PORTFOLIO

SHASHAANK YOGESH

MS MECHANICAL ENGINEERING PURDUE UNIVERSITY

Email: shashaankyogesh@gmail.com

Ph: 765-775-9065

PERSONAL STATEMENT

I'M A MOTIVATED, PASSIONATE

MECHANICAL ENGINEER
LOOKING TO CREATE A
SUSTAINABLE FUTURE THROUGH
SMARTER, MORE EFFICIENT
DESIGNS

BACKGROUND

EDUCATION

Purdue University

Master of Science in Mechanical Engineering, GPA: 3.5/4

Specialization: Mechanical Design, CAE/ FEA

Courses:

- Multidisciplinary Design Optimization
- Computational Fracture Mechanics
- Modeling Damage in Materials
- Vibrations
- Fatigue

- Elasticity
- Finite ElementMethods
- Ergonomics
- Statistical Methods

Anna University | SSN College of Engineering

Bachelors of Engineering in Mechanical Engineering, GPA: 8.31/10

Leadership: Captain of Table Tennis Player, Sports Scholar

EXPERIENCE

Intern - CAE, Simulating & Testing

Tesla

Jan 2019 - Aug 2019

- NVH CAE

WABCO

Aug 2018 - Dec 2018

- Mechanical Design and analysis of steering gears

Graduate Researcher

Purdue University

Aug 2017 - Jul 2018

- Computational Modeling of Thermo-Mechanical Deformation

Mechanical Design Engineer

Purdue Hyperloop Sep 2017 - May 2018

- Chassis and Structures Design

EXPERIENCE

Intern - Summer Research

Indian Institute of Technology, Kanpur

Jun 2016 – Aug 2016

- Design of De-spinning mechanisms for projectiles

Intern – Mechanical Engineering

Precision Equipment Private Limited

Nov 2015 - Dec 2015

- Thermal Rating of Heat Exchangers

Intern – Mechanical Engineering

India Pistons Limited

May 2015 - Jun 2015

- Piston Quality and Assembly Line Design

Intern - Mechanical Engineering

Ashok Leyland Trucks

May 2015 – Jun 2015

- Mechanical Design of Fixtures, Engine Assembly

INDUSTRY PROJECTS

CAE INTERNSHIP AT TESLA

CAE MODEL BUILD

- Advanced Meshing and geometry repair
- Material models
- Connections (welds, bolts, adhesive, joints)
- Post processing

STRUCTURAL VIBRATION

- Modal Analysis
- Steady State Dynamics
- Random Vibration
- Linear, Static

FATIGUE • High Cycle Fatigue

CRASH

- Pulse test
- Side Pole impact

PURDUE

SUBWOOFER DESIGN

FULL-VEHICLE FINITE ELEMENT MODEL

INSTRUMENT PANEL- DESIGN OPTIMIZATION

FRONT DOOR PANEL - MODAL

CAE INTERNSHIP AT TESLA

SUBWOOFER DESIGN

Geometry constraints

- Connection Points to Body-in-White
- Internal Volume of box
- Die-draw direction
- Ribs Thickness and location
- Wall Thickness

Material constraints

- Elastic Modulus
- Cost per kg
- Thermal Stability

Design Target

 Isolate displacement of speaker from box

SIMULATION PROCESS

Other Analyses

- Pulse Analysis (explicit + damage)
- Drop Test (explicit)

INSTRUMENT PANEL- DESIGN OPTIMIZATION

1 Part (Plastic)

12 Parts (metal)

Constraints

- Rib Thickness and location
- Wall Thickness
- Die-draw direction feasibility

Targets

- Same static stiffness
- Same Point Mobility (NVH) target
- Instrument Panel Sag
- Steering Column Z mode

OTHER ANALYSIS

SEATS

CENTER CONSOLE

INSTRUMENT PANEL SAG

PRODUCT ENGINEERING INTERNSHIP AT WABCO

Piston

STEERING GEAR DESIGN

- Mechanical design of sector shaft and piston
 - Concept Designs
 - GD&T
 - Load Rating calculations
 - Gear fatigue life calculations
 - Tolerance and dimensioning
 - Design for manufacturing issues
 - FEM setup
 - Multi objective Design optimization

ACADEMIC PROJECTS

Microstructure based modeling of Machining of Copper¹

Dislocation- Density based Constitutive Model

Johnson – Cook Ductile Damage Model

¹Ding, Hongtao, Ninggang Shen, and Yung C. Shin. "Modeling of grain refinement in aluminum and copper subjected to cutting." *Computational Materials Science* 50.10 (2011): 3016-3025.

