Data Analysis on Life Expectancy Dataset

Dataset: - https://www.kaggle.com/datasets/kumarajarshi/life-expectancy-who

- Descriptive analysis using data visualization
- Inferential analysis using hypothesis testing (t-test, z-test, chi-square test)
- Partial correlations analysis
- Linear and Multivariant Regression Models

```
library(dslabs)
library(ggplot2)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
      filter, lag
## The following objects are masked from 'package:base':
##
      intersect, setdiff, setequal, union
##
library(tidyverse)
## -- Attaching packages ------ tidyverse
1.3.0 --
## v tibble 3.0.0
                   v purrr 0.3.3
## v tidyr 1.0.2 v stringr 1.4.0
                   v forcats 0.5.0
## v readr 1.3.1
## -- Conflicts ----- tidyverse confli
cts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
library(ppcor)
## Loading required package: MASS
##
## Attaching package: 'MASS'
## The following object is masked from 'package:dplyr':
##
##
      select
lifexp <- read.csv("D:\\Drivers\\academics\\sem 5\\stats lab\\Life Expectancy Data</pre>
.csv")
```

View(lifexp)

	Country	Year	Status	Life.expectancy	Adult.Mortality =	infant.deaths	Alcohol	percentage.expenditure	Hepatitis.B	Measles	BMI	under.five.deaths	Polio	Total.expendit
1	Afghanistan	2015	Developing	65.0	263	62	0.01	71.279624	65	1154	19.1	83	6	8.16
2	Afghanistan	2014	Developing	59.9	271	64	0.01	73.523582	62	492	18.6	86	58	8.18
3	Afghanistan	2013	Developing	59.9	268	66	0.01	73.219243	64	430	18.1	89	62	8.13
4	Afghanistan	2012	Developing	59.5	272	69	0.01	78.184215	67	2787	17.6	93	67	8.52
5	Afghanistan	2011	Developing	59.2	275	71	0.01	7.097109	68	3013	17.2	97	68	7.87
6	Afghanistan	2010	Developing	58.8	279	74	0.01	79.679367	66	1989	16.7	102	66	9.20
7	Afghanistan	2009	Developing	58.6	281	77	0.01	56.762217	63	2861	16.2	106	63	9.42
8	Afghanistan	2008	Developing	58.1	287	80	0.03	25.873925	64	1599	15.7	110	64	8.33
9	Afghanistan	2007	Developing	57.5	295	82	0.02	10.910156	63	1141	15.2	113	63	6.73
10	Afghanistan	2006	Developing	57.3	295	84	0.03	17.171518	64	1990	14.7	116	58	7.43
11	Afghanistan	2005	Developing	57.3	291	85	0.02	1.388648	66	1296	14.2	118	58	8.70
40	Afahanistan	2004	Daveloping	F7.0	202	0.7	0.00	15 200000	c-7	100	12.0	120	-	0.70

