A functional solver for word equations with regular constraints

Maximilian David Eipper

April 12, 2023

Outline

- Foundations
- 2 Approach
- Implementation
- Benchmarks
- Results

abxb = xby, where $a, b \in \Sigma$ are symbols and $x, y \in X$ are variables

abxb = xby, where $a, b \in \Sigma$ are symbols and $x, y \in X$ are variables

Is there a mapping $\llbracket \cdot \rrbracket : X \to \Sigma^*$, s.t. $ab\llbracket x \rrbracket b = \llbracket x \rrbracket b \llbracket y \rrbracket$?

abxb = xby, where $a, b \in \Sigma$ are symbols and $x, y \in X$ are variables

Is there a mapping
$$\llbracket \cdot \rrbracket : X \to \Sigma^*$$
, s.t. $ab\llbracket x \rrbracket b = \llbracket x \rrbracket b \llbracket y \rrbracket$? \Rightarrow yes, $\llbracket x \rrbracket = a$, $\llbracket y \rrbracket = ab$

xa = byx, where $a, b \in \Sigma$ are symbols and $x, y \in X$ are variables

xa = byx, where $a, b \in \Sigma$ are symbols and $x, y \in X$ are variables

Is there a mapping $\llbracket \cdot \rrbracket : X \to \Sigma^*$, s.t. $\llbracket x \rrbracket a = b \llbracket y \rrbracket \llbracket x \rrbracket$?


```
xa = byx, where a, b \in \Sigma are symbols and x, y \in X are variables
```

Is there a mapping
$$\llbracket \cdot \rrbracket : X \to \Sigma^*$$
, s.t. $\llbracket x \rrbracket a = b \llbracket y \rrbracket \llbracket x \rrbracket ? \Rightarrow$ no

 \bullet ε

- $\begin{array}{ccc} \bullet & \varepsilon \\ \bullet & \varphi_{\mathsf{X} \to \mathsf{y}} \end{array}$

- 8
- $\varphi_{x \to y}(axbyx)$

- ε
- $\varphi_{x \to y}(axbyx) = aybyy$

- ε
- $\varphi_{x \to y}(axbyx) = aybyy$
- \bullet φ_{DEL}

- ε
- $\varphi_{x \to y}(axbyx) = aybyy$
- $\varphi_{DEL}(abb)$

- ε
- $\varphi_{x \to y}(axbyx) = aybyy$
- $\varphi_{DEL}(abb) = bb$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

$$\bullet a\alpha = a\beta \to \varphi_{DEL}$$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $a\alpha = b\beta \to \mathbf{X}$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $a\alpha = b\beta \to X$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $a\alpha = b\beta \to X$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$

Satisfiability: $\alpha = \beta \rightarrow^* \varepsilon = \varepsilon$

$$\overbrace{\hspace{1.5cm} xa=bx\hspace{1.5cm}}$$

$$\sqrt{xa=bx}$$

Unsatisfiable Example xa = bx

Unsatisfiable Example xa = bx

ab*

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

•
$$a, L(a) = \{a\}$$

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$
- \emptyset , $L(\emptyset) = \{\}$

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$
- \emptyset , $L(\emptyset) = \{\}$

For regular expressions p, q

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$
- \emptyset , $L(\emptyset) = \{\}$

For regular expressions p, q

pq

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$
- \emptyset , $L(\emptyset) = \{\}$

For regular expressions p, q

- pq
- p*, $L(p*) = {\varepsilon, p, pp, ppp, ...}$

$$ab*, L(ab*) = \{a, ab, abb, ...\}$$

- $a, L(a) = \{a\}$
- λ , $L(\lambda) = \{\varepsilon\}$
- \emptyset , $L(\emptyset) = \{\}$

