7.11. PROBLEMS 241

Prove that

$$\det(B) = (-1)^n (n-2)2^{n-1}.$$

Problem 7.8. Given a field K (say $K = \mathbb{R}$ or $K = \mathbb{C}$), given any two polynomials $p(X), q(X) \in K[X]$, we says that q(X) divides p(X) (and that p(X) is a multiple of q(X)) iff there is some polynomial $s(X) \in K[X]$ such that

$$p(X) = q(X)s(X).$$

In this case we say that q(X) is a factor of p(X), and if q(X) has degree at least one, we say that q(X) is a nontrivial factor of p(X).

Let f(X) and g(X) be two polynomials in K[X] with

$$f(X) = a_0 X^m + a_1 X^{m-1} + \dots + a_m$$

of degree $m \ge 1$ and

$$g(X) = b_0 X^n + b_1 X^{n-1} + \dots + b_n$$

of degree $n \ge 1$ (with $a_0, b_0 \ne 0$).

You will need the following result which you need not prove:

Two polynomials f(X) and g(X) with $\deg(f) = m \ge 1$ and $\deg(g) = n \ge 1$ have some common nontrivial factor iff there exist two nonzero polynomials p(X) and q(X) such that

$$fp = gq$$
,

with $deg(p) \le n - 1$ and $deg(q) \le m - 1$.

(1) Let \mathcal{P}_m denote the vector space of all polynomials in K[X] of degree at most m-1, and let $T: \mathcal{P}_n \times \mathcal{P}_m \to \mathcal{P}_{m+n}$ be the map given by

$$T(p,q) = fp + gq, \quad p \in \mathcal{P}_n, \ q \in \mathcal{P}_m,$$

where f and g are some fixed polynomials of degree $m \ge 1$ and $n \ge 1$.

Prove that the map T is linear.

- (2) Prove that T is not injective iff f and g have a common nontrivial factor.
- (3) Prove that f and g have a nontrivial common factor iff R(f,g) = 0, where R(f,g) is the determinant given by