PATENT ABSTRACTS OF JAPAN

(11) Publication number: 11279693 A

(43) Date of publication of application: 12 . 10 . 99

(51) Int. CI

C22C 38/00 C21D 9/46 C22C 38/06 C22C 38/38

(21) Application number: 10081804

(22) Date of filing: 27 . 03 . 98

(71) Applicant:

NIPPON STEEL CORP

(72) Inventor:

SAKUMA KOJI HIWATARI SHUNJI MURASATO AKINOBU

(54) GOOD WORKABILITY/HIGH STRENGTH HOT ROLLED STEEL SHEET EXCELLENT IN BAKING HARDENABILITY AND ITS PRODUCTION

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a steel sheet having stable baking hardenability as well as high strength and good workability by incorporating specified amounts of C, Si, Mn, P, S, Al and N into a steel and specifying the relation between the contents of Si and P.

SOLUTION: The compsn. of a steel is composed of, by weight, 0.05 to 0.18% C, 0.4 to 1.8% Si, 1.0 to 2.5%

Mn, $_{\leq}0.03\%$ P, $_{\leq}0.02\%$ S, 0.005 to 0.5% AI, $_{\leq}0.0060\%$ N, and the balance Fe with inevitable impurities. Also, $50_{\leq}(\%\text{Si})/(\%\text{P})_{\leq}200$ is satisfied. If required, 0.0002 to 0.0020% B is furthermore incorporated therein. Or, one or more kinds among 0.02 to 0.8% Cr, 0.002 to 0.03% Ti and 0.002 to 0.03% Nb are moreover incorporated therein. This steel slab is subjected to finish rolling at $_{\cong}\text{Ar}_3$ point, is cooled at a cooling rate of 3 to 50°C/sec to from 750 to 600°C, is coiled at 400 to 570°C and is incorporated with, by volume, $_{\cong}50\%$ ferrite and 3 to 25% martensite and residual austenite.

COPYRIGHT: (C)1999,JPO

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-279693

(43)公開日 平成11年(1999)10月12日

(51) Int.Cl. ⁶	識別記号	F I
C 2 2 C 38/	00 3 0 1	C 2 2 C 38/00 3 0 1 W
C21D 9/	46	C 2 1 D 9/46 T
C 2 2 C 38/	06	C 2 2 C 38/06
38/	38	38/38
		審査請求 未請求 請求項の数5 OL (全 7 頁)
(21)出願番号	特願平10-81804	(71) 出願人 000006655
		新日本製鐵株式会社
(22)出願日	平成10年(1998) 3月27日	東京都千代田区大手町2丁目6番3号
		(72)発明者 佐久間 康治
		千葉県君津市君津1番地 新日本製鐵株式
		会社君津製鐵所内
		(72)発明者 樋渡 俊二
		千葉県君津市君津1番地 新日本製鐵株式
		会社君津製鐵所内
		(72)発明者 村里 映信
		千葉県君津市君津1番地 新日本製鐵株式
		会社君津製鐵所内
		(74)代理人 弁理士 椎名 彊

(54) 【発明の名称】 焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法

(57)【要約】

【課題】 比較的容易な方法で製造でき、形状も良好で、安定して焼付硬化性を有する良加工性高強度熱延鋼板とその製造方法を提供すること。

【解決手段】 特定組成に制御されたCとSi、Mn、P添加量を有するうえに、P含有量に対し、一定割合のSiが添加された鋼をAr,点以上の温度で仕上圧延し、ランアウトテーブルにおいて750℃から600℃までの範囲を $3\sim50℃/$ 秒の冷却速度で冷却することにより、それ以下を室温まで強制冷却することなく、400 \sim 570°で巻き取っても、体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれる金属組織とすることができるため、高強度と良加工性に加えて安定した焼付硬化性を有する熱延鋼板を製造できる。

