TEA013 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR

()

P03, 11 Dez 2024

Prof. Nelson Luís Dias

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [20] Sabendo que

$$f(x) = e^{-|x|}$$
 \longleftrightarrow $\widehat{f}(k) = \frac{1}{\pi(1+k^2)},$ $g(x) = e^{-x^2}$ \longleftrightarrow $\widehat{g}(k) = \frac{1}{2\sqrt{\pi}}e^{-\frac{k^2}{4}},$

são pares de transformadas de Fourier, calcule

$$\mathscr{F}\left\{\int_{\xi=-\infty}^{+\infty} \mathrm{e}^{-\xi^2} \mathrm{e}^{-|x-\xi|} \,\mathrm{d}\xi\right\}.$$

SOLUÇÃO DA QUESTÃO:

A expressão acima é a transformada de Fourier da convolução [f * g](x); pelo Teorema da Convolução,

$$\mathscr{F}\left\{ [f * g](x) \right\} = 2\pi \widehat{f}(k) \widehat{g}(k)$$

$$= 2\pi \frac{1}{\pi (1+k^2)} \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}},$$

$$= \frac{1}{\sqrt{\pi} (1+k^2)} e^{-\frac{k^2}{4}} \blacksquare$$

2 [20] Utilizando o Teorema de Parseval,

$$\int_{-\infty}^{+\infty} f(x)g(x) dx = 2\pi \int_{-\infty}^{+\infty} \widehat{f}(-k)\widehat{g}(k) dk,$$

e sabendo que

$$\int_0^\infty \frac{\mathrm{e}^{-\frac{k^2}{4}}}{1+k^2}\,\mathrm{d}k = \frac{1}{2}\sqrt[4]{\mathrm{e}}\,\pi\,\mathrm{erfc}\left(\frac{1}{2}\right),$$

Obtenha

$$\int_{-\infty}^{+\infty} e^{-|x|} e^{-x^2} dx.$$

Obs: para os pares de transformadas, use o enunciado da questão 1.

SOLUÇÃO DA QUESTÃO:

$$f(x) = e^{-|x|}$$
 \longleftrightarrow $\widehat{f}(k) = \frac{1}{\pi(1+k^2)},$ $g(x) = e^{-x^2}$ \longleftrightarrow $\widehat{g}(k) = \frac{1}{2\sqrt{\pi}}e^{-\frac{k^2}{4}},$

Agora,

$$\int_{-\infty}^{+\infty} e^{-|x|} e^{-x^2} dx = 2\pi \int_{-\infty}^{+\infty} \frac{1}{\pi (1+k^2)} \frac{1}{2\sqrt{\pi}} e^{-\frac{k^2}{4}} dk$$

$$= \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{e^{-\frac{k^2}{4}}}{1+k^2} dk$$

$$= \frac{2}{\sqrt{\pi}} \int_{0}^{+\infty} \frac{e^{-\frac{k^2}{4}}}{1+k^2} dk$$

$$= \frac{2}{\sqrt{\pi}} \frac{1}{2} \sqrt[4]{e} \pi \operatorname{erfc}\left(\frac{1}{2}\right)$$

$$= \sqrt[4]{e} \sqrt{\pi} \operatorname{erfc}\left(\frac{1}{2}\right) \blacksquare$$

3 [20] Obtenha a função de Green da equação diferencial

$$\frac{\mathrm{d}y}{\mathrm{d}x} + xy = f(x),$$
$$y(0) = 0.$$

SOLUÇÃO DA QUESTÃO:

$$\frac{\mathrm{d}y}{\mathrm{d}\xi} + \xi y = f(\xi),$$

$$G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} + G(x,\xi)\xi y = G(x,\xi)f(\xi),$$

$$\int_{\xi=0}^{\infty} G(x,\xi) \frac{\mathrm{d}y}{\mathrm{d}\xi} \,\mathrm{d}\xi + \int_{\xi=0}^{\infty} G(x,\xi)\xi y \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi,$$

$$G(x,\xi)y(\xi) \bigg|_{\xi=0}^{\xi=\infty} - \int_{\xi=0}^{\infty} y \frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} \,\mathrm{d}\xi + \int_{\xi=0}^{\infty} G(x,\xi)\xi y \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi,$$

$$G(x,\infty)y(\infty) + \int_{\xi=0}^{\infty} \left[-\frac{\mathrm{d}G(x,\xi)}{\mathrm{d}\xi} + \xi G(x,\xi) \right] y(\xi) \,\mathrm{d}\xi = \int_{\xi=0}^{\infty} G(x,\xi)f(\xi) \,\mathrm{d}\xi.$$

