Негосударственное образовательное частное учреждение дополнительного профессионального образования «Геотэк-Колледж»

УТВЕРЖДАЮ

Директор З.Н.Озмидова

«14» января 2021

ДОПОЛНИТЕЛЬНАЯ ПРОФЕССИОНАЛЬНАЯ ПРОГРАММ

ПОВЫШЕНИЯ КВАЛИФИКАЦИИ

«Современные цифровые технологии получения исходных данных для обоснования конструктивных решений при проектировании зданий и сооружений»

72 акад.часа

Оглавление

І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА	3
II ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ	4
III ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ	5
IV СОДЕРЖАНИЕ ПРОГРАММЫ	6
IV.1 Учебный план	6
IV.2 Календарный учебный график	7
IV.3 Рабочие программы модулей	9
IV.3.1 Модуль 1. Лабораторные и полевые методы получения входн параметров нелинейных моделей грунтов	
IV.3.2 Модуль 2. Модели материалов	9
IV.3.3 Модуль 3. Основы метода конечных элементов и числен моделирование грунтовых оснований	
IV.3.4 Модуль 4. Особенности работы грунтовых оснований в режи сверхмалых деформаций	
IV.3.5 Модуль 5 Моделирование поведения грунтового основания зоне влияния источников динамического воздействия	
IV.3.6 Модуль 6 Конструктивные решения	.11
IV.3.7 Программа лекционных занятий	.12
IV.3.8 Программа учебной практики	. 14
IV.3.9 Самостоятельная работа слушателей	. 16
IV.4 Оценка качества освоения программы. Формы аттестации оценочные материалы	
V УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ	. 22
V.1 Материально-техническое обеспечение программы	.22
V.2 Кадровое обеспечение	. 22
V.3 Нормативно-правовое и учебно-методическое обеспечен программы	
V.3.1 Нормативные правовые акты	.23
V.3.2 Учебно-методическое обеспечение программы	

І ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Дополнительная профессиональная программа повышения квалификации цифровые технологии получения исходных обоснования конструктивных решений при проектировании зданий и сооружений» (далее – программа) разработана в соответствии с требованиями Федерального закона от 29 декабря 2012 г. № 273-ФЗ "Об образовании в Российской Федерации" и приказа Министерства образования и науки Российской Федерации от 1 июля 2013 г. № 499 «Об утверждении Порядка организации и осуществления деятельности дополнительным профессиональным образовательной ПО программам».

Нормативно-правовой и методической основой для разработки программы являются:

- Федеральный закон от 29 декабря 2004 г. № 190-ФЗ «Градостроительный кодекс Российской Федерации»,
- Федеральный закон от 27 декабря 2002 г. № 184-ФЗ «О техническом регулировании»,
- Федеральный закон от 30 декабря 2009 г. № 384-ФЗ «Технический регламент о безопасности зданий и сооружений»,
- Приказ Министерства регионального развития Российской Федерации от 30 декабря 2009 г. № 624 «Об утверждении Перечня видов работ по инженерным изысканиям, по подготовке проектной документации, по строительству, реконструкции, капитальному ремонту объектов капитального строительства, которые оказывают влияние на безопасность объектов капитального строительства»,
- Приказ Министерства образования и науки Российской Федерации от 12 мая 2016 г. № 548 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)».

Курс повышения квалификации предназначен для специалистов строительной отрасли в области инженерно-геологических и инженерно-геотехнических изысканий, а также проектировщиков фундаментов зданий и сооружений.

Общими требованиями к обучающимся являются:

- наличие среднего профессионального или высшего образования;
- получение среднего профессионального или высшего образования.

Обучение по программе является одним из условий получения свидетельства о допуске саморегулируемых организаций:

- «Конструктивные решения»
- «Организация управления инженерными изысканиями»
- «Инженерно-геологические изыскания»
- «Инженерно-геотехнические изыскания»
- «Обследование состояния грунтов основания зданий и сооружений».

ІІ ЦЕЛЬ И ЗАДАЧИ ПРОГРАММЫ

Основной целью программы является обновление теоретических и практических знаний руководителей и специалистов в области инженерных изысканий для строительства и конструктивных решений в связи с повышением требований к уровню квалификации и необходимостью освоения современных методов решения профессиональных задач.

Материалы программы позволяют ознакомить слушателей с новыми решениями в отечественной и зарубежной практике инженерных изысканий и конструктивными решениями, совершенствовать знания в области нормативных и деятельности, правовых аспектов изыскательской современных средств производства изысканий и методов проектирования. технических Слушатели имеют возможность усвоить современные приемы работы с применением компьютерной техники и использованием систем автоматизации инженерных изысканий. Практическая часть программы направлена на получение слушателями профессиональных навыков работы с программными комплексами численного моделирования грунтовых оснований PLAXIS и MIDAS GTS NX. В результате прохождения программы обучающиеся изучат нелинейные модели грунтов (Hardening Soil, Hardening Soil Small-strain, Soft Soil, Soft Soil Creep и др.), особенности динамических расчетов с применением модели семейства UBC SAND, ознакомятся с практическими лабораторными технологиями получения входных параметров моделей грунтов, а также освоят необходимые требования к составлению технического задания при проектировании зданий и проверки предоставляемых отчетов геологов и проектироващиков.

ІІІ ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

В результате реализации программы происходит совершенствование компетенций (общекультурных — ОК и профессиональных — ПК) (на основании Федерального государственного образовательного стандарта высшего образования по направлению подготовки 21.05.02 Прикладная геология (уровень специалитета)):

- способность к самоорганизации и самообразованию (ОК-7);
- способность проводить технические расчеты по проектам, техникоэкономический и функционально-стоимостный анализ эффективности проектов (ПК-11);
- способность планировать и выполнять аналитические, имитационные и экспериментальные исследования, критически оценивать результаты исследований и делать выводы (ПК-14);
- способность проводить математическое моделирование процессов и объектов на базе стандартных пакетов автоматизированного проектирования и исследований (ПК-15).

