Balotario de preguntas

Fuerzas intermoleculares

- 11.1 Proponga un ejemplo para cada tipo de fuerzas intermoleculares: *a*) interacción dipolo-dipolo, *b*) interacción dipolo-dipolo inducido, *c*) interacción ion-dipolo, *d*) fuerzas de dispersión, *e*) fuerzas de van der Waals.
- 11.2 Explique el término "polarizabilidad". ¿Qué clase de moléculas tienden a ser muy polarizables? ¿Qué relación existe entre la polarizabilidad y las fuerzas intermoleculares?
- 11.3 Explique la diferencia entre un momento dipolar temporal y un momento dipolar permanente.
- 11.4 Mencione alguna evidencia de que todos los átomos y moléculas ejercen entre sí fuerzas de atracción.
- 11.5 ¿Qué propiedades físicas se deberían considerar al comparar la intensidad de las fuerzas intermoleculares en los sólidos y los líquidos?
- 11.6 ¿Cuáles elementos pueden participar en los enlaces de hidrógeno? ¿Por qué el hidrógeno es único en este tipo de interacción?
- 11.7 Los compuestos Br₂ y ICl tienen el mismo número de electrones, pero el Br₂ se funde a −7.2°C y el ICl se funde a 27.2°C. ¿Por qué?
- 11.8 Si viviera en Alaska, ¿cuál de los siguientes gases naturales almacenaría en un tanque a la intemperie durante el invierno: metano (CH₄), propano (C₃H₈) o butano (C₄H₁₀)? Justifique su respuesta.
- 11.9 Los compuestos binarios de hidrógeno de los elementos del grupo 4A y sus puntos de ebullición son: CH₄, -162°C; SiH₄, -112°C; GeH₄, -88°C, y SnH₄,

11.1 Fuerzas dipolo-dipolo cloroformo CHCI

Fuerzas dipolo inducido el agua

Fuerzas ion-dipolo

El agua y los iones del cloruro y de sodio

Fuerzas de dispersión de London metilpentano

Fuerzas de van der Waals

1.2	es una magnitud renscriar que representa la Capacidad de una mojeculo de
	distinctionair su densidad electrónico en presencia de un campo electrico apricado
	Es la facilidad que presenta un atemo para poder distersencis per un campo
	electrico.
	aquellos moléculos altamente polarizablerson las que tengan una separación
	pequeña entre sus orbitales fronteras l'átomos pesados y de grantomaña):
	> iones de metals alcalinos
	> iones de los halogenos más pesados
	La relación que existe entre la polarizabilidad y las fuerzas intermoleculare
	es la clasificación en la que se basa se debe a que con la povaridad se tomo
	com un paper determinante del tipo y la magnitud de las fuerzas intermoleculares
	que actuam entre las molécular. Ya que la palaridad nos dirá Eles Polaro no palar.
The last of the	y por tanto la fuerza que preciaminan en la justancia.

11.3

11.3 momento dipolar temporal	- momento dipolar permanente.
o tambien mamado instantaneo, durana	ocurren entire moleculas que tienen un momento
pequenci fracción de segundo.	alpolar intrinseso.
estos se pueden general por la posición específico	se debe a que tienen una gran diferença de
de los electrones, ya que el atomo cambio de	electronegatividad.
posición	

11.4

	rada tos armos rionen caras (atracción)
-	1040, 200 410,00, 110,201
	ademas temando en cuenta su estado de oxidación
-	uguidos -> tensión superficias clas moleculas que se atraen entre si y tienden a
	minimizan su superficie)
-	socidos -> Las fuerzas mantienen juntas las maleculas en un asseglocketinido
-	capitaridad el liquido quede ascender en el tubo, incluso en contro el la gravedad.
	entre pus maliculas se da la cohesión.
-	Everzas intermoleculares - delerminan numerose propiedades y característicos.

