

Support Vector Machines

Data Mining 10 (データマイニング)

Mahito Sugiyama (杉山麿人)

Today's Outline

- Today's topic is support vector machines (SVMs)
 - A popular supervised classification method
- Perform binary classification by maximizing the margin
- Kernel trick for nonlinear classification

Classification Problem Setting

- Given a supervised dataset $D = \{(\boldsymbol{x}_1, y_1), (\boldsymbol{x}_2, y_2), \dots, (\boldsymbol{x}_N, y_N)\},$ $\boldsymbol{x}_i \in \mathbb{R}^n$ (feature vector), $y_i \in C = \{-1, 1\}$ (label)
- Use a decision function (hyperplane) in the form of $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_o = \sum_{j=1}^{n} w^j x^j + w_o$
- A classifier g(x) is given as

$$g(\mathbf{x}) = \begin{cases} 1 & \text{if } f(\mathbf{x}) > 0, \\ -1 & \text{if } f(\mathbf{x}) < 0 \end{cases}$$

• Goal: Find (\mathbf{w}, w_o) that correctly classifies the dataset

Classification by Hyperplane

Example: Perceptron

Algorithm 1: Perceptron

```
1 perceptron(D)

2 Set small random values to \mathbf{w} and w_o; // initialization

3 foreach i \in \{1, 2, ..., N\} do

4 a \leftarrow \langle \mathbf{w}, \mathbf{x}_i \rangle + w_o

5 if y_i \cdot a < 0 then

6 \mathbf{w} \leftarrow \mathbf{w} + y_i \mathbf{x}_i; // update the weight

7 w_o \leftarrow w_o + y_i; // update the bias
```

Correctness of Perceptron

- It is guaranteed that a perceptron always converges to a correct classifier
 - A correct classifier is a function f s.t.

$$f(x) > 0 \text{ if } y = 1,$$

 $f(x) < 0 \text{ if } y = -1$

- The convergence theorem
- Note: there are (infinitely) many functions that correctly classify two classes
 - A perceptron converges to one of them

Support Vector Machines (SVMs)

- A dataset *D* is separable by $f \iff y_i f(\mathbf{x}_i) > 0, \forall i \in \{1, 2, ..., N\}$
- The margin is the distance from the classification hyperplane to the closest data point
- Support vector machines (SVMs) tries to find a hyperplane that maximize the margin

Margin

Formulation of SVMs

- The distance from a point \mathbf{x}_i to a hyperplane $f(\mathbf{x}) = \langle \mathbf{w}, \mathbf{x} \rangle + w_0$ is $\frac{|f(\mathbf{x}_i)|}{||\mathbf{w}||} = \frac{|\langle \mathbf{w}, \mathbf{x}_i \rangle + w_0|}{||\mathbf{w}||}$
- Since $y_i f(\mathbf{x}_i) > 0$ should be satisfied, assume that there exists M > 0 such that $y_i f(\mathbf{x}_i) \ge M$ for all $i \in \{1, 2, ..., N\}$
- The margin maximization problem can be written as

$$\max_{\boldsymbol{w},w_{o},M} \frac{M}{\|\boldsymbol{w}\|} \quad \text{subject to } y_{i}f(\boldsymbol{x}_{i}) \geq M, i \in \{1,2,\ldots,N\}$$

$$- M = \min_{i \in \{1,2,\ldots,N\}} |\langle \mathbf{w}, x_i \rangle + w_o|$$

Hard Margin SVMs

We can eliminate M and obtain

$$\max_{\boldsymbol{w},w_o} \frac{1}{||\boldsymbol{w}||} \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1,2,\ldots,N\}$$

This is equivalent to

```
\min_{\boldsymbol{w}, w_0} ||\boldsymbol{w}||^2 \quad \text{subject to } y_i f(\boldsymbol{x}_i) \ge 1, i \in \{1, 2, \dots, N\}
```

- The standard formulation of hard margin SVMs
- There are data points x_i satisfying $y_i f(\mathbf{x}_i) = 1$, called support vectors
- The solution does not change even data points that are not support vectors are removed

Margin

Soft Margin

- Datasets are not often separable
- Extend SV classification to soft margin by relaxing $\langle w, x \rangle + w_0 \ge 1$
- Change the constraint $y_i f(\mathbf{x}_i) \ge 1$ using the slack variable ξ_i to $y_i f(\mathbf{x}_i) = y_i (\langle \mathbf{w}, \mathbf{x} \rangle + w_o) \ge 1 \xi_i, \quad i \in \{1, 2, ..., n\}$
- The formulation of soft margin SVM (C-SVM) is

