Recuperación de Información Multimedia

Detección de Bordes

CC5213 – Recuperación de Información Multimedia

Departamento de Ciencias de la Computación Universidad de Chile Juan Manuel Barrios – https://juan.cl/mir/ – 2020

Gradiente (eje x)

-1	0	1
-1	0	1
-1	0	1

Gradiente (eje y)

-1	-1	-1
0	0	0
1	1	1

$$\vec{\nabla}I = \begin{pmatrix} \frac{\partial I}{\partial x} \\ \frac{\partial I}{\partial y} \end{pmatrix} = \begin{pmatrix} I_x \\ I_y \end{pmatrix}$$

Magnitud del Gradiente:

$$||\vec{\nabla}I(i,j)|| = \sqrt{I_x(i,j)^2 + I_y(i,j)^2}$$

$$\approx |I_x(i,j)| + |I_y(i,j)|$$

Orientación del Gradiente:

$$\theta(i,j) = \arctan\left(\frac{I_y(i,j)}{I_x(i,j)}\right)$$

Prewitt

-1	0	1
-1	0	1
-1	0	1

-1	-1	0
-1	0	1
0	1	1

-1	-1	-1
0	0	0
1	1	1

0	1	1
-1	0	1
-1	-1	0

Sobel:

-1	0	1
-2	0	2
-1	0	1

Sobel (descomposición):

-1	0	1
-2	0	2
-1	0	1

-1	0	1
----	---	---

1
2
1

Scharr

-3	0	3
-10	0	10
-3	0	3

Ejemplo

Ejemplo

×

l_y

Ejemplo

Magnitud del gradiente

Aplicando un umbral

Kernel

0	1	0
1	-4	1
0	1	0

b,e

Segunda Derivada Discreta

$$\frac{\partial^2 f}{\partial^2 x^2} = f(x+1,y) + f(x-1,y) - 2f(x,y)$$

$$\frac{\partial^2 f}{\partial^2 y^2} = f(x, y + 1) + f(x, y - 1) - 2f(x, y)$$

20

Laplaciano

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) + f(x,y+1) + f(x,y-1)]$$

$$-4f(x,y)$$

Kernels basados en Laplaciano

0	1	0	1	1	1
1	-4	1	1	-8	1
0	1	0	1	1	1
0	-1	0	-1	-1	-1
-1	4	-1	-1	8	-1
0	-1	0	-1	-1	-1

Laplaciano

- El Laplaciano es muy susceptible a ruido
- Es usual primero aplicar un suavizado gaussiano y luego el Laplaciano
- Ambos procesos unidos se conocen como Laplaciano de Gaussiana (LoG)

$$h(r) = -e^{-\frac{r^2}{2\sigma^2}} \qquad r^2 = x^2 + y^2$$

$$\nabla^2 h(r) = -\left[\frac{r^2 - \sigma^4}{\sigma^4}\right] e^{-\frac{r^2}{2\sigma^2}}$$

Ver Gonzalez, cap. 10

Ver Learning OpenCV, cap.6

Canny

- Se basa en el criterio de primera y segunda derivada para detectar bordes delgados
- Seleccionar pixeles de borde en forma incremental siguiendo la dirección perpendicular al gradiente
- Aplicar diferentes filtros gaussianos para obtener bordes a distintas escalas y unirlos
- Descartar pixeles cuya magnitud del gradiente no sea un máximo local en una vecindad 3x3

Canny

- Usar dos umbrales de selección: T_{sup} y T_{inf}, el mayor 2 a 3 veces más grande que el menor
 - □ Pixeles con gradiente ≥ T_{sup} es seleccionado, se recorren vecinos perpendicular al gradiente
 - □ Pixeles con gradiente < T_{inf} rechazado
 - □ Pixeles con gradiente ≥ T_{inf} y con al menos un vecino ya seleccionado también es seleccionado

M

Detección según Canny

$$T_{sup}$$
=500 T_{inf} =10

$$T_{sup} = 500 T_{inf} = 100$$

 T_{sup} =500 T_{inf} =400

Diferencia de Gaussianas (DoG)

- El blur afecta una imagen mayormente en zonas con gran variación en la intensidad
- Al comparar la imagen original con la imagen borrosa se pueden localizar las zonas más afectadas
- Filtro gaussiano se usa para eliminar ruido
- Usar dos filtros gaussianos: uno pequeño para eliminar ruido y uno más grande para restar

М

Ejemplo

Comparación DoG vs LoG

$$L = \sigma^{2} \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

$$G(x, y, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Bibliografía

- Digital Image Processing. González et al. 2008.
 - □ Cap. 10
- The Essential Guide To Image Processing. Bovik. 2009.
 - □ Cap. 19
- Learning OpenCV. Bradski et al. 2008.
 - □ Cap. 6
- Multimedia Retrieval. Blanken et al. 2007.
 - □ Cap. 5 (canny)

