Séries

1 Définitions et premières propriétés

1.1 Séries numériques, nature d'une série

Définition 1 (Série numérique)

Soit $(u_n)_{n\geqslant n_0}$ une suite de nombres réels (en pratique on aura souvent $n_0=0$ ou 1)

On appelle série de terme général u_n , et note $\sum u_n$ la suite $(S_N)_{N\geqslant n_0}$ définie par :

$$\forall N \geqslant n_0, \ S_N = \sum_{n=n_0}^N u_n = u_{n_0} + ... + u_N.$$

Pour $N \ge n_0$ fixé, le réel S_N est appelé la somme partielle d'ordre N).

Remarque 1

Dans la notation $\sum u_n$, on ne précise pas l'indice de départ de la somme n_0 ...

En général il n'y a pas d'ambiguïté : on choisit pour n_0 le plus petit indice à n partir duquel le terme général u_n est bien défini!

Exemples

• La série de terme général $\frac{1}{2^n}$, que l'on note $\sum \frac{1}{2^n}$, est la suite $(S_N)_{N\geqslant 0}$ définie par

$$\forall n \in \mathbb{N}, \ S_N = \sum_{n=0}^N \frac{1}{2^n}.$$

• La série de terme général $\frac{1}{n^2}$, que l'on note $\sum \frac{1}{n^2}$, est la suite $(S_N)_{N\geqslant 1}$ définie par :

$$\forall n \geqslant 1, \ S_N = \sum_{n=1}^N \frac{1}{n^2}.$$

■ Définition 2 (Nature d'une série)

Une série $\sum u_n$ peut être de deux **natures** :

- Si la suite $(S_N)_{N\geqslant n_0}$ converge, c'est à dire s'il existe $S\in\mathbb{R}$ tel que $S_N=\sum_{n=n_0}^N u_n\xrightarrow[N\to+\infty]{} S$, on dit que la série est convergente (ou qu'elle converge). Dans ce cas :
 - La limite $S = \lim_{N \to +\infty} \sum_{n=n_0}^{N} u_n$ est appelée somme de la série.

Elle est naturellement notée $\sum_{n=n_0}^{+\infty} u_n$ ou encore $\sum_{n\geqslant n_0} u_n$.

- Pour tout $N \ge n_0$, on appelle reste d'ordre N le réel $R_N = S - S_N = \sum_{n=n_0}^{+\infty} u_n - \sum_{n=n_0}^{N} u_n$.

Il est également noté $R_N = \sum_{n=N+1}^{+\infty} u_n$. Par définition on a $\lim_{N\to+\infty} R_N = 0$.

• Si la suite $(S_N)_{N\geqslant n_0}$ diverge, on dit que la série est divergente (ou qu'elle diverge).

Exemples

• La série
$$\sum \frac{1}{2^n}$$
 est convergente, puisque : $\sum_{n=0}^{N} \frac{1}{2^n} = \frac{1 - \left(\frac{1}{2}\right)^{N+1}}{1 - \frac{1}{2}} = 2\left(1 - \frac{1}{2^{N+1}}\right) \xrightarrow[N \to +\infty]{} 2.$

La somme de cette série est donc : $\sum_{n=0}^{+\infty} \frac{1}{2^n} = 2.$

• La série
$$\sum n$$
 est divergente, puisque : $\sum_{n=0}^{N} n = \frac{N(N+1)}{2} \xrightarrow[N \to +\infty]{} +\infty$.

• La série
$$\sum (-1)^n$$
 est divergente, puisque : $\sum_{n=0}^N (-1)^n = \frac{1-(-1)^{N+1}}{1-(-1)} = \frac{1}{2}(1+(-1)^N)$ n'a pas de limite quand $N \to +\infty$.

A Attention!

Ne pas confondre les différentes notations :

•
$$\sum u_n$$
 désigne la série de terme général u_n , c'est à dire la suite : $\left(\sum_{n=n_0}^N u_n\right)_{N\geqslant n_0}$

- Pour $N \ge n_0$ fixé, le réel $\sum_{n=n_0}^{N} u_n$ est la somme partielle d'ordre N de la série.
- Le réel $\sum_{n=n_0}^{+\infty} u_n$ est la somme (i.e la limite) de la série $\sum u_n$ (pour une <u>série convergente uniquement</u>)
- Pour $N \ge n_0$ fixé, le réel $\sum_{n=N+1}^{+\infty} u_n$ est le reste d'ordre N de la série (pour une série convergente uniquement)

Notons que la nature d'une série (c'est à dire le fait qu'elle converge ou qu'elle diverge) est en fait indépendante de l'indice de départ de la somme!

Proposition 1 (Changer l'indice de départ)

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle et deux entiers $n_0, n_1 \in \mathbb{N}$ (avec, disons $n_0 \leqslant n_1$).

• Les séries
$$\left(\sum_{n=n_0}^N u_n\right)_{N\geqslant n_0}$$
 et $\left(\sum_{n=n_1}^N u_n\right)_{N\geqslant n_1}$ sont de même nature.

• De plus, lorsqu'elles convergent, on a l'égalité :

$$\sum_{n=n_0}^{+\infty} u_n = \sum_{n=n_0}^{n_1-1} u_n + \sum_{n=n_1}^{+\infty} u_n \qquad \text{(Relation de Chasles pour des sommes infinies)}$$

Preuve:

Pour tout
$$N \ge n_1$$
, on peut écrire :
$$\sum_{n=n_0}^{N} u_n = \sum_{n=n_0}^{n_1-1} u_n + \sum_{n=n_1}^{N} u_n.$$

Quand $N \to +\infty$, on voit donc que $\sum_{n=n_0}^N u_n$ converge si et seulement si $\sum_{n=n_1}^N u_n$ converge.

Dans le cas où on a convergence, en passant à la limite dans l'égalité, on obtient la relation voulue.□

Remarque 2

Si l'on s'intéresse uniquement à la nature d'une série, cela justifie la notation minimaliste " $\sum u_n$ " : inutile de préciser l'indice de départ n_0 puisque la nature de la série ne dépend pas de celui-ci!

Attention!

- La nature de la série est indépendante de l'indice de départ.
- Mais en cas de convergence, <u>la valeur de la somme</u> $\sum_{n=n_0}^{+\infty} u_n$ dépend de l'indice de départ n_0 !

Exemple

La série $\left(\sum_{n=1}^N \frac{1}{2^n}\right)_{N\geqslant 1}$ est convergente, car de même nature que la série $\left(\sum_{n=0}^N \frac{1}{2^n}\right)_{N\geqslant 0}$.

En revanche, on n'a pas $\sum_{n=1}^{+\infty} \frac{1}{2^n} = \sum_{n=0}^{+\infty} \frac{1}{2^n}!$ Précisément : $\sum_{n=1}^{+\infty} \frac{1}{2^n} = \sum_{n=0}^{+\infty} \frac{1}{2^n} - \frac{1}{2^0} = 2 - 1 = 1.$

1.2 Condition nécessaire pour la convergence d'une série

★ Théorème 1 (Divergence grossière)

Si la série $\sum u_n$ converge, alors on a nécessairement $\lim_{n\to+\infty}u_n=0$.

Contraposée : Si la suite $(u_n)_{n \ge n_0}$ ne tend pas vers 0 , alors la série $\sum u_n$ diverge! On dit en fait d'une telle série qu'elle diverge grossièrement.