20

1

【特許請求の範囲】

【請求項1】 重量%で、

 $C: 0.05 \sim 0.18\%$

 $Si: 0.4 \sim 1.8\%$

 $Mn: 1. 0 \sim 2. 5\%$

P:0.03%以下、

S:0.02%以下、

 $A1:0.005\sim0.5\%$

N:0.0060%以下を含有し、

残部Feおよび不可避的不純物からなり、さらに%Si、%PをそれぞれSi、P含有量とした時に $50 \le$ (%Si) \angle (%P) ≤ 200 が満たされることを特徴とする焼付硬化性に優れた良加工性高強度熱延鋼板。

【請求項2】 重量%で、B:0.0002~0.00 20%を含有する請求項1記載の焼付硬化性に優れた良 加工性高強度熱延鋼板。

【請求項3】 重量%で、Cr:0.02~0.8%、Ti:0.002~0.03%、Nb:0.002~0.03%、Nb:0.002~0.03%の1種以上を含有する請求項1または請求項2に記載の記載の焼付硬化性に優れた良加工性高強度熱延鋼板。

【請求項4】 請求項1または請求項2または請求項3 のいずれかに記載の化学成分からなり、その金属組織に 体積率で50%以上のフェライトと3%以上25%以下 のマルテンサイトおよび残留オーステナイトが含まれる ことを特徴とする焼付硬化性に優れた良加工性高強度熱 延鋼板。

【請求項5】 請求項1または請求項2または請求項3のいずれかに記載の化学成分からなる組成のスラブをAr。点以上の温度で仕上圧延を行い、ランアウトテーブルにおいて750℃から600℃までの範囲を3~50℃/秒の冷却速度で冷却し、400~570℃で巻き取り、その金属組織に体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれることを特徴とする焼付硬化性に優れた良加工性高強度熱延鋼板の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、焼付硬化性に優れた良加工性高強度熱延鋼板とその製造方法に関わるもの 40 である。本発明が係わる良加工性高強度熱延鋼板とは、自動車、家庭電気製品、建築などの用途にプレス加工をして使用されるものであり、防錆の改善のために溶融亜鉛めっきや電気亜鉛めっきを施したり、さらにその一層の改善を図るために金属酸化物皮膜、有機皮膜を表面処理した鋼板やプレス成形性の改善のために上層に鉄めっきを施した鋼板を含む。

[0002]

【従来の技術】自動車車体の衝突安全性強化やCO₂等の排出ガス削減に資する燃費向上を目的とした車体軽量 50

化の動きに対応し、プレス加工してフレーム、メンバーやフロア等の車体骨格部品に用いられる鋼板も軟鋼板から高強度鋼板へと変化してきた。一般に自動車会社が鋼板を鉄鋼会社から受入した時の強度が自動車車体の設計に当たって鋼板の強度特性として用いられているが、鋼板によっては特公昭59-20733号公報にあるように自動車会社でのプレス加工と焼付塗装工程を経る間に著しくひずみ時効硬化し、特に降伏強さが増加することがある。

2

【0003】この種の鋼板は焼付硬化性鋼板と呼ばれ、 プレス加工時には加工性が良く、プレス加工後には高強 度であるというプレス加工に供される鋼板として好まし い特徴を持ち、一般にはドアアウターやフェンダー等の 外板パネルに用いられる冷延鋼板として知られている が、熱延鋼板においても、例えば「鉄と鋼」第68巻第 9号1306頁 (1982年) に開示されているよう に、フェライト中にマルテンサイトを微細に分散した複 合組織鋼板とすることや特許第1710295号公報に 開示されているようにAlの添加量を低減し、Nを過飽 和に固溶させることによっても製造することができる。 【0004】しかし、熱延ままでフェライト中にマルテ ンサイトを微細に分散させようとすると、高合金とした 上で熱延ランアウトテーブルでの冷却条件を工業的に大 量生産を困難とする程度に厳密に制御しない限りは、室 温近傍まで強制冷却を行なう必要があり、特に板厚が 2. 0 mm以下になると良好な形状で巻取ることが困難 となり、形状矯正のために過度の調質圧延を行なおうと すれば、複合組織の優れた特徴である高強度と良加工性 の両立が困難となるし、期待していたようには焼付硬化 性を示さないこともしばしばある。またNを過飽和に固 溶させることも常温時効性を抑制することと両立させよ うとすれば、自ずと限定された範囲に固溶Nの量を制御 しなければならず、製鋼や熱延の操業は必ずしも容易で なかった。

