

Specification

ANTI-COPYING METHOD AND APPARATUS**CROSS REFERENCE TO RELATED APPLICATIONS**

5 Reference is made and priority claimed to Tony Qu's U.S. Provisional Application 60/237,285 entitled ANTI-COPYING METHOD AND APPARATUS, filed November 30, 2001.

BACKGROUND OF THE INVENTION**1. Field of the Invention**

The present invention relates to video signal copy protection technology. In particular, the present invention teaches a method and apparatus for encoding a video signal such that a television receiver may still produce a normal viewing picture from the encoded signal, but any attempt to copy the video program onto video tape or other media is effected through degradation or prohibition.

2. Description of the Related Art

To protect valuable rights in video information, there exists a need for an improved method and apparatus for modifying a video signal so that a normal color picture may be produced by a television receiver receiving the modified video signal, but recording of the modified video signal is prevented. It is of further interest that the modified signal have a minimal impact on the quality of the picture being viewed by the television audience. This is increasingly important as large screen, high resolution monitors become widespread, and high picture quality essential. It is also important that copy protection be compatible with digital television processes and components, and that copying to other forms of digital storage media be prohibited, in addition to video tape.

Ryan's U.S. Patent Serial No. 4,631,603, hereinafter referred to as Macrovision copy protection, describes what will be appreciated to be the current state of the art in anti-copying technology. According to the Macrovision copy protection, a video signal to be protected is modified by inserting a plurality of pseudo-sync pulse and positive pulse pairs into a color video signal in the vertical blanking region. Many videotape recorders include an Automatic

Gain Control (AGC) circuit and these added pulse pairs cause the AGC circuit to erroneously sense video signal levels. The AGC circuit then produces a gain correction that results in an unacceptable videotape recording, thus providing the desired anti-copying protection.

The effect of the Macrovision copy protection is not completely benign. Rather, the
5 pseudo-sync and positive pulse have a negative impact on displayed video performance,
especially in high definition, high performance television systems. It is also well known that
the Macrovision copy protection can be defeated with simple analog circuits, and is generally
only effective in certain brands of video tape recorders whose automatic gain control circuits
(AGC) have been adjusted to respond to the Macrovision signals. Further, there is no
10 protection for Macrovision encoded media when users employ recording devices that are not
video tape recorders, such as digitally based storage media or encoders.

In a prior method of copy protection described by Ezaki et al. (U.S. Patent Serial No.
6,266,480), transmitted video signals are modified in a manner similar to that described by
Ryan above, except that parameters associated with the pseudo-sync pulse and positive pulse
pairs are altered based on information of the user's television receiver. It is expected that fine
tuning of the parameters associated with the injected pulses will minimize the impact on the
picture quality. This may work until the user buys another receiver, or buys multiple,
different branded receivers for use in the same household. This system also requires the user
to feedback current and accurate information regarding their television products. Such
feedback may be prone to errors.

What is needed is an improved method and apparatus for modifying a video signal so
that copying of the modified signal is prevented in a reliable and inexpensive manner, is not
easily defeated, yet allows a normal color picture to be produced by a television receiver
receiving the modified video signal with no impact on picture quality.

SUMMARY OF THE INVENTION

60658-300101

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a flow chart showing an anti-copy protection encoding method of the present invention;

5 FIG. 2 is a flow chart showing an anti-copy protection encoding method according to another aspect of the present invention;

FIG. 3 is a flow chart showing an anti-copy protection encoding method in accordance with another embodiment of the present invention;

10 FIG. 4 illustrates an encoding system in accordance with one embodiment of the present invention;

FIG. 5 illustrates another a preferred encoding system in accordance with another embodiment of the present invention;

15 FIG. 6 illustrates an anti-copy protection encoder in accordance with one embodiment of the present invention;

FIG. 7 shows a timing diagram of the NTSC vertical blanking interval of a video waveform;

FIG. 8 is a table of two byte character codes assigned by specification EIA-608;

FIG. 9 illustrates a method for decoding an analog video program according to one aspect of the present invention;

20 FIG. 10 is a component block diagram showing the decoding of copy protected video programs in accordance with one embodiment of the present invention;

FIG. 11 is a flow chart for encoding digital video data with anti-copy protection information in accordance with one embodiment of the present invention; and,

FIG. 12 a flow chart of a digital decoding method in accordance with another embodiment of the present invention;

25 FIG 13 is a block diagram of a hardware system for the decoding of digital video data in accordance with yet another embodiment of the present invention; and

