STEEL FOR MACHINE STRUCTURAL USE, EXCELLENT IN MACHINABILITY

Publication number: JP2000087179
Publication date: 2000-03-28

Inventor: TOKOKAGE NORIMASA; HIRAOKA KAZUHIKO;

UCHIYAMA MASAO, IWAMA NAOKI, OKURA KAZUTAKA, NAITO KUNIO, MIYAMOTO MASASHI,

MORI MOTOHIDE; KAWAMOTO TAKESHI

Applicant: SANYO SPECIAL STEEL CO LTD; AICHI STEEL

WORKS LTD; TOYOTA CENTRAL RES & DEV;

TOYOTA MOTOR CORP

Classification:

- international: C22C38/00; C22C38/06; C22C38/60; C22C38/00;

C22C38/06; C22C38/60; (IPC1-7): C22C38/00;

C22C38/06; C22C38/60

- european:

Application number: JP19980251678 19980904 Priority number(s): JP19980251678 19980904

Report a data error here

Abstract of JP2000087179

PROBLEM TO BE SOLVED: To solve the problem that machinability is not exhibited at all by some machining methods and also the problem of deterioration in material quality. further to improve chip treatability at deep hole drilling, and to provide a steel for machine structural use, having excellent machinability under a wide range of machining methods and machining conditions without causing marked deterioration in the strength characteristics of steel material and particularly excellent in cemented carbide wear resistance and chip treatability. SOLUTION: This steel has a composition consisting of, by weight, 0.10-0.65% C, 0.03-1.00% Si, 0.30-2.50% Mn, 0.03-0.35% S, 0.005-0.060% AI, 0.0005-0.020% Ca, 0.0005-0.020% Mg, and the balance Fe with inevitable impurities. Moreover, as sulfide inclusions, this steel contains one or >=2 kinds among MnS, CaS, MgS, (Ca, Mn)S, and (Mg, Mn)S and further contains either or both of (Ca, Mg)S and (Ca, Mg, Mn)S. This steel is decreased in the anisotropy of mechanical properties and increased in the stable drilling depth shown by the stable drilling time in figure.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-87179

(P2000-87179A)

最終頁に続く

(43)公開日 平成12年3月28日(2000.3.28)

(51) Int.Cl.7		識別記号	FΙ			テーマコート*(参考)
C 2 2 C	38/00	301	C 2 2 C	38/00	301M	
	38/06			38/06		
	38/60			38/60		

審査請求 未請求 請求項の数3 OL (全 14 頁)

(21)出願番号	特願平10-251678	(71)出顧人 000180070
		山陽特殊製鋼株式会社
(22)出願日	平成10年9月4日(1998.9.4)	兵庫県姫路市飾磨区中島字一文字3007番地
		(71)出願人 000116655
		爱知製鋼株式会社
		愛知県東海市荒尾町ワノ割1番地
		(71)出顧人 000003609
		株式会社豊田中央研究所
		愛知県愛知郡長久手町大字長湫字横道41番
		地の1
		(74)代理人 100101085
		弁理士 横井 健至

(54) 【発明の名称】 被削性に優れる機械構造用鋼

(57)【要約】

【課題】 切削加工方法により全く快削性を示さない問題や材質劣化の問題を解消し、さらに深穴あけ加工における切粉処理性を良好にし、鋼材の強度特性を大きく低下させることなく広範な切削方法や切削条件において優れた被削性を有し、特に耐超硬工具摩耗性および切粉処理性に優れた機械構造用鋼を提供する。

【解決手段】 重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、AI:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.0005~0.020%を含有し、残部Feおよび不可避不純物からなり、硫化物系の介在物としてMnS、CaS、MgS、(Ca、Mn)S、(Mg、Mn)Sの1種または2種以上を含有し、さらに(Ca、Mg)S、(Ca、Mg、Mn)Sの1種または2種を含有し、機械的性質の異方性が小さく、かつ図1の安定穿孔時間で示す安定穿孔深さの大きい被削性に優れる機械構造用鋼である。

【特許請求の範囲】

【請求項1】 重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、Al:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.0005~0.020%を含有し、残部Feおよび不可避不純物からなり、硫化物系の介在物としてMnS、CaS、MgS、(Ca、Mn)S、(Mg、Mn)Sの1種または2種以上を含有し、さらに(Ca、Mg)S、(Ca、Mg、Mn)Sの1種または2種を含有し、機械的性質の異方性が小さく、かつ被削性が優れる機械構造用鋼。

