CS711: Introduction to Game Theory and Mechanism Design

Jul-Nov 2018

Project: Assignment 2

Name: Anubhav Agarwal Roll Number: 160136

1 Solution 1

1.1 Part a

 $f(P_1,P_2)=a$ (given) Consider the preference profile $(P_1^{'},P_2^{''})$

$$\begin{array}{c|c} P_1' & P_2'' \\ \hline b & c \\ \hline a & a \\ \hline c & b \\ \end{array}$$

For any preference profile $(\bar{P_1}, \bar{P_2})$, $f(\bar{P_1}, \bar{P_2}) \in \{\bar{P_1}(1), \bar{P_2}(1)\}$ Therefore for the above preference profile, $f(P_1', P_2'') = \{b,c\}$

But if $f(P_1^{'},P_2^{''})=c$, then $f(P_1,P_2)=c$ because of Monotonicity of f (the dominated set of c is same in both the preference profiles (P_1,P_2) and $(P_1^{'},P_2^{''})$) Therefore $f(P_1^{'},P_2^{''})=b$

Now consider the preference profile $(P_{1}^{'}, P_{2}^{'})$

$$\begin{array}{c|c} P_1' & P_2' \\ \hline b & c \\ \hline a & b \\ \hline c & a \\ \end{array}$$

Since the dominated set of b in $(P_1^{'}, P_2^{''})$ is a subset of the dominated set of b in $(P_1^{'}, P_2^{'})$ and the social choice given by $f(P_1^{'}, P_2^{''})$ is b, therefore $f(P_1^{'}, P_2^{'}) = b$ (by Monotonicity of f)

Hence proved.

1.2 Part b

If the preferences are generated from a single-peaked preference domain with the intrinsic ordering of the alternatives being a < b < c, then the above conclusion does not hold.

The reason is that while going through the above conclusion, we used a preference profile $P_2^{''}$ in which c is preferred over a and a is preferred over b. Therefore, $P_2^{''}$ is not a single peaked preference profile. It has two peaks, each at a and c

Now that we are only allowed to have single peaked preferences, we cannot use the proof above.

To have $f(P_1^{'}, P_2^{'}) = a$, we can use the following mechanism:

$$f(P) = min_{i \in N} \{P_i(1)\}$$

Where minimum is taken w.r.t. the order relation; Hence the SCF picks the left-most peak among the peaks of the agents.

Therefore $f(P_1, P_2) = a$ and $f(P'_1, P'_2) = a$.

2 Solution 2

The preference domain in this case is the set of all the subsets of X, where X is the set of projects. This means that the preference domain is the power set of X.

Let x be the top ranked project in X according to the linear ordering P_i over X.

x can be a part of more than 1 subsets of X, since |X| > 1. Let S,T \subseteq X be two such sets. Now agent i is indifferent to the two subsets S and T according to the info given.

We will have to restrict our preference domain to remove indifferences. Gibbard-Satterthwaite theorem does not hold if indifferences are allowed among alternatives or if the preference domain is restricted.

3 Solution 3

Is the Median voter SCF group strategy proof?

A social choice function f is manipulable by a group of agents $K \subseteq N$ if for some preference profile (P_K, P_K) there exists some preference profile P_K' of agents in K such that $f(P_K', P_{-K})$ P_i $f(P_K, P_{-K})$ for all $i \in K$.

Let there be n players. $P_i(1)$ denotes the top preference of player j where j = 1, 2, ..., n

Assume that the median preference is held by player i and is given by $P_i(1) = a$. Let the group of agents trying to manipulate it be K.

For all those player j, whose $P_i(1) = a$, then the player will not try to manipulate the outcome.

If all players whose $P_j(1)$ < a in common order of single peaked domain model form a group, and they

change their preference to an alternative b < a (in common order), then again the median will be a. If they chose an alternative b > a, then since it is single peaked model and $P_j(1) < a < b$ therefore a is still preferred over b. Therefore they also won't be able to manipulate.

If all players whose $P_j(1) > a$ in common order of single peaked domain model form a group, and they change their preference to an alternative b > a, then again the median will be a.

If they chose an alternative b < a, then since it is single peaked model, and $b < a < P_j(1)$ therefore a is still preferred over b. Therefore they also won't be able to manipulate.

Now consider the case when the group K has some agents with $P_j(1) < a$ and some agents with $P_j(1) > a$. Now let them manipulate the result to an alternative b. if b < a, then the manipulation will reduce the payoff for those agents whose P(1) > a.

If b > a, then it will reduce the payoff for those agents whose P(1) < a.

Hence no such group can be formed that can manipulate the outcome.

Hence the Median Voter SCF is group strategy proof.