CS1216 - Monsoon 2022 - Homework 6

Jivansh Sharma UG 24 1020211193

29/11/2022

Collaborators: None

3. Assume a 512 KB, 4-way set associative cache with a 64 byte block size (cache line size). How many sets does the cache have? How many bits are used for the offset, index, and tag, assuming that the CPU provides 32-bit addresses? How large is the tag array? Show your work.

Now, we have the following data to work with:

- 1. Blocksize = 128 bytes
- 2. Cache size = 64 MB = 64 * 1024 * 1024 bytes = 67108864 bytes
- 3. Associativity = 32 Ways
- 4. Address size = 48 Bits
- 5. Let number of sets = x

Using the formula for Cache Size, we get: Cache Size = Number of Sets x Associativity x Block Size

$$67108864 = x \times 32 \times 128$$

$$x = 67108864/(32 \times 128)$$

$$x = 67108864/4096$$

$$x = 16384$$
(1)

Therefore the number of sets are 16,384. Now, we have to find the number of bits used for the offset, index and tag.

$$\begin{aligned} & \text{Offset} = \log_2(128) \\ & \text{Offset} = 7Bits \\ & \text{Index} = \log_2(16384) \\ & \text{Index} = 14Bits \\ & \text{Tag} = 48 - 7 - 14 \\ & \text{Tag} = 27Bits \end{aligned} \tag{2}$$

Therefore, the number of bits used for the offset, index and tag are 7, 14, 27 respectively. Calculating the size of the tag array:

 ${\tt Tag \ Size} = {\tt Number \ of \ Sets \ x \ Associativity \ x \ Tag \ Size}$

Tag Size =
$$16384 \times 32 \times 27$$

Tag Size = $1,41,55,776$ Bytes
Tag Size = $1,41,55,776/1024$ KB (3)
Tag Size = $13,824/1024$ MB
Tag Size = 13.824 MB

Therefore, the size of the tag array is 13.824 MB.

4. A 64 MB L3 cache has a 128 byte line (block) size and is 32-way set-associative. How many sets does the cache have? How many bits are used for the offset, index, and tag, assuming that the CPU provides 48-bit addresses? How large is the tag array? Show your work.

Now, we have the following data to work with:

- 1. Blocksize = 128 bytes
- 2. Cache size = 64 MB = 64 * 1024 * 1024 bytes = 67108864 bytes
- 3. Associativity = 32 Ways
- 4. Address size = 48 Bits
- 5. Let number of sets = x

Using the formula for Cache Size, we get:

Cache Size = Number of Sets x Associativity x Block Size

$$67108864 = x \times 32 \times 128$$

$$x = 67108864/(32 \times 128)$$

$$x = 67108864/4096$$

$$x = 16384$$
(4)

Therefore the number of sets are 16,384. Now, we have to find the number of bits used for the offset, index and tag.

$$\begin{aligned} & \text{Offset} = \log_2(128) \\ & \text{Offset} = 7Bits \\ & \text{Index} = \log_2(16384) \\ & \text{Index} = 14Bits \\ & \text{Tag} = 48 - 7 - 14 \\ & \text{Tag} = 27Bits \end{aligned} \tag{5}$$

Therefore, the number of bits used for the offset, index and tag are 7, 14, 27 respectively. Calculating the size of the tag array:

 ${\tt Tag \ Size} = {\tt Number \ of \ Sets \ x \ Associativity \ x \ Tag \ Size}$

Tag Size =
$$16384 \times 32 \times 27$$

Tag Size = $1,41,55,776$ Bytes
Tag Size = $1,41,55,776/1024$ KB (6)
Tag Size = $13,824/1024$ MB
Tag Size = 13.824 MB

Therefore, the size of the tag array is 13.824 MB.

5. For the following access pattern, (i) indicate if each access is a hit or miss. (ii) What is the hit rate? Assume that the cache has 2 sets and is 2-way set-associative. Assume that block A maps to set 0, B to set 1, C to set 0, D to set 1, E to set 0, F to set 1. Assume an LRU replacement policy.

Now, we have the following data to work with:

- 1. A, C, E Map to Set #0
- 2. B, D, F Map to Set #1
- 3. LRU Replacement Policy
- 4. 2 Way 2 Set Associative Cache
- 5. In each block, LRU is Rightmost and MRU is Leftmost

Serial Number	Address	Hit/Miss	Cache 0 State	Cache 1 State	Why?
1.	A	Miss	A		Compulsory
	11	11100	11		Miss
2.	В	Miss	A	В	Compulsory
					Miss
3.	C	Miss	C, A	В	Compulsory Miss
4.	В	Hit	CA	В	WIISS
			C, A		
5.	A	Hit	A, C	В	
6.	В	Hit	A, C	В	
7.	Е	Miss	E, A	В	Compulsory
					Miss
8.	С	Miss	C, E	В	Conflict Miss
9.	A	Miss	A, C	В	Capacity Miss
10.	D	Miss	A, C	D, B	Compulsory
					Miss
11.	В	Hit	A, C	B, D	
12.	С	Hit	C, A	B, D	
13.	A	Hit	A, C	B, D	
14.	F	Miss	A, C	F, B	Compulsory
					Miss
15.	D	Miss	A, C	D, F	Capacity Miss
16.	В	Miss	A, C	B, D	Conflict Miss
17.	С	Hit	C, A	B, D	
18.	Е	Miss	E, C	B, D	Conflict Miss
19.	A	Miss	A, E	B, D	Conflict Miss

Now, we know Hit Rate = (Total Hits/Total Requests) * 100 Using the formula for CPI, we get:

Hit Rate = (Total Hits/Total Requests) * 100

Hit Rate =
$$7/19 * 100 = 36.84\%$$
 (7)

6. Consider a program that can execute with no stalls and a CPI of 1 if the underlying processor can somehow magically service every load instruction with a 1-cycle L1 cache hit. In practice, 10% of all load instructions suffer from an L1 cache miss. Every cache miss results in a 300-cycle stall while data is fetched from memory. What is the CPI for this program if 20% of the program's instructions are load instructions?

Now, we have the following data to work with:

- 1. Baseline CPI = 1
- 2. Miss Rate = 10\%
- 3. Miss Penalty = 300 cycles
- 4. Percentage of load instructions = 20\%

Using the formula for CPI, we get:

CPI = Baseline + (Miss Rate * Miss Penalty * Percentage of load instructions)

$$CPI = 1 + (0.1 * 300 * 0.2) = 1 + 6 = 7$$
 (8)

Therefore the CPI would be 7.