* Probabilidad y estadística

MAT 041, Primer semestre

Francisco Cuevas Pacheco 29 de agosto de 2022

Contenidos

- > Valor Esperado y momentos

Definición (Valor Esperado)

Sea X una variable aleatoria $g:\mathbb{R}\to\mathbb{R}$ una función. El valor esperado de g(X) se define como

$$E(g(X)) = \begin{cases} \sum g(x)f_X(x) & (caso \ discreto) \\ \\ \int g(x)f_X(x)dx & (caso \ continuo) \end{cases}$$

donde la suma y la integral se extienden sobre los x en el recorrido de X. Aquí, f_X denota la función de cuantía en el caso discreto y la función de densidad en el caso continuo.

Observación

Note que el valor esperado de g(X) podría ser $\pm \infty$ o no estar definido.

L

Tomando $g(x) = x^k$, donde k es un número natural en la definición anterior, obtenemos el momento de orden k de una variable aleatoria X.

El momento de orden uno se conoce como valor esperado y representa el valor promedio de la variable aleatoria.

Definición (Esperanza)

La esperanza de una variable aleatoria X se define como

$$E(X) = \begin{cases} \sum x \cdot f_X(x) & (caso \ discreto) \\ \int x \cdot f_X(x) dx & (caso \ continuo) \end{cases}$$

,

Tomando $g(x) = [x - E(X)]^2$ en la definición general, obtenemos la varianza de X, la cual captura el nivel de dispersión de la variable aleatoria.

Definición (Varianza)

La varianza de una variable aleatoria X es una cantidad no-negativa que se define como $var(X) = E([X - E(X)]^2)$

$$= \begin{cases} \sum [x - E(X)]^2 f_X(x) & (caso \ discreto) \\ \\ \int [x - E(X)]^2 f_X(x) dx & (caso \ continuo) \end{cases}$$

Observación

Notar que si $\mathbb{E}[X] = 0$ entonces $\text{var}(X) = E(X^2)$. Por lo que el momento de segundo orden contiene la información sobre la variabilidad de la variable aleatoria X.

Observación

La varianza siempre es no negativa (Verifíquelo).

3

Propiedades

Sean a y b constantes y X una variable aleatoria. Entonces, las siguientes propiedades se desprenden directamente desde la definición:

- ★ E(a) = a
- * E(aX + b) = aE(X) + b
- \star var(a) = 0
- \star var $(aX + b) = a^2 \text{var}(X)$

Fórmula alternativa para la varianza

Con las propiedades anteriores se puede probar que:

$$var(X) = E(X^2) - E(X)^2$$

En efecto, usando la notación $\mu = E(X)$ y las propiedades anteriores, tenemos que $var(X) = E([X - \mu]^2)$

$$= E(X^2 - 2\mu X + \mu^2)$$

$$= E(X^2) - 2\mu E(X) + \mu^2$$

$$= E(X^2) - 2\mu^2 + \mu^2$$

$$= E(X^2) - \mu^2$$

Sea X una variable aleatoria con recorrido $\{1,2,3,4,5,6\}$, tal que

$$P(X = j) = \frac{1}{6}, \quad j = 1, \dots, 6.$$

Calcule E(X) y var(X).

Solución: La esperanza está dada por

$$E(X) = \sum_{j=1}^{6} j \cdot P(X = j) = \sum_{j=1}^{6} j \cdot \frac{1}{6} = \frac{1}{6} \sum_{j=1}^{6} j = \frac{7}{2}$$

En la última igualdad hemos usado la identidad conocida:

$$\sum_{j=1}^{n} j = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

6

Solución (continuación): Para obtener la varianza, utilizamos la fórmula alternativa.