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., N\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in \{1, 2, ..., N\}$$

- C is called the regularization parameter

Soft Margin

Data Point Location

- $y_i f(\mathbf{x}_i) > 1$: \mathbf{x}_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1$: \mathbf{x}_i is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

Dual Problem (1/4)

The formulation of C-SVM

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., N\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in \{1, 2, ..., N\}$$

is called the primal problem

- This is usually solved via the dual problem
- Make the Lagrange function using $\boldsymbol{a} = (\alpha_1, \dots, \alpha_N), \boldsymbol{\mu} = (\mu_1, \dots, \mu_N)$: $L(\boldsymbol{w}, w_0, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu}) = \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in [N]} \xi_i - \sum_{i \in [N]} \alpha_i (y_i f(\boldsymbol{x}_i) - 1 + \xi_i) - \sum_{i \in [N]} \mu_i \xi_i$

$$-[N] = \{1, 2, ..., N\}$$

Dual Problem (2/4)

Let us consider

$$D(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} L(\boldsymbol{w}, w_o, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$$

and its maximization

$$\max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\mu} \geq 0} D(\boldsymbol{\alpha}, \boldsymbol{\mu}) = \max_{\boldsymbol{\alpha} \geq 0, \boldsymbol{\mu} \geq 0} \min_{\boldsymbol{w}, \boldsymbol{w}_{o}, \boldsymbol{\xi}} L(\boldsymbol{w}, \boldsymbol{w}_{o}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\mu})$$

The inside minimization is achieved when

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i \in [N]} \alpha_i y_i \mathbf{x}_i = 0, \ \frac{\partial L}{\partial w_o} = -\sum_{i \in [N]} \alpha_i y_i = 0, \ \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$$

Dual Problem (3/4)

• Putting the three conditions to the Lagrange function to remove \mathbf{w} , w_o , and $\boldsymbol{\xi}$, yielding

$$L = \frac{1}{2} ||\mathbf{w}||^{2} + C \sum_{i \in [N]} \xi_{i} - \sum_{i \in [N]} \alpha_{i} (y_{i} f(\mathbf{x}_{i}) - 1 + \xi_{i}) - \sum_{i \in [N]} \mu_{i} \xi_{i}$$

$$= \frac{1}{2} ||\mathbf{w}||^{2} - \sum_{i \in [N]} \alpha_{i} y_{i} \langle \mathbf{w}, \mathbf{x}_{i} \rangle - w_{o} \sum_{i \in [N]} \alpha_{i} y_{i} + \sum_{i \in [N]} \alpha_{i} + \sum_{i \in [N]} (C - \alpha_{i} - \mu_{i}) \xi_{i}$$

$$= -\frac{1}{2} \sum_{i, j \in [N]} \alpha_{i} \alpha_{j} y_{i} y_{j} \langle \mathbf{x}_{i}, \mathbf{x}_{j} \rangle + \sum_{i \in [N]} \alpha_{i}$$

Dual Problem (4/4)

• It can be proved that $\max_{\alpha \geq 0, \mu \geq 0} \min_{\mathbf{w}, w_0, \xi} L(\mathbf{w}, w_0, \xi, \alpha, \mu)$, that is, the dual problem

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [N]} \alpha_i \alpha_j y_i y_j \langle \boldsymbol{x}_i, \boldsymbol{x}_j \rangle + \sum_{i \in [N]} \alpha_i \quad \text{s.t.} \sum_{i \in [N]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [N]$$

is equivalent to the primal problem

$$\min_{\boldsymbol{w}, w_o, \boldsymbol{\xi}} \frac{1}{2} ||\boldsymbol{w}||^2 + C \sum_{i \in \{1, 2, ..., N\}} \xi_i \quad \text{s.t. } y_i f(\boldsymbol{x}_i) \ge 1 - \xi_i, \, \xi_i \ge 0, \, i \in [N]$$

KKT (Karush-Kuhn-Tucker) condition

The necessary conditions for a solution to be optimal:

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i \in [N]} \alpha_i y_i \mathbf{x}_i = 0, \quad \frac{\partial L}{\partial w_o} = -\sum_{i \in [N]} \alpha_i y_i = 0, \quad \frac{\partial L}{\partial \xi_i} = C - \alpha_i - \mu_i = 0$$

$$- (y_i f(\mathbf{x}_i) - 1 + \xi_i) \le 0, \quad -x i_i \le 0,$$

$$\alpha_i \ge 0, \quad \mu_i \ge 0,$$

$$\alpha_i (y_i f(\mathbf{x}_i) - 1 - \xi_i) = 0, \quad \mu_i \xi_i = 0,$$

$$i \in [N]$$

Recovering Primal Variables

• Using these conditions, from the optimal α , we have

$$f(\mathbf{x}) = \sum_{i \in [N]} \alpha_i y_i \langle \mathbf{x}_i, \mathbf{x} \rangle + w_o,$$

$$w_{o} = y_{i} - \sum_{j \in [N]} \alpha_{j} y_{j} \langle \boldsymbol{x}_{j}, \boldsymbol{x}_{i} \rangle, \quad \forall i \in \{i \in [N] \mid 0 < \alpha_{i} < C\}$$

– Since the second condition holds for all $i \in \{i \in [N] \mid 0 < \alpha_i < C\}$, one can take the average to avoid numerical errors

Data Point Location

- $y_i f(\mathbf{x}_i) > 1 \iff \alpha_i = 0$: \mathbf{x}_i is outside margin
 - These points do not affect to the classification hyperplane
- $y_i f(\mathbf{x}_i) = 1 \iff 0 < \alpha_i < C$: \mathbf{x}_i is on margin
- $y_i f(\mathbf{x}_i) < 1 \iff \alpha_i = C : \mathbf{x}_i$ is inside margin
 - These points do not exist in hard margin
- Points on margin and inside margin are support vectors

How to Solve?

The (dual) problem:

$$\max_{\boldsymbol{\alpha}} - \frac{1}{2} \boldsymbol{\alpha}^T Q \boldsymbol{\alpha} + \mathbf{1}^T \boldsymbol{\alpha} \quad \text{s.t. } \boldsymbol{y}^T \boldsymbol{\alpha} = 0, \ 0 \le \boldsymbol{\alpha} \le C1$$

- $Q ∈ \mathbb{R}^{N \times N}$ is the matrix such that $q_{ij} = y_i y_j \langle \mathbf{x}_i, \mathbf{x}_j \rangle$
- Since analytical solution is not available, iterative approach for continuous optimization with constraints is needed
- One of standard methods is the active set method

Active Set Method

Divide the set [N] of indices into three sets:

$$O = \{i \in [N] \mid \alpha_i = 0\}$$

$$M = \{i \in [N] \mid 0 < \alpha_i < C\}$$

$$I = \{i \in [N] \mid \alpha_i = C\}$$

- O and I are called active sets
- The problem can be solved using only $i \in M$, yielding

$$\begin{bmatrix} Q_{M} & \mathbf{y}_{M} \\ \mathbf{y}_{M}^{T} & o \end{bmatrix} \begin{bmatrix} \alpha_{M} \\ v \end{bmatrix} = -C \begin{bmatrix} Q_{M,I} & 1 \\ 1^{T} & \mathbf{y}_{I} \end{bmatrix} + \begin{bmatrix} 1 \\ o \end{bmatrix}$$

- This can be directly solved if Q_M is positive definite

Algorithm 2: Active Set Method

```
1 activeSetMethod(D)
           Initialize M, I, O
           while there exists i s.t. y_i f(\mathbf{x}_i) < 1, i \in O or y_i f(\mathbf{x}_i) > 1, i \in I do
                   Update M, I, O
                  repeat
                          a_M^{\text{new}} \leftarrow \text{the solution of the above equation}
 6
                         \boldsymbol{d} \leftarrow \boldsymbol{\alpha}_{M}^{\text{new}} - \boldsymbol{\alpha}_{M}
                          \boldsymbol{a}_M \leftarrow \boldsymbol{a}_M + \eta \boldsymbol{d}; // the maximum \eta satisfying \boldsymbol{a}_M \in [0, C]^{|M|}
                          Move i \in M from M to I or O if \alpha_i = C or \alpha_i = 0
 9
                   until \boldsymbol{a}_{M} = \boldsymbol{a}_{M}^{new};
10
```

