MA 591 Fall 2024 HW1

Name: Molena Huynh

1. Prove the Cauchy-Schwarz inequality over a general inner product space. That is, for all x, y in an inner product space, it is always true that $|\langle x, y \rangle| \le ||x|| ||y||$, and that equality holds if and only if either $x = \alpha y$ or y = 0.

Proof.

Let x, y be two general vectors in a general inner product space.

- If $\mathbf{x} = \mathbf{0}$ or $\mathbf{y} = \mathbf{0}$, then $|\langle \mathbf{x}, \mathbf{y} \rangle| = 0$, and $||\mathbf{x}|| ||\mathbf{y}|| = 0$. Thus, $|\langle \mathbf{x}, \mathbf{y} \rangle| = 0 = ||\mathbf{x}|| ||\mathbf{y}||$.
- If $x \neq 0$ and $y \neq 0$, then for all $c \in \mathbb{C}$, $\langle x + cy, x + cy \rangle = ||x + cy||^2 \geq 0$.

Moreover,
$$0 \le \langle \boldsymbol{x} + c\boldsymbol{y}, \boldsymbol{x} + c\boldsymbol{y} \rangle = \langle \boldsymbol{x}, \boldsymbol{x} + c\boldsymbol{y} \rangle + \langle c\boldsymbol{y}, \boldsymbol{x} + c\boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{x}, \boldsymbol{x} \rangle + \langle \boldsymbol{x}, c\boldsymbol{y} \rangle + \langle c\boldsymbol{y}, \boldsymbol{x} \rangle + \langle c\boldsymbol{y}, c\boldsymbol{y} \rangle$$

$$= \langle \boldsymbol{x}, \boldsymbol{x} \rangle + \langle \boldsymbol{x}, c\boldsymbol{y} \rangle + \overline{\langle \boldsymbol{x}, c\boldsymbol{y} \rangle} + \overline{cc} \langle \boldsymbol{y}, \boldsymbol{y} \rangle$$

$$= \|\boldsymbol{x}\|^2 + \overline{c} \langle \boldsymbol{x}, \boldsymbol{y} \rangle + c \overline{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} + |c|^2 \|\boldsymbol{y}\|^2 \text{ for all } c \in \mathbb{C}.$$

Since $\mathbf{y} \neq 0$, $\|\mathbf{y}\|^2 \neq 0$, choose $c = -\frac{|\langle \mathbf{x}, \mathbf{y} \rangle|}{\|\mathbf{y}\|^2}$ specifically,

$$0 \le \|\boldsymbol{x}\|^2 - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \langle \boldsymbol{x}, \boldsymbol{y} \rangle - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \overline{\langle \boldsymbol{x}, \boldsymbol{y} \rangle} + \left| -\frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \right|^2 \|\boldsymbol{y}\|^2$$

$$= \|\boldsymbol{x}\|^2 - 2\frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2} + \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2}$$

$$= \|\boldsymbol{x}\|^2 - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2}.$$

Thus, $\frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2} \le \|\boldsymbol{x}\|^2$, which implies that $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2 \le \|\boldsymbol{x}\|^2 \|\boldsymbol{y}\|^2$.

Taking the square root both sides, $|\langle x, y \rangle| \le ||x|| ||y||$.

Moreover, if $\mathbf{x} = \alpha \mathbf{y}$, then $|\langle \mathbf{x}, \mathbf{y} \rangle| = |\langle \alpha \mathbf{y}, \mathbf{y} \rangle| = |\overline{\alpha}||\mathbf{y}||^2$ and $||\mathbf{x}|| ||\mathbf{y}|| = ||\alpha \mathbf{y}|| ||\mathbf{y}|| = |\alpha|||\mathbf{y}||^2$.

Since $|\overline{\alpha}| \|\boldsymbol{y}\|^2 = |\alpha| \|\boldsymbol{y}\|^2$, $|\langle \boldsymbol{x}, \boldsymbol{y} \rangle| = \|\boldsymbol{x}\| \|\boldsymbol{y}\|$.