entre rocidos y ciquidos

- puntos de fisión y punto de ebullición

- volumen

- den sidad

1.5 Propledados físicas se deperían considerar al comparay la intensidad, de las suezas intermojeculares

- −52°C. Explique el incremento de los puntos de ebullición desde CH₄ hasta SnH₄.
- 11.10 Mencione los tipos de fuerzas intermoleculares que hay entre las moléculas (o unidades básicas) en cada una de las siguientes especies: *a*) benceno (C₆H₆), *b*) CH₃Cl, *c*) PF₃, *d*) NaCl, *e*) CS₂.
- 11.11 El amoniaco es al mismo tiempo donador y aceptor de hidrógeno en la formación de enlaces de hidrógeno. Dibuje un diagrama que muestre los enlaces de hidrógeno de una molécula de amoniaco con otras dos moléculas de amoniaco.
- il.12 ¿Cuáles de las especies siguientes son capaces de unirse entre sí mediante enlaces de hidrógeno? a) C₂H₆, b) HI, c) KF, d) BeH₂, e) CH₃COOH.
- 11.13 Organice los siguientes compuestos en orden creciente según su punto de ebullición: RbF, CO₂, CH₃OH, CH₃Br. Justifique su respuesta.
- 11.14 El éter dietílico tiene un punto de ebullición de 34.5°C, y el 1-butanol tiene un punto de ebullición de 117°C:

Los dos compuestos tienen el mismo tipo y número de átomos. Explique por qué son distintos sus puntos de ebullición.

- 11.15 ¿De cuál miembro de cada uno de los siguientes pares de sustancias se esperaría que tuviera el punto de ebullición más alto? a) O₂ y Cl₂, b) SO₂ y CO₂, c) HF y HI.
- 11.16 ¿De cuál sustancia de cada uno de los siguientes pares se esperaría que tuviera el punto de ebullición más alto?

 a) Ne o Xe, b) CO₂ o CS₂, c) CH₄ o Cl₂, d) F₂ o LiF,

 e) NH₃ o PH₃. Explique su respuesta.
- 11.17 Explique, en función de las fuerzas intermoleculares, por qué: *a*) el NH₃ tiene un punto de ebullición más alto que el CH₄ y *b*) el KCl tiene un punto de fusión mayor que el del I₂.
- 11.18 ¿Qué tipo de fuerzas de atracción se deben superar para: *a*) fundir el hielo, *b*) hacer entrar en ebullición el bromo molecular, *c*) fundir el yodo sólido y *d*) disociar el F₂ en átomos de F?
- 11.19 Los siguientes compuestos tienen las mismas fórmulas moleculares (C₄H₁₀). ¿Cuál compuesto tendría el punto de ebullición más alto?

11.20 Explique a qué se debe la diferencia en los puntos de fusión de los compuestos siguientes:

(Sugerencia: Sólo uno de los dos puede formar enlaces de hidrógeno intramoleculares.)

- 11.93 Nombre los tipos de fuerzas de atracción que se deben vencer para que: *a*) el amoniaco líquido hierva, *b*) el fósforo sólido (P₄) se funda, *c*) el CsI se disuelva en HF líquido y *d*) el potasio metálico se funda.
- 11.94 ¿Cuál de las siguientes propiedades indica que las fuerzas intermoleculares de un líquido son fuertes? a) tensión superficial muy baja, b) temperatura crítica muy baja, c) punto de ebullición muy bajo y d) presión de vapor muy baja.

Propiedades de los líquido

- 11.21 ¿Por qué los líquidos, a diferencia de los gases, son prácticamente incompresibles?
- 11.22 ¿Qué es la tensión superficial? ¿Qué relación existe entre esta propiedad y las fuerzas intermoleculares? ¿Cómo cambia la tensión superficial con la temperatura?
- 11.23 A pesar de que el acero inoxidable es mucho más denso que el agua, una navaja de afeitar de acero inoxidable puede flotar en el agua. ¿Por qué?
- 11.24 Utilice el agua y el mercurio como ejemplos para explicar la adhesión y la cohesión.
- 11.25 Un vaso se puede llenar con agua justo por encima del borde. ¿Por qué el agua no se derrama?
- 11.26 Dibuje diagramas que muestren la acción capilar de: a) el agua y b) el mercurio en tres tubos de diferente radio.
- 11.27 ¿Qué es la viscosidad? ¿Cuál es la relación entre las fuerzas intermoleculares y la viscosidad?
- 11.28 ¿Por qué la viscosidad de un líquido disminuye con el aumento en su temperatura?
- 11.29 ¿Por qué el hielo es menos denso que el agua?
- 11.30 Las tuberías de agua que están a la intemperie se tienen que drenar o aislar durante el invierno en los climas fríos. ¿Por qué?

