Converting ER Diagrams to Tables-

After designing an ER Diagram,

- ER diagram is converted into the tables in relational model.
- This is because relational models can be easily implemented by RDBMS like MySQL, Oracle etc.

Rule-01: For Strong Entity Set With Only Simple Attributes-

A strong entity set with only simple attributes will require only one table in relational model.

- Attributes of the table will be the attributes of the entity set.
- The primary key of the table will be the key attribute of the entity set.

Example-

Roll_no	Name	Sex

Schema: Student (Roll no, Name, Sex)

Rule-02: For Strong Entity Set With Composite Attributes-

A strong entity set with any number of composite attributes will require only one table in relational model.

• While conversion, simple attributes of the composite attributes are taken into account and not the composite attribute itself.

Roll no	First_name	Last_name	House_no	Street	City

Schema: Student (Roll no, First_name, Last_name, House_no, Street, City)

Rule-03: For Strong Entity Set With Multi Valued Attributes-

A strong entity set with any number of multi valued attributes will require two tables in relational model.

- One table will contain all the simple attributes with the primary key.
- Other table will contain the primary key and all the multi valued attributes.

Roll no	City

Roll_no	Mobile_no

Rule-04: Translating Relationship Set into a Table-

A relationship set will require one table in the relational model.

Attributes of the table are-

- Primary key attributes of the participating entity sets
- Its own descriptive attributes if any.

Set of non-descriptive attributes will be the primary key.

Emp_no	Dept_id	since

Schema: Works in (Emp no, Dept id, since)

NOTE-

If we consider the overall ER diagram, three tables will be required in relational model-

- One table for the entity set "Employee"
- One table for the entity set "Department"
- One table for the relationship set "Works in"

Rule-05: For Binary Relationships With Cardinality Ratios-

The following four cases are possible-

Case-01: Binary relationship with cardinality ratio m:n

<u>Case-02:</u> Binary relationship with cardinality ratio 1:n

Case-03: Binary relationship with cardinality ratio m:1

Case-04: Binary relationship with cardinality ratio 1:1

Case-01: For Binary Relationship With Cardinality Ratio m:n

Here, three tables will be required-

- 1. $A(\underline{a1}, \underline{a2})$
- 2. $R(\underline{a1},\underline{b1})$
- 3. $B(\underline{b1}, \underline{b2})$

Case-02: For Binary Relationship With Cardinality Ratio 1:n

Here, two tables will be required-

- 1. $A(\underline{a1}, \underline{a2})$
- 2. BR (a1, <u>b1</u>, b2)

NOTE- Here, combined table will be drawn for the entity set B and relationship set R.

Case-03: For Binary Relationship With Cardinality Ratio m:1

Here, two tables will be required-

- 1. $AR(\underline{a1}, a2, b1)$
- 2. $B(\underline{b1}, \underline{b2})$

NOTE- Here, combined table will be drawn for the entity set A and relationship set R.

Case-04: For Binary Relationship With Cardinality Ratio 1:1

Here, two tables will be required. Either combine 'R' with 'A' or 'B'

Way-01:

- 1. AR $(\underline{a1}, a2, b1)$
- 2. $B(\underline{b1}, \underline{b2})$

Way-02:

- 1. $A(\underline{a1}, a2)$
- 2. BR (a1, $\underline{b1}$, b2)

Thumb Rules to Remember

While determining the minimum number of tables required for binary relationships with given cardinality ratios, following thumb rules must be kept in mind-

- For binary relationship with cardinality ration m: n, separate and individual tables will be drawn for each entity set and relationship.
- For binary relationship with cardinality ratio either m: 1 or 1: n, always remember "many side will consume the relationship" i.e. a combined table will be drawn for many side entity set and relationship set.
- For binary relationship with cardinality ratio 1:1, two tables will be required. You can combine the relationship set with any one of the entity sets.

Rule-06: For Binary Relationship With Both Cardinality Constraints and Participation Constraints-

- Cardinality constraints will be implemented as discussed in Rule-05.
- Because of the total participation constraint, foreign key acquires **NOT NULL** constraint i.e. now foreign key can not be null.

<u>Case-01: For Binary Relationship With Cardinality Constraint and Total</u> Participation Constraint From One Side-

Because cardinality ratio = 1 : n, so we will combine the entity set B and relationship set R.

Then, two tables will be required-

- 1. $A(\underline{a1}, \underline{a2})$
- 2. BR (a1, <u>b1</u>, b2)

Because of total participation, foreign key al has acquired NOT NULL constraint, so it can't be null now.

<u>Case-02: For Binary Relationship With Cardinality Constraint and Total</u> **Participation Constraint From Both Sides-**

If there is a key constraint from both the sides of an entity set with total participation, then that binary relationship is represented using only single table.

Here, Only one table is required.

• ARB (a1, a2, b1, b2)

Rule-07: For Binary Relationship With Weak Entity Set-

Weak entity set always appears in association with identifying relationship with total participation constraint.

Here, two tables will be required-

- 1. $A(\underline{a1}, a2)$
- 2. BR (a1, b1, b2)