

UNIVERSIDADE FEDERAL DE MINAS GERAIS

GRADUAÇÃO EM ENGENHARIA DE SISTEMAS

Teoria da Decisão Trabalho Computacional

Professor: Lucas S. Batista

TEMAS: MODELAGEM, OTIMIZAÇÃO MONO E MULTIOBJETIVO, DECISÃO

Este trabalho tem por intuito abordar, de forma conjunta, os principais conceitos vistos na disciplina ELE088 - Teoria da Decisão.

Especificação do Problema

Deseja-se instalar uma rede WLAN do tipo N 2D para atendimento de um centro de convenções com 400×400 metros. Para planejamento dessa rede foram estimados 495 pontos de demanda, com suas respectivas posições geográficas e consumos de largura de banda. O arquivo *clientes.csv* contém as informações dos clientes: cada linha representa um cliente; a primeira e a segunda coluna correspondem às coordenadas x e y do cliente (em metros); a terceira coluna representa o consumo de banda do cliente (em Mbps).

Neste problema tem-se:

- Variáveis de decisão
 - * as posições (coordenadas $x \in y$) dos pontos de acesso (PA) a serem instalados¹;
 - * o ponto de acesso que será responsável por atender cada cliente;
- Restrições
 - * ao menos 98% dos pontos de demanda devem ter suas demandas integralmente atendidas:
 - * cada ponto de acesso a ser instalado tem capacidade de 54 Mbps, que não pode ser excedida;
 - * um cliente pode ser atendido por um PA se a distância entre ambos é inferior a 85 metros;

 $^{^1\}mathrm{Considere}$ que os pontos de acesso podem ser alocados somente em coordenadas pré-fixadas, definidas sobre um qrid com precisão de 5 m

- * assumindo que a exposição de um cliente c a um ponto de acesso p é dado por $I(c,p) = \lambda/d(c,p)^{\gamma}$, em que λ é o coeficiente de exposição (sinal nominal do PA), d(c,p) é a distância entre c e p, e γ é o fator de decaimento², a somatória da exposição de cada cliente à rede de PAs instalados deve ser pelo menos 5% do sinal nominal do PA;
- * cada cliente só pode ser atendido por um único PA;
- * devido a restrições orçamentárias, podem ser instalados no máximo 30 PAs;

- Simplificações

- * os pontos de demanda e seus consumos de banda são estáticos;
- * os efeitos de obstáculos internos no ambiente são desprezados;
- * um ponto de acesso não causa interferência em outros;

Com base nessa especificação, pede-se:

ENTREGA #1: MODELAGEM MATEMÁTICA E OTIMIZAÇÃO MONO-OBJETIVO

i. Formulação:

- (a) Modele uma função objetivo $f_1(\cdot)$ para minimização do número de pontos de acesso a serem instalados.
- (b) Modele uma função objetivo $f_2(\cdot)$ para minimização da distância entre pontos de acesso e seus respectivos clientes.
- (c) Modele as restrições do problema.

ii. Algoritmo de solução:

- (a) Proponha uma variação da meta-heurística vista no curso que seja adequada para resolver as versões mono-objetivo do problema (i.e., para otimizar separadamente as funções $f_1(\cdot)$ e $f_2(\cdot)$, com suas respectivas restrições).
- (b) Explicite como uma solução candidata será modelada computacionalmente.
- (c) Proponha pelo menos três (03) estruturas de vizinhança.
- (d) Proponha uma heurística construtiva para gerar a solução inicial.
- (e) Considere alguma estratégia de refinamento (busca local).

iii. Resultados da otimização mono-objetivo:

- (a) Utilize o algoritmo proposto no item (ii) para resolver as versões mono-objetivo do problema.
- (b) Como o método é estocástico, ele deve ser executado 05 vezes para cada uma das funções e os cinco resultados finais obtidos devem ser apresentados: para cada função otimizada, mostre os valores min, std e max considerando-se as 05 soluções finais encontradas.
- (c) Para cada função otimizada, apresente as 05 curvas de convergência do algoritmo sobrepostas em uma mesma figura, i.e., evolução do valor de $f(\cdot)$ em função do número de avaliações de soluções candidatas ou iterações do algoritmo proposto.

