Hammack Exercises - Chapter 5

FungusDesu

September 1st 2024

1 Preface

i dont really have anything to say

2 Section A - Contrapositive proof only

Proposition 5.1. Suppose $n \in \mathbb{Z}$. If n^2 is even, then n is even.

Proof. We shall prove this statement via contrapositive proof. Suppose n is odd; we wish to show that n^2 is odd. Then n = 2k + 1 for some $k \in \mathbb{Z}$. It follows that $n^2 = (2k + 1)^2 = 4k^2 + 4k + 1$, thus $n^2 = 2x + 1$ where $x = 2k^2 + 2k \in \mathbb{Z}$. Therefore n^2 is odd by definition of an odd number, as desired.

Proposition 5.2. Suppose $n \in \mathbb{Z}$. If n^2 is odd, then n is odd.

Proof. We shall prove this statement via contrapositive proof. Suppose n is even; we wish to show that n^2 is even. Then n=2k for some $k \in \mathbb{Z}$. It follows that $n^2=(2k)^2=4k^2$, thus $n^2=2x$ where $x=2k^2\in\mathbb{Z}$. Therefore n^2 is even by definition of an even number, as desired.

Proposition 5.3. Suppose $a, b \in \mathbb{Z}$. If $a^2(b^2 - 2b)$ is odd, then a and b are odd.

Proof. We shall prove this statement via contrapositive proof. Suppose a is even or b is even; we wish to show that $a^2(b^2 - 2b)$ is even. We divide into two cases as follow

Case 1. If a is even, then a = 2k for some $k \in \mathbb{Z}$. It follows that

$$(2k)^2(b^2 - 2b) = 4k^2(b^2 - 2b)$$

implying $a^2(b^2-2b)=2x$ where $x=2k^2(b^2-2b)\in\mathbb{Z}$. Thus for all even a, the number $a^2(b^2-2b)$ is even.

Case 2. If b is even, then b = 2k for some $k \in \mathbb{Z}$. It follows that

$$a^{2}((2k)^{2} - 2(2k)) = a^{2}(4k^{2} - 4k) = 2a^{2}(2k^{2} - 2k)$$

implying $a^2(b^2-2b)=2x$ where $x=a^2(2k^2-2k)\in\mathbb{Z}$. Thus for all even b, the number $a^2(b^2-2b)$ is even

We have proven $a^2(b^2 - 2b)$ to be even in both cases, as desired.

Proposition 5.4. Suppose $a, b, c \in \mathbb{Z}$. If a does not divide bc, then a does not divide b.

Proof. We shall prove this statement via contrapositive proof. Suppose $a \mid b$; we wish to prove $a \mid bc$. It follows that b = an for some $n \in \mathbb{Z}$. Thus bc = acn. Because $cn \in \mathbb{Z}$, we have $a \mid bc$, as desired.

Proposition 5.5. Suppose $x \in \mathbb{R}$. If $x^2 + 5x < 0$, then x < 0.

Proof. We shall prove this statement via contrapositive proof. Suppose $x \ge 0$; we wish to show $x^2 + 5x \ge 0$. It follows that $x(x+5) \ge 0$. Therefore $x^2 + 5x \ge 0$, as desired.

Proposition 5.6. Suppose $x \in \mathbb{R}$. If $x^3 - x > 0$ then x > -1.

Proof. We shall prove this statement by contrapositive. Suppose $x \le -1$; we wish to show that $x^3 - x \le 0$. Since $x \le -1$, we have $x + 1 \le 0$. Because x is negative for all $x \le -1$, we have $x(x+1) \ge 0$. Then because x - 1 is negative for all $x \le -1$, we also have $x(x+1)(x-1) \le 0$. Therefore $x^3 - x \le 0$, as desired.

Proposition 5.7. Suppose $a, b \in \mathbb{Z}$. If both ab and a + b are even, then both a and b are even.

