	Элл	ипс	Гипербола			
Определение	Эллипсом называется множество всех точек плоскости, сумма расстояний от каждой из которых до двух данных точек F_1 и F_2 равна длине данного отрезка PQ , причем $PQ > F_1F_2$ $\gamma = \left\{ M \mid MF_1 + MF_2 = PQ, \; PQ > F_1F_2 \right\}$		Гиперболой называется множество точек плоскости, абсолютная величина разности расстояний от каждой из которых до двух даннь точек F_1 и F_2 равна длине данного отрезка PQ , причем $PQ < F_1F_2$ $\gamma = \left\{ M \; \middle \; \middle MF_1 - MF_2 \middle = PQ, PQ < F_1F_2 \right\}$			
Каноническое уравнение	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$		$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $c^2 = a^2 + b^2$		
	$a > b$, $a^2 - c^2 = b^2$, a – большая полуось, b – малая полуось.	$b > a$, $b^2 - c^2 = a^2$, b — большая полуось, a — малая полуось.	$c^2 = a^2 + b^2$ a – действительная полуось, b – мнимая полуось	b – действительная полуось, a – мнимая полуось		
Фокусы	$F_1(-c,0), F_2(c,0).$	$F_1(0,-c), F_2(0,c)$	$F_1(-c, 0), F_2(c, 0).$	$F_1(0,-c), F_2(0,c)$		
Эксцентриси- тет	$\varepsilon = \frac{c}{a}, \ 0 \le \varepsilon < 1$	$\varepsilon = \frac{c}{b}, \ 0 \le \varepsilon < 1$	$\varepsilon = \frac{c}{a}, \ \varepsilon > 1$	$\varepsilon = \frac{c}{b}, \ \varepsilon > 1$		
Свойства эксцентриси- тета	Если $\mathcal{E}=0$, то эллипс является окружностью. Чем больше ϵ , тем больше эллипс выпянут вдоль оси абсцисс.		чем больше ε , тем больше гипербола вытянута вдоль своей мнимой оси.			
Вершины	$A_1(-a,0), A_2(a,0), B_1(0,-b), B_2(0,b).$		$A_{1}(-a,0), A_{2}(a,0)$	$B_1(0,-b), B_2(0,b)$		
Фокальные радиусы	$M_0 F_1 = a + \frac{c}{a} x_0$ $M_0 F_2 = a - \frac{c}{a} x_0$		$M_0 F_1 = \left x_0 \frac{c}{a} + a \right \qquad M_0 F_2 = \left x_0 \frac{c}{a} - a \right $			
Директрисы	$x = \pm \frac{a}{\varepsilon}$	$y = \pm \frac{b}{\varepsilon}$	$x = \pm \frac{a}{\varepsilon}$	$y = \pm \frac{b}{\varepsilon}$		
Директо- риальное свойство	$x=\pm rac{a}{arepsilon}$ $y=\pm rac{b}{arepsilon}$ $rac{AF_1}{ ho \left(A,d ight)}=arepsilon < 1$ (А принадлежит эллипсу)		$rac{AF_1}{ ho\left(A,d ight)}=arepsilon>1 \;\;$ (А принадлежит гиперболе)			
Уравнение в полярных координатах	$r = \frac{p}{1 - \varepsilon \cos \theta}$	$\frac{1}{\varphi}$, $p = \frac{b^2}{a}$	$r = \frac{p}{1 - \varepsilon \cos \varphi}, \ p = \frac{b^2}{a}$			
Касательная	$rac{xx_0}{a^2} + rac{yy_0}{b^2} = 1$, $M(x_0, y_0)$ - точка касания		$rac{xx_0}{a^2} - rac{yy_0}{b^2} = 1$, $M(x_0, y_0)$ - точка касания			
	Параметрические уравн	$\begin{cases} x = a\cos t, \\ y = b\sin t. \end{cases}$	Асимптоты: $y = \pm \frac{b}{a}x$ Если $a = b$, гипербола называется равносторонней			
			$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 -\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $			

