Analysis III

Homework

Exercises (homework) can be found in the script at the end of each Chapter.

Chapter I: #3 (only for convex sets), #4 due Th 4-25

Chapter II: # 2,4,5,6 due Th 5-2 Chapter III: # 3c, 4 due Th 5-9 Chapter IV: # 2b, 3, 4, 6 due Th 5-16 Chapter V: # 2,4,6 due Th 5-25 Chapter VI: # 2,3,4 due Th 6-1

Key Dates

Instruction begins: Mo, April 1 Instruction ends: Fr, June 7 Final's week: June 10-13 (Mo-Th)

Holiday: Mo, May 27

April 2, 2024

No class Thursday, April 04. Makeup class (tentatively) on Friday, April 12 at 10:30. Discussion sections on Fridays (tentatively) at 11:40.

Topological Vector Spaces

Definition: Vector Spaces

V over a field \mathbb{F} (\mathbb{R} or \mathbb{C}).

Definition: Topological Spaces

 (X, τ) where $\tau \subseteq \mathcal{P}(X)$ satisfying

- 1. $\emptyset, X \in \tau$
- 2. $A, B \in \tau \implies A \cap B \in \tau$
- 3. $A_{\omega} \in \tau \implies \bigcup_{\omega} A_{\omega} \in \tau$

Recall: $A \in \tau \iff A$ open $\iff X \setminus A$ closed. $A^{\circ} = \bigcup_{U \text{ open}} U \subseteq A$ the set of interior points of A.

 $\overline{A} = \bigcap_{\substack{F \supseteq A \\ F \text{ closed}}} \text{ the closure of } A.$

A' limit points of A.

Compact sets.

Locally compact sets.

Recall: X is Hausdorff iff $\forall x, y \in X$, $\exists U, V \in \tau$ such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

Definition: Bases for Topological Spaces

Definition: Let (X, τ) be a topological space. $\sigma \subseteq \tau$ is called a base for topology τ if $\forall x \in X, \ \forall U \in \tau, \ x \in U, \ \exists W \in \sigma$ such that $x \in W \subseteq U$.

Proposition

 $\sigma \subseteq \tau$ is a base for τ if and only if every $U \in \tau$ is the union of certain sets taken from σ .

$$(*) \quad \tau = \left\{ \bigcup_{\omega \in \Omega} W_{\omega} : \{W_{\omega}\}_{\omega \in \Omega} \subseteq \sigma, \Omega \right\}$$

Proof

 (\longleftarrow) \checkmark (\Longrightarrow) Take $U \in \tau$ and let $x \in U$, \leadsto find $W_x \in \sigma$, $x \in W_x \subseteq U$.

$$U = \bigcup_{x \in U} \{x\} \subseteq \bigcup_{x \in U} W_x \subseteq U$$

Therefore $\bigcup_{x \in U} W_x = U$.

Proposition

If σ is a base for some topology τ on X, then

- 1. $\forall x \in X, \exists W \in \sigma \text{ such that } x \in W.$
- 2. $\forall U, V \in \sigma$, $\forall x \in U \cap V$, $\exists W \in \sigma$ such that $x \in W \subseteq U \cap V$.

Conversely, if $\sigma \in \mathcal{P}(X)$ ($\varnothing \notin \sigma$) satisfies (1) and (2), then σ is the base for a topology τ (and τ is given by (*)). Note that $U, V \in \tau \implies U \cap V \in \tau$ (requires (2)). If $U = \bigcup U_{\alpha}$ and $V = \bigcup V_{\beta}$, then $U \cap V = \bigcup_{\alpha,\beta} (U_{\alpha} \cap V_{\beta}) = \bigcup_{\alpha,\beta} \bigcup_{x \in U} W_{\alpha,\beta,x}$.

Example: Metric Spaces

(X, d) is a metric space if $d: X \times X \to [0, +\infty)$ satisfies

- 1. d(x, y) = 0 if and only if x = y.
- 2. d(x, y) = d(y, x).
- 3. $d(x,z) \le d(x,y) + d(y,z)$ (triangle inequality).

Definition: Epsilon Neighborhoods

$$B_\varepsilon(x) = \{y \in x \,:\, d(x,y) < \varepsilon\}$$

2

 $A \subseteq X$ is open if and only if $\forall x \in A$, $\exists \varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq A$. $x \in B_{\varepsilon}(x)$. $\tau = \text{set of all open sets.}$

$$\sigma_1 = \{B_{\varepsilon}(x) : x \in X, ; \varepsilon > 0\}$$

is a base for the topology τ .

$$\sigma_2 = \left\{ B_{1/n}(x) : x \in X, \ n \in \mathbb{N} \right\}$$

is also a base for τ .

