CS 4610/5335 – Lecture 8 Sampling-based Motion Planning (continued)

Lawson L.S. Wong Northeastern University 2/14/22

Material adapted from:

- 1. Robert Platt, CS 4610/5335
- 2. Marc Toussaint, U. Stuttgart Robotics Course
- 3. Frank Dellaert, Georgia Tech CS 6601
- 4. Emilio Frazzoli, MIT 16.410/16.413
- Sebastian Thrun, Wolfram Burgard, & Dieter Fox, Probabilistic Robotics

Announcements

Ex2 released, due 2/25

Make your project Piazza thread if you are in a team!

- Will have time to work on it later today as well

Upcoming: Localization and mapping

- Time to refresh probability knowledge
- Especially Gaussian distributions

Announcements

Ex2 released, due 2/25

Make your project Piazza thread if you are in a team!

- Will have time to work on it later today as well

Upcoming: Localization and mapping

- Time to refresh probability knowledge
- Especially Gaussian distributions

Some comments regarding Ex1

Outline

More on RRTs

Overview of localization

Project

Last week: Motion planning

Given: Description of the robot and obstacles

Find: Path from start to goal that is collision-free

Probabilistic Road Maps

Given the graph, use (e.g.) Dijkstra to find path from q_{start} to q_{goal} .

Probabilistic Road Maps – generation

```
number n of samples, number k number of nearest neighbors
Output: PRM G = (V, E)
 1: initialize V = \emptyset, E = \emptyset
 2: while |V| < n do
                                                             // find n collision free points q_i
 3: q \leftarrow \text{random sample from } Q
    if q \in Q_{\mathsf{free}} then V \leftarrow V \cup \{q\}
 5. end while
 6: for all q \in V do
                                                  // check if near points can be connected
        N_q \leftarrow k nearest neighbors of q in V
        for all q' \in N_q do
 8:
            if path(q, q') \in Q_{free} then E \leftarrow E \cup \{(q, q')\}
 9:
    end for
10:
11: end for
```

where path(q, q') is a local planner (easiest: straight line)

This produces a roadmap

Shortest paths between roadmap nodes can be found using Dijkstra's algorithm To answer a motion planning query, connect init and target to closest node

Recap: Rapidly exploring random tree (RRT)

Problems with PRM:

- Two steps: Graph construction, then graph search
- Hard to apply to problems where edges are directed (kinodynamic problems)

RRTs solve both problems:

- Create a tree instead of a graph:
 No graph search needed!
- Tree rooted at start or goal: Edges can be directed

Rapidly exploring random tree (RRT)

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.

Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size α

```
Input: q_{\text{start}}, number n of nodes, stepsize \alpha
             Output: tree T = (V, E)
                1: initialize V = \{q_{\mathsf{start}}\}, E = \emptyset
                2: for i = 0 : n do
                            q_{\mathsf{target}} \leftarrow \mathsf{random} \; \mathsf{sample} \; \mathsf{from} \; Q
                3:
                            q_{\mathsf{near}} \leftarrow \mathsf{nearest} \; \mathsf{neighbor} \; \mathsf{of} \; q_{\mathsf{target}} \; \mathsf{in} \; V
                4:
                           q_{\text{new}} \leftarrow q_{\text{near}} + \frac{\alpha}{|q_{\text{target}} - q_{\text{near}}|} (q_{\text{target}} - q_{\text{near}})
                            if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}
                7: end for
                                                                                               q_{\mathsf{new}}
and (q_{near}, q_{new})
                                                                                                                                                q_{\mathrm{target}}
collision free
```

Rapidly Exploring Random Trees

RRT growing directedly towards the goal

```
Input: q_{\text{start}}, q_{\text{goal}}, number n of nodes, stepsize \alpha, \beta

Output: tree T = (V, E)

1: initialize V = \{q_{\text{start}}\}, E = \emptyset

2: for i = 0 : n do

3: if \operatorname{rand}(0, 1) < \beta then q_{\text{target}} \leftarrow q_{\text{goal}}

4: else q_{\text{target}} \leftarrow \operatorname{random} \operatorname{sample} \operatorname{from} Q

5: q_{\text{near}} \leftarrow \operatorname{nearest} \operatorname{neighbor} \operatorname{of} q_{\text{target}} \operatorname{in} V

6: q_{\text{new}} \leftarrow q_{\text{near}} + \frac{\alpha}{|q_{\text{target}} - q_{\text{near}}|} (q_{\text{target}} - q_{\text{near}})

7: if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}

8: end for
```

```
and (q_{\text{near}}, q_{\text{new}}) collision free
```

