



### Table of contents

| Problem Statement                                                                                                                                                                                                                                                      | 3           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Project Objective                                                                                                                                                                                                                                                      | 4           |
| 1.1 Outlier Treatment and inferences                                                                                                                                                                                                                                   | 4           |
| 1.1.1 Information on dataset                                                                                                                                                                                                                                           | 4           |
| 1.1.2 Treatment for outliers                                                                                                                                                                                                                                           | 6           |
| 1.1.3 Summary of the dataset                                                                                                                                                                                                                                           | 6           |
| 1.1.4 Inference                                                                                                                                                                                                                                                        | 6           |
| 1.2 Missing Value Treatment                                                                                                                                                                                                                                            | 7           |
| Inspecting Data is scaled and preprocessed before imputating missing data using KNN Impute. Imputation for completing missing values using k-Nearest Neighbors. Instead the missing value ignored so we have interpolated with the other financial side-by given data. | es can't be |
| Dropping columns with more than 30% missing values                                                                                                                                                                                                                     | 9           |
| 1.3 Transform Target variable into 0 and 1                                                                                                                                                                                                                             | 10          |
| 1.4 Univariate & Bivariate analysis with proper interpretation. (You may choose to include on variables which were significant in the model building)                                                                                                                  | •           |
| 1.4.1 Univariate Analysis                                                                                                                                                                                                                                              | 11          |
| 1.4.1 Bivariate Analysis()                                                                                                                                                                                                                                             | 15          |
| 1.4.2 Univariate Analysis                                                                                                                                                                                                                                              | 16          |
| 1.4.3 Inspect possible correlations between independent variables                                                                                                                                                                                                      | 17          |
| 1.5 Train Test Split                                                                                                                                                                                                                                                   | 18          |
| 1.6 Build Logistic Regression Model (using statsmodel library) on most important variables on Dataset and choose the optimum cutoff. Also showcase your model building approach                                                                                        |             |
| 1.6.1 Model using logistic regression                                                                                                                                                                                                                                  | 19          |
| 1.6.2 Inference:                                                                                                                                                                                                                                                       | 20          |
| 1.7 Validate the Model on Test Dataset and state the performance matrices. Also state interp from the model.                                                                                                                                                           |             |
| Inference                                                                                                                                                                                                                                                              | 21          |
| Interpretation:                                                                                                                                                                                                                                                        | 22          |



#### LIST OF FIGURE

| Figure 1 Boxplot for outliers                                                   | 5  |
|---------------------------------------------------------------------------------|----|
| Figure 2 Heat map to visually inspect the missing values                        | 7  |
| Figure 3 Univariate analysis with histplot                                      | 14 |
| Figure 4 NTPC has highest networth followed by the Bharti Airtel                | 15 |
| Figure 5 Highest debt Company is Bank of Baroda Second Highest is Bank of india | 15 |
| Figure 6 Highest debt Company is Bank of Baroda Second Highest is Bank of india | 15 |
| Figure 7 Univariate analysis - heatmap                                          | 16 |
| Figure 8 Correlation heat map                                                   | 17 |
| Figure 9 Confusion matrix on the training and test data                         | 21 |
|                                                                                 |    |
|                                                                                 |    |
|                                                                                 |    |
| LIST OF TABLES                                                                  |    |

| Table 1 Information of the dataset head.                        |    |
|-----------------------------------------------------------------|----|
| able 2 Data Dictionary                                          |    |
| Table 3 Column names and data type                              |    |
|                                                                 |    |
| Table 4 Summary f the datasetet(First few rows)                 |    |
| Table 5 Imputed all the rows missing values                     |    |
| Cable 6 Table showing outliers with null value counts           | 8  |
| able 7 Values check after inmputation                           |    |
| Table 8 Transformed targer variable 0 and 1                     | 1( |
| able 9 Table showing train and test split                       | 18 |
| able 10 Classification matrix report for training and test data | 2  |

### **Problem Statement**

Businesses or companies can fall prey to default if they are not able to keep up their debt obligations. Defaults will lead to a lower credit rating for the company which in turn reduces its chances of getting credit in the future and may have to pay higher interests on existing debts as well as any new obligations. From an investor's point of view, he would want to invest in a company if it is capable of handling its financial obligations, can grow quickly, and is able to manage the growth scale.



