Fondements de l'apprentissage machine

Automne 2014

Roland Memisevic

Leçon 2

Roland Memisevio

Fondements de l'apprentissage machine

Régression linéaire

- ► La régression linéaire est un des concepts les plus fondamentaux de l'apprentissage machine et des statistiques.
- ▶ Il s'agit d'un simple problème avec une solution simple.
- ► Pourtant, elle nous permet d'étudier une variété de concepts au centre de l'apprentissage machine, avec lesquels nous travaillerons durant ce cours.
- ► En raison de sa simplicité, la régression linéaire est également utilisée dans de très nombreuses tâches pratiques.

Plan

- ► Régression linéaire
- ► Apprentissage par optimisation
- Fonctions de base non-linéaires
- ► Apprentissage par maximum de vraisemblance
- ► La décomposition biais-variance
- ▶ Un premier aperçu de la modelisation Bayésienne

Roland Memisevic

Fondements de l'apprentissage machin

Régression linéaire

$\mathbf{x} o \mathbf{t}$

- lacktriangle Soit un ensemble d'observations ${f x}$ et ${f t}$ à valeurs réelles.
- ▶ Problème : Apprendre à prédire t à partir de x.
- ▶ Il s'agit d'un problème d'apprentissage supervisé.

Régression linéaire 1-d

▶ Si les entrées et les sorties sont des scalaires (1-d), on peut les visualiser :

La régression linéaire est basée sur l'hypothèse qu'il existe une relation linéaire entre x et t.

Roland Memisevic Fondements de l'apprentissage machin

Régression en 1-d

▶ Pour des entrées/sorties 1-d on a :

$$y(x) = w_0 + w_1 x$$

▶ Pour des entrées en D dimensions et des sorties 1-d on a :

$$y(\mathbf{x}) = w_0 + w_1 x_1 + w_2 x_2 + \ldots + w_D x_D (= w_0 + \mathbf{w}^T \mathbf{x})$$

▶ Pour des sorties en K dimensions on a simplement un modèle pour chaque dimension de y:

$$\begin{pmatrix} y_1(\mathbf{x}) \\ \vdots \\ y_K(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} y_1(\mathbf{x}) = w_{10} + w_{11}x_1 + w_{12}x_2 + \dots + w_{1D}x_D \\ \vdots \\ y_K(\mathbf{x}) = w_{K0} + w_{K1}x_1 + w_{K2}x_2 + \dots + w_{KD}x_D \end{pmatrix}$$

Bruit vs. dépendances dont on ne se soucie pas

▶ Même si cette hypothèse n'est pas tout à fait correcte, on peut utiliser la régression linéaire pour capturer la tendance linéaire dans les données (en supposant que les dépendances non-linéaires sont du bruit)

Le biais

- \blacktriangleright w_0 s'appelle biais («bias» en anglais). Il nous permet de deplacer le modèle linéaire à travers l'axe des y.
- ▶ On peut toujours éliminer le biais (et c'est courant) en remplaçant :

$$\begin{pmatrix} x_1 \\ \vdots \\ x_D \end{pmatrix} \to \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_D \end{pmatrix}$$

Maintenant le modèle linéaire contient implicitement le biais (ce qui nous permet d'écrire $\mathbf{w}^{\mathrm{T}}\mathbf{x}$).

Méthode des moindres carrés

- ▶ Estimation des paramètres ("poids"). (sorties 1-d pour le moment)
- ▶ Pour estimer les paramètres, il faut avoir un ensemble d'entraînement

$$\mathcal{D} = \left\{ (\mathbf{x}_n, t_n) \right\}_{n=1}^N$$

dont on minimise la somme des erreurs au carré :

$$E(\mathbf{w}; \mathcal{D}) = \frac{1}{2} \sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathrm{T}} \mathbf{x}_n)^2$$

par rapport à w.

▶ D'autres fonctions de perte peuvent être utilisées, mais celle-ci rend l'optimisation plus facile.

