

CMOS Sigma-Delta Modulator

AD7720

FEATURES

12.5 MHz Master Clock Frequency 0 V to +2.5 V or \pm 1.25 V Input Range Single Bit Output Stream 90 dB Dynamic Range Power Supplies: AVDD, DVDD: +5 V \pm 5% On-Chip 2.5 V Voltage Reference 28-Lead TSSOP

GENERAL DESCRIPTION

T his device is a 7th order sigma-delta modulator that converts the analog input signal into a high speed 1-bit data stream. The part operates from a +5 V supply and accepts a differential input range of 0 V to +2.5 V or ± 1.25 V centered about a commonmode bias. The analog input is continuously sampled by the analog modulator, eliminating the need for external sample and hold circuitry. The input information is contained in the output stream as a density of ones. The original information can be reconstructed with an appropriate digital filter.

The part provides an accurate on-chip 2.5 V reference. A reference input/output function is provided to allow either the internal reference or an external system reference to be used as the reference source for the part.

The device is offered in a 28-lead TSSOP package and designed to operate from -40°C to $+85^{\circ}\text{C}$.

FUNCTIONAL BLOCK DIAGRAM

Parameter	B Version	Units	Test Conditions/Comments
STATIC PERFORM ANCE Resolution Differential Nonlinearity Integral Nonlinearity Precalibration Offset Error Precalibration Gain Error ² Postcalibration Offset Error ³ Postcalibration Gain Error ^{2, 3} Offset Error Drift Gain Error Drift Unipolar Mode Bipolar Mode	16 ±1 ±2 ±6 ±0.6 ±1.5 ±0.3 ±1 ±1 ±0.5	Bits LSB max LSB typ mV typ % FSR typ mV typ % FSR typ LSB/°C typ LSB/°C typ	When T ested with Ideal FIR Filter as in Figure 1 Guaranteed Monotonic REF2 Is an Ideal Reference, REF1 = AGND
ANALOG INPUTS Signal Input Span (VIN(+) - VIN(-)) Bipolar M ode Unipolar M ode M aximum Input Voltage M inimum Input Voltage Input Sampling C apacitance Input Sampling R ate D ifferential Input Impedance	$\pm V_{REF2}/2$ 0 to V_{REF2} AVDD 0 2 2 f_{MCLK} $10^9/(8 f_{MCLK})$	V max V max V V pF typ M H z kΩ typ	BIP = V _{IH} BIP = V _{IL}
REFERENCE INPUTS REF1 Output Voltage REF1 Output Voltage Drift REF1 Output Impedance Reference Buffer Offset Voltage Using Internal Reference REF2 Output Voltage REF2 Output Voltage Drift Using External Reference REF2 Input Impedance External Reference Voltage Range	2.32 to 2.62 60 3 ±12 2.32 to 2.62 60 10 ⁹ /(16 f _{MCLK}) 2.32 to 2.62	V min/max ppm/°C typ kΩ typ mV max V min/max ppm/°C typ kΩ typ V min/max	Offset Between REF1 and REF2 REF1 = AGND Applied to REF1 or REF2
DYNAMIC SPECIFICATIONS ⁴ Bipolar M ode Signal to (Noise + Distortion) ⁵ Total Harmonic Distortion ⁵ Spurious Free Dynamic Range Unipolar M ode Signal to (Noise + Distortion) ⁵ Total Harmonic Distortion ⁵ Spurious Free Dynamic Range Intermodulation Distortion AC CMRR Overall Digital Filter Response 0 kHz-90.625 kHz 96.92 kHz 104.6875 kHz to 12.395 MHz	90 86/84.5 -90/-88 -90 88 84.5/83 -89/-87 -90 -93 96 ±0.005 -3	dB typ dB min dB max dB typ dB min dB max dB typ dB min dB max dB typ dB typ	When T ested with Ideal FIR Filter as in Figure 1 BIP = V _{IH} , V _{CM} = 2.5 V, VIN (+) = VIN (-) = 1.25 V p-p or VIN (-) = 1.25 V, VIN (+) = 0 V to 2.5 V Input BW = 0 kH z-90.625 kH z Input BW = 0 kH z-90.625 kH z Input BW = 0 kH z-90.625 kH z BIP = V _{IL} , VIN (-) = 0 V, VIN (+) = 0 V to 2.5 V Input BW = 0 kH z-90.625 kH z Input BW = 0 kH z-97.65 kH z Input BW = 0 kH z-97.65 kH z VIN (+) = VIN (-) = 2.5 V p-p, V _{CM} = 1.25 V to 3.75 V, 20 kH z See Figure 1 for C haracteristics of FIR Filter
CLOCK MCLK Duty Ratio V _{MCLKH} , MCLK High Voltage V _{MCLKL} , MCLK Low Voltage	45 to 55 4 0.4	% max V min V max	For Specified Operation MCLK Uses CMOS Logic

