

Micro Grid Tool

Martha M. Hoffmann

28.3.2019

RLI

Features of Micro Grid Tool

Capacity and dispatch optimization

Components

GenSet, PV, wind, storage, feed-in to / consumption from weak grid

Adaptability

Definition of all parameters and cases in excel file, multiple locations

Sensitivity

Possible for each input parameter

Technical verification

Sensitivity constraint, plausability tests

Using the MGT: Workflow

- 1) Installation and setup as earlier presented
- 2) Create timeseries file of demand + resources (**.csv**)
- 3) Edit Input_template_excel.xlsx
 - → save in folder "inputs"
- 4) Run A_main_script.py in terminal or python GUI
- 5) Move folder with results to your project folder
- 6) Explore results

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Installation Guide on Windows

Install python using Anaconda (Miniconda):

https://docs.conda.io/en/latest/miniconda.html You now have a terminal named "Anaconda Prompt" in your "Start" menu

Create a new virtual environment

- 1) open Anaconda Prompt
- 2) type conda create -n [env_name] python=X.X
- 3) specifc to Micro Grid Tool:

conda create -n [your_env_name] python=3.5

Activate your environment:

1) type activate [your env_name]

List environments:

1) type conda env list

Install required packages from requirements.txt file using pip:

- 1) activate your envrionment, type: activate [your_env_name]
- pip install -r [path_to_requirements.txt]
- 3) check if installation was sucessful, type: pip list

Installation Guide on Windows

Install CBC solver on your machine

1) download CBC-solver .exe here:

64bit: http://ampl.com/dl/open/cbc/cbc-win64.zip

32bit: http://ampl.com/dl/open/cbc/cbc-win32.zip

- 2) unzip into a chosen path (maybe where you store other programs)
- 3) add solver path to your system envrionment variables (local admin rights required):

open "System Propoerties" -->"Advanced"--> "Environment Variables"

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Oemof

- Based on busses, sinks, sources and transformers
 - → Busses are balanced out → Excess sink necessary

- Solves linear and mixed-integer linear problems
 - → Requires certain level of simplification
 - Charge efficiency curve not possible
 - No if-then-clauses for constraints
 - No sizing of generators with minimal loading

Generalized oemof model

Generalized oemof model

Input template

Please open

input_template_excel.xlsx in './MGT_code/input'

Excel sheet with multiple tabs:

- → Defines **all** simulation parameters
- → File name and location can not be changed!

Input parameters: Constants

Please open tab → input_constant

- → Defines all input parameters for simulation
- → Sensitivity analysis for each parameter possible
- → Costs should be based on today's values!

Definition of constant input para	meters					
Doubled values	experin	Make sure that the sensitivity setting fits the experiments you want to simulate – either sensitivity or project site values may be preffered				
Missing values	/double Python	Tab "data_sufficiency_check" helps to identify missing /doubled data, but is by no means a thourough check. Python error messages will occur if values are left undefined				

Input data: Parameters

Parameter	Value	Unit
blackout_duration	0	hrs
blackout_duration_std_deviation	0	factor
blackout_frequency	0	/mth
blackout_frequency_std_deviation	0	factor
combustion_value_fuel	8.8	kWh/l
demand_scaling_factor	1	factor
distribution_grid_cost_investment	0	currency
distribution_grid_cost_opex	0	/a
distribution_grid_lifetime	20	a
genset_batch	0.5	kW
assect seet investment	CEO	ILAAT

Input data groups

- Technical and economical data on components:
 PV, storage, genset, point of common coupling (PCC)
- Prices and costs connected to grid extension
- Project costs and financial data
- Further parameters

Component models: PV panel

- Efficiency, temperature effects etc. already included in timeseries
- Optimized: Installed kWp
- List of input parameters:
 - pv_batch
 - pv_cost_investment
 - pv cost opex
 - pv_cost_var
 - pv lifetime

Batch size, only used for optimizations based on previously evaluated case (valid for all components)

