Uncertainty Traps

Pablo Fajgelbaum¹ Edouard Schaal² Mathieu Taschereau-Dumouchel³

¹UCLA ²New York University

³Wharton School University of Pennsylvania

April 6, 2015 Harvard University Introduction

- · Some recessions are particularly persistent
 - ▶ Slow recoveries of 1990-91, 2001
 - Recession of 2007-09: output, investment and employment still below trend Details
- Persistence is a challenge for standard models of business cycles
 - Measures of standard shocks typically recover quickly
 - Productivity/TFP, financial shocks, volatility...
 - Need strong propagation channel to transform short-lived shocks into long-lasting recessions

This Paper _____

- We develop a business cycles theory of endogenous uncertainty:
 - Large evidence of heightened uncertainty in 2007-2015 (Bloom et al.,2012; Ludvigson et al.,2013)
- This paper:
 - ▶ Provides a theory that explains why uncertainty is countercyclical
 - Proposes a propagation channel that can generate persistent recessions

Mechanism ____

Mechanism _

Mechanism _

Uncertainty traps: Self-reinforcing episodes of high uncertainty and low economic activity

Roadmap _____

- 1 Discuss uncertainty concepts and measures
- Start with a stylized model
 - Isolate how key forces interact to create uncertainty traps
 - ► Establish conditions for their existence, welfare implications
- 3 Extend the model to more standard RBC environment
 - ► Compare an economy with and without endogenous uncertainty
 - ▶ The mechanism can generate substantial persistence

Uncertainty _____

- Most of the uncertainty-driven business cycle literature focuses on time-varying volatility
 - Bloom (2009), Bachmann and Bayer (2009), Gilchrist et al. (2014),...
- We adopt the broader concept of Bayesian uncertainty:
 - Subjective uncertainty as perceived by agents is what matters for investment decisions
 - Uncertainty = variance of beliefs about variables of interest
 - ▶ Time-varying risk implies Bayesian uncertainty, not vice versa
- Empirical counterparts:
 - ▶ Ex-ante forecast errors, surveys of expectation, financial data, etc.
 - Different from measures of cross-sectional dispersion and disagreement

Measures of Aggregate Uncertainty

Theoretical Model

- Infinite horizon model in discrete time
- \overline{N} atomistic firms indexed by $n \in \left\{1,\dots, \overline{N}\right\}$ producing a homogeneous good
- Firms have CARA preferences over wealth

$$u(x) = \frac{1}{a} \left(1 - e^{-ax} \right)$$

- Each firm n has a unique investment opportunity and must decide to either do the project today or wait for the next period
 - Firms face a random fixed investment cost $f \sim \operatorname{cdf} F$, iid, with variance σ^f
 - ▶ $N \in \{1, \dots, \overline{N}\}$ is the endogenous number of firms that invest.
 - Firms that invest are immediately replaced by firms with new investment opportunities
- The project produces output

$$x_n = \theta + \varepsilon_n^x$$

• Aggregate productivity (the **fundamental**) θ follows an AR(1)

$$\theta' = \rho_{\theta}\theta + \varepsilon^{\theta}$$

and
$$arepsilon^{ heta}\sim\mathsf{iid}\,\mathcal{N}\left(0,\left(1-
ho_{ heta}^{2}
ight)\gamma_{ heta}^{-1}
ight)$$
, $arepsilon_{n}^{\mathsf{x}}\sim\mathsf{iid}\,\mathcal{N}\left(0,\gamma_{\mathsf{x}}^{-1}
ight)$.

- Each firm n has a unique investment opportunity and must decide to either do the project today or wait for the next period
 - \blacktriangleright Firms face a random fixed investment cost $f \sim \operatorname{cdf} F$, iid, with variance σ^f
 - ▶ $N \in \{1, \dots, \overline{N}\}$ is the endogenous number of firms that invest.
 - Firms that invest are immediately replaced by firms with new investment opportunities
- The project produces output

$$x_n = \theta + \varepsilon_n^x$$

• Aggregate productivity (the **fundamental**) θ follows an AR(1)

$$\theta' = \rho_{\theta}\theta + \varepsilon^{\theta}$$

and
$$\varepsilon^{\theta} \sim \operatorname{iid} \mathcal{N}\left(0, \left(1 - \rho_{\theta}^{2}\right) \gamma_{\theta}^{-1}\right)$$
, $\varepsilon_{n}^{\mathsf{x}} \sim \operatorname{iid} \mathcal{N}\left(0, \gamma_{\mathsf{x}}^{-1}\right)$.

