Goldene Formelsammlung

must know:

• Zahlenmengen

Binomische Formeln:	$(a+b)^2 = a^2 + 2ab + b^2$
	$(a-b)^2 = a^2 - 2ab + b^2$
	$(a+b)*(a-b) = a^2 - b^2$
Mitternachtsformel	für $ax^2 + bx + c$: $x_{1/2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Funktionenfolgen	
Indexshift Lk regel	
Limes substitutionsregel	

blatt 01:

Injektiv, surjektiv, bijektiv	Def 1.2 Tipp: Injektivität: z.Z: f(u) = f(v) ⇒ u = v
unendlich Abzählbar (N)	Def. 1.6
Unendlich Überabzählbar(R)	Wenn nicht unendlich Abzählbar
Endlich	Eine Menge mit endlich vielen Elementen

blatt 02:

Obere Schranke	$M \subset R. U$ ist obere Schranke wenn x<= u für alle xeM.
Maximum	Obere Schranke die in M enthalten ist.
Supremum	Kleinste obere Schranke $\sup(\emptyset) = -\infty$, $\sup(M) = \infty$ falls M nach oben unbeschränkt Rechenregeln für Suprema 1. $\sup(X+Y) = \sup(X) + \sup(Y)$ 2. $\lambda > 0 \Rightarrow \sup(\lambda X) = \lambda \sup(X)$ 3. $X,Y \subset [0,\infty) \Rightarrow \sup(X\cdot Y) = \sup(X) \cdot \sup(Y)$ 4. $X \subset Y \Rightarrow \sup(X) \le \sup(Y)$
Infimum	Größte untere Schranke $\inf(X) = -\inf(-X)$ Rechenregeln für Infima 1. $\inf(X+Y) = \inf(X) + \inf(Y)$ 2. $\lambda > 0 \Rightarrow \inf(\lambda X) = \lambda \inf(X)$ 3. $X,Y \subset [0,\infty) \Rightarrow \sup(X\cdot Y) = \inf(X)\inf(Y)$ 4. $X \subset Y \Rightarrow \inf(X) \ge \inf(Y)$
Umgebung	Sei $x \in R$. Ein offenes Intervall (a,b) heißt Umgebung falls $x \in (a,b)$
Intervall	"zusammenhängende"/"lückenlose" Teilmenge: Menge aller Zahlen zB ϵ R, die alle "zwischen" den Grenzen der $^{\text{TM}}$ liegen, also \times ϵ (a,b) mit a <x<b oder<br="">a>x>b</x
Offene Menge	Eine Menge A \subset R heißt offen falls für jedes $x \in A$ eine Umgebung lx von x existiert, so dass lx \in A. Bsp: abgeschlossenes Intervall I = [0,1]: $\forall x \in B$: $0 \le x \le 1$
Abgeschlossen	Eine Menge A \subset R heißt Abgeschlossen falls R\A offen ist. Bsp: abgeschlossenes Intervall I = [0,1], R\I = $(-\infty,0) \cup (1,\infty)$ ist offen
Beispiele	 R ist offen und Ø abgeschlossen Ø ist offen und R abgeschlossen Eine Vereinigung offener Mengen ist offen Jede endliche Menge ist abgeschlossen Für a < b ist das Intervall [a,b) weder offen noch

abgeschlossen 6. Q ist weder offen noch abgeschlossen

blatt 03:

