3. Синтез комбінаційних схем

3.1. Представлення функції f4 в канонічних формах алгебр Буля, Шеффера, Пірса та Жегалкіна

<u>Алгебра Буля (I, АБО, НЕ)</u>

 $f4_{\Pi\Pi H\phi} = (\overline{X}4\overline{X}3\overline{X}2X1) \ v \ (\overline{X}4\overline{X}3X2X1) \ v \ (\overline{X}4X3X2X1) \ v \ (X4\overline{X}3\overline{X}2X1) \ v$

(X4X3X2X1) v (X4X3X2X1) v (X4X3X2X1) v (X4X3X2X1)

 $f4_{IIKH\phi} = (X4vX3vX2v\overline{X}4) \cdot (X4v\overline{X}3vX2v\overline{X}1) \cdot (X4v\overline{X}3v\overline{X}2v\overline{X}1) \cdot (\overline{X}4\overline{X}3X2\overline{X}1)$

(X4vX3vX2vX1) (X4vX3vX2vX1) (X4vX3vX2vX1) (X4vX3vX2vX1)

Алгебра Шеффера {I-HE}

f4 = ((X4/X4)/(X3/X3)/(X2/X2)/X1)/((X4/X4)/(X3/X3)/(X2)/(X1))/ ((X4/X4)/(X3)/(X2)/(X1))/((X4)/(X3/X3)/(X2/X2)/(X1))/ ((X4)/(X3)/(X2)/(X1))/((X4)/(X3)/(X2/X2)/(X1))/ ((X4)/(X3)/(X2/X2)/(X1))/((X4)/(X3)/(X2)/(X1)). Απεεδρα Πίρτα {ΑΕΟ-ΗΕ}

f4 = ((X4)\ (X3\ X3)\ (X2\ X2)\ (X1\ X1)\ ((X4)\ (X3\ X3)\ (X2)\ (X1\ X1))
\ \ ((X4)\ (X3)\ ((X2)\ (X1\ X1))\ ((X4\ X4)\ (X3)\ (X2)\ (X1))\ \ ((X4\ X4)\ (X3)\ (X2\ X2)\ (X1)\ X1))\ \ ((X4\ X4)\ (X3)\ (X2\ X2)\ (X1\ X1))\ \ ((X4\ X4)\ (X3\ X3)\ (X2\ X2)\ (X1\ X1))\ \ ((X4\ X4)\ (X3\ X3)\ (X2\ X2)\ (X1\ X1)\ \ \ Anzeδρα Жегалкіна {ΒИΚ/ΝΟΥΗΕ ΑБО, I, const 1}

3.2. Визначення належності функції f4 до п'яти передуповних класів

- f(1111) = 1 => функція эберігає одиницю
- f(0000) = 0 => функція зберігає нуль
- f(0011) = f(1100) = 1 => функція не самодвоїста
- f(0011) > f(0100) => функція не монотонна
- функція нелінійна, оскільки її поліном Жегалкіна нелінійний

Зм.	Арк.	№ докум.	Підп.	Дата

3.3. Мінімізація функції f4

Метод Квайна-Мак-Класкі

Виходячи з таблиці 2.2, запишемо стовпчик ДДНФ (КО), розподіливши терми за кількістю одиниць. Проведемо попарне склеювання між сусідніми групами та виконаємо поглинання термів (рисунок 4.4)

Рисунок 4.4 Склеювання і поглинання термів

KO	K1	<i>K2</i>
0001 (1)	00X1 (1)	X0X1 (1)
0011 (1)	X001 (1)	XOX1 (1)
0111 (1)	<i>0X11 (1</i>)	XX11 (1)
1001 (1)	X011 (1)	XX11 (1)
1011 (1)	X111 (1)	1XX1 (1)
-1100 (1)	10X1 (1)	1XX1 (1)
-1101 (1)	1X01 (1)	
-1111 (1)	1X11 (1)	_
	110X (1)	
	11X1 (1)	-

Одержані прості імпліканти запишемо в таблицю покриття (таблиця 4.3).

