空间问题的解答

弹性力学

0 碎碎念

这章也是方程特别多的一章,感觉应该掌握轴对称的表示和两个解法应该够了

基本方程的柱坐标和球坐标

柱坐标

• 平衡微分方程

$$egin{aligned} rac{\partial \sigma_{
ho}}{\partial
ho} + rac{1}{
ho} rac{\partial au_{arphi
ho}}{\partial arphi} + rac{\partial au_{z
ho}}{\partial z} + rac{\sigma_{
ho} - \sigma_{arphi}}{
ho} + F_{p} &= 0 \left(
ho_{1} rac{\partial^{2} u_{
ho}}{\partial t^{2}}
ight) \ rac{\partial au_{
ho arphi}}{\partial
ho} + rac{1}{
ho} rac{\partial \sigma_{arphi}}{\partial arphi} + rac{\partial au_{zarphi}}{\partial z} + rac{2 au_{
ho arphi}}{
ho} + F_{arphi} &= 0 \left(
ho_{1} rac{\partial^{2} u_{arphi}}{\partial t^{2}}
ight) \ rac{\partial au_{
ho z}}{\partial
ho} + rac{1}{
ho} rac{\partial au_{arphi z}}{\partial arphi} + rac{\partial \sigma_{z}}{\partial arphi} + rac{ au_{
ho z}}{\partial z} + rac{ au_{
ho z}}{
ho} + F_{z} &= 0 \left(
ho_{1} rac{\partial^{2} w}{\partial t^{2}}
ight) \end{aligned}$$

• 几何方程

$$egin{align*} arepsilon_{
ho} &= rac{\partial u_{
ho}}{\partial
ho}, \quad arepsilon_{arphi} &= rac{1}{
ho} rac{\partial u_{arphi}}{\partial arphi} + rac{u_{
ho}}{
ho}, \quad arepsilon_{z} &= rac{\partial w}{\partial z} \ \gamma_{arphi z} &= rac{1}{
ho} rac{\partial w}{\partial arphi} + rac{\partial u_{arphi}}{\partial z} \ \gamma_{
ho z} &= rac{\partial u_{
ho}}{\partial z} + rac{\partial w}{\partial
ho} \ \tau_{
ho arphi} &= rac{\partial u_{arphi}}{\partial
ho} + rac{1}{
ho} rac{\partial u_{
ho}}{\partial arphi} - rac{u_{arphi}}{
ho} \end{aligned}$$

由于材料是各向同性的, 所以应力应变关系保持不变

$$egin{aligned} \sigma_{
ho} &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_{
ho}igg), \ \sigma_{arphi} &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_{arphi}igg), \ \sigma_{z} &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_{z}igg), \ au_{arphi z} &= rac{E}{2(1+
u)}\gamma_{arphi z}, \ au_{
ho z} &= rac{E}{2(1+
u)}\gamma_{
ho z}, \ au_{
ho arphi} &= rac{E}{2(1+
u)}\gamma_{
ho arphi}. \end{aligned}$$

$$\theta = \varepsilon_{\rho} + \varepsilon_{\varphi} + \varepsilon_{z}$$

当方程是轴对称时, 上述方程可以简写成如下形式, 这在后面研究无限大问题时很有帮助

$$\begin{split} &\frac{\partial \sigma_{\rho}}{\partial \rho} + \frac{\partial \tau_{\rho z}}{\partial z} + \frac{\sigma_{\rho} - \sigma_{\varphi}}{\rho} + F_{\rho} = 0 \quad \left(\rho_{1} \frac{\partial^{2} u_{\rho}}{\partial t^{2}} \right), \\ &\frac{\partial \tau_{\rho z}}{\partial \rho} + \frac{\partial \sigma_{z}}{\partial z} + \frac{\tau_{\rho z}}{\rho} + F_{z} = 0 \quad \left(\rho_{1} \frac{\partial^{2} w}{\partial t^{2}} \right), \\ &\varepsilon_{\rho} = \frac{\partial u_{\rho}}{\partial \rho}, \quad \varepsilon_{\varphi} = \frac{u_{\rho}}{\rho}, \quad \varepsilon_{z} = \frac{\partial w}{\partial z}, \\ &\gamma_{\rho z} = \frac{\partial u_{\rho}}{\partial z} + \frac{\partial w}{\partial \rho}, \\ &\sigma_{\rho} = \frac{E}{1 + \nu} \left(\frac{\nu}{1 - 2\nu} \theta + \varepsilon_{\rho} \right), \\ &\sigma_{\varphi} = \frac{E}{1 + \nu} \left(\frac{\nu}{1 - 2\nu} \theta + \varepsilon_{\varphi} \right), \\ &\sigma_{z} = \frac{E}{1 + \nu} \left(\frac{\nu}{1 - 2\nu} \theta + \varepsilon_{z} \right), \\ &\tau_{\rho z} = \frac{E}{2(1 + \nu)} \gamma_{\rho z}. \end{split}$$

