AMENDMENTS TO THE CLAIMS:

The following listing of claims will replace all prior versions of claims in the application.

Claims 1-23 (canceled)

-- Claim 24 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I)

$$F_2HC$$
 R_1
 CH_2
 (I)

in which

Q represents a group

$$R^3_m$$
(Q-1)

- R^1 represents hydrogen, $C_1\text{--}C_8\text{-alkyl}$, $C_1\text{--}C_6\text{-alkylsulfinyl}$, $C_1\text{--}C_6\text{-alkylsulfonyl}$, $C_1\text{--}C_4\text{-alkoxy-}C_1\text{--}C_4\text{-alkyl}$, or $C_3\text{--}C_8\text{-cycloalkyl}$; represents $C_1\text{--}C_6\text{-haloalkyl}$, $C_1\text{--}C_4\text{-haloalkylsulfanyl}$, $C_1\text{--}C_4\text{-haloalkylsulfinyl}$, $C_1\text{--}C_4\text{-haloalkylsulfinyl}$, $C_1\text{--}C_4\text{-haloalkylsulfonyl}$, haloc $C_1\text{--}C_4\text{-alkoxy-}C_1\text{--}C_4\text{-alkyl}$, or $C_3\text{--}C_8\text{-halocycloalkyl}$ having in each case 1 to 9 fluorine, chlorine and/or bromine atoms; or represents $\text{--}COR^7$, $\text{--}CONR^8R^9$, or $\text{--}CH_2NR^{10}R^{11}$,
- R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkenyl, C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of

- halogen, cyano, hydroxyl, C_1 - C_8 -alkyl, C_1 - C_8 -alkoxy, C_1 - C_8 -haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C_1 - C_8 -haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R³ represents fluorine, chlorine, bromine, or methyl,
- m represents 0, 1, 2, 3, or 4,
- R^7 represents hydrogen, $C_1\text{-}C_8\text{-}alkyl,\ C_1\text{-}C_8\text{-}alkoxy,\ C_1\text{-}C_4\text{-}alkoxy-}C_1\text{-}C_4\text{-}alkyl,\ or $C_3\text{-}C_8\text{-}cycloalkyl;\ represents\ }C_1\text{-}C_6\text{-}haloalkyl,\ }C_1\text{-}C_8\text{-}haloalkoxy,\ halo-}C_1\text{-}C_4\text{-}alkoxy-}C_1\text{-}C_4\text{-}alkyl,\ or\ }C_3\text{-}C_8\text{-}halocycloalkyl\ having\ in\ each\ case\ 1\ to\ 9\ fluorine,\ }chlorine,\ and/or\ bromine\ atoms;\ or\ represents\ 4\text{-}(difluoromethyl)-2\text{-}methyl-1,3-thiazol-2-yl,}$
- R⁸ and R⁹ independently of one another represent hydrogen, C₁-C₈-alkyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; or represents C₁-C₈-haloalkyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,
- R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₈-alkyl, or C₃-C₈-cycloalkyl; or represent C₁-C₈-haloalkyl or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³, and
- R^{13} represents hydrogen or C_1 - C_6 -alkyl.

Claim 25 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to Claim 24 in which

Q represents a group

(Q-1)

- R^1 represents hydrogen; $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_4\text{-}alkylsulfinyl},\ C_1\text{-}C_4\text{-}alkylsulfonyl},\ C_1\text{-}C_3\text{-}alkoxy\text{-}C_1\text{-}C_3\text{-}alkyl,\ or\ C_3\text{-}C_6\text{-}cycloalkyl};\ represents\ C_1\text{-}C_4\text{-}haloalkyl},\ C_1\text{-}C_4\text{-}haloalkylsulfanyl},\ C_1\text{-}C_4\text{-}haloalkylsulfinyl},\ C_1\text{-}C_4\text{-}haloalkylsulfonyl},\ halo-C_1\text{-}C_3\text{-}alkoxy\text{-}C_1\text{-}C_3\text{-}alkyl},\ or\ C_3\text{-}C_6\text{-}halocycloalkyl}\ having\ in\ each\ case\ 1\ to\ 9\ fluorine,\ chlorine,\ and/or\ bromine\ atoms;\ or\ represents\ -COR^7,\ -CONR^8R^9,\ or\ -CH_2NR^{10}R^{11},$
- R² represents C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkyl, C₃-C₁₂-cycloalkyl, C₆-C₁₂-bicycloalkyl, or C₆-C₁₂-bicycloalkenyl, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₄-haloalkyl having 1 to 9 fluorine, chlorine, and/or bromine atoms, and C₁-C₄-haloalkoxy having 1 to 9 fluorine, chlorine, and/or bromine atoms,
- R³ represents fluorine, bromine or methyl,
- m represents 0, 1, 2, or 3,
- R⁷ represents hydrogen, C₁-C₆-alkyl, C₁-C₄-alkoxy, C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-cycloalkyl; represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, halo-C₁-C₃-alkoxy-C₁-C₃-alkyl, or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents 4-(difluoromethyl)-2-methyl-1,3-thiazol-2-yl.

