Министерство образования Республики Беларусь

Учреждение образования БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Факультет компьютерных систем и сетей

Кафедра электронных вычислительных средств

Дисциплина: Арифметические и логические основы цифровых устройств

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к курсовой работе на тему:

АНАЛИЗ И СИНТЕЗ ЦИФРОВЫХ УСТРОЙСТВ БГУИР 1-40 02 02 ПЗ

Студент: Кутняк А. В.

Руководитель: Демидович Г. Н.

СОДЕРЖАНИЕ

Введение	3
1 Двоичная арифметика	4
1.1 Постановка задачи	4
1.2 Описание алгоритма вычитания чисел	4
1.3 Представление чисел в форме с плавающей запятой	4
1.4 Вычитание чисел	5
2 Минимизация логической функции	6
2.1 Постановка задачи	6
2.2 Описание алгоритма минимизации логической функции	6
2.3 Переход от ДНФ к СДНФ	6
2.4 Минимизация методом карт Карно	7
3 Синтез комбинационной схемы	8
3.1 Постановка задачи	8
3.2 Описание алгоритма синтеза комбинационной схемы	8
3.3 Построение таблицы истинности	8
3.4 Минимизация функций выходов	9
3.5 Синтез комбинационной схемы демультиплексора	10
4 Понятие абстрактного цифрового автомата	11
4.1 Постановка задачи	11
4.2 Обобщенная структурная схема автомата Мили	11
4.3 Векторное представление абстрактного автомата	11
4.4 Табличное представление работы автомата	12
4.5 Представление работы автомата в виде графа	13
5 Синтез структуры синхронного автомата Мура	14
5.1 Постановка задачи	14
5.2 Алгоритм синтеза структурного автомата	14
5.3 Построение граф-схемы работы автомата	14
5.4 Выбор элементов памяти автомата	15
5.5 Построение функций переходов	15
5.6 Построение функций выходов	16
5.7 Синтез структурной схемы автомата	16
Заключение	18
Список использованных истопников	10

ВВЕДЕНИЕ

Курсовая работа является неотъемлемой частью образовательного процесса в высших учебных заведениях.

Целью курсовой работы является контроль знаний студента, полученных в течение курса по соответствующей дисциплине, актуализация знаний для перехода на следующую ступень обучения, а также формирование соответствующих теоретических знаний и практических навыков, необходимых будущему специалисту.

Данная курсовая работа содержит теоретические и практические задачи по программе первого и второго семестра курса дисциплины «Арифметические и логические основы цифровых устройств».

Первый и второй разделы посвящены арифметическим и логическим основам в проектировнии цифровых устройств. В рамкам первого задания рассматривается алгоритм вычитания чисел с плавающей запятой, а также выполнение практической задачи согласно данному алгоритму. Во втором задании требуется минимизировать логическую функцию используя один из основных методов минимизации.

Третий, четвертый и пятый разделы посвящены построению структурных схем цифровых устройств. В рамках третьего задания требуется синтезировать комбинационную схему демультиплексора. В четвертом задании требуется представить теоретические сведения о цифровых автоматах. В пятом задании необходимо синтезировать структурную схему цифрового автомата.

1 ДВОИЧНАЯ АРИФМЕТИКА

1.1 Постановка задачи

Требуется представить алгоритм вычитания двоичных чисел, преставленных в форме с плавающей запятой, а также выполнить соответствующее арифметическое действие согласно алгоритму над двумя десятичными числами $A=10,\,B=6.$

1.2 Описание алгоритма вычитания чисел

Алгоритм сложения (вычитания) чисел с произвольными знаками состоит в следующем [1]:

