Dataflow analysis (ctd.)

Using Reaching Definition analysis for Global Constant Folding

Constant Folding

- By using the Reaching Definitions Analysis, we can now formally define the rules for global constant folding optimizations.
- If P is a program, we denote by RD the minimal solution of the Reaching Definition Analysis for P.
- A statement S in P can be tranformed in a more optimized statement, by applying one of the rules below, and we'll use the notation:

$$RD \mid -S \triangleright S'$$

Rule 1

1. RD
$$[-[x := a]^{\vee} \triangleright [x := a[y \rightarrow n]]^{\vee}$$

if
$$y \in FV(a)$$
 \land $(y,?) \notin RD_{entry}(v)$ \land for every $(z,\mu) \in RD_{entry}(v)$: $(z=y \Rightarrow [...]^{\mu} \hat{e} [y:=n]^{\mu})$

The rule says that a variable can be substituted by a contant value if the Reaching Definition Analysis ensures that this is the only value that the variable can hold.

a[y \rightarrow n] means that in the expression a, variable y is substituted by value n

FV(a) denotes the set of free variables in the expression a.

Rule 2

- 2. RD $|-[x := a]^{\vee} \triangleright [x := n]^{\vee}$ if FV(a)= $\emptyset \land a \notin \text{Num} \land \text{the value of a is n}$
- The rule says that an expression can be evaluated at compile time if it contains no free variables.

Composition rules

3.
$$RD \models S_1 \triangleright S'_1 \Rightarrow$$

$$RD \models S_1; S_2 \triangleright S'_1; S_2$$

4.
$$RD \models S_2 \triangleright S'_2 \Rightarrow$$

 $RD \models S_1; S_2 \triangleright S_1; S'_2$

 These rules say that the transformation of a sub-statement (here a sequential statement) can be extended to the whole statement.

Composition rules

- 5. RD $|-S_1| > S'_1 \Rightarrow$ RD $|-\text{ if } [b]^v \text{ then } S_1 \text{ else } S_2 >$ if $[b]^v \text{ then } S'_1 \text{ else } S_2$
- 6. RD $\mid -S_2 \triangleright S'_2 \Rightarrow$ RD $\mid -\text{ if } [b]^v \text{ then } S_1 \text{ else } S_2 \triangleright$ if $[b]^v \text{ then } S_1 \text{ else } S'_2$
- 7. RD |- S ▷ S' ⇒
 RD |- while [b]^v do S ▷
 while [b]^v do S'

Example

Consider the program:

$$[x:=10]^1$$
; $[y:=x+10]^2$; $[z:=y+10]^3$;

The minimal solution of the Reaching Definition Analysis is:

•
$$RD_{in}(1) = \{(x,?),(y,?),(z,?)\}$$

 $RD_{in}(2) = \{(x,1),(y,?),(z,?)\}$
 $RD_{in}(3) = \{(x,1),(y,2),(z,?)\}$

Using RD, we may start applying the rules above:

• RD
$$[-[x:=10]^1; [y:=x+10]^2; [z:=y+10]^3$$

 $[x:=10]^1; [y:=10+10]^2; [z:=y+10]^3$

Here we apply Rule 1, with a=(x+10)
 RD_{in}(2) = {(x,10),(y,?),(z,?)}

RD |- [y := a]² > [y := a[x
$$\rightarrow$$
 10]]²
if x \in FV(a) \land (x,?) \notin RD_{in}(2) \land for every (z, μ) \in RD_{in}2): (z=x \Rightarrow [...] $^{\mu}$ is [x:=10] $^{\mu}$)

• RD
$$[-[x:=10]^1; [y:=x+10]^2; [z:=y+10]^3$$

 $[x:=10]^1; [y:=10+10]^2; [z:=y+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=y+10]^3$

Here we apply Rule 2, whith expression a=(10+10)

RD |- [y := a]²
$$\triangleright$$
 [y := n]²
if FV(a)= $\emptyset \land a \notin \text{Num} \land \text{the value of expression a is n}$

