휴먼에러에 대한 위험과 운전분석(Human error HAZOP) 기법에 관한 지침

2017. 10.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 한국교통대학교 안전공학과 박정철
- 제·개정 경과
- 2017년 9월 리스크관리분야 제정위원회 심의(제정)
- 관련규격 및 자료
- G.R. Ellis, A. Holt (2009) A Practical application of 'Human-HAZOP' for critical Procedures. Symposium series no. 155, IChemE.
- C.A. Ericson II (2005) Hazard Analysis Techniques for System Safety. Wiley-Interscience.
- N.A. Stanton, P.M. Salmon, G.H. Walker, C. Baber, D.P. Jenkins (2005)
 Human Factors Methods A Practical Guide for Engineering and Design.
 Ashgate.
- KOSHA GUIDE P-82(연속공정의 위험과 운전분석(HAZOP)기법에 관한 기술 지침)
- KOSHA GUIDE G-120(인적에러 방지를 위한 안전가이드)
- KOSHA GUIDE X-69(제어실 운전원 휴먼에러확률 예측기법(THERP)에 관한 기술지침)
- KOSHA GUIDE P-86(회분식 공정의 위험과 운전분석(HAZOP)기법에 관한 기술지침)
- 기술지침의 적용 및 문의
 - 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
 - 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2017년 10월 31일

제 정 자 : 한국산업안전보건공단 이사장

휴먼에러에 대한 위험과 운전분석(Human error HAZOP) 기법에 관한 지침

1. 목 적

이 지침은 휴면에러에 적합한 가이드워드를 활용하여 작업자 행동의 위험을 확인하는 휴면에러에 대한 위험과 운전분석 기법(Human error hazard and operability Study)에 관한 기술적 사항을 정함을 목적으로 한다.

2. 적용범위

이 지침은 화학 공장, 가스 기지, 발전소, 제조사업장 등 휴먼에러가 사고 발생에 영향을 미칠 수 있는 사업장에서 잠재적 휴먼에러를 예측하고 저감하는 데 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다.
- (가) "휴먼에러(Human error)"라 함은 의도치 않게 시스템의 효율, 안전, 성능 등을 저해할 수 있는 부적절하거나 바람직하지 않은 인간의 행동 또는 의사결정을 말한다.
- (나) "인간공학(Human factors / Ergonomics)"이라 함은 인간의 행위, 능력, 한계, 특성을 파악하여 인간이 편리하고, 안전하고, 생산적이고, 효율적으로 사용할 수 있도록 도구, 기계, 시스템, 작업, 환경의 설계에 응용하는 학문을 말한다.
- (다) "인간 신뢰도(Human reliability)"라 함은 신뢰할 수 있거나 사용할 수 있는 시스템에 대하여 인간의 행동이 성공적으로 이루어질 확률을 말한다. 즉, 시스템의 신뢰도나 가용도를 훼손할만한 외적인 직무나 행동이 실행되지 않을 뿐만 아니라, 요구되는 시간 내에 시스템이 요구하는 인간행동, 직무, 또는 작업이 성공적으로

X - 73 - 2017

완수될 확률을 말한다.

- (라) "인간 신뢰도 분석(Human reliability analysis)"이라 함은 인간 신뢰도가 추정되는 방법을 말한다.
- (마) "작업(Task)"라 함은 시스템의 목적이나 기능을 달성하기 위한 인간 행동의 단위를 말한다.
- (바) "계층적 작업분석(Hierarchical task analysis)"이라 함은 작업을 목표에 따라 여러 개의 세부 작업들로 나누고 이 세부 작업들을 다시 더 작은 작업들로 나누는 과정을 반복함으로써 작업의 구조를 계층의 형태로 상세하게 표현하는 분석 방법을 말한다.
- (사) "위험과 운전분석(Hazard and operability(HAZOP) study)"이라 함은 공정에 존재하는 위험요인과 공정의 효율을 저하시킬 수 있는 운전상의 문제점을 찾아내어 그 원인을 제거하는 방법을 말한다.
- (아) "컨트롤 시스템의 위험과 운전분석(Control systems hazard and operability study, CHAZOP)"이라 함은 컨트롤 및 컴퓨터 시스템에서 잠재적인 위험요인과 운용 상의 문제점을 찾아내는 체계적 방법을 말한다.
- (자) "안전 문화의 위험과 운전분석(Safety culture hazard and operability study, SCHAZOP)"이라 함은 안전 경영 시스템의 취약점을 찾아내는 체계적 방법을 말한다.
- (차) "위험요인(Hazard)"이라 함은 인적·물적 손실 및 환경피해를 일으키는 요인(요소) 또는 이들이 혼재된 요인으로서, 기계적 고장, 시스템의 상태, 작업자의 실수 등 물리·화학적, 생물학적, 심리적, 행동적 원인이 자극으로 작용하여 실제 사고 (손실)로 전환될 수 있는 잠재적 가능성을 가진 요인을 말한다.
- (카) "운전성(Operability)"이라 함은 운전원이 공장을 안전하게 운전할 수 있는 상태를 말한다.
- (타) "가이드워드(Guide word)"라 함은 작업 단계에 대해 질, 양 또는 상황을 표현하는 간단한 수식어를 말한다.
- (파) "이탈(Deviation)"이라 함은 가이드워드와 작업 단계가 조합되어, 설계의도로부터 벗어난 상태를 말한다.
- (하) "원인(Cause)"이라 함은 이탈을 발생시킨 요인을 말한다.
- (거) "결과(Consequence)"라 함은 이탈이 일어남으로써 야기되는 상태를 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은법 시행령, 같은법 시행규칙 및 산업안전보건기준에 관한 규칙 에서 정하는 바에 의한다.

