

The Basic Computational Problem

How do I count this?

"Numbers, however, will account for the vast majority of suffering humanity."

Flann O'Brien At Swim-two-birds

What are numbers?

•What we use to *count*.

Students registered on a course.

Correct answers on MCQ exam.

Points of a team at season end.

Converting Km to Miles

Types of numbers?

```
Number of
```

Students: 1, 2, 3, 4, ...

Correct answers: 0, 1, 2, 3, 4

Points:,-3, -2, -1, 0, 1, 2, 3, ...

Km to M: M=(5/8)*Km

What are these?

```
N: 1, 2, 3, 4, ..., (Natural numbers)
W: 0, 1, 2, 3, 4,..., (Whole numbers)
Z: ....,-3, -2, -1, 0,1,2,3, ... (Integers)
Q: ½, ¾, 2/3, 5/8 (Rational)
```

And that's all?

We know that:

$$N \subset W \subset Z \subset Q$$

and that, in "practice" all computers use "only" Rationals.

BUT

Are these *all* that arise in "counting" and "measurement"?

The Real Problem "rationality" is not enough

Suppose we wish to lay out a square field with total area $2m^2$?
What length, L, should its side be?

"Obviously" $-L \times L = L^2 = 2$

But is $L \in \mathbb{Q}$?

Can't be in Z: "too small" if 0 or 1, "too big" if larger.

So what about $L \in \mathbb{Q}$?

We need $p \in W$ and $q \in N$ with

$$\left(\frac{p}{a}\right)^2 = 2$$

There are no such p and qBut we *can* build squares with area $2m^2$? (textbook, p. 53)

Another Class of Number: R

These *irrational* numbers, such as $\sqrt{2}$, which cannot be described as "fractions" (p/q) belong to the set of

Real Numbers (R)

Modelled by data types such as **float**, **double**, etc. in HLLs.

For now, *R*, completes our survey of the number types we will need.