Reprodukcja przykład

Załóżmy, że mamy 3 osobniki. Prawdopodobieństwo wyboru osobnika w zależności od wartości funkcji

oceny q i metody reprodukcji pokazano w tabeli:

q	sel. ruletkowa	sel. turniejowa
0,01	0,52	0,56
0,09	0,48	0,33
0,90	0,00	0,11

Idea mutacji

Generacja punktu z otoczenia punktu bieżącego, tak aby punkty bliskie były bardziej prawdopodobne

niż te dalekie.

Najcześciej stosuje się mutację gaussowską, czyli do aktualnej wartości x dodaje się wektor liczb losowych z rozkładu normalnego, przeskalowany przez σ , nazywane dalej siłą mutacji: $\mathbf{x} = \mathbf{x} + \sigma \cdot \mathcal{N}(0,1)$.

Krzyżowanie

"Niech osobnik potomny ma cechy rodziców" – wygenerować punkt "pośredni" – nie zawsze się da. Tu z krzyżowania powstaje 1 potomek.

- Osobniki rozpatruje się kolejno, jeśli ma wystąpić krzyżowanie to losuje się partnera (z powtórzeniami)
- Krzyżowania wymieniające część cech przepisujemy do dziecka od jednego rodzica, a część od drugiego.
- Krzyżowania uśredniające na cechach rodziców wykonujemy uśrednianie.
- Krzyżowanie nie jest niezbędne do działania algorytmu ewolucyjnego.
- Osobniki wybrane w reprodukcji poddawane są krzyżowaniu z pewnym prawdopodobieństwem p_c , które to jest parametrem algorytmu.

Krzyżowania wymieniające

Krzyżowanie jednopunktowe. Wybieramy miejsce rozcięcia. Potomek 1 ma kod rodzica 1 od początku do

Wylosowane miejsce rozcięc

wybranego miejsca, a dalej ma kod rodzica 2. Potomek 2 dostaje resztę materiału genetycznego.

Rysunek 1: Krzyżowania wymieniające – krzyżowanie równomierne. Dla każdego genu losujemy liczbę $\mathcal{U}(0,1)$. Jeśli wyszło mniej niż p_e (parametr operacji krzyżowania) to bierzemy gen od rodzica 1. Gen pochodzi od rodzica 2 w przeciwnym przypadku.

Sukcesja

- generacyjna $P_{t+1} = M$,
- elitarna $P_{t+1} = \{k \text{ najlepszych z } P(t)\} \cup M \setminus \{k \text{ najgorszych z tego połączonego zbioru }\},$

Eksploracja vs eksploatacja

- Poprzez promowanie lepszych osobników algorytmy ewolucyjne podążają w kierunku lepszych rozwiązań.
- Zdolność poprawiania średniej wartości przystosowania osobników w populacji nazywa się naciskiem selektywnym.
- Eksploracja to zdolność znajdywania innych niż bieżące ekstremów lokalnych (przeszukiwanie całej przestrzeni).

Rysunek 2: Krzyżowanie równomierne. Wszystkie kombinacje genów są osiągalne.

Rysunek 3: Krzyżowanie uśredniające w wariancie podstawowym to ważone uśrednianie z losowymi współczynnikami (wagami): $k_{t,j}[i] = w_{t,j} \cdot R_{t,r1}[i] + (1 - w_{t,j}) \cdot R_{t,r2}[i]$, gdzie i to numer współrzędnej (genu), j to indeks osobnika, a w jest losowane z $\mathcal{U}(0,1)$.

Rysunek 4: W wyniku krzyżowania uśredniającego w wariancie podstawowym otrzymujemy punkty leżące na odcinku łączącym rodziców.

Rodzic 1	0.053	-1.893	0.062	0.0759
wagi	0.285	0.039	0.934	0.497
1				
Rodzic 2	0.194	-0.299	0.631	0.328
Potomek	0.154	-0.361	0.099	0.203

Rysunek 5: Krzyżowanie uśredniające w wariancie rozszerzonym wprowadza niezależne wagi dla każdej współrzędnej (genu) i: $k_{t,j}[i] = w_{t,j}[i] \cdot R_{t,r1}[i] + (1 - w_{t,j}[i]) \cdot R_{t,r2}[i]$

Rysunek 6: W wyniku krzyżowania uśredniającego w wariancie rozszerzonym możemy otrzymać wszystkie punkty będące wnętrzem hiperprostopadłościanu

- **Eksploatacja** zdolność do jak najdokładniejszego zlokalizowania ekstremum (przeszukiwanie fragmentu przestrzeni w pobliżu domniemanego optimum).
- Duży nacisk selektywny zwiększa zdolności eksploatacyjne kosztem eksploracyjnych.
- Zbyt mały nacisk selektywny zwiększa zdolności eksploracyjne, ale prowadzi do zbyt słabych zdolności eksploracyjnych.
- Potrzebny jest kompromis.

Elementy algorytmu kształtujące "kompromis"

- 1. Reprodukcja,
- 2. Sukcesja,
- 3. Krzyżowanie,
- 4. Mutacja.

