Velegapudi Ramakrishna Siddhartha Engineering College::Vijayawada (Autonomous)

IV/IV B Tech Degree Examinations(December/2023) Seventh Semester

Department of Information Technology

20IT7301-DEEP LEARNING

Part - A is Compulsory	Time:3Hrs MODEL QUESTION PAPER Max Marks:70								
Answers to any single question or its part shall be written at one place only Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply; K4-Analyze; K5-Evaluate; K6-Create Q. No Question Question Aarks Course Outcom Level Q. No Part - A 1 a Differentiate between Machine Learning and deep Learning. 1 CO1 K2 b What is the need for validation data in deep learning? 1 CO2 K2 d Explain the use of zero padding in CNN 1 CO2 K2 e List any three hyper parameters used in deep learning models 1 CO2 K2 e List the types of layers in CNN 1 CO2 K2 g List any 4 applications of deep learning. 1 CO1 K1 h What is sparsity in autoencoder 1 CO2 K2 I Write the difference between convolutional neural network and recurrent neural network? 1 CO3 K2 Part - B Write the difference between convolutional neural network and recurrent network. j Briefly explain attention mechanism 1 CO2 K2 Value Value									
Cognitive Levels(K): K1-Remember; K2-Understand; K3-Apply: K4-Analyze; K5-Evaluate: K6-Create Q. No									
Question									
Part - A									
Part - A 10X1=10M 10X1=10M 10X1=10M 1 a Differentiate between Machine Learning and deep Learning. 1 CO1 K2 K2 K3 K4 C List any three hyper parameters used in deep learning models 1 CO2 K2 K2 d Explain the use of zero padding in CNN 1 CO2 K2 Explain the use of zero padding in CNN 1 CO2 K2 Explain the use of zero padding in CNN 1 CO2 K1 K1 K2 K1 K2 K2 K1 K3 K2 K1 K4 K4 K4 K4 K4 K4 K4	Q. No	Question	Marks		_				
Part - A				Outcom	Level				
1				_					
b What is the need for validation data in deep learning?			1		T				
C	- "		+						
d Explain the use of zero padding in CNN			+						
e List the types of layers in CNN. f What is sparsity in autoencoder g List any 4 applications of deep learning. h What is a recurrent neural network? I CO3 K2 I Write the difference between convolutional neural network and recurrent network. j Briefly explain attention mechanism 1 CO2 K2 Part - B UNIT - I 2 a Write the functional description of a biological neuron's structure with a suitable diagram and explain how artificial neuron structure can be compared with biological neuron structure. b List and explain various activation functions (OR) 3 a Summarize back propagation algorithm in reducing the error 4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding Input Kernel Kernel Kernel			1						
F What is sparsity in autoencoder 1 CO2 K2 g List any 4 applications of deep learning. 1 CO1 K1 h What is a recurrent neural network? 1 CO3 K2 I Write the difference between convolutional neural network and 1 CO3 K2 recurrent network. j Briefly explain attention mechanism 1 CO2 K2 Earl - B Earl	d		+ +						
g List any 4 applications of deep learning. h What is a recurrent neural network? I Write the difference between convolutional neural network and recurrent network. j Briefly explain attention mechanism 1 CO2 K2 Part - B UNIT - I 2 a Write the functional description of a biological neuron's structure with a suitable diagram and explain how artificial neuron structure can be compared with biological neuron structure. b List and explain various activation functions (OR) 3 a Summarize back propagation algorithm in reducing the error 8 CO1 K4 b Explore different techniques to prevent overfitting in deep neural networks. UNIT - II 4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding Input Kernel I 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0			+ +						
h What is a recurrent neural network?			+						
I Write the difference between convolutional neural network and recurrent network. 1 CO2 K2			1						
Part - B			+						
Part - B	I		1	CO3	K2				
Part - B UNIT - I 2 a Write the functional description of a biological neuron's structure with a suitable diagram and explain how artificial neuron structure can be compared with biological neuron structure. b List and explain various activation functions 6 CO1 K2 (OR) 3 a Summarize back propagation algorithm in reducing the error 8 CO1 K4 b Explore different techniques to prevent overfitting in deep neural networks. UNIT - II 4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding Input Kernel 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	i	Briefly explain attention mechanism	1	CO2	K2				
