Rank-69 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_1 + X_0^2 X_2 = 0$$

General information

Number of lines	1
Number of points	3
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	3
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3
Type of lines on points	1^3

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 1 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_7$$

Rank of lines: (33)

Rank of points on Klein quadric: (7)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 3 single points:

The single points on the surface are:

$$0: P_3 = (0,0,0,1)$$
 lies on line ℓ_0

 $1: P_7 = (0, 1, 1, 0)$ lies on line ℓ_0

The single points on the surface are:

2: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_0

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

 $\frac{0}{0}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line in point

The surface has 3 points:

The points on the surface are:

$$0: P_3 = (0,0,0,1)$$

$$2: P_{14} = (0, 1, 1, 1)$$

$$1: P_7 = (0, 1, 1, 0)$$