SEQUENCE LISTING

<110> Takara Shuzo Co., Ltd.

5 $\langle 120 \rangle$ A method for amplification of nucleic acids

<130>

<150> JP 11-076966

10 <151> 1999-03-19

<150> JP 11-370035

<151> 1999-12-27

15 <150> JP 2000-251981

<151> 2000-08-23

<150> JP 2000-284419

<151> 2000-09-19

20

Z)

The stand than the stand that the stand

<150> JP 2000-288750

<151> 2000-09-22

<150> JP 2001-104191

25 <151> 2001-04-03

```
and part every construct ones and ones and ones are seen and ones and ones
```

<150> PCT/JP00/01534

```
<151> 2000-03-14
 5
       <160> 290
       <210> 1
       <211> 99
       <212> DNA
10
       <213> Artificial Sequence
       <220>
       <223> Synthetic DNA corresponding to a portion of human transferrin
       receptor-encoding sequence used as a template
15
       <400> 1
       ggacagcaac tgggccagca aagttgagaa actcacttta gagaattctg ctttcccttt 60
       ccttgcatat tctgagcagt ttctttctgt ttttgcgag
                                                                           99
       <210> 2
20
       <211> 22
       <212> DNA
       <213> Artificial Sequence
25
       <220>
```

344	
ų.	
44	
Ŋ1	
14	10
11	
M)	
15	
14.5	
	1 -
	15

25

<220>

5

<223>	Designed	oligonucleotide	primer	to	amplify	а	portion	of	human
transf	Gerrin rec	eptor-encoding se	equence						
<400>	2								
cagcaa	actgg gcca	gcaaag tt							22
<210>	3								
<211>	22								
<212>	DNA								
<213>	Artificia	l Sequence							
<220>									
<223>	Designed	oligonucleotide	primer	to	amplify	a	portion	of	human
transf	errin rece	eptor-encoding se	equence						
<400>	3								
gcaaaa	acag aaaga	aaactg ct							22
<210>	4								
<211>	22								
<212>	DNA								
<213>	Artificial	l Sequence							

 $\ensuremath{^{<\!223>}}$ Designed chimeric oligonucleotide primer to amplify a portion of

human	transferrin	receptor-encoding	sequence.	"nucleotide	21	is
ribonu	cleotide-othe	r nucleotides are o	deoxyribonuc	leotides"		

<400> 4

5 cagcaactgg gccagcaaag ut

22

<210> 5

<211> 22

<212> DNA

10 $\langle 213 \rangle$ Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotide 21 is ribonucleotide-other nucleotides are deoxyribonucleotides"

<400> 5

gcaaaaacag aaagaaactg ct

22

20 <210> 6

<211> 22

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotide 22 is ribonucleotide-other nucleotides are deoxyribonucleotides"

5 <400> 6

cagcaactgg gccagcaaag tu

22

<210> 7

<211> 22

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotide 22 is ribonucleotide-other nucleotides are deoxyribonucleotides"

<400> 7

gcaaaaacag aaagaaactg cu

22

20

15

<210> 8

<211> 22

<212> DNA

<213> Artificial Sequence

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of

human transferrin receptor-encoding sequence. "nucleotides 21 to 22

<220>

<211> 22

<212> DNA

25

<213> Artificial Sequence

		are ribonucleotides-other nucleotides are deoxyribonucleotides"	
	5		
		<400> 8	
		cagcaactgg gccagcaaag uu	22
		<210> 9	
	10	⟨211⟩ 22	
		<212> DNA	
The state of the s		<213> Artificial Sequence	
		⟨220⟩	
	15	<223> Designed chimeric oligonucleotide primer to amplify a portion	ı of
		human transferrin receptor-encoding sequence. "nucleotides 21 to	22
		are ribonucleotides-other nucleotides are deoxyribonucleotides"	
		<400> 9	
	20	gcaaaaacag aaagaaactg cu	22
		<210> 10	

I.	
41	
ļ.	1.0
Į.	10
II)	
₽.	
NI.	
M.	
ļ.	

20

25

<211> 26

<212> DNA

<220>
<223> Designed chimeric oligonucleotide primer to amplify a portion of
human transferrin receptor-encoding sequence. "nucleotides 19 to 20
are ribonucleotides-other nucleotides are deoxyribonucleotides"
<400> 10
cagcaactgg gccagcaaag tt 22
⟨210⟩ 11
<211> 22
<212> DNA
<213> Artificial Sequence
⟨220⟩
<223> Designed chimeric oligonucleotide primer to amplify a portion of
human transferrin receptor-encoding sequence. "nucleotides 19 to 20
are ribonucleotides-other nucleotides are deoxyribonucleotides"
<400> 11
gcaaaaacag aaagaaacug ct 22
⟨210⟩ 12
<210> 12

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide used as a probe for detecting an amplified portion of human transferrin receptor-encoding sequence

<400> 12

tgctttccct ttccttgcat attctg

26

10 <210> 13

<211> 25

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

20 <400> 13

attgcttaat cagtgaggca cctau

25

<210> 14

<211> 25

25 <212> DNA

M)
William State
Ų.
L.J
L.J
A)
444.5
चरण स्थ्
Ħ
H. H
H 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 lower NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 14

gataacactg cggccaactt actuc

25

10

5

<210> 15

<211> 25

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

20

<400> 15

actggcgaac tacttactct agcuu

25

<210> 16

25 〈211〉 25

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as pUC19 lower 542 to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 16

10 agtcaccagaa aagcatctta cggau

25

<210> 17

<211> 25

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 17

gctcatgaga caataaccct gataa

25

25 <210> 18

$\langle Z$	Ţ	Ī	>	Z	C

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed oligonucleotide primer designated as pUC19 upper 150 to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 18

ggtgtcacgc tcgtcgtttg gtaug

25

<210> 19

<211> 25

15 <212> DNA

<213> Artificial Sequence

<220>

(223) Designed chimeric oligonucleotide primer designated as pUC19 lower NN to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 19

gataacactg cggccaactt acuuc

25

1	Į.	the sail
	į,	2,175
in the	, set	4180
tite.	1	States.
111111	2	Street,
ition?	į	::70
	22.	•
H		-
222		-fant
19		
222 322	1	'tan't
AND AND ASSESSED. AND ASSESSED.		thirt think
the state of the state of the	The street free	there there there that
the state of the state of the	Stanfe Stanfe St	there there there that

m š
II.
£3
1,1
Į.
ļ.
ŭ.

<211> 25

<212> DNA

<213> Artificial Sequence

5

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper 249 to amplify a portion of plasmid pUC19. "nucleotides 23 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10

<400> 20

cgcctccatc cagtctatta atugu

25

<210> 21

15 <211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 20 human transferrin receptor-encoding sequence. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 21

ctgattgaga ggattcctga gu 25

		<22
		<22
		`
		hum
L.	10	are
IJ.		
D)		
#		
		<40
II)		
The state		tag
IJ.		
in i		
	15	<21
		<21
		(21

<211> 22

<212> DNA <213> Artificial Sequence 5 20> 23> Designed chimeric oligonucleotide primer to amplify a portion of man transferrin receptor-encoding sequence. "nucleotides 21 to 22 e ribonucleotides-other nucleotides are deoxyribonucleotides" 00> 22 22 gggagaga ggaagtgata cu 10> 23 11> 25 <212> DNA <213> Artificial Sequence

<220> 20

> <223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 23 25

5 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 24

attgcttaat cagtgaggca cctaa

25

15

10 -

to the first that the first the first the first that the first the

<210> 25

<211> 25

<212> DNA

<213> Artificial Sequence

20

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

W)
ųĮ)
44,8
Maria Pari
H
Ŋ,
#
H
E S
Ų.

<400> 25 25 attgcttaat cagtgaggca cctac <210> 26 5 <211> 25 <212> DNA <213> Artificial Sequence <220> 10 <223> Designed chimeric oligonucleotide primer designated as pUC19 upper(2)NN to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides-other nucleotides are deoxyribonucleotides" <400> 26 15 attgcttaat cagtgaggca cctag 25 <210> 27 <211> 22 <212> DNA 20 <213> Artificial Sequence <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 25 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 27

	ctgattgaga ggattcctga gu	22
5	<210≻ 28	
	⟨211⟩ 22	
	<212> DNA	
!	<213> Artificial Sequence	
10 %	<220>	
	<223> Designed chimeric oligonucleotide primer to amplify a portio	n of
. ".	human transferrin receptor-encoding sequence. "nucleotides 21 to	22
	are ribonucleotides-other nucleotides are deoxyribonucleotides"	
15	<400> 28	
	tagggagaga ggaagtgata cu	22
	<210> 29	
	<211> 24	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed chimeric oligonucleotide primer designated as MF2N3	(24)

to amplify a portion of plasmid pUC19-249 or plasmid pUC19-911.

"nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 29

5 gctgcaaggc gattaagttg ggua

24

<210> 30

<211> 24

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as MR1N3(24) to amplify a portion of plasmid pUC19-249 or plasmid pUC19-911. "nucleotides 22 to 24 are ribonucleotides-other nucleotides are

deoxyribonucleotides"

<400> 30

ctttatgctt ccggctcgta tguu

24

20

15

<210> 31

<211> 25

<212> DNA

<213> Artificial Sequence

11
ű
IJ.
Ų.
L.
L.
H
Ŧ
ZI.
L.

⟨220⟩	
<223> Designed chimeric oligonucleotide primer designated as pl	C19
upper 249 to amplify a portion of plasmid pUC19. "nucleotides 24 to	25
are ribonucleotides-other nucleotides are deoxyribonucleotides"	
<400> 31	
cgcctccatc cagtctatta attgu	25
<210> 32	
<211> 25	
<212> DNA	
<213> Artificial Sequence	
<220>	
<pre><223> Designed oligonucleotide primer designated as pUC19 upper 150</pre>) to
amplify a portion of plasmid pUC19	
(100) 00	
<400> 32	a.c
ggtgtcacgc tcgtcgtttg gtatg	25
<210> 33	
<210> 33 <211> 25	
<212> DNA	

<213> Artificial Sequence

	<220>	
	<223> Designed oligonucleotide primer designated as pUC19 upper 2	249 to
	amplify a portion of plasmid pUC19	
5	<400> 33	
	cgcctccatc cagtctatta attgt	25
	<210> 34	
	<211> 25	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer designated as pUC19 lower</pre>	NN to
15	amplify a portion of plasmid pUC19	
	<400> 34	0.5
	gataacactg cggccaactt acttc	25
20	<210> 35	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	

<223> Designed chimeric oligonucleotide primer to amplify a portion of plasmid pUC19. "nucleotides 28 to 30 are ribonucleotides—other nucleotides are deoxyribonucleotides"

5 <400> 35

ggatgtgctg caaggcgatt aagttgggua

30

<210> 36

<211> 30

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as MR1N3 to amplify a portion of plasmid pUC19. "nucleotides 28 to 30 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 36

tttacacttt atgcttccgg ctcgtatguu

30

20

15

<210> 37

⟨211⟩ 30

<212> DNA

<213> Artificial Sequence

	⟨220⟩	
	<223> Designed oligonucleotide primer to amplify a portion of pl	lasmid
	pUC19	
5	<400> 37	
Y	ggatgtgctg caaggcgatt aagttgggta	30
	⟨210⟩ 38	
	<211> 30	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Designed oligonucleotide primer designated as MR1N3 to amp	lify a
15	portion of plasmid pUC19	
	<400> 38	
	tttacacttt atgetteegg etegtatgtt	30
20	<210> 39	
	<211> 30	
	<212> RNA	
	<213> Artificial Sequence	
25	<220>	

<223> Synthetic RNA used as a probe for detecting an amplified portion of plasmid pUC19

<400> 39

5 ugauccccca uguugugcaa aaaagcgguu

30

<210> 40

<211> 25

<212> DNA

10 $\langle 213 \rangle$ Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 upper 150 to amplify a portion of plasmid pUC19. "nucleotides 24 to 25 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 40

ggtgtcacgc tcgtcgtttg gtaug

25

20 <210> 41

<211> 30

<212> DNA

<213> Artificial Sequence

25 <220>

\223/ De	SIB	nea cnime	311C	origonuc	reorrae	brimer	uesigna	iteu	as	MIXINO	ιο
amplify	a	portion	of	plasmid	pUC19.	"nucle	eotides	28	to	30	are
ribonucl	eot	ides-othe	r nu	cleotides	are de	oxyriboı	nucleoti	des"	•		

5 <400> 41

tttacacttt atgcttccgg ctcgtatguu

30

<210> 42

<211> 17

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as M13M4

15

<400> 42

gttttcccag tcacgac

17

<210> 43

20 <211> 18

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer to amplify a portion of

vero toxin 1-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 43

agttaatgtg gtggcgaa

18

<210> 44

<211> 17

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 1-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 15 to 17 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 44

20 gactetteca tetgeca

17

<210> 45

<211> 18

<212> DNA

25 <213> Artificial Sequence

1
W.
41
in a
Manga Ma Manga Manga Manga Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma
15
To the first state
AND AND THE

