Serie (definizione di Serie, tipi di serie, Criteri di Convergenza)

• Definizione di Somma Parziale

Data una successione $\{a_n\} = a_1, a_2, ..., a_n$,

una Somma Parziale s_m rappresenta la somma dei primi m valori della successione (con $m \le n$).

Esempio:
$$s_1 = a_1$$
; $s_2 = a_1 + a_2$; $s_3 = a_1 + a_2 + a_3$; $s_n = a_1 + a_2 + \cdots + a_n$

Curiosità: La successione $\{s_n\} = s_1, s_2, ..., s_n$ è detta Successione delle somme parziali della successione $\{a_n\}$.

• Definizione di Serie numerica

Data una successione $\{a_n\} = a_1, a_2, \dots, a_n$,

si dice "Serie S di termine generale a_n " la somma degli infiniti valori a_i della successione $\{a_n\}$, e si indica con:

$$\sum_{n=0}^{+\infty} a_n$$
 , o semplicemente $\sum a_n$

Considerate le somme parziali $s_1, s_2, ..., s_n$ relative alla successione $\{a_n\}$,

la somma degli infiniti valori di $\{a_n\}$ equivale al valore della somma parziale s_n , con $n \to +\infty$.

Ovvero:

$$\sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} s_n$$

Errore comune 1: $\sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} a_n$

In quanto la sommatoria dei termini di una successione è uguale alla somma parziale che tende all'infinito. la sommatoria dei termini di una successione NON è uguale al limite di un singolo valore della successione.

Errore comune 2: Non fare caso al valore di partenza di *n*.

Bisogna controllare se il dominio della successione è \mathbb{N}_0 oppure \mathbb{N} (ovvero bisogna controllare se le n partono da 0 o da 1).

• Limite di una somma parziale / Valore di una Serie

Data una successione $\{a_n\}=a_1,a_2,\ldots,a_n$, considerate le somme parziali s_1,s_2,\ldots,s_n relative alla successione $\{a_n\}$, il limite $S=\lim_{n\to +\infty}s_n$ ha 4 possibili casi:

Caso 1) $\lim_{n \to +\infty} s_n = \ell \in \mathbb{R}$, con ℓ finito	La serie converge ad ℓ
Caso 2) $\lim_{n \to +\infty} s_n = +\infty$	La serie diverge a +∞
Caso 3) $\lim_{n \to +\infty} s_n = -\infty$	La serie diverge a −∞
Caso 4) $\lim_{n \to +\infty} s_n = \emptyset$	La serie è indeterminata (o irregolare)

Esempi:

Caso 1)
$$a_n = \left(\frac{1}{2}\right)^n \forall n \in \mathbb{N} \left(\text{Ovvero } 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots \right) \rightarrow \sum_{i=0}^{+\infty} a_i \left(\text{Ovvero } 1 + 0.5 + 0.25 + 0.125 + \dots \right) \rightarrow S \text{ converge a } 2$$

Caso 2)
$$a_n=1 \ \forall \ n \in \mathbb{N} \to s_n=n+1 \ \forall \ n \in \mathbb{N} \to S$$
 diverge a $+\infty$

NB: è $s_n = n + 1$ e non $s_n = n$, perché n parte da 0, quindi si somma n + 1 volte

Caso 3)
$$a_n = -1 \ \forall \ n \in \mathbb{N} \rightarrow s_n = -(n+1) \ \forall \ n \in \mathbb{N} \rightarrow S$$
 diverge $a - \infty$

Caso 4)
$$a_n = (-1)^n \ \forall \ n \in \mathbb{N} \ (\text{Ovvero:} +1, -1, +1, \dots) \rightarrow \sum_{n=0}^{+\infty} (-1)^n = \lim_{n \to +\infty} (-1)^n = \emptyset \rightarrow S \ \text{\`e} \ \text{indeterminata}$$
 Infatti: $s_0 = a_0 = +1 \ ; \ s_1 = a_0 + a_1 = +1 - 1 = 0 \ ; \ s_2 = a_0 + a_1 + a_2 = +1 - 1 + 1 = +1; \ s_3 = 0 \ ; \ [\dots]$

• Criterio di convergenza ["Condizione necessaria per la convergenza"]

Una condizione necessaria (ma non sufficiente) per la convergenza di una serie s_n , è che il termine generale a_n diventi infinitesimo per $n\to +\infty$. Ovvero:

$$\sum_{n=0}^{+\infty} a_n \text{ converge se } \lim_{n \to +\infty} a_n = 0$$

Questo perché si sommano via via a_n più piccoli, fino ad arrivare a sommare 0, e convergere ad un numero finito.

Esempi di serie NON convergenti:

Esempio 1 (somma di numeri finiti diversi da zero):

$$\sum_{n=1}^{+\infty} \frac{1}{\sqrt[n]{n}} = \sum_{n=1}^{+\infty} \frac{1}{n^{\frac{1}{n}}} = \sum_{n=1}^{+\infty} n^{-\frac{1}{n}} \rightarrow \text{Controllo il} \lim_{n \to +\infty} n^{-\frac{1}{n}} = \lim_{n \to +\infty} e^{\ln\left(n^{-\frac{1}{n}}\right)} = \lim_{n \to +\infty} e^{-\frac{1}{n} \cdot \ln(n)} = e^{\frac{1}{n} \cdot \ln(n)$$

Ogni termine della successione è positivo (sebbene via via più piccolo fino ad 1), per cui la somma di infiniti termini positivi diverge a $+\infty$.

