Университет ИТМО Факультет безопасности информационных технологий

Группа <u>ФИЗ-1 Э БИТ 1.2.1</u>	К работе допущены		
Студент Суханкулиев Мухаммет	Работа выполнена		
Преподаватель_Иванов Виктор Юрьевич_	Отчет принят		
Рабочий протокол и отчет по лабораторной работе №1.13			
Изучение прецессии гироскопа			

1. Цели работы.

- 1. Наблюдение прецессии гироскопа.
- 2. Экспериментальное подтверждение линейно зависимости периода прецессии гироскопа от частоты вращения гироскопа вокруг оси симметрии.
- 3. Экспериментальное определение момента инерции гироскопа.

2. Задачи, решаемые при выполнении работы.

- 1. Измерить период прецессии гироскопа.
- 2. Измерить частоту вращения гироскопа вокруг своей оси.
- 3. Рассчитать момент инерции гироскопа относительно оси вращения используя данные, полученные в ходе эксперимента. Сравнить полученный результат с моментом инерции гироскопа, рассчитанным теоретически.

3. Объект исследования.

Вращательное движение гироскопа.

4. Метод экспериментального исследования.

Исследование с использованием экспериментальной установки.

5. Рабочие формулы и исходные данные.

Данные установки:

Масса маховика	1,5 кг
Радиус маховика	12,5 см
Расстояние от точки опоры оси вращения до места крепления	22,5 см
дополнительных грузов (плечо силы)	,
Масса держателя грузов m_0	2 г
Масса груза т	10 г

Рабочие формулы:

Полный момент импульса:

$$\vec{M} = I\vec{\omega}$$

Момент внешних сил по модулю:

$$L = Fl$$

Период прецессии:

$$T_{\text{np}} = A\omega_{\text{cp}}$$

$$A = \frac{\sum_{i=1}^{n} \omega_{\text{cp}i} T_{\text{np}i}}{\sum_{i=1}^{n} \omega_{\text{cp}i}^{2}}$$

Момент инерции маховика гироскопа относительно главной оси:

$$I_{\text{Teop}} = \frac{mR^2}{2}$$

$$I_{\mathfrak{SKCII}} = \frac{Amgl}{2\pi}$$

6. Измерительные приборы.

№ n/n	Наименование	Тип прибора	Используемый диапазон
1	Секундомер	Электронный	0–40 с
2	Тахометр	Цифровой	0–130 об/мин

7. Результаты прямых измерений и их обработки.

т, г	ω ₁ , об/мин	ω2, об/мин	ω _{ср} , <i>об/мин</i>	T_{np} , c
12	126,7	109,8	118,25	38,2
	115,5	99,0	107,25	37,1
	104,3	88,3	96,3	29,5
	90,7	85,5	88,1	26,8
	60,5	58,25	59,375	21,4
22	131,5	124,5	128,0	21,7
	113,0	107,7	110,35	20,2
	100,7	97,2	98,95	19,2
	93,3	89,9	91,6	17,5
	84,0	81,2	82,6	16,4
32	125,5	115,0	120,25	16,1
	118,2	113,2	115,7	14,4
	105,6	101,0	103,3	12,5
	98,4	94,6	96,5	12,0
	85,4	82,2	83,8	10,6

8. Расчет результатов косвенных измерений.

т, г	ω _{ср} , об∕сек	$T_{\rm np}$, c	A	$I_{ m эксп}$, кг $*$ м 2
	1,97	38,2		
	1,79	37,1		
12	1,61	29,5	19,5	0,0822
	1,47	26,8		
	0,99	21,4		
	2,13	21,7		
	1,84	20,2		
22	1,65	19,2	11,0	0,0854
	1,53	17,5		
	1,38	16,4		
32	2,00	16,1		
	1,93	14,4		
	1,72	12,5	7,6	0,0853
	1,61	12,0		
	1,40	10,6		

$$I_{\text{Teop}} = \frac{1,5*0,125^2}{2} \approx \mathbf{0}, \mathbf{0117} \text{ Kp * m}^2$$

$$I_{\text{3KCII}} = \frac{19,5*0,012*9,81*0,225}{2\pi} \approx 0,0822 \text{ Kp * m}^2$$

9. Расчет погрешностей измерений.

