(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 27 March 2003 (27.03.2003)

PCT

(10) International Publication Number WO 03/025138 A2

(51) International Patent Classification7:

(US). ZLOTNIK, Albert [US/US]; 507 Alger Drive, Palo Alto, CA 94306 (US).

(21) International Application Number: PCT/US02/29560

(74) Agents: BASTIAN, Kevin, L. et al.; Townsend and Townsend and Crew LLP, Two Embarcadero Center,

(22) International Filing Date:

17 September 2002 (17.09.2002)

Eighth Floor, San Francisco, CA 94111 (US).

(25) Filing Language:

(26) Publication Language:

English

C12N

English

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(30) Priority Data:

60/323,469 17 September 2001 (17.09.2001) US 60/323,887 20 September 2001 (20.09.2001) US 60/350,666 13 November 2001 (13.11.2001) US 8 February 2002 (08.02.2002) 60/355,145 US 60/355,257 8 February 2002 (08.02.2002) US US 60/372,246 12 April 2002 (12.04.2002)

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

(71) Applicant (for all designated States except US): EOS BIOTECHNOLOGY, INC. [US/US]; 225A Gateway, Boulevard, South San Francisco, CA 94080 (US).

Declaration under Rule 4.17:

of inventorship (Rule 4.17(iv)) for US only

(72) Inventors; and

(75) Inventors/Applicants (for US only): AFAR, Daniel [CA/US]; 435 Visitacion Avenue, Brisbane, CA 94005 (US). AZIZ, Natasha [US/US]; 411 California Avenue, Palo Alto, CA 94306 (US). GISH, Kurt, C. [US/US]; 37 Artuna Avenue, Piedmont, CA 94611 (US). HEVEZI, Peter, A. [GB/US]; 1360 11th Avenue, San Francisco, CA 94122 (US). MACK, David, H. [US/US]; 2076 Monterey Avenue, Menlo Park, CA 94025 (US). WILSON, Keith, E. [US/US]; 219 Jeter Street, Redwood City, CA 94062

Published:

without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: METHODS OF DIAGNOSIS OF CANCER COMPOSITIONS AND METHODS OF SCREENING FOR MODULA-TORS OF CANCER

(57) Abstract: Described herein are genes whose expression are up-regulated or down-regulated in specific cancers. Related methods and compositions that can be used for diagnosis and treatment of those cancers are disclosed. Also described herein are methods that can be used to identify modulators of selected cancers.