Esempio 2 (somma di numeri tendenti a infinito):

$$\sum_{n=1}^{+\infty} \frac{1}{\log\left(1+\frac{1}{n}\right)} \rightarrow \text{Controllo il} \lim_{n \rightarrow +\infty} \frac{1}{\log\left(1+\frac{1}{n}\right)} = \frac{1}{\log\left(1+\frac{1}{+\infty}\right)} = \frac{1}{\log(1+0^+)} = \frac{1}{\log(1^+)} = \frac{1}{0^+} = +\infty \rightarrow s_n \text{diverge}$$

La serie è una somma di infiniti numeri crescenti che tendono ad infinito.

Esempio 3 (somma di numeri che non tendono verso niente):

$$\sum_{n=1}^{+\infty} (-1)^n \to \text{Controllo il} \lim_{n \to +\infty} (-1)^n = N.E. \to s_n \text{ non converge}$$

La serie è una infinita somma di alternati +1 e -1, che non converge verso nessun valore, né diverge verso +∞.

• Proprietà delle serie

Somma dei termini generali	Siano $\sum_{n=0}^{+\infty} a_n$ e $\sum_{n=0}^{+\infty} b_n$ due serie convergenti $\sum_{n=0}^{+\infty} [a_n \pm b_n] = \sum_{n=0}^{+\infty} a_n \pm \sum_{n=0}^{+\infty} b_n$
Prodotto con una costante	Sia $\sum_{n=0}^{+\infty}a_n$ una serie convergente, e sia $k\in\mathbb{R}$ $\sum_{n=0}^{+\infty}k\cdot a_n=k\cdot\sum_{n=0}^{+\infty}a_n$
Decomposizione in intervalli	Dati $a < b < c$ $\sum_{n=a}^{c} f(n) = \sum_{n=a}^{b} f(n) + \sum_{n=b+1}^{c} f(n)$

• Serie di cui si può calcolare il risultato: Serie Geometriche

La serie $\sum_{n=0}^{\infty}q^n$, con $q^n\in\mathbb{R}$, è detta serie geometrica.

Sono serie composte da un termine generale con una base costante ed un esponente crescente.

Ovvero $s_n = q^0 + q^1 + q^2 + \dots + q^n = 1 + q + q^2 + \dots + q^n$

$$\sum_{n=0}^{M} q^{n} = \begin{cases} \frac{1 - q^{M+1}}{1 - q} & con \ q \neq 1 \\ \\ M + 1 & con \ q = 1 \end{cases}$$

NB: In caso di q=1, il risultato deriva dalla semplice sostituzione: $s_n=1^0+1^1+1^2+\cdots+1^n=n+1$.

NB: Scrivere $\frac{1-q^{n+1}}{1-q}$ oppure $\frac{q^{n+1}-1}{q-1}$ è uguale! Semplicemente per convenzione molti libri di testo scrivono nel primo modo.

Caso 1) $ q < 1$ (ovvero $-1 < q < 1$)	La serie converge	$\lim_{M \to +\infty} s_M = \sum_{n=0}^{\infty} q^n = \frac{1}{1-q}$ $\operatorname{Perch\'e:} \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \frac{1-\left(\frac{1}{2}\right)^{+\infty}}{1-\left(\frac{1}{2}\right)} = \frac{1-0}{1-\left(\frac{1}{2}\right)} = \frac{1}{1-\left(\frac{1}{2}\right)}$ Caso generale, per qualsiasi $n \ge 0$: $\sum_{n=m}^{+\infty} q^n = q^m \cdot \sum_{n=0}^{+\infty} q^n = q^m \cdot \left(\frac{1}{1-q}\right)$ Ovviamente, per $n=0$: $q^0 \cdot \sum_{n=0}^{+\infty} q^n = 1 \cdot \left(\frac{1}{1-q}\right)$
Caso 2) $q \ge 1$	La serie diverge a +∞	$\lim_{M \to +\infty} s_M = \sum_{n=0}^{\infty} q^n = +\infty$ $\text{Perch\'e: } \sum_{n=0}^{\infty} (2)^n = \frac{1 - 2^{+\infty}}{1 - 2} = \frac{1 - \infty}{1 - 2} = \frac{-\infty}{-1} = +\infty$
Caso 3) $q \le -1$	Usare un altro criterio	$\lim_{M \to +\infty} s_M = \sum_{n=0}^{\infty} q^n = N.E.$

Esempio 1: $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n \to q = \left|\frac{1}{2}\right| < 1 \to \text{La serie converge} \to \lim(s_n) = \frac{1}{1 - \left(\frac{1}{2}\right)} = 2$ Infatti $\sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n = \left(\frac{1}{2}\right)^0 + \left(\frac{1}{2}\right)^1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^3 + \dots = 1 + 0.5 + 0.25 + 0.125 + \dots$

Esempio 2: $\sum_{n=0}^{\infty} 2^n \to q = 2 \ge 1 \to \text{La serie diverge a } + \infty$. Infatti $\sum_{n=0}^{\infty} 2^n = 2^0 + 2^1 + 2^2 + 2^3 + \cdots$

Esempio 3: $\sum_{n=0}^{\infty} (-1)^n \to q = -1 \to \text{La serie non è determinabile con i criteri delle serie geometriche} \to \text{(è indeterminata)}$ Infatti $\sum_{n=0}^{\infty} (-1)^n = (-1)^0 + (-1)^1 + (-1)^2 + (-1)^3 + \dots = +1 - 1 + 1 - 1 + \dots$

