Линейная алгебра:

Векторные пространства, базис, ранг

Комплексные числа: основы

Цель: расширить множество вещественных чисел числом i таким, что $i^2=-1$. На этих числах должны быть определены все нужные арифметические операции: сложение, вычитание, умножение и деление на любое ненулевое число.

Комплексные числа: основы

Цель: расширить множество вещественных чисел числом i таким, что $i^2=-1$. На этих числах должны быть определены все нужные арифметические операции: сложение, вычитание, умножение и деление на любое ненулевое число.

Рассмотрим множество «чисел» вида a+bi, где $a,b\in\mathbb{R}$, а i – просто символ. Как множество, $\mathbb{C}=\{a+bi\mid a,b\in\mathbb{R}\}$. В этом случае нулем будет число вида 0+0i, единицей 1+0i. Числа вида a+0i можно отождествить с вещественными числами $a\in\mathbb{R}$. Таким образом, $\mathbb{R}\subseteq\mathbb{C}$.

Комплексные числа: основы

Цель: расширить множество вещественных чисел числом i таким, что $i^2=-1$. На этих числах должны быть определены все нужные арифметические операции: сложение, вычитание, умножение и деление на любое ненулевое число.

Рассмотрим множество «чисел» вида a+bi, где $a,b\in\mathbb{R}$, а i – просто символ. Как множество, $\mathbb{C}=\{a+bi\mid a,b\in\mathbb{R}\}$. В этом случае нулем будет число вида 0+0i, единицей 1+0i. Числа вида a+0i можно отождествить с вещественными числами $a\in\mathbb{R}$. Таким образом, $\mathbb{R}\subseteq\mathbb{C}$.

Сложение комплексных чисел: (a + bi) + (c + di) = (a + c) + (b + d)i.

Вычитание комплексных чисел: (a+bi)-(c+di)=(a-c)+(b-d)i.

Умножение комплексных чисел: (a+bi)(c+di) = (ac-bd) + (ad+bc)i.

Определение

Пусть $z=a+bi\in\mathbb{C}.$ Комплексно сопряженным к числу z называется число $\bar{z}=a-bi.$

Определение

Пусть $z=a+bi\in\mathbb{C}.$ Комплексно сопряженным к числу z называется число $\bar{z}=a-bi.$

Перемножим числа z и \bar{z} :

$$z\bar{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2.$$

Результат является неотрицательным вещественным числом.

Модуль комплексного числа z – это $|z| = \sqrt{z\bar{z}}$.

Определение

Пусть $z=a+bi\in\mathbb{C}.$ Комплексно сопряженным к числу z называется число $\bar{z}=a-bi.$

Перемножим числа z и \bar{z} :

$$z\bar{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2.$$

Результат является неотрицательным вещественным числом.

Модуль комплексного числа z – это $|z| = \sqrt{z\bar{z}}$.

Найдем обратный к числу z = a + bi:

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i.$$

Таким образом, обратный к числу z имеет вид $\dfrac{ar{z}}{|z|^2}$

Определение

Пусть $z=a+bi\in\mathbb{C}.$ Комплексно сопряженным к числу z называется число $\bar{z}=a-bi.$

Перемножим числа z и \bar{z} :

$$z\bar{z} = (a+bi)(a-bi) = a^2 - (bi)^2 = a^2 + b^2.$$

Результат является неотрицательным вещественным числом.

Модуль комплексного числа z – это $|z| = \sqrt{z\bar{z}}$.

Найдем обратный к числу z = a + bi:

$$\frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2}i.$$

Таким образом, обратный к числу z имеет вид $\dfrac{ar{z}}{|z|^2}$

Теорема (Основная теорема алгебры)

Любой многочлен $p(t)=a_0+a_1t+\ldots+a_{n-1}t^{n-1}+t^n$, где $a_0,a_1,\ldots,a_{n-1}\in\mathbb{C}\ (n>0)$, имеет (комплексный) корень (более того, имеет ровно n комплексных корней с учетом кратности).

Квадратные уравнения над $\mathbb C$

Квадратное уравнение: $ax^2 + bx + c = 0$, $a, b, c \in \mathbb{C}, \ a \neq 0$. Формула для решения такая же, как для \mathbb{R} :

$$D = b^2 - 4ac$$
, $x_{12} = \frac{-b \pm \sqrt{D}}{2a}$.

Квадратные уравнения над $\mathbb C$

Квадратное уравнение: $ax^2+bx+c=0,\ a,b,c\in\mathbb{C},\ a\neq 0.$

Формула для решения такая же, как для \mathbb{R} :

$$D = b^2 - 4ac$$
, $x_{12} = \frac{-b \pm \sqrt{D}}{2a}$.

Пример. $x^2 - 2x + 10 = 0$.

$$D = 2^2 - 4 \cdot 10 = -36$$
, $x_{12} = \frac{2 \pm \sqrt{-36}}{2} = \frac{2 \pm 6i}{2} = 1 \pm 3i$.

Абстрактные векторные пространства

В определении векторного пространства надо зафиксировать, откуда берутся коэффициенты. Варианты:

- ullet Вещественные числа ${\mathbb R}$
- ullet Комплексные числа ${\mathbb C}$
- Рациональные числа Q

Будем считать, что эти коэффициенты вещественны.

Определение векторного пространства может показаться сложным и формальным. Но главное – понимать, как с ним работать. Действительно, никто из нас не знает строгого определения $\mathbb R$, но это не мешает нам с ним работать!

Абстрактные векторные пространства

В определении векторного пространства надо зафиксировать, откуда берутся коэффициенты. Варианты:

- ullet Вещественные числа ${\mathbb R}$
- Комплексные числа C
- Рациональные числа Q

Будем считать, что эти коэффициенты вещественны.

