浙江大学实验报告

 专业:
 <u>电气工程及其自动化</u>

 姓名:
 <u>严旭铧</u>

 学号:
 <u>3220101731</u>

 日期:
 2023 年 9 月 18 日

地点: 东 三 406 教 室

课程名称:	电路与电子技术实	<u> 验 I</u> 指导老师:	水才君	_成绩:	
实验名称:	仪器使用练习	实验类型:	电学实验	同组学生姓名:	褚玘铖

一、万用表使用练习

1. 实验目的

熟悉万用表的基本操作和读数方法。

- 2. 实验内容
 - (1) 用万用表测出任意二个电阻(R)的阻值,并与其色环所指示的电阻值进行比较。
 - (2) 检查并验证电位器(W)中心头的功能。
 - (3) 查看电解电容器(CD)上的规格和极性标记,并用万用表检查电解电容器的漏电阻(注意万用表笔的极性),测出任意二个电容器的漏电阻值。
 - (4) 调节稳压电源输出+/-12V,用万用表测量并验证。
- 3. 主要仪器设备

求是 MADCL-1 电学实验箱(提供该实验所用电容、电阻等元器件)、优利德 UT890D+万用表(该实验的测量设备)、GWINSTEK GPD4303S 稳压源

- 4. 测试方案(均为硬件测试)
 - A: 万用表测阻值
 - (1) 选取两个不同标称值的电阻(R1:10k/1W; R2:5.1k/1W),记录其色环标注并与标称值比对
 - (2) 将万用表档位调至 $60k\Omega$
 - (3) 将红黑表笔分别插入电阻两端的孔中
 - (4) 待万用表示数稳定后读取数值,重复三次并记录
 - (5) 将万用表档位调至 10kΩ 后重复(3)(4)步骤
 - B: 检查并验证电位器中心头的功能
 - (1) 选取一个电位器(100kΩ),调节旋钮将其阻值调至最大
 - (2) 将万用表档位调至 600kΩ
 - (3) 将万用表红黑表笔接在电位器两侧插孔,读取其最大阻值
 - (4) 将万用表任一表笔接入电位器中间插孔,调节旋钮观察其阻值是否变化
 - C: 用万用表检查电解电容器的漏电阻
 - (1) 选取两个不同标称值的电解电容(C1:47 μ F; C2:100μF)
 - (2) 将万用表档位调至 60MΩ
 - (3) 将万用表红黑表笔接在电容两侧插口,注意电流红进黑出,与电解电容电极对应,此时对电容进行充电
 - (4) 待万用表数值不再增长时读数,为电容漏电阻
 - D: 用万用表测量稳压电源输出
 - (1) 将万用表档位调至 60V 直流
 - (2) 将万用表红黑表笔接在稳压电源 CH1 口,注意红笔接+黑笔接-
 - (3) 设置稳压电源 CH1 口输出为 12V
 - (4) 按下输出按钮, 待万用表数值稳定后读数

5. 测试过程和结果

A: 万用表测阻值

- (1) 测量数据如表 1 所示,用数字型万用表多次测量同一电阻,读数没有变化。
- (2) 在读色环时,一开始不知道从左往右还是从右往左,且色环颜色较难辨认。查表比对后,发现 R1 色环读数与标称值符合,R2 不论从哪个方向读取均不符合。

表 1 电阻测量数据

待测电阻	R1	R2
标称值	$10 \mathrm{k}\Omega/1\mathrm{W}$, $\pm 1\%$	5.1kΩ/1W
万用表档位	$60 \mathrm{k}\Omega$	$6 \mathrm{k}\Omega$
1	$9.92 \mathrm{k}\Omega$	$5.079 \mathrm{k}\Omega$
2	$9.92 \mathrm{k}\Omega$	$5.079 \mathrm{k}\Omega$
3	$9.92 \mathrm{k}\Omega$	$5.079 \mathrm{k}\Omega$
测量值	$9.92 \mathrm{k}\Omega$	$5.079 \mathrm{k}\Omega$
色环	棕黑黑红棕	红黑黑黑绿
色环与标称值是否相符	是	否
测量值与标称值相对偏差	-0.80%	-0.41%

