Analysis of questions

Post-final presentation

by JaMiMaKa group Mikołaj Malec, Marceli Korbin, Kacper Grzymkowski, Jakub Fołtyn

Experimental procedure

- Testing different approaches to topic clustering
 - o LDA
 - Sentence embeddings
- Analysis of question complexity
 - LLM prompt engineering
 - DSI measure
 - Bloom's taxonomy
 - Question-words

Bloom's Taxonomy

Image source: Vanderbilt University Center for Teaching

Dataset

- The Stanford Question Answering Dataset
- Not the best choice, but:
 - Available
 - Decently sized
 - Decently clean
- Time constraints
 - We wanted to get something out of the gate

Overview

- OK, but what did we actually do?
- This diagram got a bit more complicated
- While working on the project, it was clear to us...
- But not for anyone else
 - The point of reviews

New diagram

 Fair to say it was needed

Our contribution

- Explored the data from the perspective of the problem
- We found what worked
- ... and what didn't
- Found something interesting

Lessons learned

• LLMs like Beyoncé

Actual lessons learned

- LLMs aren't always the best solution to a vague problem
 - Mostly a cost / effectiveness trade-off
 - Still worth exploring as an option
- Sentence embeddings roughly model the topic
- Modelling structure is much more difficult than modelling the topic
 - Especially when trying to model the structure based on the topic...
- More careful selection and preparation of data
- Topic modeling is especially hard on short text data

Technical lessons learned

- LLMs are large
 - Model quantized to 4 bits
 - Barely fit in memory
- The Python k-modes package doesn't work on large data
- Preprocessing on question data is not as straightforward
 - Certain stop-words are significant for the meaning of the question

Future works

- Better suited datasets
 - Mix of complex and simple questions
 - Some labels semi-supervised learning
- Method refinements
 - More statistically sound clustering
 - Analysis using multi-dimensional scaling instead of t-SNE
- More rigorously study structure / topic relationships

Thank you for your attention

Any questions?