For regular expressions p, q

- pq
- p*, $L(p*) = {\varepsilon, p, pp, ppp, ...}$
- $\bullet p', p\&q, p|q$

Observation: $a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$

Observation: $a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$

Observation: $a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$ D_a

Observation: $a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$ $D_a(ap)$

Observation:
$$a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$$

 $D_a(ap) = p$

Observation:
$$a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$$

 $D_a(ap) = p$
 $D_aq = ?$

Observation:
$$a\alpha \in L(ap) \Leftrightarrow \alpha \in L(p)$$

 $D_a(ap) = p$
 $D_aq = ?$, s.t. $L(D_aq) = \{\alpha \mid \forall a\alpha \in L(q)\}$

$$ab \in L(a(b|c))$$

$$egin{array}{ll} \mathsf{ab} & \in \mathit{L}(\mathsf{a}(b|c)) \ \Leftrightarrow & b & \in \mathit{L}(\mathit{D}_\mathsf{a}(\mathsf{a}(b|c))) \end{array}$$

$$egin{array}{ll} \mathsf{ab} & \in \mathsf{L}(\mathsf{a}(b|c)) \ \Leftrightarrow & \mathsf{b} & \in \mathsf{L}(\mathsf{D}_\mathsf{a}(\mathsf{a}(b|c))) = \mathsf{L}(b|c) \end{array}$$

$$\begin{array}{lll} ab & \in L(a(b|c)) \\ \Leftrightarrow & b & \in L(D_a(a(b|c))) = L(b|c) \\ \Leftrightarrow & \varepsilon & \in L(D_b(b|c)) \end{array}$$

$$egin{array}{lll} & ab & \in L(a(b|c)) \ \Leftrightarrow & b & \in L(D_a(a(b|c))) = L(b|c) \ \Leftrightarrow & arepsilon & \in L(D_b(b|c)) = L(\lambda|\emptyset) \end{array}$$

$$\begin{array}{lll} \textit{ab} & \in \textit{L}(\textit{a}(\textit{b}|\textit{c})) \\ \Leftrightarrow & \textit{b} & \in \textit{L}(\textit{D}_{\textit{a}}(\textit{a}(\textit{b}|\textit{c}))) = \textit{L}(\textit{b}|\textit{c}) \\ \Leftrightarrow & \varepsilon & \in \textit{L}(\textit{D}_{\textit{b}}(\textit{b}|\textit{c})) = \textit{L}(\lambda|\emptyset) \\ \Leftrightarrow & \textit{true} \end{array}$$

$$egin{array}{lll} ab & \in L(a(b|c)) \ \Leftrightarrow & b & \in L(D_a(a(b|c))) = L(b|c) \ \Leftrightarrow & arepsilon \ \Leftrightarrow & true \ \end{array}$$

$$a_1a_2...a_n \in L(p) \Leftrightarrow \varepsilon \in L(D_{a_n}(...(D_{a_2}(D_{a_1}p))))$$

We define $\nu(p) :\Leftrightarrow \varepsilon \in L(p)$

We define
$$\nu(p) :\Leftrightarrow \varepsilon \in L(p)$$

$$\nu(\lambda)$$
 = true

We define
$$\nu(p) :\Leftrightarrow \varepsilon \in L(p)$$

$$u(\lambda) = true$$
 $u(\emptyset) = false$

We define $\nu(p) :\Leftrightarrow \varepsilon \in L(p)$

$$u(\lambda) = true$$
 $u(\emptyset) = false$
 $u(a) = false$

We define
$$\nu(p) :\Leftrightarrow \varepsilon \in L(p)$$

$$u(\lambda) = true$$
 $u(\emptyset) = false$
 $u(a) = false$
 $u(pq) = v(p) \land v(q)$

We define
$$\nu(p):\Leftrightarrow \varepsilon\in L(p)$$

$$\begin{array}{cccc} \nu(\lambda) & = & \textit{true} \\ \nu(\emptyset) & = & \textit{false} \\ \nu(a) & = & \textit{false} \\ \nu(pq) & = & \nu(p) \wedge \nu(q) \\ \nu(p*) & = & \textit{true} \end{array}$$

We define
$$\nu(p):\Leftrightarrow \varepsilon\in L(p)$$

$$\begin{array}{cccc} \nu(\lambda) & = & true \\ \nu(\emptyset) & = & false \\ \nu(a) & = & false \\ \nu(pq) & = & \nu(p)\wedge\nu(q) \\ \nu(p*) & = & true \\ & \dots \end{array}$$

