# Kapitel 14 - Statische elektrische Felder

Johannes Bilk me@talachem.de

## May 8, 2016

## **Contents**

| 14 | Stati | sche Elektrische Felder                              | 2  |
|----|-------|------------------------------------------------------|----|
|    | 14.1  | Elektrische Ladungen                                 | 2  |
|    |       | 14.1.1 Reibungselektrizizät                          | 2  |
|    |       | 14.1.2 Ladung ist eine skalare Größe                 | 3  |
|    |       | 14.1.3 Quarks                                        | 4  |
|    |       | 14.1.4 Entdeckung und Bestimmung der Elementarladung | 5  |
|    | 14.2  | Kräfte zwischen Ladungen und das Coulomb-Gesetz      | 5  |
|    | 14.3  | Potenzielle Energie einer Ladungsverteilung          | 7  |
|    | 14.4  | Erzeugung el. Felder durch Ladungen                  | 8  |
|    |       | 14.4.1 Feld einer Punktladung:                       | 8  |
|    |       | 14.4.2 Feld einer Verteilung von Punktladungen       | 9  |
|    |       | 14.4.3 Leiter im el. Feld und Influenz               | 10 |
|    | 14.5  | Kontinuierliche Ladungsverteilung                    | 11 |
|    |       | Elektrischer Fluss und Satz von Gauß                 | 13 |
|    |       | 14.6.1 Definition:                                   | 13 |
|    |       | 14.6.2 Gauß'scher Satz                               | 14 |
|    |       | 14.6.3 Beispiele                                     | 15 |

#### 14 Statische Elektrische Felder

## 14.1 Elektrische Ladungen

→ Ab dem 17. Jahrhundert: Ursache für "elektrische Phänomene"; "neuartiger Stoff", elektrische Ladung







#### 14.1.1 Reibungselektrizizät

- Zwei Arten von "elektrischen Zuständen" sind erzeugbar:
  - Gleichartige Zustände ⇒ Abstoßung
  - Ungleichartige Zustände ⇒ Anziehung
- Carles Du Fay (1730): positiv/negativ elektrische Ladung
- Benjamin Franklin (1750): Über-/Unterschuss an "elektrischen Fluiden"
- Lichtenberg (1778): Zuordnung der Polariät

Hargummi stab: reiben mit Pelz, Wolle: -Glas, Plexiglas: reiben mit Seide: +

Reibezeug: entgegengesetzte Polarität  $\implies$  Ladungstrennung, nicht etwa Ladungserzeugung.

Grundsätzliches Messprinzip: Elektroskop:



- → Elektrometer → quantitative Messung
- "Löffeln"; d.h. portionsweise Übertragung von Ladungen ist mglich
- Elektropendel:  $\implies$  periodisches Umladen eines "Kugelpendel"

#### 14.1.2 Ladung ist eine skalare Größe

Einheit 1C = 1 Coulomb, SI

- Zu jedem geladenen Elementarteilchen gibt es ein Elementarteilchen mit entgegengesetzter Ladung (→ Ladungssymmetrie)
- Die Gesamtladung eines abgeschlossenen Systems bleibt erhalten (→ Ladungserhaltung)
- Beispiel: Produktion eines  $e^+e^-$ -Paares;  $E_{\gamma} \geqslant 1{,}02~{\rm MeV}$



Nachweis: Blasenkammer im Magnetfeld:

Umkehrung: "Zerstrahlung" von Positronen;  $E = m \cdot c^2$ 

• Ladungträger haben stets eine Masse

• Ladung kann nicht (im Gegensatz zur Masse) in Energie umgewandelt werden, bleibt auch bei Zerfallsprozessen erhalten.

