Министерство образования Республики Беларусь Учреждение образования «Белорусский государственный университет информатики и радиоэлектроники»

Факультет инфокоммуникаций

Кафедра защиты информации

Е.С. Белоусова

КОМПЬЮТЕРНЫЕ СЕТИ IPV4 И IPV6 АДРЕСАЦИЯ ПРАКТИКУМ

СОДЕРЖАНИЕ

ПРАКТИЧЕСКАЯ РАБОТА №1 КОНВЕРТАЦИЯ ІРV4-АДРЕСОВ	5
1.1 Теоретическая часть	5
1.2 Практическое задание	7
1.3 Содержание отчета	9
1.4 Контрольные вопросы	10
ПРАКТИЧЕСКАЯ РАБОТА №2 СЕТЕВАЯ И УЗЛОВАЯ ЧАСТЬ ІРV4-АДРЕСА	11
2.1 Теоретическая часть	11
2.2 Практическое задание	20
2.3 Содержание отчета	23
2.4 Контрольные вопросы	23
ПРАКТИЧЕСКАЯ РАБОТА №3 РАЗБИЕНИЕ СЕТЕЙ ІРV4 НА ПОДСЕТИ	24
3.1 Теоретическая часть	
3.2 Практическое задание	29
3.3 Содержание отчета	32
3.4 Контрольные вопросы	33
ПРАКТИЧЕСКАЯ РАБОТА №4 АДРЕСАЦИЯ VLSM	34
4.1 Теоретическая часть	34
4.2 Практическое задание	39
4.3 Содержание отчета	41
4.4 Контрольные вопросы	42
ПРАКТИЧЕСКАЯ РАБОТА №5 ПРЕДСТАВЛЕНИЕ ІРV6-АДРЕСОВ	43
5.1 Теоретическая часть	43
5.2 Практическое задание	50
5.3 Содержание отчета	52
5.4 Контрольные вопросы	52
ПРАКТИЧЕСКАЯ РАБОТА №6 РАЗБИЕНИЕ ІРV6-СЕТИ НА ПОДСЕТИ	53
6.1 Теоретическая часть	53

6.2 Практическое задание	54
6.3 Содержание отчета	57
6.4 Контрольные вопросы	57
ПРАКТИЧЕСКАЯ РАБОТА №7 РАСЧЕТ СУММАРНЫХ IPV4- И IPV6-	
МАРШРУТОВ	58
7.1 Теоретическая часть	58
7.2 Практическое задание	60
7.3 Содержание отчета	65
7.4 Контрольные вопросы	65

ПРАКТИЧЕСКАЯ РАБОТА №1 КОНВЕРТАЦИЯ IPV4-АДРЕСОВ

Цель: научиться представлять IPv4-адреса в двоичной системе исчисления (СС), овладеть навыками перевода двоичного представления IPv4-адреса в десятичную форму представления.

1.1 Теоретическая часть

Адресация — это основная функция протоколов сетевого уровня, которая позволяет узлам обмениваться данными вне зависимости от того, находятся ли узлы в одной или нескольких сетях.

Чтобы устройства обнаружили друг друга и установили сквозное подключение по сети Интернет, используются IP-адреса, существует два стандарта адресов: IPv4 или IPv6. Фактически IP-адреса обеспечивают связь между устройствами от источника до назначения и обратно в любом сетевом взаимодействии. Структура адреса IPv4 — это точечно-десятичное представление в виде четырёх десятичных чисел в диапазоне от 0 до 255. Они имеют логическую природу, поскольку предоставляют информацию о местоположении устройства.

IP-адреса могут быть присвоены физическим портам и виртуальным интерфейсам на всех устройствах. Виртуальный интерфейс означает, что с данным устройством не связано дополнительное физическое оборудование.

Для понимания принципа работы устройств в сети, необходимо рассматривать адресацию в том виде, в которой используют ее устройства. Для этого необходимо перевести IP-адрес из десятичного представления с точками в двоичное значение.

В ІР-сетях адрес представлен с помощью серии из 32 бит (единиц и нулей), разделенных на 4 октета, каждый из которых по 8 бит или 1 байту (рисунок 1.1). Такое представление адреса называется десятично-точечной нотацией. Каждый октет представляет собой 1 байт десятичного числа от 0 до 255.

Рисунок 1.1 – Представление IPv4-адреса в двоичной системе исчисления

Большинству людей сложно понять строку из 32 бит и тем более сложно её запомнить. Поэтому вместо двоичной системы для представления IPv4-адресов используется десятичный формат с разделительными точками.