	Honofiero								
Определение	Парабола Параболой называется множество всех точек плоскости, расстояние каждой из которых до данной точки и								
	расстоянию до данной прямой d , не проходящей через точку F .								
	$\gamma = \{M \mid MF = \rho(M,d), F \notin d\}$								
	Точка F называется фокусом параболы, прямая d – директрисой параболы. $\rho(F,d) = p$ – фокальный параметр.								
Каноническое уравнение,		Каноническое	Ось	Направление	Координаты	Уравнение			
координаты фокуса,		уравнение	симметрии	ветвей	фокуса	директрисы			
уравнение директрисы		$y^2 = 2px$	Ox	$(x \ge 0) \rightarrow$	$\left(\frac{p}{2},0\right)$	$x = -\frac{p}{2}$			
		$y^2 = -2px$	Ox	$(x \le 0) \leftarrow$	$\left(-\frac{p}{2},0\right)$	$x = \frac{p}{2}$			
		$x^2 = 2py$	Oy	$(y \ge 0) \uparrow$	$\left(0,\frac{p}{2}\right)$	$y = -\frac{p}{2}$			
		$y^2 = -2 px$	Oy	$(y \le 0) \downarrow$	$\left(0,-\frac{p}{2}\right)$	$y = \frac{p}{2}$			
Директориальное свойство	Уравнение в полярных координатах				Касательная				
$\frac{AF_1}{\rho(A,d)} = \varepsilon = 1$	$r = \frac{p}{1 - \varepsilon \cos \varphi}$			yy	$yy_0 - p(x + x_0) = 0$, $M(x_0, y_0)$ - точка касания				
(А принадлежит параболе)									

Задачи

- 1. Дан эллипс $9x^2 + 25y^2 = 225$. Найти его полуоси, фокусы, эксцентриситет, уравнения директрис. //5 и 3, (-4,0) и (4,0), 4/5, x=25/4, x=-25/4
- 2. Дана гипербола $9x^2-16y^2=144$. Найти полуоси, фокусы, эксцентриситет, уравнения асимптот и директрис. Сделайте чертеж. $\langle | \varepsilon = \frac{5}{4}, y = \pm \frac{3}{4}x \rangle \rangle$
- 3. Определить величину параметра и расположение относительно координатных осей следующих парабол: а. $y^2 = 6x$ б. $x^2 = 5y$ в. $y^2 = -4x$ г. $x^2 = -y$
- 4. Составить каноническое уравнение эллипса, расстояние между фокусами которого, лежащими на оси Ox, равно 24, а эксцентриситет равен $\frac{3}{4}$. Сделайте чертёж $\frac{x^2}{256} + \frac{y^2}{112} = 1$
- 5. Составить уравнение параболы, симметричной относительно оси Ox, проходящей через точки A(2,3) и O(0,0). $y^2 = \frac{9}{2}x$
- 6. Составить уравнение эллипса, если известно, что он проходит через точку M(4,6), а фокусы его совпадают с фокусами гиперболы $x^2 y^2 = 8$. $\frac{x^2}{64} + \frac{y^2}{48} = 1$
- 7. Определить, какие линии заданы следующими уравнениями в полярных координатах, и написать канонические уравнения этих кривых в прямоугольной системе координат:

a.
$$\rho = \frac{25}{13-12\cos\varphi}$$
 6. $\rho = \frac{1}{3-3\cos\varphi}$ B. $\rho = \frac{9}{4-5\cos\varphi}$ $\frac{x^2}{69} + \frac{y^2}{25} = 1$, $y^2 = \frac{2}{3}x$, $\frac{x^2}{16} - \frac{y^2}{9} = 1$

8. Какая кривая определяется данным уравнением? Сделайте чертеж.

a.
$$3x^2 + 4y^2 + 12x - 4y + 1 = 0$$
 6. $y^2 - 3x - 4y + 10 = 0$

- 9. Найти уравнение гиперболы, вершины которой находятся в фокусах, а фокусы в вершинах эллипса $6x^2 + 5y^2 = 30 \setminus -\frac{x^2}{5} + \frac{y^2}{1} = 1 \setminus -\frac{x^2}{5} + \frac{y^2}{1} = 1$
- 10. Гипербола проходит через точку $A(\sqrt{6},3)$ и касается прямой 9x + 2y 15 = 0. Составить уравнение этой гиперболы при условии, что ее оси совпадают. $\frac{x^2}{5} \frac{y^2}{45} = 1, \frac{3x^2}{10} \frac{4y^2}{45} = 1$