Определение векторного пространства может показаться сложным и формальным. Но главное – понимать, как с ним работать. Действительно, никто из нас не знает строгого определения $\mathbb R$, но это не мешает нам с ним работать!

Определение

Векторное пространство над $\mathbb R$ состоит из:

- множества V (множество векторов);
- операции сложения векторов, т.е. отображения $+: V \times V \to V$ вида $(v_1, v_2) \mapsto v_1 + v_2;$
- операции умножения векторов на число, т.е. отображения $\cdot \colon \mathbb{R} \times V \to V$ вида $(r,v) \mapsto r \cdot v$.

Абстрактные векторные пространства

Определение

Указанное множество V с операциями $+,\cdot$ должно удовлетворять следующим аксиомам:

- 1. Для любых $v, u, w \in V$ верно: (v + u) + w = v + (u + w).
- 2. Существует вектор $0 \in V$ такой, что для любого вектора $v \in V$ имеем: 0+v=v+0=v.
- 3. Для любого вектора $v \in V$ существует вектор -v такой, что v + (-v) = (-v) + v = 0.
- 4. Для любых векторов $v,u\in V$ верно: v+u=u+v.
- 5. Для любых $r \in \mathbb{R}$ и $v,u \in V$ верно: $r \cdot (v+u) = r \cdot v + r \cdot u$.
- 6. Для любых $r_1, r_2 \in \mathbb{R}$ и $v \in V$ верно: $(r_1 + r_2) \cdot v = r_1 \cdot v + r_2 \cdot v$.
- 7. Для любых $r_1, r_2 \in \mathbb{R}$ и $v \in V$ верно: $(r_1 r_2) \cdot v = r_1 \cdot (r_2 \cdot v)$.
- 8. Для любого $v \in V$ верно: $1 \cdot v = v$.

Обычно элементы V называют векторами, а элементы \mathbb{R} – скалярами. Даже в абстрактном случае полезно мыслить геометрически, представляя как главный пример n-мерное пространство \mathbb{R}^n .

Примеры

- 1. $V=\mathbb{R}^n$ с обычными операциями сложения и умножения на скаляр.
- 2. $V = M_{m \times n}(\mathbb{R})$ с обычными операциями сложения и умножения на скаляр.
- 3. $V = \{0\} = \mathbb{R}^0$.
- 4. $V=\mathbb{R}[x]=\{a_0+a_1x+\ldots+a_nx^n\mid a_i\in\mathbb{R},\ n\in\mathbb{N}\}$ множество многочленов от переменной x с вещественными коэффициентами с обычными операциями сложения и умножения на число.
- 5. $V=\mathbb{R}_{\leqslant k}[x]=\{a_0+a_1x+\ldots+a_kx^k\mid a_i\in\mathbb{R}\}$ множество многочленов от переменной x степени не выше k с вещественными коэффициентами с обычными операциями сложения и умножения на число.
- 6. V=C[a,b] множество непрерывных функций на отрезке [a,b] с поточечными операциями сложения и умножения на число.

Подпространства

Определение

Пусть V – векторное пространство над \mathbb{R} , тогда подмножество $U\subseteq V$ называется подпространством, если

- 1. Если $u,v \in U$, то и $v+u \in U$.
- 2. Если $r \in \mathbb{R}$ и $v \in U$, то и $r \cdot v \in U$.

Стоит отметить, что всякое подпространство само является векторным пространством.

- 1. $\{0\}, V$ подпространства любого векторного пространства V.
- 2. $V = \mathbb{R}^2$, U прямая, проходящая через начало координат.
- 3. $V = \mathbb{R}^3$, U прямая или плоскость, проходящая через начало координат.

- 1. $\{0\}, V$ подпространства любого векторного пространства V.
- 2. $V = \mathbb{R}^2$, U прямая, проходящая через начало координат.
- 3. $V = \mathbb{R}^3$, U прямая или плоскость, проходящая через начало координат.
- 4. $V=\mathbb{R}^n$, U множество решений ОСЛУ от переменных x_1,x_2,\ldots,x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

$$U = \{ x \in \mathbb{R}^n \mid Ax = 0 \}.$$

- 1. $\{0\}, V$ подпространства любого векторного пространства V.
- 2. $V = \mathbb{R}^2$, U прямая, проходящая через начало координат.
- 3. $V = \mathbb{R}^3$, U прямая или плоскость, проходящая через начало координат.
- 4. $V=\mathbb{R}^n$, U множество решений ОСЛУ от переменных x_1,x_2,\ldots,x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

$$U = \{ x \in \mathbb{R}^n \, | \, Ax = 0 \}.$$

- 5. $V=M_{m imes n}(\mathbb{R})$, U матрицы с нулевой первой строкой.
- 6. $V=\mathbb{R}[x]$, $U=\mathbb{R}_{\leqslant k}[x]$ (многочлены степени не выше k).
- 7. $V = C[a,b], \, U$ множество дифференцируемых функций на отрезке [a,b].

1. $V = \mathbb{R}^2$, U – верхняя полуплоскость.

- 1. $V = \mathbb{R}^2$, U верхняя полуплоскость.
- 2. $V = \mathbb{R}^2$, U прямая, не проходящая через начало координат.

- 1. $V = \mathbb{R}^2$, U верхняя полуплоскость.
- 2. $V = \mathbb{R}^2$, U прямая, не проходящая через начало координат.
- 3. $V=\mathbb{R}^n$, U множество решений неоднородной СЛУ от переменных x_1,x_2,\ldots,x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- 1. $V = \mathbb{R}^2$, U верхняя полуплоскость.
- 2. $V = \mathbb{R}^2$, U прямая, не проходящая через начало координат.
- 3. $V=\mathbb{R}^n$, U множество решений неоднородной СЛУ от переменных x_1,x_2,\ldots,x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

4. $V=\mathbb{R}[x]$, U – многочлены степени ровно k.