-2- REV. 0

Parameter	B Version	Units	Test Conditions/Comments
LOGIC INPUTS			
V _{IH} , Input High Voltage	2	V min	
V _{IL} , Input Low Voltage	0.8	V max	
I _{INH} , Input Current	10	μA max	
C _{IN} , Input Capacitance	10	pF max	
LOGIC OUTPUTS			
V _{OH} , Output High Voltage	2.4	V min	I _{ουτ} ≤ 200 μA
V _{OL} , Output Low Voltage	0.4	V max	$ I_{OUT} \le 1.6 \text{ mA}$
POWER SUPPLIES			
AVDD	4.75/5.25	V min/V max	
DVDD	4.75/5.25	V min/V max	
I _{DD} (T otal for AVDD, DVDD)			Digital Inputs Equal to 0 V or DVDD
A ctive M ode	43	mA max	
Standby M ode	25	μA max	

NOTES

Specifications subject to change without notice.

Figure 1. Digital Filter (Consists of 2 FIR Filters). This filter is implemented on the AD7722.

REV. 0 -3-

¹Operating temperature range is as follows: B Version: -40°C to +85°C.

²Gain Error excludes reference error. The modulator gain is calibrated w.r.t. the voltage on the REF2 pin. ³Applies after calibration at temperature of interest.

 $^{^4\}text{M}$ easurement Bandwidth = 0.5 $\times\,f_{\text{M\,CLK}};$ I nput L evel = -0.05 dB .

 $^{{}^5}T_A = +25$ °C to +85°C/ $T_A = T_{MIN}$ to T_{MAX} .

AD7720
TIMING CHARACTERISTICS (AVDD = +5 V ± 5%; DVDD = +5 V ± 5%; AGND = DGND = 0 V, REF2 = +2.5 V unless otherwise noted)

Parameter	Limit at T _{MIN} , T _{MAX} (B Version)	Units	Conditions/Comments
f _{MCLK}	100	kH z min	M aster Clock Frequency
	15	M H z max	12.5 M H z for Specified Performance
t_1	67	ns min	M aster Clock Period
t ₂	$0.45 \times t_{MCLK}$	ns min	M aster Clock Input High Time
t ₃	$0.45 \times t_{MCLK}$	ns min	M aster Clock Input Low Time
t_4	15	ns min	Data Hold Time After SCLK Rising Edge
t ₅	10	ns min	RESET Pulsewidth
t_6	10	ns min	RESET Low Time Before M CLK Rising
t ₇	20 × t _{M CLK}	ns max	DVAL High Delay after RESET Low

NOTE Guaranteed by design.

Figure 2. Load Circuit for Access Time and Bus Relinquish Time

Figure 3. Data Timing

Figure 4. RESET Timing

ABSOLUTE MAXIMUM RATINGS¹

 $(T_{\bullet} = \pm 25^{\circ}C)$ unless otherwise noted)

(1 A = +25°C unless otherwise noted)
DVDD to DGND0.3 V to +7 V
AVDD to AGND0.3 V to +7 V
AVDD to DVDD0.3 V to +0.3 V
AGND to DGND0.3 V to +0.3 V
Digital Input Voltage to DGND -0.3 V to DVDD $+0.3 \text{ V}$
Analog Input Voltage to AGND $\dots -0.3 \text{ V}$ to AVDD $+0.3 \text{ V}$
Input Current to Any Pin Except Supplies ² ± 10 mA
O perating T emperature R ange
Industrial (B Version)40°C to +85°C
Storage T emperature Range65°C to +150°C
M aximum Junction T emperature +150°C
TSSOP Package
θ _{JA} T hermal Impedance
L'ead T emperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec) +220°C

NOTES

PIN CONFIGURATION

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
AD 7720BRU	-40°C to +85°C	28-L ead Thin Shrink Small Outline	RU-28

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7720 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. 0 -5-

¹Stresses above those listed under Absolute M aximum Ratings may cause permanent damage to the device. T his is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 $^{^2\}mbox{T}$ ransient currents of up to 100 mA will not cause SCR latchup.