- 1. Произвести выравнивание порядков p_A и p_B . Для этого из порядка числа A вычитается порядок числа B. Если $p=p_A-p_B>0$, то $p_A>p_B$ и для выравнивания порядков необходимо сдвинуть вправо мантиссу m_B . Если $p=p_A-p_B<0$, то $p_B>p_A$, и для выравнивания порядков необходимо сдвинуть вправо мантиссу m_A . Если $p=p_A-p_B=0$, то $p_A=p_B$, и порядки слагаемых выравнивать не требуется.
- 2. Выполнить сдвиг соответствующей мантиссы на один разряд, повторяя его до тех пор, пока $p \neq 0$.
- 3. Выполнить сложение (вычитание) мантисс m_A и m_B по правилу сложения правильных дробей.
- 4. Если при сложении (вычитании) мантисс произошло переполнение, то необходимо произвести нормализацию результата путем сдвига мантиссы вместе со знаковым разрядом вправо на один разряд с увеличением порядка на единицу. Если же произошла денормализация, то выполнить сдвиг мантиссы результата на соответствующее количество разрядов влево с соответствующим уменьшением порядка суммы.
 - 5. Конец алгоритма.

1.3 Представление чисел в форме с плавающей запятой

Так как в ЭВМ достаточно сложно выполнить операцию вычитания чисел в прямых кодах, вычитание рассматривается как сложение положительного и отрицательного чисел, представленных в дополнительных кодах.

$$\begin{split} m_A &= +0,1010 \;\;,\;\; p_A = +0100. \\ m_B &= -0,1100 \;\;,\;\; p_B = +0011. \\ \\ [m_A]_{_{\rm ДОП}} &= 0,1010 \;\;,\;\; [p_A]_{_{\rm ДОП}} = 0,0100. \\ [m_B]_{_{\rm ДОП}} &= 1,0100 \;\;,\;\; [p_B]_{_{\rm ДОП}} = 0,0011. \end{split}$$

1.4 Вычитание чисел

Определим разность порядков чисел:

$$[p]_{\text{доп}} = [p_A]_{\text{доп}} + [-p_B]_{\text{доп}} = 0,0100 + 1,1101 = 0,0001.$$

Так как p > 0, сдвигу подвергается мантисса числа B:

$$[m_B]_{\text{доп}} = 1,0100.$$

 $[m_B]_{\text{доп}} = 1, \mathbf{1}010, \ [p]_{\text{доп}} + [-1]_{\text{доп}} = 0,0001 + 1,1111 = 0,0000 = 0.$

Выполним сложение мантисс:

$$[m_A]_{\text{доп}} = 1,1010.$$

 $[m_B]_{\text{доп}} = 1,1010.$
 $[m_C]_{\text{доп}} = [m_A]_{\text{доп}} + [m_B]_{\text{доп}} = 0,1010+1,1010=0,0100.$

Определеим порядок результата:

$$[p_C]_{\text{доп}} = \max([p_A]_{\text{доп}}, [p_B]_{\text{доп}}) = [p_A]_{\text{доп}} = 0,0100.$$

Результат сложения денормализован, необходимо произвести нормализацию мантиссы:

$$[m_C]_{\text{доп}} = 0,1000, \ [p_C]_{\text{доп}} = 0,0011.$$

Результат выполнения операции вычитания над данными числами, представленными в форме с плавающей запятой:

$$A - B = C = 0,1000_2 \times 2^3 = 4_{10}.$$

2 МИНИМИЗАЦИЯ ЛОГИЧЕСКОЙ ФУНКЦИИ

2.1 Постановка задачи

Требуется минимизировать логическую функцию, преставленную в дизъюнктивной нормальной форме и содержащую следующие конъюнктивные термы:

 $ab\bar{c}, acd, b\bar{c}d, \bar{a}\bar{b}\bar{c}, \bar{a}\bar{b}cd, \bar{a}\bar{b}\bar{c}\bar{d}, abc\bar{d}.$

Минимизацию функции производить одним из следующих методов - Квайна или Карно.

2.2 Описание алгоритма минимизации логической функции

По условию задачи необходимо минимизировать логическую функцию 4-х переменных. Для этого воспользуемся методом минимизирующих карт Карно.

Алгоритм минимизации картами Карно состоит в следующем:

- 1. Графически представить логическую функцию соответствующей ей картой Карно.
- 2. Покрыть все минтермы наименьшим числом наибольших контуров, размеры которых кратны степени двойки.
- 3. По постоянным переменным контура записать соответствующий ему элементарный конъюнкт.
- 4. Из полученных элементарных конъюнктов составить минимальную нормальную дизъюнктивную форму (МДНФ).
 - 5. Конец алгоритма.