Showing 1 to 14 of 1,649 entries, 22 total columns

```
Fullifexp<-lifexp
lifexp <- lifexp %>% drop_na()
dim(lifexp)
## [1] 1649
              22
range(lifexp$Year)
## [1] 2000 2015
#Adult.Mortality - Adult Mortality Rates on both sexes (probability of dying between 15-6
0 years/1000 population).
#infant.deaths - Number of Infant Deaths per 1000 population.
#Alcohol - Alcohol recorded per capita (15+) consumption (in litres of pure alcohol).
#percentage.expenditure - Expenditure on health as a percentage of Gross Domestic Product
per capita(%).
#Hepatitis.B - Hepatitis B (HepB) immunization coverage among 1-year-olds (%) #how many b
elow one year of age received 3 doses (%)
#BMI - Average Body Mass Index of entire population.
#under.five.deaths - Number of under-five deaths per 1000 population.
#Polio - Polio (Pol3) immunization coverage among 1-year-olds (%).
#Total expenditure - General government expenditure on health as a percentage of total go
vernment expenditure (%).
#Diphtheria - Diphtheria tetanus toxoid and pertussis (DTP3) immunization coverage among
1-year-olds (%).
#HIV_AIDS - Deaths per 1 000 live births HIV/AIDS (0-4 years).
#GDP - Gross Domestic Product per capita (in USD).
#Population - Population of the country.
#thinness.10.19 years - Prevalence of thinness among children and adolescents for Age 10
to 19 (%).
#thinness 5-9 years - Prevalence of thinness among children for Age 5 to 9(%).
#Income.composition.of.resources - in terms of income composition of resources (index ra
nging from 0 to 1).
#Schooling - Number of years of Schooling(years) .
str(lifexp)
## 'data.frame':
                    1649 obs. of 22 variables:
## $ Country
                                     : Factor w/ 193 levels "Afghanistan",..: 1 1 1 1 1 1
1 1 1 1 ...
```

```
## $ Year
                                  : int 2015 2014 2013 2012 2011 2010 2009 2008 2007
2006 ...
## $ Status
                                  : Factor w/ 2 levels "Developed", "Developing": 2 2 2
2 2 2 2 2 2 2 ...
   $ Life.expectancy
                                       65 59.9 59.9 59.5 59.2 58.8 58.6 58.1 57.5 57
.3 ...
##
  $ Adult.Mortality
                                  : int
                                        263 271 268 272 275 279 281 287 295 295 ...
## $ infant.deaths
                                  : int 62 64 66 69 71 74 77 80 82 84 ...
## $ Alcohol
                                  : num 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.02
0.03 ...
## $ percentage.expenditure
                                  : num 71.3 73.5 73.2 78.2 7.1 ...
## $ Hepatitis.B
                                  : int 65 62 64 67 68 66 63 64 63 64 ...
                                  : int 1154 492 430 2787 3013 1989 2861 1599 1141 19
## $ Measles
90 ...
                                  : num 19.1 18.6 18.1 17.6 17.2 16.7 16.2 15.7 15.2
## $ BMI
14.7 ...
                                  : int 83 86 89 93 97 102 106 110 113 116 ...
## $ under.five.deaths
## $ Polio
                                  : int 6 58 62 67 68 66 63 64 63 58 ...
## $ Total.expenditure
                                  : num 8.16 8.18 8.13 8.52 7.87 9.2 9.42 8.33 6.73 7
.43 ...
## $ Diphtheria
                                  : int 65 62 64 67 68 66 63 64 63 58 ...
## $ HIV.AIDS
                                        : num
## $ GDP
                                 : num 584.3 612.7 631.7 670 63.5 ...
## $ Population
                                 : num 33736494 327582 31731688 3696958 2978599 ...
                                 : num 17.2 17.5 17.7 17.9 18.2 18.4 18.6 18.8 19 19
## $ thinness..1.19.years
.2 ...
                          : num 17.3 17.5 17.7 18 18.2 18.4 18.7 18.9 19.1 19
## $ thinness.5.9.years
## $ Income.composition.of.resources: num 0.479 0.476 0.47 0.463 0.454 0.448 0.434 0.43
3 0.415 0.405 ...
## $ Schooling
                                  : num 10.1 10 9.9 9.8 9.5 9.2 8.9 8.7 8.4 8.1 ...
summary(lifexp)
##
          Country
                         Year
                                         Status
                                                   Life.expectancy
  Afghanistan: 16 Min. :2000
                                   Developed: 242
##
                                                   Min. :44.0
  Albania : 16 1st Qu.:2005
                                   Developing:1407
                                                   1st Qu.:64.4
##
                                                   Median :71.7
   Armenia : 15 Median :2008
##
   Austria : 15 Mean :2008
##
                                                   Mean
                                                        :69.3
            : 15 3rd Qu.:2011
##
   Belarus
                                                   3rd Qu.:75.0
           : 15
   Belgium
                     Max. :2015
                                                   Max. :89.0
##
           :1557
##
   (Other)
   Adult.Mortality infant.deaths
##
                                      Alcohol
                                                   percentage.expenditure
##
   Min. : 1.0
                  Min. : 0.00
                                   Min. : 0.010
                                                  Min. :
                                                            0.00
   1st Qu.: 77.0
                            1.00
                                   1st Qu.: 0.810
                                                  1st Qu.:
                  1st Qu.:
                                                            37.44
##
##
   Median :148.0
                  Median :
                            3.00
                                   Median : 3.790
                                                  Median : 145.10
##
   Mean :168.2
                  Mean : 32.55
                                   Mean : 4.533
                                                  Mean : 698.97
##
   3rd Qu.:227.0
                  3rd Qu.: 22.00
                                   3rd Qu.: 7.340
                                                  3rd Qu.:
                                                            509.39
##
   Max. :723.0
                  Max. :1600.00
                                   Max. :17.870
                                                  Max. :18961.35
##
                                                 under.five.deaths
##
    Hepatitis.B
                     Measles
                                      BMI
   Min. : 2.00
##
                  Min. :
                              0
                                  Min. : 2.00
                                                 Min. :
                                                           0.00
##
   1st Qu.:74.00
                  1st Qu.:
                              0
                                  1st Qu.:19.50
                                                 1st Qu.:
                                                           1.00
   Median :89.00
                             15
                                  Median :43.70
##
                  Median :
                                                 Median :
                                                           4.00
##
   Mean :79.22
                  Mean : 2224
                                  Mean :38.13
                                                 Mean : 44.22
##
   3rd Qu.:96.00
                  3rd Qu.:
                            373
                                  3rd Qu.:55.80
                                                 3rd Qu.: 29.00
##
   Max. :99.00
                  Max. :131441
                                  Max. :77.10
                                                 Max. :2100.00
```

```
##
##
        Polio
                   Total.expenditure
                                       Diphtheria
                                                        HIV.AIDS
##
   Min. : 3.00
                   Min. : 0.740
                                      Min.
                                             : 2.00
                                                      Min. : 0.100
    1st Qu.:81.00
                   1st Qu.: 4.410
##
                                      1st Qu.:82.00
                                                      1st Qu.: 0.100
##
    Median :93.00
                   Median : 5.840
                                      Median :92.00
                                                      Median : 0.100
##
   Mean
         :83.56
                   Mean
                         : 5.956
                                      Mean
                                             :84.16
                                                      Mean
                                                            : 1.984
    3rd Qu.:97.00
                   3rd Qu.: 7.470
##
                                      3rd Qu.:97.00
                                                      3rd Qu.: 0.700
##
   Max.
          :99.00
                   Max.
                          :14.390
                                      Max.
                                             :99.00
                                                      Max.
                                                             :50.600
##
##
        GDP
                          Population
                                           thinness..1.19.years
   Min. :
##
                 1.68
                             :3.400e+01
                                           Min.
                                                  : 0.100
##
    1st Qu.:
              462.15
                        1st Qu.:1.919e+05
                                           1st Qu.: 1.600
   Median : 1592.57
                       Median :1.420e+06
                                           Median : 3.000
##
##
   Mean : 5566.03
                       Mean
                                           Mean
                                                 : 4.851
                             :1.465e+07
##
   3rd Qu.: 4718.51
                        3rd Qu.:7.659e+06
                                           3rd Qu.: 7.100
##
   Max. :119172.74
                       Max.
                             :1.294e+09
                                           Max.
                                                  :27.200
##
   thinness.5.9.years Income.composition.of.resources
##
                                                         Schooling
##
   Min. : 0.100
                      Min.
                             :0.0000
                                                       Min.
                                                              : 4.20
   1st Qu.: 1.700
                       1st Qu.:0.5090
                                                       1st Qu.:10.30
##
##
   Median : 3.200
                      Median :0.6730
                                                       Median :12.30
   Mean : 4.908
##
                      Mean
                              :0.6316
                                                       Mean
                                                              :12.12
##
   3rd Qu.: 7.100
                       3rd Qu.:0.7510
                                                       3rd Qu.:14.00
                                                       Max.
##
   Max. :28.200
                      Max.
                             :0.9360
                                                              :20.70
##
range(lifexp$Life.expectancy)
## [1] 44 89
data_corr <- lifexp %>% select_if(is.numeric) #remove
coef<-cor(data corr,method = "pearson")</pre>
                                               #remove
View(coef)
#Life expectancy distribution in our dataset
hist(lifexp$Life.expectancy, breaks = seq(0,100,10),ylim=c(0,800), xlab = "Life Expectanc")
     main="Life expectancy over years for developed and developing countries", col = "gra
v50")
axis(1, at = seq(0, 100, by = 10))
```

