SWITCHED CAPACITOR AMPLIFIERS

Simple amplifier

First approach: A_0 = infinite.

$$\phi_1: \qquad V_{C_1} = V_S - V_X \qquad V_{C_E} = 0 \qquad V_{out} = V_X$$

φ2:

$$\begin{split} V_{C_1} &= V_s + \Delta V_s - V_x = -V_x & \text{because} & \Delta V_s = -V_s \\ V_{C_F} &= -\frac{\Delta Q_1}{C_F} = -\frac{[-V_x - (V_s - V_x)]C_1}{C_F} = \frac{V_s C_1}{C_F} \\ V_{out} &= V_x + V_{C_F} = V_s \frac{C_1}{C_F} + V_x \end{split}$$

Alternatively:

$$\phi 1: \qquad V_{C_1} = -V_x \qquad V_{C_F} = 0 \qquad V_{out} = V_x$$

φ2:

$$V_{C_{1}} = V_{s} - V_{x}$$

$$V_{C_{F}} = -\frac{\Delta Q_{1}}{C_{F}} = -\frac{[V_{s} - V_{x} - (-V_{x})]C_{1}}{C_{F}}$$

$$V_{out} = -V_{s} \frac{C_{1}}{C_{F}} + V_{x}$$

Summing amplifier (ideal):

$$V_{out} = [V_1^p(\phi_1) - V_1^n(\phi_2)] \frac{C_1}{C_F} + [V_2^p \phi_1 - V_2^n \phi_2] \frac{C_2}{C_F} + V_x$$

Generally:

$$V_{out}(kT) = V_x + \sum_{j=1}^{m} \frac{C_j}{C_F} \left[V_j^p \left(kT - \frac{T}{2} \right) - V_j^n(kT) \right]$$
 (4.1)

Effect of Parasitics

- Final amplifier open loop gain (DC)
- Input offset
- · Leak current from sampling capacitors.
- Parasitic capacitance (conductors)

The result is found by applying the super position method on the output signal.

That is the sum of all effects.

Parasite components

Output signal as a consequence of offset and final gain.

Open loop gain: A

$$V_{out0} = (V_x - V_{out0})A$$

$$(A+1)V_{out0} = V_x A$$

$$V_{out0} = \frac{A}{1+A}V_x = \varepsilon_0 V_x \tag{4.2}$$

Output signal as a consequence of final gain and parasitic capacitance.

$$V_{out} = -V_i A$$
 $\Delta V_s = -V_s$

 ϕ_1 :

$$V_{C_1} = V_s - V_i = V_s - V_x \frac{A}{1+A}$$
 $V_{C_F} = 0$ $V_{out} = V_x \frac{A}{1+A}$

φ₂ (incremental voltage changes):

$$v_{i} = -v_{s} \frac{C_{1}}{C_{1} + C_{p} + C_{F}} + v_{out} \frac{C_{F}}{C_{1} + C_{p} + C_{F}}$$

$$v_{out} = -v_{i}A = v_{s}A \frac{C_{1}}{C_{1} + C_{p} + C_{F}} - v_{out}A \frac{C_{F}}{C_{1} + C_{p} + C_{F}}$$

$$v_{out} \left[1 + A \frac{C_{F}}{C_{1} + C_{p} + C_{F}} \right] = Av_{s} \frac{C_{1}}{C_{1} + C_{p} + C_{F}}$$

$$v_{out} = \frac{Av_{s} \frac{C_{1}}{C_{1} + C_{p} + C_{F}}}{1 + A \frac{C_{F}}{C_{1} + C_{p} + C_{F}}} = \frac{Av_{s}C_{1}}{C_{1} + C_{p} + C_{F} + AC_{F}}$$

(4.3)

$$v_{out} = \frac{C_1}{C_F} \frac{A}{1 + (C_1 + C_p)/C_F + A} v_s = \frac{C_1}{C_F} \frac{1}{1 + \epsilon_A^1} v_s$$
 $\epsilon_A^1 = \frac{1}{A} \frac{(C_p + C_F + C_1)}{C_F}$

