Announcement

- Homework 5
 - Available in Blackboard -> Homework
 - Due: Apr. 20, 11:59pm

Dependency Parsing

SLP3 Ch 14; INLP Ch 11

Dependency Parse

- A dependency parse is a directed tree where
 - the nodes are the words in a sentence
 - ROOT: a special root node
 - The links between the words represent their dependency relations
 - Typically drawn as a directed arc from head to dependent
 - Dependency arcs may be typed (labeled)

Dependency Relations

Argument Dependencies	Description
nsubj	nominal subject
csubj	clausal subject
dobj	direct object
iobj	indirect object
pobj	object of preposition
Modifier Dependencies	Description
tmod	temporal modifier
appos	appositional modifier
det	determiner
prep	prepositional modifier

Dependency Parsing

Advantages

- Deals well with free word order languages where the constituent structure is quite fluid
 - ▶ Ex: Czech, Turkish
- Dependency parses of sentences having the same meaning are more similar across languages than constituency parses
- Dependency structure often captures the syntactic relations needed by downstream applications
- Parsing can be faster than CFG-bases parsers
- Disadvantages
 - There is little agreement about what constitutes a dependency relation.
 - In contrast, there are widely agreed-upon tests for constituency.
 - Dependency maps less cleanly to formal semantic representations than constituency

Projectivity

Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words

Projectivity

- Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Most syntactic structures are projective, but some are non-projective.

Projectivity

- Projective parse: There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Most syntactic structures are projective, but some are non-projective.

- Projective dependency parsing can be modeled with a CFG
 - Hence, a projective dependency parse tree can be converted to a constituency parse tree

 Differentiate left-branching and right-branching nonterminals to avoid ambiguity

Non-projectivity & Discontinuous Constituent

- From a constituent tree to a dependency tree
 - Constituent tree

- From a constituent tree to a dependency tree
 - Constituent tree with heads

- From a constituent tree to a dependency tree
 - Constituent tree with heads, lexicalized

- From a constituent tree to a dependency tree
 - Constituent tree with heads, lexicalized

- From a constituent tree to a dependency tree
 - Dependency tree

Parsing

- Parsing: taking a string and returning the (best) parse tree for that string
- Algorithms
 - Graph-based parsing: MST, Eisner, etc.
 - can find the global optimum
 - Transition-based parsing: arc-standard, arc-eager, archybrid
 - ▶ local optimum, fast
 - Parsing as sequence labeling
 - Headed-span-based parsing

Evaluating dependency parsing

Go	old	
1	2	nsubj
2	0	root
3	5	det
4	5	nn
5	2	obj

Pa	rsed	
1	2	nsubj
2	0	root
3	4	det
4	5	nsubj
5	2	ccomp

$$Acc = \frac{\# \ correct \ deps}{\# \ of \ deps}$$
, $UAS = 4/5 = 80\%$, $LAS = 2/5 = 40\%$

Resource

- Universal Dependencies (UD) Treebanks
 - ▶ As of 2022, nearly 200 treebanks in over 100 languages

Current UD Languages

Information about language families (and genera for families with multiple branches) is mostly taken from WALS Online (IE = Indo-European).

		Afrikaans	1	49K	₹0	IE, Germanic
	pin di	Akkadian	2	25K		Afro-Asiatic, Semitic
	(S)	Akuntsu	1	<1K		Tupian, Tupari
	*	Albanian	1	<1K	W	IE, Albanian
	(後)	Amharic	1	10K		Afro-Asiatic, Semitic
<u> </u>		Ancient Greek	2	416K	45	IE, Greek
—	(>	Apurina	1	<1K		Arawakan
	©	Arabic	3	1,042K		Afro-Asiatic, Semitic
		Armenian	2	55K		IE, Armenian
	X	Assyrian	1	<1K	9	Afro-Asiatic, Semitic
		Bambara	1	13K		Mande
		Basque	1	121K		Basque
		Beja	1	1K	9	Afro-Asiatic, Cushitic
		Belarusian	1	305K		IE, Slavic
		Bengali	1	<1K	y.	IE, Indic

Graph-Based Dependency Parsing

First-order graph-based dependency parsing

- Parse tree scoring
 - Each arc has a score. The tree score is the sum of arc scores.
 - An arc score is often computed from features of the two words
 - Possible features: neighboring words, their POS tags, contextual word embeddings

