DOBLE GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS

TRABAJO FIN DE GRADO

Desarrollo de algoritmos para la aproximación no lineal mediante bases especiales en espacios de Banach

Carlos Santiago Sánchez Muñoz

Tutores

Javier Merí de la Maza Alberto Fernández Hilario

XX de junio de 2020

E.T.S. Ingenierías Informática y de Telecomunicación

Índice general

Re	esum	en y p	palabras clave	3
\mathbf{A} l	bstra	ct and	l keywords	5
A	grade	ecimie	ntos	11
1.	Intr	oducc	ión	13
	1.1.	Conte	xto	13
	1.2.	Proble	ema	13
	1.3.	Herrai	mientas	14
2.	Obj	etivos	del trabajo	15
	2.1.	Estud	io de tipos especiales de bases	15
	2.2.	Búsqu	eda de algoritmos de compresión de información	15
3.	Des	arrollo	o matemático del trabajo	17
	3.1.	Bases	y sucesiones básicas	17
		3.1.1.	Bases de Schauder	17
		3.1.2.	Ejemplos: Series de Fourier	22
		3.1.3.	Equivalencia de bases y sucesiones básicas	29
	3.2.	Tipos	especiales de bases	32
		3.2.1.	Bases incondicionales	32
		3.2.2.	Bases simétricas	39
		3.2.3.	Bases y dualidad: bases acotadamente completas y bases shrinking $% \left(1\right) =\left(1\right) +\left(1\right) +\left$	41
	3.3.	Los es	pacios L_p para $1 \le p < \infty$	50
		3.3.1.	La base de Haar en $L_p[0,1]$ $(1 \le p < \infty)$	50
	3.4.	Bases	de tipo greedy	
		3.4.1.	Marco general	
		3.4.2.	Bases democráticas	61
		3.4.3.	Bases greedy	62

4.	Des	arrollo	informático del trabajo	67
	4.1.	Algorit	tmos teóricos	67
		4.1.1.	Algoritmo Puro Greedy (AGP)	68
		4.1.2.	Algoritmo X-Greedy	69
	4.2.	Transfe	ormada de Haar para compresión de imágenes	70
		4.2.1.	Idea	70
		4.2.2.	Algoritmo	73
		4.2.3.	Resultados	73
	4.3.	Buscar	otro ejemplo/aplicación	73
		4.3.1.	Idea	73
		4.3.2.	Algoritmo	73
		4.3.3.	Resultados	73
5. Conclusiones y Trabajos Futuros				7 5
	5.1.	Conclu	nsiones	75
	5.2.	Trabaj	os futuros	76
Bi	bliog	rafía		7 6

Desarrollo de algoritmos para la aproximación no lineal mediante bases especiales en espacios de Banach

Carlos Santiago Sánchez Muñoz

Palabras clave: bases greedy, aproximación no lineal, sistema de Haar, compresión de información y matching pursuit.

Resumen

En este Trabajo Fin de Grado estudiamos las bases en espacios de Banach como herramienta fundamental para comprender las diferencias y similitudes entre espacios de Banach. El estudio de las propiedades y características de distintos tipos de bases culmina con un tipo especial de bases, las bases greedy, las cuales son útiles en la teoría de aproximación siendo esto un nexo con la parte informática del trabajo donde hemos implementado algoritmos de compresión de información usando dichas bases.

La parte más teórica y matemática esta agrupada en cuatro apartados. La mayoría de los resultados que presentamos se pueden encontrar en la monografía de Albiac y Kalton [1].

Bases y sucesiones básicas. Comenzamos poniéndonos en el ambiente de trabajo: definimos una base $(e_n)_{n=1}^{\infty}$ para un espacio de Banach X arbitrario. Continuamos definiendo los funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$ y las proyecciones $(S_n)_{n=0}^{\infty}$ asociados a esa base. Introducimos la constante básica K_b de $(e_n)_{n=1}^{\infty}$ y decimos que una base es monótona cuando $K_b = 1$.

En segundo lugar analizamos algunos ejemplos de series de Fourier y probamos que los espacios $\mathcal{C}[0,1]$ y $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$ tienen una base monótona y que el sistema trigonométrico no es una base de $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$. Acabamos este apartado con la definición de otro de los conceptos relevantes para el trabajo, el de sucesión básica y sus equivalencias y caracterizaciones.

<u>Tipos especiales de bases</u>. En este apartado estudiamos cuatro tipos especiales de bases y algunas propiedades de estas. En primer lugar las bases incondicionales, que son aquellas en las que la serie de un elemento $x \in X$ converge incondicionalmente a él. Luego estudiamos las bases simétricas como un caso particular de las incondicionales en donde la base $(e_n)_{n=1}^{\infty}$ es equivalente a $(e_{\pi(n)})_{n=1}^{\infty}$ para toda permutación π de \mathbb{N} . Por último se introducen las nociones de base acotadamente completa y base shrinking.

Los espacios L_p para $1 \le p < \infty$. Empezamos el apartado presentando el sistema de Haar que más adelante será fundamental en el resultado central de este trabajo y será

una herramienta indispensable en la parte informática. Seguiremos con la prueba de que el sistema de Haar es una base monótona para $L_p[0,1]$ con $1 \le p < \infty$. Por último, deducimos que el sistema de Haar es una base incondicional y calculamos su mejor constante incondicional.

Bases de tipo greedy. Llegamos al apartado objetivo del trabajo. En primer lugar se define la aproximación de m-términos de un elemento x y el error que obtenemos en la aproximación. Si \mathcal{B} es un base de X entonces decimos que $\Sigma_m[\mathcal{B},X]$ denota la colección de todos los elementos de X que pueden ser expresados mediante una combinación lineal de m elementos de \mathcal{B} . La pregunta fundamental es cómo construir para cada $x \in X$ y $m \in \mathbb{N}$ un elemento $y_m \in \Sigma_m[\mathcal{B},X]$ de manera que $||x-y_m||$ sea pequeño. Si X es un espacio de Hilbert y \mathcal{B} es una base ortonormal entonces buscamos aquellos elementos de la base tal que $|\langle x, e_n \rangle|$ sea lo más grande posible. A partir de aquí obtenemos algunas propiedades de $\mathcal{G}_m(x)$, el algoritmo greedy de x, el cual está determinado de manera única.

Continuamos con la definición de base democrática como último tipo de base que vamos a estudiar. Una base \mathcal{B} es democrática si bloques del mismo tamaño de \mathcal{B} tienen normas uniformemente comparables. Presentamos las funciones de democracia y dos lemas relevantes para probar el gran resultado hacia el que caminamos.

Para acabar la parte matemática definimos el concepto de base greedy de X como aquella en la que existe una constante C tal que $\|x - \mathcal{G}_m[\mathcal{B}, X](x)\| \le C \inf_{y \in \Sigma_m[\mathcal{B}, X]} \|x - y\|$ para todo $m \in \mathbb{N}$ y $x \in X$. Enunciamos una caracterización dada por Konyagin y Temlyakov que dice que una base es greedy si y solo si es incondicional y democrática. Finalmente por este teorema probando que el sistema de Haar es democrático concluimos que es también una base greedy en $L_p[0,1]$ (1 llegando al resultado central que deseamos.

La parte práctica y de un carácter informático está agrupada en tres partes.

Algoritmos teóricos. La posibilidad de reemplazar un objeto por uno más simple pero que a efectos prácticos proporcione la misma información es de gran utilidad. Comenzamos con el desarrollo de dos algoritmos teóricos para realizar aproximaciones usando como base greedy un diccionario \mathcal{D} . El primero estará enfocado en el ambiente de un espacio de Hilbert pero el segundo será para un espacio de Banach X arbitrario.

Parte 2. HACER.

Parte 3. HACER.

Development of algorithms for non-linear approximation through special bases in Banach spaces

Carlos Santiago Sánchez Muñoz

Keywords: greedy bases, non-linear approximation, Haar system, information compression and matching pursuit.

Abstract

The aim of this Final Undergradute Thesis is to study bases in Banach spaces as a tool to understand the differences and similarities between spaces. The study of the properties and characteristics of different types of bases ends with a special type of bases, the greedy bases, which are useful in approximation theory. This links with the computational part of this study where information compression algorithms have been implemented using these bases.

The most theoretical and mathematical part is divided into four sections. Most of the results have been collected from the Albiac and Kalton monograph [1].

Bases and basic sequences. Let us focus first on the work environment: we define a basis $(e_n)_{n=1}^{\infty}$ for an arbitrary Banach space X. We continue defining the biortogonal functionals $(e_n^*)_{n=1}^{\infty}$ and the partial sums projections $(S_n)_{n=0}^{\infty}$ associated with that basis. We introduce the basic constant K_b of $(e_n)_{n=1}^{\infty}$ and in the case that $K_b = 1$ the basis is said to be monotone.

Secondly, we analyse some examples of Fourier series and prove that the spaces $\mathcal{C}[0,1]$ and $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$ have a monotone basis and that the trigonometric system fails to be a basis of $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$. This section concludes with the definition of another relevant concept in this paper, basic sequences and its equivalents and characterizations.

Special type of bases. In this section we study four special types of bases and some of their properties. Firstly, the unconditional bases in which the series of an element $x \in X$ unconditionally converges to it. Then we examine the symmetric bases as a particular case of the unconditional ones where the basis $(e_n)_{n=1}^{\infty}$ is equivalent to $(e_{\pi(n)})_{n=1}^{\infty}$ for all permutation π of \mathbb{N} . Finally, the notions of boundedly complete bases and shrinking bases are introduced.

The spaces L_p for $1 \le p < \infty$. We begin the section introducing the Haar system that will be fundamental in the central result of this work and it will be an indispensable tool in the computational part. We will continue proving that the Haar system is a monotone

basis for $L_p[0,1]$ with $1 \leq p < \infty$. Finally, we will deduce that the Haar system is an unconditional basis and calculate its best unconditional constant.

Greedy-type bases. This is the main section of the work. First, we define the m-term approximation of an element x and the error we obtain in the approximation. If \mathcal{B} is a basis of X then for each $m \in \mathbb{N}$ we let $\Sigma_m[\mathcal{B},X]$ denote the collection of all the elements of X that can be expressed as a linear combination of M elements of M. The fundamental question is how to construct for each $X \in X$ and $M \in \mathbb{N}$ an element M is small. If M is a Hilbert space and M is an orthonormal basis then we look for the elements of the basis for which $|\langle x, e_n \rangle|$ is largest. Afterwards we get some properties of $\mathcal{G}_m(X)$, the greedy algorithm of X, which is uniquely determined.

We continue with the definition of democratic bases as the last type of bases that we are going to study. A basis \mathcal{B} is said to be democratic if blocks of the same size of \mathcal{B} have uniformly comparable norms. The democracy functions and two useful lemmas will be used to achieve the final result of this study.

In order to finish the mathematical part, we define the concept of greedy basis: a basis \mathcal{B} of a Banach space X is greedy if there is an absolute constant C such that $\|x - \mathcal{G}_m[\mathcal{B}, X](x)\| \leq C \inf_{y \in \Sigma_m[\mathcal{B}, X]} \|x - y\|$ for all $m \in \mathbb{N}$ and $x \in X$. Next we enunciate a very satisfactory characterization given by Konyagin and Temlyakov that says that a basis is greedy if and only if it is unconditional and democratic. Finally, by this theorem proving that the Haar system is democratic, we conclude that it is also a greedy basis in $L_p[0,1]$ (1 arriving at the central result that we desire.

The practical and computer-based part is divided into three parts.

<u>Theoretical algorithms</u>. The possibility of replacing an object by a simpler one which provides the same information for practical purposes is very useful. We begin with the development of two theoretical algorithms to make approximations using as greedy basis a dictionary \mathcal{D} . Each algorithm will focus on the environment of a different space: (1) a Hilbert space and (2) an arbitrary Banach space X.

Part 2. TO DO.

Part 3. TO DO.

Yo, Carlos Santiago Sánchez Muñoz, alumno de la titulación DOBLE GRADO EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS de la Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación y Facultad de Ciencias de la Universidad de Granada, con DNI 75931715K, autorizo la ubicación de la siguiente copia de mi Trabajo Fin de Grado en la biblioteca del centro para que pueda ser consultada por las personas que lo deseen. Fdo: Carlos Santiago Sánchez Muñoz Granada a X de junio de 2020.

D. **Javier Merí de la Maza**, Profesor del Departamento Análisis Matemático de la Universidad de Granada.

D. **Alberto Fernández Hilario**, Profesor del Departamento de Ciencias de la Computación e Inteligencia Artificial de la Universidad de Granada.

Informan:

Que el presente trabajo, titulado *Desarrollo de algoritmos para la aproximación* no lineal mediante bases especiales en espacios de Banach, ha sido realizado bajo su supervisión por Carlos Santiago Sánchez Muñoz, y autorizamos la defensa de dicho trabajo ante el tribunal que corresponda.

Y para que conste, expiden y firman el presente informe en Granada a X de junio de 2020.

Los directores:

Javier Merí de la Maza

Alberto Fernández Hilario

Agradecimientos

En primer lugar quiero agradecer a mis padres y a mis hermanos su cariño, incondicionalidad y constante apoyo hacia mí. Ellos son lo más importante para cualquier meta que me propongo.

Quiero agradecer también a todos los profesores con los que he tenido contacto en estos cinco años, han realizado una gran labor docente y de algunos he aprendido mucho más que matemáticas o informática.

Del mismo modo he sentido la fuerza que me han dado todos mis amigos, algunos de los cuales los conocí en esta carrera y junto a ellos he superado obstáculos y dificultades.

Por último quiero darle las gracias a mis tutores, Javier Merí y Alberto Fernández, quienes me han dado las herramientas para llevar a cabo este Trabajo Fin de Grado.

Capítulo 1

Introducción

1.1. Contexto

Este Trabajo Fin de Grado se enmarca dentro de la rama del Análisis Funcional conocida como Geometría de los Espacios de Banach, y tiene por objeto avanzar en el estudio de bases especiales en tales espacios. Una de las ideas principales en el estudio isomórfico de los espacios de Banach es el uso de las propiedades de bases y sucesiones básicas como herramienta fundamental para comprender las diferencias y las similitudes entre distintos espacios.

En los años 90 del siglo pasado surge el concepto de base greedy que está intimamente relacionado con la aproximación no lineal y con la búsqueda de algoritmos que se pueden implementar en computadoras para realizar compresión de datos y recuperación de información.

1.2. Problema

Hay una serie de situaciones en las que es muy útil o incluso imprescindible realizar compresión de información para que el objeto a manejar sea más simple pero que aporte prácticamente la misma información. Por ejemplo, si queremos enviar una señal a otro planeta puede que necesitamos comprimir lo máximo posible dicha información.

En nuestro caso queremos realizar el estudio de EXPLICAR LOS EJEMPLOS DE LA PARTE INFORMÁTICA AQUÍ.

1.3. Herramientas

1.3. Herramientas

Las herramientas que nos serán útiles para llevar esto a cabo son los resultados obtenidos en el estudio de bases greedy. El hecho de que el sistema de Haar sea greedy en $L_p[0,1]$ con 1 es la llave para realizar la aproximación.

Hemos usado el lenguaje de programación Python y librerías como PARTE INFORMÁTICA A SU DEBIDO TIEMPO.

Capítulo 2

Objetivos del trabajo

2.1. Estudio de tipos especiales de bases

Uno de los objetivos del presente trabajo consiste en estudiar el concepto de base de Schauder en espacios de Banach, presentando ejemplos y analizando las distintas propiedades que pueden tener las bases.

En segundo lugar seguimos con la presentación de tipos especiales de bases en estos espacios como las bases incondicionales, bases simétricas, bases acotadamente completas y bases shrinking. A partir de aquí procederemos al estudio de caracterizaciones y propiedades relevantes de la bases mencionadas anteriormente.

El siguiente objetivo matemático que tenemos es presentar el sistema de Haar y estudiar algunas de sus propiedades para finalmente probar que es una base incondicional para los espacios $L_p[0,1]$ donde 1 .

Por último, pero no menos importante, el estudio se centrará en las bases greedy y en su relación con la aproximación no lineal que debe culminar con el resultado de que el sistema de Haar es greedy. Para llegar a esto es necesario estudiar la caracterización que Konyagin y Temlyakov desarrollaron para estas bases.

Los objetivos matemáticos se han alcanzado durante el desarrollo del trabajo y el grado de consecución de estos es muy alto.

2.2. Búsqueda de algoritmos de compresión de información

La parte informática del trabajo comenzará con la presentación y análisis de modelos teóricos de aproximación mediante bases greedy.

La última parte del trabajo consistirá en utilizar técnicas de aprendizaje y / o optimi-

zación para determinar los parámetros de las funciones bajo estudio. Surge la necesidad de utilizar algoritmos y modelos que trabajen de manera automática por los grados de libertad que tiene el problema, y la necesidad de la eficiencia en la obtención de la solución, equilibrando precisión y tiempo de cómputo frente a metodologías de tipo exacto.

FINALIZAR PARTE INFORMÁTICA A SU DEBIDO TIEMPO.

Los objetivos informáticos que nos hemos marcado se han conseguido con un grado de satisfacción alto.

Capítulo 3

Desarrollo matemático del trabajo

3.1. Bases y sucesiones básicas

Una de las ideas clave en la teoría isomórfica de espacios de Banach es usar las propiedades de las bases y sucesiones básicas para estudiar las diferencias y similitudes entre espacios. Durante el desarrollo convendremos en que todos los espacios de Banach son reales a menos que se indique lo contrario y en algunas ocasiones probaremos el caso complejo para demostrar que se obtiene el mismo resultado.

3.1.1. Bases de Schauder

Aunque la noción de base de un espacio vectorial tiene sentido para espacios de dimensión infinita, no resulta satisfactoria en el ambiente de los espacios normados porque no tiene en cuenta su estructura topológica. Pasamos a definir el concepto adecuado de base en este ambiente.

3.1.1 Definición. Una sucesión de elementos $(e_n)_{n=1}^{\infty}$ en un espacio de Banach de dimensión infinita se dice que es una base de X si para cada $x \in X$ existe una única sucesión de escalares $(a_n)_{n=1}^{\infty}$ tal que

$$x = \sum_{n=1}^{\infty} a_n e_n.$$

Esto significa que necesitamos que $(\sum_{n=1}^N a_n e_n)_{N=1}^\infty$ converja a x en la topología de la norma.

De la definición es claro que una base consiste en vectores linealmente independientes

y distintos de cero. Si X tiene una base $(e_n)_{n=1}^{\infty}$ entonces su cierre coincide con X y por tanto X es separable.

Nos damos también cuenta de que si $(e_n)_{n=1}^{\infty}$ es una base de un espacio de Banach X, las aplicaciones $x \mapsto a_n$ son funcionales lineales en X. Escribiremos $e_n^{\#}(x) = a_n$. Sin embargo, no es de ninguna manera inmediato ver que los funcionales lineales $(e_n^{\#})_{n=1}^{\infty}$ son en realidad continuos. Hagamos la siguiente definición:

3.1.2 Definición. Sea $(e_n)_{n=1}^{\infty}$ una sucesión en un espacio de Banach X. Supongamos que hay una sucesión $(e_n^*)_{n=1}^{\infty}$ en X^* tal que

(I)
$$e_k^*(e_j) = 1$$
 si $j = k$ o bien $e_k^*(e_j) = 0$ si $j \neq k$ para todo $k \ y \ j$ en \mathbb{N} ,

(II)
$$x = \sum_{n=1}^{\infty} e_n^*(x)e_n$$
 para cada x en X .

Entonces decimos que $(e_n)_{n=1}^{\infty}$ es una base de Schauder de X y los funcionales $(e_n^*)_{n=1}^{\infty}$ son los funcionales biortogonales asociados a $(e_n)_{n=1}^{\infty}$.

Si $(e_n)_{n=1}^{\infty}$ es una base de Schauder de X y $x = \sum_{n=1}^{\infty} e_n^*(x)e_n$, el soporte de x es el subconjunto de enteros n tales que $e_n^*(x) \neq 0$. Lo denotamos como sop(x). Si $sop(x) < \infty$ diremos que x tiene soporte finito.

El nombre de Schauder en la definición anterior es en honor a J. Schauder quien introdujo el concepto de base en 1927. En la práctica, cualquier base de un espacio de Banach es una base de Schauder. La prueba de la equivalencia entre los conceptos de base y base de Schauder es consecuencia del teorema de la gráfica cerrada. Aunque la demostración de este resultado es muy interesante porque hace uso de algunos de los principios básicos del análisis funcional, hay que reconocer que es esencialmente inútil en el sentido de que en todas las situaciones prácticas somos capaces de demostrar que $(e_n)_{n=1}^{\infty}$ es una base mostrando la conclusión formalmente más fuerte de que ya es una base de Schauder.

3.1.3 Teorema. Sea X un espacio de Banach (separable). Una sucesión $(e_n)_{n=1}^{\infty}$ en X es una base de Schauder si y solo si $(e_n)_{n=1}^{\infty}$ es una base para X.

Demostración. Asumimos que $(e_n)_{n=1}^{\infty}$ es una base de X e introducimos las proyecciones $(S_n)_{n=0}^{\infty}$ asociadas a $(e_n)_{n=1}^{\infty}$ definidas por $S_0 = 0$ y para $n \ge 1$,

$$S_n(x) = \sum_{k=1}^n e_k^{\#}(x)e_k.$$

Por supuesto, no sabemos todavía que estos operadores están acotados. Consideremos una

nueva norma en X definida por la fórmula

$$|||x||| = \sup_{n>1} ||\mathbf{S}_n x||.$$

Como $\lim_{n\to\infty} ||x-S_n x|| = 0$ para cada $x \in X$, se sigue que $|||\cdot||| \ge ||\cdot||$. Demostraremos que $(X, |||\cdot|||)$ es completo.

Supongamos que $(x_n)_{n=1}^{\infty}$ es una sucesión de Cauchy en $(X, ||| \cdot |||)$. Por supuesto, $(x_n)_{n=1}^{\infty}$ converge a algún $x \in X$ en la norma original. Nuestro objetivo es probar que $\lim_{n\to\infty} |||x_n-x||| = 0$.

Para cada k fijado la sucesión $(S_k x_n)_{n=1}^{\infty}$ es convergente en la norma original a algún $y_k \in X$, nos damos cuenta también de que $(S_k x_n)_{n=1}^{\infty}$ está contenido en el subespacio finito dimensional generado por $e_1, ..., e_k$, el cual notamos por $[e_1, ..., e_k]$. Ciertamente, los funcionales $e_j^{\#}$ son continuos en cada subespacio finito dimensional; por tanto si $1 \le j \le k$ tenemos

$$\lim_{n \to \infty} e_j^{\#}(x_n) = e_j^{\#}(y_k) := a_j.$$

Argumentamos ahora que $\sum_{j=1}^{\infty} a_j e_j = x$ para la norma original.

Dado $\varepsilon > 0$, cogemos un entero n tal que si $m \ge n$ entonces $|||x_m - x_n||| \le \frac{\varepsilon}{3}$, y tomamos k_0 tal que $k \ge k_0$ implica $||x_n - S_k x_n|| \le \frac{\varepsilon}{3}$. Entonces para $k \ge k_0$ tenemos

$$||y_k - x|| \le \lim_{n \to \infty} ||S_k x_m - S_k x_n|| + ||S_k x_n - x_n|| + \lim_{n \to \infty} ||x_m - x_n|| \le \varepsilon.$$

Así $\lim_{k\to\infty} \|y_k - x\| = 0$ y por la unicidad de la expansión de x con respecto a la base obtenemos $S_k x = y_k$.