- 1. $V = \mathbb{R}^2$, U верхняя полуплоскость.
- 2. $V = \mathbb{R}^2$, U прямая, не проходящая через начало координат.
- 3. $V=\mathbb{R}^n$, U множество решений неоднородной СЛУ от переменных x_1,x_2,\ldots,x_n :

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

- 4. $V = \mathbb{R}[x]$, U многочлены степени ровно k.
- 5. $V=C[a,b],\, U$ множество непрерывных функций, имеющих хотя бы один нуль на отрезке [a,b].

Линейная зависимость

Определение

Пусть $v_1, v_2, \ldots, v_n \in V$ и $r_1, r_2, \ldots, r_n \in \mathbb{R}$. Тогда выражение $r_1v_1+r_2v_2\ldots+r_nv_n$ называется линейной комбинацией векторов v_1, v_2, \ldots, v_n . Линейная комбинация называется тривиальной, если все $r_i=0$, и нетривиальной в противном случае.

Определение

Векторы $v_1, v_2, \ldots, v_n \in V$ называются линейно зависимыми, если существует нетривиальная линейная комбинация этих векторов, равная нулевому вектору, т.е. существуют $r_1, r_2, \ldots, r_n \in \mathbb{R}$, не все равные нулю, для которых $r_1v_1+r_2v_2+\ldots+r_nv_n=0$. В противном случае векторы называются линейно независимыми.

Примеры

- 1. Один вектор $v \in V$ линейно зависим тогда и только тогда, когда он равен нулю.
- 2. Два вектора $v,u\in V$ линейно зависимы тогда и только тогда, когда они пропорциональны, т.е. либо $v=\lambda u$ либо $u=\lambda v.$
- 3. Следующие векторы линейно зависимы в \mathbb{R}^2 :

$$v_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -3 \\ 5 \end{pmatrix}.$$

Действительно, $2v_1 - 3v_2 + v_3 = 0$.

Примеры

- 1. Один вектор $v \in V$ линейно зависим тогда и только тогда, когда он равен нулю.
- 2. Два вектора $v,u\in V$ линейно зависимы тогда и только тогда, когда они пропорциональны, т.е. либо $v=\lambda u$ либо $u=\lambda v.$
- 3. Следующие векторы линейно зависимы в \mathbb{R}^2 :

$$v_1 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} -3 \\ 5 \end{pmatrix}.$$

Действительно, $2v_1 - 3v_2 + v_3 = 0$.

4. Рассмотрим $V=\mathbb{R}^3$ и пусть

$$v_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad v_5 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}.$$

Тогда векторы $v_1,\ v_2,\ v_3$ линейно независимы. Векторы $v_1,\ v_2,\ v_4$ тоже линейно независимы. Но вот векторы $v_1,\ v_2,\ v_3,\ v_4$ уже зависимы, так как $v_1+v_2+v_3-v_4=0$. Также зависимы векторы $v_1,\ v_2$ и v_5 , ибо $v_1+v_2-v_5=0$.

СЛУ как линейная комбинация столбцов матрицы

ОСЛУ:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Пусть матрица системы $A\in M_{m imes n}(\mathbb{R})$ имеет вид $A=(A_1|\dots|A_n).$ Тогда система Ax=0 переписывается так:

$$x_1A_1 + \ldots + x_nA_n = 0.$$

То есть решение однородной СЛУ – это выяснение, какие есть линейные комбинации между столбцами матрицы A.

Если же нам дана система Ax = b, то она переписывается в виде:

$$x_1A_1 + \ldots + x_nA_n = b.$$

То есть решение СЛУ – это выяснение, как можно линейно выразить вектор b через столбцы матрицы A.

Линейные оболочки

Пусть V — векторное пространство. Для простоты можно думать, что это \mathbb{R}^n . И пусть задан произвольный набор векторов $v_1,\dots,v_k\in V$. Конечный набор векторов не образует подпространство, но можно рассмотреть наименьшее подпространство, содержащее данные векторы. Это подпространство обозначается через $\langle v_1,\dots,v_k\rangle$ и называется линейной оболочкой векторов v_1,\dots,v_k . Оно состоит из всех линейных комбинаций v_i :

$$\langle v_1, \ldots, v_k \rangle = \{\lambda_1 v_1 + \ldots + \lambda_k v_k \in V \mid \lambda_i \in \mathbb{R}\}.$$

Линейные оболочки

Пусть V — векторное пространство. Для простоты можно думать, что это \mathbb{R}^n . И пусть задан произвольный набор векторов $v_1,\dots,v_k\in V$. Конечный набор векторов не образует подпространство, но можно рассмотреть наименьшее подпространство, содержащее данные векторы. Это подпространство обозначается через $\langle v_1,\dots,v_k\rangle$ и называется линейной оболочкой векторов v_1,\dots,v_k . Оно состоит из всех линейных комбинаций v_i :

$$\langle v_1, \ldots, v_k \rangle = \{\lambda_1 v_1 + \ldots + \lambda_k v_k \in V \mid \lambda_i \in \mathbb{R}\}.$$

Теорема (Основная лемма о линейной зависимости)

Если векторы u_1, u_2, \dots, u_m линейно независимы и $u_1, u_2, \dots, u_m \in \langle v_1, v_2, \dots, v_k \rangle$, то $m \leqslant k$.

Таким образом, линейно независимая система векторов не может линейно выражаться через меньшее число векторов.

