NAME: Hrutuja Patkar SEAT NO.: 2115205

SUBJECT : TIME SERIES SUBJECT INCHARGE : MR. ASHISH MHATRE

DATE OF SUBMISSION: 14 FEBRUARY 2022

Q.1 Estimate parameters of AR (1) model by MLE method.

Consider the stationary AR(1) model

$$y_t = c + \phi y_{t-1} + \varepsilon_t, \ \varepsilon_t \sim iid \ N(0, \sigma^2), \ t = 1, \dots, T$$

 $\boldsymbol{\theta} = (c, \phi, \sigma^2)', \ |\phi| < 1$

Conditional on I_{t-1}

$$y_t|I_{t-1} \sim N(c + \phi y_{t-1}, \sigma^2), \ t = 2, \dots, T$$

which only depends on y_{t-1} . The conditional density $f(y_t|I_{t-1},\theta)$ is then

$$f(y_t|y_{t-1},\boldsymbol{\theta}) = (2\pi\sigma^2)^{-1/2} \exp\left(-\frac{1}{2\sigma^2}(y_t - c - \phi y_{t-1})^2\right), \ t = 2,\dots,T$$

To determine the marginal density for the initial value y_1 , recall that for a stationary AR(1) process

$$E[y_1] = \mu = \frac{c}{1-\phi}$$

 $var(y_1) = \frac{\sigma^2}{1-\phi^2}$

It follows that

$$y_1 \sim N\left(\frac{c}{1-\phi}, \frac{\sigma^2}{1-\phi^2}\right)$$

$$f(y_1; \boldsymbol{\theta}) = \left(2\pi \frac{\sigma^2}{1-\phi^2}\right)^{-1/2} \exp\left(-\frac{1-\phi^2}{2\sigma^2}\left(y_1 - \frac{c}{1-\phi}\right)^2\right)$$

The conditional log-likelihood function is

$$\sum_{t=2}^{T} \ln f(y_t | y_{t-1}, \boldsymbol{\theta}) = \frac{-(T-1)}{2} \ln(2\pi) - \frac{(T-1)}{2} \ln(\sigma^2)$$
$$-\frac{1}{2\sigma^2} \sum_{t=2}^{T} (y_t - c - \phi y_{t-1})^2$$

Notice that the conditional log-likelihood function has the form of the log-likelihood function for a linear regression model with normal errors. It follows that the conditional mles for c and ϕ are identical to the least squares estimates from the regression

$$y_t = c + \phi y_{t-1} + \varepsilon_t, t = 2, \dots, T$$

and the conditional mle for σ^2 is

$$\hat{\sigma}_{cmle}^2 = (T-1)^{-1} \sum_{t=2}^{T} (y_t - \hat{c}_{cmle} - \hat{\phi}_{cmle} y_{t-1})^2$$

The marginal log-likelihood for the initial value y_1 is

$$\ln f(y_1; \boldsymbol{\theta}) = -\frac{1}{2} \ln(2\pi) - \frac{1}{2} \ln\left(\frac{\sigma^2}{1 - \phi^2}\right) - \frac{1 - \phi^2}{2\sigma^2} \left(y_1 - \frac{c}{1 - \phi}\right)^2$$

The exact log-likelihood function is then

$$\ln L(\boldsymbol{\theta}|\mathbf{y}) = -\frac{T}{2}\ln(2\pi) - \frac{1}{2}\ln\left(\frac{\sigma^2}{1-\phi^2}\right) - \frac{1-\phi^2}{2\sigma^2}\left(y_1 - \frac{c}{1-\phi}\right)^2 - \frac{(T-1)}{2}\ln(\sigma^2) - \frac{1}{2\sigma^2}\sum_{t=2}^{T}(y_t - c - \phi y_{t-1})^2$$

