ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MS F/G 13/3 COMPUTER PROGRAM FOR OPTIMUM NONLINEAR DYNAMIC DESIGN OF REINFO--ETC(U) MAR 81 J M FERRITTO, R M WAMSLEY, P K SENTER NL MES-INSTRUCTION-K-81-6 AD-A104 253 UNCLASSIFIED 104 4104253 END DATE 40-81 DTIC

INSTRUCTION REPORT K-81-6

USER'S GUIDE: COMPUTER PROGRAM FOR OPTIMUM NONLINEAR DYNAMIC DESIGN OF REINFORCED CONCRETE SLABS UNDER BLAST LOADING (CBARCS)

by

John M. Ferritto

Civil Engineering Laboratory
Naval Construction Battalion Center, Port Hueneme, Calif. 93043

and

Robert M. Wamsley

U. S. Army Engineer Division, Huntsville P. O. Box 1600 WS, Huntsville, Ala. 35807

and

Paul K. Senter

Automatic Data Processing Center
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

March 1981

Final Report

A report under the Computer-Aided Structural Engineering (CASE) Project

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 2841

16 003

Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	- Pinal regil
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
Instruction Report K-81-6	O. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
UCERTIC COMPUTER PROGRAM FOR OPTIMUM	Final report
NONLINEAR DYNAMIC DESIGN OF REINFORCED CONCRETE SLABS UNDER BLAST LOADING (CHARCS)	6. PERFORMING ORG. REPORT NUMBER
TO SULLINIA CO.	8. CONTRACT OR GRANT NUMBER(*)
John M./ Ferritto, Robert M./ Wamsley, Paul K./ Sente	er P
9. PERFORMING ORGANIZATION NAME AND ADDRESS Naval Construction Battalion Center, Civil Engi-	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
neering Laboratory, Port Hueneme, Calif. 93043;	
Huntsville Division, P. O. Box 1600 WS, Huntsville	
Ala. 35807; and Waterways Experiment Station, P. C	12 Revent exts
Box 631, Vicksburg, Miss. 39180 Performing organization name and address	Mar 981
Office, Chief of Engineers, U. S. Army	19. NUMBER OF PAGES
Washington, D. C. 20314 14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	
	Unclassified
(12) 84	184, DECLASSIFICATION/DOWNGRADING SCHEDULE
Approved for public release; distribution unlimit	
Approved for public release; distribution unlimited to the abeliance of the abeliance antered in Block 20, if different	16.716NK-81
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different lands are supplementary notes available from National Technical Information Serthis report was prepared under the Computer-Aided Project. A list of published CASE reports is print	vice, Springfield, Va. 22151. Structural Engineering (CASE)
17. DISTRIBUTION STATEMENT (of the abeliact entered in Block 20, if different 18. SUPPLEMENTARY NOTES Available from National Technical Information Ser This report was prepared under the Computer-Aided	vice, Springfield, Va. 22151 Structural Engineering (CASE)
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Available from National Technical Information Serthis report was prepared under the Computer-Aided Project. A list of published CASE reports is princover. 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Blast loads Reinforced conc. Blast resistant structures CEARCS (Computer program)	vice, Springfield, Va. 22151. Structural Engineering (CASE, nited on the inside of the back
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Available from National Technical Information Ser This report was prepared under the Computer-Aided Project. A list of published CASE reports is princover. 19. KEY WORDS (Continue on reverse side if necessary and identity by block numb Blast loads Reinforced conc: Blast resistant structures CBARCS (Computer program) Computer programs	vice, Springfield, Va. 22151. Structural Engineering (CASE, anted on the inside of the backer) rete gn
17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different 18. SUPPLEMENTARY NOTES Available from National Technical Information Serthis report was prepared under the Computer-Aided Project. A list of published CASE reports is princover. 19. KEY WORDS (Continue on reverse side if necessary and identify by block numb Blast loads Reinforced conc. Blast resistant structures CEARCS (Computer program)	vice, Springfield, Va. 22151. Structural Engineering (CASE nted on the inside of the backer) rete gn computer program for optimum labs under blast loading. e slab, CBARCS computes the mass, and stiffness of the slat contains optimization subrouf least-cost structural slabs alysis of facilities that are

Upc Dessified
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

03810

BLA

Preface

This user's guide documents a computer program called CBARCS that can be used to determine the nonlinear dynamic response of reinforced concrete slabs subjected to blast (pressure-time) loading. CBARCS is a modified version of a program called BARCS that was written by Mr. John M. Ferritto, Civil Engineering Laboratory, Naval Construction Battalion Center, Port Hueneme, Calif. The program was modified to include gas pressure loadings used by the Huntsville Division (described in HNDM-1110-1-2) and to allow it to execute in a time-sharing mode with free field input. The program is useful for initial sizing of concrete slabs, but the fine points such as diagonal steel at the supports and in plane tension forces must be considered separately in accordance with Technical Manual 5-1300. The work in modifying the program and preparing this user's guide was sponsored through funds provided to the Waterways Experiment Station (WES) by the Office, Chief of Engineers (OCE), under the Computer-Aided Structural Engineering (CASE) Project.

The program was tested and recommended for Corps of Engineers' use by the CASE Task Group on Structures Subject to Explosion:

Mr. Robert M. Wamsley, Huntsville Division (Chairman)

Mr. Dennis Bellet, Sacramento District

Mr. William Hill, Middle East Division

Mr. Byron Foster, South Atlantic Division

Mr. William Gaube, Omaha District

Dr. Paul F. Mlakar, WES

Mr. Ferritto

Major parts of this user's guide are taken directly from Mr. Ferritto's original report on BARCS (CEL Technical Note No. N-1494). Mr. Paul K. Senter, Automatic Data Processing (ADP) Center, WES, and Mr. Wamsley wrote those parts pertaining to the modifications. Dr. N. Radhakrishnan, Special Technical Assistant, ADP Center, WES, monitored the work, assisted by Mr. Senter. Mr. Donald L. Neumann was Chief of the ADP Center. Mr. Seymour Schneider, Advanced Technology Branch, Military Programs Directorate, was the OCE point of contact.

Director of WES during the period of development was COL N. P. Conover, CE. Technical Director was Mr. F. R. Brown.

Contents

	Page
Preface	1
Conversion Factors, Inch-Pound to Metric (SI) Units of Measurement	
Background of Original Computer Program (BARCS) Development	4
Background of Original Computer 1208	. 6
Theoretical Development	. 6
Blast loads and structural response	. 7
Structural optimization	. 13
Discussion	. 22
The Computer Program	. 23
Program input	
Program input	
Example problems	. 75
References	. 76
Blank Form	

Access	ion For	
NTIS		X
DTIC :		ñ
Unann		IJ
Justi	fication_	
Ву		
Distr	ibution/	
Avai	lability	Codes
	Avail an	id/or
Dist	Specia	1
11		
1 11	1 1	

Conversion Factors, Inch-Pound to Metric (SI) Units of Measurement

Inch-pound units of measurement used in this report can be converted to metric (SI) units as follows:

Multiply	Ву	To Obtain
cubic feet	0.02831685	cubic metres
feet	0.3048	metres
inches	2.54	centimetres
pounds (force) per inch	1.75126850	newtons per centimetre
pounds (force) per square inch	6.89475789	kilopascals
pounds (mass)	0.45359237	kilograms
square feet	0.09290304	square metres

USER'S GUIDE: COMPUTER PROGRAM FOR OPTIMUM DYNAMIC DESIGN OF NONLINEAR REINFORCED CONCRETE SLABS UNDER BLAST LOADING (CBARCS)*

Background of Original Computer Program (BARCS) Development

- 1. The Department of Defense (DOD) has numerous facilities engaged in the production of various types of explosives and munitions used by military services. In most cases, the production of ammunition utilizes assembly line procedures. Projectiles pass through various stages of preparation: filling with explosive, fuzing, marking, and packing. Hazardous operations, such as the filling of the projectile case with an explosive in a powder form and the compaction of the powder by hydraulic press, are accomplished in protective cells that are intended to confine the effects of an accidental explosion.
- 2. Most of the existing production facilities were built in the 1940's. With few exceptions, the manufacturing technology and existing equipment represent the state of the art as of 1940. The production equipment was operated extensively during World War II, again during the Korean conflict, and recently during the Southeast Asia war. Much of this equipment and the housing structures have been operating beyond their designed capacities (Gill et al. 1973).
- 3. DOD is conducting an ammunition plant modernization program (Mendolia 1973) that is intended to greatly enhance safety in the production plants by protective construction, automated processing, and reduction of personnel involved in hazardous operations.
- 4. In 1969, a joint-service manual, Technical Manual 5-1300 (Departments of the Army, Navy, and Air Force 1969), was published to provide guidance to structural designers of munition plants. The

^{*} Three sheets entitled "Program Information" have been hand-inserted inside the front cover of this report. They present general information on the program and describe how it can be accessed. If procedures used to access this and other CORPS library programs should change, recipients of this report will be furnished a revised version of the "Program Information."

objectives of the manual were to establish design procedures and construction techniques to prevent propogation of explosions from one building, or part of a building, to another; to prevent mass detonations; and to provide protection for personnel and equipment. The manual establishes blast-load parameters for designing protective structures, provides methods for calculating the dynamic response of concrete walls, and establishes construction details for developing required strength. The design method accounts for close-in effects of a detonation with its associated high pressures and nonuniformity of loading on protective barriers. A detailed method of assessing the degree of protection afforded by a protective facility did not exist prior to publication of TM 5-1300; consequently, the manual represents a significant improvement in design methods. The simplifications made in the development of the design procedures have been presented in the manual. The analysis of a structure using the design procedure will generally result in a conservative estimate of the structure's capacity; therefore, structures designed using these procedures will generally be adequate for blast loads exceeding the assumed load conditions.

5. Even with the simplifications presented in TM 5-1300, the computational procedures are complex and time-consuming. An automated procedure was required to give structural designers the capability to perform rapid analysis of the structural safety of blast-resistant construction. The design parameters interact in a complex way since the procedure is both nonlinear and dynamic. From a design point of view, an optimization procedure was required to minimize cost and maximize safety since blast-resistant construction has been reported to cost 3 to 5 times as much as conventional construction. Thus, the first objective was to automate the analysis procedures for determining structural response of reinforced concrete slabs having a bilinear stiffness representation and subjected to blast shock and gas pressures. Concrete slabs are the basic element forming side walls, roofs, and floors of cells designed to confine the effects of accidental explosions. The second objective was to provide an optimum design procedure for laced and unlaced reinforced concrete slabs that will automatically produce a least-cost design for a given slab geometry, material properties, and explosive weight for both feasible and nonfeasible starting points.

Theoretical Development

Blast loads and structural response

- 6. In general, the methods used in the computer program follow those in TM 5-1300, and, as such, the accuracy of both is the same. Since these are discussed in detail in the manual and in Ferritto (1976), they will not be presented here. The solution of the dynamic response equation of motion has been found to agree very closely with the response chart of TM 5-1300. Additionally, the solution covers a wider range and thus is more accurate in the areas not defined by the response chart. When the loading is less than one hundredth of the natural period, the response is determined by impulse equilibrium. The basic dynamic model is limited to one mode of response and does not consider higher modes.
- 7. The ultimate moment capacity M_{u} of the slab is based on Equation 5-4 of TM 5-1300:

$$M_u = \frac{(A_s - A_s')f_s}{b} (d - \frac{a}{2}) + \frac{A'f_s}{b} (d - d')$$

where

A; = area of compression reinforcement

A = area of tension reinforcement

f = design steel stress

b = width

d = distance from extreme compression fiber to centroid of tension reinforcement

a = depth of equivalent rectangular stress block

8. This equation for equal reinforcement in tension and compression reduces to

$$M_{u} = \frac{A_{s}'f}{b} (d - d')$$

- 9. The action of the concrete in compression is neglected, because crushing at high rotations is assumed to occur. This results in disengagement of the concrete cover. When support rotations are restricted by lack of lacing, this equation becomes conservative. However, the more conventional concrete analysis procedures were not included to conform with the methodology given in TM 5-1300.
- 10. The blast impulse computation is restricted to a geometry in which the slab height-to-length ratio is greater than 0.2. The modification made by the Naval Surface Weapons Center to the original Picatinny Arsenal program did not affect the results significantly for most cases. However, it did remove several minor problem areas, such as the location of the charge. The blast impulse has all the limitations associated with the original Picatinny programs that are caused by limitations in the test data. It assumes the charge is an equivalent sphere of TNT. Shape effects, explosive equivalence, and explosive casings are considered, but only in an empirical manner as a result of limited available data.

Structural optimization

11. The optimization problem consists of finding the least-cost structure that satisfies all the design constraints. Or, stated in optimization terms: Find \vec{X} such that $M(\vec{X})$ is a minimum and

$$g_{i}(\vec{X}) \leq 0$$
 $i = 1, 2, N$

where

 \vec{X} = vector of design variables

N = number of design constraints

g = vector of design constraints

M = objective function

Specifically for this problem, the design variables selected are areas of steel reinforcement and thickness of concrete. The design constraints are the flexural and shear limits. The objective function consists of the costs of formwork and concrete flexural and shear reinforcement.

12. Fixed variables:

W = explosive weight

H = wall height

EL = wall length

h = height of explosive above flood

 ℓ = distance of explosive from left side of wall

 R_a = distance of explosive from wall

I = reflection code

 f_{dc} = ultimate dynamic concrete strength

 f_{dy} = dynamic yield strenght of reinforcing steel

 θ = rotations criterion

13. Design parameters, X:

 $X = \begin{cases} t_c = \text{concrete thickness} \\ AV = \text{area of vertical reinforcing steel} \\ AH = \text{area of horizontal reinforcing steel} \end{cases}$

14. Constraints, g(X):

 $\delta(X) = \delta(\theta)$, maximum deflection

 $V(X) \leq VC$ for $\theta \leq 2$ degrees, maximum shear

 $t_c \ge 12$, minimum thickness

 $AV \ge 0.0025 \text{ bd}$ minimum steel reinforcement AH $\ge 0.0025 \text{ bd}$

15. The methodology selected (Fox 1971, Advisory Group for Aerospace Research and Development) uses the unconstrained minimization approach. The problem is converted to an unconstrained minimization by constructing a function ϕ of the general form

$$\phi(\vec{X}, r) = M(\vec{X}) + P[g_1(\vec{X}), ..., g_n(\vec{X}), r]$$

For this problem, the interior penalty function technique was selected. This methodology is suitable when gradients are not available, and, because the method uses the feasible region, a useable solutions always results. The objective function is augmented with a penalty term that

is small at points away from the constraints in the feasible region, but increases rapidly as the constraints are approached. The form is as follows:

$$\phi(\vec{X}, r) = M(\vec{X}) - r \sum_{j=1}^{N} \frac{1}{g_{j}(\vec{X})}$$

where M is to be minimized over all \vec{X} satisfying $g(\vec{X}) \leq 0$, j=2 ... N . Note that if r is positive, the, since at any interior point all of the terms in the sum are negative, the effect is to add a positive penalty to $M(\vec{X})$. As the boundary is approached, some $g(\vec{X})$ will approach zero, and the penalty will increase rapidly. The parameter r will be made successively smaller in order to obtain the constrained minimum of M .

16. Objective function F:

$$Cost = F = H \cdot EL \cdot t_{c} \cdot C_{c}$$

$$+ (AV + AH)(EL \cdot H)C_{s} + (A_{s})(EL \cdot H)C_{L}$$

where

 C_c = cost of concrete, dollars/ft³ C_s = cost of horizontal and vertical reinforcement, dollars/in.³ C_L = cost of lacing reinforcement, dollars/in.³ A_s = area of lacing reinforcement, dollars/in.³

$$\phi = F + r \sum_{j=1}^{N} \left[\frac{1}{g_{j}(\vec{X})} \right]$$

where r is the penalty parameter.

17. The program requires a starting point in the feasible region before optimization can proceed. This is accomplished automatically by the program incrementing the design variables until a feasible point is reached.

- 18. An algorithm which comprises the steps most commonly used is as follows:
 - a. Given a starting point X_0 satisfying all $g_j(\vec{X}) \leq 0$ and an initial value for r , minimize ϕ to obtain X_{min} .
 - \underline{b} . Check for convergence of X_{\min} to the optimum.
 - \underline{c} . If the convergence criterion is not satisfied, reduce r by $r \leftarrow rc$, where c < 1 .
 - <u>d</u>. Compute a new starting point for the minimization, initialize the minimization algorithm, and repeat from step a.
- 19. The logic diagram for the interior penalty functions technique is shown in Figure 1.

Figure 1. Logic diagram for interior penalty function technique

20. The minimization for $\phi(X, r)$ shown in Figure 1 is accomplished by a method developed by Powell using conjugate directions (Fox 1971, Advisory Group for Aerospace Research and Development. Powell's method can be understood as follows: Given that the function has been minimized once in each of the coordinate directions and then in the associated pattern direction. Discard one of the coordinate directions in favor of the pattern direction for inclusion in the next M

minimizations, since this is likely to be a better direction than the discarded coordinate direction. After the next cycle of minimizations, generate a new pattern direction, and again replace one of the coordinate directions. This process is illustrated in Figure 2.