球坐标

• 平衡微分方程

$$\begin{split} \frac{\partial \sigma_r}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta r}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \tau_{\varphi r}}{\partial \varphi} + \\ \frac{1}{r} (2\sigma_r - \sigma_{\theta} - \sigma_{\varphi} + \tau_{r\theta} \cot \theta) + F_r &= 0 \left(\rho_1 \frac{\partial^2 u_r}{\partial t^2} \right) \\ \frac{\partial \tau_{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \sigma_{\theta}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \tau_{\varphi \theta}}{\partial \varphi} + \\ \frac{1}{r} [(\sigma_{\theta} - \sigma_{\varphi}) \cot \theta + 3\tau_{r\theta}) + F_{\theta} &= 0 \left(\rho_1 \frac{\partial^2 u_{\theta}}{\partial t^2} \right) \\ \frac{\partial \tau_{r\varphi}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta \varphi}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \sigma_{\varphi}}{\partial \varphi} + \\ \frac{1}{r} (3\tau_{r\varphi} + 2\tau_{\theta \varphi} \cot \theta) + F_{\varphi} &= 0 \left(\rho_1 \frac{\partial^2 u_{\varphi}}{\partial t^2} \right) \end{split}$$

• 几何方程

$$egin{aligned} arepsilon_r &= rac{\partial u_r}{\partial r}, arepsilon_{ heta} &= rac{1}{r} rac{\partial u_{ heta}}{\partial heta} + rac{u_r}{r}, \ arepsilon_{\phi} &= rac{1}{r \sin heta} rac{\partial u_{arphi}}{\partial arphi} + rac{u_{ heta}}{r} \cot heta + rac{u_r}{r} \ \gamma_{ heta arphi} &= rac{1}{r} igg(rac{\partial u_{arphi}}{\partial heta} - u_{arphi} \cot heta igg) + rac{1}{r \sin heta} rac{\partial u_{ heta}}{\partial arphi} \ \gamma_{r arphi} &= rac{1}{r \sin heta} rac{\partial u_r}{\partial arphi} + rac{\partial u_{arphi}}{\partial r} - rac{u_{arphi}}{r} \ \gamma_{ heta \phi} &= rac{\partial u_{ heta}}{\partial r} + rac{1}{r} rac{\partial u_r}{\partial heta} - rac{u_{ heta}}{r} \end{aligned}$$

由于材料是各向同性的, 所以应力应变关系保持不变

$$egin{aligned} \sigma_r &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_rigg), \ \sigma_ heta &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_ hetaigg), \ \sigma_arphi &= rac{E}{1+
u}igg(rac{
u}{1-2
u} heta + arepsilon_arphiigg), \ au_{ hetaarphi} &= rac{E}{2(1+
u)}\gamma_{ hetaarphi}, \ au_{ auarphi} &= rac{E}{2(1+
u)}\gamma_{ auarphi}, \ au_{ au heta} &= rac{E}{2(1+
u)}\gamma_{ au heta}. \ heta &= arepsilon_r + arepsilon_ heta + arepsilon_arphi \end{pmatrix}$$

对于球对称问题,应变分量和应力分量仅是 r 的函数,我们用 ε_t 和 σ_t 表示切向的正应变和正应力

$$egin{align} rac{\partial \sigma_r}{\partial r} + rac{2(\sigma_r - \sigma_l)}{r} + F_r &= 0 \left(
ho rac{\partial^2}{\partial t^2}
ight) \ arepsilon_r &= rac{du_r}{dr}, \ arepsilon_t &= rac{E}{1 +
u} igg(rac{
u}{1 - 2
u} heta + arepsilon_r igg), \ \sigma_t &= rac{E}{1 +
u} igg(rac{
u}{1 - 2
u} heta + arepsilon_t igg), \ heta &= arepsilon_r + 2arepsilon_t. \end{aligned}$$

