Обработка датчиков

Евгений Белоусов Ведущий программист в компании IQTech

Проверка связи

Если у вас нет звука:

- убедитесь, что на вашем устройстве и на колонках включён звук
- обновите страницу вебинара (или закройте страницу и заново присоединитесь к вебинару)
- откройте вебинар в другом браузере
- перезагрузите компьютер (ноутбук) и заново попытайтесь зайти

Поставьте в чат:

- 🕂 если меня видно и слышно
- если нет

Евгений Белоусов

О спикере:

- Ведущий программист в компании IQTech
- Работает в IT с 2011
- Опыт разработки на С++ более 12 лет

Вопрос: Какие бывают схемы соединения сегментов в семисегментном индикаторе?

Вопрос: Какие бывают схемы соединения сегментов в семисегментном индикаторе?

Ответ: С общим анодом и общим катодом

Bonpoc: В чем состоит принцип динамической индикации?

Bonpoc: В чем состоит принцип динамической индикации?

Ответ: Объединение линий данных нескольких индикаторов и их переключение с высокой частотой для имитации формирования непрерывного свечения всех индикаторов с разными символами

Вопрос: Сколько минимально выводов (исключая выводы питания) нужно для подключения жидкокристаллического индикатора?

Вопрос: Сколько минимально выводов (исключая выводы питания) нужно для подключения жидкокристаллического индикатора?

Ответ: 6 линий: 4 линии данных, линия RS и линии Enable

Цели занятия

- Узнаем, как обрабатывать датчики с аналоговым выходом
- Научимся подключать аналоговый датчик температуры и обрабатывать сигнал от него
- Научимся подключать ультразвуковой дальномер и обрабатывать сигнал от него

• Научимся подключать пироэлектрический датчик движения и обрабатывать сигнал от него

План занятия

- (1) Как обрабатывать датчики с аналоговым выходом
- (2) Как измерять расстояние до препятствий
- (з) Как определять движение с помощью пироприемника
- 4 Итоги

Как обрабатывать датчики с аналоговым выходом

Что такое датчик?

Датчик — это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.

Резистивный датчик изменяет свое сопротивление под внешним воздействием

NTC термистор

Зависимость сопротивления NTC термистора (от Negative Temperature Coefficient) от температуры описывается уравнением Стейнхарта-Харта

$$\frac{1}{T} = A + B\ln(R) + C[\ln(R)]^3$$

Аппроксимация характеристики NTC термистора

Уравнение Стейнхарта-Харта имеет параметры А,В и С, которые нужно брать из спецификации к датчику. Если не требуется большой точности, можно воспользоваться модифицированным уравнением (В-уравнение)
Для большинства термисторов
В = 3950

$$\frac{1}{T} = \frac{1}{T_0} + \frac{1}{B} \ln \left(\frac{R}{R_0} \right)$$

Измерение температуры с помощью NTC термистора

```
// Подключаем две библиотеки для работы с LCD и математических вычислений
#include <LiquidCrystal.h>
#include <math.h>
// Инициализируем объект-экран, передаём использованные
// для подключения контакты на Arduino в порядке:
// RS, E, D4, D5, D6, D7
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
void setup(void)
 lcd.begin(16, 2);
 lcd.clear();
 lcd.setCursor(0,0);
// Функция для перевода показаний датчика в градусы Цельсия
float Getterm(int RawADC)
 float celsius = 1 / (\log(1 / (1023. / RawADC - 1)) / 3950 + 1.0 / 298.15) - 273.15;
 return celsius;
```

Измерение температуры с помощью NTC термистора

```
// Функция для вывода на экран показаний датчика
void printTemp(void)
 float temp = Getterm(analogRead(A0)); // считываем показания датчика
 lcd.clear();
  lcd.setCursor(0,0);
 lcd.print("Temperature is:");
 lcd.setCursor(0,1);
 lcd.print(temp);
 lcd.print(" C");
void loop(void)
 printTemp(); // вывод температуры на экран
 delay(1000);
```

Измерение температуры с помощью NTC термистора

В симуляторе модуль NTC термистора уже содержит баластный резистор для формирования резистивного делителя напряжения

Практическое задание N°1

Практика: измерение температуры с помощью NTC термистора

Задание:

- соберите схему в симуляторе WOKWI, подключив жидкокристаллический индикатор к выводам 7 - 12, а NTC термистор к выводу A0;
- 2) создайте скетч с текстом, приведенным выше;
- 3) проведите моделирование работы

Как выполнять: напишите в чат об удачной работе схемы

Время выполнения: 5 минут

Ваши вопросы?

