Láng Csabáné

TESTBŐVÍTÉS, VÉGES TESTEK HIBAJAVÍTÓ KÓDOK

Példák és megoldások

ELTE Budapest 2007-11-26 IK Digitális Könyvtár 3. javított kiadás

Felsőoktatási tankönyv

Lektorálta: Gonda János

 $\ \ \,$ C
sabáné 2006

Tartalomjegyzék

2.	Példák						
	2.1. Testbővítés, véges testek						
		2.1.1.	Testbővítés, véges testek, felbonthatatlan (irreducibilis) polinomok				
		2.1.2.	Elem felírása bázisban				
		2.1.3.	Minimálpolinom, felbontási test				
		2.1.4.	Bővítés foka, véges és algebrai bővítés				
		2.1.5.	Véges test elemeinek összege, szorzata, Vieta-formulák, gyökök és együtthatók közötti összefüggések				
	2.2.	. Hibajavító kódok					
		2.2.1.	Alapfogalmak				
		2.2.2.	Blokk-kódok				
		2.2.3.	Lineáris kód alapfogalmai				
		2.2.4.	Lineáris kód				
		2.2.5.	Hamming-kód				

	3.1.1.	Testbővítés, véges testek, felbonthatatlan (irreducibilis)				
	0.1.1.	polinomok				
	3.1.2.	Elem felírása bázisban				
	3.1.3.	Minimálpolinom, felbontási test				
	3.1.4.	Bővítés foka, véges és algebrai bővítés				
	3.1.5.	Véges test elemeinek összege, szorzata, Vieta-formulák, gyökök és együtthatók közötti összefüggések				
3.2.	Hibaja	bajavító kódok				
	3.2.1.	Alapfogalmak				
	3.2.2.	Blokk-kódok				
	3.2.3.	Lineáris kód alapfogalmai				
	3.2.4.	Lineáris kód				
	3.2.5.	Hamming-kód				

1. Bevezetés

Ez a példatár elsősorban az ELTE Informatikai Kar programtervező informatikus, programtervező matematikus, programozó és informatika tanár szakos hallgatói számára készült. Megkönnyíti a hallgatók önálló tanulását azzal, hogy minden példa részletesen ki van dolgozva.

A 2. fejezetben a példákat soroltuk fel, a 3. fejezetben pedig ezek a példák megoldással együtt szerepelnek.

A példákhoz szükséges elméleti anyag megtalálható Gonda János: Bevezető fejezetek a matematikába III. ELTE TTK, Budapest, 1998 könyvében. A kódelmélet példákhoz szükséges fogalmak rövid összefoglalása a 3.2.1. és a 3.2.3. fejezetben szerepel.

A példák egy része más könyvekből, példatárakból, mások által összeállított feladatsorokból származik. Azok a források, amelyekről tudomásunk van, szerepelnek az *Ajánlott irodalom* fejezetben. A feladatok más része pedig ebben a példatárban jelenik meg először.

Ajánljuk Gonda János: Gyakorlatok és feladatok a Bevezetés a matematikába c. tárgyhoz Polinomok, véges testek, kongruenciák, kódolás ELTE TTK, Budapest, 2001 példatárát is, amelyik mindkét témakörből bőségesen tartalmaz kidolgozott példákat. 1. Bevezetés 5

 ${\bf A}$ könyvben található hibákra, hi
ányosságokra vonatkozó észrevételeket köszönettel fogadjuk.

Budapest, 2006. június

Láng Csabáné

szerző

zslang@compalg.inf.elte.hu

ELTE Informatikai Kar Komputer Algebra Tanszék

1117 Budapest, Pázmány Péter sétány I/C.

2. Példák

2.1. Testbővítés, véges testek

2.1.1. Testbővítés, véges testek, felbonthatatlan (irreducibilis) polinomok

- 2.1-1. Van-e a valós számoknak olyan részteste, amelyet a valós számok minden részteste tartalmaz?
- 2.1-2. Testet alkotnak-e a szokásos műveletekre a következő halmazok?
- a. $T_1 = \left\{ a + b\sqrt[4]{2} \mid a, b \in \mathbb{Q} \right\}$ b. $T_2 = \left\{ a + bi\sqrt{5} \mid a, b \in \mathbb{Q} \right\}$ 2.1-3. Mi a kapcsolat a $\mathbb{Q}(\sqrt{2})$, a $\mathbb{Q}(1 + \sqrt{2})$ és a $\mathbb{Q}(\sqrt{8})$ testek között?
- **2.1-4.** Mely a, b racionális számokra teljesül, hogy $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(a + b\sqrt{2})$?
- 2.1-5. Van-e olyan szám, amellyel bővítve a racionális számok testét, rögtön a $\mathbb{Q}(\sqrt{2},\sqrt{3})$ testet kapjuk?
- **2.1-6.** Felbonthatatlan-e az x^5+5 polinom \mathbb{Z} , \mathbb{Q} , \mathbb{C} , \mathbb{Z}_2 , \mathbb{Z}_3 , illetve \mathbb{Z}_5 felett?
- **2.1-7.** Keressük meg \mathbb{Z}_2 fölött az összes másod-, harmad-, és negyedfokú felbonthatatlan (irreducibilis) polinomot.
- 2.1-8. Igazoljuk, hogy az alábbi polinomok felbonthatatlanok (irreducibilisek) \mathbb{F}_2 felett.

a.
$$x^5 + x^2 + \overline{1}$$
,

b.
$$x^6 + x + \overline{1}$$
,

c.
$$x^7 + x^3 + \overline{1}$$
.

- **2.1-9.** Hány másodfokú normált (1 főegyütthatójú) irreducibilis polinom van egy q elemű testben?
- 2.1-10. Készítsünk 9 elemű testet.
 - a. Adjuk meg a művelettáblákat.
- b. Határozzuk meg az egyes elemek multiplikatív rendjét, keressünk primitív elemeket.
 - c. Határozzuk meg az egyes elemek additív rendjét.
- 2.1-11. Készítsünk 4 elemű testet.
 - a. Adjuk meg a művelettáblákat.
- b. Határozzuk meg az egyes elemek multiplikatív rendjét, keressünk primitív elemeket.

2.1-12.

- a. Bizonyítsuk be, hogy az $f(x) = x^3 + x + \overline{1} \in \mathbb{Z}_5[x]$ polinom irreducibilis \mathbb{Z}_5 felett.
- b. Hány eleme van a $\mathbb{Z}_5[x]/\overline{f}$ maradékosztálygyűrűnek (testnek), ahol \overline{f} az f többszöröseiből álló ideál? Adjunk meg egy reprezentánsrendszert.

2.1-13.

- a. Bizonyítsuk be, hogy az $f(x) = x^2 + x + \overline{1} \in \mathbb{Z}_5[x]$ polinom irreducibilis \mathbb{Z}_5 felett.
- b. Hány eleme van a $\mathbb{Z}_5[x]/\overline{f}$ maradékosztálygyűrűnek (testnek), ahol \overline{f} az f többszöröseiből álló ideál? Adjunk meg egy reprezentánsrendszert.

2.1-14.

- a. Igazoljuk, hogy $f(x) = x^3 + x + \overline{2}$ reducibilis \mathbb{Z}_7 felett.
- b. Hány eleme van a $\mathbb{Z}_7[x]/\overline{f}$ maradékosztálygyűrűnek (\overline{f} az f polinom többszöröseiből álló ideál)? Adjunk meg egy reprezentánsrendszert.
- c. Mutassuk meg, hogy a $\mathbb{Z}_7[x]/\overline{f}$ maradékosztálygyűrű tartalmaz nullosztót.

2.1.2. Elem felírása bázisban

2.1-15. Legyen $u \in \mathbb{C}$ a \mathbb{Q} feletti $x^3 - 2x + 2$ polinom egyik gyöke. Lássuk be,

8 2. Példák

hogy a polinom $\mathbb Q$ felett irreducibilis. Írjuk fel $\mathbb Q(u)\mid \mathbb Q\mid \{1,\ u,\ u^2\}$ bázisában a következő elemeket:

a.
$$u^7$$
 b. u^{-1} c. $u^4 + u^{-2}$

2.1-16. Legyen $u \in \mathbb{C}$ az $x^3 - 6x^2 + 9x + 3$ \mathbb{Q} felett irreducibilis polinom gyöke. Fejezzük ki $\mathbb{Q}(u) \mid \mathbb{Q} = \{1, u, u^2\}$ bázisában a következő elemeket:

a.
$$3u^5 - 2u$$
 b. $\frac{1}{1+u}$

2.1.3. Minimálpolinom, felbontási test

2.1-17. Határozzuk meg $\sqrt{2-\sqrt[3]{2}}$ minimálpolinomját \mathbb{Q} felett.

2.1-18. Mutassuk meg, hogy

$$\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}$$

egész szám.

2.1-19. Határozzuk meg az $(x^2+1)(x^2-2x+1)$ polinom felbontási testét $\mathbb Q$ felett.

2.1-20. $\mathbb{Q}(\sqrt[3]{2})$ megegyezik-e $\sqrt[3]{2}$ minimálpolinomjának a felbontási testével?

2.1-21. Van-e racionális gyöke az $f(x) = x^3 - x^2 - x - 2$ polinomnak? Mi az f(x) felbontási teste \mathbb{Q} felett?

2.1-22. Bizonyítsuk be, hogy ha $\alpha \in \mathbb{C}$ megoldása a $10x^3 - 105x^2 + 84x + 210 = 0$ racionális együtthatós egyenletnek, és valamely K testre fennáll, hogy $\mathbb{Q}(\alpha)|K$ és $K|\mathbb{Q}$, akkor $K=\mathbb{Q}(\alpha)$ vagy $K=\mathbb{Q}$.

2.1-23. Legyen $K = \mathbb{F}_q$, és f(x) K fölötti irreducibilis n-edfokú polinom. Lássuk be, hogy

$$f(x)|x^{q^n} - x.$$

 $(\mathbb{F}_q \text{ a } q \text{ elemű testet jelöli.})$

2.1-24. Legyen $K = \mathbb{F}_q$, f(x) K fölötti irreducibilis n-edfokú polinom, és legyen α gyöke f-nek. Lássuk be, hogy K-t α -val bővítve megkapjuk f K fölötti felbontási testét. (Más szóval lássuk be, hogy ha f egyik gyöke a bővített véges testben van, akkor f mindegyik gyöke benne van.) (\mathbb{F}_q a q elemű testet jelöli.)

Megjegyzés. 0 karakterisztikájú testben ez általában nem igaz (lásd a 20. példát).

2.1.4. Bővítés foka, véges és algebrai bővítés

2.1-25. A következő bővítések közül melyik véges és melyik algebrai? (A az algebrai számok halmaza)

a. $\mathbb{C}|\mathbb{R}$

b. $\mathbb{Q}(\sqrt{5})|\mathbb{Q}$ c. $A|\mathbb{Q}$ d. $A|\mathbb{Q}(\sqrt{5})$ e. $\mathbb{R}|\mathbb{Q}(\pi)$

2.1-26. Mennyi a $\mathbb{Q}(\pi)|\mathbb{Q}(\pi^2)$ testbővítés foka?

2.1-27. Határozzuk meg a $T|\mathbb{Q}$ testbővítés fokát, ahol T az alábbi. Mi a bővítő elem minimálpolinomja Q fölött? Adjunk meg egy bázist.

a. $\mathbb{Q}(\sqrt{7})$

b. $\mathbb{Q}(i\sqrt{5})$

c. $\mathbb{Q}(1+i\sqrt{3})$

d. $\mathbb{Q}(i+\sqrt{5})$

e. $\mathbb{Q}(u+i\sqrt{v}), u,v\in\mathbb{Q},\sqrt{v}\not\in\mathbb{Q}$

2.1-28. Határozzuk meg a $T|\mathbb{Q}$ testbővítés fokát, ahol T az alábbi. Adjunk meg egy bázist.

a. $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ **b.** $\mathbb{Q}(i, \sqrt{8})$

2.1.5. Véges test elemeinek összege, szorzata, Vieta-formulák, győkök és együtthatók közötti összefüggések

2.1-29. Bizonyítsuk be a Wilson-tételt: $(p-1)! \equiv -1 \pmod{p}$, ha p prím.

2.1-30. Mennyi valamely véges test nem nulla elemeinek a szorzata?

2.1-31. Véges testben mi az elemek számának paritása?

Vieta-formulák, gyökök és együtthatók közötti összefüggések

Legyen R egységelemes integritási tartomány, és tegyük fel, hogy az

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 \in R[x]$$

10 2. Példák

n-edfokú polinom – multiplicitással együtt vett – n gyöke mind R-ben van. Legyenek ezek a gyökök $c_1,\ c_2,\ \ldots,\ c_n$. Ekkor

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 =$$

$$= a_n (x - c_1)(x - c_2) \cdots (x - c_n) =$$

$$= a_n (x^n - (c_1 + c_2 + \dots + c_n) x^{n-1} +$$

$$+ (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n) x^{n-2} +$$

$$\vdots$$

$$+ (-1)^n (c_1 \cdot c_2 \cdots c_n)$$

amiből

$$\frac{a_{n-1}}{a_n} = -(c_1 + c_2 + \dots + c_n)
\frac{a_{n-2}}{a_n} = (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n)
\vdots
\frac{a_0}{a_n} = (-1)^n (c_1 \cdot c_2 \cdots c_n)$$

2.1-32. Legyen L véges test, $|L|=q^k$. Számítsuk ki a következő összeget:

$$\sum_{l \in L} l.$$

2.1-33. Legyen L véges test, $|L| = q^k$. Jelölje L^* az L multiplikatív csoportját. Számítsuk ki a következő szorzatot:

$$\prod_{l \in L^*} l.$$

(Lásd a 30. példát is.)

2.2. Hibajavító kódok

A feladatok általában bináris kódokra vonatkoznak, vagyis olyanokra, amelyek esetén az S alaphalmaz a $\{0,1\}$ halmaz. Néhány feladat általánosabban van megfogalmazva, ezekben az S alaphalmaz tetszőleges nem üres halmaz.

2.2.1. Alapfogalmak

A részleteket lásd a megoldásnál.

2.2.2. Blokk-kódok

2.2-1. Tegyük fel, hogy az üzenetek bináris jelsorozatok, vagyis az $S=\{0,1\}$ halmaz elemeiből épülnek fel. Rendeljünk hozzá a kettő hosszú üzenetekhez öt hosszú kódokat a következő szabály szerint.

$$(0\ 0) \rightarrow (0\ 0\ 0\ 0\ 0)$$

 $(0\ 1) \rightarrow (0\ 1\ 1\ 1\ 0)$
 $(1\ 0) \rightarrow (1\ 0\ 1\ 0\ 1)$
 $(1\ 1) \rightarrow (1\ 1\ 0\ 1\ 1)$

Így négy elemből álló blokk-kódot kapunk. Ha a csatornán például a $(0\ 1\ 0\ 0)$ jelsorozat érkezik, tudjuk, hogy hiba történt, hiszen ez a szó nem szerepel a kódszavak között.

Mekkora az $u = (0\ 1\ 1\ 1\ 0)$ és $v = (1\ 0\ 1\ 0\ 1)$ kódszavak távolsága, a kód távolsága, a $z = (1\ 1\ 0\ 1\ 1)$ vektor súlya, valamint a kód súlya?