PIN FUNCTION DESCRIPTIONS

Pin No.	Mnemonic	Function	
1	REF2	Reference Input/O utput. REF2 connects to the output of an internal buffer amplifier used to drive the sigma-delta modulator. When REF2 is used as an input, REF1 must be connected to AGND.	
2, 14, 18, 20, 24, 26	AGND	Ground reference point for analog circuitry.	
3, 13	NC	N o C onnect.	
4	STBY	Standby, Logic Input. When STBY is high, the device is placed in a low power mode. When STBY is low, the device is powered up.	
5	DVAL	D ata Valid Logic Output. A logic high on DVAL indicates that the data bit stream from the AD7720 is an accurate digital representation of the analog voltage at the input to the sigma-delta modulator. The DVAL pin is set low for 20 MCLK cycles if the analog inpu overranged.	
6, 15	DGND	Ground reference for the digital circuitry.	
7	GC	Digital Control Input. When GC is high, the gain error of the modulator can be calibrated.	
8	BIP	Analog Input Range Select, Logic Input. A logic low on this input selects unipolar mode. A logic high selects bipolar mode.	
9	M ZERO	Digital Control Input. When M ZERO is high, the modulator inputs are internally grounded, i.e., tied to AGND in unipolar mode and REF2 in bipolar mode. M ZERO allows on-chip offsets to be calibrated out. M ZERO is low for normal operation.	
10	DATA	M odulator Bit Stream. The digital bit stream from the sigma-delta modulator is output a DATA.	
11	SCLK	Serial Clock, Logic Output. The bit stream from the modulator is valid on the rising edge of SCLK.	
12	RESETO	Reset Logic Output. The signal applied to the RESET pin is made available as an output at RESETO.	
16	XTAL1/M CLK	C M O S L ogic C lock I nput. The X T A L 1/M C L K pin interfaces the device's internal oscillator circuit to an external crystal or an external clock. A parallel resonant, fundamental-frequency, microprocessor-grade crystal and a 1 M Ω resistor should be connected between the M C L K and X T A L pins with two capacitors connected from each pin to ground. Alternatively, the X T A L 1/M C L K pin can be driven with an external C M O S-compatible clock. The part is specified with a 12.5 M H z master clock.	
17	XTAL2	Oscillator Output. The XTAL2 pin connects the internal oscillator output to an external crystal. If an external clock is used, XTAL2 should be left unconnected.	
19	DVDD	Digital Supply Voltage, +5 V \pm 5%.	
21, 23	VIN (-), VIN (+)	Analog Input. In unipolar operation, the analog input range on VIN (+) is VIN (-) to $(VIN (-) + V_{REF})$; for bipolar operation, the analog input range on VIN + is $(VIN (-) \pm V_{REF}/2)$. The absolute analog input range must lie between 0 and AVDD. The analog input is continuously sampled and processed by the analog modulator.	
25, 28	AVDD	Analog Positive Supply Voltage, +5 V ± 5%.	
22	RESET	Reset Logic Input. RESET is an asynchronous input. When RESET is taken high, the sigma-delta modulator is reset by shorting the integrator capacitors in the modulator. DVAL goes low for 20 MCLK cycles while the modulator is being reset.	
27	REF1	R eference Input/O utput. REF1 connects via a 3 k Ω resistor to the output of the internal 2.5 V reference, and to the input of a buffer amplifier that drives the sigma-delta modulator. This pin can also be overdriven with an external 2.5 V reference.	

-6- REV. 0

TERMINOLOGY (IDEAL FIR FILTER USED WITH AD7720 [FIGURE 1])

Integral Nonlinearity

This is the maximum deviation of any code from a straight line passing through the endpoints of the transfer function. The endpoints of the transfer function are zero scale (not to be confused with bipolar zero), a point 0.5 LSB below the first code transition ($100\ldots00$ to $100\ldots01$ in bipolar mode and $000\ldots00$ to $000\ldots01$ in unipolar mode) and full scale, a point 0.5 LSB above the last code transition ($011\ldots10$ to $011\ldots11$ in bipolar mode and $111\ldots10$ to $111\ldots11$ in unipolar mode). The error is expressed in LSBs.

