# 2023年全國大專校院智慧創新暨跨域整合創作競賽 使用手册

# 一、 系統名稱便捷 e 起來(Ease Up)

#### 二、 系統目的與範圍

大眾運輸系統的便捷與安全是重要的指標。本系統的核心目標是透過 物聯網與深度學習的整合應用,偵測包含人流、環境、危險等情境;並且 透過車站、車載不同前端設計,將資訊以易懂的圖示化呈現。讓使用者獲 得便利且安全的搭乘體驗。

經本團隊實際觀察高雄捷運,有以下兩點可改善。

- 乘客體驗:目前站體內指示不足,於高峰時段須搭配人力引導人流。
   且各式面板資訊量、機動性不足。
- 智慧偵測:目前站內仰賴傳統監視器與隨車人員,若有突發情況, 無法主動感知。

故本團隊著手開發本系統。

#### 本系統的目的:

- 1. 提供公眾運輸使用者: 車廂載客量情況、車廂位置與站體內設施相對位置、車輛運行狀況。
- 2. 對場域智慧偵測:提供分貝、頻譜分析、氣體分析、人流分析、人 體姿態分析等智慧監測。

#### 1. 系統非功能需求

| 功能編號       | 功能說明                                 |
|------------|--------------------------------------|
| LCO-NF-001 | 系統在連線暢通時可以在10秒內刷新資訊                  |
| LCO-NF-002 | 系統在偵測到突發狀況時,可以在10秒內主動感知並<br>傳遞至行控中心。 |
| LCO-NF-003 | 系統間傳輸以 HTTP 加密傳輸。                    |
| LCO-NF-004 | 系統可應用至不同大眾運輸站體。                      |

## 2. 系統功能需求

| 2. 系統功能需求  |        |                                 |  |  |
|------------|--------|---------------------------------|--|--|
| 功能編號       | 功能名稱   | 功能<br>說明                        |  |  |
| 系統資訊偵測<br> |        |                                 |  |  |
| LCO-F-A-1  | 加速感測   | 作為離/進站訊號輔助偵測。                   |  |  |
| LCO-F-A-2  | 離/進站訊號 | 作為相機傳感器與面板啟動觸發訊號。               |  |  |
| LCO-F-A-3  | 攝像頭感測  | 作為照片分析之資料來源。                    |  |  |
| LCO-F-A-4  | 聲音感測   | 作為聲音判定之來源。                      |  |  |
| LCO-F-A-5  | 毒氣感測   | 作為氣體判定之來源。                      |  |  |
|            |        | 觸發器處理                           |  |  |
| LCO-F-B-1  | 進離站資訊  | 將進離站資訊傳遞之車載面板伺服器。               |  |  |
| LCO-F-B-2  | 照相啟動   | 在進/離站時進行照相。                     |  |  |
|            |        | 傳感器處理                           |  |  |
| LCO-F-C-1  | 照片辨識   | 透過照片輸入模型計算載客量。                  |  |  |
| LCO-F-C-2  | 聲音判定   | 透過音訊輸入模型判斷是否發生危險。               |  |  |
| LCO-F-C-3  | 氣體判定   | 透過氣體感測器進行監測。                    |  |  |
| LCO-F-C-4  | 資料評估   | 透過各模型評估資料。                      |  |  |
| LCO-F-C-5  | 資訊傳遞   | 將資料傳至車載/車站伺服器。                  |  |  |
| LCO-F-C-6  | 資訊示警   | 評估(LCO-F-C-4)出異常時進行示警並通<br>知車長。 |  |  |
| 伺服器端       |        |                                 |  |  |