【請求項2】 重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、Al:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.0005~0.020%を含有し、Cr:0.1~2.0%、Mo:0.05~1.00%、Ni:0.1~3.5%、V:0.01~0.50%から選択した1種または2種以上を含有し、残部Feおよび不可避不純物からなり、硫化物系の介在物としてMnS、CaS、MgS、(Ca、Mn)S、(Mg、Mn)Sの1種または2種以上を含有し、さらに(Ca、Mg)S、(Ca、Mg、Mn)Sの1種または2種と含有し、さらに(Ca、Mg)S、(Ca、Mg、Mn)Sの1種または2種と含有し、機械的性質の異方性が小さく、かつ被削性が優れる機械構造用鋼。

【請求項3】 請求項1または請求項2に記載の鋼の構成成分元素に加えて、重量%で、Bi:0.01 \sim 0.30%、Pb:0.01 \sim 0.30%、REM:0.001 \sim 0.10%から選択した1種または2種以上を含有し、機械的性質の異方性が小さく、かつ被削性が優れる機械構造用鋼。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は機械構造用炭素鋼や機械構造用合金鋼を対象とし、機械的性質の異方性が小さく、かつ広範な切削方法や切削条件における被削性の優れた機械構造用鋼に関するものであり、切削加工時の工具費低減および生産性の向上を得ることを可能とする。

[0002]

【従来の技術】近年の切削加工の高速化、自動化の発展に伴って、機械構造用部品に使用される鋼材の被削性が重要視されるようになり、被削性を改善した鋼いわゆる快削鋼の需要が高まっている。しかも、鋼材の必要強度は厳しくなりつつあり、鋼材を高強度化した場合には被削性は劣化する。すなわち鋼材の高強度化と被削性という相反する特性の改善が要求されている。現在、一般的に使用されている快削鋼として、Pb、S、Caを含有させた鋼材がある。しかし、これらの快削鋼は切削加工

方法の種類によっては全く快削性を示さなかったり、あるいは材質劣化の問題があったりするため、その用途および快削物質の量は制限されているのが現状である。

【0003】すなわち、Pb快削鋼は、基本鋼と比較し て機械的性質の劣化が小さく、一般の旋削加工において 切粉処理性の改善を示し、ドリル加工、タップ加工、リ ーマ加工、中ぐり加工等の工具寿命の延長、および(穴 深さ/ドリル直径) ≥3を深穴とした場合の深穴あけ加 工時に切粉の排出を容易にし、突発的な切粉つまりによ る工具の折損を防止するのに非常に有効な元素である。 しかし、旋削時の工具寿命については高速度鋼工具、超 硬工具共にPb添加の有効性は小さく、むしろ軽負荷の 切削条件領域では通常鋼よりも劣化する傾向が認められ る場合もある。さらに、近年の環境問題への関心の高ま りから、Pbの有毒性が問題視されており、今後Pbの 使用量は削減される方向にある。本発明鋼においても、 環境負荷対策としてPbの添加量を減少させるために、 Pbと同等の低融点であり、切削時の剪断域において切 粉の生成を容易ならしめるBiを併用する。

【0004】S快削鋼は、比較的広範な切削加工に対して工具寿命を延長させる改善効果を示すが、Pb快削鋼にくらべて切粉処理性は悪く、特に高速切削領域では改善効果は小さく、また、鋼材の強度面では介在物として存在するMnSが熱間圧延あるいは熱間鍛造中に延伸するため、圧延方向から直角方向に近づくにつれて衝撃強度等の機械的性質が低下する(異方性)という問題がある。したがって、衝撃強度が重要とされる部品を対象とした鋼材はS含有量をできるだけ抑える必要があり、その結果十分な被削性が得られない場合がある。

【0005】また、Ca脱酸により鋼中の酸化物系介在物を低融点化させた従来のCa快削鋼は、鋼材の強度特性にほとんど影響を及ぼさず、高速切削領域の超硬工具寿命に著しい延長効果を示す。しかし、Ca脱酸快削鋼は、超硬工具寿命以外の被削性改善効果がほとんど認められないため、オールラウンドの被削性を得るためにSあるいはPbとの複合で使用される場合が一般的である。

