## Lecture 4: Instrumental variables

P.J. Messe<sup>1</sup>

<sup>1</sup>Le Mans Université GAINS-TEPP, CEET, LEMNA

Master in Applied Econometrics

#### Outline

#### IV and causality

#### The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

- ▶ Back to the example in Lecture 2: estimating the causal effect of schooling  $(S_i)$ : number of years of education on earnings
  - Let family background, intelligence and motivation be denoted by a 1xK vector  $A_i$
  - The regression of earnings on the variable of interest  $(S_i)$  controlling for this vector of covariates writes as:

$$Y_i = \alpha + \rho S_i + A_i \gamma + \epsilon_i$$

• where  $\gamma$  is a Kx1 vector of population regression coefficients associated to each covariate.

- ▶ If the CIA holds given the set of covariates  $A_i$ ,  $\rho$  is the causal population ATE and  $\hat{\rho}_{OLS}$  is a consistent estimator of this ATE.
  - BUT in practice  $A_i$  is hard to measure so the researcher can only estimate a "short" regression in which this strong predictors are omitted.

$$Y_i = \alpha + \rho S_i + \eta_i$$

- ▶ If the CIA holds given the set of covariates  $A_i$ ,  $\rho$  is the causal population ATE and  $\hat{\rho}_{OLS}$  is a consistent estimator of this ATE.
  - BUT in practice A<sub>i</sub> is hard to measure so the researcher can only estimate a "short" regression in which this strong predictors are omitted.

$$Y_i = \alpha + \rho S_i + \eta_i$$

- ▶ In that case  $S_i$  is **endogenous**: correlated with unobservables (including ability, motivation, ...)
- $ightharpoonup cov(S_i, \eta_i) \neq 0$

- ► Here, endogeneity issue arises because of omitted variables that strongly predict the dependent variable
- ▶ BUT this issue may result from
  - Simultaneity/reverse causality bias
  - Measurement errors

- ► The issue can be addressed with a variable (instrument variable: IV)  $z_i$  that is
  - ullet strongly correlated with the causal variable of interest  $D_i$
  - Uncorrelated with unobservable variables  $\eta_i$  (including ability, motivation, ...)
  - In that case, z<sub>i</sub> can be excluded from the causal model of interest: it is an exclusion restriction

- Good instruments are often linked to institutional settings
  - Example: compulsory schooling laws (Angrist and Krueger, 1991): children have to enter school in the calendar year in which they turn 6 and have to remain in school until their 16th birthday
  - So we can expect that individuals of a given cohort born earlier (1st quarter of the year) tend to have lower average schooling levels than individuals born later (4th quarter of the year)

- ► Is quarter-of-birth of individuals of a given cohort a good instrument?
  - exogenous?: a priori no reason why quarter of birth influences ability: OK (but not testable)
  - Do quarter-of-birth strongly influence educational attainment (first-stage): testable with data

The relationship between quarter of birth and educational attainment using US census data (Angrist and Krueger, 1991)

Within each cohort (year-of-birth) average schooling levels strongly increase with the quarter-of-birth: strong first-stage



- ▶ IV models consist in estimating 2 simultaneous equations
  - The first-stage: regression of the variable of interest (here
    education) on the instrument z<sub>i</sub> adjusting for a 1xK vector of
    covariates X<sub>i</sub>
  - The reduced-form: regression of the dependent variable  $Y_i$  on the set of covariates  $X_i$  and the instrument  $z_i$
  - $X_i$  are possible strong predictors of  $Y_i$  (e.g. year of birth as earnings increase with age)

# Graphical representation of the reduced-form equation of the Angrist and Krueger (1991) example

- Controlling for year of birth, earnings increase with quarter-of-birth z<sub>i</sub>
- If z<sub>i</sub> is truly exogenous, and since it strongly predicts schooling choices, this pattern can only be driven by the effect of education on earnings



#### Outline

#### IV and causality

The endogeneity issue

#### Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

# Two-Stage Least Squares (2SLS)

Let  $\hat{s}_i$  be the fitted value of the number of years of education  $S_i$  after regressing it on a set of included exogenous characteristics  $X_i$  and a set of excluded instruments  $z_i$ .

$$\hat{s}_i = X_i \hat{p}_{i10} + \hat{\pi}_{11} z_i$$

lacktriangle where  $\hat{\it pi}_{10}$  and  $\hat{\pi}_{11}$  are OLS estimates from the first-stage.

