Operating Systems: Principles and Practice

Rodrigo Gonzalez

Main Points (for today)

- Operating system definition
 - Software to manage a computer's resources for its users and applications
- OS challenges
 - Reliability, security, responsiveness, portability, ...
- OS history
 - How are OS X, Windows 8, and Linux related?

What is an operating system?

 Software to manage a computer's resources for its users and applications

Graphics Processor

Network

Disk

Operating System Roles

• Referee:

- Resource allocation among users, applications
- Isolation of different users, applications from each other
- Communication between users, applications

Illusionist

- Each application appears to have the entire machine to itself
- Infinite number of processors, (near) infinite amount of memory, reliable storage, reliable network transport

Glue

- A set of common services that facilitate sharing among applications
- Libraries, user interface widgets, ...

Example: File Systems

Referee

- Prevent users from accessing each other's files without permission
- Even after a file is deleting and its space re-used

Illusionist

- Files can grow (nearly) arbitrarily large
- Files persist even when the machine crashes in the middle of a save

Glue

Named directories, printf, ...

Operating System as Referee

 Resource allocation. The operating system must keep all simultaneous activities separate, allocating resources to each as appropriate

```
while (true) {
   ;
}
```

- **Isolation.** An error in one application should not disrupt other applications, or even the operating system itself.
- Communication. The flip side of isolation is the need for communication between different applications and different users

•

Operating System as Illusionist

 A second important role of an operating system is to mask the restrictions inherent in computer hardware

 Virtualization provides an application with the illusion of resources that are not physically present

- Illusion of a nearly inf

 OS masks network fair reliable service.

Guest Operating System

Operating System

Operating System

APP

APP

Hardware

Operating System as Glue

- OS provides a set of common, standard services to applications to simplify and standardize their design.
- The operating system hides the specifics of how the network and disk devices work, providing a simpler abstraction based on receiving/sending reliable streams of bytes and reading/writing named files
- For applications to share files, they must be stored in a standard format
- It provide a standard way for applications to pass messages and to share memory.

Example: web service

- How does the operating system enable multiple applications to communicate
- with each other?
- How does the operating system enable applications to do multiple things at once?
- How does the operating system synchronize application access to shared data?
- Does the operating system be re-written for every new piece of hardware?

OS History

Computer Performance Over Time

	1981	1997	2014	Factor (2014/1981
Uniprocessor speed (MIPS)	1	200	2500	2.5K
CPUs per computer	1	1	10+	10+
Processor MIPS/\$	\$100K	\$25	\$0.20	500K
DRAM Capacity (MiB)/\$	0.002	2	1K	500K
Disk Capacity (GiB)/\$	0.003	7	25K	10M
Home Internet	300 bps	256 Kbps	20 Mbps	100K
Machine room network	10 Mbps (shared)	100 Mbps (switched)	10 Gbps (switched)	1000
Ratio of users to computers	100:1	1:1	1:several	100+

Early Operating Systems: Computers Very Expensive

- One application at a time
 - Had complete control of hardware
 - OS was runtime library
 - Users would stand in line to use the computer
- Batch systems
 - Keep CPU busy by having a queue of jobs
 - OS would load next job while current one runs
 - Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systems: Computers and People Expensive

- Multiple users on computer at same time
 - Multiprogramming: run multiple programs at same time
 - Interactive performance: try to complete everyone's tasks quickly
 - As computers became cheaper, more important to optimize for user time, not computer time

Today's Operating Systems: Computers Cheap

- Smartphones
- Embedded systems
- Laptops
- Tablets
- Virtual machines
- Data center servers

Tomorrow's Operating Systems

- Giant-scale data centers
- Increasing numbers of processors per computer
- Increasing numbers of computers per user
- Very large scale storage

Textbook

Thomas Anderson and Mike Dahlin Operating Systems Principles & Practice Volume I: Kernels and Processes, Second Edition. Chapter 1.