Predictive Modeling of IPL Player Salary

Rohit Bhamidipati Springboard Data Science Career Track Capstone 2

Problem Statement

- The Indian Premier League (IPL) is the most viewed and fastest growing league in cricket.
- This has driven salaries for and the number of contracted players upwards.
- In turn, this has driven the need to understand the factors that are most impactful in determining the salary of the player.
- **Project Objective:** Develop a Machine Learning model to predict the player salary based on statistical aggregate features.

Summary of Results

- Strongest determining factor in a player's salary is their previous year's salary.
- Predicting the next-year salary is almost a one variable problem depends on the cutoff.
- The trained models had metrics as follow, and indicate decent model performance.
 - o Batting:
 - Mean Absolute Error: 0.252
 - R^2: 0.691
 - Bowling:
 - Mean Absolute Error: 0.265
 - R^2: 0.653
- A function was developed to predict player salary.
- As the IPL gets older, and more data becomes available, models will become better.

Data Sources

- IPL ball-by-ball data was sourced from Kaggle: IPL ball-by-ball dataset
- General player statistics were sourced from Cricmetric: <u>Player Salary and General Player Statistics</u>

Wrangling and Feature Engineering

- The match data was integrated and filtered with the player data.
- The following features were engineered.
 - o Batters: balls faced, total runs, batting average, strike rate, 50s, 100s, 4s, 6s.
 - Bowlers: balls bowled, total runs, total wickets, bowling average, economy, strike rate, 3-wicket games,
 5-wicket games, dots, 4s, 6s.
- The following features were also considered.
 - Country, Role, Team.
 - o match count, season count, previous year salary.

Exploratory Data Analysis

• Initial explorations of the data yielded the insight that most of the variability in the player salary is determined by the previous year's salary.

Exploratory Data Analysis (contd.)

 PCA revealed that most of the variability is captured by one variable, but the model can be fine-tuned by including more.

Model Selection: Metric

- Mean Absolute Error was chosen as the metric.
- MAE directly measures the average salary prediction error, which aligns with estimating player salaries accurately.
- MAE is less sensitive to outliers compared to other metrics because it treats all errors equally without squaring them.
- MAE is a linear metric, meaning that errors are considered proportionally.

Model Selection: Features and Models

• Various models were tested for their performance against the number of selected features.

Model Selection: Tuning and Evaluation

- For both bowling and batting, Support Vector Regression models with 4 features were chosen.
- The following optimal hyperparameters were found.
 - Batting: 'C' (Regularization parameter) set to 10, 'epsilon' (Epsilon parameter for margin of error) set to 0.01,
 and the 'kernel' chosen as 'linear'.
 - Bowling: 'C' (Regularization parameter) set to 1, 'epsilon' (Epsilon parameter for margin of error) set to 0.01,
 and the 'kernel' chosen as 'linear'.
- These parameter combinations yielded the following metrics.
 - Batting: R^2 score of 0.691, MAE score of 0.252.
 - Bowling: R^2 score of 0.653, and an MAE score of 0.265.
- These metrics indicate that the models have a good level of efficacy in predicting player salary.

Sample Predictions

The following sample predictions were made for some input data in either bowling or batting:

```
sample_bat_data = [
    'Shubman Gill', 'India', 0, 2023, 'Kolkata Knight Riders', 963501.60,
    17, 5, 564, 890, 59.33,
    157.80, 4, 3, 85, 33, 0,
    0
]
sample_bat_salary = predict_salary(sample_bat_data, 'batting')
sample_bat_salary
```

977323.0334347271 483044.7507882039

```
sample_bowl_data = [
    'Umran Malik', 'India', 0, 2022, 'Sunrisers Hyderabad', 481914.00,
    14, 2, 295, 444,
    22, 20.18, 9.03, 13.40, 1,
    1, 20, 20, 40, 0, 0
]

sample_bowl_salary = predict_salary(sample_bowl_data, 'bowling')

sample_bowl_salary
```

Further Questions

- How do player salaries and their determinants vary across different leagues?
- How does player performance in other leagues or international games affect their IPL salary?
- Can the model be refined to make separate predictions for the Mega-auctions (occurring once every four years) and Mini-auctions (occurring every year there is no Mega-auction)?
- How do more advanced models (such as deep learning models or ensemble methods) compare to the current SVR-based approach in terms of predictive power?
- Can NLP models be applied (such as analyzing ESPNcricinfo article sentiment) to account for player "hype" in predicting player salary?

Conclusion

- **Project Objective:** Develop a Machine Learning model to predict the player salary based on statistical aggregate features.
- Most of the variability in the player salary is determined by the previous year's salary.
- Mean Absolute Error was chosen as the metric.
- For both bowling and batting, Support Vector Regression models with 4 features were chosen.
 - Batting: R^2 score of 0.691, MAE score of 0.252.
 - o Bowling: R^2 score of 0.653, and an MAE score of 0.265.
- These metrics indicate that the models have a good level of efficacy in predicting player salary.
- Salary for two sample players was predicted. Can be applied to other players provided their IPL statistics.
- More data would reveal more interactions- such as between mega/mini auctions and player salary.