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 45

ttcggtatcc tattcccg

18

10

5

<210> 46

<211> 18

<212> DNA

<213> Artificial Sequence

15

20

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 46

tctctggtca ttgtauua

18

25 <210> 47

a

.met
ilan 3
w.
47
14
148
4
M

	<211> 22		
	<212> DNA		
	<213> Artificial Sequence		
5	<220>		
	<223> Designed oligonucleotide primer designated as MCR-F to ampl	ify	a
	long DNA fragment		
	<400> 47		
10	ccattcaggc tgcgcaactg tt	22	
	<210> 48		
	<211≻ 22		
	<212> DNA		
15	<213> Artificial Sequence		
	<220>		
	<223> Designed oligonucleotide primer designated as MCR-R to ampl	ify	a
	long DNA fragment		
20			
	<400> 48		
	tggcacgaca ggtttcccga ct	22	
	<210> 49		
25	<211> 24		

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as MF2N3(24) to amplify a long DNA fragment. "nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 49

10 gctgcaaggc gattaagttg ggua

24

<210> 50

<211> 24

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as MR1N3(24) to amplify a long DNA fragment. "nucleotides 22 to 24 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 50

ctttatgctt ccggctcgta tguu

24

25 <210> 51

28/158

		<211> 20
		<212> DNA
		<213> Artificial Sequence
	5	<220>
		<223> Designed oligonucleotide primer to amplify a portion of
of Hotel II is		bacteriophage lambda DNA
		<400> 51
A The read half of the fact for the first	10	aacaacaaga aactggtttc 20
hat in a		<210> 52
Jun 14 offi Term Senso		<211> 20
		<212> DNA
	15	<213> Artificial Sequence
		<220>
		<223> Designed oligonucleotide primer to amplify a portion of
		bacteriophage lambda DNA
	20	
		<400≻ 52
		gcaatgcatg acgactgggg 20
		<210> 53
	25	<211> 17

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of bacteriophage lambda DNA. "nucleotides 16 to 17 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 53

10 gttttcccag tcacgac

17

<210> 54

<211> 17

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of bacteriophage lambda DNA. "nucleotides 16 to 17 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 54

caggaaacag ctatgac

17

25 〈210〉 55

30/158

		<211> 20
		<212> DNA
		<213> Artificial Sequence
	5	<220>
		<223> Designed oligonucleotide primer to amplify a portion of
1. Court dates these tests that the first from from that the four four tests that		bacteriophage lambda DNA
M Hour Mills		<400> 55
	10	gtacggtcat catctgacac 20
		<210> 56
		⟨211⟩ 20
		<212> DNA
	15	<213> Artificial Sequence
		<220>
		<223> Designed oligonucleotide primer to amplify a portion of
		bacteriophage lambda DNA
	20	
		<400> 56
		gcaatcggca tgttaaacgc 20
		<210> 57
	25	<211> 20

<212> DNA

25

	<212> DNA	
	<213> Artificial Sequence	
	<220>	
5	<223> Designed oligonucleotide primer to amplify a port	ion of
	bacteriophage lambda DNA	
	<400> 57	
	cgccatcctg ggaagactcc	20
10		
	<210> 58	
	<211> 44 .	
	<212> DNA	
	<213> Artificial Sequence	
15		
	<220>	
	<223> Designed oligonucleotide primer designated as R1-S1 to a	mplify a
	portion of bacteriophage lambda DNA	
20	· <400> 58	
	tttcacacag gaaacagcta tgacaacaac aagaaactgg tttc	44
	<210> 59	
	<211> 44	

a

<211> 62

<212> DNA

25

<213> Artificial Sequence <220> $\langle 223 \rangle$ Designed oligonucleotide primer designated as R1-A3 to amplify a portion of bacteriophage lambda DNA 5 <400> 59 44 tttcacacag gaaacagcta tgacgcaatg catgacgact gggg <210> 60 10 <211> 62 <212> DNA <213> Artificial Sequence <220> 15 $\langle 223 \rangle$ Designed oligonucleotide primer designated as R2-S1 to amplify a portion of bacteriophage lambda DNA <400> 60 attgtgagcg gataacaatt tcacacagga aacagctatg acaacaacaa gaaactggtt 20 62 tc<210> 61

<213> Artificial Sequence

ul.
L)
III.
Africa Second
M.
iš
111
M.
12.5

		<220>
		<223> Designed oligonucleotide primer designated as R2-A3 to amplify a
	5	portion of bacteriophage lambda DNA
•		<400> 61
		attgtgageg gataacaatt teacacagga aacagetatg acgeaatgea tgacgaetgg 60
		gg 62
The second	10	
		<210> 62
		<211> 95
Transport Contract		<212> DNA
		<213> Artificial Sequence
	15	
		<220>
		<pre><223> Designed oligonucleotide primer designated as R3-S1 to amplify a</pre>
		portion of bacteriophage lambda DNA
	20	<400> 62
		cactttatgc ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca 60

95

<210> 63

<211> 95

25

ggaaacagct atgacaacaa caagaaactg gtttc

1	
923	
蕁 .	
M.	
2.54	
Mar Sur	
Mar Sur	

		<212> DNA	
		<213> Artificial Sequence	
		<220>	
	5	$\langle 223 \rangle$ Designed oligonucleotide primer designated as R3-A3 to ampli	fy a
		portion of bacteriophage lambda DNA	
Hall H			
wand that bad thet tall		<400> 63	
all section and		cactttatgc ttccggctcg tatgttgtgt ggaattgtga gcggataaca atttcacaca	60
10 mary 100	10	ggaaacagct atgacgcaat gcatgacgac tgggg	95
F			
		⟨210⟩ 64	
		<211> 17	
		<212> DNA	
	15	<213> Artificial Sequence	
		⟨220⟩	
		$\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as M13R	V-2N
		17mer. "nucleotides 16 to 17 are ribonucleotides-other nucleotides	are
	20	deoxyribonucleotides"	
		<400> 64	
		caggaaacag ctatgac	17

in I
L.
L.
12.5
Here Trees
ing.
<u>L</u> j
M)
護
41, 14

<211> 20

	<212> DNA	
	<213> Artificial Sequence	
5	<220>	
	<223> Designed chimeric oligonucleotide primer designated as M13	RV-2N
l	20mer. "nucleotides 19 to 20 are ribonucleotides-other nucleotides	s are
	deoxyribonucleotides"	
10	<400> 65	
	acacaggaaa cagctatgac	20
	<210> 66	
	<211> 70	
15	<212> DNA	
	<213> Artificial Sequence	
	⟨220⟩	
	<223> Designed oligonucleotide primer to amplify a portion of	CDC2-
20	related protein kinase PISSLRE gene	
	<400> 66	
	gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacccaac aagagcctat	60
	agettegete	70

	5			
		<220>		
\$1.000 T		<223>	Designed	oligonuc
		relate	ed protein	kinase F
a dos de garantes de danni Bar				
the face that their their face for the face	LO	<400>	67	
		tegaaa	atcag ccac	agcgcc at
		tgtggt	tg	
		<210>	68	
'	15	<211>	44	
		<212>	DNA	
		<213>	Artificia	1 Sequen
		<220>		
	20	<223>	Designed	oligonuc

25

<210> 67	
<211> 44	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Designed oligonucleotide primer to amplify a portion of CD	C2-
related protein kinase PISSLRE gene	
<400> 67	
tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacccgct gtctttgagt 6	60
tgtggtg	67
<210> 68	
<211> 44	
<212> DNA	
<213> Artificial Sequence	
⟨220⟩	
<223> Designed oligonucleotide primer to amplify a portion of Type	e II
cytoskeltal 11 keratin gene	
<400> 68	
gagttcgtgt ccgtacaact atttcacaca ggaaacagct atgacgctat tctgacatca	60
ctttccagac	70

ì	Harel	7
į	Ī	Descript,
	į	
300	Heret,	2
i din		Mer.
1000	ž	2
tint.	,	20.00
Œ		
igg.	=	Sec. 5
1000	-	****
2000	Hora	,,,,,,,
III	7	******
1000	=	Minet

<210> 69

		<211> 44
		<212> DNA
	5	<213> Artificial Sequence
		<220>
H Hall Hall		<223> Designed oligonucleotide primer to amplify a portion of Type II
Joseph Jan Jan Han Jan W. Hay Hill H. H. Joseph Jan		cytoskeltal 11 keratin gene
The State of the S	10	
4		<400> 69
And Hill		tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacgaatt ccactggtgg 60
The Hole and the first Hill Head of the		cagtag 66
	15	<210> 70
		<211> 62
		<212> DNA
		<213> Artificial Sequence
	20	<220>
		<223> Designed oligonucleotide primer to amplify a portion of
		bacteriophage lambda DNA
		<400> 70
	25	attgtgagcg gataacaatt tcacacagga aacagctatg acgtacggtc atcatctgac 60

	5
<u>"</u>	
43	
u.	
151	
i.i	
L.I	1.0
H	ΤO

ac	62

<2	1	$\langle 0 \rangle$	71

<211> 62

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of bacteriophage lambda DNA

<400> 71

60 attgtgagcg gataacaatt tcacacagga aacagctatg acatgcgccg cctgaaccac 62 ca

15

The state than their thank thank

<210> 72

<211> 62

<212> DNA

<213> Artificial Sequence

20

<220>

Designed oligonucleotide primer to amplify a portion of <223> bacteriophage lambda DNA

<400> 72 25

		attgtgagcg gataacaatt tcacacagga aacagctatg acctgctctg ccgcttcacg	60
		ca	62
		<210> 73	
	5	<211> 62	
		<212> DNA	
Agric Marin Arm armed Sam Ingle Built Real		<213> Artificial Sequence	
₩ M		⟨220⟩	
10 Maria	10	<223> Designed oligonucleotide primer to amplify a portion	of
		bacteriophage lambda DNA	
Ar Anne Ann Over And Vert		<400> 73	
e ŝi		attgtgagcg gataacaatt tcacacagga aacagctatg acgcaatcgg catgttaaac	60
	15	gg	62
		<210> 74	
		<211> 24	
		<212> DNA	
	20	<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer designated as MF2N3(24)	to
		amplify a portion of plasmid pUC19-249 or plasmid pUC19-911	
	25		

<400> 74

gctgcaaggc gattaagttg ggta

24

<210> 75

5 〈211〉 24

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed oligonucleotide primer designated as MR1N3(24) to amplify a portion of plasmid pUC19-249 or plasmid pUC19-911

<400> 75

ctttatgctt ccggctcgta tgtt

24

15

<210> 76

<211> 20

<212> DNA

<213> Artificial Sequence

20

<220>

<223> Designed chimeric oligonucleotide primer designated as M13M4-3N 20mer. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

```
<400> 76
```

agggttttcc cagtcacgac

20

<210> 77

5 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed chimeric oligonucleotide primer designated as M13RV-3N 20mer. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 77

15 acacaggaaa cagctatgac

20

<210> 78

<211> 24

<212> DNA

20 <213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer designated as M13M4-3N 24mer. "nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides"

25

portion of cyclin A DNA

<400> 78

cgccagggtt ttcccagtca cgac 24 <210> 79 5 <211> 24 <212> DNA <213> Artificial Sequence <220> 10 <223> Designed oligonucleotide primer designated as M13RV-3N 24mer. "nucleotides 22 to 24 are ribonucleotides-other nucleotides are deoxyribonucleotides" 15 <400> 79 tttcacacag gaaacagcta tgac 24 <210> 80 <211> 70 20 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide primer designated as 5'ID to amplify a

43/158

		<400> 80
		tcgaaatcag ccacagcgcc atttcacaca ggaaacagct atgacatgtt ttgggagaa 60
		ttaagtctga 70
	5	
		<210≻ 81
The state of the s		<211> 44
And the		<212> DNA
der jen den gent dem frei beg het fillen freis		<213> Artificial Sequence
	10	
	*	⟨220⟩
Maria Maria Maria		<223> Designed oligonucleotide primer designated as 3'ID to amplify a
The state of the s		portion of cyclin A DNA
	15	<400> 81
		gagttcgtgc cgtacaacta tttcacacag gaaacagcta tgacttacag atttagtgtc 60
		tctggtggg 69
		⟨210⟩ 82
	20	<211> 16
		<212> DNA
		<213> Artificial Sequence
		<220>
	25	
	20	$\langle 223 \rangle$ Designed oligonucleotide primer designated as M13RV-2N 16mer.

15

"nucleotides 15 to 16 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 82

5 aggaaacagc tatgac

16

<210> 83

<211> 27

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 83

cagcaactgg gccagcaaag uugagaa

27

20 <210> 84

<211> 27

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

5 <400> 84

gcaaaaacag aaagaaactg cucagaa

27

<210> 85

<211> 26

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 85

cagcaactgg gccagcaaag uugaga

26

20

<210> 86

<211> 26

<212> DNA

<213> Artificial Sequence

ij.	
Æ.	
1,51	
L.	
Œ.	
副	
(I)	
M.	
L.	
.0300 S.	

