ANALYSIS-I

Chaitanya G K

Indian Statistical Institute, Bangalore

Recall

- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.

Recall

- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.
- ▶ Theorem. Every absolutely convergent series is convergent.

Recall

- ▶ Definition. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of real numbers. We say that $\sum_{n=1}^{\infty} a_n$ is
 - (i) absolutely convergent if $\sum_{n=1}^{\infty} |a_n|$ is convergent;
 - (ii) conditionally convergent if it is convergent, but not absolutely convergent.
- Theorem. Every absolutely convergent series is convergent.
- ► Theorem (Cauchy's Root Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a real sequence and suppose that

$$r:=\lim_{n\to\infty}|a_n|^{\frac{1}{n}}$$

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r:=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$$

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.

▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r:=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$$

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- **Definition**. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.

▶ Theorem (D'Alembert Ratio Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of nonzero real numbers and suppose that

$$r:=\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|$$

- (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ is divergent.
- **Definition**. Given two series $\sum_{n=0}^{\infty} a_n$ and $\sum_{n=0}^{\infty} b_n$, their Cauchy product is the series $\sum_{n=0}^{\infty} c_n$, where $c_n := \sum_{k=0}^n a_k b_{n-k}$.
- Remark. The Cauchy product of two convergent series need not be convergent.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$ and $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$, and $\sum_{n=0}^{\infty} c_n$, respectively.

Convergence of Cauchy product

▶ Theorem (Mertens' Theorem). Let $\sum_{n=0}^{\infty} a_n$ be absolutely convergent and $\sum_{n=0}^{\infty} b_n$ be convergent. If $\sum_{n=0}^{\infty} a_n = a$ and $\sum_{n=0}^{\infty} b_n = b$, then their Cauchy product $\sum_{n=0}^{\infty} c_n$ is convergent and $\sum_{n=0}^{\infty} c_n = ab$.

Proof: Let $\{s_n\}_{n\in\mathbb{N}}$, $\{t_n\}_{n\in\mathbb{N}}$ and $\{u_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=0}^{\infty}a_n$, $\sum_{n=0}^{\infty}b_n$, and $\sum_{n=0}^{\infty}c_n$, respectively. Then for all $n\in\mathbb{N}\cup\{0\}$, we have

$$u_{n} = c_{0} + c_{1} + \dots + c_{n}$$

$$= (a_{0}b_{0}) + (a_{0}b_{1} + a_{1}b_{0}) + \dots + (a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0})$$

$$= a_{0}(b_{0} + \dots + b_{n}) + a_{1}(b_{0} + \dots + b_{n-1}) + \dots + a_{n}b_{0}$$

$$= a_{0}t_{n} + a_{1}t_{n-1} + \dots + a_{n}t_{0}$$

$$= a_{0}t_{n} + a_{1}t_{n-1} + \dots + a_{n}t_{0} - \left(\sum_{k=0}^{n} a_{k}\right)b + s_{n}b$$

$$= a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b) + s_{n}b,$$

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (1), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} v_n = 0$.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n\to\infty} s_n b = ab$, in view of (1), to prove that $\lim_{n\to\infty} c_n = ab$, it suffices to prove that $\lim_{n\to\infty} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$:

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{\substack{n\to\infty\\n\to\infty}} s_n b = ab$, in view of (1), to prove that $\lim_{\substack{n\to\infty\\n\to\infty}} c_n = ab$, it suffices to prove that $\lim_{\substack{n\to\infty}} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n\to\infty} s_n b = ab$, in view of (1), to prove that $\lim_{n\to\infty} c_n = ab$, it suffices to prove that $\lim_{n\to\infty} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n = 0$: Let $\epsilon > 0$ be arbitrary.

Since $\lim_{n \to \infty} (t_n - b) = 0$, there exists $K_1 \in \mathbb{N}$ such that

$$|t_n-b|<\epsilon, \ \forall n\geq K_1.$$

$$c_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \dots + a_n(t_0 - b) + s_n b$$

= $v_n + s_n b$, (1)

where $v_n = a_0(t_n - b) + a_1(t_{n-1} - b) + \cdots + a_n(t_0 - b)$ for all $n \in \mathbb{N} \cup \{0\}$.

Now, since $\lim_{n\to\infty} s_n b = ab$, in view of (1), to prove that $\lim_{n\to\infty} c_n = ab$, it suffices to prove that $\lim_{n\to\infty} v_n = 0$.

