6 Integralrechnung

6.1 Riemann-Integrale

(siehe Walter: Analysis I)

Definition 6.1. Sei $f:[a,b]\to\mathbb{R}$ beschränkt. Eine Zerlegung Z von [a,b] ist eine Menge der Form

$$Z = \{(t_0, t_1, \dots, t_n), (\tau_1, \tau_2, \dots, \tau_n) : a = t_0 < t_1 < \dots < t_n = b,$$

$$\tau_k \in I_k := [t_{k-1}, t_k] \text{ für } k = 1, \dots, n\},$$

wobei $n \in \mathbb{N}$ beliebig. $\mathcal{Z}(a,b)$ ist die Menge aller Zerlegungen von [a,b]. Die Riemann-Summe von f bzgl. $Z \in \mathcal{Z}(a,b)$ ist

$$S(f,Z) = \sum_{k=1}^{n} f(\tau_k)(t_k - t_{k-1}).$$

Man setzt $d_k = t_k - t_{k-1}$ und $|Z| = \max_{k=1,\dots,n} d_k$ (Feinheit). t_k heißt Teilungspunkt, τ_k heißt Stützstelle. Kurzschreibweise: $Z = \{t_k, \tau_k, k \leq n\}$. f heißt Riemann-integrierbar, falls es ein $J \in \mathbb{R}$ gibt, sodass für jede Folge $(Z_n) \subseteq \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$ gilt: $\exists \lim_{n \to \infty} S(f, Z_n) = J$. Dann heißt J das Riemann-Integral von f. Man schreibt

$$J = \int_{a}^{b} f(x) \, \mathrm{d}x.$$

Ferner $R([a,b]):=\{f:[a,b]\to\mathbb{R}:f \text{ ist beschränkt und Riemann-integrierbar}\}.$

Lemma 6.2 (CAUCHY-Kriterium). Sei $f : [a, b] \to \mathbb{R}$ beschränkt und $J \in \mathbb{R}$. Dann sind äquivalent:

a) f ist Riemann-integrierbar mit
$$J = \int_a^b f(x) dx$$

b) $\forall \varepsilon > 0 \ \exists \delta_{\varepsilon} > 0 \ \forall Z, Z' \in \mathcal{Z}(a,b) \ mit \ |Z|, |Z'| \leq \delta_{\varepsilon} \ gilt:$

$$|S(f,Z) - S(f,Z')| \le \varepsilon \tag{6.1}$$

Beweis. b) \Rightarrow a) Es gelte (6.1). Sei $Z_n \in \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$. Wähle $\varepsilon > 0$. Sei $\delta_{\varepsilon} > 0$ aus (6.1). Dann $\exists N_{\varepsilon} \in \mathbb{N}$ mit $|Z_j| \le \delta_{\varepsilon}$ für alle $j \ge N_{\varepsilon}$. (6.1) liefert $|S(f, Z_n) - S(f, Z_m)| \le \varepsilon$ für alle $n, m \ge N_{\varepsilon}$. Thm. 2.26 zeigt $\exists \lim_{m \to \infty} S(f, Z_m) = J$. Damit $|S(f, Z_n) - J| \le \varepsilon$ $(\forall n \ge N_{\varepsilon})$ (*) Sei $Z'_n \in \mathcal{Z}(a,b)$ mit $|Z'_n| \to 0$ $(n \to \infty)$. Dann $\exists N'_{\varepsilon} \ge N_{\varepsilon}$ mit $|Z'_n| \le \delta_{\varepsilon}$ für alle $n \ge N'_{\varepsilon} \stackrel{\text{f.1}}{\Longrightarrow} |S(f, Z_n) - S(f, Z'_n)| \le \varepsilon \ \forall n \ge N'_{\varepsilon}$ (**) $\Longrightarrow |S(f, Z'_n) - J| \le |S(f, Z'_n) - S(f, Z_n)| + |S(f, Z_n) - J| \le 2\varepsilon$ für alle $n \ge N'_{\varepsilon}$, nach (*), (**). $\Longrightarrow \exists \int_a^b f(x) \, dx = J$

- a) \Rightarrow b) f sei Riemann-integrierbar. Annahme: (6.1) sei falsch, also $\exists \varepsilon_0 > 0 \ \forall n \in \mathbb{N} \ \exists Z_n, Z'_n \in \mathcal{Z}(a,b) \ \text{mit} \ |Z_n|, |Z'_n| < \frac{1}{n}, \ \text{aber} \ |\underbrace{S(f,Z_n)}_{\text{n.V.} \to J} \underbrace{S(f,Z'_n)}_{\to J \ (n \to \infty)}| > \varepsilon \not\downarrow$
- **Beispiel 6.3.** a) Sei $a \leq c \leq d \leq b$, $\alpha \in \mathbb{R}$. Setze $f = \alpha \mathbf{1}_{[c,d]}$. Dann ist f Riemann-integrierbar und $\int_a^b f(x) \, \mathrm{d}x = \alpha(d-c)$. Speziell $\int_a^b \alpha \, \mathrm{d}x = \alpha(b-a)$, $\int_a^b \alpha \mathbf{1}_{[c,c]}(x) \, \mathrm{d}x = 0$.