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

		CONCECNOCO	CACCTACCCT	CACCCACATC	CCCCCCCC	ACGTGTTCAC	a. acaaaaa	2200
								2700
						GCATCCACGC		2760
		CTGGAGCGCA	AGGAGGACTG	AGGCGCCGCC	CGTCCTGGGC	CCGGCCAGGC	CCCGCTTGGA	2820
		GGAGGCATCG	TCGGCATTTT	CGTTTAGACC	TTTAATTCTA	GCACTTTGAA	TTCGAGCAGG	2880
	5					CTCTTTCTTT		2940
_	_							
•						GGGTCAGACG		3000
		TGCCGTTTTG	TCTTCTTCTA	AGGTGTGTGT	TGGGTTGTTT	TGCTTTCCTT	TGCATCTTTA	3060
		TTAAGATGTC	TTTCATGTGT	ATATGCCTCT	GCCATAGAAT	ACTCAGTCTT	GTGGTCAAGA	3120
						TCTTGATATG		
1	0							3180
1	·					CAAATGAAAT		3240
		TTGTTTCTGT	TCCTAATTCC	TAAAAAATT	AGGGGGAATA	GTATTTTAGA	ATTTTATGCA	3300
		GAATTTAATT	CTCTTTTTAC	GGTTAAGATT	TTAAGATTTT	CTTACTTGCA	CATAAAAATA	3360
						TGTTTAAAAA		3420
			IIMMCIIM	1110100001	GIGACINOAA	IGITIMAAAA	AMMANAGAC	
1	_	CCTCGTGC						3428
1	.5							
	. Seq ID NO: 142 DNA Sequence							
				#: XM 1669	946 2			
			uence: 116					
_		1	11	21	31	41	51	
	20	1	i	1	1	1	1	
		ATGGGCTCTG	ACTCTCGGCT	TCCTGAGATG	GAGGAGAAAG	GGTCTGGGGA	CAAAGCTGGC	60
						TGAAACTATG		120
						TGATTGTAGG		180
~						GCAAGTACCT		240
	25	ATCAAGCGCT	GCAGCGGCCT	CATGGGCCTG	AACTGGAGTT	TGAGACCAGC	CATCTCTTCC	300
		TCACCCCTTG	CGAGGAGTCA	AGAGAAACAC	CACGGGGCAA	AGGGAAACGA	AGGAGTTAAG ·	360
						CCACTCCTCC		420
						CGGGAGCCGC		480
7	. ^	GTGCAGGCGG	CGCTCCTCAG	CACGCACCCT	TTCGTGCCCT	TCGGCTTCGG	GGGCTCCCCG - · ·	540
	30	GACGGGCTAG	GGGGCGCCTT	CGGAGCCCTG	GACAAGGGCT	GCTGTTTCGA	GGACGATGAG	600 .
		ACCGGGGCTC	CGGCGGGTGC	GCTGCTGTCG	GGAGCCGAAG	GAGGGGACGT	GCGCGAGGCC	660
						ACATCAAGCT		720
						CCCCGACAGT		
								780
~						CCCCCCCCCCC		840
3	35	CAAAGCCGAA	GTCTGGCCGC	GCTCTTCGAC	TCGCTGCGCC	ACGTCCCCGG	GGGTGCCGAG	900
		CCGGCGGGGG	GTGAGGTGGC	TGCGCCGGCG	GCCGGGCTAG	GAGGTGCGGG	CACTGGGGGC	960
						TCCCAGGGGC		1020
						AGCCGTCCCG		1080
	10					ACCTGGAGAA		1140
4	10	GCCGTGGAGT	TCTTTGAGCT	GCTGGGGCCC	GACTACGGCG	CCGGCACGGA	GGCGGCAGTC	1200
		TTGCTTGCCG	CCGAGCCTCT	CGACGTGTTC	CCCGCCGGAG	CCTCCGTACT	GCGGGGACCC	1260
						TGGTGGGAAA		1320
						AGAGCCCCCT		1380
	15					ACCCCGCCGC		1440
4	15	CCCGGCGGGG	AGGACGGGCG	GGGCCATTTG	GCCTCTTTCG	CCCCCTTCTT	TCCAGACTGC	1500
		GCCCTGCCCC	CGCCGCCGCC	GCCCCATCAG	GTGTCCTACG	ATTACAGCGC	GGGCTACAGC	1560
						GGGAAGGGGC		1620
					ONCOGGGIII	GGGWAGGGC	GCCGGGGAG	
