Burs 11

Extreme en legaturi

Fie fiECRM > R, ACE ju act.

Det: Spunem ca a este:

- 1) funct de minim (respectio maxim) local al funcției f condiționat de multimea A dacă 7 VE Va a î. f(a) = f(x) (respectiv f(a) > 2 f(x)) + xEVNA.
- 2) junct de extrem local al functiei f conditionat de multimea + dacă a este junct de minim sau de maxim local al lui f condiționat de A.

Obs.: Daca A=E se somité sintagma, condiționat de A".

Denumire alternativa. Punctele de extrem local ale lui f conditionate de t se numer si puncte de extrem local de extrem local de lui f relative la A.

Fie 1 ≤ k < m, g, ..., g: E-> R i sistemul $\left(g_{1}(x_{1},...,x_{m})=0\right)$ {g2(x1,-.., xm) = 0 & (X1, ---, Xm) = 0 Fil A = { xet | g1(x) = ... = g1(x) = 0}, det: Punctèle de extrem bocal ale lui f condiționote de multimes & se numer, în acest cotz, puncte de extrem bocal ale lui f cu legăturile $g_1(x) = 0$, $g_2(x) = 0$, ..., $g_k(x) = 0$. Jedema urmatoure don condiții necesare de existen ta pentre penetele de extrem bocal en legaturi. Itolema (Teolema multiplicatorilor lui Lagrange). Fie a E A (i.e. a verifica sistemul (1)). Presupernem loa henctia f si functiile gr, ..., gr au dui-vote partiale pe o orcinatate a lui A si acestea

sunt continue în a. Trompunem, de asemenea, ca matricea $\left(\frac{\partial g_i}{\partial x_i}(a)\right)$ are rangul la (egal cu $1 \le i \le k$ mimărul ecusțiilor $1 \le j \le m$ sistemului (1)). Dacà a este punet de extrem bocal al functiei f conditionat de t, atunci existà $\lambda_1, ..., \lambda_R \in \mathbb{R}$ a.c. $\frac{\partial \mathcal{L}}{\partial \mathcal{L}}(\alpha) = 0$ (2), $\left|\frac{\partial L}{\partial x_2}(\alpha) = 0\right|$ $\sqrt{\frac{3+m}{3+m}} = 0$ unde L: E-> R, L(x)=f(x)+ $\sum_{i=1}^{k}$ $\lambda_{i}g_{i}(x)$. Def.: 1) Orice punct $a = (a_1, ..., a_m) \in E$ core verificar risternal (1) (i.e. $a \in A$), cu proprietation car rang $\begin{pmatrix} \frac{\partial a_i}{\partial x_i}(a_i) \end{pmatrix}_{1 \le i \le k} = k$ si care verificar și sistemul $1 \le i \le k$

2) beficientie 24,..., 24 de mai sus se numer multiplicatorie lui Lagrange.

3) Function L s.n. lagrangeianul problèmei de extrem.

Obs: Volorile 21,..., 2 se schimba o data cu punctul stational a.

Obs: Tedema antivoarà re poste enunts artil:

"Orice punct de extrem local conditional este

punct Mational conditionat."

Algoritm pentru determinarea punitela staționare conditionate.

Resupenem ca E este multime deschisa si ca functule f, g₁,..., g_e admit derivate partiale continue pe E.
1) le considerà funcția L:E>R, L(X)=f(X) + $+\sum_{i=1}^{n}\lambda_{i}q_{i}(x)$ $(\lambda_{1},...,\lambda_{k})$ nedeterminati). 2) Le formează sistemul ou m+k ecuații, m+k necunsait $(x_1, ..., x_m, \lambda_1, ..., \lambda_k)$, $\frac{9 + 1}{9 \Gamma} (x) = 0$ $\frac{\partial L}{\partial x_{2}}(x) = 0$ $\frac{\partial L}{\partial L}(x) = 0$ g(x) = 0g(x)=0 si se cautà solutible acettura. 3) Daca (a₁, ..., a_m, \lambda₁, ..., \lambda_k) este & sol, a sistemului de la 2) si rang (3gi (a)) 1 = k,

