儿童阻塞性睡眠呼吸暂停综合症 统计判别分析研究

报告提纲

- 研究背景
- ●数据
- 研究方法与结果
- 交叉核实分析
- 比较与讨论

研究背景

● 阻塞性睡眠呼吸暂停综合症(OSAS)

阻塞性睡眠呼吸暂停综合症(Obstructive Sleep Apnea Syndrome, OSAS)是以睡眠时上气道阻塞为特征,通常伴有血氧饱和度下降和(或)高碳酸血症。

该症在儿童中是一种较常见的疾病,如果不及时治疗,可能导致生长障碍、心血管疾病、注意力不集中、学习能力差、认知功能障碍等等,在儿科界已日益受到重视。

研究背景

● 原发鼾症(PS)

OSAS最常见的临床表现是打鼾,但并不是所有打鼾的儿童都有OSAS。有些儿童虽然夜间打鼾,但其睡眠结构、肺泡的通气以及氧合并未发生异常改变,在睡眠医学中被称为原发鼾症(PS)。

文献报道,儿童OSAS的发生率为2%,而鼾症的发生率为20%。因此,把OSAS和PS区分开来非常重要,因为前者应及早诊断和治疗,而后者无需处理。

研究背景

● 研究问题

多导睡眠检测仪(PSG)是诊断OSAS的标准方法(即医学"金标准")。以呼吸暂停/低通气指数(AHI)大于5作为儿童OSAS的诊断标准,以此把所有患儿分成OSAS组和非OSAS组。但这种诊断方法费用高、需要大量的人力整夜监测和检测,等待时间长,不利于儿童及时进行治疗。

因此,利用儿童的其它非**PSG**指标来对**OSAS**进行筛查对医务工作者有吸引力和应用价值。

数据

- 数据结构
 - 1. 临床调查22项
 - 2. 体格检查11项
 - 3. AHI值

数据

● 数据结构

- 临床病状数据: 22项,取值1或0(打勾)
- 夜间睡眠情况:

打鼾病史>1年、打鼾次数>3夜/周、鼾声严重影响他人、呼吸窘迫、 用力呼吸、吸气三凹征阳性、胸腹矛盾呼吸、口唇紫绀、家长目睹呼吸 暂停、大汗、睡眠不安、遗尿、睡眠质量差

• 白天症状:

晨起头痛、白天困倦、行为异常、在学校成绩差、晨起难唤醒、 午睡时间>1小时、睡眠姿势怪异、鼻堵、反复咽痛或口干

数据

- 数据结构
- 体格检查数据: 11项,取值1或0

肥胖(BMI>百分位)、遗传代谢病症特殊面容、腺样体面容、鼻中甲肥厚 肿胀、中面部发育不良、小下颌畸形或下颌后缩、鼻息肉、高腭弓、张口 呼吸、扁桃体肥大>3度、颈部侧位X线平片示上气道阻塞

• AHI数据:

数据及预处理

- 数据预处理
 - 1. 临床检查数据22项,相加X
 - 2. 体格检查数据11项,相加 X_2
 - **3.** 医检数据, $X_3 = X_1 + X_2$
 - 4. 是否OSAS,Y

预处理后数据

● 共50例鼾症患儿,其中,OSAS组31例, 非OSAS组19例

● 如何利用协变量(得分, X_1 , X_2 , X_3),对响应变量(是否患病,Y)进行统计判别

预处理后数据

OSAS (Y)	X_1	X_2	X_3	OSAS (Y)	X_1	X_2	X_3
0	6	4	10	1	10	2	12
1	8	1	9	1	8	4	12
0	5	0	5	0	8	2	10
0	6	0	6	1	13	5	18
1	15	4	19	1	9	4	13
1	8	2	10	1	8	2	10
0	9	2	11	1	8	4	12
1	17	5	22	0	2	3	5
0	8	1	9	1	13	4	17
1	6	2	8	1	8	5	13
1	9	3	12	1	7	2	9
0	8	1	9	1	15	4	19
0	7	1	8	1	4	2	6
1	11	4	15	1	2	3	5
1	14	3	17	1	13	2	15
1	9	1	10	0	3	3	6
1	13	3	16	1	10	2	12
0	16	3	19	1	8	0	8
1	7	5	12	0	7	1	8
0	12	0	12	0	4	1	5
1	8	3	11	0	3	2	5
0	14	2	16	0	3	2	5
1	13	4	17	1	12	4	16
0	11	1	12	1	7	5	12
0	4	2	6	1	5	2	7

己有研究成果

方法: T检验和Fisher精确检验

结果: 6项指标有显著差异

临床资料总记分有显著差异

ROC曲线显示,若总记分大于8,

则患病可能性增加

已有研究成果

临床资料	OSAS	非OSAS	合计
阳性	26		35
阴性		10	16
合计	32	19	51

误判率: $29.41\% \approx (6+9)/51$

灵敏度: 81.25% ≈ 26/32

特异度: $52.63\% \approx 10/19$

研究方法

- Fisher线性判别
- Logistic回归判别
- 树形方法
- 支持向量机(SVM)

