软件测试 Software Testing

07. 边界值测试

程适

cheng@snnu.edu.cn

计算机科学学院

2016年10月13日

1 / 27

Outline

- 边界值分析
- 边界值测试举例
 - 三角形问题
 - NextDate问题

功能性测试

- 边界值分析法
- ■等价类划分法
- ■判定表方法
- 因果图法

边界值分析

- 程序与函数
 - 程序的输入—定义域
 - 程序的输出—值域
- 程序中变量的值域
 - 强类型语言
 - 非强类型语言

边界值分析

- 边界值测试的基本原理:
 - 错误更可能出现在输入变量的极值附近.
 - 单缺陷假设: 失效极少由两个(或多个)缺陷的同时发生引起的。
 - min、min +、nom、max —和max。

5 / 27

示例

■ 如果函数f()有两个输入变量 x_1 , x_2 ; 设计一个程序实现f(), 则 x_1 、 x_2 会有一些边界:

$$f(x_1, x_2)$$

for $a \le x_1 \le b$, $c \le x_2 \le d$

区间[a,b]和[c,d]分别是 x_1 和 x_2 的取值范围。

示例

测试用例: { (x₁nom, x₂min), (x₁nom, x₂min+), (x₁nom, x₂nom), (x₁nom, x₂max-), (x₁nom, x₂max), (x₁min, x₂nom), (x₁min+, x₂nom), (x₁max-, x₂nom), (x₁max, x₂nom)}

边界值分析注意事项

- 边界的数据类型可能是:
 - 数值 速度
 - 字符 地址
 - 位置 尺寸
 - 数量

边界值分析注意事项

■ 边界值类型的描述:

■ 第一个/最后一个 最小值/最大值

■ 开始/完成

超过/在内

■ 空/满

最短/最长

■ 最大/最小

最高/最低

■ 相邻/最远

10 / 27

次边界值分析

- 次边界条件:
 - 有些边界条件在软件内部,最终用户几乎看不到,但是软件测试仍 有必要检查。这样的边界条件称为次边界条件或者内部边界条件: 如2的乘方和ASCII。

软件中的2的乘方

术语	范围或值		
位	0 或1	20	b
双位	0-15	2 ⁴	
字节	0-255	2 ⁸	В
字	0-65,535 (单字)	2 ¹⁶	Word
千	1024	210	K
兆	1,048,576	2 ²⁰	М
十亿	1,073,741,824	2 ³⁰	G
万亿	1,009,511,627,776	2 ⁴⁰	Т

部分ASCII 表

字符	ASCII 值		字符	ASCII 值	
Null	0		В	66	#42
Space	32		Y	89	
/	37		Z	90	
0	48	#30	[91	
1	49	#31	ı	96	
2	50	#32	a	97	#61
9	57	#39	b	98	#62
:	58		у	121	
@	64		z	122	
Α	65	#41	{	123	

边界值分析的特点和局限性

- 对于一个n变量函数,边界值分析会产生4n+1个测试用例。
- 边界值的取值取决于变量本身的性质。
- 边界值分析对布尔变量没有什么意义。
- 边界值分析假设变量是完全独立的。

边界值分析的扩展

- 健壮性测试max+, min-
- 会产生什么样的输出?

边界值分析的扩展

■ 最坏情况测试: "多缺陷假设"

边界值分析的扩展

■健壮最坏情况测试

边界值测试的小结

■ 区别边界值测试的准则是:正常值与健壮值;单缺陷与多缺陷

	正常值	健壮值	单缺陷假设	多缺陷假设	测试用例数量
一般边界值测试	\checkmark		\checkmark		4n + 1
健壮性测试	\checkmark	\checkmark	\checkmark		6n + 1
最坏情况测试	\checkmark			\checkmark	5 ⁿ
健壮最坏情况测试	\checkmark	\checkmark		$\sqrt{}$	7 ⁿ

边界值测试

特殊值测试

- 特殊值测试: 运用地最广泛的一种功能性测试
 - 测试人员根据领域知识、经验等设计的测试用例
 - 三角形问题
 - NextDate问题

b界值分析 **边界值测试举例** 小结

随机测试

- 随机测试: 使用随机数生成器选出测试用例, 避免出现测试偏见。
- 多少随机测试才是充分的?

边界值测试举例

- 三角形问题的边界值分析测试用例
- 接受三个整数a、b、c作为输入,用做三角形的边。整数a、b、c必须满足以下条件:
 - 1 c1: $1 \le a \le 200$
 - 2 c2: $1 \le b \le 200$
 - **3** c3: $1 \le c \le 200$
 - 4 c4: a < b+c
 - 5 c5: b < a+c
 - 6 c6: c < a+b

边界值测试举例

- 三角形问题的边界值分析测试用例
- 接受三个整数a、b、c作为输入,用做三角形的边
- 程序的输出由这三条边确定的三角形类型:等边三角形、等腰三角 形、不等边三角形、非三角形

边界值测试举例

- NextDate函数的最坏情况测试用例
- NextDate是一个有三个变量(月份、日期和年)的函数。函数返回 输入日期后面的那个日期。变量都具有整数值且满足条件:
 - **1** c1: 1 ≤ 月份≤ 12
 - 2 c2: 1 ≤ 日期≤ 31
 - **3** c3: 1816 ≤ 年≤ 2016
- 1582年10月5日~ 10月14日

小结

- 边界值分析
- 边界值测试举例
 - 三角形问题
 - NextDate问题

小结

- 边界值测试方法是基于一种假设:输入的变量是真正独立的。
- 这些方法的区别是:
 - 正常值与健壮值;
 - ■单缺陷与多缺陷。

致谢

谢谢,欢迎提问!