• Quantisierung der Ladung: Alle in der Natur vorkommenden Ladungen sind ganzzahlige Vielfache der Elementarladung:  $e_0 := 1,602 \cdot 10^{-19}C; 1C = 1AS$ 

#### Beispiele von Ladungen

• Neutral:  $\gamma$ ,  $\nu$ , n

• einfach geladen:  $e^-, e^+, p, \bar{p}$ 

• zweifach geladen::  $He_2(2^+, Z:2)$ 

#### 14.1.3 Quarks

Seit 60er Jahre Nukleonen bestehen aus Quarks, diese haben "drittelzahlige

Ladungen"





Up-Quarks: $u: +\frac{2}{3}e_0$ Down-Quarks: $d: -\frac{1}{3}e_0$ Proton: $2u + d: 1 \cdot e_0$ Neutron: $u + 2d: 0 \cdot e_0$ 

Quarks treten immer in 2er- oder 3er- Kombinationen auf.

#### 14.1.4 Entdeckung und Bestimmung der Elementarladung

Robert Andrews Millikan(1868-1953): Öltrpfchenversuch (→ Anfängerpraktikum)

#### Kräfte zwischen Ladungen und das Coulomb-Gesetz

Charles-Augustin de Coulomb (1736-1806)

1785: Messung der Kraft zwischen zwei Ladungen als Funktion des Abstands mit Hilfe einer Torsionswaage



$$\vec{F_{12}} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \frac{\vec{r_{12}}}{|\vec{r_{12}}|} = f \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \hat{r}_{12}$$

F ist definiert durch die Definition der Ladungseinheit:

Internationales Messsystem (SI):  $f = \frac{1}{4\pi\epsilon_0}$ 

$$\epsilon_0 = 8,854 \cdot 10^{-12} \frac{(As)^2}{Nm^2}$$

 $\epsilon_0=8,854\cdot 10^{-12}\frac{(As)^2}{Nm^2}$ ist Dielektrizitätskonste des Vakuums oder elektrische Feldkonstante

 $Q_1 \cdot Q_2 > 0$ : Abstoßung

 $Q_1 \cdot Q_2 < 0$ : Anziehung

#### Coulomb-Kraft

$$\vec{F}_{12} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{r_{12}^2} \cdot \hat{r}_{12}$$

1 Coulomb ist diejenige elektrische Ladung, die eine gleich große Ladung im Abstand von 1m mit der Kraft von 8,9874 · 10<sup>9</sup>N abstößt

5

**Analogie Gravitation** :  $\vec{F} = -\gamma \frac{m_1 \cdot m_2}{r^2} \cdot \hat{r}$ 

Vergleiche Gravitation und Coulombkraft zwischen Elektron und Proton:

$$|\vec{F}_C| = \frac{1}{4\pi\epsilon_0} \cdot \frac{|q_p| \cdot |q_e|}{r^2} = 2, 3 \cdot 10^{-28} \frac{N}{r[m]^2}$$
$$|\vec{F}_G| = \gamma \cdot m_e \cdot m_p = 9, 71 \cdot 10^{-68} \frac{N}{r[m]^2}$$
$$\implies \frac{|F_G|}{|F_C|} = 4, 2 \cdot 10^{-40}$$

#### Wechselwirkung zwischen mehreren Ladungen



Die einzelnen Kräfte überlagern sich ungestört, (ungestörte Superposition)!

Kraft auf

$$Q_3: \vec{F}_3 = \left[ \frac{Q_1 \cdot Q_3}{r_{13}^2} \cdot \hat{r}_{13} + \frac{Q_2 \cdot Q_3}{r_{23}^2} \cdot \hat{r}_{23} \right]$$

#### 14.3 Potenzielle Energie einer Ladungsverteilung

$$\begin{split} W_{12} &= -\frac{1}{4\pi\epsilon_0} \cdot \int_{\infty}^{r} \frac{Q_1 \cdot Q_2}{V^2} \, \mathrm{d}V \\ &= \frac{1}{4\pi\epsilon_0} \Big[ \frac{Q_1 \cdot Q_2}{V} \Big]_{\infty}^{12} = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q_1 \cdot Q_2}{V_{12}} \\ W_{1,2,3} &= \frac{1}{4\pi\epsilon_0} (\frac{Q_1 \cdot Q_3}{r_{13}} + \frac{Q_1 \cdot Q_2}{r_{12}} + \frac{Q_2 \cdot Q_3}{r_{23}}) \end{split}$$

Anzahl an Summanden = Anzahl an Paaren

$$W = \left[\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \frac{Q_i \cdot Q_j}{r_{ij}}\right] \cdot \frac{1}{4\pi\epsilon_0}$$

 $\implies$  Aufsummieren auch unendlicher Ensembles möglich, wenn die Reihe konvergiert.