Стандартное отклонение (для $m = 12 \ \epsilon$):

$$\sigma_{A} = \sqrt{\frac{\sum_{i=1}^{n} (T_{\pi pi} - A\omega_{cpi})^{2}}{\sum_{i=1}^{n} (n-1)\omega_{cpi}^{2}}} \approx 0,502$$

Абсолютная и относительная погрешность (доверительная вероятность 0.90):

$$\Delta A = 2,132\sigma_A \approx 1,07$$
 ΔA

$$\varepsilon_A = \frac{\Delta A}{A} 100\% \approx 5,484\%$$

Абсолютная и относительная погрешность $I_{\text{эксп}}$ (доверительная вероятность 0.90):

$$\bar{\it I} \approx 0$$
, 0843 кг * м 2

$$\sigma_{I_{\text{ЭКСП}}} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (I_i - \bar{I})^2} \approx 0.0018$$

$$\Delta I_{\scriptscriptstyle \mathrm{9KCII}} = 2,92 \sigma_{I_{\scriptscriptstyle \mathrm{9KCII}}} \approx \mathbf{0}, \mathbf{0053}$$

$$\varepsilon_{I_{3\text{KCII}}} = \frac{\Delta I_{3\text{KCII}}}{I_{3\text{KCII}}} 100\% \approx 6,279\%$$

10. График.

11. Окончательные результаты.

Значение момента инерции гироскопа относительно главной оси, полученное из эксперимента, записанное в виде доверительного интервала:

$$I_{_{
m 2KCII}} = 0$$
, 0843 \pm 0, 005 Kp * M²; $arepsilon_{I_{
m 2KCII}} = 6$, 279%; $lpha = 0$, 90

Абсолютное отклонение измеренного значения момента инерции от его теоретического значения: $|I_{\text{эксп}} - I_{\text{теор}}| = 0,0705 \pm 0,01 \, \text{кг} * \text{м}^2$

12. Выводы и анализ результатов работы.

В результате проведения лабораторной работы по изучению прецессии гироскопа были выполнены следующие задачи:

- 1. Было проведено наблюдение прецессии гироскопа, что позволило наглядно увидеть этот физический процесс.
- 2. Было экспериментально подтверждено линейное зависимость периода прецессии гироскопа от частоты вращения гироскопа вокруг оси симметрии. Это подтверждает теоретические представления о прецессии гироскопа.
- 3. Был экспериментально определен момент инерции гироскопа. Полученные результаты были сравнены с теоретическими значениями, что позволило оценить точность эксперимента.

Таким образом, лабораторная работа позволила не только подтвердить теоретические знания о прецессии гироскопа, но и получить практический опыт ее изучения. Это помогло лучше понять принципы работы гироскопа и его применение в различных областях.

13. Дополнительные задания.

Контрольные вопросы

- 1. Что такое главные центральные оси инерции, как с ними связаны главные моменты инерции твёрдого тела? В чём отличия шарового, симметрического и асимметрического волчков?
- 2. В каком случае момент импульса твёрдого тела совпадает по направлению с угловой скоростью вращения твёрдого тела?
- 3. Опишите свободное вращение твёрдого тела. Возможно ли вращение твёрдого тела относительно главной оси, не являющейся центральной? При каком условии свободное вращение будет устойчивым?
- 4. Что такое нутация? Что такое прецессия?
- 5. Можно ли наблюдать нутацию шарового волчка? Можно ли считать Землю шаровым волчком?

14. Выполнение дополнительных заданий.

- 1. Главные центральные оси инерции это взаимно перпендикулярные оси, проходящие через центр тяжести тела, относительно которых центробежный момент инерции обращается в нуль. Главные моменты инерции тела относительно этих осей называются главными центральными моментами инерции. Отличия шарового, симметрического и асимметрического волчков связаны с их геометрией и распределением массы, что влияет на их динамику вращения.
- 2. Момент импульса твёрдого тела совпадает по направлению с угловой скоростью вращения твёрдого тела, когда тело вращается вокруг одной из своих главных осей.
- 3. Свободное вращение твёрдого тела это вращение тела вокруг оси, жестко связанной с телом, без внешних воздействий. Вращение твёрдого тела возможно относительно главной оси, не являющейся центральной, но это вращение будет неустойчивым. Устойчивым свободное вращение будет в случае, когда ось вращения совпадает с главной центральной оси инерции.
- 4. Нутация это слабое нерегулярное движение вращающегося твёрдого тела, совершающего прецессию. Прецессия это явление, при котором ось вращения тела меняет своё направление в пространстве.
- 5. Нутацию шарового волчка наблюдать в принципе возможно, но это зависит от конкретных условий, таких как начальные условия вращения и внешние воздействия. Землю можно считать шаровым волчком в контексте некоторых моделей, но стоит помнить, что это упрощение, поскольку Земля не является идеальным шаром и имеет сложное внутреннее строение.

Список использованных источников

- 1. Матвеев А. Н., Механика и теория относительности, том 1.
- 2. Курепин В.В., Баранов И. В. Обработка экспериментальных данных: Учеб.-метод. пособие СПб.: НИУИТМО; ИХиБТ, 2012.