Scenario: Let's consider a retail business that wants to analyze sales data across different dimensions like time, product, and location.

1. Star Schema Example

The **Star Schema** is a simple database design in a data warehouse, where a central fact table is directly connected to several dimension tables.

- Fact Table: Sales
 - Columns: `Sales_ID`, `Product_ID`, `Date_ID`, `Store_ID`, `Quantity_Sold`,
 `Total_Sales_Amount`
- Dimension Tables:
 - Product Dimension:
 - `Product_ID`, `Product_Name`, `Category`, `Brand`
 - Date Dimension:
 - `Date_ID`, `Date`, `Month`, `Quarter`, `Year`
 - Store Dimension:
 - `Store_ID`, `Store_Name`, `City`, `State`, `Country`

Sample Data:

• Fact Table (Sales):

Sales_ID	Product_ID	Date_ID	Store_ID	Quantity_Sold	Total_Sales_Amount
1	101	20230101	1	5	\$500
2	102	20230102	2	3	\$300

• Product Dimension:

Product_ID	Product_Name	Category	Brand
101	Laptop	Electronics	Dell
102	Smartphone	Electronics	Apple

Date Dimension:

Date_ID	Date	Month	Quarter	Year
20230101	01-Jan-2023	Jan	Q1	2023
20230102	02-Jan-2023	Jan	Q1	2023

• Store Dimension:

Store_ID	Store_Name	City	State	Country
1	Store A	New York	NY	USA
2	Store B	San Francisco	CA	USA

2. Snowflake Schema Example

The **Snowflake Schema** is a more normalized version of the star schema, where dimension tables are further broken down into related tables.

- Fact Table: Sales
 - Same as in the Star Schema:
 - Columns: `Sales_ID`, `Product_ID`, `Date_ID`, `Store_ID`, `Quantity_Sold`,
 `Total_Sales_Amount`
- Dimension Tables:
 - Product Dimension:
 - `Product_ID`, `Product_Name`, `Category_ID`, `Brand_ID`
 - Category Dimension (Normalized from Product Dimension):
 - `Category_ID`, `Category_Name`
 - Brand Dimension (Normalized from Product Dimension):
 - `Brand_ID`, `Brand_Name`
 - Date Dimension:
 - `Date_ID`, `Date`, `Month_ID`, `Quarter_ID`, `Year`
 - Month Dimension (Normalized from Date Dimension):
 - `Month_ID`, `Month_Name`
 - Quarter Dimension (Normalized from Date Dimension):
 - `Quarter_ID`, `Quarter_Name`
 - Store Dimension:
 - `Store_ID`, `Store_Name`, `City_ID`
 - City Dimension (Normalized from Store Dimension):
 - `City_ID`, `City_Name`, `State_ID`
 - State Dimension (Normalized from City Dimension):
 - `State_ID`, `State_Name`, `Country_ID`
 - Country Dimension (Normalized from State Dimension):
 - `Country_ID`, `Country_Name`

Sample Data:

• Fact Table (Sales):

Sales_ID	Product_ID	Date_ID	Store_ID	Quantity_Sold	Total_Sales_Amount
1	101	20230101	1	5	\$500
2	102	20230102	2	3	\$300

• Product Dimension:

Product_ID	Product_Name	Category_ID	Brand_ID
101	Laptop	10	20
102	Smartphone	10	21

• Category Dimension:

Category_ID	Category_Name
10	Electronics

• Brand Dimension:

Brand_ID	Brand_Name
20	Dell
21	Apple

• Date Dimension:

Date_ID	Date	Month_ID	Quarter_ID	Year
20230101	01-Jan-2023	1	1	2023
20230102	02-Jan-2023	1	1	2023

Month Dimension:

Month_ID	Month_Name
1	January

• Quarter Dimension:

Quarter_ID	Quarter_Name
1	Q1

Store Dimension:

Store_ID	Store_Name	City_ID
1	Store A	100
2	Store B	101

• City Dimension:

City_ID	City_Name	State_ID
100	New York	200
101	San Francisco	201

• State Dimension:

State_ID	State_Name	Country_ID
200	NY	300
201	CA	300

• Country Dimension:

Country_ID	Country_Name
300	USA

Comparison

• Star Schema:

- Easier to understand and navigate.
- Denormalized with fewer joins required in queries.
- Faster query performance but potentially more data redundancy.

• Snowflake Schema:

- More normalized, which reduces redundancy and saves storage space.
- More complex queries with multiple joins.
- Typically used in scenarios where data integrity and storage efficiency are critical.

These schemas are foundational structures in a data warehouse, designed to efficiently organize and query large volumes of data.