Test 1 du 16 octobre 2018

Durée: 1h45, Polycopié autorisé.

Exercice 1. On considère les fonctions 2π -périodiques suivantes, définies par :

- -a) $f_1(t) = (\cos(2t 3))^3$ pour $t \in \mathbb{R}$
- -b) $f_2(t) = |\cos t| \text{ pour } t \in [-\pi, \pi[$
- -c) $f_3(t) = \exp t \text{ pour } t \in [-\pi, \pi[.$
- 1) représenter l'allure des graphes de f_1 , f_2 et f_3 .
- 2) Parmi les fonctions f_1 , f_2 , f_3 , quelles sont les fonctions continues sur \mathbb{R} ? Quelles sont les fonctions de classe C^1 sur \mathbb{R} ? De classe C^2 sur \mathbb{R} ?
- 3) Calculer les coefficients de Fourier de f_1 .
- 4) Calculer les coefficients de Fourier de f_2 .
- 5) Calculer les coefficients de Fourier de f_3 .
- 6) Calculer les coefficients de Fourier de $f_1 \star f_3$.

Exercice 2. Pour $k \in \mathbb{N}^*$, on considère la fonction $g_k : \mathbb{R} \to \mathbb{R}$ définie par

$$\begin{cases} g_k(t) = \sin \pi k t, \text{ pour } t \in [-1, 1], \\ g_k(t) = 0 \text{ pour } t \in \mathbb{R} \setminus [-1, 1]. \end{cases}$$
 (1)

- A1) représenter les graphes des fonctions g_1 et g_2 .
- A1) la fonction g_k est-elle périodique? Vérifier qu'elle est impaire.
- A2) La fonction g_k est-elle continue? De classe $C^1(\mathbb{R})$? De classe $C^2(\mathbb{R})$?
- A3) Calculer la norme $\|g_k\|_{L^{\infty}(\mathbb{R})}$ pour tout $k \in \mathbb{N}^*$.
- A4) Calculer $||g_1||_{L^1(\mathbb{R})}$.
- B) Soit I un intervalle de \mathbb{R} . On note $\mathbf{1}_I$ la fonction indicatrice de I, c'est à dire la fonction définie sur \mathbb{R} par

$$\begin{cases} \mathbf{1}_{I}(t) = 1 \text{ si } t \in I \\ \mathbf{1}_{I}(t) = 0 \text{ si } t \notin I. \end{cases}$$
 (2)

- B1) Représenter le graphe de la fonction $\mathbf{1}_{[-1,1]}$.
- B2) La fonction $\mathbf{1}_{[-1,1]}$ est-elle continue? Est-elle paire?
- B3) La fonction $\mathbf{1}_{[-1,1]}$ appartient-elle à $L^{\infty}(\mathbb{R})$? Appartient-elle à $L^{1}(\mathbb{R})$? Si oui, déterminer sa norme dans chacun de ces espaces de fonctions.
- B) On considère le produit de convolution $f_k \equiv \mathbf{1}_{[-1,1]} \star g_k$.
- B1) Justifier le fait que le produit de convolution est bien défini et qu'il s'agit

d'une fonction paire.

- B2) Montrer, sans faire de calcul, que la fonction f_k s'annule en dehors de l'intervalle [-2,2].
- B3) Déterminer explicitement la fonction f_k .
- B4) Représenter le graphe de f_1 . S'agit-il d'une fonction continue? De classe $C^1(\mathbb{R})$?
- B5) Calculer $\int_{\mathbb{R}} f_1(t) dt$.
- C) On considère la fonction h définie sur \mathbb{R} par $h(t) = \exp(-|t|)$.
- C1) Donner l'allure du graphe de h. La fonction h a t-elle des propriétés de parité?
- C2) Vérifier que le produit de convolution $w \equiv g_1 \star h$ est bien défini, est une fonction impaire et positive.
- C3) déterminer explicitement w.
- C4) La fonction w est-elle continue? de classe C^1 ? de classe C^2 ?