Esempio $4: \sum_{n=0}^{\infty} (-2)^n \to q = -2 < -1 \to \text{La serie non è determinabile con i criteri delle serie geometriche} \to (\text{diverge})$ Infatti $\sum_{n=0}^{\infty} (-2)^n = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + \dots = 1 - 2 + 4 - 8 + \dots \to -\infty$

Errore: Non controllare il valore di partenza di n

$$\begin{split} &\sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n \neq \frac{1}{1 - \left(\frac{2}{3}\right)} = \frac{1}{\left(\frac{1}{3}\right)} = 3 \quad \rightarrow \quad \sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n = \left(\frac{2}{3}\right)^2 \cdot \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n = \left(\frac{4}{9}\right) \cdot (3) = \frac{4}{3} \\ &\text{Equivalentemente, } \sum_{n=2}^{\infty} \left(\frac{2}{3}\right)^n = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n - \sum_{n=0}^{2} \left(\frac{2}{3}\right) = \sum_{n=0}^{\infty} \left(\frac{2}{3}\right)^n - \left[\left(\frac{2}{3}\right)^0 + \left(\frac{2}{3}\right)^1\right] = 3 - 1 - \frac{2}{3} = \frac{4}{3} \\ &\text{Perché? } \sum_{n=0}^{\infty} q^n = q^0 + q^1 + q^2 + q^3 + \dots + q^n \; ; \; \sum_{n=2}^{\infty} q^n = q^2 + q^3 + \dots + q^n \end{split}$$

Errore: Risolvere le disequazioni con un numero $n \neq 0$ a destra

Trova
$$\alpha$$
 per cui $\sum_{n=0}^{+\infty} \left(\frac{2+\alpha}{1-\alpha}\right)^n$ converge $\rightarrow \left|\frac{2+\alpha}{1-\alpha}\right| < 1 \rightarrow \mathbb{R}$
Risolvo
$$\begin{cases} \frac{2+\alpha}{1-\alpha} > -1 \\ \frac{2+\alpha}{1-\alpha} < 1 \end{cases} \rightarrow ERRORE: \text{Studio } N_{E1}: 2+\alpha > -1 \rightarrow CORRETTO: \frac{2+\alpha}{1-\alpha} > -1 \rightarrow \frac{2+\alpha}{1-\alpha} + 1 > 0 \rightarrow \cdots \end{cases}$$

• Serie di cui si può calcolare il risultato: Serie Telescopiche

Le serie espresse (o riconducibili) in forma $\sum_{n=1}^{N} q_n - q_{n+k}$ sono dette serie telescopiche.

Sono serie composte da somme parziali in cui rimane un numero fisso k di termini dopo le semplificazioni.

In tali serie,
$$\sum_{n=1}^{N} q_n - q_{n+k} = (q_1 + q_2 + \dots + q_k) - q_N$$

$$\operatorname{Per} N = +\infty \ \Rightarrow \ \sum_{n=1}^{+\infty} q_n - q_{n+k} = (q_1 + q_2 + \dots + q_k) - \lim_{n \to +\infty} q_n$$

Per
$$N=+\infty$$
, se il termine generale q_n converge, ovvero se $\lim_{n\to+\infty}q_n=0$, allora: $\sum_{n=1}^{+\infty}q_n-q_{n+k}=a_1+a_2+\cdots+a_k$

Quindi:
$$\sum_{n=1}^{+\infty} q_n - q_{n+k} = (q_1 + q_2 + \dots + q_k) - \lim_{n \to +\infty} q_n$$

E se gli addendi
$$q_n$$
 , q_{n+k} sono invertiti di posto?
$$\sum_{n=1}^{+\infty} q_{n+k} - q_n = -1 \cdot \left(\sum_{n=1}^{+\infty} q_n - q_{n+k}\right)$$

E se l'indice di partenza è diverso da
$$n=1$$
? Formula generale:
$$\sum_{n=i}^{+\infty}q_n-q_{n+k}=(q_i+q_{i+1}+\cdots+q_{i+k-1})-\lim_{n\to+\infty}q_n$$

Esempio 1 (La serie di Mengoli):

$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = \sum_{n=1}^{+\infty} \left[\frac{1}{n} - \frac{1}{n+1} \right] \to \lim_{n \to +\infty} \frac{1}{n} = 0 \to s_n = \frac{1}{1} = 1$$

$$\text{Infatti:} \sum_{n=1}^{+\infty} \left[\frac{1}{n} - \frac{1}{n+1} \right] = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \cdots \\ \left(\frac{1}{n-1} - \frac{1}{n} \right) + \left(\frac{1}{n} - \frac{1}{n+1} \right) = \cdots = 1 - \frac{1}{n+1}, \\ \cos n = +\infty \Rightarrow 1 - \frac{1}{+\infty} = 1 - \frac{1}{n+1} = 1 - \frac{1}{n+1}$$

Esempio 2

$$\sum_{n=1}^{+\infty} \frac{2}{n^2 + 2n} = \sum_{n=1}^{+\infty} \frac{2}{n(n+2)} = \text{Fratti semplici } [\dots] = \sum_{n=1}^{+\infty} \left[\frac{1}{n} - \frac{1}{n+2} \right] \rightarrow \lim_{n \to +\infty} \frac{1}{n} = 0 \rightarrow s_n = \frac{1}{1} + \frac{1}{2} = \frac{3}{2}$$

$$\text{Infatti:} \sum_{n=1}^{+\infty} \left[\frac{1}{n} - \frac{1}{n+2} \right] = \left(\frac{1}{1} - \frac{1}{3} \right) + \left(\frac{1}{2} - \frac{1}{4} \right) + \left(\frac{1}{3} - \frac{1}{5} \right) + \left(\frac{1}{4} - \frac{1}{6} \right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1} \right) = \frac{1}{1} + \frac{1}{2} - \frac{1}{n+1} \text{ , con } n = +\infty \\ \Rightarrow \frac{3}{2} - \frac{1}{+\infty} = \frac{3}{2} + \frac{1}{2} + \frac{$$

