Artificial Intelligence Foundations and Applications Machine Learning

Sudeshna Sarkar

Nov 8 2021

Machine Learning: Definition

Learning is the ability to evolve behaviours based on data (experience).

- Learn from data such as build a model from data
- Use the model for prediction, decision making or solving some tasks

The Machine Learning Solution

- Collect many examples that specify the correct output for a given input
- ML to get the mapping from input to output

Components of a learning problem

- Task: The behaviour or task being improved.
 - For example: classification, acting in an environment
- Data: The experiences that are being used to improve performance in the task.
- Measure of improvement :
 - For example: increasing accuracy in prediction, improved speed and efficiency

Models for Prediction

Design a Learner

- 1. Choose the training experience
 - Features
- 2. Choose the target function f
 - Choose how to represent the target function
- 3. Choose a learning algorithm to infer the target function

Representation

- Features: Data specification
- Function class: Model form

Optimization

Model Training

Evaluation

Performance measure

Representation of Data

- 1. How is the data specified?
 - A. Features
 - Feature vector of *n* features

$$\bar{x} = (x_1, x_2, \dots, x_n)$$

B. Convert input to a vector of basis functions

$$\left(\phi_0(\bar{x}),\phi_1(\bar{x}),\ldots,\phi_p(\bar{x})\right)$$

Feature Choice

- Input Data comprise features
 - Structured features (numerical or categorical values)
 - Unstructured (text, speech, image, video, etc)
- Use only relevant features
- Too many features?
 - Select feature subset (reduction)
 - Extract features: Transform features

1. Model Representation

- The richer the representation, the more useful it is for subsequent problem solving.
- The richer the representation, the more difficult it is to learn.

- Linear function
- Decision Tree
- Graphical Model
- Neural Network

$$y = f(\bar{x})$$

$$y = g(\bar{\phi}(\bar{x}))$$

Model Representation Hypothesis space

$$y = f(\bar{x})$$

2. Evaluation

- 1. Accuracy = $\frac{\text{# correctly classified}}{\text{# all test examples}}$
- 2. Logarithmic Loss:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

$$L = \sum_{c=1}^{M} y_{oc} \log(p_{oc})$$

3. Mean Squared error

$$MSE = \frac{1}{m} \sum (y_{pred} - y_{true})^2$$

3. Optimization

- 1. Define loss function
- 2. Optimize loss function

- Stochastic Gradient Descent (Convex functions)
- Combinatorial optimization
 - E.g.: Greedy search
- Constrained optimization
 - E.g.: Linear programming

Elements of Optimization

- 1. Variables
- 2. Constraints
- 3. Objective Function

Simple Linear Regression

- 1. Variables: w_0, w_1, \dots, w_n
- 2. Constraints: none
- 3. Objective Function: Minimize

$$\sum_{i=1}^{m} \left(y_i \left(w_0 + \sum_{j=1}^{n} w_j x_{ij} \right) \right)^2$$

- m data points, n features
 - x_{ij}: jth attribute of ith instance
 - *y_i*: output of ith instance

Find coefficients $w_0, w_1, ..., w_n$ to best fit data

Broad types of machine learning

Supervised Learning

- Training Data with labels: X,y (pre-classified)
- Given an observation x, what is the best label for y?

Unsupervised learning

- Training Data without labels: X
- Given a set of x's, find hidden structure

Semi-supervised Learning

Training Data + some Labels

Reinforcement Learning

- Given: observations and periodic rewards as the agent takes sequential action in an environment
- Determine optimum policy

Supervised Learning

Given data containing the inputs and outputs:

Training Data:

$$\{(\overline{x_1}, y_1), (\overline{x_2}, y_2), \dots, (\overline{x_m}, y_m)\}$$

• Learn a function f(x) to predict y given x

- Training: Learn the model from the Training Data
- Given Test instance \overline{x}' , predict $y' = f_{\theta}(\overline{x}')$

Supervised Learning

Classification

Y is categorical/ discrete

Regression

Example Tasks

Classification

- Object identification from images
- Defect classification
- Credit card transaction fraud or not

