Computability and Complexity COSC 4200

NL = coNL

A log-space transducer is a TM with

- a read-only input tape,
- a write-only output tape, and
- a read/write work tape.

The head of the output tape cannot move leftward, so it cannot read what has been written. The work tape may contain $O(\log n)$ symbols.

A log-space transducer is a TM with

- a read-only input tape,
- a write-only output tape, and
- a read/write work tape.

The head of the output tape cannot move leftward, so it cannot read what has been written. The work tape may contain $O(\log n)$ symbols.

Definition

A function that is computed by a log-space transducer is called *log-space computable*.

We say that A is log-space mapping reducible to B, and write $A \leq_L B$, if there is a log-space computable function $f: \Sigma^* \to \Sigma^*$

such that for all $w \in \Sigma^*$,

$$w \in A \Leftrightarrow f(w) \in B$$
.

We say that A is log-space mapping reducible to B, and write $A \leq_L B$, if there is a log-space computable function $f: \Sigma^* \to \Sigma^*$

$$w \in A \Leftrightarrow f(w) \in B$$
.

Definition

A language B is NL-complete if

 \bigcirc B is in NL, and

such that for all $w \in \Sigma^*$,

2 every A in NL is log-space reducible to B.

If $A \leq_{\mathrm{L}} B$ and $B \in \mathrm{L}$, then $A \in \mathrm{L}$.

If $A \leq_{\operatorname{L}} B$ and $B \in \operatorname{L}$, then $A \in \operatorname{L}$.

Proof. Let f be the \leq_{L} -reduction and let M be the log-space algorithm for B.

• The basic idea is to compute f(w) and then run M on f(w) like before.

If $A \leq_{\mathrm{L}} B$ and $B \in \mathrm{L}$, then $A \in \mathrm{L}$.

Proof. Let f be the \leq_{L} -reduction and let M be the log-space algorithm for B.

- The basic idea is to compute f(w) and then run M on f(w) like before.
- However, the runtime of f can be polynomial and so the output may have polynomial size. Thus we don't have the space to compute f(w).

If $A \leq_{\operatorname{L}} B$ and $B \in \operatorname{L}$, then $A \in \operatorname{L}$.

Proof. Let f be the \leq_{L} -reduction and let M be the log-space algorithm for B.

- The basic idea is to compute f(w) and then run M on f(w) like before.
- However, the runtime of f can be polynomial and so the output may have polynomial size. Thus we don't have the space to compute f(w).
- Instead, each time M needs a bit of f(w), we recompute f until that bit is output. This way we only need to store one output bit of f at a time.

If $A \leq_{\mathrm{L}} B$ and $B \in \mathrm{L}$, then $A \in \mathrm{L}$.

Proof. Let f be the \leq_{L} -reduction and let M be the log-space algorithm for B.

- The basic idea is to compute f(w) and then run M on f(w) like before.
- However, the runtime of f can be polynomial and so the output may have polynomial size. Thus we don't have the space to compute f(w).
- Instead, each time M needs a bit of f(w), we recompute f until that bit is output. This way we only need to store one output bit of f at a time.
- We use O(log n) space to keep track of where M's tape head is.

If $A \leq_{\mathrm{L}} B$ and $B \in \mathrm{L}$, then $A \in \mathrm{L}$.

Corollary

If any NL-complete problem is in L, then L = NL.

Recall

 $\mathrm{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a directed graph with a path from } s \text{ to } t \}.$

We know that $PATH \in P$ and $PATH \in DSPACE(log^2 n)$.

Theorem

PATH is NL-complete.

PATH is NL-complete.

PATH is NL-complete.

Proof. First, we show that $PATH \in NL$. On input $\langle G, s, t \rangle$ where G has n vertices, our NTM N nondeterministically follows a path of length up n.

PATH is NL-complete.

