Staphylococcus *aureus* Biofilm Dispersion: Computationally Analyzing Interactions between Nattokinase Binding-Partners via Stacked Generalization

Raghav Sriram, Carmel High School, Carmel, IN USA

Background and Research Question

- **Staphylococcus** *aureus* is a gram-positive round-shaped bacterium that commonly forms on surgical devices and is the leading cause of soft tissue infection
- Nattokinase, an enzyme produced by nattokin, has been used as a treatment option for S. aureus biofilms. However, the mechanism remains largely unknown
- **Stacked Generalization** allows for the creation of higher-level models from low-level models
- By determining residues necessary for nattokinase binding we can determine surface protein structure of biofilms
- Through this we can determine the nattokinase-aided biofilm dispersion pathway

Figure 1 | Diagram describing the components and process involved in a Stacked Generalization ensemble algorithm

Data Analysis and Results

(i)	Accuracy	Precision
STKD-1	0.897	0.912
STKD-7	0.832	0.789
STKD-12	0.913	0.925
STKD-15	0.883	0.893
MSTR	0.932	0.915

Table 1 | Precession and accuracy of selected low-level (STKD) and higher level (MSTR) models

- Higher-level model aggregated via stack generalization had an accuracy of <u>0.932</u> and precession of <u>0.915</u>
- Lower-level Random Forest models proved to be more effective than lower-level SVM models
- 90% of nattokinase binding sites had N-sulfo groups and 80% had 6-O-desulfo groups present

Methodology

- 1.) **Data Concatenation** Combine publicly accessible data on binding interactions between known nattokinase binding partners from KLIFS, BioGRID, and RCSB datasets
- 2.) **Training -** Nattokinase binding interactions are fed as training data to lower-level Random Forest and SVM models
- 3.) **Generate Interactions -** Binding site interactions are modeled via AQ Laboratory RGN-Protein Modeling Software. Top ten most probable interactions from each lower-level modem move on to the meta-classifier to allow Stacked Generalization
- 4.) **Binding Parameters** After higher-level model achieved an accuracy greater than 90%, necessary residues and chemical groups for nattokinase binding sites were established via a linear regression Matplot
- 5.) **Surface Protein Modeling -** Potential non-experimentally determined binding partners with known protein structures found at the surface of biofilms following nattokinase binding parameters were generated through logistic regression

Interpretation and Conclusions

- Nattokinase is a **heparin-binding protein** with an affinity of ~217 nM
- NK binding percentages suggest nattokinase binding partners must have <u>N-sulfogroups</u> and <u>6-O-desulfogroups</u>, but not <u>2-O-desulfogroups</u>
- Hydrogen bonds formed between \underline{D}^{60} , \underline{S}^{33} \underline{S}^{62} , and \underline{T}^{220} to **stabilize binding site** and \underline{G}^{127} , \underline{L}^{126} , and \underline{S}^{125} served as **substrate binding sites**
- No cross referencing matches with known structures of biofilm surface proteins
- Surface Peptidoglycan-repeat unit could serve as a potential binding site
 - Contains S¹²⁵ residue and
 6-O-desulfo chemical group
 - 79.3% confidence in NK Binding
- Further experimental research required to determine relevance

Figure 2 | Chemical structure of S. *aureus* surface peptidoglycan-repeat unit. Potential initiator of the nattokinase biofilm dispersion cascade