

Filière: S.V Semestre 4 Module: Génétique I

Cours de Génétique I

Semestre : 4 Filière : SCIENCES DE LA VIE

Pr. Zahidi

Plan du cours

Filière : S.V Semestre 4 Module : Génétique I

Partie I:

Rappels : notions de génétique

Chapitre I : Identification du matériel génétique

- I- Définitions et domaines d'application de la génétique
- II- Identification du matériel génétique
 - 1- Expérience de Griffith (1928)
 - 2- Expérience d'Avery et al. (1944)
 - 3- Expériences de Hershey et Chase (1952)
 - 4- Travaux sur les virus à ARN (virus du tabac) (Expérience de Fraenkel Conrat, William et schram)
- III- Caractères généraux des acides nucléiques

Chapitre II : Mitose et méiose : Description et comparaison (voir Annexe)

- 1- Mitose
- 2- Méiose

Chapitre III : Analyse génétique chez les organismes haploïdes :

- 1- Cycle de croissance chez les Champignons Analyse des tétrades
- 2- Hérédité monogénique; Distance locus centromère
- 3- Transmission de deux gènes indépendants
- 4- Ségrégation de deux gènes et de trois gènes liés; distance génétique; Carte Factorielle

Chapitre IV : Analyse génétique chez les organismes diploïdes :

- 1- Transmission d'un couple d'allèles autosomique : monohybridisme
- 2- Transmission de deux copules d'allèles indépendants : dihybridisme
- 3- Transmission de trois copules d'allèles indépendants : trihybridisme
- 4- Liaison génétique
- 5- L'hérédité liée au sexe
- 6- Les interactions génétiques (Létalité; Pléiotropie; Epistasie)

Rappels : Notions de génétique

A- L'information génétique

1°) Le noyau

	control des serentes i i prinquees		
Campus Univ. Ait Melloul		oul Filière : S.V Semestre 4 Module : Génétique I Pr. Zahidi	
	Noyau	partie de la cellule eucaryote, située dans le cytoplasme et séparée de lui par l'enveloppe nucléaire, et qui contient les chromosomes en interphase.	
Ī	Eucaryote	se dit d'une cellule dont le programme génétique est enfermé dans un noyau en interphase.	
Γ	Procaryote	se dit d'une cellule dont le programme génétique n'est pas contenu dans un noyau.	

2°) Filament de chromatine et chromosomes

T3'1 4 1 1 4'	Clarent along the second day to the second state of the second sta
Filament de chromatine	filament colorable, présent dans le noyau de toute cellule, et formé <u>d'ADN</u> et de
	<u>protéines</u> (histones).
Chromosome	structure en forme de bâtonnets constituées d'ADN et de protéines, et qui provient de
	la condensation d'un filament de chromatine lors d'une mitose ou d'une méiose.
Chromatide	partie d'un chromosome, constituée d'un filament de chromatine.
Caryotype	1- examen paraclinique permettant d'étudier l'ensemble des chromosomes d'une
	cellule, en les classant par paires de chromosomes homologues, en fonction de leur
	taille, de la position de leur centromère et de la position des bandes claires et sombres
	après coloration.
	1
	2 angamble dag abunmagamag d'una gallula, comactánistiques d'una combac dannée
	2- ensemble des chromosomes d'une cellule, caractéristiques d'une espèce donnée.
Homologues	se dit de deux chromosomes d'une cellule diploïde appartenant à la même paire.
Autosome	variété de chromosomes ne déterminant pas le sexe de l'individu.
Hétérochromosome ou	nom donné aux deux chromosomes sexuels (le X et le Y).
gonosome	
Sexe chromosomique ou	sexe dépendant des chromosomes sexuels (XX chez la femme, XY chez l'homme).
génétique ou	
gonosomique	
Acrocentrique	se dit d'un chromosome dont le centromère se trouve à une extrémité
Télocentrique	se dit d'un chromosome dont le centromère se situe plus près d'une extrémité que de
_	l'autre.
Métacentrique	se dit d'un chromosome dont le centromère se situe à égale distance de ses deux
1	extrémités.
	V.144

3°) L'ADN

Acide désoxyribonucléi -que (ADN)	acide nucléique bicaténaire localisé dans les chromosomes, et porteur de l'information génétique.
Bicaténaire	qui possède deux chaînes (ex. : l'ADN possède deux brins).
Brin	une des deux chaînes constituant la molécule d'ADN.
Désoxyribonuclé otide	molécule, constitutive de l'ADN, résultant de la combinaison d'un acide phosphorique, d'un désoxyribose et d'une base azotée parmi 4 possibles (adénine, thymine, cytosine ou guanine).
Désoxyribonuclé oside	molécule résultant de la combinaison d'un désoxyribose et d'une base azotée parmi 4 possibles (adénine, thymine, cytosine ou guanine).
Base azotée	molécule contenant des atomes d'azote, rencontrée dans les nucléotides et les acides nucléiques (ex. : adénine, cytosine, guanine, thymine, uracile).
Désoxyribose	pentose entrant dans la composition des désoxynucléotides et de l'ADN.

4°) Notion de gène et d'allèle

Gène	fragment d'ADN transcrit en ARN messager, et permettant la synthèse d'un polypeptide.
Génique	relatif aux gènes.

Campas Cirv. Titt Menoar	There: 5. V Semestre 4 Wodale: Generate 1
Génétique	1- relatif à l'information contenue dans l'ADN des chromosomes.
	2- science de l'hérédité.
Locus (pl.:loci)	point précis de l'ADN d'un chromosome où se situe un gène.
Génome	ensemble des gènes d'unes cellules, caractéristique de l'espèce
Allèle	l'une des séquences de nucléotides possibles de l'ADN d'un gène
Allél(o)-	Allèle, Polyallélie ; existence, pour un gène donné, de nombreux allèles différents

5°) La génie génétique

Génie génétique	partie de la génétique moléculaire consacrée à la manipulation des gènes.
Recombinant	obtenu par génie génétique.
Clonage	opération de génie génétique consistant en la production d'un clone.
Clone	ensemble de toutes les cellules (identiques entre elles, c'est-à-dire ayant le même
	patrimoine génétique) issues d'une même cellule mère.
OGM	sigle pour Organisme Génétiquement Modifié : organisme produit par transgénèse.
Transgénèse	transfert d'un gène d'une cellule à une autre.
Transgénique	1- se dit d'un gène ayant fait l'objet d'une transgénèse.
	2- se dit d'une cellule ou d'un organisme produit par transgénèse.
Séquence	suite ordonnée des acides aminés d'une protéine ou des nucléotides d'un ADN ou d'un
	ARN
Séquençage	identification de la suite ordonnée en acides aminés d'une protéine, ou en nucléotides
	d'un ADN ou d'un ARN.

II- La transmission de l'information génétique aux cellules filles

1°) L'interphase

Cycle cellulaire	période de la vie d'une cellule comprenant une interphase et la mitose qui lui fait suite.
Interphase	phase de la vie d'une cellule précédant une mitose ou une méiose et pendant laquelle a lieu la
	duplication de l'ADN.
Réplication ou	événement survenant au cours de l'interphase, marqué par le doublement de la quantité
duplication de l'ADN	d'ADN dans la cellule.