Ahora,

$$\left|\left|\left|x_n-x\right|\right|\right|=\sup_{k\geq 1}\left\|\mathbf{S}_k\,x_n-\mathbf{S}_k\,x\right\|\leq \limsup_{m\to\infty}\sup_{k\geq 1}\left\|\mathbf{S}_k\,x_m-\mathbf{S}_k\,x_n\right\|,$$

así que el lím $_{n\to\infty} |||x_n - x||| = 0$ y $(X, |||\cdot|||)$ es completo.

Por el teorema de la aplicación abierta la aplicación $Id:(X,\|\cdot\|)\to (X,\||\cdot\||)$ está acotada, i.e., existe K tal que $|||x|||\leq K\,\|x\|\,\,\,\forall x\in X.$ Esto implica que

$$\|\mathbf{S}_n x\| \le K \|x\|, \quad x \in X, \ n \in \mathbb{N}.$$

En particular,

$$\left| e_n^{\#}(x) \right| \|e_n\| = \|S_n x - S_{n-1} x\| \le 2K \|x\|;$$

por lo que
$$e_n^{\#} \in X^* \text{ y } \|e_n^{\#}\| \le 2K \|e_n\|^{-1}$$
.

Sea $(e_n)_{n=1}^{\infty}$ una base de X. El teorema anterior nos dice que $(e_n)_{n=1}^{\infty}$ es de hecho una base de Schauder; de aquí que usemos la notación $(e_n^*)_{n=1}^{\infty}$ para los funcionales biortogonales.

Consideramos los operadores $S_n: X \to X$ dados por $S_0 = 0$ y para $n \ge 1$

$$S_n\left(\sum_{k=1}^{\infty} e_k^*(x)e_k\right) = \sum_{k=1}^{n} e_k^*(x)e_k.$$

 S_n es un operador lineal y continuo ya que e_k^* es continuo. Que los operadores $(S_n)_{n=1}^{\infty}$ estén uniformemente acotados es consecuencia del principio de acotación uniforme. Recogemos este resultado:

3.1.4 Proposición. Sea $(e_n)_{n=1}^{\infty}$ es una base de Schauder de un espacio de Banach X y $(S_n)_{n=1}^{\infty}$ las proyecciones naturales asociadas a él. Entonces:

$$\sup_{n} \|\mathbf{S}_n\| < \infty.$$

Demostración. Para una base de Schauder los operadores $(S_n)_{n=1}^{\infty}$ están acotados a priori. Como $S_n(x) \to x$ para cada $x \in X$ tenemos que $\sup_n ||S_n(x)|| < \infty$ para cada $x \in X$. Entonces el principio de acotación uniforme nos dice que $\sup_n ||S_n|| < \infty$.

3.1.5 Definición. Si $(e_n)_{n=1}^{\infty}$ es una base de un espacio de Banach X entonces el número

$$K_b = \sup_n \|\mathbf{S}_n\|$$

se llama la constante básica. En el caso óptimo de que $K_b = 1$ la base $(e_n)_{n=1}^{\infty}$ se dice monótona.

3.1.6 Observación. Siempre podemos renormar un espacio de Banach X con una base de manera que la base dada sea monótona. Simplemente ponemos:

$$|||x||| = \sup_{n \ge 1} ||\mathbf{S}_n x||.$$

Tenemos $||x|| \le |||x||| \le K_b ||x||$ por lo que la nueva norma es equivalente a la antigua y rápidamente verificamos que $|||S_n||| = 1$ para cada $n \in \mathbb{N}$.

El siguiente resultado establece un método para construir una base para un espacio de Banach X siempre que tengamos una familia de proyecciones que cumplan las propiedades de los operadores de suma parcial.

3.1.7 Proposición. Supongamos que $S_n: X \to X, n \in \mathbb{N}$ es una sucesión de proyecciones $(S_n^2 = S_n)$ lineales acotadas en un espacio de Banach X tal que

- (I) dim $S_n(X) = n$ para cada n;
- (II) $S_n S_m = S_m S_n = S_{\min\{n,m\}}$ para cualesquiera números naturales $m \ y \ n; \ y$
- (III) $S_n(x) \to x \ \forall x \in X$.

Entonces toda sucesión de vectores distintos de cero $(e_k)_{k=1}^{\infty}$ en X escogidos inductivamente de manera que $e_1 \in S_1(X)$ y $e_k \in S_k(X) \cap S_{k-1}^{-1}(0)$ si $k \geq 2$ es una base para X con proyecciones asociadas $(S_n)_{n=1}^{\infty}$.

Demostración. Sea $0 \neq e_1 \in S_1(X)$ y definimos $e_1^*: X \to \mathbb{R}$ por $e_1^*(x)e_1 = S_1(x)$. A continuación cogemos $0 \neq e_2 \in S_2(X) \cap S_1^{-1}(0)$ y definimos el funcional $e_2^*: X \to \mathbb{R}$ por $e_2^*(x)e_2 = S_2(x) - S_1(x)$. Esto nos da por inducción un procedimiento para extraer la base y los funcionales biortogonales: para cada número natural n, cogemos $0 \neq e_n \in S_n(X) \cap S_{n-1}^{-1}(0)$ y definimos $e_n^*: X \to \mathbb{R}$ por $e_n^*(x)e_n = S_n(x) - S_{n-1}(x)$. Entonces

$$|e_n^*(x)| = \|S_n(x) - S_{n-1}(x)\| \|e_n\|^{-1} \le 2 \sup_n \|S_n\| \|e_n\|^{-1} \|x\|;$$

por lo tanto $e_n^* \in X^*$. Es inmediato comprobar que $e_k^*(e_j) = \delta_{kj}$ para cualesquiera números naturales k, j.

Por otro lado si $S_0(x) = 0$ para todo x, podemos escribir

$$S_n(x) = \sum_{k=1}^n (S_k(x) - S_{k-1}(x)) = \sum_{k=1}^n e_k^*(x)e_k,$$

que por la hipótesis III converge a x para todo $x \in X$. Entonces, la sucesión $(e_n)_{n=1}^{\infty}$ es una base y $(S_n)_{n=1}^{\infty}$ sus proyecciones naturales.

En la siguiente definición relajamos la suposición de que una base debe expandir el espacio entero. Vamos a introducir el concepto de $sucesión\ básica$ el cual es de fundamental importancia en la teoría de espacios de Banach.

3.1.8 Definición. Una sucesión $(e_k)_{k=1}^{\infty}$ en un espacio de Banach X es una sucesión básica si es una base para $[e_k]_{k\in\mathbb{N}}$, el cierre de la expansión lineal de $(e_k)_{k=1}^{\infty}$.

Para reconocer las sucesiones de elementos en un espacio de Banach como una sucesión básica tenemos la siguiente proposición también conocida como el *Criterio de Grun*blum.

3.1.9 Proposición. Una sucesión $(e_k)_{k=1}^{\infty}$ de elementos distintos de cero de un espacio de Banach X es una sucesión básica si y solo si existe una constante positiva K tal que

$$\left\| \sum_{k=1}^{m} a_k e_k \right\| \le K \left\| \sum_{k=1}^{n} a_k e_k \right\| \tag{3.1}$$

para cada sucesión de escalares $(a_k)_{k=1}^{\infty}$ y cualesquiera enteros m, n tales que $m \leq n$.

Demostración. Asumimos que $(e_k)_{k=1}^{\infty}$ es una sucesión básica y sean $S_m : [e_k] \to [e_k]$, m = 1, 2, ..., las proyecciones de las sumas parciales. Si $m \le n$ tenemos

$$\left\| \sum_{k=1}^{m} a_k e_k \right\| = \left\| S_m \left(\sum_{k=1}^{n} a_k e_k \right) \right\| \le \sup_{m} \|S_m\| \left\| \sum_{k=1}^{n} a_k e_k \right\|,$$

por lo que 3.1 se da con $K = \sup_m ||S_m||$.

Para la otra implicación, sea E la expansión lineal de $(e_k)_{k=1}^{\infty}$. La condición 3.1 implica que los vectores $(e_k)_{k=1}^{\infty}$ son linealmente independientes. Esto nos permite definir para cada m un operador de rango finito $s_m : E \to [e_k]_{k=1}^m$ por

$$s_m \left(\sum_{k=1}^n a_j e_j \right) = \sum_{k=1}^{\min(m,n)} a_k e_k, \quad m, n \in \mathbb{N}.$$

Por densidad cada s_m se extiende a $S_m : [e_k] \to [e_k]_{k=1}^m$ con $||S_m|| = ||s_m|| \le K$.

Nos damos cuenta de que para cada $x \in E$ tenemos

$$S_n S_m(x) = S_m S_n(x) = S_{\min(m,n)}(x), \quad m, n \in \mathbb{N},$$
(3.2)

y, por tanto, 3.2 se cumple para todo $x \in [e_k]$.

Para cada $x \in [e_k]$ la sucesión $(S_n(x))_{k=1}^{\infty}$ converge a x, ya que el conjunto $\{x \in [e_k] : S_m(x) \to x\}$ es cerrado y contiene a E, el cual es denso en $[e_k]$. Ahora por la Proposición $3.1.7 (e_k)_{k=1}^{\infty}$ es una base para $[e_k]$ con proyecciones asociadas $(S_m)_{m=1}^{\infty}$.

3.1.2. Ejemplos: Series de Fourier

Algunos de los espacios de Banach clásicos vienen con una base natural dada. Por ejemplo en los espacios ℓ_p para $1 \leq p < \infty$ y c_0 existe una base canónica dada por la sucesión $e_n = (0, ..., 0, 1, 0, ...)$ donde la única entrada distinta de 0 es la n-ésima. Vamos a mostrar un ejemplo que proviene del análisis de Fourier y también la construcción original de Schauder de una base en $\mathcal{C}[0, 1]$.

Sea $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Denotamos un elemento de \mathbb{T} por $e^{i\theta}$ y podemos identificar el espacio $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$ de las funciones continuas de variable compleja en \mathbb{T} con el espacio de las funciones 2π -periódicas continuas en \mathbb{R} . En el contexto de las series de Fourier es más natural considerar espacios de funciones complejas que de funciones reales.

Para cada $n \in \mathbb{N}$ sea $e_n \in \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ la función tal que $e_n(\theta) = e^{in\theta}$. La pregunta que queremos abordar es si la sucesión $(e_o, e_1, e_{-1}, e_2, e_{-2}, ...)$ en este orden particular es una base de $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$. De hecho veremos que no lo es. Este es un resultado clásico en análisis de Fourier que es equivalente a decir que hay una función continua f cuya serie de Fourier no converge uniformemente.

Que $[e_n]_{n\in\mathbb{N}} = \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ se obtiene del teorema de Stone-Weierstrass aunque lo vamos a probar directamente.

Los coeficientes de Fourier de $f \in \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ están definidos por la fórmula

$$\hat{f}(n) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-int}dt, \quad n \in \mathbb{Z}.$$

Se comprueba de manera rutinaria que los funcionales lineales

$$e_n^*: \mathcal{C}_{\mathbb{C}}(\mathbb{T}) \to \mathbb{C}, \ f \mapsto e_n^*(f) = \hat{f}(n)$$

son biortogonales a la sucesión $(e_n)_{n\in\mathbb{Z}}$.

La serie de Fourier de f es la serie formal

$$\sum_{n=-\infty}^{n=\infty} \hat{f}(n)e^{in\theta}.$$

Vamos a enunciar dos lemas que nos serán muy útiles más adelante.

3.1.10 Lema. Para todo $t \in \mathbb{R}$, se tiene

(I)
$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=0}^{n} \cos(kt) = \cos\left(\frac{nt}{2}\right) \operatorname{sen}\left(\frac{(n+1)t}{2}\right),$$

(II)
$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=1}^{n} \operatorname{sen}(kt) = \operatorname{sen}\left(\frac{nt}{2}\right) \operatorname{sen}\left(\frac{(n+1)t}{2}\right).$$

Demostración. Vamos a probar ambas igualdades simultáneamente. Comencemos:

$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=0}^{n} \cos(kt) + i \operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=0}^{n} \operatorname{sen}(kt) = \operatorname{sen}\left(\frac{t}{2}\right) \left(\sum_{k=0}^{n} \cos(kt) + i \operatorname{sen}(kt)\right).$$

Usamos la fórmula de Moivre y obtenemos

$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=0}^{n} \left(\cos(t) + i \operatorname{sen}(t)\right)^{k}.$$

Sea $z = \cos(t) + i \sin(t)$. Sabemos que

$$1 + z + \dots + z^n = \frac{1 - z^{n+1}}{1 - z}$$

con la salvedad de que z=1. En ese caso $t=2k\pi,\ k\in\mathbb{Z}$ y las igualdades son ciertas trivialmente. Usando $z^{n+1}=\cos((n+1)t)+i\sin((n+1)t)$ junto con las igualdades trigonométricas $2\sin^2(\alpha/2)=1-\cos(\alpha)$ y $\sin(\alpha)=2\sin(\alpha/2)\cos(\alpha/2)$ llegamos a

$$\operatorname{sen}\left(\frac{t}{2}\right) \frac{1 - \cos((n+1)t) - i\operatorname{sen}((n+1)t)}{1 - \cos(t) - i\operatorname{sen}(t)} =$$

$$= \frac{2\operatorname{sen}^2\left(\frac{n+1}{2}t\right) - 2i\operatorname{sen}\left(\frac{n+1}{2}t\right)\cos\left(\frac{n+1}{2}t\right)}{2\operatorname{sen}\left(\frac{t}{2}\right) - 2i\cos\left(\frac{t}{2}\right)}.$$

Simplificamos,

$$\operatorname{sen}^{2}\left(\frac{n+1}{2}t\right) \frac{\operatorname{sen}\left(\frac{n+1}{2}t\right) - i\operatorname{cos}\left(\frac{n+1}{2}t\right)}{\operatorname{sen}\left(\frac{t}{2}\right) - i\operatorname{cos}\left(\frac{t}{2}\right)}.$$

Multiplicamos numerador y denominador por el conjugado del denominador

$$\operatorname{sen}\left(\frac{n+1}{2}t\right)\left(\operatorname{sen}\left(\frac{n+1}{2}t\right)-i\operatorname{cos}\left(\frac{n+1}{2}t\right)\right)\left(\operatorname{sen}\left(\frac{t}{2}\right)+i\operatorname{cos}\left(\frac{t}{2}\right)\right).$$

Desarrollando la parte real

$$\operatorname{sen}\left(\frac{n+1}{2}t\right)\left(\cos\left(\frac{n+1}{2}t\right)\cos\left(\frac{t}{2}\right)+\operatorname{sen}\left(\frac{n+1}{2}t\right)\operatorname{sen}\left(\frac{t}{2}\right)\right)=\\=\operatorname{sen}\left(\frac{n+1}{2}t\right)\cos\left(\frac{n+1}{2}t-\frac{t}{2}\right)=\operatorname{sen}\left(\frac{n+1}{2}t\right)\cos\left(\frac{nt}{2}\right).$$

A continuación desarrollamos la parte imaginaria

$$\operatorname{sen}\left(\frac{n+1}{2}t\right)\left(\left(\operatorname{sen}\left(\frac{n+1}{2}t\right)\operatorname{cos}\left(\frac{t}{2}\right)-\operatorname{cos}\left(\frac{n+1}{2}t\right)\operatorname{sen}\left(\frac{t}{2}\right)\right)\right)=$$

$$=\operatorname{sen}\left(\frac{n+1}{2}t\right)\operatorname{sen}\left(\frac{n+1}{2}t-\frac{t}{2}\right)=\operatorname{sen}\left(\frac{n+1}{2}t\right)\operatorname{sen}\left(\frac{nt}{2}\right).$$

Finalizamos la demostración juntando ambas partes,

$$\operatorname{sen}\left(\frac{n+1}{2}t\right)\left(\cos\left(\frac{nt}{2}\right)+i\operatorname{sen}\left(\frac{nt}{2}\right)\right).$$

3.1.11 Lema. Sean $n \in \mathbb{N}$ y $t \in \mathbb{R}$. La siguiente igualdad es cierta:

$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=-n}^{n} e^{ikt} = \operatorname{sen}\left(\left(n + \frac{1}{2}\right)t\right).$$

Demostración. Vamos a desarrollar el sumatorio y seguidamente podremos utilizar la paridad del coseno y la imparidad del seno

$$\sum_{k=-n}^{n} e^{ikt} = \sum_{k=-n}^{n} (\cos(kt) + i \sin(kt)) = \sum_{k=-n}^{n} \cos(kt) + i \sum_{k=-n}^{n} \sin(kt)$$
$$= \sum_{k=-n}^{n} \cos(kt) = 2 \sum_{k=1}^{n} \cos(kt) + 1 = 2 \sum_{k=0}^{n} \cos(kt) - 1.$$

Usando lo anterior y aplicando el apartado (I) del Lema 3.1.10 obtenemos

$$\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=-n}^{n} e^{ikt} = 2\operatorname{sen}\left(\frac{t}{2}\right) \sum_{k=0}^{n} \cos(kt) - \operatorname{sen}\left(\frac{t}{2}\right)$$
$$= 2\cos\left(\frac{nt}{2}\right) \operatorname{sen}\left(\frac{(n+1)t}{2}\right) - \operatorname{sen}\left(\frac{t}{2}\right).$$

Desarrollando y usando la fórmula para el seno de la suma de dos ángulos:

$$2\cos\left(\frac{nt}{2}\right)\sin\left(\frac{nt}{2} + \frac{t}{2}\right) - \sin\left(\frac{t}{2}\right) =$$

$$= 2\cos\left(\frac{nt}{2}\right)\left[\sin\left(\frac{nt}{2}\right)\cos\left(\frac{t}{2}\right) + \cos\left(\frac{nt}{2}\right)\sin\left(\frac{t}{2}\right)\right] - \sin\left(\frac{t}{2}\right) =$$

$$= \sin(nt)\cos\left(\frac{t}{2}\right) + 2\cos\left(\frac{nt}{2}\right)^2\sin\left(\frac{t}{2}\right) - \sin\left(\frac{t}{2}\right).$$

Recordamos que $2\cos^2(\alpha/2) = \cos(\alpha) + 1$ para cualquier $\alpha \in \mathbb{R}$ y posteriormente identificamos el seno de la suma en la expresión finalizando la demostración.

$$sen (nt) cos \left(\frac{t}{2}\right) + (cos (nt) + 1) sen \left(\frac{t}{2}\right) - sen \left(\frac{t}{2}\right)$$

$$= sen (nt) cos \left(\frac{t}{2}\right) + cos (nt) sen \left(\frac{t}{2}\right)$$

$$= sen \left(nt + \frac{t}{2}\right) = sen \left(\left(n + \frac{1}{2}\right)t\right).$$

Para cada entero n sea $T_n: \mathcal{C}_{\mathbb{C}}(\mathbb{T}) \to \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ el operador

$$T_n(f) = \sum_{k=-n}^{n} \hat{f}(k)e_k,$$

el cual nos da la n-ésima suma parcial de la serie de Fourier de f. Entonces

$$T_n(f)(\theta) = \sum_{k=-n}^{n} \frac{1}{2\pi} \int_{\theta-\pi}^{\theta+\pi} f(t)e^{ik(\theta-t)}dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta-t) \sum_{k=-n}^{n} e^{ikt}dt$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta-t) \frac{\sin(n+\frac{1}{2})t}{\sin\frac{t}{2}}dt.$$

En la última igualdad hemos usado el Lema 3.1.11. La función

$$D_n(t) = \frac{\operatorname{sen}(n + \frac{1}{2})t}{\operatorname{sen}\frac{t}{2}}$$

es conocida como el núcleo de Dirichlet.

Consideremos también los operadores

$$A_n = \frac{1}{n}(T_0 + \dots + T_{n-1}), \quad n = 2, 3, \dots$$
 (3.3)

Entonces

$$A_n f(\theta) = \frac{1}{2\pi n} \int_{-\pi}^{\pi} f(\theta - t) \sum_{k=0}^{n-1} \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}} dt = \frac{1}{2\pi n} \int_{-\pi}^{\pi} f(\theta - t) \left(\frac{\sin\frac{nt}{2}}{\sin\frac{t}{2}}\right)^2 dt.$$

La función

$$F_n(t) = \frac{1}{n} \left(\frac{\sin \frac{nt}{2}}{\sin \frac{t}{2}} \right)^2$$

es el *núcleo de Fejér*. En el siguiente lema mostramos una propiedad que verifican ambos núcleos.

3.1.12 Lema. Sea $n \in \mathbb{N}$, entonces

(I)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t) dt = 1$$
,

(II)
$$\frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{F}_n(t) dt = 1.$$

Demostración. (I) De la demostración del Lema 3.1.11 es claro ver la caracterización $D_n(t) = 1 + 2\sum_{k=1}^n \cos(kt)$. Integramos usándola:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} D_n(t)dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(1 + \sum_{k=1}^n \cos(kt) \right) dt = 1 + \frac{1}{2\pi} \sum_{k=1}^n \int_{-\pi}^{\pi} \cos(kt) dt = 1 + \frac{1}{2\pi} \sum_{k=1}^n \sum_{k=1}^n \frac{2 \sin(k\pi)}{k} = 1.$$

(II) Sabemos que

$$A_n f(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta - t) F_n(t) dt,$$

y tomando f como la función identidad nos queda

$$A_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_n(t) dt \text{ pero } A_n = \frac{T_0 + \dots + T_{n-1}}{n}$$

por la ecuación 3.3. Calculamos los coeficientes de Fourier de f que son $a_0 = 2$ y $a_n = b_n = 0$ para $n \ge 1$ de manera trivial. Ya hemos finalizado la demostración pues

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} F_n(t)dt = \frac{T_0 + \dots + T_{n-1}}{n} = \frac{n\frac{a_0}{2}}{n} = 1.$$

Sin embargo, una diferencia crucial es que \mathbf{F}_n es una función positiva mientras que \mathbf{D}_n no lo es.

Mostremos ahora que si $f \in \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ entonces $||A_n f - f|| \to 0$. Como f es uniformemente continua, dado $\varepsilon > 0$ podemos encontrar un $0 < \delta < \pi$ de manera que $|\theta - \theta'| < \delta$ implica que $|f(\theta) - f(\theta')| \le \varepsilon$. Entonces para cada θ tenemos

$$A_n f(\theta) - f(\theta) = \frac{1}{2\pi} \int_{-\pi}^{\pi} F_n(t) (f(\theta - t) - f(\theta)) dt.$$

Por tanto

$$\|\mathbf{A}_n f - f\| \le \frac{1}{2\pi} \|f\| \int_{\delta < |t| \le \pi} \mathbf{F}_n(t) dt + \frac{1}{2\pi} \varepsilon \int_{-\delta}^{\delta} \mathbf{F}_n(t) dt.$$

Ahora

$$\frac{1}{2\pi} \|f\| \int_{\delta < |t| \le \pi} \mathcal{F}_n(t) dt \le \frac{1}{n} \operatorname{sen}^{-2} \frac{\delta}{2}$$

y por tanto

$$\limsup \|\mathbf{A}_n f - f\| \le \varepsilon.$$

Esto muestra que $[e_n]_{n\in\mathbb{Z}} = \mathcal{C}_{\mathbb{C}}(\mathbb{T})$.

Como los funcionales biortogonales están dados por los coeficientes de Fourier, se sigue que si $(e_0, e_1, e_{-1}...,)$ es una base entonces los operadores de las sumas parciales $(S_n)_{n=1}^{\infty}$ satisfacen $S_{2n+1} = T_n$ para todo \mathbb{N} . Para mostrar que no es una base es suficiente ver que la sucesión de operadores $(T_n)_{n=1}^{\infty}$ no está uniformemente acotada.

