

Departamento de Electrónica Laboratorio de Microprocesadores - 86.07

Trabajo Práctico Obligatorio Nº4: Interrupción Externa

Profesor:			Ing. Guillermo Campiglio								
Cuatrimestre/Año:			1°/2020								
Turno de las clases prácticas			Miércoles								
Jefe de trabajos prácticos:			Ing. Pedro Ignacio Martos								
Docente guía:			Ing. Fabricio Baglivo, Ing. Fernando Pucci								
Autor			Seguimiento del proyecto								
Maximiliano	Porta	98800									

Observaciones:							

Fecha	de apro	bación	Firma J.T.P

${\bf \acute{I}ndice}$

1.	Objetivo	2
2.	Descripción	2
	2.1. Introducción	2
	2.2. Desarrollo	
	2.3. Diagrama de Conexión del Circuito Físico	
	2.4. Esquema en Bloques	
	2.5. Materiales Utilizados	
	2.6. Diagrama de Flujo	
	2.7. Lógica del Programa	
	2.8. Links de funcionamiento del circuito	
3.	Código	7
-	3.1. Código Sin Resistencia de Pull-Up	7
	3.2. Código con Resistencia de Pull-Up	8
4.	Resultados y Conclusiones	10
	4.1. Resultados	10
	4.2 Conclusiones	10

1. Objetivo

Consiste en aprender mas código del lenguaje ensamblador, aprender a usar las interrupciones del microcontrolador y ver como funcionan, activando salidas o entradas del mismo, también en ver como cambia el circuito con resistencias de PullUp y sin ella.

2. Descripción

2.1. Introducción

Para el desarrollo de este trabajo de laboratorio se utilizo el diagrama de la Figura 1 y el diagrama de la Figura 2. Se observo en la hoja de datos del Arduino la corriente máxima de entrada/salida (I=20mA), usando las leyes de ohm se obtiene la ecuación 1, con una Resistencia de 220Ω y la tensión para un diodo led verde, se obtuvo que la corriente de salida total es $I_{Out}=10.9mA$, por lo cual es menor a la máxima permitida por pin del arduino. Mediante la programación se busca poder controlar mediante una interrupción externa (INT0-PD2) el encendido de un led (PB1) y en caso de que no se active se mantiene encendido el led (PB0).

Figura 1: Diagrama de conexión sin resistencia de Pull-Up

Figura 2: Diagrama de conexión con resistencia de Pull-Up

$$I_{Led} = \frac{V_{CC} - V_{Led}}{R_{Led}} \tag{1}$$

2.2. Desarrollo

Como se observa en la figura 1, en este caso no se usa la resistencia interna de pull-up, por lo tanto se conecta el pulsador a Vcc y se tiene un resistor de $1K\Omega$ para no exceder la corriente máxima de entrada del dispositivo, en este caso entrara un uno lógico . Para la configuración con la resistencia interna de pull-up como se ve en la figura 2 y como se observa en la figura 3, acá la lógica cambia un poco por que la resistencia de pull-up ya esta alimentada con una tensión positiva por por eso para cerrar el circuito tengo que conectar el pulsador a Gnd, su habilitación depende de valor del flip-flop PORTxn, del flip-flop DDRxn y del bit PUD (PUD: Pull-Up Disable). El bit PUD se encuentra en el Registro I/O denominado SFIOR (SFIOR: Special Function I/O Register, Registro I/O de función especial). Con estos 3 bits configurado DDRxn en 0, PORTxn en 1 y PUD en 0. Esto garantiza un 1 lógico cuando el dispositivo está abierto. El otro extremo del botón o interruptor se conecta a tierra, de manera que cuando se cierra el circuito introduce un 0 lógico, el resistor de Pull-Up evita un corto entre el voltaje de alimentación y tierra.

Figura 3: Diagrama de interno del microcontrolador

2.3. Diagrama de Conexión del Circuito Físico

Figura 4: Diagrama del Circuito Sin Resistencia de Pull-Up

Figura 5: Diagrama del Circuito Con Resistencia de Pull-Up

2.4. Esquema en Bloques

Figura 6: Diagrama en bloques

2.5. Materiales Utilizados

- x1(2.5 Ars)Pulsador de 2 o 4 pines
- x2(14 Ars)Diodo Led verde de 3mm (Alta Luminosidad).
- x1(2.1 Ars)Resistor de 220Ω de carbón 1/4 Watt.
- x1(1.05 Ars) Resistor de $1K\Omega$ de carbón 1/4 Watt.
- 1x(725 Ars)Placa Arduino Uno con USB.
- 1x(96.5 Ars)Placa Experimental.
- 1x(10 Ars)Cables de conexión.
- Costo del Proyecto: 852 Ars

2.6. Diagrama de Flujo

Figura 7: Diagrama de flujo

2.7. Lógica del Programa

Primero habilito las interrupciones externas (INT0) ,luego configuro en el registro de control EICRA, interrupciones por flanco descendente, esto lo logro colocando (1-ISC01 y 0-ISC00), luego tengo dos programas el principal y el de interrupción, el principal se encarga de encender el led en el PB0, luego en el programa de interrupción, activo un contador para que parpadee el led en PB1, y ajusto el delay que desarrolle en el Trabajo Practico 1 para que parpadee a un frecuencia de 1Hz que es lo mismo que 1 segundo, cuando termina, vuelve el programa principal esperando una nueva interrupción.

