General Specifications

The X7R dielectric is the most popular of the intermediate EIA class II materials due to its relative temperature stability. While the capacitance change is non-linear, temperature variation is within ±15% from - 55°C to + 125°C.

Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency. X7R dielectric chip usage covers a broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable.

SpiCAT is an additional online resource that KAVX offers to help create engineering simulations. Please visit spicat. kyocera-avx.com for more information.

HOW TO ORDER

Α	R
T	
Thickness	Diele
See Cap Chart	R7 = 2

1E Voltage 1H = 50V

0G = 4.0V0J = 6.3V2A = 100V1A = 10V 2D = 200V 1C = 16V 2E = 250V1E = 25V 2H = 500V

101

Capacitance Code Code (in pF) 2 Significant Digits + Number of zeros eg. $106 = 10 \mu F$ 103 = 10nF

М Capacitance Tolerance J* = +/-5%

K = +/- 10% M = +/-20%

*≤1µF only, contact factory for additional values

Packaging See Table Below

PACKAGING CODES

Code	EIA (inch)	IEC(mm)	7" Paper	7" Embossed	13" Paper	13"Embossed
02	01005	0402	Н			
03	0201	0603	Н		N	
05	0402	1005	Н		N	
15	0603	1608	Т		М	
21	0805	2012	Т	U	М	L
31	1206	3216	Т	U	М	L
32	1210	3225		U		L
43	1812	4532		V		S
44	1825	4564		V		S
55	2220	5750		V		S
56	2225	5763		V		S

^{*}Note: The thickness determines if packaging is paper or embossed.

Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805 10.00 1,000 pF mpedance, Ω 100 1000

Frequency, MHz

variation of impedance with Cap Value

☑ KU□CER∃ | The Important Information/Disclaimer is incorporated in the catalog where these specifications came from or available online at www.kyocera-avx.com/disclaimer/ by reference and should be reviewed in full before placing any order.

