PLSC476: Empirical Legal Studies

Christopher Zorn

September 4, 2025

R and RMarkdown

- RMarkdown is "an authoring framework for data science" that facilitates literate programming and reproduceable research
- Purpose: To allow for the creation of *reproduceable*, *dynamic* documents, presentations, and web pages.
- Similar to Markdown (and other lightweight, literate markup languages)
- Combines text, R code, and R output
- Output formats: PDF, HTML, Word, Shiny (for interactive web apps), others
- These slides were created using RMarkdown; the code for doing so is available on the course github repository

Why Plot?

- Know your data
- Catch mistakes
- Learn something...

Running Example: COVID-19 in PA

- *N* = 67 counties
- Current as of July 22, 2025
- Source: PA Department of Health

Variables:

- County Name
- Latitude/Longitude
- FIPS code
- Date
- New Cases
- 7-Day Average of New Cases
- Total/Cumulative Cases
- County Population

- New Case Rate (per 100K population)
- 7-Day Average of New Case Rate
- Cumulative Case Rate (per 100K population)
- New Deaths
- Total/Cumulative Deaths
- Cumulative Death Rate (per 100K population)

Table 1: PA COVID-19 Data, 07/22/2021

	FIPS	Date	County	New.Cases	New.Cases.7dayAvg	Cumulative.Cases
2320	42001	07/22/2021	Adams	5	7.1	9820
3805	42003	07/22/2021	Allegheny	51	44.9	103176
5290	42005	07/22/2021	Armstrong	6	1.4	6062
6775	42007	07/22/2021	Beaver	2	6.6	15737
8260	42009	07/22/2021	Bedford	0	0.6	4783
9745	42011	07/22/2021	Berks	18	16.0	49086
11230	42013	07/22/2021	Blair	2	1.7	13646
12715	42015	07/22/2021	Bradford	2	1.4	6204
14200	42017	07/22/2021	Bucks	37	31.0	61405
15685	42019	07/22/2021	Butler	7	6.4	17850
17170	42021	07/22/2021	Cambria	4	2.1	15069
18655	42023	07/22/2021	Cameron	0	0.4	316

Data Summary

FIPS	Date	County	New.Cases
Min. :42001 L	ength:67	Length:67	Min. : 0.00
1st Qu.:42034 C	Class :character	Class :character	1st Qu.: 1.00
Median :42067 M	lode :character	Mode :character	Median: 3.00
Mean :42067			Mean : 9.73
3rd Qu.:42100			3rd Qu.: 7.50
Max. :42133			Max. :132.00
New.Cases.7dayAvg	Cumulative.Cases	Population	New.Case.Rate
Min. : 0.10	Min. : 316	Min. : 4447	Min. : 0.00
1st Qu.: 1.00	1st Qu.: 3805	1st Qu.: 42025	1st Qu.: 1.70
Median : 2.10	Median: 8166	Median : 84629	Median: 3.30
Mean : 7.36	Mean : 18409	Mean : 191074	Mean : 3.74
3rd Qu.: 7.05	3rd Qu.: 18489	3rd Qu.: 208270	3rd Qu.: 4.95
Max. :80.90	Max. :157903	Max. :1584064	Max. :13.80
New.Case.Rate.7Da	yAvg Cumulative.Ca	ase.Rate Longitud	de Latitude
Min. :0.80	Min. : 6683	3 Min. :-8	30.4 Min. :39.9
1st Qu.:1.90	1st Qu.: 846	7 1st Qu.:-	79.1 1st Qu.:40.4
Median :2.80	Median: 9529	9 Median :-	77.4 Median:40.8
Mean :3.23	Mean : 9673	3 Mean :-	77.6 Mean :40.8
3rd Qu.:4.00	3rd Qu.:1062	7 3rd Qu.:-	76.2 3rd Qu.:41.3
Max. :9.60	Max. :19829	9 Max. :-	75.0 Max. :42.0
Georeferenced.Lat	Long New.Deat	ths Total.Dear	ths Total.Death.Rate
Length: 67	Min. :0	.0000 Min. :	10.0 Min. : 96.8
Class : character	1st Qu.:0	.0000 1st Qu.: 9	93.5 1st Qu.:187.8
Mode :character	Median :0	.0000 Median : 19	90.0 Median:224.9
	Mean :0	.0597 Mean : 4:	19.0 Mean :229.5
	3rd Qu.:0	.0000 3rd Qu.: 43	38.0 3rd Qu.:262.8
	Max. :1	.0000 Max. :38	11.0 Max. :408.4