# Two-Stage Least Squares (2SLS)

Let  $\hat{s}_i$  be the fitted value of the number of years of education  $S_i$  after regressing it on a set of included exogenous characteristics  $X_i$  and a set of excluded instruments  $z_i$ .

$$\hat{s}_i = X_i \hat{p} i_{10} + \hat{\pi}_{11} z_i$$

- lacktriangle where  $\hat{\it pi}_{10}$  and  $\hat{\pi}_{11}$  are OLS estimates from the first-stage.
- ▶ The coefficient on  $\hat{s}_i$  in the regression of  $Y_i$  on  $X_i$  and  $\hat{s}_i$  is the called the Two-Stage Least Squares (2SLS) estimator
  - The first stage consists in estimating  $\hat{s}_i$  by OLS
  - The second stage consists in estimating the coefficient on  $\hat{s}_i$  in the regression of  $Y_i$  on  $X_i$  and  $\hat{s}_i$  by OLS

# Advices to avoid common mistakes when implementing 2SLS

- ► CAUTION: the estimator of the 2SLS variance is built from the residual  $\hat{\eta}_i$
- NOT from the residual of the second-stage after regressing the dependent variable on  $\hat{s}_i$  and on  $X_i$

# Advices to avoid common mistakes when implementing 2SLS

- ► CAUTION: the estimator of the 2SLS variance is built from the residual  $\hat{\eta}_i$
- NOT from the residual of the second-stage after regressing the dependent variable on  $\hat{s}_i$  and on  $X_i$
- Computing the estimator of the variance of the 2SLS coefficient including the fitted values of the endogenous variable into the second-stage equation and using the second-stage residual is a COMMON MISTAKE
- Caution when implementing 2SLS by hand

# Advices to avoid common mistakes when implementing 2SLS

- ► Put the SAME exogenous covariates in the first and second stage
- If you introduce exogenous covariates in the second-stage that are not included in the first-stage, the 2SLS estimator of  $\rho$  is inconsistent

## Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

We start from a structural equation:

$$Y = X\beta + u$$

- where X is a NxK matrix of exogenous and endogenous covariates
- ► Let us denote Z a NxL matrix of included exogenous covariates AND the excluded instruments.

We start from a structural equation:

$$Y = X\beta + u$$

- ► where X is a NxK matrix of exogenous and endogenous covariates
- ► Let us denote Z a NxL matrix of included exogenous covariates AND the excluded instruments.
- ► The exogeneity assumption regarding Z implies the following set of moments conditions:

$$g_i(\beta) = Z_i' u_i = Z_i'(y_i - X_i\beta) = 0$$

► This yields the following system of equations:

$$\begin{pmatrix} Z'_{1i}(y_{i}-X_{i}\beta) & = & 0 \\ Z'_{2i}(y_{i}-X_{i}\beta) & = & 0 \\ \vdots & & & & \\ Z'_{li}(y_{i}-X_{i}\beta) & = & 0 \end{pmatrix}$$

#### Three cases

- 1. L < K: number of excluded instruments is lower than the number of endogenous covariates. No solution.
- 2. L = K: as many excluded instruments as included endogenous variables: A unique solution exists, this is the standard IV estimator:

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'Y$$

3. L > K: more instruments than needed to estimate the effect of included endogenous variables: the model is overidentified.

#### Three cases

- 1. L < K: number of excluded instruments is lower than the number of endogenous covariates. No solution.
- 2. L = K: as many excluded instruments as included endogenous variables: A unique solution exists, this is the standard IV estimator:

$$\hat{\beta}_{IV} = (Z'X)^{-1}Z'Y$$

3. L > K: more instruments than needed to estimate the effect of included endogenous variables: the model is overidentified.

This latter case (overidentification) is interesting as it allows to test the validity of the instruments

#### In the over-identification case

- $\blacktriangleright$  We can estimate  $\beta$  by Two-Stage Least Squares and then using a **Sargan test** 
  - ullet Regressing u on all instruments in Z
  - Under the null hypothesis that all instruments are uncorrelated with u, the Sargan' statistic is  $N*R^2$  and has a large sample  $\chi_2(r)$  distribution, r being the number of overidentifying restrictions

#### Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

- ▶ If the regressor of interest is endogenous, OLS estimator is biased
- ▶ BUT even though we find an exogenous instrument, 2SLS may also be biased
  - If the instrument is not or insufficiently correlated with the endogenous variable
  - This raises under- or weak-identification issues

A simple rule of thumb based on the F-test of the first-stage

► Statistic use to test joint significance of the first-stage coefficients

$$F = \frac{(SSR_R - SSR_{UR})/(L)}{SSR_{UR}/[N-L-1]}$$

- where SSR<sub>R</sub> and SSR<sub>UR</sub> are the sum of squared residuals respectively for
  - The restricted model (R): only regressing endogenous regressor on a constant in the first-stage)
  - The unrestricted model (UR): regressing endogenous regressor on the full set of L instruments

A simple rule of thumb based on the F-test of the first-stage

► Statistic use to test joint significance of the first-stage coefficients

$$F = \frac{(SSR_R - SSR_{UR})/(L)}{SSR_{UR}/[N-L-1]}$$

- ightharpoonup where  $SSR_R$  and  $SSR_{UR}$  are the sum of squared residuals respectively for
  - The restricted model (R): only regressing endogenous regressor on a constant in the first-stage)
  - The unrestricted model (UR): regressing endogenous regressor on the full set of L instruments
- ▶ If F < 10, it casts some doubts on the strongness of the first-stage (instrument is not valid)

Note: the F-stat can also be computed with the  $R^2$ , i.e. the fraction of observed variance of the dependent variable explained by the model, obtained for the restricted and unrestricted models

Remember that the R<sup>2</sup> writes as:

$$R^2 = 1 - (SSR/TSS)$$

where SSR is the sum of squared residuals and TSS is the Total Sum of Squares, i.e. the observed variance of the dependent variable.