Sea $\varphi \in \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ dado por

$$\varphi(f) = f(0).$$

Entonces

$$\varphi(\mathbf{T}_n(f)) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \mathbf{D}_n(t) f(-t) dt;$$

por tanto

$$\|\mathbf{T}_{n}^{*}\varphi\| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |\mathbf{D}_{n}(t)| dt.$$

Por lo tanto, como $|\sin x| \le |x|$ para todo x real,

$$\|\mathbf{T}_n\| \ge \frac{1}{2\pi} \int_{-\pi}^{\pi} |\mathbf{D}_n(t)| \, dt = \frac{1}{\pi} \int_0^{\pi} \left| \frac{\sin(n + \frac{1}{2})t}{\sin\frac{t}{2}} \right| \, dt$$

$$\ge \frac{2}{\pi} \int_0^{(n+1/2)\pi} \left| \frac{\sin t}{\sin\frac{t}{2n+1}} \right| \frac{dt}{2n+1} \ge \frac{2}{\pi} \int_0^{(n+1/2)\pi} \left| \frac{\sin t}{t} \right| \, dt.$$

Por lo tanto,

$$\liminf_{n \to \infty} \|\mathbf{T}_n\| \ge \frac{2}{\pi} \int_0^\infty \frac{|\sin x|}{x} dx = \infty.$$

Ya hemos probado que $\sup_n \| \mathrm{T}_n^* \varphi \| = \infty$; entonces por el principio de acotación de uniforme existe $f \in \mathcal{C}_{\mathbb{C}}(\mathbb{T})$ tal que $(\mathrm{T}_n f(0))_{n=1}^{\infty}$ es no acotado.

Si preferimos tratar con el espacio de las funciones continuas de variable real $\mathcal{C}(\mathbb{T})$, exactamente los mismos cálculos muestran que el sistema trigonométrico (real)

$$\{1, \cos \theta, \sin \theta, \cos 2\theta, \sin 2\theta, \ldots\}$$

no es una base. En efecto, los operadores $(T_n)_{n=1}^{\infty}$ están no acotados en el espacio $\mathcal{C}(\mathbb{T})$ y corresponden a los operadores de las sumas parciales $(S_{2n+1})_{n=1}^{\infty}$ como antes.

Sin embargo, $\mathcal{C}(\mathbb{T})$ y $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$ tienen una base. Podemos mostrar esto de manera similar a la construcción original de la base de Shauder en $\mathcal{C}[0,1]$ que ahora describiremos. Sea $(q_n)_{n=1}^{\infty}$ una sucesión que es densa en [0,1] y tal que $q_1=0$ y $q_2=1$. Construimos inductivamente una sucesión de operadores $(S_n)_{n=1}^{\infty}$, definidos en $\mathcal{C}[0,1]$, por $S_1f(t)=f(q_1)$ para $0 \le t \le 1$, y posteriormente $S_n f$ es la función lineal a trozos definida por $S_n f(q_k)=f(q_k)$ para $1 \le k \le n$ y lineal en todos los intervalos de $[0,1] \setminus \{q_1,q_2,...,q_n\}$. Es fácil ver que $||S_n|| = 1$ para todo n y que se cumplen todas las hipótesis de la Proposición 3.1.7. De esta manera obtenemos una base monótona para $\mathcal{C}[0,1]$. Los elementos de la base están dados por $e_1(t) = 1$ para todo t, y entonces e_n se define recursivamente por $e_n(q_n) = 1$, $e_n(q_k) = 0$ para $1 \le k \le n-1$, y e_n es lineal en cada intervalo en $[0,1] \setminus \{q_1,q_2,...,q_n\}$.

Para modificar esto para el caso del caso del círculo identificamos $\mathcal{C}(\mathbb{T})$ (respectivamente $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$) con las funciones en $\mathcal{C}[0,2\pi]$ (respectivamente $\mathcal{C}_{\mathbb{C}}[0,2\pi]$) tal que $f(0)=f(2\pi)$. Sea $q_1=0$ y supongamos $(q_n)_{n=1}^{\infty}$ es denso en $[0,2\pi)$. Entonces definimos $S_n f$ para n>1 por $S_n f(q_k)=f(q_k)$ para $1 \leq k \leq n$ y $S_n f(2\pi)=f(q_1)$ y para ser afín en cada intervalo en $[0,2\pi)\setminus\{q_1,...,q_n\}$.

En ambos casos este procedimiento construye una base monótona. Resumimos esto en el siguiente teorema.

3.1.13 Teorema. Los espacios C[0,1] y $C_{\mathbb{C}}(\mathbb{T})$ tienen una base monótona. El sistema trigonométrico complejo $(1,e^{i\theta},e^{-i\theta},...)$ no es una base de $C_{\mathbb{C}}(\mathbb{T})$.

3.1.3. Equivalencia de bases y sucesiones básicas

Cuando seleccionamos una base de un espacio de vectores de dimensión finita estamos, en efecto, seleccionando un sistema de coordenadas. Las bases en espacios de Banach de dimensión infinita juegan el mismo papel. Así, si tenemos una base $(e_n)_{n=1}^{\infty}$ entonces podemos escribir x usando sus coordenadas $(e_n^*(x))_{n=1}^{\infty}$. Por supuesto no es cierto que toda sucesión de escalares $(a_n)_{n=1}^{\infty}$ define un elemento de X. Por tanto obtenemos un sistema de coordenadas de X a través de una cierta sucesión del espacio, es decir, un subespacio lineal del espacio de vectores de todas las sucesiones. Esto nos lleva naturalmente a la siguiente definición.

3.1.14 Definición. Dos bases (o sucesiones básicas) $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ en sus respectivos espacios de Banach X e Y son equivalentes si siempre que tomamos una sucesión de escalares $(a_n)_{n=1}^{\infty}$, entonces $\sum_{n=1}^{\infty} a_n x_n$ converge si y solo si $\sum_{n=1}^{\infty} a_n y_n$ converge.

Por lo tanto si las bases $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son equivalentes entonces los espacios de sucesiones asociados a X por $(x_n)_{n=1}^{\infty}$ y a Y por $(y_n)_{n=1}^{\infty}$ coinciden. Es una consecuencia fácil del teorema de la gráfica cerrada que si $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son equivalentes, entonces los espacios X e Y deben ser isomorfos. De una manera más precisa tenemos el siguiente teorema.

3.1.15 Teorema. Dos bases (o sucesiones básicas) son equivalentes si y solo si existe un isomorfismo $T:[x_n] \to [y_n]$ de manera que $Tx_n = y_n$ para cada $n \in \mathbb{N}$.

Demostración. Sea $X = [x_n]$ e $Y = [y_n]$. Es obvio que $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son equivalentes si existe un isomorfismo T de X a Y tal que T $x_n = y_n$ para cada $n \in \mathbb{N}$.

Supongamos a la inversa que $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son equivalentes. Definamos T : $X \to Y$ por T $(\sum_{n=1}^{\infty} a_n x_n) = \sum_{n=1}^{\infty} a_n y_n$. Entonces T es inyectiva y sobreyectiva. Para probar que es continua usaremos el teorema de la gráfica cerrada. Supongamos $(u_j)_{j=1}^{\infty}$ es una sucesión tal que $u_j \to u$ en X y T $u_j \to v$ en Y. $u_j = \sum_{n=1}^{\infty} x_n^*(u_j) x_n$ y $u = \sum_{n=1}^{\infty} x_n^*(u) x_n$. Se sigue de la continuidad de los funcionales biortogonales asociados respectivamente a $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ que $x_n^*(u_j) \to x_n^*(u)$ e $y_n^*(Tu_j) = x_n^*(u_j) \to y_n^*(v)$ para todo n. Por la unicidad del límite, $x_n^*(u) = y_n^*(v)$ para todo n. Por tanto Tu = v por lo que T es continuo.

3.1.16 Corolario. Sean $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ dos bases para los espacios de Banach X e Y respectivamente. Entonces $(x_n)_{n=1}^{\infty}$ es equivalente a $(y_n)_{n=1}^{\infty}$ si y solo si existe una constante C > 0 tal que para toda sucesión de escalares distintos de cero $(a_i)_{i=1}^{\infty}$ tenemos

$$C^{-1} \left\| \sum_{i=1}^{\infty} a_i y_i \right\| \le \left\| \sum_{i=1}^{\infty} a_i x_i \right\| \le C \left\| \sum_{i=1}^{\infty} a_i y_i \right\|. \tag{3.4}$$

Si C=1 en 3.4 entonces las sucesiones básicas $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ se dicen isométricamente equivalentes.

La equivalencia de sucesión básicas (y en particular de bases) es una técnica poderosa para estudiar la estructura isomórfica de los espacios de Banach. Introducimos ahora un tipo especial de sucesión básica.

3.1.17 Definición. Sea $(e_n)_{n=1}^{\infty}$ una base para un espacio de Banach X. Supongamos que $(p_n)_{n=1}^{\infty}$ es una sucesión estrictamente creciente de enteros con $p_0 = 0$ y que $(a_n)_{n=1}^{\infty}$ son escalares. Entonces a una sucesión de vectores distintos de cero $(u_n)_{n=1}^{\infty}$ en X de la forma

$$u_n = \sum_{j=p_{n-1}+1}^{p_n} a_j e_j.$$

la llamaremos sucesión básica por bloques de $(e_n)_{n=1}^{\infty}$.

3.1.18 Lema. Supongamos $(e_n)_{n=1}^{\infty}$ es una base para el espacio de Banach X con constante básica K_b . Sea $(u_k)_{k=1}^{\infty}$ una sucesión básica por bloques de $(e_n)_{n=1}^{\infty}$. Entonces $(u_k)_{k=1}^{\infty}$ es una sucesión básica con constante básica menor o igual a K_b .

Demostración. Supomgamos que $u_k = \sum_{j=p_{k-1}+1}^{p_k} a_j e_j$, $k \in \mathbb{N}$, es una sucesión básica por bloques de $(e_n)_{n=1}^{\infty}$. Entonces para cualesquiera escalares (b_k) y enteros m, n con $m \leq n$ tenemos

$$\left\| \sum_{k=1}^{m} b_k u_k \right\| = \left\| \sum_{k=1}^{m} b_k \sum_{j=p_{k-1}+1}^{p_k} a_j e_j \right\| = \left\| \sum_{k=1}^{m} \sum_{j=p_{k-1}+1}^{p_k} b_k a_j e_j \right\|$$

$$= \left\| \sum_{j=1}^{p_m} c_j e_j \right\|, \text{ donde } c_j = a_j b_k \text{ si } p_{k-1} + 1 \le j \le p_k$$

$$\le K_b \left\| \sum_{j=1}^{p_n} c_j e_j \right\| = K_b \left\| \sum_{k=1}^{p_n} b_k u_k \right\|$$

Esto es, $(u_k)_{k=1}^{\infty}$ satisface la condición de Grunblum por lo que $(u_k)_{k=1}^{\infty}$ es una sucesión básica con constante básica K_b .

- **3.1.19 Definición.** Una sucesión básica $(x_n)_{n=1}^{\infty}$ en X está complementada si $[x_n]$ es un subespacio complementado de X.
- **3.1.20 Nota.** Supongamos que $(x_n)_{n=1}^{\infty}$ es una sucesión básica complementada en un espacio de Banach X. Sea $Y = [x_n]$ y $P: X \to Y$ una proyección. Si $(x_n^*)_{n=1}^{\infty} \subset Y$ son los funcionales biortogonales asociados a $(x_n)_{n=1}^{\infty}$, entonces usando el teorema de Hahn-Banach podemos obtener una sucesión biortogonal $(\hat{x}_n^*)_{n=1}^{\infty} \subset X^*$ tal que cada \hat{x}_n^* es una

extensión x_n^* que preserva la norma. Pero ya que tenemos una proyección, P, podemos también extender cada x_n^* a todo el espacio X poniendo $u_n^* = x_n^* \circ P$. Entonces para cada $x \in X$ tendremos

$$\sum_{n=1}^{\infty} u_n^*(x) x_n = P(x)$$

De manera la inversa, si podemos construir una sucesión $(u_n^*)_{n=1}^{\infty} \subset X^*$ tal que $u_n^*(x_m) = \delta_{nm}$ y la serie $\sum_{n=1}^{\infty} u_n^*(x) x_n$ converge $\forall x \in X$, entonces el subespacio $[x_n]$ está complementado por la proyección $X \to [x_n], x \mapsto \sum_{n=1}^{\infty} u_n^*(x) x_n$.

3.1.21 Definición. Sean X e Y dos espacios de Banach. Decimos que dos sucesiones $(x_n)_{n=1}^{\infty} \subset X$ e $(y_n)_{n=1}^{\infty} \subset Y$ son congruentes con respecto a (X,Y) si existe un operador $T: X \to Y$ tal que $T(x_n) = y_n$ para todo $n \in \mathbb{N}$. Cuando (x_n) e (y_n) satisfacen esta condición en el caso particular de X = Y, simplemente diremos que son congruentes.

Supongamos que las sucesiones $(x_n)_{n=1}^{\infty} \subset X$ e $(y_n)_{n=1}^{\infty} \subset Y$ son congruentes con respecto a (X,Y). El operador T de X a Y que existe por la definición previa preserva todas las propiedades isomórficas de $(x_n)_{n=1}^{\infty}$. Por ejemplo, si $(x_n)_{n=1}^{\infty}$ es una base de X, entonces $(y_n)_{n=1}^{\infty}$ es una base de Y; si K_b es la constante básica de $(x_n)_{n=1}^{\infty}$, entonces la constante básica de $(y_n)_{n=1}^{\infty}$ es $K_b \|T\| \|T^{-1}\|$.

El siguiente resultado de estabilidad data de 1940. Más o menos, dice que si $(x_n)_{n=1}^{\infty}$ es una sucesión básica en un espacio de Banach X e $(y_n)_{n=1}^{\infty}$ es otra sucesión en X tal que $(\|x_n - y_n\|)_{n=1}^{\infty}$ converge suficientemente rápido a 0, entonces $(y_n)_{n=1}^{\infty}$ y $(x_n)_{n=1}^{\infty}$ son congruentes.

3.1.22 Teorema. (Principio de las pequeñas perturbaciones). Sea $(x_n)_{n=1}^{\infty}$ una base en un espacio de Banach X con constante básica K_b . Si $(y_n)_{n=1}^{\infty}$ es una sucesión en X tal que

$$2K_b \sum_{n=1}^{\infty} \frac{\|x_n - y_n\|}{\|x_n\|} = \theta < 1,$$

entonces $(x_n)_{n=1}^{\infty}$ e $(y_n)_{n=1}^{\infty}$ son congruentes. En particular:

- (I) $(y_n)_{n=1}^{\infty}$ es una base con constante básica como mucho $K_b(1+\theta)(1-\theta)^{-1}$.
- (II) Si $(x_n)_{n=1}^{\infty}$ es una base, también lo es $(y_n)_{n=1}^{\infty}$
- (III) Si $[x_n]$ está complementado en X, también lo está $[y_n]$.

Demostración. Para $n \geq 2$ y $x \in [x_n]$ tenemos

$$x_n^*(x)x_n = \sum_{k=1}^n x_k^*(x)x_k - \sum_{k=1}^{n-1} x_k^*(x)x_k,$$

donde $(x_n^*)_{n=1}^{\infty} \subset [x_n]^*$ son los funcionales biortogonales de $(x_n)_{n=1}^{\infty}$. Entonces

$$||x_n^*(x)x_n|| \le 2K_b ||x||,$$

y entonces

$$||x_n^*|| \, ||x_n|| \le 2K_b.$$

Para n=1 es claro que $\|x_1^*(x)\| \|x_1\| \leq K_b$. Estas desigualdades se mantienen si reemplazamos x_n^* por su extensión Hahn-Banach \hat{x}_n^* de X.

Para cada $x \in X$ ponemos

$$T(x) = x + \sum_{n=1}^{\infty} \hat{x}_n^*(x)(y_n - x_n).$$

Entonces T es un operador acotado de X en X con $T(x_n) = y_n$ y con norma

$$\|T\| \le 1 + \sum_{n=1}^{\infty} \|\hat{x}_n^*\| \|y_n - x_n\| \le 1 + 2K_b \sum_{n=1}^{\infty} \frac{\|y_n - x_n\|}{\|x_n\|} = 1 + \theta.$$

Más aún,

$$\|T - I_X\| \le \sum_{n=1}^{\infty} \|\hat{x}_n^*\| \|y_n - x_n\| = \theta < 1,$$

lo cual implica que T es invertible y $\|T^{-1}\| \le (1-\theta)^{-1}$.

3.2. Tipos especiales de bases

Saber si un espacio de Banach separable tiene una base e identificar una que permita calcular fácilmente la norma de sus elementos es importante. Sin embargo, este conocimiento pasa a ser muy limitado si estamos interesados en usar las bases como una herramienta para profundizar en la geometría del espacio. En este apartado miraremos de una forma más cuidadosa los tipos espaciales de bases. En particular, consideraremos las nociones de bases shrinking, acotadamente completas, incondicionales y simétricas.

3.2.1. Bases incondicionales

Las bases incondicionales son muy útiles y son las más extensamente estudiadas debido a las buenas propiedades estructurales de los espacios que abarcan. Las bases incondicionales aparecieron por primera vez en 1948 en el trabajo de Karlin, quien demostró que $\mathcal{C}[0,1]$ no puede tener una base incondicional. Probaremos a lo largo del subapartado este hecho.

3.2.1 Definición. Una base $(u_n)_{n=1}^{\infty}$ de un espacio de Banach X es incondicional si para cada $x \in X$ la serie $\sum_{n=1}^{\infty} u_n^*(x)u_n$ converge incondicionalmente.

Obviamente, $(u_n)_{n=1}^{\infty}$ es una base incondicional de X si y solo si $(u_{\pi(n)})_{n=1}^{\infty}$ es una base de X para toda permutación $\pi: \mathbb{N} \to \mathbb{N}$.

3.2.2 Ejemplo. La base de vectores unitarios estándar $(e_n)_{n=1}^{\infty}$ es una base incondicional de c_0 y ℓ_p para $1 \leq p < \infty$. Un ejemplo de una base que es condicional (i.e., no es incondicional) es la base sumante de c_0 , definida como

$$f_n = e_1 + \dots + e_n, \quad n \in \mathbb{N}.$$

Para ver que $(f_n)_{n=1}^{\infty}$ es una base de c_0 probamos que para cada $\xi = (\xi(n))_{n=1}^{\infty} \in c_0$ tenemos $\xi = \sum_{n=1}^{\infty} f_n^*(\xi) f_n$, donde $f_n^* = e_n^* - e_{n+1}^*$ son los funcionales biortogonales de $(f_n)_{n=1}^{\infty}$. Dado $N \in \mathbb{N}$,

$$\begin{split} \sum_{n=1}^{N} f_n^*(\xi) f_n &= \sum_{n=1}^{N} (e_n^*(\xi) - e_{n+1}^*(\xi)) f_n = \sum_{n=1}^{N} (\xi(n) - \xi(n+1)) f_n \\ &= \sum_{n=1}^{N} \xi(n) f_n - \sum_{n=2}^{N+1} \xi(n) f_{n-1} = \sum_{n=1}^{N} \xi(n) (f_n - f_{n-1}) - \xi(N+1) f_N \\ &= \sum_{n=1}^{N} \xi(n) e_n - \xi(N+1) f_N, \end{split}$$

donde hemos asumido que $f_0 = 0$. Por tanto,

$$\left\| \xi - \sum_{n=1}^{N} f_n^*(\xi) f_n \right\|_{\infty} = \left\| \sum_{N+1}^{\infty} \xi(n) e_n + \xi(N+1) f_N \right\|_{\infty}$$

$$\leq \left\| \sum_{N+1}^{\infty} \xi(n) e_n \right\|_{\infty} + |\xi(N+1)| \|f_N\|_{\infty} \xrightarrow{N \to \infty} 0,$$

y $(f_n)_{n=1}^{\infty}$ es una base.

Ahora identificaremos el conjunto S de coeficientes $(\alpha_n)_{n=1}^{\infty}$ tales que las series $\sum_{n=1}^{\infty} \alpha_n f_n$ convergen. De hecho, tenemos que $(\alpha_n)_{n=1}^{\infty} \in S$ si y solo si existen $\xi = (\xi(n))_{n=1}^{\infty} \in c_0$ tal que $\alpha_n = \xi(n) - \xi(n+1)$ para todo n. Entonces, claramente, a menos que las series $\sum_{n=1}^{\infty} \alpha_n$ converjan absolutamente, la convergencia de $\sum_{n=1}^{\infty} \alpha_n f_n$ en c_0 no es equivalente a la convergencia de $\sum_{n=1}^{\infty} \varepsilon_n \alpha_n f_n$ para todas las elecciones de signos $(\varepsilon_n)_{n=1}^{\infty}$. Por lo tanto $(f_n)_{n=1}^{\infty}$ no puede ser incondicional.

3.2.3 Lema. Dada una serie $\sum_{n=1}^{\infty} x_n$ en un espacio de Banach X, los siguientes enunciados son equivalentes:

- (a) $\sum_{n=1}^{\infty} x_n$ es incondicionalmente convergente (i.e., $\sum_{n=1}^{\infty} x_{\pi(n)}$ converge para toda permutación π de \mathbb{N}).
- (b) La serie $\sum_{n=1}^{\infty} x_{n_k}$ converge para toda sucesión creciente $(n_k)_{k=1}^{\infty}$.
- (c) La serie $\sum_{n=1}^{\infty} \varepsilon_n x_n$ converge para cualquier elección de signos $(\varepsilon)_{n=1}^{\infty}$.
- (d) Para cada $\varepsilon > 0$ existe n tal que si F es cualquier subconjunto finito de $\{n+1, n+2, ...\}$, entonces

$$\left\| \sum_{j \in F} x_j \right\| < \varepsilon.$$

Demostración. (a) \Rightarrow (d) Si (d) no es cierto entonces existe $\varepsilon > 0$ tal que para cada n podemos encontrar un subconjunto finito F_n de $\{n+1, n+2, ...\}$ con

$$\left\| \sum_{j \in F_n} x_j \right\| \ge \varepsilon.$$

Vamos a construir una permutación π de $\mathbb N$ tal que $\sum_{n=1}^{\infty} x_{\pi(n)}$ diverja.

En primer lugar tomamos $n_1 = 1$ y sea $A_1 = F_{n_1}$. Después cogemos $n_2 = \max A_1$ y sea $B_1 = \{n_1 + 1, ..., n_2\} \setminus A_1$. Repetimos el proceso y tomamos $A_2 = F_{n_2}$, $n_3 = \max A_2$ y $B_2 = \{n_2 + 1, ..., n_3\} \setminus A_2$. Iterando, construimos una sucesión $(n_k)_{k=1}^{\infty}$ y una partición $\{n_k + 1, ..., n_{k+1}\} = A_k \cup B_k$. Definimos π tal que π permute los elementos de $\{n_k + 1, ..., n_{k+1}\}$ de manera que A_k preceda a B_k . Entonces la serie $\sum_{n=1}^{\infty} x_{\pi(n)}$ es divergente porque no es de Cauchy.

(b) \Rightarrow (d) Supongamos que (d) no es cierto. Entonces existen $\varepsilon > 0$ y F_n un subconjunto finito de $\mathbb N$ tal que:

$$M_n = \max\{F_n : n \in \mathbb{N}\} < m_{n+1} = \min\{F_{n+1} : n \in \mathbb{N}\},\$$

y $\left\|\sum_{j\in F_n} x_j\right\| \ge \varepsilon$ para todo $n\in\mathbb{N}$. Luego $F=\bigcup_{n=1}^{\infty} F_n$ es una sucesión de enteros para los cuales $\sum_{n\in F} x_n$ no converge.

