# 【从零训练Steel-LLM】微调探索与评估

原创 战士金 炼钢AI 2024年10月24日 22:58 北京

# ① 前言

今年二月份,机缘巧合,朋友搞到了一台A100 80G SXM,机器放着也是怪浪费的,便萌生了从零预训练一个LLM的享法。一台机器不算多,并且最多可能也就用个3-4个月,掐指一算,训个1B左右的模型,1T左右的数据应该差不多。好景不长,机器用了一个多月吧,就被收回了,当时模型才训到了20k step(预计要训练100k step)。天无绝人之路,真的非常感谢某top 3老师的资助,支持了一个多月的一台H系列机器,才得以让我们的项目顺利完成。打工的牛马,工作日10点到家,亦或是周末,靠着兴趣,每天弄点,拖拖拉拉,转眼已经到了10月了,才弄出来一个自己觉得差不多还说的过去的模型。和其他模型不太一样,我们的模型预训练时以中文语料为主,大概只有20%左右的英文数据,因此就不在英文榜单上现眼了。微调以后,最终在CEVAL上获得了38分,CMMLU上获得了33分(这已经比一些大几倍的开源模型效果要好了。叠甲:开源数据的功劳,开源数据的功劳)。本篇文章主要介绍下微调上的探索以及评估。另外,还特意试了试训练CMMLU数据集,能在榜单上提多少分(狗头

之前也写了更详细的数据准备、训练框架改造、模型设计的文章:

【从零训练Steel-LLM】预训练数据收集与处理

【从零训练Steel-LLM】预训练代码讲解、改进与测试

【从零训练Steel-LLM】模型设计

#### github:

1 https://github.com/zhanshijinwat/Steel-LLM

项目也有交流群,满200人了,加绿: a1843450905。

欢迎关注我的 zhi hu: 战士金



## 炼钢AI

个人公众号,首本RAG相关书籍《大模型RAG实战》、开源预训练项目Steel-LLM作者,… 7篇原创内容

公众号

# ② 微调数据

首先来介绍一下我们用的微调数据,主要目标是提高模型的对话能力和作题能力:

## (1) BAAI/Infinity-Instruct

开源数据的话,还是选大机构发布的靠谱一点,毕竟大机构还是要面子的,除此之外尽量选择新一些的。我们的模型是8月20号左右训练完的,BAAI正好在8月初才发布了Infinity-Instruct 7M数据集,正好就拿过来用了。这个数据集还给出了语言标签、任务类型等元信息,方便进一步筛选数据。最开始我就一把梭,直接把这700w数据全都训进去,但是CEVAL

只有30出头的分数。后来才想起了这里边应该混有一些英文数据的,统计之后才发现只有70w左右的中文数据。因为Steel-LLM预训练数据中80%都是中文数据,微调时候用大部分都是英文的数据微调效果当然是不太好的。因此,最好版本的微调模型只用了70w的Infinity-Instruct的中文数据。

Infinity-Instruct微调数据集数量不少,也借此谈谈我对微调数据的看法。从很早开始,对于使用多一些的数据微调(《Exploring the Impact of Instruction Data Scaling on Large Language Models An Empirical Study on Real-World Use Cases》)还是精选几百、几千条数据微调(《LIMA: Less Is More for Alignment》)一直有争执。我觉得使用少量的微调数据得到一个好的sft模型前提是你的基础模型足够强大,如果模型比较弱的让它在微调阶段见识到更多的数据自然是好的。还有一种普遍说法是"预训练给模型注入知识,微调学习对话方式、激活知识",经常会见到有人争执微调到底能不能注入知识的问题。我觉得只能说预训练的和微调的**主要目的**分别是注入知识和学习对话方式,微调和预训练一样,也是next token的训练,当然也能注入知识了。因此在微调Steel LLM时,我使用了百万级别的大量sft数据。

