Math 120

PSet 10

Nov 14 2024

Contents

Chapter 1			Page 2
	11	PSet 10	2

Chapter 1

1.1 PSet 10

Question 1

Find the surface area of the part of the paraboloid $x = 3y^2 + 3z^2$ satisfying $x \le 3$.

$$y = r \cos \theta, \quad z = r \sin \theta, \quad x = 3r^{2}$$

$$A = \iint_{\text{Domain}} \left\| \frac{\partial \mathbf{S}}{\partial r} \times \frac{\partial \mathbf{S}}{\partial \theta} \right\| dr d\theta$$

$$\mathbf{S}(r, \theta) = (3r^{2}, r \cos \theta, r \sin \theta)$$

$$\frac{\partial \mathbf{S}}{\partial r} = (6r, \cos \theta, \sin \theta), \quad \frac{\partial \mathbf{S}}{\partial \theta} = (0, -r \sin \theta, r \cos \theta)$$

$$\frac{\partial \mathbf{S}}{\partial r} \times \frac{\partial \mathbf{S}}{\partial \theta} = (r, -6r^{2} \cos \theta, -6r^{2} \sin \theta)$$

$$\left\| \frac{\partial \mathbf{S}}{\partial r} \times \frac{\partial \mathbf{S}}{\partial \theta} \right\| = r\sqrt{1 + 36r^{2}}$$

$$A = \int_{0}^{2\pi} \int_{0}^{1} r\sqrt{1 + 36r^{2}} dr d\theta$$

$$u = 1 + 36r^{2}, \quad du = 72r dr, \quad r dr = \frac{du}{72}$$

$$\int_{r=0}^{r=1} r\sqrt{1 + 36r^{2}} dr = \frac{1}{72} \int_{u=1}^{u=37} \sqrt{u} du = \frac{1}{72} \left[\frac{2}{3} u^{3/2} \right]_{u=1}^{u=37}$$

$$\frac{1}{72} \left[\frac{2}{3} u^{3/2} \right]_{u=1}^{u=37} = \frac{1}{108} \left(37^{3/2} - 1 \right)$$

$$A = \frac{\pi}{54} \left(37^{3/2} - 1 \right)$$

$$37^{3/2} = \sqrt{37^{3}} = 37\sqrt{37}$$

$$A = \frac{\pi}{54} \left(37\sqrt{37} - 1 \right)$$

In this problem, we'll find the surface area of the part of the cylinder $x^2 + y^2 = 9$ that lies between the planes x + y + z = -6 and x + y + z = 5.

- (a) Find a parametrization $\vec{r}_1(u)$ of the curve C_1 of intersection of the plane x+y+z=5 with the cylinder $x^2+y^2=9$. Also find a parametrization $\vec{r}_2(u)$ of the curve C_2 of intersection of the plane x+y+z=-6 with the cylinder.
- (b) Write down a parametrization $\vec{s}(u,v)$ of the part of the cylinder that lies between the two planes. The curves C_1 and C_2 should be two grid curves of the parametrization, and the bounds on the parameters should be of the form $a \le v \le b$ and $c \le u \le d$ for constants a, b, c, and d.
- (c) Use the parametrization you found to calculate the surface area of the part of the cylinder that lies between the two planes.
- (d) Does your answer from (c) make sense? Give an intuitive geometric reason that the surface area you found is the same as the surface area of a cylinder of radius 3 and height 11.

Solution:

(a) $x = 3\cos u$, $y = 3\sin u$ $z = 5 - x - y = 5 - (3\cos u + 3\sin u)$ $\vec{r}_1(u) = (3\cos u, 3\sin u, 5 - 3\cos u - 3\sin u)$ $z = -6 - x - y = -6 - (3\cos u + 3\sin u)$ $\vec{r}_2(u) = (3\cos u, 3\sin u, -6 - 3\cos u - 3\sin u)$ (b) $\vec{s}(u,v) = (3\cos u, 3\sin u, v - 3\cos u - 3\sin u)$ $0 \le u \le 2\pi$, $-6 \le v \le 5$ (c) $\frac{\partial \dot{s}}{\partial u} = (-3\sin u, \ 3\cos u, \ 3\sin u - 3\cos u)$ $\frac{\partial \vec{s}}{\partial v} = (0, 0, 1)$ $\frac{\partial \vec{s}}{\partial u} \times \frac{\partial \vec{s}}{\partial z} = (3\cos u, \ 3\sin u, \ 0)$ $\left\| \frac{\partial \vec{s}}{\partial u} \times \frac{\partial \vec{s}}{\partial v} \right\| = \sqrt{(3\cos u)^2 + (3\sin u)^2} = 3$ $A = \int_{0.05}^{5} \int_{0.05}^{2\pi} 3 \, du \, dv = 3 \cdot \left(\int_{0.05}^{2\pi} du \right) \cdot \left(\int_{0.05}^{5} dv \right) = 3 \cdot 2\pi \cdot 11 = 66\pi$ (d) $A = 2\pi rh = 2\pi \times 3 \times 11 = 66\pi$

