34

1	CLAIMS	
2		
3	[001]	A method for operating a frequency converter
4		circuit comprising at least two outputs that are
5		respectively connected to a load, especially an
6		induction coil (I1, I2), wherein a first output
7		(I1) is operated at a first switching frequency
8		(f1) and a second output (I2) is simultaneously
9		operated at a second switching frequency (f2) that
10		is different from the first in such a way that
11		noise having a frequency (fS) generated by the
12		superposition of the first switching frequency
13		(f1) and the second switching frequency (f2) is
14		produced, characterised in that the converter
15		circuit is operated in such a way that the
16		frequency (fS) of the noise is lower than a first
17		cut-off frequency (g1) and/or higher than a second
18		cut-off frequency (g2).
19		
20	[002]	The method according to claim 1, characterised in
21		that the first switching frequency (f1) and/or the
22		second switching frequency (f2) is operated in
23		such a way that the frequency (fS) of the noise is
24		lower than the first cut-off frequency (g1) and/or
25		higher than the second cut-off frequency (g2).
26		
27	[003]	The method according to claim 1 or 2,
28		characterised in that an electrical power (P1, P2)
29		of at least one of the outputs (I1, I2) is
30		regulated by a relative switch-on time (D) and/or
31		the switching frequency (f1, f2).
32		
33	[004]	The method according to any one of claims 1 to 3,

characterised in that the first cut-off frequency

14

1		(gl) and/or the second cut-off frequency (g2) is
2		determined depending on a level (LS) of the noise
3		
4	[005]	The method according to any one of claims 1 to 3,
5		characterised in that the first cut-off frequency
6		(g1) and/or the second cut-off frequency (g2) is
7		determined depending on a total electrical power
8		(P1, P2) of the outputs (I1, I2).
9		
10	[006]	The method according to any one of claims 1 to 3 ,
11		characterised in that the first cut-off frequency
12		(g1) is 2 kilohertz and/or the second cut-off
13		frequency (g2) is 14 kilohertz.