

•人的上肢结构

• 机器人的手臂

• 机器人的手腕

• 机器人的手

拉美特里

- Lamettrie, Julien Offray de (1709~1751)
- 统一的物质是唯一的实体
- , 感觉是人的心灵一切活 动的基础
- · 宇宙间只存在一种物质组织, 而人是其中最完善的

人 是 机 器

〔法〕 拉美特里 著

拉美特里, J.O. de

2.1 人的上肢结构

- ·人体是一个复合体,其运动系统由骨、连结骨与骨的关节及肌肉共同组成,外表覆盖着皮肤
- •人体有206块大小、形状各异的 骨头, 总共有几百个活动自由度
- 活动是骨头、关节在肌肉的牵引下,做出的多种多样的运动

安德罗丁 android

2.1 人的上肢结构

- □人类的双手是大自然创造的最灵巧的劳动工具, 它能抓取各种各样粗细、长短、大小和形状各异的 物体,能做各种复杂的动作
- □人的手臂在空中占据很小的空间,却能在很大的活动范围内工作,还可以绕过障碍物进行操作
- □通过皮肤,上肢还有感觉,能分辨物体的形状和 某些特征

2.1 人的上肢结构

人的上肢骨骼和关节

$$F = 6n - \sum (6 - f)P_f$$

$$n = 19$$

$$F = 27$$

- 手臂的自由度 7
- 手的自由度 20

- □最基本的条件就是要像人一样具有腕、肘及肩关 节等类似的动作
- □人臂从肩部到腕部(不包括手掌及手指)共有7个自由度
- □处在自由状态下的任何物体都具有6个自由度 沿着3个直角坐标轴的移动和绕着3个坐标轴的转动
- □移动决定了物体在空间某一点的位置, 转动则决定了该物体在空间某位置上的方向, 或称姿态

机器人的上肢的作用是什么?

● 只须有相对 应的6个自由 度就可以了

- □棱柱关节(prismatic joint) 能使一杆件相对于另一杆件值线运动
- □回转关节(rotary joint) 能使一杆件相对于另一 杆件绕固定轴转动

□球关节(spherical joint) 能使一杆件相对于另一杆件在三自由度上绕一个固定点转动

低副: a. 面接触;

b. 有一个自由度, 转动或移动。

(约束了二个自由度)