Proof. First, we show that $PATH \in NL$. On input $\langle G, s, t \rangle$ where G has n vertices, our NTM N nondeterministically follows a path of length up n.

```
N: On input \langle G, s, t \rangle:

let n be the number of vertices in G

let v = s

for i = n down to 1

if (v = t) ACCEPT

if (v has no neighbors) REJECT

nondeterministically choose a neighbor u of v

let v = u

REJECT
```

PATH is NL-complete.

Proof. First, we show that $PATH \in NL$. On input $\langle G, s, t \rangle$ where G has n vertices, our NTM N nondeterministically follows a path of length up n.

```
N: On input \langle G, s, t \rangle:

let n be the number of vertices in G

let v = s

for i = n down to 1

if (v = t) ACCEPT

if (v = t) has no neighbors) REJECT

nondeterministically choose a neighbor u of v

let v = u

REJECT
```

 If there is a path from s to t, N will find t on some computation path and accept.

PATH is NL-complete.

Proof. First, we show that $PATH \in NL$. On input $\langle G, s, t \rangle$ where G has n vertices, our NTM N nondeterministically follows a path of length up n.

```
N: On input \langle G, s, t \rangle:

let n be the number of vertices in G

let v = s

for i = n down to 1

if (v = t) ACCEPT

if (v has no neighbors) REJECT

nondeterministically choose a neighbor u of v

let v = u

REJECT
```

- If there is a path from s to t, N will find t on some computation path and accept.
- If there is no path from s to t, N always rejects.

PATH is NL-complete.

Proof. First, we show that $PATH \in NL$. On input $\langle G, s, t \rangle$ where G has n vertices, our NTM N nondeterministically follows a path of length up n.

```
N: On input \langle G, s, t \rangle:

let n be the number of vertices in G

let v = s

for i = n down to 1

if (v = t) ACCEPT

if (v has no neighbors) REJECT

nondeterministically choose a neighbor u of v

let v = u

REJECT
```

- If there is a path from s to t, N will find t on some computation path and accept.
- If there is no path from s to t, N always rejects.
- N only needs to store v and i, which takes $O(\log n)$ space.

Given an input w, we will construct $\langle G, s, t \rangle$ such that $w \in A \iff \langle G, s, t \rangle \in \text{PATH}$.

• The vertices of G are the configurations of N on w.

- The vertices of G are the configurations of N on w.
- There is an edge between two configurations if the second one follows from the first via one move of N.

- The vertices of G are the configurations of N on w.
- There is an edge between two configurations if the second one follows from the first via one move of *N*.
- s is the start configuration of N on w.

- The vertices of G are the configurations of N on w.
- There is an edge between two configurations if the second one follows from the first via one move of *N*.
- s is the start configuration of N on w.
- t is the accepting configuration of N.

Here is how a log-space transducer computes the adjacency list representation of G:

- Since N is $O(\log n)$ -space bounded, each configuration may be represented by a $c \log n$ -bit string for some constant c.
- We loop through all strings of size $c \log n$.
- If a string encodes a valid configuration C, we list all configurations that follow from C via one move of N's transition function.

Analogously to coNP, we have

$$coNL = \{ A^c \mid a \in NL \}.$$

While NP versus coNP is open, the log-space analogues of these classes are equal.

Theorem (Immerman (1988) and Szelepcsényi (1988)) NL = coNL.

Theorem (Immerman (1988) and Szelepcsényi (1988)) NL = coNL.

Proof. Since PATH is NL-complete, PATH^c is coNL-complete (every problem in coNL \leq_{L} -reduces to PATH^c).

Theorem (Immerman (1988) and Szelepcsényi (1988)) NL = coNL

Proof. Since PATH is NL-complete, PATH^c is coNL-complete (every problem in coNL \leq_{L} -reduces to PATH^c).

Thus it suffices to show $PATH^c \in NL$. This uses a technique called *inductive counting*.

Theorem (Immerman (1988) and Szelepcsényi (1988)) NL = coNL.

Proof. Since PATH is NL-complete, PATH^c is coNL-complete (every problem in coNL \leq_{L} -reduces to PATH^c).