В позиционном представлении цифра представляет разные значения в зависимости от своего расположения. Основанием системы позиционного представления является корень. В десятичной системе корнем является 10. Корень для двоичной системы — 2. Значение, представленное цифрой, умножается на основание, или корень, который представлен позицией, занимаемой цифрой. Например, для десятичного числа 192 единица (1) представляет значение $1\cdot10^2$. Единица находится на позиции сотни (100). Позиционное представление передаёт эту позицию, как основание 2, поскольку основание — это 10, а степень — это 2. Цифра 9 представлена как $9\cdot10^1$. С помощью позиционного представления в системе исчисления с корнем 10 число 192 представлено следующим образом: $192 = 1\cdot10^2 + 9\cdot10^1 + 2\cdot10^0$. Корнем для двоичной системы исчисления является 2. Таким образом, каждое расположение представляет значение в степени 2. В 8-битных двоичных числах расположения представлены в таблице 1.1.

Таблица 1.1 — Представления десятичного числа 168 в двоичной системе исчисления

27	2^{6}	25	24	2^{3}	2^2	2^{1}	20
128	64	32	16	8	4	2	1
1	0	1	0	1	0	0	0

В таблице 1.1 показано представление десятичного числа 168 в двоичном формате. Единица (1) в определённой позиции означает, что это значение должно учитываться в общей сумме. При сложении 128+32+8 получаем сумму 168₁₀, в двоичной системе исчисления 10101000₂. В представленных значениях 168₁₀ и 10101000₂ индексы означают систему исчисления, десятичную и двоичную соответственно. Для преобразования IPv4-адрес из двоичной системы исчисления необходимо выполнить следующие действия (рисунок 1.2).

- 1. Разделить 32 бита на 4 октета.
- 2. Преобразовать каждый октет в десятичное число.
- 3. Добавить «точку» между десятичными числами.

Аналогичным образом производиться преобразование маски подсети.

Рисунок 1.2 – Представление IPv4-адреса в десятичной системе исчисления

1.2 Практическое задание

В данной практической работе необходимо выполнить представленные ниже задания.

1. Осуществить преобразование десятичных чисел в двоичные. В соответствии с третьей и второй цифрой шифра из таблицы 1.2 выбрать десятичные числа и осуществить их преобразование в двоичную СС. Результаты перевода представить в виде таблицы 1.3.

Таблица 1.2 – Десятичные числа для перевода в двоичную СС

Номер третьей цифры шифра	Десятичные числа для перевода в двоичную СС	Номер второй цифры шифра	Десятичные числа для перевода в двоичную СС
0		0	
1		1	
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	

Таблица 1.3 – Представление результатов перевода из одной СС в другую

Десятичное число	Результат перевода в двоичную СС	Двоичное число	Результат перевода в десятичную СС

2. Осуществить преобразование двоичных чисел в десятичные. В соответствии с первой и второй цифрой шифра из таблицы 1.4 выбрать двоичные числа и осуществить их преобразование в десятичную СС. Результаты перевода представить в виде таблицы 1.3.

Таблица 1.4 – Двоичные числа для перевода в десятичную двоичную СС

таолица т. т	двои шые тема для пере	odu b deemmi	путе двен туте с с
Номер пер-	Двоичные числа для	Номер вто-	Двоичные числа для
вой цифры	перевода в десятичную	рой цифры	перевода в десятичную
шифра	CC	шифра	CC
0		0	
1		1	
2		2	
3		3	
4		4	
5		5	
6		6	
7		7	
8		8	
9		9	

3. Перевести IP-адреса в двоичный эквивалент. В соответствии со второй цифрой шифра из таблицы 1.5 выбрать IP-адреса и осуществить их преобразование в двоичную СС. Результаты перевода представить в виде таблицы 1.6.

Таблица 1.5 – ІР-адреса для перевода в десятичную СС

Номер второй цифры шифра	ІР-адреса
0	
1	
2	
3	
4	
5	
6	
7	

Окончание таблицы 1.5

Номер второй цифры шифра	IP-адреса
8	~~
9	

Таблица 1.6 – Результат перевода IPv4-адреса в двоичную СС

IP-адрес в десятичной CC	ІР-адрес в двоичной СС	

4. Перевести двоичные числа в IPv4-адрес. В соответствии с третьей цифрой шифра из таблицы 1.8 выбрать двоичные числа и осуществить их преобразование в IPv4-адрес. Результаты перевода представить в виде таблицы 1.7.

Таблица 1.7 – Результат перевода двоичного числа в IPv4-адрес

Двоичное число	ІР-адрес в десятичной СС
	-

Таблица 1.8 – Двоичные числа для перевода в ІР-адреса

Номер третьей цифры шифра	Двоичные числа
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

1.3 Содержание отчета

- 1. Цель работы, исходные данные из таблицы 1.2, 1.4, 1.5, 1.8.
- 2. Результаты произведенных вычислений (заполненные таблицы 1.3, 1.6, 1.8).

- 3. Вывод по работе.
- 4. Ответы на контрольные вопросы.

1.4 Контрольные вопросы

- 1. Структура IPv4-адреса.
- 2. Значение октета.
- 3. Преобразование IPv4-адреса из двоичной системы исчисления.
- 4. Представления IPv4-адрес в двоичной системе исчисления.