²Considere neste trabalho $\lambda = 1$ e $\gamma = 1$.

(d) Para cada função otimizada, plote uma figura no plano Cartesiano com a melhor solução encontrada, ilustrando a localização dos pontos de acesso e suas conexões com os respectivos clientes.

ENTREGA #2: OTIMIZAÇÃO MULTIOBJETIVO

- iv. Resultados da otimização multiobjetivo:
 - (a) Apresente a modelagem matemática do problema considerando as abordagens escalares Soma Ponderada (P_w) e ϵ -restrito (P_{ϵ}) .
 - (b) Para cada uma das abordagens escalares (Soma Ponderada (P_w) e ϵ -restrito (P_ϵ)), utilize o algoritmo apresentado no item (ii) para resolver o problema biobjetivo construído.
 - (c) Como o método é estocástico, ele deve ser executado 05 vezes considerando cada uma das abordagens escalares. Para cada uma das técnicas empregadas, as 05 fronteiras obtidas devem ser apresentadas sobrepostas em uma mesma figura.
 - (d) Cada fronteira estimada deve conter no máximo 20 soluções não-dominadas.

ENTREGA #3: TOMADA DE DECISÃO MULTICRITÉRIO

- v. Resultados da tomada de decisão:
 - (a) Empregue 02 métodos de auxílio à tomada de decisão para escolher a ação final a ser implementada (as opções são Abordagem Clássica, AHP, ELECTRE, PROMETHEE e TOPSIS).
 - (b) Compare os métodos escolhidos. Como executou o otimizador mais de uma vez, considere a fronteira não-dominada obtida a partir da união de todas as fronteiras estimadas (no fim do processo, considere no máximo 20 soluções não-dominadas).
 - (c) Assuma como critérios de decisão pelo menos quatro (04) atributos de interesse, i.e., as duas funções objetivo definidas no problema e pelo menos mais duas funções adicionais que considerar relevantes (e.g., desvio padrão do balanço de carga dos PAs, robustez da rede em relação a redução da capacidade dos PAs, robustez da rede em relação a redução do raio de alcance dos PAs, confiabilidade da rede em relação a um aumento não previsto do número de clientes ou do consumo de banda dos clientes etc.). Os atributos empregados devem ser claramente definidos e apresentados. A ideia é escolher uma configuração final (solução) que seja confiável/ robusta diante de cenários ligeiramente distintos do previsto. Para os atributos adicionais a serem propostos, a equipe tem liberdade para gerar os dados extras necessários.
 - (d) Os métodos de decisão utilizados devem ser apropriadamente definidos e apresentados.
 - (e) No caso de incomparabilidade entre alternativas no final do processo, estabeleça um critério adicional e tome sua decisão. É importante notar que nesse trabalho você representa a unidade de decisão e, portanto, é responsável pela definição dos pesos dos atributos e demais parâmetros que forem necessários.
 - (f) Plote uma figura contendo a fronteira de soluções avaliadas na tomada de decisão e indique, nesta figura, qual(is) solução(ões) foi(foram) escolhida(s).
 - (g) Plote uma figura no plano Cartesiano com a(s) solução(ões) final(is) escolhida(s), ilustrando a localização dos pontos de acesso e suas conexões com os respectivos clientes.

NOTA

O atendimento a todos os itens estabelecidos, bem como a apresentação e organização formal deste TC, são fundamentais para uma avaliação adequada do trabalho. Para o texto final, o aluno deve empregar um dos "templates" disponibilizados na página da disciplina. O texto final e código usado no desenvolvimento deverão ser enviados somente via plataforma Moodle.

Serão aceitos no máximo 10 grupos.