Università degli studi di Verona Dipartimento di Informatica — Settore di Matematica Prova scritta di Algebra lineare — 8 settembre 2009

matricola		nome		cognome
corso di laur	ea		anno accademico d	i immatricolazione
Votazione:	T1 T2	E1		
		E2		
		E3		

- \square (1) Se $f: \mathbb{C}^2 \to \mathbb{C}^2$ è un'applicazione lineare suriettiva, allora f è biiettiva.
- \square (2) Se λ è un autovalore di una matrice **A**, allora λ^2 è un autovalore della matrice **A**².
- \square (3) Se $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ è una base di uno spazio vettoriale V, allora $\{\mathbf{v}_1, \mathbf{v}_3\}$ è un insieme linearmente indipendente.
- T1) Data una matrice quadrata \mathbf{A} , si diano le definizioni di autovalore e di polinomio caratteristico di \mathbf{A} . Si dimostri: $\lambda \in \mathbb{C}$ è un autovalore di \mathbf{A} se e solo se il polinomio caratteristico $p_{\mathbf{A}}(X)$ di \mathbf{A} soddisfa $p_{\mathbf{A}}(\lambda) = 0$.
- T2) Si dia la definizione di prodotto interno in uno spazio vettoriale e si dimostri che, se $(\cdot | \cdot)$ è un prodotto interno su V, per ogni $\mathbf{u}, \mathbf{v} \in V$ vale la disuguaglianza

$$(\mathbf{u} \,|\, \mathbf{v})^2 \leq (\mathbf{u} \,|\, \mathbf{u})(\mathbf{v} \,|\, \mathbf{v}).$$

E1) Si consideri, al variare di $\alpha \in \mathbb{C}$, la matrice

$$\mathbf{A}_{\alpha} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 2 & \alpha & 0 \\ 1 & 0 & \alpha & 1 \end{bmatrix}.$$

Trovare, per ogni $\alpha \in \mathbb{C}$ la decomposizione LU oppure la P^TLU . Per $\alpha = 1$ si trovi una base ortogonale di $C(\mathbf{A}_1)$. Inoltre si interpreti \mathbf{A}_1 come la matrice completa di un sistema lineare e si trovino tutte le soluzioni del sistema.

- E2) Sia $\mathscr{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, dove $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Si verifichi che \mathscr{B} è una base di \mathbb{C}^3 . Si consideri l'applicazione lineare $f \colon \mathbb{C}^3 \to \mathbb{C}^3$ tale che $f(\mathbf{v}_1) = \mathbf{v}_2$, $f(\mathbf{v}_2) = \mathbf{v}_3$, $f(\mathbf{v}_3) = \mathbf{v}_2 + \mathbf{v}_3$.
 - (1) Si trovi la matrice **B** associata a f rispetto alla base canonica sul dominio e sul codominio.
 - (2) Si calcoli il rango di f.
 - (3) Il vettore $\mathbf{w} = \mathbf{v}_1 + \mathbf{v}_3$ appartiene all'immagine di f? Se sì, si trovi un vettore $\mathbf{v} \in \mathbb{C}^3$ tale che $f(\mathbf{v}) = \mathbf{w}$.
 - (4) Si trovi una base dello spazio nullo e dell'immagine di f.
- E3) Si consideri la matrice $(\beta \in \mathbb{C})$

$$\mathbf{B}_{\beta} = \begin{bmatrix} \beta + 1 & 0 & 2\beta + 1 \\ 0 & 1 & 2 \\ -\beta - 1 & 0 & -1 - 2\beta \end{bmatrix}.$$

Si dica per quali valori di β la matrice è diagonalizzabile; si determini, quando esiste, una base di \mathbb{C}^3 formata da autovettori di \mathbf{B}_{β} . Esiste una base ortogonale di \mathbb{C}^3 formata da autovettori di \mathbf{B}_2 ?