

Reference: Van Cleve et. al. "Helium-3 Mining Aerostats in the Atmospheres of the Outer Planets", 2002

Art by David Seal of JPL

Imagine an Interplanetary Future

Where

- d-He3 fusion produces most of Earth's energy needs without radioactivity or carbon emissions
- Space transportation has been revolutionized by an efficient fusion propulsion system with exhaust velocity up to 0.088 c
- Space commerce is stimulated by the existence of an interplanetary cargo worth \$3-M a kilogram
- Unmanned probes travel to the nearest star systems with flight times less than a human lifetime

2

He-3 Fusion for Energy & Propulsion

d + He3 --> p + He4

- reactants are stable and storable
- products are energetic, charged and stable
- Efficient electrical generation from MHD
- No activation and embrittlement of reactor vessel
- 0.088 c --> ~50 yr interstellar flight using known physics. Efficient conversion to thrust with exhaust velocity up to
- 3.6×10^{14} J/kg of d-He3 mixture = 1.0×10^{8} kWh/kg
- Fuel is about 20% of the kWh cost of electricity
- If electricity is 15¢/kWh then He3 has a value of \$3M/kq

He-3 is one of the few commodities worth interplanetary freight costs

Why Outer Planets for He-3?

- Earth: breeding of tritium from either isotope of lithium by neutron bombardment, tritons decay to He-3.
- Containment, waste problems same as d-t fission.
- USA has no current capability.
- Lithium inventory?
- Moon: solar wind implanted in regolith, 10 ppb (10-8) by mass in uppermost few meters. ~1000 yr of 2001 energy needs- a starter catalyst?.
- Outer planets: primordial He3, ~10 parts per million (10⁻⁵), ~10⁹ yr of 2001 energy needs- the ultimate energy source?.

Which Outer Planet-Jupiter

<u>.</u>

Closest to Earth and Sun

Con:

Huge gravity means return vehicle has mass ratio >20 (nuclear thermal $I_{sp} = 900 \text{ s}$)

No mass budget left for cargo!

A lot hotter at a any given density

Galileo probe killed by heat not by pressure

2

Which Outer Planet-Saturn

- Not as far as Uranus and Neptune
- Rapid rotation substantially reduces ∆V to orbit

Con:

- Seen as depleted ~5x in Helium compared to other outer planets
- reanalysis of Voyager data 20 yr later restores that 5x- maybe
- won't know for sure until we send an entry probe
- Rings as a navigation hazard
- need close-in, co-orbiting mission to look

ဖ

Which Outer Planet-Uranus

<u>ح</u>

- Primordial He3 abundance?
- ∆V to orbit requires mass ratio < 5
- Closer than Neptune

Co_{Γ}

- Axial tilt complicates interplanetary travel
- Twice as far from Earth as Saturn

Uranus may be the closest planet without major possible problems -- but we must return to both Saturn to be sure WS-2 2004

Do we really know how much He3 is there?

- He3/He4 cannot be measured by remote sensing
- measured in situ only by Galileo at Jupiter He3/H₂ and He3/He4 ratios have been
- He3/He4 ratio of 10⁻⁴ to 1.5x10⁻⁴ from meteors, solar wind, cosmology
- Use Galileo results for He3/He4 = 10⁻⁴ and Voyager results (?) for He4/H₂

 ∞

He-3 Mining with Balloons

Insulation

Balloon diameter:

Total Plant mass:

Return vehicle:

Total lift needed:

80 m

146 tonnes

59 tonnes 205 tonnes

Balloon reactor

He3 plant

တ

Notional Distillation Plant Concept

Thinking Big about our Space Cryogenics Future

Energy Economics He3/ $H_2 = 10 \text{ ppm}$

Stage	Process	Energy (J)/g He3
1, 2, 3	cool atmosphere to 16 K	$7.2x10^{7}$
3	liquify H ₂ at 16 K	$3.2x10^{8}$
5	cool He from 16 K to 4.2 K	$1.3x10^{7}$
5	liquify He at 4.2 K	$1.1x10^{7}$
9	cool LHe from 4.2 to 1.2 K	$1.2x10^{7}$
total		$4.3x10^{8}$

Fransportation on 2 yr trajectory: 5x10⁷J/g He3 Theoretical energy payback: ~1000 Energy released: 6x1011 J/g He3

The Persian Gulf of the Solar System, 2150

The most valuable interplanetary commodities are refined He-3, deuterium, and heavy metals

Next Steps

- Jupiter Icy Moons Orbiter (JIMO)
- nuclear fission-powered
- electric propulsion flight system
- Big deal: 20 tonnes, >\$4 B, 10 kWe
- First of a series: Project Prometheus
- Saturn Ring Observer
- **Uranus/Neptune Orbiter with Probes**
- Self-deploying balloon probes for Mars, Titan
- Discovery/New Frontiers missions to other resource sites (Moon, asteroids, comets) for interplanetary commodity economy

A Trial Balloon?

Scientific balloon missions to outer planets, using Pu RTGs and/or O₂ burners, to study

He3/He4 and He/H, ratio

pressure vs. temperature for 1 < p < 100 bar

trace gas composition

entry, deployment, and telemetry engineering experiments

diameter, and use at most 7 kg of Plutonium as a A science balloon could be as small as 2.8 m heat and power source