#### (2) wanjuan中文选择题部分

Steel-LLM预训练数据里边不仅有原始文本数据,还有诸如BELLE、moss等项目的对话数据 (详细的数据组成可以看我之前的文章),本意是想通过在预训练数据中混入少量sft数据, **让预训练之后的模型直接有一定的对话能力**。但现实是,训练出来的模型续写能力和对话能 力都不是很稳定。。。不能很好的输出选择题答案,有点四不像了。因此考虑在微调阶段加 入一些选择题数据,规范一下回答格式。**其实wanjuan中文选择题部分在预训练阶段就有** pretrain modify from TinyLlama/scripts/ 的 Steel-LLM 项 目 的 prepare steel IIm data.py文件里甚至还有专门处理这部分数据的逻辑,相当于在微调阶段 再回炉重造一遍。wanjuan选择题的一条数据形式如下所示,除了问题、选项和答案以外,还 有"解析"(answer detail)。个人认为"解析"部分还是很重要的(如果没有解析,真的更像是 背答案了),qwen等模型在回答选择题时候也会输出解析,说明他们的sft数据的选择题也是 有解析的。

```
1 {'id': 'BkQQU-7xK3YAJdm0cWMc', 'q_type': '单选题', 'q_main': '下列属于同种物质的
```

在构造选择题微调数据时,考虑cot和非cot两种格式,后文也会展示这两种微调方式的在选择题上的得分。cot格式先输出"解析",再输出答案;非cot格式,先输出答案,再输出"解析"。具体格式如下:

#### cot格式:

```
1 # 替换"解析"里的答案部分,最后统一输出答案。
2 answer = f'{item["answer_detail"]}'
3 pattern = r"故选.*"
4 answer = re.sub(pattern, '', answer, flags=re.DOTALL)
5 answer = answer + f'答案为{item["std_ans"]}'
6 instruct = f"以下是一道{json_obj['q_type']}:\n{choice}请先给出解释再给出答案。\n"
```

#### 非cot格式:

```
1 answer = f'{item["std_ans"]}。{item["answer_detail"]}'
```

2 instruct = f"以下是一道单选题:\n{choice}请给出答案。\n"

(这里自我吐槽一下,这项目真的持续太久了,微调时候都忘记了预训练数据里还有选择题数据这回事。。。还是刷github时候看了survivi/Llama-3-SynE数据里有选择题,本来想用正则表达式从里边提取出选择题,后来嫌麻烦直接发邮件问作者选择题哪来的,才发现是wanjuan数据的选择题)

### (3) ruozhiba

之前比较火的"弱智吧"微调数据,问题来源于百度贴吧"弱智吧",由GPT4回答。我使用的优化版的"弱智吧"数据:Better-Ruozhiba,人为审阅了每一条的原文和回复,剔除了一些原文中的格式错误,修改或重写了部分答案。

#### (4) 自我认知数据

通过微调的方式让Steel-LLM知道自己是Steel-LLM,数据内容就是各种形式的问模型"你是谁"。模板来自于EmoLLM项目,地址如下,将原来数据中的"心理健康助手"替换为了"Steel-LLM"

1 https://github.com/SmartFlowAI/EmoLLM/blob/main/datasets/self\_cognition\_EmoLLM

# ③ 其他模型在ceval/cmmlu上的表现

这块列一下其他模型在benchmark上的表现,让读者大概有个分数的概念。我们的1B模型在中文榜单上的表现已经比一些更大的早期的模型效果好了,这得益于开源数据的进步。(当然,也有一些模型本身训练数据里中文数据就少,比如llama)