Component models: Wind plant

- Efficiency etc. already included in timeseries
- Optimized: Installed kW
- List of input parameters:
 - wind batch
 - wind cost investment
 - wind_cost_opex
 - wind cost var
 - wind_lifetime

Component models: GenSet

- Optimized: Dispatch / installed kW
- List of input parameters:
 - genset_batch
 - genset_cost_investment
 - genset_cost_opex
 - genset_cost_var
 - genset_efficiency
 - genset_lifetime
 - genset_max_loading
 - genset_min_loading
 - genset_oversize_factor
 - price fuel
 - combustion_value_fuel

- Connected to inflow
- Application requires specific setting in case definition
- Only if estimated with 'peak_demand', which is necessary to include Min/max loading

Component models: Storage

- Optimized: Dispatch / installed kWh
- List of input parameters:
 - storage_batch
 - storage cost investment
 - storage_cost_opex
 - storage cost var
 - storage_Crate_charge
 - storage_Crate_discharge
 - storage_efficiency_charge
 - storage_efficiency_discharge
 - storage_lifetime
 - storage_loss_timestep –
 - storage soc initial
 - storage_soc_max
 - storage soc min

Ratio, per timestep: max (dis-)charge/CAP

► Long-term storage losses

Advanced setting, leave at None

► Max. allowed charge

▶ 1-DOD

Component models: PCC

Optimized:

Installed **kW** of point of common coupling (connection to/from central grid)

 Only if capacity is estimated with

'peak_demand'

Based on inflow

- List of input parameters:
 - pcoupling oversize factor
 - pcoupling_batch
 - pcoupling_cost_investment
 - pcoupling_cost_opex
 - pcoupling_cost_var
 - pcoupling_efficiency
 - pcoupling_lifetime
- → For bi-directional inverter (assumption not used in oemof):

Optimized CAP=max(CAP_consumption, CAP_feedin)

Costs = 2* CAP * Cost per unit

Central grid

- List of financial parameters:
 - maingrid distance
 - maingrid_electricity_price
 - maingrid extension cost investment
 - maingrid_extension_cost_opex
 - maingrid_extension_lifetime
 - maingrid feedin tariff
 - maingrid_renewable_share

To determine renewable

factor of grid-connected systems

- → Used to calculate fix central grid extension costs
- → Expenditures through central grid consumption
- → Revenues through central grid feed-in

Central grid - Blackouts

- List of parameters regarding blackouts:
 - blackout duration
 - blackout duration std deviation
 - blackout_frequency
 - blackout_frequency_std_deviation
 - → Used for randomized blackout timeseries
 - → For 100% reliable grid: Set all to zero

Project parameters - financial

- List of financial parameters:
 - project_cost_fix
 - project_cost_opex
 - project_life
 - distribution_grid_cost_investment
 - distribution grid cost opex
 - distribution grid lifetime
 - → Used to calculate fix costs
 - Tax → Ontop of on investment costs!
 - Wacc
 - → Used for annuity method

Project parameters - others

- demand_scaling_factor
 demand_scaling_factor
 bultiplies demand
 timeseries with factor,
 Usual setting: 1
- min_renewable_share
 Currently not implemented!
- shortage_max_allowed -
- shortage penalty costs
- Relative to annual demand!
- Estimation: ~LCOE

- stability_limit
- white_noise_demand
- white_noise_pv
- white_noise_wind

Timeseries of each experiment subjected to noise

→ Limits comparability, recommentation: 0

Senstivity analysis

Terms

Project sites

Project locations with distinct demand (and PV/wind) timeseries

Experiments

Generated based on analysed project sites and based on sensitivity parameters

Complete set of input parameters

Cases

Define components modelled with oemof and optimization type (dispatch / capacity optimization)

