EE833B - 2010/II - Prova 2

- 1. Considere uma fonte chaveada com isolação do tipo Flyback. São dados a frequência de chaveamento $f_c=50~\rm kHz$, a relação de espiras $N_{\rm prim}/N_{\rm sec}=20~\rm e$ a indutância de magnetização (referida ao primário) $L=1~\rm mH$ do transformador. A tensão de saída deve ser mantida em $V_0=5~\rm V$ e, para essa tensão, a carga consome uma potência $P_0=30~\rm W$. Para uma tensão de entrada $E=180~\rm V$, verifica-se que a fonte opera com total desmagnetização do núcleo do tranformador (MCD). Para essa tensão de entrada
 - a) determine o ciclo de trabalho δ ;
 - b) a corrente máxima através da chave (transistor);
 - c) a corrente máxima através do diodo.
- 2. Considere um conversor DC-DC redutor de tensão com $f_c=60$ kHz, $L=180~\mu\text{H}$, $C=100~\mu\text{F}$. A tensão de saída é mantida em $V_0=12$ V. Com uma tensão de entrada E=48 V e uma corrente de saída $I_0=1.6$ A, determine
 - a) o ciclo de trabalho δ ;
 - b) as correntes máxima e mínima no indutor;
 - c) a ondulação pico a pico $\nu_{0\text{max}} \nu_{0\text{min}}$ na tensão de saída.
- 3. Considere um conversor DC-AC, PWM, em ponte, alimentado por uma fonte de tensão DC de valor E. O braço A da ponte é controlado através da comparação de uma onda triangular, v_T , sem nível DC, oscilando entre os valores $-A_T$ e $+A_T$, com um sinal de referência $v_R = A_R \sin(\omega_R t + \phi)$: a chave superior é fechada nos intervalos em que $v_R \ge v_T$. O braço B é controlado através da comparação de $-v_R$ com v_T : a chave superior fecha quando $-v_R \ge v_T$. Assuma que a frequência da onda triangular (portadora), f_p , seja muito maior que a frequência da referência $f_R = \omega_R/2\pi$ e que $A_R < A_T$.
- a) Esboce a forma da tensão v_0 num intervalo de poucos ciclos da portadora, durante o qual a tensão de referência é praticamente constante e igual a $A_T/4$. Anote as amplitudes relevantes, normalizadas em relação a E, e os instantes relevantes, normalizados em relação a $T_p = 1/f_p$.
- b) A forma de onda encontrada no item anterior se assemelha (no intervalo considerado) a uma onda quadrada. Qual a frequência dessa onda?
- c) Com carga RL, sendo $\omega_p L = 2\pi f_p L >> R$, dê a expressão para o valor de pico da corrente i_0 (aproximadamente senoidal).