Information

Firms do not observe θ directly, but receive noisy signals:

• Public signal that captures the information released by media, agencies, etc.

$$Y = \theta + \varepsilon^{y}$$
, with $\varepsilon^{y} \sim \mathcal{N}\left(0, \gamma_{y}^{-1}\right)$

- Output of all investing firms
 - Each individual signal

$$x_n = \theta + \varepsilon_n^{\mathsf{x}}, \text{ with } \varepsilon_n^{\mathsf{x}} \sim \operatorname{iid} \mathcal{N}\left(0, \gamma_{\mathsf{x}}^{-1}\right)$$

can be summarized by the aggregate signal:

$$X \equiv \frac{1}{N} \sum_{n \in I} x_n = \theta + \frac{1}{N} \sum_{n \in I} \varepsilon_n^x \sim \mathcal{N}\left(\theta, (N\gamma_x)^{-1}\right)$$

- Remarks:
 - ▶ No bounded rationality: firms use all information from observables
 - No asymmetry of information

Timing ____

Each firm starts the period with common beliefs

- 1 Firms draw investment cost f and decide to invest or not
- 2 Production takes place, public signals X and Y are observed
- **3** Agents update their beliefs and θ' is realized

Beliefs and Uncertainty _____

ullet Before observing signals, firms share the same beliefs about heta

$$\theta | \mathcal{I} \sim \mathcal{N} \left(\mu, \gamma^{-1} \right)$$

- ullet Our notion of uncertainty is captured by the variance of beliefs $1/\gamma$
 - High uncertainty means low γ
- Remark: no heterogeneity in beliefs, no disagreement

Law of Motion for Beliefs _

• After observing signals X and Y, the posterior about θ is

$$\theta \quad | \quad \mathcal{I}, \mathbf{X}, \, \mathbf{Y} \sim \mathcal{N}\left(\mu_{\textit{post}}, \gamma_{\textit{post}}^{-1}\right)$$

with

$$\mu_{post} = \frac{\gamma \mu + \gamma_y Y + N \gamma_x X}{\gamma + \gamma_y + N \gamma_x}$$
$$\gamma_{post} = \gamma + \gamma_y + N \gamma_x$$

• Next period's beliefs about $\theta' = \rho_{\theta}\theta + \varepsilon^{\theta}$ is

$$\mu' =
ho_{ heta} \mu_{post} \ rac{1}{\gamma'} = rac{
ho_{ heta}^2}{\gamma_{post}} + rac{1 -
ho_{ heta}^2}{\gamma_{ heta}} \equiv \Gamma^{-1} \left(extstyle ex$$

• Firms choose whether to invest or not

$$V(\mu, \gamma, f) = \max \left\{ \underbrace{V^W(\mu, \gamma)}_{\text{wait}}, \underbrace{V^I(\mu, \gamma) - f}_{\text{invest}} \right\}$$

• Decision is characterized by a threshold $f_c(\mu, \gamma)$ such that

firm invests
$$\Leftrightarrow f \leq f_c(\mu, \gamma)$$

Firm Problem

Value of waiting:

$$\begin{split} V^{W}(\mu,\gamma) &= \beta \mathbb{E}\left[\int V\left(\mu',\gamma',f'\right) dF\left(f'\right) \mid \mu,\gamma\right] \end{split}$$
 with $\mu' = \rho_{\theta} \frac{\gamma \mu + \gamma_{x} Y + N\gamma_{x} X}{\gamma + \gamma_{x} + N\gamma_{x}}$ and $\gamma' = \Gamma\left(N,\gamma\right)$