2.3 Переход от ДНФ к СДНФ

Для построения таблицы истинности представим логическую функцию в совершенной нормальной дизъюнктивной форме (СДН Φ):

 $F = ab\bar{c}(d \vee \bar{d}) \vee acd(b \vee \bar{b}) \vee b\bar{c}d(a \vee \bar{a}) \vee \bar{a}\bar{b}\bar{c}(d \vee \bar{d}) \vee \bar{a}\bar{b}cd \vee \bar{a}\bar{b}\bar{c}\bar{d} \vee abc\bar{d} = \\ = ab\bar{c}d \vee ab\bar{c}\bar{d} \vee abcd \vee a\bar{b}cd \vee ab\bar{c}d \vee \bar{a}\bar{b}\bar{c}d \vee \bar{a}\bar{b}\bar{c}\bar{d} \vee \bar{a}\bar{b}c\bar{d} \vee \bar{a}\bar{b}\bar{c}\bar{d} \vee abc\bar{d} = \\ = ab\bar{c}d \vee ab\bar{c}\bar{d} \vee abcd \vee a\bar{b}cd \vee \bar{a}\bar{b}\bar{c}d \vee \bar{a}\bar{b}\bar{c}\bar{d} \vee \bar{a}\bar{b}c\bar{d} \vee abc\bar{d}.$

 $F_{\text{\tiny CZH+\Phi}} = ab\bar{c}d \vee ab\bar{c}\bar{d} \vee abcd \vee a\bar{b}cd \vee \bar{a}b\bar{c}d \vee \bar{a}\bar{b}\bar{c}d \vee \bar{a}\bar{b}\bar{c}\bar{d} \vee \bar{a}\bar{b}cd \vee abc\bar{d}.$

Полученное представление функции состоит из термов максимального ранга (минтермов).

2.4 Минимизация методом карт Карно

На основании представления функции F в виде СДНФ, построим минимизирующую карту Карно для данной функции:

ab	00	01	11	10
00	1	1	1	0
01	0	1	0	0
11	1	1	1	1
10	0	0	1	0

Рисунок 2.1 – Карта Карно для функции F(a,b,c,d)

На рисунке 2.1 изображена карта Карно с наименьшим числом наибольших покрытий минтермов. На основании покрытий получим минимальную дизъюнктивную нормальную форму функции:

$$F_{\text{\tiny MJH\Phi}} = ab \vee \bar{a}\bar{b}\bar{c} \vee b\bar{c}d \vee \bar{b}cd.$$

3 СИНТЕЗ КОМБИНАЦИОННОЙ СХЕМЫ

3.1 Постановка задачи

На вход демультиплексора синхронно во времени с трехразрядным кодом адреса поступает информационный сигнал, который следует передать на один из 5-ти выходов, соответствующий коду адреса на входе демультиплексора. Задать в табличной форме функцию переходов и синтезировать комбинационную схему демультиплексора с одним информационными входом, 3-х разрядным кодом адреса и 5-ю выходами.

3.2 Описание алгоритма синтеза комбинационной схемы

Алгоритм синтеза комбинационной схемы состоит в следующем:

- 1. Построить таблицу истинности устройства.
- 2. Минимизировать функции выходных сигналов.
- 3. Синтезировать комбинационную схему устройства.
- 4. Конец алгоритма.

3.3 Построение таблицы истинности

Построим таблицу истинности для демультиплексора с входным сигналом x, адресными - a_1 , a_2 , a_3 и выходными - y_1 , y_2 , y_3 , y_4 , y_5 .

