Numbers of various sorts

Exercises

1. Prove the following formulas by induction.

(i)
$$1^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Proof. Let n=1. Then $\frac{1(2)(3)}{6}=1$, so the formula holds. Now assume that the formula is true for some $k\in N$. Then

$$1^{2} + \dots + (k+1)^{2} = 1^{2} + \dots + k^{2} + (k+1)^{2} = \frac{k(k+1)(2k+1)}{6} + (k+1)^{2}$$
$$= \frac{k(k+1)(2k+1) + 6(k+1)^{2}}{6} = \frac{2k^{3} + 9k^{2} + 13k + 6}{6}$$
$$= \frac{(k+1)(k+2)(2(k+1) + 1)}{6}$$

(ii) $1^3 + \dots + n^3 = (1 + \dots + n)^2$

Proof. Let n = 1. Then $1^3 = 1^2$, so the formula holds. Now assume that the formula is true for some $k \in \mathbb{N}$. Then

$$1^{3} + \dots + (k+1)^{3} = (1^{3} + \dots + k^{3}) + (k+1)^{3} = (1 + \dots + k)^{2} + (k+1)^{3}$$

$$= (1 + \dots + k)^{2} + (k+1)^{2}(k+1) = (1 + \dots + k)^{2} + k(k+1)^{2} + (k+1)^{2}$$

$$= (1 + \dots + k)^{2} + 2\frac{k(k+1)}{2}(k+1) + (k+1)^{2}$$

$$= (1 + \dots + k)^{2} + 2(1 + \dots + k)(k+1) + (k+1)^{2}$$

$$= (1 + \dots + (k+1))^{2}$$

2. Find a formula for

(i)
$$\sum_{i=1}^{n} (2i-1) = 1+3+5+\cdots+(2n-1)$$

Proof.

$$\sum_{i=1}^{n} (2i-1) = 1 + 2 + \dots + 2n - 2(1+2+\dots+n) = \frac{2n(2n+1)}{2} - 2\frac{n(n+1)}{2}$$
$$= n(2n+1) - n(n+1) = 2n^2 + n - n^2 - n = n^2.$$

(ii)
$$\sum_{i=1}^{n} (2i-1)^2 = 1^2 + 3^2 + 5^2 + \dots + (2n-1)^2$$

Proof.

$$\sum_{i=1}^{n} (2i-1)^2 = 1^2 + 2^2 + \dots + (2n)^2 - 4(1^2 + 2^2 + \dots + n^2) = \frac{2n(2n+1)(4n+1)}{6} - 4\frac{n(n+1)(2n+1)}{6}$$
$$= \frac{8n^3 - 2n}{6} = \frac{2n(2n-1)(2n+1)}{6}$$

3. If $0 \le k \le n$, the "binomial coefficient" $\binom{n}{k}$ is defined by

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)\dots(n-k+1)}{k!}, \text{ if } k \neq 0, n$$

 $\binom{n}{0} = \binom{n}{n} = 1$ (a special case of the first formula if we define 0! = 1),

and for k < 0 or k > n we just define the binomial coefficient to be 0.

(a) Prove that

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Proof.

$$\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-(k-1))!} + \frac{n!}{k!(n-k)!} = \frac{kn!}{k!(n+1-k)!} + \frac{(n+1-k)n!}{k!(n+1-k)!}$$

$$= \frac{n!(k+n+1-k)}{k!(n+1-k)!} = \frac{(n+1)!}{k!(n+1-k)!} = \binom{n+1}{k}$$

(b) Notice that all the numbers in Pascal's triangle are natural numbers. Use part (a) to prove by induction that $\binom{n}{k}$ is always a natural number.

Proof. Let n=1. Then $\binom{1}{0}=1$ and $\binom{1}{1}=1$, so the binomial coefficient is always a natural number. Next, suppose that for some number n, and $0 \le k \le n$, $\binom{n}{k}$ is always a natural number. Then if k=0 or k=n+1, then $\binom{n+1}{k}=1$, which is a natural number. Otherwise,

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}, \text{ and } 1 \le k \le n, 0 \le k-1 \le n-1,$$

so $\binom{n+1}{k}$ is a sum of two natural numbers, and is therefore also a natural number.