Базис

Пусть V – векторное пространство над $\mathbb R$ и пусть $v_1, v_2 \dots, v_n \in V$.

Определение

Система векторов v_1, v_2, \ldots, v_n называется базисом пространства V, если:

- ullet векторы v_1, v_2, \ldots, v_n линейно независимы;
- любой вектор $u \in V$ представляется в виде $u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ (то есть является линейной комбинацией базисных).

Базис

Пусть V – векторное пространство над $\mathbb R$ и пусть $v_1, v_2 \dots, v_n \in V$.

Определение

Система векторов v_1, v_2, \ldots, v_n называется базисом пространства V, если:

- ullet векторы v_1, v_2, \ldots, v_n линейно независимы;
- любой вектор $u \in V$ представляется в виде $u = \lambda_1 v_1 + \lambda_2 v_2 + \ldots + \lambda_n v_n$ (то есть является линейной комбинацией базисных).

Оказывается, что следующие условия эквивалентны:

- 1. Векторы v_1, v_2, \ldots, v_n базис пространства V.
- 2. Векторы v_1,v_2,\ldots,v_n линейно независимы, и для любого $u\in V$ векторы v_1,v_2,\ldots,v_n,u уже линейно зависимы.
- 3. Любой вектор $u\in V$ единственным образом представляется в виде $u=a_1v_1+a_2v_2\ldots+a_nv_n$, где $a_i\in\mathbb{R}.$

Описание всех векторных пространств с базисами

Пусть V – векторное пространство над $\mathbb R$ с базисом $v_1,\dots,v_n\in V$. Тогда любой вектор $u\in V$ единственным образом представляется в виде

$$u=a_1v_1+\ldots+a_nv_n$$
, а значит, однозначно описывается столбцом $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

Кроме того, при сложении векторов u_1 и u_2 соответствующие столбцы будут складываться и при умножении u на коэффициент соответствующий столбец умножится на этот же коэффициент.

Описание всех векторных пространств с базисами

Пусть V – векторное пространство над $\mathbb R$ с базисом $v_1,\dots,v_n\in V$. Тогда любой вектор $u\in V$ единственным образом представляется в виде

$$u=a_1v_1+\ldots+a_nv_n$$
, а значит, однозначно описывается столбцом $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$.

Кроме того, при сложении векторов u_1 и u_2 соответствующие столбцы будут складываться и при умножении u на коэффициент соответствующий столбец умножится на этот же коэффициент.

Таким образом, можно считать, что V и \mathbb{R}^n – это одно и то же пространство: все свойства V будут такие же, как и свойства \mathbb{R}^n .

Описание всех векторных пространств с базисами

Пусть V – векторное пространство над $\mathbb R$ с базисом $v_1,\dots,v_n\in V$. Тогда любой вектор $u\in V$ единственным образом представляется в виде

$$u=a_1v_1+\ldots+a_nv_n$$
, а значит, однозначно описывается столбцом $\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$. Кроме того, при сложении векторов u_1 и u_2 соответствующие столбцы

Кроме того, при сложении векторов u_1 и u_2 соответствующие столбцы будут складываться и при умножении u на коэффициент соответствующий столбец умножится на этот же коэффициент.

Таким образом, можно считать, что V и \mathbb{R}^n – это одно и то же пространство: все свойства V будут такие же, как и свойства \mathbb{R}^n .

Это рассуждение можно применить к векторному пространству $U=\{x\in\mathbb{R}^n\mid Ax=0\}$, где $A\in M_{m\times n}(\mathbb{R})$, «не очень похожему» на \mathbb{R}^k . Однако, если правильно выбрать в нем базис, то оно превратится в \mathbb{R}^k для некоторого k.

Поэтому обычно доказывают результаты только для пространства \mathbb{R}^n , подразумевая, что они автоматически применимы к любому векторному пространству с конечным базисом.

Размерность

У любого векторного пространства V существует базис! Только не всегда он состоит из конечного числа векторов. Далее мы не будем обсуждать случай бесконечных базисов.

Теорема

Пусть V — векторное пространство. Тогда любые два базиса V имеют одинаковое число элементов.

(Это утверждение верно и для конечных, и для бесконечных базисов, но для работы с бесконечными базисами нужно понимать, как сравнивать бесконечные множества.)

Если V — векторное пространство, то число элементов в любом его базисе называется pазмерностью векторного пространства V и обозначается $\dim V$. Если конечного базиса нет, то пишут $\dim V = \infty$.

Примеры

Размерность — это величина, показывающая, насколько векторное пространство большое и характеризующее «количество степеней свободы» в пространстве. Кроме того, это понятие согласовано с нашей интуицией: прямая \mathbb{R}^1 имеет размерность 1, плоскость \mathbb{R}^2 — размерность 2, а пространство \mathbb{R}^3 — размерность 3. Для простых пространств размерность в точности равна числу коэффициентов, которые необходимы для задания векторов.

Примеры

Размерность — это величина, показывающая, насколько векторное пространство большое и характеризующее «количество степеней свободы» в пространстве. Кроме того, это понятие согласовано с нашей интуицией: прямая \mathbb{R}^1 имеет размерность 1, плоскость \mathbb{R}^2 — размерность 2, а пространство \mathbb{R}^3 — размерность 3. Для простых пространств размерность в точности равна числу коэффициентов, которые необходимы для задания векторов.

