第十五周作业参考解答及补充

作业

1. (习题 4.3.1)

设 $G = \langle \alpha \rangle$ 是 n 阶循环群, 试证明:

- (1) α^m 是 G 的生成元 (即 $G = \langle \alpha^m \rangle$) $\Leftrightarrow (m, n) = 1$;
- (2) 若 $\mathbb{Z}/n\mathbb{Z}$ 表示模 n 的剩余类环, $U(\mathbb{Z}/n\mathbb{Z})$ 是它的单位群, 则

$$\overline{m} \in U(\mathbb{Z}/n\mathbb{Z}) \Leftrightarrow (m,n) = 1;$$

(3) 设 $\operatorname{Aut}(G)$ 表示群 G 的自同构群, 则 $\operatorname{Aut}(G) \cong U(\mathbb{Z}/n\mathbb{Z})$.

proof

该题在 3.1.6 的注记有提及. 已经指出 $G \in \mathbb{Z}$ 》 所循环群即 $G \cong \mathbb{Z}/n\mathbb{Z}$,因此只需证 (2),而 (2) 是 1.2.9. 因此只证 (3).

对 $\sigma \in \operatorname{Aut}(G)$, 注意到 $\sigma(\overline{m}) = m\sigma(\overline{1})$, 故可以验证映射

$$\operatorname{Aut}(G) \to U(\mathbb{Z}/n\mathbb{Z}), \quad \sigma \mapsto \sigma(\overline{1})$$

是一个群同构. 事实上只需要验证 $(\sigma_1 \circ \sigma_2)(\overline{1}) = \sigma_1(\overline{1}) \cdot \sigma_2(\overline{1})$, 这由群同态的定义得到. 而 $\sigma \in \operatorname{Aut}(G)$ 可逆, 因此 $\sigma(\overline{1}) \in \mathbb{Z}/n\mathbb{Z}$ 关于乘法可逆, 必须有 $\sigma(\overline{1}) \in U(\mathbb{Z}/n\mathbb{Z})$.

2. (习题 4.3.2)

设 F 是一个域, $F^* = F \setminus \{0\}$, 证明乘法群 F^* 的任何有限子群都是循环群.

proof

任意 F^* 的有限子群 G, 设 |G|=n, 那么 $\forall \alpha \in G$, 有 $\alpha^n=1$. 因此 G 是 $U_n(F)$ 的一个子群, 而循环群的子群一定是循环群.

注:

 \mathbb{Z} 的子群一定是 $n\mathbb{Z}$, n 为该子群中最小的自然数. 循环群是 \mathbb{Z} 的一个商群, 因此对同态 $\mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ 用 4.1.3, 那么 $\mathbb{Z}/n\mathbb{Z}$ 的子群是某个 $d\mathbb{Z}$ 的像, 这里要求 $n\mathbb{Z} \subset d\mathbb{Z}$, 即 $d \mid n$. 从而该子群就是 $\langle \overline{d} \rangle$.

3. (习题 4.3.3)

设 K 是特征零的域, L 是多项式 $x^n - 1 \in K[x]$ 的分裂域. 试证明: Gal(L/K) 同构于 $U(\mathbb{Z}/n\mathbb{Z})$ 的一个子群. 特别地, Gal(L/K) 总是交换群.

proof

这是分圆域的一般情形 (3.1.6), 设 $\theta \in L$ 是 n 次本原单位根, 即 $x^n - 1$ 的根, $\sigma \in \operatorname{Gal}(L/K)$. 那么 $x^n - 1 = (x - 1)(x - \theta) \cdots (x - \theta^{n-1})$. 对等式两边以 σ 作用, 就有 $x^n - 1 = (x - 1)(x - \sigma(\theta)) \cdots (x - \sigma(\theta)^{n-1})$. 因此 $\sigma(\theta)$ 也是本原单位根, 则有同态

$$Gal(L/K) \to U(\mathbb{Z}/n\mathbb{Z}) = \langle \theta \rangle, \sigma \mapsto \sigma(\theta)$$

因此 $\operatorname{Gal}(L/K)$ 同构于 $U(\mathbb{Z}/n\mathbb{Z})$ 的一个子群, 即它的像. 而交换群的子群自然是交换的.

注:

若 K 特征零或特征 p 满足 (p,n)=1, 则 x^n-1 是可分多项式, 因此无重根, 此时单位根群 $U_n(K)\cong \mathbb{Z}/n\mathbb{Z}$. 这时有

$$Gal(L/K) = \begin{cases} U(\mathbb{Z}/n\mathbb{Z}) & \theta \notin K, \\ \{id\} & \theta \in K. \end{cases}$$

4. (习题 4.5.1)

设 Aut(X) 表示集合 X 的自同构群. 试证明:

(1) 若 $G \times X \to X$, $(g, x) \mapsto g \cdot x$, 是群 G 在 X 上的一个作用, $\forall g \in G$, 定义映射 $X \xrightarrow{\rho(g)} X$, $x \mapsto g \cdot x$. 则 $\rho(g) \in \operatorname{Aut}(X)$ 且映射

$$\rho: G \to \operatorname{Aut}(X), g \mapsto \rho(g)$$

是群同态.

(2) 若 $\rho: G \to \operatorname{Aut}(X)$ 是一个群同态, 则映射

$$G \times X \to X, (q, x) \mapsto \rho(q)(x)$$

是一个群作用.

proof

(1) 由于 G 是群, g^{-1} 是存在的, 从而这里定义的左乘映射 $\rho(g)$ 自然是一个双射. 只需验证 ρ 是保持乘法的. 对 $\forall x \in X$

$$\rho(g_1g_2)(x) = (g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x) = \rho(g_1)(\rho(g_2)(x)) = (\rho(g_1) \circ \rho(g_2))(x).$$

因此有 $\rho(g_1g_2) = \rho(g_1) \circ \rho(g_2)$ 保持乘法, ρ 是群同态.

(2) 反过来, 若 ρ 是群同态, 则 $\rho(1)=1,$ 即 $\rho(1)=\mathrm{id}_X$. 那么对 $\forall x\in X$ 自然

有
$$1 \cdot x = \rho(1)(x) = id_X(x) = x$$
. 另一方面,

$$(g_1g_2) \cdot x = \rho(g_1g_2)(x) = (\rho(g_1) \circ \rho(g_2))(x) = \rho(g_1)(\rho(g_2)(x)) = g_1 \cdot (g_2 \cdot x)$$

因此 $G \times X \to X$, $(g, x) \mapsto \rho(g)(x)$ 是一个群作用.

注:

这题是群作用的两种表述, 若看成一个群同态 $\rho:G\to \operatorname{Aut}(X)$ 则更贴近表示论的观点. 比如同态

$$\rho: G \to \mathrm{GL}(V), \quad g \mapsto \rho(g)$$

称为群 G 的一个 k-表示 (a k-representation, or a representation over field k). 其中 V 是一个 k-线性空间, GL(V) 为 V 上所有可逆线性变换构成的群.

一般地, 对于范畴 C 中的对象 X, 群 G 在 X 上的作用是群同态

$$\rho: G \to \operatorname{Aut}_{\mathcal{C}}(X)$$

此观点在模的定义中也是类似的, 见 5.1.3, 即一个 R-模实际上是环 R 在 Abel 群 M 上的一个作用.