4. 휴먼에러에 대한 위험과 운전분석 기법(Human error HAZOP) 개요

4.1. 개발 배경

- (1) 위험과 운전분석(HAZOP) 기법은 공장이나 작업의 안전이나 운전성을 조사하기 위한 목적으로 1960년대 후반 영국의 화학 기업인 ICI에 의해 처음 개발된 이래 원자력 발전이나 화학 공정 분야에 널리 사용되어 왔다.
- (2) 컨트롤시스템의 위험과 운전분석(CHAZOP), 안전문화의 위험과 운전분석(SCHAZOP) 등 위험과 운전분석 형태의 접근방법을 사용하는 다양한 기법들이 있다.
- (3) 휴먼에러에 대한 위험과 운전분석(Human error HAZOP) 기법은 휴먼에러 이슈를 분석하기 위한 목적으로 개발되었다. Whalley는 1988년 개발한 휴먼에러 확인 기법 인 PHECA(Potential Human Error and Cause Analysis)를 개발하면서 휴먼에러에 더 적합한 인간공학 기반의 가이드워드를 제시하였다.

4.2. 기법의 특징

- (1) 위험과 운전분석은 공정 설계 감사와 리스크 평가를 위해 개발된 잘 정립된 엔지니어링 접근방법이다. 이 기법은 발생 가능한 잠재적인 문제를 확인하기 위해 공정의각 단계에 '없음(No)', '과다(More than)', '늦음(Later than)' 등과 같은 이탈을 나타내는 가이드워드(Guide word)를 적용한다.
- (2) 이 기법은 휴면에러에 적합한 가이드워드(<표 1> 참조)를 계층적 작업분석 결과 최하 수준의 작업 단계 각각에 적용함으로써 발생 가능한 잠재적 휴면에러를 찾는다.
- (3) 확인된 잠재적 휴면에러에 대해 기술한 뒤 에러의 결과, 원인과 현재안전조치를 기록한다. 추가적으로, 에러의 개선에 활용될 수 있는 설계 개선 방안을 찾는다.

<표 1> 휴먼에러에 대한 위험과 운전분석 가이드워드

가이드워드(Guide word)	설명			
없음(No)	작업을 수행하지 않음			
반복(Repeated)	수행한 작업을 재차 수행함			
과소(Less than)	정상보다 적음/작음/느림			
과대(More than)	정상보다 많음/큼/빠름			
반대(Reverse)	잘못된 방향으로 수행함			
부가(As well as)	정상적인 작업과 함께 다른 작업을 부가적으로 수행함			
기타(Other than)	정상적인 작업이 아닌 다른 작업을 수행함			
이름(Sooner than)	정상적인 시점보다 이른 시점에 수행함			
늦음(Later than)	정상적인 시점보다 늦은 시점에 수행함			
순서가 잘못됨(Mis-ordered)	작업의 순서가 정상과 다름			
부분(Part of)	작업이 불완전하거나 부분적으로만 수행됨			