- 1. $\dim \mathbb{R}^n = n$.
- 2. $\dim M_{m \times n}(\mathbb{R}) = mn$. Базис состоит из матричных единиц E_{ij} матриц, в которых единственный ненулевой элемент равен 1 и стоит на позиции (i,j).
- 3. Для $V=\{x\in\mathbb{R}^n\mid Ax=0\}$, где $A\in M_{m\times n}(\mathbb{R})$, $\dim V$ равна числу свободных переменных СЛУ Ax=0.
- 4. $\dim \mathbb{R}[x] = \infty$. Базис состоит из одночленов $1, x, x^2, \ldots, x^n, \ldots$
- 5. $\dim \mathbb{R}_{\leqslant k}[x] = k+1$. Базис состоит из одночленов $1, x, x^2, \ldots, x^k$.

Размерность подпространства

Утверждение. Пусть V — конечномерное векторное пространство, $v_1, v_2, \ldots, v_k \in V$ — набор линейно независимых векторов. Тогда его можно дополнить до базиса V.

Утверждение. Пусть V — векторное пространство и пусть $U \subseteq V$ — подпространство.

- 1. $\dim U \leqslant \dim V$. В частности, если V обладает конечным базисом, то и U обязательно обладает конечным базисом.
- 2. $\dim U = \dim V$ тогда и только тогда, когда U = V.

Задание подпространств в \mathbb{R}^n

Существует два способа задания подпространства в \mathbb{R}^n :

- 1. С помощью образующих векторов: $U\subseteq \mathbb{R}^n$ задано в виде $U=\langle v_1,\dots,v_k\rangle$, где $v_1,\dots,v_k\in \mathbb{R}^n$ некоторые векторы. В этом случае часто бывает полезно, чтобы векторы v_i были линейно независимыми, то есть были базисом U.
- 2. С помощью ОСЛУ: $U\subseteq\mathbb{R}^n$ задано в виде $U=\{x\in\mathbb{R}^n\mid Ax=0\}$, где $A\in M_{m\times n}(\mathbb{R})$ некоторая матрица. В этом случае часто бывает полезно, чтобы строки матрицы A были линейно независимыми.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Задача. Пусть $v_1,v_2,\dots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\dots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,\dots,v_m найти базис пространства U и разложить оставшиеся вектора по этому базису.

Задача. Пусть $v_1,v_2,\dots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\dots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,\dots,v_m найти базис пространства U и разложить оставшиеся вектора по этому базису.

Алгоритм.

1. Запишем векторы v_1,\dots,v_m по столбцам в матрицу $A\in M_{n\times m}(\mathbb{R}).$ Например, при $n=3,\ m=5$

$$A = \begin{pmatrix} v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix}$$

Задача. Пусть $v_1,v_2,\ldots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\ldots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,\ldots,v_m найти базис пространства U и разложить оставшиеся вектора по этому базису.

Алгоритм.

1. Запишем векторы v_1,\dots,v_m по столбцам в матрицу $A\in M_{n\times m}(\mathbb{R}).$ Например, при $n=3,\ m=5$

$$A = \begin{pmatrix} v_{11} & v_{21} & v_{31} & v_{41} & v_{51} \\ v_{12} & v_{22} & v_{32} & v_{42} & v_{52} \\ v_{13} & v_{23} & v_{33} & v_{43} & v_{53} \end{pmatrix}$$

2. Приведем матрицу A элементарными преобразованиями строк к каноническому ступенчатому виду. Например,

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

Задача. Пусть $v_1,v_2,\ldots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\ldots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,v_2,\ldots,v_m требуется найти базис пространства U и разложить оставшиеся вектора по этому базису.

Алгоритм.

2. Приведем матрицу A элементарными преобразованиями строк к каноническому ступенчатому виду. Например,

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

Задача. Пусть $v_1,v_2,\dots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\dots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,v_2,\dots,v_m требуется найти базис пространства U и разложить оставшиеся вектора по этому базису.

Алгоритм.

2. Приведем матрицу A элементарными преобразованиями строк к каноническому ступенчатому виду. Например,

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

3. Пусть k_1,\ldots,k_r — номера главных позиций в матрице A'. Тогда вектора v_{k_1},\ldots,v_{k_r} образуют базис U. В примере выше это векторы $v_1,\ v_2$ и v_4 .

Задача. Пусть $v_1,v_2,\ldots,v_m\in\mathbb{R}^n$ – векторы и $U=\langle v_1,v_2,\ldots,v_m\rangle$ – их линейная оболочка. Среди векторов v_1,v_2,\ldots,v_m требуется найти базис пространства U и разложить оставшиеся вектора по этому базису.

Алгоритм.

2. Приведем матрицу A элементарными преобразованиями строк к каноническому ступенчатому виду. Например,

$$A' = \begin{pmatrix} 1 & 0 & a_{31} & 0 & a_{51} \\ 0 & 1 & a_{32} & 0 & a_{52} \\ 0 & 0 & 0 & 1 & a_{53} \end{pmatrix}$$

- 3. Пусть k_1,\dots,k_r номера главных позиций в матрице A'. Тогда вектора v_{k_1},\dots,v_{k_r} образуют базис U. В примере выше это векторы $v_1,\,v_2$ и v_4 .
- 4. Пусть v_i вектор соответствует неглавной позиции в A'. Тогда в i-ом столбце A' записаны координаты разложения v_i через найденный базис выше. В примере выше $v_3=a_{31}v_1+a_{32}v_2$ и $v_5=a_{51}v_1+a_{52}v_2+a_{53}v_4.$

Пример

Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Пример

Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Тогда

$$\begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 3 & 2 & 12 & 1 & 1 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 0 & 2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

Пример

Пусть

$$v_1 = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 5 \\ 12 \\ 7 \end{pmatrix}, v_4 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_5 = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix} \in \mathbb{R}^3$$

Тогда

$$\begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 3 & 2 & 12 & 1 & 1 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 2 & 1 & 7 & 1 & 0 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & -1 & 2 \\ 1 & 0 & 2 & 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 1 & 1 & 5 & 1 & -1 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 1 & -2 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 0 & 2 & 0 & 1 \\ 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \end{pmatrix}$$

Тогда v_1 , v_2 и v_4 – базис линейной оболочки $\langle v_1,v_2,v_3,v_4,v_5 \rangle$. $v_3=2v_1+3v_2$ и $v_5=v_1-2v_4$.