Roland Memisevic Fondements de l'apprentissage machine

Méthode des moindres carrés

▶ Pour formuler de manière plus compacte, on définit t le vecteur de sorties

$$\mathbf{t} = \begin{pmatrix} t_1 \\ \vdots \\ t_N \end{pmatrix}$$

ainsi que X une matrice d'entrées (une par rangée) :

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{pmatrix}$$

Cela nous permet d'écrire la solution de manière plus compacte:

Les équations normales

$$\mathbf{w} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

Méthode des moindres carrés

▶ Pour l'optimiser par rapport à w on dérive

$$\frac{\partial E}{\partial \mathbf{w}} = -\sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathrm{T}} \mathbf{x}_n) \mathbf{x}_n$$

Définissant la dérivée à zéro

$$-\sum_{n=1}^{N} t_n \mathbf{x}_n + \left(\sum_{n=1}^{N} \mathbf{x}_n \mathbf{x}_n^{\mathrm{T}}\right) \mathbf{w} = 0$$

on obtient:

$$\mathbf{w} = \left(\sum_{n=1}^{N} \mathbf{x}_{n} \mathbf{x}_{n}^{\mathrm{T}}\right)^{-1} \left(\sum_{n=1}^{N} t_{n} \mathbf{x}_{n}\right)$$

▶ (Il est plus simple et instructif de le faire pour les entrées 1-d.)

Une interprétation géométrique

- ▶ Pensez à l'erreur comme la norme au carré de la différence entre les vecteurs t et y, contenant toutes les sorties et toutes les prédictions, respectivement.
- Le vecteur $\mathbf{y} \ (= \mathbf{X} \mathbf{w})$ réside dans le sous-espace \mathcal{S} engendré par les colonnes \mathbf{x}^i de \mathbf{X} .
- ▶ Il s'agit de la *projection orthogonale* de t sur S.

Des sorties multidimensionelles

- La régression avec des sorties multidimensionnelles est similaire au cas 1-d.
- Imaginez un modèle séparé pour chaque sortie.
- ▶ Nous avons une *matrice* W de paramètres et minimisons

$$E(\mathbf{W}; \mathcal{D}) = \frac{1}{2} \sum_{n=1}^{N} \|\mathbf{t}_n - \mathbf{W}^{\mathrm{T}} \mathbf{x}_n\|^2$$

Roland Memisevic Fondements de l'apprentissage machine

Descente de gradient stochastique Stochastic Gradient Descent (SGD)

- ► Comme l'a montré la régression linéaire, l'apprentissage peut être défini comme l'optimisation d'une fonction de perte.
- ▶ Souvent, on n'a pas de solution de forme fermée.
- Également, les données arrivent souvent un point à la fois et nous voudrions faire des prédictions au fur et à mesure qu'elles arrivent.
- ▶ Une solution commune : l'apprentissage en ligne.
- ▶ Une approche simple et commune est Descente de Gradient Stochastique ("Stochastic Gradient Descent/SGD").
- ▶ SGD est basée sur le fait que le gradient est dans la direction de descente maximale.

Des sorties multidimensionelles

Les équations normales (sorties multidimensionnelles)

$$\mathbf{W} = \left(\mathbf{X}^{\mathrm{T}}\mathbf{X}\right)^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{T}$$

où chaque colonne de T contient un vecteur, \mathbf{t}_k , de N sorties.

 \blacktriangleright La régression multidimensionnelle est comme Krégressions 1-d indépendantes.

Fondements de l'apprentissage machin

Descente de gradient stochastique Stochastic Gradient Descent (SGD)

▶ Elle s'applique lorsque la fonction de perte se décompose en une somme sur les exemples d'entraînement :

$$E = \sum_{n} E_n$$

(où E_n ne dépend que d'un exemple d'entraînement n).

Descente de gradient stochastique

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} - \eta \frac{\partial E_n}{\partial \mathbf{w}}$$

- $\triangleright \tau$ est l'itération
- \triangleright η est le taux d'apprentissage (*learning rate*) (normalement une petite valeur réelle (par exemple $\eta = 0.001$). On peut le réduire pendant l'apprentissage.

Descente de gradient stochastique Stochastic Gradient Descent (SGD)

- À chaque itération, l'algorithme voit un exemple d'entraînement.
- ► Il vacille autour d'une trajectoire moyenne idéalisée vers l'optimum.

Roland Memisev

Fondements de l'apprentissage machine

Fonctions de base non-linéaires

- ► Il existe un moyen très simple d'étendre la régression linéaire à la régression non-linéaire :
- ▶ Prétraiter les entrées en utilisant un ensemble de fonctions non-linéaires (qui restent fixes).
- Remplacer

$$\mathbf{x} \to \mathbf{\Phi}(\mathbf{x})$$

où Φ est une fonction non-linéaire (fixe!).