• Value of investing:

$$V'(\mu, \gamma) = \mathbb{E}\left[u(x) | \mu, \gamma\right]$$

Aggregate Consistency _____

• The aggregate number of investing firms N is

$$N = \sum_{n} \mathbb{1}(f_n \leq f_c(\mu, \gamma))$$

Firms have the same ex-ante probability to invest

$$p(\mu, \gamma) = F(f_c(\mu, \gamma))$$

• The number of investing firms follows a binomial distribution

$$N\left(\mu,\gamma
ight)\sim \mathit{Bin}\left[ar{N},\mathit{p}\left(\mu,\gamma
ight)
ight]$$

Recursive Equilibrium ____

Definition

An equilibrium consists of the threshold $f_c(\mu, \gamma)$, value functions $V(\mu, \gamma, f)$, $V^W(\mu, \gamma)$ and $V^I(\mu, \gamma)$, and a number of investing firms $N(\mu, \gamma, \{f_n\})$ such that

- 1 The value functions and policy functions solve the Bellman equation;
- 2 The number of investing firms N satisfies the consistency condition;
- **3** Beliefs (μ, γ) follow their laws of motion.

Characterizing the Evolution of Beliefs: Mean ___

• Mean beliefs μ follow

$$\mu' = \rho_{\theta} \frac{\gamma \mu + \gamma_{y} Y + N \gamma_{x} X}{\gamma + \gamma_{y} + N \gamma_{x}}$$

Lemma

For a given N, mean beliefs μ follow an AR(1) with time-varying volatility s,

$$\mu'|\mu, \gamma = \rho_{\theta}\mu + s(N, \gamma)\varepsilon,$$

with $\frac{\partial s}{\partial N}>0$ and $\frac{\partial s}{\partial \gamma}<0$ and $\varepsilon\sim\mathcal{N}\left(0,1\right)$.

$$\gamma' = \Gamma(N, \gamma) = \left(\frac{\rho_{\theta}^2}{\gamma + \gamma_y + N\gamma_x} + \frac{1 - \rho_{\theta}^2}{\gamma_{\theta}}\right)^{-1}$$

Lemma

- 1) Belief precision γ' increases with N and γ ,
- 2) For a given N, $\Gamma(N, \gamma)$ admits a unique stable fixed point in γ .

Characterizing the Evolution of Beliefs .

ullet Precision of beliefs γ follows

Characterizing the Evolution of Beliefs

• Precision of beliefs γ follows

Equilibrium Characterization ____

Proposition

For ρ_{θ} and γ_{θ} large enough and for γ_{x} small,

- 1) The equilibrium exists and is unique;
- 2) The investment decision of firms is characterized by the cutoff $f_c(\mu, \gamma)$ such that:

firm with cost f invests
$$\Leftrightarrow$$
 f \leq f_c (μ, γ)

3) f_c is a strictly increasing function of μ and γ .

Uncertainty Traps _____

- We now examine the existence of "uncertainty traps"
 - ▶ Self-reinforcing episodes of high uncertainty/low economic activity
- Take the limit as $\bar{N} \to \infty$,

$$\frac{N}{\bar{N}} = F\left(f_c\left(\mu, \gamma\right)\right)$$

• The whole economy is described by the two-dimensional system:

$$\begin{cases} \mu' &= \rho_{\theta} \mu + s \left(N \left(\mu, \gamma \right), \gamma \right) \varepsilon \\ \gamma' &= \Gamma \left(N \left(\mu, \gamma \right), \gamma \right) \end{cases}$$

Equilibrium Dynamics of Belief Precision

ullet Precision of beliefs γ follow

$$\gamma' = \Gamma(N, \gamma)$$
1
0.8
0.6
0.4
0.4
0.2
0
0
0
0.2
0.4
0.6
0.8

Equilibrium Dynamics of Belief Precision

• Precision of beliefs γ follow

$$\gamma' = \Gamma\left(N\left(\mu, \gamma\right), \gamma\right)$$

Equilibrium Dynamics of Belief Precision .