2°) La mitose et la méiose

Mitose	mode de division d'une cellule mère en deux cellules filles strictement identiques
	entre elles et à la cellule mère.
Méiose	succession de deux divisions cellulaires qui, à partir d'une cellule diploïde, donne
	quatre cellules haploïdes.
Cellule mère	cellule donnant par division deux cellules filles.
Cellule fille	une des deux cellules issues de la division d'une cellule mère.
Prophase	premier stade d'une division cellulaire (mitose ou chacune des divisions de méiose),
	au cours duquel les chromosomes deviennent visibles au microscope optique et
	l'enveloppe nucléaire disparaît progressivement.
Métaphase	deuxième stade d'une division cellulaire, au cours duquel les chromosomes à deux
	chromatides (mitose et première division de méiose) ou les chromosomes à une
	chromatide (deuxième division de méiose) se placent sur le plan équatorial.
Anaphase	troisième stade d'une division cellulaire (mitose ou chacune des divisions de méiose),
	au cours duquel les chromatides d'un même chromosome (mitose et deuxième
	division de méiose) ou les chromosomes homologues (première division de méiose) se
	séparent et se dirigent chacun vers un pôle de la cellule.
Télophase	quatrième et dernier stade d'une division cellulaire (mitose ou chacune des divisions
_	de méiose), au cours duquel les chromosomes se décondensent et le noyau des deux

nouvelles cellules se reconstitue.

III- <u>L'expression de l'information génétique</u>

1°) La transcription

Transcription	premier étape de l'expression de l'information génétique, se déroulant dans le noyau,
	et consistant en la synthèse d'une molécule d'ARN messager à partir d'un des deux
	brins de l'ADN d'un gène (ou brin transcrit).
Acide ribonucléique (ARN)	acide nucléique monocaténaire synthétisé dans le noyau à partir d'un brin de l'ADN
	par transcription.
Monocaténaire	qui est constitué d'une seule chaîne (ex. : l'ARN possède un seul brin).
Ribonucléotide	molécule, constitutive de l'ARN, résultant de la combinaison d'un acide
	phosphorique, d'un ribose et d'une base azotée parmi 4 possibles (adénine, cytosine,
	guanine et uracile).
Ribonucléoside	molécule résultant de la combinaison d'un ribose et d'une base azotée parmi 4
	possibles (adénine, cytosine, guanine et uracile).
ARNm	sigle pour Acide RiboNucléique messager : ARN qui sert de modèle pour la synthèse
	d'un polypeptide (traduction) dans le cytoplasme.
ARNr	sigle pour Acide RiboNucléique ribosomique : ARN contenu dans les ribosomes.
ARNt	sigle pour Acide RiboNucléique de transfert : ARN permettant d'adapter un acide
	aminé en face de chaque codon de l'ARNm.

2°) La traduction

Traduction	deuxième étape de l'expression de l'information génétique, se déroulant dans le
	cytoplasme, et consistant en la synthèse d'un polypeptide à partir d'une
	molécule d'ARN messager.
Ribosome	particule très petite du cytoplasme, constituée de deux sous-unités (une grosse et
	une petite) renfermant des protéines et des molécules d'ARNr, et intervenant
	dans la traduction de l'ARNm en polypeptide.
Polyribosome ou polysome	ensemble des ribosomes traduisant la même molécule d'ARNm.
Réticulum endoplasmique	organite de la cellule, formé d'un ensemble de canaux, ayant pour fonction la
rugueux (RER) ou	synthèse et la maturation de certaines protéines.
granuleux (REG)	
Triplet	ensemble de trois éléments (ex. : triplet de nucléotides de l'ADN).
Codon	triplet de nucléotides de l'ARNm, codant pour un acide aminé.
Code génétique	ensemble des correspondances qui, à un codon de l'ARNm, associe un acide
	aminé.
Anticodon	groupe de trois nucléotides de l'ARNt, par lequel celui-ci s'adapte au codon
	complémentaire de l'ARN messager pour y fixer l'acide aminé dont il est
	porteur.

3°) La maturation du polypeptide en protéine

Polypeptide	molécule sans structure tridimensionnelle, composé de l'association de nombreux acides
	aminés.
Protéine	polypeptide ayant acquis une structure tridimensionnelle.
Maturation	ensemble des phénomènes qui permettent la transformation d'un polypeptide en protéine
	fonctionnelle.
Glycoprotéine	protéine comportant un constituant glucidique.
Glycosylation	fixation de glucides sur une protéine ou un lipide.
Appareil de Golgi	organite de la cellule, formé d'un ensemble de canaux en fer à cheval, ayant pour
	fonction la transformation des polypeptides en protéines (maturation).

IV- Les modifications de l'information génétique

1°) Les mutations

Mutation	modification de la séquence de nucléotides de l'ADN d'un gène
Mutant	individu, caractère ou allèle d'un gène, qui a été modifié par suite d'une mutation

Pr. Zahidi

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I

Substitution mutation caractérisée par le remplacement d'un nucléotide de l'ADN pa

Substitution	mutation caractérisée par le remplacement d'un nucléotide de l'ADN par un autre
Addition	mutation consistant en l'ajout d'un ou plusieurs nucléotides de l'ADN
Délétion	mutation consistant en la perte d'un ou plusieurs nucléotides de l'ADN
Mutation	mutation d'un gène ne modifiant pas la séquence d'acides aminés (et donc pas la
silencieuse	fonction) du polypeptide correspondant
Mutation neutre	mutation d'un gène modifiant la séquence d'acides aminés du polypeptide correspondant,
	mais pas sa fonction
Mutation faux-	mutation d'un gène modifiant la séquence d'acides aminés du polypeptide correspondant,
sens	sans en modifer le nombre d'acides aminés.
Mutation non-	mutation d'un gène entraînant la synthèse d'un polypeptide anormalement court, du fait
sens	de l'apparition d'un codon stop au milieu de l'ARNm qui le code.

2°) Les aberrations chromosomiques

Aberration	anomalie dans le nombre ou la structure des chromosomes.
chromosomique	

- Les anomalies du nombre de lots de chromosomes :

Situations normales	Haploïdie	un seul lot de chromosomes (un seul chromosome de chaque type) (n) (normal pour les gamètes).
	Diploïdie	deux lots de chromosomes (deux chromosomes de chaque type) (2n).
	Aneuploïdie	état d'une cellule présentant un nombre anormal de lots de chromosomes
Anomolies	Triploïdie	trois exemplaires de tous les types de chromosomes (3 n)
Anomalies	Tétraploïdie	quatre exemplaires de tous les types de chromosomes (4 n)
	Polyploïdie	nombre de chromosomes multiple de n et supérieur à 2n (3n, 4n, etc)

- Les anomalies du nombre de chromosomes d'un type donné :

Situations normales	Disomie	deux chromosomes pour un type de chromosomes donné.
	Aneusomie	état d'une cellule présentant un nombre anormal d'un seul type de chromosomes.
Anomalies	Monosomie	un seul chromosome pour un type de chromosome donné (2n - 1).
	Trisomie	un chromosome supplémentaire d'un type donné (2n + 1).
	Polysomie	des chromosomes surnuméraires pour un type de chromosomes donné (2n + x).

- Les anomalies de structure des chromosomes :

Réarrangement		
ou remaniement	inversion, insertion, délétion, translocation).	
chromosomique		
Fusion	deux chromosomes de paires différentes se soudent.	
Inversion un fragment de chromosome se casse, se retourne, puis se ressoude au même et		
	inversé.	
Insertion	adjonction à un chromosome d'un segment supplémentaire.	
Délétion	perte d'un segment de chromosome.	
Translocation	transfert d'un fragment de chromosome ou d'un chromosome entier sur un chromosome	
	d'une autre paire.	

