Отчёт по лабораторной работе №7

Эффективность рекламы.

Волков Тимофей Евгеньевич

Содержание

1	Цель работы														5													
	Зада 2.1		ант 17				•		•	•	•	•	•	•	•	•	•	•	•	6								
3	Выполнение лабораторной работы													7														
	3.1	Поста	новка задачи																							7		
	3.2	Постр	оение графиков																							9		
		3.2.1	Первый случай																							9		
			Второй случай																							11		
			Третий слчай .																							13		
4	Выв	оды																								16		

List of Tables

List of Figures

3.1	График решения уравнения модели Мальтуса	8
3.2	График логистической кривой	9
3.3	Код программы	10
	График распространения рекламы. Коэффициенты $\alpha_1 = 0.63$,	
	$\alpha_2 = 0.00013 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	11
3.5	Код программы	12
3.6	График распространения рекламы. Коэффициенты $\alpha_1 = 0.000035$,	
	$\alpha_2 = 0.98$	13
3.7	Код программы	14
3.8	График распространения рекламы. $lpha_1(t)=0.65sin(7t)$, $lpha_2(t)=0.65sin(7t)$	
	cos(3t)	15

1 Цель работы

Цель данной работы — рассмотреть модель рекламной кампании.

2 Задание

2.1 Вариант 17

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

- 1. dn/dt = (0.63 + 0.00013n(t))(N n(t))
- 2. dn/dt = (0.000035 + 0.98n(t))(N n(t))
- 3. dn/dt = (0.65sin(7t) + cos(3t)n(t))(N n(t))

При этом объем аудитории N=741, в начальный момент о товаре знает 4 человека. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Выполнение лабораторной работы

3.1 Постановка задачи

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что dn/dt — скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:

 $lpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $lpha_1(t)>0$ — характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $lpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$dn/dt = \alpha_1(t) + \alpha_2(t)n(t)(N - n(t))$$

(1) $\text{При } \alpha_1(t) >> \alpha_2(t) \text{ получается модель типа модели Мальтуса, решение которой имеет вид }$

Figure 3.1: График решения уравнения модели Мальтуса

В обратном случае, при $\alpha_1(t) << \alpha_2(t)$

Figure 3.2: График логистической кривой

3.2 Построение графиков

n(0) = 4 — число информированных клиентов в начальный момент.

N = 741 — общее число потенциальных платежеспособных покупателей.

3.2.1 Первый случай

Дано:

$$dn/dt = (0.63 + 0.00013n(t))(N-n(t)) \\$$

Тогда начальные условия:

$$\alpha_1 = 0.63$$

$$\alpha_2=0.00013$$

Код программы в Python (fig. 3.3).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
x\theta = 4
N = 741
t = np.arange(0, 30, 0.1)
def k(t):
    g = 0.63
    return g
def p(t):
   V = 0.00013
    return v
def f(x, t):
    xd = (k(t) + p(t)*x)*(N - x)
    return xd
x = odeint(f, x0, t)
plt.plot(t, x)
plt.grid('axis = "both"')
```

Figure 3.3: Код программы

График (fig. 3.4).

Figure 3.4: График распространения рекламы. Коэффициенты $\alpha_1 = 0.63$, $\alpha_2 = 0.00013$

3.2.2 Второй случай

Дано:

$$dn/dt = (0.000035 + 0.98n(t))(N-n(t)) \\$$

Тогда начальные условия:

$$\alpha_1=0.000035$$

$$\alpha_2=0.98$$

Код программы в Python (fig. 3.5).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
x\theta = 4
N = 741
t = np.arange(0, 30, 0.1)
def k(t):
    g = 0.000035
    return g
def p(t):
    V = 0.98
    return v
def f(x, t):
    xd = (k(t) + p(t)*x)*(N - x)
    return xd
x = odeint(f, x0, t)
plt.plot(t, x)
plt.grid('axis = "both"')
```

Figure 3.5: Код программы

График (fig. 3.6).

Figure 3.6: График распространения рекламы. Коэффициенты $\alpha_1=0.000035$, $\alpha_2=0.98$

3.2.3 Третий слчай

Дано:

$$dn/dt = (0.65sin(7t) + cos(3t)n(t))(N-n(t)) \label{eq:dn_dt}$$

Тогда начальные условия:

$$\alpha_1 = 0.65 sin(7t)$$

$$\alpha_2=\cos(3t)$$

Код программы в Python (fig. 3.7).

```
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
import math
x\theta = 4
N = 741
t = np.arange(0, 30, 0.1)
def k(t):
    g = 0.65*np.sin(7*t)
    return g
def p(t):
    v = np.cos(3*t)
    return v
def f(x, t):
    xd = (k(t) + p(t)*x)*(N - x)
    return xd
x = odeint(f, x0, t)
plt.plot(t, x)
plt.grid('axis = "both"')
```

Figure 3.7: Код программы

График (fig. 3.8).

Figure 3.8: График распространения рекламы. $\alpha_1(t)=0.65sin(7t)$, $\alpha_2(t)=cos(3t)$

4 Выводы

Рассмотрел модель рекламной кампании.