Modelo e metodologia usada para o artigo "Como combater o inimigo epidémico invisível e vencer?"

Ganna Rozhnova, João Nogueira, Paulo Ferreira

1. Descrição do modelo usado

Para modelar a propagação da epidemia de COVID-19 em Portugal, consideramos um modelo de transmissão de SARS-CoV-2 descrito no estudo orientado por Ganna Rozhnova [7], co-autora deste artigo, e aplicado muito recentemente para compreender o caso de outros países Europeus. Trata-se de um modelo de transmissão de doença infecciosa (um modelo tipo SEIR) que descreve o número de casos diários diagnosticados e ativos em Portugal numa população estratificada por posição relativa à doença, tal como ilustrado na Figura S1.

Figura S1: Esquema do modelo de transmissão de SARS-CoV-2 utilizado. Setas pretas mostram as transições epidemiológicas. Setas vermelhas indicam compartimentos que contribuem para a força da infeção.

No modelo cada indivíduo é classificado por suscetível (S), exposto (E), infecioso com sintomas leves (I_m), infecioso com sintomas severos (I_s), diagnosticado e isolado (I_d), e recuperado após sintomas leves (R_m) e severos (R_s). Indivíduos suscetíveis (S) passam a expostos (E) por contacto com indivíduos infetados (I_m e I_s) com força de infeção λ_{inf} . Indivíduos expostos (E) ficam infecciosos a uma taxa α ; uma proporção P dos indivíduos infetados irá para o compartimento I_m e outra (I-P) para o compartimento I_s . Assumimos que indivíduos com sintomas leves (I_m) não precisam de atenção médica, e recuperam sem ser diagnosticados (R_m) com uma taxa γ_m sem saber que tiveram a doença. Indivíduos com sintomas severos (I_s) são diagnosticados a uma taxa v e conhecem o seu estado quando diagnosticados. Depois de detectados são mantidos em isolamento (I_d) até recuperarem com uma taxa γ_s ou até ocorrer o óbito a uma taxa η . Indivíduos diagnosticados assumem-se em perfeito isolamento e, por isso, não contribuem para

as cadeias de transmissão. Indivíduos recuperados não são novamente infetados. A infecciosidade dos indivíduos com sintomas leves é mais baixa com um fator de $0 \le \sigma \le I$ do que a infecciosidade de indivíduos com sintomas severos.

Com o modelo podemos fazer projeções para cada uma das variáveis independentes $(S, E, I_m, I_s, I_d, R_m, R_s)$ mas a que usámos para o artigo foi a variável de número de casos diagnosticados (I_d) conforme no diagrama da Figura S1.

O modelo de transmissão usado é descrito pelo seguinte sistema de equações diferenciais ordinárias:

$$\frac{dS(t)}{dt} = -S(t)\lambda_{inf}(t)$$

$$\frac{dE(t)}{dt} = S(t)\lambda_{inf}(t) - \alpha E(t)$$

$$\frac{dI_m(t)}{dt} = p\alpha E(t) - \gamma_m I_m(t)$$

$$\frac{dI_s(t)}{dt} = (1 - p)\alpha E(t) - \nu I_s(t)$$

$$\frac{dI_d(t)}{dt} = \nu I_s(t) - \gamma_s I_d(t) - \eta I_d(t)$$

$$\frac{dR_m(t)}{dt} = \gamma_m I_m(t)$$

$$\frac{dR_s(t)}{dt} = \gamma_s I_d(t)$$

onde $\lambda_{inf}(t) = \frac{\beta}{N(t)} [\sigma I_m(t) + I_s(t)]$, e $N(t) = S(t) + E(t) + I_m(t) + I_s(t) + R_m(t) + R_s(t)$ é o número de indivíduos que participam no processo de contacto.

Tabela S1. Valores dos parâmetros epidemiológicos

Parâmetro		Valor	Fonte
Número básico de reprodução	R_0	6.45	Por ajuste do modelo aos casos ate dia 25 de marco [2]
Probabilidade de transmissão por contato com I_s	ϵ	0.124	A partir de $R_0 = \beta [p\sigma/\gamma_m + (1-p)/\nu]$
Taxa de infeção de transmissão por contato com I_s	β	1.697 /dia	$\beta = c\epsilon$
Taxa média de contato (por pessoa)	С	13.74 /dia	Valor médio europeu obtido a partir de Mossong et al [1]
Infecciosidade relativa dos infetados leves (I_m)	σ	50%	Assumido
Proporção dos infetados leves (I_m)	p	80%	Centro Europeu de Prevenção e Controlo de Doenças [3]
Período de latência	$^{1}/_{\alpha}$	4 dias	Menor do que o período de incubação [5, 6]
Período de infecção severa até diagnóstico para I_s	$1/_{\nu}$	5 dias	Li et al [5]
Período de recuperação para os infeccionados leves (I_m)	$^{1}/_{\gamma_{m}}$	7 dias	Li Xingwang†
Período de recuperação para diagnosticados (I_d)	$^{1}/_{\gamma_{s}}$	14 dias	WHO [4]
Taxa de fatalidade dos casos verificados dos infeccionados diagnosticados	f	1.3%	A partir dos casos verificado até dia 24 de março [2]
Taxa de mortalidade associada dos infeccionados diagnosticados	η	0.00094 /dia	$\eta = \gamma_s f/(1-f)$

