

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento Matemática

Lista 02 - REVISÃO

Dados de Identificação		
Professor:	Matheus Pimenta	
Disciplina:	Cálculo I - 1MAT096	
Aluno:		

18. Sendo $f(x) = x^3 + 2x^2 - 4$, calcule:

(a)
$$f(0)$$
 R=-4

(c)
$$f(\frac{1}{2}) R = -\frac{27}{8}$$

(b)
$$f(2) R=12$$

(d)
$$f(\sqrt{x})$$

19. Determine a função inversa em cada um dos exercícios. Faça seus gráficos e restrinja o domínio, se necessário:

(a)
$$f(x) = x - 4 \text{ R:} f^{-1}(x) = x + 4$$

(d)
$$f(x) = \log(\frac{x}{3}) \text{ R:} f^{-1}(x) = 3 \cdot 10^x$$

(b)
$$f(x) = x^2 + 1 \text{ R}: f^{-1}(x) = \sqrt{x-1}$$

(c)
$$f(x) = e^{4x} R: f^{-1}(x) = \frac{1}{4} \ln(x)$$

(e)
$$f(x) = \arctan(8x) \text{ R:} f^{-1}(x) = \frac{\tan(x)}{8}$$

20. Determine o domínio das seguintes funções de uma variável real:

(a)
$$f(x) = \sqrt{(x-4)(x+3)}$$

 $R:D(f) = \{x \in \mathbb{R}; x \le -3 \lor x \ge 4\}$
 (c) $f(x) = \sqrt{\frac{x}{x+1}}$
 $R:D(f) = \{x \in \mathbb{R}; x < -1 \lor x \ge 0\}$

(c)
$$f(x) = \sqrt{\frac{x}{x+1}}$$

 $R:D(f) = \{x \in \mathbb{R}; x < -1 \lor x \ge 0\}$

(b)
$$f(x) = \frac{\sqrt{2x}}{\sqrt{x^2 - 9}}$$

 $R:D(f) = \{x \in \mathbb{R}; x > 3\}$

(d)
$$f(x) = \log(\frac{x^2 - 3x + 2}{x + 1})$$

 $R: D(f) = \{x \in \mathbb{R}; -1 < x < 1 \lor x > 2\}$

21. Se $f(x) = \frac{3x-1}{x-7}$ determine:

(a)
$$\frac{5(f-1)-2(f(0))+3f(5)}{7}$$

(c)
$$f(3x-2)$$

(b)
$$f(-\frac{1}{2})$$

(d)
$$f[f(5)]$$

22. Dadas as funções $f(x) = x^2 - 1$ e g(x) = 2x - 1:

- (a) Determine o domínio e o conjunto imagem de f(x);
- (b) Determine o domínio e o conjunto imagem de g(x);

(c) Construa os gráficos de
$$f(x)$$
 e $g(x)$; (d) Calcule: $f(x) + g(x)$, $f(x) - g(x)$, $f(x) \cdot g(x)$, $\frac{f(x)}{g(x)}$, $g \circ f$ e $f \circ g$.

23. Determine
$$(g \circ f)^{-1}$$
 onde $f(x) = \frac{2+x}{3}$ e $g(x) = \frac{2x+3}{5}$: R: $\frac{15x-13}{2}$

24. Determine se as funções são pares ou impares:

(a)
$$f(x) = x^2 - 3$$

R: par

(b) $f(x) = |x|$

(c) $f(x) = x^{-3}$
R: impar

(d) $f(x) = 1 - x^4$

OBS: Utilize algum software (ou website) para verificar com seu traçado a mão.

(a)
$$f(x) = x$$
; $g(x) = x + 1$; $h(x) = x - 2$; $w(x) = x + 3$
(b) $f(x) = x^2$; $g(x) = x^2 + 1$; $h(x) = x^2 - 3$; $i(x) = 2 - x^2$; $j(x) = -3 - x^2$; $l(x) = 3x^2$

(b)
$$f(x) = x^{-}$$
; $g(x) = x^{-} + 1$; $h(x) = x^{-} - 3$; $i(x) = 2 - x^{-}$; $j(x) = -3 - x^{-}$; $i(x) = 3$