Regression

- House price prediction
- Remaining Useful Life Prediction
- Probability of developing cracks
- Demand forecasting

Structured Prediction

- Machine translation: English sentence → Japanese sentence
- Dialogue: conversational history → next utterance
- Image captioning: image → sentence describing image
- Image segmentation: image → segmentation

Supervised Learning

Classification Example

Training Samples

Test Instances

Train a model to minimize loss

Probabilistic Classification

X1	X2	Х3	X4	Category
				Type 1
				Type 3
				Type 1
				Type 2

Predict a probability distribution over the set of classes **Pr (Y|X)**

X1	X2	Х3	X4	Type 1	Type 2	Type 3
				0.4	0.15	0.45
				0.2	0.7	0.1
				0.1	0.2	0.7
				0.5	0.1	0.4

Evaluation for Classification problems

$$\mathbf{Accuracy} = \frac{\text{# correctly classified}}{\text{# all test examples}}$$

$$= \frac{\text{#predicted true } pos + \text{#predicted true } neg}{\text{#all test examples}}$$

Precision =
$$\frac{\text{# predicted true } pos}{\text{# predicted pos}}$$

Recall=
$$\frac{\text{# predicted true } pos}{\text{# True } pos}$$

		True C		
		Pos	Neg	
Predicte d Class	Pos	TP	FP	
	Neg	FN	TN	

Loss Function Classification problems

Loss indicates how bad the model's prediction is.

1. Fraction of Misclassifications

$$Error = \sum_{i=1}^{m} \frac{I(y_i \neq \widehat{y}_i)}{m}$$

2. Logarithmic Loss: Maximize the log likelihood. For a loss function, minimize the negative log likelihood of the correct class:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

Logarithmic Loss Function

Logarithmic Loss:

$$L_i = -\log(P(Y = y_i | X = x_i))$$

M - number of classes

y - binary indicator (0 or 1) if class label c is the correct classification for observation o

p - predicted probability
 observation o is of class c

2. Evaluation for regression problem

Mean Squared error

Unsupervised Learning (Clustering)

Given $\{\overline{x_1}, \overline{x_2}, ... \overline{x_m}, \}$ without labels

Find hidden structure in the data

- Clustering
- Dimensionality Reduction

Clustering: Grouping similar objects

Clustering Problems

How to evaluate clustering?

- Internal Evaluation:
 - Intra-cluster distances are minimized
 - Inter-cluster distances are maximized
- External Evaluation

Linear Models

Linear Regression

Understand the relationship between dependent variable *x* and explanatory variable *y*

Objective: predict y from x

Linear Model: $\theta X + \theta_0$

- *n* features
- *m* training examples
- $(x^{(i)}, y^{(i)})$: *i*th training example

Linear hypothesis function: Intuition

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Two equivalent questions:

- 1. Which is the best straight line to fit the data?
- 2. How to learn the values of the parameters θ_i ?

Cost function

$$e^{(i)} = \widehat{y^{(i)}} - y^{(i)} = h_{\theta}(x^{(i)}) - y^{(i)}$$
:
prediction error for ith training example

$$J(\bar{\theta}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

Choose parameters $ar{ heta}$ so that

 $J(\bar{\theta})$ is minimized

$$\frac{\text{minimize}}{\bar{\theta}} J(\bar{\theta})$$

 $h_{\theta}(x)$: function of x for fixed θ

 $J(\theta_1)$: function of θ_1

 $h_{\theta}(x)$, function of x for fixed θ

$J(\theta_1)$, function of θ_0 , θ_1

Minimizing cost function & Gradient Descent

Minimizing function $J(\theta_0, \theta_1)$

Outline:

- Start with some θ_0 , θ_1
- Keep changing θ_0 , θ_1 to reduce $J(\theta_0, \theta_1)$
- until we end up at a minimum

$$\theta_1 \coloneqq \theta_1 - \alpha \; \frac{\partial}{\partial \theta_1} J(\theta_1)$$

$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Computing partial derivatives