[0005]

【発明が解決しようとする課題】前述のとおり、比較的 容易な方法で製造でき、形状も良好で、安定して焼付硬 化性を有する良加工性高強度熱延鋼板とその製造方法を 開発することが課題とされてきた。

[0006]

【課題を解決するための手段】本発明者らは、上記の課題を解決するべく、CとSi、Mn、Pの添加量を制御した鋼を用いて、熱延ランアウトテーブルでの冷却条件と巻き取り温度について鋭意検討を加えた結果、特定組成に制御されたCとSi、Mn、P添加量を有するうえにP含有量に対し、一定割合のSiが添加された鋼を用い、Ar,点以上の温度で仕上圧延を行うと、ランアウトテーブルにおいて750℃から600℃までの範囲を3~50℃/秒の冷却速度で冷却すれば、それ以下を室温まで強制冷却することなく、400~570℃で巻き

取っても、その金属組織には体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトを含まれ、高強度と良加工性に加えて安定した焼付硬化性を有する熱延鋼板を製造できることを見出した。

【0007】本発明はこのような思想と新知見に基づいて構成された従来にはない全く新しい鋼板であり、その要旨とするところは以下のとおりである。

(1) 重量%で、 $C:0.05\sim0.18\%$ 、 $Si:0.4\sim1.8\%$ 、 $Mn:1.0\sim2.5\%$ 、P:0.03%以下、S:0.02%以下、 $Al:0.005\sim0.5\%$ 、N:0.0060%以下を含有し、残部Feおよび不可避的不純物からなり、さらに%Si、%PをそれぞれSi、P含有量とした時に $50\leq$ (%Si) / (%P) \leq 200が満たされることを特徴とする焼付硬化性に優れた良加工性高強度熱延鋼板、

【0008】(2) 重量%で、B:0.0002~0.0020%を含有する前記(1)記載の焼付硬化性に優れた良加工性高強度熱延鋼板、(3)重量%で、Cr:0.02~0.8%、Ti:0.002~0.03%、Nb:0.002~0.03%の1種以上を含有する前記(1)または(2)に記載の記載の焼付硬化性に優れた良加工性高強度熱延鋼板、(4)前記(1)または(2)または(3)のいずれかに記載の化学成分からなり、その金属組織に体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれることを特徴とする焼付硬化性に優れた良加工性高強度熱延鋼板、

【0009】(5)前記(1)または(2)または(3)のいずれかに記載の化学成分からなる組成のスラブをAr,点以上の温度で仕上圧延を行い、ランアウトテーブルにおいて750℃から600℃までの範囲を3~50℃/秒の冷却速度で冷却し、400~570℃で巻き取り、その金属組織に体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれることを特徴とする焼付硬化性に優れた良加工性高強度熱延鋼板の製造方法である。

【0010】以下、本発明を詳細に説明する。まず、C、Si、Mn、P、Al、N、B、Cr、Ti、Nbの数値限定理由について述べる。Cはマルテンサイトや 40残留オーステナイトによる組織強化で鋼板を高強度化しようとする場合に必須の元素であり、Cが0.05%未満ではセメンタイトやパーライトが生成しやすく、必要とする引張強さの確保が困難である。一方Cが0.18%を超えると、硬質な組織が連結して存在し、加工性の劣化が顕著となるうえ、降伏強さへのフェライトの寄与が小さく、焼付硬化性が見られない。

