Name	Notation	Parameters	PDF/PMF	Support	Mean	Variance
Bernoulli	Bern(p)	$p \in [0, 1]$	$f(x) = p^x (1 - p)^{1 - x}$	$x \in \{0, 1\}$	p	p(1 - p)
Beta	Beta(a,b)	a, b > 0	$f(x) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$x \in (0,1)$	$\frac{a}{a+b}$	$\frac{ab}{(a+b)^2(a+b+1)}$
Binomial	Binom(n, p)	$n\in\mathbb{Z}^+, p\in[0,1]$	$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$	$x \in \{0, 1, \dots, n\}$	np	np(1-p)
Chi-squared	$\chi^2_ u$	$\nu \in \mathbb{Z}^+$	$f(x) = \frac{1}{2^{\nu/2} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2} - 1} e^{-\frac{x}{2}}$	$x \ge 0$	u	2ν
Exponential	$\operatorname{Exp}(\lambda)$	$\lambda > 0$	$f(x) = \lambda e^{-\lambda x}$	x > 0	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
First Success	FS(p)	$p \in [0, 1]$	$f(x) = p(1-p)^{x-1}$	$x = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
Gamma	Gamma(a, b)	a, b > 0	$f(x) = \frac{b^a}{\Gamma(a)} x^{a-1} e^{-bx}$	x > 0	$rac{a}{b}$	$\frac{a}{b^2}$
$\mathbf{Geometric}$	Geom(p)	$p \in [0, 1]$	$f(x) = p(1-p)^x$	$x = 0, 1, 2, \dots$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
${\bf Hypergeometric}$	$\mathrm{HGeom}(w,b,n)$	$w, b, n = 0, 1, \dots$	$f(x) = \frac{\binom{w}{x}\binom{b}{n-x}}{\binom{w+b}{x}}$	$x \in \{0, \dots w\},\$ $(n-x) \in \{0, \dots b\}$	$\frac{nw}{w+b}$	$\frac{w+b-n}{w+b-1}\left(\frac{nwb}{(w+b)^2}\right)$
Multinomial	$ Multinom_k(n, \mathbf{p}) \mathbf{p} = (p_1, \dots, p_k) $	$n \in \mathbb{Z}^+, p_j \ge 0$ $\sum_{j=1}^k p_j = 1$	$f(\mathbf{x}) = \frac{n!}{x_1! \cdots x_k!} p_1^{x_1} \cdots p_k^{x_k}$	$\sum_{j=1}^{k} x_j = n$		
Negative Binomial	$\operatorname{NegBinom}(r,p)$	$ \begin{array}{l} r = 0, 1, \dots \\ p \in [0, 1] \end{array} $	$f(x) = {\binom{x+r-1}{x}} p^r (1-p)^x$	$x = 0, 1, 2, \dots$	$\frac{r(1-p)}{p}$	$\frac{r(1-p)}{p^2}$
Normal	$N(\mu,\sigma^2)$	$\mu \in \mathbb{R}, \sigma^2 > 0$	$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$	$x \in \mathbb{R}$	μ	σ^2
Poisson	$Poisson(\lambda)$	$\lambda > 0$	$f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$	$x = 0, 1, 2, \dots$	λ	λ
\mathbf{t}	$t_{ u}$	$\nu > 0$	$f(x) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\Gamma(\frac{\nu}{2})} (1 + \frac{x^2}{\nu})^{-\frac{\nu+1}{2}}$	$x \in \mathbb{R}$	$0 \ (\nu > 1$	$) \frac{\nu}{\nu - 2} \ (\nu > 2)$
Uniform (disc.)	$\mathrm{Unif}\{a_1,\ldots,a_N\}$	$a_i \in \mathbb{R}$	$f(x) = \frac{1}{N}$	$x \in \{a_1, \dots, a_N\}$	\bar{a}	$\frac{1}{N}\sum_{i=1}^{N}(a_i-\bar{a})^2$
Uniform (cont.)	$\mathrm{Unif}[a,b]$	$a, b \in \mathbb{R}, a < b$	$f(x) = \frac{1}{b-a}$	$x \in [a, b]$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$