consulting project

2022-11-10

Q1: MUA is a risk factor of C_MUA? - Yes

```
#Pearson's Chi-squared test
chisq.test(MUA_data1$MUA, MUA_data1$C_MUA)

##

## Pearson's Chi-squared test with Yates' continuity correction
##

## data: MUA_data1$MUA and MUA_data1$C_MUA
## X-squared = 13.354, df = 1, p-value = 0.0002579
```

* Mosic plot

MUA plot

* Fisher's exact test for count data

Fisher's exact test, p-value = 0.004

* Logistic regression model

```
#Model with MUA predicting C_mua
mua_glm = glm(C_MUA ~ MUA, data= MUA_data1, family = "binomial")
summary(mua_glm)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min
                1Q Median
                                 30
                                         Max
## -0.5168 -0.1482 -0.1482 -0.1482
                                      3.0057
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.5061 0.3800 -11.857 < 2e-16 ***
                2.5602
                                   3.532 0.000412 ***
## MUAYes
                          0.7248
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 95.248 on 663 degrees of freedom
## AIC: 99.248
##
## Number of Fisher Scoring iterations: 7
```

- $logit(odds) = -4.5061 + 2.5602*MUA_bi (0/1)$
- if the patient got MUA, the odds of getting C_MUA is exp(-4.5061 + 2.5602) = 0.1428586
- if the patient didn't get MUA, the odds of getting C_MUA is exp(-4.5061) = 0.01104144

* Odds Ratio & Correlation

```
#Odds ratio
exp(mua_glm$coefficients[-1])
```

```
## MUAYes
## 12.93878
```

Odds of receiving MUA on contralateral knee is almost 13x times larger than not

```
cor(MUA_data1$C_MUA_bi,MUA_data1$MUA_bi)
```

```
## [1] 0.1748324
```

Q2: is the # between 2 TKAs a risk factor? - No

* boxplot of # days between 2 TKAs

Variable N No, N = 655¹ Yes, N = 10¹ date_diff 665 224 (70, 658) 174 (0, 420)

¹ Median (IQR)

Variable N No, $N = 528^{1}$ **Yes**, $N = 6^{1}$

 $\textbf{date_diff} \ 534 \ 336 \ (147, \, 822) \ 357 \ (214, \, 578)$

¹ Median (IQR)

#Model with MUA predicting C_mua with time
cor(MUA_data1\$C_MUA_bi,MUA_data1\$date_diff)

```
## [1] -0.01729522
```

mua_glm1 = glm(C_MUA ~ date_diff, data= MUA_data1, family = "binomial")
summary(mua_glm1)

```
##
## Call:
## glm(formula = C_MUA ~ date_diff, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min
                1Q Median
                                  3Q
                                         Max
## -0.1830 -0.1817 -0.1787 -0.1702 3.0462
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.0812948 0.3773046 -10.817 <2e-16 ***
## date_diff -0.0002058 0.0004644 -0.443
                                              0.658
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.57 on 663 degrees of freedom
## AIC: 107.57
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ date_diff, data= MUA_data1[MUA_data1$BTKA=="No",], family = "bino
mial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ date_diff, family = "binomial", data = MUA_data1[MUA_data1$BTKA
##
      "No", ])
##
## Deviance Residuals:
##
               1Q Median 3Q
                                        Max
## -0.1635 -0.1506 -0.1491 -0.1485 3.0042
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.508e+00 5.196e-01 -8.676
                                             <2e-16 ***
## date diff 4.287e-05 4.408e-04 0.097
                                              0.923
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 65.796 on 533 degrees of freedom
## Residual deviance: 65.787 on 532 degrees of freedom
## AIC: 69.787
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA +date_diff, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + date_diff, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 3Q
                                         Max
## -0.5990 -0.1599 -0.1549 -0.1420 3.2877
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.3332971 0.4184459 -10.356 < 2e-16 ***
## MUAYes 2.7063127 0.7443088 3.636 0.000277 ***
## date diff -0.0004001 0.0004977 -0.804 0.421363
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 94.435 on 662 degrees of freedom
## AIC: 100.43
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ (MUA +date_diff)^2, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ (MUA + date_diff)^2, family = "binomial",
      data = MUA data1)
##
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                         Max
## -0.8144 -0.1484 -0.1484 -0.1481
                                       3.0104
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                 -4.503e+00 4.520e-01 -9.961 < 2e-16 ***
## MUAYes
                   3.569e+00 9.594e-01 3.720 0.000199 ***
## date diff
                   -6.689e-06 4.595e-04 -0.015 0.988385
## MUAYes:date diff -2.333e-03 2.488e-03 -0.938 0.348382
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 92.359 on 661 degrees of freedom
## AIC: 100.36
##
## Number of Fisher Scoring iterations: 7
```

the correlation between days between 2TKAs and C_MUA is close to 0. In logistic regression model, the days between 2 TKAs is insignificant

let's see patients who got the 2nd TKA within 645 days

```
# let's see patients who got the 2nd TKA within 645 days summary(as.vector(MUA_data1$date_diff)) #3rd Q: 645
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.0 69.0 224.0 552.1 645.0 4633.0
```

cor(MUA_data1[MUA_data1\$date_diff<645,]\$C_MUA_bi,MUA_data1[MUA_data1\$date_diff<645,]\$d
ate_diff)</pre>

```
## [1] 0.01043714
```

```
## Warning in MUA_datal$date_diff < 645 && MUA_datal$BTKA == "No": 'length(x) = 665
## > 1' in coercion to 'logical(1)'

## Warning in MUA_datal$date_diff < 645 && MUA_datal$BTKA == "No": 'length(x) = 665
## > 1' in coercion to 'logical(1)'

## Warning in MUA_datal$date_diff < 645 && MUA_datal$BTKA == "No": 'length(x) = 665
## > 1' in coercion to 'logical(1)'

## Warning in MUA_datal$date_diff < 645 && MUA_datal$BTKA == "No": 'length(x) = 665
## > 1' in coercion to 'logical(1)'
```

```
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ date_diff, family = "binomial", data = MUA_data1[MUA_data1$date
diff <
##
      645 && MUA_data1$BTKA == "No", ])
##
## Deviance Residuals:
##
      Min
                10
                    Median
                                  30
                                          Max
## -0.1830 -0.1817 -0.1787 -0.1702
                                       3.0462
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.0812948 0.3773046 -10.817 <2e-16 ***
## date diff -0.0002058 0.0004644 -0.443
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.57 on 663 degrees of freedom
## AIC: 107.57
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+date_diff+ MUA*date_diff, data= MUA_data1[MUA_data1$date_diff
<645, ], family = "binomial")
summary(mua_glm1)</pre>
```

```
##
## Call:
## glm(formula = C MUA ~ MUA + date diff + MUA * date diff, family = "binomial",
       data = MUA data1[MUA data1$date diff < 645, ])</pre>
##
##
## Deviance Residuals:
##
       Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.7534 -0.1604 -0.1574 -0.1550
                                        2.9756
##
## Coefficients:
##
                     Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -4.4151849 0.5973269 -7.392 1.45e-13 ***
## MUAYes
                     3.3009333 1.1438643
                                            2.886
                                                    0.0039 **
## date diff
                     0.0002268 0.0024510
                                            0.093
                                                    0.9263
## MUAYes:date diff -0.0014365 0.0042356 -0.339
                                                    0.7345
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 90.077 on 497 degrees of freedom
## Residual deviance: 79.460 on 494 degrees of freedom
## AIC: 87.46
##
## Number of Fisher Scoring iterations: 7
```

```
# getting obvious that date_diff is insignificant
```