Univariate Graphics

- Dotcharts / Barcharts
- Histograms
- Density Plots
- Boxplots
- Q-Q Plots
- Others...

A Dotchart

Figure 1: New COVID-19 Cases by County

A Sorted Dotchart

Figure 2: New COVID-19 Cases by County

A (Sorted) Barchart

Figure 3: New COVID-19 Cases by County

The Histogram: Cumulative Case Percentages

vars n mean sd median trimmed mad min max range skew kurtosis se X1 1 67 9.67 1.91 9.53 9.54 1.63 6.68 19.8 13.2 2.19 9.79 0.23

COVID-19 Infection Percent

Figure 4: Cumulative Cases, as a Percentage of Population

"Kernel Density" Plot

Figure 5: Cumulative Cases, as a Percentage of Population

COVID-19 Infection Percent

Density + Histogram

Figure 6: Cumulative Cases, as a Percentage of Population

A Boxplot

Figure 7: Cumulative Cases, as a Percentage of Population

Multiple Boxplots in One Figure

Figure 8: Two Boxplots

Quantile-Quantile (Q-Q) Plots

- Plots two sets of quantiles against each other...
- Can be used to compare two variables' distributions to each other
- Can also compare the *empirical* distribution of a variable to a *theoretical* distribution
- If the two are the same, the quantiles will lie on a straight line

One Density...

Figure 9: New Cases per 100K Population

New COVID Cases per 100K

One-Variable Normal Q-Q Plot

Figure 10: New Cases per 100K Population

Two Densities...

New COVID Cases per 100K

Cumulative COVID Cases per 100

Figure 11: New and Cumulative Cases per 100K Population

Two-Variable Q-Q Plot

Figure 12: New and Cumulative Cases per 100K Population

Other Univariate Plots

- Pie charts (please don't...)
- "Donut" plots (same)
- "Stem-and-leaf" plots (very old-school)
- Stripplots
- Time-Series Plots. . .

A Time Series Plot

Figure 13: Daily COVID Cases in Centre County, 3/1/2020-6/15/2023

Date

Add a "Smoother"

Figure 14: Daily COVID Cases in Centre County, 3/1/2020-6/15/2023

Date

Another Cool Viz: Maps

Figure 15: Total Cases (Percent of the Population)

Bivariate Plots: The Scatterplot

Figure 16: Case Rates vs. Death Rates

Cumulative.Case.Rate

A Better Scatterplot

Cumulative Cases per 100K

Figure 17: Case Rates vs. Death Rates

Rescaling Axes (Log Scales)

Cumulative Cases per 100K

Figure 18: Case Rates vs. Death Rates

Adding Lines

Figure 19: New Cases vs. Population

How Not To Draw A Scatterplot

Urban/Rural

Figure 20: Urban/Rural vs. Cumulative Case Percent

Better...

Figure 21: Cumulative Cases: Percent of the Population

Cumulative Case Percent

Or:

Figure 22: Cumulative Cases: Percent of the Population

Multivariate Plots: Scatterplot Matrix

Figure 23: COVID in Pennsylvania (1/27/2021)

Conditioned Scatterplots

Figure 24: Case and Death Rates, by Urban/Rural

Cumulative Case Rate: Urban

Cumulative Case Rate: Rural

Other Cool Visualizations

- Contour / Wireframe Plots ("3D")
- Radar plots
- Parallel coordinates plots
- Dynamic / interactive graphics
- Many more. . .

Good Visualization Practices

- Go from simple to complex
- Optimize {readability, information density}
- Each plot should "stand on its own"
- Consider colorblindness (see, e.g., here)