£- "

SEQUENCE LISTING

```
<110> Chishti, Athar
      Oh, Steven
      Liu, David
      Goel, Vikas
     Li, Xuerong
<120> Band 3 Antigenic Peptides, Malaria Polypeptides and Uses Thereof
<130> S1237/7019
<150> US 06/272,930
<151>
      2001-03-02
<160> 59
<170> PatentIn version 3.0
<210>
      1
<211>
      20
<212>
      PRT
<213> Homo sapiens
<400> 1
Gly Met Pro Trp Leu Ser Ala Thr Thr Val Arg Ser Val Thr His Ala
                                   10
Asn Ala Leu Thr
<210>
      2
<211>
      20
<212> PRT
<213> Homo sapiens
<400> 2
Ser Val Thr His Ala Asn Ala Leu Thr Val Met Gly Lys Ala Ser Thr
Pro Gly Ala Ala
           20
<210>
      3
<211>
      20
<212>
      PRT
<213> Homo sapiens
<400> 3
Gly Lys Ala Ser Thr Pro Gly Ala Ala Ala Gln Ile Gln Glu Val Lys
Glu Gln Arg Ile
<210> 4
<211> 20
```

Ö

<212> PRT Homo sapiens

<400> 4

Asp Arg Ile Leu Leu Phe Lys Pro Pro Lys Tyr His Pro Asp Val

Pro Tyr Val Lys

<210> 5 <211> 3475 <212> DNA

Homo sapiens

<400> 5

ggaacgagtg ggaacgtagc tggtcgcaga gggcaccagc ggctgcagga cttcaccaag 60 ggaccctgag gctcgtgagc agggacccgc ggtgcgggtt atgctggggg ctcagatcac 120 cgtagacaac tggacactca ggaccacgcc atggaggagc tgcaggatga ttatgaagac 180 240 atgatggagg agaatctgga gcaggaggaa tatgaagacc cagacatccc cgagtcccag atggaggagc cggcagctca cgacaccgag gcaacagcca cagactacca caccacatca 300 360 caccogggta cccacgaggt ctatgtggag ctgcaggagc tggtgatgga cgaaaagaac caggagetga gatggatgga ggeggegege tgggtgeaac tggaggagaa cetgggggag 420 480 cgtagagtct tcaccaaggg tactgtcctc ctagacctgc aagagacctc cctggctgga 540 600 qtqqccaacc aactqctaga caggtttatc tttgaagacc agatccggcc tcaggaccga 660 qaqqaqctgc tccgggccct gctgcttaaa cacagccacg ctggagagct ggaggccctg 720 gggggtgtga agcctgcagt cctgacacgc tctgggggatc cttcacagcc tctgctcccc caacactcct cactggagac acagctcttc tgtgagcagg gagatggggg cacagaaggg 780 840 cactcaccat ctggaattct ggaaaagatt ccccggatt cagaggccac gttggtgcta 900 gtgggccgcg ccgacttcct ggagcagccg gtgctgggct tcgtgaggct gcaggaggca 960 gcggagctgg aggcggtgga gctgccggtg cctatacgct tcctctttgt gttgctggga 1020 cctgaggccc cccacatcga ttacacccag cttggccggg ctgctgccac cctcatgtca 1080 gagagggtgt tccgcataga tgcctacatg gctcagagcc gaggggagct gctgcactcc ctagagggct teetggactg cagectagtg etgeeteeca eegatgeeee eteegageag 1140 gcactgctca gtctggtgcc tgtgcagagg gagctacttc gaaggcgcta tcagtccagc 1200 cctgccaagc cagactccag cttctacaag ggcctagact taaatggggg cccagatgac 1260 1320 cctctgcagc agacaggcca gctcttcggg ggcctggtgc gtgatatccg gcgccgctac

Me so than 1

ccctattacc tgagtgacat cacagatgca ttcagccccc aggtcctggc tgccgtcatc 1380 1440 ttcatctact ttgctgcact gtcacccgcc atcaccttcg gcggcctcct gggagaaaag accoggaacc agatgggagt gtcggagctg ctgatctcca ctgcagtgca gggcattctc 1500 1560 ttcgccctgc tgggggctca gcccctgctt gtggtcggct tctcaggacc cctgctggtg tttgaggaag cettettete gttetgegag accaaeggte tagagtacat egtgggeege 1620 gtgtggatcg gcttctggct catcctgctg gtggtgttgg tggtggcctt cgagggtagc 1680 1740 ttcctggtcc gcttcatctc ccgctatacc caggagatct tctccttcct catttccctc atcttcatct atgagacttt ctccaagctg atcaagatct tccaggacca cccactacag 1800 1860 aagacttata actacaacgt gttgatggtg cccaaacctc agggccccct gcccaacaca gccctcctct cccttgtgct catggccggt accttcttct ttgccatgat gctgcgcaag 1920 1980 ttcaagaaca gctcctattt ccctggcaag ctgcgtcggg tcatcgggga cttcggggtc 2040 cccatctcca tcctgatcat ggtcctggtg gatttcttca ttcaggatac ctacacccag 2100 aaactctcgg tgcctgatgg cttcaaggtg tccaactcct cagcccgggg ctgggtcatc cacccactgg gcttgcgttc cgagtttccc atctggatga tgtttgcctc cgccctgcct 2160 2220 gctctgctgg tcttcatcct catattcctg gagtctcaga tcaccacgct gattgtcagc 2280 aaacctgage gcaagatggt caagggetee ggettecace tggacetget getggtagta 2340 ggcatgggtg gggtggccgc cctctttggg atgccctggc tcagtgccac caccgtgcgt 2400 teegteacce atgecaacge ceteactgte atgggcaaag ceageacece aggggetgea 2460 gcccagatcc aggaggtcaa agagcagcgg atcagtggac tcctggtcgc tgtgcttgtg 2520 ggcctgtcca tcctcatgga gcccatcctg tcccgcatcc ccctggctgt actgtttggc atottcctct acatgggggt cacgtcgctc agcggcatcc agctctttga ccgcatcttg 2580 2640 cttctgttca agccacccaa gtatcaccca gatgtgccct acgtcaagcg ggtgaagacc 2700 tggcgcatgc acttattcac gggcatccag atcatctgcc tggcagtgct gtgggtggtg 2760 aagtecaege eggeeteeet ggeeetgeee ttegteetea teeteaetgt geegetgegg 2820 cgcgtcctgc tgccgctcat cttcaggaac gtggagcttc agtgtctgga tgctgatgat 2880 gccaaggcaa cctttgatga ggaggaaggt cgggatgaat acgacgaagt ggccatgcct 2940 gtgtgagggg cgggcccagg ccctagaccc tcccccacca ttccacatcc ccaccttcca 3000 aggaaaagca gaagttcatg ggcacctcat ggactccagg atcctcctgg agcagcat gaggccccag ggctgtgggt ggggaaggaa ggcgtgtcca ggagaccttc cacaaagggt 3060 agcctggctt ttctggctgg ggatggccga tggggcccac attagggggt ttgttgcaca 3120

gtecetectg ttgccacact ttcactgggg atcccgtgct ggaagactta gatetgagcc 3180 ctccctcttc ccagcacagg caggggtaga agcaaaggca ggaggtgggt gagcgggtgg 3240 ggtgcttgct gtgtgacctt gggcaagtcc cttgaccttt ccagcctata tttcctcttc 3300 tgtaaaatgg gtatattgat gataataccc acattacagg atggttactg aggaccaaag 3360 atacatgtaa aatagggctt tgtaaactcc acagggactg ttctatagca gtcatcattt 3420 gtctttgaac gtacccaagg tcacatagct gggatttgaa ctgagccgtg cagct 3475

<210> 6

<211> 911

<212> PRT

<213> Homo sapiens

<400> 6

Met Glu Glu Leu Gln Asp Asp Tyr Glu Asp Met Met Glu Glu Asn Leu 1 5 10 15

Glu Glu Glu Tyr Glu Asp Pro Asp Ile Pro Glu Ser Gln Met Glu 20 25 30

Glu Pro Ala Ala His Asp Thr Glu Ala Thr Ala Thr Asp Tyr His Thr 35 40 45

Thr Ser His Pro Gly Thr His Glu Val Tyr Val Glu Leu Gln Glu Leu 50 55 60

Val Met Asp Glu Lys Asn Gln Glu Leu Arg Trp Met Glu Ala Ala Arg 65 70 75 80

Trp Val Gln Leu Glu Glu Asn Leu Gly Glu Asn Gly Ala Trp Gly Arg 85 90 95

Pro His Leu Ser His Leu Thr Phe Trp Ser Leu Leu Glu Leu Arg Arg
100 105 110

Val Phe Thr Lys Gly Thr Val Leu Leu Asp Leu Gln Glu Thr Ser Leu 115 120 125

Ala Gly Val Ala Asn Gln Leu Leu Asp Arg Phe Ile Phe Glu Asp Gln 130 135 140

Ile Arg Pro Gln Asp Arg Glu Glu Leu Leu Arg Ala Leu Leu Lys
145 150 155 160

His Ser His Ala Gly Glu Leu Glu Ala Leu Gly Gly Val Lys Pro Ala 165 170 175

Val Leu Thr Arg Ser Gly Asp Pro Ser Gln Pro Leu Leu Pro Gln His
180 185 190

Ser Ser Leu Glu Thr Gln Leu Phe Cys Glu Gln Gly Asp Gly Gly Thr 195 200 205

•	Glu	Gly 210	His	Ser	Pro	Ser	Gly 215	Ile	Leu	Glu	Lys	Ile 220	Pro	Pro	Asp	Ser
	Glu 225	Ala	Thr	Leu	Val	Leu 230	Val	Gly	Arg	Ala	Asp 235	Phe	Leu	Glu	Gln	Pro 240
٦	Val	Leu	Gly	Phe	Val 245	Arg	Leu	Gln	Glu	Ala 250	Ala	Glu	Leu	Glu	Ala 255	Val
(Glu	Leu	Pro	Val 260	Pro	Ile	Arg	Phe	Leu 265	Phe	Val	Leu	Leu	Gly 270	Pro	Glu
i	Ala	Pro	His 275	Ile	Asp	Tyr	Thr	Gln 280	Leu	Gly	Arg	Ala	Ala 285	Ala	Thr	Leu
]	Met	Ser 290	Glu	Arg	Val	Phe	Arg 295	Ile	Asp	Ala	Tyr	Met 300	Ala	Gln	Ser	Arç
	Gly 305	Glu	Leu	Leu	His	Ser 310	Leu	Glu	Gly	Phe	Leu 315	Asp	Cys	Ser	Leu	Val 320
]	Leu	Pro	Pro	Thr	Asp 325	Ala	Pro	Ser	Glu	Gln 330	Ala	Leu	Leu	Ser	Leu 335	Val
	Pro	Val	Gln	Arg 340	Glu	Leu	Leu	Arg	Arg 345	Arg	Tyr	Gln	Ser	Ser 350	Pro	Ala
]	Lys	Pro	Asp 355	Ser	Ser	Phe	Tyr	Lys 360	Gly	Leu	Asp	Leu	Asn 365	Gly	Gly	Pro
2	Asp	Asp 370	Pro	Leu	Gln		Thr 375	Gly	Gln	Leu	Phe	Gly 380	Gly	Leu	Val	Arç
	Asp 385	Ile	Arg	Arg	Arg	Туг 390	Pro	Tyr	Tyr	Leu	Ser 395	Asp	Ile	Thr	Asp	Ala 400
]	Phe	Ser	Pro	Gln	Val 405	Leu	Ala	Ala	Val	Ile 410	Phe	Ile	Tyr	Phe	Ala 415	Ala
3	Leu	Ser	Pro	Ala 420	Ile	Thr	Phe	Gly	Gly 425	Leu	Leu	Gly	Glu	Lys 430	Thr	Arg
Ž	Asn	Gln	Met 435	Gly	Val	Ser	Glu	Leu 440	Leu	Ile	Ser	Thr	Ala 445	Val	Gln	Gly
-	Ile	Leu 450	Phe	Ala	Leu	Leu	Gly 455	Ala	Gln	Pro	Leu	Leu 460	Val	Val	Gly	Phe
	Ser 465	Gly	Pro	Leu	Leu	Val 470	Phe	Glu	Glu	Ala	Phe 475	Phe	Ser	Phe	Cys	Glu 480
5	Thr	Asn	Gly	Leu	Glu 485	Tyr	Ile	Val	Gly	Arg 490	Val	Trp	Ile	Gly	Phe 495	Trp
J	Leu	Ile	Leu	Leu 500	Val	Val	Leu	Val	Val 505	Ala	Phe	Glu	Gly	Ser 510	Phe	Leu
7	Val	Arg	Phe	Ile	Ser	Arg	Tyr	Thr	Gln	Glu	Ile	Phe	Ser	Phe	Leu	Ile

Պ. (1914 - 1914

Ser Leu Ile Phe Ile Tyr Glu Thr Phe Ser Lys Leu Ile Lys Ile Phe 535 Gln Asp His Pro Leu Gln Lys Thr Tyr Asn Tyr Asn Val Leu Met Val Pro Lys Pro Gln Gly Pro Leu Pro Asn Thr Ala Leu Leu Ser Leu Val 570 Leu Met Ala Gly Thr Phe Phe Phe Ala Met Met Leu Arg Lys Phe Lys 585 Asn Ser Ser Tyr Phe Pro Gly Lys Leu Arg Arg Val Ile Gly Asp Phe 600 Gly Val Pro Ile Ser Ile Leu Ile Met Val Leu Val Asp Phe Phe Ile 615 620 Gln Asp Thr Tyr Thr Gln Lys Leu Ser Val Pro Asp Gly Phe Lys Val 635 630 Ser Asn Ser Ser Ala Arg Gly Trp Val Ile His Pro Leu Gly Leu Arg 645 650 Ser Glu Phe Pro Ile Trp Met Met Phe Ala Ser Ala Leu Pro Ala Leu Leu Val Phe Ile Leu Ile Phe Leu Glu Ser Gln Ile Thr Thr Leu Ile Val Ser Lys Pro Glu Arg Lys Met Val Lys Gly Ser Gly Phe His Leu 695 Asp Leu Leu Val Val Gly Met Gly Gly Val Ala Ala Leu Phe Gly Met Pro Trp Leu Ser Ala Thr Thr Val Arg Ser Val Thr His Ala Asn 730 Ala Leu Thr Val Met Gly Lys Ala Ser Thr Pro Gly Ala Ala Ala Gln Ile Gln Glu Val Lys Glu Gln Arg Ile Ser Gly Leu Leu Val Ala Val Leu Val Gly Leu Ser Ile Leu Met Glu Pro Ile Leu Ser Arg Ile Pro Leu Ala Val Leu Phe Gly Ile Phe Leu Tyr Met Gly Val Thr Ser Leu Ser Gly Ile Gln Leu Phe Asp Arg Ile Leu Leu Phe Lys Pro Pro Lys Tyr His Pro Asp Val Pro Tyr Val Lys Arg Val Lys Thr Trp Arg 825 Met His Leu Phe Thr Gly Ile Gln Ile Ile Cys Leu Ala Val Leu Trp Val Val Lys Ser Thr Pro Ala Ser Leu Ala Leu Pro Phe Val Leu Ile 850 855 860

Leu Thr Val Pro Leu Arg Arg Val Leu Leu Pro Leu Ile Phe Arg Asn 865 870 875 880

Val Glu Leu Gln Cys Leu Asp Ala Asp Asp Ala Lys Ala Thr Phe Asp 885 890 895

Glu Glu Gly Arg Asp Glu Tyr Asp Glu Val Ala Met Pro Val 900 905 910

<210> 7

<211> 3637

<212> DNA

<213> Homo sapiens

<400> 7

cageggetge aggactteac caagggacee tgaggetegt gageagggac cegeggtgeg 60 ggttatgctg ggggctcaga tcaccgtaga caactggaca ctcaggacca cgccatggag 120 180 gagctgcagg atgattatga agacatgatg gaggagaatc tggagcagga ggaatatgaa gacccagaca tccccgagtc ccagatggag gagccggcag ctcacgacac cgaggcaaca 240 gccacagact accacacca atcacacccg ggtacccaca aggtctatgt ggagetgcag 300 360 gagctggtga tggacgaaaa gaaccaggag ctgagatgga tggaggcggc gcgctgggtg caactggagg agaacctggg ggagaatggg gcctggggcc gcccgcacct ctctcacctc 420 accttctgga gcctcctaga gctgcgtaga gtcttcacca agggtactgt tctcctagac 480 ctgcaagaga cctccctggc tggagtggcc aaccaactgc tagacaggtt tatctttgaa 540 gaccagatcc ggcctcagga ccqagaggag ctgctccggg ccctgctgct taaacacagc 600 cacgctggag agctggaggc cctggggggt gtgaagcctg cagtcctgac acgctctggg 660 720 gatectteac agectetget ecceeaacae teeteactgg agacacaget ettetgtgag cagggagatg ggggcacaga agggcactca ccatctggaa ttctggaaaa gattcccccg 780 840 gattcagagg ccacgttggt gctagtgggc cgcgccgact tcctggagca gccggtgctg 900 ggcttcgtga ggctgcagga ggcagcggag ctggaggcgg tggagctgcc ggtgcctata 960 cgcttcctct ttgtgttgct gggacctgag gcccccaca tcgattacac ccagcttggc cgggctgctg ccaccctcat gtcagagagg gtgttccgca tagatgccta catggctcag 1020 ageegagggg agetgetgea etecetagag ggetteetgg aetgeageet agtgetgeet 1080 cccaccgatg ccccctccga gcaggcactg ctcagtctgg tgcctgtgca gagggageta 1140 cttcgaaggc gctatcagtc cagccttgcc aagccagact ccagcttcta caagggccta 1200 gacttaaatg ggggcccaga tgaccctctg cagcagacag gccagctctt cgggggcctg 1260