- 11.31 ¿Cuál de los siguientes líquidos tiene mayor tensión superficial: etanol (C₂H₅OH) o éter dimetílico (CH₃OCH₃)?
- 11.32 ¿Cuál es la viscosidad del etilenglicol respecto del etanol y el glicerol? (Vea la tabla 11.3.)

11.	27	niscosida	d =	es 1	a opo	sicion	de	un	riguido a	def	ormanse.					
		a mayor	VIS	cosic	ad er	nonces	n	eno	r fluidez.							
		cyanto v	nayo	or sea	n las	fuerza	15 1	meri	noieculares	, ma	s visuosa	sera	la	SUT	anac	(

11.28	a	mayor	TO,	mayor	energic	CI	nerica	esto	genera	vn	grar	Liber	Tool	de	MOV	imle	nto
	Y	es10 (dismin	uye ic	s tuer	zas	intern	nove	culare.		.,,	111/11	100	ll n			

11.2	q et hiero es menos denso que et agua por el fenómeno ato enjare de hidrogieno.
	a medido que la Tétaje y los moleculos tenpon linenas energia cinetico, estas se vain
	al mediato por enlace de hidrageno en estructuras, exagonario que acupan mayor
	estacio que los movervior libres de agra líquida; a
19, 3	o las Tuberías que estan a la interperie o en el interior (atico) Tienen mayor resgo
	a congerarse ya que no tienen acceso qua i caron. Debido a esto se aisia los tutos
	del trio con material dissante (politileno).
11.3	1 el etanol presenta puentes de hidrogeno y forma un alipaco por lo que su atracción
110	entre movecular almenia, por ello su tensión superficial debe ser mayor.
	Y esto se da a perar de su ligual masa molar.
11 32	l'debido a que la guierira es la que posee una mayor catridad de puentes de hidrogeno
,,,,,,	There tambien mayor fuerza intermolecular y por ende mayor viscos laco.
	2° lyego serb el etherno etilenguron
	3° por ultimo el etanos

Soluciones

- 12.3 Describa brevemente el proceso de disolución a nivel molecular. Utilice como ejemplo la disolución de un sólido en un líquido.
- 12.4 A partir de las fuerzas intermoleculares, explique el significado de "lo semejante disuelve lo semejante".
- 12.5 ¿Qué es la solvatación? ¿Cuáles son los factores que influyen en el grado de solvatación? Proporcione dos ejemplos de solvatación; incluya uno relacionado con la interacción ion-dipolo, y otro en el que intervengan fuerzas de dispersión.
- 12.6 Según se sabe, algunos procesos de disolución son endotérmicos y otros son exotérmicos. Proponga una interpretación molecular de esta diferencia.
- 12.7 Explique por qué el proceso de disolución invariablemente conduce a un aumento en el desorden.

12.3	la displución implica la interacción de especies químicas entre las que tendiemos s
	partículas de soluto y solvente. So son de proporción variable.
	Este podría ser el agua avocarada, va que al merclar. avucar al agua vienovara
	se da la percepción que el azucar desaparecto, pero lo que paso que una discución.
12.4	Esto nos dice que es más protable que 2 sustançãos cuyas fuerzas intermojecularos y sus
	magnitudes sean del mismo tipo, sean surbles entro SI.
	Porello es importante tomar en wento la naturaliza del soluto y del discuento.
12.5	Sulvatación; es el proceso por a cual las paníavias de soluto se tocheon y se oscienanton
	moleculas de souvente grando un souto se disserve. En un solvente datticular
	Es un 11 po de interacción sou to - solvente. Y es importante para questal la disolución.
	La noturaleza y la mazz nitud de la solvatación dependen de la naturaliza
	outmice de has particular de solute y del robente.
	· demale: descripcion del cloruro de sodio en aqua
	disdiction del dioxido de azufte en benceno: disdiction de your moietaron en terracionato de carbono.

