Ensembling Handout

Introduction to Machine Learning

April 2020

We'll	assign eac	h team	a nu	ımber.	Your	team	${\rm number}$	${\rm determines}$	which	${ m ten}$	${\it observations}$	${\rm from}$	the	testing
set y	ou'll predic	t (Roun	d 1)	and vo	te on	(Rou	nd 2).							

Team	#:					
------	----	--	--	--	--	--

Round 1: Predict

Use the get_boot_votes() function provided to:

- build a single classification tree,
- train it with one bootstrapped sample, and
- predict your 10 observations from the testing set.

Your output will look like this. Use it to fill in the table on the back of this page.

```
get_boot_votes(seed = 0, team = 2020)
```

```
## # A tibble: 10 x 3
##
        obs truth
                        estimate
##
      <int> <fct>
                        <fct>
##
         87 Remote
    1
                        Remote
##
    2
         88 Remote
                        Remote
##
    3
         89 Remote
                        Not remote
##
         90 Remote
                        Remote
##
    5
         91 Remote
                       Remote
##
    6
        230 Not remote Not remote
##
    7
        231 Not remote Not remote
        232 Not remote Not remote
##
    9
        233 Not remote Not remote
## 10
        234 Not remote Remote
```

What was your bootstrapped tree's overall accuracy?

(over)

			Round 1	: Predict			
	Obs	Truth	Guess	Score	Votes Remote	Votes Not	Majority Vote
1		Remote		0 / 1			Remote / Not
2		Remote		0 / 1			Remote / Not
3		Remote		0 / 1			Remote / Not
4		Remote		0 / 1			Remote / Not
5		Remote		0 / 1			Remote / Not
6		Not Remote		0 / 1			Remote / Not
7		Not Remote		0 / 1			Remote / Not
8		Not Remote		0 / 1			Remote / Not
9		Not Remote		0 / 1			Remote / Not
10		Not Remote		0 / 1			Remote / Not
			Total	/ 10			

Round 2: Vote!

Now, as a team, form a voting committee. You have your tree's votes for those 10 observations already filled in the table above. Your job now is to tally up the number of votes for Remote / Not Remote across all team members' trees. Fill in the second half of the table with your team.

What was your team's overall accuracy, across each members' bootstrapped trees?