

#### Horn Minimization

An overview of some existing algorithms

Simon Vilmin

HSE - ISIMA

12 mars 2018



# Closure operator and systems

ISIMA



UNIVERSITY

Set  $\Sigma$  of attributes. A map  $\varphi: 2^{\Sigma} \longrightarrow 2^{\Sigma}$  is a *closure operator* if,  $\forall X, Y, Z \subset \Sigma:$ 

 $ightharpoonup X \subseteq \varphi(X)$  (increasing)

1.1 - Elements of set theory

#### Some details:

- $\triangleright$  ( $\Sigma$ ,  $\varphi$ ) is a closure space,
- ightharpoonup X is *closed* if  $X = \varphi(X)$ ,
- $\blacktriangleright$   $\Sigma^{\varphi}$  set of closed sets : *closure system*.



## Example of closure operator

1.1 - Elements of set theory



#### **Notations**

#### 1.1 - Elements of set theory



NATIONAL RESEARCH UNIVERSITY

```
typedef struct vertex vertex_t;
typedef std::pair<FCA::BitSet, vertex_t> elt_t;
std::vector<std:string> sigma = {"a", "b", "c", "d"};
elt_t *p = NULL;
void *c = nullptr;

// defines a structure
struct vertex {
   std::map<std::string, std::list<elt_t *>> edges;
   unsigned int counter;
};

if (p) { exit(o); } else { return "Pouet"; }
```

### title

1.1 - Elements of set theory



### title

2.1 - early 80s



### title

2.1 - early 80s



#### title 3.1 - Pouf



#### title 3.1 - Pouf

