

# Unit 3: Croston's Forecasting Method for Intermittent Demand

# Jyothi R.

Department of Computer Science and Engineering





#### **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND**



What is Intermittent Demand?

When a customer calls for that product item that almost no one ever asks for, do you have it? If your answer is no, it could cost you a sale, or even a customer.

Equally important, if *that* item is only occasionally requested, do you have too many units of the product on-hand to avoid stocking out of it?

If your answer is yes, then excess inventory is probably costing you money.

Forecasting intermittently demanded, "slow-moving" product items or parts is a problem that is especially well-known to managers in service parts organizations and companies in the capital goods industries, among others.

Traditional forecasting methods, such as exponential smoothing and moving averages, that are designed for normal, high-volume demand just don't work well with intermittent demand.

#### **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND**



What is Intermittent Demand?

Figure 1 below shows the challenge demand planners face. It plots the demand over 36 months for three intermittent part items (shown in red, blue and green),.

Many months had no demand at all (zero values), and when demand did appear, its value varied erratically.



**Croston's method(CR)** is a classic method that specifically dealing with intermittent demand, it was developed base upon the Simple Exponential Smoothing method.

- Products such as spare parts may have intermittent demands.
- Exponential smoothing models discussed so far in the chapter will produce biased estimate when used for intermittent demand.
- Croston (1972) developed a model that uses two separate exponential smoothing
  equations for predicting mean time between demands and the magnitude of demand
  whenever the demand occurs.
- That is, Croston's method has two components:
  - (a) Predicting time between demand and
  - (b) magnitude of the demand.
- The primary objective of Croston's method is to forecast mean demand per period.



#### **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND**



 $Y_t$  = Demand at time t ( $Y_t$  may take value 0)

 $F_t$  = Forecasted demand

 $TD_t$  = Time between the latest and the previous non-zero demand in period t

 $FTD_t$  = Forecasted time between demand at period t

The following steps are used for forecasting demand:

If 
$$Y_t = 0$$
 then  $F_{t+1} = F_t$  and  $FTD_{t+1} = FTD_t$  (13.24)

If 
$$Y_t \neq 0$$
 the  $F_{t+1} = \alpha \times Y_t + (1-\alpha)F_t$  and  $FTD_{t+1} = \beta \times TD_t + (1-\beta) \times FTD_t$  (13.25)



- $\alpha$  and  $\beta$  are smoothing constants for forecasted demand and forecasted time between demands, respectively
- Once the forecasted demand and time between demands are known, then the mean demand per period  $D_{t+1}$ , is given by

$$D_{t+1} = \frac{F_{t+1}}{FDT_{t+1}} \tag{13.26}$$



- Quarterly demand for spare parts of avionics system of an aircraft
- Use the demand during the quarters 1 to 4 as training data to forecast demand for periods 5 to 16 using Croston's method.

#### **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND-**



**Example 13.2:** Quarterly demand for spare parts of avionics system of an aircraft is shown in Table 13.8. Use the demand during the quarters 1 to 4 as training data to forecast demand for periods 5 to 16 using Croston's method.

| Quarter | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|---------|----|----|----|----|----|----|----|----|
| Demand  | 20 | 12 | 0  | 18 | 16 | 0  | 20 | 22 |
| Quarter | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| Demand  | 0  | 28 | 0  | 0  | 30 | 26 | 0  | 34 |

TABLE 13.8 Quarterly demand for avionic system spares

#### **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND**



- Procedure used for starting values of  $F_t$  and  $FTD_t$  is shown in the table here:
- $TD_4 = 2$  since the elapsed time from the previous demand and current demand period is 2 (4 2).
- The forecasted time between demand is the average  $TD_t$  values up to t = 4.
- So,  $FTD_4 = (1+2)/2 = 1.5$ .
- The forecasted demand  $F_4$  for t = 4 is (20 + 12 + 18)/3 = 16.67.
- Note that the total value is divided by 3 (not 4) since only 3 quarters had non-zero demand.

| Quarter | Demand | TD <sub>t</sub> | FTD <sub>t</sub> | F <sub>t</sub> |
|---------|--------|-----------------|------------------|----------------|
| 1       | 20     |                 |                  |                |
| 2       | 12     | 1               |                  |                |
| 3       | 0      |                 |                  |                |
| 4       | 18     | 2               | 1.5              | 16.67          |