12.7	xq el	desorder	Commente	con 19	disorveior	1				1- (0)	
	el dis	olvente	y sorvento	. poseev	n un grado	de ord	en, pero.	esto se	destruy	e cuando el	
	SULUTO	re disver								es acompo	
										wildedad a	
	una	sustancia	, incuso s	esta e	endotern	nico			1 1111 (1)		

12.8 Describa los factores que afectan la solubilidad de un sólido en un líquido. ¿Qué significa decir que dos líquidos son miscibles?

2.8 factores de la sombindad:	
- naturaleza clez soluto y solvente	+ pH del medio
- temperatura	- tamaño de la particula
- presion	- grado de agración
- presencia de otros sustancias.	- Superficie del contacto
liquides miscibles. , significa que	pueden merclarse en walquier proporción son glese
e of formen dos tases se paractos.	ejempia : agua t etanol

- 12.9 ¿Por qué el naftaleno $(C_{10}H_8)$ es más soluble en benceno que el CsF?
- 12.10 Explique por qué el etanol (C₂H₅OH) no es soluble en ciclohexano (C₆H₁₂).
- 12.11 Acomode los siguientes compuestos en orden creciente de solubilidad en agua: O₂, LiCl, Br₂, metanol (CH₃OH).
- 12.12 Explique las variaciones de la solubilidad en agua de los alcoholes que se presentan a continuación:

Compuesto	Solubilidad en agua (g/100 g) a 20°C
CH ₃ OH	∞
CH ₃ CH ₂ OH	∞
CH ₃ CH ₂ CH ₂ OH	∞
CH ₃ CH ₂ CH ₂ CH ₂ OH	9
CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	2.7

(*Nota*: ∞ significa que el alcohol y el agua son completamente miscibles en todas las proporciones.)

Unidades de concentración

- 12.13 Defina los siguientes términos de concentración y especifique sus unidades: "porcentaje en masa", "fracción molar", "molaridad" y "molalidad". Compare sus ventajas y sus desventajas.
- 12.14 Describa brevemente los pasos que se requieren para la conversión entre molaridad, molalidad y porcentaje en masa.

12.13	El porcentaje	en masa: e	s la relaci	on entre la	meisa del 10	luto y la mara total	de la
	solution mult	liplicado po	7 100		198 188		
	unidad : %	- Yomasa	a = marc	de sou	× 100		
						asa dels oluto Foodasad	reldisolvente.
	molahdad	numero de r	notes de so	entos disu	etos en jugad	el disolverte.	
	unidad = mol	mola = moi	es del sou	40			
	Kgom	nosa	de disso.	lvento			
						ente en l'elación a	1a
	(x)					ed a dimensional	
		fm = mou	of de solut	0 .	Xsoluto + Xs	olvente 3.	
		mol	es totales au	la disolución	all is es gompso	n para presionos avo	apor .
	ayrda 9 8	ormar a dolo	sion jui cu	1 00 101 19	all with the state of the state	DATE THE PARTY	
30/	molandad:	expresa las	CONCENTRO CU	ones volume	Tricas.	MARKET OF MARKET	
	unidad : moi	cocharidad :	1 utro de d	3(0)0			
12.1	u mayasıdad						
12.1	motor rady.	olumen solu	ción Ti	Y	1/SFO		
	molaydad	= 17 so m	1-1	• Tolucian	1/30/-		
		Kn= 7.	tace				
	% masa	MSTO x 100	- MSTO	100%	1 111 -		
	1 1 1 1	msor.	Msto +	ste			
					0 + 10 =	S 1 970	
/2 . 15	a) 5.50g. X	13 Br en 78,	29 de disolu	ción 12.1	60144220	- disolucian al	16.27, en
	= 5.008				59.	masa.	
	18,29				2 16,2-6=	5q x 100	%
	7,04%				٤	sig + Magua	
					0,819 +0,	162 Mag 4 = 500	
	61 31 g de		de agua	DUSCUSS ID	our par program	Magua = 25,86	Hgi.
		81+152 = 183				No Party Sel	
	= 319 ,	1007-				2 - 7 desolucio	n al 15% en
	1839		the same	and the second	26,29	. masa	
	= 16,947.		52/10				
	c) 4,59 Towe	enven 29g.	ae bensero		1,5 % =	26, 2 g + No	2 %
		4,59 +299 =			. Support	26, 29 + 00	31 31 31
	= 459.				0,393 +	0,015x = 26,2	A COLOR
	33 5 9	18/19/18	7 10 2			x = 1720-47	-
	= 13, 43%		and the same of				
					1 100		A COLUMN

