GENETIC EFFECTS OF MICROWAVE EXPOSURE ON MAMMALIAN CELLS IN VITRO VOLUME 2.. (U) TEXAS UNIV HEALTH SCIENCE CENTER AT SAN ANTONIO DEPT OF RADIO... M L MELTZ ET AL. OCT 84 USAFSAN-TR-84-24-VOL-2 F/G 6/18 AD-A149 347 1/1 % UNCLASSIFIED NL END

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1964 A

GENETIC EFFECTS OF MICROWAVE EXPOSURE ON MAMMALIAN CELLS IN VITRO: VOLUME II

Martin L. Meltz, Ph.D. Clifton R. Harris, Ph.D. Kathleen A. Walker, B.S.

University of Texas Health Science Center 7703 Floyd Curl Drive San Antonio, Texas 78284

October 1984

Annual Report for Period 1 July 1981 - 30 September 1982

Approved for public release; distribution is unlimited.

Prepared for
USAF SCHOOL OF AEROSPACE MEDICINE
Aerospace Medical Division (AFSC)
Brooks Air Force Base, TX 78235-5000

DTIS THE COPY

NOTICES

This annual report was submitted by the University of Texas Health Science San Antonio, Texas, under contract F33615-80-C-0607, job order 7757-01-80, with the USAF School of Aerospace Medicine, Aerospace Medical Division, AFSC, Brooks Air Force Base, Texas. Dr. David N. Erwin (USAFSAM/RZP) was the Laboratory Project Scientist-in-Charge.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely Government-related procurement, the United States Government incurs no responsibility or any obligation whatsoever. The fact that the Government may have formulated or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication, or otherwise in any manner construed, as licensing the holder, or any other person or corporation; or as conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

The Office of Public Affairs has reviewed this report, and it is releasable to the National Technical Information Service, where it will be available to the general public, including foreign nationals.

This report has been reviewed and is approved for publication.

DAVID N. ERWIN, Ph.D.

Project Scientist

DAVID N. ERWIN, Ph.D.

JOHN C. MITCHELL, B.S.

Supervisor

Royce Mon. &

ROYCE MOSER, Jr. Colonel, USAF, MC

Commander

SECURITY CLASSIFICATION OF THIS PAGE

AD-A149347

	REPORT DOCUME	NTATION PAG	en e		ORDINAR MENTS T	
is REPORT SECURITY CLASSIFICATION. Unclassified	16. RESTRICTIVE MARKINGS					
23 SECURITY CLASSIFICATION AUTHORITY		3 DISTRIBUTION: A Approved for		FREPORT lease; dist	tribution	
26. DECLASSIFICATION DOWNGRADING SCHED	is unlimited	đ.				
4 PERFORMING ORGANIZATION REPORT NUM	5 MUNITORING ORGANIZATION REPORT NUMBER S. USAFSAM-TR-84-24					
6a NAME OF PERFORMING ORGANIZATION University of Texas Health Sci- ence Center, Dept. of Radiology	6b. OFFICE SYMBOL (If applicable)	USAF Schoo		ace Medicine	e (RZP)	
6c. ADDRESS (City State and ZIP Code) Division of Radiation Oncology 7703 Floyd Curl Drive San Antonio, Texas 78284	76. ADDRESS (City, State and ZIP Code) Aerospace Medical Division (AFSC) Brooks Air Force Base, Texas 78235-5000					
84 NAME OF FUNDING SPONSORING ORGANIZATION	86. OFFICE SYMBOL (If applicable)	9. PROCUREMENT 1		ENTIFICATION N	UMBER	
8c ADDRESS City, State and ZIP Code)	<u>. </u>	10 SOURCE OF FU	NDING NOS			
		PROGRAM ELEMENT NO 62202F	PROJECT NO. 7757	TASK NO. 01	WORK UNIT	
SENETIC EFFECTS OF MICROWAVE EXPOSURE ON MAMMALIAN CELLS IN VITRO: VOLUME II 12 PERSONAL AUTHOR(S) Meltz, Martin L.; Harris, Clifton R.; and Walker, Kathleen A. 13a. TYPE OF REPORT 13b. TIME COVERED 14 DATE OF REPORT (F. Mo., Day) 15 PAGE COUNT Annual Report 16 SUPPLEMENTARY NOTATION Appendix A and Appendix B of this report are available as separate documents, USAFSAM-TR-84-24-APP-B, through the Defense Technical Information Center (DTIC), Cameron Station, Alexandria VA 22304-6145. 17 COSATI CODES 18 SUBJECT TERMS Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 19 ABSTRACT Continue on receive if necessary and identify by block number: 10 Actin Codes 10 Actin Codes 11 B SUBJECT TERMS (Continue on receive if necessary and identify by block number) 11 Cosati Codes 12 Children 13 Children 14 Cosati Codes 15 PAGE COUNT 15 PAGE COUNT 16 Supplementary (State Country (St						
20 DISTRIBUTION AVAILABILITY OF ABSTRAC		21 ABSTRACT SECU		CATION		
UNCLASSIF ED UNLIMITED X SAME AS RPT	D OTIC USERS	UNCLASSIFIE				
David N. Erwin. Ph.D.		225 TELEPHONE NO (100 CO) (512) 536-3582	de	USAFSAM/RZF		
Daviu H. Erwin, Ph.D.		(312) 330-3300	<u>_</u>	USAT SAMI KEP		

BLANK PAUE

Accession	TIS GRA Unannounce Unannounce Unatifica Availabit Availabit St Sp		<u>Page</u>
	ÎNTRODUCTION	• • • •	5
	DNA Repair StudiesCHO Studies		5 6
	METHODS AND MATERIALS	• • • •	9
	RFR Exposure Facilities and Parameters. Specific Absorption Rate Measurements for DNA Repair Studies		9 10 10 14 14 15 15 15 15 16 16 16
	RESULTS OF THE DNA REPAIR STUDIES	• • • •	18
	SAR Determinations for DNA Repair Studies	• • • •	18 18 18 19 19
	RESULTS OF THE CHO STUDIES	• • • •	24
	SAR Measurements for CHO Experiments. Signal Quality Control for CHO Studies. Clonal Survival. Growth Kinetics. Cellular Morphology. Sister Chromatid Exchange. Chromosome Aberrations.	• • • • • • • • • • • • • • • • • • • •	24 27 28 28 28 28 33
	DISCUSSION	• • • •	33
	REFERENCES	• • • •	34
	APPENDIX A. Cytogenetics and Growth Kinetics Data, 850 MHz (Available in Microfiche)	••••	88
	APPENDIX B. Cytogenetics and Growth Kinetics Data, 1.2 GHz (Available in Microfiche)		88

CONTENTS (Cont'd)

Figures

Figure No.		Page
1.	The mechanism of sister chromatid differentiation	6
2.	Diagrammatic appearance of chromosomes with three sister chromatid exchanges	7
3.	Corrected SAR values at different locations in a square petri dish containing cell culture medium (350 MHz)	11
4.	Corrected SAR values at different locations in a square petri dish containing cell culture medium (850 MHz)	11
5.	Representative spectra for 850-MHz pulsed wave	12
6.	Representative spectra for 1.2-GHz pulsed wave	13
7.	The microwave exposure facility (block diagram)	14
8.	UV-induced DNA repair synthesis during 1.2-GHz RFR exposure at 37°C	20
9.	UV-induced DNA repair synthesis during 350-MHz RFR exposure at 37°C	22
10.	UV-induced DNA repair synthesis during 850-MHz RFR exposure at 37°C	23
11.	Power-density map, 850 MHz, 350 W	24
12.	Power-density map, 1.2 GHz, 380 W	25
13.	SAR map, 850 MHz, 38 mW/cm ²	25
14.	SAR map, 1.2 GHz, 15 mW/cm ²	26
15.	Typical SAR experiment data	26
16.	Spectrum analysis of 850-MHz signal	27
17.	Spectrum analysis of 1.2-GHz signal	27
18.	CHO growth kinetics data: A. 850 MHz, 37°C; and B. 850 MHz, 39°C	29
19.	CHO growth kinetics data: A. 1.2 GHz, 37°C; and B. 1.2 GHz, 39°C	30
20.	Phase-contrast micrographs of CHO cells, 3 hr after exposure to 850-MHz fields, 37°C: A. Control; and B. Exposed	31
21.	Phase-contrast micrographs of CHO cells, 3 hr after exposure to 1.2-GHz fields, 37°C: A. Control; and B. Exposed	32
22.	CHO chromosomes for SCE analysis	33

CONTENTS (Cont'd)

<u>Tables</u>

Table No.		Page
	DNA repair study: 1.2-GHz continuous-wave radiation - 37°C	36
2.	DNA repair study: 1.2 GHz pulse-wave radiation - 37°C	39
3.	DNA repair study: 350-MHz continuous-wave radiation - 37°C	42
4.	DNA repair study: 350-MHz pulse-wave radiation - 37°C	45
5	Smith and Hanawalt technique comparison	48
6.	Effect of RFR (10 mW/cm ²) on semi-conservative DNA synthesis	49
7.	DNA repair study: 850 MHz continuous-wave radiation - 37°C	51
8.	DNA repair study: 850-MHz pulse-wave radiation - 37°C	54
9.	DNA repair study: 1.2-GHz pulse-wave radiation - 37°C	57
10.	DNA repair study: 850-MHz continuous-wave radiation37°C	60
11.	DNA repair study: 850-MHz pulse-wave radiation - 39°C	63
12.	DNA repair study: 1.2-GHz pulse-wave radiation - 37°C	66
13. 1	DNA repair study: 1.2-GHz pulse-wave radiation - 39°C	69
14. [DNA repair study: 350-MHz pulse-wave radiation - 37°C	72
15. (DNA repair study: 350-MHz pulse-wave radiation - 39°C	74
16. [DNA repair study: 850-MHz pulse-wave radiation - 39°C	77
17. (Clonal survival data, CHO cells, 850 MHz and 1.2 GHz,37°C and 39°C	80
18. 5	Summary of growth kinetics, CHO cells, 850 MHz and 1.2 GHz, 37°C and 39°C	80
19. 9	Sister chromatid exchange frequency, CHO cells, 850 MHz, 37°C and 39°C	81
20. 9	Sister chromatid exchange frequency, CHO cells, 1.2 GHz, 37°C and 39°C	82
21. E	Exposure parameters for studies of effects of RFR on UV-induced DNA repair synthesis in MRC-5 cells	34

BLANK PAGE

GENETIC EFFECTS OF MICROWAVE EXPOSURE ON MAMMALIAN CELLS IN VITRO: VOLUME 11

INTRODUCTION

This work is a continuation of studies designed to answer the question of whether radiofrequency radiation (RFR) at lower power levels (no greater than $10~\text{mW/cm}^2$), where measurable heating in the exposure system cannot be detected, causes any transient or permanent alteration in a series of subtle biochemical processes elicited in the DNA of mammalian cells. The specific processes being studied are: the effects of RFR on the repair synthesis process in normal human fibroblasts after ultraviolet light (UV) damage of the DNA; and the possible induction by RFR of sister chromatid exchanges (SCE) or chromosome aberrations in Chinese Hamster Ovary (CHO) cells. Additional information obtained in the latter studies includes any effects on cell viability (by cloning efficiency) or on cell growth (increase in cell number).

DNA Repair Studies

In Volume I of this series (for the period February 1, 1980, to June 30, 1981), data were presented for DNA repair studies involving various exposure conditions (5); and, for the convenience of the reader, the respective tables incorporating these data have also been included in this Report (Volume II). Here, the table numbers are as follows:

Table 1. DNA repair study: 1.2-GHz continuous-wave radiation, 37°C;

Table 2. DNA repair study: 1.2-GHz pulse-wave radiation, 37°C;

Table 3. DNA repair study: 350-MHz continuous-wave radiation, $37^{\circ}C$; and

Table 4. DNA repair study: 350-MHz pulse-wave radiation, 37°C.

In conjunction with the continuation of this project, we investigated a possibly more rapid procedure for isolating parental repair replicated DNA (Table 5). We also examined whether RFR at $10~\text{mW/cm}^2$ had an effect on semi-conservative DNA synthesis (Table 6).

Because a question arose as to whether or not the 1.2-GHz data in Table 2 were really the result of a pulse-wave exposure, the experiment was repeated (Table 9). As described in the "Results" section, other experiments have also been repeated for Volume II of this series, when review of all the available data indicated that some effect of RFR on repair synthesis—albeit transient in nature—might be occurring.

EDITOR'S NOTE: In this Report. BrUdR and BrdU are used interchangeably to represent bromodeoxyuridine. For the convenience of the reader, all tables have been grouped at the close of this publication.

In addition, the experiments were extended to an RFR exposure where the incubation medium was maintained at 39°C, rather than the normal 37°C. This temperature (39°C) was shown not to affect UV-induced repair synthesis by itself (Fig. 4), but was considered to represent a biological system already under "thermal stress" prior to RFR exposure. The data for DNA repair synthesis studies included in this Report are presented in Tables 7-16.

CHO Studies

As just indicated, the genetic studies were expanded to include analysis for any RFR induction of SCEs or chromosome aberrations in CHO cells. These experiments were performed with pulse wave exposures, and at both 37°C and 39°C.

For the cytotoxicity of athermal levels of RFR irradiation to be assessed, a battery of endpoints were studied in cultured hamster fibroblasts (CHO) after exposure to 850 MHz and 1.2-GHz pulsed-wave fields at $10~\rm mW/cm^2$. This power density induced no significant increase in the temperature of the culture medium which bathed the cells.

The cellular parameters chosen for these studies were: clonal survival, growth kinetics, morphology, chromosome aberration, and SCE frequencies. All of these endpoints are sensitive indicators of cellular perturbations, with SCE induction probably being the most sensitive (1). The mechanism of SCE induction is unknown; substantial evidence exists, however, that these lesions are related to some disturbance in the cell's normal synthesis of DNA. Therefore, these studies relate well to the examination of RFR effects on UV-induced DNA repair replication.

SCEs were originally observed by Taylor (2), using tritiated thymidine prelabeling and subsequent autoradiography of the chromosomes. An SCE represents a homologous exchange between sister chromatids. These exchanges are most conveniently visualized by using one of the many methods for sister chromatid differentiation (SCE). Most SCE methodologies are based on staining of chromosomes by certain dyes, which are quenched when 5-bromodeoxyuridine (BrdU) has been incorporated into the DNA. Growing cells in BrdU-containing medium for two generations results in the differential BrdU-labeling pattern of chromatids (Fig. 1).

