MATH6302 - Modern Algebra Homework 8

Joel Sleeba

December 6, 2024

- 1. Let x be a nilpotent element of the commutative ring R.
 - (a) Prove that x is either zero or a zero-divisor.
 - (b) Prove that rx is nilpotent for all $r \in R$.
 - (c) Prove that 1 + x is a unit of R.
 - (d) Deduce that the sum of a unit and a nilpotent element is a unit in R.

Solution:

- (a) Let $x \in R$, be nilpotent, $(x^n = 0)$ and R be commutative. If $x \neq 0$, then x^{n-1} is not zero (assuming n to be the smallest $n \in \mathbb{N}$ such that $x^n = 0$) but $x^{n-1}x = x^n = 0$, which shows that x is a zero divisor.
- (b) By the commutativity of R, we get

$$(rx)^n = r^n x^n = r^n 0 = 0$$

which shows that rx is nilpotent.

(c) We claim that $(1+x)^{-1} = 1 - x + x^2 - x^3 \dots x^{n-1}$. To see this, notice that

$$(1+x)(1-x+x^2-x^3\dots x^{n-1})=(1-x+x^2-x^3\dots x^{n-1})+x(1-x+x^2-x^3\dots x^{n-1})=1$$

- (d) Let $a \in R$ be a unit and $x \in R$ be nilpotent with $x^n = 0$. Then $a^{-1}x$ is again nilpotent. Then, by the previous part, we see that $(1 + a^{-1}x)$ is a unit. Thus $a(1 + a^{-1}x) = a + x$ is a unit.
- 2. A ring R is called a Boolean ring if $a^2 = a$ for all $a \in R$. Prove that every Boolean ring is commutative.

Solution: Let $a \in R$. then $a + a = (a + a)^2 = a^2 + a^2 + a^2 + a^2 = a + a + a + a$ forces a + a = 0 i.e a = -a for all $a \in R$. Therefore showing ab = ba is equivalent to showing ab + ba = 0 for any $a, b \in R$.

$$a + b = (a + b)^2 = a^2 + ab + ba + b^2$$

= $a + b + ab + ba$

gives ab + ba = 0 and hence we're done.

3. Let X be any non-empty set and let $\mathcal{P}(X)$ be the power set of X. Define addition and multiplication in $\mathcal{P}(X)$ as

$$A + B = A\Delta B$$
, $A \cdot B = A \cap B$

- (a) Show that $\mathcal{P}(X)$ is a ring under these operations.
- (b) Prove that $\mathcal{P}(X)$ is a unital commutative Boolean ring.

Solution:

(a) We have already verified in the first assignment that (\mathcal{P}, Δ) is an Abelian group. Notice that since $A \cap B \subset X$ for each $A, B \in \mathcal{P}(X)$, \cap is a binary operation. Associativity of \cap follows since $(A \cap B) \cap C = A \cap B \cap C = A \cap (B \cap C)$. Moreover $A \cap B = B \cap A$. Hence we just need to verify that \cap distributes over Δ .

$$(A\Delta B) \cap C = ((A \setminus B) \cup (B \setminus A)) \cap C$$

$$= ((A \setminus B) \cap C) \cup ((B \setminus A) \cap C)$$

$$= ((A \cap C) \setminus (B \cap C)) \cup ((B \cap C) (A \cap C))$$

$$= (A \cap C)\Delta(B \cap C)$$

Hence $(\mathcal{P}, \Delta, \cap)$ is a commutative ring.

- (b) Since we've already shows that \cap is commutative, we'll just verify the rest. Notice that for any $A \in \mathcal{P}(X)$, we have $A \cap X = A = X \cap A$, hence X acts as the multiplicative identity making the ring unital. Moreover $A \cap A = A$ shows that it is a Boolean ring.
- 4. Decide which of the following are ideals of the ring $\mathbb{Z}[x]$
 - (a) Set of all polynomials whose constant term is a multiple of 3.
 - (b) Set of all polynomials whose coefficient of x^2 is a multiple of 3.

- (c) Set of all polynomials whose constant term, coefficient of x, and coefficient of x^2 are 0.
- (d) $\mathbb{Z}[x^2]$.
- (e) Set of polynomials whose coefficients sum to zero.
- (f) Set of polynomials p(x) such that p'(0) = 0.