Preuve:

Supposons que la série $\sum u_n$ converge : la somme partielle $S_N = \sum_{n=n_0}^N u_n$ converge vers un réel S quand $N \to +\infty$. On remarque alors que pour tout $N \geqslant n_0$,

$$u_N = S_N - S_{N-1} \xrightarrow[N \to +\infty]{} S - S = 0$$
 d'où $\lim_{N \to +\infty} u_N = 0$.

Exemples

- La série $\sum 1$ diverge puisque $\lim_{n \to +\infty} 1 \neq 0$.
- La série $\sum \frac{n^2}{1+2n^2}$ diverge, car $\lim_{n\to+\infty} \frac{n^2}{1+2n^2} = \frac{1}{2} \neq 0$.

Attention!

La réciproque de la Proposition 2 est (très!) fausse :

Il n'est pas suffisant d'affirmer $\lim_{n\to+\infty}u_n=0$ pour que la série $\sum u_n$ converge!

<u>Contre-Exemple</u>: Posons $\forall n \ge 1, \ u_n = \frac{1}{n}$. On a bien $\lim_{n \to +\infty} u_n = 0$.

Mais on a déjà étudié la série harmonique et vu que : $S_N = \sum_{n=1}^N \frac{1}{n} \underset{N \to +\infty}{\sim} \ln(N) \xrightarrow[N \to +\infty]{} +\infty.$

Ainsi, la série $\sum \frac{1}{n}$ diverge!

Remarque 3

Pour que la série $\sum u_n$ converge, il faut en fait que u_n converge vers 0 "suffisamment rapidement"... Nous allons clarifier cette affirmation (peu précise pour l'instant!) un peu plus tard dans ce chapitre.

1.3 Manipulation de sommes infinies

Proposition 2 (Multiplication par une constante)

Soit $(u_n)_{n\geqslant n_0}$ une suite réelle et $\lambda\in\mathbb{R}^*$. Les séries $\sum \lambda u_n$ et $\sum u_n$ sont de même nature. De plus, lorsqu'elles convergent, on a l'égalité :

$$\sum_{k=n_0}^{+\infty} \lambda u_k = \lambda \sum_{k=n_0}^{+\infty} u_k \quad \text{(Factorisation dans une somme infinie)}$$

Preuve rapide:

Pour tout $N \ge n_0$: $\sum_{n=n_0}^{N} \lambda u_n = \lambda \sum_{n=n_0}^{N} u_n$. On passe ensuite à la limite quand $N \to +\infty$...

Proposition 3 (Somme de deux séries)

Soit $(u_n)_{n \geqslant n_0}$ et $(v_n)_{n \geqslant n_0}$ deux suites réelles.

- I Si les séries $\sum u_n$ et $\sum v_n$ convergent, alors la série $\sum (u_n + v_n)$ converge et on a l'égalité : $\sum_{n=0}^{+\infty} (u_n + v_n) = \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n.$ ("Séparation" des sommes pour une somme infinie)
- 2 Si $\sum u_n$ converge et $\sum v_n$ diverge, alors la série $\sum (u_n + v_n)$ diverge.
- $\boxed{3}$ Si $\sum u_n$ et $\sum v_n$ divergent, on ne peut rien dire en général sur la nature de $\sum (u_n + v_n)...$

Preuve rapide:

Pour tout $N \ge n_0$: $\sum_{n=n_0}^{N} (u_n + v_n) = \sum_{n=n_0}^{N} u_n + \sum_{n=n_0}^{N} v_n$.

- I Supposons que $\sum u_n$ et $\sum v_n$ convergent : les deux sommes à droite convergent quand $N \to +\infty$. C'est donc également le cas de la somme à gauche. On passe à la limite pour avoir l'égalité voulue.
- 2 Supposons que $\sum u_n$ converge et $\sum v_n$ diverge. Si jamais la série $\sum (u_n + v_n)$ était convergente, alors avec $\sum_{n=n_0}^N v_n = \sum_{n=n_0}^N (u_n + v_n) \sum_{n=n_0}^N u_n$ on obtiendrait la convergence de $\sum v_n$: absurde!
- 3 Posons $u_n = 1$ et $v_n = 1$: $\sum u_n$ et $\sum v_n$ divergent, et la série $\sum (u_n + v_n)$ également. Posons $u_n = 1$ et $v_n = -1$: $\sum u_n$ et $\sum v_n$ divergent, mais la série $\sum (u_n + v_n) = 0$ converge!

A Attention!

Pour séparer une somme infinie : $\sum_{n=n_0}^{+\infty} (u_n + v_n) = \sum_{n=n_0}^{+\infty} u_n + \sum_{n=n_0}^{+\infty} v_n$

il faut absolument que les séries $\sum u_n$ et $\sum v_n$ convergent, sinon le membre de droite n'a aucun sens!

Exemple: La série $\sum \left(\frac{1}{n} - \frac{1}{n+1}\right)$ est convergente car :

$$\sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1 - \frac{1}{N+1} \xrightarrow[N \to +\infty]{} 1. \quad \text{Ainsi} : \quad \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right) = 1.$$

 $\text{Mais on ne peut pas \'ecrire } \sum_{n=1}^{+\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \sum_{n=1}^{+\infty} \frac{1}{n} - \sum_{n=1}^{+\infty} \frac{1}{n+1} \quad \dots$

cela n'a pas de sens car les séries $\sum \frac{1}{n}$ et $\sum \frac{1}{n+1}$ divergent!

Ainsi on fera particulièrement attention, en manipulant des sommes infinies, à toujours justifier la convergence de toutes les séries mises en jeu...

Il est souvent préférable de faire les calculs à N fixé, puis passer à la limite quand $N \to +\infty$

Remarque 4

En combinant les Propositions 2 et 3, on obtient la "linéarité de la somme infinie" :

Si les séries $\sum u_n$ et $\sum v_n$ convergent, pour tous $\lambda, \mu \in \mathbb{R}$, la série $\sum (\lambda u_n + \mu v_n)$ converge et :

$$\sum_{n=n_0}^{+\infty} (\lambda u_n + \mu v_n) = \lambda \sum_{n=n_0}^{+\infty} u_n + \mu \sum_{n=n_0}^{+\infty} v_n.$$

A Attention !

Les résultats connus pour les sommes finies ne sont pas automatiquement valable pour des sommes infinies! En particulier :

$$\frac{d}{dx}\sum_{n=n_0}^{+\infty}u_n(x)\neq\sum_{n=n_0}^{+\infty}u_n'(x),\qquad \int_a^b\left(\sum_{n=n_0}^{+\infty}u_n(x)\right)dx\neq\sum_{n=n_0}^{+\infty}\int_a^bu_n(x)dx\quad \text{ en général.}$$

Bien-sûr c'est parfois vrai, mais il faut alors justifier rigoureusement l'"interversion"! Cela peut typiquement faire l'objet d'un exercice...