Debemos calcular $E(X^2)$. En efecto,

$$E(X^2) = \sum_{i=1}^{6} j^2 \cdot P(X=j) = \sum_{i=1}^{6} j^2 \cdot \frac{1}{6} = \frac{1}{6} \sum_{i=1}^{6} j^2 = \frac{91}{6}$$

En la última igualdad hemos usado la identidad conocida:

$$\sum_{j=1}^{n} j^{2} = 1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

Finalmente, concluímos que

$$var(X) = E(X^2) - E(X)^2 = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{35}{12}$$

7

Se lanza dos veces un dado tradicional de 6 caras. Sea X la suma de ambos lanzamientos.

- (a) Determine el recorrido de X.
- (b) Determine la función de cuantía de X.
- (c) Calcule P(X < 6) y $P(|X 5| \le 2)$.
- (d) Calcule E(X) y var(X).

Solución:

.

$$rec(X) = 2, 3, ..., 11, 12$$

¢

X	2	3	4	5	6	7	8	9	10	11	12
f(x)	1 36	<u>2</u> 36	3/36	4 36	<u>5</u> 36	<u>6</u> 36	<u>5</u> 36	4 36	3 36	2 36	$\frac{1}{36}$

* $P(X < 6) = P(X \le 5) = 10/36$

$$P(|X - 5| < 2) = P(-2 < X - 5 < 2) = P(4 \le X \le 6) = 12/36 = 1/3$$

★ E[X] = 7; V[X] = 5.83

Sea X una variable aleatoria con función de densidad

$$f_X(x) = \begin{cases} 2/x^3 & \text{si } x \ge 1\\ 0 & \text{si } x < 1 \end{cases}$$

Calcule E(X) y var(X).

Solución: La esperanza es

$$E(X) = \int_{1}^{\infty} x \cdot \frac{2}{x^{3}} dx = 2 \int_{1}^{\infty} \frac{1}{x^{2}} dx = -\frac{2}{x} \Big|_{1}^{\infty} = 2$$

Por otro lado, la varianza es infinita ya que

$$E(X^2) = \int_1^\infty x^2 \cdot \frac{2}{x^3} dx = 2 \int_1^\infty \frac{1}{x} dx = 2 \ln(x) \Big|_1^\infty = \infty$$

Problema:

Si transformamos una variable aleatoria por medio de una función conocida, ¿cómo se relaciona la ley de probabilidad de la variable original con la ley de probabilidad de la variable transformada?

- Comenzaremos discutiendo el caso discreto a través de un ejemplo (el caso discreto es sencillo).
- Posteriormente, daremos un resultado general para el caso continuo, conocido como el teorema de cambio de variable, el cual nos permite relacionar las funciones de densidad antes y después de la transformación.

Ejemplo (discreto)

Sea X una variable aleatoria (discreta) con recorrido $rec(X) = \{-1, 0, 1\}$, donde

$$P(X = -1) = 1/4$$
, $P(X = 0) = 1/4$, $P(X = 1) = 1/2$.

* La variable aleatoria Y = X + 1 tiene recorrido $rec(Y) = \{0, 1, 2\}$, donde

$$P(Y = 0) = 1/4$$
, $P(Y = 1) = 1/4$, $P(Y = 2) = 1/2$.

* La variable aleatoria $Y = X^2$ tiene recorrido $rec(Y) = \{0,1\}$, donde

$$P(Y = 0) = 1/4$$
, $P(Y = 1) = 3/4$.

lacktriangledown La variable aleatoria $Y=X^3$ sigue la misma distribución que X.

Teorema (Teorema de Transformación)

Sea X una variable aleatoria continua con función de densidad $f_X(x)$. Definamos

$$Y = g(X),$$

donde g es una función diferenciable e inyectiva. Entonces, la función de densidad de Y está dada por

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dg^{-1}(y)}{dy} \right|,$$

para cada $y \in rec(Y)$.

Demostración: Note que g es invertible y su inversa es una función monótona. Asumamos que su inversa g^{-1} es creciente. Para $y \in rec(Y)$, la función de distribución de Y está dada por

$$F_Y(y) = P(Y \le y)$$

= $P(g(X) \le y)$
= $P(X \le g^{-1}(y))$
= $F_X(g^{-1}(y))$

Derivando a ambos lados de la igualdad obtenemos que

$$f_Y(y) = f_X(g^{-1}(y)) \frac{dg^{-1}(y)}{dy}$$

El caso donde g^{-1} es decreciente es análogo.