Figure 1. The mechanism of sister chromatid differentiation. (dI = thymidine; and BrdU = bromodeoxyuridine)

The more heavily BrdU-labeled chromatids quench staining more, and therefore, result in a more lightly stained chromatid relative to the sister chromatid. If no SCEs are present, then the chromosome will contain one intensely stained and one lightly stained chromatid—the "harlequin" staining pattern. When SCEs occur, however, they appear as alternating light and dark regions along the long axis of a chromatid, with the sister chromatid having the converse pattern (Fig. 2).

Figure 2. Diagrammatic appearance of chromosomes with three sister chromatid exchanges.

The studies reported herein represent an effort to determine whether or not various cellular processes are affected by exposure of cultured hamster fibroblasts to athermal levels of RFR (850 MHz and 1.2 GHz).

The data for this report are available, in Appendixes A and B, as indicated here:

Raw Data, 850 MHz

The number designations in the following lists refer to page(s) in Appendix A on which data are given.

Experi- ment No.	SCE	Chromo- some No.	Chromosome aberration	Growth kinetics	Surviving fraction
1	A1 - A4	A1-A4	A 5	A6	A7
2	A8-A11	A8-A11			A12
3	A13-A16	A13-A16	A17		A18
4	A19-A22	A19-A22	A23	A24	A25
5	A26-A29	A26-A29			A30
6	A31-A34	A31-A34	A35		A36

Raw Data, 1.2 GHz

The number designations in the following lists refer to page(s) in Appendix B on which data are given.

Experi- ment No.	SCE	Chromo- some No.	Chromosome aberration	Growth kinetics	Surviving fraction
1	B1-B6	B1 - B6	В7	88	
2	B9-B14	B9-B14			B15
3	B16-B21	B16-B21	B22		B23
1	B24-B29	B24-B29			330
$\tilde{5}$	B31-B36	B31-B36	837	838	
6	839-844	639-844			B 45
7	B46-B51	B46-B51	B52		B53
3	B54-B59	B54-B59			В60

METHODS AND MATERIALS

RFR Exposure Facilities and Parameters

All RFR exposures (see footnote) were conducted, at the USAF School of Aerospace Medicine (USAFSAM), in the anechoic chambers or Narda Model 8801 Transverse Electromagnetic Mode (TEM) Transmission Cell. The exposure geometry for DNA repair experiments, using MRC-5 human diploid fibroblasts, has been described in the "Introduction" in Volume I (5); that for the CHO cells is described in the following section of this report (Volume II).

Specific Absorption Rate Measurements for DNA Repair Studies

Specific absorption rate (SAR) measurements were made for the DNA repair studies with the assistance of the technical staff at USAFSAM. The following procedure was employed:

In preparation for the SAR determination, media was prepared to have the same ingredients and molarities as the exposure media, except that "cold" thymidine (TdR) was used in place of ^3H TdR. The media consists of complete Basal Minimal Essential Medium (BME) with Hanks' Salts, 5 x ^{10-3}M hydroxyurea (HU), 5 x ^{10-6}M BrUdR, ^{10-6}M 5-fluorodeoxyuridine (FUdP). and $^{2.7}$ x ^{10-7}M TdR. For each SAR we used 80 ml of media in a square dish with a lid with numerous holes.

The SAR determinations were done in anechoic chamber No. 1 at a chamber temperature of 37°C. Four Vitek probes were used--three for media temperatures, and one for room temperature. They were interfaced to a Hewlett Packard 9830A Computer for printout. The 3 media Viteks were moved to various positions in the dish so that the complete field could be determined (viewed from top of dish); e.g.,

MOTE: The exposure parameters for all of our DNA repair experiments, since the beginning of the project, are listed in Table 21.

Temperature measurements were taken at 10-sec intervals during the stabilization period, the 1-min exposure period, and the cool-down period. Three 1-min exposures were done at each Vitek configuration. These temperatures were entered into an SAR computer program with a correction factor to determine the SARs at the actual exposure power level of $10~\text{mW/cm}^2$.

For 350 MHz, an MCL generator (No.15022) and MCL amplifier (No.10110) were used. Transmitter output power was 1226 W, continuous wave (CW), as compared with the 32 W used for the exposure of $10~\text{mW/cm}^2$; a correction factor was used to determine the values in Figure 3. The dish was placed in the TEM chamber (Narda 8801) with the circulating fan $\underline{\text{off}}$.

For 350 MHz, an MCL generator No.15022 with MCL amplifier No.10110 was used. Dosimetry was done at a transmitter output power of 575-W CW, to give a power density of 20 mW/cm². Actual SAR exposure output was 600-W CW. A correction factor was used to give the values for a 10 mW/cm² exposure (Fig. 4). The square dish with media was placed in a Plexiglas water bath with noncirculating water. Distance from the horn was 1.1 m. Because of the buffer effect of the water bath, more cooling and heating of the media occurred during the stabilization and cool-down periods. The respective data for 350 and 350 MHz are presented in Figures 3 and 4.

Signal Quality Control for DNA Repair Studies

In addition to the stringent control of physical factors (e.g., temperature during exposures), we have begun documenting the quality of the signal being transmitted. This aim is accomplished by analyzing and stroking the signal spectrum with a Hewlett Packard 8566A spectrum analyzer interfaced to a Hewlett Packard 8566B computer with a 9872C eight-pen vector plotter. These data are collected when the transmitter is reconfigured for a new frequency, and during each exposure run to confirm reproducibility.

Figures 5 and 6 show representative spectra for 850 MHz and 1.2 GHz, respectively. Detailed parameters of the signals are presented in the legends.

Exposure Facility for CHO Experiments

Exposures to far-field RFR at 350 MHz and 1.2 GHz were performed in anechoic chamber No.2 (Fig. 7) in Building 1187, Radiofrequency Radiation Research Laboratory, Brooks Air Force Base. The chamber temperature was maintained externally by forced air heating; the deviation in air temperature was approximately $\pm~0.3^{\circ}\text{C}$.

Figure 3. Corrected SAR values at different locations in a square petri dish containing cell culture medium (350 MHz).

Figure 4. Corrected SAR values at different locations in a square petri dish containing cell culture medium (850 MHz).

Figure 5. Representative spectra for 850-MHz pulsed wave (5000 pulses/sec, $100-\mu$ sec pulse width, MCL transmitter).

Figure 6. Representative spectra for 1.2-GHz pulsed wave (80,000 pulses/sec, 3- μ sec pulse width, Cober Model 1831 transmitter).

Figure 7. The microwave exposure facility(block diagram).

CHO Cell Exposure Geometry

The CHO cells to be exposed to RFR were contained in T-25 flasks, attached in a 3x3 array to the underside of a sheet of RF-transparent foam. The flask-foam assemblies were floated in water baths connected to a large volume water circulator outside of the anechoic chamber. The experimental water bath was situated in the center of the far field, approximately 1.5 m from the horn. The control water bath was placed out of the field and was shielded by RF opaque material.

Signal Quality Control for CHO Studies

The output frequency of the transmitters was analyzed with a Hewlett Packard spectrum analyzer. Power levels were measured in the far field with Narda probes, a minimum of five points being measured within the area to contain the experimental samples.

SAR Measurements for CHO Studies

The SAR measurement was performed throughout the exposure facility by placing Vitek temperature probes in different positions of each T-25 flask containing 20 ml of growth medium. Maximum transmitter power was imparted on the system, and the temperature rise was measured as a function of time; the power was then removed and the cooling rate was determined. From these data, SARs were estimated by the method of Lozano (3).

Cell Lines

MRC-5 Cells--The MRC-5 normal human diploid fibroblast cell line used in these investigations is an "aging" cell line. It was obtained from the American Type Culture Collection (ATCC), and was kept frozen under liquid nitrogen (in sterile ampoules) until experiments were to be performed. The cells were used only at relatively early passage numbers (before passage 35). Once thawed, the cells were maintained in the biohazard tissue culture laboratories of the Department of Radiology, The University of Texas Health Science Center at San Antonio (UTHSCSA), in BME with Hanks' Salts. HEPES at 25 mM was added to maintain the pH in an air atmosphere. The concentration of fetal calf serum was 10%; antibiotics were added.

CHO Cells--Chinese hamster ovary fibroblasts (originally obtained from Dr. Abraham Hsie, Oak Ridge National Laboratories) were used in all of the described studies. The cells were maintained in exponential growth phase by serial passage by trypsinization, with a split ratio of 1:500 every four days. The medium used was Ham's F12, supplemented with: 10% heat-inactivated (56°C, 30 min) fetal calf serum; 1.8 mM glutamine; 90 units/ml penicillin; and 90 μ g/ml streptomycin. Cultures were maintained at 37°C with a humidified atmosphere of 5% carbon dioxide ~ 95% air.

Cell cultures were routinely monitored for normal morphology and microbial contamination by observation with phase-contrast microscopy. Mycoplasma screening was performed by the fluorescent Hoechst 33258 method.

Procedures for DNA Repair Studies

Fully described in Volume I (5) are the: Cell Culture Procedures for UV and RFR exposures; Repair Replication Protocol; Temperature-Effect Studies; DNA Isolation Procedures; Alkali Cesium Chloride-Cesium Sulfate Density Gradient Procedure; and DNA Concentration Determination-The Hinegardner Technique.

General Experimental Protocol for CHO Studies

Approximately 18 hr preexposure, experimental and control cultures were prepared. An exponential maintenance culture of CHO was harvested by a 15 min treatment with trypsin (0.05% in Earle's balanced salt solution, Ca^{2+} and Mg^{2+} free) at ambient temperature. The culture was passed into the prescribed number of T-25 flasks at a split ratio of 1:32, the total amount of medium being 20 ml. The flasks were placed in an incubator and maintained overnight at 37°C in a humidified atmosphere of 5% CO_2 in air.

Immediately before departure for the transmitter facility, the cultures were tightly wrapped in heavy-duty aluminum foil. This package was transported via automobile; the transport time averaged approximately 30 min. That this method of transfer did not significantly affect any of the cytotoxicity parameters measured was evident when transported cultures were compared with cultures left in the laboratory at UTHSCSA.

Upon arrival at the RFR laboratory, the T-25 flasks were mounted in the holders and placed in the water baths which were pre-equilibrated to either 37° or 39°C. After the cultures had reached experimental temperature, the 3-hr exposure commenced.

After treatment, the cultures were exposed to chemicals when necessary; all were wrapped in heavy-duty aluminum foil and transported to UTHSCSA, where they were returned to a humidified environment of 5% carbon dioxide - 95% air at 37°C.

Clonal Survival

Two hundred cells were plated into three T-25 flasks, 18 hr before RFR exposure. After exposure, the cultures were allowed to proliferate for 4 days. The medium was decanted and the colonies were fixed with methanol:acetic acid (3:1); and colonies were stained with 1% aqueous trypan blue. Colonies were counted with the aid of a dissecting microscope; the lower limit for a clone was 50 cells. Correction was made for multiplicity, and all groups were normalized to their control.

Growth Kinetics

Cells, one flask per time point, were released by trypsinization (as already described) at various times after RFR exposure. Cell numbers per flask were enumerated with an electronic particle counter (Model ZB-I, Coulter Electronics). A total of three counts were made on each sample.

General Morphology

Morphological examination of CHO cultures was performed by phase-contrast microscopy (Olympus Model IMT Inverted Microscope) of living cultures at various times for 72 hr after experimental treatment. Photomicrographs were recorded on Technical Pan 35-mm film (Kodak).

Sister Chromatid Exchange and Chromosome Aberration Analysis

Cells were prepared according to General Experimental Protocol (1:32 dilution of an exponentially grown culture). Immediately after RFR exposure, 100 μ l of a solution of 5-bromo-2'-deoxyuridine (2 x 10⁻⁴M in complete culture medium) was added to the existing 20 ml of medium in each flask, thus yielding a final concentration of 10⁻⁶M BrdU. From this point forward, the cultured cells were kept wrapped in heavy-duty aluminum foil to prevent

exposure to light; only brief exposures to gold-filtered fluorescent lighting was allowed during required culture manipulations. Cultures were returned to UTHSCSA, and were incubated under standard conditions for 19.5 hr.

To arrest cells in metaphase, $100~\mu l$ of colcemid $(4x10^{-5}M$ in complete culture medium) was added to each culture to give a final concentration of $2 \times 10^{-7}M$. Standard incubation was allowed to continue for 2.5 hr. The total elapsed time after administration of BrdU was 22 hr, equivalent to two generation times.

Cells were harvested by trypsinization (as described earlier), and were transferred to 15-ml centrifuge tubes. The cells were then pelleted by centrifugation at 80~g for 15~min, and the pellets were resuspended in 10~ml of 0.075M KCl which had been prewarmed to 37°C . Incubation in KCl at 37°C was allowed to proceed for 12~min, and was followed by pelleting at 800~g for 15~min. This pellet was resuspended in 10~ml of methanol:acetic acid (3:1), and allowed to fix for 30~min. The pre-fixed cells were centrifuged at 800~g for 15~min; the pellet was resuspended in 10~ml of fresh methanol:acetic acid (3:1) and refrigerated (4°C) for 24~mr.

The fixed cells were pelleted at 800 g for 15 min, and approximately 9.5 ml of the supernatant was discarded. The pellet was resuspended in the remaining 0.5 ml of fixative. Cells were spread on clean, dry slides by depositing 1 drop of suspension from a height of approximately 12 in. The slides, precleaned in acid-dichromate cleaning solution for a minimum of 24 hr, had undergone exhaustive washing in deionized water and air-drying in a dust-free environment. Slides were air-dried and stored in dust-free storage boxes.

SCE analysis was performed by the fluorescence method of Goto et al. (4). Slides were stained for 5 min in 0.175% acridine orange (C.I. No. 46005) in 0.067 M phosphate buffer (PB), pH 6.8. The slides were then washed in running distilled water for 10 min, and soaked in PB for 10 min; a $22 \times 40 \text{-mm}$ cover slip was then mounted with a drop of PB.

Slides were observed with a Zeiss Model 18 microscope, equipped with an epifluorescence attachment for blue excitation. When an appropriate metaphase plate was located, the exciter filter was removed in order to allow "burning in" of sister chromatid differentiation. Upon differentiation, the exciter filter was replaced, and the chromosome number and sister chromatid exchanges per cell were scored.

Upon completion of SCE analysis the cover slips were floated off of the slides; these were then stained with a 1:20 dilution of Giemsa stain stock solution in PB for 15 min. The slides were washed in three changes of distilled water, 5 min for each change. After air-drying, 22 x 40 cover slips were mounted with Permount resin.

Chromosome aberration analysis was performed by scoring the frequency of dicentric chromosomes in a total of 500 metaphases.

