ЧИСЛЕННАЯ РЕАЛИЗАЦИЯ ИНТЕГРАЛЬНЫХ ПРЕОБРАЗОВАНИЙ В КОНЕЧНЫХ ПРЕДЕЛАХ

Методические указания к лабораторным работам по курсу «Оптическая информатика»

Кириленко М.С.

Содержание

3
4
4
4
7
.10

Введение

Данная лабораторная предназначена для студентов четвёртого курса специальности «Прикладная математика и информатика». Работа предполагает наличие знаний, полученных на предыдущих курсах специальности, однако многие вещи разъясняются практически с базового уровня.

В работе рассматриваются интегральные преобразования в конечных пределах. Ядро интегрального преобразования может быть как действительным, так и комплексным. Сигнал, над которым осуществляется преобразование, является комплекснозначной функцией действительного аргумента. Это справедливо и для выходного сигнала.

Задания данной работы подготавливают студентов к следующей лабораторной работе, посвящённой важному в дифракционной оптике оператору, известному как преобразование Фурье.

Некоторые варианты включают в себя специальные функции, такие как функции Бесселя, полиномы Эрмита и Лагерра, активно использующиеся в приложениях оптики.

Краткие теоретические сведения

Интегральное преобразование

Пусть имеется некоторая комплексная функция действительного аргумента $f: \mathbb{R} \to \mathbb{C}$. Рассмотрим следующий линейный оператор T:

$$F(\xi) = T \left[f(x) \right] (\xi) = \int_{-\infty}^{+\infty} K(\xi, x) f(x) dx, \tag{1}$$

где $F(\xi)$ — результат, получившийся после действия оператора. Данное преобразование является интегральным. Функция $K(\xi, x)$ называется ядром интегрального преобразования (не следует путать с ядром оператора $\ker T$).

Не всегда преобразования определяются в бесконечных пределах. Некоторые преобразования (например, преобразование Ханкеля) предусматривают интегрирование по полупрямой, а некоторые – только на конечной области. Более того, любую бесконечную область можно ограничить, получив новый интегральный оператор. Будем называть интегральным преобразованием в конечных пределах следующий оператор:

$$F(\xi) = T[f(x)](\xi) = \int_{a}^{b} K(\xi, x) f(x) dx,$$
(2)

где a < b.

Численное интегрирование

Рассмотрим, как осуществляется численная реализация интегральных преобразований от простого к сложному.

Предположим, что требуется численно найти значение интеграла:

$$\int_{a}^{b} f(x)dx,\tag{3}$$

где $f: \mathbb{R} \to \mathbb{R}$ — некоторая непрерывная на отрезке [a,b] действительная функция. Тогда её интеграл может быть найден численно. Далее будет рассмотрен наиболее простой метод численного интегрирования — метод левых прямоугольников.

Разобьём (т.е. проведём дискретизацию) отрезок интегрирования на n равных отрезков $(x_k,x_{k+1}),k=\overline{0,n-1}$. Заметим, что $a=x_0$ и $b=x_n$. Обозначим длину каждого такого отрезка через $h_x=x_{k+1}-x_k=(b-a)/n$ (шаг разбиения), тогда $x_k=a+kh_x$. Значения интегрируемой функции в точках разбиения обозначим $f_k=f(x_k)$.

Воспользовавшись свойством аддитивности интеграла, получаем представление для выражения (3):

$$\int_{a}^{b} f(x)dx = \sum_{k=0}^{n-1} \int_{x_{k}}^{x_{k+1}} f(x)dx.$$
 (4)

Значение интеграла на отрезке (x_k, x_{k+1}) приблизительно равно значению площади прямоугольника $S_k = f_k(x_{k+1} - x_k) = f_k h_x$ (рисунок 1).

Рисунок 1 – Геометрическая интерпретация численного интегрирования.

Тогда, в соответствии с (4), значение интеграла (3) приближённо равно:

$$\int_{a}^{b} f(x)dx \approx \sum_{k=0}^{n-1} f_k \cdot h_x.$$
 (5)

Формула (7) остаётся справедливой и для комплекснозначных функций вещественной переменной, т.е. функций вида $f: \mathbb{R} \to \mathbb{C}$, что позволяет применять метод для расчёта интегральных преобразований в конечных пределах. Перепишем формулу (2) в соответствии с приближением:

$$F(\xi) = \int_{a}^{b} K(\xi, x) f(x) dx \approx \sum_{k=0}^{n-1} K(\xi, x_k) f_k \cdot h_x,$$
 (6)

где n – количество интервалов разбиения, $h_x = (b-a)/n$, $x_k = a + kh_x$, $f_k = f(x_k)$, $k = \overline{0,n}$. Формула (6) позволяет вычислить приближённое значение $F(\xi)$ интегрального преобразования (2) в каждой выбранной точке ξ . Для того чтобы получить вид функции $F(\xi)$ на некотором отрезке [p,q], необходимо вычислить преобразования для всех точек данного отрезка. Мы можем лишь пробежаться по конечному множеству точек, поэтому определим разбиение и для отрезка [p,q].

