Integrative Reduction, Confirmation, and the Syntax-Semantics Map

Kristina Liefke Sanders

Tilburg Center for Logic and Philosophy of Science

Formal Epistemology Workshop, USC, May 21, 2011

Reduction • • • •

Montague

Bayes

0000000

Integrative 00000000 Outlook

Motivation

Why Care about Reduction?

Reductive relations are ubiquitous in science:

- Thermodynamics (TD) → Statistical mechanics (SM)
- Chemistry → Atomic physics
- Psychology Neuroscience

Advantages of reductive relations:

- Simplicity
- Explanation
- Consistency
- Confirmation (Dijzadji-Bahmani et al., 2010b)

Outline

- Intertheoretic Reduction
- 2 Montague Grammar
 - Montague Grammar and Intertheoretic Reduction
 - Montagovian Rules and Probabilities
- Bayesian Networks
- 4 'Montague' Reduction
- **5** Integrative Reduction
- **6** Outlook

Reduction

Montagu

Bayes

tague' R Inte

Integrative R

Outlook 0000

Nagelian Reduction

The Nagelian Model of Reduction

(Nagel, 1961),

cf. (Dijzadji-Bahmani et al., 2010a)

Assume two theories:

T_P the reduced, or phenomenological, theory (TD)

T_F the reducing, or fundamental, theory (SM)

With each theory, we associate a set of propositions

$$\mathcal{T}_{P} = \{T_{P}^{1}, \dots, T_{P}^{n}\} \text{ resp. } \mathcal{T}_{F} = \{T_{F}^{1}, \dots, T_{F}^{n}\}$$

 T_P is reduced to T_F in three steps:

- lacktriangle Connect the vocabularies of T_F and T_P via bridge laws;
- 2 Substitute terms from T_F by their correspondents from T_P ;
- **3** Derive every proposition in T_P from a proposition in T_F .

Reduction

Montague

'Montague' R

Integrative R

Outlook

Reduction

Montague

Bayes

Integrative R

Outlook

Nagelian Reduction

The 'Fundamental'-'Phenomenological' Map

 $(T_{\rm F})$ The kinetic theory of gases:

Newton's equations of motion, the def.s of pressure and kinetic energy Bridge laws:

mean kinetic energy ~ temperature Auxiliary assumptions:

molecules interact only kinetically, the velocity distribution is isotropic

The thermal theory of the ideal gas: Boyle-Charles Law: pV = kT.

Assumption The connection by T_{E^-} and T_{P^-} terms is bijective.

Reduction

Montague

Integrative R

Outlook

Montague Grammar

The Syntax-Semantics Map

 \mathbb{G}_{S} . If $R \in \mathcal{E}_{V}$ and $j \in \mathcal{E}_{N}$, then $[jR'] \in \mathcal{E}_{S}$.

 \mathbb{S}_{S} . If $[\![R]\!] \in \mathcal{D}_{V}$ and $[\![j]\!] \in \mathcal{D}_{N}$, then $[\![R]\!] ([\![j]\!]) \in \mathcal{D}_{S}$.

Montague Gramma

'Montague' R

Montague's 'Two Theories' Theory

(Montague, 1970: 1973)

Categorial Grammar (CG) A triple $\langle CAT, \mathcal{E}, \mathbb{G} \rangle$, with $= \{N(OUN), V(ERB), S(ENTENCE), \dots \}$ categories $= \{\mathcal{E}_{N}, \mathcal{E}_{V}, \mathcal{E}_{S}, \dots\}$ expressions $= \{\mathbb{G}_s, \dots\}$ syntactic rules Syntax An algebra $\mathcal{A}_{CG} = \langle \mathcal{E}, \mathbb{G}_s, \dots \rangle$ over the set \mathcal{E} .

Model-Theoretic Semantics (MS) A pair $\langle \mathcal{D}, \mathbb{S} \rangle$, with $= \{\mathcal{D}_{N}, \mathcal{D}_{V}, \mathcal{D}_{S}, \dots\}$ objects $= \{S_N, S_V, S_S\}$ semantic rules Semantics An algebra $\mathcal{A}_{MS} = \langle \mathcal{D}, \mathbb{S}_{S}, \dots \rangle$ over the set \mathcal{D} .

Reduction Reduction Montague

Integrative R

Outlook

A New Type of Intertheoretic Relation?