[†] Perito da Comissão Nacional de Saúde da China

2. Descrição da estimação dos parâmetros do modelo

A estimação dos parâmetros do modelo foi feita usando dados sobre o número de casos diários ativos em Portugal, segundo o Boletim Diário da Direção Geral de Saúde [2]. Os dados foram partilhados em dois intervalos: (i) desde o dia do anúncio dos primeiros casos diagnosticados (2 de março) até ao dia da declaração de Estado de Emergência em Portugal (18 de março); (ii) dias seguintes até ao dia 25 de marco.

O método utilizado foi a de regressão com mínimos quadrados entre $I_d(t)$ e o número de casos diários ativos em Portugal [2]. No primeiro intervalo usamos como variáveis R_θ e $I_m(0) + I_s(0)$ no início da epidemia. No segundo intervalo reduzimos a taxa media de contacto c enquanto R_θ foi fixo no valor estimado para o primeiro intervalo.

Os valores dos restantes parâmetros epidemiológicos estão indicados na Tabela S1. Considerámos a população residente em Portugal no dia 2 de marco de 10.2 milhões (P). Introduzindo o número inicial total de infetados $I(0) = I_m(0) + I_s(0)$, assumimos que o número inicial de infeções com sintomas leves e o com sintomas graves foram $I_m(0) = 0.8I$ e $I_s(0) = 0.2I$ de acordo com a Tabela S1. As condições iniciais usadas nas restantes variáveis do modelo foram $I_a(0) = 2$ (número de casos diagnosticados anunciados no dia 2 de março), $R_m(0) = 0$, $R_s(0) = 0$, $E(0) = c \times (I_m(0) + I_s(0))$ e $S(0) = P - I_d(0) - I_m(0) - I_s(0) - R_m(0) - R_s(0) - E(0)$. Usando o método descrito acima, obtivemos os valores $R_0 = 6.45$ e I(0) = 12 no primeiro intervalo e a redução da taxa de contacto cerca de 50% no segundo intervalo, ou seja c = 6.87 por dia.

Na Figura S2 temos uma ilustração da curva de I_d (a vermelho), em escala logarítmica, com os valores de R_0 e I(0) e c obtidos com a regressão; os pontos representam o número de casos confirmados ativos anunciados pela DGS [2]. O código em Mathematica usado para a execução do modelo pode ser encontrado em [8]; uma implementação do modelo em Python pode ser encontrada [9].

Figura S2: Gráfico em escala logarítmica da curva da variável I_d do modelo (a vermelho), e pontos correspondentes aos números de casos diagnosticados ativos desde o dia 2 de março até ao dia 25 de março. A linha a tracejado indica a data de declaração de Estado de Emergência (18 de março).

Referências

- [1] https://journals.plos.org/plosmedicine/article?id=10.1371/journal.pmed.0050074
- [2] https://covid19.min-saude.pt/ponto-de-situacao-atual-em-portugal/
- [3] https://www.ecdc.europa.eu/en/current-risk-assessment-novel-coronavirus-situation
- [4] https://www.who.int/dg/speeches/detail/ who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---24-february-2020
- [5] https://www.nejm.org/doi/full/10.1056/NEJMoa2001316
- [6] https://www.eurosurveillance.org/content/10.2807/1560-7917.ES.2020.25.5.2000062
- [7] https://www.medrxiv.org/content/10.1101/2020.03.12.20034827v1
- [8] https://github.com/lynxgav/COVID19-Portugal
- $[9] \ \underline{https://www.dropbox.com/sh/eoky0q8fr1eb3yx/AACUpX7Pk2GyZbTdgDiggOUoa?dl=0}$

Ganna Rozhnova, Professora Auxiliar, Centro Médico Universitário, Universidade de Utrecht, The Netherlands; Centro de Controle de Doenças Infecciosas, Instituto Nacional de Saúde Pública e Meio Ambiente, Bilthoven, The Netherlands; BiolSI – Biosystems & Integrative Sciences Institute, Faculdade de Ciencias, Universidade de Lisboa, Lisboa, Portugal

João Nogueira, Professor Auxiliar, Universidade de Coimbra, Departamento de Matemática, Centro de Matemática da Universidade de Coimbra.

Paulo Ferreira, Professor Catedrático, Departamento de Engenharia Mecânica, Instituto Superior Técnico, Universidade de Lisboa; Diretor do Centro de Microscopia Avançada, Laboratório Ibérico Internacional de Nanotecnologia (INL), Braga; Professor Catedrático, The University of Texas at Austin, EUA.