Even though the correlation between days between 2TKAs and C_MUA changed from negative to positive, it is still close to 0. When we looked into the days within 3rd quartiles, it is getting obvious that date_diff is insignificant

If the patient got Bilateral TKA, is the risk of getting MUA significantly higher? : No.

```
# If the patient got Bilateral TKA, is the risk of getting MUA significantly higher? No.
MUA_datal$BTKA <- ifelse(MUA_datal$date_diff==0, "Yes","No")
mua_glm1 = glm(as.factor(Group2) ~ as.factor(BTKA), data= MUA_data1, family = "binomia 1")
summary(mua_glm1)</pre>
```

```
##
## Call:
## glm(formula = as.factor(Group2) ~ as.factor(BTKA), family = "binomial",
##
      data = MUA data1)
##
## Deviance Residuals:
              1Q Median
##
     Min
                             3Q
                                    Max
## -2.556 0.316 0.316 0.316
                                   0.316
##
## Coefficients:
##
                    Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                      2.9724
                                0.2011 14.783 <2e-16 ***
## as.factor(BTKA)Yes 0.2545
                                 0.4984
                                        0.511
                                                   0.61
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 250.61 on 664 degrees of freedom
## Residual deviance: 250.34 on 663 degrees of freedom
## AIC: 254.34
##
## Number of Fisher Scoring iterations: 6
```

```
mua_glm1 = glm(C_MUA ~ as.factor(BTKA), data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C MUA ~ as.factor(BTKA), family = "binomial", data = MUA data1)
##
## Deviance Residuals:
                1Q Median
                                 3Q
                                         Max
## -0.2490 -0.1503 -0.1503 -0.1503
                                      2.9962
##
## Coefficients:
                    Estimate Std. Error z value Pr(>|z|)
##
                     -4.4773 0.4106 -10.905 <2e-16 ***
## (Intercept)
## as.factor(BTKA)Yes 1.0194
                                 0.6530
                                         1.561
                                                  0.118
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 101.58 on 663 degrees of freedom
## AIC: 105.58
##
## Number of Fisher Scoring iterations: 7
```

· want to mention about below in the presentation?

```
##
## Call:
## glm(formula = C_MUA ~ yeardiff, family = "binomial", data = MUA_data1)
##
## Deviance Residuals:
      Min 10 Median
                                  30
                                          Max
## -0.2085 -0.1822 -0.1822 -0.1822 3.1593
##
## Coefficients:
##
                         Estimate Std. Error z value Pr(>|z|)
                                    0.3811 -10.731 <2e-16 ***
## (Intercept)
                          -4.0896
## yeardiff2yr
                          0.2719
                                      0.8101 0.336
                                                       0.737
## yeardiffmore than 2yrs -0.8940
                                    1.0732 -0.833 0.405
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 102.66 on 662 degrees of freedom
## AIC: 108.66
##
## Number of Fisher Scoring iterations: 7
##
## Classification tree:
## tree(formula = C MUA ~ MUA + date_diff, data = MUA_data1)
## Number of terminal nodes: 14
## Residual mean deviance: 0.09584 = 62.39 / 651
## Misclassification error rate: 0.01504 = 10 / 665
##
## Classification tree:
## tree(formula = C MUA ~ MUA + date diff, data = MUA data1[MUA data1$date diff <
##
      645, ])
## Number of terminal nodes: 13
## Residual mean deviance: 0.1137 = 55.13 / 485
## Misclassification error rate: 0.01807 = 9 / 498
##
```

```
##
## Classification tree:
## tree(formula = C_MUA ~ MUA + BTKA, data = MUA_data1)
## Variables actually used in tree construction:
## [1] "MUA"
## Number of terminal nodes: 2
## Residual mean deviance: 0.1437 = 95.25 / 663
## Misclassification error rate: 0.01504 = 10 / 665
```

Q3 Demographics and comorbidities factors?

(1) sex : No

a. EDA

b. chi-squared test

names(MUA_data1)

```
##
     [1] "MUA_type"
##
     [2] "Group2"
##
    [3] "MUA"
##
    [4] "C_MUA"
    [5] "ID"
##
##
    [6] "sex"
##
    [7] "age"
##
   [8] "race"
##
   [9] "ethnicity"
   [10] "BMI"
##
##
   [11] "tobacco"
##
   [12] "death_date"
##
   [13] "Insurance"
## [14] "cpt code"
## [15] "surgery_date"
## [16] "Admission date"
## [17] "Discharge date"
## [18] "los"
## [19] "disch_disp"
## [20] "ASA"
## [21] "op_time"
## [22] "mua_count"
## [23] "blood_transfusion"
## [24] "platelet_transfusion"
## [25] "AIDS"
## [26] "Malignancy"
## [27] "Cerebrovascular"
## [28] "COPD"
##
   [29] "CHF"
## [30] "Dementia"
## [31] "Diabetes_cc"
##
   [32] "Diabetes_no_cc"
## [33] "Hemiplegia"
## [34] "Metastatic"
##
   [35] "Mild_Liver"
## [36] "Moderate_Liver"
## [37] "MI"
   [38] "Peptic_Ulcer"
##
   [39] "PVD"
## [40] "CKD"
   [41] "Rheumatic"
##
##
   [42] "hematoma"
##
   [43] "wound_infection"
##
   [44] "knee_infection"
## [45] "Readmission within 90 days (1=yes)"
  [46] "Readmission date"
##
## [47] "Reason for Readmission"
## [48] "ED visit within 90 days (1=yes)"
##
   [49] "ED visit date"
   [50] "Reason for ED Visit"
##
   [51] "Initial TKA Knee (right or left)"
##
   [52] "Pre-Op Total Knee arthroplasty range of motion"
```

```
##
   [53] "Date of most recent Preop Visit"
##
   [54] "varus/valgus preoperative (normal=0, varus=1, valgus=2)"
   [55] "Postoperative ROM (list flexion arc) 1"
   [56] "Date of first follow up appt"
##
   [57] "Postoperative ROM (list flexion arc) 2"
##
   [58] "Date of second follow up"
##
   [59] "Date of MUA"
##
   [60] "IF SAME KNEE HAS A 2ND MUA: Post MUA ROM ARC"
##
   [61] "DATE of follow up"
   [62] "DATE of 2nd MUA"
##
   [63] "Date of contralateral TKA"
   [64] "Contralateral side (left or right knee)"
##
##
   [65] "Pre-Op contralateral TKA ROM"
##
   [66] "Date of Most Recent Preop Visit_C_TKA"
##
   [67] "varus/valgus preoperative_C_TKA"
   [68] "Postoperative ROM (list flexion arc) 1_C_TKA"
##
   [69] "Date of f/u 1_C_TKA"
##
   [70] "Postoperative ROM (list flexion arc) 2_C_TKA"
##
##
   [71] "Date of f/u 2_C_TKA"
## [72] "Contralateral knee MUA?"
   [73] "Contralateral Knee MUA Date"
##
   [74] "age_C_TKA"
##
## [75] "bmi_C_TKA"
##
   [76] "tobacco_C_TKA"
   [77] "Insurance_C_TKA"
##
##
   [78] "los_C_TKA"
##
   [79] "disch disp C TKA"
   [80] "ASA_C_TKA"
##
   [81] "op_time_C_TKA"
##
   [82] "blood_transfusion_C_TKA"
##
   [83] "platelet transfusion C TKA"
##
   [84] "AIDS C TKA"
##
   [85] "Malignancy_C_TKA"
   [86] "Cerebrovascular C TKA"
##
##
   [87] "COPD C TKA"
   [88] "CHF_C_TKA"
##
##
   [89] "Dementia_C_TKA"
##
   [90] "Diabetes_cc_C_TKA"
   [91] "Diabetes no cc C TKA"
##
   [92] "Hemiplegia C TKA"
##
   [93] "Metastatic C TKA"
##
   [94] "Mild Liver C TKA"
##
   [95] "Moderate Liver C TKA"
##
## [96] "MI_C_TKA"
## [97] "Peptic Ulcer C TKA"
   [98] "PVD C TKA"
##
   [99] "CKD_C_TKA"
##
## [100] "Rheumatic C TKA"
## [101] "hematoma_C_TKA"
## [102] "wound infection C TKA"
## [103] "knee_infection_C_TKA"
## [104] "readmit 90d C TKA"
```

```
## [105] "readmit_date_C_TKA"
## [106] "ed_90d_C_TKA"
## [107] "ed_date_C_TKA"
## [108] "MUA_bi"
## [109] "C_MUA_bi"
## [110] "MUA_count_T"
## [111] "age_diff"
## [112] "los_total"
## [113] "op_time_total"
## [114] "date_diff"
## [115] "BTKA"
## [116] "Fac_age_C_TKA"
## [117] "Fac_age_TKA"
## [118] "redu_race"
## [119] "redu_tobacco"
## [120] "redu_tobacco_C_TKA"
## [121] "redu_ASA_C_TKA"
## [122] "redu_ASA"
## [123] "yeardiff"
sex <- MUA_data1[,c(1:4,6)]</pre>
sex_table <- table(sex[,4:5])</pre>
# fisher's exact test for count data
test <-chisq.test(sex_table)</pre>
```