Par	rameter/Test	X7R Specification Limits	Measuring Conditions (Complies with JIS C5101 / IEC60384)								
Operating	Temperature Range	-55°C to +125°C	Temperature Cycle Chamber								
C	apacitance	Within specified tolerance	Measure after heat treatment								
			Capacitance Frequency Volt								
			C≤10μF Frequency : 1kHz±10%								
			Volt : 1.0±0.2Vrms *0.5±0.2Vrms								
Dissipat	tion Factor / Tanδ	Refer to https://spicat.kyocera-avx.com for	7011110-31211110 310201211110								
•		individual part number specification	C>10µF								
			Frequency: 120Hz±10%								
			Volt: 0.5±0.2Vrms								
			The charge and discharge current of the capacitor must not exceed 50mA. Apply the rated voltage for 1 minute, and measure it in normal tempera-								
Insula	tion Resistance	Refer to https://spicat.kyocera-avx.com for	ture and humidity. The charge and discharge current of the capacitor must								
moula	tion registance	individual part number specifiction	not exceed 50mA.								
			Charge device with 250% of rated voltage for 1-5 seconds, w/charge and								
Diele	ectric Strength	No breakdown or visual defects	discharge current limited to 50 mA (max)								
			Note: Charge device with 150% of rated voltage for 500V devices.								
Ben	ding Strength	No significant damage with 1mm bending	Glass epoxy PCB: Fulcrum spacing: 90mm, duration time 10 seconds.								
s	olderability	Solder coverage : 95% min.	Soaking condition Sn-3Ag-0.5Cu 245±5°C 3±0.5 sec.								
	Appearance	No problem observed	Take the initial value after heat treatment.								
	Capacitance Variation	≤ ±7.5%	Soak the sample in 260°C±5°C solder for 10±0.5 seconds and place in nor-								
	Dissipation Factor / Tanδ	Within specification	mal temperature and humidity, and measure after heat treatment.								
Resistance to	Insulation Resistance	Within specification	(Pre-heating conditions)								
Solder Heat	ilisulation Resistance	within specification	Order Temperature Time								
	Withstanding Voltage /		1 80 to 100°C 2 minutes 2 150 to 200°C 2 minutes								
	Withstanding Voltage / Dielectric Strength	Resist without problem	The charge and discharge current of the capacitor must not exceed 50mA								
	Dicieotiio oti erigiii		for IR and withstanding voltage measurement.								
	Appearance	No visual defects	Take the initial value after heat treatment.								
	Capacitance Variation	≤ ±7.5%	(Cycle)								
	Dissipation Factor	Within specification	Room temperature (3 min.)—> Lowest operation temperature (30 min.)—>								
Thermal Shock	Insulation Resistance	Within specification	Room temperature (3 min.) ->								
			Highest operation temperature(30 min.)								
	Withstanding Voltage /	Resist without problem	After 5 cycles, measure after heat treatment.								
	Dielectric Strength	Resist without problem	The charge and discharge current of the capacitor must not exceed 50mA								
	Appearance	No visual defects	for IR and withstanding voltage measurement. Take the initial value after heat treatment.								
		≤ ±12.5%	After applying *1.5 the rated voltage at the highest operation								
	Capacitance Variation		temperature for 1000+12/ -0 hours, and measure the sample after heat								
Load Life	Dissipation Factor / Tanδ	≤ Initial Value x 2.0 (See Above)	treatment in normal temperature and humidity.								
		Over $1000M\Omega$ or $50M\Omega \cdot \mu$ F, whichever is less.	The charge and discharge current of the capacitor must not exceed								
	Insulation Resistance	*Exceptions Listed Below	50mA for IR measurement. *Apply 1.0 times when the rated voltage is 4V or less. Applied voltages								
			for respective products are indicated in the chart below.								
	Appearance	No visual defects	Take the initial value after heat treatment.								
	Capacitance Variation	≤ ±12.5%	After applying rated voltage for 500+12/ -0 hours in the condition of								
Load	Dissipation Factor / Tanδ	Within specification	40°C ± 2°C and 90 to 95%RH, and place in normal temperature and								
Humidity	Insulation Resistance	Over $1000M\Omega$ or $50M\Omega \cdot \mu$ F, whichever is less.	humid- ity, then measure the sample after heat treatment. The charge and discharge current of the capacitor must not exceed								
	ilisulation Resistance	*Exceptions Listed Below	50mA for IR measurement.								
A	ppearance	No problem observed	Microscope								
Tormi	nation Strength	No problem observed	Apply a sideward force of 500g (5N) to a PCB-mounted sample. note :								
i ei iiii	-	'	2N for 0201 size, and 1N for 01005 size.								
	Appearance	No problem observed	Take the initial value after heat treatment.								
	Capacitance	Within tolerance	Vibration frequency: 10 to 55 (Hz) Amplitude: 1.5mm								
Vibration			Sweeping condition: 10 -> 55 -> 10Hz/ 1 minute in X, Y and Z								
	Tanδ	Within tolerance	directions: 2 hours each, 6 hours in total, and place in normal temperature								
			and humidity, then measure the sample after heat treatment.								
Hea	at Treatment	Expose sample in the temperature of 150+0/ -	-10°C for 1 hour and leave the sample in normal temperature and humidity for								
		24±2 hours.									

Voltage to be applied in the High Temperature Load (Applied voltage is the multiple of the rated voltage)

Rated Voltage		Products
×1.0	16V	KGM21AR71C475
<load h<="" life="" load="" th=""><th>lumidit</th><th>y>Insulation Resistance : Over 10MΩ·μF</th></load>	lumidit	y>Insulation Resistance : Over 10MΩ·μF
	05	KGM05AR70J474
R7	15	KGM15AR71E105
K/	21	KGM21AR71C475
	31	KGM31AR71E106, KGM31AR71H475

