Величко Арсений Александрович Институт информационных технологий и технологического образования ИВТ 1 курс, 10 поток, 2 группа, 3 подгруппа Предмет: Физика

Лабораторная работа №1

«ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА»

Цель работы

С помощью падающего шарика экспериментально установить коэффициент вязкости некоторой жидкости.

Приборы и инструменты

- Персональный компьютер с установленной ОС Windows
- Программа «Виртуальная физическая лаборатория»
- Табличный процессор Microsoft Excel для быстрых расчетов по формулам.

Используемые формулы

Модуль силы внутреннего трения:

$$F = \eta \frac{\Delta V}{\Delta x} S, \qquad (1)$$

где Δx - расстояние между двумя соседними слоями, ΔV - разность скоростей жидкости в двух соседних слоях $\Delta V/\Delta x$ - градиент скорости, S - площадь соприкосновения двух соседних слоев, η - коэффициент вязкости, зависящий от природы жидкости и температуры.

Выражение для η имеет вид

$$\eta = \frac{2}{9} (\rho_1 - \rho_2) \frac{gr^2}{v}.$$
 (2)

Эксперимент

Высота цилиндра h составляет 87,5 см.

№ шарика	r, cm	t, c	V, см/с	η, Пз	$\Delta\eta_{i}$
1	0,2	9,98	8,7675	0,0951	0,0008
2	0,17	13,65	6,4103	0,0937	0,0022
3	0,12	27,94	3,1317	0,0967	-0,0007
4	0,17	13,76	6,3590	0,1007	-0,0048
5	0,22	7,92	11,0480	0,0961	-0,0001
6	0,14	19,12	4,5764	0,0987	-0,0027
7	0,19	10,24	8,5449	0,0907	0,0052
Среднее	0,1715	14,6586	6,9768	0,0959	0,0000
Округленное среднее	0,17	14,66	6,98	0,1	0,00

Расчеты по формулам и расчеты погрешностей

 $\eta_{\text{средн}} = 0.0959 \pm 0.00 \, \Pi_3$

Вывод

В ходе эксперимента удалось определить коэффициент вязкости исследуемого вещества. Для этого был использован «Метод Стокса». Использованный метод определения коэффициента вязкости оказался достаточно точным, погрешность измерений находится на допустимом уровне.

В результате среднее значение коэффициента вязкости η составило **0,0959** \pm **0,00 Пз,** что, впрочем, не соответствует табличному значению коэффициента вязкости глицерина — 12 Пз. Это может быть вызвано ошибками в измерениях или переводах величин для подстановки в формулы. Возможно, причиной являются ошибки в программе «Виртуальная лаборатория».