MATH 101.2 PS-6

O1) Show that the function $f(x) = \frac{x}{\sqrt{x^2+1}}$ is one-to-one and calculate the inverse function f^{-1} . Specify the domains and ranges f and f^{-1} .

Sol: If $f(x_1) = f(x_2)$, then $\frac{x_1}{\sqrt{x_1^2+1}} = \frac{x_2}{\sqrt{x_2^2+1}}$. Thus,

 $x_1^2(x_2^2+1)=x_2^2(x_1^2+1)$. Hence, $x_1^2=x_2^2$. From (*) x_1 and x_2 must have same sign. Then, $x_1=x_2$ and fix 1 to 1. Let $y=f^{-1}(x)$. Then, $x=f(y)=\frac{y}{\sqrt{y^2+1}}$ and $x^2(y^2+1)=y^2$. Hence, $y^2=\frac{x^2}{1-x^2}$. Since f(y) and y

have the same sign, we must have $g = \frac{x}{\sqrt{1-x^2}}$, so

$$f^{-1}(x) = \frac{x}{\sqrt{11-x^2}}$$
. Also, $D(f) = (-\infty, \infty)$ and $R(f^{-1}) = (-1,1)$, $R(f) = (-1,1)$ and $R(f^{-1}) = (-\infty, \infty)$.

Q2) Let f be a one-to-one function with inverse f^{-1} . Calculate the inverse of $p(x) = \frac{1}{1+f(x)}$ in terms of f^{-1} .

Sol: $p(x) = \frac{1}{1+f(x)}$. Let $y=p^{-1}(x)$. Then,

 $x = p(y) = \frac{1}{1+f(y)}$ so, $f(y) = \frac{1}{x} - 1$, and

$$\rho^{-1}(x) = y = f^{-1}(\frac{1}{x}-1).$$

Q3) Find $h^{-1}(-3)$ if h(x) = x.|x|+1.

Solo Let us say $h^{-1}(-3) = a$. Then, h(a) = -3 and $h(a) = a \cdot |a| + 1 = -3$ $\Rightarrow a \cdot |a| = -4$ $\Rightarrow a = -2$.

So, $h^{-1}(-3) = -2$.

Q4) Find $(f^{-1})'(-2)$ if $f(x) = x\sqrt{3+x^2}$.

Sol: Let $y=f^{-1}(x)$. Then, $x=f(y)=y\sqrt{3+y^2}$, so

 $1 = y' \sqrt{3+y^2} + y \frac{2yy'}{2\sqrt{3+y^2}}$. Hence, $y' = \sqrt{3+y^2}$.

Since f(-1) = -2, $f^{-1}(-2) = -1$. we have $(f^{-1})'(-2) = \frac{\sqrt{3+y^2}}{3+2v^2}\Big|_{v=1} = \frac{2}{5}$.

Q5) Simplify the expression $log_x(x(log_y g^2))$.

Solo $\log_x (x(\log_y y^2)) = \log_x (x. \lfloor y \lfloor \log_y y \rfloor) = \log_x (2x)$ = $\log_x x + \log_x 2 = 1 + \frac{1}{\log_2 x}$

Q6) Solve $2\log_3 x + \log_9 x = 10$ for x.

Soll 2. $\log_3 x + \log_{3^2} x = 10 \Rightarrow 2.\log_3 x + \frac{1}{2} \cdot \log_3 x = 10$.

Hence, $\frac{5}{2} \cdot \log_3 x = 10 \Rightarrow \log_3 x = 4$ and $x = 3^4 = 81/$

Q7)
$$\lim_{x\to 0^+} \log_x(\frac{1}{2}) = ?$$

Solo Note that
$$\log_{X}(\frac{1}{2}) = -\log_{X} 2 = \frac{-1}{\log_{2} X}$$
. Hence,

$$\lim_{X\to 0^+} \log_{\mathbf{X}}\left(\frac{1}{2}\right) = \lim_{X\to 0^+} \frac{-1}{\log_2 \mathbf{X}} = \frac{-1}{\lim_{X\to 0^+} \log_2 \mathbf{X}} = \frac{-1}{-\infty} = 0.$$

Q8)
$$\lim_{x\to 1^-} \log_x 2 = ?$$

Soll Note that
$$\log_{x} 2 = \frac{1}{\log_{2} x}$$
. Hence,

$$\lim_{x\to 1^-} \log_x 2 = \lim_{x\to 1^-} \frac{1}{\log_2 x} = \lim_{x\to 1^-} \log_2 x = \frac{1}{0^-} = -\infty.$$

Sols
$$2\ln x + 5\ln(x-2) = \ln x^2 + \ln(x-2)^5 = \ln(x^2(x-2)^5)$$
.