#### Betrachte Kraft auf Probeladung in homogen geladener Kugel



Für beliebe Räumlichelemente (und damit auch Flächenelemente) gilt:

$$q_1 \propto dA_1 \propto r_1^2$$

$$q_1 \propto dA_1 \propto r_1^2$$

$$q_1 \propto dA_1 \propto r_1^2$$

Geometrie  $\implies \frac{q_1}{q_2} = \frac{r_1^2}{r_2^2}$ 

Annahme: Kraft 
$$\propto \frac{1}{r^n}$$

$$|\vec{F}_1| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot q_1}{r_1^n}$$

$$|\vec{F}_2| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot q_2}{r_2^n}$$

$$|\vec{F}_2| = \frac{1}{4\pi\epsilon_0} \cdot \frac{q \cdot q_2}{r_2^n}$$

Geometrie einsetzen: 
$$\frac{|\vec{F_1}|}{|\vec{F_2}|} = \frac{q_1}{r_1^n} \cdot \frac{r_2^n}{q_2} \stackrel{!}{=} 1 \implies n = 2$$
 Gesamtkraft verschwindet nur wenn  $\parallel \propto \frac{1}{r^2}$ 

#### Erzeugung el. Felder durch Ladungen

#### 14.4.1 Feld einer Punktladung:

$$\vec{F} = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_1 q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}$$

$$= q_1 \cdot \underbrace{\frac{1}{4\pi\epsilon_0} \cdot \frac{q_2}{|\vec{r}_{12}|^2} \cdot \hat{r}_{12}}_{\text{Feld von } q_2}$$

$$= q_1 \vec{E}(\vec{r})$$

- Felder einer Punktladung sind Zentralfelder mit Kugelsymmetrie
- Konvention: Feldlinien führen von positiver zu negativer Ladung



⇒ Punktladungsfelder sind inhomogen!

### 14.4.2 Feld einer Verteilung von Punktladungen

N Ladungen bei  $\vec{r_i}$ 

$$\vec{E}_i(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \frac{q_i}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{\vec{r} - \vec{r_i}}{|\vec{r} - \vec{r_i}|}$$

Ungestörte Superposition:

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \cdot \sum_{i=1}^{N} \frac{q_i}{|\vec{r} - \vec{r_i}|^2} \cdot \frac{\vec{r} - \vec{r_i}}{|\vec{r} - \vec{r_i}|}$$

2 Ladungen, q; -q: Feld eines Dipols



2 Ladungen: q; q



#### Beispiele für "natürliche Dipole":

## 1. Neutrales Atom im homogenen $\vec{E}$ -Feld



#### 2. Polare Molekühle mit permanentem Dipolmoment



### 14.4.3 Leiter im el. Feld und Influenz

Leiter: Ladungen sind <u>frei</u> beweglich Isolator: Ladungen sind ortsfest

## 1. $\vec{E} = 0$ im Inneren des Leiters



falls  $\vec{E} \neq 0$ :  $\vec{F} = q\vec{E}$  verschiebt Ladung bis  $\vec{E} = 0$ !

- 2. Es folgt, sich bei einem Leiter die (Netto-)Ladungen immer an der Oberfläche befinden  $\Rightarrow$  Flächenladungsdichte  $\sigma = \frac{dQ}{dA}$
- 3.  $\vec{E}$  immer  $\perp$  auf Leiteroberfläche



(falls  $\vec{E}_{\parallel} \neq 0$ : Verschiebung der Ladung bis  $\vec{E}_{\parallel} = 0$ !)

**Influenz:** Räumliche Ladungstrennung in el. Leitern durch äußeres  $\vec{E}$ -Feld (Kontaktlos!), so dass das Innere des Leiters Feldfrei ist!