В результате освоения программы обучения слушатель должен знать:

- физические основы моделей грунтов, используемых в современной механике грунтов;
- устройство и принципы работы современного оборудования геотехнической лаборатории;
- закономерности формирования напряженно-деформированного состояния грунтового основания:
- аналитические зависимости, используемые при построении нелинейных моделей грунтов;
- методику моделирования грунтового основания при помощи средств численного моделирования PLAXIS и MIDAS GTS NX;
- технологию оценки влияния нового строительства на существующую застройку с использованием метода конечных элементов;
- положения нормативной базы по инженерным изысканиям, относящиеся к испытаниям грунтов;
 - особенности международной нормативной базы.

В результате освоения программы обучения слушатель должен уметь:

- подбирать необходимое геотехническое оборудование для выполнения испытаний;
- составлять техническое задание по определению входных параметров нелинейных моделей грунтов лабораторными методами;
- корректно использовать положения нормативной базы применительно к поставленным задачам;
 - выполнять интерпретацию материалов испытаний;
- моделировать грунтовые основания зданий и сооружений при помощи программных средств PLAXIS и MIDAS GTS NX;
 - оформлять результаты испытаний в виде лабораторных протоколов;
 - составлять текст технического отчета по определению параметров грунтов.

IV СОДЕРЖАНИЕ ПРОГРАММЫ

IV.1 Учебный план

Форма обучения: очная с возможностью применения дистанционных технологий.

Срок обучения: - 72 часа (лекции - 39 час., учебная практика – 27 час., самостоятельная работа - 6).

По окончанию учебного процесса проводится аттестация. По итогам аттестации слушателям, прошедшим курс обучения, выдаются удостоверения о повышении квалификации установленного образца.

№ п/п	Разделы, темы	Всего,	В том числе, часов			Форма контроля
_			Л	УП	CP	r
1.	Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.	9	5	3	1	Устный опрос
2.	Модуль 2. Модели материалов	19	14	4	1	Устный опрос -
3.	Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований	13	6	6	1	Устный опрос -
4.	Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций	5	2	2	1	Устный опрос -
5.	Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия	7	5	1	1	Устный опрос
6.	Конструктивные решения	18	7	10	1	Устный опрос
7.	Итоговая аттестация.	1	-	1	-	Зачет
	Итого часов	72	39	27	6	

Л – лекции, УП – учебная практика, СР – самостоятельная работа

IV.2 Календарный учебный график

Компоненты программы	Л	УП	СР	ИА	Итого
День	2				2
1	3	_			3
2	1	2			3
3	2	1			3
4	3				3
5	3				3
6	1	2			3
7	2	1			3
8	2	1			3
9	3				3
10		3			3
11		3			3
12	3				3
13	3				3
14	1	2			3
15	3				3
16	2	1			3
17	1	2			3
18	1	2			3
19		3			3
20	3				3
21		3			3
22	2				2
23			6		6
24				1	1
Всего	39	26	6	1	72

 Π – лекции, У Π – учебная практика, СР – самостоятельная работа, ИА – итоговая аттестация

Модули День	-	2	3	4	w	9	ИА	Итого, часов
1	3Л							3
2	1Л 2УП							3
3	1Л 1УП	1Л						3
4		3Л						3
5		3Л						3
6		1Л 2УП						3
7		2Л 1УП						3
8		2Л 1УП						3
9		2Л	1Л					3
10			3УП					3
11			3УП					3
12			3Л					3
13			2Л	1Л				3
14				1Л 2УП				3
15					3Л			3
16					2Л 1УП			3
17						1Л 2УП		3
18						1Л 2УП		3
19						3УП		3
20						3Л		3
21						3УП		3
22						2Л		2
23 24	1CP	1CP	1CP	1CP	1CP	1CP	1УП	6
Всего	5Л 3УП 1СР	14Л 4УП 1СР	6Л 6УП 1СР	2Л 2УП 1СР	5Л 1УП 1СР	7Л 10УП 1CP	1 У П	72

 Π – лекции, УП – учебная практика, СР – самостоятельная работа, ИА – итоговая аттестация

IV.3 Рабочие программы модулей

IV.3.1 Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.

№ п/п	Разделы, темы	Всего,	В том числе, часов			Форма контроля
11/11		Тасов	Л	УП	CP	Koniposin
1.	Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов.	9	5	3	1	-
1.1.	Основы цифрового грунтоведения. Требования к компетентности испытательных лабораторий. Экскурсия по испытательной лаборатории.	4	2	2	ı	-
1.2.	Применение полевых методов для определения входных параметров конечно-элементных моделей. Современные установки глубинного статического зондирования.	1	1	-	1	-
1.3.	Определение свойств грунтов методами инженерной геофизики.	1	1	-	1	-
1.4.	Научные и практические основы испытаний грунтов методом трехосных сжатий. Основные принципы геотехники. Упругие и пластические деформации грунтов. Критерии прочности.	2	1	1	-	-
1.5.	Проработка конспектов лекций и подготовка к опросу	1	-	-	1	Контр. вопросы

IV.3.2 Модуль 2. Модели материалов

№ п/п	Разделы, темы	Всего,	В том числе, часов			Форма контроля
11/11		часов	Л	УП	CP	Koniposia
2.	Модуль 2. Модели материалов	19	14	4	1	-
2.1.	Модель Мора-Кулона (МС).	1	1	-	-	-
2.2.	Модели уплотняющегося грунта Hardening Soil (HS) и уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS)	2	2	-	1	-
2.3	Особенности нелинейных моделей грунтов. Критерии прочности. Поверхности текучести. Шатровые модели грунтов. Статус пластических точек. Пластический потенциал.	2	1	1	-	,
2.4.	Технология определения характеристик переуплотнения (POP, OCR, PCP) и показателей дилатансии.	1	1	-	-	-
2.5.	Модели слабого грунта Soft Soil (SS) и слабого грунта с учетом ползучести Soft Soil Creep (SSC).	2	2	-	ı	-
2.6.	Принципиальные отличия в расчетах при применении линейных и нелинейных моделей. Учет разгрузки материала	1	1	-	1	-
2.7.	Калибровка параметров модели Hardening Soil при помощи средства Soil Test.	1	-	1	-	-

