Floquet-Drude Conductivity in Dressed Quantum Hall Systems

Kosala Herath, and Malin Premaratne Advanced Computing and Simulation Laboratory $(A\chi L)$, Department of Electrical and Computer Systems Engineering, Monash University, Clayton, Victoria 3800, Australia (Dated: July 2, 2021)

Interactions between light and matter have dragged research attention in the fields of optoelectronics, sensing, energy harvesting, quantum computing, bio-information, and in many branches of recent technologies. For many years, the foremost aims for examing the characteristics of dressed fermion systems were focused on the different types of atomic and molecular arrangements. These researches of extreme electron-light engagements introduced an astonishing scope of twentieth-century physics namely quantum optic physics.

I. INTRODUCTION

Interactions between light and matter have dragged research attention in the fields of optoelectronics, sensing, energy harvesting, quantum computing, bio-information, and in many branches of recent technologies. For many years, the foremost aims for examing the characteristics of dressed fermion systems were focused on the different types of atomic and molecular arrangements. These researches of extreme electron-light engagements introduced an astonishing scope of twentieth-century physics namely quantum optic physics.

On the other hand, in nanostructures that are applicable in electronic devices, the investigations with the help of quantum optic were centered on polaritonic and exciton influences on nanostructures and material characteristics of dressed electrons in two-dimensional (2D) materials and quantum wires. When considering the transport characteristics of dressed nanostructures, they are still expecting extensive analysis.

Therefore, transport properties of nanostructures exposed to a high intensity periodic electromagnetic fields have been explored theoretically in this study. The dressing field is analyzed non perturbatively using the Floquet theory whilst the probing field is examined perturbatively by applying the linear response method using the Kubo formula. The general Floquet-Drude conductivity has been derived in a fully closed analytical form in most recent research [1,2], introducing a novel type of Green's functions namely four-times Green's functions. As a consequence, the established formalism introduces a novel approach to manipulate the transport characteristics of nanostructures by an intense dressing field. From an empirical sense, this study applies directly to various nanostructures illuminated by a high-intensity electromagnetic field. In this research we have developed a robust mathematical model for dressed two-dimensional electron gas(2DEG) exposed to another stationary magnetic field and that will enable efficient manipulation of transport characteristics in nanoscale electronic devices.

When a stationary magentic field applied perpendicularly across the surface of 2DEG systems, the orbital motion of electrons becomes completely quantized and

the energy spectrium becomes discrete by creating Landau levels. Such a singular system known as a quantum Hall system and in this study we explictly calculate the diagonal $(\sigma_{xx}, \sigma_{yy})$ components of the conductivity tensor in the periodically driven quantum Hall systems.

Although there are already exist a number of adavanced theories devoted to the calculation of conductivity tensor elements in a quantum Hall systems [3-5], they have not been applied to the optically manipulation the magneto-electric properties of the quantum Hall systems. However K. Dini et al. [6] have recently investigated the one directional conductivity behaviour of dressed quantum Hall systems, they have not used the state of art model to describe the conductivity in a quantum Hall system. In their study they used the conductivity models from T. Ando et al. [3,4] and as mentioned in A. Endo et al. investigation [5] those models are far less accurate representation of the experimantally observed Landau levels because they present a semi-elliptical broadening.

In this study we develop a genralized mathematical model to describe transport properties of dressed quantum Hall systems using Floquet-Drude conductivity [1,2]. In addition, we demonstrate that our generalized model is agreed with the state of art conductivity model [5] for specalized quantum Hall system which has been considered without the external dressing field. Therefore this theory describes that the dressing field can be used as a tool to utilize transport properties in various 2D nanostructures which serve as a basis for nano-optoelectonic devices.

II. SCHRÖDINGER PROBLEM FOR LANDAU LEVELS IN DRESSED 2DEG

Our system consist of a two-dimentional free electron gas (2DEG) confined in the (x,y) plane of the three-dimentional coordinate space. In our analysis, the 2DEG is subjected to a stationary magnetic field $\mathbf{B} = (0,0,B)^{\mathrm{T}}$ which is pointed towards the z axis. In addition a linearly polorized strong light is applied perpendicular to the 2DEG plane and we specially tune the frequency of the field ω such that the optical field behaves as a purely dressing field (nonabsorbable). Without limit-

ing the generality we can choose y-polorized electric field $\mathbf{E} = (0, E \sin(\omega t), 0)^{\mathrm{T}}$ for the dressing field configuration (Fig. 1). Here B and E represent the amplitude of the stationary magnetic field and oscillating electric field respectively.