【0006】従来のCa脱酸快削鋼とは異なり、S快削鋼の欠点である異方性をCa添加によって鋼中の介在物を均一に分散・分布させることから改善し、同時に被削性も向上させた例として特公平5-15777がある。この場合、Ca脱酸快削鋼のような欠点はないが、十分な被削性を得るには多量のSを添加する必要があり、その場合に硫化物を形態制御させるために必要十分な量のCaを鋼材中に含有させることはCa歩留りが低いため量産鋼としての製造は極めて困難である。

【0007】この場合のCaと同様な効果を狙った例として特公昭52-7405に記載されたMg、Baの第1群元素の1種または2種を0.1%以下とS、Se、Teよりなる第2群元素の1種以上を0.03%~0.

5%含有し、(第1群元素)/(第2群元素)の原子比が0.01以上となる快削鋼が提案されている。しかし、SeとTeは毒性が強く、環境負荷が大きい。また特開昭51-63312があり、工具鋼にZrを添加し、O+Nの量、Zr化合物の硫化物と共存する量を所定の割合にすることにより、快削工具鋼を得ている。これらはMg、Ba、Sr等を使用しているがいずれもCaと同様な問題がある。

[0008]

【発明が解決しようとする課題】本発明は、Ca、Mg、REM(希土類金属)の複合添加から、上述のような各種の問題点を解消し、さらに深穴あけ加工時の良好な切粉処理性を得るために、PbまたはBiを微量添加し、鋼材の強度特性を大きく低下させることなく、広範な切削方法や切削条件において優れた被削性を有し、特に耐超硬工具摩耗性に、および切粉処理性に優れた効果を発揮する機械構造用鋼を提供することにある。

[0009]

【課題を解決するための手段】上記のように、現在のS 快削網では鋼中の非金属介在物が熱間圧延または熱間鍛 伸方向に延伸した形状で存在するため、被削性を向上さ せるために多量のSを添加すると鋼材の衝撃異方性が大 きくなり、機械構造用鋼としての使用が困難となる。そ こで、発明者らはS快削鋼の欠点を改善し、さらにS快 削鋼よりも被削性を向上させるため種々検討した結果、 上記の課題を解決するための手段として下記に示す機械 構造用鋼を発明した。

【0010】すなわち、上記の課題を解決するための本

発明の手段は、請求項1の発明では、重量%で、C:

 $0.10 \sim 0.65\%$, Si: $0.03 \sim 1.00\%$,

 $Mn: 0.30\sim 2.50\%$, $S: 0.03\sim 0.35$ %, A1:0.005~0.060%, Ca:0.00 $05\sim0.020\%$, Mg: $0.0005\sim0.020$ %を含有し、残部Feおよび不可避不純物からなり、硫 化物系の介在物としてMnS、CaS、MgS、(C a、Mn)S、(Mg、Mn)Sの1種または2種以上 を含有し、さらに (Ca、Mg) S、 (Ca、Mg、M n) Sの1種または2種を含有し、機械的性質の異方性 が小さく、かつ被削性が優れる機械構造用鋼である。 【0011】請求項2の発明では、重量%で、C:0. 10~0.65%, Si: 0.03~1.00%, M n:0.30~2.50%, S:0.03~0.35 %, A1:0.005~0.060%, Ca:0.00 $05\sim0.020\%$, Mg: $0.0005\sim0.020$ %を含有し、Cr:0.1~2.0%、Mo:0.05 ~1.00%, Ni:0.1~3.5%, V:0.01 ~0.50%から選択した1種または2種以上を含有す ることから快削挙動を示す良好な熱処理鋼、または非調 質鋼を得るものであり、残部Feおよび不可避不純物か らなり、硫化物系の介在物としてMnS、CaS、Mg

S、(Ca、Mn) S、(Mg, Mn) Sの1種または2種以上を含有し、さらに(Ca, Mg) S、(Ca, Mg, Mn) Sの1種または2種を含有し、機械的性質の異方性が小さく、かつ被削性が優れる機械構造用鋼である。

【0012】請求項3の発明では、請求項1または請求項2に記載の鋼の構成成分元素に加えて、重量%で、Bi:0.01~0.30%、Pb:0.01~0.30%、REM:0.001~0.10%から選択した1種または2種以上を含有し、機械的性質の異方性が小さく、かつ被削性が優れる機械構造用鋼である。