V- La transmission des caractères héréditaires d'une génération à la suivante

1°) La reproduction sexuée

- Généralités :

Gamète	cellule sexuelle, mâle (spermatozoïde) ou femelle (ovule ou ovocyte II), ayant subi la	
	méiose et apte à la fécondation.	
Ovogenèse	luction des ovules à l'intérieur de l'ovaire.	
Ovule ou ovocyte II	cellule libre, émise hors de l'ovaire lors de l'ovulation et qui constitue le gamète	

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I

	emelle	
Spermatogenèse	ensemble des étapes se déroulant dans les tubes séminifères des testicules, qui, à partir	
	d'une spermatogonie, aboutissent à la formation d'un spermatozoïde	
Spermatozoïde	cellule mobile produite par les tubes séminifères du testicule et qui constitue le gamète	
	mâle	
Fécondation	union d'un gamète mâle (le spermatozoïde) et d'un gamète femelle (l'ovule ou ovocyte	
	II) avec formation d'un zygote ou cellule œuf	
Cellule œuf ou	première cellule de l'embryon, résultant de la fécondation d'un ovule par un	
zygote	spermatozoïde	
Hybridation	fécondation entre des sujets d'espèces différentes mais voisines, ou de même espèce,	
	mais de variétés différentes	
Cellule germinale	cellule du testicule ou des ovaires formant les gamètes ; par extension, les gamètes eux-	
	mêmes	
Cellule somatique	toute cellule du corps, à l'exception des cellules de la lignée reproductrice et les	
	gamètes (cellules germinales)	

- Cas particuliers :

Dispermie	Dispermie pénétration de deux spermatozoïdes dans le même ovule	
Jumeau, jumelle	enfant issu d'une grossesse double (grossesse gémellaire)	
Uni-ovulaires ou	se dit de jumeaux provenant d'une seule cellule œuf (vrais jumeaux)	
monozygotes		
Bi-ovulaires ou	se dit de jumeaux provenant de deux cellules œufs différentes (faux jumeaux)	
dizygotes		
Chimère	individu qui porte en mosaïque des caractères propres à deux génotypes différents	
Mosaïque	existence chez un individu, de populations de cellules qui n'ont pas le même équipement	
_	chromosomique (ex. : mosaïque XO/XX dans le syndrome de Turner)	

2°) Génotype et phénotype

Génotype	1- ensemble des combinaisons de deux allèles pour l'ensemble des gènes d'un
	individu.
	2- combinaison des deux allèles qui possède un individu pour un gène donné.
Phénotype	ensemble des caractères d'un individu, détectables à l'œil nu, au microscope ou
	par des analyses biochimiques.
Homozygote	se dit d'un sujet, d'une cellule ou d'un génotype, dont les deux gènes allèles sont
	identiques.
Hémizygote	se dit du génotype d'un individu mâle, concernant un gène porté par le
	chromosome sexuel X (ou par le chromosome Y), et donc présent en un seul
	exemplaire.
Hétérozygote	se dit d'un sujet, d'une cellule ou d'un génotype, dont les deux gènes allèles sont
	différents.

3°) Les différents modes de transmission des caractères héréditaires

- Généralités :

Hérédité	1- étude des caractères héréditaires et de leur transmission (génétique moléculaire)	
	2- étude des phénomènes chimiques liés à l'information génétique portée par l'ADN des chromosomes (génétique mendélienne).	
Héréditaire	qui est transmis des parents aux descendants.	
Monohybridisme	étude de la transmission d'un seul caractère.	
Dihybridisme	étude de la transmission simultanée de deux caractères.	
Monogénique	qui se rapporte à, qui dépend d'un seul gène.	
Polygénique	qui se rapporte à, qui dépend de plusieurs gènes.	

	Prédisposition	tendance particulière d'origine génétique de certaines personnes à présenter plus
	héréditaire	facilement que d'autres des troubles donnés.
ĺ	Consanguinité	lien unissant deux individus ayant un ascendant commun.

- Hérédité autosomale et hérédité liée au sexe :

Hérédité	transmission d'un caractère lié à un gène situé sur un chromosome autosome.
autosomale ou	
autosomique	
Hérédité liée au	transmission d'un caractère lié à un gène situé sur le segment non homologue d'un
sexe	chromosome sexuel (le X ou le Y).

- Dominance, récessivité et codominance :

Caractère	se dit d'un caractère héréditaire qui apparaît chez tout sujet portant l'un seulement des
dominant	deux gènes allèles correspondant.
Caractère récessif	se dit d'un caractère héréditaire qui n'apparaît que lorsque le gène allèle responsable
	existe sur les deux chromosomes (c'est-à-dire à l'état homozygote).
Caractères	se dit de deux caractères héréditaires, déterminés par deux gènes allèles différents, et qui
codominants	apparaissent simultanément dans le phénotype.
Allèle dominant	se dit d'un allèle qui s'exprime dans le phénotype à l'état homozygote ou hétérozygote.
Allèle récessif	se dit d'un allèle qui ne s'exprime dans le phénotype qu'à l'état homozygote
Allèles	se dit de deux allèles différents du même gène, qui s'expriment simultanément dans le
codominants	phénotype.

4°) Quelques exemples de maladies géniques héréditaires

Génopathie ou	maladie héréditaire
hérédopathie	

- Maladies autosomales (gène sur un autosome) :

Albinisme	maladie génétique caractérisée par une blancheur extrême de la peau due à une absence
	de mélanine.
Anémie falciforme	maladie génétique touchant l'hémoglobine qui est responsable d'une malformation des
ou drépanocytose	globules rouges qui ont une forme de faucille.
ou sicklémie	
Mucoviscidose	maladie génétique caractérisée une sécrétion trop abondante de mucus, bronchique et
	pancréatique en particulier.
Chorée de	maladie nerveuse héréditaire, caractérisée par des mouvements involontaires et
Huntington	irréguliers.

- Maladies liées au sexe (gène sur le chromosome X) :

Daltonisme	trouble de la vision des couleurs, généralement le rouge et le vert.
Hémophilie	maladie génétique, consistant en une anomalie de la coagulation par manque de certains
	facteurs de coagulation (facteur VIII pour l'hémophilie A, facteur IX pour l'hémophilie
	B).
Myopathie de	maladie génétique dégénérative des muscles due à une mutation du gène de la
Duchenne	dystrophine.

Filière : S.V Semestre 4 Module : Génétique I

Chapitre I : Identification du matériel génétique

I- <u>Définitions et domaines d'application de la Génétique</u> A- Définitions:

- + La génétique est la science de l'hérédité issue de l'étude des gènes; la génétique étudie la nature, le fonctionnement et la transmission des gènes à l'échelle des cellules, des individus et des populations.
- + La génétique est ainsi la branche de la biologie traitant de l'hérédité et des variations des organismes, ainsi que des mécanismes par lesquels elles se réalisent; qui est propre à la génération.
- + La génétique formelle étudie les gènes et leur transmission.
- + <u>La génétique moléculaire</u> étudie la biochimie des acides nucléiques, leur réparation, leur réplication, leur expression et leur régulation.
- + <u>La génétique du développement</u> traite des processus génétiques qui ont lieu au cours du développement.
- + <u>La génétique des populations</u> étudie statistiquement la transmission des gènes dans une population.
- + <u>La génétique de l'évolution</u> est consacrée à l'étude des mécanismes génétiques de l'évolution des espèces.

B- Domaines d'applications de la génétique

+ Les connaissances acquises en génétique sont utilisées dans les domaines comme la production végétale et animale. En effet, grâce à la génétique, on fait de l'amélioration des plantes et de l'amélioration des races animales. On procède alors à la création, à la sélection des individus qui intéressent le consommateur, l'agriculture ou l'éleveur.

Exemple de plantes améliorées : café, cacao, palmier à l'huile, cocotier, blé, riz, mouton, cheval, maïs, etc.

Exemples d'espèces animales améliorées : poulet, porc, lapin, vache, chèvre, mouton, etc.