4.3. 팀의 역할

- (1) 이 기법을 사용하기 위해서는 공정안전 전문가, 관리 감독자, 운전원, 공정 엔지니어, 인간공학 전문가 등으로 별도의 팀을 구성한다. 일반적으로, 위험과 운전분석 기법의 효율성은 팀 구성에 크게 좌우된다.
- (2) 팀의 리더는 위험과 운전분석 기법에 대한 충분한 경험을 보유해야 한다. 리더는 가이드워드를 사용해 팀이 시스템 설계를 분석할 수 있도록 안내하는 역할을 수행한다.
- (3) 팀은 공정의 각 단계에서 무엇이 잘못될 수 있는지 파악하기 위해 가이드워드를 검토한다.
- (4) 제시된 가이드워드에 대해 다음과 같은 형태의 질문을 함으로써 모든 가능한 이탈을 검토할 수 있다.
- (가) 공장의 어느 부분이 고려되는가?
- (나) 그 이탈은 무엇이며, 그것이 의미하는 것은 무엇인가?
- (다) 그 이탈이 어떻게 발생할 수 있으며, 원인은 무엇인가?
- (라) 만약 그것이 발생 가능하다면, 그로 인한 중요한 결과가 있는가?
- (마) 중요한 결과가 있다면, 이러한 결과에 대비해 현재 공장에 어떠한 기능이 있는가?
- (바) 만약 제안된 설계가 그 결과를 적절히 다루지 못하고 있다고 판단된다면, 해결책과 조치를 검토한다.

5. 휴먼에러에 대한 위험과 운전분석 기법 절차

- (1) 휴먼에러에 대한 위험과 운전분석 기법의 수행 절차는 8개의 세부 단계로 구성된다. 수행 절차의 흐름을 그림으로 나타내면 다음 <그림 1>과 같다. 분석 결과는 미리 정한 양식에 따라 기록지(부록 1 참조)에 기록한다.
- (2) 부록 2는 개별 2kg 포장을 분당 8개씩 회전하는 벨트 컨베이어에 적재하는 작업에 대하여 휴먼에러에 대한 위험 및 운전분석(Human error HAZOP)을 적용해 분석한 결과의 예시이다.

<그림 1> 휴먼에러에 대한 위험과 운전분석 수행 절차

X - 73 - 2017

5.1. 단계 1: 팀 구성

- 이 단계는 휴먼에러에 대한 위험과 운전분석을 수행할 팀을 구성한다. 올바른 팀의 구성은 위험과 운전분석에서 매우 중요하다.
- (1) 효율적인 분석을 위해 팀의 리더는 HAZOP 형태의 분석에 충분한 경험을 가지고 있어야 하고, 팀을 효과적으로 이끌 수 있어야 한다.
- (2) 휴먼에러에 대한 위험 및 운전분석을 위해서는 다음과 같은 인원으로 팀을 구성하는 것이 바람직하다.
- (가) 위험과 운전분석 팀 리더
- (나) 현장 공정 안전 전문가
- (다) 대상 작업에 대한 관리 감독자
- (라) 작업 경험이 있는 운전원 또는 작업자
- (마) 공정 엔지니어
- (바) 인간 신뢰도 분석에 대한 지식이 있는 인간공학 전문가
- (사) 데이터 기록원

5.2. 단계 2: 계층적 작업분석

- 이 단계에서는 위험요인을 찾기 전에 계층적 작업분석을 통해 휴면에러에 대한 위험과 운전분석의 대상이 될 작업과 시스템에 대해 철저하게 분석하여 기술한다.
- (1) 작업을 목표에 따라 여러 개의 세부 작업들로 구분하고, 필요한 경우 세부 작업들을 다시 더 작은 작업들로 나누는 과정을 반복한다.
- (2) 계층적 작업분석에 필요한 정보를 수집하기 위해 다음과 같은 다양한 데이터 수집 방법들이 사용될 수 있다.
- (가) 실제 작업이 어떻게 수행되는지에 관한 전문가/작업자 대상 인터뷰
- (나) 분석 대상 작업에 대한 직접적 또는 간접적 관찰
- (다) 절차서, 작업 보조자료(체크리스트 등), 교육/훈련 자료, 관련 리스크 평가 결과 등

X - 73 - 2017

에 대한 검토

5.3. 단계 3: 가이드워드 검토

- 이 단계는 계층적 작업분석에서 얻어진 가장 하위의 작업 단계들에 대해, HAZOP 팀 회의를 통해 관련된 가이드워드의 유효성을 검토한다.
- (1) 가이드워드가 작업 단계에 영향을 미칠 수 있는지 없는지 뿐만 아니라 어떠한 형태의 에러가 발생할지에 대해서도 토론한다.
- (2) 고려해야 할 휴먼에러의 형태는 다음을 포함한다.
- (가) 신체적 에러(예: '해야 할 것을 하지 않음')
- (나) 정신적 에러 또는 착오(예: '잘못된 판단을 내림')
- (다) 절차적 위반(예: '의도적으로 손쉬운 방법을 택함')

5.4. 단계 4: 에러(이탈) 설명

이 단계에서는 유효한 가이드워드들에 대해 에러(이탈)의 형태에 대해 설명(예: '운전원이 현재 증기 압력 설정을 확인하지 않음')을 제시한다. 에러에 대한 설명은 명확하고 간결해야 한다.