Life expectancy over years for developed and developing countries


```
summary(lifexp$Life.expectancy)
                              Mean 3rd Qu.
##
      Min. 1st Qu.
                    Median
                                               Max.
##
      44.0
              64.4
                      71.7
                              69.3
                                       75.0
                                               89.0
#Does Status of country have an effect on life expectancy?
Dev<- lifexp%>% filter(Status=="Developed") %>% group_by(Year) %>% summarise(total=mean(L
ife.expectancy))
Devloping<-lifexp%>% filter(Status=="Developing") %>% group_by(Year) %>% summarise(total=
mean(Life.expectancy))
barplot(Dev$total, names.arg = Dev$Year,
        cex.axis = 0.65, ylim=c(0,100), space=c(0), xlab = "Years",
        col=rgb(1, 0, 0, .5),border = "Red",ylab="Life Expectancy (Years)",
        main="Life expectancy over years for developed and developing countries",)
barplot(Devloping$total, names.arg = Devloping$Year,
        cex.axis = 0.65, ylim=c(0,100), space=c(0), xlab = "Years",
        col=rgb(0, 1, 0, .05),border = "Green",ylab="Adult mortality rates",
        main="Life expectancy over years for developed and developing countries",
        add = TRUE
legend("topright",
       c("Developed", "Developing"),
       fill = c("orange", "green"), cex=0.65, bty="n"
)
```