Model definition

Scenario

Certain experiment subjected to case | Input parame = Case study

Input parameters + model = Case study

Input parameters: Sensitivity analysis

Please open tab → input sensitivity

→ **Defines** sensitivity analysis to be performed

		_	_	_	_	•	_
	Definition of sensitivity parameters						
Ī							
	Deleting rows	Rows can be de is defined in inp					eted value
	Make sure that the sensitivity setting fits the experiments you Doubled value want to simulate – either sensitivity or project site values may be preffered						
	Parameter Parameter from input_costant that is subject to sensitivity analysis						
	Min	Minimal value of parameter					
	Max	Maximal value of parameter					
	Step	Step lenght for values between min and max value of parameter					

Input parameters: Sensitivity analysis

- 1) Copy parameter name from tab "input_constants" into new row
- 2) Minimal / Maximal value of sensitivity parameter
- 3) Define step lenght for analysis

Parameter	Min	Max	Step
shortage_max_allowed	0	0.1	0.025
genset_lifetime	10	20	5

Value ranges here:

shortage_max_allowed in [0, 0.025, 0.05, 0.075, 0.1] genset_lifetime in [10, 15, 20]

Input parameters: Sensitivity analysis

Sensitivity experiments defined based → "settings":

(1) Senstitivity_all_combinations = True:

- → Experiments for all possible combinations of sensitivity parameters
- → High number of experiments
- → Analysing dependencies

(2) Sensitvitiy_all_combinations = False:

- → Only one sensitivity parameter varies at a time
- → "Base case" defined through constant parameters
 OR parameters defined per project location

Project locations

Please open tab → **project_sites**

→ Defines project locations with timeseries and specific parameters

Definition of projec	t locations				
Number of location	An unlimited number of locations can be a sure that project site names are only used	dded belo I once	w. Make		
For each project location: project_site_name, Necessary entries timeseries_file, title_time, title_demand, title_pv, title_wind, title_grid_availability, seperator					
Project site specific can be defined in additional columns. If Additional columns one project has a specific value, the value needs to be defined here for all project sites					
timeseries_file The timeseries have to be provided in an external csv file.					
title_time Title of column with timestamp or None					
title_demand	Title of column with demand in kW				
title_pv	Title of column with PV generation in kW/k	Wp, or No	one		
title_wind	Title of column with wind generation in kW	/kW, or N	one		
title_grid_availabil	Title of column with grid availability (boole	an) or Nor	ie		
seperator Seperator used in csv file					

Project locations

Timeseries file (.csv)

Demand	SolarGen	Wind	GridAvailability
0	0	0.045	-
0	0	0.052	1
0	0	0.045	1
0	0	0.052	1
0	0	0.061	1
0	0	0.079	1
0.004	0.025	0.097	1
0.004	0.147	0.075	0
0.003	0.375	0.093	1
0.003	0.585	0.097	0
0	0.65	0.063	1
0.006	0.634	0.014	1
0.006	0.5	0	1
0	0.352	0.001	1
0.003	0.324	0.005	0
0.006	0.136	0.014	0
0.003	0	0.019	1

Go to

./input/timeseries/ intermediate Tier2.csv

For each project site:

- Demand in kW
- Solar generation in kW / kWp
- Wind generation in kW / kW
- Blackout (boolean vektor)
 - 1: available, 0: unavailable
- Timestamp (optional)

Timeseries file (.csv)

Demand	SolarGen	Wind	GridAvailability
0	0	0.045	1
0	0	0.052	1
0	0	0.045	1
0	0	0.052	1
0	0	0.061	1
0	0	0.079	1
0.004	0.025	0.097	1
0.004	0.147	0.075	0
0.003	0.375	0.093	1
0.003	0.585	0.097	0
0	0.65	0.063	1
0.006	0.634	0.014	1
0.006	0.5	0	1
0	0.352	0.001	1
0.003	0.324	0.005	0
0.006	0.136	0.014	0
0.003	0	0.019	1

- Variable file name
- Hourly timesteps, min. as many as analysed in simulation
- Column header string variable

Optional:

- Solar/Wind timeseries, but necessary if respective capacities optimized
- Blackout timeseries, otherwise randomized through input variables