Extracting the solution – it's a tree!

$$n = 2000$$

Each node in tree has pointer to parent

- Follow path from goal (leaf) back to start (root)

Other considerations in RRTs

- Reaching the goal
- Extracting the solution
- Kinodynamic planning
- Completeness
- Optimality
- Smoothing the path

Kinodynamic planning

So far, assumed the system has no dynamics

 System can instantaneously move in any direction in configuration space (holonomic)

Not necessarily true, e.g., Dubins car:

- C-space: x-y position + velocity, angle
- Control forward velocity and steering angle (if reverse allowed: Reeds-Shepp car)

 Plan a path through c-space with corresponding control signals

$$x_{t+1} = f(x_t, u_t)$$

u – control

Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size α

```
Input: q_{\text{start}}, number n of nodes, stepsize \alpha

Output: tree T = (V, E)

1: initialize V = \{q_{\text{start}}\}, E = \emptyset

2: for i = 0: n do

3: q_{\text{target}} \leftarrow \text{random sample from } Q

4: q_{\text{near}} \leftarrow \text{nearest neighbor of } q_{\text{target in } V}

5: q_{\text{new}} \leftarrow q_{\text{near}} + \frac{\alpha}{|q_{\text{target}} - q_{\text{near}}|} (q_{\text{target}} - q_{\text{near}})

6: if q_{\text{new}} \in Q_{\text{free}} then V \leftarrow V \cup \{q_{\text{new}}\}, E \leftarrow E \cup \{(q_{\text{near}}, q_{\text{new}})\}

7: end for
```

Replace highlighted line with a feasible trajectory:

Try a small set of feasible actions/controls starting at q_{near}

Add trajectory that results in configuration closest to q_{target}

Kinodynamic planning: Left-turn only Dubins car

Other considerations in RRTs

- Reaching the goal
- Extracting the solution
- Kinodynamic planning
- Completeness
- Optimality
- Smoothing the path

Probabilistic completeness

Theorem 16 (Probabilistic completeness of RRT (LaValle and Kuffner 2001)). Consider a robustly feasible path planning problem ($\mathcal{X}_{\text{free}}, x_{\text{init}}, \mathcal{X}_{\text{goal}}$). There exist constants a > 0 and $n_0 \in \mathbb{N}$, both dependent only on $\mathcal{X}_{\text{free}}$ and $\mathcal{X}_{\text{goal}}$, such that

$$\mathbb{P}\left(\left\{V_n^{\text{RRT}} \cap \mathcal{X}_{\text{goal}} \neq \emptyset\right\}\right) > 1 - e^{-an}, \quad \forall n > n_0.$$

Essentially the same as PRM

RRT does not find optimal paths

Theorem 33 (Non-optimality of RRT). *The RRT algorithm is not asymptotically optimal*.

Probabilistic Road Maps – generation

```
number n of samples, number k number of nearest neighbors
Output: PRM G = (V, E)
 1: initialize V = \emptyset, E = \emptyset
 2: while |V| < n do
                                                             // find n collision free points q_i
 3: q \leftarrow \text{random sample from } Q
    if q \in Q_{\mathsf{free}} then V \leftarrow V \cup \{q\}
 5. end while
 6: for all q \in V do
                                                 // check if near points can be connected
        N_q \leftarrow k nearest neighbors of q in V
        for all q' \in N_q do
 8:
            if path(q, q') \in Q_{free} then E \leftarrow E \cup \{(q, q')\}
 9:
    end for
10:
11: end for
```

where path(q, q') is a local planner (easiest: straight line)

```
Does this algorithm work?

Is it complete? – depends on n

Is it optimal? – depends on the graph, and the search algorithm
```