Beweis. Sei $\varepsilon > 0$ gegeben. Sei $Z = \{t_j, \ \tau_j, \ j \le n\} \in \mathcal{Z}(a,b)$ mit $|Z| \le \varepsilon$. Seien $l \le m \le n$, sodass $c \in I_l$, $d \in I_m$. Dann $f(\tau_j) = \alpha$ für l < j < m und $f(\tau_j) = 0$ für j < l-1 und j > m+1.

$$|S(f,Z) - \alpha(d-c)| = \left| \sum_{j=l-1}^{m+1} f(\tau_j) d_j - \left(\sum_{j=l+1}^{m-1} \alpha d_j + \alpha \left(t_l - c + d - t_{m-1} \right) \right) \right| \\ \leq 6 |\alpha| |Z| \leq 6 |\alpha| \varepsilon$$

Mit $|Z_n| \to 0 \ (n \to \infty)$ folgt Beh.

b) Sei $f = \mathbf{1}_{\mathbb{Q} \cap [0,1]}$. Behauptung. f ist nicht Riemann-Integrierbar.

Beweis. Sei $n \in \mathbb{N}$ gegeben. Setze $Z = \{t_k = \frac{k}{n}, k = 0, \dots, b; \tau_k = t_{k-1} \in \mathbb{Q}\},$ $Z' = \{t' = \frac{k}{n}, \tau'_k = \frac{k}{n} + \frac{\sqrt{2}}{2} \cdot \frac{1}{n}, k = 1, \dots, n\}. \implies |Z| = |Z'| = \frac{1}{n},$

$$S(f,Z) = \sum_{k=1}^{n} \underbrace{f(\tau_k)}_{=1} \cdot \frac{1}{n} = 1, \ S(f,Z') = \sum_{k=1}^{n} \underbrace{f(\tau'_k)}_{=0} \cdot \frac{1}{n} = 0$$

 \Longrightarrow (6.1) kann für $\varepsilon = \frac{1}{2}$ nicht gelten.

Bemerkung 6.4 (Verfeinerung). Seien $Z = \{t_k, \ \tau_k, \ k \leq n\} \in \mathcal{Z}(a,b)$ und $t'_1, \ldots, t'_l \in [a,b]$. Ordne die $t_k, \ t'_j$ zu $a = \hat{t}_0 < \hat{t}_1 < \cdots < \hat{t}_m = b$. Setze $\hat{I}_j = [\hat{t}_{j-1}, \hat{t}_j], \ \hat{d}_j = \hat{t}_j - \hat{t}_{j-1}$. Wenn $\hat{I}_j \subseteq [t_{k-1}, t_k]$, dann definiere Stützstellen $\hat{\tau}_j = \tau_k$. Dann ist $S(f, Z) = \sum_{j=1}^m f(\hat{\tau}_j)\hat{d}_j$ im Allgemeinen keine Riemann-Summe, weil u. U. $\hat{\tau}_j \notin \hat{I}_j$.

Satz 6.5. $C([a,b]) \subset R([a,b])$

Beweis. Sei $\varepsilon > 0$ und $f:[a,b] \to \mathbb{R}$ stetig. Thm 4.16 $\Longrightarrow f$ ist gleichmäßig stetig, d.h.

$$\exists \delta_{\varepsilon} > 0 \ \forall x, y \in [a, b] \ \text{mit} \ |x - y| \le \delta_{\varepsilon} \ \text{gilt:} \ |f(x) - f(y)| \le \varepsilon$$
 (*)

Seien $Z = \{t_k, \ \tau_k\}, Z' = \{t_k', \ \tau_k'\} \in \mathcal{Z}(a,b)$ mit $|Z|, |Z'| \leq \frac{\delta_{\varepsilon}}{2}$. Verfeinere Z und Z' wie in Bem. 6.4 zu den gemeinsamen Teilungspunkten $\{t_k, t_i\} = \{\hat{t}_j\}$. Erhalte dabei Stützstellen $\hat{\tau}_j$ zu Z und $\hat{\tau}_j'$ zu Z', wobei $|\hat{\tau}_j - \hat{\tau}_j'| \leq 2\frac{\delta_{\varepsilon}}{2} = \delta_{\varepsilon}$, weil $\hat{I}_j \subseteq I_k \cap I_{l_j}'$ und $\hat{\tau}_j \in I_{k_j}, \ \hat{\tau}_j' \in \hat{I}_{l_j}$. Somit

$$|S(f,Z) - S(f,Z')| \stackrel{6.4}{=} \left| \sum_{j=1}^{m} f(\hat{\tau}_j) \hat{d}_j - \sum_{j=1}^{m} f(\hat{\tau}'j) \hat{d}_j \right| \leq \sum_{j=1}^{m} \underbrace{|f(\hat{\tau}_j) - f(\hat{\tau}'j)|}_{\stackrel{*}{=} \varepsilon} \hat{d}_j \leq \varepsilon(b-a)$$