Figure 2. Step process, Powell method

21. Figure 3 is a logic diagram for the unconstrained minimization algorithm. The pattern move is constructed in block A, then used

for a minimization step (blocks B and C), and then stored in S_n (block D) as all of the directions are up-numbered and S_1 is discarded. The direction S_n will then be used for a minimizing step just before the construction of the next pattern direction. Consequently, in the second cycle, both X and Y in block A are points that are minima along S_n , the last pattern direction. This sequence will impart special properties to $S_{n+1} = X - Y$ that are the source of the rapid convergence of the method.

22. Figure 3 shows a block requiring a one-dimensional minimization of α^{\star} of the function $\phi(\vec{X}+\alpha S_q)$. The one-dimensional minimizationuses a four-point cubic interpolation. It finds the minimum along

Figure 3. Logic diagram for minimization of $\phi(\vec{X})$

the direction S_q , where X is the coordinate of the previous minimum. By trial and error, it finds three points with the middle one less than the other two. It makes a quadratic interpolation, and then a cubic interpolation. If the actual function evaluated at the new interpolated point is not sufficiently close to that of the preceding point or if it is not sufficiently close to the interpolated function, then another cubic interpolation is made. The logic for this algorithm is shown in Figure 4.

Discussion

- 23. The objective function is linearly dependent on the design variables; however, the constraints are both linearly and nonlineally related to the design variables. The minimum area of steel is a linear constraint. Figures 5 and 6 show the shear stress and the deflection as being nonlinearly related to the thickness of the concrete. Note that the shear stress is almost linear and is constant (independent of thickness). Figure 7 shows the useable region bounded by flexure, shear, and minimum steel constraints. The optimum least-cost solution is shown. This specific example solution considers an unlaced section; thus, the maximum shear constraint is active. Laced sections eliminate the shear constraint. If the number of sides supported were increased from N = 2 to N = 3, the design space would change as shown in Figure 8. There are two regions that are useable areas. Obviously, the lower one offers the least cost and, therefore, is more desirable.
- 24. There is clearly a complex interaction of constraints. Unfortunately, the optimum solution found by the program depends on the starting point selected. The program converges on the closest relative optimum. Several alternative starting points should be used to verify a questionable optimum. Revising the design parameters could possibly shift the constraints such that only one useable solution would appear. However, a slight increase in shear stress (10 percent) can significantly reduce cost by allowing the near-optimum nonfeasible solution to be accepted.

satisfies $F_3 > F_1 > F_2$ or $F_1 > F_3 > F_2$

Figure 4. One-dimensional minimization algorithm

Figure 5. Shear stress as a function of thickness

AS constant

Figure 6. Deflection as a function of thickness

Figure 7. Design space, N = 2

Figure 8. Design space, N = 3

- 25. The dual-space problem of finding a useable solution is limited to unlaced concrete slabs only because lacing eliminates the shear constraint. Nonautomated design for these conditions is almost impossible when one considers the complexity of the design space and the large number of iterations required when an initial solution is not feasible.
- However, the data used in the program can be selected by the user. However, the data used herein are based on work by Picatinny Arsenal on contract with Ammann and Whitney (Dede et al. 1972). Table 1 shows a comparison of unlaced and laced concrete walls with and without sand. The example considers a 15-ft-high* by 12-ft-wide wall subjected to a 200-psi, 10-msecond triangular loading function. In all cases the laced concrete (12-degree rotation) is less expensive than unlaced (2-degree rotation) designs. The costs for sand-concrete composite construction are for only the front wall. When the rear wall is included, the costs are almost double, thereby making this form of construction unsuitable for relatively low-pressure loadings. It should be pointed out that, for the N=3 and 4 conditions, the optimum design selected is actually a near-ptimum with the shear capacity slightly exceeded as shown in Figure 9.
- 27. The program contains an option to analyze wall with openings. During many analyses, it was noted that blast doors with resistances much higher than those of the walls transfer significant reactions to the walls such that the walls are incapable of accepting these and fail. Computational problems arise in the program when this happens in that uield regions cannot be brought into equilibrium by yield analysis methods. To avoid termination of the solution at this point, the door resistance is reduced automatically by a factor of 2 to reduce the reaction. This usually allows for a successful termination. Unfortunately, this destroys the original starting point for optimization, and creates problems when a nonfeasible low-cost solution is lost and cannot be used to provide direction. It is, therefore, not possible to perform optimization solutions of walls with openings. Generally, it

^{*} A table of factors for converting inch-pound units of measurement used in this report to metric (SI) units is presented on page 3.

has been found that compatible designs occur when the door is designed to have approximately the same resistance as the wall.

Table 1
Comparison of Optimum Solutions
For a 15-ft-high by 12-ft-long Wall
Subjected to a 200-psi, 10-msecond
Angular Loading Function

N Side	Theta degrees	Sand in.	Cost dollars
N = 2	2	0	3,290
1	12	0	2,289
1 3 1 1	2	24	2,209*
<i>וווווווווווווווווווווווווווווווווווו</i>	12	24	1,856*
N = 3	2	0	2,753*
1 3	12	o	2,019
1 3 6	2	24	1,944*,**
round	12	24	1,943*
N = 4	2	0	2,001*
	12	0	1,958
1 3	2	24	2,001*,**
ויונדונונ יל	12	24	1,943*

^{*} One wall only in composite construction.

^{**} Shear capacity exceeded.

Figure 9. Revised design space, N = 3

The Computer Program

- 28. The program is composed of four areas:
 - a. Blast-load determination.
 - b. Structural analysis parameters.
 - c. Dynamic response.
 - d. Optimization.
- 29. The blast-load determination is accomplished by subroutines BLA, PIC, SGRID, HBA, RATIO, GRID, GAS INTERP, EQUIV, HEDATA, ARDC, SHOCK, and TNT. The subroutines read the explosive weight and type and cell geometry, and then compute the equivalent spherical weight of TNT and the equivalent pressure loading using the geometry of the wall and charge location. Both the shock pressure and its duration and the gas pressure and its duration are calculated. Using the duration and pressure data for both shock and gas, the program computes an equivalent triangular pressure loading for each part and adds both together to produce the resultant shown in Figure 10. The total impulse is then determined.
- 30. The structural analysis is accomplished by subroutines SSTIFF, LACE, DOOR 1, DOOR 2, DOOR 3, DOOR 4, and DOOR 5. These routines compute the stiffness, resistance, and equivalent mass of the slab using input material properties. Both flexure and shear are considered. Openings (doors and windows) in walls are allowed.
- 31. The dynamic response calculation is accomplished in subroutine RESP. The program determines the response of the slab modeled as an equivalent dynamic single-degree-of-freedom system with bilinear stiffness and pressure loading as shown in Figure 10. The solution technique is based on a Newmark iteration method.
- 32. When a thickness of sand is specified for composite construction (i.e., two slabs with sandfill), the program computes the impulse capacity of the first slab using half the mass of the sand as acting with the wall. Figures 6-38 and 6-39 of TM 5-1300 give the attenuation of the blast wave on the sand for evaluation of the impulse capacity of the second wall. The optimization of an initial design is accomplished in

Figure 10. Equivalent pressure loading

subroutines OPT, MINIMZ, PMINZ, DMINZ, GETE, SUMRY, TLEFT, and GCOMP. The methodology used is that of a penalty function with individual minimization sequences being accomplished by the Powell method.

Program input

- 33. The following sections describe the data input phase of CBARCS and the various options available. A data input guide was prepared to aid the user in data preparation. A copy of this guide with appropriate entries is presented later with each example problem. Also, a blank copy of the guide is presented at the back of this report. Illustrative results are presented for the following example problems.
 - a. Analyze back wall for Type I cross section.
 - \underline{b} . Analyze left side wall for same geometry as given in \underline{a} .
 - c. Perform optimization and use impulse grid.
 - \underline{d} . Use same wall geometry as in \underline{c} but with a roof.
 - <u>e</u>. Use same condition as in <u>a</u> but increase wall height and use a door.

- 34. Defining a problem involves specification of 8 basic data groups composed of about 58 variables. The program can be run by making use of an existing data file having sequence numbers at the start of each line. As an alternative mode of input, an interactive phase is also provided which assists the user in defining data for a particular problem. All data are entered in free field format with commas or blanks used to separate the successive numbers. All values can be input with or without decimal points (for instance, FLAG1 = 1 can be input either as 1. or as 1). If the user so desires, data input interactively can be saved into a permanent file with line numbers. The output from a problem can be written to the terminal or into a permanent file to be either scanned with an editor or sent to a line printer.
- 35. The user should be aware that data saved in a file may not coincide exactly with the values input interactively. The data are written to a file using field widths adequate for practical situations. For instance, most variables are written using two digits past the decimal point. In the event that greater accuracy is needed in the recorded data, the data file can be edited accordingly.
- 36. The different data groups with names of the variables for each one as used in the program are as follows:

```
a. Data group 1--Cost Data (CYD, CCS, CCSH, CI, SDIF):

CYD - Cost of concrete, $/yd³ (default = 50.0)

CCS - Cost of flexural steel, $/1b (default = 0.2)

CCSH - Cost of lacing, $/1b (default = 0.325)
```

CI - Inflation factor (default = 1.5)

SDIF - Dynamic increase factor for flexural steel

b. Data group 2--Heading (HDG):

HDG - Alphanumeric heading for problem identification68 characters maximum

c. Data group 3--Program Control (FLAG1, FLAG2, FLAG3, FLAG4, FLAG5, PC):

FLAG1 - Set = 1 for optimization; otherwise = 0

FLAG2 - Set = 0 to calculate gas pressure; set = 1 to input gas pressure

FLAG3 - Set = 0 for reinforcing area, in. 2/ft; set = 1 for reinforcing diameter and spacing, in.

FLAG4 - Set = 1 for impulse grid; otherwise = 0

FLAG5 - Set = 1 for door/window reaction present; otherwise = 0

PC - Set = 0 for standard

- Set = 0 for standard printout

= 1 for print response time-history

= 2 for print door/window equilibrium iteractions

<u>d.</u> <u>Data group 4--Load Parameters (WLB, ANUM, RLOD, CASE, APAMB, TAMB, ALTKFT, PERCE):</u>

WLB - Weight of actual explosive including safety factor, 1b

ANUM - Explosive number used to compute explosive equivalence (see Table 2 for list of explosives)

RLOD - Explosive length to diameter ratio (default = 1)

CASE - Projectile case weight to explosive weight ratio (use 0 for conservative analysis)

APAMB - Ambient air pressure, psia (default = 14.69)

TAMB - Ambient temperature, $^{\circ}$ C (default = 20 $^{\circ}$ C)

ALTKFT - Altitude, 10³ ft (when APAMB and TAMB not specified)

PERCE - Effective impulse fraction for composite construction (default = 1.0)

e. Data group 5--Geometry:

(1) When gas pressure is calculated (FLAG2 = 0) input (RR, H, EL, HLIT, ELLIT, AV, AC, ICODE(i), where i = 1, 2, 3, or 4):

RR - Distance from charge to wall, ft

H - Wall height, ft

EL - Wall length, ft

HLIT - Height of charge, ft

ELLIT - Distance of charge to left boundary, ft

AV - Cell volume for gas pressure. ft³

AC* - Cell vent area for gas pressure, ft²

ICODE(1) - Set = 1 for floor reflection; otherwise set = 0

ICODE(2) - Set = 1 for roof reflection; otherwise set = 0

^{*} CBARCS will not solve for gas pressure if vent area = 0.

```
ICODE(3) - Set = 1 for left wall reflection; otherwise
    set = 0
```

(2) When gas pressure is input (FLAG2 = 1) input (TOTIM, H, EL, FPRES, TO, PG, TG, ICODE(i), where i = 1, 2, 3, or 4):

TOTIM - Total impulse, psi-msec

H - Wall height, ft

EL - Wall length, ft

FPRES - Peak pressure, psi

TO - Duration of peak pressure, msec

PG - Gas pressure, psi

TG - Gas pressure duration, msec

ICODE(1) - Set = 1 for floor reflection; otherwise set = 0

ICODE(2) - Set = 1 for roof reflection; otherwise set = 0

ICODE(3) - Set = 1 for left wall reflection; otherwise
 set = 0

ICODE(4) - Set = 1 for right wall reflection; otherwise
 set = 0

f. Data group 6--Strength Parameters (FC, FST, TC, THETA, SN, TSAND, BL, SL):

FC - Concrete dynamic strength, psi

FST - Steel static design strength, psi

TC - Overall thickness of concrete, in. (12 in. minimum)

THETA - Allowable rotation, degrees

SN - Support code (see Figure 11a):

= 1, bottom fixed

= 2, bottom and 1 side fixed

= 3, bottom and 2 sides fixed

= 4, 4 sides fixed

= 5, beam simple supports top and bottom

= 6, beam fixed top and bottom

= 7, beam, simple support top, fixed bottom

TSAND - Sand thickness, ft (usually = 0)

BL - Lacing spacing, in. (transverse direction)

SL - Lacing spacing, in. (peak to valley direction)

g. Data group 7--Reinforcement:

- (1) When reinforcement area is specified (FLAG3 = 0), input ASVT, ASVB, ASHT, ASHB, DVT, DVB, DHT, DHB:
- ASVT Area vertical steel blast side, in. 2/ft
- ASVB Area vertical steel opposite side, in. 2/ft
- ASHT Area horizontal steel blast side, in. 2/ft
- ASHB Area horizontal steel opposite side, in. 2/ft
- DVT Depth to center of vertical steel blast side, in.
- DVB Depth to center of vertical steel opposite side, in.
- DHT Depth to center of horizontal steel blast side,
 in.
- DHB Depth to center of horizontal steel opposite
 side, in.
- (2) When reinforcement diameter is specified (FLAG3 = 1), input BAR1, BAR2, BAR3, BAR4, SP1, SP2, SP3, SP4, DVT, DVB, DHT, DHB:
- BARl Bar size vertical blast side
- BAP.2 Bar size vertical opposite side
- BAR3 Bar size horizontal blast side
- BAR4 Bar side horizontal opposite side
- SP1 Bar spacing vertical blast side, in.
- SP2 Bar spacing vertical opposite side, in.
- SP3 Bar spacing horizontal blast side, in.
- SP4 Bar spacing horizontal opposite side, in.

DVT, DVB, DHT, and DHB are the same as defined above in subparagraph 36g(1).

(All depths are measured in inches from outer concrete surface to center of reinforcement bar.)

- h. Data group 8--Door or Window Parameters (see Figure 11b) input if FLAG5 = 1 (H2, WT, B, REA, RD1, H1):
 - H2 Door or window height, ft
 - WT Door or window width, ft
 - B Distance from left side to door or window, ft
 - REA Door or window reaction, 1b/in. (3 sides supported)
 - RD1 Resistance for calculating door or window reaction, psi (3 sides supported)
 - H1 Distance to floor, ft (for window only)

Table 2
List of Explosives

Explosive Number	Explosive Name and Composition
1	TNT
2	TNETB
3	EXPLOSIVE D
4	PENTOLITE (PETN/TNT 50/50)
5	PICRATOL (EXPLOSIVE D/TNT 52/48)
6	CYCLOTOL (RDX/TNT 70/30)
7	COMP B (RDX/TNT/WAX 59.4/39.6/1.0)
8	RDX/WAX (98/2)
9	COMP A-3 (RDX/WAX 91/9)
10	TNETB/AL (90/10)
11	TNETB/AL (78/22)
12	TNETB/AL (72/28)
13	TNETB/AL (65/34)
14	TRITONAL (TNT/AL80/70)
15	RDX/AL/WAX (88/10/2)
16	RDX/AL/WAX (89/20/2)
17	RDX/AL/WAX (74/21/5)
18	RDX/AL/WAX (74/22/4)
19	RDX/AL/WAX (62/33/5)
20	TORPEX II (RDX/TNT/AL 42/40/18)
21	H6 (RDX/TNT/AL/WAX 45/29/21/5)
22	HBX-1 (RDX/TNT/AL/WAX 40/38/16/5)
23	HBX-3 (RDX/TNT/AL/WAX 31/29/35/5)
24	TNETB/RDX/AL 39/26/35)
25	ALUMINUM
26	WAX
27	RDX
28	PETN
29	TETRYL

Figure 11a. Wall geometry

Wall three sides supported with door.

Wall four sides supported with opening.

Figure 11b. Wall geometry with opening for door

Program output

37. Sketches of yield lines which are possible and considered by CBARCS are shown in Figure 12. It may be helpful to refer to these when the door or window option is used.

Example problems

38. Five example problems are presented on pages 34-74. In example problems 1 and 2A, data were entered interactively. In problems 2B-5, data were entered from a data file.