Esempio 3:

$$\sum_{n=1}^{+\infty} \ln\left(\frac{n+1}{n}\right) = \sum_{n=1}^{+\infty} \left[\ln(n+1) - \ln(n)\right] = -1 \cdot \left(\sum_{n=1}^{+\infty} \left[\ln(n+1) - \ln(n)\right]\right) = -1 \cdot \left(\ln(1) - \lim_{n \to +\infty} \ln(n)\right) = -1 \cdot (0 - \infty) = +\infty$$

Esempio 4 (esame):

$$\sum_{n=2}^{+\infty} \frac{1}{n^2-1} = \sum_{n=2}^{+\infty} \frac{1}{(n-1)\cdot(n+1)} = \text{Fratti semplici } [\dots] = \sum_{n=2}^{+\infty} \frac{\frac{1}{2}}{(n-1)} - \frac{\frac{1}{2}}{(n+1)} = \frac{1}{2} \cdot \sum_{n=2}^{+\infty} \frac{1}{(n-1)} - \frac{1}{(n+1)} \Rightarrow \frac{1}{2} \cdot \sum_{n=2}^{+\infty} \frac{1}{(n-1)\cdot(n+1)} = \frac{1}{2} \cdot \sum_{n=2}^{+\infty} \frac{1}{(n+1)\cdot(n+1)} = \frac{1}{$$

$$\Rightarrow \text{Pongo } m = n - 1 \Rightarrow n = m + 1 \Rightarrow \frac{1}{2} \cdot \sum_{\substack{m+1 = 2 \\ m \neq 1}}^{+\infty} \frac{1}{m} - \frac{1}{(m+1) + 1} = \sum_{\substack{m=1 \\ m \neq 1}}^{+\infty} \frac{1}{m} - \frac{1}{m+2} \Rightarrow \frac{1}{1} + \frac{1}{2} - \lim_{m \to +\infty} q_m = \frac{3}{2} - 0 = \frac{3}{2}$$

Esempio 5 (esame):

$$\sum_{n=1}^{+\infty} \frac{1}{4n^2 - 9} = \sum_{n=1}^{+\infty} \frac{1}{(2n-3) \cdot (2n+3)} = \text{Fratti semplici } [\dots] = \frac{1}{6} \sum_{n=1}^{+\infty} \frac{1}{2n-3} - \frac{1}{2n+3} \Rightarrow \text{Provo a fare sostituzioni} \Rightarrow \text{Niente} \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{(2n-3) \cdot (2n+3)} = \sum_{n=1}^{+\infty$$

$$\Rightarrow \text{Risolvo a mano scrivendo i primi termini} \Rightarrow \left(-1 - \frac{1}{5}\right) + \left(1 - \frac{1}{7}\right) + \left(\frac{1}{3} - \frac{1}{9}\right) + \left(\frac{1}{5} - \frac{1}{11}\right) + \dots = \text{Semplifico} = \frac{1}{3}$$

• Studio delle serie a termini positivi: Criterio del rapporto (Criterio di D'Alembert)

Sia $\sum_{n=0}^{+\infty} a_n$ una serie con $a_n > 0$ definitivamente (ovvero da una certa n in poi).

Si calcola il limite del rapporto fra due valori successivi del termine generale:

$$\lim_{n \to +\infty} \frac{a_{n+1}}{a_n} = \ell$$

$0 \le \ell < 1$	La serie converge
$\ell > 1$	La serie diverge a +∞
$\ell = 1$	Tutto è possibile (usare altro criterio)

NB: $\ell < 0$ in quanto il criterio si può usare solo sulle serie a termini definitivamente positivi.

Quando può essere utile usare il criterio:

- Quando c'è un n!

In quanto $(n+1)! = 1 \cdot 2 \cdot ... \cdot n \cdot (n+1) = n! \cdot (n+1)$, per cui si può semplificare il n!

- Quando c'è un α^n

Perché $\alpha^{n+1} = \alpha^n \cdot \alpha$, per cui si può semplificare il α^n

Esempio:

$$\sum_{n=0}^{+\infty} \frac{n^{2015}}{3^n} \to a_n \text{ è definitivamente positivo} \to \lim_{n \to +\infty} \frac{\frac{(n+1)^{2015}}{3^{(n+1)}}}{\frac{n^{2015}}{3^n}} = \lim_{n \to +\infty} \frac{(n+1)^{2015}}{3 \cdot 3^n} \cdot \frac{3^n}{n^{2015}} = \lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^{2015}}{n^{2015}} = \lim_{n \to +\infty} \frac{1}{3} \cdot \frac{(n+1)^{2015}}{n^{2015$$

• Studio delle serie a termini positivi: Criterio della radice (Criterio di Cauchy)

NB: IL PROF PISANI NON ACCETTA QUESTO CRITERIO ("Ha un grado di precisione inferiore al criterio del rapporto").

Sia $\sum_{n=0}^{+\infty} a_n$ una seria con $a_n \ge 0$ definitivamente (da un certo n in poi).

