МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Физтех-школа электроники, фотоники и молекулярной физики

Лабораторная работа 2.1.3 Определение C_p/C_v по скорости звука в газе

Салтыкова Дарья Б04-105

1 Введение

Цель работы: 1) измерение частоты колебаний и длины волны при резонансе звуковых колебаний в газе, заполняющем трубу; 2) определение показателя адиабаты с помощью уравнения состояния идеального газа.

Оборудование: звуковой генератор ГЗ; электорнный осциллограф ЭО; микрофон; телефон; раздвижная труба; теплоизолированная труба, обогреваемая водой из термостата; баллон со сжатым углекислым газом; газгольдер.

2 Теоретические сведения

Скорость распространения звуковой волны в газах зависит от показателя адиабаты γ . На измерении скорости звука основан один из наиболее точных методов определения показателя адиабаты.

Скорость звука в газах определяется формулой:

$$c = \sqrt{\gamma \frac{RT}{\mu}}.$$

где R — газовая постоянная, T — температура газа, а μ — его молярная масса. Преобразуя эту формулу, найдем

$$\gamma = \frac{\mu}{RT}c^2.$$

Таким образом, для определения показателя адиабаты достаточно измерить температуру газа и скорость распространения звука (молярная масса газа предполагается известной).

Звуковая волна, распространяющаяся вдоль трубы, испытывает многократные отражения от торцов. Звуковые колебания в трубе являются наложением всех отраженных волн и очень сложны. Картина упрощается, если длина трубы L равна целому числу полуволн, то есть когда

$$L = n\lambda/2$$
,

где λ — длина волны звука в трубе, а n — любое целое число. Если это условие выполнено, то волна, отраженная от торца трубы, вернувшаяся к ее началу и вновь отраженная, совпадает по фазе с падающей. Совпадающие по фазе волны усиливают друг друга. Амплитуда звуковых колебаний при этом резко возрастает — наступает резонанс.

При звуковых колебаниях слои газа, прилегающие к торцам трубы, не испытывают смещения. Узлы смещения повторяются по всей длине трубы через $\lambda/2$. Между узлами находятся максимумы смещения.

Скорость звука с связана с его частотой f и длиной волны λ соотношением

$$c = \lambda f. \tag{1}$$

Подбор условий, при которых возникает резонанс, можно производить двояко:

1. При неизменной частоте f звукового генератора (а следовательно, и неизменной длине звуковой волны λ) можно изменять длину трубы L. Для этого применяется раздвижная

труба. Длина раздвижной трубы постепенно увеличивается, и наблюдается ряд последовательных резонансов. Возникновение резонанса легко наблюдать на осциллографе по резкому увеличению амплитуды колебаний. Для последовательных резонансов имеем

$$L_n = n\frac{\lambda}{2}, \quad L_{n+1} = (n+1)\frac{\lambda}{2}, \quad \dots, \quad L_{n+k} = n\frac{\lambda}{2} + k\frac{\lambda}{2},$$

т. е. $\lambda/2$ равно угловому коэффициенту графика, изображающего зависимость длины трубы L от номера резонанса k. Скорость звука находится по формуле (1).

2. При постоянной длине трубы можно изменять частоту звуковых колебаний. В этом случае следует плавно изменять частоту f звукового генератора, а следовательно, и длину звуковой волны λ . Для последовательных резонансов получим

$$L = \frac{\lambda_1}{2}n = \frac{\lambda_2}{2}(n+1) = \dots = \frac{\lambda_{k+1}}{2}(n+k).$$
 (2)

Из (1) и (2) имеем:

$$f_1 = \frac{c}{\lambda_1} = \frac{c}{2L}n, \quad f_2 = \frac{c}{\lambda_2} = \frac{c}{2L}(n+1) = f_1 + \frac{c}{2L}, \dots,$$

$$f_{k+1} = \frac{c}{\lambda_{k+1}} = \frac{c}{2L}(n+k) = f_1 + \frac{c}{2L}k.$$

Скорость звука, деленная на 2L, определяется, таким образом, по угловому коэффициенту графика зависимости частоты от номера резонанса.

3 Экспериментальная установка

Соответственно двум методам измерения скорости звука в работе имеются две установки. В обеих установках звуковые колебания в трубе возбуждаются телефоном Т и улавливаются микрофоном М. Мембрана телефона приводится в движение переменным током звуковой частоты; в качестве источника переменной ЭДС используется звуковой генератор ГЗ. Возникающий в микрофоне сигнал наблюдается на осциллографе ЭО.

Микрофон и телефон присоединены к установке через тонкие резиновые трубки. Такая связь достаточна для возбуждения и обнаружения звуковых колебаний в трубе и в то же время мало возмущает эти колебания: при расчетах оба торца трубы можно считать неподвижными, а влиянием соединительных отверстий пренебречь.

Мы будем использовать первую установку (рис. 1), которая содержит раздвижную трубу с миллиметровой шкалой. Через патрубок (на рисунке не показан) труба может наполняться воздухом или углекислым газом из газгольдера. На этой установке производятся измерения γ для воздуха и для CO_2 .

