2. Gruppteori 2. Isomorfier

21 juli

Definition. En *isomorfi* φ mellan grupperna G_1 och G_2 är en kartläggning (funktion) så att:

- 1. Varje element i G_2 antas som värde av φ för exakt ett element i G_1 .
- 2. För alla a, b i G_1 gäller $\varphi(a) \star \varphi(b) = \varphi(a \star b)$.
- 3. För identitetselementen e_1, e_2 i G_1 respektive G_2 gäller att $\varphi(e_1) = e_2$.
- 1. Gruppen G_1 av "klä om strumpan"-operationer (från förra lektionen), består av operationerna: "gör inget", "byt fot", "vänd ut och in", "vänd ut och in och byt fot". Gruppen G_2 består istället av mängden $\{e,a,b,c\}$ och operatorn \star som uppfyller multiplikationstabellen

Hitta en isomorfi mellan G_1 och G_2 .

- 2. Visa att D_3 är isomorf med permutationsgruppen S_3 , mängden av alla omordningar av 3 element.
- 3. Motivera att gruppen av rotationer av en kub är isomorf med permutationsgruppen S_4 .

Definition. En grupp G kallas cyklisk om det finns ett element a i G så att mängden till G är exakt potenserna till a.

- **4. (Cykliska grupper).** Visa att heltalen modulo *n* under addition är cykliska.
- **5**. Grupperna G_1 , G_2 kallas isomorfa om det finns en isomorfi mellan dem. Visa att om G_1 är isomorf med G_2 och G_2 är isomorf med G_3 så är G_1 isomorf med G_3 .
- **6. (Cykliska grupper).** Visa att alla cykliska grupper av storlek n är isomorfa med varandra och inga andra.

Definition. Låt $H = (M_H, \star)$ och $G = (M_G, \star)$ vara grupper. H är en *delgrupp* till G om M_H är en delmängd till M_G .

7. Är mängden av alla (a) speglingar (b) rotationer en delgrupp av D_n ?

- 8. Hitta 4 delgrupper till dragen på en Rubiks Kub som har olika storlek.
- 9. Låt φ vara en isomorfi från G_1 till G_2 och och $H_1 = (\{a_1, \ldots, a_n\}, \star)$ vara en delgrupp till G_1 . Visa att $H_2 = (\{\varphi(a_1), \ldots, \varphi(a_n)\}, \star)$ är en delgrupp till G_2 .
- 10. Hitta en delgrupp av S_4 som är isomorf med "klä om strumpan"-gruppen.

Extra uppgifter

Definition. För två grupper G_1, G_2 definieras den *direkta produkten* $G_1 \times G_2$ som gruppen där:

- 1. Elementen är mängden av alla par (a_1, a_2) där a_1, a_2 är element i G_1 respektive G_2 .
- 2. Operatorn appliceras elementvist enligt $(a_1, a_2) \star (b_1, b_2) = (a_1 \star b_1, a_2 \star b_2)$.
- 11. (Direkta produkten). Låt $G = \mathbb{Z}_4 \times \mathbb{Z}_5$ under addition. Vad är inversen till (2,0)?
- 12. (Direkta produkten). Låt \mathbb{Z}_n vara heltalen modulo n. Är (a) $\mathbb{Z}_2 \times \mathbb{Z}_2$ isomorf med \mathbb{Z}_4 (b) $\mathbb{Z}_2 \times \mathbb{Z}_3$ isomorf med \mathbb{Z}_6 ?
- 13. (Direkta produkten). Visa att $\mathbb{Z}_2 \times \mathbb{Z}_2$ under addition är isomorf med "klä om strumpan"-gruppen.
- 14. Är de rationella talen under addition isomorfa med de nollskilda rationella talen under multiplikation?
- 15. Är heltalen under addition isomorfa med de rationella talen under addition?
- 16. Ar de rationella talen under addition isomorfa med de reella talen under addition?