Domaine d'application de la génétique :

□ La médecine : en effet grâce à la connaissance du mode d'action des gènes responsables de
certaines affections pathologiques héréditaires, des traitements adéquats ont pu être apportés.
Exemple : la drépanocytose (anémie falciforme), thalassémies, etc.
☐ L'industrie alimentaire : par exemple on peut modifier génétiquement certaines levures qui
entrent dans l'industrie alimentaire. Exemple : la levure de boulangerie.

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I Pr. Zahidi

☐ Génie génétique : c'est une spécialité de la génétique qui s'occupe de transférer artificiellement le matériel génétique

II - <u>Identification du matériel génétique</u>

1- Expérience de Griffith (1928):

Met en évidence le "principe ou facteur transformant" chez les bactéries pneumocoques.

L'étude précise de l'aspect des colonies à la loupe permet de définir deux sortes de colonies :

Les colonies S (smooth), lisses, formées de germes capsulés et virulents ;

Les colonies R (rough), rugueuses dont les éléments ne sont ni capsulés, ni virulents.

Figure 1 et 2

Expérience 1: Pneumocoques de type S (virulents) injectés à des souris : Mort de la souris par pneumonie et Bactéries S vivantes dans le sang

Expérience 2 : Pneumocoques de type R (non virulents) injectés à des souris : Survie de la souris

Bactéries R vivantes dans le sang

Expérience 3 : Pneumocoques de type S « tués » par la chaleur injectés à des souris : Survie de la souris et présence de Bactéries S mortes dans le sang

Expérience 4 : Pneumocoques de type S « tués » par la chaleur ET Pneumocoques de type R injectés en même temps à des souris : Mort de la souris par pneumonie et présence de Bactéries S vivantes dans le sang.

Conclusion : <u>Griffith proposa qu'un facteur de virulence a été transmis des bactéries S aux bactéries R ; il a appelé ce facteur le « principe transformant ».</u>

2: Expérience d'Avery et al. (1944) (figure 2)

- Objectif : détermination de la nature chimique du « principe transformant » :
- Seul l'ADN est capable d'induire une transformation des bactéries R en bactéries S.

Conclusion: Avery et son équipe en ont conclu que la <u>nature chimique du matériel</u> <u>génétique est l'ADN</u>.

Ce résultat fut par la suite étendu à l'ensemble du monde vivant (travaux de *Hershey et Chase*).

3- Expériences de Hershey et Chase: 1952

Marquage du Soufre (protéines) et du phosphore (Matériel génétique)

Interprétation : les nouveaux virions apparaissent dans le culot : dans les bactéries. Or les capsides ne pénètrent pas dans les bactéries. Seul l'ADN a pénétré à l'intérieur des bactéries. Donc, seul l'ADN peut être à l'origine des nouveaux virions. L'ADN seul permet de fabriquer de nouvelles molécules d'ADN et de nouvelles capsides. L'ADN porte l'information génétique du virus.

Conclusion: l'ADN était le support de l'hérédité.

Interprétation: les nouveaux virions apparaissent dans le culot : dans les bactéries. Or les capsides ne pénètrent pas dans les bactéries. Seul l'ADN a pénétré à l'intérieur des bactéries. Donc, seul l'ADN peut être à l'origine des nouveaux virions. L'ADN seul permet de fabriquer de nouvelles molécules d'ADN et de nouvelles capsides. L'ADN porte l'information génétique du virus.

En 1953, Watson et Crick proposent le modèle moléculaire de l'ADN.

4- Travaux sur les virus à ARN (virus du tabac)

Expérience de Fraenkel Conrat, William et schram

Formation d'un virus mixte

Protéines de type B + ARN type A

Présence sur les feuilles du tabac le virus de type A

Conclusion : ARN est responsable des caractères du virus du tabac

= ARN matériel génétique

5- Cas des organismes supérieurs

Filière : S.V Semestre 4 Module : Génétique I

Pr. Zahidi

- Les méthodes de la génétique formelle ont permis de démontrer que le matériel héréditaire est localisé sur les chromosomes, grâce aux techniques cytologiques.

- Le constituant fondamental du chromosome est l'ADN.
- Les chromosomes sont le support de la transmission de l'information héréditaire au cours des générations.

III – Caractères généraux des acides nucléiques

- Macromolécules: polymères de nucléotides
- ADN (acide désoxyribonucléique) et ARN (acide ribonucléique)
- ADN est formé de deux brins complémentaires enroulés en double hélice (Watson & Crick) ce qui lui permet de se dupliquer en deux molécules identiques entre elles et identiques à la molécule mère. L'ADN (Acide DésoxyriboNucléique) est :
- constituée par un enchaînement d'unités élémentaires : les désoxyribonucléotides;
- une forme de stockage de l'information génétique représentée par une suite de gènes;

On distingue essentiellement :

- l'ADN nucléaire des eucaryotes
- les ADN des procaryotes.

Les acides nucléiques (ARN)

L'ARN (Acide RiboNucléique) est :

- constitué par un enchaînement d'unités élémentaires : les ribonucléotides
- une forme qui permet de transférer et de traiter l'information dans la cellule (un gène)
- le plus souvent formé d'un simple brin
- On distingue essentiellement:
- les ARN messagers ou ARNm : ils sont transcrits à partir d'un gène (ADN). Ils sont ensuite traduits en protéines.
- les ARN de transfert: transfert des acides aminés.
- les ARN ribosomaux: formation des ribosomes.

Structure des monomères

- Chaque nucléotide comporte une base azotée:
- Les pyrimidines : cytosine et thymine (ou uracile dans l'ARN)
- Les purines : adénine et guanine

- Le nucléotide: Nucléoside auquel est lié un ou plusieurs phosphate en position 5' du sucre.
- Le nucléoside: Base azotée liée à un pentose: désoxyribose ou ribose

Structure de l'ADN + Adaptée à sa fonction: protection et stockage de l'info génétique

- ADN bicaténaire, brins antiparallèles
- Liaison phosphodiester entre C5' et C3' des (d)riboses voisins;
- Lecture du 5' libre vers le 3' libre.
- Hydrophobicité des bases
- Squelette sucre-phosphate à l'extérieur/ Bases à intérieur
- Régularité de l'écartement
- Bases appariées par paire via des liaisons hydrogènes
- Appariement purine-pyrimidine:
- Écartement fixe de 11Å, Paire de base GC avec ses 3 liaisons hydrogène intermoléculaires

Paire de base AT avec ses 2 liaisons hydrogène intermoléculaires

La structure 3D de l'ADN

- Régularité de l'écartement
- Structure en double hélice droite avec un grand sillon et un petit sillon.

Chapitre II: Mitose et méiose: Description et comparaison (voir Annexe)

1- **La Mitose**:

- Est une division nucléaire qui accompagne les divisions des cellules somatiques. Chaque mitose est associée à une seule division cellulaire qui produit deux cellules filles génétiquement identiques elle dure 10 à 20 heures. Chaque chromosome du noyau se copie luimême sur toute sa longueur, puis cette structure double (deux chromatides) est donc clivée à la mitose et produit deux chromosomes-fils qui migrent vers des noyaux différents.

Filière : S.V Semestre 4 Module : Génétique I

- Phénomène général de la division cellulaire.
 - Caractéristiques : Division unique, asexuée.
 - Rôle : Renouvellement des cellules mortes, croissance, cicatrisation, (cancer).

Une des phases du cycle cellulaire: division cellulaire

- Une cellule mère donne 2 cellules filles identiques
- La mitose se fait en plusieurs phases :

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I Pr. Zahidi

Interphase: (Duplication des chromosomes) c'est la période la plus longue du cycle (90%), elle est caractérisée par l'accroissement du volume de la cellule en phase G1, la synthèse de nouvelles molécules d'ADN par réplication (Phase S) puis pendant la phase G2 la cellule continue à croitre afin d'avoir suffisamment d'organites nécessaires pour sa division.