Repeat until convergence{

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\bar{\theta})$$

Equivalently

$$\frac{\partial}{\partial \theta_j} J(\bar{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_{j}^{(i)}$$

Convergence

 The cost function in linear regression is always a convex function – always has a single global minimum

So, gradient descent will always converge

Batch gradient descent

"Batch": Each step of gradient descent uses all the training examples Repeat until convergence m: Number of training examples

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x^{(i)}$$

Logistic Regression for Classification

Regression vs. Classification

- How can we make the possible outputs of $h_{\theta}(x) = \theta^T x$ discrete-valued (as opposed to real-valued)?
 - By using an *activation function* (e.g., *sigmoid or logistic function*)

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $z \in \mathbb{R}$, but $g(z) \in [0,1]$

Assume a labeled example (x, y):

If y = 1, we want $g(z) \approx 1$ (i.e., we want a correct prediction)

For this to happen, $z \gg 0$

Regression vs. Classification

- How can we make the possible outputs of $h_{\theta}(x) = \theta^T x$ discrete-valued (as opposed to real-valued)?
 - By using an *activation function* (e.g., *sigmoid or logistic function*)

$$g(z) = \frac{1}{1 + e^{-z}}$$

 $z \in \mathbb{R}$, but $g(z) \in [0,1]$

Assume a labeled example (x, y):

If y = 0, we want $g(z) \approx 0$ (i.e., we want a correct prediction)

For this to happen, $z \ll 0$

Regression vs. Classification

- How can we make the possible outputs of $h_{\theta}(x) = \theta^T x$ discrete-valued (as opposed to real-valued)?
 - By using an *activation function* (e.g., *sigmoid or logistic function*)

Alternative Interpretation: $h_{\theta}(x) = \text{estimated probability that } y = 1 \text{ on input } x$

Hypothesis representation

Want
$$0 \le h_{\theta}(x) \le 1$$

$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x),$$

where
$$g(z) = \frac{1}{1+e^{-z}}$$

- Sigmoid function
- Logistic function

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{\mathsf{T}} x}}$$

Logistic regression

$$h_{\theta}(x) = g(\theta^{\mathsf{T}}x)$$
$$g(z) = \frac{1}{1 + e^{-z}}$$

Suppose predict "y = 1" if $h_{\theta}(x) \ge 0.5$

$$z = \theta^{\top} x \geq 0$$

predict "y = 0" if $h_{\theta}(x) < 0.5$

$$z = \theta^{\mathsf{T}} x < 0$$

Cost function for Logistic Regression

Linear Regression

$$Cost(h_{\theta}(x), y) = \frac{1}{2}(h_{\theta}(x) - y)^2$$

Logistic Regression

$$Cost(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$
$$= -y \log(h_{\theta}(x)) - (1 - y) \log(1 - h_{\theta}(x))$$

Logistic regression

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)}))$$

$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Learning: fit parameter
$$\theta$$
 $\min_{\theta} J(\theta)$

Prediction: given new xOutput $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$

Gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$

Goal: $\min_{\theta} J(\theta)$

Good news: Convex function!

Bad news: No analytical solution

Repeat {

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_i} J(\theta)$$

(Simultaneously update all θ_i)

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Gradient descent

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log \left(h_{\theta}(x^{(i)}) \right) + (1 - y^{(i)}) \log \left(1 - h_{\theta}(x^{(i)}) \right) \right]$$
Goal:
$$\min_{\theta} J(\theta)$$

Repeat { (Simultaneously update all
$$\theta_j$$
)
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$

Gradient descent for Linear Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \qquad \qquad h_\theta(x) = \theta^\top x$$
 }

Gradient descent for Logistic Regression

Repeat {
$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta(x^{(i)}) - y^{(i)} \right) x_j^{(i)}$$
 }
$$h_\theta(x) = \frac{1}{1 + e^{-\theta^\top x}}$$