Differential Nonlinearity

This is the difference between the measured and the ideal 1 LSB change between two adjacent codes in the ADC.

Common-Mode Rejection Ratio

The ability of a device to reject the effect of a voltage applied to both input terminals simultaneously—often through variation of a ground level—is specified as a common-mode rejection ratio. CMRR is the ratio of gain for the differential signal to the gain for the common-mode signal.

Unipolar Offset Error

U nipolar offset error is the deviation of the first code transition from the ideal VIN (+) voltage which is (VIN(-) + 0.5 LSB) when operating in the unipolar mode.

Bipolar Offset Error

This is the deviation of the midscale transition (111 \dots 11 to 000 \dots 00) from the ideal VIN (+) voltage which is (VIN (-) -0.5 LSB) when operating in the bipolar mode.

Gain Error

The first code transition should occur at an analog value 1/2 LSB above minus full scale. The last code transition should occur for an analog value 3/2 LSB below the nominal full scale. Gain error is the deviation of the actual difference between first and last code transitions and the ideal difference between first and last code transitions.

Signal-to-(Noise + Distortion)

Signal-to-(Noise + Distortion) is measured signal-to-noise at the output of the ADC. The signal is the rms magnitude of the

fundamental. Noise plus distortion is the rms sum of all of the nonfundamental signals and harmonics to half the output word rate ($f_{MCLK}/128$), excluding dc. Signal-to-(Noise + Distortion) is dependent on the number of quantization levels used in the digitization process; the more levels, the smaller the quantization noise. The theoretical Signal-to-(Noise + Distortion) ratio for a sine wave input is given by

Signal-to-(N oise + D istortion) = (6.02 N + 1.76) dBwhere N is the number of bits.

Total Harmonic Distortion

Total Harmonic Distortion (THD) is the ratio of the rms sum of harmonics to the rms value of the fundamental. For the AD 7720, THD is defined as

THD = 20 log
$$\frac{\sqrt{(V_2^2 + V_3^2 + V_4^2 + V_5^2 + V_6^2)}}{V_1}$$

where V $_1$ is the rms amplitude of the fundamental and V $_2$, V $_3$, V $_4$, V $_5$ and V $_6$ are the rms amplitudes of the second through the sixth harmonic.

Spurious Free Dynamic Range

Spurious free dynamic range is the difference, in dB, between the peak spurious or harmonic component in the ADC output spectrum (up to $f_{\text{MCLK}}/128$ and excluding dc) and the rms value of the fundamental. N ormally, the value of this specification will be determined by the largest harmonic in the output spectrum of the FFT. For input signals whose second harmonics occur in the stop band region of the digital filter, a spur in the noise floor limits the spurious free dynamic range.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities will create distortion products at sum and difference frequencies of mfa \pm nfb where m, n = 0, 1, 2, 3, etc. Intermodulation distortion terms are those for which neither m or n are equal to zero. For example, the second order terms include (fa + fb) and (fa – fb), while the third order terms include (2fa + fb), (2fa – fb), (fa + 2fb) and (fa – 2fb).

REV. 0 -7-

AD7720- Typical Characteristics

(AVDD = DVDD = 5.0 V, $T_A = +25 ^{\circ}\text{C}$; CLKIN = 12.5 MHz, AIN = 20 kHz, Bipolar Mode; $V_{IN}(+) = 0 \text{ V}$ to 2.5 V, $V_{IN}(-) = 1.25 \text{ V}$ unless otherwise noted)

Figure 5. S/(N+D) and SFDR vs. Analog Input Level

Figure 6. S/(N+D) vs. Output Sample Rate

Figure 7. SNR, THD, and SFDR vs. Input Frequency

Figure 8. SNR, THD, and SFDR vs. Input Frequency

Figure 9. S/(N+D) vs. Output Sample Rate

Figure 10. SNR vs. Temperature

Figure 11. THD vs. Temperature

Figure 12. Histogram of Output Codes with DC Input

Figure 13. Differential Nonlinearity

-8- REV. 0

Figure 14. Integral Nonlinearity Error

Figure 15. Modulator Output (0 Hz to MCLK/2)

