第四次上机作业

21300180079 吕昂格

2023年11月17日

第一题

对于对原来线性方程组的系数矩阵进行扰动得到的扰动矩阵 $A + \delta A$,方程 $(A + \delta A)(x + \delta x) = b$,用 python 计算得出 (保留三位小数):

$$\delta x = [-10.586, 17.374, -4.226, 2.524]$$

误差的二范数:

$$\|\delta x\| = 20.932$$

解的相对误差为:

$$\frac{\|\delta x\|}{\|x\|} = 0.0955$$

此时系数矩阵的相对误差为:

$$\frac{\|\delta A\|}{\|A\|} = 0.0076$$

从理论角度分析, 我们有如下公式 (北大教材定理 2.2.1):

$$\frac{\|\delta x\|}{\|x\|} \leqslant \frac{k(A)}{1 - k(A)\frac{\|\delta A\|}{\|A\|}} \frac{\|\delta A\|}{\|A\|}$$

其中 $k(A) = \|A^{-1}\| \|A\|$ 且当 $\frac{\|\delta A\|}{\|A\|}$ 很小时,上面的估计式可化为:

$$\frac{\|\delta x\|}{\|x\|} \leqslant k(A) \frac{\|\delta A\|}{\|A\|}$$

本题计算得出的 k(A) = 2984.0927, 得出对解的误差估计为:

$$\frac{\|\delta x\|}{\|x\|} \leqslant 25.962$$

第二题

构建算法 2.5.1 的程序见文件 得到对 Hilbert 矩阵的条件数估计: 对于问题 2 我们采用 numpy.random 库

阶数	—————————————————————————————————————
5	943655
10	3.54×10^{13}
15	7.04×10^{17}
20	1.35×10^{18}

生成随机向量 x, 与 Guass 消去法得到的解产生偏差 δx 对 n 从 5 到 30 估计相对误差 $\frac{\|\delta x\|}{\|x\|}$: 对于问题 2 我们采用 numpy.ra

<u></u>	解相对误差
5	1.78×10^{-16}
10	1.39×10^{-15}
15	1.28×10^{-14}
20	1.90×10^{-12}
25	4.09×10^{-11}
30	7.01×10^{-9}