B: 检查并验证电位器中心头的功能

测量数据如表 2 所示,中心头调节功能正常。

表 2 检查并验证电位器中心头功能

电位器规格	两端最大阻值	调节旋钮得到的最大阻值	调节旋钮得到的最小阻值	万用表档位
100kΩ	101.6kΩ	101.7kΩ	0	600kΩ

C: 用万用表检查电解电容器的漏电阻

在给电容器充电时,万用表读数一直缓慢增长,直到不再增长开始下降时,所用时间约为 8~10 分钟。 读出的最大值记作漏电阻。因测量较为不便,未做多组重复实验。

表 3 电解电容器漏电阻数据

电容器	规格	漏电阻	万用表档位
C1	47μF	$32.48 \mathrm{M}\Omega$	60ΜΩ
C2	100μF	$15.06 \mathrm{M}\Omega$	$60 \mathrm{M}\Omega$

D: 用万用表测量稳压电源输出

表 4 稳压电源输出验证

输出参数	测量值	万用表档位
±12V	11.96V	60V (DC)

6. 实验结果分析

A 万用表测阻值:

R1 色环与标称值对应,且标称值与实际测量值相对偏差在误差容许范围(±1%)以内; R2 色环与标称值不对应,测量值与标称值相对偏差在容许范围内。R2 的色环颜色较难辨认,可能存在肉眼辨色出错的情况。

B: 检查并验证电位器中心头的功能:

该电位器中心头功能正常。

C: 用万用表检查电解电容器的漏电阻

该测量方法具有较大的误差。理想情况下直流电路中电容器电阻等效为无穷大,实际情况会发生漏电,一般来说电容量越大漏电阻越小,电解电容漏电更明显。因测量数值较大,且测量时间较长,该漏电阻测量值仅能用作粗略参考。

D: 用万用表测量稳压电源输出 该稳压电源能稳定输出。

二、示波器和信号源联合使用练习I

1. 实验目的

熟悉示波器和信号源的使用、调试

2. 实验内容

- (1) 用机内"探头补偿信号"对示波器进行自检,并记录波形,频率,周期,幅值,上升下降沿时间等
- (2) 波形设置与测量。用示波器分别完成四组给定输出电压及频率下波形的测量。

3. 主要仪器设备

Keysight DSOX1102G 示波器、RIGOL DG1022U 信号源

4. 测试方案

- (1) 将探头连接到标记为探头补偿的端子,并按下示波器前面板上的 [Default Setup] 默认设置。
- (2) 将通道 1 设置为 1.0 V/div, 将通道 1 偏移/位置设置为 0.0 V (默认设置)
- (3) 按触发电平旋钮,以将通道 1上的触发电平设置为约 50%
- (4) 将示波器的时基设置为 200.0 μs/div
- (5) 按 Auto Scale 按钮使示波器自动调节波形,观察是否为平坦响应得到方波。
- (6) 连接信号源和示波器。
- (7) 在信号源上设定输出参数,设定完毕后输出,在示波器上调整波形直至出现完整、稳定的波形。
- (8) 在 Measure 菜单找到需要测量的物理量(峰值、交流有效值、周期、频率),读出测量数据并记录
- (9) 换下一组参数,重复(7)(8)

5. 测试过程和结果

表 5 探头补偿信号自检数据

波形	频率	周期	幅值	上升沿时间	下降沿时间	
方波	1.00021kHz	999.8µs	2.49V	1.9μs	1.9μs	

表 6 示波器和信号源联合使用练习 |

台 县减龄山山 [[] 4	示波器测量值				
信号源输出电压及频率	峰值值(V)	有效值(V)	周期(ms)	频率(Hz)	
25kHz 正弦波 80mV,偏移量 20mV	0.09	28.43	0.04	25.08	
1kHz 方波 5V,偏移 0,占空比 40%	5.90	2.37	1.00	1000.00	
2kHz 锯齿 5V,偏移 1V,对称 性 20%	5.10	1.40	0.50	1.98	
1kHz 脉冲 3V,偏移 1V,占空 比 50%,边沿 50ns	3.90	1.51	1.00	1000.00	

6. 实验结果分析

自检数据及波形与说明书基本一致,可以正常使用;信号源和示波器联合使用时,示波器测量结果中, 周期和频率与输出参数基本一致,但峰值/有效值有一定的偏差,4组数据的峰值与输出值比较,相对 偏差为16%,且测量值均大于输出值。

三、示波器和信号源联合使用练习Ⅱ

1. 实验目的

进一步掌握示波器和信号源的操作,绘制幅频特性曲线。

2. 实验内容

信号发生器输出有效值为 1V, 频率 $10Hz\sim1MHz$ 变化的正弦波。观察 U_R 不同频率输入下输出有效值 的大小(即幅频特性),并描绘曲线 $U_R(f)$ 。

