

Discussion

Course

Progress

<u>Syllabus</u>

<u>Help</u> sandipan_dey ▼

★ Course / Part 2: Graph Traversal, Routing, Queuing Structures / Quiz 2 Previous Next > Quiz 2 □ Bookmark this page

Quiz 2

4/4	noints	(graded)
4/4	politics	(graueu

1. Imagine a graph where u and v are vertices,	, and there is no path	for which \boldsymbol{u} and \boldsymbol{v}	are extremities.	If we run a DFS from $\it u$
which of the following propositions are true?				

lacksquare At the end of the DFS, v has not been explored.
The DFS is not well defined and cannot be processed.
\bigcirc The resulting tree is made exclusively of shortest paths from u to the accessible vertices of the graph.
✓
2. Imagine we run a DFS (respectively a BFS) from any vertex u of a complete graph of order n . How many vertices are neighbors of u in the resulting tree?
\bigcirc $n-1$ (respectively 1).
$igcup n\left(n-1 ight) /2$ in both cases.
igorup 1 (respectively $n-1$).
✓
3. Imagine a graph with vertices (v_1,v_2,v_3,v_4) , in which $\{v_1,v_2\}$, $\{v_1,v_3\}$, and $\{v_1,v_4\}$ are edges. Which of the following are correct (two correct answers)?
\checkmark To traverse this graph using a DFS from v_1 , we use a LIFO. v_2 , v_3 , and v_4 (in this order) are added to the LIFO, and none of them have been previously visited. As a consequence, the next vertex to be visited is v_4 .
To traverse this graph using a BFS from v_1 , we use a FIFO. v_2 , v_3 , and v_4 (in this order) are added to the FIFO, and none of them have been previously visited. As a consequence, the next vertex to be visited is v_2 .
To traverse this graph using a DFS from v_1 , we use a LIFO. v_2 , v_3 , and v_4 (in this order) are added to the LIFO, and none of them have been previously visited. As a consequence, the next vertex to be visited is v_1 .
✓
4. Imagine a graph with vertices (v_1,v_2,v_3,v_4,v_5) . A graph traversal algorithm from v_1 has produced the following routing table (second row): $(undefined,v_3,v_1,v_2,v_1)$. What is the corresponding path between v_1 and v_4 ?
$igcup \{v_1,v_2\}, \{v_2,v_3\}, \{v_3,v_4\}$
$igcup \{v_1,v_3\}, \{v_3,v_5\}, \{v_4,v_5\}$
$igcup \{v_1,v_2\}, \{v_2,v_4\}$
$igorup \{v_1,v_3\}, \{v_2,v_3\}, \{v_2,v_4\}$
✓

• Answers are displayed within the problem

Submit

Previous

Next >

© All Rights Reserved

edX

About

<u>Affiliates</u>

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

0

© 2020 edX Inc. All rights reserved. 深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>