## 12: Computationally Efficient Markov chain Simulation

November 11, 2019

#### Introduction

#### We mention:

- an example where adding auxiliary variables increases computational efficiency
- a few tuning tips for Random-Walk Metropolis-Hastings
- Metropolis-adjusted Langevin Algorithm (MALA)
- Hamiltonian Monte Carlo (HMC)
- Seudo-Marginal Metropolis-Hastings (PMMH).

## Example: Data Augmentation

- $y_1, \ldots, y_n \mid \mu, \sigma^2 \stackrel{\text{iid}}{\sim} t_{\nu}(\mu, \sigma^2)$
- $\bullet$   $\nu$  is assumed known

• 
$$p(y_i \mid \mu, \sigma^2) \propto \left(1 + \frac{1}{\nu} \left(\frac{y_i - \mu}{\sigma}\right)^2\right)^{-(\nu + 1)/2}$$

- $p(\mu) \propto 1$
- $p(\sigma^2) \propto (\sigma^2)^{-1}$  (uniform for  $\log \sigma$ )

## **Example: Data Augmentation**

- $y_1, \ldots, y_n \mid \mu, \sigma^2 \stackrel{\mathsf{iid}}{\sim} t_{\nu}(\mu, \sigma^2)$
- ullet  $\nu$  is assumed known

• 
$$p(y_i \mid \mu, \sigma^2) \propto \left(1 + \frac{1}{\nu} \left(\frac{y_i - \mu}{\sigma}\right)^2\right)^{-(\nu+1)/2}$$

- $p(\mu) \propto 1$
- $p(\sigma^2) \propto (\sigma^2)^{-1}$  (uniform for  $\log \sigma$ )

Normally we would do

$$p(\mu, \sigma \mid y) \propto p(y \mid \mu, \sigma^2)p(\mu)p(\sigma^2)$$

## Example: Data Augmentation

Gibbs sampler not available :(



## Data Augmentation: auxiliary variables

Instead, we introduce  $V_i$  (hidden/latent/unobserved data):

- $p(y_i \mid V_i, \mu, \sigma^2) \sim N(\mu, V_i)$
- $p(V_i \mid \sigma^2) \sim \text{Inv-}\chi^2(\nu, \sigma^2)$
- ullet  $\nu$  is assumed known still
- $p(\mu) \propto 1$  still
- $p(\sigma^2) \propto (\sigma^2)^{-1}$  (uniform for  $\log \sigma$ ) still

 $p(y_i \mid \mu, \sigma^2)$  is the same as before.



## Data Augmentation: auxiliary variables

We can show that

**1** 
$$V_i \mid \mu, \sigma^2, y \sim \text{Inv-}\chi^2 \left( \nu + 1, \frac{\nu \sigma^2 + (y_i - \mu)^2}{\nu + 1} \right)$$

$$\circ \sigma^2 \mid \mu, V_{1:n}, y \sim \mathsf{Gamma}\left( rac{n 
u}{2}, rac{
u}{2} \sum_i rac{1}{V_i} 
ight)$$

## Data Augmentation: auxiliary variables

Note:

$$\begin{aligned} V_i \mid \mu, \sigma^2, y &\sim \mathsf{Inv-}\chi^2\left(\nu + 1, \frac{\nu\sigma^2 + (y_i - \mu)^2}{\nu + 1}\right) \\ &= \mathsf{Inv-Gamma}\left(\frac{\nu + 1}{2}, \frac{\nu\sigma^2 + (y_i - \mu)^2}{2}\right) \end{aligned}$$



(see t\_visualization.r)

Near-zero values of  $V_i$ s lead to  $\sigma^2$  being near zero, too,

"12" November 11, 2019 7 / 19

## Data Augmentation: parameter expansion

Add another parameter:  $\alpha > 0$ 

Rename a few things:

$$\tau^2 = \sigma^2/\alpha^2 \tag{1}$$

$$U_i = V_i/\alpha^2 \tag{2}$$

$$U_i = V_i/\alpha^2 \tag{2}$$

Assume a noninformative prior for  $\alpha$ :

$$p(\alpha^2) \propto (\alpha^2)^{-1}$$

## Data Augmentation: parameter expansion

- $p(y_i \mid V_i, \mu, \sigma^2) \sim N(\mu, \alpha^2 U_i)$
- $p(U_i \mid \tau^2) \sim \text{Inv-}\chi^2(\nu, \tau^2)$
- $\bullet$   $\nu$  is assumed known
- $p(\mu) \propto 1$
- $p(\tau^2) \propto (\tau^2)^{-1}$  (uniform for  $\log \tau$ )

Prove that the model is not identifiable in the full parameter space! However, the inference about  $\mu$ ,  $\alpha\tau$ , and  $\alpha^2U_i$  is still valid.

"12"

## Data Augmentation: parameter expansion

Posterior conditional distributions are similar:

**1** 
$$U_i \mid \alpha, \mu, \tau^2, y \sim \text{Inv-}\chi^2 \left(\nu + 1, \frac{\nu \tau^2 + ((y_i - \mu)/\alpha)^2}{\nu + 1}\right)$$

$$\bullet$$
  $\tau^2 \mid \mu, U_{1:n}, y \sim \mathsf{Gamma}\left(\frac{n\nu}{2}, \frac{\nu}{2} \sum_i \frac{1}{\alpha^2 U_i}\right)$ 

**4** 
$$\alpha \mid \mu, \tau^2, U_{1:n}, y \sim \text{Inv-}\chi^2\left(n, \frac{1}{n} \sum_{i=1}^n \frac{(y_i - \mu_i)^2}{U_i}\right)$$

 $\alpha$  breaks the dependence between  $V_i = \alpha^2 U_i$  and  $\tau^2$ .