Lemma $6.2 \implies Beh.$

Satz 6.6. Seien $f, g \in R([a,b]), \ \alpha, \beta \in \mathbb{R}, \ c \in [a,b], \ h : [a,b] \to \mathbb{R}$ beschränkt. Dann gelten:

a)
$$\alpha f + \beta g \in R([a,b])$$
 und $\int_a^b (\alpha f(x) + \beta g(x)) dx = \alpha \int_a^b f(x) dx + \beta \int_a^b g(x) dx$

b) Wenn
$$f(x) \leq g(x)$$
 ($\forall x \in [a,b]$), $dann \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$.

$$Speziell \left| \int_{a}^{b} f(x) dx \right| \leq (b-a) \sup_{a \leq x \leq b} |f(x)|.$$

c)
$$|f| \in R([a,b])$$
 und $\left| \int_a^b f(x) \, dx \right| \le \int_a^b |f(x)| \, dx$.

d)
$$h \in R([a,b]) \iff h|_{[a,c]} \in R([a,c]) \land h|_{[c,b]} \in R([c,b]).$$

$$Dann \int_a^b h(x) dx = \int_a^c h(x) dx + \int_c^b h(x) dx.$$

Beweis. Sei $Z_n = \{t_{j,n}; \tau_{j,n}; j \leq m_n\} \in \mathcal{Z}(a,b)$ mit $|Z_n| \to 0$ $(n \to \infty)$. Setze $d_{j,n} = t_{j,n} - t_{j-1,n}$.

a)

$$S(\alpha f + \beta g, Z_n) = \sum_{j=1}^{m_n} \alpha f(\tau_{j,n}) + \beta f(\tau_{j,n}) d_{j,n} = \alpha \underbrace{\sum_{j=1}^{m_n} f(\tau_{j,n}) d_{j,n}}_{\rightarrow \int_a^b f(x) dx} + \beta \underbrace{\sum_{j=1}^{m_n} g(\tau_{j,n}) d_{j,n}}_{\rightarrow \int_a^b g(x) dx \ (n \to \infty)}$$

b)
$$\underbrace{S(f, Z_n)}_{\substack{b \\ \rightarrow \int_a^b f(x) \, dx}} = \sum_{j=1}^{m_n} f(\tau_{j,n}) d_{j,n} \overset{\text{n.V.}}{\leq} \sum_{j=1}^{m_n} g(\tau_{j,n}) d_{j,n} = \underbrace{S(g, Z_n)}_{\substack{b \\ \rightarrow \int_a^b g(x) \, dx}}$$

- c) Abschätzung folgt aus $\pm f \leq \mathbf{1}_{[a,b]} \sup |f|$. Siehe Ilias.
- d) Siehe Ilias.

Man setzt für $f \in R([a,b])$, $a \le b \int_b^a f(x) dx := -\int_a^b f(x) dx$. Auch in diesem Fall gilt Satz 6.6 entsprechend.

6.2 Hauptsatz der Differential- und Integralrechnung

Definition 6.7. Sei $f:[a,b] \to \mathbb{R}$. Eine Funktion $F:[a,b] \to \mathbb{R}$ heißt Stammfunktion von f, wenn F differenzierbar ist und F'=f ist. Man schreibt $F=\int f \ \mathrm{d}t = \int f = f^{[1]}$. Beachte: mit F ist auch die Funktion F(x)+c für ein beliebiges $c\in\mathbb{R}$ $(x\in[a,b])$ eine Stammfunktion von f.

Lemma 6.8. Sei $f \in R([a,b])$ und f sei stetig bei $x_0 \in [a,b]$. Dann ist das unbestimmte Integral $F_0(x) = \int_a^x f(t) dt$, $x \in [a,b]$, differenzierbar bei x_0 und $F'(x_0) = f(x_0)$.