| LCO-F-D-1 | 資料呈現   | 將資料渲染於瀏覽器呈現。      |  |
|-----------|--------|-------------------|--|
| LCO-F-D-2 | 異常狀態標記 | 將異常狀態於瀏覽器提示使用者。   |  |
| LCO-F-D-3 | 資料紀錄   | 與資料庫連線紀錄。         |  |
| LCO-F-D-4 | 資料記錄輸出 | 將資料記錄輸出至班車資訊。     |  |
|           |        | 管理端               |  |
| LCO-F-E-1 | 登入系統   | 車站管理員登入系統。        |  |
| LCO-F-E-2 | 分析資料   | 從資料庫中抓取數據分析。      |  |
| 用戶端       |        |                   |  |
| LCO-F-F-1 | 查看車載面板 | 獲得包含站體資訊、車廂情況等資訊。 |  |
| LCO-F-F-2 | 查看車站面板 | 獲得包含車次、車廂人潮等資訊。   |  |
| LCO-F-F-3 | 查看班車資訊 | 獲得包含車次紀錄資訊。       |  |



| a.系統根據資料庫將車次內容呈現,包括載客量、空氣等。 |                               |
|-----------------------------|-------------------------------|
| (- LCO-F-D-1)               | b.使用者根據呈現內容,預先移<br>動至人潮較少之車廂。 |

| 使用案例編號:LCO-UC002  | 使用者案例名稱:查看車載面板   |
|-------------------|------------------|
| 系統反應動作            | 使用者操作動作          |
| a.以傳感器接收車廂情況,將與   |                  |
| 站體關係、異常情況等資訊對應    |                  |
| 車廂呈現。(-LCO-F-C-6) |                  |
|                   | b.使用者可觀察哪節車廂發生異常 |
|                   | 狀況,提前遠離。         |

| 使用案例編號:LCO-UC003   | 使用案例名稱:使用者在列車上   |
|--------------------|------------------|
|                    | 查看預計到站時間         |
| 系統反應動作             | 使用者操作動作          |
| a. 列車離開 A 站        |                  |
| b. 接收離站信號 (離站信號)   |                  |
| (- LCO-F-A-2)      |                  |
| c. 觸發器發送下個到站點 B 站, |                  |
| 顯示狀態改成行進中向車站、車次    |                  |
| d. 資料庫請求列車行進時間資料,  |                  |
| 並計算接下來5站的到站時間      |                  |
| e. 車載面板顯示伺服器顯示狀態更  |                  |
| 新成行進中狀態            |                  |
| (- LCO-F-D-1)      |                  |
| f. 車載顯示面板顯示 (車載顯示面 |                  |
| 板)                 |                  |
|                    | g. 使用者透過查看車載面板,獲 |
|                    | 取預計到達時間(車載顯示面板)  |

| 使用案例編號:LCO-UC004    | 使用案例名稱:使用者在列車上  |
|---------------------|-----------------|
|                     | 查看到站資訊          |
| 系統反應動作              | 使用者操作動作         |
| a. 列車靠近 B 站         |                 |
| b. 接收進站信號 (進站信號)    |                 |
| - LCO-F-A-2         |                 |
| c. 觸發器發送到站點 B 站,顯示  |                 |
| 狀態改成即將到站 -LCO-F-C-5 |                 |
| d. 向車站、車次資料庫請求 B 站  |                 |
| 車站配置狀態              |                 |
| e. 車載面板顯示伺服器狀態更新    |                 |
| 成進站狀態 (-LCO-F-D-1)  |                 |
| f. 車載顯示面板顯示(車載顯示面   |                 |
| 板)                  |                 |
|                     | g. 使用者透過查看車載面板, |
|                     | 獲取車站配置狀態,以及哪    |
|                     | 側開門,外加出口資訊 (車   |
|                     | 載顯示面板)          |

| 使用案例編號:LCO-UC005       | 使用案例名稱:使用者透過車站 |
|------------------------|----------------|
|                        | 面板了解列車壅擠程度     |
| 系統反應動作                 | 使用者操作動作        |
| a. 列車離開 A 站 / 列車靠近 B 站 |                |
| (離站後與進站前都會觸發)          |                |
| b. 接收離站信號 (離站信號) /     |                |
| 接收進站信號(進站信號)           |                |
| (- LCO-F-A-2)          |                |
| C. 觸發器向攝像機模組發送拍攝       |                |
| 照片請求(-LCO-F-B-2)       |                |
| d. 攝像頭感測器拍攝照片          |                |
| e. 辨析拍攝照片計算擁擠分類        |                |
| (-LCO-F-C-1)           |                |
| f. 資料評估為例行資料,即非異       |                |
| 常資料                    |                |