Proof. We shall prove this statement by contrapositive. Suppose a is odd or b is odd; we wish to prove ab is odd or a + b is odd. We divide into two cases as follow, depending on whether a and b have the same or opposite parity

- Case 1. If a and b are both odd, then a=2m+1 and b=2n+1 for some $m,n\in\mathbb{Z}$. So ab=(2m+1)(2n+1)=4mn+2m+2n+1, thus ab=2(2mn+m+n)+1 where $2mn+m+n\in\mathbb{Z}$. Therefore ab is odd by definition of an odd number.
- Case 2. Without loss of generality, consider a is odd and b is even. Then a=2m+1 and b=2n for some $m,n\in\mathbb{Z}$. So a+b=2m+1+2n. Thus a+b=2(m+n)+1 where $m+n\in\mathbb{Z}$. Therefore a+b is odd by definition of an odd number.

The two cases have shown that if a or b is odd, then either ab is odd or a + b is odd, as desired.

Proposition 5.8. Suppose $x \in \mathbb{R}$. If $x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 > 0$, then x > 0.

Proof. We shall prove this statement by contrapositive. Suppose x < 0; we wish to show that $x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 < 0$. Consider the quintic term-wise, we notice that for all x < 0, each term are less than 0. The sum of negative numbers is also a negative number, thus $x^5 - 4x^4 + 3x^3 - x^2 + 3x - 4 < 0$, as desired.

Proposition 5.9. Suppose $n \in \mathbb{Z}$. If $3 \nmid n^2$, then $3 \nmid n$.

Proof. We shall prove this statement by contrapositive. Suppose $3 \mid n$; we wish to show that $3 \mid n^2$. Since $3 \mid n$, it follows that n = 3x for some $x \in \mathbb{Z}$. Thus $n^2 = 9x^2 = 3(3x^2)$. Because $3x^2 \in \mathbb{Z}$, we have $3 \mid n^2$, as desired.

Proposition 5.10. Suppose $x, y, z \in \mathbb{Z}$ and $x \neq 0$. If $x \nmid yz$, then $x \nmid y$ and $x \nmid z$.

Proof. We shall prove this statement by contrapositive. Suppose $x \mid y$ or $x \mid z$; we wish to show that $x \mid yz$. We divide this into two cases, depending on the divisibility of x on y and z

- Case 1. If $x \mid y$, then y = ax for some $a \in \mathbb{Z}$. So yz = azx, and because $az \in \mathbb{Z}$, we have $x \mid yz$.
- Case 2. If $z \mid z$, then z = ax for some $a \in \mathbb{Z}$. So yz = ayx, and because $ay \in \mathbb{Z}$, we have $x \mid yz$.

In both cases, we have proven $x \mid yz$ if $x \mid y$ or $x \mid z$, as desired.

Proposition 5.11. Suppose $x, y \in \mathbb{Z}$. If $x^2(y+3)$ is even, then x is even or y is odd.

Proof. We shall prove this by contrapositive proof. Suppose x is odd and y is even; we wish to show $x^2(y+3)$ is odd. Since x is odd and y is even, we have x = 2m + 1 and y = 2n for some $m, n \in \mathbb{Z}$. So

$$x^{2}(y+3) = (2m+1)^{2}(2n+3)$$

$$= (4m^{2} + 4m + 1)(2n+3)$$

$$= 8m^{2}n + 12m^{2} + 8mn + 12m + 2n + 3.$$

Thus $x^2(y+3) = 2k+1$ where $k = 4m^2n + 6m^2 + 4mn + 6m + n + 1 \in \mathbb{Z}$. Therefore we have proven $x^2(y+3)$ is even by definition of an even number, as desired.

Proposition 5.12. Suppose $a \in \mathbb{Z}$. If a^2 is not divisible by 4, then a is odd.

Proof. We shall prove this by contrapositive proof. Suppose a is even; we wish to show that a^2 is divisible by 4. Since a is even, we have a=2k for some $k \in \mathbb{Z}$. It follows that $a^2=4k^2$, and because $k^2 \in \mathbb{Z}$, we have $4 \mid a^2$. Therefore a^2 is divisible by 4, as desired.

Proposition 5.13. Suppose $x \in \mathbb{R}$. If $x^5 + 7x^3 + 5x \ge x^4 + x^2 + 8$, then $x \ge 0$.