Konfiguracja algorytmu na początek

- Selekcja turniejowa
- Sukcesja elitarna z elitą o rozmiarze 1
- Bez krzyżowania, każdy osobnik podlega mutacji
- Mutacja wielowymiarowym rozkładem normalnym: $\mathbf{x} = \mathbf{x} + \sigma \cdot \mathcal{N}(0, 1)$
- Rozmiar populacji: 20
- Liczba iteracji ≥ 500

Mutacja gaussowska $\sigma=0.1$

Rysunek 7: Dynamika prostego algorytmu ewolucyjnego. (Normalnie nie możemy sobie popatrzeć na wykres funkcji celu) Przykładowy problem: 3 optima, tu wyjątkowo maksymalizacja. Ustawiono "słabą" siłę mutacji.

• Mutacja gaussowska $\sigma = 0.55$

Rysunek 8: Ustawiono "średnią" siłę mutacji.

Mutacja gaussowska $\sigma=5$

Rysunek 9: Ustawiono "dużą" siłę mutacji.

Główne wady klasycznego algorytmu ewolucyjnego

- Konieczność doboru szeregu parametrów: rozmiar populacji, siła mutacji, prawdopodobieństwo krzyżowania.
- Wybór jednego z wielu komponentów: metody reprodukcji, sukcesji, mutacji, krzyżowania.

Algorytmy ewolucyjne

Obecnie uznaje się, że algorytm genetyczny Hollanda i algorytm ewolucyjny należą do ogólniejszej grupy, zwanej algorytmami ewolucyjnymi. Do algorytmów ewolucyjnych zalicza się wszystkie algorytmy inspirowane lub kojarzone z procesem ewolucji, w tym:

- Programowanie Genetyczne (Cramera, 1985; Koza 1992) ewolucja "programów".
- Programowanie Ewolucyjne (1958, Friedberg; 1964, Fogel) odkrywanie gramatyki nieznanego języka, automaty skończone.
- Strategie Ewolucyjne (1965; Bienert, Rechenberg, Schwefel).

Algorytmy ewolucyjne - podsumowanie

- Algorytm ewolucyjny to schemat działania (szablon) przedstawiony na poprzednim pseudokodzie. Można go skonkretyzować na wiele sposobów, np. można zrobić jego wersję z mutacją Gaussowską i sukcesją elitarną.
- Algorytmy ewolucyjne to duża rodzina metod należąca do rodziny metaheurystyk.

Algorytmy ewolucyjne – podsumowanie

Dlaczego zdobyły popularność?

- Nośna metafora (osobnik, populacja, ewolucja).
- Łatwość zapamiętania i implementacji.
- Dobre wyniki.

Strategie ewolucyjne

- Wczesne lata 60 (Rechenberg, Schwefel).
- Rozwiązywali problemy inżynierskie, np. projektowanie skrzydła.
- Początkowo zajmowali się stochastycznym algorytmem wspinaczkowym (losowy sąsiad, akceptacja jeśli nie gorszy).
- Z tego, po dodaniu mechanizmu adaptacji zasięgu kroku, stworzono algorytm zwany dziś Strategią Ewolucyjną (1+1) (ES(1+1)).

Strategia ES(1+1). Jeden osobnik, jeden potomek

```
Data: q(x), \hat{x}^*, \sigma, a, t_{max}
       Result: \hat{x}^*, \hat{o}^*
  ı begin
             \begin{aligned} t &\leftarrow 1 \\ l_s &\leftarrow 0 \\ \hat{o}^* &\leftarrow q(\hat{x}^*) \end{aligned}
              while t \le t_{max} do
 | m \leftarrow \hat{x}^* + \sigma \cdot \mathcal{N}(0, 1) 
                       o_m \leftarrow q(m)
                           o_m \leq \hat{o}^* then
                            l_s \leftarrow l_s + 1

\hat{o}^* \leftarrow o_m
 10
                             \hat{x}^* \leftarrow m
11
12
                      if t \% a = 0 then
                            if l_s/a > 1/5 then \sigma \leftarrow 1, 22 \cdot \sigma
 14
 15
                             if l_s/a < 1/5 then
 17
 18
                              \sigma \leftarrow 0.82 \cdot \sigma
                             end
 19
21
                      end
                      t \leftarrow t + 1
22
23
              end
24 end
```

Strategie ewolucyjne

Strategia (1+1)

- Jest to pierwszy algorytm z samoczynną adaptacją zasięgu mutacji.
- Reguła 1/5 sukcesu powstała na podstawie rozważań teoretycznych dla funkcji kwadratowej.
- Parametry 1,219512 i 0,82 dobrano eksperymentalnie.

Rysunek 10: Silna mutacja to mała szansa trafienia w interesujący obszar, słaba mutacja to mały krok

Największa średnia wartość różnicy $q(\mathbf{x},t) - q(\mathbf{x},t+1)$ jest osiągana na ogół wtedy, kiedy odsetek potomków lepszych od swoich rodziców jest na poziomie 1/5.

