SUSY Lectures in 2017 Summer

Kwang Sik Jeong ¹

Noted by Y.J. Park, T.G. Kim

Contents

1	Intr	Introduction			
	1	[L1] Q	Quantum Field Theory	2	
		1-1	S(action)	2	
		1-2	Regularization & Renormalization	3	
	2	[L2] E	ffective Field Theory	5	
	3	[L2] P	oincaré Symmetry	6	
		3-1	Group	6	
		3-2	Representation	6	
		3-3	Poincaré group	6	
2	Sup	Supersymmetry			
1 Supersymmetry		Supers	symmetry	8	
		1-1	Super-Poincaré algebra $(N=1)$	9	
		1-2	Superspace Formalism	10	

¹Dept. of Physics, Pusan National University

1 Introduction

1 [L1] Quantum Field Theory

: basic framework to study elementary particles and their interactions.

"special relativity + Quantum mechanics"

On special relativity
$$\begin{cases} \text{spacetime}: (ct, \vec{x}) \\ \text{force: mediated by fields. (e.g. EM)} \end{cases}$$

S: action

 $\delta S = 0$: classical action(least action)

$$\langle f|i \rangle \sim \sum_{\mathrm{path}} e^{iS/\hbar}$$
 ; path integral
$$\begin{cases} \Delta S \gg \hbar & ; \mathrm{Classical} \\ \Delta S \sim \hbar & ; \mathrm{Quantum} \end{cases}$$

We use the natural unit, $\hbar = c = 1$.

Theory
$$\begin{cases} action(S) \\ + \\ regularization \\ + \\ renormalization \end{cases}$$

1-1 S(action)

$$S = \int \underbrace{d^4x}_{dtdxdydz} \mathcal{L}(\phi, \partial_{\mu}\phi)$$

where ϕ is a field, $\phi(x)$. Lagrange has a symmetry.

- i) symmetry
- Important role to better understand natural.
- Defining an elementary particle according to the behavior of the corresponding field with respect to symmetries.
- Determining interactions among particles. (can be hidden; spontaneous breaking)

Noether Theorem(classical field theory)

: continuous symmetry \rightarrow conserved quantity

Symmetry

- 1. Spacetime Symmetry $(x \to x')$
 - (a) Poincaré Transformation: transformation leaving the line element invariant. $ds^2 = \eta_{\mu\nu} dx^\mu dx^\nu$
 - i. Lorentz transformation; action conservation
 - ii. Translations; energy-momentum conservation
 - (b) General coordinate Transformation→ general relativity
- 2. Internal Symmetry

$$\Phi^a(x) \to \Phi'^a(x) = M^a_{\ b} \Phi^b(x)$$

where $\Phi^a(x)$ is general field and a, b are internal indices.

$$M^{a}_{\ b} \begin{cases} \text{global symmetry: } M^{a}_{\ b} \text{ is spacetime-independent} \\ \text{local(gauge) symmetry: } M^{a}_{\ b}(x) \text{ is spacetime-dependent} \end{cases}$$

QFT: the most general symmetry of the S-matrix (Scattering matrix).

Note 1.1 Coleman-Mandula(1967)

Poincaré symmetry

Internal symmetry

where \bigotimes is a direct product.

- assumption on QFT (local, relativity, $4D, \ldots$) & scattering interacions.
- considered only bosonic generator.

Extended to include spinor generators (spin: $\frac{1}{2}$, $\frac{3}{2}$),

Note 1.2 Haag-Lopuszański-Sohnius (1975)

Super-Poincaré symmetry

Internal symmetry

1-2 Regularization & Renormalization

- 1. Regularization
 - (a) UV divergence

: we need to regulate the theory.

(Infinities \rightarrow absorbed by appropriate counter terms.)

e.g. cutoff regulation, dimensional regularization

- 2. Renormalization
 - : determine how to absorb the infinities into counter terms. (arbitraty renormalization point $\mu(\text{unphysical})$)
 - (a) Perturbation Theory : expansion w.r.t renormalized parameters. \rightarrow large logs: $\ln(\frac{E}{\mu}), \ln(\frac{M}{\mu})$ \rightarrow physical amplitude(independent of μ) \rightarrow "set $\mu \sim E$ "
 - (b) RGE(Renormalization Group Equation)

2 [L2] Effective Field Theory

[Need Figure!] To make massive particle, we need high energy. So in low energy scale, we can see only small mass particles. We can't & don't need to see higher mass particles.

