

Capstone Project-3 Mobile Price range Prediction

(Supervised Machine Learning Regression)

By Chand Kamble.

Points To Discuss.

- Problem Statement
- Data Overview
- Insights For Dataset
- Data wrangling
- EDA
- Model selection
- Hyperparameter Tuning
- Feature Importance
- Conclusions

Problem Statement

In the competitive mobile phone market companies want to understand sales data of mobile phones and factors which drive the prices. the objective is to find out some relation between features of mobile phones (eg: Ram,internal memory,etc) and its selling price, in this problem we don't have to predict the actual price but the price range indicating that how high the price is.

- 0- Low cost phones
- 1- medium cost phones
- 2- high cost phones
- 3- very high cost phones

This will basically help companies to estimate price of mobiles to give tough competition to other mobile manufacturer.

Also, it will be useful for consumers to verify that they are paying best price for a mobile.

Data Overview.

- Battery_power Total energy a battery can store in one time measured in mAh
- Blue Has bluetooth or not
- Clock_speed speed at which microprocessor executes instructions
- Dual_sim Has dual sim support or not
- Fc Front Camera megapixels
- Four_g Has 4G or not
- Int_memory Internal Memory in Gigabytes
- M_dep Mobile Depth in cm
- Mobile_wt Weight of mobile phone
- N_cores Number of cores of processor
- Pc Primary Camera megapixels

Data Overview (Cont..)

- Px_height Pixel Resolution Height
- Px_width Pixel Resolution Width
- Ram Random Access Memory in MegaBytes
- Sc_h Screen Height of mobile in cm
- Sc_w Screen Width of mobile in cm
- Talk_time longest time that a single battery charge will last
- Three_g Has 3G or not
- Touch screen Has touch screen or not
- Wifi Has wifi or not
- Price_range This is the target variable with value of O(low cost), 1(medium cost), 2(high cost) and 3(very high cost).

Workflow

Insights For Dataset

- Dataset Contains 2000 Rows and 20 Columns.
- Categorical Feature: Blue, Dual Sim, Four-g,Three-g,Touch-Screen,Wifi,Price Range.
- **Numerical Feature**: Battery Power, Clock Speed, Int-Memory, Fc ,M-Depth, Mobile Weight,N-Cores,Pc, Px-Height, Px-Width, Ram, Sc-h, Sc-w, Talktime.
- There Are No Missing Values Present And Duplicate Value Present.
- The Px-Height and Sc-Weight Had Some Zero Values Which We Had To Remove Before Proceeding Further As These Values Cannot Be Zero In Real Life.

Checking outliers in numerical variables.

Data Wrangling.

• After removing outliers.

EDA

Target variable/Dependent variable.

- we have records of 2000 mobiles with 20 columns/features.
- we have perfectly balanced dataset with 500 observations in each class.

EDA

Observations:

- Half the devices have bluetooth and half don't.
- Half of the phones here have a dual sim card slot the other half doesn't.
- There are slightly more phone with 4g line compared to non 4g line.
- Phone with price range 3 has the most 4g line among all group
- Three quarter of the phones in this data set has a 3g line, while quarter of it doesn't even have 3g.

<u>EDA</u>

- Data is well distributed.
- fc and px_height has some outliers.
- Many features have an almost uniform distribution which means there are products available almost equally in all sizes/values.
- Battery power, internal_memory, Ram are almost normally distributed with respect to their set of feature values and also around 2.5gb has most count in ram similarly others.
- In second row pixel_height is slightly positively skewed, pixel_width is normally distributed.
- In third row screen_height and screen_size are normally distributed unlike screen_width which is slightly positive skewed.
- we can see that internal memory sizes doesn't have many difference when it comes to distribution.

<u>EDA</u>

 Majority of phone in this dataset have a front facing camera, almost a quarter of the phone in this dataset doesn't have front facing camera.

 95% phone in this dataset has a primary camera (back camera)only 5 % of phones in this dataset does not have camera.

EDA (Price range vs Ram and Mobile weight).

- Costly phones are lighter in weight.
- As from our analysis before that ramsize is highly correlated with the price range. the more expensive the price range the higher the ram.
- A phone have Ram has continuous increase with price range while moving from Low cost to Very high cost.

EDA (Price range vs px-height and px-width)

- There is not a continuous increase in pixel height as we move from Low cost to Very high cost. Mobiles with 'Medium cost' and 'High cost' has almost equal pixel width. so we can say that it would be a driving factor in deciding price_range.
- Pixel height is almost similar as we move from Low cost to Very high cost.little variation in pixel_height.

EDA (HEATMAP).

- From the graph RAM and price_range is highly correlated.
- There is some collinearity in feature pairs ('pc', 'fc') and ('px_width', 'px_height').
- Also, if px_height increases, pixel width also increases, that means the overall pixels in the screen.

-0.6

 We can replace these two features with one feature.
 Front Camera megapixels and Primary camera megapixels are different entities despite of showing colinearity. So we'll be keeping them as they are.

Model Selection and Evaluation.

