Relatório do segundo trabalho

Maria Eduarda de Melo Hang (17202304) 20 de julho de 2021

1 Introdução

Este trabalho consiste na geração de número primos pseudo-aleatórios de 40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048 e 4096 bits. A linguagem utilizada para a implementação foi o Python 3.8.10 (Python3) devido à familiaridade da aluna com a linguagem.

2 Geração de números pseudo-aleatórios

Os algoritmos utilizados para a geração de números pseudo-aleatórios foram *Linear Congruential Generator* (LCG) e *Blum Blum Shub* (BBS), ambos foram escolhidos devido à simplicidade de implementação.

2.1 LCG

Ao pesquisar sobre o algoritmo na internet, foi possível encontrar uma implementação em Python [Wik21c]. Foram necessárias as seguintes adaptações para atender às exigências do trabalho: alterar o parâmetro m para sempre seguir a forma 2^b , sendo b a quantidade de bits necessária, verificar se o número resultante contém a quantidade de bits solicitada e, caso tenham pedido um número primo, o least significant bit (LSB) sempre receberá o valor 1 para evitar a geração de números pares, que é um desperdício de processamento, já que números pares não são primos para números com mais de 2 bits (apenas o 2 seria considerado um número primo nesse caso). Os parâmetros a e c foram retirados da tabela presente na seção $Parameters\ in\ common\ use\ [Wik21c]$. O trecho de código 1 contém a implementação realizada.

```
class LCG:
1
             def __init__(self, seed: int = 1, num_bits: int = 32, a: int = 1664525, c : int = 1013904223):
2
                self.num_bits = num_bits
3
                self.m = 2 ** num_bits
                self.a = a
5
                self.c = c
                \# X_0 = seed
                self.state = seed
             # Atribui o valor do parâmetro m como 2 ** num_bits e atribui o valor de bits solicitado
             def __m__(self, num_bits: int):
11
                self.num_bits = num_bits
12
                self.m = 2 ** num_bits
13
14
             # Gera um numero pseudo-aleatorio
15
             def next(self, prime: bool = False):
                 \# X_n+1 = (a * X_n - c) \mod m
17
                self.state = (self.a * self.state + self.c) % self.m
18
19
                 # Enquanto o número não tiver o bit mais significativo (MSB) igual a 1,
                 # esse numero não contém a quantidade de bits necessária, então continue gerando
21
                 # Exemplo:
22
                 # Se queremos um número com 40 bits, pelo menos o bit 40 deve ser 1,
                 # já que apenas os zeros à direita são contabilizados na quantidade de bits de um número
24
                while self.state < (2**(self.num_bits - 1)):
25
26
                     self.state = (self.a * self.state + self.c) % self.m
                # Não retornar números pares caso estejam pedindo um primo, é perda de tempo
28
                 # Coloque o LSB como 1
                 if prime:
                     return self.state | 1
31
32
33
                 # Retorne o valor obtido no cálculo
                return self.state
34
```

Listing 1: Gerando os números através do LCG

Em relação à complexidade do algoritmo, foi necessário realizar um teste simples para verificar quantas vezes o while presente na linha 25 do código 1 seria executado, uma vez que caso se provasse com complexidade linear, todo o algoritmo se tornaria O(n), já que todas as outras operações são O(1). Com isso, o algoritmo foi executado para gerar 1000 números para cada valor de bits, como pode ser visto no código 2 e o método next do LCG foi adaptado para contabilizar as execuções, como pode ser visto no código 3.

```
import time
    from typing import Dict, List
    from lcg import LCG
    solicited_bits = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096]
5
    seed = int(time.time())
    lcg = LCG(seed=seed)
9
10
    # Quantidade de numeros a serem gerados para cada valor de bits
11
    quantity_of_numbers = 1000
12
13
    # Dicionario para guardar quantas vezes o while foi executado para cada valor de bits
14
    dict : Dict[int, List[int]] = {}
15
    # Inicializando as listas dentro do dicionário
    for b in solicited_bits:
18
        dict[b] = []
19
20
    # Abrindo um arquivo no modo escrita
21
    with open("./generate_random.txt", "w") as writer:
22
        writer.write("===== LCG =====\n")
24
        for numBits in solicited_bits:
25
            # Colocando o valor do parametro m
26
            lcg.__m__(numBits)
            writer.write(f"Começando a gerar números de {numBits} bits\n")
28
            for _ in range(quantity_of_numbers):
                lcg.next(dict=dict)
31
32
        for b in dict.keys():
            writer.write(f'Para números de {b} bits, foi necessário na média {sum(dict[b])/len(dict[b])} tentativas\n')
```