Using Landau gauge for the stationary magnetic field, we can represent it using vector potential as $\mathbf{A}_s = (-By, 0, 0)^{\mathrm{T}}$ and choosing Coulomb gauge, the vector potential of the dynamic dressing radiation can be presented as $\mathbf{A}_d(t) = (0, [E/\omega] \cos(\omega t), 0)^{\mathrm{T}}$. These vector potentials are coupled to the momentum of 2DEG as kinetic momentum [1, 2] and this leads to the time-dependent Hamiltonian

$$\hat{H}_e(t) = \frac{1}{2m_e} \left[\hat{\mathbf{p}} - e \left(\mathbf{A}_s + \mathbf{A}_d(t) \right) \right]^2, \tag{1}$$

where m_e is the effective electron mass and e is the magnitude of the electron charge. $\hat{\mathbf{p}} = (\hat{p}_x, \hat{p}_y, 0)^{\mathrm{T}}$ represents the canonical momentum operator for 2DEG with electron momentums $p_{x,y}$. The exact solutions for the time-dependent Schrödinger equation $i\hbar \frac{\mathrm{d}}{\mathrm{d}t}\psi = \hat{H}_e(t)\psi$ was already given by Refs. [3–5] and we can present them as a set of wave functions defined by two quantum numbers (n,m)

$$\psi_{n,m}(x,y,t) = \frac{1}{\sqrt{L_x}} \chi_n \left[y - y_0 - \zeta(t) \right] \exp\left(\frac{i}{\hbar} \left[-\varepsilon_n t + p_x x + \frac{eE(y - y_0)}{\omega} \cos(\omega t) + m_e \dot{\zeta}(t) \left[y - y_0 - \zeta(t) \right] + \int_0^t dt' L(\zeta, \dot{\zeta}, t') \right] \right),$$
(2)

where $n \in \mathbb{Z}_0^+$ and $m \in \mathbb{Z}$; see Appendix A. Here $L_{x,y}$ are dimention of the 2DEG surface, \hbar is the reduced Planck constant, and $y_0 = -p_x/eB$ is the center of the cyclotron orbit along y axis. χ_n are well known solutions for Schrödinger equation of a stationary quantum

FIG. 1. Two dimentional eletron gas (2DEG) confined in the (x,y) plane while both stationary magnetic field ${\bf B}$ and strong dressing field with y-polorized electric field ${\bf E}$ are being applied perpendicular to the surface of 2DEG.

harmonic oscillartor

$$\chi_n(x) \equiv \frac{\sqrt{\kappa}}{\sqrt{2^n n!}} e^{-\kappa^2 x^2/2} \mathcal{H}_n(\kappa x) \quad \text{with} \quad \kappa = \sqrt{\frac{m_e \omega_0}{\hbar}},$$
(3)

with eigenvalues given by $\varepsilon_n = \hbar\omega_0(n+1/2)$ and $\omega_0 = eB/m_e$ is the cyclotron frequency. Each n value defines the energy(ε_n) of the respective Landau level. The path shift of the driven classical oscillator $\zeta(t)$ is given by

$$\zeta(t) = \frac{eE}{m_e(\omega_0^2 - \omega^2)} \sin(\omega t), \tag{4}$$

while the Lagrangian of the classical oscialltor $L(\zeta, \dot{\zeta}, t)$ can be idenfied as

$$L(\zeta, \dot{\zeta}, t) = \frac{1}{2} m_e \dot{\zeta}^2(t) - \frac{1}{2} m_e \omega_0^2 \zeta^2(t) + eE\zeta(t) \sin(\omega t).$$
(5)

The exponential phase shifts in Eq. (2) represent the influence done by the stationary magnetic field and strong dressing field. Therefore we can accept that magnetotransport properties of 2DEG will be renormalized by the magnetic field as well as the dressing field.

