Nome e cognome:	 Classe:	Data:	Griglia

Risposte (variante 86)

1	2	3	4	5	6	7	8	9	10
					•	1			
4.4	10	10	4.4	1.5	1.0	1.77	10	10	20
11	12	13	14	15	16	17	18	19	20

1. Completare la seguente reazione di decadimento beta più (β^+) o cattura elettronica (EC), sapendo che il Fluoro-18 $({}^{18}F)$ può decadere β^+ : ${}^{18}F \rightarrow ? + e^+ + \nu_e$

(a) ${}_{0}^{17}$ F

(b) ${}_{0}^{19}$ F

(c) $^{18}_{10}$ Ne

- (d) ${}_{8}^{18}O$
- 2. Cosa postula il modello di Bohr riguardo all'emissione di radiazione da parte di un atomo?
 - (a) Un atomo emette radiazione solo quando viene ionizzato.
 - (b) Un atomo emette radiazione continuamente mentre l'elettrone orbita attorno al nucleo.
 - (c) Un atomo emette radiazione solo se si trova in uno stato eccitato stazionario.
 - (d) Un atomo emette radiazione (un fotone) solo quando un elettrone salta da un'orbita permessa a un'altra orbita permessa di energia inferiore.
- 3. Nel paradosso del gatto di Schrödinger, cosa rappresenta lo stato del gatto PRIMA che la scatola venga aperta, secondo un'interpretazione strettamente quantistica?
 - (a) Lo stato "gatto vivo".
 - (b) Una sovrapposizione quantistica degli stati "gatto vivo" e "gatto morto".
 - (c) Uno stato indeterminato che non è né vivo né morto.
 - (d) Lo stato "gatto morto".
- 4. Il nucleo di Deuterio (2_1 H) è formato da 1 protone ($m_p \approx 1.0073\,\mathrm{u}$) e 1 neutrone ($m_n \approx 1.0087\,\mathrm{u}$). La sua massa misurata è $m_D \approx 2.0141\,\mathrm{u}$. Qual è approssimativamente il difetto di massa Δm ?
 - (a) $\Delta m \approx 2.0141 \,\mathrm{u}$

- (c) $\Delta m \approx 1.0073 + 1.0087 + 2.0141 \approx 4.0301 \,\mathrm{u}$
- (b) $\Delta m \approx 2.0141 (1.0073 + 1.0087) = -0.0019 \,\mathrm{u}$
- (d) $\Delta m \approx (1.0073 + 1.0087) 2.0141 = 0.0019 \,\mathrm{u}$
- 5. Nel range di energie tipico della radiodiagnostica (es. $30-150 \,\mathrm{keV}$), quale interazione tra fotoni X e tessuti biologici (a basso Z) è generalmente dominante e più rilevante per la formazione dell'immagine?
 - (a) Effetto Compton.

(c) Produzione di coppie (e^+/e^-) .

(b) Scattering di Rayleigh (coerente).

- (d) Effetto fotoelettrico.
- 6. Secondo l'esperimento mentale di Schrödinger, cosa determina il passaggio del gatto da uno stato di sovrapposizione a uno stato definito (vivo o morto)?
 - (a) L'atto di osservazione o misurazione (apertura della scatola).
 - (b) Il decadimento dell'atomo radioattivo all'interno della scatola.
 - (c) Il tempo trascorso dall'inizio dell'esperimento.
 - (d) La volontà del gatto.
- 7. La legge del decadimento radioattivo $N(t) = N_0 e^{-\lambda t}$ descrive:
 - (a) L'attività del campione al tempo t.
 - (b) Il numero N(t) di nuclei radioattivi non ancora decaduti presenti al tempo t, partendo da N_0 nuclei al tempo t=0.
 - (c) Il tempo di dimezzamento del campione.
 - (d) Il numero di nuclei decaduti al tempo t.
- 8. Come si calcola l'energia di legame (E_B) di un nucleo, noto il difetto di massa Δm ?