Solution:

- (a) The zero polynomial **0**, which is the additive identity will not be in the collection. Therefore it won't be a subring, hence not an ideal.
- (b) Consider $3x^2 + 1$ in the collection and $x^2 \in \mathbb{Z}[x]$. Then $x^2(3x^2 + 1) = 3x^4 + x^2$ is not in the collection. Hence it is not an ideal.
- (c) Since any sum and product of such polynomials will have their constant term, and coefficients of x, x^2 be 0, the collection is a subring. Moreover if $p(x) \neq \mathbf{0}$ is in the collection, then $p(x) = x^3 q(x)$ for $q(x) \in \mathbb{Z}[x]$. Then for any $r(x) \in \mathbb{Z}[x]$, $(rp)(x) = x^3 q(x) r(x)$, is again in the collection. Hence the collection is an ideal.
- (d) Let $x^2 \in \mathbb{Z}[x^2]$. Then for $x \in \mathbb{Z}[x]$, $x \cdot x^2 = x^3 \notin \mathbb{Z}[x^2]$, shows that $\mathbb{Z}[x^2]$ is not an ideal.
- (e) It is easy to verify that the collection given is a subroup of $\mathbb{Z}[x]$. The closure of the product on the collection will be evident once we verify the ideal condition.

Let $p(x) = \sum_{i=0}^{n} a_i x^i$, be a polynomial with $\sum_{i=0}^{n} a_i = 0$ and $q(x) = \sum_{j=0}^{m} b_j x^j$ be another polynomial in $\mathbb{Z}[x]$. Then

$$(qp)(x) = \sum_{j=0}^{m} \sum_{i=0}^{n} b_j a_i x^{i+j}$$

Then the sum of their co-efficients,

$$\sum_{j=0}^{m} \sum_{i=0}^{n} b_j a_i = \sum_{j=0}^{m} b_j \left(\sum_{i=0}^{n} a_n \right) = 0$$

shows that the collection is an ideal and hence proves the closure under multiplication too.

(f) Let $p(x) = x^2 + 1$ and q(x) = x. Then $p'(0) = 2 \times 0 = 0$. But $(pq)(x) = x^3 + x$ and $(pq)'(x) = 3x^2 + 1$ gives (pq)'(0) = 1. Hence the collection is not an ideal.

5. Prove that the ring $M_2(\mathbb{R})$ contains a subring isomorphism to \mathbb{C} .

Solution: Consider the map $\phi: \mathbb{C} \to M_2(\mathbb{R})$ defined as

$$\phi(a+ib) = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$$

The fact that ϕ preserves addition follows easily from the matrix addition in $M_2(\mathbb{R})$. Hence we'll only verify the multiplicativity of the map.

$$\phi((a+ib)(p+iq)) = \phi((ap-bq) + i(aq+bp))$$

$$= \begin{pmatrix} ap-bq & aq+bp \\ -aq-bp & ap-bq \end{pmatrix}$$

$$= \begin{pmatrix} a & b \\ -b & a \end{pmatrix} \begin{pmatrix} p & q \\ -q & p \end{pmatrix}$$

$$= \phi(a+ib)\phi(p+iq)$$

shows that ϕ is a ring homomorphism. Moreover we see that $\phi(a+ib) = \mathbf{0}$ if and only if a = b = 0. Hence ϕ is an injective ring homomorphism, which proves our assertion.

- 6. (a) Prove that the map $\phi : \mathbb{Z} \to R$ defined as $n \to n1_R$ is a ring homomorphism with kernel $n\mathbb{Z}$, where n is the characteristic of R.
 - (b) Determine the characteristic of $\mathbb{Q}, \mathbb{Z}[x], \mathbb{Z}/n\mathbb{Z}$.
 - (c) Prove that if p is a prime and if R is a commutative ring of characteristic p, then $(a+b)^p = a^p + b^p$ for all $a, b \in R$.

Solution:

(a) Let $\phi: \mathbb{Z} \to R$ be the map given. Then

$$\phi(m+n) = (m+n)\mathbf{1} = m\mathbf{1} + n\mathbf{1} = \phi(m) + \phi(n)$$

and

$$\phi(mn) = mn\mathbf{1} = (mn)(\mathbf{1} \cdot \mathbf{1}) = (m\mathbf{1}) \cdot (n\mathbf{1}) = \phi(m) \cdot \phi(n)$$

shows that ϕ is a ring homomorphism.

We'll show that $\operatorname{Ker}(\phi) = n\mathbb{Z}$, where n is the characteristic of R. Let $nk \in n\mathbb{Z}$, then

$$\phi(nk) = (nk)\mathbf{1} = (kn)\mathbf{1} = k(n\mathbf{1}) = k\mathbf{0} = 0$$

Conversely if $k \in \text{Ker}(\phi)$, then

$$\phi(k) = k\mathbf{1} = 0$$

which forces k to be a multiple of n. Thus we get $Ker(\phi) = n\mathbb{Z}$.

