

Klausur

Mathematik I - Theoretische Grundlagen der Informatik

HWR Berlin, Wintersemester 2024/2025

Prof. Dr.-Ing. Sebastian Schlesinger

Aufgabe 1 (Mengen und Funktionen)

(6 Punkte)

Gegeben seien die Mengen $A = \{1, 2, 3, \{4\}\}, B = \{2, 4\} \text{ und } C = \{\emptyset, \{1\}\}.$

- **1.** Geben Sie die Menge $A \cup B$ an
- **2.** Geben Sie die Menge $A \cap B$ an
- **3.** Geben Sie die Menge $A \setminus B$ an.
- **4.** Was ist $\mathcal{P}(C)$?
- **5.** Geben Sie eine bijektive Abbildung $f: A \to \mathcal{P}(C)$ an.

— Lösung Anfang —

- **1.** $A \cup B = \{1, 2, 3, \{4\}, 4\}$
- **2.** $A \cap B = \{2\}$
- **3.** $A \setminus B = \{1, 3, \{4\}\}$
- **4.** $\mathcal{P}(C) = \{\emptyset, \{\emptyset\}, \{\{1\}\}, \{\emptyset, \{1\}\}\}$
- **5.** $f(1) = \emptyset$, $f(2) = \{\emptyset\}$, $f(3) = \{\{1\}\}$, $f(\{4\}) = \{\emptyset, \{1\}\}$

Aufgabe 2 (Relationen) (12 Punkte)

Gegeben seien die Relationen $R, S \subseteq \{1, 2, 3, 4, 5, 6\}$ mit $R = \{(1, 2), (2, 3), (4, 3), (5, 4), (6, 4)\}$ und $S = \{(1, 1), (1, 2), (2, 1)\}.$

- (i) Stellen Sie R und S als Graphen und Adjazenzmatrix dar.
- (ii) Stellen Sie die Relation $R \circ S$ als Graphen dar.
- (iii) Stellen Sie die Relation $S \circ R$ als Graphen dar.
- (iv) R ist nicht transitiv. Begründen Sie warum (Gegenbeispiel).
- (v) Ergänzen Sie den Graphen von R zur reflexiv-transitiven Hülle R_{trans} von R (also nochmal neu zeichnen als reflexiv-transitive Hülle).
- (vi) R_{trans} ist eine Ordnungsrelation. Was sind die minimalen, maximalen, kleinsten, größten Elemente (sofern existent) davon? Begründen Sie Ihre Antwort.

— Lösung Anfang —

Aufzeichnungen s. Vorlesung (straight-forward).

Aufgabe 3 (Äquivalenzrelationen und Partitionen)

(6 Punkte)

Sei $M = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$, also $A \subseteq M$ und die Partition P auf M mit $P = \{A, \{4\}, \{5\}\}$ gegeben.

- (i) Warum ist P eine Partition auf M?
- (ii) Eine Partition induziert eine Äquivalenzrelation. Definieren Sie die zu *P* passend Äquivalenzrelation.
- (iii) Argumentieren Sie warum Ihre Relation eine Äquivalenzrelation ist.
- (iv) Geben Sie die Äquivalenzklasse [1] an.

— Lösung Anfang —

- 1. Eine Partition *P* von *M* ist eine Menge von Teilmengen von *M*, also eine Teilmenge der Potenzmenge von *M*, so dass je paarweise verschiedene Mengen aus *P* disjunkt sind (Schnitt leer ist) und die Vereinigung aller Mengen aus *P* die gesamte Menge *M* ergibt. Das ist hier der Fall.
- **2.** $R \subseteq M \times M$ mit $(x, y) \in R \Leftrightarrow x \in A \land y \in A \lor x = y$.
- **3.** reflexiv: wegen x = y im zweiten Teil der Bedingung, symmetrisch: klar, entweder beide in A oder beide gleich, transitiv: entweder alle in A oder alle gleich.
- **4.** [1] = A

Aufgabe 4 (Indexmengen und Beweis)

(4 Punkte)

Es sei $A_i = \{n \in \mathbb{N} \mid n < i\}$.