#### 来自ceval论文的榜单:

| Model               | STEM | Social Science | Humanities | Other | Average |
|---------------------|------|----------------|------------|-------|---------|
| Random              | 25.0 | 25.0           | 25.0       | 25.0  | 25.0    |
| GPT-4               | 65.2 | 74.7           | 62.5       | 64.7  | 66.4    |
| ChatGPT             | 49.0 | 58.0           | 48.8       | 50.4  | 51.0    |
| Claude-v1.3         | 48.5 | 58.6           | 47.3       | 50.1  | 50.5    |
| Bloomz-mt           | 39.1 | 53.0           | 47.7       | 42.7  | 44.3    |
| GLM-130B            | 36.7 | 55.8           | 47.7       | 43.0  | 44.0    |
| Claude-instant-v1.0 | 38.6 | 47.6           | 39.5       | 39.0  | 40.6    |
| ChatGLM-6B          | 33.3 | 48.3           | 41.3       | 38.0  | 38.9    |
| LLaMA-65B           | 32.6 | 41.2           | 34.1       | 33.0  | 34.7    |
| MOSS                | 31.6 | 37.0           | 33.4       | 32.1  | 33.1    |
| Chinese-Alpaca-13B  | 27.4 | 39.2           | 32.5       | 28.0  | 30.9    |
| Chinese-LLaMA-13B   | 28.8 | 32.9           | 29.7       | 28.0  | 29.6    |

来自MiniCPM榜单: https://arxiv.org/pdf/2404.06395

| Model              | C-Eval | CMMLU | MMLU  | HumanEval | MBPP  | GSM8K | MATH  |
|--------------------|--------|-------|-------|-----------|-------|-------|-------|
| Llama2-7B          | 32.42  | 31.11 | 44.32 | 12.20     | 27.17 | 13.57 | 1.80  |
| Qwen-7B            | 58.96  | 60.35 | 57.65 | 17.07     | 42.15 | 41.24 | 5.34  |
| Deepseek-7B        | 42.82  | 44.45 | 47.82 | 20.12     | 41.45 | 15.85 | 1.53  |
| Mistral-7B         | 46.12  | 42.96 | 62.69 | 27.44     | 45.20 | 33.13 | 5.00  |
| Gemma-7B           | 42.57  | 44.20 | 60.83 | 38.41     | 50.12 | 47.31 | 6.18  |
| Llama2-13B         | 37.32  | 37.06 | 54.71 | 17.07     | 32.55 | 21.15 | 2.25  |
| MPT-30B            | 29.34  | 32.09 | 46.56 | 21.95     | 35.36 | 10.31 | 1.56  |
| Falcon-40B         | 40.29  | 41.57 | 53.53 | 24.39     | 36.53 | 22.44 | 1.92  |
| TinyLlama-1.1B     | 25.02  | 24.03 | 24.3  | 6.71      | 19.91 | 2.27  | 0.74  |
| Qwen-1.8B          | 49.81  | 45.32 | 43.37 | 7.93      | 17.8  | 19.26 | 2.42  |
| Qwen1.5-1.8B       | 55.00  | 50.85 | 43.81 | 5.49      | 24.82 | 26.16 | 3.25  |
| Gemini Nano-3B     | -      | -     | -     | -         | 27.20 | 22.80 | -     |
| StableLM-Zephyr-3B | 30.34  | 30.89 | 45.90 | 35.37     | 31.85 | 52.54 | 12.12 |
| Phi-2(2B)          | 23.37  | 24.18 | 52.66 | 47.56     | 55.04 | 57.16 | 3.50  |
| Gemma-2B           | 29.26  | 28.56 | 38.49 | 24.39     | 29.74 | 16.83 | 3.34  |
| MiniCPM-1.2B       | 49.14  | 46.81 | 49.63 | 44.51     | 32.75 | 31.77 | 10.60 |
| MiniCPM-2.4B       | 51.13  | 51.07 | 53.46 | 50.00     | 47.31 | 53.83 | 10.24 |