- $(d) \Rightarrow (a)$ y $(d) \Rightarrow (b)$ Por ser (d) cierto las series de (a) y (b) son de Cauchy y por ser X un espacio de Banach toda sucesión de Cauchy converge.
- (a) \Leftrightarrow (c) Toda serie de números reales es incondicionalmente convergente si y solo si es absolutamente convergente. Como $\sum_{n=1}^{\infty} \|\varepsilon_n x_n\| = \sum_{n=1}^{\infty} \|x_n\|$ hemos acabado.
- **3.2.4 Definición.** Una serie $\sum_{n=1}^{\infty} x_n$ en un espacio de Banach X es débilmente incondicionalmente de Cauchy (abreviadamente WUC) o débilmente incondicionalmente convergente si $\sum_{n=1}^{\infty} |x^*(x_n)| < \infty$ para todo $x^* \in X^*$.
- **3.2.5 Proposición.** Supongamos que la serie $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente a algún x en un espacio de Banach X. Entonces $\sum_{n=1}^{\infty} x_n$ es WUC.

Demostración. Dado $x^* \in X^*$, la serie de escalares $\sum_{n=1}^{\infty} x^*(x_{\pi(n)})$ converge para cada permutación π . El teorema clásico de Riemann nos dice que para sucesiones de escalares la serie $\sum_{n=1}^{\infty} a_n$ converge incondicionalmente si y solo si converge absolutamente, i.e., $\sum_{n=1}^{\infty} |a_n| < \infty$. Así tenemos $\sum_{n=1}^{\infty} |x^*(x_n)| < \infty$.

3.2.6 Ejemplo. La serie $\sum_{n=1}^{\infty} e_n$ en c_0 , donde $(e_n)_{n=1}^{\infty}$ es la base canónica del espacio, es WUC.

En la Proposición 3.2.8 probaremos que las series WUC están en correspondencia natural con los operadores acotados de c_0 . Veamos primero un lema.

3.2.7 Lema. Sea $\sum_{n=1}^{\infty} x_n$ una serie formal en un espacio de Banach X. La serie $\sum_{n=1}^{\infty} x_n$ es WUC si y solo si existe un C > 0 tal que para toda $(\xi)_{n=1}^{\infty} \in c_{00}$, tenemos

$$\left\| \sum_{n=1}^{\infty} \xi(n) x_n \right\| \le C \max |\xi(n)|.$$

Demostración. Sea

$$S = \left\{ \sum_{n=1}^{\infty} \xi(n) x_n \in X : \ \xi = (\xi(n)) \in c_{00}, \ \|\xi\|_{\infty} \le 1 \right\}.$$

La propiedad WUC implica que S es débilmente acotado. Entonces, está acotado para la norma por el principio de acotación uniforme.

Probamos ahora la implicación hacia la izquierda. Dado $x^* \in X^*$, sea $\varepsilon_n = \operatorname{sgn} x^*(x_n)$ que está en c_{00} . Entonces para cada N natural tenemos

$$\sum_{n=1}^{N} |x^*(x_n)| = \left| x^* \left(\sum_{n=1}^{N} \varepsilon_n x_n \right) \right| \le C \|x^*\|,$$

y por tanto la serie $\sum_{n=1}^{N} |x^*(x_n)|$ converge.

3.2.8 Proposición. Sea $\sum_{n=1}^{\infty} x_n$ una serie en un espacio de Banach X. Entonces $\sum_{n=1}^{\infty} x_n$ es WUC si y solo si existe un operador acotado $T: c_0 \to X$ con $Te_n = x_n$.

Demostración. Si $\sum_{n=1}^{\infty} x_n$ es WUC, entonces el operador T : $c_{00} \to X$ definido por $T \xi = \sum_{n=1}^{\infty} \xi(n) x_n$ está acotado para la norma de c_0 por el Lema 3.2.7. Por densidad, T se extiende a un operador acotado T : $c_0 \to X$.

Para la otra implicación sea T : $c_0 \to X$ un operador acotado con T $e_n = x_n$ para todo n. Para cada $x^* \in X^*$ tenemos

$$\sum_{n=1}^{\infty} |x^*(x_n)| = \sum_{n=1}^{\infty} |x^*(\mathrm{Te_n})| = \sum_{n=1}^{\infty} |\mathrm{T}^*(x^*)(e_n)|,$$

el cual es finito, ya que $\sum_{n=1}^{\infty} e_n$ es WUC.

3.2.9 Proposición. Sea $\sum_{n=1}^{\infty} x_n$ una serie WUC en un espacio de Banach X. Entonces $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente en X si y solo si el operador $T: c_0 \to X$ tal que $Te_n = x_n$ es compacto.

Demostración. Supongamos que $\sum_{n=1}^{\infty} x_n$ es incondicionalmente convergente. Vamos a ver que $\lim_{n\to\infty} \|T - TS_n\| = 0$, donde $(S_n)_{n=1}^{\infty}$ son las proyecciones de las sumas parciales asociadas a la base canónica $(e_n)_{n=1}^{\infty}$ de c_0 . De este modo, por ser el límite uniforme de operadores de rango finito, T será compacto.

Dado $\varepsilon > 0$ usamos el Lema 3.2.3 para encontrar $n = n(\varepsilon)$ tal que si F es un subconjunto finito de $\{n+1, n+2, ...\}$, entonces $\left\|\sum_{j \in F} x_j\right\| \le \varepsilon/2$. Para todo $x^* \in X^*$ con $\|x^*\| \le 1$ tenemos

$$\sum_{\{j \in F: x^*(x_j) \ge 0\}} x^*(x_j) \le \frac{\varepsilon}{2},$$

y por tanto

$$\sum_{j \in F} |x^*(x_j)| \le \varepsilon.$$

Por lo tanto si $\xi \in c_{00}$ con $\|\xi\| \le 1$, entonces $|x^*(T-TS_m)\xi| \le \varepsilon$ para $m \ge n$ y $x^* \in X^*$. Por densidad concluimos que $\|T-TS_m\| \le \varepsilon$.

Para la otra implicación asumamos que T es compacto. Consideremos

$$T^{**}: c_0^{**} = \ell_\infty \to X \subset X^{**}.$$

La restricción de T^{**} a $B_{\ell_{\infty}}$ es débil* continua para la norma, porque en la norma de un conjunto compacto, la topología débil* coincide con la topología de la norma. Como $\sum_{n=1}^{\infty} e_{\pi(n)}$ converge débil* en ℓ_{∞} para cada permutación π , $\sum_{n=1}^{\infty} x_n$ también converge incondicionalmente en X.

El razonamiento anterior también implica la siguiente propiedad de estabilidad de series incondicionalmente convergentes con respecto a la multiplicación por sucesiones acotadas.

3.2.10 Proposición. Una serie $\sum_{n=1}^{\infty} x_n$ en un espacio de Banach X es incondicionalmente convergente si y solo si $\sum_{n=1}^{\infty} t_n x_n$ converge (incondicionalmente) para toda $(t_n)_{n=1}^{\infty} \in \ell_{\infty}$.

Demostración. La implicación trivial es hacia la izquierda. Escogemos como $(t_n)_{n=1}^{\infty}$ la sucesión constante 1 que está en ℓ_{∞} . Obtenemos que $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente.

La implicación restante se razona de la siguiente forma: si $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente entonces por la Proposición 3.2.5 es WUC y por el Lema 3.2.7 existe C > 0

tal que para toda $(\xi(n))_{n=1}^{\infty} \in c_{00}$ se cumple

$$\left\| \sum_{n=1}^{\infty} \xi(n) x_n \right\| \le C \max_{n} |\xi(n)|.$$

Fijamos $t=(t_n)_{n=1}^{\infty}\in\ell_{\infty}$ y probamos que $\sum_{n=1}^{\infty}t_nx_n$ converge incondicionalmente. Para ello observamos que

$$\left\| \sum_{n=1}^{\infty} \xi(n) t_n x_n \right\| \le C \|t\|_{\infty} \max_{n} |\xi(n)|,$$

luego el Lema 3.2.7 nos dice que $\sum_{n=1}^{\infty} t_n x_n$ es WUC.

Ahora, como $\sum_{n=1}^{\infty} x_n$ converge incondicionalmente, la Proposición 3.2.9 implica que el operador $T: c_0 \to X$ dado por $Te_n = x_n$ es compacto. Como $\sum_{n=1}^{\infty} t_n x_n$ es WUC el operador $S: c_0 \to X$ dado por $Se_n = t_n x_n$ es continuo.

Si definimos el operador $J \in L(c_0)$ por $J(e_n) = t_n e_n$ para todo $n \in \mathbb{N}$, tenemos que $S(e_n) = t_n T(e_n) = T(t_n e_n) = T(J(e_n))$ para todo $n \in \mathbb{N}$. Luego $S = T \circ J$ y como T es compacto, S también lo es. Finalmente, la Proposición 3.2.9 nos dice que la serie $\sum_{n=1}^{\infty} t_n x_n$ es incondicionalmente convergente en X.

3.2.11 Proposición. Una base $(u_n)_{n=1}^{\infty}$ de un espacio de Banach X es incondicional si y solo si existe una constante $K \geq 1$ tal que para todo $N \in \mathbb{N}$,

$$\left\| \sum_{n=1}^{N} a_n u_n \right\| \le K \left\| \sum_{n=1}^{N} b_n u_n \right\| \tag{3.5}$$

siempre que $a_1,...,a_N,b_1,...,b_N$ sean escalares satisfaciendo $|a_n| \leq |b_n|$ para n = 1,...,N.

Demostración. Asumimos que $(u_n)_{n=1}^{\infty}$ es incondicional. Si $\sum_{n=1}^{N} a_n u_n$ converge, entonces también lo hace $\sum_{n=1}^{N} t_n a_n u_n$ para todo $(t_n)_{n=1}^{\infty} \in \ell_{\infty}$ por la Proposición 3.2.10. Por el teorema de Banach-Steinhaus, la aplicación lineal $T_{(t_n)}: X \to X$ dada por $\sum_{n=1}^{\infty} a_n u_n \mapsto \sum_{n=1}^{\infty} t_n a_n u_n$ es continua. Ahora el principio de acotación uniforme nos da K de manera que se da la desigualdad.

Demostramos ahora la implicación inversa. Sea $\sum_{n=1}^{\infty} a_n u_n$ una serie convergente en X. Vamos a probar que las subseries $\sum_{k=1}^{\infty} a_{n_k} u_{n_k}$ son convergentes para cada sucesión creciente de enteros $(n_k)_{k=1}^{\infty}$ y apelamos al Lema 3.2.3 para deducir que es incondicionalmente convergente. Dado $\varepsilon > 0$; existe $N = N(\varepsilon) \in \mathbb{N}$ tal que si $m_2 > m_1 \ge N$, entonces

$$\left\| \sum_{n=m_1+1}^{m_2} a_n u_n \right\| < \frac{\varepsilon}{K}.$$

Por hipótesis, si $N \leq n_k < ... < n_{k+l}$, tenemos

$$\left\| \sum_{j=k+1}^{k+l} a_{n_j} u_{n_j} \right\| \le K \left\| \sum_{j=n_k+1}^{n_k+l} a_j u_j \right\| < \varepsilon,$$

y por tanto $\sum_{k=1}^{\infty} a_{n_k} u_{n_k}$ es de Cauchy.

3.2.12 Definición. Sea $(u_n)_{n=1}^{\infty}$ una base incondicional de un espacio de Banach X. La constante básica incondicional K_u de $(u_n)_{n=1}^{\infty}$ es la menor constante K tal que la desigualdad 3.5 es cierta. Entonces decimos que $(u_n)_{n=1}^{\infty}$ es K-incondicional siempre que $K \geq K_u$.

Supongamos que $(u_n)_{n=1}^{\infty}$ es una base incondicional para un espacio de Banach X. Para cada sucesión de escalares $(\alpha_n)_{n=1}^{\infty}$ con $|\alpha_n|=1$, sea $T_{(\alpha_n)}:X\to X$ el isomorfismo definido por $T_{(\alpha_n)}(\sum_{n=1}^N a_n u_n)=\sum_{n=1}^N \alpha_n a_n u_n$. Entonces

$$K_u = \sup \{ \| \mathbf{T}_{(\alpha_n)} \| : (\alpha_n) \text{ escalares}, |\alpha_n| = 1 \text{ para todo } n \}.$$

Sea $(u_n)_{n=1}^{\infty}$ una base incondicional de X. Para cada $A \subseteq \mathbb{N}$ existe una proyección lineal P_A de X sobre $[u_k : k \in A]$ definida para cada $x = \sum_{k=1}^{\infty} u_k^*(x) u_k$ en X por

$$P_A(x) = \sum_{k \in A} u_k^*(x) u_k.$$

Los miembros del conjunto $\{P_A : A \subseteq \mathbb{N}\}$ son las proyecciones naturales asociadas a la base incondicional $(u_n)_{n=1}^{\infty}$.

- **3.2.13 Proposición.** Sea $(u_n)_{n=1}^{\infty}$ una base de un espacio de Banach X. Los siguientes enunciados son equivalentes:
 - (I) La base $(u_n)_{n=1}^{\infty}$ es incondicional.
 - (II) La aplicación P_A está bien definida para cada $A \subseteq \mathbb{N}$.
 - (III) La aplicación P_A está bien definida para cada $A \subseteq \mathbb{N}$ y $\sup_A ||P_A|| < \infty$.
 - (IV) $\sup \{ \| P_F(x) \| : F \subseteq \mathbb{N}, F \text{ finito} \} < \infty.$
 - (V) La aplicación P_B está bien definida para cada subconjunto cofinito B de \mathbb{N} y

$$\sup \{ \| P_B(x) \| : B \text{ conjunto cofinito de } \mathbb{N} \} < \infty$$

Además, si alguno de los enunciados de arriba es cierto entonces los supremos de III, IV y coinciden.

Demostración. La implicación (I) \Rightarrow (II) es una consecuencia de la Proposición 3.2.11.

- (II) \Rightarrow (III) se deduce rápidamente del principio de acotación uniforme.
- $(III) \Rightarrow (IV) y (III) \Rightarrow (V) \text{ son triviales.}$
- (IV) \Rightarrow (III) Sea A cualquier subconjunto (finito o infinito) de N. Para cada $x \in X$ con

soporte finito en $(u_n)_{n=1}^{\infty}$ sea S = sop(x). Como $P_A(x) = P_{A \cap S}(x)$,

$$\|P_A(x)\| = \|P_{A \cap S}(x)\| \le \|P_{A \cap S}\| \|x\| \le \sup\{\|P_F\| : F \text{ finito}\} \|x\|.$$

Por densidad P_A se extiende a un operador acotado de X en X.

Para cerrar el círculo de equivalencias probaremos (v) \Rightarrow (III). Sea A cualquier subconjunto de \mathbb{N} . Tomamos $x \in X$ con soporte finito en $(u_n)_{n=1}^{\infty}$ y sea S = sop(x). Como $P_A(x) = P_{A \cup S^c}(x)$,

$$\|P_A(x)\| = \|P_{A \cup S^c}\| \|x\| \le \sup\{\|P_B\| : B \subseteq \mathbb{N} \text{ cofinito}\} \|x\|.$$

3.2.14 Definición. Si $(u_n)_{n=1}^{\infty}$ es una base incondicional de X, llamamos al número

$$K_{su} = \sup\{\|P_A\| : A \subseteq \mathbb{N}\}$$

la constante de supresión-incondicional de la base.

Observemos que en general, tenemos

$$1 \le K_{su} \le K_u \le 2K_{su}.$$

3.2.2. Bases simétricas

A continuación estudiamos un tipo especial de bases que incluye a las bases canónicas de los espacios ℓ_p y c_0 .

3.2.15 Definición. Una base $(e_n)_{n=1}^{\infty}$ de un espacio de Banach X es simétrica si $(e_n)_{n=1}^{\infty}$ es equivalente a $(e_{\pi(n)})_{n=1}^{\infty}$ para toda permutación π de \mathbb{N} .

Las bases simétricas son en particular incondicionales. También tienen la propiedad de ser equivalentes a todas sus subsucesiones (infinitas), como dice el próximo lema.

3.2.16 Lema. Supongamos $(e_n)_{n=1}^{\infty}$ es una base simétrica de un espacio de Banach X. Entonces existe una constante D tal que

$$D^{-1} \left\| \sum_{i=1}^{N} a_i e_{j_i} \right\| \le \left\| \sum_{i=1}^{N} a_i e_{k_i} \right\| \le D \left\| \sum_{i=1}^{N} a_i e_{j_i} \right\|$$

para cada $N \in \mathbb{N}$, cada elección de escalares $(a_i)_{i=1}^N$ y cualesquiera dos familias de números naturales $\{j_1,...,j_N\}$ y $\{k_1,...,k_N\}$.

Demostración. Es suficiente probar el lema para la sucesión básica $(e_n)_{n\geq n_0}$ para algún n_0 . Si es falso, entonces para cada n_0 podemos construir una sucesión estrictamente creciente

de números naturales $(p_n)_{n=0}^{\infty}$ con $p_0 = 0$, números naturales $m_n \leq p_n - p_{n-1}$, escalares $(a_{n,i})_{n=1,i=1}^{\infty,m_n}$, y familias $\{j_{n,1},...,j_{n,m_n}\}$ y $\{k_{n,1},...,k_{n,m_n}\}$ tales que para todo n=1,2,... tenemos

$$p_{n-1} + 1 \le j_{n,i}, k_{n,i} \le p_n, \quad 1 \le i \le m_n,$$

$$\left\| \sum_{i=1}^{m_n} a_{n,i} e_{j_{n,i}} \right\| < 2^{-n},$$

у

$$\left\| \sum_{i=1}^{m_n} a_{n,i} e_{k_{n,i}} \right\| > 2^n.$$

Ahora podemos hacer una permutación π de \mathbb{N} tal que $\pi[p_{n-1}+1,p_n]=[p_{n-1}+1,p_n]$ y $\pi(j_{n,i})=k_{n,i}$, y esto contradice la equivalencia de $(e_n)_{n=1}^{\infty}$ y $(e_{\pi(n)})_{n=1}^{\infty}$.

3.2.17 Nota. El recíproco del lema no tiene por qué ser cierto. De hecho, la base sumante de c_0 es equivalente a todas sus subsucesiones y no es ni siquiera incondicional.

3.2.18 Definición. Una base $(e_n)_{n=1}^{\infty}$ de un espacio de Banach X es subsimétrica si es incondicional y para cada sucesión creciente de enteros $\{n_i\}_{i=1}^{\infty}$, la subbase $(e_{n_i})_{i=1}^{\infty}$ es equivalente a $(e_n)_{n=1}^{\infty}$.

El Lema 3.2.16 dice que las bases simétricas son subsimétricas. Sin embargo, estos dos conceptos no coinciden tal y como muestra el siguiente ejemplo, dado por Garling [2].

3.2.19 Ejemplo. Una base subsimétrica que no es simétrica.

Sea X el espacio de Banach de todas las sucesiones de escalares $\xi = (\xi_n)_{n=1}^{\infty}$ para las cuales

$$\|\xi\| = \sup \sum_{k=1}^{\infty} \frac{|\xi_{n_k}|}{\sqrt{k}} < \infty,$$

se toma el supremo de todas las sucesiones crecientes de enteros $(n_k)_{k=1}^{\infty}$. X dotado de esta norma es un espacio de Banach cuyos vectores unidad $(e_n)_{n=1}^{\infty}$ forman una base subsimétrica que no es simétrica.

Sea $(e_n)_{n=1}^{\infty}$ una base simétrica de un espacio de Banach X. Para cada permutación π de \mathbb{N} y cada sucesión de signos $\varepsilon = (\varepsilon_n)_{n=1}^{\infty}$, existe un automorfismo

$$T_{\pi,\varepsilon}: X \to X, \quad x = \sum_{n=1}^{\infty} a_n e_n \mapsto T_{\pi,\varepsilon}(x) = \sum_{n=1}^{\infty} \varepsilon_n a_n e_{\pi(n)}.$$

El principio de acotación uniforme nos da un número K tal que

$$\sup_{\pi,\varepsilon} \|\mathbf{T}_{\pi,\varepsilon}\| \le K,$$

i.e., la estimación

$$\left\| \sum_{n=1}^{\infty} \varepsilon_n a_n e_{\pi(n)} \right\| \le K \left\| \sum_{n=1}^{\infty} a_n e_n \right\| \tag{3.6}$$

es válida para todas las elecciones de signos (ε_n) y todas las permutaciones π .

La constante más pequeña $1 \leq K$ en 3.6 es llamada la constante simétrica de $(e_n)_{n=1}^{\infty}$ y se denotará por K_s . Entonces diremos que $(e_n)_{n=1}^{\infty}$ es K-simétrica siempre que $K_s \leq K$.

Para cada $x = \sum_{n=1}^{\infty} a_n e_n \in X$, pongamos

$$|||x||| = \sup \left\| \sum_{n=1}^{\infty} \varepsilon_n a_n e_{\pi(n)} \right\|, \tag{3.7}$$

el supremo tomado sobre todas las opciones de escalares (ε_n) de signos y todas las permutaciones de números naturales. La ecuación 3.7 define una nueva norma en X equivalente a $\|\cdot\|$, ya que $\|x\| \le \|\|x\|\| \le K \|x\|$ para todo $x \in X$. Con respecto a esta norma, $(e_n)_{n=1}^{\infty}$ es una base 1-simétrica de X.

3.2.3. Bases y dualidad: bases acotadamente completas y bases shrinking

Supongamos que $(e_n)_{n=1}^{\infty}$ es una base de un espacio de Banach X y que $(e_n^*)_{n=1}^{\infty}$ es la sucesión de funcionales biortogonales. Uno de los objetivos de este subapartado es establecer condiciones necesarias y suficientes para que $(e_n^*)_{n=1}^{\infty}$ sea una base de X^* . Este no es siempre el caso, ya que es necesario que X^* sea un espacio separable. De hecho, existen espacios de Banach X con una base y con dual separable tal que X^* no tiene la propiedad de aproximación; por lo tanto, X^* no puede tener una base. Sin embargo $(e_n^*)_{n=1}^{\infty}$ es siempre una sucesión básica en X^* .

A continuación introducimos un lema que necesitaremos en varias demostraciones.

3.2.20 Lema. (Vuelta parcial del teorema de Banach-Steinhaus). Sea $(T_n)_{n=1}^{\infty}$ una sucesión de operadores lineales continuos de un espacio de Banach X en un espacio lineal normado Y tal que $\sup_n ||T_n|| < \infty$. Si $T: X \to Y$ es otro operador, entonces el subespacio

$${x \in X : ||T_n(x) - T(x)|| \to 0}$$

es cerrado para la norma en X.

3.2.21 Proposición. Sea $(e_n)_{n=1}^{\infty}$ una base para un espacio de Banach X con constante básica K_b y funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. Entonces $(e_n^*)_{n=1}^{\infty}$ es una base para el subespacio $Z = [e_n^*]$ con constante básica no mayor a K_b . Más especificamente:

- 1. Los funcionales coordenados $(e_n^{**})_{n=1}^{\infty}$ asociados a $(e_n^{*})_{n=1}^{\infty}$ están dados por $e_n^{**} = j(e_n)|_Z$ para cada n, donde j es el embebimiento canónico de X en su dual segundo X^{**} .
- 2. Las proyecciones de las sumas parciales asociadas a la sucesión básica $(e_n^*)_{n=1}^{\infty}$ son las restricciones $(S_N^*|_Z)_{N=1}^{\infty}$ de los operadores adjuntos de las proyecciones de las sumas parciales asociadas a $(e_n)_{n=1}^{\infty}$. Más aún,

$$Z = \left\{ x^* \in X^* : \lim_{N \to \infty} S_N^*(x^*) = x^* \right\}$$

Demostración. Los funcionales $(e_n^{**})_{n=1}^{\infty}$ satisfacen $e_n^{**}(e_k^*)=1$ si n=k y 0 en otro caso. Basta probar que los operadores $T_N:Z\to Z$ definidos por

$$T_N(x^*) = \sum_{k=1}^N e_k^{**}(x^*)e_k^*, \quad x^* \in \mathbb{Z},$$

satisfacen $||T_N|| \le K_b$ y usar la vuelta parcial del teorema de Banach-Steinhaus.

