Despre Puterile unei Relații Binare pe o Mulțime și Închiderea Tranzitivă a unei Relații Binare pe o Mulțime

Seminar de Logică Matematică și Computațională

Claudia MUREŞAN

Universitatea din București, Facultatea de Matematică și Informatică cmuresan@fmi.unibuc.ro, claudia.muresan@g.unibuc.ro, c.muresan@yahoo.com

2023–2024, Semestrul I

• Fie R o relație binară pe o mulțime A, adică $R \subseteq A \times A = A^2$.

Vom folosi convenția stabilită la curs: prin $(a,b) \in A^2$ subînțelegem: $a,b \in A$.

Pentru fiecare relație binară pe $A Q \subseteq A^2$, considerăm graful orientat (A,Q), cu mulțimea de vârfuri A și mulțimea de arce Q. Desigur, (A,Q) este subgraf al lui (A,A^2) : graful orientat cu mulțimea de vârfuri A și mulțimea de arce dată de întregul $A^2 = A \times A$. Amintesc că, pentru orice $n \in \mathbb{N}^*$ și orice $a_1, a_2, \ldots, a_n \in A$, n-uplul (a_1, a_2, \ldots, a_n) determină un drum din (A,A^2) notat $[a_1,a_2,\ldots,a_n]$, format din arcele $(a_1,a_2),(a_2,a_3),\ldots,(a_{n-1},a_n)$, a cărui lungime este, prin definiție, n-1: numărul acestor arce, numărând un arc $(a,b) \in A^2$ de oricâte ori apare în acest drum, i.e. de $|\{i \in \overline{1,n-1} \mid (a,b)=(a_i,a_{i+1})\}|$ ori. Drumurile de lungime 0 sunt: [a], pentru fiecare $a \in A$, iar drumurile nevide sunt cele formate din cel puțin un arc.

Să observăm că: pentru orice relații binare pe A $S, T \in \mathcal{P}(A^2)$, conform definiției compunerii de relații binare:

Remarca 1. $T \circ S = \{(a_1, a_3) \in A^2 \mid (\exists a_2 \in A) ((a_1, a_2) \in S \text{ } \text{i} (a_2, a_3) \in T)\}$, aşadar compunerea lui T cu S este formată din perechile (a_1, a_3) de capete de drumuri $[a_1, a_2, a_3]$ de lungime 2 (i.e. formate din 2 arce) din (A, A^2) cu primul arc (a_1, a_2) din S \$i\$ al doilea arc (a_2, a_3) din T.

Amintesc din curs că $R^0 = \Delta_A$ și, pentru fiecare $n \in \mathbb{N}$, $R^{n+1} = R^n \circ R = R \circ R^n$.

Lema 2. Pentru fiecare $n \in \mathbb{N}$, R^n este formată din perechile de capete de drumuri de lungime n din (A, A^2) cu toate cele n arce din R.

Demonstrație: Putem demonstra acest lucru prin inducție după $n \in \mathbb{N}$.

 $n \in \{0,1\}$: $R^0 = \Delta_A = \{(a,a) \mid a \in A\}$ este formată din capetele de drumuri fără arce [a] din (A,A^2) , iar $R^1 = R \circ \Delta_A = \{(a_1,a_2) \in A^2 \mid (a_1,a_2) \in R\}$ este mulțimea perechilor de capete de drumuri $[a_1,a_2]$ din (A,A^2) formate dintr–un singur arc (a_1,a_2) , arc aparținând lui R.

 $\underline{n \in \mathbb{N}^* \longrightarrow n+1}$: Fie $n \in \mathbb{N}^*$. Presupunem că R^n este mulțimea perechilor de capete de drumuri de lungime n formate din arce din R; adică:

$$R^{n} = \{(a_{1}, a_{n+1}) \in A^{2} \mid (\exists a_{2}, \dots, a_{n} \in A) ((a_{1}, a_{2}), (a_{2}, a_{3}), \dots, (a_{n}, a_{n+1}) \in R)\};$$

scris desfășurat, i.e. fără prescurtarea pentru această succesiune de n-1 cuantificatori existențiali și prescurtarea pentru această succesiune de conjuncții: $R^n = \{(a_1, a_{n+1}) \in A^2 \mid (\exists a_2 \in A) (\exists a_3 \in A) \dots (\exists a_n \in A) ((a_1, a_2) \in R \text{ și } (a_2, a_3) \in R \text{ și } \dots \text{ și } (a_n, a_{n+1}) \in R)\}.$

Conform Remarcii 1, rezultă că $R^{n+1} = R \circ R^n = \{(a_1, a_{n+2}) \in A^2 \mid (\exists a_{n+1} \in A) ((a_1, a_{n+1}) \in R^n \text{ şi } (a_{n+1}, a_{n+2}) \in R)\} = \{(a_1, a_{n+2}) \in A^2 \mid (\exists a_{n+1} \in A) [(\exists a_2 \in A) (\exists a_3 \in A) \dots (\exists a_n \in A) ((a_1, a_2) \in R \text{ şi } (a_2, a_3) \in R \text{ şi } \dots \text{ şi } (a_n, a_{n+1}) \in R)\}$ si $(a_{n+1}, a_{n+2}) \in R\}$.