Beweis. Sei $x \in [a, b] \setminus \{x_0\}$. Dann

$$\left| \frac{1}{x - x_0} \left(F_0(x) - F_0(x_0) \right) - f(x_0) \right| \stackrel{\text{Bsp. 6.3}}{=}$$

$$\left| \frac{1}{x - x_0} \left(\int_a^x f(t) \, dt - \int_a^{x_0} f(t) \, dt \right) - \frac{1}{x - x_0} \int_{x_0}^x f(x_0) \, dt \right| \stackrel{\text{Satz 6.6}}{=}$$

$$\frac{1}{|x - x_0|} \left| \int_{x_0}^x \left(f(t) - f(x_0) \right) \, dt \right| \stackrel{\text{Satz 6.6}}{\leq} \frac{1}{|x - x_0|} |x - x_0| \underbrace{\sup_{|x_0 - t| \le |x - x_0|} |f(t) - f(x_0)|}_{\to 0 \ (x \to x_0)}$$

Theorem 6.9 (Hauptsatz der Differential- und Integralrechnung). a) $Sei f \in C([a, b])$. Dann ist jede Stammfunktion F gegeben durch

$$F(x) = F(a) + \int_{a}^{x} f(t) dt \quad (\forall x \in [a, b]).$$

Speziell x = b:

$$\int_{a}^{b} f(t) dt = F(b) - F(a) =: F|_{b}^{a}.$$

b) Sei
$$g \in C^1([a, b])$$
. Dann $\int_a^b g'(t) dt = g(b) - g(a)$.

Beweis. a) Lem. 6.8 $\Longrightarrow F_0(x) = \int_0^x f(t) dt$ ist eine Stammfunktion von f. Sei F eine weitere Stammfunktion von f. Dann $(F - F_0)' = f - f = 0 \xrightarrow{\text{TODO 5.20}} F(x) - F_0(a) = F(a) - F_0(a) = F(a)$.

b) folgt aus 1 mit f = g'.

Bemerkung. Für unstetige $f,\,g'$ ist der Hauptsatz viel schwieriger und zum Teil falsch. Ein Beispiel ist

 $g(x) = \begin{cases} x^{\frac{3}{2}} \cos \frac{1}{x} & , 0 < x \le 1\\ 0 & , x = 0. \end{cases}$

Wie in Bsp. TODO 5.11: g ist auf [0,1] differenzierbar und $g'(x) = \frac{3}{2}\sqrt{x}\sin\frac{1}{x}$, $x > 0 \implies g$ ist unbeschränkt und somit nicht Riemann-integrierbar. Also ist 6.9 2 nicht sinnvoll.

Beispiel 6.10. a) Wir kennen schon zahlreiche Stammfunktionen aus Kapitel 5.

b) Sei $f(x) = \sum_{n=0}^{\infty} a_n x^n$, $|x| < \varrho$ = Konvergenzradius. Betrachte $F(x) = \sum_{n=1}^{\infty} \frac{1}{n+1} a_n x^{n+1}$. Wie im Beweis von Thm. TODO 5.9 zeigt man, dass F den gleichen Konvergenzradius $\varrho > 0$ hat. Thm. TODO 5.9 $\Longrightarrow F'(x) = f(x)$, $|x| < \varrho$. F ist also eine Stammfunktion von f. Beispiel:

$$f(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-x^2)^n = \sum_{n=0}^{\infty} (-1)^n x^{2n} \quad (|x| < 1)$$

$$\implies F(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \quad (|x| < 1)$$

ist Stammfunktion von f. Weitere Stammfunktion ist arctan. Da arctan 0 = 0 = F(x), folgt

$$\arctan x = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} x^{2n+1} \quad (|x| < 1).$$

c) Fläche A zwischen $f(x) = e^x$ und $g(x) = x^2 - \pi x$ $(0 \le x \le \pi)$. Beachte $f(\pi) \ge 0 \ge g(x)$ für alle $x \in [0, \pi]$. Also

$$A = \int_{0}^{\pi} (f(x) - g(x)) dx \stackrel{\text{HS}}{=} \left(e^{x} - \left(\frac{1}{3} x^{3} - \frac{\pi}{2} x^{2} \right) \right) \Big|_{0}^{\pi}$$
$$= e^{\pi} - \left(\frac{1}{3} \pi^{3} - \frac{\pi}{2} \pi^{2} \right) - (1 - 0) = e^{\pi} - \frac{\pi^{3}}{6} - 1.$$

Satz 6.11.

Beispiel 6.12.

Satz 6.13.

Beispiel 6.14.

Bemerkung 6.15 (Integration rationaler Funktionen). Sei $f(x) = \frac{p(x)}{q(x)}$, wobei p, q reelle gekürzte Polynome, q sei nicht konstant 0, höchster Koeffizient von p und q sei gleich 1.