#### Kontinuierliche Ladungsverteilung 14.5

Betrachte Ladungsverteilung über endliches Volumen  $V = \int_{V} dV$ 



Ladungsdichte:  $\rho(\vec{r}) = \frac{dq(\vec{r})}{dV}$ Gesamtladung:  $Q = \int_V dq = \int_V \rho(\vec{r}) dV$ 

Flächenladungsdichte:  $\sigma = \frac{dq}{dA}$ 

Integral über geschlossene Oberfläche:  $A = \oint dA$ 

1-dim Ladungsdichte:  $\lambda = \frac{dq}{dl}$  Länge  $l = \int_{l} dl'$  für (\*) :

$$\text{Länge } l = \int_{l} dl'$$

$$\begin{split} d\vec{E}(\vec{r}) &= \frac{dq}{|\vec{r} - \vec{r}'|^3} \cdot (\vec{r} - \vec{r}') \cdot \frac{1}{4\pi\epsilon_0} \\ \vec{E}(\vec{r}) &= \frac{1}{4\pi\epsilon_0} \int_V dV \left\{ \frac{dq}{dV} \cdot \frac{(\vec{r} - \vec{r}')}{|\vec{r} - \vec{r}'|^3} \right\} \\ &= \frac{1}{4\pi\epsilon_0} \int_V dV \left\{ \frac{\rho(\vec{r})}{|\vec{r} - \vec{r}'|^3} \cdot (\vec{r} - \vec{r}') \right\} \end{split}$$

Beispiel: unendlich langer geladener Draht



$$\begin{split} \frac{dq}{dx} &= \lambda \text{ (lin. Ladungsdichte)} \\ \text{Symmetrie: } E_x &= E_z = 0 \\ E_y &= E \cdot \cos(\theta) \\ dE_y &= |d\vec{E}| \cdot \cos(\theta) \\ dE_y &= \frac{1}{4\pi\epsilon_0} \cdot 2 \cdot \frac{\lambda \cdot dx}{r^2(\theta)} \cdot \cos(\theta) \qquad ; \cos(\theta) = \frac{a}{r} \\ &= \frac{1}{2\pi\epsilon_0} \cdot \lambda \cdot dx \cdot \underline{\cos^2 \theta} \cdot \cos \theta \end{split}$$

$$\tan \theta = \frac{x}{a} \Rightarrow \frac{dx}{d\theta} = \frac{a}{\cos^2 \theta} \qquad \Rightarrow dx = \frac{a}{\cos^2 \theta} d\theta$$

$$\Rightarrow dE_y = \frac{1}{2\pi\epsilon_0} \cdot \lambda \cdot \frac{\cos \theta}{a} \cdot d\theta$$

$$E_y = \frac{1}{2\pi\epsilon_0} \cdot \frac{\lambda}{a} \cdot \int_0^{\pi/2} \cos \theta d\theta = \frac{1}{2\pi\epsilon_0} \cdot \frac{\lambda}{a}$$

#### 14.6 Elektrischer Fluss und Satz von Gauß



Zusammenhang zwischen "Elektrischem Fluss" (Feldliniendurchsatz) durch eine Oberfläche und der eingeschlossenen Ladung.

⇒ Allgemeinere Formulierung des Coulomb-Gesetzes

#### 14.6.1 Definition:

Fluss  $\phi$  eines Vektorfeldes  $\vec{E}$  durch einen Fläche A:



d: Richtung \(\perp \) Flche(nachAuen)
RichtungderFlchennormale

Betrag dA: Größe der Fläche

#### Spezialfälle

 $\vec{E}$  – homogen  $\vec{E} \cdot d\vec{A} = E \cdot dA \cdot \cos \alpha$ 

$$\bullet \ \alpha = 0 : \vec{E} \parallel d\vec{A} : \vec{E} \cdot d\vec{A} = E \cdot dA$$

• 
$$\alpha = 90 : \vec{E} \perp d\vec{A} : \vec{E} \cdot d\vec{A} = 0$$

#### 14.6.2 Gauß'scher Satz

$$\phi = \oint\limits_{\substack{A \ geschlossen}} ec{E} \cdot dec{A} = rac{Qeingeschlossen}{\epsilon_0}$$

Der elektrische Fluss durch einer belieben geschlossenen Oberfläche hängt weder von der Form der Oberfläche, noch von der Ladungsverteilung  $\varrho(\vec{r})$  ab, sondern nur von der eingeschlossenen Gesamtladung Q.

