MAS115

Prellberg

Lecture 19

Lastura 2

Lecture 2

MAS115 Calculus I Week 8

Thomas Prellberg

School of Mathematical Sciences Queen Mary, University of London

2007/08

Revision

Lecture 19 Lecture 20

- Extreme values
- Critical points
- Rolle's theorem
- Mean value theorem

Sections 4.3 and 4.4 (needed for coursework 7)

Indeterminate Forms and L'Hôpital's Rule

If f(a) = 0 and g(a) = 0, f(a)/g(a) is a meaningless indeterminate form. How can we compute

$$\lim_{x\to a}\frac{f(x)}{g(x)}?$$

Idea: consider linearisation

$$f(a + \Delta x) \approx f(a) + f'(a)\Delta x = f'(a)\Delta x$$

 $g(a + \Delta x) \approx g(a) + g'(a)\Delta x = g'(a)\Delta x$

and therefore

$$\frac{f(a + \Delta x)}{g(a + \Delta x)} \approx \frac{f'(a)\Delta x}{g'(a)\Delta x} = \frac{f'(a)}{g'(a)}$$

Can we prove this?

Lecture 20 Lecture 21

L'Hôpital's Rule (First Form)

Lecture 19 Theorem

Suppose that f(a)=g(a)=0, that f'(a) and g'(a) exist and that $g'(a)\neq 0$. Then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\frac{f'(a)}{g'(a)}.$$

Proof.

$$\frac{f'(a)}{g'(a)} = \frac{\lim_{x \to a} \frac{f(x) - f(a)}{x - a}}{\lim_{x \to a} \frac{g(x) - g(a)}{x - a}} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}}$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{f(x) - 0}{g(x) - 0} = \lim_{x \to a} \frac{f(x)}{g(x)}$$

• When using l'Hôpital's rule, always check for "0/0", i.e., check that f(a) = 0 and g(a) = 0.

• Do not compute $(\frac{f}{g})'(x)$, this is not the same as $\frac{f'(x)}{g'(x)}$ (I've seen second year students do just that ...).

 This sort of mistake is less likely to happen if you understand l'Hôpital's rule, rather than memorise the formula.

•
$$\lim_{x\to 0} \frac{3x-\sin x}{x} = \frac{3-\cos x}{1}\Big|_{x=0} = 2.$$

•
$$\lim_{x\to 0} \frac{\sqrt{1+x}-1}{x} = \frac{\frac{1}{2}(1+x)^{-1/2}}{1} \Big|_{x=0} = \frac{1}{2}.$$

- $\lim_{x\to 0} \frac{1+\sin x}{1-x} = \left. \frac{\cos x}{-1} \right|_{x=0} = -1$. This is wrong! This was not of the form "0/0". The correct result is 1 (by substitution).
- $\lim_{x\to 0} \frac{x-\sin x}{x^3} = \frac{1-\cos x}{3x^2}\Big|_{x=0} = \frac{0}{0}$. What's wrong here? Can we fix it?

L'Hôpital's Rule (Stronger Form)

Lecture 19

Lecture 2

Theorem

Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side exists.

Back to the last example:

$$\begin{array}{ll} \bullet & \lim_{x \to 0} \frac{x - \sin x}{x^3} = \lim_{x \to 0} \frac{1 - \cos x}{3x^2} = \lim_{x \to 0} \frac{\sin x}{6x} = \\ \lim_{x \to 0} \frac{\cos x}{6} = \frac{1}{6}. \end{array}$$

MAS115

Prellberg

Lecture 19

Lecture 2

Using L'Hôpital's Rule

Using L'Hôpital's Rule

To find

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

by l'Hôpital's Rule, continue to differentiate f and g, so long as we still get the form 0/0 at x = a. But as soon as one or the other of these derivatives is different from zero at x = a we stop differentiating. L'Hôpital's Rule does not apply when either the numerator or denominator has a finite nonzero limit.