• RD
$$[-[x:=10]^1; [y:=x+10]^2; [z:=y+10]^3$$

 $[x:=10]^1; [y:=10+10]^2; [z:=y+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=y+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=20+10]^3$

Here we apply again Rule 1, with a=(y+10)

RD |- [z := a]³
$$\triangleright$$
 [z := a[y \rightarrow 20]]³
if y \in FV(a) \wedge (y,?) \notin RD_{in}(3) \wedge for every (w, μ) \in RD_{in}(3): (w=y \Rightarrow [...] $^{\mu}$ is [y:=20] $^{\mu}$)

• RD
$$[-[x:=10]^1; [y:=x+10]^2; [z:=y+10]^3$$

 $[x:=10]^1; [y:=10+10]^2; [z:=y+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=y+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=20+10]^3$
 $[x:=10]^1; [y:=20]^2; [z:=30]^3$

Here we apply again Rule 2 with a=(20+10)

RD |- [
$$z := a$$
]³ \triangleright [$z := n$]³ if FV(a)= $\emptyset \land a \notin \text{Num} \land \text{the value of expression a is n}$

 The example above show how to get a sequence of transformations

$$RD \models S_1 \triangleright S_2 \triangleright S_3 \triangleright \ldots \triangleright S_k$$

- Theoretically, once computed S₂ we should re-execute a reaching Definition Analysis to the new program.
- However, if RD is a solution of the Reaching Def. Analysis for S_i and RD $|-S_i| > S_{i+1}$, then it is easy to see that RD is also a solution of the Reaching Def. Analysis for S_{i+1} . In fact the transformation applies to elements that do not affect at all the Reaching Def. Analysis.

Liveness: live variables

- Determine whether a given variable is used along a path from a given point to the exit.
- A variable x is *live at point p* if there is a path from p to the exit along which the value of x is used before it is redefined.
- Otherwise, the variable is dead at that point.
- Used in :
 - register allocation
 - dead code elimination

Example

```
a = 0;
do{
  b= a+1;
  c+=b;
  a=b*2;
}
while (a<N);
return c;</pre>
```


- Statement 4 makes use of variable b, then b is live in in(4) and in out(3)
- Block 3 dos not define b, then b is live also in in(3), and so in out(2)
- Block 2 defines b. Therefore the b is not live anymore in(2).
- The "live range" of variable b is: $\{2 \rightarrow 3, 3 \rightarrow 4\}$

- a is live on $4 \rightarrow 5$ e $5 \rightarrow 2$
- a è live on $1 \rightarrow 2$
- It is dead on $2 \rightarrow 3 \rightarrow 4$

- c is live starting from the beginning of the program:
- c is live in all points
- liveness analysis tells us that if there are no other program lines above, c is used without being initialized (and a warning message can be generated).

 Two registers are sufficient to store the three variables, as a and b are never alive at the same moment.

Live variables

What is safe?

- To assume that a variable is live at some point even if it may not be.
- The computed set of live variables at point p will be a superset of the actual set of live variables at p
- The computed set of dead variables at point p will be a subset of the actual set of dead variables at p
- Goal : make the set of live variables as small as possible (i.e. as close to the actual set as possible)

Live variables

- How are the **def** and **use** sets defined?
 - def[B] = {variables defined in B before being used}
 /* kill */
 - use[B] = {variables used in B before being defined}
 /* gen */
- What is the direction of the analysis?
 - backward
 - $\quad \mathsf{in}[\mathsf{B}] = \mathsf{use}[\mathsf{B}] \cup (\mathsf{out}[\mathsf{B}] \mathsf{def}[\mathsf{B}])$

Live variables

- What is the confluence operator?
 - union
 - **out**[B] = \cup **in**[S], over the successors S of B

- How do we initialize?
 - start small
 - for each block B initialize $in[B] = \emptyset$

