Tarea1:RMarkdown

Silvia Rodríguez

14 de septiembre de 2018

1 Introducción

En el ejercicio de simulación se generan 90 puntos provenientes de una distribución Poisson rpois(n = 1,90), luego se genera las variables x y y que provienen de una distribución uniforme (0,1), runif(n = N,0,1).

El link a mi repositorio personal es:

https://github.com/SilviaRCollazo

2 Simulaciones y tabla

```
N<-rpois(n=1,90)
x<-runif(n=N,0,1)
y<-runif(n=N,0,1)
dat<-data.frame(x,y)
library(xtable)

## Warning: package 'xtable' was built under R version 3.4.3
tabla<-xtable(summary(dat),caption="Resultados simulación", label="tab:Results")
print(tabla,caption.placement="top", comment="FALSE")</pre>
```

Table 1: Resultados simulación		
	X	У
1	Min. :0.009008	Min. :0.002414
2	1st Qu.:0.300570	1st Qu.:0.237054
3	Median $:0.526854$	Median $:0.595433$
4	Mean $:0.521201$	Mean $:0.524960$
5	3rd Qu.:0.780807	3rd Qu.:0.836366
6	Max. :0.984175	Max. :0.984872

En la Tabla 1 se observa que la mediana de x es 0.5268537

3 Figura

```
plot(x,y)
```


Figure 1: Grafico de dispersión