III. FLOQUET THEORY PERSPECTIVE

The general interpretations of physical systems are mostly derived using symmetry conditions in quantum theory. Famous Bloch analysis of electrons in quantum systems introduces a mathematical explanation of quantum systems occupying a discrete translational symmetry in configuration space. Floquet theory gives a mathematical formalism that can be used for translational symmetry in time rather than in space [6–8]. Examine the transport properties of systems exposed to strong radiation using the Floquet-Drude conductivity method introduced recently by M. Wackerl [9]. In their analysis they have presented more accurate results than previously existed theoretical descriptions for the conductivity in presence of a strong dressing field. Therefore, we are hoping to apply the Floquet-Drude conductivity method to analyse our 2DEG system which is subjected to both a staionary magnetic field and a strong dressing field.

First we need to identify the *quasienergies* and periodic *Floquet modes* for derived wavefunctions in Eq. (2). By factorizing the wavefunction into a linearly time dependent part and a peridic time dependend part, the quasienergies can be present as

$$\varepsilon_n = \hbar\omega_0 \left(n + \frac{1}{2} \right) - \Delta_{\varepsilon},\tag{6}$$

which is only depend on single quantum number (n) and

Floquet modes are given by

$$\phi_{n,m}(x,y,t) = \frac{1}{\sqrt{L_x}} \chi_n \left[y - y_0 - \zeta(t) \right] \exp\left(\frac{i}{\hbar} \left[p_x x + \frac{eE(y - y_0)}{\omega} \cos(\omega t) + m_e \dot{\zeta}(t) \left[y - y_0 - \zeta(t) \right] + \xi \right] \right),$$
(7)

with

$$\Delta_{\varepsilon} = \frac{(eE)^2}{4m_e(\omega_0^2 - \omega^2)} \text{ and } \xi = \frac{(eE)^2(3\omega^2 - \omega_0^2)}{8m_e\omega(\omega_0^2 - \omega^2)^2} \sin(2\omega t).$$
(8)

It is important to notice that these Floquet modes are time-periodic $(T=2\pi/\omega)$ functions.

Then performing Fourier transform over the confined two-dimentional space $A = L_x L_y$, we obtain the momentum space (k_x, k_y) representation of Floquet modes

$$\phi_{n,m}(k_x, k_y, t) = \sqrt{L_x} \tilde{\chi}_n(k_y - b\cos(\omega t)) \times \exp\left(i\xi - ik_y[d\sin(\omega t) + y_0]\right), \tag{9}$$

where

$$\tilde{\chi}_n(k) = \frac{i^n}{\sqrt{2^n n! \sqrt{\pi}}} \left(\frac{1}{\kappa}\right)^{1/2} e^{-\frac{k^2}{2\kappa^2}} \mathcal{H}_n\left(\frac{k}{\kappa}\right) \tag{10}$$

and

$$b \equiv \frac{eE\omega_0^2}{\hbar\omega(\omega_0^2 - \omega^2)} \quad d \equiv \frac{eE}{m_e(\omega_0^2 - \omega^2)}.$$
 (11)

For details of the formalism the authors refer to Appendix B. Now using Floquet theory, the wave functions derived in Eq. (2) can be written in momentum space as Floquet states

$$\psi_{n,m}(k_x, k_y, t) = \exp\left(-\frac{i}{\hbar}\varepsilon_n t\right)\phi_{n,m}(k_x, k_y, t).$$
 (12)

IV. FLOQUET FERMI GOLDEN RULE

In Ref. [9] Floquet Fermi golden rule has been introduced as a method to analyse transport propeties in dressed quantum systems. However, this theory has not been applied for a dressed quantum Hall system and to identify magnetotransport properties in our system we use Floquet Fermi golden rule. With the help of t-t' formalism [7, 9–12] and using Floquet states derived in Eq. (12) we can derive an expression for the inverse scattering time matrix ((l, l')th element) for the Nth Landau level, per a given energy ε and momentum k_x value for our considered quantum Hall system as