【0011】Siは鋼板の加工性、特に伸びを大きく損なうことなく強度を増す元素として知られており、その添加は一般に有用と考えられるうえ、パーライトおよび 50

ベイナイト変態の進行を著しく遅滞させ、室温まで強制 冷却しなくとも体積率で3~25%のマルテンサイトお よび残留オーステナイトが体積率で50%以上のフェラ イト中に混在する金属組織を形成するために0.4%以 上を添加する。しかし、その添加量が1.8%を超える と鋼板表面に赤スケールの生成が著しく、酸洗性が著し く阻害されるため、上限を1.8%とする。

【0012】また、%Si、%PをそれぞれSi、P含有量とした時に $50 \le (\%Si)$ / $(\%P) \le 200$ が満たされる時に、その理由が定かではないが、焼付硬化性が大きい。 (%Si) / (%P) が50 未満の場合には、体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれる金属組織であっても十分な焼付硬化性は得られない。また (%Si) / (%P) が200を超えるようにするには、酸洗性が著しく悪化するほどのSiを添加するか、極端にPを低減する必要があり、コスト高となるため工業的な生産には向かない。

【0013】MnはCとともに鋼の重要な強化元素であると同時に、オーステナイトの自由エネルギーを下げ、マルテンサイトおよび残留オーステナイトが含まれる金属組織とするために1.0%以上添加する。しかし添加量が過大になるとスラブに割れが生じやすく、また偏析が著しく、連結状の硬質組織を形成してプレス加工性を悪化させるため2.5%を上限とする。Pは一般に不可避的不純物として鋼に含まれるが、偏析が著しく、その低減のためには熱延条件を制約する必要が生じるため、0.03%を上限とし、好ましくは0.015%以下とすることが望ましい。

30 【0014】Sも一般に不可避的不純物として鋼に含まれるが、その量が0.02%を超えると、圧延方向に伸張したMnSの存在が顕著となり、鋼板の曲げ性に悪影響をおよぼす。Alは鋼の脱酸元素として、またAlNによる熱延素材を細粒化し、材質を改善する目的で0.05%以上添加する必要があるが、0.5%を超えることはコスト高となるばかりか、表面性状を劣化させ、好ましくは0.1%以下が望ましい。

【0015】Nもまた一般に不可避的不純物として鋼に含まれるが、その量が0.060%を超えると、伸びとともに脆性も劣化するため、これを上限とする。Bは一般に焼き入れ性を増す元素として知られており、室温まで冷却後に体積率で3~25%のマルテンサイトおよび残留オーステナイトがフェライト中に混在した金属組織とすることを容易にするため0.002%以上添加してもよい。しかし、その添加量が0.0020%を超すと、フェライトが50%以上となるような体積率に成長せず、硬質な組織が連続状になるため、高強度とプレス加工性の良いことの両立が困難となる。

【0016】Crはマルテンサイトおよび残留オーステナイトの存在する金属組織を形成し、また焼付硬化性を

増す目的で0.02%以上添加してもよい。しかし、0.8%を超す添加はコストの増加につながるばかりか、焼付硬化性を低下させることもあるため避けなければならない。TiおよびNbは炭化物、窒化物あるいは炭窒化物を形成し、フェライトやオーステナイトおよび残留オーステナイトの体積率を大きく変えずに鋼を強化するため、加工性を劣化させずに高強度化を達成できるため0.002%以上添加してもよい。しかし、さらに添加量を増すとその効果が飽和し、また加工性が劣化し始めるため0.03%を上限とする。これらを主成分とする鋼にMo、Cu、Sn、Zn、Zr、W、Niを合計で1%以下、CaおよびREMを合計で0.02%以下含有しても本発明の効果を損なわず、その量によって

【0017】次に、製造条件の限定理由について述べる。その目的は体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトを含む金属組織とし、高強度とプレス加工性が良いことを両立させた上に、SiをPに対し特定割合添加することにより、安定した焼付硬化性を得ることにある。フェライトが50%未満の場合にはプレス加工性が良くないうえ、硬質な組織が連結して存在し、降伏強さへのフェライトの寄与が小さく、焼付硬化性が見られない。マルテンサイトおよび残留オーステナイトの体積率が3%未満の場合には高強度とならない。一方、マルテンサイトおよび残留オーステナイトの体積率が25%を超えると、高強度ではあるものの鋼板の加工性が劣化し、本発明の目的が達成されない。

