An analysis of Uniswap markets CryptoEconSys 2020, MIT

Guillermo Angeris*, Hsien-Tang Kao, Rei Chiang, Charlie Noyes, Tarun Chitra

March 8, 2020

Outline

The pricing oracle problem

Automated Market Makers

An analysis of Uniswap

Acknowledgements

Measuring the price of assets

- ▶ Often, we need a way of measuring the price of an asset
- ► (Normally) easy: ask how much is someone willing to pay!
- ▶ In the traditional setting, this led to order books

Order book methods

- ▶ Bid: How much an agent is willing to pay for an asset
- Ask: How much an agent is willing to sell an asset for
- ► A trusted party keeps a record of all unfulfilled bids and asks
- ▶ When the highest bidder bids more than the lowest asker, the trade is executed
- The price of this trade is the 'current market price'

Disadvantages

- ► A trusted party keeps a record of all bids and asks Linear space requirement
- ► When the highest bidder bids more than the lowest asker [...] Price may update slowly, esp. with a small number of agents

Outline

The pricing oracle problem

Automated Market Makers

An analysis of Uniswap

 ${\sf Acknowledgements}$

Automated Market Makers

Savage '71, Hanson '02

- ldea: use a (simple) formula to determine asset price
- ▶ Third-parties pool their assets (say A and B) into reserves
- Price set too low: agents purchase reserves at current price
- Price set too high: agents sell to reserves at current price

Automated Market Makers

Savage '71, Hanson '02

- ldea: use a (simple) formula to determine asset price
- ▶ Third-parties pool their assets (say A and B) into reserves
- Price set too low: agents purchase reserves at current price
- Price set too high: agents sell to reserves at current price
- Using this idea, set price based on assets remaining in reserves
- e.g., if too much of asset A remains, compared to asset B, decrease the price of A

Automated Market Maker examples

- ➤ Simplest example: fixed asset price at all reserve amounts *i.e.*, a flat line
- ► Another example: reported price is ratio of two asset reserves This curve is Uniswap!

Uniswap (and constant product markets)

► Constant product markets (e.g., Uniswap) is the family of curves whose reserves R_{α} , R_{β} must always satisfy:

$$R_{\alpha}R_{\beta}=k$$
,

for some constant k (no fees)

- In this case, we will assume that α and β are coins, though they can be any asset
- \blacktriangleright To satisfy this equation, the marginal price of asset β with respect to α is always

$$m_u = \frac{R_\beta}{R_\alpha}$$

Current situation DeFi

▶ People are using these markets!

52.1M USD as of 11 AM yesterday (defipulse.com)

- ► Celo, e.g., uses it as a price oracle
- So certainly worth analyzing!

Outline

The pricing oracle problem

Automated Market Makers

An analysis of Uniswap

Acknowledgements

► How do we formalize the idea that the reported price, m_u , must be close to the true market price, m_p ?

- ► How do we formalize the idea that the reported price, m_u , must be close to the true market price, m_p ?
- ► Set up a game!

- ► How do we formalize the idea that the reported price, m_u , must be close to the true market price, m_p ?
- Set up a game!
- An arbitrageur borrows an arbitrary amount of coin α or β but must pay it all back after their transaction (sound familiar?)
- ▶ The agent can then trade between two markets:
 - 1. Uniswap
 - 2. Some (infinitely liquid) reference market, with price m_p

- ► How do we formalize the idea that the reported price, m_u , must be close to the true market price, m_p ?
- ► Set up a game!
- An arbitrageur borrows an arbitrary amount of coin α or β but must pay it all back after their transaction (sound familiar?)
- ▶ The agent can then trade between two markets:
 - Uniswap
 - 2. Some (infinitely liquid) reference market, with price m_p
- Optimal strategy?

The arbitrage game

Equivalent to the optimization problem

maximize
$$m_p \Delta_\alpha - \Delta_\beta$$
 subject to $(R_\alpha - \Delta_\alpha)(R_\beta + \Delta_\beta) = k$.

Here, Δ_{α} is the amount of α traded and Δ_{β} is the amount of β traded.

▶ Optimal trade $(\Delta_{\alpha}^{\star}, \Delta_{\beta}^{\star})$ always satisfies:

$$rac{R_{eta}+\Delta_{eta}^{\star}}{R_{lpha}-\Delta_{lpha}^{\star}}=m_{m{p}},$$

i.e., the new price equals to the market price!

More questions

- ► This game lets us ask one more important question
- ► Faced with these arbitrageurs, how much does manipulation cost?

More questions

- ► This game lets us ask one more important question
- Faced with these arbitrageurs, how much does manipulation cost?
- It is not hard to give a *per block* lower bound. Manipulating price to $(1 + \varepsilon)m_p$ costs at least

$$C(\varepsilon) \ge KR_{\alpha} \min\{\varepsilon^2, \sqrt{\varepsilon}\},$$

and K > 0 a universal constant

Important points

- ▶ Lower bound is zero if manipulation is within one transaction
- Manipulation over the short term is cheap
- ightharpoonup As is manipulation where ε is small

Even more properties

- ► As expected, trading a fixed amount of desired coin will be cheaper as the reserves grow
- ▶ But liquidity providers will only (rationally) add coin to reserves if they believe m_p is driftless
- Additionally, Uniswap can never be drained of coin (i.e., $R_{\alpha} + R_{\beta} \geq 2\sqrt{k}$ is always satisfied)

Simulations confirm these results:

Price in the case of no traders (with optimal arbitrage)

Simulations confirm these results:

Price in the case of trading noise

Simulations confirm these results:

Initial LP utility vs HODL

Outline

The pricing oracle problem

Automated Market Makers

An analysis of Uniswap

Acknowledgements

Acknowledgements

- ▶ Dan Robinson (Paradigm)
- ► Hayden Adams (Uniswap)
- Regina Cai (UMA)
- Alex Evans (Placeholder)
- Jonathan Tuck (Stanford)
- Reviewers 1 and 2 (really!)
- Siddharth Seethepalli (Dover)