Таблица 3.1 – Таблица истинности демультиплексора

x	a_1	a_2	a_3	y_1	y_2	y_3	y_4	y_5
0	0	0	0	_	-	-	-	-
0	0	0	1	0	0	0	0	0
0	0	1	0	0	0	0	0	0
0	0	1	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0
0	1	1	0	-	-	-	-	-
0	1	1	1	-	-	-	-	-
1	0	0	0	-	-	-	-	-
1	0	0	1	1	0	0	0	0
1	0	1	0	0	1	0	0	0
1	0	1	1	0	0	1	0	0
1	1	0	0	0	0	0	1	0
1	1	0	1	0	0	0	0	1
1	1	1	0	_	_	_	-	-
1	1	1	1	_	-	-	-	-

3.4 Минимизация функций выходов

На рисунке 3.1 показаны карты Карно с наибольшими покрытиями для функций выходов: а - y_1 ; б - y_2 ; в - y_3 ; г - y_4 ; д - y_5 .

Рисунок 3.1 – Карты Карно для функций выходов y_i

По наибольшим покрытиям минтермов получим минимальные формы для каждой функции y_i :

$$y_1 = x\bar{a_1}\bar{a_2} \tag{3.1}$$

$$y_2 = xa_2\bar{a_3} \tag{3.2}$$

$$y_3 = x a_2 a_3 (3.3)$$

$$y_4 = x\bar{a_2}\bar{a_3} \tag{3.4}$$

$$y_5 = x a_1 a_3 (3.5)$$

3.5 Синтез комбинационной схемы демультиплексора

Синтезируем комбинационную схему демультиплексора с одним информационным входом, трехразрядным адресныим входом и пятью информационными выходами, заданными функциями (3.1) - (3.5).

Рисунок 3.2 – Структурная схема демультиплексора

4 ПОНЯТИЕ АБСТРАКТНОГО ЦИФРОВОГО АВТОМАТА

4.1 Постановка задачи

Привести обобщенную структурную схему автомата Мили. Пояснить векторное представление абстрактного автомата: описание входов/выходов, начального состояния, функций переходов и функций выходов, состояний памяти. Пояснить способ табличного представления работы автомата и в виде графа автомата.

4.2 Обобщенная структурная схема автомата Мили

В обобщенном виде автомат представляет собой устройство с одним входом, на который подается набор логических сигналов, одним выходом, на котором формируется набор логических сигналов, и блоком памяти, который хранит текущее состояние автомата. Состояние памяти определяется функцией, зависящей от входного сигнала и предыдущего состояния памяти. В автомате Мили выходной сигнал определяется функцией, зависящей не только от состояния памяти, но и от входного сигнала автомата. На рисунке 4.1 представлена обобщенная структура автомата Мили.

Рисунок 4.1 – Обобщенная структурная схема автомата Мили

4.3 Векторное представление абстрактного автомата

Векторное представление абстрактного автомата имеет вид:

$$S = (A, Z, W, \delta, \lambda)$$

где A - множество состояний памяти автомата;

Z - множество входных сигналов;

W - множество выходных сигналов;

 $\delta: A \times Z \to A$ - функция переходов, определяющая внутреннее состояние памяти автомата;

 λ - функция выходов, определяющая выходной сигнал автомата.

Абстрактный автомат с некоторым выделенным состоянием памяти a_0 называется инициальным автоматом. Таким образом, один неинициальный автомат с п состояниями задает семейство из п различных инициальных автоматов [2]. Если начальное состояние не указано, то поведение автомата всегда недетерменированно, выходное слово зависит от начального состояния, поэтому полное детерменированное векторное представление абстрактного автомата имеет вид:

$$S = (A, Z, W, \delta, \lambda, a_0)$$

В зависимости от функции выходов λ выделяют два класса автоматов: автомат Мура - выходной сигнал которого не зависит от входного сигнала $(\lambda : A \to W)$ и автомат Мили, выходной сигнал которого зависит как от внутреннего состояния, так и от состояния входа $(\lambda : A \times Z \to W)$.

4.4 Табличное представление работы автомата

Работу автомата можно представить в табличном виде. Для этого составляются таблицы функции перехода δ и функции выхода λ . Строки таблиц отмечают входными символами (элементами множества Z), а столбцы - состояниями памяти (элементами множества A).