		CACCACACCAC	ACCGGGACTG	A				1641
	50							
-	טכ	Seq ID NO: 143 DNA Sequence						
		Nucleic Acid Accession #: NM_022123.1						
			uence: 76					
		1	11					
		†	11	21	31	41	51	
	55	1		1	1	Į.	1	
	, ,	CCACGCGTCC	GACGCCCCCC	ACCCGGGAGG	GGGGAGAGAG	GCAAAAAGTA	AGAGAGGAAA	60
		AAAAATAGCA	GGAAGATGGC	GCCCACCAAG	CCCAGCTTTC	AGCAGGATCC	TTCCAGGCGA	120
	•					CTGCTCGCTC		180
						CTCTTCCTGC		
								240
-	50					GCTATCTGAA		300
•	,,,	1 FTGCTAACC	AGGGGGACCC	TCCGTGGAAC	TTGCGAATGG	AAGGCCCTCC	ACCTAACACA	360
						TAGCCATTGA		420
							ACTAAATCAG	480
						ACCTAGGCCT		540
						GAGATCACGT		
6	55							600
•	,,,	GAGCAGCTGG	GCATGAAGCT	CCCCCCTGGG	CGGGGTCTCC	TGTCACAGGG	CACTGCTGAG	660
		GACGGAGCCA	GCTCAGCATC	TTCCTCCTCT	CAGTCGGAGA	CCCCGAGCC	AGTGGAGTCA	720
		ACCAGCCCCA	GTCTGCTAAC	CACTGACAAC	ACTOTTGAGO	GTTCCTTTTT	CATCCGAATG	780
		AAATCTACTC	TGACCAAACC	CCCTCTCC	ATCABATCAT	CAGGATATAA	CCTCATTCAC	840
	70					GGAGGACCGT		900
	U	ATCATGGGTC	"regigettet	TGCGCATGCC	*TTGCCTCCCC	-CTACGATCAA		-960
		ATTGACTGCC	ATATGTTCGT	CACTCGAGTA	AATATGGACC	TCAATATCAT	TTACTGTGAA	1020
		AATAGGATTA	GTGATTATAT	GGATCTGACC	CCTGTAGATA	TCGTAGGGAA	GAGATGCTAC	1080
		CACTTCATCC	ATCCTCAACA	CCTCCACCCC	ATCACCOCC	GTCACTTGGA		
		PACTICATE	ATTOCK CANCA	COLOGNOGGC	MICAGGCACA	GICACITGGA	CITGCIGAAT	1140
-	75	MAGGGTCAGT	GIGIGACAAA	GIACTATCGC	TGGATGCAGA	AGAACGGAGG	ATATATTTGG_	1200 .
,	, ,	ATACAGTCCA	GTGCCACCAT	AGCTATTAAT	GCCAAGAATG	CAAATGAAAA	GAATATCATC	1260
		TGGGTGAATT	ACCTTCTTAG	CAATCCTGAG	TACAAGGACA	CACCCATGGA	CATCGCACAG	1320
						CATCCGACTC		
								1380
		ICIAAAGACA	CCICAGGTAT	LACAGAGGAC	AACGAGAACT	CCAAGTCCGA	CGAGAAGGGG	1440
c	20	AACCAGTCCG	AGAACAGCGA	AGACCCGGAG	CCCGACCGGA	AGAAGTCGGG	CAACGCGTGT	1500
5	30	GACAACGACA	TGAACTGCAA	CGACGACGGC	CACAGCTCCA	GTAACCCGGA	CAGCCGCGAC	1560
		AGCGACGACA	GCTTCGAGCA	CTCGGACTTT	GAGAACCCC	AGGCGGGCGA	GGACGGGTTC	1620
		COTOTOTO	COCCOMOCA	CATCALCETT	CACCACTICA	MOGE COCCGA	CONCOCTIC	
		GOTOCICIO	GCGCGATGCA	GATCAAGGTG	GAGCGCTACG	TGGAGAGCGA	GTCGGACCTG	1680
		CGGCTGCAGA	ACTGCGAGTC	ACTCACGTCC	GACAGCGCCA	AGGACTCGGA	CAGCGCAGGC	1740
		Chacacacac	CCCNCCCCTC	CACCAACCAC	ChCAACCCCA	ACA A A ACCOS	GAAACGGCAA	
		GAGGCGGGCG	COCHOCCTIC	CUCCAMOCAL	CUGNACIO	MONAMAL	GAAACGGCAA	1800
		GAGGCGGGCG	COCHOCCIC	CAGCAAGCAC	CAGAAGCGCA	AGAAAAGGCG	GAAACGGCAA	1800

