

Home Grades

yathartha.regmi@ttu.edu

(Sign out)

My Assignments
Communication

Calendar

My eBooks

← PHYS 2401, section 201, Summer 2 2022

Ray Optics (Homework)

™ INSTRUCTOR **Keith West**Texas Tech University

Due Date

THU, AUG 4, 2022

11:58 PM CDT

Assignment Submission & Scoring

Assignment Submission

For this assignment, you submit answers by question parts. The number of submissions remaining for each question part only changes if you submit or change the answer.

Assignment Scoring

Your last submission is used for your score.

The wavelength of red helium-neon laser light in air is 632.8 nm.

(a) What is it	ts frequency?
	Hz
(b) What is i	ts wavelength in glass that has an index of refraction of 1.53?
	nm
(c) What is it	s speed in the glass?
	Mm/s

 \bigcirc

The figure shows a refracted light beam in linseed oil making an angle of $\varphi = 27.6^{\circ}$ with the normal line NN'. The index of refraction of linseed oil is 1.48.

(a) Determine the angle θ .

(b) Determine the angle $\theta^{\prime}.$

Need Help? Read It Master It

 \bigcirc

When the light ray illustrated in the figure below passes through the glass block of index of refraction n = 1.50, it is shifted laterally by the distance d. (Let L = 2.20 cm and $\theta = 32.0^{\circ}$.)

(a) Find the value of d.

cm

(b) Find the time interval required for the light to pass through the glass block.

ps

Need Help? Read It Watch It

You are working in an optical research laboratory. One of the pieces of experimental apparatus involves a beam of light entering a transparent rod (see the figure below) of diameter $d = 6.00 \, \mu m$ and index of refraction n = 1.26, surrounded by air.

Your supervisor has given you the task of determining the *cone of acceptance* for the rod, which is the maximum angle θ_{max} (in degrees) for which the light rays incident on the end of the rod are subject to total internal reflection along the walls of the rod.

Copyright © 1998 - 2022 Cengage Learning, Inc. All Rights Reserved

TERMS OF USE PRIVACY