Definition: Direct Product - Product Topology

Let (X_1, τ_1) and (X_2, τ_2) be topological spaces. Consider $X = X_1 \times X_2$. The product topology τ on X is given by the base

$$\sigma = \{U_1 \times U_2 \,:\, U_1 \in \tau_1, \; U_2 \in \tau_2\}$$

More explicitly,

$$\tau = \left\{ \bigcup_{\omega} U_{1,\omega} \times U_{2,\omega} : U_{i,\omega} \in \tau_i \right\}$$

 $(X_{\omega}, \tau_{\omega})$ topological spaces $(\omega \in \Omega)$

$$X = \prod_{\omega \in \Omega} = \{(x_{\omega})_{\omega \in \Omega} : x_{\omega} \in X_{\omega}\}$$

Formally, $f \cong (x_{\omega})_{\omega \in \Omega}$, $x_{\omega} = f(\omega)$, $f : \Omega \to \bigcup_{\omega \in \Omega} X_{\omega}$ such that $f(\omega) \in X_{\omega}$. $[x \neq \emptyset \longleftarrow X_{\omega} \neq \emptyset \text{ axiom of choice}]$

$$\sigma = \left\{ \prod_{\omega \in \Omega} U_{\omega} : U_{\omega} \in \tau_{\omega} \text{ and all but finitely many } U_{\omega} = X_{\omega} \right\}$$

Definition: Subspace Topology

Given (X, τ) and $Y \subseteq X$, then (Y, τ_Y) is also a topological space where

$$\tau_Y \{ U \cap Y : U \in \tau \}$$

Definition: Local Bases for Topological Spaces

A collection $\gamma \subseteq \tau$ is called a local base at $x \in X$ if

- 1. $\forall U \in \tau$, $x \in U$, $\exists W \in \gamma$ such that $x \in W \subseteq U$.
- 2. $\forall W \in \gamma, x \in W$

Example

Let (X, d) be a metric space.

$$\gamma_x = \{B_{\varepsilon}(x) : \varepsilon > 0\}$$

is a local base at x. Similarly,

$$\tilde{\gamma}_x = \{B_{1/n} : n \in \mathbb{N}\}$$

is a countable local base.

Proposition

If γ_x ($x \in X$) are local bases for τ at X, then

$$\sigma = \bigcup_{x \in X} \gamma_x$$

is a bse for τ .

Proposition

 $\{\gamma_x\}_{x\in X}$ are local bases at x for some topology τ if and only if

- 1. $\forall x \in X$, γ_x is a non-empty collection of subsets containing x.
- 2. If $U \in \gamma_x$, $V \in \gamma_y$, and $z \in U \cap V$, then $\exists W \in \gamma_z$ such that $z \in W \subseteq U \cap V$.

Definition: Topological Vector Spaces

Suppose V is a vector space over $\mathbb{F} = \mathbb{R}$, \mathbb{C} and let τ be a topology on V. Then V is a topological vector space (TVS) if

- 1. $\forall x \in V$, $\{x\}$ is closed.
- 2. The functions f, g (i.e. algebraic operations) are continuous.

$$f: V \times V \to V, f(x, y) = x + y$$

 $g: \mathbb{F} \times V \to V, g(\lambda, x) = \lambda \cdot x$

Notation

For $A_1, A_2 \subseteq V$ and $B \subseteq \mathbb{F}$,

$$A_1 + A_2 = \{ a_1 + a_2 : a_1 \in A_1, a_2 \in A_2 \}$$

$$a + A_1 = \{ a + \alpha : \alpha \in A \}$$

$$B \cdot A = \{ \beta \cdot a : \beta \in B, a \in A \}$$

$$\alpha \cdot A = \{ \alpha \cdot a : a \in A \}$$

Lemma

Let V be a TVS. Then

- 1. $\forall x, y \in V$, \forall open $U_{x+y} \ni x + y$, \exists open $U_x \ni x$, open $U_y \ni y$ such that $U_x + U_y \subseteq U_{x+y}$.
- 2. $\forall x \in V, \alpha \in \mathbb{F}, \forall \text{ open } U_{\alpha x} \ni \alpha x, \exists \text{ open } U_x \ni x, U_\alpha \ni \alpha \text{ such that } U_\alpha \cdot U_x \subseteq U_{\alpha x}.$

Proof of 1

Given $x, y \in X$, $x + y \in U_{x+y}$ open.

$$f(x,y) = x + y \in U_{x+y}$$

and $(x,y) \in f^{-1}(U_{x+y})$ open. In the product topology

$$(x,y) \in U_x \times U_y \subseteq f^{-1}(U_{x+y})$$

which implies $x \in U_x$ and $y \in U_y$, both open, and $U_x + U_y \le U_{x+y}$.

