Stat 134: Section 18

Ani Adhikari

April 3, 2017

Problem 1

Suppose that (X,Y) is uniformly distributed over the region $\{(x,y): 0<|y|< x<1\}$. Find:

- a. the joint density of (X, Y);
- b. the marginal densities $f_X(x)$ and $f_Y(y)$.
- c. Are *X* and *Y* independent?
- d. Find E(X) and E(Y).

Ex 5.2.1 in Pitman's Probability

Sketch the region. Based on the picture, can you deduce the expectation of Y without any calculation? The picture may also be useful for part c.

Problem 2

A random point (X, Y) in the unit square has joint density $f(x.y) = c(x^2 + 4xy)$ for 0 < x < 1 and 0 < y < 1 for some constant c.

- a. Evaluate *c*;
- b. Find $P(X \le a)$, 0 < a < 1.
- c. Find $P(Y \le b)$, 0 < b < 1.

Ex 5.2.3 in Pitman's Probability

Problem 3

For random variables *X* and *Y* with joint density function

$$f(x,y) = 6e^{-2x-3y}, (x,y > 0)$$

and f(x,y) = 0 otherwise, find:

- a. $P(X \le x, Y \le y)$;
- b. $f_X(x)$;
- c. $f_Y(y)$;
- d. Are *X* and *Y* independent? Give a reason for your answer.

Ex 5.2.4 in Pitman's Probability

Problem 4

Minimum and maximum of n independent exponentials. Let $X_1, X_2, ..., X_n$ be independent, each with exponential (λ) distribution. Let $V = \min(X_1, X_2, ..., X_n)$ and $W = \max(X_1, X_2, ..., X_n)$. Find the joint density of *V* and *W*. Ex 5.2.10 in Pitman's Probability

There are two ways to solve the problem: 1. Draw a picture and deduce $P(V \in dv, W \in dw)$. 2. Compute $-\frac{\partial^2}{\partial v \partial w} P(V \ge v, W \le w)$. Explain why this yields the joint density of (V, W).