- Full Theory (UV)

$$\mathcal{L}_{full} = \mathcal{L}_{H}(\phi_{H}, \phi_{L}) + \mathcal{L}(\phi_{L})$$
 where
$$\begin{cases} \phi_{H} : \text{Fields describing particles with masses} > \Lambda \\ \phi_{L} : \text{Fields describing particles with masses} < \Lambda \end{cases}$$

- Effective theory of light fields ϕ_L

: Integrating out ϕ_H in E.O.M. (Effects of all Heavy particle are in C_i)

$$\mathcal{L}_{eff} = \mathcal{L}(\phi_L) + \sum_{k} \frac{C_i}{\Lambda^{k-4}} \mathcal{O}_i^{(k)}(\phi_L)$$
where
$$\begin{cases} C_i : \text{Wilson Coefficient (dim=0)} \\ \Lambda : \text{Cut-off sclae of EFT} \end{cases}$$

(1) Contribution of $\mathcal{O}_i^{(k)}$ to a process at energy scale $E \gg \Lambda$

$$C_i \left(\frac{E}{\Lambda}\right)^{k-4} \begin{cases} k=4 : \text{Marginal} \\ k<4 : \text{Relavent} \\ k>4 : \text{Irrelavnt - (Almost non-renormalizable)} \end{cases}$$

(2) Matching (Around Λ): Same physical predictions at low energy.

$$\lambda_{eff}(\mu) = \lambda_{full}(\mu) + \text{(threshold corrections)}$$

e.g. [Need Figure!]

3 [L2] Poincaré Symmetry

- Symmetry of the SM

$$\begin{cases} \text{Poincar\'e} & \text{Lorentz Inv.} \\ \text{Translation Sym.} \end{cases}$$
 Internal
$$\begin{cases} \text{Global: Baryon number, Lepton number, Flavor Sym.} \\ \text{Gauge/Local: } SU(3)_c \times SU(2)_c \times U(1)_Y \end{cases}$$

3-1 Group

Definition 3.1 (Group) A set of elements $G = \{g_1, g_2, \dots\}$ with product operator * s.t

- 1. Closure: $\forall g_i, g_i \in G, \ g_i * g_i \in G$
- 2. Unit element: $\exists e \in G, \ e * g = g * e = g \ \forall g \in G$
- 3. Inverse element : $\forall g \in G, \exists g^{-1} \in G \text{ s.t. } g * g^{-1} = g^{-1} * g = e$
- 4. Associativity: $\forall g_i, g_j, g_k \in G, g_i * (g_j * g_k) = (g_i * g_j) * g_k$

3-2 Representation

Definition 3.2 (Representation) A map $G \to R$ where $R = \{D(g)\}$ such that

- 1. $D(g_1)D(g_2) = D(g_1 * g_2)$
- 2. D(e) = 1
- 3. $D(g^{-1}) = D(g)^{-1}$

D(g) is a linear operator acting on a vector space $V = \{v_1, v_2, \cdots\}$.

3-3 Poincaré group

- Coordinate trsf leaving $ds^2 = \eta_{\mu\nu} dx^{\mu} dx^{\nu}$ is invariant.

$$x' = \Lambda x + a \quad \begin{cases} a : \text{Translations} \\ \Lambda : \text{Lorentz trsf (rotations + boosts)} \end{cases}$$

- Inifinitesimal transformation : (Λ, a)

$$\delta x^{\mu} = \epsilon^{\mu} + \omega^{\mu}_{\ \nu} x^{\nu} \ (\omega^{\mu\nu} = -\omega^{\nu\mu}; \text{ anti-sym})$$

$$\Rightarrow \delta X^{\mu} = -i \left(\epsilon_{\sigma} P^{\sigma} + \frac{1}{2} \omega_{\rho\sigma} M^{\rho\sigma} \right)^{\mu}_{\ \nu} X^{\nu} \quad (X \text{ in Vector space})$$

In this representations, $\begin{cases} P_{\mu} = i\partial_{\mu} \\ M_{\mu\nu} = i(X_{\mu}\partial_{\nu} - X_{\nu}\partial_{\mu}) \end{cases} \rightarrow \text{the form of } P \text{ and } M \text{ depends on the reps.}$

Poincaré algebra

From the composition rule : $(\Lambda_2, a_2)(\Lambda_1, a_1) = (\Lambda_2\Lambda_1, \Lambda_2a_1 + a_2)$, we can derive below algebra.