Other Indeterminate Forms

So far, we have considered limits involving the indeterminate form "0/0". What about " ∞/∞ ", " $\infty \cdot 0$ ", or " $\infty - \infty$ "? • " ∞/∞ ": use

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{1/g(x)}{1/f(x)}$$

• " $\infty \cdot 0$ ": use

$$\lim_{x \to a} (f(x)g(x)) = \lim_{x \to a} \frac{g(x)}{1/f(x)}$$

• " $\infty - \infty$ ": use

$$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} \frac{1/g(x) - 1/f(x)}{1/(f(x)g(x))}$$

The last case is slightly cumbersome to remember . . .

Lecture 19

•
$$\lim_{x\to\infty} x \sin(1/x) = \lim_{x\to\infty} \frac{\sin(1/x)}{1/x} = \lim_{h\to 0^+} \frac{\sin h}{h} = \lim_{h\to 0^+} \frac{\cos h}{1} = 1$$

$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x - \sin x}{x \sin x} = \lim_{x \to 0} \frac{1 - \cos x}{\sin x + x \cos x} = \lim_{x \to 0} \frac{\sin x}{2 \cos x - x \sin x} = 0$$

•
$$\lim_{x \to \infty} (x - \sqrt{x^2 + x}) = \lim_{x \to \infty} \frac{x^2 - (x^2 + x)}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-x}{x + \sqrt{x^2 + x}} = \lim_{x \to \infty} \frac{-1}{1 + \sqrt{1 + 1/x}} = -\frac{1}{2}$$

Conclusion: use l'Hôpital's rule, but don't use it blindly!

MAS115

Prellberg

Lecture 19

Lecture 20

Lecture 2

Revision

- Indeterminate Forms
- L'Hôpital's Rule

Antiderivatives

Aim: given f(x) and f(x) = F'(x), find F(x)

DEFINITION Antiderivative

A function F is an **antiderivative** of f on an interval I if F'(x) = f(x) for all x in I.

Reminder: a consequence of the Mean Value Theorem was

Corollary

If
$$f'(x) = g'(x)$$
 on (a, b) then $f(x) = g(x) + C$ for all $x \in (a, b)$.

Consequently

If F is an antiderivative of f on an interval I, then the most general antiderivative of f on I is

$$F(x) + C$$

where C is an arbitrary constant.

Prellberg

Lecture 20

• Tables of formulas:

TARI	F / 2	Antiderivative	formulac

	Function	General antiderivative
1.	x^n	$\frac{x^{n+1}}{n+1} + C, n \neq -1, n \text{ rational}$
2.	sin kx	$-\frac{\cos kx}{k} + C, k \text{ a constant, } k \neq 0$
3.	$\cos kx$	$\frac{\sin kx}{k} + C, k \text{ a constant, } k \neq 0$
4.	$\sec^2 x$	$\tan x + C$
5.	$\csc^2 x$	$-\cot x + C$
6.	$\sec x \tan x$	$\sec x + C$
7.	$\csc x \cot x$	$-\csc x + C$

Finding Antiderivatives

• List of rules:

TABLE 4.3 Antiderivative linearity rules				
		Function	General antiderivative	
1.	Constant Multiple Rule:	kf(x)	kF(x) + C, k a constant	
2.	Negative Rule:	-f(x)	-F(x) + C	
3.	Sum or Difference Rule:	$f(x) \pm g(x)$	$F(x) \pm G(x) + C$	

More advanced techniques will come later

Lecture 19 Lecture 20 Given

$$f(x) = \frac{3}{\sqrt{x}} + \sin 2x \; ,$$

find all F(x) with F'(x) = f(x):

•
$$f(x) = 3g(x) + h(x)$$
 with $g(x) = x^{-1/2}$ and $h(x) = \sin 2x$.

•
$$G(x) = 2\sqrt{x} + C_1$$
 satisfies $G'(x) = g(x)$.

•
$$H(x) = -\frac{1}{2}\cos 2x + C_2$$
 satisfies $H'(x) = h(x)$.

