${\bf Protokoll\ zum\ Fortgeschrittenen praktikums versuch}$

Zeitkorrelierte Einzelphotonenzählung

WS 2016/2017

Verfasser 1: Christoph Egerland Verfasser 2: Max Pfeifer Versuchsdatum: 6.12.2016 Versuchsplatz: NEW15 2'106 Betreuer: Dr. Steffen Hackbarth

Abstract

Mit Hilfe der zeitkorrelierten Einzelphotonenzählung (TCSPC) wird in diesem Versuch die Fluoreszenzlebensdauer von Phäophorbid a in Ethanol-Wasser-Gemischen untersucht. Hierbei gehen wir insbesondere auf das Verhalten bei unterschiedlichen Konzentrationen, optischen Dichten und zusätzlichen Reaktionsagenten (Triton X-100) der Probe ein. Es werden Störeffekte (Peak Pile-Up, Reabsorption) behandelt und quantifiziert. Schließlich wird die Einbettung des Phäophorbid in Mizellen durch Messung der Anisotropie nachgewiesen.

Inhaltsverzeichnis

1	Ma	erialien und Methoden	2
	1.1	Versuchsaufbau	2
	1.2	Versuchsmethode	2
2	Aus	wertung und Diskussion	3
	2.1	Optimierung des Messplatzes	3
		2.1.1 Apparatefunktion	4
		2.1.2 Peak-Pile-Up-Effekt	4
		2.1.3 Reabsorption	5
	2.2	Fluoreszenzlebensdauer von Pheo	6
	2.3	Pheo in versch. Ethanol-Wasser-Gemischen	6
	2.4	Einbettung in Mizellen / Triton X-100	7
		2.4.1 Wirkungsweise von Triton X-100	7
		2.4.2 Anisotropie	7
3	Schlussfolgerungen		
4	Anl		7
	4.1	Plots für Reabsorptionseffekt	7
	4.2	Plots für Peak-Pile-Up-Effekt	7
5	Lite	eatur	8

1 Materialien und Methoden

1.1 Versuchsaufbau

Der Versuchsaufbau wird in [1] beschrieben:

"Der Laser emittiert einen gepulsten Laserstrahl, der auf einen halbdurchlässigen Spiegel trifft. Dieser teilt den Strahlenweg in zwei Komponenten. Der eine trifft auf eine Referenzdiode. Der andere wird mit Hilfe eines $\lambda/2$ -Plättchens und eines vertikal orientierten Polarisationsfilters abgeschwächt und trifft anschließend auf die Probe. [...] Bei dem Detektor handelt es sich um einen Photomultiplier dessen Pulse einen Constant Fraction Discriminator passieren müssen, um gemessen zu werden."

Abbildung 1: Versuchsaufbau

Die Messelektronik stammt von der Firma Becker und Hickl GmbH, wir verwenden das Programm SPC300 dieser Firma.

1.2 Versuchsmethode

Die verwendete Versuchsmethode wird wie folgt in [1] beschrieben:

"Mit der TCSPC sollen strahlende optische Übergänge im Bereich vieler ps bis vieler ns untersucht werden. Nun entsteht aber wegen der Unschärferelation im Allgemeinen das Problem, nicht gleichzeitig schnell und genau messen zu können. Bei der TCSPC wird dieses Problem durch die Entkopplung von Detektion und Zeitmessung umgangen. Die Grundidee ist hierbei, dass sich eine Vielzahl identischer, nicht wechselwirkender Teilchen (oder Moleküle) statistisch genauso verhält wie ein einzelnes Teilchen (oder Molekül)."