• Precision of beliefs γ follow

$$\gamma' = \Gamma(N(\mu, \gamma), \gamma)$$

Equilibrium Dynamics of Belief Precision .

ullet Precision of beliefs γ follow

$$\gamma' = \Gamma(N(\mu, \gamma), \gamma)$$

Equilibrium Dynamics of Belief Precision .

ullet Precision of beliefs γ follow

$$\gamma' = \Gamma(N(\mu, \gamma), \gamma)$$

Phase Diagram ___

Existence of Uncertainty Traps _____

Definition

Given mean beliefs μ , there is an uncertainty trap if there are at least two locally stable fixed points in the dynamics of beliefs precision $\gamma' = \Gamma\left(N\left(\mu,\gamma\right),\gamma\right)$.

- · Does not mean that there are multiple equilibria
 - ► The equilibrium is unique,
 - ▶ The past history of shocks determines which regime prevails

Existence of Uncertainty traps __

Proposition

For γ_x and σ^f low enough, there exists a non-empty interval $[\mu_I, \mu_h]$ such that, for all $\mu_0 \in (\mu_I, \mu_h)$, the economy features an uncertainty trap with at least two stable steady states $\gamma_I(\mu_0) < \gamma_h(\mu_0)$. Equilibrium $\gamma_I(\gamma_h)$ is characterized by high (low) uncertainty and low (high) investment.

 \bullet The dispersion of fixed costs σ^f must be low enough to guarantee a strong enough feedback from information on investment

- ullet We now examine the effect of a negative shock to μ
 - Economy starts in the high regime
 - ▶ Hit the economy at t = 5 and last for 5 periods
 - ▶ We consider small, medium and large shocks
- Under what conditions does the economy fall into an uncertainty trap?

Impact of a **small** negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a **medium**-sized negative shock to μ

Impact of a large negative shock to μ

Impact of a large negative shock to μ

Impact of a large negative shock to μ

Uncertainty Traps: Escaping the Trap _____

- We now start after a full shift of the economy towards the low regime
- How can the economy escape the trap?

Uncertainty Traps: Escaping the Trap _____

Uncertainty Traps _____

- The economy displays strong non-linearities:
 - for small fluctuations, uncertainty does not matter much,
 - only large or prolonged declines in productivity (or signals) lead to self-reinforcing uncertainty events: uncertainty traps
- In such events, the economy may remain in a depressed state even after mean beliefs about the fundamental recover (μ)
 - ▶ Slow recoveries, high persistence in aggregate variables
- The economy can remain in such a trap until a large positive shock hits the economy

Welfare Implications _____

- The economy is inefficient because of an informational externality
 - Firms do not internalize the effect of their investments on public information

Proposition

The following results hold:

- 1) The competitive equilibrium is inefficient. The socially efficient allocation can be implemented with positive investment subsidies τ (μ, γ) ;
- 2) In turn, uncertainty traps may still exist in the efficient allocation.

Extended Model ____

- We now introduce standard features of business cycle models
 - Evaluate the robustness of the mechanism
 - Explore numerically the potential magnitude of effects
- These features include:
 - Neoclassical production function with capital and labor
 - ▶ Long-lived firms that accumulate capital over time
 - Firms receive multiple investment opportunities stochastically
 - Competitive equilibrium and general equilibrium effects

Extended Model ____

Representative household with inelastic labor supply and preferences

$$\mathbb{E}\sum_{t=0}^{\infty}\beta^{t}U(C_{t})$$

• Continuum of firms $j \in [0, 1]$ with Cobb-Douglas technology

$$(A + Y) k_j^{\alpha} l_j^{1-\alpha}$$

with
$$Y = \theta + \varepsilon^Y$$
 and $\theta' = \rho_\theta \theta + \varepsilon^\theta$

Capital accumulates over time

$$k_j' = (1 - \delta + i_j) k_j$$

Investment Technology __

- Two different types of investment:
 - 1 Regular investments
 - routine maintenance and small repairs of current capital
 - convex variable cost c(i), $i \in [\underline{i}, \overline{i}]$
 - does not require an investment opportunity
 - 2 Large investments
 - large purchases of plants or equipment
 - requires an investment opportunity
 - fixed cost $f \sim F$ with mean \overline{f} and standard deviation σ^f
 - convex variable cost c(i), i unconstrained