Sea X una variable aleatoria con función de densidad

$$f_X(x) = \begin{cases} 0 & \text{si } x \le 0 \\ e^{-x} & \text{si } x > 0 \end{cases}$$

Encuentre la función de densidad de Y = ln(X).

Solución: Claramente, $\operatorname{rec}(Y) = \mathbb{R}$. Sea $y \in \mathbb{R}$, entonces

$$F_Y(y) = P(Y \le y) = P(\ln(X) \le y) = P(X \le e^y) = F_X(e^y).$$

Derivando a ambos lados, obtenemos

$$f_Y(y) = f_X(e^y) \frac{de^y}{dy} = e^{-e^y} e^y, \qquad y \in \mathbb{R}.$$

Sea X una variable aleatoria con función de densidad

$$f_X(x) = \begin{cases} 1 & \text{si } 0 \le x \le 1 \\ 0 & \text{en otro caso} \end{cases}$$

Definimos la variable aleatoria $Y = X^2$.

- (a) Encuentre la función de distribución de X.
- (b) Encuentre la función de densidad de Y.
- (c) Calcule E(Y) y var(Y).

Solución: Notar que, rec(Y) = [0, 1]. Sea $y \in [0, 1]$, entonces

Solución (a):

$$F_X(x) = \int_0^x f_X(s) ds = x \mathbb{I}_{[0,1]}(x)$$

Solución (b):

$$F_Y(y) = P(Y \le y) = P(X^2 \le y) = P(X \le \sqrt{y}) = F_X(\sqrt{y}).$$

Derivando a ambos lados, obtenemos

$$f_Y(y) = f_X(\sqrt{y}) \frac{1}{2\sqrt{y}} = \frac{1}{2\sqrt{y}} \mathbb{I}_{(0,1)}(\sqrt{y}), \qquad y \in (0,1).$$

Solución (c):

El valor esperado es:

$$E[Y] = \int_0^1 \frac{y}{2\sqrt{y}} dy = \int_0^1 \sqrt{y} dy = \frac{2}{3}$$

Para calcular la varianza utilizaremos el segundo momento:

$$E[Y^2] = \int_0^1 \frac{y^2}{2\sqrt{y}} dy = \int_0^1 y^{3/2} dy = \frac{2}{5}$$

Luego, la varianza es

$$V[Y] = E[Y^2] - E[Y]^2 = \frac{2}{5} - \left(\frac{2}{3}\right)^2 = \frac{8}{45}.$$

Ejercicio (Propuesto)

Sea X una variable aleatoria con función de densidad

$$f_X(x) = \frac{1}{2\beta} e^{-\frac{|x-\alpha|}{\beta}}, \quad x \in \mathbb{R},$$

donde $\alpha \in \mathbb{R}$ y $\beta > 0$ son números conocidos.

- (a) Muestre que $E(X) = \alpha$ y $var(X) = 2\beta^2$.
- (b) Calcule $P(X > \alpha)$.
- (c) Encuentre un número z tal que P(X > z) = 1/4.

Ejercicio (Propuesto)

Sea X una variable aleatoria con función de densidad

$$f_X(x) = 6x(x-1), \qquad x \in [0,1],$$

- (a) Encuentre la densidad de la variable aleatoria $Y = X^3$.
- (b) Encuentre el valor esperado y la varianza de Y.
- (c) Calcule $P\left(Y > \frac{1}{8}\right)$.

Ejercicio (Propuesto)

Sea X una variable aleatoria con función de densidad

$$f_X(x)=1, \qquad x\in [0,1],$$

Encuentre la densidad de la variable aleatoria $Y = -\frac{\ln X}{\lambda}$.