gtgcgtgata	tccggcgccg	ctacccctat	tacctgagtg	acatcacaga	tgcattcagc	1320
ccccaggtcc	tggctgccgt	catcttcatc	tactttgctg	cactgtcacc	cgccatcacc	1380
ttcggcggcc	tcctgggaga	aaagacccgg	aaccagatgg	gagtgtcgga	gctgctgatc	1440
tccactgcag	tgcagggcat	tctcttcgcc	ctgctggggg	ctcagcccct	gcttgtggtc	1500
ggcttctcag	gacccctgct	ggtgtttgag	gaagccttct	tctcgttctg	cgagaccaac	1560
ggtctagagt	acatcgtggg	ccgcgtgtgg	atcggcttct	ggctcatcct	gctggtggtg	1620
ttggtggtgg	ccttcgaggg	tagcttcctg	gtccgcttca	tctcccgcta	tacccaggag	1680
atcttctcct	tcctcatttc	cctcatcttc	atctatgaga	ctttctccaa	gctgatcaag	1740
atcttccagg	accacccact	acagaagact	tataactaca	acgtgttgat	ggtgcccaaa	1800
cctcagggcc	ccctgcccaa	cacagccctc	ctctcccttg	tgctcatggc	cggtaccttc	1860
ttctttgcca	tgatgctgcg	caagttcaag	aacagctcct	atttccctgg	caagctgcgt	1920
cgggtcatcg	gggacttcgg	ggtccccatc	tccatcctga	tcatggtcct	ggtggatttc	1980
ttcattcagg	atacctacac	ccagaaactc	teggtgeetg	atggcttcaa	ggtgtccaac	2040
tcctcagccc	ggggctgggt	catccaccca	ctgggcttgc	gttccgagtt	tcccatctgg	2100
atgatgtttg	cctccgccct	gcctgctctg	ctggtcttca	tcctcatatt	cctggagtct	2160
cagatcacca	cgctgattgt	cagcaaacct	gagcgcaaga	tggtcaaggg	ctccggcttc	2220
cacctggacc	tgctgctggt	agtaggcatg	ggtggggtgg	ccgccctctt	tgggatgccc	2280
tggctcagtg	ccaccaccgt	gcgttccgtc	acccatgcca	acgccctcac	tgtcatgggc	2340
aaagccagca	ccccaggggc	tgcagcccag	atccaggagg	tcaaagagca	gcggatcagt	2400
ggactcctgg	tcgctgtgct	tgtgggcctg	tccatcctca	tggagcccat	cctgtcccgc	2460
atccccctgg	ctgtactgtt	tggcatcttc	ctctacatgg	gggtcacgtc	gctcagcggc	2520
atccagctct	ttgaccgcat	cttgcttctg	ttcaagccac	ccaagtatca	cccagatgtg	2580
ccctacgtca	agcgggtgaa	gacctggcgc	atgcacttat	tcacgggcat	ccagatcatc	2640
tgcctggcag	tgctgtgggt	ggtgaagtcc	acgccggcct	ccctggccct	gcccttcgtc	2700
ctcatcctca	ctgtgccgct	gcggcgcgtc	ctgctgccgc	tcatcttcag	gaacgtggag	2760
cttcagtgtc	tggatgctga	tgatgccaag	gcaacctttg	atgaggagga	aggtcgggat	2820
gaatacgacg	aagtggccat	gcctgtgtga	ggggcgggcc	caggccctag	accctccccc	2880
accattccac	atccccacct	tccaaggaaa	agcagaagtt	catgggcacc	tcatggactc	2940
aggatectec	tggagcagca	gctgaggccc	cagggctgtg	ggtggggaag	gaaggcgtgt	3000
ccaggagacc	ttccacaaag	ggtagcctgg	cttttctggc	tggggatggc	cgatggggcc	3060

cacattaggg ggtttgttgc acagtccctc ctgttgccac actttcactg gggatcccgt 3120 gctggaagac ttagatctga gccctccctc ttcccagcac aggcaggggt agaagcaaag 3180 gcaggaggtg ggtgagcggg tggggtgctt gctgtgtgac cttgggtaag tcccttgacc 3240 tttccaggcc tatatttcct cttctgtaaa atgggtatat tgatgataat acccacatta 3300 caggatggtt actgaggacc aaagatacat gtaaaatagg gctttgtaaa ctccacaggg 3360 actgttctat agcagtcatc atttgtcttt gaacgtaccc aaggtcacat agctgggatt 3420 tgaactgagc cgtgcagctg ggatttgaac caggccttct gatttcaagg tccgagctct 3480 3540 gtectetgte agteatgegt ceaettteee tteecetgtg acteeteect teeceaetet gctcccagcc cctaccttga gaccctcttc tctgggccca gagagaggcg tcctgggtga 3600 3637 aggaaggtac aggcaggatg atccagggat tgggctg

```
<210> 8
<211> 911
<212> PRT
```

<213> Homo sapiens

<400> 8

Met Glu Glu Leu Gln Asp Asp Tyr Glu Asp Met Met Glu Glu Asn Leu 1 5 10 15

Glu Glu Glu Tyr Glu Asp Pro Asp Ile Pro Glu Ser Gln Met Glu
20 25 30

Glu Pro Ala Ala His Asp Thr Glu Ala Thr Ala Thr Asp Tyr His Thr 35 40 45

Thr Ser His Pro Gly Thr His Lys Val Tyr Val Glu Leu Gln Glu Leu 50 55 60

Val Met Asp Glu Lys Asn Gln Glu Leu Arg Trp Met Glu Ala Ala Arg 65 70 75 80

Trp Val Gln Leu Glu Glu Asn Leu Gly Glu Asn Gly Ala Trp Gly Arg
85 90 95

Pro His Leu Ser His Leu Thr Phe Trp Ser Leu Leu Glu Leu Arg Arg 100 105 110

Val Phe Thr Lys Gly Thr Val Leu Leu Asp Leu Gln Glu Thr Ser Leu 115 120 125

Ala Gly Val Ala Asn Gln Leu Leu Asp Arg Phe Ile Phe Glu Asp Gln 130 135 140

His Ser His Ala Gly Glu Leu Glu Ala Leu Gly Gly Val Lys Pro Ala 165 170 175 Val Leu Thr Arg Ser Gly Asp Pro Ser Gln Pro Leu Leu Pro Gln His 185 Ser Ser Leu Glu Thr Gln Leu Phe Cys Glu Gln Gly Asp Gly Gly Thr 200 Glu Gly His Ser Pro Ser Gly Ile Leu Glu Lys Ile Pro Pro Asp Ser Glu Ala Thr Leu Val Leu Val Gly Arg Ala Asp Phe Leu Glu Gln Pro 235 Val Leu Gly Phe Val Arg Leu Gln Glu Ala Ala Glu Leu Glu Ala Val Glu Leu Pro Val Pro Ile Arg Phe Leu Phe Val Leu Leu Gly Pro Glu 265 Ala Pro His Ile Asp Tyr Thr Gln Leu Gly Arg Ala Ala Ala Thr Leu 280 Met Ser Glu Arg Val Phe Arg Ile Asp Ala Tyr Met Ala Gln Ser Arg 290 Gly Glu Leu Leu His Ser Leu Glu Gly Phe Leu Asp Cys Ser Leu Val 315 Leu Pro Pro Thr Asp Ala Pro Ser Glu Gln Ala Leu Leu Ser Leu Val 330 325 Pro Val Gln Arg Glu Leu Leu Arg Arg Arg Tyr Gln Ser Ser Pro Ala Lys Pro Asp Ser Ser Phe Tyr Lys Gly Leu Asp Leu Asn Gly Gly Pro 355 Asp Asp Pro Leu Gln Gln Thr Gly Gln Leu Phe Gly Gly Leu Val Arg 375 Asp Ile Arg Arg Tyr Pro Tyr Tyr Leu Ser Asp Ile Thr Asp Ala 390 Phe Ser Pro Gln Val Leu Ala Ala Val Ile Phe Ile Tyr Phe Ala Ala 405 Leu Ser Pro Ala Ile Thr Phe Gly Gly Leu Leu Gly Glu Lys Thr Arg 420 Asn Gln Met Gly Val Ser Glu Leu Leu Ile Ser Thr Ala Val Gln Gly 440 Ile Leu Phe Ala Leu Leu Gly Ala Gln Pro Leu Leu Val Val Gly Phe 455 450 Ser Gly Pro Leu Leu Val Phe Glu Glu Ala Phe Phe Ser Phe Cys Glu 470 475 Thr Asn Gly Leu Glu Tyr Ile Val Gly Arg Val Trp Ile Gly Phe Trp

490

Leu Ile Leu Leu Val Val Leu Val Val Ala Phe Glu Gly Ser Phe Leu 505 Val Arg Phe Ile Ser Arg Tyr Thr Gln Glu Ile Phe Ser Phe Leu Ile 520 Ser Leu Ile Phe Ile Tyr Glu Thr Phe Ser Lys Leu Ile Lys Ile Phe Gln Asp His Pro Leu Gln Lys Thr Tyr Asn Tyr Asn Val Leu Met Val Pro Lys Pro Gln Gly Pro Leu Pro Asn Thr Ala Leu Leu Ser Leu Val 570 Leu Met Ala Gly Thr Phe Phe Phe Ala Met Met Leu Arg Lys Phe Lys 585 Asn Ser Ser Tyr Phe Pro Gly Lys Leu Arg Arg Val Ile Gly Asp Phe Gly Val Pro Ile Ser Ile Leu Ile Met Val Leu Val Asp Phe Phe Ile 615 Gln Asp Thr Tyr Thr Gln Lys Leu Ser Val Pro Asp Gly Phe Lys Val 635 Ser Asn Ser Ser Ala Arg Gly Trp Val Ile His Pro Leu Gly Leu Arg Ser Glu Phe Pro Ile Trp Met Met Phe Ala Ser Ala Leu Pro Ala Leu 665 Leu Val Phe Ile Leu Ile Phe Leu Glu Ser Gln Ile Thr Thr Leu Ile 675 Val Ser Lys Pro Glu Arg Lys Met Val Lys Gly Ser Gly Phe His Leu Asp Leu Leu Leu Val Val Gly Met Gly Gly Val Ala Ala Leu Phe Gly 710 705 Met Pro Trp Leu Ser Ala Thr Thr Val Arg Ser Val Thr His Ala Asn 730

Ile Gln Glu Val Lys Glu Gln Arg Ile Ser Gly Leu Leu Val Ala Val 760 Leu Val Gly Leu Ser Ile Leu Met Glu Pro Ile Leu Ser Arg Ile Pro 775 770

Ala Leu Thr Val Met Gly Lys Ala Ser Thr Pro Gly Ala Ala Ala Gln 745

740

Leu Ala Val Leu Phe Gly Ile Phe Leu Tyr Met Gly Val Thr Ser Leu 790 795

Ser Gly Ile Gln Leu Phe Asp Arg Ile Leu Leu Leu Phe Lys Pro Pro 810 805

Lys Tyr His Pro Asp Val Pro Tyr Val Lys Arg Val Lys Thr Trp Arg
820
825
830

Met His Leu Phe Thr Gly Ile Gln Ile Ile Cys Leu Ala Val Leu Trp 835 840 845

Val Val Lys Ser Thr Pro Ala Ser Leu Ala Leu Pro Phe Val Leu Ile 850 855 860

Leu Thr Val Pro Leu Arg Arg Val Leu Leu Pro Leu Ile Phe Arg Asn 865 870 875 880

Val Glu Leu Gln Cys Leu Asp Ala Asp Asp Ala Lys Ala Thr Phe Asp 885 890 895

Glu Glu Gly Arg Asp Glu Tyr Asp Glu Val Ala Met Pro Val 900 905 910

<210> 9

<211> 5917

<212> DNA

<213> Plasmodium falciparum

<400> 9

attaatttaa ttaagttgtg taataatata ttccattacc aagaaaaaaa aaaaaaagaa 60 120 180 tatatatata tatatata tataattttt tttcacaaaa aacaaaaaa aaacaaaaag 240 ggttgtatat atatctataa tatatatata tatacatatg tgtaaggaaa ataatttgaa taatattaaa attatagtta tgatgtaata aataattttt attataaaaa taaggctaat 300 qtaaaatqca aaaataaatq tatacatatt tttqctaaqt catattttta aattattaac 360 420 aagatcatat tottttatg ttoatttott ttttttatta taaatacaca atgtgtaaca 480 catgaaagtt atcaagaact tgtcaaaaaa ctagaagctt tagaagatgc agtattgaca 540 qgttatagtt tatttcaaaa ggaaaaaatg gtattaaatg aaggaacaag tggaacagct 600 gttacaacta gtacacctgg ttcaaagggt tcagttgctt caggtggttc aggtggctca 660 720 gttgcttcag gtggctcagt tgcttcaggt ggctcagttg cttcaggtgg ctcagttgct tcaggtggtt caggtaattc aagacgtaca aatccttcag ataattcaag tgattcagat 780 gctaaatctt acgctgattt aaaacacaga gtacgaaatt acttgttaac tatcaaagaa 840 900 ctcaaatatc ctcaactctt tgatttaact aatcatatgt taactttgtg tgataatatt catggtttca aatatttaat tgatggatat gaagaaatta atgaattatt atataaatta 960 aacttttatt ttgatttatt aagagcaaaa ttaaatgatg tatgtgctaa tgattattgt 1020 caaatacctt tcaatcttaa aattcgtgca aatgaattag acgtacttaa aaaacttgtg 1080

1140 ttcggatata gaaaaccatt agacaatatt aaagataatg taggaaaaat ggaagattac attaaaaaaa ataaaaaaac catagaaaat ataaatgaat taattgaaga aagtaagaaa 1200 1260 acaattgata aaaataagaa tgcaactaaa gaagaagaaa aaaaaaaatt ataccaagct caatatgatc tttctattta caataaacaa ttagaagaag cacataattt aataagcgtt 1320 ttagaaaaac gtattgacac tttaaaaaaaa aatgaaaaca ttaaggaatt acttgataag 1380 ataaatgaaa ttaaaaatcc cccaccggcc aattctggaa atacaccaaa tactctcctt 1440 1500 gataagaaca aaaaaatcga ggaacacgaa aaagaaataa aagaaattgc caaaactatt 1560 aaatttaata ttgatagttt atttactgat ccacttgaat tagaatacta tttaagagaa aaaaataaaa atattgatat aagtgcaaag gttgaaacaa aggaatcaac tgaacccaat 1620 1680 gaatatccaa atggagttac ttatcctttg tcatataacg atattaacaa tgctttaaat 1740 gaacttaatt cttttggtga tttaattaat ccatttgatt atacaaaaga accaagtaaa aacatatata ctgataatga aagaaaaaaa ttcataaatg aaattaagga aaaaattaaa 1800 1860 atagaaaaaa aaaaaattga atctgataaa aaatcttacg aagacagatc taagtcttta 1920 aatgatataa caaaagaata tgaaaaatta cttaatgaaa tttatgatag caaattcaat 1980 aataatatag atttaactaa tttcgaaaaa atgatgggta aaagatattc atataaagtt gagaaactta cacaccataa tacttttgca tcctatgaaa attctaaaca taatcttgaa 2040 2100 aagttaacaa aagctcttaa atatatggaa gattattctt taaggaatat agtagttgaa aaagaattaa aatattataa aaatttaata agcaaaatag aaaatgagat tgaaacatta 2160 gttgaaaata ttaaaaaaga tgaagaacag ctttttgaaa aaaaaattac taaagacgaa 2220 2280 aataaaccag atgaaaaaat tttagaagta tctgacattg taaaagtaca agttcaaaaa gttttattaa tgaacaaaat tgacgaatta aaaaagactc aattgatttt aaaaaatgta 2340 gaattaaaac ataatataca tgttcccaat tcttacaaac aagaaaataa gcaagaacct 2400 tattatttaa ttgtgttgaa aaaagaaatt gataaattaa aagtgttcat gcctaaggta 2460 2520 gaatcattga taaatgaaga aaaaaaaaac ataaaaacag aaggtcaatc ggataattcg 2580 gaaccatcaa ccgaaggaga aataacagga caagcaacta caaaacctgg acaacaagca 2640 ggatctgctt tagaaggaga ttcagtacaa gcacaagcac aagaacaaaa acaagcacaa ccaccagtac cagtaccagt accagaagca aaagcacaag tcccaacacc accagcacca 2700 gtaaataata aaactgaaaa tgtttccaaa ttagattatc ttgaaaaatt atatgaattt 2760 2820 ttaaatactt catatatatg tcacaaatat attttggttt cacactcaac tatgaacgaa 2880 aagatattaa aacaatataa aattacaaag gaggaagaaa gcaaattaag ttcatgtgat

2940 ccattagact tattgtttaa tatacaaaat aacatacctg taatgtattc tatgtttgat agcttaaaca atagtttatc acaactattt atggaaattt atgaaaaaga aatggtttgt 3000 aatttatata aacttaagga taatgacaaa attaaaaatt tattagagga agcgaaaaaa 3060 gtatccacat ctgtaaaaac tctttcaagt tcatcaatgc aaccattatc attaacacct 3120 caggataaac ccgaagtaag tgcaaatgat gatacatcac attctacaaa tttgaataat 3180 3240 agtttaaaat tatttgaaaa catattgagt cttggaaaaa acaaaaatat ataccaagaa ttaataggtc aaaaaagtag tgaaaacttt tatgaaaaga tattaaaaga tagtgataca 3300 3360 ttttataatg aatcttttac aaattttgta aaatctaaag ctgatgatat taattcattg aatgatgaat caaaaaggaa gaaattagaa gaagatatta ataaattaaa aaaaacttta 3420 cagttatcat ttgatttata taataaatat aaattaaaat tagaaagatt atttgataaa 3480 aagaaaacag ttggtaaata taaaatgcaa attaaaaaac ttactttatt aaaagaacaa 3540 ttagaatcaa aattgaattc acttaataac ccaaagcatg tattacaaaa cttttctgtt 3600 ttctttaaca aaaaaaaaga agctgaaata gcagaaactg aaaacacatt agaaaacaca 3660 aaaatattat tgaaacatta taaaggactt gttaaatatt ataatggtga atcatctcca 3720 3780 ttaaaaactt taagtgaaga atcaattcaa acagaagata attatgccag tttagaaaac tttaaagtat taagtaaatt agaaggaaaa ttaaaggata atttaaattt agaaaagaaa 3840 aaattatcat acttatcaag tggattacat catttaattg ctgaattaaa agaagtaata 3900 aaaaataaaa attatacagg taattctcca agtgaaaata atacggatgt taacaatgca 3960 4020 ttagaatctt acaaaaaatt tctcccagaa ggaacagatg ttgcaacagt tgtaagtgaa agtggatccg acacattaga acaaagtcaa ccaaagaaac cagcatcaac tcatgtagga 4080 gcagagtcta acacaataac aacatcacaa aatgtcgatg atgaagtaga tgacgtaatc 4140 4200 atagtaccta tatttggaga atccgaagaa gattatgatg atttaggaca agtagtaaca ggagaagcag taactccttc cgtaattgat aacatacttt ctaaaattga aaatgaatat 4260 gaggttttat atttaaaacc tttagcaggt gtttatagaa gtttaaaaaa acaattagaa 4320 aataacgtta tgacatttaa tgttaatgtt aaggatattt taaattcacg atttaataaa 4380 cgtgaaaatt tcaaaaatgt tttagaatca gatttaattc catataaaga tttaacatca 4440 agtaattatg ttgtcaaaga tccatataaa tttcttaata aagaaaaaag agataaattc 4500 4560 ttaagcagtt ataattatat taaggattca atagatacgg atataaattt tgcaaatgat 4620 gttcttggat attataaaat attatccgaa aaatataaat cagatttaga ttcaattaaa 4680 aaatatatca acgacaaaca aggtgaaaat gagaaatacc ttcccttttt aaacaatatt

gagaccttat	ataaaacagt	taatgataaa	attgatttat	ttgtaattca	tttagaagca	4740
aaagttctaa	attatacata	tgagaaatca	aacgtagaag	ttaaaataaa	agaacttaat	4800
tacttaaaaa	caattcaaga	caaattggca	gattttaaaa	aaaataacaa	tttcgttgga	4860
attgctgatt	tatcaacaga	ttataaccat	aataacttat	tgacaaagtt	ccttagtaca	4920
ggtatggttt	ttgaaaatct	tgctaaaacc	gttttatcta	atttacttga	tggaaacttg	4980
caaggtatgt	taaacatttc	acaacaccaa	tgcgtaaaaa	aacaatgtcc	acaaaattct	5040
ggatgtttca	gacatttaga	tgaaagagaa	gaatgtaaat	gtttattaaa	ttacaaacaa	5100
gaaggtgata	aatgtgttga	aaatccaaat	cctacttgta	acgaaaataa	tggtggatgt	5160
gatgcagatg	ccaaatgtac	cgaagaagat	tcaggtagca	acggaaagaa	aatcacatgt	5220
gaatgtacta	aacctgattc	ttatccactt	ttcgatggta	ttttctgcag	ttcctctaac	5280
ttcttaggaa	tatcattctt	attaatactc	atgttaatat	tatacagttt	catttaaaaa	5340
atgtaggagt	taaaatatgt	taccttaatt	tttttttt	tttttttt	taaatatata	5400
tatatattaa	tatatata	taaaatatta	cataatatat	atatatatat	ttagttatta	5460
caggaatagt	gatattttag	tcatgttcaa	aatatattaa	aaaattataa	atattataat	5520
aaaaaaaaa	aaaaaaaaa	attatatact	tataaattta	tacatttata	catatatata	5580
tatatatttt	tttttcttct	ttcttttcaa	gttctatttt	atattttata	tatagattta	5640
ataaaaaact	ttttaaaata	aaaaaaagta	cgtaaatttt	aatatatata	tatatatata	5700
taatatatat	ataatatata	tttatttatt	tatatgtata	atatattac	atatattatt	5760
ataatatata	tattttttt	tacgcataca	taaaaagcat	tttttttt	tataaacatt	5820
ccaacaatta	taaaataact	ttaataataa	cattaaattt	ttatttttt	ttttaaaaaa	5880
aaaaaaaaa	aaaaaaaaa	actaaagaga	ttattca			5917