<220>

	<223> Designed chimeric oligonucleotide primer to amplify a port	ion	of
	human transferrin receptor-encoding sequence. "nucleotides 21	to	22
	are ribonucleotides-other nucleotides are deoxyribonucleotides"		
5			
	<400≻ 86		
	gcaaaaacag aaagaaactg cucaga	26	
	<210≻ 87		
10	<211> 25		
	<212> DNA		
	<213> Artificial Sequence		
	<220>		
15	$\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a port	ion	of
	human transferrin receptor-encoding sequence. "nucleotides 21	to	22
	are ribonucleotides-other nucleotides are deoxyribonucleotides"		
	<400> 87		
20	cagcaactgg gccagcaaag uugag	25	
	<210> 88		
	<211> 25		
	<212> DNA		
25	<213> Artificial Sequence		

Æ.	
L.	
串	
Ľ1	
He but the man way	
Man des from	

<212> DNA

<220>	
<223> Designed chimeric oligonucleotide primer to amplify a portion	n of
human transferrin receptor-encoding sequence. "nucleotides 21 to	o 22
are ribonucleotides-other nucleotides are deoxyribonucleotides"	
<400> 88	
gcaaaaacag aaagaaactg cucag 25	5
<210> 89	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Designed chimeric oligonucleotide primer to amplify a portion	n of
human transferrin receptor-encoding sequence. "nucleotides 21 to	o 22
are ribonucleotides—other nucleotides are deoxyribonucleotides"	
<400> 89	
cagcaactgg gccagcaaag uuga 24	
<210> 90	
<211> 24	

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 90

gcaaaaacag aaagaaactg cuca

24

10

<210> 91

<211> 23

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

2.0

<400> 91

cagcaactgg gccagcaaag uug

23

<210> 92

25 〈211〉 23

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 92

10 gcaaaaacag aaagaaactg cuc

23

<210> 93

<211> 22

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of human transferrin receptor-encoding sequence. "nucleotides 21 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 93

cagcaactgg gccagcaaag uu

22

25 <210> 94

⟨211⟩ 22

<212> DNA

25

<210> 96

		<213> Artificial Sequence	
	5	<220>	
		<223> Designed chimeric oligonucleotide primer to amplify a portion	on of
C)		human transferrin receptor-encoding sequence. "nucleotides 21 t	to 22
The first two that the first that the first two word two that the first two		are ribonucleotides-other nucleotides are deoxyribonucleotides"	
	10	<400> 94	
		gcaaaaacag aaagaaactg cu	22
		<210> 95	
ipe b		<211> 22	
	15	<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer to amplify a portion of 1	human
	20	transferrin receptor-encoding sequence	
		<400> 95	
		caacttcaag gtttctgcca gc	22

⟨211⟩ 21

```
<212> DNA
       <213> Artificial Sequence
       <220>
 5
       \langle 223 \rangle Designed oligonucleotide primer to amplify a portion of human
       transferrin receptor-encoding sequence
       <400> 96
10
                                                                            21
       aatagtccaa gtagctagag c
       <210> 97
       <211> 20
       <212> DNA
15
       <213> Artificial Sequence
       <220>
       <223> PCR primer BsuII-3 for cloning a gene encoding a polypeptide
       having a RNaseHII activity from Bacillus caldotenax
20
       <400> 97
       gtcgccagcg cagtnathyt
                                20
       <210> 98
25
       <211> 20
```

<210> 100

<211> 20

<212> DNA

```
the those their the those that their the
```

```
<212> DNA
      <213> Artificial Sequence
      <220>
      <223> PCR primer BsuII-6 for cloning a gene encoding a polypeptide
 5
      having a RNaseHII activity from Bacillus caldotenax
      <400> 98
      cggtccctcg tcacyttngc
                               20
10
       <210> 99
      <211> 20
       <212> DNA
       <213> Artificial Sequence
15
       <220>
       <223> PCR primer RNII-S1 for cloning a gene encoding a polypeptide
      having a RNaseHII activity from Bacillus caldotenax
20
       <400> 99
                               20
       cgcgcttttc cggcgtcagc
```

<213> Artificial Sequence

<220>

<223> PCR primer RNII-S2 for cloning a gene encoding a polypeptide

5 having a RNaseHII activity from Bacillus caldotenax

<400> 100

acggcgcacg cttcaatttg 20

10 <210> 101

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> PCR primer RNII-S5 for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

<400> 101

20 acgcctattt gccggggctt 20

<210> 102

<211> 20

<212> DNA

25 <213> Artificial Sequence

<220>

<223> PCR primer RNII-S6 for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

5

<400> 102

atgaccgacg cagcggcgat 20

<210> 103

10 <211> 39

<212> DNA

<213> Artificial Sequence

<220>

15 <223> PCR primer RNII-Nde for cloning a gene encoding a polypeptide having a RNaseHII activity from Bacillus caldotenax

<400> 103

tagaagaggg agaggcatat gaagcggtat acggtgaaa 39

20

<210> 104

<211> 780

<212> DNA

<213> Bucillus caldotenax

<400> 104

atgaagcggt	atacggtgaa	agacattgaa	gcgctgcttc	cgaagcttgg	cgcggacgac	60
ccgcgctggg	agatgctgcg	gcaggatgag	cgaaaaaagcg	tgcaggcgct	tcttgcccgt	120
tttgaaaggc	agaaagcgcg	ccggcacgcc	atcgagcagc	ggtgggaaga	actaatgcgt	180
tatgagaggg	aactatacgc	cgctggcgtt	agacggatcg	ccggcattga	tgaggccggg	240
cgcggcccgc	tggccggccc	ggtcgtcgcc	gccgcggtca	tcttgccgaa	agacgcctat	300
ttgccggggc	ttgacgactc	gaagcggctg	acgccggaaa	agcgcgaggc	attgtttgcg	360
caaattgaag	cgtgcgccgt	cgccatcggc	atcggcatcg	tcagcgcggc	ggagatcgat	420
gaaaggaata	tttacgaagc	gacaaggcaa	gcgatggcga	aagcggtgaa	cgccctttcc	480
ccgccgcctg	aacatttgct	tgttgatgcg	atggcggtgc	cgtgcccact	gccgcaacag	540
cgcctcataa	aaggagacgc	caacagcgct	tcaatcgccg	ctgcgtcggt	catcgccaaa	600
gtgacgcgcg	accggtggat	gaaagaactg	gatcgccgct	atccacaata	cgggttcgcg	660
cgccatatgg	gctacggaac	gccggaacat	ttcgaggcga	tccgccgcta	cggcgttacg	720
cctgagcacc	gtcgttcgtt	cgcaccggtg	agggaggtgc	tgaaggcgag	cgagcagctc	780
<210> 105						
<211> 260						
<212> PRT						
<213> Buci	llus caldote	enax				
<400> 105						

Met Lys Arg Tyr Thr Val Lys Asp Ile Glu Ala Leu Leu Pro Lys

Leu Gly Ala Asp Asp Pro Arg Trp Glu Met Leu Arg Gln Asp Glu

56/158

	Arg	Lys	Ser	Val	G1n	Ala	Leu	Leu	Ala	Arg	Phe	Glu	Arg	G1n	Lys
					35					40					45
	Ala	Arg	Arg	His	Ala	Ile	G1u	Gln	Arg	Trp	Glu	Glu	Leu	Met	Arg
					50					55					60
5	Tyr	Glu	Arg	G1u	Leu	Tyr	Ala	Ala	G1y	Va1	Arg	Arg	Ile	Ala	G1y
					65					70					75
	Ile	Asp	Glu	Ala	G1y	Arg	G1y	Pro	Leu	Ala	G1y	Pro	Val	Val	Ala
					80					85					90
	Ala	Ala	Va1	Ile	Leu	Pro	Lys	Asp	Ala	Tyr	Leu	Pro	G1y	Leu	Asp
10 -					95					100					105
• . •	Asp	Ser	Lys	Arg	Leu	Thr	Pro	Glu	Lys	Arg	Glu	Ala	Leu	Phe	Ala
,					110					115					120
	G1n	Ile	Glu	Ala	Cys	Ala	Val	Ala	Ile	G1y	I1e	G1y	Ile	Val	Ser
					125					130					135
15	Ala	Ala	Glu	Ile	Asp	Glu	Arg	Asn	Ile	Tyr	Glu	Ala	Thr	Arg	G1n
					140					145					150
	Ala	Met	Ala	Lys	Ala	Val	Asn	Ala	Leu	Ser	Pro	Pro	Pro	G1u	
					155					160					165
	Leu	Leu	Val	Asp		Met	Ala	Val	Pro		Pro	Leu	Pro	Gln	
20					170					175					180
	Arg	Leu	Ile	Lys		Asp	Ala	Asn	Ser		Ser	Ile	Ala	Ala	
	_				185					190	_			~-	195
	Ser	Val	lle	Ala		Val	Thr	Arg	Asp		Trp	Met	Lys	Glu	
					200					205					210
25	Asp	Arg	Arg	Tyr	Pro	Gln	Tyr	G1y	Phe	Ala	Arg	His	Met	G1y	Tyr

215 225 220 Gly Thr Pro Glu His Phe Glu Ala Ile Arg Arg Tyr Gly Val Thr 235 230 240 Pro Glu His Arg Arg Ser Phe Ala Pro Val Arg Glu Val Leu Lys 5 245 250 255 Ala Ser Glu Gln Leu 260 <210> 106 <211> 20 10 <212> DNA <213> Artificial Sequence <220> <223> PCR primer BsuIII-1 for cloning a gene encoding a polypeptide 15 having a RNaseHIII activity from Bacillus caldotenax <400> 106 20 ggtaaggtct tgttycargg 20 <210> 107 <211> 20

25

<212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer BsuIII-3 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

5 <400> 107

ggaaccggag attayttygg 20

<210> 108

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer BsuIII-6 for cloning a gene encoding a polypeptide

having a RNaseHIII activity from Bacillus caldotenax

<400> 108

atgattgaag cagengenae 20

20 <210> 109

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> PCR primer BsuIII-8 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

<400> 109

5 gtattggcga aatgnarytt 20

<210> 110

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> PCR primer RNIII-S3 for cloning a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

15

<400> 110

cccgatcgtc gtcgccgccg 20

<210> 111

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> PCR primer BcaRNIII-3 for cloning a gene encoding a polypeptide

having a RNaseHIII activity from Bacillus caldotenax

<400> 111

gatacgtgga cactttccgc 20

5

<210> 112

<211> 915

<212> DNA

<213> Bucillus caldotenax

10

15

20

25

<400> 112

60	agacgcctta	cccactacca	gccttgcgcg	gctgcttgac	ccgaccaaca	gtgattcaag
120	cgtcatcacc	gcccggatgt	gccgtcaagc	agcgttgttt	ttccggctgg	tccgaccggc
180	agcagcgaaa	cggagcaaga	gggaaagcgg	gctgtttcaa	caggcaaagt	gcctaccgct
240	cgctttggca	accagccgtc	acagctgacc	ctcaaacgaa	gggcgagcgc	tggatatcag
300	cggcgattat	aagtcggcac	ggttccgatg	ttccgccatc	tcgggtctct	gctcatcaac
360	caaaatcgcg	cgcatatcgc	gtggatcggc	cgccgcctac	tcgtcgtcgc	ttcggcccga
420	gategeeece	caatcaaacg	aacgatgagg	gaaacaattg	tgaaagattc	gcgcttggcg
480	atacaaccgc	acaatgccga	accgtgttgg	gcatgcggtc	aaaccgtgcc	gccatcatgg
540	ccggacgctc	tectteacaa	atgaaagcgc	gcagacgaaa	gcggcatgcc	tggcagcgaa
600	cgacgaattt	caatcatcat	gaaccagaag	cgcgcccgcc	ttgacgccat	gtgaaactcg
660	ccgcgagcgg	atcgcattat	tccgatgaag	ccgttacctt	attcgtattt	ttaaaacggg
720	ctcgatcatc	tcgccgccgc	cacgtatcag	ggaaagtgtc	ttcccaaggc	gtgcactgcc
780	cctcctgctt	gcgccgtcgg	caattatccc	ggagatggag	tgtttttaga	gcccgctatg
840	cgcgcggggg	acatcatccg	gccgcggcca	tgtcgatgaa	ccggcgccat	ccaaaaggcg

gcggaagege ttgagacatg egceaagett catttegeea atacaaaaaa ggegetggae 900 ategeeaaac geegg 915