FIG. 14 is a block diagram illustrating a variety of program sources which may be encoded with anti-copy protection codes of the present invention.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
229
230
231
232
233
234
235
236
237
238
239
239
240
241
242
243
244
245
246
247
248
249
249
250
251
252
253
254
255
256
257
258
259
259
260
261
262
263
264
265
266
267
268
269
269
270
271
272
273
274
275
276
277
278
279
279
280
281
282
283
284
285
286
287
288
289
289
290
291
292
293
294
295
296
297
298
299
299
300
301
302
303
304
305
306
307
308
309
309
310
311
312
313
314
315
316
317
318
319
319
320
321
322
323
324
325
326
327
328
329
329
330
331
332
333
334
335
336
337
338
339
339
340
341
342
343
344
345
346
347
348
349
349
350
351
352
353
354
355
356
357
358
359
359
360
361
362
363
364
365
366
367
368
369
369
370
371
372
373
374
375
376
377
378
379
379
380
381
382
383
384
385
386
387
388
389
389
390
391
392
393
394
395
396
397
398
399
399
400
401
402
403
404
405
406
407
408
409
409
410
411
412
413
414
415
416
417
418
419
419
420
421
422
423
424
425
426
427
428
429
429
430
431
432
433
434
435
436
437
438
439
439
440
441
442
443
444
445
446
447
448
449
449
450
451
452
453
454
455
456
457
458
459
459
460
461
462
463
464
465
466
467
468
469
469
470
471
472
473
474
475
476
477
478
479
479
480
481
482
483
484
485
486
487
488
489
489
490
491
492
493
494
495
496
497
498
499
499
500
501
502
503
504
505
506
507
508
509
509
510
511
512
513
514
515
516
517
518
519
519
520
521
522
523
524
525
526
527
528
529
529
530
531
532
533
534
535
536
537
538
539
539
540
541
542
543
544
545
546
547
548
549
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
569
570
571
572
573
574
575
576
577
578
579
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
898
899
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
988
989
989
990
991
992
993
994
995
996
997
998
998
999
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1098
1099
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1889
1890
1891
1892
1893
18

SUMMARY OF THE INVENTION

The present invention teaches a variety of methods, systems and articles of manufacture for providing anti-copy protection and control of an underlying anti-copy protection mechanism. The anti-copy protection mechanism is controlled through anti-copy protection codes inserted into a video program. In preferred embodiments, the anti-copy protection code is inserted into closed caption (CC) bandwidth. As used herein, the term CC bandwidth refers to the capacity for insertion of closed caption data within the video program.

10

The encoding methods of the present invention effectuate control of an underlying anti-copy protection mechanism by encoding a video program prior to use by an end user. The underlying anti-copy protection mechanism is implemented at a video program receiving device such as a STB or other such suitable device. The anti-copy protection codes may be inserted into a video program at any suitable stage during the provision of the video program to an end user such as during content authoring or video broadcast.

15
The anti-copy protection codes of the present invention are suitable for use with analog and digital video programs. The preferred embodiment of the present invention utilizes CC bandwidth, and there exist both analog and digital video formats which support CC data encoding. The present invention is not limited to formats supporting CC data encoding.

20

25
The present invention also teaches that the underlying anti-copy protection mechanism can be implemented in a variety of ways. The present invention contemplates anti-copy protection mechanisms having multiple levels of anti-copy protection. These multiple levels of anti-copy protection may include varying levels of degradation of subsequent copies as well as absolute prohibition of subsequent copying.

25

30
A first aspect of the present invention teaches a video encoding method for providing control of an anti-copy protection mechanism for a video program, the video encoding method encoding at least one anti-copy protection code within CC bandwidth of said video program. Another embodiment of the present invention teaches a computer readable medium encoded with at least one anti-copy protection code within closed captioning (CC) bandwidth of said video program. A still further embodiment teaches a video program encoded with at

least one anti-copy protection code within CC bandwidth of the video program. The present invention also teaches a data carrier wave having at least one anti-copy protection code encoded within a portion of the data carrier wave intended for use in providing closed caption (CC) data.

5 Related aspects of the present invention teach an underlying anti-copy protection mechanism responsive to a frequency of insertion of said anti-copy protection codes. The method operates such that certain portions of the video program or computer readable medium are encoded with anti-copy protection codes at a frequency of insertion such that the anti-copy protection mechanism is controlled as desired.

