PCT

国際事務局

特許協力条約に基づいて公開された国際出願

(51) 国際特許分類 5 C07D 211/26, 211/44, 211/70 C07D 211/96, 213/71, 295/22 C07D 401/06, 401/12, 405/06 C07D 405/12, 409/06, 409/12 A61K 31/445, 31/47, 31/475 A61K 31/495

(11) 国際公開番号

WO 93/12086

(43) 国際公開日

1993年6月24日 (24.06.1993)

(21) 国際出願番号

PCT/JP92/01614

Αĺ

(22) 国際出願日

'n

1992年12月10日(10.12.92)

(30) 優先権データ

特顯平3/327482

1991年12月11日(11. 12. 91) JP

(71) 出願人(米国を除くすべての指定国について)

エスエス製薬株式会社

(SS PHARMACEUTICAL CO., LTD.)[JP/JP]

〒103 東京都中央区日本橋浜町2丁目12番4号 Tokyo, (JP)

(72) 発明者; および

(75) 発明者/出願人(米国についてのみ)

甲本照夫(KOMOTO, Teruo)[JP/JP]

〒263 千葉県千葉市稲毛区山王町1-22 Chiba, (JP)

廣田浩之(HIROTA, Hiroyuki)[JP/JP]

〒285 千葉県印旛郡酒々井町中央台4-5-12 Chiba, (JP)

佐藤 進(SATO, Susumu)[JP/JP]

〒285 千葉県印旛郡酒々井町東酒々井6-6-9-503 Chiba, (JP)

大塚真理(OHTSUKA, Mari)[JP/JP]

〒275 千葉県習志野市谷津4-7-15-704 Chiba, (JP)

神谷英彦(KOHYA, Hidehiko)[JP/JP]

〒286 千葉県成田市吾妻2-2-21-404 Chiba, (JP)

水野博之(MIZUNO, Hiroyuki)[JP/JP]

〒286-02 千葉県印旛郡富里町日吉台1-24-19 Chiba, (JP)

倉石忠幸(KURAISHI, Tadayuki)[JP/JP]

〒275 千葉県習志野市香登2-5-4 Chiba, (JP)

(74) 代理人

弁理士 有賀三幸,外(ARUGA, Mitsuyuki et al.)

〒103 東京都中央区日本橋人形町1丁目3番6号 共同ビル

Tokyo, (JP)

(81) 指定国

AT(欧州特許), BE(欧州特許), CA, CH(欧州特許),

DE(欧州特許),DK(欧州特許),ES(欧州特許),FR(欧州特許),

GB(欧州特許), GR(欧州特許), IE(欧州特許), IT(欧州特許), KR, LU(欧州特計), MC(欧州特計), NL(欧州特計),

PT(欧州特許), SE(欧州特許), US.

添付公開書類

国際調査報告書

(54) Title: ARYLAMIDE DERIVATIVE

(54) 発明の名称 アリールアミド誘導体

$$Ar - X - Y - Q \qquad (1)$$

$$-N \longrightarrow (b) \longrightarrow (c) \longrightarrow (d) \longrightarrow (e)$$

(57) Abstract

An arylamide derivative represented by general formula (1) or a salt thereof, and a drug for cardiovascular organs, wherein Ar represents (a), naphthyl, pyridinyl, furyl, thienyl, quinolyl or indolyl; X represents -CO- or -SO₂-; Y represents (b), (c), (d) or (e); Q represents -O- or a single bond; Z represents alkylene; and R^4 represents OH or -NH(CH₂)_mCOOH. The derivative or the salt has potent activities of platelet agglutination inhibition, vasodilation and hyperlipidemia resistance, thus being useful for treating and preventing various thromboses, embolisms, arterioscleroses, hypertensions, and so forth.

次の一般式(1)

$$Ar - X - Y - Q - Z - COR^4$$
 (1)

ル基、キノリル基又はインドリル基を、X は一CDー、又は一SD2ーを、Y は

合を、Z はアルキレン基を、R⁴はOH又は一NH(CH₂)_mCOOHを示す〕 で表わされるアリールアミド誘導体又はその塩及びこれを有効成分とする循環器 官用剤。

本発明のアリールアミド誘導体又はその塩は強い血小板凝集抑制作用、血管拡張作用及び抗高脂血作用を有し、各種血栓症、塞栓症、動脈硬化症、高血圧症等の治療及び予防のために有用である。

情報としての用途のみ

PCTに基づいて公開される国際出願のハンフレット第1頁にPCT加盟国を同定するために使用されるコード

MW マラウイ NL オランダ NO ノルウェー NZ ニュー・ジーランド FR フランス GA ガボン GB イギリス AT オーストリア AU オーストラリア BB パルパードス GB イギリス GN ギニア GR ギリシャ HU ヘンかリー IE アイルランド IT イタリー JP 日本 KP 朝鮮民主主義人民共和国 PL ホーランド PT ポルトガル BE ベルギー BF ブルキナ・ファソ BG ブルガリア RO ルーマニア RU ロシア連邦 BG アルカリア BJ ベナン BR ブラジル CA カナデ OF 中央アフリカ共和国 CG コンゴー CH スイス スーダン スウェーデン スロヴァキア共和国 SE SK SN KP 朝鮮民王王森人氏共和 KR 大韓サススタン LI リリーアンカー LK スリーサンガルグ MC モッリカー MC マッケー ML マッケー MN モンゴル セネガル ソヴィエト連邦 コート・ジボアール TD TG チャード OL コート・ンボアール CM カメルーン CS チェッコスロヴァキア テャート トーゴ ウクライナ CM カム・フコスロウ CS チェッコスロウ CZ チェッコ DE ドイツ DK デンマーク FI フィンランド ES スペイン UA. US 米国 VN ヴェトナム MN モンゴル MR モーリタニア

\$ \$\frac{2}{2}

明 細 書

アリールアミド誘導体

技術分野

本発明は、新規なアリールアミド誘導体又はその塩、及びこれを含有し、優れた血小板凝集抑制作用、血管拡張作用、抗高脂血作用等を有する循環器官用剤に関するものである。

背景技術

トロンボキサンA₂(以下「TXA₂」と略称する)は、アラキドン酸カスケードの代謝物の一つであり、その主な作用として、血小板凝集作用、血管収縮作用が知られている。

従って、TXA₂はこれらの作用により血栓症や心筋梗塞の原因となることが 想定され、TXA₂合成系に関する研究が活発に展開されてきた。

この結果、TXA₂に基づく血小板凝集を抑制する薬剤として、ダゾキシベン (Dazoxiben)、OKY-046、CV4151、ダズマグレル (Dazmagrel)、OKY-1581、R68070等のTXA₂生成酵素抑制剤及びAH23848、GR32191、BM13177、BM13505、SQ28668、ICI192605等のTXA₂受容体阻害剤が開発されてきた。

しかし、従来のTXA2生成酵素抑制剤は、インビトロでは、TXA2生成を抑制するにもかかわらず、インビボにおける血栓形成の抑制は不十分であった。

一方、TXA₂受容体阻害剤は、TXA₂による直接の血小板凝集を抑制するため、血栓形成の予防に有効と考えられているが、従来公知のTXA₂受容体阻害剤の中に、優れたTXA₂受容体阻害作用と共に一過性のTXA₂様作用、即ち血小板凝集誘起作用、血管収縮作用等の副作用を伴う等の欠点があり問題となっていた。

従って本発明の目的は、強い血小板凝集抑制作用、血管拡張作用及び抗高脂血 作用を有する循環器官用剤を提供することにある。

斯かる実状において本発明者は、多数のアリールアミド誘導体を合成し、その 血小板凝集抑制作用、血管拡張作用及び抗高脂血作用について鋭意研究を行なっ

PCT/JP92/01614

た結果、後記一般式(1)で表わされるアリールアミド誘導体又はその塩が、T XA2受容体阻害活性による優れた血小板凝集抑制作用、血管拡張作用を有し、 さらに抗高脂血作用を有し、かつ安全性も高く血栓症、心筋梗塞、動脈硬化、高血圧等の種々の循環器系疾患用薬として有用であることを見いだし、本発明を完成した。

発明の開示

本発明は、次の一般式(1)

$$Ar - X - Y - Q$$

$$Q - Z - COR^4$$
(1)

原子、ハロゲン原子、ハロゲン原子が置換してもよいアルキル基、アルコキシ 基、アルケニル基、アシルアミノ基又はカルボキシアルキルオキシ基を示す)、 ナフチル基、ピリジニル基、フリル基、チェニル基、キノリル基又はインドリ

し、R'は水酸基又は一NH(CH₂)_mCOOH(式中、m は1~3の数を示す)を示す〕で表わされるアリールアミド誘導体又はその塩、さらにこれを含有する循環器官用剤である。

発明を実施するための最良の形態

本発明のアリールアミド誘導体は前記一般式(1)で表わされるものであるが、 式中、アルキル基としては、炭素数 $1 \sim 6$ の直鎖又は分枝鎖のものが好ましく、 具体例にはメチル基、エチル基、nープロピル基、iープロピル基、nーブチル基、iーブチル基、tーブチル基、nーペンチル基、iーペンチル基、nーペキシル基等が例示され、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられ、ハロゲン原子が置換したアルキル基としては、トリフルオロメチル基、1,1,1ートリフルオロエチル基等が挙げられ、カルボキシアルキルオキシ基としては、カルボキシメチルオキシ基、カルボキシエチルオキシ基、カルボキシプロピルオキシ基等が挙げられる。また、アルコキシ基としては前記アルキル基に酵素原子が結合したものが挙げられ、アルケニル基としては、ビニル基、プロペニル基、アリル基、ブラニル基、ペンテニル基等が挙げられ、アシルアミノ基としては、ホルミルアミノ基、アセトアミノ基、プロピオニルアミノ基又はブチリルアミノ基等が挙げられ、また炭素数1~3のアルキレン基としては、メチレン基、エチレン基、プロピレン基が挙げられる。

アリールアミド誘導体(1)の塩としては、例えばアルカリ金属塩、無機酸塩、 有機酸塩等が挙げられる。より具体的には、アルカリ金属塩としては、リチウム 塩、ナトリウム塩、カリウム塩、マグネシウム塩等が挙げられ、無機酸塩として は、塩酸塩、硫酸塩、硝酸塩、臭化水素酸塩、リン酸塩等が挙げられ、有機酸塩 としては、酢酸塩、シュウ酸塩、クエン酸塩、リンゴ酸塩、フマール酸塩、マレ イン酸塩、コハク酸塩、乳酸塩、酒石酸塩、メタンスルホン酸塩、ベンゼンスル ホン酸塩、pートルエンスルホン酸塩等が挙げられる。

本発明化合物(1)の具体例としては、以下のものが挙げられる。

- 2-(4-ベンゼンスルホニルピペラジニル) $\beta-フェノキシプロピオン酸$
- 3-(4-ベンゼンスルホニルピペラジニル) $\beta-フェノキシプロピオン酸$
- 4-(4-ベンゼンスルホニルピペラジニル) β-フェノキシプロピオン酸
- 2-(4-ペンゾイルピペラジニル) $\beta-フェノキシプロピオン酸$
- 3-(4-ペンゾイルピペラジニル) $\beta-フェノキシプロピオン酸$
- 4-(4-ベンゾイルピペラジニル) $\beta-フェノキシプロピオン酸$
- $3 \{4 (4)$ ロムベンゼンスルホニル)ピペラジニル $\} \beta$ フェノキシ

プロピオン酸

- $2-\{4-(4-)$ プロムベンゾイル) ピペラジニル $\}$ $\beta-$ フェノキシプロピオン酸
- 4 {4 (4 ブロムベンゾイル) ピペラジニル} β フェノキシプロピオン酸
- 2-(1-ベンゼンスルホニルピペリジン<math>-4-イル) $\beta-$ フェノキシプロピ オン酸
- 3 (1 —ベンゼンスルホニルピペリジン—4 —イル) β —フェノキシプロピ オン酸
- 4 (1 —ベンゼンスルホニルピペリジン—4 —イル) β —フェノキシプロピ オン酸
- 2-(1-ベンゾイルピペリジン-4-イル) $\beta-フェノキシプロピオン酸$
- 3-(1-ベンゾイルピペリジン-4-イル) $\beta-フェノキシプロピオン酸$
- 4- (1-ベンゾイルピペリジン-4-イル) β-フェノキシプロピオン酸
- $2-\{1-(4-)$ ロムベンゼンスルホニル) ピペリジン-4- イル $\}$ $\beta-$ フェノキシプロピオン酸
- 3 {1 (4 ブロムベンゼンスルホニル) ピペリジンー 4 イル} β フェノキシプロピオン酸
- $4-\{1-(4-)$ ロムベンゼンスルホニル) ピペリジン-4-イル $\}$ $\beta-$ フェノキシプロピオン酸
- $2-\{1-(4-) \pi \Delta \sim 2 \tau \Delta \sim 2$
- $3-\{1-(4-)$ プロムベンゾイル)ピペリジン-4-イル $\}$ $\beta-$ フェノキシプロピオン酸

