Ejercicios Tema 4 - Contraste hipótesis. Taller 1

Ricardo Alberich, Juan Gabriel Gomila y Arnau Mir

Curso completo de estadística inferencial con R y Python

Contenidos

1	Con	ntraste hipótesis taller 1.	1
	1.1	Ejercicio 1	1
	1.2	Ejercicio 2	9
	1.3	Ejercicio 3	
	1.4	Ejercicio 4	6
	1.5	Ejercicio 5 EXTRA VOLUNTARIO	7
	1.6	Ejercicio 6 EXTRA VOLUNTARIO	8

1 Contraste hipótesis taller 1.

Los siguientes ejercicios son de puro cálculo. Seguid la teoría y utilizar R para el cálculo de los estadísticos y de los cuantiles de los p-valores.

1.1 Ejercicio 1

En muestra aleatoria simple de tamaño n=36 extraída de una población normal con $\sigma^2=12^2$ hemos obtenido la siguiente media muestral $\overline{x}=62.5$, Contrastar al nivel de significación $\alpha=0.05$, la hipótesis nula $\mu=61$ contra la alternativa $\mu<60$. Resolver calculando el p-valor del contraste.

1.1.1 Solución

Tenemos que contrastar

$$\begin{cases} H_0: \mu = 60 \\ H_1: \mu < 60 \end{cases}$$

```
sigma2=12^2
sigma2
```

[1] 144

```
n=36
n
```

[1] 36

```
media_muestral=62.5
media_muestral
```

[1] 62.5

```
alpha=0.05
alpha
```

[1] 0.05

```
mu0=60
mu0
```

[1] 60

```
z0 = (media_muestral-mu0)/sqrt(sigma2/n)
z0
```

[1] 1.25

```
#valor critico para mu< 60
valor_critico= qnorm(alpha)
valor_critico</pre>
```

[1] -1.644854

Bajo estas condiciones, normalidad muestra aleatoria simple y con los datos de la muestra el estadístico de contraste es:

$$z_0 = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{62.5 - 60}{\frac{12}{\sqrt{36}}} = 1.25$$

La región de rechazo contra $H_1: \mu < 60$ es rechazar H_0 si

$$z_0 = 1.25 \le z_\alpha = z_{0.05} = -1.6448536,$$

como NO se cumple la condición concluimos que NO podemos rechazar H_0 contra H_1 ; la muestra no da evidencias suficientes para considerar que $\mu < 60$ al nivel de significación $\alpha = 0.05$.

Por último el p-valor para esta alternativa es

```
p_valor=pnorm(z0) # 2 P(>>|z0|)
p_valor
```

[1] 0.8943502

Como el nivel del significación $\alpha=0.05$ es menor que el p-valor=0.8943502 no podemos rechazar la hipótesis nula.

1.2 Ejercicio 2

Hemos obtenido una media muestral de $\overline{x}=72.5$ de una muestra aleatoria simple de tamaño n=100 extraída de una población normal con $\sigma^2=30^2$. Contrastar al nivel de significación $\alpha=0.10$, la hipótesis nula $\mu=77$ contra las siguientes tres alternativas $\mu\neq70$, $\mu>70$, $\mu<70$. Calcular el p-valor en cada caso.

1.2.1 Solución

Tenemos que contrastar $\mu = 70$ con cada una (por separado) de las tres alternativas, la población es normal los contrastes son:

$$\left\{ \begin{array}{l} H_0: \mu = 70 \\ H_1: \mu \neq 70, \mu > 70, \mu < 70 \end{array} \right.$$

Cargamos los datos del enunciado

```
sigma2=30^2
sigma2
## [1] 900
sigma=sqrt(sigma2)
sigma
## [1] 30
n=100
## [1] 100
media_muestral=72.5
media_muestral
## [1] 72.5
alpha=0.1
alpha
## [1] 0.1
mu0=70
mu0
## [1] 70
z0 = (media_muestral-mu0)/sqrt(sigma2/n)
z0
```

[1] 0.8333333

Bajo estas condiciones, normalidad muestra aleatoria simple y esto datos el estadístico de contraste es

$$z_0 = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{72.5 - 70}{\frac{30}{\sqrt{100}}} = 0.8333333$$

Ahora para cada opción alternativa los valores críticos son

```
#valores crítico para mu distinto de 70
valor_critico_bilateral= c(-qnorm(1-alpha/2), qnorm(1-alpha/2))
valor_critico_bilateral
```

[1] -1.644854 1.644854

```
#valores crítico para mu menor 70
valor_critico_unilateral_menor= qnorm(alpha)
valor_critico_unilateral_menor
```

[1] -1.281552

```
#valores crítico para mu distinto de 70
valor_critico_unilateral_mayor= qnorm(1-alpha)
valor_critico_unilateral_mayor
```

[1] 1.281552

Ahora tenemos tres casos según H_1 :

- $H_1: \mu \neq 70$ como $z_0 = 0.83333333 \not< -1.6448536$ y $z_0 = 0.83333333 \not> 1.6448536$ NO se cumple la condición de rechazo así que NO podemos rechazar H_0 contra H_1 ; la muestra no da evidencias suficientes para considerar que $\mu \neq 70$ al nivel de significación $\alpha = 0.1$.
- $H_1: \mu < 70$ como $z_0 = 0.8333333 \nleq -1.2815516$ NO se cumple la condición de rechazo así que NO podemos rechazar $H_0: \mu = 70$ contra $H_1: \mu < 70$; la muestra no da evidencias suficientes para considerar que $\mu < 70$ al nivel de significación $\alpha = 0.1$.
- $H_1: \mu > 70$ como $z_0 = 0.83333333 \not> 1.2815516$ NO se cumple la condición de rechazo así que no podemos rechazar $H_0: \mu = 70$ en favor de que $H_1: \mu > 70$; la muestra no da algunas evidencias suficientes para considerar que $\mu > 70$ al nivel de significación $\alpha = 0.1$.

