Intro to Math Reasoning HW 5b

Ozaner Hansha

October 10, 2018

Problem 1

Problem: Prove that for all indexed collections of sets $(A_{\alpha})_{\alpha \in J}$ and any set B:

$$\left(\bigcup_{\alpha \in J} A_{\alpha}\right) \cap B = \left(\bigcup_{\alpha \in J} A_{\alpha} \cap B\right)$$

Solution: The definitions of the set on the left hand side is the following:

$$\left(\bigcup_{\alpha \in J} A_{\alpha}\right) = \left\{x \mid (\exists \alpha \in J) \ x \in A_{\alpha}\right\}$$

$$\left(\bigcup_{\alpha \in J} A_{\alpha}\right) \cap B = \left\{x \mid x \in (\bigcup_{\alpha \in J} A_{\alpha}) \land x \in B\right\}$$

$$= \left\{x \mid (\exists \alpha \in J) \ x \in A_{\alpha} \land x \in B\right\}$$

The other set is defined to be:

$$\left(\bigcup_{\alpha \in J} A_{\alpha} \cap B\right) = \{x \mid x \in \left(\bigcup_{\alpha \in J} A_{\alpha}\right) \land x \in B\}$$
$$= \{x \mid (\exists \alpha \in J) \ x \in A_{\alpha} \land x \in B\}$$

And thus the two sets are equivalent.

Problem 2

Problem: Prove that for any universe U and sets in it A, B the following holds:

$$(A \setminus B)^{\complement} = A^{\complement} \cup B$$

Solution: We'll write down the definition of the left hand set (the universe is assumed to be U):

$$A \setminus B = \{x \mid x \in A \land x \notin B\}$$
$$(A \setminus B)^{\complement} = \{x \mid x \notin (A \setminus B)\}$$
$$= \{x \mid \neg(x \in A \land x \notin B)\}$$
$$= \{x \mid x \notin A \lor x \in B\}$$

Now the definition of the right hand set (again, the universe is assumed to be U):

$$A^{\complement} = \{x \mid x \notin A\}$$
$$A^{\complement} \cup B = \{x \mid x \in A^{\complement} \lor x \in B\}$$
$$= \{x \mid x \notin A \lor x \in B\}$$

The two sets are equal and we are done.

Problem 3

Problem: Prove the following for all sets A, B, C, D:

$$A \subseteq C \land B \subseteq D \implies A \setminus B \subseteq C \setminus D$$

Solution: Here are the definitions for the left hand side:

$$\begin{split} A \subseteq C &\equiv x \in A \to x \in C \\ B \subseteq D &\equiv x \in B \to x \in D \\ A \subseteq C \land B \subseteq D &\equiv (x \in A \to x \in C) \land (x \in B \to x \in D) \end{split}$$

Now the right hand side:

$$\begin{split} A \setminus B &\equiv \{x \mid x \in A \land x \not\in B\} \\ C \setminus D &\equiv \{x \mid x \in C \land x \not\in D\} \\ A \setminus B \subseteq C \setminus D \equiv (x \in A \setminus B) \to (x \in C \setminus D) \\ &\equiv (x \in A \land x \not\in B) \to (x \in C \land x \not\in D) \end{split}$$

We'll just use a truth table to verify this:

a	b	c	$\mid d \mid$	$a \rightarrow c$	$b \rightarrow d$	$a \land \neg b$	$c \land \neg d$	$(a \to c) \land (b \to d)$	$(a \land \neg b) \to (c \land \neg d)$	$P \rightarrow Q$
								P	Q	
F	F	F	F	Т	Т	F	F	T	T	Т
\mathbf{F}	F	F	Γ	Т	Т	F	F	T	${ m T}$	Т
\mathbf{F}	F	Т	F	Т	Т	F	T	T	${ m T}$	Т
\mathbf{F}	F	Т	$\mid T \mid$	Т	Т	F	F	${ m T}$	${ m T}$	Т
\mathbf{F}	Т	F	F	Т	F	F	F	F		
\mathbf{F}	Т	F	Γ	T	T	F	F	${ m T}$	${ m T}$	T
\mathbf{F}	Т	Т	F	T	F	F	T	F		
\mathbf{F}	Т	Т	T	Т	T	F	F	${ m T}$	${ m T}$	Т
\mathbf{T}	F	F	F	F	T	Т	F	F		
${ m T}$	F	F	Γ	F	T	Т	F	F		
${ m T}$	F	Т	F	Т	Т	Т	Т	${ m T}$	${ m T}$	Т
${ m T}$	F	Т	$\mid T \mid$	Т	Т	Т	F	${ m T}$	${f T}$	Т
${ m T}$	Γ	F	F	F	F	F	F	F		
\mathbf{T}	Т	F	Т	F	T	F	F	F		
${ m T}$	Т	Т	F	T	F	F	T	F		
\mathbf{T}	Т	Т	Т	T	T	F	F	Т	T	Т

And we have proved it. Notice that we only care to check the truth table when the antecedent P is true. The other cases are irrelevant to our cause.

Problem 4

Problem: Prove that for any sets A, B, C:

$$(A\triangle B)\triangle C = A\triangle (B\triangle C)$$

Solution: Let's expand out the left hand side:

$$\begin{aligned} x \in (A \triangle B) \triangle C &\equiv (x \in A \triangle B \land x \not\in C) \lor (x \not\in A \triangle B \land x \in C) \\ &\equiv (x \in A \land x \not\in B \land x \not\in C) \lor (x \in A \land x \in B \land x \in C) \\ &\lor (x \not\in A \land x \in B \land x \not\in C) \lor (x \not\in A \land x \not\in B \land x \in C) \end{aligned}$$

Now let's do the same for right hand side:

$$x \in A \triangle (B \triangle C) \equiv (x \in A \land x \not\in B \triangle C) \lor (x \not\in A \land x \in B \triangle C)$$
$$\equiv (x \in A \land x \not\in B \land x \not\in C) \lor (x \in A \land x \in B \land x \in C)$$
$$\lor (x \not\in A \land x \in B \land x \not\in C) \lor (x \not\in A \land x \not\in B \land x \in C)$$

Notice that when expanded out both statements say the same thing: for an element to be the set it must be in either only 1 or all 3 of the sets A, B, C. Thus they are equal and the symmetric difference is associative.

Problem 5

Part a

Problem: Prove or give a counterexample:

$$\mathcal{P}(A) \setminus \mathcal{P}(B) \subseteq \mathcal{P}(A \setminus B)$$

Solution: This isn't true, here's an example:

$$A = \{a, b\}$$

$$B = \{b\}$$

$$A \setminus B = \{a\}$$

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

$$\mathcal{P}(B) = \{\emptyset, \{b\}\}$$

$$\mathcal{P}(A \setminus B) = \{\emptyset, \{a\}\}$$

$$\mathcal{P}(A) \setminus \mathcal{P}(B) = \{\{a\}, \{a, b\}\}$$

As we can see, $\{a,b\} \notin \mathcal{P}(A \setminus B)$ but $\{a,b\} \in \mathcal{P}(A) \setminus \mathcal{P}(B)$.

Part b

Problem: Prove or give a counterexample:

$$\mathcal{P}(A \setminus B) \subseteq \mathcal{P}(A) \setminus \mathcal{P}(B)$$

Solution: This isn't true, here's an example:

$$A = \{a, b\}$$

$$B = \{b\}$$

$$A \setminus B = \{a\}$$

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

$$\mathcal{P}(B) = \{\emptyset, \{b\}\}$$

$$\mathcal{P}(A \setminus B) = \{\emptyset, \{a\}\}$$

$$\mathcal{P}(A) \setminus \mathcal{P}(B) = \{\{a\}, \{a, b\}\}$$

As we can see, $\emptyset \in \mathcal{P}(A \setminus B)$ but $\emptyset \notin \mathcal{P}(A) \setminus \mathcal{P}(B)$.