Warning in chisq.test(sex_table): Chi-squared approximation may be incorrect

```
fisher.test(sex_table)
```

```
##
## Fisher's Exact Test for Count Data
##
## data: sex_table
## p-value = 0.7526
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1209991 3.2422035
## sample estimates:
## odds ratio
## 0.7317336
```

```
fisher.test(table(MUA_data1$C_MUA, MUA_data1$sex))
```

```
##
## Fisher's Exact Test for Count Data
##
## data: table(MUA_data1$C_MUA, MUA_data1$sex)
## p-value = 0.7526
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1209991 3.2422035
## sample estimates:
## odds ratio
## 0.7317336
```

```
# combine plot and statistical test with ggbarstats
library(ggstatsplot)
ggbarstats(
   MUA_datal,C_MUA,sex,
   results.subtitle = FALSE,
   subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
)
) + scale_fill_manual(values=c("#69b3a2", "#404080"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.903

b. fitting model

```
##### add sex variable - insignificant ######
mua_glm1 = glm(C_MUA ~ sex, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ sex, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                30
                                        Max
## -0.1833 -0.1833 -0.1570 2.9674
##
## Coefficients:
##
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.0775 0.3812 -10.70 <2e-16 ***
              -0.3128
## sexM
                         0.6948 - 0.45
                                          0.653
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.58 on 663 degrees of freedom
## AIC: 107.58
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 <- glm(as.factor(Group2) ~ sex, data= MUA_data1, family = "binomial")
summary(mua_glm1)</pre>
```

```
##
## Call:
## glm(formula = as.factor(Group2) ~ sex, family = "binomial", data = MUA data1)
##
## Deviance Residuals:
      Min
                1Q Median
                                 3Q
                                         Max
## -2.5293 0.2887 0.3203 0.3203 0.3203
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) 2.9444
                          0.2239 13.151 <2e-16 ***
## sexM
                                   0.541
                                            0.589
                0.2126
                          0.3929
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 250.61 on 664 degrees of freedom
## Residual deviance: 250.31 on 663 degrees of freedom
## AIC: 254.31
##
## Number of Fisher Scoring iterations: 6
```

```
mua_glm1 = glm(C_MUA ~ MUA +sex, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + sex, family = "binomial", data = MUA_data1)
##
## Deviance Residuals:
##
      Min
               1Q
                   Median
                               3Q
                                      Max
## -0.5321 -0.1541 -0.1541 -0.1376
                                    3.0542
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
2.5440 0.7265 3.502 0.000463 ***
## MUAYes
## sexM
             -0.2271
                       0.7053 -0.322 0.747424
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 95.142 on 662 degrees of freedom
## AIC: 101.14
##
## Number of Fisher Scoring iterations: 7
```

The sex variable is insignificant in these models.

(2) Age

a. EDA

Contraletral MUA when in younger than 50s or older than 60s

b.

```
# fisher's exact test for count data
test <- fisher.test(table(MUA_datal$C_MUA, MUA_datal$Fac_age_C_TKA))

# combine plot and statistical test with ggbarstats
library(ggstatsplot)
ggbarstats(
    MUA_datal,C_MUA,Fac_age_C_TKA,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.081

c. regression model

i. with numerical age variable

```
mua_glm1 = glm(C_MUA ~ age_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ age_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min
          1Q Median
                                 30
                                         Max
## -0.3588 -0.1982 -0.1623 -0.1328 3.2929
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.52301 2.07238 -0.252 0.8008
## age_C_TKA -0.05758
                         0.03357 -1.715 0.0863 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 100.79 on 663 degrees of freedom
## AIC: 104.79
##
## Number of Fisher Scoring iterations: 7
```

mua_glm1 = glm(C_MUA ~ MUA +age_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1) #exp(-0.04859) = 0.9525716 : as age increase 1, the odds of getting C
_MUA decrease 5%..? Not true

```
##
## Call:
## glm(formula = C MUA ~ MUA + age C TKA, family = "binomial", data = MUA data1)
##
## Deviance Residuals:
                1Q Median
                                 3Q
                                         Max
## -0.6582 -0.1677 -0.1416 -0.1195 3.3242
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -1.39109 2.28043 -0.610 0.54185
## MUAYes
              2.35246
                         0.73571
                                   3.198 0.00139 **
## age C TKA -0.04859 0.03633 -1.337 0.18108
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 93.434 on 662 degrees of freedom
## AIC: 99.434
##
## Number of Fisher Scoring iterations: 7
```

numeric age variable seems insignificant and not to make sense. EDA shows that when the patients are in 50s, 60s, the odds of getting MUA seems higher