Capacitance Range

SIZE		01005			0201					04	02			0603							0805									1206									
Soldering	,	Reflow Only		Ret	flow (nly			R	eflow	//Wav	/e				R	eflow	/Wav	ve						Refl	ow/V	Vave				Reflow/Wave								
Packaging	,	All Paper		Α	II Pap	er				All P	aper					Par	er/Ei	mbos	sed					F	Paper	/Emb	osse	d			Paper/Embossed								
(L) Length	mm (in.)	0.40 ± 0.02 (0.016 ± 0.0008)			50 ± 0 24 ± 0						± 0.10						1.60 : .063 :								2.0	1 ± 0					3.20 ± 0.30 (0.126 ± 0.012)								
W) Width	mm (in.)	0.20 ± 0.02 (0.008 ± 0.0008)			30 ± 0					0.50 :	± 0.10)					0.81 : .032 :									5 ± 0	.20				1.60 ± 0.30 (0.063 ± 0.012)								
(t) Terminal	mm (in.)	0.10± 0.04 (0.004 ± 0.0016)		0.1	15 ± 0	.05				0.25 :	± 0.15	5		0.35 ± 0.15 (0.014 ± 0.006)									0.50 ± 0.25 (0.020 ± 0.010)								0.50 ± 0.25 (0.020 ± 0.010)								
WVDC	(111.)	16	6.3	10			50	6.3		16	25		100	6.3	10		25		100	200	250	63	10	16				200	250	500	63	10	16					250	500
	101	A	Α	A	A	A	A	Α	A	A	A	A	A	Α	A	A	A	A	A	B	B	0.5	10	10	23	30	100	200	230	В	0.5	10	10	25	30	100	200	230	300
	151	A	A	A	A	A	Α	Α	A	A	Α	A	A	Α	A	Α	A	Α	A	В	В									В		\vdash					Н	\Box	\dashv
. ,	221	A	A	A	A	A	Α	Α	A	A	A	A	A	Α	A	Α	A	Α	Α	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	Т	Т	D
	331	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	Ť	T	D
	471	A	A	A	A	A	Α	A	A	A	A	A	A	Α	A	Α	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	T	T	D
	681	A	Α	A	Α	A	Α	Α	A	A	A	Α	Α	Α	Α	Α	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	Ť	T	D
	102	A	A	A	A	A	A	A	A	A	A	A	A	A	A	Α	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	T	Ť	D
	152	A	A	A	A	A		A	A	A	A	A	A	Α	A	Α	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	T	T	D
	222	A	A	A	A	A	\vdash	A	A	A	A	A	A	A	A	A	A	A	A	В	В		N	N	N	N	N	N	N	В	В	В	В	В	В	В	Ť	Ť	D
	332	,,	A	A	A	A	\vdash	A	A	A	A	A	A	A	A	A	A	A	A	В	В		N	N	N	N	N	A	A	A	В	В	В	В	В	В	T	T	D
	392		A	A	A	A	\vdash	A	A	A	A	A	A	Α	A	A	A	A	A	В	В		N	N	N	N	N	A	A	A	В	В	В	В	В	В	T	T	D
	472		A	A	A	A		A	A	A	A	A	A	A	A	A	A	A	A	В	В		N	N	N	N	N	A	A	A	В	В	В	В	В	В	T	T	D
	562		A	A	A	A		A	A	A	A	A	A	A	A	A	A	A	A	В	В		N	N	N	N	N	A	A	A	В	В	В	В	В	В	T	T	D
