МЕТОДЕ ОПТИМИЗАЦИЈЕ

Материјал за вјежбе 1 - Увод у Пајтон (енгл. Python)

Графички приказ функција у Пајтону

У овом дијелу ће бити показане основе графичког приказивања (цртања) функција и сигнала у Пајтону. Најприје ће бити показано исцртавање функција које зависе од једне промјенљиве, а након тога ће бити приказано исцртавање функција са више промјенљивих.

Графички приказ функција једне промјенљиве

За исцртавање функције једне промјенљиве y=f(x) потребна су нам два вектора вриједности: вектор вриједности x-осе и вриједности функције y за свако x. На примјер, изаберимо сљедећих десет тачака и вриједности функције у тим тачкама:

Да бисмо у Пајтону нацртали ову функцију, потребно је да вриједности за x и y ставимо у два одговарајућа вектора, а потом позовемо функцију за њихово исцртавање:

```
import numpy as np
import matplotlib.pyplot as plt

x = np.array([ 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5])
y = np.array([1, 2, 3, 2, 2, 2, 1.5, 2, 2, 2.5])

pl = plt.plot(x, y)
plt.show()
```

Извршавањем наведног кода добијамо сљедећи прозор:

Пајтон је исцртао дате вриједности y у датим тачкама x и аутоматски те тачке спојио линијама како би график изгледао као функција. Дакле, за најједноставније цртање функција довољно је да припремимо два вектора бројева. У први вектор стављамо вриједности независно промјенљиве x (вриједности x-ose), а у други вектор стављамо вриједности функције у тим тачкама.

Примјер: Нацртати функцију y = f(x) = sin(x) на интервалу $x \in [0, 2\pi]$.

```
import numpy as np
import matplotlib.pyplot as plt

x = np.arange(0, 2*np.pi, 1)
y = np.sin(x)

p1 = plt.plot(x, y)
plt.show()
```

На овај начин добијамо графички приказ жељене функције:

Шта треба промијенити да бисмо добили "очекивани" изглед синусне функције?

Графички приказ функција више промјенљицих

Графичко приказивање функција више промјенљивих ће бити приказано на примјеру фунцкије која зависи од двије промјенљиве. Рецимо да желимо да нацртамо функцију $y = f(x_1, x_2) = \sin{(x_1)} + \cos{(x_2)}$ на интервалу $x_1, x_2 \in [-5, 5]$.

У овом случају имамо двије независно промјенљиве, па морамо припремити два скупа података за промјенљиве x_1 и x_2 и један скуп података за вриједност функције y. Такође, ови скупови података више не могу бити вектори јер морамо да израчунамо вриједност функције y за **сваку комбинацију** вриједности промјенљивих x_1 и x_2 из жељеног домена. Дакле, вриједности промјенљивих x_1 , x_2 и y складиштимо у матрицама. У наставку је приказан примјер Пајтон кода који црта наведену функцију, као и њен графички приказ који се добије као резултат.

```
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np

xlv = np.arange(-5, 5, 0.01)
x2v = np.arange(-5, 5, 0.01)
x1, x2 = np.meshgrid(x1v, x2v)
f = np.sin(x1) + np.cos(x2)

fig = plt.figure()
ax = fig.gca(projection='3d')
p1 = ax.plot_surface(x1, x2, f)
plt.show()
```


Задаци за вјежбање

- 1. Написати програм који за дати природни број N рачуна факторијел тог броја. Задатак ријешити помоћу FOR и WHILE петље.
- 2. Направити функцију која као аргумент прима један број N, а као резултат враћа вектор који садржи првих N чланова Фибоначијевог низа.
- 3. Исцртати функцију $f(x) = \sin x + \frac{1}{25}x^2$ на интервалу $x \in [-10, 10]$.
- 4. Скицирати *Ackley* функцију за двије промјенљиве у интервалу [-5, 5]. *Ackley* функција се дефинише сљедећом једначином

$$f_1(\underline{x}) = -a \exp\left(-b\sqrt{\frac{1}{n}\sum_{i=1}^n x_i^2}\right) - \exp\left(\frac{1}{n}\sum_{i=1}^n \cos\left(2\pi x_i\right)\right) + a + \exp\left(1\right)$$

гдје је a = 20 и b = 0.2.

5. Скицирати *Griewank* функцију за двије промјенљиве у интервалу [-5, 5]. *Griewank* функција се дефинише сљедећом једначином

$$f_2(\underline{x}) = \sum_{i=1}^n \left(\frac{x_i^2}{4000}\right) - \prod_{i=1}^n \left(\cos\left(\frac{x_i}{\sqrt{i}}\right)\right) + 1$$