- **2.2-2.** Az 1. példa S halmaza legyen \mathbb{F}_2 , a kételemű test. \mathbb{F}_2 az összeadásra csoportot alkot. Az \mathbb{F}_2 elemeiből készített n hosszú vektorok is csoportot alkotnak az elemenkénti összeadásra nézve. Lássuk be, hogy a példa K kódhalmaza részcsoport S^n -ben, így K csoportkód.
- **2.2-3.** Legyen K az 1. példabeli kód, $u = (0\ 0\ 0\ 0), t = 1$. Adjuk meg az u körüli 1 sugarú gömbben szereplő sorozatokat.
- **2.2-4.** Az 1. példa kódját alkalmazva tegyük fel, hogy a $(0\ 1\ 0\ 0)$ hibás jelsorozat érkezik. Minimális távolságú dekódolás esetén melyik szót választjuk helyette?
- **2.2-5.** Legyen $S = \mathbb{F}_2$, a közleményszavak pedig k hosszú sorozatok. Állapítsuk meg, hogy az alábbi kódok esetén mi jellemzi a kódszavakat, mennyi a kód minimális távolsága, hibajelző és (minimális távolságú dekódolással) a hibajavító képessége.
- a. Kétszeri ismétlés kódja. A kódszót megkapjuk, ha a közleményszót kétszer egymásután leírjuk. Az $(\alpha_1, \alpha_2, \dots, \alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \ldots, \alpha_k, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

kódszó keletkezik.

b. Háromszori ismétlés kódja. A kódszót megkapjuk, ha a közleményszót háromszor egymásután leírjuk. Az $(\alpha_1, \alpha_2, \dots, \alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \ldots, \alpha_k, \alpha_1, \alpha_2, \ldots, \alpha_k, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

12 2. Példák

kódszó keletkezik.

c. Paritásvizsgálat kódja. A kódszót megkapjuk, ha a közleményszó végére az elemek (\mathbb{F}_2 -ben számított) összegét írjuk. Az $(\alpha_1, \alpha_2, \dots, \alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \dots, \alpha_k, \beta), \quad \beta = \sum_{i=1}^k \alpha_i$$

kódszó keletkezik.

2.2-6. Hamming-korlát.

Bizonyítsuk be a következőt. Legyen az alaphalma
zS, a $K\subseteq S^n$ kódt-hiba javító. Ekkor

$$|K| \cdot \sum_{i=0}^{t} \binom{n}{i} (s-1)^i \le s^n,$$

ahol s = |S|.

- 2.2-7. Bináris blokk-kódot készítünk 3 hosszú üzenetekhez. Legalább mekkora legyen a kódszavak hossza, ha azt akarjuk, hogy a kód (minimális távolságú dekódolással) pontosan 1-hiba javító legyen?
- **2.2-8.** *k* hosszú bináris szavakból (üzenet) 19 hosszú bináris szavakat (kódszót) készítünk. Legfeljebb mekkora lehet az üzenetek hossza, ha azt akarjuk, hogy a kód minimális távolsága 8 legyen?
- **2.2-9.** Allapítsuk meg, hogy van-e 6 minimális távolságú, 13 hosszú perfekt bináris kód?
- A K blokk-kód tökéletes (perfekt), ha a Hamming-korlát egyenlőséggel teljesül. Perfekt kód esetén a kódszavak körüli $\lfloor \frac{d-1}{2} \rfloor$ sugarú gömbök teljesen kitöltik az n hosszú sorozatok terét, s így minden szóhoz pontosan egy kódszó van, amelytől legfeljebb $\lfloor \frac{d-1}{2} \rfloor$ távolságra van.
- **2.2-10.** Létezik-e 3 minimális távolságú perfekt bináris kód n = 147 esetén?
- 2.2-11. Van-e 12 hosszú kódszavakból álló 1-hiba javító perfekt bináris kód?

2.2.3. Lineáris kód alapfogalmai

A részleteket lásd a megoldásnál.

2.2.4. Lineáris kód

2.2-12. Valamely kód generátormátrixa legyen a következő:

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Ezt a mátrixot használva kódolásra, adjuk meg az összes közleményszót, valamint a megfelelő kódszavakat.

- **2.2-13.** Állapítsuk meg, hogy az 5. példa kódjai közül melyik lineáris, és a lineárisoknak adjuk meg a generátormátrixát.
- **2.2-14.** Az alábbi bináris kódok esetében állapítsuk meg a minimális távolságot, a hibajelző illetve (minimális távolságú dekódolással) a hibajavító képességet, valamint azt, hogy melyik lineáris, a lineárisoknak pedig adjuk meg a generátormátrixát.
- a. Legyen $k=3,\,n=4,$ és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat.

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + 1$$

b. Legyen $k=3,\,n=5,$ és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat.

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1, \alpha_2 + \alpha_3$$

c. Legyen k=3, n=5, és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat.

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1, \max(\alpha_2, \alpha_3)$$

2.2-15. Lássuk be, hogy ha az \mathbb{F}_k fölötti [n,k] kód generátormátrixa $G=(I_k\ P)$ alakú, akkor a $H=(-P^T\ I_{n-k})$ mátrix a kód ellenőrző mátrixa. $(I_k\ a\ k\times k$ méretű egységmátrixot jelöli, P pedig tetszőleges $k\times (n-k)$ méretű, \mathbb{F}_k fölötti mátrix.) A kételemű test fölött -P helyett P is irható, mert \mathbb{F}_2 -ben 1=-1.

Megjegyzés. Hasonlóan igaz az is, hogy ha egy [n, k] kód ellenőrző mátrixa $H = (I_{n-k} \ R)$ alakú, ahol R tetszőleges $((n-k) \times k)$ méretű, \mathbb{F}_k fölötti mátrix, akkor a $G = (-R^T \ I_k)$ mátrix megfelel generátormátrixnak. **2.2-16.** Adjuk meg a 14. példában szereplő lineáris kód ellenőrző mátrixát a

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

generátormátrix felhasználásával.

2.2-17. Lássuk be, hogy egy [n, k, d] kód H ellenőrző mátrixában van d lineárisan összefüggő oszlop, de bármely d-nél kevesebb oszlop lineárisan független.

2. Példák

2.2-18. Adjuk meg a 14. és 16. példában szereplő lineáris kód

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

ellenőrző mátrixának segítségével a kód távolságát és hibajelző, valamint (minimális távolságú dekódolással) a hibajavító képességét.

2.2-19. Legyen egy bináris lineáris kód generátormátrixa:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Adjuk meg az (egyik) ellenőrző mátrixát. Az ellenőrző mátrix felhasználásával mondjuk meg a kódtávolságot.

2.2-20. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Adjuk meg a kód paritásellenőrző mátrixát és távolságát.

2.2-21. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

Adjuk meg a kód paritásellenőrző mátrixát és távolságát.

2.2-22. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Mennyi a kód számossága? Adjuk meg a kód paritásellenőrző mátrixát, és ennek segítségével határozzuk meg a távolságát.

2.2-23. Egy bináris kód paritásellenőrző mátrixa

Lássuk be, hogy 1-hiba javító perfekt lineáris kódról van szó.

2.2.5. Hamming-kód

Az 1-hiba javító perfekt lineáris kódot Hamming-kódnak nevezzük.

2.2-24. Hamming-kód készítése.

Bináris Hamming-kódot készíthetünk a következőképpen. Legyen

r pozitív egész szám (ellenőrző jegyek száma),

 $n=2^r-1$ a kódszavak hossza,

 $k = 2^r - 1 - r$ a közleményszavak hossza.

A H $r \times n$ -es ellenőrző mátrix j-edik oszlopában a j 2-es számrendszerbeli alakjának jegyei szerepelnek.

Legyen például r=3, n=7, k=4. Adjuk meg a kód ellenőrző mátrixát.

- **2.2-25.** Adjuk meg az előző példában megismert szabály szerinti Hammingkód ellenőrző mátrixát, ha r=2, és ha r=4.
- **2.2-26.** A Hamming-kód generátormátrixa. Adjuk meg a 24. példabeli [7,4] Hamming-kód H ellenőrző mátrixának ismeretében a kód (egyik) generátormátrixát. Ha ezt a generátormátrixot alkalmazzuk a kódolásnál, mi lesz a $(0\ 1\ 1\ 1)$ üzenet kódja?
- 2.2-27. Hibajavítás bináris Hamming-kóddal.

A részleteket lásd a megoldásnál.

2.2-28. [7,4] bináris Hamming-kódnál, feltételezve, hogy egynél több hiba nem lépett fel az átvitelnél, mi volt a továbbított kódvektor, ha

a.
$$a^T = (0 \ 1 \ 1 \ 1 \ 1 \ 0)$$
 illetve

b.
$$b^T = (0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
 érkezett.

3. Példák és megoldások

3.1. Testbővítés, véges testek

- 3.1.1. Testbővítés, véges testek, felbonthatatlan (irreducibilis) polinomok
- 3.1-1. Van-e a valós számoknak olyan részteste, amelyet a valós számok minden részteste tartalmaz?

Megoldás. Ebben a T testben természetesen benne van a 0 és az 1. Mivel test zárt az összeadásra, benne van az $1+1=2, 1+1+1=3, \ldots$, tehát a természetes számok halmaza része ennek a testnek,

$$\mathbb{N} \subset T$$

Mivel minden elem additív inverze is benne van a testben, benne van a -1, -2, ..., tehát az egész számok halmaza is része ennek a testnek,

$$\mathbb{Z} \subseteq T$$
.

Test az osztásra is zárt, ha nem nulla elemmel osztunk, s így $m,n\in\mathbb{Z},\,n\neq0$ esetén $m/n\in T$ is teljesül. Tehát a racionális számok halmaza is része T-nek,

Q azonban maga is testet alkot, s így megtaláltuk a keresett résztestet,

$$T = \mathbb{Q}$$
.

Megjegyzés. Azt mondjuk, hogy \mathbb{Q} az \mathbb{R} prímteste.

3.1-2. Testet alkotnak-e a szokásos műveletekre a következő halmazok?

a.
$$T_1 = \{a + b\sqrt[4]{2} \mid a, b \in \mathbb{Q}\}$$
 b. $T_2 = \{a + bi\sqrt{5} \mid a, b \in \mathbb{Q}\}$

Megoldás.

a. Nem, mert például $\sqrt{2} = (\sqrt[4]{2})^2 \notin T_1$.

Tegyük fel ugyanis indirekt módon, hogy $\sqrt{2}=a+b\sqrt[4]{2}$, ahol $a,b\in\mathbb{Q}$. Ebből $\sqrt{2}-a=b\sqrt[4]{2}$, amit négyzetre emelve $2-2\sqrt{2}a+a^2=b^2\sqrt{2}$. Ezt rendezve $2+a^2=\sqrt{2}(b^2+2a)$. Vizsgáljuk meg előszőr a $b^2+2a=0$ esetet. Ekkor $2+a^2=0$, ebből $a^2=-2$, ami ellentmondás. Ha pedig $b^2+2a\neq 0$, akkor $\sqrt{2}=\frac{2+a^2}{b^2+2a}$, s ez azt jelentené, hogy $\sqrt{2}$ racionális.

Tehát egy T_1 -beli szám négyzete nem T_1 -beli, s így T_1 nem test.

b. Igen. A test axiómák teljesülnek. Most csak azt vizsgáljuk meg, hogy az osztás is elvégezhető a halmazon belül, ha a nevező nem nulla. Legyen ugyanis $a+bi\sqrt{5},\ c+di\sqrt{5}\in T_2,\ c+di\sqrt{5}\neq 0$. Ekkor

$$\frac{a + bi\sqrt{5}}{c + di\sqrt{5}} = \frac{(a + bi\sqrt{5})(c - di\sqrt{5})}{c^2 + 5d^2} \in T_2.$$

3.1-3. Mi a kapcsolat a $\mathbb{Q}(\sqrt{2})$, a $\mathbb{Q}(1+\sqrt{2})$ és a $\mathbb{Q}(\sqrt{8})$ testek között?

Megoldás. Azonosak. Felhasználjuk a test tulajdonságait, nevezetesen azt, hogy testbeli elemek összege, különbsége, szorzata és (ha a nevező nem nulla) a hányadosa is testbeli. Másrészt, ha valamely $a \in \mathbb{Q}(b)$, akkor $\mathbb{Q}(a) \subseteq \mathbb{Q}(b)$

is fennáll.

Először megmutatjuk, hogy $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(1+\sqrt{2}).$

és így

$$\mathbb{Q}(\sqrt{2}) \qquad = \quad \mathbb{Q}(1+\sqrt{2}).$$

Most megmutatjuk, hogy $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}(\sqrt{8})$.

és így

$$\mathbb{Q}(\sqrt{2}) \qquad = \qquad \mathbb{Q}(\sqrt{8}).$$

3.1-4. Mely a,b racionális számokra teljesül, hogy $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(a+b\sqrt{2})$?

Megoldás. $b \neq 0$, egyébként bármelyik racionális szám lehet a, illetve b. Ugyanis egyrészt

$$a + b\sqrt{2} \in \mathbb{Q}(\sqrt{2}),$$

tehát

$$\mathbb{Q}(a+b\sqrt{2})\subseteq\mathbb{Q}(\sqrt{2})$$

Másrészt, ha $b \neq 0$, akkor

$$\sqrt{2} = \frac{a + b\sqrt{2} - a}{b} \in \mathbb{Q}(a + b\sqrt{2})$$

miatt

$$\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(a + b\sqrt{2}),$$

s így a két test megegyezik.

3.1-5. Van-e olyan szám, amellyel bővítve a racionális számok testét, rögtön a $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ testet kapjuk?

Megoldás. Ilyen például az $A=\sqrt{2}+\sqrt{3}$. Ugyanis $A\in\mathbb{Q}(\sqrt{2}+\sqrt{3})$ miatt $\frac{1}{A}\in\mathbb{Q}(\sqrt{2}+\sqrt{3})$ és

$$\frac{1}{A} = \frac{1}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{3} - \sqrt{2}}{(\sqrt{3})^2 - (\sqrt{2})^2} = \sqrt{3} - \sqrt{2},$$

tehát $\sqrt{3} - \sqrt{2} \in \mathbb{Q}(\sqrt{2} + \sqrt{3})$. Másrészt

$$\frac{A - \frac{1}{A}}{2} = \sqrt{2}$$
 és $\frac{A + \frac{1}{A}}{2} = \sqrt{3}$

miatt

és így

$$\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3}).$$

3.1-6. Felbonthatatlan-e az x^5+5 polinom $\mathbb{Z},\ \mathbb{Q},\ \mathbb{C},\ \mathbb{Z}_2,\ \mathbb{Z}_3,\$ illetve \mathbb{Z}_5 felett?

Megoldás.

Mi felett?	Felbont-	$\operatorname{Indokl\acute{a}s}$			
	hatatlan?				
$\mathbb Z$	igen	p=5 választással a Schönemann–Eisenstein tétel.			
\mathbb{Q}	$_{ m igen}$	Az előző és a Gauss-tétel miatt.			
$\mathbb C$	nem	5 elsőfokú tényező szorzatára bontható.			
\mathbb{Z}_2	nem	$x^5 + \overline{5} = x^5 + \overline{1} = (x - \overline{1})(\dots)$ (az $\overline{1}$ gyöke)			
\mathbb{Z}_3	nem	$x^5 + \overline{5} = x^5 - \overline{1} = (x - \overline{1})(\ldots)$ (az $\overline{1}$ gyöke)			
\mathbb{Z}_5	nem	$x^5 + \overline{5} = x^5 (a \ \overline{0} \ \text{gy\"{o}ke})$			

3.1-7. Keressük meg \mathbb{Z}_2 fölött az összes másod-, harmad-, és negyedfokú felbonthatatlan (irreducibilis) polinomot.

