Fourier Series in L^2

Alvis Zhao April 29, 2019

Fourier Series in L^2

Let $\mathbb{T} = [0, 2\pi]$. Define

$$L^{1}(\mathbb{T}) = \{ f | |f|_{L^{1}} = \frac{1}{2\pi} \int_{\mathbb{T}} |f| < \infty \}$$

$$L^{2}(\mathbb{T}) = \{ f | |f|_{L^{2}} = \frac{1}{2\pi} \int_{\mathbb{T}} |f|^{2} < \infty \}$$

In $L^2(\mathbb{T})$, the inner product is defined by

$$\langle f, g \rangle = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) \bar{g}(\theta) d\theta$$

If we approximate $f \in L^2$ with $g \in L^2$, we can measure the degree of approximation by the mean square distance

$$||f - g|| = |f - g|_{L^2} = \langle f - g, f - g \rangle$$

We define the Fourier transform to be

$$\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(\theta) e^{-in\theta} d\theta$$
 where $\mathbb{T} = [0, 2\pi]$

We would like to approximate any $f \in L^2$ with trigonometric polynomial $g(\theta) = \sum_{n=-N}^{N} b_n e^{in\theta}$. Then the following calculation shows that the approximation is best when $b_n = \hat{f}(n)$.

$$|f - g|_{L^2}^2 = |f|_{L^2}^2 - \langle f, g \rangle - \langle g, f \rangle + |g|_{L^2}^2 \tag{1}$$

$$=|f|_{L^{2}}^{2}-\sum_{n=-N}^{N}(\hat{f}(n)\bar{b}_{n}+\bar{f}(n)b_{n}-|b_{n}|_{L^{2}}^{2})$$
(2)

$$= \sum_{n=-N}^{N} |b_n - \hat{f}(n)|^2 + |f|_{L^2}^2 - \sum_{n=-N}^{N} |\hat{f}(n)|_{L^2}^2$$
 (3)

Thus, we have the following proposition.

Proposition. Suppose that $f \in L^2(\mathbb{T})$. Then the minimum mean square is attained when b_n is the Fourier coefficient $b_n = \hat{f}(n)$. The mean square distance is given by:

$$|f-g|_{L^2}^2 = |f|_{L^2}^2 - \sum_{n=-N}^N |\hat{f}(n)|^2$$

In particular, for $N \in \mathbb{Z}^+$, we have the inequality

$$\sum_{n=-N}^{N} |\hat{f}(n)|^2 \leqslant |f|_{L^2}^2$$

In particular Bessel's inequality

$$\sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2 \leqslant |f|_{L^2}^2 \tag{4}$$

Lemma. For any $f \in L^2(\mathbb{T})$, the Fourier series converges in $L^2(\mathbb{T})$. Let F be its limit, them $\hat{F} = \hat{f}$ *Proof.* We first show that the partial sums $S_N f = \sum_{-N}^N \hat{f}(n) e^{in\theta}$ is Cauchy by showing that $S_{N^+} f = \sum_{0}^N \hat{f}(n) e^{in\theta}$, thus converges in L^2 .

$$||S_{N^+}f - S_{M^+}f||^2 = \frac{1}{2\pi} \int_{\mathbb{T}} |S_{N^+}f - S_{M^+}f|^2 = \sum_{M+1}^N |\hat{f}(n)|^2 \to 0^* \text{ M, N} \to \infty$$

Similarly we show that $S_{N^+}f$ is Cauchy. L^2 is complete \Rightarrow The Fourier series $\sum \hat{f}(n)e^{inx}$ converges. Let F be its limit. It is left to show that F = f.

$$2\pi \hat{F}(n) = \int_{\mathbb{T}} (F(\theta) - S_N f(\theta)) e^{-in\theta} d\theta + \int_{\mathbb{T}} S_N f(\theta) e^{-in\theta} d\theta$$

For $N > |n| \int_{\mathbb{T}} S_N f(\theta) e^{-in\theta} d\theta = 2\pi \hat{f}(n)$. Thus,

$$|\hat{F}(n) - \hat{f}(n)| = \int_{\mathbb{T}} (F(\theta) - S_N f(\theta)) e^{-in\theta} d\theta \le ||F - S_N f|| \quad (N > |n|)$$

Let $N \to \infty$, we have $\hat{F} = \hat{f}$

Now the following discussions shows that we have F = f a.e.