$$\left(\frac{1}{\tau(\varepsilon, k_x)}\right)_N^{ll'} = \frac{\eta_{imp}^2 L_x^2 \hbar V_{imp}}{(eB)^2} \delta(\varepsilon - \varepsilon_N) \int_{-\infty}^{\infty} dk_1 J_l \left(\frac{g\hbar}{eB} [k_x - k_1]\right) J_{l'} \left(\frac{g\hbar}{eB} [k_x - k_1]\right) \times \left|\int_{-\infty}^{\infty} dk_2 \, \chi_N \left(\frac{\hbar}{eB} k_2\right) \chi_N \left(\frac{\hbar}{eB} [k_1 - k_x - k_2]\right)\right|^2, \tag{13}$$

where $J_l(\cdot)$ are Bessel functions of the first kind with lth integer order and ε_N is the energy of Nth Landau level; see Appendix C. In this study, the perturbation potential is assumed to be formed by an ensemble of randomly distributed impurities, since random impurities in a disorded metal is a better approximation for experimental results. The total scattering potential in 2DEG is then given by the sum over uncorrelated single impurity potentials $v(\mathbf{r})$. Here η_{imp} is the number of impurities in a unit area and $V_{imp} = \left\langle |V_{k'_x,k_x}|^2 \right\rangle$ with $V_{k'_x,k_x} = \left\langle k'_x |v(x)|k_x \right\rangle$ where $\left\langle x|k_x \right\rangle = e^{-ik_x x}/\sqrt{L_x}$.

х

V. INVERSE SCATTERING TIME ANALYSIS

Considerable research effort in recent years has been de-voted to synthesizing materials whose thermal conductivity.

VI. CURRENT OPERATOR IN LANDAU LEVELS

Considerable research effort in recent years has been de- voted to synthesizing materials whose thermal conductivity.

VII. FLOQUET-DRUDE CONDUCTIVITY IN QUANTUM HALL SYSTEMS

Considerable research effort in recent years has been de-voted to synthesizing materials whose thermal conductivity.

VIII. MANIPULATE CONDUCTIVITY IN QUANTUM HALL SYSTEM

Considerable research effort in recent years has been de- voted to synthesizing materials whose thermal conductivity.

IX. CONCLUSIONS

Considerable research effort in recent years has been de-voted to synthesizing materials whose thermal conductivity.

ACKNOWLEDGMENTS

We wish to acknowledge the support of the author community in using REVTEX, offering suggestions and encouragement, testing new versions,

Appendix A: Wave function for Landau levels

The deriving process of solutions for Schrödinger equation with Hamiltonian of an electron in 2DEG (Eq. 1) quite similar to that followed in Refs. [3, 5]. We start with expanding the Hamiltonian for two-dimentional case

$$\hat{H}_e(t) = \frac{1}{2m_e} \left[(\hat{p}_x + eBy)^2 + \left(\hat{p}_y - \frac{eE}{\omega} \cos(\omega t) \right)^2 \right],$$
(A1)

and since $\left[\hat{H}_e(t), \hat{p}_x\right] = 0$ both operators share same (simultaneous) eigen functions $\frac{1}{\sqrt{L_x}} \exp\left(\frac{ip_x x}{\hbar}\right)$ with $p_x = 2\pi\hbar m/L_x$, $m \in \mathbb{Z}$. Therefore we re-arrange the Hamiltonian using definition of canonical momentum in y-direction to derive

$$\hat{H}_e(t) = \frac{1}{2m_e} \left[(p_x + eBy)^2 + \left(-i\hbar \frac{\partial}{\partial y} - \frac{eE}{\omega} \cos(\omega t) \right)^2 \right].$$
(A2)

