The group G is isomorphic to the group labelled by [48, 29] in the Small Groups library. Ordinary character table of $G \cong GL(2,3)$:

Trivial source character table of $G \cong GL(2,3)$ at p = 3:

Normalisers N_i

Normansers N_i	N_1						1V2			
p-subgroups of G up to conjugacy in G	P_1					P_2				
Representatives $n_j \in N_i$	1 <i>a</i>	2b	4a	2a	8a	8 <i>b</i>	1a	2b	2a	2c
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	3	-1	3	3	-1	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	3	1	3	3	1	1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	3	1	-1	3	-1	-1	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	6	0	0	-6	$E(8) + E(8)^3$	$-E(8) - E(8)^3$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8$	6	0	0	-6	$-E(8) - E(8)^3$	$E(8) + E(8)^3$	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8$	3	-1	-1	3	1	1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	1	1	1	1	1	1	1	1	1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	0	-4	0	0	1	-1	1	-1
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	1	-1	1	1	-1	-1	1	1	-1	-1
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8$	4	0	0	-4	0	0	1	-1	-1	1

 $P_1 = Group([()]) \cong 1$ $P_2 = Group([(1,11,3)(2,18,7)(4,47,30)(5,40,28)(6,27,14)(8,48,37)(9,44,35)(10,34,21)(12,31,41)(13,16,39)(15,26,29)(17,25,42)(19,38,45)(20,23,43)(22,33,36)(24,32,46)]) \cong C3$

 $N_1 = Group([[1,2](3,18)(4,9)(5,8)(6,10)(7,11)(12,33)(13,32)(14,34)(15,38)(16,24)(17,23)(13,34)(15$

 $|\chi_2|$ 1 1 1 -1 -1 -1 1 1

 $\begin{vmatrix} \chi_5 & 4 & -4 & 0 & 0 & 0 & 0 & 1 & -1 \end{vmatrix}$

 $|\chi_4| 3 3 -1 1 -1$