Proposition. Trigonometric polynomials are dense in $L^2([0.2\pi])$. (trig polynomials by def: $\sum_{-N}^N a_n e^{in\theta}$ $a \in \mathbb{C}$, dense: any $f \in L^2$ his a limit(L^2) of trig polynomial) (Hint: use Stone -Weierstrass Thm[†])

Proof. First we notice that trigonometric polynomials do not separate points since $g(0) = g(2\pi)$ for all trigonometric polynomial g. Thus, we perform a change of variable and apply Stone - Weierstrass Thm to the unit circle.

Let $c(x) = \sum_{-N}^{N} b_n x^n$ where $x = e^{in\theta}$. $\theta \in [0, 2\pi]$. Then apply Stone-Weierstrass Theorem on c implies for every continuous function g defined on the unit circle, there exists a sequence of trigonometric polynomials f_n converges to g uniformly.

$$||g-f_n|| \leqslant \varepsilon/2$$

Since continuous functions are dense in L^2 . For any $f \in L^2([0,2\pi])$

$$||f - g|| \le \varepsilon/2$$

Triangle inequality implies

$$||f-f_n|| \leq ||f-g|| + ||g-f_n|| \leq \varepsilon$$

^{*}By Bessel's Inequality

[†]page165 Rudin, Walter Principles of Mathematical Analysis

Proposition. For $f \in L^2([0,2\pi])$, suppose $\hat{f}(n) = 0 \ \forall n$, then $f \equiv 0$ in L^2 . (using Trig polynomials are dense in $L^2([0,2\pi])$)

Proof. Since $\hat{f}(n) = 0$ for all n, $\hat{f}(n) = (f, e^{in\theta})_{L^2} = 0$ where (\cdot, \cdot) is the inner product on L^2 . For any $g \in L^2$, we can pick g_n be the sequence of trig polynomials that converges to g, then for any $\varepsilon > 0$, $\exists N$ st. for all n > N, $|g - g_n|_{L^2} < \varepsilon$, then

$$|(f,g-g_n)| \leq |f|_{L^2}|g-g_n|_{L^2} \leq \varepsilon |f|_{L^2}$$

So for all
$$g \in L^2$$
, $|(f,g-g_n)| = |(f,g)-(f,g_n)| = |(f,g)| \le \varepsilon |f|_{L^2}$.
Take $g = f$, $|f|_{L^2}^2 = (f,f) \le \varepsilon |f|_{L^2} \Rightarrow |f|_{L^2} \le \varepsilon$, Thus, $f \equiv 0$ a.e.

If $\hat{F} = \hat{f}$, $\hat{F} - \hat{f} = \widehat{F - f} = 0 \Rightarrow F - f \equiv 0$ a.e. We conclude above discussion with the following main theorem.

Theorem. Parseval's theorem For any $f \in L^2(\mathbb{T})$, the Fourier series converges to f in $L^2(\mathbb{T})$ and we have Parseval's identity:

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(\theta)|^2 d\theta = \sum_{n \in \mathbb{Z}} |\hat{f}(n)|^2$$
 (5)

Proof. Since $S_N f \to f$, by definition $|S_N f - f|_{L^2} \to 0$. By reverse triangle inequality $||S_N f|_{L^2} - |f|_{L^2}| \leq |S_N f - f|_{L^2}$. Therefore, $|S_N f|_{L^2} \to |f|_{L^2}$.

An alternative approach to $\hat{F} = \hat{f} \Rightarrow F = f$ a.e.

We first show that L^2 periodic functions is also L^1 , then proposition implies the wanted result.

Proposition. If $f \in L^2([0,2\pi])$, then $f \in L^1([0,2\pi])$ (Hint: Cauchy-Schwartz)

Proof.

$$||f||_{L^1} = \int_0^{2\pi} |f| \le \int_0^{2\pi} |1| \cdot |f| \le ||1||_{L^2} \cdot ||f||_{L^2} = ||f||_{L^2}$$

Remark: Is it true if $f \in L^2(\mathbb{R})$ then $f \in L^1(\mathbb{R})$? In general no, $\frac{1}{1+|x|}$ in L^2 but not in L^1 . \square

Proposition. Suppose that $f,g \in L^1(\mathbb{T})$ have the property that $\hat{f}(n) = \hat{g}(n)$, for all $n \in \mathbb{Z}$. Then f = g a.e.