Microstructure based modeling of Machining of Copper¹

- Material Subroutine written in Fortran and linked with Abaqus
- Model to Predict Ultra-Fine Grain metals (10 nm scale)
- Dislocation Density Based Constitutive Model dictates the microstructure

¹Ding, Hongtao, Ninggang Shen, and Yung C. Shin. "Modeling of grain refinement in aluminum and copper subjected to cutting." *Computational Materials Science* 50.10 (2011): 3016-3025.

Elastic-Plastic Analysis of Compact Tension Specimen with crack growth and cohesive zone model

Figure 7: Deformed Mesh state showing eq. Plastic Strain values

- Mesh: Hybrid 8 noded plane strain reduced integration
- Boundary Condition: Displacement
- Concepts: J-Integral, Cohesive Zone Model

Virtual Crack Closure Technique (VCCT) used in Single Edge Notch Specimen Test

- Virtual Crack Closure Technique
- Singular Collapsed Elements

Figure 9: Opening stress distribution S22 for H/W=1

Figure 5: Displacement behind crack tip

Stress Intensity Factor Plot

Crack Growth in a Double cantilever Beam specimen using cohesive zone model

Crack Amplification and Shielding in Material interface

Determined crack amplification and shielding factors in a material interface

(discontinuous properties)

 σ_{mises} at load factor 0.6 No yielding in material 2

σ_{mises} at load factor 0.66 Yielding starts in material 2

Energy Release Rate vs. Initial Crack length

Simulation of 2D machining using Johnson-Cook Plasticity Model and Ductile Damage Model

Continuous chip formation

Discontinuous chip formation at High cutting Speed

Cutting Force Validation

Temperature below Machined surface

Serrated chip formation in high speed machining of Ti-6Al-4V

Cutting Force Validation

Plastic Strain Distribution across chip region

Figure 8: Evolution of shear band and the corresponding cutting force values for for feed: $120\mu m/rev$ and cutting speed: 170 m/min

UNIVERSITY®

Simulation of 3D Laser Assisted Machining

Geometry + Mesh

Validation of Results

Figure 6: Cutting Force Comparison for d.o.c = 0.75mm, f=0.075mm/rev and Cutting Speed 107m/min

Temperature across tool

e 4: Temperature distribution in Kelvin on tool rake face for cutting speed=107m/min and depth cut=0.76mm

Temperature across work

Modeling 3D Friction Stir Welding¹

Geometry + Mesh

Void Fraction of Material

- Coupled Eulerian Lagrangian Method
- Johnson Cook Plastic Model
- Boundary Condition: Tool RPM + Feed
- Currently Implementing ALE Technique to study microstructure refinement and recrystallisation

Structural Design of Hyperloop Pod

- Responsible for Chassis design, analysis, assembly design
- Simple ladder frame design to account for modifications during manufacturing

Stiffness Prediction of Uni-directional Composite using Mori- Tanaka Micromechanical Model

- Random Aspect Ratio of Fiber
- Based on Eshelby Problem

Rate Dependent Viscoplastic Model For Texture Evolution

- To obtain a texture plot when a material undergoes different deformation modes
- Can be readily implemented as a crystal plasticity model in FE Code

Plane Strain Compression

Uniaxial Compression

Uniaxial Tension

Simple Shear

Simulation of Metal Forming using Arbitrary Eulerian Lagrangian (ALE) Technique

NT11 1.278e+00 1.103e+00 1

Forward Extrusion

Temperature Plots

Forging

Wood Plastic Composite for 3D Printers

- Optimizing composition, process parameters
- Hands-on experience in using a twin screw injection molding machine
- Made the samples and conducted mechanical tests (tensile, density, hardness)
- Published a conference paper
- Made from waste sawdust!

QUESTIONS?

Email me at shashaankyogesh@gmail.com

