TEST REPORT

Reference No. : WTS16S0960994-2E V1

FCC ID 2AJVK-SP4513

Applicant..... Foto Electric Supply Co., INC.

Address...... 1 Rewe St. Brooklyn, New York, 11211, USA

Manufacturer : The same as above

Address..... The same as above

Product Name..... : Smart Phone

Model No. : SP4513, SP4523, CBP3154, CBP3254

Brand..... : SLIDE, COBY

Standards.....: FCC CFR47 Part 15.247:2015

Date of Receipt sample : Sep. 19, 2016

Date of Test Sep. 20 – Nov. 10, 2016

Date of Issue...... : Dec. 08, 2016

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

Reference No.: WTS16S0960994-2E V1 Page 2 of 94

2 Test Summary

Test Items	Test Requirement	Result
	15.247(d)	
Radiated Spurious Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Spurious Emissions	15.247(d)	PASS
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

		Page
1	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	
4	REPORT REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T.	
	5.3 CHANNEL LIST	
	5.4 TEST MODE	
	5.5 TEST FACILITY	9
6	EQUIPMENT USED DURING TEST	
	6.1 EQUIPMENTS LIST	
	6.2 DESCRIPTION OF SUPPORT UNITS	
	6.3 MEASUREMENT UNCERTAINTY	
_	6.4 TEST EQUIPMENT CALIBRATION	
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.3 MEASUREMENT DESCRIPTION	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED EMISSIONS	
	8.1 EUT OPERATION	
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
9	CONDUCTED SPURIOUS EMISSIONS	
,	9.1 TEST PROCEDURE	
	9.2 TEST RESULT	
10	BAND EDGE MEASUREMENT	
10	10.1 TEST PRODUCE	
	10.2 Test Result	
11	6 DB BANDWIDTH MEASUREMENT	62
	11.1 Test Procedure:	
	11.2 Test Result:	
12	MAXIMUM PEAK OUTPUT POWER	
	12.1 Test Procedure:	
	12.2 TEST RESULT:	74
13	POWER SPECTRAL DENSITY	
	13.1 TEST PROCEDURE:	
	13.2 TEST RESULT:	83
14	ANTENNA REQUIREMENT	

Reference No.: WTS16S0960994-2E V1 Page 4 of 94

15	RF EXPOSURE	. 93
16	PHOTOGRAPHS OF TEST SETUP AND EUT.	. 94

Reference No.: WTS16S0960994-2E V1 Page 5 of 94

4 Report Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S0960994-2E	Sep. 19, 2016	Sep. 20 – Nov. 10, 2016	Nov. 11, 2016	original	-	Replaced
WTS16S0960994-2E V1	Sep. 19, 2016	Sep. 20 – Nov. 10, 2016	Dec. 08, 2016	Version 1	Updated	Valid

Reference No.: WTS16S0960994-2E V1 Page 6 of 94

5 General Information

5.1 General Description of E.U.T.

Product Name: Smart Phone

Model No.: SP4513, SP4523, CBP3154, CBP3254

Model Description: Only the model names and brand names are different.

GSM Band(s): GSM 850/900/1800/1900MHz

GPRS Class: 12

WCDMA Band(s): FDD Band II/V

LTE Band(s): N/A

Wi-Fi Specification: 2.4G-802.11b/g/n HT20/n HT40

Bluetooth Version: Bluetooth v4.0 with BLE

GPS: Support

NFC: N/A

Hardware Version: T223-2_MB_V10

Software Version: SLIDE_SP4513_20160830

Highest frequency

(Exclude Radio):

Storage Location: Internal Storage

5.2 Details of E.U.T.

Operation Frequency: GSM/GPRS 850: 824~849MHz

PCS/GPRS 1900: 1850~1910MHz WCDMA Band II: 1850~1910MHz WCDMA Band V: 824~849MHz

WiFi:

802.11b/g/n HT20: 2412~2462MHz 802.11n HT40: 2422~2452MHz Bluetooth: 2402~2480MHz