Listing 2: Arquivo de teste para avaliar a quantidade de execuções do while

```
1
    # Método adaptado da classe LCG para contabilizar as tentativas
2
3
        def next(self, prime: bool = False, dict: Dict[int, List[int]]=None):
             \# X_n+1 = (a * X_n - c) \mod m
             self.state = (self.a * self.state + self.c) % self.m
5
6
            i = 0
             # Enquanto o número não tiver o bit mais significativo igual a 1, esse numero nao contem a quantidade de bits necessar
             while self.state < (2**(self.num_bits - 1)):</pre>
10
                self.state = (self.a * self.state + self.c) % self.m
11
             dict[self.num_bits].append(i)
12
13
             # Nao retornar numeros pares caso estejam pedindo um primo, eh perda de tempo
14
             if prime:
15
                return self.state | 1
17
             return self.state
18
```

Listing 3: Método next do LCG adaptado

Os valores obtidos podem ser vistos na Tabela 1. A partir desse resultado, torna-se claro que a complexidade do algoritmo é O(1).

Quantidade de bits	Média de execuções do while
Qualitidade de bits	
40	0,978
56	0,941
80	0,999
128	0,992
168	0,95
224	0,978
256	1,045
512	1,043
1024	0,998
2048	1,105
4096	1,106

Tabela 1: Resultados obtidos após a execução do arquivo teste

2.2 BBS

A implementação do BBS foi baseada no algoritmo original [Wik21a] com a estratégia de pegar o LSB do resultado. Assim como no LCG, algumas adaptações foram necessárias, como criar um método para gerar um número com a quantidade de bits necessárias, uma vez que o BBS gera apenas o próximo bit, verificar se o número tem a quantidade de bits necessárias e alterar o LSB para 1, caso seja solicitado um número primo. Os parâmetros p e q, como deveriam ser números primos grandes e atender a alguns critérios (que podem ser vistos no código abaixo), foram encontrados em outras implementações na internet. O código 4 contém a implementação realizada.

```
from math import gcd
1
2
3
    class BBS:
4
         def __init__(self, seed: int = 1, p: int = 3141592653589771, q: int = 2718281828459051) -> None:
            if p == q:
5
                 raise ValueError("Os valores de p e q não podem ser iguais")
6
             if p % 4 != 3 or q % 4 != 3:
                 raise ValueError("Os valores de p e q devem ser congruentes a 3 (mod 4)")
9
             if gcd(p,q) != 1:
10
                 raise ValueError("Os valores p e q devem ser relativamente primos, ou seja, gcd(p,q) = 1")
             self.m = p * q
11
             self.state = seed
12
13
         # Gera o próximo bit
14
        def next(self):
15
             \# X_n+1 = (X_n ** 2) \mod m
             self.state = pow(self.state, 2, self.m)
17
18
             \# B_n = X_n \mod 2 \ (pegando \ o \ LSB)
19
             return self.state % 2
21
         # Gera um número com uma quantidade de bits
22
         def generate(self, num_bits: int, prime: bool = False) -> int:
             number = 0
24
             for _ in range(num_bits):
25
26
                 number = (number << 1) | self.next()</pre>
27
             # Uma solução proposta, mas que não foi utilizada porque não parecia adequada
28
             # Se o valor não atender ao número de bits, coloque o valor 1 no MSB
             # if number < (2**(num_bits - 1)):
                   number = 1 << num_bits - 1 / number</pre>
31
32
             # Se o número não atender à quantidade de bits (MSB=0), gere novamente
             if number < (2**(num_bits - 1)):</pre>
34
                 return self.generate(num_bits, prime)
35
             # Não retornar números pares caso estejam pedindo um primo, é perda de tempo
37
             if prime:
38
                 return number | 1
39
40
             return number
41
```

Listing 4: Método BBS

Se considerarmos apenas o método next, a complexidade do algoritmo também seria O(1). Todavia, se considerarmos o generate teríamos uma complexidade $O(n^2)$, sendo n a quantidade de bits solicitada. Caso não existisse o if da linha 34, a complexidade seria O(n).

