}$

$$xy^{i_m}z = a^{n+(i_m-1)m}b^n$$

 $lackbox{ Para que } xy^{i_m}z\in L'$, es decir, que $n+(i_m-1)m\neq n$, tomo $i_m=0$.

Intento de Solución

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

Intento de Solución

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.

33 / 36

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ▶ Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$,

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ▶ Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

Demostración: Supongo que L es regular.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

Demostración: Supongo que L es regular.

Escribo L como $L=(L-LLC)\cup LLC$, que es una unión disjunta.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

Demostración: Supongo que L es regular.

Escribo L como $L=(L-LLC)\cup LLC$, que es una unión disjunta.

▶ Si L - LLC es regular entonces LLC = L - (L - LLC) es regular por ser resta de lenguajes regulares. Abs.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

Demostración: Supongo que L es regular.

Escribo L como $L=(L-LLC)\cup LLC$, que es una unión disjunta.

- ▶ Si L-LLC es regular entonces LLC = L (L-LLC) es regular por ser resta de lenguajes regulares. Abs.
- ightharpoonup Si L-LLC es libre de contexto, entonces L es libre de contexto por ser unión de lenguajes libres de contexto. Abs.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

 $\underline{\mathsf{Demostraci\'on:}}\ \mathsf{Supongo}\ \mathsf{que}\ L\ \mathsf{es}\ \mathsf{regular}.$

Escribo L como $L=(L-LLC)\cup LLC$, que es una unión disjunta.

- ▶ Si L-LLC es regular entonces LLC = L (L-LLC) es regular por ser resta de lenguajes regulares. Abs.
- Si L LLC es libre de contexto, entonces L es libre de contexto por ser unión de lenguajes libres de contexto. Abs.

Se concluye que L es no regular.

$$L' = \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- ightharpoonup L' es regular si y sólo si L'^c es regular. Veamos que L'^c no es regular.
- ► Teniendo en cuenta que L'^c incluye a $\{a^ib^i \mid i \geq 0\}$, invoco la siguiente propiedad (¡que no es válida!):

Si L contiene a un lenguaje LLC no regular y además libre de contexto entonces L no es regular.

 $\underline{\mathsf{Demostraci\'on:}}\ \mathsf{Supongo}\ \mathsf{que}\ L\ \mathsf{es}\ \mathsf{regular}.$

Escribo L como $L=(L-LLC)\cup LLC$, que es una unión disjunta.

- ▶ Si L-LLC es regular entonces LLC = L (L-LLC) es regular por ser resta de lenguajes regulares. Abs.
- Si L − LLC es libre de contexto, entonces L es libre de contexto por ser unión de lenguajes libres de contexto. Abs. ¡No es absurdo!

Se concluye que L es no regular.

Lenguajes regulares \subsetneq Lenguajes libres de contexto

Lenguajes regulares ⊊ Lenguajes libres de contexto

Los lenguajes regulares son lenguajes libres de contexto.

Lenguajes regulares ⊊ Lenguajes libres de contexto

- Los lenguajes regulares son lenguajes libres de contexto.
- El intento de demostración es incorrecto porque un lenguaje libre de contexto puede ser regular.

Lenguajes regulares ⊊ Lenguajes libres de contexto

- Los lenguajes regulares son lenguajes libres de contexto.
- El intento de demostración es incorrecto porque un lenguaje libre de contexto puede ser regular.
- ▶ Un contraejemplo concreto para la propiedad falsa es el lenguaje

$$L = \{a^ib^i \mid i \geq 0\} \cup \{a^ib^j \mid i,j \geq 0 \land i \neq j\}$$

Lenguajes regulares ⊊ Lenguajes libres de contexto

- Los lenguajes regulares son lenguajes libres de contexto.
- El intento de demostración es incorrecto porque un lenguaje libre de contexto puede ser regular.
- ▶ Un contraejemplo concreto para la propiedad falsa es el lenguaje

$$L = \{a^i b^i \mid i \ge 0\} \cup \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

Es el generado por la expresión regular a^*b^* .

Lenguajes regulares ⊊ Lenguajes libres de contexto

- Los lenguajes regulares son lenguajes libres de contexto.
- El intento de demostración es incorrecto porque un lenguaje libre de contexto puede ser regular.
- ▶ Un contraejemplo concreto para la propiedad falsa es el lenguaje

$$L = \{a^i b^i \mid i \ge 0\} \cup \{a^i b^j \mid i, j \ge 0 \land i \ne j\}$$

- **E**s el generado por la expresión regular a^*b^* .
- ▶ Contiene al lenguaje no regular y libre de contexto $\{a^ib^i \mid i \geq 0\}$.

► Fijar el Lema de Pumping

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - ⇒ no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- ightharpoonup Verificar que el α propuesto para Pumping cumple las hipótesis.

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - ⇒ no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- lacktriangle Verificar que el lpha propuesto para Pumping cumple las hipótesis.
- A veces hay que darle ciertas vueltas de tuercas

- ▶ Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - ⇒ no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- ightharpoonup Verificar que el α propuesto para Pumping cumple las hipótesis.
- A veces hay que darle ciertas vueltas de tuercas
 - Usar propiedades de lenguajes regulares (operaciones como la resta).

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - ⇒ no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- ightharpoonup Verificar que el α propuesto para Pumping cumple las hipótesis.
- A veces hay que darle ciertas vueltas de tuercas
 - Usar propiedades de lenguajes regulares (operaciones como la resta).
- Entender el análisis por casos.

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- ightharpoonup Verificar que el α propuesto para Pumping cumple las hipótesis.
- A veces hay que darle ciertas vueltas de tuercas
 - Usar propiedades de lenguajes regulares (operaciones como la resta).
- ► Entender el análisis por casos.
 - ightharpoonup para toda α : **todas** las posibilidades (cantidad par e impar de 0s, etc.)

- Fijar el Lema de Pumping
 - existe alguna descomposición, no todas cumplen
 - es una implicación, no un si y sólo si
 - ⇒ no siempre se puede probar usando el Lema de Pumping que un lenguaje no es regular
- ightharpoonup Verificar que el α propuesto para Pumping cumple las hipótesis.
- A veces hay que darle ciertas vueltas de tuercas
 - Usar propiedades de lenguajes regulares (operaciones como la resta).
- ► Entender el análisis por casos.
 - ightharpoonup para toda lpha: todas las posibilidades (cantidad par e impar de 0s, etc.)
 - ver que existe una descomposición válida

Para compensarles, un ejercicio de parcial :D

Ejercicio del 8 de mayo de 2017

Sea

$$L = \{a^n b^m c^j d^k \mid n \le m \le 3 \land 2 \le j \le k\}$$

Demostrar que L no es regular.