1200CST302052302

Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

 $B. Tech \ Degree \ S6 \ (R, \, S) \, / \, S6 \ (PT) \ (R) \ Examination \ June \ 2023 \ (2019 \ Scheme)$

Course Code: CST302			
Course Name: COMPILER DESIGN			
Max. Marks: 100 Duration: 3 H		Hours	
		PART A	
		Answer all questions, each carries 3 marks.	Marks
1		What is the relevance of input buffering in lexical analysis?	(3)
2		Draw a transition diagram to represent relational operators.	(3)
3		With an example write the steps to remove left recursion.	(3)
4		What is left factoring? Left factor the following grammar, C	(3)
		$E \rightarrow E + T \mid T$	
		$T \rightarrow float \mid float * T \mid (E)$	
5		Differentiate CLR and LALR parsers.	(3)
6		What are the possible actions of a shift-reduce parser?	(3)
7		Convert the expression $a = b * -c + b * -c$ into quadruple?	(3)
8		Define SDD with an example.	(3)
9		Explain common sub expression elimination with an example.	(3)
10		How the peephole optimization technique makes its role in the compilation	(3)
		process?	
		PART B	
Answer one full question from each module, each carries 14 marks.			
		Module I	
11	a)	What are the various phases of a compiler? Explain each phase in detail by using	(8)
		the input statement. $position := initial + rate * 60$	
	b)	Differentiate tokens, patterns and lexemes with the help of an example.	(6)
OR			
12	a)	Write short notes on compiler construction tools.	(6)
	b)	Explain in detail about buffer pairs and sentinels.	(8)

1200CST302052302

Module II

13 a) Find FIRST set and FOLLOW set of each nonterminal in the following (6) grammar.

 $S \rightarrow aBDh \mid bBc$ $B \rightarrow eC$ $C \rightarrow bC \mid \epsilon$ $D \rightarrow EF$ $E \rightarrow g \mid \epsilon$ $F \rightarrow f \mid \epsilon$

b) Explain the error recovery strategies in parsing.

(8)

(7)

(7)

OR

14 a) i) Show that the given grammar is ambiguous or not.

 $E \rightarrow E + E \mid E - E$ $E \rightarrow E * E \mid E/E$ $E \rightarrow E ^ E$

$$E \rightarrow (E) \mid id$$

Also eliminate ambiguity from the above grammar.

(Precedence order: id, (), $^{\wedge}$, * and /, + and -)

b) Construct a non-recursive predictive parsing table for the following grammar:

$$S \rightarrow (L) \mid a$$

 $L \rightarrow L, S \mid S$

Also prove that the grammar is LL(1) or not.

Module III

- 15 a) What is a shift-reduce parser? Explain in detail the conflicts that may occur (8) during shift-reduce parsing.
 - b) Construct canonical LR(1) collection of items for the grammar below: (6)

 $S \rightarrow CC$

 $C \rightarrow aC$

 $C \rightarrow d$

OR

16 Consider the grammar

(14)

$$S \rightarrow Aa \mid bAc \mid dc \mid bda$$

$$A \rightarrow d$$

1200CST302052302

Construct a LALR parsing table for the grammar given above. Verify whether the input string "bdc" is accepted by the grammar or not.

Module IV

- 17 a) Define the following terms and give suitable example for each. (6)
 - i) Three-address code ii) Triples iii) Quadruples.
 - b) Explain static allocation and heap allocation strategies.

(8)

(7)

OR

18 a) Construct a syntax directed definition for an assignment statement.

$$S \rightarrow E$$

E -> E1 + E2

E -> E1 * E2

 $E \rightarrow -E1$

E -> (E1)

 $E \rightarrow id$

Also construct an annotated parse tree for the input string: 6 * 8 + 5.

b) Generate an intermediate code for the following code segment along with the required syntax-directed translation scheme. (7)

if
$$(a > b)$$

$$x = a + b$$

else

$$x = a - b$$

where a and x are of real and b of int type data.

Module V

19 a) Explain different code optimization techniques.

- (8)
- b) Generate a code sequence for the assignment d = (a b) + (a c) + (a c). (6)

OR

20 a) Explain the design issues of a code generator.

(7)

b) Illustrate the optimization of basic blocks with examples.

(7)
