Page 14, please amend lines 4-15 as follows:

The polymers of this embodiment can be formed by polymerizing a macromer comprising at least one segment having the following general formula (II):

in which,

(a) is a polysiloxane segment,

Page 15, please amend lines 4-16 as follows:

In one embodiment, a polysiloxane segment (a) can be derived from a compound having the following general formula (IV):

$$R_{1} = \begin{bmatrix} R_{2} & R_{4} \\ S_{1} & S_{5} \end{bmatrix}_{n}$$
 (IV)

in which, n is an integer from 5 to 500;

Page 16, please amend lines 7-15 as follows:

Another embodiment of a substrate material of the present invention involves the polymerization of a siloxane-containing macromer formed from a poly(dialkylsiloxane) dialkoxyalkanol having the following structure (V):

$$R_{1} = 0$$
 $R_{2} = 0$
 $R_{3} = 0$
 $R_{4} = 0$
 $R_{4} = 0$
 $R_{5} = 0$
 $R_{5} = 0$
 $R_{6} = 0$
 $R_{8} = 0$
 $R_{8} = 0$
 $R_{8} = 0$
 $R_{8} = 0$

where n is an integer from about 5 to about 500, preferably about 20 to about 200, more preferably about 20 to about 100;

Page 21, please amend the whole page as follows:

meaning a polyacrylic acid obtainable by polymerizing acrylic acid in the presence of suitable (minor) amounts of a di- or polyvinyl compound.

Suitable polyanionic material may be any material known in the art to have a plurality of negatively charged groups along a polymer chain. For example, suitable anionic materials can include, but are not limited to:

(a) polymethacrylic acid (PMA)

(b) polyacrylic acid (PAA)

(c) poly(thiophene-3-acetic acid) (PTAA)

Page 22, please amend the whole page as follow:

(d) poly(4-styrenesulfonic acid) (PSS) or sodium poly(styrene sulfonate) (SPS) or poly(sodium styrene sulfonate) (PSSS)

A suitable cationic substance may be any material known in the art to have a plurality of positively charged groups along a polymer chain. A cationic polymer may, for example, be a synthetic polymer, a biopolymer or modified biopolymer comprising primary, secondary or tertiary amino groups or a suitable salt thereof, preferably an ophthalmically acceptable salt thereof when ophthalmic devices are to be coated, for example, a hydrohalogenide, such as a hydrochloride thereof, in the backbone or as substituents.

Various cationic materials can include, but are not limited to:
(a) poly(allylamine hydrochloride) (PAH)

Page 23, please amend the whole page as follows:

$$\begin{array}{c|c}
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- & + & + & + \\
- &$$

(b) poly(ethyleneimine) (PEI)

(c) poly(vinylbenzyltriamethylamine) (PVBT)

(d) polyaniline (PAN or PANI) (p-type doped) or sulphonated polyaniline

Page 24, please amend the page as follows:

(e) polypyrrole (PPY) (p-typed doped)

(f) poly(pyridinium acetylene)

$$CH_2$$
 C H_3

Page 25, on the top of the page please insert formula (1) as follows:

Page 28, after formula (6d) please insert formula (6e) -

$$R_3$$
—O—C X (6e)

Page 29, please amend the whole page as follows:

wherein X is halogen, preferably chlorine; (alk') is C₁-C₁₂-alkylene; R₁₂ is hydrogen or C₁-C₂-alkyl, preferably hydrogen or methyl; and R₃, R₄, R₅', R₆ and Q₁ are as defined above. The reaction proceeds, for example, in an aqueous solution at room temperature or at an elevated temperature, such as from 25°C to about 60°C, and yields various polymers comprising various modifier units.