	0001(F1)	0011(F1)	0111(F1)	1001(F1)	1011(F1)	1100(F1)	1101(F1)	1111/F1/
110X (1)						+		
X0X1 (1)	+	+						
XX11 (1)			+					
1XX1 (1)				+	+		+	+

Таблиця 4.3 Таблиця покриття

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {1XX1; XX11; 110X; XOX1}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{4MHJI\Phi}=(X2X1) \ v \ (X4X3\overline{X2}) \ v \ (\overline{X3}X1) \ v \ (X4X1)$

3M.	Арк.	№ докум.	Підп.	Дата

Метод невизначених коефіцієнтів

Ідея цього методу полягає у відкушанні ненульових коефіцієнтів при кожній імпліканті. Метод виконується у декілька етапів:

<i>X</i> ₄	<i>X</i> ₃	<i>X</i> ₂	<i>X</i> ₁	X_4X_3	X_4X_2	X_4X_1	X ₃ X ₂	X ₃ X ₁	X ₂ X ₁	$X_4X_3X_2$	$X_4X_3X_1$	$X_4X_2X_1$	X ₃ X ₂ X ₁	X ₄ X ₃ X ₂ X ₁	f_4
Ð	Ð	Đ	Ð	00	00	00	00	00	00	-000	-000	-000	-000	-0000	Ð
Ф	Ә	Ә	1	θθ	θθ	Ә1	θθ	01	Ә	.000	_001	<i>-001</i>	901	_0001	1
Ф	Ф	1	Ф	00	0 1	00	0 1	ĐĐ	10	<i>-001</i>	000	<i>-010</i>	<i>-010</i>	0010	Ф
Ә	Ф	1	-1	00	01	01	0 1	01	11	<i>-001</i>	901	011	011	0011	1
Ф	1	Ф	Ф	01	θθ	00	10	10	-00	<i>-010</i>	<i>-010</i>	<i>-000</i>	<i>-100</i>	<i>0100</i>	Ф
Ә	1	Ф	-1	01	<i>00</i>	0 1	10	-11	0 1	010	011	<i>-001</i>	-101	<i>0101</i>	Ф
Ә	1	1	Ф	01	0 1	<i>00</i>	-1 1	10	10	011	<i>010</i>	<i>-010</i>	-110	0110	Đ
Ә	1	1	-1	01	0 1	0 1	-1 1	-1 1	11	011	011	911		0111	1
1	Ф	Ф	Ф	10	10	10	00	θθ	00	-100	-100	-100	<i>-000</i>	1000	Ф
1	Ф	Ф	1	10	10	11	00	01	01	-100	101	101	901	1901	1
1	Ф	1	Ф	10	-11	10	01	00	10	-101	-100	-110	<i>-010</i>	-1010	Ф
1	Ф	1	1	10	-11	11	01	01	11	-101	101	111	911	_1011	1
1	1	Ә	Ә	1 1	10	10	10	10	00	110	-110	-100	-100		1
1	1	Ә	1	1 1	10	11	10	1 1	01	110	111	101	101	1101	1
1	1	1	Ф	-11	-11	10	-11	10	10	-111	-110	<i>110</i>	-110	-1110	Ф
-1	1	1	1	-11	-11	11	-11	1 1	11	-111	111	_111	111		1

- 1. Рівняння для знаходження коефіцієнтів представляється у вигляді таблиці (таблиця 4.4).
- 2. Виконується відкреслення нульових рядків.
- 3. Викреслюються вже знайдені нульові коефіцієнти на залишившихся рядках. 4. Імпліканти, що залишилися, поглинають імпліканти справа від них.

Таблиця 4.4 Метод невизначених коефіцієнтів

В ядро функції входять ті терми, без яких неможливо покрити хоча б одну імпліканту.

Ядро = {1XX1; XX11; 110X; X0X1}

В МДНФ входять всі терми ядра, а також ті терми, що забезпечують покриття всієї функції з мінімальною ціною.

 $f_{LMH\Pi\Phi} = (X2X1) \ v \ (X4X3\overline{X2}) \ v \ (\overline{X3}X1) \ v \ (X4X1)$

<u>Метод діаграм Вейча</u>

Метод діаграм Вейча— це графічний метод, призначений для ручної мінімізації. Його наочність эберігається за невеликої кількості аргументів. Кожна клітинка відповідає конституанті. Кожний прямокутник, що містить 2^k елементів, відповідає імпліканті. Прямокутник максимального розміру відповідає простій імпліканті (рисунок 4.5).

Зм.	Арк.	№ докум.	Підп.	Дата