EECS 127/227AT Discussion 3 Slides

Druv Pai

September 19, 2020

Definition (Least Squares)

An unconstrained optimization problem of the form

$$p^* = \min_{x} \|y - Ax\|_2^2.$$

Theorem

$$x^* = \left(A^\mathsf{T} A\right)^{-1} A^\mathsf{T} y.$$

Proof.

Two ways: algebraic or geometric.

Algebraic way: take derivative and set to 0. In particular

$$\nabla_x ||y - Ax||_2^2 = 2A^TAx - 2A^Ty \stackrel{\text{set}}{=} 0$$
; obtains optimal x^* .

Geometric way: error vector $y - Ax^* \perp range(A)$, since x^* is

"best" (use triangle inequality). Thus orthogonal to all columns of A. so $A^{T}(v - Ax^{*}) = 0$, gets same solution.

Remark: Making updated predictions via least squares has the

form:
$$\hat{y} = Ax^* = A(A^TA)^{-1}A^Ty$$
.

Remark: Matrix $(A^TA)^{-1}A^T$ is the **left inverse** of A.

Name *left inverse* applies to any matrix A_L^{-1} for which $A_L^{-1}A = I$. But is there a right inverse?

SVD: "Generalized diagonalization". Let $A \in \mathbb{R}^{m \times n}$ and rank(A) = r. SVD of A is decomposition

$$\mathsf{A} = \mathsf{U}\widetilde{\Sigma}\mathsf{V}^\mathsf{T} = \begin{bmatrix} \mathsf{U}_\mathcal{R} & & \mathsf{U}_\mathcal{N} \end{bmatrix} \begin{bmatrix} \sum & \mathsf{0}^{r \times (n-r)} \\ \mathsf{0}^{(m-r) \times r} & \mathsf{0}^{(m-r) \times (n-r)} \end{bmatrix} \begin{bmatrix} \mathsf{V}_\mathcal{R}^\mathsf{T} \\ \mathsf{V}_\mathcal{N}^\mathsf{T} \end{bmatrix}$$

This is "full SVD". Notice that $A = U_{\mathcal{R}} \Sigma V_{\mathcal{R}}^{\mathsf{T}}$, "compact SVD".

- ▶ $U \in \mathbb{R}^{m \times m}$ w/ o.n. columns, $U_{\mathcal{R}} \in \mathbb{R}^{m \times r}$ w/ o.n. columns which span range(A), $U_{\mathcal{N}} \in \mathbb{R}^{m \times (m-r)}$ w/ o.n. columns which span null (A^T) .
- ▶ Σ ∈ $\mathbb{R}^{m \times n}$ diagonal, Σ ∈ $\mathbb{R}^{r \times r}$ diagonal where $\Sigma_{i,i} = \sigma_i = \sqrt{\lambda_i (A^T A)} i^{th}$ "singular value".
- ▶ $V \in \mathbb{R}^{n \times n}$ w/ o.n. columns, $V_{\mathcal{R}} \in \mathbb{R}^{n \times r}$ w/ o.n. columns which span range (A^T) , $V_{\mathcal{N}} \in \mathbb{R}^{n \times (n-r)}$ w/ o.n. columns which span null(A).

Two algorithms to construct SVD:

- Form V_R from eigenvector basis of A^TA and fill Σ with square roots of corresponding eigenvalues.
- ► For i^{th} column u_i of $U_{\mathcal{R}}$, set $u_i = \frac{1}{\sigma_i} A v_i$ (v_i is i^{th} column of $V_{\mathcal{R}}$).
- ▶ Fill up U_N , V_N by picking any basis for \mathbb{R}^m , \mathbb{R}^n that include columns of U_R , V_R and using Gram-Schmidt process

Or: do the same thing except fill up $U_{\mathcal{R}}$ first by using eigenvector basis of AA^T and filling in $\sigma_i = \sqrt{\lambda_i (AA^T)}$. Do the same process except swapping U and V.

Why? Sometimes AA^T or A^TA is a lot easier to compute/smaller. Why are these constructions equal/justified? Symmetric matrices A^TA , AA^T , diagonalized as:

$$\mathsf{A}^\mathsf{T}\mathsf{A} = \left(U\widetilde{\Sigma}V^\mathsf{T}\right)^\mathsf{T} \left(U\widetilde{\Sigma}V^\mathsf{T}\right) = V\widetilde{\Sigma}^\mathsf{T}U^\mathsf{T}U\widetilde{\Sigma}^\mathsf{T}V^\mathsf{T} = V\widetilde{\Sigma}^\mathsf{T}\widetilde{\Sigma}V^\mathsf{T}.$$

$$\mathsf{A}\mathsf{A}^\mathsf{T} = \left(U\widetilde{\Sigma}V^\mathsf{T}\right)\left(U\widetilde{\Sigma}V^\mathsf{T}\right)^\mathsf{T} = U\widetilde{\Sigma}V^\mathsf{T}V\widetilde{\Sigma}^\mathsf{T}U^\mathsf{T} = U\widetilde{\Sigma}\widetilde{\Sigma}^\mathsf{T}U^\mathsf{T}.$$

Pattern matching the diagonalization gives the construction.

If $A = U_{\mathcal{R}} \Sigma V_{\mathcal{R}}^\mathsf{T}$ (compact SVD), then Moore-Penrose psuedoinverse is given by $A^\dagger = V_{\mathcal{R}} \Sigma^{-1} U_{\mathcal{R}}^\mathsf{T}$. We want to show that $A^\dagger y = x^*$ gives the optimal solution to the constrained optimization problem

$$p^* = \min_{x} ||x||_2^2$$

s.t. $Ax = y$.

This is **least norm** problem.

When A has full column rank (linearly independent columns) then $A^{\dagger} = \left(A^{T}A\right)^{-1}A^{T}$, is the **left inverse**. When A has full row rank (linearly independent rows), then $A^{\dagger} = A^{T}\left(AA^{T}\right)^{-1}$, is the **right inverse**.

Definition

Let $X \in \mathbb{R}^{m \times n}$ be data matrix; **columns are data points, rows are features**. Assume sum of columns is 0 (X is **centered**). Then $Var(X) = \frac{1}{n}XX^T \in \mathbb{R}^{m \times m}$ is the sample (empirical) variance-covariance matrix of the features.

Important! Most of the time this is flipped around, and you have to take transposes.

What this means is that u^TCu is the variance of the sample data along direction u. Covariance matrix is aligned with coordinate axes; u is our axis to compute covariance along.

Definition

PCA: eigendecomposition of the (symmetric) covariance matrix. Eigenvalues λ_i determine covariance along direction of eigenvector v_i . We can pick a few eigenvectors with largest eigenvalues and replace our data set by the projections onto the space spanned by the v_i ; saves a lot of data.