- Le modèle est toujours linéaire par rapport aux paramètres du modèle.
- ► Cette approche s'appelle aussi « l'expansion de base ».

Descente de gradient stochastique Stochastic Gradient Descent (SGD)

- ► Gradient Descent s'applique aussi á l'optimisation "batch" (non-en ligne) mais il n'est pas courant dans ce cas.
- ► Pour la régression linéaire SGD correspond à des mise à jour :

$$\mathbf{w}^{(\tau+1)} = \mathbf{w}^{(\tau)} + \eta (t_n - \mathbf{w}^{(\tau)T} \mathbf{x}_n) \mathbf{x}_n$$

Roland Memisevi

Fondements de l'apprentissage machin

Examples de fonctions de base

Modèle polynomial :

$$\phi_i(x) = x^j \quad i = 1, \dots, M$$

▶ Modèle polynomial (multidimensionnel, ordre 2) :

$$\phi_{ik}(\mathbf{x}) = x_i x_k \quad \phi_i(\mathbf{x}) = x_i$$

► Fonctions de base « radiales » ou « Gaussiennes » :

$$\phi_j(x) = \exp\left(-\left(\frac{x-\mu_j}{2s^2}\right)^2\right)$$

Régression polynomiale

- ▶ Modèle polynomial de la leçon 1.
- Notez que dans chaque exemple, l'entrée de la régression est de dimension différente même si l'entrée originale (x) est toujours de dimension 1.

Roland Memisevi

Fondements de l'apprentissage machi

Bruit gaussien et maximum de vraisemblance

Bruit gaussien et maximum de vraisemblance

- ▶ Jusqu'à présent, nous avons traité l'apprentissage comme un problème d'optimisation.
- Nous obtenons une interprétation probabiliste si nous faisons l'hypothèse suivante :

$$t = y(\mathbf{x}, \mathbf{w}) + \epsilon$$

où ϵ est une variable aléatoire gaussienne.

Ainsi

$$p(t|\mathbf{x}; \mathbf{w}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \sigma^2)$$

Roland Memisevi

Fondements de l'apprentissage machin

Bruit gaussien et maximum de vraisemblance

Pour estimer les paramètres de la gaussienne conditionnelle en utilisant des données d'entraı̂nement $\mathcal{D} = \left\{ (\mathbf{x}_n, t_n) \right\}_{n=1}^N \text{IID } (= \ll \text{indépendantes et identiquement distribuées} \gg) maximisez$

$$p(\mathcal{D}) = \prod_{n} \mathcal{N}(t_n | y(\mathbf{x}_n, \mathbf{w}), \sigma^2)$$

Équivalemment, nous pouvons maximiser la log vraisemblance (car le log est monotone) :

maximisez
$$-\sum_{n=1}^{N} (t_n - \mathbf{w}^{\mathrm{T}} \mathbf{x}_n)^2 + \text{const.}$$

ce qui est équivalent à minimiser la somme des erreurs au carré $E(\mathbf{w}; \mathcal{D})$ d'auparavant.

Bruit gaussien et maximum de vraisemblance

- ► Le maximum de vraisemblance est un principe (ou « recette ») pour mettre à jour les paramètres d'une distribution.
- ► Il s'applique à des distributions conditionnelles ou inconditionnelles.
- ▶ Il s'applique à des distributions discrètes ou continues.
- ► Le maximum de vraisemblance (et la méthode des moindres carrés en général) peut souffrir de sur-apprentissage.

Roland Memisev

Fondements de l'apprentissage machine

La méthode des moindres carrés régularisée

▶ Il est facile de montrer que la solution devient :

Les équations normales pour la régression de ridge

$$\mathbf{w} = (\mathbf{X}^{\mathrm{T}}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{t}$$

- ▶ Notez que, dans la régression polynomiale, la pénalité décourage les polynômes « ondulés » (qui sont due à de grands coefficients).
- ▶ Il faut choisir λ ! (par exemple par validation croisée)

La méthode des moindres carrés régularisée

► Pour prévenir le sur-apprentissage, on peut pénaliser la fonction de perte :

$$E_{\lambda}(\mathbf{w}, \mathcal{D}) = E(\mathbf{w}, \mathcal{D}) + \lambda E_{W}(\mathbf{w})$$

pour réduire la taille de l'espace d'hypothèses.

