De lo visto en los campos \mathbb{Z}_p , sodomos que $\overline{0} = [0] = [1] + [1] + [1] + [1] + [1]$.

Es por elle que definimos

Ofn, Sec IT un campo. Se define la covactaristica de It

Car (IF) = (har(IF) = $\begin{cases} min \frac{1}{2} n \in \mathbb{N} \\ min \frac{1}{2} n \in \mathbb{N$

Para iluster le defr., tenemos la sigte prop

Prop | Sea IF un campo. Si Char (IF) +0 =) Chor(IF) of un número primo.

Supongamos que Char (F) = q no es primo. Enl. Joub (N) $q = a \cdot b$, con ($a < q + 1 < b < q \cdot 0 < e > te modo$

$$0 = \underbrace{1 + 1 + \dots + 1}_{q} = q \cdot 1 = (a \cdot b) \cdot 1$$
$$= (a \cdot 1) \cdot F(b \cdot 1)$$

Esto significe que $\alpha = 9.1$, $\beta = 5.1$ (IF y cumplum $0 = \alpha \cdot \beta$ $\Rightarrow \alpha = 0$ ó $\beta = 0$

O-coqui, si \ =0, terumos

$$0 = \alpha = \alpha \cdot 1 = 1 + 1 + \dots + 1$$

pou esto contradice (al < q = Char(F). Es anclosus: B=0.

Ejemples de Esp-Vect. (continuación): Sea # campo.

6] S, U=qpl, ent. altomer p=0 (pjugenielpopeldelnunty), be from que les operaciones

: IF ~ V -> V 7: U×V →V (a,p) HP (p,p) 1-> p

haven de V un IT-eap. rect., Mamede "trivial".

11 V=1F (con Fcompo)

31 S: KEIF -s un subcompo (ver de 65 en N1, poig.2), ent Fos un K-osp. vect. Como cosos pontrentus, tenemos

·) K = Q S IR = IF

·) K = IRSC = IF

Moraleja: R es un Q-esp-rect. Sin emborgo.

Troj Q no es un R-esprects

Lema Sean It un campo. V un IT.ev y V EV 1951. Ent. la fonción Q: IT > V es inyectiva.

 $\lambda \mapsto \lambda \overline{\nu}$

Surge l', MET camples U() = Q(M), ie l'= Mr.

 $(\lambda - \mu)\bar{v} = \lambda\bar{v} + (-(\mu\bar{v})) + \bar{v} = \bar{v}(\mu - \kappa)$

Es deciv, $(\lambda - m)\hat{v} = \overline{\partial} \Rightarrow \lambda - M = \delta$ As!, $\lambda = M$?

por proprodud viste

por proprodud viste

Dem (del Teo)

S: V=Q frem un =sp rect. Subre R, ent. pora el recter V=1+0,

se trene fre $\varphi: \mathbb{R} \to \mathbb{Q}$, double per $\varphi(\lambda) = \lambda \cdot \sqrt{1}$, es injective. De aqui, la cordinalidad de \mathbb{Q} es mayor o ignal a lod \mathbb{R} , le $|\mathbb{Q}| \geq 1 \mathbb{R}$, la cual es una confedicación.

4]
$$F^{\prime\prime}$$
 os $F = v$. 5] $M_{main}(IF) = 0$ be mismo gre
$$F^{m\times n} = Fun(21_m m! x!_1, -, n!_r, F)$$

81 Si
$$V_{\gamma}W$$
 Son F-e.V., on.1. $V_{x}W$ tembién be es con les operaciones $+:(V_{x}W)_{x}(V_{x}W) \rightarrow V_{x}W$
 $(V_{y}W)_{x}+(V_{y}W)_{y}=(V_{y}V_{y},W_{y}W_{y})$
 $-DODS$ Torse Dom. gre $(V_{x}W)_{y}+(O_{y},O_{y})_{y}$
 $-S_{y}=0$ obeliens

Prop. Sea F un campo y V un $Fev. S: \alpha \&Fy veV$, entitle $\alpha.\overline{0} = \overline{0}$, $\alpha.\overline{0} = \overline{0}$, $\alpha.\overline{0} = \overline{0}$, $\alpha.\overline{0} = \overline{0}$.

Dem
(i)
$$d\bar{o} = \alpha(\bar{o} + \bar{o}) = d\bar{o} + \alpha\bar{o} \Rightarrow \alpha\bar{o} = \alpha\bar{o} + d\bar{o}$$

 $= d\bar{o} + (-(d\bar{o})) = d\bar{o} + (d\bar{o} + (-(d\bar{o})))$
 $= d\bar{o} + \bar{o} = d\bar{o}$.

(ii) Notemos que (-1)
$$\overline{U}$$
 comple \overline{U} + (-1) \overline{V} = \overline{U} + (-1) \overline{U} = \overline{U} = \overline{U} + (-1) \overline{U} = \overline{U} = \overline{U} + (-1) \overline{U} = $\overline{$

Teo Sen Sto un do y F un compo. End- SF = S un F-es.

Ejemple S= 41,24 y IF=IR Le come a R2.

Dorde $f \in ^{21,25}\mathbb{R}$, so trave $f : 1:25 \rightarrow 12$. Asi, f quide determinade per las valores f(i) y f(2) [em esc orden). Vermes parqué: $si g \in ^{11,25}\mathbb{R}$ y g(i) = f(i), g(2) = f(2), en].

f , g son funciones on el mismo, mirmo contradomio y mismo regle de conspondencia,
por ello son iguales.

De est made, podemos defendr $\Phi: d_1 \otimes d_2 \rightarrow 1R^2$ tol que $\Phi(f: \frac{1}{2} \rightarrow f(2)) = (f(1), f(2))$.

Result get $\bar{\phi}$ is bryingtive is, mais win, present las operaciones. Esto es $\bar{\phi}(f+g) = \bar{\phi}(f) + \bar{\phi} \bar{\phi}(g)$

$$\underline{p}(\gamma t) = \gamma \cdot \aleph_3 \underline{p}(t)$$