First-order graph-based dependency parsing

- Parse tree scoring
- Parsing
 - Maximum spanning tree (more precisely, spanning arborescence)
 - What about dependency labels?
 - For each arc, we may simply predict its label from features of the two words

CYK

- Remember: projective dependency parsing can be modeled with a CFG
- We can run CYK for parsing
- ▶ But runtime is $O(n^5)$!
 - CYK is $O(n^3 \cdot |G|)$
 - ▶ There are n^2 rules for a sentence:

$$\forall w_1, w_2 : N_{w_1} \to N_{w_1} N_{w_2} \text{ or } N_{w_2} \to N_{w_1} N_{w_2}$$

Eisner Algorithm

Items:

- Triangles: a partial tree whose root is x_h and no words except x_h expect more children.
- Trapezoids: x_c is a child of x_h and x_c still expects children on its side.
- In all cases, the words in between are descendants of x_h .

Eisner Algorithm – DP base case

Initialization:

Eisner Algorithm – DP recursion

Attach a left dependent:

Complete a left child:

Eisner Algorithm – DP recursion

Attach a right dependent:

Complete a right child:

Eisner Algorithm - DP recursion

- Ambiguity
 - An item may have multiple valid compositions
 - Pick the highest scoring one (and record its composition)

Eisner Algorithm - DP recursion

- Ambiguity
 - An item may have multiple valid compositions
 - Pick the highest scoring one (and record its composition)

$$I_{2\to 4} = \max \begin{pmatrix} C_{2\to 2} + C_{3\leftarrow 4}, \\ C_{2\to 3} + C_{4\leftarrow 4} \end{pmatrix} + s(x_2 \to x_4)$$

Eisner Algorithm – DP goal state

Goal:

Eisner Algorithm – DP goal state

- Ambiguity
 - There may be multiple goal states
 - Pick the highest scoring one (and record its composition)

Eisner Algorithm – obtain the parse tree

Eisner Algorithm

- Time complexity
 - $\rightarrow O(n^2)$ items
 - Each item has O(n) possible compositions
 - The run time is $O(n^3)$

- CYK has $O(n^3)$ items, each has $O(n^2)$ possible compositions, hence the run time is $O(n^5)$
- Fisher does head-splitting to eliminate $O(n^2)$ time!

Non-projective dependency parsing

- Eisner algorithm only finds projective dependency parses
- We need a different algorithm for finding non-projective dependency parses
 - MST parser based on the Chu-Liu-Edmonds algorithm

Chu-Liu-Edmonds: Preliminary

- Maximum spanning tree (arborescence)
- Every non-root node needs exactly one incoming edge.
- In fact, every connected component that doesn't contain root needs exactly one incoming edge.

Chu-Liu-Edmonds

- Two stages:
 - Contraction
 - Expansion

Chu-Liu-Edmonds: Contraction

- 1. For each non-ROOT node v, pick its highest scoring incoming edge
 - Set bestInEdge[v] to be the edge
- 2. If this forms an arborescence (i.e., no cycle)
 - We are done! Go to the next stage.
- 3. Otherwise, a cycle C is formed
 - To build an arborescence, we need to:
 - ▶ Find an incoming edge for C
 - Kick out some edge in C
 - Choosing the incoming edge for C determines which edge to kick out.

Chu-Liu-Edmonds: Contraction

- 3. Otherwise, a cycle C is formed
 - Choosing the incoming edge for C determines which edge to kick out.
 - contract the nodes in \mathcal{C} into a new node $v_{\mathcal{C}}$ and adjust related edges:
 - \blacktriangleright Edges outgoing from any node in C now get source v_C
 - ightharpoonup Edges incoming to any node in $\mathcal C$ now get destination $v_{\mathcal C}$
 - ▶ For each edge e incoming to $v \in C$ from outside of C:
 - ▶ e.kicksOut \leftarrow bestInEdge[v]
 - ▶ e.score $\leftarrow e$.score -e.kicksOut.score
 - This is the change in total score if we choose e and kick out the original incoming edge to v
- 4. Now we get a new graph. Go back to step 1 and repeat.