Figure 12. Sketches of yield lines which are possible with and considered by CBARCS (sheet 1 of 2) $\,$

c. Four sides supported

Figure 12. (sheet 2 of 2)

SUBJECT COMPUTED BY DATE

EXAMPLE PROBLEM 1 CHECKED BY DATE:

GIVEN: (Conti from page 1)

TYPE I cross-section (Allowable support rotation = 2°)

f' = 3000 psi

f = 60,000 psi (see TM for definition)

Dynamic increase factors:

Concrete compression - 1.25

" diag. tension - 1.00

" direct shear - 1.10

Reinforcing steel

bending - 1.20 {1.10 = default}

shear - 1.00 {Programmed}

Concrete cover to center of rebars:

Horizontal bars - 2"

Vertical bors - 3"

 $\rho(min) = .25\%$

As (min.) = .0025 bd = .0025(12)(22) = 0.66 "/ft.

REQUIRED : ANALYZE BACK WALL SHOWN ON PAGE 1

PARAMETERS: Ra=6.0', H=14.0', L=20.0', h=7.0', L=8.0'

EXAMPLE PROBLEM 1 CHECKED BY. DATE.

BUILD AN INPUT DATA FILE (SEE INPUT DATA FORM)

FILE NAME : BOATA1

LINE 1 0,0,0,0,1.2 Note! Cost data is needed only when performing a design optimization

LINE 2 EXAMPLE PROBLEM 1

LINE 3 0,0,0,0,0,1

LINE 4 120, 1,0,0,0,0,0 Note! Pragram has built-in default values

LINE 5 6, 14, 20, 7, 8, 0, 0, 1, 0, 1, 1

LINE 6 3750, 60000, 24, 2, 3, 0, 0, 0

LINE 7 0.75, .75, .75, 3, 3, 2, 2

File name: <u>SDATA1</u>

\$/yd 3	ccs \$/1b (0.2)	CCSH \$/1b (0.325)	(1.5)	Sp1 R	(Default Values)		
0		0	0	1.2			
PROBLEM	-						
FLAG2		FLAG3	FLAG4	FLAGS	D _a		
Input Gas Pressure 0 - Calculate 1 - Input	e Tu	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	it ime history	
0		0	0	0	1		
ANDA		RLOD	CASE	APAHB, psia (Default = 14.69)	TAMB, °C (Default = 20)	ALTKFT 10 ³ ft	PERCE (Default = 1.0)
1		0	0	0	0	0	0
± ij		EL fc	HLIT ft	ELLIT	AV ft ³	AC ft ²	ICODE F R L R
4		20	7	٥٥	0	0	1101
# J		11.1	FPRES pe1	TO Mase c	PC ps1	TG Maec	ICODE F R L R
FST pei		TC fn.	THETA deoi: es	SN	TSAND	II.	St. fn.
00009		24	2	3	0	0	0
ASVB in. ² /ft		ASHT 10. ² /ft	ASHB 19. ² /ft	DVT fn.	DVB In.	DHT 1n.	DHB In.
0.75		0.75	0.75	3	8	7	8
BAR2		BAR3	BAR4	SP1 1n.	SP2 In.	SP3 in.	SP4 In.
DVB fn.		DF.f. In.	DHB In.				
	1						
1		B fr	REA 15/fn.	RD1 pef	אַן		

C>OLD, CBARCS C>CBARCS

INPUT NAME OF DATA FILE IN 7 CHARACTERS OR LESS. HIT CARRIAGE RETURN IF DATA IS TO COME FROM TERMINAL. I>

ENTER CONVERSIONAL MODE FOR DATA INPUT

INPUT NAME OF FILE DATA IS TO BE WRITTEN TO.
HIT A CARRIAGE RETURN IF YOU DO NOT WANT THIS FILE.
I>

INPUT A QUESTION MARK (?) IF HORE INFORMATION IS NEEDED

INPUT COST DATA (CYD, CCS, CCSH, CI, SDIF):

I>? CYD CCS

- COST OF CONCRETE, \$/CUYD (DEFAULT=50.0)
- COST OF FLEXURAL STEEL, \$/LB (DEFAULT=0.2)

CCSH - COST OF LACING, \$/LB (DEFAULT=0.325)
CI - INFLATION FACTOR (DEFAULT=1.5)

CI - INFLATION FACTOR (DEFAULT=1.5)
SDIF - DYNAMIC INCREASE FACTOR FOR FLEXURAL STEEL

I>0,0,0,0,1.2

INPUT HEADING (HDG):

1>?

HDG - ALPHANUMERIC HEADING FOR PROBLEM IDENTIFICATION

68 CHARACTERS MAXIMUM

I> EXAMPLE PROBLEM 1

INPUT PROGRAM CONTROL (FLAG1, FLAG2, FLAG3 FLAG4, FLAG5, PC):

1>?

FLAG1 - SET = 1 FOR OPTIMIZATION, OTHERWISE = 0

FLAG2 - SET = 0 TO CALCULATE GAS PRESSURE

SET = 1 TO INPUT GAS PRESSURE

FLAG3 - SET = 0 FOR REINFORCING AREA, SQIN/FT

SET = 1 FOR REINFORCING DIAMETER AND SPACING, IN

FLAG4 - SET = 1 FOR IMPULSE GRID, OTHERWISE = 0

FLAG5 - SET = 1 FOR DOOR/WINDOW REACTION PRESENT, OTHERWISE = 0

PC - SET = 0 STANDARD PRINTOUT
SET = 1 PRINT RESPONSE TIME~HISTORY

1>0,0,0,0,0,1

INPUT LOAD PARAMETERS (WLB, ANUM, RLOD, CASE, APAMB, TAMB, ALTKFT, PERCE): 1>?

WLB - WEIGHT OF ACTUAL EXPLOSIVE INCLUDING SAFETY FACTOR, LB

ANUM - EXPLOSIVE NUMBER USED TO COMPUTE EXPLOSIVE EQUIVALENCE RLOD - EXPLOSIVE LENGTH TO DIAMETER RATIO (0 FOR SPHERE)

CASE - PROJECTILE CASE WEIGHT TO EXPLOSIVE WEIGHT RATIO

APAMB - AMBIENT AIR PRESSURE PSIA (DEFAULT=14.69 PSI)
TAMB - AMBIENT TEMPERATURE, DEG C (DEFAULT 20 DEG C)

ALTKFT - ALTITUDE, 1000 FT (WHEN APANB AND TAMB NOT SPECIFIED)

PERCE - EFFECTIVE INPULSE FRACTION FOR COMPOSITE

CONSTRUCTION (DEFAULT=1.0)

1>120,1,0,0,0,0,0,0

```
INPUT GEOMETRY (RR, H, EL, HLIT, ELLIT, AV, AC, ICODE(I), WHERE I=1,2,3,4):
1>?
RR
          - DISTANCE FROM CHARGE TO WALL, FT
          - WALL HEIGHT, FT
 н
          - WALL LENGTH, FT
 FL
 HLIT
          - HEIGHT OF CHARGE, FT
          - DISTANCE OF CHARGE TO LEFT BOUNDARY, FT
 ELLIT
          - CELL VOLUME FOR GAS PRESSURE, FT3
 ΑV
          - CELL VENT AREA FOR GAS PRESSURE, FT2
 AC
 ICODE(1) - SET = 1 FOR FLOOR REFLECTION, OTHERWISE = 0
 ICODE(2) - SET = 1 FOR ROOF REFLECTION, OTHERWISE = 0
 ICODE(3) - SET = 1 FOR LEFT WALL REFLECTION, OTHERWISE = 0
 ICODE(4) - SET = 1 FOR RIGHT WALL REFLECTION, OTHERWISE = 0
1>6,14,20,7,8,0,0,1,0,1,1
 INPUT STRENGTH PARAMETERS (FC,FST,TC,THETA,SN,TSAND,BL,SL):
1>?
          - CONCRETE DYNAMIC STRENGTH, PSI
 FC
          - STEEL STATIC DESIGN STRENGTH, PSI
 FST
           - OVERALL THICKNESS OF CONCRETE, IN (12 IN MIN.)
 TC
          - ALLOWABLE ROTATION, DEGREES
 THETA
          - SUPPORT CODE
 SN
            = 1, BOTTOM FIXED
            = 2, BOTTOM AND ONE SIDE FIXED
            = 3, BOTTOM AND TWO SIDES FIXED
            = 4, FOUR SIDES FIXED
            = 5, BEAM SIMPLE SUPPORTS TOP AND BOTTOM
            = 6, BEAM FIXED TOP AND BOTTOM
            = 7, BEAM, SIMPLE SUPPORT TOP, FIXED BOTTOM
          - SAND THICKNESS, FT (USUALLY=0)
 TSAND
          - LACING SPACING, IN (TRANSVERSE DIRECTION)
- LACING SPACING, IN (PEAK TO VALLEY DIRECTION)
 BL
 SL
1>3750,60000,24,2,3,0,0,0
 INPUT REINFORCEMENT AREA AND DEPTH
 (ASUT, ASUB, ASHT, ASHB, DVT, DVB, DHT, DHB):
 NOTE: DEPTHS ARE IN INCHES MEASURED FROM THE OUTER CONCRETE
        SURFACE TO THE CENTER OF THE BAR
I>?
 ASVT
          - AREA VERTICAL STEEL BLAST SIDE, SQIN/FT
 ASVB
          - AREA VERTICAL STEEL OPPOSITE SIDE, SQIN/FT
          - AREA HORIZONTAL STEEL BLAST SIDE, SQIN/FT
 ASHT
          - AREA HORIZONTAL STEEL OPPOSITE SIDE, SQIN/FT
 ASHB
 DVT
          - DEPTH TO VERTICAL STEEL BLAST SIDE
 DVB
          - DEPTH TO VERTICAL STEEL OPPOSITE SIDE
          - DEPTH TO HORIZONTAL STEEL BLAST SIDE
 DHT
 DHB
          - DEPTH TO HORIZONTAL STEEL OPPOSITE SIDE
1>.750,.750,.750,.750,3,3,2,2
 INPUT NAME OF FILE FOR OUTPUT TO BE WRITTEN TO.
 HIT A CARRIAGE RETURN IF OUTPUT TO BE PRINTED AT TERMINAL
```

EXAMPLE PROBLEM 1

TNT

EXPLOSIVE PROPERTIES.....CHARGE WEIGHT(LB) \approx 120.0 NUMBER EQWT EFORM EXPLOSIVE COMPOSITION BY WEIGHT KCAL/G C H N D AL 1 1.000 -.078400 .370 .022 .185 .423 0.000

PAMB(PSIA) = 14.69 TAMB(C) = 20.00

SHOCK WAVE CALCULATION

INPUT PARAMETERS		CHARGE WEIGHT ADJUSTMENTS
CHARGE WEIGHT)LB) =	120.0	ADJUSTED WT(LB TNT) = 120.0
EXPLOSIVE NUMBER =	1	HE ENERGY FACTOR ≈ 1.000
L/D RATIO ≈	0.	CHARGE SHAPE FACTOR = 1.000
CASE/CHARGE WT RATIO =	0.	CASE WEIGHT FACTOR ≈ 1.000
CHAMBER PRESSURE(PSIA)=	14.69	PRESSURE SCALE FACTOR≈ 1.000
CHAMBER TEMP(C) =	20.00	DISTANCE SCALE FACTOR= .2027
ALTITUDE (KFT) =	0.	TIME SCALE FACTOR = .2045
		NORMAL REFL FACTOR = 7.878

DISTANCE OF CHARGE FROM BLAST WALL	FT.	6.00
CHARGE WEIGHT	LBS.	120.00
BLAST WALL HEIGHT	FT.	14.00
BLAST WALL LENGTH	FT.	20.00
HEIGHT OF CHARGE ABOVE GROUND	FT.	7.00
DIST. BETWEEN CHARGE & LEFT BOUNDARY	FT.	8.00
REFLECTION CODE		1 0 1 1

TOTAL IMPULSE 1038.65 FSI-MS
DURATION OF LOAD 5.90377 MSEC
FICTITIOUS PEAK PRESSURE 351.85852 PSI
EFFECTIVE IMPULSE 1038.65 PSI MS

HEIGHT	168.00 I	N LE	NGTH	240.00	IN
DYNAMIC CONC	RETE STRENG	STH	3750.00		
DYNAMIC STEE	L STRESS		72000.00		
THICKNESS CO	NCRETE INC	CHES	24.0000		
THICKNESS OF	SAND INC	CHES	0.0000		
THETA ALLOWA	BLE DEGF	REES	2.0000		
AREA VERT TO	P STEEL/FT		.7500	COVER	3.0000
AREA VERT BO	T STEEL/FT		•7500	COVER	3.0000
AREA HORIZ T	OP STEEL/FI	T	•7500	COVER	2.0000
AREA HORIZ B	DT STEEL/FI	τ	.7500	COVER	2.0000

TYPE 1 CONSTRUCTION

CONCRETE HODULUS PSI	3155923.
RATIO MOD STEEL/CONCRETE	9.19
GROSS MOMENT INERTIA	1152.00
AVE CRACKED MOM INERTIA	198.32
AVE MOMENT INERTIA	675.16
AVERAGE PERCENT STEEL	.0029
D FACTOR MU=1/6	2191685441.
D FACTOR MU= 0.3	2341490753.

ALLOW SHEAR UNREINFORCED WEB	94.64	PSI	2034.71 LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	594.00	PSI	12771.00 LBS/IN WIDTH
UNREINFORCED CONCRETE THETA LE	2 DEG		

POSITIVE	VERTICAL MOMENT	91323.53
NEGATIVE	VERTICAL MOMENT	91323.53
POSITIVE	HORIZONTAL MOMENT	95823.53
NEGATIVE	HORIZONTAL MOMENT	95823.53

SUPPORT ON 3 SIDES

YIELD LINE Y ABOVE FLOOR

LOCATION YIELD LINE LENGTH	120.00		
LOCATION YIELD LINE HEIGHT	134.75		
ULTIMATE LOAD CAPACITY RU	50.2926		
SHEAR LOAD AT VERTICAL SUPPORT	4172.52	LB/IN	WIDTH
SHEAR LOAD AT HORIZONTAL SUPPORT	4066.26	LB/IN	WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT	157.62	PSI	
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT	153.14	PSI	
ALLOWABLE MAX DEFLECTION	4.1975		

SHEAR CAPACITY(VC) EXCEEDED

LOAD MASS FACTOR	.6216
MASS CONCRETE ONLY	3351.44
FIRST YIELD POINT AT PT2 ELASTIC LIMIT RE PSI ELASTIC DEFLECTION XE	20.56 .0912

SECOND YIELD AT PT 3	
ELASTO PLASTIC LIMIT	25.66
ELASTO-PLASTIC DEFLECTION	.1402
ULTIMATE RESISTANCE	50.29
PLASTIC DEFLECTION	.5075

ULTIMATE RESISTANCE RU		50.29
ELASTIC DEFLECTION LIMIT	ΧE	.3780
STIFFNESS KE		133.06

MASS 3351.436 LOAD 351.859 DURATION 5.904 RESISTANCE 50.293 STIFFNESS 133.059

GAS PRESSURE 0.00 DURATION 0.00

TIME	ACCEL	VEL	DISP	LOAD	RESIS
.126070	.102680	.130903E-01	:155947E-02	344.345	.220807
.378211	.978733E-01	.383779E-01	.973028E-02		1.30136
.630351	.928232E-01	.624228E-01	.240440E-01		3.19929
.882491	.875420E-01	.851649E-01	.441260E-01		5.87137
1.13463	.820434E-01	.106548	.69686BE-01		9.27248
1.38677	.763412E-01	.126518	.100374	269.208	13.3557
1.63891	.704500E-01	.145027	.135821	254.181	18.0723
1.89105	.643848E-01	.162028	.175651	239.154	23.3721
2.14319	.581610E-01	.177480	.219477	224.127	29.2035
2.39533	.517944E-01	.191344	.266899	209.099	35.5134
2.64747	.453012E-01	.203587	.317512	194.072	42.2479
2.89961	.386977E-01	.214178	.370899	179.045	49.3516
3.15175	.339331E-01	.223317	.426668	164.017	50.2926
3.40389	.294493E-01	.231308	.484522	148.990	50.2926
3.65604	.249654E-01	.238168	.544177	133.963	50.2926
3.90518	.204816E-01	.243897	.605348	118.935	50.2926
4.15032	159978E-01	.248496	.667750	103.908	50.2926
4.41246	.115139E-01	.251965	.731097	88.8808	50.2926
4.56460	.703010E-02	.254303	.795106	73.8535	50.2926
4.91674	.254626E-02	.255510	859490	58.8262	50.2926
5.16888	193758E-02	.255587	.923964	43.7990	50.2926
5.42102	642141E-02	.254533	.988244	28.7717	50.2926
5.67316	109053E-01	.252348	1.05204	13.7444	50.2926
5.92530	150063E-01	.249058	1.11508	0.	50.2926
6.17744	150063E-01	.245274	1.17716	ŏ.	50.2926
6.42958	150063E-01	.241490	1.23829	ŏ.	50.2926
6.68172	150063E-01	.237707	1.29847	ŏ.	50.2926
6.93386	150063E-01	.233923	1.35769	0.	50.2926
7.18600	150063E-01	.230139	1.41595	ŏ.	50.2926
7.43814	150063E-01	.226356	1.47326	0.	50.2926
7.69028	150063E-01	.222572	1.52962	0.	50.2926
7.94242	150063E-01	.218788	1.58503	0.	50.2926
8.19456	150063E-01	.215004	1.63948	0.	50.2926
8.44670	150063E-01	.211221	1.69297	0.	50.2926
8.69884	150063E-01	.207437	1.74551	ŏ.	50.2926
8.95098	150063E-01	.203653	1.79710	ŏ.	50.2926
9.20312	150063E-01	.199870	1.84773	0.	50.2926
9.45526	150063E-01	.196086	1.89741	0.	50.2926
9.70740	150063E-01	.192302	1.94614	ŏ.	50.2926
9.95954	150063E-01	.188519	1.99391	ŏ.	50.2926
10.2117	150063E-01	.184735	2.04073	ŏ.	50.2926
10.4638	150063E-01	.180951	2.08659	0.	50.2926
10.7160	150063E-01	.177168	2.13150	0.	50.2926
10.9681	150063E-01	.173384	2.17546	0.	50.2926
11.2202	150063E-01	.169600	2.21846	0.	50.2926
11.4724	150063E-01	.165816	2.26051	0.	50.2926
11.7245	150063E-01	.162033	2.30160	ŏ.	50.2926
11.9767	150063E-01	.158249	2.34174	ŏ.	50.2926
12.2288	150063E-01	.154465	2.38093	0.	50.2926
12.4809	150063E-01	.150682	2.41916	ŏ.	50.2926
12.7331	150063E-01	.146898	2.45643	ŏ.	50.2926
12.9852	150063E-01	.143114	2.49276	ŏ.	50.2926
			· · · - · -		