ii. with factorized age variable

```
## # A tibble: 4 × 3
## # Groups: Fac_age_C_TKA2 [2]
    Fac_age_C_TKA2
##
                                   Group2
    <chr>
                                   <chr> <int>
## 1 50/60
                                   MUA
                                             25
## 2 50/60
                                   No_MUA
                                            377
## 3 younger than 50 older than 60 MUA
                                              6
## 4 younger than 50 older than 60 No_MUA
                                            257
```

```
mua_glm1 = glm(C_MUA ~ Fac_age_C_TKA2, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ Fac_age_C_TKA2, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min
                1Q Median
                                 3Q
                                         Max
## -0.2005 -0.2005 -0.1236 3.1238
##
## Coefficients:
##
                                             Estimate Std. Error z value
## (Intercept)
                                              -3.8969 0.3571 -10.912
## Fac_age_C_TKA2younger than 50 older than 60 -0.9745
                                                      0.7945 - 1.226
##
                                             Pr(>|z|)
                                               <2e-16 ***
## (Intercept)
## Fac age C TKA2younger than 50 older than 60
                                                 0.22
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 102.01 on 663 degrees of freedom
## AIC: 106.01
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA +Fac_age_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + Fac_age_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
                1Q Median
      Min
                                 3Q
                                         Max
## -0.7063 -0.1234 -0.1234 -0.1089 3.2032
##
## Coefficients:
##
                       Estimate Std. Error z value Pr(>|z|)
                        -3.5885 0.4926 -7.284 3.24e-13 ***
## (Intercept)
## MUAYes
                        2.3271
                                    0.7567 3.075 0.0021 **
## Fac age C TKA60s
                       -1.5360
                                    0.8345 -1.841 0.0657 .
## Fac_age_C_TKAless50 -15.2348 1267.5272 -0.012 0.9904
## Fac_age_C_TKAover70s -1.2857 0.8478 -1.516 0.1294
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 89.844 on 660 degrees of freedom
## AIC: 99.844
##
## Number of Fisher Scoring iterations: 17
```

```
mua_glm1 = glm(C_MUA ~ (MUA +Fac_age_C_TKA2)^2, data= MUA_data1, family = "binomial")
summary(mua glm1) # interaction term is insignificant
```

```
##
## Call:
## glm(formula = C_MUA ~ (MUA + Fac_age_C_TKA2)^2, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -0.5701 -0.1623 -0.1623 -0.1245
                                        3.1189
##
## Coefficients:
##
                                                       Estimate Std. Error z value
## (Intercept)
                                                        -4.3228
                                                                    0.4502 - 9.603
## MUAYes
                                                         2.5882
                                                                    0.7712 3.356
## Fac_age_C_TKA2younger than 50|older than 60
                                                        -0.5331
                                                                    0.8406 -0.634
## MUAYes:Fac_age_C_TKA2younger than 50|older than 60 -14.2983 1199.7728 -0.012
##
                                                      Pr(>|z|)
## (Intercept)
                                                       < 2e-16 ***
                                                      0.000791 ***
## MUAYes
## Fac_age_C_TKA2younger than 50|older than 60
                                                      0.525921
## MUAYes:Fac_age_C_TKA2younger than 50 older than 60 0.990491
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 93.642 on 661 degrees of freedom
## AIC: 101.64
##
## Number of Fisher Scoring iterations: 15
```

- when the patients are in 50s or 60s, age is significant. interaction is insignificant
- · keep age in the model.

(3) Race

a. EDA

b. chi-squared test

```
# fisher's exact test for count data
test<- fisher.test(table(MUA_data1$C_MUA, MUA_data1$redu_race))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_data1,C_MUA,redu_race,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
              ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.078

b. fitting model

```
##
## Call:
## glm(formula = C_MUA ~ as.factor(redu_race), family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
                1Q Median 3Q
##
      Min
                                         Max
## -0.2829 -0.1575 -0.1575 -0.1575
                                      2.9653
##
## Coefficients:
##
                           Estimate Std. Error z value Pr(>|z|)
                            -3.1987 0.5101 -6.271 3.6e-10 ***
## (Intercept)
## as.factor(redu_race)Other -16.3674 1233.5700 -0.013 0.9894
## as.factor(redu_race)White -1.1854 0.6549 -1.810 0.0703 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 98.434 on 662 degrees of freedom
## AIC: 104.43
##
## Number of Fisher Scoring iterations: 18
```

```
mua_glm1 = glm(C_MUA ~ MUA+ as.factor(redu_race), data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + as.factor(redu_race), family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
                1Q
      Min
                    Median
                                  3Q
                                         Max
## -0.7192 -0.1397 -0.1397 -0.1397 3.0444
##
## Coefficients:
##
                             Estimate Std. Error z value Pr(>|z|)
                             -3.6508
                                         0.5880 -6.209 5.33e-10 ***
## (Intercept)
## MUAYes
                              2.4307
                                         0.7461 3.258 0.00112 **
## as.factor(redu race)Other -16.1944 1194.7891 -0.014 0.98919
## as.factor(redu race)White -0.9734
                                         0.6787 - 1.434 0.15151
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 90.802 on 661 degrees of freedom
## AIC: 98.802
##
## Number of Fisher Scoring iterations: 18
```

```
mua_glm1 = glm(C_MUA ~ (MUA+ as.factor(redu_race))^2, data= MUA_data1, family = "binomia
l")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ (MUA + as.factor(redu_race))^2, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                1Q
                   Median
                                 3Q
                                         Max
## -0.8203 -0.1458 -0.1458 -0.1458 3.0165
##
## Coefficients:
##
                                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                    -3.8395
                                                0.7147 -5.372 7.77e-08 ***
## MUAYes
                                     2.9232
                                                1.1003 2.657 0.00789 **
## as.factor(redu race)Other
                                   -15.7266 1258.6622 -0.012 0.99003
                                   -0.6996
## as.factor(redu race)White
                                                0.8443 -0.829 0.40735
## MUAYes:as.factor(redu_race)Other -2.9232 6335.1266 0.000 0.99963
## MUAYes:as.factor(redu race)White -0.9491
                                                1.5779 -0.601 0.54752
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 90.425 on 659 degrees of freedom
## AIC: 102.42
##
## Number of Fisher Scoring iterations: 18
```

(4). Ethnicity

b. chi-squared test

```
# fisher's exact test for count data
test<- fisher.test(table(MUA_datal$C_MUA, MUA_datal$ethnicity))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_datal,C_MUA,ethnicity,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.611

C. regression model

```
##
## Call:
## glm(formula = C_MUA ~ ethnicity, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                        Max
## -0.1844 -0.1844 -0.1844 2.8575
##
## Coefficients:
##
                              Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                -19.57 1267.37 -0.015
## ethnicityNon-Hispanic Origin
                                15.50
                                         1267.37 0.012
                                                           0.990
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 101.48 on 663 degrees of freedom
## AIC: 105.48
## Number of Fisher Scoring iterations: 18
```

```
mua_glm1 = glm(C_MUA ~ MUA+ethnicity, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + ethnicity, family = "binomial", data = MUA_data1)
## Deviance Residuals:
                1Q Median
##
      Min
                                 3Q
                                         Max
## -0.5863 -0.1567 -0.1567 -0.1567
                                      2.9687
##
## Coefficients:
##
                              Estimate Std. Error z value Pr(>|z|)
                               -20.1270 1190.7128 -0.017 0.986514
## (Intercept)
## MUAYes
                                 2.7205
                                            0.7352 3.701 0.000215 ***
## ethnicityNon-Hispanic Origin 15.7326 1190.7128 0.013 0.989458
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 92.183 on 662 degrees of freedom
## AIC: 98.183
## Number of Fisher Scoring iterations: 18
```

```
# the stand.error is toooooooo big..
```


b. chi-squared test

```
# fisher's exact test for count data
test<- fisher.test(table(MUA_data1$C_MUA, MUA_data1$Insurance_C_TKA))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_data1,C_MUA,Insurance_C_TKA,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
             ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
    ) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.102

c. Regression model