は耐食性が改善される等好ましい場合もある。

【0018】熱間圧延に供するスラブは特に限定するものではない。すなわち、連続鋳造スラブや薄スラブキャスター等で製造したものであればよいし、鋳造後直ちに熱間圧延を行う連続鋳造ー直送圧延(CC-DR)のようなプロセスにも適合する。また熱間圧延に際して、仕上直前や粗圧延を行なう場合にはその間において1回以上10MPa以上の高圧水で鋼材をデスケーリングすることは鋼板表面の性状を改善するうえで好ましい。

【0019】熱間圧延の仕上温度は鋼板のプレス加工性を確保するという観点からAr,点以上とする必要がある。仕上温度がAr,点未満になると、硬質相が連結状に存在するようになり、プレス加工性が劣化する。熱間 40 圧延の仕上げ後の鋼帯は、オーステナイトからのパーライト変態を避ける目的で、ランアウトテーブルでは750℃から600℃の温度範囲を3~50℃/sで冷却す*

* る。冷却開始温度が750 \mathbb{C} 以下であったり、または750 \mathbb{C} から600 \mathbb{C} までを3 \mathbb{C} /s 未満の冷却速度で冷却した場合には、本発明のP に対して一定割合のSi を添加された鋼でも炭化物の析出が著しく、焼付硬化性が

低下する。一方、冷却終了温度が600℃を超えるような場合にはオーステナイトからパーライトへの変態が急速に進むため、強度の低下が顕著となる。また50℃/sを超える冷却速度で鋼帯を冷却しようとすれば、ランアウトテーブルにおける鋼帯の走行性が悪く、形状の悪

10 化につながる。

【0020】本発明では鋼帯はこのような条件で冷却後、400~570℃で巻き取ってコイルとされる。巻取温度が570℃よりも高いと、本発明のPに対して一定割合のSiを添加された鋼でも巻取り後に炭化物が急速に析出し、焼付硬化性が低下する。一方、400℃以下で巻き取ることは冷却終点温度の制御が難しいうえ、制御できたとしても鋼帯の形状が悪く、矯正にともなってプレス加工性が劣化するために好ましくない。

【0021】巻き取ったコイルは捲き解いてから、そのまま、あるいは調質圧延の後、酸洗するが、黒皮のままで使用することもできる。この後、必要により、溶融亜鉛めっきや電気亜鉛めっきを施したり、さらに上層に鉄めっきや金属酸化物皮膜、有機皮膜などの表面処理を施すこともでき、高強度とプレス加工性が良く、安定した焼付硬化性を有するといった本発明の特徴は阻害されず、プレス加工性や防錆の一層の改善につながるため本発明の目的を達成する上で好ましい。

[0022]

【発明の実施の形態】次に本発明例を実施例にて説明する。表1に示す組成からなるスラブを1150℃に加熱し、仕上温度880~940℃で1.2~3.2mmに熱間圧延した後、ランアウトテーブルにおいて750℃から600℃までを表2に示すような冷却速度で冷却し、コイルに巻き取った。酸洗後の鋼帯からJIS5号試験片を切り出し、降伏強さ(YP)、引張強さ(TS)、伸び(E1)を常温での引張試験を行うことにより、また2%予変形後、170℃で20分の時効処理を行った際の降伏強さの増加量、すなわち焼付硬化量(BH)を求めた。さらに光学顕微鏡組織観察により、フェライト、マルテンサイトおよび残留オーステナイトの体積率を求めた。以上の結果を表2に示す。

[0023]

