Turdalin Nurassyl Saturday TASK 1

It is not always possible to achieve both BCNF and dependency preservation. Consider a schema: dept_advisor(s_ID, i_ID, department_name). With function dependencies: i_ID \rightarrow dept_name s_ID, dept_name \rightarrow i_ID. dept_advisor is not in BCNF. i_ID is not a superkey. Any decomposition of dept_advisor will not include all the attributes in s_ID, dept_name \rightarrow i_ID. Thus, the composition is NOT be dependency preserving.

(From lecture)

	<u>UnitlD</u>	TutorID	Topic		Room	Date	Date		StudentID	Grade	
	U1	Tut1	(ЭМТ	629	23.02.03	3	U1	St1	4.7	
	U2	U2 Tut3 Gin		631	18.11.02	2	U2	St2	5.1		
	U4	Tut5	AVQ		621	04.07.03	3	U1	St4	4.3	
	U5	Tut3	PhF		632	05.05.03	3	U5	St2	4.9	
								U4	St2	5.0	
	<u>TutorID</u>	TutEmai	TutEmail		<u>Topic</u>	Book					
	Tut1	tut1@fhbb.ch tut3@fhbb.ch tut5@fhbb.ch			GMT	Deumlich					
	Tut3				GIn	Zehnder	Zehnder				
	Tut5				PhF	Dummlers					
			AVQ	SwissTopo							

TASK 3 1NF

ProjectName	ProjectManager	Position	Budget	TeamSize
Project1	Manager1	сто	1 kk \$	15
Project2	Manager2	СТО2	1.5 kk \$	12

2NF - Budget directly depends on Project

<u>ProjectName</u>	<u>ProjectManager</u>	Position	TeamSize
Project1	Manager1	сто	15
Project2	Manager2	CTO2	12

<u>ProjectName</u>	Budget
Project1	1 kk \$
Project2	1.5 kk \$

TASK 4

Group	Faculty	Speciality	
g1	f1	s1	
g2	f2	s2	

3NF – Each speciality relates to faculties. Several specialities also can relate to one faculty. And the same with groups. Each group relates to some specialities. Also, several groups can relate to one speciality.

<u>Speciality</u>	Faculty	<u>Group</u>	Speciality	
s1	f1	g1	s1	
s2	f2	g2	s2	

TASK 5

ProjectID	Department	Curator	TeamSize	ProjectGroupsNumber
p1	d1	e1	100	5
p2	d2	e2	120	6

Curator and TeamSize relate to Project that has relation with Department. ProjectGroupsNumber relates to TeamSize. Using this information we can easily decompose table.

2NF:

						
ProjectID	Department	L	<u>ProjectID</u>	Curator	TeamSize	ProjectGroupsNumber
p1	d1		p1	e1	100	5
p2	d2		p2	e2	120	6

3NF:

				↓		
ProjectID	Department	<u>ProjectID</u>	Curator	Team Size	Team Size	ProjectGroupsNumber
p1	d1	p1	e1	100	100	5
p2	d2	p2	e2	120	120	6

There is no more desirable decompositions.

TASK 6

Let R be a relation scheme with a set F of functional dependencies. Decide whether a relation scheme R is in "good" form. In the case that a relation scheme R is not in "good" form, decompose it into a set of relation scheme $\{R1, R2, ..., Rn\}$ such that • Each relation scheme is in good form • The decomposition is a lossless decomposition • Preferably, the decomposition should be dependency preserving.

(Also from lecture)