TFM_Exp1_Local

June 20, 2025

1 Experimento 1

Basado en los notebooks proporcionados en los siguientes enlaces:

- pykan/.../tutorials/Example/Example_1_function_fitting
- pykan/hellokan.ipynb

El teorema de representación de Kolmogorov-Arnold establece que si f es una función continua multivariada en un dominio acotado, entonces se puede escribir como una composición finita de funciones continuas de una sola variable y la operación binaria de suma.

Por lo tanto, dada $f:[0,1]^n\to\mathbb{R}$ cumpliendo ciertas condiciones,

$$f(x) = f(x_1,...,x_n) = \sum_{q=1}^{2n+1} \Phi_q(\sum_{p=1}^n \phi_{q,p}(x_p))$$

donde $\phi_{q,p}:[0,1]\to\mathbb{R}$ y $\Phi_q:\mathbb{R}\to\mathbb{R}$.

En cierto sentido, el KART indica que la única operación multivariada verdadera es la operación suma, ya que cualquier otra función puede escribirse usando funciones univariadas y la suma.

Sin embargo, esta representación de Kolmogorov-Arnold de 2 capas de ancho (2n+1) puede no ser suave debido a su limitada capacidad expresiva.

En liu et al. (2024) se aumenta su capacidad expresiva generalizándola a profundidades y anchos arbitrarios.

1.1 Instalación de pykan

[1]: !pip install pykan

Collecting pykan

Using cached pykan-0.2.8-py3-none-any.whl.metadata (11 kB)

Using cached pykan-0.2.8-py3-none-any.whl (78 kB)

Installing collected packages: pykan

Successfully installed pykan-0.2.8

[5]: !pip install tqdm

Collecting tqdm

Using cached tqdm-4.67.1-py3-none-any.whl.metadata (57 kB)

```
Requirement already satisfied: colorama in c:\users\jorge\anaconda3\envs\kan_pytorch\lib\site-packages (from tqdm) (0.4.6) Using cached tqdm-4.67.1-py3-none-any.whl (78 kB) Installing collected packages: tqdm Successfully installed tqdm-4.67.1
```

1.2 Configuración de torch, device y generación de modelo base

cuda

checkpoint directory created: ./model saving model version 0.0

1.3 Creación del dataset

Se genera un conjunto de datos conformado con las evaluaciones de una función en una serie de valores de sus variables de entrada. La función create_dataset nos genera un conjunto de 1000 valores de entrenamiento y de etiquetas de entrenamiento asociadas.

```
[8]: from kan.utils import create_dataset
# create dataset f(x,y) = exp(sin(pi*x)+y^2)
f = lambda x: torch.exp(torch.sin(torch.pi*x[:,[0]]) + x[:,[1]]**2)
dataset = create_dataset(f, n_var=2, device=device)
dataset['train_input'].shape, dataset['train_label'].shape
```

[8]: (torch.Size([1000, 2]), torch.Size([1000, 1]))

1.4 Inicialización del modelo

```
[9]: # plot KAN at initialization
model(dataset['train_input']);
model.plot()
```


1.5 Entrenamiento inicial

```
[10]: # train the model
    model.fit(dataset, opt="LBFGS", steps=50, lamb=0.001);

    | train_loss: 1.91e-02 | test_loss: 1.88e-02 | reg: 5.74e+00 | : 100%| | 50/50
    [00:18<00:00, 2.77it
    saving model version 0.1</pre>
[11]: model.plot()
```


1.6 Poda del modelo

saving model version 0.2

1.7 Entrenamiento modelo podado

```
[13]: model.fit(dataset, opt="LBFGS", steps=50);

| train_loss: 1.78e-02 | test_loss: 1.70e-02 | reg: 8.13e+00 | : 100%| | 50/50
        [00:12<00:00, 3.97it
        saving model version 0.3</pre>
```

1.8 Refinamos el grid del modelo

```
[14]: model = model.refine(10)
saving model version 0.4
```

1.9 Entrenamiento modelo refinado

```
[15]: model.fit(dataset, opt="LBFGS", steps=50);

| train_loss: 4.65e-04 | test_loss: 4.71e-04 | reg: 8.13e+00 | : 100%| | 50/50
       [00:12<00:00, 4.12it
       saving model version 0.5</pre>
```

1.10 Obtención de la expresión simbólica

```
fixing (0,0,0) with sin, r2=0.9999999193565677, c=2 fixing (0,1,0) with x^2, r2=0.9999999823307842, c=2 fixing (1,0,0) with exp, r2=0.999999998846936, c=2 saving model version 0.6
```

1.11 Último entrenamiento para conseguir precisión máquina

```
[17]: model.fit(dataset, opt="LBFGS", steps=50);
```

```
| train_loss: 9.41e-12 | test_loss: 3.70e-12 | reg: 0.00e+00 | : 100% | | 50/50 [00:04<00:00, 11.42it saving model version 0.7
```

