Deep Learning Approach for Overweight Prediction on Twitter

Luwen Huangfu May 02, 2016

Overview

- Introduction
- Motivation
- Literature Review
- Research Question
- Research Design
- Research Experiment
- Findings and Discussions
- Conclusions and Future Directions

Introduction

Overweight is epidemic in the United States and

elsewhere in the world

"Prevalence of self-reported obesity among U.S. adults by state and territory," Internet: http://www.cdc.gov/obesity/data/prevalence-maps.html, 2014

Notes. The country codes refer to the ISO 3186-1 Alpha-3 country codes. Data ranking for obesity is intentionally the same as for the overweight data. BMI: body mass index.

[&]quot;Nutrition, physical activity and obesity: Netherlands," Internet: http://www.euro.who.int/__data/assets/pdf_file/0018/243315/Netherlands-WHO-Country-Profile.pdf?ua=1, 2013

Introduction

- Overweight is serious and costly nowadays
 - Cosmetic problem
 - Raise risks for other health problems
 - T2DM mounted up to \$245 billion in 2012
- Overweight is closely related with diet and physical activities (Neel, 1999)
 - Energy intake > energy expenditure
 - Humans tend to store energy in case of famine
 - High-calorie food can lead to overweight

Motivation

- We are motivated to study overweight based on language of food on Twitter using deep learning approach
- Why study language of food on Twitter?
 - Across ethnic, gender, age, and social-economic groups
 - Short paragraphs are preferred to talk about daily activities
 - Permanent records of eating related behaviors
- Why deep learning approach?
 - Deep representations
 - e.g., learning intermediate concepts, features or latent variables that are useful to capture dependencies that we care about
 - Powerful in many research domains
 - e.g., image processing, video analysis
 - Emerge in NLP and text mining

Literature Review

- Twitter has been utilized as a popular source for public health monitoring
 - Track diseases (Yom-Tov et al., 2014; Chew et al., 2010)
 - Detect life satisfaction (Schwartz et al., 2013)
 - Identify overweight (Fried et al., 2014)
- Approaches for public health monitoring
 - Statistical Approach (Yom-Tov et al., 2014; Ginsberg et al., 2009)
 - Machine Learning Approach (Paul & Dredze, 2011; Schwartz et al., 2013; Fried et al., 2014)
- However, accuracy is not good or feature sets are really large
- Few work utilizes deep learning approach in monitoring health issues

Literature Review

- Deep learning emerges as a powerful technique in NLP and text mining
 - Sentiment analysis (Dong et al., 2014)
 - Document summarization (Cao et al., 2015)
 - Text classification (Lai et al., 2015)
- Inspired by its power, we attempt to apply it to overweight identification, which has not been done by others

Research Question

 Can we monitor overweight issue from Twitter by using deep learning approach?

Research Design

Research Design

Data Collection

- Twitter Stream API
- Food related words (801 words)
- 7.40GB till May 1st, 2015
- 30,000,000+ sentences

Food Related Words Examples					
apple	ate	bacon	banana	barbecue	
beef	biscuit	blackberry	blueberry	bread	
cabbage	cake	carrot	cereal	cheese	
chocolate	chopsticks	cocoa	coconut	coffee	

Data Preparation

- Text extraction
 - Removal of URL, HTTP and other noisy information
- Text processing
 - http://nlp.stanford.edu/software/
 - Tokenization
 - Stemming
 - POS Tagging
 - Dependency Tree Generation

Lexical Semantics

- Food related words as base lexical
- Word2Vec for lexical extension
 - http://deeplearning4j.org/word2vec
 - Similarity calculation
 - Extend base lexical by nearest N-words

word1	word2	similarity
wholegrain	banana	0.43262019753456116
diningroom	appetizer	0.2730669677257538
kitchenette	honey	0.17973479628562927

Lexical Semantics

An example of lexical extension

Classification

- Classification Task
 - 51 states (including Washington D. C.) in the United States
 - Each state is regarded as a single unit
 - Label whether a state is "overweight" or not by comparing with the overweight rate of the national median
- Food related words and extended words by Word2Vec are regarded as features
- TF-IDF normalization for features
- Multiple Layer Perceptron (MLP) Classifier
 - http://deeplearning4j.org
 - "A multilayer perceptron is a logistic regressor where instead of feeding the input to the logistic regression you insert a intermediate layer, called the hidden layer, that has a nonlinear activation function (usually tanh or sigmoid)"
 - Can handle numeric features

Evaluation

Ten-folder evaluation, get average accuracy

Result

Model	Overweight Accuracy(%)
Majority Baseline	50
Food + LDA + SVM (Fried et al., 2014)	69
Food + Word2Vec + MLP	79

Findings and Discussions

- GIGO (garbage in, garbage out), good features are really significant
- Word2Vec is useful for improving the performance
- Our model can perform better than Food + LDA + SVM

Conclusions and Future Directions

- Our model can well classify overweight on statelevel, which provides us with an automatic and scalable methodology to deal with large amount of the social media
- In the future, we will improve the performance of our model by extending our lexical words and at the same time set up thresholds to refine the extension
- We are considering moving from state-level to individual-level

References

- Z. Cao, F. Wei, L. Dong, S. Li, and M. Zhou, "Ranking with recursive neural networks and its application to multi-document summarization," *Proc. Twenty-Ninth AAAI Conf. Artif. Intell.*, pp. 2153–2159, 2015.
- C. Chew and G. Eysenbach, "SARS revisited: Managing 'outbreaks' with 'communications'," *PLoS One*, vol. 5, no. 11, 2010.
- L. Dong, F. Wei, M. Zhou, and K. Xu, "Adaptive multi-compositionality for recursive neural models with applications to sentiment analysis," *Proc. Twenty-Eighth AAAI Conf. Artif. Intell.*, pp. 1537–1543, 2014.
- D. Fried, M. Surdeanu, S. Kobourov, M. Hingle, and D. Bell, "Analyzing the language of food on social media," *Proc. 2014 IEEE Int. Conf. Big Data (IEEE BigData)*, pp. 778–783, 2014.
- J. Ginsberg, M. H. Mohebbi, R. S. Patel, L. Brammer, M. S. Smolinski, and L. Brilliant, "Detecting influenza epidemics using search engine query data.," *Nature*, vol. 457, no. 7232, pp. 1012–1014, 2009.
- S. Lai, L. Xu, K. Liu, and J. Zhao, "Recurrent convolutional neural networks for text classification," *Proc. Twenty-Ninth AAAI Conf. Artif. Intell.*, pp. 2267–2273, 2015.
- M. J. Paul and M. Dredze, "You are what you tweet: analyzing Twitter for public health," *Proc. Fifth Int. AAAI Conf. Weblogs Soc. Media*, pp. 265–272, 2011.
- H. A. Schwartz, J. C. Eichstaedt, M. L. Kern, L. Dziurzynski, M. Agrawal, G. J. Park, S. K. Lakshmikanth, S. Jha, M. E. P. Seligman, and L. Ungar, "Characterizing geographic variation in well-being using tweets," *Proc. Seventh Int. AAAI Conf. Weblogs Soc. Media*, pp. 583–591, 2013.
- E. Yom-Tov, D. Borsa, I. J. Cox, and R. A. McKendry, "Detecting disease outbreaks in mass gatherings using internet data," *J. Med. Internet Res.*, vol. 16, no. 6, 2014.