Therefore

$$F(x) = 6\sqrt{x} - \frac{1}{2}\cos 2x + C$$
.

$$(C=C_1+C_2)$$

Lecture 19 Lecture 20 Differential equation for unknown y(x):

$$\frac{dy}{dx} = f(x)$$

Initial condition:

$$y(x_0)=y_0$$

Example: find the curve whose slope at (x, y) is $3x^2$ if (1, -1) lies on the curve.

• Solve the differential equation $y' = 3x^2$:

$$y(x) = x^3 + C$$

• Evaluate C from y(1) = -1: C = -2.

Therefore

$$y(x) = x^3 - 2$$

Lecture 20 Lecture 21

Indefinite Integrals

A special symbol is used to denote the collection of all antiderivatives of f.

DEFINITION Indefinite Integral, Integrand

The set of all antiderivatives of f is the **indefinite integral** of f with respect to x, denoted by

$$\int f(x) dx.$$

The symbol \int is an **integral sign**. The function f is the **integrand** of the integral, and x is the **variable of integration**.

Examples:

MAS115

Prellberg

Lecture 19

Lecture 20

Lecture 21

Integration

Estimating with Finite Sums

Lecture 20

How can we compute the are between the x-axis and the curve y = f(x)?

Idea: approximate the area by "lots of small rectangles"

"more rectangles" \Longrightarrow "better approximation"

How should we pick the rectangles? The choice of rectangles in the figure overestimate the area.

Estimating with Finite Sums

Alternatives: underestimate the area (left) or use "midpoint rule" (right)

MAS115

Prellberg

Lecture 20
Lecture 21

Estimating with Finite Sums

Number of			
subintervals	Lower sum	Midpoint rule	Upper sum
2	.375	.6875	.875
4	.53125	.671875	.78125
16	.634765625	.6669921875	.697265625
50	.6566	.6667	.6766
100	.66165	.666675	.67165
1000	.6661665	.66666675	.6671665

Animation!

Summary:

- subdivide the interval [a, b] into n subintervals of equal width $\Delta x = \frac{b-a}{n}$
- choose points c_k in the k-th subinterval
- form the sum

$$f(c_1)\Delta x + f(c_2)\Delta x + \ldots + f(c_n)\Delta x$$

- different estimates:
 - upper sum: choose c_k such that $f(c_k)$ is maximal
 - lower sum: choose c_k such that $f(c_k)$ is minimal
 - midpoint rule: choose c_k in the middle of the interval

Sigma Notation

To handle sums with many terms, we need a better notation:

$$\sum_{k=1}^{n} a_k = a_1 + a_2 + \ldots + a_n$$

So, instead of writing

$$f(c_1)\Delta x + f(c_2)\Delta x + \ldots + f(c_n)\Delta x$$

we can write

$$\sum_{k=1}^{n} f(c_k) \Delta x$$

This needs practice

The sum in sigma notation	The sum written out, one term for each value of k	The value of the sum
$\sum_{k=1}^{5} k$ $\sum_{k=1}^{3} (-1)^{k} k$	1 + 2 + 3 + 4 + 5	15
$\sum_{k=1}^{3} (-1)^k k$	$(-1)^{1}(1) + (-1)^{2}(2) + (-1)^{3}(3)$	-1 + 2 - 3 = -2
$\sum_{k=1}^{2} \frac{k}{k+1}$ $\sum_{k=1}^{5} \frac{k^2}{k-1}$	$\frac{1}{1+1} + \frac{2}{2+1}$	$\frac{1}{2} + \frac{2}{3} = \frac{7}{6}$
$\sum_{k=4}^{5} \frac{k^2}{k-1}$	$\frac{4^2}{4-1} + \frac{5^2}{5-1}$	$\frac{16}{3} + \frac{25}{4} = \frac{139}{12}$

and rules

Algebra Rules for Finite Sums

Algebra Rules for Finite Sums

1. Sum Rule:
$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$
2. Difference Rule:
$$\sum_{k=1}^{n} (a_k - b_k) = \sum_{k=1}^{n} a_k - \sum_{k=1}^{n} b_k$$
3. Constant Multiple Rule:
$$\sum_{k=1}^{n} ca_k = c \cdot \sum_{k=1}^{n} a_k \quad \text{(Any number c)}$$

4. Constant Value Rule:
$$\sum_{k=1}^{n} c = n \cdot c \qquad (e \text{ is any constant value.})$$

Lecture 20

Express the sum 1+3+5+7+9 in sigma-notation:

•
$$\sum_{k=1}^{5} (2k-1)$$

•
$$\sum_{u=0}^{4} (2u+1)$$

•
$$\sum_{x=-3}^{1} (2x+7)$$

These sums are all equal to 25.