Note: the F-stat can also be computed with the  $R^2$ , i.e. the fraction of observed variance of the dependent variable explained by the model, obtained for the restricted and unrestricted models

Remember that the R<sup>2</sup> writes as:

$$R^2 = 1 - (SSR/TSS)$$

- where SSR is the sum of squared residuals and TSS is the Total Sum of Squares, i.e. the observed variance of the dependent variable.
- ► The F-stat can be written as:

$$F = \frac{(R_{UR}^2 - R_R^2)/(L)}{(1 - R_{UR}^2)/[N - L - 1]}$$

However even though F>10, the first-stage is not necessarily strong

- ▶ It tests the joint significance of ALL first-stage coefficients
- ▶ BUT it could be that the coefficients associated to the included exogenous regressors are high so F can be high and the instruments are not correlated with the endogeneous regressor

However even though F>10, the first-stage is not necessarily strong

- ▶ It tests the joint significance of ALL first-stage coefficients
- ▶ BUT it could be that the coefficients associated to the included exogenous regressors are high so F can be high and the instruments are not correlated with the endogeneous regressor
- ▶ In the case of a single endogenous regressor, the Cragg-Donald (1993) Statistic is a F-stat to test  $H_0$ : excluded instruments do not enter the first-stage regression
- A good test for under-identification

#### Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

#### The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

#### The Wald estimator

▶ In a case of one endogenous regressor  $S_i$ , no covariates and one BINARY instrument  $Z_i \in \{0;1\}$ 

$$Y_i = \alpha + \rho S_i + \eta_i$$

- Let  $N_t$  be the number of units for whom  $Z_i = 1$  and  $N_c$  the number of units for whom  $Z_i = 0$
- Recall (cf lecture 2) that the OLS estimator of a regression of  $Y_i$  on an intercept and one dummy variable  $Z_i$  is:

$$\frac{cov(Y_i, Z_i)}{Var(Z_i)} = \frac{1}{N_t} \sum_{i:Z_i=1} Y_i - \frac{1}{N_c} \sum_{i:Z_i=0} Y_i$$

#### The Wald estimator

▶ In a case of one endogenous regressor  $S_i$ , no covariates and one BINARY instrument  $Z_i \in \{0; 1\}$ 

$$Y_i = \alpha + \rho S_i + \eta_i$$

- Let  $N_t$  be the number of units for whom  $Z_i = 1$  and  $N_c$  the number of units for whom  $Z_i = 0$
- Recall (cf lecture 2) that the OLS estimator of a regression of  $Y_i$  on an intercept and one dummy variable  $Z_i$  is:

$$\frac{cov(Y_i, Z_i)}{Var(Z_i)} = \frac{1}{N_t} \sum_{i:Z_i=1} Y_i - \frac{1}{N_c} \sum_{i:Z_i=0} Y_i$$

Given the formula of the IV estimator, we could write it as:

$$\hat{\rho}^{W} = \frac{\frac{1}{N_{t}} \sum_{i:Z_{i}=1} Y_{i} - \frac{1}{N_{c}} \sum_{i:Z_{i}=0} Y_{i}}{\frac{1}{N_{t}} \sum_{i:Z_{i}=1} S_{i} - \frac{1}{N_{c}} \sum_{i:Z_{i}=0} S_{i}}$$

#### The Wald estimator

- $ightharpoonup \hat{
  ho}^W$  is the Wald estimator
  - The numerator is the reduced-form difference in means
  - The denominator is the first-stage difference in means

#### The Wald estimator

- $\triangleright \hat{\rho}^W$  is the Wald estimator
  - The numerator is the reduced-form difference in means
  - The denominator is the first-stage difference in means
- ► The Wald estimator in the Angrist and Krueger study:

Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instruments

|                                         | (1)<br>Born in the 1st<br>or 2nd quarter of<br>year | (2)<br>Born in the 3rd<br>or 4th quarter of<br>year | (3)<br>Difference<br>(std. error)<br>(1)-(2) |
|-----------------------------------------|-----------------------------------------------------|-----------------------------------------------------|----------------------------------------------|
| ln (weekly wage)                        | 5.8916                                              | 5.9051                                              | -0.01349<br>(0.00337)                        |
| Years of education                      | 12.6881                                             | 12.8394                                             | -0.1514<br>(0.0162)                          |
| Wald estimate of<br>return to education |                                                     |                                                     | 0.0891<br>(0.0210)                           |
| OLS estimate of<br>return to education  |                                                     |                                                     | 0.0703<br>(0.0005)                           |

Notes: Adapted from a re-analysis of Angrist and Krueger (1991) by Angrist and Imbens (1995). The sample includes native-born men with positive earnings from the 1930-39 birth cohorts in the 1980 Census 5 percent file. The sample size is 329,509.

#### Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

#### IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

- ▶  $Y_i(d, z)$ : the potential outcome of an individual i were this person to have:
  - Treatment status  $D_i = d$
  - Instrument value  $Z_i = z$

- ▶  $Y_i(d, z)$ : the potential outcome of an individual i were this person to have:
  - Treatment status  $D_i = d$
  - Instrument value  $Z_i = z$
- The observed treatment status is:

$$D_i = D_{0i} + (D_{1i} - D_{0i})Z_i = \pi_0 + pi_1Z_i + \zeta_i$$

- ▶  $D_{0i}$  tells us whether the unit i is treated if  $Z_i = 0$
- ▶  $D_{1i}$  tells us whether the unit i is treated if  $Z_i = 1$

- $\triangleright$  In that case,  $Z_i$  stands for the treatment assignment
- ► And D<sub>i</sub> indicates whether the treatment is effectively received

- $\triangleright$  In that case,  $Z_i$  stands for the treatment assignment
- ► And D<sub>i</sub> indicates whether the treatment is effectively received
- Some examples
  - ullet Active Labor Market policies: most often take-up rate < 1)
  - Randomized encouragement  $(Z_i)$  through supplementary information on a program  $(D_i)$
  - Military service and earnings (Angrist, 1990): In the Vietnam-war era (1960's-1970's), conscription has been based on random numbers assigned based on birthdays.
    - Those with lottery numbers below an eligibility ceiling were eligible for the draft.
    - Those with numbers above the ceiling were not eligible.

In that case, we can group units into 4 categories  $G_i \in \{C; NT; AT; D\}$  according to their **compliance types** 

|                | $D_i=1, Z_i=1$     | $D_i=0,Z_i=1$     |
|----------------|--------------------|-------------------|
| $D_i=1,Z_i=0$  | Always-Takers (AT) | Defiers (D)       |
| $D_i=0, Z_i=0$ | Compliers (C)      | Never-Takers (NT) |

In the Angrist paper using Vietnam-era draft lottery as instrument for conscription

- Some men with numbers below the draft ceiling have been exempted from service (e.g. for health reasons): never-takers or defiers
- Some men with numbers below the draft ceiling serve in the military: compliers or always-takers
- Some men with numbers above the draft ceiling (a priori exempted) volunteered for service: always-takers or defiers

- ▶ Random assignment:  $Z_i \perp (\{Y_i(d,z) \forall d,z\}, D_{1i}, D_{0i})$ 
  - This allows to identify the average effect of assignment: the Intention-to-Treat (ITT) effect

$$E(Y_i|Z_i=1) - E(Y_i|Z_i=0) = E(Y_i(D_{1i},1) - Y_i(D_{0i},0))$$

We need additional assumptions with respect to the case of constant treatment effect

- ▶ Random assignment:  $Z_i \perp (\{Y_i(d,z) \forall d,z\}, D_{1i}, D_{0i})$ 
  - This allows to identify the average effect of assignment: the Intention-to-Treat (ITT) effect

$$E(Y_i|Z_i=1) - E(Y_i|Z_i=0) = E(Y_i(D_{1i},1) - Y_i(D_{0i},0))$$

▶ In the Angrist (1990) study, draft lottery number instruments are random.

- ► Exclusion restriction: the assignment does not affect outcome other than through the treatment received
  - So potential outcomes may be indexed solely against treatment status

$$Y_i(1,1) = Y_i(1,0) = Y_{1i}$$
 and  $Y_i(0,1) = Y_i(0,0) = Y_{0i}$ 

- ► Exclusion restriction: the assignment does not affect outcome other than through the treatment received
  - So potential outcomes may be indexed solely against treatment status

$$Y_i(1,1) = Y_i(1,0) = Y_{1i}$$
 and  $Y_i(0,1) = Y_i(0,0) = Y_{0i}$ 

- ▶ In the Angrist (1990) study, this does not necessarily hold if for instance low lottery number would have encouraged men to stay in college longer
- In that case, instrument is correlated with earnings through two channels: increased likelihood of military service AND increased likelihood of college attendance