Enunțul $(a_{n+1}, a_{n+2}) \in R$ nu depinde de niciuna dintre variabilele a_1, a_3, \ldots, a_n , așadar, pe rând, domeniul fiecăruia dintre cuantificatorii: $\exists a_2 \in A, \exists a_3 \in A, \ldots, \exists a_n \in A$ poate fi extins peste conjuncția cu acest enunț:

$$(\exists a_{2} \in A) \ (\exists a_{3} \in A) \ \dots \ (\exists a_{n} \in A) \ ((a_{1}, a_{2}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R) \ \Si \ (a_{n+1}, a_{n+2}) \in R \Longleftrightarrow$$

$$(\exists a_{2} \in A) \ [(\exists a_{3} \in A) \ \dots \ (\exists a_{n} \in A) \ ((a_{1}, a_{2}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R) \ \Si \ (a_{n+1}, a_{n+2}) \in R] \Longleftrightarrow$$

$$(\exists a_{2} \in A) \ (\exists a_{3} \in A) \ [(\exists a_{4} \in A) \ \dots \ (\exists a_{n} \in A) \ ((a_{1}, a_{2}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R) \ \Si \ (a_{n+1}, a_{n+2}) \in R]$$

$$\Longleftrightarrow (\exists a_{2} \in A) \ (\exists a_{3} \in A) \ \dots \ (\exists a_{n} \in A) \ ((a_{1}, a_{2}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{n+1}, a_{n+2}) \in R),$$
 aşadar:
$$R^{n+1} = \{(a_{1}, a_{n+2}) \in A^{2} \ | \ (\exists a_{n+1} \in A) \ (\exists a_{2} \in A) \ (\exists a_{3} \in A) \ \dots \ (\exists a_{n} \in A) \ ((a_{1}, a_{2}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{n}, a_{n+1}) \in R \ \Si \ (a_{2}, a_{3}) \in R \ \Si \ \dots \ \Si \ (a_{2}, a_{3}$$

Cuantificatorii de acelaşi fel comută, aşadar putem aplica comutarea lui $\exists a_{n+1} \in A$, pe rând, cu fiecare dintre cuantificatorii: $\exists a_2 \in A, \exists a_3 \in A, \ldots, \exists a_n \in A$, şi obţinem: $R^{n+1} = \{(a_1, a_{n+2}) \in A^2 \mid (\exists a_2 \in A) (\exists a_3 \in A) \ldots (\exists a_n \in A) (\exists a_{n+1} \in A) ((a_1, a_2) \in R \text{ şi } (a_2, a_3) \in R \text{ şi } \ldots \text{ şi } (a_n, a_{n+1}) \in R \text{ şi } (a_{n+1}, a_{n+2}) \in R)\}$; scris prescurtat:

$$R^{n+1} = \{(a_1, a_{n+2}) \in A^2 \mid (\exists a_2, a_3, \dots, a_n, a_{n+1} \in A) ((a_1, a_2), (a_2, a_3), \dots, (a_n, a_{n+1}), (a_{n+1}, a_{n+2}) \in R) \}.$$

Am încheiat raționamentul prin inducție.

Amintesc că am notat cu $\mathcal{T}(R)$ închiderea tranzitivă a lui R și am demonstrat în curs că: $\mathcal{T}(R) = \bigcup_{i=1}^n R^n$, cu semnificația uzuală pentru această notație: $\mathcal{T}(R) = \bigcup_{n \in \mathbb{N}} R^n$. Prin urmare, conform Lemei 2:

Propoziția 3. Închiderea tranzitivă a lui R este mulțimea tuturor perechilor de capete de drumuri nevide din (A, A^2) formate $din \ arce \ din \ R.$

Exercițiul 4. Pentru fiecare $n \in \mathbb{N}$, considerăm relațiile binare pe $A T_n \subseteq A^2$, definite recursiv astfel:

$$\begin{cases} T_0 = \emptyset; \\ (\forall n \in \mathbb{N}) (T_{n+1} = R \cup (R \circ T_n)). \end{cases}$$

Să se demonstreze că:

- ① pentru fiecare $n \in \mathbb{N}$, $T_n = \bigcup_{j=1}^n R^j$ (cu semnificația uzuală pentru această notație: $T_n = \bigcup_{j \in \mathbb{T}_n} R^j$);
- (2) $dacă |A| = k < \aleph_0$ (i.e. mulţimea A este finită, de cardinal k), atunci:
 - $sirul R^0, R^1, R^2, \ldots, R^n, \ldots$ este periodic începând de la un anumit exponent;
 - $\bullet \ \mathcal{T}(R) = \bigcup_{n=1}^{\kappa} R^n = T_k;$
 - $\mathcal{T}(R) = \bigcup_{n=1}^{m} R^n = T_m$, unde $m = \min\{j \in \mathbb{N}^* \mid T_j \text{ e tranzitiv}\check{a}\}.$

Rezolvare: ① $T_0 = \emptyset = \bigcup_{j \in \emptyset} R^j = \bigcup_{j=1}^0 R^j$. Pentru $n \in \mathbb{N}^*$ procedăm prin inducție.

$$\underline{n=1}: T_1 = R \cup (R \circ T_0) = R \cup (R \circ \emptyset) = R \cup \emptyset = R = R^1 = \bigcup_{j=1}^1 R^j.$$

$$\underline{n \in \mathbb{N}^* \longrightarrow n+1}$$
: Fie $n \in \mathbb{N}^*$ astfel încât $T_n = \bigcup_{j=1}^n R^j = R \cup R^2 \cup R^3 \cup \ldots \cup R^n$.

Atunci, întrucât compunerea de relații binare este distributivă față de reuniune, avem:

$$T_{n+1} = R \cup (R \circ T_n) = R \cup [R \circ (R \cup R^2 \cup R^3 \cup \ldots \cup R^n)] =$$

$$R \cup (R \circ R) \cup (R \circ R^2) \cup (R \circ R^3) \cup \ldots \cup (R \circ R^n) = R \cup R^2 \cup R^3 \cup R^4 \cup \ldots \cup R^{n+1} = \bigcup_{i=1}^{n+1} R^i.$$

Am încheiat raționamentul prin inducție.

② $\{R^n \mid n \in \mathbb{N}\}\subseteq \mathcal{P}(A^2)$, iar numărul de relații binare pe A este $|\mathcal{P}(A^2)|=2^{|A^2|}=2^{|A^2|}=2^{k^2}$, așadar $|\{R^0,R^1,\ldots,R^{2^{k^2}}\}|\le |\{R^n \mid n \in \mathbb{N}\}|\le 2^{k^2}$, în timp ce $|0,2^{k^2}|=2^{k^2}+1$, prin urmare există $i,j\in \overline{0,2^{k^2}}$ astfel încât i< j și $R^i=R^j$, așadar, pentru orice $p\in \mathbb{N}$, $R^{i+p}=R^i\circ R^p=R^j\circ R^p=R^{j+p}$, deci șirul $R^0,R^1,\ldots,R^n,\ldots$ este periodic cel puțin de la termenul R^i cu periode de lungime cel project R^i R^i , cu perioada de lungime cel mult j-i.

Dacă $A = \emptyset$, atunci R este singura relație binară pe \emptyset , adică unicul element al lui $\mathcal{P}(\emptyset^2) = \mathcal{P}(\emptyset \times \emptyset) = \mathcal{P}(\emptyset) = \{\emptyset\}$, așadar:

$$R = \emptyset = T_0 = \bigcup_{j \in \emptyset} R^j = \bigcup_{\substack{j \in \overline{1,0} \\ 1}} R^j = \bigcup_{j=1}^0 R^j;$$

de asemenea, $R=R^1=\bigcup_{j=1}^1 R^j=T_1$, iar $\min\{j\in\mathbb{N}^*\mid T_j \text{ e tranzitiv} \S\}=1$.

Acum să presupunem că A este nevidă, i.e. k > 0.

Conform formulei demonstrate la curs, $\mathcal{T}(R) = \bigcup_{n=1}^{\infty} R^n = \bigcup_{n=1}^k R^n \cup \bigcup_{n=k+1}^{\infty} R^n \supseteq \bigcup_{n=1}^k R^n = T_k$.

Să demonstrăm prin inducție că, pentru fiecare $n \in \mathbb{N}^*$, $R^n \subseteq \bigcup_{i=1}^n R^i = T_k$.

 $n \in \overline{1,k}$: Întrucât orice reuniune nevidă (i.e. a unei familii nevide de mulțimi) își include termenii, avem, pentru orice $n \in \overline{1,k}$: $R^n \subseteq R \cup R^2 \cup \ldots \cup R^n \cup \ldots \cup R^k = \bigcup_{j=1}^{\kappa} R^j = T_k$.