A balance sheet is a financial statement of a company that provides a snapshot of what a company owns, owes, and the amount invested by the shareholders. Thus, it is an important tool that helps evaluate the performance of a business.

Data that is available includes information from the financial statement of the companies for the previous year (2015). Also, information about the Networth of the company in the following year (2016) is provided which can be used to drive the labeled field.

### **Project Objective**

- Understanding the structure of dataset.
- Exploratory Data analysis
- Graphical exploration
- Prediction using various machine learning models
- Insights from the dataset

### 1.1 Outlier Treatment and inferences

### 1.1.1 Information on dataset

As given in the dataset the column names are modified.



Table 1 Information of the dataset head.

|   | # | Field Name         | Description                                                        | New Field Name     |
|---|---|--------------------|--------------------------------------------------------------------|--------------------|
| 0 | 1 | Co_Code            | Company Code                                                       | Co_Code            |
| 1 | 2 | Co_Name            | Company Name                                                       | Co_Name            |
| 2 | 3 | Networth Next Year | Value of a company as on 2016 - Next Year(diff                     | Networth_Next_Year |
| 3 | 4 | Equity Paid Up     | Amount that has been received by the company $t_{\cdot\cdot\cdot}$ | Equity_Paid_Up     |
| 4 | 5 | Networth           | Value of a company as on 2015 - Current Year                       | Networth           |
|   |   |                    |                                                                    |                    |