Megoldás.

${ m foksz\'{a}m}$	polinom	felbonthatóság
elsőfokú	x	irreducibilis
	$x + \overline{1}$	irreducibilis
másodfokú	x^2	$=x\cdot x$
	$x^2 + \overline{1}$	$=(x+\overline{1})\cdot(x+\overline{1})$
	$x^2 + x$	$=x\cdot(x+\overline{1})$
	$x^2 + x + \overline{1}$	irreducibilis
harmadfokú	x^3	$=x\cdot x\cdot x$
	$x^3 + \overline{1}$	$= (x+\overline{1})\cdot(x^2+x+\overline{1})$
	$x^3 + x$	$= x \cdot (x^2 + \overline{1}) = x \cdot (x + \overline{1})^2$
	$x^3 + x + \overline{1}$	irreducibilis
	$x^3 + x^2$	$=x^2\cdot(x+\overline{1})$
	$x^3 + x^2 + \overline{1}$	irreducibilis
	$x^3 + x^2 + x$	$=x\cdot(x^2+x+\overline{1})$
	$x^3 + x^2 + x + \overline{1}$	$=(x+\bar{1})\cdot(x^2+\bar{1})=(x+\bar{1})^3$
negyedfokú	x^4	$=x\cdot x\cdot x\cdot x$
	$x^4 + \overline{1}$	$= (x + \overline{1}) \cdot (x^3 + x^2 + x + \overline{1}) = (x + \overline{1})^4$
	$x^4 + x$	$= x \cdot (x^3 + \overline{1}) = x \cdot (x + \overline{1}) \cdot (x^2 + x + \overline{1})$
	$x^4 + x + \overline{1}$	irreducibilis
	$x^4 + x^2$	$= x^2 \cdot (x^2 + \overline{1}) = x^2 \cdot (x + \overline{1})^2$
	$x^4 + x^2 + \overline{1}$	$=(x^2+x+\overline{1})^2$
	$x^4 + x^2 + x$	$=x\cdot(x^3+x+\overline{1})$
	$x^4 + x^2 + x + \overline{1}$	$= (x+\overline{1})\cdot(x^3+x^2+\overline{1})$
	$x^4 + x^3$	$=x^3\cdot(x+\overline{1})$
	$x^4 + x^3 + \overline{1}$	irreducibilis
	$x^4 + x^3 + x$	$=x\cdot(x^3+x^2+\overline{1})$
	$x^4 + x^3 + x + \overline{1}$	$= (x+\overline{1})\cdot(x^3+\overline{1}) = (x+\overline{1})^2\cdot(x^2+x+\overline{1})$
		$= x^2 \cdot (x^2 + x + \overline{1}) = (x + \overline{1})^3$
		$= (x + \overline{1}) \cdot (x^3 + x + \overline{1})$
		$= (x+\overline{1})\cdot(x^3+x^2+x+\overline{1})$
	$x^4 + x^3 + x^2 + x + \overline{1}$	irreducibilis

Az elsőfokú polinomok természetesen irreducibilisek. A másod- és harmadfokúak akkor és csak akkor irreducibilisek, ha nincs gyökük a test felett. A negyedfokúak esetében, ha van gyöke a polinomnak, akkor nyilván felbontható, ha nincs gyöke, akkor még előfordulhat, hogy felbontható két másodfokú irreducibilis szorzatára.

Ha f konstans tagja osztható p-vel, és a polinom legalább másodfokú, akkor f nem irreducibilis, hiszen a 0 gyöke, így az ilyen polinomokat nem kell külön vizsgálni.

A következő stratégiát alkalmaztuk például a negyedfokúaknál: minden lehetséges módon összeszoroztuk az első-, másod- és harmadfokú irreducibilis polinomokat úgy, hogy az eredmény negyedfokú legyen. Az a negyedfokú polinom, amelyet így nem kaptunk meg, irreducibilis.

3.1-8. Igazoljuk, hogy az alábbi polinomok felbonthatatlanok (irreducibilisek) \mathbb{F}_2 felett.

a.
$$x^5 + x^2 + \overline{1}$$
,

b.
$$x^6 + x + \overline{1}$$
,

c.
$$x^7 + x^3 + \overline{1}$$
.

Megoldás. Felhasználjuk, hogy $x^2 + x + \overline{1}$, $x^3 + x + \overline{1}$, $x^3 + x^2 + \overline{1}$ a másodés harmadfokú irreducibilis polinomok \mathbb{F}_2 felett (lásd az előző példát).

 ${\bf a.}$ Ha az $x^5+x^2+\overline{1}$ polinom felbontható lenne, akkor lenne elsőfokú vagy másodfokú tényezője.

Ha lenne elsőfokú tényezője, akkor lenne gyöke \mathbb{F}_2 felett a polinomnak. Az összes elem ($\overline{0}$ és $\overline{1}$) behelyettesítésével meggyőződhetünk arról, hogy nincs gyöke, így nincs elsőfokú tényezője sem.

Vizsgáljuk meg, hogy van-e másodfokú tényezője. Az egyetlen másodfokú irreducibilis polinom az x^2+x+1 . Ezzel a polinommal osszuk el maradékosan az $x^5+x^2+\overline{1}$ polinomot.

$$(x^{5} + x^{2} + \overline{1}) : (x^{2} + x + \overline{1}) = x^{3} + x^{2}$$

$$-(\underline{x^{5} + x^{4} + x^{3}})$$

$$x^{4} + x^{3} + x^{2} + \overline{1}$$

$$-(\underline{x^{4} + x^{3} + x^{2}})$$

$$\overline{1}$$

A maradék $\overline{1}$, tehát az első polinom nem osztható a másodikkal.

Mivel $x^5+x^2+\overline{1}$ -nek sem első- sem másodfokú irreducibilis tényezője nincs, ő maga irreducibilis.

b. Ha az $x^6 + x + \overline{1}$ polinom felbontható lenne, akkor lenne elsőfokú, másodfokú vagy harmadfokú tényezője.

Ha lenne elsőfokú tényezője, akkor lenne gyöke \mathbb{F}_2 felett a polinomnak. Az összes elem ($\overline{0}$ és $\overline{1}$) behelyettesítésével meggyőződhetünk arról, hogy nincs gyöke, így nincs elsőfokú tényezője sem.

Vizsgáljuk meg, hogy van-e másodfokú tényezője. Az egyetlen másodfokú irreducibilis polinom az x^2+x+1 . Ezzel a polinommal osszuk el maradékosan az $x^6+x+\overline{1}$ polinomot.

$$(x^{6} + x + \overline{1}) : (x^{2} + x + \overline{1}) = x^{4} + x^{3} + x + 1$$

$$-(\underline{x^{6} + x^{5} + x^{4}})$$

$$x^{5} + x^{4} + x + \overline{1}$$

$$-(\underline{x^{5} + x^{4} + x^{3}})$$

$$x^{3} + x + \overline{1}$$

$$-(\underline{x^{3} + x^{2} + x})$$

$$x^{2} + \overline{1}$$

$$-(\underline{x^{2} + x + \overline{1}})$$

$$x$$

A maradék x, tehát az első polinom nem osztható a másodikkal.

Most osszuk el az $x^6+x+\overline{1}$ polinomot sorban a két harmadfokú irreducibilis polinommal is.

$$(x^{6} + x + \overline{1}) : (x^{3} + x^{2} + \overline{1}) = x^{3} + x^{2} + x$$

$$-(\underline{x^{6} + x^{5} + x^{3}})$$

$$x^{5} + x^{3} + x + \overline{1}$$

$$-(\underline{x^{5} + x^{4} + x^{2}})$$

$$x^{4} + x^{3} + x^{2} + x + \overline{1}$$

$$-(\underline{x^{4} + x^{3} + x})$$

$$x^{2} + \overline{1}$$

A maradék $x^2 + \overline{1}$, tehát az első polinom nem osztható a másodikkal.

$$(x^{6} + x + \overline{1}) : (x^{3} + x + \overline{1}) = x^{3} + x + \overline{1}$$

$$-(\underline{x^{6} + x^{4} + x^{3}})$$

$$x^{4} + x^{3} + x + \overline{1}$$

$$-(\underline{x^{4} + x^{2} + x})$$

$$x^{3} + x^{2} + \overline{1}$$

$$-(\underline{x^{3} + x + \overline{1}})$$

$$x^{2} + x$$

A maradék $x^2 + x$, tehát az első polinom most sem osztható a másodikkal.

Mivel $x^6 + x + \overline{1}$ -nek sem első-, sem másod-, sem pedig harmadfokú irreducibilis tényezője nincs, ő maga irreducibilis.

3.1-9. Hány másodfokú normált (1 főegyütthatójú) irreducibilis polinom van egy q elemű testben?

Megoldás. Számoljuk meg, hogy összesen hány $x^2 + bx + c$ alakú polinom van, ha b és c a test tetszőleges eleme lehet. Mivel a test q elemű, ilyen polinom $q \cdot q = q^2$ darab van.

Ebből el kell vennünk a reducibilisek számát. Ha egy normált másodfokú polinom reducibilis, akkor $(x-\alpha)(x-\beta)$ alakú, ahol α és β a test tetszőleges eleme lehet. Ezek számát megkapjuk, ha q elemből kettőt választunk ismétléssel, a tényezők sorrendje nem számít, tehát a keresett számot megadja a $C_q^{2,i}$ ismétléses permutációszám.

$$C_q^{2,i} = C_{q+1}^2 = \binom{q+1}{2} = \frac{q(q+1)}{2}$$

Az irreducibilisek száma így

$$q^2 - \frac{q(q+1)}{2} = \frac{q(q-1)}{2}$$

q=2 esetén ez a képlet 1-et ad, q=3 esetén pedig 3-at.

3.1-10. Készítsünk 9 elemű testet.

- a. Adjuk meg a művelettáblákat.
- b. Határozzuk meg az egyes elemek multiplikatív rendjét, keressünk primitív elemeket.
 - c. Határozzuk meg az egyes elemek additív rendjét.

Megoldás.

a. \mathbb{F}_9 -et úgy készítjük el, hogy \mathbb{Z}_3 -mat bővítjük például az $m=x^2+\overline{1}$ \mathbb{Z}_3 fölött irreducibilis polinom u gyökével (másodfokú bővítés). \mathbb{F}_9 elemei u legfeljebb elsőfokú polinomjai és a 0. \mathbb{Z}_3 elemei :

$$\overline{0}$$
 $\overline{1}$ $\overline{2} = \overline{-1} = -\overline{1}$

 \mathbb{F}_9 elemei:

Az elemek összeadását és szorzását úgy végezzük el, mint a polinomokét.

A szorzótábla elkészítésénél felhasználjuk azt, hogy $u^2 + \overline{1} = 0$, hiszen u az $m = x^2 + \overline{1}$ polinom gyöke.

$$\begin{array}{lll} d\cdot d & = & u^2 = u^2 + \overline{1} - \overline{1} = \overline{0} - \overline{1} = c \\ d\cdot e & = & u^2 + u = u^2 + \overline{1} + u - \overline{1} = \overline{0} + u + \overline{2} = f \\ d\cdot f & = & u^2 + 2u = u^2 + \overline{1} + 2u + \overline{2} = \overline{0} + i = i \\ d\cdot g & = & 2u^2 = 2u^2 + \overline{2} + \overline{1} = \overline{0} + \overline{1} = b \\ d\cdot h & = & 2u^2 + u = 2u^2 + \overline{2} + u + \overline{1} = \overline{0} + u + \overline{1} = e \\ d\cdot i & = & 2u^2 + 2u = 2u^2 + \overline{2} + 2u + \overline{1} = \overline{0} + h \\ e\cdot e & = & (u + \overline{1})^2 = u^2 + 2u + \overline{1} = \overline{0} + 2u = g \\ e\cdot f & = & (u + \overline{1})(u + \overline{2}) = u^2 + 3u + \overline{2} = \overline{1} = b \\ e\cdot g & = & (u + \overline{1})(2u + \overline{1}) = 2u^2 + 3u + \overline{1} = \overline{2} = c \\ e\cdot i & = & (u + \overline{1})(2u + \overline{1}) = 2u^2 + 3u + \overline{1} = \overline{2} = c \\ e\cdot i & = & (u + \overline{1})(2u + \overline{2}) = 2u^2 + 4u + \overline{2} = u = d \\ f\cdot f & = & (u + \overline{2})^2 = u^2 + 4u + \overline{4} = u = d \\ f\cdot g & = & (u + \overline{2})(2u + \overline{1}) = 2u^2 + 5u + \overline{2} = 2u = g \\ f\cdot i & = & (u + \overline{2})(2u + \overline{1}) = 2u^2 + 5u + \overline{2} = 2u = g \\ f\cdot i & = & (u + \overline{2})(2u + \overline{1}) = 2u^2 + 6u + \overline{4} = c \\ g\cdot g & = & (2u)^2 = 4u^2 = u^2 + \overline{1} + \overline{2} = \overline{2} = c \\ g\cdot h & = & 2u(2u + \overline{1}) = 4u^2 + 2u = u^2 + \overline{1} + 2u + \overline{2} = i \\ g\cdot i & = & 2u(2u + \overline{1}) = 4u^2 + 4u = u^2 + u = f \\ h\cdot h & = & (2u + \overline{1})(2u + \overline{1}) = 4u^2 + 4u + \overline{1} = u = d \\ h\cdot i & = & (2u + \overline{1})(2u + \overline{2}) = 4u^2 + 6u + \overline{2} = b \\ i\cdot i & = & (2u + \overline{2})^2 = 4u^2 + 8u + \overline{4} = 2u = g \\ \end{array}$$

Megjegyzés. A fenti számítások elvégzése során úgy is eljárhattunk volna, hogy felhasználjuk az $u^2 = \overline{-1} = \overline{2}$, összefüggést.

b. Most nézzük a nem nulla elemek multiplikatív rendjét. A Lagrangetételből tudjuk, hogy ez a rend csak olyan szám lehet, ami osztója a test multiplikatív csoportja rendjének, vagyis 8-nak. A szóbajöhető rendek tehát 1, 2, 4, 8. Azt kell megvizsgálnunk, hogy ezekre a kitevőkre emelve az elemet, mikor kapjuk meg először az egységelemet. A 8. hatvány esetében természetesen mindenképpen megkapjuk.

$$\begin{array}{lll} |b|=1 & & & & & & & & \\ c^2=1 & & |c|=2 & & & & & \\ d^2=c & & d^4=c^2=1 & & |d|=4 & & \\ g^2=c & & c^2=1 & & |g|=4 & & \\ e^2=g & & e^4=g^2=c & & e^8=c^2=1 & & |e|=8 \\ f^2=d & & f^4=d^2=\overline{2} & & f^8=1 & & |f|=8 \\ h^2=d & & |h|=8 & & & \\ i^2=g & & |i|=8 & & & \end{array}$$

Primitív elemek – az (\mathbb{F}_9^* , ·) csoport generáló elemei – azok, amelyek rendje megegyezik a multiplikatív csoport rendjével, tehát 8 a rendjük. Ezek e, f, h, i.

c. Az elemek additív rendje a 0 kivételével 3, mert $\operatorname{Char}(\mathbb{Z}_3) = \operatorname{Char}(\mathbb{F}_9) = 3$.