13.2374	150063E-01	.139331	2.52813	0.	50.2926
13.4895	150063E-01	.135547	2.56254	0.	50.2926
13.7416	150063E-01	.131763	2.59600	0.	50.2926
13.9938	150063E-01	.127980	2.62851	0.	50.2926
14.2459	150063E-01	.124196	2.66006	0.	50.2926
14.4981	150063E-01	.120412	2.69066	0.	50.2926
14.7502	150063E-01	.116629	2.72031	0.	50.2926
15.0024	150063E-01	.112845	2.74900	0.	50.2926
15.2545	150063E-01	.109061	2.77674	0.	50.2926
15.5066	150063E-01	.105277	2.80352	0.	50.2926
15.75#8	150063E-01	.101494	2.82935	0.	50.2926
16.0109	150063E-01	.977101E-01	2.85422	0.	50.2926
16.2631	150063E-01	.939264E-01	2.87815	0.	50.2926
16.5152	150063E-01	.901427E-01	2.90111	0.	50.2926
16.7673	150063E-01	.863590E-01	2.92313	0.	50.2926
17.0195		.825753E-01	2.94419	0.	50.2926
17.2716	150063E-01		2.96429	0.	50.2926
17.5238	150063E-01		2.98344	0.	50.2926
17.7759	150063E-01	.712242E-01	3.00164	0.	50.2926
18.0280	150063E-01	.674405E~01	3.01888	0.	50.2926
18.2802	150063E-01	.636568E-01	3.03517	0.	50.2926
18.5323	150063E-01	.598731E-01	3.05051	0.	50.2926
18.7845	150063E-01	.560895E-01	3.06489	0.	50.2926
19.0366	150063E-01	.523058E-01	3.07831	0.	50.2926
19.2887	150063E-01	.485221E-01	3.09079	0.	50.2926
19.5409	150063E-01	.447384E-01	3.10230	0.	50.2926
19.7930	150063E-01	.409547E-01	3.11287	0.	50.2926
20.0452	150063E-01	•371710E-01	3.12248	0.	50.2926
20.2973	150063E-01	.333873E-01	3.13114	0.	50.2926
20.5494	150063E-01		3.13884	0.	50.2926
20.8016		.258199E-01	3.14559	0.	50.2926
21.0537	150063E-01		3.15138	0.	50.2926
21.3059	150063E-01	.182526E-01	3.15622	0.	50.2926
21.5580	150063E-01	.144689E-01	3.16011	0.	50.2926
21.8101	150063E-01	·	3.16304	0.	50.2926
22.0623	150063E-01	.690148E-02		0.	50.2926
22.3144	150063E-01	.311779E-02	3.16605	0.	50.2926
22.5666	150063E-01-	. • • • • • • • • • • • • • • • • • • •	5.16612	0.	50.2926

NATURAL PERIOD	31.533505
HAXIMUM DEFLECTION	3.166201
TIME TO MAXIMUM DEFLECTION	22.440492
DURATION/NATURAL PERIOD	.187222
LOAD/RESISTANCE	6.996226
ELASTIC DEFLECTION LIMIT	.377971

MAX FRAGMENT SPALL VELOCITY FT/SEC 21.307468

SUBJECT COMPUTED BY DATE

EXAMPLE PROBLEM 2 CHECKED BY: DATE

GIVEN : FIGURE SHOWN ON PAGE 35

REQUIRED : ANALYZE LEFT SIDE WALL

PARAMETERS: Ra= 8, H=14, L=16, h=7, 1=10' Fdc= 1.25(3000) = 3750

F_{dy} = 1.10 (60000) = 66000

BUILD AN INPUT DATA FILE (SEE INPUT DATA FORM)

FILE NAME : BDATAZA

LINE 1 0,0,0,0,0

LINE 2 EXAMPLE PROBLEM 2A

" 3 0,0,0,0,0

4 120,1,0,0,0,0,0,0

" 5 8, 14, 16, 7, (10,0,0,1,0,0); (1) } See Explanation Below

" 6 3750,60000,24,2,2,0,0,0

" 7 .75, .75, .75, 3,3,2,2

Note! This problem will be analysed using two models to show their equivalence, i.e. PROBZA & PROBZB

Left Boundary Boundary

NSIDE = 2

These are equivalent configurations

NSIDE = Z

File name: BDATA2A

		cyb \$/yd ³	CCS \$/1b	\$/1p	15	Alus			
		(50.0)	(0.2)	(0, 325)	(1.5)	(1.1)	(Default Values)		
	Line 1	٥	0	0	0	0			
		HEADING							
	Line 2		PROBLEM 2A	A					
		FLAGI	FLAG2	FLAG3	FLAG4	FLAGS	PC		
		Optimize 0 - No 1 - Yes	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No I - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	it ime history	
	Line 3	0	0	0	0	0	0		
		47.8 1.b	АМСЖ	RLOD	CASE	APAMB, psis (Default = 14.69)	TAMB, °C (Default = 20)	ALTKFT 10 ³ ft	PERCE (Default = 1.0)
	Line 4	120	1	0	0	0	0	٥	0
		RR ft	K fc	12 13	HLIT ft	tr ft	ε ο μ ΛV	AC ft ²	ICODE F R L R
If FLAG2 = 0,	Line SA	00	4	9/	7	0/	0	0	1001
		TOTIM psi-usec	H E	13 13	PPRES P#1	TO Rocc	PC ps1	TG	ICODE R L R
If FLAG2 - 1,	Line 58								
		FC psf	FST	TC In.	THETA	SN	TSAND	BL In.	SL fn.
	Line 6	3750	00009	24	7	2	0	0	0
		ASVI 10. 2/ft	ASVB in. ² /ft	ASHT 10. ² /ft	ASHB fn. ² /ft	DVT fn.	DVB fn.	DHT fn.	DH8
If PLAC3 = 0,	Line 7A	0.75	0.75	0.75	0.75	3	3	2	7
		BAR1	BAR2	BAR3	BAR4	SP1 ta.	SP2 In.	SP J in.	SP4 In.
If FLAG) = 1,	Line 78								
		DVT 1n.	DVB 1n.	DHT tn.	<i>ВнВ</i> 1n.				
1f FLAG3 = 1,	Line 78 (Continued)								
		н2 fc	אנ ה	B ft	REA 1b/1n.	rb) ps1	H1 fe		
If PLAGS - 1,	Line 8								

C>OLD, CBARCS C>CBARCS

INPUT NAME OF DATA FILE IN 7 CHARACTERS OR LESS.
HIT CARRIAGE RETURN IF DATA IS TO COME FROM TERMINAL.
I>

ENTER CONVERSIONAL MODE FOR DATA INPUT

INPUT NAME OF FILE DATA IS TO BE WRITTEN TO. HIT A CARRIAGE RETURN IF YOU DO NOT WANT THIS FILE. I>

INPUT A QUESTION MARK (?) IF HORE INFORMATION IS NEEDED

INPUT COST DATA (CYD,CCS,CCSH,CI,SDIF): I>0,0,0,0,0

INPUT HEADING (HDG):

I> EXAMPLE PROBLEM 2A

INPUT PROGRAM CONTROL (FLAG1,FLAG2,FLAG3FLAG4,FLAG5,PC): I>0,0,0,0,0,0

INPUT LOAD PARAMETERS (WLB, ANUN, RLOB, CASE, APAMB, TAMB, ALTKFT, PERCE): I>120, 1, 0, 0, 0, 0, 0, 0

INPUT GEOMETRY (RR, H, EL, HLIT, ELLIT, AV, AC, ICODE(I), WHERE I=1,2,3,4): I>8,14,16.,7,10,0,0,1,0,0,1

INPUT STRENGTH PARAMETERS (FC,FST,TC,THETA,SN,TSAND,BL,SL): 1>3750,60000,24,2,2,0,0,0

INPUT REINFORCEMENT AREA AND DEPTH
(ASVT,ASVB,ASHT,ASHB,DVT,DVB,DHT,DHB):
NOTE: DEPTHS ARE IN INCHES MEASURED FROM THE OUTER CONCRETE
SURFACE TO THE CENTER OF THE BAR

1>.75,.75,.75,.75,3,3,2,2

INPUT NAME OF FILE FOR OUTPUT TO BE WRITTEN TO.
HIT A CARRIAGE RETURN IF OUTPUT TO BE PRINTED AT TERMINAL I>BOUT2A

EXAMPLE PROBLEM 2A

TNT

PAMB(PSIA) = 14.69 TAMB(C) = 20.00

SHOCK WAVE CALCULATION

INPUT PARAMETERS		CHARGE WEIGHT ADJUSTMENTS
CHARGE WEIGHT)LB) =	120.0	ADJUSTED WT(LB TNT) = 120.0
EXPLOSIVE NUMBER =	1	HE ENERGY FACTOR = 1.000
L/D RATIO =	0.	CHARGE SHAPE FACTOR = 1.000
CASE/CHARGE WT RATIO =	0.	CASE WEIGHT FACTOR = 1.000
CHAMBER PRESSURE(PSIA)=	14.69	PRESSURE SCALE FACTOR= 1.000
CHAMBER TEMP(C) =	20.00	DISTANCE SCALE FACTOR= .2027
ALTITUDE (KFT) =	0.	TIME SCALE FACTOR = .2045
		NORMAL REFL FACTOR = 6.872

DISTANCE OF CHARGE FROM BLAST WALL	FT.	8.00
CHARGE WEIGHT	LBS.	120.00
BLAST WALL HEIGHT	FT.	14.00
BLAST WALL LENGTH	FT.	16.00
HEIGHT OF CHARGE ABOVE GROUND	FT.	7.00
DIST. BETWEEN CHARGE & LEFT BOUNDARY	FT.	10.00
REFLECTION CODE		1 0 0 1

TOTAL IMPULSE 838.95 PSI-MS
DURATION OF LOAD 5.10011 MSEC
FICTITIOUS PEAK PRESSURE 828.99149 PSI
EFFECTIVE IMPULSE 838.95 PSI MS

HEIGHT 168.00 IN	LENGTH	192.00	IN	
DYNAMIC CONCRETE STRENGTH	3750.00			
DYNAMIC STEEL STRESS	66000.00			
THICKNESS CONCRETE INCHES	24.0000			
THICKNESS OF SAND INCHES				
THETA ALLOWABLE DEGREES				
AREA VERT TOP STEEL/FT	.7500	COVER	3.0000	
AREA VERT BOT STEEL/FT		COVER		
AREA HORIZ TOP STEEL/FT		COVER		
AREA HORIZ BOT STEEL/FT		COVER		
HACK HONIE DOT OFFEEDIT	17.000	001211	21000	
TYPE 1 CONSTRUCTION				
CONCRETE HODULUS PSI	3155	923.		
RATIO MOD STEEL/CONCRETE				
CONCE MOMENT INERTIA	116	2.00		
AVE CRACKED MOM INERTIA	19			
AVE MOMENT INERTIA	67	5.16		
AVERAGE PERCENT STEEL	•	0029		
D FACTOR MU=1/6	2191685	441.		
D FACTOR MU= 0.3	2341490	753.		
ALLOW SHEAR UNREINFORCED W		PSI	2034.71	LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	594.00	PSI	12771.00	LBS/IN WIDTH
UNREINFORCED CONCRETE THE	TA LE 2 DEG			

POSITIVE	VERTICAL MOMENT	83955.88
NEGATIVE	VERTICAL MOMENT	83955.88
POSITIVE	HORIZONTAL MOMEN	88080.88
NEGATIVE	HORIZONTAL MOMENT	88080.88

SUPPORT ON 2 SIDES

YIELD LINE X FROM SIDE

LOCATION YIELD LINE LENGTH	181.34
LOCATION YIELD LINE HEIGHT	168.00
ULTIMATE LOAD CAPACITY RU	26.7847
SHEAR LOAD AT VERTICAL SUPPORT	2914.31 LB/IN WIDTH
SHEAR LOAD AT HORIZONTAL SUPPORT	2818.48 LB/IN WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT	116.35 PSI
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT	111.93 PSI
ALLOWABLE MAX DEFLECTION	5.8765

SHEAR CAPACITY(VC) EXCEEDED

LOAD	MASS FACTOR	.5858
MASS	CONCRETE ONLY	3158.74

FIRST YIELD POINT AT PT2	
ELASTIC LIMIT RE PSI	8.93
ELASTIC DEFLECTION XE	.1464
ULTIMATE RESISTANCE	26.78
PLASTIC DEFLECTION	.5803

ULTIMATE RESISTANCE RU		26.78
ELASTIC DEFLECTION LIMIT	ΧE	.5334
STIFFNESS KE		50.21

MASS	3158.738
LOAD	328.991
DURATION	5.100
RESISTANCE	26.785
STIFFNESS	50.215

GAS PRESSURE	0.00	DURATION	0.00

NATURAL PERIOD	49.833446
MAXIMUM DEFLECTION	4.310321
TIME TO MAXIMUM DEFLECTION	33.493264
DURATION/NATURAL PERIOD	.102343
LOAD/RESISTANCE	12.282829
ELASTIC DEFLECTION LIMIT	.533403

MAX FRAGMENT SPALL VELOCITY FT/SEC 20.282837

File name: BDATA2B

		cro \$/yd ³	\$/10 \$/10	\$/1P	IJ	SDIF			
		(50.0)	(0.2)	(0.325)	(1.5)	(1.1)	(Default Values)		
	Line 1	0	0	0	٥	0			
		HEADING							
	Line 2	EXAMPLE	PROBLEM	28					
		FLAG1	FLAG2	FLAG3	FLACA	FLAGS	PC		
		Optimize 0 - No 1 - Yes	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	it ine history	
	Line 3	0	0	0	0	0	0		
		40.8 1b	УКЛ	итор	CASE	APAMB, pata (Default = 14.69)	TAMB, °C (Default = 20)	ALTICT 10 ³ ft	PERCE (Default = 1.0)
	Line 4	120	1	0	0	0	0	0	0
		318 1c	H ft	13	HIT ft	ELLIT	kt. ³	NC ft ²	ICODE F R L R
11 PLAG2 - 0,	Line 5A	8	14	2/	7	9	0	0	0 / 0 /
		TOTIM ps1-msec	H I	11 21	FPRES ps1	TO masec	PC ps1	TG Rasec	ICODE F R L R
1f PLAG2 - 1,	Line 58								
		PC ps1	FST pa1	TC In.	THETA	SN	TSAND	BL in.	SL fn.
	Line 6	3750	00009	24	7	2	0	0	0
		ASVT to. ² /ft	ASVB tn. ² /fr	ASHT In. ² /ft	ASHB in. ² /ft	DVT 1n.	DVB In.	DHT tn.	DHB in.
1f FLAG3 - 0,	Line 7A	0.75	0.75	272	0.75	3	3	7	7
		BARI	BAR2	EAR3	BAR4	SP1 In.	SP2 1n.	SP3 1n.	SP4 in,
If FLAG3 . 1,	Line 78							i	
		DVT 1a.	DVB fn.	OHT in.	DHB fn.				
If FLAG3 + 1,	Line 78 (Continued)								
		#2 ft	ţ	ت ۵	REA 1b/1n.	101 184	ΞĽ		
1f FLAG5 - 1,	Line 8								