Prophase: (Condensation de l'ADN, disparition du nucléosome et formation du fuseau); Chromatique condensation de chromosomes qui deviennent visibles et présentent l'aspect de filaments doubles. Chaque chromosome est donc présent sous forme de deux chromatides sœurs. Celles-ci étant reliées au niveau de leur centromère. Les nucléoles et l'enveloppe nucléaire commencent à se dégrader, puis le contenu du noyau, appelé « nucléoplasme », finit par se confondre avec le cytoplasme.

Métaphase : on distingue le fuseau mitotique (microtubules) qui apparaît clairement. L'enveloppe est complètement dégradée et les chromosomes migrent vers le plan équatorial de la cellule et s'attachent aux fibres du fuseau mitotique, grâce à un complexe protéique appelé « **kinétochore** » .

Anaphase : il y a séparation des chromatides sœurs, chaque chromatide migre vers un des pôles de la cellule. Durant la migration, les deux bras de la chromatide s'infléchissent et il en résulte des structures en « V. »

Télophase: l'enveloppe nucléaire se reforme autour de chaque noyau issu de la division. Les chromosomes condensés se déspiralisent, les nucléoles réapparaissent, le fuseau mitotique s'atrophie et les noyaux inter-phasiques se recréent. La cytodiérèse permet de couper la cellule mère en deux « cellules-filles » avec des chromosomes sous forme d'une chromatide comme la cellule interphasique du départ.

2- La méiose

- Processus aboutissant à la création de cellules sexuelles (gamètes).
- Caractéristiques : 2 divisions cellulaires successives : M1 : division réductionnelle et M2 : division équationnelle.
- Processus sexué : Reproduction, diversité génétique.
- Définition : est une division nucléaire des cellules germinales ou méiocystes (2n), comme les gonades, spermatogonie ou ovogonie, rencontrées dans le cycle sexuel. Chaque méiocyste subit deux divisions cellulaires accompagnées de deux divisions nucléaires. Il s'ensuit généralement 4 cellules « tétrades » ou « produit de la méiose» ou « gamètes » (spermatozoïdes et ovocytes) qui sont génétiquement différentes.
- Chez les organismes haploïdes, pour qu'il y ait méiose, il faut créer un méiocyste à 2n transitoire (zygote). Comme pour la mitose, la méiose est toujours précédée d'une phase S S pré-méiotique, au cours de laquelle la réplication de l'ADN se fait. La méiose possède deux divisions : méiose I et méiose II.

Phases de la Méiose I:

Prophase I: Les chromosomes invisibles jusqu'à présent deviennent visibles en longs filaments. L'appariement des chromosomes homologues par un processus dit «en fermeture éclair» » appelé également complexe synaptoné mal (figure). On dit que ces chromosomes entrent « en synapsis »

Filière: S.V Semestre 4 Module: Génétique I Campus Univ. Ait Melloul

et forment des paires d'homologues. Ce phénomène n'existe pas dans la mitose. On distingue bien la structure en synapsis constituée de quatre chromatides (deux chromatides sœurs de chaque homologue apparié.) Il y a un relâchement de l'appariement entre les homologues et on observe la présence de structures en croix, appelées « chiasmas ». Un chiasma est la manifestation physique d'enjambement ou crossing-over entre chromatides non-sœurs. Un crossing-over est une cassure égale de deux chromatides non-sœurs suivies de leur ressoudure croisée précise. Il s'agit d'un échange physique réciproque entre deux des quatre chromatides d'une paire de chromosomes homologues. Le rôle du crossing-over est de favoriser la variation génétique en formant de nouvelles combinaisons de gènes, permettant ainsi une ségrégation (une séparation) correcte des chromosomes homologues appariés.

Métaphase I: L'enveloppe nucléaire et les nucléoles ont disparus et, cette fois-ci, chaque paire d'homologues se place dans le plan équatorial du fuseau. En métaphase I les centromères ne se séparent pas. Chaque chromosome va rester sous forme de deux chromatides.

Anaphase I : Les chromosomes homologues appariés se séparent et migrent vers les pôles grâce aux tensions opposées subites sur les kinétochores. En fin de stade, chaque lot de chromosomes se retrouve de chaque côté de la cellule. Télophase I : Deux noyaux issus de la méiose I se reforment. Ces deux noyaux sont haploïdes puisque le nombre de chromosomes a été réduit de moitié par rapport à la cellule mère. On parle de « « division réductionnelle » pour la méiose I.

Phases de la Méiose II : La méiose II ressemble à la mitose. Celle-ci conserve le nombre n de chromosomes. On parle de « division équationnelle »

Prophase II: Les chromosomes ont un aspect très compacté et sont en nombre haploïde.

Métaphase II : Les chromosomes se rangent sur le plan équatorial (toujours présents sous forme de deux chromatides.)

Anaphase II : Les centromères se séparent et chaque chromatide est entraînée vers un pôle opposé.

Télophase II : Reconstitution d'un noyau autour des chromosomes rassemblés.

Fin de la méiose II : On obtient quatre cellules-filles haploïdes: produit de la méiose (spores ou gamètes).

Deux types de brassages génétiques au moment de la méiose:

- **Brassage inter-chromosomique**: entre chromosomes distincts.
- Brassage intra-chromosomique: entre chromatides du même chromosome.

Chapitre III : Analyse génétique chez les organismes haploïdes

1- Introduction

- L'un des fondements de l'analyse génétique repose sur l'analyse des produits de la méiose. La ségrégation des gènes permet entre autres de les dénombrer, de les cartographier, parfois même de préciser leur type d'interaction. La ségrégation allélique à la méiose conduit à la formation de gamètes dont le contenu génétique n'est pas directement déductible, sauf si on étudie des organismes ayant une phase haploïde non réduite aux gamètes, comme les fougères ou les champignons.
- Chez les organismes haploïdes, les gamètes, ce sont les ascospores et les mycéliums haploïdes issus de ces dernières. Leurs caractères morphologiques ou biochimiques sont directement observables.

- La phase haploïde (ascospores + mycéliums) est observable grâce à l'analyse de tétrades qui permet de connaître les caractères de chacun des quatre gamètes (tétrade) issus d'une méiose individuelle.
- L'analyse de tétrades est utilisée pour localiser des gènes chez les champignons et des algues unicellulaires.

Ces organismes sont haploïdes et présentent un cycle de développement haplobiontique ou haplodiplobiontique

Exemples:

- Neurosporacrassa moisissure rose.
- Saccharomyces cerevisiae levure de bière
- Chlamydomonas reinhardtii algue unicellulaire. Ces organismes sont haploïdes.

Figure : Cycle haplodiplobiontique de la levure (gauche), Cycle haplobiontique de Neurospora (droite)

- Chez ces champignons, les spores haploïdes résultant de la méiose, restent enfermées dans un sac nommé *asque*.
- L'isolement d'un asque, puis des quatre spores qu'il renferme permet alors d'entreprendre l'analyse isolée des quatre produits d'une même méiose, la *tétrade*.
- On distingue deux types d'ascomycètes selon que la méiose y donne des <u>tétrades ordonnées</u> ou <u>inordonnées</u>.

- Dans le cas des tétrades ordonnées, les plans successifs des métaphases des méioses I et
 II restent parallèles entre eux et les spores qui en résultent restent ordonnées, de sorte qu'il est possible d'identifier les ségrégations alléliques survenues lors de la méiose I.
- Chez certains ascomycètes, la méiose est suivie d'une mitose conduisant à *huit spores haploïdes*, normalement <u>identiques deux à deux</u>.

II - Cas: Tétrades ordonnées

Chez Neurospora : une <u>octade</u> correspond à une tétrade qui a subi une *mitose supplémentaire*.