So, the starting values for Croston's method are.

$$TD_4 = 2$$
,  $FTD_4 = 1.5$ , and  $F_4 = 16.67$ 

Let 
$$\alpha = \beta = 0.2$$
. Then

$$F_5 = 0.2 \times 18 + (1 - 0.2) \times 16.67 = 16.936$$

$$FTD_{\varepsilon} = 0.2 \times 2 + (1 - 0.2) \times 1.5 = 1.6$$

## **CROSTON'S FORECASTING METHOD FOR INTERMITTENT DEMAND**

Forecasted demand for periods 5 to 16 using Croston's method.

| Quarter | Demand | TD <sub>t</sub> | FTD <sub>t</sub> | F <sub>t</sub> | $D_t = (F_t/FTD_t)$ |
|---------|--------|-----------------|------------------|----------------|---------------------|
| 1       | 20     |                 |                  |                |                     |
| 2       | 12     | 1               |                  |                |                     |
| 3       | 0      |                 |                  |                |                     |
| 4       | 18     | 2               | 1.5000           | 16.67          | 11.11333            |
| 5       | 16     | 1               | 1.6000           | 16.936         | 10.585              |
| 6       | 0      |                 | 1.4800           | 16.7488        | 11.31676            |
| 7       | 20     | 2               | 1.4800           | 16.7488        | 11.31676            |
| 8       | 22     | 1               | 1.5840           | 17.39904       | 10.98424            |
| 9       | 0      |                 | 1.4672           | 18.31923       | 12.48585            |
| 10      | 28     | 2               | 1.4672           | 18.31923       | 12.48585            |
| 11      | 0      |                 | 1.5738           | 20.25539       | 12.8707             |
| 12      | 0      |                 | 1.5738           | 20.25539       | 12.8707             |
| 13      | 30     | 3               | 1.5738           | 20.25539       | 12.8707             |
| 14      | 26     | 1               | 1.8590           | 22.20431       | 11.94417            |
| 15      | 0      |                 | 1.6872           | 22.96345       | 13.61034            |
| 16      | 34     | 2               | 1.6872           | 22.96345       | 13.61034            |



# CROSTON'S FORECASTING METHOD FOR

## **INTERMITTENT DEMAND**

- Example: lubricant sales
- Several years ago, an oil company requested forecasts of monthly lubricant sales
- One of the time series is shown in the table below.
- The data contain small counts, with many months registering no sales at all, and only small numbers of items sold in other months.

| Year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 1    | 0   | 2   | 0   | 1   | 0   | 11  | 0   | 0   | 0   | 0   | 2   | 0   |
| 2    | 6   | 3   | 0   | 0   | 0   | 0   | 0   | 7   | 0   | 0   | 0   | 0   |
| 3    | 0   | 0   | 0   | 3   | 1   | 0   | 0   | 1   | 0   | 1   | 0   | 0   |

- There are 11 non-zero demand values in the series, denoted by q.
- The corresponding arrival series a is also shown in the following table.

| i | 1 | 2 | 3  | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
|---|---|---|----|---|---|---|---|---|---|----|----|
| q | 2 | 1 | 11 | 2 | 6 | 3 | 7 | 3 | 1 | 1  | 1  |
| a | 2 | 2 | 2  | 5 | 2 | 1 | 6 | 8 | 1 | 3  | 2  |

- Applying Croston's method gives the demand forecast 2.750 and the arrival forecast 2.793.
- So the forecast of the original series is









- An implementation of Croston's method with more facilities (including parameter estimation) is available in the tsinterminant package for R.
- Forecasting models that deal more directly with the count nature of the data are described in Christou & Fokianos (2015).

#### References



#### **Text Book:**

"Business Analytics, The Science of Data-Driven Making", U. Dinesh Kumar, Wiley 2017 Chapter-13.7-13.9

# **Image and Case Study**



https://www.abs.gov.au/websitedbs/D3310114.nsf/home/Time+Series+Analysis:+The+Basics

https://otexts.com/fpp2/stationarity.html

https://demand-planning.com/2009/10/08/understanding-intermittent-demand-forecasting-solutions/





# **THANK YOU**

# Jyothi R

Assistant Professor, Department of Computer Science

jyothir@pes.edu