【0013】ここに、BiとPbは他の合金元素に比べ て低融点元素のために鋼の凝固時に介在物の外郭部に分 布する。切削時の剪断域において切削温度によって両者 は溶解し、介在物と地金間に空隙が発生した状態と近似 する。その結果、この空隙が切欠き効果を起こすことか ら介在物の変形が容易となり、切粉生成時の剪断変形を 促進させる。このことは深穴あけ加工時に安定な切粉を 生成し、切粉つまりを防止し、安定した穿孔挙動を得 る。REMはCa、Mgと同じように硫化物系介在物の 形状を制御し、機械的性質の異方性の劣化を防ぐ。C a、MgおよびREMの複合添加から機械的性質の異方 性が小さく、かつ被削性が優れる機械構造用鋼である。 【0014】以下、本発明について詳細に説明する。本 発明は、CaおよびMgを同時に鋼中に含有させて硫化 物を形態制御し、衝撃特性の劣化、特に衝撃異方性を最 小限に抑え、CaあるいはMgの硫化物により従来のS 快削鋼よりも被削性を大幅に向上させようとするもので ある。ただし、CaとMgは一方のみを鋼材中に存在さ せても被削性および機械的性質の異方性の改善効果は小 さく、CaとMgを共存させるとそれらを単独に増量添 加させた場合から予想される改善効果を大きく上回る。 【0015】特に、本発明鋼は従来の快削鋼と比較して

【0015】特に、本発明鋼は従来の快削鋼と比較して 耐超硬工具摩耗性が非常に良好である。なお、特にドリ ル深穴あけ性、切粉処理性を向上させるためには、微量 なPb、Bi、REMの1種または2種以上を添加し、 さらに、必要に応じてS添加量を増量するとよい。

【0016】次に、本発明における機械構造用鋼の構成成分の限定理由について述べる。

C:0.10~0.65%、Cは、機械構造用鋼として の強度を確保するための必須元素であり、0.10%以 上添加する。しかし、多すぎると硬さ増加から靱性およ び被削性の劣化を招くため上限を0.65%とする。

【0017】Si:0.03 \sim 1.00%、Siは、製鋼時の脱酸剤として不可欠であるため下限を0.03%とする。しかし、過剰に添加すると延性を低下させるほか、鋼中に高硬度の介在物であるSiO2を生成させて被削性も劣化させるため上限を1.00%とする。

【0018】Mn:0.30~2.50%、Mnは、一般に銅の強度、靱性、熱間延性、焼入性を確保する上で

重要な元素であり、かつ、本発明において、硫化物系介 在物生成に不可欠な元素であるため0.30%以上添加 する。しかし、多すぎると硬さ増加から被削性が劣化す るため上限を2.50%とする。

【0019】S:0.03~0.35%、Sは、被削性を改善させる硫化物系介在物の生成元素であり、被削性改善効果を得るためには少なくとも0.03%以上添加する必要があり、Sの増量に伴い被削性は向上する。しかし、多すぎるとCaおよびMgによる硫化物形態制御が困難となり、衝撃異方性が劣化するため、上限を0.35%とする。

【0020】A1:0.005~0.060%、A1は、脱酸のために不可欠の元素であり0.005%以上必要であるが、0.060%を超えて含有させてもA1203の形成によって被削性を劣化させるため、上限を0.060%とする。

【0021】Ca:0.0005~0.020%、Caは、Mn、Mgと共に硫化物の生成元素であり、被削性向上以外にも硫化物形態制御による機械的性質の異方性改善効果がある。その効果を得るためには少なくとも0.0005%以上必要であるが、製鋼段階でのCa歩留りは非常に悪く、必要以上に含有させてもその効果が飽和状態となり、無駄であるためCaの上限を0.020%とする。

【0022】Mg:0.0005~0.020%、Mgは、Caと同様の効果を示し、Caと複合で存在させた場合に大きな被削性改善効果および機械的性質の異方性改善効果が得られる。その効果を得るためには少なくとも0.0005%以上必要であるが、必要以上に含有させてもその効果は飽和状態となり無駄であるのでMgの上限を0.020%とする。

