Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання РГР

з дисципліни: «Вакуумна та плазмова електроніка»

Виконавець:		
Студент 3-го курсу	(підпис)	В.О. Тололо
Перевірив:	(підпис)	О.М. Бевза

Завдання

- 1. Дивимось на графіки побудовані для п.3 лабораторної роботи.
 - 1.1 Визначити частоту червоної границі фотоефекту.
 - 1.2 Необхідно визначити напругу запирання для кожного елементу при інтенсивності 50 % та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - 1.3 Побудувати графіки залежностей напруги запирання від частоти (у вас вказані довжини хвиль, отже їх треба перерахувати в частоту) для випадку інтенсивності 50% та 100%. Для кожного матеріалу (у кожного свої три матеріала).
 - 1.4 Визначити з цих нових побудованих графіків роботу виходу в точці (будь-якій, назвіть її А) за вашим власним вибором, яка розташована десь посередині отриманого графіку. Для всіх трьох матеріалів. Для обох значень інтенсивності (50% та 100%). Порівняйте отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - 1.5 Розрахувати кінетичну швидкість електронів для точки A для всіх трьох матеріалів.
 - 1.6 Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки. Зробити для трьох ваших матеріалів матеріалів.
 - 1.7 Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).

- 1.8 Зробіть перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.
- 2. Беремо графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Ви вибирали самі три довжини хвилі. У кожного вибрано свій один матеріал. Робимо:
 - 2.1 Побудуйте ваш графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення струму для Інтенсивності 50%.
 - 2.2 Побудуйте самі (ваші припущення) на вашому новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант.
- 3. Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба:
 - 3.1 Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Завдання 1

Частота червоної межі фотоефекту для Na $\approx 0.5 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Zn $\approx 1.1 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Ca $\approx 0.75 \cdot 10^{15}$ Гц

За формулою $v=\frac{c}{\lambda}$ можна знайти частоту наступним чином:

λ , HM	$f \cdot 10^{15}$, Гц
200	1,5
400	0,7
440	0,6
470	0,6

Тепер побудую графіки залежностей напруги запирання від частоти для випадку інтенсивності 50% та 100%, для кожного матеріалу

Na			
$f \cdot 10^{15}$, Гц	U_3 , B		
	50%	100%	
	50%	100%	
0.6	0	0	
0.6	-0.4	-0.4	
0.7	-0.8	-0.6	
1.5	-4	-4.1	

Zn			
$f \cdot 10^{15}$, Гц	U_3 , B		
	50%	100%	
0.6	0	0	
0.6	0	0	
0.7	0	0	
1.5	-1.92	-2.5	

Cu			
$f \cdot 10^{15}$, Гц	U_3 , B		
	50%	100%	
0.6	0	0	
0.6	0	0	
0.7	0	0	
1.5	-6.2	-6.9	

Тепер з побудованих графіків треба визначити роботу виходу в точці A, яка розташована десь посередині отриманих графіків, для всіх трьох матеріалів. $A = h \cdot f$

$$A_{Na-50\%} = 4.140 \text{ eB}$$

 $A_{Na-100\%} = 4.140 \text{ eB}$
 $A_{Zn-50\%} = 4.140 \text{ eB}$
 $A_{Zn-100\%} = 4.554 \text{ eB}$
 $A_{Cu-50\%} = 4.554 \text{ eB}$
 $A_{Cu-100\%} = 4.968 \text{ eB}$

Рахуємо кінетичну швидкість електронів для точки A для всіх трьох матеріалів:

$$v = \sqrt{\frac{2 \cdot e \cdot U_3}{m}} \tag{1}$$

Для Na

$$v = 8,9 \cdot 10^5 \frac{M}{c}$$
 $v = 8,9 \cdot 10^5 \frac{M}{c}$

Для Zn

$$v = 8, 5 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$$
 $v = 8, 6 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$

Для Cu

$$v = 10, 4 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$$
 $v = 10, 6 \cdot 10^5 \, \frac{\text{M}}{\text{c}}$

	Na		Zn		Cu	
	A, eB					
	розраховане	табличне	розраховане	табличне	розразоване	табличне
50%	4.140	2.2	4.140	4	4.554	4.4
100%	4.140	2.2	4.554	$\frac{4}{2}$	4.968	4.4

Для Na 50% похибка становить: $\triangle \approx 1.940; \, \delta = 88.182\%$ Для Na 100% похибка становить: $\triangle \approx 1.940; \, \delta = 88.182\%$

Для Zn похибка становить: $\triangle \approx 0.1; \, \delta = 0.140\%$

Для Си 50% похибка становить: $\triangle \approx 0.154; \delta = 3.500\%$ Для Си 100% похибка становить: $\triangle \approx 0.568; \delta = 12.909\%$

	Na Zn		Cu				
	A, eB						
	розраховане	довідкове	розраховане	довідкове	розраховане	довідкове	
50%	4.140	2.2	4.140	4	4.554	4.4	
100%	4.140		4.140		4.968		
	U_3 , B						
50%	-2.95		-3		-2.3		
100%	-3		-3		-2.4		
	$V, \cdot 10^5 \frac{M}{c}$						
50%	8,9		8,5		10,4		
100%	8,9		8,6		10,6		

Частота червоної межі фотоефекту для $\mathrm{Na}\approx0.53\cdot10^{15}~\Gamma$ ц Частота червоної межі фотоефекту для $\mathrm{Zn}\approx1.125\cdot10^{15}~\Gamma$ ц Частота червоної межі фотоефекту для $\mathrm{Cu}\approx1.25\cdot10^{15}~\Gamma$ ц Довідкові дані взято з: Макс Планк о фотоэффекте, 1919 г.

Завдання 2

Взяв графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Побудував графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм.

Завдання 3

На графіку «Сімейство кривих залежності Енергія(частота)» по осі ігрек на мою думку— це кінетична енергія, це можна зрозуміти якщо прочитати ІІ закон Столетова.