

Sistema Operativos II

Prof. Saúl Zalimben

Examen Final

Indicaciones

- El trabajo puede ser de forma grupal (hasta 2 personas).
- Debe subir el documento en la plataforma, en la tarea creada a dicho fin.
- El archivo deberá tener como nombre el número de documento del alumno, nombre y apellido [3564325_carlos_moreno].
- Todos los integrantes deben subir el trabajo a la plataforma.

Planificación de Procesos (50 %)

Asumiendo los siguientes procesos:

Proceso Llegada t

Α	0	7
В	2	13
С	4	3
D	4	5
Ε	6	7
F	6	3

Resuelva el esquema de planificación de procesos aplicando los siguientes algoritmos:

- Round robin (q=2)
- Round robin (q=4)
- Proceso más corto a continuación con enfoque preventivo.

Por cada uno desarrolle:

- 1. Representación gráfica de cómo el despachador les asignaría el CPU (30%)
- 2. Tabla de análisis (20%)

Docker (50 %)

Considerando los algoritmos implementados en el trabajo de Algoritmos de Planificación, crea 2 dockerfile que *dockericen* la implementación, un dockerfile por cada algoritmo.

- Ronda (Round robin)
- El proceso más corto primero

Documentación

Estoy ejecutando utilizando Python 3.12, Pycharm como IDE, versión de Docker 24.0.7, Windows 11 Pro Estructura del Proyecto

El programa debe ir acompañado de documentación que incluya:

- Pasos para la ejecución correcta del dockerfile en Docker

1-Construir Imágenes

Construir imagen para Round Robin docker build -t scheduler-rr -f Dockerfile.rr .

Construir imagen para SRTF docker build -t scheduler-srtf -f Dockerfile.srtf .

2-Ejecutar Contenedores:

Round Robin con quantum=2 (por defecto) docker run scheduler-rr

Round Robin con quantum=4
docker run -e "QUANTUM=4" scheduler-rr

SRTF

docker run scheduler-srtf

Observaciones:

Quantum (q) para Round Robin:

- Se configura mediante la variable de entorno QUANTUM
- Se puede modificar al ejecutar el contenedor usando -e "QUANTUM=valor"

Archivo de entrada:

- Se configura mediante la variable de entorno INPUT_FILE
- Por defecto: /app/data/processes.json
- Versión Docker

Docker version 24.0.7

- Capturas de pantalla de su correcta ejecución

Round Robin Q=2

Representación gráfica de cómo el despachador les asignaría el CPU

Tabla de análisis:

Proceso	Tiempo de Llegada	Tiempo de Ejecución	Tiempo de Finalización	Tiempo de Retorno	Tiempo de Espera
Α	0	7	17	17	10
В	2	13	27	25	12
С	4	3	15	11	8
D	4	5	19	15	10
E	6	7	22	16	9
F	6	3	18	12	9

Tiempo de Retorno Promedio: 18.67 unidades Tiempo de Espera Promedio: 12.33 unidades

Round Robin Q=4

Representación gráfica:

Tabla de análisis:

Proceso	Tiempo de Llegada	Tiempo de CPU	Tiempo de Finalización	Tiempo de Retorno	Tiempo de Espera
Α	0	7	11	11	4
В	2	13	34	32	19
С	4	3	18	14	11
D	4	5	22	18	13
E	6	7	31	24	17
F	6	3	27	21	18

Tiempo de Retorno Promedio: 22.17 unidades Tiempo de Espera Promedio: 15.83 unidades

Shortest Remaining Time First SRTF

Representación gráfica:

Tabla de análisis:

Proceso	Tiempo Llegada	Tiempo CPU	Tiempo Final	Tiempo Retorno	Tiempo Espera
Α	7	18	18	11	0
В	2	13	38	36	23
С	4	37	30	26	16
D	4	51	51	16	11
E	7	25	19	12	5
F	6	31	41	0	10

Tiempo de Retorno Promedio: 15.17 unidades Tiempo de Espera Promedio: 8.83 unidades

Entregar

- Dockerfile: 1 por cada algoritmo

- Documentación (PDF)

Observaciones

- Para el algoritmo de round robin el valor de *q* debe ser parametrizado, es decir, el valor tiene que ser configurado en el dockerfile y luego ser usado por su aplicación.
- También debe existir una variable para los archivos externos
- En la documentación puede incluir todos los comentarios pertinentes para facilitar su evaluación, como casos de prueba, lógica de negocio, etc.
- No se aceptarán enlaces externos.
- No se realizan correcciones binarias.