2.8. Links de funcionamiento del circuito

Sin Resistencia de Pull-Up:https://youtu.be/AOSQOrvcIIc Con Resistencia de Pull-Up:https://youtu.be/TYdiQNyVOFA

3. Código

3.1. Código Sin Resistencia de Pull-Up

.INCLUDE "m328pdef.inc"

. CSEG

.ORG 0X0000

JMP CONFIGURACIONES

ORG INTOaddr ; ES LA POSICION 0X02

JMP INTERRUPCION

ORG INT_VECTORS_SIZE ;52 WORDS EN 328P

CONFIGURACIONES:

LDI R16,0XFF ;CONFIGURO EL PUERTO B

OUT DDRB, R16 ; CONFIGURO EL PUERTO B COMO SALIDA

LDI R16,0X00

OUT PORTB, R16 ;PONGO TODO EN CERO

LDI R16, (1 << ISC01 | 0 << ISC00)

; CONF INTO POR FLANCO DESCENDENTE

STS EICRA, R16 ;SETEO INTO EN 0X69

CLR R16

LDI R16, (1 < < INT0) ; ACTIVO INT0

OUT EIMSK, R16 ;PASO EL REG A 0X1D

CLR R16

SEI ; HABILITO INTERRUPCIONES

MAIN:

SBI PORTB, 0 ; ENCIENDE EL LED 0

JMP MAIN

INTERRUPCION:

CLI

CBI PORTB, 0 ;APAGO EL LED 0

LDI R17,0x05

PARPADEO:

DEC R17

SBI PORTB, 1

CALL DELAY

```
CBI PORTB, 1
         CALL DELAY
         CPI R17,0
         BRNE PARPADEO
         SBI PORTB, 0
         SEI
         RETI
DELAY:
                                    ;CONFIGURO EL DELAY
         LDI R20, 64
    t3: LDI R19, 250
    t2: LDI R18, 250
    t1: NOP
 hasta aca son 4 ciclos de maquina por iteración -> 250ns
         DEC R18
                                    : 250 \times 250 \text{ ns} = 62.5 \text{ us}
         BRNE t1
         DEC R19
         BRNE t2
                                    ; 250 \times 50 \text{ us} = 15.625 \text{ms}
         DEC R20
         BRNE t3
                                    ; 64 \times 15.625 \text{ms} = 1 \text{s} = 1 \text{Hz}
         ; Con esto logre un retardo de Medio Segundo
         ; Vuelve a la linea siguiente de la que fue llamado
3.2.
      Código con Resistencia de Pull-Up
.INCLUDE "m328pdef.inc"
. CSEG
                           ; COMIENZO ESCRITURA EN ROM
                                ; INICIO DE LA ROM
.ORG 0X0000
         JMP CONFIGURACIONES
.ORG INT0addr
                                    ; ES LA POSICION 0X02
         JMP INTERRUPCION
ORG INT VECTORS SIZE
                                    ;52 WORDS EN 328P
CONFIGURACIONES:
         LDI R16,0X00
         OUT DDRD, R16
         LDI R16,0XFF
         OUT PORTD, R16
         ; ACTIVO EL PUERTO D CON RESISTENCIAS DE PULL-UP
         LDI R16,0XFF
                                    ;CONFIGURO EL PUERTO B
         OUT DDRB, R16
                                    ;CONFIGURO EL PUERTO B COMO SALIDA
```

LDI R16,0X00 OUT PORTB, R16 ;PONGO TODO EN CERO LDI R16,(1 << ISC01 | 0 << ISC00); CONF INTO POR FLANCO DESCENDENTE STS EICRA, R16 ;SETEO INTO EN 0X69 CLR R16 ;ACTIVO INTO LDI R16,(1 < < INT0)OUT EIMSK, R16 ;PASO EL REG A 0X1D CLR R16 SEI ; HABILITO INTERRUPCIONES MAIN: SBI PORTB,0 ; ENCIENDE EL LED 0 JMP MAIN INTERRUPCION: CLICBI PORTB, 0 ;APAGO EL LED 0 LDI R17,0x05 PARPADEO: DEC R17 SBI PORTB, 1 CALL DELAY CBI PORTB, 1 CALL DELAY CPI R17,0 BRNE PARPADEO SBI PORTB, 0 SEIRETI DELAY: ;CONFIGURO EL DELAY LDI R20, 64 t3: LDI R19, 250 t2: LDI R18, 250 t1: NOP ; hasta aca son 4 ciclos de maquina por iteración -> 250ns DEC R18 $; 250 \times 250 \text{ ns} = 62.5 \text{ us}$ BRNE t1 DEC R19

BRNE t2

DEC R20

 $; 250 \times 50 \text{ us} = 15.625 \text{ms}$

```
BRNE t3 ; 64 \times 15.625 \text{ms} = 1 \text{s} = 1 \text{Hz} ; Con esto logre un retardo de Medio Segundo RET ; Vuelve a la linea siguiente de la que fue llamado
```

4. Resultados y Conclusiones

4.1. Resultados

Se logro controlar mediante interrupciones externas que el microcontrolador cambie de su programa principal a otro según la interrupción que fue activada, una vez que termina de ejecutar esa interrupción, vuelve al programa original.

4.2. Conclusiones

Aprendí a utilizar las interrupciones del microcontrolador y a ver la diferencia entre usar las resistencias de Pull Up o no usarlas, al usarla se evita que haya un posible cortocircuito entre Vcc y Tierra, también tuve el problema que el pulsador tenia un rebote y me ejecutaba dos veces la interrupción, esto lo solucione cambiando de pulsador.