

Redes de Información

Ing. Norberto Gaspar Cena Redes de Información

4to Año Ingeniería en Sistemas de Información

Protocolos de Acceso Múltiple

- El escenario
 - Dar a todo el mundo una oportunidad de hablar
 - No monopolizar la conversación
 - Levantar la mano si se tiene una pregunta
 - No interrumpir cuando alguien esta hablando
- Si dos o mas nodos transmiten simultáneamente se produce una colisión

Cable compartido (ej., cable Ethernet)

(ej., 802.11 WiFi)

Personas reunidas (aire compartido, acústica)

Protocolos de Acceso Múltiple

- Coordinar las transmisiones
- Miles de artículos escritos
- Se continúa investigando de manera activa
- Deben garantizar:
 - Cuando haya un nodo que tenga datos para transmitir se garantizan los R bps del canal
 - Cuando haya M nodos para transmitir, cada uno tendrá una tasa de transferencia de R/M bps
 - El protocolo será descentralizado
 - El protocolo sera simple de modo que no sea costoso de implementar
- Se pueden clasificar en:
 - Protocolos de particionamiento de canal
 - Protocolos de acceso aleatorio
 - Protocolos de toma de recursos

Protocolos de Acceso Múltiple Particionamiento del canal

Protocolos de Acceso Múltiple

Protocolos de acceso aleatorio

- Se transmite siempre a la máxima velocidad
- Cuando se produce una colisión los nodos retransmiten su trama
- Existen decenas de protocolos
- Los que más comúnmente utilizados son:
 - ALOHA
 - CSMA
 - CSMA/CD

ALOHA

- Creado para comunicaciones de radio
- Cuando una estación posee una trama la envía
- La estación escucha por un tiempo determinado
- Si no recibe un ACK, retransmite la trama
- Si no recibe un ACK luego de repetidas transmisiones, no sigue transmitiendo
- Del lado del receptor si la trama se recibe correctamente, éste envía un ACK
- La trama puede estar dañada por ruido o porque alguna estación se encuentre transmitiendo al mismo tiempo (colisión)
- Cualquier solapamiento de trama causa colisión
- Utilización del canal del 18%

ALOHA Ranurado

- El tiempo de la ranura es igual al tiempo de transmisión de la trama (L/R segundos)
- Se necesita un reloj central (u otro mecanismo de sincronización)
- La transmisión comienza con cada ranura
- Máxima utilización del canal del 37 %

Carrier Sense Multiple Access - CSMA

- Tiempo de propagación menor al tiempo de transmisión
- Todas las estaciones saben que la transmisión ha comenzado casi de inmediato
- Primero escuchan por el medio libre
- Si el medio se encuentra libre transmiten
- Si dos estaciones transmiten a la vez se origina una colisión
- Esperan por un tiempo razonable
- La máxima utilización depende del tiempo de propagación y la longitud de la trama
- Para tramas largas y tiempo de propagación reducido, se mejora la utilización del canal

CSMA/CD

- Con CSMA, las colisiones ocupan el medio durante una transmisión
- En CSMA/CD Las estaciones escuchan mientras transiten
- Reglas
 - Si el medio esta inactivo, transmite, de lo contrario sigue el paso 2
 - Si el medio esta ocupado, escucha hasta que se desocupe, luego transmite
 - Si se detecta una colisión, cesa de transmitir
 - Luego de la colisión, espera un tiempo aleatorio y sigue con el paso 1

Operación CSMA/CD

		00 0		001
TIME t ₀				
A's transmission	n			
C's transmissio	n			
Signal on bus	$\mathbb{Z}\mathbb{Z}$			
TIME t ₁				
A's transmission	n 📆 /////	///////	3	
C's transmissio	n		$\Box \Box$	
Signal on bus		///////////////////////////////////////		
TIME t ₂				
A's transmission	n 📆 /////			
C's transmissio	n			
Signal on bus		///////	XXXXX	
TIME t ₃				
A's transmission	n 📆 //////	///////////////////////////////////////	///////////////////////////////////////	777////
C's transmissio		3		
Signal on bus	// XXXXX	<i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i>	///////////////////////////////////////	

CSMA y CSMA/CD

Espera binaria exponencial

- Señal de interferencia de 48 bits
- La estación intentara transmitir cada vez que colisione
- Para los primeros 10 intentos, el valor medio de tiempo de espera se dobla cada vez
- A partir de allí el valor se mantiene igual durante 6 intentos
- Después de 16 intentos, la estación reporta el error
- Cuando la congestión crece, las estaciones esperan para transmitir periodos de tiempo cada vez mas largos
- Este algoritmo produce el efecto no deseado de ultimo-enllegar, primero-en-salir
- Las estaciones con pocas colisiones transmiten primero

Token Ring (802.5)

Protocolos de toma de turnos

- Token Ring 802.5
- Desarrollado por IBM
- Obtuvo aceptación por el nombre de IBM
- Nunca alcanzó la popularidad de Ethernet
- Actualmente, existen gran cantidad de productos token ring instalados
- Su mercado está decayendo