Therefore, if $\mathbf{x} = \alpha \mathbf{y}$ or $\mathbf{y} = \mathbf{0}$, then $|\langle \mathbf{x}, \mathbf{y} \rangle| = ||\mathbf{x}|| ||\mathbf{y}||$.

On the other hand, assume that $|\langle x, y \rangle| = ||x|| ||y||$ and $y \neq 0$.

Thus,
$$\|\boldsymbol{x}\| = \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|}$$
 and $\|\boldsymbol{x}\|^2 = \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2}$.

$$\begin{aligned} \text{Moreover, } \boldsymbol{x} &= \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} + \left(\boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y}\right) \\ \|\boldsymbol{x}\|^2 &= \left\| \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} + (\boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y}) \right\|^2 \\ &\leq \left\| \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} \right\|^2 + \left\| \boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} \right\|^2 \\ &= \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2} + \left\| \boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} \right\|^2 \end{aligned}$$

Thus, $\|\boldsymbol{x}\|^2 = \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|^2}{\|\boldsymbol{y}\|^2}$ implies $\|\boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y}\|^2 = 0$, which further implies $\boldsymbol{x} - \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2} \boldsymbol{y} = \boldsymbol{0}$. In other words, $\boldsymbol{x} = \alpha \boldsymbol{y}$, where $\alpha = \frac{|\langle \boldsymbol{x}, \boldsymbol{y} \rangle|}{\|\boldsymbol{y}\|^2}$.

Therefore $|\langle x,y\rangle| \leq ||x|| ||y||$, and that equality holds if and only if either $x = \alpha y$ or y = 0.

2. Show that if S is any orthonormal subset (not necessarily maximal, nor countable) of a Hilbert space \mathcal{H} and $x \in \mathcal{H}$, then the inner product $\langle z, x \rangle$ is nonzero for at most a countable number of $z \in S$. Therefore, the Fourier series of any $x \in \mathcal{H}$ defined by

$$\mathcal{F}(x) := \sum_{z \in S} \langle z, x \rangle z \tag{1}$$

always makes sense in any Hilbert space.

Proof.

Given $x \in \mathcal{H}$, show that $\{z \in S \mid |\langle z, x \rangle| \neq 0\}$ is countable (in other words, the inner product $\langle z, x \rangle$ is nonzero for at most a countable number of $z \in S$).

For each $\epsilon > 0$, choose $n \in \mathbb{Z}$ such that $n > \frac{\|\boldsymbol{x}\|^2}{\epsilon^2}$. In other words, $n\epsilon^2 > \|\boldsymbol{x}\|^2$.

Define $H_{x,\epsilon} = \{z \in S \mid |\langle \boldsymbol{z}, \boldsymbol{x} \rangle| > \epsilon \}.$

Then, $H_{x,\epsilon}$ is finite. Otherwise, if $H_{x,\epsilon}$ is infinite, choose $\{z_1,\ldots,z_n\}\subset H_{x,\epsilon}$.

Then, $n\epsilon^2 < \sum_{i=1}^n |\langle \boldsymbol{z}_i, \boldsymbol{x} \rangle|^2 \le \|\boldsymbol{x}\|^2$. This is a contradiction to the assumption $n\epsilon^2 > \|\boldsymbol{x}\|^2$.

Thus, $H_{x,\epsilon}$ is finite.

Then, define
$$\mathcal{H}_x = \bigcup_{\epsilon > 0} H_{x,\epsilon}$$
. Specifically, if $\epsilon = m \in \mathbb{N}$, then $\mathcal{H}_x = \bigcup_m H_{x,\frac{1}{m}}$, which is countable.

3. The Riesz representation theorem claims that $\Lambda: \mathcal{H} \to \mathbb{C}$ is a bounded linear functional if and only if there exists $x \in \mathcal{H}$ such that $\Lambda(y) = \langle x, y \rangle$ for every $y \in \mathcal{H}$. Show that this representation x is unique.