Пусть m — количество интервалов разбиения, $h_{\xi}=(q-p)/m$, $\xi_l=p+lh_{\xi},\ l=\overline{0,m}$. Легко убедиться, что $\xi_0=p$, $\xi_m=q$. Значения преобразования $F(\xi_l)$ в точке ξ_l приближённо равно:

$$F(\xi_l) \approx \sum_{k=0}^{n-1} K(\xi_l, x_k) f_k \cdot h_x, \ l = \overline{0, m}. \tag{7}$$

Обозначим через F_l значение выражения справа в (7):

$$F_{l} = \sum_{k=0}^{n-1} K(\xi_{l}, x_{k}) f_{k} \cdot h_{x}, \ l = \overline{0, m}.$$
 (8)

Важно помнить, что $F_l \neq F(\xi_l)$. Выражение (8) может быть легко преобразовано в матричную форму. Введём следующие обозначения:

$$\mathbf{F} = \begin{pmatrix} F_0 \\ F_1 \\ \dots \\ F_m \end{pmatrix}, \mathbf{f} = \begin{pmatrix} f_0 \\ f_1 \\ \dots \\ f_n \end{pmatrix}, \mathbf{A} = \left(K(\xi_l, x_k) \right)_{l=0, k=0}^{m, n}. \tag{9}$$

Тогда формула (8) может быть переписана в виде:

$$\mathbf{F} = \mathbf{Af} \cdot h_{r}. \tag{10}$$

Примечание: выражение (8) содержит в себе сумму до элемента с номером n-1, в то время как формула (10) просуммирует все n+1 элементов. Иными словами, мы получим другой результат. При больших n разница будет незначительной.

Требования к выполнению лабораторной работы

- Выбрать в качестве входного сигнала $f(x) = \exp(i\beta x)$, где $\beta = 1/10$.
- Построить график исходного оптического сигнала (здесь и далее: подразумевается, что строить нужно амплитуду и фазу на отдельных изображениях). Изменяя параметр β (задавая его как большим, так и близким к нулю, а также рассматривая отрицательные значения), сделать вывод о том, как он влияет на график исходной функции. Привести несколько графиков для подкрепления выводов. После этого вернуть параметр β в начальное значение. Число *п* можно задать равным 1000.
- В соответствии с вариантом (таблица 1) реализовать численный расчёт интегрального преобразования над одномерным сигналом по формулам (7) или (10), везде α принять равным 1. Число *m* можно также задать равным 1000.
- Построить график результата преобразования.
- Изменяя параметры выходной области [p,q], p < q, сделать выводы о том, как они влияют на график результата преобразования. После этого вернуть параметры в начальное значение.
- Варьируя параметр $\alpha > 0$ (по аналогии с β , но рассматривая только положительные значения) исследовать, как меняется результат преобразования. После этого вернуть параметр α в начальное значение. Важно: для того, чтобы сделать вывод, может понадобиться изменить размеры выходной области [p,q].
- Варьируя параметр c > 0 и, следовательно, изменяя область интегрирования, исследовать, как меняются график исходной функции и результат преобразования. После этого вернуть параметр c в начальное значение. Важно: для того, чтобы сделать вывод, может понадобиться изменить размеры выходной области [p,q].
- Собрать все выводы в таблицу 2. Важно: в разных вариантах параметры могут влиять совершенно разным образом на выходную функцию. Выводы должны быть содержательными. Пример: «При увеличении параметра α амплитуда $F(\xi)$ сжимается по оси абсцисс, становится больше локальных максимумов, при этом каждый следующий меньше предыдущего. Фаза преобразования практически не изменяется».
- Прикрепить код программы к отчёту.

Таблица 1. Варианты выполнения задания.

