Complementi di algebra

- 1. Divisione tra polinomi
- 2. Scomposizione di un polinomio
- 3. Frazioni algebriche
- 4. Equazioni e disequazioni fratte

Divisione tra polinomi

Per completare lo studio delle operazioni tra polinomi dobbiamo trattare la divisione tra due polinomi.

Divisione di un polinomio per un monomio

Il primo anno abbiamo già trattato la divisione di un polinomio per un monomio ma rivediamo qualche esempio.

1)
$$(2a^3b + a^2): a^2$$

Per la proprietà distributiva della divisione rispetto all'addizione abbiamo:

$$(2a^3b:a^2)+(a^2:a^2)=2ab+1$$

Quindi in questo caso, essendo ogni termine del polinomio divisibile per il monomio, il polinomio risulta divisibile per il monomio.

$$(2a^3b + a^2)$$
: $a^2 = 2ab + 1$

Abbiamo infatti
$$(2ab+1)\cdot a^2 = 2a^3b+a^2$$
 cioè se $\frac{A}{Q(quoziente)}$

si ha $Q \cdot B = A$

2)
$$(2a^3b + a^2): a^3$$

In questo caso il polinomio non è divisibile per a^3 poiché il suo 2° termine a^2 non è divisibile per a^3 .

Abbiamo quindi
$$\frac{2a^3b + a^2}{a^3} = 2b + \frac{1}{a}$$

e il risultato non è un polinomio.

Divisione tra due polinomi

Definizione: dati 2 polinomi A e B diciamo che A è divisibile per B se esiste un polinomio Q che moltiplicato per B dà A cioè:

$$\begin{array}{c|c}
A & B \\
\hline
Q & Q
\end{array}$$

Esempio 1
$$(x^2-1):(x+1)$$

Seguiamo la seguente procedura (simile a quella usata per la divisione in colonna tra numeri naturali):

• I polinomi vanno ordinati secondo le potenze decrescenti della loro lettera e dobbiamo lasciare, nel dividendo A, degli spazi vuoti in corrispondenza delle potenze mancanti

$$x^2$$
 -1 $x+1$ A B

• Dividiamo il 1° termine del dividendo per il 1° termine del divisore e scriviamo il risultato (1° termine del quoziente Q)

$$x^2$$
 -1 $x+1$ x

• Moltiplichiamo x per ogni termine del divisore (x+1) e sottraiamo i risultati ai termini corrispondenti in grado del dividendo A (x^2-1) ; sommiamo in colonna e otteniamo -x-1

$$\begin{array}{c|cccc}
x^2 & -1 & x+1 \\
-x^2 - x & x
\end{array}$$

• Poiché -x-1 ha grado uguale al divisore **si può ancora dividere**. Ripetiamo quindi il procedimento precedente partendo da -x-1 ed in questo caso otterremo resto

$$\begin{array}{c|cccc}
x^2 & -1 & x+1 \\
-x^2 - x & x-1 \\
\hline
& -x-1
\end{array}$$

R=0 e quoziente Q=x-1

Il polinomio $x^2 - 1$ è divisibile per x + 1 e il quoziente è x - 1.

Infatti abbiamo che $(x+1)(x-1) = x^2 - 1$

Nota: in questo caso potevamo anche sfruttare la scomposizione di $x^2 - 1$ come differenza di due quadrati e avremmo avuto subito il risultato.

3

Se il resto R (di grado minore del divisore) è diverso da zero, A non è divisibile per B e si avrà:

$$Q \cdot B + R = A$$

come nella divisione tra due numeri interi a e b si ha che, se q è il quoziente e r il resto, vale l'uguaglianza $b \cdot q + r = a$ (chiamata anche "verifica" della divisione).

Esempio:

$$\begin{array}{c|cccc}
15 & 7 \\
1 & 2
\end{array}
\qquad 7 \cdot 2 + 1 = 15$$

Esempio 2: $(x^2 + x + 1): (x + 1)$

In questo caso quindi c'è un resto R = 1 e abbiamo che

$$Q \cdot B + R = A$$

$$\downarrow \downarrow \qquad \downarrow \qquad \downarrow$$

$$x \cdot (x+1) + 1 = x^2 + x + 1$$

Osservazione: il grado di Q è uguale alla differenza tra il grado di A e il grado di B.

Scomposizione di un polinomio

Abbiamo già introdotto nel primo anno diversi metodi per la scomposizione dei polinomi: cominciamo con il ricordare i metodi già trattati per scomporre un polinomio.

Raccoglimento totale

Se in tutti i termini di un polinomio è contenuto lo stesso fattore (che può essere anche un numero) si può "raccogliere" questo fattore comune (si dice anche "mettere in evidenza")

Esempi

1)
$$3x^2 - 2x = x(3x - 2)$$

2)
$$4x^3 - 2x^2 + 8x = 2x(2x^2 - x + 4)$$

Nota importante: il fattore comune può essere un polinomio.

Esempi

1)
$$2(a^2+b)-3a(a^2+b)=(a^2+b)(2-3a)$$

2)
$$(x+y)^2 + 2(x+y) = (x+y)(x+y) + 2(x+y) = (x+y)[(x+y)+2] = (x+y)(x+y+2)$$

• Raccoglimento parziale

Esempio:
$$x^3 - x^2 + 4x - 4 =$$
 raccogliamo x^2 tra i primi due termini e il numero 4 tra il 3° ed il 4° termine

$$= x^{2}(x-1)+4(x-1)=$$
 possiamo raccogliere $(x-1)$

$$= (x-1)(x^2+4)$$

Osservazione: è come percorressimo all'indietro i passaggi per la moltiplicazione di due polinomi.

Nota: perché questo metodo funzioni è essenziale che dopo il primo raccoglimento si possa ancora raccogliere.

Esempio:
$$x^3 - x^2 + 4x + 4 = x^2(x-1) + 4(x+1)$$
 ... non funziona!