```
mua_glm1 = glm(C_MUA ~ Insurance_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ Insurance_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                3Q
                                        Max
## -0.5553 -0.1877 -0.1331 -0.1331 3.0758
##
## Coefficients:
##
                          Estimate Std. Error z value Pr(>|z|)
                                       0.7157 -5.189 2.12e-07 ***
## (Intercept)
                           -3.7136
                                       0.9211 -1.094
## Insurance_C_TKAMedicare -1.0079
                                                     0.274
## Insurance_C_TKAPrivate
                          -0.3162
                                       0.8756 -0.361 0.718
## Insurance C TKAUninsured -13.8525 1769.2578 -0.008 0.994
                                       1.2957 1.483 0.138
## Insurance_C_TKAWork_Comp 1.9218
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 99.309 on 660 degrees of freedom
## AIC: 109.31
##
## Number of Fisher Scoring iterations: 16
```

```
mua_glm1 = glm(C_MUA ~ MUA+Insurance_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + Insurance_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                3Q
                                        Max
## -0.5375 -0.1554 -0.1270 -0.1270 3.1061
##
## Coefficients:
##
                          Estimate Std. Error z value Pr(>|z|)
                           -4.1649 0.7848 -5.307 1.11e-07 ***
## (Intercept)
## MUAYes
                            2.3032
                                       0.7680 2.999 0.00271 **
## Insurance C TKAMedicare -0.6509
                                       0.9582 - 0.679 0.49693
## Insurance_C_TKAPrivate -0.2461
                                       0.8928 -0.276 0.78281
## Insurance_C_TKAUninsured -13.4012 1769.2578 -0.008 0.99396
## Insurance C TKAWork Comp 1.8001 1.3862 1.299 0.19408
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 92.535 on 659 degrees of freedom
## AIC: 104.53
##
## Number of Fisher Scoring iterations: 16
```

(6) BMI

Variable	N	No , N = 655 ¹	Yes , N = 10 ¹
bmi_C_TKA	665	33 (29, 38)	31 (28, 36)
1 Median (IQR)			

b. Regression model

```
mua_glm1 = glm(C_MUA ~ bmi_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ bmi_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                         Max
## -0.2113 -0.1849 -0.1747 -0.1629 3.0114
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.32716 1.55742 -2.136 0.0327 *
                                         0.5820
## bmi_C_TKA -0.02555
                         0.04641 - 0.550
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.47 on 663 degrees of freedom
## AIC: 107.47
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+bmi_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C MUA ~ MUA + bmi C TKA, family = "binomial", data = MUA data1)
##
## Deviance Residuals:
      Min 1Q Median
                                 3Q
                                        Max
## -0.5869 -0.1619 -0.1492 -0.1351 3.1608
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.33262 1.71153 -1.947 0.051516 .
## MUAYes
          2.60529
                         0.73145 3.562 0.000368 ***
## bmi C TKA -0.03536 0.05159 -0.685 0.493086
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 94.744 on 662 degrees of freedom
## AIC: 100.74
##
## Number of Fisher Scoring iterations: 7
```

(7) tobacco

a. EDA

b. Regression Model

mua_glm1 = glm(C_MUA ~ redu_tobacco_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)

```
##
## Call:
## glm(formula = C_MUA ~ redu_tobacco_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
               1Q Median
      Min
                             3Q
                                        Max
## -0.2097 -0.1711 -0.1711 -0.1711 2.9089
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                       -4.2162 0.3358 -12.556 <2e-16 ***
## redu_tobacco_C_TKAYes 0.4096
                                  1.0654 0.384
                                                    0.701
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.66 on 663 degrees of freedom
## AIC: 107.66
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+redu_tobacco_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + redu_tobacco_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
      Min 1Q Median
                             3Q
                                        Max
## -0.5168 -0.1424 -0.1424 -0.1424 3.0321
##
## Coefficients:
##
                      Estimate Std. Error z value Pr(>|z|)
                       -4.5867 0.4103 -11.178 < 2e-16 ***
## (Intercept)
## MUAYes
                        2.6408
                                  0.7412 3.563 0.000367 ***
## redu_tobacco_C_TKAYes 0.7800 1.0911 0.715 0.474700
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 94.821 on 662 degrees of freedom
## AIC: 100.82
##
## Number of Fisher Scoring iterations: 7
```

(8) ASA


```
# fisher's exact test for count data
test<- fisher.test(table(MUA_datal$C_MUA, MUA_datal$ASA_C_TKA))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_datal,C_MUA,ASA_C_TKA,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.404

b. Regression model

```
mua_glm1 = glm(C_MUA ~ as.factor(ASA_C_TKA), data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ as.factor(ASA_C_TKA), family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                 3Q
                                         Max
## -0.2285 -0.2285 -0.1563 -0.1348 3.0676
##
## Coefficients:
##
                        Estimate Std. Error z value Pr(>|z|)
                        -16.57 1385.38 -0.012
## (Intercept)
                                                      0.990
## as.factor(ASA_C_TKA)2
                          12.93
                                   1385.38 0.009
                                                      0.993
## as.factor(ASA C TKA)3 12.17 1385.38 0.009
                                                     0.993
                           11.87
                                   1385.38 0.009
## as.factor(ASA_C_TKA)4
                                                     0.993
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.79 on 664 degrees of freedom
##
## Residual deviance: 101.68 on 661 degrees of freedom
## AIC: 109.68
##
## Number of Fisher Scoring iterations: 15
# standard error is too big so reduced the factors into binary
MUA data1$redu ASA C TKA <- ifelse(MUA data1$ASA C TKA %in% c(2,3),"2/3","else")
```

mua glm1 = glm(C MUA ~ as.factor(redu ASA C TKA), data= MUA data1, family = "binomial")

summary(mua glm1)

```
##
## Call:
## glm(formula = C_MUA ~ as.factor(redu_ASA_C_TKA), family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                1Q Median
                                3Q
                                         Max
## -0.1913 -0.1913 -0.1339 3.0720
##
## Coefficients:
##
                               Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                                -3.9913
                                        0.3568 -11.186 <2e-16 ***
## as.factor(redu_ASA_C_TKA)else -0.7182
                                          0.7949 -0.904 0.366
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 102.86 on 663 degrees of freedom
## AIC: 106.86
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+ as.factor(redu_ASA_C_TKA), data= MUA_data1, family = "binom
ial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + as.factor(redu_ASA_C_TKA), family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -0.5200 -0.1566 -0.1566 -0.1311
                                       3.0858
##
## Coefficients:
##
                                Estimate Std. Error z value Pr(>|z|)
                                             0.4425 -9.934 < 2e-16 ***
## (Intercept)
                                 -4.3956
## MUAYes
                                  2.4627
                                             0.7521 3.274 0.00106 **
## as.factor(redu_ASA_C_TKA)else -0.3569
                                             0.8289 - 0.431 0.66672
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 95.053 on 662 degrees of freedom
## AIC: 101.05
##
## Number of Fisher Scoring iterations: 7
```