RESULTS OF THE DNA REPAIR STUDIES

SAR Determinations for DNA Repair Studies

The distribution of values (determined as already described in "Methods") are indicated: in Figure 3, for 350-MHz exposure in the Narda TEM cell; and, in Figure 4, for 850-MHz exposure in the anechoic chamber. The average value for the 350-MHz exposure is 0.39 \pm .15 W/kg, with individual values ranging from 0.18 to 0.71 W/kg. For the 850-MHz exposure, the average value is 4.5 \pm 3.0 W/kg, with individual values ranging from 0.6 to 9.9 W/kg.

Signal Quality Control for DNA Repair Studies

These determinations are presented in Figures 5 and 6 for 850 MHz pulsewave (PW) radiation and 1.2-GHz PW radiation, respectively.

Results of Investigation of a Possibly More Rapid Procedure for Isolating Parental Repair Replicated DNA

Investigated in this research was a previously published technique for isolating DNA, by density gradient centrifugation, almost directly from labeled calls (δ) . If this technique were to prove successful, it could reduce the time racessary to perform a complete assay (currently requiring 1 week for DNA isolation) and two 36-hr density gradient centrifugations.

Ine results are summarized in Table 5. Included in the experimental data are results obtained when a separate portion of the same UV-irradiated and repair labeled cell population was processed using our standard isolation procedure, and the first of the two alkaline density gradient centrifugation steps was typically performed.

In this attempt, at least, an increasing extent of repair incorporation with increasing UV dose was not detected by the Smith and Hanawalt method, although a dose dependence was evident after only one gradient and pooling in the standard method.

Because the yield (μg DNA/.1 ml) appears to be greater for the Smith and Hanawalt procedure after one gradient, a second alkali gradient added to that procedure might eliminate incorporated radioactivity overlap which we detected in the fractionation profile (continuous 0.D. and filter spotting of small aliquots from each fractionation tube). Thereby the UV-induced DNA repair would be allowed to become evident, while still reducing the total assay time. Because a second gradient would be necessary, our decision was not to change techniques at this point in the project.

Results of RFR (10 mW/cm²) on Semi-Conservative DNA Synthesis

In conjunction with many of the DNA repair studies described herein, a preliminary study was performed to investigate the effect of RFR radiation on semi-conservative DNA synthesis. In either the presence or absence of an RF field at $10~\text{mW/cm}^2$, MRC-5 cells were allowed to incorporate the DNA precursor $^3\text{H-TdR}$ for 1 hr. The DNA was isolated as in the repair studies, and then subjected to one neutral pH density gradient centrifugation. The dpm/µg were determined (Table 6). For all of the PW data--350 MHz (37°C), 350 MHz (39°C), 050 MHz (39°C), and 1.2 GHz (39°C)--the RFR at 10 mW/cm² had no effect on precursor incorporation.

For the CW RFR exposure, at 350 MHz (37°C) and 850 MHz (37°C), the $10~\text{mW/cm}^2$ RFR exposure appeared to result in an increase in incorporation. Because the specific activity of the isolated DNA (dpm/ μg) in these two early experiments (Table 6) is so low as compared with that in the more recent PW experiments, drawing a conclusion from the data must be delayed until additional experiments are performed.

Summary of RFR Exposure Effects on UV-Induced DNA Repair Synthesis in MRC-5 Cells

- 1.2-GHz CW, 37°C --The results for the CW exposure at 37°C for this frequency (Table 7) are plotted graphically in Figure 8, upper panel. No significant effect on incorporated repair radioactivity is evident at either 1 or $10~\text{mH/cm}^2$ of 1.2-GHz CW exposure.
- 1.2-GHz PW, 37°C --The original experiment (Table 2) was probably not a PW exposure. The experiment was therefore repeated; the data are presented in Table 9, and are plotted in Figure 3, middle panel (Expt. 1). As can be seen in Figure 3, for both the 1 mW/cm² and 10 mW/cm² power densities, a "lag" of the repair label incorporation at the 2-hr time point was apparent for the RFR-exposed cells as compared with that for the control cells. The "lag" had disappeared within 3 hr.

To confirm whether or not this observation was reproducible, an additional repeat experiment has been performed at both 1 and 10 mW/cm² (Table 12). The results are plotted in the lower panel (Expt. 2) of Figure 8. The original observation is clearly absent; the conclusion is that RFR--at 1.2-GHz PW, 37°C, 1 and 10 mW/cm² average power densities--has no effect on DNA repair synthesis.

1.2-GHz PW, 39°C--These experiments have been performed to determine whether incubation of the cells in medium at 39°C during the RFR exposure period, in effect producing a non-RFR induced "thermal stress," resulted in any RFR effect not previously observed at 37°C for 1 and 10 mW/cm² average power densities (Table 13). With the generator on, but no RFR being transmitted, incubation of UV-irradiated cells at 39°C in the exposure position does not result in an increase in incorporated repair label above that in the control position (Table 13, Part A). Surprisingly, for 1 mW/cm² PW RFR, 39°C (Table 13, Part D), and to a lesser extent for 10 mW/cm² PW RFR, 39°C (Table 13, Part E), the incorporated repair radioactivity in the exposed cells was consistently higher than in the control cells. This observation should be confirmed.

Figure 3. UV-induced DNA repair synthesis during 1.2 GHz RFR exposure at 37°C.

350-MHz CW, 37°C--The results for the CW exposure at 37°C for this frequency (Table 3) are plotted graphically in Figure 9, upper panel. No evidence exists of any effect of 350-MHz CW exposure at either 1 or 10 mW/cm².

 $\frac{350\text{-MHz PW}}{37^{\circ}\text{C}}$. The data for 350-MHz PW exposure have been presented in Table 4. At $\frac{10 \text{ mW/cm}^2}{10 \text{ mW/cm}^2}$, no RFR effect was observed (Fig. 9, lower right panel). For the 1 mW/cm² exposure, the initial data were unsatisfactory (3-hr values less than 2-hr values), and the experiment was repeated. As can be seen, 1 mW/cm² of 350-MHz PW RFR also has no significant effect on DNA repair synthesis (Table 13; and Fig. 9, lower left panel).

350-MHz PW, 39°C--The results of these experiments are shown in Table 15. The exposures in this experiment were 5 and 10 mW/cm 2 , instead of the usual 1 and 10 mW/cm 2 average power densities. At both 5 and 10 mW/cm 2 , an absence of any effect of 350-MHz PW exposure with incubation at 39°C was noted.

850-MHz CW, $37^{\circ}\text{C}\text{--}$ The original data for this experiment appear in Table 7. Analysis of these data indicated that they were internally inconsistent and not acceptable.

The experiment has therefore been repeated; the data are presented in Table 10, and plotted in Figure 10, upper panel. No indication was noted of any effect of CW exposure at this frequency on DNA repair synthesis.

 $850\,\text{-MHz}$ PW, $37^\circ\text{C}\text{--}$ The data for this experiment appear in Table 8, and in Figure 10, lower panel. No indication was noted of any effect of PW exposure at this frequency on DNA repair synthesis.

850-MHz PW, 39°C--The results of these experiments are shown in Tables 11 and 16. The data in Table 11, Part D, do not indicate any effect of 1 mW/cm² PW RFR at 850 MHz on the DNA repair process at 39° C. At 10 mW/cm^2 in this experiment, however, we noted a continuing inhibitory action on UV-induced DNA repair synthesis, as observed at 2 and 3 hr of incubation.

To confirm this observation, the experiment was repeated. The data are given for both 1 and $10~\text{mW/cm}^2$ in Table 16. The results do not confirm the previous observation; an 350-MHz PW exposure, at 1 or $10~\text{mW/cm}^2$ average power density, does not interfere with the DNA repair process in cells incubated at 39°C .

Figure 9. UV-induced DNA repair synthesis during 350-MHz RFR exposure at 37°C.

Figure 10. UV-induced DNA repair synthesis during 850-MHz RFR exposure at 37°C.

RESULTS OF THE CHO STUDIES

SAR Measurements for CHO Experiments

The exposure fields have been mapped in terms of power density (mW/cm²) and are presented in figures II and I2. Specific absorption rate (W/kg) distributions were determined at various locations in the culture medium (Figs.13 and 14). The data in Figure 15 are from a typical SAR experiment; the neating-cooling kinetic data were further treated to yield average SAR values.

Figure 11. Power-density map, 850 MHz, 350 W. (dotted line = water-bath outline)

Figure 12. Power-density map, 1.2 GHz, 380 W. (dotted line = water-bath outline)

Figure 13. SAR map, 850 MHz, 38 mW/cm². (dotted line = water-bath outline)

Figure 14. SAR map, 1.2 GHz, 15 mW/cm². (dotted line = water-bath outline)

Figure 15. Typical SAR experiment data. (on = magnetron current on; off = magnetron current off)

Power densities were reasonably uniform in the far field for both 350 MHz and 1.2 GHz. The specific absorption rates were fairly similar throughout the 1.2-GHz field; however, some variations in the 350-MHz field were significant.

Signal Quality Control for CHO Studies

A major quality control procedure was spectral analysis of the transmitter output. Figures 16 and 17 are representative spectra for 850 MHz and 1.2 GHz, respectively.

Figure 16. Spectrum analysis of 350-MHz signal.

Figure 17. Spectrum analysis of 1.2-GHz signal.

Clonal Survival

No differences in clonal survival were detected between cultures left undisturbed at the UTHSCSA laboratory and those transported to the RFR laboratory. Clonal survival values were the calculated quotient of the number of colonies in each exposed flask and of the mean number of colonies in control flasks. The mean of the clonal survival values is defined as the surviving fraction (SF). These data for 850 MHz and 1.2 GHz are summarized in Table 17. No decline in cell survival was observed under the exposure conditions utilized.

Growth Kinetics

Representative data from four growth kinetics experiments are shown in Figures 18 and 19. The semilogarithmic transforms of the data are linear and fit the equation $C = C_0 e^{\lambda} t$, where: C = number of cells at time t; $C_0 =$ initial cell number; and $\lambda =$ growth constant. The data for the series of growth kinetics are summarized in Table 13. No differences were detected among the groups; and all had a doubling time of 11 hr, characteristic of CHO cells.

Cellular Morphology

CHO cells grown in monolayer culture exhibit a typical fibroblastic morphology with no outstanding features. The population is homogeneous; however, occasional large multinucleated cells do arise. These unusual cells appear to be reproductively terminal, and therefore do not affect the parameters studied.

Representative phase-contrast photomicrographs of CHO cells at various times after microwave exposure are presented in Figures 20 and 21. None of the experimental treatments caused any demonstrable morphological alterations. Possible morphological changes investigated were: general cell shape and size; membrane blebbing; micronucleation; and granulation and vesiculation of the cytoplasm.

Sister Chromatid Exchange

In each experiment, two or three exposed and control flasks were devoted to SCE analysis. Two slides were analyzed from each flask, fifty metaphases being scored for chromosome number and SCEs per cell. Not included in the scores were metaphases which had obviously had chromosomes lost during preparation, were incompletely spread, or were obviously polyploid. The model chromosome number was 19.

The SCE frequency data for all experiments are contained in Table 19 for $850 \sim MHz$ PW, and in Table 20 for 1.2-GHz PW; the means (± 1 standard deviation) for each slide are tabulated. Statistical analysis of differences among means was performed by the two-tailed t statistic method. Differences between exposed and control means were not significant (P<.01).

Figure 18. CHO growth kinetics data: A. 850 MHz, 37°C; and B. 850 MHz, 39°C.

Figure 19. CHO growth kinetics data: A. 1.2 GHz, 37° C; and B. 1.2 GHz, 39° C.

Α.

Figure 20. Phase-contrast micrographs of CHO cells, 3 hr after exposure to 350-iHz fields, 37°C: A. Control; and B. Exposed.

Figure 21. Phase-contrast micrographs of CHO cells, 3 hr after exposure to 1.2-GHz fields, 37°C: A. Control; and B. Exposed.

A typical metaphase for SCE analysis is presented in Figure 22. The photomicrographic quality is poor because of high-intensity red-background fluorescence which tends to create a "haze." However, the observer has a very sharp image for scoring.

Figure 22. CHO chromosomes for SCE analysis.

Chromosome Aberrations

Inder no experimental conditions were any dicentric chromosomes detected. Previous experience discloses that the number of cells scored (500) is sufficient to observe any meaningful increase in the frequency of dicentrics in cultured Chinese hamster fibroblasts.

DISCUSSION

According to the results of these studies, RFR exposure under the described conditions produced no effects on cultured Chinese hamster fibroblasts. The endpoints chosen for these studies encompass a wide variety of potential biological effects. We conclude, therefore, that short-term PN exposure at 850 MHz and 1.2 GHz at an average power density of 10 mW/cm² elicits no deleterious cellular effects.

Continuation of these studies at different frequencies and at higher power levels could lead to interesting results. In addition, studies at other frequencies are indicated in order for potential occupational hazards of such exposures to be ascertained.

REFERENCES

- 1. Latt, S. A., Allen, J., Bloom, S. E., Carrano, A., Falke, E., Kram, D., Schneider, E., Schrenck, R., Tice, R., Whitfield, B., Wolff, S., "Sister Chromatid Exchanges: A report of the Gene-Tox Program." <u>Mutation Res</u>, Vol. 87, pp. 17-62, 1981.
- 2. Taylor, J. H., "Sister Chromatid Exchanges in Tritium Labelled Chromosomes." <u>Genetics</u>, Vol. 43, pp. 515-529, 1953.
- 3. Lozano, L. Abstract. Fourth Annual Scientific Session, Bioelectromagnetics Society, Los Angeles, Calif., June 1982.
- Goto, K., Maeda, S., Kano, Y., Sugiyama, T., "Factors Involved in Differential Giemsa-staining of Sister Chromatids, <u>Chromosoma</u>, Vol. 66, pp. 351-363, 1973.
- 5. Meltz, M. L., Walker, K.A., <u>Genetic Effects of Microwave Exposure on Mammalian Cells In Vitro:</u> <u>Volume I. USAFSAM-TR-84-22</u>, 1984.
- 6. Smith, C. A., Hanawalt, P. C., "Repair Replication In Human Cells. Simplified Determination Utilizing Hydroxyurea." <u>Biochim Biophys Acta</u>, Vol. 432: pp. 336-347, 1976.