Proof of the claim that $\lim_{n\to\infty} v_n=0$: Let $\epsilon>0$ be arbitrary. Since $\lim_{n\to\infty} (t_n-b)=0$, there exists $K_1\in\mathbb{N}$ such that

$$|t_n-b|<\epsilon, \ \forall n\geq K_1.$$

Since $\{t_n-b\}_{n\in\mathbb{N}\cup\{0\}}$ is bounded, there exists M>0 such that

$$|t_n - b| \leq M, \ \forall n \in \mathbb{N}.$$

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

Let $K := \max\{K_1, K_2\}.$

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \ge 2K$, we have

$$|v_{n}| = |a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b)|$$

$$\leq |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$= |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n-K}||t_{n+K} - b|$$

$$+ |a_{n-K+1}||t_{n+K-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$\leq (|a_{0}| + |a_{1}| + \dots + |a_{n-K}|)\epsilon$$

$$+ (|a_{n-K+1}| + \dots + |a_{n}|)M$$

$$\leq \alpha\epsilon + \epsilon M$$

$$= (\alpha + M)\epsilon.$$

$$|a_{n+1}| + |a_{n+2}| + \cdots + |a_m| < \epsilon, \ \forall m > n \ge K_2.$$

Let $K := \max\{K_1, K_2\}$. Then for all $n \ge 2K$, we have

$$|v_{n}| = |a_{0}(t_{n} - b) + a_{1}(t_{n-1} - b) + \dots + a_{n}(t_{0} - b)|$$

$$\leq |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$= |a_{0}||t_{n} - b| + |a_{1}||t_{n-1} - b| + \dots + |a_{n-K}||t_{n+K} - b|$$

$$+ |a_{n-K+1}||t_{n+K-1} - b| + \dots + |a_{n}||t_{0} - b|$$

$$\leq (|a_{0}| + |a_{1}| + \dots + |a_{n-K}|)\epsilon$$

$$+ (|a_{n-K+1}| + \dots + |a_{n}|)M$$

$$\leq \alpha\epsilon + \epsilon M$$

$$= (\alpha + M)\epsilon.$$

Since $\epsilon > 0$ is arbitrary, it follows that $\lim_{n \to \infty} v_n = 0$. This completes the proof.

Tests for conditional convergence

▶ Definition. A sequence $\{a_n\}_{n\in\mathbb{N}}$ of non-negative real numbers is said to be alternating if $(-1)^{n+1}a_n$ is non-negative for all $n\in\mathbb{N}$.

Tests for conditional convergence

▶ Definition. A sequence $\{a_n\}_{n\in\mathbb{N}}$ of non-negative real numbers is said to be alternating if $(-1)^{n+1}a_n$ is non-negative for all $n\in\mathbb{N}$.

If $\{a_n\}_{n\in\mathbb{N}}$ is an alternating sequence, then the series $\sum_{n=1}^{\infty}a_n$ generated by it is called an alternating series.

Tests for conditional convergence

- ▶ Definition. A sequence $\{a_n\}_{n\in\mathbb{N}}$ of non-negative real numbers is said to be alternating if $(-1)^{n+1}a_n$ is non-negative for all $n\in\mathbb{N}$.
 - If $\{a_n\}_{n\in\mathbb{N}}$ is an alternating sequence, then the series $\sum_{n=1}^{\infty} a_n$ generated by it is called an alternating series.
- ▶ Theorem (Alternating Series Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of positive reals such that $\lim_{n\to\infty}a_n=0$. Then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1}a_n$ is convergent.

▶ Theorem (Dirichlet's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n\to\infty}a_n=0$ and let the sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ of $\sum_{n=1}^\infty b_n$ be bounded. Then the series $\sum_{n=1}^\infty a_nb_n$ is convergent.

▶ Theorem (Dirichlet's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n\to\infty}a_n=0$ and let the sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ of $\sum_{n=1}^\infty b_n$ be bounded. Then the series $\sum_{n=1}^\infty a_n b_n$ is convergent.

Proof: First, we prove a lemma.

▶ Theorem (Dirichlet's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n\to\infty}a_n=0$ and let the sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ of $\sum_{n=1}^{\infty}b_n$ be bounded. Then the series $\sum_{n=1}^{\infty}a_nb_n$ is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of reals and $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$ with $s_0:=0$. If m>n, then

$$\sum_{k=n+1}^{m} a_k b_k = (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k.$$
 (2)

▶ Theorem (Dirichlet's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a decreasing sequence of reals with $\lim_{n\to\infty}a_n=0$ and let the sequence of partial sums $\{s_n\}_{n\in\mathbb{N}}$ of $\sum_{n=1}^{\infty}b_n$ be bounded. Then the series $\sum_{n=1}^{\infty}a_nb_n$ is convergent.

Proof: First, we prove a lemma.