<210> 10

Met Lys Ile Ile Phe Phe Leu Cys Ser Phe Leu Phe Phe Ile Ile Asn $1 \hspace{1.5cm} 5 \hspace{1.5cm} 10 \hspace{1.5cm} 15$

Thr Gln Cys Val Thr His Glu Ser Tyr Gln Glu Leu Val Lys Lys Leu 20 25 30

Glu Ala Leu Glu Asp Ala Val Leu Thr Gly Tyr Ser Leu Phe Gln Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

<211> 1639

<212> PRT

<213> Plasmodium falciparum

<400> 10

THE PROPERTY OF STREET STREET

- And Andrew Control (1985) - Andrew Control (1985)

Glu Lys Met Val Leu Asn Glu Gly Thr Ser Gly Thr Ala Val Thr Thr Ser Thr Pro Gly Ser Lys Gly Ser Val Ala Ser Gly Gly Ser Gly Gly Ser Val Ala Ser Gly Gly Ser Gly Asn Ser Arg Arg Thr Asn 105 Pro Ser Asp Asn Ser Ser Asp Ser Asp Ala Lys Ser Tyr Ala Asp Leu 120 Lys His Arg Val Arg Asn Tyr Leu Leu Thr Ile Lys Glu Leu Lys Tyr 135 Pro Gln Leu Phe Asp Leu Thr Asn His Met Leu Thr Leu Cys Asp Asn 150 155 Ile His Gly Phe Lys Tyr Leu Ile Asp Gly Tyr Glu Glu Ile Asn Glu 170 Leu Leu Tyr Lys Leu Asn Phe Tyr Phe Asp Leu Leu Arg Ala Lys Leu Asn Asp Val Cys Ala Asn Asp Tyr Cys Gln Ile Pro Phe Asn Leu Lys Ile Arg Ala Asn Glu Leu Asp Val Leu Lys Lys Leu Val Phe Gly Tyr Arg Lys Pro Leu Asp Asn Ile Lys Asp Asn Val Gly Lys Met Glu Asp Tyr Ile Lys Lys Asn Lys Lys Thr Ile Glu Asn Ile Asn Glu Leu Ile Glu Glu Ser Lys Lys Thr Ile Asp Lys Asn Lys Asn Ala Thr Lys Glu Glu Glu Lys Lys Lys Leu Tyr Gln Ala Gln Tyr Asp Leu Ser Ile Tyr 280 Asn Lys Gln Leu Glu Glu Ala His Asn Leu Ile Ser Val Leu Glu Lys 290 295 Arg Ile Asp Thr Leu Lys Lys Asn Glu Asn Ile Lys Glu Leu Leu Asp 310 315 Lys Ile Asn Glu Ile Lys Asn Pro Pro Pro Ala Asn Ser Gly Asn Thr 330 Pro Asn Thr Leu Leu Asp Lys Asn Lys Lys Ile Glu Glu His Glu Lys 345 Glu Ile Lys Glu Ile Ala Lys Thr Ile Lys Phe Asn Ile Asp Ser Leu

Phe Thr Asp Pro Leu Glu Leu Glu Tyr Tyr Leu Arg Glu Lys Asn Lys 375 Asn Ile Asp Ile Ser Ala Lys Val Glu Thr Lys Glu Ser Thr Glu Pro 390 395 Asn Glu Tyr Pro Asn Gly Val Thr Tyr Pro Leu Ser Tyr Asn Asp Ile 405 410 Asn Asn Ala Leu Asn Glu Leu Asn Ser Phe Gly Asp Leu Ile Asn Pro Phe Asp Tyr Thr Lys Glu Pro Ser Lys Asn Ile Tyr Thr Asp Asn Glu 440 Arg Lys Lys Phe Ile Asn Glu Ile Lys Glu Lys Ile Lys Ile Glu Lys Lys Lys Ile Glu Ser Asp Lys Lys Ser Tyr Glu Asp Arg Ser Lys Ser 470 Leu Asn Asp Ile Thr Lys Glu Tyr Glu Lys Leu Leu Asn Glu Ile Tyr Asp Ser Lys Phe Asn Asn Ile Asp Leu Thr Asn Phe Glu Lys Met Met Gly Lys Arg Tyr Ser Tyr Lys Val Glu Lys Leu Thr His His Asn Thr Phe Ala Ser Tyr Glu Asn Ser Lys His Asn Leu Glu Lys Leu Thr Lys Ala Leu Lys Tyr Met Glu Asp Tyr Ser Leu Arg Asn Ile Val Val Glu Lys Glu Leu Lys Tyr Tyr Lys Asn Leu Ile Ser Lys Ile Glu Asn Glu Ile Glu Thr Leu Val Glu Asn Ile Lys Lys Asp Glu Glu Gln Leu Phe Glu Lys Lys Ile Thr Lys Asp Glu Asn Lys Pro Asp Glu Lys Ile Leu Glu Val Ser Asp Ile Val Lys Val Gln Val Gln Lys Val Leu Leu. 615 Met Asn Lys Ile Asp Glu Leu Lys Lys Thr Gln Leu Ile Leu Lys Asn Val Glu Leu Lys His Asn Ile His Val Pro Asn Ser Tyr Lys Gln Glu 645 650 Asn Lys Gln Glu Pro Tyr Tyr Leu Ile Val Leu Lys Lys Glu Ile Asp 665 Lys Leu Lys Val Phe Met Pro Lys Val Glu Ser Leu Ile Asn Glu Glu

Lys Lys Asn Ile Lys Thr Glu Gly Gln Ser Asp Asn Ser Glu Pro Ser 695 Thr Glu Gly Glu Ile Thr Gly Gln Ala Thr Thr Lys Pro Gly Gln Gln 710 715 Ala Gly Ser Ala Leu Glu Gly Asp Ser Val Gln Ala Gln Ala Gln Glu 730 Gln Lys Gln Ala Gln Pro Pro Val Pro Val Pro Val Pro Glu Ala Lys 745 Ala Gln Val Pro Thr Pro Pro Ala Pro Val Asn Asn Lys Thr Glu Asn 760 Val Ser Lys Leu Asp Tyr Leu Glu Lys Leu Tyr Glu Phe Leu Asn Thr Ser Tyr Ile Cys His Lys Tyr Ile Leu Val Ser His Ser Thr Met Asn 790 Glu Lys Ile Leu Lys Gln Tyr Lys Ile Thr Lys Glu Glu Glu Ser Lys 810 Leu Ser Ser Cys Asp Pro Leu Asp Leu Leu Phe Asn Ile Gln Asn Asn Ile Pro Val Met Tyr Ser Met Phe Asp Ser Leu Asn Asn Ser Leu Ser Gln Leu Phe Met Glu Ile Tyr Glu Lys Glu Met Val Cys Asn Leu Tyr Lys Leu Lys Asp Asn Asp Lys Ile Lys Asn Leu Leu Glu Glu Ala Lys 870 875 Lys Val Ser Thr Ser Val Lys Thr Leu Ser Ser Ser Met Gln Pro Leu Ser Leu Thr Pro Gln Asp Lys Pro Glu Val Ser Ala Asn Asp Asp Thr Ser His Ser Thr Asn Leu Asn Asn Ser Leu Lys Leu Phe Glu Asn Ile Leu Ser Leu Gly Lys Asn Lys Asn Ile Tyr Gln Glu Leu Ile Gly Gln Lys Ser Ser Glu Asn Phe Tyr Glu Lys Ile Leu Lys Asp Ser Asp Thr Phe Tyr Asn Glu Ser Phe Thr Asn Phe Val Lys Ser Lys Ala Asp 965 970 Asp Ile Asn Ser Leu Asn Asp Glu Ser Lys Arg Lys Leu Glu Glu 980 985 Asp Ile Asn Lys Leu Lys Lys Thr Leu Gln Leu Ser Phe Asp Leu Tyr

Asn Lys Tyr Lys Leu Lys Leu Glu Arg Leu Phe Asp Lys Lys

is a second of the delight of the contract of

Asn	Lys 1010	TYT	ьуs	Leu	ьуs	1015	GIU	Arg	ьeu	Pne	1020	ьуs	гуѕ	rys
Thr	Val 1025	Gly	Lys	Tyr	Lys	Met 1030		Ile	Lys	Lys	Leu 1035		Leu	Leu
Lys	Glu 1040	Gln	Leu	Glu	Ser	Lys 1045	Leu	Asn	Ser	Leu	Asn 1050	Asn	Pro	Lys
His	Val 1055	Leu	Gln	Asn	Phe	Ser 1060	Val	Phe	Phe	Asn	Lys 1065	Lys	Lys	Glu
Ala	Glu 1070	Ile	Ala	Glu	Thr	Glu 1075	Asn	Thr	Leu	Glu	Asn 1080	Thr	Lys	Ile
Leu	Leu 1085	Lys	His	Tyr		Gly 1090	Leu	Val	Lys	Tyr	Tyr 1095	Asn	Gly	Glu
Ser	Ser 1100	Pro	Leu	Lys	Thr	Leu 1105	Ser	Glu	Glu	Ser	Ile 1110	Gln	Thr	Glu
Asp	Asn 1115	Tyr	Ala	Ser	Leu	Glu 1120	Asn	Phe	Lys	Val	Leu 1125	Ser	Lys	Leu
Glu	Gly 1130		Leu	Lys		Asn 1135	Leu	Asn	Leu	Glu	Lys 1140	Lys	Lys	Leu
Ser	Tyr 1145	Leu	Ser	Ser	Gly	Leu 1150	His	His	Leu	Ile	Ala 1155	Glu	Leu	Lys
Glu	Val 1160	Ile	Lys	Asn	Lys	Asn 1165	Tyr	Thr	Gly	Asn	Ser 1170	Pro	Ser	Glu
Asn	Asn 1175	Thr	Asp	Val	Asn	Asn 1180	Ala	Leu	Glu	Ser	Tyr 1185	Lys	Lys	Phe
Leu	Pro 1190	Glu	Gly	Thr	Asp	Val 1195	Ala	Thr	Val	Val	Ser 1200	Glu	Ser	Gly
Ser	Asp 1205	Thr	Leu	Glu	Gln	Ser 1210	G1n	Pro	Lys	Lys	Pro 1215	Ala	Ser	Thr
His	Val 1220	Gly	Ala	Glu	Ser	Asn 1225	Thr	Ile	Thr	Thr	Ser 1230	Gln	Asn	Val
Asp	Asp 1235	Glu	Val	Asp	Asp	Val 1240	Ile	Ile	Val	Pro	Ile 1245		Gly	Glu
Ser	Glu 1250	Glu	Asp	Tyr	Asp	Asp 1255	Leu	Gly	Gln	Val	Val 1260	Thr	Gly	Glu
Ala	Val 1265	Thr	Pro	Ser	Val	Ile 1270	Asp	Asn	Ile	Leu	Ser 1275	Lys	Ile	Glu
Asn	Glu 1280	Tyr	Glu	Val	Leu	Tyr 1285	Leu	Lys	Pro	Leu	Ala 1290	Gly	Val	Tyr
Arg	Ser 1295	Leu	Lys	Lys	Gln	Leu 1300	Glu	Asn	Asn	Val	Met 1305	Thr	Phe	Asn

Val Asn Val Lys Asp Ile Leu Asn Ser Arg Phe Asn Lys Arg Glu Asn Phe Lys Asn Val Leu Glu Ser Asp Leu Ile Pro Tyr Lys Asp Leu Thr Ser Ser Asn Tyr Val Val Lys Asp Pro Tyr Lys Phe Leu Asn Lys Glu Lys Arg Asp Lys Phe Leu Ser Ser Tyr Asn Tyr Ile Lys Asp Ser Ile Asp Thr Asp Ile Asn Phe Ala Asn Asp Val Leu Gly Tyr Tyr Lys Ile Leu Ser Glu Lys Tyr Lys Ser Asp Leu Asp Ser Ile Lys Lys Tyr Ile Asn Asp Lys Gln Gly Glu Asn Glu Lys Tyr Leu Pro Phe Leu Asn Asn Ile Glu Thr Leu Tyr Lys Thr Val Asn Asp Lys Ile Asp Leu Phe Val Ile His Leu Glu Ala Lys Val Leu Asn Tyr Thr Tyr Glu Lys Ser Asn Val Glu Val Lys Ile Lys Glu Leu Asn Tyr Leu Lys Thr Ile Gln Asp Lys Leu Ala Asp Phe Lys Lys Asn Asn Asn Phe Val Gly Ile Ala Asp Leu Ser Thr Asp Tyr Asn His Asn Asn Leu Leu Thr Lys Phe Leu Ser Thr Gly Met Val Phe Glu Asn Leu Ala Lys Thr Val Leu Ser Asn Leu Leu Asp Gly Asn Leu Gln Gly Met Leu Asn Ile Ser Gln His Gln Cys Val Lys Lys Gln Cys Pro Gln Asn Ser Gly Cys Phe Arg His Leu Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly Gly Cys Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn Gly Lys Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser

Tyr Pro Leu Phe Asp Gly Ile Phe Cys Ser Ser Ser Asn Phe Leu 1610 1615 1620

Gly Ile Ser Phe Leu Leu Ile Leu Met Leu Ile Leu Tyr Ser Phe 1625 1630 1635

Ile

<210> 11

<211> 378

<212> PRT

<213> Plasmodium falciparum

<400> 11

Gly Glu Ala Val Thr Pro Ser Val Ile Asp Asn Ile Leu Ser Lys Ile 1 5 10 15

Glu Asn Glu Tyr Glu Val Leu Tyr Leu Lys Pro Leu Ala Gly Val Tyr
20 25 30

Arg Ser Leu Lys Lys Gln Leu Glu Asn Asn Val Met Thr Phe Asn Val 35 40 45

Asn Val Lys Asp Ile Leu Asn Ser Arg Phe Asn Lys Arg Glu Asn Phe 50 55 60

Lys Asn Val Leu Glu Ser Asp Leu Ile Pro Tyr Lys Asp Leu Thr Ser 65 70 75 80

Ser Asn Tyr Val Val Lys Asp Pro Tyr Lys Phe Leu Asn Lys Glu Lys 85 90 95

Arg Asp Lys Phe Leu Ser Ser Tyr Asn Tyr Ile Lys Asp Ser Ile Asp 100 105 110

Thr Asp Ile Asn Phe Ala Asn Asp Val Leu Gly Tyr Tyr Lys Ile Leu 115 120 125

Ser Glu Lys Tyr Lys Ser Asp Leu Asp Ser Ile Lys Lys Tyr Ile Asn 130 135 140

Asp Lys Gln Gly Glu Asn Glu Lys Tyr Leu Pro Phe Leu Asn Asn Ile 145 150 155 160

Glu Thr Leu Tyr Lys Thr Val Asn Asp Lys Ile Asp Leu Phe Val Ile 165 170 175

His Leu Glu Ala Lys Val Leu Asn Tyr Thr Tyr Glu Lys Ser Asn Val 180 185 190

Glu Val Lys Ile Lys Glu Leu Asn Tyr Leu Lys Thr Ile Gln Asp Lys 195 200 205

Leu Ala Asp Phe Lys Lys Asn Asn Phe Val Gly Ile Ala Asp Leu 210 215 220

Ser Thr Asp Tyr Asn His Asn Asn Leu Leu Thr Lys Phe Leu Ser Thr 225 230 235 240

Gly Met Val Phe Glu Asn Leu Ala Lys Thr Val Leu Ser Asn Leu Leu 255

Asp Gly Asn Leu Gln Gly Met Leu Asn Ile Ser Gln His Gln Cys Val 260 265

Lys Lys Gln Cys Pro Gln Asn Ser Gly Cys Phe Arg His Leu Asp Glu 275 280 285

Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly Asp Lys 290 295 300

Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly Gly Cys 305 310 315 320

Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn Gly Lys 325 330 335

Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser Tyr Pro Leu Phe Asp 340 345 350

Gly Ile Phe Cys Ser Ser Ser Asn Phe Leu Gly Ile Ser Phe Leu Leu 355 360 365

Ile Leu Met Leu Ile Leu Tyr Ser Phe Ile 370 375

<210> 12

<211> 360

<212> PRT

<213> Plasmodium falciparum

<400> 12

Gln Asp Lys Pro Glu Val Ser Ala Asn Asp Asp Thr Ser His Ser Thr 1 5 10 15

Asn Leu Asn Asn Ser Leu Lys Leu Phe Glu Asn Ile Leu Ser Leu Gly 20 25 30

Lys Asn Lys Asn Ile Tyr Gln Glu Leu Ile Gly Gln Lys Ser Ser Glu 35 40 45

Asn Phe Tyr Glu Lys Ile Leu Lys Asp Ser Asp Thr Phe Tyr Asn Glu 50 55 60

Ser Phe Thr Asn Phe Val Lys Ser Lys Ala Asp Asp Ile Asn Ser Leu 70 75 80

Asn Asp Glu Ser Lys Arg Lys Lys Leu Glu Glu Asp Ile Asn Lys Leu 85 90 95

Lys Lys Thr Leu Gln Leu Ser Phe Asp Leu Tyr Asn Lys Tyr Lys Leu 100 105 110

Lys Leu Glu Arg Leu Phe Asp Lys Lys Lys Thr Val Gly Lys Tyr Lys 115 120 125

Met Gln Ile Lys Lys Leu Thr Leu Leu Lys Glu Gln Leu Glu Ser Lys

	130					135					140				
Leu 145	Asn	Ser	Leu	Asn	Asn 150	Pro	Lys	His	Val	Leu 155	Gln	Asn	Phe	Ser	Va:
Phe	Phe	Asn	Lys	Lys 165	Lys	Glu	Ala	Glu	Ile 170	Ala	Glu	Thr	Glu	Asn 175	Thi
Leu	Glu	Asn	Thr 180	Lys	Ile	Leu	Leu	Lys 185	His	Tyr	Lys	Gly	Leu 190	Val	Lys
Tyr	Tyr	Asn 195	Gly	Glu	Ser	Ser	Pro 200	Leu	Lys	Thr	Leu	Ser 205	Glu	Glu	Sei
Ile	Gln 210	Thr	Glu	Asp	Asn	Tyr 215	Ala	Ser	Leu	Glu	Asn 220	Phe	Lys	Val	Lei
Ser 225	Lys	Leu	Glu	Gly	Lys 230	Leu	Lys	Asp	Asn	Leu 235	Asn	Leu	Glu	Lys	Lys 240
Lys	Leu	Ser	Tyr	Leu 245	Ser	Ser	Gly	Leu	His 250	His	Leu	Ile	Ala	Glu 255	Let
Lys	Glu	Val	Ile 260	Lys	Asn	Lys	Asn	Туг 265	Thr	G1y	Asn	Ser	Pro 270	Ser	Glı
Asn	Asn	Thr 275	Asp	Val	Asn	Asn	Ala 280	Leu	Glu	Ser	Tyr	Lys 285	Lys	Phe	Leı
Pro	Glu 290	Gly	Thr	Asp	Val	Ala 295	Thr	Val	Val	Ser	Glu 300	Ser	Gly	Ser	Asp
Thr 305	Leu	Glu	Gln	Ser	Gln 310	Pro	Lys	Lys	Pro	Ala 315	Ser	Thr	His	Val	Gl ₃ 320
Ala	Glu	Ser	Asn	Thr 325	Ile	Thr	Thr	Ser	Gln 330	Asn	Val	Asp	Asp	Glu 335	Val
Asp	Asp	Val	Ile 340	Ile	Val	Pro	Ile	Phe 345	Gly	Glu	Ser	Glu	Glu 350	Asp	Туз
Asp	Asp	Leu 355	Gly	Gln	Val	Val	Thr 360								
<210 <211 <212 <213	L> 2 2> I	l3 220 PRT Plasi	nodi	ım fa	alcip	parui	n								
<400)> 1	L3													
Gln 1	Asp	Lys	Pro	Glu 5	Val	Ser	Ala	Asn	Asp 10	Asp	Thr	Ser	His	Ser 15	Thi
Asn	Leu	Asn	Asn 20	Ser	Leu	Lys	Leu	Phe 25	Glu	Asn	Ile	Leu	Ser 30	Leu	Gly
Lys	Asn	Lys 35	Asn	Ile	Tyr	Gln	Glu 40	Leu	Ile	Gly	Gln	Lys 45	Ser	Ser	Glı

Asn	Phe 50	Tyr	Glu	Lys	Ile	Leu 55	Lys	Asp	-Ser	Asp	Thr 60	Phe	Tyr	Asn	Glu	
Ser 65	Phe	Thr	Asn	Phe	Val 70	Lys	Ser	Lys	Ala	Asp 75	Asp	Ile	Asn	Ser	Leu 80	
Asn	Asp	Glu	Ser	Lys 85	Arg	Lys	Lys	Leu	Glu 90	Glu	Asp	Ile	Asn	Lys 95	Leu	
Lys	Lys	Thr	Leu 100	Gln	Leu	Ser	Phe	Asp 105	Leu	Tyr	Asn	Lys	Tyr 110	Lys	Leu	
Lys	Leu	Glu 115	Arg	Leu	Phe	Asp	Lys 120	Lys	Lys	Thr	Val	Gly 125	Lys	Tyr	Lys	
Met	Gln 130	Ile	Lys	Lys	Leu	Thr 135	Leu	Leu	Lys	Glu	Gln 140	Leu	Glu	Ser	Lys	
Leu 145	Asn	Ser	Leu	Asn	Asn 150	Pro	Lys	His	Val	Leu 155	Gln	Asn	Phe	Ser	Val 160	
Phe	Phe	Asn	Lys	Lys 165	Lys	Glu	Ala	Glu	Ile 170	Ala	Glu	Thr	Glu	Asn 175	Thr	
Leu	Glu	Asn	Thr 180	Lys	Ile	Leu	Leu	Lys 185	His	Tyr	Lys	Gly	Leu 190	Va1	Lys	
Туr	Tyr	Asn 195	Gly	Glu	Ser	Ser	Pro 200	Leu	Lys	Thr	Leu	Ser 205	Glu	Glu	Ser	
Ile	Gln 210	Thr	Glu	Asp	Asn	Tyr 215	Ala	Ser	Leu	Glu	Asn 220					
<210 <211 <212	> 2	14 20 DNA														
<213			icia	al Se	equer	nce	-									
<220 <221 <223	> n		_feat netic		.gonu	ıcled	otide	j								
)> 1 jagct		gata	aacc	c											20
<210 <211 <212 <213	.> 1 !> [icia	al Se	equen	ıce										
<220 <221 <223	.> n	_	_feat netic		.gonu	ıcled	otid∈	<u> </u>								
<400 gcgg		.5 ac t	tgtt	agt												18

<210><211><212><213>	23	
	misc_feature Synthetic Oligonucleotide	
<400> ctcgag	16 ctgg agaagcagta act	23
<210><211><211><212><213>	26	
<220> <221>	misc_feature Synthetic Oligonucleotide	
	17 gcac taaatgaaac tgtata	26
<210><211><211><212><213>	27	
<220> <221>	misc_feature Synthetic Oligonucleotide	
<400> ccggga	18 tcca acatttcaca acaccaa	27
<210><211><211><212><213>	19 26 DNA Artificial Sequence	
<220> <221> <223>	misc_feature Synthetic Oligonucleotide	
<400> ccggaa	19 ttca atgaaactgt ataata	26
<210><211><212>	20 31 DNA	

```
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Synthetic Oligonucleotide
<400> 20
ccgggatccg ggatgccctg gctcagtgcc a
                                                                     31
<210> 21
<211> 33
<212> DNA
<213> Artificial Sequence
<220>
<221> misc_feature
<223> Synthetic Oligonucleotide
<400> 21
ccggaattct tagatccgct gctctttgac ctc
                                                                     33
<210> 22
<211> 42
<212>
      PRT
<213> Homo sapien
<400> 22
Gly Met Pro Trp Leu Ser Ala Thr Thr Val Arg Ser Val Thr His Ala
Asn Ala Leu Thr Val Met Gly Lys Ala Ser Thr Pro Gly Ala Ala Ala
Gln Ile Gln Glu Val Lys Glu Gln Arg Ile
        35
<210> 23
<211> 51
<212> PRT
<213> Homo sapien
<400> 23
Asp Arg Ile Leu Leu Phe Lys Pro Pro Lys Tyr His Pro Asp Val
               5
Pro Tyr Val Lys Arg Val Lys Thr Trp Arg Met His Leu Phe Thr Gly
                               25
Ile Gln Ile Ile Cys Leu Ala Val Leu Trp Val Val Lys Ser Thr Pro
                           40
Ala Ser Leu
    50
```

<210> <211> <212> <213>	30	
	misc_feature Synthetic Oligonucleotide	
<400> ccggga	24 steet eegteaceea tgecaaegee	30
<210><211><211><212><213>	31	
	misc_feature Synthetic Oligonucleotide	
<400> ccggga	25 steeg acegeatett gettetgtte a	31
<210><211><212><213>	30	
	misc_feature Synthetic Oligonucleotide	
	26 ttct tagatctgga tgcccgtgaa	30
<210><211><211><212><213>		
<220> <221> <223>	misc_feature Synthetic Oligonucleotide	
<400> ggccat	27 atgg atgatacatc acatt	25
<210> <211> <212> <213>	DNA	

	misc_feature	
<223>	Synthetic Oligonucleotide	
<400>	28 Egagg ttttctaaac tggcat	26
35		
<210> <211>		
<212>		
<213>	Artificial Sequence	
<220>	misc_feature	
	Synthetic Oligonucleotide	
<400>		2.5
ggccat	catgt ttaaagtatt aagta	25
<210>	30	
<211>		
<212> <213>	DNA Artificial Sequence	
<220>	misc_feature	
	Synthetic Oligonucleotide	
<400>		
ggccto	egagt teteetgtta etaettg	27
<210>	31	
<211>		
<212>	DNA Artificial Sequence	
	in officer at position	
<220>	misc_feature	
<223>		
<400>	31	
gccgaa	attcg cagtaactcc ttccg	25
<210> <211>	32 26	
<211>		
	Artificial Sequence	
<220>		
<221>	misc_feature Symthetic Oliganuslastida	
<220> <221>		

26

210

<400> 32 gccggatcca atgaaactgt ataata <210> 33 <211> 334 <212> PRT <213> Plasmodium falciparum <400> 33 Gln Asp Lys Pro Glu Val Ser Ala Asn Asp Asp Thr Ser His Ser Thr Asn Leu Asn Asn Ser Leu Lys Leu Phe Glu Asn Ile Leu Ser Leu Gly Lys Asn Lys Asn Ile Tyr Gln Glu Leu Ile Gly Gln Lys Ser Ser Glu Asn Phe Tyr Glu Lys Ile Leu Lys Asp Ser Asp Thr Phe Tyr Asn Glu Ser Phe Thr Asn Phe Val Lys Ser Lys Ala Asp Asp Ile Asn Ser Leu Asn Asp Glu Ser Lys Arg Lys Lys Leu Glu Glu Asp Ile Asn Lys Leu Lys Lys Thr Leu Gln Leu Ser Phe Asp Leu Tyr Asn Lys Tyr Lys Leu 105 Lys Leu Glu Arg Leu Phe Asp Lys Lys Lys Thr Val Gly Lys Tyr Lys 120 115 Met Gln Ile Lys Lys Leu Thr Leu Leu Lys Glu Gln Leu Glu Ser Lys 135 Leu Asn Ser Leu Asn Asn Pro Lys His Val Leu Gln Asn Phe Ser Val 155 150 145 Phe Phe Asn Lys Lys Glu Ala Glu Ile Ala Glu Thr Glu Asn Thr 165 170 Leu Glu Asn Thr Lys Ile Leu Leu Lys His Tyr Lys Gly Leu Val Lys 180 Tyr Tyr Asn Gly Glu Ser Ser Pro Leu Lys Thr Leu Ser Glu Glu Ser 200 Ile Gln Thr Glu Asp Asn Tyr Ala Ser Leu Glu Asn Phe Lys Val Leu

215

245

Ser Lys Leu Glu Gly Lys Leu Lys Asp Asn Leu Asn Leu Glu Lys Lys

Lys Leu Ser Tyr Leu Ser Ser Gly Leu His His Leu Ile Ala Glu Leu

235

Lys Glu Val Ile Lys Asn Lys Asn Tyr Thr Gly Asn Ser Pro Ser Glu 260 265 270

Asn Asn Thr Asp Val Asn Asn Ala Leu Glu Ser Tyr Lys Lys Phe Leu 275 280 285

Pro Glu Gly Thr Asp Val Ala Thr Val Val Ser Glu Ser Gly Ser Asp 290 295 300

Thr Leu Glu Gln Ser Gln Pro Lys Lys Pro Ala Ser Thr His Val Gly 305 310 315 320

Ala Glu Ser Asn Thr Ile Thr Thr Ser Gln Asn Val Asp Asp 325 330

<210> 34

<211> 376

<212> PRT

<213> Plasmodium falciparum

<400> 34

Ala Val Thr Pro Ser Val Ile Asp Asn Ile Leu Ser Lys Ile Glu Asn 1 5 10 15

Glu Tyr Glu Val Leu Tyr Leu Lys Pro Leu Ala Gly Val Tyr Arg Ser 20 25 30

Leu Lys Lys Gln Leu Glu Asn Asn Val Met Thr Phe Asn Val Asn Val 35 40 45

Lys Asp Ile Leu Asn Ser Arg Phe Asn Lys Arg Glu Asn Phe Lys Asn 50 55 60

Val Leu Glu Ser Asp Leu Ile Pro Tyr Lys Asp Leu Thr Ser Ser Asn 65 70 75 80

Tyr Val Val Lys Asp Pro Tyr Lys Phe Leu Asn Lys Glu Lys Arg Asp 90 95

Lys Phe Leu Ser Ser Tyr Asn Tyr Ile Lys Asp Ser Ile Asp Thr Asp 100 105 110

Ile Asn Phe Ala Asn Asp Val Leu Gly Tyr Tyr Lys Ile Leu Ser Glu 115 120 125

Lys Tyr Lys Ser Asp Leu Asp Ser Ile Lys Lys Tyr Ile Asn Asp Lys 130 135 140

Gln Gly Glu Asn Glu Lys Tyr Leu Pro Phe Leu Asn Asn Ile Glu Thr 145 150 155 160

Leu Tyr Lys Thr Val Asn Asp Lys Ile Asp Leu Phe Val Ile His Leu
165 170 175

Glu Ala Lys Val Leu Asn Tyr Thr Tyr Glu Lys Ser Asn Val Glu Val 180 185 190

Lys Ile Lys Glu Leu Asn Tyr Leu Lys Thr Ile Gln Asp Lys Leu Ala

205 195 200 Asp Phe Lys Lys Asn Asn Asn Phe Val Gly Ile Ala Asp Leu Ser Thr Asp Tyr Asn His Asn Asn Leu Leu Thr Lys Phe Leu Ser Thr Gly Met 235 Val Phe Glu Asn Leu Ala Lys Thr Val Leu Ser Asn Leu Leu Asp Gly Asn Leu Gln Gly Met Leu Asn Ile Ser Gln His Gln Cys Val Lys Gln Cys Pro Gln Asn Ser Gly Cys Phe Arg His Leu Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly Gly Cys Asp Ala 315 Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn Gly Lys Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser Tyr Pro Leu Phe Asp Gly Ile Phe Cys Ser Ser Ser Asn Phe Leu Gly Ile Ser Phe Leu Leu Ile Leu Met Leu Ile Leu Tyr Ser Phe Ile 370 <210> 35 <211> 114 <212> PRT <213> Plasmodium falciparum <400> 35 Asn Ile Ser Gln His Gln Cys Val Lys Lys Gln Cys Pro Gln Asn Ser Gly Cys Phe Arg His Leu Asp Glu Arg Glu Glu Cys Lys Cys Leu Leu Asn Tyr Lys Gln Glu Gly Asp Lys Cys Val Glu Asn Pro Asn Pro Thr Cys Asn Glu Asn Asn Gly Gly Cys Asp Ala Asp Ala Lys Cys Thr Glu Glu Asp Ser Gly Ser Asn Gly Lys Lys Ile Thr Cys Glu Cys Thr Lys Pro Asp Ser Tyr Pro Leu Phe Asp Gly Ile Phe Cys Ser Ser Ser Asn

Phe Leu Gly Ile Ser Phe Leu Leu Ile Leu Met Leu Ile Leu Tyr Ser

Phe Leu	Gly	Ile Ser P 100	he Leu Leu	Ile Leu Me 105	et Leu II6	110	r ser	
Phe Ile								
<211> 3 <212> I		ficial Seq	uence					
	_	_feature netic Olig	onucleotide	e				
	36 tog (ggatgccctg	gctcagtgc	c a				31
<210> 3 <211> 3 <212> 1 <213> 2	33 DNA	ficial Sec	quence					
		_feature hetic Olig	gonucleotid	e				
	37 cct	tagatccgct	gctctttga	c ctc				33
<211> 3	38 1287 DNA Plasi	modium fal	ciparum					
	38 ata	aattgtcaag	g gggtagtaa	t atgaacaag	gt cagaat	tagg aga	ıtaggagt	60
			t ttgctcaag					120
gttatag	gaa	tgttatgtat	. aaaattaag	g gataaata	tg aaggat	atgc tgc	cttcaggt	180
atacaaa	aca	ataatgtata	a tttaagaaa	t ttatcagag	gt tacaaa	aggg aaa	atcaacct	240
tgcttga	gac	atacaaacaç	g aacggataa	t tcaaagat	ga acaaag	tcaa aaa	ataataat	300
cagacag	aaa	ataatgacaa	a caaaaaaaa	g ctaggtaa	ta aggaag	ataa cca	agggaaaa	360
aataaaa	ata	ataataataa	a agaaaaaca	a aatgacat	ta ataaaa	gagg aac	cacaaaat	420
accgaaa	cta	aaaaaagtaa	a taaaaaatt	a agtcagga	ct ataatg	atgt aaa	ataagaaa	480
tttacaa	aag	aacaaatgaa	a aaatttagt	t aattcatt	ag atgaaa	ttcc acc	cccgaaac	540
gatatgg	aaa	agatatggaa	a tcatgccgt	t aaaacagc	ta atagtg	gaac aag	gcagaatt	600

aaaaaaaaat taaaagaata tgaacaaaaa tatggaagat gctatgaaga gagaccaa	at 660
cgttttggat catatgaaca ggtgttaata agccagccac atgaatttaa tgaaagat	ta 720
aaagttcatg aaaatgatta tactgttttt ttttatgaac tacttgataa agacccta	aca 780
cttgatgaaa taaaaaatta tattacttca tttttagaag gttttcaaaa tttgatag	gac 840
tttcttttta ataaatataa aattatattt ttgcaaacaa ctacggaaat tcctatag	gac 900
ggaactattt atgataccag taagaaagat atgaagaaaa ataaaaacaa aaagcaaa	aat 960
ataaaacaag gaggtaaaaa ggaagaggta aaacaagaag gtaaaaagga agaggtaa	aaa 1020
caagaaggta aaaaggaaga ggtaaaacaa gaaggtaaaa aggaagaggt aaaacaag	gaa 1080
ggtaaaaagg aagaggtaaa acaaggaggt aaaaaggaag aggtaaaaca aggaggta	aaa 1140
aaggaagagg taaaacaagg aggtaaaaag gaagaggtaa aacaaggagg taaaaaagg	gag 1200
gaggtaaaac aaggaggtaa aaaggaggag gtaaaacaag gaggtaaaaa ggaagagg	gtg 1260
aaaaaagaat taaaaaaaaa caattaa	1287
<210> 39 <211> 3576 <212> DNA <213> Plasmodium falciparum	
<400> 39 atgatatttg ttaagagtaa gattttatat ttcctaaaat ggccttctgt tgccata	gag 60
gaaaatttta gtggttcctt taaatgttta ttcaaaaaca agaggaataa atataat	gtt 120
gaaatattaa agaatgatta taatacgcta acagaaagtc ataatataat	agg 180
tctagaaatt taggagcgaa tccagaatcc attagtttag gttatgaatt aagtgaa	aag 240
gatgaaggaa ataaaaatga tctaataaat agtgctacag atgtatcaac agaatta	gag 300
aatttaaaag aacgtttatt tootgaacta gaattatata caaacgatca aaattca	aga 360
aataatactc caaatttacg taagggttct ttgggatttg atagttttaa aaaattg	gaa 420
ttaggaacac taaatcaatt tgataaagat aaaatgatta atctgaaaga tgaaacc	aat 480
atgaatgaat ttgaaggatt tctaggaaga aattcaatgg ctagtaatgt agttaca	tcc 540
gaattatttg atgaaccagt agatgatagt agtagtacta ctactagcac aggtaca	aaa 600
ttgcaaaacg ttccatcgaa tgataataac ggtgaacttt tgaaagatga acctata	gat 660
gattatataa ataataatto gaaagttgaa toggaagata attattatgo acaacag	aat 720
atgcaaagtc agtcgaaaga taattatgct tcagaacaaa atgtagcaga tcaatcg	aca 780
gataattatc ctacgcaaca tgatgtacca gttcaattga gagacaatta tgcttca	gaa 840

caagagtatt ttgatagagg tgaacaattg aatgacgtaa gtgcagataa caatacaagt

960 aataaattga aagacgaacc tgtagataac aatacaagta ataaattgaa agacgaacct gtagataaca atacaagtaa taaattgaaa gacgaacctg tagatgacaa tacaagtaat 1020 aaattgaaag acgaacctgt agataacaat acaattaata aattgaaaga cgaacctgta 1080 gatgacaata caagtaatat tttgaaagac gaacctgtag atgaccatgc aggtaaacat 1140 ttgaaagatg aacctgtaga tgaccatgca ggtaaacata tgaaagatga acccgttgat 1200 1260 attgatagaa caaatattaa aaagggttta aatgaacaac atgttaatcc atggactaca 1320 acattagcag atttaaaaaa tattaataat agtatgaaaa tagaaaaaaa taataaaagt 1380 aatgaacagg taaaaaatac gagcgttagc aaatcatgtg atattataaa accttccaag tttaataaaa agaacctttt tgagcaaaga cttcaaagtg ttgaaggtaa aaactttttt 1440 gaaggaagaa gtcaaaattt agaaggaaga agtaattttg atgagagatc tcaaattgta 1500 gaacaaagga gaaactttga tgacagggac cagaacataa tggatagaaa aaattttgat 1560 gaaagaaatc aacaggttaa tgacagaaga aattttgatg aaagaaatca acaggttaat 1620 gacagaagaa attttgatga cagggatcag aacgtaatgg atagaagaaa ctttgatgaa 1680 1740 agaaatcaac aggttaatga cagaagaaat tttgatgaaa gaaatcaaca ggttaatgac agaagaaatt ttgatgacag ggatcagaac gtaatggata gaagaaactt tgatgaaaga 1800 1860 aatcaacagg ttaatgacag aagaaacttt gatgaaagaa atcaacaggt taatgacaga 1920 agaaactttg atgacaggga tcagaacgta atggatagaa gaaactttga tgaaagaaat caacaggtta atgacagaag aaattttgat gaaagaaatc aacaggttaa tgacagaaga 1980 2040 aattttgatg aaagaaatca acatgttaat gacagaagaa attttgatga aagaaatcaa 2100 aatgttaatg atagaagaaa ttttgatgaa agaaatcaaa atgttaatga tagaagaaat 2160 tttgatgaaa gaaatcaaca agttaatgac agaagaaatt ttgatgaaag atatcaaaat 2220 gttaatgaga gaagaaattt tgatgagaga aatcaacaag ttaatgacag aagaaatttt 2280 gatgagagaa atcaacatgt taatgagaga tatcaaaatg ttaatgatag aagaaatttt 2340 gatgaaagaa atcaacaagt taatgacaga agaaattttg atgagagaaa tcaacatgtt aatgagagaa gaaattttga tgagagaaat caacatgtta atgagagata tcaaaatgtt 2400 2460 aatgatagaa gaaattttga tgaaagaaat caacatgtta atgagagacg aaactttgat caaagggctc caaatgtaga agagcgaaga tatatggatc caagaaatcc gaatattcca 2520 2580 tatgtaaggt ttccacatca tcagtggggt caaggaatga tgtatggaag accatattat 2640 ccttgggttc catttatggg agatggaaga ggttataatt tttataatcc tcatcaacat 2700 atggtatatg gaagacccta ttattgggta cctccacccc cagcgttaga atatacaaaa

2760 ggatttaatc caatggaaca gagaagagaa gaagacaggg gacatatggg aggaagaggt agtagatacc cagaagagga aagatataat tataacaata agagaagtaa tagtatacct 2820 2880 gaaggacgaa attatgaaga gaatgcatat gagagaggag gagggaataa taaatgggat tttcgaaata tgtatgatag attaagagat gaagatgaaa atgattatga ccaacctcct 2940 agtacatctt cttctaatag aggaagaggt aatgaaagat atagtcaatc aagagataga 3000 3060 agagaagaaa ggaataatta taatagtgat tattatacta gaggaaatga gagaacatat 3120 aataattcaa atgtaacaag tagttcaaat agagaattaa taccttacaa aaaagagata 3180 ttaccttttg gtgttagtaa ttctgaattg gaagataaat taacagaaga ggaattaaat 3240 gaaagaataa gaagattaga ttatacagta tctgttaaag atatgtttat attatggaat 3300 catatacttg cacatgaaag aaaaaaatat acaaaaatgc aagaatattt aatgtattat agtcaatatt tagaaaaaac atatcttgtt cctacagctt ttagaaaaaa atactggtgg 3360 agggttcatt atatgttgac cgaagaagta gttaaaaagag aaaggacaga taatttagat 3420 3480 ttccatcaat tcttacgtaa aggttcttgt gaaaaacgtg aatttttata ttttattaat 3540 tctaaaagaa aaggatgggc tgatcttacg gaaacaatga aaaatatatg gatggaaaga 3576 ttaacttata aaatgagaaa atatagtgga gcataa

<210> 40

<211> 903

<212> DNA

<213> Plasmodium falciparum

<400> 40 60 atgtgttcta caaataagaa tttagcttgc tgcaaaggag ataatgtttt cgatggacaa ataaatggaa atgaatcata cccccaagta gtaaataaac aattaccacc taaggtatta 120 gaacccataa ttcaaaataa aatagttgaa atacccaaag aagtatatct tgaaaagatt 180 gtagaagttc ctcaaataaa aactgtagaa agaatagtgg aacagataag gcccgttatt 240 300 aagtacaaaa atgtgtataa acccaaaatt gtatatgttg aaaaagtaaa aaatgtagat aaaattatat accaagagaa aattgttgaa gttccacaaa taaaaactgt tgaaaaaatt 360 gtagaagtcc cagtatatgt taacagagaa agaattatta ctgttccaag atatatggtt 420 gtagaaaaag taatacccgt attaaaaaca tccaaaagag aaagtataat ggaagttcca 480 540 gaagttaatt gcccacacat tgatataagt aaagaagtag aagataaaga agaaatacca 600 attaacgaat taaaagagaa ccaaaccata agtcttgctg atgaaaaaga aatccaaata 660 ttaaatgact taactagcca aaaggtagat tctaatgcaa ccattaatat ggaaggtgaa

tga

caagatacaa	ctgtagatac	tattacacaa	gaaaacttct	gtggaacagt	tagttgtaat	720
ttcttaccaa	attatccaaa	cttctccaaa	attggaaacc	cattatgcaa	aggaggtcca	780
gaaaaagaaa	aacgtttttc	aagtatcagc	atctacaaat	caaaggattc	aggattccca	840
agtataagaa	ttgcaaaaac	tccacaaatg	ttccaaagaa	atctttactg	ttcatatgct	900
taa						903
<210> 41 <211> 1203 <212> DNA <213> Plas	modium falo	ciparum				
<400> 41 atgaagaatg	aaaatatggg	taattccata	ttttattatt	cctgttatgt	tattatagtt	60
cttactataa	tattgtctaa	gtttgttgta	atccctttga	tggctcaaat	gtttttgtac	120
acattcatta	caatatatat	tggaagtcat	gatagtttga	aacaattaga	aattgatgat	180
aaaaccaaaa	agtcagacaa	cataacagcc	tatgatgcta	tgatgtttcc	agtaattgga	240
tctgcagctt	tgcttacttt	atatttcgca	tataagttct	tagatccgtt	ttatgtgaat	300
ttattattga	ctctttacct	aaccttggcg	ggtgtatttt	ccttacaggg	tgtatttaca	360
acaatcttgg	aacctgtttt	tccaaatttt	tttaaaaaag	atgaatatgt	caaaacattc	420
aaattaccaa	attttatata	taaagaacct	attgtattca	atactaataa	aggagaaata	480
gtttgcttaa	tactcagctt	tgctatagga	ttgcgttgga	tattttataa	agacttcatt	540
acacataacg	ttttggcagt	ttctttttgt	tttcaagcca	tatctttggt	aattcttagc	600
aactttttaa	taggattctt	attattatct	ggtttgtttg	tatatgatat	tttctgggtt	660
tttggaaacg	atgttatggt	tacagtagct	aagtcttttg	aagctccagt	aaaattgtta	720
ttcccagttt	cgagtgatcc	agtacattac	agtatgcttg	gtttaggaga	tattattata	780
ccaggaatat	tgatgtcttt	atgtttacgt	tttgattatt	atttatttaa	gaataacata	840
cataaaggaa	acttaaagaa	aatgtttaat	gatatatcta	tacatgaatc	tttcaagaaa	900
tattatttt	ataccattat	aatattttac	gaattaggtt	tagttgttac	atattgtatg	960
ctcttttatt	ttgaacatcc	tcaaccagct	cttctttatt	tggtacctgc	atgtatactt	1020
gccatattag	cttgttccat	atgcaaaaga	gaatttaaat	taatgataaa	atatcaagaa	1080
attacagaca	aatccaatac	tgtagatgat	gcaagtaaga	ataaaaaaaa	agataaggaa	1140
gaaatcccca	aaattcaaga	gaccccagtg	tcaaatgcaa	aaaaaagaat	taccaataaa	1200

<210> 42

<211> 3996

<212> DNA

<213> Plasmodium falciparum

<400> 42 atggtgttag tagtagagta tcataatata aatactcctg ttggaaaata ttcagagttg 60 gagaatttga aagaagaaaa ggaaaaaaga ttatataata atttggaata tgtaaattta 120 ttagacataa gaactttgga aaataaatct atatatgtat cttcagattt attgaatttt 180 ttaaaatgct attcaaattt gaatatcaac ttgaataagg ttccttatga tttggtctat 240 tcatttttgc ttgatggaga attatattta ggatatgata tatctgtttt tattttatta 300 gtaaaagcag aacattttga atattgtaga agaatagata atgaaaatag tgataagaaa 360 420 gaaagtttta gaacaaaaaa taaatcaaca attaaaagat catcacagat agatgatgaa 480 gataatttac aaggattgtt gattaaagaa aaagaagatt atttatcatt tttgaatgaa aataatgagg ctttaaaaca atatatggaa tccgaaaaaa gaggaaatcc tttgtggcat 540 ttggatgaat ctaaatatat ggataaagat tggtatgatg aagaagattc atcatttata 600 660 tttaagccta cttttaatta tttaggaaag aataataata ataataataa tcataataat aataatgctt tttctaattt tgtaatgggc aacttatctt ctgataatat ttctggatgc 720 780 ttctttgtgg agaaattaaa tgcttatctt ttcgccatgt tggataaatg tagcaataaa 840 acagttatat ctgtttttcc atatgaaaaa tttggaagac acgaatccag aaatttagct atccaatttt cccaatatga ggactatatg cataggataa ttgaggacag actttatgcg 900 aatattcaaa ataatctccc aagtgttcac aatatgaaga atatgagtaa tatgaataat 960 ataaacaata ataataaaga tattattatt aatagaagtg gtatttctaa tggtaatagc 1020 caaagtgttc cttgctttga aaatattttg gattatgata aattaaaatt tgtggaatat 1080 ataaatteet ttagtgatgt aaagaaatea tetteatteg atattattgg tageageaaa 1140 1200 aatatatatg aacaaggtga aaacctgaag aactattgta tatatcataa taataatttt 1260 gaaagtggat ttgaaaatta tattttggaa aataaacaac cattggaatt aattgaaaat catttcgaca taatggaaaa cattaaaggg atgtatgata atacaaatca ggaggaaatg 1320 aatttcaata atgtttcagg gttgttgagg gaagacaatt caaatatgaa tgaaatatac 1380 ctaacgaggg ataatcataa taataattat catgaaaatg aagaaaatat atatagtatt 1440 aatattaaat atattaataa tcattttaat aataaggatg atatgattat gaaatgtaaa 1500 aatatgaagg gatctatttc tatggataat aatagtagta atagtaatag taataatact 1560 cattttgaga aaacattgga atccataaat cctgatgacc ataatatttt taacagtgaa 1620 atggattcta tgaaaaatga aaataacgat gaagaagaac aaacagccac aagtatttat

ttacgtaatg	aggaaaaaga	tgaattatct	gatctaatta	atatagataa	aaatgcattg	3480
gataatctag	aactggaaac	atctgttcat	aataataata	aagtgaaaca	taataataac	3540
aacaacaaca	acaataataa	taataataat	aataataata	ataataattc	tgaaaaaatg	3600
agaattaaaa	ataatgattt	ttcagttgat	aataataatg	aaaatgttgg	aacaggagaa	3660
attaaaatat	ccaatgataa	atatttaaaa	ataacacaag	aagctattga	aatgattcta	3720
agtaatatca	aacataaatc	cttaccagaa	attaaaatga	aattaattga	taaacaaaag	3780
tttgaaaatt	ataatacatt	actagataaa	cattttaaat	ttattacatc	tgtaaaaaac	3840
atttcacagt	taagacgata	tatatcactc	tttcacaaat	ttataattta	tcatacactt	3900
cctcataata	tttctttaag	gaaacaatta	tttattatcg	aagctttaga	atggtcttcg	3960
ttttttcag	gtgcagctag	cgaaaaagtg	gaataa			3996

<210> 43

<211> 876

<212> DNA

<213> Plasmodium falciparum

<400> 43 atggaagtaa catcaacctt attagaaaag ggtaaaaact ttgcccaaga tccatctgag 60 gtttttcctg agtcaaaaaa atttttttt tcgtcaattg tgtgcttaaa aacaaatttc 120 gacaaaagga caggagcctt aggttatcta aatctaagtt atggaatggg tattatattc 180 240 ggtagtttct tagcaggtgt tatggtaaac tttgtaggat caagaggaaa tttattaatt gcattattat cccaattaat agctttatgt ataagtacaa cgttagaaga agatccgaaa 300 360 ttattgaaga gctctaatgt ggataaaatg aaaatgtcag aaatactttt aagtattaaa 420 aatgaataca taagagtatt aaatttattt aaaaaaacat atggaatatg tttattaata 480 ctttttggat tattacctat attaatgaca aaatttgctt ttgctcctgt ggttgtagat 540 atgttcaaat taactccttc acacacatca tatctaatga cttatgcagg tataataact attattgctg aagggatact tgctccttat ttaagttctt tactagggga tatgatttgt 600 tgtaaatatt cgataccact aacattaaca ggatttttat tattatcatt atgtggcgct 660 720 aacgaatcac ttgttcttat atttatgtct ataccattat gtggaggtgc tttattatat atatgtggaa ctagccaaat gacaaaacga gtggaagaat cagaattggg ttcgattatt 780 ggtttaaata catctctttt ttatgccgtt acaataatag ctccatatat tgcctttaaa 840 876 tcatatatag ccttgggatt gggattatat tggtaa

<210> 44 <211> 2712

<212> DNA

<213> Plasmodium falciparum

<400> 44 atgcgtattt ggggaaaaga tgtattcgcc ggttttgtaa caaagaaatt aaaaaccctt 60 ttagactgta attttgctct ttattataat tttaaaggaa atggcccaga cgctggatcc 120 tttttagatt ttgtggatga acctgaacaa ttttactggt tcgtggaaca tttttgtct 180 gtgaaatttc gagttccaaa gcatcttaaa gataaaaaca ttcataattt tacaccttgc 240 ttaaatagat catgggtatc tgaattttta aaagaatatg aagagccatt tgtaaatcct 300 gttatgaaat ttctagataa agagcaaaga ttatttttta catataactt tggagatgta 360 gaaccacaag gtaaatatac atatttccca gttaaggaat ttcacaaata ttgtatacta 420 cccccttaa taaaaactaa tataaaagat ggtgaaagtg gagaattttt aaaatatcaa 480 ttaaataaag aagaatataa agtttttctt tcttcggttg gttcccaaat gacagctata 540 aaaaatttat attcaacagt tgaagatgaa caaagaaaac aattattaaa agttatcata 600 660 gaaaatgaaa gtacaaatga tatatctgtt caatgcccaa cttataacat aaaattacat tatactaaag aatgtgctaa tagtaataat atattaaaat gtattgatga atttcttaga 720 780 aaaacatgtg aaaagaaaac cgaaagtaaa cacccttctg cagacttatg tgaacactta caatttcttt ttgaatcatt aaagaatcct tacttggata attttaaaaa atttatgact 840 900 aacagtgatt ttaccttaat caaacctcaa tcagtatgga atgtacctat attcgatata 960 tataaaccaa aaaattattt agatagtgtc caaaatttag atacagaatg ttttaagaaa 1020 ttaaatagca aaaatttgat cttcttatca ttccatgatg atatacctaa caatccatat 1080 tacaatgtgg aacttcaaga aattgttaaa ttgagtacct acacatatag catatttgat aaattgtata atttcttctt cgtttttaaa aaaagtggag ctcccattag tccagtgtca 1140 gttaaagaat tgagccataa tatcaccgat tttagcttta aagaggacaa cagtgaaatt 1200 caatgccaaa atgtaagaaa gagtttagat ttagaagtag atgtagaaac aatgaaaggt 1260 attgcggcag aaaagttatg taagatcatt gaaaaattta ttcttacaaa agatgatgca 1320 agtaaaccag aaaagagtga tatacacaga ggtttccgta tcttatgtat attaatatct 1380 actcatgtgg aagcttataa catagttaga caattattaa atatggaaag tatgatatca 1440 1500 ttaacaagat atacttcatt atatatccat aaatttttta agagtgtaac attattaaaa 1560 ggaaactttt tatataaaaa caataaggct ataagatatt cacgtgcttg tagtaaagcc tcattacacg ttccatccgt tttatacaga agaaatatat atattcctga aacattctta 1620 tcattatatt taggattatc aaatttagta tcttcaaatc ctagtagtcc attttttgaa 1680

tatgcaatta tagaattttt agtaacttat tacaataagg gttctgaaaa attcgttctt 1740 tattttatat ctattatatc agtattatat atcaacgaat attattatga acaactttca 1800 1860 tgtttctatc caaaagaatt tgaattaata aaatccagaa tgatacatcc aaatatagta 1920 gatcgtatat taaagggtat agataactta atgaaaagta caagatatga taaaatgcgt acaatgtatt tggatttcga aagttccgat attttctcca gagaaaaagt tttcaccgcc 1980 2040 ttatacaact tcgatagctt cattaagacc aatgaacaat taaagaagaa gaacttagaa gaaatatcag aaatacctgt acaattagaa acatctaatg atggtattgg atacagaaaa 2100 2160 caagacgttc tttatgaaac tgataaacca caaactatgg atgaagcttc atatgaagaa 2220 actgtagatg aagatgctca ccatgttaat gaaaaacaac acagtgccca cttcttagat 2280 gctattgcgg aaaaagacat attagaagaa aaaaccaagg atcaagattt agaaatagaa ttatacaaat atatgggacc attaaaagaa caatctaaaa gtacaagtgc tgcatctact 2340 2400 agtgatgaaa tatcaggttc tgaaggtcca tctactgaat ctacaagtac aggaaatcaa 2460 ggtgaagata aaacaacaga taatacatac aaagaaatgg aagaattaga agaagctgaa 2520 ggaacttcaa atcttaaaaa aggtttagaa ttttataaat cttctctaaa acttgatcaa 2580 ttagataaag aaaaacctaa aaagaaaaaa tctaaaagaa aaaaaaagag agacagttct 2640 agtgacagaa tattattaga agaatctaaa acctttactt ctgaaaatga attgatgaga 2700 aaaaaaaaaa aaaaaaaaa aaaaaaaaat aacaatgaaa taaaaaaatat tcgtatatat 2712 tataatttat aa

<210> 45

<211> 2232

<212> DNA

<213> Plasmodium falciparum

<400> 45

atgatgaaca tgaaaattgt tttattcagt ttattgctct ttgtcataag atggaatatt 60 attagttgta ataaaaacga caagaaccaa ggtgttgata tgaatgtttt gaataattat 120 180 gaaaatttat ttaaatttgt taaatgtgaa tattgtaatg aacatactta tgttaaaggt 240 aagaaagctc cttcagatcc tcaatgtgct gatataaaag aagaatgcaa agaattactt aaggaaaaac aatacacaga ttcagttaca tatttaatgg atggttttaa atcagcaaat 300 360 aattcagcaa ataatggtaa aaaaaataac gctgaagaaa tgaaaaattt agtaaatttc ttacaatctc ataagaaatt aattaaagca ttaaaaaaga atattgaaag tatacaaaat 420 480 aagaaacact taatttataa aaacaaatca tataatccat tattactttc ttgtgttaaa aaaatgaata tgttaaaaga aaatgttgac tatattcaaa aaaatcaaaa cttatttaaa 540

600 gaattaatga atcaaaaagc tacctactct tttgttaata ccaaaaaaaa aattatttct 660 ttaaaatcac aaggtcataa aaaagaaacc tcacaaaatc aaaatgaaaa taacgacaat 720 caaaaatatc aagaagttaa tgatgaagat gatgtaaatg atgaagaaga tacaaacgat 780 gacgaagata ctaacgatga agaagataca aacgatgacg aagatacaaa tgatgacgaa gatactaacg atgaagaaga tactaacgac gaagaagatc atgaaaataa taatgctaca 840 900 gcatacgaat taggtatcgt cccagttaac gatgtgttaa atgttaatat gaaaaatatg ataacaggaa ataattttat ggatgttgtt aaaaatacat tagctcaatc aggtggatta 960 ggaagtaatg atttaataaa tttcttaaat caaggtaaag aaataggaga aaatttatta 1020 1080 aacataacaa agatgaactt gggagataag aataatcttg aaagttttcc tttagatgaa ttaaatatgt taaaagataa tttaataaac tatgaattca tattagataa tttgaaaaca 1140 1200 agtgttttaa ataaattaaa agatttatta ttaagattat tatacaaagc atatgtatca tataagaaaa gaaaagctca agaaaaagga ttaccagaac ctactgttac taatgaagaa 1260 tatgttgaag aattaaagaa aggtattcta gatatgggta tcaaattatt atttagtaaa 1320 1380 gttaaaagcc tattaaaaaa attaaaaaat aaaatattcc ctaagaaaaa agaagataat 1440 caagcagtag ataccaaaag tatggaagaa cccaaagtta aagcacaacc agctcttaga 1500 qqtqttqaac caacqgaaga ttctaatatt atgaacagta ttaataatgt tatggatgaa 1560 attgatttct ttgaaaaaga attaatcgaa aataataata cacctaatgt tgtaccacca 1620 actcaatcaa aaaaaaaaa caaaaatgaa actgtatctg gtatggatga aaattttgat 1680 aatcatcctg aaaattattt taaagaagaa tattattatg atgaaaatga tgatatggaa 1740 gtaaaagtta aaaaaatagg tgtcacatta aaaaaatttg aaccacttaa aaatggaaat 1800 gttagtgaaa ccattaaatt gattcattta ggaaataaag ataaaaaaca cattgaagct 1860 ataaacaacg atattcaaat tattaaacaa gaattacaag ctatttataa tgaacttatg 1920 aattatacaa atggaaacaa aaatattcaa caaatatttc aacaaaatat tctagaaaat 1980 gatgttctta atcaagaaac ggaggaagaa atggaaaaac aagttgaagc aatcaccaag 2040 caaatagaag ctgaagtgga tgccctcgca ccaaaaaata aggaagaaga agaaaaagaa 2100 2160 2220 gaagaagaac aagaagaaga agaagaagaa gaaatagtac cagaaaattt gacaactgaa 2232 gaatcaaaat aa

<210> 46

<211> 428

<212> PRT

<213> Plasmodium falciparum

<400> 46

Met Cys Asn Lys Leu Ser Arg Gly Ser Asn Met Asn Lys Ser Glu Leu 1 5 10 15

Gly Asp Arg Ser Thr Lys Met Lys Gly Lys Ile Cys Ser Ser Tyr Val 20 25 30

Lys Tyr Ile Cys Leu Thr Ile Cys Val Ile Gly Met Leu Cys Ile Lys $35 \hspace{1cm} 40 \hspace{1cm} 45$

Leu Arg Asp Lys Tyr Glu Gly Tyr Ala Ala Ser Gly Ile Gln Asn Asn 50 55 60

Asn Val Tyr Leu Arg Asn Leu Ser Glu Leu Gln Lys Gly Asn Gln Pro 65 70 75 80

Cys Leu Arg His Thr Asn Arg Thr Asp Asn Ser Lys Met Asn Lys Val 85 90 95

Lys Asn Asn Gln Thr Glu Asn Asn Asp Asn Lys Lys Leu Gly
100 105 110

Asn Lys Glu Asp Asn Gln Gly Lys Asn Lys Asn Asn Asn Asn Lys Glu 115 120 125

Lys Gln Asn Asp Ile Asn Lys Arg Gly Thr Gln Asn Thr Glu Thr Lys 130 135 140

Lys Ser Asn Lys Lys Leu Ser Gln Asp Tyr Asn Asp Val Asn Lys Lys 145 150 155 160

Phe Thr Lys Glu Gln Met Lys Asn Leu Val Asn Ser Leu Asp Glu Ile 165 170 175

Pro Pro Arg Asn Asp Met Glu Lys Ile Trp Asn His Ala Val Lys Thr 180 185 190

Ala Asn Ser Gly Thr Ser Arg Ile Lys Lys Lys Leu Lys Glu Tyr Glu 195 200 205

Gln Lys Tyr Gly Arg Cys Tyr Glu Glu Arg Pro Asn Arg Phe Gly Ser 210 220

Tyr Glu Gln Val Leu Ile Ser Gln Pro His Glu Phe Asn Glu Arg Leu 225 230 235 240

Lys Val His Glu Asn Asp Tyr Thr Val Phe Phe Tyr Glu Leu Leu Asp 245 250 255

Lys Asp Pro Thr Leu Asp Glu Ile Lys Asn Tyr Ile Thr Ser Phe Leu 260 265 270

Glu Gly Phe Gln Asn Leu Ile Asp Phe Leu Phe Asn Lys Tyr Lys Ile 275 280 285

The state of the s

All the state of the same of t

Ile Phe Leu Gln Thr Thr Glu Ile Pro Ile Asp Gly Thr Ile Tyr Asp Thr Ser Lys Lys Asp Met Lys Lys Asn Lys Asn Lys Gln Asn 310 315 Ile Lys Gln Gly Gly Lys Lys Glu Glu Val Lys Gln Glu Gly Lys Lys 330 Glu Glu Val Lys Gln Glu Gly Lys Lys Glu Glu Val Lys Gln Glu Gly 345 Lys Lys Glu Glu Val Lys Gln Glu Gly Lys Lys Glu Glu Val Lys Gln 360 Gly Gly Lys Lys Glu Glu Val Lys Gln Gly Lys Lys Glu Glu Val 375 Lys Gln Gly Gly Lys Lys Glu Glu Val Lys Gln Gly Gly Lys Lys Glu 395 Glu Val Lys Gln Gly Gly Lys Lys Glu Glu Val Lys Gln Gly Gly Lys Lys Glu Glu Val Lys Lys Glu Leu Lys Lys Asn Asn <210> 47 <211> 1191 <212> PRT <213> Plasmodium falcīparum <400> 47 Met Ile Phe Val Lys Ser Lys Ile Leu Tyr Phe Leu Lys Trp Pro Ser Val Ala Ile Glu Glu Asn Phe Ser Gly Ser Phe Lys Cys Leu Phe Lys Asn Lys Arg Asn Lys Tyr Asn Val Glu Ile Leu Lys Asn Asp Tyr Asn Thr Leu Thr Glu Ser His Asn Ile Ile Asn Arg Arg Ser Arg Asn Leu Gly Ala Asn Pro Glu Ser Ile Ser Leu Gly Tyr Glu Leu Ser Glu Lys

Asp Glu Gly Asn Lys Asn Asp Leu Ile Asn Ser Ala Thr Asp Val Ser

Thr Glu Leu Glu Asn Leu Lys Glu Arg Leu Phe Pro Glu Leu Glu Leu 105

Tyr Thr Asn Asp Gln Asn Ser Arg Asn Asn Thr Pro Asn Leu Arg Lys

Gly Ser Leu Gly Phe Asp Ser Phe Lys Lys Leu Glu Leu Gly Thr Leu

120

130 135 140 Asn Gln Phe Asp Lys Asp Lys Met Ile Asn Leu Lys Asp Glu Thr Asn 155 Met Asn Glu Phe Glu Gly Phe Leu Gly Arg Asn Ser Met Ala Ser Asn 170 Val Val Thr Ser Glu Leu Phe Asp Glu Pro Val Asp Asp Ser Ser Ser Thr Thr Thr Ser Thr Gly Thr Lys Leu Gln Asn Val Pro Ser Asn Asp Asn Asn Gly Glu Leu Leu Lys Asp Glu Pro Ile Asp Asp Tyr Ile Asn Asn Asn Ser Lys Val Glu Ser Glu Asp Asn Tyr Tyr Ala Gln Gln Asn 235 Met Gln Ser Gln Ser Lys Asp Asn Tyr Ala Ser Glu Gln Asn Val Ala Asp Gln Ser Thr Asp Asn Tyr Pro Thr Gln His Asp Val Pro Val Gln Leu Arg Asp Asn Tyr Ala Ser Glu Gln Glu Tyr Phe Asp Arg Gly Glu Gln Leu Asn Asp Val Ser Ala Asp Asn Asn Thr Ser Asn Lys Leu Lys 295 Asp Glu Pro Val Asp Asn Asn Thr Ser Asn Lys Leu Lys Asp Glu Pro 310 305 Val Asp Asn Asn Thr Ser Asn Lys Leu Lys Asp Glu Pro Val Asp Asp 325 330 Asn Thr Ser Asn Lys Leu Lys Asp Glu Pro Val Asp Asn Asn Thr Ile 345 Asn Lys Leu Lys Asp Glu Pro Val Asp Asp Asn Thr Ser Asn Ile Leu 360 Lys Asp Glu Pro Val Asp Asp His Ala Gly Lys His Leu Lys Asp Glu 375 370 Pro Val Asp Asp His Ala Gly Lys His Met Lys Asp Glu Pro Val Asp 395 390 Ile Asp Arg Thr Asn Ile Lys Lys Gly Leu Asn Glu Gln His Val Asn 405 410 Pro Trp Thr Thr Leu Ala Asp Leu Lys Asn Ile Asn Asn Ser Met 425 Lys Ile Glu Lys Asn Asn Lys Ser Asn Glu Gln Val Lys Asn Thr Ser Val Ser Lys Ser Cys Asp Ile Ile Lys Pro Ser Lys Phe Asn Lys Lys

460 455 450 Asn Leu Phe Glu Gln Arg Leu Gln Ser Val Glu Gly Lys Asn Phe Phe Glu Gly Arg Ser Gln Asn Leu Glu Gly Arg Ser Asn Phe Asp Glu Arg Ser Gln Ile Val Glu Gln Arg Arg Asn Phe Asp Asp Arg Asp Gln Asn Ile Met Asp Arg Lys Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp Arg Arg Asn 535 Phe Asp Asp Arg Asp Gln Asn Val Met Asp Arg Arg Asn Phe Asp Glu 555 Arg Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln 570 Gln Val Asn Asp Arg Arg Asn Phe Asp Asp Arg Asp Gln Asn Val Met Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp 615 Asp Arg Asp Gln Asn Val Met Asp Arg Arg Asn Phe Asp Glu Arg Asn 630 Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln His Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Asn Val Asn Asp Arg Arg Asn Phe 680 Asp Glu Arg Asn Gln Asn Val Asn Asp Arg Arg Asn Phe Asp Glu Arg 695 690 Asn Gln Gln Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Tyr Gln Asn 715 710 Val Asn Glu Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn Asp 730 725 Arg Arg Asn Phe Asp Glu Arg Asn Gln His Val Asn Glu Arg Tyr Gln 745 Asn Val Asn Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln Gln Val Asn 755 Asp Arg Arg Asn Phe Asp Glu Arg Asn Gln His Val Asn Glu Arg Arg

Ala His Glu Arg Lys Lys Tyr Thr Lys Met Gln Glu Tyr Leu Met

1095 1090 1085 Tyr Tyr Ser Gln Tyr Leu Glu Lys Thr Tyr Leu Val Pro Thr Ala 1105 Phe Arg Lys Lys Tyr Trp Trp Arg Val His Tyr Met Leu Thr Glu 1120 1125 1115 Glu Val Val Lys Arg Glu Arg Thr Asp Asn Leu Asp Phe His Gln 1135 1130 Phe Leu Arg Lys Gly Ser Cys Glu Lys Arg Glu Phe Leu Tyr Phe 1150 Ile Asn Ser Lys Arg Lys Gly Trp Ala Asp Leu Thr Glu Thr Met 1170 1165 1160 Lys Asn Ile Trp Met Glu Arg Leu Thr Tyr Lys Met Arg Lys Tyr 1185 1180 1175 Ser Gly Ala 1190 <210> 48 <211> 300 <212> PRT <213> Plasmodium falciparum <400> 48 Met Cys Ser Thr Asn Lys Asn Leu Ala Cys Cys Lys Gly Asp Asn Val Phe Asp Gly Gln Ile Asn Gly Asn Glu Ser Tyr Pro Gln Val Val Asn 25 Lys Gln Leu Pro Pro Lys Val Leu Glu Pro Ile Ile Gln Asn Lys Ile Val Glu Ile Pro Lys Glu Val Tyr Leu Glu Lys Ile Val Glu Val Pro 55 Gln Ile Lys Thr Val Glu Arg Ile Val Glu Gln Ile Arg Pro Val Ile 70 65 Lys Tyr Lys Asn Val Tyr Lys Pro Lys Ile Val Tyr Val Glu Lys Val 90 Lys Asn Val Asp Lys Ile Ile Tyr Gln Glu Lys Ile Val Glu Val Pro Gln Ile Lys Thr Val Glu Lys Ile Val Glu Val Pro Val Tyr Val Asn 120 Arg Glu Arg Ile Ile Thr Val Pro Arg Tyr Met Val Val Glu Lys Val 130 Ile Pro Val Leu Lys Thr Ser Lys Arg Glu Ser Ile Met Glu Val Pro 155

Glu Val Asn Cys Pro His Ile Asp Ile Ser Lys Glu Val Glu Asp Lys
165 170 175

Glu Glu Ile Pro Ile Asn Glu Leu Lys Glu Asn Gln Thr Ile Ser Leu 180 185 190

Ala Asp Glu Lys Glu Ile Gln Ile Leu Asn Asp Leu Thr Ser Gln Lys
195 200 205

Val Asp Ser Asn Ala Thr Ile Asn Met Glu Gly Glu Gln Asp Thr Thr 210 215 220

Val Asp Thr Ile Thr Gln Glu Asn Phe Cys Gly Thr Val Ser Cys Asn 225 230 235 240

Phe Leu Pro Asn Tyr Pro Asn Phe Ser Lys Ile Gly Asn Pro Leu Cys 245 250 255

Lys Gly Gly Pro Glu Lys Glu Lys Arg Phe Ser Ser Ile Ser Ile Tyr 260 265 270

Lys Ser Lys Asp Ser Gly Phe Pro Ser Ile Arg Ile Ala Lys Thr Pro 275 280 285

Gln Met Phe Gln Arg Asn Leu Tyr Cys Ser Tyr Ala 290 295 300

<210> 49

<211> 400

<212> PRT

<213> Plasmodium falciparum

<400> 49

Met Lys Asn Glu Asn Met Gly Asn Ser Ile Phe Tyr Tyr Ser Cys Tyr 1 5 10 15

Val Ile Ile Val Leu Thr Ile Ile Leu Ser Lys Phe Val Val Ile Pro 20 25 30

Leu Met Ala Gln Met Phe Leu Tyr Thr Phe Ile Thr Ile Tyr Ile Gly $35 \hspace{1cm} 40 \hspace{1cm} 45$