- (c) Give another proof that $\binom{n}{k}$ is a natural number by showing that $\binom{n}{k}$ is the number of sets of exactly k integers chosen from $1, \ldots, n$.
 - *Proof.* The number of k-tuples of integers chosen from $1, \ldots, n$ is $n(n-1) \ldots (n-k+1)$, because there is n choices for the first element, n-1 choices for the second, etc. Now, for each k-tuple, it can be arranged in $k(k-1) \ldots (1) = k!$ different ways, so to get the number of sets of size k, with elements chosen from $1, \ldots, n$, we have $\frac{n(n-1) \ldots (n-k+1)}{k!} = \binom{n}{k}$.
- (d) Prove the "binomial theorem": If a and b are any numbers and n is a natural number, then

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{n-1}ab^{n-1} + b^{n}$$
$$= \sum_{j=0}^{n} \binom{n}{j}a^{n-j}b^{j}.$$

Proof. Let n = 1. Then

$$(a+b)^1 = a+b = a^1 + b^1 = \sum_{j=0}^{n} \binom{n}{j} a^{n-j} b^j,$$

so the statement holds true.

Next, suppose that the statement is true for some $n \ge 1$. Then

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{j=0}^n \binom{n}{j} a^{n-j} b^j$$

$$= \sum_{j=0}^n \binom{n}{j} a^{n+1-j} b^j + \sum_{j=0}^n \binom{n}{j} a^{n-j} b^{j+1}$$

$$= \sum_{j=0}^n \binom{n}{j} a^{n+1-j} b^j + \sum_{j=1}^{n+1} \binom{n}{j-1} a^{n+1-j} b^j$$

$$= a^{n+1} + \sum_{j=1}^n \binom{n}{j} + \binom{n}{j-1} a^{n+1-j} b^j + b^{n+1}$$

$$= a^{n+1} + \sum_{j=1}^n \binom{n+1}{j} a^{n+1-j} b^j + b^{n+1}$$

$$= \sum_{j=0}^{n+1} a^{n+1-j} b^j.$$

(e) Prove that

(i)

$$\sum_{j=0}^{n} \binom{n}{j} = \binom{n}{0} + \dots + \binom{n}{n} = 2^{n}$$

Proof. Let n = 1. Then

$$\sum_{j=0}^{n} \binom{n}{j} = 1 + 1 = 2 = 2^{1},$$

so the formula holds.

Next, suppose that for some $n \ge 1$, $\sum_{j=0}^{n} = 2^{n}$. Then

$$\sum_{j=0}^{n+1} \binom{n+1}{j} = \sum_{j=0}^{n+1} \left(\binom{n}{j} + \binom{n}{j-1} \right) = \binom{n}{0} + \sum_{j=1}^{n} \binom{n}{j} + \sum_{j=1}^{n} \binom{n}{j-1} + \binom{n}{n}$$
$$= \sum_{j=0}^{n} \binom{n}{j} + \sum_{j=0}^{n} \binom{n}{j} = 2^{n} + 2^{n} = 2^{n+1}.$$

Proof. (alternative)

$$2^{n} = (1+1)^{n} = \sum_{j=0}^{n} 1^{n-j} 1^{j} \binom{n}{j} = \sum_{j=0}^{n} \binom{n}{j}$$

(ii)

$$\sum_{j=0}^{n} (-1)^{j} \binom{n}{j} = \binom{n}{0} - \binom{n}{1} + \dots \pm \binom{n}{n} = 0$$

Proof.

$$0 = (1 + (-1))^n = \sum_{j=0}^n 1^{n-j} (-1)^j \binom{n}{j} = \sum_{j=0}^n (-1)^j \binom{n}{j}.$$

(iii)

$$\sum_{l=1}^{n} \binom{n}{l} = \binom{n}{1} + \binom{n}{3} + \dots = 2^{n-1}$$

Proof.

$$0 = \sum_{l=0}^{n} (-1)^{l} \binom{n}{l} = \sum_{l \text{ graph}} \binom{n}{l} - \sum_{l \text{ odd}} \binom{n}{l},$$

so

$$\sum_{l \text{ even}} \binom{n}{l} = \sum_{l \text{ odd}} \binom{n}{l}.$$

Then

$$2^{n} = \sum_{l=0}^{m} \binom{n}{l} = \sum_{l \text{ even}} \binom{n}{l} + \sum_{l \text{ odd}} \binom{n}{l} = 2 \sum_{l \text{ odd}} \binom{n}{l},$$

so

$$\sum_{l \text{ odd}} = \frac{2^n}{2} = 2^{n-1}$$

(iv)

$$\sum_{l \text{ even}} \binom{n}{l} = \binom{n}{0} + \binom{n}{2} + \dots = 2^{n-1}$$

Proof. It follows from proof of (iii).

5.

(a) Prove by induction on n that

$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$

if $r \neq 1$.

