DS- Theony CT-01

Lecture:01

Data Structure: The way of organizing data in such way that the stoned data can be easier to access, use and make operations. Linear > linked Light basic operations are there *. How many -> Peloting \rightarrow D5(6):

> Insenting

Algorithm: Algorithm retens to the logic of a program
of a step by step solution of how to arrive at the solution
in the most efficient way.
Representation of Algorithm
Programs -> Flowchant Pseudocode -
Psoudon me 2
Legancia C
Time Complexity
. Swap without thind vaniable:
$\lambda = \lambda + \lambda$
$\chi = \chi - \chi$ $\chi = \chi - \chi$ $\chi = \chi - \chi$
. O(k) = O(1) -> Constant time
· O(logn) = O(logn) -> Logarithmic-time
$o(n) = \frac{1}{100}$ Linear time.
· O(nlogn) -> Lineanithmic time
· O(n) —> Quadradic time.
· O(n3) cubic time.
· O(k") } -> Exponential time / Factorial time
Resource: USACO - Time complexity Gruide

. 1	
Lectur	e:02_

* strings are nothing but an armay of characters They are stoned in three types of structures: a) fixed Length b) Variable Length + D & in used for rating end. _9 Linked Address of next node Most efficient B - C NULL AGC . Insertion in Linked Strueture: C NUL JADOC A O C * String Operation: RAW_String.h' * Frequently used functions with parameters: · Length (string) Subotring (String, Initial, length) Index (Text, Pattern) Concate (Strings, strings) · grosent (String, Possition, String) · Debete (String, Position, Length) Replace (String, Pattern 1, pattern 2)

. First String Matching Algor	rifhm:	Hin a	simple	
apportanch, that generates su				
Compares with the pattern.				oí
O(nr). That's why It is calle			1 0	
			6	_
· Second String Matching Al			Only for the	7
Step:01 - Generate the sub	otrings	:	aaba > p)
So = N (Emply)	,			-
81 = a				
92 = aa				
93 = aab				
gy=aaba	, ,	À		
Step: 02 - Compluct the comp	are-fu	nction. #	and append	the
ext. Each time check, if not-	found	discard H	ne leftmont	one.
$f(\Lambda,a) = \alpha f(\Lambda b) = \Lambda$		Table	-	
f(a,a) = aa $f(a,b) = A$ $f(a,b) = aab$		٩	Ь	
11	80	81	9,	
$f(aa,a) = aa f(aab,b) = \Lambda$	91	82	9.	
f (aab,a) = P	92	92	93	
(aaba,	93	(P)	9.]
Step: 03 - Labeled Directed Gr			•	
6			1	

Lecture-03
* To get the length of an array = UB-LB+1 N
*- Let, LA be a linear armay:
LOC(LA[k]) = Base (LA) + W# (k-LB) Stanting pointer of the Jorden = 4 bytes ATTRAY bool/chan = 1 byte
Aractice: Check Slide - Page: 14.15 2 3 4 5 Wile (J>K) 2 100 3 4 5 LA[J+1]=LA[J] LA[J+1]=LA[J]
Delete from the array: 1 2 3 4 5 for (J=k > N-1)! LA[J]=[A[J+1] N; While In Reduced LA LA Reduced LA

* Binary Search Simulation:

2,3, 6,8,10,12,14,16,17,23,26

- Nhen searching Hem= 2,26,15

Fon 2:

Heration	BEH	END	MID	Companison	Found
1	٥	10	চ	2<12	№
2	٥	4	2	2 < 6	No
3	0	1	Ö	2==2_	Yes

fon26:

Henation	BEN	END	OEW.	Companison	found
1	0	10	5	12/26	№
2	6	0	8	17<26	No
. 3	9	10	9	23<26	√o
1	10	10	.10	23=23	Yes

Complexity Analysis of Bubble Sont: Total Steredion: N-1

So,
$$\frac{(N-1)(N-1+1)}{2} = \frac{N-N}{2} = \frac{1}{2} - \frac{N}{2} = O(N^*)$$

Lecture-04

Memory representation of 2D ATTRAY:

Number of Columns per

Row Majon: LOC (LA[J,k]) = Base + W* (n*(J-1)+(k-1))

Column Majon: LOC (LA[J,k]) = Base + W* (n*(J-1)+(k-1))

Number of Row

per Column

* Longest common subsequence:

- D Naive Approach:

O(n.2m) { If the string in of length m, then it takes of n.2m) { 2m operations to take generate subnequences. for companison it take n operations for all 2m.

-D Efficient Way,

- · Make a 2D Matrix of size (length(51)+1) & length(52)+1.
- · Initialize the first row & first column with sens.
- The prievious column element & row element.

 Then point anurrow to the max of them. Incare

equal then point at any of them.

- · If the domen letters are the same, then add 1. with diagonal value & point to that value.
- · Only consisting with diagonals uprising attrow letters, we will get the LCS.

For example:

X= ACADO Y= CODIA | Find the Les?

10ta m=6

tig: Merye Sort Using Olvide P Conquer

0(1/2)

final Digit . Second Digit: Updated A = Count 10 (25, 53, 398, 101, 701 Cont - 0 子好 Count = | 2 |0 | 1 | 0 | 1 Apply Courting South for every possition A = | 123 0 7 2233 0 101 701 123 57 98 ó∢ 7 4 なら 348 101 70 0 123 57 348 modified 2 2 4 0 Counting Radix Sont 0000 Updated A = Corry : Updated A= Countal Thind Digit: Court = |2|2|3|3|9|5|5 - When the Tange in too high there 9120 1. 3 3 4 9 9 0 0(pxw) country sort in not the prices. [101 701 123 398 55-52 101 125 348 201 ٠. 101 301 123 398 057 -) Final Sonted Anny > Number of Digits Ò 0 7 0 5/5/5 0

Bucket Sont Scatten & Crother

-) This Algorithm works better for floating point numbers.

Step:01. Create a vector of vector of floating type.

Step: 02 Determine the Braket Index for each of the floating values by using: A. size() * A[i] of push the back floting number back to that indust Bucket.

Step:03 . Go to each of the bucket indu and using any sorting algorithm (Insertion), we sont the flooting values.

Step:09 Letter we trewrite the sorted values into the original vector A.

Time Complexity:

Worst Care: O(n) to O(nlogn)