2 Séries usuelles

2.1 Séries géométriques

"Rappel": Si $q \in]-1,1[$, pour tout $\alpha > 0$, $q^n = o\left(\frac{1}{n^{\alpha}}\right)$

En effet : On peut écrire $|q^n|=|q|^n=e^{n\ln(|q|)}=e^{-cn}$ où $c=-\ln(|q|)>0$ puisque |q|<1.

$$\text{Ainsi :} \left| \frac{q^n}{\frac{1}{n^\alpha}} \right| = n^\alpha |q|^n = n^\alpha e^{-cn} \xrightarrow[n \to +\infty]{} 0 \quad \text{donc } \lim_{n \to +\infty} \frac{q^n}{\frac{1}{n^\alpha}} = 0 \quad \text{c'est à dire } \ q^n \underset{n \to +\infty}{=} o \left(\frac{1}{n^\alpha} \right).$$

★ Théorème 2 (Séries géométriques (dérivées))

Soit $x \in \mathbb{R}$. Les séries $\sum x^n, \sum nx^{n-1}$ et $\sum n(n-1)x^{n-2}$ convergent si et seulement si $x \in]-1,1[$.

Dans ce cas, on a:

- $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$ (Somme d'une série géométrique)
- $\sum_{n=1}^{+\infty} nx^{n-1} = \frac{1}{(1-x)^2}$ (Somme d'une série géométrique dérivée)
- $\sum_{n=2}^{+\infty} n(n-1)x^{n-2} = \frac{2}{(1-x)^3}$ (Somme d'une série géométrique dérivée seconde)

Remarques 5

- Notons que les sommes des deux derniers points pourraient également démarrer à l'indice n=0...
- Si on retient l'expression de la première somme, les autres sont facile à retrouver : ce sont les dérivées (première et seconde) de cette expression! On est ici dans un cadre où $\sum_{n=0}^{+\infty} \frac{d}{dx} x^n = \frac{d}{dx} \sum_{n=0}^{+\infty} x^n \dots$

Preuve du Théorème 2:

• Si $|x| \ge 1$, on a $\lim_{n \to +\infty} x^n \ne 0$, donc la série $\sum x^n$ diverge. Supposons donc |x| < 1, i.e $x \in]-1,1[$.

$$\begin{aligned} & \text{Pour tout } N \geqslant 0, \, (\text{puisque } x \neq 1) \text{ on a } \sum_{n=0}^{N} x^n = \frac{1-x^{N+1}}{1-x} \xrightarrow[N \rightarrow +\infty]{} \frac{1}{1-x}. \\ & (\text{car pour } x \in]-1, 1[, \text{ on a } \lim_{N \rightarrow +\infty} x^{N+1} = 0). \end{aligned}$$

On a bien montré que la série converge et $\sum_{n=0}^{+\infty} x^n = \frac{1}{1-x}$.

• Si $|x| \ge 1$, on a $\lim_{n \to +\infty} |nx^{n-1}| = \lim_{n \to +\infty} n|x|^{n-1} = +\infty \ne 0$, donc la série $\sum nx^{n-1}$ diverge. Supposons donc |x| < 1, i.e $x \in]-1,1[$.

Pour $N \ge 0$ et $x \in]-1,1[$, posons $f_N(x) = \sum_{n=0}^N x^n$. On a bien sûr $f_N \in D(]-1,1[,\mathbb{R})$.

En dérivant, pour tout
$$x \in]-1,1[:(f_N)'(x) = \sum_{n=0}^N nx^{n-1} = \sum_{n=1}^N nx^{n-1}.$$

Par ailleurs, comme $f_N(x) = \frac{1 - x^{N+1}}{1 - x}$, on obtient aussi :

$$(f_N)'(x) = \frac{-(N+1)x^N(1-x) + 1 - x^{N+1}}{(1-x)^2} = \frac{Nx^{N+1} - (N+1)x^N + 1}{(1-x)^2}.$$

Ainsi on a l'égalité :

$$\sum_{n=1}^{N} nx^{n-1} = \frac{Nx^{N+1} - (N+1)x^{N} + 1}{(1-x)^{2}} \xrightarrow[N \to +\infty]{} \frac{1}{(1-x)^{2}}$$

 $\text{car, puisque } x \in]-1,1[, \quad x^N \underset{N \to +\infty}{=} o\left(\frac{1}{N}\right), \text{ donc on a}: \lim_{N \to +\infty} Nx^{N+1} = 0 \text{ et } \lim_{N \to +\infty} (N+1)x^N = 0.$

On a bien montré que la série converge et $\sum_{n=1}^{+\infty} \frac{1}{(1-x)^2}$.

 \bullet Rapidement : on dérive f_N à nouveau sur] - 1, 1[pour obtenir, après calcul :

$$(f_N)''(x) = \sum_{n=2}^{N} n(n-1)x^{n-2} = \frac{-(N-1)Nx^{N+1} + 2(N^2 - 1)x^N - N(N+1)x^{N-1} + 2}{(1-x)^3} \xrightarrow[N \to +\infty]{} \frac{2}{(1-x)^3}$$

car, puisque
$$x \in]-1,1[, \quad x^N \underset{N \to +\infty}{=} o\left(\frac{1}{N^2}\right)...$$

Exercice 1

Soit $q \in]-1,1[$.

Justifier que les séries $\sum nq^n$ et $\sum n^2q^n$ convergent et calculer leurs sommes : $\sum_{n=1}^{+\infty}nq^n$ et $\sum_{n=1}^{+\infty}n^2q^n$.

• Pour tout
$$N \geqslant 1$$
: $\sum_{n=1}^{N} nq^n = q \times \sum_{n=1}^{N} nq^{n-1} \xrightarrow[N \to +\infty]{} q \times \frac{1}{(1-q)^2}$.

Donc la série converge et $\sum_{n=1}^{+\infty} kq^k = \frac{q}{(1-q)^2}$.

• Pour tout
$$N \ge 1$$
: $\sum_{n=1}^{N} n^2 q^n = \sum_{n=1}^{N} (n(n-1) + n) q^n = \sum_{n=1}^{N} n(n-1) q^n + \sum_{n=1}^{N} n q^n$

$$= q^2 \times \sum_{n=2}^{N} n(n-1)q^{n-2} + q \times \sum_{n=1}^{N} nq^{n-1} \xrightarrow[N \to +\infty]{} q^2 \times \frac{2}{(1-q)^3} + q \times \frac{1}{(1-q)^2}$$

Donc la série converge et
$$\sum_{n=1}^{+\infty} n^2 q^n = \frac{2q^2}{(1-q)^3} + \frac{q}{(1-q)^2} = \frac{q(q+1)}{(1-q)^3}$$

2.2 Séries de Riemann

Avant d'annoncer les résultats de cette section, donnons un aperçu de la méthode générale de **comparaison série-intégrale** (à savoir reproduire / adapter au cas voulu) :

Soit f une fonction continue, positive, <u>décroissante</u> sur $[1, +\infty[$.

On s'intéresse à la série $\sum f(n)$: $\forall N \geqslant 1$, $S_N = \sum_{n=1}^N f(n)$, que l'on va "comparer" à $\int_1^N f(t)dt$.