RRT with optimality

RRG and RRT*

```
Algorithm 5: RRG.
```

```
1 V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;
 2 for i = 1, ..., n do
            x_{\text{rand}} \leftarrow \text{SampleFree}_i;
 3
            x_{\text{nearest}} \leftarrow \text{Nearest}(G = (V, E), x_{\text{rand}});
 4
            x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x_{\text{rand}});
 5
             if ObtacleFree(x_{\text{nearest}}, x_{\text{new}}) then
 6
                   X_{\text{near}} \leftarrow \text{Near}(G =
 7
                    (V, E), x_{\text{new}}, \min\{\gamma_{\text{RRG}}(\log(\text{card}(V)))/
                    card (V)^{1/d}, \eta;
                    V \leftarrow V \cup \{x_{\text{new}}\};
 8
                    E \leftarrow E \cup \{(x_{\text{nearest}}, x_{\text{new}}), (x_{\text{new}}, x_{\text{nearest}})\};
                   foreach x_{\text{near}} \in X_{\text{near}} do
                           if CollisionFree(x_{\text{near}}, x_{\text{new}}) then
10
                           E \leftarrow E \cup \{(x_{\text{near}}, x_{\text{new}}), (x_{\text{new}}, x_{\text{near}})\}
```

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

11 **return** G = (V, E);

RRT with optimality

- RRT algorithm extends the nearest vertex towards the sample.
- RRG also extends all vertices returned by the Near procedure (if first was success).

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

RRG

RRG is probabilistically complete and asymptotically optimal.

Theorem 36 (Asymptotic optimality of RRG). If $\gamma_{PRM} > 2(1 + 1/d)^{1/d} \left(\frac{\mu(X_{free})}{\zeta_d}\right)^{1/d}$, then the RRG algorithm is asymptotically optimal.

RRG

RRG is probabilistically complete and asymptotically optimal.

Theorem 36 (Asymptotic optimality of RRG). If $\gamma_{PRM} > 2(1 + 1/d)^{1/d} \left(\frac{\mu(X_{free})}{\zeta_d}\right)^{1/d}$, then the RRG algorithm is asymptotically optimal.

Why may we prefer RRT to RRG?

Algorithm 6: RRT*. 1 $V \leftarrow \{x_{\text{init}}\}; E \leftarrow \emptyset;$ 2 for i = 1, ..., n do $x_{\text{rand}} \leftarrow \text{SampleFree}_i$; $x_{\text{nearest}} \leftarrow \text{Nearest}(G = (V, E), x_{\text{rand}});$ $x_{\text{new}} \leftarrow \text{Steer}(x_{\text{nearest}}, x_{\text{rand}})$; 5 if ObtacleFree($x_{\text{nearest}}, x_{\text{new}}$) then $X_{\text{near}} \leftarrow \text{Near}(G =$ (V, E), x_{new} , min $\{\gamma_{\text{RRT}^*}(\log(\text{card}(V)))/$ card $(V)^{1/d}, \eta\});$ $V \leftarrow V \cup \{x_{\text{new}}\};$ 8 $x_{\min} \leftarrow x_{\text{nearest}}; c_{\min} \leftarrow$ $Cost(x_{nearest}) + c(Line(x_{nearest}, x_{new}));$ foreach $x_{\text{near}} \in X_{\text{near}}$ do // Connect along a 10 minimum-cost path if 11 CollisionFree $(x_{\text{near}}, x_{\text{new}}) \land \text{Cost}(x_{\text{near}})$ $+ c(\text{Line}(x_{\text{near}}, x_{\text{new}})) < c_{\text{min}}$ then $x_{\min} \leftarrow x_{\text{near}}; c_{\min} \leftarrow$ 12 $Cost(x_{near}) + c(Line(x_{near}, x_{new}))$ $E \leftarrow E \cup \{(x_{\min}, x_{\text{new}})\};$ 13 // Rewire the tree foreach $x_{\text{near}} \in X_{\text{near}}$ do 14 15 CollisionFree $(x_{\text{new}}, x_{\text{near}}) \land \text{Cost}(x_{\text{new}})$ $+ c(\text{Line}(x_{\text{new}}, x_{\text{near}})) < \text{Cost}(x_{\text{near}})$ **then** $x_{parent} \leftarrow Parent(x_{near});$ $E \leftarrow (\bar{E} \setminus \{(x_{\text{parent}}, x_{\text{near}})\}) \cup \{(x_{\text{new}}, x_{\text{near}})\}$ 16 17 return G = (V, E);

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Do not just connect x_{new} to x_{near}

Attempt to connect to every vertex within a radius *r*

Get position and cost of min-cost vertex in X_{near}

RRT*

Other considerations in RRTs

- Reaching the goal
- Extracting the solution
- Kinodynamic planning
- Completeness
- Optimality
- Smoothing the path

