Formal definition of the given LispKit grammar

```
G = (NT, T, R, S) where:
• NT = {Prog Bind X Exp ExpA E1 T T1 F Y OPA OPM OPP Seq_Exp Seq_Var}
• T = {let letrec in end = and lambda if then else exp_const ( ) + - * / cons car cdr eq leq atom
  var}
• S \in NT, S = Prog
• R \in \wp(NT \times (NT \cup T \cup \{\epsilon\})) is identified by:
Prog ::= let Bind in Exp end | letrec Bind in Exp | \epsilon
Bind ::= var = Exp X
X::= and Bind \mid \epsilon
Exp ::= Prog | İambda (Seq_Var) Exp | ExpA | OPP (Seq_Exp) | if Exp then Exp else Exp
ExpA ::= T \tilde{E}_1
E_1 ::= OPA T E_1 | \epsilon
T ::= F T_1
T_1 ::= OPM F T_1 \mid \epsilon
F ::= var Y | exp_const | (ExpA)
Y ::= (Seq_Exp) \mid \varepsilon
OPA ::= + | -
OPM ::= * | /
OPP ::= cons | car | cdr | eq | leq | atom
Seq_Exp ::= Exp Seq_Exp | ε
Seq_Var ::= var Seq_Var | ε
```

First and Follow for the given LispKit grammar

Non Terminal	First Set	Follow Set
Prog	let letrec) end and then else lambda if let letrec cons car cdr eq leq atom var $\mbox{exp_const}$ (in
Bind	var	in
X	and ε	in
Ехр	lambda if let letrec cons car cdr eq leq atom var exp_const () end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
ЕхрА	var exp_const () end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
E1	+ - ε) end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
Т	var exp_const (+ -) end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
T1	* / ε	+ -) end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
F	var exp_const (* / + -) end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
Y	(ε	* / + -) end and then else lambda if let letrec cons car cdr eq leq atom var exp_const (in
OPA	+ -	var exp_const (
ОРМ	* /	var exp_const (
0PP	cons car cdr eq leq atom	(
Seq_Exp	lambda if let letrec cons car cdr eq leq atom var exp_const (ϵ)
Seq_Var	var ε)