- a) Polynomdivison: es existieren Polynome p_0 , r mit grad $p_0 \leq \operatorname{grad} q$, sodass $f = r + \frac{p_0}{q}$. $\implies r$ kann integriert werden
- b) Fundamentalsatz der Algebra: $\exists !\ z_1,\ldots,z_m\in\mathbb{C}\ (\text{mit}\ z_i\neq z_j\ \text{für}\ i\neq j)$ und $\exists !\ n_1,\ldots,n_m\in\mathbb{N},\ \text{sodass:}\ q(x)=(x-z_1)^{n_1}\cdot\ldots\cdot(x-z_m)^{n_m}.$
- c) Komplexe Partialbruchzerlegung (TODO Königsberger §4.3): $\exists ! \ c_{jk} \in \mathbb{C}$:

$$\frac{p_0(x)}{q(x)} = \frac{c_{11}}{(x - z_1)} + \dots + \frac{c_{1n_1}}{(x - z_1)^{n_1}} + \dots + \frac{c_{m1}}{(x - z_m)} + \dots + \frac{c_{mn_m}}{(x - z_m)^{n_m}}$$
(6.2)

- d) Integration:
 - a) Terme mit $c_{jk}, z_j \in \mathbb{R}$ in (6.2) können integriert werden (man hat Formel für Stammfunktion)
 - b) Komplexer Fall für Nennerpotenz k=1: Da p_0 , q reell sind, gilt (für $x \in \mathbb{C}$):

$$\frac{p_0(x)}{q(x)} = \frac{\overline{p_0(\overline{x})}}{q(\overline{x})} \stackrel{(6.2)}{=} \sum_{j,k} \frac{c_{jk}}{(\overline{x} - z_j)^k} = \sum_{j,k} \frac{\overline{c_{jk}}}{(x - z_j)^k}$$

Da (6.2) eindeutig ist, gilt: wenn $c_{jk}, z_j \notin \mathbb{R}$, dann $\exists l \neq j$, sodass $\overline{z_j} = z_l$ und $\overline{c_{jk}} = c_{lk}$ (gleiches k). Für k = 1 treten im komplexen Fall also Terme der Form auf:

$$\frac{c}{x-z} + \frac{\overline{c}}{x-\overline{z}} = \frac{(c+\overline{c})x - (c\overline{z} + \overline{c}z)}{(x-z)(x-\overline{z})} = \frac{2\operatorname{Re}(c)x - 2\operatorname{Re}(c\overline{z})}{x^2 - 2\operatorname{Re}(z)x + |z|^2} =: \frac{ax+b}{x^2 + \alpha x + \beta},$$
(6.3)

mit $a, b, \alpha, \beta \in \mathbb{R}, \beta > \frac{\alpha^2}{4}$. Übung: Stammfunktion für (6.3)

e) Komplexer Fall für k > 1: Mit komplexer Integration erhält man:

$$\int \left(\frac{c}{(t-z)^k} + \frac{\overline{c}}{(t-\overline{z})^k}\right) dt = \frac{-2\operatorname{Re}\left(c(x-\overline{z})^k\right)}{(k+1)\left(x^2 - 2\operatorname{Re}\left(z\right)x + |z|^2\right)^{k-1}}$$
(6.4)

(siehe TODO Amann/Escher: Analysis II, Bem. II.5.10) reelle Methode: Walter, Analysis I, §11.5

Fazit. 2 zugestanden, findet man Formel für eine Stammfunktion von f.

Beispiel. a) Seien $a, b \in \mathbb{R}$ gegeben, $a \neq b, x \in \mathbb{R} \setminus \{a, b\}$.

$$f(x) = \frac{1}{(x-a)(x-b)} \stackrel{\text{(6.2), Ansatz}}{=} \frac{c_1}{x-a} + \frac{c_2}{x-b} \implies 1 = c_1(x-b) + c_2(x-a) \quad (*)$$

(für zu bestimmende $c_1, c_2 \in \mathbb{R}$)

Berechne c_1, c_2 : (*) gilt nach stetiger Fortsetzung für alle $x \in \mathbb{R}$. Einsetzen:

$$x = a: \quad 1 = c_1(a - b) \neq 0 \qquad \Longrightarrow c_1 = \frac{1}{a - b}$$

$$x = b: \quad 1 = 0 + c_2(b - a) \qquad \Longrightarrow c_2 = \frac{1}{b - a}$$

$$\Longrightarrow f(x) = \frac{1}{b - a} \left(-\frac{1}{x - a} + \frac{1}{x - b} \right)$$

$$\Longrightarrow \int f(t) dt = -\frac{1}{b - a} \left(\int \frac{dt}{t - a} - \int \frac{dt}{t - b} \right)$$

$$= -\frac{1}{b - a} (\ln|x - a| - \ln|x - b|)$$

$$= \frac{1}{a - b} \ln \left| \frac{x - a}{x - b} \right| \quad (x \neq a, b) \text{ (Probe!)}$$

b)
$$f(x) = \frac{x}{(1+x^2)(x-1)^2} \quad (x \neq 1)$$

Ansatz mit (6.2) und (6.3):

$$f(x) = \frac{a}{x-1} + \frac{b}{(x-1)^2} + \frac{cx+d}{1+x^2}, \text{ wobei } a, b, c, d \in \mathbb{R} \text{ zu bestimmen sind}$$