 $1, 2, \dots, n-1 \longrightarrow n > k$: Fie $n \in \mathbb{N}$ astfel încât n > k şi, pentru fiecare $j \in \overline{1, n-1}$, $R^j \subseteq T_k$, astfel că $\bigcup_{i=1}^{n-1} R^j \subseteq T_k$.

Potrivit Lemei 2, \mathbb{R}^n este multimea capetelor de drumuri de lungime n din (A, A^2) formate din arce din \mathbb{R} : \mathbb{R}^n $\{(a_1, a_{n+1}) \in A^2 \mid (\exists a_2, a_3, \dots, a_n \in A) ((a_1, a_2), (a_2, a_3), \dots, (a_n, a_{n+1}) \in R)\}.$

Dar orice astfel de drum $[a_1, a_2, \dots, a_{n+1}]$ conține cel puțin un circuit nevid $[a_i, a_{i+1}, \dots, a_{j-1}, a_j = a_i]$, cu $1 \le i < j \le n$, care poate fi eliminat din acest drum, formând drumul strict mai scurt $[a_1, a_2, \dots a_{i-1}, a_i = \underline{a_j, a_{j+1}}, \dots, a_n, a_{n+1}]$, de lungime $1 \le n-j+i < n$, așadar ale cărui capete formează o pereche din R^{n-j+i} , cu $n-j+i \in \overline{1,n-1}$.

Într-adevăr, fie perechea arbitrară, fixată, $(a_1, a_{n+1}) \in \mathbb{R}^n$. Conform scrierii de mai sus pentru \mathbb{R}^n , această pereche satisface: $(\exists a_2, a_3, \ldots, a_n \in A)$ $((a_1, a_2), (a_2, a_3), \ldots, (a_n, a_{n+1}) \in R)$. Cum n > k, rezultă că elementele a_1, a_2, \ldots, a_n nu pot fi două câte două distincte, așadar există $i, j \in \overline{1, n}$, cu i < j, astfel încât $a_i = a_j$. Așadar perechea (a_1, a_{n+1}) satisface:

 $(\exists a_2, a_3, \dots, a_{i-1}, a_i, a_{j+1}, \dots, a_{n-1}, a_n \in A) ((a_1, a_2), (a_2, a_3), \dots, (a_{i-1}, a_i), (a_i, a_{j+1}), (a_{j+1}, a_{j+2}), \dots, (a_n, a_{n+1}) \in R),$

prin urmare, conform Lemei 2, $(a_1, a_{n+1}) \in \mathbb{R}^{n-j+i}$. Cum $1 \leq i < j \leq n$, rezultă că $1 \leq n-j+i \leq n-1$, așadar $(a_1, a_{n+1}) \in \bigcup_{j=1}^{n-1} R^j$, deci $(a_1, a_{n+1}) \in T_k$ conform ipotezei de inducție. Prin urmare $R^n \subseteq T_k$. Raționamentul prin inducție este încheiat.

Aşadar, pentru fiecare $n \in \mathbb{N}^*$, $R^n \subseteq T_k$, prin urmare $\mathcal{T}(R) = \bigcup_{n=1}^{\infty} R^n \subseteq T_k$. Am văzut mai sus că are loc și $T_k \subseteq \mathcal{T}(R)$.

Aşadar $\mathcal{T}(R) = T_k$. În particular, T_k este tranzitivă.

Acum fie $m = \min\{j \in \mathbb{N}^* \mid T_j \text{ este tranzitivă}\}$. Cum $k \in \mathbb{N}^*$, iar T_k este tranzitivă, are loc $k \in \{j \in \mathbb{N}^* \mid T_j \text{ este tranzitivă}\}$ ranzitivă}, prin urmare $m \le k$, așadar $T_k = \bigcup_{n=1}^k R^n = \bigcup_{n=1}^m R^n \cup \bigcup_{n=m+1}^k R^n \supseteq \bigcup_{n=1}^m R^n = T_m \supseteq R^1 = R$.

Dar $m = \min\{j \in \mathbb{N}^* \mid T_j \text{ este tranzitivă}\} \in \{j \in \mathbb{N}^* \mid T_j \text{ este tranzitivă}\}$, așadar T_m este tranzitivă, prin urmare $T_k = \mathcal{T}(R) \subseteq T_k$ conform definiției închiderii tranzitive

 $T_k = \mathcal{T}(R) \subseteq T_m$ conform definiției închiderii tranzitive.

Aşadar $T_m = T_k = \mathcal{T}(R)$.