Midterm review

Point estimation & Hypothesis testing 07/15/2021

Population vs. samples

How to learn from samples about f(x)?

- **Point estimate**: a particular value $\hat{\theta}$ that best approximates the parameter of interest.
 - MLE; MM estimators;
 - Sufficiency; Estimation error quantification.
- **Interval estimate**: an interval $[\theta a, \theta + b]$ that would contain the true parameter θ with a certain degree of <u>confidence</u>.
- **Hypothesis testing**: whether to reject a hypothesis.
 - $\circ \theta > a$? $\circ \theta < a$?

• Regression: A special parametric model

$$fig(x\,ig|\,eta,\sigma^2ig) = \underbrace{\mathbf{z}eta}_{\mathbf{Explanatory\ variables}} + Nig(0,\sigma^2ig)$$

IID assumption

If independently drawn, each sample X_l will be identically and independently distributed (i.i.d) under the true f(x).

Sampling distribution

Bootstrapping

Sampling distribution

- \bar{X}_n and $\hat{\sigma}_n^2$ for population mean and variance;
- MM estimators;
- Maximum likelihood estimators.

- 1. Exact sampling distribution; e.g. MLE for $U(-\theta, \theta)$, \bar{X}_n for $Gamma(\alpha, \beta)$ and $N(\mu, \sigma^2)$ $\hat{\sigma}_n^2$ for $N(\mu, \sigma^2)$
- 2. Asymptotic normality;

$$\bar{X}_n$$
, $g(\bar{X}_n)$, MLE

3. Parametric or non-parametric bootstrapping (Page 10, Lecture 3 & Lab 3).

Confidence interval

$$\hat{ heta}_n \pm \mathrm{Distr}_{lpha/2} * \mathrm{SE}(\hat{ heta}_n)$$

The confidence levels represents theoretical long-run frequency (i.e., the proportion) of confidence intervals that contain the true θ .

- 1. Exact sampling distribution; e.g. MLE for $U(-\theta, \theta)$, \bar{X}_n for $Gamma(\alpha, \beta)$ and $N(\mu, \sigma^2)$ $\hat{\sigma}_n^2$ for $N(\mu, \sigma^2)$
- 2. Asymptotic normality; \bar{X}_n , $g(\bar{X}_n)$, MLE
- 3. Parametric or non-parametric bootstrapping (Page 10, Lecture 3 & Lab 3).

Evaluating estimators

- $ar{X}_n$ and $\hat{\sigma}_n^2$
- MM
- MLE

Hypothesis testing

$$H_0:\, heta\in\,\Theta_0 \quad \leftrightarrow \quad H_1:\, heta\in\Theta_1$$

$$R = \{ \text{Unlikely } T(\mathbf{X}_n) \text{ values under } H_0 \}$$

formulate LRT
$$R = \{\lambda(\mathbf{X}_n) \leq c\}$$

All possible values of $T(\mathbf{X}_n)$

Strategy: Maximizing power among tests with $\sup_{\theta \in \Theta_0} \beta(\theta) \leq \alpha$.

	H_0 is true	H_1 is true
Reject H ₀	Type I error	Correct decision
Fail to reject H_0	Correct decision	Type II error

UMP tests

$$H_0: heta = heta_0 \quad \leftrightarrow \quad H_1: heta = heta_1 \;\; (heta_1 > heta_0).$$

$$H_0: heta = heta_0 \quad \leftrightarrow \quad H_1: heta > heta_0.$$

$$H_0: \theta \leq \theta_0 \quad \leftrightarrow \quad H_1: \theta > \theta_0.$$

$$H_0: heta = heta_0 \quad \leftrightarrow \quad H_1: heta = heta_1 \;\; (heta_1 < heta_0).$$

$$H_0: \theta = \theta_0 \quad \leftrightarrow \quad H_1: \theta < \theta_0.$$

$$H_0:\, heta \geq heta_0 \quad \leftrightarrow \quad H_1:\, heta < heta_0.$$

Perform HT

Perform hypothesis testing with real data:

- \circ Specify significance level α and calculate the rejection region;
- Calculate p-value and compare it with α .

p-value. Under H_0 , the probability of observing a result at least as extreme as the test statistic.

Duality between CIs and HTs

 $(1-\alpha) \times 100\%$ exact CI for μ :

$$P\left(\overline{X}_n - \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2) \le \mu \le \overline{X}_n + \frac{S}{\sqrt{n}}t_{n-1}(\alpha/2)\right) = 1 - \alpha$$

LRT with significance level α :

$$H_0: \, \mu = \mu_0 \quad ext{versus} \quad H_1: \, \mu
eq \mu_0. \quad \Longleftrightarrow \quad R = \left\{ \left| rac{\sqrt{n}ig(ar{X}_n - \mu_0ig)}{S}
ight| \ge t_{n-1}(lpha/2)
ight\}.$$