CPSC 340 Midterm Examination (50 minutes)

Allowed: scientific calculator

Total Points: 20 Number of pages: 2

1. Consider the following training relation:

Salary	Education	Label		
10,000	Undergraduate	Reject		
40,000	Undergraduate	Accept		
19,000	Graduate	Accept		
18,000	Undergraduate	Reject		
75,000	Graduate	Accept		
15,000	Graduate	Accept		

- (a) (3 points) Using gini index as the impurity function, show the reduction of impurity if the split point is "Salary $\leq 15,000$ ".
- (b) (1 point) If the attribute **Salary** is to be used as the splitting attribute, which value will give the highest reduction? No need to show derivations; just state your answer.

Answer:

(a) Let p1 be accept and p2 be reject. Without the split, p1 = 2/6 and p2 = 4/6. Gini = 1 - 2/6 * 2/6 - 4/6 * 4/6 = 4/9.

With the split at 15,000, for the left branch:

Gini = $1 - \frac{1}{2} * \frac{1}{2} - \frac{1}{2} * \frac{1}{2} = \frac{1}{2}$

For the right branch, gini = $1 - \frac{3}{4} * \frac{3}{4} - \frac{1}{4} * \frac{1}{4} = \frac{3}{8}$

Gini reduction = $4/9 - \frac{1}{2} * \frac{2}{6} - \frac{3}{8} * \frac{4}{6} = \frac{1}{36}$

- (b) between 18,000 and 19,000. Use 18,500.
- 2. Consider the training relation from the previous question. This time we use 2-fold cross validation to estimate the sensitivity and precision of the tree built by the training relation. In this case, the positives correspond to Label = Accept, and the negatives correspond to Reject.
 - (a) (3 points) The first fold consists of the first 3 rows. Show the decision tree built by the first fold using gini index as the impurity function. (You don't need to show the derivations; just show the tree.) Show how the confusion matrix looks like when applied to the second fold consisting of the last 3 rows.
 - (b) (2 points) Complete the 2-fold cross validation by repeating (a) on the second fold. Show the final confusion matrix.
 - (c) (2 points) Give the 2-fold cross validation sensitivity and precision of the tree built by the entire training relation.

Answer:

- (a) For the first fold, the tree consists of a single node, which is salary <= 14500, reject. Otherwise, accept. 4th row is a FP. 5th and 6th row are TP.
- (b) For the second fold, the tree consists of a single node, which is education = Graduate, accept. Otherwise, reject. First row is TN. Second row is FN. 3rd row is TP.
- (c) sensitivity = TP / (TP + FN) = $\frac{3}{4}$ precision = TP /(TP + FP) = $\frac{3}{4}$
- 3. The following table gives the pairwise distance between 8 data objects.

	A	В	C	D	E	F	G	Н
A	0	4	6	14	18	13	28	20
В	4	0	4	10	14	9	24	16
C	6	4	0	8	12	11	22	14
D	14	10	8	0	6	13	14	14
E	18	14	12	6	0	7	10	8
F	13	9	11	13	7	0	15	7
G	28	24	22	14	10	15	0	8
Н	20	16	14	14	8	7	8	0

- (a) (3 points) Suppose in the first iteration of the **k-medoids** clustering algorithm, the 3 points C, G, H are chosen as the medoids to form the initial clusters. What are the clusters corresponding to C, G and H?
- (b) (2 points) For the initial clusters in (a), what are the new medoids? Show your derivations.

Answer:

(a) For A: C

For B: C

For D: C

For E: H

For F: H

So clusters are $\{A, B, C, D\}$, $\{E, F, H\}$ and $\{G\}$.

(b) For the {A, B, C, D} cluster:

A as medoid = 4 + 6 + 14 = 24

B as medoid = 4 + 4 + 10 = 18

C as medoid = 6 + 4 + 8 = 18

D as medoid = 14 + 10 + 8 = 32

Thus, either B and C can be the medoid for the first cluster.

For the {E, F, H) cluster:

E as medoid = 15, F as medoid = 14, H as medoid = 15. So F is the medoid.

For the $\{G\}$ cluster, G is the medoid.

4. Consider the following 6 data objects with a numeric attribute X and a categorical attribute Y.

Object	X	Y
A	1	β
В	2	α
С	4	β
D	5	α
Е	7	β
F	8	α

- (a) (2 points) For k = 2, use **k-means** clustering to form clusters based on attribute X only. What are the two clusters formed if the initial clusters are based on A and F? Compute the entropy based on attribute Y.
- (b) (1 point) For k = 3, use **k-means** clustering to form three clusters based on attribute X only. What are the three clusters if the initial clusters are based on A, D and F? Compute the entropy based on attribute Y.
- (c) (1 point) Does a larger value of k always give a smaller entropy for k-means clustering? What about hierarchical clustering? Provide explanations to your answers.

Answer:

- (a) {A,B,C} {D,E,F} form 2 clusters and is a local optimum. For $\{A,B,C\}$, entropy = - $(0.67 \log 0.67 + 0.33 \log 0.33) = 0.92$ For $\{D,E,F\}$, entropy = 0.92
 - Thus, for k = 2, the combined entropy is 3/6 * 0.92 + 3/6 * 0.92 = 0.92
- (b) {A,B} {C,D} {E,F} form 3 clusters and is a local optimum. For each of the 3 clusters, the entropy = $-(0.5 \log 0.5 + 0.5 \log 0.5) = 1$ Thus, for k = 3, the combined entropy is 2/6 * 1 + 2/6 * 1 + 2/6 * 1 = 1
- (c) No, k = 2 gives a smaller entropy than k = 3 in the above example. In hierachical clustering, it is different because it chooses a cluster to split in each step, always making entropy non-increasing. In k-means, the new cluster need not be a subset of any cluster from the previous configuration.