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Case definitions

Please open

input_template_excel.xlsx in './MGT_code/input' and tab case_definitions

→ Defines models using previous parameters

Case definitions	
Adding cases	An unlimited number of cases can be added in new columns. Make sure each has an unique name.
case_name	string
based_on_case	False or True
pv_fixed_capacity	oem, string (name of base capacity case), None
storage_fixed_capacity	oem, string (name of base capacity case), None
genset_fixed_capacity	oem, string (name of base capacity case), None, peak_
pcc_consumption_fixed_capacity	oem, string (name of base capacity case), None, peak_
pcc_feedin_fixed_capacity	oem, string (name of base capacity case), None, peak_
allow_shortage	True or False or default
max_shortage	value or default
stability_constraint	False / share_usage / share_backup / share_hybrid
renewable_constraint	currently not implemented

Case definitions

- → Easy/adaptable generation of cases in new column
- → Currently not possible to include existing capacities

case_name	mg_hybrid_no_min	mg_hybrid	solar_battery_mg	diesel_mg
perform_simulation	False	True	False	False
based_on_case	False	False	False	False
capacity_pv_kWp	oem	oem	oem	None
capacity_storage_kWh	oem	oem	oem	None
capacity_genset_kW	oem	peak_demand	None	4k_demand
genset_with_minimal_loading	False	True	False	True
number_of_equal_generators	1	2	1	2
capacity_pcc_consumption_kW	None	None	None	None
capacity_pcc_feedin_kW	None	None	None	None
capacity_wind_kW	None	None	None	None
allow_shortage	True	True	True	True
max_shortage	default	default	default	default
stability_constraint	share_hybrid	share_hybrid	share_hybrid	are_hybrid
renewable_constraint	False	False	False	False

Case definition

case_name	Off-grid MG	Unique name
perform_simulation	True	True/False
based_on_case	False	True/False
capacity_pv_kWp	oem	→ Options
capacity_storage_kWh	oem	"oem" Optimize CAP
capacity_genset_kW	oem	"None"
genset_with_minimal_loading	False	Not included
number_of_equal_generators	1	string case_name Use capacities of
capacity_pcc_consumption_kW	None	another case with
capacity_pcc_feedin_kW	None	based_on_case = True For genset + pcc:
capacity_wind_kW	oem	"peak_demand"
allow_shortage	True	True/False
max_shortage	default	value or default
stability_constraint	share_hybrid	False or "share_hybrid", "share_backup", "share_usage"

Oemof model

Generators with minimal loading

- Min. loading requires nonconvex equations
 - → Mixed integer problems
 - → Capacities of generator can not be optimized
- → Estimate capacity with "peak_load" and adapt scaling factor "genset_oversize_factor"
- Min. load of auto-sized generator > base load
 - → Error: No solution
 - → Allow multiple generators, effectively lowering minimal loading

Stability criterion

Demand and (renewable) generation variability

- → System response (frequency, voltage) → Stability? **stability limit** = Share of demand that is sufficient to guarantee stable system operation
 - ↔ Homer parameter "operating reserve"!

Four options:

(1) None

(2) "share backup"

(3) "share usage" (4) "share hybrid"

Stability criterion - share_backup

Stability limit
$$\cdot$$
 (demand – shortage)
 $\leq CAP_{GenSet}$
 $+(SOC(t)-(1-DOD))\cdot CAP_{storage}\cdot Crate$
 $+CAP_{PCC}\cdot grid availability(t)$

Stability criterion - share_backup

$$\begin{split} & \text{Stability limit} \cdot (\text{demand-shortage}) \\ & \leq \text{CAP}_{\text{GenSet}}^{\text{possible flow}} \\ & + (\text{SOC}(t) - (1 - \text{DOD})) \cdot \text{CAP}_{\text{storage}} \cdot \text{Crate} \\ & + \text{CAP}_{\text{PCC}} \cdot \text{grid availability}(t)^{\text{possible flow}} \end{aligned}$$

