M5216L/P/FP

DUAL LARGE-CURRENT OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

DESCRIPTION

The M5216 is a semiconductor integrated circuit disigned as a high-output and high-speed operational amplifier for use in high-performance headphone amplifiers and mizer amplifiers found in cassette decks.

The device comes in an 8-pin SIP, DIP or FP and it contains two circuits for yielding a high internally phase-compensated gain, a high current capacity and a high slew rate. It can be widely used as a general-purpose dual amplifier in electronic equipment. In addition, it can be used in a single power supply format and employed in conditions where the supply voltage is low. These are features which make this device ideal for headphone amplifiers in portable products.

FEATURES

- High power output

- High slew rate, high f_T ····· SR=3.0V/ μ s, f_T =10MHz(typ.)
- Low noise $(R_S=1k\Omega)$ FLAT ············V_{NI}=1.8 μ Vrms(typ.)
- Low supply voltage drive possible ········· V_{CC}≥4V(±2V)
- High allowable power ···················Pd=800mW(SIP)

 $P_d=625mW(DIP), P_d=440mW(FP)$

APPLICATION

High-performance headphone amplifiers in VTRs, tape decks and stereo cassette tape recorders with bulit-in radios; also as a large current high speed, general-purpose operating amplifier in other electronic products and equipment.

RECOMMENDED OPERATING CONDITION

Supply voltage range $-...\pm 2V \sim \pm 16V$ (dual power supply) $\pm 4V \sim \pm 32V$ (single power supply) Rated supply voltage $-......\pm 15V$

DUAL LARGE-CURRENT OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

ABSOLUTE MAXIMUM RATINGS ($T_a=25$ °C, unless otherwise noted)

Symbol	Parameter	Conditions	Ratings	Unit	
Vcc	Supply voltage		±18	V	
I _{LP}	Load current		±100	mA	
Vid	Differential input voltage		±30	V	
Vic	Common input voltage		±15	V	
Pd	Power dissipation		800(SIP)/625(DIP)/440(FP)	mW	
Kθ	Thermal derating	T _a ≧25℃	8(SIP)/6.25(DIP)/4.4(FP)	mW/°C	
Topr	Ambient temperature		-20~+75	Ĉ	
T _{stg}	Storage temperature		-55~+125	°C	

ELECTRICAL CHARACTERISTICS (Ta=25°C, Vcc=±15V)

Symbol	Parameter	Test conditions		Limits		
			Min.	Тур.	Max.	Unit
lcc	Circuit current	V _{in} =0		4.5	9.0	mA
V _{IO}	Input offset voltage	R _S <u>≤</u> 10kΩ		0.5	6.0	m∨
l _{io}	Input offset current			5	200	nA
I _{іВ}	Input bias current			180	500	nA
Rin	Input resistance		0.3	5		МΩ
Gvo	Open loop voltage gain	$R_L \ge 2k\Omega, V_0 = \pm 10V$	86	110	•	dB
V _{OM}	Maximum output voltage	R _L ≥10kΩ	±12	±13.5		V
		R _L <u>≥</u> 2kΩ	±10.5	±11		
V _{CM}	Common input voltage width		±12	±14		V
CMRR	Common mode rejection ratio	R _s ≦10kΩ	70	90		dB
SVRR	Supply voltage rejection ratio	R _S ≦10kΩ		30	150	μ٧/٧
Pd	Power dissipation			135	270	mW
SR	Slew rate	$G_V=0$ dB, $R_L=2$ k Ω		3, 0		V/μs
f _T	Gain bandwidth product			10		MHz
V _{NI}	Input referred noise voltage	R _S =1kΩ, BW=10Hz~30kHz		1.8		μ Vrms

TYPICAL CHARACTERISTICS

DUAL LARGE-CURRENT OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

MAXIMUM OUTPUT VOLTAGE

AMBIENT TEMPERATURE Ta (℃)

LOAD RESISTANCE $R_L(\Omega)$

FREQUENCY f (Hz)

DUAL LARGE-CURRENT OPERATIONAL AMPLIFIERS (DUAL POWER SUPPLY TYPE)

APPLICATION EXAMPLE FOR A HEADPHONE AMPLIFIER (DUAL POWER SUPPLY TYPE)

INVERTED INPUT TYPE

(Note) For a single power supply type, (+) input pin voltage level is shifted at $V_{\rm CC}/2$ and output must be used by AC connection by means of a capacitor.

APPLICATION EXAMPLE FOR A HEADPHONE AMPLIFIER (SINGLE POWER SUPPLY TYPE)

NON-INVERTED INPUT TYPE

VOLTAGE GAIN VS. FREQUENCY RESPONSE

FREQUENCY f (Hz)

HEADPHONE AMPLIFIER CIRCUIT Po-Vcc CHARACTERISTICS

HEADPHONE AMPLIFIER CIRCUIT THD—Po CHARACTERISTICS

POWER OUTPUT Po (mW)

COUNTERMEASURE AGAINST OSCILLATION

If oscillation occurs due to load condition, substrate wiring condition, instability of power supply after the M5216 is mounted on the equipement, the following preventative circuit is recommended.

 R_{O} is recommended because it is effective for preventing capacitative load oscillation and controlling current when load is shorted.

