

Hoofdstuk 2 – Verzamelingen, relaties & functies Discrete wiskunde

dr. ir. Cedric De Boom IDLab - imec

Verzamelingen

Verzamelingen

Verzameling = niet-geordende collectie van objecten (= elementen) Notaties:

```
a \in A (i.e. het element a maakt deel uit van de verzameling A) a \notin A \emptyset is de lege verzameling
```

Voorstellingswijzen:

- Via expliciete opsomming, bv. $\mathbb{N} = \{0, 1, 2, 3, ...\}$
- Via een voorschrift, bv. $\mathbb{Z} = \{z \mid z \in \mathbb{N} \text{ of } -z \in \mathbb{N} \}$

Cardinaliteit = aantal elementen in een verzameling Notatie:

$$\#\{1,2,3,4\} = 4$$

 $\#\emptyset = 0$

Deelverzamelingen

Als elk element van A ook tot B behoort, dan is A een deelverzameling van B

Wiskundig: $\forall a \in A : a \in B$

Notaties:

 $A \subseteq B$ A is een deelverzameling van B

 $A \subset B$ A is een strikte deelverzameling van B

Machtsverzameling of delenverzameling

Machtsverzameling van A = verzameling van alle mogelijke deelverzamelingen van A Het is m.a.w. een verzameling van verzamelingen

Notatie: $\mathcal{P}(A)$

Bijvoorbeeld:

```
Stel A = \{1,2,3\}
Dan \mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{2,3\}, \{1,3\}, \{1,2,3\}\}
```

Vraag: als #A = n, wat is dan $\#\mathcal{P}(A)$?

Partitie (niet in cursus)

Partitie van A = strikte 'opsplitsing' van A in verschillende verzamelingen

Bijvoorbeeld:

Stel
$$A = \{1,2,3,4,5,6\}$$

Dan is een mogelijke partitie P bijv. $P = \{\{2\}, \{1,5\}, \{3,4,6\}\}$

Wiskundig:

 $\forall X \in P : \emptyset \neq X \subset A$

 $\forall x \in A : \exists ! X \in P : x \in X$

Doorsnede

Notatie en definitie:

$$A \cap B = \{x \in U \mid x \in A \text{ en } x \in B\}$$

Twee verzamelingen zijn **disjunct** a.s.a. $A \cap B = \emptyset$

Voorbeeld: alle deelverzamelingen van een partitie zijn disjunct

NB: U is het **universum** = de verzameling die alle elementen bevat

Unie

Notatie en definitie:

$$A \cup B = \{x \in U \mid x \in A \text{ of } x \in B\}$$

Verschil

Notatie en definitie:

$$A \setminus B = \{ x \in U \mid x \in A \text{ en } x \notin B \}$$

Complement

Notatie en definitie:

$$\bar{A} = \{x \in U \mid x \notin A\}$$

Enkele nuttige eigenschappen

Associativiteit:

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cap C) = (A \cap B) \cap C$$

Commutativiteit:

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Distributiviteit:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Wetten van De Morgan:

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$

Kunnen 'bewezen' worden a.d.h.v. venndiagrammen

Cartesisch product

Cartesisch product $A \times B$ tussen twee verzamelingen A en B

= de verzameling van alle *geordende koppels* met element 1 uit *A* en element 2 uit *B*

Voorbeeld:

$${a,b} \times {a,b,c} = {(a,a),(a,b),(a,c),(b,a),(b,b),(b,c)}$$

Wiskundig:

$$A \times B = \{(a, b) \mid a \in A \text{ en } b \in B\}$$

Uitbreiding naar meerdere verzamelingen mogelijk:

 $A_1 \times A_2 \times A_3$ leidt tot triples

 $A_1 \times A_2 \times A_3 \times A_4$ leidt tot quadruples

 $A_1 \times A_2 \times \cdots \times A_k$ leidt tot k-tuples

Speciaal geval(!): A^n is het cartesisch product van A, n keer met zichzelf

Relaties en functies

Relatie

Een **relatie** R tussen twee verzamelingen A en B is een deelverzameling van $A \times B$