Proof. We shall prove this by contrapositive. Suppose x < 0; we wish to prove $x^5 + 7x^3 + 5x < x^4 + x^2 + 8$. Since x < 0, we can see that $x^5 + 7x^3 + 5x < 0$ and $x^4 + x^2 + 8 > 8$. Thus the inequation is true for all x < 0, and we are done.

3 Section B - Direct and contrapositive proof only

Proposition 5.14. If $a, b \in \mathbb{Z}$ and a and b have the same parity, then 3a + 7 and 7b - 4 do not.

Proof. Suppose $a,b \in \mathbb{Z}$ and they have the same parity. We divide into two cases as follow

- Case 1. If a and b are both even, then a=2m and b=2n for some $m,n\in\mathbb{Z}$. Thus 3a+7=2(3m+3)+1 and 7b-4=2(7n-2), where $3m+3\in\mathbb{Z}$ and $7n-2\in\mathbb{Z}$. Therefore 3a+7 is odd and 7b-4 is even, making them have opposite parity.
- Case 2. If a and b are both odd, then a=2m+1 and b=2n+1 for some $m,n\in\mathbb{Z}$. Thus 3a+7=2(3m+5) and 7b-4=2(7n+1)+1, where $3m+5\in\mathbb{Z}$ and $7n+1\in\mathbb{Z}$. Therefore 3a+7 is even and 7b-4 is odd, making them have opposite parity.

These cases have shown that if a and b have the same parity, then 3a + 7 and 7b - 4 do not, as desired.

Proposition 5.15. Suppose $x \in \mathbb{Z}$. If $x^3 - 1$ is even, then x is odd.

Proof. We shall prove this by contrapositive. Suppose x is even; we wish to show that $x^3 - 1$ is odd. Since x is even, we have x = 2k for some $k \in \mathbb{Z}$. Thus $x^3 - 1 = 2(4k^3 - 1) + 1$. Because $4k^3 - 1 \in \mathbb{Z}$, we have proven $x^3 - 1$ is odd, as desired.

Proposition 5.16. Suppose $x, y \in \mathbb{Z}$. If x + y is even, then x and y have the same parity.

Proof. We shall prove this by contrapositive. Suppose x and y have the opposite parity; we wish to prove x+y is odd. Without loss of generality, suppose x is odd and y is even. Then x=2m+1 and y=2n for some $m,n\in\mathbb{Z}$. Thus x+y=2(m+n)+1 where $m+n\in\mathbb{Z}$. Therefore x+y is odd, and we are done.

Proposition 5.17. If n is odd, then $8 \mid (n^2 - 1)$.

Proof. Suppose n is odd; we have n=2k+1 for some $k \in \mathbb{Z}$. Thus $n^2-1=8(\frac{1}{2}k^2+\frac{1}{2}k)$. We divide into two cases depending on the parity of k:

Case 1. If k is odd, then k = 2u + 1 for some $u \in \mathbb{Z}$. Thus $\frac{1}{2}k^2 + \frac{1}{2}k = 2u^2 + 3u + 1 \in \mathbb{Z}$.

Case 2. If k is even, then k = 2u for some $u \in \mathbb{Z}$. Thus $\frac{1}{2}k^2 + \frac{1}{2}k = 2u^2 \in \mathbb{Z}$.

In both cases, $\frac{1}{2}k^2 + \frac{1}{2}k \in \mathbb{Z}$. Therefore $8 \mid (n^2 - 1)$, as desired.

Proposition 5.18. If $a, b \in \mathbb{Z}$, then $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

Proof. Suppose $a, b \in \mathbb{Z}$. We have $(a+b)^3 - a^3 - b^3 = 3(a^2b + ab^2) \in \mathbb{Z}$. Because $3 \mid 3(a^2b + ab^2)$, we have proven $(a+b)^3 \equiv a^3 + b^3 \pmod{3}$.

Proposition 5.19. Let $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$, then $c \equiv b \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$ and $a \equiv c \pmod{n}$. We have $n \mid (b-a)$ and $n \mid (c-a)$, so b-a=nx and c-a=ny for some $x,y \in \mathbb{Z}$. Thus b-c=n(x-y). Because $n \mid (b-c)$, we have proven $c \equiv b \pmod{n}$.

Proposition 5.20. If $a \in \mathbb{Z}$ and $a \equiv 1 \pmod{5}$, then $a^2 \equiv 1 \pmod{5}$.