Strategie ewolucyjne

Strategia ta ma niewielką odporność na minima lokalne dlatego szukano lepszych strategii.

Strategia $ES(\mu + \lambda)$

Populacja bazowa ma μ osobników a potomna λ osobników.

```
Result: \hat{x}^*, \hat{o}^*
 1 \ t \leftarrow 0
 \mathbf{z} \ o \leftarrow \operatorname{ocena}(q, P_0)
 \hat{x}^*, \hat{o}^* \leftarrow \text{znajd\'z najlepszego}(P_0, o)
 4 while nie spełnione kryterium stopu(t, t_{max}, P_t, o) do
          R \leftarrow wylosuj \lambda osobników z powtórzeniami( P_t, \lambda )
         M \leftarrow \text{krzyżowanie i mutacja}(R, \sigma)
         o_m \leftarrow \text{ocena}(q, M)
          x_t^*, o_t^* \leftarrow \text{znajd\'z najlepszego}(M, o_m)
         if o_t^* < \hat{o}^* then
               \hat{x}^* \leftarrow x_t^*
10
11
12
          P_{t+1}, o \leftarrow \mu najlepszych z P_t \cup M wraz z ich ocenami
13
14
         t \leftarrow t + 1
15 end
```

Data: $q(x), P_0, \mu, \lambda, \sigma, t_{max}$

Strategie ewolucyjne

Strategia $ES(\mu + \lambda)$

- Osobnik zawiera 2 chromosomy. Ten dodatkowy zawiera wartości σ używane do mutacji.
- W pierwszej wersji nie było krzyżowania, obecnie najczęściej stosuje się uśrednianie z losową wagą (sigma też).
- Mutacja ma 3 etapy. Dla każdego osobnika:
 - 1. $a = \mathcal{N}(0,1)$; $b_i = \mathcal{N}(0,1)$, $i \in 1..n$, gdzie n to liczba cech osobnika.
 - 2. $\sigma_i \leftarrow \sigma_i \exp(\tau' a + \tau b_i)$, gdzie $\tau = \frac{1}{\sqrt{2n}}$, a $\tau' = \frac{1}{\sqrt{2\sqrt{n}}}$ Wartości τ wyprowadzono dla modelu sferycznego i potwierdzono eksperymentalnie dla innych f. testowych.
 - 3. $M_i = K_i + \sigma_i \mathcal{N}(0,1)$, gdzie K to wynik krzyżowania.

Rysunek 11: Przez co mnożymy σ_i ? Na wykresie 5000 próbek, problem o wymiarowości 10.

Rysunek 12: Zmiana w czasie średniej wartości σ . Optymalizacja 30 wymiarowej funkcji Ackleya.

Strategie ewolucyjne

Strategia $ES(\mu + \lambda)$

- Przykładowe $\mu = 20$, $\lambda = 7 * \mu$,
- Strategia elitarna,
- Dobry osobnik mający zbyt mały lub zbyt duży zasięg mutacji blokuje miejsce i "ciągnie" do ekstremów lokalnych.

Strategie ewolucyjne

Strategia $ES(\mu, \lambda)$

- Od $\mathrm{ES}(\mu + \lambda)$ różni się tylko tym, że nowa populacja potomna tworzona jest tylko na podstawie λ osobników potomnych.
- Strategia nieelitarna.

Strategie ewolucyjne

Cechy strategii ewolucyjnych:

- Reprodukcja czysto losowa brak nacisku selektywnego.
- Sukcesja deterministyczna z naciskiem selektywnym.

Algorytmy ewolucyjne

Jak zwiększyć szansę znalezienia optimum globalnego?

• Uruchomić algorytm wielokrotnie z losowymi punktami startowymi.

Algorytmy ewolucyjne

Wymienione algorytmy trzeba rozumieć, z tego wynika, że trzeba umieć odpowiadać na pytania typu:

- Czy klasyczny algorytm ewolucyjny będzie działał jeżeli populacja początkowa składała się będzie z kopii pewnego osobnika spełniającego ograniczenia?
- Jaka jest spodziewana różnica w wynikach tego samego algorytmu, jeśli raz był uruchomiony z populacją losową, a za drugim razem z populacją składającą się z kopii pewnego osobnika?
- Jaki wpływ na działanie algorytmu ma zasieg mutacji?
- Co by było jakbyśmy chcieli prawdopodobieństwo sukcesu w ES(1+1) stabilizować na 0,5?
- Jaki wpływ na działanie algorytmu ma zwiększanie rozmiaru elity w sukcesji elitarnej?
- Jaki wpływ na działanie algorytmu ma zwiększanie rozmiaru populacji?

Algorytmy ewolucyjne

Na co szczególnie zwrócić uwagę:

- Trzeba rozróżniać algorytm ewolucyjny od genetycznego, od strategii ewolucyjnej.
- Należy znać podane pseudokody (ich sens, np. można użyć innych literek do oznaczeń)
- Należy umieć zapisać wskazaną operację w Pythonie (np. krzyżowanie uśredniające, selekcję ruletkową).
- Należy znać metody krzyżowania.