We now define the center of the cyclotron orbit along y axis $y_0 \equiv -p_x/eB$ and the cyclotron frequency $\omega_0 \equiv eB/m_e$. This leads to a new arangement of the Hamiltonian

$$\hat{H}_{e}(t) = \frac{m_{e}\omega_{0}^{2}}{2}\tilde{y}^{2} + \frac{1}{2m_{e}} \left[-\hbar^{2}\frac{\partial^{2}}{\partial\tilde{y}^{2}} + \frac{2i\hbar eE}{\omega}\cos(\omega t)\frac{\partial}{\partial\tilde{y}} + \frac{e^{2}E^{2}}{\omega^{2}}\cos^{2}(\omega t) \right],$$
(A3)

where we used a variable substitution $\tilde{y} = (y - y_0)$. Now we are assuming that the solutions for the time-dependent Schrödinger equation

$$i\hbar \frac{\mathrm{d}\psi}{\mathrm{d}t} = \hat{H}_e(t)\psi,$$
 (A4)

can present by the following form

$$\psi_m(x, \tilde{y}, t) = \frac{1}{\sqrt{L_x}} \exp\left(\frac{ip_x x}{\hbar} + \frac{ieE\tilde{y}}{\hbar\omega}\cos(\omega t)\right) \vartheta(\tilde{y}, t), \tag{A5}$$

where $\vartheta(\tilde{y}, t)$ is a function that need to be find to satisfy the following property

$$\[\frac{m_e \omega_0^2}{2} \tilde{y}^2 - eE\tilde{y}\sin(\omega t) - \frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial \tilde{y}^2} - i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \] \vartheta(\tilde{y}, t) = 0.$$
(A6)

If we turn off the strong dressing field (E=0), this equation leads to simple harmonic oscillator Hamiltonian

$$i\hbar \frac{\mathrm{d}\vartheta(\tilde{y},t)}{\mathrm{d}t} = \left[\frac{\hat{p}_{\tilde{y}}^2}{2m_e} + \frac{1}{2}m_e\omega_0^2\tilde{y}^2\right]\vartheta(\tilde{y},t). \tag{A7}$$

It is important to notice that we can identify the $S(t) \equiv eE\sin(\omega t)$ part as a external force act on the harmonic oscillator and we can solve this as a forced harmonic oscillator in \tilde{y} axis.

$$i\hbar \frac{\mathrm{d}\vartheta(\tilde{y},t)}{\mathrm{d}t} = \left[-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial \tilde{y}^2} + \frac{1}{2} m_e \omega_0^2 \tilde{y}^2 - \tilde{y} S(t) \right] \vartheta(\tilde{y},t).$$
(A8)

This system can be extacly solvable and we can solve the equation using the methods explained by Husimi [3] as follows. We introduce a time dependent shifted cordinate $y' = \tilde{y} - \zeta(t)$ and perform following unitary trasformation

$$\vartheta(y',t) = \exp\left(\frac{im_e\dot{\zeta}y'}{\hbar}\right)\varphi(y',t),$$
 (A9)

and this yeilds

$$\begin{split} i\hbar\frac{\partial\varphi(y',t)}{\partial t} &= \bigg[-\frac{\hbar^2}{2m_e}\frac{\partial^2}{\partial y'^2} + \frac{1}{2}m_e\omega_0^2y'^2 \\ &+ \bigg[m_e\ddot{\zeta} + m_e\omega_0^2\zeta - S(t)\bigg]y' \\ &+ \bigg[-\frac{1}{2}m_e\dot{\zeta}^2 + \frac{1}{2}m_e\omega_0^2\zeta^2 - \zeta S(t)\bigg]\bigg]\varphi(y',t). \end{split} \tag{A10}$$

Then we can restrict our $\zeta(t)$ function such that

$$m_e \ddot{\zeta} + m_e \omega_0^2 \zeta = S(t) \tag{A11}$$

and that leads to

$$i\hbar \frac{\partial \varphi(y',t)}{\partial t} = \left[-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial y'^2} + \frac{1}{2} m_e \omega_0^2 {y'}^2 - L(\zeta,\dot{\zeta},t) \right] \varphi(y',t)$$
(A12)

where

$$L(\zeta,\dot{\zeta},t) \equiv \frac{1}{2}m_e\dot{\zeta}^2 - \frac{1}{2}m_e\omega_0^2\zeta^2 + \zeta S(t)$$
 (A13)

is the largrangian of a classical driven oscillator. To proceed further, another unitary trasform can be introduced as follows

$$\varphi(y',t) = \exp\left(\frac{i}{\hbar} \int_0^t dt' L(\zeta,\dot{\zeta},t')\right) \chi(y',t), \quad (A14)$$

and subtiting Eq. (A14) back in Eq. (A12) yields

$$i\hbar \frac{\partial}{\partial t} \chi(y',t) = \left[-\frac{\hbar^2}{2m_e} \frac{\partial^2}{\partial {y'}^2} + \frac{1}{2} m_e \omega_0^2 {y'}^2 \right] \chi(y',t).$$
 (A15)