プロピオン酸

2 - (1 -ベンゼンスルホニルピペリジン-3-エン-4-イル) β-フェノ キシプロピオン酸

- 3 (1 ベンゼンスルホニルピペリジン-3-エン-4-イル) β-フェノ キシプロピオン酸
- 4- (1-ベンゼンスルホニルピペリジン-3-エン-4-イル) β-フェノ キシプロピオン酸
- 2-(1-ベンゾイルピペリジン<math>-3-エン-4-イル) $\beta-$ フェノキシプロピオン酸
- 3-(1-ベンゾイルピペリジン<math>-3-xン-4-イル) $\beta-$ フェノキシプロピオン酸
- 4-(1-ペンゾイルピペリジン<math>-3-エン-4-イル) $\beta-$ フェノキシプロピオン酸
- 2 {1 (4 ブロムベンゼンスルホニル) ピペリジン-3 エン-4 イ ル} β-フェノキシプロピオン酸
- 3-{1-(4-ブロムベンゼンスルホニル) ピペリジン-3-エン-4-イ ル} B-フェノキシプロピオン酸
- $4-\{1-(4-)$ ロムペンゼンスルホニル)ピペリジン-3-エン-4-イル $\beta-$ フェノキシプロピオン酸
- $2-\{1-(4-)$ ロムベンゾイル) ピペリジン-3-エン-4-イル $\}$ $\beta-$ フェノキシプロピオン酸
- $4-\{1-(4-) \pi \Delta \sim 1 \Delta \sim 1 \pi \Delta \sim 1 \Delta$
- 2 (1 ベンゼンスルホニル-4-ヒドロキシピペリジン-4-イル) β-フェノキシプロピオン酸
- 3 (1 ベンゼンスルホニル 4 ヒドロキシピペリジン 4 イル) β フェノキシプロピオン酸

4- (1-ベンゼンスルホニルー4-ヒドロ· ピペリジン-4-イル) β-フェノキシプロピオン酸

- 2 (1 ベンゾイル-4 ヒドロキシピペリ ン-4 イル) β フェノキ シプロピオン酸
- 3-(1-ベンゾイルー4-ヒドロキシピペリジンー4-イル) $\beta-フェノキ$ シプロピオン酸
- 4 (1 —ベンゾイルー4 —ヒドロキシピペリジン—4 —イル) β —フェノキ シプロピオン酸
- $2-\{1-(4-)$ ロムベンゼンスルホニル) -4-ヒドロキシピペリジンー 4-イル} $\beta-$ フェノキシプロピオン酸
- $4-\{1-(4-)$ ロムベンゼンスルホニル) -4-ヒドロキシピペリジンー 4-イル} $\beta-$ フェノキシプロピオン酸
- 2- {1- (4-プロムベンゾイル) -4-ヒドロキシピペリジン-4-イル 8-フェノキシプロピオン酸

- 2-{4-(1-ナフタレンスルホニル) ピペラジニル} フェノキシ酢酸
- 2 $\{4-(1-t)$ クレンスルホニル) ピペラジニル $\beta-$ フェノキシプロピオン酸
- $2-\{4-(1-tフタレンスルホニル) ピペラジニル <math>\tau-$ フェノキシ酪酸
- 3-{4-(1ーナフタレンスルホニル) ピペラジニル} フェノキシ酢酸
- $3 \{4 (1 t \, 7 \, 9 \, \nu \,)$ アェノキシプロピオン酸
- 3-{4-(1ーナフタレンスルホニル)ピペラジニル}ャーフェノキシ酪酸
- $4-\{4-\{1-ナフタレンスルホニル)$ ピペラジニル $\}$ フェノキシ酢酸

 $4-\{4-(1-)$ ナフタレンスルホニル)ピペラジニル $\}$ $\beta-$ フェノキシプロピオン酸

- 4-{4-(1-ナフタレンスルホニル)ピペラジニル}ャーフェノキシ酪酸
- 2-{4-(1-ナフタレンカルポニル)ピペラジニル}フェノキシ酢酸

4

- 3-{4-(1-ナフタレンカルポニル)ピペラジニル}フェノキシ酢酸
- $3-\{4-(1-)$ ナフタレンカルボニル)ピペラジニル $\}$ $\beta-$ フェノキシプロピオン酸
- 3-{4-(1-ナフタレンカルボニル)ピペラジニル》ャーフェノキシ酪酸
- 4-{4-(1-ナフタレンカルポニル)ピペラジニル}フェノキシ酢酸
- $4 \{4 (1 t) / 2 + t /$
- $2 \{4 (2 t) \neq \nu \}$ アェノキシ酢酸
- $2-\{4-(2-t) タレンスルホニル) ピペラジニル} <math>\beta-$ フェノキシプロピオン酸
- $2 \{4 (2 \tau)$ クランスルホニル) ピペラジニル} $\tau \tau$ インェノキシ酪酸

- $3 \{4 (2 t)$ フタレンスルホニル) ピペラジニル $\} r$ フェノキシ酪酸
- $4 \{4 (2 t)$ アンスルホニル) ピペラジニル} フェノキシ酢酸
- $4 \{4 (2 t) \neq 0 \}$ ない にゅう にゅう アーフェノキシ 酪酸
- $2-\{4-(2-t)$ フェノキシ酢酸
- $2 \{4 (2 t)$ クレンカルポニル) ピペラジニル $\} \beta$ フェノキシプロ

ピオン酸

2-{4-(2-ナフタレンカルボニル)ピペラジニル}ャーフェノキシ酪酸

- 3-{4-(2ーナフタレンカルボニル)ピペラジニル}フェノキシ酢酸
- $3-\{4-(2-t T タレンカルポニル) ピペラジニル <math>\beta-T$ ェノキシプロピオン酸
- $3-\{4-(2-tフタレンカルポニル) ピペラジニル <math>\tau-$ フェノキシ酪酸
- 4-{4-(2ーナフタレンカルボニル)ピペラジニル}フェノキシ酢酸
- $4-\{4-(2-t T タレンカルボニル) ピペラジニル} <math>\beta-T$ ェノキシプロピオン酸
- 4-{4-(2-ナフタレンカルボニル)ピペラジニル}ャーフェノキシ酪酸
- 2 {1 (1 ナフタレンスルホニル) ピペリジンー 4 イル} フェノキシ 酢酸
- 2 {1 (1 ナフタレンスルホニル) ピペリジンー 4 イル} r フェノ キシ酪酸
- 3 {1 (1 ナフタレンスルホニル) ピペリジンー4 イル} フェノキシ 酢酸
- $3-\{1-(1-t) 7タレンスルホニル) ピペリジン<math>-4-1$ ル $\}$ $\beta-7$ ェノキシプロピオン酸
- 3 {1 (1 ナフタレンスルホニル) ピペリジンー 4 イル} r フェノ キシ酪酸
- $4-\{1-(1-t ext{ } ext{ }$
- 4 {1 (1 ナフタレンスルホニル) ピペリジンー 4 イル} β フェノ キシプロピオン酸
- $4-\{1-(1-t)$ アーフェル ピペリジン-4-t ル キシ酪酸
- 2-{1-(1-ナフタレンカルボニル) ピペリジンー4-イル} フェノキシ

插酸

 $2-\{1-(1-t)$ フェルカルボニル)ピペリジン-4-tル》 $\beta-$ フェノキシプロピオン酸

- $2-\{1-(1-t)$ アーフェル ピペリジン-4-t ル r- アーフェル キシ酪酸
- 3-{1-(1-ナフタレンカルポニル) ピペリジン-4-イル} フェノキシ 酢酸
- $3-\{1-(1-t)$ クレンカルポニル)ピペリジン-4-t ル $\}$ $\beta-t$ キシプロピオン酸
- 3 {1 (1 ナフタレンカルポニル) ピペリジンー 4 イル} ャーフェノ キシ酪酸
- 4 {1 (1 ナフタレンカルボニル) ピペリジンー 4 イル} フェノキシ 酢酸
- 4 {1 (1 ナフタレンカルボニル) ピペリジンー 4 イル} β フェノ キシプロピオン酸
- 4-{1-(1-ナフタレンカルボニル) ピペリジン-4-イル} rーフェノ キシ酪酸
- 2 {1 (1 ナフタレンスルホニル) ピペリジンー4 イル} フェノキシ 酢酸
- $2-\{1-(1-t)$ ターフェル ピペリジン-4-t ル $\beta-$ フェノキシプロピオン酸
- 2 {1-(1-ナフタレンスルホニル) ピペリジン-4-イル} ャーフェノ キシ酪酸
- $3-\{1-(1-t)$ アンスルホニル) ピペリジン-4-t ル フェノキシ 酢酸
- $3-\{1-(1-t)$ タレンスルホニル) ピペリジン-4-1 ル〉 $\beta-$ フェノキシプロピオン酸
- $3-\{1-(1-t)$ ターフェル ピペリジン-4-t ル $\gamma-$ フェノキン な酸

4-{1-(1-ナフタレンスルホニル) ピペリジン-4-イル} フェノキシ 酢酸

- $4 \{1 (1 t)$ $\theta t)$ ピペリジン- 4 t θt キシプロピオン酸
- 4-{1-(1-ナフタレンスルホニル) ピペリジン-4-イル} rーフェノ キシ酪酸
- 2-{1-(2-ナフタレンカルポニル) ピペリジン-4-イル} フェノキシ 酢酸
- 2- {1- (2-ナフタレンカルボニル) ピペリジン-4-イル} β-フェノキシプロピオン酸
- $2-\{1-(2-t T タレンカルボニル) ピペリジンー<math>4-t N\}$ $\tau-T$ ェノキシ酪酸
- 3 {1-(2-ナフタレンカルボニル) ピペリジン-4-イル フェノキシ 酢酸
- 3-{1-(2-ナフタレンカルボニル) ピペリジン-4-イル} β-フェノ キシプロピオン酸
- $3 \{1 (2 t T タレンカルボニル) ピペリジン<math>-4 4 4 \mu\}$ $\tau T = 1$ キシ酪酸
- 4 {1 (2 —ナフタレンカルボニル) ピペリジンー 4 —イル} フェノキシ 酢酸
- 4 {1 (2 —ナフタレンカルポニル) ピペリジンー4 —イル} β —フェノ キシプロピオン酸
- 4 {1 (2 ナフタレンカルポニル) ピペリジンー 4 イル} ャーフェノ キシ酪酸
- $2-\{1-(1-t)$ クェノキシ酢酸
- $2-\{1-(1-t)7タレンスルホニル)$ ピペリジン-3-x2ー4ーイル} $\beta-7$ 1・ノキシプロピオン酸
- $2 \{1 (1 t フ タレンスルホニル) ピペリジン<math>-3 x \nu 4 4 \nu \}$

r-フェノキシ**酪酸**

3 - {1 - (1 - ナフタレンスルホニル) ピペリジン-3 - エン-4 - イル} フェノキシ酢酸

- $3-\{1-(1-t)$ フタレンスルホニル)ピペリジン-3-xン-4-tル $\}$ $\theta-7$ xノキシプロピオン酸
- 3-{1-(1-ナフタレンスルホニル) ピペリジン-3-エン-4-イル} r-フェノキシ酪酸
- 4-{1-(1-ナフタレンスルホニル) ピペリジン-3-エン-4-イル} フェノキシ酢酸
- $4-\{1-(1-t)$ ターフェノキシプロピオン酸
- 2-{1-(1-ナフタレンカルボニル) ピペリジン-3-エン-4-イル}フェノキシ酢酸
- $2-\{1-(1-t)$ クローンカルボニル) ピペリジン-3-x クーフェノキシプロピオン酸
- $2-\{1-(1-t)$ クロール アーフェノキシ 整酸
- 3-{1-(1-ナフタレンカルボニル) ピペリジン-3-エン-4-イル) フェノキシ酢酸
- $3-\{1-(1-t)$ クロール アーフェノキシ 酢酸
- 4-{1-(1-ナフタレンカルボニル) ピペリジン-3-エン-4-イル}フェノキシ酢酸
- $4-\{1-(1-t)7タレンカルボニル) ピペリジン<math>-3-x$ 2ー4ーイル $\}$ 8ーフェノキシプロピオン酸

