Analisi Matematica 1-Informatica-UniNa Foglio 4

ESERCIZIO 1: Calcolare le derivate delle seguenti funzioni:

1.
$$f(x) = \frac{x^3 e^x}{x+1}$$

1.
$$f(x) = \frac{x^3 e^x}{x+1}$$
 2. $f(x) = \log\left(\frac{x^2}{x+1}\right)$; 3. $f(x) = \sqrt{e^{x^2} - 1}$;

3.
$$f(x) = \sqrt{e^{x^2} - 1}$$

4.
$$f(x) = 2^x \log(x^2)$$
;

5.
$$f(x) = \arccos(x^2 + x);$$

4.
$$f(x) = 2^x \log(x^2);$$
 5. $f(x) = \arccos(x^2 + x);$ 6. $f(x) = \arctan\left(\frac{4}{x^2}\right);$

7.
$$f(x) = \sin(\cos(x^2))$$

8.
$$f(x) = \cos(x)^{\sin(x)};$$

7.
$$f(x) = \sin(\cos(x^2));$$
 8. $f(x) = \cos(x)^{\sin(x)};$ 9. $f(x) = \tan(x^2 + 1);$

10.
$$f(x) = e^{\sin^2(x) + x}$$
;

$$11. \quad f(x) = \arccos^3(x^2);$$

10.
$$f(x) = e^{\sin^2(x) + x}$$
; 11. $f(x) = \arccos^3(x^2)$; 12. $f(x) = \log(\cos^2(x^2))$.

ESERCIZIO 2: Determinare, se esiste, la retta tangente al grafico di f(x) nel punto x_0 :

1.
$$f(x) = \log(x^2) + 1$$
, $x_0 = e$;

2.
$$f(x) = (x+1)^{\frac{4}{3}} + 1$$
, $x_0 = -1$;

3.
$$f(x) = \arctan(x^2 + 1) + 3x$$
, $x_0 = 0$; 4. $f(x) = |x|^3$, $x_0 = 0$.

4.
$$f(x) = |x|^3$$
, $x_0 = 0$

ESERCIZIO 3: Determinare, se esistono, minimo e massimo assoluto di f(x):

1.
$$f(x) = x^3 + x^2 - x$$
, $x \in [-2, 3]$

1.
$$f(x) = x^3 + x^2 - x$$
, $x \in [-2, 3]$; 2. $f(x) = \log(x^2 - 2x + 3)$, $x \in [-1, 2]$;

3.
$$f(x) = |x^2 - x - 2|$$
, $x \in \left[0, \frac{5}{2}\right]$; 4. $f(x) = \begin{cases} \sin(x), & -\pi \le x < 0, \\ -x + 1, & 0 \le x \le 1 \end{cases}$

4.
$$f(x) = \begin{cases} \sin(x), & -\pi \le x < 0 \\ -x + 1, & 0 \le x \le 1 \end{cases}$$

ESERCIZIO 4: Determinare la derivata di f(x) stabilendo la natura degli eventuali punti di non derivabilità (punto angoloso, a tangente verticale o cuspide):

1)

$$f(x) = |x^2 - 1|e^x;$$

2)

$$f(x) = |\log(x)| + (x-2)^{\frac{1}{3}} + x^2;$$

3)

$$f(x) = \begin{cases} \log(x^2 + 1), & 0 \le x < 1, \\ x^2 + 1, & 1 \le x < 2, \\ 2e^{2x - 4} + 3, & 2 \le x < 3; \end{cases}$$

ESERCIZIO 5: Determinare $a, b \in \mathbb{R}$ tali che f(x) sia derivabile

1)

$$f(x) = \begin{cases} 2e^{x^2 - 1}, & 0 < x < 1, \\ 2, & x = 1, \\ a\log(x^2) + b, & 1 \le x < 2; \end{cases}$$

2)

$$f(x) = \begin{cases} e^{x^2} + \log^2(x), & 0 < x < 1, \\ ax^2 + b, & 1 \le x < 2. \end{cases}$$