Estadística No Paramétrica

Joaquin Cavieres G.

Ingeniería en Estadística

Facultad de Ciencias, Universidad de Valparaíso

Contenidos del curso

Estadística No Parámetrica:

- Introducción
- Generalidades sobre técnicas no paramétricas
- Pruebas para una muestra
- Pruebas para dos muestras independientes
- Pruebas para dos muestras relacionadas
- Pruebas para varias muestras independientes
- Pruebas para varias muestras relacionadas
- Jackknife, Bootstrap paramétrico y no paramétrico
- Regresión no paramétrica

Bibliografía

Referencias bibliográficas:

Obligatoria

- Conover, W.J (1999). Practical Nonparametric Statistics (3rd Ed.)
- Siegel S. Diseño experimental no paramétrico.
- Wasserman, L (2006). All of Nonparametric Statistics

Complementaria

- Hollander, M and Wolfe D.A (1972). Nonparametric Statistical Methods.
- Daniel W. W (1978). Applied Nonparametric Statistics

Tipos de evaluaciones

Tipo de evaluación	Ponderación (% del total)
Pruebas	60%
Presentaciones grupales e informes	20%
Tareas	10%
Co-evaluación	10%

Software

- R (principal del curso)
 - The R project: www.r-project.org
 - Disponible en Windows, MacOSX, Linux
- Python (uso opcional)

¿Por que usar R?

- R es un software de uso libre.
- No necesita una licencia.
- Cualquiera puede usar o modificar los códigos disponibles ('source').
- Sigue presentando un amplio desarrollo y crecimiento (a diferencia del software SPSS que ha ido disminuyendo su popularidad)
- Es uno de los softwares más utilizados por los Data Scientist para el análisis de datos y creación de modelos predictivos.

¿Para que sirve R?

R contiene una variedad de 'librerías' base para ser diferentes tipos de análisis estadísticos y más de 12000 librerías adicionales que hans sido desarrolladas. Estas librerías nos permiten trabajar con:

- Distribuciones de probabilidad.
- Test estadísticos.
- Modelado lineal, no lineal, semiparamétrico, no parametríco, etc.
- Análisis multivariado.
- Series de tiempo.
- Estadística espacial.
- Mapas.
- Machine learning, Deep learning.
- ...

Adicionales con R

Además de permitir realizar análisis estadísticos, R se ha convertido en un ambiente de desarrollo con extensiones tales como:

- Desarrollo de API's.
- Interfaz con Shiny.
- Interfaz con LaTeX mediante Rmarkdown.
- Interfaz con c++ a través de Rcpp.
- Interfaz con álgebra lineal a través de RcppArmadillo.
- Interfaz con análisis númerico a través de RcppNumerical.
- Creación de páginas web con blogdown
-

Estadística paramétrica

Caracteristicas principales

- Los parámetros son desconocidos y fijos en el tiempo. Estos determinan la caractecteristicas de una población.
- La estimación y la inferencia estan basados en supuestos distribucionales en la función de distribucion.

Estadística no paramétrica

Caracteristicas principales

- No se asume una forma conocida para la función de distribución.
- Se requieren pocos supuestos en el proceso de estimación y test para la población de estudio.
- Igualmente se realizan procesos de estimación y test de hipótesis para los parámetros de la población.

Ventajas

- Se requieren pocos supuestos sobre los datos obtenidos sobre la población en estudio.
- Permite la estimación exacta en los test comparativos de los p-values y/o estimación exacta de los intervalos de confianza sin asumir supuesto de distribución Normal.
- Sin problemas de estimación en muestras pequeñas.
- Generalmente son sencillos de aplicar y sencillos de comprender.
- Relativamente insensible a valores atípicos.
- Puede ser apicable cuando la teoría de la distribución Normal no puede ser utilizada.
- Los avances computacionales permiten estimaciones eficientes en los test no paramétricos.

Función de distribución

Comencemos defininiendo una variable aleatoria Y la cual esta determinada por su función de distribución acumulada de la forma:

$$F(y) = P(Y \le y)$$

Lo anterior es puede ser aplicado para una variable aleatoria discreta o una variable aleatoria continua.

La distribución de Y esta deteminada únicamente por:

- Función de densidad de probabilidad $(pdf) \Rightarrow f(y)$ si Y es v.a continua.
- Función de masa de probabilidad $(pmf) \Rightarrow f(y) = P(Y = y)$ si Y es una v.a discreta.

Función de distribución acumulada

CDF

$$F(y) = P(Y \le y)$$
 para una v.a continua.

```
\begin{split} & \texttt{n} = \texttt{1000} \\ & \texttt{y} = \texttt{rnorm}(\texttt{n}, \texttt{mean} = \texttt{0}, \texttt{sd} = \texttt{1}) \\ & \texttt{mean}(\texttt{y}) \\ & \texttt{var}(\texttt{y}) \end{split}
```

```
\begin{split} x &= seq(-3,3,length = 100) \\ ecdf.fun &= ecdf(z) \ \#Crea \ una \ CDF \\ class(ecdf.fun)\# \ La \ función \ CDF \ con \ el \ argumento \ 'class' \end{split}
```

Función de distribución acumulada

CDF

$$F(y) = P(Y \le y)$$
 para una v.a continua.