Как измерять расстояние до препятствий

Принцип работы ультразвукового дальномера

Ультразвуковой датчик генерирует узконаправленный сигнал на частоте около 40 кГц и принимает отраженный сигнал (эхо). По времени распространения звука до объекта и обратно можно определить расстояние до него.

Ультразвуковой дальномер HC-SR04

Характеристики:

- напряжение питания: 5 В
- потребление в режиме тишины: 2 мА
- потребление при работе: 15 мА
- диапазон расстояний: 2-400 см
- рабочий угол наблюдения: 30°

Работа дальномера HC-SR04

Последовательность действий:

- для инициализации отправки сигнала дальномером, необходимо подать высокий сигнал длительностью 10 мкс на вход Trig;
- после этого модуль генерирует пачку из восьми сигналов частотой 40 кГц и устанавливает высокий уровень на выводе Echo;
- после получения отраженного сигнала модуль устанавливает на выводе Echo низкий уровень.

Расчет расстояния по показаниям дальномера

Зная продолжительность высокого сигнала на выводе Echo можем вычислить расстояние, умножив время, которое потратил звуковой импульс, прежде чем вернулся к модулю, на скорость распространения звука в воздухе (340 м/с).

Вычислим расстояние переведя скорость из м/с в см/мкс:

distance = duration * 340 [м/c] = duration * 0,034 [cм/мкc]

Преобразуем десятичную дробь в обыкновенную:

distance = duration * 1/29 = duration / 29

Принимая во внимание то, что звук преодолел расстояние до объекта и обратно, поделим полученный результат на 2:

distance = duration / 58

Дополнительные функции ввода/вывода

unsigned long pulseln(uint8_t pin, uint8_t state, unsigned long timeout) — измеряет длительность сигнала на заданном выводе. Функция может измерять сигналы длительностью от 10 микросекунд до 3 минут.

Параметры:

- pin: номер порта вход/выхода, на котором будет ожидаться сигнал
- state: тип ожидаемого сигнала HIGH или LOW
- timeout: (опционально) время ожидания сигнала (таймаут) в микросекундах; по умолчанию одна секунда

Возвращаемое значение: длительность сигнала в микросекундах или 0, если сигнал не получен до истечения таймаута

Использование ультразвукового дальномера

```
// Подключаем библиотеку для работы с LCD
#include <LiquidCrystal.h>
// Инициализируем объект-экран, передаём использованные
LiquidCrystal lcd(12, 11, 10, 9, 8, 7);
float cm;
float inches;
// Функция чтения данных с датчика
long readUltrasonicDistance(int triggerPin, int echoPin)
 pinMode(triggerPin, OUTPUT); // c6poc Trig
 digitalWrite(triggerPin, LOW);
 delayMicroseconds(2);
 digitalWrite(triggerPin, HIGH); // установка TRIG на 10 мкс
 delayMicroseconds(10);
 digitalWrite(triggerPin, LOW);
 pinMode(echoPin, INPUT); // измерение длительности ЕСНО
 return pulseIn(echoPin, HIGH);
```

Использование ультразвукового дальномера

```
void setup()
  lcd.begin(16, 2);
  lcd.clear();
void loop()
  cm = readUltrasonicDistance(3, 2)/58;
  inches = (cm / 2.54);
  lcd.setCursor(0,0);
  lcd.print("Inches");
  lcd.setCursor(4,0);
  lcd.setCursor(12,0);
  lcd.print("cm");
  lcd.setCursor(1,1);
  lcd.print(inches, 1);
  lcd.setCursor(11,1);
  lcd.print(cm, 1);
  lcd.setCursor(14,1);
  delay(2000);
  lcd.clear();
```

Использование ультразвукового дальномера

Расстояние выводится в сантиметрах и дюймах

Практическое задание N°2

Практика: использование ультразвукового дальномера

Задание:

- 1) соберите схему в симуляторе WOKWI, подключив жидкокристаллический индикатор к выводам 7 12, а ультразвуковой дальномер к выводам 2 и 3;
- 2) создайте скетч с текстом, приведенным выше;
- 3) проведите моделирование работы

Как выполнять: напишите в чат об удачной работе схемы

Время выполнения: 5 минут

Ваши вопросы?

