Esercizio 1: Rete logistica

Una rete logistica comprende diversi nodi, distribuiti su una vasta zona geografica. Per ogni coppia di essi è nota la distanza che li separa. I trasporti che avvengono giornalmente via *container* sulla rete producono in alcuni nodi un eccesso di *containers* vuoti ed in altri una mancanza di essi. Pertanto è necessario prevedere ogni giorno oltre alle normali operazioni di trasporto della merce, anche opportune operazioni di trasporto di *containers* vuoti, per ri-bilanciare la loro disponibilità ai nodi della rete. Tali operazioni ovviamente devono avvenire a costo minimo. Il costo di trasporto di ogni *container* da ogni nodo ad ogni altro è direttamente proporzionale alla distanza che separa i due nodi. Il numero di *containers* trasferibili ogni giorno tra ogni coppia di nodi è però limitato da un valore massimo noto (la capacità di quella tratta), che è uguale per tutte le coppie di nodi.

Formulare il problema, classificarlo e risolverlo con i dati del file RETELOG.TXT. Discutere inoltre l'ottimalità e l'unicità della soluzione.

Se fosse possibile potenziare una tratta, aumentandone la capacità pagando un prezzo dato, su quale sarebbe meglio intervenire e di quanto sarebbe opportuno aumentarne la capacità?

Per motivi meteorologici si prevede che la capacità su tutte le tratte sarà ridotta in pari misura durante la stagione delle piogge. Qual è il minimo valore di capacità per cui la rete logistica può funzionare e con quale peggioramento del costo rispetto al caso attuale?

I nodi della rete sono 10.

Tabella 1: Distanze geografiche [km]

	1	2	3	4	5	6	7	8	9	10
1	0	250	130	600	660	720	700	840	850	670
2	250	0	240	550	620	700	800	750	640	580
3	130	240	0	580	650	710	650	660	640	700
4	600	550	580	0	240	150	240	260	250	220
5	660	620	650	240	0	190	310	300	280	180
6	720	700	710	150	190	0	320	310	210	260
7	700	800	650	240	310	320	0	130	140	180
8	840	750	660	260	300	310	130	0	90	110
9	850	640	640	250	280	210	140	90	0	120
10	670	580	700	220	180	260	180	110	120	0

Tabella 2: domanda e surplus [containers/giorno]

Nodo	Eccesso	Difetto
1	60	0
2	75	0
3	0	95
4	0	80
5	15	0
6	90	0
7	0	15
8	0	55
9	0	75
10	80	0

```
Costo unitario di trasporto: 0.80 Euro/(container*km)
Capacità di ogni tratta: 50 container/giorno
Costo per aumentare la capacità di una tratta: 100 Euro/container
```