- (b) \mathbb{Q} has characteristic 0, since $1+1+\ldots 1\neq 0$. For the same reason $\mathbb{Z}[x]$ also has characteristic 0. But $\underbrace{1+1+\ldots 1}_{n \text{ times}}=0$ in $\mathbb{Z}/n\mathbb{Z}[x]$. Hence $\mathbb{Z}/n\mathbb{Z}[x]$ has characteristic n.
- (c) Let R be a ring of characteristic p, then for any $a \in R$, $pa = \underbrace{a + a + \dots a}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}} = \underbrace{a \underbrace{1 + 1 + \dots 1}_{p \text{ times}}}_{p \text{ times}}_{p \text{ times}}$

$$(a+b)^p = \sum_{r=0}^p \frac{p!}{(p-r)!r!} a^{p-r} b^r = a^p + \sum_{r=1}^{p-1} \frac{p!}{(p-r)!r!} a^{p-r} b^r + b^p$$

Since p is a prime, $\frac{p!}{(p-r)!r!}$ is a multiple of p whenever $1 \le r \le p-1$. This is because all the numbers being multiplied together in the denominator is less than p and cannot factor out p. Hence we get that $(a+b)^p = a^p + b^p$.

7. Prove that an integral domain has characteristic p, where p is either a prime or 0.

Solution: Assume that R is an integral domain with characteristic $p \neq 0$. Then $p\mathbf{1} = 0$ for the multiplicative identity $\mathbf{1} \in R$. If p was not a prime, then p = nk for 1 < n, k < p. Then we'd get

$$p\mathbf{1} = (n\mathbf{1})(k\mathbf{1}) = 0$$

Since R is an integral domain this would force $n\mathbf{1} = 0$ or $k\mathbf{1} = 0$, which contradicts our assumption on the characteristic of R since n, k < p. Hence we see that p must be a prime.

8. Let R be a commutative ring. Prove that the set of all nilpotent elements form an ideal, called the nilradical.

Solution: Let I be the collection of all nilpotent elements of a commutative ring R. Let $a, b \in I$ with $a^n = b^m = 0$. Then

$$(a+b)^{m+n} = \sum_{i=0}^{m+n} {m+n-i \choose i} a^{m+n-i} b^i = \sum_{i=0}^{m+n} 0 = 0$$

shows that $a + b \in I$. If $r \in R$, then

$$(ar)^n = a^n r^n = 0$$

shows that $ar \in I$ for all $r \in R$, hence proving that I is an ideal.

- 9. Let I, J be ideals of R.
 - (a) Prove that I + J is the smallest ideal containing both I and J.
 - (b) Prove that IJ is an ideal contained in $I \cap J$.
 - (c) Give an example where $IJ \neq I \cap J$.
 - (d) Prove that if R is commutative and I + J = R, then $IJ = I \cap J$.

Solution:

(a) Since I, J are subrings of R, being the ideals of R, we see that $I, J \subset I + J$ $(I = I + e_J \text{ and } J = e_I + J)$. If $i + j, p + q \in I + J$, then $(i + j) + (p + q) = (i + p) + (j + q) \in I + J$. Moreover if $r \in R$ and $i + j \in I + J$, then

$$r(i+j) = ri + rj \in I + J$$

and

$$(i+j)r = ir + jr \in I + J$$

shows that I+J is an ideal which contains I,J. Now if K is any other ideal that contain I,J, then being a subring, $K\ni i+j$ for all $i\in I,j\in J$. Hence $K\supset I+J$, which shows that I+J is the smallest ideal that contain I,J.

(b) Let $\sum_{i=1}^n a_i b_i$, $\sum_{j=1}^m p_j q_j \in IJ$, where $a_i, p_j \in I$ and $b_i, q_j \in J$. Then

$$\sum_{i=1}^{n} a_i b_i + \sum_{j=1}^{m} p_j q_j \in IJ$$

by the definition of IJ. Moreover if $r \in R$, then

$$r\sum_{i=1}^{n} a_i b_i = \sum_{i=1}^{n} (ra_i)b_i \in IJ$$

and

$$\left(\sum_{i=1}^{n} a_i b_i\right) r = \sum_{i=1}^{n} a_i (b_i r) \in IJ$$

since I, J are ideals in R. Hence we see that IJ is an ideal of R.

Also for any $a_i \in I$, $b_i \in J$, $a_ib_i \in I \cap J$ since I, J are ideals. Thus we see that $IJ \subset I \cap J$.

(c) Let $I, J = (2) \subset \mathbb{Z}$. Then $I \cap J = (2)$. We claim that IJ = (4). Since $4 = 2 \times 2$, we see that $4 \in IJ$. Thus $(4) \subset IJ$.

Conversely if $ij \in IJ$, then i = 2k, j = 2m for $m, k \in \mathbb{Z}$. Thus $ij = 4mk \in (4)$. Thus all finite sums of elements ij where $i \in I, j \in J$ are also in (4). Thus we see that $IJ = (4) \neq (2) = I \cap J$.