## Mathematisch gilt:

[

Die Ladungsverteilung im Raum ist die lokale Quelle ( $\varrho(\vec{r})>0$ ) bzw. Senke ( $\varrho(\vec{r})<0$ ) des elektrischen Feldes.

## 14.6.3 Beispiele

(i)Feld einer Punktladung



- Geeignete Wahl von A: Kugeloberfläche
- Symmetrie:  $\vec{E}(\vec{r}) = E(r) \cdot \hat{e}_r$
- $\bullet \implies \vec{E} \parallel d\vec{A}$

Gauß:  $\phi \stackrel{!}{=} \frac{Q}{\epsilon_0} = E(r) \cdot 4\pi r^2 \implies \underline{E(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2}}$ 

[

(ii) Ladung auf beliebig geformten Leitern



 $\phi = \oint_A \vec{E} d\vec{A} = \frac{Q}{\epsilon_0} = 0$ 

(iii) Feld einer <u>leitenden</u> Kugel mit Ladung Q: (Ladung auf der Oberfläche)



$$\vec{E}(\vec{r}) = E(\vec{r}) \cdot \hat{e}_r$$

$$r < R : E = 0$$

$$r > R : \phi = \oint_A E(r) dA = E(r) \cdot 4\pi r^2$$

$$\phi = \frac{Q}{\epsilon_0}$$

$$\Longrightarrow E(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{r^2}$$



(iv) Feld einer homogen geladenen Kugel



$$\rho = \frac{Q}{\frac{4}{3}\pi R^3} \text{ für } r < R \rho = 0 \text{ für } r > R$$

$$\frac{r < R}{\phi} = \oint_A \vec{E} \cdot d\vec{A} = E(r) \cdot 4\pi r^2 = \frac{Q_{in}}{\epsilon_0}$$

$$Q_{in} = Q \cdot \frac{r^3}{R^3}$$

$$\implies E(r) = \frac{1}{4\pi\epsilon_0} \cdot \frac{Q}{R^3} \cdot r$$



⇒ Von Außen ist nicht feststellbar, ob die geladene Kugel massiv oder hohl ist (Leiter oder homogen geladener Isolator)!

(v) Unendlich lnager homogen geladener Draht



Zylinderkoordinaten:

$$\begin{split} \lambda &= \frac{dq}{dL} = (\frac{Q}{R}) \leftarrow \text{als endliche lange l} \\ \vec{E}(\vec{r}) &= \vec{E}(r) = E(r) \cdot \hat{e}_r \\ \phi &= \oint_A \vec{E} \cdot d\vec{A} = \oint_A E(r) dA = E(r) \oint_A da = E(r) \cdot 2\pi r l \\ \phi &= \frac{Q_{ges}}{\epsilon_0} \implies E(r) = \frac{Q_{ges}}{2\pi \epsilon_0 \cdot r l} \\ E(r) &= \frac{\lambda}{2\pi \epsilon_0} \cdot \frac{1}{r} \end{split}$$

(vi) Unendlich langer, homogen geladener leitender Zylinder



(vii) Feld einer homogen geladener unendliche leitenden Ebene



$$\sigma = \frac{Q}{A}$$

$$\phi = \oint_A \vec{E} \cdot d\vec{A} = \int_{A,stirn} \vec{E} \cdot d\vec{A} + \int_{A,mantel} \vec{E} \cdot d\vec{A}$$

$$\vec{E}$$
-Ebene
$$\implies \text{Beitrag Über Mantelfläche verschwindet } (d\vec{A} \perp \vec{E})$$

$$\phi = \oint_A \vec{E} d\vec{A} = 2 \cdot E \cdot A_{stirn} \stackrel{G.S.}{=} \frac{Q}{\epsilon_0}$$

$$\implies E = \frac{\sigma}{2\epsilon_0}$$