$N_{\underline{0}}$	Ядро $K(\xi, x)$	Параметры
1	$\exp(-\alpha(x-\xi)^2)$	[a,b] = [-c,c], c = 5
		[p,q] = [-25,25]
2	$\exp(-\alpha x-\xi)$	[a,b] = [-c,c], c = 5
	$\exp(-\alpha_{ x}-\zeta_{ })$	[p,q] = [-10,10]
3	$\exp(-\alpha x+i\xi)$	[a,b] = [-c,c], c = 5
	$\exp(-\alpha x + i\zeta)$	[p,q] = [-5,5]
4	$\exp(-\alpha \xi x)$	[a,b] = [0,c], c = 5
	$\exp(-\alpha \zeta t)$	[p,q] = [0,5]

No॒	Ядро $K(\xi, x)$	Параметры
5	$\chi^{\alpha\xi-1}$	[a,b] = [1,c], c = 5
	X	[p,q] = [0,3]
6	$J_0(\alpha \xi x)x$	[a,b] = [0,c], c = 5
0	J ₀ (wçı)ı	[p,q] = [0,5]
7	$J_1(\alpha \xi x)x$	[a,b] = [0,c], c = 5
,	01(00\$t)11	[p,q] = [0,5]
8	$J_{\gamma}(\alpha \xi x)x$	[a,b] = [0,c], c = 5
	2(3-)	[p,q] = [0,5]
9	$\exp(-\alpha x^2 \xi^2) H_4(x\xi)$	[a,b] = [-c,c], c = 3
	1 (3 / 4(3/	[p,q] = [-3,3]
10	$\exp(-x^2\xi^2)H_5(\alpha x\xi)$	[a,b] = [-c,c], c = 3
10		[p,q] = [-3,3]
11	$\exp(-\alpha x \xi) L_1(x \xi)$	[a,b] = [-c,c], c = 3
		[p,q] = [-3,3]
12	$i\exp(-\alpha(x-\xi)^2)$	[a,b] = [-c,c], c = 5
12	(()	[p,q] = [-25,25]
13	$i\exp(-\alpha x-\xi)$	[a,b] = [-c,c], c = 5
	r r ([p,q] = [-10,10]
14	$i\exp\left(-\alpha\left x+i\xi\right \right)$	[a,b] = [-c,c], c = 5
1	1 (3)	[p,q] = [-5,5]
15	$i \exp(-\alpha \xi x)$	[a,b] = [0,c], c = 5
	1 \ 3 /	[p,q] = [0,5]
16	$ix^{\alpha\xi-1}$	[a,b] = [1,c], c = 5
	i.A	[p,q] = [0,3]
17	$iJ_0(\alpha \xi x)x$	[a,b] = [0,c], c = 5
	0 \ 2 /	[p,q] = [0,5]
18	$iJ_1(\alpha \xi x)x$	[a,b] = [0,c], c = 5
	1, 5,	[p,q] = [0,5]
19	$iJ_{\gamma}(\alpha\xi x)x$	[a,b] = [0,c], c = 5
		[p,q] = [0,5]
20	$i \exp(-\alpha x^2 \xi^2) H_4(x\xi)$	[a,b] = [-c,c], c = 3
	x , 3 , 4 \ 3/	[p,q] = [-3,3]
21	$i \exp(-x^2 \xi^2) H_5(\alpha x \xi)$	[a,b] = [-c,c], c = 3
		[p,q] = [-3,3]
22	$i \exp(-\alpha x \xi) L_3(x \xi)$	[a,b] = [-c,c], c = 3
	I . W . J . W	[p,q] = [-3,3]

Таблица 2. Влияние параметров на графики входной функции и результат преобразования.

Параметр	
βв	
исходной	
функции	
Выходная	
область	
[p,q]	
Параметр	
а в ядре	
оператора	
Параметр	
с во	
входной	
области	
[a,b]	

Литература

- 1. Фихтенгольц Г.М. Основы математического анализа, том I.-M.: Наука, 1968.-440c.
- 2. Кострикин А.И., Манин Ю.И. Линейная алгебра и геометрия. М.: Наука, 1980. 309с.
- 3. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1973. 736 с.
- 4. Самарский А.А., Гулин А.В. Численные методы: Учебное пособие для вузов. М.: Наука, 1989. 432 с.
- 5. Люстерник Л.А., Соболев В.И. Краткий курс функционального анализа: Учебное пособие. СПб.: Лань, 2009. 272 с.
- 6. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 2004. 798 с.
- 7. Лебедев Н.Н. Специальные функции и их приложения. М.: Лань, 2010. 368 с.
- 8. Диткин В.А., Прудников А.П. Интегральные преобразования и операционное исчисление. М.: Государственное издательство физико-математической литературы, 1961. 524 с.