

### Классификация как процесс

- $\hfill\Box$   $\hfill$   $\hfill$ 
  - Каждый кортеж множества принадлежит некоторому предопределенному классу, значение которого фиксировано в классификационном атрибуте
  - Множество кортежей для построения модели обучающая выборка (training set).
  - Модель может быть представлена в виде классификационных правил, деревьев решений или математическими формулами
- □ Использование модели для классификации будущих или неизвестных
  - □ Оценка точности модели

    - Сравнение значения классификационного агрибута у кортежей тестовой выборки о результатом классификации этих кортежей, полученного с помощью модели. Точность модели доля (%) кортежей, корректно классифицированных с помощью модели.
  - Если полученная точность приемлема, использовать модель для классификации кортежей, значение атрибута классификации которых неизвестно.

Технологии анализа данных © М.Л. Цымблер

### Классификация Обучающая выборка ФИО Доход Возраст Выдать кредит <30 HET Иванов Низкий Алгоритм Петров Средний 30..40 ДА классификации Сидоров Высокий <30 ДА Егоров Средний >40 ДА 30..40 Бендер ДΑ Низкий Балаганов Средний HET **ЕСЛИ** Доход=Высокий <u>ИЛИ</u> Возраст>30 <u>ТО</u> ВыдатьКредит=ДА Модельный классификатор



### Классификация Модельный классификатор **ЕСЛИ** Доход=Высокий <u>ИЛИ</u> Возраст>30 ТО ВыдатьКредит=ДА Новые кортежи Доход Возраст Выдать кредит Выдать кредит Низкий <30 HET Берлиоз Паркер Низкий ДА Методы классификации □ Деревья решений $\square$ Метод k ближайших соседей □ Нейронные сети □ Байесовская классификация □ Генетические алгоритмы □ Нечеткие множества □ ... Оценка методов классификации □ Точность прогноза □ Способность модели корректно предсказать класс □ Скорость и масштабируемость ■ Время построения модели ■ Время использования модели □ Эффективность для сверхбольших баз данных □ Устойчивость □ Обработка шумов и отсутствующих значений □ Интерпретируемость ■ Уровень понимания и знания, предоставляемых моделью

Технологии анализа данных © М.Л. Цымблер

### Деревья решений

- □ Дерево решений дерево, в котором
  - внутренние узлы представляют собой операции проверки значения указанного атрибута
  - ветви представляют собой переходы в соответствии с результатом проверки значения указанного атрибута
  - листья представляют собой метки класса или их диапазоны

Технологии анализа ланных © М.Л. Пымбле

### 

## Деревья решений: пример 80 80 60 6000 10000 Доход Технологии анализа данных © М.Л. Цымблер

| 13         |             |            |       |       |                                |
|------------|-------------|------------|-------|-------|--------------------------------|
| Прогноз    | Температура | Влажность  | Ветер | Игра? | ]                              |
| Солнце     | Жарко       | Высокая    | Нет   | Нет   |                                |
| Солнце     | Жарко       | Высокая    | Да    | Нет   |                                |
| Облачность | Жарко       | Высокая    | Нет   | Да    |                                |
| Дождь      | Умеренно    | Высокая    | Нет   | Да    | Прогноз                        |
| Дождь      | Холодно     | Нормальная | Нет   | Да    |                                |
| Дождь      | Холодно     | Нормальная | Да    | Нет   | Солнце Облачность Дождь        |
| Облачность | Холодно     | Нормальная | Да    | Да    |                                |
| Солнце     | Умеренно    | Высокая    | Нет   | Нет   | Влажность Да Ветер             |
| Солнце     | Холодно     | Нормальная | Нет   | Да    |                                |
| Дождь      | Умеренно    | Нормальная | Нет   | Да    | Высокая Нормальная Сильны Слаб |
| Солнце     | Умеренно    | Нормальная | Да    | Да    | Нет Да Нет Да                  |
| Облачность | Умеренно    | Высокая    | Да    | Да    | Life A                         |
| Облачность | Жарко       | Нормальная | Нет   | Да    |                                |
| Дождь      | Умеренно    | Высокая    | Да    | Нет   |                                |