№ п/п	Разделы, темы	Всего,	Вт	ом чи часов	Форма контроля	
,		писов	Л	УП	CP	Контроли
2.8.	Методы лабораторного определения входных параметров моделей материала PLAXIS	2	1	1	-	-
2.9.	Коэффициент бокового давления для нормально уплотненных и переуплотненных грунтов	2	1	1	-	-
2.10.	Отличия моделей Modified Morh-Coulomb(MMC) и Hardening Soil (HS) в MIDAS GTS NX.	1	1	-	1	-
2.11.	Понятие упрочнения и разупрочнения грунта	1	1	-	-	-
2.12.	Модель материала Concrete.	2	2	-	ı	-
2.13.	Проработка конспектов лекций и подготовка к опросу	1	-	-	1	Контр. вопросы

IV.3.3 Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований

№ п/п	Разделы, темы	Всего,	Вт	ом чи часов	Форма контроля	
11/11		писов	Л	УП	CP	Konipolin
3.	Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований	13	6	6	1	-
3.1.	Использование метода конечных элементов (МКЭ) в расчетах оснований. PLAXIS	4	1	3	1	-
3.2.	Нахождение НДС в MIDAS GTS NX. Особенности расчета.	3	-	3	-	-
3.3.	Основные понятия и принципы МКЭ	3	3	-	-	-
3.4.	Сходимость численного решения.	2	2	-	-	-
3.5.	Проработка конспектов лекций и подготовка к опросу	1	1	-	1	Контр. вопросы

IV.3.4Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций

№ п/п	Разделы, темы		Вт	ом чи часов	Форма контроля	
		часов	Л	УП	CP	,
4.	Модуль 4. Особенности работы грунтовых оснований в режиме сверхмалых деформаций	5	2	2	1	-
4.1.	Деформационных характеристик грунтов G_0 и $\gamma_{0,7}$ для модели HSS. Лабораторное определение.	2	1	1	-	-
4.2.	Теоретические основы проведения эксперимента на циклическом сервогидравлическом стабилометре. с целью получения входных параметров модели HSS.	2	1	1	-	-
4.3.	Проработка конспектов лекций и подготовка к опросу	1	-	-	1	Контр. вопросы

IV.3.5 Модуль 5 Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия

№ п/п	Разделы, темы		В том числе, часов			Форма контроля
			Л	УП	CP	
5.	Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия	7	5	1	1	-
5.1.	Основы динамических расчетов в методе конечных элементов. Особенности лабораторного определения разжижаемости грунтов	2	2	-	-	-
5.2.	Модель UBC SAND. Основные гипотезы и допущения, параметры. Геотехнические параметры грунтов: прочность, жесткость	1	1	-	ı	-
5.3.	Научные и практические основы определения динамических свойств грунтов (сейсморазжижение, виброползучесть, вибропустойчивость).	3	2	1	-	-
5.4.	Проработка конспектов лекций и подготовка к опросу	1	-	-	1	Контр. вопросы

IV.3.6 Модуль 6 Конструктивные решения

№ п/п	Разделы, темы	Всего,	′ насов			Форма контроля
			Л	УП	CP	•
6.	Модуль 6. Конструктивные решения	18	7	10	1	-
6.1.	Влияние выбора модели материала на напряженно-деформированного состояния грунтового основания.	3	1	2	-	-
6.2.	Расчет эпюры геостатического давления и давления от здания.	1	-	1	-	-
6.3.	Расчет на устойчивость	3	1	1	-	-
6.4.	Расчет с учетом консолидации	2	-	1	-	-
6.5.	Расчет влияния нового строительства на существующую застройку. Моделирование котлована		-	1	-	-
6.6.	Расчет влияния нового строительства на существующую застройку. Моделирование карста/тоннеля.	1	-	1	-	-
6.7.	Практические расчеты котлованов и оценка влияния на окружающую застройку. Расчеты при различных моделях		3	3	ı	-
6.8.	Решение геотехнических задач в транспортном строительстве	3	2	-	-	-
6.9.	Проработка конспектов лекций и подготовка к опросу	1	-	-	1	Контр. вопросы

IV.3.7Программа лекционных занятий

- **Тема 1.1.** Основные принципы цифрового грунтоведения. Современные программные средства численного моделирования. Требования к компетентности испытательных лабораторий. Основные принципы работы оборудования современной геотехнической лаборатории. Инновационные методы определения состава и свойств грунтов. Геотехническое оборудование ведущих мировых производителей. Основные положения ГОСТ ИСО/МЭК 17025 «Общие требования к компетентности испытательных и калибровочных лабораторий». Оборудование современной геотехнической лаборатории. Оборудование для испытаний грунтов ведущих мировых производителей. Импортозамещение в геотехнике (2 часа).
- **Тема 1.2.** Применение полевых методов для определения входных параметров конечно-элементных моделей. Современные установки глубинного статического зондирования (1 час).
- **Тема 1.3** Перспективы использования геофизических данных в целях численного моделирования грунтовых оснований зданий и сооружений. Комплексирование геотехнических и геофизических технологий в рамках концепций цифрового грунтоведения (**1 час**).
- **Тема 1.4.** Научные и практические основы испытаний грунтов методом трехосных сжатий. Статический, кинематический и динамический режимы испытаний. Дренированные и недренированные испытания. Метод восстановления фазового состава. Методы ускорения и снижения себестоимости трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов. Основные принципы геотехники. Упругие и пластические деформации грунтов. Критерии прочности (1 час).
- **Тема 2.1.** Модель Мора-Кулона (МС). Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость (1 час).
- **Тема 2.2.** Модели уплотняющегося грунта Hardening Soil (HS) и уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS). Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость. Нелинейная механика грунтов (**2 часа**).
- **Тема 2.3.** Особенности нелинейных моделей грунтов. Критерии прочности. Поверхности текучести. Шатровые модели грунтов. Статус пластических точек. Пластический потенциал (1 час).
- **Тема 2.4.** Технология определения характеристик переуплотнения (РОР, ОСР, РСР) и показателей дилатансии. Влияние дилатансии на прочностные свойства грунтов. Влияние переуплотнения и дилатансии на параметры шатровых моделей грунтов. Учет дилатансии грунтов при проектировании свайных полей (1 час).
- **Тема 2.5.** Модели слабого грунта Soft Soil (SS) и слабого грунта с учетом ползучести Soft Soil Creep (SSC). Основные гипотезы, допущения, параметры.

