

本科实验报告

基尔霍夫定律实验研究

课程名称: 电子电路设计实验

姓 名:

学院: 信息与电子工程学院

专业: 信息工程

学号:

指导老师: 李锡华、施红军、叶险峰

2021年7月5日

浙江大学实验报告

课程名称:	电子电路设计实验	指导老师:	李锡华、施红	军城 绩险 <u>峰</u>	_
实验名称:	基尔霍夫定律实验研究	实验类型:	研究实验	同组学生姓名:	

一、 实验目的

验证基尔霍夫电流、电压定律的正确性,加深对基尔霍夫定律的理解。

二、 实验任务和要求

- (1) 按电路图连接好电路。
- (2) 先理论计算出 3 个支路的电流值 I_1 、 I_2 和 I_3 ,然后用电流表分别测量支路电流 I_1 、 I_2 、 I_3 ,验证基尔霍夫电流定律是否成立。
- (3) 先理论计算出表 2 所列各节点之间的电压, 然后用数字万用表分别测量各节点间的电压值, 并验证基尔霍夫电压定律是否成立。
- (4) 再用二极管 D1 代替 R5, 重复实验。

三、实验方案设计与实验参数计算

1. 完整的实验电路

图 1: 验证验证基尔霍夫定律的实验电路

2. 实验方案总体设计

- (1) 利用 KCl 法计算三个支路的电流值。利用 KVL 法计算节点间的电压值。
- (2) 接入电阻 R_5 验证基尔霍夫定律是否成立。
- (3) 接入二极管 D₁ 验证在非线性电路中基尔霍夫定律是否成立。

四、 主要仪器设备

万用表, 电压源, 电阻若干, 一个 1N4007 二极管。

五、 实验步骤、实验调试过程、实验数据记录

1. 实验步骤

- (1) 按电路图连接好电路。并将 R5 接入支路中。
- (2) 理论计算出 3 个支路的电流值和节点间的电压值,记入表中。
- (3) 用电流表分别测量支路电流记入表中,用数字万用表分别测量各节点间的电压值,记入表中。
- (4) 再用二极管 D_1 代替 R_5 , 重复实验。

2. 实验调试过程

- (1) 设置电压源为 6.0V 和 12.0V 并接入 U_1 和 U_2 。
- (2) 将 R_5 接入 CD, 测量支路电流和节点电压。
- (3) 将 D_1 接入 CD, 测量支路电流和节点电压。

3. 实验数据记录

(1) CD 间接入 R₅ 时。

表 1: 各支路电流测量值

大 5 日 入 日 日 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	$I_1(mA)$	$I_2(mA)$	$I_3(mA)$		
计算值	1.93	5.99	7.92		
测量值	1.839	6.12	8.07		

表 2: 各节点间电压测量值

N = 1 1 W 1 0 = W = E							
	$U_1(V)$	$U_2(V)$	$U_{FA}(V)$	$U_{AB}(V)$	$U_{AD}(V)$	$U_{CD}(V)$	$U_{DE}(V)$
计算值	6	12	0.984	-5.99	4.039	-1.977	0.984
测量值	5.98	11.99	1.033	-5.98	3.96	-2.03	0.985

(2) CD 间接入 D_1 时。

表 3: 各支路电流测量值

	$I_1(mA)$	$I_2(mA)$	$I_3(mA)$
计算值	3.92	0	3.92
测量值	3.98	0	3.98

表 4: 各节点间电压测量值

	$U_1(V)$	$U_2(V)$	$U_{FA}(V)$	$U_{AB}(V)$	$U_{AD}(V)$	$U_{CD}(V)$	$U_{DE}(V)$
计算值	6	12	2	0	2	-10	2
测量值	5.98	11.99	2.06	0	1.944	-10.04	1.966

六、 实验结果和分析处理

1. 数据分析

(1) KCL 分析:

接入 R_5 : $I_1 = 1.839mA$, $I_2 = 6.12mA$, $I_3 = 8.07mA$; $I_1 + I_2 = 7.959mA \approx I_3 = 8.07mA$ 接入 D_1 : $I_1 = 3.92mA$, $I_2 = 0mA$, $I_3 = 3.92mA$; $I_1 + I_2 = 3.92mA = I_3 = 3.92mA$

(2) KVL 分析

接入 R5:

$$U_{FA} + U_{AD} + U_{DE} = 5.978V \approx U_1 = 5.98V$$
 $U_{BA} + U_{AD} + U_{DC} = 11.97V \approx U_2 = 11.99V$
接入 D_1 :
$$U_{FA} + U_{AD} + U_{DE} = 5.97V \approx U_1 = 5.98V$$
 $U_{BA} + U_{AD} + U_{DC} = 11.984V \approx U_2 = 11.99V$

2. 实验结果

由实验结果,在误差允许范围内,支路电流和回路电压符合基尔霍夫定律。

七、 讨论、心得

通过本次实验, 我对基尔霍夫定律有了更加直观的认识。

八、 思考题

- (1) 如果设定不同的电压与电流参考方向,基尔霍夫定律是否仍然成立? 依然成立。
- (2) 如果电路中含有非线性器件,基尔霍夫定律是否仍然成立?(在图 1 所示电路中,可选择将二极管 1N4007 替换电阻 R5 连入电路,进行实验验证。)

由实验结果分析可知,电路中含有非线性器件时,基尔霍夫定律依然成立。