- The syntax-semantics pair instantiates a specific type of reduction relation.
- Commonalities with Nagelian reduction:
 - The map h connects objects of the two theories.
 - The map h enables us to derive propositions of one theory from propositions of the other theory.
- Differences from Nagelian reduction:
 - The relation between CG and MS is a directed relation.
- We assume Syntax the reduced theory (T_P) Semantics the reducing theory (T_F)

Reduction

Reduction

Montague ○○●○○○ Bayes

'Montague' R

Integrative R

Outlook

A New Type of Intertheoretic Reduction?

Reduction

Montague ○○○○●○ Bayes

'Montague' R

Integrative R

Outlook

Probabilities

Hypothesis Formation

Rules in \mathbb{G} , \mathbb{S} are obtained by the scientific method:

- Isolate syntactic structures in a given text sample;
- Observe their common structural properties;
- Propose a hypothesis about their formation;
- Test the hypothesis by analyzing other samples.

An expression supports a hypothesis if

- The expression is intuitively well-formed.
- Its structure reflects the assumed formation process.

Caveats

Reduction

• Our model of the syntax-semantics relation represents only one particular type of relation:

- We distinguish 'Montague' Reduction (MR) from Integrative Reduction (IR).
- The syntax-semantics relation is a very weak relation:
 - Syntax is structurally richer than semantics.
 - Syntax and semantics have distinct domains of application.

Reduction

Montague ○○○○○● Bayes

'Montague'

Integrative R

Outlook

Probabilities

Montagovian Rules and Probabilities

- ullet Rules in \mathbb{G} , \mathbb{S} are subject to probability attributions.
- The probability of a rule is informed by frequentist data.
- The frequentist probability of a rule influences a linguist's psychological confidence in its descriptive adequacy.

Note

- Only syntactic rules are directly instantiated.
- Semantic rules derive their support from synactic rules via the assumption of the map *h*.

Caveat We are NOT interested in a probabilistic extension of Montague Grammar.

Reduction

Montague

Bayes

'Montague' R

Integrative R

Outlook

Reduction

Montague

Bayes

'Montague' R

Integrative R

Outlook

Bayesian Networks

We analyze the relation between confirmation and reduction via Bayesian networks:

Bayesian network A directed acyclical graph, where

Nodes propositional variables,
Arrows probabilistic dependence relations
between variables

Variables can take different values, assigned by P.

We use the following conventions:

```
Variables H, E;

Values H, \neg H := 'the proposition is true/false';

E, \neg E := 'the evidence obtains/

does not obtain'.
```

Montague

Bayes

'Montague' R ●00000000 Integrative R

4□ > 4回 > 4 = > 4 = > = 9 q @

Outlook

Reduction

OOO

Advantages

Confirmation and Reduction

Bayesian Networks: Illustration

We frame the confirmatory relation between H and E:

Figure: The dependence between E and H.

- The arrow denotes a direct influence of H on E.
- To turn the graph into a Bayesian network, we further need:
 - The marginal probability distribution for every 'root' variable;
 - The conditional prob'y distribution for every 'child' variable.

Reduction

Montague

Bayes

'Montague'

Integrative R

Outlook

Advantages

The Single-Proposition Case

Figure: Montagovian dependencies of S, G, E.

Figure: Pre-reductive dependencies of S, G, E.

The Pre- vs. Post-Reductive Situation (1)

$$\begin{aligned} \mathbf{P}_{1}(\mathsf{S}) &= \sigma \\ \mathbf{P}_{1}(\mathsf{G}) &= \gamma \\ \mathbf{P}_{1}(\mathsf{E}|\mathsf{G}) &= \pi \ , \quad \mathbf{P}_{1}(\mathsf{E}|\neg\mathsf{G}) = \rho \end{aligned}$$

$$S \longrightarrow G \longrightarrow E$$

$$\begin{aligned} \mathbf{P}_2(\mathsf{S}) &= \sigma \\ \mathbf{P}_2(\mathsf{G}|\mathsf{S}) &= 1 \ , \ \mathbf{P}_2(\mathsf{G}|\neg\mathsf{S}) = 0 \\ \mathbf{P}_2(\mathsf{E}|\mathsf{G}) &= \pi \ , \ \mathbf{P}_2(\mathsf{E}|\neg\mathsf{G}) = \rho \end{aligned}$$

- $\bullet \ \ \text{We assume} \ \textbf{P}_2(S) = \textbf{P}_1(S), \ \textbf{P}_2(G) = \textbf{P}_1(G), \ \textbf{P}_2(E|G) = \textbf{P}_1(E|G).$
- Then, iff $\sigma \in (0,1)$ and $\pi > \rho$, the following holds:
 - $P_2(S,G) > P_1(S,G)$
 - $P_2(S,G|E) > P_1(S,G|E)$
 - $d_2 > d_1$

Reduction 000

Montague 0000000 Bayes oo 'Montague' R 0000●0000 Integrative R

Outlook

Advantages

The Problem

Triples $\langle S_k, G_k, E_k \rangle$ (with $k \in \{S, V, N\}$) remain probabilistically independent.