Max. RF output power: GSM 850: 32.64dBm

PCS1900: 29.88dBm

WCDMA Band II: 22.56dBm WCDMA Band V: 22.51dBm

WiFi(2.4G): 9.47dBm Bluetooth: 5.22dBm

Type of Modulation: GSM,GPRS: GMSK

WCDMA: BPSK WiFi: CCK, OFDM

Bluetooth: GFSK, Pi/4 DQPSK, 8DPSK

Reference No.: WTS16S0960994-2E V1 Page 7 of 94

Antenna installation: GSM/WCDMA: internal permanent antenna

WiFi/Bluetooth: internal permanent antenna

Antenna Gain: GSM 850: 0.5dBi

PCS1900: 1.0dBi

WCDMA Band II: 1.0dBi WCDMA Band V: 0.5dBi

WiFi(2.4G): 1.0dBi Bluetooth: 1.0dBi

Technical Data: Battery DC 3.7V, 1400mAh

DC 5V, 1.0A, charging from adapter (Adapter Input: 100-240V~50/60Hz 0.2A

Adapter: Manufacture: XINYU EAGLETRON ELECTRONIC CO.LTD.

Model No.: SWN006S050100U1

5.3 Channel List

WIFI

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
1	2412	2	2417	3	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11	2462	12	-

BT BLE

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2404	2	2406	3	2408
4	2410	5	2412	6	2414	7	2416
8	2418	9	2420	10	2422	11	2424
12	2426	13	2428	14	2430	15	2432
16	2434	17	2436	18	2438	19	2440
20	2442	21	2444	22	2446	23	2448
24	2450	25	2452	26	2454	27	2456
28	2458	29	2460	30	2462	31	2464
32	2466	33	2468	34	2470	35	2472
36	2474	37	2476	38	2478	39	2480

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
	802.11b	11 Mbps	1/6/11	TX
Maximum Dook Output Dougr	802.11g	54 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
Power Spectral Density	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
CalD Danadavidab	802.11g	54 Mbps	1/6/11	TX
6dB Bandwidth	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
David Edua	802.11g	54 Mbps	1/6/11	TX
Band Edge	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX
	802.11b	11 Mbps	1/6/11	TX
Transmittor Spurious Emissions	802.11g	54 Mbps	1/6/11	TX
Transmitter Spurious Emissions	802.11n HT20	108 Mbps	1/6/11	TX
	802.11n HT40	150 Mbps	3/6/9	TX

Table 2 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
Maximum Peak Output Power	BT BLE	1 Mbps	0/19/39	TX
Power Spectral Density	BT BLE	1 Mbps	0/19/39	TX
6dB Bandwidth	BT BLE	1 Mbps	0/19/39	TX
Band Edge	BT BLE	1 Mbps	0/19/39	TX
Transmitter Spurious Emissions	BT BLE	1 Mbps	0/19/39	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

Reference No.: WTS16S0960994-2E V1 Page 9 of 94

5.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC – Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

• FCC Test Site 2#- Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

6 Equipment Used during Test

6.1 Equipments List

Condu	cted Emissions Test S					
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12,2016	Sep.11,2017
2.	LISN	R&S	ENV216	101215	Sep.12,2016	Sep.11,2017
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12,2016	Sep.11,2017
Condu	cted Emissions Test \$	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12,2016	Sep.11,2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12,2016	Sep.11,2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12,2016	Sep.11,2017
4.	Cable	LARGE	RF300	-	Sep.12,2016	Sep.11,2017
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	Apr.29, 2016	Apr.28, 2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	Apr.09,2016	Apr.08,2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09,2016	Apr.08,2017
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12,2016	Sep.11,2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09,2016	Apr.08,2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09,2016	Apr.08,2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13,2016	Apr.12,2017
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13,2016	Apr.12,2017
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#		
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	Apr.13,2016	Apr.12,2017
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09,2016	Apr.08,2017
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Apr.13,2016	Apr.12,2017
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13,2016	Apr.12,2017

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

RF Cor	RF Conducted Testing							
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12,2016	Sep.11,2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12,2016	Sep.11,2017		
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Sep.12,2016	Sep.11,2017		

6.2 Description of Support Units

Equipment	Manufacturer	Model No.	Series No.
1	1	1	1

6.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S0960994-2E V1 Page 12 of 94

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

 Limit:
 Frequency (MHz)
 Limit (dBμV)