5.5. 단계 5: 결과 분석

이 단계에서는 단계 4에서 기술한 잠재적 에러들에 대해 관련된 결과(예: '운전원이 증기 압력 설정이 높다는 것을 모름')를 기술한다. 에러의 결과는 명확하게 기술되어야 한다.

5.6. 단계 6: 원인 분석

이 단계는 잠재적 에러의 원인을 기술한다. 원인 분석은 이후 개선 또는 에러 저감 방안을 찾는 데 있어 매우 중요하다. 원인은 하나 이상일 수 있으며, 확인된 에러와 관련된모든 원인을 명확하게 기술하여야 한다.

X - 73 - 2017

5.7. 단계 7: 현재안전조치 분석

- 이 단계는 에러의 결과를 방지하기 위해 현재 취하고 있는 안전조치에 대해 기술한다.
- (1) 휴먼에러에 대한 안전조치는 일반적으로 다음의 세 단계를 거친다.
- (가) 에러를 발견하는 단계
- (나) 무엇이 어떻게 잘못되었는지에 대해 진단하는 단계
- (다) 문제를 해결하는 단계
- (2) 에러에 대한 현재안전조치는 보통 계층적 작업분석 상의 다른 작업 단계나 별도의 절차를 통해 확인할 수 있다.
- (3) 해당 에러에 대한 현재안전조치를 확인할 수 없는 경우, '없음'을 명시한다.

5.8. 단계 8: 에러 개선방안 제안

이 단계는 분석자의 판단과 전문지식에 기반하여 에러를 저감시키기 위한 개선방안을 제안한다. 에러에 대한 개선방안은 다음을 포함한다.

- (가) 근본적인 설계의 개선을 통한 위험요인의 제거
- (나) 작업자가 해당 작업을 수행하지 않아도 되도록 자동화하거나 작업을 개선
- (다) 절차서의 수정 및 보완을 통한 개선
- (라) 작업 보조자료(체크리스트, 표지 등)의 활용 및 개선
- (마) 교육 및 훈련의 개선
- (바) 정기적 감사 실시

6. 장점과 단점

6.1. 장점

X - 73 - 2017

- (1) HAZOP 분석을 올바르게 수행하면 시스템에서 발생 가능한 모든 에러를 찾아낼 수 있다.
- (2) HAZOP 형태의 분석은 많은 분야에서 활용되어 왔으며, 공정 산업 및 정부 기관 에 의해 폭넓게 받아들여져 왔다.
- (3) 전문가 팀에 의해 수행되기 때문에 분석자 단독으로 수행하는 다른 기법들에 비해 보다 정확하고 포괄적이다. 즉, 잠재적 에러가 누락되거나 비현실적인 에러가 포함 되는 것을 막을 수 있다.
- (4) 방법을 배우기 쉽고 활용이 용이하다.
- (5) 범용의 가이드워드를 활용하므로 다양한 분야에 적용할 수 있다.

6.2. 단점

- (1) 수행하는 데 시간이 매우 오래 걸릴 수 있으며, 많은 노력이 필요하다.
- (2) 운전원, 인간공학 전문가, 관리 감독자, 엔지니어 등으로 혼성 팀을 구성하고 이들을 동시에 한자리에 모으는 것이 쉽지 않을 수 있다.
- (3) HAZOP 분석을 통해 산출되는 정보의 양이 방대하여, 이를 기록하고 분석하는 것이 부담이 될 수 있다
- (4) HAZOP 팀원 간의 의견의 불일치나 충돌이 문제가 될 수 있다.
- (5) 일선 현장의 에러만 고려할 수 있으며, 시스템이나 조직의 에러는 고려하지 못한다.

부록 1.

휴먼에러에 대한 위험 및 운전분석(Human error HAZOP) 기록 양식

작업명:	<u>작성일:</u>	
페이지: /	<u>작성자: 작성자: </u>	_

작업 단계	가이드워드	이탈	결과	원인	현재안전조치	개선방안

부록 2.