	${\tt bestInEdge}$
V1	
V2	
V 3	

	kicksOut
a	
a b	
c d	
d	
е	
e f	
g	
h	
i	

	${\tt bestInEdge}$
V1	g
V2	
V3	

	kicksOut
a	
b	
c d	
d	
е	
e f	
g	
h	
i	

	bestInEdge
V1	g
V2	d
V 3	

	kicksOut
a	
a b	
c d	
d	
е	
e f	
g	
h	
i	

	bestInEdge
V1	g
V2	d
V3	

	kicks0ut
a	ф
a b	g d
c d	
d	
е	
e f	
g	
h	g
i	d

	bestInEdge
V1	g
V2	d
V3	
V4	

	kicksOut
а	g
a b	d
c d	
d	
e f	
f	
g h	
h	g
i	d

${\tt bestInEdge}$
æ
d
f

	kicksOut
а	g
a b	d
c d	
l	
е	
f	
g h	
h	g
i	d

	bestInEdge
V1	g
V2	d
V3	f
V4	h

	kicksOut
а	g
b	d
c d	
1	
е	
f	
g h	
h	g d
i	d

	${\tt bestInEdge}$
V1	g
V2	d
V3	f
V4	h
V5	

	kicks0ut
а	g, h
b	d, h
С	f
c d	
е	
f	
g	
g h	g
i	d

	${\tt bestInEdge}$
V1	g
V2	d
V3	f
V4	h
V5	

	kicks0ut
а	g, h
a b	d, h
c d	f
e f	
f	
g	
g h	g
i	g d

	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
е	
f	
g	
g h	g
i	g d

Chu-Liu-Edmonds: Expansion

- After the contraction stage, every contracted node will have exactly one bestInEdge. This edge will kick out one edge inside the contracted node, breaking the cycle.
 - Go through each bestInEdge e in the reverse order that we added them
 - Lock down e, and remove every edge in kicksOut(e) from bestInEdge.

	bestInEdge
V1	g
V2	d
V3	f
V4	h
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
е	
f	
g	
h	g
i	d

	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
a b	d, h
c d	f
d	
е	
f	
g	
h	g
i	d

	bestInEdge
V1	a g
V2	ď
V 3	f
V4	a M
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
е	
e f	
g	
h	g
i	d

	bestInEdge
V1	a g
V2	ď
V 3	f
V4	a M
V5	a

	kicksOut
а	g, h
a b	d, h
c d	f
d	
e f	
f	
g	
g h	g
i	g d

	bestInEdge
V1	a g
V2	a g d
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
b	d, h
c d	f
d	
e f	
f	
g	
h	g
i	g d

	bestInEdge
V1	a g
V2	ď
V3	f
V4	a M
V5	a

	kicksOut
а	g, h
a b	d, h
c d	f
d	
е	
e f	
g	
g h	g
i	d

Chu-Liu-Edmonds Algorithm

- Time complexity
 - Simple implementation: $O(n^3)$
 - Fast implementation: $O(n^2 + n \log n)$
- Single-root parsing: only one word can be the root
 - Several extensions of CLE
 - A simple solution: root reweighting
 - Subtract a large constant from ROOT edges, so that any singleroot tree has a larger score than any multi-root tree
 - See https://aclanthology.org/2021.emnlp-main.823.pdf

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.

Second-order graph-based dependency parsing

- Parse tree scoring:
 - Each connected pair of arcs has a score. The tree score is the sum of arc-pair scores.
- Parsing:
 - $O(n^4)$ time for projective dependency parsing
 - NP-hard for non-projective dependency parsing
 - Approximate algorithms exist

Learning a grammar from a corpus

Training Corpus

Induction

Grammar / Parser

```
S → NP VP

NP → Det N

VP → Vt NP (0.3)

| Vi PP (0.2)

| rolls (0.2)

| bounces (0.1)

.....
```

- Supervised Methods
 - Rely on a training corpus of sentences annotated with parses (treebank)
- Unsupervised Methods (Grammar Induction)
 - Do not require annotated data

Supervised Learning

- Objective
 - Conditional likelihood: P(gold parse | sentence)

$$P(t|x) = \frac{\exp(s(t))}{Z(x)} = \frac{\exp(\sum_{r \in (t,x)} s(r))}{Z(x)} = \frac{\prod_{r \in (t,x)} \exp(s(r))}{Z(x)}$$

- Problem: how to compute the partition function
 - Impossible to enumerate parse trees
- Projective: replace max with sum in Eisner algorithm (similar to inside algorithm)
- Non-projective: Kirchhoff's matrix tree theorem
 - The *determinant* of the Kirchoff (aka Laplacian) adjacency matrix of directed graph G without row and column r is equal to the sum of scores of all directed spanning trees of G rooted at node r.