Hinreichende Bedingung	Wenn A hinreichend für B ist schreibt man: A⇒B
	A= "Es hat geregnet" und B= "Die Straße ist nass"
	Wenn es geregnet hat, dann ist die Straße nass.
Notwendige Bedingung	Wenn A notwendig für B ist, dann schreibt man: B⇒A
	A= "Der Vogel ist schwarz" und B= "Der Vogel ist ein Rabe"
	Wenn der Vogel ein Rabe ist, dann ist es auch ein schwarzer Vogel.
Dreiecksungleichung	$\forall a,b \in R a+b \le a + b $
Umgekehrte Dreiecksungleichung	∀ a,b ∈ R a-b ≥ a - b
Komplexe Zahlen	Komplexe Zahlen. $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$. Für $z = a + bi$ gilt: • Konjugierte: $\overline{z} = a - bi$. • Betrag: $ z = \sqrt{z\overline{z}} = \sqrt{a^2 + b^2}$. • $ z_1 \cdot z_2 = z_1 \cdot z_2 $ und $\left \frac{z_1}{z_2}\right = \frac{ z_1 }{ z_2 }$. Für $z_1 = a_1 + b_1i$ und $z_2 = a_2 + b_2i$ gilt: • Addition: $z_1 + z_2 = (a_1 + a_2) + (b_1 + b_2)i$. • Subtraktion: $z_1 - z_2 = (a_1 - a_2) + (b_1 - b_2)i$, • Multiplikation: $z_1 \cdot z_2 = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1)i$, • Division: $\frac{z_1}{z_2} = \frac{z_1\overline{z_2}}{z_2\overline{z_2}} = \left(\frac{a_1 a_2 + b_1 b_2}{a_2^2 + b_2^2}\right) + \left(\frac{b_1 a_2 - a_1 b_2}{a_2^2 + b_2^2}\right)i$. $\frac{1}{z} = \dots$ Formel in T3.2

Grenzwert einer Folge	Grenzwert (a_n) konvergiert gegen a $(\lim_{n\to\infty} a_n = a \text{ oder } a_n\to a \text{ für } n\to\infty)$, falls $\forall \ \varepsilon > 0$: $\exists \ n_0 \in \mathbb{N}$: $\forall \ n \ge n_0$: $ a_n-a < \varepsilon$. Wenn kein solches a existiert, dann divergiert sie. Rechenregeln für Grenzwerte Falls $\lim_{n\to\infty} a_n = a \text{ und } \lim_{n\to\infty} b_n = b$, dann: 1. $\lim_{n\to\infty} a_n + b_n = a + b$ 2. $\lim_{n\to\infty} a_n * b_n = a * b$ 3. $\lim_{n\to\infty} a_n / b_n = a / b (b \neq 0)$ 4. $a_n \le b_n$ für alle $n \in \mathbb{N} \Rightarrow a \le b$ 5. FAKTORREGEL
Einschließungskriterium	Seien (x_n) und (y_n) Folgen mit $x_n \rightarrow x$ und $y_n \rightarrow x$ und $x_n \le y_n \forall n$, dann geht (w_n) mit $x_n \le w_n \le y_n$ gegen $w_n \rightarrow x$.
Beschränktheit	(a_n) ist nach oben beschränkt, falls $\exists C \in R: \forall n \in N: a_n < C$ nach unten beschränkt, falls $\exists C \in R: \forall n \in N: a_n > C$ und beschränkt, falls $\exists C > 0: \forall n \in N: a_n < C$ (nach unten und oben beschränkt) Bolzano-Weierstrass: (a_n) beschränkt \Rightarrow (a_n) hat mindestens einen HFP
Stetigkeit	Folgenkriterium $f: D \to R$ stetig in $c \Leftrightarrow \forall (xn)$ mit $\lim_{n \to \infty} x_n = c$ gilt $\lim_{n \to \infty} f(x_n) = f(c)$ $ \varepsilon - \delta - \text{Kriterium} $ $ D \subseteq R, f: D \to R, c \in D \Rightarrow f \text{ stetig in } $ $ c \Leftrightarrow \forall \varepsilon > 0 \exists \delta > 0: \forall x \in D: x - c < \delta \Rightarrow f(x) - f(c) < \varepsilon $ $ \text{Stetigkeit Rechenregeln} $ $ \text{Wenn } f(x), g(x) \text{ stetig an einem Punkt } c, \text{ dann:} $ $ \bullet f(x) + g(x) \text{ sind stetig in } c $ $ \bullet f(x) - g(x) \text{ sind stetig in } c $ $ \bullet f(x) * g(x) \text{ sind stetig in } c $ $ \bullet f(x) / g(x) \text{ sind stetig in } c , g(x) \neq 0 $