Pour tout $n \geqslant 2$, on a l'encadrement :

$$f(n) \leqslant \int_{n-1}^{n} f(t)dt \leqslant f(n-1)$$

En sommant ces inégalités pour n = 2, ..., N:

$$\sum_{n=2}^{N} f(n) \leqslant \sum_{n=2}^{N} \int_{n-1}^{n} f(t)dt \leqslant \sum_{n=2}^{N} f(n-1)$$

c'est à dire:

$$S_N - f(1) \leqslant \int_1^N f(t)dt \leqslant S_N - f(N)$$

✓ Dessin :

On obtient ainsi un encadrement de S_N : $\int_1^N f(t)dt + f(N) \leqslant S_N \leqslant \int_1^N f(t)dt + f(1).$

(Il y a d'autres variantes possibles, en encadrant plutôt $\int_n^{n+1} f(t)dt$ par exemple...)

À partir d'un tel encadrement, on peut souvent :

- Déterminer la nature de la série.
- Si la série diverge : déterminer un équivalent de S_N quand $N \to +\infty$.
- Si la série converge : déterminer un équivalent du reste $R_N = \sum_{n=N+1}^{+\infty} f(n)$ quand $N \to +\infty$.

业 Théorème 3 (Séries de Riemann)

Soit $\alpha \in \mathbb{R}$. La série $\sum \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha > 1$.

Ces séries (pour $\alpha \in \mathbb{R}$) sont appelées séries de Riemann.

Preuve:

D'abord si $\alpha \leq 0$, $\lim_{n \to +\infty} \frac{1}{n^{\alpha}} = \lim_{n \to +\infty} n^{-\alpha} = \begin{cases} 1 \text{ si } \alpha = 0 \\ +\infty \text{ si } \alpha < 0 \end{cases} \neq 0 \text{ donc la série } \sum \frac{1}{n^{\alpha}} \text{ diverge.}$

Supposons maintenant $\alpha > 0$. (La fonction $t \mapsto \frac{1}{t^{\alpha}}$ est donc décroissante)

Pour tout $N \geqslant 1$, on définit $S_N = \sum_{n=1}^N \frac{1}{n^{\alpha}}$: on chercher à encadrer S_N .

Pour tout $n \geqslant 1$, on a l'encadrement : $\frac{1}{n^{\alpha}} \leqslant \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt \leqslant \frac{1}{(n-1)^{\alpha}}$

En sommant pour n = 2, 3, ..., N: $\sum_{n=2}^{N} \frac{1}{n^{\alpha}} \leqslant \sum_{n=2}^{N} \int_{n-1}^{n} \frac{1}{t^{\alpha}} dt \leqslant \sum_{n=2}^{N} \frac{1}{(n-1)^{\alpha}}$.

C'est à dire : $\sum_{n=2}^N \frac{1}{n^\alpha} \leqslant \int_1^N \frac{1}{t^\alpha} dt \leqslant \sum_{n=1}^{N-1} \frac{1}{n^\alpha} \quad \text{ i.e : } \quad S_N - 1 \leqslant \int_1^N \frac{1}{t^\alpha} dt \leqslant S_N - \frac{1}{N^\alpha} dt \leqslant S_N -$

On obtient donc l'encadrement : $\forall N \geqslant 2, \int_1^N \frac{1}{t^{\alpha}} dt + \frac{1}{N^{\alpha}} \leqslant S_N \leqslant \int_1^N \frac{1}{t^{\alpha}} dt + 1$ (*)

• Traitons d'abord le cas où $\alpha \neq 1$:

On calcule l'intégrale : $\int_1^N \frac{1}{t^{\alpha}} dt = \int_1^N t^{-\alpha} dt = \left[\frac{t^{-\alpha+1}}{-\alpha+1} \right]_1^N = \frac{N^{-\alpha+1}-1}{-\alpha+1}.$

Ainsi:

(a) Si
$$\alpha < 1$$
, on a $-\alpha + 1 > 0$.

D'après (*), on a : $\forall N \geqslant 1$, $\underbrace{\frac{N^{-\alpha+1}-1}{-\alpha+1}}_{N \to +\infty} + \underbrace{\frac{1}{N^{\alpha}}}_{N \to +\infty} \leqslant S_N$.

On en déduit que $\lim_{N\to+\infty} S_N = +\infty$: la série diverge.

(b) Si $\alpha > 1$, on a $\alpha - 1 > 0$, donc : $\int_{1}^{N} \frac{1}{t^{\alpha}} dt = \frac{N^{-\alpha + 1} - 1}{-\alpha + 1} = \frac{1 - N^{-(1 - \alpha)}}{1 - \alpha} \leqslant \frac{1}{1 - \alpha}$

D'après (*), on déduit : $\forall N \ge 1, \ S_N \le \frac{1}{1-\alpha} + 1.$

La suite $(S_N)_{N\geqslant 1}$ est donc majorée (par $\frac{1}{1-\alpha}+1$).

De plus elle est clairement croissante (somme de termes positifs...), donc elle converge! Ainsi la série converge.

• Enfin, le cas $\alpha = 1$:

On calcule l'intégrale : $\int_{1}^{N} \frac{1}{t^{\alpha}} dt = \int_{1}^{N} \frac{1}{t} dt = \left[\ln(t) \right]_{1}^{N} = \ln(N).$

D'après (*), on a : $\forall N \geqslant 1$, $\underbrace{\frac{\ln(N)}{N \to +\infty}}_{N \to +\infty} + \underbrace{\frac{1}{N^{\alpha}}}_{N \to +\infty} \leqslant S_N$.

On en déduit que $\lim_{N\to+\infty} S_N = +\infty$: la série diverge.

Remarques 6

- Dans le cas "limite" $\alpha = 1$, on obtient la **série harmonique** $\sum \frac{1}{n}$ qui est divergente.
- On sait que la série converge pour $\alpha > 1$, mais on ne connait pas la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n^{\alpha}}$ en général! Il est possible (mais difficile!) de calculer cette valeur lorsque α est un entier pair.

Par exemple: On peut montrer que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$

2.3 Série exponentielle

Rappel: La fonction exponentielle est définie comme l'unique fonction $f \in D(\mathbb{R}, \mathbb{R})$ satisfaisant:

$$f' = f \text{ et } f(0) = 1 \ (\star)$$

L'existence d'une telle fonction est admise. L'unicité peut être démontrée facilement en exercice :

- (a) Soit $f \in D(\mathbb{R}, \mathbb{R})$ satisfaisant (\star) . Montrer que la fonction $x \mapsto f(x)f(-x)$ est constante. En déduire que f ne s'annule pas sur \mathbb{R} .
- (b) Soit $g \in D(\mathbb{R}, \mathbb{R})$ une autre fonction satisfaisant (*). Montrer que la fonction $\frac{g}{f}$ est constante. En déduire que g = f.

★ Théorème 4 (Série exponentielle (admis pour l'instant))

Pour tout $x \in \mathbb{R}$, la série $\sum \frac{x^n}{n!}$ est convergente et : $\sum_{n=0}^{+\infty} \frac{x^n}{n!} = e^x$

Ceci donne une définition alternative de la fonction exponentielle comme une somme infinie :

$$\forall x \in \mathbb{R}, \quad e^x = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} + \dots + \frac{x^n}{n!} + \dots$$

"Justification" non-rigoureuse: Admettons que ces séries convergent et posons $\forall x \in \mathbb{R}, \ f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$

On a bien f(0) = 1, et en admettant que l'on puisse inverser somme et dérivée :

$$\forall x \in \mathbb{R}, \ f'(x) = \frac{d}{dx} \left(\sum_{n=0}^{+\infty} \frac{x^n}{n!} \right) = \sum_{n=0}^{+\infty} \frac{d}{dx} \left(\frac{x^n}{n!} \right) = \sum_{n=1}^{+\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{+\infty} \frac{x^{n-1}}{(n-1)!} = \sum_{k=0}^{+\infty} \frac{x^k}{k!} = f(x).$$

On reviendra plus tard, rigoureusement, sur la preuve de ce théorème.