- ► Monotonicity (Imbens and Angrist, 1994): there are no defiers:  $D_{1i} \ge D_{0i}$ 
  - There could be never-takers ( $D_i=0$  while  $Z_i=1$ ) BUT  $D_i=0$  is not caused by  $Z_i=1$

Without monotonicity the true compliance status is not observed on all units

| Z | D | Compliance type             |  |  |  |  |
|---|---|-----------------------------|--|--|--|--|
| 0 | 0 | Compliers or never-takers?  |  |  |  |  |
| 0 | 1 | Always-takers of defiers?   |  |  |  |  |
| 1 | 0 | Never-takers or defiers?    |  |  |  |  |
| 1 | 1 | Compliers or always-takers? |  |  |  |  |

Assuming monotonicity (no defiers) it is possible to estimate the distribution of compliance types:

| Z | D | Compliance type             |
|---|---|-----------------------------|
| 0 | 0 | Compliers or never-takers?  |
| 0 | 1 | Always-takers               |
| 1 | 0 | Never-takers                |
| 1 | 1 | Compliers or always-takers? |

Assuming monotonicity (no defiers) it is possible to estimate the distribution of compliance types:

| Z | D | Compliance type             |  |  |  |
|---|---|-----------------------------|--|--|--|
| 0 | 0 | Compliers or never-takers?  |  |  |  |
| 0 | 1 | Always-takers               |  |  |  |
| 1 | 0 | Never-takers                |  |  |  |
| 1 | 1 | Compliers or always-takers? |  |  |  |

Let  $N_0$  denote the number of individuals not assigned into treatment  $(Z_i = 0)$  and  $N_1$  the number of individuals assigned to treatment  $(Z_i = 1)$ 

► The probability of being an always-taker  $\pi_{AT} = P(D_{0i} = D_{1i} = 1)$  is estimated by:

$$\hat{\pi}_{AT} = \frac{1}{N_0} \sum_{i}^{N} (1 - Z_i) D_i$$

The probability of being a never-taker  $\pi_{NT} = P(D_{0i} = D_{1i} = 0)$  is estimated by:

$$\hat{\pi}_{NT} = \frac{1}{N_1} \sum_{i}^{N} Z_i (1 - D_i)$$

This allows to estimate the probability of being a **complier**  $\pi_C = P(D_{0i} = 0, D_{1i} = 1) = E(D_i|Z_i = 1) - E(D_i|Z_i = 0)$ 

$$\hat{\pi}_{C} = 1 - \hat{\pi}_{AT} - \hat{\pi}_{NT}$$

Note that the ratio of the ITT over the probability of being a complier is:

$$\frac{ITT}{\pi_C} = \frac{E(Y_i|Z_i=1) - E(Y_i|D_i=0)}{E(D_i|Z_i=1) - E(D_i|Z_i=0)}$$

This allows to estimate the probability of being a **complier**  $\pi_C = P(D_{0i} = 0, D_{1i} = 1) = E(D_i|Z_i = 1) - E(D_i|Z_i = 0)$ 

$$\hat{\pi}_{\textit{C}} = 1 - \hat{\pi}_{\textit{AT}} - \hat{\pi}_{\textit{NT}}$$

Note that the ratio of the ITT over the probability of being a complier is:

$$\frac{ITT}{\pi_C} = \frac{E(Y_i|Z_i=1) - E(Y_i|D_i=0)}{E(D_i|Z_i=1) - E(D_i|Z_i=0)}$$

➤ This is the Wald estimand and this corresponds to the Local Average Treatment Effect: LATE (Imbens and Angrist, 1994)

#### The LATE theorem (Angrist and Imbens, 1994) says that:

 Under the assumptions of randomness of instrument, exclusion restrictions and monotonicity and provided that the first-stage is strong

$$\frac{E(Y_i|Z_i=1)-E(Y_i|D_i=0)}{E(D_i|Z_i=1)-E(D_i|Z_i=0)}=E(Y_{1i}-Y_{0i}|D_{1i}>D_{0i})=E(Y_{1i}-Y_{0i}|G_i=C)$$

► IV estimates the average causal effect of the treatment on the COMPLIERS (only a local effect)

# IV does not capture the average causal effect on all the treated or on all the non-treated individuals

► There are exceptions to this rule ONLY if the IV allows no always-takers or no never-takers

# IV does not capture the average causal effect on all the treated or on all the non-treated individuals

- ► There are exceptions to this rule ONLY if the IV allows no always-takers or no never-takers
- Angrist and Evans (1998) use multiple second births (twins) indicator to instrument the fact of having three children
- ► The goal is to estimate the effect of having three children on earnings among women with at least two children

- In that case, there are no never-takers: if  $Z_i = 1$ , the woman has necessarily three children.
- ▶ BUT there are always-takers: even if  $Z_i = 0$  a woman can decide to have a third children afterwards

