$\mathit{Задача}$ 1. Пусть $X_t = W_t^4$, где W_t – броуновское движение. Найти $\mathbb{E} X_t$.

Задача 2. Пусть

$$\begin{cases} dX_t = X_t(\mu_x dt + \sigma_x dW_t), \\ dY_t = Y_t(\mu_y dt + \sigma_y dZ_t), \end{cases}$$

где $dW_t \cdot dZ_t = \rho dt$ – броуновские движения с корреляций ρ . Выписать уравнения для процессов $X_t^\alpha, X_t \cdot Y_t, \frac{X_t}{Y_t}$

Задача 3. Теорема Гирсанова 123

Задача 4. Свойства отражения 123

 $3a\partial a$ ча 5. Пусть процесс X_t удовлетворяет следующуему СДУ:

$$dX_t = \alpha X_t dt + \sigma_t dW_t$$

для некоторого процесса σ_t и $\alpha \in \mathbb{R}$. Найти $\mu(t) = \mathbb{E} X_t$.

3a da va 6 (Уравнение Орнштейна-Уленбека). Решить стохастическое дифференциальное уравнение на X_t :

$$dX_t = \alpha(\theta - X_t)dt + \sigma dW_t$$

где $\alpha, \theta \in \mathbb{R}, \sigma \in \mathbb{R}^+$.

При каком распределении X_0 процесс X_t стационарен?