Shuffling

Nipun Batra

IIT Gandhinagar

July 31, 2025

Outline

1. The Importance of Data Shuffling

2. Shuffling in Stochastic Gradient Descent

3. Summary

Why Shuffle? A Motivating Example

The Problem

Question: What happens if our data has hidden patterns or ordering?

Why Shuffle? A Motivating Example

The Problem

Question: What happens if our data has hidden patterns or ordering?

Why Shuffle? A Motivating Example

The Problem

Question: What happens if our data has hidden patterns or ordering?

Let's see with a concrete example...

Consider this dataset

First 80 examples are of class "Yes" Remaining 20 examples are of class "No".

Serial Number	•••	Class
1		Yes
2		Yes
3		Yes
•		•
•		•
80		Yes
81		No
•		•
100		No

With 80-20 train-test split on ordered data:

With 80-20 train-test split on ordered data:

Critical Question

Will we learn anything useful in this scenario?

With 80-20 train-test split on ordered data:

Critical Question

Will we learn anything useful in this scenario?

- Training set: Only "Yes" examples
- Test set: Only "No" examples

With 80-20 train-test split on ordered data:

Critical Question

Will we learn anything useful in this scenario?

- Training set: Only "Yes" examples
- Test set: Only "No" examples
- Model learns: "Always predict Yes"

With 80-20 train-test split on ordered data:

Critical Question

Will we learn anything useful in this scenario?

- Training set: Only "Yes" examples
- Test set: Only "No" examples
- Model learns: "Always predict Yes"
- Test accuracy: 0%!

With 80-20 train-test split on ordered data:

Critical Question

Will we learn anything useful in this scenario?

- Training set: Only "Yes" examples
- Test set: Only "No" examples
- Model learns: "Always predict Yes"
- Test accuracy: 0%!

Pop Quiz: Data Ordering

Quick Quiz 1

You have a time-series dataset with data points ordered by time. For machine learning, you should:

a) Keep the time order to preserve patterns

Answer: c) For time-series prediction, order matters! For general classification, shuffle.

Pop Quiz: Data Ordering

Quick Quiz 1

You have a time-series dataset with data points ordered by time. For machine learning, you should:

- a) Keep the time order to preserve patterns
- b) Always shuffle to avoid bias

Answer: c) For time-series prediction, order matters! For general classification, shuffle.

Pop Quiz: Data Ordering

Quick Quiz 1

You have a time-series dataset with data points ordered by time. For machine learning, you should:

- a) Keep the time order to preserve patterns
- b) Always shuffle to avoid bias
- c) It depends on the problem

Answer: c) For time-series prediction, order matters! For general classification, shuffle.

The Problem

Without shuffling, SGD can get stuck in cycles!

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

• Step 1 - Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 - 0.2$

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

• Step 1 - Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 - 0.2$

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

- Step 1 Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 0.2$
- Step 2 Point 2: $\theta_0 \leftarrow \theta_0 0.2, \theta_1 \leftarrow \theta_1 + 0.2$

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

- Step 1 Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 0.2$
- Step 2 Point 2: $\theta_0 \leftarrow \theta_0 0.2, \theta_1 \leftarrow \theta_1 + 0.2$

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

- Step 1 Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 0.2$
- Step 2 Point 2: $\theta_0 \leftarrow \theta_0 0.2, \theta_1 \leftarrow \theta_1 + 0.2$
- Step 3 Point 1: Back to step 1...

The Problem

Without shuffling, SGD can get stuck in cycles!

Example with 2 data points:

- Step 1 Point 1: $\theta_0 \leftarrow \theta_0 + 0.2, \theta_1 \leftarrow \theta_1 0.2$
- Step 2 Point 2: $\theta_0 \leftarrow \theta_0 0.2, \theta_1 \leftarrow \theta_1 + 0.2$
- Step 3 Point 1: Back to step 1...

Why This Happens

Biased learning: Point 2 always follows Point 1, creating predictable oscillations

Best Practice for SGD

Shuffle the dataset before each epoch!

Best Practice for SGD

Shuffle the dataset before each epoch!

Best Practice for SGD

Shuffle the dataset before each epoch!

Best Practice for SGD

Shuffle the dataset before each epoch!

Benefits of shuffling:

Breaks cycles: No predictable patterns in gradient updates

Best Practice for SGD

Shuffle the dataset before each epoch!

Benefits of shuffling:

Breaks cycles: No predictable patterns in gradient updates

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions
- Reduces bias: Each sample gets fair treatment

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions
- Reduces bias: Each sample gets fair treatment

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions
- Reduces bias: Each sample gets fair treatment
- Improves generalization: Model sees varied combinations

Best Practice for SGD

Shuffle the dataset before each epoch!

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions
- Reduces bias: Each sample gets fair treatment
- Improves generalization: Model sees varied combinations

Best Practice for SGD

Shuffle the dataset before each epoch!

Benefits of shuffling:

- Breaks cycles: No predictable patterns in gradient updates
- Better convergence: More diverse gradient directions
- Reduces bias: Each sample gets fair treatment
- Improves generalization: Model sees varied combinations

Implementation

np.random.shuffle(training_data) before each
epoch

Pop Quiz: SGD Shuffling

Quick Quiz 2

How often should you shuffle your training data in SGD?

a) Once at the beginning of training

Answer: b) Before each epoch ensures maximum randomness while being computationally efficient!

Pop Quiz: SGD Shuffling

Quick Quiz 2

How often should you shuffle your training data in SGD?

- a) Once at the beginning of training
- b) Before each epoch

Answer: b) Before each epoch ensures maximum randomness while being computationally efficient!

Pop Quiz: SGD Shuffling

Quick Quiz 2

How often should you shuffle your training data in SGD?

- a) Once at the beginning of training
- b) Before each epoch
- c) After every batch

Answer: b) Before each epoch ensures maximum randomness while being computationally efficient!

Data ordering matters: Hidden patterns can destroy learning

Data ordering matters: Hidden patterns can destroy learning

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates
- Simple but critical: One line of code, huge impact on performance

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates
- Simple but critical: One line of code, huge impact on performance

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates
- Simple but critical: One line of code, huge impact on performance
- Exception: Time-series and sequential data require special handling

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates
- Simple but critical: One line of code, huge impact on performance
- Exception: Time-series and sequential data require special handling

- Data ordering matters: Hidden patterns can destroy learning
- Always shuffle: Before train-test split and during SGD
- Prevents cycles: SGD oscillations and biased updates
- Simple but critical: One line of code, huge impact on performance
- Exception: Time-series and sequential data require special handling

Remember

Good shuffling is the foundation of good machine learning!