Life expectancy over years for developed and developing countries


```
print("Over the years there isn't much difference in life expectancy though it differs si
gnificantly for developed and developing countries");
## [1] "Over the years there isn't much difference in life expectancy though it differs s
ignificantly for developed and developing countries"
# Life expectancy for developed countries in 2014
data_developed<- lifexp%>% filter(Status=="Developed" & Year==2014)
dim(data developed)
## [1] 19 22
Full_data_developed<- Fullifexp%>% filter(Status=="Developed" & Year==2014)
dim(Full_data_developed)
## [1] 32 22
mean(data developed$Life.expectancy)
## [1] 81.02632
plot((seq(1:19)), data_developed$Life.expectancy, type = "o", pch = 19, ylim=c(0,100),
     col = "red", ylab = "Life Expectancy (Age) '
     xlab = "Sample observations", main="Life Expectancy Distribution for Developed countr
ies in 2014")
axis(2, at = seq(0, 100, by = 10))
axis(1, at = seq(1, 19, by = 1))
```



```
# Can average life expectancy for developed countries in 2014 be said as 80 ?
#Null hypothesis life expectancy for developed countries in 2014 = 80
isAccept<- function(tcal,dF,alpha,isTwotailed){</pre>
  ttable<-0;
  if(isTwotailed){
    ttable<-abs(qt(alpha/2,df=dF))
  }else{
    ttable<-abs(qt(alpha,df=dF))
  tcal<-abs(tcal)
  if(tcal<ttable){</pre>
    cat("The calculated t value is ", tcal," is less than the table t value ",ttable,"\n"
)
    cat("Hence the null hypothesis is accepted")
    cat("The calculated t value is ", tcal," is greater than the table t value ",ttable,"
    cat("Hence the null hypothesis is rejected")
  }
}
res<-t.test(data_developed$Life.expectancy,alt="two.sided",mu=80,conf.level=0.95)
res
##
##
    One Sample t-test
##
## data: data developed$Life.expectancy
## t = 0.93135, df = 18, p-value = 0.364
## alternative hypothesis: true mean is not equal to 80
## 95 percent confidence interval:
```

```
##
    78.71118 83.34145
## sample estimates:
## mean of x
   81.02632
##
isAccept(res$statistic,res$parameter,0.05,TRUE)
## The calculated t value is 0.9313539 is less than the table t value 2.100922
## Hence the null hypothesis is accepted
#Developing countries in 2014
data_developing<- lifexp%>% filter( Status=="Developing" & Year==2014)
dim(data_developing)
## [1] 112 22
Full_data_developing<- Fullifexp%>% filter(Status=="Developing" & Year==2014)
dim(Full_data_developing)
## [1] 151 22
hist(data_developing$Life.expectancy, breaks = seq(20,100,5), xlab = "Age",
     main="Histogram of Life Expectancy Distribution for developing countries", col = "gr
ay50")
axis(1, at = seq(0, 100, by = 5))
```

Histogram of Life Expectancy Distribution for developing countries

#Null hypothesis : the life expectancy of population is 70

#is distribution normal ?
qqnorm(data_developing\$Life.expectancy)
qqline(data_developing\$Life.expectancy)

Normal Q-Q Plot


```
#Z test
isAccept<- function(zcal,alpha,isTwotailed){</pre>
  ztable<-0;
  if(isTwotailed){
    ztable<-abs(qnorm(alpha/2))</pre>
  }else{
    ztable<-abs(qnorm(alpha))</pre>
  }
  zcal<-abs(zcal)</pre>
  if(zcal<ztable){</pre>
    cat("The calculated z value is ", zcal," is less than the table z value ",ztable,"\n"
)
    cat("Hence the null hypothesis is accepted")
  }else{
    cat("The calculated z value is ", zcal," is greater than the table z value ",ztable,"
    cat("Hence the null hypothesis is rejected")
}
sd<-sd(data developing$Life.expectancy)</pre>
z<- (mean(data developing$Life.expectancy)-70)/sd</pre>
isAccept(z,0.05,TRUE) # for 95% confidence interval
## The calculated z value is 0.1618012 is less than the table z value 1.959964
## Hence the null hypothesis is accepted
#Top 10 countries which have highest improvement of life expectancy in 2014 as compared t
o 2000?
high_lifexp<-lifexp<mark>%>% filter((Year==2014 | Year == 2000) &Life.expectancy!=0 ) %>%group_</mark>
```

by(Country, Year) %>% summarise(Life.expectancy) %>% arrange(desc(Life.expectancy)) View(high_lifexp)


```
high_lifexp$Year<- as.factor(high_lifexp$Year)
high_lifexp_s<-high_lifexp %>% spread(Year,Life.expectancy)
View(high_lifexp_s)
high_lifexp_s<- high_lifexp_s%>% mutate(diff= (`2014`- `2000`))
high_lifexp_s <- high_lifexp_s %>% drop_na()
View(high_lifexp_s)
```

^	Country	2000 ‡	2014 🗦	diff [‡]
1	Afghanistan	54.8	59.9	5.1
2	Albania	72.6	77.5	4.9
3	Armenia	72.0	74.6	2.6
4	Austria	78.1	81.4	3.3
5	Belarus	68.0	72.0	4.0
6	Belgium	77.6	89.0	11.4
7	Belize	68.3	70.0	1.7
8	Bhutan	62.0	69.4	7.4
9	Botswana	47.8	65.1	17.3
10	Brazil	75.0	74.8	-0.2
11	Bulgaria	71.1	74.3	3.2
12	China	71.7	75.8	4.1
13	Colombia	71.4	74.6	3.2
14	Costa Rica	77.6	79.5	1.9
15	Cyprus	78.1	83.0	4.9
16	Dominican Republic	72.0	73.6	1.6
17	Ecuador	72.8	76.0	3.2
18	El Salvador	69.0	73.3	4.3

#did any country had a fall in life expectancy in 2014 compared to 2000 high_lifexp_s%>% filter(diff<=0)

#Brazil and Romania had a fall in thier life expectancy

```
top_improved<-high_lifexp_s%>% arrange(desc(diff))
top_improved<-top_improved[1:10,]
View(top_improved) #top improved</pre>
```