| g. 檢查直到連上伺服器,發送   | 資                                     |
|-------------------|---------------------------------------|
| 料到車站面板顯示伺服器       |                                       |
| h. 資料處理評估為例行資料,   | 艮は                                    |
| 非異常資料 (LCO-F-C-4) |                                       |
| i. 向列車班次紀錄資料庫查詢·  | <u> </u>                              |
|                   | ····································· |
| 車次編組              |                                       |
| j. 車站面板顯示該車次擁擠狀   | 態                                     |
| k. 車站顯示面板顯示 (車站顯: | 示                                     |
| 面板)               |                                       |
| (LCO-F-F-3)       |                                       |
|                   |                                       |
|                   | m. 使用者透過查看車站面板,獲                      |
|                   | 取下班車的預計到達時間與車                         |
|                   | 廂壅擠分布 (車站顯示面板)                        |
|                   | n. 使用者依照資訊前往較不壅擠                      |
|                   |                                       |
|                   | 車廂候車                                  |

| 使用案例編號:LCO-UC006    | 使用案例名稱:管理員透過管理<br>員介面了解乘客分布與流量變化<br>圖表 |
|---------------------|----------------------------------------|
| 系統反應動作              | 使用者操作動作                                |
|                     | a.管理員透過登入系統介面登入<br>(LCO-F-E-1)         |
| b. 系統驗證向列車班次紀錄資料    |                                        |
| 庫確認管理員訪問權限          |                                        |
| c. 若確認身分,將介面導向分析    |                                        |
| 資料頁面                |                                        |
| d. 回傳成功登入並等候查詢      |                                        |
|                     | e. 管理員輸入查詢的車次編號與日期                     |
| f. 向列車班次紀錄資料庫請求該車   |                                        |
| 次與日期的紀錄 (LCO-F-D-4) |                                        |
|                     | g. 閱覽分析該車次資料                           |
|                     | (LCO-F-E-2)                            |

### 三、 系統架構設計

### 系統架構圖:



#### 1. 子模組架構

- A. 傳感器模組:負責從各種傳感器和感測器中收集車廂的 數據。
- B. 智能分析模組:使用深度學習模型進行資料分析,包括 人數計算、擁擠偵測、和異常偵測。
- C. 資訊呈現模組:負責將分析結果以易懂的方式呈現給使 用者,包括站台面板和車載面板。

如圖所示:



# 四、 系統介面設計

### 1. 站台面板



▲如圖所示: 顯示人潮與到站時間



▲如圖所示: 透過不同顏色顯示車廂人潮



▲以圖示提醒乘客有突發狀況

### 2. 車載面板

從左至右分別為:當前即將到站之站名,當前時間,以及目前所在車廂、車門。 而長條區則呈現:車廂、車廂與站體設施之關係 出口方向以及車廂異常提示(若有偵測到)

- I. 車廂與站體設施間的相對位置 以示意圖之範例:
  - 乘客目前所在位置為第一號車門若是其有電梯/手扶梯之需求,即可提前移動。
  - 乘客若想前往特定出口,也可在下車前 了解出口方向