(9) los

b. regression model

```
mua_glm1 = glm(C_MUA ~ los_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ los_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                        Max
## -0.8965 -0.1665 -0.1665 -0.1524 2.9873
##
## Coefficients:
##
              Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.80709 0.48351 -9.942 <2e-16 ***
## los_C_TKA 0.17839
                         0.08877 2.010 0.0445 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 101.11 on 663 degrees of freedom
## AIC: 105.11
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA + los_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C MUA ~ MUA + los C TKA, family = "binomial", data = MUA data1)
##
## Deviance Residuals:
      Min 1Q Median
                                 3Q
                                        Max
## -0.7002 -0.1429 -0.1429 -0.1316 3.0834
##
## Coefficients:
             Estimate Std. Error z value Pr(>|z|)
## (Intercept) -5.07478 0.53716 -9.447 < 2e-16 ***
## MUAYes
          2.46618
                         0.73362 3.362 0.000775 ***
## los C TKA 0.16495 0.09424 1.750 0.080064 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 93.167 on 662 degrees of freedom
## AIC: 99.167
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ (MUA + los_C_TKA)^2, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ (MUA + los_C_TKA)^2, family = "binomial",
      data = MUA_data1)
##
## Deviance Residuals:
      Min 1Q Median 3Q
##
                                      Max
## -1.0343 -0.1506 -0.1483 -0.1483 3.0257
##
## Coefficients:
                 Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.41180 0.84049 -5.249 1.53e-07 ***
## MUAYes
                 -0.61750 2.12504 -0.291 0.771
## los_C_TKA
                -0.03105 0.24982 -0.124 0.901
## MUAYes:los_C_TKA 0.70005 0.43730 1.601 0.109
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 88.715 on 661 degrees of freedom
## AIC: 96.715
##
## Number of Fisher Scoring iterations: 7
```

(10) operation time

Variable	N	No , N = 655^1	Yes , N = 10 ¹
op_time_C_TKA	665	108 (93, 133)	100 (82, 118)
¹ Median (IQR)			

b. Regression model

```
mua_glm1 = glm(C_MUA ~ op_time_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ op_time_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                         Max
## -0.1893 -0.1809 -0.1762 -0.1688 3.0064
##
## Coefficients:
##
                 Estimate Std. Error z value Pr(>|z|)
## (Intercept) -3.797912 1.088970 -3.488 0.000487 ***
## op_time_C_TKA -0.003304 0.009122 -0.362 0.717203
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.65 on 663 degrees of freedom
## AIC: 107.65
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+op_time_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C MUA ~ MUA + op time C TKA, family = "binomial",
##
      data = MUA data1)
##
## Deviance Residuals:
                1Q Median
                                  3Q
##
                                          Max
## -0.5321 -0.1510 -0.1492 -0.1464 3.0063
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.337188 1.095228 -3.960 7.49e-05 ***
                 2.547101 0.729099 3.493 0.000477 ***
## MUAYes
## op time C TKA -0.001434  0.008791  -0.163  0.870453
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 95.221 on 662 degrees of freedom
## AIC: 101.22
##
## Number of Fisher Scoring iterations: 7
```

(11) readmission

a. EDA

Variable	N	No , N = 655^1	Yes , N = 10 ¹	
readmit_90d_C_TKA 665				
0		568 (87%)	6 (60%)	
1		87 (13%)	4 (40%)	
¹ n (%)				

fisher

```
# fisher's exact test for count data
test<- fisher.test(table(MUA_datal$C_MUA, MUA_datal$readmit_90d_C_TKA))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_datal,C_MUA,readmit_90d_C_TKA,
    results.subtitle = FALSE,
    subtitle = paste0(
        "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
)
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.036

c. Regression model

```
mua_glm1 = glm(C_MUA ~ readmit_90d_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ readmit_90d_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
##
          1Q Median
      Min
                             3Q
                                        Max
## -0.2998 -0.1450 -0.1450 -0.1450 3.0202
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                   -4.5504 0.4104 -11.088 <2e-16 ***
## readmit_90d_C_TKA1 1.4707
                               0.6557 2.243 0.0249 *
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 99.486 on 663 degrees of freedom
## AIC: 103.49
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+ readmit_90d_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ MUA + readmit_90d_C_TKA, family = "binomial",
##
      data = MUA_data1)
##
## Deviance Residuals:
               1Q Median
      Min
                              3Q
                                        Max
## -0.7985 -0.1257 -0.1257 -0.1257 3.1130
##
## Coefficients:
##
                   Estimate Std. Error z value Pr(>|z|)
                   -4.8375 0.4558 -10.614 < 2e-16 ***
## (Intercept)
## MUAYes
                     2.4747
                               0.7401 3.344 0.000826 ***
## readmit_90d_C_TKA1 1.3832 0.6737 2.053 0.040072 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 91.56 on 662 degrees of freedom
## AIC: 97.56
##
## Number of Fisher Scoring iterations: 7
```

(13) ER visit within 90 days

Variable	N	No , N = 655^1	Yes , N = 10 ¹					
ed_90d_C_TKA 665								
0		597 (91%)	9 (90%)					
1		58 (8.9%)	1 (10%)					
¹ n (%)								

b. fisher

```
# fisher's exact test for count data
test<- fisher.test(table(MUA_datal$C_MUA, MUA_datal$ed_90d_C_TKA))

# combine plot and statistical test with ggbarstats
ggbarstats(
    MUA_datal,C_MUA,ed_90d_C_TKA,
    results.subtitle = FALSE,
    subtitle = paste0(
    "Fisher's exact test", ", p-value = ",
        ifelse(test$p.value < 0.001, "< 0.001", round(test$p.value, 3))
    )
) + scale_fill_manual(values = c( "darkturquoise", "coral"))</pre>
```

Scale for 'fill' is already present. Adding another scale for 'fill', which
will replace the existing scale.

Fisher's exact test, p-value = 0.608

C. Regression model

```
mua_glm1 = glm(C_MUA ~ ed_90d_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C_MUA ~ ed_90d_C_TKA, family = "binomial", data = MUA_data1)
## Deviance Residuals:
##
      Min 1Q Median
                                 30
                                        Max
## -0.1849 -0.1730 -0.1730 -0.1730 2.9016
##
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -4.1947 0.3358 -12.490 <2e-16 ***
## ed_90d_C_TKA1 0.1342
                           1.0630 0.126
                                               0.9
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 103.79 on 664 degrees of freedom
## Residual deviance: 103.78 on 663 degrees of freedom
## AIC: 107.78
##
## Number of Fisher Scoring iterations: 7
```

```
mua_glm1 = glm(C_MUA ~ MUA+ ed_90d_C_TKA, data= MUA_data1, family = "binomial")
summary(mua_glm1)
```

```
##
## Call:
## glm(formula = C MUA ~ MUA + ed 90d C TKA, family = "binomial",
##
      data = MUA data1)
##
## Deviance Residuals:
                1Q Median
##
                              3Q
                                         Max
## -0.5281 -0.1495 -0.1495 -0.1495 2.9997
##
## Coefficients:
               Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) -4.4880 0.3873 -11.587 < 2e-16 ***
                 2.5886
                            0.7355
## MUAYes
                                     3.520 0.000432 ***
## ed 90d C TKA1 -0.2401 1.1017 -0.218 0.827503
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 103.793 on 664 degrees of freedom
## Residual deviance: 95.198 on 662 degrees of freedom
## AIC: 101.2
##
## Number of Fisher Scoring iterations: 7
```

(12) comorbidities

a. EDA

```
# summary
Comor_ratio_C_MUA <- apply(MUA_data1[MUA_data1$C_MUA=="Yes",c(82:89,91:101,103)],2,sum)/
10
Comor_ratio_NO_C_MUA<- round(apply(MUA_data1[MUA_data1$C_MUA!="Yes",c(82:89,91:101,10
3)],2,sum)/655,2)
cbind(Comor_ratio_C_MUA,Comor_ratio_NO_C_MUA)</pre>
```