$$\implies x = a(x-1)(1+x^2) + b(1+x^2) + (cx+d)(x-1)^2 \tag{*}$$

Einsetzen:

$$x = 1: \quad 1 = 0 + 2b + 0 \qquad \Longrightarrow b = \frac{1}{2}$$

$$x = 0: \quad 0 = -a + b + d \quad \Longrightarrow a - d = \frac{1}{2}$$

$$(+)$$

Koeffizientenvergleich (vgl. Thm. TODO 5.28):

für
$$x^2$$
: $0 = a + 0 + c$ $\implies c = -a$
für x^3 : $0 = -a + b - 2c + d = -a + \frac{1}{2} + 2c + d$ $\implies a + b = -\frac{1}{2}$ (++)
(+) und (++): $2a = 0$ $\implies a = 0 = c$, $d = -\frac{1}{2}$
 $\implies f(x) = \frac{\frac{1}{2}}{(x-1)^2} - \frac{\frac{1}{2}}{1+x^2}$
 $\implies \int f(t) dt = \frac{1}{2} \int \left(\frac{1}{(t-1)^2} - \frac{1}{1+t^2}\right) dt = -\frac{1}{2} \left(\frac{1}{x-1} + \arctan x\right)$

6.3 Skalare Differentialgleichungen erster Ordnung

Beispiel (Zinseszins). Gegeben seien Anfangskapital u_0 , Anlage dauert Zinsrate nach Zeit $\frac{t}{n}$ mit Wiederanlage der Zinsen. u_k sei Kapital zur Zeit $\frac{kt}{n}$, $k = 0, \ldots, n$ $(n \in \mathbb{N})$.

$$\implies u_1 = u_0 + \frac{at}{n}u_0 = \left(1 + \frac{at}{n}\right)u_0$$

$$u_2 = u_1 + \frac{at}{n}u_1 = \left(1 + \frac{at}{n}\right)^2 u_0$$
iterativ: $u_n = \left(1 + \frac{at}{n}\right)^n u_0$

"instantane Wiederanlage" =TODO " $n \to \infty$ ". Damit $u_n \to e^{at}u_0$ (vgl. Aufg. 5.6, Aufg. 12.3 e). $\leadsto u(t) = e^{at}u_0$ = Kapital zur Zeit t bei instantaner Wiederanlage.

Nach Bem. TODO 5.21 ist $u \in C^1(\mathbb{R})$ die einzige Lösung von

$$\begin{cases} u'(t) = au(t) \\ u(0) = u_0 \end{cases} \quad (a, u_0 \in \mathbb{R} \text{ gegeben})$$

Andere Interpretation: $a = \frac{u'(t)}{u(t)} = \text{momentane}$, relative Änderung des Kapitals ("pro Kopf"). Weitere Beispiele für diese Differentialgleichung: Radioaktiver Zerfall (a < 0), Populationswachstum bei unbeschränktem Nahrungsangebot (u(t) = Stoffmenge)

 $\frac{u'}{u}=a$ " ist unplausibel für Population (etwa da $u(t)\to\infty$ $(t\to\infty)$ für a>0). Verhulst (1837): Gesetz für begrenztes Wachstum: $\frac{u'(t)}{u(t)}=\lambda-\frac{\lambda u(t)}{u_\infty}$ ist u(t)-abhängig. "mehr Konkurrenten" =TODO u(t) groß =TODO weniger Wachstum

$$\implies \begin{cases} u'(t) = \lambda \left(1 - \frac{u(t)}{u_{\infty}}\right) u(t) \\ u(0) = u_0 \end{cases}, \quad t \ge 0.$$
 (6.5)

Gegeben sind $\lambda, u_0, u_\infty > 0$ (λ : Wachstumsparameter, u_∞ : Sättigungsparameter, u_0 : Anfangswert). Gesucht: $u \in C^1(\mathbb{R}_+)$, das (6.5) für $t \geq 0$ löst.

Bemerkung. Spezielle, "stationäre" Lösungen: u(t) = 0 mit $u_0 = 0$ oder $u(t) = u_\infty$ mit $u_0 = u_\infty$ (für alle $t \in \mathbb{R}$). Im folgenden sei $u_0 \neq u_\infty$, $u_0 > 0$.