 $4-\{1-(1-t フタレンカルボニル) ピペリジン<math>-3-x -4-4 -1$ アーフェノキシ酪酸

- 2-{1-(2-ナフタレンスルホニル) ピペリジン-3-エン-4-イル}フェノキシ酢酸
- 2-{1-(2-ナフタレンスルホニル) ピペリジン-3-エン-4-イル} 8-フェノキシプロピオン酸
- $2-\{1-(2-t)$ フェノキシ酪酸
- 3-{1-(2ーナフタレンスルホニル) ピペリジン-3-エン-4ーイル}フェノキシ酢酸
- $3-\{1-(2-t) 79 (2 -t) 19 (2 -t) 1$
- 3 {1 (2 —ナフタレンスルホニル) ピペリジンー3 —エンー4 —イル} ャーフェノキシ酪酸
- 4 {1 (2 ナフタレンスルホニル) ピペリジンー 3 エンー 4 イル} フェノキシ酢酸
- 4-{1-(2-ナフタレンスルホニル) ピペリジン-3-エン-4-イル} B-フェノキシプロピオン酸
- $4 \{1 (2 t) + 7 + 2)$ ピペリジン-3 x > 4 4 アーフェノキシ酪酸
- 2 {1-(2-ナフタレンカルボニル) ピペリジン-3-エン-4-イル} フェノキシ酢酸
- 2- {1- (2-ナフタレンカルボニル) ピペリジン-3-エン-4-イル} 8-フェノキシプロピオン酸
- 2 {1 (2 ナフタレンカルボニル) ピペリジンー3 エンー4 イル} ャーフェノキシ酪酸
- 3-{1-(2ーナフタレンカルボニル) ピペリジン-3-エン-4-イル}フェノキシ酢酸
- 3-{1-(2-ナフタレンカルボニル) ピペリジン-3-エン-4-イル}

βーフェノキシプロピオン酸

- 3 {1 (2 ナフタレンカルポニル) ピペリジンー3 エンー4 イル} r — フェノキシ酪酸
- 4-{1-(2-ナフタレンカルボニル)ピペリジン-3-エン-4-イル}フェノキシ酢酸
- 4 {1 (2 —ナフタレンカルボニル) ピペリジンー3 —エンー4 —イル} ャーフェノキシ酪酸
- 2 {1 (2 ナフタレンスルホニル) 4 ヒドロキシピペリジン— 4 イル} フェノキシ酢酸
- $2-\{1-(2-t)$ フタレンスルホニル) -4-tドロキシピペリジン-4-tイル} $\beta-t$ フェノキシプロピオン酸
- $2-\{1-(2-t)$ フェノキシ酪酸
- 3-{1-(2-ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル}フェノキシ酢酸
- $3-\{1-(2-t)$ フタレンスルホニル)-4-tドロキシピペリジン-4-tイル $\}$ $\beta-$ フェノキシプロピオン酸
- 3-{1-(2-ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル) r-フェノキシ酪酸
- 4 {1 (2 ナフタレンスルホニル) 4 ヒドロキシピペリジン 4 イル} フェノキシ酢酸
- $4-\{1-(2-t)$ フェノキシプロピオン酸
- $4-\{1-(2-t)$ クレンスルホニル) -4-t ドロキシピペリジン-4-t イル $\{1-(2-t)$ かいる アーフェノキシ酪酸
- 2-{1-(2-ナフタレンカルボニル)-4-ヒドロキシピペリジン-4- イル}フェノキシ酢酸

 $2-\{1-(2-t)$ フェノキシプロピオン酸

- $2-\{1-(2-\tau 7タレンカルボニル)-4-ヒドロキシピペリジンー4- 4- 4ル\}$ $\tau-7$ $\tau-7$
- 3 {1 (2 —ナフタレンカルボニル) 4 —ヒドロキシピペリジンー 4 イル} フェノキシ酢酸
- $3-\{1-(2-+ 7タレンカルボニル) -4- ヒドロキシピペリジン-4- イル <math>\beta-7$ ェノキシプロピオン酸
- $4-\{1-(2-t)$ アンカルボニル) -4-t ドロキシピペリジンー 4-t イル フェノキシ酢酸
- $4-\{1-(2-t 7タレンカルポニル) -4-t ドロキシピペリジン-4-4ル <math>\beta-7$ ェノキシプロピオン酸
- $4-\{1-(2-t)$ アーフェノキシ酪酸
- 2-{1-(1-ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル}フェノキシ酢酸
- 2 $\{1-(1-t)$ フタレンスルホニル) -4-tドロキシピペリジンー4-tイル $\}$ $\tau-$ フェノキシ酪酸
- $3-\{1-(1-+) フェノキシプロピオン酸$ $3-\{1-(1-+) フェノキシプロピオン酸$
- $3-\{1-(1-+) フェノキン 酪酸$ 3 $-\{1-(1-+) フェノキン 酪酸$
- 4-{1-(1-ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-

イル}フェノキシ酢酸

- $4-\{1-(1-t)$ フタレンスルホニル)-4-tドロキシピペリジン-4-tイル $\}$ $\theta-$ フェノキシプロピオン酸
- $4-\{1-(1-t)$ フタレンスルホニル)-4-tドロキシピペリジン-4-tイル $\}$ $\gamma-$ フェノキシ酪酸
- 2-{1-(1-ナフタレンカルポニル)-4-ヒドロキシピペリジン-4-イル}フェノキシ酢酸
- $2-\{1-(1-t)$ フェノキシプロピオン酸
- $2-\{1-(1-t)$ フタレンカルボニル)-4-tドロキシピペリジン-4-tイル $\}$ $\tau-$ フェノキシ酪酸
- 3 {1 (1 ナフタレンカルボニル) 4 ヒドロキシピペリジン-4 イル} フェノキシ酢酸
- $3-\{1-(1-t)$ フタレンカルポニル)-4-tドロキシピペリジン-4-tイル $\}$ $\beta-$ フェノキシプロピオン酸
- $3-\{1-(1-t)$ フタレンカルボニル) -4-tドロキシピペリジン-4-t イル $\{1-t\}$ アーフェノキシ酪酸
- 4-{1-(1-ナフタレンカルポニル)-4-ヒドロキシピペリジン-4-イル}フェノキシ酢酸
- $4-\{1-(1-t)$ フタレンカルポニル) -4-tドロキシピペリジン-4-t イル} $\beta-$ フェノキシプロピオン酸
- $4-\{1-(1-t)$ アーフェノキシ酪酸
- $3-\{1-(1-)$ ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル $\}$ α , $\alpha-$ ジメチルフェノキシ酢酸
- $4-\{1-(1-tフタレンスルホニル)-4-ヒドロキシピペリジン<math>-4-$ イル $\}$ lpha,lphaージメチルフェノキシ酢酸

- 2 $\{1-(1-t)$ フタレンカルボニル) -4-tドロキシピペリジンー4-tイル $\}$ α , α -ジメチルフェノキシ酢酸
- $4-\{1-(1-t)$ フタレンカルボニル)-4-ヒドロキシピペリジン-4-イル $\}$ α , $\alpha-$ ジメチルフェノキシ酢酸
- $3-\{1-(2-)$ ナフタレンスルホニル) -4-ヒドロキシピペリジン-4-イル $\}$ α , $\alpha-$ ジメチルフェノキシ酢酸
- $4-\{1-(2-)$ ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル $\}$ α , $\alpha-$ ジメチルフェノキシ酢酸

- $4-\{1-(2-\tau 7タレンカルボニル) -4-ヒドロキシピペリジン-4-4ル\}$ α , α -ジメチルフェノキシ酢酸
- 2 $\{4-(1-t)$ タレンスルホニル)ピペラジニル $\}$ $\beta-$ フェニルプロピオン酸
- $2-\{4-(1-\tau 7タレンスルホニル) ピペラジニル <math>\tau-\tau$ ェニル酪酸
- $3 \{4 (1 t フタレンスルホニル) ピペラジニル <math>\beta フェニルプロピ$ オン酸
- 3-{4-(1ーナフタレンスルホニル)ピペラジニル}ャーフェニル酪酸
- $4-\{4-(1-)$ ナフタレンスルホニル)ピペラジニル $\}$ $\beta-$ フェニルプロピオン酸
- 4-{4-(1ーナフタレンスルホニル) ピペラジニル} ャーフェニル酪酸
- $2-\{4-(1-ナフタレンカルボニル) ピペラジニル<math>\}$ $\beta-フェニルプロピ$

オン酸

- 3-{4-(1-ナフタレンカルポニル)ピペラジニル}フェニル酢酸
- $3 \{4 (1 t フタレンカルボニル) ピペラジニル <math>\beta フェニルプロピ$ オン酸
- $3 \{4 (1 t) \neq 0 \}$ ない はいま $(1 t) \neq 0$ はいま $(1 t) \neq 0$
- $4 \{4 (1 t)$ クレンカルボニル) ピペラジニル フェニル酢酸
- $4-\{4-(1-t)$ クレンカルボニル) ピペラジニル〉 $\beta-$ フェニルプロピオン酸
- 4-{4-(1-ナフタレンカルボニル)ピペラジニル}ィーフェニル酪酸
- $2 \{4 (2 t) \neq 0 \}$ アーフェニル酪酸
- $3-\{4-(2-)$ プロピカンスルホニル) ピペラジニル $\}$ $\beta-$ フェニルプロピカン酸
- $3 \{4 (2 t) \neq \nu \}$ アーフェニル酪酸
- $4-\{4-(2-)$ ナフタレンスルホニル)ピペラジニル $\}$ $\beta-$ フェニルプロピオン酸
- $4 \{4 (2 t) \neq \nu \}$ レンスルホニル) ピペラジニル $\tau \tau = \nu$ 酢酸
- $2 \{4 (2 t) \neq 0 \}$ フェニル酢酸
- $2-\{4-(2-t フタレンカルボニル) ピペラジニル<math>\}$ $\beta-フェニルプロピ オン酸$
- $2 \{4 (2 t) \neq \nu \}$ アーフェニル酪酸
- $3 \{4 (2 t)$ クレンカルポニル) ピペラジニル} フェニル酢酸
- $3-\{4-(2-ナフタレンカルボニル) ピペラジニル} <math>\beta-$ フェニルプロピオン酸
- $3 \{4 (2 t) \neq 0 \}$ アーフェニル酪酸
- $4 \{4 (2 t) \neq 0 \}$ フェニル酢酸
- $4 \{4 (2 t)$ クレンカルボニル)ピペラジニル $\} \beta$ フェニルプロピ

オン酸

 $4-\{4-\{2-tフタレンカルポニル\}$ ピペラジニル $\}$ $\tau-フェニル酪酸$

2-{1-(1-ナフタレンスルホニル) ピペリジン-4-イル} フェニル酢 酸

- $3-\{1-(1-t)$ フェール) ピペリジン-4-1ル》 $\beta-7$ ェニルプロピオン酸
- 3-{1-(1-ナフタレンスルホニル) ピペリジン-4-イル} ャーフェニル酪酸
- 4- {1- (1-ナフタレンスルホニル) ピペリジン-4-イル} フェニル酢 酸
- $4-\{1-(1-t)$ クレンスルホニル) ピペリジン-4-1 ルプロピオン酸
- 2 {1 (1 ナフタレンカルボニル) ピペリジン—4 イル} フェニル酢酸
- $2-\{1-(1-t)$ アクトンカルボニル) ピペリジン-4-t ルプロピオン酸
- 2 {1 (1 ナフタレンカルボニル) ピペリジンー4 イル} ャーフェニル酪酸
- 3-{1-(1-ナフタレンカルボニル) ピペリジン-4-イル} フェニル酢酸
- $3-\{1-(1-tフタレンカルボニル) ピペリジンー<math>4-1$ ル $\}$ $\beta-フェニ$