Геотехнические параметры грунтов: прочность и жесткость. Нелинейная механика грунтов (2 часа).

- **Tema 2.6.** Принципиальные отличия в расчетах при применении линейных и нелинейных моделей. Учет разгрузки материала (1 час).
- **Тема 2.8.** Методы лабораторного определения входных параметров моделей материала конечно-элементного программного комплекса PLAXIS. Стандарт предприятия по определению входных параметров расчетных моделей грунтовых оснований. Особенности инструментальных определений входных параметров расчетной модели HS посредством использования камеры трехосного сжатия типа Б в режиме K0-консолиации. Разработка программного обеспечения по имитации камеры трёхосного сжатия типа Б при помощи камеры типа A (1 час).
- **Тема 2.9.** Определение коэффициента бокового давления в состоянии покоя и коэффициента поперечного расширения при повторном нагружении. Коэффициент бокового давления для нормально уплотненных и переуплотненных грунтов. (1 час).
- **Tema 2.10.** Отличие моделей Modified Morh-Coulomb(MMC) и Hardening Soil (HS) в MIDAS GTS NX (**1 час**).
- **Тема 2.11.** Понятие упрочнения и разупрочнения грунта. Связь с разгрузкой и повторным нагружением. Характерный вид на диаграмме (1 час).
- **Тема 2.12.** Модель материала Concrete. Основные гипотезы, допущения, параметры. Геотехнические параметры грунтов: прочность и жесткость. Нелинейная механика грунтов (2 часа).
- **Тема 3.1.** Использование метода конечных элементов (МКЭ) в расчетах оснований. Развитие нормативной базы по инженерно-геологическим и геотехническим испытаниям, ориентированным на получение входных параметров программных комплексов численного моделирования. Требования к составлению программы работ и технического задания (1 час).
- **Тема 3.3.** Основные понятия и принципы МКЭ. Принципы построения сети конечных элементов. Понятие конечного элемента, узла, Гауссовой точки (stress point) и граничных условий (ГУ). Современные программные средства численного моделирования: PLAXIS и MIDAS GTS NX. Действующие нормативы по численному моделированию (**3 часа**).
- **Тема 3.4.** Сходимость численного решения. Итерации и шаги нагружения. Критерии сходимости решения. Методы Newton-Paphson, Modified Newton-Paphson, Initial Stiffness (**2 часа**).
- **Тема 4.1.** Особенности модели уплотняющегося грунта при малых деформациях (HSS). Определение деформационных характеристик грунтов G0 и γ 0,7 в циклическом режиме малых деформаций (microstrain), используемых в модели Hardening Soil Small (HSS). (1 час).

- **Тема 4.2.** Организация и проведение эксперимента на циклическом сервогидравлическом стабилометре Wille Geotechnik. с целью получения входных параметров модели Hardening Soil Small (HSS). Использование геофизических методов для оценки начального модуля сдвига в рамках модели HSS (1 час).
- **Tema 5.1.** Основы динамических расчетов в методе конечных элементов. Особенности лабораторного определения разжижаемости грунтов (2 часа).
- **Тема 5.2.** Модель UBC SAND. Основные гипотезы и допущения, параметры. Геотехнические параметры грунтов: прочность, жесткость (1 час).
- **Тема 5.3.** Научные и практические основы определения динамических свойств грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Современные сервопневматические и сервогидравлические циклические установки трехосного сжатия. Спектральный анализ сигналов-откликов динамического нагружения грунтов в камерах циклических стабилометров. Требования к составлению технического задания при проектировании зданий и сооружений в зоне влияния источников динамического воздействия. Нормативная база. Превентивные мероприятия, повышающие динамическую устойчивость грунтовых оснований (**2 часа**).
- **Тема 6.1.** Влияние выбора модели материала на напряженнодеформированного состояния грунтового основания. Характерные ошибки при оценке устойчивости грунтовых оснований (1 час).
- **Тема 6.3.** Параметры решателя в PLAXIS. Расчет на устойчивость. Коэффициента запаса устойчивости. Критерии сходимости расчета на устойчивость (1 час).
- **Тема 6.7.** Практические расчеты котлованов и оценка влияния на окружающую застройку. Расчеты при различных моделях: МС, НS, HSS.Определение сжимаемой толщи. Определение перемещений окружающей застройки и ограждений котлована. Возможные ошибки при использовании не соответствующих моделей (3 часа).

IV.3.8Программа учебной практики

- **Тема 1.1.** Экскурсия по испытательной лаборатории. Знакомство с современным оборудованием по определению прочностных и деформационных свойств грунтов. Демонстрация процесса сборки установки трехосного сжатия (2 часа).
- **Тема 1.4.** Интерпретация результатов стабилометрических испытаний. Построение диаграмм Мора-Кулона. Особенности построения предельной огибающей кругов Мора в консолидированно-недренированном режиме (1 час).
 - Тема 2.3. Статус пластических точек. Интерпретация результатов. (1 час).