Si calcola il limite della radice n-esima del termine generale:

$$\lim_{n \to +\infty} \sqrt[n]{a_n} = \ell$$

$0 \le \ell < 1$	La serie converge
$\ell > 1$	La serie diverge a +∞
$\ell = 1$	Tutto è possibile (usare altro criterio)

Ouando usare il criterio:

Questo criterio è utile in casi di termini contenenti potenze con esponente n.

Esempio 1

$$\sum_{n=2}^{+\infty} \frac{1}{[\log(n)]^{\frac{n}{2}}} \rightarrow a_n \geq 0 \text{ definitivamente} \rightarrow \lim_{n \rightarrow +\infty} \left(\sqrt[n]{\frac{1}{[\log(n)]^{\frac{n}{2}}}} \right) = \dots = \lim_{n \rightarrow +\infty} \frac{1}{\log(n)^{\frac{1}{2}}} = \dots = 0 \rightarrow 0 < 1 \rightarrow s_n \text{ converge}$$

Esempio 2:

$$\sum_{n=1}^{+\infty} \frac{1}{2^n} \cdot \left(\frac{n+1}{n}\right)^{n^2} \to a_n \ge 0 \text{ definit.} \to \lim_{n \to +\infty} \sqrt[n]{\frac{1}{2^n} \cdot \left(\frac{n+1}{n}\right)^{n^2}} = \dots = \lim_{n \to +\infty} \frac{1}{2} \left(\frac{n+1}{n}\right)^n = \frac{1}{2} \cdot \lim_{n \to +\infty} \left(\frac{n+1}{n}\right)^n = \frac{1}{2} \cdot e \to \frac{e}{2} > 1 \to s_n \text{ diverge}$$

• Serie armoniche generalizzate

(sono Serie "notevoli")

Dato $\lambda \in \mathbb{R}$:

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\lambda}} \begin{cases} \text{converge se } \lambda > 1 \\ \text{diverge se } \lambda \le 1 \end{cases}$$

È il caso generalizzato della serie $\sum_{n=1}^{+\infty} \left(\frac{1}{n}\right)$

NB:
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \dots = +\infty$$

Da non confondere con
$$\sum_{n=1}^{+\infty} \left(\frac{1}{n^2}\right) = \frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2$$

Perché:

La serie converge per $\lambda > 1$ perché i valori con delle potenze al denominatore tendono più velocemente allo zero. Si arriva quindi a sommare valori infinitesimi, e la serie converge.

La serie diverge per $\lambda \leq 1$ perché i valori decrescono molto lentamente, e sommando infiniti valori simili fra loro la serie diverge.

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\lambda} \cdot [\log(n)]^{\beta}} \begin{cases} \text{converge se } \lambda > 1 \text{ oppure } \lambda = 1, \beta > 1 \\ \text{diverge se } \lambda < 1 \text{ oppure } \lambda = 1, \beta \leq 1 \end{cases}$$

• Studio delle serie a termini positivi: Criterio del confronto

Sia
$$\sum_{n=0}^{+\infty} a_n$$
 una serie $0 \le a_n \le b_n$ definitivamente (da una certa n in poi).

Allora

1)
$$\sum_{n=0}^{+\infty} b_n$$
 converge $\rightarrow \sum_{n=0}^{+\infty} a_n$ converge

1)
$$\sum_{n=0}^{+\infty} a_n$$
 diverge $\rightarrow \sum_{n=0}^{+\infty} b_n$ diverge

Quando usare il criterio:

Questo criterio viene usato per studiare una serie cercandone un'altra con un termine generale "più facile" da calcolare

Perché:

- 1) Se b_n (più grande di a_n) diventa infinitesimo per $n \to +\infty$, allora a_n (più piccolo di b_n) diventa anch'esso infinitesimo.
- 2) Se già la serie con valori a_n (più piccoli di b_n) diventa infinita per $n \to +\infty$, allora anche la serie b_n diventa infinita.

Esempio 1:

$$\sum_{n=1}^{+\infty} \left(\frac{\cos(n)}{n} \right)^2 \rightarrow \text{individuo un } b_n : 0 \le \left(\frac{\cos(n)}{n} \right)^2 \le \frac{1}{n^2} \text{ definitivamente} \rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2} \text{ converge} \rightarrow \sum_{n=1}^{+\infty} \left(\frac{\cos(n)}{n} \right)^2 \text{ converge}$$

Esempio 2:

$$\sum_{n=1}^{+\infty} \frac{1}{n^{\log(n)}} \to 0 \le \frac{1}{n^{\log(n)}} \le \frac{1}{n^2} \to \sum_{n=1}^{+\infty} \frac{1}{n^2} \text{ converge } \to \sum_{n=1}^{+\infty} \frac{1}{n^{\log(n)}} \text{ converge }$$

Perché: "Definitivamente" (di preciso per n > 2), $n^{\log(n)} > n^2$, e quindi la prima frazione, col divisore più grande, è più piccola.

• Studio delle serie a termini positivi: Criterio del confronto asintotico

Consideriamo 2 successioni a_n , b_n definitivamente positive.

Se

$$a_n \sim b_n \left(\text{ovvero se: } \lim_{n \to +\infty} \frac{a_n}{b_n} = 1 \right)$$

Allora le serie $s_1 = \sum a_n$ ed $s_2 = \sum b_n$ hanno lo stesso carattere.

Ovvero:

 s_1 converge $\Leftrightarrow s_2$ converge

 s_1 diverge $\Leftrightarrow s_2$ diverge

Quando usare il criterio:

Questo criterio viene usato per studiare una serie s_1 cercando una serie s_2 asintotica ad s_1 e più semplice da studiare. Spesso torna utile in frazioni di polinomi.