Ser His Asp Ser Leu Lys Gln Leu Glu Ile Asp Asp Lys Thr Lys Lys 50 55 60

Ser Asp Asn Ile Thr Ala Tyr Asp Ala Met Met Phe Pro Val Ile Gly 65 70 75 80

Ser Ala Ala Leu Leu Thr Leu Tyr Phe Ala Tyr Lys Phe Leu Asp Pro 85 90 95

Phe Tyr Val Asn Leu Leu Leu Thr Leu Tyr Leu Thr Leu Ala Gly Val
100 105 110

Phe Ser Leu Gln Gly Val Phe Thr Thr Ile Leu Glu Pro Val Phe Pro 115 120 125

Asn Phe Phe Lys Lys Asp Glu Tyr Val Lys Thr Phe Lys Leu Pro Asn 130 135 140

Phe Ile Tyr Lys Glu Pro Ile Val Phe Asn Thr Asn Lys Gly Glu Ile 145 150 155 160

Val Cys Leu Ile Leu Ser Phe Ala Ile Gly Leu Arg Trp Ile Phe Tyr 165 170 175

Lys Asp Phe Ile Thr His Asn Val Leu Ala Val Ser Phe Cys Phe Gln 180 185 190

Ala Ile Ser Leu Val Ile Leu Ser Asn Phe Leu Ile Gly Phe Leu Leu 195 200 205

Leu Ser Gly Leu Phe Val Tyr Asp Ile Phe Trp Val Phe Gly Asn Asp 210 215 220

Val Met Val Thr Val Ala Lys Ser Phe Glu Ala Pro Val Lys Leu Leu 225 230 235 240

Phe Pro Val Ser Ser Asp Pro Val His Tyr Ser Met Leu Gly Leu Gly 245 250 255

Asp Ile Ile Pro Gly Ile Leu Met Ser Leu Cys Leu Arg Phe Asp 260 265 270

Tyr Tyr Leu Phe Lys Asn Asn Ile His Lys Gly Asn Leu Lys Lys Met 275 280 285

Phe Asn Asp Ile Ser Ile His Glu Ser Phe Lys Lys Tyr Tyr Phe Tyr 290 295 300

Thr Ile Ile Ile Phe Tyr Glu Leu Gly Leu Val Val Thr Tyr Cys Met 305 310 315 320

Leu Phe Tyr Phe Glu His Pro Gln Pro Ala Leu Leu Tyr Leu Val Pro 325 330 335

Ala Cys Ile Leu Ala Ile Leu Ala Cys Ser Ile Cys Lys Arg Glu Phe 340 345 350

Lys Leu Met Ile Lys Tyr Gln Glu Ile Thr Asp Lys Ser Asn Thr Val 355 360 365

Asp Asp Ala Ser Lys Asn Lys Lys Lys Asp Lys Glu Glu Ile Pro Lys 370 375 380

Ile Gln Glu Thr Pro Val Ser Asn Ala Lys Lys Arg Ile Thr Asn Lys 385 390 395 400

<210> 50

<211> 1331

<212> PRT

<213> Plasmodium falciparum

<400> 50

Met Val Leu Val Val Glu Tyr His Asn Ile Asn Thr Pro Val Gly Lys
1 5 10 15

Tyr Ser Glu Leu Glu Asn Leu Lys Glu Glu Lys Glu Lys Arg Leu Tyr

			20					25					30		
Asn	Asn	Leu 35	Glu	Tyr	Val	Asn	Leu 40	Leu	Asp	Ile	Arg	Thr 45	Leu	Glu	Asn
Lys	Ser 50	Ile	Tyr	Val	Ser	Ser 55	Asp	Leu	Leu	Asn	Phe 60	Leu	Lys	Cys	Tyr
Ser 65	Asn	Leu	Asn	Ile	Asn 70	Leu	Asn	Lys	Val	Pro 75	Tyr	Asp	Leu	Va1	Tyr 80
Ser	Phe	Leu	Leu	Asp 85	Gly	Glu	Leu	Tyr	Leu 90	Gly	Tyr	Asp	Ile	Ser 95	Val
Phe	Ile	Leu	Leu 100	Val	Lys	Ala	Glu	His 105	Phe	Glu	Tyr	Cys	Arg 110	Arg	Ile
Asp	Asn	Glu 115	Asn	Ser	Asp	Lys	Lys 120	Glu	Ser	Phe	Arg	Thr 125	Lys	Asn	Lys
Ser	Thr 130	Ile	Lys	Arg	Ser	Ser 135	Gln	Ile	Asp	Asp	Glu 140	Asp	Asn	Leu	Gln
Gly 145	Leu	Leu	Ile	Lys	Glu 150	Lys	Glu	Asp	Tyr	Leu 155	Ser	Phe	Leu	Asn	Glu 160
Asn	Asn	Glu	Ala	Leu 165	Lys	Gln	Tyr	Met	Glu 170	Ser	Glu	Lys	Arg	Gly 175	Asn
Pro	Leu	Trp	His 180	Leu	Asp	Glu	Ser	Lys 185	Tyr	Met	Asp	Lys	Asp 190	Trp	Tyr
Asp	Glu	G1u 195	Asp	Ser	Ser	Phe	Ile 200	Phe	Lys	Pro	Thr	Phe 205	Asn	Tyr	Leu
Gly	Lys 210	Asn	Asn	Asn	Asn	Asn 215	Asn	Asn	His	Asn	Asn 220	Asn	Asn	Ala	Phe
Ser 225	Asn	Phe	Val	Met	Gly 230	Asn	Leu	Ser	Ser	Asp 235	Asn	Ile	Ser	Gly	Cys 240
Phe	Phe	Val	Glu	Lys 245	Leu	Asn	Ala	Tyr	Leu 250	Phe	Ala	Met	Leu	Asp 255	Lys
Cys	Ser	Asn	Lys 260	Thr	Val	Ile	Ser	Val 265	Phe	Pro	Tyr	Glu	Lys 270	Phe	Gly
Arg	His	Glu 275	Ser	Arg	Asn	Leu	Ala 280	Ile	Gln	Phe	Ser	Gln 285	Tyr	Glu	qaA
Tyr	Met 290	His	Arg	Ile	Ile	Glu 295	Asp	Arg	Leu	Tyr	Ala 300	Asn	Ile	Gln	Asn
Asn 305	Leu	Pro	Ser	Val	His 310	Asn	Met	Lys	Asn	Met 315	Ser	Asn	Met	Asn	Asn 320
Ile	Asn	Asn	Asn	Asn 325	Lys	Asp	Ile	Ile	Ile 330	Asn	Arg	Ser	Gly	Ile 335	Ser
Asn	Gly	Asn	Ser	Gln	Ser	Val	Pro	Cys	Phe	Glu	Asn	Ile	Leu	Asp	Tyr

			340					345					350		
Asp	Lys	Leu 355	Lys	Phe	Val	Glu	Tyr 360	Ile	Asn	Ser	Phe	Ser 365	Asp	Val	Lys
Lys	Ser 370	Ser	Ser	Phe	Asp	Ile 375	Ile	Gly	Ser	Ser	Lys 380	Asn	Ile	Tyr	Glu
Gln 385	Gly	Glu	Asn	Leu	Lys 390	Asn	Tyr	Cys	Ile	Tyr 395	His	Asn	Asn	Asn	Phe 400
Glu	Ser	Gly	Phe	Glu 405	Asn	Tyr	Ile	Leu	Glu 410	Asn	Lys	Gln	Pro	Leu 415	Glu
Leu	Ile	Glu	Asn 420	His	Phe	Asp	Ile	Met 425	Glu	Asn	Ile	Lys	Gly 430	Met	Tyr
Asp	Asn	Thr 435	Asn	Gln	Glu	Glu	Met 440	Asn	Phe	Asn	Asn	Val 445	Ser	Gly	Leu
Leu	Arg 450	Glu	Asp	Asn	Ser	Asn 455	Met	Asn	Glu	Ile	Tyr 460	Leu	Thr	Arg	Asp
Asn 465	His	Asn	Asn	Asn	Tyr 470	His	Glu	Asn	Glu	Glu 475	Asn	Ile	Tyr	Ser	Ile 480
Asn	Ile	Lys	Tyr	Ile 485	Asn	Asn	His	Phe	Asn 490	Asn	Lys	Asp	Asp	Met 495	Ile
Met	Lys	Cys	Lys 500	Asn	Met	Lys	Gly	Ser 505	Ile	Ser	Met	Asp	Asn 510	Asn	Ser
Ser	Asn	Ser 515	Asn	Ser	Asn	Asn	Thr 520	His	Phe	Glu	Lys	Thr 525	Leu	Glu	Ser
Ile	Asn 530	Pro	Asp	Asp	His	Asn 535	Ile	Phe	Asn	Ser	Glu 540	Met	Asp	Ser	Met
Lys 545	Asn	Glu	Asn	Asn	Asp 550	Glu	Glu	Glu	Gln	Thr 555	Ala	Thr	Ser	Ile	Tyr 560
Asn	Ile	Leu	Gly	Lys 565	Ile	Gly	Lys		Thr 570	Tyr	Ile	Lys	Arg	Cys 575	Ser
Ser	Asn	Tyr	Asn 580	Tyr	Asp	Asn	Asn	Asn 585	Gly	Tyr	Ser	Asn	Glu 590	Ser	Ser
Asp	Asn	Tyr 595	Asn	Asn	Gly	Tyr	Asn 600	Asp	Ser	Thr	Asp	Asn 605	Asn	Asn	Gly
Tyr	Asn 610	Ser	Asn	Ser	Ser	Tyr 615	Asn	Ser	Asn	Asn	Asn 620	Glu	Asp	Asp	Asn
Asn 625	Asn	Asn	Asn	Asn	Asn 630	Asp	Glu	Asn	Cys	Asp 635	Asn	Asn	Asn	Asn	His 640
Asn	Asn	Asn	Asn	Tyr 645	Asn	Asn	Asn	Asn	Asn 650	Tyr	Gly	Asn	Asn	Asn 655	Asn
Asn	Asn	Asn	Asn	Asn	Lys	Asp	Asn	Asn	Asn	Asn	Asp	Gly	Asn	Gly	Ser

Ser	Asn	Asn 675	Asn	Asn	Asn	Asp	Asp 680	Asp	Asp	Glu	Glu	Glu 685	Glu	Asp	Asp
Glu	Asp 690	Asp	Asn	Asn	Asn	Asn 695	Asn	Asp	Asp	Asp	Asn 700	Met	Ser	Asp	Asn
Glu 705	Glu	Met	Glu	Asp	Asn 710	Asp	Glu	Asp	Asn	Asp 715	Glu	Tyr	Asn	Asn	Ser 720
Asn	Asp	Ser	Tyr	Lys 725	Tyr	Glu	Glu	Lys	Asp 730	Ser	Asn	His	Glu	Lys 735	Asp
Leu	Lys	Lys	Asp 740	Ile	Ile	Glu	Gly	Asp 745	Met	Ile	Asn	Ser	Val 750	Lys	Tyr
Asp	Lys	Asn 755	Ile	Gly	His	His	Thr 760	Thr	Asn	Lys	Ser	Glu 765	Ile	Ser	Thr
Asn	Tyr 770	Phe	Glu	Asn	Ser	Cys 775	Asn	Met	Ser	Val	Asn 780	Asn	Ser	Asn	Asn
Glu 785	Ala	Tyr	Asp	Asp	Asn 790	Cys	Asn	Asn	Gly	Phe 795	Met	Asn	His	Asp	Glu 800
Gly	Leu	Thr	Leu	Asn 805	Asn	Gly	Asn	Val	Ser 810	Asn	Asn	Lys	Cys	Asp 815	Ile
Ile	Ile	Pro	Glu 820	Asp	Gly	Ser	Val	Met 825	Tyr	Glu	Asn	Met	Ile 830	Asn	Arg
Gly	Asn	Gly 835	Leu	Thr	Ser	Asn	I1e 840	Asn	Asn	Asn	Asn	Asn 845	Val	Ser	Asn
Asn	Asn 850	Ser	Ile	Ser	Cys	Asn 855	Ala	Asp	Asp	Asn	Val 860	Tyr	Asn	Asn	Ile
Asn 865	Asn	Tyr	Ile	Asn	Thr 870	Tyr	Met	Glu	Thr	Thr 875	Asn	Asn	Lys	Asn	His 880
Ile	Glu	Asn	Arg	Cys 885	Asn	Gln	Asp	Ser	Tyr 890	Ser	Thr	Asn	Glu	Glu 895	Pro
Leu	Ser	Asn	His 900	Ser	Ile	Asn	Asp	Pro 905	Gly	Lys	Ile	Lys	Asp 910	Gly	Ile
Met	Tyr	Asp 915	Gly	Asn	Asp	Leu	Asp 920	Met	Asn	Gly	Thr	Gln 925	Glu	His	Ser
Lys	Glu 930	Glu	Gly	Met	Asp	Val 935	Phe	Glu	Pro	Asn	Phe 940	Phe	Glu	Leu	Lys
Arg 945	Asn	Ser	Ser	Asp	Gly 950	Gln	Asn	Lys	His	Leu 955	Glu	Pro	Gly	Val	Gln 960
Lys	Lys	Ile	Ser	Lys 965	Lys	Arg	Ser	Lys	Val 970	Lys	His	Glu	Arg	Asn 975	Ser
Lys	Ile	Leu	Asp	Asp	Glu	Lys	Lys	Glu	Val	Leu	Asn	Lys	Val	Ser	Gln

Ile Thr Arg Val Gly Gly Val Cys Phe Asp Lys Asn Arg Gln Arg Trp 1000 Ile Ala His Trp Lys Ile Asp Gly Lys Tyr His Lys His Tyr Phe 1015 Pro Ile Ser Gln Tyr Gly Phe Glu Asn Ala Arg Glu Arg Ala Val 1030 1025 Ser Cys Arg Lys Gln Ala Glu Lys Leu Phe Asn Leu Pro Glu Ile 1045 Gln Pro Arg Asn Arg Trp Asn Gln Ile Lys Val Asn Gly Thr Ser 1055 1060 His Ile Lys Lys Ala Ala Lys Leu Pro Arg Cys Glu Gly Ile Gly 1075 Tyr Asp Glu Leu Ser Gln Ser Trp Val Ser Thr Phe Val Val His 1085 1090 Lys Lys Phe Ser Ile Glu Glu Leu Gly Phe Tyr Glu Ala Arg Glu 1100 1105 Lys Ala Ile Tyr Cys Arg Lys Thr Phe Glu Lys Val Asn Val His 1115 1120 Asp Asp Tyr Glu Cys Leu Leu Asn Asp Arg Leu Gly Leu Arg Asn 1130 1135 Glu Glu Lys Asp Glu Leu Ser Asp Leu Ile Asn Ile Asp Lys Asn 1145 1150 Ala Leu Asp Asn Leu Glu Leu Glu Thr Ser Val His Asn Asn Asn 1165 1175 1180 Asn Asn Asn Asn Asn Asn Asn Ser Glu Lys Met Arg Ile Lys 1190 1195 Asn Asn Asp Phe Ser Val Asp Asn Asn Glu Asn Val Gly Thr 1205 1210 Gly Glu Ile Lys Ile Ser Asn Asp Lys Tyr Leu Lys Ile Thr Gln 1225 Glu Ala Ile Glu Met Ile Leu Ser Asn Ile Lys His Lys Ser Leu 1235 1240 Pro Glu Ile Lys Met Lys Leu Ile Asp Lys Gln Lys Phe Glu Asn 1255 Tyr Asn Thr Leu Leu Asp Lys His Phe Lys Phe Ile Thr Ser Val 1265 1270 Lys Asn Ile Ser Gln Leu Arg Arg Tyr Ile Ser Leu Phe His Lys

1280 1285 1290 Phe Ile Ile Tyr His Thr Leu Pro His Asn Ile Ser Leu Arg Lys 1300 Gln Leu Phe Ile Ile Glu Ala Leu Glu Trp Ser Ser Phe Phe Ser 1310 1315 Gly Ala Ala Ser Glu Lys Val Glu 1325 <210> 51 <211> 291 <212> PRT <213> Plasmodium falciparum <400> 51 Met Glu Val Thr Ser Thr Leu Leu Glu Lys Gly Lys Asn Phe Ala Gln Asp Pro Ser Glu Val Phe Pro Glu Ser Lys Lys Phe Phe Ser Ser Ile Val Cys Leu Lys Thr Asn Phe Asp Lys Arg Thr Gly Ala Leu Gly Tyr Leu Asn Leu Ser Tyr Gly Met Gly Ile Ile Phe Gly Ser Phe Leu Ala Gly Val Met Val Asn Phe Val Gly Ser Arg Gly Asn Leu Leu Ile Ala Leu Leu Ser Gln Leu Ile Ala Leu Cys Ile Ser Thr Thr Leu Glu Glu Asp Pro Lys Leu Leu Lys Ser Ser Asn Val Asp Lys Met Lys Met 105 Ser Glu Ile Leu Leu Ser Ile Lys Asn Glu Tyr Ile Arg Val Leu Asn Leu Phe Lys Lys Thr Tyr Gly Ile Cys Leu Leu Ile Leu Phe Gly Leu Leu Pro Ile Leu Met Thr Lys Phe Ala Phe Ala Pro Val Val Asp 155 Met Phe Lys Leu Thr Pro Ser His Thr Ser Tyr Leu Met Thr Tyr Ala Gly Ile Ile Thr Ile Ile Ala Glu Gly Ile Leu Ala Pro Tyr Leu Ser 185 Ser Leu Leu Gly Asp Met Ile Cys Cys Lys Tyr Ser Ile Pro Leu Thr Leu Thr Gly Phe Leu Leu Ser Leu Cys Gly Ala Asn Glu Ser Leu

a manufacture from 1 to 1 to 10 March School School

Val Leu Ile Phe Met Ser Ile Pro Leu Cys Gly Gly Ala Leu Leu Tyr 225 230 235 240

Ile Cys Gly Thr Ser Gln Met Thr Lys Arg Val Glu Glu Ser Glu Leu 245 250 255

Gly Ser Ile Ile Gly Leu Asn Thr Ser Leu Phe Tyr Ala Val Thr Ile 260 265 270

Ile Ala Pro Tyr Ile Ala Phe Lys Ser Tyr Ile Ala Leu Gly Leu Gly 275 280 285

Leu Tyr Trp 290

<210> 52

<211> 903

<212> PRT

<213> Plasmodium falciparum

<400> 52

Met Arg Ile Trp Gly Lys Asp Val Phe Ala Gly Phe Val Thr Lys Lys
1 5 10 15

Leu Lys Thr Leu Leu Asp Cys Asn Phe Ala Leu Tyr Tyr Asn Phe Lys 20 25 30

Gly Asn Gly Pro Asp Ala Gly Ser Phe Leu Asp Phe Val Asp Glu Pro $35 \hspace{1cm} 40 \hspace{1cm} 45$

Glu Gln Phe Tyr Trp Phe Val Glu His Phe Leu Ser Val Lys Phe Arg 50 55 60

Val Pro Lys His Leu Lys Asp Lys Asn Ile His Asn Phe Thr Pro Cys 65 70 75 80

Leu Asn Arg Ser Trp Val Ser Glu Phe Leu Lys Glu Tyr Glu Glu Pro 85 90 95

Phe Val Asn Pro Val Met Lys Phe Leu Asp Lys Glu Gln Arg Leu Phe 100 105 110

Phe Thr Tyr Asn Phe Gly Asp Val Glu Pro Gln Gly Lys Tyr Thr Tyr 115 120 125

Phe Pro Val Lys Glu Phe His Lys Tyr Cys Ile Leu Pro Pro Leu Ile 130 135 140

Lys Thr Asn Ile Lys Asp Gly Glu Ser Gly Glu Phe Leu Lys Tyr Gln 145 150 155 160

Leu Asn Lys Glu Glu Tyr Lys Val Phe Leu Ser Ser Val Gly Ser Gln
165 170 175

Met Thr Ala Ile Lys Asn Leu Tyr Ser Thr Val Glu Asp Glu Gln Arg 180 185 190

Lys Gln Leu Leu Lys Val Ile Ile Glu Asn Glu Ser Thr Asn Asp Ile 195 200 205 Ser Val Gln Cys Pro Thr Tyr Asn Ile Lys Leu His Tyr Thr Lys Glu 215 Cys Ala Asn Ser Asn Asn Ile Leu Lys Cys Ile Asp Glu Phe Leu Arg 235 Lys Thr Cys Glu Lys Lys Thr Glu Ser Lys His Pro Ser Ala Asp Leu Cys Glu His Leu Gln Phe Leu Phe Glu Ser Leu Lys Asn Pro Tyr Leu 265 Asp Asn Phe Lys Lys Phe Met Thr Asn Ser Asp Phe Thr Leu Ile Lys 280 Pro Gln Ser Val Trp Asn Val Pro Ile Phe Asp Ile Tyr Lys Pro Lys 295 Asn Tyr Leu Asp Ser Val Gln Asn Leu Asp Thr Glu Cys Phe Lys Lys 315 Leu Asn Ser Lys Asn Leu Ile Phe Leu Ser Phe His Asp Asp Ile Pro 330 325 Asn Asn Pro Tyr Tyr Asn Val Glu Leu Gln Glu Ile Val Lys Leu Ser Thr Tyr Thr Tyr Ser Ile Phe Asp Lys Leu Tyr Asn Phe Phe Phe Val 360 Phe Lys Lys Ser Gly Ala Pro Ile Ser Pro Val Ser Val Lys Glu Leu 375 Ser His Asn Ile Thr Asp Phe Ser Phe Lys Glu Asp Asn Ser Glu Ile 390 385 Gln Cys Gln Asn Val Arg Lys Ser Leu Asp Leu Glu Val Asp Val Glu 405 Thr Met Lys Gly Ile Ala Ala Glu Lys Leu Cys Lys Ile Ile Glu Lys 425 420 Phe Ile Leu Thr Lys Asp Asp Ala Ser Lys Pro Glu Lys Ser Asp Ile 440 His Arg Gly Phe Arg Ile Leu Cys Ile Leu Ile Ser Thr His Val Glu 455 450 Ala Tyr Asn Ile Val Arg Gln Leu Leu Asn Met Glu Ser Met Ile Ser 475 470 Leu Thr Arg Tyr Thr Ser Leu Tyr Ile His Lys Phe Phe Lys Ser Val 490 485 Thr Leu Leu Lys Gly Asn Phe Leu Tyr Lys Asn Asn Lys Ala Ile Arg 505 Tyr Ser Arg Ala Cys Ser Lys Ala Ser Leu His Val Pro Ser Val Leu