Exercice 2

Montrer que les séries $\sum \frac{(-1)^n}{n!}$ et $\sum \frac{1}{(n+1)!}$ convergent et calculer leurs sommes.

• On reconnait une série exponentielle avec x = -1.

Donc la série $\sum \frac{(-1)^n}{n!}$ converge et $\sum_{n=0}^{+\infty} \frac{(-1)^n}{n!} = e^{-1}$.

• Pour tout $N \geqslant 0$, $\sum_{n=0}^{N} \frac{1}{(n+1)!} = \sum_{n=1}^{N+1} \frac{1}{n!} = \sum_{n=0}^{N+1} \frac{1}{n!} - 1 = \sum_{n=0}^{N+1} \frac{1^n}{n!} - 1 \xrightarrow[N \to +\infty]{} \sum_{n=0}^{+\infty} \frac{1^n}{n!} - 1 = e^1 - 1.$

Donc la série $\sum \frac{1}{(n+1)!}$ converge et $\sum_{n=0}^{+\infty} \frac{1}{(n+1)!} = e - 1$.

$\mathbf{3}$ Séries à termes positifs

Nous allons à présent énoncer des résultats permettant de déterminer "à l'oeil" la nature (i.e une série $\sum u_n$ avec $u_n \ge 0$ (au moins à partir d'un certain rang)). d'une série à termes positifs

3.1 Critère de convergence pour une série à termes positifs

Théorème 5 (Nature d'une série à termes positifs)

Soit $(u_n)_{n\geqslant n_0}$ une suite de réels <u>positifs</u>. Pour tout $N\geqslant n_0$, soit $S_N=\sum_{n=1}^\infty u_n$.

Alors la suite $(S_N)_{N \geqslant n_0}$ est croissante. En conséquence :

- Si la suite $(S_N)_{N\geqslant n_0}$ est majorée, alors la série $\sum u_n$ converge.
- Sinon, on a $\lim_{N\to+\infty} S_N = +\infty$ et la série $\sum u_n$ diverge.

Pour tout $N \ge n_0$, $S_{N+1} - S_N = \sum_{n=n_0}^{N+1} u_n - \sum_{n=n_0}^{N} u_n = u_{N+1} \ge 0$ donc $(S_N)_{N \geqslant n_0}$ est croissante.

On conclut avec le théorème de la limite monotone pour les suites réelles.

Remarque 7

On a utilisé ce résultat dans la preuve de la convergence des séries de Riemann (Théorème 3):

 $\forall N \geqslant 1, \quad \sum_{n=1}^{N} \frac{1}{n^{\alpha}} \leqslant \frac{1}{1-\alpha} + 1.$ Pour tout $\alpha > 1$, on a la majoration :

La suite des sommes partielles est majorée (par $\frac{1}{1-\alpha}+1$), donc la série $\sum \frac{1}{n^{\alpha}}$ converge!

3.2Théorèmes de comparaison pour des séries à termes positifs

Les théorèmes de comparaison suivants permettent de déterminer la nature d'une série à termes positifs en la comparant à une série dont la nature est connue (série géométrique, série de Riemann, série exponentielle...)

Théorème 6 (Comparaison : Inégalités et nature des séries)

Soient $(u_n)_{n \ge n_0}$ et $(v_n)_{n \ge n_0}$ deux suites positives (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n \leq v_n$ (à partir d'un certain rang).

- Si la série $\sum v_n$ converge , alors la série $\sum u_n$ converge. Si la série $\sum u_n$ diverge , alors la série $\sum v_n$ diverge.

Preuve:

Supposons que l'inégalité $0 \le u_n \le v_n$ est valable pour tout $n \ge n_0$.

(Quitte à augmenter n_0 : de toute façon, la nature des séries ne dépend par de l'indice de départ!)

Posons, pour tout $N \ge n_0$, $S_N = \sum_{n=0}^N u_n$ et $T_N = \sum_{n=0}^N v_n$.

Les suites $(S_N)_{N\geqslant n_0}$ et $(T_N)_{N\geqslant n_0}$ sont croissantes, et pour tout $N\geqslant n_0$: $S_N\leqslant T_N$.

- Si (T_N) converge alors (T_N) est majorée et donc (S_N) est majorée : (S_N) converge
- Si (S_N) diverge alors $\lim_{n\to+\infty} S_N = +\infty$ et donc $\lim_{n\to+\infty} T_N = +\infty$: (T_N) diverge.

Exercice 3

Déterminer la nature des séries $\sum \frac{\ln(n)}{n}$ et $\sum \frac{1}{n^2 \ln(n)}$.

Il s'agit bien de séries à termes positifs : on peut donc utiliser les théorèmes de comparaisons!

• On voit que $\frac{\ln(n)}{n} \geqslant \frac{1}{n} \geqslant 0$ à partir d'un certain rang (n=3).

Comme la série de Riemann $\sum \frac{1}{n}$ est divergente, on en déduit que $\sum \frac{\ln(n)}{n}$ est divergente.

• On voit que $\frac{1}{n^2 \ln(n)} \leqslant \frac{1}{n^2}$ à partir d'un certain rang (n=3).

Comme la série de Riemann $\sum \frac{1}{n^2}$ est convergente, on en déduit que $\sum \frac{1}{n^2 \ln(n)}$ est convergente.

En fait, on a non seulement $\frac{1}{n^2\ln(n)} \leqslant \frac{1}{n^2}$ à partir d'un certain rang, mais carrément $\frac{1}{n^2\ln(n)} \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right)$.

Le théorème de comparaison précédent est en fait aussi valable avec des " $o(\)$ " :

★ Théorème 7 (Comparaison : Négligeabilité et nature des séries)

Soient $(u_n)_{n\geqslant n_0}$ et $(v_n)_{n\geqslant n_0}$ deux suites <u>positives</u> (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n = o(v_n)$

- Si la série $\sum v_n$ converge , alors la série $\sum u_n$ converge .
- Si la série $\sum u_n$ diverge , alors la série $\sum v_n$ diverge.

Preuve:

Puisque $u_n = 0$ $u_n = 0$ $u_n = 0$, on peut écrire (à partir d'un certain rang) $u_n = v_n \times \varepsilon_n$ avec $\lim_{n \to +\infty} \varepsilon_n = 0$.

À partir d'un certain rang, on aura $u_n \ge 0$, $v_n \ge 0$ et $\varepsilon_n \le 1$, donc : $u_n \le v_n$.

On peut donc appliquer le Théorème 6 précédent pour obtenir les conclusions voulue.

Exercice 4

Montrer que la série $\sum \frac{\ln(n)}{n^2}$ converge.

Il s'agit bien d'une série à termes positifs : on peut donc utiliser les théorèmes de comparaisons!