Notatie:

$$R \subset A \times B$$

$$R:A\to B$$

Het **domein** van R

- = de verzameling van alle punten van waaruit een pijl vertrekt
- $= \{a \in A : \exists b \in B \text{ waarvoor } (a, b) \in R\}$

Het **bereik** of **codomein** van R

- = de verzameling van alle punten waarin in een pijl toekomt
- $= \{b \in B : \exists a \in A \text{ waarvoor } (a, b) \in R\}$

Relatie

Toepassingen:

Wiskunde zelf

Programmeertalen: functies, methoden, procedures, ...

Relationele databanken

identifier nam		label	price_per_kilo	maturity	taste	
g_001	Leila	Red Delicious	3.19	Late Sept.	sweet	
g_001	Leila	Braeburn	3.49	Mid. Oct.	sweet/tart	
g_001	Leila	Gala	3.19	Mid. Sept.	sweet	
g_002	Mark	Red Delicious	3.19	Late Sept.	sweet	
g_002	Mark	Braeburn	3.49	Mid. Oct.	sweet/tart	
g_002	Mark	Gala	3.19	Mid. Sept.	sweet	
g_003	Luke	Red Delicious	3.19	Late Sept.	sweet	
g_003	Luke	Braeburn	3.49	Mid. Oct.	sweet/tart	
g_003	Luke	Gala	3.19	Mid. Sept.	sweet	
g_004	Sarah	Red Delicious	3.19	Late Sept.	sweet	
g_004	Sarah	Braeburn	3.49	Mid. Oct.	sweet/tart	
g_004	Sarah	Gala	3.19	Mid. Sept.	sweet	

Tastas Variati

Functie, afbeelding, bijectie, injectie en surjectie

Afhankelijk van bijkomende eigenschappen, kan men een relatie verder classificeren

speciale relatie van A naar B	# pijlen vertrekkend uit punt van A	# pijlen toekomend in punt van B		
functie	≤ 1	_		
afbeelding	1	-		
bijectie	1	1		
injectie	≤ 1	≤ 1		
surjectie	1	≥ 1		

betekent 'niet nader gespecificeerd'

Functie, afbeelding, bijectie, injectie en surjectie

Voorbeeld:

$$R = \{(q, q') \in \mathbb{Q} \times \mathbb{Q} \colon q' = q^2\}$$

Vanuit elk punt vertrekt sowieso een pijl (want elke breuk heeft een kwadraat in Q)

speciale relatie van A naar B	# pijlen vertrekkend uit punt van A	# pijlen toekomend in punt van B			
functie	≤ 1	-			
afbeelding	1	-			
bijectie	1	1			
injectie	≤ 1	≤ 1			
surjectie	1	≥ 1			

Niet in elk punt komt een pijl toe; in de meeste punten komen 2 pijlen toe bijv. in 2 komt geen pijl toe, in 4 komen twee pijlen toe

Dus: R is een functie en afbeelding, maar geen bijectie, injectie of surjectie

Aantal elementen

Verzamelingen A en B bevatten evenveel elementen \Leftrightarrow er bestaat een bijectie van A naar B (of omgekeerd)

Is intuïtief voor eindige verzamelingen

Ook voor **oneindige** verzamelingen?

Bijv. bestaat er een bijectie van $\mathbb N$ naar $\mathbb Z$?