	682		Α	A	Α	A		Α	A	A	Α	A	A	Α	A	Α	A	Α	A	В	В		N	N	N	N	N	A	Α	A	В	В	В	В	В	В	T	T	D
	103		Α	A	Α	A		A	A	A	A	A	A	Α	A	Α	A	A	A	В	В		N	N	N	N	N	A	A	Α	В	В	В	В	В	В	D	D	D
<u> </u>	123		,,	-	1			Α	A	A	A	A	-	Α	A	Α	A	Α	A	В	В		N	N	N	N	N	A	Α	Α	В	В	В	В	В	В	D	D	D
· /	153							A	A	A	A	A		A	A	A	A	A	В	В	В		N	N	N	N	A	A	A	A	В	В	В	В	В	В	D	D	D
	183							A	A	A	A	Α		A	A	A	A	A	В	В	В		N	N	N	N	A	A	Α	A	В	В	В	В	В	В	D	D	D
	223		Α	Α	Α			A	A	A	A	A		Α	A	Α	A	A	В	В	В		N	N	N	N	A	A	Α	A	В	В	В	В	В	В	D	D	A
	273		, ,	-	, ·			A	A	A	A	A	\vdash	Α	A	Α	A	В	В		_		N	N	N	N	A	A	Α	, ·	В	В	В	В	В	В	D	D	Α
	333							A	A	A	A	A	\vdash	Α	A	Α	В	В	В				N	N	N	N	A	A	A		В	В	В	В	В	В	Ā	Ā	A
	393							A	A	A	A	A	\vdash	A	A	Α	В	В	В				N	N	N	N	A	A	A		В	В	В	В	В	В	A	A	Α
	473							A	A	A	A	A	\vdash	Α	A	Α	В	В	В				N	N	N	N	A	A	A		В	В	В	В	В	В	A	A	A
	683							Α	Α	Α	Α	С		Α	Α	Α	В	В	В				N	N	N	N	Α	A			В	В	В	В	В	D	Α	Α	-
	823							Α	Α	Α	Α	C		Α	Α	Α	В	В	В				N	N	N	N	Α	A			В	В	В	В	В	D	Α	Α	\neg
	104		Α					Α	A	A	A	c		Α	A	Α	В	В	В				N	N	N	N	A	A			В	В	В	В	В	D	A	Α	\dashv
	124													Α	Α	Α	В	В					N	N	N	E	Α				В	В	В	В	В	D	Α	Α	\dashv
0.15	154				t			Α	Α	Α	Α			Α	Α	Α	В	В					Е	Е	E	E	Α				V	V	V	М	М	A	Α	Α	\neg
	224				t			Α	Α	Α	Α			Α	В	В	В	В					A	A	A	A	Α				٧	V	٧	М	М	Α	Α	Α	\neg
	334													В	В	В	В	В					Α	Α	A	A	Α				٧	V	V	М	Р	A			\dashv
	474							Α	Α					В	В	В	В	В					A	A	A	A	A				Н	Н	Н	Н	H	A	Н	\Box	\dashv
	684													В	В	В							Α	A	A	A	Α				Н	Н	Н	Н	Н	Н	\Box	\Box	\dashv
	105		T		t			Α	Α					В	В	В	Α	С					Α	Α	Α	Α	Α				Н	Н	Н	Н	Н	Н	М	\Box	\neg
	225													В	В	c							A	A	Α	A					Н	H	Н	H	Н	Н	Н	\vdash	\dashv
4.7	_													С									Α	A	Α						Н	Н	Н	Н	Α	Ė	М	\vdash	\dashv
	106																					Α	Α	Α							Н	Н	Α	Α	Н		М	\Box	\neg
	226																						1								Α	A	<u> </u>				Н	\vdash	\dashv
	476																															<u> </u>					Н	\vdash	\dashv
	107																																T				Н	\vdash	ᅱ
WVDC		16	6.3	10	16	25	50	6.3	10	16	25	50	100	6.3	10	16	25	50	100	200	250	6.3	10	16	25	50	100	200	250	500	6.3	10	16	25	50	100	200	250	500
SIZE		01005			0201						02						06									0805									1206				
		0.000			3_01			_								_												_	_										