Thus it suffices to show $PATH^c \in NL$. This uses a technique called *inductive counting*.

Let $\langle G, s, t \rangle$ be an instance of PATH^c. We will design an NL algorithm that accepts $\langle G, s, t \rangle$ if and only if there is *not* a path from s to t.

• *M* goes through all *m* vertices in *G* and nondeterministically guesses which ones are reachable from *s*.

- M goes through all m vertices in G and nondeterministically guesses which ones are reachable from s.
- For each node u that is guessed to be reachable from s, M tries to nondeterministically guess a path from s to u of length at most m.

- M goes through all m vertices in G and nondeterministically guesses which ones are reachable from s.
- For each node u that is guessed to be reachable from s, M tries to nondeterministically guess a path from s to u of length at most m.
 - If a path from s to u is successfully guessed, M increments a counter.
 - ullet If a path is not successfully guessed, M rejects.

- *M* goes through all *m* vertices in *G* and nondeterministically guesses which ones are reachable from *s*.
- For each node u that is guessed to be reachable from s, M tries to nondeterministically guess a path from s to u of length at most m.
 - If a path from s to u is successfully guessed, M increments a counter.
 - If a path is not successfully guessed, M rejects.
- If *M*'s counter equals *c*, then *M* has guessed all *c* vertices that are reachable from *s*:
 - *M* accepts if *t* is not one of the guessed vertices.

Now we show how to calculate c.

• For each i, $0 \le i \le m$, let A_i be the vertices that are at distance at most i from s.

Now we show how to calculate c.

- For each i, $0 \le i \le m$, let A_i be the vertices that are at distance at most i from s.
- Let $c_i = |A_i|$.

Now we show how to calculate c.

- For each i, $0 \le i \le m$, let A_i be the vertices that are at
 - distance at most i from s. • Let $c_i = |A_i|$.
 - We have $A_0 = \{s\}$, $A_i \subseteq A_{i+1}$ for all i, and A_m is all vertices that are reachable from s.

Now we show how to calculate c.

- For each i, $0 \le i \le m$, let A_i be the vertices that are at
- distance at most i from s.
 - Let c_i = |A_i|.
 We have A₀ = {s}, A_i ⊆ A_{i+1} for all i, and A_m is all vertices that are reachable from s.
 - We will show how to calculate c_{i+1} from c_i .

Now we show how to calculate c.

• At the end, we'll have $c_m = c$.

- For each i, $0 \le i \le m$, let A_i be the vertices that are at
 - distance at most i from s.
 - Let $c_i = |A_i|$. • We have $A_0 = \{s\}$, $A_i \subseteq A_{i+1}$ for all i, and A_m is all vertices that are reachable from s.
 - We will show how to calculate c_{i+1} from c_i .

• Let $c_{i+1} = 1$. We loop through all vertices of G, guessing which ones are in A_{i+1} :

- Let $c_{i+1} = 1$. We loop through all vertices of G, guessing which ones are in A_{i+1} :
 - In an inner loop, we go through all vertices of G, guessing which ones are in A_i . A path of length $\leq i$ is nondeterministically guessed to verify that each guessed vertex is in A_i . (Similar to PATH \in NL.)

- Let $c_{i+1} = 1$. We loop through all vertices of G, guessing which ones are in A_{i+1} :
 - In an inner loop, we go through all vertices of G, guessing which ones are in A_i . A path of length $\leq i$ is nondeterministically guessed to verify that each guessed vertex is in A_i . (Similar to $PATH \in NL$.)
 - We use a counter to keep track of how many vertices are verified to be in A_i.

- Let $c_{i+1} = 1$. We loop through all vertices of G, guessing which ones are in A_{i+1} :
 - In an inner loop, we go through all vertices of G, guessing which ones are in A_i . A path of length $\leq i$ is nondeterministically guessed to verify that each guessed vertex is in A_i . (Similar to $PATH \in NL$.)
 - We use a counter to keep track of how many vertices are verified to be in A_i .
 - For each vertex verified to be in A_i , M tests whether (u, v) is an edge. If it is an edge, then $v \in A_{i+1}$ and we increment c_{i+1} .