10 Other related embodiments teach that activation of the anti-copy protection mechanism is initiated when the frequency of insertion of the anti-copy protection codes is greater than or equal to an anti-copy protection initiation frequency. The anti-copy protection mechanism may be maintained in an on state when the frequency of insertion of the anti-copy protection codes is greater than or equal to an anti-copy protection maintenance frequency, the anti-copy protection maintenance frequency possibly being less than the anti-copy protection initiation frequency.

15 Another preferred embodiment of the present invention teaches an anti-copy protection video program encoding system operable to insert anti-copy protection codes within closed captioning bandwidth of a video program. A related embodiment teaches an
20 encoding system having a data merger device and a CC encoder. In preferred embodiments, the data merger device has a first CC data input, an anti-copy data input, and a CC data output. The data merger device is operable to merge data received at the anti-copy data input and the specific CC data output. The CC encoder has a second CC data input coupled to the data merger device CC data output, a video data input, and a video data output. The CC
25 encoder is operable to encode data received at the second CC data input within a CC bandwidth portion of a video program received at the video input. The present invention teaches anti-copy protection video program encoding systems operable for either analog or digital video.

30 The present invention still further contemplates an anti-copy protection decoding method which receives a video program, and analyzes a CC portion of the video program for anti-copy protection codes. The method teaches controlling the anti-copy protection

mechanism as indicated by the anti-copy protection codes. In a related aspect of the present invention, the anti-copy protection mechanism is activated at least when a frequency of anti-protection encoding within the video program is greater than or equal to a predefined activation frequency. According to this aspect, analyzing the anti-copy protection codes 5 within the CC portion of the video program includes determining the frequency of anti-protection encoding within the video program.

Yet another aspect of the present invention teaches a method for anti-copy protection in an video program including encoding a video program with a two byte character code in a vertical blanking interval of a video field such that the two byte character code may be 10 decoded in a video recording device in order to disable a recording process of the video program. The method also teaches disabling the recording process in response to a content of the two byte character code.

Another related aspect of the present invention teaches storing a reference two byte code in a video recording device, comparing the reference two byte character code with the two byte character code, and disabling the recording process based on a comparison of the two byte character code and the reference two byte character code. The present invention further teaches a method for recording a copy-protected video program with a video recording device including decoding a two byte character code in a vertical blanking interval of a video field, and enabling recording of the video program in response to the two byte 20 character code.

Still further, the present invention teaches a video transmission receiver for receiving copy protected video programs. The video transmission receiver of this aspect includes a decoding device for decoding copy protection codes incorporated in a video program, a memory operative for storing a reference code, a comparator for comparing the reference 25 code with the copy protection codes in order to produce an output responsive to the reference code and the copy protection codes; a control device operative to limit recording and playback of the video program in response to the output of the comparator, and a recording device for recording and playback of the video program.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

The present invention teaches methods and apparatus for providing anti-copy protection and control of an underlying anti-copy protection mechanism through anti-copy protection codes inserted into a video program. In preferred embodiments, the anti-copy protection code is inserted into closed caption (CC) bandwidth. As used herein, the term CC bandwidth refers to the capacity for insertion of closed caption data within the video program. In an analog video program, e.g., anti-copy protection codes can be inserted into line 21 of the Vertical Blanking Interval (VBI). Those skilled in the art will appreciate that often little of the CC bandwidth is used and is thus readily available for the encoding of the present invention.

The encoding methods of the present invention effectuate control of an underlying anti-copy protection mechanism by encoding a video program prior to use by an end user. The underlying anti-copy protection mechanism is implemented at a video program receiving device such as a STB or other such suitable device. Hence the anti-copy protection codes of the present invention may be encoded into a video program at any suitable stage during the process of providing the video program to an end user.

In preferred embodiments, the necessary anti-copy protection codes are inserted while authoring the video program and in conjunction with encoding of any desired CC data. Of course, during the full process of providing the video program to the end user there are many suitable opportunities for encoding anti-copy protection into the video program. For example, the anti-copy protection codes may be inserted subsequent to authoring and simultaneously with broadcast of the video program or even at the end user's receiving device (e.g., a set top box).

The anti-copy protection codes of the present invention are suitable for use with analog and digital video programs. The preferred embodiment of the present invention utilizes CC bandwidth, and there exist both analog and digital video formats which support CC data encoding. The present invention is not limited to formats supporting CC data encoding and methods and devices for implementing the present invention in formats which do not directly support CC data encoding are described below in more detail.

