基础电路与电子学

主讲: 陈开志

办公室:学院2号楼304

Email: ckz@fzu.edu.cn

第5章 放大电路基础

- 5.1 放大电路的组成及工作原理 --- 定性
- 5.3 计算分析法———— 适合实际计算
- 5.4 放大电路的三种接法
- 5.5 阻容耦合放大电路
- 5.6 场效应管放大电路
- 5.7 多级放大电路
- 5.8 放大器的通频带

总结: 计算法求静态工作点

放大条件: 发射结正偏,集电结反偏

 $U_{
m BEO} > U_{
m on}, \quad U_{
m CEO} >$

分析步骤:

- 1 用直流等效模型替换,通过输入 回路求 I_{BO},
- 2 若 I_{BQ} 小于 0 ,三极管处于截止区 若 I_{BQ} 大于 0 ,求 I_{CQ} ,
- 3 通过输出回路求 U_{CEQ} ,若 U_{CEQ} ,大于 U_{BEQ} ,则处于放大区,小于则处于饱和区

第5章 放大电路基础

- 5.3 计算分析法
- ◆ 静态工作点计算
- ◆ 交流通路的分析
 - ▶ 晶体管的 h 参数微变等效电路
 - 三极管如何等效成以前的普通电路
 - 在普通电路上进行计算
 - > 用计算分析法计算主要性能指标
 - 1. 电压放大倍数
 - 2. 电流放大倍数
 - 3. 输入电阻和输出电阻
 - 4. 最大输出电压幅值 $U_{
 m omax}$

图解法求 UBE 及 ig 波形

(4) 简化 h 参数微变等效电路

$$\frac{\Delta i}{\Delta u} = k = \frac{1}{r_{be}}$$

b + U be r be

两个h参数的等效电路

r_{be} 等效电阻和静态工作 点上的斜率有关

$$r_{\text{be}} = 300 + (1 + \beta) \frac{26(\text{mV})}{I_{\text{EO}}(\text{mA})} (\Omega)$$

$$i_{\rm C} = \overline{\beta}i_{\rm B} = \overline{\beta}I_{\rm B} + \overline{\beta}I_{\rm bm}\sin\omega t = I_{\rm C} + I_{\rm cm}\sin\omega t$$

- ❖将晶体管当作一个线性双口网络。
- ❖小信号输入时求出的等效电路称为晶体管微变等效电路。

5.3 计算分析法 R_{c} (4) 简化 h 参数微变等效电 $R_{\rm b}$ 路 $R_{\rm s}$ $R_{\rm c}$ $R_{\rm b}$ $\mathring{U_{\mathrm{o}}} + U_{\mathrm{o}}$ $R_{\rm s}$ 交流通路 ${U_{i}}$ ❖画微变等效电路 $V_{ m BB}$ $R_{\rm b}$ $U_{\mathbf{0}}$ 放大电路 r_{be} $r_{\text{be}} = 300 + (1 + \beta) \frac{26(\text{mV})}{I_{\text{EQ}}(\text{mA})} (\Omega)$ (b) 微变等效电路

第5章 放大电路基础

- 5.3 计算分析法
- ◆ 静态工作点计算
- ◆ 交流通路的分析
 - ▶ 晶体管的 h 参数微变等效电路
 - 三极管如何等效成以前的普通电路
 - 在普通电路上进行计算
 - > 用计算分析法计算主要性能指标
 - 1. 电压放大倍数
 - 2. 电流放大倍数
 - 3. 输入电阻和输出电阻
 - 4. 最大输出电压幅值 $U_{
 m omax}$

- 3. 用计算分析法计算主要性能指标
- (1) 计算电压放大倍数

$$\dot{A}_{\mathbf{u}} = \frac{\dot{U}_{\mathbf{o}}}{\dot{U}_{\mathbf{i}}} = \frac{U_{\mathbf{o}} \angle \phi_{\mathbf{o}}}{U_{\mathbf{i}} \angle \phi_{\mathbf{i}}} = A_{\mathbf{u}} \angle \phi$$

式中: $A_{\rm u}=U_{\rm o}/U_{\rm i}$ (有效值之比), $\emptyset = \emptyset_{\rm o} - \emptyset_{\rm i}$

●放大倍数亦常用增益来表示,单位是分贝(dB),

公式: $A_{\rm u}({\rm dB})=20{\rm lg}A_{\rm u}$

3. 用计算分析法计算主要性能指标

(1) 计算电压放大倍数

$$\dot{U}_{\rm o} = -\beta \dot{I}_{\rm b} (R_{\rm c} / / R_{\rm L}) = -\beta \dot{I}_{\rm b} R'_{\rm L}$$