Extension to Nonlinear Classification

• To achieve nonlinear classification, convert each data point \mathbf{x} to some point $\varphi(\mathbf{x})$, and $f(\mathbf{x})$ becomes

$$f(\mathbf{x}) = \langle \mathbf{w}, \varphi(\mathbf{x}) \rangle + w_{o}$$

The dual problem becomes

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [N]} \alpha_i \alpha_j y_i y_j \langle \varphi(\boldsymbol{x}_i), \varphi(\boldsymbol{x}_j) \rangle + \sum_{i \in [N]} \alpha_i \text{ s.t. } \sum_{i \in [N]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [N]$$

- Only the dot product $\langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_i) \rangle$ is used!
- We do not even need to know $\varphi(\mathbf{x}_i)$ and $\varphi(\mathbf{x}_i)$
- Kernel function: $K(\mathbf{x}_i, \mathbf{x}_j) = \langle \varphi(\mathbf{x}_i), \varphi(\mathbf{x}_j) \rangle$

C-SVM with Kernel Trick

Using the kernel function K, we have

$$\max_{\boldsymbol{\alpha}} -\frac{1}{2} \sum_{i,j \in [N]} \alpha_i \alpha_j y_i y_j K(\boldsymbol{x}_i, \boldsymbol{x}_j) + \sum_{i \in [N]} \alpha_i \text{ s.t. } \sum_{i \in [N]} \alpha_i y_i = 0, \ 0 \le \alpha_i \le C, i \in [N]$$

The technique of using K is called kernel trick

Positive Definite Kernel

- A kernel $K: \Omega \times \Omega \to \mathbb{R}$ is a positive definite kernel if
 - (i) K(x, y) = K(y, x)
 - (ii) For x_1, x_2, \dots, x_N , the $N \times N$ matrix

$$(K_{ij}) = \begin{bmatrix} K(x_1, x_1) & K(x_2, x_1) & \dots & K(x_N, x_1) \\ K(x_1, x_2) & K(x_2, x_2) & \dots & K(x_N, x_2) \\ \dots & \dots & \dots & \dots \\ K(x_1, x_N) & K(x_2, x_N) & \dots & K(x_N, x_N) \end{bmatrix}$$

is positive (semi-)definite, that is, $\sum_{i,j=1}^{N} c_i c_j K(x_i, x_j) \ge 0$ for any $c_1, c_2, \ldots, c_N \in \mathbb{R}$

- (K_{ij}) ∈ $\mathbb{R}^{N \times N}$ is called the Gram matrix

Popular Positive Definite Kernels

Linear Kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \langle \boldsymbol{x}, \boldsymbol{y} \rangle$$

Gaussian (RBF) kernel

$$K(\boldsymbol{x}, \boldsymbol{y}) = \exp\left(-\frac{1}{\sigma^2}||\boldsymbol{x} - \boldsymbol{y}||^2\right)$$

Polynomial Kernel

$$K(\mathbf{x}, \mathbf{y}) = (\langle \mathbf{x}, \mathbf{y} \rangle + c)^{c} \quad c, d \in \mathbb{R}$$

Simple Kernels

The all-ones kernel

$$K(\boldsymbol{x},\boldsymbol{y})=1$$

• The delta (Dirac) kernel

$$K(\mathbf{x}, \mathbf{y}) = \begin{cases} 1 & \text{if } \mathbf{x} = \mathbf{y}, \\ 0 & \text{otherwise} \end{cases}$$

Closure Properties of Kernels

- For two kernels K_1 and K_2 , $K_1 + K_2$ is a kernel
- For two kernels K_1 and K_2 , the product $K_1 \cdot K_2$ is a kernel
- For a kernel K and a positive scalar $\lambda \in \mathbb{R}^+$, λK is a kernel
- For a kernel K on a set D, its zero-extension:

$$K_{o}(\mathbf{x}, \mathbf{y}) = \begin{cases} K(\mathbf{x}, \mathbf{y}) & \text{if } \mathbf{x}, \mathbf{y} \in D, \\ 0 & \text{otherwise} \end{cases}$$

Kernels on Structured Data

- Given objects X and Y, decompose them into substructures S and T
- The R-convolution kernel K_R by Haussler (1999) is given as

$$K_R(X,Y) = \sum_{s \in S, t \in T} K_{\text{base}}(s,t)$$

- K_{base} is an arbitrary base kernel, often the delta kernel
- For example, X is a graph and S is the set of all subgraphs

Summary

- SVM finds the "best" classification hyperplane
 - The margin is maximized
- Although the original SVM can perform only linear classification, it can be extended to nonlinear classification by using kernels
- Gaussian kenrel + C-SVM can be the first choice