휴먼에러에 대한 위험 및 운전분석(Human error HAZOP) 기록 예시

작업명: 개별 2kg 포장을 분당 8개씩 회전하는 벨트 컨베이어에 적재

페이지: 00 / 00

<u>작성일: 0000.00.00</u> 작성자: OOO

작업 단계	가이드 워드	이탈	결과	원인 현재안전조치		개선방안
	없음 (No)	적재되지 않음	벨트에 적재물이 없음 - 처리량 감소	작업자의 주의가 분산됨	위치 센서로 감지	없음
			따라잡기 위해 작업자가 더 많은 포장을 적재	작업자의 주의가 분산됨	다운스트림 어큐뮬레이터	1. 과적 처리를 위한 어큐뮬레이터 용량 검토
			벨트에 적재물이 없음 - 처리량 감소	작업자가 라인을 이탈함	없음	2. 휴식 및 적정 예비 인원 검토
개별 2kg 포장을		포장이 없음	벨트에 적재물이 없음 - 처리량 감소	작업자가 자신의 포장을 가져와야 함	없음	3. 지속적 공급 유지에 필요한 인원 수준 검토
모으로 분당			사양을 벗어난 제품	다른 대체 포장을 사용	포장을 분리	4. 가동 종료 후 생산 구역의 모든 재료 제거
8개씩		벨트가	컨베이어에 잼 발생	재시동 준비 상태로 배치를	훈련 및 작업자 능력	없음
회전하는		작동하지 않음	또는 포장이 배출됨	벨트에 적재함		
		더 빨리 적재함	벨트에 포장이 쌓임	벨트 속도를 잘못 계산함	다운스트림 어큐뮬레이터	5. 간단한 계산 차트 제공 (벨트에 간격 표시)
벨트			벨트에 포장이 쌓임	작업자가 다른 제품으로 착각	다운스트림 어큐뮬레이터	6. 라인가동조건에 따라 명확한 배치카드 제공
컨베이어	과대		컨베이어에 잼 발생	 휴식을 위해 서둘러 적재함	없음	개선방안 2 참조
에 적재			또는 포장이 배출됨	휴격을 위에 시킬니 국제함 	₩ 급	
	(More than)	포장이 더 큼	취급시 상해 위험 증가	작업자가 이전의 작은 포장에 익숙함	관리자 브리핑	없음
		벨트가 더	포장이 작업자의 손에서	이전 작업 이후 속도를	МО	711 MHIOL C *L*
		빠르게 움직임	당겨짐	재설정하지 않음	없음	개선방안 6 참조
	반대 (Reverse)	포장을 제거함	기계에 닿아 협착 가능	포장이 잘못된 것을 발견함	벨트의 정지 보호 기능	7. 행동의 수정을 위한 충분한 안전 거리 제공

X - 73 - 2017

작업	가이드					
단계	기이 <u>트</u> 워드	이탈	결과	과 원인 현재안전조치		개선방안
		더 느리게 적재함	벨트에 적재물이 적음 - 처리량 감소	작업자의 주의가 분산됨	위치 센서로 감지	없음
			취급시 상해 위험 증가	작업자의 피로	관리자 브리핑	없음
	과소 (Less than)		따라잡기 위해 작업자가 더 많은 포장을 적재	작업자의 주의가 분산됨	다운스트림 어큐뮬레이터	개선방안 1 참조
		벨트가 더	벨트에 적재물이 없음 -	이전 작업 이후 속도를	Ol O	개선방안 6 참조
		느리게 움직임	처리량 감소	재설정하지 않음	없음	
711141 01	부가 (As well as)	작업자가 벨트 위에 올라감	전도 및 협착 위험	벨트 위의 포장을 정리함	벨트의 정지 보호 기능	없음
개별 2kg		포장 이외의 다른 물건 적재	컨베이어에 잼 발생	작업자 부주의	없음	8. 가동 시작 전 작업장 정리정돈
포장을 분당 8개씩 회전하는 벨트 컨베이어 에 적재	기타 (Other than)		적재된 물건 제거 시 협착 가능	컨베이어에 적재된 다른 물건 발견	벨트의 정지 보호 기능	9. 작업자 안전교육 시 대처방법 훈련
			사양을 벗어난 제품	다른 대체 포장을 사용	포장을 분리	개선방안 4 참조
		다른 작업자가 적재	이상 상황 발생시 대처 미흡	작업자가 라인을 이탈함	관리자 브리핑	개선방안 2 참조
	이름 (Sooner than)	미리 여러 개의 포장을 들고 적재함	중량물 들기 작업에 의한 상해 위험 증가	작업자의 피로	없음	10. 관리자 브리핑에 추가
	늦음 (Later than)	포장의 준비가 늦음	벨트에 적재물이 없음 — 처리량 감소	작업자가 자신의 포장을 가져와야 함	없음	개선방안 3 참조
	벨트 중앙에서 부분 벗어나 (Part of) 불완전하게 적재함		재정렬 시도 시 협착 가능	작업자의 주의가 분산됨	관리자 브리핑	개선방안 9 참조