【0023】Cr:0.1~2.0%、Mo:0.05~1.00%、Ni:0.1~3.5%、Cr、Mo、Niは、網の焼入性および靭性を向上させる元素で、これらの性質をさらに向上させる必要のある場合に添加する。その効果を得るためにCrは0.1%以上、Moは0.05%以上、Niは0.1%以上必要であり、多量に添加した場合には被削材の硬さが増加することから、被削性確保のためにはCrは2.0%以下、Moは1.00%以下、Niは3.5%以下とする必要がある。【0024】V:0.01~0.50%、Vは、析出強化作用の強い元素であるので、焼入焼戻し処理を省略する場合に添加する。この効果を得るには0.01%以上必要であるが、0.50%を超えて含有させても効果は飽和するので上限を0.50%とする。

【0025】Bi:0.01~0.30%、Biは、機械的性質の異方性をほとんど劣化させることなく、切粉処理性および穿孔性を改善するのに有効であるため、そのような特性が特に必要な場合に添加する。この効果を得るには0.01%以上必要であるが、0.30%を超

えて含有させても効果は飽和し、またコスト高となるため、上限を0.30%とする。

【0026】Pb:0.01~0.30%、Pbは、Biと同様の効果があり、この効果を得るには0.01%以上必要であるが、0.30%を超えて含有させても効果は飽和し、また環境問題も考慮する必要があるため、上限を0.30%とする。

[0027] REM: 0. 001~0. 10%, REM は硫化物の形態制御効果が大きいため、Mg、Caの効 果を助長させる場合に用いる。つまり、Mg、Caだけ で硫化物を形態制御しようとすると、衝撃異方性の点で S含有量にある一定の制限が出きるが、REMをMg、 Caと複合添加するとS含有量をさらに増加することが てきるため、その分被削性を向上させることができる。 なお、REMは主に、Ce、La、Nd、Pr、Smの 混成合金から成るものである。この効果を得るには0. 001%以上必要であるが、0.10%を超えて含有さ せても効果は飽和し、またコスト高となるため、上限を 0.10%とする。本発明において酸化物が被削性を向 上させる役割については、工具と切粉間での粘性体潤滑 作用、工具刃先被覆作用および一次せん断域での応力集 中源としての作用に大別することができる。粘性体潤滑 作用および応力集中作用については従来からのMnS快 削鋼と同様の効果であるが、本発明鋼中の硫化物は楕円 形で存在していることを特徴としており、従来のS快削 鋼の硫化物よりも応力集中作用が大きく快削性改善に有 利な形状である。また、工具刃先被覆作用も本発明鋼の 重要な特徴である。本発明鋼の工具摩耗特性が非常に優 れる理由は、X線マイクロアナライザーで調査した結 果、工具刃先をMn、Mg、Caの硫化物が被覆するた めであることがわかった。

[0028]

【発明の実施の形態】(1)本願の請求項1の発明を実施するには、重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、Al:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.0005~0.020%を含有する機械構造用鋼を溶製し、熱間圧延あるいは熱間鍛造を行う。このようにして得られた鋼材は、機械的性質の異方性が小さく、かつ広範な切削方法や切削条件における被削性が優れ、特に耐超硬工具摩耗性に優れる。

【0029】(2)本願の請求項2の発明を実施するには、重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、Al:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.0005~0.020%を含有し、Cr:0.1~2.0%、Mo:0.05~1.00%、Ni:0.1~3.5%、V:0.01~0.50%から選択した1種また

は2種以上を含有する機械構造用鋼を溶製し、熱間圧延 あるいは熱間鍛造を行う。このようにして得られた鋼材 は、機械的性質の異方性が小さく、かつ広範な切削方法 や切削条件における被削性が優れ、特に耐超硬工具摩耗 性に優れる。

【0030】(3)本願の請求項3の発明を実施するには、重量%で、C:0.10~0.65%、Si:0.03~1.00%、Mn:0.30~2.50%、S:0.03~1.00%、Mn:0.30~2.50%、S:0.03~0.35%、Al:0.005~0.060%、Ca:0.0005~0.020%、Mg:0.005~0.020%を含有し、必要によってはCr:0.1~2.0%、Mo:0.05~1.00%、Ni:0.1~3.5%、V:0.01~0.50%から選択した1種または2種以上を含有し、さらにBi:0.01~0.30%、REM:0.001~0.10%から選択した1種または2種以上を含有し、さらにBi:0.01~0.30%、REM:0.001~0.10%から選択した1種または2種以上を含有する機械構造用鋼を溶製し、熱間圧延あるいは熱間鍛造を行う。このようにして得られた鋼材は、機械的性質の異方性が小さく、かつ広範な切削方法や切削条件における被削性が優れ、特に耐超硬工具摩耗

