Assignment 1

Iterative Closest Point Algorithm

Name: Girish Chandar G Roll_No: 16110057

Theory:

Let P and Q be a point cloud. And let p_i's and q_i's be the points in P and Q respectively.

$$\overline{p} = \frac{1}{N} \sum_{i}^{N} p_{i}$$

$$\overline{q} = \frac{1}{N} \sum_{i}^{N} q_{i}$$

where \overline{p} is mean of p_i 's and \overline{q} is mean of q_i 's

X is a matrix with the columns as $(p_i - \overline{p})$'s and Y is a matrix with the columns as $(q_i - \overline{q})$'s.

Let the singular value decomposition of XY^T be as follows

$$XY^T = U \Sigma V^T$$

Then,

$$R = VU^T$$
$$t = \overline{q} - R\overline{p}$$

Procedure:

- 1. Find the correspondences between pi's and qi's in P and Q, respectively.
- 2. Apply the formula $t=\overline{q}-R\overline{p}$ and $R=VU^T$ for the correspondences found in the previous step.
- 3. Repeat steps 1 and 2 until $\|t_{k+1}-t_k\| pprox 0$ and $\|\theta_{k+1}-\theta_k\| pprox 0$

Note:

The method used for finding correspondences in the assignment is least distance method, i.e., p_i 's and q_i 's are aligned such that q_j corresponding to p_i has the least distance for all j=0,1,2,...,N.