Proof. Let n=1. Then $1+r=\frac{(1+r)(1-r)}{1-r}=\frac{1-r^2}{1-r}$, so the formula holds.

Next, suppose that the formula is true for some $n \ge 1$. Then

$$1 + r + r^{2} + \dots + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + r^{n+1} = \frac{1 - r^{n+1}}{1 - r} + \frac{r^{n+1}(1 - r)}{1 - r}$$
$$= \frac{1 - r^{n+1} + r^{n+1} - r^{n+2}}{1 - r} = \frac{1 - r^{n+2}}{1 - r}$$

(b) Derive this result by setting $S = 1 + r + \cdots + r^n$, multiplying this equation by r, and solving the two equations for S.

Proof.

$$S = 1 + r + \dots + r^n$$
 and $Sr = r + r^2 + \dots + r^{n+1}$.

Then

$$S(1-r) = 1 + r + \dots + r^n - r - r^2 - \dots - r^{n+1} = 1 - r^{n+1},$$

so

$$S = \frac{1 - r^{n+1}}{1 - r}$$

21

6. The formula for $1^2 + \cdots + n^2$ can be derived as follows. We begin with the formula

$$(k+1)^3 - k^3 = 3k^2 + 3k + 1.$$

Writing this formula for k = 1, ..., n and adding, we obtain

$$2^3 - 1^3 = 3 \cdot 1^2 + 3 \cdot 1 + 1$$

$$3^3 - 2^3 = 3 \cdot 2^2 + 3 \cdot 2 + 1$$

:

$$\frac{(n+1)^3 - n^3 = 3n^2 + 3n + 1}{(n+1)^3 - 1 = 4[1^2 + \dots + n^2] + 3[1 + \dots + n] + n.}$$

Thus we can find $\sum_{k=1}^{n} k^2$ if we already know $\sum_{k=1}^{n} k$. Use this method to find

(i) $1^3 + \dots + n^3$.

Proof. We begin with

$$(k+1)^4 - k^4 = 4k^3 + 6k^2 + 4k + 1$$

Then we have

$$(n+1)^4 - 1 = 4\sum_{j=1}^n j^3 + 6\sum_{k=1}^n k^2 + 4\sum_{l=1}^n l + n$$

so

$$\begin{split} \sum_{j=1}^n j^3 &= \frac{(n+1)^4 - 1 - 6\sum_{k=1}^n k^2 - 4\sum_{l=1}^n l - n}{4} \\ &= \frac{n^4 + 4n^3 + 6n^2 + 4n + 1 - 1 - 6\frac{n(n+1)(2n+1)}{6} - 4\frac{n(n+1)}{2} - n}{4} \\ &= \frac{n^4 + 4n^3 + 6n^2 + 3n - 2n^3 - 3n^2 - n - 2n^2 - 2n}{4} \\ &= \frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} \end{split}$$

(ii) $1^4 + \dots + n^4$.

Proof. We begin with

$$(k+1)^5 - k^5 = 5k^4 + 10k^3 + 10k^2 + 5k + 1$$

Then we have

$$(n+1)^5 - 1 = 5\sum_{i=1}^n i^4 + 10\sum_{j=1}^n j^3 + 10\sum_{k=1}^n k^2 + 5\sum_{l=1}^n l + n$$

SO

$$\sum_{i=1}^{n} i^4 = \frac{(n+1)^5 - 1 - 10\sum_{j=1}^{n} j^3 - 10\sum_{k=1}^{n} k^2 - 5\sum_{l=1}^{n} l - n}{5}$$

$$= \frac{n^5 + 5n^4 + 10n^3 + 10n^2 + 5n - 5\left(\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4}\right) - 10\frac{n(n+1)(2n+1)}{6} - 5\frac{n(n+1)}{2} - n}{5}$$

$$= \frac{n^5}{5} + \frac{n^4}{2} + \frac{n^3}{3} - \frac{n}{30}$$

(iii) $\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{n(n+1)}$.

Proof. We begin with

$$\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)}$$

Then we have

$$\sum_{j=1}^{n} \frac{1}{n(n+1)} = 1 - \frac{1}{n+1}$$

(iv) $\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \dots + \frac{2n+1}{n^2(n+1)^2}$.

Proof. We begin with

$$\frac{1}{(k+1)^2} - \frac{1}{k^2} = \frac{2k+1}{k^2(k+1)^2}$$

Then we have

$$\sum_{j=1}^{n} \frac{2j+1}{j^2(j+1)^2} = \frac{1}{(n+1)^2} - 1$$

8. Prove that every natural number is either even or odd.