On ne peut pas dire que $\frac{\ln(n)}{n^2} = o\left(\frac{1}{n^2}\right)...$

En revanche, on a $\frac{\ln(n)}{n^2} = o\left(\frac{1}{n}\right)$. Mais comme $\sum \frac{1}{n}$ diverge, cela n'aide pas!

Soyons plus précis : pour tout $\underline{\alpha < 2}, \quad \frac{\ln(n)}{n^2} = o\left(\frac{1}{n^{\alpha}}\right).$

En effet : $\frac{\frac{\ln(n)}{n^2}}{\frac{1}{n^{\alpha}}} = \frac{\ln(n)}{n^2} n^{\alpha} = \frac{\ln(n)}{n^{2-\alpha}} \xrightarrow[n \to +\infty]{} 0 \quad (\text{car } 2 - \alpha > 0).$

Ainsi, par exemple, avec $\alpha = 2 - \frac{1}{2} = \frac{3}{2}$, on a $\frac{\ln(n)}{n^2} = o\left(\frac{1}{n^{3/2}}\right)$.

Puisque la série de Riemann $\sum \frac{1}{n^{3/2}}$ est convergente (puisque 3/2 > 1), on en déduit que $\sum \frac{\ln(n)}{n^2}$ est convergente.

Énonçons un dernier théorème de comparaison très utile :

Théorème 8 (Comparaison : Équivalent et nature des séries)

Soient $(u_n)_{n\geqslant n_0}$ et $(v_n)_{n\geqslant n_0}$ deux suites positives (à partir d'un certain rang).

On suppose qu'elles satisfont : $u_n \sim v_n$

Alors les séries $\sum u_n$ et $\sum v_n$ sont de même nature.

Preuve:

Puisque $u_n \sim v_n$, on peut écrire (à partir d'un certain rang) $u_n = v_n \times \lambda_n$ avec $\lim_{n \to +\infty} \lambda_n = 1$.

À partir d'un certain rang on a ainsi : $u_n \ge 0$, $v_n \ge 0$, et $\frac{1}{2} \le \lambda_n \le 2$ donc : $\frac{1}{2}v_n \le u_n \le 2v_n$.

On peut alors appliquer le Théorème 6 (inégalité et nature des séries) :

- Si $\sum v_n$ converge, alors $\sum 2v_n$ converge, et donc $\sum u_n$ converge.
- Si $\sum v_n$ diverge, alors $\sum \frac{1}{2}v_n$ diverge, et donc $\sum u_n$ diverge.

Les séries $\sum u_n$ et $\sum v_n$ sont donc bien de même nature.

Exercice 5

Déterminer la nature des séries $\sum \ln \left(1 + \frac{1}{n}\right)$ et $\sum \ln \left(1 + \frac{2}{n^2}\right)$.

Il s'agit bien de séries à termes positifs : on peut donc utiliser les théorèmes de comparaisons!

- On a $\ln\left(1+\frac{1}{n}\right) \underset{n\to+\infty}{\sim} \frac{1}{n}$ et la série $\sum \frac{1}{n}$ est divergente, donc $\sum \ln\left(1+\frac{1}{n}\right)$ est divergente.
- On a $\ln\left(1+\frac{2}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{2}{n^2}$ et la série $\sum \frac{1}{n^2}$ est convergente, donc $\sum \frac{2}{n^2}$ également,

et donc $\sum \ln \left(1 + \frac{2}{n^2}\right)$ est convergente.

Remarque 8

Ces théorèmes permettent de comparer la nature de deux séries $\sum u_n$ et $\sum v_n$ à termes positifs.

Cependant, ils ne font aucun lien entre les valeurs des sommes $\sum_{n=0}^{+\infty} u_n$ et $\sum_{n=0}^{+\infty} v_n$!

Attention!

Pour appliquer les 3 théorèmes de comparaisons précédents (inégalité, négligeabilité, équivalent), il est impératif de travailler avec des séries à termes positifs! (éventuellement à partir d'un certain rang)

Remarque 9

Bien-sûr, si les termes généraux u_n et v_n sont <u>tous négatifs</u> à partir d'un certain rang, on se ramenera au cas positif en considérant les séries de termes généraux $-u_n$ et $-v_n$. (En se rappelant que multiplier par -1 ne change pas la nature d'une série!)

Exemple

La série $\sum \ln \left(1 - \frac{1}{n^2}\right)$ est à termes négatifs! (pour tout $n \geqslant 1$, $1 - \frac{1}{n^2} < 1$ donc $\ln(1 - \frac{1}{n^2}) < 0$).

Ainsi la série $\sum -\ln\left(1-\frac{1}{n^2}\right)$ est à termes positifs, on peut utiliser les théorèmes de comparaison :

$$-\ln\left(1-\frac{1}{n^2}\right) \underset{n \to +\infty}{\sim} \frac{1}{n^2} \text{ et la série } \sum \frac{1}{n^2} \text{ converge donc la série } \sum -\ln\left(1-\frac{1}{n^2}\right) \text{ converge.}$$

On en déduit que la série $\sum \ln \left(1 - \frac{1}{n^2}\right)$ converge.

4 Convergence absolue

On vient de voir comment on pouvait déterminer, par comparaison, la nature d'une série $\sum u_n$ à termes positifs ($u_n \ge 0$ à partir d'un certain rang) ou bien à termes négatifs ($u_n \le 0$ à partir d'un certain rang).

Mais que dire d'une série dont le terme général u_n n'est pas de signe constant partir d'un certain rang?

Exemples:
$$\sum \frac{(-1)^n}{n^2}$$
, $\sum \frac{\cos(n)}{1+n^2}$...

Définition 3 (Convergence absolue)

On dit qu'une série $\sum u_n$ converge absolument (CVA), ou bien est absolument convergente, lorsque

la série
$$\sum |u_n|$$
 est convergente.

t Exemples

- La série $\sum \frac{(-2)^n}{3^n}$ converge absolument car $\sum \left|\frac{(-2)^n}{3^n}\right| = \sum \left(\frac{2}{3}\right)^n$ converge.
- La série $\sum \frac{(-1)^n}{n}$ ne converge pas absolument car $\sum \left|\frac{(-1)^n}{n}\right| = \sum \frac{1}{n}$ diverge.

Remarque 10

Bien-sûr, si la série $\sum u_n$ est à termes positifs, $\sum |u_n| = \sum u_n$, donc la convergence absolue revient à la convergence "tout court"!

L'intérêt de cette notion de convergence absolue est le suivant :

★ Théorème 9 (Convergence absolue implique convergence)

Si une série $\sum u_n$ converge absolument, alors elle converge.

On a de plus : $\left|\sum_{n=n_0}^{+\infty} u_n\right| \leqslant \sum_{n=n_0}^{+\infty} |u_n|$ (Inégalité triangulaire pour une somme infinie)

Ce résultat, très fort, permet dans de nombreux cas de restreindre l'étude de la convergence des séries uniquement aux séries à termes positifs.

Pour étudier la nature d'une série $\sum u_n$ dont le terme général u_n n'est pas de signe constant, on commencera par s'intéresser à $\sum |u_n|$: si $\sum |u_n|$ est convergente, alors on peut affirmer que $\sum u_n$ l'est également!