EXAMPLE PROBLEM 2B

TNI

PAMB(PSIA)= 14.69 TAMB(C)= 20.00

SHOCK WAVE CALCULATION

INPUT PARAMETERS CHARGE WEIGHT ADJUSTMENTS CHARGE WEIGHT)LB) 120.0 ADJUSTED WT(LB TNT) = 120.0 EXPLOSIVE NUMBER HE ENERGY FACTOR 1 1.000 = 0. CHARGE SHAPE FACTOR = L/D RATIO 1.000 CASE/CHARGE WT RATIO = ο. CASE WEIGHT FACTOR 1.000 CHAMBER PRESSURE(PSIA) = 14.69 PRESSURE SCALE FACTOR= 1.000 = DISTANCE SCALE FACTOR= CHAMBER TEMP(C) 20.00 .2027 ALTITUDE (KFT) ٥, = TIME SCALE FACTOR = .2045 NORMAL REFL FACTOR 6.872

DISTANCE OF CHARGE FROM BLAST WALL FT. 8.00 CHARGE WEIGHT LBS. 120.00 BLAST WALL HEIGHT FT. 14.00 BLAST WALL LENGTH FT. 16.00 HEIGHT OF CHARGE ABOVE GROUND FT. 7.00 DIST. BETWEEN CHARGE & LEFT BOUNDARY FT. 6.00 REFLECTION CODE 1 0 1 0

TOTAL IMPULSE 838.95 PSI-MS
DURATION OF LOAD 5.10011 MSEC
FICTITIOUS PEAK PRESSURE 328.99149 PSI
EFFECTIVE IMPULSE 838.95 PSI MS

HEIGHT 168.00 IN LENGTH 192.00 IN DYNAMIC CONCRETE STRENGTH 3750.00 DYNAMIC STEEL STRESS 66000.00 THICKNESS CONCRETE INCHES THICKNESS OF SAND INCHES 24.0000 0.0000 THETA ALLOWABLE DEGREES 2.0000 AREA VERT TOP STEEL/FT .7500 CDVER 3.0000 AREA VERT BOT STEEL/FT .7500 COVER 3.0000 AREA HORIZ TOP STEEL/FT .7500 COVER 2.0000 AREA HORIZ BOT STEEL/FT .7500 COVER 2.0000

TYPE 1 CONSTRUCTION

CONCRETE HODULUS PSI	3155923.
RATIO MOD STEEL/CONCRETE	9.19
GROSS MOMENT INERTIA	1152.00
AVE CRACKED MOM INERTIA	198.32
AVE MOMENT INERTIA	675.16
AVERAGE PERCENT STEEL	.0029
D FACTOR MU=1/6	2191685441.
D FACTOR MU= 0.3	2341490753.

ALLOW SHEAR UNREINFORCED WEB	94.64	PSI	2034.71 LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	594.00	PSI	12771.00 LBS/IN WIDTH
INDETNERBORED CONCRETE THETA LE	2 DEG		

POSITIVE	VERTICAL MOMENT	83955.88
NEGATIVE	VERTICAL MOMENT	83955.88
POSITIVE	HORIZONTAL MOMENT	88080.88
NEGATIVE	HORTZONTAL MOMENT	88080.88

SUPPORT ON 2 SIDES

YIELD LINE X FROM SIDE

LOCATION YIELD LINE LENGTH	181.34
LOCATION YIELD LINE HEIGHT	168.00
ULTIMATE LOAD CAPACITY RU	26.7847
SHEAR LOAD AT VERTICAL SUPPORT	2914.31 LB/IN WIDTH
SHEAR LOAD AT HORIZONTAL SUPPORT	2818.48 LB/IN WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT	116.35 PSI
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT	111.93 PSI
ALLOWABLE MAX DEFLECTION	5.8765

SHEAR CAPACITY(VC) EXCEEDED

LOAD	MASS FACTOR	.5858
HASS	CONCRETE ONLY	3158.74

FIRST YIELD POINT AT PT2	
ELASTIC LIMIT RE PSI	8.93
ELASTIC DEFLECTION XE	.1464
ULTIMATE RESISTANCE	26.78
PLASTIC DEFLECTION	.5803

ULTIMATE RESISTANCE RU		26.78
ELASTIC DEFLECTION LIMIT	ΚE	.5334
STIFFNESS KE		50.21

UMOO	3130./30		
LOAD	328.991		
DURATION	5.100		
RESISTANCE	26.785		
STIFFNESS	50.215		
GAS PRESSURE	0.00	DURATION	0.00
NATURAL PERI	ao		49.833446
MAXINUM DEFL	ECTION		4.310321
TIME TO MAXI	MUM DEFLECTION		33.493264
DURATION/NAT	URAL PERIOD		.102343
LOAD/RESISTA	NCE		12.282829
ELASTIC DEFL	ECTION LIMIT		.533403

MAX FRAGMENT SPALL VELOCITY FT/SEC 20.282837

SUBJECT COMPUTED BY DATE EXAMPLE PROBLEM 3 CHECKED BY: DATE: PERFORM OPTIMIZATION & USE IMPULSE GRID 12 -A_s=1.58 sq.in/ft. E.W.E.F. Couer=2° vert. 3" Horiz. PLAN Locing BL = 6" SL : 6" SECTION A-A 0 = 5° Cell Vol. = 3456 cu.ft. FDC = 5000 psi FS = 40000 psi FDY = (DIF) × FS = 1.2 × FS W = 1.2 × 100 = 120 lb. TNT Cell Vent Area = 108 sq.ft.

File name: BDATA3

		exa axa	\$/18	\$/1P	כנ	\$10S			
		(50.0)	(0.2)	(0.325)	(1.5)	(1.1)	(Default Values)		
	Line 1	0	0	0	0	1.2			
		HEADING							
	Line 2	EXAMPLE	CAMPLE PROBLEM	3					
		FLAGI	FLAG2	FLAG3	FLAGA	FLAGS	PC		
		Optimize 0 - No 1 - Yes	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout I - Print response time history	st ime history	
	Line 3	7	٥	٥	_	0	1		
		a a	AMUN	RLOD	CASE	APANG, pele (Default = 14.69)	TAMB, °C (Default = 20)	ALTKFT 10 ³ fe	PERCE (Default = 1.0)
	Line 6	120	1	0	0	0	0	0	0
		s z	# Y	13	HLIT ft	it tr	AV ft ³	AC ft ²	ICODE F R L R
1f PLAG2 = 0.	Line SA	4	32	12	6	4	3456	801	1011
		TOTIM ps:-msec	m J	ដដ	FPRES ps1	TO Mec	PG pe1	2 3	1000E
11 PLAG2 - 1.	Line Sh								
		22 6	PST pst	5 ਦੇ	THETA	NS	TSAND	ij e	St. fa.
	Line 6	2005	40000	24	જ	3	٥	e	6
		ASVT In. 2/ft	ASVB in. ² /ft	ASHT In. ² /ft	ASHB 1n. 2/ft	DVT In.	DV S 1n.	DAT ta.	DNS fa.
If PLAC3 - 0,	Line 7A	1.58	1.58	1.58	1.58	2	2	3	3
		BAR	BAR2	BAR3	BARG	SP1 tn.	SP2 In.	SP3 In.	SP4 in.
If PLAC3 • 1,	Line 78								
		DVT In.	DVB fn.	DMT tn.	DNB 1n.				
1f PLAG3 = 1,	Line 78 (Continued)								
		H2 ft	rv fr	زد 8	REA 1b/in.	192 S	z z		
If PLACS - 1.	Line 8								

0010 0 0 0 0 1.2 0020 EXAMPLE PROBLEM 3 0030 1 0 0 1 0 1 0040 120 1 0 0 0 0 0 0050 4 32 12 6 4 3456 108 1 0 1 1 0060 5000 40000 24 5 3 0 6 6 0070 1.58 1.58 1.58 2 2 3 3

EXAMPLE PROBLEM 3

TNT

EXPLOSIVE PROPERTIES.....CHARGE WEIGHT(LB) = 120.0 NUMBER EQWT EFORM EXPLOSIVE COMPOSITION BY WEIGHT KCAL/G C H N 0 AL 1 1.000 -.078400 .370 .022 .185 .423 0.000

 $PAMB(PSIA) = 14.69 \qquad TAMB(C) = 20.00$

SHOCK WAVE CALCULATION

INPUT PARAMETERS		CHARGE WEIGHT ADJUSTMENTS
CHARGE WEIGHT)LB) =	120.0	ADJUSTED WT(LB TNT) = 120.0
EXPLOSIVE NUMBER =	1	HE ENERGY FACTOR = 1.000
L/D RATIO =	0.	CHARGE SHAPE FACTOR = 1.000
CASE/CHARGE WT RATIO =	0.	CASE WEIGHT FACTOR = 1.000
CHAMBER PRESSURE(PSIA)=	14.69	PRESSURE SCALE FACTOR= 1.000
CHAMBER TEMP(C) =	20.00	DISTANCE SCALE FACTOR= .2027
ALTITUDE (KFT) =	0.	TIME SCALE FACTOR = .2045
		NORMAL REFL FACTOR = 9.076

DISTANCE OF CHARGE FROM BLAST WALL	FT.	4.00
CHARGE WEIGHT	LBS.	120.00
BLAST WALL HEIGHT	FT.	32.00
BLAST WALL LENGTH	FT.	12.00
HEIGHT OF CHARGE ABOVE GROUND	FT.	6.00
DIST. BETWEEN CHARGE & LEFT BOUNDARY	FT.	4.00
REFLECTION CODE		1 0 1 1

```
THE REFLECTED IMPULSE (PSI-MSEC) AT EACH GRID POINT
ON THE BLAST WALL IS... (MACH REFLECTIONS NOT INCLUDED)
                                  I
                                      3
                                                                5
           1
                        2
17
        450.0
                     452.8
                                   455.9
                                                463.0
                                                             473.5
                                                503.2
                     493.5
16
        489.4
                                   497.3
                                                            515.2
 15
        535.1
                     543.3
                                  547.7
                                                554.6
                                                             552.1
                     594.5
                                  608.0
                                                601.5
                                                             602.7
 14
        584.9
 13
        645.9
                     655.6
                                   655.9
                                                666.6
                                                             672.1
 12
        723.1
                     733.7
                                  722.3
                                               721.8
                                                            753.2
        828.9
                     821.7
                                  804.1
                                                799.0
                                                             841.8
 11
                                   919.0
                                                889.2
                                                             850.6
 10
        1005.
                     971.4
  9
        1245.
                     1165.
                                  1074.
                                                914.5
                                                            920.3
  8
        1574.
                     1407.
                                  1040.
                                                986.4
                                                            989.7
  7
                                               1055.
                                                             1054.
        2211.
                     1726.
                                  1126.
                     1430.
                                  1205.
                                               1111.
                                                            1114.
  6
        3190.
  5
        2358.
                     1560.
                                   1274.
                                               1163.
                                                             1169.
        2594.
                                  1353.
                                                1236.
                                                             1241.
                     1663.
  3
        2561.
                     1769.
                                  1482.
                                                1372.
                                                            1372.
  2
                     1924.
                                   1707.
                                                1604.
        3647.
                                                             1571.
  1
        3085.
                     3549.
                                  3008.
                                               2878.
                                                            1928.
                                  I
                        7
           6
17
        487.8
                     486.8
        523.5
                     525.4
 16
 15
        562.6
                     572.5
 14
        619.0
                     632.4
 13
        687.5
                     694.2
                     771.2
 12
        752.3
 11
        839.1
                     882.0
 10
        964.1
                     1041.
  9
        955.6
                     1265.
  8
        1054.
                     1176.
  7
        1147.
                     1302.
  6
5
                     1694.
        1212.
                     1782.
        1266.
  4
        1331.
                     1848.
  3
        1452.
                      1930.
  2
                     2027.
        1612.
  1
        2550.
                     2203.
          TOTAL IMPULSE =
                               1064.40
          TOTAL IMPULSE
                                              1158.99 PSI-MS
                       CELL VOLUME
                                          3456.00
 VENT AREA
               108.00
 GAS PRESSURES CALCULATION
 PEAK GAS PRESSURE
                              143.23
 GAS DURATION
                               13.59
 GAS IMPULSE
                              972.88
 TOTAL IMPULSE
                             1170.74
                                            17.12573 MSEC
          DURATION OF LOAD
          FICTITIOUS PEAK PRESSURE
                                           135.35086 PSI
```

EFFECTIVE IMPULSE

1170.74 PSI HS

HEIGHT 384.00 IN L	ENGTH	144.00	NI (
DYNAMIC CONCRETE STRENGTH	5000.00			
DYNAMIC STEEL STRESS	48000.00			
THICKNESS CONCRETE INCHES	24.0000			
THICKNESS OF SAND INCHES	0.0000			
THETA ALLOWABLE DEGREES	5.0000			
	4 5544	201155		
AREA VERT TOP STEEL/FT AREA VERT BOT STEEL/FT	1.5800			
AREA HORIZ TOP STEEL/FT	1.5800			
AREA HORIZ BOT STEEL/FT	1.5800	COVER	3.0000	
TYPE 3 CONSTRUCTION				
CONCRETE MODULUS PSI	3644	146.		
RATIO MOD STEEL/CONCRETE		7.96		
GROSS MOMENT INERTIA		2.00		
AVE CRACKED MOM INERTIA		2.26		
AVE MOMENT INERTIA AVERAGE PERCENT STEEL		2.13 0061		
D FACTOR MU=1/6	2781771			
D FACTOR HU= 0.3	2971910			
ALLOW SHEAR UNREINFORCED WEB	115.16	PSI	2475.99	LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	792.00	PSI	17028.00	LBS/IN WIDTH
UNREINFORCED CONCRETE THETA	LE 2 DEG			
POSITIVE VERTICAL MOMENT	126400.00			
NEGATIVE VERTICAL MOMENT	126400.00			
POSITIVE HORIZONTAL MOMENT	113760.00			
NEGATIVE HORIZONTAL MOMENT	113/60.00			
SUPPORT ON 3 SIDES				
YIELD LINE Y ABOVE FLOOR				
LOCATION YIELD LINE LENGTH			72.00	
LOCATION YIELD LINE HEIGHT			111.37	
ULTIHATE LOAD CAPACITY RU	N.T.	-	01.9133	
SHEAR LOAD AT VERTICAL SUPPO SHEAR LOAD AT HORIZONTAL SUP	KI Port		6592.36 LB/IN 6809.89 LB/IN	
SHEAR AT DISTANCE FROM VERTI	CAL SUPPOR	Т	217.36 PSI	W2D111
SHEAR AT DISTANCE FROM HORIZ			243.92 PSI	
ALLOWABLE MAX DEFLECTION			6.3098	
SHEAR CAPACITY(VC) EXCE	EDED			
BAR SPACING WIDTH	6.0			
BAR SPACING LENGTH	6.0			
BAR VERTICAL HEIGHT Angle Alpha	18.5 80.5	-		
EXCESS SHEAR STRESS	128.7			
STEEL STRESS	40000.0	_		
AREA STEEL LACING REQ	.1			
BAR NUMBER LACING REQ	4.0	U		

MASS CONCRETE ONLY	3766.44
FIRST YIELD POINT AT PT2	
ELASTIC LIMIT RE PSI	65.66
ELASTIC DEFLECTION XE	.0702
SECOND YIELD AT PT 1	
ELASTO PLASTIC LIMIT	76.66
ELASTO-PLASTIC DEFLECTION	.0943
ULTIMATE RESISTANCE	101.91
PLASTIC DEFLECTION	.1497
III TIMATE RESISTANCE DII	101.91

