Data Mining and Machine Learning

Assignment Project Exam Help
Language Modelling for Automatic
Speech Recognitionowcoder

Peter Jančovič

Objectives

 Understand role of language model in speech recognition

Assignment Project Exam Help

Approaches to Language Modelling:

https://powcoder.com – Rule-Based Language Models

- Add WeChat powcoder
 Statistical Language Models
- N-gram Language Models

Speech Recognition: Statistical Methods

Given an unknown utterance y, want to find the word sequence W such that P(W/y) is maximised Assignment Project Exam Help

By Bayes' Theorem, https://powcoder.powcoder $P(W \mid y) = \frac{P(W \mid y)}{Add WeChat powcoder}$

• P(W) - probability that the word sequence W is in application language - language model probability

Language Modelling

Language Model (Grammar) used to compute the probability P(W) that the sequence of words W 'belongs to' the language

- Assignment Project Exam Help
 Constrains recognition problem fewer possible interpretations https://powcoder.com
- Basically there are two types of candidate LM: Add WeChat powcoder
 - Rule-based (traditional) language model
 - Probabilistic language model

- Language models in linguistics and natural language processing typically rule-based
- A rule-based language model consists of:
 - A set of non-terminal units (e.g. sentence, noun-phrase, verb-phrase, https://powcoder.com
 - A set of terminal units (e.g. words)
 - A set of rules, defining now non-terminal units can be expanded into sequences of non-terminal and terminal units
- Corresponds to formal notion of grammar like in school

- Let S denote the non-terminal root node corresponding to 'sentence'
- A sequence of words is **grammatical** if it can be derived from *S* by a sequence of **https://powcoder.com**
- Example: Consider the tiny mouse"

(From Geoffrey Finch, "How to study linguistics", MacMillan, 1998)

- Example rules:
 - S:- NP + VP
 - NP:- det + noun

- det:- "the"
- noun:- "cat"
- verb:- "devoured"
- adj:- "tiny"
- VP:- verb + NP.
 Assignment Project Example puse"
 NP:- det + adj + noun

Add WeChat poweoder det verb noun

> det adi noun

The cat devoured the tiny mouse

- Disadvantages
 - Normally applied to written language
 - A determination of the stype of the stype
 - Cannot easily handle uncertainty
 - Cannot be derived automatically from example data and is - based on human knowledge

- Advantages
 - Can model complex structure, e.g. non-local dependencies
 - Significant tham an expertise and knowledge already exists WeChat powcoder
 - Much effort has already been devoted to the construction of large language models of this type

"She ran, waving enthusiastically, across the bridge"

Finite State Language Models

- Describe all possible sentences as routes through a finite state network
- Typically hand-crafted using graphical design tools
 https://powcoder.com
- Not normally used for vocabulary sizes greater than ~1,000 words

Finite-State Syntax

Expansion of Macros

UNIVERSITYOF BIRMINGHAM

Statistical Language Models

- With a rule based language model, a sequence of words W is either
 - in the language (grammatical) or Help
 - outside the language (not grammatical)
- With a statistical language model, a sequence of words W is in the language (grand with a statistical havir porobability P(W)
- The most common statistical language model is known as the N-gram model

N-gram Language Models

- Let $W = W_1, W_2, ..., W_K$ be a sequence of words
- In general:

$$P(W) = P(W AP(W y W y w))$$

In an N-gram language model, we assume: https://powcoder.com $P(W_k/W_{k-1}, W_{k-2}, ..., W_1) = P(W_k/W_{k-1}, ... W_{k-N+1})$

i.e. the probability of the k^{th} word in the sequence depends only on identities of the previous N-1 words

• The most commonly used *N*-gram models are 2-gram (**bigram**) and 3-gram (**trigram**) models

Bigram and Trigram Models

• In a **Bigram Language Model**, we assume:

$$P(W_k/W_{k-1}, W_{k-2}, ..., W_1) = P(W_k/W_{k-1})$$

Assignment Project Exam Help

Similarly, in a Trigram Language Model, we assume: https://powcoder.com

Add WeChat powcoder
$$P(W_k/W_{k-1}, W_{k-2}, ..., W_1) = P(W_k/W_{k-1}, W_{k-2})$$