atunci (a,,,, am) este punt staționar al lui

& conditionat de A. Obs.: Printre aceste juncte stationare conditionate Le pet afla je junctele de extrem local conditionate. Von cauta acum condiții suficiente care să ne printa să identificăm, dintre printele staționare conditionate, pe acelea care sent princte de exthem boal conditionate. Fie a= (a1,..., am) un punct stationar al lui f conditionat de A. Aceasta înseamnă că $g_{\mu}(a) = 0, \dots, g_{\mu}(a) = 0, \exists k \text{ numere reale}$ 7,..., xx a.r., são fre satisfacut sistemul (2) $\text{Ni hang} \left(\frac{\partial g_{i}}{\partial x_{i}}(a) \right) = k$ I \le i \le k I \le i \le k

Perrymen cà lagrangianul Ladmite toate derivatele partiale de vidinul 2 pe o vecinatate a lui A ji acestea sent continue în a.

Diferențiem relatiile sistemului (1) în a și obținem: $\frac{\partial x_1}{\partial x_1}(x) dx_1 + ... + \frac{\partial x_m}{\partial x_m}(x) dx_m = 0.$ $\frac{\int \frac{\partial g}{\partial x_1}(a) dx_1 + \dots + \frac{\partial g}{\partial x_m}(a) dx_m = 0.$ $\left|\frac{\partial g_{k}(a)dx_{1}+...+\frac{\partial g_{k}(a)dx_{m}}{\partial x_{m}}=0.\right|$ Devalue matricea acestrii sistem liniar este (3tj. (a)) 1 = i = k

1 = j = m prima le diferențiale în funție de celelatte Jusqualm ca $\frac{D(g_1,...,g_k)}{D(x_m,k+1,...,x_m)}$ (a) = $= \frac{3\pi \sqrt{1-(n)}}{3\pi \sqrt{1+1}} \frac{3\pi \sqrt{1+1}}{3\pi \sqrt{1+1}}$

jutem exprima d'Em-k+1,..., d'Em ûn funcție de Reamintim coi $d^2L(a): \mathbb{R}^m \times \mathbb{R}^m \rightarrow \mathbb{R}$, $d^2L(a)(u,v) = \sum_{i,j=1}^{\infty} \frac{3^2L}{3\pi i 3\pi j}(a) u_i v_j$. Definin $\mp(a): \mathbb{R}^m \to \mathbb{R}, \ \mp(a)(u) = d^2l(a)(u,u) =$ $= n^2 L(\mathbf{a}) (\mathbf{u})^2.$ Jutem serie $\mp(a)(u) = \sum_{\substack{i \in A \\ i \neq i}} \frac{3^2 L}{3 \pm i 3 \pm i 3} (a) u_i u_j$,
i.e. $\mp(a) = \sum_{\substack{i \in A \\ i \neq i}} \frac{3^2 L}{3 \pm i 3 \pm i 3} (a) d \pm i d \pm i d$. Inlocuin, în expresia lui F(a), dxm-f+1,...) dxm en relatiile (*) și consideram

F(m) lug = $\sum_{i,j \in I} A_{i,j} a \times_i d \times_j$, unde $A_{i,j}$ resultation colcul $(F(m))_{log} : \mathbb{R}^{m-k} \rightarrow \mathbb{R}$ $F(m)_{log} (u) =$ $= \frac{m-k}{\sum_{i,j=1}^{n} A_{i,j}} \operatorname{div}_{i,j},$ 1) Docă F(n) leg $(u) \ge 0$ + $u \in \mathbb{R}^{m-k}$ si F(n) leg (u) == 0 docă și numai docă u= 0 pm-k, atunci a este punct de minim bocal al lui f conditionat det.
2) Daca F(a) leg (u) \le 0 + u \in \mathbb{R}^m - k \forall \forall \text{F(a)} \leg (u) = 0 donca je numai donca u=0_{pm-k}, otunci a este junct de marien boal al lui f condiționat de A. Obs.: În aplicațiile noartre avem dridrij = = dxjdxi +i, j e {1,..., m-le}. Ex. Fie f: (0, M= (0, M × (0, M × (0, M) -) R,

f(x,y,z)=xy+xz+yz. Ja re det. punctile de extrem bocal ale his f en legatura $\pm y = 1$. Yel: $E = (0, \infty)^3$ deschisa. Det, punetile stationare condiționate ale lui f. Fie g: E >> R, g(x, y, 2) = xy2-1 (g=g1) si $A = \{(x, y, z) \in E \mid g(x, y, z) = 0\}.$ 37 = HZ 37 = x+5 35 = x+h 4 (x,y,z)EE. 39 = 42 34 = X5 3= = x W