ルプロピオン酸

3-{1-(1-ナフタレンカルボニル)ピペリジン-4-イル}ャーフェニル酪酸

- $4-\{1-(1-t フタレンカルボニル) ピペリジンー <math>4-t$ フェニル酢酸
- 4-{1-(1-ナフタレンカルボニル) ピペリジン-4-イル} β-フェニルプロピオン酸
- 4 {1 (1 ナフタレンカルボニル) ピペリジンー 4 イル} ァーフェニ ル酪酸
- 2 {1 (2 ナフタレンスルホニル) ピペリジンー 4 イル} フェニル酢酸
- 2 {1 (2 ナフタレンスルホニル) ピペリジンー 4 イル} β フェニルプロピオン酸
- $2-\{1-(2-ナフタレンスルホニル) ピペリジン<math>-4-4$ ル $\}$ r-フェニル 都酸
- 3 {1 (2 ナフタレンスルホニル) ピペリジンー 4 イル} フェニル酢 酸
- 3 {1 (2 ナフタレンスルホニル) ピペリジンー 4 イル} ₇ フェニ ル**酪酸**
- 4 {1 (2 ナフタレンスルホニル) ピペリジン—4 イル} フェニル酢 酸
- $4-\{1-(2-t)$ フタレンスルホニル)ピペリジン-4-tル) $\beta-$ フェニルプロピオン酸
- 2-{1-(2-ナフタレンカルボニル) ピペリジン-4-イル} フェニル酢酸

 $2-\{1-(2-t ext{ } ext{ }$

- $2-\{1-(2-t フタレンカルボニル) ピペリジン<math>-4-4$ ル $\}$ r-フェニ ル酸酸
- 3-{1-(2-ナフタレンカルポニル)ピペリジン-4-イル}フェニル酢酸
- $3-\{1-(2-)$ ナフタレンカルポニル)ピペリジン-4-イル) $\beta-$ フェニルプロピオン酸
- 3-{1-(2ーナフタレンカルボニル)ピペリジン-4ーイル} ャーフェニル酪酸
- 4-{1-(2-ナフタレンカルボニル) ピペリジン-4-イル} フェニル酢酸
- 4- {1- (2-ナフタレンカルポニル) ピペリジン-4-イル} β-フェニルプロピオン酸
- 4 {1 (2 —ナフタレンカルボニル) ピペリジンー 4 —イル} r —フェニル酸酸
- 2-{1-(1-ナフタレンスルホニル) ピペリジン-3-エン-4-イル}フェニル酢酸
- 2 {1 (1 ナフタレンスルホニル) ピペリジンー3 エンー4 イル} *B* — フェニルプロピオン酸

- $3 \{1 (1 + 7 タ レンスルホニル) ピペリジン<math>-3 x 2 4 4 4 n\}$ $\beta 7 x = n \pi 2 \pi 2 \pi 2 \pi 2 \pi 2 \pi 3$
- 3 {1 (1 ナフタレンスルホニル) ピペリジンー 3 エンー 4 イル} r フェニル酪酸
- 4-{1-(1-ナフタレンスルホニル)ピペリジン-3-エン-4-イル

フェニル酢酸

 $4-\{1-(1-t) 2 4 - (1-t) 2 4$

- 2-{1-(1-ナフタレンカルボニル) ピペリジン-3-エン-4-イル} フェニル酢酸
- $2-\{1-(1-t)$ フェニル 整酸
- 3-{1-(1-ナフタレンカルボニル)ピペリジン-3-エン-4-イル}フェニル酢酸
- 3 {1 (1 ナフタレンカルポニル) ピペリジン—3 エン—4 イル} r フェニル酪酸
- 4-{1-(1-ナフタレンカルボニル) ピペリジン-3-エン-4-イル} フェニル酢酸
- $4-\{1-(1-t)7タレンカルボニル) ピペリジン<math>-3-x$ 2ー4ーイル} $\beta-7$ 2 ニルプロピオン酸
- 4 {1 (1 ナフタレンカルボニル) ピペリジン-3 エン-4 イル} ャーフェニル酪酸
- 2-{1-(2-ナフタレンスルホニル)-4-ヒドロキシピペリジン-4-イル}フェニル酢酸
- $2-\{1-(2-t)$ フタレンスルホニル)-4-tドロキシピペリジン-4-tイル $\}$ $\beta-$ フェニルプロピオン酸
- 2 {1 (2 ナフタレンスルホニル) 4 ヒドロキシピペリジン 4 イル) ァーフェニル酪酸

- $3-\{1-(2-t ext{ } ext{ }$
- $3-\{1-(2-t)$ アーフェニル酪酸
- $4-\{1-(2-t)$ クェニル酢酸
- $4-\{1-(2-t)7タレンスルホニル) -4-t ドロキシピペリジン-4-4ル <math>r-7$ ェニル酪酸
- 2 {1 (2 ナフタレンカルポニル) 4 ヒドロキシピペリジン— 4 イル} フェニル酢酸

- $3-\{1-(2-t フタレンカルボニル) -4-t ドロキシピペリジン<math>-4-t$ イル $\}$ $\beta-フェニルプロピオン酸$
- $3-\{1-(2-t) 7 + (2-t) 7$
- 4-{1-(2ーナフタレンカルポニル)-4ーヒドロキシピペリジン-4ーイル} フェニル酢酸
- $4-\{1-(2-ナフタレンカルポニル) -4-ヒドロキシピペリジンー<math>4-$ イル} $\beta-$ フェニルプロピオン酸
- 4-{1-(2-ナフタレンカルボニル)-4-ヒドロキシピペリジン-4-

PCT/JP92/01614

イル) アーフェニル酪酸

- 3-(4-ニコチノイルピペラジニル)フェノキシ酢酸
- 3-{4-(3-ピリジンスルホニル)ピペラジニル}フェニル酢酸
- 3-(4-ニコチノイルピペラジニル)フェニル酢酸
- 3 {1 (3 ピリジンスルホニル) ピペリジンー 4 イル} フェノキシ酢酸
- 3-(1-ニコチノイルピペリジン-4-イル)フェノキシ酢酸
- 3-{1-(3-ピリジンスルホニル)ピペリジン-4-イル}フェニル酢酸
- 3-(1-ニコチノイルピペリジン-4-イル)フェニル酢酸
- 3 {1 (3 ピリジンスルホニル) ピペリジン-3 エン-4 イル} フェニル酢酸
- 3-(1-ニコチノイルピペリジン-3-エン-4-イル)フェニル酢酸
- 3-{1-(3-ピリジンスルホニル)-4-ヒドロキシピペリジン-4-イ ル}フェノキシ酢酸
- 3 (1 ニコチノイル 4 ヒドロキシピペリジン 4 イル) フェノキシ 酢酸
- 3 {1 (3 ピリジンスルホニル) 4 ヒドロキシピペリジン 4 イ 」ル} フェニル酢酸
- 3- (1-ニコチノイル-4-ヒドロキシピペリジン-4-イル) フェニル酢酸
- 3-{4-(2-フランスルホニル)ピペラジニル}フェノキシ酢酸
- $3-\{4-(2-フランスルホニル) ピペラジニル <math>\}$ フェニル酢酸
- $3-\{4-(2-フランカルポニル) ピペラジニル\} フェニル酢酸$
- 3-{1-(2-フランスルホニル)ピペリジン-4-イル}フェノキシ酢酸
- 3—{1—(2—フランカルボニル)ピペリジン—4—イル〉フェノキシ酢酸
- $3 \{1 (2 7 7) \}$ プランスルホニル) ピペリジン $\{1 4 7\}$ フェニル酢酸
- $3-\{1-(2-7) = (2-7)$

ノキシ酢酸

3 — {1 — (2 — フランカルボニル) ピペリジンー 3 — エンー 4 — イル} フェ ノキシ酢酸

- 3- {1-(2-フランカルボニル) -4-ヒドロキシピペリジン-4-イル}フェノキシ酢酸
- $3-\{1-(2-フランスルホニル)-4-ヒドロキシピペリジン-4-イル}$ フェニル酢酸
- 3-{1-(2-フランカルボニル)-4-ヒドロキシピペリジン-4-イル}フェニル酢酸
- $3-\{1-(2-フランスルホニル)-4-ヒドロキシピペリジン-4-イル\}$ α . α -ジメチルフェノキシ酢酸
- 3-{1-(2-フランスルホニル) ピペリジン-3-エン-4-イル} フェニル酢酸
- 3 {1 (2 フランカルポニル) ピペリジン 3 エンー 4 イル} フェニル酢酸
- $3-\{1-(3-ピリジンスルホニル)-4-ヒドロキシピペリジン-4-インル <math>\alpha$, α -ジメチルフェノキシ酢酸
- 3-(1-4 y=1 + y
- 3-{4-(2-チオフェンスルホニル)ピペラジニル}フェノキシ酢酸
- 3- (4-テノイルピペラジニル) フェノキシ酢酸
- 3-{4-(2-チオフェンスルホニル)ピペラジニル}フェニル酢酸
- 3-(4-テノイルピペラジニル)フェニル酢酸

 $3-\{1-(2-f オフェンスルホニル) ピペリジンー<math>4-1$ ル $\}$ フェノキシ 酢酸

- 3-(1-テノイルピペリジン-4-イル)フェノキシ酢酸
- 3 {1 (2 チオフェンスルホニル) ピペリジン 4 イル} フェニル酢酸
- 3-(1-テノイルピペリジン-4-イル)フェニル酢酸
- 3 {1 (2 チオフェンスルホニル) ピペリジン 3 エン 4 イル} フェノキシ酢酸
- 3-(1-テノイルピペリジン-3-エン-4-イル)フェノキシ酢酸
- 3 {1 (2 チオフェンスルホニル) ピペリジンー 3 エンー 4 イル} フェニル酢酸
- 3-(1-テノイルピペリジン-3-エン-4-イル)フェニル酢酸
- 3 {1 (2 チオフェンスルホニル) 4 ヒドロキシーピペリジン— 4 イル} フェノキシ酢酸
- 3-(1-テノイル-4-ヒドロキシピペリジン-4-イル)フェノキシ酢酸
- 3-(1-F) イルー4-E ドロキシピペリジンー4-4 ルフェノキシ酢酸
- 3 {1 (2 チオフェンスルホニル) 4 ヒドロキシピペリジン 4 イル} フェニル酢酸
- 3- (1-テノイル-4-ヒドロキシピペリジン-4-イル)フェニル酢酸
- $3 \{4 (4 \pm 1) \}$ リンスルホニル) ピペラジニル} フェノキシ酢酸
- $3 \{4 (4 \pm 1) \}$ リンカルボニル) ピペラジニル フェノキシ酢酸
- 3-{4-(4-キノリンスルホニル)ピペラジニル}フェニル酢酸
- $3 \{4 (4 +) \}$ リンカルポニル) ピペラジニル フェニル酢酸
- 3 {1 (4 キノリンスルホニル) ピペリジンー 4 イル} フェノキシ酢酸

3 — {1 — (4 — キノリンカルボニル) ピペリジン — 4 — イル} フェノキシ酢酸

- 3-{1-(4-キノリンスルホニル)ピペリジン-4-イル}フェニル酢酸
- 3- {1-(4-キノリンカルボニル) ピペリジン-4-イル} フェニル酢酸
- 3- {1- (4-キノリンスルホニル) -4-ヒドロキシピペリジン-4-イ ル} フェノキシ酢酸
- 3 {1 (4 キノリンカルボニル) 4 ヒドロキシピペリジン 4 イ ル} フェノキシ酢酸
- $3-\{1-(4-+) リンカルポニル) -4-ヒドロキシピペリジン-4-イル <math>\alpha$, α -ジメチルフェノキシ酢酸
- $3-\{1-(4-+) リンスルホニル) -4-ヒドロキシピペリジン-4-イ ル フェニル酢酸$
- 3 {1 (4 キノリンカルボニル) 4 ヒドロキシピペリジンー 4 イ ル} フェニル酢酸
- 3-{4-(2-インドールカルボニル)ピペラジニル}フェノキシ酢酸
- 3 {1 (2 インドールカルボニル) ピペリジンー 4 イル} フェノキシ 酢酸
- 3-{1-(2-インドールカルポニル) ピペリジン-3-エン-4-イル}フェノキシ酢酸
- $3-\{1-(2-4) = 1-(2-4) =$

