TD agreg n°2

Coralie Renault

5 octobre 2016

Exercice 1

Soient E et F deux \mathbb{R} -espaces vectoriels de dimension finies et $\varphi \colon E \times E \to F$ une application bilinéaire.

Établir que φ est différentiable et calculer sa différentielle φ .

Exercice 2

- 1. Soit $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par $f(M) = M^2$. Justifier que f est différentiable et déterminer la différentielle de f en tout $M \in M_n(\mathbb{R})$.
- 2. Soit $f: M_n(\mathbb{R}) \to \mathbb{R}$ définie par $f(M) = tr(M^3)$. Justifier que f est différentiable et calculer la différentielle de f en tout $M \in M_n(\mathbb{R})$.

Exercice 3

- 1. Justifier que l'application det: $M_n(\mathbb{R}) \to \mathbb{R}$ est différentiable.
- 2. Calculer sa différentielle en I_n puis en toute matrice M inversible.
- 3. En introduisant la comatrice de M, exprimer la différentielle de l'application det en tout $M \in M_n(\mathbb{R})$.

Exercice 4

- 1. Montrer que $Sl_n(\mathbb{R})$ l'ensemble des matrices de déterminant 1 une sous-variété de \mathbb{R}^{n^2} de dimension $n^2 1$ et que si $X \in SL_n(\mathbb{R})$ alors le plan tangent en X est l'ensemble des matrices H telles que $Tr(X^{-1}J) = 0$.
- 2. Montrer que l'ensemble des matrices orthogonales de tailles n est une sous-variété de \mathbb{R}^{n^2} de dimension $\frac{n(n-1)}{2}$ et que si $X \in O_n(\mathbb{R})$ alors le plan tangent en X est l'ensemble des matrices H telles que $t(X^{-1}H) = -X^{-1}H$.

Exercice 5

Soit $n \in \mathbb{N}^*$ et $f: M_n(\mathbb{R}) \to \mathbb{R}^n$ l'application définie par

$$f(M) = (tr(M), tr(M^2), \dots, tr(M^n))$$

- 1. Montrer que f est différentiable et calculer sa différentielle en $M \in M_n(\mathbb{R})$.
- 2. Comparer le rang de f(M) et le degré du polynôme minimal de M.
- 3. Montrer que l'ensemble des matrices de $M_n(\mathbb{R})$ dont le polynôme minimal est de degré n est une partie ouverte de $M_n(\mathbb{R})$.

Exercice 6 (Surjectivité de l'exponentielle)

On veut démontrer le théorème suivant

Théorème 1

Soit $A \in GL_n(\mathbb{C})$ alors il existe $P \in \mathbb{C}[X]$ tel que A = exp(P(A)). En particulier l'application exponentielle de $M_n(\mathbb{C})$ dans $Gl_n(\mathbb{C})$ est surjective.

- 1. Montrer que exp réalise un morphisme de groupe de $(\mathbb{C}[A], +)$ dans $(\mathbb{C}[A]^{\times}, .)$
- 2. Montrer qu'il existe un voisinage ouvert V_0 de 0 et un voisinage ouvert V de l'identité tel que exp réalise un difféomorphisme de V_0 dans V.
- 3. Montrer que $exp(\mathbb{C}[A])$ est un ouvert-fermé de $\mathbb{C}[A]^{\times}$.
- 4. Montrer que $\mathbb{C}[A]^{\times}$ est connexe.
- 5. Conclure.
- 6. Le résultat est-il vrai sur \mathbb{R} ?