Instituto de Informática - UFRGS

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Sistemas Operacionais

Implementação de tabelas Introdução a memória virtual

Aula 15

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Introdução

- Sistema operacional deve manter :
 - Paginação:
 - Número de quadros da memória física e a indicação de livre/ocupado
 - Mapeamento de páginas a quadros (por processo ou não, se for invertida)
 - Tabela de páginas
 - Segmentação:
 - Mapa de memória (indicação de áreas livres e ocupadas)
 - Mapeamento de segmentos (por processo)
 - Tabela de segmentos
- Dois problemas:
 - Que tipo de estrutura de dados utilizar ?
 - Onde armazenar essas estruturas ?

Sistemas Operacionais 2

Informação de quadros livres e ocupados: paginação

- Duas formas: listas encadeadas e *bitmap*
 - Bit map é mais natural devido ao tamanho fixo de quadros em memória e o fato ter dois estados (livre ou ocupado)
- Problema: onde armazenar essas estruturas de dados?
 - Memória: desvantagem é o tamanho
 - Disco: desvantagem é o tempo de acesso (desempenho)
- Como o bitmap é relativamente pequeno ele pode ser armazenado em memória
 - tam_bitmap = (tam_RAM ÷ tam_quadro ÷ 8) bytes
 - Ex: 1 GB RAM, quadros de 4 KB fornece um bit map de 32 KB

Informação de segmentos livres e ocupados

- Os segmentos evoluem dinamicamente fornecendo lacunas livres e ocupadas na memória principal (RAM)
 - Lista de lacunas (endereço inicial + tamanho)
 - Método de busca: first fit, best fit, worst fit
- Problema: onde armazenar essa estrutura de dados?
 - Memória: desvantagem pode ser o tamanho
 - Disco: desvantagem é o tempo de acesso (desempenho)
- Lista possui um tamanho variável, pois as lacunas livres surgem em função do uso da memória
 - Podem ser concatenadas
- Normalmente são armazenadas em memória.

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Sistemas Operacionais 3 Sistemas Operacionais 4

Implementação da tabela de páginas

- Cada processo possui uma tabela de páginas própria
 - Exceção é a tabela de páginas invertida
- Cada entrada da tabela ocupa um certo número de bits
 - log₂ (tam_ram/tam_quadro); bits de acesso, validade, compartilhamento, etc...
- A estrutura de dados natural para implementar a tabela de páginas é um vetor indexado pelo número da página
- Problema: onde armazenar essa estrutura?
 - Registradores no hardware do processador (MMU)
 - Memória RAM
 - Disco

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Compromisso: tamanho versus desempenho

Sistemas Operacionais

Implementação da tabela de segmentos

- Cada processo possui uma tabela de segmento própria
- Cada entrada da tabela ocupa um certo número de bits
 - Endereço início, limite, bits de acesso, validade, compartilhamento, etc...
- A estrutura de dados natural para implementar a tabela de segmentos é um vetor indexado pelo número da segmento
- Problema: onde armazenar essa estrutura?
 - Registradores no hardware do processador (MMU)
 - Memória RAM
 - Disco

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

5

Sistemas Operacionais

Implementação da tabela de páginas*

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Tabela de páginas* em hardware

- Implementada como um banco de registradores
- Vantagem:
 - tempo de acesso para tradução de endereço lógico em físico
- Desvantagem:
 - Tamanho da tabela de páginas
 - Número de entradas (páginas) é limitado

*Raciocínio válido para segmentação e segmentação com paginação

Sistemas Operacionais

Sistemas Operacionais

Tabela de páginas em memória

- Armazenada na memória RAM
 - Registrador especial para indicar onde ela inicia na memória
 - PTBR (Page Table Base Register)
- Vantagem:
 - Tamanho da tabela de páginas não é limitado por hardware
- Desvantagem:
 - Tempo de acesso
 - Necessário pelo menos dois acessos a RAM para acessar um endereço do espaço do processo