Evaluate the surface integral

$$\iint_{S} (x^2 + y^2 + z^2) \, dS$$

where S is the surface of the solid cylinder defined by the inequalities $x^2 + z^2 \le 1$ and $0 \le y \le 5$. Note that S consists of a hollow cylinder and two disks.

$$I = \iint_{S} (x^{2} + y^{2} + z^{2}) dS$$

$$x^{2} + z^{2} \leq 1, \quad 0 \leq y \leq 5$$

$$S = S_{\text{cyl}} \cup S_{\text{top}} \cup S_{\text{bot}}$$
For S_{cyl} , $x = \cos \theta$, $z = \sin \theta$, $y = y$, $\theta \in [0, 2\pi)$, $y \in [0, 5]$

$$\vec{r}(\theta, y) = (\cos \theta, y, \sin \theta)$$

$$\vec{r}_{\theta} = (-\sin \theta, 0, \cos \theta), \quad \vec{r}_{y} = (0, 1, 0)$$

$$\vec{r}_{\theta} \times \vec{r}_{y} = (-\cos \theta, 0, -\sin \theta), \quad |\vec{r}_{\theta} \times \vec{r}_{y}| = 1$$

$$dS_{\text{cyl}} = d\theta dy$$

$$x^{2} + y^{2} + z^{2} = \cos^{2} \theta + y^{2} + \sin^{2} \theta = 1 + y^{2}$$

$$I_{\text{cyl}} = \int_{0}^{2\pi} \int_{0}^{5} (1 + y^{2}) dy d\theta$$

$$\int_{0}^{5} (1 + y^{2}) dy = \int_{0}^{5} 1 dy + \int_{0}^{5} y^{2} dy = [y]_{0}^{5} + \left[\frac{y^{3}}{3}\right]_{0}^{5} = 5 + \frac{125}{3} = \frac{140}{3}$$

$$I_{\text{cyl}} = \int_{0}^{2\pi} \frac{140}{3} d\theta = \frac{140}{3} \cdot 2\pi = \frac{280\pi}{3}$$
For S_{top} , $x = r \cos \theta$, $z = r \sin \theta$, $y = 5$, $r \in [0, 1]$, $\theta \in [0, 2\pi)$

$$dS_{\text{top}} = r dr d\theta$$

$$x^{2} + y^{2} + z^{2} = r^{2} + 25$$

$$I_{\text{top}} = \int_{0}^{2\pi} \int_{0}^{1} (r^{2} + 25)r dr d\theta$$

$$\int_{0}^{1} (r^{2} + 25)r dr = \int_{0}^{1} (r^{3} + 25r) dr = \left[\frac{r^{4}}{4} + \frac{25r^{2}}{2}\right]_{0}^{1} = \frac{1}{4} + \frac{25}{2} = \frac{51}{4}$$

$$I_{\text{top}} = \int_{0}^{2\pi} \frac{51}{4} d\theta = \frac{51}{4} \cdot 2\pi = \frac{51\pi}{2}$$