- **Тема 2.7.** Калибровка параметров модели Hardening Soil при помощи программного модуля Soil Test на основе файла с результатами лабораторного эксперимента девиаторного нагружения (1 час).
- **Тема 2.8.** Интерпретация результатов лабораторных испытаний и определение входных параметров модели уплотняющегося грунта Hardening Soil (1 час).
- **Тема 2.9.** Влияние параметров переуплотнение на формирование напряженно-деформированного состояния подземных сооружений и бортов глубоких котлованов (1 час).
- **Тема 3.1.** Расчет напряженно-деформированного состояния грунтового основания под многоэтажным зданием при помощи программного средства PLAXIS. Знакомство с интерфейсом. Задание материалов. Построение геометрии. Разбиение на сеть конечных элементов. Задание граничных условий. Создание фаз строительства. Задание параметров расчета. Отображение и интерпретация результатов (**3 часа**).
- **Тема 3.2.** Знакомство с интерфейсом MIDAS GTS NX. Знакомство с интерфейсом. Задание материалов. Построение геометрии. Разбиение на сеть конечных элементов. Задание граничных условий. Создание фаз строительства. Задание параметров расчета. Отображение и интерпретация результатов (**3 часа**).
- **Тема 4.1.** Интерпретация результатов лабораторных испытаний и определение входных параметров модели уплотняющегося грунта Hardening Soil Small. Определение коэффициентов зависимости Гардина-Дрневича (1 час).
- **Тема 4.2.** Проведение эксперимента на циклическом сервогидравлическом стабилометре Wille Geotechnik с целью получения входных параметров модели Hardening Soil Small (HSS) (1 час).
- **Тема 5.3.** Интерпретация результатов динамических трехосных сжатий. Определения параметров сейсморазжижение грунтов (1 час).
- **Тема 6.1.** Определение области влияния нового строительства на существующую застройку и величины сжимаемой толщи при использовании моделей HS и HSS. Расчет усадки с использованием модели материала SS и SSC (2 часа).
- **Тема 6.2.** Расчет эпюры геостатического давления и давления от здания с использованием метода конечных элементов (1 час).
- **Тема 6.3.** Расчет на устойчивость модели грунтового основания под многоэтажным зданием (1 час).
- **Тема 6.4.** Расчет с учетом консолидации. Нахождение порового давления в грунтовом основании. Определение необходимого времени выдержки при строительстве (1 час).

- **Тема 6.5.** Расчет влияния нового строительства на существующую застройку. Создание модели котлована. Ограждающие и усиливающие конструкции. Моделирование осущения котлована (1 часа).
- **Тема 6.6.** Расчет влияния нового строительства на существующую застройку. Создание модели карста или тоннеля метро под зданием. Моделирование осущения (1 час).
- **Тема 6.7.** Моделирование котлована сложной конструкции и оценка влияния на окружающую застройку. Расчеты при различных моделях: МС, HS, HSS. Определение перемещений окружающей застройки и ограждений котлована. Возможные ошибки при использовании не соответствующих моделей (**3 часа**).
- **Тема 6.8.** Решение геотехнических задач в транспортном строительстве. Моделирование насыпи. Особенности определения и калибровки параметров модели по результатам полевых испытаний (2 часа).

•		•					
Вид самостоятельной работы	Модуль 1	Модуль 2	Модуль 3	Модуль 4	Модуль 5	Модуль 6	Всего
Проработка конспектов лекций и подготовка к опросу, часов	1	1	1	1	1	1	6
Итого часов	1	1	1	1	1	1	6

IV.3.9 Самостоятельная работа слушателей

Примеры вопросов для проверки самостоятельной подготовки

Модуль 1. Лабораторные и полевые методы получения входных параметров нелинейных моделей грунтов

- 1. Почему появилось цифровое грунтоведение как отдельное направление? В чем достоинства и недостатки данного направления?
- 2. Принципы цифрового грунтоведения.
- 3. Норматив, регламентирующий требования к компетентности испытательных лабораторий.
- 4. Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- 5. Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- 6. Принципиальная схема установки трехосного сжатия.
- 7. Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- 8. Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
- 9. Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.

- 10. Характеристики грунтов, определяемые при неконсолидированнонедренированных испытаниях грунтов.
- 11. Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- 12. Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
- 13. Наименования современных программных средств численного моделирования грунтовых оснований.
- 14. Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.

Модуль 2. Модели материалов

- 1. Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS и MIDAS GTS NX.
- 2. Критерии прочности, используемые в механике грунтов.
- 3. Определение упругих и пластических деформаций грунтов. Упругоидеально пластическая модель грунта Мора-Кулона.
- 4. Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- 5. Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Small (HSS).
- 6. Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- 7. Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.
- 8. Основные принципы моделей Soft Soil (SS) и Soft Soil Creep (SSC). Определение коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.
- 9. Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- 10. Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.
- 11. Отличия моделей Modified Morh-Coulomb(MMC) и Hardening Soil (HS) в MIDAS GTS NX.
- 12. Основные принципы модели Concrete.

Модуль 3. Основы метода конечных элементов и численное моделирование грунтовых оснований

- 1. Основные положения программы работ по расчету грунтовых оснований численными методами.
- 2. Основные этапы расчета напряженно-деформированного состояния грунтового основания методом конечных элементов.

- 3. Основные принципы МКЭ. Принципы построения сети конечных элементов. Понятие конечного элемента, узла, Гауссовой точки (stress point) и граничных условий (ГУ).
- 4. Сходимость численного решения. Итерации и шаги нагружения. Критерии сходимости решения
- 5. Параметры решателя. Расчет на устойчивость. Коэффициента запаса устойчивости. Критерии сходимости расчета на устойчивость
- 6. Элементы какого порядка используются в PLAXIS 2D по умолчанию? К какой сетке необходимо стремиться в MIDAS GTS NX? К чему может в MIDAS GTS NX привести треугольный элемент среди четырехугольных?

