Assignment-based Subjective Questions

1. From your analysis of the categorical variables from the dataset, what could you infer about their effect on the dependent variable?

Answer:

There were 6 categorical variables in the dataset.

Box plot is used to study their effect on the dependent variable ('cnt').

- season: Around 32% of the bike booking were happening in fall with a median of over 5000 booking (for the period of 2 years). This was followed by summer & winter with 27% & 25% of total booking. This indicates season can be a good predictor for the dependent variable.
- 2. **mnth**: Almost 10% of the bike booking were happening in the months "may,june,july,august & sept" (5,6,7,8 & 9) with a median of over 4000 booking per month. This indicates "mnth" can be a good predictor for the dependent variable.
- 3. **weathersit**: Almost 67% of the bike booking were happening during 'weathersit-1" ie "A" with a median of close to 5000 booking (for the period of 2 years). This was followed by "weathersit-2" ie "B" with 30% of total booking. This indicates, weathersit does show some trend towards the bike bookings can be a good predictor for the dependent variable.
 - 4. **holiday**: Almost 98% of the bike booking were happening when it is not a holiday which means this data is clearly biased. This indicates, holiday cannot be a good predictor for the dependent variable.
 - 5. **weekday**: weekday variable shows very close trend on all days of the week having their medians between 4000 to 5000 bookings. This variable can have some or no influence towards the predictor. Let the model decide if this needs to be added or not.
 - 6. **workingday**: Almost 69% of the bike booking were happening in 'workingday' with a median of close to 5000 booking (for the period of 2 years). This indicates, workingday can be a good predictor for the dependent variable
 - 7. **yr**: This shows increase in trend with base year(2018) median below 4000 and subsesquent year as "2019" as median near 6000. This can be a good predictor for the dependent variable

Box Plot for Categorical value are shared below: -

2. Why is it important to use drop_first=True during dummy variable creation? Answer:-

- drop_first=True is important to use, as it helps in reducing the extra column created during dummy variable creation. Hence it reduces the correlations created among dummy variables.
- Let's say we have 3 types of values in Categorical column and we want to create dummy variable for that column. If one variable is not Green and red, then it is obvious yellow. So we do not need 3rd variable to identify the Yellow among three colors (Red, Yellow, Green)

Hence if we have categorical variable with n-levels, then we need to use n-1 columns to represent the dummy variables.

3. Looking at the pair-plot among the numerical variables, which one has the highest correlation with the target variable?

Answer:

'temp' variable has the highest correlation with the target variable.

4. How did you validate the assumptions of Linear Regression after building the model on the training set.

Answer:

I have validated the assumption of Linear Regression Model based on below 5 assumptions: -

Normality of error terms - Error terms should be normally distributed
 Error Terms

Multicollinearity check - There should be insignificant multicollinearity among variables. VIF values are less than 5 which is good and also there is no multicollinearity as seen from the heatmap

	Features	VIF
1	temp	4.72
2	windspeed	4.04
0	yr	2.06
3	season_spring	1.66
9	weathersit_B	1.51
4	season_winter	1.41
5	mnth_Jul	1.35
7	weekday_Sat	1.22
6	mnth_Sept	1.20
8	weekday_Sun	1.20
10	weathersit_C	1.08

• Linear relationship validation – Linearity should be visible among variables

• Homoscedasticity - There should be no visible pattern in residual values.

 Independence of residuals - No auto-correlation. Durbin-Watson value of final model Ir6 is 1.977 5. Based on the final model, which are the top 3 features contributing significantly towards explaining the demand of the shared bikes?

As per our final Model, the top 3 predictor variables that influences the bike booking are:

- . **Temperature (temp)** A coefficient value of '0.4509' indicated that a unit increase in temp variable increases the bike hire numbers by '0.4509' units.
- . **Weather Situation 3 (weathersit_C)** A coefficient value of '-0.2868' indicated that, w.r.t Weathersit1, a unit increase in Weathersit3 variable decreases the bike hire numbers by '-0.2868' units.
- . **Year (yr)** A coefficient value of **'0.2344'** indicated that a unit increase in yr variable increases the bike hire numbers by **'0.2344'** units.So, it's suggested to consider these variables utmost importance while planning, to achive maximum Booking

The next best features that can also be considered are

- . **season_winter & mnth_Sept : -** A coefficient value of **'0.0461' * '0.0526'** respectively. This indicates that both are next best influencer.
- . **windspeed:** A coefficient value of **'-0.1414'** indicated that, a unit increase in windspeed variable decreases the bike hire numbers by **0.1414** units.