As will be described below in more detail, the underlying anti-copy protection mechanism can implement anti-copy protection in a variety of ways. The present invention 60658-300101

contemplates anti-copy protection mechanisms having multiple levels of anti-copy protection. These multiple levels of anti-copy protection may include varying levels of degradation of subsequent copies as well as absolute prohibition of subsequent copying.

In the following description, certain method aspects of the present invention are described with reference to flow chart figures. These method steps need not be performed in a sequential manner as might be implied by such flow chart figures. Rather, the methods of the present invention should be implemented in the appropriate manner determined by those skilled in the art depending upon the underlying hardware and the specific application.

FIG. 1 is a flow chart showing an anti-copy protection analog video encoding method

100 in accordance with a preferred embodiment of the present invention. The method 100 effectuates control of the underlying anti-copying mechanism by encoding at the time of video content authoring. The method 100 begins in a content authoring step 102 where an analog video program is initially authored or created. As will be appreciated, content authoring may be accomplished in a variety of ways. For example, content authoring can be done "off-line" in a recording studio, or may be the result of content creation during a live broadcast.

With further reference to FIG. 1, a step 104 generates any desired CC data intended for use with the analog video program. The CC data generation may occur simultaneous with content authoring, or may be performed subsequently. The CC data may be created in real time simultaneous with a live broadcast. The step 104 is an optional step, as there may be no need for CC data or perhaps CC data will be later inserted.

A step 106 of FIG. 1 determines or defines those portions of the analog video program requiring anti-copy protection. A step 108 generates the required anti-copy protection codes. The necessary codes depend upon the nature of the underlying anti-protection mechanism and 25 the CC standard adhered to. For example, in the EIA-608 standard (7 bit code, 1 parity), a special and unused 2-byte character such as (1F, 60) or (1F, 61) would be suitable for use as an anti-copy protection code.

A step 110 merges the CC data together with anti-copy protection codes to effectuate the required anti-copy protection. The step 110 can be accomplished in a variety of ways. In 30 preferred embodiments, the anti-copy protection codes and any CC data are encoded within mutually exclusive portions of the CC bandwidth such that the merger step 110 creates no
60658-300101

risk of loosing encoded data. When the anti-copy protection codes and the CC data are not encoded simultaneously, the analog video signal can be examined to insure that neither step results in the loss of data. Alternatively, the anti-copy protection codes can be inserted into a least used portion of the CC bandwidth such as CC3 or CC4, thereby minimizing any risk of
5 data loss. In any event, a step 110 encodes the analog video program with the merged CC data and anti-copy protection codes. Once the analog video program is encoded in the step 110, the analog video program is ready for distribution through any variety of mechanisms (e.g., broadcast, sale of video tapes, etc.)

FIG. 2 is a flow chart showing an anti-copy protection analog video encoding method
10 120 in accordance with another embodiment of the present invention. The method 120 is suitable for encoding analog video program with anti-copy protection codes subsequent to content authoring and CC data encoding. A step 122 receives an analog video program which may contain CC encoding. Accordingly, a step 124 examines the CC bandwidth of the analog video program to determine if and where CC information is encoded. A step 126 encodes the analog video program with anti-copy protection coding within unused CC bandwidth. As will be appreciated, the typical video program will have a sufficient surplus of CC bandwidth to enable such encoding. Steps 124 and 126 are typically performed in conjunction, e.g., together frame by frame. Of course the present invention does not preclude an a priori analysis of the video program should such an approach be desirable or necessary
15 for a given application.
20

FIG. 3 is a flow chart showing an anti-copy protection analog video encoding method
130 in accordance with a third embodiment of the present invention. The method 130 is suitable for encoding an analog video program with anti-copy protection codes subsequent to content authoring and CC data encoding. A step 122 receives an analog video program which may contain CC encoding. The method 130 avoids any complicated CC data analysis by an educated guess as to the whereabouts of available CC bandwidth. Thus a step 134 encodes the analog video program with anti-copy protection codes in a least used portion of the CC bandwidth. As will be appreciated, the typical video program has a sufficient surplus of CC bandwidth to enable such encoding without great risk of overwriting data. For example CC3 and CC4 are often unused in typical applications common at the time of filing
25 of the present invention.
30

Certain digital video standards (e.g., EIA-708) provide for CC capability. Those skilled in the art will readily understand how to modify the methods of FIGS. 1-3 so that they apply within a digital video context supporting CC capabilities. Alternatively, the anti-copy protection encoding methods described with reference to FIGS. 2-3 may be used in conjunction with a digital video broadcast system by encoding anti-copy protection data within the digital video program and implementing the encoding methods at any point in the process where the digital video is converted to an analog video program, e.g. at a user's STB. Underlying anti-copy protection mechanisms, and the implementation within a digital video broadcast system are described below in more detail.