- L'ordre des spores dans l'asque correspond à la position des chromatides à la méiose.
- On peut différencier la **ségrégation des allèles** à la première ou la deuxième division de la méiose.
- Un <u>crossing-over (C.O) entre le gène et le centromère</u> conduit à une <u>ségrégation à la deuxième division de la méiose</u> (<u>asques post-réduits</u>)
- Les méioses sans crossing-over présentent deux dispositions possibles conduisant à deux types d'asques différents (figure 1), à la suite de la <u>séparation des centromères à la méiose I</u>, puis de <u>leur disjonction à la méiose II</u>, la mitose ne faisant que dupliquer les spores.

A- 1 er cas : Pas de crossing-over gène -centromère

Les centromères ségrègent vers deux pôles à la seconde division de la méiose, les demitétrades sont homogènes et A et a sont séparés à la première division de la méiose.

Semestre 4

Module : Génétique I

Les asques sont pré-réduits (les deux allèles A et a, réunis dans le zygote, ont été séparés dès la méiose I).

- La disposition des paires de chromatides à la métaphase de la méiose I est aléatoire.

Filière: S.V

- Si **p** la probabilité d'avoir un crossing-over entre le gène et son centromère,
- (1 p) probabilité de ne pas en avoir, c'est-à- dire la fréquence des méioses sans crossingover; la fréquence de chacun de ces deux types équi-fréquents de tétrades pré-réduites est égale à (1 - p)/2.

B- 2 ème cas : 1 crossing-over gène – centromère

- Les méioses avec crossing-over présentent huit <u>dispositions possibles</u>, selon la disposition aléatoire des centromères et selon la paire de chromatides impliquée, conduisant à quatre types d'asques différents (figure 2,3,4 et 5):

Figure 2: Crossing-over entre les chromatides 2-3.

Figure 3: Crossing-over entre les chromatiques 1-3

Figure 4 Crossing-over entre les chromatides 2-4.

Figure 5 Crossing-over entre les chromatides 1-4.

- Les allèles A et a ségrégent à la deuxième division de la méiose, les demitétrades sont hétérogènes; les asques sont <u>post-réduits</u>.
- Dans toutes ces méioses, il y a eu post-réduction, <u>les deux allèles A</u> et a n'ont été disjoints qu'à l'issue de la méiose II, ce qui se traduit par l'observation de demi-asques hétérogènes, avec <u>deux spores noires et deux spores blanches</u>.

Pr. Zahidi

- Il faut noter que si l'hétérogénéité des demi-asques est la conséquence de la post-réduction (survenue d'un crossing-over), la disposition relative des spores blanches et noires est la conséquence ou le reflet de la disposition aléatoire des centromères et des deux chromatides impliquées par le crossing-over, lors de la méiose I.
- Si on désigne par p la probabilité d'avoir un crossing-over entre le gène et son centromère, c'està-dire la fréquence des méioses avec crossing-over, la fréquence de chacun de <u>ces quatre types</u> <u>équi-fréquents de tétrades post-réduites</u> est égale à p/4.

NB:

- L'équi-fréquence des deux <u>types d'asques pré-réduits</u> valide l'hypothèse de la migration aléatoire, vers chacun des pôles, de chacun des deux centromères d'une paire de **chromatides homologues**, lors de la méiose I; hypothèse qui fonde la théorie de la recombinaison génétique par brassage chromosomique (pour les <u>gènes physiquement indépendants</u>).
- L'équi-fréquence des <u>quatre types d'asques post-réduits</u> valide l'hypothèse selon laquelle les deux <u>chromatides impliquées par un crossing-over</u> sont désignées aléatoirement; hypothèse qui fonde la théorie de la recombinaison génétique par crossing-over (pour les <u>gènes physiquement</u> <u>liés</u>).
- La pré-réduction et la post-réduction sont deux <u>évènements génétiques</u> qui aboutissent à une information de la <u>position du gène sur le chromosome</u>. L'exploitation de ces données permet d'évaluer la **distance entre le gène et le centromère** qui est dite : **distance génétique.**

C - Distance du locus d'un gène à son centromère

- La distance sert à repérer le locus, cette grandeur correspond à un comptage des points d'interchanges en chromatides.
- La fréquence des asques post-réduits dépendra de la distance entre le locus du gène et son centromère.
- La fréquence de post-réduction n'est pas égale à la probabilité (p) qu'un CO survienne entre le locus du gène et son centromère, car il peut, quand le gène est assez éloigné, survenir deux CO qui, selon les chromatides impliquées, peuvent conduire soit à une pré-réduction, soit à une post-réduction.
- p est une fréquence (ou une probabilité) qui tient compte d'une multitude d'événements possibles et non du seul événement d'un CO entre le gène et son centromère.
- Si la distance du locus du gène au centromère est nulle, aucun crossing-over ne survient dans aucune méiose, p = 0
- NB : On peut conclure d'une absence de post-réduction (sur un grand nombre de méioses) que la distance du gène à son centromère est nulle, ou, en tout cas, suffisamment faible pour qu'aucun crossing-over ne soit survenu sur le nombre de méioses étudiées.

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I

- Si la distance du locus du gène à son centromère est telle qu'un crossing-over au plus peut survenir dans quelques méioses, on peut mesurer la distance à partir du *taux p de post-réduction*, par analogie au calcul de la distance génétique en unités de recombinaison. Celles-ci ne concernent que la moitié des spores d'un asque post-réduit, aussi la fréquence des chromatides remaniées par un crossing-over entre le gène et son centromère est égale à **p/2**, d'où :

Pr. Zahidi

$D = p / 2 \times 100$, en unités de recombinaison par post-réduction (urp).

Remarque : Chez des ascomycètes comme *Saccharomyces cerevisiae* (levure de boulangerie) ou *Aspergillus nidulans* (moisissure verte du pain), les tétrades sont inordonnées, et il n'est pas possible de ce fait, d'analyser la pré et la post-réduction, ou de cartographier les gènes par rapport à leur centromère, du moins directement, car cela est possible indirectement avec des marqueurs centromériques.

- La fréquence d'un crossing-over est proportionnelle à la distance génétique qui sépare les deux positions recombinées.
- La fréquence des asques post-réduits est proportionnelle à la fréquence des crossingover entre un gène suivi et son centromère.
- La moitié des spores des asques post-réduits ont subit un crossing-over entre le gène suivi et son centromère.
- Donc: Distance (centromère gène) = % post-réduction * 1 / 2
 - % post-réduction = Nombre asques ou tetrades post-réduit * 100 / Nombre total d'asques

Exemple:

- Nombre asques ou tetrades post-réduit = 37
- Nombre total d'asques = 247
- % post-réduction = 37 * 100 / 247 = 15 %
- Dans 100 asques, il y'a 15 asques où s'est produit des C.O
- Dans 85% des asques sont pré-réduits et donc pas de C.O
- Distance (centromère gène) = 15 * 1 / 2 = 7.5 U.C.O
- L'unité de la distance génétique est définie comme la distance pour laquelle 1 % des produits de la méiose ont subit un crossing-over (C.O).
- Unité : centimorgan (c) ou unité crossing-over

NB:

Le calcul ci-dessus est valable quand le % de post-réduction est < 25%; c.à.d. qu'un comptage de point d'inter-change n'est correcte que si la distance est suffisamment petite. Si ce % est > ou égale à 25% le segment entre le locus et son centromère est important d'où la possibilité d'avoir plusieurs chiasmas et par conséquent il n'y a plus de relation entre la fréquence de post-réduction et la distance génétique.