性に優れ、また深穴あけ加工時の切粉処理性に優れる。 【0031】

【実施例】以下、本発明の実施例について説明する。成分組成が表1からなる本発明鋼と比較鋼(従来鋼を含む)を30kg真空溶解炉にて溶製し、1200℃で440mm材がある。との一般では1200℃で30分間保持した後、空冷処理を行い、G、H、O鋼については880℃にて焼入れ後、640℃にて焼戻し処理を行い、被削性試験、引張試験、鍛伸方向(以下、「L方向」と示す。)の衝撃試験に用いた。また、460mm材は1200℃で40×70mm角材に鍛伸し、そのA~F鋼、およびI~N鋼については1200℃で30分間保持した後、空冷処理を行い、G、H、O鋼については880℃にて焼入れ後、640℃にて焼戻し処理を行い、鍛伸方向とは直角の方向(以下、「T方向」と示す。)の衝撃試験に用いた。

【0032】 【表1】

(重量%、 Ca、Mg、REMはppm)

													<u> </u>			
	鋼種	С	Si	Mn	Р	S	Ni	Cr	Мо	Al	V	Ca	Мg	Bi	Pb	REM
	A	0. 44	0. 21	0. 70	0. 018	0. 045	0.06	0. 33	0. 02	0. 021	0. 08	37	52	-	-	-
発	В	0. 43	0. 25	0. 79	0. 017	0. 086	0. 06	0. 22	0. 02	0. 014	0. 09	14	23	-	-	-
明	С	0. 45	0. 26	0. 97	0. 023	0. 167	0. 06	0. 22	0. 02	0. 008	0. 09	13	39	-	-	-
鋼	D	0. 45	0. 24	0. 80	0. 022	0. 091	0. 05	0. 26	0. 01	0. 016	0. 08	29	21	0. 02	-	-
	Е	0. 43	0. 23	0. 78	0. 019	0. 095	0. 05	0. 25	0. 02	0. 023	0. 08	27	58	_	0. 03	-
	F	0. 44	0. 23	0. 82	0. 018	0. 090	0.06	0. 23	0. 01	0. 025	0. 09	36	19	-	-	67
	G	0. 41	0. 23	0. 90	0. 014	0. 058	0. 09	1. 13	0. 02	0. 013	-	30	33	-	-	_
	Н	0. 39	0. 25	0. 85	0. 016	0. 054	0. 51	0. 50	0. 20	0. 020	-	25	17	-	1	_
	I	0. 44	0. 25	1. 12	0. 021	0. 397	0. 05	0. 20	0. 02	0. 010	0. 08	7	8	1	-	-
	J	0. 44	0. 26	0. 71	0. 020	0. 053	0. 06	0. 22	0. 02	0. 020	0. 09	1	17	-	-	-
比較	K	0. 42	0. 22	0. 69	0. 019	0. 047	0. 06	0. 29	0. 02	0. 015	0. 10	42	-	ı	1	_
鋼	L	0. 44	0. 25	0. 84	0. 019	0. 058	0.06	0. 21	0. 02	0. 031	0. 09	-	-	1	1	-
	М	0. 44	0. 23	0. 73	0. 020	0. 018	0. 05	0. 21	0. 02	0. 031	0. 08	-	-	1	0. 12	-
	N	0. 44	0. 24	0. 82	0. 017	0. 051	0. 05	0. 22	0. 01	0. 033	0. 08	26	_	-	0. 11	-
	0	0. 41	0. 22	0. 75	0. 018	0. 019	0. 08	1. 13	0. 03	0. 013	-	-	-	-	0. 17	-

【0033】被削性試験方法と切削条件を表2に示す。なお、引張試験片はJIS4号試験片を、衝撃試験片はJIS3号試験片を用いた。表2におけるドリル深穴あけ性の評価基準の安定穿孔深さは図1に示す安定穿孔時間1とドリルの送り量から計算して得られる。なお、図1において、符号の1は安定穿孔時間、2は安定トルク、3は安定トルク×2のトルク高さを示し、安定穿孔