706

```
AAGGGCGGCA GCGCCAGCCG CCGGCGCCTG TCCAGCGCGT CGAGCCCAGG CGGCCTGGAC
                                                                             1860
        GCGGGCCTGG TGGAGCCCCC GCGGCTGCTG TCCTCCCCCA ACAGTGCCTC GGTGCTCAAG
                                                                             1920
        ATCAAGACGG AGATCTCAGA ACCCATCAAT TTCGACAATG ACAGCAGCAT CTGGAACTAC
                                                                             1980
        CCGCCCAACC GGGAGATCTC CAGGAACGAG TCCCCCTACA GCATGACCAA GCCCCCCAGC
                                                                             2040
  5
        TCTGAGCACT TCCCGTCCCC GCAGGGCGGC GGCGGTGGGG GTGGCGGTGG CGGGGGGCTG
                                                                             2100
        CACGTGGCCA TTCCCGACTC GGTCCTCACC CCGCCGGCG CCGACGGGGC GGCCGCCGC
                                                                             2160
        AAGACTCAGT TCGGCGCCTC GGCCACCGCG GCCCTGGCCC CCGTCGCCTC CGACCCGCTG
                                                                             2220
        2280
        GGCGGGGGCG GCGCGCGG GGGCGCGGC CCCAGCGCGT CCAACTCCTT GCTGTACACT
                                                                             2340
10
        GGGGACCTGG AGGCGCTGCA GAGGTTGCAG GCGGGCAACG TCGTGCTCCC GCTGGTGCAC
                                                                             2400
        AGGGTGACCG GGACCCTGGC CGCCACCAGC ACGGCCGCGC AGAGGGTCTA CACCACGGGC
                                                                             2460
        ACCATCCGCT ACGCGCCCGC CGAGGTGACC CTGGCCATGC AGAGCAACCT GCTGCCCAAC
                                                                             2520
        GCGCACGCTG TTAACTTCGT GGACGTTAAC AGCCCCGGCT TTGGCCTCGA CCCCAAGACG
                                                                             2580
        CCCATGGAGA TGCTCTACCA CCACGTGCAC CGGCTCAACA TGTCAGGACC GTTCGGCGGC
                                                                             2640
15
        GCAGTGAGCG CAGCTAGCCT GACGCAGATG CCCGCCGGCA ACGTGTTCAC CACGCCCGAG
                                                                             2700
        GGACTCTTCT CCACGCTGCC CTTCCCCGTC TACAGCAACG GCATCCACGC GGCACAGACT
                                                                             2760
        CTGGAGCGCA AGGAGGACTG AGGCGCCGCC CGTCCTGGGC CCGGCCAGGC CCCGCTTGGA
                                                                             2820
        GGAGGCATCG TCGGCATTTT CGTTTAGACC TTTAATTCTA GCACTTTGAA TTCGAGCAGG
                                                                             2880
        TCAGCGTCTT CTCTCGCCAC GACGGTCCCC ATTCCACCCC CTCTTTCTTT CACCTGACTT
                                                                             2940
20
        ATTCTTTCGT GTAAAGATAT GTTTATTTTT TGCCTTCAGA GGGTCAGACG ACCAGTTGCC
                                                                             3000
        TGCCGTTTTG TCTTCTTCTA AGGTGTGTGT TGGGTTGTTT TGCTTTCCTT TGCATCTTTA
                                                                             3060
        TTAAGATGTC TITCATGTGT ATATGCCTCT GCCATAGAAT ACTCAGTCTT GTGGTCAAGA
                                                                             3120
        GAGTTCTCAA GTGACAACCA TTGGGGTTTC TTCATAAAGA TCTTGATATG ATCAAGATGG
                                                                             3180
        AAAGAGACAA GCATAAACAA TGTGCCCTGT TTGACTAAGT CAAATGAAAT AGGGTGGTTT
                                                                             3240
25
        TTGTTTCTGT TCCTAATTCC TTTAAAAAAT AGGGGGAATA GTATTTTAGA ATTTTATGCA
                                                                             3300
