MCU			
Période et fréquence		$T = \frac{1}{f}$	T : période (s) f : fréquence (Hz)
Vitesse linéaire	v (m/s)	$v = \frac{2\pi R}{T}$	R : rayon (m) T : période (s)
Vitesse angulaire	ω (rad/s)	$\omega = \frac{2\pi}{T} = \frac{v}{R}$	T : période (s) v : vitesse linéaire (m/s) R : rayon (m)
Accélération centripète	a _{cp} (m/s²)	$a_{cp} = \frac{v^2}{R} = \omega^2 R$	v : vitesse linéaire (m/s) R : rayon (m) ω : vitesse angulaire (rad/s)
Force centripète	F _{cp} (N)	$F_{cp} = \frac{mv^2}{R} = m\omega^2 R$	m : masse du corps en rotation (kg) v : vitesse linéaire (m/s) R : rayon (m) ω : vitesse angulaire (rad/s)
Virages horizontaux	v _{max} (m/s)	$v_{ m max} = \sqrt{\mu g R}$	v _{max} : vitesse maximale possible (m/s) μ : coefficient d'adhérence g : champ de pesanteur (m/s² ou N/kg) R : rayon du virage (m)

MRU			
vitesse moyenne	v (m/s)	$v = \frac{d}{\Delta t}$	d : distance parcourue (m) Δt : intervalle de temps (s)
position instantanée	x (m)	$x(t) = x_0 + v_0 t$	<pre>x₀: position initiale (m) v₀: vitesse initiale (m/s) t:instant (s)</pre>

MRUA			
distance parcourue	x (m)	$x(t) = x_0 + v_0 t + \frac{at^2}{2}$ $x(t) = x_0 + \frac{1}{2}(v_0 + v)t$	x ₀ : position initiale (m)
			v ₀ : vitesse initiale (m/s)
			a : accélération (m/s²)
			t:instant(s)
			v : vitesse à l'instant t (m/s)
vitesse instantanée	v (m/s)	$v(t) = v_0 + at$	v ₀ : vitesse initiale (m/s)
			a : accélération (m/s²)
			t : instant (s)
		$v^2 = v_0^2 + 2a(x - x_0)$	v ₀ : vitesse initiale (m/s)
			a : accélération (m/s²)
			x :distance parcourue (m)
vitesse moyenne	v _m (m/s)	$v_m = \frac{1}{2}(v_0 + v)$	v ₀ : vitesse initiale (m/s)
			v : vitesse atteinte à l'instant où l'on calcule la vitesse moyenne (m/s)
Chute libre	y (m)	$y(t) = \frac{gt^2}{2}$	g : champ de pesanteur (m/s² ou N/kg)
			t:instant(s)
	v (m/s)	v(t) = gt	g : champ de pesanteur (m/s² ou N/kg)
		$v(t) = \sqrt{2gy}$	t:instant(s)
			y : position à l'instant t

Oscillations			
élongation de la source	y (m)	$y(t) = A\sin(\omega t + \varphi)$	A : amplitude (m)
			ω = $2\pi f$: vitesse angulaire (rad/s)
			$f = \frac{1}{T}$: fréquence (Hz)
			T : période (s)
			t:temps(s)
			φ : constante de phase (rad)
concordance de phase		$\Delta t = 2kT$	Δt : retard (s)
concordance de priase			T : période (s)
opposition de phase		$\Delta t = (2k+1)\frac{T}{2}$	Δt : retard (s)
opposition de pridse			T : période (s)
ressort ; vitesse	ω (rad/s)	$\omega = \sqrt{\frac{k}{m}}$	k : constante de raideur du ressort (N/m)
angulaire	w (rau/s)		m : masse de l'objet oscillant
loi de Hooke pour les	F (N)	F = -ky	k : constante de raideur (N/m)
objets élastiques	(14)	r – ky	y : élongation (m)
énergie potentielle	E _{pe} (J)	$E_{Pe} = \frac{1}{2} k y^2$	k : constante de raideur (N/m)
élastique			y : élongation (m)
pendule simple ; vitesse	ω (rad/s)	$\omega = \frac{\overline{g}}{g}$	g : champ de pesanteur (m/s² ou N/kg)
angulaire	w (rud) sy	$\omega = \sqrt{\frac{g}{L}}$	L : longueur du pendule (m)
	v (m/s)	$v(t) = A\omega\cos(\omega t + \varphi)$	A : amplitude (m)
			$\omega = 2\pi f$: vitesse angulaire (rad/s)
vitesse d'oscillation			$f = \frac{1}{T}$: fréquence (Hz)
vicesse a oscillation			T : période (s)
			t : temps (s)
			φ : constante de phase (rad)
	a (m/s²)	$a(t) = -A\omega^2 \sin(\omega t + \varphi)$	A : amplitude (m)
accélération			$\omega = 2\pi f$: vitesse angulaire (rad/s)
			$f = \frac{1}{T}$: fréquence (Hz)
			T : période (s)
			t : temps (s)
			ф : constante de phase (rad)
	<u> </u>	1	<u> </u>