位移场的势函数

在之前的章节讨论过,在三维问题中,应力解法是非常复杂的,更多的时候采用的是位移解法。我们用一个位移场 U 表示问题中的位移变化。Helmholtz 定理给出,一个任意的位移场 U 总可以分解成两部分:一部分代表没有转动,即无旋的位移场,另一部分代表没有体积变换,分别用 U_1,U_2 表示得

$$U = U_1 + U_2$$

对于 U_1 其表示无旋位移场,旋度为零

$$abla imes U_1 = 0$$

所以存在一个标量势函数,梯度为 U_1

$$U_1 = \nabla \Phi$$

对于 U_2 其表示等容变形,散度为零

$$abla \cdot U_2 = 0$$

对于上式成立的条件为

$$U_2 = \nabla \times \Psi$$

Ψ 为矢量势函数, 引入一个简单的位移约束条件

$$\nabla \cdot \Psi = 0$$

所以位移场表示成如下形式

$$U = \nabla \Phi + \nabla \times \Psi$$

利用之前所研究的关系式,给出体应变 θ 和转动矢量 ω

$$heta =
abla^2 \Phi \ \omega = -
abla^2 \Psi$$

如果我们只考虑无旋的位移场, 则上式可以简化为

$$U =
abla \Phi$$

将势函数带入带入到不计体力的拉梅方程中的

$$(\lambda + G)\nabla\theta + G\nabla^2U = 0$$

利用之前所导出的体应变的表达式,并将位移势函数代入得

$$(\lambda + 2G)\nabla\nabla^2\Phi = 0$$

所以可得标量势 Φ (也称拉梅应变势) 应该满足一个泊松方程

$$abla^2 \Phi = C$$

这表示,弹性体内各处的膨胀或收缩都是均匀或者没有膨胀和收缩如果 C 为零,就退化为 Laplace 方程,也就是说任意调和函数都可以作为拉梅应变势。此时可以得出非常简单的应力 分量表达式

$$egin{align} \sigma_x &= rac{\partial^2 \Phi}{\partial x^2} & \sigma_y &= rac{\partial^2 \Phi}{\partial y^2} & \sigma_z &= rac{\partial^2 \Phi}{\partial z^2} \ au_{yz} &= rac{\partial^2 \Phi}{\partial y \partial z} & au_{zx} &= rac{\partial^2 \Phi}{\partial z \partial x} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} \ \end{pmatrix}$$

对于轴对称问题, 拉梅应变势可改写成

$$\Phi=\Phi(
ho,z)$$

对应的关系式为

$$u_{
ho} = rac{1}{2G}rac{\partial\Phi}{\partial
ho} \quad w = rac{1}{2G}rac{\partial\Phi}{\partial z}$$

对于球对称问题, 拉梅应变势

$$\Phi = \Phi(r)$$

对应的关系式

$$u_r = \frac{1}{2G} \frac{d\Phi}{dr}$$

空心圆球受均布压力

举个igle : 考虑一个内半径 a 外半径 b 的空心厚壁圆球体,其内外部分别受均布压力 q_1 和 q_2 作用。

取拉梅应变势(这其实是由球对称导出的平衡微分方程的解)

$$\Phi = rac{A}{r} + B r^2$$

可求得应力分量

$$egin{aligned} \sigma_r &= rac{2A}{r^3} + 2rac{1+
u}{1-2
u}B \ \sigma_t &= -rac{A}{r^3} + 2rac{1+
u}{1-2
u}B \end{aligned}$$

利用边界条件可得 A, B 的表达式,我们直接给出位移分量和应力分量

$$egin{aligned} u_r &= rac{(1+
u)r}{E} \Bigg[q_1 rac{(b/r)^3 + (1-2
u)/(1+
u)}{(b/a)^3 - 1} - q_2 rac{(1-2
u)/(1+
u) + (a/r)^3}{1 - (a/b)^3} \Bigg] \ \sigma_r &= -q_1 rac{(b/r)^3 - 1}{(b/a)^3 - 1} - q_2 rac{1 - (a/r)^3}{1 - (a/b)^3} \ \sigma_ heta &= \sigma_\phi = q_1 rac{(b/r)^3 + 2}{2[(b/a)^3 - 1]} - q_2 rac{(a/r)^3 + 2}{2[1 - (a/b)^3]} \end{aligned}$$

考虑一种特殊情况 b >> a,则

$$egin{align} \sigma_r &= -q_1 \Big(rac{a}{r}\Big)^3 - q_2 \left[1 - \Big(rac{a}{r}\Big)^3
ight] \ \sigma_ heta &= rac{q_1}{2} \Big(rac{a}{r}\Big)^3 - rac{q_2}{2} \left[\Big(rac{a}{r}\Big)^3 + 2
ight] \ u_r &= rac{(1+
u)r}{E} igg\{rac{q_1}{2} \Big(rac{a}{r}\Big)^3 - q_2 \left[rac{1-2
u}{1+
u} + rac{1}{2} \Big(rac{a}{r}\Big)^3
ight]igg\} \ . \end{align}$$