本発明のアリールアミド誘導体(1)は、例えば、次の反応式1~5に従って 製造することができる。

反応式1:

Me0 (2)
$$Ar-X-A$$
 (3) $Me0$ (4)

脱メチル化
$$Ar-X-N$$
 N OH OH OH

$$Ar - X - N \longrightarrow 0 - Z - COOH \xrightarrow{N_2 N (CH_2)_m COOR^7} (7)$$

$$(1 a)$$

$$Ar - X - N - O - Z - CONH (CH2) mCOOR2$$
(8)

(式中、Aはハロゲン原子を、R 7 はアルキル基を示し、A $_{\Gamma}$ 、X 、Z 及U mは 前記と同じ意味を示す)

即ち、1-rリールピペラジン誘導体(2)にrリールスルホニルハライド又はrリールカルボニルハライド(3)を反応させ、化合物(4)となし、これを脱メチル化し、化合物(5)を得る。次いで当該化合物(5)に化合物(6)を反応させれば、本発明のrリールrミド誘導体(1 a)が得られる。さらに(1 a)にrミノ酸誘導体(7)を反応せしめて化合物(8)とし、これを加水分解すれば本発明のrリールrミド誘導体(1 b)が得られる。

以下、各反応工程を詳述する。

1ーアリールピペラジン誘導体(2)とアリールスルホニルハライド又はアリールカルボニルハライド(3)との反応は、テトラヒドロフラン、ベンゼン、トルエン、エーテル、クロロホルム、塩化メチレン等の反応に不活性な溶媒中、トリエチルアミン、ピリジン等の塩基の存在下、0℃~室温で行なうのが好ましい。化合物(4)の脱メチル化は、塩化メチレン、クロロホルム等の反応に不活性な溶媒中、エタンチオール/無水塩化アルミニウム、三塩化ホウ素、三臭化ホウ素を0℃~室温にて反応させるか、ピリジン塩酸塩等のピリジニウム塩と130~200℃で加熱溶融させることにより行なわれる。

化合物(5)と化合物(6)との反応は、水酸化ナトリウム、水酸化カリウム、 炭酸ナトリウム、炭酸カリウム、水素化ナトリウム等の塩基の存在下、0~ 100℃で行なわれる。

また、(1a) と化合物(7) との反応は、塩化メチレン、クロロホルム、テトラヒドロフラン、ベンゼン、トルエン、エーテル等の反応に不活性な溶媒中、トリエチルアミン、ピリジン等の塩基存在下、0℃~室温にて行なうのが好ましい。

化合物 (8) の加水分解は、水酸化カリウム、水酸化ナトリウム等の塩基存在下、水、ジオキサン、アルコール等の混合溶媒中、室温にて行なわれる。

反応式2:

(式中、Ar、X、A、Z、R7及びmは前記と同じ意味を示す)

即ち、1-ベンジル-4-ピペリドン (9) にアリールマグネシウムハライド (10) を反応させ、化合物 (11) となし、これを脱水し化合物 (12) を得、これを還元して4-アリールピペリジン誘導体 (13) を得る。次いで、当該化合物 (13) にアリールスルホニルハライド又はアリールカルポニルハライド

(3) を反応させ化合物 (14) となし、これを脱メチル化し化合物 (15) を得る。さらに、当該化合物 (15) に化合物 (6) を反応させれば、本発明のアリールアミド誘導体 (1c) が得られる。次いで (1c) にアミノ酸誘導体 (7) を反応させて化合物 (16) とし、これを加水分解すれば本発明のアリールアミド誘導体 (1d) が得られる。

以下、各反応工程について詳述する。

1 ーベンジルー4 ーピペリドン (9) とアリールマグネシウムハライド (10) の反応は、テトラヒドロフラン、エーテル等の溶媒中、通常のグリニヤー反応として行なわれる。

化合物 (11) の脱水反応は、ベンゼン、トルエン等の溶媒中、硫酸、pートルエンスルホン酸、メタンスルホン酸等の酸の存在下、加熱還流することにより行なわれる。

化合物 (12) の還元は、通常の接触還元、例えばパラジウムー炭素を触媒として水素添加すればよい。

化合物 (13) から本発明のアリールアミド誘導体 (1c) への反。は、反応式1の化合物 (2) から化合物 (1a) の合成と同様の方法により行なうことができる。

また、(1 c) から本発明のアリールアミド誘導体(1 d) への反応は、反応式1 の化合物(1 b) の合成と同様の方法により行なうことができる。

(式中、Ar、X、A、Z及びmは前記と同じ意味を示し、 R^8 はrルキル基を示す)

即ち、1-ベンジル-4-ピペリドン(9)にアリールマグネシウムハライド (17)を反応させ化合物 (18)となし、これを還元し化合物 (19)を得、これにアリールスルホニルハライド又はアリールカルボニルハライド (3)を反応させ化合物 (20)となし、さらに加水分解して化合物 (21)を得る。

次いで当該化合物(21)に化合物(6)を反応させれば、本発明のアリールアミド誘導体(1e)が得られる。同様に、化合物(21)に化合物(24)を反応させ、加水分解することにより、本発明のアリールアミド誘導体(1e)が得られる。さらに化合物(21)を脱水し化合物(23)となし、これに化合物(6)を反応させれば、本発明のアリールアミド誘導体(1f)が得られる。

詳細には、1ーベンジルー4ーピペリドン(9)とアリールマグネシウムハライド(17)を反応させて化合物(18)を製造するには、反応式2の化合物(9)から(11)を得る方法に準じて行なえばよい。化合物(18)から(19)への還元反応は、反応式2の化合物(12)から(13)を得る方法に準じて行なうことができる。

化合物 (19) から (20) の反応は、反応式1の化合物 (2) から (4) の 反応に準じて行なうことができ、化合物 (20) 及び化合物 (22) の加水分解 は、反応式1の化合物 (8) から (1b) の反応に準じて行なうことができる。 さらに化合物 (21) から (1e) 及び (22) への反応は、反応式1の化合物 (5) から (1a) の反応に準じて行なうことができ、化合物 (21) から (23) への脱水反応は、反応式2の化合物 (11) から (12) の合成方法に 準じて行なうことができ、化合物 (23) から (1f) への反応は、反応式1の 化合物 (5) から (1a) の合成方法に準じて行なうことができる。

反応式4:

$$NH_2$$
 \rightarrow NH_2 \rightarrow \rightarrow NH_2 \rightarrow NH_2

(式中、Ar、X、A、Z及びR®は前記と同じ意味を示す)

即ち、アリールアミノカルボン酸誘導体(25)に、ビス(2-ハロエチル)アミン塩酸塩(26)を反応させ、化合物(27)となし、これにアリールスルホニルハライド又はアリールカルボニルハライド(3)を反応させ、化合物(28)を得る。次いで、これを加水分解すれば本発明のアリールアミド誘導体(1g)が得られる。

以下各反応工程を詳述する。

アリールアミノカルボン酸誘導体(25)とピス(2ーハロエチル)アミン塩酸塩(26)との反応は、テトラヒドロフラン、ベンゼン、トルエン、エタノール、メタノール等の反応に不活性な溶媒中、トリエチルアミン、ピリジン等の塩基の存在下、加熱還流下行なわれる。

化合物 (27) から (28) の反応は、反応式1の化合物 (2) から (4) の 反応に準じて行なうことができ、 (28) の加水分解は、反応式1の化合物 (8) から (1b) の反応に準じて行なうことができる。

反応式5:

$$MgA$$
 $Z \longrightarrow N$
 CH_3
 CH_3

(式中、Ar、X、A及びZは前記と同じ意味を表わす)

即ち、アリールハロゲノ誘導体 (29) をMgと反応させグリニヤー試薬 (30) となし、これと1 - ベンジル-4 - ピペリドン (9) と反応させ化合物

(31)を得る。次いでこれを加水分解し、化合物 (32)となし、これを還元 し化合物 (33)を得る。さらに、アリールスルホニルハライド又はアリールカ ルポニルハライド (3)を反応させれば本発明のアリールアミド誘導体 (1h) が得られる。

以下、各反応工程を詳述する。

グリニヤー試薬(30)は、アリールハロゲノ誘導体(29)をエーテル、テトラヒドロフラン等の反応に不活性な溶媒中、触媒量の I_2 存在下Mgと加熱還流することにより調製できる。化合物(9)とグリニヤー試薬(30)の反応は、反応式2の化合物(9)から(11)の合成と同様の方法により行なうことができる。

化合物(31)の加水分解は、通常の酸加水分解、例えばエタノール中、希塩酸を加え加熱環流すればよい。

化合物(32)の還元は、水酸化パラジウムー炭素を触媒として水素添加すればよい。

化合物 (33) から本発明のアリールアミド誘導体 (1h) への反応は、反応 式1の (2) から (4) の反応に準じて行なうことができる。

このようにして得られた本発明のアリールアミド誘導体(1)の粗生成物は、 溶媒抽出、再結晶、カラムクロマトグラフィー等の常法により精製することがで きる。

次に本発明のアリールアミド誘導体(1)の薬理作用を示す。

1. 出血時間の延長作用 (インビボ)

実験動物として、1群5匹のマウスを用い、試験を行なった。

下記表1に示す被験化合物を経口投与し、その1時間後に尾の先端を切り、直ちにマウスをホルダーに入れ、尾の先端約2cmを37℃の生理食塩水に垂直に浸した。

尾を15秒間隔で上下させ、出血しなくなるまでこれを繰返した。

評価は、対照群より50%以上の出血時間の延長が観察された場合を有意差有りと判定し、その最小有効量 (MED) を求めることにより行なった。結果を表1に示す。

表1

	化合物	出血時間延長の最小有効量 (mg/kg)	
本発明 9		50	
化合物 (1)	16	30	
	21	50	
比較化	アスピリン	- 100	
合物	BM13177	200	

- 2. トロンボキサンA₂ (TXA₂) 受容体拮抗作用 (インビトロ) らせん状に切ったラット大動脈標本を用いて試験を行なった。
- 0. $1\mu g/ml$ のアトロピン、フェントラミン、メピラミン、シプロヘプタジン及び $1\mu g/ml$ のプロプラノロール、インドメタシンを含む生理食塩水を浴槽内に入れ37℃に加温した。これに上記標本を懸垂し、トロンボキサンアゴニストのU-46619 (0. $01\mu g/ml$) を加え収縮させた。次いで表2の被験化合物を加え、この収縮を50%以上抑制する最小阻害濃度(MIC)を求めた。結果を表2に示す。

表2

	化合物番号	血管収縮抑制最小阻止濃度 (μg/ml)
本発明	9	0. 3
(1)	16	0. 2
	21	0. 3
比較化 合物	BM13177	0, 5

3. コレステロール減少作用

実験動物は、高コレステロールーコレイン酸の食餌を7日間与え過コレステロール血症としたマウス6匹(1群3匹)を使用した。

被験化合物は、6日目と7日目にそれぞれ全投与量の半分ずつを経口投与した。 次いで一夜絶食後、血清コレステロール濃度を測定し、対照群より15%以上の 血清コレステロール濃度を減少させたものを有意差有りと判定した。 その最小有効量 (MED) を表3に示した。

表3

化合物番号	コレステロール減少作用 の最小有効量(mg/kg)
本発明化合物 2 5	70
本発明化合物 6 0	30
比較化合物 ベザフィブラート	100

上記の如く、本発明のアリールアミド誘導体(1)は、優れた出血時間延長作用、トロンボキサンA2受容体拮抗作用に基づく血小板凝集抑制作用、血管拡張作用、さらにコレステロール減少作用を有している。

また、本発明のアリールアミド誘導体(1)は、マウスに300mg/kg経口投与しても死亡例はなく安全であった。

本発明のアリールアミド誘導体(1)又はその塩を循環器官用剤として使用する場合、その投与量は、患者の体重、年齢、性別、投与方法、体調、病状等により異なるが、経口投与の場合、一日 $10\sim200$ mg、非経口投与の場合は、一日 $1\sim20$ mg程度が適当である。

本発明のアリールアミド誘導体(1)は通常の方法で錠剤、顆粒剤、硬カプセル剤、軟カプセル剤、散剤、細粒剤、丸剤、懸濁剤、注射剤、座薬、点滴剤、あるいはシロップ剤等の種々の剤形の医薬製剤として用いることができる。