Assumption:

Each GenSet, battery and grid consumption can stabilize micro grid instantaneously

→ Sufficient to have enough backup capacities at hand

Stability criterion - share_usage

Stability $limit \cdot (demand(t) - shortage(t))$

- \leq Generation Genset (t)
 - + Battery discharge(t)
 - +Grid consumption (t) \cdot grid availability (t)

Stability criterion - share_usage

actual flow

Stability
$$limit \cdot (demand(t) - shortage(t))$$

- \leq Generation Genset $(t)^{\text{actual flow}}$
 - + Battery discharge(t) actual flow

+Grid consumption (t)-grid availability (t)

Assumption:

Components have a long reaction time; to ensure stability they have to be deployed in each timestep

→ 100% renewable supply directly from its generation sources not possible

Stability criterion - share_hybrid


```
Stability limit \cdot (demand (t) - shortage (t))

\leq Generation Genset (t)

+(SOC(t)-(1-DOD))\cdot CAP_{storage}\cdot Crate

+CAP_{PCC}\cdot grid availability (t)
```

Stability criterion - share hybrid

Recommended

Stability limit · (demand (t) – shortage (t))

 \leq Generation Genset $(t)^{actual flow}$

 $+ (SOC(t) - (1 - DOD)) \cdot CAP_{storage} \cdot Crate^{\textit{possible flow}} \\ + CAP_{PCC} \cdot grid \, availability^{\textit{possible flow}}$

Assumption:

GenSet has long reaction time, while battery and PCC can react almost instantaneously

→ To provide stability to the system, the GenSet hast to actually generate electricity while battery and PCC only have to insure that a sufficient flow is possible.

Simulation settings

Please open tab → **settings**

→ **Defines** universal simulation settings:

Defining settings	
General	Electricity solution settings
Simulated cases	Cases evaluated
Oemof settings	Oemof-internal simulation settings
File settings	File locations
Output - Files	Data saved to file
Output – Terminal display	Data is displayed in terminal
Output – Evaluated values	Simulation/evaluation values added to the result file

Simulation settings

		Restores previous results
		✓ saved as .oemof
General		
restore_oemof_if_existant	False	Restores previous blackout
restore_blackouts_if_existar	False	timeseries
allow_shortage	True	
evaluated_days	7	▲ Overrules case definitions! Better
time_start	####	leave at "True"
time_frequency	Н	1 265 (influences simulation time)
sensitivity_all_combinations	True	1 365 (infuences simulation time!)
		Generates sensitivity experiments
Oemof settings		(all combinations or with base case)
solver	cbc	(all combinations of with base case)
solver_verbose	False	Advanced settings:
cmdline_option	ratioGap	Oemof-simulation
cmdline_option_value	0.03	J Germon Similaración
File settings		
output_folder	¶lation_re	→ Defines folder name for simulation
output_file	results	outputs - existing folder deleted!
		Defines name for result file

Simulation settings

Output – files	
save_lp_file	False
lp_file_for_only_3_timesteps	False
save_oemofresults	True
save_to_csv_flows_storage	False
save_to_csv_flows_electric	True
save_to_png_flows_storage	False
save_to_png_flows_electric>	True
Output – Terminal display	
display_meta	False
display_main	False
display_experiment	False
Output – Evaluated values	
results_demand_characteris	True
results_blackout_characteris	True
results_annuities	False
results_costs	False

Advanced setting: Ip-file for other solvers, checking equations for cases

► Necessary to restore results

Saving flows of each experiment as csv/png

Advanced setting: Terminal output

Sets parameters included in "result" file

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Execute MGT - From Terminal

Open Anaconda prompt and execute:

- Activate virtual environment activate environment_name
- Go to MGT code foldercd other_path/MGT_code
- Run scriptpython A main script.py