Seien f: $D_f \to R$, g: $D_g \to R$ mit $f(D_f) \subseteq D_g$ Ist f stetig in x und g stetig in f(x), so ist g o f: $D_f \to R$ stetig in x. (g o f) (x) = g(f(x))

Special Zeug

- polynome immer stetig und rationale Funktionen von Polynomen

Limes Superior, Limes Inferior	Limes Superior $\overline{x}_n = \sup_{k \ge n} x_k$ (monoton fallend) $\lim_{n \to \infty} \sup x_n = \lim_{n \to \infty} \overline{x}_n = \inf \sup_{k \ge n} x_k$ Limes Inferior $\underline{x}_n = \inf_{k \ge n} x_k$ (monoton wachsend) $\lim_{n \to \infty} \inf x_n = \lim_{n \to \infty} \underline{x}_n = \sup \inf_{k \ge n} x$
Induktionsaufbau	Behauptung (Aufgabenstellung "Zu zeigen:" Induktionsanfang: Zeige dass Beh. für n=1 gilt Induktionsvoraussetzung: Es gelte Beh. für ein beliebiges aber festes n. Induktionsschritt: Zeige dass Beh. auch für n+1 gilt. Reduktionsschritt auf n bringen und IV einsetzen. Damit gilt IV □
Monotonie	Monoton wachsend $\forall \ x_n \leq x_{n+1}$ Streng monoton wachsend $\forall \ x_n < x_{n+1}$ Monoton fallend $\forall \ x_n \geq x_{n+1}$ Streng monoton fallend $\forall \ x_n > x_{n+1}$
Konvergenz-Spezial	 Sei (x_n)_n beschränkte Folge. Dann: wenn (x_n)_n konvergiert ⇔ (x_n)_n hat genau einen Häufungspunkt ⇔ lim sup_{n->∞} x_n = lim inf_{n->∞} x_n Sei (x_n)_n monoton fallend oder wachsend ⇒ (x_n)_n hat höchstens ein Häufungspunkt
Häufungspunkt	1. Falls (n _k) streng monoton wachsend

	oder fallend, dann (a _{nk}) Teilfolge von (a _n) 2. Eine Zahl a heißt Häufungspunkt von (a _n) wenn ∃ Teilfolge (a _{nk}) von (a _n), die gegen a konvergiert
--	--

Blatt 06

Reihen Definition	Folge (a_n) , Reihe $s_n = \sum a_n$
Bekannte Reihen	Harmonische Reihe: $H_n = \sum\limits_{k=1}^n \frac{1}{k}$ divergiert Allgemeine Harmonische Reihe: $S = \sum\limits_{k=1}^n \frac{1}{k^n}$, konvergiert für a > 1 Alternierende Harmonische Reihe: $\sum\limits_{k=1}^n \frac{(-1)^{k+1}}{k} = ln(2)$, konvergiert laut Leibniz-Kriterium Geometrische Reihe: $s_n = \sum\limits_{k=0}^n a_0 z^k = \frac{a_0}{1-z}$, konvergiert für $ z < 1$, divergiert für $ z \ge 1$
Kriterien für Divergenz	Trivialkriterium/Nullfolgenkriterium Wenn $(a_k)_k$ divergiert oder $\lim_{k\to\infty} a_k \neq 0$ ist, dann ist die Reihe divergent. Minorantenkriterium: Sei $\sum_{k=0}^{\infty} a_k \text{ und } \sum_{k=0}^{\infty} b_k \text{ Reihen mit } 0 \leq a_k \leq b_k \text{ . Falls}$ $\sum_{k=0}^{\infty} a_k \text{ divergiert, dann auch } \sum_{k=0}^{\infty} b_k \text{ .}$
Kriterien für Konvergenz	Majorantenkriterium: Sei $s_n = \sum\limits_{k=0}^n a_k$ mit konvergenter Majorante $\sum\limits_{k=0}^n b_k$ (d.h. $ a_k \leq b_k$). Dann (s_n) konvergent und $ \sum\limits_{k=0}^\infty a_k \leq \sum\limits_{k=0}^\infty a_k \leq \sum\limits_{k=0}^\infty b_k$. Absolute Konvergenz Eine Reihe $\sum\limits_{k=1}^\infty a_k$ heißt absolut konvergent, falls $\sum\limits_{k=1}^\infty a_k $ konvergiert.