Proof. Suppose $a \equiv 1 \pmod{5}$ where $a \in \mathbb{Z}$. Then $5 \mid (a-1)$, implying a-1=5x for some $x \in \mathbb{Z}$. Thus, $a^2-1=5x(a+1)$; because $x(a+1) \in \mathbb{Z}$, we have $5 \mid (a^2-1)$. Therefore $a^2 \equiv 1 \pmod{5}$, as desired.

Proposition 5.21. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $a^3 \equiv b^3 \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$. Then $n \mid (a-b)$, implying a-b=nx for some $x \in \mathbb{Z}$. Thus, $a^3-b^3=n(a^2+ab+b^2)x$; because $x(a^2+ab+b^2)\in \mathbb{Z}$, we have $n \mid (a^3-b^3)$. Therefore $a^3\equiv b^3 \pmod{n}$, as desired.

Proposition 5.22. Let $a \in \mathbb{Z}$, $n \in \mathbb{N}$. If a has remainder r when divided by n, then $a \equiv r \pmod{n}$.

Proof. Suppose a has remainder r when divided by n. Then there exists $q \in \mathbb{Z}$ such that a = qn + r. Thus a - r = qn implies $n \mid (a - r)$. Therefore $a \equiv r \pmod{n}$, and we are done.

Proposition 5.23. Let $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$. If $a \equiv b \pmod{n}$, then $a^2 \equiv ab \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$. Then $n \mid (a-b)$, which implies a-b=nx for some $x \in \mathbb{Z}$. Thus $a^2-ab=anx \in \mathbb{Z}$, hence $n \mid (a^2-ab)$. Therefore $a^2 \equiv ab \pmod{n}$.

Proposition 5.24. If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$, then $ac \equiv bd \pmod{n}$.

Proof. Suppose $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$. Then $n \mid (a-b)$ and $n \mid (c-d)$, which implies a-b=nx and c-d=ny for some $x,y \in \mathbb{Z}$. Thus ac-bc=cnx and bc-bd=bny. Adding the two equations yields ac-bd=n(cx+by); since $cx+by \in \mathbb{Z}$, we have $n \mid (ac-bd)$. Therefore $ac \equiv bd \pmod{n}$.

Proposition 5.25. Let $n \in \mathbb{N}$. If $2^n - 1$ is prime, then n is prime.

Proof. We shall prove this by contrapositive. Suppose n is not prime; we wish to show $2^n - 1$ is not prime. Since n is not prime, then there exists 1 < a, b < n such that n = ab. Thus $2^n - 1 = 2^{ab} - 1 = (2^a - 1)((2^a)^{b-1} + (2^a)^{b-2} + \cdots + 2^a + 1)$. Therefore $2^n - 1$ is composite, as desired.

Proposition 5.26. If $n = 2^k - 1$ for $k \in \mathbb{N}$, then every entry in Row n of Pascal's Triangle is odd.

Proof. Suppose $n = 2^k - 1$ for some $k \in \mathbb{N}$. We can see that the (r+1)-th entry of row n+1 in the Pascal's Triangle is the sum of two entries of the n-th row:

$$\binom{n}{r+1} = \binom{n-1}{r} + \binom{n-1}{r+1}.$$

We wish to show every entry of the *n*-th row is odd, therefore every entry but the first and last of the (n+1)-th row must be all even. In other words, we want to prove $\binom{2^k}{r}$ is even for every $0 < r < 2^k$.

By definition of $\binom{a}{b}$ for some $a, b \in \mathbb{N}$, we have

$$\binom{2^k}{r} = \frac{2^k!}{r!(2^k - r)!} = \frac{2^k(2^k - 1)\cdots(2^k - r + 1)}{1\cdot 2\cdots r}.$$

If r = 1, then $\binom{2^k}{r} = 2^k$. As r increases to $2^k - 1$, we can see that the powers of two on the numerator will always be larger than that on the denominator. Thus the prime factorization of $\binom{2^k}{r}$ will always contain 2 as one of the terms, thus $\binom{2^k}{r}$ is even for every $0 < r < 2^k$, and we are done.