当r很大时,又可以简化成

$$\sigma_r = \sigma_t = -q_2$$
 $u_r = -rac{1-2
u}{E}q_2 r$

如果内壁压力 $q_1=0$,则圆球内壁处的应力

$$\sigma_t = -rac{3}{2}q_2$$

表明洞壁的应力是无洞孔的1.5倍,应力集中因子为1.5。

齐次拉梅方程的通解

在一般的空间问题中, 位移分量是两个或三个坐标的函数, 直接求解是非常困难的, 所以我们考虑将位移分量用位移函数来表示, 然后求解各种问题的位移函数, 从而位移分量的解答。上

面的工作是为了寻找位移势函数奠定了基础。列出比较重要的方程:

• 位移场的分布:

$$U = \nabla \Phi + \nabla \times \Psi$$

• 拉梅势函数:

$$abla^2 \Phi = C$$

我们知道,当 C=0 时,方程退化为 Laplace 方程, Φ 是一个调和函数,调和函数是数学分析中研究非常详尽的函数,此时对应的应力分量表达式:

$$egin{align} \sigma_x &= rac{\partial^2 \Phi}{\partial x^2} & \sigma_y &= rac{\partial^2 \Phi}{\partial y^2} & \sigma_z &= rac{\partial^2 \Phi}{\partial z^2} \ & au_{yz} &= rac{\partial^2 \Phi}{\partial y \partial z} & au_{zx} &= rac{\partial^2 \Phi}{\partial z \partial x} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} \ & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} \ & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} & au_{xy} &= rac{\partial^2 \Phi}{\partial x} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} & au_{xy} &= rac{\partial^2 \Phi}{\partial x \partial y} & au_{xy} &= rac{\partial^2$$

我们现在来求解上述 Laplace 方程。

将位移场的分解式改写成

$$U = A \nabla \Phi + \nabla imes \Psi$$

考虑之前所引用的简单位移约束条件 $\nabla \cdot \Psi = 0$,所以 Ψ 也可以表达成另一个矢量势 $\Psi = -\nabla \times \varphi$,于是上式可以改写成(运用一些矢量计算)

$$U = A
abla \Phi -
abla
abla \cdot arphi +
abla^2 arphi$$

带入到不计体力的拉梅方程中

$$abla^2 \left(A rac{\lambda + 2G}{G}
abla \Phi -
abla
abla \cdot arphi +
abla^2 arphi
ight) = 0$$

此时我们所需要求的未知函数有两个 Φ,φ 。所以,因为暂时不知道标量势 Φ ,为了简洁表达式所以不妨取 $\Phi=\nabla\cdot\varphi$,同时取 $A=\frac{G}{\lambda+2G}$,我们所需要求得未知函数就简化成一个双调和方程:

$$abla^2
abla^2arphi=0$$

于是位移势函数就能写成如下条件:

$$U = -rac{1}{2(1-
u)}
abla
abla \cdot arphi +
abla^2 arphi$$

上式给出的解称为布西内斯克-伽辽金通解,而矢量势 φ 为伽辽金矢量。

对于空间轴对称问题,我们取伽辽金矢量分别为 $\varphi_1=\varphi_2=0, \varphi_3\neq 0$,所以应变势可以简化为

$$U = -rac{1}{2(1-
u)}
ablarac{\partial arphi_3}{\partial z} + e_3
abla^2arphi_3$$

 φ_3 称为勒夫(Love) 应变函数,实际上,伽辽金通解是勒夫函数的推广。在柱坐标系中为

$$arphi_3=arphi_3(
ho,z)$$

此时相应的分量

$$egin{aligned} u_
ho &= -rac{1}{2(1-
u)}rac{\partial^2arphi_3}{\partial
ho\partial z},\ w &= -rac{1}{2(1-
u)}rac{\partial^2arphi_3}{\partial z^2} +
abla^2arphi_3\ \sigma_
ho &= rac{E}{2(1-
u^2)}rac{\partial}{\partial z}igg(
u
abla^2-rac{\partial^2}{\partial
ho^2}igg)arphi_3,\ \sigma_arphi &= rac{E}{2(1-
u^2)}rac{\partial}{\partial z}igg(
u
abla^2-rac{\partial}{\partial
ho^2}igg)arphi_3,\ \sigma_z &= rac{E}{2(1-
u^2)}rac{\partial}{\partial z}igg[(2-
u)
abla^2-rac{\partial^2}{\partial z^2}igg]arphi_3,\ au_{
ho z} &= rac{E}{2(1-
u^2)}rac{\partial}{\partial
ho}igg[(1-
u)
abla^2-rac{\partial^2}{\partial z^2}igg]arphi_3, \end{aligned}$$

此时 $\nabla = \frac{\partial^2 u}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial u}{\partial \rho} + \frac{\partial u}{\partial z^2}$