• The probability of the truth of propositions in S, G corresponds to the product of their individual probabilities:

$$\mathbf{P}_{2}(\bigcap_{k} \langle S_{k}, G_{k} \rangle) = \mathbf{P}_{2}(S_{s}, G_{s}) \mathbf{P}_{2}(S_{v}, G_{v}) \mathbf{P}_{2}(S_{s}, G_{s})$$

$$= \mathbf{P}_{2}(S_{s}) \mathbf{P}_{2}(S_{v}) \mathbf{P}_{2}(S_{s})$$

 Their joint probability converges to zero as their number increases.

The improvement of our model requires insight into the mutual dependencies between same-theory propositions.

The Pre- vs. Post-Reductive Situation (1)

Bayes

- We assume $P_2(S) = P_1(S)$, $P_2(G) = P_1(G)$, $P_2(E|G) = P_1(E|G)$.
- Then, iff $\sigma \in (0,1)$ and $\pi > \rho$, the following holds:
 - $P_2(S,G) > P_1(S,G)$
 - $P_2(S,G|E) > P_1(S,G|E)$
 - $d_2 > d_1$

'Montague' Reduction increases the probabilities and effects a flow of confirmation between syntactic and semantic propositions.

Reduction

Montague 000000 Bayes

'Montague' ○○○○●○○ Integrative R

Outlook

Advantages

Montague's Solution (1)

Stipulate a level of types:

Reduction

OOO

Advantages

Montague 0000000 ayes

'Montague' R ○○○○○●○○○ Integrative R

Outlook

Reduction

Montague 0000000 Bayes

'Montague' R

Integrative R

Outlook

Montague's Solution (1)

Stipulate a level of types:

Reduction

Montague 0000000

00

'Montague' R ○○○○○○●○ Integrative R

Outlook

Advantages

Case 1: Separate Types

Assume types e, t, p, where

e := the type of objects in $\mathcal{D}_{\scriptscriptstyle N}$, associated with nouns;

t := the type of objects in \mathcal{D}_{S} , associated with sentences;

p := the type of objects in \mathcal{D}_{V} , associated with verbs.

Advantages
Types

- Types are Montague's counterparts of bridge laws:
 - Types connect elements from the two theories.
- Types introduce a new (onto-)logical level.
- We call this new relation Integrative Reduction.
- Different ways of implementing types:
 - **1** Assume a separate type for each category, |TY| = |CAT|.
 - $\textbf{2} \ \, \text{Assume fewer types than categories,} \qquad |\text{TY}| < |\text{CAT}|.$
 - Assume |TY| > 1.
 - Assume |TY| = 1.

Reduction 000

Montague 0000000 Bayes

'Montague' R 0000000●0 Integrative R

Outlook

Advantages

Case 1: Separate Types

Reduction Advantages Montague

'Montague' R 00000000

Integrative R

Outlook

Reduction

Improvements

The Three-Typed vs. Untyped Situation (1)

$$S_{\rm s}$$
 $G_{\rm s}$ $E_{\rm s}$

$$P_3(T_t) = \tau$$

$$\mathbf{P}_{3}(S_{t}|T_{t}) = 1$$
 , $\mathbf{P}_{3}(S_{t}|\neg T_{t}) = 0$
 $\mathbf{P}_{3}(G_{t}|T_{t}) = 1$, $\mathbf{P}_{3}(G_{t}|\neg T_{t}) = 0$

$$\mathbf{P}_3(\mathsf{G}_t|\mathsf{T}_t) = 1$$
 , $\mathbf{P}_3(\mathsf{G}_t|\mathsf{T}_t) = 0$
 $\mathbf{P}_3(\mathsf{G}_t|\mathsf{G}_t) = \pi$, $\mathbf{P}_3(\mathsf{E}_t|\mathsf{G}_t) = \rho$

$$P_2(S_s) = \sigma$$

$$P_2(G_s|S_s) = 1, P_2(G_s|\neg S_s) = 0$$

 $P_2(E_s|G_s) = \pi, P_2(E_s|\neg G_s) = \rho$

• If
$$\mathbf{P}_3(\mathsf{T}_t) = \mathbf{P}_2(\mathsf{S}_\mathrm{s})$$
, $\mathbf{P}_3(\mathsf{E}_t|\mathsf{G}_t) = \mathbf{P}_2(\mathsf{E}_\mathrm{s}|\mathsf{G}_\mathrm{s})$, etc., then