Sea $(S_N^*)_{N=1}^{\infty}$ la sucesión de operadores adjuntos de las proyecciones de las sumas parciales asociadas a $(e_n)_{n=1}^{\infty}$. Para cada $x \in X$ y $x^* \in X^*$:

$$S_N^*(x^*)(x) = x^*(S_N(x)) = \sum_{k=1}^N e_k^*(x)x^*(e_k) = \sum_{k=1}^N e_k^*(x)j(e_k)(x^*).$$

Por tanto $S_N^* = \sum_{k=1}^N j(e_k) e_k^*$ y $T_N = S_N^* |_Z$. De este modo:

$$\sup_{N} \|\mathbf{T}_{N}\| \leq \sup_{N} \|\mathbf{S}_{N}^{*}\| = \sup_{N} \|\mathbf{S}_{N}\| = K_{b}.$$

3.2.22 Ejemplo. La identificación natural de ℓ_1^* con ℓ_∞ muestra que $(e_n^*)_{n=1}^\infty$ es una base para el subespacio de ℓ_1^* isométricamente isomorfo a c_0 .

Vamos a introducir una definición que nos será útil en la siguiente proposición.

3.2.23 Definición. Supongamos que X es un espacio normado e Y es un subespacio de X^* . Consideremos una nueva norma en X dada por

$$\|x\|_Y = \sup\{|y^*(x)|: y^* \in Y, \ \|y^*\| = 1\}, \ \ x \in X,$$

Si existe una constante $c \leq 1$ tal que

$$c\left\|x\right\| \leq \left\|x\right\|_{Y} \leq \left\|x\right\|, \quad x \in X,$$

entonces se dice que Y es un subespacio c-normante para X en X^* .

En términos generales, la siguiente proposición dice dice que si $(e_n)_{n=1}^{\infty}$ es una base para un espacio de Banach X, entonces el subespacio $Z = [e_n^*]$ de X^* es razonablemente grande, en el sentido de que es $1/K_b$ -normante para X.

3.2.24 Proposición. Sea $(e_n)_{n=1}^{\infty}$ una base de un espacio de Banach X con constante básica K_b y sea $Z = [e_n^*]$. La norma en X definida por

$$||x||_Z = \sup\{|h(x)| : h \in Z, ||h|| \le 1\}$$

satisface

$$K_b^{-1} \|x\| \le \|x\|_Z \le \|x\|, \quad x \in X.$$

Así:

- (I) El subespacio Z de X^* es $1/K_b$ -normante para X.
- (II) La aplicación $x \to j(x)|_Z$ define un embebimiento isomórfico de X en Z^* . Este embebimiento es isométrico si $(e_n)_{n=1}^{\infty}$ es monótona.

Demostración. Sea $x \in X$. Como $Z \subseteq X^*$,

$$||x||_Z \le \sup\{|x^*(x)| : x^* \in X^*, ||x^*|| \le 1\} = ||x||.$$

Para probar la desigualdad contraria cogemos $x^* \in S_{X^*}$ tal que $x^*(x) = ||x||$. Para cada N,

$$\frac{|(S_N^* x^*)x|}{K_b} \le \frac{|(S_N^* x^*)x|}{\|S_N^* x^*\|} \le \sup\{|h(x)| : h \in Z, \ \|h\| \le 1\} = \|x\|_Z.$$

Dejamos que $N \to \infty$ y usamos que si $||S_N(x) - x|| \to 0$ entonces $|S_N^* x^*(x)| = |x^*(S_N x)| \to ||x||$.

Como consecuencia del embebimiento isomórfico de X en Z^* y la Proposición 3.2.21 obtenemos una propiedad reflexiva interesante para sucesiones básicas.

3.2.25 Corolario. Sea $(e_n)_{n=1}^{\infty}$ una base de un espacio de Banach X. La sucesión básica $(e_n^{**})_{n=1}^{\infty}$ es equivalente a $(e_n)_{n=1}^{\infty}$ (isométricamente equivalente si $(e_n)_{n=1}^{\infty}$ es monótona).

Aunque $(e_n^*)_{n=1}^{\infty}$ puede no ser una base para X^* , uno podría ir más lejos y, basado en la siguiente proposición, decir que $(e_n^*)_{n=1}^{\infty}$ es una base débil* para X^* .

3.2.26 Proposición. Sea $(e_n)_{n=1}^{\infty}$ una base para un espacio de Banach X con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. Entonces para cada $x^* \in X^*$ existe una única sucesión de escalares $(a_n)_{n=1}^{\infty}$ tal que

$$x^* = \sum_{n=1}^{\infty} a_n e_n^*,$$

la serie converge en la topología débil* de X^* . Más precisamente, $x^* = débil^* - \lim_{N \to \infty} \sum_{n=1}^{N} x^*(e_n)e_n^*$.

Demostración. Para cada $x \in X$,

$$|(x^* - S_N^*(x^*))(x)| = |(x^*(x - S_N(x)))| \le ||x^*|| ||x - S_N(x)|| \xrightarrow{N \to \infty} 0.$$

De la Proposición 3.2.21 (1) deducimos que $(e_n^*)_{n=1}^{\infty}$ será una base para X^* (en el sentido habitual) si y solo si $[e_n^*] = X^*$. Nuestro próximo resultado proporciona una comprobación útil para esto, pero primero veamos un caso trivial.

3.2.27 Proposición. Si $(e_n)_{n=1}^{\infty}$ es una base para un espacio de Banach reflexivo X, entonces $(e_n^*)_{n=1}^{\infty}$ es una base para X^* .

Demostración. La Proposición 3.2.26 nos dice que el cierre lineal de $(e_n^*)_{n=1}^{\infty}$ es denso débil* en X^* . Como X es reflexivo, las topologías débil y la débil* de X^* coinciden, por lo que el cierre lineal de $(e_n^*)_{n=1}^{\infty}$ es de hecho denso débilmente en X^* . Una aplicación del teorema de Mazur (expuesto a continuación) asegura que el cierre lineal de $(e_n^*)_{n=1}^{\infty}$ es denso para la norma en X^* , que junto a la Proposición 3.2.21 (1) da que $(e_n^*)_{n=1}^{\infty}$ es una base para X^* .

- **3.2.28 Teorema.** (Teorema de Mazur). Si C es un conjunto convexo en un espacio normado X, entonces la clausura de C en la norma de la topología, \bar{C} , coincide con \bar{C}^w , la clausura de C en la topología débil.
- **3.2.29 Ejemplo.** Supongamos $1 . Si <math>(e_n)_{n=1}^{\infty}$ es una base para ℓ_p [respectivamente, $L_p[0,1]$], entonces $(e_n^*)_{n=1}^{\infty}$ es una base para ℓ_q [respectivamente $L_q[0,1]$], donde $\frac{1}{p} + \frac{1}{q} = 1$.
- **3.2.30 Proposición.** Supongamos que $(e_n)_{n=1}^{\infty}$ es una base para un espacio de Banach X. Los funcionales coordenados $(e_n^*)_{n=1}^{\infty}$ son una base para X^* si y solo si

$$\lim_{N \to \infty} ||x^*||_N = 0 \quad para \ cada \ x^* \in X^*, \tag{3.8}$$

donde $||x^*||_N$ es la norma de x^* restringida al espacio (cola) $[e_n]_{n>N}$, i.e.,

$$||x^*||_N = \sup\{|x^*(y)| : y \in [e_n]_{n>N}, ||y|| \le 1\}.$$

Demostración. Supongamos $(e_n^*)_{n=1}^{\infty}$ es una base para X^* . Cada $x^* \in X^*$ puede descomponerse como $(x^* - \mathbf{S}_N^* x^*) + \mathbf{S}_N^* x^*$ para cada N. Entonces

$$||x^*||_N \le ||(x^* - S_N^* x^*)|_{[e_n]_{n>N}}|| + ||S_N^* x^*|_{[e_n]_{n>N}}|| \le ||x^* - S_N^* x^*|| \xrightarrow{N \to \infty} 0.$$

Asumamos ahora que 3.8 es válido. Sea x^* un elemento de X^* . Como para cada $x \in X$, $(I_X - S_N)(x)$ está en el subespacio $[e_n]_{n>N}$, tenemos que

$$|(x^* - S_N^* x^*)(x)| = |x^* (I_X - S_N)(x)|$$

$$\leq ||x^*|_{[e_n]_{n \geq N+1}} || ||I_X - S_N|| ||x||$$

$$\leq (K_b + 1) ||x^*|_{[e_n]_{n \geq N+1}} || ||x||.$$

Por tanto

$$||x^* - S_n^* x^*|| \le (K_b + 1) ||x^*|_{[e_n]_{n \ge N+1}} || \xrightarrow{N \to \infty} 0.$$

Así $X^* = [e_n^*]$ y hemos acabado.

3.2.31 Definición. Decimos que una base $(e_n)_{n=1}^{\infty}$ que cumpla la propiedad 3.8 es shrin-king.

3.2.32 Ejemplo. La base unitaria de vectores $(e_n)_{n=1}^{\infty}$ de c_0 es shrinking, ya que $c_0^* = \ell_1$ y dado $x^* = (a_n)_{n=1}^{\infty} \in \ell_1$ tenemos

$$||x^*||_N = \sum_{n=N+1}^{\infty} |a_n| \xrightarrow{N \to \infty} 0.$$

En general, solo porque un espacio tenga una base shrinking no significa que toda base para ese espacio sea shrinking también. La base sumante $(f_n)_{n=1}^{\infty}$ de c_0 , por ejemplo, no es shrinking. Para ver esto podemos tomar el funcional coordenado e_1^* correspondiente a el primer vector de la base canónica de c_0 y simplemente observar que $e_1^*(f_n) = 1$ para todo n, por lo que la condición 3.8 no se puede dar.

A continuación damos una caracterización adicional de bases shrinking.

3.2.33 Proposición. Una base $(e_n)_{n=1}^{\infty}$ de un espacio de Banach X es shrinking si y solo si cada sucesión básica por bloques acotada de $(e_n)_{n=1}^{\infty}$ es débilmente nula.

Demostración. Asumimos que $(e_n)_{n=1}^{\infty}$ no es shrinking. Entonces $Z \neq X^*$; por lo tanto existe $x^* \in X^* \setminus [e_n^*]$, $\|x^*\| = 1$, tal que por la Proposición 3.2.26 la serie $\sum_{n=1}^{\infty} x^*(e_n) e_n^*$ converge a x^* en la topología débil* de X^* pero no converge en la topología de la norma de X^* . Usando la condición de Cauchy, podemos encontrar dos sucesiones de naturales positivos $(p_n)_{n=1}^{\infty}$, $(q_n)_{n=1}^{\infty}$ y $\delta > 0$ tal que $p_1 \leq q_1 < p_2 \leq q_2 < p_3 \leq q_3 < \dots$ y $\left\|\sum_{n=p_k}^{q_k} x^*(e_n) e_n^*\right\| > \delta$ para todo $k \in \mathbb{N}$. Así para cada k existe $x_k \in X$, $\|x_k\| = 1$, para el cual $\left\|\sum_{n=p_k}^{q_k} x^*(e_n) e_n^*(x_k)\right\| > \delta$. Ponemos

$$y_k = \sum_{n=p_k}^{q_k} e_n^*(x_k)e_n^*, \quad k = 1, 2, \dots$$

La sucesión $(y_k)_{k=1}^{\infty}$ es una sucesión básica por bloques de $(e_n)_{n=1}^{\infty}$ que no es débilmente nulo, ya que $x^*(y_k) > \delta$ para todo k.

La implicación inversa se deduce inmediatamente de la Proposición 3.2.30.

Una definición compañera a la de bases shrinking que fue dada por James como una herramienta para el estudio de la estructura de los espacios de Banach es la de bases acotadamente completas. Esta propiedad había sido usada por Dunford y Morse en 1936 para garantizar la existencia de derivadas de aplicaciones de Lipschitz en la recta real tomando valores en espacios de Banach.

3.2.34 Definición. Sea X un espacio de Banach. Una base $(e_n)_{n=1}^{\infty}$ de X es una base acotadamente completa si para cualquier sucesión de escalares $(a_n)_{n=1}^{\infty}$ tal que

$$\sup_{N} \left\| \sum_{n=1}^{N} a_n e_n \right\| < \infty,$$

entonces la serie $\sum_{n=1}^{\infty} a_n e_n$ converge.

- **3.2.35 Ejemplo.** (a) La base canónica de ℓ_p para $1 \le p < \infty$ es acotadamente completa.
- (b) La base natural $(e_n)_{n=1}^{\infty}$ de c_0 no es acotadamente completa. En efecto, las series $\sum_{n=1}^{\infty} e_n$ no son convergentes en c_0 a pesar de que

$$\sup_{N} \left\| \sum_{n=1}^{N} e_n \right\|_{\infty} = \sup_{N} \left\| (\underbrace{1, 1, ..., 1}_{N}, 0, 0, ...) \right\|_{\infty} = 1.$$

(c) La base sumante $(f_n)_{n=1}^{\infty}$ de c_0 no es acotadamente completa, ya que

$$\sup_{N} \left\| \sum_{n=1}^{N} (-1)^{n} f_{n} \right\|_{\infty} = 1,$$

pero las series $\sum_{n=1}^{\infty} (-1)^n f_n$ no convergen.

Los dos próximos teoremas mostrarán que las bases acotadamente completas y las bases shrinking están en dualidad. Antes de enunciar estos resultados y probarlos deberíamos enunciar un lema sobre bases acotadamente completas que es de interés y destaca una propiedad que necesitamos.

3.2.36 Lema. Supongamos $(e_n)_{n=1}^{\infty}$ es una base acotadamente completa para un espacio de Banach X con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. Entonces para cada $x^{**} \in X^{**}$ tenemos

$$\lim_{N \to \infty} \sum_{n=1}^{N} x^{**}(e_n^*) e_n \in X.$$

Demostración. Para cada $N \in \mathbb{N}$,

$$\sum_{n=1}^{N} x^{**}(e_n^*)e_n = S_N^{**}(x^{**}),$$

donde S_N^{**} es el dual doble de S_N . Por lo tanto,

$$\left\| \sum_{n=1}^{N} x^{**}(e_n^{**}) e_n \right\| = \|\mathbf{S}_n^{**}(x^{**})\| \le \sup_{N} \|\mathbf{S}_N^{**}\| \|x^{**}\| = K_b \|x^{**}\|.$$

Por ser $(e_n)_{n=1}^{\infty}$ acotadamente completa tenemos $\lim_{N} \sum_{n=1}^{N} x^{**}(e_n^*) e_n \in X$.

Vamos a recordar un teorema que nos será útil más adelante.

- **3.2.37 Teorema.** (Teorema de Banach-Alaoglu). Si X es un espacio lineal normado, entonces el conjunto $B_{X^*} = \{x^* \in X^* : ||x^*|| \le 1\}$ es debil* compacto.
- **3.2.38 Teorema.** Sea $(e_n)_{n=1}^{\infty}$ una base para un espacio de Banach X con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. Son equivalentes:
 - (I) $(e_n)_{n=1}^{\infty}$ es una base acotadamente completa para X.
 - (II) $(e_n^*)_{n=1}^{\infty}$ es una base shrinking para $Z = [e_n^*]$, i.e., la sucesión de sus funcionales biortogonales $(j(e_n)|_Z)_{n=1}^{\infty}$ es una base para Z^* .
- (III) La aplicación $x \mapsto j(x)|_Z$ define un isomorfismo de X en Z^* que es isométrico si $K_b = 1$.

Demostración. $(I) \Rightarrow (III)$ Usando la Proposición 3.2.24 solo necesitamos ver que la aplicación es sobreyectiva. Dado $h^* \in Z^*$, existen $x^{**} \in X^{**}$ tal que $x^{**}|_Z = h^*$. Por el Lema 3.2.36 la serie $\sum_{n=1}^{\infty} x^{**}(e_n^*)e_n$ converge a algún $x \in X$. Ahora $j(x)|_Z = h^*$, ya que para cada $k \in \mathbb{N}$ tenemos

$$j(x)|_{Z}(e_{k}^{*}) = e_{k}^{*}(x) = x^{**}(e_{k}^{*}) = h^{*}(e_{k}^{*}).$$

- $(III) \Rightarrow (II)$ Asumimos que $x \mapsto j(x)|_Z$ es un isomorfismo de X en Z^* . Entonces $(j(e_n)|_Z)_{n=1}^{\infty}$ es una base para Z^* y es también la sucesión de funcionales coordenados para $(e_n^*)_{n=1}^{\infty}$. Esto significa que $(e_n^*)_{n=1}^{\infty}$ es una base shrinking para Z.
 - $(II)\Rightarrow (I)$ Sea $(a_n)_{n=1}^{\infty}$ una sucesión de escalares para los cuales

$$\sup_{N} \left\| \sum_{n=1}^{N} a_n e_n \right\| < \infty.$$

Como $(\sum_{n=1}^{N} a_n j(e_n))_{N=1}^{\infty}$ está acotada en X^{**} , entonces por el teorema de Banach-Alaoglu (3.2.37) existe un punto de acumulación debil* $x^{**} \in X^{**}$ de esa sucesión. Sea $h^* = x^{**}|_Z$.

Como

$$\lim_{N} \sum_{n=1}^{N} a_n j(e_n)(e_k^*) = \lim_{N} \sum_{n=1}^{N} a_n e_k^*(e_n) = a_k,$$

tenemos que $h^*(e_k^*) = x^{**}(e_k^*) = a_k$ para todo k. Usando la hipótesis y la Proposición 3.2.21, obtenemos

$$h^* = \sum_{n=1}^{\infty} e_n^{***}(h^*)e_n^{**} = \sum_{n=1}^{\infty} h^*(e_n^*)e_n^{**} = \sum_{n=1}^{\infty} a_n j(e_n)|_Z.$$

En particular, la serie anterior converge en Z^* . Como por la Proposición 3.2.24, la aplicación $x \mapsto j(x)|_Z$ es un embebimiento isomórfico, la serie $\sum_{n=1}^{\infty} a_n e_n$ converge en X.

3.2.39 Corolario. El espacio c_0 no tiene una base acotadamente completa.

Demostración. El resultado se sigue del Teorema 3.2.38, teniendo en cuenta que c_0 no es isomórfico a un espacio dual.

- **3.2.40 Teorema.** Sea $(e_n)_{n=1}^{\infty}$ una base para un espacio de Banach X con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. Son equivalentes:
 - (I) $(e_n)_{n=1}^{\infty}$ es una base shrinking para X.
 - (II) $(e_n^*)_{n=1}^{\infty}$ es una base acotadamente completa para $Z = [e_n^*]$.
- (III) $Z = X^*$.

Demostración. Simplemente aplicar el Teorema 3.2.38 a la base $(e_n^*)_{n=1}^{\infty}$ de Z teniendo en cuenta el Corolario 3.2.25.

En 1948, Karlin [3] planteó la siguiente pregunta: Si el dual X^* de un espacio de Banach X tiene un base, ¿tiene X un base? Johnson, Rosenthal, y Zippin dieron en 1971 una respuesta afirmativa a esta pregunta [4], resolviendo uno de los problemas fundamentales en la teoría de bases. Ellos mostraron que de hecho X tiene una base shrinking. De su resultado se sigue que si X tiene una base y X^* es separable y satisface la propiedad de aproximación, entonces X^* tiene un base. Una pregunta relacionada pero más fácil es esta: Si X tiene una base $(e_n)_{n=1}^{\infty}$, ¿qué propiedad de $(e_n)_{n=1}^{\infty}$ nos dice si X es el dual de otro espacio de Banach con una base? El Teorema 3.2.38 nos da la respuesta: si $(e_n)_{n=1}^{\infty}$ es una base acotadamente completa, entonces X es isomorfo al espacio dual $Z^* = [e_n^*]^*$.

Puede que no sepamos mucho más de X^* más allá de que tiene una base acotadamente completa si todo lo que sabemos de X es que tiene un base shrinking. Sin embargo, es posible dar una descripción muy útil de X^{**} como el espacio de todas las sucesiones de escalares $(a_n)_{n=1}^{\infty}$ para las cuales $\sup_N \sum_{n=1}^N a_n e_n < \infty$. El propósito original del siguiente

teorema era sentar las bases del espacio de James \mathcal{J} . Su prueba usa una combinación de ideas esencialmente contenidas en la demostración del Teorema 3.2.38 por lo que la vamos a omitir.

3.2.41 Teorema. Supongamos que $(e_n)_{n=1}^{\infty}$ es una base shrinking para un espacio de Banach X con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$. La aplicación

$$x^{**} \to (x^{**}(e_n^*))_{n=1}^{\infty}$$

define un isomorfismo de X^{**} con el espacio de todas las sucesiones de escalares $(a_n)_{n=1}^{\infty}$ tal que $\sup_N \left\| \sum_{n=1}^N a_n e_n \right\| < \infty$. En particular,

$$||x^{**}|| \approx \sup_{N} \left\| \sum_{n=1}^{N} x^{**}(e_n^*)e_n \right\|,$$

 $y \operatorname{si} (e_n)_{n=1}^{\infty}$ es monótona, entonces

$$||x^{**}|| \approx \lim_{N \to \infty} \left\| \sum_{n=1}^{N} x^{**}(e_n^*) e_n \right\|.$$

La imagen canónica de X dentro de X^{**} corresponde a todas las sucesiones de escalares $(a_n)_{n=1}^{\infty}$ para las cuales $(\sum_{n=1}^{N} a_n e_n)_{n=1}^{\infty}$ no sólo está acotada sino que converge en norma.

Ahora vamos a exponer el resultado principal de este subapartado que se debe a James [5].

3.2.42 Teorema. Sea X un espacio de Banach. Si X tiene una base $(e_n)_{n=1}^{\infty}$ entonces X es reflexivo si y solo si $(e_n)_{n=1}^{\infty}$ es una base acotadamente completa y shrinking.

Demostración. Asumimos que X es reflexivo y que $(e_n)_{n=1}^{\infty}$ es una base para X. Entonces $X^* = Z$. Si no, usando el teorema de Hahn-Banach, uno puede encontrar $0 \neq x^{**} \in X^{**}$ tal que $x^{**}(h) = 0$ para todo $h \in Z$. Por reflexividad existe $0 \neq x = \sum_{n=1}^{\infty} e_n^*(x)e_n \in X$ tal que $x = x^{**}$. En particular, tendríamos $0 = x^{**}(e_n^*) = e_n^*(x)$ para todo n, lo cual implicaría x = 0. Así $(e_n)_{n=1}^{\infty}$ es shrinking. Ahora consideremos $(e_n^*)_{n=1}^{\infty}$ como una base para el espacio de Banach reflexivo $X^* = Z$. Lo anterior muestra que $(e_n^*)_{n=1}^{\infty}$ es shrinking; por tanto por el Teorema 3.2.38, $(e_n)_{n=1}^{\infty}$ es acotadamente completa.