.6985

ULTIMATE RESISTANCE RU 101.91
ELASTIC DEFLECTION LIMIT XE .1234
STIFFNESS KE 825.77

MASS 3766.439 LOAD 135.351 DURATION 17.126 RESISTANCE 101.913 STIFFNESS 825.770

LOAD MASS FACTOR

GAS PRESSURE 143.23 DURATION 13.59

TIME	ACCEL	VEL	DISP	LOAD	RESIS
.692956E-01	.377928E-01	.263509E-02	.182600E-03	142,495	.150786
.207887	.372057E-01	.785387E-02	.109092E-02	141.034	.900846
.346478	.364621E-01	.129723E-01	.271321E-02	139.573	2,24048
.485070	.355658E-01	.17964BE-01	.503214E-02	138.112	4.15539
.623661	.345207E-01	.228227E-01	.802937E-02	136.651	6.63041
.762252	.333315E-01	.275258E-01	.116841E-01	135.189	9.64839
.900843	.320033E-01	.320544E-01	.159729E-01	133.728	13.1899
1.03943	.305418E-01	.363896E-01	.208694E-01	132.267	17.2334
1.17803	.289533E-01	.405134E-01	.263452E-01	130.806	21.7551
1.31662	.272447E-01	.444087E-01	.323690E-01	129.345	26.7293
1.45521	.254233E-01	.480593E-01	.389075E-01	127.884	32.1286
1.59380	.234967E-01	.514501E-01	.459251E-01	126.423	37.9236
1.73239	.214734E-01	.545671E-01	.533845E-01	124.962	44.0834
1.87098	.193618E-01	.573975E-01	.612463E-01	123.500	50.5754
2.00957	.171710E-01	.599297E-01	.694696E-01	122.039	57.3659
2.14817	.149102E-01	.621533E~01	.780119E-01	120.578	64.4199
2.28676	.125890E-01	.640594E-01	.868295E-01	119.117	71.7012
2.42535	.102174E-01	.656401E-01	.958776E-01	117.656	79.1728
2.56394	.780519E~02	.668893E-01	.105110	116.195	86.7970
2.70253	.536272E-02	.678020E-01	.114481	114.734	94.5353
2.84112	.301591E-02	.683787E-01	.123944	113.273	101.913
2.97971	.262798E-02	.687698E-01	.133462	111.811	101.913
3.11830	.233444E-02	.691135E-01	.143029	110.706	101.913
3.25690	.204362E-02	.694169E-01	.152640	109.610	101.913
3.39549	.175281E-02	.696B00E-01	.162289	108.515	101.913
3.53408	.146199E-02	.699028E-01	.171970	107.420	101.913
3.67267	.117118E-02	.700852E-01	.181677	106.324	101.913
3.81126	.880360E-03	.702274E-01	.191406	105.229	101.913
3.94985	.589545E-03	.703293E-01	.201150	104.134	101.913

4.08844	.298730E-03	.703908E-01	.210904	103.038	101.913
4.22703	.791448E-05	.704121E-01	.220663	101.943	101.913
4.36563	282901E-03	.703930E-01	.230420	100.848	101.913
4.50422	573716E-03	.703337E-01	.240170	99.7524	101.913
4.64281	864531E-03	.702340E-01	.249908	98.6571	101.913
4.78140	115535E-02	.700940E-01	.259628	97.5617	101.913
4.91999	144616E-02	.699137E-01	.269325	96.4664	101.913
5.05858	173698E-02	.696932E-01	.278992	95.3711	101.913
5.19717	202779E-02	.694323E-01	.288624	94.2757	101.913
5.33576	231861E-02	.691311E-01	.298216	93.1804	101.913
5.47436	260942E-02	.687896E-01	.307762	92.0850	101.913
5.61295	290024E-02	.684078E-01	.317257	90.9897	101.913
5.75154	319105E-02	.679857E-01	.326695	89.8944	101.913
5.89013	~.348187E-02	.675233E-01	.336070	88.7990	101.913
6.02872	377268E-02	.670206E-01	.345376	87.7037	101.913
6.16731	406350E-02	.664776E-01	.354609	86.6084	101.913
6.30590	435431E-02	.658943E-01	.363762	85.5130	101.913
6.44450	464513E-02	.652706E-01	.372830	84.4177	101.913
6.58309	493594E-02	.646067E-01	.381808	83.3223	101.913
			.390689	82.2270	101.913
6.72168	522676E-02	.639025E-01			_
6.86027	~.551757E-02	.631580E-01	.399469	81.1317	101.913
6.99886	580839E-02	.623731E-01	.408141	80.0363	101.913
7.13745	609920E-02	.615480E-01	.416701	78.9410	101.913
7.27604	639002E-02	.606825E-01	.425141	77.8457	101.913
7.41463	668083E-02	.597768E-01	.433458	76.7503	101.913
7.55323	697165E-02	.588307E-01	.441645	75.6550	101.913
7.69182	~.726246E-02	.578443E-01	.449697	74.5596	101.913
7.83041	755328E-02	.568177E-01	• 457607	73.4643	101.913
7.96900	784409E-02	.557507E-01	.465371	72.3690	101.913
8.10759	813491E-02	.546434E-01	.472984	71.2736	101.913
8.24618	~.842572E-02		.480438	70.1783	101.913
		.534959E-01			
8.38477	871654E-02	.523080E-01	.487729	69.0830	101.913
8.52336	900735E-02	.510798E-01	.494852	67.9876	101.913
8.66196	929817E-02	.498113E-01	.501800	66.8923	101.913
8.80055	958898E-02	.485025E-01	.508568	65.7969	101.913
8.93914	~.987980E-02	.471534E-01	.515151	64.7016	101.913
9.07773	101706E-01	.457640E-01	.521542	63.6063	101.913
9.21632			.527736	62.5109	101.913
	104614E-01	.443343E-01			
9.35491	107522E-01	.428643E-01	.533729	61.4156	101.913
9.49350	~.110431E-01	.413539E-01	.539513	60.3203	101.913
9.63210	113339E-01	.398033E-01	.545084	59.2249	101.913
9.77069	116247E-01	.382124E-01	.550436	58.1296	101.913
9.90928	119155E-01	.365811E-01	.555563	57.0342	101.913
10.0479	122063E-01	.349096E-01	.560459	55.9389	101.913
10.1865	124971E-01	.331978E-01	.565120	54.8436	101.913
10.3251	127880E-01	.314456E-01	.569540	53.7482	101.913
10.4636	~.130788E-01	.296532E-01	.573712	52.6529	101.913
10.6022	~.133696E-01	.278204E-01	.577632	51.5576	101.913
10.7408	136604E-01	.259474E-01	.581294	50.4622	101.913
10.8794	139512E-01	.240340E-01	.584692	49.3669	101.913
				48.2715	101.913
11.0180	142420E-01	.220803E-01	.587820		
11.1566	145328E-01	.200864E-01	.590674	47.1762	101.913
11.2952	148237E-01	.180621E-01	.593248	46.0809	101.913
11.4338	151145E-01	.159976E-01	.595537	44.9855	101.913
11.5724	-,154053E-01	.138928E-01	.597535	43.8902	101.913
11.7110	~.156961E-01	.117477E-01	.599238	42.7949	101.913
11.8496	159869E-01	.956230E-02	.600639	41.6995	101.913
11.9881	162777E-01	.733658E-02	.601734	40.6042	101.913
12.1267	165685E-01	.507055E-02	.602515	39.5088	101.913
12.2653	168594E-01	.276421E-02	.602979	38.4135	101.913
12.4039	~.171502E-01	.417577E-03	.603118	37.3182	101.913
			_		

```
NATURAL PERIOD
                                           13.418852
     HAXIMUM DEFLECTION
                                             .603118
     TIME TO MAXIMUM DEFLECTION
                                           12.403921
    DURATION/NATURAL PERIOD
                                            1.276244
     LOAD/RESISTANCE
                                            1.405367
    ELASTIC DEFLECTION LIMIT
                                             .123416
    MAX FRAGMENT SPALL VELOCITY FT/SEC
                                            5.867672
          TOTAL COST
                        8253.74
          COUNT
                           1.00
 X)S ARE
   .240000E+02 .158000E+01 .158000E+01
0 G)S ARE
  .570667E+01 .100000E+04 .860000E+00 .860000E+00 .860000E+00
  .860000E+00 .120000E+02 .176000E+03 .184200E+02
   .184200E+02
 R = .16425381E+04
ITER = 0 P = .16507472E+05
ITER = 12 P = .12766344E+05
                                       OBJ = .82537361E+04
OBJ = .81489238E+04
         12
0 G)S ARE
  .427794E+01 .100000E+04 .178622E+01 .178622E+01 .198808E+01 .301143E+01 .184989E+03 .177634E+02 .177634E+02
   .175616E+02
FUNCTION CALLS = 117
 R = .16425381E+01
ITER = 0 P = .81535412E + 04
                                        0BJ = .81489238E+04
ITER =
                P = .55369057E+04
                                        OBJ = .54700946E+04
0 G)S ARE .110635E+00 .100000E+04 .698878E-01 .698878E-01 .795603E+00
  .187684E+02
FUNCTION CALLS =
                   347
XNEXT(I) =
   .145280E+02 .486461E+00 .121806E+01
R = .16425381E-02
ITER = 0 P = ITER = 12 P =
                                        OBJ = .54426446E+04
OBJ = .54143391E+04
                      .54432950E+04
                 P = .54153362E+04
0 G)S ARE
  .285640E-02 .100000E+04 .787667E-02 .787667E-02 .790261E+00
  .790261E+00 .252616E+01 .185474E+03 .195563E+02
```

.187740E+02 FUNCTION CALLS =

XNEXT(I) =

193

.145261E+02 .443344E+00 .122602E+01

```
R = .16425381E-05

ITER = 0 P = .54140633E+04

ITER = 3 P = .54140557E+04
                                                       OBJ = .54140545E+04
                                                      OBJ = .54140358E+04
0 G)S ARE
   .847066E-04 .100000E+04 .756447E-02 .756447E-02 .790224E+00 .790224E+00 .252606E+01 .185474E+03 .195567E+02 .187740E+02
FUNCTION CALLS =
                        110
XNEXT(I) =
   .145261E+02 .443337E+00 .122600E+01
 R = .16425381E-08
                                                       OBJ = .54140271E+04
OBJ = .54140267E+04
 ITER = 0 P = .54140274E+04
 ITER =
                      P = .54140273E+04
              3
0 G)S ARE
  .268589E-05 .100000E+04 .755550E-02 .755550E-02 .790223E+00 .790223E+00 .252605E+01 .185474E+03 .195567E+02 .187740E+02
FUNCTION CALLS =
                          140
XNEXT(I) ≈
.145261E+02 .443337E+00 .122600E+01
TOTAL FUNCTION CALLS = 907
ITER =, 0 PF = .5414027E+04 (
                                                   OBJ = .5414026E+04
                                                                                         X)S ARE
    .145261E+02 .443337E+00 .122600E+01
0 G)S ARE
  .921569E-07 .100000E+04 .755522E-02 .755522E-02 .790223E+00 .790223E+00 .252605E+01 .185474E+03 .195567E+02 .187740E+02
```

HEIGHT	384.00 IN	LENGTH	144.00	IN
DYNAMIC CONC	RETE STRENGTH	5000.00		
DYNAMIC STEE	L STRESS	48000.00		
THICKNESS CO	NCRETE INCHES	5 14.5261		
THICKNESS OF	SAND INCHES	0.0000		
THETA ALLOWA	BLE DEGREES	5.0000		
AREA VERT TO	P STEEL/FT	,4433	COVER	2.0000
	T STEEL/FT			
	OP STEEL/FT			
AREA HORIZ B	OT STEEL/FT	1.2260	COVER	3.0000
CONCRETE MOD			146.	
	EEL/CONCRETE		7.96	
GROSS MOMENT			5.42	
AVE CRACKED			0.82	
AVE MOMENT I		• -	3.12	
	ENT STEEL		0059	
D FACTOR MU=		573953		
D FACTOR MU	≖ U.3	613184	031.	

ALLOW SHEAR UNREINFORCED WEB	114.69	PSI	1379.31 LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	792.00	PSI	9524.63 LBS/IN WIDTH
UNREINFORCED CONCRETE THETA LE	2 DEG		

POSITIVE	VERTICAL MOMENT	18666.35
NEGATIVE	VERTICAL MOMENT	18666.35
POSITIVE	HORIZONTAL HOHENT	41811.90
NEGATIVE	HORIZONTAL MOMENT	41811.90

SUPPORT ON 3 SIDES

YIELD LINE Y ABOVE FLOOR

LOCATION YIELD LINE LENGTH	72.00	
LOCATION YIELD LINE HEIGHT	71.98	
ULTINATE LOAD CAPACITY RU	36.0317	
SHEAR LOAD AT VERTICAL SUPPORT	2426.97	LB/IN WIDTH
SHEAR LOAD AT HORIZONTAL SUPPORT	1556.05	LB/IN WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT	168.84	PSI
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT	103.61	PSI
ALLOWABLE MAX DEFLECTION	6.3077	

SHEAR CAPACITY(VC) EXCEEDED

BAR SPACING WIDTH	6.00
BAR SPACING LENGTH	6.00
BAR VERTICAL HEIGHT	8.90
ANGLE ALPHA	43.78
EXCESS SHEAR STRESS	114.69
STEEL STRESS	40000.00
AREA STEEL LACING REQ	.09
BAR NUMBER LACING REQ	3.00

LOAD	MASS FACTOR	.7057
MASS	CONCRETE DNLY	2303.06

FIRST YIELD POINT AT PT3	
ELASTIC LIMIT RE PSI	17.77
ELASTIC DEFLECTION XE	.0920
SECOND YIELD AT PT 2	
ELASTO PLASTIC LIMIT	22.02
ELASTO-PLASTIC DEFLECTION	.1372
ULTIMATE RESISTANCE	36.03
PLASTIC DEFLECTION	.2862
ULTIMATE RESISTANCE RU	36.03
ELASTIC DEFLECTION LIMIT XE	.2371
STIFFNESS KE	152.00

MASS 2303.061 LOAD 135.351 DURATION 17.126 RESISTANCE 36.032 STIFFNESS 151.995

GAS PRESSURE 143.23 DURATION 13.59

TIME	ACCEL	VEL	DISP	LOAD	RESIS
.191489	.611628E-01	.118102E-01	.227095E-02		.345173
.574468	,586728E-01	.347711E-01	.134348E-01		2.04202
.957446	.556220E-01	.566702E-01	.330975E-01		5.03065
1.34042	.520411E-01	.772986E-01	.607918E-01		9.24005
1.72340	.479660E-01	.964600E-01	.959740E-01	125.056	14.5876
2.10638	.434373E-01	.113973	.138029	121.019	20,9798
			.186278	116.981	28.3134
2.48936	.384999E-01	129672		112.943	
2.87234	.333954E-01	.143428	.239985		36.0317
3.25532	.319537E-01	.155930	.298532	109.623	36.0317
3.63829	.306394E-01	.167916	.361717	106.596	36.0317
4.02127	.293251E-01	.179398	.429347	103.569	36.0317
4.40425	.280109E-01	.190378	.501231	100.542	36.0317
4.78723	.266966E-01	.200853	.577174	97.5156	36.0317
5.17021	.253824E-01	.210826	.656985	94.4888	36.0317
5.55319	.240681E-01	-220295	740471	91.4620	36.0317
5.93616	.227539E-01	.229261	.827439	88.4352	36.0317
6.31914	.214396E-01	.237724	.917696	85.4084	36.0317
6.70212	.201253E-01	.245683	1.01105	82.3816	36.0317
7.08510	.188111E-01	.253139	1.10731	79.3547	36.0317
7.46808	.174968E-01	.260091	1.20627	76.3279	36.0317
7.85106	.161826E-01	.266541	1.30776	73.3011	36.0317
8.23404	.148683E-01	.272487	1.41157	70.2743	36.0317
8.61701	·135540E-01	•277929	1.51751	67.2475	36.0317
8.99999	.122398E-01	.282868	1.62540	64.2207	36.0317
9.38297	.109255E-01	.287304	1.73503	61.1938	36.0317
9.76595	.961127E-02	.291237	1.84621	58.1670	36.0317
10.1489	.829701E-02	.294666	1.95876	55.1402	36.0317
10.5319	.698275E-02	•297592	2.07248	52.1134	36.0317
10.9149	.566850E-02	.300015	2.18717	49.0866	36.0317
11.2979	.435424E-02	.301934	2.30264	46.0598	36.0317
11.6808	.303998E-02	.303350	2.41871	43.0329	36.0317
12.0638	.172572E-02	.304262	2.53517	40.0061	36.0317
12.4468	.411463E-03	.304672	2.65184	36.9793	36.0317
12.8298	902796E-03	.304577	2.76852	33.9525	36.0317
13.2128	-,221705E-02	.303980	2.88502	30.9257	36.0317
13.5957	353131E-02	.302879	3.00114	27.8989	36.0317
13.9787	484557E-02	.301275	3.11670	24.8720	36.0317
14.3617	615983E-02	.299168	3.23150	21.8452	36.0317
14.7447	747409E-02	.296557	3.34535	18.8184	36.0317
15.1276	878835E-02	.293443	3.45806	15.7916	36.0317
15.5106	101026E-01	·289826	3.56942	12.7648	36.0317
15.8936	114169E-01	·285705	3.67926	9.73795	36.0317
16.2766	127311E-01	.281081	3.78737	6.71113	36.0317
16.6596	140454E-01	.275953	3.89357	3.68431	36.0317
17.0425	153596E-01	.270323	3.99766	.657495	36.0317
17.4255	156451E-01	.264358	4.09948	0.	36.0317
17.8085	156451E-01	.258366		0.	36.0317
18.1915	156451E-01	.252375	4.29623	0.	36.0317
18.5745	156451E-01	.246383		0.	36.0317
18.9574	156451E-01	.240391		0.	36.0317
19.3404	156451E-01	.234399	4.57415	0.	36.0317

