The why, the how, and the when to impute: a practitioners' guide to survey-to-survey imputation of poverty

Paul Corral, Andres Ham, Leonardo Lucchetti, and Henry Stemmler February 9, 2025

1 Introduction

The measurement and monitoring of poverty are central to assessing global development progress. For the World Bank, whose twin goals include ending extreme poverty, the ability to track poverty reduction is fundamental to measuring institutional effectiveness and guiding policy decisions. Yet a persistent challenge hampers this crucial task: the limited availability of recent, high-quality household survey data that includes information that allows for comparable measures of expenditure or income across time. This challenge is particularly acute in countries where poverty is concentrated (H.-A. Dang et al., 2017). For instance, India, home to a significant share of the global poor, did not release official consumption survey data between 2011 and 2022. Similarly, Nigeria lacked household survey data for poverty monitoring between 2009 and 2018. These data gaps not only affect our understanding of poverty at the country level but can significantly impact global poverty estimates and our assessment of progress toward poverty reduction targets.

Traditional poverty measurement relies on household surveys that collect detailed consumption or income data. These surveys represent substantial investments in both financial and human resources. They require extensive preparation, careful implementation, and place considerable burden on responding households, who must either maintain detailed consumption diaries or participate in comprehensive recall interviews. The method of data collection itself can introduce significant biases into poverty estimates. For instance, consumption diaries – while theoretically more accurate – can lead to respondent fatigue and underreporting over time. Recall modules, on the other hand, may suffer from memory bias, with longer recall periods typically resulting in lower reported consumption. Research has shown that simply changing the recall period or the number of consumption items can lead to substantially different poverty estimates within the same population (Beegle et al. 2012). These methodological challenges add another layer of complexity to the already demanding task of poverty measurement.

The challenges of traditional poverty measurement become particularly acute during crises when standard survey operations are disrupted or impossible to conduct. Armed conflicts, natural disasters, health emergencies, and other humanitarian crises often prevent face-to-face household interviews precisely when poverty monitoring becomes most crucial. The COVID-19 pandemic provided a stark illustration of this challenge, as household survey efforts were halted globally at a time when understanding welfare impacts was most critical. Similar data collection constraints arise in conflict zones, where security concerns prevent enumerator access to households, or during natural disasters that displace populations and disrupt statistical operations. During such crises, policymakers and international organizations

¹The 75th round of the NSO Survey of Consumption Expenditure was collected in 2017-18 but was not released.

must resort to alternative methods for estimating poverty. Survey-to-survey imputation, often combined with rapid phone surveys or other alternative data collection methods, has emerged as a key tool for maintaining poverty monitoring during these challenging periods. However, these approaches come with their own limitations and potential biases that must be carefully considered.²

Survey-to-survey (S2S) imputation has emerged as a methodological response to these data limitations. The approach builds upon techniques originally developed for small area estimation (SAE) in poverty mapping, pioneered by Hentschel et al. (1998) and further refined by Elbers et al. (2003). S2S imputation enables poverty estimation using surveys that lack direct welfare measures by:

- 1. Developing a predictive model of household welfare using a survey with consumption or income data (the "source" survey)
- 2. Applying this model to a different survey containing similar household characteristics but lacking direct welfare (the "target" survey)
- 3. Generating poverty estimates based on the predicted welfare distribution

While S2S and small area estimation share methodological foundations, they serve distinct purposes. Small area estimation, as developed by Elbers et al. (2003) and advanced by Molina and Rao (2010), typically applies nationally estimated models to census data to generate precise poverty estimates for small geographic areas. In contrast, S2S focuses on predicting welfare in a separate survey, regardless of geographic disaggregation. One might view traditional poverty mapping as a special case of S2S where the target dataset are the different areas of the census and the primary goal is obtaining geographically disaggregated estimates.

This handbook first examines the limitations and potential pitfalls of survey-to-survey imputation through rigorous analysis of its fundamental assumptions. In these experiments, the focus is not on traditional concerns such as variable selection or model specification, but rather on the method's core limitations, particularly for measuring poverty across extended time periods or different populations. The analysis relies on simulated data to isolate and demonstrate specific mechanisms that can generate biased estimates. This approach allows for clear illustration of three critical findings:

- 1. Standard sampling bias-correction techniques, such as re-weighting to match population means, may be insufficient when source and target surveys differ fundamentally.
- 2. The method's tendency to replicate the welfare distribution of the source survey can make it unreliable for measuring changes in inequality and poverty. Thus, better communication behind the limitations of the methods are crucial. These insights are particularly relevant given the increasing reliance on survey-to-survey imputation to fill data gaps in poverty monitoring.
- 3. Third, omitted variable bias will likely affect poverty predictions, particularly when imputing across time periods that include significant economic shocks or structural changes. This last finding has important implications for applications that use "fast-moving" variables to capture welfare changes,³ as these variables may introduce bias if they are correlated with unobserved factors that affect welfare.

²For global monitoring see Mahler et al. (2021) Global projections of poverty rely on GDP projections during the pandemic. The GDP projection for each country is used to shift the welfare distribution of a given country by the GDP per capita growth rate observed between year corresponding to the household survey collection and the desired year in the future.

³Yoshida et al. (2021) refer to expenditure related covariates as fast moving. These include dichotomous variables indicating if a household reported purchasing a product or not.

Through systematic examination of these limitations using simplified examples, the handbook provides practitioners with a framework for understanding when and why S2S methods may produce misleading results. The results here are of relevance since survey-to-survey imputation has become more prevalent in recent times to overcome data scarcity.

2 Survey-to-Survey Imputation in Action

Survey-to-survey imputation has become a widely used tool for poverty estimation when consumption or income data are unavailable. The method builds upon the idea proposed by Elbers et al. (2003) and Hentschel et al. (1998) where a linear regression model is fit on a survey where expenditure or income are available to determine the joint distribution of expenditure or income, and a given set of household characteristics. The model parameters are then applied to a second data source with the aim of replicating the welfare distribution and from that deriving poverty estimates and other indicators as if one had expenditure or income in that survey. The methods can be applied to contemporaneous surveys or to surveys corresponding to a different point in time.

Evidence from country applications has revealed both the potential and limitations of these methods, with much of the criticism centered around applications to surveys from a different point in time. The fundamental challenge lies in the method's core assumptions. S2S imputation assumes that model parameters remain stationary over time - meaning that any observed changes in poverty are solely attributable to changes in the model's covariates, rather than shifts in unobservable factors or changing returns to these covariates (Dang, Lanjouw and Serajuddin 2014). This assumption becomes particularly tenuous in dynamic economic contexts. As Christiaensen et al. (2012) note, such assumptions may be especially problematic in rapidly growing economies like India, where structural economic changes can alter the relationship between poverty and its predictors. It can also be problematic when a strong shock has occurred between the periods – for example, a global pandemic.

Researchers and practitioners have proposed various approaches to address these limitations. Stifel and Christiaensen (2007) advocate for including time-varying variables such as rainfall and prices to capture temporal changes. Yoshida et al. (2021) suggest incorporating variables that track economic conditions more directly. However, as Yoshida et al. (2021) emphasize, without updated training data to re-estimate model parameters, the risk of missing significant economic changes remains substantial, even with these additional covariates.

The effectiveness of S2S imputation across time has been subject to empirical validation across various contexts, revealing both its potential and its limitations. While some studies report estimates within acceptable margins of error, others highlight significant discrepancies between predicted and observed poverty rates. These mixed results underscore the importance of careful consideration when applying S2S imputation across different temporal and economic contexts.

The bias of estimates obtained with data that correspond to very different time periods or data where the covariates are considerably different has mostly been studied using real world data. For example, Dang, Lanjouw and Serajuddin (2014) conduct experiments using the Household Expenditure and Income Survey and the Unemployment and Employment Survey in Jordan; Stifel and Christiaensen (2007) rely on survey data for Kenya to conduct experiments; Dang et al. (2021) applies the method to several countries and note that estimates are well within margins of error.⁴

⁴The countries are: Ethiopia, Malawi, Nigeria, Tanzania, and Vietnam

Christiaensen et al. (2012) undertakes an empirical validation of survey-to-survey imputation methods over time. The authors perform survey-to-survey imputation over time in scenarios where there is comparable expenditure data which provides a "true" estimate of poverty. The authors validate their approach using data for Vietnam and for China using rural household panel data. In Vietnam, the authors obtain a model using the 1992/93 data and predict poverty using the 1997/98 data. They note that the method works relatively well and depending on the covariates used, differences between predicted and observed poverty rates were on average 3.4 percentage points during a period where poverty fell by 23.2 percentage points. For the Chinese regions where the method was tested, the authors also find that the methods work relatively well. However, depending on the model used differences between predicted and observed rates were considerable.

Applications of survey to survey imputation have also made their way to global poverty monitoring.⁵ This is mostly due to India's lack of recent survey data. The following case studies not only demonstrate specific instances where S2S applications have contributed to the World Bank's global poverty metrics, but they also highlight the mechanisms that can generate biased estimates as discussed in the introduction. These mechanisms include: (i) challenges arising when source and target surveys differ fundamentally; (ii) the method's propensity to replicate the welfare distribution of the source survey, which undermines its reliability for tracking changes in well-being; and (iii) the impact of omitted variable bias, especially when imputing across time periods marked by significant economic shocks or structural changes.

2.1 S2S in India

India's importance in global poverty measurement cannot be overstated. Its large population implies that even a slight shift in poverty in the country can make or break the World Bank's pledge on ending extreme poverty. Consequently, since 2011, the last time data was collected before 2022, there are at least 3 different studies which attempt to estimate a poverty rate for the country making use of survey-to-survey imputation (see Edochie et al. (2022), Newhouse and Vyas (2019), and Roy and Van Der Weide (2022)). These papers obtain a welfare model constructed on the 2011 data and apply it to several more recent data which lack a welfare measure to obtain poverty predictions.

In 2017, when the next expenditure survey for the country was supposed to be released it was scrapped due to concerns regarding its validity. There were leaks of the report, however, and these suggested that between 2011 and 2017/18 consumption in the country had fallen by 3.7 percent.⁶ While rural consumption fell by 8.8 percent, urban areas fared somewhat better and grew by 2 percent over the period. Given the lack of actual data to validate the leaked report and the fact that the survey was never "official" the leaked report never fed into the World Bank's global poverty monitoring efforts.

Various studies utilizing survey-to-survey (S2S) imputation have produced divergent estimates of poverty in India, raising questions about the robustness of such methods. Newhouse and Vyas (2019) estimate a dramatic reduction in poverty, from 22.5 percent in 2011/12 to 12.7 percent in 2014/15, suggesting poverty was nearly halved during this period. In contrast, Roy and Van Der Weide (2022) provide a higher poverty estimate for 2015, ranging between 18.6 percent and 20.6 percent, while an earlier version of the same paper placed the figure at around 15 percent. Similarly, estimates for 2017/18 differ: the World Bank's Poverty and Shared Prosperity Report (PSPR) (2020), following Edochie et al. (2022), provides estimates of poverty at 9.9 percent. However, Roy and Van Der Weide (2022) suggest the

⁵As of this writing, every poverty number for India after 2011 is an imputation. These numbers are reported in the World Bank's Poverty and Inequality Platform with no warning to visitors on the origins of the numbers.

⁶https://www.thehinducentre.com/the-arena/current-issues/article30265409.ece

poverty rate for 2017 lies between 12.2 and 15.3 percent, with a previous version of their work estimating 13 to 14 percent.

