Problem 1. Prove that the following conditions on an R-module P are equivalent.

- (a) P is projective.
- (b) P is isomorphic to a direct summand of a free R-module.
- (c) If $f: M \to P$ is surjective, then there exists and R-module homomorphism $g: P \to M$ such that $f \circ q = \mathrm{id}_P$.

Proof. First we will show that (a) implies (c). Let P be a projective module and $f: M \to P$ be surjective. Then the identity map id_P fulfills the projective conditions and there exists a map $g: P \to M$ such that $f \circ g = \mathrm{id}_P$.

Next we will show that (c) implies (b). Let P be a module that fulfills property (c). Then let F be the free group with generators the elements of P and Q the free group with generators the relations of P. This creates a short exact sequence inclusion and projection of the form

$$0 \longrightarrow Q \xrightarrow{i} F \xrightarrow{\pi} P \longrightarrow 0$$

However condition (c) states that this sequence splits. As such $F \cong Q \oplus P$ by the splitting lemma which implies that condition (b) holds.

Finally we show that (b) implies (a). Let $F = P \oplus Q$ where F is free and let $\pi : F \to P$ be the projection map. Then let $f : P \to N$ and $g : M \to N$ where g is surjective.

Let x be a generator of F and n_x as $f \circ \pi(x) \in N$. By surjectivity of g there exists $m_x \in M$ such that $g(m_x) = n_x$. By the universal property of free modules there exists a unique map $\bar{f}: F \to M$ such that $g \circ \bar{f}(x) = f \circ \pi(x)$. Now define $\tilde{f}: P \to M$ by $\tilde{f}(p) = \bar{f}(p + 0_q)$. Then

$$g \circ \tilde{f}(p) = f \circ \pi(p + 0_q) = f(p)$$

which completes the proof.

Problem 2. Let F be a field and let $R = F \times F$. Let $e = (1,0) \in R$ and let P = Re. Show that P is a projective R-module, but that P is not a free R-module.

Note that R is a free module over itself. Since $P \oplus R(0,1) \cong R$ we have that P is projective by problem 1. However P is not free as if we let $x, y \in F \setminus \{0\}$ then $(0, y) \cdot (x, 0) = 0$ even though neither element is zero.

Problem 3. Show that if R is a semisimple ring, then so is $M_n(R)$.

Proof. Let $R = \bigoplus_{i \in I} S_i$ be the decomposition of R into simple modules. As in the proof of that $M_n(R)$ is simple if R is simple decompose $M_n(R)$ into the direct sum of column vectors $c_j(M_n(R))$ for $0 < j \le n$. Since the $M_n(S_i)$ are submodules of $M_n(R)$ we can decompose the column as $c_j(M_n(R)) = \bigoplus_{i \in I} (M_n(S_i) \cap c_j(M_n(R)))$ which are simple submodules. It then follows that $M_n(R) = \bigoplus_{j=1}^n \bigoplus_{i \in I} (M_n(S_i) \cap c_j(M_n(R)))$ is a decomposition of $M_n(R)$ into simple modules.

Therefore if R is semisimple then $M_n(R)$ is semisimple.

Problem 4. Show that if R is a semisimple ring and I is any ideal, then R/I is also semisimple.

Proof. Suppose that $R = \bigoplus_{\alpha} M_{\alpha}$ is a semisimple ring and let $\pi : R \to R/I$ be the projection map. Then $\pi(M_{\alpha})$ is an ideal of R/I which implies that $R/I \cong \bigoplus_{\alpha} \pi(M_{\alpha})$. Moreover since the preimages of ideals are ideals the components $\pi(M_{\alpha})$ must also be simple otherwise it would violate the simplicity of the M_{α} s.

Therefore since the $\pi(M_{\alpha})$ s are simple and ideals of R/I we have a decomposition of R/I into simple submodules as a R/I module. It then follows that R/I is a semisimple ring.

