# Analysis 2A

Luc Veldhuis

7 Februari 2016

Kosmala §8.1 8.2

#### Herhaling convergentie

 $\{a_n\}_{n\in\mathbb{N}}$  rij reeële getallen  $\lim_{n\to+\infty}a_n=L\in\mathbb{R}$  dan en slechts dan  $orall\epsilon>0\exists n^*\in N$  zodat  $|a_N-L|<\epsilon$  voor alle  $n\geq n^*$ 

### Functie rij

$$\{f_n\}_{n\in\mathbb{N}}$$

$$D \subseteq \mathbb{R}$$
,  $f_n : D \to \mathbb{R} \ \forall n \in \mathbb{N}$ 

Fix  $x_0 \in D$ :  $\{f_n(x_0)\}_{n \in \mathbb{N}}$  een rij reeele getallen

#### **Definitie**

Een functie-rij  $\{f_n\}_{n\in\mathbb{N}}$ ,  $f_n:D\to\mathbb{R}$ ,  $D\subseteq\mathbb{R}$  convergeert puntsgewijs naar een functie  $f:D\to\mathbb{R}$  dan en slechts dan als  $\lim_{n\to+\infty}f_n(x_0)=f(x_0)$  voor alle  $x_0\in D$ 

### Gevolg

Als we de definitie van convergentie voor  $\mathbb{R}$ -rijen toepassen:  $\{f_n\}_{n\in\mathbb{N}}$  convergeert puntsgewijs naar de functie f dan en slechts dan als  $\forall x_0\in D$  en  $\forall \epsilon>0$  bestaat er  $n^*\in\mathbb{N}$  zodat  $|f_n(x_0)-f(x_0)|<\epsilon\;\forall n\geq n^*.$ 

### **Opmerking**

f heet de puntgewijze limiet van  $\{f_n\}_{n\in\mathbb{N}}$  op D.



#### Voorbeeld

$$D = [0, 1]$$
$$f_n(x) = x^n$$

We beschouwen de rij van getallen  $\{f_n(x_0)\}_{n\in\mathbb{N}}$ 

$$x_0 = 1$$
,  $\lim_{n \to +\infty} f_n(x_0) = 1$ 

$$0 \le x_0 < 1$$
,  $\lim_{n \to +\infty} f_n(x_0) = 0$ 

Volgens de definitie hebben we hiermee bewezen dat de functie-rij  $\{f_n(x_0)\}_{n\in\mathbb{N}}$ ,  $f_n(x)=x^n$ ,  $x\in[0,1]$  op het interval [0,1] puntsgewijs convergeert naar de functie  $f:[0,1]\to\mathbb{R}$  gedefinieerd door

$$f(x) := 0 \text{ voor } 0 \le x < 1$$

$$f(x) := 1 \text{ voor } x = 1$$

#### Boodschap van vandaag

Puntsgewijze limieten zijn niet echt goed. Eigenschappen van de functies in de rij worden niet altijd behouden. Bijvoorbeeld continuïteit in vorige voorbeeld.

#### Voorbeeld

$$D = [0,1]$$

$$f_n: D \to \mathbb{R}, \ f_n(x) = \frac{x}{n} \ \forall n \in \mathbb{N}$$

$$\{f_n\}_{n \in \mathbb{N}} = \{f_1(x) = x, f_2(x) = \frac{x}{2} \dots\}.$$

$$\lim_{n \to \infty} f_n = 0$$
Puntsgewijze limiet:  $f(x) = 0 \ \forall x \in [0,1]$ 

#### **Bewijs**

We moeten bewijzen dat:  $\forall x \in [0,1]$  en  $\forall \epsilon > 0$  bestaat er een  $n^* \in \mathbb{N}$  zodat  $|f_n(x) - f(x)| < \epsilon$  voor alle  $n \ge n^*$   $|f_n(x) - f(x)| = |\frac{x}{n} - 0| = \frac{x}{n} \le \frac{1}{n} < \epsilon$  als  $n \ge n^* = \frac{1}{\epsilon}$ 

### **Opmerking**

Bij het vorige voorbeeld geldt:

Alle  $f_n$  en de puntsgewijze limiet f zijn continue, differentieerbaar, integreerbaar, begrensd op het gebied [0,1]. Bovendien geldt:

$$\lim_{n \to \infty} \int_0^1 f_n(x) dx = \lim_{n \to \infty} \int_0^1 \frac{x}{n} dx = \lim_{n \to \infty} \frac{1}{2n} = 0 = \int_0^1 f(x) dx$$

Let op:  $\lim_{n\to\infty} \int f_n(x) dx \neq \int \lim_{n\to\infty} f_n(x) dx$ 



#### Voorbeeld

$$\begin{array}{l} D=(0,1)\\ \forall n\in\mathbb{N},\ f_n:D\to\mathbb{R},\ f_n(x)=nx^n\\ \text{De puntsgewijze limiet van }\{f_n\}\ \text{op }(0,1)\ \text{is de functie }f(x)=0\\ \text{voor alle }x\in(0,1).\\ \int_0^1f_n(x)dx=\int_0^1nx^ndx=\frac{n}{n+1}\\ \lim_{n\to\infty}\int_0^1f_n(x)dx=\lim_{n\to\infty}\frac{n}{n+1}=1\\ \text{Maar }\int_0^1\lim_{n\to\infty}f_n(x)dx=\int_0^10dx=0\neq1 \end{array}$$

#### Gevolg

We hebben voorwaardes nodig om limiet en integraal om te kunnen wisselen.



#### Verschil voorbeelden

Vraag: wat is het verschil tussen  $f_n = \frac{x}{n}$  en de andere voorbeelden? Antwoord: Bij voorbeeld 2 is er sprake van **uniforme convergentie**.

#### Recap

Herinner: bij de functie-rij  $f_n = \frac{x}{n}$ ,  $x \in [0,1]$  hadden we  $n^*(\epsilon)$  onafhankelijk van x.

#### Definitie uniforme convergentie

Een functie-rij  $\{f_n\}_{n\to\infty}$ ,  $\forall n\in\mathbb{N}$ ,  $f_n:D\to\mathbb{R}$ , convergeert uniform naar  $f:D\to\mathbb{R}$  dan en slechts dan als  $\forall \epsilon>0$ ,  $\exists n^*\in\mathbb{N}$  zodat  $|f_n(x)-f(x)|<\epsilon$  voor alle  $n\geq n^*$  en voor alle  $x\in D$ .



#### Niet uniform convergent

Te bewijzen bij niet uniform convergent:

 $\exists \epsilon > 0$ ,  $\forall n \in \mathbb{N}$  bestaat er een  $x_n \in D$  zodat  $|f_n(x) - f(x)| \ge \epsilon$ 

#### Voorbeeld

De functie-rij  $f_n(x) = x^n$  is niet uniform convergent op [0,1]

#### Bewijs

Neem 
$$\epsilon = \frac{1}{4}$$
 voor  $n \in \mathbb{N}$ , zij  $x_n = \sqrt[n]{\frac{1}{2}}$ 

Dan geldt: 
$$|f_n(x_n) - f(x_n)| = |(\sqrt[n]{\frac{1}{2}})^n| = \frac{1}{2} > \frac{1}{4}$$



#### Recap

 $D \subseteq \mathbb{R}$ ,  $\{f_n\}_{n \in \mathbb{N}}$ ,  $f_n : D \to \mathbb{R}$ 

- De functie-rij  $\{f_n\}$  convergeert puntsgewijs naar  $f:D\to\mathbb{R}$  als  $\lim f_n(x)=f(x)$  voor alle  $x\in D$ .
- De functie-rij  $\{f_n\}$  convergeert uniform naar  $f:D\to\mathbb{R}$  als er voor elke  $\epsilon>0$  een  $n^*\in\mathbb{N}$  bestaat zodat  $|f_n(x)-f(x)|<\epsilon$  voor alle  $n\geq n^*$  en voor alle  $x\in D$   $|f_n(x)-f(x)|<\epsilon$

$$|f_n(x) - f(x)| < \epsilon$$

$$-\epsilon < f_n(x) - f(x) < \epsilon$$

$$f(x) - \epsilon < f_n(x) < f(x) + \epsilon$$

Voor  $n \ge n^*$  ligt de grafiek van  $f_n$  in een  $\epsilon$  strip rondom de grafiek van f.