【表1】

						表	Ę	1					
鋼	C	Si	Man	P	S	Al	N	В	Cr	Ti	Nb	(%Si)/(%P)	備考
A	0.03	1.24	1.63	0. 011	0.006	0.038	0.0029	_		<u> </u>	-	113	比較例
В	0. 07	1. 16	1.52	0.007	0.003	0.042	0.0034	-		<u> </u>	<u> </u>	166	本発明
C	0.08	0.32	1.32	0.005	0.004	0.032	0.0035	_		_	_	64	比较例
D	0.09	1.62	1.55	0. 032	0.005	0. 034	0.0028	· –			_	51	比較例
E	0.09	1. 18	0.84	0.014	0.002	0.027	0.0028	<u> </u>	_	_		84	比較例
F	0.09	0.62	1.58	0, 008	0.002	0. 130	0.0024					78	本発明
G	0.09	0.64	1.60	0.012	0.005	0.031	0.0036		_	_	0.017	53	本発明
H	0.09	0.67	1.52	0.017	0.003	0.028	0.0040	_	-			39	比較例
I	0.09	1.05	2.23	0.007	0.003	0.031	0.0030	_	_	_		150	本発明
J	0.09	1.63	1.76	0.009	0.003	0.027	0.0026	0.0012	_		_	181	本発明
K	0. 10	1.54	1.78	0. 010	0.004	0.037	0.0037	0.0026	_		-	154	比較例
L	0.10	0.89	1.31	0.007	0.005	0.040	0.0036		0.35	_	–	127	本発明
M	0. 10	0.90	1.34	0.009	0.007	0, 027	0.0039	_	1.08	_	-	100	比較例
N	0. 11	1.93	1.17	0.010	0.003	0.041	0.0028	_	_	-	—	193	比較例
O	0. 12	1.55	1.76	0.008	0.002	0.021	0.0022		_	0.011	_	194	本発明
P	0.13	1.56	1.77	0. 011	0.003	0.037	0.0031			_		142	本発明
Q	0.14	0.86	2.10	0. 012	0.002	0.028	0.0030	_		0.016	0.013	<i>T</i> 2	本発明
R	0. 15	0.95	2.63	0. 011	0.004	0.032	0.0037	_			_	86	比較例
S	0.16	1.23	1.59	0. 027	0.003	0.036	0.0030		-	_	_	<u>46</u>	比較例
T	0.17	1.17	1.67	0.009	0.003	0.033	0.0029	_				130	本発明
U	0. 21	1.45	1.98	0. 013	0.004	0.029	0.0031	_		-	_	112	比較例

(注) - は無添加。アンダーラインは本発明外

[0024]