Esempio 1:

$$s = \sum_{n=1}^{+\infty} \frac{n + \cos(n)}{n^3 - n} \Rightarrow \text{Identifico una successione } b_n \text{ as intoticamente equivalente ad } a_n \Rightarrow$$

 \Rightarrow Osservo che a_n è un rapporto di polinomi, la cui tendenza dipende dai monomi di grado massimo a num. e denom. \Rightarrow

$$\Rightarrow \frac{n + \cos(n)}{n^3 - n} \sim \frac{n}{n^3} \left(= \frac{1}{n^2} \right)$$

Infatti:
$$\lim_{n \to +\infty} \frac{\frac{n + \cos(n)}{n^3 - n}}{\frac{1}{n^2}} = \lim_{n \to +\infty} \frac{n^3 + n^2 \cos(n)}{n^3 - n} = \lim_{n \to +\infty} \frac{n^3 \left(1 + \frac{n^2 \cos(n)}{n^3}\right)}{n^3 \left(1 - \frac{n}{n^3}\right)} = \lim_{n \to +\infty} \frac{n^3 \left(1 + \frac{\cos(n)}{n}\right)}{n^3 \left(1 - \frac{1}{n^2}\right)} = \dots = 1$$

Studio s' = $\sum_{n=1}^{+\infty} \frac{1}{n^2} \Rightarrow s'$ converge (è una serie armonica generalizzata con $\lambda > 1$) $\Rightarrow s$ converge

Esempio 2:

$$s = \sum_{n=1}^{+\infty} \frac{e^{\frac{1}{n^2}} - 1}{4n} \implies \text{Ricordo il limite notevole: } \lim_{n \to 0} \frac{e^n - 1}{n} = 1 \implies$$

$$\Rightarrow \operatorname{Per} n \to +\infty, f(n) = \frac{1}{n^2} \to 0 \quad \Rightarrow \quad \lim_{n \to +\infty} \frac{e^{\frac{1}{n^2}} - 1}{\frac{1}{n^2}} = \lim_{f(n) \to 0} \frac{e^{f(n)} - 1}{f(n)} = 1 \Rightarrow \operatorname{Per} f(n) \to 0, e^{f(n)} - 1 \sim f(n) \Rightarrow 0$$

$$\Rightarrow \sum_{n=1}^{+\infty} \frac{e^{\frac{1}{n^2}} - 1}{4n} \sim \sum_{n=1}^{+\infty} \frac{\left(\frac{1}{n^2}\right)}{4n} = \sum_{n=1}^{+\infty} \frac{1}{4n^3} = \frac{1}{4} \cdot \sum_{n=1}^{+\infty} \frac{1}{n^3}$$

Infatti:
$$\lim_{n \to +\infty} \frac{e^{\frac{1}{n^2} - 1}}{\frac{1}{4n^3}} = \lim_{n \to +\infty} \frac{e^{\frac{1}{n^2} - 1}}{4n} \cdot 4n^3 = \lim_{n \to +\infty} \frac{e^{\frac{1}{n^2} - 1}}{4n} \cdot 4n^3 = \lim_{n \to +\infty} \frac{e^{\frac{1}{n^2} - 1}}{\frac{1}{n^2}} = \lim_{f(n) \to 0} \frac{e^{f(n)} - 1}{f(n)} = 1 \text{ (limite notev.)}$$

Studio $s' = \frac{1}{4} \cdot \sum_{n=1}^{+\infty} \frac{1}{n^3} \Rightarrow s'$ converge (armonica generalizzata) $\Rightarrow s$ converge (criterio del confronto asintotico)

• Studio delle serie a termini positivi: Criterio degli Infinitesimi

Consideriamo una serie $S = \sum_{n=0}^{+\infty} a_n$ a termini definitivamente positivi.

Passo 1)

Si calcola il limite:

$$\lim_{n\to +\infty} [n\cdot a_n] = \ell$$

Se $\ell > 0 \rightarrow S$ diverge

Altrimenti si passa al Passo 2.

Passo 2)

Data la funzione:

$$p(k) = 1 + \frac{1}{2^{k-1}}$$

$$p(2) = \frac{2}{1} = 2$$
; $p(3) = \frac{3}{2}$; $p(4) = \frac{5}{4}$; $p(5) = \frac{9}{8}$; $p(6) = \frac{17}{16}$ = [...]

Si calcola il limite:

$$\lim_{n \to +\infty} \left[n^{p(k)} \cdot a_n \right] = \ell$$

Partendo da k = 2.

Se $\ell < +\infty \rightarrow S$ converge

Se $\ell = +\infty \rightarrow$ si aumenta k e si ripete il calcolo

Si calcoleranno quindi i limiti:

Si calcoleranno quindi i limiti:
$$\lim_{n \to +\infty} \left[n^2 \cdot a_n \right] \; ; \; \lim_{n \to +\infty} \left[n^{\frac{3}{2}} \cdot a_n \right] \; ; \; \lim_{n \to +\infty} \left[n^{\frac{5}{4}} \cdot a_n \right] \; ; \; [...]$$
 e si continua finché $\ell < +\infty$

• Studio delle serie a termini positivi: Serie di Potenze

Serie in forma S =
$$\sum_{n=k}^{+\infty} a_n = \sum_{n=k}^{+\infty} \left[b_n \cdot (x - x_0)^n \right]$$

Tali serie sono sempre convergenti per alcuni (o tutti) i possibili valori di x. Si definisce "raggio di convergenza" l'intervallo dei valori di x per i quali la serie S converge.

