37.17 that $f^{-1}(V)$ is open for every subset $V \subseteq Y$, and thus $U_1 = f^{-1}(y) = f^{-1}(\{y\})$ and $U_2 = f^{-1}(Y - \{y\})$ are both open, nonempty, and clearly $X = U_1 \cup U_2$ and U_1 and U_2 are disjoint. This contradicts the fact that X is connected and f must be constant.

Assume that every locally constant function $f: X \to Y$ is constant. If X is not connected, we can write $X = U_1 \cup U_2$, where both U_1, U_2 are open, disjoint, and nonempty. We can define the function, $f: X \to \mathbb{R}$, such that f(x) = 1 on U_1 and f(x) = 0 on U_2 . Since U_1 and U_2 are open, the function f is locally constant, and yet not constant, a contradiction. \square

A characterization on the connected subsets of \mathbb{R}^n is harder and requires the notion of arcwise connectedness. One of the most important properties of connected sets is that they are preserved by continuous maps.

Proposition 37.18. Given any continuous map, $f: E \to F$, if $A \subseteq E$ is connected, then f(A) is connected.

Proof. If f(A) is not connected, then there exist some nonempty open sets, U, V, in F such that $f(A) \cap U$ and $f(A) \cap V$ are nonempty and disjoint, and

$$f(A) = (f(A) \cap U) \cup (f(A) \cap V).$$

Then, $f^{-1}(U)$ and $f^{-1}(V)$ are nonempty and open since f is continuous and

$$A = (A \cap f^{-1}(U)) \cup (A \cap f^{-1}(V)),$$

with $A \cap f^{-1}(U)$ and $A \cap f^{-1}(V)$ nonempty, disjoint, and open in A, contradicting the fact that A is connected.

An important corollary of Proposition 37.18 is that for every continuous function, $f: E \to \mathbb{R}$, where E is a connected space, f(E) is an interval. Indeed, this follows from Proposition 37.16. Thus, if f takes the values a and b where a < b, then f takes all values $c \in [a, b]$. This is a very important property known as the intermediate value theorem.

Even if a topological space is not connected, it turns out that it is the disjoint union of maximal connected subsets and these connected components are closed in E. In order to obtain this result, we need a few lemmas.

Lemma 37.19. Given a topological space, E, for any family, $(A_i)_{i\in I}$, of (nonempty) connected subsets of E, if $A_i \cap A_j \neq \emptyset$ for all $i, j \in I$, then the union, $A = \bigcup_{i \in I} A_i$, of the family, $(A_i)_{i\in I}$, is also connected.

Proof. Assume that $\bigcup_{i \in I} A_i$ is not connected. There exists two nonempty open subsets, U and V, of E such that $A \cap U$ and $A \cap V$ are disjoint and nonempty and such that

$$A = (A \cap U) \cup (A \cap V).$$