- 1. Let $f(x) = \sqrt{1 x^2}$.
 - (a) (4 pts) Find the domain and range of f(x).

$$|-x^2 \ge 0$$
 =) $|\ge x^2$ =) $|\ge |x|$: Domain of f)

Since $|x| \le 1$ => $|Roughting of [0,1]$

(b) (4 pts) Compute $(f \circ f \circ f)(\frac{1}{2})$

$$f(f(f(\frac{1}{2}))) = f(f(\frac{1}{4})) = f(\frac{1}{4})$$

2. (6 pts) Write $f(x) = \sin(\sqrt{x^2 + 2})$ as a composition of 3 functions.

$$u(x) = x^{2} + 2$$

$$V(u) = \sqrt{u}$$

$$W(v) = \sin v$$

3. (8 pts each) Find the limit if it exists. If it doesn't, explain why.

(a)
$$\lim_{x \to -1} \frac{x^2 - x - 2}{x^2 + 4x + 3} = \lim_{x \to -1} \frac{(x - 2)(x + 1)}{(x + 1)(x + 3)} = \lim_{x \to -1} \frac{x - 2}{x + 3}$$

$$= \begin{bmatrix} -3 \\ 2 \end{bmatrix}$$

(b)
$$\lim_{x \to \infty} \left(\frac{x^2}{2x - 1} - \frac{x}{2} \right) =$$

$$\frac{1}{21A} \frac{21A}{\text{(b)}} \lim_{x \to \infty} \left(\frac{x^2}{2x - 1} - \frac{x}{2} \right) = \lim_{x \to \infty} \frac{2x^2 - 2x^2 + x}{2(2x - 1)} = \lim_{x \to \infty} \frac{x}{4x - 2}$$

$$\lim_{X \to \infty} \frac{X}{4x}$$

$$\frac{1}{x \Rightarrow \infty} \frac{1}{4 - \frac{2}{x}}$$

(c)
$$\lim_{x\to 0} \frac{2x^3 + \sin 3x}{4x} = \lim_{X\to 0} \frac{1}{4x} + \frac{\sin 3x}{4x} = \lim_{X\to 0} \frac{1}{2} x^2 + \frac{\sin 3x}{4x}$$

$$= 0 + \lim_{X\to 0} \frac{3}{4} \frac{\sin 3x}{3x} = 3/4$$

(d)
$$\lim_{x\to 0} \frac{\cos x - 1}{x^2} = \lim_{\chi \to 0} \frac{1 - \cos \chi}{\chi \to 0} = \lim_{\chi \to 0} \frac{1 - \cos \chi}{\chi^2}$$
Hint: $1 - \cos^2(x) = \sin^2(x)$.

$$= -\lim_{\chi \to 0} \frac{\sin^2 \chi}{\chi^2} \frac{1}{1 + \cos \chi}$$

$$= - \lim_{x \to 0} \frac{\sin x}{x} \frac{\sin x}{x} \frac{1}{1 + \cos x}$$

$$=$$
 $\begin{bmatrix} -\frac{1}{2} \end{bmatrix}$

4. (22 pts) Sketch the graph of $f(x) = \frac{x^2-4}{x^2-2x-3}$. Clearly specify the domain, range, intercept(s), asymptotes and symmetry.

$$f(x) = \frac{(x-2)(x+2)}{(x+1)(x-3)}$$

Intercepts:
$$f(0) = \frac{4}{3}$$
 $f(x) = 0$ when

Symmetry: Neither even nor odd since
$$f(4) = \frac{12}{12} + f(-4) = \frac{12}{12}$$

$$f(4) = \frac{12}{5} \neq f(-4) = \frac{12}{21}$$
You can also see this since
the asymptotes are not at
$$x = -1 \neq x = 1$$

Asymptotes: H.A.
$$\lim_{x\to\pm\infty} f(x) = 1$$
.