Función de distribución acumulada

CDF

 $F(y) = P(Y \le y)$ para una v.a discreta es la misma que para una v.a continua pero a través de una función en 'intervalos'.

$$\begin{split} &n=10\\ &p=0.5\\ &\texttt{dbinom}(\texttt{1},\texttt{size}=\texttt{n},\texttt{prob}=\texttt{p})\\ &\texttt{x}<-\texttt{0}:\texttt{n} \end{split}$$

Función de distribución acumulada

CDF

 $F(y) = P(Y \le y)$ para una v.a discreta es la misma que para una v.a continua pero a través de una función en 'intervalos'.

Función de distribución de probabilidad

PDF

Considerando una v.a aleatoria continua Y, la función de densidad de probabilidad (pdf, siglas en inglés) denotada como f(y), determina la región más probable.

$$P(a < Y \le b) = F(b) - F(a) = \int_a^b f(y) dy$$

Métodos paramétricos

Si nos enfocamos en los tradicionales métodos paramétricos, la función de distribución está gobernada por parámetros, por ejemplo:

- ullet Distribución Normal: $\mathscr{N}(\mu,\sigma^2)$
- Distribución de Poisson: λ
- Distribución Gamma: Ga(a,b)

Métodos paramétricos

Comparación de medias de dos grupos

Si asumimos que tenemos dos muestras aleatorias desde dos grupos, llamemosles $y_1, ..., y_n$ y $z_1,, z_m$, para observaciones independientes una de otra. Para determinar si las medias son distintas podemos realizar un clásico test paramétrico bajo los siguientes supuestos:

- $Y_i \sim \mathcal{N}(\mu_1, \sigma_1^2)$
- $Z_i \sim \mathcal{N}(\mu_2, \sigma_2^2)$
- $\sigma_1 = \sigma_2 = \sigma_{\mathsf{total}}$

Métodos paramétricos

Test de hipótesis

- Generalmente tenemos una hipótesis nula (por ejemplo, asumir que las medias de los grupos son iguales).
- Si la hipótesis nula se cumple entonces el 'estadístico t' tiene cierta distribución de probabilidad.
- Observamos el valor actual de 't'.
- Determinamos que tan distinto es este valor comparado con la distribución nula del 'estadístico - t'.

Métodos paramétricos

Test de hipótesis: ejemplo

Comparación de dos medias en dos grupos distintos

• Calculamos el 'estadístico - t' para las dos muestras aleatorias observadas (independientes):

$$t = \frac{\bar{y} - \bar{z}}{\hat{\sigma}\sqrt{\frac{1}{m} + \frac{1}{n}}}$$

donde \bar{y} e \bar{z} son las medias de cada muestra y $\hat{\sigma}$ es una estimación de la desviación estándar.

- t es el 'estadístico t' para estas dos muestras y T la correspondiente variable aleatoria.
- Hipótesis nula $\Rightarrow \mu_1 = \mu_2$ para las muestras y y z respectivamente.
- Si la Hipótesis nula es verdadera entonces T tiene una distribución t_{n+m-2} .

Métodos paramétricos

p - value

- Para verificar la Hipótesis nula, calculamos la probabilidad que *T* podría tomar valores en los extremos de los valores observados.
- Esta probabilidad es conocida como p value.
- La distribución de probabilidad utilizada es la distribución que tomaría
 T si la Hipótesis nula fuera cierta.
- Por ejemplo: Si la distribución de T es simétrica en torno a 0 y, además observamos que T=t, entones el p-value (en ambos extremos): $p=P(|T|\geq |t|)$

Métodos paramétricos

Test de Hipótesis

Para llevar a cabo un test de Hipótesis necesitamos comparar el p-value con un valor dado. Este valor dado le llamamos nivel de significancia

- El nivel de significancia generalmente se denota por α con un valor de $\alpha=0.05$.
- Si $p-value < \alpha$ entonces decimos que hay evidencia para rechazar la Hipótesis nula. Esto por que el valor observado t era poco probable si la Hipótesis nula fuera cierta.

Métodos paramétricos

Test de Hipótesis: ejemplo

• Si $p-value < \alpha$ entonces decimos que hay evidencia para rechazar la Hipótesis nula. Esto por que el valor observado t era poco probable si la Hipótesis nula fuera cierta.

Métodos paramétricos

Test de Hipótesis: ejemplo

- p value es el área al lado derecho de t
- α es el área al lado derecho de $t_{1-\alpha}$.
- No podemos rechazar la Hipótesis nula si $t < t_{1-\alpha}$.

Métodos paramétricos

Observaciones del 'estadístico - t' (t)

- Todos los supuestos se satisfacen.
- Puede llevar a errores ante muestras pequeñas.
- El téorema del límite central puede ayudar para muestras grandes.
- Si cada Y_i y Z_i no son se asumen como normalmente distribuidos, las medias muestrales son aproximadamente normales para muestras grandes.

este es el final.... por ahora....