Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию $N_{0}6$

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант $7 \ / \ 5 \ / \ 1$

Выполнил: студент 119 группы Дроздов Н. А.

> Преподаватель: Сковорода Н. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	4
Структура программы и спецификация функций	5
Сборка программы (Маке-файл)	6
Отладка программы, тестирование функций	7
Программа на Си и на Ассемблере	8
Анализ допущенных ошибок	9
Список питируемой литературы	10

Постановка задачи

Задача — вычислить площадь плоской фигуры, ограниченной кривыми $y_1=ln(x)$, $y_2=14-2x,\ y_3=\frac{1}{2-x}+6$. При решении задачи необходимо следующее:

- для каждой кривой аналитически определить отрезок, на котором применимы метод касательных и метод хорд;
- вычислить абсциссы точек пересечения кривых методом касательных или методом хорд с точностью ε_1 (конкретный метод задается через -D на этапе сборки программы);
- методом прямоугольников вычислить нужные интегралы с точностью ε_2 .

Значения ε_1 и ε_2 должны быть подобраны так, чтобы для них достигалась итоговая точность $\varepsilon=0.001$.

Математическое обоснование

Обоснуем следующий выбор ε_1 и ε_2 : $\varepsilon_1=0.0001$, $\varepsilon_2=0.00001$. Пусть M – максимум по модулю всех функций, интегрируемых в программе, на некотором отрезке, в который строго вложены все отрезки интегрирования. Пусть при нахождении корня есть погрешность ε_1 , а интеграл считается с погрешностью ε_2 . Путем использования первой теоремы о среднем и аддитивности интеграла находим для некоторых точек c_1 , c_2 из $[a-\varepsilon_1,b+\varepsilon_1]$:

$$\left| \int_{a-\varepsilon_1}^{b+\varepsilon_1} f(x) dx - I \right| = \left| \varepsilon_2 + \varepsilon_1 (f(c_1) + f(c_2)) \right| \le \left| \varepsilon_2 \right| + 2M \left| \varepsilon_1 \right|.$$

Пусть общая погрешность равна ε ; учитывая, что в программе считается 3 интеграла, получаем: $|\varepsilon| \leq 3|\varepsilon_2| + 6M|\varepsilon_1|$. Заметим, что в отрезок [2.1, 7] строго вложены все отрезки интегрирования и на нем все функции по модулю не превосходят 10. Таким образом, $|\varepsilon| \leq 3|\varepsilon_2| + 60|\varepsilon_1|$; предложенные значения констант удовлетворяют этому неравенству для нужной в программе итоговой точности $\varepsilon = 0.001$.

В таблице ниже – выбор отрезков нахождения корня для каждой пары кривых. На каждом из выбранных отрезков первые и вторые производные нужных функций знакопостоянны, значения функции на концах разных знаков, а значит, методы касательных и хорд применимы [1].

f(x)	f'(x)	f''(x)	Отрезок
$y_1 - y_2 = \ln(x) + 2x - 14$	$\frac{1}{x}+2$	$-\frac{1}{x^2}$	[5, 7]
$y_3 - y_1 = \frac{1}{2-x} + 6 - \ln(x)$	$-\frac{(1-x)(x-4)}{x(x-2)^2}$	$\frac{1}{x^2} + \frac{2}{(2-x)^3}$	[2.1, 2.5]
$y_3 - y_2 = \frac{1}{2-x} + 2x - 8$	$\frac{1}{(2-x)^2} + 2$	$\frac{2}{(2-x)^3}$	[4, 4.5]

Остановка метода при достижении требуемой точности происходит следующими способами:

- В методах касательных и хорд используется формула (11.12) из [1]: $|x_n c| \leq \frac{|f(x_n)|}{m}$, где m минимум модулей производных всех функций на отрезках, где ищется корень. Эту константу легко посчитать, т.к на отрезках, где применимы эти методы, первая и вторая производные знакопостоянны; для функций выше эта константа равна 2.
- В методе прямоугольников используется правило Рунге [2]: $|I-I_n|\approx p|I_n-I_{2n}|$ с p=0.3333 и $n_0=100$.

Результаты экспериментов

Точки пересечения кривых:

Кривые	x	y
y_1 и y_2	6.0962	1.8076
<i>у</i> ₂ и <i>у</i> ₃	4.2248	5.5504
<i>у</i> ₁ и <i>у</i> ₃	2.1918	0.7847

Таблица 1: Координаты точек пересечения

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

Список модулей и функций в них:

• func.asm:

- f1, f2, f3, f1p, f2p, f3p - функции, реализующие вычисление математических функций 1-3 и их производных.

\bullet task6.c:

- root, root-newton реализуют методы хорд/касательных;
- integral реализует численное вычисление интеграла методом прямоугольников.

Сборка программы (Маке-файл)

Текст make-файла:

```
METHOD = newton

all: program
clean:
   rm func.o task6.o
program: func.o task6.o
   gcc -m32 -o program func.o task6.o
func.o: func.asm
   nasm -f elf32 -o func.o func.asm
task6.o: task6.c
   gcc -c -m32 -D $(METHOD) -o task6.o task6.c -lm
```

Зависимости между модулями:

Отладка программы, тестирование функций

Тесты для отладки методов хорд и касательных:

Метод	Кривая и отрезок	Корень на отрезке	Вывод метода
Хорд	$y = x^2 - 1, [0.5, 1.5]$	1	0.999787
Хорд	y = x - 4, [3.5, 4.5]	4	4.000000
Хорд	y = ln(x) - 2, [6.25, 9]	7.389056	7.388117
Хорд	$y = arctg(x) - e^{-x}, [0, 1]$	0.606555	0.606823
Касательных	$y = x^2 - 1, [0.5, 1.5]$	1	1.000005
Касательных	y = x - 4, [3.5, 4.5]	4	4.000000
Касательных	y = ln(x) - 2, [6.25, 9]	7.389056	7.388472
Касательных	$y = arctg(x) - e^{-x}, [0, 1]$	0.606555	0.606544

Тесты для отладки метода прямоугольников:

Кривая и отрезок	Площадь под графиком	Вывод метода
y = 2, [0.3, 1]	1.4	1.4
$y = 20x^3 - 5, [2, 3]$	320	320.0000
y = arctg(x), [0, 1]	0.438824	0.438825

Все значения считались с точностью $\varepsilon=0.001.$

Программа на Си и на Ассемблере

Исходные тексты функций на языке ассемблера и программы на языке C имеются в архиве, приложенном к данному отчету.

Анализ допущенных ошибок

В ходе разработки программы допускались ошибки, связанные с реализацией тех или иных численных методов или с нарушением логических связей в программе. Все ошибки были исправлены в процессе отладки, причиной послужила невнимательность.

Список литературы

- [1] Ильин В. А., Садовничий В. А., Сендов Бл. X. Математический анализ. Т. 1 Москва: Наука, 1985.
- [2] Трифонов Н.П., Пильщиков В.Н. Задания практикума на ЭВМ (1 курс). Учебное пособие, 2-е исправленное издание. М.: МГУ, 2001.