1.12 Expresión final redondeada

```
[18]: from kan.utils import ex_round ex_round ex_round(model.symbolic_formula()[0][0],4)

[18]: 1.0e<sup>1.0x<sub>2</sub><sup>2</sup>+1.0sin(3.1416x<sub>1</sub>)</sup>
```

2 Ejemplo nuevo

```
[55]: |# create a KAN: 2D inputs, 1D output, and 5 hidden neurons. cubic spline (k=3),
      \hookrightarrow5 grid intervals (grid=5).
     model = KAN(width=[4,2,1,1], grid=3, k=3, seed=1, device=device)
     f = lambda x: torch.exp((torch.cos(torch.pi*(x[:,[0]]**2+x[:,[1]]**2))+torch.
      dataset = create_dataset(f, n_var=4, train_num=3000, device=device)
     # train the model
     model.fit(dataset, opt="LBFGS", steps=20, lamb=0.002, lamb_entropy=2.);
     checkpoint directory created: ./model
     saving model version 0.0
     | train_loss: 3.36e-01 | test_loss: 3.43e-01 | reg: 1.00e+01 | : 100% | 20/20
     [00:45<00:00, 2.26s/
     saving model version 0.1
[56]: model = model.prune(edge_th=1e-2)
     saving model version 0.2
[57]: model.plot()
```



```
[58]: #grids = [3,5,10,20,50]
grids = [3,5,10,15]

train_rmse = []

test_rmse = []

for i in range(len(grids)):
    #model = KAN(width=[4,2,1,1], grid=grids[i], k=3, seed=0, device=device).
    initialize_from_another_model(model, dataset['train_input'])
    model = model.refine(grids[i])
    results = model.fit(dataset, opt="LBFGS", steps=50,___
    stop_grid_update_step=20);
    train_rmse.append(results['train_loss'][-1].item())
    test_rmse.append(results['test_loss'][-1].item())

saving model version 0.3
```

| train_loss: 3.35e-01 | test_loss: 3.41e-01 | reg: 1.05e+01 | : 100% | | 50/50

[01:25<00:00, 1.71s/

```
saving model version 0.4
     saving model version 0.5
     | train_loss: 3.12e-01 | test_loss: 3.33e-01 | reg: 1.05e+01 | : 100% | 50/50
     [01:24<00:00, 1.69s/
     saving model version 0.6
     saving model version 0.7
     | train_loss: 2.47e-01 | test_loss: 2.83e-01 | reg: 1.07e+01 | : 100% | | 50/50
     [01:24<00:00, 1.69s/
     saving model version 0.8
     saving model version 0.9
     | train_loss: 2.17e-01 | test_loss: 2.72e-01 | reg: 1.08e+01 | : 100% | | 50/50
     [01:24<00:00, 1.68s/
     saving model version 0.10
[59]: import numpy as np
      import matplotlib.pyplot as plt
      n_{params} = np.array(grids) * (4*2+2*1+1*1)
      plt.plot(n_params, train_rmse, marker="o")
      plt.plot(n_params, test_rmse, marker="o")
      plt.plot(n_params, 10000*n_params**(-4.), color="black", ls="--")
     plt.legend(['train', 'test', r'$N^{-4}$'], loc="lower left")
      plt.xscale('log')
      plt.yscale('log')
      print(train_rmse)
     print(test_rmse)
     [0.33491458047828593, 0.3116140012454979, 0.24746186911760043,
     0.21699923177666086]
     [0.3414907763028715, 0.33281905966089087, 0.2830321329057478,
     0.2716074918380671]
```



```
[60]: mode = "auto" # "manual"
      if mode == "manual":
          # manual mode
          model.fix_symbolic(0,0,0,'sin');
          model.fix_symbolic(0,1,0,'x^2');
          model.fix_symbolic(1,0,0,'exp');
      elif mode == "auto":
          # automatic mode
          lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','abs','cos']
          model.auto_symbolic(lib=lib)
     fixing (0,0,0) with x, r2=0.6891954583003471, c=1
     fixing (0,0,1) with x, r2=0.7672119687592164, c=1
     fixing (0,1,0) with 0
     fixing (0,1,1) with x, r2=0.0006527763190471485, c=1
     fixing (0,2,0) with x, r2=0.6124331171113655, c=1
     fixing (0,2,1) with x, r2=0.015671232694491295, c=1
     fixing (0,3,0) with cos, r2=0.9832471704704203, c=2
     fixing (0,3,1) with x, r2=0.0013693399691198577, c=1
     fixing (1,0,0) with cos, r2=0.9603408213760777, c=2
     fixing (1,1,0) with x, r2=0.868049689484838, c=1
```

```
fixing (2,0,0) with x, r2=0.008799896389810453, c=1
      saving model version 0.11
[61]: from kan.utils import ex_round
      ex_round(model.symbolic_formula()[0][0],4)
 \begin{array}{l} \textbf{[61]:} \\ 0.0613x_{1} - 0.0005x_{2} + 0.0003x_{3} - 0.0204\cos\left(2.0762x_{1} + 2.1578x_{3} - 57.4923\cos\left(0.348x_{4} - 0.0036\right) + 61.6549\right) + \\ \end{array} 
      1.0277
          Ejemplo original
[69]: device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
      print(device)
      # create a KAN: 2D inputs, 1D output, and 5 hidden neurons. cubic spline (k=3)_{i,j}
       \hookrightarrow5 grid intervals (grid=5).
      model = KAN(width=[4,2,1,1], grid=3, k=3, seed=1, device=device)
      f = lambda x: torch.exp((torch.sin(torch.pi*(x[:,[0]]**2+x[:,[1]]**2))+torch.
        \Rightarrowsin(torch.pi*(x[:,[2]]**2+x[:,[3]]**2)))/2)
      dataset = create_dataset(f, n_var=4, train_num=3000, device=device)
      # train the model
      model.fit(dataset, opt="LBFGS", steps=20, lamb=0.002, lamb_entropy=2.);
      checkpoint directory created: ./model
      saving model version 0.0
      | train_loss: 4.26e-01 | test_loss: 4.27e-01 | reg: 8.74e+00 | : 100%| | 20/20
      [00:43<00:00, 2.20s/
      saving model version 0.1
[70]: model = model.prune(edge_th=1e-2)
      saving model version 0.2
```