The exact log-likelihood function is a non-linear function of the parameters θ , and so there is no closed form solution for the exact mles. The exact mles must be determined by numerically maximizing the exact log-likelihood function. Usually, a Newton-Raphson type algorithm is used for the maximization which leads to the interative scheme

$$\hat{\boldsymbol{\theta}}_{mle,n} = \hat{\boldsymbol{\theta}}_{mle,n-1} - \hat{\mathbf{H}} (\hat{\boldsymbol{\theta}}_{mle,n-1})^{-1} \hat{\mathbf{s}} (\hat{\boldsymbol{\theta}}_{mle,n-1})$$

where $\hat{\mathbf{H}}(\hat{\boldsymbol{\theta}})$ is an estimate of the Hessian matrix (2nd derivative of the log-likelihood function), and $\hat{\mathbf{s}}(\hat{\boldsymbol{\theta}})$ is an estimate of the score vector (1st derivative of the log-likelihood function). The estimates of the Hessian and Score may be computed numerically (using numerical derivative routines) or they may be computed analytically (if analytic derivatives are known).

Q.2 Select any real-life data in which both trend and seasonal components are present. Apply a smoothing technique to smooth the chosen data using appropriate smoothing constants.

TOPIC: To analyse the consumption of coal over a period of time.

OBJECTIVE: To smoothen the data in order to find clear trends to analyse the consumption of coal for years (2014-2020).

WHY THIS TOPIC?

Coal is a fossil fuel that poses serious threats to our environment. Though it has the lowest consumption rate among all fossil fuels, it is necessary to understand how we have been consuming it over years.

Understanding the consumption of coal over time, can help us determine if coal is really causing the threat to our environment, or we have reduced its consumption for a better alternative and also to safeguard our planet.

DATA SOURCE:

https://github.com/rishabh89007/Time Series Datasets

Total consumption of coal for quarterly (short tons) over years:

Year	Q1	Q2	Q3	Q4
2014	24914.333	24410.19	30060.366	22272.614
2015	19639.959	20880.065	27792.799	18466.374
2016	14616.943	20077.346	27738.163	23698.04
2017	19887.551	23138.725	27312.98	23148.298
2018	16466.977	17975.559	22259.525	19196.961
2019	16002.251	15464.589	17977.253	13866.538
2020	11029.285	12950.538	17219.614	14869.537

INTERPRETATION:

Plot for the consumption of coal over years 2014-2020:

The graph shows that there is a decreasing trend and seasonality present in the time series.

The Holts and Winters exponential smoothing is used to when there is trend as well as seasonality present in the time series.

ANALYSIS:

Step 1: The trend line is given by equation: y = -404.25x + 25981

Year	Q1	Q2	Q3	Q4	Mean	Estimated y
2014	24914.333	24410.19	30060.366	22272.614	25414.37575	-10247780.4
2015	19639.959	20880.065	27792.799	18466.374	21694.79925	-8744141.597
2016	14616.943	20077.346	27738.163	23698.04	21532.623	-8678581.848
2017	19887.551	23138.725	27312.98	23148.298	23371.8885	-9422104.926
2018	16466.977	17975.559	22259.525	19196.961	18974.7555	-7644563.911
2019	16002.251	15464.589	17977.253	13866.538	15827.65775	-6372349.645
2020	11029.285	12950.538	17219.614	14869.537	14017.2435	-5640489.685

Step2:

Estimation of trends:

Year	II - b/4	yt - b/8	yt + b/8	III + b/4
2014	-10257523.3	-10251028	-10244533	-10238037.52
2015	-8753884.47	-8747389.22	-8740894	-8734398.722
2016	-8688324.72	-8681829.47	-8675334.2	-8668838.973
2017	-9431847.8	-9425352.55	-9418857.3	-9412362.051
2018	-7654306.79	-7647811.54	-7641316.3	-7634821.036
2019	-6382092.52	-6375597.27	-6369102	-6362606.77
2020	-5650232.56	-5643737.31	-5637242.1	-5630746.81

Step 3:

Detrend the data:

The multiplicative method is preferred when the seasonal variations are changing over time. For multiplicative case, we obtain seasonal indices using the equation given by, $Si=\overline{X}i$ / \overline{X}