### Построение дерева решений

14

- □ Построение
  - Поместить все кортежи обучающей выборки в корень дерева.
  - Разбивать множество кортежей рекурсивно на основе отбираемых атрибутов.
- □ Сокращение
  - удалить ветви дерева, которые могут отражать шумы в обучающей выборке и привести к ошибкам при классификации тестовых данных (повышение точности классификации)

Технологии анализа данных © М.Л. Цымблер

### Спецификация условия отбора

15

- □ В зависимости от типа атрибута
  - □ Номинальный
  - Порядковый
  - □ Непрерывный
- В зависимости от степени разбиения
  - Бинарное
  - N-арное

Гехнологии анализа данных © М.Л. Цымблег

## Разбиение по номинальным атрибутам □ N-арное □ Разбиение по всем значениям атрибута СатТуре □ Бинарное □ Разбиение на 2 подмножества (для нахождения оптимального разбиения) СатТуре (Sports, (Family) (Family, (Sports)

| атрибута                     | ие по порядковым<br>м                                       |
|------------------------------|-------------------------------------------------------------|
| 17                           |                                                             |
| □ N-арное                    |                                                             |
| <ul><li>Разбиение</li></ul>  | по всем значениям атрибута Size                             |
| <ul> <li>Бинарное</li> </ul> | Small Medium Large                                          |
| Разбиение                    | на 2 подмножества (для нахождения                           |
| оптимальн                    | ого разбиения)                                              |
| Siz<br>{Small,               | e Size Size Size  (Large) (Medium, (Small) (Small, (Medium) |
| Medium}                      | Large) Large) (Small) Large)                                |
|                              | Технологии анализа данных                                   |

| Разбиение по непрерывным                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------|
| атрибутам                                                                                                               |
| 18                                                                                                                      |
| <ul> <li>☐ Дискретизация для формирования порядкового</li> </ul>                                                        |
| атрибута-категории                                                                                                      |
| <ul> <li>■ Статическая дискретизация – однажды перед</li> </ul>                                                         |
| построением дерева                                                                                                      |
| <ul> <li>□ Динамическая дискретизация – промежутки могут быть<br/>найдены, например, с помощью кластеризации</li> </ul> |
| $\square$ Бинарное разбиение (A <v) (a<math="" or="">\gev)</v)>                                                         |
| <ul> <li>□ рассмотреть все возможные разбиения и взять<br/>наилучшее</li> </ul>                                         |
| □ может увеличить вычислительную сложность                                                                              |
| Технологии анализа данных                                                                                               |



### 



### Определение наилучшего разбиения □ Жадный подход □ Предпочтительнее узлы с однородным распределением □ Мера информационных примесей в узле 0000 Высокая Отсутствие Низкая степень примесей степень примесей примесей 75% 75% 25% 25% 100% 100% 0% 0% 50% 50% Технологии анализа данных Меры инф. примесей □ Information gain (прирост информации) □ Gain ratio (соотношение прироста информации и информации, необходимой для разбиения) □ Gini index (индекс Джини) Алгоритм индуктивного построения дерева решений □ Основной (жадный) алгоритм ■ Дерево строится рекурсивно сверху вниз методом "разделяй и властвуй" ■ Вначале все элементы помещаются в корень дерева Атрибуты – категории (в случае непрерывных предварительно выполняется дискретизация) ■ Разбиение выполняется рекурсивно на основе выбранных атрибутов Атрибуты выбираются с помощью эвристики или статистической меры (например, прирост информации) □ Условия останова разбиения ■ Все элементы данного узла принадлежат одному классу Не осталось атрибутов для последующего разбиения – выполняется "голосование" и определение класса листа по большинству Не осталось элементов для последующего разбиения

### Алгоритм ID3

- □ Выбирается атрибут, дающий наибольший прирост
- $\hfill\Box p_i$  вероятность принадлежности произвольного элемента из множества D классу  $C_i$ ,  $p_i$ = $|C_{i,D}|/|D|$
- □ Ожидаемое количество информации (энтропия), необходимое для классификации элемента из D:  $Info(D) = -\sum_{i=1}^{m} p_{i} \log_{2}(p_{i})$
- $\square$  Информация, необходимая для классификации множества D