- In that case, there are no never-takers: if  $Z_i = 1$ , the woman has necessarily three children.
- ▶ BUT there are always-takers: even if  $Z_i = 0$  a woman can decide to have a third children afterwards
- ► The LATE corresponds here to the average causal effect of the treatment on the non-treated individuals:

$$LATE = E(Y_{1i} - Y_{0i}|D_i = 0)$$

#### Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

- ▶ In a completely randomized experiment, the OLS estimator captures the ATT (cf lecture 1 and 2)
  - BUT in many RCTs, participation is voluntary among those randomly assigned to receive treatment
  - The group that receives the treatment (compliers) is a self-selected subset of those offered treatment

- ▶ In a completely randomized experiment, the OLS estimator captures the ATT (cf lecture 1 and 2)
  - BUT in many RCTs, participation is voluntary among those randomly assigned to receive treatment
  - The group that receives the treatment (compliers) is a self-selected subset of those offered treatment
- In RCTs with non-compliance, there remains a selection bias (almost always positive): OLS estimator is misleading

- ► ALMP are generally characterized by non-compliance
  - Ex: the randomized evaluation of the Job Training Partnership Act shows that only 60% of those assigned to treatment received training.

- ALMP are generally characterized by non-compliance
  - Ex: the randomized evaluation of the Job Training Partnership Act shows that only 60% of those assigned to treatment received training.
- In that case, LATE using randomized assignment to treatment as an instrument of receiving treatment is a consistent estimator of the Average Treatment Effect on the Treated (ATT)
  - Since generally non-compliance concerns the treatment group.

# IV and non-compliance in RCTs: the example of the evaluation of the JTPA

If we compare treated and non-treated individuals, the causal effect of JTPA on earnings is large ( $\approx$  \$ 4000 for men)

Table 4.4.1: Results from the JTPA experiment: OLS and IV estimates of training impacts

|          | Comparisons by<br>Training Status |            | Comparisons by<br>Assignment Status |            | Instrumental Variable<br>Estimates |            |
|----------|-----------------------------------|------------|-------------------------------------|------------|------------------------------------|------------|
|          |                                   |            |                                     |            |                                    |            |
|          | Without                           | With       | Without                             | With       | Without                            | With       |
|          | Covariates                        | Covariates | Covariates                          | Covariates | Covariates                         | Covariates |
|          | (1)                               | (2)        | (3)                                 | (4)        | (5)                                | (6)        |
| A. Men   | 3,970                             | 3,754      | 1,117                               | 970        | 1,825                              | 1,593      |
|          | (555)                             | (536)      | (569)                               | (546)      | (928)                              | (895)      |
| B. Women | 2,133                             | 2,215      | 1,243                               | 1,139      | 1,942                              | 1,780      |
|          | (345)                             | (334)      | (359)                               | (341)      | (560)                              | (532)      |

# IV and non-compliance in RCTs: the example of the evaluation of the JTPA

BUT the Intention-to-Treat effect (ITT), i.e. the comparison of those assigned to treatment and those not assigned is strongly lower ( $\approx$  \$1100 for men)

Table 4.4.1: Results from the JTPA experiment: OLS and IV estimates of training impacts

|          | Comparisons by  |            | Comparisons by    |            | Instrumental Variable |            |
|----------|-----------------|------------|-------------------|------------|-----------------------|------------|
|          | Training Status |            | Assignment Status |            | Estimates             |            |
|          | Without         | With       | Without           | With       | Without               | With       |
|          | Covariates      | Covariates | Covariates        | Covariates | Covariates            | Covariates |
|          | (1)             | (2)        | (3)               | (4)        | (5)                   | (6)        |
| A. Men   | 3,970           | 3,754      | 1,117             | 970        | 1,825                 | 1,593      |
|          | (555)           | (536)      | (569)             | (546)      | (928)                 | (895)      |
| B. Women | 2,133           | 2,215      | 1,243             | 1,139      | 1,942                 | 1,780      |
|          | (345)           | (334)      | (359)             | (341)      | (560)                 | (532)      |

# IV and non-compliance in RCTs: the example of the evaluation of the JTPA

The LATE (the ITT divided by the difference in compliance rates between treatment and control groups) estimates the ATT: roughly \$1800 for men

Table 4.4.1: Results from the JTPA experiment: OLS and IV estimates of training impacts

|          | Comparisons by  |            | Comparisons by    |            | Instrumental Variable |            |
|----------|-----------------|------------|-------------------|------------|-----------------------|------------|
|          | Training Status |            | Assignment Status |            | Estimates             |            |
|          | Without         | With       | Without           | With       | Without               | With       |
|          | Covariates      | Covariates | Covariates        | Covariates | Covariates            | Covariates |
|          | (1)             | (2)        | (3)               | (4)        | (5)                   | (6)        |
| A. Men   | 3,970           | 3,754      | 1,117             | 970        | 1,825                 | 1,593      |
|          | (555)           | (536)      | (569)             | (546)      | (928)                 | (895)      |
| B. Women | 2,133           | 2,215      | 1,243             | 1,139      | 1,942                 | 1,780      |
|          | (345)           | (334)      | (359)             | (341)      | (560)                 | (532)      |

- ▶ IV estimates can use multiple instruments
- And the compliant subpopulations associated with each instrument may be very different

- ▶ IV estimates can use multiple instruments
- And the compliant subpopulations associated with each instrument may be very different
- In that case, if we obtain similar IV estimates using different instruments, we could conclude to homogeneous treatment effects
- ▶ BUT how can we characterize compliant subpopulations?  $D_{1i}$  and  $D_{0i}$  are not observable at the same time.