Фундаментальная система решений (ФСР)

Пусть $A\in M_{m\times n}(\mathbb{R})$, тогда пространство $U=\{x\in\mathbb{R}^n\mid Ax=0\}$, заданное в виде множества решений ОСЛУ

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

можно задать в виде линейной оболочки не более чем n линейно независимых векторов. На самом деле, их количество равно количеству свободных неизвестных ОСЛУ Ax=0. Базис пространства U называется фундаментальной системой решений. Наша задача — научиться находить его.

Задача. Дана матрица $A\in M_{m\times n}(\mathbb{R}).$ Необходимо найти базис пространства $U=\{x\in\mathbb{R}^n\mid Ax=0\}.$

Задача. Дана матрица $A \in M_{m \times n}(\mathbb{R})$. Необходимо найти базис пространства $U = \{x \in \mathbb{R}^n \mid Ax = 0\}$.

Алгоритм.

1. Приведем матрицу A к (каноническому) ступенчатому виду. Пусть, например, он имеет вид:

$$\begin{pmatrix}
1 & a_{12} & 0 & a_{14} & 0 & a_{16} \\
0 & 0 & 1 & a_{24} & 0 & a_{26} \\
0 & 0 & 0 & 0 & 1 & a_{36}
\end{pmatrix}$$

Задача. Дана матрица $A\in M_{m\times n}(\mathbb{R})$. Необходимо найти базис пространства $U=\{x\in\mathbb{R}^n\mid Ax=0\}$.

Алгоритм.

1. Приведем матрицу A к (каноническому) ступенчатому виду. Пусть, например, он имеет вид:

$$\begin{pmatrix} 1 & a_{12} & 0 & a_{14} & 0 & a_{16} \\ 0 & 0 & 1 & a_{24} & 0 & a_{26} \\ 0 & 0 & 0 & 0 & 1 & a_{36} \end{pmatrix}$$

2. ФСР строится так: каждой свободной переменной будет соответствовать свой вектор. Полагаем значение данной свободной переменной равным 1, а остальных свободных переменных -0. После чего рассчитываем значения главных переменных. В примере выше свободные переменные есть x_2 , x_4 и x_6 . Тогда ФСР такова:

$$v_2 = \begin{pmatrix} -a_{12} \\ \frac{1}{0} \\ \frac{0}{0} \\ 0 \end{pmatrix}, \quad v_4 = \begin{pmatrix} -a_{14} \\ \frac{0}{2} \\ -a_{24} \\ \frac{1}{0} \\ 0 \end{pmatrix}, \quad v_6 = \begin{pmatrix} -a_{16} \\ \frac{0}{2} \\ -a_{26} \\ \frac{0}{2} \\ -a_{36} \\ 1 \end{pmatrix},$$

В векторах выше подчеркнуты позиции свободных переменных, которые мы задаем сами.

Ранг системы векторов

Определение

Пусть V — некоторое векторное пространство. Рангом системы векторов $v_1, v_2, \ldots, v_k \in V$ называется максимальное количество линейно независимых векторов среди них. Это число обозначаем $\operatorname{rk}(v_1, \ldots, v_k)$.

Утверждение. $\operatorname{rk}(v_1,\ldots,v_k)=\dim\langle v_1,\ldots,v_k\rangle$.

Ранг системы векторов

Определение

Пусть V – некоторое векторное пространство. Рангом системы векторов $v_1, v_2, \ldots, v_k \in V$ называется максимальное количество линейно независимых векторов среди них. Это число обозначаем $\operatorname{rk}(v_1, \ldots, v_k)$.

Утверждение. $\operatorname{rk}(v_1,\ldots,v_k)=\dim\langle v_1,\ldots,v_k\rangle$.

Пусть $A \in M_{m imes n}(\mathbb{R})$ – произвольная матрица.

Определение

Пусть $A_1,\ldots,A_n\in\mathbb{R}^m$ – столбцы матрицы A, то есть $A=(A_1|\ldots|A_n)$. Тогда столбцовым рангом матрицы A называется ранг системы (A_1,\ldots,A_n) , то есть $\operatorname{rk}_{\operatorname{cton6}}A=\operatorname{rk}(A_1,\ldots,A_n)$.

Определение

Пусть $A_1, \ldots, A_m \in \mathbb{R}^n$ — строки матрицы A, то есть $A^T = (A_1 | \ldots | A_m)$. Тогда строковым рангом матрицы A называется ранг системы (A_1, \ldots, A_m) , то есть $rk_{\mathsf{стp}}A = rk(A_1, \ldots, A_m)$.

Ранг матрицы

Теорема

Пусть $A\in M_{m imes n}(\mathbb{R})$ – произвольная матрица. Тогда $\mathit{rk}_{\mathit{стол}6}A=\mathit{rk}_{\mathit{сто}p}A$. Это число обозначается через $\mathit{rk}\,A$ и называется рангом матрицы.

Ранг матрицы

Теорема

Пусть $A \in M_{m \times n}(\mathbb{R})$ – произвольная матрица. Тогда $\mathit{rk}_{\mathit{стол6}} A = \mathit{rk}_{\mathit{стр}} A$. Это число обозначается через $\mathit{rk}\, A$ и называется рангом матрицы.

Примеры:

- 1. $\operatorname{rk} A = 0$ тогда и только тогда, когда A = 0.
- 2. ${\rm rk}\,A=1$ тогда и только тогда, когда $A\neq 0$ и все столбцы матрицы A пропорциональны одному общему столбцу (или, эквивалентно, все строки пропорциональны одной общей строке). Иными словами, матрица A имеет вид

$$A = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix} (y_1 y_2 \dots y_n) = x y^t,$$

где $x \in \mathbb{R}^m$ и $y \in \mathbb{R}^n$ — ненулевые векторы.

Определение

Факториальным рангом матрицы $A \in M_{m imes n}(\mathbb{R})$ называется число

$$\min\{k\in\mathbb{N}\mid A=BC,\$$
где $B\in M_{m imes k}(\mathbb{R}),\ C\in M_{k imes n}(\mathbb{R})\},$

то есть это минимальное число k такое, что матрица A представима в виде произведения матриц BC, где число столбцов B и число строк C есть k.

Определение

Факториальным рангом матрицы $A \in M_{m imes n}(\mathbb{R})$ называется число

$$\min\{k \in \mathbb{N} \mid A = BC, \text{ где } B \in M_{m \times k}(\mathbb{R}), C \in M_{k \times n}(\mathbb{R})\},$$

то есть это минимальное число k такое, что матрица A представима в виде произведения матриц BC, где число столбцов B и число строк C есть k.

Определение

 ${f Teнзорным}$ рангом матрицы A называется следующее число

$$\min\{k \mid A = x_1y_1^t + \ldots + x_ky_k^t, \text{ где } x_i \in \mathbb{R}^m, y_i \in \mathbb{R}^n\}$$

то есть это минимальное число k такое, что матрица A представима в виде суммы k «тощих» матриц вида xy^t , где $x\in\mathbb{R}^m$ и $y\in\mathbb{R}^n$.

Выделим в матрице A какой-нибудь набор из k строк и одновременно набор из k столбцов и рассмотрим матрицу, составленную из элементов на пересечении этих строк и столбцов, — некоторую квадратную матрицу размера $k \times k$. Такие матрицы мы будем называть квадратными подматрицами матрицы A. Определители таких подматриц будем называть минорами размера k.

Определение

Минорным рангом матрицы A называется максимальный размер ненулевого минора в A (т.е. максимальный размер обратимой квадратной подматрицы в A).

Выделим в матрице A какой-нибудь набор из k строк и одновременно набор из k столбцов и рассмотрим матрицу, составленную из элементов на пересечении этих строк и столбцов, — некоторую квадратную матрицу размера $k \times k$. Такие матрицы мы будем называть квадратными подматрицами матрицы A. Определители таких подматриц будем называть минорами размера k.

Определение

Минорным рангом матрицы A называется максимальный размер ненулевого минора в A (т.е. максимальный размер обратимой квадратной подматрицы в A).

Теорема

Для любой матрицы $A \in M_{m \times n}(\mathbb{R})$ все пять видов ранга (столбцовый, строковый, факториальный, тензорный, минорный) совпадают и не превосходят $\min(m,n)$.

- 1. Пусть $A \in M_{m \times n}(\mathbb{R})$. Тогда $\operatorname{rk} A = \operatorname{rk} A^T$.
- 2. Пусть $A, B \in M_{m \times n}(\mathbb{R})$, тогда

$$|\operatorname{rk} A - \operatorname{rk} B| \leq \operatorname{rk} (A + B) \leq \operatorname{rk} A + \operatorname{rk} B$$

Смысл: если шевелить матрицу A с помощью матрицы B, то ранг A может измениться не более чем на ранг B в любую сторону. Теперь посмотрим на матрицы: $A=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ и C=-A. Тогда $\operatorname{rk}\left(A+B\right)=\operatorname{rk}A+\operatorname{rk}B$ и $\operatorname{rk}\left(A+C\right)=\operatorname{rk}A-\operatorname{rk}C$.

- 1. Пусть $A \in M_{m \times n}(\mathbb{R})$. Тогда $\operatorname{rk} A = \operatorname{rk} A^T$.
- 2. Пусть $A, B \in M_{m \times n}(\mathbb{R})$, тогда

$$|\operatorname{rk} A - \operatorname{rk} B| \leq \operatorname{rk} (A + B) \leq \operatorname{rk} A + \operatorname{rk} B$$

Смысл: если шевелить матрицу A с помощью матрицы B, то ранг A может измениться не более чем на ранг B в любую сторону. Теперь посмотрим на матрицы: $A=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ и C=-A. Тогда $\operatorname{rk}(A+B)=\operatorname{rk}A+\operatorname{rk}B$ и $\operatorname{rk}(A+C)=\operatorname{rk}A-\operatorname{rk}C$.

3. Пусть $A \in M_{m \times n}(\mathbb{R})$ и $B \in M_{n \times k}(\mathbb{R})$, тогда

$$\operatorname{rk} A + \operatorname{rk} B - n \leqslant \operatorname{rk} (AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$$

Равенства вновь достигаются: пусть $A=\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right)$ и $B=\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)$. Тогда $\operatorname{rk}\left(A^2\right)=\operatorname{rk}A$ и $\operatorname{rk}\left(AB\right)=\operatorname{rk}A+\operatorname{rk}B-2$.

- 1. Пусть $A \in M_{m \times n}(\mathbb{R})$. Тогда $\operatorname{rk} A = \operatorname{rk} A^T$.
- 2. Пусть $A, B \in M_{m \times n}(\mathbb{R})$, тогда

$$|\operatorname{rk} A - \operatorname{rk} B| \leq \operatorname{rk} (A + B) \leq \operatorname{rk} A + \operatorname{rk} B$$

Смысл: если шевелить матрицу A с помощью матрицы B, то ранг A может измениться не более чем на ранг B в любую сторону. Теперь посмотрим на матрицы: $A=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ и C=-A. Тогда $\operatorname{rk}(A+B)=\operatorname{rk}A+\operatorname{rk}B$ и $\operatorname{rk}(A+C)=\operatorname{rk}A-\operatorname{rk}C$.