- 12.15 Calcule el porcentaje en masa de soluto en cada una de las siguientes disoluciones acuosas: *a*) 5.50 g de NaBr en 78.2 g de disolución, *b*) 31.0 g de KCl en 152 g de agua, *c*) 4.5 g de tolueno en 29 g de benceno.
- 12.16 Calcule la cantidad de agua (en gramos) que se debe agregar a: *a*) 5.00 g de urea (NH₂)₂CO para preparar una disolución al 16.2% en masa y *b*) 26.2 g de MgCl₂ para preparar una disolución al 1.5% en masa.
- 12.17 Calcule la molalidad de cada una de las siguientes disoluciones: *a*) 14.3 g de sacarosa ($C_{12}H_{22}O_{11}$) en 676 g de agua, *b*) 7.20 moles de etilenglicol ($C_2H_6O_2$) en 3 546 g de agua.
- 12.18 Calcule la molalidad de cada una de las siguientes disoluciones acuosas: *a*) disolución de NaCl 2.50 *M* (densidad de la disolución = 1.08 g/mL), *b*) disolución de KBr al 48.2% en masa.
- 12.19 Calcule la molalidad de cada una de las siguientes disoluciones acuosas: *a*) disolución de azúcar (C₁₂H₂₂O₁₁) 1.22 *M* (densidad de la disolución = 1.12 g/mL), *b*) disolución de NaOH 0.87 *M* (densidad de la disolución = 1.04 g/mL), *c*) disolución de NaHCO₃ 5.24 *M* (densidad de la disolución = 1.19 g/mL).

12/17	Molalidad		12.20 NH212 CO 0,010M
0	C12 H22 P11 6769	de cegua	9,01 = 0,01 mal unes
	M = 342	Magua 0,676	1 L disof
	11 = 14,3 =0,0418	MCHO = \$14,300	0,03 not mea x 60x 069 mea = 0,6 g mea
	347	**	1 mol wea
	molaridad = 0,0418 .	= 0,0618	1000 ML displ x 1g displ = 1000g displ.
	0,676		1 me desol
6	7,2 mo QH602 3	596g agna	1000 g disol - 0,6 g urea = 999,4 g disolver
		= 2,030	m = 0,01 mol ma = 0,01 m
	3546		o, agging disol

- 12.20 Para disoluciones diluidas, en las que la densidad de la disolución es aproximadamente igual a la del disolvente puro, la molaridad de la disolución es igual a su molalidad. Demuestre que este enunciado es válido para una disolución acuosa de urea (NH₂)₂CO, 0.010 *M*.
- 12.21 El contenido de alcohol de un licor se expresa en términos de la "prueba", que se define como el doble del porcentaje en volumen de etanol (C₂H₅OH) presente. Calcule el número de gramos de alcohol presente en 1.00 L de ginebra "prueba 75". La densidad del etanol es de 0.798 g/mL.
- 12.22 El ácido sulfúrico concentrado que se utiliza en el laboratorio es H₂SO₄ al 98.0% en masa. Calcule la molalidad y la molaridad de la disolución ácida. La densidad de la disolución es de 1.83 g/mL.
- 12.23 Calcule la molaridad y la molalidad de una disolución de NH₃ preparada con 30.0 g de NH₃ en 70.0 g de agua. La densidad de la disolución es de 0.982 g/mL.