"12"

### Random Walk M-H: Some Tricks

Last chapter, when we were using the Metropolis-Hastings algorithm, we need to specify the proposal's covariance matrix: If  $\theta$  is roughly normal,

$$q(\theta^* \mid \theta^{t-1}) = \mathsf{Normal}(\theta^{t-1}, \Sigma).$$

The book recommends setting

$$\Sigma pprox rac{2.4^2}{d} \operatorname{Var}(\theta \mid y).$$

Here d is the dimension of  $\theta$ . A rough approximation of the posterior covariance matrix is required, e.g., Hession matrix at the posterior mode.

### Random Walk M-H: Some Tricks

Why set the proposal covariance matrix this way?

It is all about the efficiency of the posterior samples.

Specifically, our goal is to increase the **rate** that a new independent  $\theta$  being generated.

It can be shown that under the suggested proposal,  $q(\theta^* \mid \theta^{t-1}) = \text{Normal}(\theta^{t-1}, \frac{2.4^2}{d} \text{Var}(\theta \mid y))$ , the efficiency is 0.3/d, meaning that, on average, every d/0.3 iterations a new independent  $\theta$  is drawn.

The efficiency is low when the dimension d is large!!!

## Adaptive Metropolis-Hasting algorithm

Adaptive MH is aimed to improve the acceptance rate: Initial stage:

• Start simulations with a fixed MH algorithm using proposals like  $q(\theta^* \mid \theta^{t-1}) = \text{Normal}(\theta^{t-1}, \frac{2.4^2}{d} \text{Var}(\theta \mid y))$ 

#### Adaptive stage:

- Update the jumping rule as  $q(\theta^* \mid \theta^{t-1}) = \text{Normal}(\theta^{t-1}, \Sigma)$ , where  $\Sigma$  is estimated from the simulation in initial stage.
- (Optional, needs parallel simulations) Adjust the scale of the jumping distribution until an acceptance rate of 0.44 in one dimension or 0.23 when parameters are updated as a vector.

Note: if  $\Sigma$  is the same as the target distribution, the jumping rule,  $q(\theta^* \mid \theta^{t-1}) = \text{Normal}(\theta^{t-1}, \frac{2.4^2}{d}\Sigma)$ , has acceptance rate 0.44 in one dimension or 0.23 when parameters are updated as a vector.

"12"

## Slice sampling

To sample from a distribution, simply sample uniformly from the region under the density function and consider only the horizontal coordinates.



14 / 19

## Slice sampling

#### One way to do this is

- Introduce latent (auxiliary) variables
- Use Gibbs sampling on the area beneath the density

Suppose we wish to sample from f(x), it is equivalent to:

- $y \mid x \sim \text{Uniform}(0, f(x))$ , then f(x, y) is constant over  $\{(x, y) : 0 \le y \le f(x)\}$ .
- $x \mid y \propto f(x, y) \sim \mathsf{Uniform}(S(y))$ , where  $S(y) = \{x : y \leq f(x)\}$

## Slice sampling

This leads to an iterative algorithm:

- $y_i | x_{i-1} \sim \text{Uniform}(0, f(x_{i-1}))$
- $x_i \mid y_i \sim \mathsf{Uniform}(S(y_i))$

No need to specify proposal distributions as needed by MH or rejection sampling.

Determining the slice S(y) can be tricky!

### Slice sampling: example for normal distribution

Suppose  $x \sim \text{Normal}(0,1)$ , so  $f(x) \propto g(x) = \exp(-x^2/2)$ , then the slice through the density is

$$S(y) = \{x : -\sqrt{-2\log(y)} \le x \le \sqrt{-2\log(y)}\}.$$

First five iterations of the slice sampler for the standard normal example:



"12" November 11, 2019

## Sampling from multi-modal distribution: simulated tempering

Let  $p(\theta)$  be the target (unnormalized) density. Consider

$$q_k(\theta) \propto p(\theta)^{1/T_k}$$

for a set of "temperature" parameters  $T_k > 0$ , k = 0, 1, ..., K, where  $T_0 = 1$  and  $q_0(\theta) = p(\theta)$ .

For  $T_k$  large (high temperature), the density  $q_k$  will be more flat than  $q_0$ . Simulated tempering constructs a Markov chain with augmented state  $(\theta^t, s^t)$  at time t with  $s^t$  an integer indicating the current temperature.

# Sampling from multi-modal distribution: simulated tempering

The algorithm is an Metropolis-Hasting algorithm leading to a composite Markov chain:

- Propose a new state for  $\theta^t$ :  $\theta^t$  is then generated using Markov chain simulation corresponding to stationary distribution  $q_{s^{t-1}}$ .
- An MH step for  $s^t$ : proposing  $s^t$  according to  $P(s^t = k) \propto J_{s^{t-1},k}$  accept with probability min(r,1), where

$$r = \frac{c_k q_k(\theta^t) J_{ks^{t-1}}}{c_{s^{t-1}} q_{s^{t-1}}(\theta^t) J_{s^{t-1}k}}$$

 $c_k$  is the normalizing constant for  $q_k$ .

Once the composite Markov chain is simulated for  $t=1,\ldots,T$ , only  $\theta^t$  corresponding to  $s^t=0$  are kept for inference about  $q_0$ .