

Mecánica de Sólidos

02. Estudio de los esfuerzos en un punto

Universidad Nacional de Colombia sede Manizales Departamento de Ingeniería Civil

> Michael Heredia Pérez mherediap@unal.edu.co

Docente Ocasional Ingeniero Civil Esp. en Estructuras Maestrando en Estructuras – Investigación

Derrotero

- 2.1. Tensiones o esfuerzos
- 2.2. Estudio de las tensiones en un punto bidimensional
- 2.3. Estudio de las tensiones en un punto tridimensional
- 2.4. Notación tensorial*
- 2.5. Cambio de base
- 2.6. Matriz de esfuerzos expresada en otro sistema de coordenadas
- 2.7. Esfuerzos normales y tangenciales sobre un plano
- 2.8. Esfuerzos y direcciones principales
- 2.9. Círculo de Mohr en problemas bi- y tridimensionales*
- 2.10. La analogía del bombillo y la caja*

 $Respositorio\ del\ curso:\ \underline{github.com/michaelherediaperez/mecanica}\ \underline{de}\ \underline{solidos}\ \underline{un}$

- Intensidad de una fuerza por unidad de área en el entorno de un punto material sobre una superficie real o imaginaria de un medio continuo.
- Las fuerzas internas son una reacción a las fuerzas externas aplicadas.

Augustin-Lois Cauchy (1789-1857)

Suposición — El sólido deformado es continuo

Distribución
de esfuerzos
representada

como una
función
continua por
partes

Dominio (x, y, z)

Modelo estático de neopreno zunchado: simscale.com

 $\bullet \quad \text{Dominio } (x, y, z, t)$

Colisión modelada en abaqus: <u>youtube.com/video</u>

Figura 2.1: Fuerzas superficiales f_1 , f_2 , ..., f_n , másicas b, e internas que actúan sobre un sólido. El vector $\Delta f := [f_x, f_y, f_z]^T$ representa la resultante de la fuerza interna que actúa sobre el área ΔA , la cual contiene el punto P y se encuentra ubicada sobre el plano con normal \hat{n} que pasa por el punto P.

El esfuezo: $q(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f}{\Delta A}$ (aquí ΔA tiene normal \hat{n}).

$$\boldsymbol{q}(x,y,z) = \boldsymbol{\sigma}_n(x,y,z) + \boldsymbol{\sigma}_s(x,y,z).$$

 Vector de esfuerzo normal Fuerzas de compression y tracción

$$\sigma_n(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f_n}{\Delta A},$$

• Vector de esfuerzo tangencial Fuerzas de corte

$$\sigma_s(x, y, z) = \lim_{\Delta A \to 0} \frac{\Delta f_s}{\Delta A}$$

2.2. Estudio de las tensiones en un punto bidimensional

- 2.2.1. Análisis de un elemento infinitesimal rectangular
- 2.2.2. Análisis de un elemento infinitesimal triangular

2.2.1. Análisis de un elemento infinitesimal rectangular

Figura 2.2: Análisis de esfuerzos en un elemento infinitesimal rectangular de espesor t (no mostrado) localizado sobre el plano xy. El gráfico muestra la convención positiva de los esfuerzos. Del sólido mostrado en (a) extraemos un pedazo infinitesimal rectangular mostrado en (b). En (b) podemos ver los esfuerzos actuando sobre dicho rectángulo. Los esfuerzos sobre este rectángulo se pueden descomponer en esfuerzos normales y cortantes que se ilustran en (c) con una sola flecha para simplificar la representación gráfica.

Un esfuerzo cortante que actúa sobre una superficie ortogonal al eje x y tiene la misma dirección que el eje y

2.2.2. Análisis de un elemento infinitesimal triangular

Figura 2.3: Análisis de esfuerzos en un elemento triangular de espesor t (no mostrado) localizado sobre el plano xy. Dicho elemento se podría considerar como uno ubicado en el borde del sólido o interior a él. En el último caso, la superficie \overline{AB} puede considerarse como análoga a la superficie rectangular ΔA mostrada en la Figura 2.1; desde este punto de vista, el vector \boldsymbol{q} puede entenderse como un vector de esfuerzos internos o como un vector de fuerzas superficiales; todo depende del contexto.

Fórmula de Cauchy bidimensional

Estos arreglos son función del punto P(x,y,z)

2.3. Estudio de las tensiones en un punto tridimensional

- 2.2.1. Análisis de un paralelepípedo infinitesimal
- 2.2.2. Análisis de un elemento tetraédrico infinitesimal

Un pequeño comentario sobre el Sistema coordenado en 3 dimensiones

Sistema coordenado de la mano Usualmente usado en izquierda mecánica de suelos

La consecuencia de usar un sistema de coordenadas u otro es que las fórmulas que se deducen con diferente sistemas de coordenadas pueden diferir en los signos de las fórmulas.

Sistema coordenado de la mano Usualmente usado en derecha mecánica de sólidos y elementos finitos

11

¿... dónde veo esto?

	Global co-ordinate
	system
Function	Definition of co-ordinates
	Definition of directions
	Interpretation of results
	-
Type	Right-handed Cartesian
Axes	X, Y, Z
Symbol	^
	7
Symbol color	Fixed 3 colors,
	X = green
	Y = red
	Z = blue
	·
Manue	al de usuario
FEI	M $DESIGN$

ABAQUS y FEM DESIGN son software enfocados en el área estructural y mecánica, y también trabajan el Sistema coordenado de la mano derecha

NO es información trivial, de ser así no se molestarían en ponerlo en los manuales de usuario del programa.