NOTE: The details of weathersit_B & weathersit_C weathersit_B: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist weathersit_C: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds

The details of season_spring & season_winter

season_spring: spring season_winter: winter

General Subjective Questions

1. Explain the linear regression algorithm in detail.

Answer:

Linear regression may be defined as the statistical model that analyses the linear relationship between a dependent variable with given set of independent variables. Linear relationship between variables means that when the value of one or more independent variables will change (increase or decrease), the value of dependent variable will also change accordingly (increase or decrease).

Mathematically the relationship can be represented with the help of following equation -Y = mX + c

Here, Y is the dependent variable we are trying to predict.

X is the independent variable we are using to make predictions.

m is the slope of the regression line which represents the effect X has on Y c is a constant, known as the Y-intercept. If X = 0, Y would be equal to c.

Furthermore, the linear relationship can be positive or negative in nature as explained below-

Positive Linear Relationship:

A linear relationship will be called positive if both independent and dependent variable increases. It can be understood with the help of following graph –

Negative Linear relationship

A linear relationship will be called positive if independent increases and dependent variable decreases. It can be understood with the help of following graph –

Linear regression is of the following two types –

- Simple Linear Regression
- Multiple Linear Regression

Assumptions

The following are some assumptions about dataset that is made by Linear Regression model –

Multi-collinearity –

Linear regression model assumes that there is very little or no multi-collinearity in the data. Basically, multi-collinearity occurs when the independent variables or features have dependency in them.

o Auto-correlation -

Another assumption Linear regression model assumes is that there is very little or no auto-correlation in the data. Basically, auto-correlation occurs when there is dependency between residual errors

Relationship between variables –

Linear regression model assumes that the relationship between response and feature variables must be linear.

Normality of error terms

Error terms should be normally distributed

Homoscedasticity

There should be no visible pattern in residual values

2. Explain the Anscombe's quartet in detail.

Answer:

Anscombe's Quartet was developed by statistician Francis Anscombe. It comprises four datasets, each containing eleven (x, y) pairs. The essential thing to note about these datasets is that they share the same descriptive statistics. But things change completely, and I must emphasize COMPLETELY, when they are graphed. Each graph tells a different story irrespective of their similar summary statistics.

	1		11		111		IV	
	x	У	х	У	х	У	х	У
	10	8,04	10	9,14	10	7,46	8	6,58
	8	6,95	8	8,14	8	6,77	8	5,76
	13	7,58	13	8,74	13	12,74	8	7,71
	9	8,81	9	8,77	9	7,11	8	8,84
	11	8,33	11	9,26	11	7,81	8	8,47
	14	9,96	14	8,1	14	8,84	8	7,04
	6	7,24	6	6,13	6	6,08	8	5,25
	4	4,26	4	3,1	4	5,39	19	12,5
	12	10,84	12	9,13	12	8,15	8	5,56
	7	4,82	7	7,26	7	6,42	8	7,91
	5	5,68	5	4,74	5	5,73	8	6,89
SUM	99,00	82,51	99,00	82,51	99,00	82,50	99,00	82,51
AVG	9,00	7,50	9,00	7,50	9,00	7,50	9,00	7,50
STDEV	3,32	2,03	3,32	2,03	3,32	2,03	3,32	2,03

The summary statistics show that the means and the variances were identical for x and y across the groups:

- Mean of x is 9 and mean of y is 7.50 for each dataset.
- Similarly, the variance of x is 11 and variance of y is 4.13 for each dataset
- The correlation coefficient (how strong a relationship is between two variables) between x and y is 0.816 for each dataset

When we plot these four datasets on an x/y coordinate plane, we can observe that they show the same regression lines as well but each dataset is telling a different story:

Dataset I appears to have clean and well-fitting linear models

- Dataset II is not distributed normally
- In Dataset III the distribution is linear, but the calculated regression is thrown off by an outlier
- Dataset IV shows that one outlier is enough to produce a high correlation coefficient.