Because the reaction of the amino groups of the polyallyl amine with the compounds of formulae (6) or (6a)-(6k) proceeds, in general, quantitatively, the structure of the modified polymers is determined mainly by the stoichiometry of the reactants that are employed into the reaction. A particular polyionic material is polyallylamine gluconolactone, as shown below in formula (7):

Page 30, after the last line please insert -

Page 32, before the first line please insert -

Page 32, please amend lines 9-21 as follows:

A particular embodiment relates to polyallyl amines comprising units of the above formula (5), wherein L is a radical of formula

$$\begin{array}{c|c}
- CH - CH - H \\
OR^* OR^*
\end{array}$$
(6),

wherein g is 1, 2, 3, 4 or 5, preferably 3 or 4 and in particular 4, each R^* is independently hydrogen or a radical -C(O)-R₂₉ or -C(O)-NH-R₂₉', and for

Page 34, before the first line please insert -

Page 48, please amend the page as follows:

macromonomer such as, for example, a macromonomer having the formula

wherein R₁ is hydrogen, C₁-C₆-alkyl or a radical -COOR';

R, R' and R_1 ' are each independently of the other hydrogen or C_1 - C_6 -alkyl;

A is a direct bond or is a radical of formula

$$-C(O)-(A_1)_n-X-$$
 (2a) or $-(A_2)_m-NH-C(O)-X-$ (2b); or $-(A_2)_m-X-C(O)-$ (2c); or $-C(O)-NH-C(O)-X-$ (2d); or $-C(O)-X_1-(alk^*)-X-C(O)-$ (2e); or

A and R₁, together with the adjacent double bond, are a radical of formula

H
$$N$$
 $(X)_{0 \text{ or } 1}C$
 X
 $(2f),$

 A_1 is $-O-C_2-C_{12}$ -alkylene which is unsubstituted or substituted by hydroxy, or is $-O-C_2-C_{12}$ -alkylene-NH-C(O)- or $-O-C_2-C_{12}$ -alkylene-O-C(O)-NH-R₁₁-NH-C(O)-, wherein

 R_{11} is linear or branched C_1 - C_{18} -alkylene or unsubstituted or C_1 - C_4 -alkylene C_1 - C_4 -alkoxy-substituted C_6 - C_{10} -arylene, C_7 - C_{18} -aralkylene, C_6 - C_{10} -arylene- C_1 - C_2 -alkylene- C_6 - C_{10} -arylene, C_3 - C_8 -cycloalkylene, C_3 - C_8 -cycloalkylene- C_1 - C_2 -alkylene- C_1 - C_2 -alkylene- C_3 - C_8 -cycloalkylene- C_1 - C_2 -alkylene- C_1 - C_2 - C_3 - C_4 - C_4 - C_4 - C_5 - C_6 - C_6 - C_6 - C_7 - C_8 -

Page 50, please amend lines 21-22 as follows:

(ii) the radical of an oligomer of the formula

Page 50, please amend lines 4-13 as follows:

(iii) the radical of formula

$$CH_2$$
— CH_2 —

wherein R_{28} , X and u are as defined above, or

(iv) the radical of an oligomer of formula

wherein R_2 and R_2 ' are each independently C_1 - C_4 -alkyl, An^- is an anion, v is an integer from 2 to 250, and Q'' is a monovalent group that is suitable to act as a polymerization chain-reaction terminator; or

Page 61, please amend lines 1-5 as folows:

A particularly preferred group of non-ionic substituents of B or B' comprises the radicals -CONH₂, -CON(CH₃)₂, -CONH-(CH₂)₂-OH,

$$\begin{array}{c|c} O & C_1\text{-}C_2 \text{ alkyl} \\ \hline C & C_1\text{-}C_2 \text{ alkyl} \\ \hline CH_2\text{CH}_2\text{OH} \end{array}, \begin{array}{c} O & O \\ O$$

-COO-(CH₂)₂-N(CH₃)₂,

and -COO(CH₂)₂₋₄-NHC(O)-O-G wherein -O-G is the radical of trehalose. (ii) anionic substituents:

Page 64, please amend lines 14-22 as follows:

B denotes for example a radical of formula

wherein R_5 is hydrogen or C_1 - C_4 -alkyl, preferably hydrogen or methyl; R_6 is a hydrophilic substituent, wherein the above given meanings and preferences apply; R_7 is C_1 - C_4 -alkyl, phenyl or a radical - $C(O)OY_9$, wherein Y_9 is hydrogen or unsubstituted or hydroxy-substituted C_1 - C_4 -alkyl; and R_8 is a radical - $C(O)Y_9$ ' or - CH_2 - $C(O)OY_9$ ' wherein Y_9 ' independently has the meaning of Y_9 .