- The distribution of compliers' characteristics can be learned from variation in the first-stage across covariate groups
- ▶ The relative likelihood a complier is characterized by  $X_{ik} = x$ , where  $X_{ik}$  is a discrete covariate and x is its value, is given by

$$\frac{P(X_{ik} = x | D_{1i} > D_{0i})}{P(X_{ik} = x)} = \frac{E(D_i | Z_i = 1, X_{ik} = x) - E(D_i | Z_i = 0, X_{ik} = x)}{E(D_i | Z_i = 1) - E(D_i | Z_i = 0)}$$

- ► The distribution of compliers' characteristics can be learned from variation in the first-stage across covariate groups
- ▶ The relative likelihood a complier is characterized by  $X_{ik} = x$ , where  $X_{ik}$  is a discrete covariate and x is its value, is given by

$$\frac{P(X_{ik} = x | D_{1i} > D_{0i})}{P(X_{ik} = x)} = \frac{E(D_i | Z_i = 1, X_{ik} = x) - E(D_i | Z_i = 0, X_{ik} = x)}{E(D_i | Z_i = 1) - E(D_i | Z_i = 0)}$$

This is the ratio of the first stage among individuals with  $X_{ik} = x$  to the overall first-stage.

### Characterizing compliers

- ► Ex: Angrist and Evans (1998) use two instruments:
  - Multiple second births (twins)
  - Sex-composition of the first two children

### Characterizing compliers

- Ex: Angrist and Evans (1998) use two instruments:
  - Multiple second births (twins)
  - Sex-composition of the first two children
- ► They look at the characteristics of the two associated compliant subpopulations

### Characterizing compliers (Angrist and Evans, 1998)

Twins compliers are more educated than the average mother but this is the reverse story for sex-composition compliers

Table 4.4.3: Complier-characteristics ratios for twins and sex-composition instruments

| Variable                       | E[x] (1) | Twins at second birth               |                           | First two children are same sex                    |                                                |
|--------------------------------|----------|-------------------------------------|---------------------------|----------------------------------------------------|------------------------------------------------|
|                                |          | $E\left[x _{D_1}>_{D_0}\right]$ (2) | $P[x D_1 > D_0]/P[X]$ (3) | $E\left[x \mathtt{D}_1>\mathtt{D}_0\right] \\ (6)$ | $P[x \mathtt{D}_1 > \mathtt{D}_0]/P[X] $ $(5)$ |
| Age 30 or older at first birth | 0.00291  | 0.00404                             | 1.39<br>(0.0201)          | 0.00233                                            | 0.995<br>(0.374)                               |
| Black or hispanic              | 0.125    | 0.103                               | 0.822<br>(0.00421)        | 0.102                                              | 0.814<br>(0.0775)                              |
| High school graduate           | 0.822    | 0.861                               | 1.048<br>(0.000772)       | 0.815                                              | 0.998<br>(0.0140)                              |
| College graduate               | 0.132    | 0.151                               | 1.14<br>(0.00376)         | 0.0904                                             | 0.704<br>(0.0692)                              |

Notes: The table reports an analysis of complier characteristics for twins and sex-composition instru-

ments. The ratios in columns 3 and 5 give the relative likelihood compliers have the characteristic indicated in each row. Data are from the 1980 Census 5% sample, including married mothers age 21-35 with at least two children, as in Angrist and Evans (1998). The sample size is 254,654 for all columns.

000000

#### Outline

#### IV and causality

The endogeneity issue

Two-Stage Least Squares

IV and overidentification

Under-identification and weak identification issues

#### IV and heterogeneous treatment effects

The Wald estimator

IV and heterogeneous treatment effects

IV and non-compliance issues

IV and limited dependent or endogenous variables

- Back to the Angrist and Evans' paper (1998): estimating the motherhood's penalty.
  - ullet Let  $D_i$  be the dummy indicating whether a woman has three children
  - Let  $X_i$  be a vector of exogenous covariates
  - Let  $Z_i$  be the excluded instrument: having already two boys or two girls