<210> 113

5 <211> 305

<212> PRT

<213> Bucillus caldotenax

<400> 113

Met Ile Gln Ala Asp Gln Gln Leu Leu Asp Ala Leu Arg Ala His

1 5 10 15

Tyr Gln Asp Ala Leu Ser Asp Arg Leu Pro Ala Gly Ala Leu Phe

20 25 30

Ala Val Lys Arg Pro Asp Val Val Ile Thr Ala Tyr Arg Ser Gly

15 35 40 45

Lys Val Leu Phe Gln Gly Lys Ala Ala Glu Gln Glu Ala Ala Lys

50 55 60

Trp Ile Ser Gly Ala Ser Ala Ser Asn Glu Thr Ala Asp His Gln

65 70 75

20 Pro Ser Ala Leu Ala Ala His Gln Leu Gly Ser Leu Ser Ala Ile

80 85 90

Gly Ser Asp Glu Val Gly Thr Gly Asp Tyr Phe Gly Pro Ile Val

95 100 105

Val Ala Ala Ala Tyr Val Asp Arg Pro His Ile Ala Lys Ile Ala

25 110 115 120

	Ala	Leu	G1y	Val	Lys	Asp	Ser	Lys	Gln	Leu	Asn	Asp	G1u	Ala	I1e
					125					130					135
	Lys	Arg	I1e	Ala	Pro	Ala	Ile	Met	G1u	Thr	Va1	Pro	His	Ala	Va1
					140					145					150
5	Thr	Val	Leu	Asp	Asn	Ala	Glu	Tyr	Asn	Arg	Trp	Gln	Arg	Ser	G1y
					155					160					165
	Met	Pro	G1n	Thr	Lys	Met	Lys	Ala	Leu	Leu	His	Asn	Arg	Thr	Leu
					170					175					180
	Val	Lys	Leu	Val	Asp	Ala	Ile	Ala	Pro	Ala	Glu	Pro	Glu	Ala	Ile
10					185					190					195
	Ile	Ile	Asp	Glu	Phe	Leu	Lys	Arg	Asp	Ser	Tyr	Phe	Arg	Tyr	Leu
					200					205					210
	Ser	Asp	G1u	Asp	Arg	Ile	Ile	Arg	Glu	Arg	Val	His	Cys	Leu	Pro
					215					220					225
15	Lys	Ala	G1u	Ser	Val	His	Val	Ser	Val	Ala	Ala	Ala	Ser	Ile	Ile
					230					235					240
	Ala	Arg	Tyr	Va1	Phe	Leu	Glu	G1u	Met	Glu	G1n	Leu	Ser	Arg	Ala
					245					250					255
	Va1	G1y	Leu	Leu	Leu	Pro	Lys	G1y	Ala	G1y	Ala	Ile	Val	Asp	G1u
20					260					265					270
	Ala	Ala	Ala	Asn	Ile	Ile	Arg	Ala	Arg	G1y	Ala	G1u	Ala	Leu	Glu
					275					280					285
	Thr	Cys	Ala	Lys	Leu	His	Phe	Ala	Asn	Thr	Lys	Lys	Ala	Leu	Asp
					290					295					300
25	Ile	Ala	Lys	Arg	Arg										

63/158

305

41
Į.
W
Ţ
Ų.
L
71
Ŧ.
H
32 E
T.

10

<210> 11

<211> 39

5 <212> DNA

<213> Artificial Sequence

<220>

<223> PCR primer BcaRNIIINde for amplifying a gene encoding a polypeptide having a RNaseHIII activity from Bacillus caldotenax

<400> 114

cgaacgttgt caaaccatat gattcaagcc gaccaacag 39

15 〈210〉 115

<211> 663

<212> DNA

<213> Pyrococcus horikoshii

20 <400> 115

25

atgaaggttg ctggagttga tgaagcggg agggggccgg taattggccc gttagtaatt 60 ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120 tccaaacaat taactcctgg gcaacgtgaa aaactattta gcaaattaat agatatccta 180 gacgattatt atgttcttct cgttaccccc aaggaaatag atgagaggca tcattctatg 240 aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 300

5

aagatatatg	tggactctgc	cgatgtagat	cctaagaggt	ttgctagtct	aataaaggct	360
gggttgaaat	atgaagccac	ggttatcgcc	gagcataaag	ccgatgcaaa	gtatgagata	420
gtatcggcag	catcaataat	tgcaaaggtc	actagggata	gagagataga	gaagctaaag	480
caaaagtatg	gggaatttgg	ttctggctat	ccgagtgatc	cgagaactaa	ggagtggctt	540
gaagaatatt	acaaacaata	tggtgacttt	cctccaatag	ttaggagaac	ttgggaaacc	600
gctaggaaga	tagaggaaag	gtttagaaaa	aatcagctaa	cgcttgataa	attccttaag	660
tga 663						

10 <210> 116

<211> 33

<212> DNA

<213> Artificial Sequence

15 <220>

<223> PCR primer 1650Nde for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus furiosus

<400> 116

20 caggaggaga gacatatgaa aataggggga att 33

<210> 117

<211> 33

<212> DNA

25 <213> Artificial Sequence

<223> PCR primer 1650Bam for cloning a gene encoding a polypeptide having a RNaseHII activity from Pyrococcus furiosus

5

<400> 117

gaaggttgtg gatccacttt ctaaggtttc tta 33

<210> 118

10 <211> 672

<212> DNA

<213> Pyrococcus furiosus

<400> 118

60 15 atgaaaatag ggggaattga cgaagcagga agaggaccag cgatagggcc attagtagta 120 gctactgtcg tcgttgatga gaaaaacatt gagaagctca gaaacattgg agtaaaagac tecanacaac taacacccca tgaaaggaag aatttatttt cecagataac etcaatageg 180 gatgattaca aaatagtgat agtatcccca gaagaaatcg acaatagatc aggaacaatg 240 300 aacgagttag aggtagagaa gtttgctctc gccttaaatt cgcttcagat aaaaccagct 20 360 cttatatacg ctgatgcagc ggatgtagat gccaatagat ttgcaagctt gatagagaga 420 agactcaatt ataaggegaa gattattgee gaacacaagg eegatgcaaa gtatecagta 480 gtttcagcag cttcaatact tgcaaaggtt gttagggatg aggaaattga aaaattaaaa 540 aagcaatatg gagactttgg ctctgggtat ccaagtgatc caaaaaccaa gaaatggctt gaagagtact acaaaaaaca caactettte cetecaatag teagaegaac etgggaaact 600 25 gtaagaaaaa tagaggaaag cattaaagcc aaaaaatccc agctaacgct tgataaattc 660

tttaagaaac ct 672

<210> 119

<211> 224

5 <212> PRT

<213> Pyrococcus furiosus

<400> 119

Met Lys Ile Gly Gly Ile Asp Glu Ala Gly Arg Gly Pro Ala Ile

10 1 5 10 15

Gly Pro Leu Val Val Ala Thr Val Val Val Asp Glu Lys Asn Ile

20 25 30

Glu Lys Leu Arg Asn Ile Gly Val Lys Asp Ser Lys Gln Leu Thr

35 40 45

Pro His Glu Arg Lys Asn Leu Phe Ser Gln Ile Thr Ser Ile Ala

50 55 60

Asp Asp Tyr Lys Ile Val Ile Val Ser Pro Glu Glu Ile Asp Asn

65 70 75

Arg Ser Gly Thr Met Asn Glu Leu Glu Val Glu Lys Phe Ala Leu

20 80 85 90

Ala Leu Asn Ser Leu Gln Ile Lys Pro Ala Leu Ile Tyr Ala Asp

95 100 105

Ala Ala Asp Val Asp Ala Asn Arg Phe Ala Ser Leu Ile Glu Arg

110 115 120

25 Arg Leu Asn Tyr Lys Ala Lys Ile Ile Ala Glu His Lys Ala Asp

130 135 125 Ala Lys Tyr Pro Val Val Ser Ala Ala Ser Ile Leu Ala Lys Val 145 150 140 Val Arg Asp Glu Glu Ile Glu Lys Leu Lys Lys Gln Tyr Gly Asp 155 160 165 5 Phe Gly Ser Gly Tyr Pro Ser Asp Pro Lys Thr Lys Lys Trp Leu 170 175 180 Glu Glu Tyr Tyr Lys Lys His Asn Ser Phe Pro Pro Ile Val Arg 185 190 195 Arg Thr Trp Glu Thr Val Arg Lys Ile Glu Glu Ser Ile Lys Ala 10 200 205 210 Lys Lys Ser Gln Leu Thr Leu Asp Lys Phe Phe Lys Lys Pro 215 220

15 〈210〉 120

<211> 28

<212> DNA

<213> Artificial Sequence

20 <220>

<223> PCR primer 915-F1 for cloning a gene encoding a polypeptide having a RNaseHII activity from Thermotoga maritima

<400> 120

25 aaaaagcttg ggaatagatg agctttac 28

```
The state was the state of the
```

```
<210> 121
       <211> 26
       <212> DNA
 5
       <213> Artificial Sequence
       <220>
       \langle 223 \rangle PCR primer 915-F2 for cloning a gene encoding a polypeptide
       having a RNaseHII activity from Thermotoga maritima
10
       <400> 121
       aaaccatggg aatagatgag ctttac
                                        26
       <210> 122
15
       <211> 29
       <212> DNA
       <213> Artificial Sequence
       <220>
       \langle 223 \rangle PCR primer 915-R1 for cloning a gene encoding a polypeptide
20
       having a RNaseHII activity from Thermotoga maritima
       <400> 122
```

29

aaatctagat cctcaacttt gtcgatgtg

```
I B See and See for
```

<210> 123 <211> 30 <212> DNA <213> Artificial Sequence 5 <220> <223> PCR primer 915-R2 for cloning a gene encoding a polypeptide having a RNaseHII activity from Thermotoga maritima <400> 123 10 30 aatctagatt aaaaaagagg gagattatgg ⟨210⟩ 124 <211> 22 <212> DNA 15 <213> Artificial Sequence <220> <223> Designed oligonucleotide primer designated as MCS-F to amplify a 20 long DNA fragment <400> 124

ccattcaggc tgcgcaactg tt

22

25 <210> 125

	ž.
	ž.
Æ	2000
4	
1 5	Arres
Ų.	rent.
Ų	dan.
11.2	dans
ū	1
	٠,
Œ	÷
Ľ	the state
	Stuff Staff
Ľ	Stuff Staff
	Jenn Som Buff dash
	Jenn Som Buff dash
	thair than Soon that daily

	<211> 22
	<212> DNA
	<213> Artificial Sequence
5	<220>
	$\langle 223 \rangle$ Designed oligonucleotide primer designated as MCS-R to amplify a
	long DNA fragment
	<400> 125
10	tggcacgaca ggtttcccga ct 22
	<210> 126
	<211> 24
	<212> DNA
15	<213> Artificial Sequence
	⟨220⟩
	<223> Designed chimeric oligonucleotide primer designated as MF2N3(24)
	to amplify a long DNA fragment. "nucleotides 22 to 24 are
20	ribonucleotides-other nucleotides are deoxyribonucleotides"
	<400> 126
	gctgcaaggc gattaagttg ggua 24
2.5	∕910\ 197

The trans of the trans of the trans W

<211>	24	
<212>	DNA	
<213>	Artificial	Sequenc

<223> Designed chimeric oligonucleotide primer designated as MR1N3(24) "nucleotides 22 24 amplify a long DNA fragment. are to ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 127 10 ctttatgctt ccggctcgta tguu

<210> 128

<211> 20

<220>

5

<212> DNA 15

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of lambda 20 DNA. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 128

cctttctctg tttttgtccg

20

<210> 129

	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
5		
	<220>	
	$\langle 223 \rangle$ Designed chimeric oligonucleotide primer to	amplify a portion of
	lambda DNA. "nucleotides 18 to 20 are	ribonucleotides-other
	nucleotides are deoxyribonucleotides"	
10		
	<400> 129	
	aagcacctca ttaccctugc	20
	<210> 130	
15	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Designed oligonucleotide primer to amplify	a portion of lambda
	DNA	
	<400> 130	
	gggcggcgac ctcgcgggtt ttcg	24

<210> 131

		<211> 24	
		<212> DNA	
		<213> Artificial Sequence	
	5		
		<220>	
		<223> Designed oligonucleotide primer to amplify a portio	n of lambda
hind dam dam mad had had dam tagi		DNA	
dime.	10	<400> 131	
il' And Ann Ann Ann Ind Sant		gctgcttatg ctctataaag tagg	24
ma, mark		<210> 132	
*		<211> 20	
	15	<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Designed chimeric oligonucleotide primer to amplify a	portion of
	20	Flavobacterium species DNA. "nucleotides 18 to 20 are ribo	nucleotides-
		other nucleotides are deoxyribonucleotides"	
		<400> 132	
		aggaatcttt atttaccaug 2	0

<210> 133

	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
5		
	<220>	
	<223> Designed chimeric oligonucleotide primer to amplify a	portion of
	Flavobacterium species DNA. "nucleotides 18 to 20 are ribon	ucleotides
	other nucleotides are deoxyribonucleotides"	
10		
	<400> 133	
	tggtgtttaa acttattgcg	20
	<210> 134	
15	<211> 24	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
20	<223> Designed oligonucleotide primer to amplify a portion o	f
	Flavobacterium species DNA.	
	<400≻ 134	
	ccatcagcta taaacacaaa cagc	24
25		

<210> 135 <211> 24

<212> DNA

<213> Artificial Sequence

5

<220>

<223> Designed oligonucleotide primer to amplify a portion of Flavobacterium species DNA.