Once we have computed c_m :

- We loop through all vertices of G, guessing which ones are in A_m and guessing a path for each starting from s.
- When all c_m vertices and paths have been successfully guessed, the algorithm accepts if t is not one of these vertices.

```
\begin{array}{lll} \textit{M} \colon \text{On input } \langle \mathcal{G}, s, t \rangle \colon \\ & \text{let } c_0 = 1 & \text{$//$} A_0 = \{s\} \text{ has one vertex} \\ & \text{for } i = 0 \text{ to } m-1 & \text{$//$} compute \ c_{i+1} \text{ from } c_i \\ & \text{let } c_{i+1} = 1 & \text{$//$} \end{array}
```

```
\begin{array}{lll} \textit{M} \colon \text{On input } \langle \mathcal{G}, s, t \rangle \colon \\ & \text{let } c_0 = 1 & \text{$//$} A_0 = \{s\} \text{ has one vertex} \\ & \text{for } i = 0 \text{ to } m - 1 & \text{$//$} compute \ c_{i+1} \text{ from } c_i \\ & \text{let } c_{i+1} = 1 & \text{for each vertex } v \neq s \text{ in } G \colon \\ & \text{let } d = 0 & \text{$//$} c_i \text{ is now known; } d \text{ is used to recount } A_i \end{array}
```

```
M: On input \langle G, s, t \rangle:
    let c_0 = 1
                                         //A_0 = \{s\} has one vertex
    for i = 0 to m - 1
                                         // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
              let d = 0
                                         // c_i is now known; d is used to recount A_i
              for each vertex \mu in G:
                 nondeterministically either perform or skip these steps:
                     nondeterministically follow a path of length at most i from s
                        if the path does not end at u, REJECT
                        increment d
                                                   // verified that u \in A_i
                        if (u, v) is an edge in G
                            increment c_{i+1}
                                                   // verified that v \in A_{i+1}
```

```
M: On input \langle G, s, t \rangle:
                                         //A_0 = \{s\} has one vertex
    let c_0 = 1
    for i = 0 to m - 1
                                         // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
              let d = 0
                                         // c_i is now known; d is used to recount A_i
              for each vertex u in G:
                 nondeterministically either perform or skip these steps:
                     nondeterministically follow a path of length at most i from s
                        if the path does not end at u, REJECT
                        increment d
                                                   // verified that u \in A_i
                        if (u, v) is an edge in G
                           increment c_{i+1}
                                                   // verified that v \in A_{i+1}
                                                   // check whether found all of Ai
              if d \neq c_i, REJECT
```

```
M: On input \langle G, s, t \rangle:
                                        //A_0 = \{s\} has one vertex
    let c_0 = 1
    for i = 0 to m - 1
                                        // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
                                         // c_i is now known; d is used to recount A_i
              let d=0
              for each vertex \mu in G:
                 nondeterministically either perform or skip these steps:
                    nondeterministically follow a path of length at most i from s
                        if the path does not end at u, REJECT
                        increment d
                                                   // verified that u \in A_i
                        if (u, v) is an edge in G
                           increment c_{i+1} // verified that v \in A_{i+1}
              if d \neq c_i, REJECT
                                                   // check whether found all of Ai
    let d=0
                                         // c_m is now known; d is used to recount A_m
```

```
M: On input \langle G, s, t \rangle:
                                        //A_0 = \{s\} has one vertex
    let c_0 = 1
    for i = 0 to m - 1
                                        // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
              let d=0
                                        // c_i is now known; d is used to recount A_i
              for each vertex u in G:
                 nondeterministically either perform or skip these steps:
                    nondeterministically follow a path of length at most i from s
                        if the path does not end at u, REJECT
                        increment d
                                                  // verified that u \in A_i
                        if (u, v) is an edge in G
                           increment c_{i+1} // verified that v \in A_{i+1}
              if d \neq c_i, REJECT
                                                  // check whether found all of Ai
    let d=0
                                        // c_m is now known; d is used to recount A_m
    for each vertex u in G.
       nondeterministically either perform or skip these steps:
```

```
M: On input \langle G, s, t \rangle:
                                        //A_0 = \{s\} has one vertex
   let c_0 = 1
   for i = 0 to m - 1
                                        // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
             let d=0
                                        // c_i is now known; d is used to recount A_i
             for each vertex u in G:
                 nondeterministically either perform or skip these steps:
                    nondeterministically follow a path of length at most i from s
                       if the path does not end at u, REJECT
                       increment d
                                                  // verified that u \in A_i
                       if (u, v) is an edge in G
                           increment c_{i+1} // verified that v \in A_{i+1}
             if d \neq c_i, REJECT
