LOGARITHMS

- KOUSTAV

- in www.linkedin.com/in/KoustavNandi
- www.youtube.com/TheAptitudeGuy

CONCEPT

- $1. \log_{\mathsf{a}}(xy) = \log_{\mathsf{a}} x + \log_{\mathsf{a}} y$
- 2. $\log_a \left(\frac{x}{y}\right) = \log_a x \log_a y$
- 3. $\log_{x} x = 1$
- 4. $\log_a 1 = 0$
- 5. $\log_a(x^n) = n(\log_a x)$
- $6. \log_{\mathbf{a}} x = \frac{1}{\log_{\mathbf{X}} \mathbf{a}}$

7.
$$\log_a x = \frac{\log_b x}{\log_b a} = \frac{\log x}{\log a}$$

If $a^x = N$, Then, $\log_a N = x$

- Logarithms are defined only for positive numbers.
- Logarithms are not defined for zero or negative numbers.
- Characteristic: The internal part of the logarithm.
- Mantissa: The decimal part of the logarithm.
 12.3456
- Natural log: Base "e".
- Common log: Base "10".

i.
$$a^{m} \times a^{n} = a^{m+n}$$

ii.
$$\frac{a^m}{a^n} = a^{m-n}$$

iii.
$$(a^m)^n = a^{mn}$$

iv.
$$(ab)^n = a^n b^n$$

$$v. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

vi.
$$a^0 = 1$$

1. $log_x y = 100$ and $log_x 2 = 10$, then the value of y is

A. 2^10

B. 2^1000

C. 2^100

D. 2^10000

$$\chi^{100} = y$$

$$(\chi^{10})^{10} = (2)^{10}$$

$$= \chi^{100} = 2^{10} = y$$

2. What is the value of log(ab²) – log(ac) + log(abc⁴) – 3log(bc)? A. log (ab) B. log c C. log b D. log a

log ab xabe

loga

3. The value of log 9/8 – log 27/32 + log 3/4 is ?A. 0 B. 1 C. 2 D. 3

log 2

5. Find the value of log (
$$a^2$$
 / bc) + log (b^2 / ac) + log (c^2 / ab)?
 C . abc

D. ab^2c^2

log
$$a^2 \times b^2 \times c^2$$
 $bc \times ac \times ab$

6. The equation $log_a(x) + log_a(1+x) = 0$ can be written as?

A.
$$x^2 + x + 1 = 0$$

B. $x^2 + x - 1 = 0$
C. $x^2 - x - 1 = 0$
D. $x^2 - x + 1 = 0$

$$log_{a} \times + log_{a} + \log_{a} 1$$

$$log_{a} \times (1+x) = log_{a} 1$$

$$x + x^{2} = 1$$

$$x^{2} + x - 1 = 0$$

7. $\log_{10}(10) + \log_{10}(100) + \log_{10}(1000) + \log_{10}(100000)$ is equal to?

A. 15 B. 12

C. 16

D. 14 log₁₀ (100)

$$1+2+3+4+5$$
= $\frac{15}{15}$

8. The value of log_2 (1/64) is?

A. 6

C. 7

D. None of these

$$2^{6} = 64$$

$$2^{-6} = \frac{1}{64}$$

9. If $\log 125 / \log 5 = x$, then x is equal to?

A. 2

B. 3

C. 4

D. 1 / 2

10. If $\log_x (0.1) = -1/3$, then the value of x is - A. 10 B. 100

$$\frac{-1/3}{10} = \frac{1}{10}$$

$$\frac{1}{10} = \frac{1}{10}$$

D. 1/1000

11. If $\log_8 x + \log_8 (1/6) = 1/3$ then, the value of x will be: A. 12 B. 16 C. 18 D. 24

$$log_8 \frac{\chi}{6} = \frac{1}{3}$$

$$8^{\frac{1}{3}} = \frac{\chi}{6} = \frac{3}{3} \cdot 8 = 2$$

$$\chi = 2 \times 6$$

$$= 12$$

12. If $log \{(a+b)/3\} = 0.5$ (log a + log b), then the correct relation between a and b will be:

$$A_{\cdot} a^2 + b^2 = 7ab$$

B. C.
$$(a+b)^2 = 2$$

B.
$$a^2-b^2 = 7ab$$

D.
$$(a+b)/3 = (1/2)(a+b)$$

$$log(a+b) = log(ab)^{0.5}$$

$$\frac{a+b}{3} = (ab)^{1/2}$$

$$\frac{a+b}{3^2} = ab$$

$$\frac{a^2 + b^2 + 2ab}{3^2} = 9ab$$

$$a^{2} + b^{2} = 9ab - 2ab$$

 $a^{2} + b^{2} = 7ab$

13. If $\log x = \log 3 + 2 \log 2 - (3/4) \log 16$. The value of x will be:

D. 2

A. 1/2 B. 1 C. 3/2

$$= log \left[\frac{3 \times 2^2}{16^{3/4}} \right]$$

$$= log \left[\frac{3 \times 4}{2^{4 \times 3/4}} \right]$$

$$= log \left[\frac{3 \times 4}{2^{4 \times 3/4}} \right]$$

14. It is given that $log_{64} x = 2/6$, then, the value of x will be? A. 2 B. 4 C. 6 D. 8 15. What will be the value of $log_3 (1/9) + log_9 81$?

A. 2 B. -2 C. 0

D. 4

ANSWER KEY - LOGARITHMS

QUESTION	ANSWER	QUESTION	ANSWER	QUESTION	ANSWER
I	Α	6	В	11	Α
2	D	7	Α	12	Α
3	Α	8	В	13	С
4	В	9	В	14	В
5	Α	10	С	15	С