16 17

18 19

1

2

3

4

5

7

8

9

regions of the support;

WHAT IS CLAIMED IS:

1	1. A method of preparing a nucleic acid array on a support, said
2	method comprising synthesizing a plurality of nucleic acids on said support wherein the
3	synthesis steps are carried out in a non-oxidizing atmosphere.
1	2. A method in accordance with claim 1, wherein each nucleic acid
2	occupies a separate predefined region of the support, said synthesizing comprising:
3	(a) activating a region of the support;
4	(b) attaching a nucleotide to a first region, said nucleotide having a
5	masked reactive site linked to a protecting group;
6	(c) repeating steps (a) and (b) on other regions of said support whereby
7	each of said other regions has bound thereto another nucleotide comprising a masked
8	reactive site link to a protecting group, wherein said another nucleotide may be the same
9	or different from that used in step (b);
10	(d) removing the protecting group from one of the nucleotides bound to
11	one of the regions of the support to provide a region bearing a nucleotide having an
12	unmasked reactive site;
13	(e) binding an additional nucleotide to the nucleotide with an unmasked
14	reactive site;
15	(f) repeating steps (d) and (e) on regions of the support until a desired
16	plurality of nucleic acids is synthesized, each nucleic acid occupying separate predefined

- wherein each of steps (a) through (f) are carried out in a non-oxidizing atmosphere.
- 3. A method in accordance with claim 1, wherein said synthesizing comprises the sequential steps of:
- a) generating a pattern of light and dark areas by selectively irradiating at least a first area of a surface of a substrate, said surface comprising immobilized nucleotides on said surface, said nucleotides capped with a photoremovable protective group, without irradiating at least a second area of said surface, to remove said protective group from said nucleotides in said first area;
- simultaneously contacting said first area and said second area of said surface with a first nucleotide to couple said first nucleotide to said immobilized

10 11

12

13

14 15

16

17

18

19

20

21

22

23 24

1

2

1 2

1

2

3

1

3

nucleotides in said first area, and not in said second area, said first nucleotide capped with said photoremovable protective group;

- c) generating another pattern of light and dark areas by selectively irradiating with light at least a part of said first area of said surface and at least a part of said second area to remove said protective group in said at least a part of said first area and said at least a part of said second area;
- d) simultaneously contacting said first area and said second area of said surface with a second nucleotide to couple said second nucleotide to said immobilized nucleotides in at least a part of said first area and at least a part of said second area;
- e) performing additional irradiating and nucleotide contacting and coupling steps so that a matrix array of at least 100 nucleic acids having different sequences is formed on said support;

with the proviso that steps (a) through (e) are performed in said non-oxidizing atmosphere, and said atmosphere has an ozone concentration of from about 0 to about 5 ppb.

- A method in accordance with claim 3, wherein said atmosphere is 4. carbon-filtered air.
- A method in accordance with claim 3, wherein said atmosphere is 5. an inert gas.
- A method in accordance with claim 3, wherein said atmosphere is 6. 1 2 argon.
- A method in accordance with claim 3, wherein said substrate is 7 1 irradiated with light directed from a source at a position opposite the surface comprising 2 said immobilzed nucleotides. 3
 - A method in accordance with claim 3, wherein said substrate is 8 irradiated with light directed from a source on the same side of the surface comprising said immobilized nucleotides.
- A method in accordance with claim 3, wherein said substrate is 9. irradiated with light from a position opposite the surface comprising said immobilzed 2 nucleotides and said atmosphere is an inert gas atmosphere.

1	 A method of preparing and packaging a nucleic acid array, said
2	method comprising,
3	(a) preparing a nucleic acid array according to the method of claim 1; and
4	(b) packaging said nucleic acid array in an enclosure having a non-
5	oxidizing atmosphere.
1	11. A method in accordance with claim 10, wherein each of said steps
2	is conducted in a facility having an atmosphere comprising 5 ppb or less ozone.
1	12. A method in accordance with claim 10, wherein for the period of
2	time between said preparing and packaging steps, said nucleic acid array is exposed to
3	unfiltered air for a period of 2 hours or less.
1	13. A method of preparing a nucleic acid array, said method
	• • •
2	comprising attaching each of a plurality of nucleic acids to a solid support at preselected
3	locations to provide said array, wherein said attaching is carried out in a non-oxidizing
4	atmosphere.
1	14. A method in accordance with claim 13, said atmosphere
2	comprising ozone at a concentration of from about 0 to 5 ppb.
1	15. A method in accordance with claim 2, wherein each of said nucleic
1	
2	acids comprise from 5 to 30 nucleotide residues.
1	16. A nucleic acid array prepared by the method of claim 1.
1	17. A nucleic acid array prepared and packaged by the method of claim
2	10.