10 <400> 135

tgttttgacc aaacatagta atgc

24

<210> 136

<211> 21

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of 20 vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 19 to 21 are ribonucleotides-other nucleotides deoxyribonucleotides"

<400> 136

25 tcgttaaata gtatacggac a

<400> 138

<210> 137

<211> 20 <212> DNA <213> Artificial Sequence 5 <220> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are 10 deoxyribonucleotides" <400> 137 20 tgctcaataa tcagacgaag 15 <210> 49 <211> 24 <212> DNA <213> Artificial Sequence 20 <220> $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of vero

toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<210> 139

<211> 24

5 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 139

ctctgtatct gcctgaagcg taag

24

15 <210> 140

<211> 21

<212> DNA

<213> Artificial Sequence

20 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides" <400> 140

tacctgggtt tttcttcggu a

20

<210> 141

5 〈211〉 20

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

15 <400> 141

atagactttt cgacccaaca

20

<210> 142

<211> 20

20 <212> DNA

<213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

10

15

20

are ribonucleotides-other nucleotides "nucleotides 18 to 20 deoxyribonucleotides" <400> 142 20 atagacatca agccctcgua <210> 143 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> Designed oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. <400> 143 21 tcgttaaata gtatacggac a <210> 144 <211> 20 <212> DNA <213> Artificial Sequence

<220>

25 <223> Designed oligonucleotide primer to amplify a portion of vero

toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 144

atagacatca agccctcgta

20

5

<210> 145

<211> 20

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

15

<400> 145

gaacaatgga agtcaacaaa

20

<210> 146

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed oligonucleotide primer to amplify a portion of viroid

```
on sanit them best dead their sec
```

20

CSVd.

<220>

<400> 146
tacttgtggt tcctgtggtg

5
<210> 147

20

<211> 20 <212> DNA

<213> Artificial Sequence

<223> Designed oligonucleotide primer to amplify a portion of viroid CSVd.

15 <400> 147

atactaaggt tccaagggct 20

<210> 148 <211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 148

ggaaacctgg aggaaguc

18

5

<210> 149

<211> 20

<212> DNA

<213> Artificial Sequence

10

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

15

<400> 149

gtgaaaaccc tgtttaggau

20

<210> 150

20 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

25 <223> Designed chimeric oligonucleotide primer to amplify a portion of

Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotidesother nucleotides are deoxyribonucleotides"

<400> 150

5 acctagatat aagctctaca

20

<210> 151

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 151

aaatagatgt tttagcagag

20

20 <210> 152

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of Flavobacterium species DNA. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

5 <400> 152

atagataaaa aaaactccac

20

<210> 153

<211> 21

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 19 to 21 are ribonucleotides-nucloetide 18 is inosineother nucleotides are deoxyribonucleotides"

<400> 153

20 tcgttaaata gtatacgiac a

21

<210> 154

<211> 21

<212> DNA

25 <213> Artificial Sequence

Į.	Cars?	
¥	-tend	
L	direction of	
IJ	Sheek	
Ļ	· Perri	
ļ	date:	
Ū	-Can	
Œ		
	4Frig	
	400	
ī	-Maritan	
Ļ		
	4114	

15

20

5

<223> Designed chimeric oligonucleotide primer to amplify a portion of
vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
"nucleotides 19 to 21 are ribonucleotides-nucleotide 17 is inosine
other nucleotides are deoxyribonucleotides"
<400> 154
tcgttaaata gtatacigac a 21
<210> 155
<211> 21
<212> DNA
<213> Artificial Sequence
⟨220⟩
$\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of
vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
"nucleotides 19 to 21 are ribonucleotides-nucleotide 16 is inosine-
other nucleotides are deoxyribonucleotides"

<400> 155

<220>

tcgttaaata gtataiggac a

21

25 <210> 156 <211> 20

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-nucleotide 17 is inosineother nucleotides are deoxyribonucleotides"

10

<400> 156

tgctcaataa tcagaciaag

20

<210> 157

15 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
"nucleotides 18 to 20 are ribonucleotides-nucleotide 16 is inosine-other nucleotides are deoxyribonucleotides"

25 <400> 157

tgctcaataa tcagaigaag

and any area area man pass was the same and area to be a total and area area and the same and the same area.

	<210> 158
	<211> 20
5	<212> DNA
	<213> Artificial Sequence
	<220>
	<223> Designed chimeric oligonucleotide primer to amplify a portion of
10	vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
	"nucleotides 18 to 20 are ribonucleotides-nucleotide 15 is inosine-
	other nucleotides are deoxyribonucleotides"
	<400> 158
15	tgctcaataa tcagicgaag 20
	<210> 159
	<211> 21
	<212> DNA
20	<213> Artificial Sequence
	<220>
	<223> Designed chimeric oligonucleotide primer to amplify a portion of
	vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.
25	"nucleotides 9 to 11 and 19 to 21 are ribonucleotides-other

nucleotides are deoxyribonucleotides"

<400> 159

tacctggguu uttcttcggu a

21

5

<210> 160

<211> 20

<212> DNA

<213> Artificial Sequence

10

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 8 to 10 and 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 160

atagacauca agccctcgua

20

20

<210> 161

<211> 20

<212> DNA

<213> Artificial Sequence

25

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

5

<400> 161

gtcccctgag atatatguuc

20

<210> 162

10 <211> 30

<212> DNA

<213> Artificial Sequence

<220>

15 <223> Designed oligonucleotide probe to detect a DNA fragment amplifing a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 162

20 ccaacaaagt tatgtctctt cgttaaatag

30

<210> 163

<211> 20

<212> DNA

25 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 163

atgccattga gttcatcaac

20

10 <210> 164

<211> 19

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse. "nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides"

20 <400> 164

tcttggtggc aaagatgag

19

<210> 165

<211> 20

25 <212> DNA

 $\langle 213 \rangle$ Artificial Sequence

<220>

5

<223> Designed oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse.

<400> 165

atgccattga gttcatcaac

20

10 <210> 166

<211> 19

<212> DNA

<213> Artificial Sequence

15 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of iNOS-encoding sequence from mouse

<400> 166

20 tcttggtggc aaagatgag

19

<210> 167

<211> 20

<212> DNA

25 <213> Artificial Sequence

	<220>	
	$\langle 223 \rangle$ Designed oligonucleotide primer designated as GMO-PCR-F	20mer
5	<400> 167	
	atcgttgaag atgcctctgc 20	
	<210> 168	
	<211> 20	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> designed oligonucleotide primer designated as GMO-PCR-R	20mer
15		
	<400> 168	
	teegtatgat egegegteat	20
	<210> 169	
20	<211> 20	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> Designed chimeric oligonucleotide primer designated	as GMO-S1

20mer. "nucleotides 19 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 169

5 tttggagagg acacgctgac

20

<210> 170

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as GMO-S2 20mer.

"nucleotides 19 to 20 are ribonucleotides-other nucleotides are

15 deoxyribonucleotides"

<400> 170

ggacacgctg acaagctgac

20

20 <210> 171

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

	š
140	4
1	1822.50
1	diam'r.
ij	Specia
g a	4000
1 5	461131
Ü	thing.
8	
	ī
4111	7
Ü	
	-
THE HAT WELL	Sum dues and
Told Have	Sum dues and

5

<223>	Designed	oligonu	cleotide	primer	designated	as G	MO-A1	20mer.
"nuc1	eotides 1	9 to 20	are	ribonucl	eotides-othe	r nuc	leotide	s are
deoxy	ribonucleo	tides"						
<400>	171							
ggctg	tagee actga	atgcug					20	
<210>	172							
<211>	20							
<212>	DNA							
<213>	Artificial	Sequenc	e					
<220>								
<223>	Designed	oligonuc	leotide	primer	designated	as GMO	D-A2 20	mer.
"nucl	eotides 19	9 to 20	are i	ribonucle	eotides-other	r nucl	leotide	s are
deoxyı	ribonucleot	ides"						
<400>	172							

20

20

15

<210> 173

<211> 21

<212> DNA

<213> Artificial Sequence

ttccggaaag gccagaggau

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are (alpha-thio)ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 173

tactgggtt tttcttcggu a

20

10 <210> 174

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of vero toxin 2-encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are (alpha-thio)ribonucleotides-other nucleotides are deoxyribonucleotides"

20

<400> 174

atagacatca agccctcgua

20

<210> 175

25 〈211〉 22

```
<212> DNA
```

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of INOS-encoding sequence from mouse. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 175

10 tcatgccatt gagttcatca ac

22

<210> 176

<211> 22

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
INOS-encoding sequence from mouse. "nucleotides 20 to 22 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 176

tggtaggttc ctgttgtttc ua

22

25 〈210〉 177

<211> 22

<210> 179

<211> 20

```
<212> DNA
        <213> Artificial Sequence
 5
        <220>
        \langle 223 \rangle Designed oligonucleotide primer to amplify a portion of INOS-
        encoding sequence from mouse.
       <400> 177
10
       tcatgccatt gagttcatca ac
                                                                             22
       <210> 178
       <211> 22
       <212> DNA
15
       <213> Artificial Sequence
       <220>
       \langle 223 \rangle Designed oligonucleotide primer to amplify a portion of INOS-
       encoding sequence from mouse.
20
       <400> 178
       tggtaggttc ctgttgtttc ta
                                                                            22
```

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 179

10 ctgcgaggcg gtggcaaggg

20

<210> 180

<211> 21

<212> DNA

15 <213> Artificial Sequence

<220>

20

<223> Designed chimeric oligonucleotide primer to amplify a portion of lambda DNA. "nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 180

ctgcctcgct ggccgtgccg c

21

25 <210> 181

```
<211> 23
```

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
INOS-encoding sequence from mouse. "nucleotides 21 to 23 are
ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 181

ctcatgccat tgagttcatc aac

23

<210> 182

<211> 22

15 <212> DNA

<213> Artificial Sequence

<220>

(223) Designed chimeric oligonucleotide primer to amplify a portion of 20 INOS-encoding sequence from mouse. "nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 182

gctggtaggt tcctgttgtu uc

<210> 183

<211> 19

<212> DNA

<213> Artificial Sequence

5

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of pDON-AI DNA. "nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10

<400> 183

agctctgtat ctggcggac

19

<210> 184

<211> 21 15

<212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of 20 DNA. "nucleotides pDON-AI 19 21 to are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 184

25 gatcgggatt tttggactca g

<210> 185

<211> 21

<212> DNA

5 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of HPV type16 DNA. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 185

caaaagagaa ctgcaatguu u

21

15 <210> 186

<211> 21

<212> DNA

<213> Artificial Sequence

<220> 20

> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of HPV type16 DNA. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

25 <400> 186

		gttgcttgca gtacacacau u	21
		<210> 187	
		<211> 27	
	5	<212> DNA	
		<213> Artificial Sequence	
ter t.			
Jank, Jan - Jack - Trajk Jan - Bark Skill 14 ff. Jank, Janu Sam Irank Amar Sank Said - Angri		<220>	
treat dens		<223> Designed oligonucleotide probe to detect a DNA	fragment
10 Mar. 1986. 7	10	amplifing a portion of HPV DNA.	
		<400> 187	
A H St. Str. speech Book, N. Sp.		gaggacccac aggagcgacc cagaaag	27
= \$			
	15	<210> 188	
		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
	20	<220>	
		$\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of l	HCV.
		<400> 188	
		cactecacca tgaatcactc 20)

```
<210> 189
       <211> 20
       <212> DNA
       <213> Artificial Sequence
 5
       <220>
       <223> Designed oligonucleotide primer to amplify a portion of HCV.
       <400> 189
10
       ggtgcacggt ctacgagacc
                                                                     20
       <210> 190
       <211> 21
       <212> DNA
15
       <213> Artificial Sequence
       <220>
       <223> Designed chimeric oligonucleotide primer to amplify a portion of
       HCV. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are
20
       deoxyribonucleotides"
       <400> 190
       ctgtgaggaa ctactgtcuu c
                                                                       21
```

25 <210> 191

<211> 18 <212> DNA

<213> Artificial Sequence

5 <220>

> <223> Designed chimeric oligonucleotide primer to amplify a portion of HCV. "nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10 <400> 191

gcagaccact atggcucu

18

<210> 192

<211> 30

<212> DNA 15

<213> Artificial Sequence

<220>

20

<223> Designed oligonucleotide probe to detect a DNA fragment amplifing portion of HCV.

<400> 192

gtatgagtgt cgtgcagcct ccaggacccc

30

25 <210> 193 <211> 21

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of adenovirus. "nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides"

10 <400> 193

tgagacatat tatctgccac g

21

<210> 194

<211> 21

15 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of adenovirus. "nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides"

<400> 194

aaatggctag gaggtggaag a

21

41		
4		
W		
UI		
Li		
W		
T.		
131		
M		
Lj		

<210> 195

<211> 21

<212> DNA

<213> Artificial Sequence

5 <220> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of adenovirus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides" 10 <400> 195 ttatcagcca gtacctctuc g 21 <210> 196 15 <211> 21 <212> DNA <213> Artificial Sequence <220> Designed oligonucleotide primer to amplify a portion of 20 adenovirus <400> 196 tgagacatat tatctgccac g 21 25

107/158

		<210> 197	
		<211> 21	
		<212> DNA	
		<213> Artificial Sequence	
	5		
		<220>	
		<223> Designed oligonucleotide primer to amplify a	portion of
Just Jon Jee and then they had the		adenovirus.	
der Ann a	10	<400> 197	
		aaatggctag gaggtggaag a	21
A W W Marie April Joseph Brail of Marie		<210> 198	
=======================================		<211> 20	
	15	<212> DNA	
		<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer to amplify a portion	n of viroid
	20	CSVd.	
		<400> 198	
		ggggaaacct ggaggaagtc	20

25 〈210〉 199

<211> 20 <212> DNA <213> Artificial Sequence <220> 5 <223> Designed oligonucleotide primer to amplify a portion of viroid CSVd. <400> 199 20 10 cgggtagtag ccaaaggaag <210> 200 <211> 19 <212> DNA 15 <213> Artificial Sequence <220> <223> Designed oligonucleotide primer to amplify a portion of pDON-AI DNA. 20 <400> 200 agctctgtat ctggcggac 19 <210> 201 25 <211> 21

```
<212> DNA
```

<213> Artificial Sequence

<220>

 5 $^{\langle 223\rangle}$ Designed oligonucleotide primer to amplify a portion of pDON-AI DNA.