Рис. 1: Установка для измерения скорости звука при помощи раздвижной трубы

4 Ход работы

Перепишем параметры установки: $L=(700\pm5)$ мм, $\Delta L_{max}=(23\pm1)$ мм

Для проведения серии измерений фиксируем частоту звукового сигнала и оставляем её неизменной до окончания снятия показаний. Увеличиваем и уменьшаем длину трубки, чтобы добиться резонанса, возникновение которого устанавливается при помощи осциллографа. При возникновении резонанса фиксируем то расстояние ΔL , на которое была выдвинута трубка прибора. Данные измерения проводим для нескольких значений частот. Полученные результаты заносим в таблицу.

f , к Γ ц	3,39	3,15	3,67	3,93	4,16
ΔL , cm	0	0	0	0	0
	5,3	5,7	5,0	4,3	4,1
	10,4	11,2	9,5	8,7	8,3
	15,5	16,6	14,2	13,1	12,4
	20,7	22,2	19,0	17,5	16,6
				21,9	

По полученным данным построим графики зависимости L(k), где k - номер резонанса (Рис.2) Угловой коэффициент наклона прямой a равен $\lambda/2$. Вычислим λ и результаты занесём в таблицу.

Скорость звука в воздухе можно вычислить по следующей формуле:

$$c = \lambda f$$
.

Погрешность такого вычисления равна

$$\sigma_c = c\sqrt{\varepsilon_f^2 + \varepsilon_\lambda^2}.$$

При этом в каждом измерении примем $\sigma_f \approx 1$ Γ ц.

Усредняя вычисленные значения, в итоге получаем

$$c_{ ext{возд}} = (346.8 \pm 1.5) \text{ м/с} \quad (\varepsilon = 0.4\%)$$

Вычислим C_p/C_v :

$$\frac{C_p}{C_v} = \gamma = \frac{\mu}{RT}c^2.$$

f, Гц	а, мм	σ_a , mm	λ , mm	σ_{λ} , mm	с, м/с	σ_c , м/с
3390	51,6	0,2	103,2	0,4	349,8	1,4
3150	55,3	0,3	110,6	0,6	348,4	1,9
3670	47,2	0,4	94,4	0,8	346,4	2,9
3930	43,8	0,08	87,6	0,16	344,3	0,6
4160	41,5	0,1	83	0,2	345,3	0,8

При этом для воздуха $\mu \approx 0.02898 \, \frac{\mathrm{K}\Gamma}{\mathrm{МОЛЬ}}$. Во время эксперимента температура в лаборатории равнялась $T = (25.1 \pm 0.1) \, ^{\circ}C$. Тогда погрешность такого вычисления можно оценить по следующей формуле:

$$\sigma_{\gamma} = \gamma \sqrt{\varepsilon_f^2 + (2\varepsilon_c)^2}.$$

В итоге получаем:

$$\gamma_{\text{возд}} = 1,407 \pm 0,009 \quad (\varepsilon = 0,6\%)$$

Аналогичные измерения и вычисления проведем для углекислого газа. Перед началом измерений продуем трубу углекислым газом. Для этого при открытом кране подвижную часть трубы следует несколько раз медленно выдвинуть и затем резко вдвинуть в трубу. Графики зависимости L от k представлены на Puc.3.

f, кГц	2,93	3,08	3,22	3,33	3,46
dL, см	-0,1	-0,1	-0,1	-0,1	-0,1
	5,3	4,8	4,4	3,9	3,6
	10,2	9,7	9	8,2	7,6
	15	14,2	13,2	12,1	11,5
	19,6	18,6	17,5	16,4	15,4
		23	21,6	20,4	19,8

f, Гц	а, мм	σ_a , MM	λ , mm	σ_{λ} , mm	с, м/с	σ_c , м/с
2930	49,1	0,9	98,2	1,8	287,726	5,274
3080	46,1	0,6	92,2	1,2	283,976	3,696
3220	43,4	0,4	86,8	0,8	279,496	2,576
3330	41,1	0,2	82,2	0,4	273,726	1,332
3460	39,6	0,5	79,2	1	274,032	3,46

$$c_{\mathrm{CO2}} = (279.8 \pm 3.2) \; \mathrm{m/c} \quad (\varepsilon = 1.2\%)$$

$$\gamma_{\text{CO}\,2} = 0.915 \pm 0.015 \quad (\varepsilon = 1.7\%)$$

5 Вывод

В ходе работы были получены значения скорости звука и показателя адиабаты в воздухе углексилом газе.

Для воздуха получено:

$$c_{\text{возл}} = (346.8 \pm 1.5) \text{ M/c} \quad (\varepsilon = 0.4\%)$$

$$\gamma_{\text{возд}} = 1,407 \pm 0,009 \quad (\varepsilon = 0,6\%)$$

Табличные значения (при T = 298 K): $c_{\rm табл} = 343$ м/с, $\gamma_{\rm табл} = 1,4$

Для углекислого газа получено:

$$c_{\rm CO2} = (279.8 \pm 3.2) \text{ M/c} \quad (\varepsilon = 1.2\%)$$

$$\gamma_{\rm CO\,2} = 0.915 \pm 0.015 \quad (\varepsilon = 1.7\%)$$

Табличные значения (при нормальных условиях): $c_{\text{табл}}=259$ м/с, $\gamma_{\text{табл}}=1,3$

Эксперементальные данные для воздуха в пределах погрешности соответствуют табличным. Для углекислого газа полченные значения отличатся от табличных, но по порядку величины совпадают.Вероятно, это связано с тем, что в трубе мог находиться углекислый газ с примесями (азот или кислород), которые могли исказить результаты измерений.

6 Графики

Рис. 2: График зависимости L(k) для воздуха

Рис. 3: График зависимости L(k) для CO2