- Before Building The Model We Performed The Train Test Split .We Split The Training Data In 80% And Test Data In 20%.
- We Compared four Algorithms And Evaluated On Basis Of Overall Accuracy And The Recall Value Of Individual Classes.
- Accuracy Score Is The Ratio Of Total Number Of Correct Predictions And Total Predictions.
- 2. The Recall Is The Measure Of Our Model Correctly Identifying True Positives.
- Logistic Regression .
- Random Forest .
- support vector machine classifier.
- Decision Tree Classifier.

Predicted Values

Implementing Logistic regression.

• Diagonal labels are true predicted labels all other labels are false predicted variables.

Implementing Random Forest.

classification_report:

	precision	recall	fl-score	support
0	1.00	1.00	1.00	395
1	1.00	1.00	1.00	409
2	1.00	1.00	1.00	408
3	1.00	1.00	1.00	388
				<u> </u>
accuracy			1.00	1600
macro avg	1.00	1.00	1.00	1600
weighted avg	1.00	1.00	1.00	1600

Train metrics

Seaborn Confusion Matrix with labels

Seaborn Confusion Matrix with labels

classification report:

	precision	recall	f1-score	support
0	0.95	0.93	0.94	107
1	0.85	0.87	0.86	89
2	0.84	0.79	0.81	97
3	0.88	0.93	0.90	107
accuracy			0.88	400
macro avg	0.88	0.88	0.88	400
weighted avg	0.88	0.88	0.88	400

Test metrics

Implementing Decision Tree classifier.

classification report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	395
1	1.00	1.00	1.00	409
2	1.00	1.00	1.00	408
3	1.00	1.00	1.00	388
accuracy			1.00	1600
macro avg	1.00	1.00	1.00	1600
weighted avg	1.00	1.00	1.00	1600
macro avg	1.00		1.00	160

Seaborn Confusion Matrix with labels

Train metrics

classification_report:						
		precision	recall	f1-score	support	
	0	0.87	0.94	0.90	97	
	1	0.82	0.71	0.76	106	
	2	0.70	0.78	0.74	82	
	3	0.93	0.90	0.92	115	
accur	acy			0.83	400	
macro	avg	0.83	0.83	0.83	400	
weighted	avg	0.84	0.83	0.83	400	

Test metrics

Seaborn Confusion Matrix with labels

ΑI

Implementing support vector machine classifier.

C b	Confusion	84-4		1-1-1-	
Seaporn	Confusion	Matrix	wirn	labels	

	precision	recall	f1-score	support
0	0.98	0.97	0.98	395
1	0.94	0.95	0.95	409
2	0.92	0.95	0.94	408
3	0.98	0.95	0.96	388
accuracy			0.96	1600
macro avg	0.96	0.96	0.96	1600
weighted avg	0.96	0.96	0.96	1600

precision recal1 f1-score support 0 0.95 0.93 0.94 105 0.80 0.84 0.82 0.76 0.73 0.79 0.93 0.85 0.89 112 0.85 400 accuracy 0.85 0.85 400 0.85 macro avg weighted avg 0.86 0.85 0.86 400

Test metrics

Best Model after Hyperparameter

Tuning. ie (logistic regression).

	precision	recall	f1-score	support
0 1 2	0.98 0.94 0.92	0.98 0.94 0.92	0.98 0.94 0.92	395 409 408
3	0.96	0.96	0.96	388
accuracy macro avq	0.95	0.95	0.95 0.95	1600 1600
weighted avg	0.95	0.95	0.95	1600

•	Tr	ai	in	
	m	e.	tr	ics

Seaborn Confusion Matrix with labels

Seaborn Confusion Matrix with labels

	precision	recall	f1-score	support
0	0.97	0.96	0.97	105
1	0.91	0.92	0.92	91
2	0.86	0.90	0.88	92
3	0.95	0.92	0.94	112
accuracy			0.93	400
macro avg	0.93	0.93	0.93	400
weighted avg	0.93	0.93	0.93	400

Feature Importance.

Random Forest classifier.

Decision Tree classifier.

Model Explanation.

- ROC is a probability curve and AUC represents the degree or measure of separability. It tells how much the model is capable of distinguishing between classes. An AUC of 0.98 would actually mean that lets say we take two data points belonging to separate classes then there is 0.98% chance model would be able to segregate them or rank order them correctly.
- In this above plot shows that ram is the most important features in predicting price range.
- Among all the classes of price range class 3 gets most affected by the ram features.

Al

Conclusions:

- We Started with Data understanding, data wrangling, basic EDA where we found the relationships, trends between price range and other independent variables.
- From EDA we can see that here are mobile phones in 4 price ranges. The number of elements is almost similar.
- Half the devices have Bluetooth, and half don't.
- there is a gradual increase in battery as the price range increases.
- Ram has continuous increase with price range while moving from Low cost to Very high cost.
- Costly phones are lighter.
- RAM, battery power, pixels played more significant role in deciding the price range of mobile phone.
- Implemented various classification algorithms, out of which the logistic regression algorithm gave the best performance after hyper-parameter tuning with 95% train accuracy and 93 % test accuracy.
- SVM is the second best good model which gave good performance after hyper-parameter tuning with 94% train accuracy and 92% test accuracy score.
- We checked for the feature importance of each model. RAM, Battery Power, Px_height and px_width contributed the most while predicting the price range.
- From all the above experiments we can conclude that in logistic regression we got the best results.

Thank you