Astuce: Pour tout $x \in \mathbb{R}$, on note:

$$x^{+} = \max(x, 0) = \begin{cases} x & \text{si } x \geqslant 0 \\ 0 & \text{si } x < 0 \end{cases}$$
 ("Partie positive de x")

$$x^- = \max(-x, 0) = \begin{cases} -x & \text{si } x \leq 0 \\ 0 & \text{si } x > 0 \end{cases}$$
 ("Partie négative de x")

On vérifie facilement les propriétés suivantes (distinguer les cas $x\geqslant 0$ et $x\leqslant 0$) :

•
$$x^+ \ge 0$$
 et $x^- \ge 0$ • $x = x^+ - x^-$ • $|x| = x^+ + x^-$

•
$$x = x^+ - x^-$$

•
$$|x| = x^+ + x^-$$

Supposons que la série $\sum u_n$ converge absolument, c'est à dire que la série $\sum |u_n|$ converge.

Pour tout $n \ge n_0$, on peut écrire $|u_n| = \underbrace{u_n^+}_{\ge 0} + \underbrace{u_n^-}_{\ge 0}$, donc en particulier $u_n^+ \le |u_n|$ et $u_n^- \le |u_n|$.

Puisque la série $\sum |u_n|$ est convergente, d'après le théorème de comparaison pour les séries à termes positifs (Théorème 6), on en déduit que les séries $\sum u_n^+$ et $\sum u_n^-$ sont convergentes!

Ensuite, en écrivant $u_n = u_n^+ - u_n^-$, on a pour tout $N \geqslant n_0$:

$$\sum_{n=n_0}^N u_n = \underbrace{\sum_{n=n_0}^N u_n^+}_{\text{converge}} - \underbrace{\sum_{n=n_0}^N u_n^-}_{\text{converge}} \xrightarrow[N \to +\infty]{} \underbrace{\sum_{n=n_0}^{+\infty} u_n^+}_{n=n_0} - \underbrace{\sum_$$

Pour finir, en passant à la limite dans l'inégalité triangulaire connue pour les sommes finies :

$$\forall N \geqslant n_0, \ \left| \sum_{n=n_0}^N u_n \right| \leqslant \sum_{n=n_0}^N |u_n|$$

on obtient bien $\left|\sum_{n=1}^{+\infty} u_n\right| \leqslant \sum_{n=1}^{+\infty} |u_n|$.

lack Attention !

La réciproque du Théorème 4 est fausse :

Une série qui ne converge pas absolument peut tout de même être convergente!

Exemple: $\sum \frac{(-1)^n}{n}$ ne converge pas absolument (puisque $\sum \frac{1}{n}$ diverge), mais est convergente. (cf. Feuille d'exercices).

Ainsi, si la série $\sum |u_n|$ diverge, on ne peut rien conclure sur la nature de la série $\sum u_n$...

Exercice 6

Déterminer la nature des séries $\sum \frac{(-1)^n}{n(n+1)}$ et $\sum \frac{\sin(n)}{n^3}$.

Les séries ne sont pas à termes positifs : on ne peut pas utiliser les théorèmes de comparaison!

• Étudions la série $\sum \left| \frac{(-1)^n}{n(n+1)} \right| = \sum \frac{1}{n(n+1)}$ qui est à termes positifs.

On a $\frac{1}{n(n+1)} \underset{n \to +\infty}{\sim} \frac{1}{n^2}$ et la série $\sum \frac{1}{n^2}$ converge, donc la série $\sum \frac{1}{n(n+1)}$ converge.

Ainsi la série $\sum \frac{(-1)^n}{n(n+1)}$ est absolument convergente, donc convergente.

• Étudions la série $\sum \left| \frac{\sin(n)}{n^3} \right| = \sum \frac{|\sin(n)|}{n^3}$ qui est <u>à termes positifs.</u>

On a $\frac{|\sin(n)|}{n^3} \leqslant \frac{1}{n^3}$ pour tout $n \geqslant 1$ et la série $\sum \frac{1}{n^3}$ converge, donc la série $\sum \frac{|\sin(n)|}{n^3}$ converge.

Ainsi la série $\sum \frac{\sin(n)}{n^3}$ CVA donc converge.

Remarque 11

On peut à présent justifier la convergence de la série exponentielle $\sum \frac{x^n}{n!}$ du Théorème 4 :

Pour tout $x \in \mathbb{R}$, on a : $\left| \frac{x^n}{n!} \right| = \frac{|x|^n}{n!} = o\left(\frac{1}{2^n}\right)$ (par exemple!)

$$\big(\operatorname{car}\lim_{n\to+\infty}\frac{2^n|x|^n}{n!}=\lim_{n\to+\infty}\frac{(2|x|)^n}{n!}=0\big)$$

Comme la série géométrique $\sum \frac{1}{2^n}$ est convergente, on en déduit que $\sum \left|\frac{x^n}{n!}\right|$ est convergente, donc que la série exponentielle $\sum \frac{x^n}{n!}$ est convergente.

Résumé des méthodes standards pour l'étude des séries

Ξ Méthode : Déterminer la nature d'une série $\sum u_n$

- $\boxed{1}$ Vérifier avant toute chose si $\lim_{n\to+\infty}u_n=0$ (au moins "à l'oeil")
 - Si jamais $\lim_{n\to+\infty}u_n\neq 0$, on sait tout de suite que la série diverge!
 - Si $\lim_{n\to+\infty}u_n=0$, cela ne signifie pas pour autant que la série converge : on poursuit la méthode.
- $\boxed{2}$ Si la série est à termes positifs $(u_n \ge 0$, éventuellement à partir d'un certain rang)

Comparer le terme général u_n à celui d'une série classique (souvent Riemann, parfois géométrique ou exponentielle) et utiliser un théorème de comparaison.

En pratique: Pour montrer que la série converge, on pourra souvent comparer à $\sum \frac{1}{n^2}$

en montrant : $u_n \leqslant \frac{\lambda}{n^2}$ ou $u_n \underset{n \to +\infty}{\sim} \frac{\lambda}{n^2}$ (pour un certain $\lambda > 0$) ou $u_n \underset{n \to +\infty}{=} o\left(\frac{1}{n^2}\right)$.

Si cela ne marche pas, tenter de montrer que $u_n = o\left(\frac{1}{n^{\alpha}}\right)$ pour un certain $1 < \alpha < 2...$ (Tester $\alpha = \frac{3}{2}$ par exemple)

- Si la série est à termes négatifs $(u_n \leq 0$, éventuellement à partir d'un certain rang) Se ramener à 2 en considérant la série $-\sum u_n = \sum (-u_n)$.
- $\boxed{4}$ Si le terme général u_n n'est pas de signe constant

Considérer la série à termes positifs $\sum |u_n|$ (méthode du $\boxed{2}$).

- Si $\sum |u_n|$ converge, alors $\sum u_n$ converge absolument, donc converge.
- Si $\sum |u_n|$ diverge, on ne peut rien dire de la nature de $\sum u_n...$ Se laisser guider par l'énoncé.

Ξ Méthode : Calculer la somme d'une série convergente

On souhaite montrer qu'une série $\sum u_n$ converge et calculer la somme $\sum_{n=n_0}^{+\infty} u_n$.

À N fixé, transformer la somme partielle $\sum_{n=n_0}^{N} u_n$ pour faire apparaître une série usuelle (géométrique, géométrique dérivée, exponentielle), puis passer à la limite quand $N \to +\infty$.