### II. 車廂異常狀況提示

- 在2-3號車門之間偵測到異常情況其他車廂乘客,可以及時發現
- 乘客若想前往特定出口,也可在下車前 了解出口方向



<sup>\*</sup>因車載面板為長條尺寸,故將圖片翻轉90度

# 五、 軟體或硬體架構設計

# 1. 資料設計(Data Design)

# (1) Station

| 欄位名稱 | 欄位代號         | 定義       | 型態                  | 範例                |
|------|--------------|----------|---------------------|-------------------|
| 數字編號 | idx          | 站體數字編號   | Int(11)             | 1                 |
| 文字編號 | sid          | 站體文字編號   | Varchar(3)          | 05                |
| 名稱   | sName        | 站體名稱     | Varchar(15)         | 美麗島               |
| 路線   | route        | 站體路線     | Enum('0', 'R', 'C') | 0                 |
| 路線順序 | Route_order  | 站體在線路的順序 | Int(3)              | 3                 |
| 英文名稱 | English_name | 站體英文名稱   | Varchar(50)         | Formosa Boulevard |

# (2).Carriage\_info

| 欄位名稱 | 欄位代號      | 定義        | 型態                         | 範例                     |
|------|-----------|-----------|----------------------------|------------------------|
| 資料編號 | idx       | 捷運車廂資料編號  | Int(11)                    | 1                      |
| 車號   | cid       | 捷運車號      | Int(5)                     | 168                    |
| 車廂號  | cNo       | 捷運車廂號     | Int(3)                     | 1                      |
| 車門號  | dNo       | 捷運車門號     | Int(2)                     | 1                      |
|      | pNum      | 捷運車廂內壅擠程度 | Enum('不壅擠',<br>'尚可', '壅擠') | 不壅擠                    |
| 空氣品質 | air       | 捷運車廂內空氣品質 | Bool                       | True                   |
| 異常聲音 | volume    | 捷運車廂內異常聲音 | Boo1                       | False                  |
| 時間戳記 | timestamp | 資料輸入時間戳記  | Timestamp                  | 2023-07-29<br>02:25:03 |

# (3).Access\_signal

| 欄位名稱 | 欄位代號          | 定義       | 型態         | 範例                     |
|------|---------------|----------|------------|------------------------|
| 資料編號 | idx           | 捷運車廂資料編號 | Int(11)    | 1                      |
| 車號   | cid           | 捷運車號     | Int(5)     | 168                    |
| 路線方向 | Route_way     | 捷運前進路線方向 | Varchar(3) | OT1                    |
| 離站數  | Leave_station | 捷運已離站數   | Int(3)     | 0                      |
| 進站數  | enter_station | 捷運已進站數   | Int(3)     | 0                      |
| 時間戳記 | timestamp     | 資料輸入時間戳記 | Timestamp  | 2023-07-29<br>02:25:03 |

# (4).Facility\_location

| 欄位名稱 | 欄位代號              | 定義                 | 型態                | 範例     |
|------|-------------------|--------------------|-------------------|--------|
| 資料編號 | idx               | 車站資料編號             | Int(11)           | 1      |
| 文字編號 | sid               | 車站編號               | Varchar(3)        | 05     |
| 站名   | sName             | 車站名稱               | Varchar(15)       | 美麗島    |
| 路線方向 | way               | 車站設施接近的路線方向        | Enum('0T1', '01') | OT1    |
| 設施類別 | Facility_type     | 車站設施類別             | Varchar(15)       | stairs |
| 設施方向 | Facility_way      | 車站設施面朝方向           | Varchar(3)        | OT1    |
| 相對位置 | Relative_position | 車站設施相對位置的捷運<br>車門號 | Float             | 1      |

## (5).Station\_exit

| 欄位名稱   | 欄位代號      | 定義                | 型態          | 範例           |
|--------|-----------|-------------------|-------------|--------------|
| 資料編號   | idx       | 車站資料編號            | Int(11)     | 1            |
| 文字編號   | sid       | 車站編號              | Varchar(3)  | 05           |
| 出口編號   | eNo       | 車站出口編號            | Int(2)      | 1            |
| 出口地標   | eName     | 車站出口地標之一          | Varchar(20) | 華南銀行         |
| 英文出口地標 | eName_en  | 車站出口地標之一的英<br>文名  | Varchar(50) | Hua Nan Bank |
| 相對位置   | ePosition | 車站出口相對捷運車門<br>的位置 | Float       | 1            |

