UNIT VI

Analog to digital converter

And

Digital to analog converter

DAC performance specification

- * Resolution
- * Reference Voltages
- * Settling Time
- * Linearity
- * Speed
- * Errors

Resolution

- * **Resolution**: is the amount of variance in output voltage for every change of the LSB in the digital input.
- * How closely can we approximate the desired output signal(Higher Res. = finer detail=smaller Voltage divisions)
- * A common DAC has a 8 12 bit Resolution

Resolution =
$$V_{LSB} = \frac{V_{Ref}}{2^N}$$
 N = Number of bits

3

Resolution continue

Poor Resolution(1 bit)

Better Resolution(3 bit)

Reference voltage

* Reference Voltage: A specified voltage used to determine how each digital input will be assigned to each voltage division.

* Types:

- Non-multiplier: internal, fixed, and defined by manufacturer
- > Multiplier: external, variable, user specified

Reference voltage types

Non-Multiplier: (Vref = C)

Multiplier: (Vref = Asin(wt))

Settle time

- * **Settling Time:** The time required for the input signal voltage to settle to the expected output voltage(within +/- VLSB).
- * Any change in the input state will not be reflected in the output state immediately. There is a time lag, between the two events.

Settle time continue

Linearity

- * Linearity: is the difference between the desired analog output and the actual output over the full range of expected values.
- * Ideally, a DAC should produce a linear relationship between a digital input and the analog output, this is not always the case.

Linearity continue

Linearity(Ideal Case)

Perfect Agreement

NON-Linearity(Real World)

Miss-alignment

Speed

- * **Speed:** Rate of conversion of a single digital input to its analog equivalent
- * Conversion Rate
 - Depends on clock speed of input signal
 - > Depends on settling time of converter

Errors

- * Non-linearity
 - ✓ Differential
 - ✓ Integral
- * Gain
- * Offset

Non linearity: differential

* **Differential Non-Linearity**: Difference in voltage step size from the previous DAC output (Ideally All DLN's = 1 VLSB)

Non linearity: integral

* Integral Non-Linearity: Deviation of the actual DAC output from the ideal (Ideally all INL's = 0)

Gain error

* Gain Error: Difference in slope of the ideal curve and the actual DAC output

High Gain Error: Actual slope greater than ideal

Low Gain Error: Actual slope less than ideal

Offset

* Offset Error: A constant voltage difference between the ideal DAC output and the actual.

The voltage axis intercept of the DAC output curve is different than the ideal.

Applications of DAC

- * Digital Motor Control
- * Computer Printers
- * Sound Equipment (e.g. CD/MP3 Players, etc.)
- * Function Generators/Oscilloscopes
- * Digital Audio

Quick Quiz

What is the resolution of a digital-to-analog converter (DAC)?

- **A.**It is the comparison between the actual output of the converter and its expected output.
- **B.**It is the deviation between the ideal straight-line output and the actual output of the converter.
- C.It is the smallest analog output change that