Problem 5 (7.2). Let F be a field and let

$$R = \left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] | a, b, c \in F \right\}$$

be the ring of upper triangular matrices over F. Let $M = F^2$ and make M into a (left) R-module by matrix multiplication. Show that $End_R(M) \cong F$. Conclude that the converse of Schur's lemma is false, i.e., $End_R(M)$ can be a division ring without M being a simple R-module.

Proof. Define a map $\psi: F \to End_R(M)$ by $\Psi(x) = \varphi_x$ where φ_x is defined as

$$\varphi_x \left(\begin{array}{c} d \\ e \end{array} \right) = \left(\begin{array}{c} xd \\ xe \end{array} \right)$$

Since the maps φ_x are equivalent to scalar multiplication by field elements it is clear from the definition that φ_x are in fact endomorphisms and respect the module structure. Now we will show that ψ is indeed an isomorphism.

The fact that the kernel of ψ is trivial follows from the fact that we are multiplying by field elements and as such there are no zero divisors. However to show that ψ is surjective we must utilize the fact that the endomorphisms play nice with the module structure.

First note that for $\phi \in End_R(M)$ we have

$$\left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right) \phi \left(\begin{array}{c} d \\ e \end{array}\right) = \phi \left(\left(\begin{array}{cc} a & b \\ 0 & c \end{array}\right) \left(\begin{array}{c} d \\ e \end{array}\right)\right)$$

If we split ϕ into two pieces like so

$$\phi \left(\begin{array}{c} d \\ e \end{array} \right) = \left(\begin{array}{c} \phi_1(d, e) \\ \phi_2(d, e) \end{array} \right)$$

The module structure gives us two equations

$$a\phi_1(d, e) + b\phi_2(d, e) = \phi_1(ad + be, ce)$$

and

$$c\phi_2(d,e) = \phi_2(ad + be, ce)$$

Note that we could define a new endomorphism by swapping ϕ_1 and ϕ_2 . As such any statement we make about one applies to the other.

First if we let a=1,b=c=0 in the latter equation this gives us that $\phi_2(d,0)=0$. Thus ϕ_1 and ϕ_2 are zero whenever the right coordinate are zero. Next let a=1,b=-1,c=0 in the first equation and we get that $\phi_1(d,e)=\phi_2(d,e)$. Finally if we set b=0,c=1 and let $a\in F$ we get that we can pull constants out of the right term. Similarly setting a=1,b=0 and letting $c\in F$ we get that we can pull constants out of the right term. This implies that ϕ_1 and ϕ_2 are equivalent to multiplying by $\phi(1,1)=x$. Thus the map $\phi=\varphi_x$ and implying that ψ is surjective.

Therefore ψ is in fact an isomorphism and as such $F \cong End_R(M)$. Since M is not simple but it's endomorphisms form a field this is a counterexample to the converse of Schur's lemma.

Problem 6 (7.4). An R-module M is said to satisfy the descending chain condition (DCC) on submodules if any strictly decreasing chain of submodules of M of finite length.

- (a) Show that if M satisfies the DCC, then any nonempty set of submodules of M contains a minimal element.
- (b) Show that $\ell(M) < \infty$ if and only if M satisfies M satisfies both the ACC and DCC.
- *Proof.* (a) Let \mathcal{M} be the set of submodules of M partially ordered by reverse inclusion. Since M satisfies DCC every chain in \mathcal{M} will have a maximal element and as such by Zorn's lemma there is a maximal element of \mathcal{M} that corresponds to a minimal submodule.
 - (b) Suppose that $\ell(M) < \infty$. Then given a series of submodules $\{N\}$ we can refine it to a composition series $\{N'\}$ which will be of finite length. Since the length of $\{N\}$ is less than that of $\{N'\}$ it must also have finite length and as such has a minimal point and a maximal point. Since this holds for any series it follows that M satisfies both ACC and DCC.

Otherwise suppose that $\ell(M) = \infty$ and let $\{N\}$ be a composition series. Since all composition series have the same length this series must be infinite and as such M breaks either ACC or DCC.