The sum of the first *n* integers

$$S = 1$$
 + 2 + 3 + ... + $(n-1)$ + n
= n + $(n-1)$ + $(n-2)$ + ... + 2 + 1

so that

$$2S = (n+1)n$$

[Carl-Friedrich Gauß, \approx 1784, seven years old!]

This shows that

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$$

The first *n* squares:
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

The first *n* cubes:
$$\sum_{k=1}^{n} k^3 = \left(\frac{n(n+1)}{2}\right)^2$$

Such formulas can be proved by mathematical induction.

- Lecture 2
- Lecture 21

- Antiderivatives
- Initial Value Problems
- Indefinite Integrals
- Estimating Area with Sums

Lecture 20
Lecture 21

Example: compute the area below the graph of $y = 1 - x^2$ and above the interval [0, 1].

• subdivide the interval into *n* subintervals of width $\Delta x = \frac{1}{n}$:

$$\left[0,\frac{1}{n}\right],\,\left[\frac{1}{n},\frac{2}{n}\right],\,\left[\frac{2}{n},\frac{3}{n}\right],\,\ldots,\,\left[\frac{n-1}{n},\frac{n}{n}\right]$$

- choose lower sum: $c_k = \frac{k}{n}$ is rightmost point
- do the summation ...

Limits of Finite Sums

• do the summation:

$$\sum_{k=1}^{n} f(c_k) \Delta x = \sum_{k=1}^{n} f\left(\frac{k}{n}\right) \frac{1}{n}$$

$$= \sum_{k=1}^{n} \left(1 - \left(\frac{k}{n}\right)^2\right) \frac{1}{n}$$

$$= \sum_{k=1}^{n} \left(\frac{1}{n} - \frac{k^2}{n^3}\right)$$

$$= \frac{1}{n} \sum_{k=1}^{n} 1 - \frac{1}{n^3} \sum_{k=1}^{n} k^2$$

$$= \frac{1}{n} n - \frac{1}{n^3} \frac{n(n+1)(2n+1)}{6}$$

$$= \dots = \frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$$

Lecture 20
Lecture 21

lower sum:

$$R \ge \frac{2}{3} - \frac{1}{2n} - \frac{1}{6n^2}$$

• upper sum:

$$R \leq \frac{2}{3} + \frac{1}{2n} - \frac{1}{6n^2}$$

(not done here)

- as $n \to \infty$, both sums tend to $\frac{2}{3}$
- any other choice of c_k would give the same result (why?)

Thereforem the area is equal to

$$R=\frac{2}{3}$$

Lecture 20
Lecture 21

Allow f to be positive or negative

• Partition the interval [a, b] by choosing n - 1 points between a and b:

$$a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b$$

(i.e. Δx may vary!)

Riemann Sums

Lecture 20 Lecture 21 • Choose *n* points c_k between x_{k-1} and x_k

- The resulting sums are called Riemann sums for f on [a, b]
- Choose finer and finer partitions: take the limit such that the width of the largest subinterval tends to zero

Notation: for a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] we write ||P|| for the width of the largest subinterval.

