# Deep Learning: differentiable programming

Christian Wolf

July 8<sup>th</sup>, 2021

#### Content



DL Frameworks and Tensors



Automatic differentiation



Example: MLP for MNIST



Exercise: CNN for MNIST

# We manipulate tensors



[Figure: Anima Anandkumar]

# High dimensional tensors



## Images as tensors

A color image has 3 color channels (red, green, blue) and is therefore a 3D tensor.



# Tensors: examples

- Example of a tensor of dim 2 (input data, 1D signal)
  - Batch dimension (multipe samples)
  - Signal dimension
- Example of a tensor of dim 2 (output data, classification)
  - Batch dimension (multipe samples)
  - Prediction for different classes
- Example of a tensor of dim 3 (layer activation, 1D signal)
  - Batch dimension (multipe samples)
  - Signal dimension
  - Feature dimension
- Example of a tensor of dim 4 (layer activation, 2D image)
  - Batch dimension (multipe samples)
  - Spatial X dimension
  - Spatial Y dimension
  - Feature dimension
- Example of a tensor of dim 5 (input data, 2D+t video)
  - Batch dimension (multipe samples)
  - Spatial X dimension
  - Spatial Y dimension
  - Color channel dimension
  - Time dimension





#### Implementing a functional mapping

Inputs, outputs, layer activations, weights are tensors of different dimensions.



#### Main frameworks









Tensorflow

PyTorch

- Both support execution and training on CPUs, GPUs, TPUs (google's machine learning hardware)
- Both use python.
- Tensorflow also supports C++, Swift.

# PyTorch vs. Tensorflow



#### Creating tensors

```
1 # loading PyTorch
 import torch
3
 # create with given shape
5 torch.full((shape), value)
6 torch.full_like(other_tensor, value)
8 # create with given values
9 torch.tensor((values))
torch.tensor((values), dtype=torch.int16)
11
12 # create from numpy array
torch.from_numpy(numpyArray)
14
15 # Create zeros or ones
16 torch.zeros((shape))
torch.zeros_like(other_tensor)
torch.ones((shape))
19 torch.ones_like(other_tensor)
```

## Creating tensors, tensor I/O

```
# Random tensors
torch.randn(3, 4)

# Tensor I/O
A = torch.load ("A.tensor")
torch.save (A, "A.tensor")
```

#### Tensor slicing

Slicing is similar to python (NumPy) Slicing or Matlab notation. Example for a 2D tensor:

```
1 A [1,5]
                        # access an element (row, col)
2 A [:,5]
                        # column access
3 A [1,:]
                        # row access
 A[1:6,:] A[1:,:] # range access (1:6 = 1,2,3,4,5)
 A[:,0:-1]
                        # Negative index count backwards
                        \# -1 = last col/row
7
8
 A == 3
                        # provides a tensor of logical
                        # results
10
11
  A[4:17,3] = B
                        # replace a slice
13
 A[B==3]=4
                        # Set values in A to 4 at pos
                        # where there is a 3 in B
15
```

#### Manipulating tensors

```
# concatenate tensors
 torch.cat((tensors), axis)
3
  # split tensors into chunks of equal size
 torch.split(tensor, splitSize, dim=0)
6
  # reshape tensor w/o changing the data
 torch.view(tensor, shape)
9
 # Repeat along a given dimension
  X.repeat(4,2)
12
13 # transpose tensor
 torch.t(tensor) # 1D and 2D tensors
  torch.transpose(tensor, dim0, dim1)
16
17 # Sorting
torch.sort(input, dim=-1)
```

#### Tensor math

```
# Overloaded operators
x = A+Y*Z-B  # * is elementwise mul

# Sum, product, min, max of all elements
torch.sum(tensor) torch.min(tensor)
torch.prod(tensor) torch.max(tensor)

# Linear algebra
torch.mm(A, B)  # Matrix multiplication
torch.inverse(tensor)  # Matrix inversion
torch.det(tensor)  # Determinant
```