还有另一种解法: 现在取

$$abla^2 arphi = \xi$$

带回 $\nabla^2 \nabla^2 \varphi = 0$ 可得 ξ 为调和函数,则可以得到标量势 Φ 和 ξ 的关系

$$abla^2\Phi=
abla\cdot \xi$$

对应解

$$\Phi = \Phi_0 + rac{1}{2}r\cdot \xi$$

 Φ_0 是一个调和函数, r 为位置矢量, 所以拉梅位移势为

$$U=\xi-rac{1}{2(1-
u)}
abla\left(\Phi_0+rac{1}{2}r\cdot \xi
ight)$$

这成为纽勃-巴博考维奇通解。

对于空间轴对称问题

$$\xi_1 = \xi_2 = 0$$
 $\xi_3 = \xi_3(\rho, z)$ $\Phi_0 = \Phi_0(\rho, z)$

$$egin{align} U &= \xi_3 e_3 - rac{1}{2(1-
u)}
abla \left(\Phi_0 + rac{\xi_3 z}{2}
ight) \ u_
ho &= -rac{1}{2(1-
u)} rac{\partial}{\partial
ho} igg(\Phi_0 + rac{\xi_3 z}{2} igg), \ w &= \xi_3 - rac{1}{2(1-
u)} rac{\partial}{\partial z} igg(\Phi_0 + rac{\xi_3 z}{2} igg). \end{split}$$

上述两种解法都是针对同一个问题,根据解的唯一性定理,应该是互通的。

空间问题

无限体内一点受集中力作用

设无限体内一点受集中力 F 作用,这个问题被称为开尔文问题,是一个空间轴对称问题,我们借助勒夫应变函数求解。根据量纲分析,应力分量表达式应为 r, ρ, z 等长度坐标的负二次幂函数,因此, φ_3 是一个一次幂双调和函数(做三次导数)。

取

$$arphi_3 = Br = B(
ho^2 + z^2)^{1/2}$$

带入用勒夫函数表示的分量中,位移分量和应力分量在坐标原点是奇异的,而在无穷远处为零,考虑 $z=\pm a$ 上正应力的合力,有平衡条件得

$$F=\int_0^\infty 2\pi
ho(\sigma_z)_{z=-a}d
ho-\int_0^\infty 2\pi
ho(\sigma_z)_{z=a}d
ho$$

此时对于给定的 z, 有 $\rho d\rho = r dr$ 所以可得

$$B = \frac{(1+\nu)F}{4\pi E}$$

半无限体表面受法向集中力作用

又称 布西内斯克问题

我们采用扭勃-巴博考维奇解来求解。和上题一样,应力分量表达式仍为 r, ρ, z 等长度坐标的负二次幂函数,所以对应位移分量应该是这些长度坐标的负一次幂函数。因此调和函数 ξ_3 应是这些长度坐标的负一次幂函数,而调和函数 Φ_0 则是长度坐标的零次幂函数,取

$$egin{aligned} \xi_3 &= 4(1-
u)rac{K}{r} \ \Phi_0 &= 2(1-
u)C\ln(r+z) \ r^2 &=
ho^2 + z^2 \end{aligned}$$

考虑边界条件

$$(\sigma_z)_{z=0,
ho
eq0}=0 \ (au_{z
ho})_{z=0,
ho
eq0}=0$$

上述边界条件可以给出

$$C = K(1 - 2\nu)$$

同时,还有这样一组应力边界条件:在力的作用点附近的一小部分边界上,有一组面力作用,他的分布不明确,但已知它等效于集中力F。在半空间体的任何一个水平截面上的应力,必须和这一组面力合成平衡力系,因此也就必须和力F合成平衡力系,也就是

$$F=-\int_{0}^{\infty}2\pi
ho\sigma_{z}d
ho$$

(实际上是因为力的作用点会导致奇异边界条件,因此我们用圣维南原理放松边界条件)

所以可以解得

$$K=rac{(1+
u)F}{2\pi E}$$
 $C=K(1-2
u)=rac{(1+
u)(1-2
u)F}{2\pi E}$

所以对于上述问题可以给出布西内斯克解答:

$$egin{aligned} u_{
ho} &= rac{(1+
u)F}{2E\pi r}igg[rac{
ho z}{r^2} - rac{(1-2
u)
ho}{r+z}igg], \ w &= rac{(1+
u)F}{2E\pi r}igg[rac{z^2}{r^2} + 2(1-
u)igg]. \ \sigma_{
ho} &= rac{F}{2\pi r^2}igg[-rac{3
ho^2 z}{r^3} + rac{(1-2
u)r}{r+z}igg], \ \sigma_{arphi} &= rac{(1-2
u)F}{2\pi r^2}igg(rac{z}{r} - rac{r}{r+z}igg), \ \sigma_{z} &= -rac{3Fz^3}{2\pi r^5}, \ au_{
ho z} &= au_{z
ho} &= -rac{3F
ho z^2}{2\pi r^5}. \end{aligned}$$