A common feature across these imputation exercises is their reliance on parameters derived from the 2011 National Sample Survey (NSS), despite significant changes in the Indian economy since then. This reliance has produced conflicting trends. For example, the imputation-based models suggest declining poverty and inequality, while data from a leaked, retracted 2017-18 report indicates a fall in rural consumption across all deciles of the welfare distribution, with higher declines among wealthier groups. This discrepancy highlights the limitations of imputation-based methods over extended periods, particularly when direct data is unavailable and significant economic changes occur, raising serious concerns about the accuracy and reliability of poverty estimates.

Other authors have attempted to arrive at a poverty rate for India leading to a wide range of predictions, leaving many to wonder what in fact is the true poverty rate for the country. Additionally, a key question in these contexts is what meaning do the estimated standard errors for the imputations carry? In some instances, through some very elaborate statistical applications poverty numbers are presented with statements of precision that may be misleading.

2.2 S2S in Afghanistan

Afghanistan's 2023 poverty estimates, derived through survey-to-survey (S2S) imputation, illustrate the complexities of applying this methodology during periods of significant economic transition. Barriga-Cabanillas et al. (2023) trained their model using the 2019-2020 Expenditure and Labor Force Survey (IE-LFS), which reported a national poverty rate of 52.3 percent, and applied it to 2023 phone survey data to estimate updated poverty rates.

The estimates indicate a decline in poverty to 48.3 percent in 2023, driven by reductions in rural poverty despite slight increases in urban areas. While these results are noteworthy, several methodological and contextual factors warrant caution. First, the reliance on phone survey data introduces challenges related to representativeness. The 2023 estimates were based on responses from households in the 2019-20 IE-LFS with access to phones and who participated in the follow-up survey. Although weights were adjusted for socioeconomic characteristics such as region, urban/rural status, electricity access, and household assets, such adjustments may not fully address potential biases inherent in phone-based surveys. Experimental evidence (see section 4.3.4) demonstrates the risks of bias when using S2S imputation with re-weighted data.

Second, the model's performance metrics raise questions about its predictive accuracy. Even when imputations were obtained using the original 2019-20 data, model predictions deviated from the original, direct, estimates by nearly 1 percentage point, indicating potential violations of key assumptions (Table 4 of Barriga-Cabanillas et al. (2023)). When applied to 2021 data, the model overestimated urban poverty by 1.7 percentage points and rural poverty by 2.1 points, suggesting that the reported 4-percentage-point reduction in 2023 could fall within a margin of error rather than representing a clear trend.

Third, broader economic indicators appear inconsistent with the reported decline in poverty. Between 2019 and 2023, Afghanistan faced significant economic challenges, including severe GDP contraction after administrative changes and U.S. military withdrawal, droughts exacerbating food insecurity, reductions in emergency food assistance, a locust outbreak affecting key agricultural areas, and a doubling of unem-

⁷See for example: Bhalla et al. (2022) and Lanjouw, Schirmer, et al. (2024)

⁸World Food Programme (WFP) (2023)

ployment rates. These factors collectively point to heightened vulnerabilities rather than improvements in welfare.

The authors attribute the poverty reduction primarily to reduced conflict and lower food prices. However, the model does not directly account for conflict, leaving this explanation speculative. Any effects would need to operate indirectly through the model's existing covariates, raising concerns about omitted variable bias that could compromise its predictions over time (see Annex 6.1 for further discussion and section 4.4.3 for simulation results).

Additionally, the model's reliance on consumption indicators, such as meat and egg consumption, introduces further uncertainty. Much of the welfare gains in rural areas stem from variables capturing these specific consumption patterns, which may be closely tied to conflict and other contextual factors. For instance, reported meat consumption increased by 30 percent and egg consumption doubled, with these variables contributing significantly to the estimated rise in real per capita consumption. Yet such trends seem incongruous with broader economic realities, underscoring the challenges in interpreting these results.

In sum, Afghanistan's 2023 poverty estimates highlight the difficulties of using S2S imputation during periods of economic upheaval. The case underscores the need for cautious interpretation of imputed results, particularly when data collection limitations, methodological assumptions, and contextual factors may influence the findings. Recognizing these complexities is critical to ensuring the reliability of poverty estimates in challenging contexts.

2.3 The Case of Zambia

Zambia's gap in survey data between 2015 and 2022 presented a challenge for monitoring poverty trends. Compounding this challenge, the 2022 consumption data is not directly comparable to 2015 data due to differences in survey design. While the 2015 survey used a fixed recall period for food consumption, the 2022 survey allowed respondents to choose different reference periods for reporting quantities and values of consumption. This variation in reporting likely undermines the comparability of the two datasets, complicating the construction of poverty trends (Beegle et al., 2012).

To address this issue, the Zambia team employed survey-to-survey (S2S) imputation referred to as a "SWIFT approach", 9 to project the 2015 welfare aggregate onto the 2022 data. Using this approach, they estimate that international poverty (\$2.15 2017 USD PPP) increased by nearly 4 percentage points between 2015 and 2022, rising from 60.8 to 64.4 percent. At the same time, inequality, as measured by the Gini index, is predicted to have decreased from 55.9 to 51.5, and average consumption fell by 15 percent, from \$2.97 (2017 PPP) to \$2.53 (2017 PPP). While these results suggest a worsening of economic conditions, they also raise questions about the broader macroeconomic context.

Although the imputed estimates indicate declining welfare, Zambia's GDP per capita in constant terms barely changed between 2015 and 2022, recovering to its pre-pandemic levels by 2022 and exceeding its 2018 peak by 2023. This divergence between household survey-based consumption estimates and national accounts data highlights a growing gap to national accounts that is not easily explained. Literature suggests such gaps may stem from underreporting of incomes in surveys (Ravallion, 2003), although they tend to narrow as countries become wealthier (Prydz et al., 2022).¹⁰

⁹The World Bank's Survey of Well-being via Instant and Frequent Tracking (SWIFT) program began as a program where for a small subset of households expenditure is collected and a model is trained on this small sample and applied to the larger sample that lacks expenditure. Recently, the term has been used by some as an all encompassing application of S2S methods.

 $^{^{\}rm 10}{\rm Additionally},$ it could also reflect problems with national accounts.

The comparable components of expenditure between the 2022 and the 2015 survey correspond to 33.7 percent of the 2015 survey expenditure, but does not include food, and frequent non-food components. The comparable component consists mainly of health, a sub-set of education, clothing, financial services, durables, and housing. The last item, housing, corresponds to imputed rent. In urban areas, the comparable component suggests consumption has decreased in real terms. In rural areas there is no discernible change. The authors validate their results applying a method from Deaton (2003) that relies on a comparable subset of the welfare aggregate and is aligned to that based on the imputation model. The authors also validate their model by imputing on the same data as the one used for the model. Their validations already point toward a slight upward bias in their model for urban areas, same for their Gini predictions, both likely driven by the residuals not meeting the model's assumptions (Table 6).

Additional concerns about the imputation models remain. First, the models fit have a surprisingly high R^2 value – 0.8 for rural, and 0.91 for urban areas. Such a high R^2 value may be suggestive of overfitting. The team implemented cross-validation as part of their model selection and do not seem to include other model diagnostics. Cross-validation, although useful, does not necessarily guarantee the absence of overfitting (Cawley and Talbot 2010).

The rural model includes as a covariate the natural logarithm of comparable consumption per adult equivalent, and its square – the coefficients for both are positive. Inclusion of such items should be done with care and is only "theoretically justified if and only if all Engel curves are linear for any realization of prices". The model also includes the number of members employed in agriculture, which was nearly halved between 2015 and 2022, from 1.2 to 0.62. The coefficient for the number of members employed in agriculture is negative, thus the reduction in employment would have increased consumption. However, that would not be the case if the reduction is because of a shock such as droughts or COVID which leaves these households without income. The model also includes covariates on the number of items purchased, like cattle, vegetables, pulses, and chicken. These are in natural log terms, where possibly $\ln(0)$ is treated as 0. This can lead to biased coefficients particularly when the proportion of 0 is large (Battese 1997). Finally, the model likely includes many covariates that are potentially highly correlated. For example, number of tubers consumed from own consumption and purchased.

The model for urban areas has an R^2 value of 0.91, one of the highest values observed in such an exercise. The high R^2 is suggestive of overfitting that would limit its predictive out-of-sample capacity, particularly when applying the model to data that is 7 years ahead. The model has multiple other potential issues. Like the rural model, the urban model includes number of items purchased in logarithms, where presumably $\ln(0)$ is treated as 0, but not explicitly stated in the report, and can lead to biased estimates.¹³ The model also includes the number of inactive household members, which a priori one would expect to be negatively related to consumption, but is positive in this case. Moreover, the data suggests that between 2015 and 2022 the number of inactive members increased by nearly 1 person, from 1.6 to 2.4. Beyond the issue of the inactive members, the urban and rural models share many of the same limitations, including the use of the natural logarithm of the comparable component of welfare.

In summary, Zambia's 2023 poverty estimates underscore the challenges of applying S2S imputation in the context of survey design differences and extended time gaps. While the results provide useful insights, issues related to model assumptions, parameter stability, and data representativeness warrant careful consideration. This case emphasizes the importance of robust validation and sensitivity analyses to ensure reliable estimates when addressing data gaps.

¹¹Includes health, a subset of education, clothing, financial services, durables, and housing. It has a correlation of 0.987 with total consumption and corresponds to 33.7 percent of consumption as noted by the authors.

¹²(Ligon et al. 2020, abstract)

 $^{^{13}}$ The authors include the nat. log. of hoes owned as well a fishing and hunting gear which likely have multiple 0.

3 The basics behind survey-to-survey imputation (S2S)

Imputation is a method for filling in missing data. According to Van Buuren (2018), the first instance of a statistical method to replace a missing value dates to 1930,¹⁴ and the first widespread use of the term "imputation" comes from Madow et al. (1983).¹⁵ The method was originally proposed to fill in missing observations and considered the nature of the missing data (Dempster et al. 1977). The goal of the multiple imputation approach is not to create a single imputation, but multiple imputations to reflect the uncertainty around the actual value (Van Buuren 2018). Multiple imputation's goal is to create imputations for observations with missing data to obtain a valid estimand with adequate confidence intervals (Van Buuren, 2018). For example, in the case of a regression on agricultural yields the variable capturing plot sizes may have missing values and these must be imputed with the aim of not losing information as well as obtaining a valid estimate of the coefficient for the relationship between land and yields. Using multiple imputation in this example, as opposed to just the predicted land size, is expected to reduce the rate of false positives.¹⁶

The case of a variable that is entirely missing in the dataset was not considered by the original multiple imputation literature. The academic background for predicting an entirely missing variable in a given dataset is more aligned to the small area estimation literature (see Rao 2005 and Rao and Molina 2015). Perhaps the first instance of survey-to-survey imputation, as is applied in the World Bank, comes from the work of Hentschel et al. (1998) which is more aligned to small area estimation and noted by the authors. The key difference to small area estimation up to that point was that Hentschel et al. (1998) predicted the variable of interest, consumption, at the household level and from that they obtained aggregate statistics based on the prediction of consumption. Nevertheless, earlier examples exist where data from different sources are combined to predict a variable of interest at the household level (for example, Arellano and Meghir 1992). Nevertheless, what is innovative of the work from Hentschel et al. (1998) is that the authors apply models fit on survey data to the census with the goal of replicating the entire consumption distribution and from that distribution obtain estimates of poverty and other welfare indicators as if one had welfare in the census. After refinements by Elbers et al. (2003), the work became the basis of what later was referred to as poverty mapping in the World Bank. The key difference between survey-to-survey imputation and small area estimation is that small area estimation aims to replicate the welfare distribution for each specific area or group of interest, rather than only for the entire population. One of the first applications of the methods from Elbers et al. (2003) to predict national level poverty can be seen in the work of Simler et al. (2004) who use the methods to track changes in poverty in Mozambique.