<400> 201

gatcgggatt tttggactca g

21

10

<210> 202

<211> 20

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 202

ggggataatt tgtttgcagu

20

25

20

<210> 203

<211> 20

<212> DNA

<213> Artificial Sequence

<220> 5

> <223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

10

<400> 203

tcgttcaaca ataagccgua

20

<210> 204

<211> 30 15

<212> DNA

<213> Artificial Sequence

<220>

Designed oligonucleotide probe to detect a DNA fragment 20 amplifying a portion of verotoxin-1 encoding sequence from hemorrhagic Escherichia coli 0-157.

<400> 204

25 egecetteet etggatetae eeetetgaca

<210> 205

<211> 21

<212> DNA

5 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of botulinum toxin A encoding sequence from Clostridium botulinum. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 205

caccagaagc aaaacaaguu c

21

15

<210> 206

<211> 23

<212> DNA

<213> Artificial Sequence

20

25

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of botulinum toxin A encoding sequence from Clostridium botulinum. "nucleotides 21 to 23 are ribonucleotides-other nucleotides are deoxyribonucleotides"

```
<400> 206
```

ctattgatgt taacaacatt cuu

23

5 <210> 207

<211> 30

<212> DNA

<213> Artificial Sequence

10 <220>

<223> Designed oligonucleotide probe to detect a DNA fragment amplifying a portion of botulinum toxin A encoding sequence from Clostridium botulinum.

15 <400> 207

gggagttaca aaattatttg agagaattta

30

<210> 208

<211> 21

20 <212> DNA

<213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer to amplify a portion of viroid CSVd. "nucleotides 19 to 21 are ribonucleotides-other

Designed oligonucleotide probe

to

detect

a DNA fragment

<220>

⟨223⟩

21

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer to amplify a portion of

<220>

25

amplifying a portion of viroid CSVd.

to

21

are

19

ribonucleotides-other

CSVd. "nucleotides

nucleotides are deoxyribonucleotides"

viroid

		<400> 212	
	5	cgttgaagct tcagttgtuu c	21
		⟨210⟩ 213	
		<211> 21	
Many News		<212> DNA	
An Jin	10	<213> Artificial Sequence	
The first tree of the first property of the front from the first front from the first front fron			
		<220>	
		<223> Designed oligonucleotide primer to amplify a portion of	viroid
2000 S		CSVd.	
	15		
		<400> 213	
		caccetteet ttagttteet t	21
		<210> 214	
	20	<211> 21	
		<212> DNA	
		<213> Artificial Sequence	
		<220>	
	25	<223> Designed oligonucleotide primer to amplify a portion of	viroid

CSVd.

<400> 214

cgttgaagct

tcagttgttt

c

5 21

<210> 215

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
c-ki-ras oncogene. "nucleotides 18 to 20 are ribonucleotides-other
nucleotides are deoxyribonucleotides"

<400> 215

gactgaatat aaacttgugg

20

20 <210> 216

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of
c-ki-ras oncogene. "nucleotides 18 to 20 are ribonucleotides-other
nucleotides are deoxyribonucleotides"

5 <400> 216

ctattgttgg atcatatucg

20

<210> 217

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of c-ki-ras

15 oncogene.

<400> 217

gactgaatat aaacttgtgg

20

20 <210> 218

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed oligonucleotide primer to amplify a portion of c-ki-ras oncogene.

<400> 218

5 ctattgttggatcatattcg

20

<210> 219

<211> 20

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-2 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 219

20 gacttttcga cccaacaaag

20

<210> 220

<211> 20

<212> DNA

25 <213> Artificial Sequence

w.i
11
44
in!
L.
.
ij.
Mi
Ĥ er k

<220>

<223> Designed chimeric oligonucleotide primer to amplify a portion of verotoxin-2 encoding sequence from hemorrhagic Escherichia coli 0-157. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 220

atatccacag caaaataacu

20

10

5

<210> 221

<211> 21

<212> DNA

<213> Artificial Sequence

15

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of INOS-encoding sequence from mouse.

20 <400> 221

cacaaggcca catcggattt c

21

<210> 222

<211> 20

25 <212> DNA

<213> Artificial Sequence

25

<213> Artificial Sequence

	<220>	
	<223> Designed oligonucleotide primer to amplify a portion o	f INOS-
5	encoding sequence from mouse.	
	⟨400⟩ 222	
	tgcataccac ttcaacccga g	21
10	<210> 223	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
15	<220>	
	<223> Designed oligonucleotide primer designated as pUC19 upper	150 to
	amplify a portion of plasmid pUC19.	
	<400> 223	
20	ggtgtcacgc tcgtcgtttg gtatg	25
	<210> 224	
	<210	
	<212> DNA	

<220>

<223> Designed chimeric oligonucleotide primer designated as pUC19 lower NN to amplify a portion of plasmid pUC19.

5

<400> 224

gataacactg cggccaactt acttc

25

<210> 225

10

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

15

(223) Designed chimeric oligonucleotide primer designated as SEA-1 to amplify a portion of Staphylococcus aureus. "nucleotides 19 to 21 are ribonucleotides-other nucleotides are deoxyribonucleotides"

<400> 225

20 tgtatgtatg gtggtgtaac g

21

<210> 226

<211> 21

<212> DNA

25 <213> Artificial Sequence

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as SEA-2 to amplify a portion of Staphylococcus aureus. "nucleotides 19 to 21 are ${\tt ribonucleotides-other}\ \ {\tt nucleotides}\ \ {\tt are}\ \ {\tt deoxyribonucleotides''}$

<400> 226

taaccgtttc caaaggtacu g

21

10 <210> 227

<211> 19

<212> DNA

<213> Artificial Sequence

<220> 15

> $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as HCV-F3 to amplify a portion of HCV. "nucleotides 17 to 19 are ribonucleotidesother nucleotides are deoxyribonucleotides"

20 <400> 227

gcgtctagcc atggcguua

19

<210> 228

<211> 18

25 <212> DNA <220>

<223> Designed chimeric oligonucleotide primer designated as HCV-R1 to amplify a portion of HCV. "nucleotides 16 to 18 are ribonucleotidesother nucleotides are deoxyribonucleotides"

<400> 228

gcagaccact atggcucu

18

10

<210> 229

<211> 30

<212> DNA

<213> Artificial Sequence

15

<220>

 $\langle 223 \rangle$ Designed oligonucleotide primer designated as MF2 to amplify a portion of pUC19 plasmid DNA.

20 <400> 229

ggatgtgctg caaggcgatt aagttgggta

30

<210> 230

<211> 30

25 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as MR1 to amplify a
5 portion of pUC19 plasmid DNA.

<400> 230

tttacacttt atgcttccgg ctcgtatgtt

30

10 <210> 231

<211> 21

<212> DNA

<213> Artificial Sequence

15 <220>

 $\langle 223 \rangle$ Designed oligonucleotide primer to amplify a portion of adenovirus.

<400> 231

20 ttatcagcca gtacctcttc g

21

<210> 232

<211> 714

<212> DNA

25 <213> Thermotoga maritima

125/158

	<400> 232						
	atgggaatag	atgagcttta	caaaaaaagag	tttggaatcg	tagcaggtgt	ggatgaagcg	60
	ggaagagggt	gcctcgcagg	tcccgttgtg	gcggccgctg	tcgttctgga	aaaagaaata	120
5	gaaggaataa	acgattcaaa	acagctttcc	cctgcgaaga	gggaaagact	tttagatgaa	180
	ataatggaga	aggcagcagt	tgggttagga	attgcgtctc	cagaggaaat	agatetetae	240
	aacatattca	atgccacaaa	acttgctatg	aatcgagcac	tggagaacct	gtctgtgaaa	300
	ccatcatttg	tactcgttga	cgggaaagga	atcgagttga	gcgttcccgg	tacatgctta	360
	gtgaagggag	accagaaaaag	caaattgata	ggagcagctt	ccattgttgc	gaaggtcttc	420
10	agagatagat	tgatgagcga	gtttcacagg	atgtatccac	agttttcctt	ccacaaacac	480
	aaaggttacg	ccacaaaaga	acatctgaac	gaaatcagaa	agaacggagt	tttaccaatc	540
	caccggctga	gttttgaacc	tgttttagaa	cttctgaccg	atgatttgtt	gagggagttc	600
	ttcgaaaaaag	gcctcatctc	cgaaaatcga	ttcgaacgaa	tattgaatct	tctgggggcg	660
	agaaaaagtg	tggttttccg	gaaagaaaga	acaaaccata	atctccctct	tttt 714	
15							
	<210> 233						
	<211> 238						
	<212> PRT						
	<213> Therm	otoga marit	ima				
20							
	<400> 233						
	Met Gly Ile	Asp Glu Le	u Tyr Lys L	ys Glu Phe	Gly Ile Val	Ala	
	1	5		10		15	
	Gly Val Asp	Glu Ala Gl	y Arg Gly C	ys Leu Ala (Gly Pro Val	Val	
25		20		25		30	

126/158

	Ala	Ala	Ala	Val	Val	Leu	G1u	Lys	G1u	Ile	Glu	G1y	Ile	Asn	Asp
					35					40					45
	Ser	Lys	G1n	Leu	Ser	Pro	Ala	Lys	Arg	Glu	Arg	Leu	Leu	Asp	Glu
					50					55					60
5	Ile	Met	G1u	Lys	Ala	Ala	Val	G1y	Leu	G1y	Ile	Ala	Ser	Pro	Glu
					65					70					75
	Glu	Ile	Asp	Leu	Tyr	Asn	Ile	Phe	Asn	Ala	Thr	Lys	Leu	Ala	Met
					80					85					90
	Asn	Arg	Ala	Leu	Glu	Asn	Leu	Ser	Val	Lys	Pro	Ser	Phe	Val	Leu
10					95					100					105
	Va1	Asp	G1y	Lys	Gly	Ile	Glu	Leu	Ser	.Val	Pro	G1y	Thr	Cys	Leu
					110					115					120
	Val	Lys	G1y	Asp	G1n	Lys	Ser	Lys	Leu	I1e	Gly	Ala	Ala	Ser	Ile
					125					130					135
15	Val	Ala	Lys	Val	Phe	Arg	Asp	Arg	Leu	Met	Ser	Glu	Phe	His	Arg
					140					145					150
	Met	Tyr	Pro	G1n	Phe	Ser	Phe	His	Lys	His	Lys	G1y	Tyr	Ala	Thr
					155					160					165
	Lys	Glu	His	Leu	Asn	Glu	Ile	Arg	Lys		G1y	Val	Leu	Pro	
20				_	170		_			175	_				180
	His	Arg	Leu	Ser	Phe	Glu	Pro	Val	Leu		Leu	Leu	Thr	Asp	
					185					190					195
	Leu	Leu	Arg	Glu	Phe	Phe	Glu	Lys	Gly		Ile	Ser	Glu	Asn	
	D *	a-			200					205					210
25	Phe	Glu	Arg	He	Leu	Asn	Leu	Leu	Gly	Ala	Arg	Lys	Ser	Val	Val

Œ.
41
L)
ij.
Į.
1
7)
Ħ
u
: ::::::::::::::::::::::::::::::::::::

15

20

2	215	220

Phe Arg Lys Glu Arg Thr Asn His Asn Leu Pro Leu Phe
230 235

200	2.0

5 <210> 234 <211> 663

<212> DNA

<213> Pyrococcus horikoshii

10 <400> 234

atgaaggttg ctggagttga tgaagcgggg agggggccgg taattggccc gttagtaatt 60 ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120 tecaaacaat taacteetgg geaacgtgaa aaactattta geaaattaat agatateeta 180 gacgattatt atgttettet egttaeecee aaggaaatag atgagaggea teattetatg 240 aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 300 aagatatatg tggactctgc cgatgtagat cctaagaggt ttgctagtct aataaaggct 360 gggttgaaat atgaagccac ggttatcgcc gagcataaag ccgatgcaaa gtatgagata 420 gtatcggcag catcaataat tgcaaaggtc actagggata gagagataga gaagctaaag 480 caaaagtatg gggaatttgg ttctggctat ccgagtgatc cgagaactaa ggagtggctt 540 gaagaatatt acaaacaata tggtgacttt cctccaatag ttaggagaac ttgggaaacc 600 gctaggaaga tagaggaaag gtttagaaaa aatcagctaa cgcttgataa attccttaag 660