Figure 16. 16K Point FFT

Figure 17. 16K Point FFT

Figure 18. Modulator Output (0 to 393.295 kHz)

Figure 19. 16K Point FFT

Figure 20. 16K Point FFT

REV. 0 -9-

CIRCUIT DESCRIPTION Sigma-Delta ADC

The AD7720 ADC employs a sigma-delta conversion technique that converts the analog input into a digital pulse train. The analog input is continuously sampled by a switched capacitor modulator at twice the rate of the clock input frequency (2 \times f_{MCLK}). The digital data that represents the analog input is in the one's density of the bit stream at the output of the sigma-delta modulator. The modulator outputs the bit stream at a data rate equal to f_{MCLK} .

Due to the high oversampling rate, which spreads the quantization noise from 0 to $f_{MCLK}/2$, the noise energy contained in the band of interest is reduced (Figure 21a). To reduce the quantization noise further, a high order modulator is employed to shape the noise spectrum, so that most of the noise energy is shifted out of the band of interest (Figure 21b).

Figure 21. Sigma-Delta ADC

USING THE AD7720 ADC Differential Inputs

The AD 7720 uses differential inputs to provide common-mode noise rejection (i.e., the converted result will correspond to the differential voltage between the two inputs). The absolute voltage on both inputs must lie between AGND and AVDD.

In the unipolar mode, the full-scale input range (VIN (+) – VIN (-)) is 0 V to V_{REF} . In the bipolar mode configuration, the full-scale analog input range is $\pm V_{REF2}/2$. The bipolar mode allows complementary input signals. Alternatively, VIN (-) can be connected to a dc bias voltage to allow a single-ended input on VIN (+) equal to $V_{BIAS} \pm V_{REF2}/2$.

Differential Inputs

The analog input to the modulator is a switched capacitor design. The analog input is converted into charge by highly linear sampling capacitors. A simplified equivalent circuit diagram of the analog input is shown in Figure 22. A signal source driving the analog input must be able to provide the charge onto the sampling capacitors every half MCLK cycle and settle to the required accuracy within the next half cycle.

Figure 22. Analog Input Equivalent Circuit

Since the AD 7720 samples the differential voltage across its analog inputs, low noise performance is attained with an input circuit that provides low differential mode noise at each input. The amplifiers used to drive the analog inputs play a critical role in attaining the high performance available from the AD 7720.

When a capacitive load is switched onto the output of an op amp, the amplitude will momentarily drop. The op amp will try to correct the situation and, in the process, hits its slew rate limit. This nonlinear response, which can cause excessive ringing, can lead to distortion. To remedy the situation, a low pass RC filter can be connected between the amplifier and the input to the AD 7720 as shown in Figure 23. The external capacitor at each input aids in supplying the current spikes created during the sampling process. The resistor in this diagram, as well as creating the pole for the antialiasing, isolates the op amp from the transient nature of the load.

Figure 23. Simple RC Antialiasing Circuit

The differential input impedance of the AD 7720 switched capacitor input varies as a function of the M CLK frequency, given by the equation:

$$Z_{IN} = 10^9/(8 f_{MCLK}) k\Omega$$

E ven though the voltage on the input sampling capacitors may not have enough time to settle to the accuracy indicated by the resolution of the AD 7720, as long as the sampling capacitor charging follows the exponential curve of RC circuits, only the gain accuracy suffers if the input capacitor is switched away too early.

An alternative circuit configuration for driving the differential inputs to the AD 7720 is shown in Figure 24.

-10- REV. 0

Figure 24. Differential Input with Antialiasing

A capacitor between the two input pins sources or sinks charge to allow most of the charge that is needed by one input to be effectively supplied by the other input. This minimizes undesirable charge transfer from the analog inputs to and from ground. The series resistor isolates the operational amplifier from the current spikes created during the sampling process and provides a pole for antialiasing. The 3 dB cutoff frequency ($f_{3 \text{ dB}}$) of the antialias filter is given by Equation 1, and the attenuation of the filter is given by Equation 2.

$$f_{3 dB} = 1/(2 \pi R_{EXT} C_{EXT})$$
 (1)

Attenuation =
$$20 \log \left(1/\sqrt{1 + \left(f/f_{3dB} \right)^2} \right)$$
 (2)

The choice of the filter cutoff frequency will depend on the amount of roll off that is acceptable in the passband of the digital filter and the required attenuation at the first image frequency.