Survey-to-survey (S2S) imputation for poverty measurement relies on the assumption that a population's welfare distribution can be captured by a linear model. For simplicity, the subscript target is used to indicate when parameters are applied to the target data. Hence, the assumed data generating process (DGP) for transformed welfare $\ln y_i$ is:¹⁷

¹⁴Allan and Wishart (1930)

¹⁵As noted by Van Buuren (2018).

¹⁶Type I errors, which occur when a null hypothesis is incorrectly rejected.

¹⁷Transformed data is often used as the dependent variable to ensure the model's assumptions hold. For simplicity, throughout this document the assumed transformation is the natural logarithm, although many others are possible. Meeting the model's statistical assumptions is crucial for reliable estimation. Corral et al. (2022) demonstrate that violations of these assumptions, particularly the normality of residuals, can lead to biased poverty estimates. Their analysis shows that appropriate transformation of the dependent variable (household welfare) can significantly reduce such bias. When the

$$\ln y_i = x_i \beta + e_i; \ e_i \sim N(0, \sigma_e^2) \tag{1}$$

where x_i is a vector of independent variables common to the source survey and the target survey, ¹⁸ and e_i is a random disturbance term that is assumed to be distributed i.i.d. and $N(0, \sigma_e^2)$. The β as well as the σ_e^2 parameters are estimated using the source survey or the training data since this is the only data where the welfare vector of interest (ln y_i) is available. These estimated parameters are then applied to the target data to predict ln y_i , and from that poverty or other welfare related indicators.

Because normally distributed errors are assumed, for any given household i in the target survey, the probability of being poor is entirely dependent on its expected welfare, $x_i\beta$, and its error, e_i , which is assumed to follow $e_i \sim N(0, \sigma_e^2)$.

$$FGT0_i = \Phi\left(\frac{\ln z - x_i\beta}{\sqrt{\sigma_e^2}}\right) \tag{2}$$

where $\ln z$ is the natural log of the poverty line,¹⁹ and Φ is the standard normal distribution. Consequently, what the method calculates is each household's probability of being poor. The average probability of being poor across households corresponds to the national poverty rate. Additionally, because the only thing differing across households in Eq. 2 are the characteristics, x_i , a proxy means test (PMT) approach that relies only on $x_i\beta$ will yield the same household ranking as the survey-to-survey approach if the same model is used for either.²⁰

The implementation of welfare predictions to the target data can follow different approaches. The mod common method, grounded in the multiple imputation literature, generates several welfare vectors to reflect prediction uncertainty. This approach follows what was implemented in poverty mapping through the PovMap software (Zhao 2006) and is similar to the methodology used in Stata's multiple imputation commands (mi regress). Under this approach, each imputed welfare vector is generated through a five-step process:

- 1. From ordinary least squares fit on the training data (Eq. 1) obtain model parameter estimates for β , and σ_e^2 , noted below as $\hat{\beta}$ and $\hat{\sigma}_e^2$.
- 2. The distribution of the error terms is drawn from its posterior Chi-square distribution, where n is the number of observations in the training data, and K is the number of covariates in the model:

$$\sigma_e^{2*} \sim \hat{\sigma}_e^2 \frac{(n-K)}{\chi_{n-K}^2},$$

3. With σ_e^{2*} in hand it is possible to update the variance covariance matrix of the β parameters:

$$\beta^* \sim MVN\left(\hat{\beta}, \sigma_e^{2*} \left(x'x\right)^{-1}\right),$$

4. Then errors are drawn from:

$$e_i^* \sim N\left(0, \sigma_e^{2*}\right)$$

standard logarithmic transformation proves insufficient, alternative transformations may be necessary to better approximate normality in the model's error term.

¹⁸the source survey is the one used to fit equation 1, and the target survey is where the parameters estimated in the source survey are applied to impute $\ln y_i$.

¹⁹Note that if the transformation of the dependent variable is not the natural logarithm, then this is not valid. The poverty line must be transformed in a similar manner as the dependent variable.

²⁰Under a PMT the threshold is chosen at a given percentile of $x\beta$ so that by construction it yields a desired proportion of people eligible.

5. Each imputed transformed welfare for household i in the target data under imputation m is given by:

$$\ln y_{im}^* = x_{i_{target}} \beta_m^* + e_{im}^* \tag{3}$$

Hence, for each imputed vector, a new σ_e^{2*} is drawn and that is used to draw β^* and a household specific residual, e_i^* . The multiple imputation simulation approach is not necessarily aligned to reducing the prediction mean squared errors (MSE), but as noted by Van Buuren (2018) the purpose is to minimize the likelihood of false positives, since normally the imputed vectors are then used for regression analysis. Alternatively, step 4 may be skipped and the imputed transformed welfare can be obtained from $N\left(x_{i_{target}}\beta_m^*, \sigma_e^{2*} \left(x'x\right)^{-1}\right)$.

An alternative approach, derived from the small area estimation literature, treats the source survey as the best representation of the true welfare distribution. Under this method, parameters estimated from the source survey are applied directly to the target data through Monte Carlo simulation. For straightforward indicators like poverty rates, practitioners can simply apply the asymptotic formula for expected values (Eq. 2). The steps are straight froward:

- 1. From ordinary least squares fit on the training data Eq. 1 to obtain model parameter estimates for β , and σ_e^2 . Noted below as $\hat{\beta}$ and $\hat{\sigma}_e^2$.
- 2. Each transformed welfare for household i in the Monte Carlo simulation is given by note how the coefficients remain constant across Monte Carlo simulations:²¹

$$\ln y_{im}^* \sim N\left(x_{i_{target}}\hat{\beta}, \hat{\sigma}_e^2\right) \tag{4}$$

Recent methodological advances have expanded model fitting options to include machine learning (ML) techniques. However, since most ML methods do not make explicit assumptions about error term distributions, they cannot directly replicate the multiple imputation approach described above. Nevertheless, bootstrap-based alternatives exist where draws from the empirical residuals are used to obtain a welfare vector. These were implemented in both PovMap (Zhao 2006) and Stata's sae command by Nguyen et al. (2018). This bootstrapping approach has proven particularly valuable for regularized regression techniques, as demonstrated by Lucchetti et al. (2024) with lasso regression, 22 and may be extended to other ML methods such as gradient boosting, random forests, or Bayesian additive regression trees. An additional approach available for these techniques is predictive mean matching. The method relies on comparing the linear fit $(x\beta)$ of the target data to the training data. Once a set of nearest neighbors are found the approach randomly draws one of the actual welfare values (Van Buuren, 2018).

3.1 Imputing to a contemporaneous survey

The successful application of survey-to-survey imputation depends on meeting several critical preconditions, first outlined by Hentschel et al. (1998) and later refined by Elbers et al. (2003). These preconditions ensure that the fundamental assumption – both surveys represent the same underlying population – holds true. Having 2 contemporaneous surveys who represent the same population are needed for the approach to work well. In this instance, the tendency of S2S methods to replicate the distribution of the source data in the target data is considered an advantage.

²¹Monte Carlo simulations are not always necessary and for poverty one could immediately apply Eq.2. However, for more complex parameters Monte Carlo simulations allow for indicators that are difficult to handle analytically.

²²https://github.com/pcorralrodas/lassopmm

Covariate comparability

The variables used to predict welfare must be present and measured consistently in both source and target surveys. This requirement extends beyond simple presence to encompass:

- 1. Identical definitions of key variables
- 2. Consistent measurement approaches
- 3. Similar survey implementation protocols

Distribution Alignment

Distribution Alignment For the method to work effectively, both surveys must exhibit three types of consistency:

- 1. Similar distributions of predictor variables. Each covariate should have similar summary statistics across surveys. This includes both averages and measures of spread/variation
 - (a) Example: The distribution of education levels should be comparable across surveys. Not just means, but other moments should be aligned.
- 2. Stable structural relationships between variables
 - (a) The correlation patterns between predictors must be preserved
 - (b) Example: If education strongly predicts formal employment in the source survey, this relationship should hold in the target survey. Changes in these relationships may indicate structural economic changes that could invalidate the model's predictions

A consistent definition of covariates across training and target surveys is also crucial. For instance, household size must be defined uniformly across surveys. If one survey counts only members sharing five or more meals per week while another uses a different definition, this violates not just the first requirement (similar distributions) but potentially the second as well, as it affects both the variable's distribution and its relationships with other predictors.

Model Assumptions

The reliability of welfare predictions depends critically on meeting the model's statistical assumptions, particularly:

- 1. Normal distribution of residuals, although this can be relaxed as discussed in the previous section
- 2. Homoscedasticity of error terms, although this can be relaxed by modeling for heteroskedasticity following the methods from Elbers et al. (2002) or Harvey (1976)
- 3. Linear relationships between predictors and welfare

When these assumptions are violated, Corral et al. (2022) provide evidence that appropriate transformations of the dependent variable may help achieve normality. In cases where transformations prove insufficient, practitioners may draw residuals from their empirical distribution, though this requires the assumption of symmetric errors around zero.

3.2 Imputing across time

Survey-to-survey (S2S) imputation provides a valuable tool for addressing gaps in welfare data, but its application over time demands careful scrutiny. The core assumption—that changes in welfare stem solely from shifts in observable characteristics while their relationship with welfare remains stable—becomes increasingly fragile as the time span between surveys grows. Structural changes in the economy, shifts in labor markets, and evolving household behaviors can all undermine this assumption, leading to imputation errors that distort true welfare dynamics. Moreover, S2S methods often replicate the welfare distribution of the source survey, making them less reliable for capturing real changes in inequality and poverty over time. This limitation is particularly concerning given the growing reliance on S2S for poverty monitoring, where even subtle distortions can misinform policy decisions. Thus, practitioners must apply these methods with greater caution, rigorously testing their validity across different time periods, and ensuring transparent communication about their limitations to avoid misleading conclusions.

The Variance Decomposition Challenge

The core challenge lies in the decomposition of empirical welfare variance into two components:

- The explicable empirical variance captured by the model: $\operatorname{var}\left[x\hat{\beta}\right] = \frac{1}{n}\sum_{i}\left(x_{i}\hat{\beta} \bar{x}\hat{\beta}\right)^{2}$, and
- The unexplained random component: (σ_e^2)

In well-specified models, the R^2 typically ranges from 0.40 to 0.60, meaning that a substantial portion of welfare variation remains unexplained. The R^2 statistic represents the proportion of variance explained by the model:

$$R^{2} = \frac{\operatorname{var}\left[x\hat{\beta}\right]}{\left(\operatorname{var}\left[x\hat{\beta}\right] + \hat{\sigma}_{e}^{2}\right)}$$

When imputing across time, practitioners must rely on an error distribution (σ_e^2) estimated from historical data. This implicitly assumes that households with similar predicted welfare face the same probability of being poor across different time periods, even if the relationship between welfare and the covariates, i.e. the β , remains unchanged. However, a critical limitation arises from the assumption of constant parameters over time.

In reality, parameters often change, especially in rapidly developing countries or over long time horizons, as highlighted in micro decomposition techniques such as those of Bourguignon et al. (2008). This implies that the estimated contributions of changes in characteristics may not fully reflect actual poverty or inequality levels but rather the role of compositional shifts in shaping welfare evolution. In other words, instead of measuring the true welfare distribution, the method may only capture the effect of compositional shifts—how the population's characteristics are changing over time. When characteristics change significantly, the assumption of stable parameters becomes increasingly restrictive, leading to potential bias in predicted welfare levels.