Attention!

Quelques erreurs de rédaction à éviter :

- Ne jamais dire " $\lim_{n\to+\infty}u_n=0$ donc la série $\sum u_n$ converge ": c'est archi-faux! (exemple : $u_n=\frac{1}{n}$)
- Pour les théorèmes de comparaison : effectuer les comparaisons sur les termes généraux u_n et v_n et non pas directement sur les séries $\sum u_n$ et $\sum v_n$.
- igwedge Ne pas écrire : " $\sum u_n \underset{n \to +\infty}{\sim} \sum v_n$ " ni même " $u_n \underset{n \to +\infty}{\sim} v_n$ donc $\sum u_n \underset{n \to +\infty}{\sim} \sum v_n$ "
- \checkmark Écrire : " $u_n \underset{n \to +\infty}{\sim} v_n$ donc les séries $\sum u_n$ et $\sum v_n$ sont de même nature. "
- $\pmb{\times}$ Ne pas écrire : " $\sum u_n \leqslant \sum v_n$ " ni même " $u_n \leqslant v_n$ donc $\sum u_n \leqslant \sum v_n$ "
- \checkmark Écrire (par exemple) : " $u_n \leqslant v_n$ et $\sum v_n$ converge, donc $\sum u_n$ converge également "

De même avec $u_n = o(v_n)...$

₹≣ Méthode : Exploiter une série télescopique

Une série $\sum (u_n - u_{n-1})$ (ou $\sum (u_{n+1} - u_n)$...) converge <u>si et seulement si</u> la suite $(u_n)_{n \geqslant n_0}$ converge.

En effet, par "télescopage", pour tout $N \geqslant n_0$, $\sum_{n=n_0}^N (u_n - u_{n-1}) = \underbrace{u_N - \underbrace{u_{n_0-1}}_{\text{constante}}}.$

Ainsi:

- Si une série $\sum v_n$ peut se mettre sous la forme $\sum (u_n u_{n-1})$ (ou bien $\sum (u_{n+1} u_n)$), on peut déduire sa nature et éventuellement la valeur de la somme $\sum_{n=n_0}^{+\infty} v_n$.
- Inversement, pour établir la convergence d'une suite (u_n) , il est parfois utile de s'intéresser à la série $\sum (u_{n+1} u_n)!$

Exercice 7

Calculer la valeur de $\sum_{n=1}^{+\infty} \frac{1}{n(n+1)}$.

Cette série est bien convergente : elle est à termes positifs, $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$

et la série de Riemann $\sum \frac{1}{n^2}$ converge. (pas utile en fait, car on va calculer la valeur de la somme!)

Pour la valeur de la somme, il faut remarquer que pour tout $n \ge 1$, $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$.

Ainsi:
$$\sum_{n=1}^{N} \frac{1}{n(n+1)} = \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{N+1} \xrightarrow[N \to +\infty]{} 1.$$

D'où :
$$\sum_{n=1}^{+\infty} \frac{1}{n(n+1)} = 1.$$

Exercice 8

Pour tout $N \ge 1$, on pose $S_N = \sum_{n=1}^N \frac{1}{n}$ (série harmonique).

On a déjà vu que : $S_N \underset{N \to +\infty}{\sim} \ln(N)$. Pour tout $n \ge 1$, on pose $u_n = S_n - \ln(n)$.

1. Montrer que $(u_n)_{n\geqslant 1}$ converge vers un certain $\gamma\in\mathbb{R}$.

Indication : étudier la série $\sum (u_n - u_{n-1})$.

On admettra (pour l'instant) le développement suivant : $\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$.

2. En déduire le développement asymptotique : $S_N = \gamma + \ln(N) + o(1)$.

Le réel $\gamma \simeq 0,577$ est appelé "constante gamma d'Euler".

1. Pour montrer la convergence de (u_n) , on s'intéresse plutôt à la série télescopique $\sum (u_n - u_{n-1})$: Pour tout $n \ge 2$:

$$u_n - u_{n-1} = S_n - \ln(n) - (S_{n-1} - \ln(n-1)) = (S_n - S_{n-1}) + (\ln(n-1) - \ln(n)) = \frac{1}{n} + \ln\left(\frac{n-1}{n}\right)$$

= $\frac{1}{n} + \ln\left(1 - \frac{1}{n}\right)$. (on cherche un équivalent simple de cette expression...)

Puisque
$$\ln(1+x) = x - \frac{x^2}{2} + o(x^2)$$
, on a $\ln\left(1 - \frac{1}{n}\right) = -\frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right)$.

On obtient donc :
$$(u_n - u_{n-1}) = \frac{1}{n} - \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) = -\frac{1}{2n^2} + o\left(\frac{1}{2n^2}\right) \underset{n \to +\infty}{\sim} -\frac{1}{2n^2}$$
.

Ainsi
$$(u_{n-1} - u_n) \underset{n \to +\infty}{\sim} \frac{1}{2n^2}$$
 (ce qui montre que $u_{n-1} - u_n > 0$ à partir d'un certain rang!)

On sait que la série $\sum \frac{1}{2n^2}$ converge, donc la série $\sum (u_{n-1} - u_n)$ converge également.

On en déduit finalement que la suite $(u_n)_{n\geqslant 1}$ converge!

$$\left(\text{ Car } \sum_{n=2}^{N} (u_{n-1} - u_n) = u_1 - u_N \text{ donc } u_N = u_1 - \sum_{n=2}^{N} (u_{n-1} - u_n) \xrightarrow[N \to +\infty]{} u_1 - \sum_{n=2}^{+\infty} (u_{n-1} - u_n). \right)$$

On note
$$\gamma = \lim_{n \to +\infty} u_n$$
.

2. On a
$$\lim_{n \to +\infty} (u_n - \gamma) = 0$$
 c'est à dire $u_n - \gamma = o(1)$.

Ainsi
$$u_n = \gamma + o(1)$$
, c'est à dire $S_n - \ln(n) = \gamma + o(1)$ et donc $S_n = \gamma + \ln(n) + o(1)$.

À savoir faire à l'issue de ce chapitre : —

Au minimum

- Maitriser et ne pas confondre les différentes notations liées aux séries (Série: $\sum u_n$, Somme partielle: $\sum_{n=n_0}^N u_n$, Somme (limite): $\sum_{n=n_0}^{+\infty} u_n$)

 • Savoir que $\sum u_n$ converge $\Longrightarrow \lim_{n \to +\infty} u_n = 0$.

 (et donc, en pratique: $\lim_{n \to +\infty} u_n \neq 0 \Longrightarrow \sum u_n$ diverge!)

 - Connaitre les résultats de convergence et les sommes des séries usuelles.
 - Comparer une série à termes positifs à une série usuelle pour déduire sa nature.
 - Calculer la somme de séries "proches" des séries usuelles.
 - Exploiter la notion de convergence absolue.

- Bien maîtriser la méthode standard pour la nature d'une série (page 16).
- $\bullet\,$ Définir et manipuler le reste R_N d'une série convergente.
- Exploiter le fait qu'une série à termes positifs converge SSI elle est majorée.
- Exploiter les séries télescopiques.

- Appliquer spontanément la méthode de comparaison série-intégrale.
- Maitriser les exercices classiques (notamment le "critère des séries alternées").

Pour les ambitieux