• Scomposizioni basate su prodotti notevoli

Differenza di quadrati: $A^2 - B^2 = (A + B) \cdot (A - B)$

Esempi

1.
$$x^2 - 4 = (x+2)(x-2)$$

2.
$$x^2 - y^2 = (x + y)(x - y)$$

3.
$$9x^2 - 1 = (3x + 1)(3x - 1)$$

4.
$$4a^2 - b^2 = (2a + b)(2a - b)$$

Quadrato di un binomio: $A^2 \pm 2 \cdot A \cdot B + B^2 = (A \pm B)^2$

Esempi

1.
$$x^2 + 2x + 1 = (x+1)^2$$

2.
$$x^2 - 2x + 1 = (x - 1)^2$$

3.
$$4x^2 + 4x + 1 = (2x + 1)^2$$

4.
$$9b^2 - 6b + 1 = (3b - 1)^2$$

5.
$$25x^2 - 10xy + y^2 = (5x - y)^2$$

Cubo di un binomio: $A^3 + 3 \cdot A^2 \cdot B + 3 \cdot A \cdot B^2 + B^3 = (A + B)^3$

Esempi

1.
$$x^3 + 3x^2 + 3x + 1 = (x+1)^3$$

2.
$$8a^3 - 12a^2 + 6a - 1 = (2a - 1)^3$$

• Scomposizione di un trinomio di secondo grado $ax^2 + bx + c$

Se $\Delta \ge 0$ e quindi abbiamo due soluzioni x_1 , x_2 (distinte o coincidenti) dell'equazione $ax^2 + bx + c = 0$ abbiamo dimostrato che possiamo scrivere

$$ax^{2} + bx + c = a(x - x_{1}) \cdot (x - x_{2})$$

Esempi

1.
$$x^2 - 5x + 6$$

Risolviamo l'equazione associata

$$x^{2} - 5x + 6 = 0 \rightarrow x_{1,2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2} \rightarrow x_{1} = 2; \quad x_{2} = 3$$

Quindi
$$x^2 - 5x + 6 = (x - 2)(x - 3)$$

2.
$$2x^2 + x - 1$$

Risolviamo

$$2x^{2} + x - 1 = 0 \rightarrow x_{1,2} = \frac{-1 \pm \sqrt{1+8}}{4} \rightarrow x_{1} = -1; \quad x_{2} = \frac{1}{2} \rightarrow 2x^{2} + x - 1 = 2(x+1)\left(x - \frac{1}{2}\right)$$

Completiamo i metodi di scomposizione di un polinomio utilizzando la divisione tra polinomi che abbiamo introdotto.

• Differenza di cubi

Osserviamo che la differenza di due cubi $A^3 - B^3$ è sempre divisibile per A - B: infatti se eseguiamo la divisione troviamo R=0

Poiché il quoziente risulta $A^2 + AB + B^2$ abbiamo quindi

$$A^3 - B^3 = (A - B)(A^2 + AB + B^2)$$

Esempi

1.
$$x^3 - y^3 = (x - y)(x^2 + xy + y^2)$$

2.
$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

• Somma di cubi

Analogamente abbiamo che la somma di due cubi $A^3 + B^3$ è sempre divisibile per A + B: infatti se eseguiamo la divisione troviamo R=0 e quoziente $A^2 - AB + B^2$ e quindi

$$A^3 + B^3 = (A + B)(A^2 - AB + B^2)$$

Esempi

1.
$$x^3 + y^3 = (x + y)(x^2 - xy + y^2)$$

2.
$$x^3 + 8 = (x+2)(x^2 - 2x + 4)$$

Scomposizione con il "teorema di Ruffini"

Consideriamo un polinomio contenente una sola lettera, per esempio $P(x) = 2x^3 - 5x^2 + 5x - 6$ Se non riusciamo a scomporlo con i metodi considerati finora possiamo provare ad utilizzare il seguente teorema di Ruffini:

Teorema di Ruffini: dato un polinomio P(x), se sostituendo alla lettera x un valore a otteniamo zero, cioè se P(a) = 0, allora il polinomio è divisibile per (x - a)e viceversa.

Dimostrazione

Infatti se supponiamo di dividere P(x) per (x-a)e scriviamo

$$P(x) = (x - a) \cdot Q(x) + r$$

avremo P(a) = r e quindi essendo per ipotesi P(a) = 0 ne seguirà che r = 0 cioè P(x) è divisibile per (x-a).

Viceversa se P(x) è divisibile per (x-a) cioè

$$P(x) = (x - a) \cdot Q(x) \Rightarrow P(a) = 0$$

Nel nostro esempio abbiamo che

$$P(2) = 2 \cdot 8 - 5 \cdot 4 + 5 \cdot 2 - 6 = 0$$

e quindi (x-2) è un divisore di P(x).

Eseguiamo la divisione:

In conclusione
$$2x^3 - 5x^2 + 5x - 6 = (x - 2)(2x^2 - x + 3)$$

Osservazione: ma come facciamo a individuare(se esiste) un numero intero a che annulla il polinomio?

Se a intero esiste, deve essere un divisore del termine noto di P(x): infatti se osserviamo l'ultimo passaggio della divisione dell'esempio, per avere R=0 dovrà essere $a \cdot \text{numero} = \text{termine}$ noto di P(x) e quindi a deve essere (se è intero) un divisore del termine noto del polinomio.

Nel nostro esempio quindi avremmo dovuto provare a sostituire alla lettera x i divisori di -6 cioè

$$\pm 1$$
 ; ± 2 ; ± 3 ; ± 6

ESERCIZIDIVISIONE TRA POLINOMI

Esegui le seguenti divisioni tra polinomi:

1)
$$(x^4 + 3x^2 - 4): (x^2 - 4)$$
 [$Q = x^2 + 7; R = 24$]
2) $(15a^3 - 8a^2 - 9a + 2): (3a + 2)$ [$Q = 5a^2 - 6a + 1; R = 0$]
3) $(7a - a^3 + 2 + a^2): (a^2 + 2)$ [$Q = -a + 1; R = 9a$]
4) $(16x^5 - 8x^3 + 2x - 1): (x^3 - 1)$ [$Q = 16x^2 - 8; R = 16x^2 + 2x - 9$]
5) $(2a^3 - 4a^2 + a + 2): (2a^2 + a - 1)$ [$Q = a - \frac{5}{2}; R = \frac{9}{2}a - \frac{1}{2}$]
6) $(x^5 - x^3 + 1): (x^2 + 1)$ [$Q = x^3 - 2x; R = 2x + 1$]
7) $(y^3 - 5y^2 + 3y - 6): (y^2 + 1 - 2y)$ [$Q = y - 3; R = -4y - 3$]
8) $(-3y^3 + 11y^2 - 9y - 2): (3y^2 - 5y - 1)$ [$Q = 2 - y; R = 0$]
9) $(a^2 - a - 12): (a - 4)$ [$Q = a + 3; R = 0$]
10) $(3x^3 + x^2 - 8x + 4): (x + 2)$ [$Q = 3x^2 - 5x + 2; R = 0$]
11) $(b^2 - b + b^3 + 15): (3 + b)$ [$Q = b^2 - 2b + 5; R = 0$]
12) $(2x^3 - x - 3x^2 + 2): (x - 1)$

