ПРИЛОЖЕНИЕ Ж ROC анализ для номинативной переменной

Таблица Ж.1 – Процесс изменения TPR и FPR номинативного предиктора

Таблица Ж.1 – Процесс изменения TPR и FPR номинативного предиктора					
l	Решение	FP_l	TP_l	FPR_l	TPR_l
m	$A_N = \{t_1, t_2, \dots, t_m\},\$ $A_P = \emptyset$	0	0	0	0
m-1	$A_N = \{t_1, \dots, t_{m-1}\},\ A_P = \{t_m\}$	n_m^N	n_m^P	$\frac{n_m^N}{N'}$	$\frac{n_m^P}{P'}$
<i>m</i> -2	$A_N = \{t_1, \dots, t_{m-2}\},\ A_P = \{t_{m-1}, t_m\}$	$n_m^N + n_{m-1}^N$	$n_m^P + n_{m-1}^P$	$\frac{n_m^N + n_{m-1}^N}{N'}$	$\frac{n_m^P + n_{m-1}^P}{P'}$
•••		•••	•••		•••
и	$A_N = \{t_1,, t_u\},\ A_P = \{t_{u+1},, t_m\}$	$\frac{\sum_{k=u+1}^{m} n_k^N}{\sum_{k=u+1}^{m} n_k^N}$	$\sum\nolimits_{k=u+1}^{m}n_{k}^{P}$	$\frac{\sum_{k=u+1}^{m} n_k^N}{N'}$	$\frac{\sum_{k=u+1}^{m} n_k^P}{P'}$
<i>u-1</i>	$A_N = \{t_1,, t_{u-1}\},\ A_P = \{t_u,, t_m\}$	$\sum\nolimits_{k=u}^{m}n_{k}^{N}$	$\sum\nolimits_{k=u}^{m}n_{k}^{P}$	$\frac{\sum_{k=u}^{m} n_k^N}{N'}$	$\frac{\sum_{k=u}^{m} n_k^P}{P'}$
•••		•••	•••	•••	•••
j+1	$A_{N} = \{t_{1}, \dots, t_{j+1}\},\$ $A_{P} = \{t_{j+2}, \dots, t_{m}\}$	$\sum_{k=j+2}^{m} n_k^N$	$\sum\nolimits_{k=j+2}^{m}n_{k}^{P}$	$\frac{\sum_{k=j+2}^{m} n_k^N}{N'}$	$\frac{\sum_{k=j+2}^{m} n_k^P}{P'}$
j	$A_{N} = \{t_{1}, \dots, t_{j}\},\$ $A_{P} = \{t_{j+1}, \dots, t_{m}\}$	$\sum_{k=j+1}^{m} n_k^N$	$\sum_{k=j+1}^{m} n_k^P$	$\frac{\sum_{k=j+1}^{m} n_k^N}{N'}$	$\frac{\sum_{k=j+1}^{m} n_k^P}{P'}$
<i>j-1</i>	$A_N = \{t_1,, t_{j-1}\},\ A_P = \{t_j,, t_m\}$	$\sum_{k=j}^{m} n_k^N$	$\sum_{k=j}^{m} n_k^P$	$\frac{\sum_{k=j}^{m} n_k^N}{N'}$	$\frac{\sum_{k=j}^{m} n_k^P}{P'}$
•••		•••			
S	$A_N = \{t_1,, t_s\},\$ $A_P = \{t_{s+1},, t_m\}$	$\sum_{k=s+1}^{m} n_k^N$	$\sum_{k=s+1}^{m} n_k^P$	$\frac{\sum_{k=s+1}^{m} n_k^N}{N'}$	$\frac{\sum_{k=s+1}^{m} n_k^P}{P'}$
s-1	$A_N = \{t_1,, t_{s-1}\},\ A_P = \{t_s,, t_m\}$	$\sum_{k=s+1}^{m} n_k^N$	$\sum_{k=s+1}^{m} n_k^P$	$\frac{\sum_{k=s}^{m} n_k^N}{N'}$	$\frac{\sum_{k=s}^{m} n_k^P}{P'}$
•••		•••	•••	•••	•••
<i>i</i> +1	$A_N = \{t_1,, t_{i+1}\},\$ $A_P = \{t_{i+2},, t_m\}$	$\sum\nolimits_{k=i+2}^{m} n_k^N$	$\sum\nolimits_{k=i+2}^{m} n_k^P$	$\frac{\sum_{k=i+2}^{m} n_k^N}{N'}$	$\frac{\sum_{k=i+2}^{m} n_k^P}{P'}$
i	$A_N = \{t_1,, t_i\},\$ $A_P = \{t_{i+1},, t_m\}$	$\sum^m n_k^N$	$\sum_{k=i+1}^{m} n_k^P$	$\frac{\sum_{k=i+1}^{m} n_k^N}{N'}$	$\frac{\sum_{k=i+1}^{m} n_k^P}{P'}$
i-1	$A_N = \{t_1,, t_{i-1}\},\ A_P = \{t_i,, t_m\}$	$\frac{\sum_{k=i+1}^{m} n_k^N}{\sum_{k=i}^{m} n_k^N}$	$\sum_{k=i}^{m} n_k^P$	$\frac{\sum_{k=i}^{m} n_k^N}{N'}$	$\frac{\sum_{k=i}^{m} n_k^P}{P'}$
•••		•••	•••		
r	$A_N = \{t_1,, t_r\},\$ $A_P = \{t_{r+1},, t_m\}$	$\sum\nolimits_{k=r+1}^{m} n_k^N$	$\sum_{k=r+1}^{m} n_k^P$	$\frac{\sum_{k=r+1}^{m} n_k^N}{N'}$	$\frac{\sum_{k=r+1}^{m} n_k^P}{P'}$