April 9, 2024

Office Hours: Th 11:30 AM - 1:00 PM

Makeup Class: Friday, April 12 at 11:00 AM.

Lemma

Let V be a TVS

- 1. $\forall x, y \in V, \ \forall U_{x+y} \ni x+y \ \text{open}, \ \exists U_x \ni x, U_y \ni y \ \text{such that} \ U_x + U_y \subseteq U_{x+y}.$
- 2. $\forall \alpha \in F, \forall U_{\alpha x} \ni \alpha x \text{ open, } \exists U_{\alpha} \ni \alpha \text{ open in } F, U_{x} \ni x \text{ such that } U_{\alpha} \cdot U_{x} \subseteq U_{\alpha x}.$

For 2. with $\alpha = 0$, $\forall x \in X$, $\forall U \ni 0$ open, $\exists \delta > 0$, $U_x \ni x$ open such that $B_\delta(0) \cdot U_x \subseteq U$. That is, $\beta U_x \subseteq U$, $\forall |\beta| < \delta$.

Proposition

In a TVS, the maps

- 1. Translation: $T_a: x \in V \mapsto X + a \in V \ (a \in V)$
- 2. Multiplication: $M_{\lambda}: x \in V \mapsto \lambda \cdot x \in V \ (\lambda \in \mathbb{F}, \ \lambda \neq 0)$

are continuous (in fact, homeomorphic).

Proof

We know $(x, y) \mapsto x + y$ and $(\lambda, x) \mapsto \lambda \cdot x$ are continuous.

Inversions

 $T_a \circ T_{-a} = \mathrm{id}$, $T_{-a} \circ T_a = \mathrm{id}$, $M_{\lambda} \circ M_{1/\lambda} = \mathrm{id}$, and $M_{1/\lambda} \circ M_{\lambda} = \mathrm{id}$.

Therefore they are bijective and the inverses are continuous.

Remark

If U is open, then a + U is also open.

If γ_0 is a local base at 0, then $\gamma_x = \{x + U : U \in \gamma_0\} = x + \gamma_0$ is a local base at x.

Recall that γ_x is a local base at x if $\forall W \ni x$ open, $\exists U \in \gamma_x$ such that $x \in U \subseteq W$.

That is, in a TVS only local bses at 0 are needed. We may interpret "local base" as "local base at 0".

$$\sigma = \bigcup_{x \in V} (x + \gamma_0)$$

is a base for the TVS.

Types of Topologial Vector Spaces

Normed Spaces / Banach Spaces

A normed space is a vector space over \mathbb{F} together with a norm $||\cdot||$, i.e. a map $||\cdot||: x \in V \mapsto ||x|| \in [0, \infty)$ such that

- 1. $||x|| = 0 \iff x = 0$.
- 2. $||x+y|| \le ||x|| + ||y||$.
- 3. $||\lambda x|| = |\lambda| \cdot ||x||$.

Remarks

A normed space is a metric space with d(x, y) = ||x - y||.

A local base (at 0) is given by ε -neighborhoods:

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}$$

where

$$B_{\varepsilon}(0) = \{ x \in V : ||x|| < \varepsilon \}$$

(open ball with radius $\varepsilon > 0$).

Convergence in Normed Space

A sequence $\{x_n\}$ $(x_n \in V)$ converges to $\lambda \in V$ if $\lim_{n\to\infty} ||x_n - x|| = 0$.

A sequence $\{x_n\}$ is Cauchy if $\forall \varepsilon > 0$, $\exists N$ such that $\forall j, k \ge N$, $||x_j - x_k|| < \varepsilon$.

A normed space is complete if $\{x_n\}$ Cauchy implies $\exists x \in V$ such that $x_n \to x$.

Complete normed spaces are called Banach spaces.