 $Gain(A) = Info(D) - Info_A(D)$ 

### Алгоритм ID3

| 26       |         |         |          |                  |                     |                                                                                           |
|----------|---------|---------|----------|------------------|---------------------|-------------------------------------------------------------------------------------------|
| №<br>п/п | Возраст | Доход   | Студент? | Кред.<br>рейтинг | Купит<br>компьютер? | <ul> <li>Классы</li> <li>С1 Купит компьютер = Да</li> </ul>                               |
| 1        | <=30    | Высокий | Нет      | Удовл.           | Нет                 | ■ C2 Купит компьютер = Нет                                                                |
| 2        | <=30    | Высокий | Нет      | Отличный         | Нет                 | □ Info(D) =                                                                               |
| 3        | 3140    | Высокий | Нет      | Удовл.           | Да                  | * ' '                                                                                     |
| 4        | >40     | Средний | Нет      | Удовл.           | Да                  | $-\frac{9}{14}\log_2(\frac{9}{14}) - \frac{5}{14}\log_2(\frac{5}{14}) = 0.940$            |
| 5        | >40     | Низкий  | Да       | Удовл.           | Да                  | 1. 1. 1.                                                                                  |
| 6        | >40     | Низкий  | Да       | Отличный         | Нет                 | $\square$ Info <sub>Bospacm</sub> (D) =                                                   |
| 7        | 3140    | Низкий  | Да       | Отличный         | Да                  | $=\frac{5}{14}\times(-\frac{2}{5}\log_2\frac{2}{5}-\frac{3}{5}\log_2\frac{3}{5})$         |
| 8        | <=30    | Средний | Нет      | Удовл.           | Нет                 | 14 3 3 3 3                                                                                |
| 9        | <=30    | Низкий  | Да       | Удовл.           | Да                  | $+\frac{4}{14} \times (-\frac{4}{4} \log_2 \frac{4}{4} - \frac{0}{4} \log_2 \frac{0}{4})$ |
| 10       | >40     | Средний | Да       | Удовл.           | Да                  |                                                                                           |
| 11       | <=30    | Средний | Да       | Отличный         | Да                  | $+\frac{5}{14} \times (-\frac{3}{5} \log_2 \frac{3}{5} - \frac{2}{5} \log_2 \frac{2}{5})$ |
| 12       | 3140    | Средний | Нет      | Отличный         | Да                  | 11 0 0 0                                                                                  |
| 13       | 3140    | Высокий | Да       | Удовл.           | Да                  | = 0.694  bits.                                                                            |
| 14       | >40     | Средний | Нет      | Отличный         | Нет                 | □ Gain(Возраст)=0.940-0.694                                                               |
|          | •       |         |          | •                |                     | =0.246                                                                                    |

### Алгоритм ID3

| 27       |         |         |          |                  |                     |   |
|----------|---------|---------|----------|------------------|---------------------|---|
| №<br>п/п | Возраст | Доход   | Студент? | Кред.<br>рейтинг | Купит<br>компьютер? |   |
| 1        | <=30    | Высокий | Нет      | Удовл.           | Нет                 | 1 |
| 2        | <=30    | Высокий | Нет      | Отличный         | Нет                 | ١ |
| 3        | 3140    | Высокий | Нет      | Удовл.           | Да                  | 1 |
| 4        | >40     | Средний | Нет      | Удовл.           | Да                  | 1 |
| 5        | >40     | Низкий  | Да       | Удовл.           | Да                  | 1 |
| 6        | >40     | Низкий  | Да       | Отличный         | Нет                 | ĺ |
| 7        | 3140    | Низкий  | Да       | Отличный         | Да                  | ĺ |
| 8        | <=30    | Средний | Нет      | Удовл.           | Нет                 | 1 |
| 9        | <=30    | Низкий  | Да       | Удовл.           | Да                  | ĺ |
| 10       | >40     | Средний | Да       | Удовл.           | Да                  | ĺ |
| 11       | <=30    | Средний | Да       | Отличный         | Да                  | 1 |
| 12       | 3140    | Средний | Нет      | Отличный         | Да                  | ĺ |
| 13       | 3140    | Высокий | Да       | Удовл.           | Да                  | 1 |
| 14       | >40     | Средний | Нет      | Отличный         | Нет                 | 1 |