 Quasi-peak
 Average

Frequency (MHZ)	Quasi-peak	Average	
0.15 to 0.5	66 to 56*	5 to 46*	
0.5 to 5	56	60	
5 to 30	60	50	

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C
Humidity: 51.9 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in WIFI link mode, the worst data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

Reference No.: WTS16S0960994-2E V1 Page 13 of 94

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Worst Mode: WIFI mode

Live line:

Neutral line:

Reference No.: WTS16S0960994-2E V1 Page 15 of 94

Worst Mode: BLE mode

Live line:

Neutral line:

Reference No.: WTS16S0960994-2E V1 Page 17 of 94

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

Frequency (MHz)	Field Strength		Field Strength Limit at 3m Measurement Dist		
	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 52.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in WIFI link mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0 ° to 360 °

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1GH	łz	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	100kHz
	Video Bandwidth	300kHz
Above 1GHz		
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS16S0960994-2E V1 Page 20 of 94

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m(30M-1GHz) 1.5m(above 1GHz) above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

8.6 Summary of Test Results

Wifi:

Test Frequency: 9KHz~30MHz

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margin dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margin
			802.	11b			
6.352	26.42	QP	21.84	40.00	8.26	29.54	-21.28
8.254	26.30	QP	21.02	40.00	7.32	29.54	-22.22
26.314	25.12	QP	20.55	40.00	5.67	29.54	-23.87
			802.	11g			
6.325	24.63	QP	21.84	40.00	6.47	29.54	-23.07
8.257	28.54	QP	21.02	40.00	9.56	29.54	-19.98
25.461	25.67	QP	20.55	40.00	6.22	29.54	-23.32
			802.11n	(HT20)			
6.520	26.42	QP	21.84	40.00	8.26	29.54	-21.28
8.654	26.30	QP	21.02	40.00	7.32	29.54	-22.22
26.420	26.32	QP	20.55	40.00	6.87	29.54	-22.67
802.11n(HT40)							
6.021	24.96	QP	21.84	40.00	6.80	29.54	-22.74
8.304	26.51	QP	21.02	40.00	7.53	29.54	-22.01
26.127	25.33	QP	20.55	40.00	5.88	29.54	-23.66

Test Frequency: 30MHz ~ 1GHz

Remark: only the worst data (802.11n HT40 Low Channel mode) were reported

Horizontal

Vertical

Test Frequency: Above 1GHz

Remark: only the worst data (802.11n HT20 Low Channel mode) were reported

Horizontal

Vertical

Reference No.: WTS16S0960994-2E V1 Page 26 of 94

BT BLE: Test Frequency: 9KHz~30MHz

	Measurement	Detector	Correct	Extrapolatio	Measurement	Limits	Margi
Frequency	results dBµV	PK/QP	factor	n factor	results (calculated)	dBµV/m	n
	@3m	PNQP	dB/m	dB	dBµV/m @30m	@30m	dB
(MU ₇)	Measurement	Detector	Correct	Extrapolatio	Measurement	Limits	Margi
(MHz)	results	Detector	factor	n factor	results (calculated)	LIIIIIIS	n
6.352	26.42	QP	21.84	40.00	8.26	29.54	-21.28
8.624	26.30	QP	21.02	40.00	7.32	29.54	-22.22
26.547	25.63	QP	20.55	40.00	6.18	29.54	-23.36

only the worst data (high Channel) were reported

High Channel - Horizontal

Test Frequency: Above 1GHz

only the worst data (high Channel) were reported

High Channel - Horizontal

High Channel - Vertical

Reference No.: WTS16S0960994-2E V1 Page 31 of 94

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 **Test Result**

9KHz - 30MHz

802.11b

Low Channel

Stop 30.0 MHz

Middle Channel

-80 dBm

Start 9.0 kHz

802.11g Low Channel **③** Offs 0.50 dB * RBW 100 kHz * VBW 300 kHz * Att 20 dB M1[1] -42.29 dBm Batt Ref 10.50 dBm SWT 5ms 578.000000000 kHz 1Pk 0 dBm-Max -10 dBm -20 dBm -30 dBm ₩0 dBm -50 dBm -60 dBm -70 dBm -80 dBm Start 9.0 kHz Stop 30.0 MHz