<210> 235

tga 663

25 <211> 30

<212> DNA

```
<212> DNA
        <213> Artificial Sequence
        <220>
        <223> PCR primer PhoNde for cloning a gene encoding a polypeptide
  5
       having a RNaseHII activity from Pyrococcus horikoshii
        <400> 235
       aggaggaaaa tcatatgaag gttgctggag
                                            30
10
       <210> 236
       <211> 30
       <212> DNA
       <213> Artificial Sequence
15
       <220>
       \langle 223 \rangle PCR primer PhoBam for cloning a gene encoding a polypeptide
       having a RNaseHII activity from Pyrococcus horikoshii
20
       <400> 236
       ttacatgaag gatccaagat cacttaagga
                                           30
       <210> 237
       <211> 663
```

15

5

<213> Pyrococcus horikoshii

<400> 237

atgaaggttg ctggagttga tgaagcgggg agggggccgg taattggccc gttagtaatt 60 ggagtagccg ttatagatga gaaaaatatt gagaggttac gtgacattgg ggttaaagac 120 tccaaacaat taactcctgg gcaacgtgaa aaactattta gcaaattaat agatatccta 180 gacgattatt atgttcttct cgttaccccc aaggaaatag atgagaggca tcattctatg 240 aatgaactag aagctgagaa attcgttgta gccttgaatt ctttaaggat caagccgcag 300 aagatatatg tggactctgc cgatgtagat cctaagaggt ttgctagtct aataaaggct 360 gggttgaaat atgaagccac ggttatcgcc gagcataaag ccgatgcaaa gtatgagata 420 gtatcggcag catcaataat tgcaaaggtc actagggata gagagataga gaagctaaag 480 caaaagtatg gggaatttgg ttctggctat ccgagtgatc cgagaactaa ggagtggctt 540 gaagaatatt acaaacaata tggtgacttt cctccaatag ttaggagaac ttgggaaacc 600 gctaggaaga tagaggaaag gtttagaaaa aatcagctaa cgcttgataa attccttaag 660 tgatcttgga tcc 663

<210> 238

<211> 220

<212> PRT

20 <213> Pyrococcus horikoshii

<400> 238

Met Lys Val Ala Gly Val Asp Glu Ala Gly Arg Gly Pro Val Ile

1 5 10 15

25 Gly Pro Leu Val Ile Gly Val Ala Val Ile Asp Glu Lys Asn Ile

130/158

					20)				25	5				30
	G1u	Arg	g Lei	ı Arg	g Asp	i Ile	e Gly	Val	Lys	. Asp	Sei	Lys	s Gln	Leu	Thr
					35	<u>,</u>				40)				45
	Pro	G1y	G1r	n Arg	g Glu	ı Lys	Leu	Phe	Ser	Lys	Leu	ı Ile	e Asp	I1e	Leu
5					50)				55	;				60
	Asp	Asp	Tyr	Tyr	Val	Leu	Leu	Val	Thr	Pro	Lys	Glu	Ile	Asp	Glu
					65	•				70					75
	Arg	His	His	Ser	Met	Asn	G1u	Leu	Glu	Ala	Glu	Lys	Phe	Val	Val
					80					85					90
10	Ala	Leu	Asn	Ser	Leu	Arg	Ile	Lys	Pro	G1n	Lys	Ile	Tyr	Val	Asp
					95					100					105
	Ser	Ala	Asp	Val	Asp	Pro	Lys	Arg	Phe	Ala	Ser	Leu	I1e	Lys	Ala
•					110					115					120
	Gly	Leu	Lys	Tyr		Ala	Thr	Val	Ile	Ala	Glu	His	Lys	Ala	Asp
15	. 1		_		125					130					135
	Ala	Lys	Tyr	Glu		Val	Ser	Ala	Ala		Ile	I1e	Ala	Lys	Val
	ani.	4			140			_		145					150
	Inr	Arg	Asp	Arg		lle	Glu	Lys	Leu		Gln	Lys	Tyr	Gly	G1u
2.0	DI	C1	C .	01	155 T	D	0		_	160					165
20	rne	GIÀ	ser	Gly		Pro	Ser	Asp	Pro		Thr	Lys	Glu	Trp	
	Glu i	Clu	Туга	Т	170	01	Т	01	4	175 Di	D	D	T 1		180
	Glu •	GIU	1) 1	Tyr		GIN	lyr	СІУ	Asp		Pro	Pro	lle	Val	
	Arg '	Thr	Trn	Glu	185	A10	Ana	I ** ~	T1 -	190	C1	Δ -	DI.		195
25	Arg '	111T	тър	olu	200	ита	игg	LYS			ъlи	Arg	rhe		
					200					205					210

Asn Gln Leu Thr Leu Asp Lys Phe Leu Lys 215 220

<210> 239 5 ⟨211⟩ 626 <212> DNA <213> Archaeoglobus fulgidus <400> 239 10 atgaaggcag gcatcgatga ggctggaaag ggctgcgtca tcggcccact ggttgttgca 60 ggagtggctt gcagcgatga ggataggctg agaaagcttg gtgtgaaaga ctccaaaaag 120 ctaagtcagg ggaggagaga ggaactagcc gaggaaataa ggaaaatctg cagaacggag 180 gttttgaaag tttctcccga aaatctcgac gaaaggatgg ctgctaaaac cataaacgag 240 attttgaagg agtgctacgc tgaaataatt ctcaggctga agccggaaat tgcttatgtt 300 gacagteetg atgtgattee egagagaett tegagggage ttgaggagat taeggggttg 15 360 agagttgtgg ccgagcacaa ggcggacgag aagtatcccc tggtagctgc ggcttcaatc 420 atcgcaaagg tggaaaggga gcgggagatt gagaggctga aagaaaaatt cggggatttc 480 ggcagcggct atgcgagcga tccgaggaca agagaagtgc tgaaggagtg gatagcttca 540 ggcagaattc cgagctgcgt gagaatgcgc tggaagacgg tgtcaaatct gaggcagaag 600 20 acgettgacg atttctaaac gaaacc 626 <210> 240

<211> 30

<212> DNA

25 <213> Artificial Sequence

<220><223>

<223> PCR primer AfuNde for cloning a gene encoding a polypeptide having a RNaseHII activity from Archaeoglobus fulgidus

5

<400> 240

aagctgggtt tcatatgaag gcaggcatcg

30

<210> 241

10 <211> 30

<212> DNA

<213> Artificial Sequence

<220>

15 <223> PCR primer AfuBam for cloning a gene encoding a polypeptide having a RNaseHII activity from Archaeoglobus fulgidus

<400> 241

tggtaataac ggatccgttt agaaatcgtc

30

20

<210> 242

<211> 638

<212> DNA

<213> Archaeoglobus fulgidus

4.
u[]
Į.J
ij.
M)
S.
ZI.
Service of the servic

5

catatgaagg	caggcatcga	tgaggctgga	aagggctgcg	tcatcggccc	actggttgtt	60
gcaggagtgg	cttgcagcga	tgaggatagg	ctgagaaagc	ttggtgtgaa	agactccaaa	120
aagctaagtc	aggggaggag	agaggaacta	gccgaggaaa	taaggaaaat	ctgcagaacg	180
gaggttttga	aagtttctcc	cgaaaatctc	gacgaaagga	tggctgctaa	aaccataaac	240
gagattttga	aggagtgcta	cgctgaaata	attctcaggc	tgaagccgga	aattgcttat	300
gttgacagtc	ctgatgtgat	tcccgagaga	ctttcgaggg	agcttgagga	gattacgggg	360
ttgagagttg	tggccgagca	caaggcggac	gagaagtatc	ccctggtagc	tgcggcttca	420
atcatcgcaa	aggtggaaag	ggagcgggag	attgagaggc	tgaaagaaaa	attcggggat	480
ttcggcagcg	gctatgcgag	cgatccgagg	acaagagaag	tgctgaagga	gtggatagct	540
tcaggcagaa	ttccgagctg	cgtgagaatg	cgctggaaga	cggtgtcaaa	tctgaggcag	600
aagacgcttg	acgatttcta	aacggatccc	cgggtacc 6	538		

<210> 243

<400> 242

15 <211> 205

<212> PRT

<213> Archaeoglobus fulgidus

<400> 243

Met Lys Ala Gly Ile Asp Glu Ala Gly Lys Gly Cys Val Ile Gly

1 5 10 15

Pro Leu Val Val Ala Gly Val Ala Cys Ser Asp Glu Asp Arg Leu

20 25 30

Arg Lys Leu Gly Val Lys Asp Ser Lys Lys Leu Ser Gln Gly Arg

25 35 40 45

134/158

	Arg	Glu	Glu	Leu	Ala	Glu	Glu	lle	Arg	Lys	He	Cys	Arg	Thr	Glu
					50					55					60
	Va1	Leu	Lys	Val	Ser	Pro	Glu	Asn	Leu	Asp	Glu	Arg	Met	Ala	Ala
					65					70					75
5	Lys	Thr	Ile	Asn	Glu	Ile	Leu	Lys	G1u	Cys	Tyr	Ala	G1u	I1e	I1e
					80					85					90
	Leu	Arg	Leu	Lys	Pro	G1u	Ile	Ala	Tyr	Val	Asp	Ser	Pro	Asp	Val
					95					100					105
	Ile	Pro	Glu	Arg	Leu	Ser	Arg	Glu	Leu	Glu	Glu	Ile	Thr	G1y	Leu
10					110					115					120
	Arg	Va1	Val	Ala	G1u	Hisl	Jys A	Ala A	lsp (Glu I	lys T	ſyr H	Pro I	∠eu \	/al
					125					130					135
	Ala	Ala	Ala	Ser	Ile	Ile	Ala	Lys	Va1	Glu	Arg	Glu	Arg	Glu	Ile
					140					145					150
15	Glu	Arg	Leu	Lys	G1u	Lys	Phe	G1y	Asp	Phe	G1y	Ser	G1y	Tyr	Ala
					155					160					165
	Ser	Asp	Pro	Arg	Thr	Arg	Glu	Val	Leu	Lys	Glu	Trp	Ile	Ala	Ser
					170					175					180
	G1y	Arg	Ile	Pro	Ser	Cys	Val	Arg	Met	Arg	Trp	Lys	Thr	Val	Ser
20					185					190					195
	Asn	Leu	Arg	Gln	Lys	Thr	Leu	Asp	Asp	Phe					
					200					205					

<210> 244

25 <211> 18

<212> DNA

<213> Artificial Sequence

<220>

5 <223> Designed chimeric oligonucleotide primer designated as MTIS2F to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 16 to 18 are ribonucleotides—other nucleotides are deoxyribonucleotides."

<400> 244

10 tetegteeag egeegeuu

18

<210> 245

<211> 21

<212> DNA

15 <213> Artificial Sequence

<220>

20

<223> Designed chimeric oligonucleotide primer designated as MTIS2R to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 19 to 21 are ribonucleotides—other nucleotides are deoxyribonucleotides."

<400> 245

gacaaaggcc acgtaggcga a

21

25 <210> 246

<211> 20

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed chimeric oligonucleotide primer designated as CT2F to amplify a portion of Chlamydia trachomatis cryptic plasmid DNA."nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides."

10

<400> 246

ctggatttat cggaaaccuu

20

<210> 247

15 〈211〉 18

<212> DNA

<213> Artificial Sequence

<220>

20 <223> Designed chimeric oligonucleotide primer designated as CT2R to amplify a portion of Chlamydia trachomatis cryptic plasmid DNA."nucleotides 16 to 18 are ribonucleotides-other nucleotides are deoxyribonucleotides."

25 <400> 247

44
4D
u
Ų1
IJ.
IJ
Œ
C
u
T.

aggeetetga aacgaeuu

18

<210> 248

<211> 19

5 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as K-F-1033(60) to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 17 to 19 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 248

15 cacategate eggtteage

19

<210> 249

<211> 20

<212> DNA

20 <213> Artificial Sequence

<220>

25

<223> Designed chimeric oligonucleotide primer designated as K-R1133(62) to amplify a portion of Mycobacterium tuberculosis
DNA."nucleotides 18 to 20 are ribonucleotides-other nucleotides are

```
deoxyribonucleotides."
```

<400> 249

tgatcgtctc ggctagtgca

20

5

<210> 250

<211> 22

<212> DNA

<213> Artificial Sequence

10

15

<220>

 $\langle 223 \rangle$ Designed chimeric oligonucleotide primer designated as K-F-1033(68) to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 250

gtacacatcg atccggttca gc

22

20 <210> 251

<211> 22

<212> DNA

<213> Artificial Sequence

25 <220>

<223> Designed chimeric oligonucleotide primer designated as K-R1133(68) to amplify a portion of Mycobacterium tuberculosis
DNA."nucleotides 20 to 22 are ribonucleotides-other nucleotides are
deoxyribonucleotides."

5

<400> 251

gttgatcgtc tcggctagtg ca

22

<210> 252

10 <211> 20

<212> DNA

<213> Artificial Sequence

<220>

15 <223> Designed oligonucleotide primer designated as F26 to amplify a portion of Mycobacterium tuberculosis DNA.

