CHAPTER 8 DISCUSSIONS 2

What is a *trivial functional dependency*? List all trivial FDs in the following schema and explain how the properties of trivial FDs hold.

Student(ID, Name, Address)

Derive additional FDs from your initial set using each of the three *Armstrong's Axioms*.

Student(ID, Name, Address, Sex, Age, Dept, Dept_office, Dept_Chair, College, Dean, AdvisorID, AdvName, AdvDept)

Show sound	_	Augmer	ntation F	R <i>ule</i> in A	rmstron	g's Axior	ns is

Is the schema in BCNF? If not decompose the relation into a set of relation schemas, each of which is in BCNF.

Student(ID, Name, Address, Sex, Age, Dept, Dept_office, Dept_Chair, College, Dean, AdvisorID, AdvName, AdvDept)

Show that the following is true for any relation r(R) and its decomposition $\{R_1, R_2\}$.

$$r \subseteq \prod_{R_1} (r) \bowtie \prod_{R_2} (r)$$

It has been emphasized that *redundancy creates problems*. Discuss where redundancy lies in the following relation.

title	author	риb-пате	pub-branch	keyword
Compilers	Smith	McGraw-Hill	New York	parsing
Compilers	Jones	McGraw-Hill	New York	parsing
Compilers	Smith	McGraw-Hill	New York	analysis
Compilers	Jones	McGraw-Hill	New York	analysis
Networks	Jones	Oxford	London	Internet
Networks	Frick	Oxford	London	Internet
Networks	Jones	Oxford	London	Web
Networks	Frick	Oxford	London	Web