```
##
                               Comor_ratio_C_MUA Comor_ratio_NO_C_MUA
## blood_transfusion_C_TKA
                                              0.5
                                                                    0.05
## platelet transfusion C TKA
                                              0.0
                                                                    0.00
## AIDS_C_TKA
                                              0.0
                                                                    0.01
                                              0.0
                                                                    0.16
## Malignancy_C_TKA
## Cerebrovascular_C_TKA
                                              0.3
                                                                    0.16
## COPD C TKA
                                              0.1
                                                                    0.23
                                              0.3
## CHF_C_TKA
                                                                    0.13
                                              0.0
                                                                    0.01
## Dementia_C_TKA
## Diabetes_no_cc_C_TKA
                                              0.1
                                                                    0.24
                                              0.1
                                                                    0.01
## Hemiplegia_C_TKA
## Metastatic_C_TKA
                                              0.0
                                                                    0.02
## Mild_Liver_C_TKA
                                              0.1
                                                                    0.17
## Moderate Liver C TKA
                                              0.1
                                                                    0.02
## MI C TKA
                                              0.0
                                                                    0.10
## Peptic Ulcer C TKA
                                              0.0
                                                                    0.05
## PVD_C_TKA
                                              0.2
                                                                    0.16
                                              0.1
## CKD C TKA
                                                                    0.11
## Rheumatic C TKA
                                              0.0
                                                                    0.07
## hematoma_C_TKA
                                              0.0
                                                                    0.00
## knee infection C TKA
                                              0.0
                                                                    0.01
```

b. Lasso

```
#Lasso model - comorbidities
library(glmnet)
xlmatrix = data.matrix(MUA_data1[,c(82:89,91:101,103)])
colnames(xlmatrix)<- c(str_sub(colnames(xlmatrix),end=-7))

C_MUA = as.vector(MUA_data1$C_MUA_bi)

#Finding lambda
k = 5
set.seed(987)
cv.lasso<- cv.glmnet(xlmatrix, C_MUA, alpha=1, family = "binomial")
lasso.mod = glmnet(xlmatrix, C_MUA, alpha=1,family = "binomial",lambda=cv.lasso$lambda.min)
lasso.coef <- predict(lasso.mod, type = "coefficients", s=cv.lasso$lambda.min)
paste0(round(lasso.coef@x,4),"X",lasso.coef@i, collapse=" + ")</pre>
```

```
## [1] "-4.6106X0 + 2.3932X1 + 0.3195X10"
```

Lasso regression model picked blood transfusion and Hemiplegia

correlation between diagnosed disease and contralateral MUA

The predictor that lasso picked matches with correlation between C_MUA and diseases

(1) LASSO

a. model

library(glmnet)
names(MUA_data1)

```
##
     [1] "MUA_type"
##
     [2] "Group2"
##
    [3] "MUA"
##
    [4] "C_MUA"
    [5] "ID"
##
##
    [6] "sex"
##
    [7] "age"
##
   [8] "race"
##
   [9] "ethnicity"
   [10] "BMI"
##
##
   [11] "tobacco"
##
   [12] "death_date"
##
   [13] "Insurance"
## [14] "cpt code"
## [15] "surgery_date"
## [16] "Admission date"
## [17] "Discharge date"
## [18] "los"
## [19] "disch_disp"
## [20] "ASA"
## [21] "op_time"
## [22] "mua_count"
## [23] "blood_transfusion"
## [24] "platelet_transfusion"
## [25] "AIDS"
## [26] "Malignancy"
## [27] "Cerebrovascular"
## [28] "COPD"
##
   [29] "CHF"
## [30] "Dementia"
## [31] "Diabetes_cc"
##
   [32] "Diabetes_no_cc"
## [33] "Hemiplegia"
## [34] "Metastatic"
##
   [35] "Mild_Liver"
## [36] "Moderate_Liver"
## [37] "MI"
   [38] "Peptic_Ulcer"
##
   [39] "PVD"
## [40] "CKD"
   [41] "Rheumatic"
##
##
   [42] "hematoma"
##
   [43] "wound_infection"
##
   [44] "knee_infection"
## [45] "Readmission within 90 days (1=yes)"
  [46] "Readmission date"
##
## [47] "Reason for Readmission"
## [48] "ED visit within 90 days (1=yes)"
##
   [49] "ED visit date"
   [50] "Reason for ED Visit"
##
   [51] "Initial TKA Knee (right or left)"
##
   [52] "Pre-Op Total Knee arthroplasty range of motion"
```

```
##
   [53] "Date of most recent Preop Visit"
##
   [54] "varus/valgus preoperative (normal=0, varus=1, valgus=2)"
   [55] "Postoperative ROM (list flexion arc) 1"
  [56] "Date of first follow up appt"
##
   [57] "Postoperative ROM (list flexion arc) 2"
##
   [58] "Date of second follow up"
##
   [59] "Date of MUA"
##
   [60] "IF SAME KNEE HAS A 2ND MUA: Post MUA ROM ARC"
##
   [61] "DATE of follow up"
   [62] "DATE of 2nd MUA"
##
   [63] "Date of contralateral TKA"
   [64] "Contralateral side (left or right knee)"
##
##
   [65] "Pre-Op contralateral TKA ROM"
##
   [66] "Date of Most Recent Preop Visit_C_TKA"
##
   [67] "varus/valgus preoperative_C_TKA"
   [68] "Postoperative ROM (list flexion arc) 1_C_TKA"
##
  [69] "Date of f/u 1_C_TKA"
##
   [70] "Postoperative ROM (list flexion arc) 2_C_TKA"
##
##
   [71] "Date of f/u 2_C_TKA"
## [72] "Contralateral knee MUA?"
   [73] "Contralateral Knee MUA Date"
##
   [74] "age_C_TKA"
##
## [75] "bmi_C_TKA"
##
   [76] "tobacco_C_TKA"
##
   [77] "Insurance_C_TKA"
##
   [78] "los_C_TKA"
##
   [79] "disch disp C TKA"
   [80] "ASA_C_TKA"
##
##
   [81] "op_time_C_TKA"
   [82] "blood_transfusion_C_TKA"
##
   [83] "platelet transfusion C TKA"
##
   [84] "AIDS C TKA"
##
   [85] "Malignancy_C_TKA"
   [86] "Cerebrovascular C TKA"
##
##
   [87] "COPD C TKA"
   [88] "CHF_C_TKA"
##
##
   [89] "Dementia_C_TKA"
##
   [90] "Diabetes_cc_C_TKA"
   [91] "Diabetes no cc C TKA"
##
   [92] "Hemiplegia C TKA"
##
   [93] "Metastatic C TKA"
##
   [94] "Mild Liver C TKA"
##
   [95] "Moderate Liver C TKA"
##
## [96] "MI_C_TKA"
## [97] "Peptic Ulcer C TKA"
   [98] "PVD C TKA"
##
   [99] "CKD_C_TKA"
##
## [100] "Rheumatic C TKA"
## [101] "hematoma_C_TKA"
## [102] "wound infection C TKA"
## [103] "knee_infection_C_TKA"
## [104] "readmit 90d C TKA"
```