- (i) Bestimmen Sie A_4 .
- (ii) Zeigen Sie, dass $\bigcap_{i \in \mathbb{N}} A_i = \emptyset$.

— Lösung Anfang —

$$A_4 = \{0, 1, 2, 3\}$$

Beweis:

 \supseteq ist trivial (\emptyset ist Teilmenge jeder Menge).

 \subseteq : Es ist $x \in \bigcap_{i \in \mathbb{N}} A_i \Leftrightarrow \forall i \in \mathbb{N} : x \in A_i \Leftrightarrow \forall i \in \mathbb{N} : x < i$. Da es aber keine natürliche Zahl gibt, die kleiner als alle natürlichen Zahlen ist, ist die Schnittmenge leer.

Aufgabe 5 (Funktionen und Relationen)

(5 Punkte)

Sei $f: X \to Y$ eine Funktion und ~ eine Relation über X mit $x \sim y :\Leftrightarrow f(x) \leq f(y)$.

- (i) Stellen Sie die Funktion f und die Relation \sim für $X = \{1, 2, 3, 4, 5\}, Y = \{1, 2, 3\}, 1 \mapsto 1, 2 \mapsto 1, 3 \mapsto 2, 4 \mapsto 2, 5 \mapsto 3$ dar.
- (ii) Zeigen Sie: \sim ist eine Ordnungsrelation genau dann, wenn f injektiv ist.

— Lösung Anfang —

 $\sim \subseteq X \times X \text{ mit })1 \sim 1, 1 \sim 2, 1 \sim 3, 1 \sim 4, 1 \sim 5, 2 \sim 2, 2 \sim 3, 2 \sim 4, 2 \sim 5, 3 \sim 3, 3 \sim 4, 3 \sim 5, 4 \sim 4, 4 \sim 5, 5 \sim 5$ Beweis:

 \Rightarrow : Sei \sim eine Ordnungsrelation. Wir zeigen f ist injektiv. Sei dazu $x, y \in X$ und f(x) = f(y). Wir wollen zeigen x = y. Da f(x) = f(y) ist insbesondere $f(x) \le f(y)$ und $f(y) \le f(x)$, also $x \sim y$ und $y \sim x$. Da \sim antisymmetrisch ist, folgt x = y.

 \Leftarrow : Sei nun f injektiv. Wir wollen zeigen, dass \sim eine Ordnungsrelation ist. Dazu zeigen wir die Reflexivität, die Antisymmetrie und die Transitivität. Reflexivität: Wir müssen zeigen $x \sim x$. Das gilt aber, da f(x) = f(x) für beliebiges $x \in X$ und damit $f(x) \le f(x)$, also $x \sim x$. Antisymmetrie: Falls $x \sim y$ und $y \sim x$, dann ist $f(x) \le f(y)$ und $f(y) \le f(x)$. Wegen der Antisymmetrie von \le folgt damit f(x) = f(y) und wegen der Injektivität von f folgt damit f(x) = f(x) und $f(y) \le f(x)$. Wegen der Transitivität von \le folgt damit $f(x) \le f(x)$ und dami

Formelsammlung

Hier eine kleine Formelsammlung. Sie ist nicht vollständig, enthält aber alle wichtigen Statements / Definitionen, die man brauchen könnte.