Sistemas Operacionais

Translation look-aside buffers (TLBs)

- Solução de compromisso entre implementação via registradores e via memória
- Baseada em uma memória cache especial (TLB) composta por um banco de registradores (memória associativa)
- Idéia é manter a tabela de páginas* em memória com uma cópia parcial da tabela em um banco de registradores (TLB)
 - Página acessada está na TLB (hit): similar a solução de registradores
 - Página acessada não está na TLB (miss): similar a solução via memória

*Raciocínio válido para segmentação e segmentação com paginação

Tabela de páginas* em memória

Registradores associativos

- Registradores associativos permitem a busca de valores por conteúdo, não por endereços
 - Pesquisa paralela

Key	value

- Funcionamento:
 - Se valor "key" está na memória associativa, se obtém valor (value).

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

> Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

11

Sistemas Operacionais 12

Implementação da tabela de páginas* via TLB

Implementação da tabela de segmentos via TLB

Aspectos relacionados com o uso de TLB: paginação

- Melhora o desempenho no acesso a tabela de páginas
 - Tempo de acesso:1 a 3 ciclos de clock contra 100 a 200 ciclos da memória
- Desvantagem é o seu custo
 - Tamanho limitado (de 8 a 4096 entradas)
 - Processadores atuais tem TLB organizadas em níveis
 - A TLB pertence a MMU e é compartilhada por todos processos
 - Apenas as páginas em uso por um processo necessitam estar na TLB
- Um acesso é feito em duas partes:
 - Se página está presente na TLB (hit) a tradução é feita
 - Se página não está presente na TLB (miss), consulta a tabela em memória e atualiza entrada na TLB
 - Se paginação multinível acessa os diferentes níveis

Hit ratio (h)

- Probabilidade de qualquer dado referenciado estar na memória, no caso. na TLB
 - Taxa de acerto: hit ratio
 - Seu complemento é a taxa de erro: miss ratio

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Sistemas Operacionais

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

15

16

Exemplo: influência do hit ratio no desempenho

$$hit _ratio = 0.80$$

$$t_{medio} = 0.80 \times (120) + 0.20 \times (220) = 140 ns$$

$$hit ratio = 0.98$$

$$t_{medio} = 0.98 \times (120) + 0.02 \times (220) = 122ns$$

Sistemas Operacionais

Atenção: TLB não é cache de dados e/ou instruções

Leituras complementares

- A. Tanenbaum. <u>Sistemas Operacionais Modernos</u> (3ª edição), Pearson Brasil. 2010.
 - Capítulo 3: seção 3.6
- A. Silberchatz, P. Galvin; <u>Sistemas Operacionais</u>. (7ª edição). Campus, 2008.
 - Capítulo 8 (seção 8.4.2)
- R. Oliveira, A. Carissimi, S. Toscani; <u>Sistemas Operacionais</u>. Editora Bookman 4ª edição, 2010
 - Capítulo 6 e capítulo 6 (seções 6.5 e 6.6)

Instituto de Informática - UFRGS

Sistemas Operacionais

Introdução a memória virtual

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

(Aula 15 – cont.)

Sistemas Operacionais

19

17

- Memória real é a memória fisicamente instalada no sistema (RAM)
- Processos executam na memória real
 - Se não há memória disponível o processo não é criado
- Memória real impõem limitações:
 - Processo não pode ser maior que a memória física
 - O somatório do espaço necessário a *n* processos não pode exceder o tamanho da memória física
 - Limita o grau de multiprogramação
- Memória virtual surge como solução

Sistemas Operacionais

Vantagens e desvantagens de memória virtual

- Dimensionamento da memória virtual depende do que se deseja do sistema
- Vantagens:
 - Capacidade de executar programas maiores que o tamanho da RAM
 - Aumento do grau de multiprogramação
- Desvantagens:
 - Desempenho: acesso a área de swap é mais lenta que acesso a RAM
- Aumento da memória física é sempre a melhor solução!!