```
## [105] "readmit_date_C_TKA"
## [106] "ed_90d_C_TKA"
## [107] "ed_date_C_TKA"
## [108] "MUA_bi"
## [109] "C_MUA_bi"
## [110] "MUA_count_T"
## [111] "age diff"
## [112] "los_total"
## [113] "op_time_total"
## [114] "date_diff"
## [115] "BTKA"
## [116] "Fac_age_C_TKA"
## [117] "Fac_age_TKA"
## [118] "redu_race"
## [119] "redu_tobacco"
## [120] "redu_tobacco_C_TKA"
## [121] "redu_ASA_C_TKA"
## [122] "redu ASA"
## [123] "yeardiff"
## [124] "Fac_age_C_TKA2"
```

```
MUA data2 = MUA data1[,c(109,108,6,9,75:78, 80:89,91:104,106,116,118)]
MUA_data2$ASA_C_TKA<-as.factor(MUA_data2$ASA_C_TKA)
y = MUA data2$C MUA bi
# Fac_age_C_TKA(116) is included instead of age_C_TKA(74), Diabetes_cc_C_TKA(90) is remo
ved b/c it's duplicated with Diabetes no cc C TKA
# 108: MUA bi, 6 : sex, 9: ethnicity, 75: bmi C TKA, 76: tobacco C TKA, 77: Insurance
C_{TKA}, 78: los_{C_{TKA}}, 80:ASA_C_{TKA}, 81: op_{time_{C_{TKA}}}, 82~103: comorbidities, 104:readmi
t 90d C TKA, 106:ed 90d C TKA,116:Fac age C TKA, 118: redu race
d <- as.data.frame(MUA data2)</pre>
options(na.action="na.pass")
m <- model.matrix(C MUA bi ~ ., data=d)[,-1]</pre>
set.seed(1234)
cv.out = cv.glmnet(m, y, alpha=1,family="binomial")
bestlam = cv.out$lambda.min
lasso.mod = glmnet(m, y, alpha= 1, lambda = bestlam,family="binomial")
coef(lasso.mod)
```

```
## 45 x 1 sparse Matrix of class "dgCMatrix"
##
## (Intercept)
                              -4.6203440
## MUA bi
                               1.2846775
## sexM
## ethnicityNon-Hispanic Origin .
## bmi_C_TKA
## tobacco_C_TKAPassive
## tobacco_C_TKAQuit
## tobacco_C_TKAYes
## Insurance_C_TKAMedicare
## Insurance_C_TKAPrivate
## Insurance_C_TKAUninsured
## Insurance_C_TKAWork_Comp 0.9442249
## los_C_TKA
## ASA_C_TKA2
## ASA C TKA3
## ASA_C_TKA4
## op_time_C_TKA
## blood_transfusion_C_TKA 2.0398585
## platelet_transfusion_C_TKA
## AIDS_C_TKA
## Malignancy_C_TKA
## Cerebrovascular_C_TKA
## COPD C TKA
## CHF C TKA
## Dementia C TKA
## Diabetes no cc C TKA
## Hemiplegia C TKA
## Metastatic C TKA
## Mild_Liver_C_TKA
## Moderate Liver C TKA
## MI_C_TKA
## Peptic Ulcer C TKA
## PVD C TKA
## CKD C TKA
## Rheumatic C TKA
## hematoma C TKA
## wound infection C TKA
## knee infection C TKA
## readmit 90d C TKA1
## ed 90d C TKA1
## Fac age C TKA60s
## Fac_age_C_TKAless50
## Fac age C TKAover70s
## redu raceOther
## redu raceWhite
```

```
\verb|paste0(round(coef(lasso.mod)@x,4),"X",coef(lasso.mod)@i, collapse=" + ")|\\
```

```
## [1] "-4.6203X0 + 1.2847X1 + 0.9442X11 + 2.0399X17"
```

```
##### ROC
#lasso.mod = lasso mod using bestlam from cv.glmnet
#m = original model matrix
predict_fit = predict(lasso.mod, m, type = "response")

library(pROC)
roc_score=roc(predictor=as.vector(predict_fit), response = y )

#ROC Plot
plot(roc_score ,main = "ROC curve -Lasso Regression")
```

ROC curve -Lasso Regression

roc_score\$auc #AUC score

Area under the curve: 0.864

```
##### Bootstrapping AUC to find 95% CI
#Finding Bootstrapped AUC confidence intervals
library(fbroc)
boot_roc = boot.roc(as.numeric(predict_fit), as.logical(as.numeric(y)), n.boot = 10000)
plot(boot_roc)
```

ROC Curve


```
w=perf(boot_roc, "auc") #Measuring performance
w #AUC confidence interval
```

```
##
##
##
Bootstrapped ROC performance metric
##
## Metric: AUC
## Bootstrap replicates: 10000
## Observed: 0.864
## Std. Error: 0.065
## 95% confidence interval:
## 0.716 0.972
```

hist(w\$boot.results, main = "Bootstrapped AUC Values", xlab = "Area Under Curve") #Histo gram of bootstrapped AUC

Bootstrapped AUC Values

-4.6632 + 1.3594MUA_bi + 1.2333Insurance_C_TKAWork_Comp + 2.1177blood_transfusion_C_TKA b. leave one out cross validation

```
library(glmnet)
#y = MUA data1$C MUA bi
\#MUA\_data2 = MUA\_data1[,c(108, 6, 9,75:78, 80:89,91:104,106,116,118)] \# Fac\_age\_C\_TKA(11)
6) is included instead of age_C_TKA(74), Diabetes_cc_C_TKA(90) is removed b/c it's dupli
cated with Diabetes_no_cc_C_TKA
# 108: MUA_bi, 6 : sex, 9: ethnicity, 75: bmi_C_TKA, 76: tobacco_C_TKA, 77: Insurance_
C_TKA, 78: los_C_TKA, 80:ASA_C_TKA, 81: op_time_C_TKA, 82~103: comorbidities, 104:readmi
t_90d_C_TKA, 106:ed_90d_C_TKA,116:Fac_age_C_TKA, 118: redu_race
#MUA_data2$ASA_C_TKA<-as.factor(MUA_data2$ASA_C_TKA)
#d <- data.frame(x=MUA_data2, y=y)</pre>
\#m \leftarrow model.matrix(y \sim ., data=d)[,-1]
pred prob <- c()
for(i in 1:nrow(d)){
y_{train} = d[-i,]$C_MUA_bi
x train = m[-i,]
y_test = d[i,]$C_MUA_bi
x_{test} = m[i,]
set.seed(1234)
cv.out = cv.glmnet(x_train, y_train, alpha =1,family="binomial", nfolds=5)
bestlam = cv.out$lambda.min
lasso.mod = glmnet(x train, y train, alpha= 1, lambda = bestlam,family="binomial")
pred prob[i] <- predict(lasso.mod,s = bestlam, newx = x test,type="response")</pre>
}
pred C MUA<-cbind(pred prob,y)</pre>
median(pred C MUA[y==0,1])
```

```
## [1] 0.007457973
```

```
median(pred_C_MUA[y==1,1])
```

```
## [1] 0.04405194
```

```
library(pROC)
roc_score_predictpower=roc(predictor=as.vector(pred_prob), response = y )
#ROC Plot
plot(roc_score_predictpower ,main ="ROC curve -Lasso Regression(LOOCV) ")
```


roc_score_predictpower\$auc #AUC score

Area under the curve: 0.8872