2 TGR homeworks — October 10th, 2018

2.1 Prove or disprove:

Given a simple undirected graph G without loops and with n > 2 vertices. If the smallest degree $\delta(G)$ satisfies

$$\delta(G) \ge \frac{n-1}{2},$$

then G is connected.

2.2 Given a simple undirected graph G without loops. Prove or disprove:

If G has radius at most k and the greatest degree $\Delta(G)$ is at least 3, then G had less than

$$\frac{d}{d-2}(d-1)^k$$

vertices, where $d = \Delta(G)$.

- **2.3** Let G be a simple undirected graph without loops with $\delta(G) > 1$ ($\delta(G)$ is the smallest degree of a vertex in G). Prove or disprove:
 - 1. In G there exists a path of length $\delta(G)$ (i.e. a path with $\delta(G)$ edges).
 - 2. In G there exists a circuit of length at least $\delta(G) + 1$.

Hence, either prove the above assertion, of find contra examples.