2.3 Gerando os números pseudo-aleatórios

Para avaliar o desempenho de cada algoritmo na geração dos números, foi necessário criar um arquivo de teste, podendo ser visto nos códigos 5 e 6.

```
import time
    from util import find_number_of_bits
    from lcg import LCG
    from bbs import BBS
    solicited_bits = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096]
    seed = int(time.time())
10
    lcg = LCG(seed=seed)
11
    # Como o SO pode escalonar os processos,
12
    # eh importante considerar mais de um numero gerado para encontrar um valor mais proximo da realidade
    # Quantidade de números que serão gerados para cada quantidade de bits
    quantity_of_numbers = 1000
15
    with open("./generate_random.txt", "w") as writer:
17
        writer.write("===== LCG =====\n")
18
        for numBits in solicited_bits:
19
            # Colocando o valor do parâmetro m
            lcg.__m__(numBits)
21
22
             # Tempo médio para gerar um número com numBits bits
            avg_time = 0.0
24
25
            writer.write(f"Começando a gerar números de {numBits} bits\n")
26
             for _ in range(quantity_of_numbers):
                # Tempo inicial
28
                start = time.time()
                value = lcg.next()
31
32
                 # Tempo final ao gerar o valor
                final = time.time()
34
35
                 # Pega a quantidade de bits que a saida gerou
                bits = find_number_of_bits(value)
38
                # Verifica se a quantidade de bits foi realmente atendida
39
                assert(numBits == bits)
41
                time_to_generate = final - start
42
                avg_time += (time_to_generate / quantity_of_numbers)
44
45
                 \#writer.write(f"bits = \{bits\} => \{time\_to\_generate\}\ segundos \ n")
46
             # Escreve no arquivo o tempo médio obtido
             writer.write(f"0 tempo médio para gerar um número com {numBits} bits foi {avg_time} segundos\n")
48
```

Listing 5: Gerando os números pseudo-aleatórios - parte 1

```
# Continuacao ...
               bbs = BBS(seed=seed)
   2
                              writer.write("==== BBS =====\n")
                             for numBits in solicited_bits:
   5
                                            avg_time = 0.0
                                            writer.write(f"Começando a gerar números de {numBits} bits \color="numBits" bits \colo
                                            for _ in range(quantity_of_numbers):
                                                          # Tempo inicial
11
                                                         start = time.time()
12
13
                                                         value = bbs.generate(num_bits=numBits)
14
15
                                                          # Tempo final ao gerar o valor
                                                         final = time.time()
18
                                                          # Pega a quantidade de bits que a saida gerou
19
                                                         bits = find_number_of_bits(value)
21
                                                         # Verifica se a quantidade de bits foi realmente atendida
                                                          assert(numBits == bits)
24
                                                         time_to_generate = final - start
25
26
                                                          avg_time += (time_to_generate / quantity_of_numbers)
28
                                                            \begin{tabular}{ll} # writer.write(f"bits = {bits}) => {time\_to\_generate} & segundos \n") \\ \end{tabular} 
                                            # Escreve no arquivo o tempo médio obtido
                                            writer.write(f"0 tempo médio para gerar um número com {numBits} bits foi {avg_time} segundos\n")
31
```

Listing 6: Gerando os números pseudo-aleatórios - parte 2

Os resultados podem ser vistos nas Tabelas 2 e 3 para os algoritmos de LCG e BBS respectivamente. A partir desses dados, torna-se perceptível que o LCG foi mais rápido que o BBS para gerar os números. A diferença se torna mais gritante a partir dos 1024 bits em diante, chegando a ter uma redução de no mínimo duas ordens de grandeza. Caso fosse utilizada a solução comentada nas linhas 28 a 31 do código 4, haveria uma redução nessa diferença, uma vez que o BBS teria uma complexidade O(n). Além disso, como era o esperado, os algoritmos consumiram mais tempo para gerar números com quantidades de bits maiores.