来自MAP-Neo论文的榜单:

https://arxiv.org/pdf/2405.19327

| Dataset          | LLama-3-8B<br>(Instruct) | Mistral-7B<br>(Instruct-v0.2) | LLama-2-7B<br>(Chat) | Amber-7B<br>(Chat) | OLMo-7B<br>(Instruct) | MAP-Neo-7B<br>(SFT) | MAP-Neo-7E<br>(Instruct) |
|------------------|--------------------------|-------------------------------|----------------------|--------------------|-----------------------|---------------------|--------------------------|
|                  |                          |                               | Chinese              |                    |                       |                     |                          |
| C-Eval           | 50.76                    | 43.72                         | 35.67                | 26.29              | 35.18                 | 55.42               | 56.97                    |
| *-stem           | 47.47                    | 41.35                         | 32.59                | 23.99              | 31.43                 | 47.37               | 49.08                    |
| *-social-science | 57.05                    | 47.75                         | 40.04                | 26.77              | 42.13                 | 69.21               | 70.75                    |
| *-humanities     | 48.32                    | 47.33                         | 36.96                | 28.26              | 34.03                 | 63.17               | 63.14                    |
| *-other          | 53.48                    | 40.74                         | 36.01                | 28.06              | 36.81                 | 49.78               | 52.63                    |
| *-hard           | 31.04                    | 27.32                         | 28.45                | 22.77              | 26.33                 | 38.41               | 39.55                    |
| CMMLU            | 51.68                    | 42.67                         | 33.9                 | 30.09              | 35.55                 | 55.27               | 55.01                    |
| *-humanities     | 52.55                    | 42.01                         | 35.45                | 30.48              | 34.78                 | 63.4                | 62.99                    |
| *-stem           | 44.09                    | 36.82                         | 29.33                | 26.76              | 30.36                 | 47.29               | 46.69                    |
| *-social-science | 53.02                    | 44.41                         | 34.55                | 30.97              | 38.04                 | 57.55               | 57.79                    |
| *-other          | 57.58                    | 47.3                          | 36.77                | 32.25              | 38.45                 | 53.93               | 53.44                    |
| *-china-specific | 45.86                    | 39.22                         | 32.64                | 28.38              | 33.97                 | 55.69               | 55.9                     |

### 4 微调实验

我尝试了构造不同数据组成、格式的微调数据,查看模型在微调不同微调step下的ceval和cmmlu准确率,微调数据构造和评估代码也已经更新到了Steel LLM的项目中了。如果不特别说明的话,微调加载的是预训练1060k step的预训练模型,对数据微调3个epoch,学习率为2e-5,micro batch 大小为8,累计8个 micro batch进行一次反向传播(模拟单卡batch size=64),wanjuan exam数据集默认不使用cot方式。每次实验都带着ruozhiba数据和自我认知数据,数据量很少,主要是对Infinity-Instruct数据和wanjuan exam数据上做探索(有的实验组没有cmmlu的评测结果)

### 实验1: 全量Infinity-Instruct数据+全量wanjuan exam

随着微调step不断增加,ceval的指标是会上涨的,但微调到18000step之后变化就不大了。最好能拿到32%的准确率。因此有如下猜想:即使wanjuan exam在预训练里已经见过,但因为模型比较小,训练过的数据仍然会忘掉一些,微调多一些的数据还是有益的(小模型情况下)。

| 微调step | STEM  | Social<br>Science | Humanities | Other | Hard  | (ceval) |
|--------|-------|-------------------|------------|-------|-------|---------|
| 2000   | 27.84 | 26.22             | 30.99      | 29.09 | 28.82 | 28.46   |
| 6000   | 25.97 | 24.12             | 31.48      | 28.44 | 27.77 | 27.30   |
| 12000  | 27.99 | 29.32             | 29.15      | 27.99 | 27.88 | 28.49   |
| 18000  | 30.51 | 30.54             | 33.92      | 30.19 | 33.72 | 31.17   |
| 24000  | 33.98 | 32.98             | 33.14      | 29.88 | 40.01 | 32.74   |
| 30000  | 32.57 | 31.97             | 35.01      | 31.82 | 35.56 | 32.81   |
| 36000  | 30.57 | 31.00             | 35.62      | 29.39 | 34.52 | 31.47   |
| 42000  | 31.79 | 30.49             | 34.71      | 30.70 | 35.68 | 31.93   |
| 46000  | 31.40 | 32.62             | 33.77      | 32.43 | 36.51 | 32.35   |