        GAATTTAATT CTCTTTTTAC GGTTAAGATT TTAAGATTTT CTTACTTGCA CATAAAAATA
                                                                             3360
        ATTTGGGTTC TTAAACTTAA TTTCTGGCCT GTGACTAGAA TGTTTAAAAA AAAAAAAAAC
                                                                             3420
        CCTCGTGC
 30
        Seq ID NO: 144 DNA Sequence
        Nucleic Acid Accession #: NM_005806.1
        Coding sequence: 105..1076
                   11
                              21
                                          31
                                                     41
                                                                51
 35
        CCCTGAGGCT TTTCGGAGCG AGCTCCTCAA ATCGCATCCA GATTTTCGGG TCCGAGGGAA
                                                                              60
        GGAGGACCCT GCGAAAGCTG CGACGACTAT CTTCCCCTGG GGCCATGGAC TCGGACGCCA
                                                                             120
        GCCTGGTGTC CAGCCGCCCG TCGTCGCCAG AGCCCGATGA CCTTTTTCTG CCGGCCCGGA
                                                                             180
        GTAAGGGCAG CAGCGGCAGC GCCTTCACTG GGGGCACCGT GTCCTCGTCC ACCCCGAGTG
                                                                             240
        ACTGCCCGCC GGAGCTGAGC GCCGAGCTGC GCGCCGCTAT GGGCTCTGCG GGCGCGCATC
                                                                             300
 40
        CTGGGGACAA GCTAGGAGGC AGTGGCTTCA AGTCGTCCTC GTCCAGCACC TCGTCGTCTA
                                                                             360
        CGTCGTCGGC GGCTGCGTCG TCCACCAAGA AGGACAAGAA GCAAATGACA GAGCCGGAGC
                                                                              420
        TGCAGCAGCT GCGTCTCAAG ATCAACAGCC GCGAGCGCAA GCGCATGCAC GACCTCAACA
        TCGCCATGGA TGGCCTCCGC GAGGTCATGC CGTACGCACA CGGCCCTTCG GTGCGCAAGC
                                                                              540
        TTTCCAAGAT CGCCACGCTG CTGCTGGCGC GCAACTACAT CCTCATGCTC ACCAACTCGC
                                                                              600
 45
        TGGAGGAGAT GAAGCGACTG GTGAGCGAGA TCTACGGGGG CCACCACGCT GGCTTCCACC
                                                                             660
        CGTCGGCCTG CGGCGGCCTG GCGCACTCCG CGCCCCTGCC CGCCGCCACC GCGCACCCGG
                                                                              720
        CAGCAGCAGC GCACGCCGCA CATCACCCCG CGGTGCACCA CCCCATCCTG CCGCCCGCCGCCGCAGCCGC TGCTGCCGCC GCTGCAGCCG CGGCTGTGTC CAGCGCCTCT CTGCCCGGAT
                                                                             840
        CCGGGCTGCC GTCGGTCGGC TCCATCCGTC CACCGCACGG CCTACTCAAG TCTCCGTCTG
                                                                             900
 50
        CTGCCGCGGC CGCCCCGCTG GGGGGGGGGG GCGGCGCAG TGGGGCGAGC GGGGGCTTCC
                                                                              960
        AGCACTGGGG CGGCATGCCC TGCCCCTGCA GCATGTGCCA GGTGCCGCCG CCGCACCACC
                                                                             1020
        ACGTGTCGGC TATGGGCGCC GGCAGCCTGC CGCGCCTCAC CTCCGACGCC AAGTGAGCCG
                                                                             1080
        ACTGGCGCCG GCGCGTTCTG GCGACAGGGG AGCCAGGGGC CGCGGGGAAG CGAGGACTGG
                                                                             1140
        CCTGCGCTGG GCTCGGGAGC TCTGTCGCGA GGAGGGGGGC AGGACCATGG ACTGGGGGTG
                                                                             1200
 55
        GGGCATGGTG GGGATTCCAG CATCTGCGAA CCCAAGCAAT GGGGGCGCCC ACAGAGCAGT