Quantidade de bits	Tempo média para gerar (seg)
40	2,59E-06
56	1,81E-06
80	1,77E-06
128	1,84E-06
168	1,76E-06
224	1,97E-06
256	1,95E-06
512	2,41E-06
1024	3,39E-06
2048	5,32E-06
4096	1,23E-05

Tabela 2: Resultados para LCG

Quantidade de bits	Tempo média para gerar (seg)
40	7,19E-05
56	9,67E-05
80	1,4E-04
128	2,1E-04
168	2,93E-04
224	3,89E-04
256	4,37E-04
512	8,78E-04
1024	1,85E-03
2048	3,56E-03
4096	7,37E-03

Tabela 3: Resultados para BBS

3 Números primos

Nesta seção serão descritos os algoritmos utilizados para o teste de primalidade e os resultados obtidos na geração de número primos pseudo-aleatórios.

3.1 Testes de primalidade

Os algoritmos de teste de primalidade implementados foram o de Miller-Rabin e de Fermat. O algoritmo de Fermat foi escolhido devido à simplicidade e abundância de materiais (códigos e textos) na internet para o algoritmo.

3.1.1 Miller-Rabin

A implementação pode ser encontrada no código 7, seguindo o algoritmo [Wik21d] e a implementação de base desenvolvida em Python [Gee21b]. As alterações feitas foram mais apenas para melhorar a legibilidade do código. A complexidade do algoritmo é $O(k*log^3n)$ [Wik21d], sendo k o número de iterações e n o número testado.

```
from random import randint
    def miller_rabin_test(n: int, k: int = 100) -> bool:
3
        # Nenhum numero menor que 2 eh primo
        if n < 2:
 5
           return False
 6
        # Casos base
        if n in [2,3]:
 9
           return True
10
11
        # Numeros pares nao sao primos
12
        if n % 2 == 0:
13
           return False
14
15
        # Eh necessario decompor o n como 2^r * d + 1, sendo d um numero impar
        r, d = decompose(n-1)
18
        for _ in range(k):
19
             # Pegue um valor aleatorio entre [2, n-2]
            a = randint(2, n - 2)
21
22
             \# x = a^d \mod n
            x = pow(a, d, n)
24
25
             # Se x = 1 ou x = -1, continue o loop
26
            if x in (1, n - 1):
                continue
28
29
            continue_loop = False
            for _ in range(r - 1):
31
                \# x = x^2 \mod n
32
                x = pow(x, 2, n)
34
                 # Se x == n -1, continue o loop
35
                 if x == n - 1:
                    continue_loop = True
38
            if continue_loop: continue
39
41
             # Eh um numero composto
            return False
42
         # Eh um numero primo
44
        return True
45
46
    def decompose(n: int):
47
        # Inicializando a maior potência de 2 que n pode ter como zero
48
        r = 0
49
        # Enquanto n tiver potências de 2
50
        while n \% 2 ==0:
51
            # Incremente o valor de maior potência
52
            r += 1
            # Pegue o resto da divisão por 2
54
            n = n / 2
55
        return r, n
```

Listing 7: Teste de Miller-Rabin

3.1.2 Fermat

Assim como no teste de Miller-Rabin, a implementação se baseou no algoritmo [Wik21b] e em um código base [Gee21a], podendo ser vista no código 8. A complexidade do algoritmo é $O(k*log^2n)$ [Wik21b], sendo k a quantidade de iterações que serão feitas e n o número a ser testado.

```
from random import randint
    def fermat_test(n: int, k: int = 100) -> bool:
3
         # Nenhum numero menor que 2 eh primo
5
        if n < 2:
6
             return False
         # Casos base
        if n in [2,3]:
9
            return True
10
         # Numeros pares nao sao primos
12
        if n % 2 == 0:
13
             return False
15
        for _ in range(k):
16
             # Pegue um valor entre [2, \ldots, n-2]
17
             a = randint(2, n - 2)
18
19
             # a^{(n-1)} % n != 1 => Eh composto
20
             if pow(a, n - 1, n) != 1:
                 return False
22
23
         # Provavelmente eh um primo
         return True
```