## 实验2: 70w Infinity-Instruct中文数据+全量wanjuan exam

Infinity-Instruct全量数据有700w条左右,这里边有大概630w的英文对话数据。因为Steel-LLM在预训练时候80%都是中文,微调数据如果有很多英文是会影响到模型性能的,将Infinity-Instruct里边的英文数据全部去掉,只保留70w的中文数据能拿到更高的准确率。在ceval和cmmlu上的准确率如下所示,**这是Steel-LLM的最好的一版模型,ceval达到了38%的准确率,cmmlu达到了33%的准确率**。ceval准确率:

| 微调step | STEM  | Social<br>Science | Humanities | Other | Hard  | AVERAGE (ceval) |
|--------|-------|-------------------|------------|-------|-------|-----------------|
| 4000   | 27.95 | 30.89             | 29.03      | 30.08 | 29.18 | 29.20           |
| 8000   | 28.22 | 31.05             | 29.00      | 31.58 | 28.48 | 29.64           |
| 10000  | 29.93 | 35.40             | 32.86      | 34.38 | 28.93 | 32.55           |
| 12000  | 33.75 | 39.73             | 39.05      | 34.22 | 33.42 | 36.12           |
| 16000  | 34.65 | 42.33             | 43.13      | 35.90 | 34.52 | 38.18           |
| 20000  | 34.53 | 43.31             | 39.17      | 39.68 | 33.23 | 38.29           |
| 24000  | 34.45 | 41.30             | 41.20      | 38.64 | 34.48 | 38.09           |
| 27459  | 33.94 | 41.61             | 43.00      | 39.79 | 33.65 | 38.57           |

### cmmlu准确率:

| 微调step | STEM  | Humanities | Social<br>Science | Other | China<br>specific | Overall<br>(CMMLU |
|--------|-------|------------|-------------------|-------|-------------------|-------------------|
| 4000   | 25.37 | 26.10      | 25.46             | 25.63 | 25.83             | 25.60             |
| 8000   | 27.11 | 28.48      | 26.51             | 26.80 | 26.64             | 27.11             |
| 10000  | 27.41 | 29.91      | 29.65             | 30.97 | 31.10             | 29.43             |
| 12000  | 27.61 | 32.51      | 32.10             | 34.06 | 32.98             | 31.48             |
| 16000  | 27.46 | 33.96      | 33.34             | 34.11 | 33.81             | 32.14             |
| 20000  | 29.07 | 35.86      | 34.56             | 34.56 | 34.81             | 33.42             |
| 24000  | 29.07 | 35.15      | 34.08             | 35.52 | 35.02             | 33.34             |
| 27459  | 29.17 | 35.87      | 34.10             | 35.37 | 35.23             | 33.48             |

### 实验3: CMMLU刷榜测试

有一些工作(比如天工大模型的技术报告:https://arxiv.org/pdf/2310.19341)已经表明了目前各种榜单上排名靠前的某些模型有刷榜的行为(直接过拟合测试集),论文《Training on the Benchmark Is Not All You Need》也证明了这一点。笔者比较好奇,如果我直接去过拟合CMMLU测试数据,最多能在CMMLU上拿到多少分。

笔者在70w Infinity-Instruct中文数据+wanjuan选择题数据+ruozhiba数据+自我认知数据的基础上,消融在训练数据中直接加入CMMLU数据对模型的影响。(这块由于笔者的疏忽,训练加载的checkpoint是实验1训练出来的checkpoint而不是原始预训练出来的模型。。。通过CEVAL正确率没有进一步增长,也能说明在实验1训练3个epoch的基础上,再多训练几个epoch已经没啥收益了)

