

ANÁLISIS DE CORRESPONDENCIA

Dr. Misael Erikson Maguiña Palma

Análisis de Correspondencias Simples

- El ACS trata de analizar, describir y representar gráficamente la información contenida en una tabla de distribución conjunta de datos dispuestos en filas y columnas: sus correspondencias (asociaciones)
- Es una técnica destinada al análisis de la relación de dos variables cualitativas, tratadas como nominales
- En general se trata de una tabla de doble entrada de números positivos:
 - Tabla de contingencia (conocimiento de la lengua y edad)
 - Casos por variables (ubicación y ocupación por sectores)
 - Matriz de distancias (distancias entre objetos, "municipios")
 - Matrices de transición o tabla de movilidad (origen y destino)
- En ACS, en general, la mayor parte de la información de la tabla se suele expresar en términos de 2 factores
- En la representación gráfica cada categoría o valor de la variable se representa como un punto en el espacio: puntos-fila y puntos-columna Las proximidades geométricas entre puntos-fila y puntos-columna traducen las asociaciones estadísticas entre filas y columnas

Esquema del ACS. Transformación de la tabla de contingencia

- Objetivo del análisis: comparar las filas y las columnas para determinar las correspondencias que se dan entre la diferentes categorías o modalidades
- Procedimiento técnico:
- 1) Métrica para determinar la proximidad: medida de distancia χ²

$$d^{2}(i,i') = \sum_{j=1}^{J} \frac{1}{f_{+j}} \cdot \left(\frac{f_{ij}}{f_{i+}} - \frac{f_{i'j}}{f_{i'+}}\right)^{2}$$

- 2) La suma de la distancias de cada punto al centro de gravedad es la inercia. La inercia total es $I_a = \sum_{k=1}^{K} \lambda_k$
- La distancia χ² se transforma en euclidiana y se obtiene la Matriz de Inercia (o de Varianzas y Covarianzas)
- Como en ACP se procede a la Diagonalización:
 a la obtención de los vectores propios (factores)
 y valores propios (inercia explicada por los
 factores)

Análisis de Correspondencias Simples

- Resultados e interpretación
- <u>Vectores propios</u>: son los factores, se extraen un total de $\min\{I,J\}-1$
- Valores propios: expresan la inercia relativa (la varianza explicada) de cada eje
- Criterios del <u>número de factores a retener</u>
 - 1. Considerar el número de ejes que acumulan en torno al 70% de la inercia total
 - Representar gráficamente los factores y los valores: Gráfico de sedimentación "Scree test" (Catell, 1966)
 - Interpretabilidad y pertinencia conceptual de los ejes obtenidos
- La <u>contribución absoluta</u> de cada punto a la inercia explicada por el eje factorial
- La <u>contribución relativa</u>, la correlación entre puntos-fila y ejes factoriales, mide la contribución relativa del factor o eje en la posición de una modalidad, la calidad de su representación
- Valores test de significación
- Representación gráfica

$$CTA_{ik} = \frac{f_{i+} \cdot y_{ik}^2}{\lambda_k}$$

$$CTR_{ik} = \frac{y_{ik}^2}{d^2(i, G_j)} = \cos^2(i, k)$$

Análisis de Correspondencias Simples

- Resultados e interpretación
- Representación gráfica
 - Buscar las categorías con mayor contribución absoluta
 - De estos se distinguen entre los positivos y los negativos para definir las polaridades del eje
 - Se estudia la calidad de la representación de los puntos, las valores más altos de contribución relativa
 - Interrelacionan los ejes para dar cuenta de la estructura de relaciones teniendo en cuenta el orden jerárquico de cada eje
 - Una categoría que coincide con el perfil medio se ubicará en el centro del espacio cercano al origen ("tipo ideal promedio"). Si se aleja difiere de este promedio.
 - Si dos filas (o columnas) tienen perfiles similares se situarán próximos en el espacio.
 - Equivalencia distribucional: las distancias entre dos modalidades no se alteran si se juntan. Criterio de recodificación.
 - Modalidades suplementarias (ilustrativas)

Análisis de Correspondencias Múltiples

- El Análisis de Correspondencias Múltiples (ACM) es la aplicación de la ACS al estudio de tablas lógicas donde se considera un nº cualquiera de variables cualitativas
- Pero con procedimientos de cálculo y reglas de interpretación específicas
- Notación. Consideremos la matriz X:
 - \boldsymbol{n} individuos ($\boldsymbol{i=1...n}$)
 - p variables cualitativas (j=1...p)

Cada variable x_{+j} tiene c categorías (diferentes según la variable) que permiten descomponer la variable en tantas modalidades o categorías

Codificación disyuntiva completa:

Si un individuo *i* tiene en la variable *j* la categoría $c = c_{oi}$ entonces tendrá:

- El valor 1 para esta categoría, x_{ijk} , y
- **0** para el resto de las categorías de la variable, $x_{ijk} = 0$ si $c \neq c_o$ Se obtiene así la Matriz o Tabla Disyuntiva

n: individuos

p: variables cualitativas

	Sexo	Prov	salario					
1	M	Alajuela	Alto					
2	F	Heredia	Bajo					
3	F	San Jose	Muy Alto					
4	M	Cartago	Bajo					
÷	:	:	:					

Tino de

Tabla disyuntiva completa:

	M	F	SJ	A	C	Н	0 0 0 0	В	M	A	MA	•••
1	1	0	0	1	0	0	0	0	0	1	0	
2	0	1	0	0	0	1	0	1	0	0	0	
3	0	1	1	0	0	0	0	0	0	0	1	
4	1	0	0	0	1	0	0	1	0	0	0	
	l											