A plethora of suitable schemes are contemplated for controlling the anti-copy protection mechanism. A preferred embodiment teaches the insertion of an anti-copy protection activation code at one or more predefined frequencies within the CC bandwidth. The term "frequency" as used herein is defined loosely as the rate at which anti-copy protection codes or information are encoded within the video program. As will be described further with reference to FIG. 9, this technique allows the video program receiving device (e.g., STB) to control the anti-copy protection mechanism based on a sensed frequency of the anti-copy protection codes within the received video program. In a first embodiment, the anti-copy protection mechanism is activated by an anti-copy protection code frequency equal to or greater than a predefined value. The inverse of this is also contemplated; that is, anti-copy protection may be activated when the anti-copy protection code frequency falls below a predefined value.

In certain embodiments, the frequency requirement for initiating anti-copy protection activation may differ from maintaining anti-copy protection activation. For example, an anti-copy protection maintenance frequency could be lower than an anti-copy protection initiation frequency.

It is further contemplated that the nature of the anti-copy protection may vary depending on the anti-copy protection code itself, or even upon the frequency of the anti-copy protection code. The anti-copy protection mechanism could be responsive to multiple anti-copy protection codes. By way of example, different anti-copy protection codes may correspond to different levels of degradation in a subsequent copy including and up to complete prohibition of copying, or even disabling any recording device. Likewise, the level

of anti-copy protection could correspond to a frequency or frequency range of the anti-copy protection encoding.

The present invention further contemplates an activate/deactivate anti-copy protection scheme. In the activate/deactivate anti-copy protection scheme, an activate anti-copy protection code can be inserted at least once but more likely multiple times into sequential line 21 VBIs of the analog video signal at a point where activation of the anti-copy protection mechanism is desired. Similarly, a deactivate anti-copy protection code is inserted at least once but more likely multiple times into sequential line 21 VBIs at a point where anti-copy protection is no longer desired in the analog video signal. A drawback to this embodiment arises in that the user video program access time is unpredictable. Hence if the user accesses the video program after the activate sequence or before the deactivate sequence, the anti-copy protection mechanism may fail to work properly. Multiple transmissions of the anti-copying sequence may be inserted into the video program to overcome this problem. Details of implementation will be readily apparent to those skilled in the art in light of the present teaching.

Further schemes for controlling the anti-copy protection mechanism are contemplated. For example, the insertion of one or multiple sequential anti-copy protection codes could correspond to a predefined time period of activation of the anti-copy protection code. Alternatively, the anti-copy protection mechanism could be deactivated by an end of program marker or other feature of the analog video program rendering the anti-copy protection mechanism simpler as no deactivate anti-copy protection code is necessary. In any event, the present invention is not limited by the nature of the underlying anti-copy protection mechanism, but rather provides a broad framework wherein those skilled in the art will find a powerful solution to a previously inadequately addressed problem.

As will be appreciated, the anti-copy protection encoding methods of the present invention can be implemented through a variety of devices. In one embodiment, a CC encoder may be designed with enhanced capability for encoding an analog video signal with the necessary anti-copy protection codes. Alternatively, an anti-copy protection encoder lacking closed caption encoding capabilities can be designed for the sole purpose of inserting only the anti-copy protection codes into the analog video program. This anti-copy protection encoder can be used in conjunction with a suitable closed caption encoder as described below with reference to FIG. 6, or be used alone where no closed captioning encoding capability is

desired or necessary. In another embodiment, a separate device provides the anti-copy protection codes into the input of a standard line closed caption encoder as described below with reference to FIG. 5.

FIG. 4 is a block diagram illustrates an anti-copy protection encoding system 200 of the present invention. The anti-copy protection encoding system 200 includes a closed caption data input 202, an analog video data input 204, an anti-copy protection data input 206, and an encoded analog video signal output 208. The anti-copy protection encoding system 200 is operable to receive the input data and generate at the encoded analog video signal output 208 an analog video signal encoded with the required closed caption and anti-copy protection codes. As will be appreciated, the anti-copy protection encoding system 200 can be implemented in a variety of ways. For example, the anti-copy protection encoding system 200 can be manufactured as an ASIC. In preferred embodiments such as that described below with reference to FIG. 5, the anti-copy protection encoding system 200 is built of distinct components and utilizes a standard CC encoder.