For
$$S_{\text{bot}}$$
, $x = r \cos \theta$, $z = r \sin \theta$, $y = 0$

$$x^{2} + y^{2} + z^{2} = r^{2}$$

$$dS_{\text{bot}} = r dr d\theta$$

$$I_{\text{bot}} = \int_{0}^{2\pi} \int_{0}^{1} r^{3} dr d\theta$$

$$\int_{0}^{1} r^{3} dr = \left[\frac{r^{4}}{4}\right]_{0}^{1} = \frac{1}{4}$$

$$I_{\text{bot}} = \int_{0}^{2\pi} \frac{1}{4} d\theta = \frac{1}{4} \cdot 2\pi = \frac{\pi}{2}$$

$$I = I_{\text{cyl}} + I_{\text{top}} + I_{\text{bot}} = \frac{280\pi}{3} + \frac{51\pi}{2} + \frac{\pi}{2}$$

$$I = \frac{560\pi}{6} + \frac{153\pi}{6} + \frac{3\pi}{6} = \frac{716\pi}{6} = \frac{358\pi}{3}$$

$$\boxed{\frac{358\pi}{3}}$$

Find the mass of a thin funnel in the shape of a cone $z=\sqrt{x^2+y^2},\ 1\leq z\leq 4,$ if its density function is $\rho(x,y,z)=z+2.$

$$z = \sqrt{x^2 + y^2}, \quad 1 \le z \le 4$$

$$\rho(x, y, z) = z + 2$$

$$\begin{cases} x = z \cos \theta \\ y = z \sin \theta \\ z = z \end{cases}$$

$$\mathbf{r}(\theta, z) = (z \cos \theta, z \sin \theta, z)$$

$$\mathbf{r}_{\theta} = (-z \sin \theta, z \cos \theta, 0)$$

$$\mathbf{r}_{z} = (\cos \theta, \sin \theta, 1)$$

$$\mathbf{N} = \mathbf{r}_{\theta} \times \mathbf{r}_{z} = (z \cos \theta, z \sin \theta, -z)$$

$$|\mathbf{N}| = \sqrt{(z \cos \theta)^2 + (z \sin \theta)^2 + (-z)^2} = z\sqrt{2}$$

$$dS = z\sqrt{2} d\theta dz$$

$$M = \int_{\theta=0}^{2\pi} \int_{z=1}^{4} \rho(z) dS$$

$$M = \int_{z=1}^{4} \int_{\theta=0}^{2\pi} (z+2) z \sqrt{2} d\theta dz$$

$$\int_{\theta=0}^{2\pi} d\theta = 2\pi$$

$$M = 2\pi \sqrt{2} \int_{z=1}^{4} (z+2) z dz$$

$$M = 2\pi \sqrt{2} \int_{z=1}^{4} (z^2 + 2z) dz$$

$$\int (z^2 + 2z) dz = \frac{1}{3} z^3 + z^2$$

$$\left[\frac{1}{3}(4)^3 + (4)^2\right] - \left[\frac{1}{3}(1)^3 + (1)^2\right]$$

$$\left(\frac{64}{3} + 16\right) - \left(\frac{1}{3} + 1\right)$$

$$36$$

$$M = 2\pi \sqrt{2} \times 36$$

$$M = 72\pi \sqrt{2}$$

Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S}, \text{ where } \vec{F} = \langle x, y, 2z \rangle$$

and S is the part of the paraboloid $z = 4 - x^2 - y^2$, oriented downwards, that lies above the unit square $[0,1] \times [0,1]$.

$$\iint_{S} \vec{F} \cdot d\vec{S}, \quad \vec{F} = \langle x, y, 2z \rangle$$

$$z = 4 - x^{2} - y^{2}$$

$$\vec{n} = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right)$$

$$\frac{\partial f}{\partial x} = -2x, \quad \frac{\partial f}{\partial y} = -2y$$

$$\vec{n} = (-2x, -2y, -1)$$

$$d\vec{S} = \vec{n} \, dx \, dy = (-2x, -2y, -1) \, dx \, dy$$

$$\vec{F} = (x, y, 2z) = (x, y, 2(4 - x^{2} - y^{2}))$$

$$6$$

$$\vec{F} \cdot d\vec{S} = (x, y, 2z) \cdot (-2x, -2y, -1) \, dx \, dy$$

$$\vec{F} \cdot d\vec{S} = [-2x^2 - 2y^2 - 2(4 - x^2 - y^2)] \, dx \, dy$$

$$\vec{F} \cdot d\vec{S} = [-2x^2 - 2y^2 - 8 + 2x^2 + 2y^2] \, dx \, dy = -8 \, dx \, dy$$

$$\iint_S \vec{F} \cdot d\vec{S} = \iint_D (-8) \, dx \, dy = -8 \, \iint_D dx \, dy$$

$$\iint_S \vec{F} \cdot d\vec{S} = -8 \times 1 = -8$$

$$\iint_S \vec{F} \cdot d\vec{S} = -8$$

Ouestion 6

Evaluate the surface integral

$$\iint_{S} \vec{F} \cdot d\vec{S}, \text{ where } \vec{F} = \langle -z, x, y \rangle$$

and S is the part of the unit sphere $x^2 + y^2 + z^2 = 1$ in the first octant, oriented upwards.