V. A.
$$\lim_{x \to -1} f(x) = -\infty$$
 $\lim_{x \to -1} f(x) = \infty$
Check both limits $\lim_{x \to 3^{-}} f(x) = -\infty$ $\lim_{x \to 3^{+}} f(x) = +\infty$
from both sides

5. (16 pts) Is the function f given below continous at x = 0? You must show your work to receive credit.

$$f(x) = \begin{cases} \frac{\frac{1}{x+1}-1}{x} & \text{, if } x < 0\\ -1 & \text{, if } x = 0\\ \frac{x^2+x}{3x^2-x} & \text{, if } x > 0 \end{cases}$$

$$\lim_{x \to 0^{-}} \frac{\frac{1}{x+1} - 1}{x} = \lim_{x \to 0^{-}} \frac{1 - x - 1}{(x+1)x} = \lim_{x \to 0^{-}} \frac{-1}{x+1} = -1$$

$$\lim_{X \to 0^{+}} \frac{x^{2} + x}{3x^{2} - x} = \lim_{X \to 0^{+}} \frac{x(x+1)}{x(3x-1)} = \lim_{X \to 0^{+}} \frac{x+1}{3x-1} = \frac{1}{-1} = -1$$

Since
$$\lim_{x\to 0^{-}} f(x) = \lim_{x\to 0^{+}} f(x) = -1$$
 = $\lim_{x\to 0^{+}} f(x) = -1 = f(0)$

6. (6 pts) Let $f(x) = \frac{1-\cos x}{x}$ for $x \neq 0$. Is it possible to define f(0) in such a way that f is continuous throughout the x-axis? Explain your answer.

Since
$$\lim_{x\to 0} \frac{1-\cos x}{x} = 0$$
 if we define

7. (a) (8 pts) State the intermediate value theorem.

Let f be a continuous function on a closed interval [a,b] if m is in between f(a) and f(a) then there exist a c in [a,b] g. f(c) = m.

(b) (8 pts) Use the intermediate value theorem to show that the equation $x^2 + \sin(\frac{\pi x}{2}) = 3$ has a solution on [0, 2].

Let
$$f(x) = \chi^2 + \sin \frac{\pi x}{2}$$

and
$$f(0) = 0$$
 and $f(2) = 4$

$$f(c) = 3$$
.

8. (a) (8 pts) State the definition of $\lim_{x\to a} f(x) = L$.

For any
$$\epsilon 70$$
 there is a $\delta 70$ s.t. if $0 < |x-a| < \delta$ then $|f(x)-L| < \epsilon$.

Scretch

(b) (16 pts) Use the definition of limit to prove
$$\lim_{x\to 0} \frac{x-1}{x+1} = -1$$
.

Assuming the provided of the prove $\lim_{x\to 0} \frac{x-1}{x+1} = -1$.

Formal Proof

Assuming the provided of the prove $\lim_{x\to 0} \frac{x-1}{x+1} = -1$.

Formal Proof

 $|x| < |y| < |y|$

What is the velocity of the rocket at time $t = t_0 > 0$? Use the definition of the derivative but the power rule.

Hint: $(a - b)(a + b) = a^2 - b^2$.

$$\lim_{h \to 0} \frac{f(t_{c} + h) - f(t_{0})}{h} = \lim_{h \to 0} \frac{t_{0} + h + \sqrt{t_{0} + h} - t_{0} - \sqrt{t_{0}}}{h}$$

$$= \lim_{h \to 0} \frac{h + \sqrt{t_{0} + h} - \sqrt{t_{0}}}{h} = \lim_{h \to 0} \frac{1 + \sqrt{t_{0} + h} - \sqrt{t_{0}}}{h} = 1 + \lim_{h \to 0} \frac{t_{0} + h - t_{0}}{h}$$

$$= 1 + \lim_{h \to 0} \frac{1}{h} + \lim_{h \to 0} \frac{1}{h} + \lim_{h \to 0} \frac{t_{0} + h - t_{0}}{h} = 1 + \lim_{h \to 0} \frac{1}{h}$$

$$= 1 + \lim_{h \to 0} \frac{1}{h} + \lim_{h \to 0} \frac{1}{h} = 1 + \lim_{h \to 0} \frac{1}{h}$$

10. The graph of a function f is sketched below. For which values of x is f

(a) (4 pts) Left continuous

$$(-\infty, 1) \cup (1, \mathbb{R} \cup (8, \infty)) = (-\infty, 1) \cup (1, \infty)$$

(b) (4 pts) Right continuous

$$(-\infty, 1) \cup [1, 8) \cup (8, \infty) = (-\infty, 8) \cup (8, \infty)$$

(c) (2 pts) Continuous

Page	2 (22)	3 (24)	4 (38)	5 (22)	6 (34)	7 (10)	Total (150)
Scores							