Este teorema da un criterio para la reflexividad que es muy útil, particularmente en la construcción de ejemplos. El hecho de que la base canónica de ℓ_1 no sea shrinking y que la base canónica de c_0 no sea acotadamente completa se explican ahora por la no reflexividad de estos espacios.

Durante los 1960s estaba de moda estudiar la estructura de los espacios de Banach entendiendo las propiedades de sus bases. Por supuesto, este hecho se vio algo debilitado

cuando Enflo demostró que no todos los espacios de Banach separables tienen una base [6]. Uno de los puntos álgidos de esta teoría fue el teorema de Zippin [7] el cual dice que un espacio de Banach con una base es reflexivo si y solo si toda base está acotadamente completa o si y solo si toda base es shrinking. Así, todo espacio de Banach no reflexivo que tiene una base debe de tener al menos una base que no sea acotadamente completa y al menos una base que no sea shrinking.

3.3. Los espacios L_p para $1 \le p < \infty$

En este capitulo presentaremos la base de Haar en $L_p[0,1]$ $(1 \le p < \infty)$ y estudiaremos algunas de sus propiedades. Continuaremos el estudio de las base de Haar en el Capítulo 3.4.

3.3.1. La base de Haar en $L_p[0,1]$ $(1 \le p < \infty)$

El sistema de Haar es una sucesión de funciones $(h_n)_{n=1}^{\infty}$ definidas en [0,1] por $h_1=1$ y para $n=2^k+s$, donde k=0,1,2,...,y $s=1,2,...,2^k$,

$$h_n(t) = \chi_{\left[\frac{2s-2}{2^{k+1}}, \frac{2s-1}{2^{k+1}}\right)}(t) - \chi_{\left[\frac{2s-1}{2^{k+1}}, \frac{2s}{2^{k+1}}\right)}(t) = \begin{cases} 1 & \text{si } \frac{2s-2}{2^{k+1}} \le t < \frac{2s-1}{2^{k+1}} \\ -1 & \text{si } \frac{2s-1}{2^{k+1}} \le t < \frac{2s}{2^{k+1}} \\ 0 & \text{en otro caso.} \end{cases}$$

Dados k = 0, 1, 2, ... y $1 \le s \le 2^k$, cada intervalo de la forma $\left[\frac{s-1}{2^k}, \frac{s}{2^k}\right]$ es llamado diádico. Es a menudo útil etiquetar los elementos del sistema de Haar por sus soportes; por tanto escribimos h_I para denotar h_n cuando I es el soporte del intervalo diádico de h_n .

En este apartado veremos que el sistema de Haar es una base de Schauder (no normalizada) en L_p para cada $1 \le p < \infty$ y que es incondicional cuando 1 . Necesitaremos el concepto de expectativa condicional, que introducimos a continuación.

Sea (Ω, Σ, μ) un espacio de probabilidad, y Σ' una sub- σ -álgebra de Σ . Dados $f \in L_1(\Omega, \Sigma, \mu)$, podemos definir una medida, ν , en Σ' como

$$u(E) = \int_{E} f d\mu, \quad E \in \Sigma'.$$

La medida ν es absolutamente continua con respecto a $\mu|_{\Sigma'}$; por el teorema de Radon-Nikodym, existe una (única, salvo conjuntos de medida cero) función Σ' -medible $\psi \in$

 $L_1(\Omega, \Sigma', \mu)$ tal que

$$\nu(E) = \int_{E} \psi d\mu, \quad E \in \Sigma'$$

3.3.1 Definición. Dados $f \in L_1(\Omega, \Sigma, \mu)$, la expectativa condicional de f en la σ -álgebra Σ' es la (única) función ψ que satisface

$$\int_{E} f d\mu = \int_{E} \psi d\mu, \ \forall E \in \Sigma'.$$

Denotaremos a la función ψ por $\mathbb{E}(f|\Sigma')$.

Tengamos en cuenta que si Σ' consiste en innumerables $(A_n)_{n=1}^{\infty}$ disjuntos, la definición de $\mathbb{E}(f|\Sigma')$ es especialmente simple:

$$\mathbb{E}(f|\Sigma')(t) = \sum_{j=1}^{\infty} \frac{1}{\mu(A_j)} \left(\int_{A_j} f d\mu \right) \chi_{A_j}(t).$$

También observamos que si $f \in L_1(\mu)$, para toda función simple Σ' -medible g, tenemos

$$\int_{\Omega} f g d\mu = \int_{\Omega} g \mathbb{E}(f|\Sigma') d\mu$$

у

$$\mathbb{E}(fg|\Sigma') = g\mathbb{E}(f|\Sigma').$$

3.3.2 Lema. Sea (Ω, Σ, μ) un espacio de probabilidad y supongamos que Σ' es una sub- σ -álgebra de Σ . Entonces $\mathbb{E}(\cdot|\Sigma')$ es una proyección lineal de norma uno de $L_p(\Omega, \Sigma, \mu)$ en $L_p(\Omega, \Sigma', \mu)$ para cada $1 \leq p \leq \infty$.

Demostración. Fijamos $1 \leq p \leq \infty$. Es inmediato comprobar que $\mathbb{E}(\cdot|\Sigma')^2 = \mathbb{E}(\cdot|\Sigma')$. Si $f \in L_p(\mu)$, usando la desigualdad de Hölder en $L_p(\Omega, \Sigma', \mu)$, tenemos

$$\begin{split} \left\| \mathbb{E}(\cdot|\Sigma') \right\|_p &= \sup \left\{ \int_{\Omega} \mathbb{E}(\cdot|\Sigma') g d\mu : \text{g simple } \Sigma'\text{-medible con } \left\| g \right\|_q \leq 1 \right\} \\ &= \sup \left\{ \int_{\Omega} f g d\mu : \text{g simple } \Sigma'\text{-medible con } \left\| g \right\|_q \leq 1 \right\} \\ &\leq \sup \left\{ \int_{\Omega} f g d\mu : \text{g simple con } \left\| g \right\|_q \leq 1 \right\} = \| f \|_p \,. \end{split}$$

- **3.3.3 Nota.** El resultado anterior también es válido en el caso $p = \infty$.
- **3.3.4 Proposición.** El sistema de Haar es una base monótona en L_p para $1 \le p < \infty$.

Demostración. Consideremos una sucesión creciente de σ-álgebras, $(\mathcal{B})_{n=1}^{\infty}$, contenida en la σ-álgebra de Borel de [0,1] definida como sigue: sea \mathcal{B}_1 la σ-álgebra trivial, $\{\emptyset, [0,1]\}$,

y para $n=2^k+s$ $(k=0,1,2,...,\ 1\leq s\leq 2^k)$ sea \mathcal{B}_n el subálgebra finito de los conjuntos de Borel de [0,1] cuyos elementos son los intervalos diádicos de la familia

$$\mathcal{F}_{n} = \begin{cases} \left[\frac{j-1}{2^{k+1}}, \frac{j}{2^{k+1}} \right) & \text{para } j = 1, ..., 2s \\ \\ \left[\frac{j-1}{2^{k}}, \frac{j}{2^{k}} \right) & \text{para } j = s+1, ..., 2^{k} \end{cases}$$

Fijamos $1 \leq p < \infty$. Para cada n, \mathbb{E}_n denotará al operador de expectativa condicional en la σ -álgebra \mathcal{B}_n . Por el Lema 3.3.2 \mathbb{E}_n es una proyección de norma uno de L_p en $L_p([0,1],\mathcal{B}_n,\lambda)$, el espacio de funciones que son constantes en intervalos de la familia \mathcal{F}_n . Denotaremos este espacio por $L_p(\mathcal{B}_n)$. Claramente, $rango \mathbb{E}_n = n$. Además, $\mathbb{E}_n\mathbb{E}_m = \mathbb{E}_m\mathbb{E}_n = \mathbb{E}_{\min\{m,n\}}$ para cualesquiera dos enteros positivos m,n.

Por otro lado, el conjunto

$$\{f \in L_n : ||\mathbb{E}_n(f) - f|| \to 0\}$$

es cerrado por la vuelta parcial del teorema de Banach-Steinhaus y contiene al conjunto $\bigcup_{k=1}^{\infty} L_p(\mathcal{B}_k)$, el cual es denso en L_p . Por lo tanto $\|\mathbb{E}_n(f) - f\| \to 0$ para todo $f \in L_p$. Por la Proposición 3.1.7 L_p tiene una base cuya proyecciones naturales son $(\mathbb{E}_n)_{n=1}^{\infty}$. Esta base es de hecho el sistema de Haar, porque para cada $n \in \mathbb{N}$ tenemos $\mathbb{E}_m(h_n) = h_n$ para $m \geq n$ y $\mathbb{E}_m h_n = 0$ para m < n. La constante básica es sup_n $\|\mathbb{E}_n\| = 1$

- **3.3.5 Notas.** (a) El sistema de Haar tal y como lo hemos definido no está normalizado en L_p para $1 \le p < \infty$. Está normalizado en L_∞ , ya que $\|h_{2^k+s}\|_p = (1/2^k)^{1/p}$. Para normalizarlo en L_p uno debe tomar $h_n/\|h_n\|_p = |I_n|^{-1/p} h_n$, donde I_n denota el soporte de la función de Haar h_n .
- (b) Observemos que si $f \in L_p$ $(1 \le p < \infty)$, entonces

$$\mathbb{E}_n(f) - \mathbb{E}_{n-1}(f) = \left(\frac{1}{|I_n|} \int f(t) h_n(t) dt\right) h_n$$

Deducimos que los funcionales duales asociados al sistema de Haar están dados por

$$h_n^* = \frac{1}{|I_n|} h_n, \quad n \in \mathbb{N}$$

y la serie de expansión de $f \in L_p$ en términos de la base de Haar es

$$f = \sum_{n=1}^{\infty} \left(\frac{1}{|I_n|} \int f(t) h_n(t) dt \right) h_n.$$

Observamos que si p=2, entonces $(h_n/\|h_n\|_2)_{n=1}^{\infty}$ es una base ortonormal para el espacio de Hilbert L_2 y por tanto incondicional. Este es un hecho importante, en realidad,

la base de Haar es una base incondicional en L_p para 1 . Esto fue probado por Paley en 1932. Mucho más recientemente, Burkholder [8] estableció la*mejor*constante. Vamos a presentar la demostración de Burkholder de 1988 [9]. Aunque aquí solamente haremos el caso real, la misma demostración funciona para escalares complejos con la misma constante; sin embargo, los cálculos necesarios para el caso complejo son un poco más duros de seguir. Para nuestros objetivos la constante no es tan importante, y simplemente nos damos cuenta de que si la base de Haar es incondicional para escalares reales, rápidamente comprobamos que es incondicional para escalares complejos. La demostración de Burkholder sólo tiene un inconveniente: parece hecha por arte de magia.

Empezamos con algunos cálculos elementales.

3.3.6 Lema. Supongamos p > 2. Entonces

$$\frac{p^{p-2}}{(p-1)^{p-1}} < 1 \tag{3.9}$$

Demostración. Si cogemos t = p - 1 la desigualdad 3.9 es equivalente a

$$H(t) = -(t-1)\log(1+t) + t\log(t) > 0, \quad \forall t > 1.$$

En efecto, diferenciando H da

$$H'(t) = \frac{2}{t+1} - \log\left(\frac{1+t}{t}\right) \ge \frac{2}{t+1} - \frac{1}{t} = \frac{t-1}{t(t+1)} > 0, \quad \forall t > 1.$$

Por lo tanto
$$H(t) > H(1) = 0$$
 para todo $t > 1$.

En el siguiente lema introduciremos una función misteriosa que nos permitirá probar el teorema de Burkholder. Esta función parece ser sacada de la manga, aunque hay buenas razones detrás de su selección. El uso de tales funciones para probar desigualdades finas ha sido desarrollado extensamente por Nazarov, Treil y Volberg que las llamaron las funciones de Belmerg.

3.3.7 Lema. Supongamos p>2 y definimos una función φ en el primer cuadrante de \mathbb{R}^2 por

$$\varphi(x,y) = (x+y)^{p-1}((p-1)x - y), \quad x, y \ge 0.$$

(I) La siguiente desigualdad es válida para todo (x, y) con $x \ge 0$ e $y \ge 0$:

$$\frac{(p-1)^{p-1}}{p^{p-2}}\varphi(x,y) \le (p-1)^p x^p - y^p.$$

(II) Para cualesquiera números reales x, y, a y para $\varepsilon = \pm 1$,

$$\varphi(|x+a|, |y+\varepsilon a|) + \varphi(|x-a|, |y-\varepsilon a|) \ge 2\varphi(|x|, |y|). \tag{3.10}$$

Demostración. (I) Por homogeneidad podemos suponer que x + y = 1. Entonces es suficiente mostrar que la función

$$G(x) = \frac{p^{p-2}}{(p-1)^{p-1}}((p-1)^p x^p - (1-x)^p) - px + 1, \quad 0 \le x \le 1,$$

es no negativa. Las primeras dos derivadas de G son

$$G'(x) = \frac{p^{p-1}}{(p-1)^{p-1}}((p-1)^p x^{p-1} + (1-x)^{p-1}) - p,$$

$$G''(x) = \frac{p^{p-1}}{(p-1)^{p-2}}((p-1)^p x^{p-2} + (1-x)^{p-2}).$$

Como p > 2, G" es creciente. Aún más,

$$G''(0) = -\frac{p^{p-1}}{(p-1)^{p-2}} < 0 < p((p-1)^2 - 1) = G''\left(\frac{1}{p}\right).$$

Por tanto, existe $0 < a < \frac{1}{p}$ tal que G es cóncava en [0,a] y convexa en [a,1]. Nos damos cuenta de que

$$G\left(\frac{1}{p}\right) = G'\left(\frac{1}{p}\right) = 0.$$

Consecuentemente, por la convexidad de G en [a,1], obtenemos que G(x) > 0 para todo $x \in [a,1] \setminus \{\frac{1}{p}\}$. Uniendo esto con G(a) > 0 y aplicando 3.9 tenemos:

$$G(0) = 1 - \frac{p^{p-2}}{(p-1)^{p-1}} > 0.$$

Por lo tanto, por la concavidad de G en [0,a], obtenemos G(x) > 0 para todo $x \in [0,a]$.

(II) El caso $\varepsilon=-1$ se puede deducir del caso $\varepsilon=1$ reemplazando y por -y. Para probar la desigualdad con $\varepsilon=1$ consideramos la familia de funciones

$$F_s: \mathbb{R} \to \mathbb{R}, t \mapsto \varphi(|t+s|, |t-s|),$$

definido para cada $s \in \mathbb{R}$. Entonces, para obtener 3.10 basta ver que F_s es una función convexa para cada s real. En efecto, si este fuera el caso, tendríamos:

$$F_s(t+a) + F_s(t-a) \ge 2 F_s(t), \ \forall t, a \in \mathbb{R},$$

y escogiendo s y t tal que t+s=x y t-s=y, tendríamos la desigualdad deseada.

Para mostrar la convexidad de las funciones F_s , notamos que por un argumento de continuidad, es suficiente tratar con $s \neq 0$. Ahora, si $s \neq 0$, tenemos $F_s(t) =$

 $|s|^p F_1(\frac{t}{s})$. Por eso solo necesitamos probar que F_1 es una función convexa. Claramente, F_1 es continua en \mathbb{R} y diferenciable en $\mathbb{R} \setminus \{\pm 1\}$. Un cálculo sencillo nos da:

$$\mathbf{F}_1' = \begin{cases} p2^{p-1}(-t)^{p-2}((p-2)t - (p-1)) & \text{si } t < -1, \\ -p2^{p-1} & \text{si } -1 < t < 1, \\ p2^{p-1}t^{p-2}((p-2)t - (p-1)) & \text{si } 1 < t. \end{cases}$$

De aquí es claro que F_1' es creciente en $(-\infty, -1)$ y constante en (-1, 1). Diferenciando nuevamente en puntos con t > 1, obtenemos

$$F_1''(t) = p(p-1)(p-2)2^{p-1}(t-1)t^{p-2} > 0.$$

Por lo que F_1' es también creciente en $(1, \infty)$. En los puntos frontera ± 1 , donde F_1 puede no ser suave,

$$F'_1((-1)^-) < F'_1((-1)^+) = F'_1(1^-) = F'_1(1^+).$$

Consecuentemente, F_1 es convexa en toda la recta real.

3.3.8 Teorema. Sean $0 < p, q < \infty$ de modo que $\frac{1}{p} + \frac{1}{q} = 1$ y sea $p^* = \max(p, q)$. La base de Haar $(h_n)_{n=1}^{\infty}$ en L_p es incondicional con constante incondicional como mucho $p^* - 1$. Esto es,

$$\left\| \sum_{n=1}^{N} \varepsilon_n a_n h_n \right\|_p \le (p^* - 1) \left\| \sum_{n=1}^{N} a_n h_n \right\|_p,$$

siempre que $N \in \mathbb{N}$, para cualesquiera escalares reales $a_1, ..., a_N$ y cualesquiera elecciones de signos $\varepsilon_1, ..., \varepsilon_N$.

Demostración. Supongamos primero p > 2, en cuyo caso $p^* = p$. Teniendo en cuenta el apartado (I) del Lema 3.3.7 solo necesitamos demostrar que

$$\int_0^1 \varphi\left(\left|\sum_{n=1}^N a_n h_n(u)\right|, \left|\sum_{n=1}^N \varepsilon_n a_n h_n(u)\right|\right) du \ge 0 \tag{3.11}$$

para todo $N \in \mathbb{N}$, todas las N-tuplas $(a_n)_{n=1}^N$ en \mathbb{R} , y todo $(\varepsilon_n)_{n=1}^N$ en $\{\pm 1\}$. Con ese fin, procedemos por inducción en N. Para N=1 esto es trivial, ya que tomando x=y=0 y $\varepsilon=1$ en el apartado II del Lema 3.3.7.

$$\varphi(|a|,|a|) \ge \varphi(0,0) = 0, \quad \forall a \in \mathbb{R}.$$

Para establecer el paso a la inducción, supongamos $N \geq 2$ y asumimos que 3.11 es

válido para (N-1) tuplas. Dados $(a_n)_{n=1}^N$ en \mathbb{R} y $(\varepsilon_n)_{n=1}^N$ en $\{\pm 1\}$, pongamos

$$f_{N-1} = \sum_{n=1}^{N-1} a_n h_n, \quad g_{N-1} = \sum_{n=1}^{N-1} \varepsilon_n a_n h_n$$

$$f_N = \sum_{n=1}^{N} a_n h_n = f_{N-1} + a_N h_N, \quad g_N = \sum_{n=1}^{N} \varepsilon_n a_n h_n = g_{N-1} + \varepsilon_N a_N h_N$$

$$\tilde{f}_N = \sum_{n=1}^{N} a_n h_n = f_{N-1} - a_N h_N, \quad \tilde{g}_N = \sum_{n=1}^{N} \varepsilon_n a_n h_n = g_{N-1} - \varepsilon_N a_N h_N.$$

Dado que h_N tiene soporte en un intervalo en el cual f_{N-1} y g_{N-1} son constantes y toma valores opuestos en intervalos de la misma medida (o, usando terminología probabilística, h_N y h_{N-1} son variables aleatorias equidistribuidas, ambas independientes con la pareja de variables aleatorias (f_{N-1}, g_{N-1})), tenemos que

$$J := \int_0^1 \varphi(|f_N(u)|, |g_N(u)|) du = \int_0^1 \varphi(|\tilde{f}_N(u)|, |\tilde{g}_N(u)|) du.$$

Por tanto, por el apartado II del Lema 3.3.7,

$$J = \int_0^1 \frac{1}{2} \left(\varphi(|f_N(u)|, |g_N(u)|) + \varphi(|\tilde{f}_N(u)|, |\tilde{g}_N(u)|) \right) du$$

$$\geq \int_0^1 \varphi(|f_{N-1}(u)|, |g_{N-1}(u)|) du \geq 0.$$

El caso p=2 es trivial, ya que el sistema de Haar es una base ortonormal de L_2 ; por lo tanto, su constante básica incondicional es 1. El caso $1 se deduce ahora por dualidad. Con <math>f_N = \sum_{n=1}^{N-1} a_n h_n$ y $g_N = \sum_{n=1}^{N-1} \varepsilon_n a_n h_n$ como antes, elegimos $g'_N \in L_q(\mathcal{B}_N)$ tal que $\|g'_N\|_q = 1$ y

$$\int_0^1 g_N(u)g_N'(u)du = \|g_N\|_p$$

Entonces $g'_N = \sum_{n=1}^N b_n h_n$ para alguna $(b_n)_{n=1}^N$. Sea $f'_N = \sum_{n=1}^N \varepsilon_n b_n h_n$. Es claro que

$$\|g_N\|_p = \int_0^1 f_N(u) f_N'(u) du \le \|f_N\|_p \|f_N'\|_q \le \|f_N\|_p (q-1) \|g_N'\|_q \le (q-1) \|f_N\|_p.$$

- **3.3.9 Nota.** La constante p^*-1 en el teorema de Burkholder es perfecta, aunque este hecho no lo vamos a probar.
- **3.3.10 Teorema.** Sea $1 \leq p < \infty$. Para cada conjunto finito de funciones $\{f_i\}_{i=1}^n$ en $L_p(\mu)$, se cumple que

$$A_{p} \left\| \left(\sum_{i=1}^{n} |f_{i}|^{2} \right)^{1/2} \right\|_{p} \leq \left(\mathbb{E} \left\| \sum_{i=1}^{n} \varepsilon_{i} f_{i} \right\|_{p}^{p} \right)^{1/p} \leq B_{p} \left\| \left(\sum_{i=1}^{n} |f_{i}|^{2} \right)^{1/2} \right\|_{p},$$

donde A_p , B_p son las constantes en las desigualdades de Khintchine (en particular, $A_p = 1$ para $2 \le p < \infty$ y $B_p = 1$ para $1 \le p \le 2$).

Demostración. Para cada $\omega \in \Omega$, de las desigualdades de Khintchine,

$$A_p \left(\sum_{i=1}^n |f_i(\omega)|^2 \right)^{1/2} \le \left(\mathbb{E} \left| \sum_{i=1}^n \varepsilon_i f_i(\omega) \right|^p \right)^{1/p},$$

donde $A_p = 1$ para $2 \le p < \infty$. Ahora, usando el teorema de Fubini, obtenemos

$$A_p \left\| \left(\sum_{i=1}^n |f_i|^2 \right)^{1/2} \right\|_p^p \le \int_{\Omega} \mathbb{E} \left| \sum_{i=1}^n \varepsilon_i f_i(\omega) \right|^p d\mu = \mathbb{E} \left(\int_{\Omega} \left| \sum_{i=1}^n \varepsilon_i f_i(\omega) \right|^p d\mu \right) = \mathbb{E} \left\| \sum_{i=1}^n \varepsilon_i f_i \right\|_p^p.$$

La otra desigualdad se obtiene de manera similar.

3.4. Bases de tipo greedy

Supongamos que X es un espacio de Banach y que $\mathcal{B} = (e_n)_{n=1}^{\infty}$ es una base de X. Una aproximación de m-términos con respecto a \mathcal{B} es una aplicación $T_m : X \to X$ tal que para cada $x \in X$, $T_m(x)$ es una combinación lineal de como mucho m elementos de \mathcal{B} . Un algoritmo de aproximación es una sucesión $(T_m)_{m=1}^{\infty}$ de tales aplicaciones.