#### Elementwise operations

```
torch.exp(tensor) torch.log(tensor)
torch.cos(tensor) torch.cosh(tensor)
torch.sin(tensor) torch.sinh(tensor)
torch.tan(tensor) torch.tanh(tensor)

torch.add(tensor, tensor2) # or tensor+scalar
torch.div(tensor, tensor2) # or tensor/scalar
torch.mult(tensor,tensor2) # or tensor*scalar
torch.sub(tensor, tensor2) # or tensor*scalar
```

#### Content



DL Frameworks and Tensors



Automatic differentiation



Example: MLP for MNIST



Exercise: CNN for MNIST

#### Gradient descent

One optimizer step:

$$\theta^{[t+1]} = \theta^{[t]} + \nu \nabla \mathcal{L} \left( h(x, \theta), y^* \right)$$

The gradient is a vector of partial derivatives:

$$abla \mathcal{L} = egin{bmatrix} rac{\partial \mathcal{L}}{\partial heta_0} \ rac{\partial \mathcal{L}}{\partial heta_1} \ rac{\partial \mathcal{L}}{\partial heta_N} \end{bmatrix}$$

#### Autograd

In PyTorch (and some other frameworks), Autograd performs automatic differentiation through a sequence of tensor instructions of an imperative language.

Let's consider a simple linear operation:

$$w = [5 \ 3], \quad x = [7 \ 2], \quad y = wx^T$$

The gradient of y w.r.t to x is given as

$$\nabla = \left[\frac{\partial y}{\partial x_i}\right] = \left[\begin{array}{c} 5\\3 \end{array}\right]$$

The gradient of y w.r.t to w is given as

$$\nabla = \begin{bmatrix} \frac{\partial y}{\partial w_i} \end{bmatrix} = \begin{bmatrix} 7 \\ 1 \end{bmatrix}$$

#### Autograd

In PyTorch, we will first create the tensors:

```
w = torch.tensor([5, 3], dtype=float, requires_grad=True)
x = torch.tensor([7, 1], dtype=float, requires_grad=True)
```

The requires\_grad flag ensures that all calculations are tracked. We perform the linear operation:

```
y = torch.dot(w,x)
```

Since the tensor y has been calculated as result of operations on tracked tensors, it has a gradient function:

```
print (y)
```

```
tensor (38., dtype=torch.float64, grad_fn=<DotBackward>)
```

#### Autograd

We now run a backward pass on the variable y, which calculates gradients w.r.t. to all involved tensors:

```
y.backward()
```

The gradients are attached to each variable:

```
print (x.grad)
print (w.grad)
```

```
tensor([5., 3.], dtype=torch.float64)
tensor([7., 1.], dtype=torch.float64)
```

## Detaching tracking history

The tracking history uses memory in the tensor's space. If tracking is not used anymore for a tensor, it's tracking history can be detached:

```
print (y)

tensor(38., dtype=torch.float64, grad_fn=<DotBackward>)

z = y.detach()
print (z)

tensor(38., dtype=torch.float64)
```

#### Content



DL Frameworks and Tensors



Automatic differentiation



Example: MLP for MNIST



Exercise: CNN for MNIST

# Example: the MNIST dataset

A dataset of handwritten digits introduced by Yann LeCun in 1999 with 60 000 training images and 10 000 test images. One image is of size 28x28 pixels.



http://yann.lecun.com/exdb/mnist/

# MNIST: MLP performance

| linear classifier (1-layer NN)                  | none      | 12.0 | LeCun et al. 1998 |
|-------------------------------------------------|-----------|------|-------------------|
| linear classifier (1-layer NN)                  | deskewing | 8.4  | LeCun et al. 1998 |
| pairwise linear classifier                      | deskewing | 7.6  | LeCun et al. 1998 |
| Ir                                              |           |      | ٦١                |
| 2-layer NN, 300 hidden units, mean square error | none      | 4.7  | LeCun et al. 1998 |
| 2-layer NN, 300 HU, MSE, [distortions]          | none      | 3.6  | LeCun et al. 1998 |
| 2-layer NN, 300 HU                              | deskewing | 1.6  | LeCun et al. 1998 |
| 2-layer NN, 1000 hidden units                   | none      | 4.5  | LeCun et al. 1998 |
| 2-layer NN, 1000 HU, [distortions]              | none      | 3.8  | LeCun et al. 1998 |
| 3-layer NN, 300+100 hidden units                | none      | 3.05 | LeCun et al. 1998 |
| 3-layer NN, 300+100 HU [distortions]            | none      | 2.5  | LeCun et al. 1998 |
| 3-layer NN, 500+150 hidden units                | none      | 2.95 | LeCun et al. 1998 |
| 3-layer NN, 500+150 HU [distortions]            | none      | 2.45 | LeCun et al. 1998 |