                                                                             1260
        GGGGAGTGAG GGGATGTTCT CTCCGGGACC TGATCGAGCG CTGTCTGGCT TTAACCTGAG
                                                                             1320
        CTGGTCCAGT AGACATCGTT TTATGAAAAG GTACCGCTGT GTGCATTCCT CACTAGAACT
                                                                             1380
        CATCCGACCC CCGACCACCA CCTCCGGGAA AAGATTCTAA AAACTTCTTT CCCTGAGAGC
                                                                             1440
        GTGGCCTGAC TTGCAGACTC GGCTTGGGCA GCACTTCGGG GGGGGAGGGG GTGTTATGGG
                                                                             1500
 60
        AGGGGGACAC ATTGGGGCCT TGCTCCTCTT CCTCCTTTCT TGGCGGGTGG GAGACTCCGG
                                                                             1560
        GTAGCCGCAC TGCAGAAGCA ACAGCCCGAC CGCGCCCTCC AGGGTCGTCC CTGGCCCAAG
                                                                              1620
        GCCAGGGCC ACAAGTTAGT TGGAAGCCGG CGTTCGGTAT CAGAAGCGCT GATGGTCATA
                                                                             1680
        TCCAATCTCA ATATCTGGGT CAATCCACAC CCTCTTAGAA CTGTGGCCGT TCCTCCCTGT
                                                                             1740
        CTCTCGTTGA TTTGGGAGAA TATGGTTTTC TAATAAATCT GTGGATGTTC CTTCTTCAAC
                                                                             1800
 65
        AGTATGAGCA AGTTTATAGA CATTCAGAGT AGAACCACTT GTGGATTGGA ATAACCCAAA
                                                                             1860
        ACTGCCGATT TCAGGGGCGG GTGCATTGTA GTTATTATTT TAAAATAGAA ACTACCCAC
                                                                             1920
        CGACTCATCT TTCCTTCTCT AAGCACAAAG TGATTTGGTT ATTTTGGTAC CTGAGAACGT
                                                                              1980
        AACAGAATTA AAAGGCAGTT GCTGTGGAAA CAGTTTGGGT TATTTGGGGG TTCTGTTGGC
                                                                             2040
        TTTTTAAAAT TTTCTTTTTT GGATGTGTAA ATTTATCAAT GATGAGGTAA GTGCGCAATG
                                                                             2100
--70 ---
        CTAAGCTGTT TGCTCACGTG ACTGCCAGCC CCATCGGAGT CTAAGCCGGC TTTCCTCTAT
                                                                              2160
        TTTGGTTTAT TTTTGCCACG TTTAACACAA ATGGTAAACT CCTCCACGTG CTTCCTGCGT
                                                                             2220
        TCCGTGCAAG CCGCCTCGGC GCTGCCTGCG TTGCAAACTG GGCTTTGTAG CGTCTGCCGT
                                                                              2280
        GTAACACCCT TCCTCTGATC GCACCGCCCC TCGCAGAGAG TGTATCATCT GTTTTATTTT
                                                                              2340
        TGTAAAAACA AAGTGCTAAA TAATATTTAT TACTTGTTTG GTTGCAAAAA CGGAATAAAT
                                                                              2400
 75
        GACTGAGTGT TGAGATTTTA AATAAAATTT AAAGT
                                                                              2435
        Seq ID NO: 145 DNA Sequence
        Nucleic Acid Accession #: XM_045127.3
        Coding sequence: 21..4469
 80
                              21
                   11
        ATGGTGCCGA GACTCTGTGC ATGACCGTGC TGGAAGAAAG CAGCATCTCT CTAATGAGTA
        GCGTCGTAGC AGACTTCTCT GAATTTGAGG AAGATCCTCA AGTATTTAAT ACGCTTTTCC
                                                                             120
        CCTCCAGACC TATCGTCCCA CTTTCTTCTA GATCCATGGA AATCTCAGAG ACGAGTGTTG
                                                                             180
```

707