Contents

1	Cla	sses		2
	1.1	poly.ri	ing – <mark>多項</mark>	<mark>式環</mark>
		1.1.1	Polynom	iialRing – 多項式環
			1.1.1.1	getInstance – クラスメソッド 4
			1.1.1.2	getCoefficientRing 4
			1.1.1.3	getQuotientField 4
			1.1.1.4	issubring 4
			1.1.1.5	issuperring 4
			1.1.1.6	getCharacteristic 4
			1.1.1.7	createElement 4
			1.1.1.8	gcd
			1.1.1.9	<u>isdomain</u>
			1.1.1.10	iseuclidean
			1.1.1.11	isnoetherian
			1.1.1.12	ispid
			1.1.1.13	isufd
		1.1.2	Rational	FunctionField – 有理関数体 5
			1.1.2.1	getInstance – クラスメソッド 6
			1.1.2.2	createElement 6
			1.1.2.3	getQuotientField 6
			1.1.2.4	issubring 6
			1.1.2.5	issuperring 6
			1.1.2.6	<u>unnest</u>
			1.1.2.7	gcd 6
			1.1.2.8	<u>isdomain</u>
			1.1.2.9	iseuclidean
			1.1.2.10	isnoetherian
			1.1.2.11	ispid
			1.1.2.12	isufd
		1.1.3	Polynom	iialIdeal – <mark>多項式環のイデアル</mark> 7
			1.1.3.1	reduce
			1.1.3.2	<u>issubset</u>
			1122	iccupercet

Chapter 1

Classes

- 1.1 poly.ring 多項式環
 - Classes
 - PolynomialRing
 - $\ {\bf Rational Function Field}$
 - PolynomialIdeal

1.1.1 PolynomialRing – 多項式環

uni-/multivariate polynomial rings のためのクラス. CommutativeRing のためのサブクラス.

Initialize (Constructor)

 $\label{local_polynomial} Polynomial Ring (coeffring: \begin{subarray}{c} Commutative Ring, number_of_variables: \\ integer = 1) \end{subarray}$

 \rightarrow PolynomialRing

coeffring は係数環. number_of_variables は変数の数. もしその値が 1 より大きければ、その環は多変数多項式に対するもの.

Attributes

zero:

環上の 0.

one:

環上の 1.

Methods

1.1.1.1 getInstance - クラスメソッド

 ${\tt getInstance} ({\tt coeffring:}\ CommutativeRing,\ {\tt number_of_variables:}\ integer)$

 $\rightarrow PolynomialRing$

係数環 coeffring と変数の数 number_of_variables を持つ多項式環のインスタンスを返す.

1.1.1.2 getCoefficientRing

 $getCoefficientRing() \rightarrow CommutativeRing$

1.1.1.3 getQuotientField

 $\mathbf{getQuotientField()} \to \mathbf{Field}$

1.1.1.4 issubring

 $\text{issubring}(\text{other: } \textit{Ring}) \rightarrow \textit{bool}$

1.1.1.5 issuperring

 ${\tt issuperring(other:}\ Ring) \rightarrow bool$

1.1.1.6 getCharacteristic

 $getCharacteristic() \rightarrow integer$

1.1.1.7 createElement

 $createElement(seed) \rightarrow polynomial$

多項式を返す. seed は多項式,係数環の元,または一変数/多変数多項式の最初の引数に適した他のデータであり得る.

1.1.1.8 gcd

 $\gcd(a,\,b) o polynomial$

(可能ならば)与えられた多項式の最大公約数を返す.多項式は多項式環に入っていなければならない.もし係数環が体ならば,その結果はモニック多項式.

- 1.1.1.9 isdomain
- 1.1.1.10 iseuclidean
- 1.1.1.11 isnoetherian
- 1.1.1.12 ispid
- 1.1.1.13 isufd

CommutativeRing から継承された.

1.1.2 RationalFunctionField – 有理関数体

Initialize (Constructor)

有理関数体に関するクラス. Quotient Field のサブクラス.

field は **Field** のオブジェクトであるべきである係数体. number_of_variables は変数の数.

Attributes

zero:

体上の 0.

one:

体上の 1.

Methods

1.1.2.1 getInstance – クラスメソッド

```
{f getInstance(coefffield: \it Field, number\_of\_variables: \it integer)} \ 
ightarrow \it RationalFunctionField
```

係数体 coefffield と変数の数 number _ of _ variables を持つ Rational Function Field のインスタンスを返す.

1.1.2.2 createElement

```
\mathbf{createElement(*seedarg:}\ \mathit{list},\ \texttt{**seedkwd:}\ \mathit{dict)} \rightarrow \mathit{RationalFunction}
```

1.1.2.3 getQuotientField

 $\operatorname{getQuotientField}() o extit{Field}$

1.1.2.4 issubring

```
issubring(other: Ring) \rightarrow bool
```

1.1.2.5 issuperring

```
issuperring(other: Ring) \rightarrow bool
```

1.1.2.6 unnest

```
\mathrm{unnest}() 	o \mathit{RationalFunctionField}
```

もし self が RationalFunctionField にネストされていたら, すなわちその係数体もまた RationalFunctionField なら, メソッドは一段階アンネストされた RationalFunctionField を返す.

例えば:

Examples

```
>>> RationalFunctionField(RationalFunctionField(Q, 1), 1).unnest() RationalFunctionField(Q, 2)
```

1.1.2.7 gcd

```
\gcd(a: RationalFunction, b: RationalFunction) 
ightarrow RationalFunction
```

Field から継承される.

- 1.1.2.8 isdomain
- 1.1.2.9 iseuclidean
- 1.1.2.10 isnoetherian
- 1.1.2.11 ispid
- 1.1.2.12 isufd

CommutativeRing から継承される.

1.1.3 PolynomialIdeal – 多項式環のイデアル

多項式環のイデアルを表す Ideal のサブクラス.

Initialize (Constructor)

 ${\bf Polynomial Ideal (generators: \it list, polyring: Polynomial Ring)}$

 \rightarrow PolynomialIdeal

generators によって生成される多項式環 polyring のイデアルを表す新しいオブジェクトを作成.

Operations

operator	explanation
in	含まれているかのテスト
==	同じイデアルか?
!=	異なるイデアルか?
+	和
*	積

Methods

$1.1.3.1 \quad {\rm reduce} \quad$

 ${\tt reduce(element:}~polynomial) \rightarrow polynomial$

イデアルを法とする element の剰余.

1.1.3.2 issubset

 $\mathbf{issubset}(\mathbf{other} \colon \mathit{set}) \to \mathit{bool}$

1.1.3.3 issuperset

 $\text{issuperset(other: } \textit{set}) \rightarrow \textit{bool}$

Bibliography