3. 主要仪器设备

Keysight DSOX1102G 示波器、RIGOL DG1022U 信号源

4. 测试方案

- (1) 如图 1 所示连接电路。
- 将接口接在 YA 端 (2)
- 在信号源上设置有效值为 1V, 频率 (按以 (3) 10 为底的指数增长) 依次设为 10Hz、 100Hz、1kHz、10kHz、100kHz、1MHz的 正弦波。
- 示波器上调节波形直至相对稳定后,利用 (4) Measure 功能读出交流有效值并记录。
- (5) 将接口接在 YB 端, 重复(3)(4)
- (6) 整理数据,以对数分配确定频率轴测量点,

绘制幅频特性曲线。

眩 0.01uf 生 Ui 信 10K UR 图 1

5. 测试过程和结果

接入 YB 端时, 我们发现, 频率从 100Hz 到 1kHz 再到 10kHz 这两段间隔中, 测得的有效值有较大的 突跃。为了更精确地描绘幅频特征曲线, 我们在 10Hz 到 100Hz 中间每隔 10Hz 选取一个测量点, 在 100Hz 到 1kHz 中间每隔 100Hz 选取一个测量点(以及一个 150Hz 测量点),在 1kHz 到 10kHz 中间每隔 1kHz 选取一个测量点(以及 1300Hz、1600Hz 两个测量点)。

在 10Hz 到 100Hz 段测量时我们发现,示波器 Auto Scale 按钮进行调节图像有时会出现问题,需要手动调整才能得到相对稳定的图像。且该频段的示波器图像波动程度比高频段更大。同时,该频段在测量时,先将信号源调至 100~200Hz 得到稳定图像后,再将频率缓慢下调至目标测量频率,得到的图像会更稳定。直接从 10Hz 调至 20Hz 有时图像会很不稳定,难以读数。

借助 Excel 2019 软件,我们分别以对数坐标(图表 1)和线性坐标(图表 2)绘制了幅频特性曲线 $U_R(f)$ 。其中,对数坐标选取了所有的测量点,线性坐标下,我们选取了 10Hz 到 10kHz 之间的点,以便图像特征更清晰地展现出来。

	YA				YB		
频率(Hz)	有效值(mV)	频率(Hz)	有效值(mV)	频率(Hz)	有效值(mV)	频率(Hz)	有效值(mV)
10	943.1	10	5.45	400	204.95	5000	874.9
100	947.5	20	11.33	500	252.32	6000	889.9
1000	946	30	16.27	600	297.61	7000	900.1
10000	941.6	40	21.32	700	340.62	8000	906.7
100000	924.6	50	26.25	800	381.08	9000	911.2
1000000	939.3	60	31.66	900	418.98	10000	913.7
		70	36.93	1000	455.25	100000	912.4
		80	42.17	1300	548.72	1000000	928.5
		90	47.39	1600	621		
		100	52.64	2000	695.8		
		150	78.79	2500	757.9		
		200	104.72	3000	799.8		
		300	155.62	4000	848.8		

表 7 不同频率下输出的有效值数据

6. 实验结果分析

- 如图表 1 所示, YB 的幅频特性曲线在对数坐标下呈现 "S"形,拐点出现在 1kHz 左右,当频率 到达 10kHz 时,YB 线已经非常趋近于YA 线(这也是我们在线性坐标选点时考虑的)。
- (2) 如图表 2 所示, YB 的幅频特性曲线 (10~10kHz) 在线性坐标下, 10~1kHz 时近似为一条直线, 是 线性增长,1kHz后,曲线的切线斜率不断减小,有效值增长率不断下降。当频率大于10kHz时与 YA 线基本贴合。
- 网上查阅相关资料(图 21)时发现一电路图与该实验相似,其幅频特性曲线与所测结果基本一致。 (3)

$$\begin{array}{c|c}
C \\
\downarrow \\
\dot{U}_{i} \\
\bar{C}
\end{array}$$

高通滤波电路 (假设电容初始电压为0)

$$A(s) = \frac{U_o(s)}{U_I(s)} = \frac{sRC}{1 + sRC}$$

$$\dot{A}_{u} = \frac{\dot{U}_{o}}{\dot{U}_{i}} = \frac{j\omega RC}{1 + j\omega RC}$$

$$\diamondsuit f_{\mathrm{L}} = \frac{1}{2\pi RC}$$
,则 $\dot{A}_{\mathrm{u}} = \frac{\mathrm{j} f/f_{\mathrm{L}}}{1+\mathrm{j} f/f_{\mathrm{L}}}$

$$A(s) = \frac{U_O(s)}{U_I(s)} = \frac{sRC}{1 + sRC}$$

$$\begin{cases} \left| \dot{A}_u \right| = \frac{f/f_L}{\sqrt{1 + (f/f_L)^2}} \\ \varphi = 90^\circ - \arctan(f/f_L) \end{cases}$$