Impomos

$$G(x, \infty) = 0,$$

$$-\frac{\mathrm{d}G(x, \xi)}{\mathrm{d}\xi} + \xi G(x, \xi) = \delta(\xi - x),$$

e resolvemos para G:

$$G(x,\xi) = u(x,\xi)v(x,\xi),$$

$$-\frac{\mathrm{d}(uv)}{\mathrm{d}\xi} + \xi uv = \delta(\xi - x),$$

$$u\left[-\frac{\mathrm{d}v}{\mathrm{d}\xi} + \xi v\right] - v\frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$-\frac{\mathrm{d}v}{\mathrm{d}\xi} = -\xi v$$

$$\frac{\mathrm{d}v}{\mathrm{d}v} = \xi \mathrm{d}\xi$$

$$\int_{v(x,0)}^{v(x,\xi)} \frac{\mathrm{d}v}{v} = \int_{\eta=0}^{\xi} \eta \mathrm{d}\eta$$

$$\ln\left(\frac{v(x,\xi)}{v(x,0)}\right) = \frac{1}{2}\xi^2$$

$$v(x,\xi) = v(x,0) \exp\left(\frac{1}{2}\xi^2\right);$$

$$-v(x,0) \exp\left(\frac{1}{2}\xi^2\right) \frac{\mathrm{d}u}{\mathrm{d}\xi} = \delta(\xi - x),$$

$$\frac{\mathrm{d}u}{\mathrm{d}\xi} = -\frac{1}{v(x,0)} \exp\left(-\frac{1}{2}\xi^2\right) \delta(\xi - x),$$

$$\mathrm{d}u = -\frac{1}{v(x,0)} \exp\left(-\frac{1}{2}\eta^2\right) \delta(\eta - x) \mathrm{d}\eta,$$

$$u(x,\xi) - u(x,0) = -\frac{1}{v(x,0)} \int_{\eta=0}^{\xi} \exp\left(-\frac{1}{2}\eta^2\right) \delta(\eta - x) \mathrm{d}\eta$$

$$= -\frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right),$$

$$u(x,\xi) = u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right),$$

$$G(x,\xi) = \left[u(x,0) - \frac{1}{v(x,0)} H(\xi - x) \exp\left(-\frac{1}{2}x^2\right)\right] v(x,0) \exp\left(\frac{1}{2}\xi^2\right);$$

$$= \exp\left(\frac{1}{2}\xi^2\right) \left[G(x,0) - H(\xi - x) \exp\left(-\frac{1}{2}x^2\right)\right].$$

Para impor a condição de contorno,

$$G(x, \infty) = 0,$$

$$G(x, 0) - H(\infty - x) \exp\left(-\frac{1}{2}x^2\right) = 0,$$

$$G(x, 0) - \exp\left(-\frac{1}{2}x^2\right) = 0,$$

$$G(x, 0) = \exp\left(-\frac{1}{2}x^2\right).$$

Portanto,

$$G(x,\xi) = [1 - H(\xi - x)] \exp\left(\frac{1}{2}(\xi^2 - x^2)\right)$$

$$y'' + 4y' + (4 - 9\lambda)y = 0,$$
 $y(0) = y(1) = 0.$

SOLUÇÃO DA QUESTÃO: Se $\lambda = k^2 > 0$, k > 0,

$$r^{2} + 4r + (4 - 9k^{2}) = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 4(4 - 9k^{2})}}{2},$$

$$= \frac{-4 \pm \sqrt{36k^{2}}}{2}$$

$$= -2 \pm 3k.$$

Neste caso a solução geral é

$$y(x) = \exp(-2x) [A \cosh(3kx) + B \sinh(3kx)],$$

 $y(0) = A = 0,$
 $y(1) = \exp(-2)B \sinh(3k) = 0 \implies B = 0.$

Portanto, $\lambda > 0$ não é autovalor. Se $\lambda = 0$,

$$r^{2} + 4r + 4 = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 16}}{2} = -2.$$

