Register No:						

Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam – 603 110.

(An Autonomous Institution, Affiliated to Anna University, Chennai)

B.E. / B.Tech. End Semester Theory Examinations, April/May 2023.

Fourth Semester

Information Technology

UIT2404 AUTOMATA THEORY AND COMPILER DESIGN

Time: Three Hours Maximum: 100 Marks

K1: Remembering K2: Understanding K3: Applying K4: Analyzing K5: Evaluating

the state of the state of	
CO1:	Construct automata, regular expressions for any pattern.
CO2:	Write Context free grammar for any construct.
CO3:	Build the different Phases of the compiler and apply the various optimization techniques.
CO4:	Design Turing machine for a given language
CO5:	Explain decidability, semi-decidability, and undecidability

 $Part - A (5 \times 2 = 10 Marks)$

		KL	СО	PI
1.	Write the regular expressions for an identifier and a constant.	K1	CO1	1.1.1 1.4.1 1.4.2 2.1.3
2.	List out any two reasons to group the phases of a compiler.	•K2	CO2	1.1.1 1.3.1 1.4.1 2.1.3
3.	List four error recovery mechanisms used in predictive parsing technique.	K1	CO3	1.4.1 1.4.2 1.1.2 2.2.2
4.	Compare the Turing machine with DFA.	K2	CO4	2
5.	Define the Rice theorem.	K1	CO5	2

 $Part - B (5 \times 6 = 30 Marks)$

	KL	CO	PI
6. Build a CFG for the RE (0 1)*111.	К3	CO1	1.1.1 1.4.1 1.4.2 2.1.3

7.	Consider the context-free grammar $X \to XX^* \mid XX^+ \mid a$ Give the leftmost derivation, rightmost derivation, and parse tree for the string " aa^+a^* ". Is the grammar ambiguous or unambiguous? Justify?	K3	CO2	1.1.1 1.3.1 1.4.1 2.1.3
8.	Explain the working of recursive descent parser with an example.	K2	CO3	1.4.1 1.4.2 1.1.2 2.2.2
9.	Construct a turning machine for language L={a ⁿ b ⁿ }	K3	CO4	3.2.1 3.2.2. 13.1.1
10.	When do we say a problem is decidable? Give an example of undecidable problem.	K2	CO5	3.1.5 13.1.1

		Part – C (5×12)	2 = 60 Marks			
				KL	СО	PI
11.	a) Determine whether define the same langu		sions (ab)* and a*b*	К3	CO1	1.1.1 1.4.1 1.4.2 2.1.3
	b) Compare Nondeter Deterministic Finite		omata with	К3	CO1	1.1.1 1.4.1 1.4.2 2.1.3
		(Or	•)			
12.	Construct NFA for the Convert the above con	e following regular nstructed NFA to m	expression (x/y)* xyy. iinimized DFA.	К3	CO1	1.1.1 1.4.1 1.4.2 2.1.3
13.	grammar E→E@E E%E The associativity and below. Operators @ and % \$ and & ^	Precedence Low Medium High Ambiguity, construction	mmar to unambiguous E (E) id operators are given Associativity right-associative left-associative Right-associative. ot the parse tree for the (7 Marks)	К3	CO2	1.1.1 1.3.1 1.4.1 2.1.3

UIT2404

	b) Convert the following Con- Normal Form. $S \to XA BB$ $B \to b SB$ $X \to b$ $A \to a$	itext Free Gran	nmar to Chomsky's (5 marks)	К3	CO2	1.1.1 1.3.1 1.4.1 2.1.3
		(Or)				
14	a) Remove the useless symbol grammar: S -> aB / bX A -> Bad / bSX / a B -> aSB / bBX	ol from the give	en context free (7 Marks)	K4	CO2	1.1.1 1.3.1 1.4.1 2.1.3
	b) Remove unit production from the following $S \rightarrow XY, X \rightarrow a, Y \rightarrow Z \mid b, Z \rightarrow M, M \rightarrow N, N \rightarrow a$ (5 marks)				CO2	1.1.1 1.3.1 1.4.1 2.1.3
15.	Construct LR(0) parsing table for the following grammar. Explain step by step procedure. Test the string 'bbba' is the valid or not $S \rightarrow a Aa B$ $A \rightarrow Abb$ $B \rightarrow Aa b$				CO3	1.4.1 1.4.2 1.1.2 2.2.2
		(Or)				
16.	% Lo	E) id		K3	CO3	1.4.1 1.4.2 1.1.2 2.2.2
	Test if the string a & b ^ (c orresponding parse tree.					

UIT2404

17.	a) Consider the grammar with the following translation rules and E as the start symbol. Compute E.val for the root of the parse tree for the expression: 3^12@6^2 (8 marks) E -> E ^ T { E.val = E.val * T.val } T	К3	CO3	1.4.1 1.4.2 1.1.2 2.2.2
	b) Draw a Turing machine that subtracts two numbers. Explain with an example. (4marks)	K3	CO4	3.2.1 3.2.2. 13.1.1
	(Or)			
18.	a) Express the Syntax Directed Translation(SDT) to generate the syntax tree for the expression. Draw the SDT annotated parse tree for the following expressions $(\mathbf{w}^*\mathbf{x}) + (\mathbf{y}/\mathbf{z})$ (8 marks)	К3	CO3	1.4.1 1.4.2 1.1.2 2.2.2
	b) Difference between Turing machine and Universal Turing machine (4 marks)	K3	CO4	3.2.1 3.2.2. 13.1.1
19.	a) Describe the important features of decidable, undecidable problems, and semi-decidability problems. Explain with an example. (7 marks)	K3	CO5	3.1.5 13.1.1
17.	b) Write the differences between recursive and recursively enumerable languages. (5 marks)	K3	CO5	3.1.5
	(Or)			
20.	a) Explain the two ways of representing the Post Corresponding problems with an example. (7 marks)	K3	CO5	3.1.5
	b) Find whether the lists M = (abb, aa, aaa) and N = (bba, aaa, aa) have a Post Correspondence Solution. (5 marks) K	3 CO:	3.1.5