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} = \frac{-\beta \dot{I}_{\rm b} R'_{\rm L}}{\dot{I}_{\rm b} (R_{\rm b} + r_{\rm be})} = \frac{-\beta R'_{\rm L}}{R_{\rm b} + r_{\rm be}}$$

③ 考虑信号源内阻 R。时电压放大倍数的计算

对信号源电压U。的电压放大倍数定义为

$$\dot{A}_{\rm us} = \frac{U_{\rm o}}{\dot{U}_{\rm s}}$$

由微变等效电路可得

$$\dot{A}_{\rm us} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm s}} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} \cdot \frac{\dot{U}_{\rm i}}{\dot{U}_{\rm s}} = \dot{A}_{\rm u} \frac{\dot{U}_{\rm i}}{\dot{U}_{\rm s}}$$

$$\frac{\dot{U}_{i}}{\dot{U}_{s}} = \frac{\dot{I}_{i}(R_{b} + r_{be})}{\dot{I}_{i}(R_{s} + R_{b} + r_{be})} = \frac{R_{b} + r_{be}}{R_{s} + R_{b} + r_{be}}$$

③ 考虑信号源内阻 R。 时电压放大倍数的计算

式中 R_b+r_{be} 就是放大电路的输入电阻,用 R_i 表示。因此。可以表示为 R_i

$$\dot{A}_{\rm us} = \dot{A}_{\rm u} \cdot \frac{R_{\rm i}}{R_{\rm s} + R_{\rm i}}$$

$$\dot{A}_{us} = \frac{-\beta R_{L}^{'}}{R_{b} + r_{be}} \cdot \frac{R_{b} + r_{be}}{R_{s} + R_{b} + r_{be}} = \frac{-\beta R_{L}^{'}}{R_{s} + R_{b} + r_{be}}$$

比较式
$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} = \frac{-\beta R'_{\rm L}}{R_{\rm b} + r_{\rm be}}$$
 和上式

可见 $A_{us} < A_{u}$ 。 原因是信号源电压 C_{s} 的一部分电压分到 到信号源内阻 R_{s} 上。

3. 用计算分析法计算主要性能指标

(2) 计算电流放大倍数

根据微变等效电路

$$\dot{I}_{i} = \frac{\dot{U}_{i}}{R_{b} + r_{be}}$$

$$\dot{I}_{o} = \frac{-\dot{U}_{o}}{R_{L}}$$

$$\dot{A}_{i} = \frac{\dot{I}_{o}}{\dot{I}_{i}} = \frac{-\dot{U}_{o}}{R_{L}} \cdot \frac{R_{b} + r_{be}}{\dot{U}_{i}}$$

$$\dot{R}_{b} + r_{be}$$

$$= -\dot{A}_{\rm u} \, \frac{R_{\rm b} + r_{\rm be}}{R_{\rm r}}$$

微变等效电路

② 关于提高 A_{\parallel} 的讨论

式

$$\dot{A}_{\mathrm{u}} = \frac{U_{\mathrm{o}}}{\dot{U}_{\mathrm{i}}} = \frac{-\beta R'_{\mathrm{L}}}{R_{\mathrm{b}} + r_{\mathrm{be}}}$$

要提高 $A_{\mathbf{u}}$

- 可以增大β;
- ▶增大交流负载电阻 R'__;
- >减小 $R_{\rm b}$;
- \rightarrow 增大静态发射极电流 I_{EO} 来使 r_{be} 减小。
- ▶但实际上, A₁ 与这些参数之间并不是简单的正比关系。

第5章 放大电路基础

- 5.3 计算分析法
- ◆ 交流通路的分析-
- ◆ 静态工作点计算 「 ➤ 晶体管的 h 参数微变等效电路
 - ▶ 用计算分析法计算主要性能指标
 - 1. 电压放大倍数
 - 2. 电流放大倍数
 - 3. 等效输入电阻和输出电阻
 - 4. 最大输出电压幅值 U_{omax}

图 5-22 放大器的输入电阻和输出电阻

问题: 为什么要计算输入电阻?

$$\dot{U}_{i} = \frac{R_{i}}{R_{s} + R_{i}} \dot{U}_{s}$$
 $\dot{I}_{i} = \frac{\dot{U}_{s}}{R_{s} + R_{i}}$

Ri 越大,放大器输入端得到的信号电压Li 也越大,即信号源电压衰减的少;但大器从信号源取的电流越小

反之Ri越小,放大器从信号源取的电流越大,放大器的输入电

流 就越接近信号源提供的最大电流 ,其值为R。

输入电阻用 于衡量放大 器对信号源 的影响

计算输入电阻 Ri

输入电阻 R_i 是用来衡量放大器对信号源的影响的一个性能指标。它定义为输入信号电 \overline{L}_i 与输入信号电流 之比。即 \overline{U}_i