Só há uma raiz, e a solução geral agora é

$$y(x) = (A + Bx)e^{-2x},$$

 $y(0) = A = 0,$
 $y(1) = Be^{-2} = 0 \implies B = 0,$

e novamente $\lambda = 0$ não é autovalor. Se $\lambda = -k^2 < 0$, k > 0,

$$r^{2} + 4r + (4 + 9k^{2}) = 0,$$

$$r = \frac{-4 \pm \sqrt{16 - 4(4 + 9k^{2})}}{2},$$

$$= \frac{-4 \pm \sqrt{-36k^{2}}}{2},$$

$$= -2 \pm 3ki.$$

A solução geral é

$$y(x) = e^{-2x} [A\cos(3kx) + B\sin(3kx)],$$

$$y(0) = A = 0,$$

$$y(1) = e^{-2}B\sin(3kx) = 0;$$

$$\sin(3k) = 0,$$

$$3k_n = n\pi, \qquad n = 1, 2, 3, ...$$

$$k_n = \frac{n\pi}{3},$$

$$y_n(x) = e^{-2x} \sin(n\pi x),$$

$$\lambda_n = -\frac{n^2\pi^2}{9} \blacksquare$$

$$\frac{\partial \phi}{\partial t} = \alpha^2 \frac{\partial^2 \phi}{\partial x^2}; \qquad \phi(0, t) = 0, \qquad \phi(1, t) = 1, \qquad \phi(x, 0) = 0.$$

Sugestão: As condições de contorno em ϕ não são homogêneas! Faça $\phi(x,t) = u(x,t) + x$. Obtenha a EDP correspondente em u com condições de contorno homogêneas. Resolva para u(x,t) utilizando o método de separação de variáveis.

SOLUÇÃO DA QUESTÃO:

$$\phi(x,t) = u(x,t) + x,$$

$$\frac{\partial \phi}{\partial t} = \frac{\partial u}{\partial t},$$

$$\frac{\partial \phi}{\partial x} = \frac{\partial u}{\partial x} + 1,$$

$$\frac{\partial^2 \phi}{\partial x^2} = \frac{\partial^2 u}{\partial x^2}.$$

A equação diferencial em u não muda:

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}.$$

As condições de contorno correspondentes são

$$u(0,t) = \phi(0,t) - 0 = 0 - 0 = 0,$$

 $u(1,t) = \phi(1,t) - 1 = 1 - 1 = 0.$

A condição inicial é

$$u(x, 0) = \phi(x, 0) - x = -x.$$

Temos portanto condições de contorno homogêneas e prosseguimos.

$$u(x,t) = X(x)T(t),$$

$$X\frac{dT}{dt} = \alpha^2 T \frac{d^2 X}{dx^2},$$

$$\frac{1}{\alpha^2 T} \frac{dT}{dt} = \frac{1}{X} \frac{d^2 X}{dx^2} = \lambda.$$

A solução em termos de autofunções e autovalores é

$$\lambda_n = -n^2 \pi^2, \qquad n = 1, 2, 3, \dots$$

$$X_n(x) = \operatorname{sen}(n\pi x).$$

Procuramos portanto

$$u(x,0) = -x,$$

$$u(x,t) = \sum_{n=1}^{\infty} A_n e^{-n^2 \pi^2 \alpha^2 t} \operatorname{sen}(n\pi x),$$

$$-x = \sum_{n=1}^{\infty} A_n \operatorname{sen}(n\pi x),$$

$$-x \operatorname{sen}(m\pi x) = \sum_{n=1}^{\infty} A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x)$$

$$-\int_0^1 x \operatorname{sen}(m\pi x) dx = \sum_{n=1}^{\infty} \int_0^1 A_n \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x) dx$$

$$-\int_0^1 x \operatorname{sen}(m\pi x) dx = \int_0^1 A_m \operatorname{sen}^2(m\pi x) dx = A_m \frac{1}{2},$$

$$\frac{(-1)^m}{m\pi} = A_m \frac{1}{2},$$

$$A_m = 2 \frac{(-1)^m}{m\pi} \blacksquare$$