2 Auswertung und Diskussion

2.1 Optimierung des Messplatzes

In diesem Versuchsteil wollen wir eine optimale Konfiguration (optimal bedeutet hier: höchstmögliches Signal-Rausch-Verhältnis SNR) erreichen. Wir setzen zunächst eine Streuküvette mit stark verdünntem Ludox ein, stellen die Detektorspannung auf $U_D=800V$ und regeln die Laserintensität mit dem Polarisationsfilter so niedrig wie möglich. In Tabelle 1 ist das SNR für die verschiedenen Schwellwerte des Constant-Fraction-Discriminators (CFD) dargestellt. Wir erreichen das höchste SNR bei:

$$CFD_{opt} = 30mV$$

CFD[mV]	Signal[Counts]	Rauschen[Counts]	SNR
5	-	-	-
10	45000	200	225
15	40000	50	800
20	30000	10	3000
25	25000	8	312.5
30	20000	6	3333.3
35	15000	5	3000
40	12000	4	3000
45	8000	3	2666.7
50	5200	2	2600

Tabelle 1: Ermittlung des optimalen Schwellenwerts CFD bei U=800V

Nun variieren wir mit festem Schwellwert CFD_{opt} die Detektorspannung. In Tabelle 2 sehen wir analog zu Tabelle 1 die Detektorspannung und das daraus resultierende SNR. Wir finden:

$$U_{opt} = 800V$$

U[kV]	Signal[Counts]	Rauschen[Counts]	SNR
0.6	0	0	-
0.7	520	2	260
0.8	16000	5	3200
0.9	25000	8	3125
1.0	10000	5	2000

Tabelle 2: Ermittlung der optimalen Spannung bei $CFD_{opt} = 30mV$

In den folgenden Versuchsteilen werden wir also stets die feste Konfiguration $CFD_{opt}=30mV$ und $U_{opt}=800V$ verwenden!

2.1.1 Apparate funktion

Die aufgenommen Apparatefunktion der Streuküvette ist in Abbildung 2 dargestellt. Durch variieren der Countrate ergaben sich kleine Variationen in der Halbwertsbreite des Peaks, sowie veränderte Fluktuationen in der auslaufenden Kurve. Es wurde jene Countrate gewählt, bei der eine weitere Verringung die Halbwertsbreite nicht weiter verringert. Am Graphen ist diese gut zu sehen:

 $Countrate \approx \mathcal{O}(10^4)$

Abbildung 2: Apparatekurve

2.1.2 Peak-Pile-Up-Effekt

Unter dem Peak-Pile-Up-Effekt versteht man, dass zwei Photonen nicht als zwei separate Events registriert werden. Wir erwarten, dass bei höherer Laserintensität zum einen die Amplitude A größer wird und dass die Fluoreszenzlebensdauer t abnimmt, da es bei höheren Intensitäten wahrscheinlicher ist, dass zwei Photonen als ein Ereignis gezählt werden und somit nicht doppelt zur Kurve beitragen. Die Messung wurde mit einer Probe mit OD=0.1 und verschiedenen Laserintensitäten durchgeführt.

Die Ergebnisse der Messung sind in Tabelle 3 aufgeführt. Die Fits zeigen eine gute Übereinstimmung zum Modell ($\chi^2-Werte<2.3$) und die oben beschriebenen Erwartungen werden bestätigt. Die Halbwertszeit nimmt mit zunehmender Intensität ab, die Amplitude steigt. Allerdings liegt die Schwankung lediglich in der Fehlerordnung und ist somit also zu vernachlässigen. Wir wählen $I=77\mu W$ als Laserintensität für die folgenden Versuche.

$I[\mu W]$	A[a.u.]	t[ns]	χ^2
15.9	0.19	5.44	1.42
77	0.19	5.42	1.42
79	1.06	5.38	2.06
91	1.24	5.44	2.24

Tabelle 3: Messung des Peak-Pile-Up-Effekts

2.1.3 Reabsorption

Für diesen Versuchsteil mussten zunächst 5 Proben mit verschiedener optischer Dichte im Bereich 0.1 - 1.5 hergestellt werden. Hierfür wurde auf der Grundlage, dass die optische Dichte eines Stoffes proportional zur Konzentration desselben ist, folgende Formel hergeleitet:

$$\omega = \frac{V_{Pheo}}{V_{Rest}} = \frac{OD_{Probe}}{OD_{Pheo} - OD_{Probe}} \tag{1}$$

Hierbei ist OD_x die optische Dichte des jeweiligen Stoffes. Für ein Probenvolumen von 2ml und eine optische Dichte des Pheophorbid a von $OD_{Pheo}=2.4$ ergeben sich die Werte wie in Tabelle ZAHL.