Case Size	01005 (KGM 02)	0201 (KGM03)	0402 (F	(GM05)	06	03 (KGM	15)	080)5 (KGM:	21)	1206 (KGM31)										
Thickness Letter	Α	Α	Α	С	Α	В	С	N	Е	Α	В	٧	М	Т	Р	D	Α	Н			
Max Thickness (mm)	0.22	0.33	0.55	0.70	0.90	0.95	1.00	1.00	1.35	1.45	0.94	1.22	1.25	1.35	1.40	1.45	1.80	1.90			
Carrier Tape	PAPER	PAPER	PAI	PER	PAPER	PAPER	PAPER	PAPER	EMB	EMB	PAPER	EMB									
Packaging Code 7"reel	Н	Н	Н	Н	T	T	T	Т	U	U	T	U	U	U	U	U	U	U			
Packaging Code 13"reel	n/a	N	N	N	М	М	М	М	L	L	М	L	L	L	L	L	L	L			
			EMBOSSED (EMB)																		

SIZE				1210				1812							18	25				2220		2225						
Soldering			Re	flow Or	nly					Reflo	v Only				Reflov	v Only			Re	flow Or	nly		Reflow Only					
Packaging			Pape	r/Embo	ssed					All Em	bossed				All Eml	bossed			All	Embos	sed		All Embossed					
(L) Length mm				.30 ± 0.							± 0.40				4.50 :					70 ± 0.5			5.70 ± 0.40 (0.224 ± 0.016)					
(in.)			$\overline{}$	30± 0.0 50 ± 0.3							± 0.016)		-	<u> </u>	± 0.016))			24 ± 0.0 00 ± 0.4			6.30 ± 0.40					
W) Width mm (in.)				98 ± 0.0						3.20 : : 0.126)	± 0.40 ± 0.016)			6.40 : : 0.252)	± 0.40 ± 0.016)))		
mm			$\overline{}$	50 ± 0.2						<u> </u>	± 0.36				0.61 :			(0.197 ± 0.016) 0.64 ± 0.39						(0.248 ± 0.016) 0.64 ± 0.39				
(t) Terminal (in.)			(0.0	20 ± 0.0	010)					(0.024 :	± 0.014				(0.024 :	± 0.014))		(0.0	25 ± 0.0	(0.025 ± 0.015)							
WVDC	10	16	25	50	100	200	500	16	25	50	100	200	500	50	100	200	500	25	50	100	200	500	50	100	200	500		
Cap 100 101																					L	. >						
(pF) 150 151	-	-	-	-	-	-	-														_ <							
220 221	R	R	R	R	R	R	D	٨	۸	Α	Α	Α	۸								- (<u> </u>	\mathcal{U}^{\downarrow}				
330 331 470 471	R R	R R	R R	R R	R R	R R	D D	A	A	A	A	A	A								L	1						
680 681	R	R	R	R	R	R	D	A	A	A	A	A	A								-	<u> </u>	1					
1000 102	R	R	R	R	R	R	D	A	A	A	A	A	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
1500 152	R	R	R	R	R	R	D	A	A	A	A	A	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
2200 222	R	R	R	R	R	R	D	A	A	A	A	A	В	С	C	C	С	Z	Z	Z	Z	Z	D	D	D	D		
3300 332	R	R	R	R	R	R	E	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
3900 392	R	R	R	R	R	R	Ε	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
4700 472	R	R	R	R	R	R	Е	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
5600 562	R	R	R	R	R	R	Е	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
6800 682	R	R	R	R	R	R	Е	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
Cap 0.010 103	R	R	R	R	R	R	E	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
(μF) 0.012 123	R	R	R	R	R	R	Е	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.015 153	R	R	R	R	R	R	Е	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.018 183	R	R	R	R	R	R	E	Α	Α	Α	Α	Α	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.022 223	R	R	R	R	R	E	Ε	A	A	A	A	A	В	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.027 273 0.033 333	R	R	R	R	R	E E	H	A	A	A	A	A	B B	С	C	С	C	Z	Z Z	Z Z	Z	Z	D D	D D	D	D D		
0.033 333 0.039 393	R R	R R	R R	R R	R R	E	H	A	A	A	A	A	В	C	C	C	C	Z	Z	Z	Z	Z	D	D	D D	D		
0.039 393	R	R	R	R	R	E	Н	A	A	A	A	B	В	C	C	C	C	Z	Z	Z	Z	Z	D	D	D	D		
0.068 683	R	R	R	R	R	Н	Р	A	A	A	A	В	F	С	C	C	С	Z	Z	Z	Z	Z	D	D	D	D		
0.082 823	R	R	R	R	R	Н	P	A	A	A	A	В	F	C	C	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.100 104	R	R	R	R	R	Н	P	A	A	A	В	В	F	C	C	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.120 124	R	R	R	R	R	Н		Α	A	Α	В	В	J	C	C	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.150 154	Е	Е	Е	Е	Е	L		Α	Α	Α	В	F	J	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.220 224	Е	Е	Е	Е	Е	L		Α	Α	Α	В	F	J	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.330 334	Е	Е	Е	Е	Н	L		Α	Α	Α	В	F	J	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.470 474	Е	Е	Е	Е	L	L		Α	Α	Α	F	F	J	С	С	С	С	Z	Z	Z	Z	Z	D	D	D	D		
0.680 684	Е	Е	Е	Е	L	L		F	F	F	F	J		С	С	С		Z	Z	Z	Z	С	D	D	D	G		
1.000 105	Е	Е	Е	Е	L			F	F	F	F	J		С	С	С		Z	Z	Z	Z	D	D	D	D			
2.200 225	L	L	L	L	L			F	F	F	J			С	С	F		Z	Z	Z	С		D	D	G			
4.700 475	L	L	L	L				J	J	J	J			С	F			Z	Z	Z			D	G				
10 106	L	L	L	Α				J	J	J				F	F			С	С	D			G	G				
22 226	L	Α	L															D	D	Н								
47 476	L																											
100 107	10	1.0	0.5		100	000	500	4.0	0.5	50	400	200	500	F0.	400	000	500	0.5		100	200	500	50	400	222	500		
WVDC SIZE	10	16	25	50 1210	100	200	500	16	25	50	100	200	500	50	100	200	500	25	50	100 2220								
SIZE				1210						18	112				18	23				2220		2225						