Listing 8: Teste de Fermat

3.2 Geração de números primos

Os códigos 9 e 10 mostram o arquivo utilizado para gerar os números primos. O algoritmo de Fermat foi usado para testar a primalidade dos números por ser mais eficiente que o de Miller Rabin. Os resultados para o LCG e BBS podem ser vistos nas Tabelas 4 e 5 respectivamente.

```
from typing import Dict, List
    from fermat import fermat_test
    import time
    from util import find_number_of_bits
    from lcg import LCG
    from bbs import BBS
    solicited_bits = [40, 56, 80, 128, 168, 224, 256, 512, 1024, 2048, 4096]
    seed = int(time.time())
    lcg = LCG(seed=seed)
11
    # Quantidade de numeros primos a serem gerados para cada quantidade de bits
12
    quantity_of_numbers = 10
13
14
    # Dicionario contendo os numeros gerados
15
    possible_primes : Dict[int, List[int]] = {}
    # Inicializando a lista
    for numBits in solicited_bits:
18
        possible_primes[numBits] = []
19
20
    with open("./generate_prime.txt", "w") as writer:
21
        writer.write("===== LCG =====\n")
22
        for numBits in solicited_bits:
            # Colocando o valor do parametro m
24
            lcg.__m__(numBits)
25
26
            avg_time = 0.0
28
            writer.write(f"Começando a gerar números primos de {numBits} bits\n")
             for _ in range(quantity_of_numbers):
31
                start = time.time()
32
                value = lcg.next()
34
35
                 # Enquanto o resultado obtido nao for primo, continue gerando
                while not fermat_test(value):
                    value = lcg.next(prime=True)
38
39
                final = time.time()
41
                # Pega a quantidade de bits que a saida gerou
42
                bits = find_number_of_bits(value)
44
                 # Verifica se a quantidade de bits foi realmente atendida
45
                assert(numBits == bits)
46
47
                time_to_generate = final - start
48
49
                avg_time += (time_to_generate / quantity_of_numbers)
50
51
                 # Adiciona o valor a lista
52
                possible_primes[numBits].append(value)
53
54
                 \# writer.write(f"bits = {bits} => {time_to_generate} segundos\n")
55
            writer.write(f"O tempo médio para gerar um número primo com {numBits} bits foi {avg_time} segundos\n")
```

Listing 9: Gerando números primos - parte 1

```
# Continuacao...
         bbs = BBS(seed=seed)
2
         writer.write("===== BBS =====\n")
         for numBits in solicited_bits:
5
             avg_time = 0.0
             writer.write(f"Começando a gerar números primos de {numBits} bits\n")
             for _ in range(quantity_of_numbers):
11
                 start = time.time()
12
13
                 value = bbs.generate(num_bits=numBits)
14
15
                 # Enquanto o resultado obtido nao for primo, continue gerando
                 while not fermat_test(value):
17
                      value = bbs.generate(num_bits=numBits, prime=True)
18
19
                 final = time.time()
21
                 # Pega a quantidade de bits que a saida gerou
22
                 bits = find_number_of_bits(value)
24
                 # Verifica se a quantidade de bits foi realmente atendida
25
                 assert(numBits == bits)
26
                 time_to_generate = final - start
28
                 avg_time += (time_to_generate / quantity_of_numbers)
31
                 # Adiciona o valor a lista
32
                 possible_primes[numBits].append(value)
34
                  \begin{tabular}{ll} \# \ writer.write(f"bits = \{bits\} => \{time\_to\_generate\} \ segundos \n") \\ \end{tabular} 
35
             writer.write(f"O tempo médio para gerar um número primo com {numBits} bits foi {avg_time} segundos\n")
         # Escreve no arquivo todos os valores gerados
38
         writer.write(possible_primes.__str__())
39
```