The capacitors used for the input antialiasing circuit must have low dielectric absorption to avoid distortion. Film capacitors such as Polypropylene, Polystyrene or Polycarbonate are suitable. If ceramic capacitors are used, they must have NPO dielectric.

Applying the Reference

The reference circuitry used in the AD 7720 includes an on-chip +2.5 V bandgap reference and a reference buffer circuit. The block diagram of the reference circuit is shown in Figure 25. The internal reference voltage is connected to REF1 via a 3 $k\Omega$ resistor and is internally buffered to drive the analog modulator's switched capacitor DAC (REF2). When using the internal reference, connect 100 nF between REF1 and AGND. If the internal reference is required to bias external circuits, use an external precision op amp to buffer REF1.

Figure 25. Reference Circuit Block Diagram

The AD 7720 can operate with its internal reference or an external reference can be applied in two ways. An external reference can be connected to REF1, overdriving the internal reference. However, there will be an error introduced due to the offset of the internal buffer amplifier. For lowest system gain errors when using an external reference, REF1 is grounded (disabling the internal buffer) and the external reference is connected to REF2.

In all cases, since the REF2 voltage connects to the analog modulator, a 220 nF capacitor must connect directly from REF2 to AGND. The external capacitor provides the charge required for the dynamic load presented at the REF2 pin (Figure 26).

Figure 26. REF2 Equivalent Circuit

The AD 780 is ideal to use as an external reference with the AD 7720. Figure 27 shows a suggested connection diagram.

Figure 27. External Reference Circuit Connection

Input Circuits

Figures 28 and 29 show two simple circuits for bipolar mode operation. Both circuits accept a single-ended bipolar signal source and create the necessary differential signals at the input to the ADC.

The circuit in Figure 28 creates a 0 V to 2.5 V signal at the VIN (+) pin to form a differential signal around an initial bias voltage of 1.25 V. For single-ended applications, best T H D performance is obtained with VIN (-) set to 1.25 V rather than 2.5 V. The input to the AD 7720 can also be driven differentially with a complementary input as shown in Figure 29.

In this case, the input common-mode voltage is set to 2.5 V. The 2.5 V p-p full-scale differential input is obtained with a 1.25 V p-p signal at each input in antiphase. This configuration minimizes the required output swing from the amplifier circuit and is useful for single supply applications.

REV. 0 -11-

Figure 28. Single-Ended Analog Input for Bipolar Mode Operation

Figure 29. Single-Ended to Differential Analog Input Circuit for Bipolar Mode Operation

The 1 nF capacitors at each ADC input store charge to aid the amplifier settling as the input is continuously switched. A resistor in series with the drive amplifier output and the 1 nF input capacitor may also be used to create an antialias filter.

Clock Generation

The AD 7720 contains an oscillator circuit to allow a crystal or an external clock signal to generate the master clock for the ADC. The connection diagram for use with the crystal is shown in Figure 30. Consult the crystal manufacturer's recommendation for the load capacitors.

Figure 30. Crystal Oscillator Connection

An external clock must be free of ringing and have a minimum rise time of 5 ns. D egradation in performance can result as high edge rates increase coupling that can generate noise in the sampling process. The connection diagram for an external clock source (Figure 31) shows a series damping resistor connected between the clock output and the clock input to the AD 7720. The optimum resistor will depend on the board layout and the impedance of the trace connecting to the clock input.

Figure 31. External Clock Oscillator Connection

A low phase noise clock should be used to generate the ADC sampling clock because sampling clock jitter effectively modulates the input signal and raises the noise floor. The sampling clock generator should be isolated from noisy digital circuits, grounded and heavily decoupled to the analog ground plane.

The sampling clock generator should be referenced to the analog ground plane in a split ground system. However, this is not always possible because of system constraints. In many cases, the sampling clock must be derived from a higher frequency multipurpose system clock that is generated on the digital ground plane. If the clock signal is passed between its origin on a digital plane to the AD 7720 on the analog ground plane, the ground noise between the two planes adds directly to the clock and will produce excess jitter. The jitter can cause unwanted degradation in the signal-to-noise ratio and also produce unwanted harmonics.

