ARIAN SHARIAT MOHAMMADI MOHAMMADI

LICENSE PLATE RECOGNITION

WHY LICENSE PLATE RECOGNITION?

We are amateurs in neural network

Dataset availability

Widely analyzed

INPUTS

▶ A set of pictures with labels (11.5K)

Train: 11K images

Test: 0.5K images

Width: 128 X Height: 64

OUTPUTS

Output is a set of strings

Generated from characters with the highest probability of presence

8 characters long

(0,1~9) and (A to Z)

Predicted: X835KX31

True: X835KX31

CHALLENGES

Which neural network to use and why?

Which loss function to use and why?

Where to get data from?

IMPLEMENTATION

Architecture

Layers

Loss Function

WE USE CNN AS NEURAL NETWORK

- CNN is a class of deep neural networks
- Most common neural network applied analyzing visual imagery
- CNN uses a variation of multilayer perceptrons
- CNN requires minimal preprocessing because of it's various multilayer perceptrons design

LAYERS

- InputLayer
- ▶ Conv2D
- MaxPoolin2D
- Reshape
- Dense
- GRU (Deleted)
- Activation layer(Softmax)

WE USE CTC AS LOSS FUNCTION, WHY?

Difference of different images beginning will be marked emptyspace by CTC-blanks

 Occupancy of one character in multiple time-steps will be merged by CTC

RUNNING THE CODE USING ONE EPOCH WITH GRU

```
Using TensorFlow backend.
TensorFlow version: 1.12.0
Keras version: 2.2.4
Max plate length in "": 8
Max plate length in "": 8
{'Y', 'X', 'E', 'K', 'M', '5', '2', '3', 'T', '6', '0', 'B', 'C', 'P', '7', '9', '4', 'H', '0', '1', 'A', '8'}
Letters in train and val do match
Letters: 0 1 2 3 4 5 6 7 8 9 A B C E H K M O P T X Y
Text generator output (data which will be fed into the neutral network):

    the_input (image)

2) the_labels (plate number): A024AK54 is encoded as [10, 0, 2, 4, 10, 15, 5, 4]
3) input length (width of image that is fed to the loss function): 30 == 128 / 4 - 2
4) label length (length of plate number): 8
Layer (type)
                              Output Shape
                                                             Connected to
the_input (InputLayer)
                              (None, 128, 64, 1)
                                                             the_input[0][0]
conv1 (Conv2D)
                              (None, 128, 64, 16) 160
                                                             conv1[0][0]
max1 (MaxPooling2D)
                              (None, 64, 32, 16)
conv2 (Conv2D)
                              (None, 64, 32, 16)
                                                 2320
                                                             max1[0][0]
max2 (MaxPooling2D)
                                                             conv2[0][0]
                              (None, 32, 16, 16)
                                                 0
                                                             max2[0][0]
reshape (Reshape)
                              (None, 32, 256)
dense1 (Dense)
                              (None, 32, 32)
                                                  8224
                                                             reshape[0][0]
gru1 (GRU)
                                                  837120
                                                             dense1[0][0]
                              (None, 32, 512)
                              (None, 32, 512)
                                                  837120
                                                             dense1[0][0]
gru1 b (GRU)
add 1 (Add)
                              (None, 32, 512)
                                                             gru1[0][0]
                                                             gru1_b[0][0]
gru2 (GRU)
                              (None, 32, 512)
                                                  1574400
                                                             add_1[0][0]
```

(wone,	32,	512)	1574400	add_1[0][0]
(None,	32,	512)	1574400	add_1[0][0]
(None,	32,	1024)	0	gru2[0][0] gru2_b[0][0]
(None,	32,	23)	23575	concatenate_1[0][0]
(None,	32,	23)	9	dense2[0][0]
	(None,	(None, 32, (None, 32,	(None, 32, 512) (None, 32, 1024) (None, 32, 23) (None, 32, 23)	(None, 32, 512) 1574400 (None, 32, 1024) 0 (None, 32, 23) 23575

Total params: 4,857,319 Trainable params: 4,857,319 Non-trainable params: 0

Epoch 1/1

Predicted: A036CT78 True: A036CT78 Predicted: A065CA30 True: A065CA30

C:\Users\Amu Chaei\Miniconda3\envs\license_plate\lib\site-packages\matplotlib\figure.py:2366: UserWarning: This figure includes
Axes that are not compatible with tight_layout, so results might be incorrect.
warnings.warn("This figure includes Axes that are not compatible "

Predicted: A083YA10
True: A083YA10
Predicted: A128HB61
True: A128HB61
Predicted: A141AP01
True: A141AP01
Predicted: A160HE95
True: A160HE95
Predicted: A183KE05
True: A183KE05
Predicted: A225EP73
True: A225EP73

RUNNING THE CODE USING 4 EPOCHS WITHOUT GRU

Layer (type)	Output	Shape	Param #
the_input (InputLayer)	(None,	128, 64, 1)	0
conv1 (Conv2D)	(None,	128, 64, 16)	160
max1 (MaxPooling2D)	(None,	64, 32, 16)	0
conv2 (Conv2D)	(None,	64, 32, 16)	2320
max2 (MaxPooling2D)	(None,	32, 16, 16)	0
reshape (Reshape)	(None,	32, 256)	0
densel (Dense)	(None,	32, 32)	8224
dense2 (Dense)	(None,	32, 23)	759
softmax (Activation)	(None,	32 , 23)	0

Total params: 11,463

Trainable params: 11,463
Non-trainable params: 0

Predicted: B362PM18

True: B362PM18

Predicted: 0285CP75

True: 0285CP75

Predicted: X030MP56

True: X030MP56

Predicted: X8770K50

True: X8770K50

Predicted: X248BX38

True: X248BX38

Predicted: M348AX39

True: M348AX39

Predicted: Y668B066

True: Y668B066