•
$$P_3(T_t, S_t, G_t) = P_2(S_s, G_s)$$

•
$$P_3(T_t, S_t, G_t|E_t) = P_2(S_s, G_s|E_s)$$

•
$$d_3 = d_2$$

Reduction

Montague

Bayes

'Montague' R

Integrative R

Outlook

Improvements

Case 2: Two Types

- Assume basic types $e, t \pmod{p}$, where
 - e := the type of objects in \mathcal{D}_{N} , associated with nouns;
 - t := the type of objects in \mathcal{D}_{S} , associated with sentences;
- Type-p objects are represented by functions $\mathcal{D}_N \to \{\mathsf{T},\mathsf{F}\}.$
 - Let w be inhabited by $\mathring{\chi}$, \mathring{A} , and \mathring{m}
 - $\llbracket \text{is a dog} \rrbracket := \{x \in \mathcal{D}_{\mathbb{N}} \mid \llbracket \text{is a dog} \rrbracket(x) = \mathbf{T} \} = \{ \bigstar \}.$

Montague's Solution (2)

Assume fewer types than categories, |TY| < |CAT|:

- Some expressions/objects are associated with basic types: others with constructions out of basic types (derived types).
- Derived types establish connections between same-theory propositions.
- Dependencies between same-theory propositions characterize Integrative Reduction.

◆ロト ◆園 ト ◆ 重 ト ◆ 重 ・ 釣 Q (*)

Reduction

Montague

Bayes

Integrative R

Outlook

Improvements

Case 2: Two Types

$$\begin{split} \mathbf{P}_{4}(\mathsf{T}_{t}) &= \tau \quad , \quad \mathbf{P}_{4}(\mathsf{T}_{e}) = \tau' \\ \mathbf{P}_{4}(\mathsf{S}_{t}|\mathsf{T}_{t}) &= 1 \quad , \quad \mathbf{P}_{4}(\mathsf{S}_{t}|\neg\mathsf{T}_{t}) = 0 \\ \mathbf{P}_{4}(\mathsf{S}_{e}|\mathsf{T}_{e}) &= 1 \quad , \quad \mathbf{P}_{4}(\mathsf{S}_{e}|\neg\mathsf{T}_{e}) = 0 \\ \mathbf{P}_{4}(\mathsf{S}_{p}|\mathsf{T}_{e},\mathsf{T}_{t}) &= 1 \quad , \quad \mathbf{P}_{4}(\mathsf{S}_{p}|\neg\mathsf{T}_{e},\mathsf{T}_{t}) = 0 \\ \mathbf{P}_{4}(\mathsf{S}_{p}|\mathsf{T}_{e},\neg\mathsf{T}_{t}) &= 0 \quad , \quad \mathbf{P}_{4}(\mathsf{S}_{p}|\neg\mathsf{T}_{e},\neg\mathsf{T}_{t}) = 0 \\ & \vdots \qquad \qquad \vdots \\ \mathbf{P}_{4}(\mathsf{E}_{t}|\mathsf{G}_{t}) &= \pi \quad , \quad \mathbf{P}_{4}(\mathsf{E}_{t}|\neg\mathsf{G}_{t}) = \rho \\ \mathbf{P}_{4}(\mathsf{E}_{e}|\mathsf{G}_{e}) &= \pi' \quad , \quad \mathbf{P}_{4}(\mathsf{E}_{e}|\neg\mathsf{G}_{e}) = \rho' \end{split}$$

 $P_4(E_n|G_n) = \pi''$, $P_4(E_n|\neg G_n) = \rho''$

The Two- vs. Three-Typed Situation (1)

To compare both situations, we must first obtain

- the probabilities $P_3(\bigcap_i \langle T_j, S_j, G_j \rangle)$, $P_3(\bigcap_i \langle T_j, S_j, G_j | E_j \rangle)$;
- the degree of confirmation

$$d_5 := \mathbf{P}_3(\bigcap_i \langle \mathsf{T}_i, \mathsf{S}_i, \mathsf{G}_i | \mathsf{E}_i \rangle) - \mathbf{P}_3(\bigcap_i \langle \mathsf{T}_i, \mathsf{S}_i, \mathsf{G}_i \rangle).$$

