પ્રશ્ન 1(અ) [3 ગુણ]

વ્યાખ્યા આપો: (અ) Amplitude Modulation, (બ) Frequency Modulation અને (ક) Phase Modulation

જવાબ:

કોષ્ટક: મોક્યુલેશન પ્રકારો

મોડ્યુલેશન પ્રકાર	વ્યાખ્યા
Amplitude	એક પ્રક્રિયા જેમાં carrier સિગ્નલનું amplitude, modulating સિગ્નલની ક્ષણિક કિંમત અનુસાર
Modulation (AM)	બદલાય છે જ્યારે frequency અથળ રહે છે
Frequency	એક પ્રક્રિયા જેમાં carrier સિગ્નલની frequency, modulating સિગ્નલની ક્ષણિક કિંમત અનુસાર
Modulation (FM)	બદલાય છે જ્યારે amplitude અથળ રહે છે
Phase Modulation	એક પ્રક્રિયા જેમાં carrier સિગ્નલનો phase, modulating સિગ્નલની ક્ષણિક કિંમત અનુસાર
(PM)	બદલાય છે જ્યારે amplitude અથળ રહે છે

મેમરી ટ્રીક: "A-F-P: Amplitude બદલાય છે, Frequency ખસે છે, Phase સમાયોજિત થાય છે"

પ્રશ્ન 1(બ) [4 ગુણ]

મોક્યુલેશનની જરૂરિયાત સમજાવો.

જવાબ:

કોષ્ટક: મોડ્યુલેશનની જરૂરિયાત

જરૂરિયાત	સમજૂતી
પ્રેક્ટિકલ એન્ટેના સાઈઝ	frequency વધારીને એન્ટેનાનું કદ ઘટાડે છે (એન્ટેના લંબાઈ = λ/4)
ઇન્ટરફેરન્સ ઘટાડો	અલગ-અલગ frequencies પર એક સાથે ઘણા સિગ્નલો પ્રસારિત કરવાની મંજૂરી આપે છે
રેન્જ વિસ્તરણ	ઉચ્ચ frequency સિગ્નલો વાતાવરણમાં વધુ દૂર સુધી જાય છે
મલ્ટિપ્લેક્સિંગ	ઘણા સિગ્નલોને કોમ્યુનિકેશન માધ્યમ શેર કરવા સક્ષમ બનાવે છે

આકૃતિ:

મેમરી ટ્રીક: "PIRM: પ્રેક્ટિકલ એન્ટેના, ઇન્ટરફેરન્સ ઘટાડો, રેન્જ વિસ્તરણ, મલ્ટિપ્લેક્સિંગ"

પ્રશ્ન 1(ક) [7 ગુણ]

અમ્પિલટુડ મોડ્યુલેશનમાં મોડ્યુલેટિંગ સિગ્નલને 3V નું અમ્પિલટુડ અને 1 KHz ની ફ્રિક્વન્સી છે જ્યારે કેરિયર સિગ્નલને 10 V નું અમ્પિલટુડ અને 30 KHz ની ફ્રિક્વન્સી છે. મોડ્યુલેશન ઇન્ડેક્સ, સાઇડબેન્ડ ફ્રીક્વન્સીઝ અને તેમના અમ્પ્લટુડ શોધો તેમજ આ AM વેવનું સ્પેક્ટ્રમ દોરો.

જવાબ:

કોષ્ટક: આપેલ માહિતી

પરિમાણ	મોક્યુલેટિંગ સિગ્નલ	કેરિયર સિગ્નલ
અમ્પ્લિટુડ	3 V	10 V
ફ્રિક્વન્સી	1 kHz	30 kHz

ગણતરી:

- મોક્યુલેશન ઇન્ડેક્સ (m) = Am/Ac = 3/10 = 0.3
- **સાઇડબેન્ડ ફિક્વન્સી** = fc ± fm = 30 ± 1 = 29 kHz અને 31 kHz
- સાઇડબેન્ડ અમ્પ્લિટ્રડ = m × Ac/2 = 0.3 × 10/2 = 1.5 V

આકૃતિ: AM સ્પેક્ટ્રમ

મેમરી ટ્રીક: "LSB-C-USB: લોઅર સાઇડબેન્ડ, કેરિયર, અપર સાઇડબેન્ડ 29-30-31 પર"

પ્રશ્ન 1(ક) OR [7 ગુણ]

કેરિયર પાવર અને મોડુલેટેડ સિગ્નલ પાવરના મેથેમેટિકલ ઇક્વેશન તારવો.

જવાબ:

મેથેમેટિકલ રિલેશન:

- કેરિયર સિગ્નલ: c(t) = Ac cos(2πfc·t)
- મોક્યુલેટિંગ સિગ્નલ: m(t) = Am cos(2πfm·t)

• AM સિગ્નલ: s(t) = Ac[1 + m·cos(2πfm·t)]·cos(2πfc·t)

કોષ્ટક: AM માં પાવર વિતરણ

ยรร	સૂત્ર	Рс ના સંદર્ભમાં
કેરિયર પાવર (Pc)	Ac²/2	Pc
કુલ સાઇડબેન્ડ પાવર (Ps)	m²·Ac²/4	m²·Pc/2
કુલ AM પાવર (Pt)	Pc(1 + m ² /2)	Pc(1 + m ² /2)

આકૃતિ: પાવર વિતરણ

• મોક્યુલેશન કાર્યક્ષમતા = Ps/Pt = (m²/2)/(1 + m²/2) × 100%

મેમરી ટ્રીક: "કુલ પાવર = કેરિયર પાવર \times (1 + $m^2/2$)"

પ્રશ્ન 2(અ) [3 ગુણ]

AM અને FM ની સરખામણી કરો.

