Organic Chemistry Concepts LOKT.09.051

σ-bond reactivity

Bond homolysis

Bond heterolysis

Homolysis: non-polar bond

Heterolysis: polar bond

Radical mechanism

Bond homolysis

Bond energy (kJ/mol)

H-H	436	H-C	413
C-C	348	H-N	391
N-N	170	H-O	366
O-O	145	H-F	568
F-F	158	H-C1	432
Cl-Cl	243	H-Br	366
Br-Br	193	H-I	298
I-I	151		

$$\mathbf{A}: \mathbf{B} \longrightarrow \mathbf{A} \cdot + \cdot \mathbf{B}$$

From where energy comes?

- Thermolysis
- Photolysis
- Chemically induced homolysis

$$CH_4 + F-F \rightarrow CH_3^{\bullet} + H-F + F^{\bullet}$$

Photochemical initiation

$$: \overset{\dots}{\text{CI}} : \overset{\dots}{\text{CI}} : \overset{\dots}{\text{CI}} : \overset{\dots}{\text{CI}} :$$

Radical substitution reaction mechanism

First step:

$$H_3C: H + \ddot{C}I: \longrightarrow H_3C \cdot + H: \ddot{C}I:$$

Second step:

$$H_3C \cdot + : C: C: C: \longrightarrow H_3C: C: + : C:$$

$$H_3C:H + :C:C: \longrightarrow H_3C:C: + H:C:$$

Radical substitution reaction

First step:

$$H_3C: H + \ddot{C}I: \longrightarrow H_3C \cdot + H: \ddot{C}I:$$

Second step:

$$H_3C \cdot + : C: C: C: \longrightarrow H_3C: C: + : C:$$

$$H_3C:H + :C:C: \longrightarrow H_3C:C: + H:C:$$

Termination

$$H_3C \cdot + \cdot \ddot{C}I: \longrightarrow H_3C: \ddot{C}I:$$

Very small amount of product via this step.

Butane chlorination

Frequency of hydrogen atom occurrence C_4H_{10}

Buthane clorination

1-chlorobutane and 2-clorobutane

$$CH_{3}CH_{2}CH_{2}CH_{3} \xrightarrow{CI_{2}} CH_{3}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{3}$$

$$CH_{3}CH_{2}CH_{2}CH_{3} \xrightarrow{h\nu} CH_{3}CHCH_{2}CH_{3}$$

$$(72\%) CI$$

Reactivity is different

10 hydrogen atoms at CH₃ groups and 1 at tert C atom

Methylpropane chlorination yields

7.0%

H
$$\dot{C}$$
 H \dot{C} Stable \rightarrow H \dot{C} Stable \rightarrow H \dot{C} H \dot{C} H \dot{C} Stable \rightarrow H \dot{C} H $\dot{$

Hyperconjugation

C-H bond dissociation energies kJ/mol

Me-H	439	• PhCH ₂ -H	370
 MeCH₂-H 	423	• Ph ₂ CH-H	341
 Me₂CH-H 	412	• Ph ₃ C-H	298
 Me₃C-H 	404		
		• CH2=CH-H	465
• CH2=CHCH2	-Н 362	• CH = C-H	556

Radical stability

Radical structure

Combustion

Combustion

Redistribution of electrons stabilizes molecules