ESERCIZI

SCOMPOSIZIONE DI POLINOMI

1)
$$2x+4y$$
 ; b^3x-b^3y ; x^4+4x

2)
$$3a^2b - 6a^2$$
 ; $\frac{1}{3}b^3 + \frac{1}{3}b$; $8ax - 4a + 2a^2$

3)
$$(x+2y)-(x+2y)^2$$
 ; $(a+b)^2-(a+b)$; $(x-3y^2)^3+(x-3y^2)^2$

4)
$$4ay - y - 4a + 1$$
 $[(4a - 1)(y - 1)]$

5)
$$a^2b-2a^2+6b-12$$
 $[(b-2)(a^2+6)]$

6)
$$x^2 - 16y^2$$
 ; $1 - a^2b^2$

7)
$$x^4 - y^4$$
 $[(x^2 + y^2)(x + y)(x - y)]$

8)
$$a^2x - b^2x + a^2y - b^2y - a^2 + b^2$$
 [$(a+b)(a-b)(x+y-1)$]

9)
$$(3a-x)^3-4(3a-x)$$
 $[(3a-x)(3a-x+2)(3a-x-2)]$

10)
$$4a^3 - 4a^2 - 4a + 4$$
 [4(a-1)(a-1)(a+1)]

11)
$$9b-18-(b^2-4)$$
 [$(b-2)(7-b)$]

12)
$$9x^2 + 6x + 1$$
 ; $a^2 + 4ab + 4b^2$

13)
$$y^2 - 6y + 9$$
 ; $4 + 9b^2 - 12b$

14)
$$x^2 - 4x + 4$$
 ; $25x^2 - 60x + 36$

15)
$$4a-4a^2-1$$
 ; $9y^2+\frac{1}{4}-3y$

16)
$$27x^3 + 27x^2 + 9x + 1$$
 [(3x+1)³]

17)
$$a^3 - 6a^2b + 12ab^2 - 8b^3$$
 [$(a-2b)^3$]

18)
$$-a^3 + 3a^2b - 3ab^2 + b^3$$
 [$(b-a)^3$]

19)
$$x^6 + 1 + 3x^4 + 3x^2$$
 [$(x^2 + 1)^3$]

20)
$$8a^3 + b^3$$
 ; $\frac{8}{27}a^3 - 1$

21)
$$27x^3 - 1$$
 ; $125a^3 + 8b^3$

22)
$$x^3 + 27$$
 ; $a^3b^3 + 1$

23)
$$24x^7 - 3x$$
 $[3x(2x^2 - 1)(4x^4 + 2x^2 + 1)]$

24)
$$2a^2 + 2b^2 + 12a + 12b + 4ab + 18$$
 [2(a+b+3)²]

25)
$$x^4 + 2x^3 - x - 2$$
 $[(x-1)(x+2)(x^2+x+1)]$

26)
$$x^3 - 2x^2 - 9x + 18$$
 [$(x+3)(x-3)(x-2)$]

28)
$$x^2 - x - 2$$
 [(x+1)(x-2)]

29)
$$2x^2 + 3x - 2$$
 [$(x+2)(2x-1)$]

30)
$$x^2 - 6x + 8$$
 [$(x-2)(x-4)$]

31)
$$x^3 - x^2 - 3x - 9$$
 [$(x-3)(x^2 + 2x + 3)$]

32)
$$2b^3 + 5b^2 - 4b - 3$$
 [$(b-1)(b+3)(2b+1)$]

33)
$$3b^3 - 4b^2 + 5b - 4$$
 [$(b-1)(3b^2 - b + 4)$]

34)
$$x^3 - 3x - 2$$
 $[(x+1)^2(x-2)]$

35)
$$x^2 - 6x + 5$$
 [$(x-1)(x-5)$]

36)
$$x^3 - 2x^2 - 5x + 6$$
 [$(x-1)(x+2)(x-3)$]]

37) $x^2 + 5x + 4$ [$(x+1)(x+4)$]

38) $4x^2 + 25 - 20x$ [$(2x-5)^2$]

39) $8x^3 + 27 + 36x^2 + 54x$ [$(2x+3)^3$]

40) $bx - ax + a - b$ [$(b-a)(x-1)$]

41) $27x^3 + 64$ [$(x+1)(x-13)$]

42) $x^2 - 12x - 13$ [$(x+1)(x-13)$]

43) $3ax + 3xy + 2a + 2y$ [$(a+y)(3x+2)$]

44) $2a^4 - 2a^3 - 12a^2$ [$2a^2(a+2)(a-3)$]

45) $3a^3 - 2b^2 + 2a^2b - 3ab$ [$(3a+2b)(a^2-b)$]

46) $10a^2 - 4ab + 15a - 6b$ [$(5a-2b)(2a+3)$]

47) $x^3 - 2x^2 + 4x - 3$ [$(x-1)(x^2-x+3)$]

48) $8ab - ax + 2a^2 - 4bx$ [$(4b+a)(2a-x)$]

49) $3x^5 - 81x^2$ [$(x+1)(1-x)(y-2)$]

50) $y - 2 - x^2y + 2x^2$ [$(x+1)(1-x)(y-2)$]

51) $x^6 - x^4 + x^2 - 1$ [$(x+1)(x-1)(x^4+1)$]

52) $x^2 - 4x^2y + 4xy^2 - y^2$ [$(x-y)(x+y-4xy)$]

 $3x^4 - 12ax^2 + 12a^2$

53)

 $[3(x^2-2a)^2]$

Le frazioni algebriche

Definizione: se A e B sono due polinomi e B è diverso dal polinomio nullo, $\frac{A}{B}$ viene detta frazione algebrica.

Esemplo:
$$\frac{x^2 - 1}{x + 3}$$
 ; $\frac{a^2 + b^2}{3a - b}$; $\frac{x + 1}{x}$

sono esempi di frazioni algebriche.

Così come abbiamo imparato a semplificare, sommare, moltiplicare le frazioni numeriche vedremo come si possono semplificare, sommare ecc. le frazioni algebriche.

Per prima cosa però dobbiamo studiare la cosiddetta "condizione di esistenza" (C.E.) di una frazione algebrica: infatti abbiamo detto che il denominatore deve essere un polinomio diverso da zero e dobbiamo quindi escludere i valori delle lettere che annullano il denominatore della frazione.

Condizione di esistenza di una frazione algebrica

Una frazione algebrica perde significato per tutti i valori delle lettere che annullano il denominatore della frazione.

Determinare le "condizioni di esistenza" (abbreviato con C.E.) significa individuare i valori delle lettere che annullano il denominatore della frazione algebrica cioè risolvere l'equazione che si ottiene ponendo il denominatore uguale a zero.

Esemplo 1: $\frac{a+3}{5a-2}$

Dobbiamo risolvere l'equazione 5a-2=0 (per determinare il valore di a che annulla il denominatore).

