

Figure 1.9 The Gaussian approximation to the binomial coefficients g(100,s) plotted on a linear scale. On this scale it is not possible to distinguish on the drawing the approximation from the exact values over the range of s plotted. The entire range of s is from -50 to +50. The dashed lines are drawn from the points at 1/e of the maximum value of g.

For N=50, the value of g(50,0) is 1.264×10^{14} , from (37). The approximate value from (36) is 1.270×10^{14} . The distribution plotted in Figure 1.9 is centered in a maximum at s=0. When $s^2=\frac{1}{2}N$, the value of g is reduced to e^{-1} of the maximum value. That is, when

$$s/N = (1/2N)^{1/2}, (38)$$

the value of g is e^{-1} of g(N,0). The quantity $(1/2N)^{1/2}$ is thus a reasonable measure of the fractional width of the distribution. For $N \approx 10^{22}$, the fractional width is of the order of 10^{-11} . When N is very large, the distribution is exceedingly sharply defined, in a relative sense. It is this sharp peak and the continued sharp variation of the multiplicity function far from the peak that will lead to a prediction that the physical properties of systems in thermal equilibrium are well defined. We now consider one such property, the mean value of s^2 .