Как определять движение с помощью пироприемника

Принцип работы датчика движения на основе пироприемника

Когда теплокровный объект (человек или животное), проходит мимо датчика, он пересекает зону чувствительности первого сенсора, в результате чего на датчике генерируются два различных значения излучения. Когда человек покидает зону чувствительности первого сенсора, значения выравниваются. Изменения в показаниях двух датчиков регистрируются и формируют выход

Конструкция пироприемника

Чувствительные элементы датчика устанавливается в металлический герметический корпус, который защищает от внешних шумов, перепадов температур и влажности. Прямоугольник в центре сделан из материала, который пропускает инфракрасное излучение. За этой пластиной устанавливаются два чувствительных элемента

Конструкция линзы

Для уменьшения габаритов в большинстве датчиков движения на основе пироприемников используется линза Френеля.

Линза Френеля, заменяющая сферическую линзу, состоит из концентрических колец, каждое из которых представляет собой участок конической поверхности с криволинейным профилем и является элементом поверхности сплошной линзы

Модуль пироэлектрического датчика движения

Обычно имеет два режима:

- режим Н в этом режиме при срабатывании датчика несколько раз подряд на его выходе (OUT) остается высокий логический уровень.
- режим L в этом режиме на выходе при каждом срабатывании датчика появляется отдельный импульс

Датчик движения на основе пироприемника

```
const int ledPin = 13;  // выход для светодиода
const int inputPin = 2;  // вход от датчика
int pirState = LOW; // состояние датчика
int val = 0;
             // переменная для чтения состояния датчика
void setup()
 pinMode(ledPin, OUTPUT); // выход для светодиода
 pinMode(inputPin, INPUT); // вход для датчика
 Serial.begin(9600); // дублирование выхода на СОМ порт
```

Датчик движения на основе пироприемника

```
void loop()
 val = digitalRead(inputPin);
  if (val == HIGH) // есть сигнал от датчика
    digitalWrite(ledPin, HIGH); // включаем светодиод
    if (pirState == LOW)
      Serial.println("Motion detected!"); // отправляем сообщение только один раз
      pirState = HIGH;
  else
   digitalWrite(ledPin, LOW); // выключаем светодиод
    if (pirState == HIGH)
      Serial.println("Motion ended!"); // отправляем сообщение только один раз
      pirState = LOW;
```

Датчик движения на основе пироприемника

Наличие движения отображается светодиодом и дополнительно выводится по COM порту

Практическое задание N°3

Практика: датчик движения на основе пироприемника

Задание:

- 1) соберите схему в симуляторе WOKWI, выход датчика движения в выводу 2, а светодиод к выводу 13;
- 2) создайте скетч с текстом, приведенным выше;
- 3) проведите моделирование работы

Как выполнять: напишите в чат об удачной работе схемы

Время выполнения: 5 минут

Итоги

Итоги занятия

Сегодня мы

- (1) Узнали особенности обработки сигнала с аналогового датчика
- (2) Научились подключать аналоговый датчик температуры и обрабатывать сигнал от него
- (3) Научились подключать ультразвуковой дальномер и обрабатывать сигнал от него
- 4 Научились подключать пироэлектрический датчик движения и обрабатывать сигнал от него

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- (1) Вопросы по домашней работе задавайте в чате группы
- (2) Задачи можно сдавать по частям
- (з) Зачёт по домашней работе ставят после того, как приняты все задачи

Задавайте вопросы и пишите отзыв о лекции

Евгений Белоусов Ведущий программист в компании IQTech

