A Novel Dual-Loop-Controlled Latent Factor Analysis Model for Highly-Efficient Representation Learning to High-Dimensional and Incomplete Matrices: Supplementary File

Anonymous

I. INTRODUCTION

THIS is the supplementary file for paper entitled "A Novel Dual-Loop-Controlled Latent Factor Analysis Model for Highly-Efficient Representation Learning to High-Dimensional and Incomplete Matrices". It provides Table S1 for hyperparameter settings of each competitor.

II. HYPERPARAMETER SETTINGS

TABLE S1
HYPERPARAMETER SETTINGS FOR COMPETITORS

Abbr	. M2		M3		M4	M5		M6		M7		M8	M9	M10
D1	$\eta = 5e-2$,	λ =8e-1,	η =2e-2,	λ =7e-1,	$\eta = 9e-1$,	η =8e-3,	λ =7e-1,	η =3e-2,	λ =9e-1,	η =2e-2,	λ =7e-1,	η =2e-2,	η =9e-4,	$\eta = 9e-4$,
	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-1$,	$K_I = 5e-4$,	λ =8e-1,	β =9e-1,	ϵ =1e-8	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-5$,	$K_D = 5e - 5$	λ =7e-1	λ =9e-1,	λ =9e-1,
	ϵ =1e-8		$K_D = 5e-4$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β =9e-1
D2	η =6e-3,	λ =4e-2,	η =3e-2,	λ =4e-2,	η =8e-2,	η =1e-3,	λ =4e-2,	η =9e-3,	λ =7e-2,	η =3e-2,	λ =4e-2,	η =3e-2,	η =3e-3,	η =3e-3,
	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-1$,	$K_I = 5e-4$,	λ =4e-2,	β =9e-1,	ϵ =1e-8	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-5$,	$K_D = 5e - 3$	λ =4e-2	λ =4e-2,	λ =4e-2,
	ϵ =1e-8		$K_D = 5e - 2$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β =9e-1
D3	η =9e-3,	λ =3e-1,	η =8e-3,	λ =3e-1,	η =1e-1,	η =4e-3,	λ =4e-2,	η =7e-3,	λ =3e-1,	η =8e-3,	λ =3e-1,	η =8e-3,	η =9e-4,	η =9e-4,
	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-1$,	$K_I = 5e-4$,	λ =3e-1,	β =9e-1,	ϵ =1e-8	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =3e-1	λ =3e-1,	λ =3e-1,
	ϵ =1e-8		$K_D = 5e-4$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β =9e-1
D4	η =8e-3,	λ =3e-1,	η =2e-2,	λ =9e-2,	η =5e-2,	η =5e-3,	λ =2e-1,	η =8e-3,	λ =3e-1,	η =2e-2,	λ =9e-2,	η =2e-2,	η =2e-3,	η =2e-3,
	$\beta_1 = 9e-1$,	$\beta_2 = 9.99e-1$,	$K_P = 5e-1$,	$K_I = 5e-4$,	λ =3e-1,	β =9e-1,	ϵ =1e-8	$\beta_1 = 9e-1$,	β_2 =9.99e-1,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =9e-2	λ =9e-2,	λ =9e-2,
	ϵ =1e-8		$K_D = 5e - 1$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β =9e-1
D5	η =4e-2,	λ=9e-1,	η =2e-2,	λ =8e-1,	η =4e-1,	η =9e-3,	λ =8e-1,	η =2e-2,	λ=9e-1,	η =2e-2,	λ =8e-1,	η =2e-2,	η =9e-4,	$\eta = 9e-4$,
	$\beta_1 = 9e-1$,	$\beta_2 = 9.99e-1$,	$K_P = 5e-1$,	$K_I = 5e-4$,	λ =6e-1,	β =9e-1,	ϵ =1e-8	$\beta_1 = 9e-1$,	β_2 =9.99e-1,	$K_P = 5e-4$,	$K_D = 5e-4$	λ =8e-1	λ =9e-1,	λ =9e-1,
	ϵ =1e-8		$K_D = 5e - 1$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β =9e-1
D6	η =9e-3,	λ =6e-2,	η =8e-3,	λ =5e-2,	η =3e-2,	η=9e-4,	λ =6e-2,	η =8e-3,	λ =5e-2,	η =8e-3,	λ =5e-2,	η =8e-3,	η =5e-4,	η=9e-4,
	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-1$,	$K_I = 5e-3$,	λ =1e-2,	β =9e-1,	ϵ =1e-8	β_1 =9e-1,	β_2 =9.99e-1,	$K_P = 5e-5$,	$K_D = 5e-4$	λ =5e-2	λ =9e-2,	λ =6e-2,
	ϵ =1e-8		$K_D = 5e - 5$		ϵ =1e-8			ϵ =1e-8					β =9e-1	β=9e-1