SOC LAB#3 Report

1. Block Diagram

2. Describe operation

2.1 How to receive data-in and tap parameters and place into SRAM

當 $tap_EN = 1$ 與 $tap_WE = 4$ 'hF 時,會將 wdata 寫進去 awaddr(會做 shift)的位置。

當 data_EN = 1 與 data_WE = 4'hF 時,會將 ss_tdata 寫進去 data_A 的位置。

2.2 How to access shiftram and tapRAM to do computation

ctrl 模組會輸出對應的 tap_addr 與 data_addr,之後從 RAM 讀出數值。

e.g. RAM_size = 3 * data_size

data: 1, 2, 3, 4tap: -1, 3, -1

1st

tap

data_ram_addr	A0	A1	A2
tap_ram_addr	A2	A0	A1
data	1	0	0
tap	-1	-1	3
2nd			
data_ram_addr	A0	A1	A2
tap_ram_addr	A1	A2	A0
data	1	2	0
tap	3	-1	-1
3rd			
data_ram_addr	A0	A1	A2
tap_ram_addr	A0	A1	A2
data	1	2	3
tap	-1	3	-1
4th			
data_ram_addr	A0	A1	A2
tap_ram_addr	A2	A0	A1
data	4	2	3

-1

3

2.3 How ap done is generated.

當 ss_tlast = 1 與 sm_tlast = 1 後, state = ap_done(2'b10)。

3. Resource usage

因為使用很多 reg 來儲存,所以可能 flip flop 使用比較多,是可以減少的。

4. Timing Report

5. Simulation Waveform, show

5.1 首先 state = ap_idle(2'b00), 開始的輸入 taps, 並存在 RAM。

5.2 testbench 開始的檢查輸出的 taps。

5.3 當接收到 testbench 的 ap start 訊號, ap start sig=1, state=ap start(2'b01)。

5.3 state = ap_start(2' b01)後,會將 ss_tdata 寫入至 RAM,並且 ctrl_tap_ready = 1, ctrl 模組開始輸出對應的 tap_addr 與 data_addr,之後從 RAM 讀出數值做 相乘累加,輸出結果,且 sm_tvalid = 1。

5.4 當 ss_tlast = 1 與 sm_tlast = 1 後, state = ap_done(2'b10)。