Модуль 4. Моделирование грунтовых оснований в режиме сверхмалых деформаций

- 1. Определение деформационных характеристик грунтов G0 и γ0,7 при помощи циклического стабилометра и резонансной колонки.
- 2. Особенности использования сейсмоакустических методов для оценки значения начального модуля сдвига G0.
- 3. Принципиальная схема циклического сервогидравлического стабилометра.

Модуль 5. Моделирование поведения грунтового основания в зоне влияния источников динамического воздействия

- 1. Динамические свойства дисперсных грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Возможности лабораторного оборудования по определения свойств грунтов в условиях динамического воздействия.
- 2. Основы динамических расчетов в методе конечных элементов. Временной шаг.
- 3. Особенности лабораторного определения разжижаемости грунтов
- 4. Модель UBC SAND. Основные гипотезы, допущения и параметры.
- 5. Принципиальная схема циклической сервогидравлической установки трехосного сжатия. Возможности сервогидравлических и сервопневматических стабилометров.
- 6. Спектральный анализ сигналов-откликов динамического нагружения грунтов в камерах циклических стабилометров.

Модуль 6. Конструктивные решения

- 1. Расчет геостатического давления в грунтовом массиве. Форма эпюры напряжения в грунтовом массиве, включающем в себя водоупорный слой.
- 2. Требования к составлению технического задания по определению входных параметров нелинейных моделей грунтов.
- 3. Влияние выбора математической модели грунта на результаты расчета осадки здания/сооружения.
- 4. Какие признаки в полях напряженно-деформированного состояния указывают на возможные ошибки в расчетах. Чем могут быть обусловлены локальные всплески напряжений?

- 5. Как проверить, что расчет на устойчивость проведен верно? Признаки по коэффициенту запаса и перемещениям.
- 6. Какие этапы расчета должны быть в отчете?
- 7. Как проверить, что статический расчет выполнен верно?
- 8. Из каких соображений выбираются модели материала? Приведите примеры.
- 9. Как, имея результаты испытаний штампом, можно откалибровать параметры модели материала, найденные в лаборатории?
- 10. Особенности расчета с учетом консолидации.

IV.4 Оценка качества освоения программы. Формы аттестации и оценочные материалы

Оценка качества освоения программы осуществляется при проведении:

- промежуточной аттестации обучающихся в форме опроса и выполнения практических заданий;
 - итоговой аттестации обучающихся в форме зачета.

Промежуточная аттестация проводится в форме опроса или задания практического характера (задачи) по окончании каждого модуля. Промежуточная аттестация должна выявить уровень освоения обучающимися пройденного модуля и тем, изученных в рамках этого модуля, а также наличие профессиональных компетенций, совершенствование и формирование которых проводилось в ходе реализации модулей данной программы.

Промежуточная аттестация осуществляется преподавателем непосредственно на учебных занятиях. Вопросы для опроса и практические задания для промежуточной аттестации готовятся преподавателем.

Итоговая аттестация должна выявить уровень освоения обучающимися данной образовательной программы и наличие у него профессиональных компетенций, формирование и совершенствование которых проводилось в ходе ее реализации. Слушатель допускается к итоговой аттестации после прохождения всех учебных модулей в объеме, предусмотренном учебным планом программы и успешного прохождения промежуточной аттестации в конце каждого модуля.

Итоговая аттестация проводится в форме зачета, в ходе которого вопросы билета. Итоговый зачет обучающемуся предлагается ответить на принимает аттестационная комиссия ИЗ трех человек. Состав утверждается директором. В состав комиссии входит председатель, экзаменационной комиссии, секретарь. Качество освоения программы обучающихся на зачете осуществляется по двухбалльной системе оценивания: зачет/незачет.

Билеты для проведения итоговой аттестации составляются преподавателем из примерных вопросов и заданий, являющихся частью программы.

Примеры контрольных вопросов для итоговой аттестации:

- 1. Виды лабораторного оборудования, применяемого для определения прочностных и деформационных свойств грунтов.
- 2. Основные упругопластические модели, используемые в программном средстве численного моделирования грунтовых оснований PLAXIS.

- **3.** Норматив, регламентирующий требования к компетентности испытательных лабораторий.
 - 4. Основные принципы цифрового грунтоведения.
- **5.** Лабораторное оборудование, позволяющее определить угол внутреннего трения и удельное сцепление грунтов.
- **6.** Применение статического зондирования в целях оценки параметров нелинейных моделей грунтов.
 - 7. Принципиальная схема установки трехосного сжатия.
- **8.** Основные режимы испытаний грунтов с помощью установки трехосного сжатия.
- **9.** Применение метода восстановления фазового состава (ВФС) и противодавления (ПД) для водонасыщения образцов грунтов.
- **10.** Характеристики грунтов, определяемые при неконсолидированнонедренированных испытаниях грунтов.
- **11.** Принцип Терцаги. Расчет эффективных напряжений в грунтовом массиве.
 - 12. Критерии прочности, используемые в механике грунтов.
- **13.** Определение упругих и пластических деформаций грунтов. Упруго-идеально пластическая модель грунта Мора-Кулона.
- **14.** Расчет геостатического давления в грунтовом массиве. Форма эпюры напряжения в грунтовом массиве, включающем в себя водоупорный слой.
- **15.** Методы ускорения трехосных испытаний грунтов, отвечающие требованиям действующих нормативных документов.
- **16.** Основные этапы расчета напряженно-деформированного состояния грунтового основания методом конечных элементов.
- **17.** Наименования современных программных средств численного моделирования грунтовых оснований.
- **18.** Нормативные документы, регламентирующие применение метода конечных элементов для расчета грунтовых оснований.
- **19.** Требования к составлению технического задания по определению входных параметров нелинейных моделей грунтов.
- 20. Основные положения программы работ по расчету грунтовых оснований численными методами.
- **21.** Основные аналитические зависимости модели уплотняющегося грунта Hardening Soil (HS).
- 22. Особенности модели уплотняющегося грунта при малых деформациях Hardening Soil Основные принципы моделей Soft Soil и Soft Soil Стеер. Определение коэффициентов первичной и вторичной консолидации грунтов лабораторными методами.
- **23.** Влияние выбора математической модели грунта на результаты расчета осадки здания/сооружения.
- **24.** Технология определения коэффициента бокового давления в состоянии покоя К0 и коэффициента поперечного расширения v грунтов при помощи камеры трехосной испытаний типа Б.
- **25.** Полный перечень входных параметров моделей HS и HSS, используемых в программном комплексе PLAXIS.
- **26.** Преимущества модели HSS, проявляющиеся при расчете глубины сжимаемой толщи под фундаментом здания.

