

QUÍMICA GENERAL

CONFIGURACIÓN
ELECTRÓNICA Y
TABLA PERIÓDICA

OBJETIVOS

- 1. Comprender los principios de la configuración electrónica.
- 2. Desarrollar la configuración electrónica de átomos y iones.
- 3. Ubicar un elemento químico en su respectivo bloque, periodo y grupo.
- 4. Clasificar a los elementos químicos como metal, no metal, semimetal y gas noble.

CONTENIDO

- 1. Principios de la configuración electrónica
- 2. Configuración electrónica de átomos
- 3. Configuración electrónica de iones
- 4. Tabla periódica
- 5. Bloques de la tabla periódica (s,p,d,f)
- 6. Ubicación de un elemento químico (periodo y grupo)
- 7. Clasificación de los elementos químicos (metal, no metal, semimetal y gas noble.
- 8. Bibliografía

CONFIGURACIÓN ELECTRÓNICA

CONFIGURACIÓN ELECTRÓNICA

CONFIGURACIÓN ELECTRÓNICA: Es la distribución ordenada de electrones en cada nivel y subnivel energético. O bien, la distribución de electrones en los orbitales de un átomo.

Indica la cantidad de electrones existentes en un tipo de orbital

Indica el número

cuántico secundario (I)

Indica el número cuántico principal (n)

Los números cuánticos para el último electrón en este ejemplo serían:

$$n = 3$$
 $l = 1 m = -1$ $s = +1/2$

1) PRINCIPIO DE LLENADO PROGRESIVO

Aufbauprinzip: Principio de construction Los electrones pasan a ocupar los subniveles de menor energía, y progresivamente se van llenando los subniveles de mayor energía.

1s² 2s² 2p⁶ 3s² 3p⁶ 4s² 3d¹⁰ 4p⁶ 5s² 4d¹⁰ 5p⁶ 6s²...

ENERGIA RELATIVA: Se determina por la suma de los números cuánticos principal y secundario.

$$ER = n + \ell$$

Escriba la configuración electrónica de los elementos señalados.

₅B

₁₂Mg

35**B**r

Escriba la configuración electrónica de los elementos señalados.

₉F

15**P**

33**As**

Hallar la energía relativa de los siguientes subniveles:

SUBNIVEL	n	l	ENERGIA RELATIVA
1 s			
2s			
2p			
3d			
4f			

Hallar la energía relativa de los siguientes subniveles:

SUBNIVEL	n	l	ENERGIA RELATIVA
3s			
3р			
4d			

2) PRINCIPIO DE EXCLUSIÓN DE PAULI

Dos electrones en un mismo átomo no pueden tener los cuatro números cuánticos iguales. Esto significa, que un electrón tendrá **espín +1/2** y el otro -**1/2**.

Elemento

Configuración electrónica

₄Be

 $1s^2 2s^2$

Diagrama de orbitales

1s

Número cuánticos del electrón celeste 2, 0, 0, +1/2

Número cuánticos del electrón naranja

2, 0, 0, -1/2

3) REGLA DE HUND

En orbitales de la misma energía, la mayor estabilidad se alcanza cuando el número de electrones que tienen el mismo espín se maximiza. En otras palabras, los orbitales se llenan de manera que exista un mayor número de electrones desapareados.

PROBLEMA 5

Construya el diagrama de energía de los orbitales atómicos de los elementos señalados.

₁₁Na

PROBLEMA 6

Construya el diagrama de energía de los orbitales atómicos de los elementos señalados.

₁₆S

Configuración Electrónica Desarrollada:

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14} 6d^{10} 7p^6$

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^6 5s^2 4d^{10} 5p^6 6s^2 4f^{14} 5d^{10} 6p^6 7s^2 5f^{14} 6d^{10} 7p^6$

Ejemplos:

ÚLTIMO NIVEL DE ENERGÍA

Usualmente, las propiedades químicas de un átomo se definen por la cantidad de electrones en el último nivel de energía.