時間1は穿孔を開始して安定トルクに達してからこの安定トルクの2倍のトルク高さ3に達するまでの時間をいう。この安定穿孔時間1が長いと切粉処理性に優れて深穴を穿孔することができる。

[0034]

【表2】

	超硬工具摩耗	切粉処理性	ドリル深穴あけ性	ドリル寿命	
工具	P20	P20	SKH51 (φ6mm)	SKH51 (φ5mm)	
切削速度	150m/min	150m/min	19m/min	27m/min	
送り	0. 2mm/rev	0.10, 0.15, 0.20mm/rev	0.1mm/rev	0.2mm/rev	
切込み	1.5mm	1.5mm	-	穿孔深度:15㎜	
切削油	乾式	乾式	乾式	乾式	
評価基準	5 分間旋削後の	切屑処理性指数	安定穿孔深さ	溶損または折損	
	横逃げ面摩耗量	(切屑個数/切屑重量)	(図1)	までの穴数	

【0035】被削性試験結果を表3に、強度試験結果を表4に示す。ここに示すように、本発明鋼は耐超硬工具 摩耗性が特に優れており、切粉処理性、ドリル深穴あけ 性、ドリル寿命についても、S量の増加あるいはPb、 Bi、REMの微量添加により、比較鋼のPb鋼あるい

はPb3元快削網と同等以上に改善は可能であることが確かめられた。

[0036]

【表3】

	鋼種	超硬工具摩耗 (mm)	切粉処理性指数	ドリル深穴あけ性 (mm)	ドリル寿命 (穴数)
	A	0. 07	7	37	631
	В	0. 06	13	49	862
発	С	0. 09	24	94	985
明鋼	D	0. 09	42	94	1013
[~]	Е	0. 08	40	94	1125
	F	0. 07	22	53	774
	G	0. 09	6	35	639
	Н	0. 10	6	34	612
	I	0. 06	26	94	942
	J	0. 11	4	28	406
比	K	0. 15	2	25	318
較	L	0. 20	3	39	393
鋼	Ж	0. 18	22	69	688
	N	0. 12	32	87	920
	0	0. 23	17	61	587

【0037】図2は発明網A中の介在物を観察した結果であり、Mn、Mg、SおよびCaが同一介在物内で検出されており、MnS、(Mg、Ca)Sおよび(Mn、Mg、Ca)Sの存在が確認された。また介在物の形状は、一般的にMnSで代表される硫化物は鍛伸後に棒状になるが、今回の発明網では球状である。この事実

は、機械的性質の試験時に介在物による切欠き効果を減少させて、表4に示すように機械的性質の衝撃異方性が 良好となることをもたらす。

[0038]

【表4】

	鋼種	硬さ (HV)	引張強さ (MPa)	衝撃異方性 (T方向/L方向)	
	A 249		816	0. 82	
	В	236	779	0. 60	
発	С	237	793	0. 38	
明鋼	D	244	808	0. 51	
-73	Е	238	795	0. 49	
	F	224	761	0. 77	
	G	255	826	0. 49	
	Н	268	835	0. 56	
	I	207	697	0. 07	
	J	229	759	0. 64	
比	K	232	782	0. 61	
較	L	243	818	0. 59	
鋼	М	246	795	0. 79	
	N	240	809	0. 53	
	0	261	833	0. 62	

【0039】図3および図4は、本発明鋼のA鋼の超硬 工具摩耗試験を実施し、そのすくい面摩耗部 (クレータ 摩耗部)での合金元素の分布を観察した結果である。A 鋼は0.04%S、0.0037%Ca、0.005 2%Mgを添加した鋼であり、すくい面摩耗部にはM n、S、Ca、Mgが付着しており、MnSと(Ca、 Mg) Sの複合効果による潤滑作用から表3に示すよう に工具摩耗の進行を抑制したものと思われる。比較鋼N での合金元素の分布を図5および図6に示す。N鋼は 0.051%S, 0.0026%Ca, 0.11%Pb を添加した従来鋼であり、摩耗部にはCa、Sが、摩耗 部端にはPbが付着している。この結果からCaSの潤 滑作用から摩耗の進行が抑制されたものと推定できる が、今回の本発明網Aにはおよばない。図7および図8 に示す0.058%Sを添加した比較鋼Lでは、Sがわ ずかに工具摩耗部に分布しているが、FeとOが多量に 付着している。Feの酸化物は工具内のCoと置換現象 を起こして工具の摩耗を促進させる作用があり、今回の