**Table 2 Data Dictionary** 

| n     | A | 1   | _ 1 |
|-------|---|-----|-----|
| Power | A | nec | III |

|     | eIndex: 3586 entries, 0 to 3585 |                |         | 34 |                                | 3586 non-null | f |
|-----|---------------------------------|----------------|---------|----|--------------------------------|---------------|---|
| ata | columns (total 67 columns):     |                |         | 31 |                                | 3586 non-null |   |
| #   | Column                          | Non-Null Count | Dtype   | 32 |                                | 3586 non-null |   |
|     |                                 |                |         | 33 |                                | 3586 non-null |   |
| 0   | Co Code                         | 3586 non-null  | int64   | 34 |                                | 3586 non-null |   |
| 1   | Co Name                         | 3586 non-null  | object  | 35 |                                | 3586 non-null |   |
| 2   | Networth Next Year              | 3586 non-null  | float64 | 36 |                                | 3586 non-null |   |
| 3   | Equity Paid Up                  | 3586 non-null  | float64 | 37 |                                | 3586 non-null |   |
| 4   | Networth                        | 3586 non-null  | float64 | 38 |                                | 3586 non-null |   |
| 5   | Capital Employed                | 3586 non-null  | float64 | 35 |                                | 3586 non-null |   |
| 6   | Total Debt                      | 3586 non-null  | float64 | 46 |                                | 3586 non-null |   |
| 7   | Gross Block                     | 3586 non-null  | float64 | 4: |                                | 3586 non-null |   |
|     | <del>-</del>                    | 3586 non-null  | float64 | 42 | _                              | 3586 non-null |   |
| 8   | Net_Working_Capital             |                |         | 43 |                                | 3586 non-null |   |
| 9   | Curr_Assets                     | 3586 non-null  | float64 | 44 |                                | 3586 non-null |   |
| 10  | Curr_Liab_and_Prov              | 3586 non-null  | float64 | 45 |                                | 3586 non-null |   |
| 11  | Total_Assets_to_Liab            | 3586 non-null  | float64 | 46 |                                | 3586 non-null |   |
| 12  | Gross_Sales                     | 3586 non-null  | float64 | 47 |                                | 3586 non-null |   |
| 13  | Net_Sales                       | 3586 non-null  | float64 | 48 |                                | 3586 non-null |   |
| 14  | Other_Income                    | 3586 non-null  | float64 | 49 |                                | 3586 non-null |   |
| 15  | Value_Of_Output                 | 3586 non-null  | float64 | 56 |                                | 3586 non-null |   |
| 16  | Cost_of_Prod                    | 3586 non-null  | float64 | 5: |                                | 3585 non-null |   |
| 17  | Selling_Cost                    | 3586 non-null  | float64 | 52 |                                | 3585 non-null |   |
| 18  | PBIDT                           | 3586 non-null  | float64 | 5  |                                | 3585 non-null |   |
| 19  | PBDT                            | 3586 non-null  | float64 | 54 |                                | 3585 non-null |   |
| 20  | PBIT                            | 3586 non-null  | float64 | 59 |                                |               |   |
| 21  | PBT                             | 3586 non-null  | float64 | 56 |                                | 3585 non-null | 1 |
| 22  | PAT                             | 3586 non-null  | float64 | 57 |                                | 3585 non-null |   |
| 23  | Adjusted PAT                    | 3586 non-null  | float64 | 58 |                                | 3585 non-null |   |
| 24  | CP CP                           | 3586 non-null  | float64 | 59 |                                | 3585 non-null |   |
| 25  | Rev_earn_in_forex               | 3586 non-null  | float64 | 66 |                                | 3585 non-null |   |
| 26  | Rev_exp_in_forex                | 3586 non-null  | float64 | 6: | · · · · · · ·                  | 3585 non-null |   |
| 27  | Capital exp in forex            | 3586 non-null  | float64 | 63 |                                | 3586 non-null |   |
|     |                                 | 3586 non-null  | float64 | 6: |                                | 3586 non-null |   |
| 28  | Book_Value_Unit_Curr            |                |         | 64 |                                | 3483 non-null |   |
| 29  | Book_Value_Adj_Unit_Curr        | 3582 non-null  | float64 | 65 |                                | 3586 non-null | 1 |
| 30  | Market_Capitalisation           | 3586 non-null  | float64 | 66 | Value_of_Output_to_Gross_Block | 3586 non-null | 1 |

Table 3 Column names and data type

There are 118 missing values. For the Credit risk analysis, missing values are not treated using normal methods mostly imputation methods are used before treating missing, it is important to treat outliers for the analysis.



Figure 1 Boxplot for outliers

In many variables there are negative and positive outliers.



### 1.1.2 Treatment for outliers

As we have various companies financial data and also the outliers are too large in numbers. But these are not actually outliers so in other scenario we have this financial data and the outliers might very well reflect the information which is genuine in the nature. Since data capture for various parameter of companies so we do not trim or Winsorize data.