	Country	2000	2014	diff [‡]
1	Botswana	47.8	65.1	17.3
2	Zimbabwe	46.0	59.2	13.2
3	Portugal	76.6	89.0	12.4
4	Belgium	77.6	89.0	11.4
5	Germany	78.0	89.0	11.0
6	Ukraine	67.5	78.0	10.5
7	Swaziland	48.4	58.4	10.0
8	Greece	78.2	88.0	9.8
9	Maldives	69.6	78.2	8.6
10	Bhutan	62.0	69.4	7.4
	<pre>(top_impr cex.axis col=rgb((top_impr cex.axis col=rgb(main="Li add = TR</pre>	= 0.65 1, 0, 6 oved\$`2 = 0.65 0, 1, 6	5,ylim=0 0, .5),b 2014`,na 5,ylim=0 0, .05),	a(0,100) oorder = ames.arg a(0,100) border
	auu = IK	UE)		

)

```
#adult mortality over years in developed and developing countries
morDev<- lifexp%>% filter(Status=="Developed") %>% group by(Year) %>% summarise(total=mea
n(Adult.Mortality))
morDevloping<-lifexp%>% filter(Status=="Developing") %>% group_by(Year) %>% summarise(tot
al=mean(Adult.Mortality))
barplot(morDev$total, names.arg = morDev$Year,
        cex.axis = 0.65, ylim=c(0,250), space=c(0), xlab = "Years",
        col=rgb(1, 0, 0, .5),border = "Red",ylab="Adult mortality rates",main="Adult mort
ality rates over years")
barplot(morDevloping$total,names.arg = morDevloping$Year,
        cex.axis = 0.65, ylim=c(0,250), space=c(0), xlab = "Years",
        col=rgb(0, 1, 0, .05),border = "Green",ylab="Adult mortality rates",
        main="Avg adult mortality rates over years for developed and developing countries
        add = TRUE
legend("topright",
       c("Developed", "Developing"),
       fill = c("orange", "green"), cex=0.75, bty="n"
```

Adult mortality rates over years

#Average adult mortality rates over the years have not changed significantly but #its quite low in developed countries as compared to developing countries

Life Expectancy For Developed And Developing Countries


```
#vaccination status
lifexp1 <- lifexp %>%
 mutate(Hepatitis.B = ifelse(Hepatitis.B < 90, "lt80", "mt80"),</pre>
         Polio = ifelse(Polio < 80, "lt80", "mt80"),
         Diphtheria = ifelse(Diphtheria < 80, "1t80", "mt80"),</pre>
         Hepatitis.B = as.factor(Hepatitis.B),
         Polio = as.factor(Polio),
         Diphtheria = as.factor(Diphtheria))
# corr between Hepatitis B Coverage and Life expectancy
coeff<-cor(lifexp$Hepatitis.B,lifexp$Life.expectancy, method = "pearson")</pre>
coeff #v Low
## [1] 0.1999353
boxplot(lifexp1$Life.expectancy~lifexp1$Hepatitis.B,xlab="Hepatitis.B vaccine coverage",
        ylab = "Life Expectancy (Age)", main="Different countries Hepatitis.B vaccine cove
rage vs Life Expectancy ",
        col = c("red", "green"),
        names = c("Less than 80% covered", "More than 80% covered"))
```

Different countries Hepatitis.B vaccine coverage vs Life Expectancy

Hepatitis.B vaccine coverage

Different countries Polio vaccine coverage vs Life Expectancy

Polio vaccine coverage

Different countries Diphtheria vaccine coverage vs Life Expectancy

Diphtheria vaccine coverage

Less than and greater than 80 % Hepatitis.B coverage in developed and developing countries


```
# Does the staus of country affect Hepatitis.B coverage significantly ?
#chi square test
#function to compare x value calculated and table x value
acceptChi<-function(Xcal,alpha,df){</pre>
  XTable<-qchisq(p=alpha,df,lower.tail=FALSE)</pre>
  if(abs(Xcal)<=abs(XTable)){</pre>
    cat("The calculated X value is ", abs(Xcal)," is less than the table X value ",abs(XT
able),"\n")
    print("There isn't much difference in the groups of data ")
    cat("The calculated X value is ", abs(Xcal)," is greater than the table X value ",abs
(XTable), "\n")
    print("There is a significant difference in the groups of data")
  }
}
df < -y[c(4,5)]
df<-data.frame(df)</pre>
rownames(df) <- c("Developed", "Developing")</pre>
#class(df)
#dim(df)
#str(df)
df
##
                  lt80p
                           mt80p
## Developed 28.92562 71.07438
## Developing 53.73134 46.26866
res<-chisq.test(df,correct=FALSE)</pre>
res
```

```
##
##
    Pearson's Chi-squared test
##
## data: df
## X-squared = 12.688, df = 1, p-value = 0.000368
acceptChi(res$statistic,0.05,res$parameter)
## The calculated X value is 12.68811 is greater than the table X value 3.841459
## [1] "There is a significant difference in the groups of data"
# Hence development status affect the Hepatitis.B coverage
#Does developed or devloping status of country affect polio immunization?
y <- lifexp1 %>% group_by(Status, Polio) %>% count()%>% spread(Polio, n, fill = 0L)
y<-y\%>\% mutate( lt80p=(lt80/(lt80+mt80))*100,mt80p=(mt80/(lt80+mt80))*100 )
#View(y)
barplot(height = t(y[c("lt80p","mt80p" )]),
        names.arg = y$Status,col = c("red","green"),space=c(0),cex.axis = 0.65,xlab = "Co
untry Status",
        ylab="Percentage ",
        main="Less than and greater than 80 % Polio coverage in developed and developing
countries")
legend("topleft",
       c("<80% Polio coverage",">80% Polio coverage"),
       fill = c("red", "green"), cex=0.5
)
```