- Back to the Angrist and Evans' paper (1998): estimating the motherhood's penalty.
  - Let  $D_i$  be the dummy indicating whether a woman has three children
  - Let  $X_i$  be a vector of exogenous covariates
  - Let  $Z_i$  be the excluded instrument: having already two boys or two girls
- ► The usual 2SLS first-stage is:

$$D_i = X_i \pi_{10} + \pi_{11} Z_i + \zeta_i$$

- Since  $D_i$  is a dummy, the OLS first-stage is an approximation to the underlying nonlinear Conditional Expectation Function  $E(D_i|X_i,Z_i)$ .
  - We could use a non-linear first-stage to come closer to the CEF, like a Probit or a logit model.
  - And then plugging in the fitted value of  $D_i$ ,  $\hat{D}_i$  in the second-stage OLS equation

- Since  $D_i$  is a dummy, the OLS first-stage is an approximation to the underlying nonlinear Conditional Expectation Function  $E(D_i|X_i,Z_i)$ .
  - We could use a non-linear first-stage to come closer to the CEF, like a Probit or a logit model.
  - And then plugging in the fitted value of  $D_i$ ,  $\hat{D}_i$  in the second-stage OLS equation
- ▶ BUT this is FORBIDDEN (Angrist and Pischke, 2008):
  - Only OLS first-stage is guaranteed to produce first-stage residuals that are uncorrelated with fitted values and covariates
  - The main issue with non-linear model: assuming the distribution of the first-stage CEF
  - With 2SLS, no need to worry about whether the first-stage CEF is really linear.

- ► An alternative approach: building up a causal story describing the process generating the dependent variable in detail
  - With a binary dependent variable ( $Y_i = 1$  if the woman is employed), we can use a bivariate Probit model.

- ► An alternative approach: building up a causal story describing the process generating the dependent variable in detail
  - With a binary dependent variable ( $Y_i = 1$  if the woman is employed), we can use a bivariate Probit model.
- Suppose that a woman decides to have a third child by comparing costs and benefits using a net benefit function. This latent variable would be linear in covariates, excluded instruments with an error term  $\zeta_i$ .
- ► The bivariate Probit first-stage can be written as:

$$D_i = 1[X_i \pi_{10} + \pi_{11} Z_i > \zeta_i]$$

▶ Suppose that the employment status  $Y_i$  is defined by the following latent index arising from the comparison of the costs an benefits of working:

$$Y_i = 1[X_i\beta_0 + \beta_1 D_i > \epsilon_i]$$

• where  $\epsilon_i$  is the second-stage error term.

▶ Suppose that the employment status  $Y_i$  is defined by the following latent index arising from the comparison of the costs an benefits of working:

$$Y_i = 1[X_i\beta_0 + \beta_1 D_i > \epsilon_i]$$

- where  $\epsilon_i$  is the second-stage error term.
- ▶ The source of omitted variable bias in this setup is correlation between  $\zeta_i$  and  $\epsilon_i$ 
  - unobserved determinants of childbearing could be correlated with unobserved determinants of employment

▶ Assuming that  $Z_i$  is independent of  $\zeta_i$  and  $\epsilon_i$  and that these residuals are normally distributed, the parameters can be identified maximizing the following log likelihood:

$$\sum Y_{i} In \Phi_{b}(\frac{X_{i}\beta_{0} + \beta_{1}D_{i}}{\sigma_{\epsilon}}, \frac{X_{i}\pi_{10} + \pi_{11}Z_{i}}{\sigma_{\zeta}}; \rho_{\epsilon\zeta})$$

$$+ (1 - Y_{i}) In[1 - \Phi_{b}(\frac{X_{i}\beta_{0} + \beta_{1}D_{i}}{\sigma_{\epsilon}}, \frac{X_{i}\pi_{10} + \pi_{11}Z_{i}}{\sigma_{\zeta}}; \rho_{\epsilon\zeta})]$$

• where  $\Phi_b(.,.,\rho_{\epsilon\zeta})$  is the bivariate normal cumulative distribution function with correlaton coefficient  $\rho_{\epsilon\zeta}$ .

► One big advantage of bivariate Probit model: estimating the ATE and not only the LATE

$$ATE = E\{\Phi[\frac{X_i\beta_0 + \beta_1}{\sigma_\epsilon}] - \Phi[\frac{X_i\beta_0}{\sigma_\epsilon}]\}$$

• where  $\Phi[.]$  is the normal c.d.f.

► One big advantage of bivariate Probit model: estimating the ATE and not only the LATE

$$ATE = E\{\Phi[\frac{X_i\beta_0 + \beta_1}{\sigma_\epsilon}] - \Phi[\frac{X_i\beta_0}{\sigma_\epsilon}]\}$$

- where Φ[.] is the normal c.d.f.
- ▶ BUT this comes at a cost: assuming normality of the latent index error terms
- Without distributional assumption, the best we can do is estimating the LATE: so we can also use a 2SLS model