જવાબ:

કોષ્ટક: AM અને FM વચ્ચે તુલના

પરિમાણ	AM	FM
મોક્યુલેશન પરિમાણ	અમ્પ્લિટુડ બદલાય છે	ફ્રિક્વન્સી બદલાય છે
બેન્ડવિડ્થ	2 × fm	2 × (Δf + fm)
નોઇઝ ઇમ્યુનિટી	નબળી	 ਰਿਜਮ
પાવર કાર્યક્ષમતા	નીચી	ઉંચી
સર્કિટ જટિલતા	સરળ	જટિલ

મેમરી ટ્રીક: "ABNPC: અમ્પ્લિટ્ડ/બેન્ડવિડ્થ/નોઇઝ/પાવર/જટિલતા તફાવત"

પ્રશ્ન 2(બ) [4 ગુણ]

સર્કિટ ડાયાગ્રામની મદદથી એન્વલેપ ડિટેક્ટરને સમજાવો.

જવાબ:

આકૃતિ: એન્વલેપ ડિટેક્ટર સર્કિટ

કોષ્ટક: એન્વલેપ ડિટેક્ટર ઘટકો

ยรร	รเช่	
ડાયોડ (D)	AM સિગ્નલને રેક્ટિફાય કરે છે અને પોઝિટિવ હાફ સાયકલ મેળવે છે	
કેપેસિટર (C)	ઇનપુટના પીક સુધી ચાર્જ થાય છે, પીક વચ્ચે ચાર્જ જાળવી રાખે છે	
રેઝિસ્ટર (RL)	એન્વેલોપ એક્સટ્રેક્શન માટે યોગ્ય દરે કેપેસિટરને ડિસ્થાર્જ કરે છે	

ટાઈમ કોન્સ્ટન્ટ સિલેક્શન:

• 1/fm << RC << 1/fc (યોગ્ય એન્વેલોપ ડિટેક્શન માટે)

મેમરી ટ્રીક: "DCR: ડાયોડ રેક્ટિફાય કરે છે, કેપેસિટર ચાર્જ થાય છે, રેઝિસ્ટર ડિસ્ચાર્જ કરે છે"

પ્રશ્ન 2(ક) [7 ગુણ]

સુપરહીટરોડાઈન રીસીવરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

આકૃતિ: સુપરહીટરોડાઈન રીસીવર

કોષ્ટક: સુપરહીટરોડાઈન રીસીવર બ્લોક્સના કાર્યો

બ્લોક	รเน็
RF એમ્પ્લિફાયર	નબળા RF સિગ્નલને એમ્પ્લિફાય કરે છે, સિલેક્ટિવિટી પ્રદાન કરે છે, ઇમેજ ફ્રિક્વન્સીને ૨દ કરે છે
લોકલ ઓસિલેટર	મિક્સિંગ માટે ફ્રિક્વન્સી fo = fRF + fIF ઉત્પન્ન કરે છે
મિક્સર	IF (ઇન્ટરમીડિયેટ ફ્રિક્વન્સી) બનાવવા માટે RF સિગ્નલને લોકલ ઓસિલેટર સાથે જોડે છે
IF એમ્પ્લિફાયર	ફિક્સ્ડ ફ્રિક્વન્સી પર મોટાભાગના રિસીવર ગેઇન અને સિલેક્ટિવિટી પ્રદાન કરે છે
ડિટેક્ટર	IF સિગ્નલમાંથી મોક્યુલેટિંગ સિગ્નલ એક્સટ્રેક્ટ કરે છે
AF એમ્પ્લિફાયર	સ્પીકર ચલાવવા માટે રિકવર થયેલ ઓડિયોને એમ્પ્લિફાય કરે છે

મેમરી ટ્રીક: "RLMIDS: RF, લોકલ ઓસિલેટર, મિક્સર, IF, ડિટેક્ટર, સ્પીકર"

પ્રશ્ન 2(અ) OR [3 ગુણ]

નીચેના શબ્દો વ્યાખ્યાયિત કરો: (અ) Sensitivity અને (બ) Selectivity

જવાબ:

કોષ્ટક: રિસીવર લક્ષણો

કાલ્દ	વ્યાખ્યા
Sensitivity	નબળા સિગ્નલોને શોધવા અને એમ્પ્લિફાય કરવાની રિસીવરની ક્ષમતા; સ્ટાન્ડર્ડ આઉટપુટ માટે જરૂરી ન્યૂનતમ ઇનપુટ સિગ્નલ સ્ટ્રેન્થ (µV) તરીકે માપવામાં આવે છે
Selectivity	અડીન ચેનલોથી ઇચ્છિત સિગ્નલને અલગ કરવાની રિસીવરની ક્ષમતા; રેસોનન્ટ ફ્રિક્વન્સી પર રિસ્પોન્સના ઓફ- રેસોનન્ટ ફ્રિક્વન્સી પર રિસ્પોન્સના ગુણોત્તર તરીકે માપવામાં આવે છે

આકૃતિ: સિલેક્ટિવિટી કર્વ

મેમરી ટ્રીક: "SS: સિગ્નલ સ્ટ્રેન્થ ફોર સેન્સિટિવિટી, સિગ્નલ સેપરેશન ફોર સિલેક્ટિવિટી"

પ્રશ્ન 2(બ) OR [4 ગુણ]

જનરલ કમ્યુનિકેશનના બ્લોક ડાયાગ્રામનું વર્ણન કરો

જવાબ:

આકૃતિ: જનરલ કમ્યુનિકેશન સિસ્ટમ

કોષ્ટક: કમ્યુનિકેશન સિસ્ટમના ઘટકો

ยรร	รเน็
ઇન્ફોર્મેશન સોર્સ	કમ્યુનિકેટ કરવા માટેનો સંદેશ ઉત્પન્ન કરે છે (વૉઇસ, ડેટા, વિડિઓ)
ટ્રાન્સમીટર	સંદેશને ટ્રાન્સમિશન માટે યોગ્ય સિગ્નલમાં રૂપાંતરિત કરે છે
યેનલ	જેના દ્વારા સિગ્નલ પસાર થાય છે તે માધ્યમ (વાયર, ફાઇબર, હવા)
રિસીવર	મળેલા સિગ્નલમાંથી મૂળ સંદેશ એક્સટ્રેક્ટ કરે છે
ડેસ્ટિનેશન	જેના માટે સંદેશ અભિપ્રેત છે તે એન્ટિટી
નોઇઝ સોર્સ	અવાંછિત સિગ્નલો જે સંદેશમાં દખલ કરે છે

મેમરી ટ્રીક: "I-T-C-R-D: ઇન્ફોર્મેશન ટ્રાવેલ્સ કેરફુલી, રીચેસ ડેસ્ટિનેશન"

પ્રશ્ન 2(ક) OR [7 ગુણ]

સુપરહીટરોડાઈન FM રીસીવરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

આકૃતિ: સુપરહીટરોડાઈન FM રીસીવર

કોષ્ટક: FM રિસીવરમાં વધારાના ઘટકો

ยวร	รเช็
લિમિટર	અમ્પ્લિટુડ વેરિએશન્સ દૂર કરે છે, સ્થિર અમ્પ્લિટુડ સિગ્નલ પ્રદાન કરે છે
FM ડિસ્ક્રિમિનેટર	ફ્રિક્વન્સી વેરિએશન્સને અમ્પ્લિટુડ વેરિએશન્સમાં રૂપાંતરિત કરે છે (ડિમોક્યુલેશન)
ડી-એમ્ફેસિસ	ટ્રાન્સમીટર પર બૂસ્ટ થયેલ ઉચ્ચ ફ્રિક્વન્સીને ઘટાડે છે

FM રિસીવરની વિશિષ્ટ બાબતો:

- વધુ પહોળી બેન્ડવિડ્થ IF એમ્પ્લિફાયર (AM માટે 10 kHz ની સરખામણીમાં 200 kHz) વાપરે છે
- નોઇઝ ઘટાડવા માટે લિમિટર સ્ટેજની જરૂર પડે છે
- FM ડિમોડ્યુલેશન માટે વિશિષ્ટ ડિસ્ક્રિમિનેટર વાપરે છે

મેમરી ટ્રીક: "MILD: મિક્સર, IF, લિમિટર, ડિસ્ક્રિમિનેટર - FM રિસેપ્શનમાં મુખ્ય ઘટકો"

પ્રશ્ન 3(અ) [3 ગુણ]

વેવફોર્મ ટાઈમ અને ફિક્વન્સી ડોમેન માં દોરો (અ) Impulse અને (બ) Pulse

જવાબ:

કોષ્ટક: Impulse અને Pulse લક્ષણો

સિગ્નલ	ટાઈમ ડોમેન	ફ્રિક્વન્સી ડોમેન
Impulse	અનંત સાંકડો સ્પાઇક અનંત અમ્પ્લિટુડ સાથે	ફ્લેટ સ્પેક્ટ્રમ જેમાં બધી ફ્રિક્વન્સી સમાન રીતે હાજર હોય
Pulse	આયતાકાર આકાર સાથે મર્યાદિત પહોળાઈ અને ઊંચાઈ	Sinc ફંક્શન (sin(x)/x) આકાર

આકૃતિ: Impulse અને Pulse

મેમરી ટ્રીક: "I-P: Impulse એ Pinpoint સ્પાઇક છે, Pulse ને Persistent પહોળાઈ છે"

પ્રશ્ન 3(બ) [4 ગુણ]

અંડર સેમ્પલિંગ અને ક્રિટિકલ સેમ્પલિંગનું વર્ણન કરો

જવાબ:

કોષ્ટક: સેમ્પલિંગના પ્રકારો

સેમ્પલિંગનો પ્રકાર	વર્ણન	અસર
અંડર સેમ્પલિંગ	સેમ્પલિંગ ફ્રિક્વન્સી fs < 2fm (નાયક્વિસ્ટ રેટ કરતાં ઓછી)	એલિયાસિંગ થાય છે; સિગ્નલ પુનઃપ્રાપ્ત કરી શકાતો નથી
ક્રિટિકલ સેમ્પલિંગ	સેમ્પલિંગ ફ્રિક્વન્સી fs = 2fm (ચોક્કસ નાયક્વિસ્ટ રેટ)	સૈદ્ધાંતિક રીતે સંપૂર્ણ પુનર્નિર્માણ શક્ય છે
ઓવર સેમ્પલિંગ	સેમ્પલિંગ ફ્રિક્વન્સી fs > 2fm (નાયક્વિસ્ટ રેટ કરતાં વધારે)	વધુ સારું પુનર્નિર્માણ, સરળ ફિલ્ટરિંગ

આકૃતિ: અંડર સેમ્પલિંગ vs ક્રિટિકલ સેમ્પલિંગ

મેમરી ટ્રીક: "UCO: અંડર (fs<2fm), ક્રિટિકલ (fs=2fm), ઓવર (fs>2fm)"

પ્રશ્ન 3(ક) [7 ગુણ]

PAM, PWM અને PPM સિગ્નલોને વેવફોર્મ સાથે જણાવો.