OD_{Probe}	ω	$V_{Pheo}[\mu l]$	$V_{Ethanol}[\mu l]$
0.1	1:23	87	1913
0.3	1:7	250	1750
0.7	7:17	583	1417
1.1	11:13	917	1083
1.5	5:3	1250	750

Tabelle 4: Mischung der Proben für verschiedene optische Dichten

Unter Reabsorption versteht man, dass ein absorbiertes und wieder abgestrahltes Photon erneut absorbiert und emmitiert wird. Wir erwarten also, da bei höheren optischer Dichte die Wahrscheinlichkeit für einen solchen Fall höher ist, dass die Fluoreszenzlebensdauer bei höheren optischer Dichte sinkt, da nun ein Photon zwei Counts verursacht . Die Ergebnisse der Messung befinden sich in Tabelle 5.

OD	A[a.u.]	t[ns]	χ^2
0.1	0.01	5.91	-
0.3	0.54	5.44	1.66
0.7	0.59	5.54	1.64
1.1	0.63	5.62	1.79
1.5	0.27	5.86	1.50

Tabelle 5: Messung Reabsorptionseffekt

Die Fits zeigen wieder gute Übereinstimmung mit dem Modell (χ^2 -Werte <

2) und unsere Erwartungen bestätigen sich deutlich. Die Fluoreszenzlebensdauer steigt bei höheren Dichte um bis zu 8% an. Im Folgenden werden wir also OD=0.2 wählen.

2.2 Fluoreszenzlebensdauer von Pheo

Nun wird die FLuoreszenzlebensdauer bei den optimalen Einstellung bestimmt. Diese sind noch einmal zusammengefasst:

• CFD-Spannung: $CFD_{opt} = 30mV$

• Detektorspannung: $U_D = 800V$

- Laserintensität: $I=77\mu W$

 \bullet optische Dichte der Probe: OD = 0.2

Die Fluoreszenzlebensdauer ist:

$$t = (5.9 \pm 0.1)ns$$

Diese stimmt sehr gut mit dem Referenzwert in [2] überein (ebenfalls $t=(5.9\pm0.1)ns$). Auch der χ^2 -Wert weißt auf eine sehr gute Übereinstimmung mit dem Modell hin.

2.3 Pheo in versch. Ethanol-Wasser-Gemischen

Für diesen Versuchsteil stellen wir 7 Proben mit verschiedenem Ethanol-Wasser-Verhältnis her. Wir setzen in unserer 2ml Probe $V_{Pheo}=1ml$, so dass $V_{Rest}=1ml$. Mit $\omega=\frac{V_{Ethanol}}{V_{Rest}}$ erhalten wir:

ω	$V_{H_2O}[\mu l]$	$V_{Ethanol}[\mu l]$
5%	950	50
15%	850	150
30%	700	300
45%	550	450
60%	400	600
75%	250	750
100%	0	1000

Tabelle 6: Mischung für verschiedene Verhältnisse Ethanol:Wasser

- 2.4 Einbettung in Mizellen / Triton X-100
- 2.4.1 Wirkungsweise von Triton X-100
- 2.4.2 Anisotropie
- 3 Schlussfolgerungen
- 4 Anhang
- 4.1 Plots für Reabsorptionseffekt
- 4.2 Plots für Peak-Pile-Up-Effekt

5 Literatur

- (1) Dr. Steffen Hackbarth: "Versuchsskript: Zeitkorrelierte Einzelphotonenmessung"
- (2) Röder et al.: "Photophysical properties of pheophorbide a in solution and in model membrane systems"

Abbildung 3: Mess- und Fitkurve für optimale Einstellung, Fit
parameter: $t=5.91ns,\,A=0.001[a.u.],\,\chi^2=1.24$

Abbildung 4: Fits und Residuen des Reabsorptionseffekt

Abbildung 5: Fits und Residuen des Peak-Pile-Up-Effekts