(c)
$$f(x) = 2^x$$
; $g(x) = 2^x + 3$; $h(x) = 1 - 2^x$

(d)
$$f(x) = \sin(x)$$
; $g(x) = \sin(2x)$; $h(x) = \sin(3x)$

(e)
$$f(x) = \frac{1}{x}$$
; $g(x) = -\frac{1}{x}$

R: par

(f)
$$f(x) = |x|$$
; $g(x) = |x + 3|$; $h(x) = -|x|$

- 26. Uma companhia telefônica cobra uma taxa de R\$0,36 por minuto e uma taxa fixa de R\$39,00 por mês. Escreva uma função linear que permite calcular o valor da conta mensal (em reais) em função do tempo total das ligações em minuto e construa o gráfico.
- 27. Uma empresa de software está vendendo uma média de 400 cópias de um certo jogo de computador por semana a um preço de R\$120,00. A empresa observou que a demanda é uma função linear do preço e estima que para cada R\$5,00 de redução do preço mais 50 cópias do jogo serão vendidas por semana.
 - (a) Escreva uma equação para a receita da empresa em função do preço. $\mathbf{OBS:}$ Receita = preço · demanda
 - (b) Que preço a empresa de software deve cobrar para maximizar a receita com a venda do jogo de computador.
- 28. Certo banco cobra R\$20,00 por talão de cheques e R\$0,50 por cheque utilizado. Outro banco cobra R\$10,00 por talão e R\$0,90 por cheque utilizado. Levando-se em conta apenas a questão financeira, decida em qual banco você abrirá sua conta. Justifique sua resposta através de gráficos e funções matemática.
- 29. Se sessenta limoeiros forem plantados, a média de colheita por árvore será 475 limões. A média de colheita por árvore decrescerá de 5 limões por árvore adicional plantada. Quantas árvores deverão ser plantadas, para maximizar a colheita total? (A resposta deverá ser um número inteiro)

- 30. A produção diária de um operário com t semanas de experiência é $Q(t)=120-Ae^{-kt}$ unidades. O operário inicialmente produzia 30 unidades/dia e, após oito semanas, 80 unidades/dia. Quantas unidades/dia produziria com quatro semanas? Apresente o gráfico da função.
- 31. O custo médio por DVD, em dólares, para uma companhia produzir x DVD é determinado pela função:

$$A(x) = \frac{2x + 100}{x}, x > 0$$

- (a) Qual é o preço médio por DVD quando é produzido 100 DVDs?
- (b) Para que o preço médio do DVD seja U\$2,50 quantos DVDs devem ser produzidos?
- (c) O que você observa em relação ao preço, à medida que a produção de DVD aumenta?
- (d) Plote o gráfico da função
- 32. Calcula-se que a população máxima que nosso planeta pode comportar, em termos de terras agricultáveis disponíveis, seja de pouco mais de 45 bilhões. Atualmente a população mundial está na casa dos 7bi. Supondo que essa população duplique a cada 30 anos, calcule em quanto tempo ela atingiria o limite máximo?
- 33. Uma locadora de carros da cidade do Rio de Janeiro aluga carros por uma diária de R\$62,00, estando incluídos os 100 primeiros quilômetros. Para cada quilômetro rodado a mais que os 100 é cobrado uma taxa de R\$0,18.

Cidades	Distância ao Rio
Niterói	18km
São Paulo (SP)	$429 \mathrm{km}$
Petrópolis	66km
São José dos Campos	343km
Vitória	$525 \mathrm{km}$

- (a) Nesta situação, identifique quais seriam as variáveis dependentes e independentes a serem consideradas na relação que dá o preço diário a ser pago em função da distância percorrida.
- (b) Encontre uma fórmula que relacione o preço a ser pago em função da distância percorrida.
- (c) Se uma pessoa pegar o carro de manhã, for a São Paulo e voltar a noite, qual o valor a ser pago, sabendo que ela rodou 35km na cidade.
- 34. Um funcionário recebe R\$12,00 por hora trabalhada para trabalhar 44 horas semanais, sendo acrescido 30% do salário/hora a cada hora que exceder esse limite, sendo que ele não pode fazer mais do que duas horas por dia.
 - (a) Construa uma lei que expresse uma relação entre a quantidade a ser recebida pelo funcionário em função do número de horas trabalhadas.
 - (b) Quanto o funcionário receberá após um mês se durante o mês ele fizer uma hora por dia? (Considere o mês sem feriado e com 4 sábados e 4 domingos)
 - (c) Qual a variável dependente e qual a variável independente neste problema?

- 35. Em uma piscina inicialmente haviam 100.000 litros de água. Foi aberta uma torneira cuja vazão é de 25 litros por minuto. Sabendo que a piscina tem 10 metros de comprimento e 8 de largura, e 3 metros de profundidade.
 - (a) Construa uma lei que expresso uma relação entre a quantidade de litros de água presente na piscina em função do tempo transcorrido desde a abertura da torneira.
 - (b) Qual a variável dependente e independente?
- 36. Sobre determinadas condições a variação entre a temperatura e a altura da coluna de mercúrio de um termômetro é dada por:

Temperatura em graus Celsius	Comprimento da coluna
0	40
5	48
10	56
15	64

- (a) Baseado nos dados da tabela acima, tente por meio de uma fórmula expressar a relação entre temperatura e a altura do termômetro.
- (b) Na relação estabelecida, quem é a variável dependente e quem é a independente?
- 37. Sejam as funções reais $f(x) = x^2 + 4x 5$ e g(x) = 2x 3
 - (a) Obtenha $f \circ g \in g \circ f$;
 - (b) Calcule $(f \circ g)(2)$ e $(g \circ f)(2)$
 - (c) Determine os valores do domínio de $f\circ g$ que produzem como imagem 16.