3.1-11. Készítsünk 4 elemű testet.

- a. Adjuk meg a művelettáblákat.
- b. Határozzuk meg az egyes elemek multiplikatív rendjét, keressünk primitív elemeket.

Megoldás.

a. \mathbb{F}_4 -et úgy készítjük el, hogy \mathbb{Z}_2 -t bővítjük az $m=x^2+x+\overline{1}$ \mathbb{Z}_2 fölött irreducibilis polinom u gyökével (másodfokú bővítés). Az m polinom valóban irreducibilis \mathbb{Z}_2 fölött, mert $m(\overline{1})=\overline{1}$ és $m(\overline{0})=\overline{1}$, tehát nincs gyöke \mathbb{Z}_2 -ben (egyébként lásd a 7. példát). \mathbb{F}_4 elemei u legfeljebb elsőfokú polinomjai és a 0.

 \mathbb{Z}_2 elemei:

$$\overline{0}$$
 $\overline{1} = \overline{-1} = -\overline{1}$

 \mathbb{F}_4 elemei:

$$a = \overline{0}$$
 $b = \overline{1}$ $c = u$ $d = u + \overline{1}$

Az elemek összeadását és szorzását úgy végezzük el, mint a polinomokét.

A szorzótábla elkészítésénél felhasználjuk azt, hogy $u^2 + u + \overline{1} = 0$, hiszen u az $m = x^2 + x + \overline{1}$ polinom gyöke, és így $u^2 = u + \overline{1}$ is fennáll.

$$c\cdot c=u^2=u^2+u+\overline{1}+u+\overline{1}=u+\overline{1}=d$$

$$c \cdot d = u^2 + u = u^2 + u + \overline{1} + \overline{1} = \overline{1} = b$$

$$d \cdot d = (u+1)(u+1) = u^2 + 2u + 1 = u^2 + u + \overline{1} + u = u = c$$

b. Primitív elemek: c = u, d = u + 1.

A multiplikatív csoport generáló eleme a c, mert különböző hatványai előállítják a többi elemet:

$$c^1 = c$$
 $c^2 = u + \overline{1} = d$ $c^3 = (u+1) \cdot u = \overline{1} = b$

Hasonlóan generáló elem a d is:

$$d^1 = d$$
 $d^2 = u^2 + \overline{1} = u = c$ $d^3 = u^2 + u = \overline{1} = b$

Megjegyzés. Az előbbi eredményt más meggondolással is megkaphatjuk: mivel \mathbb{Z}_3 multiplikatív csoportjának rendje 3, a csoport ciklikus, sőt az egységelem kivételével a többi két eleme (c és d) generálja.

3.1-12.

- a. Bizonyítsuk be, hogy az $f(x)=x^3+x+\overline{1}\in\mathbb{Z}_5[x]$ polinom irreducibilis \mathbb{Z}_5 felett.
- b. Hány eleme van a $\mathbb{Z}_5[x]/\overline{f}$ maradékosztálygyűrűnek (testnek), ahol \overline{f} az f többszöröseiből álló ideál? Adjunk meg egy reprezentánsrendszert.

Megoldás.

a. Az irreducibilitáshoz elég megvizsgálnunk azt, hogy van-e gyöke a polinomnak \mathbb{Z}_5 -ben. Ha ugyanis felbontható (reducibilis) lenne, akkor

$$x^{3} + x + \overline{1} = (ax + b)(cx^{2} + dx + e) \pmod{5}$$

alakban lehetne felírni. Mivel $ax+b=0\pmod 5$ $a\neq 0$ miatt megoldható, lenne gyöke a polinomnak \mathbb{Z}_5 -ben. A polinomnak azonban nincs gyöke ebben a testben:

$$f(\overline{0}) = \overline{1},$$
 $f(\overline{1}) = \overline{3},$ $f(\overline{2}) = \overline{1},$ $f(\overline{3}) = \overline{1},$ $f(\overline{4}) = \overline{-1},$ így f irreducibilis \mathbb{Z}_5 felett.

b. reprezentánsrendszert alkotnak a legfeljebb másodfokú polinomok:

$${a+bx+cx^2 \mid a, b, c \in \{0, 1, 2, 3, 4\}}$$

Mivel a, b, c egymástól függetlenül felveheti az 5 különböző értéket, ezért a reprezentánsrendszer $5^3 = 125$ elemű, s ennyi eleme van a $\mathbb{Z}_5[x]/\overline{f}$ testnek is.

3.1-13.

- a. Bizonyítsuk be, hogy az $f(x)=x^2+x+\overline{1}\in\mathbb{Z}_5[x]$ polinom irreducibilis \mathbb{Z}_5 felett.
- b. Hány eleme van a $\mathbb{Z}_5[x]/\overline{f}$ maradékosztálygyűrűnek (testnek), ahol \overline{f} az f többszöröseiből álló ideál? Adjunk meg egy reprezentánsrendszert.

Megoldás.

a. Az irreducibilitáshoz elég megvizsgálnunk azt, hogy van-e gyöke a polinomnak \mathbb{Z}_5 -ben. Ha ugyanis felbontható (reducibilis) lenne, akkor

$$x^2 + x + \overline{1} = (ax + b)(cx + d) \pmod{5}$$

alakban lehetne felírni. Mivel $ax + b = 0 \pmod{5}$ $a \neq 0$ miatt megoldható, lenne gyöke a polinomnak \mathbb{Z}_5 -ben. A polinomnak azonban nincs gyöke ebben a testben:

$$f(\overline{0}) = \overline{1},$$
 $f(\overline{1}) = \overline{3},$ $f(\overline{2}) = \overline{2},$ $f(\overline{3}) = \overline{3},$ $f(\overline{4}) = \overline{1},$

így f irreducibilis \mathbb{Z}_5 felett.

b. reprezentánsrendszert alkotnak a legfeljebb elsőfokú polinomok:

$${a + bx \mid a, b \in \{0, 1, 2, 3, 4\}}$$

Mivel a és b egymástól függetlenül felveheti az 5 különböző értéket, ezért a reprezentánsrendszer $5^2 = 25$ elemű, s ennyi eleme van a $\mathbb{Z}_5[x]/\overline{f}$ testnek is.

 $\mathbb{Z}_5[x]/\overline{f}$ elemei az alábbi elemek által reprezentált osztályok:

$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$
\boldsymbol{x}	$x + \overline{1}$	$x + \overline{2}$	$x + \overline{3}$	$x + \overline{4}$
2x	$2x + \overline{1}$	$2x + \overline{2}$	$2x + \overline{3}$	$2x + \overline{4}$
3x	$3x + \overline{1}$	$3x + \overline{2}$	$3x + \overline{3}$	$3x + \overline{4}$
4x	$4x + \overline{1}$	$4x + \overline{2}$	$4x + \overline{3}$	$4x + \overline{4}$

3.1-14.

- a. Igazoljuk, hogy $f(x) = x^3 + x + \overline{2}$ reducibilis \mathbb{Z}_7 felett.
- b. Hány eleme van a $\mathbb{Z}_7[x]/\overline{f}$ maradékosztálygyűrűnek (\overline{f} az f polinom többszöröseiből álló ideál)? Adjunk meg egy reprezentánsrendszert.
- c. Mutassuk meg, hogy a $\mathbb{Z}_7[x]/\overline{f}$ maradékosztálygyűrű tartalmaz nullosztót.

Megoldás.

a. A Horner-elrendezéssel azt tapasztaljuk, hogy f-nek $\overline{4}$ kétszeres gyöke, $\overline{-1}$ pedig egyszeres gyöke.

	1	0	1	2	
4		1	4	3	0
4			1	1	0
-1				1	0

b. A maradékosztálygyűrű elemeinek reprezentánsai a legfeljebb másodfokú polinomok:

$${a+bx+cx^2 \mid a, b, c \in \{0, 1, 2, 3, 4, 5, 6\}}$$

Mivel a, b és c egymástól függetlenül felveheti a 7 különböző értéket, ezért a reprezentánsrendszer $7^3 = 343$ elemű, s ennyi eleme van a $\mathbb{Z}_5[x]/\overline{f}$ maradékosztálygyűrűnek is.

c. Nullosztópárt alkot például a következő két osztály:

$$\overline{(x-4)^2}$$
, $\overline{x+1}$,

mert

$$\overline{(x-4)^2} \cdot \overline{x+1} = \overline{(x-4^2) \cdot (x+1)} = \overline{f} = 0.$$

Ez a maradékosztálygyűrű nem test, hiszen tartalmaz nullosztót.

3.1.2. Elem felírása bázisban

3.1-15. Legyen $u \in \mathbb{C}$ a \mathbb{Q} feletti $x^3 - 2x + 2$ polinom egyik gyöke. Lássuk be, hogy a polinom \mathbb{Q} felett irreducibilis. Írjuk fel $\mathbb{Q}(u) \mid \mathbb{Q}$ $\{1,\ u,\ u^2\}$ bázisában a következő elemeket:

a.
$$u^7$$
 b. u^{-1} **c.** $u^4 + u^{-2}$

Megoldás. A polinom irreducibilis \mathbb{Z} felett: p=2-vel alkalmazzuk a Schönemann–Eisenstein-tételt. A \mathbb{Q} feletti irreducibilitás ebből és a Gauss-tételből következik.

u az x^3-2x+2 polinom gyöke, ezért $u^3-2u+2=0$, amiből $u^3=2u-2$. Ezt használjuk fel többször is a továbbiakban.

a.

$$u^7 = u^4 \cdot u^3 = u^4 (2u - 2) = u(2u - 2)u^3 = u(2u - 2)(2u - 2) =$$

$$= u(4u^2 - 8u + 4) = 4u^3 - 8u^2 + 4u = 4(2u - 2) - 8u^2 + 4u = -8u^2 + 12u - 8u^2 + 12u$$

 ${\bf b.}\ u\neq 0,$ így létezik inverze. Az $u^3-2u+2=0$ egyenletet megszorozzuk $u^{-1}\text{-gyel},$ ekkor

$$(u^3 - 2u + 2) \cdot u^{-1} = 0.$$

Ebből
$$u^2 - 2 + 2u^{-1} = 0$$
, $u^{-1} = 1 - \frac{u^2}{2}$.

c. Először számítsuk ki u^4 -t. $u^4 = u(2u-2) = 2u^2 - 2u$

Most nézzük u^{-2} kiszámítását. Az $u^3 - 2u + 2 = 0$ egyenletet megszorozzuk $u^{-2}\text{-vel}.$

$$(u^3 - 2u + 2)u^{-2} = 0$$
$$u - 2u^{-1} + 2u^{-2} = 0$$

$$u^{-2} = 1 - \frac{u^2 + u}{2}$$

Végül a két kifejezés összege:

$$u^4 + u^{-2} = 2u^2 - 2u + 1 - \frac{u^2 + u}{2} = \frac{3}{2}u^2 - \frac{5}{2}u + 1$$

3.1-16. Legyen $u\in\mathbb{C}$ az x^3-6x^2+9x+3 \mathbb{Q} felett irreducibilis polinom gyöke. Fejezzük ki $\mathbb{Q}(u)\mid\mathbb{Q}-\{1,\ u,\ u^2\}$ bázisában a következő elemeket:

a.
$$3u^5 - 2u$$
 b. $\frac{1}{1+u}$

Megoldás. $u \not\in \mathbb{Q}$, mert a polinom irreducibilis. u az $x^3 - 6x^2 + 9x + 3$ polinom gyöke, ezért $u^3 - 6u^2 + 9u + 3 = 0$, amiből $u^3 = 6u^2 - 9u - 3$. Ezt használjuk fel többször is a továbbiakban.

a.

$$3u^{5} - 2u = 3u^{2} \cdot u^{3} - 2u = 3 \cdot u^{2} (6u^{2} - 9u - 3) - 2u = 18u^{4} - 27u^{3} - 9u^{2} - 2u = 18u(u^{3}) - 27u^{3} - 9u^{2} - 2u = 18u \cdot (6u^{2} - 9u - 3) - 27(6u^{2} - 9u - 3) - 9u^{2} - 2u = 18u(u^{3}) - 162u^{2} - 54u - 162u^{2} + 243u + 81 - 9u^{2} - 2u = 108(6u^{2} - 9u - 3) - 333u^{2} + 187u + 81 = 108(6u^{2} - 9u - 3) - 335u^{2} - 785u - 243$$

b. Az $u^3 - 6u^2 + 9u + 3 = 0$ egyenletet megszorozzuk $(u+1)^{-1}$ -gyel.

$$\frac{u^3 - 6u^2 + 9u + 3}{u + 1} = 0$$

A számlálóval és a nevezővel maradékos osztást végzünk:

$$(u^{3} - 6u^{2} + 9u + 3) : (u + 1) = u^{2} - 7u + 16$$

$$\frac{-(u^{3} + u^{2})}{-7u^{2} + 9u + 3}$$

$$\frac{-(-7u^{2} - 7u)}{16u + 3}$$

$$\frac{16u + 16}{-13}$$

A maradékos osztás eredménye:

$$u^{3} - 6u^{2} + 9u + 3 = (u^{2} - 7u + 16)(u + 1) - 13$$
(1)

Felhasználva, hogy $u^3 - 6u^2 + 9u + 3 = 0$, azt kapjuk, hogy:

$$\frac{1}{u+1} = \frac{u^2 - 7u + 16}{13}$$

Az u+1 kifejezéssel való maradékos osztás helyett Horner-elrendezést is alkalmazhatunk:

Ebből a táblázatból is leolvashatjuk (1) együtthatóit.

3.1.3. Minimálpolinom, felbontási test

3.1-17. Határozzuk meg $\sqrt{2-\sqrt[3]{2}}$ minimálpolinomját $\mathbb Q$ felett.

Megoldás. Legyen

$$\alpha = \sqrt{2 - \sqrt[3]{2}}$$

Ebből a következőkhöz jutunk:

$$\alpha^2 = 2 - \sqrt[3]{2}$$
$$-\alpha^2 + 2 = \sqrt[3]{2}$$
$$(-\alpha^2 + 2)^3 = 2$$

$$-\alpha^6 + 6\alpha^4 - 12\alpha^2 + 6 = 0.$$

vagyis α gyöke az

$$f = x^6 - 6x^4 + 12x^2 - 6$$

polinomnak. Másrészt ez a polinom irreducibilis, amit beláthatunk úgy, hogy alkalmazzuk a Schönemann-Eisenstein tételt p=2-vel (vagy 3-mal). Ebből pedig következik, hogy f minimálpolinomja $\sqrt{2-\sqrt[3]{2}}$ -nek.

3.1-18. Mutassuk meg, hogy

$$\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}$$

egész szám.