                                                  // check whether found all of Ai
   let d=0
                                        // c_m is now known; d is used to recount A_m
   for each vertex u in G.
       nondeterministically either perform or skip these steps:
          nondeterministically follow a path of length at most m from s
             if the path does not end at u, REJECT
```

```
M: On input \langle G, s, t \rangle:
                                       //A_0 = \{s\} has one vertex
   let c_0 = 1
   for i = 0 to m - 1
                                       // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
             let d=0
                                       // c_i is now known; d is used to recount A_i
             for each vertex u in G:
                nondeterministically either perform or skip these steps:
                    nondeterministically follow a path of length at most i from s
                       if the path does not end at u, REJECT
                       increment d
                                                 // verified that u \in A_i
                       if (u, v) is an edge in G
                          increment c_{i+1} // verified that v \in A_{i+1}
             if d \neq c_i, REJECT
                                                 // check whether found all of Ai
   let d=0
                                       // c_m is now known; d is used to recount A_m
   for each vertex u in G.
       nondeterministically either perform or skip these steps:
          nondeterministically follow a path of length at most m from s
             if the path does not end at u, REJECT
          if u = t, REJECT // found a path from s to t
```

```
M: On input \langle G, s, t \rangle:
                                       //A_0 = \{s\} has one vertex
   let c_0 = 1
   for i = 0 to m - 1
                                       // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
             let d=0
                                       // c_i is now known; d is used to recount A_i
             for each vertex u in G:
                 nondeterministically either perform or skip these steps:
                    nondeterministically follow a path of length at most i from s
                       if the path does not end at u, REJECT
                       increment d
                                                 // verified that u \in A_i
                       if (u, v) is an edge in G
                          increment c_{i+1} // verified that v \in A_{i+1}
             if d \neq c_i, REJECT
                                                 // check whether found all of Ai
   let d=0
                                       // c_m is now known; d is used to recount A_m
   for each vertex u in G.
       nondeterministically either perform or skip these steps:
          nondeterministically follow a path of length at most m from s
             if the path does not end at u, REJECT
          if u = t, REJECT // found a path from s to t
                                       // verified u \in A_m
          increment d
```

```
M: On input \langle G, s, t \rangle:
   let c_0 = 1
                                      //A_0 = \{s\} has one vertex
   for i = 0 to m - 1
                                      // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
             let d=0
                                       // c_i is now known; d is used to recount A_i
             for each vertex u in G:
                nondeterministically either perform or skip these steps:
                   nondeterministically follow a path of length at most i from s
                       if the path does not end at u, REJECT
                       increment d
                                                // verified that u \in A_i
                       if (u, v) is an edge in G
                          increment c_{i+1} // verified that v \in A_{i+1}
             if d \neq c_i, REJECT
                                                // check whether found all of Ai
   let d=0
                                       // c_m is now known; d is used to recount A_m
   for each vertex u in G.
       nondeterministically either perform or skip these steps:
          nondeterministically follow a path of length at most m from s
             if the path does not end at u, REJECT
          if u = t, REJECT // found a path from s to t
          increment d // verified u \in A_m
   if d \neq c_m, REJECT // check whether found all of A_m
```

```
M: On input \langle G, s, t \rangle:
                                      //A_0 = \{s\} has one vertex
   let c_0 = 1
   for i = 0 to m - 1
                                      // compute c_{i+1} from c_i
       let c_{i+1} = 1
          for each vertex v \neq s in G:
             let d=0
                                       // c_i is now known; d is used to recount A_i
             for each vertex \mu in G:
                nondeterministically either perform or skip these steps:
                   nondeterministically follow a path of length at most i from s
                       if the path does not end at u, REJECT
                       increment d
                                                // verified that u \in A_i
                       if (u, v) is an edge in G
                          increment c_{i+1} // verified that v \in A_{i+1}
             if d \neq c_i, REJECT
                                                // check whether found all of Ai
   let d = 0
                                       // c_m is now known; d is used to recount A_m
   for each vertex u in G.
       nondeterministically either perform or skip these steps:
          nondeterministically follow a path of length at most m from s
             if the path does not end at u, REJECT
          if u = t, REJECT // found a path from s to t
          increment d
                                      // verified u \in A_m
   if d \neq c_m, REJECT // check whether found all of A_m
   otherwise, ACCEPT // we have verified that t \notin A_m
```