T A B L E S 1 - 21

Throughout the series of tables in the Report, the following with rations are frequently used--

FA natio = diarnels ratio, liquid scintillation counter
Fky = background
iym = limintographion(s) for minute

Eligi Spirit Spirit Spirit = percent efficients = transverse electric rede

TABLE 11. THA REPAIR STUDY: 1.2-UH: CLWITHTFULLWALE PASIATION -- 3/PC

the section of a confi

incubation (inc (hr)	n cpm	AVG.	-8kg	8/A rat 10	Avg.	&E f f	dpm .1 ml	HO DNA	dpm pg DNA
A. 119-11	119. induced repair replication in anechoic chamber with generator on, in Exposure vs. Control Position. The cells were not exposed to RFR.	replic	ation in a e cells we	nechoic re not e	chamber xposed t	⊀ith gen o RfR.	erator <u>on</u> ,	tn Expo	ure
1. Control Position 1	377 280	329	305	.381	.380	36.5	836	1.18	708
2. Exposure Position 1	191	196	172	.400	.403	38.0	453	0.64	708
3. Control Position 3	506 496	501	477	.369	.375	36.0	1,325	96.0	1,380
4. Exposure Posttion 3	28 4 391	338	314	.399	.387	37.0	849	0.63	1,348
8. Backg in an	Background level of radioactivity incorporated into DNA of cells without UV exposure in anechoic chamber with generator on, in Exposure vs. Control Position. The cells were not exposed to RFR.	of radi	oactivity generator	incorpor	ated interpretation	o DNA of	cells wit rol Positi	hout UV on. The	kposure cells
1. Control Position 3	117	130	98	.410	.406	40.0	245	0.94	261
2. Exposure Position 3	84	82	90	.437	.446	42.5	118 0.56 (Out 12,00)	0.56 (ace grave)	211

्रा करणकार में जिल्हा है। जिल्हा के ब्रिक्ट के ब्रिक्ट के किए कि जिल्हा के अपने कि जिल्हा के अपने कि

		ncubation ime (hr)	cpm .1 mT	Avg.	-8kg	B/A ratio	Avg.	%Eff	dpm .1 mT	ug DNA	dpm ng DNA
	ું		Assay for induction of repair synthesis by 1.2-GHz non-UV irradiated cells.	on of re cells.	pair synt	thesis by	1.2-GHz		continuous-wave	radiation	ë
1. Control		ю	151 149	150	118	.413	.409	40.0	295	0.70	421
2. RFR (10 mW/cm ²)	.m ²)	ю	176 170	173	141	.400	.389	38.7	364	0.82	444
	0.	Effect	of 1.2-GHz		continuous-wave	radiation		at 1 mW/cm ² on	UV-induc	UV-induced DNA repair.	pair.
1. Control		-	42 42	42	10	.500	.518	45.2	22	0.02	1,100
2. 1 mW/cm ²		-	222 227	225	193	.384	.392	39.0	495	0.61	811
3. Control		2	107	111	79	.429	.416	40.5	195	0.92	212°
4. 1 mW/cm ²	•	2	240 207	224	192	.376	.392	39.0	492	0.45	1,093
5. Control		æ	297 229	298	266	.390	.385	38.5	691		1,280
6. 1 mW/cm ²		e	194	186	154	.388	.401	39.5	390 0.29 b		1,345

143Lt 1 (Cont'd.)

	Incubation time (hr)	cpm .l mT	Avg.	-Bkg	B/A ratio	Avg.	84 EE F	dpm 1 mT	ug DNA	dpm ug DNA
	E. Effect of 1 DNA repair.	Effect of 1.2-GHz continuous-wave radiation at 10 mW/cm² on UV-induced DNA repair.	continu	ious-wave	radiation	at 10	mw/cm2 o	n UV-indu	ced	
1. Control	-	302 195	249	225	.387	.394	37.5	009	1.34	448
2. 10 mW/cm ²	-	141 160	151	127	.407	.416	39.0	326	0.64	509
3. Control	2	291 396	344	320	.396	.385	37.0	865	0.86	1,006
4. 10 mW/cm ²	2	304 289	297	273	.363	.370	35.8	763	0.8	954
5. Control	т	238 205	222	198	.375	.390	37.2	532	0.58	917
6. 10 mW/cm ²	ю	70	7.5	51	.471	.454	41.2	124	0.1	1,240

TABLE 2. DEA REPAIR STUDY: 1.2-SEZ FRESH-WARF GEDIATION++ 37°C [Table t in Tolume : 4]

į												
1		Incu	Incubation time (hr)	cpm .1 m1	Avg.	-Bkg	B/A ratio	Avg.	%Eff	dpm 1 ml	PNG DH	dpm ng DNA
		4	UV-inc vs. Cor	UV-induced repair replication in anechoic chamber with generator <u>on</u> , in Exposure vs. Control Position. The cells were <u>not</u> exposed to RFR.	replica n. The	tion in a cells we	nechoic re <u>not</u> e	chamber y	with gene o RFR.	erator on	in Expos	ure
÷	l. Control Positio	sition	-	94 107	101	11	.376	.400	39	197	0.7	281
2.	2. Exposure Posit	osition		69	69	45	.485	.482	44	102	0.3	340
3.	3. Control Positio	sition	е	120 118	119	95	.425	.424	41	232	0.4	580
4.	4. Exposure Posit	osition	3	139 138	139	115	.402	.400	39	295	0.51	578
		. 80	Back in a were r	ound level of radioactivity incorporated into DNA of cells without UV exposure choic chamber with generator on, in Exposure vs. Control Position. The cells not exposed to RFR.	f radio r with o RFR.	activity generator	on, in	ated inte Exposure	o DNA of vs. Contr	cells wit rol Positi	hout UV e on. The	
÷	1. Control Positio	sition	က	37 40	39	15	.585	.572	47	32	0.4	80
· 2	2. Exposure Positi	osition	8	43 40	42	18	.525	.536	45	40	40 0.45	88

The second of th

	Incubation time (hr)	cpm .1 mT	Avg.	-Bkg	B/A ratio	Avg.	\$Eff	dpm .1 m1	19 DNA	dpm ug DNA
	C. Assay	Assay for induction of repair synthesis by 1.2 GHz non-UV irradiated cells.	on of re	pair syn	thesis by	1.2 GHZ		pulse-wave radiation in	tion in	
1. Control	т	51 53	25	28	.509	.495	43	99	0.95	68
2. RFR (10 mW/cm ²)	ю	33 32	33	6	.593	695*	47	19	0.4	64
	D. Effect	Effect of 1.2-GHz		ave radi	pulse-wave radiation at	1 mW/cm ²	on UV-1	on UV-induced DNA	A repair.	
1. Control	1	57 57	57	33	.491	.469	43	11	0.2	385
2. 1 mW/cm ²	11	73	73	49	.438	.431	41	120	0.28	429
3. Control	2	97 93	96	7.1	.453	.460	43	165	0.26	635
4. 1 mW/cm ²	2	126 132	129	105	.396	.406	40	263	0.42	929
5. Control	в	64 57	61	37	.492	.474	44	84	9.05	1,680
6. 1 mW/cm ²		167 149	158	134	.389	.406	40	335	35 0.45 7	744
									1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

TABLE 2 (Cont'd.)

	Incubation time (hr)	c pm	Avg.	-8kg	B/A ratio	Avg.	8 E f f	dpm .1 mT	μg DNA	dpm pg DNA
	E. Effect	of 1.2-GHz	pulse-w	ave radi	ation at	10 mW/cm ²	on UV-	induced	Effect of 1.2-GHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair.	
1. Control	1	81 81	81	57	.450	.453	40	143	0.5	286
2. 10 mW/cm ²		38 43	41	17	.540	.572	47	36	0.15	240
3. Control	7	85 85	82	61	.452	.461	41	149	0.35	426
4. 10 mW/cm ²	2	119 114	117	93	.386	.405	38	245	0.33	742
5. Control	m	105 107	106	82	.419	.436	39	210	0.38	553
6. 10 mW/cm ²	m	146 151	149	125	.413	.407	38	329	9.0	548

TABLE 3. CHA DEPAIR STUDY: 350-MHz CONTINUOUS-DAVE RADIATION -- 37°C [Table 7 in Volume I 4]

		Incubation	ion	c p m		248	B/A		9 9 1 8	wdp	P DNA	md p
-		רוווה (וונ)		1 .	-fia	- bkg	9110	AV G.	7F 1 1	- H	1 111	AND Du
		A. UV- The	-induce cells	UV-induced repair replication in Ti The cells were <u>not</u> exposed to RFR.	replica expose	tion in d to RFR	TEM Cham.	ber with	generato	r <u>on</u> , vs.	UV-induced repair replication in TEM Chamber with generator <u>on</u> , vs. in Sham Chamber. The cells were <u>not</u> exposed to RFR.	namber.
<u>.</u>	1. Sham Chamber	က		385 469	427	402	.309	.315	32	1,256	2.1	598
2.	2. Generator <u>o</u> n, TEM Chamber	က		311 306	309	284	.327	.330	33	861	1.35	638
		B. Bac in to	Backgroun in TEM Ch to RFR.	id level c amber wit	of radio th gener	activity ator <u>on</u> ,	incorpo vs.in S	rated int ham Chamt	o DNA of ser. The	cells wi	Background level of radioactivity incorporated into DNA of cells without UV exposure in TEM Chamber with generator <u>on</u> , vs. in Sham Chamber. The cells were <u>not</u> exposed to RFR.	exposure
:	l. Sham Chamber	က		57 57	57	33	.491	.491	43	11	1.3	59
2.	2. Generator <u>on</u> , TEM Chamber	es .		48 45	47	22	.416	.447	40	55 Cont (4.	55 0.63 (Cont'd, on next page)	87

a tajer to <u>tran 6</u> in the precolling list of "Rejerences."

TABLE 3 (Cont'd.)

	Incubation time (hr)	cpm .1 mT	Avg.	-Bkg	B/A ratio	Avg.	%Eff	dpm .1 m1	PO DNA	dpm ng DNA
	C. Assay for in non-UV	r induction of repair / irradiated cells.	on of re ed cell		synthesis by	350 MH2		continuous-wave	radiation	
1. Control	æ	42 46	4 4	19	.422	.449	40	48	0.63	16
2. RFR (10 mW/cm ²)	3	55 51	53	28	.454	.427	39	72	1.0	72
	D. Effect of	F 350-MHz		continuous-wave	radiation	at 1	mW/cm ² on	UV-induced DNA		repair.
1. Control	-	155 146	151	126	.367	.370	36	350	0.8	438
2. 1 mW/cm ² on	1	116 119	118	93	.387	.380	36	258	0.62	417
3. Control	2	183 167	175	150	.362	.361	35	429	0.68	631
4. 1 mW/cm ²	2	1117	118	93	.364	.367	35	266	0.41	649
5. Control	3	135 135	135	110	.377	.374	36	306	0.38	805
6. 1 mW/cm ²	æ	210 210	210	185	.352	.350	35	529	0.69	167
									1	

TABLE 3 (Cent'd.)

		Incubation time (hr)	cpm .1 mT	Avg.	-Bkg	B/A ratio	Avg.	%Eff	dpm 1 mT	на DNA 1 m	dpm ug DNA
1		E. Effect of 3. DNA repair.	Effect of 350-MHz continuous-wave radiation at 10 mW/cm² on UV-induced DNA repair.	continu	Ous-wave	radiation	at 10	mW/cm ² or	υV-indu	ced	
1.	1. Control	-	89 91	06	99	.443	.433	40	165	0.78	212
2.	2. 10 mW/cm ²	-	118 123	121	97	.389	.389	37	262	1.1	238
3.	3. Control	2	128 118	123	66	.433	.396	38	261	0.85	307
4	4. 10 mW/cm ²	2	119 120	120	96	.403	.412	39.	246	0.7	351
5.	5. Control	ю	77 80	62	55	.467	.442	40	138	0.42	329
9	6. 10 mW/cm ²	က	170	168	144	.382	.380	37	389	0.95	409

TOBLE 4. ONA REPAIR STORY: 310-MHz PRESELANG FATIATION = 37°C. ETABLE POINT VOLUME 1 1]

1 1		Incu	ncubation ime (hr)	c pm	Avg.	-Bkg	B/A ratio	Avg.	8E f f	dpm .1 mT	ug DNA	дрш из ВиА
		۸.	HV-induce The cells	NV-induced repair r The cells were <u>not</u>	replication t_exposed to	UV-induced repair replication in TEM Chamber with generator <u>on</u> , vs.in Sham Chamber. The cells were <u>not</u> exposed to RFR.	ЕМ Сһашbел	with	generator	.sv . no	in Sham (hamber.
.:	1. Sham Chamber		1	878 862	870	847	.386	.383	37	2,289	1.7	1,347
2.	2. Generator <u>on,</u> TEM Chamber	•		632 653	643	620	.386	.379	37	1,676	1.25	1,341
÷	3. Sham Chamber		ъ П	1,331	1,344	1,320	.368	.370	36	3,667	1.78	2,060
4.	4. Generator on, TEM Chamber		ж 	1,278	1,274	1,250	.374	.377	36	3,472	1.45	2,395
		• •	Backgrour in TEM Ch to RFR.	nd level hamber wii	of radic th gene	Background level of radioactivity incorporated into DNA of cells without UV exposure in TEM Chamber with generator on, vs. in Sham Chamber. The cells were not exposed to RFR.	incorporat vs.in Sha	ed int im Cham	o DNA of ber. The	cells wit	thout UV ere <u>not</u> e	exposure xposed
<u>.</u>	1. Sham Chamber		ဗ	356 357	357	334	.433	.434	38	879	1.48	594
2.	2. Generator <u>on</u> , TEM Chamber	•	E	154 150	152	129	.402	.406	37	349 1.24 (1941), on near gage)	1.24 t gage)	281

The transfer of the property of the transfer of

Apply 3 (Lont' 1.)

		Inc	ncubation time (hr)	cpm .1 mT	Avg.	-8kg	B/A ratio	Avg.	%Eff	dpm .1 mT	ug DNA	dрш иg DNA
		ن.	Assay for irradiate	Assay for inductic irradiated cells.	on of r	epair syn	Assay for induction of repair synthesis by 350-MHz irradiated cells.	350-MHz		pulse-wave radiation in non-UV	ton in	non-UV
. c	1. Control		E.	54 56	55	32	.500	.495	42	9/	0	;
2. R (2. RFR (10 mW/cm ²)		es	239 239	239	216	.424	.436	39	554	0.8	692
		0.	Effect of	F 350-MHz	pulse-	pulse-wave radiation at		1 mW/cm ²	on UV-induced	nduced DNA	repair.	
1. 0	1. Control		-	121 112	117	94	.475	.461	40	235	0.25	940
2. 1	2. 1 mW/cm ²		-	535 543	539	516	.433	.427	38	1,358	0.7	1,940
3. C	3. Control		2	631 620	929	603	.428	.423	38	1,587	0.75	2,116
4. 1	4. 1 mW/cm ²		2	712 722	717	694	.428 .421	.425	38	1,826	0.75	2,435
5. C	5. Control		က	350 347	349	326	.417	.422	38	858	0.5	1,716
6. 1	6. 1 mW/cm ²		က	333 523	428	405	.349	.345	33	1,227	0.7	1,753

TABLE 4 (Cont'd.)

