	MCT544	Course Code:
--	--------	-----------------

First Semester Master In Computer Application End Semester Examination Theory of Automata and Formal Languages

Time: 2 Hours Max. Marks: 40

Instructions to Candidates:

- 1. All Questions carry equal marks as indicated.
- 2. All Questions are compulsory.
- 3. Assume suitable data wherever necessary.

4. Illustrate your answers with suitable figures wherever necessary

Question		Description of Question					Marks	СО
1	(a)	Obtain Regular Expression for following automata:						CO1
			State /∑	a	b			
			A(Initial State)	A	В			
			В	В	С			
			C(Final State)	A	Ø		03	
	(b)	Write Short Notes On:						CO1
		(i) Moore mach	ines				
		(i	i) Non Determ					
2	(a)	Describe any two closure properties of regular sets.						CO1, CO2
	(b)	Prove that L= {ww w is in $(0 1)^*$ } is non- regular.						CO1, CO2
3	(a)	Reduce the following Grammar G to CNF. G is as follows:					3.5	CO2
	<i>(</i> 1)	$S \rightarrow aAD, A \rightarrow aB \mid bAB, B \rightarrow b, D \rightarrow d$						
	(b)	What is parse tree? Consider the CFG : $S \rightarrow XX$, $X \rightarrow XXX \mid bX \mid Xb \mid a$				3.5	CO2	
		Find the parse tree for the string bbaaaab						
4	(a)	Construct a PDA accepting L={ 0 ⁿ 1 ⁿ 0 ^{m+n} }					03	CO2
	(b)	Explain "Acceptance by final state" and "Acceptance by					04	CO2
		l .					1	<u> </u>

		empty stack" with respect to PDA.		
5	(a)	Write Short Notes on: Variants of Turing Machine	02	CO3
	(b)	Construct a Turing Machine accepting	04	CO3
		L={ $a^nb^nc^n$ where $n \ge 1$ }		
6	(a)	Write short notes on : Undecidability	03	CO3
	(b)	Write short notes on : Properties of Recursively Enumerable Language	03	CO3
1				