 $5a - 2 = 0 \rightarrow a = \frac{2}{5}$

Quindi il C.E. della frazione algebrica è : $a \neq \frac{2}{5}$

Esempio 2: $\frac{b^2 + 1}{\frac{1}{2}b + 3}$

Dobbiamo risolvere l'equazione $\frac{1}{2}b+3=0$: $\frac{1}{2}b=-3 \rightarrow b=\frac{-3}{\frac{1}{2}}=-6$

Quindi il C.E. è : $b \neq -6$

Esempio 3: $\frac{x+5}{x^2-4}$

Dobbiamo risolvere l'equazione $x^2 - 4 = 0$: $x^2 - 4 = 0 \rightarrow x^2 = 4 \rightarrow x_{1,2} = \pm 2$

In conclusione il C.E. è : $x \neq \pm 2$.

Esempio 4: $\frac{a+3}{a^2+a}$

Dobbiamo risolvere l'equazione $a^2 + a = 0$: $a^2 + a = 0 \rightarrow a(a+1) = 0 \rightarrow a_1 = 0$, $a_2 = -1$

In conclusione il C.E. è: $a \neq 0$; $a \neq -1$

Esempio 5: $\frac{b+4}{b^2-5b+6}$

Dobbiamo risolvere l'equazione $b^2 - 5b + 6 = 0$:

 $b^2 - 5b + 6 = 0 \rightarrow b_{1,2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2} \rightarrow b_1 = 3, \quad b_2 = 2 \rightarrow b^2 - 5b + 6 = (b - 2)(b - 3)$

In conclusione C.E.: $b \neq 2$, $b \neq 3$

Operazioni con le frazioni algebriche

Semplificazione di una frazione algebrica

Come per le frazioni numeriche, dividendo numeratore e denominatore di una frazione algebrica per uno stesso polinomio (diverso da zero) si ottiene una frazione algebrica equivalente.

Esempio:
$$\frac{x^2 - 1}{x^2 + x} = \frac{(x + 1)(x - 1)}{x(x + 1)} = \frac{x - 1}{x}$$

(C.E.
$$x \neq 0$$
 e $x \neq -1$)

Attenzione: si semplificano i fattori della scomposizione del numeratore e del denominatore e mai gli addendi!

$$\frac{x^2 - \cancel{\lambda}}{x - \cancel{\lambda}}$$
 Errore grave!

Somma algebrica

Per sommare due o più frazioni algebriche bisogna prima di tutto ridurle allo stesso denominatore (come per le frazioni numeriche).

Esempio:

$$\frac{x}{x-1} + \frac{1}{x+2} = ?$$

Dobbiamo prendere come denominatore comune il m.c.m. dei denominatori, in questo caso (x-1)(x+2)

$$\frac{x(x+2)+1(x-1)}{(x-1)(x+2)} = \frac{x^2+2x+x-1}{(x-1)(x+2)} = \frac{x^2+3x-1}{(x-1)(x+2)}$$

Importante: per determinare il mc.m. dei denominatori delle frazioni algebriche da sommare occorre scomporli.

Esempi

1)
$$\frac{2}{x^2 - 1} + \frac{1}{x - 1} = \frac{2}{(x - 1)(x + 1)} + \frac{1}{x - 1} = \frac{2 + 1(x + 1)}{(x - 1)(x + 1)} = \frac{x + 3}{(x - 1)(x + 1)}$$

2)
$$\frac{1}{x^2 + x} + \frac{2}{x^2} = \frac{1}{x(x+1)} + \frac{2}{x^2} = \frac{x + 2(x+1)}{x^2(x+1)} = \frac{3x + 2}{x^2(x+1)}$$

3)
$$\frac{2}{a^2 + 2ab + b^2} + \frac{a}{2a + 2b} = \frac{2}{(a+b)^2} + \frac{a}{2(a+b)} = \frac{4 + a(a+b)}{2(a+b)^2} = \frac{a^2 + ab + 4}{2(a+b)^2}$$

4)
$$\frac{3x}{x^3 - 1} - \frac{1}{x - 1} = \frac{3x}{(x - 1)(x^2 + x + 1)} - \frac{1}{x - 1} = \frac{3x - (x^2 + x + 1)}{(x - 1)(x^2 + x + 1)} = \dots$$

5)
$$\frac{1}{x^2 - 4x + 4} - \frac{x}{x^2 - 2x} = \frac{1}{(x - 2)^2} - \frac{x}{x(x - 2)} = \frac{1 - (x - 2)}{(x - 2)^2} = \frac{3 - x}{(x - 2)^2}$$

6)
$$\frac{1}{x-3} + \frac{2}{x^2-9} - \frac{x}{2x+6} = \frac{1}{x-3} + \frac{2}{(x-3)(x+3)} - \frac{x}{2(x+3)} = \frac{2(x+3)+4-x(x-3)}{2(x-3)(x+3)} = \dots$$

7)
$$\frac{1}{a^2 + ab + 2a + 2b} - \frac{2}{a^2 + 4a + 4} + \frac{b}{3a + 3b} =$$

$$\frac{1}{a(a+b)+2(a+b)} - \frac{2}{(a+2)^2} + \frac{b}{3(a+b)} = (a+b)(a+2)$$

$$\frac{3(a+2)-6(a+b)+b(a+2)^2}{3(a+b)(a+2)^2} = \dots$$

Moltiplicazione

Il prodotto di due o più frazioni algebriche è una frazione algebrica che ha per numeratore il prodotto dei numeratori e per denominatore il prodotto dei denominatori.

$$\frac{A}{B} \cdot \frac{C}{D} = \frac{A \cdot C}{B \cdot D}$$

Esempi

1)
$$\frac{x-1}{x+2} \cdot \frac{x}{x-3} = \frac{(x-1)x}{(x+2)(x-3)}$$

2)
$$\frac{x^2 - 1}{x + 2} \cdot \frac{1}{x - 1} = \frac{(x - 1)(x + 1)}{x + 2} \cdot \frac{1}{(x - 1)} = \frac{x + 1}{x + 2}$$

Nota: prima di moltiplicare conviene scomporre numeratore e denominatore delle frazioni algebriche per effettuare eventuali semplificazioni.