Último nivel de energía = 3 (Nivel de valencia)

Electrones en el último nivel de energía = 5 (Electrones de valencia)

$$_{15}P$$
 1s² 2s² 2p⁶ 3s² 3p³

Hallar el mayor nivel de energía (capa de valencia) y los electrones de valencia.

6C

15**P**

36Kr

Hallar el mayor nivel de energía (capa de valencia) y los electrones de valencia.

O₈

16S

35**Br**

CONFIGURACIÓN ELECTRÓNICA PARA IONES

Para cationes

Especies de carga positiva, debido a la pérdida de electrones. Estos electrones perdidos no salen siempre del final de la configuración, sino **salen** del **mayor nivel** de energía.

NEUTRO

 $_{30}$ Zn :1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^2 3 d^{10}

CATIÓN

 $_{30}$ Zn²⁺:1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^0 3 d^{10}

NEUTRO

 $_{26}$ Fe :1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^2 3 d^6

CATIÓN

 $_{26}$ Fe²⁺ :1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^0 3 d^6

CATIÓN

 $_{26}$ Fe³⁺ :1 s^2 2 s^2 2 p^6 3 s^2 3 p^6 4 s^0 3 d^5

CONFIGURACIÓN ELECTRÓNICA PARA IONES

Para aniones

Especies de carga negativa, debido a la ganancia de electrones. Estos electrones ganados siguen llenando subniveles según las reglas antes vistas.

NEUTRO $_{17}\text{Cl} : 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^5$

NEUTRO $_{7}$ N : $1s^{2}$ $2s^{2}$ $2p^{3}$

ANIÓN $_{17}\text{Cl}^-:1s^2\ 2s^2\ 2p^6\ 3s^2\ 3p^6$

ANIÓN $_{7}N^{3-}:1s^{2}\ 2s^{2}\ 2p^{6}$

Hallar el mayor nivel de energía (capa de valencia) y los electrones de valencia.

$$_{20}$$
 Ca^{2+}

$$_{7}N^{3-}$$

Hallar el mayor nivel de energía (capa de valencia) y los electrones de valencia.

$$_{20}$$
 Ca^{2+}

$$5^{2-}$$

$$17Cl^{-}$$

TABLA PERIÓDICA

TABLA PERIÓDICA

Es una tabla que agrupa los elementos químicos, los cuales se ordenan periódicamente a su **número atómico**. Los elementos de una columna constituyen un **grupo.** Los elementos de una fila horizontal constituyen un **periodo**

TABLA PERIÓDICA

Tabla periódica moderna

- Contiene 118 elementos reconocidos por la IUPAC.
- Organiza los elementos en orden de su número atómico creciente.
- Los elementos se disponen en 18 grupos (8A y 8B) y 7 periodos.

BLOQUES DE LA TABLA PERIÓDICA

Representativos:

La configuración termina en **s** o **p**

De transición:

La configuración termina en d.

De transición interna:

La configuración termina en f.

Determine el bloque al que pertenece cada elemento químico.

₁₁Na

₁₆S

₂₆Fe

Determine el bloque al que pertenece cada elemento químico.

₇N

₁₇Cl

₂₅Mn

PERIODOS Y GRUPOS

Periodos:

Son las disposiciones de los elementos en forma *horizontal o filas*. En la actualidad se presentan *7 períodos*, donde los 3 primeros periodos son cortos y los otros 4 son largos.

Ejemplo 1:

 $_{20}$ Ca= 1s² 2s² 2p⁶ 3s² 3p⁶ 4s²

El calcio pertenece al cuarto período porque posee cuatro niveles de energía.

Ejemplo 2:

$$_{35}Br = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4p^5$$

El bromo pertenece al cuarto período porque posee cuatro niveles de energía.

PERIODOS Y GRUPOS

Grupos:

• Los elementos de un grupo tienen configuraciones electrónicas similares, tienen propiedades químicas parecidas.