FIG. 5 illustrates a preferred embodiment 250 of the anti-copy protection encoder system 200 of FIG. 4. The anti-copy protection system 250 includes a data merger device 252 coupled to a standard closed caption encoder 254. The data merger device 260 includes a closed caption data input 256, an anti-copy protection data input 258, and a line 21 data output 260. The closed caption encoder 254 includes a closed caption data input 262, an analog video data input 264, and an analog video output 266.

With further reference to FIG. 5, the data merger device 252 merges the closed caption and anti-copy data and provides line 21 data at the line 21 data output 260 to the closed caption encoder 254. In turn, the closed caption encoder 254 inserts the line 21 data onto received analog video data and provides an analog video output with the desired closed caption and anti-copy protection coding in place. Note that "line 21" refers specifically to the NTSC standard, however other suitable standards such as PAL are contemplated by the present invention, and those skilled in the art will readily recognize how to implement the present invention in such standards.

FIG. 6 illustrates an anti-copy protection system encoder 218. The anti-copy protection 218 includes a standard closed caption encoder 222 driving an anti-copy protection encoder 220. The anti-copy protection encoder 220 has an analog video data input 224 and

an anti-copy data input 226. Upon receipt of both the video data (possibly) containing CC data and the anti-copy data, the anti-copy protection encoder 220 inserts the anti-copy protection codes into the video signal as required for the desired anti-copy protection mechanism, utilizing any suitable method. For example, either methods of FIGS 2-3 are 5 suitable for implementation within the anti-copy protection encoder 220 may utilize

10

As previously mentioned, in preferred embodiments of the present invention the anti-copy protection is encoded into line 21 of a VBI. Accordingly, a brief discussion of closed caption line 21 encoding is now described. FIG. 7 shows a timing diagram 28 of line 21, Field 1, of the vertical blanking interval of an NTSC video waveform. Line 21 of Field 1 of the NTSC VBI contains the closed caption information. In particular, the location of the closed caption character information is shown as CHARACTER 1 (Ref. 36) and CHARACTER 2 (Ref. 38). Each character is made up of 7 bits plus a parity bit. Any pair of 7 bit characters can be encoded in this location of a video field. A single character can also be identified by special codes that require all 16 bits of CHARACTER 1 and CHARACTER 2. Such codes will be referred to subsequently as two byte character codes.

15

20

25

With further reference to FIG. 7, a horizontal sync pulse 33 and color burst signal 31 are present in the 10.50 microsecond region 30, followed by seven cycles of a 503.5 kHz run in clock in the 12.91 microsecond region 32. Immediately following region 32 is a 4.15 microsecond region 39 for stabilization of the data collection clock. Start bit 35 follows region 39. CHARACTER 1 bits 36a-36h and CHARACTER 2 bits 38a-38h follow start bit 35 in timing region 34. The two eight bit words 36 and 38 are formatted per the USA Standard Code of Information Interchange (USASCII; 3.4-1967) with odd parity. Data clock rate is 503.5 kHz, and is 32 times the horizontal sweep frequency. Similar timing is evident for Field 2, although vertical blanking interval ends at line 283 instead of line 21, and similar character data may be present as outlined in Xtended Data Services (XDS) in EIA-766.

30

Further reference to character data or closed caption character data in the vertical blanking interval may apply to digital character data stored on line 21 or line 283, as can be appreciated by those skilled in the art. Although the discussion above specifically refers to the NTSC video standard, a similar comparison can be made to video signals conforming to the PAL standard. The specific line locations of the vertical blanking intervals differ for the two formats, however the general signal pattern is similar enough that one skilled in the art would be able to extract closed caption character information from either format. Therefore,

it is to be assumed that in subsequent discussion of closed caption character information present in the vertical blanking interval of a video program, either the NTSC or the PAL formats are applicable, in either or both of field 1 or field 2.

FIG. 8 shows a table of the currently assigned two byte character codes according to the EIA-608 standard. Only 16 characters are represented by the table in this figure. As a result, there are numerous other two byte character codes not assigned the EIA specification that can be used for other purposes. For example the unused code (1F,60) can be used to activate anti-copy protection and the unused code (1F,61) can be used to deactivate anti-copy protection.

FIG. 9 is a flow chart of a method 300 for decoding an analog video program to determine the frequency and nature of anti-copy protection codes for the control of an underlying anti-copy protection mechanism. In preferred embodiments, this method is implemented in hardware within a device such as a set top box. This method may also be performed when an analog video program is being converted into a digital video program in order to provide any desired anti-copy protection within the digital video.