Filière: S.V Semestre 4 Module: Génétique I

III. L'étude de l'indépendance et de la liaison génétique par l'analyse de tétrades :

- L'analyse de tétrades, pour une méiose affectant deux gènes représentés par deux couples d'allèles, permet de définir toutes les configurations possibles de méioses.

I.1. Transmission de deux couples d'allèles

A- Cas d'un croisement de deux souches différentes au niveau de deux gènes

Analyse de tétrades pour deux gènes dépendants :

- On croise deux souches différentes par deux caractères : une souche sauvage et une autre mutante.
- Couleur des spores : noir / blanc ; croissance du mycélium (normale / lente)
- Chez les haploïdes, le nombre de génotypes = nombre de phénotypes
- Avec un gène, 6 manières d'arrangement des tetrades.
- Avec 2 gènes, 36 arrangements possibles. Ainsi le nombre de cas possible obéit à la formule 6 n, avec $n = nombre de gènes (n=2; 6^2=36)$.
- Si on ne tient pas compte de l'ordre des spores dans chaque tetrade, on a 3 types de tetrades

Ditypes parental (DP)

Tetratypes (T)

Ditypes Recombinés (DR)

- Les ditypes parentaux (DP) avec quatre spores, deux à deux identiques à chacun des deux types parentaux, ici {+; +} et {a; b}.
- Les **tétratypes** (**T**) avec quatre spores, **toutes de génotypes différents**, deux de type **parental**, ici {+; +} et {a; b}, et deux des **deux types recombinés** possibles, ici {+; b} et {a; +}.
- Les ditypes recombinés (DR) avec <u>quatre spores</u>, <u>deux à deux identiques</u> à chacun des deux types recombinés possibles, ici {+; b} et {a; +}.

Origine des différentes tétrades

Les règles:

- La recombinaison méiotique est réciproque.
- Les **DP** proviennent de **l'absence de crossing-over** (a) ou de **double crossing-over** (c) **touchant les mêmes chromatides**.
- Les **Tétratypes** (**T**) proviennent de **simple crossing-over** (b) ou de **double crossing-over** (d) touchant **3 chromatides**.
- Les DR proviennent de double crossing-over (e) touchant 4 chromatides différentes.

Filière : S.V Semestre 4 Module : Génétique I

Figure 4.8 Méiose avec deux crossing-over.

B- Distance entre deux gènes:

Exemple:

Le résultat d'un croisement entre deux souches différentes pour deux caractères a donné les résultats suivants :

 $DP = 166 \text{ tetrades}, \quad T = 30 \text{ tretrades}; \quad DR = 4 \text{ tetrades}$

Calculer la distance entre les deux gènes.

Solution:

- Le nombre total de tetrades : 166 + 30 + 4 = 200
- Le nombre de spores :
- Les **DP** ne contiennent que des **spores parentales**.

 $166 \times 4 = 664 \text{ spores}.$

- Les tetratypes (T), contiennent $\frac{1}{2}$ de spores recombinantes et $\frac{1}{2}$ de spores parentales.

 $30 \times 2 = 60$ parentales

 $30 \times 2 = 60$ recombinées

- Les DR ne contiennent que des spores recombinées.
- $4 \times 4 = 16$ spores recombinées
 - Le nombre total de spores = 800.

Campus Univ. Ait Melloul

Filière : S.V Semestre 4 Module : Génétique I

- Les DP (0 crossing-over) sont largement en excès par rapport DR (2 C.0).
- La fréquence des T et DR fournit une indication sur la distance entre 2 gènes portés sur le même chromosome.
- Cette distance est fonction du %recombinaison entre les deux gènes.

% recombinaison $(g_1 - g_2) = nb$ spores recombinées * 100 / nb total spores

Ou bien

% recombinaison (g 1 -g 2) = (nb de DR + $\frac{1}{2}$ nb de T) * 100 / nb total de tétrades

Dans cet exemple:

NB:

- Deux gènes sont liés, si le % recombinaison < 50%.
- Si ce % > 50%, on dit que les deux gènes ne sont pas portés par le même chromosome. Cette condition est nécessaire mais pas suffisantes, car on peut avoir 2 gènes sur le même chromosome mais sont suffisamment éloignés l'un de l'autre pour avoir plus d'un seul C.O.
 - C Analyse de tétrades pour deux gènes physiquement indépendants : ou ségrégation di-génique dans le cas de l'indépendance

Exemple 1:

Ségrégation de deux gènes sur des chromosomes différents avec :

Allèle j (couleur jaune) =

Allèle b (couleur bleue) =

Croisement: j b + X - j + b

• x

Génotypes et phénotypes des spores obtenues

Filière : S.V Semestre 4 Module : Génétique I

Les 36 types d'asques peuvent être, si on ne tient plus compte de l'ordre des spores dans l'asque, regroupés en trois types d'asques :

Quelle est l'origine des différentes tétrades ???

+ Les DP proviennent:

- * de la répartition des centromères à la 1 ère division de la méiose.
- * de <u>l'absence de crossing-over</u> ou d'un <u>crossing-over entre chacun des</u> <u>gènes et son centromère</u>.

+ Les DR proviennent :

- * de la répartition des centromères à la <u>1 ère division</u> de la méiose.
- * de l'absence de crossing-over ou d'un crossing-over entre chacun des gènes et son centromère.

+ Les Tétratypes IV proviennent:

- * d'un crossing-over entre un des 2 gènes et son centromère.
- * de la répartition des centromères à la 1 ère division de la méiose et d'un crossing-over entre chacun des gènes et son centromère.

Filière : S.V Semestre 4 Module : Génétique I

		Pré-	réducti	ion ((1-p)			Pe	ost-rédu	ıctioi	n (p)		
			В		N		N		В		В		N
			В		N		В		N		N		В
			N		В		В		N		В		N
			N		В		N		В		N		В
Pré-	J N N	V V N	DR	J J B B	DP	J V B N	7	V J N B	T	V J B Z	T	J V N B	7
réduction	N	В		N		N	•	B	-	B	•	N	•
(1-q)	N	B		N		B		N		N		B	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ĵ	<mark> </mark>		V		V		J		V		V	
	J	J	DP	V	DR	J	T	V	T	J	T	J	T
	N	B		N		N		В		B		N	
	J	V		J		V		J		J		V	
	J	J		V		V		J		V		B	
	N	N	T	В	T	N	DR	В	DP	N	T	J	T
	J	V		J		J		V		V		J	
	N	B		N		B		V		N		B	
	N	N		B	_	В		N		B	_	N	_
Post-	J	J	T	V	T	J	DP	N	DR	J	T	V	T
réduction	J	V		J		J		V		V		<u>J</u>	
(q)	N	B		N		B		N		N		B	
(4)	J	J.	_	V	_	V	_	J	_	V		<u></u>	
	N N	N	T	В	T	N	T	B	T	N	DR	В	DP
	N	B		Ņ		N		B		B		N	
	J	V		7		V		J.		Z.		V.	
	N	N		B V	-	B	T	N V		B	0.0	N V	DE
	J	J	T	V	T	J	I	V	T	J	DP	V	DR

Exemple 2:

- Filière : S.V Semestre 4 Module : Génétique I
- Le croisement d'une souche haploïde $\{A; B\}$ par une souche haploïde $\{a; b\}$ donne une cellule diploïde $\{A//a; B//b\}$.
- Pour chacun des deux gènes on a six configurations possibles, deux pré-réduites et quatre post-réduites, et sous l'hypothèse qu'une paire d'homologues ségrége indépendamment d'une autre paire d'homologues, on peut prévoir $6 \times 6 = 36$ configurations possibles (tableau ci-dessous).

Dans un organisme où survient une mitose supplémentaire le stock des spores est doublé, sans que cela change la configuration; on s'abstiendra donc de cette mitose. Les taux de post-réduction pour les couples d'allèles A/a et B/b sont respectivement figurés par p et q.

