Métodos Numéricos

Aula Virtual: http://www.famaf.proed.unc.edu.ar/course/view.php?id=451

Guía 2

Solución de ecuaciones de una variable Abril de 2022

Problema 1: Desarrolle un programa para encontrar la raíz de una función f utilizando el método de la bisección, dando como datos de entrada el intervalo inicial [a,b] y la tolerancia en $x \in f$ debe definirse como una función dentro del programa (usando CONTAINS), o en un módulo separado. La salida debe ser

- archivo con cinco columnas: N, p_N , $f(p_N)$, |b-a|/2 (error absoluto), y |b-a|/|a+b| (error relativo), con 12 cifras significativas para los reales.
- la aproximación final p_N (en pantalla)
- el valor final de $f(p_N)$. (en pantalla)
- el número de iteraciones realizadas (en pantalla)

Utilice el programa para

- a) encontrar la menor solución positiva de la ecuación $2x = \tan(x)$ con un error (relativo en x y absoluto en y) menor a 10^{-5} . Cuántos pasos son necesarios si se comienza con el intervalo [0.8, 1.4]?
- b) encontrar una aproximación a $\sqrt{3}$ con un error (relativo en x y absoluto en y) menor a 10^{-5} . Note que $\sqrt{3}$ es la raíz positiva de la ecuación $f(x) = x^2 3$.

Problema 2: Desarrolle un programa para encontrar la raíz de una función f utilizando el método de Newton (también conocido como Newton–Raphson) dando como datos de entrada una estimación inicial p_0 , ε_x (la tolerancia en x), la tolerancia en y ε_y y el número máximo de iteraciones MAX_ITE que se permite antes de detener el algoritmo. El programa debe finalizar cuando se satisfaga una de las siguientes condiciones:

$$\left(\frac{|p_n-p_{n-1}|}{|p_n|}<\varepsilon_x \qquad \text{AND} \qquad |f(p_n)|<\varepsilon_y\right) \qquad \text{O} \qquad \text{N\'umero de iteraciones} = \texttt{MAX_ITE}$$

El programa debe retornar (en pantalla) el número de iteraciones realizadas, el valor final de la aproximación p_n , el error relativo estimado en x y el error absoluto estimado en y ($|f(p_n)|$). f y f' deben ser funciones del programa. Además, en un archivo, debe escribir para cada iteración: n, p_n , el error relativo estimado en x y el error absoluto estimado en y, cada uno con 13 cifras significativas para las variables reales

Utilice este programa para resolver los incisos a) y b) del problema 1. Compare la cantidad de evaluaciones de la función y su derivada en los dos métodos.

Problema 3: Grafique el error relativo y el error relativo estimado $(|p_k - p_{k-1}|/|p_k|)$ de la aproximación k-ésima de $\sqrt{3}$ (pensada como raíz de la función $f(x) = x^2 - 3$) en función de k, empleando el método de bisección (use el intervalo inicial [0., 2.5] y el de Newton-Raphson (use $p_0 = 2.5$). Escriba los programas en doble precisión, y fije una tolerancia de 10^{-10} como criterio de detención. Compare los resultados en un único gráfico en escala log - log. Cree un archivo postscript color con el gráfico. Recuerde de poner título, nombre a los ejes y leyendas para las distintas curvas.

Problema 4: Un objeto en caída vertical en el aire está sujeto a la fuerza de gravedad y a la resistencia del aire. Si un objeto de masa m es dejado caer desde una altura h_0 , su altura luego de t segundos está

dada por:

$$h(t) = h_0 - \frac{mg}{k}t + \frac{m^2g}{k^2}\left(1 - e^{-kt/m}\right)$$

donde $g = 9.8 \, m/s^2 \, y \, k$ representa el coeficiente de resistencia del aire en kg/s. Suponga que $h_0 = 10m$, $m = 0.1 \, kg$, y $k = 0.149 \, kg/s$. Grafique h(t) usando gnuplot para analizar su comportamiento. Encuentre, con una precisión de $0.01 \, s$, el tiempo que le toma a este objeto llegar al suelo. Utilice el método de bisección y el de Newton-Raphson.

Problema 5: Resuelva numéricamente, utilizando el método de Newton-Raphson, el problema de encontrar la raíz que satisfaga $x^3 - 2x - 5 = 0$.

Utilizando calculadora y siete cifras decimales calcule los primeros elementos de la secuencia, comenzando con $p_0 = 2.000000$. Pare cuando el error absoluto en el eje de las abcsisas, definido como $\epsilon_x = |p_n - p_{n-1}|$ sea menor a 10^{-5} . Escriba en un papel a mano una tabla que en cada fila tenga n, p_n , $f(p_n)$ y ϵ_x .

Problema 6: Escriba un programa para hallar la solución a la ecuación

$$x - \cos x = 0$$

en el intervalo $[0, \pi/2]$.

- a) utilizando el método de la secante.
- b) utilizando el método de Regula Falsi.
- c) utilizando el método de bisección.
- d) utilizando el método de Newton.

Graficar el error relativo en función del número de iteración para los cuatro casos, en escala doble logarítmica.

Ejercicios Complementarios

Problema 7: Adapte el programa de Newton–Raphson para calcular una aproximación a la raíz cúbica de un número R positivo. La entrada debe ser el número R, la aproximación inicial x_0 y el error máximo permitido ε .