

TRIGONOMETRY

Tomo 05

Advisory

1. Determine la variación de a, si:

$$2 < \frac{7a - 6}{4} \le 9$$

Resolución

Dato:
$$2 < \frac{7a - 6}{4} \le 9$$
 ... (1)

Piden: a ... (2)

Dando forma de (1) hacia (2):

∴ $a \in <2;6$

2. Si $x \in \langle 1; 4 \rangle$, determine I variación de: $S = 2x^2 - 7$

Resolución

Dato:
$$x \in (1; 4) \to 1 < x < 4 \dots$$
 (1)

Piden:
$$S = 2x^2 - 7$$
 ... (2)

Dando forma de (1) hacia (2):

$$\begin{array}{c|c}
 & 1 < x < 4 \\
 & 1 < x^{2} < 16 \\
 & 2 < 2x^{2} < 32 \\
 & -7 & -5 < 2x^{2} - 7 < 25
\end{array}$$

3. Calcule secβ.cscβ, si |8tanβ - 5| = 11; donde β es un ángulo agudo.

RESOLUCIÓN

CASO 1: $8 \tan \beta - 5 = 11 \Rightarrow 8 \tan \beta = 16$

$$\tan \beta = 2$$
 ... (*)

AGUDO

CASO 2:
$$8 \tan \beta - 5 = -11 \implies 8 \tan \beta = -6$$

$$\tan \beta = \frac{-3}{4}$$

Calculamos:

secβ.cscβ =
$$\frac{\sqrt{5}}{1} \cdot \frac{\sqrt{5}}{2}$$

∴ secβ.cscβ =
$$\frac{5}{2}$$

4. A partir del gráfico, determine el valor de x.

Resolución

M ∈ CT entonces se cumple:

$$x^2 + y^2 = 1$$

$$x^2 + \left(-\frac{15}{17}\right)^2 = 1$$

$$x^2 + \frac{225}{289} = 1$$

$$x^2 = \frac{64}{289}$$

$$M \in IIIC \rightarrow x: (-) \quad \therefore \quad x = -\frac{8}{17}$$

$$x = -\frac{8}{17}$$

5. En una CT ordene en forma decreciente: cos10°, cos 140°, cos 200° y cos310°.

Resolución

Representando en la CT, tenemos:

Ordenando:

 $\cos 10^{\circ} > \cos 310^{\circ} > \cos 140^{\circ} > \cos 200^{\circ}$

6. Si $\alpha \in IIIC$, determine la variación de: $Q = 3\cos\alpha + 5$

Recordamos Variación del coseno según los cuadrantes IIC $-1 < \cos \theta < 0 \mid 0 < \cos \theta < 1$ IVC IIIC $-1 < \cos\theta < 0$ $0 < \cos\theta < 1$

Resolución

Dato: $\alpha \in IIIC \rightarrow -1 < \cos\alpha < 0 \dots$ (1)

Piden: $Q = 3\cos\alpha + 5...$ (2)

Dando forma de (1) hacia (2):

$$-1 < \cos\alpha < 0$$

$$\times 3$$

$$-3 < 3\cos\alpha < 0$$

$$+5$$

$$2 < 3\cos\alpha + 5 < 5$$

$$Q$$

$$\vdots \quad Q \in \langle 2; 5 \rangle$$

7. Determine la suma del mínimo y máximo valores de k, si:

$$sen \beta = \frac{2k-5}{9}, \beta \in \mathbb{R}$$

Resolución

Dato:
$$sen\beta = \frac{2k-5}{9}, \beta \in \mathbb{R}$$

$$\rightarrow -1 \le sen\beta \le 1 \dots (1)$$

Piden: k_{mín} y k_{máx} ... (2)

la suma del Dando forma de (1) hacia (2):

$$-1 \le \underline{\operatorname{sen}\beta} \le 1$$

$$\times 9$$

$$-1 \le \frac{2k - 5}{9} \le 1$$

$$\times 9$$

$$-9 \le 2k - 5 \le 9$$

$$+5$$

$$-4 \le 2k \le 14$$

$$\div 2$$

$$k_{min}$$

$$k_{máx}$$

$$\therefore \mathbf{k}_{min} + \mathbf{k}_{max} = \mathbf{5}$$

8. Del gráfico, determine el área de la región sombreada.

RESOLUCIÓN

Recordar:

$$S = \frac{b \times h}{2}$$

$$S = \frac{(1)|sen\theta|}{2}$$

$$\theta \in IIC$$

$$S = \frac{sen\theta}{2}$$

$$|sen\theta| = sen\theta$$

De la circunferencia trigonométrica mostrada, determine el semiperímetro de la región sombreada.

RESOLUCIÓN

Calculamos el semiperímetro.

$$p = \frac{perímetro}{2}$$

$$2p = 4 + 2|\cos\beta|$$

Como
$$\beta \in IIIC$$
 $|\cos\beta| = -\cos\beta$

$$2p = 4 + 2(-\cos\beta)$$

$$\Rightarrow$$
 p = 2 - cos β

$$\therefore p = (2 - \cos\beta) u$$

10. Humberto tiene un jardín en RESOLUCIÓN forma triangular como muestra en la figura. Calcule el área de dicho jardín.

Analizando el gráfico:

 $S_{\Delta} = \operatorname{sen}\beta(1 + \cos\beta) \, \mathrm{m}^2$