Multiclass classification

Binary classification

Multiclass classification

Multi-class Classification

- Binary classification: $h_{\theta}(x) = \theta^T x$
- Multi-class Classification: y can take on K different values $y^{(i)} \in \{1, 2, ..., K\}$
- $h_{\theta}(x)$ estimates the probability of belonging to each class

$$P(y = k | x, \theta) \propto \exp(\theta_k^T x)$$

$$\theta = \begin{bmatrix} \vdots & \vdots & \vdots \\ \theta_1 & \theta_2 & \theta_k \\ \vdots & \vdots & \vdots \end{bmatrix}$$

$$P(y = k | x, \theta) = \frac{\exp(\theta_k^T x)}{\sum_{j=1}^K \exp(\theta_j^T x)}$$

Multi-class Classification Cost Function

$$P(y = k | x, \theta) = \frac{\exp(\theta_k^T x)}{\sum_{j=1}^K \exp(\theta_j^T x)}$$

$$J(\theta) = -\left[\sum_{i=1}^{m} \sum_{j=1}^{K} 1\{y^{(i)} = k\} \log \frac{\exp(\theta_k^T x^{(i)})}{\sum_{j=1}^{K} \exp(\theta_j^T x^{(i)})}\right]$$

Machine Learning—Part 2

Neural Networks

Biological Neural Network

Image courtesy: F. A. Makinde et. al., "Prediction of crude oil viscosity using feed-forward back-propagation neural network (FFBPNN)"." Petroleum & Coal 2012

Artificial Neuron

Terminologies

x: input, w: weights, b: bias

z: pre-activation (input activation)

g: activation function

y: activation for output units

Towards Neural Networks

• Logistic regression is a neural network with only 1 neuron

Output Units: Linear

$$\hat{y} = w^T a + b$$

Used to produce the mean of a conditional Gaussian distribution:

$$p(\mathbf{y} | \mathbf{x}) = N(\mathbf{y}; \hat{\mathbf{y}}, \sigma)$$

Maximizing log-likelihood ⇒ Minimizing squared error

Output Units: Sigmoid

$$\hat{y} = \sigma(\mathbf{w}^T \mathbf{a} + \mathbf{b})$$

$$J(\theta) = -\log p(y|x)$$

$$= -\log \sigma((2y - 1)(\mathbf{w}^T \mathbf{a} + \mathbf{b}))$$

Output Softmax Units

Need to produce a vector \hat{y} with $\hat{y}_i = p(y = i|x)$

$$\operatorname{softmax}(z)_i = \frac{\exp(z_i)}{\sum_j \exp(z_j)}$$

$$\log \operatorname{softmax}(z)_i = z_i - \log \sum_j \exp(z_j)$$

Artificial Neuron – hidden unit

$$\mathbf{w} = [w_1 \ w_2 \dots w_d]^T \text{ and } \mathbf{x} = [x_1 \ x_2 \dots x_d]^T$$

$$\mathbf{z} = b + \sum_{i=1}^d w_i x_i = [\mathbf{w}^T b] \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}$$

$$\mathbf{a} = g(z)$$

Activation Functions for Hidden Nodes

Name	Function	Gradient	Graph
Sigmoid	$\sigma(z) = \frac{1}{1 + \exp(-z)}$	g'(z) $= g(z)(1 - g(z))$	
Tanh	$tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}$	$g'^{(z)} = 1 - g^2(z)$	
ReLU	$g(z) = \max(0, z)$	$g'(z) = \begin{cases} 1, & z \ge 0 \\ 0, & z < 0 \end{cases}$	y=g(a) 4 3 2 6 1 0 -1
softplus	$g(z) = \ln(1 + e^z)$		-2 -4 -2 0 2 4

Rectified Linear Units

- Activation function: $g(z) = \max\{0, z\}$
 - Gives large and consistent gradients (does not saturate) when active
 - Efficient to optimize, converges much faster than sigmoid or tanh

https://towardsdatascience.com/understanding-backpropagation-algorithm-7bb3aa2f95fd

Basic Neural Units

$$z_1^1 = b_1^1 + \sum_{i=1}^d w_{1,i}^1 x_i$$

$$a_1^1 = g(z_1^1)$$

Neural networks in blocks

We can visualize $a_L = h_L \circ h_{L-1} \circ \cdots \circ h_1(x)$ as a cascade of blocks.

