The Optimization of Flight Routes: Enhancing Connectivity and Reducing Cost

Leveraging Optimization Models for Profitability!

Ian Wald

Institute for Computing in Research Santa Fe, New Mexico

August 2, 2024

Context

Research Question

What variables can airlines manipulate to optimize flight routes across the continental United States to enhance efficiency and maximize profitability for its flights?

Flight Route Optimization Problem vs. Standard Optimization

Figure: Example of a Standard Optimized Plot

• Discrete Decision Making:

- All-or-Nothing Routes
- Incremental Adjustments

• Strict Operational Constraints:

- Fixed vs Dynamic Variables
- Levels of Flexibility on Constraints

• Data Integration:

- Simulation vs Functions
- Balanced vs Feasible Solutions

Strategy of the Three Algorithms

Flight Generation

```
flight number: 1
origin: LAX
destination: PHX
passengers: 49
flight path: LAX, None, None, PHX
n stops: 0
FLIGHT RECORD SEPARATOR
flight number: 2
origin: LAX
destination: DEN
passengers: 64
flight_path: LAX, SEA, None, DEN
n stops: 1
 FLIGHT RECORD SEPARATOR
fliaht number: 3
origin: LAX
destination: DFW
passengers: 57
flight path: LAX, MIA, MCI, DFW
n stops: 2
 FLIGHT RECORD SEPARATOR
```

Overview:

- Generate all possible flights from predefined airports
- Base File Pior for Modification

Details:

- Produces flights from one airport (origin) to all other listed airports
- Random number of stops and amount of passengers
- IATA codes with an associated latitude and longitude coordinate.

Figure: Output within generated_flights_new.txt

Haversine Formula

Description:

$$a = \sin^2\left(\frac{\Delta\phi}{2}\right) + \cos(\phi_1) \cdot \cos(\phi_2) \cdot \sin^2\left(\frac{\Delta\lambda}{2}\right)$$
$$c = 2 \cdot \operatorname{atan2}\left(\sqrt{a}, \sqrt{1-a}\right)$$
$$d = R \cdot c$$

where ϕ_1 and ϕ_2 are the latitudes, $\Delta \phi$ and $\Delta \lambda$ are the differences in latitudes and longitudes, and R is the Earth's radius.

Figure: Haversine Formula Visualization

Route Optimization

```
REORDER: 1 310.07875842955656 ['LAX', 'PHX'] 310.07875842955656

ORIG: ['LAX', 'SEA', 'DEN']

OPTIMAL: ['LAX', 'DEN', 'SEA']

REORDER: 2 1720.3251381031996 ['LAX', 'DEN', 'SEA'] 1607.0480523143033

ORIG: ['LAX', 'MIA', 'MCI', 'DFW']

OPTIMAL: ['LAX', 'MCI', 'DFW', 'MIA']

REORDER: 3 3522.954323132324 ['LAX', 'MCI', 'DFW', 'MIA'] 2551.50200846393

REORDER: 4 2135.772293104575 ['LAX', 'JFK'] 2135.772293104575

REORDER: 5 2029.5732616512466 ['LAX', 'MIA'] 2029.5732616512466
```

Figure: Trial Error of the sorting algorithm of three flight routes

Overview:

Details:

- Utilizes Airport IATA Codes as coordinate pair.
- Sorts the distance using the Haversine formula

- Explains the importance and impact of sorting distances
- Enhances route efficiency by minimizing travel distance

Visualization of the Sorting Algorithm: Unsorted Flights

Visualization of Sorting Algorithm: Sorted Flights

Replace Unprofitable Flights

```
REPLACEMENT: Flight 27: DEN, MCI, DFW, MIA -> Flight 76: ABQ, PHX, DFW, MIA
$ -12471.263962290022 -> $ 47914.60656796576
REPLACEMENT: Flight 28: DFW, MIA, LAX, SEA -> Flight 46: MIA, DFW, LAX, SEA
$ -25666.983748255916 -> $ 26609.28941328331
```

Figure: Bad Profitable Flight to Profitable Flight (Net Profits Below Flight Routes).

Overview:

- Remove Unprofitable Routes
- Replace with Nearby Profitable Flights

Details:

- Matched Closest Profitable Paths
- Adhered to Passenger Capacity Limits

Results

Future Work

- Consider passenger boarding and deboarding at intermediate stops.
- Incorporate dynamic ticket pricing based on flight distance.
- Adapt to real-life flight routes with only an origin and a destination, with no intermediate stops.
- Modify Total Passenger Miles also to reflect its contribution to income.
- Integrate weather conditions and no-fly zones into the data analysis.