► La pénalité la plus commune supprime les grandes entrées de w :

$$E_W(\mathbf{w}) = \frac{1}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

« Weight decay » ou régression de ridge (« Ridge Regression »)

Roland Memisevic

Fondements de l'apprentissage machin

Régression Lasso

▶ Une alternative commune est de pénaliser la norme L1 des poids :

$$E_W(\mathbf{w}) = \lambda \sum_j |w_j|$$

- ► Cela s'appelle régression **Lasso** (« least absolute shrinkage and selection operator », Tibshirani 1996).
- Avantage : Il conduit à des solutions *éparses*, ou clairsemées (\ll sparse \gg) : de nombreux poids w_i ont exactement la valeur zéro.
- ▶ Désavantage : Il n'existe pas de solution de forme fermée.

Lasso: intuition

► La minimisation de "fonction de perte + terme de pénalité" est comme optimiser la fonction de perte avec une

Roland Memisevi

contrainte sur les paramètres.

Fondements de l'apprentissage machine

Biais-variance

- ▶ Imaginez que vous estimez les paramètres w plusieurs fois, chaque fois en utilisant un ensemble d'entraînement \mathcal{D} différent.
- Pour un exemple de test x_n , la moyenne de l'erreur (par rapport au choix d'ensemble de données) est :

$$\mathbb{E}_{\mathcal{D}}[(y(\mathbf{x}_n; \mathcal{D}) - \mathbb{E}[t|\mathbf{x}_n])^2]$$

Cela est égal à (dérivation, Bishop page 149) :

$$(\mathbb{E}_{\mathcal{D}}[y(\mathbf{x}_n; \mathcal{D})] - \mathbb{E}[t|\mathbf{x}_n])^2 + \mathbb{E}_{\mathcal{D}}[(y(\mathbf{x}_n; \mathcal{D}) - \mathbb{E}_{\mathcal{D}}[y(\mathbf{x}_n; \mathcal{D})])^2]$$

$$=: (\text{biais})^2 + \text{variance}$$

Biais-variance

- ▶ Supposons que les données sont tirées d'une distribution jointe $p(\mathbf{x},t)$.
- La meilleure prédiction possible sur un exemple de test \mathbf{x}_n en termes d'erreur quadratique est l'espérance conditionnelle

$$\mathbb{E}[t|\mathbf{x}_n] = \int tp(t|\mathbf{x}_n) \, \mathrm{d}t$$

► En pratique, nous ne pouvons jamais produire cette prédiction optimale, car la quantité de données d'entraînement est toujours limitée.

Roland Memisevic

Fondements de l'apprentissage machin

Biais-variance

Biais-variance

Roland Memisevic

Fondements de l'apprentissage machine

Un aperçu de l'apprentissage bayésien

- Écrivez la vraisemblance comme une distribution conditionnelle $p(\mathcal{D}|\mathbf{w})$ (au lieu d'une distribution qui est paramétrisée par \mathbf{w}).
- ▶ En utilisant la règle de Bayes :

$$p(\mathbf{w}|\mathcal{D}) = \frac{p(\mathcal{D}|\mathbf{w})p(\mathbf{w})}{p(\mathcal{D})}$$

- $p(\mathbf{w}|\mathcal{D})$ est appelé distribution postérieure de \mathbf{w} .
- Pour être en mesure de la calculer, il faut d'abord définir une distribution $p(\mathbf{w})$, connue comme la distribution à priori de \mathbf{w} .

Un aperçu de l'apprentissage bayésien

- Le maximum de vraisemblance est une méthode pour mettre à jour des paramètres afin que la probabilité des données d'entraînement devienne maximale.
- La régularisation est nécessaire pour prévenir le sur-apprentissage.
- ▶ On peut éliminer le sur-apprentissage en remplaçant le réglage de paramètres par un raisonnement probabiliste.
- Cela nécessite de traiter les paramètres eux-mêmes comme des variables aléatoires.

Roland Memisevi

Fondements de l'apprentissage machin

Un aperçu de l'apprentissage bayésien

- Pensez à la modélisation bayésienne comme un moyen de mettre à jour nos suppositions $p(\mathbf{w})$ concernant les paramètres en présence de données \mathcal{D} .
- ► Malheureusement, cela est souvent très difficile en pratique, nécessitant fréquemment des approximations.
- \blacktriangleright Par exemple, le calcul de la constante de normalisation $p(\mathcal{D})$ est souvent coûteux.

Exemple de la régression bayésienne en utilisant une distribution à priori gaussienne pour w

Roland Memisevi

Fondements de l'apprentissage machine