列出半无限体表面任一点的法向位移, 即沉陷为

$$(w)_{z=0}=rac{(1-
u^2)F}{\pi E
ho}$$

半无限体表面受切向集中力作用

这个问题称为塞路蒂问题

我们适当选取拉梅应变势和伽辽金矢量

$$U = rac{1}{2G}
abla\Phi - rac{1}{2(1-
u)}
abla
abla\cdotarphi +
abla^2arphi$$

同样根据量纲分析, Φ 是零次幂的调和函数, φ 是一次幂的双调和函数,取

$$arphi_1 = Ar_1, arphi = 0, arphi_3 = Bx \ln(r+z) \ \Phi = rac{Cx}{r+z}$$

根据边界条件

$$(\sigma_z)_{z=0}=0$$
 $(au_{zx})_{z=0}=0$ $(au_{zy})_{z=0}=0$ $_{
ho
eq0}$

平衡条件

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}(au_{zx})dxdy=0$$

解得

$$A = rac{(1+
u)F}{2\pi E}, \ B = rac{(1+
u)(1-2
u)F}{2\pi E}, \ C = rac{(1-2
u)F}{2\pi}.$$

半无限体表面圆形区域内受均匀分布压力作用

我们采用叠加法求得有法向分布力引起的位移和应力

我们先求半空间体边界上距离圆心为r的一点M的沉陷。在荷载范围内取微分面积 $dA=sd\psi ds$,得M点沉陷为

$$rac{(1-\mu^2)qdA}{\pi Es} = rac{(1-\mu^2)qsd\psi ds}{\pi Es} = rac{(1-\mu^2)q}{\pi E}d\psi ds$$

所以 M 点总沉陷为

$$w=rac{(1-
u^2)q}{\pi E}\iint ds d\psi$$

对 s 积分,弦 mn 的长度为 $2\sqrt{a^2-\rho^2\sin^2\psi}$ 考虑对称性的

$$w = rac{4(1-
u^2)q}{\pi E} \int_0^{\psi_1} \sqrt{a^2 -
ho^2 \sin^2 \psi} d\psi$$

引入变量 φ 满足

$$a\sin\varphi = \rho\sin\psi$$

带入积分的

$$w=rac{4(1-
u^2)q
ho}{\pi E}\left[\int_0^{rac{\pi}{2}}\sqrt{1-rac{a^2}{
ho^2} ext{sin}^2\,arphi}\,darphi-\left(1-rac{a^2}{
ho^2}
ight)\int_0^{rac{\pi}{2}}rac{darphi}{\sqrt{1-rac{a^2}{
ho^2} ext{sin}^2\,arphi}}
ight]$$

好 复杂

方程右边的积分为椭圆积分,可通过查表确定结果。当 M 位于载荷圆边界时,r=a 上式简化为

$$w=rac{4(1-\mu^2)qa}{\pi E}\int_0^{rac{\pi}{2}}\cos heta d heta=rac{4(1-\mu^2)qa}{\pi E}$$

若 M 点在荷载面积内, 做法和上述相同

总沉陷:

$$w=rac{(1-
u^2)q}{\pi E}\iint d\psi ds$$

弦长度为 $2a\cos\varphi$, ψ 从 0 变化到 $\pi/2$

$$w=rac{4(1-
u^2)q}{\pi E}\int_0^{rac{\pi}{2}}a\cosarphi d\psi$$

利用关系 $a\sin\varphi = \rho\sin\psi$

$$w = rac{4(1-
u^2)qa}{E} \int_0^{rac{\pi}{2}} \sqrt{1-rac{
ho^2}{a^2} {
m sin}^2 \, \psi} d\psi$$

若去 $\rho=0$ 则可以得到沉陷的结果,他是最大的沉陷,切实载荷圆边界沉陷的 $\frac{\pi}{2}$ 被,最大沉陷不仅和荷载集度 q 成正比,而且与荷载圆的半径成正比。

我们采用叠加法求得应力。对于应力分量 σ_z ,可以将荷载面积分为微分圆环,圆环上荷载为 $2\pi rdrq$,所以

$$\sigma_z = -rac{3z^3}{2\pi} \int_0^a rac{2\pi r dr q}{(r^2+z^2)^{rac{3}{2}}} = -q \left[1-rac{z^3}{(z^2+a^2)^{rac{3}{2}}}
ight]$$