### 1.1.3 Summary of the dataset

|                      | count  | mean         | std          | min       | 25%       | 50%      | 75%        | max       |
|----------------------|--------|--------------|--------------|-----------|-----------|----------|------------|-----------|
| Co_Code              | 3586.0 | 16065.388734 | 19776.817379 | 4.00      | 3029.2500 | 6077.500 | 24269.5000 | 72493.00  |
| Networth_Next_Year   | 3586.0 | 725.045251   | 4769.681004  | -8021.60  | 3.9850    | 19.015   | 123.8025   | 111729.10 |
| Equity_Paid_Up       | 3586.0 | 62.966584    | 778.761744   | 0.00      | 3.7500    | 8.290    | 19.5175    | 42263.46  |
| Networth             | 3586.0 | 649.746299   | 4091.988792  | -7027.48  | 3.8925    | 18.580   | 117.2975   | 81657.35  |
| Capital_Employed     | 3586.0 | 2799.611054  | 26975.135385 | -1824.75  | 7.6025    | 39.090   | 226.6050   | 714001.25 |
| Total_Debt           | 3586.0 | 1994.823779  | 23852.842748 | -0.72     | 0.0300    | 7.490    | 72.3500    | 652823.81 |
| Gross_Block          | 3586.0 | 594.178829   | 4871.547802  | -41.19    | 0.5700    | 15.870   | 131.8950   | 128477.59 |
| Net_Working_Capital  | 3586.0 | 410.809665   | 6301.218546  | -13162.42 | 0.9425    | 10.145   | 61.1750    | 223257.58 |
| Curr_Assets          | 3586.0 | 1980.349172  | 22577.570829 | -0.91     | 4.0000    | 24.540   | 135.2775   | 721166.00 |
| Curr_Liab_and_Prov   | 3586.0 | 391.992078   | 2875.001831  | -0.23     | 0.7325    | 9.225    | 65.6500    | 83232.98  |
| Total_Assets_to_Liab | 3586.0 | 1778.453751  | 11437.574690 | -4.51     | 10.5550   | 52.010   | 310.5400   | 254737.22 |
| Gross_Sales          | 3586.0 | 1123.738985  | 10603.703837 | -62.59    | 1.4425    | 31.210   | 242.2500   | 474182.94 |
| Net_Sales            | 3586.0 | 1079.702579  | 9996.574173  | -62.59    | 1.4400    | 30.440   | 234.4400   | 443775.16 |
| Other_Income         | 3586.0 | 48.729824    | 426.040665   | -448.72   | 0.0200    | 0.450    | 3.6350     | 14143.40  |
| Value_Of_Output      | 3586.0 | 1077.187292  | 9843.880293  | -119.10   | 1.4125    | 30.895   | 235.8375   | 435559.09 |
| Cost_of_Prod         | 3586.0 | 798.544621   | 9076.702982  | -22.65    | 0.9400    | 25.990   | 189.5500   | 419913.50 |
| Selling_Cost         | 3586.0 | 25.554997    | 194.244488   | 0.00      | 0.0000    | 0.160    | 3.8825     | 5283.91   |
| PBIDT                | 3586.0 | 248.175282   | 1949.593350  | -4855.14  | 0.0400    | 2.045    | 23.5250    | 42059.26  |
| PBDT                 | 3586.0 | 116.268795   | 956.199566   | -5874.53  | 0.0000    | 0.795    | 12.9450    | 23215.00  |
| PBIT                 | 3586.0 | 217.659395   | 1850.972782  | -4812.95  | 0.0000    | 1.150    | 16.6875    | 41402.96  |

Table 4 Summary f the datasetet(First few rows)

### 1.1.4 Inference

- The number of rows (observations) is 3586
- The number of columns (variables) is 67
- Minimum Networth\_Next\_Year (-8021)
- Maximum Networth\_Next\_Year (111729.10)
- Maximum Total Debt 652823.81
- There are no duplicates in the dataset



### 1.2 Missing Value Treatment



Figure 2 Heat map to visually inspect the missing values

Inspecting Data is scaled and preprocessed before imputating missing data using KNN Imputer. Imputation for completing missing values using k-Nearest Neighbors. Instead the missing values can't be ignored so we have interpolated with the other financial side-by given data.



Since the outliers are too large in the number.it will affect the model.but Also given the fact that this is a financial data and the outliers might very well reflect the information which is genuine in nature. Since data captured from different size of companies