### 六、 軟體或硬體模組設計

# ■ 資料收集模組:

如下圖所示:透過不同傳感器連接於傳感器處理機。收集車 廂資訊。



#### ■ 智能分析模組:

### i. 人數分析模型:

使用 YOLO 將車廂內人數情況進行判斷,在團隊測試階 段可達 90%以上之準確率。

示意圖:綠色框代表偵測到人、藍色框則為空



▲圖為單個車廂人數偵測(忽略非當車廂的人)

\*可分辨非當前偵測區段

### ii. 姿態分析模組:

使用 alphapose 將乘客節點資訊紀錄,用以判斷坐/站情況。在團隊測試階段可達 65%以上的準確率 示意圖:如下圖所示在偵測到人時,可進一步分析人體姿態,用於進階判斷站/坐人數→推算車廂擁擠程度。



### iii. 異常偵測(頻譜分析模型):

將音訊(wav)檔進行頻譜轉換,變成頻譜圖,透過卷積運算(convolution)訓練。模型在團隊測試階段可達 85%以



## ■ 資訊呈現模組:

# 系統資料庫-> 車次資訊 table

| $\leftarrow$ T | $\rightarrow$ |             | ~       | idx | cid | route_way | leave_station | $enter\_station$ | timestamp           |
|----------------|---------------|-------------|---------|-----|-----|-----------|---------------|------------------|---------------------|
|                | 🥒 编辑          | 复制 复制       | ⊜ 删除    | 1   | 168 | OT1       | 1             | 0                | 2023-07-29 02:26:15 |
|                | ❷ 编辑          | 3 复制        | ⊜ 删除    | 2   | 168 | OT1       | 1             | 0                | 2023-07-29 19:00:00 |
|                | 🥒 编辑          | ₹ 复制        | ⊜ 删除    | 3   | 168 | OT1       | 2             | 1                | 2023-07-29 22:41:07 |
|                | ❷ 编辑          | ≱ 复制        | ⊜ 删除    | 4   | 168 | OT1       | 3             | 2                | 2023-07-29 22:55:41 |
|                | 🥒 编辑          | ፮• 复制       | ⊜ 删除    | 5   | 168 | OT1       | 0             | 0                | 2023-07-29 23:01:35 |
|                | ❷ 编辑          | <b>≩</b> 复制 | ⊜ 删除    | 6   | 168 | OT1       | 1             | 0                | 2023-07-29 23:50:45 |
|                | 🥒 编辑          | ፮• 复制       | ⊜ 删除    | 7   | 168 | OT1       | 0             | 0                | 2023-07-30 17:10:04 |
|                | ❷ 编辑          | 3€ 复制       | ⊜ 删除    | 8   | 168 | OT1       | 1             | 0                | 2023-07-30 18:03:31 |
|                | 🥒 编辑          | ፮• 复制       | ⊜ 删除    | 9   | 168 | OT1       | 1             | 1                | 2023-07-30 18:20:56 |
|                | Þ#2           | □ 生 信生!     | A nnile | 10  | 160 | OT1       | 1             | 0                | 2022 07 20 20-67-24 |

# 七、 軟體或硬體開發環境

| 前端    | HTML, CSS                                               |  |
|-------|---------------------------------------------------------|--|
| 前端框架  | Flask                                                   |  |
| 後端    | Python                                                  |  |
| 傳感器   | Arduino - C++                                           |  |
| 資料庫   | Phpmyadmin, MySQL                                       |  |
| 溝通方式  | Http Post、Http Get                                      |  |
| 傳感器型號 | MQ-135, LM386, mpu6050, Raspberry Pi<br>Camera Module 3 |  |
| 軟體需求  | ipython>=8.12.0                                         |  |
|       | matplotlib>=3.7.1                                       |  |
|       | pandas>=2.0.0                                           |  |