試験結果の表3に示すように、工具横逃げ面摩耗幅は大きい。

【0040】BiとPbを微量添加した発明網DとEでは、表3から明らかなようにドリル寿命が飛躍的に向上しているが、これは両元素の低融点挙動により介在物の変形を増長させることと、複合硫化物による工具摩耗の進行阻止効果によるものである。

【0041】また表4から明らかなように、本発明網Aと比較網Kの機械的性質を対比させると、A網はCaとMgの複合添加によって同一S量レベルの比較網Kよりも衝撃異方性が良好であり、従来よりもSの増量が可能になり、工具寿命の向上が達成されることがわかった。【0042】表5に本実施例の測定値の評価結果を示す。発明網は全ての項目において○であるが、比較網は少なくとも1つ以上の項目で×が存在する。

[0043]

【表5】

	鋼種	超硬工具摩耗	切粉処理性指数	ドワカ深穴あけ性	ドリル寿命	衝擊異方性
	A	0	0	0	0	0
	В	0	0	0	0	0
発	С	0	0	0	0	0
明鋼	D	0	0	0	0	0
	Е	0	0	0	0	0
	F	0	0	0	0	0
	G	0	0	0	0	0
	Н	0	0	0	0	0
	I	0	0	0	0	×
	J	×	×	×	×	0
比	K	×	×	×	×	0
較	L	×	×	0	×	0
剱	М	×	0	0	0	0
	N	×	0	0	0	0
	0	×	0	0	0	0

[0044]

【発明の効果】以上の説明で明らかなように、本発明の機械構造用鋼は、被削性に優れ、しかも衝撃異方性をはじめとする機械的性質の劣化が小さいため、従来の機械構造用快削鋼の切削加工方法により全く快削性を示さない添加元素の問題や添加元素による材質劣化の問題などの種々の問題点を解決でき、さらに優れた特性を得ることができる。

【図面の簡単な説明】

【図1】深穴あけ試験の安定な穿孔深さ試験方法における時間によるトルクの変化を示すグラフである。

【図2】発明鋼A中の介在物の観察結果を示すX線マイクロアナライザー写真である。

【図3】発明網Aを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真のその1である。

【図4】発明鋼Aを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真

のその2である。

【図5】比較鋼Nを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真のその1である。

【図6】比較鋼Nを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真のその2である。

【図7】比較鋼Lを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真のその1である。

【図8】比較網Lを切削後の工具すくい面摩耗部における合金元素の分布を示すX線マイクロアナライザー写真のその2である。

【符号の説明】

- 1 安定穿孔時間
- 2 安定トルク
- 3 安定トルク×2のトルク高さ

【図1】

【図2】

【図3】

【図6】

(11) #2000-87179 (P2000-8>\$A)

【図4】

【図5】

【図7】

(14) 月2000-87179 (P2000-85A)

【図8】

1mm

フロントページの続き

(71)出願人 000003207

トヨタ自動車株式会社

愛知県豊田市トヨタ町1番地

(72)発明者 常陰 典正

兵庫県姫路市飾磨区中島字一文字3007番地

山陽特殊製鋼株式会社内

(72)発明者 平岡 和彦

兵庫県姫路市飾磨区中島字一文字3007番地

山陽特殊製鋼株式会社内

(72)発明者 内山 雅夫

愛知県東海市荒尾町ワノ割1番地 愛知製

鋼株式会社内

(72)発明者 岩間 直樹

愛知県東海市荒尾町ワノ割1番地 愛知製

鋼株式会社内

(72)発明者 大庫 和孝

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 内藤 国雄

愛知県愛知郡長久手町大字長湫字横道41番

地の1 株式会社豊田中央研究所内

(72)発明者 宮本 昌司

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72)発明者 森 元秀

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

(72) 発明者 河本 剛

愛知県豊田市トヨタ町1番地 トヨタ自動

車株式会社内

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
\square image cut off at top, bottom or sides
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
\square COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потибр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.