Proof.

Assume that the representation of x is not unique.

In other words, there exist $x_1, x_2 \in \mathcal{H}$ such that $\Lambda(y) = \langle x_1, y \rangle = \langle x_2, y \rangle$ for every $y \in \mathcal{H}$.

Thus, $\langle \boldsymbol{x}_1, \boldsymbol{y} \rangle - \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle = 0$, and since $\langle \boldsymbol{x}_1, \boldsymbol{y} \rangle - \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle = \langle \boldsymbol{x}_1 - \boldsymbol{x}_2, \boldsymbol{y} \rangle$,

$$\langle \boldsymbol{x}_1 - \boldsymbol{x}_2, \boldsymbol{y} \rangle = 0$$
 for every $\boldsymbol{y} \in \mathcal{H}$

Specifically, chose $y = x_1 - x_2$, which implies $\langle x_1 - x_2, x_1 - x_2 \rangle = 0$.

Since $\langle x_1 - x_2, x_1 - x_2 \rangle = ||x_1 - x_2||^2$,

$$\|\boldsymbol{x}_1 - \boldsymbol{x}_2\|^2 = 0$$

Thus, $x_1 - x_2 = 0$, which implies that $x_1 = x_2$.

Therefore, the representation of x is unique.

4. Let

$$\ell^2 := \{ \{a_n\}_{n=0}^{\infty} \subset \mathbb{C} | \sum_{n=0}^{\infty} |a_n|^2 < \infty \}$$
 (2)

denote the space of all square-summable sequences over the complex field C. Define the inner product of any two sequences $\{a_n\}, \{b_n\} \in \ell^2$ via

$$\langle \{a_n\}, \{b_n\} \rangle := \sum_{n=0}^{\infty} \overline{a_n} b_n \tag{3}$$

Define the function $\Lambda: \ell^2 \to \mathbb{C}$ by

$$\Lambda(\{a_n\}) := a_0 + 10a_{10} + 20a_{20} + 30a_{30} \tag{4}$$

which obviously is bounded and linear. What is the Riesz representation of Λ in ℓ^2 ?

Proof.
$$\begin{cases} 1 & \text{if } n=0\\ 10 & \text{if } n=10\\ 20 & \text{if } n=20\\ 30 & \text{if } n=30\\ 0 & \text{otherwise.} \end{cases}$$

The sequence $\{b_n\} \in \ell^2$, since $\{b_n\}_{n=0}^{\infty} \subset \mathbb{C}$,

and
$$\sum_{n=0}^{\infty} |b_n|^2 = |b_0|^2 + |b_{10}|^2 + |b_{20}|^2 + |b_{30}|^2 = 1^2 + 10^2 + 20^2 + 30^2 < \infty$$

The inner product
$$\langle \{b_n\}, \{a_n\} \rangle = \sum_{n=0}^{\infty} \overline{b_n} a_n$$

$$= 1 \cdot a_0 + 10 \cdot a_{10} + 20 \cdot a_{20} + 30 \cdot a_{30}$$

$$= a_0 + 10 a_{10} + 20 a_{20} + 30 a_{30}$$

$$= \Lambda(\{a_n\}) \text{ for every } \{a_n\} \text{ in } \ell^2.$$

Therefore, there exists a sequence $\{b_n\} \in \ell^2$ such that $\Lambda(\{a_n\}) = \langle \{b_n\}, \{a_n\} \rangle$ for every $\{a_n\} \in \ell^2$, where

Therefore, there exists a sequence
$$\{b_n\} \in \mathcal{C}$$
 such that $\Lambda(\{a_n\}) = \langle \{b_n\}, \{a_n\} \rangle$ for every $\{a_n\} \in \mathcal{C}$, where
$$\begin{cases} 1 & \text{if } n = 0 \\ 10 & \text{if } n = 10 \end{cases}$$

$$20 & \text{if } n = 20 \\ 30 & \text{if } n = 30 \\ 0 & \text{otherwise.} \end{cases}$$

References

Lecture's Note