This can be somewhat remedied by transmitting the sampling clock signal as a differential one, using either a small RF transformer or a high speed differential driver and receiver such as PECL. In either case, the original master system clock should be generated from a low phase noise crystal oscillator.

-12- REV. 0

Offset and Gain Calibration

The analog inputs of the AD7720 can be configured to measure offset and gain errors. Pins MZERO and GC are used to configure the part. Before calibrating the device, the part should be reset so that the modulator is in a known state at calibration. When MZERO is taken high, the analog inputs are tied to AGND in unipolar mode and V_{REF} in bipolar mode. After taking MZERO high, 1000 MCLK cycles should be allowed for the circuitry to settle before the bit stream is read from the device. The ideal ones density is 50% when bipolar operation is selected and 37.5% when unipolar mode is selected.

When GC is taken high, VIN(-) is tied to ground while VIN(+) is tied to V_{REF} . Again, 1000 M CLK cycles should be allowed for the circuitry to settle before the bit stream is read. The ideal ones density is 62.5%.

The calibration results apply only for the particular analog input mode (unipolar/bipolar) selected when performing the calibration cycle. On changing to a different analog input mode, a new calibration must be performed.

Before calibrating, ensure that the supplies have settled and that the voltage on the analog input pins is between the supply voltages.

Standby

The part can be put into a low power standby mode by taking STBY high. During standby, the clock to the modulator is turned off and bias is removed from all analog circuits.

Reset

The RESET pin is used to reset the modulator to a known state. When RESET is taken high, the integrator capacitors of the modulator are shorted and DVAL goes low and remains low until 20 MCLK cycles after RESET is deasserted. However, an additional 1000 MCLK cycles should be allowed before reading the modulator bit stream as the modulator circuitry needs to settle after the reset.

DVAL

The DVAL pin is used to indicate that an overrange input signal has resulted in invalid data at the modulator output. As with all single bit DAC high order sigma-delta modulators, large overloads on the inputs can cause the modulator to go unstable. The modulator is designed to be stable with signals within the input bandwidth that exceed full scale by 20%. When instability is detected by internal circuits, the modulator is reset to a stable state and DVAL is held low for 20 clock cycles.

Grounding and Layout

Since the analog inputs are differential, most of the voltages in the analog modulator are common-mode voltages. The excellent common-mode rejection of the part will remove common-mode noise on these inputs. The analog and digital supplies to the AD 7720 are independent and separately pinned out to minimize coupling between analog and digital sections of the device.

The printed circuit board that houses the AD 7720 should be designed so that the analog and digital sections are separated and confined to certain areas of the board. This facilitates the use of ground planes which can easily be separated. A minimum etch technique is generally best for ground planes as it gives the best shielding. Digital and analog ground planes should only be joined in one place. If the AD 7720 is the only device requiring an AGND-to-DGND connection, the ground planes should be connected at the AGND and DGND pins of the AD 7720. If the AD 7720 is in a system where multiple devices require AGND-to-DGND connections, the connection should still be made at one point only, a star ground point that should be established as close as possible to the AD 7720.

Avoid running digital lines under the device as these will couple noise onto the die. The analog ground plane should be allowed to run under the AD 7720 to avoid noise coupling. The power supply lines to the AD 7720 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching signals like clocks should be shielded with digital ground to avoid radiating noise to other sections of the board, and clock signals should never be run near the analog inputs. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This will reduce the effects of feedthrough through the board. A microstrip technique is by far the best, but is not always possible with a double-sided board. In this technique, the component side of the board is dedicated to ground planes while signals are placed on the other

Good decoupling is important when using high resolution ADCs. All analog and digital supplies should be decoupled to AGND and DGND respectively, with 100 nF ceramic capacitors in parallel with 10 μF tantalum capacitors. To achieve the best from these decoupling capacitors, they should be placed as close as possible to the device, ideally right up against the device. In systems where a common supply voltage is used to drive both the AVDD and DVDD of the AD7720, it is recommended that the system's AVDD supply is used. This supply should have the recommended analog supply decoupling between the AVDD pin of the AD7720 and AGND and the recommended digital supply decoupling capacitor between the DVDD pins and DGND.

REV. 0 -13-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

28-Lead Thin Shrink Small Outline (RU-28)

-14- REV. 0