Ejercicio 1

- a) Calcular el paso de número decimal a binario del 235.186, 122.002, 35.8, 1024
- b) Calcular el número decimal a partir del número binario: 100000001, 10101011, 1010.1011

https://www.disfrutalasmatematicas.com/numeros/binario-decimal-hexadecimal-conversor.html

$$0.007 \cdot z = 0.004 \longrightarrow 0$$
 $0.008 \cdot z = 0.016 \rightarrow 0$
 $0.008 \cdot z = 0.032 \rightarrow 0$

$$0.8 \times 2 = 1.6 \rightarrow 1$$
 $0.2 \cdot 2 = 0.4 \rightarrow 0$
 $0.8 \times 2 = 1.2 \rightarrow 1$
 $0.1 \cdot 2 = 0.8 \rightarrow 0$

1010.1011 =
$$2^3 + 2^1 + 2^{-1} + 2^{-3} + 2^{-4} =$$

 $3 \ 2 \ 1 \ 0 \ -1 \ -2 \ -3 \ -4$ = $8 + 2 \ + \frac{1}{2} + \frac{1}{8} + \frac{1}{16} = 10,6875$

https://cual-es-mi-ip.online/herramientas/conversores-numericos/conversor-hexadecimal-a-octal/

Éj46603		
	BCD Natural	Exceso a 3.
235 1186	0010 0011 0101 10001 1000 0110	0101 0110 1000, 0100 1011 1001
122,002	0001 0010 0010, 0000 0000 0010	0100 0101 0101 0011 0011 0101
3518	0011 0101 , 1000	0110 1000 , [0]]
1024	0001 0000 0010 0100	0100 0011 0101 0111
Reflexión: Di el mine	ro es par, en la primera divir	in el verto es cero. li es inyor,
	1. Por ejemplo:	, , , , , , , , , , , , , , , , , , ,
	• •	351 12
	15 175 10	15 175
	Bit menos kjuifcation	$\sim \rightarrow \bigcirc$
Ele bit es	el meno significativo, el que	va en las "unidades", hueço
	nbaren 0 es jar, z ni en 1, in	· · · · · · · · · · · · · · · · · · ·
		•
	0 → no per	1 -> n° impar.

Juaçino un nº analysies O(01) (5); este núrrero es $5=2^2+2^\circ$ A lo multiplico por 2, $2\cdot 5=2\cdot (2^2+2^\circ)=2^3+2^4$; en realidad lo puedo escribir como numa de potencias de 2 pero con los expuentes numando uno. Entarces en binario $2\cdot 5=2^3+2^4=1010$

li nos damos cuenta multiplicar por 2 no es más que desplazar hacia la izquierda los bits. Cada desplazamiento significa XZ

> O1O1 ← X2

De forma análoga, des plazar hacia la derecha ignifica dividir entre 2.

3))

	a	b	С	mintérmino	m	f /	maxtérmino	M
0	0	0	0	albict	mo	0	atbtc	М,
1	0	0	1	albl c	mı	0	atb+c'	M,
2	0	1	0	ما له دا	Mz	1	atbl+c	Mz
3	0	1	1	or pc	m ₃	1	atbled	M ₃
4	1	0	0	a b' c'	ր,	0	atbtc	M
5	1	0	1	able	m ₆	1	a't b tcl	Mς
6	1	1	0	a b c'	m _e	4	01+61+6	Me
7	1	1	1	abc	m ₃	0	2+6+0	M ₇

dar 1 producto debendaro "sumas"

 $\frac{1}{2} = \frac{2}{3} \left(2,3,5,6 \right) = \frac{1}{3} \cdot \frac{1}{5} \cdot$

La función complementaria j' tiene los 1 y los O cambiados respecto af, luego

La función (j') = f, ni complemento (i Obtendré &!