Regex Satisfiability

We define $\sigma(p) :\Leftrightarrow L(p) \neq \{\}$

We define
$$\sigma(p) :\Leftrightarrow L(p) \neq \{\}$$

$$\sigma(\emptyset) = false$$

We define
$$\sigma(p) :\Leftrightarrow L(p) \neq \{\}$$

$$\sigma(\emptyset)$$
 = false

$$\sigma(\lambda)$$
 = true

We define
$$\sigma(p) :\Leftrightarrow L(p) \neq \{\}$$

$$\sigma(\emptyset) = false$$

$$\sigma(\lambda)$$
 = true

$$\sigma(a) = true$$

$$\sigma(\emptyset) = false$$
 $\sigma(\lambda) = true$
 $\sigma(a) = true$
 $\sigma(pq) = \sigma(p) \wedge \sigma(q)$

We define $\sigma(p) :\Leftrightarrow L(p) \neq \{\}$

We define
$$\sigma(p) :\Leftrightarrow L(p) \neq \{\}$$

$$\sigma(\emptyset) = false$$

$$\sigma(\lambda) = true$$

$$\sigma(a) = true$$

$$\sigma(pq) = \sigma(p) \wedge \sigma(q)$$
...

$$D_a a = \lambda$$

$$D_a a = \lambda$$

 $D_a b = \emptyset$

$$D_a a = \lambda$$
 $D_a b = \emptyset$
 $D_a \lambda = \emptyset$

$$\begin{array}{lll} D_{a}a & = & \lambda \\ D_{a}b & = & \emptyset \\ D_{a}\lambda & = & \emptyset \\ D_{a}\emptyset & = & \emptyset \end{array}$$

$$\begin{array}{lll} D_{a}a & = & \lambda \\ D_{a}b & = & \emptyset \\ D_{a}\lambda & = & \emptyset \\ D_{a}\emptyset & = & \emptyset \\ D_{a}(pq) & = & \left\{ \begin{array}{ll} (D_{a}p)q \mid D_{a}q & \text{if } \nu(p) \\ (D_{a}p)q & \text{if } \neg\nu(p) \end{array} \right. \end{array}$$

$$\begin{array}{lll} D_{a}a & = & \lambda \\ D_{a}b & = & \emptyset \\ D_{a}\lambda & = & \emptyset \\ D_{a}\emptyset & = & \emptyset \\ D_{a}(pq) & = & \begin{cases} (D_{a}p)q \mid D_{a}q & \text{if } \nu(p) \\ (D_{a}p)q & \text{if } \neg\nu(p) \\ D_{a}(p*) & = & (D_{a}p)p* \end{cases}$$

$$\begin{array}{lll} D_{a}a & = & \lambda \\ D_{a}b & = & \emptyset \\ D_{a}\lambda & = & \emptyset \\ D_{a}\emptyset & = & \emptyset \\ D_{a}(pq) & = & \begin{cases} (D_{a}p)q \mid D_{a}q & \text{if } \nu(p) \\ (D_{a}p)q & \text{if } \neg\nu(p) \\ D_{a}(p*) & = & (D_{a}p)p* \end{cases}$$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*$$

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

$$a, b \in \Sigma, a \neq b, x, y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

$$a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

- $a\alpha = b\beta \to X$

$$a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

- $a\alpha = b\beta \to X$

$$a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

- $a\alpha = b\beta \to X$
- **3** $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$

 $a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$ regex constraints

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$

$$a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

- $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$

$$a,b \in \Sigma, a \neq b, x,y \in X, x \neq y, \alpha, \beta \in (\Sigma \cup X)^*, c(x), c(y)$$
 regex constraints

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$
- **3** $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$
- $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$, introduce $c(x') := D_a(c(x))$

$$a,b\in\Sigma, a\neq b, x,y\in X, x\neq y, \alpha,\beta\in(\Sigma\cup X)^*, c(x),c(y)$$
 regex constraints