Pillow>=9.5.0

torch>=2.0.1+cull8

torchaudio>=2.0.2+cull8

torchsummary==1.5.1

torchvision>=0.15.2+cull8

yt\_dlp==2023.10.7

### 八、 系統測試案例設計

| 測試編號 | LCO-TC-01                                                                                                                                                    |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 名稱   | 站台面板                                                                                                                                                         |
| 測試目標 | 車廂載客量、擁擠偵測、空氣監測、異常偵測                                                                                                                                         |
| 功能依據 | LCO-F-B-1 \ LCO-F-B-3 \ LCO-F-B-4 \ LCO-F-B-5                                                                                                                |
| 操作   | <ol> <li>使用者於月台查看站台面板。</li> <li>站台面板顯示:         <ul> <li>事次情況</li> <li>载客、擁擠程度</li> <li>空氣情況</li> <li>異常偵測</li> </ul> </li> <li>使用者根據面板資訊選擇欲搭乘之車廂</li> </ol> |
| 預想結果 | 正確顯示各項資訊,達成人流分散、提升乘車品質。                                                                                                                                      |

| 測試編號 | LCO-TC-02 |
|------|-----------|
| 名稱   | 車載面板-異常偵測 |
| 測試目標 | 異常偵測      |
| 功能依據 | LCO-F-B-5 |

| 操作   | <ol> <li>使用者於車上查看車載面板。</li> <li>車載面板顯示:<br/>異常偵測</li> <li>使用者根據車載面板資訊在車廂間可進行移動</li> <li>若1號車發生危急狀況觸發異常偵測模型,<br/>透過該面板可使2號車後的乘客了解情況並往後方<br/>車廂移動。</li> </ol> |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 預想結果 | 成功偵測異常情況並於車載面板顯示                                                                                                                                            |

| 測試編號 | LCO-TC-03                                                                                                                                    |  |  |
|------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 名稱   | 車載面板-站體設施顯示                                                                                                                                  |  |  |
| 測試目標 | 站體地圖                                                                                                                                         |  |  |
| 功能依據 | LCO-F-B-2                                                                                                                                    |  |  |
| 操作   | <ol> <li>使用者於車上查看車載面板。</li> <li>車載面板顯示:<br/>該車廂與站體設施之相對位置</li> <li>使用者根據車載面板資訊在車廂間可進行移動</li> <li>若使用者有搭乘電梯、或前往特定出口的需求,即可提早規劃搭乘車廂。</li> </ol> |  |  |
| 預想結果 | 成功載入站體地圖並於車載面板顯示                                                                                                                             |  |  |

# 九、 系統測試報告

1. 測試環境(Testing Environment)

硬體需求(Hardware Specification Configuration)

|      | 項目名稱   | 型號                              | 數量 |
|------|--------|---------------------------------|----|
|      | 車載主機   | Raspberry Pi 4                  | 1  |
| 伺服器端 | 系統主機   | MSI-gf63                        | 1  |
| 前端   | 顯示面板   | 15.6" FHD                       | 1  |
|      | 感測器處理機 | arduino uno                     | 1  |
|      | 聲音感測器  | LM386                           | 1  |
| 感測器端 | 空氣感測器  | MQ-135                          | 1  |
|      | 相機模組   | Raspberry Pi Camera<br>Module 3 | 1  |
|      | 加速度感測器 | MPU6050                         | 1  |

### 軟體需求(Software Specification Configuration)

|      | 項目名稱   | 型號            | 數量 |
|------|--------|---------------|----|
|      | 系統作業系統 | win10/11      | 1  |
| 伺服器端 | 車載作業系統 | Ubuntu 22.04  | 1  |
| 前端   | 瀏覽器    | google chrome | 1  |

## 2. 測試結果與分析(Test Results and Analysis)

### A. 測試結果

| 測試案例編號    | 測試結果<br>(Pass/Fsail) | 備註 |
|-----------|----------------------|----|
| LCO-TC-01 | Pass                 |    |
| LCO-TC-02 | Pass                 |    |
| LCO-TC-03 | Pass                 |    |