- R^8 and R^9 independently of one another represent hydrogen, $C_1\text{-}C_6\text{-}alkyl,\ C_1\text{-}C_3\text{-}alkoxy-}C_1\text{-}C_3\text{-}alkyl,\ or\ C_3\text{-}C_6\text{-}cycloalkyl;\ or\ represents\ }C_1\text{-}C_4\text{-}haloalkyl,\ halo-}C_1\text{-}C_3\text{-}alkoxy-}C_1\text{-}C_3\text{-}alkyl,\ or\ C_3\text{-}C_6\text{-}halocycloalkyl\ having\ in\ each\ case\ 1\ to\ 9\ fluorine,\ chlorine,\ and/or\ bromine\ atoms,\ or$
- R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and that has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹³,
- R¹⁰ and R¹¹ independently of one another represent hydrogen, C₁-C₆-alkyl, or C₃-C₆-cycloalkyl; or represent C₁-C₄-haloalkyl or C₃-C₆-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms, or
- R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle that is optionally mono- or polysubstituted by identical or different substituents selected from the group consisting of halogen and C₁-C₄-alkyl and which has 5 to 8 ring atoms, where the heterocycle optionally contains 1 or 2 further nonadjacent heteroatoms selected from the group consisting of oxygen, sulfur, and NR¹², and

R¹³ represents hydrogen or C₁-C₄-alkyl.

Claim 26 (new): A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to Claim 24 in which

Q represents a group

$$R^3_m$$
(O-1)

R¹ represents hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, pentyl, or hexyl, methylsulfinyl, ethylsulfinyl, n- or isopropylsulfinyl, n-, iso-, sec-, or tert-butylsulfinyl, methylsulfonyl, ethylsulfonyl, n- or isopropylsulfonyl, n-, iso-, sec-, or tert-butylsulfonyl, methoxymethyl, methoxyethyl, ethoxy-

CS8484

methyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl, trifluoromethyl, trichloromethyl, trifluoroethyl, difluoromethylsulfanyl, difluoromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfanyl, trifluoromethylsulfonyl, or trifluoromethoxymethyl; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹,

R² represents C₃-C₁₀-cycloalkyl, C₃-C₁₀-cycloalkenyl, C₆-C₁₀-bicycloalkyl, or C₆-C₁₀-bicycloalkenyl, each of which is optionally mono- to trisubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, cyano, hydroxyl, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxy, ethoxy, n- or isopropoxy, n-, iso-, sec-, or tert-butoxy, trifluoromethyl, difluoromethyl, trichloromethyl, difluorochloromethyl, trifluoromethoxy, difluoromethoxy, trichloromethoxy, or difluorochloromethoxy,

R³ represents fluorine, bromine, or methyl,

m represents 0, 1, 2, or 3,

R⁷ represents hydrogen, methyl, ethyl, n- or isopropyl, tert-butyl, methoxy, ethoxy, tert-butoxy, cyclopropyl; trifluoromethyl, trifluoromethoxy, or 4-(difluoromethyl)-2-methyl-1.3-thiazol-2-yl.

R⁸ and R⁹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trichloromethyl, trifluoroethyl, or trifluoromethoxymethyl, or

R⁸ and R⁹ together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, each of which is optionally monoto tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R¹³.

R¹⁰ and R¹¹ independently of one another represent hydrogen, methyl, ethyl, n- or isopropyl, n-, iso-, sec-, or tert-butyl, methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, cyclopropyl, cyclopentyl, cyclohexyl; trifluoromethyl, trifluoromethyl, or trifluoromethyl, or

R¹⁰ and R¹¹ together with the nitrogen atom to which they are attached form a saturated heterocycle selected from the group consisting of morpholine, thiomorpholine, and piperazine, each of which is optionally mono- to tetrasubstituted by identical or different substituents selected from the group consisting of fluorine, chlorine, bromine, and methyl, where the piperazine is optionally substituted on the second nitrogen atom by R¹³, and

R¹³ represents hydrogen, methyl, ethyl, n- or isopropyl, or n-, iso-, sec-, or tertbutyl.

Claim 27. (new) A thiazole(bi)cycloalkylcarboxanilide of formula (I) according to any of Claims 24, 25 or 26 in which R¹ is hydrogen.

Claim 28 (new): A process for preparing a thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 comprising

(1) reacting a carboxylic acid derivative of formula (II)

in which G represents halogen, hydroxyl. or $\text{C}_1\text{-C}_6\text{-alkoxy},$ with an aniline derivative of formula (III)

$$H_2N-Q$$
 (III)

in which Q is as defined for formula (I) in Claim 24, in the presence of an acid binder and in the presence of a diluent to form a compound of formula (I-a)

in which Q is as defined for formula (I) in Claim 24, and
(2) optionally reacting a compound of formula (I-a) with a halide of the formula (III)

R¹⁻¹_X (IV)

in which

R¹⁻¹ represents C₁-C₈-alkyl, C₁-C₆-alkylsulfinyl, C₁-C₆-alkylsulfonyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-cycloalkyl; represents C₁-C₆-haloalkyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfinyl, halo-C₁-C₄-alkoxy-C₁-C₄-alkyl, or C₃-C₈-halocycloalkyl having in each case 1 to 9 fluorine, chlorine, and/or bromine atoms; or represents -COR⁷, -CONR⁸R⁹, or -CH₂NR¹⁰R¹¹.

 R^7 , R^8 , R^9 , R^{10} , and R^{11} are as defined for formula (I) in Claim 24, and X represents chlorine, bromine, or iodine,

in the presence of a base and in the presence of a diluent.

Claim 29 (new): A composition for controlling unwanted microorganisms comprising one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 and one or more extenders and/or surfactants.

Claim 30 (new): A method for controlling unwanted microorganisms comprising applying an effective amount of one or more thiazole(bi)cycloalkylcarboxanilides of formula (I) according to Claim 24 to the microorganisms and/or their habitat.

Claim 31 (new): A process for preparing a composition for controlling unwanted microorganisms comprising mixing one or more thiazole(bi)cycloalkylcarboxanilides of the formula (I) according to Claim 24 with one or more extenders and/or surfactants. ---