Otro ejemplo: la fuerza cortante en función de la carga distribuida en vigas:

$$i \frac{dV}{dx} = w \circ \frac{dV}{dx} = -w?$$

2.3.1. Análisis de un paralelepípedo infinitesimal

$$\tau_{yz} = \tau_{zy}$$
 $\tau_{zx} = \tau_{xz}$ $\tau_{xy} = \tau_{yx}$.

Las caras visibles se consideran las caras positivas, ya que están en el lado positive de los ejes x, y, y z.

Figura 2.4: Componentes de esfuerzos en 3D. El gráfico muestra el sentido positivo de los esfuerzos. Recuerde que τ_{xz} representa al esfuerzo cortante que actúa sobre una superficie ortogonal al eje x y que apunta en dirección del eje z. Observe adicionalmente que los esfuerzos están referidos a un sistema de coordenadas de la mano derecha (ver Apéndice A.19).

2.3.2. Análisis de un elemento tetraédrico infinitesimal

Figura 2.5: Componentes de esfuerzos en 3D al analizar un elemento tetraédrico infinitesimal. Observe que los esfuerzos mostrados con las flechas punteadas están ubicados sobre las caras negativas del tetraedro, mientas que los esfuerzos q_x , q_y y q_z actúan sobre la superficie \overline{ABC} , el cual tiene vector normal $\hat{\bf n}$.

2.3.2. Análisis de un elemento tetraédrico infinitesimal

Figura 2.6: Relación entre los triángulos \overline{ABC} y \overline{ACO} . En el gráfico (a) se observa que las líneas \overline{DO} y \overline{BD} son las alturas de los triángulos \overline{ACO} y \overline{ABC} , respectivamente; adicionalmente, ambas líneas son ortogonales a la línea \overline{AC} . En el gráfico (b) podemos encontrar una vista de la figura (a) en la cual el plano \overline{ABC} se ve como la línea \overline{BD} y la línea \overline{AC} se ve como el punto verde mostrado. En este mismo gráfico se observa claramente que el ángulo que hace el eje y con el vector \hat{n} es θ_2 .

2.3.2. Análisis de un elemento tetraédrico infinitesimal

Fórmula de Cauchy tridimensional

Estos arreglos son función del punto P(x,y,z)

$$\underline{q}(x, y, z) = \underline{\underline{\sigma}}(x, y, z) \underline{\hat{n}}(x, y, z)$$

Dato curioso

Fórmula de Cauchy tridimensional

Observe que la matriz $\underline{\sigma}(x,y,z)$ es en este caso simétrica. No obstante, es importante anotar que Fung, Tong, y Chen (2017, página 64) dicen que, según el matemático y científico escocés James Clerk Maxwell (1831 – 1879), esta matriz no es simétrica en el caso de un imán en un campo magnético y en el caso de un material dieléctrico en un campo eléctrico con diferentes planos de polarización, ya que en ambas situaciones, cuando se tienen esfuerzos cortantes muy pequeños y campos electromagnéticos muy intensos, aparecen sobre el cuerpo del sólido "momentos másicos" que evitan que la matriz $\underline{\sigma}(x,y,z)$ sea simétrica.

2.4. Notación tensorial

(Esta sección será de estudio autónomo)

Prestar atención a:

- Notación de la matriz de esfuerzos de Cauchy, ahora tensor de esfuerzos.
- ¿Qué es el convenio de sumatoria de Einstein?
- La función Kronecker delta.
- Notación de la multiplicación de matrices.

2.5. Cambio de base

■ Intensidad...

2.6. Matriz de esfuerzos expresada en otro sistema de coordenadas

- 2.6.1. Particularización de la matriz de tensiones al caso tridimensional.
- 2.6.2. Particularización de la matriz de tensiones al caso bidimensional.

2.6. Matriz de esfuerzos expresada

■ Intensidad...

2.8. Esfuerzos y direcciones principales

- 2.8.1. Tensiones y direcciones principales en dos dimensiones.
- 2.8.2. Tensiones y direcciones principales en tres dimensiones.
- 2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica.
- 2.8.4. Ortogonalidad de las direcciones principales.

2.8.1. Tensiones y direcciones principales en dos dimensiones

■ Intensidad ...

2.8.2. Tensiones y direcciones principales en tres dimensiones

■ Intensidad ...

2.8.3. Método de Newton-Raphson para encontrar las raíces del polinomio característico de la matriz de tensiones utilizando una calculadora científica

(Esta sección será de estudio autónomo)

Sería interesante:

• ¿Cómo lo programo en Python o Matlab?

2.8.4. Ortogonalidad de las direcciones principales

■ Intensidad ...

2.9. Círculo de Mohr en problemas bi- y tridimensionales

(Esta sección será de estudio autónomo)

Prestar atención a:

- Demostración de la ecuación: ¿cómo se llegó a una circunferencia?
- Significado físico y matemático del círculo de Mohr.
- ¿Cómo se grafica?

•

2.10. La analogía del bombillo y la caja

(Esta sección será de estudio autónomo)

Prestar atención a:

• La analogía del bombillo y la caja :)

Referencias

- Álvarez Diego A. (2022) Notas de clase del curso mecánica de sólidos. En preparación. (main.pdf)
- Algunas de estas secciones de este capítulo están explicadas en los videos de YouTube que aparecen en la siguiente lista de reproducción:

 $\frac{https://youtube.com/playlist?list=PLOq9elBrzPDGKY48xSire}{XTCQXtd-ThZ9}$