Example 1

 $\ell^p(\mathbb{N})$, $1 \le p < \infty$, the set of all sequences $\{x_n\}_{n=1}^{\infty} = x$ such that

$$||x|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{1/p} < +\infty$$

Recall $\{x_n\}+\{y_n\}=\{x_n+y_n\}$ and $\lambda\{x_n\}=\{\lambda x_n\}$. ℓ^p spaces are complete and therefore Banach. If $\{x_n\}\in\ell^p$ and $\{y_n\}\in\ell^q$, then $\{x_ny_n\}\in\ell^r$, $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}\in[0,1]$ (e.g. $\ell^2\cdot\ell^2\leq\ell^1$)

Example 2

 $\ell^{\infty}(\mathbb{N})$, the set of all bounded sequences

$$||x|| = \sup_{n \in \mathbb{N}} |x_n| < +\infty$$

Example 3

 $C_0(\mathbb{N}) \subseteq \ell^p(\mathbb{N})$, the set of all sequences $\{x_n\}$

$$\lim_{n\to\infty} x_n = 0$$

 C_0 is a closed subspace, and both are Banach.

Example 4

 $L^p(\Omega)$, $1 \le p < \infty$, $\Omega \subseteq \mathbb{R}^d$ a Lebesgue measurable set with $m(\Omega) > 0$, the space of all equivalence classes of Lebesgue measurable functions $f: \Omega \to \mathbb{F}$ such that

$$||f|| = \left(\int_{\Omega} |f(x)|^p dx\right)^{1/p} < +\infty$$

Example 5

 $L^{\infty}(\Omega)$, the measurable and essentially bounded functions

$$\begin{aligned} ||f|| &= \inf_{\substack{N \subseteq \Omega \\ m(N) = 0}} \sup_{x \in \Omega \setminus N} |f(x)| < +\infty \\ &= \operatorname{ess sup}_{x \in \Omega} |f(x)| \end{aligned}$$

 $L^p(\Omega)$ spaces, $1 \le p \le \infty$, are Banach.

Example 6

For $\Omega \neq \emptyset$, let $B(\Omega)$ the set of all bounded functions $f: \Omega \to \mathbb{F}$ with

$$||f|| = \sup_{x \in \Omega} |f(x)|$$

is a Banach space.

 $f_n \to f$ in $B(\Omega)$ if and only if f_n converges uniformly on Ω to f.

Example 7

Let Ω be a topological space and $BC(\Omega)$ the set of all bounded, continuous functions $f:\Omega\to\mathbb{F}$.

Then $BC(\Omega) \subseteq B(\Omega)$ is a closed Banach subspace under the same norm.

That is, the uniform limit of continuous functions is a continuous function.

$$f_n \to f \Longrightarrow f \in B(\Omega)$$

Example 8

Let K be a compact, Hausdorff space.

Then C(K) is the set of all continous functions $f: K \to \mathbb{F}$ and C(K) = BC(K).

F Spaces / pre-F Spaces

A pre-*F*-space is a TVS where the topology is given by some invariant metric d(x+z,y+z)=d(x,y) or d(x,y)=d(x-y,0).

An *F*-space is a complete pre-*F*-space.

A local base (at 0) is given by

$$\gamma_0 = \{B_{\varepsilon}(0) : \varepsilon > 0\}, \quad B_{\varepsilon}(x) = \{y \in V : d(x, y) < \varepsilon\}$$

Example 1

 $\ell^p(\mathbb{N}), 0 , the set of all <math>\{x_n\}_{n=1}^{\infty}$ such that

$$\sum_{n=1}^{\infty} |x_n|^p < +\infty$$

with

$$d(x,y) = \sum_{n=1}^{\infty} |x_n - y_n|^p$$

Note that this obeys the triangle inequality specifically because it has not been raised to 1/p.

$$d(\lambda x, \lambda y) = |\lambda|^p \cdot d(x, y)$$

means that d(z,0) is not a norm.

Here, $B_{\varepsilon}(x)$ are not convex sets.

Side Remark

Given \mathbb{R}^2 , the ℓ^p norm for $1 \le p \le \infty$ is given by

$$||(x_1, x_2)|| = (|x_1|^p + |x_2|^p)^{1/p}$$

and the distance for 0 by

$$d((x_1, x_2))) = |x_1|^p + |x_2|^p$$

The ε neighborhoods for p=1 are diamonds, p=2 circles, $p=\infty$ squares with smooth transition between them. However, for 0 , we have concave diamond shapes.

These norms and metrics are all equivalent on \mathbb{R}^2 in the sense that they give the same topology.

Locally Convex TVS

A TVS which has a local base γ at 0 consisting of open neighborhoods of 0 which are all convex.

Definition: Convex Set

A set $A \subseteq V$ is convex if $\forall x, y \in A$, $\lambda \in [0, 1]$, then $\lambda x + (1 - \lambda)y \in A$ Alternatively, the line segment between x and y is contained in $A([x, y] \subseteq A)$.

Fréchet Spaces and pre-Fréchet Spaces

A pre-Fréchet space is locally convex.

A Fréchet space is a locally convex F-space.