Possiamo avere 3 casi:

Caso 1: $r = +\infty$

La serie converge per qualsiasi possibile valore di $x \in Dominio$

Caso 2: $0 < r < +\infty$

La serie converge per i valori di x per cui $|x - x_0| \le r$

La serie converge quindi per $x \in (x_0 - r, x_0 + r)$

Caso 3: r = 0

La serie converge solo per $x=x_0$ (ovvero quando x ed x_0 si annullano e rimane solo b_n)

$$|x - x_0| \le 0 \land r = 0 \rightarrow x = x_0 \rightarrow \sum_{n=k}^{+\infty} \left[b_n \cdot ((x_0) - x_0)^n \right] = \sum_{n=k}^{+\infty} [b_n]$$

Come risolvere:

Passo 1: Calcolare il raggio di convergenza

 $r=rac{1}{R}$, con $R=\lim_{n o +\infty}rac{b_{n+1}}{b_n}$ (Risultato del criterio di D'alembert applicato al termine b_n)

Passo 2: Controllare se la serie converge negli estremi

Studio
$$\sum_{n=k}^{+\infty} \left[b_n \cdot ([x_0 - r] - x_0)^n \right] \quad \text{;} \quad \text{Studio} \sum_{n=k}^{+\infty} \left[b_n \cdot ([x_0 + r] - x_0)^n \right]$$

Esempio 1:

La serie geometrica, $\sum_{n=0}^{+\infty} [x^n] = \sum_{n=k}^{+\infty} [1 \cdot (x-0)^n]$, è una serie di potenze con $b_n = 1$, $x_0 = 0$

$$R = \lim_{n \to +\infty} \frac{b_{n+1}}{b_n} = 1 \; ; \; r = \frac{1}{R} = 1$$

Questa serie ha raggio di convergenza = 1. Ovvero, questa serie converge per $x \in (x_0 - r, x_0 + r) = (0 - 1, 0 + 1) = (-1, +1)$. Infatti sappiamo, dalla teoria delle serie geometriche, che convergono per |q| < 1

In tal caso la somma, per le formule delle serie geometriche, sarà $\frac{1}{1-x}$

Esempio 2 (esame):

$$S = \sum_{n=0}^{+\infty} \frac{(x-2)^n}{3^n \cdot \sqrt{4n+1}} \; ; \; b_n = \frac{1}{3^n \cdot \sqrt{4n+1}} \; ; \; x_0 = 2 \; ; \; R = \lim_{n \to +\infty} \frac{\frac{1}{3^{n+1} \cdot \sqrt{4(n+1)+1}}}{\frac{1}{3^n \cdot \sqrt{4n+1}}} = [\dots] = \frac{1}{3} \; ; \; r = \frac{1}{\frac{1}{3}} = 3$$

S converge per $x \in (2-3,2+3)$, ovvero $x \in (-1,5)$. Controllo gli estremi:

$$sx: \sum_{n=0}^{+\infty} \frac{(-1-2)^n}{3^n \cdot \sqrt{4n+1}} = \sum_{n=0}^{+\infty} \frac{(-3)^n}{3^n \cdot \sqrt{4n+1}} = \sum_{n=0}^{+\infty} \frac{[(-1) \cdot (3)]^n}{3^n \cdot \sqrt{4n+1}} = \sum_{n=0}^{+\infty} \frac{(-1)^n \cdot 3^n}{3^n \cdot \sqrt{4n+1}} = \text{Leibniz} \left[\dots \right] \quad ; \quad dx: \sum_{n=0}^{+\infty} \frac{(5-2)^n}{3^n \cdot \sqrt{4n+1}} = \left[\dots \right]$$

• Studio delle serie a termini positivi: Criterio dell'Integrale

Consideriamo una serie $S = \sum_{n=k}^{+\infty} a_n$

Sia S una serie convergente, composta da termini a_n definitivamente positivi.

Consideriamo la funzione f(x) associata alla successione a_n . Ovvero y = f(x) t. c. $f(n) = a(n) \forall n \in \mathbb{N}$

Sia f(x) una funzione continua, a termini positivi, decrescente, definita in $[k, +\infty)$.

Allora:

$$\int_{k}^{+\infty} f(x)dx \text{ converge} \Rightarrow \sum_{n=k}^{+\infty} f(n) \text{ converge}$$

$$\int_{k}^{+\infty} f(x)dx \text{ diverge} \Rightarrow \sum_{n=k}^{+\infty} f(n) \text{ diverge}$$

Esempio 1:

Studia
$$S = \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = \int_{1}^{+\infty} x^{-2} dx = \lim_{t \to +\infty} \int_{1}^{t} x^{-2} dx = \lim_{t \to +\infty} \left[\frac{x^{(-2)+1}}{(-2)+1} \right]_{1}^{t} = \lim_{t \to +\infty} \left[-\frac{1}{x} \right]_{1}^{t} = -\frac{1}{+\infty} - \left(-\frac{1}{1} \right) = 1$$

$$\int_{1}^{+\infty} \frac{1}{x^2} dx = 1 \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n^2} \text{ converge}$$

Esempio 2:

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to +\infty} \left[\ln(|x|) \right]_{1}^{t} = \ln(|+\infty|) - \ln(|1|) = +\infty$$

$$\int_{1}^{+\infty} \frac{1}{x} dx = +\infty \Rightarrow \sum_{n=1}^{+\infty} \frac{1}{n} \text{ diverge}$$

• Studio delle serie con termini a segno alterno: Criterio di assoluta convergenza

 $\sum a_n$ è "assolutamente convergente" se $\sum |a_n|$ converge.