520

Tyr Arg Arg Asn Ile Tyr Ile Pro Glu Thr Phe Leu Ser Leu Tyr Leu 530 535 Gly Leu Ser Asn Leu Val Ser Ser Asn Pro Ser Ser Pro Phe Phe Glu 555 Tyr Ala Ile Ile Glu Phe Leu Val Thr Tyr Tyr Asn Lys Gly Ser Glu 570 Lys Phe Val Leu Tyr Phe Ile Ser Ile Ile Ser Val Leu Tyr Ile Asn Glu Tyr Tyr Tyr Glu Gln Leu Ser Cys Phe Tyr Pro Lys Glu Phe Glu Leu Ile Lys Ser Arg Met Ile His Pro Asn Ile Val Asp Arg Ile Leu 615 Lys Gly Ile Asp Asn Leu Met Lys Ser Thr Arg Tyr Asp Lys Met Arg 635 Thr Met Tyr Leu Asp Phe Glu Ser Ser Asp Ile Phe Ser Arg Glu Lys 650 645 Val Phe Thr Ala Leu Tyr Asn Phe Asp Ser Phe Ile Lys Thr Asn Glu Gln Leu Lys Lys Lys Asn Leu Glu Glu Ile Ser Glu Ile Pro Val Gln Leu Glu Thr Ser Asn Asp Gly Ile Gly Tyr Arg Lys Gln Asp Val Leu 695 Tyr Glu Thr Asp Lys Pro Gln Thr Met Asp Glu Ala Ser Tyr Glu Glu 705 Thr Val Asp Glu Asp Ala His His Val Asn Glu Lys Gln His Ser Ala 725 730 His Phe Leu Asp Ala Ile Ala Glu Lys Asp Ile Leu Glu Glu Lys Thr 745 Lys Asp Gln Asp Leu Glu Ile Glu Leu Tyr Lys Tyr Met Gly Pro Leu 760 Lys Glu Gln Ser Lys Ser Thr Ser Ala Ala Ser Thr Ser Asp Glu Ile 775 Ser Gly Ser Glu Gly Pro Ser Thr Glu Ser Thr Ser Thr Gly Asn Gln 790 795 Gly Glu Asp Lys Thr Thr Asp Asn Thr Tyr Lys Glu Met Glu Glu Leu 805 810 Glu Glu Ala Glu Gly Thr Ser Asn Leu Lys Lys Gly Leu Glu Phe Tyr 825 Lys Ser Ser Leu Lys Leu Asp Gln Leu Asp Lys Glu Lys Pro Lys Lys 845

Lys Lys Ser Lys Arg Lys Lys Lys Arg Asp Ser Ser Ser Asp Arg Ile 850 855

Leu Leu Glu Glu Ser Lys Thr Phe Thr Ser Glu Asn Glu Leu Met Arg 865 870 875 880

Lys Lys Lys Lys Lys Lys Lys Lys Asn Asn Asn Glu Ile Lys Asn 885 890 895

Ile Arg Ile Tyr Tyr Asn Leu 900

<210> 53

<211> 743

<212> PRT

<213> Plasmodium falciparum

<400> 53

Met Met Asn Met Lys Ile Val Leu Phe Ser Leu Leu Phe Val Ile 1 5 10 15

Arg Trp Asn Ile Ile Ser Cys Asn Lys Asn Asp Lys Asn Gln Gly Val 20 25 30

Asp Met Asn Val Leu Asn Asn Tyr Glu Asn Leu Phe Lys Phe Val Lys 35 40 45

Cys Glu Tyr Cys Asn Glu His Thr Tyr Val Lys Gly Lys Lys Ala Pro 50 55 60

Ser Asp Pro Gln Cys Ala Asp Ile Lys Glu Glu Cys Lys Glu Leu Leu 65 70 75 80

Lys Glu Lys Gln Tyr Thr Asp Ser Val Thr Tyr Leu Met Asp Gly Phe 85 90 95

Lys Ser Ala Asn Asn Ser Ala Asn Asn Gly Lys Lys Asn Asn Ala Glu 100 105 110

Glu Met Lys Asn Leu Val Asn Phe Leu Gln Ser His Lys Lys Leu Ile 115 120 125

Lys Ala Leu Lys Lys Asn Ile Glu Ser Ile Gln Asn Lys Lys His Leu 130 135 140

Ile Tyr Lys Asn Lys Ser Tyr Asn Pro Leu Leu Ser Cys Val Lys 145 150 155 160

Lys Met Asn Met Leu Lys Glu Asn Val Asp Tyr Ile Gln Lys Asn Gln 165 170 175

Asn Leu Phe Lys Glu Leu Met Asn Gln Lys Ala Thr Tyr Ser Phe Val 180 185 190

Asn Thr Lys Lys Lys Ile Ile Ser Leu Lys Ser Gln Gly His Lys Lys 195 200 205

Glu Thr Ser Gln Asn Gln Asn Glu Asn Asn Asp Asn Gln Lys Tyr Gln

215

220

Asn Glu Thr Val Ser Gly Met Asp Glu Asn Phe Asp Asn His Pro Glu

	530					535					540					
Asn 545	Tyr	Phe	Lys	Glu	Glu 550	Tyr	Tyr	Tyr	Asp	G1u 555	Asn	Asp	Asp	Met	Glu 560	
Val	Lys	Val	Lys	Lys 565	Ile	Gly	Val	Thr	Leu 570	Lys	Lys	Phe	Glu	Pro 575	Leu	
Lys	Asn	Gly	Asn 580	Val	Ser	Glu	Thr	Ile 585	Lys	Leu	Ile	His	Leu 590	Gly	Asn	
Lys	Asp	Lys 595	Lys	His	Ile	Glu	Ala 600	Ile	Asn	Asn	Asp	Ile 605	Gln	Ile	Ile	
Lys	Gln 610	Glu	Leu	Gln	Ala	Ile 615	Tyr	Asn	Glu	Leu	Met 620	Asn	Tyr	Thr	Asn	
Gly 625	Asn	Lys	Asn	Ile	Gln 630	Gln	Ile	Phe	Gln	Gln 635	Asn	Ile	Leu	Glu	Asn 640	
Asp	Val	Leu	Asn	Gln 645	Glu	Thr	Glu	Glu	Glu 650	Met	Glu	Lys	Gln	Va1 655	Glu	
Ala	Ile	Thr	Lys 660	Gln	Ile	Glu	Ala	Glu 665	Val	Asp	Ala	Leu	Ala 670	Pro	Lys	
Asn	Lys	Glu 675	Glu	Glu	Glu	Lys	Glu 680	Lys	Glu	Lys	Glu	Glu 685	Lys	Glu	Lys	
Glu	Glu 690	Lys	Glu	Lys	Glu	Lys 695	Glu	Glu	Lys	Glu	Lys 700	Glu	Glu	Lys	Glu	
Lys 705	Glu	Glu	Lys	Glu	Lys 710	Glu	Glu	Lys	Glu	Glu 715	Glu	Lys	Lys	Glu	Lys 720	
Glu	Glu	Glu	Gln	Glu 725	Glu	Glu	Glu	Glu	Glu 730	Glu	Ile	Val	Pro	Glu 735	Asn	
Leu	Thr	Thr	Glu 740	Glu	Ser	Lys										
<21 <21 <21 <21	1> : 2> :	54 1137 DNA Plasi	modi [.]	um fa	alcij	paru	m									
<40 gga		54 cag	taac	taati	tc c	gtaa	ttga	t aa	cata	cttt	cta	aaat	tga	aaat	gaatat	60
gag	gttt	tat :	attt	aaaa	cc t	ttag	cagg	t gt	ttat	agaa	gtt	taaa	aaa	acaa	ttagaa	120
aat	aacg	tta	tgac	attt	aa t	gtta	atgt	t aa	ggat	attt	taa	attc	acg	attt	aataaa	180
cgt	gaaa	att	tcaa	aaat	gt t	ttag	aatc	a ga	ttta	attc	cat	ataa	aga	ttta	acatca	240
agt	aatt.	atg	ttgt	caaa	ga t	ccat	ataa	a tt	tctt	aata	aag	aaaa	aag	agat	aaattc	300
tta	agca	gtt	ataa	ttat	at t	aagg	attc	a at	agat	acgg	ata	taaa	ttt	tgca	aatgat	360
gtt	cttg	gat	atta	taaa	at a	ttat	ccga	a aa	atat	aaat	cag	attt	aga	ttca	attaaa	420

aaatatatca	acgacaaaca	aggtgaaaat	gagaaatacc	ttcccttttt	aaacaatatt	480
gagaccttat	ataaaacagt	taatgataaa	attgatttat	ttgtaattca	tttagaagca	540
aaagttctaa	attatacata	tgagaaatca	aacgtagaag	ttaaaataaa	agaacttaat	600
tacttaaaaa	caattcaaga	caaattggca	gattttaaaa	aaaataacaa	tttcgttgga	660
attgctgatt	tatcaacaga	ttataaccat	aataacttat	tgacaaagtt	ccttagtaca	720
ggtatggttt	ttgaaaatct	tgctaaaacc	gttttatcta	atttacttga	tggaaacttg	780
caaggtatgt	taaacatttc	acaacaccaa	tgcgtaaaaa	aacaatgtcc	acaaaattct	840
ggatgtttca	gacatttaga	tgaaagagaa	gaatgtaaat	gtttattaaa	ttacaaacaa	900
gaaggtgata	aatgtgttga	aaatccaaat	cctacttgta	acgaaaataa	tggtggatgt	960
gatgcagatg	ccaaatgtac	cgaagaagat	tcaggtagca	acggaaagaa	aatcacatgt	1020
gaatgtacta	aacctgattc	ttatccactt	ttcgatggta	ttttctgcag	ttcctctaac	1080
ttcttaggaa	tatcattctt	attaatactc	atgttaatat	tatacagttt	catttaa	1137
) smodium falo	ciparum				
<400> 55 caggataaac	ccgaagtaag	tgcaaatgat	gatacatcac	attctacaaa	tttgaataat	60
agtttaaaat	tatttgaaaa	catattgagt	cttggaaaaa	acaaaaatat	ataccaagaa	120
ttaataggtc	aaaaaagtag	tgaaaacttt	tatgaaaaga	tattaaaaga	tagtgataca	180
ttttataatg	aatcttttac	aaattttgta	aaatctaaag	ctgatgatat	taattcattg	240
aatgatgaat	caaaaaggaa	gaaattagaa	gaagatatta	ataaattaaa	aaaaacttta	300
cagttatcat	ttgatttata	taataaatat	aaattaaaat	tagaaagatt	atttgataaa	360
aagaaaacag	ttggtaaata	taaaatgcaa	attaaaaaac	ttactttatt	aaaagaacaa	420
ttagaatcaa	aattgaattc	acttaataac	ccaaagcatg	tattacaaaa	cttttctgtt	480
ttctttaaca	aaaaaaaaga	agctgaaata	gcagaaactg	aaaacacatt	agaaaacaca	540
aaaatattat	tgaaacatta	taaaggactt	gttaaatatt	ataatggtga	atcatctcca	600
ttaaaaactt	taagtgaaga	atcaattcaa	acagaagata	attatgccag	tttagaaaac	660
tttaaagtat	taagtaaatt	agaaggaaaa	ttaaaggata	atttaaattt	agaaaagaaa	720
aaattatcat	acttatcaag	tggattacat	catttaattg	ctgaattaaa	agaagtaata	780

aaaaataaaa attatacagg taattctcca agtgaaaata atacggatgt taacaatgca

ttagaatctt	acaaaaaatt	tctcccagaa	ggaacagatg	ttgcaacagt	tgtaagtgaa	900
agtggatccg	acacattaga	acaaagtcaa	ccaaagaaac	cagcatcaac	tcatgtagga	960
gcagagtcta	acacaataac	aacatcacaa	aatgtcgatg	atgaagtaga	tgacgtaatc	1020
atagtaccta	tatttggaga	atccgaagaa	gattatgatg	atttaggaca	agtagtaaca	1080
<210> 56 <211> 660 <212> DNA <213> Plas	modium falc	ciparum				
<400> 56 caggataaac	ccgaagtaag	tgcaaatgat	gatacatcac	attctacaaa	tttgaataat	60
agtttaaaat	tatttgaaaa	catattgagt	cttggaaaaa	acaaaaatat	ataccaagaa	120
ttaataggtc	aaaaaagtag	tgaaaacttt	tatgaaaaga	tattaaaaga	tagtgataca	180
ttttataatg	aatcttttac	aaattttgta	aaatctaaag	ctgatgatat	taattcattg	240
aatgatgaat	caaaaaggaa	gaaattagaa	gaagatatta	ataaattaaa	aaaaacttta	300
cagttatcat	ttgatttata	taataaatat	aaattaaaat	tagaaagatt	atttgataaa	360
aagaaaacag	ttggtaaata	taaaatgcaa	attaaaaaac	ttactttatt	aaaagaacaa	420
ttagaatcaa	aattgaattc	acttaataac	ccaaagcatg	tattacaaaa	cttttctgtt	480
ttctttaaca	aaaaaaaga	agctgaaata	gcagaaactg	aaaacacatt	agaaaacaca	540
aaaatattat	tgaaacatta	taaaggactt	gttaaatatt	ataatggtga	atcatctcca	600
ttaaaaactt	taagtgaaga	atcaattcaa	acagaagata	attatgccag	tttagaaaac	660
<210> 57 <211> 1080 <212> DNA <213> Plas <400> 57) smodium falo	ciparum				
	ccgaagtaag	tgcaaatgat	gatacatcac	attctacaaa	tttgaataat	60
agtttaaaat	tatttgaaaa	catattgagt	cttggaaaaa	acaaaaatat	ataccaagaa	120
ttaataggtc	aaaaaagtag	tgaaaacttt	tatgaaaaga	tattaaaaga	tagtgataca	180
ttttataatg	aatcttttac	aaattttgta	aaatctaaag	ctgatgatat	taattcattg	240
aatgatgaat	caaaaaggaa	gaaattagaa	gaagatatta	ataaattaaa	aaaaacttta	300
cagttatcat	ttgatttata	taataaatat	aaattaaaat	tagaaagatt	atttgataaa	360
aagaaaacag	ttggtaaata	taaaatgcaa	attaaaaaac	ttactttatt	aaaagaacaa	420
ttagaatcaa	aattgaattc	acttaataac	ccaaagcatg	tattacaaaa	cttttctgtt	480

						E 4 O
	aaaaaaaga					540
aaaatattat	tgaaacatta	taaaggactt	gttaaatatt	ataatggtga	atcatctcca	600
ttaaaaactt	taagtgaaga	atcaattcaa	acagaagata	attatgccag	tttagaaaac	660
tttaaagtat	taagtaaatt	agaaggaaaa	ttaaaggata	atttaaattt	agaaaagaaa	720
aaattatcat	acttatcaag	tggattacat	catttaattg	ctgaattaaa	agaagtaata	780
aaaaataaaa	attatacagg	taattctcca	agtgaaaata	atacggatgt	taacaatgca	840
ttagaatctt	acaaaaaatt	tctcccagaa	ggaacagatg	ttgcaacagt	tgtaagtgaa	900
agtggatccg	acacattaga	acaaagtcaa	ccaaagaaac	cagcatcaac	tcatgtagga	960
gcagagtcta	acacaataac	aacatcacaa	aatgtcgatg	atgaagtaga	tgacgtaatc	1020
atagtaccta	tatttggaga	atccgaagaa	gattatgatg	atttaggaca	agtactaaca	1080
<210> 58 <211> 113 <212> DNA <213> Plas <400> 58		ciparum				
gcagtaactc	cttccgtaat	tgataacata	ctttctaaaa	ttgaaaatga	atatgaggtt	60
ttatatttaa	aacctttagc	aggtgtttat	agaagtttaa	aaaaacaatt	agaaaataac	120
gttatgacat	ttaatgttaa	tgttaaggat	attttaaatt	cacgatttaa	taaacgtgaa	180
aatttcaaaa	atgttttaga	atcagattta	attccatata	aagatttaac	atcaagtaat	240
tatgttgtca	aagatccata	taaatttctt	aataaagaaa	aaagagataa	attcttaagc	300
agttataatt	atattaagga	ttcaatagat	acggatataa	attttgcaaa	tgatgttctt	360
ggatattata	aaatattatc	cgaaaaatat	aaatcagatt	tagattcaat	taaaaaatat	420
atcaacgaca	aacaaggtga	aaatgagaaa	taccttccct	tttaaacaa	tattgagacc	480
ttatataaaa	cagttaatga	taaaattgat	ttatttgtaa	ttcatttaga	agcaaaagtt	540
ctaaattata	catatgagaa	atcaaacgta	gaagttaaaa	taaaagaact	taattactta	600
aaaacaatto	: aagacaaatt	ggcagatttt	: aaaaaaaata	acaatttcgt	tggaattgct	660
gatttatcaa	cagattataa	ccataataac	ttattgacaa	agttccttag	tacaggtatg	720
gtttttgaaa	atcttgctaa	aaccgtttta	tctaatttac	ttgatggaaa	cttgcaaggt	780
atgttaaaca	tttcacaaca	ccaatgcgta	a aaaaaacaat	gtccacaaaa	ttctggatgt	840
ttcagacatt	tagatgaaag	g agaagaatgt	: aaatgtttat	taaattacaa	acaagaaggt	900

gataaatgtg ttgaaaatcc aaatcctact tgtaacgaaa ataatggtgg atgtgatgca

gatgccaaat gtaccgaaga agattcaggt agcaacggaa agaaaatcac atgtgaatgt

960

actaaacctg	attcttatcc	acttttcgat	ggtattttct	gcagttcctc	taacttctta	1080
ggaatatcat	tcttattaat	actcatgtta	atattataca	gtttcattta	a	1131
	smodium falo	ciparum				
<400> 59 catttcacaa	caccaatgcg	taaaaaaaca	atgtccacaa	aattctggat	gtttcagaca	60
tttagatgaa	agagaagaat	gtaaatgttt	attaaattac	aaacaagaag	gtgataaatg	120
tgttgaaaat	ccaaatccta	cttgtaacga	aaataatggt	ggatgtgatg	cagatgccaa	180
atgtaccgaa	gaagattcag	gtagcaacgg	aaagaaaatc	acatgtgaat	gtactaaacc	240
tgattcttat	ccacttttcg	atggtatttt	ctgcagttcc	tctaacttct	taggaatatc	300
attcttatta	atactcatgt	taatattata	cagtttcatt	taa		343
1						

-1-