	Incubation time (hr)	c pm	Avg.	-8kg	B/A ratio	Avg.	%Eff	dp 1 mT	ng DNA	dpm ug nnA
	E. Effect o	f 350-MHz	pulse-w	ave radi	ation at	10 mW/cm ²	on UV-	.induced	Effect of 350-MHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair.	
1. Control	1	483 457	470	447	.376	.386	37	1,208	1.24	974
2. 10 mW/cm ²	1	567 570	569	545	.382	.380	37	1,473	1.58	932
3. Control	2	693 754	724	700	.372	.366	36	1,944	1.2	1,620
4. 10 mW/cm ² ^a	2 2	535 523	529	506	.376	.374	36	1,406	0.98	1,434
5. Control	က	910 922	916	893	.365	.367	36	2,481	1.48	1,676
6. 10 mW/cm ²	м	910 893	902	878	.369	.368	36	2,439	1.43	1,706

" That die an from a continuous-rare exposine, not a pulse-rure experience.

TABLE 5. SMITH AND HANAWALT $(6)^{lpha}$ TECHNIQUE COMPARISON

Sample	cpm 1 mT	Avg	-8kg (30 cpm)	B/A ratio	Avg	geff	dpm .1 mT	LI ml	dpm ug DNA
Smith and	Hanawalt	اند							
0-sec UV	1,534	1,533	1,503	.431	.424	34	4,421	1.0	4,421
8-sec UV	1,961 2,187	2,074	2,044	.439	.430	35	5,840	1.6	3,650
15-sec UV	2,333	2,247	2,217	.432	.429	35	6,334	1.9	3,334
25-sec UV	1,394	1,482	1,452	.393	. 400	33	4,400	1.6	2,750
Old Method - 1 gradient	od - 1 gr	adlent							
0-sec UV	303 279	162	261	. 494	.501	39	699	0.38	1,761
8-sec UV	612 612	612	285	.487	.482	38	1,532	4.0	3,829
15-sec UV	v 557 549	553	523	.491	.485	38	1,376	0.3	4,588
25-sec UV	v 505 236	s0s q	475	.432	.432	35	1,443	0.3	4,810

² Refer to item 6 in the preceding list of "References."

The replicate opm was less than half of the indicated value. Its use in the average would have resulted in a 3-hr dpm/vg being less than the 2-hr value and, therefore, was not used in the computation shown.

TABLE * . TERROT OF RUR (FO mW /cm²) ON SEMI-CONTERVATION FOR SENTENCES

) 	5.	hΑγ	-4kg	8/A ratio	βAυ	åE f	dpm in	ANC gu	dpm Lt 0NA
35,1-482	10020	ä							
-nr control	100. 135. 136.	9,152	9,129	.335	.336	34	25,347	- • 3)	5,593
nr 10 1w/cm2 .5,3	13,371 11,255	15,113	15,089	.331	.335	34	44,379	1.1	3,442
350-MHz	PW (37°C):	: :a							
1-hr control	59,169	59,628	509,605	.359	.361	35	170,300	2.1	31,095
1-hr 10 mW/cm ² 53,55 18,90	nW/cm ² 53,630 18,947	5:,289	51,265	.335	688.	34	150,779	3.55	91,381
350-MHZ	CM (37°5):	;;							
1-nr control	trul 3,624 3,509	3,567	3,537	.431	.433	356	9,935	2.3	3,548
1_nr 10 mW/cm ² 5,33	mW/cm ² 6,372 5,323	5,348	5,318	.357	.353	30	19,393	₩ ₩	5,104

Togethers standing them Historian emperations to serve the second server the second se

e [dup	cpin . I :nl	Avg	-3kg	8/A ratio	Avg	\$Eff	dpm .1 m]	ug DNA	A dpm
350-MHZ	(3 ₀ 68) Md	:(0)							
1-hr control 31	trol 31,611 29,549	30,558	30,536	415	\$14.	36	34,383	2.12	35,076
1-hr 10	1-hr 10 mW/cm ² 30,705 30,944	30,825	30,803	.413	.412	36	85,563	2.26	37,360
850-MHz	PW (39°C):	:: ::							
1-hr control	trol 17,133 16,706	16,920	16,897	.471	.471	34	49,697	1.7	29,234
1-hr 10	1-hr 10 mW/cm ² 20,150 19,905	20,028	20,005	.470	.472	34	58,837	6.1	30,967
1.2-GHZ	PW (39°C):	: ::							
l-hr control	trol 15,726 15,144	15,435	15,409	.459	.457	34	45,321		41,201
1-hr 10 mW/cm ² 17,10 17,71	mW/cm ² 17,105 17,716	17,411	17,385	.432	.431	32	54,327	다 .그	38,305

FOLE T. ONA REPAIR STUDY: ACC-MAY CONTINCOS-MANE PACINITION-LANCE

	Incu	Incubation time (hr)	cpm .1 ml	-8kg B/A (30 cpm) ratio	B/A ratio	%Eff	dpm .1 mT	PA DNA	dpm ug DNA	Avg dpm	
	A	UV-induced repair replication in an anecholdishes in the exposure vs. control position.	d repair the expo uency rad	replicat Sure vs. Hation.	ton in control	an anecho position	of chamb	er with t	UV-induced repair replication in an anechoic chamber with the generator <u>on</u> dishes in the exposure vs.control position. The cells were <u>not</u> exposed to radiofrequency radiation.	tor on, sed to	culture
i. Control Position			211 218	181 188	.466	38 37	476 508	2.3	20 <i>7</i> 221	214	
2. Exposure Position		1	390 343	360 313	.438	36 36	1000 869	4.3	233 202	218	
3. Control Position		ю	45 <i>7</i> 454	427 424	.459	37	1154 1146	2.6	444	443	
4. Exposure Position		9	496 492	466 462	444	3 <i>7</i> 36	1259 1283	3.0	420 428	424	
	8	Backgroun in an ane control p	d ievel o choic cha osition.	of radioa Imber wit The cel	ctivity h the ge ls were	incorpor enerator not expo	ated int	o DNA of ure dishe adiofrequ	Background level of radioactivity incorporated into DNA of cells without UV exposure in an anechoic chamber with the generator on, culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation.	hout UV exposure atton.	exposure vs.
1. Control Position		е	60 59	30 29	.474	38 42	99	1.5	53 46	20	
2. Exposure Position		ю	90 94	60 64	.500	40 39	150 164	2.4	63 68	99	

1. Control 3 54 51 2. RFR 3 43 43 (10 mW/cm²) 1. Control 1. Control 3. Control 3. Control 3. Control 4. 1 mW/cm² 2 293 4. 1 mW/cm² 3 225 5. 293	the induction of repair synthesis	(30 chm)	SEFF	. l m l	.1 ml	μg DNA	ng DNA
3 3 1 1 2 2 2	I in non-UV-irradiated cells	of repair diated cel	synthes is is		-MHZ cont	by 850-MHz continuous wave	1ve
3 D. Effect of 1 1 2 2 2	54 24 51 21	.529	40	60 50	1.4	43 36	40
D. Effect of 1 2 2 2	43 13 143 113	.558	43 36	30 314	0.05	600 6280	3440
2 2 6	850-MHz	continuous-wave	radiation		at 1 mW/cm² on U	UV-Induced	1 DNA repair
. 2 2 .	214 184 225 195	.455	37 38	497 513	1.5	331 342	337
0 0 F	202 172 196 166	.465	38 37	453 449	1.7	266 264	592
2 6	148 118 162 132	.459	38 37	311 357	0.7	444 510	477
~	293 263 188 158	.320	28 32	939 494	1.2	783 412	298
2	222 192 232 202	.457	37 36	519 561	6.0	577 623	009
6. 1 mW/cm ² 3 251 389	251 221 389 359	.384	32 30	691 1197	1.5	461 798	630

TABLE ? (C.n.t'd.)

l											
	1	Incubation time (hr)	cpm .1 ml	-Bkg B/A (30 cpm) ratio	B/A ratio	%Eff	dpm 1 mT	PA DNA	dpm ug DNA	Avg dpm	- ,
		E. Effect of	F 850-MHz	continuo	US-WAVE	radiation	at 10	Effect of 850-MHz continuous-wave radiation at 10 mW/cm² on UV-induced DNA repair	UV-1nduc	ed DNA	epair
-	1. Control	-	187 168	157 138	.326	28 33	561 418	6.0	623 464	544	
2.	2. 10 mW/cm ²	-	140 225	110 195	.438	36 33	306 591	1.4	219 422	321	
ë.	3. Control	8	159 148	129 118	.481	39 38	331 311	8.0	414	402	
4	4. 10 mW/cm ²	7	130 116	100 86	.418	35 38	286 226	0.7	409 323	366	
5.	5. Control	m	36 36	9 9	.583	4.4 5	14	No Yield	<u>.</u>	!!	
•	6. 10 mW/cm ²	ю	175 180	145 150	.459	37	392 375	6.0	436	427	

752.E . THA TERAIR STRING FOLHAMMAR FOLDE-GAME RATIATION-3750

	Inc.	ncubation ime (hr)	cpm 1 mT	-Bkg (30 cpm)	B/A ratio	\$Eff	mdb Tm I.	DNA DIE	d dpm	Avg dpm	
	¥.	UV-induci dishes i radiofre	UV-induced repair replication in an anechoic chamber with the generator dishes in the exposure vs. control position. The ceils were not exposed radiofrequency radiation.	replicat sure vs. diation.	ton in a	in anechot position.	chamber The ce	r with	chamber with the gener The cells were not exp	exposed to	culture
1. Control Position	••	1	199 199	169 169	.457	3 <i>7</i> 36	457 469	0.7	653 670	2 299	
2. Exposure a Position	а		251 265	221 235	.428	35 36	631 653	0.9	701	714 4	
3. Control Position		æ	315 270	285 240	.324	28 32	1018 750	8.0	1273 938	1106	
4. Exposure Position		m	736 729	706 699	.429	35 35	2017 1997	1.2	1681 1664	1673	
	8	Backgrou in an an control	Background level of radioactivity incorporated into DNA of cells without UV in an anechoic chamber with the generator on, culture dishes in the exposure control position. The cells were <u>not</u> exposed to radiofrequency radiation.	of radioa amber wit The cel	ctivity h the ge ls were	incorpora enerator not expos	ated into on, cultu sed to ra	DNA o re dis diofre	f cells withes in the quency rad	thout UV exposure fation.	exposure vs.
1. Control Position		٣	12 <i>7</i> 130	97 100	.492	40	243 270	6.0	270 300	285	
2. Exposure Position		ဇာ	96 66	99	.438 .494	36 40	192 165	8.0	240 223 206 (Clast'd, on neat page)	223	

the section was the survey on the suct to him of the salesting period.

	1.1 1.1 1.1	Incubation time (hr)	cpm .1 mT	-8kg (30 cpm)	B/A ratio	XEFF	dpm .1 mT	P DNA	dpm ug DNA	Avg dpm
	ပ်	Assay for in non-UV	the in —irradi	Assay for the induction of repair synthesis by 850-MHz pulse-wave radiation in non-UV-irradiated cells	repair	synthesi	s by 850-	MHz puls	e-wave ra	diation
1. Control		m	38 43	13	.552	43 45	19 29	0.2	95 145	120
2. RFR (10 mW/cm ²)		m	5 <i>7</i> 58	2 <i>7</i> 28	.517	41	66 8	0.3	220 227	224
	0.	Effect of	850-MHz	iz pulse-wave radiation at	ve radio	tion at	1 mW/cm ²	on UV-1n	1 mW/cm² on UV-induced DNA	repair
1. Control		7	369 469	339 439	.319	28 25	1211 1756	2.0	606 878	142
2. 1 mW/cm ²			531 499	501 469	.412	34 36	1474 1303	1.7	867 766	817
3. Control		~	26 <i>7</i> 268	23 <i>7</i> 238	.439	36 38	658 626	9.0	1097 1043	1070
4. 1 mW/cm ²		2	702 728	672 698	.413	34 35	1976 1994	1.4	1411 1424	1418
5. Control		m	1061 872	1031 842	.424	35 35	2946 2406	1.5	1964 1604	1784
6. 1 mW/cm ²		e	839 795	809 765	.366	31	2610 2468	1.9	1374	1337

710, 1 . (Cent' 1.)

į		Incubation time (hr)	n cpm	-Bkg B/A (30 cpm) ratio	B/A ratio	SEFF	dpm 1 ml	PA DNA	dpm ug DNA	Avg dpm
		E. Effect	Effect of 850-MHz	pulse-wa	ve radia	tion at	pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair	on UV-1	nduced DN/	repair
•	1. Control	-	478 496	448 466	.426	35 35	1280 1331	1.9	674 701	688
	2. 10 mW/cm ²	-	494 534	464 504	.365	313	149 <i>7</i> 1626	2.3	651 707	619
	3. Control	8	$\begin{array}{c} \textbf{166} \\ \textbf{148} \\ \textbf{b} \end{array}$	$\begin{array}{c} \textbf{136} \ b \\ \textbf{118} \ b \end{array}$.455	38 37	$\begin{array}{c} \textbf{358} \ b \\ \textbf{319} \ b \end{array}$	6.0	159 141	150
	4. 10 mW/cm ²	2	108 128	78 98	.500	40 36	195 272	0.2	975 1360	1168
•	5. Control	m	624 631	594 601	.431	35 35	1697 1717	1.2	1414 1431	1423
•	6. 10 mW/cm ²	က	1259 1271	1229 1241	.433	36 35	3414 3546	2.4	1423 1478	1451

have outlined are for 0.26 ml, not 0.1 ml.

