Aufgabe 26.

- (a) Da stets $M_{ij} = -M_{ji}$, gilt auf der Hauptdiagonalen ebenso $M_{ii} = -M_{ii} \Rightarrow 0 = -0$. Dementsprechend muss auf der Hauptdiagonalen $M_{ii} = 0$ sein.
- (b) Man muss nur die Werte für j > i speichern, da die Hauptdiagonale immer 0 ist und die andere Seite dieser durch die Forderung $M_{ij} = -M_{ji}$ bekannt sind.

Aufgabe 27.

(a) Es seien die beiden Funktionen min und max definiert mit:

```
  min: DICT -> ELEM
      min(create) = ERROR
      min(insert(E, create)) = E
      min(insert(E, D)) = min<sub>ELEM</sub>(E, min(D))
  max: DICT -> ELEM
      max(create) = ERROR
      max(insert(E, create)) = E
      max(insert(E, D)) = max<sub>ELEM</sub>(E, max(D))
```

(b) Es seien die beiden Funktionen succ und pred definiert mit:

```
• succ: ELEM x DICT -> ELEM succ(E, insert(E, create)) = largestElem succ(E, D) = if isequal<sub>ELEM</sub>(E,min(D)) then min(delete(E,D)) else succ(E,delete(min(D)))
```

```
• pred: ELEM x DICT -> ELEM
pred(E, insert(E, create)) = smallestElem
pred(E, D) = if isequal<sub>ELEM</sub>(E,max(D)) then max(delete(E,D)) else pred(E,delete(max(D)))
```

Aufgabe 28.

Die Laufzeit des Programms ist $n(2b+1) \cdot (2b+1) = \mathcal{O}(nb^2)$.

Aufgabe 29.

(a) Zuerst ist das Array mit $\mathcal{O}(n \log n)$ zu sortieren. Dann sucht man für jedes Element binär nach einem Partner-Element $(\mathcal{O}(n \log n))$ mit values[i]+values[j] = sum. Da alle Werte in values paarweise verschieden sind, enthält das Ergebnis auch keine Duplikate.

Aufgabe 30.

Alexander Neuwirth (439218) Leonhard Segger (440145) Jonathan Sigrist (441760)

Informatik II (SS2017) Übungsgruppe: Fr. 08-10, SR217 Blatt 8

• $f_3 = n^2$

• $f_4 = \log^2 n$

(b) Die Funktionen $f(n) = \log_2(n^n) = n \cdot \log_2 n$ und $g(n) = n^2 \log_2 n$ werden im Grenzfall $\lim_{n \to \infty} \frac{f}{g}(n) = \lim_{n \to \infty} \frac{1}{n} = 0 \Rightarrow f = \mathcal{O}(g)$. Das wurde bereits in Aufgabe 14 b) gezeigt.

(c) $f = n \log_4 n = n \frac{\log_2 n}{\log_2 4} = \frac{1}{2} n \log_2 n$ und $g = n \log_2 n$. Da $f = c \cdot g$ mit $c = \frac{1}{2}$ gilt $f \in \Omega(g)$.

(d) Sei $g = \log_2 n$. Dann $\exists c > 0, n_0 \forall n > n_0 | f(n) \le c \cdot g(n)$ mit $n_0 = 42$ und c = 1, also $\forall n > 42 | f(n) = g(n)$ und somit $f \in \mathcal{O}(g)$.

Seite: 2 von 2