当训练集中加入CMMLU数据时,在CMMLU上测试可以拿到36%的正确率,而训练集中不加入CMMLU数据时,也能达到33%左右的正确率,说明过拟合数据集对于刷榜是有一定作用的,但是作用不是特别大(单纯对于小的模型来说,死记硬背都不能特别好记下来)。 笔者这里在对CMMLU进行sft时只让模型去预测答案选项(搞不到解释),猜测如果sft时让模型去学习选项+解释能涨分更多。一些开源模型在做选择题时候,即使你告诉他只回答选项不要给出解释,很多时候依然会回答一大串解释。。。

虽然CMMLU和CEVAL题的类型大部分相同(STEM、social science等),但是对CMMLU进行过拟合并不能提升模型在CEAVL上的分数,说明在小模型上过拟合测试集的泛化性一般。

(1) 训练集中**加入**CMMLU数据 CEVAL

|       | STEM  | Social<br>Science | Humanities | Other | Hard  | AVERAGE<br>(ceval) |
|-------|-------|-------------------|------------|-------|-------|--------------------|
| 4000  | 28.26 | 30.75             | 32.48      | 27.97 | 28.34 | 29.57              |
| 8000  | 35.06 | 36.30             | 39.98      | 36.76 | 35.89 | 36.70              |
| 10000 | 31.88 | 40.21             | 39.41      | 35.78 | 29.27 | 35.90              |
| 12000 | 33.73 | 33.14             | 36.51      | 39.01 | 32.67 | 35.32              |
| 16000 | 36.19 | 36.93             | 38.34      | 38.66 | 35.75 | 37.31              |
| 20000 | 35.81 | 43.74             | 38.32      | 38.98 | 34.24 | 38.54              |
| 24000 | 36.23 | 41.33             | 42.84      | 37.83 | 34.99 | 38.95              |
| 27459 | 36.52 | 42.52             | 41.20      | 38.64 | 34.69 | 39.11              |

### **CMMLU**

| 微调step | STEM  | Humanities | Social<br>Science | Other | China<br>specific | Overall<br>(cmmlu |
|--------|-------|------------|-------------------|-------|-------------------|-------------------|
| 4000   | 32.54 | 39.28      | 36.86             | 37.67 | 37.41             | 36.42             |
| 8000   | 32.61 | 38.57      | 36.86             | 37.46 | 37.30             | 36.25             |
| 10000  | 32.80 | 38.84      | 37.06             | 37.38 | 37.92             | 36.40             |
| 12000  | 29.89 | 35.94      | 33.69             | 34.17 | 34.76             | 33.27             |
| 16000  | 30.29 | 38.58      | 35.75             | 37.73 | 37.08             | 35.36             |
| 20000  | 32.80 | 38.84      | 37.06             | 37.38 | 37.92             | 36.40             |
| 24000  | 32.61 | 38.57      | 36.86             | 37.46 | 37.30             | 36.25             |
| 27459  | 32.54 | 39.28      | 36.86             | 37.67 | 37.41             | 36.42             |

# (2) 训练集中**不加入**CMMLU数据 CEVAL

| 微调step | STEM    | Social<br>Science | Humanities | Other | Hard  | AVERAGE<br>(ceval) |
|--------|---------|-------------------|------------|-------|-------|--------------------|
| 4000   | 28.00   | 29.76             | 29.12      | 32.58 | 27.27 | 29.55              |
| 8000   | 37.61   | 34.12             | 34.97      | 35.70 | 34.60 | 35.97              |
| 10000  | 33.85   | 38.71             | 33.28      | 35.45 | 29.45 | 35.00              |
| 12000  | 37.06   | 39.51             | 38.92      | 37.27 | 34.35 | 37.97              |
| 16000  | 37.55   | 38.02             | 42.22      | 37.10 | 34.29 | 38.53              |
| 20000  | 36. T ∷ | 40.84             | 39.99      | 39.56 | 34.27 | 38.69              |
| 24000  | 38.46   | 41.01             | 42.78      | 38.94 | 35.81 | 39.97              |
| 27459  | 38.35   | 40.70             | 42.50      | 39.59 | 35.84 | 39.94              |