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

Start 9.0 kHz

802.11n HT20

Stop 30.0 MHz

802.11n HT40

BLE

Above 30MHz

802.11b

Middle Channel Avg Type: Lag-Pur AvgPtold: 10/10 Fundamental #VBW 300 kHz

Fundamental

Ref Offset 0.5 dB

Ref 10.50 dBm

Start 30 MHz

PRES BW 100 KHz

PUBW 300 KHz

Sweep 2.385 s (1001 pts)

802.11n HT20

Eundamental

Fundamental

Ref C#set 0.5 dBm

Ref 10.50 dBm

Start 30 MHz

FRES BW 100 kHz

Sveep 2.388 s (1001) pts)

BLE

Reference No.: WTS16S0960994-2E V1 Page 48 of 94

10 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

Test Limit:

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

10.2 Test Result

Test result plots shown as follows:

TX 11b: Band edge-left side Horizontal 120.0 dBuV/m Limit AVG: 110 100 80 70 60 50 40 30 20.0 2310.0000 2322.20 2334.40 2358.80 2383.20 2407.60 2346.60 2371.00 2395.40 2419.80 2432.00 MH: Freq. Reading Factor Result Limit Margin No. Detector Remark (dBuV/m) (MHz) (dBuV/m) (dB) (dBuV/m) (dB) 66.32 -15.24 -22.92 2400.000 51.08 74.00 1 peak 2 2412.114 120.25 -15.26104.99 74.00 30.99 peak

TX 11b: Band edge-right side Vertical

TX 11g: Band edge-left side Horizontal 120.0 dBuV/m Limit: AVG: 110 100 90 80 70 60 50 40 30 20.0 2310.0000 2322.20 2334.40 2358.80 2371.00 2383.20 2346.60 2395.40 2407.60 2419.80 2432.00 MH: Freq. Reading Factor Result Limit Margin Detector No. Remark (dBuV/m) (MHz) (dBuV/m) (dB) (dBuV/m) (dB) 67.33 -15.24 2400.000 52.09 74.00 -21.91 peak 2 120.72 -15.25 2406.990 105.47 74.00 31.47 peak

TX 11g: Band edge-right side Horizontal 120.0 dBuV/m Limit AVG: 110 100 90 80 70 60 Apply gray port of gray Michigan . 50 40 30 20.0 2442.0000 2447.80 2453.60 2459.40 2465.20 2471.00 2476.80 2482.60 2488.40 2494.20 2500.00 MH: Freq. Reading Factor Result Limit Margin Detector No. Remark (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) -15.35 74.00 31.25 2462.184 120.60 105.25 peak 2 2483.500 61.45 -15.39 46.06 74.00 27.94 peak

TX 11g: Band edge-right side Vertical 120.0 dBuV/m Limit: AVG: 110 100 90 80 70 60 50 40 30 20.0 2488.40 2442.0000 2447.80 2453.60 2459.40 2465.20 2471.00 2476.80 2482.60 2494.20 2500.00 MH: Freq. Reading Factor Result Limit Margin Detector Remark No. (dBuV/m) (MHz) (dB) (dBuV/m) (dB) (dBuV/m) 1 2461.024 119.72 -15.35 104.37 74.00 30.37 peak 2 2483.500 59.56 -15.39 44.17 74.00 -29.83peak

TV 44 11T40 D 1 1 1 6 11 17 6

TX 11n HT40: Band edge-right side Vertical 120.0 dBuV/m Limit: AVG: 110 100 90 80 70 60 was a state of the 50 40 30 20.0 2422.0000 2429.80 2437.60 2445.40 2453.20 2468.80 2476.60 2484.40 2492.20 2500.00 MH: 2461.00 Reading Factor Result Limit Margin Freq. No. Detector Remark (MHz) (dBuV/m) (dB) (dBuV/m) (dBuV/m) (dB) 2458.660 121.34 -15.34106.00 74.00 32.00 peak 2483.500 64.27 -15.39 48.88 74.00 -25.12 peak