This is the well known Schrödinger equation of the quantum harmonic oscillator. This allows us to identify with the well-known eigenfunctions (using Gauss-Hermite functions)

$$\chi_n(y) \equiv \frac{\sqrt{\kappa}}{\sqrt{2^n n!}} e^{-\kappa^2 y^2/2} \mathcal{H}_n(\kappa y) \text{ with } \kappa = \sqrt{\frac{m_e \omega_0}{\hbar}},$$
(A16)

which are propositional to the Hermite polynomials \mathcal{H}_n , with eigenvalues

$$\varepsilon_n = \hbar\omega_0 \left(n + \frac{1}{2}\right), \ n \in \mathbb{Z}_0^+.$$
 (A17)

Therefore we can identify the solutions of Eq. (A8) as

$$\vartheta_{n}(\tilde{y},t) = \chi_{n}(\tilde{y} - \zeta(t)) \exp\left(\frac{i}{\hbar} \left[-\varepsilon_{n}t + m_{e}\zeta(t)(\tilde{y} - \zeta(t)) + \int_{0}^{t} dt' L(\zeta,\dot{\zeta},t') \right] \right)$$
(A18)

The set $\{\chi_n(x)\}$ functions forms a complete set and thus any general solution $\vartheta_{(\tilde{y},t)}$ can be expaned in terms of the solutions given in Eq. (A18).

Finally we consider our scenario where we assumed that $S(t) = eE \sin(\omega t)$ and we can derive the solution for Eq. (A11)

$$\zeta(t) = \frac{eE}{m_e(\omega_0^2 - \omega^2)} \sin(\omega t). \tag{A19}$$

Subtiting solutions in Eq. (A18) back in Eq. (A5), we can obtain the set of wave functions with two different quantum number (n,m) that satisfy the Schrödinger eqution Eq. (A4)

$$\psi_{n,m}(x,y,t) = \frac{1}{\sqrt{L_x}} \chi_n \left[y - y_0 - \zeta(t) \right] \exp\left(\frac{i}{\hbar} \left[-\varepsilon_n t + p_x x + \frac{eE(y - y_0)}{\omega} \cos(\omega t) + m_e \dot{\zeta}(t) \left[y - y_0 - \zeta(t) \right] + \int_0^t dt' L(\zeta, \dot{\zeta}, t') \right] \right).$$
(A20)

Appendix B: Floquet modes and quasienergies

1. Position space representation

First define the time integral of Laggrangian of the classical oscillator given in Eq. (5), over a $T=2\pi/\omega$ period as

$$\Delta_{\varepsilon} \equiv \frac{1}{T} \int_{0}^{T} dt' \ L(\zeta, \dot{\zeta}, t'), \tag{B1}$$

and after performing the integral using Eq. (4), we can obtain more simplified result:

$$\Delta_{\varepsilon} = \frac{(eE)^2}{4m_e(\omega_0^2 - \omega^2)}.$$
 (B2)

Next define another paramter

$$\xi \equiv \int_0^t dt' \ L(\zeta, \dot{\zeta}, t') - \Delta_{\varepsilon} t, \tag{B3}$$

and after simplying, this leads to

$$\xi = \frac{(eE)^2 (3\omega^2 - \omega_0^2)}{8m_e \omega (\omega_0^2 - \omega^2)^2} \sin(2\omega t),$$
 (B4)

which is a periodic function in time with 2ω frequency. Now using these parmaters we can factorize the wavefunction Eq. (2) as linearly time dependend part and periodic time dependend part as follows

$$\psi_{\alpha}(x, y, t) = \exp\left(\frac{i}{\hbar} \left[-\varepsilon_n t + \Delta_{\varepsilon} t\right]\right) \frac{1}{\sqrt{L_x}} \chi_n \left(y - y_0 - \zeta(t)\right)$$