19.7234	156451E-01	.228408	4.66220	٥.	36.0317
20.1064	156451E-01	.222416	4.74795	٥.	36.0317
20.4893	156451E-01	.216424	4.83141	0.	36.0317
20.8723	156451E-01	.210432	4.91258	٥.	36.0317
21.2553	156451E-01	.204441	4.99145	٥,	36.0317
21.6383	156451E-01	.198449	5.06802	٥,	36.0317
22.0213	156451E-01	.192457	5.14230	0,	36.0317
22.4042	156451E-01	.186466	5.21429	ο,	36.0317
22.7872	156451E-01	.180474	5.28398	٥,	36.0317
23.1702	156451E-01	.174482	5.35138	0.	36.0317
23.5532	156451E-01	.168490	5.41648	0,	36.0317
23.9361	156451E-01	.162499	5.47929	0.	36.0317
24.3191	156451E-01	.154507	5.53980	0.	36.0317
24.7021	156451E-01	.150515	5.59802	0.	36.0317
25.0851	156451E-01	.144523	5.65394	٥.	36.0317
25.4681	156451E-01	.138532	5.70757	0.	36.0317
25.8510	156451E-01	.132540	5.75890	0.	36.0317
26.2340	156451E-01	.126548	5.80794	0.	36.0317
26.6170	156451E-01	.120556	5.85468	0.	36.0317
27.0000	156451E-01	.114565	5.89913	0.	36.0317
27.3830	156451E-01	.108573	5.94129	0.	36.0317
27.7659	156451E-01	.102581	5.98115	0.	36.0317
28.1489	156451E-01	.965893E-01	6.01871	0.	36.0317
28.5319	156451E-01	.905976E-01	6.05398	٥.	36.0317
28.9149	156451E-01	.846059E-01	6.08696	0.	36.0317
29.2978	156451E-01	.786141E-01	6.11764	٥.	36.0317
29.6808	156451E-01	.726224E-01	6.14603	0.	36.0317
30.0638	156451E-01	.666306E-01	6.17212	0.	36.0317
30.4468	156451E-01	.606389E-01	6.19592	0.	36.0317
30.8298	156451E-01	.546471E-01	6.21742	0.	36.0317
31.2127	156451E-01	.486554E-01	6.23663	0.	36.0317
31.5957	156451E-01	.426636E-01	6.25354	0.	36.0317
31.9787	156451E-01	.366719E-01	6.26816	0.	36.0317
32.3617	156451E-01	.306801E-01	6.28048	0.	36.0317
32.7447	156451E-01	.246884E-01	6.29051	0.	36.0317
33.1276	156451E-01	.186967E-01	6.29824	0.	36.0317
33.5106	156451E-01	.127049E-01	6.30348	0.	36.0317
33.8936	156451E-01	.671317E-02	6.30683	0.	36.0317
34,2766	156451E-01		6.30768	0.	36.0317

24.457807
6.307678
34.276566
.700215
3.974990
.237058

MAX FRAGMENT SPALL VELOCITY FT/SEC 25.390621

TOTAL COST 5414.03 COUNT 913.00

SUBJECT	COMPUTED BY .	DATE
_		
EXAMPLE PROBLEM 4	CHECKED BY:	DATE:

WALL GEOMETRY SAME AS PROB. 3, EXCEPT WITH ROOF Cell Volume = 3456 cu.ft.

Cell Vent Area = 16 sq.ft.

NSIDE = 4

Charge Wt. = 120 lb. $\theta = 12^{\circ}$

File name: BDATA4

		\$/yd	\$/18	CCSH \$/1P	13	#IdS			
		(50.0)	(0.2)	(0,325)	(1.5)	(1.1)	(Default Values)		
	Line 1	٥	0	0	0	1.2			
		HEADING							
	Line 2	EXAMPLE	PROBLEM	4					
		FLAGI	FLAG2	FLAG3	FLAG4	FLAGS	PC		
		Optimize 0 - No 1 - Yea	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	ut time history	
	Line 3	0	0	0		0	0		
		MLB Ib	ним	RLOD	CASE	APAMB, paia (Default = 14.69)	TAMB, °C (Default = 20)	ALTIEPT 10 ³ ft	PERCE (Default = 1.0)
	Line 4	120	1	0	0	0	0	O	0
		RR ft	# J	12 12	HLIT ft	TITI3	νν (ε ³	AC ft ²	ICODE R L R
If PLAG2 - 0,	Line SA	4	32	12	e	4	3456	72	1111
		тот	Я	12	SANT	70	54	70	ICODE
		psi-maec	.	z l	pet	The c	pet	anec	1 2
If PLAG2 - 1,	Line 5B								
		FC pet	FST	TC fa.	THETA	SN	TSAND	BL in.	St. th.
	Line 6	2000	40000	24	12	4	0	9	9
		ASVT fn. ² /ft	ASVB in. ² /ft	ASHT in. ² /ft	ASHB In. ² /ft	DVT ia.	DVB in.	DAT fn,	DHS fn.
If PLACS . 0.	Line 7A	1.58	1.58	1.58	1.58	2	2	3	ຄ
		BAR1	BAR2	34.83	BAR4	SP1 In.	\$P2 In.	SP3 in.	SP4 tn.
IF PLAC3 * 1.	Line 78								
		DVT in.	DVB In.	DHT λη.	DHS 1n.				
1f PLAG3 - 1,	Continued)								
		#2 tc	52	4	NEA Ib/fn.	1001	яu		
If PLACS - 1.	Line 8								

```
0020
                EXAMPLE PROBLEM
 0030 0 0 0 1 0 0
 0040 120 1 0 0 0 0 0 0
 0050 4 32 12 6 4 3456 16 1 1 1 1
0060 5000 40000 24 12 4 0 6 6
 0070 1.58 1.58 1.58 1.58 2 2 3 3
          EXAMPLE PROBLEM
TNT
EXPLOSIVE PROPERTIES....CHARGE WEIGHT(LB) =
                                                 120.0
              EFORM EXPLOSIVE COMPOSITION BY WEIGHT
NUMBER EQUT
                                      N
                                            0
              KCAL/G
                        C
                              н
   1 1.000 -.078400 .370 .022 .185 .423 0.000
PAMB(PSIA) = 14.69
                           TAMB(C)= 20.00
SHOCK WAVE CALCULATION
INPUT PARAMETERS
                                        CHARGE WEIGHT ADJUSTMENTS
CHARGE WEIGHT)LB)
                            120.0
                                        ADJUSTED WT(LB TNT) =
                                                                  120.0
 EXPLOSIVE NUMBER
                                        HE ENERGY FACTOR
                              1
                                                                   1.000
L/D RATIO
                        Ξ
                           ٥.
                                        CHARGE SHAPE FACTOR
                                                                   1.000
 CASE/CHARGE WT RATIO =
                           0.
                                        CASE WEIGHT FACTOR
                                                                   1.000
                                        PRESSURE SCALE FACTOR=
DISTANCE SCALE FACTOR=
 CHAMBER PRESSURE(PSIA)=
                            14.69
                                                                   1.000
CHAMBER TEMP(C)
                       =
                            20.00
                                                                   .2027
ALTITUDE (KFT)
                           ٥.
                        =
                                        TIME SCALE FACTOR
                                                                   .2045
                                        NORMAL REFL FACTOR
                                                                   9.076
DISTANCE OF CHARGE FROM BLAST WALL
                                             FT.
                                                                  4.00
CHARGE WEIGHT
                                            LBS.
                                                                120.00
 BLAST WALL HEIGHT
                                             FT.
                                                                 32.00
BLAST WALL LENGTH
                                             FT.
                                                                 12.00
                                             FT.
                                                                  6.00
HEIGHT OF CHARGE ABOVE GROUND
DIST. BETWEEN CHARGE & LEFT BOUNDARY
                                                                  4.00
 REFLECTION CODE
THE REFLECTED IMPULSE (PSI-MSEC) AT EACH GRID POINT
 ON THE BLAST WALL IS... (MACH REFLECTIONS NOT INCLUDED)
                                  I
                                     3
 17
        659.9
                     658.3
                                  659.3
                                               668.5
                                                           683.3
                                                           702.0
 16
        676.2
                     676.0
                                  678.0
                                               685.8
        707.1
                                                           724.1
 15
                     710.7
                                  712.7
                                               721.9
 14
        745.1
                     750.1
                                  761.5
                                               757.1
                                                           762.8
                                               830.3
 13
        814.3
                     819.3
                                  817.5
                                                           840.5
                                              875.3
                                                           911.1
 12
        880.9
                     887.1
                                  873,9
 11
        977.2
                     966.0
                                  946.7
                                               943.3
                                                           990.1
                                               1026.
                                                           991.0
 10
        1146.
                     1108.
                                  1054.
                                               1027.
                                                           1035.
 9
        1360.
                     1277.
                                  1185.
 8
        1681.
                     1512.
                                  1144.
                                               1091.
                                                           1097.
 7
        2312.
                     1825.
                                  1223.
                                               1154.
                                                           1155.
                                               1202.
                                                           1208.
 6
        3284.
                     1522.
                                  1296.
                                               1249.
                                                           1257.
 5
        2447.
                     1646.
                                  1359.
                     1743.
                                               1317.
                                                           1324.
        2677.
                                  1433.
                                               1448.
 3
        2639.
                     1845.
                                                           1450.
                                  1557.
        3721.
                     1995.
                                              1676.
                                                           1645.
 2
                                  1777.
  1
        3155.
                     3617.
                                  3075.
                                               2946.
                                                           1997.
                                  I
        701.3
 17
                     702.3
        714.4
                     719.2
 16
                     753.8
 15
        739.6
14
13
        784.4
                     802.0
        860.6
                     871.7
12
        915.2
                     938.9
 11
        992.1
                     1039.
 10
        1109.
                     1190.
        1074.
                     1386.
```

0010 0 0 0 0 1.2

8	1165.	1290.
7	1251.	1409.
6	1310.	1795.
5	1357.	1876.
4	1417.	1936.
3	1532.	2013.
2	1688.	2105.
1	2622.	2277.

TOTAL IMPULSE = 1189.42

TOTA	AL IMPUL	SE		1284.01	PSI-MS
VENT AREA	16.00	CELL VOL	JME	3456.00	
GAS PRESSURES	S CALCULA	TION			
PEAK GAS PRES	SSURE	143	. 23		
GAS DURATION		194	.06		
GAS IMPULSE		13897	. 23		
TOTAL IMPULS	Ε	13900	.05		
DUR	ATION OF	LOAD		17.12573	MSEC
FIC'	TITIOUS P	EAK PRESSI	JRE	149.95125	PSI
EFFI	ECTIVE IN	PULSE		13900.05	PSI HS

HEIGHT 384.00 IN	LENGTH	144.00	IN
DYNAMIC CONCRETE STRENGTH	5000.00		
DYNAMIC STEEL STRESS	48000.00		
THICKNESS CONCRETE INCHES	24.0000		
THICKNESS OF SAND INCHES	0.0000		
THETA ALLOWABLE DEGREES			
AREA VERT TOP STEEL/FT	1.5800	COVER	2.0000
AREA VERT BOT STEEL/FT			
AREA HORIZ TOP STEEL/FT			
AREA HORIZ BOT STEEL/FT	1.5800	COVER	3.0000
TYPE 3 CONSTRUCTION			
CONCRETE MODULUS PSI	3644	146.	
RATIO MOD STEEL/CONCRETE		7.96	
GROSS MOMENT INERTIA	115	2.00	
AVE CRACKED MOM INERTIA	33	2.26	
AVE MOMENT INERTIA	74	2.13	
AVERAGE PERCENT STEEL		0061	
D FACTOR MU=1/6	2781771	691.	
D FACTOR MU= 0.3	2971910	372.	
ALLOW SHEAR UNREINFORCED WE	B 115.16	PSI	2475.99 LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	792.00	PSI	17028.00 LBS/IN WIDTH
UNREINFORCED CONCRETE THET	A LE 2 DEG		
POSITIVE VERTICAL MOMENT			
NEGATIVE VERTICAL MOMENT			
POSITIVE HORIZONTAL MOMENT	113760.00		
NEGATIVE HORIZONTAL MOMENT	113760.00		

SUPPORT ON 4 SIDES

YIELD LINE Y ABOVE FLOOR

LOCATION YIELD LINE LENGTH 72.00
LOCATION YIELD LINE HEIGHT 101.36
ULTIMATE LOAD CAPACITY RU 123.0296
SHEAR LOAD AT VERTICAL SUPPORT 7148.96 LB/IN WIDTH
SHEAR LOAD AT HORIZONTAL SUPPORT 7482.21 LB/IN WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT 235.37 PSI
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT 260.18 PSI
ALLOWABLE MAX DEFLECTION 15.3305

SHEAR CAPACITY(VC) EXCEEDED

BAR SPACING WIDTH	6.00
BAR SPACING LENGTH	6.00
BAR VERTICAL HEIGHT	18.50
ANGLE ALPHA	80.58
EXCESS SHEAR STRESS	145.02
STEEL STRESS	40000.00
AREA STEEL LACING REQ	•13
BAR NUMBER LACING REQ	4.00

LOAD MASS FACT	'DR	.6049
MASS CONCRETE	ONLY	3261.80

FIRST YIELD POINT AT PT2	
ELASTIC LIMIT RE PSI	65.86
ELASTIC DEFLECTION XE	.1992
SECOND YIELD AT PT 3	
ELASTO PLASTIC LINIT	84.54
ELASTO-PLASTIC DEFLECTION	.5401
ULTIMATE RESISTANCE	123.03
PLASTIC DEFLECTION	.6030

ULTIMATE RESISTANCE RU		123.03
ELASTIC DEFLECTION LIMIT	XE	.5690
STIFFNESS KE		216.23

MASS	3261.803
LOAD	149.951
DURATION	17.126
RESISTANCE	123.030
STIFFNESS	216.233

	GAS	PRESSURE	143.23	DURATION	194.06
--	-----	----------	--------	----------	--------

NATURAL PERIOD	24.403238
MAXIMUM DEFLECTION	11.032337
TIME TO MAXIMUM DEFLECTION	70.733572
DURATION/NATURAL PERIOD	7.952254
LOAD/RESISTANCE	1.218822
ELASTIC DEFLECTION LIMIT	.568968

MAX FRAGHENT SPALL VELOCITY FT/SEC 17.828073

SUBJECT.	COMPUTED BY	DATE:
EXAMPLE PROBLEM 5	CHECKED BY:	DATE:

CONDITIONS SAME AS EXAMPLE PROBLEM I, EXCEPT WALL HEIGHT IS 25 FT AND DOOR IS PRESENT AS SHOWN IN FIGURE BELOW:

File name: BDATA5

	\$/yd	\$/16	CCSH \$/1b	13	#1ds			
	(50.0)	(0.2)	(0.325)	(1.5)	(1.1)	(Default Values)		
Line 1	0	0	0	٥	1.2			
	HEADING							
Line 2	EXAMPLE	PROBLEM	જ					
	FLAGI	FLAG2	FLAG3	FLAG4	FLAGS	PC		
	Optimize 0 - No 1 - Yes	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yea	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	ine history	
Line 3	0	0	0	0	1	٥		
	WLB 1b	жих	ктор	CASE	APAHB, pela (Default = 14.69)	TAMB, °C (Default = 20)	ALTICPT 10 ³ fc	PERCE (Default * 1.0)
Line 4	120	J	0	0	0	0	0	0
	RR fc	K	i t	15, 17. f t	#1,117 f c	AV ft ³	AC ft ²	ICODE P R L R
Line SA	9	2.5	70	7	⊳	0	0	/ / 0 /
	TOTIM psi-mec	H ft	ft.	FPRES pei	TO Basec	PG P#1	TG Basec	ICODE
Line 58								
	PC ps1	PST pei	7C fn.	THETA	NS.	TSAND	Bt. fa,	SI. In.
Line 6	3750	00009	24	7	B	0	0	0
	ASVT In. ² /ft	ASVB in, ² /ft	ASHT In. ² /ft	ASHB In. ² /ft	DNT fo.	DVB In.	DMT 1n.	DHE in.
Line 7A	0.75	0.75	0.75	0.75	8	3	2	7
	BARI	BAR2	BAR3	PAR4	SP1 1n.	SP2 In.	SP3 1n.	\$74 fn.
Line 73								
	DVT in.	DVB 1n.	DHT sn.	DHB fn.				
Line 78 (Continued)								
	HZ fr	52	e t	REA 1b/1n.	ND1 Pe1	12 J		
Line 8	e	8	٦	0	50	0		

0010 0 0 0 0 1.2 0020 EXAMPLE PROBLEM 5 0030 0 0 0 0 1 0 0040 120 1 0 0 0 0 0 0050 6 25 20 7 8 0 0 1 0 1 1 0060 3750 60000 24 2 3 0 0 0 0070 0.75 0.75 0.75 0.75 3 3 2 2 0080 6 3 7 0 50 0