Megoldás. Legyen

$$\alpha = \sqrt[3]{9 + 4\sqrt{5}} + \sqrt[3]{9 - 4\sqrt{5}}.$$

Számítás közben felhasználjuk, hogy

$$(a+b)^3 = a^3 + b^3 + 3a^2b + 3ab^2 = a^3 + b^3 + 3ab(a+b)$$

és alkalmazzuk a következő jelölést: $a = \sqrt[3]{9 + 4\sqrt{5}}, b = \sqrt[3]{9 - 4\sqrt{5}}$. Ekkor

$$\alpha^3 = 9 + 4\sqrt{5} + 9 - 4\sqrt{5} + 3\sqrt[3]{81 - 80}(a+b) = 18 + 3(a+b) = 18 + 3\alpha$$

Így az alábbi polinomhoz jutottunk.

$$x^3 = 18 + 3x$$

$$x^3 - 3x - 18 = 0$$

Ennek a polinomnak gyöke a $\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}$ szám.

Keressük először a polinom racionális gyökeit. Felhasználjuk, hogy ha van α racionális gyök, akkor az egész szám, osztója 18-nak, valamint $1-\alpha | \sum a_i = f(1)$ és $1+\alpha | \sum (-1)^i a_i = f(-1)$, ahol a_i a polinom együtthatóit jelöli. (Lásd a Polinomok kötetben.)

Azt kapjuk, hogy a 3 lehetséges gyök, behelyettesítéssel (Horner-elrendezés) pedig azt kapjuk, hogy valóban gyök.

A Horner-elrendezés együtthatóiból azt is leolvashatjuk, hogy mi a hányados polinom, ha x-3-mal osztjuk a polinomunkat:

$$x^2 + 3x + 6$$

Ennek a polinomnak a gyökei

$$x_{1,2} = \frac{-3 \pm \sqrt{9 - 24}}{2} = \frac{-3 \pm i\sqrt{15}}{2},$$

tehát nem valósak. A $\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}$ szám valós, s ennek a gyökök közül csak a 3 felel meg. Tehát

$$\sqrt[3]{9+4\sqrt{5}} + \sqrt[3]{9-4\sqrt{5}} = 3.$$

3.1-19. Határozzuk meg az $(x^2+1)(x^2-2x+1)$ polinom felbontási testét $\mathbb Q$ felett.

Megoldás.

$$(x^2+1)(x^2-2x+1) = (x-i)(x+i)(x-1)^2,$$

így a polinom gyökei $\pm i$ és 1, tehát a polinom $\mathbb Q$ feletti felbontási teste $\mathbb Q(i)$.

3.1-20. $\mathbb{Q}(\sqrt[3]{2})$ megegyezik-e $\sqrt[3]{2}$ minimálpolinomjának a felbontási testével?

Megoldás. $\sqrt[3]{2}$ minimálpolinomja $x^3 - 2$. Ennek gyökei $\sqrt[3]{2}$ mellett

$$\sqrt[3]{2}\left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i\right), \quad \sqrt[3]{2}\left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i\right).$$

Ez utóbbi két gyök nincs benne $\mathbb{Q}(\sqrt[3]{2})$ -ben (mert ennek a testnek minden eleme valós), tehát a két test nem egyezik meg.

3.1-21. Van-e racionális gyöke az $f(x) = x^3 - x^2 - x - 2$ polinomnak? Mi az f felbontási teste $\mathbb Q$ felett?

Megoldás. A polinom racionális gyökei 2 osztói lehetnek. 2 valóban gyöke, amint erről a Horner-elrendezéssel meggyőződhetünk:

Az előbbi táblázat második sorában a hányados polinom együtthatói is megjelennek, amely $x^2 + x + 1$. Ennek (s így az eredeti polinomnak is) a gyökei $\frac{-1 \pm i\sqrt{3}}{2}$. Az f polinom $\mathbb Q$ feletti felbontási teste így $\mathbb Q(i\sqrt{3})$.

3.1-22. Bizonyítsuk be, hogy ha $\alpha \in \mathbb{C}$ megoldása a $10x^3 - 105x^2 + 84x + 210 = 0$ racionális együtthatós egyenletnek, és valamely K testre fennáll, hogy $\mathbb{Q}(\alpha)|K$ és $K|\mathbb{Q}$, akkor $K=\mathbb{Q}(\alpha)$ vagy $K=\mathbb{Q}$.

Megoldás. Ha p=7-tel alkalmazzuk a Schönemann–Eisenstein-tételt, akkor azt tapasztaljuk, hogy a polinom $\mathbb Z$ felett irreducibilis. Ebből a Gauss-tétel alkalmazásával azt kapjuk, hogy $\mathbb Q$ felett is irreducibilis a polinom, tehát $\mathbb Q(\alpha)|\mathbb Q$ harmadfokú bővítés. A testbővítések fokszámtétele szerint

$$[\mathbb{Q}(\alpha):\mathbb{Q}] = [\mathbb{Q}(\alpha):K] \cdot [K:\mathbb{Q}] = 3.$$

Ebből $[\mathbb{Q}(\alpha):K]$ és $[K:\mathbb{Q}]$ egyike 1, tehát $K=\mathbb{Q}(\alpha)$ vagy $K=\mathbb{Q}$.

3.1-23. Legyen $K=\mathbb{F}_q$, és f(x) K fölötti irreducibilis n-edfokú polinom. Lássuk be, hogy

$$f(x)|x^{q^n} - x.$$

 $(\mathbb{F}_q \text{ a } q \text{ elemű testet jelöli.})$

Megoldás. Legyen α az f polinom gyöke, és bővítsük K-t α -val:

$$L = \mathbb{F}_q(\alpha)$$

Belátjuk, hogy α gyöke az $x^{q^n} - x$ polinomnak. L q^n elemszámú test, multiplikatív csoportjának elemszáma eggyel kevesebb:

$$|L \setminus \{0\}| = q^n - 1.$$

Legyen β a test tetszőleges nem nulla eleme. Ekkor

$$\beta^{q^n-1} = e,$$

ahol e a test egységeleme, ugyanis ha csoport valamely elemét a csoport rendje nagyságú kitevőre emeljük, akkor megkapjuk az egységelemet (Lagrange-tétel következménye). Így az is igaz, hogy

$$\alpha^{q^n-1} = e.$$

Innen

$$\alpha^{q^n} = \alpha,$$

vagyis

$$\alpha^{q^n} - \alpha = 0$$

tehát α valóban gyöke az $x^{q^n} - x$ polinomnak is.

Másrészről f az α K fölötti minimálpolinomja, és ha a K fölötti valamely g polinomnak gyöke α , akkor f|g is teljesül. Tehát

$$f(x)|x^{q^n} - x$$

3.1-24. Legyen $K=\mathbb{F}_q,\,f(x)\,K$ fölötti irreducibilis n-edfokú polinom, és legyen α gyöke f-nek. Lássuk be, hogy K-t α -val bővítve megkapjuk f K fölötti felbontási testét. (Más szóval lássuk be, hogy ha f egyik gyöke a bővített véges testben van, akkor f mindegyik gyöke benne van.) (\mathbb{F}_q a q elemű testet jelöli.)

Megjegyzés. 0 karakterisztikájú testben ez általában nem igaz (lásd a 20. példát).

Megoldás. Legyen $L = \mathbb{F}_q(\alpha)$. Beláttuk az előző példában, hogy α gyöke az $x^{q^n} - x$ L fölötti polinomnak. Sőt azt is beláttuk, hogy a test bármelyik nem nulla β eleme is gyöke a polinomnak. Ennek a polinomnak – mint könnyen látható – gyöke a 0 is, tehát a test minden eleme gyöke. Mivel a q^n -fokú polinomnak megtaláltuk q^n gyökét, több gyöke pedig nem lehet egy test fölötti

37

polinomnak, mint a fokszáma, ebből következik, hogy a polinom L fölött q^n darab elsőfokú tényező szorzatára bomlik.

$$x^{q^n} - x = \prod_{\beta \in L} (x - \beta)$$

Másrészt szintén az előbbi példából tudjuk, hogy

$$f(x)|x^{q^n}-x,$$

tehát L fölött f is elsőfokú polinomok szorzatára bomlik. Ez pedig azt jelenti, hogy f egyetlen gyökével bővítve, a kapott testben f mindegyik gyöke megtalálható.

3.1.4. Bővítés foka, véges és algebrai bővítés

3.1-25. A következő bővítések közül melyik véges és melyik algebrai? (A az algebrai számok halmaza)

- a. $\mathbb{C}|\mathbb{R}$
- b. $\mathbb{Q}(\sqrt{5})|\mathbb{Q}$ c. $A|\mathbb{Q}$ d. $A|\mathbb{Q}(\sqrt{5})$ e. $\mathbb{R}|\mathbb{Q}(\pi)$

Megoldás.

- a. Véges, algebrai, $\{1, i\}$ egy bázis.
- **b.** Véges, algebrai, $\{1, \sqrt{5}\}$ egy bázis.
- c. Nyilván algebrai a bővítés, ugyanakkor nem véges. Ha véges lenne, akkor lenne véges bázisa, s így véges sok algebrai szám lineáris kombinációjaként az összes többit elő lehetne állítani. Ez azonban nem lehetséges.
 - d. Nem véges, algebrai.
- e. Nem véges, nem algebrai, pl. belátható, hogy e nem írható fel $\mathbb{Q}(\pi)$ -beli nem nulla polinom gyökeként.

3.1-26. Mennyi a $\mathbb{Q}(\pi)|\mathbb{Q}(\pi^2)$ testbővítés foka?

Megoldás. A bővítés foka 2. Egyrészt $\pi \notin \mathbb{Q}(\pi^2)$, másrészt $x^2 - \pi^2 = \mathbb{Q}(\pi^2)$ feletti polinom, ennek gyöke π , s így másodfokú a bővítés.

3.1-27. Határozzuk meg a $T|\mathbb{Q}$ testbővítés fokát, ahol T az alábbi. Mi a bővítő elem minimálpolinomja \mathbb{Q} fölött? Adjunk meg egy bázist.

a. $\mathbb{Q}(\sqrt{7})$

b. $\mathbb{O}(i\sqrt{5})$

c. $\mathbb{Q}(1+i\sqrt{3})$

d. $\mathbb{Q}(i+\sqrt{5})$

e. $\mathbb{Q}(u+i\sqrt{v}), \ u,v\in\mathbb{Q},\sqrt{v}\notin\mathbb{Q}$

Megoldás.

a. Legyen $\alpha=\sqrt{7}$. Mivel $\alpha\not\in\mathbb{Q}$, α minimálpolinomja legalább másodfokú. $\alpha^2=7$, s így $\sqrt{7}$ minimálpolinomja \mathbb{Q} fölött x^2-7 . A bővítés foka 2, egy bázis $\{1,\sqrt{7}\}$.

b. Legyen $\alpha = i\sqrt{5}$. Mivel $\alpha \notin \mathbb{Q}$, α minimálpolinomja legalább másodfokú. $\alpha^2 = -5$, s így $i\sqrt{5}$ minimálpolinomja \mathbb{Q} fölött $x^2 + 5$, a bővítés foka 2, egy bázis $\{1, i\sqrt{5}\}$.

c. Legyen $\alpha=1+i\sqrt{3}$. Mivel $\alpha\not\in\mathbb{Q}$, α minimálpolinomja legalább másodfokú. α minimálpolinomja \mathbb{Q} fölött x^2-2x+4 . Ezt a következőképpen találhatjuk meg:

$$\alpha = 1 + i\sqrt{3}$$

$$\alpha^2 = 1 - 3 + 2i\sqrt{3} = 2 + 2i\sqrt{3} - 4 = 2\alpha - 4$$

 α gyöke az x^2-2x+4 polinomnak, és korábbi megállapításunk alapján ez a minimálpolinomja is.

A bővítés foka 2, egy bázis $\{1,1+i\sqrt{3}\}$. Mivel $\mathbb{Q}(1+i\sqrt{3})=\mathbb{Q}(i\sqrt{3}),$ bázis például $\{1,i\sqrt{3}\}$ is.

 ${\bf d.}\ i+\sqrt{5}$ minimálpolinomja $\mathbb Q$ fölött $x^4-8x^2+36.$ Ezt a következőképpen találhatjuk meg:

$$\alpha = i + \sqrt{5}$$

$$\alpha^2 = -1 + 5 + 2i\sqrt{5}$$

$$\alpha^2 - 4 = 2i\sqrt{5}$$

$$\alpha^4 + 16 - 8\alpha^2 = -20$$

Ezek szerint $i + \sqrt{5}$ gyöke az $f = x^4 - 8x^2 + 36$ polinomnak.

Az $i+\sqrt{5}$ elemmel való bővítés negyedfokú, mert két másodfokú bővítés szorzata (*i*-vel majd $\sqrt{5}$ -tel bővítünk). Így a kapott negyedfokú polinom minimálpolinomja $i+\sqrt{5}$ -nek.

Egy lehetséges bázis $\{1, i + \sqrt{5}, (i + \sqrt{5})^2, (i + \sqrt{5})^3\}$

e. $u+i\sqrt{v}$ minimálpolinomja $\mathbb Q$ fölött $x^2-2ux+u^2+v$. Ezt a következőképpen találhatjuk meg. Legyen

$$\alpha = u + i\sqrt{v}$$

ekkor

$$\alpha^{2} = u^{2} - v + 2ui\sqrt{v} = u^{2} - v + 2u(u + i\sqrt{v}) - 2u^{2} = -u^{2} - v + 2u\alpha$$

Vagyis α gyöke a \mathbb{Q} fölötti $x^2 - 2ux + u^2 + v$ polinomnak. Ugyanakkor $\alpha \notin \mathbb{Q}$, így a minimálpolinom legalább másodfokú.

A bővítés foka 2, egy bázis $\{1,u+i\sqrt{v}\}$. Mivel $\mathbb{Q}(u+i\sqrt{v})=\mathbb{Q}(i\sqrt{v}),$ bázis például $\{1,i\sqrt{v}\}$ is.

3.1-28. Határozzuk meg a $T|\mathbb{Q}$ testbővítés fokát, ahol T az alábbi. Adjunk meg egy bázist.

a.
$$\mathbb{Q}(\sqrt{2}, \sqrt{3})$$
 b. $\mathbb{Q}(i, \sqrt{8})$

Megoldás.

- a. $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2})(\sqrt{3})$. A bővítés tehát felfogható két másodfokú bővítés egymásutánjaként. Az első bővítés bázisa $\{1, \sqrt{2}\}$, a második bővítés bázisa $\{1, \sqrt{3}\}$. A keresett bővítés bázisa a két előbbi bázis szorzatából adódik (lásd testbővítések fokszámtétele): $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$, a bővítés foka pedig 4.
- b. $\mathbb{Q}(i,\sqrt{8}) = \mathbb{Q}(i)(\sqrt{8})$. A bővítés tehát felfogható két másodfokú bővítés egymásutánjaként. Az első bővítés bázisa $\{1,i\}$, a második bővítés bázisa $\{1,\sqrt{8}\}$. A keresett bővítés bázisa a két előbbi bázis szorzatából adódik (lásd testbővítések fokszámtétele): $\{1,i,\sqrt{8},i\sqrt{8}\}$, a bővítés foka pedig 4.
- 3.1.5. Véges test elemeinek összege, szorzata, Vieta-formulák, gyökök és együtthatók közötti összefüggések
- 3.1-29. Bizonyítsuk be a Wilson-tételt: $(p-1)! \equiv -1 \pmod{p}$, ha p

prím.

