Parameter	Temperature-dependence	Mass-dependence	Values used
r	$\exp(-E_B/(kT))$	$M_R^{ ho}$	$E_B = 0.32, \rho = -0.81$
K	$\exp(-(E_S - E_B)/(kT))$	M^κ_R	$E_S = 0.9, \kappa = -0.81$
m	$\exp(-E_m/(kT))$	M^μ_R	$E_m = 0.65, \mu = -0.29$
а	$(\sum_{i} [\nu_{0,i} \exp(-E_{\nu,i}/(kT))]^{2})^{1/2}$	M_C^{lpha}	$E_{\nu,i} = 0.46, \nu_{0,i} = 1, \alpha = 1$
e	none	M_C^ϵ	$\epsilon = -0.5$
b	$\exp(-E_b/(kT))$	$M_R^{b_R}M_C^{b_C}$	$E_b = 0.65, b_R = 1/3, b_C = 1/4 +$
h	$\exp(-E_h/(kT))$	$M_R^{h_R} M_C^{h_C}$	$E_h = -0.65, h_R = 0.5, h_C = -2/2$