## **CMMLU**

| 微调step | STEM  | Humanities | Social<br>Science | Other | China<br>specific | Overall<br>(cmmlu) |
|--------|-------|------------|-------------------|-------|-------------------|--------------------|
| 4000   | 25.65 | 26.68      | 27.40             | 27.84 | 28.02             | 26.91              |
| 8000   | 27.26 | 33.03      | 31.76             | 32.03 | 31.76             | 30.93              |
| 12000  | 28.67 | 35.04      | 33.29             | 35.15 | 34.59             | 32.87              |
| 16000  | 28.41 | 36.37      | 34.92             | 34.99 | 35.24             | 33.57              |
| 20000  | 29.49 | 36.91      | 34.79             | 35.61 | 36.16             | 34.04              |
| 24000  | 29.70 | 37.25      | 34.47             | 35.21 | 35.53             | 33.97              |
| 27459  | 29.76 | 37.15      | 34.15             | 35.45 | 35.27             | 33.91              |

# 实验4: COT回答方式

笔者在实验1的数据配置下(全量Infinity-Instruct数据+全量wanjuan exam),按照COT的方式微调wanjuan exam数据,在ceval上的准确率如下所示

|          | STEM  | Social<br>Science | Humanities | Other | Hard  | AVERAGE<br>(ceval) |
|----------|-------|-------------------|------------|-------|-------|--------------------|
| 2000ckpt | 21.69 | 31.04             | 32.40      | 21.67 | 18.90 | 25.75              |
| 4000     | 25.59 | 28.63             | 29.80      | 26.29 | 24.99 | 27.21              |
| 8000     | 27.09 | 33.94             | 37.15      | 25.91 | 24.59 | 30.29              |
| 12000    | 25.93 | 30.40             | 34.59      | 29.03 | 26.96 | 29.28              |
| 18000    | 22.82 | 31.46             | 34.55      | 25.50 | 20.83 | 27.53              |
| 24000    | 25.54 | 34.64             | 36.17      | 25.80 | 23.07 | 29.59              |
| 30000    | 26.26 | 32.72             | 31.30      | 31.71 | 26.28 | 29.72              |
| 36000    | 24.71 | 33.53             | 28.58      | 27.60 | 22.32 | 27.84              |

效果甚至比非COT的方式训练出来的还要差一些,可能是小模型的推理能力还是不太行。我 也尝试了让某家大厂的1.5B模型通过"先输出解释再输出答案"的方式回答,但是很多情况下模 型还是会先输出答案再输出解释,或者干脆只输出答案。说明它们在微调时候数据格式应该 也应该是先输出答案的,并没有使用COT的方式。

# case展示

#### 好的case

Q: 你的名字是什么

我的名字是SteelLLM,由SteelLLM团队开发,旨在为用户提供智能的回答和帮助。

#### Q: 写一个快速排序

- 1 快速排序是一种基于分治思想的排序算法,它通过选择一个基准元素,将数组分成两个子数组,然后
- 2 1. 选择基准元素:选择一个基准元素,例如数组的第一个元素。
- 3 2. 分割数组:将数组分成两个子数组,分别递归地对这两个子数组进行排序。
- 4 3. 递归排序: 递归地对这两个子数组进行排序, 直到它们的长度相等或它们的顺序不改变。
- 5 4. 重复步骤2和步骤3,直到整个数组有序。
- 6 下面是Python实现的快速排序算法:

```
7 ```python
```

```
8 def quick_sort(arr):
       if len(arr) <= 1:</pre>
           return arr
       pivot = arr[len(arr) // 2]
       left = [x for x in arr if x < pivot]</pre>
       middle = [x for x in arr if x == pivot]
       right = [x for x in arr if x > pivot]
16 print(quick_sort(arr)) # [1, 2, 3, 4, 5, 6, 7, 8, 9]
```

