Problema 809.

Propuesto por Jean Louis Aymé.

3.- Sean M, N, P los puntos medios de los lados BC, AC y AB, respectivamente, y O el circuncentro de un triángulo acutángulo ABC. Las circunferencias circunscritas de los triángulos BOC y MNP intersecan en dos puntos X e Y diferentes. en el interior del triángulo ABC. Demostrar que <BAX=<CAY.

Olimpiada Serbia (2013). http://srb.imomath.com/zadaci/2013 smo booklet.pdf

Solution proposée par Philippe Fondanaiche

On trace le point Z à l'intérieur du triangle ABC tel que les triangles ABX et AZN sont semblables avec \angle BAX = \angle ZAN. On va démontrer que le point Z est confondu avec le point Y.L'égalité des angles \angle BAX et \angle CAY en découle.

La similitude des triangles ABX et AZN est obtenue avec \angle ZAN = \angle ZAC = \angle BAX et AZ/AN = AB/AX, ce qui équivaut à AZ.AX = AB.AN Il en résulte que les triangles AZB et ANX sont eux aussi semblables. La figure n°1 ci-après représente ces deux couples de triangles.

Par ailleurs comme P est milieu de AB et N milieu de AC, on a AB = 2AP et AC = 2AN. D'où AZ.AX = AB.AN = AC.AP ==> non seulement AZ/AC = AP/AX et les triangles AZC et APX sont semblables mais aussi AZ/AP = AC/AX et les triangles AZP et ACX sont eux aussi semblables. La figure n°2 ci-après représente ces deux couples de triangles.

On établit alors les deux séquences suivantes de relations d'angles (cf figure n°3):

- 1) \angle NZP = \angle NZA + \angle AZP = \angle XBA + \angle XCA = \angle XBC \angle BAC (cf quadrilatère concave ABXC) = \angle BOC \angle BAC = \angle BAC = \angle NMP ==> le point Z appartient au cercle d'Euler du triangle ABC.
- 2) \angle ZBA + \angle ZCA = \angle NXA + \angle PXA = \angle NMP = \angle BAC. Comme \angle BZC \angle BAC = \angle ZBA + \angle ZCA (cf quadrilatère concave ABZC), on déduit \angle BZC = $2 \angle$ BAC ==> le point Z appartient au cercle circonscrit au triangle BOC.

Conclusion: le point Z qui est à l'intersection du cercle d'Euler du triangle ABC et du cercle circonscrit au triangle BOC tout en étant distinct du point X est nécessairement confondu avec Y.