Case Size			121	10 (KGM	32)				1812 (K	GM 43)		1825 (K	(GM 44)		2220 (K	2225 (KGM56)			
Thickness Letter	R	D	E	Н	Р	Α	L	Α	В	F	J	С	F	Z	С	D	Н	D	G
Max Thickness (mm)	1.05	1.4	1.45	1.8	2.2	2.70	2.80	1.4	1.45	2.21	2.80	2.21	2.80	2.21	2.80	3.3	3.4	2.21	2.80
Carrier Tape	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB	EMB
Packaging Code 7"reel	U	U	U	U	U	U	U	V	V	٧	V	V	٧	٧	V	٧	V	V	V
Packaging Code 13"reel	L	L	L	L	L	L	L	S	S	S	S	S	S	S	S	S	S	S	S
									EMB	OSSED(E	MB)								

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

KYOCERA AVX:

08055C393KAT2A 08055C393KAT4A 08055C393MAT2A 08055C471JAT2A 08055C471KAT2A 08055C471KAT4A 08055C471MAT2A 08055C472JAT2A 08055C472KAT2A 08055C472KAT4A 08055C472MAT2A 08055C473JAT2A 08055C473KAT2A 08055C473KAT4A 08055C473MAT2A 08055C562JAT2A 08055C562KAT2A 08055C562MAT2A 08055C681KAT2A 08055C681KAT4A 08055C681MAT2A 08055C682JAT2A 08055C682KAT2A 08055C682KAT4A 08055C682MAT2A 08055C682MAT4A 08055C683KAT2A 08055C683KAT4A 08055C683MAT2A 08055C683MAT4A 08055C823JAT2A 08055C823KAT2A 08055C823MAT2A 08055C102JAT2A 08055C102KAT2A 08055C102KAT4A 08055C102MAT2A 08055C102MAT4A 08055C103JAT2A 08055C103JAT4A 08055C103KAT4A 08055C103MAT2A 08055C103MAT4A 08055C104MAT2A 08055C104MAT4A 08055C105KAT2A 08055C123KAT2A 08055C123MAT2A 08055C124KAT2A 08055C152KAT4A 08055C152MAT2A 0805YC474MAT2A 0805YC562KAT2A 0805YC562MAT2A 0805YC682KAT2A 0805YC683KAT2A 0805YC823KAT2A 0805ZC102KAT2A 0805ZC102MAT2A 0805ZC103KAT2A 0805ZC103MAT2A 0805ZC104KAT2A 0805ZC104MAT2A 0805ZC105JAT2A 0805ZC105JAT4A 0805ZC105KAT2A 0805ZC105KAT4A 0805ZC105MAT2A 0805ZC105MAT4A 0805ZC124KAT2A 0805ZC153KAT2A 0805ZC153KAT4A 0805ZC154KAT2A 12061C102JAT2A 12061C102KAT2A 12061C102KAT4A 12061C102MAT2A 12061C102MAT4A 12061C103JAT2A 12061C103KAT2A 12061C103KAT4A 12061C103MAT2A 12061C103MAT4A 12061C104JAT2A 12061C104KAT2A 12061C104KAT4A 12061C104MAT2A 12061C104MAT4A 12061C123KAT2A 12061C123KAT4A 12061C152KAT2A 12061C152KAT4A 12061C152MAT2A 12061C153JAT2A 12061C153KAT2A 12061C153KAT4A 12061C183KAT2A 12061C183KAT4A 12061C221KAT2A 12061C222KAT2A