

101 Last time Conway VII. 2. $f_n: u \longrightarrow \sigma, f: u \longrightarrow \sigma$ $f_n \stackrel{\text{l.u.}}{\Longrightarrow} f \iff f_n \stackrel{c}{\Longrightarrow} f$ $\langle = \rangle \forall \ \not\equiv \varepsilon \ u \ , \ \not\equiv \Delta (\not\equiv, r_{\not\equiv}) \subseteq u \ , \ f_n \implies f \ m \ \Delta (\not\equiv, r_{\not\equiv}) \ .$ ←> fn = f in K + K ⊆ u. compact

11/ Weierstaß' Theorem

Zet fn: u - a holomorphic, fn = f. Then

TI f holomorphic

 $f_n \stackrel{(k)}{\Longrightarrow} f^{(k)}$

Proof III Let R & u closed rectangle., 2R = compact.

Since for holomorphic => I for olz = 0. (Techure 6)

=> If dz = 0 => f admits a primitive F in any discinu.

= f = f' = holomorphic in any disc = f holomorphic.

$$\left| f_n(2) - f'(2) \right| = \left| \frac{1}{2\pi i} \int \frac{f_n(\omega) - f(\omega)}{(\omega - 2)^2} d\omega \right|$$

$$\frac{\partial \Delta_R}{\partial \Delta_R}$$

Thus sup
$$|f_n - f'| \le \frac{R}{(R-r)^2}$$
 sup $|f_n - f'| \longrightarrow \infty$.

$$\Rightarrow f_n = f'.$$

Series fn: u - c holomorphic. Assume

(*)
$$\forall K \subseteq \mathcal{U}$$
 compact $\exists M_n(K), |f_n| \leq M_n(K)$.

over K. & \(\sum_{n=1}^{\infty} M_n (K) \). \(\omega \infty \).

 $= f = \sum_{n=0}^{\infty} f_n \quad converges \quad absolutely & uniformly on every K.$

 $\frac{\text{weiershaps}}{\text{=>}} f \text{holomorphic & } f = \sum_{n=1}^{\infty} f_n$

Remark We have seen a particular case of this for

power series. (Lecture 2).

$$|f_n| = \left| \frac{1}{n^5} \right| = \left| \frac{1}{n^2} \cdot \frac{1}{\sqrt{2}} \right| = \frac{1}{n^2} \cdot 1 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2$$

Remarks III We have seen
$$3(2n) = \frac{(-1)^{n+1}(2\pi)^{2n}}{2(2n)!}$$

12.1 Hurwitz Theorem

$$f_n: u \longrightarrow a$$
 holomorphic, $f_n \stackrel{!.u.}{\longrightarrow} f$, $\nabla \subseteq u$ compact

If $f/\partial V$ has no genees,

$$\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} = \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{1}} = \frac$$

Proof

$$V = \overline{\triangle} (a, R)$$

$$|f_n - f| < \varepsilon \leq |f| = > |f_n - f| < |f| \text{ over } \partial^{V}.$$

[W General case V compact => f has finitely many zeroes C... Ck in V. Surround C; by small disjoint discs Δ_j , $W = V \setminus \bigcup_{j=1}^{n} \Delta_j$ => f has no genes in W. => JN s.t. 4 n 2 N, fn That no zero es in \overline{w} . (If $\varepsilon = \min_{\overline{w}} |f| > 0 \Rightarrow \overline{J}N$, s.t. $\forall n \geq N$ If n-f/ < s in w => fn for in w for n 2 N.) => # Zeroes (f) = $\sum_{j=1}^{4}$ Zeroes (f) = for n large by

ist case applied

to fin on Δ_j . $= \sum_{j=1}^{k} \# Z_{eroes} (f_n) =$ gerocs in W

= # leroes (fm) for nzN.

Goro Mary A fn = f . fn holomorphic in 21, If f_n is zero free $\forall n = 3$ f zero-free or $f \equiv 0$. This fails in real analysis, $f_n = x^2 + \frac{1}{n} \implies f = x^2$ Proof Indeed if f \$0, let a be chosen so that f(a) = 0. Let $V = \overline{\Delta}(a,r)$, $f/\partial V$ has no Jenses. (Argue by contradiation, otherwise genoes of f would accumulate). Hurwitz

=> # Zeroes $(f) \ge 1$. # $n \ge N$. Va is a zero - contradiction.

=> f is zero - free $\frac{E \times ample}{} u = \sigma^* = \sigma \cdot \{o\}$ • $f_n(2) = 2$, f(2) = 2, $f_n \stackrel{\text{l.u.}}{\Longrightarrow} f$, $f_{2em} f_{ree}$. • $f_n(x) = \frac{x}{n}$, f(x) = 0 , $f_n \stackrel{\text{l.u.}}{\Longrightarrow} f$, $f \equiv 0$. Both possibilities occur.

Corollary B fn = f, fn holomorphic in 21, If In an injective un => f injective or f constant. Proof. Assume f not injective, f(a) = f(b), a + b. $f_n = f_n - f_n(a).$ $Since f_n(a) \longrightarrow f(a)$ $f(a) \longrightarrow f(a)$ $f(a) \longrightarrow f(a)$ $f(a) \longrightarrow f(a)$ for injective =: f_n zero free on $u = u \setminus \{a\}$.

Corollary A

=> f is zero free on u or $f \equiv 0$. on uNote that $\tilde{f}(b) = f(b) - f(a) = 0 \Rightarrow \tilde{f}$ is mot good free in \tilde{u} . Thus $f \equiv 0$ in $\tilde{u} = 1$ constant.

Adolf Hurwitz (1859-1919)