The decoding method 300 begins when a step 302 receives an analog video program. A step 304 monitors the frequency of the anti-copy protection codes present in the analog video program. Determining the anti-copy protection code frequency is easily accomplished by decoding characters embedded in, e.g., line 21 of the VBI and tracking the frequency of matches between the decoded characters and predefined anti-copy protection codes. In preferred embodiments, the receiving device or STB will have CC capability, and parallel processing monitors for and provides any standard closed caption information present in the analog video signal. A step 306 determines the nature of the anti-copy protection encoding in order to control the anti-copy protection mechanism. As described in more detail above, the nature of the anti-copy protection mechanism can be controlled through different anti-copy protection codes and/or the frequency of the anti-copy protection codes embedded in the analog video program. The step 306 is optional as the nature of the anti-copy protection mechanism may be inherent in the anti-copy protection code frequency. A step 308 controls the anti-copy protection mechanism in response to the frequency and/or nature of the anti-copy protection codes.

FIG. 10 is a component block diagram showing one possible system 500 suitable for implementing a frequency based decoding method of FIG. 9 in accordance with a two byte character embodiment of the present invention. The system 500 includes a standard closed caption decoder 502, a digital comparator 508, a memory 514, and a system controller 516.

5 In operation, the analog video program 501 is fed to the standard closed caption decoder 502. The encoded bit patterns for CHARACTER 1 (Ref. 36) and CHARACTER 2 (Ref. 38) are determined by the decoder 502 and transmitted over 8 bit data busses 504 and 506 to the digital comparator 508. The digital comparator 508 receives a previously stored code from the memory 514 via data busses 512 and 510. These previously saved codes may
10 be provided to the user as part of new equipment when purchased, or periodically updated by the user or equipment manufacturer at some later date. Each time a two byte code is matched to a reference code, the comparator 508 transmits a signal (e.g., pulse) to the system controller 516. In turn, the system controller 516 monitors signals from the comparator 508, and controls the anti-copy protection mechanism as required.

15 The above description focused on an anti-copy protection mechanism working directly within an analog video platform. Those skilled in the art will readily understand how the above-described embodiments are applicable to a digital video supporting CC encoding. However, the teaching of the present invention is not limited to analog and digital video platforms supporting CC encoding. Accordingly, a method and system for incorporating
20 aspects of the present invention into digital video formats not supporting CC encoding will now be described below with reference to FIGS 11-13.

FIG. 11 is a flow chart of a method 600 for encoding a digital video program with anti-copy protection information. The method 600 teaches an anti-copy protection data field provided in a predefined location within the digital data. As will be appreciated, data may be
25 inserted into the anti-copy protection data field of the digital video program at any suitable stage during the process of providing the video program to an end user. For example, this may be done during a content authoring process, immediately prior to broadcast, even upon receipt of the digital video program at a STB, etc. While the method 600 is primarily contemplated in the context of a digital video platform that does not support CC encoding,
30 the method 600 certainly could be implemented within a digital video platform that does support CC encoding. This is simply an application detail which can be selected by the system designer.

The method 600 begins in a step 602 which receives the digital content that requires copy protection. The digital video program may be in any suitable format such as DVD. In a step 604, the digital video program is marked as anti-copy protected through the insertion of suitable codes within the anti-copy protection data field. As described above, the anti-copy 5 protection mechanism can support different levels of anti-copy protection as desired. In light of the above discussion, the details of implementation of an anti-copy protection mechanism will be readily apparent to those skilled in the art.

FIG. 12 shows a flow chart of a digital decoding method 650 suitable for enabling the anti-copy protection mechanism of the present invention in conjunction with digitally 10 formatted video content. It is contemplated that the method 650 will occur at a receiving device such as a STB, however this method can be applied at any suitable point in the process of providing video content to a user. For example, a video broadcast server may store a video program in digital format containing the anti-copy protection data field, and convert the video program to a digital format prior to broadcast utilizing the method 650.

In any event, a step 652 receives the digital content for determination of anti-copy 15 protection coding. A step 654 decodes the digital data into a format suitable for analysis. A step 655 analyzes the digital data to determine whether an alternative anti-copy protection mechanism is in place. For example, the digital video platform may have its own anti-copy protection mechanism, or may support the CC encoding anti-copy protection mechanism of 20 the present invention. When the digital video platform has an alternative anti-copy protection mechanism, the method 650 is complete.