INA公司生产的球铰链和万向铰链

运动链 两个以上构件通过运动副联接而成的系统

闭链

开链

- ①平面运动链
- ②空间运动链

2.2 机器人的手臂

按结构形式分

关节型机器人 articulated robot

球坐标机器人 polar coordinate robot

圆柱坐标机器人 cylindrical coordinate robot

直角坐标机器人 cartesian coordinate robot

SCARA型机器人 scara robot

并联机器人 parallel robot

直角坐标式机器人

cartesian coordinate robot PPP

- •易于实现高定位精度
- •空间轨迹易于求解

- •当具有相同的工作空间时
- ,机体所占空间体积较大

圆柱坐标式机器人

cylindrical coordinate robot PPR

- •Versatran工业机器人
- •在相同的工作空间条件下
- ,机体所占空间体积小于直 角坐标型
- •结构简单,便于几何运算
- ,通常用于搬运机器人

球坐标式机器人

polar coordinate robot RRP

- ·Unimate工业机器人 (模铸)
- •结构紧凑,所占空间 体积小
- •目前应用较少

垂直关节式机器人

articulated robot RRR

- •结构紧凑,所占空间体积小
- •相对的工作空间大
- •能绕过基座周围的一些障碍物
- •使用最多的一种结构形式

•PUMA, MOTOMAN, CINCINNATI T3, ABB, KUKA等工业机器人

Unimate机器人

尤尼梅特

Universal Automation

Unimation公司

球坐标机器人

Versatran 机器人

沃莎特兰

Versatile Transfer

AMF公司

圆柱坐标机器人

SCARA机器人

SCARA Selective Compliance Assembly Robot Arm

具有选择适应性的机器人手臂,对水平方向有适应性,而在垂直方向的耐力强劲

在手的前部若加上水平方向的力量,则第2轴(相当于人肘的部分)会稍微旋转,顺应地移位

该特性使轴孔插入等精密配合的工作很容易进行

SCARA机器人

SCARA Selective Compliance Assembly Robot Arm

一般情况, 当轴插入孔肘, 即使中心稍微偏移, 也全造成咬住, 柔顺手腕

并联机器人

parallel robot

- •采用闭环结构
- ■刚度高
- ■承載能力高
- ■各杆件误差形成平均值
- ■运动质量小, 动态性能好
- ■定位精度高

- ■工作空间小
- ■控制复杂

□联接手臂和手部的结构部件,利用自身的活动度 确定被末端执行器夹持物体的空间姿态

□确定手部的作业方向,一般需要三个自由度

- □臂转 绕小臂轴线 方向的旋转
- □手转 使手部绕自身的轴线方向旋转
- □腕摆 使手部相对 于臂进行摆动

- □要传动灵活、结构紧凑轻巧、避免干涉
- □多数将驱动部分安排在小臂上,设法使几个电动机的运动传递到同轴旋转的心轴和多层套筒上去,再分别实现各个动作
- □当被装配零件的不一致、工件的定位夹具、机器人的定位精度不能满足装配要求时, 会导致装配困难 装配动作的柔顺性要求

图 2-12 柔顺手腕

a) 柔顺手腕结构 b) 柔顺手腕动作过程

1-机械手 2-下部浮动件 3-上部浮动件 4-钢珠 5-中空固定件 6-螺丝 7、8-弹簧 9-工件

•人手夹持物体一般利用拇指和食指或中指对向运动把物体牢牢夹住

• 机器人的手设计时要求简单、实用、易造, 所以一般多用对置的两个手指

• 机器人的手指可以做成不同形状和大小

- 工业机器人手部
- ◆ 夹持类 夹钳式,钩托式
- ❖ 吸附类 气吸式, 磁吸式

- 仿人机器人手部
- ❖ 柔性手
- ❖ 多指灵巧手

外夹式 内撑式 钩托式 两指手

图 2-13 夹钳式手部的组成 1一手指 2一传动机构 3—驱动装置 4—支架 5—工件

图 2-14 夹钳式手的指端

a) V.型指 b) 平面指 c) 尖指 d) 特形指

吸附式取料手

气吸附 利用吸盘内的压力和大气压之间的压力差 而工作的

磁吸附 铁磁物体,允许有剩磁

柔性手

东京工业大学梅谷教授

多指灵巧手

Stanford/JPL手(Salisbury手)

- □每个手指有3个自由度
- □每个手指用4台电动机驱动,保证钢丝绳不会松弛

多指灵巧手

Utah/MIT手

- □每个手指都有4个自由度
- □除了没有小指以外,非常接近于人手

- □灵巧手技术的发展经历了4个阶段
- □早期阶段 假肢 1509年 战争 年轻战士 Berlichingen 弹簧驱动的假手 战斗 生活
- □初期阶段 1962年 Belgrade手 前南斯拉夫 伤寒病患者 74年 日本 Okada手 将螺栓拧进螺母
- □中期阶段 80、90年代 Stanford/JPL手、Utah/MIT手
- □90年代后 意大利 DIST手和UB手 德国宇航中心 DLR手 美国宇航局 NASA手

HIT/DLR 机器人灵巧手

- 四个相同结构的手指,13个自由度,机械零件600多个,表面粘贴的电子无器件1600多个,尺寸略大于人手
- ·整体重量只有1.6千克,小 于国内外的同类机器人灵巧 手

练习与思考

- 1. 人的上肢有多少自由度? 空间物体有多少自由度?
- 2. 机器人上肢按结构型式可分为哪几类?
- 3. Unimate机器人是否属于圆柱坐标式机器人?
- 4. 试述垂直关节式机器人的结构特点。
- 5. 机器人的手分哪两大类? 各又分哪几类?

机器人概论