WHAT IS CLAIMED IS:

1	1. A programmable logic device (PLD) comprising:
2	input/output (I/O) interface having a first plurality of I/O register blocks
3	the first plurality of I/O register blocks being partitioned into a second plurality of I/O
4	sections each I/O section having N data I/O register blocks and a strobe circuit,
5	wherein each of the N data I/O register blocks is configured to store multiple bits of
6	data, and each strobe circuit is configured to generate a local strobe signal that drives a
7	local clock line coupling to clock inputs of the N data I/O register blocks, the N data
8	I/O register blocks and the strobe circuit in each I/O section being coupled to a
9	corresponding number of device pins; and
0	programmable logic circuitry coupled to the I/O interface.
1	2. The PLD of claim 1 wherein the strobe circuit in each I/O section
2	is configured to shift a phase of an input strobe signal received at a respective strobe
3	pin.
1	3. The PLD of claim 2 further comprising a master phase control
2	circuit coupled to receive a master clock signal and configured to generate a phase
3	control signal that controls a phase delay in the strobe circuit in one or more of the
4	second plurality of I/O sections.
1	4. The PLD of claim 3 wherein the second plurality of I/O sections
2	are grouped into a third plurality of I/O banks.
1	 The PLD of claim 4 wherein a separate master phase control
2	circuit is provided for I/O sections in each of the third plurality of I/O banks.
_	officially of the field of the sections in each of the tillia platality of the ballies.

- 1 6. The PLD of claim 1 wherein each I/O register block comprises 2 two registers, one of which stores a first incoming bit of data at a rising edge of the 3 local strobe signal and the other stores a second incoming bit of data at a falling edge 4 of the local strobe signal.
- 7. The PLD of claim 6 wherein the strobe circuit in each I/O section comprises a programmable phase delay circuit that is configured to shift a phase of the local strobe signal such that an edge of the local strobe signal occurs substantially at the center of a data pulse.
- 1 8. The PLD of claim 7 wherein the phase delay is about 90 degrees.
- 9. The PLD of claim 1 wherein each I/O section further comprises one or more general purpose register blocks coupled to respective device pins.
- 1 10. The PLD of claim 1 wherein, in each I/O section, the strobe 2 circuit is located as close to a center the N data I/O register blocks as possible wherein 3 an equal number of data I/O register blocks are located in either sides of the strobe 4 circuit.
- 1 1. The PLD of claim 1 wherein the programmable logic circuitry comprises a plurality of programmable logic blocks coupled via a network of a plurality of programmable vertical and horizontal interconnect lines.
- 1 12. A computing system comprising a multiple-data-rate memory circuit coupled to a programmable logic device (PLD) as set forth in claim 1.

1	13. The computing system of claim 12 wherein the multiple-data-rate
2	memory circuit comprises a double data rate synchronous dynamic random access
3	memory.
1	14. A method of operating a programmable logic device (PLD)
2	comprising:
3	receiving N groups of data bits each group having M data signals and a
4	corresponding data strobe signal;
5	partitioning I/O register blocks inside the PLD into a corresponding N
6	I/O modules, each module having M I/O register blocks and a strobe circuit coupled to
7	receive a respective group of M data signals and data strobe signal; and
8	driving clock inputs of the M I/O register blocks in each of the N I/O
9	modules using an independent clock network that is local to each of the N I/O
0	modules.
1	15. The method of claim 14 further comprising programmably
2	shifting a phase of the data strobe signal before driving the clock inputs of the M I/O
3	register blocks.
1	16. The method of claim 15 wherein the programmably shifting of
2	the phase of the data strobe comprises generating phase control signal in response to a
3	system clock