固型製剤を製造するには、本発明のアリールアミド誘導体(1)に賦形剤、さらに必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味矯臭剤、増量剤、被覆剤、糖衣剤などを加えた後、常法により錠剤、顆粒剤、散剤、カプセル剤、座薬等とすることが好ましい。注射剤を調製する場合は、アリールアミド誘導体(1)を注射用蒸留水等の水性担体にあらかじめ溶解、分散、乳化等するか、又は注射用の粉末にして、用事に溶解等すればよい。注射剤の投与方法としては、静脈内投与、門脈内投与、腹腔内投与、筋肉内投与、皮下投与等が挙げられる。実施例

次に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限 定されるものではない。

実施例1

1-(4-9ロルベンゼンスルホニル)-4-(3-メトキシフェニル)ピペリジン(化合物番号34-10)

4-(3-)トキシフェニル)ピペリジン0.32g(1.7mol)を無水テトラヒドロフラン30mlに溶解し、さらにトリエチルアミンを加えた後室温攪拌下、p-クロルベンゼンスルホニルクロリド0.4g(1.9mol)を少しずつ加えた。室温にて5時間攪拌後溶媒を減圧留去し、残渣をクロロホルムに転溶し、水洗した。無水 Na_2SO_4 にて乾燥後、クロロホルムを減圧留去し、残渣を SiO_2 カラムクロマトグラフィーに付し、クロロホルム溶出画分より無色結晶の目的物0.47g(収率77%)を得た。

実施例2

 $1-(4-\rho ロルベンゼンスルホニル) -4-(3-ヒドロキシフェニル) ピペリジン (化合物番号 <math>3.4-2$)

実施例3

 $1-(4-\rho u)$ ルベンゼンスルホニル) -4-(3-ビドロキシフェニル) ピペリジン-3-エン(化合物番号34-8)

WO 93/12086 PCT/JP92/01614

反応終了後、トルエンを留去することにより淡黄色油状物の目的物 0.77g (収率 8 1%) を得た。

実施例4

4-ヒドロキシー4-(3-ヒドロキシフェニル)ピペリジン2.3g(12mmol)を無水テトラヒドロフラン100mlに溶解し、トリエチルアミン2ml(14.3mmol)存在下、p-クロルベンゼンスルホニルクロリド2.6g(12mmol)を、室温で攪拌しながら少しずつ加えた。同温度で24時間攪拌後反応混液を減圧留去し、残渣をクロロホルム及びメタノールの混合溶媒に転溶し、水洗した。無水 Na_2SO_4 にて乾燥後、溶媒を減圧留去し残渣を SiO_2 カラムクロマトグラフィーに付し、クロロホルム溶出画分より無色結晶の目的物2.6g(収率58%)を得た。

以上、実施例 $1 \sim 4$ で得られた化合物及びこれらの実施例に準じて製造した化合物のデータを表 $4 \sim 7$ に示す。

	7	mass M+(m/z)	. 332	351	351	351
	NMR ô pọm (CDC1 ₉)		1. 84 (m, 4H), 2. 34 (m, 3H), 3. 92 (m, 2H), 5. 20 (br, 1H), 6. 72 (m, 3H), 7. 24 (m, 3H), 7. 94 (m, 2H)	1, 90 (m, 4H), 2, 36 (m, 3H), 3, 90 (m, 1H), 4, 04 (m, 1H), 6. 76 (m, 3H), 7, 24 (m, 1H), 7, 60 (d, 2H), 7, 82 (d, 2H)	1, 50 \sim 2, 10 (m, 4H), 2, 10 \sim 3, 30 (m, 3H), 3, 88 (m, 1H), 4, 08 (s, 1H), 6, $64\sim$ 7, 44 (m, 4H), 7, 58 (d, 2H), 7, 82 (d, 2H)	
	# 17			"	$-$ N \longrightarrow U $-$	-N-
	(2) 式中	Rª	=	*	"	*
		R³	=	*	*	*
K		R²	=	*	*	*
		R.1	4-F	4-C1	*	*
	17.A.W	5 G Sub	34-1	34—2	34—3	3 <u>4</u> — 4

}_8_z_os	(34)
12 - S	_ - 2
R ²	

7	Mass M+(m/z)	419	385	367	349	349
	NMR & ppm (CDC1s)			1. 76 (m, 2H), 2. 14 (m, 2H), 2. 82 (m, 2H), 3. 72 (m, 2H), 4. 00 (br, 1H), 6. 80 (m, 1H), 6. 96 (m, 2H), 7. 28 (t, 1H), 7. 62 (d, 2H), 7. 84 (d, 2H)	2. 52 (m, 2H), 3. 28 (t, 2H), 3. 74 (m, 2H), 5. 96 (m, 1H), 6. 86 (m, 3H), 7. 28 (t, 1H), 7. 56 (d, 2H), 7. 84 (d, 2H)	1. 90 (m, 4H), 2. 32 (m, 3H), 3. 78 (s, 3H), 3. 94 (m, 2H), 6. 76 (m, 3H), 7. 26 (m, 3H), 7. 84 (m, 2H)
中	-B-		"			
(2) 式	R9	H	"	"	"	GH.
3)	R³	5-c1	Н	"	"	"
	Ra	4-C1	=	"	,	*
	R1	2-c1	4-CFs	4-C1	"	4-F
WATE.	2 2 3 5 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34— 5	34— 6	34-7	34—8	34—9

:	Mass M+(m/z)	365	365	365	433	399
	NMR & ppm (CDC1s)	1. 84 (m, 4H), 2. 36 (m, 3H), 3. 80 (s, 3H), 3. 88 (m, 1H), 4. 00 (m, 1H), 6. 80 (m, 3H), 7. 28 (m, 1H), 7. 58 (d, 1H), 7. 82 (d, 1H)	1. 82 (m, 4H), 2. 40 (m, 3H), 3. 78 (s, 3H), 3. 88 (m, 1H), 4. 00 (m, 1H), 6. 72~7. 40 (m, 4H), 7. 58 (d, 2H), 7. 82 (d, 2H)	1. 84 (m, 4H), 2. 38 (m, 3H), 3. 80 (s, 3H), 3. 88 (m, 1H), 4. 00 (m, 1H), 6. 88 (d, 2H), 7. 14 (d, 2H), 7. 58 (d, 2H), 7. 82 (d, 2H)	1. 20~2. 10 (m, 4H), 2. 30~3. 40 (m, 3H), 3. 80 (s, 3H), 3. 94 (m, 1H), 4. 08 (m, 1H), 6. 84 (m, 3H), 7. 70 (t, 1H), 7. 72 (s, 1H), 8. 24 (s, 1H)	1. 90 (m, 4H), 2. 40 (m, 3H), 3. 80 (s, 3H), 3. 92 (m, 1H), 4. 04 (m, 1H), 6. 80 (m, 3H), 7. 28 (t, 1H), 7. 88 (d, 2H), 8. 02 (d, 2H)
#	-B-			-0-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
4 4	Rs	CHs	"	"	"	"
(2)	R³	H	"	"	5-01	H
	Rª	E	"	"	4-C1	=
	R1	4-C1	"	"	2-c1	4-CFs
17.A.W	1 四 四 9 中	34-10	34—11	34—12	3413	34—14

被6

į (
	(32)

	R	°p−OSWO Q	MS (M+)
35—15	ØĴ	1. 60 (br, 2H), 1. 87 (m, 2H), 3. 20 (br, 2H), 3. 40 (br, 2H), 5. 00 (s, 1H), 6. 51 (dd, 1H), 6. 90 (m, 2H), 7. 09 (t, 1H), 7. 46 (s, 4H), 9. 13 (s, 1H)	331
35—16	Br	1. 60 (br, 2H), 1. 88 (m, 2H), 1. 50 (s, 6H), 3. 20 (br, 2H), 3. 42 (br, 2H), 4. 38 (br, 1H), 6. 63 (dd, 1H), 6. 92 (m, 2H), 7. 12 (t, 1H), 7. 40 (d, 2H), 7. 64 (d, 2H), 9. 15 (s, 1H)	375
35—17	I		423

WO 93/12086 PCT/JP92/01614

実施例5

[3-{4-(クロルベンゼンスルホニル) ピペラジニル} フェノキシ] 酢酸 (化合物番号9)

反応終了後、反応混液に希塩酸を加え酸性とし、クロロホルムで抽出した。無水Na2SO4にて乾燥後クロロホルムを減圧留去し、残留物を酢酸エチルー石油エーテルにて結晶化し、無色結晶の目的物 0. 43g(収率 81%)を得た。 実施例 6

[3-{4-(4-クロルベンゼンスルホニル) ピペラジニル} フェノキシ] 酢酸 (3-カルボキシプロピル) アミド (化合物番号29)

[$3-\{4-(4-\rho n)$ ルベンゼンスルホニル)ピペラジニル $\}$ フェノキシ〕酢酸(化合物番号 9) 1. 0 g(2. 4 mmo ℓ)を無水塩化メチレン 2 0 $m\ell$ 及び無水テトラヒドロフラン 2 0 $m\ell$ の混液に溶解し、これにカルボジイミダゾール 0. 6 0 g(3. 7 mmo ℓ)を加え、2 時間室温にて攪拌した。次いでトリエチルアミン 0. 5 0 $m\ell$ (3. 6 mmo ℓ)を加えた後、r-rミノーn-mを酸エチル塩酸塩 0. 5 0 g(3. 0 mmo ℓ)を加え、2 4 時間室温にて攪拌した。反応終了後、反応混液を減圧留去し、残留物をエタノールーエーテルにて結晶化し、エチルエステル 1. 1 4 g(収率 9 0 %)を得た。

¹H-NMR δ ppm (CDCl_s):

1. 24(t, 3H), 1. 88 (m, 2H), 2. 36(t, 2H), 3. 20 (m, 8H), 3. 44(t, 2H),

4.14(q, 2H), 4.46(s, 2H), 6.52(m, 3H), 6.84(br, 1H), 7.24(t, 1H),

7, 60 (d, 2H), 7, 82 (d, 2H).

上記の結晶 1. 0.7g (2. $0 \text{ mmo } \ell$) をジオキサン $2.0 \text{ m} \ell$ 及びメタノール $2.0 \text{ m} \ell$ の混液に溶解し、これに 0.5 N水酸化ナトリウム水溶液を加え室温にて

2時間攪拌した。反応終了後、反応混液に希塩酸を加え酸性とし、クロロホルムで抽出した。無水Na₂SO₄にて乾燥後、クロロホルムを減圧留去し、残留物を酢酸エチルにて結晶化し、無色結晶の目的物0.84g(収率83%)を得た。 実施例7

3-[1-(4-クロルベンゼンスルホニル) ピペリジン-4-イル] フェノキシ酢酸 (化合物番号21)

 $1-(4-\rho \, \text{ロルベンゼンスルホニル}) - 4-(3-\text{ヒドロキシフェニル}) \, \text{ピ ペリジン0.} \, 45 \, \text{g} \, (1.3 \, \text{mmol}) \, をジオキサン30 \, \text{ml} に溶解し、これに2N 水酸化ナトリウム水溶液30 \, \text{ml} 及びモノクロル酢酸3.0 \, \text{g} \, (31 \, \text{mmol}) \, を含む水溶液20 \, \text{ml} を加え、2 時間還流攪拌した。さらに2N水酸化ナトリウム水溶液30 \, \text{ml} 及びモノクロル酢酸3.0 \, \text{g} \, (31 \, \text{mmol}) \, を含む水溶液20 \, \text{ml} を加え、2 時間還流攪拌したのち、再度同量の水酸化ナトリウム水溶液及びモノクロル酢酸水溶液を加え、2 時間還流攪拌した。$

反応終了後、反応混液に希塩酸を加え酸性とし、クロロホルムで抽出し、水洗し、無水 Na_2SO_4 で乾燥した。クロロホルムを減圧留去し、残留物を酢酸エチルー石油エーテルにて結晶化し、無色結晶の目的物0. 44g (収率83%)を得た。

実施例8

以下、実施例7と同様にして反応を行ない無色結晶の目的物0.42g(収率84%)を得た。

実施例9

3-[1-(4-クロルベンゼンスルホニル)-4-ヒドロキシピペリジンー 4-イル]フェノキシ酢酸(化合物番号25) 1- (4-クロルベンゼンスルホニル) -4-ヒドロキシー4- (3-ヒドロキシフェニル) ピペリジン 0. 47g (1.3 mmo l) をジオキサン 3 0 mlに溶解し、これに 2 N水酸化ナトリウム水溶液 3 0 ml及びモノクロル酢酸 3.0g (31 mmo l) を含む水溶液 2 0 mlを加え、2 時間還流攪拌した。

