Devoir surveillé n°08: corrigé

Problème 1 – Petites Mines 2003

Partie I -

- 1. Le noyau de D est le sous-espace vectoriel des applications de dérivée nulle sur \mathbb{R} , c'est à-dire les applications constantes sur \mathbb{R} . Toute application de classe \mathcal{C}^{∞} admettant une primitive de classe \mathcal{C}^{∞} , D est surjective et donc l'image de D est E.
- **2.** \blacktriangleright En prenant t = 0, on obtient (1): a + c = 0.
 - ► En prenant $t = \frac{\pi}{\sqrt{3}}$, on obtient (2): $ae^{\frac{\pi}{\sqrt{3}}} + be^{-\frac{\pi}{2\sqrt{3}}} = 0$.
 - ► En prenant $t = \frac{2\pi}{\sqrt{3}}$, on obtient (3): $ae^{\frac{2\pi}{\sqrt{3}}} ce^{-\frac{\pi}{\sqrt{3}}} = 0$.

D'après (1) et (2), $\alpha\left(e^{\frac{2\pi}{\sqrt{3}}}+e^{-\frac{\pi}{\sqrt{3}}}\right)=0$, puis $\alpha=0$ puisque la somme d'exponentielles est strictement positive donc non nulle. D'après (1), on a alors c=0 et d'après (2), on a également b=0 puisque qu'une exponentielle est non nulle.

3. On a $e^t = 1 + t + \frac{1}{2}t^2 + o(t^2)$.

On a également d'une part

$$e^{-\frac{t}{2}} = 1 - \frac{t}{2} + o(t)$$

et d'autre part :

$$\sin\left(\frac{t\sqrt{3}}{2}\right) = \frac{t\sqrt{3}}{2} + o(t^2) \underset{t\to 0}{=} t\left(\frac{\sqrt{3}}{2} + o(t)\right)$$

ďoù

$$e^{-\frac{t}{2}}\sin\left(\frac{t\sqrt{3}}{2}\right)\underset{\scriptscriptstyle t\to 0}{=}t\left(1-\frac{t}{2}+o(t)\right)\left(\frac{\sqrt{3}}{2}+o(t)\right)\underset{\scriptscriptstyle t\to 0}{=}\frac{t\sqrt{3}}{2}-\frac{t^2\sqrt{3}}{4}+o(t^2)$$

Enfin, on a d'une part :

$$e^{-\frac{t}{2}} = 1 - \frac{t}{2} + \frac{t^2}{8} + o(t^2)$$

et d'autre part :

$$\cos\left(\frac{t\sqrt{3}}{2}\right) \underset{t\to 0}{=} 1 - \frac{3t^2}{8} + o(t^2)$$

On en déduit

$$e^{-\frac{t}{2}}\cos\left(\frac{t\sqrt{3}}{2}\right) \underset{_{t\to 0}}{=} \left(1-\frac{t}{2}+\frac{t^2}{8}+o(t^2)\right)\left(1-\frac{3t^2}{8}+o(t^2)\right) \underset{_{t\to 0}}{=} 1-\frac{t}{2}-\frac{t^2}{4}+o(t^2)$$

Par conséquent,

$$\alpha f_1(t) + b f_2(t) = + c f_3(t) \underset{\scriptscriptstyle t \to o}{=} \alpha + c + \left(\alpha + \frac{b\sqrt{3}}{2} - \frac{c}{2}\right) t + \left(\frac{\alpha}{2} - \frac{b\sqrt{3}}{4} - \frac{c}{4}\right) t^2 + o(t^2)$$

Par unicité du développement limité, on a :

$$\begin{cases} a + c = 0 \\ a + \frac{b\sqrt{3}}{2} - \frac{c}{2} = 0 \\ \frac{a}{2} - \frac{b\sqrt{3}}{4} - \frac{c}{4} = 0 \end{cases}$$

On en déduit à nouveau a = b = c = 0.