| Equity Paid Up            | 448  | ROG_Net_worth_perc                | 747  |
|---------------------------|------|-----------------------------------|------|
| Networth                  | 650  | ROG_Capital_Employed_perc         | 572  |
| Capital Employed          | 596  | ROG_Gross_Block_perc              | 830  |
| Total Debt                | 583  | ROG_Gross_Sales_perc              | 671  |
| Gross Block               | 540  | ROG_Net_Sales_perc                | 667  |
| Net_Working_Capital       | 625  | ROG_Cost_of_Prod_perc             | 675  |
| Curr_Assets               | 577  | ROG_Total_Assets_perc             | 483  |
| Curr Liab and Prov        | 581  | ROG_PBIDT_perc                    | 611  |
| Total_Assets_to_Liab      | 574  | ROG_PBDT_perc                     | 628  |
| Gross_Sales               | 554  | ROG_PBIT_perc                     | 616  |
| Net_Sales                 | 556  | ROG_PBT_perc                      | 611  |
| Other_Income              | 603  | ROG_PAT_perc                      | 598  |
| Value_Of_Output           | 559  |                                   | 637  |
| Cost_of_Prod              | 560  | ROG_Rev_earn_in_forex_perc        | 1317 |
| Selling_Cost              | 605  | ROG_Rev_exp_in_forex_perc         | 1615 |
| PBIDT                     | 671  | ROG_Market_Capitalisation_perc    | 497  |
| PBDT                      | 815  |                                   | 566  |
| PBIT                      | 720  |                                   | 496  |
| PBT                       | 941  | Inventory_Ratio_Latest            | 376  |
| PAT                       | 959  | Debtors_Ratio_Latest              | 372  |
| Adjusted_PAT              | 954  | Total_Asset_Turnover_Ratio_Latest | 202  |
| CP                        | 816  | Interest_Cover_Ratio_Latest       | 726  |
| Rev_earn_in_forex         | 738  | PBIDTM_perc_Latest                | 596  |
| Rev_exp_in_forex          | 693  | PBITM_perc_Latest                 | 718  |
| Capital_exp_in_forex      | 694  | PBDTM_perc_Latest                 | 696  |
| Book_Value_Unit_Curr      | 485  | CPM_perc_Latest                   | 721  |
| Book_Value_Adj_Unit_Curr  | 490  | APATM_perc_Latest                 | 934  |
| Market_Capitalisation     | 639  | Debtors_Vel_Days                  | 398  |
| CEPS_annualised_Unit_Curr | 602  |                                   | 391  |
| Cash_Flow_From_Opr        | 801  | Inventory_Vel_Days                | 365  |
| Cash_Flow_From_Inv        | 876  | Value_of_Output_to_Total_Assets   | 150  |
| Cash_Flow_From_Fin        | 1005 | Value_of_Output_to_Gross_Block    | 481  |
| ROG_Net_Worth_perc        | 747  | dtype: int64                      |      |

Table 6 Table showing outliers with null value counts

Although most outliers have nan values which is a missing data which should be treated with missing data imputation method so here KNN imputation method is used.



Dropping columns with more than 30% missing values.



Table 7 Values check after immputation

Data is scaled and preprocessed before imputating missing data using KNN Imputer.Imputation for completing missing values using k-Nearest Neighbors.



### 1.3 Transform Target variable into 0 and 1

We have converted next year net-worth into target variable which has binary variable 0 and 1 also considered as responsible variable. All independent variables except default(dependent) variable also known as predictors or independent.





Table 8 Transformed targer variable 0 and 1



# 1.4 Univariate & Bivariate analysis with proper interpretation. (You may choose to include only those variables which were significant in the model building)

### 1.4.1 Univariate Analysis



### greatlearning Power Ahead



### greatlearning Power Ahead







Figure 3 Univariate analysis with histplot

None of the variables show perfect normal distribution. Most of the variables have left positive skewness only six variable right negative skewness.



### 1.4.1 Bivariate Analysis()



Figure 4 NTPC has highest networth followed by the Bharti Airtel



Figure 6 Highest debt Company is Bank of Baroda Second Highest is Bank of india



Figure 5 Highest debt Company is Bank of Baroda Second Highest is Bank of india



### 1.4.2 Univariate Analysis



Figure 7 Univariate analysis - heatmap

- We can observe that some of the variables are highly positive correlated and some are slightly negative correlated.
- Given variables are highly correlated. Lighter the color higher the relationship is.