Calcu	Calculation = Observed value / Trend estimated value							
Value	Trend Eliminated							
Year	I	II	III	IV				
2014	-0.00242888	-0.00238124	-0.0029343	-0.0021754 77				
2015	-0.00224357	-0.00238701	-0.0031796	-0.00211421 2				
2016	-0.00168237	-0.00231257	-0.0031974	-0.0027337 04				
2017	-0.00210855	-0.00245495	-0.0028998	-0.0024593 51				
2018	-0.00215133	-0.00235042	-0.002913	-0.0025143 96				
2019	-0.00250737	-0.00242559	-0.0028226	-0.0021793 8				
2020	-0.00195201	-0.00229467	-0.0030546	-0.0026407 75				
Mean Xi	-0.00215344	-0.00237235	-0.0030002	-0.0024024 71	Mean X =	-0.00248211 3		
Si = Xi/X	0.86758361	0.95577844	1.2087243	0.96791365 2	Sum Si =	4		

Step 4:

Constants:

alpha	0.79014062
beta	0.80080494
gamma	0.01
RMSE	3797.28555

Year	Т	Observatio n	Lt	Tt	St	Ycap t+p	Erro r
0	-3				0.867583 61		
	-2				0.955778 44		
	-1				1.208724 3		
	0		25981	-404.25	0.967913 65		
2014	1	24914.333	28057.92 94	1582.69 0712	0.867787 379	28329.865 64	-341 5.53
	2	24410.19	26400.23 01	-1012.2 29628	0.955466 859	30687.093 07	-627 6.9
	3	30060.366	24978.31 02	-1340.3 11573	1.208671 644	22879.541 57	7180 .824

	4	22272.614	23142.54 32	-1737.0 74768	0.967858 613	18575.395 33	3697 .219
2015	1	19639.959	22374.77 84	-960.84 6525	0.867887 227	20460.302 25	-820. 343
	2	20880.065	21761.06 23	-682.86 27848	0.955507 34	25476.622 07	-459 6.56
	3	27792.799	22592.34 56	529.672 8964	1.208886 793	22378.844 77	5413 .954
	4	18466.374	19927.95 48	-2028.1 49096	0.967446 595	15535.012 76	2931 .361
2016	1	14616.943	17063.97 8	-2697.4 84064	0.867774 32	13727.290 41	889. 6526
	2	20077.346	19617.56 49	1507.59 9492	0.956186 639	25537.932 21	-546 0.59
	3	27738.163	22563.25 74	2659.23 1519	1.209091 435	24401.411 04	3336 .752
	4	23698.04	24648.02 62	2199.19 8915	0.967386 708	23297.332 51	400. 7075
2017	1	19887.551	23742.49 29	-287.08 59598	0.867472 93	22427.746 76	-254 0.2
	2	23138.725	24042.92 07	183.397 9423	0.956248 697	29291.834 39	-615 3.11
	3	27312.98	22933.13 84	-852.18 72309	1.208910 352	21360.818 61	5952 .161
	4	23148.298	23540.92 58	316.967 6781	0.967546 056	20696.076 72	2452 .221
2018	1	16466.977	20005.80 38	-2767.8 04711	0.867029 3	16483.814 2	-16.8 372
	2	17975.559	18470.61 59	-1780.7 19135	0.956418 186	20176.588 93	-220 1.03
	3	22259.525	18051.29 82	-690.50 20736	1.209152 508	16797.369 86	5462 .155

	4	19196.961	19320.40 77	878.764 5322	0.967806 7	17513.274 18	1683 .687
2019	1	16002.251	18822.14 75	-223.96 36752	0.866860 827	17787.641 26	-178 5.39
	2	15464.589	16679.00 46	-1760.8 51902	0.956125 894	18038.321 75	-257 3.73
	3	17977.253	14878.24 63	-1792.8 09126	1.209143 894	12664.173 79	5313 .079
	4	13866.538	14067.07 62	-1006.7 07769	0.967986 075	11321.521 77	2545 .016
2020	1	11029.285	12793.99 56	-1220.0 20418	0.866812 892	11066.177 38	-36.8 924
	2	12950.538	13131.20 72	27.0186 7642	0.956427 047	15910.188 51	-295 9.65
	3	17219.614	14013.89 76	712.244 8374	1.209339 982	14254.700 86	2964 .913
	4	14869.537	15228.01 64	1114.14 7986	0.968070 806	14165.598 81	703. 9382

OUTPUT:

CONCLUSION:

Thus, the time series now shows a clear decreasing trend even after removing the trend and seasonality components.

