Caratheodory's Extension Theorem

Theorem

Caratheodory's Extension Theorem

Let Ω be a set, let \mathcal{A} be an algebra on Ω , and let $\mathcal{F} = \sigma(\mathcal{A})$. If μ_0 is a countably additive map $\mu_0 \colon \mathcal{A} \to [0, \infty]$, then there exists a measure μ on (Ω, \mathcal{F}) such that $\mu = \mu_0$ on \mathcal{A} . If $\mu_0(S) < \infty$ then this extension is unique.

Definition 1

For any set $A \subseteq \Omega$ define the outer measure $\mu^*(A)$ of A by

$$\mu^*(E) = \inf \left\{ \sum_{n=1}^{\infty} \mu_0(A_n) : A_n \in \mathcal{A}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}.$$

For any sets A and A_n in Ω , if $A \subseteq \bigcup_{n=1}^{\infty} A_n$ then

$$\mu^*(A) \le \sum_{n=1}^n \mu^*(A_n)$$
.

If the latter sum is $+\infty$, there is no problem.

Otherwise, given $\varepsilon > 0$, let $A_n \subseteq \bigcup_m A_{nm}$ and $\sum_m \mu_0(A_{nm}) < \mu^*(A_n) + \varepsilon/2^n$ with $A_{nm} \in \mathcal{A}$ for all m,n. Then $A \subseteq \bigcup_{m,n} E_{nm}$ and

$$\mu^*(A) \leq \sum_n \sum_m \mu_0(A_{nm}) \leq \sum_n \mu^*(E_n) + \varepsilon.$$

Letting $\varepsilon \downarrow 0$ proves the result.

For any $A \in \mathcal{A}$, $\mu^*(A) = \mu_0(E)$.

Clearly, $\mu^*(A) \leq \mu_0(A)$. Let $A \subseteq \bigcup_n A_n$ and $B_n = A_n \setminus \bigcup_{j < n} A_j$ with $A_n \in \mathcal{A}$. Then $\mu_0(A) \leq \mu_0(\bigcup B_n) = \sum \mu(B_n) \leq \sum \mu(A_n)$. Since the A_n 's are arbitrary then $\mu_0(A) \leq \mu^*(A)$.

Definition 2

A set $E \subseteq \Omega$ is called μ^* -measurable if for every set $A \subseteq \Omega$,

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

We will denote the collection of μ^* -measurable sets by $\mathcal{M}(\mu^*)$.

All sets in \mathcal{A} are μ^* -measurable, i.e., $\mathcal{A} \subseteq \mathcal{M}(\mu^*)$.

Let $A \in \mathcal{A}$ and $B \subseteq \Omega$. Given $\varepsilon > 0$, take $B \subseteq \bigcup B_n$ with $B_n \in \mathcal{A}$ and $\sum \mu_0(B_n) \leq \mu^*(B) + \varepsilon$. Then $B \cap A \subseteq \bigcup (B_n \cap A), B \cap A^c \subseteq \bigcup (B_n \cap A^c)$ with $B_n \cap A \in \mathcal{A}$ and $B_n \cap A^c \in \mathcal{A}$. So that

$$\mu^{*}(B \cap A) + \mu^{*}(B \cap A^{c})$$

$$\leq \sum \left[\mu^{*}(B_{n} \cap A) + \mu^{*}(B_{n} \cap A^{c})\right]$$

$$\leq \sum \mu_{0}(B_{n}) \leq \mu^{*}(B) + \varepsilon.$$

Letting $\varepsilon \downarrow 0$ gives the result.

 $\mathcal{M}(\mu^*)$ is a σ -algebra and μ^* is a measure on it.

Clearly $A \in \mathcal{M}(\mu^*)$ then $A^c \in \mathcal{M}(\mu^*)$. If $A, B \in \mathcal{M}(\mu^*)$ then for $C \subseteq \Omega$,

$$\mu^{*}(C) = \mu^{*}(C \cap A) + \mu^{*}(C \cap A^{c})$$

$$= \mu^{*}(C \cap A \cap B) + \mu^{*}(C \cap A \cap B^{c}) + \mu^{*}(C \cap A^{c})$$

$$= \mu^{*}(C \cap (A \cap B)) + \mu^{*}(C \cap (A \cap B)^{c}).$$

Thus $\mathcal{M}(\mu^*)$ is an algebra. Let $A_n \in \mathcal{M}(\mu^*)$, $A = \bigcup_n A_n$, $B_n = \bigcup_{j < n} A_j$, and assume, without loss of generality, that the A_n 's are disjoint.

Note that for $E \subseteq \Omega$

$$\mu^{*}(E) = \mu^{*}(E \cap B_{n}^{c}) + \mu^{*}(E \cap B_{n})$$

$$= \mu^{*}(E \cap B_{n}^{c}) + \mu^{*}(E \cap A_{n}) + \mu^{*}\left(\bigcup_{i < n} (E \cap A_{i})\right).$$

From this it follows by induction on n that

$$\mu^*(E) \ge \mu^*(E \cap A^c) + \sum_{j=1}^n \mu^*(E \cap A_j).$$

Letting $n \to \infty$

$$\mu^*(E) \ge \mu^*(E \cap A^c) + \mu^*(E \cap A).$$

Thus $A \in \mathcal{M}(\mu^*)$ and

$$\mu^*(E) = \mu^*(E \cap A^c) + \sum_{j=1}^{\infty} \mu^*(E \cap A_j)$$

Letting E = A shows μ^* is countably additive on $\mathcal{M}(\mu^*)$.

Proof of Caratheodory's

Note that by Lemmas 3 and 4, $\mathcal{M}(\mu^*)$ is a σ -algebra containing \mathcal{A} and, hence, $\mathcal{F} \subseteq \mathcal{M}(\mu^*)$. Take $\mu = \mu^*$ on \mathcal{F} . Then μ is a measure on \mathcal{F} and for $A \in \mathcal{A}$, $\mu(A) = \mu^*(A) = \mu_0(A)$.

Uniqueness follows from Theorem 2 of Lecture 3.