La tabla de datos:

Tabla de Burt

						Sexo			Edad				Ingresos			
ind	SEXO	EDAD	INGRESO			F	M	1	2	3	4	5	В	M	Α	
1	F	5	Medio	XO	F	6		1	2	1	1	1	1	4	1	
2	F	3	Alto	Sexo	М		4	1	0	1	1	1	2	0	2	
3	M	4	Bajo		1	1	1	2					1	0	1	
4	F	1	Bajo		2	2	0		2				0	2	0	
5	F	2	Medio Alto Medio Bajo Alto Medio	Edad	3	1	1			2			1	0	1	
6	M	5		$\mathbf{E}^{\mathbf{d}}$	4	1	1				2		1	1	0	
7	F	2			5	1	1				_	2	0	1	1	
8	M	3		S	В	1	2					_	3	÷	$\dot{\dashv}$	
9	M	1		Ingresos		4	0						3	1		
10	F	4		1gr	M	4								4	۱	
				Iı	Α	1	2								3	
						18	12									

ACM \iff Análisis de Correspondencias de una tabla disyuntiva completa

Estructura particular de la tabla

Propiedades particulares del análisis

 Matriz o Tabla Disyuntiva D (matriz lógica o binaria) asociada a la matriz de datos original:

original:
$$X = \begin{pmatrix} 1 & 1 & 2 \\ 2 & 2 & 1 \\ 1 & 3 & 2 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix} \qquad D = \begin{pmatrix} 10 & 100 & 01 \\ 01 & 010 & 10 \\ 10 & 001 & 01 \\ 01 & 100 & 01 \\ 10 & 010 & 10 \end{pmatrix} \qquad B = D'D = \begin{pmatrix} 3 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 2 & 1 & 1 & 0 & 2 & 1 \\ 1 & 1 & 2 & 0 & 0 & 0 & 2 \\ 1 & 1 & 0 & 2 & 0 & 2 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 1 & 2 & 0 & 2 & 0 & 2 & 0 \\ 1 & 1 & 2 & 0 & 1 & 0 & 3 \end{pmatrix}$$

- La Matriz o Tabla de Contingencia de Burt \mathbf{B} , B=D'D, es la que resulta de todas las posibles tablas de contingencia las \mathbf{p} variables.
- Propiedad que se cumple para la extensión del ACS en ACM:
 - es equivalente un ACS de la tabla de contingencia entre Y y X
 - que analizar la tabla disyuntiva D (de n filas e I+J columnas)
 - o analizar la tabla de Burt de **I+J** filas y **I+J** columnas
- A partir de la tabla de Burt, se obtienen los vectores y valores propios diagonalizando la matriz: $V = \frac{1}{L}D^{-1}B$

- Propiedades particulares y reglas de interpretación
- Cada categoría es el punto medio de los individuos que la componen, ponderado por el coeficiente;
- La proporción de inercia explicada por los ejes factoriales es débil (pesimista). Es necesaria una fórmula de cálculo de transformación y obtener así los valores propios corregidos:
 - a) Benzécri (1979) propuso la fórmula:
 - Calcular la inversa del número de variables: 1/p
 - 2) Seleccionar los valores propios superiores a: 1/p
 - 3) Calcular los valores propios corregidos con: $\lambda_j^C = \left(\frac{p}{p-1}\right)^2 \left(\lambda_j \frac{1}{p}\right)^2$
 - 4) Calcular de nuevo la proporción de varianza explicada
 - b) Greenacre (2008: 187-191, 198-201, 274) añade una propuesta de mejora a partir de eliminar la diagonal de la matriz de Burt, y recalculando la inercia total como:

$$I_T^C = \frac{p}{p-1} \times \left(I(B) - \frac{m-p}{p^2} \right)$$

- Propiedades particulares y reglas de interpretación
- La inercia explicada por una categoría es mayor cuanto menos frecuente. En este sentido considerar:
 - Como mínimo el error muestral. En general un mínimo del 5%
 - En SPAD, procedimiento CORMU, permite "ventilar" (de hecho "imputar" el valor medio) las categorías con una frecuencia inferior al 2% (ajustable)
 - En SPAD es posible la selección de modalidades en COREMA (ACM con selección de categorías), se eliminan pero se visualizan como ilustrativas
- La inercia explicada por una variable es mayor cuantas más categorías tenga
- El número de factores o ejes en ACM es: m-p
 m modalidades o categorías menos p variables
- La suma de los valores propios (la inercia total) es: $\sum_{j=1}^{p} \lambda_j = \frac{m-p}{p}$
- Categorías suplementarias o ilustrativas (papel de "VI", los factores "VD")
- Gráficos factoriales: categorías activas, ilustrativas e individuos

Análisis de Correspondencias Múltiples

ACM: INTERPRETACIÓN

- Proximidad entre individuos en términos de parecido:
 - ✓ Dos individuos se parecen si tienen casi las mismas modalidades:
- Proximidad entre modalidades de variables diferentes en términos de asociación:
 - ✓ Son cercanos puesto que globalmente están presentes en los mismos individuos
- Proximidad entre modalidades de una misma variable en términos de parecido:
 - ✓ Son excluyentes por construcción
 - ✓ Si son cercanas es porque los individuos que las poseen presentan casi el mismo comportamiento en las otras variables

- Análisis complementarios

• https://emilopezcano.github.io/seminario_urjc_2018/readme.html