*bef().	A: nxu matrix. (A: standard matrix of an operation).
	$\times \neq 0$, $\times \in \mathbb{R}^n$, $\times : eigenvector$. (correspondy to \times).
	if ARFAX for some & (exists).
	=> 2: eigenvalue (Matrix) (Scalor)
	$X = A \times A$
	= TA transperational eigen vector.
	AZ'
	xeigen vectors that off
	I transferation. With eigenvalue "30 312" the
	Lyanstartion
	without eigenvalue
*ex1)	· [] . [s o]
7-07-7	$\times = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ $A = \begin{bmatrix} 5 & 0 \\ 6 & -1 \end{bmatrix}$
	X = Ael eigen vecdorelat?
	$AX = \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix} = 3X$. Eigenvalue 301cf.
# Compad	ling.
x than 5.1.	l.
	$A \times = 2 \times \longrightarrow 2 \times -4 \times = 0$
	$(A-A) \times = 0$
	(Scalar - Matrix
	•
	$(AI-A) \times = 0 \rightarrow Consistent!!$
	1. Non-trivial linear system!
	(AI-A) X=0 > Consistent!! Non-trivial linear system! Nomogeneous linear system. Not invertible.
	det(AI-A)=0. : Churacteristic
	of A.

*CY2).	$A = \begin{bmatrix} 3 & 0 \\ 2 & -1 \end{bmatrix}. X = \begin{bmatrix} 1 \\ 2 \end{bmatrix}. A = 3.$
	$\det (AI - A) = 0. \Rightarrow \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 8 & -1 \end{bmatrix}.$
	$\det \begin{bmatrix} \lambda - 3 & 0 \\ -6 & \Lambda^{21} \end{bmatrix} \leftarrow \begin{bmatrix} \lambda - 3 & 0 \\ -8 & \Lambda + 1 \end{bmatrix}.$
	= (A-3)(A+1)=0. A=3, A=-1. "Aol Hit 2= 321-1"
	degree at most 1 1/2 2/3 note
	A: nxn det(xI-A) = p(a)
	at most n scelutions!! Characteristic polymainl.
	distind
	+) Complex solution = 12/2 stell
	2月至63 时代。
★ex3).	[010] Sol) 2-10
	A= 001 det(AI-A)= 02-1 -4-172-8
	$= \lambda \begin{vmatrix} \beta - 1 \\ \gamma \gamma - 6 \end{vmatrix} + (-\alpha) \begin{vmatrix} -1 & 0 \\ \chi - 1 \end{vmatrix}$
	= x (x (x-5)+17) + (-a) · 1
	= x2 (n-8) + mx -4
	= x3-8x2+112-4
	$= \mathcal{A}(\mathcal{A}-4)^{2} + \mathcal{A}-4$
	$=(9-4)(n^2-49+1), =0.$
	A=4, 2±√3

0 -	Aexa) A = 1-a11 -a12 -a14
	1-a22 -a23 -a29
	7-a03 -a14
	A-Class.
	↑
	sol) det (NI-A) => (A-a")(A-a22) (1 -aaa) =0.
	$A=\alpha_{11}$, $A=\alpha_{22}$,, $A=\alpha_{44}$.
	> [diagonal values are] eigenvalues.]
	when A - (Inval Iviangular)
	when A is lower diagonal matrix.
	* Than 5.1.3.) A: NXN. Equivalents.
	(a) n: Pigenvalue of A.
	(b) A: salution of ded (AI-A)=0.
	(C) (AI-A) = Q has non trivial salutions.
	(d) = x + 0 such that AE = 2x.
	"圣州战水"
	0 of of 12 x + 224
	# Finding Eigenvectors and Bases for Eigengames.
	7
	{ \$ \$ \delta \in (\Lambda I - A \times = \eartilde{2} \)
	1. Null space of NI-A.
	2. the camel of TAI-A: R" → R"
	3. Set vectors for which AX=AX

	NO.
* 0 × 6)	$A = \begin{bmatrix} -1 & 9 \\ 2 & 0 \end{bmatrix}$
	$H = \begin{bmatrix} 2 & 0 \end{bmatrix}$
sal)	$(AI-A)\times=0$ $\rightarrow det(AI-A)=0$
	1 1-3 = 1 (A+1)-6 = 1+ 2-6=0
	1 -2 A 1 = 1 (1/41) - 6 = 1/4 1/1-6-0
	Charactristic Equation. (:) Charactristic Equation. (:) :. A = 2, A = -3.
	eigenspaces Az etable Xel dist. : (7 = 2, 7=-3.
	$\begin{bmatrix} 7+1 & -3 \\ -2 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ 7a \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
	L-2 A] Lz.] [0].
	η=2
	$\begin{bmatrix} 3 & -3 \\ -2 & 2 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} \chi_1 - \chi_2 = 0 \\ \chi_1 = \chi_2 = 1 \end{bmatrix} = \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	salution space
	(1,1)の 大量を
	basis = (1,1).
	1x=-3
	$\begin{bmatrix} -2 & -9 \\ -2 & -9 \end{bmatrix} \begin{bmatrix} \chi_1 \\ \chi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} 2\chi_1 + 3\chi_2 = 0$ $\chi_1 = -3/2 \chi_1 $ $\chi_2 = -3/2 \chi_2 $ $\chi_3 = -3/2 \chi_1 $
	To = -3/2 t.
	44 /.
	: 2>Hor/ eigen valueon/ cHaH
	A=2 A=-3
	dan(e.s)=/ dan(e.s)=/.
	June (2.5/ - / .
	basis = $(1,1)$ basis = $(-\frac{3}{2},1)$.

* ex 1)	$A = \begin{bmatrix} 0 & 0 & -2 & 7 \\ 1 & 2 & 1 \\ 1 & 0 & 3 & 7 \end{bmatrix}$
	sol) det(AI-A)=0.
	= (7-2)(7(7-3)+2)=0.
	= (A-2)(A-2)(A-1)=0.
	N=1, A=2.
	(i) $\chi = 1$. eigenspace?
	$(AI - A) \stackrel{\times}{\times} = 0$ $e.5.$ $(AI - A) \stackrel{\times}{\times} = 0$ $-1 - 1 - 1$ $(AI - A) \stackrel{\times}{\times} = 0$ $(AI - A)$
	(+) param - 12 Hald 320 12.
	$\begin{bmatrix} x_1 \\ x_2 \\ = \\ S \end{bmatrix} = \begin{bmatrix} -2S \\ -2 \\ 1 \end{bmatrix}$ $+ \text{eigen space.}$
	(iii) 7 = 2.
	$\begin{bmatrix} 2 & 0 & 2 & 1 & 7 & 0 & 7 & & & & & & & & & & & & & &$
	$\begin{cases} x_1 \\ \tau_2 \\ = s \\ 0 \end{cases} = s \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}$

- yenvalues	and Imputibility.
*thm 5.1.4)	A: inventible \Leftrightarrow 1=0 is not an eigenvalue of A.
(· 행열 Ax eigenvalue를 가고되면 가역할 수 있는데 オ역라면 eigenvalue를 갖고 용착다.
4	
# Equivalence	Theorem.
* Thm 5.(:5)	