A possible avenue for improvement is to explore methods that allow for parameter variation over time. This could involve explicitly modeling β_t as a function of time or estimating it using repeated cross-sections or panel data, where available. Such an approach could help relax the assumption of constant coefficients and possibly improve the reliability of survey-to-survey imputations in dynamic contexts.

Population-Level Implications

The predicted poverty rates for the population depend on:

- The distribution of household characteristics in the target period
- The stability of relationships between these characteristics and welfare
- The assumed consistency of unobserved factors affecting welfare

Assuming log-normality, for the population, poverty is given by:

$$FGT_0 = \Phi\left(\frac{\ln z - \bar{X}_{target}\hat{\beta}}{\sqrt{\operatorname{var}\left[X_{target}\hat{\beta}\right] + \hat{\sigma}_e^2}}\right)$$
(5)

Mathematically, this translates to predictions, for any given poverty line, depending on both the mean transformed welfare $(\bar{X}_{target}\hat{\beta})$ and its variation $(\text{var}\left[X_{target}\hat{\beta}\right]+\hat{\sigma}_e^2)$.

Sources of Temporal Instability

Several factors can undermine the method's reliability across time:

- Structural changes in welfare determinants (e.g., educational convergence)
- Sampling differences between surveys
- Policy changes (e.g., new welfare programs)
- Economic shocks or systemic changes (e.g., currency reforms)
- The reliability of survey design over time, including consistency in variable definitions, data collection methods (e.g., in-person vs. phone), and other methodological changes that may affect comparability

These implications extend beyond model specification. Many S2S applications employ stepwise regression or regularization techniques (like lasso or ridge regression) to optimize model fit, often measured by R^2 . While some argue that endogeneity and omitted variable bias are less concerning in predictive modeling, 23 these issues become particularly problematic when applying models across time periods. A model trained on data from one year may produce biased estimates when used to predict welfare in another year, as both omitted variables and endogeneity can significantly impact the model's temporal stability and will likely cause biased estimates limiting the usefulness of S2S to predict poverty in years where a welfare aggregate is unavailable (see Annex 6.1).

Implications for Inequality Measurement

The challenges extend to inequality measurement. The reliance on error distributions obtained from a different point in time, particularly affects inequality measurement. Under the common assumption of log-normally distributed welfare, the Gini coefficient depends critically on the welfare distribution's standard deviation. Using an outdated error distribution can thus produce misleading inequality estimates, even when mean predictions appear reasonable.

Assuming that welfare is lognormally distributed then Gini is equal to (Crow and Shimizu 1987):

 $^{^{23}}$ H.-A. H. Dang et al. 2021 note that endogeneity is not a concern. An endogenous variable is frequently defined as an explanatory variable that may be correlated with the error term (Wooldridge, 2009 p88). Omitted variables are related as these are correlated to the error term and a covariate.

$$Gini = 2\Phi(\frac{\sigma}{\sqrt{2}}) - 1$$

where σ is the standard deviation of $\ln y$. Consequently, the imputed Gini across time is also dependent on $\hat{\sigma}_e^2$, which is estimated in an older survey and the resulting var $\left[x\hat{\beta}\right]$ in the target survey since the empirical variance of the lognormally distributed y could be decomposed by:

$$\sigma^2 = \operatorname{var}\left[x_{target}\hat{\beta}\right] + \hat{\sigma}_e^2$$

and consequently, also subject to changes in the sample's distribution of the observed characteristics used in the model.

The method's tendency to replicate the welfare distribution of the source survey can make it unreliable for measuring changes in inequality and poverty. This suggests that survey-to-survey imputation across time periods should be approached with considerable caution, particularly when economic conditions or social structures have changed significantly between the source and target periods. Given the increasing reliance on these methods to fill data gaps in poverty monitoring, it is crucial to clearly communicate their limitations to avoid misinterpretation of trends. Moreover, imputed poverty estimates should be systematically validated against other proxies for household welfare, such as national accounts, labor market indicators, and administrative data, to ensure consistency and identify potential discrepancies.

4 Model Based Simulations

This section builds on the concepts introduced in Section 3, focusing on the effects of violating the underlying assumptions of survey-to-survey imputation on imputed poverty estimates. Using simulated data, a controlled environment is created to systematically examine these effects. Model-based simulations leverage the assumptions underlying the imputation models to investigate their robustness and identify potential points of failure. Unlike real-world data, model based simulations allow for precise manipulation of individual components, enabling a clearer understanding of how specific changes impact the model's estimates.

4.1 Creating populations

We create 1,000 populations of 20,000 households where the welfare of the population is generated with the following data generating process (DGP):

$$\ln y_i = 3 + 0.1x_{1_i} + 0.5x_{2_i} - 0.25x_{3_i} + 0.2x_{4_i} - 0.15x_{5_i} + e_i$$
(6)

where $e_i \sim N(0, 0.5^2)$

- 1. x_i is a discrete variable, simulated as the rounded integer value of the maximum between 1 and a random Poisson variable with mean $\lambda = 4$
- 2. x_2 is a binary variable, taking value 1 when a random uniform number between 0 and 1 is less than 0.2

- 3. x_3 is a binary variable, taking value 1 when a random uniform number between 0 and 1 is less than 0.5 as long as $x_2 = 1$, otherwise it is equal to 0
- 4. $x_4 \sim N(2.5, 2^2)$
- 5. x_5 is a variable drawn from a Student's t distribution with 5 degrees of freedom and scaled by 0.25

The Gini for this distribution is 0.38, and the covariates explain roughly 47 percent of the variation of $\ln y_i$. For the examples presented in the following sections, training and target sample data will be taken from each population.

4.2 How to Impute?

The typical imputation approach undertaken for S2S work done to predict poverty, follows the literature on multiple imputation (MI). A similar methof was followed in the original software implementation of small area estimation method proposed by Elbers et al. (2003), PovMap (Zhao 2006). Under the MI approach, the parameters estimated on the training data are not applied directly to the target data, instead the parameters to be applied to the target data are drawn from their posterior distributions as illustrated in section 3. For small area estimation, the imputation approach from Elbers et al. (2003) has been updated to follow the approach from Molina and Rao (2010).²⁴ Under the method of the latter, the parameters estimated using the training data are applied directly to the data and noise is estimated via a parametric bootstrap which is aligned to the model's assumptions (González-Manteiga et al., 2008).

To compare different imputation methods, a simple random sample (SRS) comprising 20 percent of the data generated in Section 4.1 is used as both training and target data. In the results presented in this section, the same dataset is used for both training and prediction. This approach eliminates potential additional noise introduced by sampling variability, allowing for a more controlled assessment of imputation performance.

The baseline imputation methods assume that welfare is linearly related to a set of characteristics and that errors follow a normal distribution. The data generation process (DGP) used to simulate the dataset adheres to these assumptions.

Under this simulation setup, the prediction bias across different approaches remains minimal across various poverty lines, indicating that all methods effectively replicate the underlying welfare distribution (Figure 1). Although the "Fixed B" method—where parameters are directly applied (Eq. 4)—produces the lowest bias, the differences between methods are negligible. Even in the most biased case observed in this simulation, the discrepancy is less than 0.025 percentage points. Additionally, the number of imputations performed under multiple imputation (MI) appears to have little to no impact on bias (Eq. 3).

²⁴See a detailed discussion in Corral Rodas et al. (2021)

Figure 1: Bias in FGT0 under MI and direct application of parameters

Note: Data are generated as described in 4.1. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5. **Fixed B**: uses the method described in Eq. 4 to generate predictions. For each of 100 Monte Carlo (MC) simulations, poverty is estimated at each threshold and then averaged across simulations to produce the final estimate. **MI X**: implements X imputations following Eq. 3, poverty is estimated for each threshold under each imputed vector, and the results are averaged across simulations to obtain the final estimate.

It is essential to ensure the imputation method chosen is the one best aligned to the data at hand. Data transformations, to ensure the model assumptions are met can help (Corral et al. 2022), but there are instances where transformations may not help. If the residuals do not follow a normal distribution, an alternative is to draw from the empirical residuals. Stata's mi regress includes a bootstrap option that estimates posterior parameters from bootstrap samples, addressing concerns about asymptotic normality when parameter assumptions are questionable (StataCorp, 2023 mi impute regress p2.). Similarly, the hetmireg command, ²⁵ inspired from PovMap methods (Zhao 2006), supports heteroskedasticity following the alpha model described in Elbers et al. (2002) and generates bootstrap samples with errors drawn from the empirical distribution, though it omits the area random effect required for area-level estimates necessary for small area estimation.

Recent advancements have introduced machine learning (ML) techniques for estimation, but since most ML methods lack explicit assumptions about error term distributions, they cannot be directly applied. Instead, bootstrap-based alternatives, implemented in PovMap (Zhao 2006) and Stata's sae command (Nguyen et al., 2018), have proven effective, particularly for regularized regression techniques like lasso regression as shown by Lucchetti et al. (2024). These methods could be extended to other ML approaches, including gradient boosting, random forests, and Bayesian additive regression trees.

²⁵hetmireg command by Corral (mimeo) - https://github.com/pcorralrodas/hetmireg

Figure 2: Bias in FGT0 of different methods under non-normal errors

Note: Data are generated as described in 4.1, but errors are simulated from a Student's t-distribution with 10 degrees of freedom and scaled for a SD of 0.5. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5. **Fixed B**: uses the method described in Eq. 4 to generate predictions. For each of 100 Monte Carlo (MC) simulations, poverty is estimated at each threshold and then averaged across simulations to produce the final estimate. **Fixed B lnskew**: follows the same approach as "Fixed B" but the dependent variable is transformed using a zero-skewness log transformation. **Fixed B bcskew**: follows the same approach as "Fixed B" but the dependent variable is transformed using a Box-Cox transformation. **MI X**: implements X imputations following Eq. 3, poverty is estimated for each threshold under each imputed vector, and the results are averaged across simulations to obtain the final estimate. **MI X BS**: same as "MI X" but uses Stata's bootstrap option. **OLS BS**: Fits the model on bootstrap samples drawn using simple random sampling (SRS), applies the estimated parameters to the target data, and draws residuals from their empirical distribution. **lasso BIC**: applies parameters from lasso model where λ is selected using the Bayesian information criterion (BIC) function and residuals for each imputation are randomly drawn from the predicted residuals. **Random Forest:** applies parameter estimates from a random forest model to the target data, with residuals for each imputation randomly drawn from the distribution of predicted residuals.

Results from a simulation where the DGP is adjusted and errors are simulated from a Student's t-distribution with 10 degrees of freedom and scaled for a SD of 0.5 are presented in Figure 2. Results from this simulation seem to suggest that random forest prediction coupled with residuals drawn from their empirical distribution yield the most biased estimates, although if the poverty line were at the 50th percentile it would be deemed unbiased if other percentiles are ignored (Fig. 2, left). Under this type of errors, the applied data transformations are of limited use (Fig. 2, right - "Fixed B, lnskew" and "Fixed B, bcskew"). Additionally, Stata's mi regress with the bootstrap option does not yield considerable improvement under this simulation. Prawing residuals from their empirical distribution seems to yield the best results under this simulation where errors follow a Student's t-distribution with 10 degrees of freedom and scaled for a SD of 0.5. Both the lasso model fitting, paired with residuals drawn from the empirical distribution and an OLS with residuals drawn in the same way yield the least biased estimates.

An additional simulation is conducted where the error distribution of the DGP is modified to follow heteroskedastic errors. The errors are designed to mimic a situation where the uncertainty or variability in the dependent variable grows as an independent variable increases.³⁰ Under this simulation, data transformations are also of little help (Fig.3). It seems like the best answer for heteroskedasticity is to

 $^{^{26}}$ Perhaps under better tuning of the random forest model the bias can be reduced, although for simplicity the basic options of the command are used here.