Abel's Lemma. Let $\{a_n\}_{n\in\mathbb{N}}$ be a sequence of reals and $\{s_n\}_{n\in\mathbb{N}}$ be the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$ with $s_0:=0$. If m>n, then

$$\sum_{k=n+1}^{m} a_k b_k = (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k.$$
 (2)

Proof of the lemma:

$$\sum_{k=n+1}^{m} a_k b_k = \sum_{k=n+1}^{m} a_k (s_k - s_{k-1})$$

$$= -a_{n+1}s_n + \sum_{k=1}^{m-1} (a_k - a_{k+1})s_k + a_m s_m = \text{RHS of (2)}$$

Proof of the theorem: Let $\epsilon > 0$ be given.

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right|$$

$$\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k|$$

$$\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M$$

$$= \{ (a_m + a_{n+1}) + (a_{n+1} - a_m) \} M = 2a_{n+1} M \quad (3)$$

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right|$$

$$\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k|$$

$$\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M$$

$$= \{ (a_m + a_{n+1}) + (a_{n+1} - a_m) \} M = 2a_{n+1} M$$
 (3)

Since $\lim_{n\to\infty} a_n=0$, there exists $K\in\mathbb{N}$ such that $|a_n|<rac{\epsilon}{2M},\ \forall n\geq K.$

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right|$$

$$\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k|$$

$$\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M$$

$$= \{ (a_m + a_{n+1}) + (a_{n+1} - a_m) \} M = 2a_{n+1} M$$
 (3)

Since $\lim_{n \to \infty} a_n = 0$, there exists $K \in \mathbb{N}$ such that $|a_n| < \frac{\epsilon}{2M}, \ \forall n \geq K$. Therefore, by (3) we have $|\sum_{k=n+1}^m a_k b_k| < \epsilon, \ \forall m > n \geq K$.

$$\left| \sum_{k=n+1}^{m} a_k b_k \right| = \left| (a_m s_m - a_{n+1} s_n) + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) s_k \right|$$

$$\leq |a_m| |s_m| + |a_{n+1}| |s_n| + \sum_{k=n+1}^{m-1} |a_k - a_{k+1}| |s_k|$$

$$\leq (a_m + a_{n+1}) M + \sum_{k=n+1}^{m-1} (a_k - a_{k+1}) M$$

$$= \{ (a_m + a_{n+1}) + (a_{n+1} - a_m) \} M = 2a_{n+1} M \quad (3)$$

Since $\lim_{n\to\infty} a_n = 0$, there exists $K\in\mathbb{N}$ such that $|a_n|<rac{\epsilon}{2M}, \ \forall n\geq K$.

Therefore, by (3) we have $|\sum_{k=n+1}^m a_k b_k| < \epsilon$, $\forall m > n \ge K$. Since $\epsilon > 0$ is arbitrary, by Cauchy criterion, it follows that $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Theorem (Abel's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty}b_n$ be convergent. Then the series $\sum_{n=1}^{\infty}a_nb_n$ is convergent.

Theorem (Abel's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty}b_n$ be convergent. Then the series $\sum_{n=1}^{\infty}a_nb_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a.

Theorem (Abel's Test). Let $\{a_n\}_{n\in\mathbb{N}}$ be a convergent monotone sequence and let the series $\sum_{n=1}^{\infty}b_n$ be convergent. Then the series $\sum_{n=1}^{\infty}a_nb_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a. Set $u_n=a_n-a, \forall n\in\mathbb{N}$.

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a.

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_nb_n=(u_n+a)b_n=u_nb_n+ab_n, \ \forall n\in\mathbb{N}$$

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a.

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_nb_n=(u_n+a)b_n=u_nb_n+ab_n, \ \forall n\in\mathbb{N}$$

Now, $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$. is bounded.

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a.

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_nb_n=(u_n+a)b_n=u_nb_n+ab_n, \ \forall n\in\mathbb{N}$$

Now, $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty} b_n$. is bounded.

Therefore, by Dirichlet's test, the series $\sum_{n=1}^{\infty} u_n b_n$ is convergent.

Proof:

Case (i): Let $\{a_n\}_{n\in\mathbb{N}}$ be decreasing with limit a.

Set $u_n = a_n - a, \forall n \in \mathbb{N}$.

Then

$$a_nb_n=(u_n+a)b_n=u_nb_n+ab_n, \ \forall n\in\mathbb{N}$$

Now, $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and the sequence of partial sums of $\sum_{n=1}^{\infty}b_n$. is bounded.

Therefore, by Dirichlet's test, the series $\sum_{n=1}^{\infty} u_n b_n$ is convergent. This implies by (4) that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent, because by hypothesis $\sum_{n=1}^{\infty} b_n$ is convergent.

Case (ii): Let $\{a_n\}_{n\in\mathbb{N}}$ be increasing with limit a. Set $u_n=a-a_n, \forall n\in\mathbb{N}$.

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and

$$a_nb_n=(a-u_n)b_n=ab_n-u_nb_n, \ \forall n\in\mathbb{N}.$$

Set $u_n = a - a_n, \forall n \in \mathbb{N}$.