It, It, It, It, It, It, It continue p. E.

hang $\left(\frac{\partial n}{\partial x} + \frac{\partial n}{\partial y} + \frac{\partial n}{\partial z}\right) = \lambda_{ang}(yz + xz + xy) = 1 + (x, y, z) \in E$. Fie L: E->R, L(x, y, 2) = f(x, y, 2) + >g(x, y, 2) = = *y+ *Z+ yZ+ \(\XyZ-1). / y+Z+ >yZ= D (3) $\begin{array}{c} (3) \\ \times + \sqrt{3} + \sqrt{3} \times \sqrt{3} = 0 \\ \times + \sqrt{3} + \sqrt{3} \times \sqrt{3} = 0 \end{array}$ $\left| \frac{35}{3\Gamma} = 0 \right|$ LXyZ=1. (g(x, y, 7=)=0 Teadem prima ecuatie din a doua ji stinem: $x-y+\lambda z(x-y)=0 \Rightarrow (x-y)(1+\lambda z)=\infty$ €) X=y sau λ2=-1. bazul 1. X=y X+y+ > xy = 0 (=) x + x + > x2 = 0 (=) x (2+ xx) = 0 (=) (=) $\lambda = 2$ (=) $\lambda = -\frac{2}{\lambda}$. # (01 20)

$$y=\chi(z)$$
 $y=-\frac{2}{\lambda}$.
 $y+2+\lambda y^2=0$ (=) $-\frac{2}{\lambda}+2+\lambda\cdot(-\frac{2}{\lambda})^2=0$ (=)
(=) $z=-\frac{2}{\lambda}$.
 $\chi yz=1$ (=) $-\frac{8}{\lambda^3}=1$ (=) $\lambda=-2$.
Deci $(\chi_1, y_1, z)=(1, 1, 1)$.
 $\chi_1+2+\lambda y^2=0$ (=) $\chi_1-\frac{1}{\lambda}$.
 $\chi_1+2+\lambda y^2=0$ (=) $\chi_1-\frac{1}{\lambda}$.

$$y + t + \lambda y t = 0 \Rightarrow y - \frac{1}{\lambda} + \lambda \cdot y \cdot (-\frac{1}{\lambda}) = 0 \Leftrightarrow$$

$$\Rightarrow -\frac{1}{\lambda} = 0$$
, contradictie.

Singurul punct stationer al lui f eu legatura $\pm y^2 = 1$ este (1, 1, 1) $(\lambda = -2)$. Aven $L(\pm, y, 2) = \pm y + \pm 2 + y^2 - 2(\pm y^2 - 1) + 2$

$$\frac{3^{2}L}{3x^{2}} = 0$$
; $\frac{3^{2}L}{3^{2}L} = 0$; $\frac{3^{2}L}{3^{2}L} = 0$; $\frac{3^{2}L}{3x^{2}} = 1-2x = \frac{3^{2}L}{3^{2}L}$;

$$\frac{\partial^{2} L}{\partial x \partial z} = 1 - 2 y = \frac{\partial^{2} L}{\partial z \partial x}; \frac{\partial^{2} L}{\partial y \partial z} = 1 - 2 x = \frac{\partial^{2} L}{\partial z \partial y}$$

$$+(x, y, z) \in E.$$

Toate aceste derivate partiale de ordinal 2 sunt continue pe E.

$$\frac{3x_{5}}{3r}(1,1,1) = \frac{3x_{5}}{3r}(1,1,1) = \frac{3x_{5}}{3r}(1,1,1) = 0.$$

$$\frac{3 \times 3 \mathring{\Lambda}}{3_{5} \Gamma} (1'1'1) = \frac{3 \mathring{\Lambda} 3 \times}{3_{5} \Gamma} (1'1'1) = \frac{3 \times 3 5}{3_{5} \Gamma} (7'1'1) = \frac{3 \times 3 \times}{3_{5} \Gamma} (1'1'1) = \frac{3 \times}{3_{5} \Gamma} (1'1'1) =$$

$$=\frac{3h35}{357}(1'1'1)=\frac{359h}{357}(1'1'1)=-7.$$

Fig
$$F(1,1,1)$$
: $\mathbb{R}^3 \rightarrow \mathbb{R}$, $F(1,1,1) = -2 (d \times dy + d \times dz + d y dz)$.