[71]: model.plot()

| train_loss: 4.23e-01 | test_loss: 4.24e-01 | reg: 8.22e+00 | : 100% | | 50/50

```
[01:25<00:00, 1.71s/
     saving model version 0.4
     saving model version 0.5
     | train_loss: 4.01e-01 | test_loss: 4.08e-01 | reg: 8.33e+00 | : 100% | 50/50
     [01:24<00:00, 1.70s/
     saving model version 0.6
     saving model version 0.7
     | train_loss: 3.68e-01 | test_loss: 3.80e-01 | reg: 8.45e+00 | : 100% | 50/50
     [01:26<00:00, 1.73s/
     saving model version 0.8
[73]: import numpy as np
      import matplotlib.pyplot as plt
      n_{params} = np.array(grids) * (4*2+2*1+1*1)
      plt.plot(n_params, train_rmse, marker="o")
      plt.plot(n_params, test_rmse, marker="o")
      plt.plot(n_params, 10000*n_params**(-4.), color="black", ls="--")
      plt.legend(['train', 'test', r'$N^{-4}$'], loc="lower left")
```

[0.42297619651864254, 0.4005417137509311, 0.3684852027100266] [0.4237151088255174, 0.4075801067759189, 0.379715286736203]

plt.xscale('log')
plt.yscale('log')
print(train_rmse)
print(test_rmse)


```
[74]: mode = "auto" # "manual"
      if mode == "manual":
          # manual mode
          model.fix_symbolic(0,0,0,'sin');
          model.fix_symbolic(0,1,0,'x^2');
          model.fix_symbolic(1,0,0,'exp');
      elif mode == "auto":
          # automatic mode
          lib = ['x','x^2','x^3','x^4','exp','log','sqrt','tanh','sin','abs','cos']
          model.auto_symbolic(lib=lib)
     fixing (0,0,0) with x, r2=0.8741667131630695, c=1
     fixing (0,0,1) with x, r2=0.7515288706329102, c=1
     fixing (0,1,0) with exp, r2=0.9716346801112927, c=2
     fixing (0,1,1) with x, r2=0.9799595525231799, c=1
     fixing (0,2,0) with x^2, r^2=0.9518431525017247, c=2
     fixing (0,2,1) with x, r2=0.003343921618588383, c=1
     fixing (0,3,0) with x, r2=0.00032781481554648647, c=1
     fixing (0,3,1) with x, r2=0.029609760608970522, c=1
     fixing (1,0,0) with x, r2=0.35353241247922423, c=1
     fixing (1,1,0) with x, r2=0.40144748124366864, c=1
```

fixing (2,0,0) with x, r2=0.0034035748291901505, c=1 saving model version 0.9 $\,$

```
[75]: from kan.utils import ex_round ex_round(model.symbolic_formula()[0][0],4)
```

 $\boxed{ -0.0262x_1 + 0.0184x_2 + 0.0001x_4 + 0.0008\left(-x_3 - 0.0303\right)^2 - 0.0001e^{4.0236x_2} + 1.5496}$