Correctness:

- Inductively, there is a computation path where M successively computes c_0, c_1, \ldots, c_m .
 - In each pass, M correctly guesses which vertices are in A_i and guesses a path of length $\leq i$ to each guessed vertex.
 - Many computation paths fail and REJECT.

Correctness:

- Inductively, there is a computation path where M successively computes c_0, c_1, \ldots, c_m .
 - In each pass, M correctly guesses which vertices are in A_i and guesses a path of length $\leq i$ to each guessed vertex.
 - Many computation paths fail and REJECT.
- On this computation path:
 - M either finds a path from s to t and REJECTS, or
 - determines that $t \notin A_m$ and ACCEPTS.

Efficiency: the algorithm only needs to store

- m (number of vertices),
- u (loop vertex),
- v (loop vertex),
- c_i (count of A_i),
- c_{i+1} (count of A_{i+1}),
- d (recount variable),

These all take $O(\log n)$ space.

- a counter for how many vertices guessed on a path, and
- a pointer to the head of a guessed path.

Efficiency: the algorithm only needs to store

- *m* (number of vertices),
- u (loop vertex),
- v (loop vertex),
- c_i (count of A_i),
- c_{i+1} (count of A_{i+1}),
- d (recount variable),
- a counter for how many vertices guessed on a path, and
- a pointer to the head of a guessed path.

These all take $O(\log n)$ space.

Therefore this is an NL algorithm for PATH^c.

Theorem (Immerman (1988) and Szelepcsényi (1988)) NL = coNL.

The proof extends for other space bounds.

Corollary

For any space-constructible bound $s(n) \ge \log n$,

$$NSPACE(s(n)) = coNSPACE(s(n)).$$

Open Problem

Open Problem:

- Does L = NL?
- ullet Equivalently, is $PATH \in L$?

Open Problem

Open Problem:

- Does L = NL?
- Equivalently, is $PATH \in L$?

Notable results:

• Savitch's algorithm (1970) tells us $PATH \in DSPACE(\log^2 n)$.

Open Problem

Open Problem:

- Does L = NL?
- Equivalently, is $PATH \in L$?

Notable results:

- Savitch's algorithm (1970) tells us $PATH \in DSPACE(\log^2 n)$.
- Reingold (2004) proved that the undirected graph path problem UPATH is in L.

Summary

Open problems:

- P = NP?
- P = PSPACE?
 - NP = PSPACE?
 - PSPACE = EXP?
- NP = EXP?
- NP \subset E? E \subset NP?
- PSPACE ⊆ E? E ⊆ PSPACE?
- L = NL?
- NL = P?
- NL = NP?
- L = NP?
- NP = coNP?
- P = NP ∩ coNP?

Known:

- L ≠ DSPACE(log² n)
 ≠ PSPACE
 ≠ ESPACE
 - ≠ EXPSPACE