$$\times \exp\left(\frac{i}{\hbar} \left[p_x x + \frac{eEy}{\omega} \cos(\omega t) + m_e \zeta(t) \left[y - \zeta(t)\right] + \int_0^t dt' L(\zeta, \dot{\zeta}, t') - \Delta_{\varepsilon} t\right]\right),$$
(B5)

and this leads to seperate linear time dependent phase component as the quasienergies

$$\varepsilon_n = \hbar\omega_0 \left(n + \frac{1}{2}\right) - \Delta_{\varepsilon}$$
 (B6)

while rest of the components as time-periodic Floquet modes

$$\phi_{n,m}(x,y,t) \equiv \frac{1}{\sqrt{L_x}} \chi_n \left[y - y_0 - \zeta(t) \right] \exp\left(\frac{i}{\hbar} \left[p_x x + \frac{eE(y - y_0)}{\omega} \cos(\omega t) + m_e \dot{\zeta}(t) \left[y - y_0 - \zeta(t) \right] + \xi \right] \right).$$
(B7)

2. Momentum space representation

To write the Floquet modes in momentum space, we perform continuous Fourier transform over the considering confined space $A = L_x L_y$ for Eq. (7)

$$\phi_{n,m}(k_x, k_y, t) = \int_{-L_y/2}^{L_y/2} dy \, \exp(-i[k_y - \gamma(t)]y) \chi_n[y - \mu(t)]$$

$$\times \frac{1}{\sqrt{L_x}} \int_{-L_x/2}^{L_x/2} dx \, \exp(-ik_x x) \exp\left(\frac{ip_x}{\hbar}x\right)$$

$$\times \exp\left(\frac{-i\gamma(t)}{\hbar}y_0\right) \exp\left(\frac{-i}{\hbar}\left[m_e \dot{\zeta}(t)\zeta(t) - \xi\right]\right),$$
(B8)

where

$$\mu(t) \equiv \frac{eE \sin(\omega t)}{m_e(\omega_0^2 - \omega^2)} + y_0 \quad , \quad \gamma(t) \equiv \frac{eE\omega_0^2 \cos(\omega t)}{\hbar\omega(\omega_0^2 - \omega^2)}.$$
(B9)

Next using the identity [2]

$$\int_{L_x} dx \, \exp\left(-ik_x x + \frac{ip_x}{\hbar}x\right) = L_x \delta_{k_x, \frac{p_x}{\hbar}}, \quad (B10)$$

we can derive

$$\phi_{n,m}(k_x, k_y, t) = \exp\left(\frac{-i\gamma(t)}{\hbar}y_0\right) \exp\left(\frac{-i}{\hbar}\left[m_e\dot{\zeta}(t)\zeta(t) - \xi\right]\right) \times \Phi_{n,m}(k_y, t)\delta_{k_x, \frac{p_x}{\hbar}}.$$
(B11)

Here we defined $\Phi_{n,m}(k_y,t)$ as

$$\Phi_{n,m}(k_y,t) \equiv \sqrt{L_x} \int_{-L_y/2}^{L_y/2} dy \ \chi_n[y-\mu(t)] \times \exp(-i[k_y - \gamma(t)]y). \tag{B12}$$

Subtituting $k'_y = k_y - \gamma(t)$ and $y' = y - \mu(t)$ and assuming that size of the 2DEG sample in y-direction is large $(L_y \to \infty)$, we can obtain

$$\Phi_{n,m}(k_y',t) = \sqrt{L_x}e^{-ik_y'\mu} \int_{-\infty}^{\infty} dy' \,\chi_n(y') \exp(-ik_y'y').$$
(B13)

We can identify that the integral represents the Fourier transform of $\{\chi_n\}$ functions and using the symmetric conditions [13] for the Fourier transform of Gauss-Hermite functions $\theta_n(x)$:

$$\mathcal{FT}[\theta_n(\kappa x), x, k] = \frac{i^n}{|\kappa|} \theta_n(k/\kappa),$$
 (B14)