$$\vec{F} = \langle -z, x, y \rangle$$

$$x = \sin \phi \cos \theta, \quad y = \sin \phi \sin \theta, \quad z = \cos \phi$$

$$0 \le \phi \le \frac{\pi}{2}, \quad 0 \le \theta \le \frac{\pi}{2}$$

$$\vec{r}_{\phi} = \frac{\partial \vec{r}}{\partial \phi} = \begin{pmatrix} \cos \phi \cos \theta \\ \cos \phi \sin \theta \\ -\sin \phi \end{pmatrix}, \quad \vec{r}_{\theta} = \frac{\partial \vec{r}}{\partial \theta} = \begin{pmatrix} -\sin \phi \sin \theta \\ \sin \phi \cos \theta \\ 0 \end{pmatrix}$$

$$\vec{r}_{\phi} \times \vec{r}_{\theta} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \cos \phi \cos \theta & \cos \phi \sin \theta \\ -\sin \phi \sin \theta & \sin \phi \cos \theta \end{vmatrix}$$

$$\vec{r}_{\phi} \times \vec{r}_{\theta} = \begin{pmatrix} \sin^{2} \phi \cos \theta \\ \sin^{2} \phi \sin \theta \\ \cos \phi \sin \phi \end{pmatrix}$$

$$d\vec{S} = \begin{pmatrix} \sin^{2} \phi \cos \theta \\ \sin^{2} \phi \sin \theta \\ \cos \phi \sin \phi \end{pmatrix} d\phi d\theta$$

$$\vec{F} = \langle -z, x, y \rangle = \langle -\cos\phi, \sin\phi\cos\theta, \sin\phi\sin\theta \rangle$$

$$\vec{F} \cdot d\vec{S} = (-\cos\phi) \left(\sin^2\phi \cos\theta\right) + \left(\sin\phi \cos\theta\right) \left(\sin^2\phi \sin\theta\right) + \left(\sin\phi \sin\theta\right) \left(\cos\phi \sin\phi\right)$$

$$\vec{F} \cdot d\vec{S} = \cos\phi \sin^2\phi (-\cos\theta + \sin\theta) + \sin^3\phi \cos\theta \sin\theta$$

$$\int_0^{\frac{\pi}{2}} (-\cos\theta + \sin\theta) \, d\theta = 0, \quad \int_0^{\frac{\pi}{2}} \sin 2\theta \, d\theta = 1$$

$$\int_0^{\frac{\pi}{2}} \sin^3 \phi \, d\phi = \frac{4}{3}$$

$$\iint_S \vec{F} \cdot d\vec{S} = \frac{1}{2} \cdot \frac{4}{3} = \frac{2}{3}$$

Find the flux of $\vec{F}(x, y, z) = z\hat{i} + y\hat{j} + x\hat{k}$ across the helicoid

$$\vec{r}(u,v) = \langle u \cos v, u \sin v, v \rangle, \quad 0 \le u \le 1, \ 0 \le v \le 2\pi,$$

oriented upward.

Solution:

$$\vec{r}(u,v) = \langle u\cos v, u\sin v, v \rangle$$

$$\vec{r}_u = \langle \cos v, \sin v, 0 \rangle, \quad \vec{r}_v = \langle -u\sin v, u\cos v, 1 \rangle$$

$$\vec{n} = \vec{r}_u \times \vec{r}_v = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \cos v & \sin v & 0 \\ -u\sin v & u\cos v & 1 \end{vmatrix} = \langle \sin v, -\cos v, u \rangle$$

$$\vec{F}(x,y,z) = z \, \hat{i} + y \, \hat{j} + x \, \hat{k}, \quad \vec{F}(\vec{r}(u,v)) = \langle v, u\sin v, u\cos v \rangle$$

$$\vec{F} \cdot \vec{n} = v\sin v - u\sin v\cos v + u^2\cos v$$

$$\Phi = \iint_D (\vec{F} \cdot \vec{n}) \, du \, dv = \int_0^{2\pi} \int_0^1 \left(v\sin v - u\sin v\cos v + u^2\cos v \right) \, du \, dv$$

