15CS201J	Data Structures	L	Т	P	C
		3	0	2	4
Co-requisite:	Nil				
Prerequisite:	Nil				
Data Book /	Nil				
Codes/Standards					
Course Category	P Professional Core				
Course designed by	Department of Computer Science and Engineering				
Approval	32 nd Academic Council Meeting, 23 rd July 2016				

PURPOSE Data structure is a particular way of storing and organizing information in a computer so that it can be better processed. This course introduces different kind of data structures like stack, queue, linked list, tree and graph suitable for different kinds of applications. Specific data structures are most important for many efficient algorithms.

IN	INSTRUCTIONAL OBJECTIVES		STUDENT				
		OU'	rc(<u>M</u>	ES		
At	the end of the course, student will be able to						
1.	Understand analysis of algorithm and its time complexity	a	b				
2.	Be familiar with and implement the Linked list data structure	a	b	c			
3.	Be familiar with and implement the Stack and Queue data structure	a	b	c			
4.	Have a comprehensive knowledge of Trees and their implementations	a	b	c			
5.	Learn advanced data structures like Graphs and their implementation, hash tables	a	b	С			
	and Hashing methods						

Session	Description of Topic		C-D- I-O	IOs	Reference
UNIT I:	INTRODUCTION TO DATA STRUCTURES	6			
1.	Introduction : Basic terminology - Data structures – Data structure	1	С	1	1
	operations				
2.	ADT – Algorithms: Complexity, Time – Space trade off	1	C	1	1
3.	Mathematical notations and functions	1	C	1	1
4.	Asymptotic notations – Linear and Binary search	1	C,I	1	1
5.	Asymptotic notations – Bubble sort	1	C,I	1	1
6.	Asymptotic notations -Insertion sort	1	C,I	1	1
UNIT II	: ARRAYS AND LIST	9			
7.	Array: Operations on Arrays, Applications of Arrays	1	C,I	2	1,2,3
8.	Multidimensional Arrays : Sparse Matrix	2	С	2	1,2,3
9.	Linked List: Insertion, Deletion and Search, Cursor based	2	C,I	2	1,2
	implementation				
10.	Polynomial Arithmetic	1	C,I	2	1,2
11.	Circular Linked List – Applications – Josephus Problem	1	C, I	2	1,2
	Doubly linked list: Insertion, Deletion and Search	2	C,I	2	1,2
	I: STACK AND QUEUE	9			
13.	Stack: Array implementation, Linked list implementation	1	C	3	1,2
14.	Applications of Stack – Infix to Postfix – Evaluation of Postfix	2	C,I	3	1,2
15.	Application of Stack – Balancing symbols – Nested function calls	1	C,I	3	1,2
16.	Recursion – Towers of Hanoi	1	C,I	3	1,2
17.	Queue – Array implementation, Linked List implementation	1	C,I	3	1,2
18.	Circular Queue	1	С	3	1,2
19.	Applications of Queue – Priority queue – Double ended queue	2	С	3	1
	V: TREES	11			
20.	General trees – Terminology – Representation of trees – Tree	1	C,D,I	4	1,2
	traversal				
21.	Binary tree – Representation – Expression tree – Binary tree	1	C,D,I	4	1,2
	traversal, Threaded Binary Tree				

Session	Description of Topic	Contact hours	C-D- I-O	IOs	Reference
22.	Binary Search Tree – Construction - Searching, Deletion	2	C,D,I	4	1,2
23.	AVL trees – Rotation, Insertion	2	C,D,I	4	1,2
24.	B-Trees, construction, searching, deletion	2	C,D,I	4	1,2
25.	Splay trees	1	C	4	1,2
26.	Red-Black Trees	2	C	4	1,2
UNIT V	NIT V: GRAPHS AND HASH TABLES				
27.	Graph Terminology, Graph Traversal, Topological sorting	1	C,D,I	5	1,2,4
28.	Minimum spanning tree – Prims - Kruskals	2	C,D,I	5	1,2,3
29.	Network flow problem	1	C	5	1,2,4
30.	Shortest Path Algorithm: Dijkstra	2	C,D,I	5	1,2,3
31.	Graph Search: Depth First Search, Breadth First Search	1	C,D,I	5	1,2
32.	Hashing: Hash functions, Collision avoidance, Separate chaining	1	C,D,I	5	1,2
33.	Open addressing: Linear probing, Quadratic Probing, Double	2	С	5	1,2
	hashing, Rehashing, Extensible Hashing				
	Total contact hours		45	k	

Session	Description of the Experiments	Contact	C-D-	IOs	Reference
		hours	I-O		
1.	Implementation of Sorting, searching	4	D,I	1	1,2,3,4,5
2.	Implementation of Linked List (Singly, Doubly, Circular)	4	D,I	2	1,2,3,4,5
3.	Implementation of stack using array, linked list	4	D,I	2	1,2,3,4,5
4.	Implementation of queue using array, linked list	4	D,I	2	1,2,3,4,5
5.	Applications of stack, queue	4	D,I	3	1,2,3,4,5
6.	Binary Tree Traversal, Binary Search Tree Implementation	4	D,I	4	1,2,3,4,5
7.	Minimum Spanning Tree	4	D,I	5	1,2,3,4,5
8.	Shortest path algorithm using Dijkstra	3	D,I	5	1,2,3,4,5
	Total Contact Hours			30*	

LEAR	NING RESOURCES							
	TEXT BOOKS							
No.								
1.	Seymour Lipschutz, "Data Structures with C", McGraw Hill Education, Special Indian Edition, 2014.							
2.	R.F.Gilberg, B.A.Forouzan, "Data Structures", Second Edition, Thomson India Edition, 2005.							
	REFERENCE BOOKS/OTHER READING MATERIAL							
3.	A.V.Aho, J.E Hopcroft and J.D.Ullman, "Data structures and Algorithms", Pearson Education, First							
	Edition Reprint 2003.							
4.	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education,							
5.	ReemaThareja, "Data Structures Using C", Oxford Higher Education, First Edition, 2011							

Course nature					Theory + Practical				
Assessment	Method – Theor	y Componen	t (Weightage	50%)					
In-semester	Assessment tool	sessment tool Cycle test I Cycle test II Cycle Test III Surprise Tes		Test	Quiz	Total			
	Weightage	10%	15%	1:	5%	5%	,	5%	50%
End semester examination Weightage :									50%
Assessment	Method – Practi	cal Compone	ent (Weightag	e 50%)					
In-semester	Assessment tool	Experiments	Record	MCQ	Q/Quiz/V	Viva Voce	Mode	l examinati	on Total
	Weightage	40%	5%		5%	,		10%	60%
End semeste	er examination V	Veightage :							40%

^{*} Excluding Assessment Hours