- $\bullet \quad a\alpha = a\beta \rightarrow \varphi_{DEL}$
- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$
- **3** $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$
- **1** $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$, introduce $c(x') := D_a(c(x))$

$$a,b\in\Sigma, a\neq b, x,y\in X, x\neq y, \alpha,\beta\in(\Sigma\cup X)^*, c(x),c(y)$$
 regex constraints

- $\bullet \quad a\alpha = a\beta \rightarrow \varphi_{DEL}$
- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$
- 3 $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$
- **1** $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$, introduce $c(x') := D_a(c(x))$
- **5** $x\alpha = x\beta \rightarrow \varphi_{DEL}$, if $\sigma(c(x))$

$$a,b\in\Sigma, a\neq b, x,y\in X, x\neq y, \alpha,\beta\in(\Sigma\cup X)^*, c(x),c(y)$$
 regex constraints

- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$
- **3** $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$
- **1** $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$, introduce $c(x') := D_a(c(x))$
- **5** $x\alpha = x\beta \rightarrow \varphi_{DEL}$, if $\sigma(c(x))$

$$a,b\in\Sigma, a\neq b, x,y\in X, x\neq y, \alpha,\beta\in(\Sigma\cup X)^*, c(x),c(y)$$
 regex constraints

- $\bullet \quad a\alpha = a\beta \rightarrow \varphi_{DEL}$
- $\mathbf{a} = \mathbf{b} \boldsymbol{\beta} \rightarrow \mathbf{X}$
- **3** $x\alpha = \beta \rightarrow \varphi_{x \rightarrow \varepsilon}$, if $\nu(c(x))$
- **1** $x\alpha = a\beta \rightarrow \varphi_{x\rightarrow ax'}$, if $\sigma(D_a(c(x)))$, introduce $c(x') := D_a(c(x))$
- **5** $x\alpha = x\beta \rightarrow \varphi_{DEL}$, if $\sigma(c(x))$

$$x\alpha = y\beta$$

$$x\alpha = y\beta$$
 common prefix $a \in \Sigma$, s.t. $\sigma(D_a(c(x))), \sigma(D_a(c(y)))$


```
x\alpha = y\beta common prefix a \in \Sigma, s.t. \sigma(D_a(c(x))), \sigma(D_a(c(y))) rewrite \varphi_{y \to ay'}
```



```
x\alpha = y\beta common prefix a \in \Sigma, s.t. \sigma(D_a(c(x))), \sigma(D_a(c(y))) rewrite \varphi_{y \to ay'}, introduce c(y') := D_a(c(y))
```



```
class RegexTheory r where
  derive :: Char -> r -> r
  nullable :: r -> Bool
  satisfiable :: r -> Bool
```

```
class RegexTheory r where
  derive :: Char -> r -> r
  nullable :: r -> Bool
  satisfiable :: r -> Bool
```

```
nielsen :: RegexTheory r => Equation r -> Bool
```


benchmarkset-1 (quadratic, regex)

- benchmarkset-1 (quadratic, regex)
- benchmarkset-2 (quadratic)

- benchmarkset-1 (quadratic, regex)
- benchmarkset-2 (quadratic)
- benchmarkset-2 \ benchmarkset-1 (quadratic, non-regex)

• CVC4, CVC5

- CVC4, CVC5
- Z3Seq, Z3str3

- CVC4, CVC5
- Z3Seq, Z3str3
- Woorpje, Woorpje-levis

- CVC4, CVC5
- Z3Seq, Z3str3
- Woorpje, Woorpje-levis
- Noodler

- CVC4, CVC5
- Z3Seq, Z3str3
- Woorpje, Woorpje-levis
- Noodler
- nielsen-transformation (nt)

Solver	Version	State of the art	Can solve regex	Combined solving
CVC4	1.8	✓	✓	Х
CVC5	1.0.3	✓	✓	Х
Z3Seq	4.8.10	✓	✓	Х
Z3str3	4.8.10	✓	✓	Х
woorpje	spin22	Х	✓	Х
woorpje-levi	spin22	Х	X	Х
noodler	f752e79	Х	✓	✓
nielsen-transformation	0.1.0	Х	✓	✓