Execute MGT - From Pycharm

Run in graphical interface, eg. pycharm:


```
13:19:29-INFO-Path for logging: ./micro grid design logfile.log
13:19:29-INFO-Used oemof version: 0.2.2
13:19:31-INFO-Following project locations are evaluated: 126 Pangutaran. 34 Araceli. 17 Polo. 107 Balut Is
13:19:35-WARNING-Attributes "shortage max allowed, genset lifetime" defined in constant and sensitivity pa
rameters. Only sensitivity parameter value will be used for sensitivity experiment s.
13:19:35-WARNING-Attributes "price fuel" defined in constant and project site parameters. Only project sit
e value will be used for sensitivity experiment s.
13:19:36-INFO-1 combinations of blackout duration and frequency will be analysed.
13:19:36-INFO-For 4 project sites with 15 scenarios each, 60 sensitivity experiment s will be performed fo
r each case.
13:19:36-INFO-Base capacities provided by: mg hybrid
13:19:36-INFO-All simulated cases: mg hvbrid
13:19:36-INFO-With these cases, a total of 60 simulations will be performed.
13:19:36-INFO-Blackout experiment 1: Blackout duration 0 hrs, blackout frequency 0 per month
13:19:36-INFO-Number of blackouts in simulated timeframe: 0
13:19:36-INFO-Grid is not operational for 0 hours, with a reliability of 100.0 percent.
13:19:36-INFO-Starting simulation of case mg hybrid, project site 126 Pangutaran, experiment no. 1/60...
13:19:37-INFO-Optimization successful...
13:19:37-INFO-Restoring attributes will overwrite existing attributes.
13:19:37-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:39-INFO-Simulation of case "mg hybrid" resulted in :
                  33.8 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
13:19:39-INFO-
                  Initial simulation time (s): 0.05 / Actual evaluation time (s): 2.31
13:19:39-INFO-Starting simulation of case mg hybrid, project site 34 Araceli, experiment no. 2/60...
13:19:39-INFO-Optimization successful...
13:19:39-INFO-Restoring attributes will overwrite existing attributes.
13:19:39-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:40-INFO-Simulation of case "mg hybrid" resulted in :
                  23.3 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
                  Initial simulation time (s): 0.15 / Actual evaluation time (s): 1.25
13:19:40-INFO-
```


All analysed project locations

```
13:19:29-INFO-Path for logging: ./micro grid design logfile.log
13:19:29-INFO-Used oemof version: 0.2.2
13:19:31-INFO-Following project locations are evaluated: 126 Pangutaran, 34 Araceli, 17 Polo, 107 Balut Is
13:19:35-WARNING-Attributes "shortage max allowed, genset lifetime" defined in constant and sensitivity pa
rameters. Only sensitivity parameter value will be used for sensitivity experiment s.
13:19:35-WARNING-Attributes "price fuel" defined in constant and project site parameters. Only project sit
e value will be used for sensitivity experiment s.
13:19:36-INFO-1 combinations of blackout duration and frequency will be analysed.
13:19:36-INFO-For 4 project sites with 15 scenarios each, 60 sensitivity_experiment_s will be performed fo
r each case.
13:19:36-IM-o-Base capacities provided by: mg hybrid
13:10:50-1N50-All simulated cases: mg hvbrid
13:19:36-INFO-With these coses, a total of ou simulations will be performed.
13:19:36-INFO-Blackout experiment 1: Blackout duration 0 hrs, blackout frequency 0 per month
13:19:36-INFO-Number of blackouts in simulated timeframe: 0
13:19:36-INFO-Grid is not operational for 0 hours, with a reliability of 100.0 percent.
13:19:36-INFO-Starting simulation of case mg_hybrid, project site 126_Pangutaran, experiment no. 1/60...
13:19:37-INFO-Optimization successful...
13:19:37-INFO-Restoring attributes will overwrite existing attributes.
13:19:37-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:39-INFO-Simulation of case "mg hybrid" resulted in :
                  33.8 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
13:19:39-INFO-
                  Initial simulation time (s): 0.05 / Actual evaluation time (s): 2.31
13:19:39-INFO-Starting simulation of case mg hybrid, project site 34 Araceli, experiment no. 2/60...
13:19:39-INFO-Optimization successful...
13:19:39-INFO-Restoring attributes will overwrite existing attributes.
13:19:39-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:40-INFO-Simulation of case "mg_hybrid" resulted in :
                  23.3 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
                  Initial simulation time (s): 0.15 / Actual evaluation time (s): 1.25
13:19:40-INFO-
```