Then $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and

$$a_nb_n=(a-u_n)b_n=ab_n-u_nb_n,\ \forall n\in\mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Set
$$u_n = a - a_n, \forall n \in \mathbb{N}$$
.

Then $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and

$$a_nb_n=(a-u_n)b_n=ab_n-u_nb_n,\ \forall n\in\mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Examples.

(i) $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$ is convergent by Dirichlet's test.

Set
$$u_n = a - a_n, \forall n \in \mathbb{N}$$
.

Then $\{u_n\}_{n\in\mathbb{N}}$ is decreasing with limit 0 and

$$a_nb_n=(a-u_n)b_n=ab_n-u_nb_n,\ \forall n\in\mathbb{N}.$$

Therefore, by an argument similar to above, it follows that the series $\sum_{n=1}^{\infty} a_n b_n$ is convergent.

Examples.

- (i) $\sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi}{2}\right)$ is convergent by Dirichlet's test.
- (ii) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n\sqrt{n}}$ is convergent by Abel's test.

▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ► For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2}\right) - \frac{1}{8^2} + \cdots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ► For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2}\right) - \frac{1}{8^2} + \cdots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- ► For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2}\right) - \frac{1}{8^2} + \cdots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.
- More precisely, Theorem. If a series $\sum_{n=1}^{\infty} a_n$ is convergent, then any series obtained from it by grouping the terms also converges to the same value.

- ▶ Given a series $\sum_{n=1}^{\infty} a_n$, we can construct many other series $\sum_{n=1}^{\infty} b_n$ by leaving the order of the terms a_n fixed, but inserting parentheses that group together finite number of terms.
- For example, the series

$$1 - \frac{1}{2^2} + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \left(\frac{1}{5^2} - \frac{1}{6^2} + \frac{1}{7^2}\right) - \frac{1}{8^2} + \cdots$$

is obtained by grouping the terms in the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$.

- ▶ It is an interesting fact that such grouping does not affect the convergence or the sum of a convergent series.
- More precisely, Theorem. If a series $\sum_{n=1}^{\infty} a_n$ is convergent, then any series obtained from it by grouping the terms also converges to the same value.

Proof: Exercise

▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.

- ▶ Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent, say to a sum s (In fact s = ln(2)).

- ► Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent, say to a sum s (In fact s = ln(2)).
- ► Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

- ► Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent, say to a sum s (In fact s = ln(2)).
- ► Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

Let s_n be the n^{th} partial sum of the original series and t_n be the n^{th} partial sum of this rearranged series.

- ► Consider the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$.
- We know that it is convergent, say to a sum s (In fact s = ln(2)).
- ► Rearrange the above series in such a way that two negative terms follow a positive term:

$$1 - \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{6} - \frac{1}{8} + \dots + \frac{1}{2n-1} - \frac{1}{4n-2} - \frac{1}{4n} + \dots$$

- Let s_n be the n^{th} partial sum of the original series and t_n be the n^{th} partial sum of this rearranged series.
- ► Then

$$t_{3n} = \left(1 - \frac{1}{2} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2n - 1} - \frac{1}{4n - 2} - \frac{1}{4n}\right) + \dots$$

$$= \left(\frac{1}{2} - \frac{1}{4}\right) + \dots + \left(\frac{1}{4n - 2} - \frac{1}{4n}\right) + \dots$$

$$= \frac{s_{2n}}{2} \to \frac{s}{2}$$

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \to \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \to \frac{s}{2}$$

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \to \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \to \frac{s}{2}$$

▶ Therefore $\lim_{n\to\infty} t_n = \frac{s}{2}$.

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \to \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \to \frac{s}{2}$$

- ▶ Therefore $\lim_{n\to\infty} t_n = \frac{s}{2}$.
- ► Thus the rearranged series may converge to a sum different from that of the given series.

$$t_{3n+1} = t_{3n} + \frac{1}{2n+1} = \frac{s_{2n}}{2} + \frac{1}{2n+1} \to \frac{s}{2}$$

$$t_{3n+2} = t_{3n} + \frac{1}{2n+1} - \frac{1}{4n+2} = \frac{s_{2n}}{2} + \frac{1}{2n+1} + \frac{1}{4n+2} \to \frac{s}{2}$$

- ▶ Therefore $\lim_{n\to\infty} t_n = \frac{s}{2}$.
- ► Thus the rearranged series may converge to a sum different from that of the given series.
- ▶ Definition. A series $\sum_{n=1}^{\infty} b_n$ is said to be a rearrangement of a series $\sum_{n=1}^{\infty} a_n$ if there is a bijection f of \mathbb{N} onto \mathbb{N} such that $b_k = a_{f(k)}$ for all $k \in \mathbb{N}$.