Условие: На стол положили тонкую однородную монету радиуса r. Затем к ней прибавили еще одну, радиусом в α раз большим и плотностью в β раз большей так, что окружности их поверхностей соприкасались внутренним образом в точке O ($\alpha > 0$, $\beta > 0$). Далее аналогично добавили еще одну монету, радиусом в α раз большим и плотностью в β раз большей, чем у 2-й монеты, причем центры всех монет оказались на одной прямой, проходящей через точку O. Такой процесс проделывали до бесконечности. На каком расстоянии от точки O находится центр масс системы? Разберите все возможные случаи.

Решение: Как известно, радиус-вектор центра масс системы тел определяется по формуле $\mathbf{a} = \sum m_i \mathbf{a}_i / \sum m_i$, где m_i – масса i-го тела; \mathbf{a}_i – радиус-вектор его центра масс. Для системы монет в проекции на прямую их центров получаем:

$$x = \frac{\sum_{i=0}^{\infty} m_i x_i}{\sum_{i=0}^{\infty} m_i},$$

где x — расстояние от точки O до центра масс системы; x_i — расстояние от точки O до центра i-й монеты. Так как размер и плотность монет растут (или убывают) по закону геометрической прогрессии, то масса i-й монеты связана с величинами α и β следующим соотношением:

$$m_i = \rho_0 \beta^i \cdot \pi r^2 \alpha^{2i} d = \alpha^{2i} \beta^i \cdot \pi r^2 \rho_0 d,$$

где ρ_0 – плотность 0-й (на самом деле 1-й) монеты; d – толщина монеты.

Введем так называемые упрощенные массы $\mu_i = \alpha^{2i} \beta^i$, пропорциональные соответствующим истинным массам монет. Упрощенные массы связаны с истинными соотношением $m_i/\mu_i = \pi r^2 \rho_0 d$. Так как справа в этом уравнении находится константа, то при замене истинных масс на упрощенные выражение для x не изменится. Также, для i-й монеты верно равенство $x_i = \alpha_i r$ (расстояние от центра монеты до точки 0 равно ее радиусу). Имеем:

$$x = r \frac{\sum_{i=0}^{\infty} \alpha^{3i} \beta^i}{\sum_{i=0}^{\infty} \alpha^{2i} \beta^i} = r \frac{\sum_{i=0}^{\infty} (\alpha^3 \beta)^i}{\sum_{i=0}^{\infty} (\alpha^2 \beta)^i}.$$

И в числителе, и в знаменателе этого выражения стоят геометрические прогрессии. Рассмотрим случаи: и числитель, и знаменатель сходятся; только числитель или знаменатель сходятся; и числитель, и знаменатель расходятся.

1) Сходится и числитель, и знаменатель. Это происходит, когда $\alpha^2 \beta < 1$ и $\alpha^3 \beta < 1$. Тогда по формуле суммы бесконечной геометрической прогрессии находим:

$$x = r \cdot \frac{1 - \alpha^2 \beta}{1 - \alpha^3 \beta}.$$

- 2) Сходится только числитель. Это возможно, когда $\alpha^2 \beta \ge 1$ и $\alpha^3 \beta < 1$. Тогда, очевидно, x=0.
- 3) Сходится только знаменатель. Это происходит, когда $\alpha^2 \beta < 1$ и $\alpha^3 \beta \ge 1$. Тогда, очевидно, $x \to \infty$.