The Definite Integral

DEFINITION The Definite Integral as a Limit of Riemann Sums

Let f(x) be a function defined on a closed interval [a, b]. We say that a number I is the **definite integral of f over [a, b]** and that I is the limit of the Riemann sums $\sum_{k=1}^{n} f(c_k) \Delta x_k$ if the following condition is satisfied:

Given any number $\epsilon > 0$ there is a corresponding number $\delta > 0$ such that for every partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b] with $||P|| < \delta$ and any choice of c_k in $[x_{k-1}, x_k]$, we have

$$\left|\sum_{k=1}^n f(c_k) \Delta x_k - I\right| < \epsilon.$$

Notation:

The Definite Integral

Shorthand notation:

$$\lim_{||P|| \to 0} \sum_{k=1}^{n} f(c_k) \Delta x_k = \int_a^b f(x) dx$$

Note: as with the sigma-notation, the symbol for the "dummy variable" can be chosen as you wish

$$\int_{a}^{b} f(t)dt = \int_{a}^{b} f(x)dx$$

however, it is a bad idea to use a symbol already used for the upper/lower limit

Lecture 20
Lecture 21

When does the integral exist? When f is continuous:

THEOREM 1 The Existence of Definite Integrals

A continuous function is integrable. That is, if a function f is continuous on an interval [a, b], then its definite integral over [a, b] exists.

When does the integral fail to exist? When f is "sufficiently discontinuous":

Example:

$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

Here, $\int_0^1 f(x)dx$ does not exist as

- the upper sum is always 1
- the lower sum is always 0

Properties of Definite Integrals

TABLE 5.3 Rules satisfied by definite integrals

1. Order of Integration:
$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

2. Zero Width Interval: $\int_{a}^{a} f(x) dx = 0$ Also a Definition

A Definition

3. Constant Multiple:
$$\int_a^b kf(x) dx = k \int_a^b f(x) dx$$
 Any Number k
$$\int_a^b -f(x) dx = -\int_a^b f(x) dx$$
 $k = -1$

4. Sum and Difference: $\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$

5. Additivity:
$$\int_a^b f(x) dx + \int_b^c f(x) dx = \int_a^c f(x) dx$$

6. Max-Min Inequality: If f has maximum value max f and minimum value min f on [a, b], then

$$\min f \cdot (b-a) \le \int_a^b f(x) \, dx \le \max f \cdot (b-a).$$

7. Domination:
$$f(x) \ge g(x) \text{ on } [a, b] \Rightarrow \int_a^b f(x) \, dx \ge \int_a^b g(x) \, dx$$
$$f(x) \ge 0 \text{ on } [a, b] \Rightarrow \int_a^b f(x) \, dx \ge 0 \quad \text{(Special Case)}$$

Properties of Definite Integrals

Lecture 19

Lecture 21

(a) Zero Width Interval: $\int_{-a}^{a} f(x) dx = 0.$

(d) Additivity for definite integrals:

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

(b) Constant Multiple:

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx.$$
(Shown for $k = 2$.)

(e) Max-Min Inequality:

$$\min f \cdot (b - a) \le \int_a^b f(x) \, dx$$

$$\le \max f \cdot (b - a)$$

(c) Sum:

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$
(Areas add)

(f) Domination:

$$f(x) \ge g(x) \text{ on } [a, b]$$

$$\Rightarrow \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx$$

We now define the area as follows:

DEFINITION Area Under a Curve as a Definite Integral

If y = f(x) is nonnegative and integrable over a closed interval [a, b], then the area under the curve y = f(x) over [a, b] is the integral of f from a to b,

$$A = \int_a^b f(x) \, dx.$$

Example:
$$f(x) = x$$
, $a = 0$, $b > 0$

- graphically, $A = \frac{1}{2}b^2$
- using the definition

$$A = \lim_{n \to \infty} \sum_{k=1}^{n} f(c_k) \Delta x = \lim_{n \to \infty} \sum_{k=1}^{n} \frac{kb}{n} \cdot \frac{b}{n}$$
$$= \lim_{n \to \infty} \frac{b^2}{n^2} \sum_{k=1}^{n} k = \lim_{n \to \infty} \frac{b^2}{n^2} \frac{n(n+1)}{2} = \frac{b^2}{2}$$

DEFINITION The Average or Mean Value of a Function

If f is integrable on [a, b], then its average value on [a, b], also called its mean value, is

$$av(f) = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

Example:

MAS115

Prellberg

I - -+.... 20

Lecture 21

The End