Investment Technology __

- Investment opportunities
 - ightharpoonup Arrive at rate \overline{q}
 - Q is the total capital stock of firms with an opportunity
 - n is the fraction of firms with an opportunity that undertake large investment
- Large investments reveal information
 - ▶ Public signals $x_i = \theta + \varepsilon_i^x, \varepsilon_i^x \sim \mathcal{N}\left(0, (\gamma_x k_i)^{-1}\right)$
 - ▶ Individual signals aggregate into $X = \theta + \varepsilon^X, \varepsilon^X \sim \mathcal{N}\left(0, (nQ\gamma_x)^{-1}\right)$
- Aggregation (Hayashi, 1982)
 - ▶ We model the investment costs as CRS in capital: $c(i) \cdot k_j$ and $f \cdot k_j$
 - lacktriangle The economy admits aggregation with state variables (μ, γ, K, Q)

▶ Timing

▶ Information

• Standard parameters:

Parameter	Value	
Time period	Month	
Total factor productivity	A = 1	
Discount factor	$\beta = (0.95)^{1/12}$	
Share of capital in production	$\alpha = 0.4$	
Persistence of fundamental	$\rho_{\theta} = (0.876)^{1/12}$	
Ergodic standard deviation of fundamental	$\sigma_{\theta} = \gamma_{\theta}^{-\frac{1}{2}} = 0.03$	

Parametrization: Investment _____

- We use quarterly firm-level data from Compustat
 - ▶ Interpret large investments as investment spikes in "Property, Plant and Equipment"
 - ▶ Define a spike as i > 10%

Moment	Value	
Average investment conditioning on spike	0.18	
Average investment conditioning on no spike	0.023	
Fraction of firms with spike in a quarter	0.028	
Average total investment rate	0.027	
Median - Average time between spikes	7-14 quarters	
Parameter	Value	
Variable cost of investment $c(i) = i + \phi i^2$	$\phi = 3.3$	
Upper bound on constrained investment	$\bar{i} = 0.023$	
Cost of investment	$\overline{f} = 0.1$	
Depreciation rate	$\delta = (0.027)^{\frac{1}{3}}$	
Probability of investment opportunity	$\overline{q}=(1/10)^{rac{1}{3}}$	

- The information parameters γ_x and γ_y are difficult to identify
 - We perform sensitivity analysis

Parameter	Value
Precision of public signal γ_y	$\gamma_y = \underline{100}, 1000, 5000^1$
Precision of individual signal γ_x	$nQ\gamma_{x} = \underline{10}, 5, 1 \times \gamma_{y}$

- Our baseline case:
 - ▶ Maximum stdev of beliefs about θ_{t+12} is 1.47% (one-year ahead)
- Survey of Professional Forecasters (SPF): Probability Forecasts
 - Maximum stdev in one-year ahead forecasts about real output is 1.53% (2009Q3)

¹stdev 10%, 3.2%, 1.4%

Numerical Illustration

- We start with the risk neutral case and little heterogeneity in fixed costs $(\sigma^f = 0.001\overline{f})$
 - ▶ Isolate the option value effects and extends the baseline case
 - Relax each assumption one by one later
- Option value effects have strong impact on extensive margin of large investments:

Numerical Illustration: Negative 5% shock to μ .

Numerical Illustration: Negative 50% shock to γ _

0.000

Months since shock

Numerical Illustration __

• Results:

- Endogenous uncertainty channel adds amplitude and duration to recessions in comparison to model with fixed information flow
- ► Fundamental uncertainty does not necessarily imply uncertainty about endogenous variables
 Output uncertainty
- Evidence for model predictions:
 - Uncertainty is higher in recessions and deeper recessions feature higher uncertainty

 - Large investments fall in recessions and are slow to recover the higher is uncertainty

 Spike share

Sensitivity Analysis _____

We now relax some of our assumptions and vary parameter values:

- Risk averse preferences: logarithmic utility Risk Aversion
- Precision of individual signals
- Precision of public signals
- Heterogeneity in fixed costs