- 1. $[P^{\mu}, P^{\nu}] = 0$
- 2. $[M^{\mu\nu}, P^{\sigma}] = i(P^{\mu}\eta^{\nu\sigma} P^{\nu}\eta^{\mu\sigma})$
- 3. $[M^{\mu\nu}, M^{\rho\sigma}] = i(M^{\mu\sigma}\eta^{\nu\rho} + M^{\nu\rho}\eta^{\mu\sigma} M^{\mu\rho}\eta^{\nu\sigma} M^{\nu\sigma}\eta^{\mu\rho})$

- Representation on fields : $(x' = \Lambda x + a)$

- As a vector, $\phi^a(x) \to \phi'^a(x') = R^a_{\ b}(\Lambda)\phi^b(x)$ (ϕ is regarded as scalar for translations.)
- As a field (quantum) operator, $\hat{\phi}^a(x)$: Consider transformation of state vector $|\psi\rangle \to |\psi'\rangle = \hat{U}(\Lambda, a) |\psi\rangle$ ($\hat{U}(\Lambda, a)$ is linear & unitary.)

$$\hat{U}(\Lambda, a) = 1 - i\epsilon_{\mu}\hat{P}^{\mu} - \frac{i}{2}\omega_{\mu\nu}\hat{M}^{\mu\nu} + \cdots$$

Now consider field operator, we can get below equations.

$$\begin{cases} \varphi^a(x) = \langle f|\hat{\phi}^a(x)|g\rangle & then \quad \varphi'^a(x) = \langle f'|\hat{\phi}^a(x)|g'\rangle = \langle f|\hat{U}^\dagger\hat{\phi}^a(x)\hat{U}|g\rangle \\ \\ \varphi'^a(x') = R^a_{\ b}(\Lambda)\varphi^b(x) = R^a_{\ b}\,\langle f|\hat{\phi}^b(x)|g\rangle \end{cases}$$

$$\therefore \ \hat{\phi}'^a(x') = R^a{}_b \hat{\phi}^b(x) = \hat{U}^\dagger \hat{\phi}^a(x') \hat{U}$$

(Caution: It's not unitary equivalence!)

2 Supersymmetry

1 Supersymmetry

Symmetry to cancle Λ^2 - contributions? $\lambda = y^2$? [Supersymmetry]

- Supersymmetry : Boson \leftrightarrow Fermion

$$ar{Q} |B\rangle = |F\rangle \quad (ar{Q} = Q^{\dagger})$$
 $Q |F\rangle = |B\rangle$

* SUSY operator : Anti-commuting spinor (spin 1/2) \Rightarrow Spacetime Symmetry

Note 1.1 (SUSY) SUSY is the unique extension of Poincaré algebra within the QM framework. (Under reasonable physical assumptions)

- Supermultiplet : B, F (Superpartner)
 - (i) Equal number of fermion and boson D.O.F.

$$n_B(P_\mu) - n_F(P_\mu) \rightarrow \sum_i \langle i|(-1)^{2s} P^\mu|i\rangle$$

Since $Q \in (\frac{1}{2},0), \, \bar{Q} \in (0,\frac{1}{2})$, then $\{Q,\bar{Q}\} \in (\frac{1}{2},\frac{1}{2}), \, \{Q,\bar{Q}\} \sim P^{\mu}$.

$$\begin{split} \sum_i \left\langle i | (-1)^{2s} P^\mu | i \right\rangle &= \sum_i \left\langle i | (-1)^{2s} Q Q^\dagger | i \right\rangle + \sum_i \left\langle i | (-1)^{2s} Q^\dagger Q | i \right\rangle \\ &= \sum_i \left\langle i | (-1)^{2s} Q Q^\dagger | i \right\rangle + \sum_{ij} \left\langle i | (-1)^{2s} Q^\dagger | j \right\rangle \left\langle j | Q | i \right\rangle \\ &= \sum_i \left\langle i | (-1)^{2s} Q Q^\dagger | i \right\rangle + \sum_{ij} \left\langle j | Q | i \right\rangle \left\langle i | (-1)^{2s} Q^\dagger | j \right\rangle \\ &= \sum_i \left\langle i | (-1)^{2s} Q Q^\dagger | i \right\rangle + \sum_j \left\langle j | Q (-1)^{2s} Q Q^\dagger | j \right\rangle \\ &= \sum_i \left\langle i | (-1)^{2s} Q Q^\dagger | i \right\rangle - \sum_j \left\langle j | (-1)^{2s} Q Q^\dagger | j \right\rangle = 0 \end{split}$$

$$\therefore n_B - n_F = 0 \quad for \ P^{\mu} \neq 0$$

(ii) Internal Symmetry

 $[Q, T_i] = 0$ where T_i is generator of internal symmetry group $\Rightarrow B\&F$ in the supermultiplet: Same internal symmetry charge.