为了求得 σ_{ρ} 和 σ_{θ} ,将荷载微分成图中形式,微分面 1 和 2 给出荷载 $q\rho d\varphi d\rho$,布西内斯克解为

$$(d\sigma_
ho)_{1,2}=2rac{q
ho darphi d
ho}{2\pi r^2}iggl[-rac{3
ho^2z}{r^3}+rac{(1-2
u)r}{r+z}iggr], \ (d\sigma_arphi)_{1,2}=2rac{(1-2
u)q
ho darphi d
ho}{2\pi r^2}iggl(rac{z}{r}-rac{r}{r+z}iggr),$$

同样的,在微分面 3,4 给出荷载 $q\rho d\varphi d\rho$, 布西内斯克解为

$$(d\sigma_
ho)_{1,2}=2rac{(1-2
u)q
ho darphi d
ho}{2\pi r^2}igg(rac{z}{r}-rac{r}{r+z}igg), \ (d\sigma_arphi)_{1,2}=2rac{q
ho darphi d
ho}{2\pi r^2}igg[-rac{3
ho^2z}{r^3}+rac{(1-2
u)r}{r+z}igg],$$

叠加得

$$d\sigma_
ho = d\sigma_arphi = rac{q
ho darphi d
ho}{\pi} \left[rac{(1-2
u)z}{r^3} - rac{3
ho^2z}{r^5}
ight]$$

对 ρ 从 0 到 a 、 对 φ 从 0 到 $\frac{\pi}{2}$ 积分可得结果

$$\sigma_{
ho} = \sigma_{arphi} = -rac{q}{2} \Bigg[(1+2
u) + rac{z^3}{(a^2+z^2)^{rac{3}{2}}} - rac{2(1+
u)z}{(a^2+z^2)^{rac{1}{2}}} \Bigg]$$

两球体之间的接触压力

假定两个弹性体都是圆球体,其半径分别为 R_1 和 R_2 ,当没有压力作用时,两球体仅在一点 O 接触。设两球体表面上距公共法线为 r 的 M_1 以及 M_2 两点,他们距公共切面的距离分别为 z_1 和 z_2 ,几何关系给出

$$(R_1-z_1)^2+r^2=R_1^2 \ (R_2-z_2)^2+r^2=R_2^2$$

对应解答

$$z_1 = rac{r^2}{2R_1 - z_1} \quad z_2 = rac{r^2}{2R_2 - z_2}$$

如果这两点离接触点很近,则可以近似认为

$$z_1 = rac{r^2}{2R_1} \quad z_2 = rac{r^2}{2R_2}$$

所以 M_1, M_2 的距离为

$$z_1+z_2=rac{R_1+R_2}{2R_1R_2}r^2$$

当两球体以某一力 P 相压时,在接触点附近将发生局部形变而出现一个边界为圆形的接触面。接触面的边界半径总是远小于 R_1 和 R_2 ,记 M_1 沿 z_1 方向的位移为 w_1 , M_2 沿 z_2 方向

的位移为 w_2 , 并命 z_1 轴上及 z_2 上距O较远处的两点相互趋近的距离为 α 。假定发生局部变形后, M_1 M_2 重合,则几何关系给出

$$\alpha-(w_1+w_2)=z_1+z_2$$

也就是

$$w_1+w_2=lpha-(z_1+z_2) riangleqlpha-eta r^2 \quad eta=rac{R_1+R_2}{2R_1R_2}$$

我们用上一个问题中的载荷圆表示接触面(但此时并不是均布载荷),则 M_1 的位移

$$w_1=rac{1-
u^2}{\pi E_1}\iint q ds d\psi$$

所以

$$w_1+w_2=k_1+k_2\iint q ds d\psi \quad k_1=rac{1-
u_1^2}{\pi E_1}, k_2=rac{1-
u_2^2}{\pi E_2}$$

带回到原来的实际就是

$$(k_1+k_2)\iint q ds d\psi = lpha - eta r^2$$

现在就是要找满足上式的压力 q 的分布规律

我们在接触面的边界上做一个半圆球面,则它在各点高度代表压力 q 在各该点处的大小,则可以满足上式。假定 q_0 为半圆球面在 O 处的高度,则表示压力大小的比例尺因子为 $\frac{q_0}{a}$ (a 为圆球的半径)

半圆球

(将就着看吧)

那么沿着弦的积分就可以写作如下形式(那个推导过程我没看懂):

$$\int q\,\mathrm{d}s = rac{q_0}{a}A$$

 $A = \frac{\pi}{2}(a^2 - r^2\sin^2\psi)$ 即半圆的面积,因此简化了原有的积分计算:

$$(k_1+k_2)2\int_0^{\pi/2}rac{q_0}{a}rac{\pi}{2}(a^2-r^2\sin^2\psi)\,\mathrm{d}\psi=(k_1+k_2)rac{\pi^2q_0}{4a}(2a^2-r^2)=lpha-eta r^2$$