- **27.** Определение деформационных характеристик грунтов G_0 и $\gamma_{0,7}$ при помощи циклического стабилометра и резонансной колонки. Особенности использования сейсмоакустических методов для оценки значения начального модуля сдвига G_0 .
- **28.** Принципиальная схема циклической сервогидравлической установки трехосного сжатия. Возможности сервогидравлических и сервопневматических стабилометров.
- **29.** Основные принципы калибровки модели грунта. Возможности программного модуля Soil Test.
- **30.** Динамические свойства дисперсных грунтов (сейсморазжижение, виброразжижение, виброползучесть, вибропрочность, виброустойчивость). Возможности лабораторного оборудования по определения свойств грунтов в условиях динамического воздействия.
- **31.** Какие признаки в полях напряженно-деформированного состояния указывают на возможные ошибки в расчетах. Чем могут быть обусловлены локальные всплески напряжений?
- **32.** Как проверить, что расчет на устойчивость проведен верно? Признаки по коэффициенту запаса и перемещениям.
 - 33. Какие этапы расчета должны быть в отчете?
 - 34. Как проверить, что статический расчет выполнен верно?
- **35.** Как, имея результаты испытаний штампом, можно откалибровать параметры модели материала, найденные в лаборатории?

Пример практического задания для итоговой аттестации

Расчет деформаций грунтового основания здания при помощи конечноэлементного комплекса

Критерии оценивания построений в конечно-элементом комплексе

Характеристика ответа	Оценка
Создана конечно-элементная модель, адекватно отражающая поведение грунтового массива и конструктивных элементов. Правильно выбраны типы элементов и модели материала. Отсутствует излишняя детализация, сделаны необходимые, но не излишние упрощения. Положена качественная конечно-элементная сетка. Физические допущения, адекватные целям расчета. Граничные условия отражают реальные условия нагружения и закрепления грунта. Правильно смоделированы и заданы этапы строительства. Произведен расчет. Проведен анализ на адекватность полученных результатов. Обучающийся	Зачет
может обосновать все принятые решения. Допущены принципиальные ошибки при моделировании. Произведено излишнее упрощение геометрии. Допущена ошибка в разделении на этапы строительства. Присутствуют области в конечно-элементной сетке, провоцирующие безосновательные с точки зрения работы грунтового массива концентрации напряжений, или неправильно подобранный размер элементов в области градиента напряжений. Получен результат расчета, противоречащий физическим законам. Расчет не производится или заканчивается ошибкой. Обучающийся не может аргументировать принятые решения моделирования.	Незачет

Критерии оценивания итоговой аттестации слушателей:

Характеристика ответа	Процент	Оценка
Слушатель глубоко и прочно усвоил материал по программе,	70-100	Зачет
исчерпывающе, последовательно, четко его излагает,		
свободно справляется с вопросами и другими видами		
применения знаний, причем не затрудняется с ответом при		
видоизменении заданий, правильно обосновывает принятое		
решение, владеет разносторонними навыками и приемами		
выполнения практических заданий.		
Выставляется слушателю, который не знает значительной	Менее 70	Незачет
части теоретического материала, допускает существенные		
ошибки, неуверенно, с большими затруднениями выполняет		
практические задания.		

V УСЛОВИЯ РЕАЛИЗАЦИИ ПРОГРАММЫ

V.1 Материально-техническое обеспечение программы

Наименование учебного помещения	Вид занятий	Оснащение
Аудитория	Лекция, практические занятия	Компьютер, электронная доска, демонстрационный монитор, лицензионные программные средства PLAXIS и MIDAS GTS NX.
Лаборатория	Экскурсия	Компрессионные приборы, установки одноплоскостного среза и трехосного сжатия.

V.2 Кадровое обеспечение

К реализации программы привлекаются педагогические работники, квалификация которых соответствует требованиям Единого квалификационного справочника должностей руководителей, специалистов и служащих, раздел «Квалификационные характеристики должностей работников образования»:

«Высшее профессиональное образование или среднее профессиональное образование по направлению подготовки «Образование и педагогика» или в области, соответствующей преподаваемому предмету, без предъявления требований к стажу работы либо высшее профессиональное образование или среднее профессиональное образование и дополнительное профессиональное образование по направлению деятельности в образовательном учреждении без предъявления требований к стажу работы».