These probabilities can be estimated from data

Estimation of Bigram Probabilities

• For example, given a training text, an estimate of the bigram probability $P(W_2/W_1)$ is given by:

 $P(W_2/W_1)$ Assignable and Project Exam Help

where: https://powcoder.com

- $-N(W_1, W_2)$ = author of times the coord pair W_1, W_2 occurs in the training text
- and $N(W_I)$ = number of times the word W_I occurs in the training text

Bigram Probabilities - Example

Consider the training text:

"John sat on the old chair. John read the old book. John was interesting. The book was interesting"

- Suppose this is used to train a bigram grammar.
- 'the' occurs 3 https in provered while the bigrams 'the old' and 'the book' occur twice and once respectively. Hence Add WeChat powcoder

P(`old'|'the')=2/3, and P(`book'|`the')=1/3.

Similarly, if the symbol # denotes start of sentence, then

P('john'|#)=3/4, and P('the'|#)=1/4

Example Continued

The probability of the sentence S
"John sat on the old chair" is given by:

P(S)

= P(john/#)igpmant Project Fxam Halpon) · P(old/the)
· P(chair/old) · P(\$/chair)

+ N(this chair)
- https://powcoder.com
= 3/4 · 1/3 · 1 · 1 · 2/3 · 1/2 · 1 = 1/12

Similarly Add WeChat powcoder P("The old chair")=1/12 P("John read the old chair")=1/12

• But P("John read the interesting book")=0

Bigram & Trigram Estimation

- Most practical systems use a trigram language model
- In reality, there is never enough text to estimate trigram probabilities in this simple way
- E.g. experiments with trigrand language models for a 1,000 word vocabulary application https://powcoder.com
 using 1.5 million words for training, and 300,000 words
 - using 1.5 million words for training, and 300,000 words to test the models WeChat powcoder
 - 23% of the trigrams in the **test** corpus were absent from the **training** corpus
- Hence much more sophisticated training procedures are needed

Estimation of N-gram statistics

- In general, there will not be enough data to estimate *N*-gram statistics reliably.
- Possible Solutions: Project Exam Help
 - Robust estination/methodofloncstatistics
 - Deleted interpolation
 Add WeChat powcoder
 - 'Back-off'

Deleted interpolation

 'Interpolate' trigram probability from estimated trigram, bigram and unigram probabilities: Assignment Project Exam Help

$$\hat{P}(w_3 \mid w_2 w_1) \approx \text{https}(\lambda p \phi w_2 \omega_1 \text{der. 20p}(w_3 \mid w_2) + \lambda_3 P(w_3)$$

Add WeChat powcoder

• Estimate λ_1 , λ_2 , λ_3 through recognition experiments

'Backoff'

- Decide how many examples T are needed for robust estimation.
- Then: Assignment Project Exam Help

$$\hat{P}(w_3 \mid w_2 w_1) = \begin{cases} \frac{\text{https://powcoder.com}}{P(w_3 \mid w_2 w_1)} & \text{if } |w_1 w_2 w_3| \ge T \\ \frac{\text{Add} |\mathbf{W}_2| \text{Chat powcoder}}{P(w_3)} & \text{otherwise} \end{cases}$$

N-gram Language Models - Summary

- Advantages
 - Can be trained automatically from data
 - Probabilistic model

 Project Éxam Help
 - Consistent https://www.dodno.dom
 - Mathematically woundal porithmer

N-gram Language Models - Summary

- Disadvantages
 - Large amounts of training data needed
 Assignment Project Exam Help
 Difficult to incorporate human knowledge

 - Cannot model long term dependency: "She walkeddhawdCinappoketodenickly across the bridge"

Summary

- Role of language modelling in speech recognition
- Rule based language models

 Assignment Project Exam Help
 Finite state language models
- N-gram language in bdersoder.com
- Difficulty of Astimate Chat-peans otheristics