Eq. (B13) can be simplified as

$$\Phi_{n,m}(k'_{u},t) = \sqrt{L_{x}}e^{-ik'_{y}\mu}\tilde{\chi}_{n}(k'_{u}),$$
 (B15)

with

$$\tilde{\chi}_n(k) = \frac{i^n}{\sqrt{2^n n! \sqrt{\pi}}} \left(\frac{1}{\kappa}\right)^{1/2} e^{-\frac{k^2}{2\kappa^2}} \mathcal{H}_\alpha\left(\frac{k}{\kappa}\right).$$
 (B16)

Subtitute Eq. (B15) back in Eq. (B11) and this leads to

$$\phi_{n,m}(k_x, k_y, t) = \sqrt{L_x} \tilde{\chi}_n(k_y - b\cos(\omega t)) \times \exp\left(i\xi - ik_y \left[d\sin(\omega t) + \frac{\hbar k_x}{eB}\right]\right),$$
(B17)

where

$$b \equiv \frac{eE\omega_0^2}{\hbar\omega(\omega_0^2 - \omega^2)} \quad d \equiv \frac{eE}{m_e(\omega_0^2 - \omega^2)},$$
 (B18)

and it is necessary to notice that k_x is quantized with $k_x = 2\pi m/L_x$, $m \in \mathbb{Z}$.

Appendix C: Floquet Fermi Golden Rule

The derivation of the Floquet Fermi golden rule for our quantum Hall system with the help of $t-t^\prime$ formalism is given here in detail. The t- t^\prime -Floquet states [7, 9]

$$|\psi_{n,m}(t,t')\rangle = \exp\left(-\frac{i}{\hbar}\varepsilon_n t\right)|\phi_{n,m}(t')\rangle.$$
 (C1)

derived by seperating the aperiodic and periodic components of Eq. (12), fullfill the t-t'-Schrödinger equation [7, 9]

$$i\hbar \frac{\partial}{\partial t} |\psi_{n,m}(t,t')\rangle = H_F(t') |\psi_{n,m}(t,t')\rangle,$$
 (C2)

where Floquet Hamiltonian defined as

$$H_F(t') \equiv H_e(t') - i\hbar \frac{\partial}{\partial t'}.$$
 (C3)

Next we can identify the the time evolution operator [9] corresponding to the t-t'-Schrödinger equation given in Eq. (C2)

$$U_0(t, t_0; t') = \exp\left(-\frac{i}{\hbar}H_F(t')[t - t_0]\right)$$
 (C4)

and the advantage of t-t' formalism lies on this time evolution operator which avoids any time odering operatos. Consider a time-independent total perturbation $V(\mathbf{r})$ switched on at the reference time $t=t_0$, then Schrödinger equation becomes

X

- G. D. Mahan, Many-particle physics (Springer Science & Business Media, New York, 2000).
- [2] H. Bruus and K. Flensberg, Many-body quantum theory

- in condensed matter physics: an introduction (Oxford University Press, New York, 2004).
- [3] K. Husmi, Prog. Theor. Phys. 9, 381 (1953).
- [4] T. Dittrich, P. Hänggi, G. L. Ingold, B. Kramer, G. Schön, and W. Zwerger, Quantum Transport and Dissipation (Wiley-VCH, Weinheim, 1998).
- [5] K. Dini, O. V. Kibis, and I. A. Shelykh, Phys. Rev. B 93, 235411 (2016).
- [6] G. Floquet, Annales scientifiques de l'École Normale Supérieure 12, 47 (1883).
- [7] M. Grifoni and P. Hänggi, Phys. Rep. **304**, 229 (1998).
- [8] M. Holthaus, J. Phys. B: At., Mol. Opt. Phys. 49, 013001

- (2015).
- [9] M. Wackerl, P. Wenk, and J. Schliemann, Phys. Rev. B 101, 184204 (2020).
- [10] H. Sambe, Phys. Rev. A 7, 2203 (1975).
- [11] U. Peskin, R. Kosloff, and N. Moiseyev, J. Chem. Phys. 100, 8849 (1994).
- [12] S. C. Althorpe, D. J. Kouri, D. K. Hoffman, and N. Moiseyev, Chem. Phys. 217, 289 (1997).
- [13] E. Celeghini, M. Gadella, and M. A. del Olmo, Symmetry 13, 853 (2021).