

Topology optimization of heat conduction problems

Workshop on industrial design optimization for fluid flow 23 September 2010

Misha Marie Gregersen Anton Evgrafov Mads Peter Sørensen

Technical University of Denmark

Motivation and outline

Challenges

- Topology optimization of coupled heat conduction and fluid flow
- Large scale systems: OpenFOAM
- FVM + Topology optimization + diffusion problems

Outline

- Optimization of simple conduction problem
- FVM on diffusion problems
- Constant convection added
- Preliminary tests of unstructered mesh and 3D

Simple heat conduction problem

Pure heat conduction problem

- Constant and homogeneous heat source Q
- Insulating walls and heat sink at bottom $T_1 = 0$
- For topology optimization: Design dependent thermal diffusivity $D_{\rm th}(\gamma)$

Topology optimization of conduction problem

Topology optimization

- Minimize the weighted average temperature
- Distribution of two materials with different conductivity
- High conductivity D_{th2} : black (Max. volume 40%)
- Low conductivity D_{th_1} : White
- $-D_{\rm th}(\gamma) = D_{\rm th1} + (D_{\rm th2} D_{\rm th1}) \gamma^3$, $D_{\rm th2}/D_{\rm th1} = 1000$

IPOPT for the optimization routine

- Gradent based optimization
- Approximations of the hessian

Benchmark example

- FEM calculation
- MMA for the optimization loop

Bendsøe - Sigmund, Springer (2004)

T = 0

FVM >< **FEM** optimization results

- COMSOL (FEM)+ MMA
 - Unstructured mesh

- OpenFOAM (FVM)+ IPOPT
 - Slightly different parameter values
 - Square mesh elements

New: FVM & TopOpt & conduction

General form of balance law (steady state)

$$\nabla \cdot (F(u, \nabla u)) + s(u) = 0$$

- Previously studied: FVM & TopOpt for flow problems
 - Design field enters the source term s

$$\rho(\mathbf{u} \cdot \nabla)\mathbf{u} = -\nabla p + \eta \nabla^2 \mathbf{u} - \underline{\alpha(\gamma)} \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

- For instance: Othmer, Int. Jour. Num. Meth. Fluids (2008).
- FVM & TopOpt for conduction problems
 - Design field enters the flux term F

$$-\boldsymbol{\nabla}\cdot\left[D_{\mathrm{th}}(\gamma)\boldsymbol{\nabla}T\right]=Q$$

- Discretization using the FVM
 - The flux term is integrated by parts:
 Sensitivites becomes dependent on the design field gradient,

Sensitivity analysis of conduction problem

Adjoint method

Define a cost function

$$J = \int_{\Gamma} d\Gamma J_{\Gamma} + \int_{\Omega} d\Omega J_{\Omega}$$

Define Lagrange function by introducing Lagrange multiplier λ

$$\mathcal{L} = J + \int_{\Omega} d\Omega \, \lambda R$$

Solve the adjoint problem for λ (adjoint temperature)

- Calculate sensitivity

$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\gamma_i} = \int_{\Omega} \mathrm{d}\Omega \,\lambda \boldsymbol{\nabla} \cdot \left[\frac{\partial D_{\mathrm{th}}(\gamma)}{\partial \gamma_i} \boldsymbol{\nabla} T \right]$$

Continuous vs. discrete adjoint

> FVM

- Gradient approximation on cell edges
- Imprecise for discontinuous fields

Continuous adjoint

Optimize (differentiate) then discretize

- Sensitivity:
$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\gamma_i} = -\int_{\Omega} \mathrm{d}\Omega \, \frac{\partial D_{\mathrm{th}}(\gamma)}{\partial \gamma_i} \boldsymbol{\nabla} \lambda \cdot \boldsymbol{\nabla} T$$

Sensitivity for flow problem

- Adjoint and primary flow velocity; u, v

- Sensitivity:
$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\gamma_i} = \int_{\Omega} \mathrm{d}\Omega \, \frac{\partial \alpha(\gamma)}{\partial \gamma_i} m{u} \cdot m{v}$$

Discrete adjoint

- Discretize then optimize (differentiate)

- Sensitivity:
$$\frac{\mathrm{d}\mathcal{L}}{\mathrm{d}\gamma_i} = \sum_{\sigma_i} \frac{|\sigma_i|}{d_{KL}} \frac{\partial D_{\mathrm{th}}}{\partial \gamma_i} \big(T_K - T_L\big) \big(\lambda_K - \lambda_L\big)$$

Discretized design field γ

•	•	•	•
K	L	•	•
•	•	•	•
•	•	•	•

Discrete >< continuous optimizations

Different optimization output depending on parameters

Further numerical considerations

Mesh convergence

- Proof lacking: Discretized continuous adjoint sensitivty should converge to continuous expression
- Expect unaltered topology, but feature refinement can cause problems
 - Continuous adjoint: Volume integration -> small sensitivity change
 - Discrete adjoint: Cell edge integration -> large sensitivity change

> IPOPT

- Robust optimization routine
- Poor hessian approximations on top of uncertain gradient approximations
- MMA might be more suitable (no hessian needed)
- Higher order approximations of fluxes
 - Unsuitable for fields with large discontinuities across cell boundaries

Conduction – convection model

- Constant convection term added
- Insulation BC: Robin condition
 - Non-trivial implementation in OpenFOAM

DTU Mathematics

Department of Mathematics

Adjoint equations for convection-conduction problem

- Robin BC in the adjoint problem
- Heat sink added at upper boundary

Primary problem:

Adjoint problem:

Preliminary conduction-convection optimization

- Minimize the weighted average temperature
- Continuous adjoint

Unstructured mesh – preliminary results

- Pure conduction problem
- Influence of adjoint method

Continuous adjoint

Discrete adjoint

Preliminary 3D result

Pure conduction problem

Cross-sectional plots of design field γ :

Parallelization

- Decomposition of computational domain (OpenFOAM)
- Parallelization of optimization routine (MMA)

Summary and outlook

Summary

- Topology optimization of heat conduction problem with IPOPT & OpenFOAM
- Comparison with COMSOL & MMA
- Identified numerical issues for FVM based topology optimization of diffusion problems
- Implemented discrete adjoint method for regular (and unstructured) meshes
- Implementation of optimization routine for constant convection problem
- Preliminary results of: conduction-convection problem, 3D heat conduction problem, unstructured mesh

Outlook

- Parallelization of optimization routine (MMA)
- Coupling to the Navier-Stokes equation
- Optimization of fully coupled heat transfer problem for a simple model case

