DatasetGAN

GAN reminder

lan J. Goodfellow 2014

GAN problems

Vanishing Gradients

Research

GAN problems

Generator - black box

Understanding of various aspects of the image synthesis process is still lacking, the properties of the latent space are also poorly understood

Redesigned generator architecture in a way that exposes novel ways to control the image synthesis process

Nvidia, Tero Karras end of 2018

New Generator

Traditionally the latent code is provided to the generator through an input layer. StyleGAN departs from this design, using MLP with 8 fully-connected layers

Traditional

Style-based

Motivation for using MLP instead of Gaussian noise. For example, on x-axis women and men, on y-axis beard and hair style

Progressive Growing GAN

Learned affine transformations (A) specialize w to *styles* that control adaptive instance normalization (AdaIN) operations. The AdaIN operation is defined as

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i},$$

Finally, StyleGAN feeds a Gaussian noise to each layer of the synthesis network

Here "A" stands for a learned affine transform, and "B" applies learned per-channel scaling factors to the noise input

$$ext{AdaIN}(\mathbf{x}_i, \mathbf{y}) = \mathbf{y}_{s,i} rac{\mathbf{x}_i - \mu(\mathbf{x}_i)}{\sigma(\mathbf{x}_i)} + \mathbf{y}_{b,i},$$

Traditional

Style-based

Quality

	FID	FID
Method	CelebA-HQ	FFHQ
A Baseline Progressive GAN [30]	7.79	8.04
B + Tuning (incl. bilinear up/down)	6.11	5.25
C + Add mapping and styles	5.34	4.85
D + Remove traditional input	5.07	4.88
E + Add noise inputs	5.06	4.42
F + Mixing regularization	5.17	4.40

Mixing

Two sets of images were generated from their respective latent codes (sources A and B); the rest of the images were generated by copying a specified subset of styles from source B and taking the rest from source A

Noise effect

Effect of noise inputs at different layers of our generator (a)

Noise is applied to all layers (b) No noise (c) Noise in fine layers only (64^2 – 1024^2) (d) Noise in coarse layers only (4^2 – 32^2)

Examples

- StyleGAN2 new normalization in G, add PPI regularization, change upsample system, ...
 Better results:)
- StyleGAN2 ADA new augmentations for better results and increasing learning rate
- StyleGAN3 solving alias problem, old results, paves the way for video generate

StyleGAN summary

- New generator with a lot of details
- Novel ways to control the image synthesis process
- Very good quality
- New datasets with high-quality images at 1024²
 resolution

Stylegan again!

"API"

Learned pixel-wise representations

Inspecting StyleGAN's "API"

We can very "viewpoint", and keep other content frozen

Inspecting StyleGAN's "API"

We can keep "viewpoint", and vary other content

Lots of available data: querying Flickr

Car: 1,422,984

Van: 2,674,607

Bus: 4,799,402

Building: 1,638,425

Bicycle: 3,071,418

Tricycle: 111,341

Traffic sign: 150,647

Dog: 1,731,929

Human: 3,276,718

Pedestrian: 659,542

Person: 507,506

Skater: 2,454,728

Skateboard: 1,073,733

Semantic segmentation

DatasetGAN!

DatasetGAN!

Architecture

16 annotated

16 annotated

What can we do with a single manually labeled example!

Quality

Conclusion

- Annotate your data!
- Image GANs learn geometric and semantically disentangled features
- We can utilize these features for few-shot learning of pixel-wise and 3D tasks

References

- StyleGAN paper https://arxiv.org/abs/1812.04948
- StyleGAN2 paper http://arxiv.org/abs/1912.04958
- DatasetGAN paper
 https://arxiv.org/abs/2104.06490
- Nvidia, Sanja FIdler Image GANs for Reducing Pixel-Wise Supervision https://www.youtube.com/watch?v=fWPegVRPb7U