图 2 相关资料

¹ https://www.bilibili.com/video/BV1KB4y1a7fm/

四、 探究性实验内容

A: 用万用表不同电流档测电流

1. 实验目的

用万用表不同电流档测电路中电流大小,比较其区别

2. 主要仪器设备

求是 MADCL-1 电学实验箱(提供该实验所用电容、电阻等元器件)、优利德 UT890D+万用表(该实验的测量设备)、GWINSTEK GPD4303S 稳压源

3. 测试方案

- (1) 选用标称值为 200Ω 、 300Ω 、 400Ω 的电阻,用万用表测量其实际阻值并记录
- (2) 将电阻标称值为 200Ω 的电阻接入电路中;将恒压源输出设为 12V,接入电路中
- (3) 将万用表档位调至 600µA, 与电阻串联接入电路中
- (4) 按下恒压源开关使其输出
- (5) 待万用表读数稳定后记录数据
- (6) 将万用表档位调至 60µA, 待万用表读数稳定后记录数据
- (7) 分别换用 300Ω、400Ω 的电阻,重复步骤(2)~(5)

4. 测试过程和结果

表 8 万用表不同电流档测得电路中电流数据

电阻标称值(kΩ)	200	200+20+20+10	100+200	200+100+100
实际电阻值(k Ω)	200.4	249.7	300.2	400.2
60μA 档电流值(μA)	56.98	46.11	38.66	29.23
600μA 档电流值(μA)	59.4	47.6	39.7	29.8
差值(μA)	-2.42	-1.49	-1.04	-0.57
60μA 档内阻(kΩ)	10.20	10.55	10.20	10.34
600μA 档内阻(kΩ)	1.62	2.40	2.07	2.48

由于电学实验箱中阻值最大的电阻只有 $200k\Omega$,为了达到 $300k\Omega$ 和 $400k\Omega$,我们将几个电阻进行 串联,并在实验前测量其真实阻值。测量过程中发现电路中阻值越大,电流越小,两档间差距越不明显;而阻值过小,电流过大,则要超出 60μ A 档量程,来到 600μ A 和 6mA 档,这两档下相差也不明显。因此我们补充了一组 $250k\Omega$ 的实验,得到的数据能明显看出区别。

由于是恒压源,我们采用了以下公式对两档内阻进行粗略估算:

设万用表内阻为 R_x ,接入电路的电阻实际阻值为R,路端电压U,测得电流值为I,则

 $R_{x} \approx U/I-R$

5. 实验结果分析

由表 8 易知,在该档位范围内,电路电流越小,两档差值越小,估计出的阻值有所波动。

将四次结果取平均后得到 60μ A 档内阻约为 $10.32k\Omega$, 600μ A 档内阻约为 $2.14k\Omega$ 。受到恒压源内阻的影响,该数据并不那么精确。但档位越大,阻值越小。

B: 示波器采用 X-Y 输出观察李萨如图形

1. 实验目的

进一步掌握示波器和信号源的一些操作,观察李萨如图形随信号参数改变而改变的规律

2. 主要仪器设备

Keysight DSOX1102G 示波器、RIGOL DG1022U 信号源

3. 测试方案

- (1) 连接好信号源和示波器(双通道均连上),打开仪器
- (2) 在示波器面板按 "Acquire" 按钮,在菜单中选择 "X-Y" 输出模式
- (3) 在信号源上分别设置好 CH1、CH2 的参数,输出信号
- (4) 在示波器上调整图像直至稳定,记录对应参数和图像
- (5) 改变参数,重复(3)(4)

4. 测试结果

表 9 不同参数下的李萨如图形

			表 9 小同参数	下的李萨如图形
	频率比	相位差	幅度比	图像
1	1	0	1	C 1.00 1 CC 1.00 1 CC 1.00 1
2	1	π /2	1	© History Co 3978000 C 40000000
3	1	4/3 π	1	cc 3.97600/ 1.001 DC 1.001
4	1	π	1	斜率为-1 的线段
5	0.5	1	1	C -3 57800/ 1,001 C -4,00000/ 1,001
6	2	π /2	1	97600V 1,00.1 DC *** 1,00.1

装

订

线