Honors Linear Algebra – Problem Set 8 Solutions

April 4, 2018

Problem 1

1. Consider the big permutation formula for determinants. If we choose an entry from the B block in that formula, then we must also choose an entry from the bottom left block, which is zero. So any term in the permutation formula involving entries from B is zero. The determinant of the block matrix thus is

 $a_{11}a_{22}d_{11}d_{22} - a_{12}a_{21}d_{11}d_{22} - a_{11}a_{22}d_{21}d_{12} + a_{12}a_{21}d_{21}d_{12} = \det A \det D$

2. Let

$$A = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \;\;,\;\; B = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \;\;,\;\; C = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \;\;,\;\; D = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right]$$

We have |A| = |B| = |C| = |D| = 0, and yet

$$\left| \begin{array}{ccc} A & B \\ C & D \end{array} \right| = \left| \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right| = 1$$

Hence

$$\left| \begin{array}{cc} A & B \\ C & D \end{array} \right| \neq |A||D| - |B||C|$$

3. Let us take the same matrices A, B, C, and D as above

$$AD = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] = \left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array} \right] \; , \; \; CB = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \; , \; \; AD - CB = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right]$$

Therefore, $det(AD - CB) = 0 \neq 1 = det M$

Problem 2

As we saw in Lecture 20, if a square matrix A has an inverse A^{-1} , then we can write

$$A^{-1} = \frac{C^T}{\det A}$$

where C is the cofactor matrix.

Consider a matrix A whose cofactors are all zero, and assume A has an inverse. Then the formula says that A^{-1} is the zero matrix. This is clearly impossible: the zero matrix is not invertible. We conclude that A does not have an inverse.

Regarding the second question, let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 1 \end{array} \right]$$

All the cofactors of A are equal to 1. However, A has rank 1, so A is clearly not invertible. Having a cofactor matrix without zero entries does not imply invertibility.

Problem 3

1. The eigenvalues of P are give by solving

$$\begin{vmatrix} \frac{2}{10} - \lambda & \frac{4}{10} & 0\\ \frac{4}{10} & \frac{8}{10} - \lambda & 0\\ 0 & 0 & 1 - \lambda \end{vmatrix} = 0$$

for λ . Using a cofactor expansion, we can rewrite this as

$$\frac{(1-\lambda)}{100} \left[(2-10\lambda)(8-10\lambda) - 16 \right] = 0 \quad \Leftrightarrow \lambda(1-\lambda)^2 = 0$$

The eigenvalues of P are $\lambda_1 = 0$ and $\lambda_2 = 1$.

In general, the eigenvalues of any matrix such that $P^2 = P$ can only be 0 and 1. Indeed, let λ be an eigenvalue of such P, with corresponding eigenvector \mathbf{x} . We have $P\mathbf{x} = \lambda \mathbf{x}$. Now, multiplying this equality by P on the left, we have $P^2\mathbf{x} = \lambda P\mathbf{x} = \lambda^2\mathbf{x}$. Since \mathbf{x} is not the zero vector, it must be that $\lambda^2 = \lambda$. Only $\lambda = 0$ and $\lambda = 1$ satisfy this equality.

2. The eigenvector corresponding to $\lambda_1 = 0$ is in the nullspace of

$$\left[\begin{array}{cccc}
2 & 4 & 0 \\
4 & 8 & 0 \\
0 & 0 & 10
\end{array}\right]$$

After exchanging the second and third rows, the row reduced echelon form of this matrix is

$$\left[\begin{array}{ccc} 1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right]$$

So an eigenvector for $\lambda_1 = 0$ is (-2, 1, 0).

The eigenvectors corresponding to $\lambda_2 = 1$ are in the nullspace of

$$\left[\begin{array}{cccc}
-8 & 4 & 0 \\
4 & -2 & 0 \\
0 & 0 & 0
\end{array} \right]$$

The corresponding row reduced echelon form is

$$\left[
\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\right]$$

So we conclude that two linearly independent eigenvectors for $\lambda_2 = 1$ are (1/2, 1, 0) and (0, 0, 1).

3. (1/2, 1, 0) and (0, 0, 1) are both eigenvectors for the eigenvalue $\lambda_2 = 1$, and so is there sum (1/2, 1, 1), which is an eigenvector with no zero components.

Problem 4

1. A has three distinct eigenvalues, so three linearly independent eigenvectors, which are a basis of \mathbb{R}^3 . The dimension of the subspace spanned by the eigenvector for the eigenvalue $\lambda = 0$ is 1. This is the dimension of its nullspace. So A has rank 2.

2

- 2. $\det(A^T A) = \det(A^T) \det A = (\det A)^2 = 0$ since A is singular (rank 2).
- 3. We cannot say anything about the eigenvalues of A^TA .

4. We know that for any matrix A, the eigenvalues of A^2 are the squares of the eigenvalues of A. In our case, the eigenvalues of A^2 are therefore 0, 9, and 36.

Now, for any matrix B, if the eigenvalues of B are λ_i , the eigenvalues of B+I are λ_i+1 . In our case, we can then say that the eigenvalues of A^2+I are 1, 10, and 37, and A^2+I is invertible.

Finally, for any invertible matrix C, the eigenvalues of C^{-1} are the inverses of the eigenvalues of C. In our case, we can thus conclude that the eigenvalues of $(A^2 + I)^{-1}$ are 1, 1/10, and 1/37.

Problem 5

The eigenvalues of A satisfy $(2-\lambda)^2-1=0 \Leftrightarrow (3-\lambda)(1-\lambda)=0$. So the eigenvalues of A are $\lambda_1=3$ and $\lambda_2=1$.

The eigenvector corresponding to λ_1 is in the nullspace of

$$\left[\begin{array}{cc} -1 & -1 \\ -1 & -1 \end{array}\right]$$

So we may take $\mathbf{x}_1 = (1, -1)$ as an eigenvector.

The eigenvector corresponding to λ_2 is in the nullspace of

$$\left[\begin{array}{cc} 1 & -1 \\ -1 & 1 \end{array}\right]$$

So we may take $\mathbf{x}_2 = (1, 1)$ as an eigenvector.

The eigenvector matrix S thus is

$$S = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right]$$

We have

$$S^{-1} = \frac{1}{2} \left[\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right]$$

Hence, A may be diagonalized as

$$\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix}$$

Therefore,

$$A^{k} = \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3^{k} & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/2 & -1/2 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} (3^{k} + 1)/2 & (1 - 3^{k})/2 \\ (1 - 3^{k})/2 & (3^{k} + 1)/2 \end{bmatrix}$$