	Leibniz-Kriterium Wenn die Reihe die Form $\sum\limits_{k=1}^{\infty} (-1)^k b_k$ (alternierend) hat und wenn (b_k) eine nichtnegative monoton fallende Nullfolge ist, dann konvergiert die Reihe. Quotientenkriterium Gegeben Reihe $\sum\limits_{n=1}^{\infty} a_n$. kleiner als ein q welches < 1 $\lim_{n\to\infty} \left \frac{a_{n+1}}{a_n}\right \begin{cases} < 1 & \text{Die Reihe konvergiert} \\ = 1 & \text{Keine Aussage über die Konvergenz ist möglich} \\ > 1 & \text{Die Reihe divergiert} \end{cases}$
Minoranten (Reihen, die divergieren und als bekannte Minoranten benutzt werden können:)	- $\sum\limits_{k=0}^{\infty}z^k$ (divergiert für $ z \geq 1$) - $\sum\limits_{k=0}^{\infty}rac{1}{k}=\infty$
Majoranten (Reihen, die konvergieren und als bekannte Minoranten benutzt werden können:)	$\sum_{k=0}^{\infty} z^{k} = \frac{1}{1-z} \text{ (für } z < 1 \text{)}$ $- \sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1$ $- \sum_{k=1}^{\infty} \frac{1}{k^{2}} \text{ (konv. für a > 1),}$ $- \sum_{k=1}^{\infty} \frac{1}{k^{2}} = \frac{\pi^{2}}{6}$ $- \sum_{k=0}^{\infty} \frac{z^{k}}{k!} = e^{z} \text{ (für alle } z \in C \text{).}$ $- \ln(1+x) = \sum_{k=0}^{\infty} \frac{(-1)^{k+1}}{k} x^{k} \text{ (für } x \in (-1,1] \text{).}$
Summenregel für Reihen	Seien $\sum_{k=0}^{\infty} a_k$ und $\sum_{k=0}^{\infty} b_k$ zwei konvergente Reihen. Dann gilt $\sum_{k=0}^{\infty} a_k + \sum_{k=0}^{\infty} b_k = \sum_{k=0}^{\infty} (a_k + b_k)$
Cauchy Produkt	Sind $(a_n) = \sum_{n=0}^{\infty} a_n$ und $(b_n) = \sum_{n=0}^{\infty} b_n$ zwei absolut konvergente Reihen, so ist deren Cauchy-Produkt $(a_n)^*(b_n) = (c_n) = \sum_{n=0}^{\infty} c_n$,

Exponentialfunktion	Die Exponentialfunktion ist stetig auf C. $\exp(z) = \sum_{k=0}^{\infty} \frac{z^k}{k!}$ $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n = \sum_{k=0}^{\infty} \frac{1}{k!}$ $\overline{exp(z)} = exp(\overline{z}) = exp(z)$ $exp(z) * exp(w) = exp(z + w)$ Zentrale Eigenschaft der exp-Fkt! (einzige stetige Fkt mit dieser Eigenschaft) $exp(ix) = e^{ix} = cos(x) + i * sin(x)$ $exp(x)^y = exp(xy) = (e^x)^y = e^{xy}$ $(cos(x) + i sin(x))^y = exp(x)^y$ $= exp(xy) = cos(xy) + i sin(xy)$
Logarithmus	- $ln(x) = log_e x = y (e^y = x)$ - $ln(exp(x)) = x = exp(ln(x))$ - $ln(x^k) = k * ln(x)$ - $exp(ln(x^k)) = exp(k * ln(x))$ = $exp(ln(x))^k = x^k$ - $ln(1) = 0$ - $ln(e) = 1$ - $ln(x) + ln(y) = ln(x^*y)$ - $ln(x) - ln(y) = ln(x/y)$ - $x^a = exp(a * ln(x))$