Less than and greater than 80 % Polio coverage in developed and developing countries


```
#chi square test Does the staus of country affect Hepatitis.B coverage significantly?
#function to compare x value calculated and table x value
acceptChi<-function(Xcal,alpha,df){</pre>
  XTable<-qchisq(p=alpha,df,lower.tail=FALSE)</pre>
  if(abs(Xcal)<=abs(XTable)){</pre>
    cat("The calculated X value is ", abs(Xcal)," is less than the table X value ",abs(XT
able),"\n")
    print("There isn't much difference in the groups of data ")
  }else{
    cat("The calculated X value is ", abs(Xcal)," is greater than the table X value ",abs
(XTable),"\n")
    print("There is a significant difference in the groups of data")
  }
}
df < -y[c(4,5)]
df<-data.frame(df)</pre>
rownames(df) <- c("Developed", "Developing")</pre>
#class(df)
#dim(df)
#str(df)
res<-chisq.test(df,correct=FALSE)</pre>
res
##
##
    Pearson's Chi-squared test
##
## data: df
## X-squared = 26.048, df = 1, p-value = 3.331e-07
acceptChi(res$statistic,0.05,res$parameter)
## The calculated X value is 26.04784 is greater than the table X value 3.841459
## [1] "There is a significant difference in the groups of data"
# Hence development status affect the Polio coverage
#Does developed or devloping status of country affect Diphteria immunization?
y <- lifexp1 %>% group_by(Status, Diphtheria) %>% count()%>% spread(Diphtheria, n, fill
= 0L
y<-y%>% mutate( lt80p=(lt80/(lt80+mt80))*100,mt80p=(mt80/(lt80+mt80))*100 )
barplot(height = t(y[c("lt80p", "mt80p")]),
        names.arg = y$Status,col = c("red","green"),space=c(0),cex.axis = 0.65,xlab = "Co
untry Status",
        ylab="Percentage ",
        main="Less than and greater than 80 % Diphtheria coverage in developed and develo
ping countries")
legend("topleft",
       c("<80% Diphtheria coverage",">80% Diphtheria coverage"),
       fill = c("red", "green"), cex=0.5
)
```