Output signal as a consequence of leak current I_L in the pulse period τ .

$$v_{outL} = \frac{C_1 + C_p}{C_F} \frac{1}{1 + \varepsilon_A^1} \frac{I_L \tau}{C_1 + C_p} = \frac{I_L \tau}{C_F (1 + \varepsilon_A^1)} = \frac{I_L \tau A}{C_1 + C_p + C_F (1 + A)}$$
(4.4)

Final result

Summing (4.2), (4.3) and (4.4):

$$v_{out} = \frac{C_1}{C_F} \frac{1}{1 + \varepsilon_A} v_s + \frac{I_L \tau}{C_F (1 + \varepsilon_A^1)} + \frac{A V_x}{1 + A}$$
 (4.5)

Offset Compensation

 ϕ_1 : V_X is sampled, C_F is charged to V_X

 ϕ_2 : When Q= $\Delta V_s C_1$ is transferred to C_F , V_x is already across C_F with the negative charge at the amplifier output (when V_x er positive)

 ϕ_1 :

$$V_{C_1} = V_s - V_x$$
 $V_{C_F} = V_x$ $V_{out} = V_x$

 ϕ_2 :

$$V_{C_{1}} = (V_{s} - V_{x}) + \Delta V_{s} = -V_{x}$$

$$\Delta V_{C_{F}} = -\frac{\Delta Q_{1}}{C_{F}} - V_{x} = -\frac{[-V_{x} - (V_{s} - V_{x})]C_{1}}{C_{F}} - V_{x}$$

$$C_{1} = \frac{C_{1}}{C_{F}} - \frac$$

$$V_{out} = V_x + V_s \frac{C_1}{C_F} - V_x = V_s \frac{C_1}{C_F}$$

Compensation of charge injection:

Add dummy switches that are clocked in anti phase with the real switches.

Compensation of charge injection and clock feed through:

Introduce corresponding switches and capacitance on both amplifier's input terminals.

Dynamical Properties of SC Amplifiers

g_m: Amplifier transconductance, determined by the transconductance of the input transistors.

r_o: Amplifier output resistance

C_L: Load capacitance of the configuration.

C_p: Parallel capacitance of the input node

Requirements on the time constant:

$$v_{o} = v_{o, ss} (1 - e^{-t/\tau})$$

$$\frac{dv_{o}}{dt}\Big|_{t=0} = v_{o, ss} \frac{1}{\tau} e^{-t/\tau}\Big|_{t=0} = \frac{v_{o, ss}}{\tau}$$

Settling to 1% of $v_{o,ss}$ set the following requirement to t_s :

$$e^{-t_s/\tau} = 0.01$$

$$t_s = (-\tau)\ln 0.01 = 4.6\tau$$

$$\tau = \frac{t_s}{4.6}$$

Instrumental Amplifiers

- Correlated double sampling
 Phase 1: Offset and LF noise are stored at the input Phase 2: Subtracted from the amplified signal.
- Differential topology
 Reduces charge injection and clock feed through.
 Reduces non linearity in capacitors (distortion)
 Improves PSSR (Power Supply Rejection Ratio)

 $v_0 = (v_1^+ - v_1^-) C_1 / C_F$

READ-OUT CHAIN ARCHITECTURE

Column read out (principle)

Column read out (cont.)

Read out time diagram

Column parallel read out (example)

Slow ADC is OK:

Successive Approximation

Single slope (common to all columns)

Cyclic

Synchronizing

Mechanical shutter Synchronized with ERS

Mechanical shutter Synchronized with Global Reset

Synchronizing (cont.)

Electronic global shutter

Reduced resolution but higher frame rates

Skipping

- + Simple solution
- Aliasing

Binning

- + Spatial LP filter
- More complex

(b) Pseudo-pixel pitch skipping

References:

Unbehauen:

MOS Switched-Capacitor and Continuous-Time Integrated Circuits and Systems

Rolf Unbehauen, Andrzej Cickocki

Springer-Verlag

Nakamura:

Image Sensors and Signal Processing for Digital Still Cameras,

edited by Junich Nakamura

Taylor & Francis