Divisione

Il quoziente di due frazioni algebriche è la frazione algebrica che si ottiene moltiplicando la prima frazione per la reciproca della seconda.

$$\frac{A}{B} : \frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C} \qquad (B \neq 0 ; D \neq 0 ; C \neq 0)$$

Esempio

$$\frac{x}{x^{2}-1}: \frac{x}{2x+2} = \frac{x}{(x-1)(x+1)}: \frac{x}{2(x+1)} = \frac{x}{(x-1)(x+1)} \cdot \frac{2(x+1)}{x} = \frac{2}{x-1}$$

Potenza:
$$\left(\frac{A}{B}\right)^n = \frac{A^n}{B^n}$$

Esempio

$$\left(\frac{a+b}{a^2+3b}\right)^2 = \frac{(a+b)^2}{(a^2+3b)^2}$$

ESERCIZI FRAZIONI ALGEBRICHE

Determina C.E. (condizioni o campo di esistenza) delle seguenti frazioni algebriche

1)
$$\frac{2}{3x+6}$$
 ; $\frac{1}{2x-2}$; $\frac{2x+3}{2x+4}$; $\frac{a}{a^2+a}$

2)
$$\frac{3x}{x^2+1}$$
 ; $\frac{x}{x^2-1}$; $\frac{5}{4-x^2}$; $\frac{1}{9-b^2}$

3)
$$\frac{2}{a^2-2a+1}$$
; $\frac{2a+3}{a^2+4a}$; $\frac{1}{2b^2+3b}$; $\frac{1}{a^2-b^2}$

Dopo aver determinato C.E. semplifica le seguenti frazioni algebriche

4)
$$\frac{x^2 - 4x + 4}{3x^2 - 12}$$
 [C.E. $x \neq -2$ e $x \neq 2$; $\frac{x - 2}{3(x + 2)}$]

5)
$$\frac{2x-2y}{y-x}$$
 [C.E. $x \neq y \; ; -2$]

6)
$$\frac{x^2 - x}{x - 1}$$
 [C.E. $x \neq 1$; x]

7)
$$\frac{x^2 + 3x}{3x}$$
 [C.E. $x \neq 0$; $\frac{x+3}{3}$]

8)
$$\frac{9a^2-9}{3a+3}$$
 [C.E. $a \neq -1$; $3(a-1)$]

9)
$$\frac{ay + ax + 2y + 2x}{4ay + 4ax}$$
 [C.E. $a \neq 0$ e $x \neq -y$; $\frac{a+2}{4a}$]

10)
$$\frac{4x^2 - 4x + 1}{2ax + 2x - a - 1}$$
 [C.E. $a \neq -1$ e $x \neq \frac{1}{2}$; $\frac{2x - 1}{a + 1}$]

Esegui le seguenti somme algebriche (supponi che siano verificate le condizioni di esistenza)

11)
$$\frac{2}{a^2b} + \frac{3b}{ab^2} - 1 \qquad \left[\frac{2 + 3a - a^2b}{a^2b} \right]$$

12)
$$\frac{a}{a+1} + \frac{1}{a^2 - 1}$$
 $\left[\frac{a^2 - a + 1}{(a-1)(a+1)}\right]$

13)
$$\frac{a}{a+1} + \frac{a^2 - ab + 2a}{ab - a + b - 1} - \frac{b}{1 - b}$$
 $\left[\frac{a+b}{b-1}\right]$

14)
$$\frac{3a-b}{3a+b} - \frac{3a+b}{3a-b} = \left[-\frac{12ab}{9a^2 - b^2} \right]$$

15)
$$\frac{x+2}{x^2+x-2} + \frac{x}{x+2} - \frac{1}{x-1}$$
 $\left[\frac{x}{x+2}\right]$

16)
$$\frac{x+3}{x^2 - xy} + \frac{y-3}{xy - y^2} - \frac{2}{x - y}$$
 $\left[-\frac{3}{xy} \right]$

17)
$$\frac{x^2}{x^2 - y^2} + \frac{y^2}{y^2 - x^2} - \frac{xy - y^2}{2xy - x^2 - y^2} \qquad \left[\frac{x}{x - y}\right]$$

18)
$$\frac{2}{x+2} + \frac{9x^2 - 3x}{3x^2 + 5x - 2} + \frac{1}{-x-2}$$
 $\left[\frac{3x+1}{x+2}\right]$

19)
$$\frac{x-y}{x+y} - \frac{x+y}{x-y} + \frac{6xy}{x^2 - y^2}$$
 $\left[\frac{2xy}{x^2 - y^2}\right]$

20)
$$\frac{4a+4a^2+1}{4a-8a^2}+a-\frac{4a^2+1}{4a}$$
 $\left[\frac{2a+3}{2-4a}\right]$

Esegui le seguenti moltiplicazioni di frazioni algebriche (supponi che siano verificate le condizioni di esistenza)

21)
$$\frac{x^{2} + 4x + 4}{x^{2} - 4} \cdot \frac{2x - x^{2}}{2x}$$

$$[-\frac{(x+2)}{2}]$$
22)
$$\frac{4a^{2}}{a^{2} - x^{2}} \cdot \frac{x + a}{2a}$$

$$[3y]$$
23)
$$\frac{x^{2} - 2x + 1}{y^{2}} \cdot \frac{3y^{3} - 3xy^{3}}{(1 - x)^{3}}$$

$$[3y]$$
24)
$$\frac{x - 1}{x^{2} - 4} \cdot \frac{x^{2} + x - 6}{3x - 3}$$

$$[\frac{x + 3}{3x + 6}]$$
25)
$$\frac{2a^{2} + 2a}{2a - 1} \cdot \frac{6 - 12a}{a^{2} - a - 2}$$

$$[\frac{12a}{2 - a}]$$
26)
$$3x \cdot \frac{x + y}{x - y} \cdot \frac{2xy - x^{2} - y^{2}}{x^{2} + y^{2} + 2xy}$$

$$[\frac{3x(y - x)}{x + y}]$$
27)
$$\frac{b^{3} - 8}{8 + b^{3}} \cdot \frac{b + 2}{4 + 2b + b^{2}}$$

$$[\frac{b - 2}{4 - 2b + b^{2}}]$$
28)
$$\frac{3y - 3x}{2b - a} \cdot \frac{a^{2} - 4b^{2}}{2x - 2y}$$

$$[\frac{3(2b + a)}{2}]$$

30)
$$\left(1 + \frac{1}{x}\right) \cdot \left(1 - \frac{1}{1 - x^2}\right)$$

$$\left[\frac{x}{x - 1}\right]$$

 $[(x+y)(x-y)^2]$

29) $\frac{x^2 - y^2}{x^2 + y^2} \cdot \frac{x^4 - y^4}{x + y}$

Esegui le seguenti divisioni di frazioni algebriche

31)
$$\frac{a^2 + 3a}{a - 3} : \frac{a}{a^2 - 9}$$
 [C.E. $a \neq \pm 3$ e $a \neq 0$; $(a + 3)^2$]

32)
$$\frac{a^2 - b^2}{6ab}$$
: $\frac{a+b}{12a}$ [C.E. $a \neq 0$, $b \neq 0$ e $a \neq -b$; $\frac{2(a-b)}{b}$]

33)
$$\frac{x^2-1}{x}:\frac{x-1}{x^2}$$
 [C.E. $x \neq 0$ e $x \neq 1$; $x(x+1)$]

34)
$$\frac{\frac{x-2}{x^2-9}}{\frac{x+1}{x-3}}$$
 [C.E. $x \neq \pm 3$ e $x \neq -1$; $\frac{x-2}{(x+3)(x+1)}$]

