Analysis of the Mathematics and Implications of Bernstein-Vazirani Algorithm

Abu Bucker Siddik

Shamminuj Aktar

Presentation Outline

- ☐ Definition of Bernstein-Vazirani (BV) problem
- ☐ Classical Solution of BV Problem & Query Complexity
- Quantum Solution of BV problem
- Mathematical overview of BV algorithm
- ☐ Implementation of BV algorithm on IBM Quantum Machines
- ☐ Result Analysis & Discussion
- Conclusion

Bernstein-Vazirani Algorithm

- A quantum algorithm which solves the Bernstein Vazirani problem
- BV algorithm invented by Ethan Bernstein and Umesh Vazirani in 1992
- BV algorithm allows Quantum Computers to outperform Classical Computers
- An extension of the Deutsch-Josza algorithm (DJ) algorithm

Bernstein-Vazirani Problem

 \square A black-box function f with n bit strings as input and one bit output

$$f: x \in \{0,1\}^n \to \{0,1\}$$

The function *f* is of the form:

$$f(x) = x \cdot a$$
, where a is secret string and $a \in \{0, 1\}^n$

Problem: Find the n bit secret string a by querying f as few times as possible

The oracle returns $f(x) = x \cdot a$ [dot denotes the inner product modulo 2]

Example: Let,
$$x = 100$$
 and $a = 101$

So,
$$x \cdot a = (1)(1) + (0)(0) + (0)(1) \pmod{2} = 1$$

Classical Implementation & Query Complexity

Classically we can solve the hidden string problem using n queries.

- Consider bit string $x = 100 \cdot \cdot \cdot 0$, where $x \in \{0,1\}^n$ and $a \in \{0,1\}^n$
- The oracle will send us back

$$f(x) = x \cdot a = a_1$$
, where where a_1 is the first bit of a

- Similarly, with bit string $x = 010 \cdot \cdot \cdot 0$, we will get second bit of a
- Classically for *n* bit hidden string, it requires *n* queries
- *n* classical queries is a lower bound for classical solution

Quantum Solution of BV problem

BV algorithm can solve the BV problem with just one query for any n bit secret string - a linear speedup!

Fig: Quantum circuit for Bernstein-Vazirani algorithm

Mathematical overview of BV algorithm

First, we apply Walsh-Hadamard transformation to input qubits and Hadamard gate to target qubit:

$$H^{\otimes n}|0\rangle_n \otimes H|1\rangle = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} |x\rangle_n \otimes \frac{|0\rangle - |1\rangle}{\sqrt{2}}.$$

 \Box Then applying U_f gives us:

$$\frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x\rangle_n \otimes \frac{f(x) - f(x)'}{\sqrt{2}}$$

$$\Rightarrow \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^{n-1}} (-1)^{f(x)} |x\rangle_n \otimes \frac{(|0\rangle - |1\rangle)}{\sqrt{2}}.$$

Source: https://young.physics.ucsc.edu/150/bv.pdf

Mathematical overview of BV algorithm

- We then again apply Walsh-Hadamard transformation to first register.
 - > Applying Hadamard to one qubit gives us:

$$H|x\rangle_1 = \frac{1}{\sqrt{2}} (|0\rangle + (-1)^x |1\rangle) = \frac{1}{\sqrt{2}} \sum_{y=0}^{1} (-1)^{xy} |y\rangle.$$

 \triangleright So, $H^{\bigotimes n}$ will generate:

$$H^{\otimes n}|x\rangle_n = \sum_{y_{n-1}=0}^1 \cdots \sum_{y_1=0}^1 \sum_{y_0=0}^1 (-1)^{\sum_{j=0}^{n-1} x_j y_j} |y_{n-1}\rangle \cdots |y_1\rangle |y_0\rangle$$

$$= \frac{1}{2^{n/2}} \sum_{y_1=0}^{2^{n-1}} (-1)^{x \cdot y} |y\rangle_n$$

Source: https://young.physics.ucsc.edu/150/bv.pdf

Mathematical overview of BV algorithm

Finally we get,
$$\frac{1}{2^n} \sum_{x=0}^{2^n-1} \sum_{y=0}^{2^n-1} (-1)^{f(x)+x\cdot y} |y\rangle_n$$

$$\Rightarrow \frac{1}{2^n} \sum_{y=0}^{2^n-1} \left(\sum_{x=0}^{2^n-1} (-1)^{x\cdot a+x\cdot y}\right) |y\rangle_n \Rightarrow |a|$$