Path smoothing (applies to all methods so far)

Paths produced by sampling-based motion planners are generally not smooth

RRT* and PRM* converge to (smooth) optimal paths in the limit, but generally not possible to run these algorithms long enough to converge

Path smoothing (applies to all methods so far)

Paths produced by sampling-based motion planners are generally not smooth

RRT* and PRM* converge to (smooth) optimal paths in the limit, but generally not possible to run these algorithms long enough to converge

Simple solution (not best but works): Consider removing unnecessary vertices

Smoothing the path

Smoothing the path

Summary: RRTs

- Pros (shared with PRMs):
 - Algorithmically very simple
 - Highly explorative
 - Allows probabilistic performance guarantees

- Pros (beyond PRMs):
 - Focus computation on single query $(q_{\text{start}}, q_{\text{goal}})$ problem
 - Trees from multiple queries can be merged to a roadmap
 - Can be extended to differential constraints (nonholonomic systems)

- To keep in mind (shared with PRMs):
 - The metric (for nearest neighbor selection) is sometimes critical
 - The local planner may be non-trivial

Feedback control, path finding, trajectory optim.

- Feedback Control: E.g., $q_{t+1} = q_t + J^{\sharp}(y^* \phi(q_t))$
- Trajectory Optimization: $\operatorname{argmin}_{q_{0:T}} f(q_{0:T})$
- Path Finding: Find some $q_{0:T}$ with only valid configurations

Outline

✓ More on RRTs

Overview of localization

Project

From
"Probabilistic Robotics"
(Ch. 7-8)
by
Sebastian Thrun,
Wolfram Burgard,
& Dieter Fox

Figure 7.4 Illustration of the Markov localization algorithm. Each picture depicts the position of the robot in the hallway and its current belief bel(x). (b) and (d) additionally depict the observation model $p(z_t \mid x_t)$, which describes the probability of observing a door at the different locations in the hallway.

From
"Probabilistic Robotics"
(Ch. 7-8)
by
Sebastian Thrun,
Wolfram Burgard,
& Dieter Fox

This is an important problem!

- Ch. 2-4 (half of Part 1) is about inference
- Ch. 7-8 (entire Part 2!) is about localization
- There are 4 parts,17 chapters in total

Figure 7.4 Illustration of the Markov localization algorithm. Each picture depicts the position of the robot in the hallway and its current belief bel(x). (b) and (d) additionally depict the observation model $p(z_t \mid x_t)$, which describes the probability of observing a door at the different locations in the hallway.

From
"Probabilistic Robotics"
(Ch. 7-8)
by
Sebastian Thrun,
Wolfram Burgard,
& Dieter Fox

Continuous case; Ideal outcome

We will study this extensively with the Kalman filter

Get familiar with
 Gaussian distributions!

Figure 7.4 Illustration of the Markov localization algorithm. Each picture depicts the position of the robot in the hallway and its current belief bel(x). (b) and (d) additionally depict the observation model $p(z_t \mid x_t)$, which describes the probability of observing a door at the different locations in the hallway.

From
"Probabilistic Robotics"
(Ch. 7-8)
by
Sebastian Thrun,
Wolfram Burgard,
& Dieter Fox

See appendix for discrete case (1-D)

Figure 8.1 Grid localization using a fine-grained metric decomposition. Each picture depicts the position of the robot in the hallway along with its belief $bel(x_t)$, represented by a histogram over a grid.

Feedback

Piazza thread: 2/14 Lec 08 Feedback

Please post your answers to the following anonymously.

- 1. What did you like so far?
- 2. What was unclear?
- 3. How many hours did you spend on Ex1?
- 4. What was your favorite question on Ex1?
- 5. What was your least favorite question on Ex1?
- 6. Any additional feedback / comments?

Project

If you are not already in a team:

- Join the circle in the front of the classroom

If you already have a team:

- Work on your project thread (see @35)
 - Too many TBDs! Choose another (temp) name
- Figure out what hardware you need (see @33)
 - Including sensors and other add-ons
- Some past project topics also posted on @33

Hardware:

If you are an arm-only team:

- See a list of arm options on @33, or propose one
- Make a case for what hardware you need, and why If you are a wheeled team:
- Duckiebot, Turtlebot3 (which one), or propose one If you are a wheeled+arm team:
 - Verify that the LoCoBot WX250 6-DOF is sufficient