(Validation performance)

## Writing Data Access

The MNIST dataset is supported by PyTorch through the Dataset class, which can even download the data from Yann Lecun's website:

#### Writing Data Access

Let's recall training through gradient descent:

$$\theta^{[t+1]} = \theta^{[t]} + \nu \nabla \mathcal{L}(h(x,\theta), y^*)$$

The gradient is rarely (never?) taken over the whole dataset, but over a single sample, or batches (mini-batches) of a certain size. These batches are sample randomly from the dataset.

The actual shuffling and batching is performed by a built-in PyTorch DataLoader class, which uses an instance of our Dataset subclass:

#### Tensor dimension conventions

PyTorch functions operate on multi-dimensional tensors and follow conventions on the order of dimensions.

- The first dimension is the batch dimension
  - ightharpoonup Use 1 if you don't use batches (= batches of size 1).
  - Losses are reduced (sum or mean) over samples in a batch
- the second dimension is the channel dimension
  - Use 1 if you don't use channels (= single channels).
  - Channel arithmetics will be explained in detail in the section on convolutions.
- the following dimensions are application dependant, e.g. rows, columns in images.

#### The model

```
class LogRegression(torch.nn.Module):
      def __init__(self):
2
           super(LogRegression, self).__init__()
3
4
          # input size to 10 output units
5
           self.fc1 = torch.nn.Linear(28*28, 10)
6
7
      def forward(self, x):
8
          # Reshape from a 3D tensor (batchsize, 28, 28)
9
        # to a flattened (batchsize, 28*28)
10
        # 1 sample = 1 vector
11
          x = x.view(-1, 28*28)
12
          return self.fc1(x)
13
```

## Set up the environment

```
1 # Instantiate the model
  model = LogRegression()
3
 # This criterion combines LogSoftMax and NLLLoss in
      one single class.
 crossentropy = torch.nn.CrossEntropyLoss()
6
 # Set up the optimizer: stochastic gradient descent
8 # with a learning rate of 0.01
9 optimizer = torch.optim.SGD(model.parameters(), lr
     =0.01)
10
11 # Init some statistics
  running_loss = 0.0
  running_correct = 0
14 running_count = 0
```

#### Iterative training

```
# Cycle through epochs
  for epoch in range (100):
3
     # Cycle through batches
4
     for batch_idx, (data, labels) in enumerate(
5
      train loader):
6
        # clear the gradients (they are accumulated)
7
        optimizer.zero_grad()
8
        # perform a forward pass and calc the loss
10
        y = model(data)
11
        loss = crossentropy(y, labels)
12
13
        # backward pass: calculate the gradients
14
        loss.backward()
15
16
        # accumulate the loss, perform one SGD step
17
        running_loss += loss.item()
18
        optimizer.step()
19
```

#### Track training error

```
# Calculate the winner class
      _{-}, predicted = torch.max(y.data, 1)
      # How many correct samples?
      running_correct += (predicted == labels).sum().item()
5
      running_count += BATCHSIZE
6
7
      # Every 100 batches, print statistics
      if (batch_idx \% 100) = 0:
10
      train_err = 100.0*(1.0-running_correct / running_count)
11
      print ('Epoch: %d batch: %5d' % (epoch + 1, batch_idx +
12
       1), end="")
       print ('train-loss: %.3f train-err: %.3f' % (
13
      running_loss / 100, train_err))
       running_loss = 0.0
14
       running\_correct = 0.0
15
      running_count = 0.0
16
```