Liveness Analysis: the equations

- σ gen_{LV}(p)= use[p]
- \sim kill_{LV}(p) = def[n]

$$LV_{\texttt{exit}}(p) = \begin{cases} \emptyset & \text{if p is a final point} \\ \\ U \{ LV_{\texttt{entry}}(q) \mid q \text{ follows p in the CFG} \} \end{cases}$$

$$LV_{entry}(p) = gen_{LV}(p) U (LV_{exit}(p) \setminus kill_{LV}(p))$$

Liveness Analysis: the algorithm

```
for each n
   in[n]:={ }; out[n]:={ }
repeat
   for each n
         in'[n]:=in[n]; out'[n]:=out[n]
         in[n] := use[n] U (out[n] - def[n])
         out[n]:= U \{ in[m] \mid m \in succ[n] \}
until (for each n: in'[n]=in[n] && out'[n]=out[n])
```

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			1		2		3	
	use	def	in	out	in	out	in	out
1		a				a		a
2	a	b	a		a	b c	a c	b c
3	b c	С	bс		bс	b	bс	b
4	b	a	b		b	а	b	a
5	a		a	а	а	a c	a c	a c
6	С		С		С		С	


```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			3		4		5	
	use	def	in	out	in	out	in	out
1		a		а		a c	С	a c
2	a	b	a c	b c	a c	bс	a c	b c
3	b c	С	bс	b	bс	b	bс	b
4	b	a	b	a	b	a c	b c	a c
5	a		a c	a c	a c	a c	a c	a c
6	С		С		С		С	


```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( per ogni n: in'[n]=in[n] && out'[n]=out[n])
```

			5		6		7	
	use	def	in	out	in	out	in	out
1		a	С	a c	С	a c	С	a c
2	a	b	a c	b c	a c	bс	a c	b c
3	b c	С	bс	b	bс	b c	bс	b c
4	b	a	bс	a c	bс	a c	bс	a c
5	a		a c	a c	ас	a c	a c	a c
6	С		С		С		С	

 But reordering the nodes, i.e. starting from the bottom instead of from the top, we get much faster:

			1		2		3	
	use	def	in	out	in	out	in	out
6	С			С		С		С
5	a		С	a c	a c	a c	a c	a c
4	b	a	ас	bс	a c	bс	ас	b c
3	b c	С	b c	bс	b c	b c	b c	b c
2	a	b	b c	a c	b c	a c	b c	a c
1		a	ac	С	ac	С	ac	С

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( for each n: in'[n]=in[n] && out'[n]=out[n])
```

Time-Complexity

- A program has dimension N if the number of nodes in its CFD is N and it has at most N variables.
- Each set live-in (or live-out) has at most N elements
- Each union operation has complexity O(N)
- The for cycle computes a fixed number of union operators for each node in the graph. As the number of nodes in O(N) the for cycle has complexity O(N²)

```
for each n
    in[n]:={}; out[n]:={}

repeat
    for each n
        in'[n]:=in[n]; out'[n]:=out[n]
        in[n] := use[n] U (out[n] - def[n])
        out[n]:= U { in[m] | m ∈ succ[n]}

until ( for each n: in'[n]=in[n] && out'[n]=out[n])
```

Time Complexity

- Each iteration of the repeat cycle may just add new elements to the sets live-in and live-out (it's monotonic), and the sets cannot grow indefinitely, as their size is at most N. These sets are at most 2N. Therefore there are at most 2N² iterations.
- The worst overall complexity of the algorithm is O(N⁴).
- By reordering the nodes of the CFG, and because of the sparsity of live-in and live-out, in the practice the complexity is between O(N) and O(N²).

The analysis is conservative

- 1. in[n] = use[n] U (out[n] def[n])
- 2. $out[n] = U \{ in[m] \mid m \in succ[n] \}$
- If d is another variable unused in this code fragment, both X and Y are solutions of the two equations, while Z does not.

			X		Υ		Z	
	use	def	in	out	in	out	in	out
1		a	С	a c	cd	acd	С	a c
2	a	b	a c	b c	acd	bcd	a c	b
3	bс	С	bс	b c	bcd	bcd	b	b
4	b	а	bс	a c	bcd	acd	b	a c
5	а		ас	a c	acd	acd	ас	a c
6	С		С		С		С	