TABLE 9. DNA REPAIR STUDY: 1...GHZ PULSE-WAVE RADIATION--37 $^{\rm 0}{\rm C}$

1. Control 3. Control 4. Exposure 8. Background level of ramber with the generator on culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation. 2. Exposure dishes in the exposure vs. control position. The cells were not exposed to radio culture dishes in the exposure vs. control position. 3. Control dishes in the exposure vs. control position. The cells were not exposure dishes in the exposure vs. control position. The cells were not exposure position. 3. Control dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation. 3. Control dishes the dishes of the cells were not exposed to radiofrequency radiation. The exposure of the control position of the cells were not exposed to radiofrequency radiation. The cells were not exposure of the cells were not exposed to radiofrequency radiation. The cells were not exposure of the control position of the control of the control of the cells were not exposure of the control of the c	- 1		Inc	Incubation time (hr)	CPM .	-Bkg (30 cpm)	B/A ratio	SEFF	dpm.	ng DNA	dpm ug DNA	Avg dpm	E I
œ.			¥.	UV-induc dishes radiofre	ced repair In the exp	replicat osure vs. diation.	ion in control	an anechoi position,		er with tells were	the genera not expo	itor on,	culture
œ	•	Control Position		-	727 662	69 <i>7</i> 632	.433	32 34	2178 1859	1.15	1894 1617	1756	
.	•	Exposure Position		-	sample	lost							
.		Control Position		ဗ	152 159	122 129	.506	37 39	330 331	0.1	3297 3310	3304	
œ œ	•	Exposure Position		ю	1835 1922	1805 1892	.450	8 8 8 8	5470 5733	1.75	3126 3276	3201	
3 225 195 .482 35 557 1.9 293 222 192 .488 36 533 281 3 212 182 .481 35 520 1.85 281 208 178 .478 35 509 275			.	Backgrou in an at	und level nectoic ch position.	of radioa amber wit The cel	ctivity the general series	incorpore enerator not expos	ated int	o DNA of ure dishe	cells wit is in the	chout UV exposuriation.	exposur e vs.
3 212 182 .481 35 520 1.85 281 20 208 178 .478 35 509 275	•	Control Position		m	225	195 192	.482	35 36	557 533	1.9	293 281	287	
	.•	Exposure Position		m	212 208	182 178	.481	35	520 509	1.85	281 275	278	

TERLE 9 (Cont'd.

(Inc Eff	Incubation time (hr)	cpm Tm T.	-Bkg (30 cpm)	B/A ratio	XEFF	dpm 1 m1	ug DNA	dpm ug DNA	Avg dpm
1		ပ	Assay for in non-UV	the indi	Assay for the induction of repair synthesis by 1.2-GHz pulse-wave radiation in non-UV irradiated cells	repair	synthes	s by 1.2-	GHz puls	e-wave ra	diation
-:	1. Control		ю	534 523	504 493	487	36 36	1400 1369	1.1	1273 1245	1259
2.	RFR (10 mW/cm ²)		m	215 243	185 213	.353	27	685 789	0.85	806 928	867
		0	Effect of 1.2-GHz	1.2-GHz	pulse-wave radiation at	e radia		1 mW/cm ²	on UV-tn	on UV-induced DNA	repair
1.	1. Control		1	443 436	413 406	.555	40 39	1033 1041	0.3	3443 3470	3457
2.	2. 1 mW/cm ²		⊷	838 870	808 840	540 525	38 38	2072 2211	0.5	4144	4283
	3. Control		2	266 255	236 225	.533	40 39	590 577	0.09	6556 6411	6484
4.	4. 1 mW/cm ²		2	985 994	955 964	.495	36 38	2653 2537	0.5	5306 5074	5190
5.	5. Control		m	1058 1043	1028 1013	.533 .535	39 39	2636 2597	0.35	7531 7420	7476
9	6. 1 mW/cm ²		m	1259 1232	1229 1202	.532	3.9 3.8	3151 3163	0.4	7878 7908	7893

(Cont'd. on next page)

TABLE 9 (Cont'd.)

1		Incubation time (hr)	c pm	-8kg F (30 cpm) re	B/A ratio	%E f f	dpm 1.	LI DNA	d pm b DNA	Avg dpm	ł
		E. Effect	Effect of 1.2-GHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair	pulse-wa	ve radia	tion at	10 mW/cm ²	on UV-1	nduced DN	A repair	1
:	1. Control	1	213 218	183 188	.504	37	495 495	0.3	1650 1650	1650	
5	2. 10 mW/cm ²	1	701 716	671 686	.470	35 35	191 <i>7</i> 1960	0.85	2255 2306	2281	
ë.	3. Control	8	1347 1344	1317 1314	.537	33	3377 3369	0.65	5195 5183	5189	
4.	4. 10 mW/cm ²	8	821 849	791 819	.520	38 37	2082 2214	0.7	2974 3163	3069	
5.	5. Control	т	1413 1316	1383 1286	.531	39 38	3546 3384	9.0	5910 5640	5775	
•	6. 10 mW/cm ²	က	1699 1755	1669 1725	.533	39 39	4279	0.7	6113	6216	

TODIE 10. DNA REPAIR STORFE SEG-MAR CONTINUOUS-MAYE RADIATION--37°C

	Incubation :ime (hr)	n cpm	-8kg (23 cpm)	B/A ratio	%Eff	dpm 1 m1	P DNA	dpm uq DNA	Avg dpm
	A. UV indicate radio	UV induced repair replication in an anechoic chamber with the generator dishes in the exposure vs. control position. The cells were not exposed radiofrequency radiation.	replicat osure vs. diation.	ton in control	in anechor position	c chambe The ce	iber with the ge cells were not	he generator not exposed	tor on, culture
1. Control Position	-	313	290 284	0.500	35 35	829 811	0.3	2762 2703	2733
2. Exposure Position	~	51 <i>7</i> 505	494 482	0.497	35 34	1411 1418	0.5	2822 2836	2829
3. Control Position	m	493 476	470 453	0.481	33 35	1424 1294	0.3	4747	4530
4. Exposure Position	m	1268 1267	1245 1244	0.481	33 34	3773 3659	9.0	6288 6098	6193
	B. Backgr in an contro	Background level of radioactivity incorporated into DNA of cells without UV ein an anechoic chamber with the generator on, culture dishes in the exposure control position. The cells were <u>not</u> exposed to radiofrequency radiation.	of radioa amber wit The cel	ctivity h the ge ls were	incorpora inerator not expos	nted into on, cultused to ra	DNA of re dished	cells with s in the ency radia	Background level of radioactivity incorporated into DNA of cells without UV exposure in an anechoic chamber with the generator on, culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation.
1. Control Position	æ	120 121	37 98	3.544 0.550	37 38	262 258	1.3	202 198	200
2. Exposure Position	က	123 127	100 104	0.560	38 37	263 281	1.0	263 281	272

] - 	Incubation time (hr)	cpm .1 mT	-8kg (23 cpm)	B/A ratio	XEFF	dpm .1 mT	P DNA	dpm ng DNA	Avg dpm
	ن	Assay for radiation	the inditional	uction of JV-irradi	repair ated cel	the induction of repair synthesis in non-UV-irradiated cells	Ьу	850 MHz cont	continuous wave	1 v e
i. Control		m	121 132	98 109	0.541	37 36	265 303	1.0	265 303	284
2. RFR (10 mW/cm ²)		m	121 121	98 98	0.550	38 35	258 280	6.0	287 311	562
	0	Effect of	850-MHZ	continuous-wave	us-wave	radiation at 1 mW/cm² on	n at I mW	/cm² on U	UV-fnduced	1 DNA repair
1. Control		-	895 892	872 869	0.490	34 34	2565 2556	1.0	2565 2556	2561
2. 1 mW/cm ²		-	1065 1030	1042 1007	0.497	35 35	2977 2877	1.2	2481 2398	2440
3. Control		2	641 628	618 605	0.486	34 33	1818 1833	9.0	3030 3055	3043
. 1 mW/cm ²		2	1286 1254	1263 1231	0.486	34 34	3715 3621	1.1	3377	3335
5. Control		ю	1497 1464	1474	0.479	34 33	4335	1.0	4335	4351
6. 1 mW/cm ²		3	1693 1705	1670 1682	0.484	3.4 4.4	4912 4947	1.0	4912	4930

[ABLL 10 (Cont'd.)

												- 1
		Incubation time (hr)	tion hr)	cpm .1 mT	-Bkg B/A (23 cpm) ratio	B/A ratio	SEFF	dpm.	NO 64	dpm ug DNA	Avg dpm	1
1		E. Ef	fect of	F 850-MHZ	continuo	us-wave	radiation	at 10	mW/cm2 on	UV-Induc	E. Effect of 850-MHz continuous-wave radiation at 10 mW/cm² on UV-induced DNA repair	
1.	1. Control	1		1319 1272	1296 1249	0.492	34 35	3812 3569	1.8	2118 1983	2051	
2.	2. 10 mW/cm ²	7		743 540	720 517	0.439	31 34	2323 1521	$\frac{1.2}{(1.0)}^a$	1936(2323) 1268(1521)	3) 1602 1) (1922)	
e.	3. Control	S	amples	Samples lost due to water bath overflow during exposure	to water	bath ove	rflow dur	ing exp	osure			
4.	4. 10 mW/cm ²	Sam	ples l	Samples lost due to water bath overflow during exposure	o water ba	ith overf	low durin	e expos	ure			
5.	5. Control	t.		1633 1582	1610 1559	0.493 0.486	3 A A	4735 4585	1.2	3946 3821	3884	
ø.	6. 10 mW/cm ²	(*)	m	1367 1374	1344 1351	0.491	34 34	3953 3974	1.0	3953 3974	3964	

* Table from the Windumbher regulation of the high facts within 1," and proclaimed him is resulted.

to the the inpure the words of late my that we have a selected as a second to the sere.

Comment of the control of the contro

	Incubation	n cpm	-8kg '23 cpm)	B/A ratio	\$Eff	dpm .1 ml	ug DNA	dpm dp DNA	Avg dpm ug DNA
	A. UV inc	UV induced repair replication in an anechoic chamber with the generator on, dishes in the exposure vs.control position. The cells were <u>not</u> exposed to radiofrequency radiation.	r replicat bosure vs. adiation.	ion in a control	n anecho position	oic chambi	er with t	he general not expo	tor on, culture sed to
1. Control Position	-	1176	1153 1138	.484	34 35	3391 3251	1.2	2826 2709	2768
2. Exposure Position		1204 1166	1181	.485	35 35	3374 3266	1.3	2595 2512	2554
3. Control Position	3	1663 1668	1640 1645	.484	35 35	4686 4700	1.3	3605 3615	3610
4. Exposure Position	က	1834 1860	1811 1837	.479	35 35	51 <i>7</i> 4 5249	1.3	3980 4038	4009
	B. Backgi in an contro	round level anechoic ch ol position.	of radioa namber wit The cel	ctivity h the ge ls were	incorpor nerator not expo	on cultivised to re	o DNA of ure dishe adiofrequ	cells with s in the ency radia	Background level of radioactivity incorporated into DNA of cells without UV exposure in an anechoic chamber with the generator on, culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation.
1. Control Position	m	73 80	50 5 <i>7</i>	.589	4 1	122 143	0.3	407	442
2. Exposure Position	3	176	153	.511	3 <i>7</i> 36	414 408	1.0	414 408	411

TABLE 11 (Cont'd.)

		Incu	Incubation time (hr)	c pm	cpm -8kg	B/A ratio	%Eff	dpm 1 ml	Im I.	AND 64	Avg dpm	
		ن	Assay for in non-UV	the in	Assay for the induction of repair synthesis by 850-MHz pulse-wave radiation (39°C) in non-UV-irradiated cells	repair	synthesi	s by 850	MHz pul	SE-WAVE F	adiation	(3,68)
1. Control	.01		æ	177	154	.519	37 37	416 408	0.5	832 816	824	
2. RFR (10 m	RFR (10 mW/cm ²)		3	181 173	158 150	.502	36 36	439	9.0	732 695	714	
		٥.	Effect of 850-MHz	. 850-Mŀ	4z pulse-wave radiation (39°C) at 1 mW/cm ²	ve radiá	ıtion (39	°C) at 1	mW/cm ²	0.0	UV-induced DNA	repair
1. Centrol	rol		-	1727 1684	1704 1661	.503	36 36	4733	1.7	2784 2714	2749	
2. 1 mW/cm ²	/cm ²		1	1746 1736	1723	.497	36 36	4786 4758	1.9	2519 2504	2512	
3. Control	rol		æ	2575 2440	2552 2417	.491	35 35	7291 6906	1.2	6076 5755	5916	
4. 1 mW/cm ²	/cm ²		m	2997 2935	2974 2912	.492	35 35	8497 8320	1.4	6069 5943	9009	

	Incubation time (hr)	CPM.	-8kg (23 cpm)	B/A ratio	XEFF	dpm I ml	PH DNA	dpm ug bNA	Avg dpm	
	E. Effect	Effect of 850-MHz pulse-wave radiation (39°C) at 10 mW/cm ²	pulse-wa	ve radia	tion (3	9°C) at 10	mW/cm ²	on UV-inc	on UV-induced DNA repair	repair
1. Control	1	1065 1014	1042 991	.492	35 35	2977 2831	0.7	4253	4149	
2. 10 mW/cm ²		1570 1605	154 <i>7</i> 1582	.489	35 36	4420 4394	1.1	4018 3995	4007	
3. Control	2	89 4 820	871 797	.501	36 36	2419 2214	0.3	8063 7380	1122	
4. 10 mW/cm ²	2	154 <i>7</i> 1588	1524 1565	.495 .495	36 36	4233	0.7	6047 6210	6159	
5. Control	e .	1269 1280	1246 1257	.498	36 35	3461 3591	0.4	8653 8978	8816	
6. 10 mW/cm ²	m	1781 1786	1758 1763	.506	36 36	4883 4897	0.7	9669 9669	9869	

 Ω_{a} , the state of the second of the second of the second of the second se

	Inc	Incubation ime (hr)	c pm	cpm -8kg B/A .1 ml (2/ cpm) ratio	B/A ratio	SEFF	dpm Im I.	P D D U	dpm ug DNA	Avg dpm
	B	Backgrouin an an	Background level of in an anechoic cham control position.	of radioa thamber with	ctivity h the g	incorpor enerator not expo	ated int on, cult sed to r	o DNA of ure dishe adiofrequ	cells wis s in the ency rad	Background level of radioactivity incorporated into DNA of cells without UV exposure in an anechoic chamber with the generator on, culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation.
1. Control Position		m	127	100 102	.535	38 38	263 268	0.7	376 383	380
2. Exposure Position		ĸ	135 138	10.	.570	40 40	270 278	6.0	300 309	305
	ر.	Assay f non-UV-	Assay for the induction non-UV-irradiated cells	nduction of ed cells	repair	synthesi	is by 1.2	-GHz puls	e-wave r	Assay for the induction of repair synthesis by 1.2-GHz pulse-wave radiation in non-UV-irradiated cells
1. Control		m	147	120 118	.462	40	300 288	0.7	429 411	420
2. RFR (10 mW/cm ²)		ĸ	169 168	142 141	.458	39 40	364 353	6.0	404 392	398
									· · · · · · · · · · · · · · · · · · ·	

1518 12 (Scat'd.)

