Lemma 0.1. Let $\phi: A \to B$, and suppose that M is a B-module, and that b_1, b_2, \ldots, b_r is an M-sequence. Then $\phi^{-1}(b_1), \phi^{-1}(b_2), \ldots, \phi^{-1}(b_r)$ is also an M-sequence.

Proof.
$$\Box$$

Lemma 0.2. Suppose that A is a Cohen-Macaulay ring. Then A[x] is Cohen-Macaulay as well.

Proof. Let $i:A\to A[x]$ be the injection, and \mathfrak{m} be a maximal ideal of A[x]. Then let $\mathfrak{m}'=i^{-1}(\mathfrak{m})$. Then \mathfrak{m}' is maximal in A as the kernel of the composition

$$A \xrightarrow{i} A[x] \xrightarrow{\pi} A[x]/\mathfrak{m}$$

is given by \mathfrak{m}' , whence $A/\mathfrak{m}'\cong A[x]/\mathfrak{m}$ are both fields.

As $\dim(A[x]) = \dim(A) + 1$, and the length of any regular sequence is bounded by the Krull dimension, it will suffice that there exist a regular sequence in $A_{\mathfrak{m}'}$ of length $\dim(A_{\mathfrak{m}'}) = \dim(A[x]_{\mathfrak{m}}) - 1$.

Let a_1, a_2, \ldots, a_r be a maximal regular sequence in $A[x]_{\mathfrak{m}}$

1