Rendering Iridescent Rock Dove Neck Feathers

Weizhen Huang University of Bonn Bonn, Germany whuang@cs.uni-bonn.de

Sebastian Merzbach University of Bonn Bonn, Germany merzbach@cs.uni-bonn.de Clara Callenberg
University of Bonn
Bonn, Germany
callenbe@cs.uni-bonn.de

Doekele G. Stavenga University of Groningen Groningen, Netherlands d.g.stavenga@rug.nl Matthias B. Hullin University of Bonn Germany hullin@cs.uni-bonn.de

Pourquoi?

Travaux antérieurs

Splitting – imitates the splitting seen on feathers
Scraggle - random noise used to displace the barbs
Tangle – a scraggle that accumulates down the barb
Clipping - takes random cuts along the length of the barbs

(a) Real

(b) Procedural

Rendertime Procedural Feathers Through Blended Guide Meshes, 2008

Imaging scatterometry of butterfly wing scales, 2009

Géométrie des Plumes

© 2007-2011 The University of Waikato | www.sciencelearn.org.nz

Iridescence

Iridescence

Iridescence

BSDF

Pourquoi un BSDF?

Construire le BRDF : Microfacet BRDF

$$S_{\mathrm{R}}(\omega_{i},\omega_{o},\lambda) = \frac{I_{\mathrm{R}}(\omega_{i},\omega_{o},\lambda)D(\omega_{m})G(\omega_{i},\omega_{m},\omega_{o})}{4\langle\omega_{i},\vec{n}\rangle\langle\omega_{o},\vec{n}\rangle}$$
 Fonction Géométrique

$$D(\omega_m) = \frac{b^2}{2H\sin\theta_d\cos\theta_m} \left(\sin^2\phi_m + b^2\cos^2\phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\theta}(\theta_m) = \frac{1}{2\sin\theta_d}.$$

$$D(\omega_m) = D_{\theta}(\theta_m) D_{\phi}(\phi_m) (\cos \theta_m)^{-1}$$

$$D(\omega_m) = \frac{b^2}{2H\sin\theta_d\cos\theta_m} \left(\sin^2\phi_m + b^2\cos^2\phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\theta}(\theta_m) = \frac{1}{2\sin\theta_d}.$$

$$D(\omega_m) = D_{\theta}(\theta_m) D_{\phi}(\phi_m) (\cos \theta_m)^{-1}$$

$$D(\omega_m) = \frac{b^2}{2H\sin\theta_d\cos\theta_m} \left(\sin^2\phi_m + b^2\cos^2\phi_m\right)^{-\frac{3}{2}}$$

$$D_{\phi}(\phi_m) = \frac{1}{H\kappa(\phi_m)} = \frac{b^2}{H} \left(\sin^2 \phi_m + b^2 \cos^2 \phi_m\right)^{-\frac{3}{2}}$$

$$D_{\theta}(\theta_m) = \frac{1}{2\sin\theta_d}.$$

$$D(\omega_m) = D_{\theta}(\theta_m) D_{\phi}(\phi_m) (\cos \theta_m)^{-1}$$

$$D(\omega_m) = \frac{b^2}{2H \sin\theta_d \cos\theta_m} \left(\sin^2\phi_m + b^2 \cos^2\phi_m\right)^{-\frac{3}{2}}$$

Fonction géométrique : Fonction de visibilité

G = 0 ou 1

Réflectance et Iridescence

A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence

LAURENT BELCOUR, Unity Technologies PASCAL BARLA, Inria

A MARINE C

$$r=r_{ak}+\frac{t_{ak}r_{ka}t_{ka}e^{i\Delta\psi}}{1-r_{ka}^{2}e^{i\Delta\psi}}, \qquad t=\frac{t_{ak}t_{ka}}{1-r_{ka}^{2}e^{i\Delta\psi}}$$

$$\Delta \psi = \frac{2\pi \mathcal{D}}{\lambda} = \frac{4\pi d\eta_k \cos\beta}{\lambda}$$

Réflectance et Iridescence

A Practical Extension to Microfacet Theory for the Modeling of Varying Iridescence

LAURENT BELCOUR, Unity Technologies PASCAL BARLA, Inria

$$r = r_{ak} + \frac{t_{ak}r_{ka}t_{ka}e^{i\Delta\psi}}{1 - r_{ka}^2e^{i\Delta\psi}}, \qquad t = \frac{t_{ak}t_{ka}}{1 - r_{ka}^2e^{i\Delta\psi}}$$

$$\Delta \psi = \frac{2\pi \mathcal{D}}{\lambda} = \frac{4\pi d\eta_k \cos \beta}{\lambda}$$

Résultats

Résultats