□ Gain(Bo3pacm)=0.246 □ *Gain(Доход)*=0.029 □ Gain(Студент?)=0.151

□ Gain(КредРейтинг)=0.048

### Алгоритм ID3 Возраст >40 Купит **п/п**1 Средний Не 2 Низкий Отличный Нет 5 Средний Нет Отличный Нет Купит Высокий Низкий Отличный Да

### Алгоритм С4.5

- □ Прирост информации тяготеет к атрибутам с большим количеством значений
- □ C4.5 является последователем ID3 преодолевает данную проблему с помощью нормализации значения прироста
  - $\square$   $GainRatio(A) = Gain(A)/SplitInfo_A(D)$

$$SplitInfo_{A}(D) = -\sum_{j=1}^{v} \frac{|D_{j}|}{|D|} \times \log_{2}(\frac{|D_{j}|}{|D|})$$

$$\blacksquare \Pi p_{1}Mep: SplitInfo_{South}(D) = -\frac{5}{14} \times \log_{2}(\frac{5}{14}) - \frac{4}{14} \times \log_{2}(\frac{4}{14}) - \frac{5}{14} \times \log_{2}(\frac{5}{14}) = 0.926$$

$$\blacksquare \pi_{2} \text{ possibly as a possibly property of the property o$$

- □ Для разбиения выбирается атрибут с макс. значением GainRatio.

### Алгоритм CART

- □ Индекс Джини множества D, элементы которого принадлежат nклассам ( $p_i \!\!=\!\! |C_{i,D}|/|D|$ ): Gini  $(D) = 1 - \sum_{j=1}^{n} p_{j}^2$
- $\ \square \$  Индекс Джини разбиения множества D по атрибуту A применяется для бинарного разбиения дискретных атрибутов и вычисляется как взвешенная сумма информационных примесей каждого результирующего разбления.  $Gini_A(D) = \frac{|D_1|}{|D|} Gini_1(D_1) + \frac{|D_2|}{|D|} Gini_1(D_2)$   $\square Pedукция информационной примеси$

- $\Delta Gini(A) = Gini(D) Gini_{A}(D)$
- $\ \square\$ Для разбиения выбирается атрибут с мин.  $Gini_{A}$  (= макс.  $\Delta Gini)$