Reduction

Montague 0000000 Bayes

'Montague' R

Integrative R

Outlook

Improvements

The Two- vs. Three-Typed Situation (2)

- We assume $P_4(T_i) = P_3(T_i)$ and $P_4(E_i|G_i) = P_3(E_i|G_i)$.
- If $\mathbf{P}_i(\mathsf{T}_t) \cdot \mathbf{P}_i(\mathsf{T}_e) \cdot \mathbf{P}_i(\mathsf{T}_p) \in (0,1)$, $\mathbf{P}_i(\mathsf{E}_p|\mathsf{G}_p) > \mathbf{P}_i(\mathsf{E}_p|\neg\mathsf{G}_p)$, then
 - $\mathbf{P}_4(\mathsf{T}_t,\mathsf{T}_e,\mathsf{S}_t,\mathsf{S}_e,\mathsf{S}_p,\mathsf{G}_t,\mathsf{G}_e,\mathsf{G}_p) > \mathbf{P}_3(\bigcap_i \langle \mathsf{T}_j,\mathsf{S}_j,\mathsf{G}_j \rangle)$
 - $P_4^* > P_3^*$
 - $d_4 > d_3$ iff $(\mathbf{P}_4^* \mathbf{P}_3^*) > \mathbf{P}_i(\mathsf{T}_t) \cdot \mathbf{P}_i(\mathsf{T}_e) \cdot \mathbf{P}_i(\mathsf{T}_p)$.

Improvements

The Two- vs. Three-Typed Situation (1)

Bayes

Reduction 000 Montagu 000000 Bayes

'Montague' R

Integrative R

Outlook

Improvements

Integrative Reduction

Integrative Reduction (IR) A type of intertheoretic relation s.t.

- There exist structural connections between same-theory objects and propositions.
- The prob'y of the conjunction of propositions after the establishment of IR relations is higher than after the establishment of MR relations.

Conjecture

The propositions' probability and degree of confirmation is inversely proportional to their number of basic types.

Reduction

OOO

Improvements

Montague

Bayes

'Montague' R

Integrative R

Outlook

Case 3: One Type

• We cannot construct non-t rules.

• The assumption of a single type is probabilistically disadvantageous:

$${f P}_1^{(*)} < {f P}_5^{(*)} < {f P}_3^{(*)}$$

- \bullet S_{N}, S_{V} are not supported by evidence.
- The assumption is confirmationally disadvantageous: $d_1 < d_6 < d_5$
- The introduction of maps $S_k \to G_k$ raises the theories' probabilities and confirmation:

$${f P}_1^{(*)} < {f P}_5^{(*)} = {f P}_3^{(*)} \ d_1 < d_6 = d_5$$

Reduction

Montague 0000000 Bayes

'Montague' R

Integrative R

Outlook •000

Note

1 The one-type case is optimal if the basic type is higher-order:

$$q := ((e \rightarrow t) \rightarrow t)$$

- The success of Integrative Reduction is not conditional on the use of types.
- The IR model can be adapted to accommodate 'corrected' versions of propositions (Schaffner, 1974), cf. (Nagel, 1977).

Improvements

Reduction

Case 3: One Type

Let TY_m and TY_n be different basic-type sets such that $TY_m \subseteq TY_n$.

Theorem

If TY_m enables the construction of all linguistically relevant types, then

- $\bigcap_m \langle S_m, G_m \rangle$ has a higher prior probability than $\bigcap_n \langle S_n, G_n \rangle$.
- $\bigcap_m \langle S_m, G_m \rangle$ has a higher posterior probability than $\bigcap_n \langle S_n, G_n \rangle$.
- $\bigcap_m \langle S_m, G_m \rangle$ may be better confirmed than $\bigcap_n \langle S_n, G_n \rangle$ under the difference measure.

Reduction

Montague

Bayes

00000000

Integrative R

Outlook

Wrap-Up

- We have identified a new type of intertheoretic relation, IR, inspired by (Montague, 1973).
- We have compared IR to Nagelian reduction.
- We have analyzed IR in the framework of confirmation theory.
- We have shown that IR is advantageous over NR:
 - It raises the propositions' prior and posterior probability.
 - ② It sometimes raises the propositions' degree of confirmation.
- This is due to constructivity relations bw same-theory objects, and dependency relations bw same-theory propositions.