12 19 Molalidad \$\int_{\sumsymbol{2}} \int_{\sumsymbol{2}} \int_{\sums		appropriate to the second seco
m = 1,12 x x 1000 m = 1120 g 2,5 = 2,5 mol 1, displación m= 1, 12 x 1000 m = 1,22 o 342 2,5 not not 1,58,44g Nacy = 146,5 Not) m= 1, 12 y - 41, 2, 24 o - 702, 76 go 4000 m disolación x 100 galeolica = 10 60 galeolica = 10 60 galeolica = 10 60 galeolica = 10 60 galeolica = 10 10 10 10 10 10 10 10 10 10 10 10 10	12 .19 Molalidad 8=5-1,12 9/ 12.	18 Molalidet
m = 1,12 x x 1000 m = 1120 g 2,5 = 2,5 mol 1, displación m= 1, 12 x 1000 m = 1,22 o 342 2,5 not not 1,58,44g Nacy = 146,5 Not) m= 1, 12 y - 41, 2, 24 o - 702, 76 go 4000 m disolación x 100 galeolica = 10 60 galeolica = 10 60 galeolica = 10 60 galeolica = 10 60 galeolica = 10 10 10 10 10 10 10 10 10 10 10 10 10	3) C 2 H 22 O11 1221 en 12 ch 1919.	2 Nacl 250M 8=108 9/m
12 displición M=1 M = 1,22.342 2,5 not Novil x58,449 Novil = 146,5 Novil Mora = 17,24 g Mora mil displición x 100 galactica = 10 00 ga		
my = 417, 24 g mste = 1120 - 417, 24 = 702, 76 g 1000 ml disolation × 100 get white = 10 600 disolation modelidad = \frac{1}{22 mol} = 1,236 mol} 10 80 g decl 146. g Nine = 934 g de ague m = 25 mol de Nacl = 2,672 n 0,934 kg agua m = 1,04 3/m × 1000 m × 1040 gr m april = 1,04 3/m × 1000 m × 1040 gr m april = 1,04 3/m × 1000 m × 1040 gr m april = 1,04 3/m × 1040 + (0,92x40) m or a = 1,052 kg m or a = 1,052 kg m or a = 1,052 kg 100 g decl 146. g Nine = 934 g decl.	m _L	
m sie = 1120 - 417 24 = 702,76 g. 1000 ml disolación x 100 galactica; = 10 00 galactica;	M= 1 M = 1,22.342	2,5 not NOCI x58, 449 NOCY = 146,1 NOCI
m sine = 1120 - 417, 24 = 702, 76 g. 1000 ml disolación × 105 galachia, = 1050 galachia 1070 ml disolación 1080 ml disolación 1080 ml disolación 1080 ml disolación 1080 galachi - 146, g Niacl = 924 galacque 1080 galachi - 146, g Niacl = 924 galacque 1080 galachi - 146, g Niacl = 924 galacque 1080 galachia 1080 ml disolación 1080 ml d	maz = 417,24g	
* molalidad = 1,22 mol = 1,336 mol 1080 gduol - 146,3 g Nacl = 934 gd a agus m = 25 mol de Nacl = 2,672 n, b) Na OH 0,8 9M 0' = 1,04 0,724 n, m = 1,04 9/mL 1000 mL = 1040 gr. m = 1,04 9/mL 1000 mL 10		1000 ml clisolunch × 106 garsolonio = 10 60 gdis/
B) Na OH 0,8 am 0'= 1,04		
B) Na OH 0,8 am 0'= 1,04	* morandad to 70 3 usy 1/100 That	1080 g duel - 146.1 g Nacl = 934 g de agua
may = 1,04 9 m 1000 m 1040 - (0.87x 40) may = m - m 1040 - (0.87x 40) may = m - m 1040 - (0.87x 40) may = m 1040 - (0.87x 40)		m = 2,5 molde Nacf = 2,0771
Mary = M = M North = 1040 + (0,92x40) Mary = 1,0052 kg Mary = 1,		0, 434 kg agua
Mayor = 1,0052 kg * molaridad = 0,87 = 0,865 mb//49 * molaridad = 0,87 = 0,865 mb//49 Nanco 3 524m Nanco 3 524m May 419 21900 = 1/190 Mayor 372484 May 419 21900 = 1/190 Mayor 372484	my = 1,04 9/ml x 1000ml = 1040gr.	b) discharge de 10 de 120 de 1
* molded d = 0,87 = 0,865 mb//49 1/9 picks 1/9 picks 1/0 g disol. Na HCO 3 5-24-my Ma + 1/2 1/2000 = 1/190 Mayroz 7/24-84 m = 0,405 disol.	Magna = MT - WhoH = 10H0 + (0,97x40)	
Na HOO 3 5 724M 190 Magroz 724x84 n - 0 40 - 0 6/8	# molaudad - 0.83 - 0.65 moldes	
T m+ - 4 tg x 1900 Magros 124x84 m - 0 405 0465 = 0 018.	10045 - 0180 1. 1140	1000 dusl 48,20 KBr = 51,80 disol.
Magnat M - Mpayro3 = 190-240,165 0, 0518 49 disch	M+ = 450 × 1000 = 1190 Mugheg= 724×84	
a mill ago a 1,749 gm	Magua = M7-M104003= 1190-240,165	
621 - 6.98	74984	1 2 6 2 6 2 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3
melulidad = 5,24	malutidad = 0,74984 0,988	

