

算法性能如何分析? 如何比较?

通过多种测试图形进行最小值/最大值搜寻

- 绘制 3D 图形与等 高线图指令说明。
- 举例 6 个典型测试 多峰图形与特性。

- · 试绘制 6 个典型测试多 峰图形的 3D 图与等高 线图。
- 试着将粒子算法套入 6个典型测试多峰图形进 行最大值与最小值搜寻。
- 绘制最佳解的收敛曲线图。

- · 粒子数(40),
- 演算次数(30),
- 惯性权重(0.3),
- 个人最佳权重(0.5),
- 群体最佳权重(0.7)

$$y = \cos(x)e^{(-(x-\pi)^2)}, -3 \le x \le 10$$

绘制 3D 曲线图

$$z = 3(1-x)^{2} e^{\left(-x^{2}-(y+1)^{2}\right)} - 10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{\left(-x^{2}-y^{2}\right)} - \frac{1}{3} e^{\left(-(x+1)^{2}-y^{2}\right)}$$

y						у
	(6,6)	(5,6)	(4,6)	(3,6)	(2,6)	(1,6)
	(6,5)	(5,5)	(4,5)	(3,5)	(2,5)	(1,5)
	(6,4)	(5,4)	(4,4)	(3,4)	(2,4)	(1,4)
	(6,3)	(5,3)	(4,3)	(3,3)	(2,3)	(1,3)
	(6,2)	(5,2)	(4,2)	(3,2)	(2,2)	(1,2)
	(6,1)	(5,1)	(4,1)	(3,1)	(2,1)	(1,1)
$\stackrel{\longrightarrow}{\sim}$ x	χ					

	6	6	6	6	6	6
<i>)</i>	5	5	5	5	5	5
	4	4	4	4	4	4
	3	3	3	3	3	3
	2	2	2	2	2	2
	1	1	1	1	1	1

1	2	3	4	5	6
1	2	3	4	5	6
1	2	3	4	5	6
1	2	3	4	5	6
1	2	3	4	5	6
1	2	3	4	5	6

Z

?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?
?	?	?	?	?	?

※ Peaks Function 说明:

✓ 方程式:

$$3(1-x)^{2}exp(-x^{2}-(y+1)^{2})-10\left(\frac{x}{5}-x^{3}-y^{5}\right)exp(-x^{2}-y^{2})-\frac{1}{3}exp(-(x+1)^{2}-y^{2})$$

✓ 范围: $-3 \le x, y \le 3$

✓ 最小值: -6.5511, 坐标为: (0.229, -1.624)

✓ 最大值: 8.1062

※ Michalewics Function 说明:

✓ 方程式: $f(x) = -\sum_{j=1}^{2} sin(x_j) \left(sin(j \times x_j^2 / \pi) \right)^{20}$

范围: $0 \le x_{1,2} \le \pi$

✓ 最小值: -1.8013

✓ 坐标为: (15.8,22.1)

✓ 最大值: 0

判断值: < -1.4

判断值: < -1.2

※ Beale Function 说明:

✓ 方程式:

$$(1.5 - x_1 + x_1x_2)^2 + (2.25 - x_1 + x_1x_2^2)^2 + (2.625 - x_1 + x_1x_2^3)^2$$

✓ 范围: $-4.5 \le x_{1,2} \le 4.5$

✓ 最小值: 0

✓ 坐标为: (3.0,0,5)

✓ 最大值: 181853.6133

※ Easom Function 说明:

✓ 方程式: $-cos(x_1)cos(x_2)exp(-(x_1-\pi)^2-(x_2-\pi)^2)$

✓ 范围: $-100 \le x_{1,2} \le 100$

✓ 最小值: -1

✓ 坐标为: (-π,π)

✓ 最大值: 0.0090

判断值: < -0.5

判断值: < -0.1

※ Rastrigin Function 说明:

✓ 方程式: $10n + \sum_{i=1}^{n} (x_i^2 - 10\cos(2\pi x_i))$

✓ 范围: $-5.12 \le x_{1,2} \le 5.12$

✓ 最小值: 0

✓ 坐标为: (0,0)

✓ 最大值: 80.7031

判断值: < 0.001

判断值: < 0.1

判断值: < 2

判断值: < 5

※ Schwefel Function 说明:

✓ 方程式: $418.9829n - \sum_{i=1}^{n} \left(x_i \sin \sqrt{|x_i|}\right)$

✓ 范围: $-500 \le x_{1,2} \le 500$

✓ 最小值: 2.7197e-004

✓ 坐标为: (422,422)

✓ 最大值: 1675.93

特殊数学符号的 matlab 相对应指令

- ✓ 自然对数 $e \rightarrow \exp()$
- $\checkmark \pi \rightarrow pi$
- ✓ 平方项 → □^2
- ✓ 开根号 →□^0.5 or *sqrt*(□)
- $\checkmark \sin() \rightarrow \sin()$
- $\checkmark \quad \Sigma(\Box) \rightarrow \text{sum}()$