В таблице, задающей функцию переходов δ на пересечении строки $z_i(t)$ и столбца $a_i(t)$ ставится состояние $a_k(t+1) = \delta(z_i(t), a_i(t))$:

Таблица 4.1 – Таблица функции переходов δ

δ	a_1	a_2	a_3	a_4
z_1	a_2	a_2	-	a_4
z_2	a_4	-	a_1	a_3
z_3	a_3	a_3	a_4	-

В таблице, задающей функцию выходов λ на пересечении строки $z_i(t)$ и столбца $a_i(t)$ ставится состояние $w_k(t) = \lambda(z_i(t), a_i(t))$:

Таблица 4.2 – Таблица функции выходов λ

λ	a_1	a_2	a_3	a_4
z_1	w_1	w_2	-	w_3
z_2	w_2	-	w_4	w_5
z_3	w_3	w_1	w_3	_

Таблицы 4.1, 4.2 задают функцию переходов δ и функцию выходного сигнала λ для автомата с множеством состояний |A|=4, множеством входных сигналов |Z|=3 и множеством выходных сигналов |W|=5.

4.5 Представление работы автомата в виде графа

Более наглядным описанием закона функционирования автомата является представление его в виде графа. Граф автомата — это ориентированный граф, вершины которого соответствуют состояниям, а дуги — переходам между ними.

Дуга, направленная из вершины a_i в вершину a_j соответствует переходу из состояния a_i в состояние a_j . В начале дуги записывается входной символ z_k , влияющий на переход, а символ w_k записывается на конце дуги (для автомата Мили) или рядом с вершиной (для автомата Мура).

На рисунке 4.2 приведен граф автомата Мили, соответствующий закону функционирования, описанному таблицами 4.1, 4.2.

Рисунок 4.2 – Граф абстрактного автомата Мили

5 СИНТЕЗ СТРУКТУРЫ СИНХРОННОГО АВТОМАТА МУРА

5.1 Постановка задачи

Синтезировать структурную схему синхронного цифрового автомата Мура с входом в виде меандровой последовательности, 4-я состояниями памяти и двумя выходами, включающими: на первом выходе автомата состояния памяти на первом и третьем шаге, на втором выходе — на втором и четвертом шаге работы автомата в цикле.

Состояния памяти автомата в каждом очередном такте поступления синхросигнала изменяется по данному циклу: 11, 10, 01, 00. Начальное состояние памяти автомата: 00.

5.2 Алгоритм синтеза структурного автомата

Алгоритм метода канонического структурного синтеза автомата состоит в следующем:

- 1. Закодировать состояния памяти автомата.
- 2. Закодировать входные и выходные сигналы автомата.
- 3. Выбрать элементы памяти автомата.
- 4. Построить уравнения функций переходов и выходов автомата.
- 5. Синтезировать структурную схему автомата.
- 6. Конец алгоритма.

Так как состояния памяти и входные/выходные сигналы закодированы, выполнение пунктов алгоритма 1 - 3 не требуется.

5.3 Построение граф-схемы работы автомата

На рисунке 5.1 изображена граф-схема данного автомата.

Рисунок 5.1 – Граф-схема автомата Мура

5.4 Выбор элементов памяти автомата

Рассмотрим состояния памяти автомата в порядке их изменения во времени: 00, 11, 10, 01.

Данная последовательность образует конечную циклическую группу двухразрядных двоичных чисел с образующей 11:

$$C = (A, \Sigma)$$

где $A = \{00, 11, 10, 01\}$ - носитель алгебры; $\Sigma = \{\oplus\}$ - сигнатура алгебры, операция сложения по модулю 2.

Так как последовательность состояний памяти образует циклическую группу, переход состояния памяти можно записать следующим образом:

$$a^* = a \oplus 11.$$

Соответствующие уравнения переходов для каждого разряда состояния памяти имеют вид:

$$a_0^* = a_0 \oplus 1,$$
 $a_1^* = a_1 \oplus 1 \oplus a_0 \wedge 1 = a_1 \oplus (a_0 \oplus 1) = a_1 \oplus \bar{a_0}.$

Наиболее подходящим типом элемента памяти для данных уравнений переходов является Т-триггер, так он меняет свое состояние по принципу сложения по модулю 2.