12.24 La densidad de una disolución acuosa que contiene 10.0% en masa de etanol (C₂H₅OH) es de 0.984 g/mL. a) Calcule la molalidad de esta disolución. b) Calcule su molaridad. c) ¿Qué volumen de la disolución contendrá 0.125 moles de etanol?

12 21 624504.		12.22	H2 50	, 98	%	masa.	8	disole	eton	= 1,8	3 9	mL.
g (OH)	Oca4,-ou = 0,798 8/ml		11.0									19309
"prueba 35"_	37,5% volumen.		M 4250									
vol. etanof =	1.4 × 0, 37 5 = 375mL		Moles					8,28				
0 =	m				91	8						
	V		m	= 18,	28	moles						
0,798 g/m2×	375 ml = m					s Kg						
7,11	299,25g = M		m =	499								

Efecto de la temperatura en la solubilidad

- 12.27 Una muestra de 3.20 g de una sal se disuelve en 9.10 g de agua para formar una disolución saturada a 25°C. ¿Cuál es la solubilidad (en g de sal/100 g de H₂O) de la sal?
- 12.28 La solubilidad del KNO₃ es de 155 g por 100 g de agua a 75°C, y de 38.0 g a 25°C. ¿Cuál es la masa (en gramos) de KNO₃ que cristalizará al enfriar exactamente 100 g de esta disolución saturada de 75°C a 25°C?
- 12.29 Una muestra de 50 g de KClO₃ impuro (solubilidad = 7.1 g por 100 g de H₂O a 20°C) está contaminada con 10% de KCl (solubilidad = 25.5 g por 100 g de H₂O a 20°C). Calcule la cantidad mínima de agua a 20°C necesaria para disolver todo el KCl de la muestra. ¿Qué cantidad de KClO₃ quedará después de este tratamiento? (Suponga que las solubilidades no cambian por la presencia de otro compuesto.)

12,27 Sal (3,20g) + agua (9,1g)	128 KNO3 (1stg) + agua (100g) + (38g)
disolución salurada 25°C	1 15°C 25°C
à solubilidad .= g soluto x 100 1/2	dimasa de n NO3? 100g disof salunado 75 Cazsci
9- ste	5 75°C - 155°g por 100g de agra.
S = 3,20 g raf ×100%.	100g de sel
9,1091120	8 25°C = 36 5 por 100 c/d agra
C = 35,2 g de Sul	100 g de sol.
	Cristelizara = 155 - 38 g = 117g.