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

BLE: Band edge-left side Horizontal

BLE: Band edge-left side Vertical

Reference No.: WTS16S0960994-2E V1 Page 64 of 94

11 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

11.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

11.2 Test Result:

Operation mode	Bandwidth (MHz)		
TX 11b	Channel 1	Channel 6	Channel 11
	10.092	10.092	10.092
TX 11g	Channel 1	Channel 6	Channel 11
	16.517	16.517	16.517
TX 11n HT20	Channel 1	Channel 6	Channel 11
	17.677	17.677	17.677
TX 11n HT40	Channel 3	Channel 6	Channel 9
	36.340	36.340	36.340
BLE	Channel 0	Channel 19	Channel 39
	0.719	0.719	0.719

Test result plot as follows:

Reference No.: WTS16S0960994-2E V1 Page 73 of 94

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

12.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

section 9.1.1 (For BLE)

This procedure shall be used when the measurement instrument has available a resolution bandwidth that is greater than the DTS bandwidth.

- a)Set the RBW ≥ DTS bandwidth.
- b)Set VBW ≥ 3 RBW.
- c)Set span ≥ 3 x RBW
- d)Sweep time = auto couple.
- e)Detector = peak.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use peak marker function to determine the peak amplitude level.

section 9.1.2 (For WIFI)

This procedure may be used when the maximum available RBW of the measurement instrument is less than the DTS bandwidth.

- a)Set the RBW = 1 MHz.
- b)Set the VBW ≥ 3 RBW
- c)Set the span \geq 1.5 x DTS bandwidth.
- d)Detector = peak.
- e)Sweep time = auto couple.
- f)Trace mode = max hold.
- g)Allow trace to fully stabilize.
- h)Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select peak detector). If the instrument does not have a band power function, sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS bandwidth.

Reference No.: WTS16S0960994-2E V1 Page 74 of 94

12.2 Test Result:

Test mode :TX 11b		
Maximum Peak Output Power (dBm)		
2412MHz	2437MHz	2462MHz
9.02	9.47	9.41
Limit: 1W/30dBm		

Test mode :TX 11g			
Maximum Peak Output Power (dBm)			
2412MHz 2437MHz 2462MHz			
9.37 9.16 9.15			
Limit: 1W/30dBm			

Test mode :TX 11n HT20			
Maximum Peak Output Power (dBm)			
2412MHz 2437MHz 2462MHz			
9.08 9.27 9.18			
Limit: 1W/30dBm			

Test mode :TX 11n HT40			
Maximum Peak Output Power (dBm)			
2422MHz 2437MHz 2452MHz		2452MHz	
9.07 9.36 9.29			
Limit: 1W/30dBm			

BLE			
Maximum Peak Output Power (dBm)			
2402MHz	2440MHz	2480MHz	
-3.26 -3.15 -3.90			
Limit: 1W/30dBm			

Reference No.: WTS16S0960994-2E V1 Page 83 of 94

13 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016

13.1 Test Procedure:

KDB 558074 D01 DTS Meas Guidance v03r05 April 8, 2016 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result:

Test mode :TX 11b			
Power Spectral (dBm per 3kHz)			
2412MHz 2437MHz 2462MHz			
-17.74 -17.26 -16.81			
Limit: 8dBm per 3kHz			

Test mode :TX 11g			
Power Spectral (dBm per 3kHz)			
2412MHz 2437MHz 2462MHz			
-24.31 -23.64 -22.78			
Limit: 8dBm per 3kHz			

Test mode :TX 11n HT20			
Power Spectral (dBm per 3kHz)			
2412MHz 2437MHz 2462MHz			
-25.04 -24.93 -23.38			
Limit: 8dBm per 3kHz			

Test mode :TX 11n HT40			
Power Spectral (dBm per 3kHz)			
2422MHz 2437MHz 2452MHz			
-28.33 -28.20 -28.99			
Limit: 8dBm per 3kHz			

Reference No.: WTS16S0960994-2E V1 Page 84 of 94

BLE			
Power Spectral (dBm per 3kHz)			
2402MHz 2440MHz 2480MHz			
-19.12 -18.8 -19.53			
Limit: 8dBm per 3kHz			

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna fulfill the requirement of this section.

Reference No.: WTS16S0960994-2E V1 Page 93 of 94

15 RF Exposure

Remark: refer to SAR test report: WTS16S0960992E

Reference No.: WTS16S0960994-2E V1 Page 94 of 94

16 Photographs of test setup and EUT.

Note: Please refer to appendix: WTS16S0960994E-Photo.

=====End of Report=====