All

simulated

cases

13:19:40-INFO-

ΑII

simulated

cases

All analysed project locations

```
13:19:29-INFO-Path for logging: ./micro grid design logfile.log
13:19:29-INFO-Used oemof version: 0.2.2
13:19:31-INFO-Following project locations are evaluated: 126 Pangutaran, 34 Araceli, 17 Polo, 107 Balut Is
13:19:35-WARNING-Attributes "shortage max allowed, genset lifetime" defined in constant and sensitivity pa
rameters. Only sensitivity parameter value will be used for sensitivity experiment s.
13:19:35-WARNING-Attributes "price fuel" defined in constant and project site parameters. Only project sit
e value will be used for sensitivity experiment s.
13:19:36-INFO-1 combinations of blackout duration and frequency will be analysed.
13:19:36-INFO-For 4 project sites with 15 scenarios each, 60 sensitivity_experiment_s will be performed fo
r each case.
13:19:36-IM-o-Base capacities provided by: mg hybrid
13:19:50-1750-All simulated cases: mg hybrid
13:19:36-INFO-With these cases, a total of ou simulations will be performed.
13:19:36-INFO-Blackout experiment 1: Blackout duration 0 hrs, blackout frequincy 0 per month
13:19:36-INFO-Number of blackouts in simulated timeframe: 0_
13:19:36-INFO-Grid is not operational for 0 hours. with a reliability of 1 0.0 percent.
13:19:36-INFO-Starting simulation of case mg_hybrid project site 126_Pangutaran experiment no. 1/60...
13:19:37-INFO-Optimization successful...
13:19:37-INFO-Restoring attributes will overwrite existing attributes.
13:19:37-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:39-INFO-Simulation of case "mo
              33.8 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
13:19:39-INFO-
13:19:39-INFO-Starting simulation of case mg hybrid, project site 34 Araceli, experiment no. 2/60...
13:19:39-INFO-Optimization successful...
13:19:39-INFO-Restoring attributes will overwrite existing attributes.
13:19:39-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:40-INFO-Simulation of case "mg_hybrid" resulted in :
```

Current case + location

Experiment count

Main result

Initial simulation time (s): 0.15 / Actual evaluation time (s): 1.25

23.3 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent

All analysed project locations

```
13:19:29-INFO-Path for logging: ./micro grid design logfile.log
13:19:29-INFO-Used oemof version: 0.2.2
13:19:31-INFO-Following project locations are evaluated: 126 Pangutaran, 34 Araceli, 17 Polo, 107 Balut Is
13:19:35-WARNING-Attributes "shortage max allowed, genset lifetime" defined in constant and sensitivity pa
rameters. Only sensitivity parameter value will be used for sensitivity experiment s.
13:19:35-WARNING-Attributes "price fuel" defined in constant and project site parameters. Only project sit
e value will be used for sensitivity experiment s.
13:19:36-INFO-1 combinations of blackout duration and frequency will be analysed.
13:19:36-INFO-For 4 project sites with 15 scenarios each, 60 sensitivity_experiment_s will be performed fo
r each case.
13:19:36-IM-o-Base capacities provided by: mg hybrid
13:19:50-1:50-All simulated cases: mg hybrid
13:19:36-INFO-With these costs, a total of ou simulations will be performed.
13:19:36-INFO-Blackout experiment 1: Blackout duration 0 hrs, blackout frequency 0 per month
13:19:36-INFO-Number of blackouts in simulated timeframe: 0
13:19:36-INFO-Grid is not operational for 0 hours. with a reliability of 1 0.0 percent.
13:19:36-INFO-Starting simulation of case mg hybrid) project site 126 Pangutaran, experiment no. 1/60...
13:19:37-INFO-Optimization successful...
13:19:37-INFO-Restoring attributes will overwrite existing attributes.
13:19:37-WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!
13:19:39-INFO-Simulation of case "-
               33.8 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
13:19:39-INFO-Starting simulation of case mg hybrid, project site 34 Araceli, experiment no. 2/60...
13:19:39-INFO-Optimization successful...
13:19:39-INFO Restoring attributes will overwrite existing attributes.
13:19:59-WARNING-PLAUSABILITY TEST FAILED: charge and discharge of batteries at the same time!
13:15:40-INFO-Simulation or case "mg hybrid" resulted in :
                   23.3 EuroCt/kWh, at a renewable share of 0.0 percent with a reliability of 100.0 percent
```