以下、実施例7と同様にして反応を行ない無色結晶の目的物0.45g(収率81%)を得た。

実施例5~9及びこれら実施例に準じて製造された化合物のデータを表8~表15に示す。

	# #	(mp, C) 女	無色結晶 169~ 170	無色結晶 131~ 133	無色結晶 200~ 204 (分解)
		IR v max cm ⁻¹	3200~2000, 1740, 1350, 1330, 1180	3200~2000, 1740, 1710, 1350, 1340, 1190, 1170	3200~2200, 1740, 1350, 1170
		NMR & ppm (CDC1s)	3. 28 (m, 8H), 4. 66 (s, 2H), 7. 24 (m, 4H), 7. 70 (m, 3H), 7. 86 (m, 2H)	3. 24 (s, 8H), 4. 68 (s, 2H), 5. 70 (br, 1H), 6. 58 (m, 3H), 7. 26 (t, 1H), 7. 70 (m, 3H), 7. 88 (m, 2H)	3. 20 (s, 8H), 4. 60 (s, 2H), 0- 6. 94 (s, 4H), 7. 70 (m, 3H), 7. 86 (m, 2H)
		-r $-r$			-N N -0
0-Z-COR4	Н	2	- CH ₂ -	"	"
(1)	(1) 式中	R4	ОН	"	· ·
		R3	Н	"	
		R²	H	*	*
		Rı	н	"	*
	名	口参海中	1	2	3

1	年 (m, C)	無色結晶 159~ 160	無色結晶 157~ 158	無色結晶 202~ 203	無色結晶 203~ 204	無色結晶 163~ 164
	IR vmax cm-1	3300~2000, 1740, 1710, 1340, 1185 1160	3300~2000, 1740, 1710, 1350, 1310, 1140	3300~2000, 1730, 1710, 1330, 1180, 1140	3300~2300, 1720, 1710, 1345, 1325, 1165, 1140	3300~2000, 1735, 1350, 1175
	NMR & ppm (CDCl ₃)	2. 44 (s, 3H), 3. 20 (m, 8H), 4. 68 (s, 2H), 6. 56 (m, 3H), 7. 28 (t, 1H), 7. 30 (br, 1H), 7. 44 (d, 2H), 7. 78 (d, 2H)	3. 30 (m, 4H), 3. 38 (m, 4H), 4. 62 (s, 2H), 6. 60 (m, 3H), 7. 24 (t, 1H), 7. 70~8. 30 (m, 4H)	3. 24 (s, 8H), 4. 60 (s, 2H), 6. 56 (m, 3H), 7. 24 (t, 1H), 7. 64~8. 20 (m, 4H)	3. 26 (s, 8H), 4. 62 (s, 2H), 6. 58 (m, 3H), 7. 26 (t, 1H), 7. 92 (d, 2H), 8. 04 (d, 2H)	3. 30 (m, 8H), 4. 68 (s, 2H), 7. 26 (m, 4H), 7. 62 (d, 2H), 7. 82 (d, 2H)
	-4 -0 -1		"	"	"	
Г	Z	-CH2-	"	"	"	*
(1) 式中	# #	НО	"	"	*	"
	Rs	Н	"	"	"	"
	RZ	Н	"	"	"	"
	R¹	4-CHs	2-CF ₃	3-CF ₃	4-CP ₃	<u>4</u> −C1
和	[0	4	១	9	2	8

1	再 注 (mp, C)	無色結晶 192~ 193	無色結晶 188~ 189	無色結晶 166~ 167	無色結晶 155~ 156
	IR vmax cm-1	3200~2000, 1730, 1710, 1340, 1155	3300~2000, 1735, 1710, 1335, 1160,	3300~2000, 1730, 1705, 1350, 1340, 1150	3300~2300, 1715, 1340, 1165
	NMR & ppm (CDC1s)	3. 28 (s, 8H), 4. 62 (s, 2H), 6. 60 (m, 3H), 7. 26 (t, 1H), 7. 62 (d, 2H), 7. 84 (d, 2H)	3. 18 (s, 8H), 4. 58 (s, 2H), 6. 94 (s, 4H), 7. 62 (d, 2H), 7. 82 (d, 2H)	3. 24 (m, 4H), 3. 44 (m, 4H), 4. 60 (s, 2H), 6. 60 (m, 3H), 7. 24 (t, 1H), 7. 60 (m, 3H), 8. 16 (m, 1H)	3. 20 (s, 8H), 4. 60 (s, 2H), 6. 56 (m, 3H), 7. 24 (t, 1H), 7. 68 (m, 3H), 7. 86 (m, 1H)
	-4~	N	-0-N-N-	\sim	"
#	2	-CH2-	"	"	"
(1) 式 1	R4	HO	"	"	"
	R³	Н	"	"	"
	R²	н	"	"	"
	R1	4 -C1	"	2-c1	3-01
右	- 物番 号	6	10	Ħ	12

_	_
_	
٠.	Ī
H	ģ

i.	年 (mp, C)	無色結晶 200~ 201	無色結晶 188~ 189	無色結晶 175~ 176	無色結晶 201~ 202
	IR max cm-1	3300~2000, 1730, 1705, 1340, 1150	3200~2000, 1735, 1705, 1350, 1160	3300~2000, 1710, 1340, 1170, 1155	3200~2000, 1720, 1355, 1345, 1180, 1160
	NMR & ppm (CDC1 ₉)	3. 24 (s, 8H), 4. 60 (s, 2H), 6. 54 (m, 3H), 7. 24 (t, 1H), 7. 72 (m, 2H), 7. 96 (m, 1H)	3. 28 (m, 4H), 3. 64 (m, 4H), 4. 60 (s, 2H), 6. 58 (m, 3H), 7. 24 (t, 1H), 7. 74 (s, 1H), 8. 24 (s, 1H)	3. 22 (m, 8H), 4. 60 (s, 2H), 6. 56 (m, 3H), 7. 32 (m, 3H), 7. 90 (m, 2H)	3. 26 (s, 8H), 4. 60 (s, 2H), 6. 60 (m, 3H), 7. 26 (t, 1H), 7. 76 (m, 4H)
	-ı\i-		"	"	"
п	2	-CH2-	"	*	"
(1) 式中	R4	ОН	"	"	"
	Ra	Н	5-C1	Н	"
	R²	4-C1	"	Н	*
	R1	9-C1	2-c1	<u>4</u> -F	4 −Br
名	1秒 番号	13	14	15	16

#	(mp, C)	無色結晶 206~ 207	無色結晶 212~ 213	無色結晶 157~ 158
	IR vmax cm ⁻¹ .	3200~2000, 1735, 1345, 1150	3300~2000, 1735, 1710, 1340, 1150	3300~2000, 1720, 1325, 1160
NMR & ppm (CDC1s)		3. 20 (s, 8H), 4. 56 (s, 2H), 4. 80 (br, 1H), 6. 52 (m, 3H), 7. 20 (t, 1H), 7. 52 (d, 2H), 8. 00 (d, 2H)	3. 02 (m, 4H), 3. 18 (m, 4H), 3. 60 (s, 2H), 3. 84 (s, 2H), 6. 50 (m, 3H), 7. 18 (t, 1H), 7. 22 (d, 2H), 7. 78 (d, 2H), <solv, dmso-d<sub="">6></solv,>	1. 90 (m, 4H), 2. 40 (m, 3H), 3. 90 (br, 1H), 4. 04 (br, 1H), 4. 60 (s, 2H), 6. 84 (m, 3H), 7. 30 (t, 1H), 7. 88 (d, 2H), 8. 04 (d, 2H)
	$-\gamma$	-0	"	
-	7	-CH2-	"	,
(1) 式中	R4	ОН	"	"
	Ra	Н	"	"
	R²	H	"	"
	R1	I− ħ	4-0CH2COOH	4-CFs
他 を	1物 番 号	17	18	19

1	信 (mp, 代)	無色結晶 197~ 198	無色結晶 159~ 160	無色結晶 189~ 190	無色結晶 171~ 172
	IR v max cm-1	3300~2000, 1725, 1350, 1160	3300~2000, 1725,1335, 1165	3300~2000, 1735, 1705, 1345, 1160	3200~2000, 1720, 1360, 1170
	NWR & ppm (CDC1 _a)	1. 90 (m, 4H), 2. 42 (m, 3H), 3. 88 (br, 1H), 4. 00 (br, 1H), 4. 62 (s, 2H), 6. 68~7. 40 (m, 4H), 7. 60 (d, 2H), 7. 82 (d, 2H)	1. 86 (m, 4H), 2. 38 (m, 3H), 3. 90 (br, 1H), 4. 04 (br, 1H), 4. 70 (s, 2H), 6. 00 (br, 1H), 6. 86 (m, 3H), 7. 32 (m, 1H), 7. 60 (d, 2H), 7. 82 (d, 2H)	1. 84 (m, 4H), 2. 38 (m, 3H), 3. 86 (br, 1H), 4. 00 (br, 1H), 4. 60 (s, 2H), 6. 90 (d, 2H), 7. 14 (d, 2H), 7. 60 (d, 2H), 7. 82 (d, 2H)	1. 90 (m, 4H), 2. 36~3. 24 (m, 3H), 3. 92 (br, 1H), 4. 06 (br, 1H), 4. 62 (s, 2H), 6. 86 (m, 3H), 7. 30 (t, 1H), 7. 74 (s, 1H), 8. 24 (s, 1H)
	-v-			-0-N-	
	2	CH2	"	"	*
(1) 式中	. R4	ОН	"	"	"
	Rs	Ξ	"	"	5-C1
	Re	Н	"		4-C1
	R.1	4-C1	,		2-c1
名	1を海市	82	21	22	23

1	在 女 (mp, C)	無色結晶 152~ 153	無色結晶 143~ 144	無色結晶 176~ 177	無色結晶 204~ 205
	IR v max cm-1	3300~2000, 1735, 1700, 1335, 1170, 1150	3500, 3300~2000, 1755, 1730, 1320, 1170	3200~2000, 1740, 1710, 1345, 1155	3380, 3200~2000, 1720, 1340, 1160
	NMR & ppm (CDC1s)	1. 84 (m, 4H), 2. 36 (m, 3H), 3. 88 (br, 1H), 4. 02 (br, 1H), 4. 62 (s, 2H), 6. 80 (m, 3H), 7. 32 (m, 3H), 7. 88 (m, 2H)	1. 76 (m, 2H), 2. 10 (m, 2H), 2. 80 (m, 2H), 3. 70 (m, 2H), 4. 64 (s, 2H), 6. 84 (m, 1H), 7. 08 (m, 2H), 7. 34 (t, 1H), 7. 60 (d, 2H), 7. 84 (d, 2H)	2. 60 (m, 2H), 3. 32 (t, 2H), 3. 80 (m, 2H), 4. 62 (s, 2H), 6. 00 (m, 1H), 6. 96 (m, 3H), 7. 30 (t, 1H), 7. 60 (d, 2H), 7. 86 (d, 2H)	3. 20(s, 4H), 3. 24(s, 4H), 4. 02(d, 2H), 4. 50(s, 2H), 6. 56(m, 3H), 7. 24(t, 1H), 7. 64(d, 2H), 7. 70(br, 1H), 7. 84(d, 2H)
	-r		-0 HIO N-		-N
+	2	- CH2-	"	"	*
(1) 末 中	R4	НО	"	"	NHCH ₂ COOH
	R³	Ħ	"	"	*
	R²	H	"	"	*
	R1	4-Р	4-C1	"	,
名	口物審导	24	25	92	2.2