Proposition 5.27. If $a \equiv 0 \pmod{4}$ or $a \equiv 1 \pmod{4}$, then $\binom{a}{2}$ is even.

Proof. We divide the proof into the following two cases:

Case 1. Suppose $a \equiv 0 \pmod{4}$. Then $4 \mid a$, which implies there exists $n \in \mathbb{Z}$ such that a = 4n. Thus we have:

$$\binom{a}{2} = \binom{4n}{2} = \frac{(4n)!}{2(4n-2)!} = 2n(4n-1),$$

which is even.

Case 2. Suppose $a \equiv 1 \pmod{4}$. Then $4 \mid (a-1)$, which implies there exists $n \in \mathbb{Z}$ such that a = 4n + 1. Thus we have:

$$\binom{a}{2} = \binom{4n+1}{2} = \frac{(4n+1)!}{2(4n-1)!} = 2n(4n+1),$$

which is even.

The cases have shown that if $a \equiv 0 \pmod{4}$ or $a \equiv 1 \pmod{4}$, then $\binom{a}{2}$ is always even.

Proposition 5.28. If $n \in \mathbb{Z}$, then $4 \nmid (n^2 - 3)$.

Proof. Suppose $n \in \mathbb{Z}$. We know that only one of the following is true: $n \equiv 0 \pmod{4}, n \equiv 1 \pmod{4}, n \equiv 2 \pmod{4}, n \equiv 1 \pmod{4}, n \equiv 2 \pmod{4}, n \equiv 3 \pmod{4}$. Thus one of the following is true: $n^2 \equiv 0 \pmod{4}, n^2 \equiv 1 \pmod{4}, n^2 \equiv 1 \pmod{4}, n^2 \equiv 2 \pmod{4}$ and $n^2 \equiv 1 \pmod{4}$. Because $n^2 \equiv 1 \pmod{4}$ and $n^2 \equiv 1 \pmod{4}$. Thus only $n^2 \equiv 1 \pmod{4}$ is true. Therefore $n^2 \equiv 1 \pmod{4}$ as desired.

Proposition 5.29.1. If $a, b, k \in \mathbb{Z}$ and a, b are not both zero, then gcd(a, b) = gcd(a + kb, b).

Proof. Consider $d \in \mathbb{Z}$ such that $d \mid a$ and $d \mid b$. Since $d \mid b$, which implies $d \mid kb$, we have $d \mid (a+kb)$. Conversely, given $d \mid (a+kb)$ and $d \mid b$, we have $d \mid (-kb)$, thus $d \mid (a+kb-kb) = a$. We have shown that the set of common divisors of a and b is equal to the that of a+kb and b. Thus the largest element of one is also the largest element of the other; in other words, $\gcd(a,b) = \gcd(a+kb,b)$.

Proposition 5.29. If integers a and b are not both zero, then gcd(a,b) = gcd(a-b,b).

Proof. Applying **Proposition 5.29.1** to k = -1, we find that gcd(a, b) = gcd(a - b, b), and we are done.

Proposition 5.30. If $a \equiv b \pmod{n}$, then gcd(a, n) = gcd(b, n).

Proof. Suppose $a \equiv b \pmod{n}$. Then $n \mid (a-b)$, which implies there exists $x \in \mathbb{Z}$ such that a-b=nx. Thus we wish to prove $\gcd(b+nx,n)=\gcd(b,n)$. By **Proposition 5.29.1**, this is true, thus the proof is completed.

Proposition 5.31. Suppose the division algorithm applied to a and b yields a = qb + r. Prove gcd(a,b) = gcd(r,b).

Proof. We wish to prove gcd(qb+r,b) = gcd(r,b). By **Proposition 5.29.1**, this is true, thus the proof is completed.

Proposition 5.32. If $a \equiv b \pmod{n}$, then a and b have the same remainder when divided by n.

Proof. Suppose $a \equiv b \pmod{n}$. Then $n \mid (a-b)$. We have $a = nx + r_1$ and $b = ny + r_2$ by division algorithm. Thus $n \mid (n(x-y) + r_1 - r_2)$. Because $n > r_1, r_2$, the only case where $r_1 - r_2$ is a multiple of n is when $r_1 = r_2$, as desired.