1. Solution

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	45.69
Q2	$\lceil 0.5 \times 54 \rceil$	27	49.53
Q3	$\lceil 0.75 \times 54 \rceil$	41	55.82

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.82 - 45.69
= 10.13

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $45.69 - 1.5 \times 10.13$
= 30.495
upper boundary = Q3 + $1.5 \times IQR$
= $55.82 + 1.5 \times 10.13$
= 71.015

We determine the outliers.

outliers =
$$\{25.73\}$$

We identify the ends of the whiskers: 33.48 and 59.75. We plot the boxplot.

2. Solution

The sample size, *n*, is 21. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 21 \rceil$	6	66.54
Q2	$\lceil 0.5 \times 21 \rceil$	11	67.84
Q3	$\lceil 0.75 \times 21 \rceil$	16	73.88

We determine the IQR.

$$IQR = Q3 - Q1$$

= 73.88 - 66.54
= 7.34

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $66.54 - 1.5 \times 7.34$
= 55.53
upper boundary = Q3 + $1.5 \times IQR$
= $73.88 + 1.5 \times 7.34$
= 84.89

We determine the outliers.

outliers =
$$\{48.53\}$$

We identify the ends of the whiskers: 61.09 and 79.93. We plot the boxplot.