9.	Secondo la spiegazione di Einstein dell'effetto fotoelettrico, perché esiste una "frequenza di soglia" al di sotto della quale revengono emessi elettroni, indipendentemente dall'intensità della luce?						sotto della quale non		
	(a)	a) Perché a basse frequenze la luce si comporta solo come un'onda.							
	(b)	Perché l'intensità della luce non è sufficiente a "scaldare" abbastanza gli elettroni.							
	(c)	Perché l'energia del singolo	foto	one (hf) deve essere almeno	pari	al lavoro di estrazione (W) per l	liberare un elettrone.	
	(d)	Perché l'interazione tra lu	се е	materia richiede un tempo	mini	imo che dipende dalla freq	uenza	.	
10.	La "cata	atastrofe ultravioletta" è un problema sorto nello studio della radiazione di corpo nero perché la fisica classica prevedeva:							
	(a)	Un'intensità energetica nulla per lunghezze d'onda molto piccole.							
	(b)	Che l'energia emessa fosse quantizzata fin dall'inizio.							
	(c)	Che l'intensità massima si spostasse verso il rosso (frequenze basse) all'aumentare della temperatura.							
	(d)	Un'intensità energetica infinita per lunghezze d'onda molto piccole (alte frequenze).							
11.	Cosa di	mostra in modo sorprenden	te l'e	esperimento della doppia fe	ndit	ura con elettroni singoli?			
	(a)) Che gli elettroni sono particelle classiche che seguono traiettorie ben definite.							
	(b)	Che il principio di indeter							
	(c)	Che anche le singole particelle (elettroni) esibiscono un comportamento ondulatorio (interferenza), suggerendo che ogni elettrone "passa attraverso entrambe le fenditure" in senso quantistico.							
	(d)	Che la luce è composta da	par	ticelle (fotoni).					
12.	$h \approx 6.63$	Una radiazione di frequenza $f=1.0\times 10^{15}\mathrm{Hz}$ colpisce un metallo con lavoro di estrazione $W=2.0\mathrm{eV}$. Sapendo che $h\approx 6.63\times 10^{-34}\mathrm{J}\cdot\mathrm{s}$ e $1\mathrm{eV}\approx 1.6\times 10^{-19}\mathrm{J}$, qual è circa l'energia cinetica massima K_{max} degli elettroni emessi? (Suggerimento: calcola prima hf in eV , $hf\approx 4.14\mathrm{eV}$)							
	(a)	$K_{max} \approx 6.14 \text{eV}$	(b)	$K_{max} \approx 2.0 \text{eV}$	(c)	$K_{max} \approx 2.14 \text{eV}$	(d)	$K_{max} \approx 4.14 \text{eV}$	
13.		Un isotopo radioattivo ha un tempo di dimezzamento di $T_{1/2} = 5$ giorni. Se inizialmente abbiamo 16 mg di questo isotopo, nanti milligrammi rimarranno dopo 20 giorni?							
	(a)	$2\mathrm{mg}$	(b)	$4\mathrm{mg}$	(c)	$8\mathrm{mg}$	(d)	$1\mathrm{mg}$	
14.	In un esperimento Compton, un fotone X incide su un elettrone a riposo. La variazione della lunghezza d'onda $(\Delta \lambda = \lambda' - \lambda)$ del fotone diffuso dipende dall'angolo di diffusione θ . Quando è massima questa variazione?								
	(a)	Quando l'angolo di diffusione è $\theta = 90^{\circ}$.							
	(b)	Quando l'angolo di diffusione è $\theta=180^\circ$ (diffusione all'indietro).							
	(c)	Quando l'angolo di diffusione è $\theta=0^\circ$ (nessuna diffusione).							
	(d)	La variazione è indipendente dall'angolo θ .							
15.	Identific	Identificare il prodotto mancante nel decadimento alfa dell'Uranio-238: $^{238}_{92}\mathrm{U} \to X + \alpha$							
	(a)	$X = ^{238}_{90}$ Th (Torio-238)	(b)	$\begin{array}{l} X = ^{234}_{92} \text{ U (Uranio-} \\ 234) \end{array}$	(c)	$X = {}^{234}_{90}$ Th (Torio-234)	(d)	$X=^{234}_{88}$ Ra (Radio-234)	
16.	Completare la seguente reazione di decadimento beta meno (β^-): ${}^{14}_6{\rm C} \rightarrow ? + e^- + \bar{\nu}_e$								
	(a)	$^{14}_{6}\mathrm{C}$	(b)	$^{13}_{6}\mathrm{C}$	(c)	$^{14}_{7}\mathrm{N}$	(d)	$_{5}^{14}\mathrm{B}$	
17.	Il princi	Il principio di indeterminazione è una conseguenza fondamentale:							
	(a)	(a) Degli errori sperimentali inevitabili negli strumenti di misura.							
	(b)	Della teoria della relatività di Einstein.							
	(c)	Della natura ondulatoria della materia (dualismo onda-corpuscolo) e dei limiti intrinseci alla misurazione nel mondo quantistico.							
	(d)	Del modello atomico di Bohr.							

18. Quale tipo di decadimento radioattivo consiste nell'emissione di un nucleo di Elio $\binom{4}{2}$ He)?

(b) $E_B = (\Delta m)/c^2$. (c) $E_B = (\Delta m)c^2$. $(\sum m_{costituenti})c^2$.

(a) $E_B = m_{nucleo}c^2$.

- (a) Decadimento Beta meno (β^{-}) (c) Decadimento Alfa (α)
- (b) Decadimento Beta più (β^+) (d) Emissione Gamma (γ)
- 19. Nell'effetto Compton, un fotone X interagisce con un elettrone libero (o debolmente legato). Cosa succede al fotone?
 - (a) Viene assorbito completamente dall'elettrone.
 - (b) Viene diffuso (scatterato) con una frequenza minore (lunghezza d'onda maggiore).
 - (c) Viene diffuso con una frequenza maggiore (lunghezza d'onda minore).
 - (d) Passa attraverso l'elettrone senza interagire.
- 20. Come spiega il modello di Bohr l'emissione di luce a frequenze discrete (spettro a righe) da parte degli atomi?
 - (a) L'elettrone emette luce continuamente mentre orbita, ma solo a certe frequenze.
 - (b) Il nucleo atomico vibra emettendo fotoni.
 - (c) L'elettrone emette un fotone di energia definita (E = hf) quando salta da un'orbita permessa a energia superiore a una a energia inferiore.
 - (d) Gli urti tra atomi eccitati producono lo spettro.