- 1. Aussagen- und Prädikatenlogik
 - a) Distributivgesetz: $A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$
 - **b)** Distributivgesetz: $A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$
 - c) DeMorgan: $\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$
 - **d)** DeMorgan: $\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$
 - **e)** Idempotenz: $A \land A \Leftrightarrow A$
 - **f)** Idempotenz: $A \lor A \Leftrightarrow A$
 - g) $A \wedge \neg A \Leftrightarrow \bot$
 - **h)** $A \vee \neg A \Leftrightarrow \top$
 - i) $\neg \neg A \Leftrightarrow A$
 - **j)** $\neg \forall x \in M : A(x) \Leftrightarrow \exists x \in M : \neg A(x)$
 - **k)** $\neg \exists x \in M : A(x) \Leftrightarrow \forall x \in M : \neg A(x)$
- 2. Mengen
 - a) Teilmenge: $A \subseteq B \Leftrightarrow \forall x \in A : x \in B$
 - **b)** Potenzmenge: $\mathcal{P}(A) = \{B \mid B \subseteq A\}$
 - **c)** Vereinigung: $A \cup B = \{x \mid x \in A \lor x \in B\}$
 - **d)** Schnittmenge: $A \cap B = \{x \mid x \in A \land x \in B\}$
 - e) Differenzmenge: $A \setminus B = \{x \mid x \in A \land x \notin B\}$
 - **f)** Distributivgesetz: $A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)$
 - **g)** Distributivgesetz: $A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$
 - **h)** DeMorgan: $A \setminus (B \cup C) \Leftrightarrow (A \setminus B) \cap (A \setminus C)$
 - i) DeMorgan: $A \setminus (B \cap C) \Leftrightarrow (A \setminus B) \cup (A \setminus C)$
 - **j)** Es ist $\bigcup_{i \in I} A_i = \{x \mid \exists i \in I : x \in A_i\}.$
 - **k)** Es ist $\bigcap_{i \in I} A_i = \{x \mid \forall i \in I : x \in A_i\}$.
- 3. Relationen
 - a) Für Mengen M, N ist $R \subseteq M \times N$ eine Relation von M nach N.
 - **b)** $R \subseteq M \times M$ ist reflexiv, wenn $\forall x \in M : (x, x) \in R$.

- c) $R \subseteq M \times M$ ist symmetrisch, wenn $\forall x, y \in M : (x, y) \in R \Rightarrow (y, x) \in R$.
- **d)** $R \subseteq M \times M$ ist antisymmetrisch, wenn $\forall x, y \in M : (x, y) \in R \land (y, x) \in R \Rightarrow x = y$.
- e) $R \subseteq M \times M$ ist transitiv, wenn $\forall x, y, z \in M : (x, y) \in R \land (y, z) \in R \implies (x, z) \in R$.
- f) $R \subseteq M \times M$ ist eine Äquivalenzrelation, wenn R reflexiv, symmetrisch und transitiv ist.
- g) $R \subseteq M \times M$ ist eine Ordnungsrelation, wenn R reflexiv, antisymmetrisch und transitiv ist.
- h) Für eine Äquivalenzrelation \sim auf M ist $[x] = \{y \in M \mid x \sim y\}$ die Äquivalenzklasse von x, $M/\sim=\{[x]\mid x\in M\}$ die Menge der Äquivalenzklassen oder Quotientenmenge von M modulo \sim . Die Menge der Äquivalenzklassen ist eine Partition von M. Umgekehrt induziert jede Partition eine Äquivalenzrelation.
- i) Für eine Ordnungsrelation \leq auf M und $X \subseteq M$ ist g ein kleinstes Element von X, wenn $\forall x \in X$: $g \leq x$, g ein minimales Element von X, wenn $\forall g' \in X : g' \leq g \Rightarrow g = g'$, maximale und größte Elemente analog.

4. Funktionen

- a) Eine Funktion $f: X \to Y$ ist eine Relation (also $f \subseteq X \times Y$), die jedem Element aus der Definitionsmenge X genau ein Element aus der Zielmenge Y zuordnet.
- **b)** f ist injektiv, wenn $\forall x_1, x_2 \in X : f(x_1) = f(x_2) \Rightarrow x_1 = x_2$.
- c) f ist surjektiv, wenn $\forall y \in Y : \exists x \in X : f(x) = y$.
- **d)** *f* ist bijektiv, wenn *f* injektiv und surjektiv ist.
- e) Die Umkehrfunktion f^{-1} ist definiert $f^{-1}(Y) = \{x \in X \mid \exists y \in Y : y = f(x)\}$