35)
$$\frac{\frac{x^2 + x}{x - 2}}{\frac{x + 1}{x^2 - 4}}$$
 [C.E. $x \neq \pm 2$ e $x \neq -1$; $x(x + 2)$]

Esegui le seguenti potenze di frazioni algebriche

36)
$$\left(\frac{2a+2b}{a^2+2ab+b^2}\right)^3$$
 $\left[\frac{8}{(a+b)^3}\right]$

37)
$$\left(\frac{4a^2-4b^2}{2b-2a}\right)^2$$
 [4(a+b)²]

$$(x - \frac{xy}{x+y})^2$$

$$\left[\frac{x^4}{(x+y)^2}\right]$$

$$(b+1)^2$$

Sviluppa le seguenti espressioni con frazioni algebriche

41)
$$\frac{2}{a} \cdot \left(\frac{a+b}{2b} + \frac{b}{a-b} \right) : \frac{a^2 + b^2}{ab - b^2}$$
 $\left[\frac{1}{a} \right]$

42)
$$\left(1+\frac{2}{x-1}\right)\cdot\frac{x^2+x-2}{x^2+x}:\left(x^2-4\right)$$
 $\left[\frac{1}{x(x-2)}\right]$

43)
$$\frac{1}{x} : \left(\frac{x - 3y}{xy} + \frac{x + y}{x^2} - \frac{y^3 - 2xy^2}{x^2 y^2} \right)$$
 $\left[\frac{y}{x} \right]$

$$44) \qquad \left[\left(\frac{1}{x^2} - \frac{1}{y^2} \right) : \left(\frac{1}{x} - \frac{1}{y} \right) \right] : \frac{x + y}{xy}$$

$$45) \qquad \left[\left(\frac{x}{y} + 1 \right)^2 : \left(\frac{x}{y} - 1 \right) \right] \cdot \left(\frac{x}{y} - 1 \right)^2 : \left(\frac{x}{y} + 1 \right) + 2 + \frac{2x}{y}$$

$$\left[\left(\frac{x + y}{y} \right)^2 \right]$$

46)
$$\frac{3}{3x+3} - \frac{x-1}{1-x^2} - 3 \qquad \left[-\frac{(3x+1)}{x+1} \right]$$

48)
$$\frac{x^2 - 2x + 1}{y^2} \cdot \frac{3y^3 - 3xy^3}{(1 - x)^3}$$
 [3y]

49)
$$\frac{x^2 - 3x}{x^2 - 1} : \left(\frac{x}{x + 1} - \frac{2x}{3x - 3} + \frac{9 - x}{3x^2 - 3} \right)$$

$$\left[\frac{3x}{x - 3} \right]$$

$$50) \qquad \left[\left(\frac{1}{1+b} + \frac{b}{1-b} \right) : \left(\frac{1}{1-b} - \frac{b}{1+b} \right) - a \right] : \left(1 - a^2 \right)$$

$$\left[\frac{1}{1+a} \right]$$

Equazioni fratte

Un'equazione si dice fratta se l'incognita compare in almeno un denominatore.

Occorre quindi considerare le condizioni di esistenza e la soluzione sarà accettabile solo se rispetta le condizioni di esistenza.

Esempi

1)
$$\frac{x-2}{x+3} = 0$$
 C.E. $x \neq -3$

La soluzione si ottiene ponendo uguale a zero il numeratore della frazione algebrica cioè:

$$x-2=0 \rightarrow x=2$$
 ed è accettabile.

2)
$$\frac{x^2-4}{x-2} = 0$$
 C. E. $x \neq 2$

Poniamo uguale a zero il numeratore: $x^2 - 4 = 0 \rightarrow x = \pm 2$ ma solo x = -2 è accettabile.

3)
$$\frac{x}{x-1} + 1 = \frac{1}{x-1}$$
, C.E. $x \ne 1$

Sviluppiamo:
$$\frac{x+x-1}{x-1} = \frac{1}{x-1} \to \frac{2x-1}{x-1} = \frac{1}{x-1} \to 2x-1 = 1 \to 2x = 2 \to x = 1$$

Ma x = 1 non è accettabile e quindi l'equazione è impossibile.

4)
$$\frac{x}{x-2} = \frac{1}{x-3} + 1$$
, C.E. $x \neq 2$, $x \neq 3$

$$\frac{x(x-3)}{(x-2)(x-3)} = \frac{x-2+(x-2)(x-3)}{(x-2)(x-3)}$$
$$x^2 - 3x = x - 2 + x^2 - 3x - 2x + 6$$

$$0 = x - 2 - 2x + 6$$
 \rightarrow $0 = -x + 4 \rightarrow x = 4$ ed è accettabile.

5)
$$\frac{3}{x^2 - 1} + \frac{1}{x - 1} = 2 \text{ , C.E. } x \neq \pm 1$$

$$\frac{3}{(x - 1)(x + 1)} + \frac{1}{x - 1} = 2 \rightarrow \frac{3 + x + 1}{(x - 1)(x + 1)} = \frac{2(x^2 - 1)}{(x - 1)(x + 1)} \rightarrow x + 4 = 2x^2 - 2 \rightarrow 2x^2 - x - 6 = 0$$

$$x_{1,2} = \frac{1 \pm \sqrt{1 + 48}}{4} = \frac{1 \pm 7}{4} \rightarrow x_1 = 2$$
, $x_2 = -\frac{3}{2}$ entrambe accettabili

ESERCIZI EQUAZIONI FRATTE

1)
$$\frac{x-1}{x+5} - 4 = 0$$
 ; $\frac{3x-9}{2x-6} = 0$ [-7; impossibile]

2)
$$\frac{2(x-1)}{x+2} = 1$$
 ; $\frac{1}{4-x} - \frac{2x}{x-4} = 0$ $\left[4; -\frac{1}{2}\right]$

3)
$$\frac{3}{x+3} - \frac{2}{4-x} = 0$$
 $\left[\frac{6}{5}\right]$

4)
$$\frac{x^2}{x-3} - x - 1 = \frac{1}{2}$$
 [-3]

5)
$$\frac{x}{2x+2} + x + 1 = \frac{x^2}{x+1}$$
 $\left[-\frac{2}{5} \right]$

$$(6) x + \frac{4}{4-x} = \frac{x}{4-x} + x + 4 [impossibile]$$

7)
$$\frac{5}{2-2x} - \frac{x}{x^2 - 2x + 1} = 0$$
 $\left[\frac{5}{7}\right]$

8)
$$\frac{x-1}{x^2+3x} + \frac{2}{x} + \frac{9}{2x+6} = 0$$
 $\left[-\frac{2}{3}\right]$