<400> 252

ccggagactc cagttcttgg

20

20

<210> 253

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as R1310 to amplify a portion of Mycobacterium tuberculosis DNA.

5 <400> 253

gtctctggcg ttgagcgtag

20

<210> 254

<211> 22

10 <212> DNA

<213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as pDON-AI-

15 68-1 to amplify a portion of pDON-AI."nucleotides 20 to 22 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 254

actagetetg tatetggegg ac

22

20

<210> 255

<211> 23

<212> DNA

<213> Artificial Sequence

4D
L.
Ų.
H
ĮĮ.
Ţ)
護
ŢŢ.
71

<220>							
<223> Designed chimeric oligonucleotide primer designated as	s pDON-AI-						
68-2 to amplify a portion of pDON-AI."nucleotides 21 t	o 23 are						
ribonucleotides-other nucleotides are deoxyribonucleotides."							
<400> 255							
acgatcggga tttttggact cag	23						
⟨210⟩ 256							
<211> 300							
<212> DNA							
<213> Homo sapiens proto-oncogene Wnt-5a							
<400> 256							
cactagattt tttgtttggg gaggttggct tgaacataaa tgaaatatcc tgtatt	ttct 60						
tagggatact tggttagtaa attataatag tagaaataat acatgaatcc cattca	cagg 120						
tttctcagcc caagcaacaa ggtaattgcg tgccattcag cactgcacca gagcag	acaa 180						
cctatttgag gaaaaacagt gaaatccacc ttcctcttca cactgagccc tctctga	attc 240						
ctccgtgttg tgatgtgatg ctggccacgt ttccaaacgg cagctccact gggtcc	cctt 300						
<210> 257							
⟨211⟩ 300							
<212> DNA							
<213> Homo sapiens ribosomal protein S5							

142/158

	<400> 257						
	cgccgagtga	cagagacgct	caggctgtgt	tctcaggatg	accgagtggg	agacagcagc	60
	accagcggtg	gcagagaccc	cagacatcaa	gctctttggg	aagtggagca	ccgatgatgt	120
	gcagatcaat	gacatttccc	tgcaggatta	cattgcagtg	aaggagaagt	atgccaagta	180
5	cctccctcac	agtgcagggc	ggtatgccgc	aaacgctttc	cgcaaagctc	agtgtcccat	240
	tgtggagcgc	ctcactaact	ccatgatgat	gcacggccgc	aacaacggca	agaagctcat	300
	<210> 258						
	<211> 300						
10	<212> DNA						
	<213> Homo	sapiens dia	aphorase				
	<400> 258						
	tctatacaaa	ttttcagaag	gttattttct	ttatcattgc	taaactgatg	acttaccatg	60
15	ggatggggtc	cagtcccatg	accttggggt	acaattgtaa	acctagagtt	ttatcaactt	120
	tggtgaacag	ttttggcata	atagtcaatt	tctacttctg	gaagtcatct	cattccactg	180
	ttggtattat	ataattcaag	gagaatatga	taaaacactg	ccctcttgtg	gtgcattgaa	240
	agaagagatg	agaaatgatg	aaaaggttgc	ctgaaaaaatg	ggagacagcc	tcttacttgc	300
20	<210> 259						
	<211> 300						
	<212> DNA						
	<213> Human	n protocadhe	erin				

The first part will be the state of the stat

<400> 259

15

20

25

<220>

<223>

5

	agtetetigg	gareecetaa	ccagageeri	titgecatag	ggetgeaeae	iggicaaaic	00			
	agtactgccc	gtccagtcca	agacacagat	tcacccaggc	agacteteae	ggtcttgatc	120			
	aaagacaatg	gggagccttc	gctctccacc	actgctaccc	tcactgtgtc	agtaaccgag	180			
	gactctcctg	aagcccgagc	cgagttcccc	tctggctctg	cccccggga	gcagaaaaaaa	240			
	aatctcacct	tttatctact	tctttcccta	atcctggttt	ctgtggggtt	tgtggtcaca	300			
	<210> 260									
	<211> 80									
	<212> DNA									
<213> Artificial Sequence										
<220>										
<223> Designed oligonucleotide for making of pIC62.										
	<400> 260									
	catgtacatc	acagtagtcg	ttcacagggt	tttccggcca	taatggcctt	tcctgtgtgt	60			
	gtgctacagc	tagtcagtca	80							
	<210> 261									
	<211> 20									
	<212> DNA									
	<213> Artif	icial Seque	ence							

Designed chimeric oligonucleotide primer designated

as

ICAN2."nucleotides 19 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides."

<400> 261

5 actgactage tgtagcacae

20

<210> 262

<211> 20

<212> DNA

10 <213> Artificial Sequence

<220>

<223> Designed chimeric oligonucleotide primer designated as ICAN6."nucleotides 19 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 262

acatcacagt agtcgttcac

20

20 <210> 263

<211> 20

<212> DNA

<213> Artificial Sequence

25 <220>

145/158

		\223/ Designed offgonucleotide primer designated as ICAN2 DNA."	
		<400> 263	
المادية المادي		actgactage tgtageacae 20	
	5		
		<210> 264	
		<211> 20	
		<212> DNA	
		<213> Artificial Sequence	
Han and	10		
Mar. 1988		⟨220⟩	
		<223> Designed oligonucleotide primer designated as ICAN6 DNA.	
		<400> 264	
per in	15	acatcacagt agtcgttcac 20	
		<210> 265	
		<211> 23	
		<212> DNA	
	20	<213> Artificial Sequence	
		<220>	
		<223> Designed oligonucleotide primer to amplify a portion	of
		ribosomal protein S18-encoding sequence from mouse.	
	0.5		

25

<400> 265

gtctctagtg atccctgaga agt

23

<210> 266

5 〈211〉 23

<212> DNA

<213> Artificial Sequence

<220>

10 <223> Designed oligonucleotide primer to amplify a portion of ribosomal protein S18-encoding sequence from mouse.

⟨400⟩ 266

tggatacacc cacagttcgg ccc

23

15

<210> 267

<211> 23

<212> DNA

<213> Artificial Sequence

20

<220>

<223> Designed oligonucleotide primer to amplify a portion of transferrin receptor (TFR)-encoding sequence from mouse.

25 <400> 267

25

tetgatggat gcaaccgcta gac

	ccgcgctccg acaagtagat gga	23
	<210> 268	
	<211> 23	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<pre><223> Designed oligonucleotide primer to amplify a por</pre>	rtion of
10	transferrin receptor (TFR)-encoding sequence from mouse.	
	<400> 268	
	ccaaagagtg caaggtetge etc	23
15	<210> 269	
	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Designed oligonucleotide primer to amplify a portion of	stromal
	cell derived factor 4 (Sdf4)-encoding sequence from mouse.	
	<400> 269	

23

The first trans that the first that the first trans than the first transfer that the first transfer tr

```
<210> 270
       <211> 23
       <212> DNA
 5
       <213> Artificial Sequence
       <220>
       <223> Designed oligonucleotide primer to amplify a portion of stromal
       cell derived factor 4 (Sdf4)-encoding sequence from mouse.
10
       <400> 270
                                                                          23
       gaactettea tgeacgttge ggg
       <210> 271
15
       ⟨211⟩ 23
       <212> DNA
       <213> Artificial Sequence
       <220>
20
       <223>
              Designed oligonucleotide primer to amplify a portion of
       cytoplasmic beta-actin encoding sequence from mouse.
```

23

<400> 271

tgatggtggg aatgggtcag aag

⟨210⟩ 272

<211> 23 <212> DNA <213> Artificial Sequence 5 <220> <223> Designed oligonucleotide primer to amplify a portion of cytoplasmic beta-actin encoding sequence from mouse. <400> 272 10 agaagcactt gcggtgcacg atg <210> 273 <211> 23 15 <212> DNA <213> Artificial Sequence <220> ⟨223⟩ Designed oligonucleotide primer to amplify a portion of 20 ornithine decarboxylase-encoding sequence from mouse.

23

23

<210> 274 25

<400> 273

gatgaaagtc gccagagcac atc

<211> 23

<212> DNA

<213> Artificial Sequence

5 <220>

<223> Designed oligonucleotide primer to amplify a portion of ornithine decarboxylase-encoding sequence from mouse.

<400> 274

10 ttgatcctag cagaagcaca ggc

23

<210> 275

<211> 23

<212> DNA

15 <213> Artificial Sequence

<220>

20

<223> Designed oligonucleotide primer to amplify a portion of hypoxanthine guanine phosphoribosyl transferase (HPRT)-encoding sequence from mouse.

<400> 275

ggacaggact gaaagacttg ctc

23

25 〈210〉 276

700 S
T1
ŭ.
41
Man Amar
w
W.
er.

	<211> 23	
	<212> DNA	
	<213> Artificial Sequence	
5	<220>	
	<223> Designed oligonucleotide primer to amplify	a portion of
	hypoxanthine guanine phosphoribosyl transferase	(HPRT)-encoding
	sequence from mouse.	
10	<400> 276	
	gtctggcctg tatccaacac ttc	23
•	<210> 277	
	<211> 23	
15	<212> DNA	
	<213> Artificial Sequence	
	<220⟩	
	<223> Designed oligonucleotide primer to amplify a port	ion of tyrosine
20	3-monooxygenase encoding sequence from mouse.	
	<400> 277	
	atgagctggt gcagaaggcc aag	23

<210> 278 25

25

<212> DNA

<211> 23 <212> DNA <213> Artificial Sequence 5 <220> <223> Designed oligonucleotide primer to amplify a portion of tyrosine 3-monooxygenase encoding sequence from mouse. <400> 278 10 ttcccctcct tctcctgctt ctg 23 <210> 279 <211> 21 <212> DNA <213> Artificial Sequence 15 <220> <223> Designed oligonucleotide primer designated as MCS-F. 20 <400> 279 ccattcaggc tgcgcaatgt t 21 <210> 280 <211> 22

<212> DNA

<213> Artificial Sequence

25

<220> $\langle 223 \rangle$ Designed oligonucleotide primer designated as MCS-R 5 <400> 280 22 tggcacgaca ggtttcccga ct <210> 281 <211> 24 10 <212> DNA <213> Artificial Sequence <220> <223> Designed chimeric oligonucleotide primer designated as MF2N3(24). 15 "nucleotides 22 to 24 are ribonucleoitdes-other nucleotides are deoxyribonucleotides." <400> 281 20 24 gctgcaaggc gattaagttg ggua <210> 282 <211> 24

<220>

<223> Designed chimeric oligonucleotide primer designated as MR1N3(24).
"nucleotides 22 to 24 are ribonucleoitdes-other nucleotides are deoxyribonucleotides."

<400> 282

ctttatgctt ccggctcgta tguu

24

10 <210> 283

5

⟨211⟩ 16

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as MTIS2F-16 to amplify a portion of Mycobacterium tuberculosis DNA."nucleotides 14 to 16 are ribonucleotides-other nucleotides are deoxyribonucleotides."

20 <400> 283

tcgtccagcg ccgcuu

16

<210> 284

<211> 20

25 <212> DNA

<220>

<223> Designed chimeric oligonucleotide primer designated as MTIS2R5 ACC to amplify a portion of Mycobacterium tuberculosis
DNA."nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400> 284

10 caaaggccac gtaggcgaac

20

<210> 285

<211> 20

<212> DNA

15 <213> Artificial Sequence

<220>

<223> Designed oligonucleotide primer designated as MTIS-PCR-F-2 to
amplify a portion of Mycobacterium tuberculosis DNA.

20

<400> 285

cgaccgcatc aaccgggagc

20

<210> 286

25 〈211〉 20

<212>	DNA
<213>	Art

<220>

5 <223> Designed oligonucleotide primer designated as MTIS-PCR-R-2 to amplify a portion of Mycobacterium tuberculosis DNA.

<400> 286

cccaggatcc tgcgagcgta

20

10

<210> 287

<211> 45

<212> DNA

<213> Artificial Sequence

15

<220>

<223> Designed oligonucleotide primer designated as SP6-HCV-F to amplify a portion of HCV.

20 <400> 287

ccatttaggt gacactatag aatactgatg ggggcgacac tccac

45

⟨210⟩ 288

<211> 45

25 <212> DNA

<220>

5

<223> Designed oligonucleotide primer designated as SP6-HCV-R to
amplify a portion of HCV

<400> 288

agetetaata egaeteaeta tagggtegea ageaeeetat eagge

45

10 <210> 289

<211> 20

<212> DNA

<213> Artificial Sequence

15 <220>

<223> Designed chimeric oligonucleotide primer designated as HCV-A S to amplify a portion of HCV."nucleotides 18 to 20 are ribonucleotides—other nucleotides are deoxyribonucleotides."

20 <400> 289

gggtcctttc ttggatcaac

20

<210> 290

<211> 20

25 <212> DNA

<220>

5

(223) Designed chimeric oligonucleotide primer designated as HCV-A A to amplify a portion of HCV. "nucleotides 18 to 20 are ribonucleotides-other nucleotides are deoxyribonucleotides."

<400>, 290

gacccaacac tactcggcua

20