所以两边常数值相同可得

$$(k_1+k_2)rac{\pi^2 a q_0}{2} = lpha \quad (k_1+k_2)rac{\pi q_0}{4a} = eta$$

为了得到最大压力 q_0 取半圆球体积等于总的压力 P, 即

$$rac{q_0}{a}rac{2}{3}\pi a^3=P$$

得到

$$q_0=rac{3P}{2\pi a^2}$$

可以解得

$$egin{align} a &= \left[rac{3\pi P(k_1+k_2)R_1R_2}{4(R_1+R_2)}
ight]^{rac{1}{3}} \ &lpha &= \left[rac{9\pi^2 P^2(k_1+k_2)^2(R_1+R_2)}{16R_1R_2}
ight]^{rac{1}{3}} \ &q_0 &= rac{3P}{2\pi} igg[rac{4(R_1+R_2)}{3\pi P(k_1+k_2)R_1R_2}igg]^{rac{2}{3}} \ \end{aligned}$$

当 $E=E_1=E_2,
u_1=
u_2=0.3$ 可以得到工程实践中广泛采用的公式:

$$a=1.11igg[rac{PR_1R_2}{E(R_1+R_2)}igg]^{rac{1}{3}}$$
 $lpha=1.23igg[rac{P^2(R_1+R_2)}{E^2R_1R_2}igg]^{rac{1}{3}}$ $q_0=0.388igg[rac{PE^2(R_1+R_2)^2}{R_1R_2}igg]^{rac{1}{3}}$

两弹性体的接触

对于两个任意弹性体的基础,将坐标原点放在变形前的接触点 O ,以公共切面为 Oxy 平面。 所以弹性体在其接触点附近的曲面可表示为

$$egin{aligned} z_1 &= f_1(x,y) \ z_2 &= f_2(x,y) \end{aligned}$$

由二元函数的泰勒展开得

$$z_1 = A_1 x^2 + A_2 xy + A_3 y^2$$

 $z_2 = B_1 x^2 + B_2 xy + B_3 y^2$

按照微分几何学,总可以选择 x 和 y 轴的方向,使得 xy 项为零,于是上式就可以简化为

$$z_1 + z_2 = Ax^2 + By^2$$

A, B 具有相同的符号,他们的数值取决于二曲面的主曲率及主曲率平面所成的角度。记 下面 弹性体在接触点 O 的两个主曲率半径(两个坐标轴)分别为 R_1 和 R'_1 ,上面弹性体在接触点 O 的两个主曲率半径为 R_2 和 R'_2

则 A, B 满足方程:

$$A + B = \frac{1}{2} \left(\frac{1}{R_1} + \frac{1}{R'_1} + \frac{1}{R_2} + \frac{1}{R'_2} \right)$$

$$B - A = \frac{1}{2} \left[\left(\frac{1}{R_1} - \frac{1}{R'_1} \right)^2 + \left(\frac{1}{R_2} - \frac{1}{R'_2} \right)^2 + 2 \left(\frac{1}{R_1} - \frac{1}{R'_1} \right) \left(\frac{1}{R_2} - \frac{1}{R'_2} \right) \cos 2\psi \right]^{\frac{1}{2}}$$

上述说明两弹性体的接触面将具有椭球边界。

引用之前的关系式

$$w_1+w_2=lpha-(z_1+z_2)=lpha-Ax^2-By^2$$

引用沉陷公式得

$$(k_1+k_2)\iintrac{qdS}{r}=lpha-Ax^2-By^2$$

 k_1, k_2 和之前的表示式相同。

同样的,我们用半椭球面的高度表示压力 q 在该点的大小,取总体积等于总的压力 P,最大压力 q_0 发生在接触面的中心 Q

$$q_0=rac{3P}{2\pi ab}$$

可以解出

$$a = migg[rac{3\pi P(k_1 + k_2)}{4(A+B)}igg]^{rac{1}{3}} \quad b = nigg[rac{3\pi P(k_1 + k_2)}{4(A+B)}igg]^{rac{1}{3}}$$

取 $\cos \theta = \frac{A-B}{A+B}$, 可得 θ, m, n 关系:

θ/(°)	m	n	θ/(°)	m	n
18	4.156	0.394	55	1.611	0.678
20	3.850	0.410	60	1.486	0.717
25	3.152	0.456	65	1.378	0.759
30	2.731	0.493	70	1.284	0.802
35	2.937	0.530	75	1.202	0.846
40	2.136	0.567	-80	1.128	0.893
45	1.926	0.604	85	1.061	0.944
50	1.754	0.641	90	1.000	1.000