²⁷Zero-skewness log (lnskew) or Box-Cox transformation (bcskew). Both can be easily implemented in Stata by using the commands: lnskew0 and bcskew0. If weights are needed, users can use lnskew0w, a modified version of lnskew0 within Stata's SAE package.

 $^{^{28}\}mathrm{Stata}$'s documentation for the option is unexpectedly short and provides few details on the method's implementation. $^{29}\mathrm{The}$ OLS implementation relies on the <code>hetmireg</code> command by Corral (mimeo) - <code>https://github.com/pcorralrodas/hetmireg</code>.

³⁰The variance of the error term is: $\sigma^2 = \frac{\exp((1/6)x)}{2}$, where $x \sim N(0.5, 0.5)$

address it directly via the model. However, the alpha model from Elbers et al. (2002) does not seem to align as well to the DGP implemented here as the method from Harvey (1976) but fit with MLE ("Alpha model" vs. "Het. MLE").³¹ Finally, a lasso model coupled with residuals drawn from their empirical distribution also yields solid results.

Figure 3: Bias in FGT0 under different methods under heteroskedasticity

Note: Data are generated as described in 4.1. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5. **Fixed B**: uses the method described in Eq. 4 to generate predictions. For each of 100 Monte Carlo (MC) simulations, poverty is estimated at each threshold and then averaged across simulations to produce the final estimate. **Fixed B Inskew**: follows the same approach as "Fixed B" but the dependent variable is transformed using a zero-skewness log transformation. **Fixed B bcskew**: follows the same approach as "Fixed B" but the dependent variable is transformed using a Box-Cox transformation. **MI X**: implements X imputations following Eq. 3, poverty is estimated for each threshold under each imputed vector, and the results are averaged across simulations to obtain the final estimate. **MI X BS**: same as "MI X" but uses Stata's bootstrap option. lasso **BIC**: applies parameters from lasso model where λ is selected using the Bayesian information criterion (BIC) function and residuals for each imputation are randomly drawn from the predicted residuals. **Het. MLE**: uses parameters from the Harvey (1976) model for heteroskedasticity and follows Eq. 4 for the predictions where 100 MC simulations are undertaken except that $\sigma_{e_i}^2$ is household specific. **Alpha model**: obtains parameters following Elbers et al. (2002) model for heteroskedasticity and follows Eq. 3, except that $\sigma_{e_i}^2$ is household specific, with 100 imputed vectors.

A common alternative imputation approach, predictive mean matching (PMM), differs in its simulation strategy. Rather than drawing residuals or estimating parameters from a posterior distribution, PMM matches observations from the training dataset to those in the target dataset based on predicted values, ensuring that imputed values remain within the observed range of the training data.³² This method is particularly useful when handling non-normal or discontinuous distributions (Yoshida et al., 2021). However, its reliance on observed values limits its ability to capture shifts in economic conditions between periods.

To illustrate PMM's limitations, a simulation is conducted where a covariate distribution in the target dataset is altered, creating a mismatch with the training data. Under the simulation, the x_2 variable is adjusted to take a value of 1 when a random uniform number between 0 and 1 is less than 0.8 instead of the original 0.2. This is only done for the target data. The model is fit on the original data, but

³¹The method from Harvey (1976) is applied via Stata's hetregress command.

³²Usually OLS, see (Lucchetti et al., 2024) for an application to lasso model fitting.

the imputations are made on the adjusted data. Despite this shift, PMM follows OLS-based predictions closely (Figure 4). However, in a second simulation where economic growth of 20 percent is introduced between the source and target periods,³³ PMM fails to capture the distributional shift (Figure 5). This highlights a critical limitation of PMM: when substantial economic or structural changes occur between data collection periods, PMM may not be appropriate for imputing poverty estimates.

These findings emphasize that no single imputation approach is universally optimal. The choice of method should be guided by the underlying data properties, the distribution of errors, and the extent of economic or social changes between surveys. While parametric methods can introduce bias when assumptions are violated, empirical residual drawing and heteroskedasticity-aware models offer more robust alternatives. Finally, machine learning techniques coupled with bootstrapping could provide promising extensions for future work.

Figure 4: Difference in FGT0 under PMM imputations

Note: Data are generated as described in 4.1, with an adjustment for x_2 for the target data. Difference is assessed at various poverty lines across the welfare distribution of the source data. Specifically, these lines correspond to percentiles that are multiples of 5. **Predicted change PMM**: applies PMM imputation using Stata's impute pmm command. **Predicted change assuming normal errors:** applies Eq. 4, and follows "Fixed B" from Figure 1.

 $[\]overline{\ \ \ }^{33}$ The only change introduced is a change in the constant term, everything else remains equal between training and target data.

Figure 5: Difference in FGT0 under PMM imputations

Note: Data are generated as described in 4.1. Difference is assessed at various poverty lines across the welfare distribution of the source data. Specifically, these lines correspond to percentiles that are multiples of 5. **Predicted change:** applies PMM imputation using Stata's impute pmm command.

A word of caution is warranted here and it is related to how noise is estimated. When applying MI methods the noise is typically estimated using Rubin's rules (Rubin, 1987). Under Rubin's rules the estimated variance is equal to the sum of within-imputation variance, the between imputation variance, and the between imputation variance divided by the number of imputations.³⁴ It is important to remember that these methods were developed for regression analysis, where a variable with missing observations is imputed and then used in a model. Rubin's rules are applied in those instances to obtain a valid standard error of the regression parameters. Estimating the prediction's noise in a similar manner when parameters are applied directly risks producing improper imputations.³⁵ When keeping β fixed, as is done by Molina and Rao (2010), MSEs are estimated following a parametric bootstrap presented by González-Manteiga et al. (2008). This bootstrap procedure is aligned to the model's assumptions under small area estimation, but the approach may not necessarily align with multiple imputation.

 $^{^{34}}$ Under Rubin's rules: $T=W+(1+\frac{1}{M})B$, where T is the total variance, M is the number of imputations, W is the within survey variance, and B is the between imputation variance. Based on Rubin's rules, the imputed indicator cannot have a variance that is smaller than it would have if it were collected directly in the target survey.

 $^{^{35}\}mathrm{Van}$ Buuren (2018) notes how keeping βs fixed across imputations can lead to improper imputations since the goal of MI is not to minimize the MSE.

Figure 6: Difference in noise estimation under MI and parametric bootstrap

Note: Data are generated as described in 4.1. MSE is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5.

A simulation is run to test how aligned to the truth are the two methods – Rubin's rules and parametric bootstrap – for noise estimation. Populations of 20,000 observations are generated following the model's assumptions as illustrated in Section 4.1. A random sample of 30 percent is marked as the target survey, and a random sample of 20 percent is marked as the training data. To compare the noise estimates of each method, 10,000 populations are created. Under each population a new error is drawn from its assumed distribution and predictions are made, as well as noise is estimated – following a parametric bootstrap (González-Manteiga et al., 2008) or following Rubin's rules (Rubin, 1987). Both methods here appear to overestimate the true MSE.³⁶ The reason for the overestimation is that both methods measure the noise based on the target survey which is smaller than the population. The MSE is equal to the sum of the squared bias and the variance of the indicator of interest. Since both methods are unbiased, it mostly boils down to the variance and given that the target survey is much smaller than the population the variance parameter of the MSE is larger (see Annex 6.2).

4.3 Imputations under biased samples

Survey-to-survey (S2S) imputation methods are often applied to biased samples, such as when specific population segments are systematically underrepresented. To address this issue, practitioners commonly attempt two corrective strategies: re-weighting the sample and standardizing covariates. This section examines these methods and evaluates their effectiveness using simulations.

4.3.1 Extracting samples

Under each of the 1,000 populations created in Section 4.1, the following samples are taken:

The method's MSE/variance is the average from the 10,000 imputations. The empirical MSE is: $MSE = \sum_{b=1}^{\infty} \frac{(\hat{\tau}_b - \tau_b)^2}{B}$ where τ is the indicator of interest and B is the total number of bootstrap populations.

- 1. Random sample: a 20 percent simple random sample (SRS) of the population.
- 2. Bottom biased sample: here, the poorest quintile is purposely undersampled.
 - (a) For the top 80, take a SRS for each centile, c.
 - (b) For the bottom 20, take a c percent as a sample. This means that for the 20th centile an SRS sample of 20% is taken, for the 19th centile, 19 percent is sampled, for the 18th centile, 18 percent is sampled, and so forth.
- 3. Biased sample top and bottom: Create a biased sample, where the poorest quintile and the richest quintile are purposely under sampled.
 - (a) For the top 20, sample 100 c percent. This means that for the 80th centile, an SRS sample of 20 percent is taken, for the 81st centile a sample of 19 percent is taken, for the 82nd centile, 18 percent is sampled, and so forth. Note that we do not sample the top 1 percent.
 - (b) For the bottom 20, we sample c percent. This means that for the 20th centile an SRS sample of 20 percent is taken, for the 19th centile, 19 percent is sampled, for the 18th centile, 18 percent is sampled, and so forth. Note that the bottom 1 percent is not sampled.
 - (c) For all other centiles (21-79), an SRS sample by centile is taken.

4.3.2 Re-weighting the target sample

Re-weighting involves adjusting the sampling weights in the target survey to align its characteristics with those of the overall population. One common approach, minimum cross-entropy,³⁷ modifies the weights to match constraints like the mean or variance of key covariates. While theoretically sound, re-weighting assumes that adjusted weights can restore the representativeness of a biased sample.

To test the problems with under-sampling and re-weighting, two sampling scenarios are used as an illustrative example. The samples are taken from a population created as described in section 4.3.1. For the re-weighting exercise, three possible re-weighting scenarios are considered:³⁸

- 1. Covariate match: The mean of each covariate from the simple random sample is used as a benchmark to adjust the weights of the biased samples. Re-weighting is performed using minimum cross-entropy, which modifies the prior weights as minimally as possible to ensure that the adjusted sample meets the specified constraints, namely the covariate means.
- 2. Linear fit match: The mean of the model's linear fit from the simple random sample is used to adjust the weights of the biased samples. This calibration is performed using minimum cross-entropy, ensuring that the prior weights are modified as minimally as necessary to satisfy the constraint of matching the linear fit's mean.
- 3. Linear fit & variance match: The linear fit's mean and variance of the simple random sample are used to calibrate the weights of the biased samples. Weights are calibrated using minimum cross-entropy to adjust prior weights by the smallest amount possible so that the constraints (i.e., the mean and the variance of the linear fit) are satisfied.³⁹

³⁷When the original sampling weights of the target survey are ignored, it is assumed that every observation had a similar probability of being selected, then the re-weighting method is max-entropy (see Golan, Judge and Miller (1996) for a more thorough exposition of maximum entropy).

³⁸Re-weighting is done using Stata's user created command wentropy (Corral Rodas & Salcedo DuBois, 2022). The command is used instead of Wittenberg (2010) maxentropy command due to wentropy providing solutions to instances where maxentropy fails.

³⁹Since the simulated data does not have sampling weights, the priors are equal to 1 and thus minimum cross-entropy is in reality max-entropy in this instance.

4.3.3 Standardizing covariates

Standardizing covariates offers a straightforward approach to addressing disparities between survey samples. Using data from the source survey (or training data), where the model is initially estimated, practitioners can leverage the known means and variances of each covariate to adjust the corresponding variables in the target survey. This alignment ensures that the mean and variance of covariates in the imputed data match those of the source data, enhancing comparability. H.-A. H. Dang et al. (2014) advocate this approach as a practical solution for reconciling differences between survey samples. Their application of the method to Jordanian data suggests that it can yield valid results under certain conditions.