9)
$$\frac{2}{x^2 - 1} + \frac{7}{x - 1} = \frac{1}{x + 1}$$
 $\left[-\frac{5}{3} \right]$

$$\frac{6x+1}{x^2-4} - \frac{6}{x} = \frac{3}{x^3-4x}$$
 [-21]

11)
$$\frac{1}{x^2 - 1} + \frac{1}{x + 1} = 1$$

$$\left[x_{1,2} = \frac{1 \pm \sqrt{5}}{2} \right]$$

12)
$$\frac{1}{r} + \frac{1}{r-2} = 1$$
 $\left[x_{1,2} = 2 \pm \sqrt{2} \right]$

13)
$$2 - \frac{5}{x^2 - 4} = \frac{1}{x - 2}$$

$$\left[x_1 = -\frac{5}{2}, \quad x_2 = 3 \right]$$

14)
$$\frac{9}{x-2} = 3$$
 [5]

$$15) \qquad \frac{6x+9}{x-1} = 0 \qquad \qquad \left[-\frac{3}{2} \right]$$

$$\frac{3(x-1)}{2x-2} = 1$$
 [impossibile]

17)
$$\frac{1}{x-1} = \frac{2}{x-2}$$
 [0]

18)
$$\frac{x}{x+3} + \frac{x-1}{x-3} = \frac{2x^2 - 2x + 1}{x^2 - 9}$$
 [4]

19)
$$\frac{7}{x-6} + \frac{5}{4-x} = 0$$
 [-1]

$$\frac{2x+1}{x} + \frac{x}{x+1} = 3$$
 [impossibile]

21)
$$\frac{2}{x^2 + 4x} = \frac{x+3}{x+4} + \frac{3-x}{x}$$
 [-5]

22) In un rettangolo la base è i $\frac{4}{3}$ dell'altezza e il rapporto tra il perimetro e l'altezza aumentata di $4 \text{ cm} \ \text{è} \ \frac{14}{5}$. Calcola l'area del rettangolo.

 $[48 \text{ cm}^2]$

23) In un rombo la somma delle diagonali è di 42 cm. Trova il perimetro e l'area del rombo sapendo che il rapporto della somma della diagonale maggiore con i $\frac{2}{5}$ della minore e il doppio della maggiore è $\frac{13}{20}$.

[60 cm; 216 cm²]

Disequazioni fratte

1) Consideriamo per esempio la disequazione

$$\frac{2x-1}{x+3} > 0$$

Per risolverla possiamo studiare il segno dei due fattori, cioè:

$$2x-1 > 0 \rightarrow x > \frac{1}{2}$$
$$x+3 > 0 \rightarrow x > -3$$

Possiamo rappresentare in un grafico detto "grafico dei segni" la situazione, indicando per convenzione con una linea continua l'intervallo di numeri reali in cui un fattore ha segno positivo e con una linea tratteggiata l'intervallo in cui ha segno negativo.

Nel nostro caso abbiamo il seguente grafico dei segni:

Nota: attenzione ad ordinare correttamente i numeri sulla retta numerica.

A questo punto **per la regola dei segni** avremo un quoziente positivo quando numeratore e denominatore sono entrambi positivi o negativi e quindi in conclusione otteniamo:

La soluzione della disequazione è

$$x < -3 \cup x > \frac{1}{2}$$

Nota

Se nella disequazione compare il segno di uguaglianza, cioè se per esempio dobbiamo risolvere

$$\frac{2x-1}{x+3} \ge 0$$

dobbiamo includere nella soluzione anche i valori di x che annullano il numeratore ma non quelli che annullano il denominatore perché il C.E. della frazione algebrica è $x \neq -3$ In questo caso abbiamo come soluzione

$$x < -3 \cup x \ge \frac{1}{2}$$

2) Consideriamo la disequazione

$$\frac{2x-1}{x+3} < 0$$

Per studiare il segno dei fattori del prodotto procediamo come prima:

$$2x - 1 > 0 \rightarrow x > \frac{1}{2}$$

$$x+3>0 \rightarrow x>-3$$

In questo caso però vogliamo determinare **quando il prodotto è negativo** e quindi un fattore deve essere positivo e l'altro negativo ed abbiamo:

La soluzione della disequazione è in questo caso

$$-3 < x < \frac{1}{2}$$

che si legge x compreso tra -3 e $\frac{1}{2}$.

Nota

Anche in questo caso se dovessimo risolvere $\frac{2x-3}{x+3} \le 0$ avremmo $-3 < x \le \frac{1}{2}$.

3) Consideriamo
$$\frac{1}{2-x} - \frac{3}{4-x^2} < 0$$

Innanzitutto svolgiamo i calcoli per ricondurci ad una disequazione del tipo $\frac{N(x)}{D(x)}$ (N sta per numeratore e D per denominatore).

$$\frac{1}{2-x} - \frac{3}{(2-x)\cdot(2+x)} < 0 \to \frac{2+x-3}{(2-x)\cdot(2+x)} < 0 \to \frac{x-1}{(2-x)\cdot(2+x)} < 0$$

A questo punto studiamo il segno di x-1, 2-x, 2+x:

$$x-1 > 0 \rightarrow x > 1$$

$$2-x > 0 \rightarrow x < 2$$

$$2+x > 0 \rightarrow x > -2$$

Riportiamo il segno delle tre parentesi e scegliamo le zone in cui la combinazione dei segni dà un risultato negativo:

In conclusione la soluzione della disequazione è

$$-2 < x < 1 \quad \cup \quad x > 2$$

Nota

Se avessimo dovuto risolvere la disequazione $\frac{1}{2-x} - \frac{3}{4-x^2} \le 0 \to \frac{x-1}{(2-x)\cdot(2+x)} \le 0$ avremmo dovuto aggiungere solo x = 1 e quindi la soluzione sarebbe stata

$$-2 < x \le 1 \quad \cup \quad x > 2$$
.