Fisher线性判别

$$Y = a_0 + a_1 X_1 + a_2 X_2 + \dots + a_m X_m$$

<u>判别准则:</u> // 大于0.5时,判定患病; 反之, 判定正常。

 $Y = 0.04100 + 0.02294X_1 + 0.14957X_2$

Fisher线性判别结果

临床资料	OSAS	非OSAS	合计
阳性	25		32
阴性		12	18
合计	31	19	50

误判率: 26% = (7+6)/50(%)

灵敏度: $80.65\% = \frac{25}{31}$ (%)

特异度: 63.16% = 12/19 (%)

Logistic回归判别

$$P{事件 | X} = \frac{\exp(Z)}{1 + \exp(Z)},$$

其中: $X=(X_1, X_2, \dots, X_m)$, $Z=b_0+b_1X_1+b_2X_2+\dots+b_mX_m$

判别准则: 概率大于0.5时, 判定患病; 反之, 判定正常。

 $Z = -2.6446 + 0.1436X_1 + 0.8491X_2$

Logistic回归判别结果

临床资料	OSAS	非0SAS	合计
阳性	25		32
阴性		12	18
合计	31	19	50

误判率: 26%

灵敏度: 80.65%

特异度: 63.16%

树形方法

- 基本知识
- 结点纯度

$$i = -p \log(p) - (1-p) \log(1-p)$$

● 划分的质量

$$I = i_c - P_a i_a - (1 - P_a) i_b$$

实际操作

实际操作

判别准则

树形方法的判别结果

临床资料	OSAS	非OSAS	合计
阳性	26		31
阴性		14	19
合计	31	19	50

误判率: 20%

灵敏度: 83.87%

特异度: 73.68%

支持向量机

● 基本思想:

支持向量机(support vector machine,SVM) 是一种基于使用边缘裕量(margin)来训练的线 性机。它依赖于对数据的预处理,即在更高维的空 间表达模式,并且通常要比原来的特征空间的维数 高很多。

支持向量机

● 思路:

选取一个适当的且足够高维的非线性映射 φ ,将每个样本X作变换,得到新的样本 $Y = \varphi(X)$,然后对新的样本来寻找一个超平面分割两类总体。

9 也被称为基函数(可以等价地转换为核函数)。

判别函数: $g(Y) = \operatorname{sgn}(a^T Y + b)$

求解: (a, b)

支持向量机

基于高斯核(径向基)

支持向量机的判别结果

临床资料	OSAS	非OSAS	合计
阳性	28		29
阴性		18	21
合计	31	19	50

误判率: 8%

灵敏度: 90.32%

特异度: 94.74%

交叉核实分析

- 分组 (随机分成5组,样本量尽可能均衡)
- 重新训练(4组训练)

● 计算判别水平(1组测试)

Fisher线性判别的交叉核实

● 第一次

误判率: 32%

灵敏度: 77.42%, 特异度: 52.63%

● 第二次

误判率: 32%

灵敏度: 80.65%, 特异度: 47.37%

Logistic回归判别的交叉核实

● 第一次

误判率: 30%

灵敏度: 80.65%, 特异度: 52.63%

● 第二次

误判率: 30%

灵敏度: 83.87%, 特异度: 47.37%

树形方法的交叉核实

● 第一次

误判率: 22%

灵敏度: 90.32%, 特异度: 57.89%

● 第二次

误判率: 24%

灵敏度: 87.10%, 特异度: 57.89%

支持向量机的交叉核实

● 第一次

误判率: 38%

灵敏度: 70.96%, 特异度: 47.36%

● 第二次

误判率: 36%

灵敏度: 80.65%, 特异度: 36.84%

全样本训练

		误判率	灵敏度	特异度
T检验和	IFisher精确检验	30%	81. 25%	52.63%
Fis	her线性判别	26%	80. 65%	63. 16%
Logi	stic回归判别	26%	80.65%	63. 16%
	树形法	20%	83. 87%	73. 68%
3			90. 32%	94. 74%

交叉核实

	误判率	灵敏度	特异度
Fisher线性判别	32%	79.04%	50.00%
Logistic回归	30%	82. 26%	50.00%
树形方法	23%		57. 89%
支持向量机	37%	75.81%	42.11%

Fisher线性判别和Logistic回归判别:

两者训练结果相同,比已有研究结果有所提高, 但改进不大,特别是特异度都只有60%多,与 临床应用的要求尚有差距。

树形方法:

- 1. 训练结果有提高,特别是在特异度上分别有高达近40%和16%的增幅;
- 2. 交叉核实结果与训练结果差别不大,表明训练结果基本可以反映真实的判别水平,表现稳定:
- 3.83.87%的灵敏度和73.68%的特异度可以满足临床应用的要求,而且易于理解和操作。

支持向量机方法:

- 1. 训练结果最好,但交叉核实结果与训练结果差别很大,表明其推广能力有限,即实际预测水平可能不会太好。
- 2. 判别准则难于被实际工作者理解和使用,操作性差。