Midterm 1, Part 2 - With Resources

S&DS 361

2023-02-21

For this part of the midterm, you can use R and R Studio, class notes, Google, ChatGPT, and the internet in general (e.g Stack Overflow). You may not use Ed Discussion or any other messaging/discussion forum. You may not communicate directly with any other human being. Of these resources, I'm guessing R and R Studio will be useful and the others will not be that useful.

Academic Salaries

This question involves the academic.salaries.title.gender.rds data set posted on Canvas under Files/exams. Please download that now. If you have downloaded all of the data sets in the Files/data folder, then you already have the file.

Build a linear regression model using the academic.salaries.title.gender.rds data to find the expected salary for a professor at a public university based on other information known about that professor. Only consider the columns salary (in dollars), group.title (Assistant Professor, Associate Professor, etc), male (1=male, 0=female), score (from US News and World Report rankings), region, and state, but feel free to transform any of those columns if you think it would help. Try a few models. For each model you try, handwrite the outcome, predictors, and Adjusted R^2 in a table like this:

AdjustedR2	edictors	Pre	Outcome
0.500	mypred1		myoutcome
0.550	mypred2	mypred1,	myoutcome

Probably a good idea to take log transform of salary. Otherwise residuals will likely be far from normal. Put that table here:

Outcome	Predictors	AdjustedR2
log(salary)	title	0.428
$\log(\text{salary})$	title, male	0.427
$\log(\text{salary})$	title, region	0.547
$\log(\text{salary})$	title, state	0.637
$\log(\text{salary})$	title, state, region	0.637
log(salary)	title, state, score	0.636

Which model would you choose as the best model? Give a short explanation (1-2ish sentences).

I would choose the model with title and state. The Adjusted R² is the highest, and those predictors are significant.

Histogram of Im4\$residuals


```
d$pred = predict(lm4, newdata=d)
d$res = log(d$salary) - d$pred
ggplot(d, aes(sample=res))+
  geom_qq()+
  geom_qq_line()
```


Hmm it looks not quite normal because of those tails, but it's pretty good. And I think it is better than using salary instead of log(salary). Let's try salary to be sure.

```
lm7 = lm(salary ~ title + state, data=d);# summary(lm7)
d$pred7 = predict(lm7, newdata=d)
d$res7 = d$salary - d$pred7
hist(d$res7, breaks=30)
```

Histogram of d\$res7


```
ggplot(d, aes(sample=res7))+
geom_qq()+
geom_qq_line()
```


That looks less symmetric, and slightly worse for the right tail, so yeah I'll go with log(salary).