ME 311: Microprocessors and Automatic Control

Basics of digital logic design Sequential logic

This set of slides is very important to establish Fundamentals notions so do not ignore

P.S. Gandhi Mechanical Engineering IIT Bombay

PRASANNA S GANDHI gandhi@me.iitb.ac.in

1

Life skil

How to know if you have understood?

- Catch hold of some friend who does not know about topic and teach her/ him
- Solve text book problems on topic

PRASANNA S GANDHI gandhi@me.iitb.ac.ir

2

Sequential logic design: digital lock

- Need the following notions in place
 - Q: How to know if we are looking for the first key press or second or the third? We need to know what was previously pressed key or some such thing!!
 - Need to "REMEMBER" something → notion of memory!!
 - Say we have some way to 'remember'; is it sufficient?
 - What is needed in addition? Sense of time.

PRASANNA S GANDHI gandhi@me.iitb.ac.in

5

Sequential logic design: digital lock

- LOGIC DEVELOPMENT
 - Use of *clock* for establishing notion of sequence in digital circuits
 - Add concept/ notion of "state" of the system and moving from one state to other under certain conditions
 - Can you define states and develop state diagram for this problem?
 PRASANNA S GANDHI gandhi@me.iitb.ac.in

Sequential logic design: digital lock

- Assume that memory is available. What do we remember?
- Remember the current state so that it can be used to make decisions based on key presses and decide future state for next clock cycle
- Assume all keys are like buttons once pressed it will remain in the pressed position ok. Simple.
- There can be more complications. Say you can have a 'press and pop' button like a key board logic need to be different. Think how??

Sequential logic design: digital lock

Key1	Key2	Key3	STATE	Next STATE	LOCK
0	-	-	S1	S1	Closed
1	0	0	S1	S2	Closed
1	1	0	S2	S3	Closed
1	1	1	S3	OPEN	Open

- For all other combinations of keys and whatever be the state the next state should be s1 then lock will remain closed
- Memory block will make previous state available for given clock cycle to decide the next state AND change the state to the next state every clock cycle
- Now states (4) can be represented further as binary number to get the logic circuit with a memory block

Questions?

- Ok fine this solution may work.
- Main question is how do we realize in practice the memory block which will in some sense remember values and we will have control over updating these values at will
- For this we need to study and develop ability to analyze digital logic circuits with feedback : → next topic of discussion namely FlipFlops (EE 101)
- We will come back to completion of problem after developing understanding of FlipFlops

PRASANNA S GANDHI gandhi@me.iitb.ac.in

10