However, the method's efficacy depends on the assumption that covariates follow a normal distribution—an assumption that may not hold universally. To assess the robustness of this approach, the samples described in Section 4.3.1 were used, despite the fact that the covariates in this case deviate from normality. The adjustment process involves scaling and centering the covariates from the target survey so that their means and variances align with those of the source survey, as demonstrated in the following formula:

$$x_{target}^{'} = (x_{target} - \hat{\mu}_{x_{target}}) \frac{\hat{\sigma}_{x}}{\hat{\sigma}_{x_{target}}} + \hat{\mu}_{x}$$

Two standardization scenarios are implemented:

- 1. **Standardize each X**: The **mean** of each covariate from the simple random sample is used as a benchmark to adjust the **mean** and **standard deviation** of the biased samples.
- 2. **Standardize XB**: The linear fit's $(\hat{y} = x\hat{\beta})$ mean and standard deviation of the simple random sample are used to standardize the linear fit of the biased samples.

4.3.4 Results

To isolate the impact of biased sampling and assess the effectiveness of correction methods, the analysis avoids introducing additional sources of error by using the true values for the coefficients (β) and error distribution (σ_e^2) applied in Section 4.1. Hence, instead of fitting a model, the actual values of the linear fit from Eq. 6 are used. For each sample created in Section 4.3.1, 100 vectors were generated by combining the true β with a randomly drawn error term $e_i \sim N(0, 0.5^2)$ for every observation. Poverty and Gini coefficients were then calculated for each of these 100 vectors using either re-weighted survey weights or standardized covariates. The final estimates were obtained by averaging across the 100 simulations, and bias was determined by comparing these estimates to the true population values across the 1,000 populations, resulting in a robust evaluation of the methods.

Results and Discussion

Standard sampling bias-correction techniques, such as re-weighting to match population means, may be insufficient when source and target surveys differ fundamentally. This limitation becomes evident in bottom-biased samples, where the poorest segments of the population were underrepresented, leading to systematic underestimation of poverty levels across the welfare distribution (Figure 7, "unadjusted"). Efforts to address this bias by adjusting survey weights to match covariate means had no noticeable

⁴⁰Note that the true value is used and not its estimate $\hat{\sigma}_e^2$.

effect ("Match X").⁴¹ Incorporating additional constraints to the maximum entropy algorithm, such as aligning both means and variances of covariates, provided marginal improvements but failed to address the core issue of sampling distortion ("Match X and var[X]").

Figure 7: Bias in FGT0 under bottom biased samples (Sec 4.3.1) and different correction measures

Note: Target samples are generated as described in 4.3.1. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5.

⁴¹Since the weights assume no priors, these are in fact calculated using maximum entropy. When prior weights are considered the method adjusts the existing weights by the smallest possible amount to ensure the constraints match, this is known as cross-entropy.

Figure 8: Bias in FGT0 under top and bottom biased samples (Sec 4.3.1) and different correction measures

Note: Target samples are generated as described in 4.3.1. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5.

A more effective approach involved aligning the mean of the linear fit of the model (\hat{y}) in the target data with the average linear fit of the source data ("Match XB"). This adjustment yielded significantly improved estimates, as did standardizing individual covariates ("Standardize each X"). However, the best performing estimates incorporate the mean of the linear fit and the variance of the linear fit ("Match XB and var[XB]" and "Standardize XB"). These methods effectively address the interaction between mean and variance in determining poverty estimates, as outlined in Equation 5.

For top-and-bottom-biased samples, where both the poorest and wealthiest households were undersampled, the performance of the correction methods mirrored the earlier findings (Figure 8). Unadjusted estimates again misrepresented poverty and inequality, while methods that accounted for the mean and variance of the linear fit provided more accurate results. Importantly, results varied significantly across the welfare distribution. Biases that appeared negligible at certain thresholds, such as the 40th percentile, became pronounced elsewhere, highlighting the importance of evaluating imputations across the full distribution.

Implications for Gini Estimation

The challenges extend to inequality measurement. Biasing a sample by excluding low-income households reduces var $[x\beta]$, which standard re-weighting methods fail to address (i.e. only addressing differences in the mean). This limitation results in downward-biased Gini estimates (Figure 9). The issue is even more pronounced for top-and-bottom-biased samples, where var $[x\beta]$ is further diminished (Figure 10). Adjusting weights to align both the mean and variance of $x\beta$ with those of the source data significantly improved the accuracy of Gini estimates.

Match X

Match X and var[X]

Match XB

Match XB and var[XB]

Standardize XB

Standardize each X

Unadjusted

Figure 9: Bias in Gini under bottom biased samples (Sec 4.3.1) and different correction measures

Note: Target samples are generated as described in 4.3.1. Bias is assessed by comparing the mean predicted Gini against the mean Gini of the populations generated (i.e., the truth).

-.5

Bias (Gini points)

-1

.5

Figure 10: Bias in Gini under top and bottom biased samples (Sec 4.3.1) and different correction measures

Note: Target samples are generated as described in 4.3.1. Bias is assessed by comparing the mean predicted Gini against the mean Gini of the populations generated (i.e., the truth).

4.4 Imputation Over Time

Despite the encouraging results for correcting biased cross-sectional samples, these methods cannot be directly applied to S2S imputation across time. This limitation arises from the unavailability of true or reliable estimates for the mean and variance of the dependent variable in the target period. Without these benchmarks, the ability to standardize or re-weight effectively diminishes, compounding the challenges of imputing poverty estimates in dynamic contexts.

For accurate poverty measurement, countries frequently resort to collect surveys on the living standards of its population. These surveys are costly and their implementation is complex. Thus, data is infrequently collected for the world's poorest economies. It is for these instances where S2S's appeal is heightened. The main applications of S2S over time attempt to:

- Produce a poverty estimate that is comparable. There are many instances where a country may
 collect data on living standards, however due to any number of issues, the welfare aggregate is not
 comparable to a previous one. S2S has been applied in these scenarios by training a model on the
 original welfare aggregate and applying this to more recent survey (see the imputation of Zambia

 Yoshida and Aron (2024)).⁴²
- 2. Produce a poverty estimate when data on living standards is unavailable. In most instances where S2S is applied the country has recently collected data that does not include a comparable welfare aggregate, e.g., a recent Demographic Health Survey or a Labor Force Survey. In these instances, the model is trained on the last existing living standards survey with an adequate welfare aggregate and its estimated parameters are applied to the more recent survey i.e. the target survey. The target survey is assumed to be nationally representative, but this is not always the case for example, due to sampling bias (see the work of Roy and Van Der Weide (2022)).

S2S over time introduces additional assumptions beyond those outlined in section 3.1. A key assumption when imputing to a different period than the one used to train the model is that the estimated parameters remain constant over time (Newhouse et al., 2014). This implies that the relationship between covariates and the dependent variable is stable, and the distribution of unobservables does not change. Essentially, this assumes that any shifts in the welfare distribution are entirely driven by changes in the covariates.

Early work on S2S (Stifel & Christiaensen, 2007) often recommended selecting covariates that may vary over time but maintain a stable relationship with welfare—a challenging criterion to meet in practice. Furthermore, restricting the eligible covariates for the model can result in insufficient explanation of the variation in welfare. This, in turn, increases reliance on the distribution of unobservables, which is based on the training data and may not reflect the target period accurately.

In this section the discussion focuses on how changes in the parameters can affect the poverty predictions. Through simulated data components can be adjusted one at a time to identify how these may impact predictions. In practice, it is possible that any of the parameters used for the imputation (β, σ) has changed over time, however it is impossible to know if changes compound or cancel each other. This requires careful consideration when applying these methods and transparent communication so potential users, including policy makers, fully comprehend the limitations of the predictions.

⁴²Note that this could also be done backwards. If the preferred welfare aggregate corresponds to the new survey then the model could be trained on the new data and its parameters applied to the old data to predict poverty (see the imputation of Nigeria – Lain et al. (2022))

4.4.1 Changes in the Error's Distribution

It is possible, though unlikely, for the relationship between covariates and the dependent variable to remain constant over time while poverty levels still change. The change can be driven entirely by changes in the distribution of the unobservables, σ_e^2 . Changes in the unobservables also implies a change in inequality. To illustrate this, the same population created in section 4.1 is used. The simulation consists in keeping the linear fit constant and only change the value of σ_e . This is done across the 1,000 populations where predictions are obtained from Eq. 4.

Results for the simulation are presented in Figure 11, and illustrate how poverty rates change under different lines determined at the percentile of the original welfare. Hence, if the original poverty rate was 20 percent, and using that same threshold when increasing the value of σ_e by 20 percent, the resulting poverty rate would be biased upwards by over 2 percentage points. At higher thresholds the gap between the original poverty rate and the new rates is less noticeable, although still present. Notably, estimates at the 50th percentile show no bias, reinforcing the importance of evaluating poverty predictions across the full welfare distribution.

Figure 11: Change in poverty prediction if σ changes by x%

Note: Target samples are generated as described in 4.3.1, only the SRS samples are used for this simulation. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5. Predictions are obtained following Eq. 4, where the value for σ_e^2 is changed.

4.4.2 Changes in the Constant Term

When conducting imputations over time, changes to the constant term are seldom considered. Failing to capture a change in the constant term can lead to relatively stagnant predictions over time. It will also lead to predictions that are considerably off the mark. In Figure 12 the true constant term is adjusted by x% in the data generating process for the target data. Even slight changes lead to considerable differences in poverty. Imagine a scenario where transformed welfare for everyone has increased by 1% (Under GDP growth, for example.), yet everything else about the welfare distribution remains the same. This would entail a neutral distribution shift to the right, and thus everyone's transformed welfare is

improved by 1%. However, relying on a model fit on data before the increase – even if everything else remains the same – would use a constant term that is lower than what it really is after the increase in welfare. This would lead to imputations that considerably overestimate poverty for the new period.

Figure 12: Resulting poverty prediction if constant term changes by x%

Source: Based on simulated data illustrated in Section 4.1. Bias is assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5. Predictions are obtained following Eq. 4.

4.4.3 Omitted Variables

Omitted variables and endogeneity have traditionally not been major concerns in predictions such as S2S or small area estimation. This is because, in the current period, any omitted variables are accounted for by the constant term, which adjusts to ensure that OLS predictions of the dependent variable remain unbiased. However, over time, the effects of omitted variables can influence predictions considerably. For a more detailed discussion, see the annex (Annex 6.1).

The simulations presented here take as an example the S2S application of Afghanistan (Barriga-Cabanillas et al., 2023). The authors presume that the decrease in poverty predicted in rural areas is driven by a reduction in conflict. The models do not control for conflict. Additionally, the authors follow recommendations of the SWIFT program and include "fast-changing consumption variables to better capture welfare changes during shocks" (Barriga-Cabanillas et al. 2023, p6). Among the variables the authors include in the model are a list of food consumption dummies that include meat, eggs, and chocolate. However, it is quite likely that the model used by the authors suffers from omitted variable bias. Mainly, conflict is likely negatively correlated to expenditure and is also likely to be negatively correlated to these consumption dummies as it may affect the availability of these goods. The discussion in the annex (Annex 6.1) illustrates that in this case, the omission of conflict from the model is likely to lead to biased predicted estimates of poverty due to omitted variable bias (OVB).

