

ShanghaiTech CS181 Project: LOL Esports Prediction 连奕航/邬一闻/熊昕洋/吕钧霆/余诗博

LOL Esports Winner Prediction Example: KI Colonel (KFC-AI) Realtime Win Rate Who to win the game? 看懂了的请扣1 100% EDG 63.4% 50% 75% DK 36.6%

WHO WILL WIN THE GAME?

WHO WILL WIN THE GAME?

Supervised Machine Learning Approach

Champion Lineup: Naive Bayes

Champion Lineup: Naive Bayes

Champion Lineup: Naive Bayes

Result & Thoughts

- Result:
 - 54.0% on 2021 pro matches dataset
 - 52.7% on 2015-2018 pro matches dataset
 - even monkey can get 50% accuracy...
- Why poor performance?
 - Naive Bayes assumes conditional independence on champions
 - however, champion cooperation&counter matters!
 - Pro players might be influenced little by champion lineup
 - they tend to pick OP champion lineup as possible
 - Game patch differs

Champion Lineup: Logistic Regression

Result & Thoughts

$$f(t) = t$$
 or t or t or t

- Using Gradient Descent to optimize log loss with sigmoid probability
- Result:
 - 54.1% on 2021 pro matches dataset
 - 53.2% on 2015-2018 pro matches dataset
- This can prove champion lineup less matters to pros than expected

In-Game Performance

In-Game Performance: Logistic Regression

Result & Thoughts

$$f(\underset{Gold}{\bullet}, \underset{Tower}{\stackrel{\bullet}{\underline{\bullet}}}, \underset{Kill}{\cancel{A}}, \underset{Dragon}{\cancel{A}}) = {\binom{0}{1}} \text{ or } {\binom{1}{0}}$$

- Similarly, using Gradient Descent to optimize loss
- Features captured:
 - Difference between blue and red in . . .
 - ...gold earned/enemies killed/towers destroyed/monsters killed
 - At certain timestep (early stage), like t=15 minutes after beginning
- Result:
 - 76.0% on 2021 pro matches dataset
 - 72.3% on 2015-2018 pro matches dataset

In-Game Performance: RNN

Realtime prediction based on Recurrent Neural Network

$$X_t = (Gold, Tower, Kill, Dragon)_t$$
 t=1,2,...,T

- We want to implement real time prediction!
- Features at each previous time step are captured X1, X2, ..., Xt
- Our choice RNN!
 - can encode arbitrary-length input (T=5, 10, 15, 20, 25, 30 in our project)
 - can do classification through an additional output layer
 - With LSTM cells, can preserve more information in early time steps
 - LSTM: Long Short Term Memory networks

In-Game Performance: RNN & LSTM

Using Toolkit: PyTorch

batch size = 32, learning_rate = 0.001, loss_func = CrossEntropy, activation = ReLU, RNN hidden size = 256, LSTM num layers = 1, train:valid:test split ratio = 6:2:2, early stopping on valid accuracy

In-Game Performance: RNN

Realtime prediction based on Recurrent Neural Network

Result on 2015-2018 pro matches dataset :

58.0%	O5 min	58.9%
66.5%	10 min	66.7%
73.1%	15 min RNN LSTM	73.9%
77.3%	20 min	77.4%
82.7%	25 min	82.9%
84.4%	30 min	85.0%

In-Game Performance: RNN & LSTM

Using Toolkit: PyTorch

- Improvement of LSTM seems not obvious from accuracy metric
- But we can demonstrate their difference by following example

Source: KI Colonel (KFC-AI)

Source: FACTOR.GG

Our LSTM RNN Model Prediction!

Our RNN Model Prediction!

Source: KI Colonel (KFC-AI)

Our LSTM RNN Model Prediction!