Diferentiem legatura $\pm y = 1$. $y \ge dx + \pm 2dy + \pm y dz = 0$.

In junctul (1,1,1) ultima egalitate devine: dx+dy+dz=0=> dz=-dx-dy. them $F(1,1,1)_{leg} = -2 (dxdy + dx(-dx-dy) + dy(-dx-dy)) = -2 (dxdy - dx^2 - dxdy - - dydx - dy^2) = 2 (dx^2 + dxdy + dy^2) = 2 (2dx + dy^2 + 2\cdot 3 dx^2 (F(1,1,1))_{leg} : P^{3-1} \rightarrow P).$ $F(1,1,1)_{leg} (\mu) = 2 (\frac{1}{2} \mu_1 + \mu_2)^2 + 2\cdot \frac{3}{4} \mu_1^2.$

F(1,1,1) leg (n) > 0 + ne R².

 $\mp (1,1,1)$ leg $(u) = 0 \Leftrightarrow u = 0$ \mathbb{R}^2 .

Deci (1,1,1) este junt de minim boal al lui fru legatura g(x,y,z)=0.

Denumire alternativa. Runctele staționare condițio nate se numer și puncte critice condiționate.

Integrala Riemann pentru funçui de A variabilà reală

Fe f:[a,b] -> R.

Def: 1) S, n, divizione a intervalului [a,b], un sistem al penete $\Delta: a = X_0 \times X_1 < ... < X_n = b$.

Notam $\mathcal{D}([a,b]) = \{\Delta \mid \Delta \text{ divizione a intervalului}$ [a,b].

2) Minarul ||L|| mot, max { xi- xi-1 | i=1,m} s.n. norma divitiunii s.

3) I.n. sistem de penete intermediare asociat dirrizinni L, un sistem de puncte $3 = (3)_{i=1,n}$ ou proprietatea sà $3i \in [\pm i-1,\pm i]$ 4i=1,n.

4) Juma $\sum_{i=1}^{n} f(3_i)(x_i-x_{i-1}) \Delta.n.$ Luma Riemann procietà funcției f, diviziunii Δ și ristemului de puncte intermediare $3=(3_i)_{i=1,n}$

ji se noteata To(f, 3).
Det: Junem ca f este integrabila Riemann
Det: Junem cà f este integrabilà Riemann doca FIETR a.2. 4800, 3 5,00 eu proprietates
+ 1 = 0 [[a, b]), 1 < \(\int_{\infty} \sigma_{i} + \int_{\infty} = (\frac{\infty}{3}i)_{i=1,m} \sigma_{i} - \int_{\infty} = (\frac{\infty}{3}i)_{i=1,m} \sigma_{i} - \int_{\infty} = (\frac{\infty}{3}i)_{i=1,m} \sigma_{i} - (\inf
$(\alpha=\chi_0<\chi_1<\ldots<\chi_N=b)$
tom de juncte intermediare asociat diviriumi S, over 1I- $\sigma_{N}(f, g)/< \epsilon$.
[over] I- J(f, 3)/2 E.
[Obs: IER, doca existà, este unic si se notestà
$I = \int_{\mathbf{A}}^{\mathbf{b}} f(\mathbf{x}) d\mathbf{x}.$
Ildrema. Daca f e integr. P., atunci f e marg.
Testema. Dacoi f e cont., atunci f e integr. R.
Italma. Daca le monstona, atunci flintegr. R.
Terema de permutare a limitei en integrala
Fie (fn)n un sir de function, fn: [a, b] > R thEF
λ .:

Obs: 1) vice submultime a unei multimi negli-
Obs.: 1) Orice submultime a unei multimi negli- jabile debetsque este, la rândul ei, neglijabila
Libe Naus
Libergue
2) Orice multime cel mult numarabilà
2) Orice multime cel mult numarabilà (i.l., finità sou numarabilà) este neglijabilà
3) Vice reuniume cel mult numerabilà de multimi neglijabile Leberque este neglijabilà Lebergue.
multimi neglijabile debetque este neglijabila
Lebergul.
Whatie. De={xe[a,b] f nu e cont. în x} (multimea discontinuitatilor lui f).
L (multimea discontinuitatils lui f).
Tesema (hiterial lui debergue de integrabilitate Fremann). Lunt echivalente:
Fremann), Lunt echivalente:
Af e integr. R.
2) fl mang. Si Del neglijabila debesgue. Exc. Fe f: [9,1] > PR, f(x) = { sin \(\frac{1}{2} \); \(\tau=0. \)} (); \(\tau=0. \)
Exc. Fe l: [an] = D lix = [sin \(\frac{1}{\times} \); \(\times \)

thatati sa f e integr. R.

Sol; $|f(x)| \leq 1 + x \in [0,1] \Rightarrow f \text{ marg.}$ De C (0)

firità => neglijabilà Liberque | phiphilà
Liberque. Deci fe integr. R. a Fie f: [a, b] > R & functie marginità (i.e., JM>0 a.r. |f(x) < M + xe[a,b]) si s: a=xo < x1 < ... < xn=b o divitiure a intervalului [a,b]. Consideram Mi= rep { f(x) | xe [xi-1,xi] } + i=1,n in mi= inf{f(x) xe[xi-1, xi]} + i=1,m. Def: 1) $S_{\Delta}(f) = \sum_{i=1}^{M} M_i(x_i - x_{i-1}) s.n. numa$ Darboux superioarà asociatà funcției f și divroi-2) $S_{\Delta}(f) = \sum_{i=1}^{\infty} m_i (x_i - x_{i-1}) \quad \Delta.m. \quad \Delta.m.$ Darboux inferioarà associatà funcțiui f și divizi-

3) $\int_{a}^{b} f(x)dx = \inf \{ S_{\Delta}(f) | \Delta \in \mathcal{O}([a,b]) \} s.m.$ f isitenet åteisera årocirque ævodrab alapetrii 4) $\int_{A}^{\infty} f(x) dx = \sup \{\Delta(f) \mid \Delta \in \mathcal{D}(Ta,b^2)\}$ s.m. integala Darboux inferioară asociată funcției f. $\frac{\text{Obs}}{\text{in}}$: 1) $\text{N}(t) \leq \text{N}(t)$. 2) $\int_{\Omega}^{h} f(x) dx \leq \int_{\Omega}^{\infty} f(x) dx$. Jerema (briteriul lui Darboux de integrabilitate Riemann). Gent echio: 1) fintegr. R. $= \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$ (cot in some arem $\int_{\Omega}^{b} f(x) dx = \int_{\Omega}^{b} f(x) dx = \int_{\Omega}^{b} f(x) dx$ 3) 4 800, 3 LED([a,b])a, î. SL(f)-SL(f) < E. 4) 4 8>0, 3 Se>0 a.î. 4 LED [[a,b]), 116/1/25E, lavem SL(f)-SL(f) < E.

Atunci:

$$A_{\Delta}(f) = \sum_{i=1}^{n} m_{i}(x_{i} - x_{i-1}) = \sum_{i=1}^{n} (-1)(x_{i} - x_{i-1}) =$$

$$= (-1)(x_{i} - x_{0} + x_{2} - x_{1} + ... + x_{n} - x_{n-1}) = (-1)(x_{n} - x_{0}) =$$

$$= (-1) (1-0) = -1.$$

$$\int_{0}^{1} f(x) dx = \lambda_{1} \{ \Delta_{1}(f) \mid \Delta \in \mathcal{D}(T_{0}, 1) \} = -1.$$

$$\int_{0}^{1} f(x) dx = \lambda_{1} \{ \Delta_{1}(f) \mid \Delta \in \mathcal{D}(T_{0}, 1) \} = -1.$$

$$= \sum_{i=1}^{n} A_{i}(x_{i} - x_{i-1}) = \sum_{i=1}^{n} A_{i}(x_{i} - x_{i-1})$$