Технологии анализа данных © М.Л. Цымблер

| Алгоритм CART                                                                                                                                                                                                                                                                                                                           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| - I <sup>-</sup> -                                                                                                                                                                                                                                                                                                                      | - |
| 6 P II C                                                                                                                                                                                                                                                                                                                                |   |
| ы рейтинг комп-р2                                                                                                                                                                                                                                                                                                                       |   |
| <=30 Высокий Нет Удовл. <b>Нет</b> П С2 Купит компьютер = Нет                                                                                                                                                                                                                                                                           |   |
| 2 <=30 Высокий Нет Отличный Нет □ Индекс Джини                                                                                                                                                                                                                                                                                          |   |
| 3 3140 Высокий Нет Удовл. Да $4 > 40$ Средний Нет Удовл. Да $Gini(D) = 1 - \left(\frac{9}{14}\right)^2 - \left(\frac{5}{14}\right)^2 = 0.459$                                                                                                                                                                                           |   |
| 5 >40 Низкий Да Удовл. Да Пиндекс Джини разбиения <i>D</i> по                                                                                                                                                                                                                                                                           |   |
| 6 >40 Низкий Да Отличный <b>Нет</b> атрибуту Доход={Низкий,                                                                                                                                                                                                                                                                             |   |
| 7 3140 Низкий Да Отличный Да Средний} U {Высокий}                                                                                                                                                                                                                                                                                       |   |
| S   S   S   S   S   S   S   S   S   S                                                                                                                                                                                                                                                                                                   |   |
| $\frac{10}{10}$ >40 Средний Да Удовл. Да $=\frac{10}{14}(1-(\frac{6}{10})^2-(\frac{4}{10})^2)+\frac{4}{14}(1-(\frac{1}{4})^2-(\frac{3}{4})^2)$                                                                                                                                                                                          |   |
| 11 <=30 Средний Да Отличный Да = 0.450                                                                                                                                                                                                                                                                                                  |   |
| 12 3140 Средний Нет Отличный Да □ Gini <sub>Доход∈ {Средний, Высокий}</sub> (D)= <b>0.300</b>                                                                                                                                                                                                                                           |   |
| 13 3140 Высокий Да Удовл. Да □ Gini <sub>Доходе</sub> (Никий Высокий) (D)=0.315                                                                                                                                                                                                                                                         |   |
| 4 >40 Средний Нет Отличный Нет                                                                                                                                                                                                                                                                                                          |   |
| Технологии анализа данных © М.Л. Цымблер                                                                                                                                                                                                                                                                                                |   |
|                                                                                                                                                                                                                                                                                                                                         |   |
| Сравнение мер для выбора                                                                                                                                                                                                                                                                                                                |   |
| Сравнение мер для выбора<br>атрибута разбиения                                                                                                                                                                                                                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                         |   |
| атрибута разбиения                                                                                                                                                                                                                                                                                                                      |   |
| атрибута разбиения □ Все три меры дают хорошие результаты.                                                                                                                                                                                                                                                                              |   |
| атрибута разбиения □ Все три меры дают хорошие результаты.                                                                                                                                                                                                                                                                              |   |
| атрибута разбиения  Все три меры дают хорошие результаты.  Относительные недостатки                                                                                                                                                                                                                                                     |   |
| атрибута разбиения  Все три меры дают хорошие результаты.  Относительные недостатки  InfoGain                                                                                                                                                                                                                                           |   |
| атрибута разбиения  □ Все три меры дают хорошие результаты.  □ Относительные недостатки  □ InfoGain  ■ тяготеет к атрибутам с большим количеством значений                                                                                                                                                                              |   |
| атрибута разбиения  □ Все три меры дают хорошие результаты.  □ Относительные недостатки  □ InfoGain  ■ тяготеет к атрибутам с большим количеством значений  □ Gain ratio  ■ предпочитает несбалансированные разбиения, где одна часть                                                                                                   |   |
| атрибута разбиения  □ Все три меры дают хорошие результаты.  □ Относительные недостатки  □ InfoGain  ■ тяготеет к атрибутам с большим количеством значений  □ Gain ratio  ■ предпочитает несбалансированные разбиения, где одна часть существенно меньше остальных                                                                      |   |
| атрибута разбиения  □ Все три меры дают хорошие результаты.  □ Относительные недостатки  □ InfoGain  □ тяготеет к атрибутам с большим количеством значений  □ Gain ratio  ■ предпочитает несбалансированные разбиения, где одна часть существенно меньше остальных  □ Gini index                                                        |   |
| атрибута разбиения  □ Все три меры дают хорошие результаты.  □ Относительные недостатки  □ InfoGain  □ тяготеет к атрибутам с большим количеством значений  □ Gain ratio  □ предпочитает несбалансированные разбиения, где одна часть существенно меньше остальных  □ Gini index  ■ тяготеет к атрибутам с большим количеством значений |   |

### Популярность деревьев решений

 $\hfill \square$  Более быстрая скорость обучения (в сравнении с др. методами классификации)

 □ Возможность преобразования в простые и понятные правила классификации

□ Сравнимая точность классификации с др. методами

# Деревья решений и правила классификации Прогноз Облачность Дождь Высокая Нормальная — R<sub>1</sub>: IF (Прогноз=Солнце) AND (Влажность=Высокая) ТНЕN Игра=Нет — R<sub>2</sub>: IF (Прогноз=Солнце) AND (Влажность=Высокая) ТНЕN Игра=Да — R<sub>3</sub>: IF (Прогноз=Солнце) AND (Влажность=Нормальная) ТНЕN Игра=Да — R<sub>3</sub>: IF (Прогноз=Дождь) AND (Ветер=Сильный) ТНЕN Игра=Нет — R<sub>5</sub>: IF (Прогноз=Дождь) AND (Ветер=Сильный) ТНЕN Игра=Нет — R<sub>5</sub>: IF (Прогноз=Дождь) AND (Ветер=Сильный) ТНЕN Игра=Да



### Обучение по примерам 36 — Олементы обучающей выборки сохраняются и используются для (поочередной) классификации элементов тестовой выборки. С1 С3 С1 С4 С3 ? С4 ? С3 ? С4 ? С3 ? С4 ? С7 ? С8 ? С9 ? С9 ... С9 ... С9 ... С9 ... С9 ... С0 ... ОМЛ. Цымблер

### Определение ближайшего соседа 🗆 k ближайших соседей (kNN, k Nearest Neighbors) элемента x-k элементов, имеющих минимальное расстояние до х.