- Les 36 types d'asques peuvent être, si on ne tient plus compte de l'ordre des spores dans l'asque, regroupés en trois types d'asques : les ditypes parentaux (DP) avec quatre spores, deux à deux identiques à chacun des deux types parentaux, ici {A; B} et {a; b}.
- les ditypes recombinés (DR) avec quatre spores, deux à deux identiques à chacun des deux types recombinés possibles, ici {A; b} et {a; B}.
- les tétratypes (T) avec quatre spores, toutes de génotypes différents, deux de type parental, ici {A; B} et {a; b}, et deux des deux types recombinés possibles, ici {A; b} et {a; B}.

Tableau: CONFIGURATIONS POSSIBLES DE LA MÉIOSE.

		Préréduct	ion (1 – p)		Postréd	uction p	
		(1 - p)/2	(1 - p)/2	p/4	p/4	p/4	p/4
		A	a	Α	а	а	А
		A	a	a	A	A	а
		a	A	A	a	A	a
		a	A	a	Α	а	Α
prèréduction (1 – q)/2	8 8 6 6	ÞР	DR	Т	I	т	Т
préréduction (1 – q)/2	ь ь в в	DR	DP	T	т	Т	т
postréduction q/4	В Ь В Ь	Т	т	DP	DR	т	т
postréduction q/4	ь в ь	Ť	т	DR	DP	т	т
postréduction q/4	ь в в ь	Т	т	Т	Ī	DP	DR
postréduction q/4	В Ь Ь	Т	XT 8	Т	т	DR	DP

$$f(DP) = f(DR) = (1 - p)(1 - q)/2 + pq/4$$
et
$$f(T) = p(1 - q) + q(1 - p) + pq/2$$

Filière: S.V Semestre 4 Module: Génétique I

TABLEAU: TYPES D'ASQUES EN FONCTION DE LA POSITION DES CHROMATIDES IMPLIQUÉES PAR UN CROSSING-OVER SUR LA PAIRE

D'HOMOLOGUES.

portant le couple B/b	Portant le couple d'allèles A/a							
	2-3	1-4	2-4	1-3				
2-3	DP	DR	Т	Т				
1-4	DR	DP	Т	Т				
2-4	Т	T	DP	DR				
1-3	1	T	DR	DP				

- Valeurs limites des fréquences des trois types d'asques :
- * Le traitement de cette information suppose de connaître le domaine de variation des fréquences des trois types d'asques.
- Si les deux gènes sont très proches de leurs centromères respectifs, ils ne seront jamais post-réduits.

On a alors:

$$f(DP) = f(DR) = \frac{1}{2}$$
 et $f(T) = 0$

• Si un seul des deux gènes est génétiquement indépendants de son centromère, de sorte qu'il présente un taux de post-réduction égale à 2/3, les fréquences des trois types de tétrades deviennent indépendantes du taux de post-réduction de l'autre gène, et sont égales à :

$$f(DP) = f(DR) = 1/6$$
 et $f(T) = 2/3$

On peut ainsi définir les domaines de <u>variation des fréquences des trois types de tétrades</u> de la manière suivante :

$$1/6 \le f(DP) = f(DR) \le 1/2$$

et $0 \le f(T) \le 2/3$

Conclusion:

Analyse de tétrades

Est-ce que DP = DR?

Oui

 $\mathbf{DP} = \mathbf{DR}$

Indépendance

Le rapport DP/DR/T

est -il 1:1:4?

oui

T =2/3 Indépendance génétique T <2/3

non

Indépendance physique

Non

DP > DR

Liaison

Y a -t-il des tétratypes?

oui

Calculer la distance

%R= (2*T + 4*DR)/4*Total asques

non

Mutations

Fortement liées

Autrement dit:

Gènes physiquement indépendants

et 0 < f(T) < 2/3

Gènes physiquement liés

Liaison génétique f(DP)> 1/6 >f(DR)

 $0 \le f(T) < 2/3$

Indépendance génétique f(DP) = f(DR)=1/6

f(T) = 2/3

D - Cas de 3 gènes liés

Soit 3 couples d'allèles a + / a; b + / b et c + / c.

Croisement:

Parents: a+b+c+X a b c

zygote: a+b+c+//a b c

Nombre de spores produites : 2 n = 8

Campus Univ. Ait Melloul Filière : S.V Semestre 4 Module : Génétique I

Pr. Zahidi

1er cas: Si aucun crossing-over on aura: Cat I

a+ b+ c+ et a b c

2ème cas: Un C.O entre a et b on aura Cat II

a+ b c et a b+ c+

3ème cas: Un C.O entre b et c on aura Cat III

a+ b+ c et a b c+

Si la distance entre les gènes est très faible, probabilité d'avoir 2 crossing-over est faible.

Double recombinaison

- 2 C.O entre a et b; b et c on aura Cat IV:

a + b c +

a b + c

La carte factorielle : Calcul du % recombinaison

% recombinaison (a,b) = nb spores (a, +b) + nb spores (a, b+) * 100 / nb total de spores

= Cat II + Cat IV * 100 / total spores

De même:

% recombinaison (b,c) = nb spores (b+,c) + nb spores (b,c+)* 100 / nb total de spores

= Cat III + Cat IV * 100 / total spores

Et

% recombinaison (a,c) = nb spores (a+,c) + nb spores (a,c+)* 100 / nb total de spores

= Cat II + Cat III * 100 / total spores

Filière : S.V Semestre 4 Module : Génétique I Campus Univ. Ait Melloul

Pr. Zahidi

NB: Ces calculs constituent une information indirecte sur l'emplacement des gènes sur les chromosomes, et permettent donc d'établir une carte factorielle ou carte génétique qui correspond à un segment de droite sur lequel seront placés les différents loci des gènes considérés.

E – Additivité des distance

Reprenons le croisement en « D »

Si les trois gènes portés sur un chromosome de taille suffisamment réduite, la probabilité d'avoir simultanément 2 C.O. est nulle. (les C.O n'ont pas lieu sur les petites distances)

% recombinaison
$$(a,c) = \%$$
 recomb. $(a,b) + \%$ recomb. (b,c)

- Si le segment de chromosome est assez long, on peut s'attendre à de multiples points d'interchange et la relation ci-dessus n'est plus exacte et on obtient les 8 combinaisons génétiques possibles, ainsi :

% recombinaison (a,c)
$$\leq$$
 % recomb. (a,b) + % recomb. (b,c)

Exemple de carte factorielle :

Soit le croisement entre deux souches de Neurospora

$$(a,b)$$
 X $(a+,b+)$

DP = 120; T = 11; DR = 3 (calcul du % de recombinaison, donc distance entre 2 gènes)

- * 9 tétrades où « a » est post-réduit ;
- * 26 tétrades où b est post-réduit (% post-réduction, calcul distance gène centromère.
- Nombre des spores parentales : 502
- Nombre des spores recombinées : 34 = 22 + 12 (3*4 DR) (dans les 44 (11 * 4) spores de T; il y a 22 spores recombinées et 22 spores parentales)

Total des spores : 536

% recombinaison (a,c) =
$$34 * 100 / 536$$

= 6.3

% post-réduction (ct,a) = 9 * 100 / 134

= 6.7 %

Filière : S.V Semestre 4 Module : Génétique I

Pr. Zahidi

$$d(a,c) = 6.3 U.C$$

$$d(ct, a) = 6.7 * \frac{1}{2} = 3.4 U.C$$

% post-réduction (ct,b) = 26 * 100 / 134

$$d(ct,b) = 19.7 * \frac{1}{2} = 9.7 U.C$$

