\star Spé - St Joseph/ICAM Toulouse \star

Math. - CC 2 - S2 - Analyse

vendredi 7 mai 2021 - Durée 1 h

Toutes les réponses seront justifiées. La notation tiendra compte du soin apporté à la rédaction.

EXERCICE 1

On considère la fonction $f: x \mapsto \int_0^{+\infty} \mathrm{e}^{-t(1-itx)} \mathrm{d}t$

- 1. Montrer que f est définie sur \mathbb{R} .
- **2.** Montrer que pour tout $p \in \mathbb{N}$, l'intégrale $\int_0^{+\infty} t^p e^{-t} dt$ converge. On la note I_p .
- 3. Déterminer une relation entre I_{p+1} et I_p , pour tout entier naturel p, et en déduire la valeur de I_p .
- **4.** Montrer que f est indéfiniment dérivable sur \mathbb{R} , et déterminer $f^{(p)}(x)$, pour tout $p \in \mathbb{N}$, et tout $x \in \mathbb{R}$.
- 5. En déduire le rayon de convergence de la série $\sum_{p\geq 0} \frac{f^{(p)}(0)}{p!} x^p$. La fonction f est-elle développable en série entière au voisinage de 0?

EXERCICE 2

Soient n et N deux entiers naturels non nuls. On lance successivement n boules au hasard dans N cases numérotées de 1 à N. On suppose que les différents lancers sont indépendants et que la probabilité qu'une boule tombe dans une case donnée est $\frac{1}{N}$.

Une case peut contenir plusieurs boules. On note T_n le nombre <u>de cases non vides</u> à l'issue des n lancers.

- 1. Déterminer, en fonction de n et N, les valeurs prises par la variable T_n (on distinguera les cas $n \le N$ et n > N).
- **2.** Donner la loi de T_1 et de T_2 . Calculer leurs espérances.
- **3.** On fixe désormais $n \geq 2$. Calculer $\mathbb{P}(T_n = 1)$ et $\mathbb{P}(T_n = n)$
- **4.** A l'aide de la formule des probabilités totales, montrer que pour tout entier $k \geq 1$:

$$\mathbb{P}(T_{n+1} = k) = \frac{k}{N} \mathbb{P}(T_n = k) + \frac{N - k + 1}{N} \mathbb{P}(T_n = k - 1). \quad (\star\star)$$

- **5.** On note G_n la fonction génératrice de la variable T_n .
 - a. Rappeler la définition de G_n . Montrer qu'ici G_n est définie sur \mathbb{R} .
 - **b.** Rappeler le lien entre G_n et $\mathbb{E}(T_n)$.
 - **c.** En utilisant $(\star\star)$, montrer que, pour tout $x\in\mathbb{R}$:

$$G_{n+1}(x) = \frac{1}{N}(x - x^2)G'_n(x) + xG_n(x)$$

- **d.** En déduire que $\mathbb{E}(T_{n+1}) = \left(1 \frac{1}{N}\right)\mathbb{E}(T_n) + 1$, puis que : $\mathbb{E}(T_n) = N\left(1 \left(1 \frac{1}{N}\right)^n\right)$.
- **6.** Pour $1 \le k \le N$, on note Y_k le nombre de boules dans la case k et Z_k la variable valant 0 si la case k est vide, et 1 si elle contient au moins une boule.
 - **a.** Donner la loi de Y_k , puis celle de Z_k .
 - **b.** Les variables aléatoires $(Z_k)_{1 \le k \le N}$ sont-elles mutuellement indépendantes?
 - **c.** Exprimer T_n en fonction des variables aléatoires $(Z_k)_{1 \le k \le N}$, et retrouver ainsi l'expression de $\mathbb{E}(T_n)$.

Fin de l'énoncé d'analyse