2 a Write the functional description of a biological neuron's structure with a suitable diagram and explain how artificial neuron structure can be compared with biological neuron structure. b List and explain various activation functions (OR) 3 a Summarize back propagation algorithm in reducing the error Explore different techniques to prevent overfitting in deep neural networks. UNIT - II 4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0	Part - B		4X15 =	=60M					
with a suitable diagram and explain how artificial neuron structure can be compared with biological neuron structure. b		UNIT - I	1						
can be compared with biological neuron structure. b List and explain various activation functions	2 a	Write the functional description of a biological neuron's structure	9	CO1	K4				
b List and explain various activation functions (OR) 3 a Summarize back propagation algorithm in reducing the error b Explore different techniques to prevent overfitting in deep neural networks. UNIT - II 4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel I I I I O O O O I I I O I O I O I O I		with a suitable diagram and explain how artificial neuron structure							
COR 3 a Summarize back propagation algorithm in reducing the error 8 CO1 K4 b Explore different techniques to prevent overfitting in deep neural 7 CO1 K2 consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding		can be compared with biological neuron structure.							
3 a Summarize back propagation algorithm in reducing the error 8 CO1 K4 b Explore different techniques to prevent overfitting in deep neural 7 CO1 K2 c NTT - II	b								
b Explore different techniques to prevent overfitting in deep neural networks. UNIT - II		\ /							
Networks. UNIT - II	3 a	Summarize back propagation algorithm in reducing the error	8	CO1	K4				
VNIT - II	b	Explore different techniques to prevent overfitting in deep neural	7	CO1	K2				
4 a Consider the problem of classification of cats and dogs. Assume each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1									
each image is of 28X28 size. Draw VGG architecture that can satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0									
satisfy the given classification problem and explain different layers used in the model. b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	4 a		8	CO2	K3				
Used in the model.		each image is of 28X28 size. Draw VGG architecture that can							
b Apply convolution operation on the following input image shown with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1									
with the given kernel and show the output image with stride=1 and stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0									
stride=2 (i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	b				K3				
(i) Without zero padding (ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0									
(ii) With zero padding Input Kernel 1 1 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0									
Input Kernel 1									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(ii) With zero padding							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Innut Vornal							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		*							
0 1 1 0 0 0 1 1 0 0 0 1 1 0									
(OR)									
5 a Differentiate between PCA and Autoencoder for dimensionality 7 CO2 K4	5 a	Differentiate between PCA and Autoencoder for dimensionality	7	CO2	K4				

		reduction.					
	b	Explain the concept of denoising in auto encoders	8	CO2	K2		
	UNIT – III						
6	a	Explain unfolding computational graphs in detail	7	CO3	K2		
	b	Draw an RNN architecture for summarizing a sequence and	8	CO3	K3		
		produce a fixed- size representation					
		(OR)					
7	a	Discuss the challenges of long term dependencies	7	CO3	K2		
	b	Discuss about LSTM architecture in detail.	8	CO3	K2		
UNIT – IV							
8	a	Discuss the application of the visual attention approach for image	7	CO2	K3		
		captioning					
	b	Explain the working of Neural Turing machine with a neat diagram	8	CO2	K2		
(OR)							
9	a	What is GAN? Explain the process of generating image data with	9	CO2	K3		
		GAN					
	b	Discuss the limitations of Neural Networks	6	CO1	K4		

Designation	Name in Capitals	Signature with Date
Course Coordinator		
Program Coordinator		
Head of the Department		