

Principes de fonctionnement des ordinateurs

Jonas Lätt Centre Universitaire d'Informatique

Contenu du cours

Partie I: Introduction

Partie II: Codage de l'information

Partie III: Circuits logiques

Partie IV: Architecture des ordinateurs

- 1. Introduction
- 2. Histoire de l'informatique
- 3. Information digitale et codage de l'information
- 4. Codage des nombres entiers naturels
- 5. Codage des nombres entiers relatifs
- 6. Codage des nombres réels
- 7. Codage de contenu média
- 8. Portes logiques
- 9. Circuits logiques combinatoires et algèbre de Boole
- 10. Réalisation d'un circuit combinatoire
- 11. Circuits combinatoires importants
- 12. Principes de logique séquentielle
- 13. Réalisation de la bascule DFF
 - 14. Architecture de von Neumann
 - 15. Réalisation des composants
 - 16. Code machine et langage assembleur
 - 17. Architecture d'un processeur
 - 18. Performance et micro-architecture
 - 19. Du processeur au système

Le verrou S-R Un circuit croisé

Diagramme du verrou S-R

- Ce circuit qui mémorise un bit s'appelle un «verrou» (anglais: «latch») peut «verrouiller» la valeur à sa sortie.
- Réalisation possible: un circuit croisé avec deux portes NAND.

Verrou S-R: Mode Verrouillé

Le verrou est en mode *verrouillé* lorsque S=R=1. La sortie Q peut valoir 0 ou 1, et cette valeur est stable (elle est mémorisée).

Etat du circuit qui mémorise 0:

Etat du circuit qui mémorise 1:

La sortie ne dépend pas que des entrées: il ne s'agit **pas** d'un circuit logique combinatoire.

Verrou S-R: Mode *Ouvert*

- La bascule est en mode *ouvert* lorsque S = !R. En ce mode elle fonctionne comme un circuit combinatoire. Elle bascule vers un nouvel état.
- Si S=0 ("Set"), le nouvel état est 1. Si R=0 ("Reset"), le nouvel état est 0.

Verrou S-R: Résumé

Symbole de diagramme

Modes de fonctionnement

1) Verrouillé

2) Ouvert

$$S=0$$
 Verr Q Ou $S=1$ Verr Q Verr Q Ou $R=0$ S-R Q

3) Etat indéfini: à éviter!

Construction du DFF à l'aide de deux verrous S-R

Idée: Utilisation de deux verrous S-R

Division du cycle d'horloge en deux parties

Rappel: le signal horloge (Clk)

Première partie du cycle (signal Clk faible):

- Le DFF n'accepte pas encore de nouvelle valeur en entrée.
- En interne, le DFF copie la donnée
 In (t-1) du verrou 1 vers le verrou 2.

Deuxième partie du cycle (signal Clk élevé):

- Le verrou 1 accueille la nouvelle valeur en entrée In (t).
- Le verrou 2 maintient son état, la valeur
 In (t-1).

Utilisation du Verrou 1

Clk	In(t)	S	R
0	0	1	1
0	1	1	1
1	0	1	0
1	1	0	1

Circuit interne du Flip-Flop DFF

Le circuit pour le verrou 2 est identique à celui du verrou 1, sauf que

- Le signal en entrée In (t) est remplacé par la sortie Q du verrou 1.
- Le signal d'horloge Clk est inversé: le verrou 2 bascule lors d'un signal d'horloge faible.