Q10) Find the domain of the function
$$f(x) = \ln \frac{x}{x-2}$$
.

Sol:
$$f(x)$$
 is defined if $\frac{x}{x-2} > 0$. The root of

numerator is 0 and the root of denominator is 2.

We ran make a table.

$$\frac{\times}{\times -2}$$
 > 0 on $(-\infty,0)U(2,\infty)$

Therefore
$$D(f) = (-\infty, 0)U(2, \infty)$$
.

$$4 = x^2 e^{\frac{x}{2}}$$

$$\Rightarrow y' = (x^2)' e^{\frac{x}{2}} + x^2 (e^{\frac{x}{2}})' = 2x \cdot e^{\frac{x}{2}} + x^2 \cdot \frac{1}{2} \cdot e^{\frac{x}{2}}$$

$$\Rightarrow y' = e^{\frac{x}{2}} (2x + \frac{x^2}{2}).$$

b)
$$y = \ln(\ln x)$$

$$\Rightarrow$$
 $y' = \frac{(\ln x)'}{\ln x} = \frac{\frac{1}{x}}{\ln x} \Rightarrow y' = \frac{1}{x \ln x}$

c)
$$y = 2^{x^2-3x+8}$$

$$y' = (x^2 - 3x + 8)^1 \cdot 2^{x^2 - 3x + 8} \cdot \ln 2 \implies y' = \ln 2 \cdot (2x - 3) \cdot 2^{x^2 - 3x + 8}$$

$$= \frac{(\sec x + \tan x)'}{\sec x + \tan x} = \frac{\sec x \cdot \tan x + \sec^2 x}{\sec x + \tan x}$$

$$= \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \implies y' = \sec x$$

$$= \frac{\sec x (\sec x + \tan x)}{\sec x + \tan x} \implies y' = \sec x$$

Q12) Find an equation of the straight line tangent to the curve
$$x.e^y+y-2x=ln2$$
 at the point $(1,ln2)$.

Sol? We must colculate the derivative of both sides.

$$\Rightarrow e^{y} + x \cdot e^{y} y' + y' - 2 = 0 \Rightarrow y' = \frac{dy}{dx} = \frac{2 - e^{y}}{xe^{y} + 1}.$$

At
$$(1, \ln 2)$$
, $\frac{dy}{dx}|_{(1, \ln 2)} = \frac{2 - e^{\ln 2}}{1 \cdot e^{\ln 2} + 1} = \frac{2 - 2}{2 + 1} = 0$.

Therefore,
$$y-ln2=O(x-1)\Rightarrow y=ln2$$
.

(213) Bump! Simplify the given expressions.

a) $\cos(t \partial n^{-1}x)$ b) $t \partial n(sec^{-1}x)$

Solo 27 Let $tan^{-1}x = \alpha$. Then, $tan\alpha = x$. Then, $tan\alpha = x$. Hence, $cos(tan^{-1}x) = cos\alpha = -\frac{1}{2}$

Hence, $\cos(\tan^{1}x) = \cos x = \frac{1}{\sqrt{1+x^{2}}}$

b) Let $\sec^{-1}x = \alpha$. Then, $\sec \alpha = x \Rightarrow \frac{1}{\cos \alpha} = x$. Hence, $\cos \alpha = \frac{1}{x}$. $\frac{x}{x} = \frac{1}{x^2 - 1}$. Thus,

 $tan(sec^{-1}x) = tanx = \sqrt{x^2-1}$.

Q14) Differentiate the function $f(x) = x \cdot \sin^{-1} x$ and simplify the answer whenever possible.

Sol: $f'(x) = (x)^1 \cdot \sin^{-1} x + x \cdot (\sin^{-1} x)^1$ = $\sin^{-1} x + \frac{x}{\sqrt{1-x^2}}$.

Q15) Find equations of two straight lines tangent to the graph of $g=\sin^{-1}x$ and having slope Z.

Solo If $y = \sin^{-1}x$, then $y' = \frac{1}{\sqrt{1-x^2}}$. If the slope

is 2 then $\frac{1}{\sqrt{1-x^2}} = 2$ so that $\frac{1}{1-x^2} = 4 \Rightarrow 1 = 4 - 4x^2$.

Hence, $4x^2=3 \Rightarrow x=7\sqrt{3}$. There

At $x=\frac{13}{2}$, $y=\frac{\pi}{3}$ and at $x=-\frac{13}{2}$, $y=-\frac{\pi}{3}$

The tangent linen are

y- = 2(x- = 0) and y+ = 2(x+ = 0).