₁₃Al: [Ne] 3s²3p¹ Grupo: IIIA

₁₆S: [Ne] 3s²3p⁴ Grupo: VIA

UBICACIÓN DE UN ELEMENTO EN LA TPM

La ubicación de un elemento en su *estado basal* de la TPM se determina con el periodo y el grupo al cual pertenece.

1. El periodo de un elemento se determina con el último nivel (mayor n) de su configuración electrónica.

Periodo = Último nivel = n

2. El grupo de un elemento se determina con el número de electrones de valencia, según el siguiente cuadro:

Elementos	Configuración de Valencia	#Grupo
Grupos A	ns ^x np ^y	x + y
Grupos B	ns ^x (n-1)d ^y	x + y

UBICAR UN ELEMENTO EN LA TABLA PERIÓDICA

Periodo

El número de periodo nos informa sobre los niveles de energía que posee el átomo.

Grupo

Los elementos de un mismo grupo presentan la misma distribución electrónica en el subnivel más externo.

₁₆S 1s² 2s² 2p⁶ 3s² 3p⁴

Último nivel de energía : Periodo = 3

Electrones de valencia : Grupo = 6

PROBLEMA 10

a) ¿Cuál es el grupo y el periodo del elemento 11 Na?

b) ¿Cuál es el grupo y el periodo del elemento ₁₇Cl?

ELEMENTOS REPRESENTATIVOS

Grup o		(Electrones de Valencia)	Denominación	
Antes	Ahora	Configuración Terminal		
IA	1	ns¹	Alcalinos (excepto H)	
IIA	2	ns²	Alcalinos Térreos(excepto He)	
IIIA	13	ns², np¹	Térreos o Boroides	
IVA	14	ns², np²	Carbonoides	
VA	15	ns², np³	Nitrogenoides ó nicógenos	
VIA	16	ns², np⁴	Anfígenos o Calcógenos	
VIIA	17	ns², np⁵	Halógenos	
VIIIA	18	ns², np ⁶	Gases Nobles	

https://pse.merckgroup.com/periodic-table

Metales alcalinos

Metales alcalinotérreos

Semimetales

Otros metales Halógenos

Gases nobles

Lantánidos

Actínidos

PROBLEMA 11

Indicar el grupo, periodo y familia de cada elemento representativo.

ELEMENTO	PERIODO	GRUPO	FAMILIA
₁₁ Na			
₁₅ P			
₂₀ Ca			
₃₃ As			
₃₆ Rn			

CLASIFICACIÓN DE LOS ELEMENTOS

Metales: tienden a perder electrones para formar especies catiónicas u oxidarse

No metales: tienden a ganar electrones para formar especies aniónicas

- En la zona diagonal frontera entre metales y no metales se situan los **metaloides**
- Los seis elementos metaloides son: B, Si, Ge, As, Sb, Te y Po

METALES, NO METALES Y METALOIDES

Metales

- Son sólidos brillantes
- Son Dúctiles y maleables
- Cuentan con alta conductividad térmica y eléctrica
- Tienden a perder electrones

No metales

- No conducen ni el calor ni la electricidad
- Tienden a ganar electrones

Metaloides

- B, Si, Ge, As, Sb, Te, Po
- Conducen la electricidad mejor que los no metales pero no tan bien como los metales

Gas Noble

- Gases monoatómicos, inodoros e incoloros.
- Son muy estables y en la naturaleza generalmente no forman enlaces químicos.

PROBLEMA 12

Clasifique cada elemento según corresponda.

ELEMENTO	METAL	NO METAL	METALOIDE	GAS NOBLE
₁₁ Na				
80				
₁₄ Si				
₁₈ Ar				

BIBLIOGRAFÍA

BROWN, Theodore (2004) Química: La Ciencia Central . 11^{va} ed. México D.F. Editorial Pearson Educación.

CHANG, Raymond (2010). Química. 10^{ma} ed. México: McGraw-Hill Interamericana Editores S.A.

BUSTAMANTE, Elena y otros (2013) Química: Cuaderno de trabajo. 6ta ed. Perú: Universidad Peruana de Ciencias aplicadas-UPC.