- (d) Let R be unital, and commutative with I+J=R, and let $r\in I\cap J$. Since I+J=R and $1\in R$, we see that 1=i+j for some $i\in I, j\in J$. Thus $r=r1=ri+rj\in IJ$. Thus $I\cap J\subset IJ$.
- 10. Assume that R is commutative. Prove that if P is a prime ideal of R and P contains no zero divisors, then R is an integral domain.

Solution: Let $a, b \in \mathbb{R}$ such that $ab = 0 \in P$. Without loss of generality assume $a \in P$. Since we know that P contains no zero divisors, this forces a = 0. Hence we see that R is an integral domain.

11. Assume R is commutative. Let I, J are ideals of R and assume that P is a prime ideal of R that contains $I \cap J$. Prove that either I or J is contained in P.

Solution: Let $IJ \subset P$ and $I \not\subset P$. Then $\exists i_p \in I \setminus P$. Now for any $j \in J$,

$$i_n j \in IJ \subset P$$

forces $j \in P$, by the primality of P. Hence $J \subset P$.

12. Let I be the ideal (2, x) of $\mathbb{Z}[x]$. Prove that I^2 contains elements which are not of the form ab for any $a, b \in I$.

Solution: Let $x \in I, y \in J$. Then $x = \sum_{i=1}^{n} r_i a_i, y = \sum_{j=1}^{m} s_i b_i$ for $r_i, s_j \in R$. This shows that

$$xy = \sum_{i=1}^{n} \sum_{j=1}^{m} (r_i a_i)(s_i b_j) = \sum_{i=1}^{n} \sum_{j=1}^{m} (r_i a_i s_i) b_j = \sum_{i=1}^{n} \sum_{j=1}^{m} k_i a_i b_j$$

for $k_i \in R$, since I is an ideal of R. Since we have shown that for any $x \in I$, $y \in J$, xy is a R-combination of elements a_ib_j , we see that any element of IJ must also be such. Thus we are done.

13. Prove that if R is an integral domain, then (x) is a prime ideal in R[x]. Prove that (x) is a maximal ideal if and only if R is a field.

Solution: Let I = (x), be the principal ideal generated by $x \in R[[x]]$. Let $p = \sum_{i=0}^{n} a_i x^i, q = \sum_{j=0}^{m} b_j x^j \in R[[x]]$. Then

$$pq = \sum_{i=0}^{n} \sum_{j=0}^{m} a_i b_j x^{i+j} = \sum_{k=0}^{m+n} c_k x^k$$

where

$$c_k = \sum_{i=0}^k a_i b_{k-i}$$

We notice that $pq \in I$ if and only if $c_0 = a_0b_0 = 0$. Since R is an integral domain, this forces either a_0 or b_0 to be zero. Without loss of generality, assume $a_0 = 0$. Then

$$p = \sum_{i=1}^{n} a_i x^i = x \left(\sum_{i=0}^{n-1} a_i x^i \right) \in I$$

Thus we see that I is a prime ideal.

Now assume that I is a maximal ideal. Then R[[x]]/I must be a field. We'll show that $R[[x]]/I \cong R$. Consider the map

$$\phi:R[[x]]\to R:p\to p(0)$$

where 0 is the additive identity of R. Then by way addition and multiplication is defined in R[[x]], we see that ϕ is a ring homomorphism. Moreover if $p = \sum_{i=1}^{n} a_i x^i \in I$, then p(0) = 0 shows that $I \subset \text{Ker}(\phi)$. Maximality of I forces $I = \text{Ker}(\phi)$, since ϕ is a non trivial ring homomorphism. Then by the first isomorphism therom, we get $R[[x]]/I \cong R$. Hence we see that R is a field.

14. Let R be a commutative ring with identity. Prove that every prime ideal of R is a maximal ideal.

Solution: Let P be a prime ideal of a finite unital commutative ring R. Then consider R/P, the collection of all additive cosets of P. Let $r+P \in R/P$. Since R/P is finite $r^n+P=(r+P)^n=(r+P)^m=r^m+P$ for some $n>m\in\mathbb{N}$. This forces $r^n-r^m=r^m(r^{n-m}-1)\in P$. Now there can be two choices, either $r^m\in P$ or $r^{m-n}-1\in P$.

For the former case if $r^m \in P$, since $r^m = rr^{m-1} \in P$, by an induction argument, we see that $r \in P$. Then r + P = P is the zero element in R/P.

In the latter case, if $r^{n-m}-1 \in P$, we get $r^{n-m}+P=1+P$, and thus

$$(r+P)(r+P)^{n-m-1} = r^{n-m} + P$$

= 1 + P
= $r^{n-m} + P$
= $(r+P)^{n-m-1}(r+P)$

Which shows that r+P is invertible. Since r+P was arbitrary, we have shown that every non-zero element of R/P is invertible making R/P a field. Thus P is maximal.