MA4702 Programación Lineal Mixta: Teoría y Laboratorio.

Profesor: Martín Matamala.

Auxiliares: Benjamín Jauregui y Cristian Palma.

Fecha: 10 de abril de 2022.

Laboratorio 2: Tarea Individual

El objetivo de este laboratorio es experimentar con la solución de problemas lineales de gran tamaño. El problema que queremos resolver es:

$$\overline{\mathcal{P}}$$
: $\max\{q^T z \mid z \in Q, z < d\},$

donde Q := conv(A), para A una matrix con m filas y n columnas.

P1. Demuestre que el problema $\overline{\mathcal{P}}$ es equivalente a

$$\mathcal{P}: \max\{(g^T A)x \mid \sum_{j=1}^n x_j = 1, Ax \le d, x \ge 0\}.$$

- **P2.** Usando Julia/JuMP/GORUBI programe el problema \mathcal{P} . Para ello, debe implementarlo en la función modTI(A,d,g) del notebook adjunto. Recibe como input una matriz A de n filas y m columnas, junto con vectores d,g de n filas. Debe retornar el modelo planteado.
- **P3.** En el archivo *instancias.zip* se le entregan 11 matrices A_i distintas, cada cual tiene i filas y 2i columnas, con i = 5, ..., 15, y sus entradas son solo -1, 0 o 1.

Para cada una de estas matrices A_i , defina y calcule (1) el vector $d_{A_i} \in \mathbb{R}^i$ tal que: $d_{A_i}(j)$ es el promedio de la j-esima columna par de A_i , y (2) el vector $g_{A_i} \in \mathbb{R}^i$ tal que $g_{A_i}(j)$ es el promedio de la j-esima columna impar de A_i . Para ello, debe completar el código respectivo en las funciones auxiliares getd(A) y getg(A) para obtener los vectores d y g, respectivamente, asumiendo que la entrada f tiene f filas y f columnas.

Una vez definida las funciones getd y getd, ejecute la función getsol() para obtener el valor de \mathcal{P} con las matrices A de las instancias dadas, junto a los vectores d_A y g_A .

P4. Suponga que es necesario agregar p columnas a la matriz A, dadas por una matriz B. Usando la solución óptima \overline{x} del problema original, construya una solución factible del nuevo problema

$$\mathcal{P}^+: \quad \max\{((g^T A')u \mid \sum_{i=1}^{n+p} u_i = 1, A'u \le d, u \ge 0\},$$

donde A' es la matriz que tiene tanto las columnas de A como las de B: $A' = [A \mid B]$.

- **P5.** Encuentre el dual de \mathcal{P}^+ y úselo para proponer un test para decidir si la solución factible propuesta en la parte anterior es óptima.
- **P6.** Aplique el test a las instancias de la parte **P3.** para matrices B(i) cuyas columnas corresponden a las indicatrices de todos los subconjuntos de $\{1,\ldots,i\}$ con i-2 elementos. Es decir, ejecute el programa diseñado en la **P2.** con las matrices A' = [A|B] tal que B es una matriz que tiene $\binom{n}{n-2}$ columnas, y cada una de ellas corresponde a la indicatriz de un subconjunto de tamaño i-2 de [i] (i es la cantidad filas de A). Por ejemplo, si i=5, $\{1,3,5\}$ es un subconjunto de tamaño i-2 y entonces su columna respectiva

en
$$B$$
 es $\begin{pmatrix} 1\\0\\1\\0\\1 \end{pmatrix}$.

Para realizar esto, complete la función getsolB() siguiendo las indicaciones ahí especificadas.