Relatório - Trabalho 3 Organização e Arquitetura de Computadores - Turma C

Gabriel Vieira de Arimatéa, 15/0126956

¹CIC – Universidade de Brasília (UnB)

vieira.arimatea@gmail.com

1. Descrição do problema

O trabalho consite em implementar um código em *assemblel* MIPS que realize operações sobre uma árvore binária de busca usando funções recursivas.

2. Descrição sucinta das funções implementadas

As principais funções implementadas são a função **menu**, **input**, **inserção**, **busca**, e **contaNos**:

2.1. menu

Função para criar uma interface básica com o usuário, apresentando as opções de inserir um nó, buscar um nó, contar quantos nós a árvore possui e sair do programa;

2.2. input

Função que recebe a resposta do usuário referente à função menu;

2.3. inserção

Função que insere um nó na árvore. Sempre será adicionado de forma que todos os nós possuam seus filhos com valor maior à direita e com valor menor à esquerda. Os nós são inceridos de forma que a raiz está armazenada no endereço armazenado em \mathbf{gp} e sempre os filhos de um nó estão localizados nos endereços 2*n+1 e 2*n+2, sendo \mathbf{n} o endereço do nó analizado subtraido de um *offset* (no caso o *offset* é o valor armazenado em \mathbf{gp});

2.4. busca

Consiste em uma função que busca um nó desejado, retornando se o encontrou ou se não;

2.5. contaNos

Função que realzia a contagem de quantos nós a árvore possui.

3. Testes e resultados

Para o teste, inseriu-se os valores 10, 5, 15, 17, 4, 6, 16 nessa ordem. Os dados foram armazenados da seguinte forma na memória de dados:

Data Segme	ent							□ □
Address	Value (+0)	Value (+4)	Value (+8)	Value (+c)	Value (+10)	Value (+14)	Value (+18)	Value (+1c)
0x00001800	10	5	15	4	6	-1	17	-1 4
0x00001820	-1	-1	-1	0	Θ	16	-1	0
0x00001840	0	0	0	0	Θ	0	0	0
0x00001860	0	0	0	-1	-1	0	0	0
0x00001880	0	0	0	0	0	0	0	0
0x000018a0	0	0	0	0	0	0	0	0
0x000018c0	0	0	0	0	0	0	0	0
0x000018e0	9	0	0	0	0	0	0	0 🖵
4								Þ

Figura 1. Nós armazenados

Os valores -1 indicam nós vazios, ou seja, são os "filhos" das folhas da árvore.

Em seguida, foi testada a função contaNos. O valor retornado pode ser vizualizado na imagem abaixo:

```
Mars Messages Run I/O

| Sale to programa | Scolha uma letra: n | Quantidade de nós na árvore: 7 | Selecione uma das opcoes abaixo: | [1] - Inserir no na arvore | [8] - Buscar na arvore | [8] | Runtidade de nos na arvore | [8] - Sair do programa | Scolha uma letra: | ▼
```

Figura 2. Retorno da função contaNo

A função seguinte a ser testada foi a busca. Para isso procuramos primeiramente o valor 5 (existente na arvora) e depois o valor 2 (não existente na árvore).

Figura 3. Retorno da busca com nó existente

Figura 4. Retorno da busca com nó inexistente

A função contaNos foi a mais trabalhosa para se implementar, uma vez que sua contagem inicialmente não estava correta, mas esse erro foi corrigido.

Com isso todos os testes foram concluidos.