Improving orbit propagation of space objects: learning a propagator error

X Iberian Modelling Week
15th-19th July

Filipa Valdeira (f.valdeira@fct.unl.pt)

NEURASPACE - AI Fights Space Debris

neuraspace Fighting space debris with Al

Project

Neuraspaces' Space Traffic Management Platform for satellite operators

Artificial Intelligence and Machine Learning solutions

Safe space operations and collision avoidance

Problem

Problem Formulation

Overall goal

Data-based approach to predict the future position and velocity of objects in space

Propagation with simple model

Learning the error with respect to real model

Apply correction at prediction time

Problem Formulation

Propagation

Sample 1

Sample 2

Time Delta_t

 $t_0 \qquad t_1 - t_0$

 t_0 $t_2 - t_0$

True

Approx

 $x(t_1;t_0) \qquad \hat{x}(t_1;t_0)$

 $x(t_2;t_0)$

 $\hat{x}(t_2;t_0)$

Target

 $\hat{x}(t_1; t_0) - x(t_1; t_0)$

 $\hat{x}(t_1; t_0) - x(t_1; t_0)$

Consistency errors

Same consistency error for all points in same propagation sequence

Consistency errors

Sample for one coordinate

Multiple propagation samples

Multiple propagation sequences

Complete dataset

3 coordinates for position and 3 for velocity

Setup for dataset generation

Parameters

	Value
Propagation period	7 days
Time step	5 minutes
Number of consistency errors	5
Time between propagation start	0.5 days
Number of propagation sequences	40

Backpropagation $t_{ci} \sim U(a,b)$

	a (days)	b (days)
C1	0	0.5
C2	1	1.5
C3	2.5	3
C4	5	5.5
C5	7.5	8

Force models

	Approximation	True
Gravity Model		
Third body perturbations	×	Moon, sun
Atmospheric model	×	
Drag model	×	
Solar radiation pressure (SRP) model	×	

X	
Υ	
Z	

		RTN frame
Χ	R	Radial (position vector)
Υ		
Z		

		RTN frame
Χ	R	Radial (position vector)
Y	Т	Transverse/ along track (velocity vector)
Z		

		RTN frame
Χ	R	Radial (position vector)
Υ	Т	Transverse/ along track (velocity vector)
Z	N	Normal (across track)

Main goals and questions

Orbit XYZ **RTN** Propagation Propagation sequence sequence Propagation Propagation sequence sequence Propagation Propagation sequence sequence

XYZ RTN Propagation Propagation sequence Propagation sequence Propagation sequence Propagation sequence Propagation sequence Propagation sequence Propagation sequence

. . .

. . .

Main goals

- Q1. Given past training propagation sequences, predict 7 days into the future from a new start point
- Q2. Given samples from one orbit predict for another orbit

Relevant questions

- 1. Impact of reference frame
- 2. Impact of number and period of consistency errors
- 3. Impact of number of sequences used in training and time step
- 4. Behaviour of error over propagation period