Megoldás. \mathbb{Z}_p elemeivel dolgozunk. Minden $\overline{a} \neq \overline{0}$ maradékosztályhoz párosítjuk azt a \overline{b} maradékosztályt, amellyel szorozva $\overline{1}$ -et ad. Mivel \mathbb{Z}_p test, minden $\overline{a} \neq \overline{0}$ -hoz van ilyen \overline{b} . Ha \overline{a} párja \overline{b} , akkor nyilván \overline{b} párja \overline{a} . E párosítás során csak az $\overline{1}$ és $\overline{-1}$ osztály lesz önmaga párja. Ha ugyanis \overline{u} párja önmaga, akkor

$$u^2 \equiv 1 \pmod{p}$$
,

vagyis

$$0 \equiv u^2 - 1 = (u - 1)(u + 1) \pmod{p}.$$

Ebből, mivel p prím

$$p|u-1$$
 vagy $p|u+1$,

tehát

$$u \equiv 1 \pmod{p}$$
 vagy $u \equiv -1 \pmod{p}$.

Szorozzuk össze tehát mindegyik osztályt a párjával, ha az különbözik tőle. Ezeket az értékeket egymással is összeszorozva $\overline{1}$ -et kapunk, amit még meg kell szoroznunk a kimaradt osztályokkal, az $\overline{1}$ -gyel, és – ha ettől különbözik – akkor a $\overline{-1}$ -gyel is.

Ha
$$\overline{1} \neq \overline{-1}$$
, akkor $(p-1)! \equiv 1(-1) = -1 \pmod{p}$.

$$p=2$$
esetén $\overline{1}=\overline{-1}$ s így $(p-1)!\equiv 1\equiv -1\pmod 2$ szintén teljesül. \blacksquare

3.1-30. Mennyi valamely véges test nem nulla elemeinek a szorzata?

Megoldás. Az előző példa gondolatmenetét alkalmazzuk. Tetszőleges véges testben is megtehetjük, hogy mindegyik elemet megszorozzuk az inverzével, s a szorzatok értéke 1-et ad (most 1 az adott véges test egységeleme). Csupán azt kell most is megvizsgálnunk, hogy van-e olyan elem, amelyik önmaga

41

inverze. Ha u inverze önmaga, akkor

$$u = \frac{1}{u}$$

amiből

$$0 = u^2 - 1 = (u - 1)(u + 1).$$

Mivel testben nincs nullosztó, ez csak úgy lehet, ha

$$u - 1 = 0$$
 vagy $u + 1 = 0$,

ebből pedig

$$u = 1$$
 vagy $u = -1$.

Szorozzuk össze mindegyik elemet az inverzével, ha az különbözik tőle. Ha ezeket az értékeket egymással is összeszorozzuk, 1-et kapunk, amit még meg kell szoroznunk a kimaradt -1-gyel, s így az eredmény -1 lesz. Ha a véges testben $1 \neq -1$, akkor az eddigi eredményt még 1-gyel is szoroznunk kell – ami természetesen nem változtat a szorzat értékén. Így tetszőleges véges test nem nulla elemeinek a szorzata -1-et ad.

3.1-31. Véges testben mi az elemek számának paritása?

Megoldás. Lásd az előző példa magyarázatát.

Ha 1=-1, akkor az elemszám páros, mert a párosításból csak az 1 és a 0 marad ki.

Ha pedig $1 \neq -1$, akkor páratlan az elemszám, hiszen a párosításból az 1, -1 és a 0 marad ki.

Vieta-formulák, gyökök és együtthatók közötti összefüggések Legyen R egységelemes integritási tartomány, és tegyük fel, hogy az

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 \in R[x]$$

n-edfokú polinom – multiplicitással együtt vett – n gyöke mind R-ben van. Legyenek ezek a gyökök c_1, c_2, \ldots, c_n . Ekkor

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_1 x + a_0 =$$

$$= a_n (x - c_1)(x - c_2) \cdots (x - c_n) =$$

$$= a_n (x^n - (c_1 + c_2 + \dots + c_n) x^{n-1} +$$

$$+ (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n) x^{n-2} +$$

$$\vdots$$

$$+ (-1)^n (c_1 \cdot c_2 \cdots c_n)$$

amiből

$$\frac{a_{n-1}}{a_n} = -(c_1 + c_2 + \dots + c_n)
\frac{a_{n-2}}{a_n} = (c_1 \cdot c_2 + c_1 \cdot c_3 + \dots + c_{n-1} \cdot c_n)
\vdots
\frac{a_0}{a_n} = (-1)^n (c_1 \cdot c_2 \cdots c_n)$$

3.1-32. Legyen Lvéges test, $|L|=q^k.$ Számítsuk ki a következő összeget:

$$\sum_{l \in L} l$$
.

Megoldás. A $g(x) = x^{q^k} - x$ polinom gyökei éppen az L test elemei.

A Vieta-formulákat alkalmazzuk:

$$\frac{a_{n-1}}{a_n} = -(c_1 + c_2 + \ldots + c_n)$$

Ha $n=q^k\geq 3$, akkor $a_{n-1}=0$, a fenti érték is nulla, tehát a test elemeinek összege nulla.

Ha $n=q^k=2$, akkor a test elemeinek összege 1, hiszen ennek a testnek egyik eleme a 0, másik eleme az 1.

3.1-33. Legyen L véges test, $|L|=q^k$. Jelölje L^* az L multiplikatív csoportját. Számítsuk ki a következő szorzatot:

$$\prod_{l\in L^*}l.$$

(Lásd a 30. példát is.)

Megoldás. A $k(x) = x^{q^k-1} - 1$ polinom gyökei az L test nem nulla elemei.

A Vieta-formulákat alkalmazzuk:

$$\frac{a_0}{a_n} = (-1)^n (c_1 \cdot c_2 \cdot \cdot \cdot c_n)$$

ahol $a_0 = -1, \ a_n = 1.$

Ha $n = q^k - 1$ páros $(q^k$ páratlan), akkor a nem nulla elemek szorzata -1.

Ha $n=q^k-1$ páratlan $(q^k$ páros), akkor a nem nulla elemek szorzata 1. Ekkor azonban a test karakterisztikája 2, így 1+1=0, vagyis 1=-1. Tehát mondhatjuk ilyenkor is, hogy a nem nulla elemek szorzata -1.

3.2. Hibajavító kódok

A feladatok általában bináris kódokra vonatkoznak, vagyis olyanokra, amelyek esetén az S alaphalmaz a $\{0,1\}$ halmaz. Néhány feladat általánosabban van megfogalmazva, ezekben az S alaphalmaz tetszőleges nem üres halmaz.

3.2.1. Alapfogalmak

Az alábbiakban blokk-kódokkal foglalkozunk. A blokk-kódokat az jellemzi, hogy a kódszavak mind ugyanolyan hosszúak.

Legyen $S \neq \emptyset$ véges halmaz, $u, v \in S^n$. u és v Hamming-távolsága u és v különböző komponenseinek a száma. Jelölése d(u, v).

Legyen $K\subseteq S^n$ az előbbiek mellett még legalább kételemű. K (minimális) távolsága az egymáshoz legközelebbi két különböző kódszónak a távolsága. Jelölése d(K) vagy d.

Legyen S Abel csoport és $\underline{0} = \{0, ..., 0\}$, ahol 0 az S egységeleme. $u \in S^n$ Hamming-súlya az u nem nulla komponenseinek a száma. Jelölése w(u). Ha K-nak van eleme a $\underline{0}$ -n kívül, akkor K (minimális) súlya a nem nulla elemei közül a minimális súlyúnak a súlya. Jelölése w(K), vagy w.

Legyen K blokk-kód. K csoportkód, ha S Abel-csoport és K részcsoport S^n -ben, amennyiben S^n -ben a művelet a komponensenként végzett S-beli művelet.

Legyen $u \in S^n$, k természetes szám. Az u középpontú k sugarú gömbben S^n -nek azok az elemei szerepelnek, amelyek u-tól legfeljebb k távolságra vannak.

Egy kód t-hiba jelző, ha bármelyik üzenetben előforduló legfeljebb t számú hibát képes jelezni, pontosan t-hiba jelző, ha t-hiba jelző, de van olyan t+1 hiba, amelyet nem jelez.

Egy kód t-hiba javító, ha bármelyik üzenetben előforduló legfeljebb t számú hibát képes javítani, $pontosan\ t$ -hiba javító, ha t-hiba javító, de van olyan t+1 hiba, amelyet hibásan javít.

Legyen K blokk-kód és d(K) = d. A kód akkor és csak akkor t-hiba jelző, ha t < d, pontosan t-hiba jelző, ha t = d - 1.

Hiba javítása során alkalmazhatjuk azt a stratégiát, hogy a hibás vektor helyett azt a kódszót választjuk, amelyik hozzá a legközelebb van. Ha több ilyen kódszó van, akkor közülük az egyiket választjuk. Ekkor minimális távolságú dekódolásról beszélünk.

Minimális távolságú dekódolás esetén a d távolságú kód t-hiba javító, ha $t \leq \frac{d-1}{2}$, pontosan t-hiba javító, ha $t = \lfloor \frac{d-1}{2} \rfloor$.

3.2.2. Blokk-kódok

3.2-1.

Tegyük fel, hogy az üzenetek bináris jelsorozatok, vagyis az $S=\{0,1\}$ halmaz elemeiből épülnek fel. Rendeljünk hozzá a kettő hosszú üzenetekhez öt hosszú kódokat a következő szabály szerint.

$$(0\ 0) \rightarrow (0\ 0\ 0\ 0\ 0)$$

$$(0\ 1) \rightarrow (0\ 1\ 1\ 1\ 0)$$

$$(1\ 0) \rightarrow (1\ 0\ 1\ 0\ 1)$$

$$(1\ 1) \rightarrow (1\ 1\ 0\ 1\ 1)$$

Így négy elemből álló blokk-kódot kapunk. Ha a csatornán például a (0 1 0 0 0) jelsorozat érkezik, tudjuk, hogy hiba történt, hiszen ez a szó nem szerepel a kódszavak között.

Mekkora az $u = (0\ 1\ 1\ 1\ 0)$ és $v = (1\ 0\ 1\ 0\ 1)$ kódszavak távolsága, a kód távolsága, a $z = (1\ 1\ 0\ 1\ 1)$ vektor súlya, valamint a kód súlya?

Megoldás. Az $u=(0\ 1\ 1\ 1\ 0)$ és $v=(1\ 0\ 1\ 0\ 1)$ kódszavak távolsága d(u,v)=4, magának a kódnak a távolsága 3, a $z=(1\ 1\ 0\ 1\ 1)$ vektor súlya w(z)=4, a kód súlya 3.

3.2-2. Az 1. példa S halmaza legyen \mathbb{F}_2 , a kételemű test. \mathbb{F}_2 az összeadásra csoportot alkot. Az \mathbb{F}_2 elemeiből készített n hosszú vektorok is csoportot alkotnak az elemenkénti összeadásra nézve. Lássuk be, hogy a példa K kódhalmaza részcsoport S^n -ben, így K csoportkód.

Megoldás. Mivel a megadott halmaz nem üres, ezért ehhez csak arról kell meggyőződnünk, hogy bármely két kódszó különbsége is kódszó. Mivel \mathbb{F}_2 -ben 1=-1, ehelyett elegendő azt megvizsgálnunk, hogy bármely két kódszó összege is kódszó.

3.2-3. Legyen K az 1. példabeli kód, $u=(0\ 0\ 0\ 0),\ t=1.$ Adjuk meg az u körüli 1 sugarú gömbben szereplő sorozatokat.

Megoldás. Az u körüli 1 sugarú gömbben a következő sorozatok találhatók:

$$(0\ 0\ 0\ 0\ 0), (1\ 0\ 0\ 0\ 0), (0\ 1\ 0\ 0\ 0), (0\ 0\ 1\ 0\ 0), (0\ 0\ 0\ 1\ 0), (0\ 0\ 0\ 0\ 1).$$

Figyeljük meg, hogy nincs a gömb elemei között a (0 0 0 0 0)-t leszámítva kódszó, ami összhangban van azzal, hogy a kód távolsága nagyobb 1-nél (nevezetesen 3).

3.2-4. Az 1. példa kódját alkalmazva tegyük fel, hogy a $(0\ 1\ 0\ 0\ 0)$ hibás jelsorozat érkezik. Minimális távolságú dekódolás esetén melyik szót választjuk helyette?

Megoldás. Minimális távolságú dekódolás esetén a hibásan beérkező szó helyett a hozzá legközelebbi kódszót, a (0 0 0 0 0) szót választjuk. ■

- 3.2-5. Legyen $S = \mathbb{F}_2$, a közleményszavak pedig k hosszú sorozatok. Állapítsuk meg, hogy az alábbi kódok esetén mi jellemzi a kódszavakat, mennyi a kód minimális távolsága, hibajelző és (minimális távolságú dekódolással) a hibajavító képessége.
- a. Kétszeri ismétlés kódja. A kódszót megkapjuk, ha a közleményszót kétszer egymásután leírjuk. Az $(\alpha_1,\alpha_2,\ldots,\alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \ldots, \alpha_k, \alpha_1, \alpha_2, \ldots, \alpha_k)$$

kódszó keletkezik.

b. Háromszori ismétlés kódja. A kódszót megkapjuk, ha a közleményszót háromszor egymásután leírjuk. Az $(\alpha_1,\alpha_2,\ldots,\alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \dots, \alpha_k, \alpha_1, \alpha_2, \dots, \alpha_k, \alpha_1, \alpha_2, \dots, \alpha_k)$$

kódszó keletkezik.

c. Paritásvizsgálat kódja. A kódszót megkapjuk, ha a közleményszó végére az elemek (\mathbb{F}_2 -ben számított) összegét írjuk. Az $(\alpha_1,\alpha_2,\ldots,\alpha_k)$ közleményszóból az

$$(\alpha_1, \alpha_2, \dots, \alpha_k, \beta), \quad \beta = \sum_{i=1}^k \alpha_i$$

kódszó keletkezik.

Megoldás.

a. Kétszeri ismétlés kódja. A kódszavak n=2k hosszúak. Az n hosszú bináris szavak közül azok a kódszavak, amelyekre az i-edik és k+i-edik elem megegyezik minden $1 \le i \le k$ esetén.

Állapítsuk meg a kód távolságát. Minden közleményszóhoz más és más kódszó tartozik, így a távolság legalább 1. Másrészt tekintsünk két olyan közleményszót, amelyek egymástól csak 1 távolságra vannak. A hozzájuk tartozó kódszavak távolsága 2. Az egymástól legalább 2 távolságra lévő közleményszavakhoz tartozó kódszavak egymástól való távolsága pedig nagyobb 2-nél. Így a kód távolsága d=2.

A kód 1-hiba jelző, és hiba javítására nem alkalmas. Ugyanis ha egy helyen romlik el a kószó, akkor valamilyen i-re az i-edik és k+i-edik elem különbözik, tehát érzékeljük a hibát, de javítani nem tudjuk. Van azonban olyan 2-hiba, amelyet nem is tudunk érzékelni. Az olyan 2-hibáról van szó, amelyik úgy keletkezik, hogy valamilyen i-re az i-edik és k+i-edik elem egyszerre hibásodik meg.

b. Háromszori ismétlés kódja. A kódszavak n=3k hosszúak. Az n hosszú bináris szavak közül azok a kódszavak, amelyekre az i-edik, k+i-edik valamint a 2k+i-edik elem megegyezik minden $1 \le i \le k$ esetén.