Ja!

$$R: \mathbb{N} \to \mathbb{Z}: n \mapsto \begin{cases} \frac{n}{2} & \text{als } n \text{ even} \\ \frac{n+1}{2} & \text{als } n \text{ oneven} \end{cases}$$

Dus N en Z bevatten evenveel elementen

Aftelbaar en onaftelbare verzamelingen

Er wordt onderscheid gemaakt tussen

Eindig aftelbare verzameling: iedere eindige verzameling is aftelbaar

Oneindig aftelbare verzameling: er bestaat een bijectie met N

Oneindig overaftelbare verzameling: er bestaat geen bijectie met N

Grafisch bewijs: Q is aftelbaar

	1	2	3	4	5	Ó	7	8	
1	1/1	$\frac{1}{2}$ -	$\rightarrow \frac{1}{3}$	$\frac{1}{4}$ -	$\frac{1}{5}$	$\frac{1}{6}$	$\frac{1}{7}$	1 8	
2	$\frac{2}{1}$	2 1	$\frac{2}{3}$	2 K	$\frac{2}{5}$	2 K	$\begin{array}{c} \frac{1}{7} \\ \frac{2}{7} \\ \frac{3}{7} \end{array}$	2 8	
3	3 1	$\frac{3}{2}$	3 4	3 4	3 K	3 6 4 6 5 6 6 6 7 6 8 6		1 8 2 8 3 8 4 8 5 8 6 8 7 8 8 8	
4	4/1	***************************************	$\frac{4}{3}$	4 K	3 5 4 5 5 5 6 5 7 5 8 5	$\frac{4}{6}$	4 7 5 7 6 7 7	4 8	
5	5 1	$\frac{5}{2}$	5 K	5 4 6 4 7 4 8 4	5 5	<u>5</u>	5	5 8	
б	$\frac{6}{1}$	*	5 3	6 4	<u>6</u> 5	6	<u>6</u> 7	<u>6</u> 8	
7	7 1	$\frac{7}{2}$	7 7 3 8 3	7/4	7/5	7/6	$\frac{7}{7}$	7 8	
8	8	$\frac{8}{2}$	8 3	8 4	8 5	8	8 7	8	
:	:								

Eigenlijk is dit een surjectie i.p.v. een bijectie, maar dat is nog sterker dan een bijectie (we tellen soms dubbel), dus zeker aftelbaar

Is R aftelbaar of overaftelbaar? Het diagonaalargument van Cantor

```
Gerelateerde vraag: is [0,1] overaftelbaar?
Voorstel bijectie van N naar [0,1]:
                  0 \to 0.2718...
                  1 \rightarrow 0.4679...
                  2 \rightarrow 0.4976...
                  3 \rightarrow 0.9999...
                  . . .
         Construeer nu als volgt een getal r :
                  0.
                  1e decimaal ≠ 2
                  2e decimaal ≠ 6
                                                                  Dan: r komt niet aan bod in "bijectie"
                  3e decimaal ≠ 7
                                                                  Dus: [0,1] is overaftelbare verzameling
                                                                  En bijgevolg: ℝ is overaftelbaar
                  4e decimaal ≠ 9
                  . . .
```

(bijkomende voorwaarde : geen 0 of 9 gebruiken, bv. 0.6999... = 0.7000...)

Orderelaties: partieel vs totaal, gewoon vs strikt

R is een partiële orderelatie in $V \Leftrightarrow$

```
reflexiviteit \forall x \in V: (x, x) \in R
anti-symmetrie \forall x, y \in V: (x, y) \in R en (y, x) \in R \Rightarrow x = y
transitiviteit \forall x, y, z \in V: (x, y) \in R en (y, z) \in R \Rightarrow (x, z) \in R
```

R is een totale orderelatie in $V \Leftrightarrow$

$$\forall x, y \in V : (x, y) \in R \text{ of } (y, x) \in R$$

Strikte orderelaties zijn niet-reflexief: alle (x, x)-pijlen vallen weg

Voorbeelden:

- \subset in de machtsverzameling $\mathcal{P}(A)$ van een verzameling A
- ≤ en < bij natuurlijke getallen

Oefening

Classificeer volgende relaties (partiële/totale orde, strikte orde, geen orde)

- 1. Relatie R_1 : '... deelt ...' in {1, 2, 3, ..., 12}
- 2. Relatie R_2 : '... heeft dezelfde ouders als ...'