These materials adapted by Amelia McNamara from the RStudio <u>CC BY-SA</u> materials Introduction to R (2014) and <u>Master the Tidyverse</u> (2017).

Introduction to R & RStudio:

deck 10: Modeling

Amelia McNamara

Visiting Assistant Professor of Statistical and Data Sciences Smith College

January 2018

The basics

A low dimensional description of a higher dimensional data set.

Data Model Function

What is the model function?

Data

Model Function

What uncertainty is associated with it?

Data

How "good" is the model?

Data

What are the residuals?

Data

Model Function

What are the predictions?

Data

Model Function

(Popular) modeling functions in R

function	package	fits
lm()	stats	linear models
glm()	stats	generalized linear models
gam()	mgcv	generalized additive models
glmnet()	glmnet	penalized linear models
rlm()	MASS robust linear models	
rpart()	rpart	trees
randomForest()	randomForest	random forests
xgboost()	xgboost	gradient boosting machines

(Popular) modeling functions in R

function package		fits			
lm() stats		linear models			
glm()	stats	generalized linear models			
gam()	mgcv	generalized additive models			
glmnet()	glmnet	penalized linear models			
rlm()	MASS	robust linear models			
rpart()	rpart	trees			
randomForest()	randomForest	random forests			
xgboost()	xgboost	gradient boosting machines			

wages

							
income <int></int>	eight <dbl></dbl>	weight <int></int>	age <int></int>	marital <fctr></fctr>	sex <fctr></fctr>	education <int></int>	afqt <dbl></dbl>
19000	60	155	53	married	female	13	6.841
35000	70	156	51	married	female	10	49.444
105000	65	195	52	married	male	16	99.393
40000	63	197	54	married	female	14	44.022
75000	66	190	49	married	male	14	59.683
102000	68	200	49	divorced	female	18	98.798
0	74	225	48	married	male	16	82.260
70000	64	160	54	divorced	female	12	50.283
60000	69	162	55	divorced	male	12	89.669
150000	69	194	54	divorced	male	13	95.977

1–10 of 7,006 rows

Previous 1 2 3 4 5 6 ... 100 Next

wages %>%
ggplot(aes(log(income))) + geom_histogram(binwidth = 0.25)

lm()

Fit a linear model to data

formulas

Formula only needs to include the response and predictors

$$y = \alpha + \beta x + \epsilon$$

$$y \sim x$$

Your Turn 1

Fit the model below and then examine the output. What does it look like?

mod_e <- lm(log(income) ~ education, data = wages)</pre>


```
mod_e < -lm(log(income) \sim education, data = wages)
mod_e
## Call:
##
   lm(formula = log(income) \sim education, data = wages)
##
## Coefficients:
## (Intercept) education
       8.5577
##
                     0.1418
class(mod_e)
## "lm"
```

```
summary(mod_e)
Call:
lm(formula = log(income) \sim education, data = wages)
Residuals:
   Min
            1Q Median
                       3Q Max
-6.7893 -0.3563 0.1328 0.5798 2.9136
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.557691 0.073260 116.81 <2e-16 ***
education 0.141840 0.005305 26.74 <2e-16 ***
Signif. codes:
0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 0.9923 on 5262 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.1196, Adjusted R-squared: 0.1195
F-statistic: 715 on 1 and 5262 DF, p-value: < 2.2e-16
```

```
names(mod_e)
 [1] "coefficients" "residuals" "effects"
[4] "rank"
                   "fitted.values" "assign"
                   "df.residual" "na.action"
[7] "qr"
[10] "xlevels" "call"
                                "terms"
[13] "model"
mod_e$coefficients
(Intercept) education
 8.5576906 0.1418404
```

Plotting models

plot(mod_e, which=1)

ggplot(mod_e, aes(x=.fitted, y=.resid)) + geom_point() +
geom_smooth(se = FALSE)

plot(mod_e, which=2)

 $ggplot(mod_e, aes(sample = .resid)) + geom_qq()$

Droom

broom

Turns model output into data frames

```
# install.packages("tidyverse")
library(broom)
```

broom

Broom includes three functions which work for most types of models (and can be extended to more):

- 1. tidy() returns model coefficients, stats
- 2. glance() returns model diagnostics
- 3. **augment()** returns predictions, residuals, and other raw values

tidy()

