

Основы программирования и баз данных

В.Г.Тетерин – Microsoft Solution Developer (Visual C++)

Модуль 4. СТРУКТУРЫ ДАННЫХ. ОСНОВЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

Модуль 4. СТРУКТУРЫ ДАННЫХ. ОСНОВЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ

- Базовые структуры данных массивы и записи
- > Основные операции над структурами данных
- Динамические структуры данных. Списки. Стеки. Деревья
- Информационная система. Понятие базы данных
- Требования пользователей к базам данных
- Проектирование баз данных; Цели и этапы проектирования

Модуль 4. СТРУКТУРЫ ДАННЫХ. ОСНОВЫ ПРОЕКТИРОВАНИЯ БАЗ ДАННЫХ (продолжение)

- Инфологический аспект. Модель «сущность-связь»
- Даталогический аспект. Модели данных (иерархическая, сетевая, реляционная), их достоинства и недостатки
- Реляционные базы данных. Понятие отношения. Нормализация
- Системы управления базами данных.
- Базы данных и компьютерные сети.
 Сетевые и распределённые базы данных...

Базовые структуры данных – массивы

- **Массив (индексный)** простая статическая структура данных, предназначенная для хранения набора единиц данных, каждая из которых идентифицируется индексом или набором индексов.
- Индекс обычно целое число, либо значение типа, приводимого к целому, указывающее на конкретный элемент массива.

- Количество используемых индексов массива может быть различным.
 Массивы с одним индексом называют одномерными, с двумя двумерными и т. д.
- Одномерный массив соответствует вектору в математике, двумерный -- матрице.

Базовые структуры данных – массивы (продолжение)

Достоинства массивов

легкость вычисления адреса элемента по его индексу (поскольку элементы массива располагаются один за другим)

- одинаковое время доступа ко всем элементам
- малый размер элементов: они состоят только из информационного поля

Базовые структуры данных – записи

- **> Записью (структурой)** называется структура хранения данных, элементы которой могут содержать значения, относящиеся к различным типам данных.
- Записи удобны для хранения наборов данных произвольных типов
 - например, анкета сотрудника, квитанция и т.п.

Фамилия И.О. Дата рождения Должность Оклад

Name	Иванов И.И.						
Birthday	1.04.1980						
Position	Менеджер						
Salary	25000						

- Элементы записи называются полями и им присваиваются уникальные (в пределах записи) имена
- Имена используются в операциях доступа к значениям полей.
- Записи и их наборы (например, массивы) в языках программирования предоставляют удобный способ работы с реляционными базами данных

Динамические структуры данных. Стек.

- ▶ Стек (англ. stack = стопка) структура хранения данных с дисциплиной доступа к элементам LIFO (Last In First Out, «последним пришёл первым вышел»).
 - Операцию добавления элемента на вершину (top) стека называют push, извлечения pop.

- Стек широко используется в программировании и является неотъемлемой частью архитектуры современных процессоров.
 - Компиляторы языков программирования высокого уровня используют стек для передачи параметров при вызове подпрограмм, процессоры для хранения адреса возврата из подпрограмм.

Динамические структуры данных. Очередь.

- У Очередь (англ. queque) структура хранения данных с дисциплиной доступа к элементам FIFO (First In First Out, "первый пришел первый вышел").
 - Добавление элемента возможно лишь в конец (tail) очереди, выборка только из начала (head) очереди, при этом выбранный элемент из очереди удаляется.
 - Операцию добавление элемента называют enqueue, выборки dequeue.

Очередь широко используется в программировании для синхронизации процессов обработки (например, сообщений), моделирования систем массового обслуживания и т.д.

Динамические структуры данных. Список.

- Связанный список динамическая структура хранения данных, каждый элемент которой состоит из:
 - информационного поля (содержит значение элемента)
 - одного (односвязный) или двух (двусвязный) указателей на соседние элементы.

- Список может быть сортированным или несортированным
- Достоинства
 - лёгкость добавления и удаления элементов
 - размер списка ограничен только объемом доступной памяти
- Недостатки
 - > сложно определить адрес элемента по его индексу (номеру) в списке
 - на поле указателей расходуется дополнительная память (в массивах указатели не нужны)

Динамические структуры данных. Деревья

- Двоичное дерево абстрактная структура данных, являющееся программной реализацией двоичного дерева (графа).
- Дерево состоит из узлов (записей) вида (data, l, r),
 - где data некоторые данные привязанные к узлу,
 - І, r ссылки на узлы, являющиеся потомками данного узла. Узел I называется левым потомком, а узел r — правым.

Основные операции над структурами данных

- Создать (пустую) структуру данных
- Добавить новый элемент
- Удалить заданный элемент
- > Проверить структуру на наличие в ней элементов
- Найти элемент(ы) с заданными свойствами
- Извлечь значение заданного элемента
- Получить элемент, следующий (в некотором порядке) за текущим
- > Перебрать (в некотором порядке) все элементы структуры данных
- Сортировать (в некотором порядке) все элементы структуры данных
- Удалить всю структуру данных

Информационная система. Понятие базы данных

- **У Информационная система (ИС)** это система, в которой присутствуют *информационные процессы*:
 - хранение,
 - передача,
 - преобразование информации.
- Некоторые примеры информационных систем
 - АСУ Автоматизированные системы управления
 - АСУ П Автоматизированные системы управления предприятием
 - АСУ ТП Автоматизированные системы управления технологическими процессами
 - ИИС Информационно-измерительные системы
 - ИПС Информационно-поисковые системы
 - САПР Системы автоматизации проектной деятельности
 - СИИ Системы искусственного интеллекта

Информационная система. Понятие базы данных (продолжение)

- База данных (БД) централизованное хранилище данных, обеспечивающее хранение, доступ, первичную обработку и поиск информации.
- Базы данных разделяются на:
 - Иерархические
 - Сетевые
 - Реляционные
 - Объектно-ориентированные
- В настоящее время наибольшее распространение получили реляционные базы данных
 - > Сетевые и иерархические базы данных считаются устаревшими
 - Объектно-ориентированные пока никак не стандартизированы и не получили широкого распространения.

Требования пользователей к базам данных

- Полнота информации
- Актуальность (непротиворечивость)
- Целостность
- Сохранность (восстановимость после сбоев)
- Производительность (время отклика)
- Удобство в работе

Проектирование баз данных. Цели и этапы проектирования

- Концептуальное проектирование смысловое содержание базы данных, исходя из целей ее использования
- Логическое проектирование представление логической организации информации средствами выбранной модели данных
- Физическое проектирование разработка физического размещения данных на внешних носителях с целью оптимизации производительности БД

Инфологический аспект. Модель «сущность-связь»

- Инфологическое описание «информация об информации» - характеристики информационных единиц
 - типы данных и области возможных значений (домены)
 - > обязательность присутствия и значения по умолчанию
 - **≫** и т.п.
- Модель «сущность-связь» (ЕК-модель):
 - Основные понятия:
 - Сущности объекты
 - Атрибуты характеристики экземпляров сущностей
 - Связи между сущностями:
 - Взаимоотношения целое-часть (фирма отдел)
 - Взаимодействия (менеджер консультирует клиента)
 - Роли (начальник руководит подчиненным)
 - **≫** и т.п.

Инфологический аспект. Модель «сущность-связь» (продолжение)

- Пример ER-модели: слушатели Центра компьютерного обучения
 - Сущность (объект) слушатель
 - > Атрибуты:
 - Фамилия, имя, отчество
 - Год рождения
 - Сущность курс
 - Атрибуты:
 - Название курса
 - Продолжительность
 - Связь слушатель изучает курс

Даталогический аспект. Модели данных (иерархическая, сетевая, реляционная), их достоинства и недостатки

- Иерархическая модель базы данных
- В этой модели запрос, направленный вниз по иерархии, прост
 - например: какие заказы принадлежат этому покупателю;
- Однако запрос, направленный вверх по иерархии, более сложен
 - например, какой покупатель поместил этот заказ или заказал данный товар.

Также, трудно представить неиерархические данные при использовании этой модели.

Даталогический аспект. Модели данных (иерархическая, сетевая, реляционная), их достоинства и недостатки (продолжение)

- Сетевые модели базы данных
- подобны иерархическим, за исключением того, что в них имеются указатели в обоих направлениях, которые соединяют родственную информацию.

У Хотя эта модель решает некоторые проблемы, связанные с иерархической моделью, выполнение запросов остается достаточно сложным процессом.

Даталогический аспект. Модели данных (иерархическая, сетевая, реляционная), их достоинства и недостатки (продолжение)

- В реляционных базах данных все данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные.
- У каждого *столбца* есть своё имя, которое служит его названием, и все значения в одном столбце имеют один тип.
- **Строки** в реляционной базе данных неупорядочены упорядочивание производится в момент формирования ответа на запрос.
- Запросы к таким таблицам возвращают таблицы, которые сами могут становиться предметом дальнейших запросов.
- Каждая база данных может включать несколько таблиц, которые, как правило, связаны с друг с другом, откуда и произошло название реляционные
- **>** Общепринятым стандартом языка работы с реляционными базами данных является язык **SQL**

Реляционные базы данных. Понятие отношения. Нормализация

- Понятие нормальной формы было введено Эдгаром Коддом при создании реляционной модели БД.
- Основное назначение нормальных форм приведение структуры базы данных к виду, обеспечивающему легкость ее сопровождения
- Нормализация производится за счёт декомпозиции отношений (таблиц) таким образом, чтобы свести к минимуму функциональные зависимости между их атрибутами (полями).

- База данных «Заказы» (пример)
 - Фирма принимает от клиентов заказы на поставку товаров.
 - Для обслуживания заказов к каждому заказу прикрепляется торговый агент.
 - Учет заказов ведется в журнале в следующей таблице (бумажной форме)

	№ заказа	Дата	Клиент	Адрес	Товар	Цена	Количество	Агент	Телефон
	1	1.04.06	РиК	Черноморск	Пила	800	5	Ляпкин	1112233
					Топор	450	8		
ļ	2	3.04.06	Нимфа	Энск	Доска	200	50	Тяпкин	1112323

Заказы

Для ввода в компьютер в ячейке таблицы не должно содержаться более одного значения

№ заказа	Дата	Клиент	Адрес	Товар	Цена	Количество	Агент	Телефон
1	1.04.06	РиК	Черноморск	Пила	800	5	Ляпкин	1112233
				Топор	450	8		
2	3.04.06	Нимфа	Энск	Доска	200	50	Тяпкин	1112323

Но, при наличии пустых ячеек, к такой таблице нельзя применять операции сортировки и выборки строк.

Заказы

№ заказа	Дата	Клиент	Адрес	Товар	Цена	Количество	Агент	Телефон
1	1.04.06	РиК	Черноморск	Пила	800	5	Ляпкин	1112233
1	1.04.06	РиК	Черноморск	Топор	450	8	Ляпкин	1112233
2	3.04.06	Нимфа	Энск	Доска	200	50	Тяпкин	1112323

•1-я нормальная форма

1 НФ: Без множественных полей (плоская таблица)

Первичный ключ – уникальный идентификатор записи

Заказы (№ заказа, Дата, Клиент, Адрес, Товар, Цена, Количество, Агент, Телефон)

2-я нормальная форма

2 НФ: 1 НФ + Неключевые реквизиты зависят от всего первичного ключа (а не от его части).

Заказы (№ заказа, Дата, Клиент, Адрес, Агент, Телефон)

Перечень (№ заказа, Товар, Количество)

Товары (Товар, Цена)

3-я нормальная форма

3 НФ: 2 НФ + Нет зависимостей между неключевыми атрибутами.

Системы управления базами данных

> Система управления базами данных (СУБД) — специализированная программа (чаще комплекс программ), предназначенная для манипулирования базой данных.

Для создания и управления информационной системой СУБД необходима в той же степени, как для разработки программы на алгоритмическом языке необходим транслятор.

- Основные функции СУБД:
 - управление данными во внешней памяти (на дисках);
 - управление данными в оперативной памяти;
 - журнализация изменений и восстановление базы данных после сбоев;
 - » поддержание языков БД (язык определения данных DDL, язык манипулирования данными DML, язык управления данными DCL).

Базы данных и компьютерные сети. Сетевые и распределённые базы данных

Сетевые БД

- централизованно хранят данные на одном из узлов сети сервере
 данных и поддерживают сетевые соединения с клиентами
- такая архитектура называется архитектурой «клиент сервер»
- Распределенные БД
 - > хранят данные на нескольких узлах сети
 - в этом случае важную роль приобретает вопрос рационального дублирования данных по узлам сети - репликация данных

Итоги

- В этом модуле Вы изучили:
 - Базовые структуры данных массивы, записи, списки, стеки, деревья и основные операции над ними
 - Цели и этапы проектирования баз данных, понятие и роль модели «сущность-связь»
 - Модели данных иерархическая, сетевая, реляционная, объектная их достоинства и недостатки
 - Понятие и роль нормализации реляционной базы данных

teterin@specialist.ru

Вопросы?