根据定义微变等 效电路可以计算 R_s 共射放大电路的 输入电阻。

$$R_{\rm i} = \frac{U_{\rm i}}{\dot{I}_{\rm i}} = R_{\rm b} + r_{\rm be}$$

为什么要计算输出电阻Ro?

$$\dot{U}_{o} = \frac{R_{L}}{R_{o} + R_{L}} \dot{U}_{oo}$$

$$\dot{I}_{o} = \frac{\dot{U}_{oo}}{R_{o} + R_{L}}$$

$$R_{o} = (\frac{\dot{U}_{oo}}{\dot{I}_{L}} - 1)R_{L}$$

若 R_0 很小, $<< R_1$ 则 $U_0 \approx U_{00}$

当RI在较大范围内变化时,可基本维持输出信号电压的恒定。

反之,若 R_{o} 很大>> R_{L} 则 $I_{\text{o}} \approx U_{\text{oo}}/R_{\text{o}}$

$$\dot{I}_{\circ} \approx \dot{U}_{\circ \circ}/R_{\circ}$$

当Ri在较大范围内变化时,可基本维持输出信号电流的恒定。

输出电阻用来衡量放大器带负载能力的强弱。

计算输出电阻 R_0 : 受控源电路

1: 开路短路法

2:加压求流法

图 5-24 计算输出电阻 R₀的等效电路

计算输出电阻 R。

$$R_{
m o} = rac{\dot{U}_{
m o}^{'}}{\dot{I}_{
m o}^{'}}igg|_{\dot{U}_{
m s}=0,R_{
m L}=\infty}$$

将信号源短路,即 $U_s = 0$,负载电阻 R_L 开路,外加交流信号源 U_o ,电流源支路开路。

$$R_{\rm o} = \dot{U}'_{\rm o} / \dot{I}'_{\rm o} = R_{\rm c}$$

图 5-24 计算输出电阻 R。的等效电

第5章 放大电路基础

- 5.3 计算分析法
- ◆ 交流通路的分析-
- ◆ 静态工作点计算 「 ➤ 晶体管的 h 参数微变等效电路
 - ▶ 用计算分析法计算主要性能指标
 - 1. 电压放大倍数
 - 2. 电流放大倍数
 - 3. 等效输入电阻和输出电阻
 - 4. 最大输出电压幅值 U_{omax}

什么是最大输出电压? 为什么输出电压有限制?

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} = \frac{-\beta R'_{\rm L}}{R_{\rm b} + r_{\rm be}}$$

假设放大倍数等于10倍

U_{im} 幅度值为 1mv, 则 U_{om}=10mv

U_{im} 幅度值为 2v, 则 U_{om}=20√×

电路是用叠加原理分析,任何一点都是交流直流叠

m交直流叠加 $u_{be} = 1\sin \omega t + 0.7V$ $\dot{u}_{o} = -\dot{I}_{c}R'_{L}$ \dot{u}_{be} \dot{t} 截止失真

思考: 减小 u, 什么时候刚好不发生截止失真?

什么是最大输出电压?

减小 点, 什么时候刚好不 发生截止失真?

极限情况,交流 i_c 幅度值不能大于Ico

输出的最大电压幅度值为

什么是最大输出电压? 为什么输出电压有限制?

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} = \frac{-\beta R'_{\rm L}}{R_{\rm b} + r_{\rm be}}$$

假设放大倍数等于100倍

U_{im} 幅度值为 100mv, 则 X_{om}=10v

(b) 微变等效电路

$$u_{ce} = U_{CEQ} - I_{C} \sin wt \cdot R'_{L}$$

思考:减小 id,什么时候刚好不发生饱和失饱和失真

真?

什么是最大输出电压? 为什么输出电压有限制?

$$\dot{A}_{\rm u} = \frac{\dot{U}_{\rm o}}{\dot{U}_{\rm i}} = \frac{-\beta R'_{\rm L}}{R_{\rm b} + r_{\rm be}}$$

所以不发生饱和失真下

输出的最大电压幅度值为

$$U_{\mathit{OM}} \leq U_{\mathit{CEQ}} - U_{\mathit{CES}}$$

(b) 微变等效电路

减小 ii, 什么时候刚好不发生饱和失真?

饱和失真

5. 最大输出电压幅值

▶ 所以既不发生饱和失真,又不发生截止失真的条件下, u_{CE} 的交流分量的最大幅值应当

$$U_{\text{omax}} = \min\{U_{\text{CEQ}} - U_{\text{CES}}, I_{\text{CQ}}R'_{\text{L}}\}$$

•在电路条件一定的情况下,将静态工作点设置得使 U_{CEQ} - U_{CES} = $I_{CQ}R'_{L}$, 这时放大电路有最大的输出电压幅值 U_{omax} , 或者说有最大的输出动态范围。

作业 5-5 , 5-7,5-9