(b) 2-nearest neighbor

(c) 3-nearest neighbor

| Классификация                 |   |
|-------------------------------|---|
| по <i>k</i> ближайшим соседям | 1 |

□ Входные данные

 $\hfill\Box$  Обучающая выборка D

(a) 1-nearest neighbor

- $\blacksquare$  Метрика d для вычисления расстояния
- Количество ближайших соседей k
- Классификация
  - $\blacksquare$  Вычислить расстояние от элемента тестовой выборки до элементов обучающей выборки

    - Евклидово расстояние
       Манхэттенское расстояние
  - Найти k ближайших соседей
  - $\blacksquare$  Определить класс элемента тестовой выборки по меткам классов k ближайших соседей
    - Голосование по большинству
    - Взвешенное голосование, вес w=1/d²

Технологии анализа данных © М.Л. Цымблер

### kNN: вопросы реализации

□ Иногда необходима нормализация некоторых атрибутов для исключения их доминантного влияния на расстояние

- Poct: 1,5 м 2 м
- Вес: 50 кг 100 кг
- **п** Доход: 10000 руб. 1000000 руб.
- □ Выбор k
  - □ Слишком малое k чувствительность к точкам шума
  - Слишком большое k среди соседей может быть неоправданно много представителей др. классов



Технологии анализа данных

| Заключение                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                          |
| 40                                                                                                                                                                                                                       |
| □ Классификация – определение заранее известных классов, к                                                                                                                                                               |
| которым принадлежат объекты заданного множества.                                                                                                                                                                         |
| <ul> <li>Классификация предполагает</li> </ul>                                                                                                                                                                           |
| построение модели на основе обучающей выборки,                                                                                                                                                                           |
| □ затем оценку точности модели на основе тестовой выборки                                                                                                                                                                |
| □ и последующее использование модели для определения класса не                                                                                                                                                           |
| рассматривавшихся ранее кортежей.                                                                                                                                                                                        |
| □ Дерево решений – дерево, в котором                                                                                                                                                                                     |
| внутренние узлы представляют собой операции проверки значения                                                                                                                                                            |
| указанного атрибута                                                                                                                                                                                                      |
| ■ ветви представляют собой переходы в соответствии с результатом                                                                                                                                                         |
| проверки значения указанного атрибута                                                                                                                                                                                    |
| <ul> <li>листья представляют собой метки класса или их диапазоны.</li> </ul>                                                                                                                                             |
|                                                                                                                                                                                                                          |
| Технологии анализа данных                                                                                                                                                                                                |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                          |
| 2011-1011011110                                                                                                                                                                                                          |
| Заключение                                                                                                                                                                                                               |
|                                                                                                                                                                                                                          |
| Заключение                                                                                                                                                                                                               |
| 41                                                                                                                                                                                                                       |
| примеси, используемые при информационной примеси, используемые при примеси, используемые при                                                                                         |
| 41                                                                                                                                                                                                                       |
| □ Меры информационной примеси, используемые при построении деревьев решений                                                                                                                                              |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3)                                                                                                            |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5)                                                                               |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5)                                                                               |
| ☐ Меры информационной примеси, используемые при построении деревьев решений ☐ Information gain (алгоритм ID3) ☐ Gain ratio (алгоритм C4.5) ☐ Gini index (алгоритм CART)                                                  |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5) □ Gini index (алгоритм CART) □ Обучение по примерам — классификация методом k |
| ☐ Меры информационной примеси, используемые при построении деревьев решений ☐ Information gain (алгоритм ID3) ☐ Gain ratio (алгоритм C4.5) ☐ Gini index (алгоритм CART)                                                  |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5) □ Gini index (алгоритм CART) □ Обучение по примерам — классификация методом k |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5) □ Gini index (алгоритм CART) □ Обучение по примерам — классификация методом k |
| □ Меры информационной примеси, используемые при построении деревьев решений □ Information gain (алгоритм ID3) □ Gain ratio (алгоритм C4.5) □ Gini index (алгоритм CART) □ Обучение по примерам — классификация методом k |