With further reference to FIG. 12, when the digital video platform does not support a different anti-copy protection mechanism as determined in the step 655, a step 656 analyzes 25 the digital data to determine the existence and nature of anti-copy protection codes inserted into the anti-copy protection data field. When no anti-copy protection is required, flow control passes to a step 658 wherein an analog video output signal is provided from the digital data. When anti-copy protection is required, a step 660 generates the analog video output signal from the digital data. Then in a step 662, the anti-copy protection codes are 30 inserted into appropriate portions of the analog video program which is then provided as an analog video output with anti-copy protection inserted. The step 662 can be accomplished through methods such as those described above with reference to FIGS. 2-3.

FIG. 13 illustrates a hardware system 700 for the decoding of digital video data and the insertion of anti-copy protection codes in accordance with another embodiment of the preferred invention. The hardware system 700 includes a digital data source 702, an anti-copy protection digital detection circuit 704, and a digital to analog anti-copy protection encoding device 706. The encoding device 706 includes a digital decoder 708, a anti-copy protection encoder 710, a line 21 decoder 711, and a combiner circuit 712. The digital data source 702 provides digitally encoded video data to the encoding device 706 which in turn is fed to the digital decoder 708 for the generation of analog video signals. The detection circuit 704 monitors the digital data to determine whether anti-copy protection is indicated within the anti-copy protection field of the digital video data. In turn the detection circuit 704 is operable to control the anti-copy protection encoder 710 so that anti-copy protection codes are inserted in the required location of the analog video signal. The output of the line 21 encoder 706 and the digital decoder 708 are provided at inputs of the combiner circuit 712. The combiner circuit 712 generates the analog video output with the required anti-copy protection inserted.

Fig. 14 shows a large variety of program sources that can be encoded with the two byte character codes in accordance with the present invention. A user can receive a standard transmitted broadcast through his conventional antenna 800 connected to a standard TV 802. Item 802 can also be any tuner capable of receiving modulated radio frequency transmission (standard VHF or UHF television) broadcasts. If the program is encoded with closed captioning, then the closed captioning can also include a two byte character pre-assigned to enable or disable the subsequent copying of the broadcast program. In fact, it is not required that the program have closed captioning (although many do) to include such two byte characters, since they can be chosen as "non-printing" and will not be displayed on the user's TV. Analog video signals 804 derived from reception of the broadcast may be sent to the video inputs 838 of a recording device 852.

Video tape 812 may also be encoded with the two byte copy protect characters. Playback of video tapes in VCR 814 may produce a video output 816 containing closed captions visible on the user's TV including the invisible two byte characters, or just a video output with only non-visible two byte characters.

Satellite broadcasts received at antenna 818 are decoded in receiver 820 and produce an analog video signal 822. In a manner similar to that described above for TV broadcasts,

these programs may have closed caption information placed into the program prior to broadcast and reception by the end user. Cable broadcasts 824 are treated in a manner similar to satellite and TV broadcasts. A receiver 826 can be a set top box decoder (STB) needed to unscramble "premium" or pay for service channels, or a standard tuner as found in a TV 802 or VCR 814. In any case, broadcast 824 may be encoded with the two byte characters prior to transmission on the cable system. Following reception and decoding (if required), an analog video signal 828 is produced containing the program material.

Any number of the video program signals 804, 816, 822, or 828 shown in Figure 14 can be sent to a recording device 852 as a video input 838. A copy inhibit module 840 monitors the vertical blanking interval of input 838 and determines if the incoming program is encoded with the appropriate two byte character code. If a code is recognized, a signal 842 is sent to system controller 844. System controller can disable the recording of the program material by recording circuit 850 by opening switch 814, or by any other means known by those skilled in the art. It may also be desirable to enable a limited number of recordings from a source with repeat play capability, such as the VCR 814. In that case, the encoded program material would be decoded by module 840, and a different signal would be sent to the system controller 844. The system controller can be equipped with a memory device to allow storing of an index variable indicating the number of recordings completed, so that no more than the allowed number of recordings can be obtained, even if they are recorded at different times or following the recording of other programs.

As will be appreciated, the anti-copy protection of the present invention can be implemented in a variety of ways. For example, the anti-copy protection may be absolute; that is, when the anti-copy protection mechanism is active copying may be fully prohibited. Alternatively, the active anti-copy protection mechanism may simply cause any recording to be degraded through some mechanism readily understood in the prior art. In more complicated systems, different levels of activation may be provided to the system such that a certain code may correspond to absolute prohibition of copying, while other codes may result in predefined levels of degradation, or other anti-copying protection actions.