Page 65, please amend lines 11-23 as follows:

If (oligomer) is a telomer radical of formula (3a), the radical -(alk)-S-[B]_p-[B']_q-Q preferably denotes a radical of formula

$$---Alk - S - \begin{bmatrix} CH_2 & -\frac{R_5}{Q} \\ -\frac{R_5}{Q} \end{bmatrix}_p \begin{bmatrix} CH_2 & -\frac{R_5}{Q} \\ -\frac{R_5}{Q} \end{bmatrix}_q CH_2$$

(3a') and even more preferably of the formula

(3a")

wherein for R_5 , R_6 , Q, p and q the above-given meanings and preferences apply, for R_5 ' independently the meanings and preferences given before for R_5 apply, and for R_6 ' independently the meanings and preferences given before for R_6 apply or R_6 ' is a hydrophobic substituent selected from the group consisting of hydrogen, -CN, C_1 - C_{18} -alkanoyl, C_1 - C_{16} -alkyl, C_1 - C_{16} -haloalkyl, phenyl, C_1 - C_6 -alkylphenyl, C_2 - C_{10} -perfluoroalkyloxycarbonyl or a corresponding partially fluorinated alkyloxycarbonyl

Page 66, please amend lines 10-22 as follows:

benzylene, (alk*) is C₂-C₄-alkylene, and (oligomer) denotes a radical of formula

(3a'),

wherein (alk) is C_2 - C_6 -alkylene, Q is a monovalent group that is suitable to act as a polymerization chain-reaction terminator, p and q are each an integer of from 0 to 100 and the total of (p+q) is from 5 to 100, R_5 and R_5 ' are each independently of the other hydrogen or methyl, and for R_6 and R_6 ' each independently of the other the meanings and preferences given before apply. One particularly preferred embodiment of the above outlined hydrophilic macromers comprises those wherein q is 0, p is from 5 to 100, R_5 is hydrogen or methyl, and R_6 is a radical -CONH₂, -

CON(CH₃)₂, -CONH-(CH₂)₂-OH,
$$C_{1}-C_{2} \text{ alkyl}$$

$$CH_{2}CH_{2}OH$$
,
$$CH_{2}CH_{2}OH$$

Page 67, please amend the page as follows:

-COO-(CH₂)₂-N(CH₃)₂, or -COO(CH₂)₂₋₄-NHC(O)-O-G wherein -O-G is the radical of trehalose. A further preferred embodiment of the above outlined hydrophilic macromers comprises those wherein p is from 4 to 99, q is from 1 to 96 wherein in the total of (p+q) is from 5 to 100, R₅ and R₅' are each independently hydrogen or methyl, R₆ is a radical

-CONH₂, -CON(CH₃)₂, -CONH-(CH₂)₂-OH,

$$\begin{array}{c|c} O & C_1\text{-}C_2 \text{ alkyl} \\ \hline C + C_2 \text{-}C + C_2 \text{-}C + C_2 \text{-}C \\ \hline C + C_2 \text{-}C + C_2 \text{-}C \\ \hline C + C_2 \text{-}C + C_2 \text{-}C \\ \hline C + C_2 \text{-}C \\ C + C_2 \text{-}C \\ \hline C + C_2 \text{-}C \\ \hline$$

-COO- $(CH_2)_2$ -N $(CH_3)_2$, or -COO $(CH_2)_2$ -4-NHC(O)-O-G wherein -O-G is the radical of trehalose, and R₆' independently has the meaning of R₆ or is carboxy, subject to the proviso that R₆ and R₆' are different.

A more preferred group of suitable hydrophilic macromonomers according to the invention comprises compounds of formula

$$H_2C = \begin{bmatrix} R & O \\ C & C \end{bmatrix} - A_1 - X - (alk) - S - \begin{bmatrix} CH_2 & C \\ C & D \end{bmatrix}_p Q$$

(1a), wherein R is hydrogen or methyl, A₁ is -O-(CH₂)₂₋₄-, -O-CH₂-CH(OH)-CH₂- or a radical -O-(CH₂)₂₋₄-NH-C(O)-, X is -O- or -NH-, (alk) is C₂-C₄-alkylene, Q is a monovalent group that is suitable to act as a polymerization chain-reaction terminator, p is an integer from 5 to 50, R₅ is hydrogen or methyl, and for R₆ the above given meanings and preferences apply.