Állapítsuk meg a kód távolságát. Minden közleményszóhoz más és más kódszó tartozik, így a távolság legalább 1. Másrészt tekintsünk két olyan közleményszót, amelyek egymástól csak 1 távolságra vannak. A hozzájuk tartozó kódszavak távolsága 3. Az egymástól legalább 2 távolságra lévő közleményszavakhoz tartozó kódszavak egymástól való távolsága pedig nagyobb 2-nél. Így a kód távolsága d=3.

A kód 2-hiba jelző, és 1-hiba javító. Ugyanis ha egy helyen romlik el a kószó, akkor valamilyen i-re az i-edik, k+i-edik és 2k+i-edik elem közül kettő azonos, a harmadik más (amelyik elromlott). Amelyik más, mint a többi kettő, azt javítjuk a másik kettő értékére. Ha pedig két helyen romlik el a kószó, akkor előfordulhat, hogy valamilyen i-re az i-edik, k+i-edik és 2k+i-edik elem közül romlott el kettő. Ekkor érzékeljük a hibát, de nem tudjuk javítani. Ha pedig három helyen hibásodott meg a kódszó, lehet, hogy valamilyen i-re az i-edik, k+i-edik és 2k+i-edik elem romlott el, ilyenkor nem is érzékeljük a hibát.

c. Paritásvizsgálat kódja. A kódszavak n=k+1 hosszúak. Az n hosszú bináris szavak közül azok a kódszavak, amelyek páros sok 1-est tartalmaznak. A kód távolsága d=2, 1-hiba jelző, hiba javítására nem alkalmas.

Megjegyzés. Figyeljük meg, hogy az a. és c. kód hibajelző és hibajavító képessége megegyezik, ugyanakkor az a. kód hossza k értékével sokkal gyorsabban nő, mint a c. kód hossza.

Bizonyítsuk be a következőt. Legyen az alaphalmaz S, a $K \subseteq S^n$ kód t-hiba javító. Ekkor

$$|K| \cdot \sum_{i=0}^{t} \binom{n}{i} (s-1)^i \le s^n,$$

ahol s = |S|.

Megoldás. S^n -ben egy adott kódszótól i távolságra azok a szavak vannak, amelyek pontosan i helyen különböznek tőle. Az i különböző helyet $\binom{n}{i}$ -féleképpen választhatjuk ki, mindegyik helyre (s-1) jel kerülhet, és az i helyre összesen $(s-1)^i$ féleképpen rakhatunk jeleket.

Az adott kódszó körüli t sugarú gömbben így $\sum_{i=0}^t \binom{n}{i} (s-1)^i$ S^n -beli szó található, beleértve magát a kódszót is. Összesen |K| kódszavunk van. A kód t-hiba javító, ezért a |K| különböző kódszó körüli t-sugarú gömbök diszjunktak kell, hogy legyenek. Összesen tehát nem tartalmazhatnak több elemet, mint az S^n halmaz, vagyis s^n -et.

3.2-7. Bináris blokk-kódot készítünk 3 hosszú üzenetekhez. Legalább mekkora legyen a kódszavak hossza, ha azt akarjuk, hogy a kód (minimális távolságú dekódolással) pontosan 1-hiba javító legyen?

Megoldás. Írjuk fel a Hamming-korlátot bináris esetre alkalmazva. Mivel 1-hiba javító a kód, ezért

$$2^{k} \binom{n}{0} + \binom{n}{1} \le 2^{n}$$
$$\binom{n}{0} + \binom{n}{1} \le 2^{n-k}$$
$$n+1 \le 2^{n-k}$$
$$n+1 < 2^{n-3}$$

n=6 esetén teljesül először az egyenlőtlenség:

$$6+1=7 \le 8=2^3=2^{6-3}$$
.

Ha n értéke nagyobb, akkor a Hamming-korlát még inkább érvényben lesz, tehát a válasz az, hogy legalább 6 kell, hogy legyen a kódszavak hossza.

3.2-8. k hosszú bináris szavakból (üzenet) 19 hosszú bináris szavakat (kódszót) készítünk. Legfeljebb mekkora lehet az üzenetek hossza, ha azt akarjuk, hogy a kód minimális távolsága 8 legyen?

Megoldás. Mivel d=8, a kód $t=\lfloor\frac{d-1}{2}\rfloor=3$ -hiba javító. A Hamming korlát a következőképpen alakul:

$$\left(\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{t} \right) \le 2^{n-k}$$

$$\left(\binom{19}{0} + \binom{19}{1} + \binom{19}{2} + \binom{19}{2} + \binom{19}{3} \right) \le 2^{19-k}$$

$$1 + 19 + \frac{19 \cdot 18}{2} + \frac{19 \cdot 18 \cdot 17}{2 \cdot 3} \le 2^{19-k}$$

$$1160 < 2^{19-k}.$$

Mivel $2^{10} = 1024$ és $2^{11} = 2048$, a következőt kapjuk:

$$11 \le 19 - k$$

k < 8

3.2-9. Állapítsuk meg, hogy van-e 5 minimális távolságú, 13 hosszú perfekt bináris kód?

A K blokk-kód tökéletes (perfekt), ha a Hamming-korlát egyenlőséggel teljesül. Perfekt kód esetén a kódszavak körüli $\lfloor \frac{d-1}{2} \rfloor$ sugarú gömbök teljesen kitöltik az n hosszú sorozatok terét, s így minden szóhoz pontosan egy kódszó van, amelytől legfeljebb $\lfloor \frac{d-1}{2} \rfloor$ távolságra van.

Megoldás. A kódszavak hossza n=13. Mivel d=5 és $\lfloor \frac{d-1}{2} \rfloor = 2$, a kód t=2-hiba javító (minimális távolságú dekódolással). Ha a közleményszavak

k hosszúak, akkor a közleményszavak száma 2^k , ami megegyezik a kódszavak számával, s így $|K|=2^k$. Ha a kód perfekt, akkor a Hamming-korlát egyenlőséggel teljesül, tehát fennáll a következő

$$2^k \cdot \left(\binom{13}{0} + \binom{13}{1} + \binom{13}{2} \right) = 2^{13}$$

Ebből

$$2^k \cdot \left(1 + 13 + \frac{13 \cdot 12}{2}\right) = 2^{13}$$

amiből $2^k \cdot 92 = 2^{13}$. A jobb oldalon 2 hatványa áll, a bal oldalon szereplő 92 azonban nem 2 hatványa, ez az egyenlőség nem teljesülhet semmilyen k esetén. Ilyen kód tehát nem létezik.

3.2-10. Létezik-e 3 minimális távolságú perfekt bináris kód n=147 esetén?

Megoldás. Nincs. A kód d=3 miatt t=1-hiba javító. Ekkor a Hamming-korlát alapján a következőnek kellene teljesülni:

$$\binom{147}{0} + \binom{147}{1} = 2^{n-k}$$

$$1 + 147 = 2^{147 - k}$$

$$148 = 2^{147-k}$$

A bal oldalon lévő 148 nem 2 hatványa, a jobb oldalon pedig 2 hatványa áll, és ez ellentmondás.

3.2-11. Van-e 12 hosszú kódszavakból álló 1-hiba javító perfekt bináris kód?

Megoldás. Nincs. Ugyanis a Hamming-korlát alapján a következőnek kellene teljesülni:

$$\binom{n}{0} + \binom{n}{1} = 2^{n-k}$$

$$n+1 = 2^{n-k}$$
$$13 = 2^{12-k}$$

A bal oldalon lévő 13 nem 2 hatványa, a jobb oldalon pedig 2 hatványa áll, ez ellentmondás.

3.2.3. Lineáris kód alapfogalmai

Legyen $S = \mathbb{F}_q$, és S^n az \mathbb{F}_q test feletti vektortér. K lineáris kód, ha K az S^n -nek k-dimenziós altere. Jelölése [n, k].

Lineáris kód esetén a kód súlya és a kód távolsága megegyezik.

Legyen K [n,k] kód. A kód generátormátrixa az altér egy bázisának elemeiből mint sorvektorokból álló G mátrix. A kód (paritás)ellenőrző mátrixa a K altérre merőleges altér egy bázisának elemeiből mint sorvektorokból álló H mátrix.

Nyilvánvalóan G $(k \times n)$ -es, k rangú, míg H $((n-k) \times n)$ -es, n-k rangú \mathbb{F}_q fölötti mátrix, továbbá $H \cdot G^T = 0$.

 $\underline{v} \in \mathbb{F}_q^n$ akkor és csak akkor kódszó, ha $H \cdot \underline{v} = \underline{0}.$

A definícióból látszik, hogy egy kódnak általában több generátormátrixa és több paritásellenőrző mátrixa is lehet.

Kódolás lineáris kóddal

Tekintsünk egy [n,k] kódot. A kódszavak az n dimenziós tér k dimenziós alterének szavai, és az altér bármely bázisa alkalmas generátormátrix képzésére. Ha azonban közleményszavakhoz kívánunk kódszavakat rendelni, egy rögzített G generátormátrixszal dolgozunk. A közleményszavak k hosszú vektorok, az \mathbb{F}_q^k elemei, és az alábbi szabállyal rendelünk egy közleményszóhoz kódszót. Legyen $\underline{u} \in \mathbb{F}_q^k$ egy lehetséges közleményszó és $\underline{u}^T \cdot G = \underline{v}^T$. Ekkor a $\underline{v} \in \mathbb{F}_q^n$ vektor lesz az \underline{u} kódja.

3.2.4. Lineáris kód

3.2-12. Valamely kód generátormátrixa legyen a következő:

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Ezt a mátrixot használva kódolásra, adjuk meg az összes közleményszót, valamint a megfelelő kódszavakat.

Megoldás. Alkalmazzuk a következő szabályt. Ha $\underline{u} \in \mathbb{F}_q^k$ egy lehetséges közleményszó, és $\underline{u}^T \cdot G = \underline{v}^T$, akkor a $\underline{v} \in \mathbb{F}_q^n$ vektor lesz az \underline{u} kódja.

közleményszavak	\mapsto	kódszavak
$(0\ 0\ 0)$	\mapsto	$(0\ 0\ 0\ 0\ 0\ 0\ 0)$
$(0\ 0\ 1)$	\mapsto	$(0\ 1\ 1\ 1\ 0\ 1\ 1)$
$(0\ 1\ 0)$	\mapsto	$(1\ 1\ 0\ 0\ 1\ 1\ 0)$
$(0\ 1\ 1)$	\mapsto	$(1\ 0\ 1\ 1\ 1\ 0\ 1)$
$(1\ 0\ 0)$	\mapsto	$(0\ 1\ 0\ 1\ 0\ 1\ 0)$
$(1\ 0\ 1)$	\mapsto	$(0\ 0\ 1\ 0\ 0\ 0\ 1)$
$(1\ 1\ 0)$	\mapsto	$(1\ 0\ 0\ 1\ 1\ 0\ 0)$
$(1\ 1\ 1)$	\mapsto	$(1\ 1\ 1\ 0\ 1\ 1\ 1)$

3.2-13. Állapítsuk meg, hogy az 5. példa kódjai közül melyik lineáris, és a lineárisoknak adjuk meg a generátormátrixát.

Megoldás. Mindhárom kód esetén bármely két kódszó összege is kódszó, így lineáris kódokról van szó.

 ${\bf a.~A}$ kétszeres ismétlés kód esetén olyan $G~k\times 2k$ méretű mátrixot keresünk, amelyikre

$$(\alpha_1, \alpha_2, \dots, \alpha_k) \cdot G = (\alpha_1, \alpha_2, \dots, \alpha_k, \alpha_1, \alpha_2, \dots, \alpha_k)$$

teljesül. A megfelelő G generátormátrix

$$G = (I_k \ I_k).$$

- **b.** A háromszoros ismétlés kód generátormátrixa $G = (I_k \ I_k \ I_k)$.
- c. A paritásellenőrző kód generátormátrixa $G=(I_k\ I)$, ahol I csupa 1-esből álló oszlopvektor.
- 3.2-14. Az alábbi bináris kódok esetében állapítsuk meg a minimális távolságot, a hibajelző, illetve (minimális távolságú dekódolással) a hibajavító képességet, valamint azt, hogy melyik lineáris, a lineárisoknak pedig adjuk meg a generátormátrixát.

a. Legyen $k=3,\ n=4,$ és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat:

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1 + \alpha_2 + \alpha_3 + 1$$

b. Legyen $k=3,\ n=5,$ és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat:

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1, \alpha_2 + \alpha_3$$

c. Legyen $k=3,\ n=5,$ és az üzenetekhez az alábbi szabállyal rendeljük hozzá a kódszavakat:

$$\alpha_1, \alpha_2, \alpha_3 \rightarrow \alpha_1, \alpha_2, \alpha_3, \alpha_1, \max(\alpha_2, \alpha_3)$$

Megoldás.

a. A kód távolsága d=2. Ugyanis minden közleményszóhoz más és más kódszó tartozik, így a távolság legalább 1. Másrészt tekintsünk két olyan közleményszót, amelyek egymástól csak 1 távolságra vannak. A hozzájuk tartozó kódszavak távolsága 2. Az egymástól legalább 2 távolságra lévő közleményszavakhoz tartozó kódszavak egymástól való távolsága pedig legalább 2.

Ezért a kód
$$d-1=1$$
 hibajelző és $\lfloor \frac{d-1}{2} \rfloor = 0$ hibajavító.

A kód nem lineáris, mert például a <u>0</u> vektor nem kódszó.

b. A kód távolsága d=2. Ugyanis minden közleményszóhoz más és más kódszó tartozik, így a távolság legalább 1. Másrészt tekintsünk két olyan közleményszót, amelyek egymástól csak 1 távolságra vannak. A hozzájuk tartozó kódszavak távolsága 2. Az egymástól legalább 2 távolságra lévő közleményszavakhoz tartozó kódszavak egymástól való távolsága pedig legalább 2.

Ezért a kód
$$d-1=1$$
hibajelző és $\lfloor \frac{d-1}{2} \rfloor = 0$ hibajavító.

A kód lineáris, generátormátrixa

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

c. A kód távolsága d=1. Ugyanis minden közleményszóhoz más és más kódszó tartozik, így a távolság legalább 1. Ugyanakkor van egymástól 1 távolságra lévő két kódszó. Például (1 0 1 1 1) és (1 1 1 1).

A kód d-1=0 hibajelző és $\lfloor \frac{d-1}{2} \rfloor = 0$ hibajavító.

A kód nem lineáris, mert van két olyan kódszó, amelyek összege nem kódszó, s így az összeadás (valamint a kivonás is) kivezet a kódszavak halmazából. Ez a helyzet például a következő esetben. $\underline{u}_1^T=(1\ 1\ 0\ 1\ 1)$ és $\underline{u}_2^T=(1\ 0\ 1\ 1\ 1)$ kódszavak, de az összegük $\underline{u}_1^T+\underline{u}_2^T=(0\ 1\ 1\ 0\ 0)$ nem kódszó.

3.2-15. Lássuk be, hogy ha az \mathbb{F}_k fölötti [n,k] kód generátormátrixa $G=(I_k \ P)$ alakú, akkor a $H=(-P^T \ I_{n-k})$ mátrix a kód ellenőrző mátrixa. $(I_k$ a $k\times k$ méretű egységmátrixot jelöli, P pedig tetszőleges $k\times (n-k)$ méretű, \mathbb{F}_k fölötti mátrix.) A kételemű test fölött -P helyett P is irható, mert \mathbb{F}_2 -ben 1=-1.