Conclusion _____

- We propose a model in which uncertainty fluctuates endogenously
- The complementarity between economic activity and information leads to uncertainty traps
- Uncertainty traps are robust to more general environment
 - More work needs to be done to identify size of informational frictions
- Interesting extensions:
 - Monopolistic competition: people not only care about the fundamental but also about the beliefs of others (higher-order beliefs)
 - Financial frictions: amplification through risk premium

Equilibrium Characterization ____

Proposition

If $\beta e^{\mathsf{a}(1-\rho_{\theta})\overline{\mu}-\frac{\sigma^2}{2}\frac{1-\rho_{\theta}^2}{\overline{\gamma}}+\frac{\sigma^2}{2}\frac{1-\rho_{\theta}^2}{\gamma_{\theta}}} \leqslant 1$ and F is continuous, twice-differentiable with bounded first and second derivatives, for γ_{X} small,

- 1) The equilibrium exists and is unique;
- 2) The investment decision of firms is characterized by the cutoff $f_c(\mu, \gamma)$ such that firms invest iff $f \leq f_c(\mu, \gamma)$;
- 3) f_c is a strictly increasing function of μ and γ .

◀ Return

Limit $N \to \infty$ ____

- If $\gamma_{\rm x}$ was constant as we take the limit, a law of large number would apply and θ would be known
- To prevent agents from learning too much, we assume $\gamma_x\left(\bar{N}\right)=\gamma_x/\bar{N}$. Therefore the precision of the aggregate signal X stays constant at

$$N\gamma_{x}(\bar{N}) = n\gamma_{x}$$

where

$$n=rac{N}{\overline{N}}$$

is the fraction of firms investing.

 Under this assumption, the updating rules for information are the same as with finite N

2007-2009 Recession _____

Timing _____

f 0 At the beginning, all firms share the same prior distribution on f heta

$$\theta | \mathcal{I} \sim \mathcal{N}\left(\mu, \gamma^{-1}\right)$$

- **2** Firms with an investment opportunity draw $f_j \sim F$ and decide whether or not to invest
- 3 All firms choose investment rate i, labor I and production takes place
- 4 Signals X and Y are observed
- **5** Firms without an opportunity receive one with probability \overline{q}
- 6 Agents update their beliefs

Return

Information

- The structure of information is the same as before
 - ▶ Aggregate output reveals public signal $Y = \theta + \varepsilon^{Y}$ with precision γ_{Y}
 - ▶ Social learning channel $X = \theta + \varepsilon^X$ with precision $nQ\gamma_X$
- Belief dynamics

$$\mu' = \rho_{\theta} \frac{\gamma \mu + \gamma_{y} Y + nQ\gamma_{x} X}{\gamma + \gamma_{y} + nQ\gamma_{x}}$$
$$\gamma' = \left(\frac{\rho_{\theta}^{2}}{\gamma + \gamma_{y} + nQ\gamma_{x}} + \frac{1 - \rho_{\theta}^{2}}{\gamma_{\theta}}\right)^{-1}$$

■ Return

Endogenous vs. Exogenous Variables

- Fundamental uncertainty does not imply uncertainty about endogenous variables
 - With high uncertainty, economy is more prone to fall in recession and less volatile

Figure : Standard deviation about θ_t vs. one-year ahead output y_{t+12}

Uncertainty and Business Cycles _____

• Average uncertainty in recessions relative to expansion

Uncertainty Measure	Jurado et al. (2015)	VXO	Michigan Survey	SPF
Years available	1960-2014	1990-2014	1960-2014	1992-2014
Recessions	1.12	1.62	1.96	1.06
Small recessions	1.01	1.34	1.06	1.05
Large recessions	1.20	1.85	1.11	1.06

Mean Recovery Paths ___

- Classify recessions 1960-2015 in two bins according to average uncertainty and compute mean recovery path
- Simulate 100,000 periods in the model and compute the same

53 / 53

Recessions with low uncertainty in red, high uncertainty in black

Share of Investment Spikes _

Sensitivity: Risk Aversion ___

◆ Sensitivity

Sensitivity to γ_x ____

▶ Sensitivity

Sensitivity to γ_y _

Sensitivity

Sensitivity to σ^f _

Sensitivity