MATH20410 (W25): Analysis in Rn II (accelerated)

Lecturer: Joe Jackson Notes by: Aden Chen

Monday 13th January, 2025

Contents

1	Single-Variable Differential Calculus	3
2	Multivariable Differential Calculus	Ģ

1 Single-Variable Differential Calculus

In this chapter, we consider mainly functions of the form $f: I \to \mathbb{R}$, where I is an interval, e.g., (a,b), [a,b], (a,b), (a,∞) , \mathbb{R} . This is the function we have in mind unless otherwise stated.

Definition 1.1 (Differentiability). We say f is **differentiable at** $x \in I$ if the limit

$$f'(x) := \lim_{t \to x} \frac{f(t) - f(x)}{t - x} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. In this case, we call f'(x) the derivative of f at x. Moreover:

- We say that f is **differentiable** if f'(x) exists for each $x \in I$.
- We say f is **continuously differentiable** $(f \in C^1)$ if $f' : I \to \mathbb{R}$ is continuous.

Example 1.2.

- f(x) = |x|. Differentiable on $\mathbb{R} \setminus \{0\}$.
- $f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Continuous but not differentiable at 0.
- $f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$. Differentiable everywhere (in particular at 0), but $f \notin C^1$.

Proposition 1.3 (Rules for computing derivatives).

- (i) Linearity. (af + bg)' = af' + bg' (if f' and g' exist, such requirements are hereafter omitted).
- (ii) Product rule. (fg)' = f'g + fg'.
- (iii) Quotient rule. $(f/g)' = (f'g fg')/g^2$.
- (iv) Chain rule. $(f \circ g)' = (f' \circ g) \cdot g'$.

¹Low dhigh minus high dlow. Not Haidilao... **Proof.** We prove the quotient rule; the remaining are left as exercises. Starting from the definition

$$\left(\frac{f}{g}\right)'(x) = \lim_{t \to x} \frac{\frac{f}{g}(t) - \frac{f}{g}(x)}{t - x}$$

$$= \lim_{t \to x} \frac{\frac{f(t)}{f(t)} + \frac{f(x)}{g(t)} - \frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x}.$$

Note that

$$\frac{\frac{f(x)}{g(t)} + \frac{f(x)}{g(x)}}{t - x} = \frac{f(x)}{g(x)g(t)} \frac{g(x) - g(t)}{t - x}$$

and we have

$$\left(\frac{f}{g}\right)'(x) = \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{g^2(x)}$$

Theorem 1.4. If f is differentiable at x then f is continuous at x.

Proof. Note that

$$\lim_{t \to x} f(t) - f(x) = \lim_{t \to x} \frac{f(t) - f(x)}{t - x} (t - x) = f'(x) \cdot 0 = 0.$$

1.1 The Mean Value Theorem

Lemma 1.5. Suppose $f:[a,b] \to \mathbb{R}$ has a local maximum or minimum at $x \in (a,b)$. If f'(x) exists, then f'(x) = 0.

Proof. From the definition of the derivative, consider the limits from the left and right; one is non-positive and the other is non-negative.

Theorem 1.6 (Rolle's Theorem). Suppose $f : [a,b] \to \mathbb{R}$ is continuous on [a,b], differentiable on (a,b), and such that f(a) = f(b). Then there exists $x \in (a,b)$ such that f'(x) = 0.

Proof. Consider the global maximum or minimum (exist since f is continuous defined on a compact set) and apply the previous lemma. (If both the maximum and minimum is at a or b, f is constant.)

Theorem 1.7 (Mean Value Theorem). Let $f : [a,b] \to \mathbb{R}$ be such that f is continuous on [a,b] and differentiable on (a,b). Then there exists $x \in (a,b)$ such that f(b) - f(a) = f'(x)(b-a).

Proof. Apply Rolle's to
$$\tilde{f} = f - [f(b) - f(a)] \cdot \frac{x-a}{b-a}$$
.

Theorem 1.8. Let $f:(a,b) \to \mathbb{R}$ be differentiable.

- (a) if f' = 0, then f is constant.
- (b) if $f' \ge 0$, then f is increasing.
- (c) if $f' \leq 0$, then f is decreasing.

Proof. Apply the mean value theorem.

Theorem 1.9 (The Intermediate Value Property of Derivatives). Let $f : [a, b] \to \mathbb{R}$ be differentiable² and suppose $f'(a) < \lambda < f'(b)$ Then there exists $x \in (a, b)$ such that $f'(x) = \lambda$.

2f need not be C^1 !

Proof (à la Pugh). Slide a small secant of length so small that the slope around a and b is separated also by λ . By continuity of the slope, there exists a secant between a and b with slope λ . Apply the mean value theorem to this slope. \Box

Proof (à la Joe/Rudin). We start with $\lambda = 0$. Then f'(a), $f'(b) \neq 0$ and the global min/max of f cannot be at the endpoints. At the global extrema we have the desired result. When $\lambda \neq 0$, consider $\tilde{f} := f - \lambda x$.