18 输出结果为: [1, 2, 3, 4, 5, 6, 7, 8, 9]

## Q:介绍一下北京

- 1 北京是中国的首都,位于华北平原上。它是一个历史悠久的城市,拥有丰富的文化遗产和历史遗迹。
- 2 北京市区是全国最大的城市之一,也是中国最著名的旅游景点之一。它是中华人民共和国的首都、直
- 3 在历史上,北京曾经被划为东交民巷地区,并成为外国使节居住的地方。现在,北京已经成为一个重
- 4 在北京,你可以参观许多博物馆、艺术馆和其他文化机构。此外,你还可以品尝到各种美食,如烤鸭
- 5 总之,北京是一座充满活力和魅力的城市,无论你是来观光还是休闲度假,这里都是你的不二选择。

Q: 请将以下内容翻译成中文: A new giant step toward making rockets completely reusable was made when the SpaceX Starship successfully landed at a designated position alongside a landing tower six minutes after launch on Sunday.

(翻译有点磕磕巴巴的感觉,大致意思是对的,Steel-LLM的英文数据只有20%有点少)

1 在星期天,SpaceX成功地降落在一个指定位置与发射塔六分钟后降落的6公里跑道上的一段距离中。

Q:请将以下内容翻译成英文:大模型是指具有大规模参数和复杂计算结构的机器学习模型。 这些模型通常由深度神经网络构建而成,拥有数十亿甚至数千亿个参数。大模型的设计目的 是为了提高模型的表达能力和预测性能,能够处理更加复杂的任务和数据。

(大致意思是对的,但是有自由发挥的成分)

- 1 Q:请将以下内容翻译成英文:大模型是指具有大规模参数和复杂计算结构的机器学习模型。这些模型
- 2 (大致意思是对的,但是有自由发挥的成分)

# Q:请以下面词语为主题写一首诗:春天

- 1 春风吹拂万物生,
- 2 百花争艳竞相放。
- 3 绿草如茵,花香四溢,
- 4 鸟语虫鸣,乐享其中。

#### Q: 列出斐波那契数列的前6个数

1 1, 1, 2, 3, 5, 8

#### 差的case

Q:编写一个关于狗的笑话

(并不觉得好笑。。。不过我可能也写不出来关于狗的笑话)

1 为什么狗总是喜欢汪汪叫呢?因为它们觉得"汪"是他们的家!哈哈哈,怎么样,好笑吗?

Q: 计算一下123+286的结果

(试了几个case,三位数加法的计算大部分情况计算结果会相差10以内)

1 123 + 286 = 405.

# Q:小明有2个哥哥和6个姐姐,请问小明的爸爸有几个孩子 (少算了自己)

- 1 根据题目,我们可以列出一个简单的算式来表示这个问题:
- 2 ...
- 3 小明的弟弟数 + 小明的妹妹数 = 总共的孩子数
- A ...
- 5 其中,小明的弟弟数为 2,妹妹数为 6。将这两个数字相加即可得到总共有多少个孩子。
- 6 因此,答案是:小明的爸爸有8个孩子。

# 6 小结及后续规划

Steel-LLM到目前为止应该基本算已经完工了,时间跨度比较大,后边应该还会写一篇汇总文章。对于正规LLM预训练项目,还有强化学习对齐的任务没做,这部分看以后还有没有时间和算力。之后打算做一些sft样本筛选的工作,看看模型还能不能再进步一些,也会以博客的形式更新,并将代码更新到github仓库, 欢迎关注:https://github.com/zhanshijinwat/Steel-LLM