Returns useful model output as a data frame

mod_e %>% tidy()

term <chr></chr>	estimate <dbl></dbl>	std.error <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>
(Intercept)	8.5576906	0.073259622	116.81320	0.00000e+00
education	0.1418404	0.005304577	26.73924	8.408952e-148

2 rows

glance

Returns common model diagnostics as a data frame

r.squared <dbl></dbl>	adj.r.squared <dbl></dbl>	sigma <dbl></dbl>	statistic <dbl></dbl>	p.value <dbl></dbl>		
0.1196233	0.119456	0.9923358	714.987	8.408952e-148	2	-

1 row | 1–10 of 11 columns

augment()

Returns data frame of model output related to original data points

mod_e %>% augment()

.rownames <chr></chr>	log.income. <dbl></dbl>	education <int></int>	.fitted <dbl></dbl>	.se.fit <dbl></dbl>	.resid <dbl></dbl>	.hat <dbl></dbl>	.sigma <dbl></dbl>	_(
1	9.852194	13	10.401615	0.01400504	-0.549421141	0.0001991827	0.9924012	3.0541
2	10.463103	10	9.976094	0.02335067	0.487009048	0.0005537086	0.9924074	6.6755
3	11.561716	16	10.827137	0.01880219	0.734579123	0.0003590043	0.9923784	9.8433
4	10.596635	14	10.543456	0.01386811	0.053178965	0.0001953068	0.9924299	2.8055
5	11.225243	14	10.543456	0.01386811	0.681787624	0.0001953068	0.9923856	4.6114
6	11.532728	18	11.110817	0.02719979	0.421910848	0.0007513008	0.9924131	6.8008
7	11.156251	12	10.259775	0.01600734	0.896475490	0.0002602083	0.9923532	1.0623
8	11.002100	12	10.259775	0.01600734	0.742324811	0.0002602083	0.9923774	7.2842
9	11.918391	13	10.401615	0.01400504	1.516775174	0.0001991827	0.9922098	2.3276
10	11.652687	16	10.827137	0.01880219	0.825550901	0.0003590043	0.9923648	1.2432

augment()

Returns data frame of model output related to original data points

```
mod_e %>% augment(data = wages)
```

Adds the original wages data set to the output

Your Turn 2

Model log(income) against height. Then use broom and dplyr functions to extract:

- 1. The coefficient estimates and their related statistics
- 2. The adj.r.squared and p.value for the overall model

multivariate regression

To fit multiple predictors, add multiple variables to the formula:

log(income) ~ education + height

Your Turn 3

Model log(income) against education and height. Do the coefficients change?


```
mod_{eh} < -lm(log(income) \sim education + height, data =
wages)
mod_eh %>%
  tidy()
           term estimate std.error statistic p.value
##
## 1 (Intercept) 5.34837618 0.231320415 23.12107 1.002503e-112
      education 0.13871285 0.005205245 26.64867 7.120134e-147
## 2
         height 0.04830864 0.003309870 14.59533 2.504935e-47
## 3
```

Your Turn 4

Model log(income) against education and height and sex. Can you interpret the coefficients?


```
mod_ehs <- lm(log(income) ~ education + height + sex, data =
wages)</pre>
```

```
mod_ehs %>%

tidy()
```

What does this mean?

Where is sexmale?

```
## 1 (Intercept) 8.25042 2260 0.334/03051 24.649976 4.681336e-127
## 2 education 0.14798 3063 0.005196676 28.476486 5.164290e-166
## 3 height 0.00672 6614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

log(income) = 8.25 + 0.15 * education + 0 * height

Each additional level gets a coefficient that acts as an *adjustment* between the baseline level and the additional level, e.g. the mean income for a female is:

log(income) = 8.25 + 0.15 * education + 0 * height - 0.46

```
## term estimate std.error statistic p.value
## 1 (Intercept) 8.250422260 0.334703051 24.649976 4.681336e-127
## 2 education 0.147983063 0.005196676 28.476486 5.164290e-166
## 3 height 0.006726614 0.004792698 1.403513 1.605229e-01
## 4 sexfemale -0.461747002 0.038941592 -11.857425 5.022841e-32
```

For factors, R treats the first level as the baseline level, e.g. the mean log(income) for a male is:

log(income) = 8.25 + 0.15 * education + 0 * height

Each additional level gets a coefficient that acts as an *adjustment* between the baseline level and the additional level, e.g. the mean income for a female is:

log(income) = 8.25 + 0.15 * education + 0 * height - 0.46