4) И числитель, и знаменатель расходятся. Это возможно, когда $\alpha^2 \beta \ge 1$ и $\alpha^3 \beta \ge 1$. Тогда выражение для x приобретает вид предела:

$$x = r \lim_{i \to \infty} \frac{(\alpha^3 \beta)^i - 1}{(\alpha^2 \beta)^i - 1} \cdot \frac{\alpha^2 \beta - 1}{\alpha^3 \beta - 1} = r \lim_{i \to \infty} \frac{(\alpha^3 \beta)^i - 1}{(\alpha^2 \beta)^i - 1} \cdot \frac{\alpha^2 \beta - 1}{\alpha^3 \beta - 1}.$$

Рассмотрим теперь еще 4 случая:

а) $\alpha^3\beta=1$, $\alpha^2\beta>1$. Произведем замену переменных $\alpha^3\beta=p$, $\alpha^2\beta=q$. Имеем:

$$x = \lim_{i \to \infty} \lim_{p \to 1} \frac{p^i - 1}{p - 1} \cdot \frac{q - 1}{q^i - 1}.$$

При помощи правила Лопиталя избавляемся от внутреннего предела:

$$x = \lim_{i \to \infty} i \cdot \frac{q-1}{q^i - 1}.$$

А затем и от внешнего предела:

$$x = \lim_{i \to \infty} \frac{q - 1}{q^i \ln q} = 0,$$

т.к. q > 1. Этот результат логичен, если посмотреть на исходное выражение $x = r \sum_{i=0}^{\infty} (\alpha^3 \beta)^i / \sum_{i=0}^{\infty} (\alpha^2 \beta)^i$. В нем числитель растет по закону арифметической прогрессии, а знаменатель – по закону геометрической. Тогда, очевидно, в пределе $i \to \infty$ эта дробь будет стремиться к нулю.

б) $\alpha^2\beta=1,\,\alpha^3\beta>1.$ Произведем замену, как в предыдущем случае:

$$x = \lim_{i \to \infty} \lim_{q \to 1} \frac{p^i - 1}{p - 1} \cdot \frac{q - 1}{q^i - 1}.$$

При помощи правила Лопиталя избавляемся от пределов:

$$x = \lim_{i \to \infty} \frac{p^i - 1}{i(p - 1)} = \lim_{i \to \infty} \frac{p^i \ln p}{p - 1} = \infty,$$

т.к. p > 1. Этот результат также логичен из следующих соображений: в вышеупомянутой дроби числитель растет по геометрической прогрессии, а знаменатель – по арифметической.

в) $\alpha^2\beta = \alpha^3\beta = 1$. Тогда $\alpha = \beta = 1$. В этом случае можно обойтись без правила Лопиталя и замен переменных. Система представляет собой неограниченное число одинаковых монет, поэтому центр масс системы находится в их центре, и x = r.

г) $\alpha^2 \beta > 1$, $\alpha^3 \beta > 1$. Преобразуем выражение для x:

$$x = r \lim_{i \to \infty} \frac{1 - \frac{1}{(\alpha^3 \beta)^i}}{1 - \frac{1}{(\alpha^2 \beta)^i}} \cdot \alpha^i \cdot \frac{\alpha^2 \beta - 1}{\alpha^3 \beta - 1} = r \lim_{i \to \infty} \alpha^i \cdot \frac{\alpha^2 \beta - 1}{\alpha^3 \beta - 1}.$$

Здесь возможны еще 3 случая: $\alpha < 1$; $\alpha = 1$; и $\alpha > 1$. При $\alpha < 1$ получаем x = 0; при $\alpha = 1$ имеем $x = r \cdot \frac{\alpha^2 \beta - 1}{\alpha^3 \beta - 1} = r$; при $\alpha > 1$ получаем $x \to \infty$.

Примечание. Эта задача предлагалась 9-м классам на Соросовской олимпиаде 1998-99 гг. в слегка измененном виде. В ней было задано $\alpha=0,5$, а вместо того, чтобы просто добавлять новые монеты, из уже лежащих "вырезали" кусок, равный по размерам новой монете, причем плотность каждой следующей монеты была в γ раз больше плотности предыдущей. Таким образом, в условии была задана величина $\gamma=\beta+1$, которая в принципе могла быть меньше 1. Для той задачи ответ таков: $x=2r\cdot\frac{5-\gamma}{9-\gamma}$ при $\gamma<5$; x=0 при $\gamma\geq5$.