Less than and greater than 80 % Diphtheria coverage in developed and developing countries


```
#chi square test Does the staus of country affect Diphtheria coverage significantly ?
#function to compare x value calculated and table x value
acceptChi<-function(Xcal,alpha,df){</pre>
  XTable<-qchisq(p=alpha,df,lower.tail=FALSE)</pre>
  if(abs(Xcal)<=abs(XTable)){</pre>
    cat("The calculated X value is ", abs(Xcal)," is less than the table X value ",abs(XT
able),"\n")
    print("There isn't much difference in the groups of data ")
    cat("The calculated X value is ", abs(Xcal)," is greater than the table X value ",abs
(XTable), "\n")
    print("There is a significant difference in the groups of data")
  }
}
df < -y[c(4,5)]
df<-data.frame(df)</pre>
rownames(df) <- c("Developed", "Developing")</pre>
#class(df)
#dim(df)
#str(df)
res<-chisq.test(df,correct=FALSE)</pre>
res
##
##
    Pearson's Chi-squared test
##
## data: df
## X-squared = 25.128, df = 1, p-value = 5.364e-07
```

```
acceptChi(res$statistic,0.05,res$parameter)
## The calculated X value is 25.12823 is greater than the table X value
                                                                                                                                                  3.841459
## [1] "There is a significant difference in the groups of data"
# Hence development status affect the Diphtheria coverage
#correlation
data corr <- lifexp %>% select if(is.numeric)
coef<-cor(data_corr,method = "pearson")</pre>
View(coef)

↓ □ | ▼ Filter

                          Year
                                     Life.expectancy
                                                    Adult.Mortality
                                                                    infant.deaths
                                                                                  Alcohol
                                                                                            percentage.expenditure
                                                                                                                 Hepatitis.B
                                                                                                                              Measles
                                                                                                                                        вмі
                                                                                                                                                   under.five.deaths
                                                                                                                                                                    Polio
                     Year 1.0000000000
                                    0.05077103
                                                     -0.037091782
                                                                    0.008029128
                                                                                  -0.11336476 0.06955347
                                                                                                                 0.11489709
                                                                                                                              -0.053822046 0.005739061
                                                                                                                                                   0.01047859
                                                                                                                                                                     -0.01669880
                                     1.00000000
                          0.050771035
             Life.expectancy
                                                     -0.702523062
                                                                    -0.169073804
                                                                                  0.40271832 0.40963082
                                                                                                                 0.19993528
                                                                                                                              -0.068881222 0.542041588
                                                                                                                                                   -0.19226530
                                                                                                                                                                    0.32729440
                                                     1.000000000
                                                                    0.042450237
                                                                                                                                                                     -0.19985300
             Adult.Mortality
                          -0.037091782
                                     -0.70252306
                                                                                  -0.17553509 -0.23760989
                                                                                                                 -0.10522544
                                                                                                                              -0.003966685 -0.351542478 0.06036503
               infant.deaths
                          0.008029128
                                     -0.16907380
                                                    0.042450237
                                                                    1.000000000
                                                                                  -0.10621692 -0.09076463
                                                                                                                  -0.23176894
                                                                                                                              0.532679832
                                                                                                                                         -0.234425154 0.99690562
                                                                                                                                                                     -0.15692881
                                                     -0.175535086
                                                                    -0.106216917
                                                                                                                 0.10988939
                                                                                                                                                                    0.24031453
                   Alcohol
                                                                                                                                                                    0.12862605
       percentage.expenditure 0.069553468
                                    0.40963082
                                                     -0.237609890
                                                                    -0.090764632
                                                                                  0.41704736
                                                                                            1.00000000
                                                                                                                 0.01676017
                                                                                                                              -0.063070789 0.242738243
                                                                                                                                                   -0.09215806
                 Hepatitis.B 0.114897092
                                    0.19993528
                                                                                                                                                   -0.24076603
                                                     -0.105225443
                                                                    -0.231768937
                                                                                  0.10988939
                                                                                           0.01676017
                                                                                                                 1.00000000
                                                                                                                              -0.124799993 0.143301786
                                                                                                                                                                    0.46333080
                                                                                                                                                                     -0.05785013
                          -0.053822046 -0.06888122
                                                     -0.003966685
                                                                    0.532679832
                                                                                  -0.05011023 -0.06307079
                                                                                                                  -0.12479999
                                                                                                                              1.000000000
                                                                                                                                         -0.153245464 0.51750556
                   Measles
                     BMI 0.005739061
                                    0.54204159
                                                     -0.351542478
                                                                    -0.234425154
                                                                                  0.35339621 0.24273824
                                                                                                                 0.14330179
                                                                                                                              -0.153245464 1.0000000000
                                                                                                                                                   -0.24213740
                                                                                                                                                                    0.18626797
                          0.010478594
            under.five.deaths
                                                     0.060365026
                                                                    0.996905622
                                                                                  -0.10108216
                                                                                                                  -0.24076603
                                                                                                                              0.517505563
                                                                                                                                         -0.242137398
                                                                                                                                                                     -0.17116419
                     Polio -0.016698803 0.32729440
                                                     -0.199853000
                                                                    -0.156928805
                                                                                  0.24031453 0.12862605
                                                                                                                 0.46333080
                                                                                                                              -0.057850133 0.186267965
                                                                                                                                                   -0.17116419
                                                                                                                                                                    1.00000000
            Total.expenditure 0.059492777
                                    0.17471764
                                                     -0.085226535
                                                                    -0.146951117
                                                                                  0.21488509 0.18387236
                                                                                                                 0.11332668
                                                                                                                              -0.113582738 0.189468964
                                                                                                                                                   -0.14580310
                                                                                                                                                                    0.11976798
                 Diphtheria 0.029640586
                                                     -0.191428759
                                                                    -0.161871004
                                                                                  0.24295143 0.13481324
                                                                                                                 0.58898993
                                                                                                                              -0.058605907 0.176294503
                                                                                                                                                                    0.60924547
                  HIV.AIDS -0.123404990
                                     -0.59223629
                                                    0.550690745
                                                                    0.007711547
                                                                                  -0.02711264 -0.09508499
                                                                                                                 -0.09480197
                                                                                                                              -0.003521854 -0.210896746 0.01947593
                                                                                                                                                                    -0.10788547
                          0.096421485
                                                     -0.255034733
                                                                    -0.098092020
                                                                                  0.44343279
                                                                                                                 0.04184950
                                                                                                                              -0.064767590
                                                                                                                                        0.266113973
                                                                                                                                                                    0.15680869
                 Population 0.012566893
                                     -0.02230498
                                                     -0.015011838
                                                                    0.671758310
                                                                                  -0.02888023 -0.01679214
                                                                                                                  -0.12972265
                                                                                                                              0.321946377
                                                                                                                                         -0.081415982 0.65867969
                                                                                                                                                                     -0.04538657
          thinness..1.19.years 0.019756611
                                     -0.45783819
                                                    0.272230044
                                                                    0.463415256
                                                                                  -0.40375499 -0.25503460
                                                                                                                 -0.12940595
                                                                                                                              0.180641506
                                                                                                                                         -0.547017514 0.46478470
                                                                                                                                                                    -0.16406959
            thinness.5.9.vears 0.014122422
                                                                                  -0.38620819 -0.25563544
#correlation btw life expectancy and schooling is v high
coef<-cor(data_corr$Life.expectancy,data_corr$Schooling, method = "pearson")</pre>
cat("Pearson correlation between Life Expectancy and Schooling: ",coef)
## Pearson correlation between Life Expectancy and Schooling:
```

plot(data_corr\$Life.expectancy,data_corr\$Schooling,xlab="No of years of schooling",ylab="