Blatt 07:

komplexe Zahlen	
Einheitskreis	- $\{z: z =1\}$, - Menge der Winkel: $\{x:\ 0 < x < 2\pi\}$
Sinus und Cosinus (aber fancy)	$- sin(x) := \frac{exp(ix) - exp(-ix)}{2i}$ $= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$ $- cos(x) := \frac{exp(ix) + exp(-ix)}{2}$ $= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$

blatt 08

Zwischenwertsatz	Sei $f: [a, b] \to R$ stetig und entweder $f(a) < y < f(b)$ oder $f(b) < y < f(a)$ Dann gibt es $x \in (a,b)$ mit $f(x) = y$
Fixpunkt	Funktion f(x)=x. Funktion hat einen Schnittpunkt mit der geraden x.
Grenzwertverhalt von exp(x) In(x) sqrt(x)	$-\lim_{x\to 0} exp(x) = 1$ $-\lim_{x\to \infty} exp(x) = \infty$ $-\lim_{x\to \infty} exp(x) = 0$ $-\lim_{x\to \infty} ln(x) = -\infty$ $-\lim_{x\to 0} ln(x) = \infty$ $-\lim_{x\to \infty} ln(x) = \infty$ $-\lim_{x\to \infty} \sqrt{x} = 0$ $-\lim_{x\to \infty} \sqrt{x} = \infty$ $-\lim_{x\to \infty} \sqrt{x} = \infty$ $-\lim_{x\to \infty} \sqrt{x} = \infty$
Landau Regeln	$- f(x) \in o(g(x)) : \lim_{x \to a} \left \frac{f(x)}{g(x)} \right = 0$ $- f(x) \in O(g(x)) : \lim_{x \to a} \sup \left \frac{f(x)}{g(x)} \right < \infty$

blatt 09:

Differenzierbarkeit	Differenzierbarkeit impliziert stetigkeit. Andersrum nicht immer der Fall siehe f(x)= x .
Ableitung: Rechenregeln	 f, g diff'bar in x, a ε R, dann: a * f, f * g diff'bar in x (a * f)'(x) = a * f'(x) (f+g)'(x) = f'(x) + g'(x)
Produktregel	f, g diff'bar in x, dann: (f * g)'(x) = f'(x) * g(x) + f(x) * g'(x)
Quotientenregel	f,g diff'bar in x, $g(x) \neq 0$, dann: $ (\frac{f}{g})'(x) = \frac{f'(x)*g(x)-f(x)*g'(x)}{g(x)^2} $
Kettenregel	$(g \circ f)(x) = g(f(x)),$ $(g \circ g)'(x) = g'(f(x)) * f'(x)$
Ableitung von Umkehrfunktionen	$f:[a,b] \rightarrow [c,d]$ bijektiv, in $[a,b]$ diff'bar mit $f'(y) \neq 0$. Dann ist $f^{-1}:[c,d] \rightarrow [a,b]$ in $x = f(y)$ diff'bar und $(f^{-1})' = \frac{1}{f'(f^{-1}y)}$. $g'(y) = \frac{1}{f'(g(y))}, \ mit \ g := f^{-1}$
Spezielle Ableitungen	$- f(x) = \sqrt[n]{x}, f'(x) = \frac{1}{n*\sqrt[n]{x}},$ $- f(x) = \sin(x), f'(x) = \cos(x)$ $- f(x) = \cos(x), f'(x) = -\sin(x)$ $- f(x) = \frac{1}{x}, f'(x) = -\frac{1}{x^2}$ $- f(x) = a * e^x, f'(x) = a * e^x$ $- f(x) = \arccos(x), f'(x) = -\frac{1}{\sqrt{1-x^2}}$ $- f(x) = x^x, f'(x) = e^x * (1 + \ln(x))$ $- f(x) = a^x, f'(x) = a^x \ln(a)$ $- f(x) = a * \ln(x), f'(x) = \frac{a}{x}$
Punktweise Konvergenz	Funktionsfolgen (f_n) konvergiert punktweise gegen f falls $\lim_{n\to\infty} f_n(x) = f \forall x \in [a,b]$ Reihen Sei $I \subseteq R_n$. Konvergiert die aus einer Funktionenfolge R gebildete Reihe $f(x) = \sum\limits_{k=0}^{\infty} f_k(x)$ für alle $x \in I$, so ist die Reihe punktwiese konvergent.