	Incubation time (hr)	cpm .1 ml	-Bkg (;) cpm)	B/A ratio	SEFF	dpm .1 m1	DNA DNA	dpm ug DNA	Avg dpm
	D. Effect	Effect of 1.2-GHz pulse-wave radiation at 1 mW/cm² on UV-induced DNA repair	pulse-wa	ve radia	tion at	1 mW/cm ²	on UV-in	duced DNA	repair
1. Control	1	991 985	964 958	.416	37 36	2605 2661	1.8	1447 1478	1463
2. 1 mW/cm ²	-	1846 1822	1819 1795	.426	37	4916 4851	2.7	1821 1797	1809
3. Control	Э	1718 1762	1691 1735	.421	37 38	4570 4566	1.9	2405 2403	2404
4. 1 mW/cm ²	æ	1066 1011	1039 984	.420	37	2808 2659	1.2	2340 2216	2278
5. Control	en	835 709	808 682	.404	36 35	2244 1949	1.0	2244 1949	2097
6. 1 mW/cm ²	e	1455 1460	1428 1433	.377	35 35	4080 4094	1.6	2550 2559	2555

	Incubation :ime (hr)	cpm .1 ml	-8kg B,	B/A ratio	&E f f	dpm .1 ml	Lg DNA	dpm ug DNA	Avg dpm
	L. Effect o	f 1.2-GHZ	pulse-wa	ve radia	tion at	10 mW/cm ²	on UV-i	Effect of 1.2-GHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair	A repair
1. Control	1	615 638	588 611	.530	38 40	1547 1528	0.7 4	2210 2183	2197
2. 10 mW/cm ²	1	1224 1164	1197 1137	.538	39 38	3069 2992	1.3	2361 2302	2332
3. Control	2	1052 1066	1025 1039	.549	39 39	2628 2664	0.7	3754 3806	3780
4. 10 mW/cm ²	2	1108 1082	1081 1055	.556	40 39	2703 2705	0.7	3861 3864	3863
5. Control	e	1238 1194	1211 1167	.536	38 39	3187 2992	0.7	4553 4274	4414
6. 19 mW/cm ²	æ	1390	1363 1340	.535	38 38	358 <i>7</i> 3526	6.0	3986 3918	3952

is the control of the second of the Abusan bear resistantee (0.7 and 1.8 ra/0.1 m).
The control of 1.55 ray 0.4 ml alose a first ratue of 150 divine.

Table 75, 114 BEATH (Them 11.1-50 BILLEHANE BASEATICK-530C

	,			1	11 11 11 11 11 11 11							1
'		<u> </u>	cabatlon me_hrj) lal.	-15kg (24 cpm)	B/A ratio	%Eff	d pm	19 DHA	dpm ug DNA	Avg dpm	
		• \$7	is induced repair replicalishes in the exposure vs radiotrequency radiation.	d repair the exp	is induced repair replication in an anechoic chamber with the generator dishes in the exposure vs. control position. The cells were <u>not</u> exposed radiotrequency radiation.	ion in c control	an anecho position	oic chamb n. The c	er with tells were	he genera not expa	라	culture
_:	. tontrol Position	-		2759 2848	2735 2824	.424	36 3 <i>7</i>	7597 7632	1.4	5426 4351	5439	
.;	2. taposure Position			2302 236 <i>7</i>	2778 2843	.429	37 37	7508 7684	1.4	5363 5489	5426	
÷	3. control Position	-~1		3697 3698	3673	.426	37	992 <i>7</i> 9930	1.0	9927 9930	9929	
÷	4. Exposure Position	.×1		4439 4389	4415 4365	.424	36 37	12,264 11,797	1.4	8760 8426	8593	
		د.	background level cin an anechoic chacontrol position.	d level choic cl osition	background level of radioactivity incorporated into DNA of cells without UV exposure in an anechoic chamber with the generator <u>on,</u> culture dishes in the exposure vs. control position. The cells were <u>not</u> exposed to radiofrequency radiation.	ictivity h the ge is were	incorpor nerator not expe	rated int <u>on</u> , cult osed to r	o DNA of ure dishe adiofrequ	cells with sin the ency rad:	thout UV e exposure iation.	sxposure vs.
-	1. control Position	'n		494 505	470 481	.497	37	1270 1300	1.1	1155 1182	1169	
. 2	2. Exposure Position	2		796 796	112	.483 .488	36 36	2144 2144	1.2	1787	1787	
									Ž	Court to an month page?	gaend pa	

(1.1.4 m) 0 (1.1.4 m)

		Incu	Incubation time (hr)	cPm .1 mT	(24 cpm)	ratio	%Eff	. 1 mT	n ml	u DNA	ug DNA
		ن.	Assay for the induction non-UV-irradiated cells	r the ind	duction of deells	repair (9 mW/c	repair synthesis (9 mW/cm ²)	by 1.2-6Hz	-GHz puls	pulse-wave radiation	diation in
ပိ	1. Control		ო	681 678	65 <i>7</i> 654	.496	37 37	1776 1768	0.4	4440 4420	4430
2. RFR (9 r	RFR (9 mW/cm ²)		ဗ	928 965	904 941	.501	37 36	2443 2614	1.0	3490 3734	3612
		0.	Effect of	f 1.2-GHz	z pulse_wave radiation	e radia	tion at 1	mW/cm2		on UV-induced DNA	repair
Š	1. Control		=	1440 1436	1416 1412	.433	37 38	3827 3716	0.4	9568 9290	9429
-	2. 1 mW/cm ²		1	1312 1283	1288 1259	.432	37 37	3481 3403	0.3	11,603	11,473
၁	3. Control		2	845 876	821 852	. 444 . 444	37 37	2219 2303	0.2	11,095 11,515	11,305
-	4. 1 mW/cm ²		2	2638 2658	2614 2634	.437	37 37	7065 7119	0.5	14,130 14,238	14,184
3	5. Control		m	1136 1137	1112 1113	.433	37 37	3005 3008	0.2	15,025 15,040	15,033
-	6. 1 mW/cm ²		æ	2048 1996	2024 1972	.439	37	5470 5330	0.3	18,233	18,000

eath reposed dish and control dish were incubated for 70 min with the redisantial duel present before the 3-hr RFR exposure started.

TABLE 13 (Cont'd.)

	Incubation time (hr)	cpm .1 ml	-8kg B/A (24 pm) ratio	B/A ratio	%Eff	dpm .1 ml	ug DNA	dpm bg DNA	Avg dpm
	E. Effect	E. Effect of 1.2-GHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair	pulse-wa	ve radia	tion at	10 mW/cm ²	on UV-i	nd paonpu	A repair
1. Control		1912 1825	1888 1801	.484	36 35	5244 5146	1.1	47 <i>67</i> 4678	47.23
2. 10 mW/cm ²	1	2252 2221	2228 2197	.486	36 36	6189 6103	1.2	5158 5086	5122
3. Control	2	3106 3149	3082 3125	.482	36 35	8561 8929	1.3	6585 6868	6727
4. 10 mW/cm ²	8	3611 3661	3587 3637	.488	36 36	9964 10,103	1.3	7665 7772	7719
5. Control	m	3203 3172	31 <i>7</i> 9 3148	.453	34 34	9350 9259	1.3	7192 7122	7157
6. 10 mM/cm²	က	3566 3639	3542 3615	.476	3.55 35.55	10,120	1.2	8433	8521

AND THE STATE OF T

	Inc Inc	Incubation ime (hr)	cpm.	-8kg B/A (23 cpm) ratio	B/A ratio	%E f f	d para	2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	dpm DNA	Avg dpm
	ъ	Background level of in an anechoic cham control position.	d level choic ch osition.	of radioac amber with The cell	tivity n the ge s were	incorpor nerator not expo	ated int <u>on,</u> cult sed to r	o DNA of ure disne adiofrequ	cells wi ss in the ency rad	Background level of radioactivity incorporated into DMA of cells without UV exposure in an anechoic chamber with the generator on, culture dishes in the exposure vs. control position. The cells were not exposed to radiofrequency radiation.
i. Control Position		က	130 136	107 113	.600	42	255 269	1.25	204 215	210
2. Exposure Position		m	132 138	109 115	.537	38 39	28 <i>7</i> 295	1.3	221 227	224
	ن	Assay for the induction non-UV-irradiated cells	the ind radiated	uction of cells	repair	synthesi	s by 350	MHz puls	SE-WAVE T	Assay for the induction of repair synthesis by 350 MHz pulse-wave radistion in non-UV-irradiated cells
1. Control		ю	159 170	136 147	.553	39 39	349	1.4	249 269	259
2. RFR (10 mW/cm ²)		m	175 169	152 146	.563	40 40	380 365	1.3	292 281	287

	Incubation :ime (hr)	cpm .1 ml	-Bkg B/A (23 cpm) ratio	B/A atio	%Eff	dpm 1 ml	1 m 1.	4 dpm	Avg dpm
	D. Effect	of 350-MHz	Effect of 350-MHz pulse-wave radiation at 1 mW/cm² on UV-induced DNA repair	radiat	tion at	1 mW/cm2	or UV-ind	uced DNA	repair
1. Control	-	689 679	999 999	.519	37	1800 1773	2.3	783 771	111
2. 1 mW/cm ²	1	765 768	742 745	.530	38 40	1953 1863	2.3	849 810	830
3. Control	2	63 <i>7</i> 638	614 615	.525	38 38	1616 1618	1.5	1077 1079	1078
4. 1 mW/cm ²	2	839 720	816 697	.513	37	2205 1884	1.7	1297 1108	1203
5. Control	က	895 879	872 856	.499	3 <i>7</i> 36	2357 2378	1.8	1309 1321	1315
6. 1 mW/cm ²	ĸ	260 261	23 <i>7</i> 238	.494	36 36	658 661	0.5	1316 1322	1319

Tible 16. The REFAIR STUDY: 350-MHz PULSE-WAYE PADIATION--39⁰C (5 and 10 mW.cm²)

Control A. UV-induced repair replication in an anechoic chamber with the generator on, culture dishes in the exposure vs, control Dishes in the exposure vs, control Dishes in the exposure vs, control Dishes Dishes		In this	Incubation Lime (hr)	cpm .1 ml	-Bkg (,,'cpm)	B/A ratio	%Eff	dpm 1.	PH DNA	dpm pug DNA	Avg dpm
		Α.		ed repair the exp quency ra	replicat osure vs, diation.	ion in control	an anecho position	ic chamb . The c	er with t	he genera not expo	to t
	1. Control Positi	1 0 <i>n</i>		995 1020	973 998	.396	34 33	2862 3024	.52	5504 5815	5660
m m å m m	2. Exposure Positi	l on		943 979	921 957	.383	33 34	2791 2815	.50	5582 5630	2606
m å m m	3. Control Positi	3 on		990 1193	968 1171	.381	33 35	2933 3346	.28	10,475 11,950	11,213
	4. Exposure Positi			2389 2234	23 <i>67</i> 2212	.408	35 35	6763 6320	.62	10,908 10,194	10,551
3 135 113 .474 39 290 .40 725 140 118 .467 39 303 .55 3 210 188 .459 38 495 .55 900 227 205 .446 38 539 .90		83	Backgrour in an ane control p	d level choic ch	of radioa amber wit The cel	ctivity h the ge ls were	incorpor nerator not expo	ated int <u>on,</u> culti sed to r	o DNA of ure dishe adiofrequ	cells wit s in the ency radi	hout UV exposi exposure vs. ation.
3 210 188 .459 38 495 .55 900 227 205 .446 38 539 980	1. Control Positi			135 140	113 118	.474	39 39	290 303	.40	725 758	742
	2. Exposure Positi			210 227	188 205	.459	38 38	495 539	. 55	900	940

	Incubation :ime (hr)	cpm .1 m1	-Bkg (∠: cpm)	B/A ratio	%Eff	d pm	Pg DNA	dpm ug DNA	Avg dpm
	C. Assay for non-UV-ir	the induradiated	uction of cells (5	repair mW/cm ²)	synthesis	by 350-	MHz puls	e-wave ra	Assay for the induction of repair synthesis by 350-MHz pulse-wave radiation in non-UV-irradiated cells (5 mM/cm²)
1. Control	т	114	95 96	.464	38 37	242 259	.30	807 863	835
2. RFR (5 mW/cm ²)	т	184 184	162 162	.475	39 38	415 426	. 55	755 775	765
	D. Effect of	F 350-MHz	pulse-wave radiation at	ve radia	tion at 5	mW/cm2	on UV-in	mW/cm2 on UV-induced DNA	repair
1. Control	1	871 870	849 849	.421	36 36	2358 2356	. 64	3684 3681	3683
2. 5 mW/cm ²		1509 1505	148 <i>7</i> 1483	.438	37 37	4019 4008	1.14	3525 3516	3521
3. Control	2	1072 1174	1050 1152	.424	36 37	2917 3114	09.	4862 5190	5026
4. 5 mW/cm ²	2	1058 1056	1036 1034	.418	36 36	2878 2872	09.	4797	4792
5. Control	က	1583 1610	1561 1588	.425	36 37	4336 4292	.70	6194 6131	6163
6. 5 mW/cm ²	e	2274 2074	2252 2052	.410	36 36	6256 5700	.95	6585 6000	6293

	Incubation ; ime (hr)	cpm .1 ml	-Bkg B/A (22 cpm) ratio	B/A ratio	%Eff	dpm 1 ml	P DNA	dpm ug DNA	Avg dpm
	E. Effect of 350-MHz pulse-wave radiation at 10 mM/cm² on UV-induced DNA repair	of 350-MHz	pulse-wa	ive radia	ation at	10 mW/cm ²	on UV-i	nduced DN	A repair
1. Control	7	798 836	776 814	.382	33 34	2352 2394	.92	2557 2602	2580
2. 10 mW/cm ²		1367 1548	1345 1526	.365	32 33	4203 4624	1.84	2284 2513	5399
3. Control	2	1114	1092 1202	.393	34 34	3212 3535	.84	3824 4208	4016
4. 10 mW/cm ²	2	974 1008	952 986	.401	34 33	2800 2988	.68	4118	4256
5. Control	ဇ	1701 1577	1679 1555	.410	35 34	4797 4574	06.	5330 5082	5206
6. 10 mW/cm ²	ю	1943 1801	1921	.414	35 34	5489 5232	.91	6032 5749	5891

for the second of the exposure vs. dpm hy bNA dpm Avy dpm 3510 SEFF

165	162
167	163 161
9.6	1.1
C	179
41	39 39
9 # 9 # 9 # • • •	9.44. 9.54.
ास हु। ची देश	
100	<u>.</u>

This year the test contribution of repair synthesis by 850 MHz pulse wave radiation in $\mathcal{C}_{\mathrm{cons}}$ and stated plus