જવાબ:

કોષ્ટક: પલ્સ મોડ્યુલેશન ટેકનિક્સ

ટેકનિક	นญ์ฯ	સિગ્નલનું બદલાતું પરિમાણ
PAM (પલ્સ અમ્પ્લિટુડ મોક્યુલેશન)	પત્સનું અમ્પ્લટુડ મોડ્યુલેટિંગ સિગ્નલ અનુસાર બદલાય છે	અમ્પ્લિટુડ
PWM (પલ્સ વિડ્થ મોક્યુલેશન)	પત્સની પહોળાઈ/અવધિ મોક્યુલેટિંગ સિગ્નલ અનુસાર બદલાય છે	પત્સ પહોળાઈ
PPM (પલ્સ પોઝિશન મોક્યુલેશન)	પત્સની સ્થિતિ/સમય મોક્યુલેટિંગ સિગ્નલ અનુસાર બદલાય છે	પલ્સ સ્થિતિ

આકૃતિ: PAM, PWM, PPM વેવફોર્મ્સ

મેમરી ટ્રીક: "APP: અમ્પ્લ્ટુડ, પોઝિશન, પલ્સ-વિડ્થ અનુક્રમે બદલાય છે"

પ્રશ્ન 3(અ) OR [3 ગુણ]

સેમ્પલિંગ થીયરમ જણાવો અને સમજાવો.

જવાબ:

સેમ્પલિંગ થીયરમ સ્ટેટમેન્ટ:

"બેન્ડ-લિમિટેડ કન્ટિન્યુઅસ-ટાઈમ સિગ્નલને તેના સેમ્પલ્સ દ્વારા સંપૂર્ણપણે રજૂ કરી શકાય છે અને પુનઃપ્રાપ્ત કરી શકાય છે, જો સેમ્પલિંગ ફ્રિક્વન્સી સિગ્નલમાં ઉચ્ચતમ ફ્રિક્વન્સી ઘટકના ઓછામાં ઓછી બે ગણી હોય."

કોષ્ટક: સેમ્પલિંગ થીયરમના મુખ્ય તત્વો

શહ્દ	વર્ણન
નાયક્વિસ્ટ રેટ	જરૂરી ન્યૂનતમ સેમ્પલિંગ ફ્રિક્વન્સી (fs) = 2fm
નાયક્વિસ્ટ ઇન્ટરવલ	સેમ્પલ્સ વચ્ચેનો મહત્તમ સમય = 1/(2fm)
બેન્ક-લિમિટેડ સિગ્નલ	મર્યાદિત ઉચ્ચતમ ફ્રિક્વન્સી ઘટક ધરાવતું સિગ્નલ

આકૃતિ: યોગ્ય સેમ્પલિંગ

મેમરી ટ્રીક: "2F: ફ્રિક્વન્સીને તેની ઉચ્ચતમ ફ્રિક્વન્સીના ઓછામાં ઓછા બે ગણા પર સેમ્પલ કરવી જોઈએ"

પ્રશ્ન 3(બ) OR [4 ગુણ]

કોન્ટાઇજેશન સમજાવો.

જવાબ:

કોષ્ટક: ક્વોન્ટાઈઝેશન કોન્સેપ્ટ્સ

કાભ્દ	વર્ણન
ક્વોન્ટાઈઝેશન	સતત અમ્પ્લિટુડ મૂલ્યોને ડિસ્ક્રીટ લેવલ્સમાં રૂપાંતરિત કરવાની પ્રક્રિયા
ક્વોન્ટાઈઝેશન લેવલ્સ	ઉપયોગમાં લેવાતા ડિસ્ક્રીટ મૂલ્યોની ફુલ સંખ્યા (સામાન્ય રીતે 2 ⁿ)
ક્વોન્ટાઈઝેશન સ્ટેપ સાઈઝ	નજીકના લેવલ્સ વચ્ચેનો વોલ્ટેજ તફાવત (Q = Vmax/2 ⁿ)
ક્વોન્ટાઈઝેશન એરર	વાસ્તવિક સિગ્નલ મૂલ્ય અને ક્વોન્ટાઈઝ્ડ મૂલ્ય વચ્ચેનો તફાવત

આકૃતિ: ક્વોન્ટાઈઝેશન પ્રક્રિયા

મેમરી ટ્રીક: "LSED: લેવલ્સ, સ્ટેપ સાઈઝ, એરર, ડિસ્ક્રીટ વેલ્યુ"

પ્રશ્ન 3(ક) OR [7 ગુણ]

કમ્પાન્ડિંગને વિગતવાર સમજાવો.

જવાબ:

કોષ્ટક: કમ્પાન્ડિંગ કોન્સેપ્ટ્સ

કાલ્દ	વર્ણન
કમ્પાન્ડિંગ	COMપ્રેસિંગ + exPANDિંગ; નોન-લિનિયર ક્વોન્ટાઈઝેશન ટેકનિક
કમ્પ્રેશન	ટ્રાન્સમિશન પહેલા સિગ્નલની અમ્પ્લિટુડ રેન્જ ઘટાડે છે
એક્સપાન્શન	રિસીવર પર મૂળ અમ્પ્લટુડ રેન્જ પુનઃસ્થાપિત કરે છે
હેતુ	ડાયનેમિક રેન્જ જાળવી રાખતી વખતે નબળા સિગ્નલ માટે SNR સુધારે છે
પ્રકારો	μ-law (ઉત્તર અમેરિકા, જાપાન), A-law (યુરોપ)

આકૃતિ: કમ્પાન્ડિંગ પ્રક્રિયા

કમ્પાન્ડિંગ લો:

• **μ-law**: y = sgn(x) × ln(1+μ|x|)/ln(1+μ) જ્યાં μ = 255 USA માં

• **A-law**: y = sgn(x) × A|x|/(1+ln(A)) જ્યારે |x| < 1/A y = sgn(x) × (1+ln(A|x|))/(1+ln(A)) જ્યારે 1/A ≤ |x| ≤ 1

મેમરી ટ્રીક: "CEQS: કમ્પ્રેસ, એનકોડ, ક્વોન્ટાઈઝ, સેન્ડ; પછી ડિકોડ, એક્સપાન્ડ, રિકવર"

પ્રશ્ન 4(અ) [3 ગુણ]

ડેલ્ટા મોડ્યુલેશન સમજાવો

જવાબ:

કોષ્ટક: ડેલ્ટા મોડ્યુલેશન કોન્સેપ્ટ્સ

કોન્સેપ્ટ	વર્ણન
ડેલ્ટા મોક્યુલેશન	DPCM નું સૌથી સરળ રૂપ જ્યાં ફક્ત 1-બિટ ક્વોન્ટાઈઝેશન વાપરવામાં આવે છે
સ્ટેપ સાઈઝ	સિગ્નલને અનુમાનિત કરવામાં ફિક્સ્ડ વધારો/ઘટાડો
આઉટપુટ	બાઇનરી સ્ટ્રીમ (વધારા માટે 1, ઘટાડા માટે 0)
ફાયદા	સરળ અમલીકરણ, ઓછી બેન્ડવિડ્થ

આકૃતિ: ડેલ્ટા મોડ્યુલેશન

મેમરી ટ્રીક: "1B1S: 1-બિટ, 1-સ્ટેપ ટ્રેકિંગ"

પ્રશ્ન 4(બ) [4 ગુણ]

PCM ના ફાયદા અને ગેરફાયદા લખો

જવાબ:

કોષ્ટક: PCM ના ફાયદા અને ગેરફાયદા

ફાયદા	ગેરફાયદા
ઉચ્ચ નોઇઝ ઇમ્યુનિટી	વધારે બેન્ડવિડ્થની જરૂર પડે છે
વધુ સારી સિગ્નલ ક્વોલિટી	જટિલ સિસ્ટમ અમલીકરણ
ડિજિટલ સિસ્ટમ સાથે સુસંગત	ક્વોન્ટાઈઝેશન નોઇઝ હાજર હોય છે
સુરક્ષિત ટ્રાન્સમિશન શક્ય છે	સિન્કનાઈઝેશનની જરૂર પડે છે
મલ્ટિપ્લેક્સિંગ ક્ષમતા	વધુ પાવરની જરૂરિયાત

આકૃતિ: PCM સિસ્ટમ ઓવરવ્યુ

મેમરી ટ્રીક: "NCSMP: નોઇઝ ઇમ્યુનિટી, કમ્પેટિબલ વિથ ડિજિટલ, સિક્યોર, મલ્ટિપ્લેક્સિંગ, પ્રોસેસિંગ બેનિફિટ્સ"

પ્રશ્ન 4(ક) [7 ગુણ]

PCM-TDM સિસ્ટમનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

આકૃતિ: PCM-TDM સિસ્ટમ

કોષ્ટક: PCM-TDM સિસ્ટમ ઘટકો

ยรร	รเน็
એન્ટી-એલિયાસિંગ ફિલ્ટર	એલિયાસિંગ ટાળવા માટે સિગ્નલ બેન્ડવિડ્થને મર્યાદિત કરે છે
સેમ્પલ & હોલ્ક	એનાલોગ મૂલ્ય પકડે છે અને પ્રોસેસિંગ માટે જાળવી રાખે છે
મલ્ટીપ્લેક્સર	એકલ ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સ્ડ સ્ટ્રીમમાં ઘણા ઇનપુટ ચેનલો જોડે છે
ક્વોન્ટાઈઝર	સતત સેમ્પલ્સને ડિસ્ક્રીટ મૂલ્યોમાં ફેરવે છે
એનકોડર	ક્વોન્ટાઈઝ્ડ મૂલ્યોને બાઇનરી કોડમાં રૂપાંતરિત કરે છે
ફ્રેમ જનરેટર	સિન્ક્રોનાઈઝેશન અને કંટ્રોલ બિટ્સ ઉમેરે છે
ડિમલ્ટીપ્લેક્સર	જોડાયેલા સિગ્નલને પાછા અલગ-અલગ ચેનલમાં વિભાજિત કરે છે
રિકન્સ્ટ્રક્શન ફિલ્ટર	એનાલોગ વેવફોર્મ પુનઃપ્રાપ્ત કરવા માટે ડિકોડેડ સિગ્નલને સ્મૂધ કરે છે

મેમરી ટ્રીક: "SAMPLER: સેમ્પલ, એમ્પ્લિફાય, મલ્ટિપ્લેક્સ, પ્રોસેસ, લિમિટ, એનકોડ, રિકન્સ્ટ્રક્ટ"

પ્રશ્ન 4(અ) OR [3 ગુણ]

સ્લોપ ઓવરલોડ એરરનું વર્ણન કરો.

જવાબ:

કોષ્ટક: સ્લોપ ઓવરલોડ એરર

કોન્સેપ્ટ	વર્ણન
સ્લોપ ઓવરલોડ એરર	ઇનપુટ સિગ્નલ DM સ્ટેપ સાઈઝ કરતાં ઝડપથી બદલાય ત્યારે થતી ભૂલ
કારણ	ડેલ્ટા મોડ્યુલેશનમાં ફિક્સ્ડ સ્ટેપ સાઈઝ ઇનપુટના ઊંચા ઢાળ માટે ખૂબ નાની હોય છે
અસર	રિકન્સ્ટ્રક્ટેડ સિગ્નલમાં ડિસ્ટોર્શન, ખાસ કરીને ઉચ્ચ ફ્રિક્વન્સી પર
ઉકેલ	એડેપ્ટિવ ડેલ્ટા મોક્યુલેશન (વેરિએબલ સ્ટેપ સાઈઝ)

આકૃતિ: સ્લોપ ઓવરલોડ એરર

મેમરી ટ્રીક: "SOS: સિગ્નલ ઓવરટેક્સ સ્ટેપ્સ જ્યારે સ્લોપ સ્ટીપ હોય"

પ્રશ્ન 4(બ) OR [4 ગુણ]

ડિફરન્શિયલ PCM નું ટ્રાન્સમીટર સમજાવો

જવાબ:

આકૃતિ: DPCM ટ્રાન્સમીટર

કોષ્ટક: DPCM ટ્રાન્સમીટર ઘટકો

ยวร	รเช้
સેમ્પલ & હોલ્ડ	નિયમિત અંતરે એનાલોગ સિગ્નલ પકડે છે
ડિફરન્સ કેલ્ક્યુલેટર	વર્તમાન સેમ્પલ અને અનુમાનિત મૂલ્ય વચ્ચે એરર ગણે છે
ક્વોન્ટાઈઝર	એરર સિગ્નલને ડિસ્ક્રીટ લેવલમાં રૂપાંતરિત કરે છે
એનકોડર	ક્વોન્ટાઈઝ્ડ મૂલ્યોને બાઇનરી કોડમાં રૂપાંતરિત કરે છે
પ્રેડિક્ટર	અગાઉના મૂલ્યોના આધારે આગામી સેમ્પલનો અંદાજ લગાવે છે
ડિકોડર	રિસીવરમાં જે હોય તે જ, ફીડબેક લૂપમાં ઉપયોગ થાય છે

મુખ્ય ફાયદો:

- ફક્ત સળંગ સેમ્પલ્સ વચ્ચેનો તફાવત ટ્રાન્સમિટ કરે છે
- સ્ટાન્ડર્ડ PCM ની સરખામણીમાં બિટ રેટ ઘટાડે છે

મેમરી ટ્રીક: "SDQEP: સેમ્પલ, ડિફરન્સ, ક્વોન્ટાઈઝ, એનકોડ, પ્રેડિક્ટ"

પ્રશ્ન 4(ક) OR [7 ગુણ]

વિગતવાર PCM ટ્રાન્સમીટર સમજાવો

જવાબ:

આકૃતિ: PCM ટ્રાન્સમીટર

કોષ્ટક: PCM ટ્રાન્સમીટર ઘટકોની વિગત

ยรร	รเน้	ડિઝાઇન કન્સિડરેશન્સ
એન્ટી-એલિયાસિંગ ફિલ્ટર	ઇનપુટ બેન્ડવિડ્થને fs/2 સુધી મર્યાદિત કરે છે	કટઓફ ફ્રિક્વન્સી < fs/2, શાર્પ રોલ-ઓફ
સેમ્પલ & હોલ્ડ	ક્ષણિક સિગ્નલ મૂલ્ય પકડે છે	સેમ્પલિંગ રેટ ≥ 2fm, અપર્થર ટાઈમ << સેમ્પલિંગ પીરિયડ
ક્વોન્ટાઈઝર	સેમ્પલ અમ્પ્લિટ્યુડને ડિસ્ક્રીટ લેવલમાં અંદાજિત કરે છે	લેવલ્સ = 2º જ્યાં n = બિટ ડેપ્થ, સામાન્ય રીતે 8-16 બિટ્સ
એનકોડર	ક્વોન્ટાઈઝ્ડ મૂલ્યોને ડિજિટલ કોડમાં રૂપાંતરિત કરે છે	NRZ, RZ, મેનચેસ્ટર જેવા કોડિંગ સ્કીમ્સ વાપરે છે
લાઈન કોડર	ટ્રાન્સમિશન માટે બાઇનરી સિક્વન્સ તૈયાર કરે છે	લાંબા અંતર માટે રિજનરેટિવ રિપીટર્સ વાપરી શકે છે

સિગ્નલ પ્રોસેસિંગ વિગતો:

• **ટાઈમ ડોમેન**: Ts = 1/fs અંતરે સેમ્પલિંગ

• **અમ્પ્લિટુડ ડોમેન**: સતત અમ્પ્લિટ્યુડને 2ⁿ ડિસ્ક્રીટ લેવલમાં ક્વોન્ટાઈઝિંગ

• **કોડ ડોમેન**: લેવલ્સને n-બિટ બાઇનરી કોડમાં રૂપાંતરિત કરવું

મેમરી ટ્રીક: "SAFE-Q: સેમ્પલ એન્ડ ફિલ્ટર, ધેન એનકોડ આફ્ટર ક્વોન્ટાઈઝિંગ"

પ્રશ્ન 5(અ) [3 ગુણ]

PCM અને DMની સરખામણી કરો

જવાબ:

કોષ્ટક: PCM અને DM વચ્ચે તુલના

પરિમાણ	РСМ	DM
બિટ રેટ	ઉચ્ચ (પ્રતિ સેમ્પલ ઘણા બિટ્સ)	નીચો (પ્રતિ સેમ્પલ 1 બિટ)
સર્કિટ જટિલતા	વધુ જટિલ	સરળ
સિગ્નલ ક્વોલિટી	સારી	નીચી, સ્લોપ ઓવરલોડ & ગ્રેન્યુલર નોઇઝથી પ્રભાવિત
બેન્કવિડ્થ	વધુ પહોળી	સાંકડી
સેમ્પલિંગ રેટ	ઓછામાં ઓછી 2fm	2fm કરતાં ઘણી વધારે

મેમરી ટ્રીક: "BCSBS: બિટ રેટ, કમ્પ્લેક્સિટી, સિગ્નલ ક્વોલિટી, બેન્ડવિડ્થ, સેમ્પલિંગ"

પ્રશ્ન 5(બ) [4 ગુણ]

વ્યાખ્યા આપો: (અ) Antenna (બ) Radiation pattern (ક) Directivity અને (S) Polarization

જવાબ:

કોષ્ટક: એન્ટેના શબ્દાવલી

કાલ્દ	વ્યાખ્યા
એન્ટેના	ઇલેક્ટ્રિકલ સિગ્નલ્સને ઇલેક્ટ્રોમેગ્નેટિક વેવ્સમાં અને તેનાથી ઉલટું ફેરવતું ઉપકરણ
રેડિએશન પેટર્ન	અંતરિક્ષ કોઓર્ડિનેટ્સના ફંક્શન તરીકે એન્ટેનાની રેડિએશન પ્રોપર્ટીઝનું ગ્રાફિકલ રેપ્રેઝન્ટેશન
ડિરેક્ટિવિટી	આપેલી દિશામાં રેડિએશન ઇન્ટેન્સિટીનો સરેરાશ રેડિએશન ઇન્ટેન્સિટી સાથેનો ગુણોત્તર
પોલરાઇઝેશન	એન્ટેના દ્વારા રેડિએટ થયેલા ઇલેક્ટ્રોમેગ્નેટિક વેવના ઇલેક્ટ્રિક ફિલ્ડ વેક્ટરની ઓરિએન્ટેશન

આકૃતિ: રેડિએશન પેટર્ન

મેમરી ટ્રીક: "ARDP: એન્ટેના રેડિએટ વિથ ડિરેક્ટિવિટી એન્ડ પોલરાઈઝેશન"

પ્રશ્ન 5(ક) [7 ગુણ]

સંક્ષિપ્ત નોંધ લખો (અ) સ્માર્ટ એન્ટેના (બ) પેરાબોલિક રિફલેક્ટર એન્ટેના

જવાબ:

(અ) સ્માર્ટ એન્ટેના

કોષ્ટક: સ્માર્ટ એન્ટેના લક્ષણો

વિશેષતા	વર્ણન	
વ્યાખ્યા	બદલાતી પરિસ્થિતિઓ સાથે અનુકૂલિત થવાની ક્ષમતા સાથે એન્ટેના એરે સિગ્નલ પ્રોસેસિંગ	
પ્રકારો	સ્વિચ્ડ બીમ, એડેપ્ટિવ એરે	
ફાયદા	વધારેલી રેન્જ/કવરેજ, ઇન્ટરફેરન્સ ઘટાડો, ક્ષમતા સુધારણા	
એપ્લિકેશન્સ	મોબાઇલ કમ્યુનિકેશન, 5G નેટવર્ક્સ, WiMAX, મિલિટરી સિસ્ટમ્સ	

આકૃતિ: સ્માર્ટ એન્ટેના સિસ્ટમ

(બ) પેરાબોલિક રિફ્લેક્ટર એન્ટેના

કોષ્ટક: પેરાબોલિક રિફ્લેક્ટર લક્ષણો

વિશેષતા	นย์า	
સ્ટ્રક્ચર	ફ્રોકલ પોઈન્ટ પર ફ્રીડ એન્ટેના સાથે પેરાબોલિક રિફ્લેક્ટિંગ સરફેસ	
ઓપરેશન	સમાંતર આવતા તરંગોને ફોકલ પોઈન્ટ પર કેન્દ્રિત કરે છે અથવા ફોકલ પોઈન્ટથી સમાંતર બીમ્સમાં રેડિએટ કરે છે	
ગેઇન	ખૂબ ઉચ્ચ દિશાત્મકતા અને ગેઇન	
એપ્લિકેશન્સ	સેટેલાઇટ કમ્યુનિકેશન, રેડિયો એસ્ટ્રોનોમી, રડાર સિસ્ટમ્સ	

આકૃતિ: પેરાબોલિક રિફ્લેક્ટર

મેમરી ટ્રીક: "PFHS: પેરાબોલિક ફોકસ ગિવ્સ હાઇ સિગ્નલ સ્ટ્રેન્થ"

પ્રશ્ન 5(અ) OR [3 ગુણ]

માઇક્રોસ્ટ્રીપ એન્ટેના પર ટૂંકી નોંધ લખો

જવાબ:

કોષ્ટક: માઇક્રોસ્ટ્રીપ એન્ટેના લક્ષણો

વિશેષતા	વર્ણન	
સ્ટ્રક્ચર	ગ્રાઉન્ડ પ્લેન સાથે ડાયલેક્ટ્રિક સબસ્ટ્રેટ પર કન્ડક્ટિવ પેચ	
આકાર	લંબચોરસ, ગોળ, ઈંડાકાર, ત્રિકોણાકાર પેચ	
સાઈઝ	સામાન્ય રીતે λ/2 લંબાઈમાં, ખૂબ પાતળી (h << λ)	
ફાયદા	લો પ્રોફાઇલ, હલકા વજન, ઓછી કિંમત, સરળ ફેબ્રિકેશન, PCB ટેકનોલોજી સાથે સુસંગત	
ગેરફાયદા	ઓછી કાર્યક્ષમતા, સાંકડી બેન્ડવિડ્થ, ઓછી પાવર હેન્ડલિંગ	