Supervised Learning

- Objective
 - Conditional likelihood: P(gold parse | sentence)
 - Margin-based objective
- Optimization
 - Gradient-based methods

Unsupervised Learning

- Generative method
 - Dependency parser as a PCFG
 - Ex: Dependency Model with Valence (DMV)
 - Run EM algorithm or SGD to maximize likelihood P(sentence)
- Discriminative method
 - CRF-Autoencoder
 - Encoder: a graph-based dependency parser
 - Decoder: predict each word from its head
 - Maximize reconstruction probability using SGD

Transition-Based Dependency Parsing

Transition-Based Parsing

- A dependency tree represented as a linear sequence of transitions.
- Transitions: simple actions to be executed on a parser configuration.
- Parser configuration
 - ▶ Buffer *B*: unprocessed words of the input sentence
 - Stack S: parse tree under construction

Transition-Based Parsing

- Initial Configuration
 - Buffer B contains the complete input sentence and stack S only contains ROOT.
- During parsing
 - Apply a classifier to decide which transition to take next.
 - No backtracking.
- Final Configuration
 - Buffer B is empty and stack S contains the entire parse tree.

Transition-Based Parsing

- Transitions: "arc-standard" transition set (Nivre, 2004)
 - ▶ SHIFT: move the word at the front of buffer B onto stack S.
 - ▶ RIGHT-ARC: u = pop(S); v = pop(S); $push(S, v \rightarrow u)$.
 - LEFT-ARC: u = pop(S); v = pop(S); push $(S, v \leftarrow u)$.
- For labeled parsing, add labels to the RIGHT-ARC and LEFT-ARC transitions.
 - ▶ Ex. LEFT-ARC-nSubj
- ▶ There are other transition sets: arc-eager, arc-hybrid, ...

Transition-Based Parsing: Example

Stack S:

Buffer B:

we
vigorously
wash
our
cats
who
stink

ROOT

Actions:

Transition-Based Parsing: Example

Stack S:

Buffer B:

we ROOT

vigorously
wash
our
cats
who
stink

Actions: SHIFT

Stack S:

Buffer B:

vigorously
we
ROOT

wash
our
cats
who
stink

Actions: SHIFT SHIFT

Stack S:

Buffer B:

wash
vigorously
we
ROOT

our
cats
who
stink

Actions: SHIFT SHIFT SHIFT

Stack *S*: Buffer *B*:

	ou
vigorously wash	cat
we	wh
ROOT	stir

our
cats
who
stink

Actions: SHIFT SHIFT LEFT-ARC

Stack *S*: Buffer *B*:

our
cats
who
stink

Actions: SHIFT SHIFT LEFT—ARC LEFT — ARC

Stack *S*: Buffer *B*:

cats who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT

Stack *S*: Buffer *B*:

who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT

Stack *S*: Buffer *B*:

who stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC

Stack *S*: Buffer *B*:

stink

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT

Stack S:

Buffer B:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT SHIFT

Stack S:

Buffer B:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC RIGHT—ARC

Stack *S*: Buffer *B*:

Actions: SHIFT SHIFT LEFT—ARC LEFT—ARC SHIFT SHIFT LEFT—ARC SHIFT RIGHT—ARC RIGHT—ARC RIGHT—ARC RIGHT—ARC

Transition-Based Parsing

- See Ch.10 for discussion of classifier design, training and inference
- Time complexity
 - Each word gets SHIFTed once and participates as a child in one ARC.
 - Linear time!

Other Methods

Dependency parsing by head selection

- For each word, learn to predict its head
 - Problem: there may be cycles
 - Surprise: neural models with enough training data can learn to avoid cycles!
- This is similar to first-order graph-based parsing, but without using Eisner or CLE algorithms to avoid cycles
 - ▶ Time complexity $O(n^3) \rightarrow O(n^2)$

Dependency parsing as sequence labeling

- Cast dependency parsing as a sequence labeling task
 - Advantage: faster parsing speed

Headed-Span-Based Dependency Parsing

[exclusive, inclusive] span index

$$\beta$$
-INIT: α -I

Deduction Rules:

Summary

Dependency Parsing

- Dependency Parsing
 - Projectivity
 - Relation to constituency parsing
- Graph-based parsing
 - 1st-order: Eisner, MST
 - Learning
 - Supervised: discriminative methods
 - Unsupervised: EM, CRF-AE
- Transition-based parsing
 - Arc-standard
 - Learning: from configuration to transition