NB1: Non è necessariamente vero che se una serie $\sum a_n$ converge, allora anche $\sum |a_n|$ converge.

NB2: Se $\sum |a_n|$ diverge, il criterio non è usabile.

Quando usare il criterio:

Nel caso di serie con termini a segno alterno, se la serie col valore assoluto è convergente.

Esempio 1:

Studiare
$$\sum_{n=0}^{+\infty} \frac{\sin(n!)}{n^4} \; ; \; \sin(n!) \in [-1, +1] \; ;$$

Errore comune:
$$\frac{\sin(n!)}{n^4} \le \frac{1}{n^4} \Rightarrow$$
 Criterio del confronto.

Perché no: Il criterio del confronto è applicabile solo quando s_1 è a termini definitivamente positivi (Quando $0 \le a_n \le b_n$ per ogni a_n , b_n)

$$\sum_{n=0}^{+\infty} \frac{\sin(n!)}{n^4} \; ; \; \; \text{Studio} \sum_{n=0}^{+\infty} \left| \frac{\sin(n!)}{n^4} \right| \; ; \; \; \left| \frac{\sin(n!)}{n^4} \right| \leq \frac{1}{n^4} \; ; \; \; \text{Studio} \sum_{n=0}^{+\infty} \frac{1}{n^4} \to \text{converge (armonica generalizzata)} \; ; \\ \sum_{n=0}^{+\infty} \left| \frac{\sin(n!)}{n^4} \right| \; \text{converge per il confronto} \quad ; \quad \sum_{n=0}^{+\infty} \frac{\sin(n!)}{n^4} \; \text{converge "assolutamente"}$$

Esempio 2:

Studiare
$$\sum_{n=0}^{+\infty} (-1)^n \cdot \frac{n^2 + 3}{n^4 + 2n}$$
; Studio $\sum_{n=0}^{+\infty} \left| (-1)^n \cdot \frac{n^2 + 3}{n^4 + 2n} \right|$; $\sum_{n=0}^{+\infty} \frac{n^2 + 3}{n^4 + 2n}$; $\frac{n^2 + 3}{n^4 + 2n} \sim \frac{n^2}{n^4} \left(= \frac{1}{n^2} \right)$; Studio $\sum_{n=0}^{+\infty} \frac{1}{n^2} \rightarrow \text{converge}$; $\sum_{n=0}^{+\infty} \left| (-1)^n \cdot \frac{n^2 + 3}{n^4 + 2n} \right|$ converge per il confronto asintotico ; $\sum_{n=0}^{+\infty} (-1)^n \cdot \frac{n^2 + 3}{n^4 + 2n}$ converge assolut.

Errore:

Ricorda: NON è necessariamente vero che $\sum |a_n|$ diverge $\Rightarrow \sum a_n$ diverge In questo caso si usa il criterio di Leibniz.

• Studio delle serie con termini a segno alterno: Criterio di Leibniz

Data una successione b_n , con:

- 1) $b_n \ge 0$ "definitivamente"
- 2) $b_n \to 0$ per $n \to +\infty$ (b_n è infinitesima)
- 3) $b_{n+1} \le b_n$ "definitivamente" (b_n è decrescente)

Allora la serie S $=\sum a_n=\sum [(-1)^n\cdot b_n]$ è convergente.

NB: Se una o più delle 3 caratteristiche di b_n non sono rispettate, il criterio non è usabile. NON vuol dire necessariamente che la serie diverge. In tal caso, bisogna usare altri criteri.

NB: Si usa b_n per distinguere da a_n che rappresenta il termine n-esimo della serie S compreso il segno derivante da $(-1)^n$

Quando usare il criterio:

Quando non si può applicare il criterio di assoluta convergenza.

Conviene prima provare per assoluta convergenza, visto che Leibniz è più lungo da svolgere.

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} \left(= \sum_{n=0}^{+\infty} (-1)^n \cdot \frac{1}{n!} \right)$$

- 0) Controllo se posso applicare il criterio di assoluta convergenza: in questo caso sì, ma applico per esercizio Leibniz
- 1) Controllo se $\frac{1}{n!} \ge 0$ definitivamente: Sì
- 2) Controllo se $\lim_{n \to +\infty} \frac{1}{n!} = 0 : Si$ 3) Controllo se $\frac{1}{n!}$ è decrescente: Si, in quanto è la funzione reciproca della funzione cresccente f'(n) = n! Risultato: La serie converge

Esempio 2:

$$\sum_{n=1}^{+\infty} (-1)^n \cdot \frac{n-1}{n^2 + n}$$

0) Controllo se posso usare il criterio di assoluta convergenza:

No, in quanto $\sum_{n=1}^{+\infty} \frac{n-1}{n^2+n} \sim \sum_{n=1}^{+\infty} \frac{1}{n}$ diverge.

- 1) Controllo se $a_n \ge 0$ definitivamente: Sì, per $n \ge 2$
- 2) Controllo se $\lim_{n\to+\infty} \frac{n-1}{n^2+n} = 0$: Sì (calcoli semplici).
- 3) Controllo se $\frac{n-1}{n^2+n}$ è decrescente

$$\frac{(n+1)-1}{(n+1)^2+(n+1)} \left(= \frac{n}{(n+1)(n+2)} \right) \le \frac{n-1}{n^2+n} \to \dots \to n \ge 2, \text{ ovvero } f(n+1) \le f(n) \text{ per } n \ge 2.$$