To simulate the potential impact of omitted variable bias on poverty predictions over time the data simulated in section 4.1 is expanded to include 2 new covariates:

- 1. Conflict. Conflict is assumed to be negatively correlated with welfare with a coefficient equal to -0.3.
 - (a) It is simulated as a binary variable taking value 1 when a random uniform number between 0 and 1 is less than c = 0.4
- 2. Eggs purchased. The variable is assumed to be positively correlated to welfare with a coefficient equal to 0.4.
 - (a) The variable is simulated as binary, taking the value 1 if a randomly drawn uniform number between 0 and 1 is less than $0.5x + 0.5 \times Conflict$, where x = 1 in the baseline. This data generation process (DGP) reflects the negative correlation between conflict and the likelihood of purchasing eggs but also that it is not just a function of conflict but of x as well.

Under the baseline simulation, the value for x=1 and c=0.4. Welfare is simulated assuming the true DGP, and thus includes conflict and eggs with their true coefficients. The prediction model is produced omitting conflict and is executed using the complete data to avoid other potential sources of bias (Table 1). As presented in Annex 6.1, the coefficient on eggs is upward biased. Due to the omission of conflict, the constant term of the regression is downward biased. The adjustment in the constant term ensures that the model's prediction of the dependent variable is unbiased. As can be seen, omitting conflict from the model also leads to a larger RMSE than the truth, which will likely affect poverty predictions over time. Nevertheless, for predictions to the same period OVB has little if any impact (Figure 13).⁴³

Table 1: Omitted variable model comparison

	OVB Model	True Model
x1	0.1022	0.1017
x2	0.4965	0.4970
x3	-0.2492	-0.2481
x4	-0.1997	-0.1995
x5	-0.1423	-0.1462
eggs	0.5745	0.3927
conflict		-0.3182
Intercept	2.8264	3.0092
R2	0.5327	0.5634
RMSE	0.5120	0.4949
Observations	20,000	20,000
\hat{y}	2.9826	2.9826

⁴³The reason for this is that even in the presence of OVB var $\left[x\hat{\beta}\right] + \hat{\sigma}_e^2$ will be the same to the one where conflict is present and since \hat{y} is also equal poverty predictions in the same period are unaffected.

Figure 13: Resulting poverty prediction under OVB in the same period

Source: Based on simulated data illustrated in Section 4.1 with added covariates. Predictions are assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5.

For the simulation, different values of c and x are determined, which yield a change in conflict likelihood and egg purchases. No other covariate is changed. Using the adjusted covariates, the true resulting welfare is calculated – including conflict and the correct coefficients. Then the model parameters obtained from the original data, excluding conflict, is used to obtain predictions of poverty across the welfare distribution. As can be seen in the discussion in the Annex 6.1, the direction of the prediction bias is not immediately clear. In many instances the predictions will suggest an increase in poverty whereas in reality poverty has dropped. In other instances it may underestimate the total change.

Under the assumed data-generating process (DGP), imagine that conflict decreases by 50% (c=0.2), and egg purchases decline by 30% (x=0.7) due to factors unrelated to conflict, for example changes in preferences. ⁴⁴ In such a case, S2S predictions over time would likely show an increase in poverty based on most thresholds. However, in reality, poverty would have actually decreased (Figure 14). This is just an illustrative example where the purpose is to illustrate the potential problems encountered when imputing over time, particularly in instances that a major shock has occurred in between the year of the actual welfare data and the target data. The inclusion of "fast-changing" consumption variables as covariates is likely to introduce OVB to prediction models for imputations to other periods unless the shock only affects welfare but not individual components of welfare.

 $^{^{44}}$ Note that because of the relationship to conflict egg purchases do not actually drop by 30% since it is offset by the decrease in conflict.

Figure 14: Resulting poverty prediction under OVB in a different period

Source: Based on simulated data illustrated in Section 4.1 with added covariates. Predictions are assessed at various poverty lines across the welfare distribution. Specifically, these lines correspond to percentiles that are multiples of 5.

The impact of omitted variable bias extends beyond "fast-changing" consumption variables. Consider a model that includes an indicator for subsistence farmers, who are more likely to be poor and thus negatively correlated with welfare. Now imagine a massive drought occurs between the year the model was trained and the target year. This drought could reduce the number of people farming. If those former farmers are unable to meet their needs, the model might underestimate poverty because it omitted the effect of the drought. Another example involves the omission of remittances which are positively related to welfare and likely positively related to "fast-changing" consumption variables, such as eggs or meat. Under this instance the coefficient on eggs would be upward biased, and since the impact of the omitted variable will be absorbed by the intercept it will likely also be upward biased. Thus, changes in remittances that are not captured by the model are likely to lead to biased predictions.

The magnitude and direction of the bias that arises due to OVB is often not clear and could compound other biases just as easily as it could be offset by other biases. Nevertheless, unless actual welfare data are available for the imputed year it is impossible to truly know how the model is performing.

5 Conclusions

This paper has highlighted both the potential and the challenges of survey-to-survey (S2S) imputation for poverty prediction, emphasizing the need for cautious application and robust methodological development. While S2S has several limitations, there are scenarios where it may be the best available alternative, particularly when real-time poverty estimates are needed but household surveys are outdated, unavailable, or inconsistent **and** methods that rely on real GDP growth are not feasible. In some cases, S2S may offer more reliable estimates than alternatives such as extrapolations based purely on national accounts, which often diverge from household survey-based welfare measures. The question is

not just whether S2S introduces bias, but how its biases compare to those of alternative methods—or the default of producing no estimate at all.

Based on evidence from model-based simulations that reflect the method's assumed data-generating process, the following recommendations emerge:

- Understand and Address Bias Sources: Practitioners should assess changes in error distributions and parameter instability, as these are key sources of prediction bias. This is especially critical during periods of economic transition. Fast-moving predictors should not be relied upon without thorough validation to mitigate omitted variable bias and other factors affecting the distribution of unobservables.
- 2. Enhance Validation Practices: Validation efforts should go beyond same-period tests and include cross-time validation to assess robustness against economic and structural changes. Practitioners should also evaluate predictions across multiple poverty thresholds to capture distributional nuances. Additionally, external validation—comparing results with broader indicators such as GDP and unemployment, while incorporating country-specific knowledge—enhances reliability.
- 3. Incorporate Structural and Temporal Dynamics: Methods that allow for time-varying parameters and account for structural changes in predictor-welfare relationships should be considered. For instance, shifting the constant term by observed growth between survey periods can help adjust for evolving dynamics. Combining multiple data sources can further improve the robustness and flexibility of predictions.
- 4. Promote Transparent Communication: The limitations of S2S imputation should be clearly communicated, particularly in contexts with high economic volatility. Uncertainty intervals should go beyond noise estimates and incorporate scenario analyses to contextualize findings for stakeholders. This could involve adjusting key parameters by a certain percentage to illustrate how results may shift under different assumptions.
- 5. Exercise Caution in Interpretation: S2S methods should be applied with explicit acknowledgment of their limitations, particularly for tracking poverty over long periods. Transparency is essential—clearly stating that the estimates are predicted rather than derived from an actual household survey ensures proper interpretation and avoids misrepresentation.
- 6. **Invest in Data and Research:** Greater investment in regular and high-quality data collection is essential for reducing reliance on imputation and improving poverty measurement.
- 7. Foster Methodological Transparency: Policymakers should demand clear and transparent reporting of assumptions, validation efforts, and uncertainties in S2S applications. Practitioners should clearly document how imputations are implemented, including how errors and parameters are applied.

By recognizing both the challenges and the practical value of S2S, we can better position it as a useful tool for addressing poverty data gaps while maintaining the rigor needed for informed policy decisions. S2S should not be seen as an automatic substitute for household surveys but as a tool that—when carefully applied and validated—can provide meaningful insights when other data sources are unavailable or unreliable. The appropriate use of S2S is not just about improving estimates but also about demonstrating when cruder alternatives may be far more misleading.

References

- Allan, F., & Wishart, J. (1930). A method of estimating the yield of a missing plot in field experimental work. The Journal of Agricultural Science, 20(3), 399–406.
- Arellano, M., & Meghir, C. (1992). Female labour supply and on-the-job search: An empirical model estimated using complementary data sets. *The Review of Economic Studies*, 59(3), 537–559.
- Bank, W. (2020). Poverty and shared prosperity 2020: Reversals of fortune. https://doi.org/10.1596/978-1-4648-1602-4
- Barriga-Cabanillas, O., Chawla, P., Redaelli, S., & Yoshida, N. (2023). *Updating poverty in afghanistan using the swift-plus methodology* (tech. rep.). The World Bank.
- Battese, G. E. (1997). A note on the estimation of cobb-douglas production functions when some explanatory variables have zero values. *Journal of agricultural Economics*, 48(1-3), 250–252.
- Beegle, K., De Weerdt, J., Friedman, J., & Gibson, J. (2012). Methods of household consumption measurement through surveys: Experimental results from tanzania. *Journal of development Economics*, 98(1), 3–18.
- Bhalla, S., Bhasin, K., & Virmani, M. A. (2022). Pandemic, poverty, and inequality: Evidence from india. International Monetary Fund.
- Bourguignon, F., Ferreira, F. H., & Leite, P. G. (2008). Beyond oaxaca-blinder: Accounting for differences in household income distributions. *The Journal of Economic Inequality*, 6, 117–148.
- Cawley, G. C., & Talbot, N. L. (2010). On over-fitting in model selection and subsequent selection bias in performance evaluation. *The Journal of Machine Learning Research*, 11, 2079–2107.
- Christiaensen, L., Lanjouw, P., Luoto, J., & Stifel, D. (2012). Small area estimation-based prediction methods to track poverty: Validation and applications. *The Journal of Economic Inequality*, 10(2), 267–297.
- Corral, P., Molina, I., Cojocaru, A., & Segovia, S. (2022). Guidelines to small area estimation for poverty mapping. World Bank Washington.
- Corral Rodas, P., Molina, I., & Nguyen, M. (2021). Pull your small area estimates up by the bootstraps. Journal of Statistical Computation and Simulation, 91(16), 3304–3357.
- Corral Rodas, P., & Salcedo DuBois, R. (2022). wentropy.
- Crow, E. L., & Shimizu, K. (1987). Lognormal distributions: Theory and applications. Marcel Dekker New York.
- Dang, H.-A., Jolliffe, D., & Carletto, C. (2017). Data gaps, data incomparability, and data imputation: A review of poverty measurement methods for data-scarce environments. The World Bank. https://doi.org/10.1596/1813-9450-8282
- Dang, H.-A. H., Kilic, T., Carletto, C., & Abanokova, K. (2021). Poverty imputation in contexts without consumption data: A revisit with further refinements.
- Dang, H.-A. H., Lanjouw, P. F., & Serajuddin, U. (2014). Updating poverty estimates at frequent intervals in the absence of consumption data: Methods and illustration with reference to a middle-income country. The World Bank. https://doi.org/10.1596/1813-9450-7043
- Deaton, A. (2003). Adjusted indian poverty estimates for 1999-2000. *Economic and political Weekly*, 322–326.
- Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the royal statistical society: series B (methodological)*, 39(1), 1–22.
- Edochie, I. N., Freije-Rodriguez, S., Lakner, C., Moreno Herrera, L., Newhouse, D. L., Sinha Roy, S., & Yonzan, N. (2022). What do we know about poverty in india in 2017/18?
- Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2003). Micro–level estimation of poverty and inequality. *Econometrica*, 71(1), 355–364.