This draws a conclusion that the consumption of coal has reduced over a time period and thus we can say we may not have much threat to the environment from consumption of coal.

Q.3 Select any real-life time series data and for chosen data obtain acf, pacf. Plot the graphs. If the chosen time series is stationary, then identify which model can be fitted to the data. If it is non-stationary, then convert it into stationary and then identify which model can be fitted to the data.

TOPIC: Daily gold prices

OBJECTIVE: To find if the data is stationary, and if not ,convert it into stationary and fit a model to it by using acf and pacf plots.

DATA SOURCE:

https://www.kaggle.com/datasets?search=gold+prices

INTERPRETATION & ANALYSIS:

From the graph, we can see that the mean, variance and covariance is not constant over time. Hence the time series is **non-stationary.**

Also, by using **Dickey-Fuller Test:**

```
> adf.test(Price)
```

Augmented Dickey-Fuller Test

data: Price

Dickey-Fuller = -1.6348, $Lag\ order$ = 2, p-value = 0.7115

alternative hypothesis: stationary

From the p-value, we can say that the time series is non-stationary.

Converting Non-stationary data into stationary using Transformations and Differencing methods:

Using 1st, 2nd and 3rd order differencing:

```
ddprice = diff(Price)
> adf.test(ddprice)

Augmented Dickey-Fuller Test

data: ddprice
Dickey-Fuller = -2.5835, Lag order = 2, p-value = 0.3501
alternative hypothesis: stationary

> dd2price = diff(Price, differences = 2)
> adf.test(dd2price)

Augmented Dickey-Fuller Test

data: dd2price
Dickey-Fuller = -3.0793, Lag order = 2, p-value = 0.1612
alternative hypothesis: stationary

> dd3price = diff(Price, differences = 3)
> adf.test(dd3price)

Augmented Dickey-Fuller Test
```

```
data: dd3price
```

Dickey-Fuller = -2.1951, $Lag\ order$ = 2, p-value = 0.4981

alternative hypothesis: stationary

By looking at the p-values of all the order differencing, we find none of them to be stationary.

Using log-transformation:

```
> lnprice = log(Price)
> adf.test(lnprice)
```

Augmented Dickey-Fuller Test

data: Inprice

Dickey-Fuller = -1.6314, $Lag\ order$ = 2, p-value = 0.7128

alternative hypothesis: stationary

By looking at the p-value of the log-transformation series, we find data to be non-stationary.

Using 1st, 2nd and 3rd order differencing on log transformation:

```
> dprice = diff(lnprice)
> adf.test(dprice)
```

Augmented Dickey-Fuller Test

data: dprice

Dickey-Fuller = -2.5758, $Lag\ order = 2$, p-value = 0.353

alternative hypothesis: stationary

> d2price = diff(Inprice, differences = 2)

> adf.test(d2price)

Augmented Dickey-Fuller Test

data: d2price

Dickey-Fuller = -3.0812, $Lag\ order$ = 2, p-value = 0.1605

alternative hypothesis: stationary

- > d2price = diff(lnprice, differences = 3)
- > d3price = diff(lnprice, differences = 3)
- > adf.test(d3price)

Augmented Dickey-Fuller Test

```
data: d3price
```

Dickey-Fuller = -2.2087, $Lag\ order = 2$, p-value = 0.4929

alternative hypothesis: stationary

By looking at the p-values of all the order differencing, we find none of them to be stationary.

Using square root-transformation:

```
sqq = sqrt(Price)
> adf.test(sqq)
```

Augmented Dickey-Fuller Test

data: sqq

Dickey-Fuller = -1.6331, $Lag\ order$ = 2, p-value = 0.7121

alternative hypothesis: stationary

By looking at the p-value of the square root transformation series, we find data to be non-stationary.

Finding ACF and PACF:

ACF:

PACF:

CONCLUSION:

Even though we find ACF & PACF plots for time, we are not able to fit any model to the time series as it is non-stationary.

The given non-stationary time series data can be made stationary by trying various transformations and taking their order differentiation or solved by linear models.