Lecture Summary 7

For Markov chain theory we will consider a state space of $\Omega = \{1, 2, ..., k\}$, technically known as a finite state space. The transitions are represented by a $k \times k$ matrix P where $p_{ij} = P(X_{n+1} = j | X_n = i)$.

The stationary distribution $\pi' = (\pi_1, \dots, \pi_k)$ is connected to P via

$$\pi' = \pi' P$$
.

Here ' denotes transpose so strictly π is a $1 \times k$ column vector. In particular

$$\pi_j = \sum_{i=1}^k \pi_i \, p_{ij}.$$

If we start the chain at q_0 ; i.e. $P(X_0 = j) = q_{0j}$, then from the law of total probability it is that

$$q_1' = q_0' P,$$

where $P(X_1 = j) = q_{1j}$, and in general $q'_n = q'_0 P^n$ where $q_{nj} = P(X_n = j)$. If $(X_n)_{n>0}$ is aperiodic and irreducible (to be explained in class) then for

such a P the π exists and is unique and

$$q_{nj} \to \pi_j$$
.

The eigenvalues of P are important as to the convergence of q_n to π . If we assume

$$\pi_i p_{ij} = \pi_i p_{ji}$$
, for all i, j

then the eigenvalues are real. The eigenvalues lie between -1 and +1 and the largest eigenvalue is 1. That is

$$-1 \le \lambda_k \le \lambda_{k-1} \le \dots \le \lambda_2 \le \lambda_1 = 1$$

where (λ_k) are the eigenvalues of P in decreasing order.

That 1 is an eigenvalue of P follows from $\pi' = \pi' P$. Further, the chain is aperiodic if $\lambda_k > -1$ and is irreducible if $\lambda_2 < 1$. With this we will show in class that $q_{n\,j} \to \pi$.

The basic idea is that we can write

$$q_{nj} = \pi + \sum_{j=2}^{k} \alpha_j \lambda_j^n v_j,$$

for some (α_j) , and v_j is the left eigenvector for eigenvalue λ_j .