Due at the beginning of class on 27 February 2024

- Your answers should be neatly written and logically organized.
- You may collaborate on solving the problems, but the solutions you turn in should be your own.
- You may use any resource you find online (or elsewhere), but you must cite any resource you use.

Reading: [Mal23, Sections 2.1, 2.2, 2.3, 2.4, and 2.5].

- (1) Eilenberg-MacLane spectra are characterized by their homotopy groups: if any other spectrum X satisfies $\pi_i X = 0$ for $i \neq 0$, then $X \simeq H(\pi_0 X)$.
 - (a) Prove that $H(\mathbb{Z}/p)$ is the cofiber of the map obtained by applying the functor H to p: $\mathbb{Z} \to \mathbb{Z}$.
 - (b) Prove that the rationalization of S is stably equivalent to HQ.
 - (c) Prove that the functor $H: \mathcal{A}b \to \mathcal{S}p$ is a pointed functor in the sense that it sends the zero object in $\mathcal{A}b$ to the zero object in $\mathcal{S}p$.
 - (d) Is H: $Ab \rightarrow ho(Sp)$ an additive functor?
- (2) Let $ev_0: Sp \to Top_*$ be the functor that evaluates a spectrum at its zeroth space: $ev_0 X = X_0$.
 - (a) Prove that Σ^{∞} is left adjoint to ev₀.
 - (b) For any spectrum X, let $\Omega^{\infty}X = \text{ev}_0 \text{ RX}$, where R is the fibrant replacement functor [Mal23, Proposition 2.2.9]. Prove that there is an adjunction Σ^{∞} : ho(\mathfrak{Top}_*) \leftrightarrows : ho(\mathfrak{Sp}): Ω^{∞} .
- (3) Consider the commuting square

$$\begin{array}{ccc}
A & \xrightarrow{f} & B \\
\downarrow & & \downarrow \\
C & \xrightarrow{g} & D
\end{array}$$

- (a) Prove that this square is a pushout if and only if the induced map $cof(f) \rightarrow cof(g)$ is an isomorphism.
- (b) Use this fact to prove that a commuting square of spectra is a homotopy pullback if and only if it is a homotopy pushout. You may use the fact that a sequence of spectra is a cofiber sequence if and only if it is a fiber sequence.
- (4) Let $k \ge 0$. Define the *shift functor* $sh_k : Sp \to Sp$ by $sh_k(X)_n = X_{k+n}$.
 - (a) Prove that there is a natural stable equivalence $\Sigma \simeq sh_1$.
 - (b) Define functors sh_k for k < 0. Prove that $sh_{-1} \simeq \Omega$.

REFERENCES

[Mal23] Cary Malkiewich. Spectra and stable homotopy theory. http://people.math.binghamton.edu/malkiewich/spectra_book_draft.pdf, October 2023.