Natural Language Processing & Word Embeddings

Quiz, 10 questions

•	Congratulations! You passed!	Next Item	
~	1/1 point		
	se you learn a word embedding for a vocabulary of 10000 words. Then the emb sional, so as to capture the full range of variation and meaning in those words.	edding vectors should be 10	000
	True		
0	False		
	ect dimension of word vectors is usually smaller than the size of the vocabulary. Med d vectors ranges between 50 and 400.	ost common sizes for	
~	1/1 point		
2. What	s t-SNE?		
	A linear transformation that allows us to solve analogies on word vectors		
0	A non-linear dimensionality reduction technique		
Cor Yes	ect		
	A supervised learning algorithm for learning word embeddings		
	An open-source sequence modeling library		

1/1 point

Natural Language Processing & Word Embeddings

Quiz, 10 questions Suppose you download a pre-trained word embedding which has been trained on a huge corpus of text. You then use this word embedding to train an RNN for a language task of recognizing if someone is happy from a short snippet of text, using a small training set.

x (input text)	y (happy?)
I'm feeling wonderful today!	1
I'm bummed my cat is ill.	0
Really enjoying this!	1

Then even if the word "ecstatic" does not appear in your small training set, your RNN might reasonably be expected to recognize "I'm ecstatic" as deserving a label y=1.

\cup	

True

Correct

Yes, word vectors empower your model with an incredible ability to generalize. The vector for "ecstatic would contain a positive/happy connotation which will probably make your model classified the sentence as a "1".

	ŀ

False

1/1 point

4.

Which of these equations do you think should hold for a good word embedding? (Check all that apply)

$$e_{boy} - e_{girl} pprox e_{brother} - e_{sister}$$

Correct

Yes!

$$e_{boy} - e_{girl} pprox e_{sister} - e_{brother}$$

Un-selected is correct

 $e_{boy} - e_{brother} pprox e_{girl} - e_{sister}$

Natural Language Processing & Word Embeddings

Quiz,**Yle**Squestions

$$e_{boy} - e_{brother} pprox e_{sister} - e_{girl}$$

Un-selected is correct

1/1 point

5.

Let E be an embedding matrix, and let o_{1234} be a one-hot vector corresponding to word 1234. Then to get the embedding of word 1234, why don't we call $E*o_{1234}$ in Python?

It is computationally wasteful.

Correct

Yes, the element-wise multiplication will be extremely inefficient.

- The correct formula is $E^T * o_{1234}$.
- This doesn't handle unknown words (<UNK>).
- None of the above: calling the Python snippet as described above is fine.

1/1 point

6.

When learning word embeddings, we create an artificial task of estimating $P(target \mid context)$. It is okay if we do poorly on this artificial prediction task; the more important by-product of this task is that we learn a useful set of word embeddings.

True

Correct

False

Natural Language Processing & Word Embeddings

(v iz, 10 q	uestions			
In the word2vec algorithm, you estimate $P(t \mid c)$, where t is the target word and c is a context word. How are t and c chosen from the training set? Pick the best answer.				
	c is a sequence of several words immediately before $t.$			
	igcap c is the one word that comes immediately before $t.$			
0	\emph{c} and \emph{t} are chosen to be nearby words.			
Corr	ect			
	c is the sequence of all the words in the sentence before $t.$			
~	1 / 1 point			
	se you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The word2vec uses the following softmax function:			
$P(t \mid c)$	$\sum_{t'=1}^{10000} \frac{e^{\theta_t^T e_C}}{\sum_{t'=1}^{10000} e^{\theta_t^T e_C}}$			
Which	of these statements are correct? Check all that apply.			
	$ heta_t$ and e_c are both 500 dimensional vectors.			
Corr	ect			
	$ heta_t$ and e_c are both 10000 dimensional vectors.			
Un-s	elected is correct			
Corr	$ heta_t$ and e_c are both trained with an optimization algorithm such as Adam or gradient descent.			
2011				

After training, we should expect $heta_t$ to be very close to e_c when t and c are the same word.

Un-selected is correct

Natural Language Processing & Word Embeddings

Quiz, 10 questions

1/1 point

9.

Suppose you have a 10000 word vocabulary, and are learning 500-dimensional word embeddings. The GloVe model minimizes this objective:

$$\min \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\theta_i^T e_j + b_i + b_j' - \log X_{ij})^2$$

Which of these statements are correct? Check all that apply.

 $igcap heta_i$ and e_j should be initialized to 0 at the beginning of training.

Un-selected is correct

 $igcup_i$ and e_j should be initialized randomly at the beginning of training.

Correct

 X_{ij} is the number of times word i appears in the context of word j.

Correct

 $oxed{igcap}$ The weighting function f(.) must satisfy f(0)=0.

Correct

The weighting function helps prevent learning only from extremely common word pairs. It is not necessary that it satisfies this function.

1/1 point

10.

You have trained word embeddings using a text dataset of m_1 words. You are considering using these word embeddings for a language task, for which you have a separate labeled dataset of m_2 words. Keeping in mind that using word embeddings is a form of transfer learning, under which of these circumstance would you expect the word embeddings to be helpful?

Natural Language Processing & Word Embeddings

Quiz, 10 questions