This quartet emphasizes the importance of visualization in Data Analysis. Looking at the data reveals a lot of the structure and a clear picture of the dataset

3. What is Pearson's R?

Answer

Pearson's r is a numerical summary of the strength of the linear association between the variables. If the variables tend to go up and down together, the correlation coefficient will be positive. If the variables tend to go up and down in opposition with low values of one variable associated with high values of the other, the correlation coefficient will be negative.

The Pearson correlation coefficient, r, can take a range of values from +1 to -1. A value of 0 indicates that there is no association between the two variables. A value greater than 0 indicates a positive association; that is, as the value of one variable increases, so does the value of the other variable. A value less than 0 indicates a negative association; that is, as the value of one variable increases, the value of the other variable decreases. This is shown in the diagram below:

4. What is scaling? Why is scaling performed? What is the difference between normalized scaling and standardized scaling?

Answer:

Feature Scaling is a technique to standardize the independent features present in the data in a fixed range. It is performed during the data preprocessing to handle highly varying magnitudes or values or units. If feature scaling is not done, then a machine learning algorithm tends to weigh greater values, higher and consider smaller values as the lower values, regardless of the unit of the values.

Example: If an algorithm is not using feature scaling method then it can consider the value 3000 meter to be greater than 5 km but that's actually not

true and in this case, the algorithm will give wrong predictions. So, we use Feature Scaling to bring all values to same magnitudes and thus, tackle this issue

S.NO.	Normalized scaling	Standardized scaling
1.	Minimum and maximum value of features are used for scaling	Mean and standard deviation is used for scaling.
2.	It is used when features are of different scales.	It is used when we want to ensure zero mean and unit standard deviation.
3.	Scales values between [0, 1] or [-1, 1].	It is not bounded to a certain range.
4.	It is really affected by outliers.	It is much less affected by outliers.
5.	Scikit-Learn provides a transformer called MinMaxScaler for Normalization.	Scikit-Learn provides a transformer called StandardScaler for standardization.

5. You might have observed that sometimes the value of VIF is infinite. Why does this happen?

Answer:

If there is perfect correlation, then VIF = infinity. A large value of VIF indicates that there is a correlation between the variables. If the VIF is 4, this means that the variance of the model coefficient is inflated by a factor of 4 due to the presence of multicollinearity.

When the value of VIF is infinite it shows a perfect correlation between two independent variables. In the case of perfect correlation, we get R-squared (R2) = 1, which lead to 1/(1-R2) infinity. To solve this we need to drop one of the variables from the dataset which is causing this perfect multicollinearity.

6. What is a Q-Q plot? Explain the use and importance of a Q-Q plot in linear regression

Answer:

The quantile-quantile (q-q) plot is a graphical technique for determining if two data sets come from populations with a common distribution.

Use of Q-Q plot: A q-q plot is a plot of the quantiles of the first data set against the quantiles of the second dataset. By a quantile, we mean the fraction (or percent) of points below the given value. That is, the 0.3 (or 30%) quantile is the point at which 30% percent of the data fall below and 70% fall above that value. A 45-degree reference line is also plotted. If the two sets come from a population with the same distribution, the points should fall approximately along this reference line. The greater the departure from this reference line, the greater the evidence for the conclusion that the two data sets have come from populations with different distributions.

Importance of Q-Q plot: When there are two data samples, it is often desirable to know if the assumption of a common distribution is justified. If so, then location and scale estimators can pool both data sets to obtain estimates of the common location and scale. If two samples do differ, it is also useful to gain some understanding of the differences. The q-q plot can provide more insight into the nature of the difference than analytical methods such as the chi-square and Kolmogorov-Smirnov 2-sample tests