We can write:
$$(-1)^{x.a+x.y}=(-1)^{(a\oplus y).x}$$

We also know that
$$\sum_{x=0}^{2^n-1} (-1)^{z.x} = \begin{cases} 2^n, & \text{if } z = 0\\ 0, & \text{otherwise} \end{cases}$$

Since we are also applying Hadamard transformation on target qubit, finally we will get,

$$|a\rangle_n \otimes |1\rangle$$

Example: Quantum Solution of BV problem

- \Box Let n = 2 qubits and a secret string s = 11
- The register of two qubits is initialized to zero $|\psi_0\rangle = |00\rangle$
- After applying Hadamard gate, we get: $|\psi_1\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$
- \Box For the string s = 11, the quantum oracle performs following operation:

$$|x
angle \stackrel{f_s}{ o} (-1)^{x\cdot 11} |x
angle. \ |\psi_2
angle = rac{1}{2}ig((-1)^{00\cdot 11} |00
angle + (-1)^{01\cdot 11} |01
angle + (-1)^{10\cdot 11} |10
angle + (-1)^{11\cdot 11} |11
angleig) \ |\psi_2
angle = rac{1}{2}(|00
angle - |01
angle - |10
angle + |11
angle)$$

 \square Applying Hadamard gate to both qubits we get: $|\psi_3\rangle = |11\rangle$

Implementation on IBM Quantum Machines

- We implemented BV algorithm using Qiskit
- We used the following IBM Quantum Machines for our analysis:

IBM Machine	Qubit	T1 (μs)	T2 (μs)	Avg. CNOT Error	Avg. Readout Error
IBMQ Toronto	27	104.7	127.88	1.26E-02	4.31E-02
IBMQ Sydney	27	102.67	118.27	9.78E-03	3.63E-02
IBMQ Casablanca	7	86.39	80.94	1.60E-02	1.86E-02
IBMQ Santiago	5	125.07	142.27	6.58E-03	1.53E-02
IBMQ Rome	5	72.31	86.44	1.45E-02	2.45E-02

Source: https://quantum-computing.ibm.com/services?skip=0&systems=all

Implementation on IBM Quantum Machines

- ☐ For Hidden String 11011, we get following circuit of Fig (a)
- Then we run the circuit on IBM QASM Simulator to verify.

Fig (a): Qiskit implementation of Bernstein-Vazirani algorithm

Fig (b): Measured success rate for string 11011

Result Analysis & Discussion

Here, we observed performance of measured success rate when secret string length l = 3 & l = 4

Fig (a): Measured success rate of different quantum machine when string length l=3

Fig (b): Measured success rate of different quantum machine when string length l=4

Result Analysis & Discussion

Now, we want to see performance of **IBM Toronto** machine when we query for secret string with length l = 2, 3, 4, 5, 6, 7

Fig: Measured success rate on IBM Toronto Quantum Processor for secret string with length 1 = 2, 3, 4, 5, 6, 7

Result Analysis & Discussion

We ran the circuit on all the quantum machines varying secret string length l = 2,3,4,5,6 & 7

Fig: Measured success rate on different Quantum Processor for secret string with length 1 = 2,3,4,5,6,7

Conclusion

- Bernstein-Vazirani (BV) algorithm allows to solve hidden string problem with single query
- BV provides linear speedup over classical counterpart
- ☐ Implementation of IBM Quantum machine shows
 - Measured success rate decreases with increased bit string length
 - Machine's T1 & T2 time has significant importance on circuit execution
- Recent research showed application of BV algorithm in Quantum multiplication, cryptography etc.