矩阵理论作业12

刘彦铭 ID: 122033910081

Last Edited: 2023 年 1 月 4 日

101页: 6、7、8. 其余选做

1. 习题 6

- (1) $||A||_{M_1} := \sum_{1 \leq i,j \leq n} |a_{ij}|$. 由例 4.2.8(1) 可知 $||A||_1 = \max_{1 \leq j \leq n} \sum_{i=1}^n |a_{ij}|$, 从而有 $||A||_1 \leq \sum_{1 \leq j \leq n} \sum_{1 \leq i \leq n} |a_{ij}| = ||A||_{M_1}$. 所以对于任意的 $A \in M_n(\mathbb{F}), v \in \mathbb{F}^n$, $||Av||_1 \leq ||A||_1 ||v||_1 \leq ||A||_{M_1} ||v||_1$, 即 $||-||_{M_1}$ 与 $||-||_1$ 相容。
- (2) 由例 4.2.8(2) 知, $||A||_2 = \sqrt{\rho(A^*A)} = \sqrt{\lambda_{\max}(A^*A)}$. 而对 Frobenius 范数 $||A||_F := \sqrt{\sum_{i,j} \bar{a}_{ij} a_{ij}} = \sqrt{\operatorname{tr}(A^*A)} = \sqrt{\sum_i \lambda_i(A^*A)} \ge \sqrt{\lambda_{\max}(A^*A)} = ||A||_2.$ 所以 $||Av||_2 \le ||A||_2 ||v||_2 \le ||A||_F ||v||_2$, 即 $||-||_F = ||-||_2$ 相容。
- (3) $||A||_{M_{\infty}} := n \cdot \max_{i,j} |a_{ij}|.$
- p=1: 由例 4.2.8(1) 知, $||A||_1 = \max_j \sum_i |a_{ij}| = \sum_i |a_{ij'}| \le n \cdot \max_i |a_{ij'}| \le n \cdot \max_{i,j} |a_{ij}| = ||A||_{M_\infty}$, 同 (1)(2) 的步骤可知, $||-||_{M_\infty}$ 与 $||-||_1$ 相容
- p=2: 由 (2) 知, $||A||_2 \le ||A||_F = \sqrt{\sum_{i,j} |a_{ij}|^2} \le \sqrt{n^2 \cdot (\max_{i,j} |a_{ij}|)^2} = ||A||_{M_\infty}$. 再同 (1)(2) 可得 $||-||_{M_\infty}$ 与 $||-||_2$ 相容

 $p=\infty$: 由例 4.2.8(3) 知, $||A||_{\infty}=\max_{i}\sum_{j}|a_{ij}|$, 完全仿照 p=1 的情况即得 $||-||_{M_{\infty}}$ 与 $||-||_{\infty}$ 相容

2. 习题 7

考虑对 $A \in M_n(\mathbb{C})$ 作奇异值分解,即 A = USV,其中 U, V 是酉矩阵, $S = \text{diag}(s_A), s_A(1), \cdots, s_A(n)$ 是 A 的全体奇异值。由于 ||-|| 是酉不变的,所以 ||A|| = ||USV|| = ||S||.

按如下方式定义 \mathbb{R}^n 上的范数 $N: N(v) := ||\mathbf{diag}(v)||$. 由于矩阵范数 ||-|| 满足向量范数的各个要求,所以这样定义出来的 N 也满足向量范数的要求,且显然有 $||A|| = ||S|| = ||\mathbf{diag}(s_A)|| = N(s_A)$.

3. 习题 8

对于任意的 $x, y \in \mathbb{R}^+, \lambda \in [0, 1], N(\lambda x + (1 - \lambda)y) = ||A + (\lambda x + (1 - \lambda)y)B|| = ||\lambda A + \lambda x B + (1 - \lambda)A + (1 - \lambda)yB|| \le ||\lambda A + \lambda x B|| + ||(1 - \lambda)A + (1 - \lambda)yB|| = \lambda N(x) + (1 - \lambda)N(y),$ 这就验证了 N(x) 是凸函数