### 1.4.3 Inspect possible correlations between independent variables



Figure 8 Correlation heat map

Some of the variable is high positively correlated and some of the variables are slightly negative correlated.



### 1.5 Train Test Split

Splitting the data into train and test sets for the models, test train split ration is as given 67:33 and also have to use random state = 42.

```
The training set for the independent variables: (2402, 62)
The training set for the dependent variable: (2402,)
The test set for the independent variables: (1184, 62)
The test set for the dependent variable: (1184,)
```

Table 9 Table showing train and test split



## 1.6 Build Logistic Regression Model (using statsmodel library) on most important variables on Train Dataset and choose the optimum cutoff. Also showcase your model building approach.

### 1.6.1 Model using logistic regression

**Logistic regression using StatsModel:-** Statsmodel is a Python module that provides classes and functions for the estimation of many different statistical models, as well as for conducting statistical tests, and statistical data exploration.

First we have to define set of dependent(y) and independent(x) variables. In case the dependent variable as non numeric form, it is first converted to numeric using dummies. Statsmodel provide a Logit() function for performing logistic regression. The Logit function accepts y and x as parameter and returns the Logit object which then fitted into the data.



**Table 10Logit Regression results** 



### 1.6.2 Inference:

- ➤ The sign of a regression coefficient tells you whether there is a positive or negative correlation between each independent variable the dependent variable. A positive coefficient indicates that as the value of the independent variable increases, the mean of the dependent variable also tends to increase. A negative coefficient suggests that as the independent variable increases, the dependent variable tends to decrease.
- ➤ Gross\_Block, Curr\_Liab\_and\_Prov, Total\_Assets\_to\_Liab, Cost\_of\_Prod, ROG\_Capital\_Employed\_perc has positive coefficients. When these features increase Credit Score also increases.
- ➤ Other features have negative coefficients. When these features increases then Credit score is decreases.
- ➤ The parameter estimates table summarizes the effect of each predictor. The ratio of the coefficient to its standard error, squared, equals the Wald statistic. If the significance level of the Wald statistic is small (less than 0.05) then the parameter is useful to the model. The predictors and coefficient values shown in the last step are used by the procedure to make predictions.



## 1.7 Validate the Model on Test Dataset and state the performance matrices. Also state interpretation from the model.

### Confusion matrix on the training and test data:-



| support | f1-score | recall | precision | P            |
|---------|----------|--------|-----------|--------------|
| 2157    | 0.97     | 0.99   | 0.96      | 0.0          |
| 245     | 0.72     | 0.61   | 0.87      | 1.0          |
| 2402    | 0.95     |        |           | accuracy     |
| 2402    | 0.85     | 0.80   | 0.91      | macro avg    |
| 2402    | 0.95     | 0.95   | 0.95      | weighted avg |



|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.96      | 0.98   | 0.97     | 1041    |
| 1.0          | 0.84      | 0.69   | 0.75     | 143     |
| accuracy     |           |        | 0.95     | 1184    |
| macro avg    | 0.90      | 0.83   | 0.86     | 1184    |
| weighted avg | 0.94      | 0.95   | 0.94     | 1184    |

Figure 9 Confusion matrix on the training and test data

Table 11 Classification matrix report for training and test data

### **Inference**

Training data:

True Negative: 2135 False Positive: 22

False Negative: 95 True Positive: 150

Test data:

True Negative: 1022 False Positive: 19

False Negative: 45 True Positive: 98



#### **Train Data:**

➤ Accuracy: 95%

➤ precision: 87%

➤ recall : 61%

➤ f1:72%

### **Test Data:**

➤ Accuracy: 95%

➤ precision: 84%

➤ recall : 69%

➤ f1:75%

### Interpretation:-

Credit report analysis provides information on the credit worthiness of a potential customer The model with selected features will predict a relatively high probability of default. Next step is to integrate with classification model where defaulters further classified into "very high risk", "high risk", "medium risk", "low risk", etc. Later embed these models in Web and Database Integration.