```
df <-
  here::here("data", "vax-data.csv") %>%
  read csv(show col types = FALSE) %>%
  filter(series_complete_pop_pct != 0) %>%
    series_complete_pop_pct,
   contains("days"),
   -days,
   stringency,
    county_level_index,
   republican_percent,
   percent_adults_with_ba,
   percent_in_fair_or_poor_health,
   percent_black,
   percent_rural,
   percent_65,
   median_household_income
  ) %>%
  as.data.frame()
```

```
stargazer::stargazer(
  df %>%
   lm(
      series_complete_pop_pct ~ stringency + county_level_index +
        I(stringency * county_level_index) +
       median_household_income + percent_adults_with_ba +
       percent_in_fair_or_poor_health + percent_black +
       percent_rural + percent_65,
     data = .
   ) %>%
   lmtest::coeftest(sandwich::vcovHC(., method = "white1", type = "HCO")),
  df %>%
   lm(
      series_complete_pop_pct ~ republican_percent + county_level_index +
        I(republican_percent * county_level_index) +
       median_household_income + percent_adults_with_ba +
       percent_in_fair_or_poor_health + percent_black +
       percent_rural + percent_65,
     data = .
   ) %>%
   lmtest::coeftest(sandwich::vcovHC(., method = "white1", type = "HCO")),
  df %>%
   lm(
      series_complete_pop_pct ~ republican_percent + county_level_index +
        I(republican_percent * county_level_index) +
        stringency * county_level_index +
        I(stringency * county_level_index) +
        median_household_income + percent_adults_with_ba +
       percent_in_fair_or_poor_health + percent_black +
       percent_rural + percent_65,
     data = .
   ) %>%
    lmtest::coeftest(sandwich::vcovHC(., method = "white1", type = "HCO")),
```

```
type = "latex",
  df = FALSE,
  intercept.bottom = FALSE,
  intercept.top = TRUE,
  covariate.labels = c(
   "Constant",
   "Stringency",
   "Social K",
    "Personal Freedom",
    "Social K * Stringency",
    "Social K * Personal Freedom",
   "Median Household Income",
   "\\% Bachelor's",
   "\\% Fair/Poor Health",
    "\\% Black",
   "\\% Rural",
   "\\% > 65"
  ),
  title = "Regression Results",
  dep.var.labels = "Percentage of County Vaccinated",
  header = FALSE
```

Table 1: Regression Results

	Dependent variable: Percentage of County Vaccinated		
	(1)	(2)	(3)
Constant	15.800*** (3.090)	64.400*** (2.880)	66.700*** (3.070)
Stringency	0.005*** (0.001)		-0.001^{**} (0.001)
Social K		-0.548^{***} (0.017)	-0.556^{***} (0.018)
Personal Freedom	-0.165 (0.477)	-0.687 (0.706)	-2.270^{**} (0.895)
Social K * Stringency	0.0002 (0.001)		0.002*** (0.001)
Social K * Personal Freedom		0.013 (0.010)	0.020^* (0.011)
Median Household Income	0.0002*** (0.00003)	0.0002*** (0.00002)	0.0002*** (0.00002)
% Bachelor's	0.518*** (0.035)	-0.010 (0.034)	-0.022 (0.034)
% Fair/Poor Health	0.239*** (0.090)	0.123^* (0.067)	0.084 (0.068)
% Black	-0.058^{***} (0.020)	-0.299^{***} (0.018)	-0.302^{***} (0.019)
% Rural	-0.076^{***} (0.010)	-0.023^{***} (0.008)	-0.022^{***} (0.008)
% > 65	0.541*** (0.063)	0.527*** (0.058)	0.521^{***} (0.059)

Note:

*p<0.1; **p<0.05; ***p<0.01