【表 2】

	w	力数配	本路田	比较便	光胶倒	比较例	本紹明	比较例	比较例	比较例	本発明	无数应	本発明	比較例	北較便	本発明	北較便	北較例	比較例	本発明	比較例	比較例	本発明	本発明	本発明	比較例	比較例	比較例	本発明	九数定	比较的	比較例
マルテンサイトおよび残留オー	ステナイトの体徴等 (3)	T	8	2	2	2	7	2	2	15	2	12	91	2	2	20	80	2	18	11	12	7.7	20	15	18	ಜ	38					
727	強い	æ	85	29	33	98	11	æ	8	æ	76	11	귫	88	16	65	34	17	46	74	73	61	93	39	2	44	₽ TF	54	2.2	69	47	\$
B H	(MPa)	42	11	8	92	19	53	88	22	18	47	37	88	12	14	83	21	16	40	95	ଝ	43	အ	ফ্র	47	33	ន	56	57	11	62	12
母为	8	37	æ	ਲੱ	23	ಜ	88	88	ಜ	24	35	88	83	23	z	8	14	74	18	ಷ	99	8	2	2	ន	9	2	ষ	ध	9	œ	16
記録	(MPa)	448	607	576	513	549	577	492	488	706	640	602	760	88 88	555	785	325	758	830	625	637	緩	887	<u>.</u>	88	- 266	88	937	943	æ	8	986
改改	(MPa)	353	430	485	411	475	442	370	421	383	478	435	535	484	460	547	тт.	533	678	451	1 3	474	88	<u> </u>	8	88	813	8	SE SE	ã	&	705
卷幅取废	(2)	220	470	430	520	440	510	480	240	220	440	430	450	සි	280	440	440	490	210	\$	8	\$	8	620	<u>8</u>	420	4.30	83	83	8	8	428
在記念担選所の治性を	了 温度 (で)	280	500	490	280	220	220	220	22 0	ଞ୍ଛ	200	23	550	630	236	88	490	230	570	220	\$	510	220	480	220	4.10	220	200	200	640	410	1 88
在記念哲識所の治哲理) 88	820	078	810	98	870	710	&	8	820	8	810	820	88	930	£	8	8	28	6	88	£	250	070	3	0238	830	820	82	078	252
750 Cなら 600 Cまでの		ස	ස	35	ঠ	47	42	33	7	40	42	æ	15	82	37	œ	in the	17	∞ !	2	31	88	8	×2 8	Q	38	38	23 15	12	8	£ 8	35 0
熱間圧延仕上温度		88	026	8	£	936	96	8	88	016	910	6	<u></u>	968	SS 5	026	35	<u>8</u>	25 25	200	200	OF 18	200	38	3	38	3 3	35 5	₹ 8	200	20 00	200
検 配	1	9:	∞ !	∞. -	æ.	~	7:	9.	3.2	8:	9	»;	× .	9	9 6	77.	200	<u>ا</u>	2 C	7 ·	× 0	0 0	٥		3 .	9 -	9	٥	واه	0	0	이
좚		4	20	J	الد	<u> </u>	E.	= 1	- 1	٠,	اد	₫.	╗.	_ .	1	1	ᆉ.	+	╁	<u>با</u>	1 2	2	٥	╌	+-	3 0	40	d F	- E	- E	- :	
超碳率	111	4	.7	-1	┥,	Ŋ	D .	4	201	제	≥ :	3	2	<u>a</u>	<u> </u>	2 2	9:	49	95	2 8	-	_	3 8	+-	-		.,	+	-	3 8	<u> </u>	1

【0025】この表から明らかなように、本発明試料である試料No2、6、10、12、15、19、22~4024、28はP含有量に対し、一定割合のSiが添加された化学組成からなり、体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれる金属組織を有するとすることができるため、高強度と良加工性に加えて45MPa以上の安定した焼付硬化性を有する。

【0026】これに対し、その金属組織に含まれるフェライトが体積率で50%未満であったり、またマルテンサイトおよび残留オーステナイトが体積率で3%未満か、25%を超えるような場合には試料No1、3、

4、5、18、21、26、27、31のように本発明 成分以外の鋼に加えて、試料No7~9、13、14、 16、17、25、29、30のように本発明成分鋼で あっても、高強度ではあっても加工性が良くないか、良 加工性であっても強度が低く、また焼付硬化性も45M Paを超えることはない。

【0027】また、体積率で50%以上のフェライトと3%以上25%以下のマルテンサイトおよび残留オーステナイトが含まれる金属組織を有しても、P含有量に対し、Siの添加量が少なかったり、0.8%を超えるCrが添加されていたり本発明成分からはずれる場合に は、試料No11、20のように高強度で加工性が良く

とも焼付硬化性が小さい。

[0028]

【発明の効果】以上詳述したように、本発明によれば体 積率で50%以上のフェライトと3%以上25%以下の マルテンサイトおよび残留オーステナイトを含む金属組 織を有し、引張強さ540~1080MPa級の高強度* * と良加工性に加えて安定した焼付硬化性を有する鋼板を 製鋼や熱延に極端な負荷をかけることなく、比較的容易 な方法で製造することができ、自動車、家庭電気製品、 建築等の分野でそれぞれが持つべき機能を向上させなが ら軽量化を図ることができるため産業上極めて大きな効 果を有する。

12