- $\begin{array}{l} \textbf{4. Supposons } \alpha \neq \textbf{0. Alors } \alpha f_1(t) + b f_2(t) + c f_3(t) \underset{t \to +\infty}{\sim} \alpha e^t. \ D\text{'où } \alpha f_1(t) + b f_2(t) + c f_3(t) \underset{t \to +\infty}{\longrightarrow} \pm \infty, \text{ ce qui est impossible puisque } \alpha f_1(t) + b f_2(t) + c f_3(t) = \textbf{0} \ \text{pour tout } t \in \mathbb{R}. \ \text{On en d\'eduit } \alpha = \textbf{0}. \\ \text{Par cons\'equent, } b \sin \left(\frac{t\sqrt{3}}{2}\right) + c \cos \left(\frac{t\sqrt{3}}{2}\right) = \textbf{0} \ \text{pour tout } t \in \mathbb{R}. \ \text{En choisissant } t = \textbf{0}, \text{ on obtient } c = \textbf{0}. \ \text{Et enfin,} \\ b = \textbf{0} \ \text{en prenant pour t une valeur n'annulant pas } \sin \left(\frac{t\sqrt{3}}{2}\right). \\ \end{array}$
- **5.** On a $D(f_1) = f_1$, $D(f_2) = -\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3$ et $D(f_3) = -\frac{\sqrt{3}}{2}f_2 \frac{1}{2}f_3$. Ainsi $D(f_1)$, $D(f_2)$ et $D(f_3)$ sont des vecteurs de G. Comme la famille (f_1, f_2, f_3) engendre G, on a $D(G) \subset G$.
- 6. Comme $D(f_1) = f_1$, il est clair que $D^3(f_1) = f_1$. De plus,

$$D(f_2) = -\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3$$

donc

$$D^{2}(f_{2}) = -\frac{1}{2}D(f_{2}) + \frac{\sqrt{3}}{2}D(f_{3}) = -\frac{1}{2}\left(-\frac{1}{2}f_{2} + \frac{\sqrt{3}}{2}f_{3}\right) + \frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}f_{2} - \frac{1}{2}f_{3}\right) = -\frac{1}{2}f_{2} - \frac{\sqrt{3}}{2}f_{3}$$

puis

$$D^3(f_2) = -\frac{1}{2}D(f_2) - \frac{\sqrt{3}}{2}D(f_3) = -\frac{1}{2}\left(-\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3\right) - \frac{\sqrt{3}}{2}\left(-\frac{\sqrt{3}}{2}f_2 - \frac{1}{2}f_3\right) = f_2$$

De même,

$$D(f_3) = -\frac{\sqrt{3}}{2}f_2 - \frac{1}{2}f_3$$

donc

$$D^{2}(f_{3}) = -\frac{\sqrt{3}}{2}D(f_{2}) - \frac{1}{2}D(f_{3}) = -\frac{\sqrt{3}}{2}\left(-\frac{1}{2}f_{2} + \frac{\sqrt{3}}{2}f_{3}\right) - \frac{1}{2}\left(-\frac{\sqrt{3}}{2}f_{2} - \frac{1}{2}f_{3}\right) = \frac{\sqrt{3}}{2}f_{2} - \frac{1}{2}f_{3}$$

puis

$$D^3(f_3) = \frac{\sqrt{3}}{2}D(f_2) - \frac{1}{2}D(f_3) = \frac{\sqrt{3}}{2}\left(-\frac{1}{2}f_2 + \frac{\sqrt{3}}{2}f_3\right) - \frac{1}{2}\left(-\frac{\sqrt{3}}{2}f_2 - \frac{1}{2}f_3\right) = f_3$$

Ainsi les endomorphismes \widehat{D}^3 et Id_G coïncident sur une base de G, d'où $\widehat{D}^3 = \mathrm{Id}_G$.

7. Comme $\widehat{D}\circ\widehat{D}^2=\widehat{D}^2\circ\widehat{D}=Id_G,\,\widehat{D}$ est inversible d'inverse $\widehat{D}^{-1}=\widehat{D}^2.$

Partie II -

- 8. On sait que f est trois fois dérivable. Soit $n \ge 3$ et supposons f n fois dérivable sur $\mathbb R$. Comme f''' = f, f''' est n fois dérivable sur $\mathbb R$. Par conséquent, f est n+3 fois dérivable sur $\mathbb R$. A fortiori, elle est n+1 fois dérivable sur $\mathbb R$. On conclut par récurrence que f est indéfiniment dérivable sur $\mathbb R$.
- 9. On a vu précédemment que $\widehat{D}^3 = Id_G$ ce qui signifie que la restriction de T à G est nulle i.e. $G \subset Ker T$.
- **10.** On a g' = f''' + f'' + f' = f + f'' + f' = g. Ainsi g est solution de l'équation différentielle y' = y.
- 11. Les solutions de l'équation y'-y=0 sont les fonctions de la forme $t\mapsto \lambda e^t$ où $\lambda\in\mathbb{R}$.
- 12. L'équation caractéristique associée à l'équation différentielle y'' + y' + y = 0 est $X^2 + X + 1 = 0$. Ses solutions sont j et \bar{j} . On en déduit que l'ensemble des solutions réelles sont les fonctions de la forme :