Estados anillo

Protocolo 802.5

- Una trama pequeña circula por la red (token)
- Las estaciones esperan por el token
- Cambian un bit del token para indicar el SOF
- Es algo ineficiente sobre poca carga
- Ventajas
- Acceso flexible de las estaciones
- Puede proporcionar prioridades y servicio ancho de banda garantizado
- Problemas
 - Pérdida del token

Operación Token Ring

Formato de la trama IEEE 802.3

SFD = Start of frame delimiter

DA = Destination address

SA = Source address

FCS = Frame check sequence

- Campo de datos (46 bytes a 1500 bytes)
- Dirección de destino (6 bytes)
- Dirección de origen (6 bytes)
- Campo de tamaño (2 bytes) (Tamaño máximo de la trama 1518 bytes)
- Comprobación de redundancia cíclica CRC (4 bytes)
- Preámbulo (8 bytes) (Ej.10101010-10101011)

Ethernet y CSMA/CD

- Un adaptador puede comenzar a transmitir en cualquier instante (No existe el concepto de partición de tiempo)
- Un adaptador nunca transmite una trama cuando detecta que algún otro adaptador está transmitiendo (Mecanismo de sondeo de portadora)
- Un adaptador que esta transmitiendo aborta su transmisión tan pronto como detecta que otro adaptador también lo esta haciendo (Mecanismos de detección de colisiones)
- Antes de intentar llevar a cabo una retransmisión, un adaptador espera un intervalo de tiempo aleatorio (Generalmente menor al tiempo que demora en transmitir una trama)

Tecnologías Ethernet

- 10Base-T, 10Base-2, 100Base-T, 1000Base-LX, 10GBase-T
- •
- La primera parte del acrónimo
 - Velocidad del estándar
- BASE
 - Se transmite en banda base
- La parte final del acrónimo
 - Especifica al medio físico

Tecnologías Ethernet

- 100BASE-TX
 - Dos pares de par trenzado
 - Un para para la Tx y otro para la Rx
 - UTP Categoría 5
- 10GBASE-FX
 - Dos cables de fibra óptica
 - Uno para la Tx y otro para la Rx
- 10GBASE-T
 - Estandarizado por Ethernet en 2007
 - Permite operar sobre cable UTP

Operación Full Duplex

- Ethernet tradicional es half duplex
- Con full-duplex, las estaciones pueden tx y rx simultáneamente
- 100-Mbps Ethernet en el modo full-duplex, teóricamente transmiten a velocidades de 200Mbps
- Las estaciones debe tener adaptadores de red full duplex
- Deben utilizar un conmutador
 - Cada estación contituye un dominio de colisión
 - En realidad no hay colisiones
 - CSMA/CD no se necesita más
 - Se utiliza el formato de trama MAC 802.3
 - Las estaciones pueden continuar con CSMA/CD

- Falta de aislamiento de tráfico
- Uso ineficiente de los conmutadores
- Gestión de usuarios
- Dominios de falla
- Dominios de broadcast
- Dificultad en el manejo y soporte
- Posibles vulnerabilidades de seguridad

Redes LAN Virtuales

- Agrupar funciones del negocio dentro de vlan
- Ventajas
 - Fácil mantenimiento y resolución de problemas
 - Minimización de errores
 - Tablas de enrutamiento reducidas
 - Dominio de fallas finito
 - Diseño escalable

Redes LAN Virtuales

- Razones para implementar VLAN
 - Agrupar usuarios
 - Seguridad
 - QoS
 - Evitar enrutamiento
- Configurar una vlan
 - Puerto Troncal (VLAN Trunking)
 - Puerto de Acceso

Formato de la trama 802.1Q

IEEE 802.	3 Frame							
56 bits	8 bits	48 bits		48 bits	16 bits	368 to 12000 bits (46 to 1500 bytes)	32 bits	
Preamble	SFD	Individual/ Group Address Bit	Globally/ Locally Administered Address Bit	Destination Address	Source Address	Length	LLC/Data	Frame Check Sequence

16 bits	3 bits	1	12 bits
VLAN Product ID 0x8100	Priority	CFI	VLAN Identifier

Palabras Claves

- Protocolos de acceso múltiple
- Particionamiento de canal/Pase de testigo/Acceso Aleatorio
- ALOHA
- ALOHA ranurado
- CSMA
- CSMA/CD
- Colisiones
- Espera exponencial binaria
- Ethernet
- Red de paso de testigo
- Repetidor
- VLAN

Lectura Recomendada

- Stallings Capítulo 16
- Web sites de Ethernet, Gbit Ethernet, 10Gbit Ethernet, Token ring
- Kurose Capítulo 5
- Forouzan, Transmisión de datos y redes de comunicaciones 4ta Edición, Mc Graw Hill, capítulo 15
- http://wps.pearsoned.com/ecs_kurose_compnetw_6/216/ 55463/14198700.cw/index.html