The activation functions must be 1st-order differentiable (almost) everywhere

Intuition:

Hidden Layer: Extracts better

representation of the input data

Output layer: Does the classification

Notations

$$a_j^l = g\left(\sum_k w_{jk}^l \ a_k^{l-1} + b_j^l\right)$$
 Vectorized form: $a^l = g\left(w^l a^{l-1} + b^l\right)$
$$z^l = w^l a^{l-1} + b^l$$

$$a^l = g(z^l)$$

Backpropagation

- Feedforward Propagation: Accept input $x^{(i)}$, pass through intermediate stages and obtain output $\hat{y}^{(i)}$
- During Training: Compute scalar cost J(θ)

$$J(\theta) = \sum_{i} L(NN(x^{(i)}; \theta), y^{(i)})$$

 Backpropagation allows information to flow backwards from cost to compute the gradient

Gradient Descent

13

Stochastic gradient descent

Sample rather than computing the full sum

While not converged:

Select a single datapoint in order from the data

Compute gradient with just one point Update parameters

Mini-batch SGD:

While not converged:

Select a random batch of datapoints
Compute gradient with the batch
Update parameters

Input Layer Hidden Layer

$$z_{1}^{1} = b_{1}^{1} + \sum_{i=1}^{d} w_{1,i}^{1} x_{i} \qquad a_{1}^{1} = g(z_{1}^{1})$$

$$z_{2}^{1} = b_{2}^{1} + \sum_{i=1}^{d} w_{2,i}^{1} x_{i} \qquad a_{2}^{1} = g(z_{2}^{1})$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$z_{m}^{1} = b_{m}^{1} + \sum_{i=1}^{d} w_{m,i}^{1} x_{i} \qquad a_{m}^{1} = g(z_{m}^{1})$$

$$a^{(0)} = x$$

$$z^{(1)} = \mathbf{w}^{(1)} \mathbf{a}^{(0)}$$

$$a^{(1)} = g(\mathbf{z}^{(1)})$$

Output Layer Activation $y_1 = o(z_1^2)$

output

- Sigmoid for 2-class classification
- Softmax for multi-class classification
- Linear for regression

Training a Neural Network – Loss Function

Aim to maximize the probability corresponding to the correct class for any example \boldsymbol{x}

```
\max \mathbf{y}_c
\equiv \max (\log \mathbf{y}_c)
\equiv \min (-\log \mathbf{y}_c)
```

Can be equivalently expressed as

$$-\sum_{i} \prod_{i=c} \log(y_i)$$
known as cross-entropy loss

Multi layered network

Forward Pass in a Nutshell

 $\boldsymbol{\theta}$ is the collection of all learnable parameters i.e., all \boldsymbol{W} and \boldsymbol{b}

Hidden layer pre-activation:

For
$$l = 1, ..., L$$
; $\mathbf{z}^{(l)} = \mathbf{W}^{(l)} \mathbf{a}^{(l-1)} + \mathbf{b}^{(l)}$

Hidden layer activation:

For
$$l = 1, ..., L - 1$$
; $\mathbf{a}^{(l)} = g(\mathbf{z}^{(l)})$

Output layer activation:

For
$$l = L$$
; $y = a^{(L)} = o(z^{(L)}) = f(x, \theta)$

Error back-propagation

- We will train neural networks using gradient descent methods.
- To do SGD for a training example (x, y), we need to compute $\nabla_W Loss(NN(x; W), y)$

where W represents all weights W^l , W^l_0 in all the layers $l=(1,\ldots,L)$.

$$\frac{\partial Loss}{\partial W^{L}} = \frac{\partial Loss}{\partial A^{L}} \cdot \frac{\partial A^{L}}{\partial Z^{L}} \cdot \frac{\partial Z^{L}}{\partial W^{L}}$$
Depends on $g^{I'}$ A^{L-1}
Loss function