Current case + location

Experiment count

Main result

Automated warnings

13:19:40-INFO-

All

simulated

cases

Initial simulation time (s): 0.15 / Actual evaluation time (s): 1.25

Error messages

Don't worry about following warnings:

- WARNING-Attributes... defined in...
- WARNING-Stability criterion is strictly not fullfilled, but deviation is less then e6.
- WARNING-PLAUSABILITY TEST FAILED: Charge and discharge of batteries at the same time!

Plausibility tests

- Shortage mirrors unsupplied demand
- No charge at the same time of discharge
 - → Warning occurring regularly, if storage_cost_var=0
- No grid consumption or feedin at the same time or during blackout
- No shortage during excess generation
- No excess if feedin possible and PCC capacity not reached

→ Automated warnings if tests violated

("comments"-column in results file)

Output files

- Results of experiment saved in one file (.csv)
 - Optimal/used fixed capacities
 - Economic values (investment, expenditures, LCOE)
 - Summed flows (total pv generation / shortage)
 - System reliability (kWh)
 - Comments if plausibility tests failed
- Optional: Oemof- and Ip-files
- Optional: Flows (.csv) and graph (1a/7d, .png)
 - Electricity flows in MG
 - Storage flows (charge, discharge, stored capacity)

Please go to './MGT_code/your_results_folder'

```
    ▼ simulation_results
    ▶ electricity_mg
    ▶ inputs
    ▶ lp_files
    ▶ oemof
    ▶ storage
    grid_availability.csv
    micro_grid_design_logfile.log
    results.csv
    sensitivity_experiments.csv
    simulation_experiments.csv
```

Copy this folder before performing other analysis!

of all experiements

Auto-generated graphs: Energy flows

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Auto-generated graphs: Storage

Agenda

Installation and setup

Background and parameters

Case definitions and settings

Executing simulation and output

Final remarks

Shortage and penalty costs

Penalty < generation costs: Shortage preffered

= penalty costs have to be chosen adequately!

le. as high as...

- Expected LCOE/revenue
- Slightly higher as electricity price of central grid

Perfect foresight

Oemof-optimization based on perfect foresight of variable generation

- → le. storage charged right before blackout
 - → Influences sizing and dispatch

Rolling time horizon optimization currently not possible with oemof.

Accounting for shortage

Shortage can be any share of demand

→ Without demand management: **Blackout**!

Similar destabilization through excess generation

AC/DC bus in micro grids

Currently: Electricity bus of micro grid is AC

- → No DC bus included
- → Inverter losses have to be accounted for in
- PV timeseries and
- Battery charge efficiency

Questions or remarks?

License

Except where otherwise noted, this work and its content (texts and illustrations) are licensed under the Attribution 4.0 International (CC BY 4.0) See license text for further information.

Tel: +49 (0)30 1208 434 0

E-Mail: info@rl-institut.de

Web: http://www.rl-institut.de

Twitter: @rl_institut

Please quote as: "PRESENTATION TITLE" © Reiner Lemoine Institut | CC BY 4.0