Gleichmäßige Konvergenz	Funktionsfolgen (f_n) konvergiert gleichmäßig gegen f falls $\lim_{n\to\infty} \sup_{x\in[a,\ b]} f_n(x)-f(x) \to_{n\to\infty} 0$
	Reihen $ \text{Gilt } f_k(\mathbf{x}) \leq a_k \ und \ \sum_{k=0}^\infty ak(\mathbf{x}) < \infty , \text{so ist } \sum_{k=0}^\infty fk(\mathbf{x}) $ gleichmäßig konvergent

blatt 10:

Konkav	f''(x) < 0
Konvex	f''(x) > 0
Herangehensweise um Extrema zu bestimmen	 f: (a,b) → R Bestimme die Nullstellen von f' in (a,b). Bestimmen ob Nullstellen lokale Minima oder Maxima sind anhand f'(x)<0 Maximum oder f'(x)>0 Minimum Wenn f'(x)=0 dann Sattelpunkt Bestimmen ob sie globale Extrema sind. f(a) und f(b), bzw lim f(x) und lim f(x) gegen die Randpunkte wenn der y Wert nicht größer kleiner der Extrempunkte ist dann sind E Falls Funktion abgeschlossen dann gibt es weiter extrema an den Rändern.
Kurvendiskussion: Specials	f(x) $f'(x) = 0 \rightarrow \text{Nullstellenkandidaten}$ $f''(x) = 0 \rightarrow \text{Wendepunkte}$
Jensens Ungleichung	$f:(a,b) \rightarrow R $ sei konvex, $n \ge 2, x_1,, x_n \ \epsilon(a,b)$ und $p_1,, p_n > 0$ und $\sum_{i=1}^n p_i = 1$. Dann gilt $f(\sum_{k=1}^n p_k x_k) \le \sum_{k=1}^n p_k f(x_k)$.

Regel von l'Hospital	Zu berechnen: $\lim_{x \to a} \frac{f(x)}{g(x)}$. Problem: geht f oder g "schneller" gegen a? Regel: $f,g:[a,b] \to \mathbb{R}$, diff'bar mit $g'(x) \neq 0$. Sei $x_0 = a \ oder \ x_0 = b$, (a=- ∞ oder b= ∞ mögl.) falls $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ existiert, dann $\lim_{x \to a} \frac{f'(x)}{g'(x)} = \lim_{x \to a} \frac{f(x)}{g(x)}$. L' Hospital Umformungen: https://www.mathebibel.de/regel-von-lhospital
Satz von Rolle	$f:[a,b] \rightarrow \mathbb{R}$ stetig auf [a,b], und diff'bar auf (a,b). Falls $f(a) = f(b)$, dann $\exists x_0 \ \epsilon \ (a,b) \ mit \ f'(x_0) = 0$.
Mittelwertsatz	$f:[a, b] \rightarrow R $ stetig und diff'bar auf (a,b) $\Rightarrow \exists z \in (a,b): \frac{f(b)-f(a)}{b-a} = f'(z)$