$$t \mapsto \left(A \sin \left(\frac{t\sqrt{3}}{2}\right) + B \cos \left(\frac{t\sqrt{3}}{2}\right)\right) e^{-\frac{t}{2}}$$

où $(A,B) \in \mathbb{R}^2$ c'est-à-dire les fonctions du type $Af_2 + Bf_3$ où $(A,B) \in \mathbb{R}^2$. Autrement dit l'ensemble des solutions réelles de y'' + y' + y = 0 est $\text{vect}(f_2,f_3)$.

On a vu que (f_1, f_2, f_3) était libre donc (f_2, f_3) est aussi libre. Par conséquent, (f_2, f_3) est une base de l'ensemble des solutions de l'équation différentielle y'' + y' + y = 0.

13. Une solution particulière de l'équation différentielle $y'' + y' + y = \lambda e^t$ est $t \mapsto \frac{\lambda}{3} e^t$. Les solutions réelles de l'équation différentielle $y'' + y' + y = \lambda e^t$ sont donc les fonctions :

$$\frac{\lambda}{3}f_1 + Af_2 + Bf_3$$

avec $(A, B) \in \mathbb{R}^2$. L'ensemble des solutions est donc

$$\frac{\lambda}{3}f_1 + \text{vect}(f_2, f_3)$$

14. Soit $f \in \text{Ker } T$ i.e. f une solution de (\mathcal{E}) . En posant g = f'' + f' + f, on a montré en **II.10** que g vérifiait l'équation différentielle y' - y = 0. Ceci prouve qu'il existe $\lambda \in \mathbb{R}$ tel que $g = \lambda f_1$ (cf. **II.11**). f est alors solution de $g'' + g' + g = \lambda f_1$ dont on a vu en **II.13** que les solutions étaient de la forme $\frac{\lambda}{3}f_1 + Af_2 + Bf_3$ avec $(A, B) \in \mathbb{R}^2$. Donc $f \in \text{vect}(f_1, f_2, f_3) = G$. On a donc prouvé que $\text{Ker } T \subset G$. Or $G \subset \text{Ker } T$ d'après **II.9** donc Ker T = G par double inclusion. L'ensemble des solutions de (\mathcal{E}) est exactement

Problème 2 — Mélanges

Partie I - Préliminaires

- 1. Le lecteur vérifiera que S est bien linéaire. C'est donc un endomorphisme de \mathbb{R}^2 . De plus, il est évident que $S^2 = I$.
- 2. Comme I est également un endomorphisme, U_p est une combinaison linéaire d'endomorphismes donc un endomorphisme.
- 3. On montre sans peine que le noyau de $U_{\frac{1}{2}} = \frac{1}{2}(S+I)$ est vect((1,-1)) et que son image est vect((1,1)). Des bases respectives de $U_{\frac{1}{2}}$ sont les familles ((1,-1)) et ((1,1)).

Partie II – Un sous-groupe de $GL(\mathbb{R})^2$

4. En tenant compte du fait que $S^2 = I$,

$$U_p \circ U_q = (pS + (1-p)I) \circ (qS + (1-q)I) = (p+q-2pq)S + (1-p-q+2pq)I$$

Ainsi, en posant r=p+q-2pq, on a bien $U_p\circ U_q=U_r$. Comme l'expression de r est invariant par échange de p et q, on a également $U_q\circ U_p=U_r$.

5. Puisque $I=U_0$, la question précédente incite à rechercher q tel que p+q-2pq=0. En supposant $p\neq\frac{1}{2}$, on peut poser $q=\frac{p}{2p-1}$ de sorte que p+q-2pq=0. La question précédente montre alors que

$$U_{\mathfrak{p}} \circ U_{\mathfrak{q}} = U_{\mathfrak{q}} \circ U_{\mathfrak{p}} = U_{\mathfrak{0}} = I$$

Ainsi $U_p \in GL(\mathbb{R})^2$ et $U_p^{-1} = U_q$.

La question **I.3** montre en particulier que le noyau de $U_{\frac{1}{2}}$ n'est pas nul : $U_{\frac{1}{2}}$ n'est donc pas un automorphisme. Finalement $U_p \in GL(\mathbb{R}^2)$ si et seulement si $p\frac{1}{2}$ et, dans ce cas, $U_p^{-1} = U_q$ avec $q = \frac{p}{2p-1}$.