EXAMPLE PROBLEM 5

TNT

 $PAMB(PSIA) = 14.69 \qquad TAMB(C) = 20.00$

SHOCK WAVE CALCULATION

INPUT PARAMETERS CHARGE WEIGHT ADJUSTMENTS CHARGE WEIGHT)LB) 120.0 ADJUSTED WT(LB TNT) = 120.0 EXPLOSIVE NUMBER HE ENERGY FACTOR 1 1.000 L/D RATIO = 0. CHARGE SHAPE FACTOR = 1.000 CASE/CHARGE WT RATIO = 0. CASE WEIGHT FACTOR = 1.000 CHAMBER PRESSURE(PSIA) = 14.69 PRESSURE SCALE FACTOR= 1.000 CHAMBER TEMP(C) = DISTANCE SCALE FACTOR= 20.00 .2027 ALTITUDE (KFT) = ٥. TIME SCALE FACTOR = .2045 NORMAL REFL FACTOR 7.878

FT. DISTANCE OF CHARGE FROM BLAST WALL 6.00 CHARGE WEIGHT LBS. 120.00 BLAST WALL HEIGHT FT. 25.00 BLAST WALL LENGTH FT. 20.00 HEIGHT OF CHARGE ABOVE GROUND FT. 7.00 DIST. BETWEEN CHARGE & LEFT BOUNDARY FT. 8.00 1 0 1 1 REFLECTION CODE

TOTAL IMPULSE 896.50 PSI-MS
DURATION OF LOAD 12.41350 MSEC
FICTITIOUS PEAK PRESSURE 144.43934 PSI
EFFECTIVE IMPULSE 896.50 PSI MS

HEIGHT 300.00 IN LENGTH 240.00 IN DYNAMIC CONCRETE STRENGTH 3750.00 DYNAMIC STEEL STRESS 72000.00 THICKNESS CONCRETE INCHES THICKNESS OF SAND INCHES 24.0000 0.0000 THETA ALLOWABLE DEGREES 2.0000 .7500 AREA VERT TOP STEEL/FT AREA VERT BOT STEEL/FT 3.0000 COVER .7500 COVER 3.0000 AREA HORIZ TOP STEEL/FT .7500 COVER 2.0000 .7500 COVER 2.0000 AREA HORIZ BOT STEEL/FT

TYPE 1 CONSTRUCTION

CONCRETE HODULUS PSI	3155923.
RATIO MOD STEEL/CONCRETE	9.19
GROSS MOMENT INERTIA	1152.00
AVE CRACKED HOM INERTIA	198.32
AVE MOMENT INERTIA	675.16
AVERAGE PERCENT STEEL	.0029
D FACTOR MU=1/6	2191685441.
D FACTOR MU= 0.3	2341490753.

ALLOW SHEAR UNREINFORCED WEB	94.64	PSI	2034.71	LBS/IN WIDTH
ALLOW SHEAR AT SUPPORT	594.00	PSI	12771.00	LBS/IN WIDTH
UNREINFORCED CONCRETE THETA LE	2 DEG			

POSITIVE	VERTICAL MOMENT	91323.53
NEGATIVE	VERTICAL MOMENT	91323.53
POSITIVE	HORIZONTAL HOMENT	95823.53
MEGATTUE	HORIZONTAL MOMENT	95823.53

SUPPORT ON 3 SIDES

DOOR WIDTH	36.00
DOOR HEIGHT	72.00
DISTANCE B FROM LEFT	84.00
DISTANCE A FROM RIGHT	120.00
DOOR REACTION/IN	1273.98
ORIGINAL X YIELD LOCATION	120.00
DRIBINAL Y YIFUR LOCATION	157.53

W SECTOR 1	32.95
W SECTOR 2	33.21
W SECTOR 3	33.45
W SECTOR 4	33.20
AVERAGE RU	33.20

X 1	132.49
X2	112.62
Y 1	72.98
Y 2	72.99

YIELD LINE Y ABOVE FLOOR

LOCATION YIELD LINE LENGTH	120.00		
LOCATION YIELD LINE HEIGHT	140.62		
ULTIMATE LOAD CAPACITY RU	33.2009		
SHEAR LOAD AT VERTICAL SUPPORT	3308.85	LB/IN	WIBTH
SHEAR LOAD AT HORIZONTAL SUPPORT	2801.30	LB/IN	WIDTH
SHEAR AT DISTANCE FROM VERTICAL SUPPORT	127.12	PSI	
SHEAR AT DISTANCE FROM HORIZONTAL SUPPORT	106.53	PSI	
ALLOWABLE MAX DEFLECTION	4.1975		

SHEAR CAPACITY(VC) EXCEEDED

LOAD HASS FACTOR	.6	702
HASS CONCRETE ONLY	3613	. 56
FIRST YIELD POINT AT	PT2	
ELASTIC LIMIT RE PS	I	19.13
ELASTIC DEFLECTION)	Œ	.1232
SECOND YIELD AT PT 3		
ELASTO PLASTIC LIMIT		24.32
ELASTO-PLASTIC DEFLEC	CTION	.2357
ULTIMATE RESISTANCE		36.80
PLASTIC DEFLECTION		.5408
ULTIMATE RESISTANCE		36.80
ELASTIC DEFLECTION LI	MIT XE	.3780
STIFFNESS KE		97.36
REDUCED RU FOR DOOR	33.20	36.80
WARE		
MASS 3613.558 LOAD 144.439		
DURATION 12.413		
RESISTANCE 33.201		
STIFFNESS 97.361		
5.1. T. N. 2.5. 77.00.	•	
GAS PRESSURE 0.	00 DURATI	O.00
MATURAL PERSON		70 0704/0
NATURAL PERIOD HAXINUM DEFLECTION		38.278468
TINE TO MAXIMUM DEFLE	CTION	3.024486 29.842094
DURATION/NATURAL PERI		.324294
LOAD/RESISTANCE	.UD	4.350460
ELASTIC DEFLECTION LI	MIT	.341009
MAX FRAGMENT SPALL VE	LOCITY FT/SEC	14.442610
,		2

References

Advisory Group for Aerospace Research and Development. "Structural Design Applications of Mathematical Programming Techniques," AGAARD No. 149, North Atlantic Treaty Organization.

Dede, R., Dobbs, R., Porcaro, N., and Rindner, J. 1972. "Preliminary Estimate of Concrete Thickness and Construction Costs of Laced Reinforced Concrete Structures," Technical Report 4441, Picatinny Arsenal, Dover, N. J.

Departments of the Army, Navy, and Air Force. 1969. "Structures to Resist the Effects of Accidental Explosions," TM 5-1300, NAVFAC P-137, AFM 88-22, Washington, D. C.

Ferritto, J. M. 1976. "Development of a Computer Program for the Dynamic Nonlinear Response of Reinforced Concrete Slabs Under Blast Loading," Technical Note 1434, Civil Engineering Laboratory, Port Hueneme, Calif.

Fox, R. L. 1971. Optimization Methods for Engineering Design, Addison Wesley, Reading, Mass.

Gill, J. O., et al. 1973. "Preliminary Report on the Modernization of the Naval Ordnance Production Base and Application of Hazard Risk Analysis Technique," paper presented at the Fifteenth Explosive Safety Seminar, Department of Defense Explosive Safety Board, San Francisco, Calif.

Mendolia, A. 1973. "A New Approach to Explosives Safety," paper presented at the Fifteenth Explosive Safety Seminar, Department of Defense Explosive Safety Board, San Francisco, Calif.

U. S. Army Engineer Division, Huntsville. 1977. "Suppressive Shields, Structural Design and Analysis Handbook," HNDM-1110-1-2, Huntsville, Ala.

Blank form

	cro \$/yd ³	\$/1P	CCSH \$/1b	13	SDIF			
	(30.0)	(0.2)	(0.325)	(1.5)	(1.1)	(Default Values)		
Line 1	1							
	HEADING							
Line 2	~							
	FLAGI	FLAG2	FLAG3	FLACA	FLAGS	P.C		
	Optimize 0 - No 1 - Yes	Input Gas Pressure 0 - Calculate 1 - Input	Reinforcing 0 - AS 1 - D	Impulse Grid 0 - No 1 - Yes	Door Opening 0 - No 1 - Yes	0 - Standard printout 1 - Print response time history	it ine history	
Line 3	3							
	41.8 16	ANUM	acra .	CASE	APAMB, peta (Default = 14.69)	TAMB, °C (Default = 20)	ALTEST 10 ³ fc	PERCE (Default = 1.0)
Line 4								
	8 4	= 2	13 &	HLIT ft	ELLIT	AV ft ³	r r r r	ICODE L R
If FLAG2 = 0, Line SA	*							
	TOTIM	# J	82	FRES ps1	۾ ع	PG Pa1	2 3	ICODE
If FLAG2 = 1, Line 5B								4
	FC ps1	PST 1 e	16 In.	THETA	NS	TSAND	in i	St. In.
Line 6								
	ASVT tn. ² /ft	ASVB 1a. ² /ft	ASHT in. ² /ft	ASHB In. ² /ft	DVT tn.	DVB in,	DHT tn.	DHS in.
If FLAG3 - 0, Line 7A	V2							
	BARI	BAR2	BAR3	BAR4	SP1 tn.	SP2 fn.	SP3	SP4 in.
If FLAG3 - 1, Line 78	87							
	DVT 1n.	DVB fn.	DHT tn.	DEB 1a.				
If FLAG3 = 1, Line 78 (Continued)								
	H2 ft	WT fc	ų Įt	REA 15/in.	KD1 ps1	H1 ft		
If FLAGS - 1, Line 8								

In accordance with letter from DAEN-RDC, DAEN-ASI dated 22 July 1977, Subject: Facsimile Catalog Cards for Laboratory Technical Publications, a facsimile catalog card in Library of Congress MARC format is reproduced below.

Ferritto, John M.

User's guide, computer program for optimum nonlinear dynamic design of reinforced concrete slabs under blast loading (CBARCS): final report / by John M Ferritto (Civil Engineering Laboratory, Naval Construction Battalion Center), Robert M. Wamsley (U.S. Army Engineer Division, Huntsville), Paul K. Senter (Automatic Data Processing Center, U.S. Army Engineer Waterways Experiment Station). -- Vicksburg, Miss.: The Station; Springfield, Va.; available from NTIS, [1981].

76, [1] p.: ill.; 27 cm. -- (Instruction report / U.S. Army Engineer Waterways Experiment Station; K-81-6) Cover title.

"March 1981."

"Prepared for Office, Chief of Engineers, U.S. Army."
"This report was prepared under the Computer-Aided
Structural Engineering (CASE) Project. A list of
published CASE reports is printed on the inside of the
back cover."

Ferritto, John M.
User's guide, computer program for optimum : ... 1981.
(Card 2)

Bibliography: p. 75.

1. Blast effect. 2. CBARCS (Computer program).
3. Computer programs. 4. Reinforced concrete.
5. Structural design. I. Wamsley, Robert M.
II. Senter, Paul K. III. United States. Army. Corps of Engineers. Office of the Chief of Engineers.
IV. U.S. Army Engineer Waterways Experiment Station. Automatic Data Processing Center. V. Title
VI. Series: Instruction report (U.S. Army Engineer Waterways Experiment Station); K-81-6.
TA7.W34i no.K-81-6

Program Information

Description of Program

CBARCS, called X0056 in the Conversationally Oriented Real-Time Program-Generating System (CORPS) library, is a computer program that may be used to determine the nonlinear dynamic response of reinforced concrete slabs subjected to blast (pressure-time) loading. Given the explosive parameters and geometry of the slab, CBARCS computes the blast environment and the structural resistance, mass, and stiffness of the slab and solves for the dynamic response. The program contains optimization subroutines that provide for automatic optimum design of least-cost structural slabs. CBARCS will assist engineers in the design and analysis of facilities that are intended to contain the effects of accidental explosions.

Coding and Data Format

CBARCS is written in FORTRAN and is operational on the following systems:

- <u>a.</u> U. S. Army Engineer Waterways Experiment Station (WES) Honeywell G635.
- <u>b.</u> Office of Personnel Management Honeywell 6000 Series at Macon, Ga.
- c. Boeing Corporation's CDC CYBER 175.

Data can be input either interactively at execute time or from a prepared data file with line numbers. Output may be directed to an output file or come directly back to the terminal.

How To Use CBARCS

A short description of how to access the program on each of the three systems is provided below. It is assumed that the user knows how to sign on the appropriate system before trying to use CBARCS. In the example initiation of execution commands below, all user responses are underlined, and each should be followed by a carriage return.

WES G635 and Macon systems

After the user has signed on the system, the two system commands FORT and and NEW get the user to the level to execute the program. Next the user issues the run command

RUN WESLIB/CORPS/X0056,R

to initiate execution of the program. The program is then run as described in this user's guide. The data file should be prepared prior to issuing the RUN command. An example of initiation of execution is as follows, assuming a data file had previously been prepared:

HIS SERIES 600 ON 01/21/81 AT 13.301 CHANNEL 5647

USER ID - RØKACASEMP

PASSWORD - WMEREXAREXXOMX

SYSTEM? FORT NEW

READY

*RUN WESLIB/CORPS/X0056,R

Boeing system

The log-on procedure is followed by a call to the CORPS procedure file

OLD, CORPS/UN=CECELB

to acces the CORPS library. The file name of the program is used in the command

CALL, CORPS, XØØ56

to initiate execution of the program. An example is:

WELCOME TO THE BCS NETWORK

YOUR ACCESS PORT IS SWY 55

SELECT D RED SERVICE: EKS1

81/01/21. 13.30.01.

EKS1 175G.NØ46Ø.68BA 8Ø/Ø9/14.DS-Ø Ø2.39.Ø5, 8Ø/Ø9/16.

USER ID: CERØC1

PASSWORD -

XXKOXEXXOM

TERMINAL:

124,TTY

RECOVER/USER ID: CASE

(Continued)

C>OLD, CORPS/UN=CECELB

C>CALL, CORPS, XØØ56

How To Use CORPS

The CORPS system contains many other useful programs which may be catalogued from CORPS by use of the LIST command. The execute command for CORPS on the WES and Macon systems is:

RUN WESLIB/CORPS/CORPS,R

ENTER COMMAND (HELP,LIST,BRIEF,MESSAGE,EXECUTE, OR STOP)
*?LIST

on the Boeing computer, the commands are:

OLD, CORPS/UN=CECELB

ENTER COMMAND (HELP,LIST,BRIEF,MESSAGE,EXECUTE, OR STOP)
*?LIST

WATERWAYS EXPERIMENT STATION REPORTS PUBLISHED UNDER THE COMPUTER-AIDED STRUCTURAL ENGINEERING (CASE) PROJECT

	Title	Date
Technical Report K-78-1	List of Computer Programs for Computer-Aided Structural Engineering	Feb 1978
Instruction Report O-79-2	User's Guide: Computer Program with Interactive Graphics for Analysis of Plane Frame Structures (CFRAME)	Mar 1979
Technical Report K-80-1	Survey of Bridge-Oriented Design Software	Jan 1980
Technical Report K-80-2	Evaluation of Computer Programs for the Design/Analysis of Highway and Railway Bridges	Jan 1980
Instruction Report K-80-1	User's Guide: Computer Program for Design/Review of Curvilinear Conduits/Culverts (CURCON)	Feb 1980
Instruction Report K-80-3	A Three-Dimensional Finite Element Data Edit Program	Mar 1980
Instruction Report K-80-4	A Three-Dimensional Stability Analysis/Design Program (3DSAD)	
	Report 1: General Geometry Module	Jun 1980
Instruction Report K-80-6	Basic User's Guide: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Instruction Report K-80-7	User's Reference Manual: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Dec 1980
Technical Report K-80-4	Documentation of Finite Element Analyses Report 1: Longview Outlet Works Conduit Report 2: Anchored Wall Monolith, Bay Springs Lock	Dec 1980 Dec 1980
Technical Report K-80-5	Basic Pile Group Behavior	Dec 1980
Instruction Report K-81-2	User's Guide: Computer Program for Design and Analysis of Sheet Pile Walls by Classical Methods (CSHTWAL)	
	Report 1: Computational Processes Report 2: Interactive Graphics Options	Feb 1981 Mar 1981
Instruction Report K-81-3	Validation Report: Computer Program for Design and Analysis of Inverted-T Retaining Walls and Floodwalls (TWDA)	Feb 1981
Instruction Report K-81-4	User's Guide: Computer Program for Design and Analysis of Cast-in-Place Tunnel Linings (NEWTUN)	Mar 1981
Instruction Report K-81-6	User's Guide: Computer Program for Optimum Nonlinear Dynamic Design of Reinforced Concrete Slabs Under Blast Loading (CBARCS)	Mar 1981
Instruction Report K-81-7	User's Guide: Computer Program for Design or Investigation of Orthogonal Culverts (CORTCUL)	Mar 1981

