Parametric Surface & Surface Integral

Monday, 9 June 2025 12:28 pm

Previous parametric form of the curve:

$$ec{r}\left(t
ight)=x\left(t
ight)ec{i}+y\left(t
ight)ec{j}+z\left(t
ight)ec{k}$$

Now, in the case of the surface, it must be two variables

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k}$$

$$x = x(u, v)$$
 $y = y(u, v)$ $z = z(u, v)$

V EXAMPLE 4 Find a parametric representation of the sphere

$$x^2 + y^2 + z^2 = a^2$$

$$x = a \sin \phi \cos \theta$$
 $y = a \sin \phi \sin \theta$ $z = a \cos \phi$

 $\mathbf{r}(\phi, \theta) = a \sin \phi \cos \theta \,\mathbf{i} + a \sin \phi \sin \theta \,\mathbf{j} + a \cos \phi \,\mathbf{k}$

EXAMPLE 5 Find a parametric representation for the cylinder

$$x^2 + y^2 = 4 \qquad 0 \le z \le 1$$

$$x = 2\cos\theta$$
 $y = 2\sin\theta$ $z = z$

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid $z = x^2 + 2y^2$.

$$x = x \qquad y = y \qquad z = x^2 + 2y^2$$

$$\mathbf{r}(x, y) = x \mathbf{i} + y \mathbf{j} + (x^2 + 2y^2) \mathbf{k}$$

Normal vector:

Surface Area

Definition If a smooth parametric surface S is given by the equation

$$\mathbf{r}(u, v) = x(u, v) \mathbf{i} + y(u, v) \mathbf{j} + z(u, v) \mathbf{k} \qquad (u, v) \in D$$

and S is covered just once as (u, v) ranges throughout the parameter domain D, then the **surface area** of S is

$$A(S) = \iint\limits_{D} |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

where
$$\mathbf{r}_{u} = \frac{\partial X}{\partial u}\mathbf{i} + \frac{\partial Y}{\partial u}\mathbf{j} + \frac{\partial Z}{\partial u}\mathbf{k}$$
 $\mathbf{r}_{v} = \frac{\partial X}{\partial v}\mathbf{i} + \frac{\partial Y}{\partial v}\mathbf{j} + \frac{\partial Z}{\partial v}\mathbf{k}$

EXAMPLE 10 Find the surface area of a sphere of radius a.

SOLUTION In Example 4 we found the parametric representation

$$x = a \sin \phi \cos \theta$$
 $y = a \sin \phi \sin \theta$ $z = a \cos \phi$

where the parameter domain is

$$D = \{ (\phi, \theta) \mid 0 \le \phi \le \pi, 0 \le \theta \le 2\pi \}$$

We first compute the cross product of the tangent vectors:

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial x}{\partial \phi} & \frac{\partial y}{\partial \phi} & \frac{\partial z}{\partial \phi} \\ \frac{\partial x}{\partial \theta} & \frac{\partial y}{\partial \theta} & \frac{\partial z}{\partial \theta} \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a\cos\phi\cos\theta & a\cos\phi\sin\theta & -a\sin\phi \\ -a\sin\phi\sin\theta & a\sin\phi\cos\theta & 0 \end{vmatrix}$$

$$= a^2 \sin^2 \phi \cos \theta \, \mathbf{i} + a^2 \sin^2 \phi \sin \theta \, \mathbf{j} + a^2 \sin \phi \cos \phi \, \mathbf{k}$$

Thus

$$|\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| = \sqrt{a^4 \sin^4 \phi} \cos^2 \theta + a^4 \sin^4 \phi \sin^2 \theta + a^4 \sin^2 \phi \cos^2 \phi$$
$$= \sqrt{a^4 \sin^4 \phi + a^4 \sin^2 \phi \cos^2 \phi} = a^2 \sqrt{\sin^2 \phi} = a^2 \sin \phi$$

since $\sin \phi \ge 0$ for $0 \le \phi \le \pi$. Therefore, by Definition 6, the area of the sphere is

$$A = \iint_{D} |\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}| dA = \int_{0}^{2\pi} \int_{0}^{\pi} a^{2} \sin \phi \ d\phi \ d\theta$$
$$= a^{2} \int_{0}^{2\pi} d\theta \int_{0}^{\pi} \sin \phi \ d\phi = a^{2} (2\pi) 2 = 4\pi a^{2}$$