Para cada hipótesis alternativa los p-valores son :

```
2*(1-pnorm(abs(z0))) # Para H_1: mu != 70
```

[1] 0.4046568

```
pnorm(z0) # para H_1: mu<70
```

[1] 0.7976716

```
1-pnorm(z0) # para H_1: mu>70
```

[1] 0.2023284

Como el nivel del significación es $\alpha=0.05$ es menor que el p-valor en cualquiera de los tres casos no podemos rechazar la hipótesis nula.

1.3 Ejercicio 3

En un contraste bilateral, con $\alpha = 0.01$, ¿para qué valores de \overline{X} rechazaríamos la hipótesis nula $H_0: \mu = 70$, a partir de una muestra aleatoria simple de tamaño n = 64 extraída de una población normal con $\sigma^2 = 16^2$?

1.3.1 Solución

Cargamos los datos, la población es normal

```
sigma2=16~2
sigma2
```

[1] 256

```
n=64
n
```

[1] 64

```
alpha=0.01
alpha
```

[1] 0.01

```
\begin{array}{c} \text{mu0=}70\\ \text{mu0} \end{array}
```

[1] 70

```
z0 = (media_muestral-mu0)/sqrt(sigma2/n)
z0
```

[1] 1.25

Bajo estas condiciones, normalidad muestra aleatoria simple y esto datos el estadístico de contraste es

$$z_0 = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} = \frac{72.5 - 70}{\frac{16}{\sqrt{64}}} = 1.25$$

```
#valores crítico para \mu distinto de 70
valor_critico_bilateral= c(qnorm(alpha/2), qnorm(1-alpha/2))
valor_critico_bilateral
```

[1] -2.575829 2.575829

Por lo tanto rechazaremos la hipótesis nula si $z_0=\frac{\overline{x}-70}{\frac{16}{\sqrt{64}}}<-2.5758293$ o $z_0=\frac{\overline{x}-70}{\frac{16}{\sqrt{64}}}>2.5758293$

Despejando \overline{x} de las inecuaciones anteriores obtenemos que rechazaremos H_0 si

$$\overline{x} < 70 + -2.5758293 \cdot \frac{16}{\sqrt{64}} \text{ o } \overline{x} > 70 + 2.5758293 \cdot \frac{16}{\sqrt{64}}.$$

Es decir si $\overline{x} < 64.8483414$ o $\overline{x} > 75.1516586$ rechazaremos la hipótesis nula al nivel de confianza del 1% ($\alpha = 0.1$).

1.4 Ejercicio 4

El salario anual medio de una muestra de tamaño n=1600 personas, elegidas aleatoria e independientemente de cierta población de profesionales de las Tecnologías de la Información y Comunicación (TIC) ha sido de de 45000 euros, supongamos que nos dicen que la desviación típica es $\sigma=2000$ euros

- 1. ¿Es compatible con este resultado la hipótesis nula, H_0 : $\mu = 43500$ contra la alternativa bilateral, al nivel de significación $\alpha = 0.01$?
- 2. ¿Cuál es el intervalo de confianza para μ ?
- 3. Calcular el p-valor del contraste.

1.4.1 Solución

Cargamos datos

```
n=1600
n
```

[1] 1600

```
sigma=4000
sigma
```

[1] 4000

```
sigma2=sigma<sup>2</sup>
sigma2
```

[1] 16000000

```
media_muestral=45000
media_muestral
```

[1] 45000

```
alpha=0.01
alpha
```

[1] 0.01

```
mu0=44900
mu0
```

[1] 44900

```
z0 = (media_muestral-mu0)/sqrt(sigma2/n)
z0
```

[1] 1

Para la primera y la tercera cuestión calculo el p-valor

```
2*(1-pnorm(abs(z0)))
```

```
## [1] 0.3173105
```

Es un p-valor alto así que no podemos rechazar la hipótesis nula.

En la cuestión 2 nos piden intervalo de confianza para μ al nivel del $\alpha=0.01$ es

```
## [1] 44742.42 45257.58
```

Con un nivel de confianza del 99% la media poblacional del sueldo mensual en euros de un empleo TIC está en el intervalo (44742.4170696, 45257.5829304).

1.5 Ejercicio 5 EXTRA VOLUNTARIO

Con los datos del ejercicio anterior, ¿hay evidencia sobre para oponerse la hipótesis nula en los siguientes casos

```
1.  \begin{cases} H_0: \mu = 44000 \\ H_1: \mu > 44000 \\ 2. \end{cases} 
2.  \begin{cases} H_0: \mu = 46250 \\ H_1: \mu > 46250 \end{cases}
```

1.5.1 Solución

Es similar a los ejercicios anteriores

1.6 Ejercicio 6 EXTRA VOLUNTARIO

El peso medio de los paquetes de mate puestos a la venta por la casa comercial MATEASA es supuestamente de 1 Kg. Para comprobar esta suposición, elegimos una muestra aleatoria simple de 100 paquetes y encontramos que su peso medio es de 0.978 Kg. y su desviación típica s=0.10 kg. Siendo $\alpha=0.05$ ¿es compatible este resultado con la hipótesis nula $H_0: \mu=1$ frente a $H_1: \mu\neq 1$? ¿Lo es frente a $H_1: \mu>1$? Calcular el p-valor.

1.6.1 Solución

Es similar a los ejercicios anteriores