

FIG. 1

FIG. 2

FIG. 3

FIG. 4

$$X = [\underline{x}, \bar{x}] \equiv \left\{ x \in \Re^* \mid \underline{x} \leq x \leq \bar{x} \right\}$$

$$Y = [\underline{y}, \bar{y}] \equiv \left\{ y \in \Re^* \mid \underline{y} \leq y \leq \bar{y} \right\}$$

$$(1) \quad X + Y = [\downarrow \underline{x} + \underline{y}, \uparrow \bar{x} + \bar{y}]$$

$$(2) \quad X - Y = [\downarrow \underline{x} - \bar{y}, \uparrow \bar{x} - \underline{y}]$$

$$(3) \quad X \times Y = \left[\min(\downarrow \underline{x} \times \underline{y}, \underline{x} \times \bar{y}, \bar{x} \times \underline{y}, \bar{x} \times \bar{y}), \max(\uparrow \underline{x} \times \underline{y}, \underline{x} \times \bar{y}, \bar{x} \times \underline{y}, \bar{x} \times \bar{y}) \right]$$

$$(4) \quad X/Y = \left[\min(\downarrow \underline{x}/\underline{y}, \underline{x}/\bar{y}, \bar{x}/\underline{y}, \bar{x}/\bar{y}), \max(\uparrow \underline{x}/\underline{y}, \underline{x}/\bar{y}, \bar{x}/\underline{y}, \bar{x}/\bar{y}) \right], \text{ if } 0 \notin Y$$

$$X/Y \subseteq \Re^*, \text{ if } 0 \in Y$$

FIG. 5

FIG. 6

FIG. 7A

FIG. 7B

FIG. 7C

FIG. 7D

ANY PREVIOUS STEP THAT USED TERM CONSISTENCY, A NEWTON STEP, OR A GAUSS-SEIDEL STEP MIGHT HAVE GENERATED GAPS IN THE INTERVAL COMPONENTS OF \mathbf{X} . MERGE ANY OVERLAPPING GAPS. SPLIT THE BOX. PLACE THE SUBBOXES GENERATED BY SPLITTING IN L_1 AND GO TO STEP 703.

744

IF L_2 IS EMPTY, THERE IS NO FEASIBLE POINT IN $\mathbf{X}^{(0)}$. GO TO STEP 750.

745

IF $f_{\text{bar}} < \infty$ AND THERE IS ONLY ONE BOX IN L_2 , GO TO STEP 750.

746

FOR EACH BOX \mathbf{X} IN L_2 , IF $\sup(f[m(\mathbf{X})]) < f_{\text{bar}}$, TRY TO PROVE EXISTENCE OF A FEASIBLE POINT. USE THE RESULTS TO UPDATE f_{bar} .

747

DELETE ANY BOX \mathbf{X} FROM L_2 FOR WHICH LOWER BOUND OF $f(\mathbf{X}) > f_{\text{bar}}$.

748

DENOTE REMAINING BOXES $\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(s)}$ IN L_2 . DETERMINE

$$\underline{F} = \min_{1 \leq i \leq s} f(\mathbf{X}^{(i)}) \text{ AND } \overline{F} = \max_{1 \leq i \leq s} f(\mathbf{X}^{(i)}).$$

749

TERMINATE.

750

FIG. 7E