476
486
0.7
340
35
417
0 tr
14.0

	Incubation 'ime (hr)	on cpm	-8kg B/A (21 cpm) ratio	B/A ratio	8Eff	dpm 1 ml	ug DNA	dpm pg DNA	Avg dpm
	D. Effec	Effect of 350-MHz pulse wave radiation at 1 mW/cm² on UV-induced DNA repair	pulse wav	re radia	tion atl	m₩/cm ²	on UV-ind	uced DNA	repair
1. Control		948 926	927 905	.460	39 39	2377 2321	1.6	1486 1451	1469
2. 1 mW/cm ²	-	809 798	788 777	.461	39 39	2021 1992	1.3	1555 1532	1544
3. Control	2	979 990	696 866	.447	388	2521 2550	.85	2966 3000	2983
4. 1 mW/cm ²	2	154	133 96	.467	39 41	341 234	0.15	22 <i>7</i> 3 1560	1917
5. Control	က	1215 1219	1194 1198	.452	38 39	31.1	1.0	3142 3072	3107
6. 1 mW/cm ²	ю	1886 1946	1865 1925	.449	38 38	4908 5066	1.6	3068 3166	3117

	Incubation 'ime (hr)	cpm 1 ml	-8kg 8/A (71 cpm) ratio	B/A .atio	SEFF	dpm . 1 ml	ug DNA	d pm ug DNA	Avg dpm
	E. Effect of	F 850 MHz	pulse-wa	ve radia	ıtion at	850 MHz pulse-wave radiation at 10 mW/cm² on UV-induced DNA repair	on UV-1	nduced DN	A repair
1. Control	1	290 370	269 349	.397	35 34	769 1026	6.0	854 1140	266
2. 10 mW/cm ²	1	626 648	605 627	.400	35 36	1729 1742	1.4	2535 1244	1240
3. Control	2	512 549	491 528	.322	30 31	1637 1703	1.0 !	1637 1703	1570
1. 10 m7/cm2	2	502 509	481 488	.395	35 34	1374 1435	0.7	1963 2050	2007
5. Control	e.	739 758	718 737	.367	333	2176 2233	1.1	1978 2030	2004
6. 19 mW/cm?	ю	809	788	.383	34	2318	1.2	1932	1925

. Thus Γ is a company a review CATA, CHR CREES, and " σ and Γ is a σ , σ ", and 33%

FREQUENCY	TEMP.	(deg C)	SF
0.85	37		1.02
			0.99
			1.01
	39		1.00
			1.03
			0.98
1.2	3 7		0.99
			1.02
			1.01
	39		1.02
			1.01
			1.01

interning of the commandation of the tion, electron, electron, electron and the Heat and the control of the co

		LAME	BDA
FREQUENCY	TEMP. (deg C)	CONTROL	EXPOSED
0.85	37	0.063	0.062
	39	0.064	0.063
1.2	37	0.063	0.064
	39	0.063	0.063

Eto,	FAEQUE	TEMPO (GHZ)	SCE (069 C) CONTRE (150)	-SCE (CE) (1 SO)
i	. 85	37	10.74 (1.575) 10.58 (.928) 10.5 (.735)	9.98 { 2.47 } 10.3 (1.432) 10.58 (.731 }
2	. 85	37	10.46 (1.474) 10.48 (1.488) 10.66 (.772) 10.6 (1.088)	10.62 (1.794) 10.46 (.676) 10.58 (.758) 10.72 (1.213)
3	. 85	37	10.44 (.76) 10.24 (1.021) 10.62 (.945) 10.94 (2.316)	10.44 (1.28) 10.42 (.642) 10.02 (1.27) 10.38 (.753)
4	. 85	39	10.42 { .758 } 10.34 { 1.437 } 10.44 { .76 } 10.46 { 1.501 }	10.38 (.878) 10.44 (2.349) 10.54 (1.446) 10.46 (1.129)
5	. 85	39	10.54 (.734) 10.54 (1.164) 10.48 (.909) 10.52 (1.329)	11.1 (1.607) 10.38 (.945) 10.36 (1.711) 10.5 (1.298)
6	. 85	39	10.54 (.788) 10.44 (1.716) 10.54 (.762) 10.46 (2.111) 10.6 (.571)	10.46 (.894) 10.54 (1.446) 10.58 (1.357) 10.24 (1.437) 10.74 (.865)

TABLE 20. SISTER CHROMATID EXCHANGE FREQUENCY, CHO CELLS, 1.2 GHz, 37°C and 39°C

Exp	FREQUE	TEMP LOHS.	SCE (009 C) CONTROL (1 SD)	SCE (ELL (1 SO)
1	1.2	37	10.64 { 1.102 }	10.56 (.993)
2	1.2	37	10.4 (.881) 10.5 (.707) 10.44 (.861) 10.58 (1.214) 10.64 (.875) 10.46 (.613) 10.48 (.809)	10.76 (1.744) 10.62 (1.141) 10.38 (1.978) 10.18 (.962) 10.62 (1.413) 10.08 (1.259) 10.66 (1.768) 10.44 (1.327)
3	1.2	37	10.4 (.857) 10.56 (1.296) 100.72 (.73) 10.66 (1.062) 10.22 (1.788) 10.82 (1.395)	10.58 (.673) 10.5 (1.129) 10.42 (1.052) 10.3 (1.074) 10.32 (.699) 10.84 (1.608)
4	1.2	37	10.38 (.897) 10.54 (.706) 10.56 (.541) 10.54 (.994) 10.36 (.898) 10.74 (1.259) 10.34 (.557) 10.56 (.993) 10.34 (1.042)	10.68 (1.203) 10.5 (.544) 11.04 (1.734) 10.54 (1.232) 10.68 (.794) 10.6 (.321) 10.92 (2.174) 10.44 (.704) 10.74 (2.078)

(Cont'd. on next page)

TABLE 20 (Cont'd.)

Etoy.	FACOLE	TEMP (GHZ)	10.92 (1.482)	SCE CELL (1 30)
5	1.2	39	10.92 (1.482) 10.72 (1.691) 10.42 (1.052) 10.44 (.541) 10.92 (1.322)	10.22 (1.055) 10.64 (.875) 11.08 (2.239) 10.32 (1.382) 10.4 (1.069)
6	1.2	39	10.38 (1.086) 10.48 (2.206) 10.28 (.858) 10.12 (1.674) 10.4 (.99)	11.06 (2.411) 10.38 (2.048) 10.5 (.735) 10.58 (1.739) 10.74 (.828)
7	1.2	39	10.54 (.631) 10.44 (1.053) 10.7 (1.542) 10.46 (.677) 10.5 (.614) 10.42 (1.162) 10.7 (1.199)	10.5 (1.741) 10.4 (.904) 10.48 (.931) 10.7 (1.819) 10.5 (.814) 10.5 (.878) 10.62 (1.413)
8	1.2	39	10.28 (.807) 10.74 (1.175) 10.52 (1.432) 10.38 (.067) 10.22 (1.112) 10.32 (.587) 10.76 (1.364)	10.54 (.762) 10.44 (1.358) 10.28 (1.98) 10.22 (2.141) 10.58 (.765) 10.54 (.862) 10.3 (.763)

				;	1	;		
DATE OF EXPOSURE	12/17/50	12/16/80	1/22/81	1/50/81	2/26/81	2/24/81	3/26/81	3/24/81
FREQUENCY	1.2 GHz	1., GHZ	1.2 GHz	1.2 GHz	350 MHz	350 MHz	350 MHZ	350 MHz
3 00 W	3	3	≱	™ d	3	3	Md	Md
AVERAGE PÜMER DENSITY (MW/cm²)	e-d	10	~	10		10	*.	10**
CHAMBER	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1
GENERATOR	Cober 1831	Cober 1831	Cober 1831	Cober 1831	MCL15322	MCL 15022	MCL 15022	MCL 15022
AMPLIFIER (if used)	! !	;	:		;	}	MCL 10110	MCL 10110
TRANSITION DIMENSIONS (cm)	+ horn 34 × 46	+ horm 34 × 46	8.25x16.5	8.25×16.5	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801
UISTANCE FROM TRANSITION (m)	1.0 (near field)	1.0 (near field)	1.5	1.5	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801
DISTANCE FROM FLOOR (m)	0.85	0.85	0.85	0.85	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801	TEM Narda 8801
TRANSMITTER OUTPUT POWER (W) (Averaye/Peak)	Not Recorded	Not Recorded	Not Recorded	Not Recorded	1.5	15	1.5/30	15/300
IF PULSED MODE:	;	1						
PULSES PER SECOND	;		2000	2000			2000	2000
PULSE WIDTH (u sec)	;		10	10			10	10
PEAK POWER DENSITY (mW/cm ²) (AVERAGE D.F.)	;		20	200			20	200
DUTY FACTOR (PPS X Pulse width)	;		.05 Redone because of False pardmeters	.05 use of eters			.05 Because of settings, could possibly have Avg. Power Den. of *0.5 **5.0	.05 Because of settings, could possibly have been Avg. Power Den. of *0.5 **5.0
I	7. L. P. C. C.					(Cont'a.	on near rane)	1361

:

IF = luty jactor FFC = pulses yer second

DATE OF EXPOSURE	8/13/81	8/11/81	9/11/81	18/6/6	11/19/81	11/17/81	1/21/82	1/19/82
FREQUENCY	850 MHZ	850 MHz	850 MHz	850 MHz	1.2 GHz	1.2 GHz	850 MHz	850 MH2
MODE	3	3 0	P	P.	M.	M.	MO	M _O
AVERAGE POWER DENSITY (mW/cm ²)	1	10	-	10	1	10	1	10
CHAMBER	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1	No. 1
GENERATOR	MCL 15022	MCL 15022	MCL 15022	MCL 15022	Cober 1831	Cober 1831	MCL 15022	MCI 15022
AMPLIFIER (if used)	MCL 10110	MCL 10110	MCL 10110	MCL 10110	i	;	MCL 10110	MCL10110
TRANSITION DIMENSIONS (cm)	17×33.5	17×33.5	17×33.5	17×33.5	8.25x16.5	8.25x16.5	17×33.5	17x33.5
DISTANCE FROM TRANSITION (m)	1.38	1.38	1.38	1.38	1.5	1.5	1.38	1.38
DISTANCE FROM FLOOR (m)	0.85	0.85	0.85	0.85	0.75	0.75	0.85	0.85
TRANSMITTER OUTPUT POWER (W) (Average/Peak)	35	350	26/520	250/500	30/125	380/1583	58	280
IF PULSED MODE:								
PULSES PER SECOND	į		2000	2000	80,000	000,08		
PULSE WIDTH (µ sec)	;		10	100	೯	9		
PEAK POWER DENSITY (mW/cm ²) (AVERAGE D.F.)	i		20	50	4.2	41.7		
DUTY FACTOR (PPS Pulse width)	Redone because of low ³ H uptake	e of	.05	٤.	.24	.24		

DATE OF EXPOSURE	3/2/82	3/4/82	4/27/82	4/22/82	4/30/82	6/15/82	6/11/82	7/29/82
FREQUENCY	850 MHZ	850 MHz	1.2 GHz	1.2 GHz	350 MHz	850 MHz	850 MHz	1.2 GHz
MODE	PW 39°	98 Md	™	Md	M.	PW 39°	PW 39°	PW 39°
AVERAGE POWER DENSITY (mW/cm ²)	_	10	1	10	-	_	10	pref
CHAMBER	No. 1	No. 1	No. 2	No. 2	No. 1	No. 2	No. 2	No. 2
GENERATOR	MCL 15022	MCL 15022	Cober 1831	Cober 1831	MCL 15022	MCL 15022	MCL 15022	Cober 1831
AMPLIFIER (if used)	}	MCL 10110	1 1 f	!!!!	MCL 10110	MCL 10110	MCL10110	;
TRANSITION DIMENSIONS (cm)	17x33.5	17×33.5	8.25×16.5	8.25×16.5	TEM Narda 8801	17×33.5.5	17×33.5	8.25x16.5
DISTANCE FROM TRANSITION (m)	1.38	1.38	1.5	1.5	TEM Narda 8801	1.38	1.38	1.38
DISTANCE FROM FLOOR (m)	0.85	0.85	1.08	1.08	TEM Narda 8801	1.08	1.08	1.08
TRANSMITTER OUTPUT POWER (W) (Average/Peak)	23/46	300/600	33/138	280/1167	4.6/92	22/44	147/294	44/183
IF PULSED MODE:								
PULSES PER SECOND	2000	2000	80,000	8°,000	2000	2000	2000	000,08
PULSE WIDTH (µ sec)	100	100	m	3 0	10	100	100	3
PEAK POWER DENSITY (mW/cm ²) (AVERAGE D.F.)	2	20	4.2	41.7	20	2	20	4.2
OUTY FACTOR (PPS X Pulse width)	.5	τ.	0.24	0.24	0.05	5.	ε .	0.24

(Sout 18, on near 1 1822)

#3LE 21 (C. 8+14.)

DATE OF EXPOSURE	1/21/82	9/10/82	28/8/6
FREQUENCY	1.2 GHz	350 MHz	350 MHz
MODE	PW 39°	PW 39°	PW 39°
AVERAGE POMER DENSITY (mW/cm ²)	10	10	5
CHAMBER	No. 2	No. 1	No. 1
GENERATOR	Cober 1326	MCL 15022	MCL 15022
AMPLIFIER (if used)	:	MCL 10110	MCL 10110
TRANSITION DIMENSIONS (cm)	8.25×16.5	TEM Narda 8801	TEM Narda 8801
DISTANCE FROM TRANSITION (m)	1.38	TEM Narda 8801	TEM Narda 8801
DISTANCE FROM FLOOR (m)	1.08	TEM Narda 8801	TEM Narda 8801
TRANSMITTER OUTPUT POWER (W) (Average/Peak)	413/1721	32/640	16/320
IF PULSED MODE:			
PULSES PFR SECOND	000,08	2000	2000
PULSE WIDTH (µ sec)	3	10	10
PEAK POWER DENSITY (mM/cm ²) (AVERAGE D.F.)	42	50	200
DUTY FACTOR (PPS X Pulse width)	0.24	•05	•00

APPENDIX A: CYTOGENETICS AND GROWTH KINETICS DATA, 850 MHz

APPENDIX B: CYTOGENETICS AND GROWTH KINETICS DATA, 1.2 GHz

(For: USAFSAM-TR-84-24: GENETIC EFFECTS OF MICROWAVE EXPOSURE ON MAMMALIAN CELLS IN VITRO: VOLUME II, by Martin L. Meltz, Ph.D.; Clifton R. Harris, Ph.D.; and Kathleen A. Walker, B.S.)

RE: How to Order Appendix A (USAFSAM-TR-84-24-APP-A) How to Order Appendix B (USAFSAM-TR-84-24-APP-B)

In order for comprehensive information on this research to be accessible, microfiche have been made of these Appendixes. The microfiche are available through:

DEFENSE TECHNICAL INFORMATION CENTER (DTIC)
Cameron Station
Alexandria VA 22304-6145

END

FILMED

2-85

DTIC