5.5 Построение функций переходов

Построим таблицу переходов внутреннего состояния памяти автомата с соответствующими для этих переходов значениями функции возбуждения элементов памяти.

Т	аблица	5.1	. –		l'a	блица	переходов	автомата
---	--------	-----	-----	--	-----	-------	-----------	----------

t	x	A_1	A_2	A_1^*	A_2^*	T_1	T_2
1	1	0	0	1	1	1	1
1	0	1	1	1	1	0	0
2	1	1	1	1	0	0	1
	0	1	0	1	0	0	0
3	1	1	0	0	1	1	1
0	0	0	1	0	1	0	0
1	1	0	1	0	0	0	1
4	0	0	0	0	0	0	0

Из таблицы 5.1 получим уравнения функций возбуждения элементов памяти:

$$T_1 = x\bar{A}_2 \tag{5.1}$$

$$T_2 = x \tag{5.2}$$

5.6 Построение функций выходов

По условию задачи автомат имеет 2 выхода. Первый выход Y_1 содержит значения памяти автомата на первом и третьем тактах работы автомата, а второй выход (Y_2) — на втором и четвертом.

Значения на выходе, не задействованном на данном такте, будем считать отрицательно определенными.

Построим таблицу зависимости выходов $Y_1(y_1, y_2), Y_2(y_3, y_4)$ от состояния памяти автомата (A_1, A_2) .

Таблица 5.2 – Таблица выходных сигналов автомата

t	A_1	A_2	y_1	y_2	y_3	y_4
1	0	0	0	0	0	0
2	1	1	0	0	1	1
3	1	0	1	0	0	0
4	0	1	0	0	0	1

Из таблицы 5.2 получим уравнения функций выходных сигналов автомата:

$$y_1 = A_1 \bar{A}_2 \tag{5.3}$$

$$y_2 = 0 \tag{5.4}$$

$$y_3 = A_1 A_2 (5.5)$$

$$y_4 = A_2 \tag{5.6}$$

5.7 Синтез структурной схемы автомата

На основе данных, полученных в предыдущих подразделах, синтезируем структурную схему автомата Мура.

Комбинационная схема перехода цифрового автомата задается уравнениями (5.1), (5.2).

Комбинационная схема выхода цифрового автомата задается уравнениями (5.3) - (5.6).

В качестве элементов памяти внутреннего состояния автомата используются Т-триггеры.

Выходной сигнал y_2 не зависит от внутреннего состояния автомата и является постоянным: $y_2 = const = 0$.

На рисунке 5.2 изображена синтезированная структурная схема исходного автомата.

Рисунок 5.2 – Структурная схема автомата Мура

ЗАКЛЮЧЕНИЕ

В ходе проделанной курсовой работы были систематизированы знания по курсу дисциплины «Арифметические и логические основы цифровых устройств».

В первом разделе был рассмотрен алгоритм сложения (вычитания) чисел в форме с плавающей запятой, являющийся частью арифметических основ курса. Во втором разделе для минимизации логической функции четырех переменных был использован метод минимизирующих карт Вейча (Карно).

В четвертом разделе были изложены теоретические сведения из области абстрактных цифровых автоматов: способы описания их структуры и законов функционирования.

В третьем и пятом разделах курсовой работы были использованы теоретические знания курса дисциплины, а также практические навыки в области синтеза структурных схем цифровых устройств: демультиплексора и автомата Мура.

На основании проделанной работы можно сделать вывод, что для качественного выполнения поставленной задачи необходимы не только практические навыки, но и наличие систематизированных знаний в данной области. Курс АиЛОЦУ включает в себя множество фундаментальных понятий и сведений, без которых невозможно досконально понимать принцип работы цифровых устройств, а также приобретать новые знания в области электротехники.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1] Луцик, Ю. А. Арифметические и логические основы вычислительной техники / Ю. А. Луцик, И. В. Лукьянова. Минск : БГУИР, 2014. 174 с.
- [2] Кузнецов, О. П. Автоматы. Дискретная математика для инженера / О. П. Кузнецов, Г. М. Адельсон-Вельский. М. : Энергия, 1980. 344 с.