ESERCIZIDISEQUAZIONI FRATTE

$$1) \qquad \frac{2x+1}{x+2} > 0$$

$$[x < -2 \quad \cup \quad x > -\frac{1}{2}]$$

$$2) \qquad \frac{3-x}{x^2 - 2x + 1} > 0$$

$$[x < 3, x \ne 1]$$

$$3) \qquad \frac{3}{2-x} - \frac{1}{2+x} \le 0$$

$$[-2 < x \le -1 \quad \cup \quad x > 2]$$

4)
$$\frac{1}{3x-1} + \frac{2}{9x^2 - 1} \ge 0$$

$$[-1 \le x < -\frac{1}{3} \quad \cup \quad x > \frac{1}{3}]$$

5)
$$\frac{1}{x^2 - 4x + 4} + \frac{3}{x - 2} \ge 0$$

$$[x \ge \frac{5}{3}, \quad x \ne 2]$$

$$6) \qquad \frac{3}{x-5} - \frac{1}{x^2 - 25} < 0$$

$$[x < -5 \quad \cup \quad -\frac{14}{3} < x < 5]$$

$$7) \qquad \frac{1}{x+3} - \frac{2}{9-x^2} > 0$$

$$[-3 < x < 1 \quad \cup \quad x > 3]$$

$$8) \qquad \frac{2}{4x-3} + \frac{1}{x+1} > 0$$

$$[-1 < x < \frac{1}{6} \quad \cup \quad x > \frac{3}{4}]$$

9)
$$\frac{2}{x^2 - 1} - \frac{3}{x + 1} < 0$$

$$[-1 < x < 1 \quad \cup \quad x > \frac{5}{3}]$$

10)
$$\frac{1}{5-x} + \frac{2}{3-x} > 0$$

$$[x < 3 \cup \frac{13}{3} < x < 5]$$

11)
$$\frac{1}{x^2 - 10x + 25} - \frac{2}{x - 5} < 0$$

$$[x > \frac{11}{2}]$$

$$12) \qquad \frac{x}{9x^2 - 6x} > 0$$

$$\left[x > \frac{2}{3}\right]$$

$$13) \qquad \frac{x^2 + 4x - 5}{2x - 3} < 0$$

$$\left[x < -5 \cup 1 < x < \frac{3}{2} \right]$$

$$14) \qquad \frac{2}{x+5} \le 0$$

$$[x < -5]$$

$$15) \qquad \frac{5}{3x+4} \ge 1$$

$$\left[-\frac{4}{3} < x \le \frac{1}{3} \right]$$

16)
$$\frac{x}{2-x} + \frac{3}{4x-8} \ge \frac{5}{3x-6}$$

$$\left[-\frac{11}{12} \le x < 2 \right]$$

17)
$$\frac{11}{2x+3} > \frac{5}{2-x}$$

$$\left[-\frac{3}{2} < x < \frac{1}{3} \quad \cup \quad x > 2 \right]$$

18)
$$\frac{1}{2} + \frac{1}{x} < \frac{6}{x-1} - \frac{4}{x}$$

$$[-2 < x < 0 \cup 1 < x < 5]$$

19)
$$\frac{6}{x} - \frac{1}{2} - \frac{3}{x+1} > \frac{2}{x+1}$$

$$[-3 < x < -1 \cup 0 < x < 4]$$

$$20) \qquad \frac{2x^2 - 3x}{2x^2} \le 0$$

$$\left[0 < x \le \frac{3}{2}\right]$$

$$21) \qquad \frac{4x^2 + 5x}{3x^2} \ge 0$$

$$\left[x \le -\frac{5}{4} \quad \cup \quad x > 0\right]$$

SCHEDA PER IL RECUPERO

FRAZIONI ALGEBRICHE. EQUAZIONI E DISEQUAZIONI FRATTE

I) Espressioni con frazioni algebriche

a)
$$\left(\frac{2a}{a^2 - b^2} - \frac{2}{a + b}\right) \cdot \frac{a^2 - 2ab + b^2}{2b}$$

$$\left[\frac{a - b}{a + b}\right]$$

b)
$$\left(\frac{1}{x^2 - 4} - \frac{2}{2 - x}\right) \cdot \frac{2x - 4}{4x + 10}$$
 $\left[\frac{1}{x + 2}\right]$

c)
$$\left(\frac{1}{3b^2 - b} - \frac{2}{9b^2 - 6b + 1}\right) : \frac{2b - 2}{6b^2 - 2b}$$
 $\left[\frac{1}{3b - 1}\right]$

d)
$$\left(\frac{1}{x}-1\right)^2 \cdot x$$

e)
$$\left(\frac{1}{a} + \frac{1}{2a}\right)^2 : \left(\frac{1}{a}\right)^2$$
 $\left[\frac{9}{4}\right]$

II) Equazioni e disequazioni fratte

a)
$$\frac{x}{x+3} = \frac{1}{x-1}$$
 $[x_1 = -1; x_2 = 3]$

b)
$$\frac{1}{x^2 - 2x} + \frac{2}{x} = 0$$
 $\left[x = \frac{3}{2} \right]$

c)
$$\frac{1}{x^2 - 4x + 4} + \frac{2x}{2x - 4} = 1$$
 $\left[x = \frac{3}{2} \right]$

d)
$$\frac{1}{x-1} - \frac{2}{2x+2} > 1$$
 $\left[-\sqrt{3} < x < -1 \ \cup \ 1 < x < \sqrt{3} \right]$

e)
$$\frac{2}{x^2 - 1} - \frac{x}{x + 1} > 0$$
 [1 < x < 2]

f)
$$\frac{1}{x^2} - \frac{3}{6-3x} < \frac{1}{x-2}$$
 [impossibile]

SCHEDA DI VERIFICA COMPLEMENTI DI ALGEBRA

1) Scomponi i seguenti polinomi:

a)
$$4x^2 - 12x + 9$$

b)
$$18 - 2x^2$$

c)
$$2a^3 + a^2 + 4a + 2$$

d)
$$27 - b^3$$

e)
$$4+4y^3+12y^2+12y$$
 f) $2x^2+x-3$

f)
$$2x^2 + x - 3$$

2) Determina il campo di esistenza e poi semplifica le seguenti frazioni algebriche:

a)
$$\frac{2x+10}{x^2-25}$$

b)
$$\frac{2a^2 + 4a + 2}{a^3 + 1}$$

3) Sviluppa le seguenti espressioni:

a)
$$\frac{2}{x+2} + \frac{1}{x^2 + x - 2}$$

b)
$$\left(\frac{1}{y^2-1} + \frac{y}{y+1}\right) \cdot \frac{y^2-2y+1}{y^3+1}$$

c)
$$\left(1 - \frac{2}{x+1}\right) : \left(1 - \frac{1}{x+1}\right)^2$$

c)
$$\left(1 - \frac{2}{x+1}\right) : \left(1 - \frac{1}{x+1}\right)^2$$
 d) $\left(\frac{1}{x} - \frac{1}{x+2}\right) \cdot \left(x^2 + 4x + 4\right)$

4) Risolvi le seguenti equazioni e disequazioni fratte:

a)
$$\frac{2}{x^2 + 2x - 3} = \frac{x + 2}{x + 3} + \frac{4 - x}{x - 1}$$

b)
$$1 + \frac{x+1}{x-2} = \frac{2(x^2+2)}{x^2-4}$$

c)
$$\frac{x-5}{x-1} > 1$$

d)
$$\frac{1}{x} + \frac{1}{x-1} < 0$$

5) In un rettangolo ABCD la base AB è $\frac{5}{3}$ dell'altezza BC e il rapporto tra il perimetro del rettangolo e l'altezza aumentata di 2 cm è uguale a 4. Calcola l'area del rettangolo.