## Logistic Regression: example output

```
Epoch:
          batch:
                      1 train—loss:
                                     0.026
                                            train—err:
                                                        94.000
Epoch:
          batch:
                    101 train—loss:
                                     0.981
                                            train -err:
                                                        25.020
                    201 train—loss:
Epoch:
       1 batch:
                                     0.538
                                            train — err:
                                                        13.260
Epoch:
       1 batch:
                    301 train—loss:
                                     0.467
                                            train-err:
                                                        12.700
Epoch:
       1 batch:
                    401 train—loss:
                                     0.425
                                            train—err:
                                                        11.380
Epoch:
       1 batch:
                    501 train—loss:
                                     0.414
                                            train — err:
                                                        11.820
Epoch:
       1 batch:
                    601 train—loss:
                                     0.384
                                            train — err:
                                                        11.000
Epoch:
       1 batch:
                    701 train—loss:
                                     0.370
                                           train — err:
                                                        10.180
Epoch:
       1 batch:
                    801 train—loss:
                                     0.374
                                            train — err:
                                                        10.780
Epoch:
       1 batch:
                    901 train—loss:
                                     0.349
                                            train — err:
                                                        9.480
Epoch:
       1 batch:
                   1001 train—loss:
                                     0.347
                                            train — err:
                                                        9.840
Epoch:
          batch:
                   1101 train—loss:
                                     0.350
                                            train — err:
                                                        9.920
Epoch: 2 batch:
                      1 train—loss:
                                     0.347 train—err:
                                                        10.100
(...)
                    1001
Epoch:
       10
           batch:
                         train-loss: 0.277 train-err:
                                                         8.140
Epoch:
       10
           batch:
                    1101 train—loss:
                                      0.277 train—err:
                                                         7.660
                                      0.268 train—err:
Epoch:
       11
           batch:
                       1 train—loss:
                                                         7.700
```

This is training error, not validation error, i.e. **NOT** representative of the performance of the model!

#### Content



DL Frameworks and Tensors



Automatic differentiation



Example: MLP for MNIST



Exercise: CNN for MNIST

#### LeNet: example output

**Exercise:** create a convolution model similar to LeNet:

- One conv layer with  $5\times5$  filters and 20 output channels.
- One conv layer with  $5\times5$  filters and 50 output channels.
- One hidden layer with 500 units
- One output layer with 10 units (=digit classes)
- ReLU activation functions
- Max pooling  $(2\times2)$  after each convolutional layer

#### **Questions:**

- How many filters does each layer have?
- How many trainable parameters does each layer have?
- What are the dimensions and sizes of the each output tensor?

## LeNet: example output

```
Epoch:
       1 batch:
                     1 train—loss: 0.024 train—err:
                                                     98.000
Epoch: 1 batch:
                                                     36.140
                   101 train—loss:
                                   1.576 train—err:
Epoch: 1 batch:
                   201 train—loss: 0.747 train—err:
                                                     16.320
Epoch: 1 batch:
                   301 train—loss:
                                          train—err:
                                                     12.880
                                   0.539
Epoch: 1 batch:
                   401 train—loss: 0.481 train—err:
                                                     13.000
Epoch: 1 batch:
                   501 train—loss: 0.414 train—err:
                                                     11.280
Epoch:
                   601 train—loss:
                                                     10.380
      1 batch:
                                   0.386 train—err:
Epoch: 1 batch:
                   701 train—loss:
                                   0.385 train—err:
                                                     10.900
Epoch: 1 batch:
                                   0.363 train—err:
                                                     10.540
                   801 train—loss:
Epoch: 1 batch:
                   901 train-loss: 0.320 train-err: 9.120
Epoch: 1 batch:
                  1001 train—loss: 0.323 train—err: 8.920
Epoch: 1 batch:
                  1101 train—loss: 0.325 train—err:
                                                     9.400
Epoch: 2 batch:
                     1 train—loss: 0.304 train—err: 8.880
(...)
Epoch: 75 batch:
                    801 train—loss: 0.007 train—err:
                                                      0.000
                    901 train—loss: 0.007 train—err:
Epoch:
      75
          batch:
                                                      0.020
Epoch:
      75
          batch:
                   1001
                       train-loss: 0.008 train-err:
                                                      0.000
```

This is training error, not validation error, i.e. **NOT** representative of the performance of the model!

1101 train—loss: 0.009 train—err:

0.040

Epoch: 75 batch: