Katholieke Universiteit Leuven Departement Wiskunde Nicolas Daans 08.11.2024

Extra oefeningen: Kwantoreneliminatie

We zagen in de les dat ACF, de theorie van algebraïsch gesloten velden, in de signatuur $\mathcal{L}_{ring} = \{+, -, \cdot, 0, 1\}$, kwantoreneliminatie toelaat.

Oefening 1. Zij K een veld. Een veelterm $f \in K[X_1, \ldots, X_n]$ heet *irreducibel* indien ze niet geschreven kan worden als een product f = gh met $g, h \in K[X_1, \ldots, X_n]$ niet-constant. We noemen f absolutt irreducibel indien ze irreducibel is wanneer we ze beschouwen over een algebraïsche sluiting \overline{K} van K.

Beschouw nu, zoals in het bewijs van Theorem 3.6.3, een algemene veelterm $P_{n,d}(\overline{Z}, X_1, \ldots, X_n)$ van graad d in n veranderlijken. Toon het volgende aan:

- (a) Er bestaat een $\mathcal{L}_{\text{ring}}$ -formule $\varphi(\overline{z})$ zodanig dat voor elk veld K en elk tupel \overline{a} in K geldt: $K \models \varphi[\overline{a}]$ als en slechts als $P_{n,d}(\overline{a}, X_1, \dots, X_n)$ irreducibel is.
- (b) Er bestaat een \mathcal{L}_{ring} -formule $\psi(\overline{z})$ zodanig dat voor elk veld K en elk tupel \overline{a} in K geldt: $K \models \psi[\overline{a}]$ als en slechts als $P_{n,d}(\overline{a}, X_1, \ldots, X_n)$ absoluut irreducibel is.

Oefening 2. Beschouw $\mathcal{L} = \{+, -, \cdot, 0, 1, <\}$, de signatuur van geordende ringen. We beschouwen \mathbb{R} als \mathcal{L} -structuur op de natuurlijke manier. Je mag in deze oefening aannemen (zonder bewijs) dat $\operatorname{Th}_{\mathcal{L}}(\mathbb{R})$ kwantoreneliminatie toelaat. (Modellen van $\operatorname{Th}_{\mathcal{L}}(\mathbb{R})$ worden ook reëel gesloten velden genoemd.)

(a) Beschouw de \mathcal{L} -formule

$$\exists x (((a \cdot x) \cdot x + b \cdot x) + c = 0).$$

Zoek een concrete kwantorvrije \mathcal{L} -formule $\phi(a,b,c)$ die hiermee equivalent is in alle modellen van $\mathrm{Th}_{\mathcal{L}}(\mathbb{R})$.

- (b) Toon aan dat de definieerbare deelverzamelingen van \mathbb{R} (als \mathcal{L} -structuur) precies de eindige unies van intervallen (open of gesloten) zijn. Geldt hetzelfde voor de definieerbare deelverzamelingen van \mathbb{R} als $\mathcal{L}_{\text{ring}}$ -structuur?
- (c) Toon aan dat er voor elke \mathcal{L}_{ring} -formule $\varphi(x_1, \ldots, x_n)$ een $m \in \mathbb{N}$ en een kwantorvrije \mathcal{L}_{ring} -formule $\rho(y_1, \ldots, y_m, x_1, \ldots, x_n)$ bestaan zodanig dat

$$\mathbb{R} \models \forall x_1, \dots, x_n (\varphi \leftrightarrow \exists y_1, \dots, y_m \rho).$$