Results

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	747	1400	0	0	0	240297	240297
CVC5	747	1400	0	0	0	247331	247331
Z3seq	748	1398	0	1	55	865382	845382
Z3str3	748	1398	0	1	55	950974	930974
woorpje	393	643	684	427	126	13319883	4779883
noodler	243	824	637	443	0	27816800	18956584
nielsen-transformation	747	1398	0	2	0	251808	211808

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	747	1400	0	0	0	240297	240297
CVC5	747	1400	0	0	0	247331	247331
Z3seq	748	1398	0	1	55	865382	845382
Z3str3	748	1398	0	1	55	950974	930974
woorpje	393	643	684	427	126	13319883	4779883
noodler	243	824	637	443	0	27816800	18956584
nielsen-transformation	747	1398	0	2	0	251808	211808

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	747	1400	0	0	0	240297	240297
CVC5	747	1400	0	0	0	247331	247331
Z3seq	748	1398	0	1	55	865382	845382
Z3str3	748	1398	0	1	55	950974	930974
woorpje	393	643	684	427	126	13319883	4779883
noodler	243	824	637	443	0	27816800	18956584
nielsen-transformation	747	1398	0	2	0	251808	211808

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	1055	1491	0	1	0	326543	306543
CVC5	1055	1491	0	1	0	354380	334380
Z3seq	1045	1409	0	93	55	2908422	1048422
Z3str3	1057	1408	5	77	55	2571637	1031637
woorpje	693	651	695	508	127	15410164	5250164
noodler	544	888	665	450	0	32926399	23926181
nielsen-transformation	1011	1453	0	83	0	2371652	711652

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	1055	1491	0	1	0	326543	306543
CVC5	1055	1491	0	1	0	354380	334380
Z3seq	1045	1409	0	93	55	2908422	1048422
Z3str3	1057	1408	5	77	55	2571637	1031637
woorpje	693	651	695	508	127	15410164	5250164
noodler	544	888	665	450	0	32926399	23926181
nielsen-transformation	1011	1453	0	83	0	2371652	711652

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	308	91	0	1	0	90983	70983
CVC5	308	91	0	1	0	110981	90981
Z3seq	297	11	0	92	0	2085124	245124
Z3str3	309	10	5	76	0	1643121	123121
woorpje	299	4	8	89	0	2464010	684010
woorpje-levis	300	90	9	1	1	206817	186817
noodler	281	20	19	80	0	5256067	3656067
nielsen-transformation	264	54	0	82	0	2111959	471959

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	308	91	0	1	0	90983	70983
CVC5	308	91	0	1	0	110981	90981
Z3seq	297	11	0	92	0	2085124	245124
Z3str3	309	10	5	76	0	1643121	123121
woorpje	299	4	8	89	0	2464010	684010
woorpje-levis	300	90	9	1	1	206817	186817
noodler	281	20	19	80	0	5256067	3656067
nielsen-transformation	264	54	0	82	0	2111959	471959

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	308	91	0	1	0	90983	70983
CVC5	308	91	0	1	0	110981	90981
Z3seq	297	11	0	92	0	2085124	245124
Z3str3	309	10	5	76	0	1643121	123121
woorpje	299	4	8	89	0	2464010	684010
woorpje-levis	300	90	9	1	1	206817	186817
noodler	281	20	19	80	0	5256067	3656067
nielsen-transformation	264	54	0	82	0	2111959	471959

Solver	Satis	NSatis	Unknown	Timeout	Errors	Total Time	Total Time w/o Timeout
CVC4	308	91	0	1	0	90983	70983
CVC5	308	91	0	1	0	110981	90981
Z3seq	297	11	0	92	0	2085124	245124
Z3str3	309	10	5	76	0	1643121	123121
woorpje	299	4	8	89	0	2464010	684010
woorpje-levis	300	90	9	1	1	206817	186817
noodler	281	20	19	80	0	5256067	3656067
nielsen-transformation	264	54	0	82	0	2111959	471959

benchmarkset- $2 \setminus benchmarkset-1$

Summary