$$\int_0^1 v\sin v \, du = v\sin v, \quad \int_0^1 u\sin v\cos v \, du = \frac{1}{2}\sin v\cos v, \quad \int_0^1 u^2\cos v \, du = \frac{1}{3}\cos v$$

$$\Phi = \int_0^{2\pi} \left(v\sin v - \frac{1}{2}\sin v\cos v + \frac{1}{3}\cos v \right) \, dv$$

$$\sin v\cos v = \frac{1}{2}\sin 2v$$

$$\Phi = \int_0^{2\pi} \left(v\sin v - \frac{1}{4}\sin 2v + \frac{1}{3}\cos v \right) \, dv$$

$$\int_0^{2\pi} v\sin v \, dv = -2\pi, \quad \int_0^{2\pi} \sin 2v \, dv = 0, \quad \int_0^{2\pi} \cos v \, dv = 0$$

$$\Phi = -2\pi - \frac{1}{4}(0) + \frac{1}{3}(0)$$

$$\Phi = -2\pi$$

Question 8

Let S be the part of the elliptical cylinder $y^2 + 4z^2 = 4$ that lies above the xy-plane and between the planes x = -2 and x = 2. Let S have the upward orientation; that is, let S be oriented so that the normal vectors have positive z-component.

- (a) Find a parameterization of S.
- (b) Does your parameterization match the given orientation of S? Explain.

(c) Let \vec{F} be the vector field

$$\vec{F}(x, y, z) = e^{x^2 y^2 z^2} \hat{i} + x^2 y \hat{j} + z^2 e^{x/5} \hat{k}.$$

Find the flux of \vec{F} across the oriented surface S.

Solution:

(a)
$$\vec{r}(x,\theta) = \langle x, 2\sin\theta, \cos\theta \rangle$$
, $-2 \leqslant x \leqslant 2$, $0 \leqslant \theta \leqslant \frac{\pi}{2}$
(b) $\vec{r}_x = \langle 1,0,0 \rangle$, $\vec{r}_\theta = \langle 0, 2\cos\theta, -\sin\theta \rangle$, $\vec{N} = \vec{r}_x \times \vec{r}_\theta = \langle 0, \sin\theta, 2\cos\theta \rangle$
(c) $F_x = e^{4x^2\sin^2\theta\cos^2\theta}$, $F_y = 2x^2\sin\theta$, $F_z = \cos^2\theta e^{x/5}$
 $\vec{F} \cdot \vec{N} = 2x^2\sin^2\theta + 2\cos^3\theta e^{x/5}$

$$\Phi = \int_{x=-2}^2 \int_{\theta=0}^{\frac{\pi}{2}} \left(2x^2\sin^2\theta + 2\cos^3\theta e^{x/5}\right) d\theta dx$$

$$\int_{\theta=0}^{\frac{\pi}{2}} \sin^2\theta d\theta = \frac{\pi}{4}, \quad \int_{\theta=0}^{\frac{\pi}{2}} \cos^3\theta d\theta = \frac{2}{3}$$

$$\Phi = \int_{x=-2}^2 \left(2x^2 \cdot \frac{\pi}{4} + 2 \cdot \frac{2}{3}e^{x/5}\right) dx$$

$$\int_{x=-2}^2 x^2 dx = \frac{16}{3}, \quad \int_{x=-2}^2 e^{x/5} dx = 5\left(e^{2/5} - e^{-2/5}\right)$$

$$\Phi = \frac{\pi}{2} \cdot \frac{16}{3} + \frac{4}{3} \cdot 5\left(e^{2/5} - e^{-2/5}\right)$$

$$\Phi = \frac{8\pi}{2} + \frac{20}{2}\left(e^{2/5} - e^{-2/5}\right)$$

Question 9

For each of the following parameterizations $\vec{r}(u,v)$, and vector fields $\vec{F}(x,y,z)$:

- i. Describe the surface S that is parameterized by $\vec{r}(u, v)$.
- ii. Describe in words the positive orientation of S given by the family of unit normal vectors $\vec{n} = (\vec{r}_u \times \vec{r}_v)/|\vec{r}_u \times \vec{r}_v|$. That is, give a description of which way the normal vectors point for this orientation.