V.3 Нормативно-правовое и учебно-методическое обеспечение программы

V.3.1 Нормативные правовые акты

- 1. Федеральные законы и постановления Правительства Российской Федерации в области градостроительной деятельности:
 - «Градостроительный кодекс РФ»;
 - «Гражданский кодекс РФ»;
 - «О техническом регулировании»;
 - «Технический регламент о безопасности зданий и сооружений»;
 - «О саморегулируемых организациях» и др.
- 2. Постановления Правительства Российской Федерации в области градостроительной деятельности:
 - постановление Правительства РФ от 19 января 2006 г. № 20 «Об инженерных изысканиях для подготовки проектной документации, строительства, реконструкции объектов капитального строительства»;
 - постановление Правительства РФ от 16 февраля 2008 г. № 87 «О составе разделов проектной документации и требованиях к их содержанию»;
 - постановления Правительства РФ от 05 марта 2007 г. № 145 (с изменениями), от 31 марта 2012 г. № 272;
 - распоряжение Правительства РФ от 21 июня 2010 г. № 1047-р;
 - приказ Минрегионразвития от 30.12.2009 г. № 624;
 - приказы Рос стандарта от 1 июня 2010 г. № 2079 и от 18 мая 2011 г. № 2244 и др.
- 3. Нормативная литература
 - 1) ГОСТ 25100 -2011 Грунты. Классификация.
 - 2) ГОСТ 12248-2010 Грунты. Методы лабораторного определения характеристик прочности и деформируемости.
 - 3) ГОСТ 20522-2012. Грунты. Методы статистической обработки результатов испытаний.
 - 4) ГОСТ 56353-2015. Грунты. Методы лабораторного определения динамических свойств дисперсных грунтов.
 - 5) ГОСТ 5180-2015. Грунты. Методы лабораторного определения физических характеристик.
 - 6) ГОСТ 12536-2014. Грунты. Методы лабораторного определения гранулометрического (зернового) и микроагрегатного состава.
 - 7) СП 22.13330.2011. Основания зданий и сооружений. (актуализированная редакция СНиП 2.02.01-83*)
 - 8) СП 23.13330 СП 23.13330.2011 Основания гидротехнических сооружений. Актуализированная редакция СНиП 2.02.02-85. Приложение Б.
 - 9) СП 24.133330.2011. Свайные фундаменты. Актуализированная редакция СНиП 2.02.03-85.
 - 10) ASTM D 6528 Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils (Withdrawn 2016).
 - 11) ASTM D4186. Standard test method for one-dimensional consolidation properties of soil using controlled-strain loading. American Society for Testing and Materials (ASTM).

- 12) ASTM D2435. Standard test method for one-dimensional consolidation properties of soil using incremental loading. American Society for Testing and Materials (ASTM).
- 13) EN 1997-1. Eurecode 7. Geotechnical Design. Part 2: Design assisted by laboratory and field-testing.

V.3.2 Учебно-методическое обеспечение программы

Учебная и научно-исследовательская литература

- 1. Берлинов М.В. Основания и фундаменты. М., Изд-во Высшая школа, 1999.
- 2. Болдырев Г.Г., Малышев М.В. Механика грунтов, основания и фундаменты. Пенза, ПГУАС, 2009.
- 3. Болдырев Г.Г., Скопинцев Д.Г. Методические вопросы определения модулей деформации дисперсных грунтов. Журнал «Инженерные изыскания», № 10-11, 2016, стр. 24-36.
- 4. Болдырев Г.Г. Методы определения механических характеристик грунтов. Состояние вопроса//ПГУАС, Пенза. 2008.- 696с.
- 5. Вознесенский Е.А., Никитин М.С., Сенцова Е.А. Методические вопросы определения параметров моделей, учитывающих повышение жесткости грунтов при малых деформациях. Журнал «Геотехника», №2, 2016, стр. 4-162.
- 6. Кочерженко В.В. Технология возведения подземных сооружений. М., Издво Ассоциации строительных вузов, 2000.
- 7. Ломтадзе В.Д. и др. Методика исследований физико-механических свойств горных пород. Изд-во Недра, 1972.
- 8. Пособие по моделям материалов Plaxis 2D. МИП «Информатика», СПб, 2018.
- 9. Пособие по расчетам MIDAS GTS NX, Midas Information Technology Co. Ltd, 2018.
- 10. Строкова Л.А. Определение параметров начального напряженного состояния грунта К0 и ОСR для нелинейных упругопластических моделей. Журнал «Геотехника». №2 2012.
- 11. Улицкий В.М., Шашкин А.Г., Шашкин К.Г. Гид по геотехнике. СПб, ПИ «Геореконструкция», 2010.
- 13. Федоренко Е.В. Геотехника и геосинтетика в вопросах и ответах. СПб, WWW/DARIKNIGI.RU, 2016. MIDAS Information
- 14. Becker D.E., Crooks J.H.A., Been K., Jefferies M.G. Works as a criterion for determining in-situ and yield stresses in clays // Canadian Geotechnical Journal. 1987. V. 24. № 4. P. 549–564.
- 15. Bishop A.W., Henkel D.J. The Measurement of Soil Properties in the Triaxial Test/A.W. Bishop, D.J. Henkel, Edward Amold-е изд., London:, 1957.
- 16. Bolton M.D. The strength and dilatancy of sands // Geotechnique. 1986. N_2 1 (36). C. 65-78.
- 17. Brinkgreve R.B.J., Engin E., Swolfs W.M. Plaxis 3D. Руководство пользователя / R.B.J. Brinkgreve, E. Engin, W.M. Swolfs, Санкт-Петербург: ООО «НИП-Информатика», 2011.
- 18. Duncan J.M., Chang C.. Nonlinear analysis of stress and strain in soil // ASCE Journal of the Soil Mechanics and Foundations. 1970. (96). C. 1629-1653.
- 19. Janbu N. Soil compressibility as determined by oedometer and triaxial tests Wiesbaden:, 1963. 19-25 c.

- 20. Kondner R.L. A hyperbolic stress strain formulation for sands Brazil: 1963. 289-324 c.
- 21. Rowe P.W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact 1962. 500-527 c.
- 22. Schanz T., Vermeer P.A. Angles of friction and dilatancy of sand // Geotechnique. 1996. № 46. C. 145-151.
- 23. Schanz T., Vermeer P.A., Bonnier P.G. The hardening-soil model: Formulation and verification Rotterdam: Brinkgreve R.B.J., 1999. 281-290 c.
- 24. Schanz T. Vermeer P.A., Bonnier P.G. The hardening soil model: formulation and verification.// Beyond 2000 in Computional Geotechnics 10 years of PLAXIS. Balkema, Rotterdam, 1999
- 25. Soos P. von Properties of soil and rock (in German) / P. von Soos, Berlin: Ernst & Sohn, 1990.
- 26. Vermeer P.A., De Borst R. Non-associated plasticity for soils, concrete and rock / P.A. Vermeer, R. De Borst, Heron, 1984. 62 c.