

Mathematics for Computer Science 6.042J/18.062J

WELCOME!

Prof. Albert R. Meyer Dr. Radhika Nagpal

http://theory.lcs.mit.edu/classes/6.042

"Proof, Proofs & More Proofs"

Copyright © Albert R. Meyer, 20

L1-1.1

Quick Summary

- 1. Fundamental concepts of Mathematics.
- 2. Discrete structures.
- 3. Discrete probability theory.

pyright © Albert R. Meyer, 2002.

1112

Mathematics for Computer Science 6.042J/18.062J

DUE FRIDAY: Online Tutor

Reading Problem 1 (RP1):

- Course Registration
- Diagnostic Survey

opyright © Albert R. Meyer, 2002

L1-1.

Mathematics for Computer Science 6.042J/18.062J

Course Organization

- "Paperless:" All handouts online -- no take-home handouts
- Studio-Lecture Style: mixture of mini-lectures & team problem-solving sessions

syright © Albert R. Meyer, 2002.

L1-1.

Studio Style

Say "hello" to your TA & the people next to you.

L1-1.5

Getting started: Pythagorean theorem

$$a^2 + b^2 = c^2$$

Familiar? Yes! Obvious? No!

opyright © Albert R. Meyer, 2002

111

Another False proof

Theorem: Every quadratic polynomial over \mathbb{C} has two roots.

Proof (by calculation):

The polynomial $ax^2 + bx + c$ has roots

$$r_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $r_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

.1-1 13

Another False proof

Counter-example:

 $0x^2 + 0x + 1$ has 0 roots. $0x^2 + 1x + 1$ has 1 root.

The bug: divide by zero error. The fix: assume $a \neq 0$. (Could also say def of "quadratic" requires $a \neq 0$.)

Converight © Albert R. Meyer. 2002.

. . . .

Another false proof

Counter-example:

$$1x^2 + 0x + 0$$
 has 1 root.

The bug: $r_1 = r_2$

The fix: need hypothesis $D \neq 0$ where

$$D := \sqrt{b^2 - 4ac}$$

Copyright © Albert R. Meyer, 2002

L1-1.1

Another false proof

Ambiguity when D < 0: $x^2 + 1$ has roots i, -i. Which is r_1 , which is r_2 ?

ppyright © Albert R. Meyer, 2002

L1-1.16

Another false proof

The ambiguity causes problems:

$$1 = \sqrt{1} = \sqrt{(-1)(-1)} = \sqrt{-1}\sqrt{-1} = (\sqrt{-1})^2 = -1$$

Moral: "mindless" calculation not safe.

- 1. Be sure rules are properly applied.
- 2. Calculation is a risky substitute for understanding.

L1-1.17

Consequences of 1=-1

$$\frac{1}{2} = -\frac{1}{2}$$
 (multiply by $\frac{1}{2}$)
2 = 1 (add $\frac{3}{2}$)

"Since I and the Pope are clearly 2, we conclude that I and the Pope are 1.
That is, I am the Pope."

-- Bertrand Russell

Copyright © Albert R. Meyer, 2002.

L1-1.1

Proof by Contradiction

Theorem: $\sqrt{2}$ is irrational. Proof (by contradiction):

- Suppose $\sqrt{2}$ was rational.
- Choose *m*, *n* without common prime factors (always possible) such that

$$\sqrt{2} = \frac{m}{n}$$

• Show that *m* & *n* are both even, a contradiction.

ppyright © Albert R. Meyer, 2002.

11120

Indirect Proof

Theorem: $\sqrt{2}$ is irrational. Proof (by contradiction):

$$\sqrt{2} = \frac{m}{n}$$

$$\sqrt{2} n = m$$

$$2n^2 = m^2$$
so m is even.

so can assume
$$m = 2l$$

$$m^2 = 4l^2$$

$$2n^2 = 4l^2$$

$$n^2 = 2l^2$$
so n is even.

15 8 11 2

Short exercise

Proof assumes that if m^2 is even, then m is even.

Prove it!

wright © Albert R. Meyer, 2002.

L1-1.2

Generalizations

Can you prove $\sqrt{3}$ is irrational?

How about $\sqrt[3]{2}$?

Copyright © Albert R. Meyer, 2002.

L1-1.23

CLASS PROBLEMS 1 & 2

opyright © Albert R. Meyer, 2002.

L1-1.2