### Hoe onderzoek ik de convergentie van een functierij?

Gegeven is:  $\{f_n\}_{n\in\mathbb{N}}$ ,  $D\subseteq\mathbb{R}$   $f_n:D\to\mathbb{R}$ 

Eerste vraag:

Convergeert  $\{f_n\}$  puntsgewijs op het gebied D?

Nee, bijvoorbeeld  $f_n(x) = \cos(nx)$  op  $[0, \pi]$ 

 $\lim_{n\to\infty} f_n(\pi) = \lim_{n\to\infty} (-1)^n$  bestaat niet!

#### Voorbeeld

Kan wel:

$$f_n(x) = \frac{1}{nx^2 + 1}$$

Bewering:  $\{f_n\}$  convergeert puntsgewijs naar

$$f(x) = 1 \text{ voor } x = 0$$

$$f(x) = 0 \text{ voor } x \neq 0$$

#### Bewijs

We moeten bewijzen: voor alle  $x \in \mathbb{R}$  geldt  $\lim_{n \to \infty} f_n(x) = f(x)$  We onderzoeken 2 gevallen:

- ②  $x \neq 0$ . Kies  $\epsilon > 0$ ,  $|f_n(x) f(x)| = |\frac{1}{nx^2 + 1}| < \epsilon$ . Kies  $n* = \frac{1}{\epsilon x^2}$ . Dan geldt voor alle  $n \geq n^*$ :  $|f_n(x) f(x)| < \epsilon$ .

#### Voorbeeld

Neem  $f_n(x) = \frac{\sin(nx)}{n}$ 

Deze functie-rij convergeert puntsgewijs naar f(x) = 0,  $\forall x \in \mathbb{R}$ 

#### Bewijs

$$\lim_{n\to\infty} \frac{\sin(nx)}{n} = 0$$

 $0 \le \frac{\sin(nx)}{n} \le \frac{1}{n} \to_{n \to \infty} 0$ . Squeeze theorom, hij gaat naar 0.



### Vraag 2

Neem  $f_n(x) = \frac{\sin(nx)}{n}$  en beschouw  $\{f_n(x)\}_{n\to\infty}$  met puntsgewijze limiet f op D. Is de convergentie uniform? Ja, neem  $\epsilon = \frac{1}{n}$ , dan hangt n niet van x af.

### Opmerking

$$f_n(x) = \frac{\sin(nx)}{n}$$
 uniform convergent  $f'_n(x) = \cos(nx)$  niet eens puntsgewijs convergent!

# Uniforme convergentie van $\frac{1}{nx^2+1}$

We onderzoeken nu de uniforme convergentie van  $\{f_n(x)\}_{n\in\mathbb{N}}$ ,

$$f_n: \mathbb{R} \to \mathbb{R}$$
 ,  $f_n(x) = \frac{1}{nx^2+1} \ \forall x \in \mathbb{R}$ 

We hebben gezien dat  $\{f_n(x)\}_{n\in\mathbb{N}}$  puntsgewijs convergeert naar de functie:

$$f(x) = 1 \text{ voor } x = 0$$

$$f(x) = 0 \text{ voor } x \neq 0$$

Convergeert deze functie-rij uniform naar f? Nee! In dit geval is er geen sprake van uniforme convergentie, want er kan geen  $\epsilon$  gevonden worden.

### Stelling

Als  $f_n(x)$  continue is, maar f(x) niet continue, dan is de convergentie niet uniform.



#### Bewijs uniforme convergentie en maximum

$$\begin{split} f_n : \mathbb{R} &\to \mathbb{R} \\ f_n(x) &= \frac{x}{1 + nx^2} \\ f'_n(x) &= \frac{(1 + nx^2) - 2nx^2}{(1 + nx^2)^2} = \frac{1 - nx^2}{(1 + nx^2)^2} \\ f'_n(x) &= 0, \text{ twee extrema, } x = \pm \frac{1}{n} \\ |f_n(\frac{1}{\sqrt{n}})| &= |f_n(-\frac{1}{\sqrt{n}})| = \frac{1}{2\sqrt{n}} \end{split}$$

De functie-rij convergeert naar f(x) = 0 en de convergentie is uniform.

$$\forall x \in \mathbb{R} : |f_n(x) - f(x)| = |f_n(x)| \le \frac{1}{2\sqrt{n}}$$