

Phase-2 Submission Template

Student Name: [D Vijayalakshmi]

Register Number: [421623104169]

Institution: [Mailam Engineering College]

Department: [CSE]

Date of Submission: [Insert Date]

Github Repository Link: [Update the project source code to

your Github Repository]

1. Problem Statement

[It is extracting accurate emotional insights from this unstructured text data is a complex challenge. The nuances of human languag, sarcasm, slang, abbreviations, and multiple content make it difficult to intergret sentiments.

- **Dataset:** Text are often short and informal.Emojis,hashtags,and slang require special handling.Label may reflect multiple emotions.
- This is a multiclass classification problem the model aims to classify text into one of

several emotional categories (eg: joy,anger,sadness,fear,surprise)

Social impact: Helps intracking public mood and mental health patterns during crises

(eg:COVID-19). Automation: Reduces the need for manual monitoring of social media. Research value: Supports studies in psychology, sociology and marketing by providing large-scale emotion

2. Project Objectives

data.1

● 1)To collect and preprocess real world social media data(eg:tweets,comments) for effective emotions.2)To develop a multiclass classification model that can accurately categorize user conversation such as joy,anger,sadness.etc.3)To apply and compare different ML and DL algm.

- Initially, the focus was only on basic sentiment(positive/negative/neutral) but after exploring the dataset. The goal has evoled from simple sentiment analysis to emotion.
- Build a reliable and scalable system that helps businesses, researchers, and social organizations decode public emotions.]

3. Flowchart of the Project Workflow

[Data Collection->Data Cleaning->EDA->Feature Engineering->Model Building->Model Evaluation->Visualization & Interpretation->Deployment/Demo Interface]

4. Data Description

- Dataset: Twitter Sentiment/Emotion Dataset.
- Type of data: Unstructured Data-includes tweets, comments, or short social media texts.
- Number of Records and Features: Eg(if using Kaggle dataset) Rows:~20000 to 50000 tex entries column/Features:Text-the actual social media.Emotion/Sentiment-the target label.
- Static dataset:pre-collected and labeled data.
- Target variable (if supervised learning):Sentiment Label:Positive,Negative,Neutral.]

5. Data Preprocessing

- Handle missing values:It is text and emotion sentiment columns.Dropped records with missing text or labels using dropna()since incomplete data can't be used for training.
- Duplicate records:Duplicate text entries were identified to avoid model bias.

- Detect and treat outliers:Outliers in text data were reviewed based on unusually short texts(eg:1-2 characters)
- removed.URLs,mentions(@user),hashtags(#hashtags).Emojis and special characters.
- Encode Target Labels:label bonding was applied to convert textual labels (like

joy, anger) into numeric format for model training.

Text Cleaning:Convrted text to lowercase

- Vectorization:Used TF-IDF for vectorizer to convert cleaned text into
- numerical vectors.

Train-Test Split:Splitting dataset into training and testing sets for model validation.

6. Exploratory Data Analysis (EDA)

[Perform detailed statistical and visual exploration of the data.

- Univariate Analysis:

 Target Variable(sentiment/emotion) distribution used countplot to check the
 balance of emotion classes.
- Bivariate/Multivariate Analysis:
 - Some emotions may tend to be expressed in longer

messages(eg:sadness)compared to others.

- O Correlation between text length and encoded label.
- Insights Summary:
 - TF-IDF or word embeddings capture important keywords or patterns tied to emotions.

Text length can be used as an auxiliary feature.

Presence of emojis, exclamation marks can also be useful.

7. Feature Engineering

- As the core data is text, converting it to numerical features is essential:
- Justification: Captures the importance of words relative to all documents, reducing the effect of common words like "the".
- Created new features based on the length of the message:

Justification: Emotions like anger or joy might correlate with longer or shorter messages.

8. Model Building

- 1. Logistic Regression: A popular choice for binary classification problems, logistic regression is suitable for sentiment analysis.
- 2. Random Forest: An ensemble method that combines multiple decision trees, random forest is robust and handles high-dimensional data well.
- 1. Logistic Regression: Selected for its simplicity, interpretability, and effectiveness in binary classification problems.
- 2. Random Forest: Chosen for its ability to handle complex data, reduce overfitting, and provide feature importance scores.
- 1. Data Split: Split the data into training (80%) and testing sets (20%) with stratification to maintain class balance.
- 2. Text Preprocessing: Apply techniques like tokenization, stopword removal, and vectorization (e.g., TF-IDF).
- Matrices: Use accuracy, precision, recall, and F1-score to evaluate the performance of both models.
- 2. Comparison: Compare the performance of logistic regression and random forest models.

9. Visualization of Results & Model Insights

- Confusion matrix: This is a fundamental tool for evaluating the performance of a classification model. It shows the counts of:True Positives (TP): The model correctly predicted a positive sentiment. True Negatives (TN): The model correctly predicted a negative sentiment. False Positives (FP): The model incorrectly predicted a positive sentiment when it wasactually negative (Type I error)
 A higher AUC generally means better model performance. By examining the shape of the curve, you can understand the trade-off between sensitivityand specificity at different classification thresholds. For example, if you need to minimizefalse negatives.

 10. Tools and Technologies Used
 - Python:Python*: The primary programming language used for this project.
 - Google Colab:Google Colab*: A cloud-based notebook environment used for development, testing, and deployment. Jupyter Notebook: An interactive development environment used for exploratory data analysis and visualization.
 - pandas*: A library for data manipulation and analysis.
 - numpy: A library for numerical computing.
 - seaborn: A library for data visualization.
 - matplotlib: A library for creating static, animated, and interactive visualizations.

11. Team Members and Contributions

[Team Members:

- 1. S Supriya
- 2. A Sunmathi
- 3. S Vaishnavi
- 4. D Vijayalakshmi
- Supriya: Data cleaning and EDA: Responsible for cleaning and preprocessing the social media conversation data, as well as performing exploratory data analysis (EDA) to understand the data distribution and patterns.

- A Sunmathi: Feature engineering: Responsible for extracting relevant features from the text data, such as sentiment scores, word frequencies, and topic modeling.
 - S Vaishnavi: Model development: Responsible for developing and training machine learning models for sentiment analysis, including logistic regression, random forest, and other algorithms.
- D Vijayalakshmi: Documentation and reporting: Responsible for documenting the project methodology, results, and insights, as well as creating reports and presentations to stakeholders