

Politechnika Wrocławska

Wydział Informatyki i Zarządzania

kierunek studiów: Informatyka specjalność: Inżynieria oprogramowania

Praca dyplomowa - magisterska

Wielokryterialny problem rozmieszczenia zraszaczy wodnych

NA ZADANEJ POWIERZCHNI

Multicriteria water sprinklers deployment problem on a given area

inż. Grzegorz Dziedzic

słowa kluczowe: optymalizacja wielokryterialna, algorytmy genetyczne, zraszacze wodne

krótkie streszczenie: SHORT ABSTRACT

Promotor:	dr Mariusz Fraś		
	imię i nazwisko	ocena	podpis

Do celów archiwalnych pracę dyplomową zakwalifikowano do:*

- a) kategorii A (akta wieczyste)
- $b)\ kategorii\ BE\ 50\ (po\ 50\ latach\ podlegające\ ekspertyzie)$

pieczątka wydziałowa

Wrocław 2017

^{*} niepotrzebne skreślić

Streszczenie

ABSTRACT PL

Abstract

 ${\rm ABSTRACT\ EN}$

Spis treści

Rozdział 1. Wstęp	1
1.1. Wprowadzenie	. 1
1.2. Cel pracy	. 2
1.3. Opis pracy	
1.4. Przegląd literatury	. 2
Rozdział 2. Problem nawodnienia obszaru	3
Rozdział 3. Optymalizacja	5
3.1. Optymalizacja jednokryterialna	. 5
3.2. Optymalizacja wielokryterialna	. 5
Rozdział 4. Algorytmy genetyczne	7
4.1. Opis ogólny	. 7
4.2. Algorytmy wielokryterialne	
4.2.1. NSGA-II	
4.2.2. SPEA	
Rozdział 5. Systemy wspomagania decyzji	9
Rozdział 6. Rozwiązanie problemu	11
6.1. System wspomagania decyzji	. 11
6.1.1. Architektura	
6.1.2. Interakcja z użytkownikiem	
6.2. Optymalizacja	
6.2.1. Model matematyczny	
6.2.2. Rezultaty	
6.2.3. Porównanie algorytmów genetycznych	
Rozdział 7. Podsumowanie	13
Dodatek A. Appendix 1	15
Bibliografia	17

Wstęp

1.1. Wprowadzenie

Odpowiednie nawodnienie ogrodu jest jedną z podstawowych czynności pielęgnacyjnych. Gdy właściciel dysponuje odpowiednim budżetem najlepszym rozwiązaniem będzie dla niego inwestycja w automatyczny system nawadniania. System taki składa się z zraszaczy wodnych, rur pomiędzy nimi oraz systemu sterowania. Takie rozwiązanie pozwala zaoszczędzić czas tracony na ręcznym podlewaniu ogrodu oraz zapewnia równomierne nawodnienie na całej ustalonej powierzchni. Jednym z głównych problemów koniecznych do rozwiązania podczas instalacji takiego systemu jest odpowiednie rozmieszczenie poszczególnych zraszaczy. Te najczęściej znajdują się pod ziemią oraz posiadają wynurzalną głowicę. Z tego powodu raz zainstalowany zraszacz najczęściej zostaje na swoim miejscu, aż do momentu wymiany całej instalacji wodnej. Biorąc to pod uwagę rozmieszczenie zraszaczy powinno być dobrze przemyślane już podczas etapu projektowania systemu nawadniania. Projektując taki system należy przyjąć jako cel nawodnienie całości wskazanego obszaru jak najmniejszym kosztem przy przestrzeganiu wskazanych przez właściciela ograniczeń.

Proces projektowania sieci zraszaczy może być żmudny oraz długotrwały, biorąc pod uwagę różnorodność sprzętu dostępnego na rynku czy chociażby nieregularność powierzchni, która ma zostać nawodniona. Z pomocą może przyjść tutaj nowoczesna technologia. Opisany powyżej problem idealnie nadaje się do rozwiązania przy pomocy dostępnych algorytmów optymalizacyjnych. Praca ta będzie skupiać się na rozwiązaniu omówionego problemu poprzez opracowanie systemu wspomagania decyzji i implementację oraz porównanie wielokryterialnych algorytmów genetycznych.

SHORT TITLE

- 1.2. Cel pracy
- 1.3. Opis pracy
- 1.4. Przegląd literatury

Problem nawodnienia obszaru

Optymalizacja

- 3.1. Optymalizacja jednokryterialna
- 3.2. Optymalizacja wielokryterialna

Algorytmy genetyczne

- 4.1. Opis ogólny
- 4.2. Algorytmy wielokryterialne
- 4.2.1. NSGA-II
- 4.2.2. SPEA

Systemy wspomagania decyzji

Rozwiązanie problemu

- 6.1. System wspomagania decyzji
- 6.1.1. Architektura
- 6.1.2. Interakcja z użytkownikiem
- 6.2. Optymalizacja
- 6.2.1. Model matematyczny
- 6.2.2. Rezultaty
- 6.2.3. Porównanie algorytmów genetycznych

Plan badań

Rezultaty badań

Podsumowanie badań

Podsumowanie

Definicja 1 Definicja - pierwsza

Dodatek A

Appendix 1

Spis rysunków

Spis wzorów

Spis algorytmów

Bibliografia