Report:

Bosphorus should produce 130 TVs at Istanbul, ship them to Amsterdam, and transship them from Amsterdam to London.

The 130 TVs produced at Bruges should be shipped directly to Paris.

The total shipment is 6370 Euros.

4.5 ASSIGNMENT PROBLEMS

There is a special case of transportation problems where each supply point should be assigned to a demand point and each demand should be met. This certain class of problems is called as "assignment problems". For example determining which employee or machine should be assigned to which job is an assignment problem.

4.5.1 LP Representation

An assignment problem is characterized by knowledge of the cost of assigning each supply point to each demand point: c_{ij}

On the other hand, a 0-1 integer variable x_{ij} is defined as follows

 x_{ij} = 1 if supply point i is assigned to meet the demands of demand point j

 $x_{ij} = 0$ if supply point *i* is not assigned to meet the demands of point *j*

In this case, the general LP representation of an assignment problem is

min
$$\sum_i \sum_j c_{ij} x_{ij}$$

s.t. $\sum_j x_{ij} = 1$ (i =1,2, ..., m) Supply constraints
$$\sum_i x_{ij} = 1$$
 (j =1,2, ..., n) Demand constraints
$$x_{ij} = 0$$
 or $x_{ij} = 1$

4.5.2 Hungarian Method

Since all the supplies and demands for any assignment problem are integers, all variables in optimal solution of the problem must be integers. Since the RHS of each constraint is equal to 1, each x_{ij} must be a nonnegative integer that is no larger than 1, so each x_{ij} must equal 0 or 1.

Ignoring the $x_{ij} = 0$ or $x_{ij} = 1$ restrictions at the LP representation of the assignment problem, we see that we confront with a balanced transportation problem in which each supply point has a supply of 1 and each demand point has a demand of 1.

However, the high degree of degeneracy in an assignment problem may cause the Transportation Simplex to be an inefficient way of solving assignment problems.

For this reason and the fact that the algorithm is even simpler than the Transportation Simplex, the Hungarian method is usually used to solve assignment problems.

Remarks

- 1. To solve an assignment problem in which the goal is to maximize the objective function, multiply the profits matrix through by -1 and solve the problem as a **minimization** problem.
- If the number of rows and columns in the cost matrix are unequal, the assignment problem is unbalanced. Any assignment problem should be balanced by the addition of one or more dummy points before it is solved by the Hungarian method.

Steps

- 1. Find the minimum cost each row of the m^*m cost matrix.
- 2. Construct a new matrix by subtracting from each cost the minimum cost in its row
- 3. For this new matrix, find the minimum cost in each column
- 4. Construct a new matrix (reduced cost matrix) by subtracting from each cost the minimum cost in its column
- 5. Draw the minimum number of lines (horizontal and/or vertical) that are needed to cover all the zeros in the reduced cost matrix. If *m* lines are required, an optimal solution is available among the covered zeros in the matrix. If fewer than *m* lines are needed, proceed to next step
- 6. Find the smallest cost (*k*) in the reduced cost matrix that is uncovered by the lines drawn in Step 5
- 7. Subtract *k* from each uncovered element of the reduced cost matrix and add *k* to each element that is covered by two lines. Return to Step 5

Example 1. Flight Crew

(Based on Winston 7.5.)

Four captain pilots (CP1, CP2, CP3, CP4) has evaluated four flight officers (FO1, FO2, FO3, FO4) according to perfection, adaptation, morale motivation in a 1-20 scale (1: very good, 20: very bad). Evaluation grades are given in the table. Flight

Company wants to assign each flight officer to a captain pilot according to these evaluations. Determine possible flight crews.

	FO1	FO2	FO3	FO4
CP1	2	4	6	10
CP2	2	12	6	5
CP3	7	8	3	9
CP4	14	5	8	7

Answer:

Step 1. For each row in the table we find the minimum cost: 2, 2, 3, and 5 respectively

Step 2 & 3. We subtract the row minimum from each cost in the row. For this new matrix, we find the minimum cost in each column

Step 4. We now subtract the column minimum from each cost in the column obtaining reduced cost matrix.

Step 5. As shown, lines through row 3, row 4, and column 1 cover all the zeros in the reduced cost matrix. The minimum number of lines for this operation is 3. Since fewer than four lines are required to cover all the zeros, solution is not optimal: we proceed to next step.

Step 6 & 7. The smallest uncovered cost equals 1. We now subtract 1 from each uncovered cost, add 1 to each twice-covered cost, and obtain

Four lines are now required to cover all the zeros: An optimal s9olution is available. Observe that the only covered 0 in column 3 is x_{33} , and in column 2 is x_{42} . As row 5 can not be used again, for column 4 the remaining zero is x_{24} . Finally we choose x_{11} .

Report:

CP1 should fly with FO1; CP2 should fly with FO4; CP3 should fly with FO3; and CP4 should fly with FO4.

Example 2. Maximization problem

	F	G	Н	I	J
Α	6	3	5	8	10
В	2	7	6	3	2
С	5	8	3	4	6
D	6	9	3	1	7
Ε	2	2	2	2	8

Report:

Optimal profit = 36

Assigments: A-I, B-H, C-G, D-F, E-J

Alternative optimal sol'n: A-I, B-H, C-F, D-G, E-J