(iii) Exception : R-symmetry

Global
$$U(1)_R$$
 $\begin{cases} \text{As a vector: } Q \to e^{i\lambda}Q, \, \bar{Q} \to e^{-i\lambda}\bar{Q} \\ \text{As an operator: } \hat{Q} \to e^{-i\lambda\hat{R}}\hat{Q}e^{i\lambda\hat{R}} \end{cases}$ $\Rightarrow \begin{cases} [Q,R] = +Q \\ [\bar{Q},R] = -Q \end{cases}$

1-1 Super-Poincaré algebra (N = 1)

- SUSY generators : $Q_{\alpha} \sim \text{Spinor (spin } 1/2)$

Lorentz Transform
$$\begin{cases} \text{As a vector: } Q_{\alpha} \to Q'_{\alpha} = \exp\left[-\frac{1}{2}\omega_{\mu\nu}\sigma^{\mu\nu}\right]_{\alpha}^{\ \beta}Q_{\beta} \\ \\ \text{As an operator: } \hat{Q}_{\alpha} \to \hat{Q}'_{\alpha} = \hat{U}^{\dagger}\hat{Q}_{\alpha}\hat{U} \end{cases}$$

For some calculations, we can derive next algebra:

(i)
$$[P^{\mu}, P^{\nu}] = 0$$

(ii)
$$[M_{\mu\nu}, P_{\rho}] = -i(\eta_{\mu\rho}P_{\nu} - \eta_{\nu\rho}P_{\mu})$$

(iii)
$$[M_{\mu\nu}, M_{\rho\sigma}] = -i(\eta_{\mu\rho}M_{\nu\sigma} - \eta_{\nu\rho}M_{\mu\sigma} + \eta_{\nu\sigma}M_{\mu\rho} - \eta_{\mu\sigma}M_{\nu\rho})$$

(iv)
$$[P_{\mu}, Q_{\sigma}] = [P_{\mu}, \bar{Q}^{\dot{\alpha}}] = 0$$

(v)
$$[M_{\mu\nu}, Q_{\alpha}] = -i(\sigma_{\mu\nu})_{\alpha}{}^{\beta}Q_{\beta}$$

(vi)
$$\left[M_{\mu\nu}, \bar{Q}_{\dot{\beta}} \right] = -i(\bar{\sigma}_{\mu\nu})^{\dot{\alpha}}_{\ \dot{\beta}} \bar{Q}^{\dot{\beta}}$$

(vii)
$$\{Q_{\alpha}, Q_{\beta}\} = 0$$

(viii)
$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}}P_{\mu}$$

Now let's find representations.

1-2 Superspace Formalism

- Superspace $(\chi^{\mu}, \theta^{\alpha}, \bar{\theta}_{\dot{\alpha}})$; Corresponding to $(P^{\mu}, Q^{\alpha}, \bar{Q}_{\dot{\alpha}})$
- * SUSY : Translation in the Grassmann Coordinates.

$$\delta \begin{pmatrix} \chi^{\mu} \\ \theta^{\alpha} \\ \bar{\theta}_{\dot{\alpha}} \end{pmatrix} \equiv -i(a_{\rho}P^{\rho} + \frac{1}{2}\omega_{\rho\sigma}M^{\rho\sigma} - \xi Q - \bar{\xi}\bar{Q}) \begin{pmatrix} \chi^{\mu} \\ \theta^{\alpha} \\ \bar{\theta}_{\dot{\alpha}} \end{pmatrix}$$

$$\delta \chi^{\mu} = a^{\mu} + \omega^{\mu}_{\nu}\chi^{\nu} - ic(\xi\sigma^{\mu}\bar{\theta}) + ic^{*}(\theta\sigma^{\mu}\bar{\xi})$$

$$\delta \theta^{\alpha} = \frac{i}{2}\omega_{\mu\nu}(\sigma^{\mu\nu})^{\alpha}_{\beta}\theta^{\beta} + \xi^{\alpha}$$

$$\delta \bar{\theta}_{\dot{\alpha}} = \frac{i}{2}\omega_{\mu\nu}(\bar{\sigma}^{\mu\nu})_{\dot{\alpha}}{}^{\dot{\beta}}\bar{\theta}_{\dot{\beta}} + \bar{\xi}_{\dot{\alpha}}$$

Thus, one finds,

$$\begin{split} P_{\mu} &= i\partial_{\mu} \\ Q_{\alpha} &= -i\frac{\partial}{\partial\theta_{\alpha}} - c(\sigma^{\mu})_{\alpha\dot{\beta}}\bar{\theta}^{\dot{\beta}}\frac{\partial}{\partial x^{\mu}} \\ \bar{Q}_{\dot{\alpha}} &= i\frac{\partial}{\partial\bar{\theta}^{\dot{\alpha}}} + c^{*}\theta^{\beta}(\sigma^{\mu})_{\beta\dot{\alpha}}\frac{\partial}{\partial x^{\mu}} \end{split}$$

where c is determined by the commutation relation.

$$\{Q_{\alpha}, \bar{Q}_{\dot{\beta}}\} = 2(\sigma^{\mu})_{\alpha\dot{\beta}}P_{\mu}$$

 $\Rightarrow Re(c) = 1$ (Convenient to set $c = 1$)