Lösung von (6.5): Wir nehmen an, es gebe eine Lösung $u \in C^1([0, b])$ von (6.5). Wenn $u_0 > u_\infty$ ($u_0 < u_\infty$), dann existiert ein $t_0 > 0$, sodass u(t) > 0, $u(t) > u_\infty$ ($u(t) < u_\infty$) für alle $0 \le t \le t_0$ (da u stetig und $u(0) = u_0$).

$$(6.5) \implies \frac{u'(s)}{(u_{\infty} - u(s))u(s)} = \frac{\lambda}{u_{\infty}} \quad (\forall \ 0 \le s \le t_0)$$

$$\xrightarrow{\int_0^t \dots ds} \int_0^t \frac{u'(s)}{(u_\infty - u(s))u(s)} ds = \int_0^t \frac{\lambda}{u_\infty} ds = \frac{\lambda}{u_\infty} t \quad (\forall \ 0 \le t \le t_0)$$

Substitution: x = u(s), $\frac{dx}{ds} = u'(s)$, $u(0) = u_0$

$$\Rightarrow \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{(u_\infty - x)x} = \frac{1}{u_\infty} \ln \frac{x}{|x - u_\infty|} \Big|_{u_0}^{u(t)}$$

$$\xrightarrow{x>0} \frac{1}{u_\infty} \ln \frac{u(t)}{|u(t) - u_\infty|} = \frac{\lambda}{u_\infty} t + \frac{1}{u_\infty} \ln \frac{u_0}{|u_0 - u_\infty|}$$

$$\xrightarrow{u_\infty, \text{ exp}} \frac{u(t)}{|u(t) - u_\infty|} = e^{\lambda t} \frac{u_0}{|u_0 - u_\infty|}$$

$$\Rightarrow u(t) = \frac{u_0 u_\infty}{u_0 + (u_\infty - u_0)e^{\lambda t}}.$$

Probe zeigt, dass dieses u (6.5) für alle $t \ge 0$ löst. Es gilt:

- u(t) > 0 für alle $t \ge 0$ ($u_0 > 0$) (biologisch sinnvoll)
- $u(t) \to u_{\infty}$ für $t \to \infty$
- u(t) wächst und $u(t) < u_{\infty} \ (\forall t > 0)$, falls $u_0 < u_{\infty}$
- u(t) fällt und $u(t) > u_{\infty}$ ($\forall t > 0$), falls $u_0 > u_{\infty}$

Gegeben sei $f \in C([a, b])$, $g \in C(\mathbb{R}_+)$, $u_0 \in (a, b)$. Suchen $u \in C^1([0, \tau))$ und $\tau \in (0, \infty)$, sodass $u(t) \in (a, b)$ für alle $t \in [0, \tau)$ und

$$\begin{cases} u'(t) = g(t)f(u(t)), \\ u(0) = u_0 \end{cases}, \quad 0 \le t < \tau.$$
 (6.6)

(in (6.5):
$$f(x) = \left(1 - \frac{x}{u_{\infty}}\right) x$$
, $g(x) = \lambda$)

Satz 6.16 (Trennung der Variablen). Sei $f \in C((a,b))$, $g \in C(\mathbb{R}_+)$, $u_0 \in (a,b)$, $f(u_0) \neq 0$. Dann existiert ein $t_0 > 0$ und eine eindeutige Lösung $u \in C^1([0,t_0])$ von (6.6).

Beweis. Sei etwa $f(u_0) > 0$ und $\tau > 0$. Wähle $\varepsilon \in (0, f(u_0))$. Da f stetig ist, existiert $\delta > 0$ mit f(x) > 0 für alle $x \in [u_0 - \delta, u_0 + \delta] \subseteq (a, b)$. Sei $M := \max_{|x-u_0| \le \delta} f(x) < \infty$ (Satz vom Maximum). Setze $t_0 = \min \{\frac{\delta}{Mc}, T\}, c = \max_{0 \le t \le T} |g(t)|$.

a) Eindeutigkeit: Sie $u \in C^1([0,\tau))$ eine Lösung von (6.6). Annahme: $\tau > t_0$ und es existiere $t_1 \in (0,t_0)$ mit $|u(s)-u_0| \leq \delta$ für alle $0 \leq s < t_1$ und $|u(t_1)-u_0| = \delta$.

$$\implies |u(t_1) - u_0| \stackrel{\text{HS}}{=} \left| \int_0^{t_1} \underbrace{u'(s)}_{\stackrel{(6.6)}{=} f(u(s))g(s)} ds \right|$$

$$\stackrel{\text{Satz 6.6}}{\leq} \int_0^{t_1} |f(u(s))| |g(s)| ds \leq \int_0^{t_1} Mc \, ds \leq Mct_1 < Mct_0 = \delta \quad \cancel{\xi}$$

 $\implies |u(s) - u_0| \le \delta$ für alle $0 \le s < \min\{t_0, T\} =: \bar{t}$. Damit $(6.6) \implies \frac{u'(s)}{f(u(s))} = g(s)$.