- 6. On vérifie les différents axiomes :
 - $I = U_0 \in G$;
 - la question II.5 montre que $G \subset GL(\mathbb{R}^2)$ et est stable par inversion;
 - la question II.4 montre que G est stable par composition.

En ce qui concerne la stabilité par inversion, il convient néanmoins de montrer que si $p \neq \frac{1}{2}$, alors $q = \frac{p}{2p-1} \neq \frac{1}{2}$; on peut par exemple remarquer que $q - \frac{1}{2} = \frac{1}{2(2p-1)} \neq 0$.

De même, en ce qui concerne la stabilité par produit, il convient de noter que si p et q sont deux réels différents de $\frac{1}{2}$, $U_p \circ U_q = U_r$ (avec r = p + q - 2pq) et qu'on a bien $r \neq \frac{1}{2}$ puisque U_r est un automorphisme de \mathbb{R}^2 en tant que composée d'automorphismes de \mathbb{R}^2 .

Finalement, on peut affirmer que G est bien un sous-groupe de $GL(\mathbb{R}^2)$.

Partie III - Puissances d'un endomorphisme

- 7. Il s'agit de calculs simples en utilisant le fait que $S^2 = I$.
- 8. On montre par récurrence que $(S+I) \circ U_p^n = S+I$ et que $(S-I) \circ U_p^n = (1-2p)^n (S-I)$ pour tout $n \in \mathbb{N}$.
- 9. En effectuant la différence des deux inégalités précédentes et en factorisant, on obtient

$$U_{\mathfrak{p}}^{\mathfrak{n}} = \frac{1 - (1 - 2\mathfrak{p})^{\mathfrak{n}}}{2}S + \frac{1 + (1 - 2\mathfrak{p})^{\mathfrak{n}}}{2}I$$

Partie IV - Application

10. Plaçons-nous à la fin de la $n^{\text{ème}}$ opération. Après la première phase de la $(n+1)^{\text{ème}}$ opération, la proportion de grenadine dans le récipient A vaut toujours a_n , tandis que dans le récipient B, elle vaut $\frac{\nu a_n + V b_n}{\nu + V}$. A la fin de la $(n+1)^{\text{ème}}$ opération, la proportion de grenadine dans le récipient A vaut $\frac{(V-\nu)a_n + \nu \frac{\nu a_n + V b_n}{\nu + V}}{V}$ tandis que dans le récipient B, elle vaut toujours $\frac{\nu a_n + V b_n}{\nu + V}$. Ainsi

$$\begin{split} a_{n+1} &= \frac{(V-\nu)a_n + \nu \frac{\nu a_n + V b_n}{\nu + V}}{V} \\ &= \frac{V-\nu}{V} a_n + \frac{\nu^2}{V(V+\nu)} a_n + \frac{\nu}{V+\nu} b_n \\ &= \frac{(V-\nu)(V+\nu) + \nu^2}{V(V+\nu)} a_n + \frac{\nu}{V+\nu} b_n \\ &= \frac{V}{V+\nu} a_n + \frac{\nu}{V+\nu} b_n \\ b_{n+1} &= \frac{\nu}{V+\nu} a_n + \frac{V}{V+\nu} b_n \end{split}$$

Ainsi en posant $p = \frac{\nu}{V + \nu}$, on a $1 - p = \frac{V}{V + \nu}$ et donc

$$a_{n+1} = (1-p)a_n + pb_n$$

 $b_{n+1} = pa_n + (1-p)b_n$

ou encore

$$(a_{n+1},b_{n+1}) = (1-p)(a_n,b_n) + p(b_n,a_n) = pS(a_n,b_n) + (1-p)I(a_n,b_n) = U_p(a_n,b_n) = U_p(a_n,b_n) + (1-p)I(a_n,b_n) = U_p(a_n,b_n) + U_p(a_n,b_n) + U_p(a_n,b_n) = U_p(a_n,b_n) + U_p(a_n,b_n) + U_p(a_n,b_n) = U_p(a_n,b_n) + U_p(a_$$

Puisque 0 < v < V, on a clairement $p \in]0, 1[$.

11. Une récurrence simple montre que

$$\forall n \in \mathbb{N}, \ (a_n, b_n) = U_p^n(a_0, b_0) = U_p^n(1, 0)$$

La question III.9 montre alors que

$$\forall n \in \mathbb{N}, \ (\alpha_n, b_n) = \frac{1 - (1 - 2p)^n}{2} S(1, 0) + \frac{1 + (1 - 2p)^n}{2} I(1, 0) = \left(\frac{1 + (1 - 2p)^n}{2}, \frac{1 - (1 - 2p)^n}{2}\right)$$

Ainsi pour tout $n \in \mathbb{N}$,

$$\alpha_n = \frac{1 + (1 - 2p)^n}{2} \qquad \qquad b_n = \frac{1 - (1 - 2p)^n}{2}$$

Comme $p \in]0, 1[, 1-2p \in]-1, 1[$ de sorte que

$$\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \frac{1}{2}$$

SOLUTION 1.

1. Supposons que $E = \operatorname{Im} f + \operatorname{Ker} g$ et montrons que $\operatorname{Im} g \circ f = \operatorname{Im} g$. Tout d'abord $\operatorname{Im} g \circ f \subset \operatorname{Im} g$. Soit maintenant $y \in \operatorname{Im} g$. Il existe donc $x \in F$ tel que y = g(x). Or $F = \operatorname{Im} f + \operatorname{Ker} g$ donc il existe $(a, b) \in \operatorname{Im} f \times \operatorname{Ker} g$ tel que x = a + b. Ainsi y = g(x) = g(a) + g(b) = g(a). Mais comme $a \in \operatorname{Im} f$, il existe $c \in E$ tel que a = f(c). Finalement, $y = g(b) = g \circ f(c) \in \operatorname{Im} g \circ f$. On a donc montré que $\operatorname{Im} g \subset \operatorname{Im} g \circ f$. Par double inclusion, $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$.

Supposons maintenant que $\operatorname{Im}(g \circ f) = \operatorname{Im}(g)$ et montrons que $F = \operatorname{Im} f + \operatorname{Ker} g$. Tout d'abord, $\operatorname{Im} f \subset F$ et $\operatorname{Ker} g \subset F$ donc $\operatorname{Im} f + \operatorname{Ker} g \subset F$. Soit maintenant $x \in F$. Alors $g(x) \in \operatorname{Im} g$. Puisque $\operatorname{Im} g = \operatorname{Im} g \circ f$, $g(x) \in \operatorname{Im} g \circ f$. Il existe donc $a \in E$ tel que $g(x) = g \circ f(a)$. Remarquons que x = f(a) + (x - f(a)). De plus, $f(a) \in \operatorname{Im} f$ et $g(x - f(a)) = g(x) - g \circ f(a) = 0_E$ donc $x - f(a) \in \operatorname{Ker} g$. Ainsi $x \in \operatorname{Im} f + \operatorname{Ker} g$. On a donc $F \subset \operatorname{Im} f + \operatorname{Ker} g$ et donc $F = \operatorname{Im} f + \operatorname{Ker} g$ par double inclusion.

2. Supposons que $\operatorname{Ker} g \cap \operatorname{Im} f = \{0_F\}$ et montrons que $\operatorname{Ker} (g \circ f) = \operatorname{Ker} (f)$. On a clairement $\operatorname{Ker} f \subset \operatorname{Ker} g \circ f$. Soit donc maintenant $x \in \operatorname{Ker} g \circ f$. Alors $g(f(x)) = 0_G$ donc $f(x) \in \operatorname{Ker} g \cap \operatorname{Im} f$. Or $\operatorname{Ker} g \cap \operatorname{Im} f = \{0_F\}$ donc $f(x) = 0_F$ i.e. $x \in \operatorname{Ker} f$. On a donc montré que $\operatorname{Ker} g \circ f \subset \operatorname{Ker} f$ et donc $\operatorname{Ker} g \circ f = \operatorname{Ker} f$ par double inclusion.

Supposons maintenant que $\text{Ker}(g \circ f) = \text{Ker}(f)$ et montrons que $\text{Ker}\ g \cap \text{Im}\ f = \{0_F\}$. Soit alors $y \in \text{Ker}\ g \cap \text{Im}\ f$. On a donc $g(y) = 0_G$ et il existe $x \in E$ tel que y = f(x). Ainsi $g \circ f(x) = 0_G$ et donc $x \in \text{Ker}\ g \circ f$. Comme $\text{Ker}\ g \circ f = \text{Ker}(f)$, $x \in \text{Ker}\ f$ de sorte que $y = f(x) = 0_F$. On a bien montré que $\text{Ker}\ g \cap \text{Im}\ f = \{0_F\}$.