Megjegyzés. Hasonlóan igaz az is, hogy ha egy [n,k] kód ellenőrző mátrixa $H=(I_{n-k}\quad R)$ alakú, ahol R tetszőleges $((n-k)\times k)$ méretű, \mathbb{F}_k fölötti mátrix, akkor a $G=(-R^T\quad I_k)$ mátrix megfelel generátormátrixnak.

Megoldás. H nyilván n-k rangú. Elég belátnunk azt, hogy $H \cdot G^T = 0$. Blokkonkénti szorzással a következőt kapjuk:

$$(-P^T \quad I_{n-k}) \cdot \begin{pmatrix} I_k \\ P^T \end{pmatrix} = -P^T + P^T = 0$$

3.2-16. Adjuk meg a 14. példában szereplő lineáris kód ellenőrző mátrixát a

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

generátormátrix felhasználásával.

Megoldás. Alkalmazzuk az előző példát, ami alapján

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

3.2-17. Lássuk be, hogy egy [n,k,d] kód H ellenőrző mátrixában van d lineárisan összefüggő oszlop, de bármely d-nél kevesebb oszlop lineárisan független.

Megoldás.

1. Belátjuk, hogy egy [n,k,d] kód H ellenőrző mátrixában van d lineárisan összefüggő oszlop. A következő módon lehet ilyet találni. Mivel d a kód minimális távolsága és ez az érték megegyezik a kód súlyával, van a kódban olyan \underline{u} vektor, amelyikre $w(\underline{u}) = d$. Ebben a vektorban tehát d helyen nem nulla érték áll, a többi helyen pedig nulla. Tudjuk, hogy $H \cdot \underline{u} = \underline{0}$.

Ez az egyenlet felfogható úgy is, hogy H oszlopainak vesszük a lineáris kombinációit, és \underline{u} elemei az együtthatók. Olyan lineáris kombinációról van szó, amelyben pontosan d számú együttható különbözik nullától. A megfelelő d oszlop H-ban lineárisan összefüggő.

2. Most belátjuk, hogy H-ban bármely d-nél kevesebb oszlop lineárisan független. Legyen $0 < d_1 < d$, és tegyük fel, hogy H-ban van d_1 összefüggő oszlop. Ekkor van H oszlopainak olyan lineáris kombinációja, amelyben ez a d_1 oszlop nem mind nullával szorzódik, a többi együttható azonban mind nulla, s az eredmény a nullvektor. Ezekből az együtthatókból készítsünk egy \underline{u}_1 vektort. Egyrészt $H \cdot \underline{u}_1 = \underline{0}$, ami azt jelenti, hogy \underline{u}_1 kódvektor. Másrészt $w(\underline{u}_1) = d_1$, így a kód súlya és ezzel együtt a távolsága kisebb lenne d-nél, ami ellentmond a kiindulási feltételnek. Így valóban minden d-nél kevesebb oszlop lineárisan független H-ban.

3.2-18. Adjuk meg a 14. és 16. példában szereplő lineáris kód

$$H = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

ellenőrző mátrixának segítségével a kód távolságát és hibajelző, valamint (minimális távolságú dekódolással) a hibajavító képességét.

Megoldás. Az ellenőrző mátrixban van két összefüggő oszlop (a 2. és a 3.), ugyanakkor bármely oszlop önmagában lineárisan független (nem szerepel köztük a nullvektor), így d=2, 1-hibajelző és 0-hiba javító a kód. Más meggondolással a 14.b példában ugyanezt kaptuk.

3.2-19. Legyen egy bináris lineáris kód generátormátrixa:

$$G = \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Adjuk meg az (egyik) ellenőrző mátrixát. Az ellenőrző mátrix felhasználásával mondjuk meg a kódtávolságot.

Megoldás. Az ellenőrző mátrix:

$$H = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Van két összefüggő oszlop H-ban (a 3-dik és a 7-dik), de nincs egyetlen önmagában összefüggő oszlop, ugyanis egyik oszlopban sincs csupa nulla. Így a kódtávolság 2.

3.2-20. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Adjuk meg a kód paritásellenőrző mátrixát és távolságát. Megoldás.

A generátormátrixnak nem szerepel az elején az egységmátrix, de az oszlopok 4-3-2 permutációját elvégezve (a negyedik oszlopot rakjuk a harmadikba,

a harmadikat a másodikba, a második pedig a negyedik oszlopba kerül), az így keletkező G_1 mátrix már ilyen alakú:

$$G_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 \end{pmatrix}.$$

Ehhez a G_1 mátrixhoz tartozó H_1 mátrixot a 15. példa alkalmazásával megkaphatjuk.

$$H_1 = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Ezen a H_1 mátrixon hajtsuk végre az előző permutáció inverzét, tehát a 2-3-4 permutációt, a kapott H mátrix a G mátrixnak megfelelő paritásellenőrző mátrix:

$$H = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

A kód távolsága d=3, mert H-ban van három összefüggő oszlop (a második, negyedik és hatodik), de semelyik két oszlop nem összefüggő.

3.2-21. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}.$$

Adjuk meg a kód paritásellenőrző mátrixát és távolságát.

Megoldás. A generátormátrixban nem fordulnak elő az egységmátrix oszlopai, ezért oszlopcserével sem tudjuk a kívánt alakra hozni. Emlékeztetünk azonban arra, hogy a generátormátrix sorai a kódszavakból álló altér bázisának vektorai. Ha valamilyen bázistranszformációt hajtunk végre ezeken a vektorokon, akkor ugyanannak az altérnek másik bázisát kapjuk, az az ellenőrző mátrix, amelyik megfelel az utóbbi bázisból képzett generátormátrixnak,

megfelel az eredeti generátormátrixnak is. Adjuk hozzá a G mátrix első sorát a másodikhoz, s igy a G_1 mátrixhoz jutunk:

$$G_1 = \begin{pmatrix} 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 \end{pmatrix}$$

Ebben már ott vannak az egységmátrix oszlopai, s megfelelő oszloppermutációval a mátrix elejére hozhatjuk. Alkalmazzuk G_1 oszlopaira a 4-1-3-2 permutációt, így a G_2 mátrixhoz jutunk:

$$G_2 = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

A G_2 -höz tartozó H_2 ellenőrző mátrixot a 15. példa alkalmazásával kaphatjuk:

$$H_2 = \begin{pmatrix} 1 & 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Ezen a H_2 mátrixon hajtsuk végre az előző permutáció inverzét, tehát a 2-3-1-4 permutációt, a kapott H_1 mátrix a G_1 mátrixnak megfelelő paritásellenőrző mátrix, de korábban kifejtett gondolatmenet alapján ez a G mátrixnak megfelelő H paritásellenőrző mátrix is.

$$H_1 = H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

A kód távolsága d=2, mert H-ban van két összefüggő oszlop (a harmadik és a hetedik), de mindegyik oszlop önmagában független.

3.2-22. Egy bináris kód generátormátrixa

$$G = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 \end{pmatrix}.$$

Mennyi a kód számossága? Adjuk meg a kód paritásellenőrző mátrixát, és ennek segítségével határozzuk meg a távolságát.

Megoldás. Ez egy [5,3] bináris kód, az üzenetek hossza 3, s így a kód számossága $|K| = 2^3 = 8$. G-ből bázistranszformációval olyan mátrixot képezünk, amelyiknek az elején ott van az egységmátrix.

Először a második sort a harmadikhoz adjuk, és így kapjuk az alábbi G1 mátrixot:

$$G1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Most G1 első sorát adjuk a másodikhoz, és így kapjuk az alábbi G2 mátrixot:

$$G2 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Határozzuk meg a G2-höz tartozó ellenőrző mátrixot a 15. példa eredményét felhasználva.

$$H = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 \end{pmatrix}$$

Mivel G sorai és G2 sorai ugyanannak az altérnek két különböző bázisa, így a kapott H mátrix a G generátormátrixhoz tartozó ellenőrző mátrix.

A kód távolsága d=2, mert H-nak van két összefüggő oszlopa (a 2-dik és a 4-dik), de egy összefüggő oszlopa nincs (nincs az oszlopok között a nullvektor).

3.2-23. Egy bináris kód paritásellenőrző mátrixa

Lássuk be, hogy 1-hiba javító perfekt lineáris kódról van szó.

Megoldás. H a 15 dimenziós tér 4 dimenziós alterének bázisa, mert a sorok lineárisan függetlenek (ugyanis benne vannak az egységmátrix oszlopai). Ennek az altérnek ortogonális altere 11-dimenziós és egyértelműen meghatározott, tehát a kód lineáris.

d=3, mert a 3-dik, 7-dik és a 12-dik oszlopok összefüggnek, és nincs két összefüggő oszlop (nincs két azonos oszlop). Ebből t=1-hiba javító a kód.

Vizsgáljuk meg a Hamming-korlátot. r = 4, n = 15, k = 11, és

$$2^{11} \left(\binom{15}{0} + \binom{15}{1} \right) = 2^{11} (1+15) = 2^{11} 2^4 = 2^{15} = 2^n$$

A Hamming korlát egyenlőséggel teljesül, s így a kód perfekt.

Megjegyzés: Ez egy Hamming-kód. Lásd a következő fejezetet.

3.2.5. Hamming-kód

Az 1-hiba javító perfekt lineáris kódot Hamming-kódnak nevezzük.

3.2-24. Hamming-kód készítése.

Bináris Hamming-kódot készíthetünk a következőképpen. Legyen

r pozitív egész szám (ellenőrző jegyek száma),

 $n=2^r-1$ a kódszavak hossza,

 $k = 2^r - 1 - r$ a közleményszavak hossza.

A H $r \times n$ -es ellenőrző mátrix j-edik oszlopában a j 2-es számrendszerbeli alakjának jegyei szerepelnek.

Legyen például r=3, n=7, k=4. Adjuk meg a kód ellenőrző mátrixát.

Megoldás.

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

Ez egy [7,4] kód ellenőrző mátrixa.

61

3.2-25. Adjuk meg az előző példában megismert szabály szerinti Hamming-kód ellenőrző mátrixát, ha r=2, és ha r=4.

Megoldás.

r=2 esetén:

$$H = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

r=3 esetén:

3.2-26. A Hamming-kód generátormátrixa.

Adjuk meg a 24. példabeli [7,4] Hamming-kód H ellenőrző mátrixának ismeretében a kód (egyik) generátormátrixát. Ha ezt a generátormátrixot alkalmazzuk a kódolásnál, mi lesz a $(0\ 1\ 1\ 1)$ üzenet kódja?

Megoldás. A

$$H = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

mátrixból az oszlopok (3,4) transzpozíciójával kapható a

$$H_1 = \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \end{pmatrix}$$

mátrix, amely $(I_{n-k} \ P)$ alakú. A H_1 -nek megfelelő G_1 mátrix, amely $(P^T \ I_k)$ alakú, a 15. példa alkalmazásával kapható:

$$G_1 = \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Ebből a transzpozíciót újra alkalmazva megkapjuk a keresett

$$G = \begin{pmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

mátrixot. A $(0\ 1\ 1\ 1)$ üzenet kódját megkapjuk, ha ezt a vektort jobbról szorozzuk G-vel. Az eredmény: $(0\ 0\ 1\ 1\ 1\ 1)$.

3.2-27. Hibajavítás bináris Hamming-kóddal.

Megoldás. A [7,4] Hamming-kód esetén láttuk az előző példában, hogy $b^T=(0\ 0\ 0\ 1\ 1\ 1\ 1)$ kódszó. Ha ellenőrizzük, azt tapasztaljuk, hogy valóban $H\cdot \underline{b}=(0\ 0\ 0)=\underline{0}$. Tegyük fel, hogy az átvitel során egy hiba történt, mégpedig a harmadik helyen. Ekkor $e^T=(0\ 0\ 1\ 0\ 0\ 0)$ a hibavektor, és a $(b+e)^T=(0\ 0\ 1\ 1\ 1\ 1\ 1)$ vektor érkezik meg a csatornán. $H\cdot (b+e)=(0\ 1\ 1)^T$, ez a H mátrix 3. oszlopa, alulról olvasva éppen a 3 bináris alakja, rámutat arra, hogy a 3. pozícióban van a hiba. Ha pedig $e^T=(0\ 0\ 0\ 0\ 0\ 0\ 1)$ a hibavektor, ellenőrzéskor azt kapjuk, hogy $H\cdot (b+e)=(1\ 1\ 1)^T$, ez a 7 bináris értéke, ami azt mutatja, hogy a 7. jegy hibás. Ezzel a módszerrel mindig megkapjuk a hiba helyét, feltéve, hogy legfeljebb 1 hiba történt. Egynél több hiba esetén nem kapunk helyes eredményt, a kód időnként nem ismeri fel a hibát, vagy rosszul javítja. Ha olyan hibaminta lép fel, mely maga is

kódszó, akkor $H\cdot(b+e)=\underline{0}$, olyan mintha nem történt volna hiba. Ha a hibaminta két 1-est tartalmaz (kettős hiba), akkor a kód egyhibának tekinti.

3.2-28. [7,4] bináris Hamming-kódnál, feltételezve, hogy egynél több hiba nem lépett fel az átvitelnél, mi volt a továbbított kódvektor, ha

a.
$$a^T = (0 \ 1 \ 1 \ 1 \ 1 \ 0)$$
, illetve

b.
$$b^T = (0 \ 0 \ 1 \ 0 \ 1 \ 0)$$
 érkezett.

Megoldás.

 $\mathbf{a.}\ H\cdot a=(0\ 1\ 1)^T,$ így a 6. hely hibás, $(0\ 1\ 1\ 1\ 1\ 0\ 0)^T$ volt a küldött szó.

b.
$$H \cdot b = (0 \ 0 \ 0)^T$$
. A kapott szó hibátlan.

4. Ajánlott irodalom

Bagyinszkiné Orosz Anna – Csörgő Piroska – Gyapjas Ferenc: Példatár a bevezető fejezetek a matematikába c. tárgyhoz Tankönyvkiadó, Budapest, 1983.

Bálintné Szendrei Mária – Czédli Gábor – Szendrei Ágnes: Absztrakt algebrai feladatok Tankönyvkiadó, Budapest, 1988.

G. Birkhoff - T. C. Bartee: A modern algebra a számítógéptudományban Műszaki Könyvkiadó, Budapest, 1974.

Demetrovics, Denev, Pavlov: A számítástudomány matematikai alapjai Tankönyvkiadó, Budapest, 1985.

Freud Róbert: *Lineáris algebra* ELTE Eötvös Kiadó, Budapest, 1996.

Gavrilov, Szapozsenko: Diszkrét matematikai feladatgyűjtemény Műszaki Könyvkiadó 1981.

Gonda János: Bevezető fejezetek a matematikába III. ELTE TTK, Budapest, 1998

Gonda János: Gyakorlatok és feladatok a Bevezetés a matematikába c. tárgyhoz – Polinomok, véges testek, kongruenciák, kódolás ELTE TTK, Budapest, 2001 Györfi László – Győri Sándor – Vajda István: Információ- és kódelmélet

Typotex Kiadó, 2000, 2002

Járai Antal: Bevezetés a matematikába

ELTE Eötvös Kiadó, 2005.

Surányi László: Algebra. Testek, gyűrűk, polinomok.

Typotex, Budapest, 1997.