$$\implies G(t) := \int_{0}^{t} g(s) \, \mathrm{d}s = \int_{0}^{t} u'(s) \, \mathrm{d}f(u(s)) s \stackrel{x=u(s)}{=} \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{f(x)} \quad \text{für alle } 0 \le t < \bar{t}$$

$$\tag{6.7}$$

Setze $H(y) = \int_{u_0}^{y} \mathrm{d}x f(x)$ für $y \in [u_0 - \delta, u_0 + \delta] \implies H(u(t)) = G(t)$. H ist strikt wachsend

$$u(t) = H^{-1}(G(t)) \quad (\forall \ 0 \le t < \bar{t})$$
 (6.8)

b) Existenz: Sei u durch (6.8) für $0 \le t \le t_0$ gegeben. Dann $u(0) = H^{-1}(G(0)) = H^{-1}(0) = u_0$. Kettenregel und Umkehrsatz liefern:

$$\exists u'(t) = \frac{1}{H'(H^{-1}(G(t)))}G'(t) \stackrel{\text{HS}}{=} \frac{1}{H'(u(t))} \stackrel{\text{HS}}{=} \frac{1}{\frac{1}{f(u(t))}}g(t) = f(u(t))g(t)$$

 $\implies u \text{ löst } (6.6).$

Fazit: u aus (6.8) ist eine Lösung von (6.6) und jede weitere Lösung ist auf $[0, t_0]$ gleich diesem u und kann, falls $\tau < t_0$, zu u auf $[0, t_0]$ fortgesetzt werden.

Beispiel 6.17. a)

Betrachte
$$\begin{cases} u'(t) = u(t)^2 \\ u(0) = u_0 \end{cases}, t \ge 0. \text{ Es sei } u_0 > 0.$$

$$\implies f(x) = x^2, \ g(t) = 1.$$

$$\xrightarrow{\text{TV, (6.7)}} \int_{u_0}^{u(t)} \frac{\mathrm{d}x}{x^2} = \int_{0}^{t} 1 \ \mathrm{d}s = t$$

$$= -\frac{1}{x} |_{u_0}^{u(t)}|$$

$$\implies t = \frac{1}{u_0} - \frac{1}{u(t)}$$

$$\implies u(t) = \frac{1}{\frac{1}{u_0} - t} \text{ für } 0 \le t < \frac{1}{u_0} =: \tau$$

Zum Beispiel für $u_0=1$: $u(t)=\frac{1}{1-t}$ (Probe!). "blow up".

b)

Sei
$$a \in C(\mathbb{R}), \ u_0 \in \mathbb{R}$$
. Betrachte
$$\begin{cases} u'(t) = a(t)u(t) \\ u(0) = u_0 \end{cases}, t \ge 0.$$

 $\implies f(x) = x$. Sei $u_0 > 0$. Trennung der Variablen liefert

$$\int_{u_0}^{u(t)} \frac{\mathrm{d}x}{x} = \int_0^t a(s) \, \mathrm{d}s$$

$$= \ln u(t) - \ln u_0$$

$$\implies u(t) = \exp\left(\ln u_0 + \int_0^t a(s) \, \mathrm{d}s\right) = \exp\left(\int_0^t a(s) \, \mathrm{d}s\right) u_0$$

Probe zeigt: Dies löst die Gleichung für alle $t \in \mathbb{R}$ und $u_0 \in \mathbb{R}$.

c) $u'(t) = \sqrt{u(t)}$, u(0) = 0, $t \ge 0$. $\Longrightarrow f(x) = \sqrt{x}$, g(t) = 1. $\Longrightarrow f(0) = f(u_0) = 0$, haben Lösung $v(x) = 0 \ \forall x \in \mathbb{R}$. Führe Trennung der Variablen trotzdem durch. Sei u eine weitere Lösung, die auf $(0, t_0]$ ungleich 0 ist. Dann $\frac{u'(s)}{\sqrt{u(s)}} = 1$ für $0 < s \le t_0$. Sei $\varepsilon > 0$, $\varepsilon < t_0$

$$\xrightarrow{\text{TV}} \int_{\varepsilon}^{t} 1 \, ds = \int_{\varepsilon}^{t} \frac{u'(s)}{\sqrt{u(s)}} \, ds = \int_{u(\varepsilon)}^{u(t)} \frac{dx}{\sqrt{x}} = 2\left(\sqrt{u(t)} - \sqrt{u(\varepsilon)}\right).$$

 $\varepsilon \to 0$: $t = 2\sqrt{u(t)} \ (0 < t \le t_0) \implies u(t) = \frac{t^2}{4}$. Probe: u löst Gleichung.

6.4 Uneigentliche Integrale

Definition 6.18.	a)
b)	
Bemerkung 6.19.	a)
b)	
Beispiel 6.20.	a)
b)	
c)	
d)	
Satz 6.21. <i>a)</i>	
<i>b)</i>	
Beispiel 6.22.	a)
b)	
c)	
d)	
Beispiel 6.23.	
Beispiel 6.24.	
Trapezregel	