આકૃતિ: માઇક્રોસ્ટ્રીપ પેચ એન્ટેના

મેમરી ટ્રીક: "PDGF: પેચ ઓન ડાયલેક્ટ્રિક વિથ ગ્રાઉન્ડ પ્લેન ગિવ્સ ફ્લેટ પ્રોફાઇલ"

પ્રશ્ન 5(બ) OR [4 ગુણ]

EM વેવ સ્પેક્ટ્રમ, તેની ફ્રીક્વન્સી રેન્જ અને તેની એપ્લિકેશન્સ સમજાવો.

જવાબ:

કોષ્ટક: EM વેવ સ્પેક્ટ્રમ અને એપ્લિકેશન્સ

બેન્ડ	ફ્રિક્વન્સી રેન્જ	વેવલેન્થ	એપ્લિકેશન્સ	
ELF	3 Hz - 30 Hz	10,000 - 100,000 km	સબમરીન કમ્યુનિકેશન	
VLF	3 kHz - 30 kHz	10 - 100 km	નેવિગેશન, ટાઈમ સિગ્નલ્સ	
LF	30 kHz - 300 kHz	1 - 10 km	AM રેડિઓ, મેરિટાઈમ રેડિઓ	
MF	300 kHz - 3 MHz	100 m - 1 km	AM બ્રોડકાસ્ટિંગ	
HF	3 MHz - 30 MHz	10 - 100 m	શોર્ટવેવ રેડિઓ, એમેચ્યોર રેડિઓ	
VHF	30 MHz - 300 MHz	1 - 10 m	FM રેડિઓ, TV બ્રોડકાસ્ટિંગ	
UHF	300 MHz - 3 GHz 10 cm - 1 m TV, મોબાઇલ ફોન, WiFi		TV, મોબાઇલ ફોન, WiFi	
SHF	3 GHz - 30 GHz	3 GHz - 30 GHz 1 - 10 cm સેટેલાઇટ, રડાર, 5G		
EHF	30 GHz - 300 GHz	1 mm - 1 cm	રેડિઓ એસ્ટ્રોનોમી, સિક્યુરિટી સ્કેનિંગ	
IR	300 GHz - 400 THz	750 nm - 1 mm	થર્મલ ઇમેજિંગ, રિમોટ કંટ્રોલ	
Visible	400 THz - 800 THz	380 - 750 nm	ઓપ્ટિકલ કમ્યુનિકેશન્સ	

આકૃતિ: EM વેવ સ્પેક્ટ્રમ

મેમરી ટ્રીક: "RVMIXG: રેડિઓ, વિઝિબલ, માઇક્રોવેવ, ઇન્ફ્રારેડ, X-રે, ગામા"

પ્રશ્ન 5(ક) OR [7 ગુણ]

સંક્ષિપ્ત નોંધ લખો (અ) Space Wave Propagation અને (બ) Ground Wave Propagation પર સંક્ષિપ્ત નોંધ લખો.

જવાબ:

(ਅ) Space Wave Propagation

કોષ્ટક: Space Wave Propagation લક્ષણો

વિશેષતા	વર્ણન	
વ્યાખ્યા	સ્પેસ દ્વારા સીધું વેવ પ્રોપેગેશન, જેમાં લાઇન-ઓફ-સાઇટ અને રિફ્લેક્ટેડ વેવ્સ શામેલ છે	
ફ્રિક્વન્સી રેન્જ	VHF અને ઉપર (>30 MHz)	
અંતર	હોરિઝન દ્વારા મર્યાદિત, સામાન્ય રીતે 50-80 km	
પ્રકારો	ડાયરેક્ટ વેવ, ગ્રાઉન્ડ રિફ્લેક્ટેડ વેવ, ટ્રોપોસ્ફેરિક સ્કેટર, ડક્ટ પ્રોપેગેશન	
એપ્લિકેશન્સ	TV બ્રોડકાસ્ટિંગ, માઇક્રોવેવ લિંક્સ, સેટેલાઇટ કમ્યુનિકેશન	

આકૃતિ: Space Wave Propagation

(ម) Ground Wave Propagation

ຣາ້າຮະ: Ground Wave Characteristics

વિશેષતા	વર્ણન
વ્યાખ્યા	પૃથ્વીની સપાટી સાથે વેવ પ્રોપેગેશન, પૃથ્વીની વક્રતાને અનુસરે છે
ફિક્વન્સી રેન્જ	LF, MF (2 MHz સુધી)
અંતર	ફ્રિક્વન્સી અને પાવર પર આધારિત 1000 km સુધી
મેકેનિઝમ	વર્ટિકલી પોલરાઇઝ્ડ વેવ કન્ડક્ટિવ અર્થ સરફેસને જોડાય છે
એપ્લિકેશન્સ	AM રેડિઓ બ્રોડકાસ્ટિંગ, મેરિટાઈમ કમ્યુનિકેશન

આકૃતિ: Ground Wave Propagation

મેમરી ટ્રીક: "SHGM: સ્પેસ વેવ્સ ગો હાઇ, ગ્રાઉન્ડ વેવ્સ હગ મીડિયમ સરફેસ"