Memória virtual

- Expande a memória do sistema através de um espaço em disco
 - Arquivo de swap ou partição de swap
- O sistema operacional tem a ilusão de possuir uma memória maior que a fisicamente instalada
 - Área total disponível = RAM + tamanho do swap
 - Se não há memória (virtual) disponível não se pode criar processo

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

21

23

Sistemas Operacionais

22

24

Memória virtual: necessidades para implementação

- Deve haver suporte a hardware para paginação, segmentação ou segmentação com paginação
- Sistema operacional deve controlar o fluxo de páginas/segmentos entre a memória secundária (disco) e a memória principal
- Necessidade de gerenciar:
 - Áreas livres e ocupadas
 - Mapeamento da memória lógica em memória física

Substituição de páginas/segmentos

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Sistemas Operacionais

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Paginação por demanda

- Objetivo é utilizar memória física de forma eficiente
 - Carregar para a memória apenas os trechos do processo que são necessários a sua execução em determinado momento
 - Beneficia da localidade de referência
- O trecho do programa pode ser um segmento ou uma página
 - Segmentação por demanda ou paginação por demanda
- Paginação é método preferido porque simplifica a alocação
 - Qualquer página pode ser carregada em qualquer frame disponível

Swapping implica em movimentar todo o processo, o termo correto seria pagging, porém o termo swap "pegou"

Sistemas Operacionais

- - Operações de carga são limitadas a transferência de páginas
- Reduz a quantidade de memória utilizada por processo

Princípio da localidade de referência

- Base de funcionamento da memória virtual
- Na execução de um processo existe uma probabilidade que acessos a instruções e a dados sejam limitados a um trecho
 - Exemplos:
 - Execução da instrução i+1 segue a execução da instrução i
 - Laços for, while, do-while
 - Acessos a elementos de vetores
- Em um determinado período de tempo apenas esses trechos do processo necessitam estar em memória
- Possibilidade de "prever" os trechos necessários a sequência de execução

Sistemas Operacionais

26

Área de swap

- Pode ser:
 - Partição específica em um disco ou um disco físico específico
 - Formato simples: blocos iguais ao tamanho da página
 - Arquivo em um sistema de arquivos (solução Windows)
 - Flexibilidade versus desempenho
- Procedimento simplificado
 - Imagem completa do processo é criado na área de swap
 - Cada página corresponde a um bloco
 - Efetua page-in (swap→memória) e page-out (memória →swap) com base na origem a imagem no swap e o deslocamento é a própria página
 - Desvantagem: tamanho da imagem e desperdício
 - Vantagem: mapeamento direto de página para bloco na área de swap

Vantagens da paginação por demanda

- Reduz operações de E/S
 - Não é necessário carregar todo o processo em memória

 - Aumenta o grau de multiprogramação

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

Instituto de Informática - UFRGS A. Carissimi - 25-avr. - 12

25

Sistemas Operacionais 27 Sistemas Operacionais 28

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

- Copiar na área de swap apenas o que é estático (código e globais)
 - Pilha e heap são alocados a medida que são usados
 - Problema: mapeamento não é mais 1:1
 - Tabela para indicar qual bloco do swap corresponde a qual página
- Páginas de códigos podem ser lidas diretamente do executável
- Preferir *page-out* de página não modificadas
- Operação de swapping é sobreposta ao processamento
 - E/S realizada através de DMA

Leituras complementares

- A. Tanenbaum. Sistemas Operacionais Modernos (3ª edição), Pearson Brasil, 2010.
 - Capítulo 3: (seções 3.4, 3.7)
- A. Silberchatz, P. Galvin; Sistemas Operacionais. (7ª edição). Campus, 2008.
 - Capítulo 9 (seções 9.1 e 9.2)
- R. Oliveira, A. Carissimi, S. Toscani; Sistemas Operacionais. Editora Bookman 4ª edição, 2010
 - Capítulo 7 (seção 7.1)

Instituto de Informática - UFRGS A. Carissimi -25-avr.-12

29

Sistemas Operacionais 30