El algoritmo de aproximación más natural es el algoritmo lineal $(S_m)_{m=1}^{\infty}$ dado por las proyecciones de las sumas parciales $S_m(x) = \sum_{j=1}^m e_j^*(x)e_j$. Para cada m, S_m proporciona la aproximación de m-términos más cercana para cada $x \in X$ del subespacio lineal $[e_1, ..., e_m]$. Esto es, si para cada $x \in X$ definimos el error de la mejor aproximación lineal de m-términos como

$$E_m(x) = \inf \left\{ \left\| x - \sum_{j=1}^m \alpha_j e_j \right\| : (\alpha_j)_{j=1}^m \text{ escalares} \right\},\,$$

tenemos

$$||x - S_m(x)|| \le C E_m(x), \quad m = 1, 2, ...,$$

para alguna constante $C \ge 1$ independiente de $x \in X$ y $m \in \mathbb{N}$. Así la teoría de aproximación lineal con respecto a bases resulta ser simple y conveniente si uno está contento con este nivel de precisión.

Motivados por el problema de encontrar algoritmos más eficientes (i.e., que mejoran el error de aproximación), los investigadores pusieron en juego la no linealidad permitiendo a los elementos usados en la aproximación depender del vector x al aproximarlos en vez de cogiéndolos de un espacio lineal fijado. Los correspondientes algoritmos de aproximación construidos de este modo definen aplicaciones que pueden no ser lineales o continuos.

Konyagin y Telmyakov introdujeron en [10] el algoritmo greedy $(G_m)_{m=1}^{\infty}$, donde $G_m(x)$ se obtiene tomando los m primeros términos en orden decreciente de magnitud de la serie de expansión de x con respecto a \mathcal{B} ; cuando dos términos tienen igual tamaño, los tomamos en el orden de la base.

En términos generales, nuestro objetivo es investigar cómo de bien $G_m(x)$ aproxima $x \in X$ para varias bases \mathcal{B} . El mínimo requisito para hacer de este un método razonable de aproximación es que $G_m(x)$ converja a x para cada $x \in X$. Nosotros vamos a exigir más a $G_m(x)$, queremos que nos proporcione la mejor aproximación de x por una suma de m elementos de la base, lo cual nos lleva a la noción de base greedy. La definición formal de base greedy fue dada por Konyagin y Temlyakov en [10].

3.4.1. Marco general

Sea X un espacio de Banach. A lo largo de este capítulo $\mathcal{B} = (e_n)_{n=1}^{\infty}$ será una base (de Schauder) seminormalizada en X (i.e., $1/c \leq ||e_n|| \leq c$ para cada n, para algún c) con funcionales biortogonales $(e_n^*)_{n=1}^{\infty}$.

Para cada m = 1, 2, ..., denotamos por $\Sigma_m[\mathcal{B}, X]$ a la colección de todos los $x \in X$ que pueden ser expresados por una combinación lineal de m elementos de \mathcal{B} ,

$$\Sigma_m[\mathcal{B}, X] = \left\{ \sum_{n \in A} a_n e_n : A \subset \mathbb{N}, |A| = m, a_n \in \mathbb{R} \right\}.$$

Cuando la base \mathcal{B} , el espacio X, o ambos están claros por el contexto los suprimiremos de la notación anterior y usaremos solamente el símbolo Σ_m . Claramente $\Sigma_m \subset \Sigma_k$ siempre que $m \leq k$. Notemos que el espacio Σ_m no es lineal: la suma de dos elementos de Σ_m generalmente no está en Σ_m , está en Σ_{2m} .

La pregunta fundamental aquí es cómo podemos construir para cada $x \in X$ y cada m = 1, 2, ... un elemento $y_m \in \Sigma_m$, tal que el error de aproximación de x por y_m , dado por la cantidad $||x - y_m||$, es pequeño.

La respuesta a esta pregunta en algunos casos particulares es simple. Por ejemplo, si X=H es un espacio de Hilbert y $\mathcal B$ es una base ortonormal, cada elemento $x\in H$ tiene una expansión de la forma

$$x = \sum_{n=1}^{\infty} \langle x, e_n \rangle e_n,$$

y por la identidad de Parseval,

$$||x||^2 = \sum_{n=1}^{\infty} |\langle x, e_n \rangle|^2$$
.

Uno se da rápidamente cuenta de que la mejor aproximación de x en Σ_m existe, y se obtiene como sigue. Ordenamos los coeficientes de Fourier $(\langle x, e_n \rangle)_{n=1}^{\infty}$ de x de acuerdo al valor absoluto de su tamaño, y escogemos $A_m(x)$ como el conjunto de índices n con cardinalidad m para los cuales $|\langle x, e_n \rangle|$ es el más grande. Entonces,

$$y_m = \sum_{n \in A_m(x)} \langle x, e_n \rangle e_n$$

es la mejor aproximación de x de Σ_m , y

$$||x - y_m||^2 = \sum_{n \notin A_m(x)} |\langle x, e_n \rangle|^2.$$

Este es un ejemplo de lo que es conocido como algoritmo greedy. Existen dos caminos esencialmente equivalentes de formalizar esta idea y simultáneamente generalizarla a bases seminormalizadas en un espacio de Banach arbitrario X.

La primera es considerar para cada $\varepsilon > 0$ el operador umbral,

$$T_{\varepsilon}[\mathcal{B}, X](x) := T_{\varepsilon}(x) = \sum_{\{n: |e_n^*(x)| > \varepsilon\}} e_n^*(x) e_n.$$

Como lím $_{n\to\infty} e_n^* = 0$, estamos sumando solo un número finito de términos, y por tanto las aplicaciones $(T_{\varepsilon})_{\varepsilon>0}$ están bien definidas.

En el segundo enfoque fijamos $m \in \mathbb{N}$, y para $x \in X$ definimos la suma greedy de x de orden m como

$$G_m[\mathcal{B}, X](x) := G_m(x) = \sum_{n \in A_m(x)} e_n^*(x)e_n,$$

donde $A_m(x)$ es un conjunto de m-elementos de índices tales que

$$\min\{|e_n^*(x)| : n \in A_m(x)\} \ge \max\{|e_n^*(x)| : n \notin A_m(x)\}. \tag{3.12}$$

Por supuesto, los conjuntos $A_m(x)$ pueden no estar determinados únicamente por las condiciones previas; por lo tanto, un elemento $x \in X$ dado puede tener más de una suma greedy de cualquier orden. Sin embargo, nos damos cuenta de que si en 3.12 se da la desigualdad estricta entonces $\sum_{n \in A_m(x)} e_n^*(x) e_n$ es la única suma greedy de x de orden m.

Sumas estrictam
tente greedy y operadores umbrales están estrechamente relacionados. A cada $x \in X$ le correspon
de un subconjunto de enteros

 $\mathbb{N}_x = \{ m \in \mathbb{N} : \text{ existe una suma estrictamente greedy de } x \text{ de orden m} \}.$

Entonces para cada $\varepsilon > 0$ y $m \in \mathbb{N}_x$, tenemos

$$T_{\varepsilon}(x) = G_{m_{\varepsilon}} \text{ y } G_m(x) = T_{\varepsilon_m}(x),$$
 (3.13)

donde

$$m_{\varepsilon} = |\{n \in \mathbb{N} : |e_n^*(x)| > \varepsilon\}| \text{ y } \max_{n \notin A_m(x)} |e_n^*(x)| \le \varepsilon < \min_{n \in A_m(x)} |e_n^*(x)|.$$

La manera más natural de construir una suma greedy de un vector x es comenzar con una aplicación inyectiva $\pi: \mathbb{N} \to \mathbb{N}$ tal que $(|e_{\pi(n)}^*(x)|)_{n=1}^{\infty}$ no es creciente y entonces considerar las sumas parciales

$$G_m(x) = \sum_{n=1}^m e_{\pi(n)}^*(x)e_{\pi(n)}$$

de las series formales $\sum_{n=1}^{\infty} e_{\pi(n)}^*(x)e_{\pi(n)}$. Toda sucesión $(G_m(x))_{n=1}^{\infty}$ obtenida así la llamaremos aproximación greedy de x, y a π lo llamaremos ordenamiento greedy de x. Si el soporte de x es finito, entonces también lo es \mathbb{N}_x ; por lo tanto se puede enumerar en la forma $\mathbb{N}_x = (m_j)_{j=1}^{\infty}$ con los índices m_j crecientes. La sucesión $(G_{m_j}(x))_{j=1}^{\infty}$ es una subsucesión de cada aproximación greedy x, y la llamaremos la aproximación estrictamente greedy de x.

La aproximación greedy de un vector x no tiene por qué ser única. Sin embargo, podemos usar el orden natural existente en \mathbb{N} para construir para cada x un orden greedy únicamente determinado como sigue. Definimos $\rho: \mathbb{N} \to \mathbb{N}$ tal que $\{n: e_n^*(x) \neq 0\} \subset \rho(\mathbb{N})$ y tal que si j < k, entonces o bien $|e_{\rho(j)}^*(x)| > |e_{\rho(k)}^*(x)|$ o $|e_{\rho(j)}^*(x)| = |e_{\rho(k)}^*(x)|$ y $\rho(j) < \rho(k)$. Con esta convención, la m-ésima suma greedy de x, dada por

$$\mathcal{G}_m[\mathcal{B}, X](x) := \mathcal{G}_m(x) = \sum_{n=1}^m e_{\rho(n)}^*(x) e_{\rho(n)},$$

está determinada de manera única, y $(\mathcal{G}_m(x))_{m=1}^{\infty}$ forma una aproximación greedy de x. Las sucesiones de aplicaciones $(\mathcal{G}_m)_{m=1}^{\infty}$ son el algoritmo greedy asociado a \mathcal{B} en X. En algunas ocasiones nuestro razonamiento requerirá considerar las sumas greedy de orden nulo, así que acordamos poner $\mathcal{G}_0(x) = 0$ para todo x.

Nos damos cuenta de que $(\mathcal{G}_m)_{m=1}^{\infty}$ no son ni lineales ni continuos. Sin embargo, son homogéneos, es decir, $\mathcal{G}_m(\lambda x) = \lambda \mathcal{G}_m(x)$ para $\lambda \in \mathbb{R}$, gracias a lo que podemos definir su norma,

$$\|\mathcal{G}_m\| = \sup_{\|x\| \le 1} \|\mathcal{G}_m(x)\|.$$

Notamos que si $T: X \to Y$ es un isomorfismo entre espacios de Banach, entonces

$$T(\mathcal{G}_m[\mathcal{B}, X](x)) = \mathcal{G}_m[T(\mathcal{B}), Y](T(x));$$

por lo que todos los conceptos relacionados con ser greedy que vamos a introducir a continuación serán invariantes bajo isomorfismos.

3.4.2. Bases democráticas

Vamos a introducir a continuación una propiedad que disfrutan algunas bases que es fundamental para nuestras consideraciones [10].

3.4.1 Definición. Una base $\mathcal{B} = (e_n)_{n=1}^{\infty}$ de un espacio de Banach se dice democrática si bloques del mismo tamaño de \mathcal{B} tienen normas uniformemente comparables, i.e., existe una constante $C \geq 1$ tal que para cada dos subconjuntos finitos A, B de \mathbb{N} con |A| = |B|,

$$\left\| \sum_{n \in A} e_n \right\| \le C \left\| \sum_{n \in B} e_n \right\|.$$

La constante más pequeña verificando lo anterior se llama la constante democrática de \mathcal{B} y la denotaremos por C_d .

La falta de democracia de una base \mathcal{B} exhibe algún tipo de asimetría. Para medir cuánto se desvía una base de ser democrática, consideramos su función democrática superior, también conocida como la función fundamental de \mathcal{B} ,

$$\varphi_u[\mathcal{B},X](m) := \varphi_u(m) = \sup_{|A|=m} \left\| \sum_{n \in A} e_n \right\|, \quad m = 1,2,...,$$

y su función democrática inferior,

$$\varphi_l[\mathcal{B}, X](m) := \varphi_l(m) = \inf_{|A|=m} \left\| \sum_{n \in A} e_n \right\|, \quad m = 1, 2, \dots$$

Una base \mathcal{B} es democrática si y solo si las sucesiones $(\varphi_u[\mathcal{B},X](m))_{m=1}^{\infty}$ y $(\varphi_l[\mathcal{B},X](m))_{m=1}^{\infty}$ son uniformemente comparables término a término, en cuyo caso

$$C_d = \sup_{m \in \mathbb{N}} \frac{\varphi_u(m)}{\varphi_u(l)} < \infty.$$

Por supuesto, las funciones democráticas $\varphi_l[\mathcal{B}, X]$ y $\varphi_u[\mathcal{B}, X]$ pueden variar si consideramos diferentes bases \mathcal{B} dentro del mismo espacio de Banach X.

Los siguientes resultados contienen propiedades elementales de funciones democráticas de bases que nos serán útiles más tarde.

3.4.2 Lema. Sea \mathcal{B} una base democrática en un espacio de Banach X y sea $\tilde{\mathcal{B}}$ una base de un espacio de Banach finito-dimensional Y. La suma directa de \mathcal{B} y $\tilde{\mathcal{B}}$ es una base democrática en $X \oplus Y$.

El último resultado de este apartado relaciona la incondicionalidad con las funciones de democracia.

3.4.3 Lema. Sea $(e_n)_{n=1}^{\infty}$ una base incondicional para un espacio de Banach X. Sean A y B conjuntos finitos de naturales. Supongamos que $x \in X$ es tal que

$$\max\{|e_n^*(x)| : n \in A\} \le \min\{|e_n^*(x)| : n \in B\}.$$

Entonces

$$\|P_A(x)\| \le K_u^2 \frac{\varphi_u(|A|)}{\varphi_l(|B|)} \|P_B(x)\|.$$

Demostración. Sean $M = \max\{|e_n^*(x)| : n \in A\}$ y $m = \min\{|e_n^*(x)| : n \in B\}$. Entonces

$$\|P_A(x)\| = \left\| \sum_{n \in A} e_n^*(x) e_n \right\| \le K_u \left\| \sum_{n \in A} M e_n \right\| = K_u M \left\| \sum_{n \in A} e_n \right\| \le K_u M \varphi_u(|A|)$$

donde hemos usado la incondicionalidad y la definición de la función democrática superior. Ahora continuamos usando la hipótesis $M \leq m$ y la definición de la función democrática inferior:

$$K_u M \varphi_u(|A|) \leq K_u m \frac{\varphi_u(|A|)}{\varphi_l(|B|)} \varphi_l(|B|) \leq K_u \frac{\varphi_u(|A|)}{\varphi_l(|B|)} \left\| \sum_{n \in B} m e_n \right\| \leq K_u^2 \frac{\varphi_u(|A|)}{\varphi_l(|B|)} \left\| P_B(x) \right\|,$$

lo que concluye la demostración.

3.4.3. Bases greedy

En la teoría de la aproximación es conveniente saber desde un punto teórico si el algoritmo greedy es eficiente, en el sentido de que el error que cometemos para cada m al aproximar cualquier x en X por $\mathcal{G}_m(x)$ es uniformemente comparable con el error teórico más pequeño en la aproximación de m-términos de x con respecto a la base B, dado por

$$\sigma_m[\mathcal{B}, X](x) := \sigma_m(x) = \inf_{y \in \Sigma_m} ||x - y||.$$

Para formalizar esta idea, Konyagin y Temlyakov introdujeron el concepto de base greedy en [10].

3.4.4 Definición. Una base \mathcal{B} de un espacio de Banach X es greedy si existe una constante absoluta $C \geq 1$ tal que

$$||x - \mathcal{G}_m(x)|| \le C \,\sigma_m(x), \quad \forall m \in \mathbb{N}, \ \forall x \in X. \tag{3.14}$$

A la C más pequeña la llamaremos la constante greedy de \mathcal{B} y la denotaremos por C_g .

Observamos que $0 \in \Sigma_m$ para todo m, por lo que tenemos

$$\sigma_m(x) \le ||x||, \quad \forall x \in X.$$

También como $\bigcup_{n=1}^{\infty} \Sigma_n$ es denso en X, entonces

$$\lim_{m \to \infty} \sigma_m(x) = 0.$$

3.4.5 Nota. Si hemos estado atentos, la definición de base greedy es equivalente al cumplimiento de la condición

$$||x - G_m(x)|| \le C \sigma_m(x), \forall m \in \mathbb{N}, \forall x \in X$$

para alguna constante C, para cualesquiera sumas greedy $G_m(x)$.

3.4.6 Ejemplo. Si \mathcal{B} es la base de vectores unitarios en ℓ_p $(1 \leq p < \infty)$ o c_0 , entonces para cada x en el espacio y cualquier entero m tenemos $\sigma_m(x) = ||x - G_m(x)||$ para cada suma greedy de m-términos $G_m(x)$, la cual es lo mejor que podemos esperar. En otras palabras, \mathcal{B} es una base greedy y $C_g = 1$. Esta propiedad puede ser extendida a las bases simétricas.

El principal resultado de esta sección es una caracterización intrínseca muy satisfactoria de Konyagin y Temlyakov de las bases greedy.

3.4.7 Teorema. Una base $\mathcal{B} = (e_n)_{n=1}^{\infty}$ de un espacio de Banach X es greedy si y solo si es incondicional y democrática.

Demostración. Asumimos que \mathcal{B} es una base greedy con constante greedy C_g . Fijamos $x \in X$ y sea $A \subset \mathbb{N}$ con cardinalidad m. Consideramos el vector

$$y = P_{A^c}(x) + \alpha \sum_{n \in A} e_n = x + \sum_{n \in A} (\alpha - e_n^*(x))e_n,$$

donde $\alpha > \sup_{n \notin A} |e_n^*(x)|$. Claramente, $\sigma_m(y) = ||x||$ y $\mathcal{G}_m(y) = \alpha \sum_{n \in A} e_n$. Por lo tanto, la suposición de ser greedy nos dice

$$\|P_{A^c}(x)\| = \|y - \mathcal{G}_m(y)\| \le C_a \, \sigma_m(y) \le C_a \, \|x\|,$$

lo cual implica que \mathcal{B} es incondicional con constante de supresión-incondicional acotada por C_q .

Para mostrar que \mathcal{B} es democrática, cogemos cualesquiera dos conjuntos de enteros A, B del mismo cardinal. Consideramos $x = \sum_{n \in A \cup B} e_n$. Como $\sum_{n \in B \setminus A} e_n$ es la suma greedy de x de orden $m = |A \setminus B| = |B \setminus A|$, y $\sum_{n \in A \setminus B} e_n \in \Sigma_m$, tenemos

$$\left\| \sum_{n \in A} e_n \right\| = \left\| x - \sum_{n \in B \setminus A} e_n \right\| \le C_g \left\| x - \sum_{n \in A \setminus B} e_n \right\| = C_g \left\| \sum_{n \in B} e_n \right\|,$$

por lo que \mathcal{B} es democrática con constante democrática acotada por C_q .

Para demostrar la otra implicación, asumimos que \mathcal{B} es incondicional con constante K_u y democrática con constante democrática C_d . Fijamos $x \in X$ y $m \in \mathbb{N}$. Cogemos $y = \sum_{n \in B} a_n e_n \in \Sigma_m$. Consideramos una suma greedy $G_m(x) = P_A(x)$. Notemos que

$$||x - G_m(x)|| = ||P_{(A \cup B)^c}(x) + P_{B \setminus A}(x)|| \le ||P_{(A \cup B)^c}(x)|| + ||P_{B \setminus A}(x)||.$$

Por la definición de suma greedy,

$$\max_{n \in B \setminus A} |e_n^*(x)| \le \min_{n \in A \setminus B} |e_n^*(x)|$$

Sea $r = |A \setminus B| = |B \setminus A|$. Usando el Lema 3.4.3, tenemos

$$\left\| \mathbf{P}_{B \setminus A}(x) \right\| \le K_u^2 \frac{\varphi_u(r)}{\varphi_l(r)} \left\| \mathbf{P}_{A \setminus B}(x) \right\| \le K_u^2 C_d \left\| \mathbf{P}_{A \setminus B}(x) \right\|.$$

La incondicionalidad de \mathcal{B} implica

$$\|P_{(B\cup A)^c}(x)\| = \|P_{(B\cup A)^c}(x-y)\| \le K_{su} \|x-y\|.$$

Análogamente,

$$\|\mathbf{P}_{A\setminus B}(x)\| = \|\mathbf{P}_{A\setminus B}(x-y)\| \le K_{su} \|x-y\|.$$

Combinándolos, obtenemos

$$||x - G_m(x)|| \le (K_{su} + K_{su}K_u^2C_d) ||x - y||,$$

y, con el Lema 3.4.3 en mente, la prueba finaliza tomando el ínfimo en y.

3.4.8 Corolario. Toda base subsimétrica en un espacio de Banach es greedy.

Demostración. Supongamos que $\mathcal{B}=(e_n)_{n=1}^{\infty}$ es subsimétrica y no greedy. Como \mathcal{B} es incondicional, debe fallar que sea democrática. Recursivamente construimos sucesiones de subconjuntos mutuamente disjuntos de enteros $(A_k)_{k=1}^{\infty}$ y $(B_k)_{k=1}^{\infty}$ tal que $|A_k|=|B_k|$, $\max(A_{k-1}\cup B_{k-1})<\min(A_k\cup B_k)$, y $\left\|\sum_{n\in A_k}e_n\right\|>k\left\|\sum_{n\in B_k}e_n\right\|$. Supongamos construidos $(A_j)_{j=1}^{k-1}$ y $(B_j)_{j=1}^{k-1}$. Establecemos $N=1+\max(A_{k-1}\cup B_{k-1})$. Usando el Lema 3.4.2, inferimos que la sucesión básica $(e_n)_{n=N}^{\infty}$ no es democrática. Por tanto, existen A_k , B_k subconjuntos de $\{n\in\mathbb{N}:n\geq N\}$ tal que $|A_k|=|B_k|$ y $\left\|\sum_{n\in A_k}e_n\right\|>k\left\|\sum_{n\in B_k}e_n\right\|$.

Ahora consideremos sucesiones estrictamente crecientes de enteros $(n_j^a)_{j=1}^{\infty}$ y $(n_j^b)_{j=1}^{\infty}$ tales que $\{n_j^a: j \in \mathbb{N}\} = \bigcup_{k=1}^{\infty} A_k$ y $\{n_j^b: j \in \mathbb{N}\} = \bigcup_{k=1}^{\infty} B_k$. Como las sucesiones básicas $(e_{n_j^a})_{j=1}^{\infty}$ y $(e_{n_j^b})_{j=1}^{\infty}$ no son equivalentes, alcanzamos una contradicción con que \mathcal{B} sea subsimétrica.

El siguiente lema será una herramienta importante para la demostración de la Proposición 3.4.10.

3.4.9 Lema. Sea $1 < r < \infty$ y $0 . Existen constantes positivas <math>c_{r,p}$ y $C_{r,p}$ tales que para cada conjunto finito de enteros A,

$$c_{r,p} \left(\sum_{k \in A} r^{pk} \right)^{1/p} \le \left(\sum_{k \in A} r^{2k} \right)^{1/2} \le C_{r,p} \left(\sum_{k \in A} r^{pk} \right)^{1/p}.$$

Después del arduo trabajo que nos ha tomado llegar hasta aquí, estamos en condiciones de enunciar el resultado más importante del trabajo. Fue obtenido por Temlyakov en [11] y nos permitirá usar el sistema de Haar como herramienta fundamental para la aproximación en la parte informática.

3.4.10 Proposición. El sistema de Haar normalizado $\mathcal{H}_p = (h_n^p)_{n=1}^{\infty}$ es una base greedy en $L_p[0,1]$ para 1 .

Demostración. Como \mathcal{H}_p es incondicional (Teorema 3.3.8) por el Teorema 3.4.7 sólo necesitamos probar que \mathcal{H}_p es democrática. Para probar esto, por el Lema 3.4.2 será suficiente estimar $\left\|\sum_{n\in A} h_n^p\right\|$ por subconjuntos finitos de enteros A tales que $1 \notin A$.