Problem 7 (7.5). *Let*

$$R = \left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] : a,b \in \mathbb{R}; c \in \mathbb{Q} \right\}$$

R is a ring under matrix addition and multiplication. Show that R satisfies the ACC and DCC on left ideals but neither chain condition is valid for right ideals. Thus R is of finite length as a left R-module, but $\ell(R) = \infty$ as a right R-module.

Starting with R as a left R-module we can construct a composition series as

$$\left[\begin{array}{cc} 0 & b \\ 0 & 0 \end{array}\right] \subset \left[\begin{array}{cc} a & b \\ 0 & 0 \end{array}\right] \subset \left[\begin{array}{cc} a & b \\ 0 & c \end{array}\right]$$

the quotients of which are isomorphic to \mathbb{R}, \mathbb{R} , and \mathbb{Q} respectively. Since we have a composition series of finite length it must be that $\ell(R) < \infty$ as a left module and from the prior problem satisfies ACC and DCC.

However for R as a right module start with the submodule that has a=c=0 and $b\in\mathbb{Q}$. Multiplication looks like

$$\left[\begin{array}{cc} 0 & b \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} d & e \\ 0 & f \end{array}\right] = \left[\begin{array}{cc} 0 & cf \\ 0 & 0 \end{array}\right]$$

Since $f \in \mathbb{Q}$ it will be closed under the action of R. Then create an ascending series of submodules by adjoining roots of primes $\mathbb{Q}[\sqrt{2}, \sqrt{3}, \ldots]$. Since there are infinitely many primes this chain is infinite and as such $\ell(R) = \infty$ as a right R-module.

For the descending series let \mathcal{B} be a basis for \mathbb{R} over \mathbb{Q} . Then do the same construction as above but instead start with $b \in \mathbb{R}$ and each time take away an element of \mathcal{B} . This will create an infinite descending series.

Problem 8 (7.11). Let F be a field, let V be a finite-dimensional vector space over F, and let $T \in End_F(V)$. We shall say that T is semisimple if the F[X]-module V_T is semisimple. If $A \in M_n(F)$, we shall say that A is semisimple if the linear transformation $T_A : F^n \to F^n$

(multiplication by A) is semisimple. Let \mathbb{F}_2 be the field with 2 elements and let $F = \mathbb{F}_2(Y)$ be the rational function field in the indeterminate Y, and let $K = F[X]/\langle X^2 + Y \rangle$. Since $X^2 + Y \in F[X]$ is irreducible, K is a field containing F as a subfield. Now let

$$A = C(X^2 + Y) = \begin{bmatrix} 0 & Y \\ 1 & 0 \end{bmatrix} \in M_2(F)$$

Show that A is semisimple when considered in $M_2(F)$ but A is not semisimple when considered in $M_2(K)$. Thus, semisimplicity of a matrix is not necessarily preserved when one passes to a larger field. However, prove that if L is a subfield of the complex numbers \mathbb{C} , then $A \in M_n(L)$ is semisimple if and only if it is also semisimple as a complex matrix.

From Adkins' book the linear transformation will be semisimple as described above if the minimal polynomial is the product of irreducible factors. The minimal polynomial for A is $X^2 + Y$ which is irreducible for F but not irreducible for K.

Proof. Let \mathbb{L} be a subfield of \mathbb{C} and $A \in M_n(\mathbb{L})$. Then as above the matrix A is semisimple only when its minimal polynomial is the product of distinct irreducible factors. If A is irreducible as a complex matrix then it will definitely be irreducible as a matrix over \mathbb{L} . On the other hand if the minimal polynomial of A is the product of distinct irreducible factors over \mathbb{L} then it will factor into linear terms when we move to \mathbb{C} as \mathbb{C} is a perfect field.

Therefore a matrix is semisimple on a subfield of the complex numbers if and only if it is semisimple over the complex numbers themselves. \Box

Problem 9 (7.17). (a) Prove that if R is a semisimple ring and I is an ideal, then R/I is semisimple.

(b) Show (by example) that a subring of a semisimple ring need not be semisimple.

Proof. (a) See problem 4.

(b) The rationals are simple, and as such semisimple, since they are a field. However the integers are a subring of the rationals and the integers are not semisimple.