Interpolação pelo Método das Diferenças Divididas de Newton

Diferenças divididas

Seja f(x), função tabelada em n+1 pontos distintos x_0 , x_1 , ..., x_n . Defini-se o operador de diferenças divididas por:

$$f[x_0] = f(x_0)$$

$$f[x_0, x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$f[x_0, x_1, x_2, \dots, x_n] = \frac{f[x_1, x_2, \dots, x_n] - f[x_0, x_1, \dots, x_{n-1}]}{x_n - x_0}$$

Dizemos que $f[x_0, x_1, x_2, ..., x_n]$ é a diferença dividida de ordem k da função f(x) sobre k+1 pontos.

Conhecidos os valores que f(x) assume nos pontos distintos x_0 , x_1 , ..., x_n , podemos construir a tabela exemplo para um polinômio de grau 3

Xi	Ordem 0	Ordem 1	Ordem 2	Ordem 3
X_0	$f[x_0]$			
X ₁	$f[x_1]$	$f[x_0, x_1]$		
X ₂	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$	
X ₃	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$

Pode-se provar que cada coeficiente a_n do polinômio interpolador de Newton corresponde ao operador de grau n de diferenças divididas:

$$f[x_0] = a_0$$

$$f[x_0, x_1] = a_1$$

$$f[x_0, x_1, x_2] = a_2$$

$$f[x_0, x_1, x_2, ..., x_n] = a_n$$

Polinômio Interpolador

$$P_n(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_n(x - x_0)(x - x_1)(x - x_2) \dots (x - x_{n-1})$$

Exemplo:

Dada a seguinte tabela de pontos:

Х	У	Ordem 0	Ordem 1	Ordem 2
-1	4	4		
0	1	1	-3	
2	-1	-1	-1	2/3

$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$$

$$P_2(x) = 4 - 3(x + 1) + \frac{2}{3}(x + 1)(x - 0)$$

$$P_2(x) = 1 - \frac{7}{3}x + \frac{2}{3}x^2$$