3. Пусть $A \in M_{m \times n}(\mathbb{R})$ и $B \in M_{n \times k}(\mathbb{R})$, тогда

$$\operatorname{rk} A + \operatorname{rk} B - n \leqslant \operatorname{rk} (AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$$

Равенства вновь достигаются: пусть $A=\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right)$ и $B=\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)$. Тогда $\operatorname{rk}\left(A^2\right)=\operatorname{rk}A$ и $\operatorname{rk}\left(AB\right)=\operatorname{rk}A+\operatorname{rk}B-2$.

4. Для любой матрицы $A\in M_{m\times n}(\mathbb{R})$ и любых обратимых матриц $C\in M_m(\mathbb{R})$ и $D\in M_n(\mathbb{R})$ верно: $\operatorname{rk} A=\operatorname{rk}(CA)=\operatorname{rk}(AD).$ Смысл: ранг не меняется при умножении на обратимую матрицу.

- 1. Пусть $A \in M_{m \times n}(\mathbb{R})$. Тогда $\operatorname{rk} A = \operatorname{rk} A^T$.
- 2. Пусть $A, B \in M_{m \times n}(\mathbb{R})$, тогда

$$|\operatorname{rk} A - \operatorname{rk} B| \leq \operatorname{rk} (A + B) \leq \operatorname{rk} A + \operatorname{rk} B$$

Смысл: если шевелить матрицу A с помощью матрицы B, то ранг A может измениться не более чем на ранг B в любую сторону. Теперь посмотрим на матрицы: $A=\left(\begin{smallmatrix} 1 & 0 \\ 0 & 0 \end{smallmatrix}\right)$, $B=\left(\begin{smallmatrix} 0 & 0 \\ 0 & 1 \end{smallmatrix}\right)$ и C=-A. Тогда $\operatorname{rk}(A+B)=\operatorname{rk}A+\operatorname{rk}B$ и $\operatorname{rk}(A+C)=\operatorname{rk}A-\operatorname{rk}C$.

3. Пусть $A \in M_{m \times n}(\mathbb{R})$ и $B \in M_{n \times k}(\mathbb{R})$, тогда

$$\operatorname{rk} A + \operatorname{rk} B - n \leqslant \operatorname{rk} (AB) \leqslant \min(\operatorname{rk} A, \operatorname{rk} B)$$

Равенства вновь достигаются: пусть $A=\left(\begin{smallmatrix}1&0\\0&0\end{smallmatrix}\right)$ и $B=\left(\begin{smallmatrix}0&0\\0&1\end{smallmatrix}\right)$. Тогда $\operatorname{rk}\left(A^2\right)=\operatorname{rk}A$ и $\operatorname{rk}\left(AB\right)=\operatorname{rk}A+\operatorname{rk}B-2$.

- 4. Для любой матрицы $A\in M_{m\times n}(\mathbb{R})$ и любых обратимых матриц $C\in M_m(\mathbb{R})$ и $D\in M_n(\mathbb{R})$ верно: $\mathrm{rk}\,A=\mathrm{rk}\,(CA)=\mathrm{rk}\,(AD).$ Смысл: ранг не меняется при умножении на обратимую матрицу.
- 5. Для любых матриц $A \in M_{m \times n}(\mathbb{R})$ и $B \in M_{s \times t}(\mathbb{R})$ имеем:

$$\operatorname{rk}\begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} = \operatorname{rk} A + \operatorname{rk} B$$

Связь ранга и обратимости

Теорема

Пусть $A \in M_n(\mathbb{R})$ – квадратная матрица. Тогда следующие условия эквивалентны:

- 1. *А* обратима;
- 2. $\det A \neq 0$;
- 3. rkA = n.

Матрицы, удовлетворяющие условиям этой теоремы, также называют **невырожденными**.

Таким образом, на ранг можно смотреть как на степень невырожденности матрицы A. Самый высокий ранг у невырожденных матриц, самый маленький — у нулевой, но есть еще и промежуточные состояния.

Алгоритм нахождения ранга матрицы

Задача. Дана матрица $A \in M_{m \times n}(\mathbb{R}).$ Необходимо найти rk A.

Алгоритм нахождения ранга матрицы

Задача. Дана матрица $A\in M_{m imes n}(\mathbb{R}).$ Необходимо найти $\operatorname{rk} A.$ Алгоритм основан на следующих фундаментальных свойствах ранга:

- 1. Ранг матрицы не меняется при элементарных преобразованиях строк (столбцов) следует из вышеприведенного свойства 4.
- 2. Ранг ступенчатой матрицы равен количеству ее ненулевых строк (т.е. количеству ступенек).

Алгоритм нахождения ранга матрицы

Задача. Дана матрица $A\in M_{m imes n}(\mathbb{R}).$ Необходимо найти $\operatorname{rk} A.$ Алгоритм основан на следующих фундаментальных свойствах ранга:

- 1. Ранг матрицы не меняется при элементарных преобразованиях строк (столбцов) следует из вышеприведенного свойства 4.
- 2. Ранг ступенчатой матрицы равен количеству ее ненулевых строк (т.е. количеству ступенек).

Алгоритм.

- 1. Приводим матрицу A к ступенчатому виду.
- 2. Подсчитываем число ненулевых строк (ступенек) полученной матрицы это и есть ранг A.