Listing 10: Gerando números primos - parte 2

0 (:1 1 1 1:)	m /1: /)
Quantidade de bits	Tempo média para gerar (seg)
40	9,66E-04
56	1,41E-03
80	2,52E-03
128	5,85E-03
168	1,15E-02
224	1,91E-02
256	2,97E-02
512	1,8E-01
1024	1,55
2048	1,57E01
4096	2,24E02

Tabela 4: Tempo médio para gerar números primos no LCG

Quantidade de bits	Tempo média para gerar (seg)				
40	1,47E-03				
56	3,33E-03				
80	7,71E-03				
128	1,54E-02				
168	1,58E-02				
224	4,52E-02				
256	6,05E-02				
512	5,15E-01				
1024	1,88				
2048	1,69E01				
4096	3,16E02				

Tabela 5: Tempo médio para gerar números primos no BBS

A partir desses resultados torna-se perceptível novamente que o LCG é mais rápido que o BBS na geração dos números primos, sendo que essa diferença pode ter sido causada pelo if que chama o generate do BBS novamente. Além disso, vale ressaltar que o tempo gasto para gerar os números primos foi superior ao dos números, como era esperado. A Figura 1 mostra a variação percentual entre o tempo médio para gerar um número e um primo para os algoritmos LCG e BBS. Por fim, a Figura 2 mostra um possível primo gerado para cada quantidade de bits, os outros valores foram omitidos porque não caberiam na imagem.

	LCG		Variação LCG	BBS		Variação BBS
Quantidade de bits	Número Aleatório	Primo	Variação percentual	Número Aleatório	Primo	Variação percentual
40	2,59E-06	9,66E-04	3709730%	7,19E-05	1,47E-03	184451%
56	1,81E-06	1,41E-03	7770055%	9,67E-05	3,33E-03	324364%
80	1,77E-06	2,52E-03	14217288%	1,40E-04	7,71E-03	530714%
128	1,84E-06	5,85E-03	31773478%	2,10E-04	1,54E-02	713333%
168	1,76E-06	1,15E-02	65320909%	2,93E-04	1,58E-02	519249%
224	1,97E-06	1,91E-02	96934315%	3,89E-04	4,52E-02	1141954%
256	1,95E-06	2,97E-02	152287692%	4,37E-04	6,05E-02	1364439%
512	2,41E-06	1,80E-01	746867967%	8,78E-04	5,15E-01	5845604%
1024	3,39E-06	1,55E+00	4572251386%	1,85E-03	1,88E+00	10142162%
2048	5,32E-06	1,57E+01	29511258195%	3,56E-03	1,69E+01	47451910%
4096	1,23E-05	2,24E+02	182113801138%	7,37E-03	3,16E+02	428745265%

Figura 1: Variação do tempo médio para os métodos LCG e BBS ao produzir números primos

Figura 2: Um possível primo gerado para cada quantidade de bits

4 Dificuldades encontradas

As principais dificuldades foram encontrar parâmetros para os métodos LCG e BBS, porque ambos os algoritmos são muito sensíveis aos parâmetros escolhidos (além de precisar seguir algumas regras, como foi explicado anteriormente), logo foi necessária uma busca considerável para achá-los. Além disso, o tempo para gerar 10 primos grandes para cada algoritmo foi também uma dificuldade, uma vez que custou um tempo considerável (eu deixei rodando enquanto dormia porque sabia que ia demorar).

Referências

- [Gee21a] Geek for Geeks contributors. Primality test set 2 (fermat method), 2021. [Online; accessed 20-July-2021].
- [Gee21b] Geek for Geeks contributors. Primality test set 3 (miller–rabin), 2021. [Online; accessed 20-July-2021].
- [Wik21a] Wikipedia contributors. Blum blum shub Wikipedia, the free encyclopedia, 2021. [Online; accessed 20-July-2021].
- [Wik21b] Wikipedia contributors. Fermat primality test Wikipedia, the free encyclopedia, 2021. [Online; accessed 20-July-2021].
- [Wik21c] Wikipedia contributors. Linear congruential generator Wikipedia, the free encyclopedia, 2021. [Online; accessed 19-July-2021].
- [Wik21d] Wikipedia contributors. Miller–rabin primality test Wikipedia, the free encyclopedia, 2021. [Online; accessed 20-July-2021].