$$\frac{(\beta')'}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_2 + m_3 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')}{m_0 + m_1 + m_2 + m_3 + m_4 + m_7} = \frac{(\alpha'b'c') \cdot (\alpha'b'c') \cdot (\alpha'b'c')$$

Luego $\int = \frac{\xi(2,3,5)}{3} = m_2 + m_3 + m_5 + m_6 = abc' + abc' + abc' = \frac{\xi(2,3,5)}{3} =$

A)		С			
			0		1
	00	0	0	4	0
AB	01	2	(1)	3	0
A	11	6	1	7	0
	10	4	0	5	0

S=b.c' (averia, crede l'empre 0 j

			æ				
		00	01	11	10		
	00	0	1	3	2		
AB	01	4	5	7	6		
∃ ₹	11	12	13	15	14		
	10	8	9	11	10		

S = c'd' + b'd'

Fácilmente re puede comprobar

que tiene una expresión más

simplificada S = (c' + b').d'

pero ja como productos de numas.

¿Y i lo hago por maxterns?

Maxlerms Los maxtérnios que son cero son: 1.3.5.7.6.13.15,14,9,10

TT (1,3,5,7,6,13,15,14,9,10) = M1.M3. M5. M7 Mx. M0.M1. M4.M1.

m sura detre dar cero
luago (5'+c')

La función es

S=d'.(5'+c')

pero como do estamo haciendo con producto de mosos, cogeremos d'

5= (c+d).(a+b+c).(a+b+d)

http://www.32x8.com/pos4 A-B-C-D m 1-2-3-5-6-7-11-13-14-15 option-a 889788975078827597720

Un ascensor muestra la información de la planta en la que se encuentra la cabina como un número, codificado en binario de 4 dígitos. Se trata de realizar un sistema que avise cuando el ascensor esté en la planta 4, 6, 7, 8 y 12 como una función lógica.

	a	b	С	d	mintérmino	m	f	maxtérmino	M
0	0	0	0	0			0	arbretd	Mo
1	0	0	0	1			0	athetdi	μ
2	0	0	1	0			0	atstold	Mz
3	0	0	1	1			0	arbidid	M3
4	0	1	0	0	aib c'd'	My	1		
5	0	1	0	1			O	atbitctd	Mr
6	0	1	1	0	a'bcd'	M ₆	1		
7	0	1	1	1	albed	μMη	Ŧ		
8	1	0	0	0	ab'c'd'	m ₈	1		
9	1	0	0	1			0	alt bect di	Mg
10	1	0	1	0			Ø	a1 16+c1+4	Mio
11	1	0	1	1			0	a'sbtold'	Mil
12	1	1	0	0	ab c'd'	MIZ	1		
13	1	1	0	1			0	WAPIACHA!	MB
14	1	1	1	0			0	a'tb'tc'td	Mily
15	1	1	1	1			0	01261261291	Mis

0 1 0 1 0 1 0 1 0 0 0 1 1 0 0 3 1 1 0 0 7 1 1 0 5 1 f= c, esta es la función. Estrival.

Tomo la variable 4 como la del presidente del Carejo.

		CD					
		\00	01	11	10		
	00	000	1 0	3 0	20		
AB	01	4 0	5 0	7 1	60		
A	11	12 1	13 1	15 1	14 1		
	10	3 0	9 1	u 1	10 1		

0000 0	1111 (13) - 3
000(]	0(1)(2)
0010100	1 101 (13)
0100	[01] (11)
1000)	110 (14)
0011(3)-0	JT00(18)) 1
0110 (6) -0	1001 (9) }
$0101(s) \rightarrow 0$	jo10 (10)
	booto de calida

Calculo le función por maxtérnino j= (C+a).(a+b).(a+d).(c+d+b)

Purtos NOR
$$\int = \overline{\int} = (\overline{(c+a)} \cdot (a+b) \cdot (a+d) \cdot (c+d+b) =$$

$$= \overline{(c+a)} + \overline{(a+b)} + \overline{(a+d)} + \overline{(c+d+b)}$$