Life expectancy");


```
No of years of schooling
pcor.test(data corr$Life.expectancy,data corr$Schooling,data corr$Income.composition.of.r
esources,method = c("pearson"))$estimate
## [1] 0.3766893
print("large decrease in correlation and hence life expectancy and schooling have spuriou
s relationship")
## [1] "large decrease in correlation and hence life expectancy and schooling have spurio
us relationship"
coef<-cor(data_corr$Life.expectancy,data_corr$Income.composition.of.resources, method = "</pre>
pearson")
coef
## [1] 0.7210826
pcor.test(data_corr$Life.expectancy,data_corr$Income.composition.of.resources,data_corr$G
DP, method = c("pearson"))$estimate
## [1] 0.6525817
print("not a major difference hance life expectancy and income composition share a direct
realtionship")
## [1] "not a major difference hance life expectancy and income composition share a direc
t realtionship"
model<-lm(Life.expectancy ~ Income.composition.of.resources,data=lifexp)</pre>
plot(Life.expectancy ~ Income.composition.of.resources,data=lifexp,
     xlab="Income composition of resources",ylab="Life expectancy",col="gray50");
abline(reg=lm(Life.expectancy~Income.composition.of.resources,data=lifexp),col="red")
```



```
coeffs<-coefficients(model)</pre>
coeffs
##
                         (Intercept) Income.composition.of.resources
                            47.42175
##
                                                               34.64574
#divide the datset into 2 for prediction
set.seed(42)
rows <- sample(nrow(lifexp))</pre>
lifexp_100 <- lifexp[rows, ]</pre>
split <- round(nrow(lifexp_100) * 0.80)</pre>
lifexp_80<-lifexp_100[1:split, ]</pre>
lifexp_20<-lifexp_100[(split + 1):nrow(lifexp_100), ]</pre>
View(lifexp 80)
View(lifexp_20)
#linear regression
model<-lm(Life.expectancy ~ Income.composition.of.resources,data=lifexp_80)</pre>
plot(Life.expectancy ~ Income.composition.of.resources,data=lifexp_80,
     xlab="Income composition of resources",ylab="Life expectancy",col="gray50");
abline(reg=model,col="red")
```



```
coeffs<-coefficients(model)</pre>
coeffs
                        (Intercept) Income.composition.of.resources
##
##
                           48.14638
                                                             33.69854
predicted<-predict(model,lifexp_20)</pre>
View(predicted)
error_info = data.frame(real =lifexp_20$Life.expectancy,prediction = predicted)
error_info<- error_info %>% mutate(error=error_info[,1] - error_info[,2] );
View(error_info)
mean_abs_err = mean(abs(error_info$error))
mean_abs_err
## [1] 4.290697
x<- as.factor(seq(1:330))</pre>
plot(x,error_info$error,type = "l",pch=1,ylim=c(-40,40),xlab="Test observations",ylab = "
Error",main="Plot for error in predicted and real values ")
lines(x,rep(mean_abs_err,330),col="Blue")
legend("topleft",
       c("Each test observation error", "Mean absolute error line"),
       fill = c("Black","blue"),cex=0.65,bty="n"
)
```

Plot for error in predicted and real values

```
9
           Mean absolute error line
   2
   2
   8
         1 9 19 31 43 55 67 79 91 104 119 134 149 164 179 194 209 224 239 254 269 284 299 314 329
                                         Test observations
rmse = sqrt(mean(error info$error ^ 2))
rmse
## [1] 6.193577
#multiple regression
my model<-lm(Life.expectancy ~ Income.composition.of.resources+Adult.Mortality+Alcohol+GD
P+thinness..1.19.years+thinness.5.9.years,data=lifexp_80)
#plot(Life.expectancy ~ Income.composition.of.resources,data=lifexp 80,
      xlab="Income composition of resources",ylab="Life expectancy",col="gray50");
#abline(reg=my_model,col="red")
coeffs<-coefficients(my model)</pre>
coeffs
##
                       (Intercept) Income.composition.of.resources
                                                      2.016409e+01
                      6.274058e+01
##
##
                   Adult.Mortality
                                                           Alcohol
##
                     -3.139423e-02
                                                     -3.081762e-02
##
                               GDP
                                              thinness..1.19.years
                                                     -1.363737e-01
##
                      8.158393e-05
##
                thinness.5.9.years
                     -1.037149e-01
##
predicted<-predict(my_model,lifexp_20)</pre>
#View(predicted)
error info = data.frame(real =lifexp 20$Life.expectancy, prediction = predicted)
error_info<- error_info %>% mutate(error=error_info[,1] - error_info[,2] );
View(error_info)
```

Plot for error in predicted and real values


```
rmse = sqrt(mean(error_info$error ^ 2))
rmse
## [1] 4.542652
```