Example 1.10. Consider

$$f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

We have

$$f(x) = \begin{cases} 2x \sin(1/x) = \cos(1/x), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

which has the intermediate value property.

Theorem 1.11 (Generalized Mean Value Theorem). Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists $x \in (a, b)$ such that

$$(f(a) - f(b))g'(x) = (g(a) - g(b))f'(x).$$

Remark 1.12. When the above is not zero,

$$\frac{f(a)-f(b)}{g(a)-g(b)} = \frac{f'(x)}{g'(x)}.$$

Proof. Define

$$h(t) := (f(b) - f(a))g(t) - (g(b) - g(a))f(t).$$

Note that

$$h(a) = f(b)g(a) - f(a)g(b) = h(b)$$

and apply Rolle's.

1.2 L'Hôpital's Rule

Theorem 1.13 (L'Hôpital's Rule, a particular case). Let $f, g : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If $g(x) \neq 0$ in a neighborhood of a and f(x) = g(x) = 0, then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

if the last limit exists.

Proof. Consider some small $\delta > 0$. The generalized MVT gives some $x \in (a, a+\delta)$ such that

$$\frac{f(a+\delta)}{g(a+\delta)} = \frac{f'(x)}{g'(x)} \approx \lim_{t \to a} \frac{f'(t)}{g'(t)},$$

where the last approximation follows from the existence of the limit. Note that as $\delta \to 0$, $x \to a$, and the approximation error shrinks to 0.

Refer to Rudin or something for the general case.

1.3 Higher Derivatives

If $f: I \to \mathbb{R}$ is differentiable, then we can define the second derivative f'' := (f')' if f' is differentiable. Higher derivatives can be defined similarly. We usually write $f^{(n)}$ for the n-th derivative of f.

Example 1.14. $L(x) = f(x_0) + f'(x_0)(x - x_0)$ is a (first order) linear approximation of f at x_0 . How good is this approximation? A first answer is

$$f(x) = L(x) + o(|x - x_0|),$$

since we have as $x \to x_0$ that

$$\frac{f(x) - L(x)}{x - x_0} = \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0) \longrightarrow 0.$$

But can we say even more about the quality of the approximation? – Yes, if f is twice differentiable.

Proposition 1.15 (First-order Taylor's Theorem). Suppose f' exists and is continuous on [a,b] and f'' exists on (a,b). Let $x_0, x \in [a,b]$ with $x_0 \neq x$. Then

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(y)(x - x_0)^2,$$

where y is between x_0 and x. In particular, we have

$$|f(x) - f(x_0) - f'(x_0)(x - x_0)| \le \frac{1}{2} \sup_{y \in (a,b)} |f''(y)| \cdot |x - x_0|^2.$$

Proof. Find M such that we have

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{M}{2}(x - x_0)^2.$$

We need only find y such that M = f''(y). Define

$$g(t) := f(t) - f(x_0) - f'(x_0)(t - x_0) - \frac{M}{2}(t - x_0)^2.$$

Note that g''(t) = f''(t) - M, so we need only find a point at which g'' vanishes. Since $g(x_0) = g(x) = 0$, by the MVT there exists y' between x_0 and x such that g(y') = 0. Observe that $g'(x_0) = 0$, and so by the MVT again, there exists y between x_0 and y' (and by extension between x_0 and x) such that g''(y) = 0.

The more general story: given $f : [a, b] \to \mathbb{R}$ and $x_0 \in [a, b]$, we may define

$$P_0(x) := f(x_0),$$

$$P_1(x) := f(x_0) + f'(x_0)(x - x_0),$$

$$P_2(x) := f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2,$$

$$\vdots$$

$$P_n(x) := \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

when the corresponding derivatives exist. Note that $P_n(x)$ is the unique degree n polynomial such that $P_n^{(k)}(x_0) = f^{(k)}(x_0)$ for k = 1, ..., n.

Theorem 1.16 (Taylor's Theorem). *Let* $f : [a, b] \to \mathbb{R}$ *be such that*

- $f^{(k)}$ exists on [a,b] for $k=1,\ldots,n$; and
- $f^{(n+1)}$ exists on (a,b).

Then, for any $x_0, x \in [a, b]$ with $x_0 \neq x$, there exists y between x_0 and x such that

$$f(x) = P_n(x) + \frac{f^{(n+1)}(y)}{(n+1)!} (x - x_0)^{n+1}.$$

for some y between x_0 and x.

We proof the case n = 2, the same idea can be used to prove the general case.

Proof. Define

$$g(t) = f(t) - P_2(t) - \frac{M}{6}(t - x_0)^3.$$

Since g''' = f''' - M, we need only find y such that g'''(y) = 0. Note that $g(x_0) = g(x) = 0$, and so by the MVT there exists y' between x_0 and x such that g'(y') = 0. Next, note that $g'(x_0) = 0$, and so by the MVT there exists y'' between x_0 and y' such that g''(y'') = 0. Finally, note that $g''(x_0) = 0$, and so by the MVT there exists y between x_0 and y'' such that g'''(y) = 0.

2 Multivariable Differential Calculus