Tenemos en cuenta que las funciones $(h_n^p)_{n=2}^{\infty}$ solo alcanzan valores 0 y $\pm 2^{k/p}$, y que para cada $t \in [0,1]$ sólo una de esas funciones alcanza $2^{k/p}$ en valor absoluto. Usando la propiedad de las series geométricas enunciada en el Lema 3.4.9 con $r=2^{1/p}$ obtenemos constantes c_p y C_p de manera que para cada subconjunto finito $A \subset \mathbb{N} \setminus \{1\}$ y para cada $t \in [0,1]$, se cumple que

$$c_p \left(\sum_{n \in A} |h_n^p(t)|^p \right)^{1/p} \le \left(\sum_{n \in A} |h_n^p(t)|^2 \right)^{1/2} \le C_{r,p} \left(\sum_{n \in A} |h_n^p(t)|^p \right)^{1/p}.$$

Tomando L_p -normas en las desigualdades anteriores y usando que $||h_n^p||_p = 1$ obtenemos

$$c_p |A|^{1/p} \le \left\| \left(\sum_{n \in A} |h_n^p(t)|^2 \right)^{1/2} \right\|_p \le C_p |A|^{1/p}.$$
 (3.15)

Por el Teorema 3.3.10 y la incondicionalidad de $\mathcal{H}_p = (h_n^p)_{n=1}^{\infty}$, para cada $1 existen constantes <math>A'_p$ y B'_p tales que para cada $(a_n)_{n=1}^{\infty} \in c_{00}$, se tiene

$$A_p' \left\| \left(\sum_{n=1}^{\infty} |a_n|^2 |h_n^p|^2 \right)^{1/2} \right\|_p \le \left\| \sum_{n=1}^{\infty} a_n h_n^p \right\|_p \le B_p' \left\| \left(\sum_{n=1}^{\infty} |a_n|^2 |h_n^p|^2 \right)^{1/2} \right\|_p. \tag{3.16}$$

Usando 3.15 obtenemos

$$A'_p c_p |A|^{1/p} \le \left\| \sum_{p \in A} h_p^p \right\| \le B'_p C_p |A|^{1/p},$$

para cada $A \subset \mathbb{N} \setminus \{1\}$ finito, lo cual implica la democracia de $(h_n^p)_{n=2}^{\infty}$.

Los ejemplos naturales de bases greedy en los espacios clásicos que hemos visto en este apartado pueden ser útiles para encontrar bases greedy cuando están combinados con métodos teóricos simples. Observemos el hecho de que ser greedy es una propiedad isomórfica, i.e., si $(e_n)_{n=1}^{\infty}$ es una base greedy en X y $T: X \to Y$ es un isomorfismo lineal, entonces $(T(e_n))_{n=1}^{\infty}$ es una base greedy en Y.

Capítulo 4

Desarrollo informático del trabajo

4.1. Algoritmos teóricos

La idea de reemplazar un objeto completo por uno más simple (aproximante) es usado con éxito en muchas áreas de la ciencia y en particular en las matemáticas computacionales. En nuestro caso escogemos un espacio de Banach X y nos gustaría tener un algoritmo de construcción de m-términos que añade en cada paso un nuevo elemento del sistema dado \mathcal{D} . No es obvio que con este nivel de generalidad (X y \mathcal{D} son arbitrarios) tal algoritmo exista.

Sea X un espacio de Banach dotado de una norma $\|\cdot\| := \|\cdot\|_X$. Formulamos nuestro problema de aproximación de la siguiente manera general. Diremos que un conjunto de funciones \mathcal{D} de un espacio de Banach X es un diccionario si cada $g \in X$ tiene norma uno $(\|g\|_X = 1)$ y el cierre lineal de \mathcal{D} coincide con X. Denotamos como $\Sigma_m[\mathcal{D}, X]$ a la colección de todas las funciones (elementos) en X que pueden ser expresados como una combinación lineal de como mucho m elementos de \mathcal{D} .

Por tanto cada función $s \in \Sigma_m[\mathcal{D}, X]$ puede ser escrita de la forma

$$s = \sum_{g \in \Lambda} c_g g, \quad \Lambda \subset \mathcal{D}, \ \#\Lambda \le m,$$

donde c_g son números reales o complejos. En algunos casos sería posible escribir un elemento de $\Sigma_m[\mathcal{D}, X]$ de esta forma de más de una manera. El espacio $\Sigma_m[\mathcal{D}, X]$ no es lineal: la suma de dos funciones de $\Sigma_m[\mathcal{D}, X]$ no está generalmente en $\Sigma_m[\mathcal{D}, X]$.

Para una función $f \in X$ recordamos su error de aproximación

$$\sigma_m[\mathcal{D}, X](f) := \inf_{s \in \Sigma_m[\mathcal{D}, X]} \|f - s\|_X,$$

y para una clase de funciones F,

$$\sigma_m[\mathcal{D}, X](F) := \sup_{f \in F} \sigma_m[\mathcal{D}, X](f).$$

Vamos a concentrarnos en el importante problema de encontrar buenos métodos de aproximación de m-términos en el caso de un diccionario general \mathcal{D} , así como de estudiar su eficiencia.

4.1.1. Algoritmo Puro Greedy (AGP)

Comencemos esta discusión con un caso especial, un espacio de Hilbert con el producto escalar $\langle \cdot, \cdot \rangle$. Definimos en primer lugar el Algoritmo Puro Greedy (AGP) en espacios de Hilbert H. Describiremos este algoritmo para un diccionario general \mathcal{D} . Si $f \in H$, sea $g(f) \in \mathcal{D}$ un elemento de \mathcal{D} que maximiza $|\langle f, g \rangle|$. Asumiremos por simplicidad que tal maximizador existe; si no modificaciones adecuadas son necesarias (Algoritmo Greedy Débil (AGD)) en el algoritmo que sigue. Definimos

$$G[\mathcal{D}, H](f) := G(f) = \langle f, g(f) \rangle g(f),$$

$$R[\mathcal{D}, H](f) := R(f) = f - G(f).$$

Podemos omitir en la notación el diccionario y el espacio cuando sean evidentes.

Algoritmo Greedy Puro (AGP). Definimos $R_0[\mathcal{D}, H](f) := f \ \text{y} \ G_0[\mathcal{D}, H](f) := 0$. Entonces, para cada $m \ge 1$, definimos inductivamente

$$G_m[\mathcal{D}, H](f) := G_m(f) = G_{m-1}(f) + G(R_{m-1}(f)),$$

 $R_m[\mathcal{D}, H](f) := R_m(f) = f - G_m(f) = R(R_{m-1}(f)).$

El algoritmo greedy definido da un procedimiento para construir un aproximante que resulta ser bueno. El procedimiento para construir un aproximante greedy no es un algoritmo numérico listo para implementación computacional. Por tanto, sería más preciso llamarlo algoritmo greedy teórico. Llamamos un algoritmo incremental si en el paso m añadimos a lo mucho un elemento más, $\varphi_m \in \mathcal{D}$ y aproximamos por la combinación lineal $c_1 \varphi_1 + \cdots + c_m \varphi_m$.

Usamos el término tipo greedy para un algoritmo incremental con φ_m escogido para maximizar un funcional dado $F(f_{m-1},g)$ sobre $g \in \mathcal{D}$ con f_{m-1} el residuo después de (m-1) pasos del algoritmo. La forma de $F(\cdot,\cdot)$ determina el tipo de algoritmo greedy. Usaremos el término greedy débil para un algoritmo incremental con φ_m satisfaciendo una condición más débil que maximizar un funcional dado. Por ejemplo,

$$F(f_{m-1}^{\tau}, \varphi_m) \ge t_m \sup_{g \in \mathcal{D}} F(f_{m-1}, g), \quad 0 \le t_m \le 1.$$

A la sucesión $\tau := \{t_k\}_{k=1}^{\infty}$ la llamaremos la sucesión de debilidad.

También anotar que en otros campos de la investigación AGP recibe otros nombres, en procesamiento de señales recibe el nombre de *matching pursuit*.

Es claro que para una base ortonormal \mathcal{B} de un espacio de Hilbert H tenemos, para cada f,

$$||f - G_m[\mathcal{B}, H](f)|| = \sigma_m[\mathcal{B}, H](f).$$

Existe una clase no trivial de ejemplos de un diccionario redundante, teniendo la misma propiedad: AGPs realizan la mejor aproximación de m-términos para cada función individual. Describimos ese diccionario ahora. Sea Π un conjunto de funciones de $H = L_2([0,1]^2)$ de la forma $u(x_1)v(x_2)$ con la norma unitaria de L_2 . Entonces para este diccionario y para cada $f \in H$,

$$||f - G_m[\Pi, H](f)|| = \sigma_m[\Pi, H](f).$$

4.1.2. Algoritmo X-Greedy

Sabemos mucho menos sobre algoritmos greedy con respecto a diccionarios redundantes generales en el caso de un espacio general de Banach X. Vamos a discutir una generalización de AGP de un espacio de Hilbert H a un espacio de Banach X. Llamamos a esta versión el Algoritmo X-Greedy cuando queremos indicar el espacio de Banach. Para un X y \mathcal{D} dado definimos $G[\mathcal{D},X](f):=\alpha(f)g(f)$ donde $\alpha(f)\in\mathbb{R}$ y $g(f)\in\mathcal{D}$ satisfacen (asumimos existencia) la relación

$$\min_{\alpha \in \mathbb{R}, g \in \mathcal{D}} = \|f - \alpha(f)g(f)\|.$$

Algoritmo X-Greedy. Definimos $R_0[\mathcal{D}, X](f) := f$ y $G_0[\mathcal{D}, X](f) := 0$. Entonces, para cada $m \ge 1$, inductivamente definimos

$$G_m[\mathcal{D}, X](f) := G_m(f) = G_{m-1}(f) + G(R_{m-1}(f)),$$

 $R_m[\mathcal{D}, X](f) := R_m(f) = R_{m-1}(f) - G(R_{m-1}(f)).$

La segunda versión de AGP en un espacio de Banach está basada en un el concepto de tomar un funcional normante. Lo llamamos el Algoritmo Greedy Dual (AGD). Sea un diccionario \mathcal{D} en X dado. Tomamos un elemento $f \in X$ y encontramos un funcional F_f tal que $\|F_f\|_{X^*} = 1$ y $F_f(f) = \|f\|_X$. La existencia de tal funcional se sigue del Teorema de Hanh-Banach. Ahora modificamos el paso básico de un AGP a lo siguiente. Asumimos que existe $g_f \in \mathcal{D}$ tal que

$$|\mathbf{F}_f(g_f)| = \max_{g \in D} |\mathbf{F}_f(g)|.$$

Tomamos esta g_f y resolvemos un problema de optimización más: encontrar el número a tal que

$$||f - ag_f||_X = \min_b ||f - bg_f||_X.$$

Ponemos

$$G[\mathcal{D}, X](f) := ag_f, \quad R[\mathcal{D}, X](f) := f - ag_f.$$

Repitiendo este paso m veces tenemos $G_m(f)$ como un aproximante y $R_m(f)$ como un residuo.

4.2. Transformada de Haar para compresión de imágenes

El primer ejemplo de compresión de información que vamos a llevar a cabo es para imágenes. En esta sección estudiaremos cómo el sistema de Haar se enmarca en este contexto, para ello la referencia bibliográfica que he usado es [12].

4.2.1. Idea

La cuestión más importante es cómo relacionar la funciones de Haar h_n con nuestro ejemplo, una matriz de píxeles. Para ello tenemos que pensar en discretizar el intervalo [0,1] en tantos trozos como la dimensión de una fila o columna de la matriz.

Empezamos viendo el procedimiento para la fila (12 12 12 12 8 8 10 10). Hacemos la medias por parejas y obtenemos cuatro valores, pero con ellos nos resultaría imposible recuperar la fila original, por lo que vamos a calcular también las diferencias divididas por dos por parejas. Así obtenemos cuatro medias y cuatro diferencias que presentamos en la siguiente lista: (12 12 8 10 0 0 0 0). Ahora la segunda mitad de nuestra fila queda fija y aplicamos de manera recursiva este procedimiento a la primera mitad. Obtenemos (12 9 0 -1 0 0 0 0). En la última iteración tenemos fijados los últimos 6 valores y operamos sobre los dos primeros obteniendo (10,5 1,5 0 -1 0 0 0 0).

Los valores obtenidos son los coeficientes de Haar de esa fila, es decir, podríamos obtener la fila como la suma de los productos de cada coeficiente por su función de Haar, es decir, $f = \sum_{k=1}^{n} c_k h_k$.

Realicemos el cálculo para este ejemplo:

$$(12\ 12\ 12\ 12\ 8\ 8\ 10\ 10) = 10,5h_1 + 1,5h_2 - h_4 =$$

$$= 10,5(1\ 1\ 1\ 1\ 1\ 1\ 1) + 1,5(1\ 1\ 1\ 1\ -1\ -1\ -1\ -1)$$

$$- (0\ 0\ 0\ 1\ 1\ -1\ -1)$$

$$= (12\ 12\ 12\ 12\ 9\ 9\ 9) - (0\ 0\ 0\ 1\ 1\ -1\ -1)$$

Efectivamente obtenemos la fila original. Más adelante tendremos que coger los coeficientes que más información nos aporten. Nos fijamos en que si hubiésemos quitado el coeficiente menos importe (distinto de cero), hubiera sido el -1, y entonces la aproximación de la lista inicial hubiera sido (12 12 12 12 9 9 9 9) la cual refleja bastante bien la original.

Para realizar este proceso la lista inicial debe de tener tamaño 2^n con n un número natural y el número de iteraciones es n. En el ejemplo mostrado n = 3.

Cuando tratamos con un array 2-dimensional las cosas son diferentes. Hay dos vías de llevarlo cabo:

- Hacer una iteración sobre las filas tal y como lo hemos explicado y luego sobre las columnas y así sucesivamente.
- Hacer todas las iteraciones sobre las filas y una vez hemos acabado hacer las iteraciones sobre las columnas.

Aquí vamos implementar la segunda vía pues una vez que tengamos implementado el procedimiento por filas para hacerlo por columnas sólo hemos de transponer la matriz y volverlo a aplicar. Claramente de la segunda forma realizamos muchas menos transposiciones y por tanto resulta más acertada.

Imagen 1: Procedimiento de obtención de los coeficientes de la base de Haar.

Para una matriz de tamaño 4 × 4 el desarrollo sería como sigue:

$$\begin{pmatrix}
12 & 12 & 8 & 8 \\
12 & 12 & 8 & 8 \\
10 & 10 & 8 & 8 \\
10 & 10 & 8 & 8
\end{pmatrix}
\rightarrow
\begin{pmatrix}
10 & 2 & 0 & 0 \\
10 & 2 & 0 & 0 \\
9 & 1 & 0 & 0 \\
9 & 1 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
9,5 & 1,5 & 0 & 0 \\
0,5 & 0,5 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix},$$
(4.1)

donde la primera matriz es la original, la segunda la resultante de aplicar el procedimiento por filas y la última la obtenida de aplicar el proceso por columnas.

En último lugar, un ejemplo de una matriz 8×8 y con más diferencias en los números. Sea la matriz:

$$\begin{pmatrix} 12 & 12 & 12 & 12 & 8 & 8 & 10 & 10 \\ 12 & 12 & 12 & 12 & 8 & 8 & 10 & 10 \\ 10 & 10 & 10 & 10 & 8 & 8 & 10 & 10 \\ 10 & 10 & 10 & 10 & 8 & 8 & 10 & 10 \\ 22 & 22 & 22 & 22 & 8 & 8 & 16 & 16 \\ 22 & 20 & 20 & 20 & 14 & 14 & 4 & 4 \\ 22 & 20 & 20 & 20 & 14 & 14 & 4 & 4 \end{pmatrix},$$

sus coeficientes en la base de Haar son:

Nuestro objetivo en esta sección será escoger de diferentes formas los mejores coeficientes. Algunas opciones son:

- Limitarnos simplemente a escoger el número m de coeficientes que queremos quedarnos y hacer una aproximación de m-términos como hemos visto en el desarrollo matemático del trabajo.
- Escoger un valor umbral $\varepsilon > 0$ que sea pequeño y poner ceros en aquello valores de la matriz o píxeles cuyo valor absoluto sea más pequeño.

Sin embargo los coeficientes c_k de la base de Haar no son totalmente objetivos, algunos son más importantes que otros. El motivo de este hecho es que no hemos usado la base de

Haar normalizada. Matemáticamente:

$$\widehat{h_k} = \frac{h_k}{\|h_k\|} \Rightarrow f = \sum_{k=1}^n c_k h_k = \sum_{k=1}^n c_k \|h_k\| \widehat{h_k} = \sum_{k=1}^n \widehat{c_k} \widehat{h_k}$$

donde $\widehat{h_k}$ son las funciones del sistema de Haar normalizado $\widehat{c_k} = c_k ||h_k||$ los coeficientes sobre el sistema normalizado. Los nuevos coeficientes $\widehat{c_k}$ reflejan mucho mejor el valor de los píxeles y son los adecuados a la hora de pasar cualquier algoritmo por la matriz.

Como nuestro caso es en dos dimensiones la norma de la función de Haar en el píxel (i,j) es $||h_i|| ||h_j||$ y la norma de la función de Haar h_n es:

$$||h_n|| = \frac{1}{\sqrt{2^k}}$$
 donde $n = 2^k + s$, $k = 0, 1, 2, \dots$ y $s = 1, 2, \dots, 2^k$.

El ejemplo 4.1 ya está normalizado porque los únicos valores distintos de 0 son los de la submatriz 2×2 superior izquierda y ahí todos los píxeles tienen norma uno.

Para el otro ejemplo 4.2, la matriz normalizada queda:

donde se ha redondeado a 4 decimales. Estos nuevos coeficientes son los que vamos a usar. Es muy fácil construir un procedimiento de manera que obtengamos directamente los píxeles normalizados y revertir el proceso teniendo en cuenta que están normalizados.

4.2.2. Algoritmo

4.2.3. Resultados

4.3. Buscar otro ejemplo/aplicación

4.3.1. Idea

4.3.2. Algoritmo

4.3.3. Resultados

Capítulo 5

Conclusiones y Trabajos Futuros

5.1. Conclusiones

En el desarrollo del trabajo se han presentado resultados muy interesantes. De todos ellos me gustaría destacar las siguientes conclusiones:

- Una sucesión $(e_n)_{n=1}^{\infty}$ es una base de X si para cada $x \in X$ existe una única sucesión de escalares $(a_n)_{n=1}^{\infty}$ tal que $x = \sum_{n=1}^{\infty} a_n e_n$. Una sucesión $(e_n)_{n=1}^{\infty}$ es una base de Shauder si y solo si es una base para X. El sistema trigonométrico complejo $(1, e^{i\theta}, e^{-i\theta}, ...)$ no es una base de $\mathcal{C}_{\mathbb{C}}(\mathbb{T})$.
- Hay una variedad de tipos de bases en espacios de Banach con propiedades y caracterizaciones realmente interesantes. En este trabajo hemos estudiado las bases monótonas, incondicionales, simétricas, acotadamente completas, shrinking y democráticas.
- La caracterización de Konyagin y Temlyakov: una base $\mathcal{B} = (e_n)_{n=1}^{\infty}$ de un espacio de Banach X es greedy si y solo si es incondicional y democrática.
- La conclusión matemática más importante para nuestros objetivos es que el sistema de Haar normalizado $\mathcal{H}_p = (h_n^p)_{n=1}^{\infty}$ es una base greedy en $L_p[0,1]$ para 1 .
- La primera conclusión de carácter informático es el algoritmo teórico de aproximación. Dado $f \in X$ y un diccionario \mathcal{D} en X, calculamos un funcional F_f tal que $\|F_f\|_{X^*} = 1$ y $F_f(f) = \|f\|_X$. Asumimos que existe $g_f \in \mathcal{D}$ de manera que $|F_f(g_f)| = \max_{g \in \mathcal{D}} |F_f(g)|$. Por último, una optimización más: encontrar el número a tal que $\|f ag_f\|_X = \min_b \|f bg_f\|_X$. Entonces:

$$G[\mathcal{D}, X](f) := ag_f, \quad R[\mathcal{D}, X](f) := f - ag_f.$$

■ HACER MÁS CONCLUSIONES INFORMÁTICAS.

5.2. Trabajos futuros

La teoría de bases en espacios de Banach y la teoría de aproximación son campos de estudio con una gran potencia en la actualidad. Es por eso que aún se puede seguir trabajando e investigando en cuestiones muy relacionadas a las aquí expuestas. Algunas de ellas pueden ser:

- La búsqueda de más aplicaciones de las bases y sucesiones básicas a la teoría isomórfica de espacios de Banach. Esto es un mundo enorme.
- Estudio de nuevos tipos de bases como las Almost Greedy y Quasi-Greedy y también analizar nuevas caracterizaciones de las bases así como la relación que estas guardan con las que hemos estudiado.
- Otra tarea interesante sería examinar nuevos ejemplos de bases greedy en espacios de Banach. Hacer pruebas con ejemplos sencillos y más visuales e incluso ver las aportaciones computacionales de otras bases greedy más complejas.
- Una propuesta verdaderamente interesante de cara al futuro es el estudio de la relación que guardan las bases de un espacio con su espacio dual. Una primera cuestión a abordar sería: dada una base \mathcal{B} en un espacio de Banach X con alguna propiedad de tipo greedy, ¿qué podemos decir acerca de la sucesión de funcionales biortogonales $B^* = (e_n^*)_{n=1}^{\infty}$ en el espacio dual X^* ?
- Pensar nuevos ejemplos informáticos y ejecutar los algoritmos programados sobre estos. En caso de que los algoritmos no sean útiles para los nuevos ejemplos analizar modificaciones que sí los harían válidos.
- HACER MÁS TRABAJOS FUTUROS INFORMÁTICOS.

Bibliografía

- [1] FERNANDO ALBIAC & NIGEL J. KALTON, *Topics in Banach Space Theory*. Graduate Texts in Mathematics (2015, Second Edition).
- [2] D.J.H. Garling, Symmetric bases of locally convex spaces. Stud. Math. 30, 163-181 (1968).
- [3] S. Karlin, Bases in Banach Spaces. Duke Math. J. 15, 971-985 (1948).
- [4] W.B. JOHNSON & H.P. ROSENTHAL & M. ZIPPIN, On bases, finite dimensional descompositions and weaker structures in Banach spaces. Isr. J. Math. 9, 488-506 (1971).
- [5] R.C. James, Bases and reflexivity of Banach spaces. Ann. Math. (2) **52**, 518-527 (1950).
- [6] P. Enflo, A counter example to the approximation problem in Banach spaces. Acta Math. 130, 309-317 (1973).
- [7] M. ZIPPIN, A remark on bases and reflexivity in Banach spaces. Isr. J. Math. 6, 74-79 (1968).
- [8] D.L. Burkholder, A nonlinear partial equation and the unconditional constant of the Haar system in L_p . Bull. Am. Math. Soc. (N.S.) 7(3), 591-595 (1982).
- [9] D.L. Burkholder, A proof of Pelczynski's conjecture for the Haar system. Stud. Math. 91(1), 79-83 (1988).
- [10] S. V. Konyagin & V. N. Temlyakov, A remark on greedy approximation in Banach spaces. East J. Approx. 5(3), 365-379 (1999).
- [11] V. N. Temlyakov, The best m-term approximation and greedy algorithms. Adv. Comput. Math. 8(3), 249-265 (1998).
- [12] DAVID SALOMON, Data compression. The Complete Reference. Springer (2007, Fourth Edition).