- Elbers, C., Lanjouw, J. O., & Lanjouw, P. (2002). Micro-level estimation of welfare. World Bank Policy Research Working Paper, (2911).
- González-Manteiga, W., Lombardía, M. J., Molina, I., Morales, D., & Santamaría, L. (2008). Bootstrap mean squared error of a small-area eblup. *Journal of Statistical Computation and Simulation*, 78(5), 443–462. https://doi.org/10.1080/10629360600821768
- Harvey, A. C. (1976). Estimating regression models with multiplicative heteroscedasticity. *Econometrica:* journal of the Econometric Society, 461–465.
- Hentschel, J., Lanjouw, J. O., Lanjouw, P., & Poggi, J. (1998). Combining census and survey data to study spatial dimensions of poverty. World Bank Policy Research Working Paper, (1928).
- Lain, J. W., Schoch, M., & Vishwanath, T. (2022). Estimating a poverty trend for nigeria between 2009 and 2019 (tech. rep.). The World Bank.
- Lanjouw, P., Schirmer, P. D., et al. (2024). Imputation-based poverty monitoring in india post-2011.
- Ligon, E., Christiaensen, L., & Sohnesen, T. (2020). Should consumption sub-aggregates be used to measure poverty? (Tech. rep.). Department of Agricultural & Resource Economics, UC Berkeley.
- Lucchetti, L., Corral, P., Ham, A., & Garriga, S. (2024). An application of lasso and multiple imputation techniques to income dynamics with cross-sectional data. *Review of Income and Wealth*.
- Madow, W. G., Nisselson, H., Olkin, I., Rubin, D. B., et al. (1983). Incomplete data in sample surveys. (No Title).
- Mahler, D., Yonzan, N., Lakner, C., & Castaneda Aguilar, H., R.A. abd Wu. (2021, June). Updated estimates of the impact of covid-19 on global poverty: Turning the corner on the pandemic in 2021? https://blogs.worldbank.org/opendata/updated-estimates-impact-covid-19-global-poverty-turning-corner-pandemic-2021
- Maximum entropy econometrics: Robust estimation with limited data. (1996). Chichester [England]; New York: Wiley, c1996.
- Molina, I., & Rao, J. N. (2010). Small area estimation of poverty indicators. *Canadian Journal of statistics*, 38(3), 369–385.
- Newhouse, D. L., Shivakumaran, S., Takamatsu, S., & Yoshida, N. (2014). How survey-to-survey imputation can fail. World Bank Policy Research Working Paper, (6961).
- Newhouse, D. L., & Vyas, P. (2019). Estimating poverty in india without expenditure data: A survey-to-survey imputation approach. World Bank Policy Research Working Paper, (8878).
- Nguyen, M., Corral Rodas, P. A., Azevedo, J. P., & Zhao, Q. (2018). Sae: A stata package for unit level small area estimation. World Bank Policy Research Working Paper, (8630).
- Prydz, E. B., Jolliffe, D., & Serajuddin, U. (2022). Disparities in assessments of living standards using national accounts and household surveys. *Review of Income and Wealth*, 68, S385–S420.
- Rao, J. (2005). Small area estimation (Vol. 331). John Wiley & Sons.
- Rao, J., & Molina, I. (2015). Small area estimation (2nd). John Wiley & Sons.
- Ravallion, M. (2003). Measuring aggregate welfare in developing countries: How well do national accounts and surveys agree? *Review of Economics and Statistics*, 85(3), 645–652.
- Roy, S., & Van Der Weide, R. (2022). Poverty in india has declined over the last decade but not as much as previously thought.
- Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. John Wiley & Sons.
- Simler, K., Harrower, S., & Massingarela, C. (2004). Estimating poverty indices from simple indicator surveys. conference on âGrowth, poverty reduction and human development in Africa,â Centre for the Study of African Economies, University of Oxford, 21–21.
- StataCorp. (2023). Stata 18 base reference manual. College Station, TX, Stata Press.
- Stifel, D., & Christiaensen, L. (2007). Tracking poverty over time in the absence of comparable consumption data. The World Bank Economic Review, 21(2), 317–341.

- Van Buuren, S. (2018). Flexible imputation of missing data. CRC press.
- Wittenberg, M. (2010). An introduction to maximum entropy and minimum cross-entropy estimation using stata. The Stata Journal, 10(3), 315-330.
- Wooldridge, J. M. (2009). *Introductory econometrics: A modern approach* (4th). South-Western, Cengage Learning.
- World Food Programme (WFP). (2023, May). Wfp afghanistan: Situation report, 24 may 2023 (Accessed: 2024-12-06). https://reliefweb.int/report/afghanistan/wfp-afghanistan-situation-report-24-may-2023
- Yoshida, N., Chen, X., Takamatsu, S., Yoshimura, K., Malgioglio, S., & Shivakumaran, S. (2021). The concept and empirical evidence of swift methodology. *unpublished manuscript*.
- Yoshida, N., & Aron, D. V. (2024). Enabling high-frequency and real-time poverty monitoring in the developing world with swift (survey of wellbeing via instant and frequent tracking).
- Yoshida, N., Takamatsu, S., Yoshimura, K., Aron, D. V., Chen, X., Malgioglio, S., Shivakumaran, S., & Zhang, K. (2022). The concept and empirical evidence of swift methodology. World Bank.
- Zhao, Q. (2006). User manual for povmap. World Bank. http://siteresources. worldbank. org/INTPGI/Resources/342674-1092157888460/Zhao_ ManualPovMap. pdf.

6 Annex

6.1 The Case of Afghanistan - Omitted Variable Bias

The Afghanistan team's discussion inadvertently demonstrates why survey-to-survey imputation across time periods requires careful consideration. While Barriga-Cabanillas et al. (2023) report overall poverty reduction driven by rural improvements—despite GDP contraction, reduced aid, and a locust outbreak—they attribute this to decreased conflict. However, since conflict is not explicitly included in their model, its effects would only manifest through changes in other variables. This potential omitted variable bias raises concerns about the model's reliability for temporal predictions. When imputing over time, it is possible for multiple issues to arise. Since true expenditure is not available it is impossible to know if the model's biases cancel eachother out or compound.

A key aspect of the team's imputation is the inclusion of fast changing consumption variables, such as an indicator of whether or not the household consumed eggs over the past week. Barriga-Cabanillas et al. (2023, p2) follow the proposed approach from Yoshida et al. (2022) and argue that these dummies are included "to better capture welfare changes in a context where large economic shocks have occurred". This is what the authors refer to as the "SWIFT Plus methodology". Nevertheless, these variables are likely subject to omitted variable bias which can lead to biased estimates of the coefficients leading to biased poverty measures. In the case of the Afghanistan imputation the omitted variable is conflict. In others it may be the introduction of a cash transfer, for example.

If conflict is negatively related to expenditure and negatively related to consumption of certain goods, such as meat and eggs, this would lead to coefficients that are upward biased. Assume the following, simplified, model:

$$Y = \beta_0 + \beta_1 Eggs + \beta_2 Conflict + \varepsilon \tag{7}$$

By omitting conflict the model is now:

$$Y = \tilde{\beta}_0 + \tilde{\beta}_1 E g g s + u \tag{8}$$

where $u = \beta_2 Conflict + \varepsilon$. In a model where conflict is not included $\tilde{\beta}_1$ would be greater than β_1 . The OLS estimator for $\tilde{\beta}_1$ is given by:

$$\tilde{\beta}_1 = \frac{\text{Cov}(Eggs, Y)}{\text{Var}[Eggs]}$$

$$\tilde{\beta}_{1} = \frac{\operatorname{Cov}\left(Eggs, \beta_{0} + \beta_{1}Eggs + \beta_{2}Conflict + \varepsilon\right)}{\operatorname{Var}\left[Eggs\right]}$$

and relying on the linearity of covariance:

$$\tilde{\beta}_{1} = \beta_{1} + \frac{\beta_{2} \text{Cov} \left(Eggs, Conflict\right)}{\text{Var} \left[Eggs\right]}$$

 $^{^{45}}$ Note that nothing to control for those shocks was included in the original model.

Since we assume that conflict and welfare are negatively correlated, and negatively correlated with the likelihood of buying eggs, then we know that $\beta_2 < 0$ and that $\text{Cov}\left(Eggs, Conflict\right) < 0$. This would lead to $\frac{\beta_2 \text{Cov}(Eggs, Conflict)}{\text{Var}[Eggs]} > 0$ which means that $\tilde{\beta}_1$ is upward biased.

In addition, the intercept will be underestimated. The intercept is equal to:

$$\tilde{\beta}_0 = \bar{y} - \tilde{\beta}_1 \overline{Eggs}$$

$$\tilde{\beta}_0 = \beta_0 + \beta_1 \overline{Eggs} + \beta_2 \overline{Conflict} - \tilde{\beta}_1 \overline{Eggs}$$

$$\tilde{\beta}_0 = \beta_0 + \beta_2 \overline{Conflict} + (\beta_1 - \tilde{\beta}_1) \overline{Eggs} \tag{9}$$

we know that $\beta_2 \stackrel{.}{\sim} 0$, and that $(\beta_1 - \tilde{\beta}_1) < 0$. This suggest that the intercept term is downward biased.

When predicting over time, the direction of the prediction bias is dictated by changes in conflict and the share of households who purchased eggs. Any change in conflict, will lead to a change in egg purchases and expenditure. The direction of the bias in prediction is undetermined:

$$E\left[\bar{\tilde{y}} - \bar{y}\right] = E\left[\tilde{\beta}_0 + \tilde{\beta}_1 \overline{Eggs'} - \beta_0 - \beta_1 \overline{Eggs'} - \beta_2 \overline{Conflict'}\right]$$

replace $\tilde{\beta}_0$ with the value of Eq. 9, and re-arrange:

$$E\left[\bar{\bar{y}} - \bar{y}\right] = E\left[\beta_2 \left(\overline{Conflict} - \overline{Conflict'}\right) + \left(\beta_1 - \tilde{\beta}_1\right) \left(\overline{Eggs} - \overline{Eggs'}\right)\right]$$

then a prediction will be **upward biased** if:

$$\beta_2 \left(\overline{Conflict} - \overline{Conflict'} \right) > \left(\tilde{\beta}_1 - \beta_1 \right) \left(\overline{Eggs} - \overline{Eggs'} \right)$$

and downward biased if:

$$\beta_2 \left(\overline{Conflict} - \overline{Conflict'} \right) < \left(\tilde{\beta}_1 - \beta_1 \right) \left(\overline{Eggs} - \overline{Eggs'} \right)$$

and while they could cancel eachother out, it is unlikely.

Note that since poverty also depends on the model's predicted root mean squared error (RMSE), which would change over time since it is a function of the omitted variable – conflict – then there are 2 sources of bias. The first is due to the egg coefficient and the intercept, and the second is due to the difference in the distribution of errors which changes due to the omitted variable. A decrease in conflict would potentially lead to a shrinking of the RMSE, lowering the poverty likelihood of households but would be ignored in the Afghanistan exercise.

6.2 Sample Size and MSE

The MSE of an estimator τ is defined as:

$$MSE(\hat{\tau}) = Bias(\bar{\tau})^2 + var(\bar{\tau})$$

Under the imputation methods used in the example the bias is assumed to be 0. Thus, the MSE is equal to var $(\bar{\tau})$, which is equal to:

$$\operatorname{var}(\bar{\tau}) = \operatorname{var}\left(\frac{1}{N}\sum_{i=1}^{N} \tau_i\right)$$

$$\operatorname{var}\left(\bar{\tau}\right) = \frac{1}{N^2} \operatorname{var}\left(\sum_{i=1}^{N} \tau_i\right)$$

Consequently, the variance of an indicator is dependent on the true finite population's size. However, since the methods assess the variance based on the target data (6,000) and not the true population (20,000) the estimated variance will be larger than the true population variance which leads to a larger estimate of the MSE.