Surface Integrals of Vector Fields

8 Definition If F is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , then the surface integral of F over S is

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \ dS$$

This integral is also called the flux of F across S.

orientation of a parametric surface

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA$$

EXAMPLE 4 Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

SOLUTION As in Example 1, we use the parametric representation

$$\mathbf{r}(\phi, \theta) = \sin \phi \cos \theta \, \mathbf{i} + \sin \phi \, \sin \theta \, \mathbf{j} + \cos \phi \, \mathbf{k} \qquad 0 \le \phi \le \pi \qquad 0 \le \theta \le 2\pi$$

Then
$$\mathbf{F}(\mathbf{r}(\phi, \theta)) = \cos \phi \, \mathbf{i} + \sin \phi \, \sin \theta \, \mathbf{j} + \sin \phi \, \cos \theta \, \mathbf{k}$$

$$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta} = \sin^2\!\phi \, \cos\theta \, \mathbf{i} + \sin^2\!\phi \, \sin\theta \, \mathbf{j} + \sin\phi \, \cos\phi \, \mathbf{k}$$

Therefore

$$\mathbf{F}(\mathbf{r}(\phi, \theta)) \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) = \cos \phi \, \sin^2 \!\! \phi \, \cos \theta + \sin^3 \!\! \phi \, \sin^2 \!\! \theta + \sin^2 \!\! \phi \, \cos \phi \, \cos \theta$$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot (\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}) dA$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} (2 \sin^{2}\phi \cos \phi \cos \theta + \sin^{3}\phi \sin^{2}\theta) d\phi d\theta$$

$$= 2 \int_{0}^{\pi} \sin^{2}\phi \cos \phi d\phi \int_{0}^{2\pi} \cos \theta d\theta + \int_{0}^{\pi} \sin^{3}\phi d\phi \int_{0}^{2\pi} \sin^{2}\theta d\theta$$

$$= 0 + \int_{0}^{\pi} \sin^{3}\phi d\phi \int_{0}^{2\pi} \sin^{2}\theta d\theta \qquad \left(\operatorname{since} \int_{0}^{2\pi} \cos \theta d\theta = 0\right)$$

$$= \frac{4\pi}{3}$$

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

EXAMPLE 5 Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = y\mathbf{i} + x\mathbf{j} + z\mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane z = 0.

$$P(x, y, z) = y$$
 $Q(x, y, z) = x$ $R(x, y, z) = z = 1 - x^2 - y^2$

$$\frac{\partial g}{\partial x} = -2x$$

$$\frac{\partial g}{\partial y} = -2y$$

$$\iint_{S_1} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

$$= \iint_{D} \left[-y(-2x) - x(-2y) + 1 - x^2 - y^2 \right] dA$$

$$= \iint_{D} \left(1 + 4xy - x^2 - y^2 \right) dA$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(1 + 4r^2 \cos \theta \sin \theta - r^2 \right) r \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{1} \left(r - r^3 + 4r^3 \cos \theta \sin \theta \right) \, dr \, d\theta$$

$$= \int_{0}^{2\pi} \left(\frac{1}{4} + \cos \theta \sin \theta \right) \, d\theta = \frac{1}{4} (2\pi) + 0 = \frac{\pi}{2}$$

Oriented Surfaces

To define surface integrals of vector fields, we need to rule out nonorientable surfaces such as the Möbius strip shown in Figure 4. [It is named after the German geometer August Möbius (1790–1868).]

A Möbius strip

Figure 4

Calcworkshop.com

20

Mobius Strip Video

