

เลขที่นั่งสอบ	

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคการศึกษาที่ 2/2550

CHE 452 ChE. Plant Design สอบวันที่ 3 มีนาคม พ.ศ. 2551 ภาควิชาวิศวกรรมเคมีชั้นปีที่ 4 เวลา 9.00 – 12.00 น.

คำเตือน

- 1) อนุญาตให้นำหนังสือเข้าห้องสอบได้
- 2) อนุญาตให้ใช้เครื่องคำนวณตามระเบียบของมหาวิทยาลัยได้
- 3) ข้อสอบมีทั้งหมด 13 หน้า 4 ข้อ (100 คะแนน) ให้ทำลงในข้อสอบ หากไม่ พอทำในค้านหลัง

ชื่อ-นามสกุลรหัสประจำตัว......ร

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบเพื่อขออนุญาตออกนอกห้องสอบ

ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

<u>นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา</u>

(คร.บุณยพัต สุภานิช)

ผู้ออกข้อสอบ

ข้อสอบนี้ได้ผ่านการประเมินจากภาควิชาวิสวกรรมเคมีแล้ว

(รศ.คร.อนวัช สังข์เพ็ชร) หัวหน้าภาควิชาวิศวกรรมเคมี ชื่อ-นามสกุลรหัสประจำตัว......รหัสประจำตัว......

1) จากแผนผังกระบวนการผลิตที่กำหนดให้คังรูป

(40 คะแนน)

ให้หาข้อมูลของสายร้อนและเย็นต่างๆ (stream data) แล้วเติมลงในตารางที่กำหนดให้ข้างล่างนี้ ตารางที่ 1: แสดงข้อมูลของสายร้อนและสายเย็นต่างๆ ในกระบวนการ

Stream	Supply Temp (°C)	Target Temp (°C)	CP (MW/°C)	Q (MW)

จากข้อมูลที่ท่านหามาได้ในตารางที่ 1 และที่ $\Delta T_{min} = 10$ °C, ให้ใช้ problem table algorithm ใน การหา:

- n) Pinch interval temperature. (T_{Pinch})
- The minimum hot and cold utility requirement (Q_{Hmin}, Q_{Cmin})
 (ให้ทำในตารางที่ 2)
- ค) ปริมาณ hot and cold utilities ที่ใช้จริงตามในแผนผังกระบวนการผลิตมีค่าเป็นไปตาม ค่า minimum requirement ที่หาได้จากข้อ ข) หรือไม่ หากไม่ใช่จงหาว่ามีความ แตกต่างระหว่างค่าที่ใช้จริงและค่า minimum requirement เท่าไร
- ง) จงวาครูป Grid Diagram ของโครงข่ายแลกเปลี่ยนความร้อนตามแผนผังกระบวนการ พร้อมทั้งชี้ให้เห็นว่ามีเครื่องแลกเปลี่ยนความร้อนตัวใคบ้างที่แลกเปลี่ยนความร้อน ข้ามตำแหน่ง Pinch
- อ) จงวาครูป Grand Composite Curve ลงในกราฟที่กำหนดให้

ชื่อ-นามสกุล	รหัสประจำตัว	J				
ทารางที่ 2 : Surplus/Deficit in each interval temperature	Interv	al ΔT (°C)	Σcp _H (MW/°C)	Σcp _c (MW/°C)	$\Sigma_{\text{CP}_{\text{H}}}$ - $\Sigma_{\text{CP}_{\text{C}}}$	Δн (мw)

Grand Composite Curve

ชื่อ-นามสกุล รหัสประจำตัว......รหัสประจำตัว......

2) จากแผนภูมิโครงข่ายเครื่องแลกเปลี่ยนความร้อน (Grid Diagram) ที่กำหนดให้ ซึ่ง ประกอบด้วยสายร้อนและสายเย็นทั้งหมด 6 สาย ค่า∆T_{min} = 10 °C จงออกแบบโครงข่ายเครื่องแลกเปลี่ยนความร้อน เพื่อให้ได้โครงข่ายที่มีการนำความร้อน กลับมาใช้มากสุด (MER Network) และค่า Minimum hot and cold utility requirements มีค่า เป็นเท่าไร โดยอธิบายขั้นตอนการเลือกจับคู่สายร้อนและเย็น รวมทั้งแสดงค่าอุณหภูมิที่ทางเข้า และออกของเครื่องแลกเปลี่ยนความร้อนที่ใช้แต่ละตัว

4		ه_ هـ
ชอ-นามสกุล	 รหสบระ	จาฅว

3) จากแผนภูมิโครงข่ายที่มีการนำความร้อนกลับมาใช้มากสุด (MER Network) ที่กำหนดให้ ซึ่ง ประกอบด้วยสายร้อนและสายเย็นทั้งหมด 4 สาย

(20 คะแนน)

CP (kW/°C)

หากต้องการลดจำนวนเครื่องแลกเปลี่ยนความร้อนของโครงข่ายนี้ สามารถลดลงได้มากที่สุดกี่ ตัว ให้เหตุผลประกอบพอสังเขป

จากนั้นให้กำจัดเครื่องแลกเปลี่ยนความร้อนออกจากโครงข่ายที่กำหนคให้เพียง 1 ตัว โดยเลือก กำจัด process-to-process exchanger และยังคงรักษาค่า ΔT_{min} ของระบบไว้ที่ $10\,^{\circ}\mathrm{C}$

4) จากรูปกราฟ Grand Composite Curve ที่กำหนดให้ต่อไปนี้

ชื่อ-นามสกุล รหัสประจำตัว......รหัสประจำตัว......

- ก) จงหาว่าควรจะใช้ duty ของ Utility แต่ละประเภทในปริมาณเท่าใคต่อปี จึงจะมีค่าใช้จ่ายค้าน พลังงานรวมต่ำที่สุด และแสดงเส้น Utility line บนกราฟ Grand Composite Curve ข้างค้น
- ข) ให้คำนวณปริมาณและค่าใช้จ่ายต่อปีที่จำเป็นต้องใช้ในแต่ละประเภทอย่างละเอียด ΔT_{\min} ของระบบมีค่าเป็น 20 °C และ Utility ต่างๆ มีคังนี้ Flue gas ที่อุณหภูมิ 900 °C เชื่อเพลิงที่ใช้ในการเผาใหม้ เพื่อให้ได้ Flue gas ราคา 3 \$/kg ค่าความร้อนจากการเผาใหม้เชื้อเพลิงมีค่าเป็น 2,050 kJ/kg อากาศที่นำมาเผาใหม้กับเชื้อเพลิงมีอุณหภูมิเท่ากับ 30 °C สมมติให้ค่าความจุดวามร้อนจำเพาะของอากาศ และ Flue gas มีค่าเท่ากัน และอัตราการใหลของอากาศมีค่าใกล้เคียงกับอัตราการใหลของ Flue gas ค่าอุณหภูมิค่ำที่สุดที่ไม่ทำให้ใอกรดจากการเผาใหม้ใน Flue gas เกิดการควบแน่นเท่ากับ 190 °C HP steam ที่ 300 °C ราคาต่อหน่วยเป็น 2.2 \$/(kW.hr) MP steam ที่ 250 °C ราคาต่อหน่วยเป็น 1.6 \$/(kW.hr) Cooling water ในช่วง 20-30 °C ราคาต่อหน่วยเป็น 0.2 \$/(kW.hr)

จำนวนชั่วโมงในการทำงานเท่ากับ 8,000 ชม.ต่อปี

(20 คะแนน)