മ
₩.
嵌

1	(alb, C) 対	無色結晶 174~ 175	無色結晶 162~ 163	無色結晶 177~ 178	無色結晶 157~ 158
=		12.	166	新 江), 15種
	IR v max cm - 1	0, 0~2000 0, 1165	70, 200, 2000 10, 1345, 30	70, 1355, 70, 1160	9400~2000 1700, 1340, 1150
	H.	3360, 3200 1730,	3360, 3200- 1710, 1160	3200 1690 1170	11.73
	NMR & ppm (CDC1 _s)	2. 54(t, 2H), 2. 90(br, 1H), 3. 24(s, 8H), 3. 56(m, 2H), 4. 48(s, 2H), 6. 56(m, 3H), 7. 26(t, 1H), 7. 34(br, 1H), 7. 64(d, 2H), 7. 84(d, 2H)	1. 86 (m, 2H), 2. 32 (t, 2H), 3. 24 (m, 8H), 3. 44 (m, 2H), 4. 46 (s, 2H), 6. 56 (m, 3H), 7. 16 (br, 1H), 7. 24 (t, 1H), 7. 62 (d, 2H), 7. 82 (d, 2H)	2. 10 (m, 2H), 2. 52 (t, 2H), 3. 56 (s, 8H), 4. 08 (t, 2H), 6. 80~7. 20 (m, 3H), 7. 40 (m, 1H), 7. 76 (d, 2H), 7. 88 (d, 2H)	1. 58 (s, 6H), 3. 20 (s, 8H), 6. 54 (m, 3H), 7. 20 (m, 1H), 7. 70 (d, 2H), 7. 82 (d, 2H),
	-r	$-N \longrightarrow N -$	"	"	
	2	-CH2-	"	– (CH₂) ş−	## ##
(1) 式中	R.4	NH (CH2) 2COOH	NH (CH ₂) _s COOH	HO	HO
	R³	Н	"	"	
	R²	Н	"	"	
	R¹	4-C1	"	4-Br	"
名	口物海中	82	83	30	31

実施例10

 $\{1-(4-)$ ロムベンゾイル) -4-(2-) ドロキシアェニル) -4- ドロキシピペリジン801 mgを炭酸カリウム1.20g(8.68 mmo ℓ)存在下、 α -ブロモイソ酪酸エチル4.00g(20.5 m ℓ)中で外温100℃にて9時間攪拌した。反応終了後反応混液を冷却し、さらに水を加えた後、クロロホルムにて抽出した。次いで芒硝乾燥後、クロロホルム及び残存 α -ブロモイソ酪酸エチルを減圧留去し、 $3-\{1-(4-)$ ロムベンゾイル) -4- にドロキシピペラリジン-4- イル $\}$ α , α -ジメチルフェノキシ酢酸エチルの油状物902 mg(86.4%)を得た。

実施例11

3-{4-(4-ブロムベンゼンスルホニル) ピペラジニル} フェニル酢酸 (化合物番号36)

3-Tミノフェニル酢酸エチル480 mg(2. 68 mmo ℓ)、ピス(2-クロロエチル)アミン塩酸塩 480 mg(2.70 mmo ℓ)及びトリエチルアミン 0.50 ml(3.61 mmo ℓ)をメタノール中に加え、100 時間還流攪拌を行なった。反応終了後反応混液を減圧留去し、残渣に炭酸水素ナトリウム水溶液を加えて、液性を弱アルカリ性とした後、クロロホルムにて抽出し、芒硝乾燥後、減圧留去した。次いで残渣油状物をシリカゲル 30 gを用いてカラムクロマトグ

WO 93/12086 PCT/JP92/01614

ラフィーを行ない、10% Me OH/CHC1。溶出部を減圧留去し、3-(1ーピペラジニル)フェニル酢酸エチルの油状物350mg(52.7%)を得た。このようにして得られた、3-(1ーピペラジニル)フェニル酢酸エチル220g(0.887mmoℓ)を無水テトラヒドロフラン20mℓに溶解し、さらに、トリエチルアミン0.50mℓ(3.61mmoℓ)を加えた後、室温撹拌にて少量ずつ、pーブロモベンゼンスルホニルクロライド300mg(1.17mmoℓ)を加え、その後、一夜室温にて攪拌した。反応終了後、反応混液を減圧留去し、残渣をクロロホルムに溶解し、水洗後芒硝乾燥した。次いでクロロホルムを減圧留去し、3-{4-(4ーブロムベンゼンスルホニル)ピペラジニル}フェニル酢酸エチル414mg(定量的)を得た。

実施例 $5 \sim 1$ 1 の方法に準じて、次の表 1 6 \sim 表 2 4 に示す本発明化合物 (1) を製造した。これらのデータを同表に示す。

, a-z-cor4	
`	X-Y-X
	Ar X-

	(ji)	無色結晶 154~ 155	無色結晶 210~ 211	無色結晶 169~ 170	無色結晶 201~ 202
	IR v max cm-1	3300~2000, 1730, 1340, 1160	3200~2200, 1740, 1350, 1180	3400~2000, 1700, 1320, 1170	3400~2000, 1700, 1340, 1160
	NMR & ppm(CDC1s)	1. 96 (m, 4H), 2. 32 (m, 3H), 3. 84 (br, 1H), 3. 96 (br, 1H), 4. 64 (s, 2H), 6. 76 (m, 3H), 7. 24 (t, 1H), 7. 60 (d, 2H), 7. 72 (d, 2H)	3. 24(s, 8H), 4. 58(s, 2H), 6. 50(m, 3H), 7. 18(t, 1H), 7. 64(m, 1H), 8. 18(dt, 1H), 8. 84 (m, 1H), 9. 00(m, 1H)	3. 17 (m, 4H), 3. 25 (m, 4H), 3. 57 (s, 2H), 6. 80 (m, 3H), 7. 20 (dd, 1H), 7. 60 (m, 3H), 7. 79 (m, 2H)	3. 20 (m, 4H), 3. 26 (m, 4H), 3. 58 (s, 2H), 6. 83 (m, 3H), 7. 22 (t, 1H), 7. 53 (d, 2H), 7. 73 (d, 2H)
	R	НО	"	"	"
	2-0	-2H2O-	"	−cH₂−	"
(1) 式中	⟨ <u></u>	(O)-(N-	$\bigvee_{N} - \bigvee_{N} -$	"	"
	Х	\$0 ₂	"	"	"
	Ar	Br - 🕒 -	(N)	- -	C4-Q
名4	D 参布中	32	33	34	33

1	語 次 (mp, C)	無色結晶 213~ 214	無色結晶 174~ 175	無色結晶 187~ 188	無色結晶 177~ 178
	IR v max cm-1	3200~2000, 1705, 1340, 1160	3400~2000, 1690, 1335, 1160	3300~2000, 1690, 1340, 1160	3300~2000, 1690, 1340, 1160
	NMR & ppm (CDC13)	3. 18 (s, 8H), 3. 56 (s, 2H), 6. 78 (m, 3H), 7. 22 (t, 1H), 7. 68 (s, 4H)	2. 44(s, 3H), 3. 16(t, 4H), 3. 25(t, 4H), 3. 58(s, 2H), 6. 81(m, 3H), 7. 21(dd, 1H), 7. 35(d, 2H), 7. 67(d, 2H)	3. 17 (m, 4H), 3. 26 (m, 4H), 3. 58 (s, 2H), 3. 88 (s, 3H), 6. 83 (m, 3H), 7. 01 (d, 2H), 7. 22 (t, 1H), 7. 73 (d, 2H)	3. 23 (m, 8H), 3. 58 (s, 2H), 5. 45 (d, 1H), 5. 89 (d, 1H), 6. 76 (dd, 1H), 6. 82 (m, 3H), 7. 22 (m, 1H), 7. 56 (d, 2H), 7. 74 (d, 2H)
	æ	но	"	*	*
-	C-C	- CH2-	"	"	"
(1) 式 中	V ()	$\bigcup_{N} \bigvee_{N} -$	"	"	"
	Х	-S02-	"	"	"
	Ar	Br <equation-block></equation-block>	снз — 🕒	CH ₃ 0—Q)-	CH ₂ =CH-{O}-
为人	11秒 審明	96	37	38	39

1	r _{cm-1} 在 状 (mp, C)	1720. 無色結晶 1345. 239~ 240	-2000, 無色結晶 1330, 164~ 165	2000, 無色結晶 [340, 151~ 152	.2000, 無色結晶 340, 104~
	IR V Max Cm-1	3320, 1 1650, 1 1165	3200 1710, 1 1160	3200~ 1690, 1 1150	3400~2000, 1700, 1340.
	NMR & ppm (CDC1s)	2. 08 (s, 3H), 3. 00 (t, 4H), 3. 18 (t, 4H), 3. 46 (s, 2H), 6. 70 (d, 1H), 6. 77 (d, 1H), 6. 78 (s, 1H), 7. 12 (t, 1H), 7. 70 (d, 2H), 7. 83 (d, 2H), 10. 32 (s, 1H), 12. 13 (br, 1H)	3. 22 (br. s, 4H), 3. 39 (br. s, 4H), 3. 57 (s, 2H), 6. 83 (m, 3H), 7. 21 (t, 1H), 7. 58~7. 70 (m, 3H), 7. 94 (d, 1H), 8. 10 (d, 1H), 8. 25 (dd, 1H), 8. 77 (d, 1H)	3. 24 (s, 8H), 3. 55 (s, 2H), 6. 78 (m, 3H), 7. 18 (m, 1H), 7. 64 (m, 1H), 7. 65 (m, 1H), 7. 58 (dd, 1H), 7. 93 (d, 1H), 7. 99 (d, 2H), 8. 37 (d, 1H)	3. 20(s, 4H), 3. 23(s, 4H), 3. 57(s, 2H), 6. 86(d, 2H).
	~	НО		"	*
	Z-0	- CH2-	. "	"	*
(1) 式中	V - (C)		"	"	
	Х	-S0 ₂ -	"	"	
	Ar	CH ₃ CONH —			
名	口物海中	40	41	42	43

)
	4
H	Ź

1	(mp, C)	無色格晶 183~ 184	無色格晶 192~ 193	無色結晶 163~ 164	無色結晶 204~ 205
	IR v max cm-1	3300~2000, 1700, 1340, 1160	3300~2000, 1720, 1700, 1340, 1160	3400~2000, 1700, 1340, 1165	3300~2200, 1720, 1335, 1160
	NWR & ppm(CDCls)	3. 16 (m, 4H), 3. 22 (m, 4H), 3. 55 (s, 2H), 6. 82 (d, 2H), 7. 15 (d, 2H), 7. 53 (d, 2H), 7. 73 (d, 2H)			3. 25 (m, 8H), 3. 53 (s, 2H), 3. 88 (s, 3H), 6. 92 (br, 2H), 7. 02 (d, 2H), 7. 20 (d, 2H), 7. 72 (d, 2H)
	R	HO	"	"	*
	Z-0	-CH2-	"	"	"
(1) 式 中	⟨ <u>O</u> - ¹	-\(\)-\(\)\-\(\)\-\(\)	"	"	"
	Х	- SO ₂ -	"	"	"
	Ar	-{O}-10	Br-O	CHs - O -	CH ₃ D - O
₩ ₩	10多海中	44	45	46	47

	年 女 (mp, C)	無色結晶 184~ 185	無色結晶 196~ 197	無色結晶 188~ 189	無色結晶 191~ 192
	IR v max cm-1	3300~2000, 1705, 1335, 1160	3200~2000, 1690, 1335, 1165	3300~2000, 1700, 1340, 1160	3300~2000, 1700, 1340, 1160
	NMR & ppm(CDC1s)	3. 16 (m, 4H), 3. 33 (m, 4H), 3. 53 (s, 2H), 6. 79 (d, 2H), 7. 12 (d, 2H), 7. 55~7. 67 (m, 3H), 7. 94 (d, 1H), 8. 10 (d, 1H), 8. 24 (dd, 1H), 8. 80 (d, 1H)	3. 25 (m, 4H), 3. 27 (m, 4H), 3. 53 (s, 2H), 6. 85 (d, 2H), 7. 14 (d, 2H), 7. 64 (m, 1H), 7. 65 (m, 1H), 7. 77 (dd, 1H), 7. 92 (d, 1H), 7. 99 (d, 2H), 8. 36 (d, 1H)	2. 48(t, 2H), 2. 74(t, 2H), 3. 05(m, 4H), 3. 19(m, 4H), 6. 67(d, 1H), 6. 72(dd, 1H), 6. 77(s, 1H), 7. 09(t, 1H), 7. 73(d, 1H), 7. 9(d, 1H), 12. 0(br, 1H)	2. 48(t, 2H), 2. 74(t, 2H), 3. 04(m, 4H), 3. 19(m, 4H), 6. 67(d, 1H), 6. 71(dd, 1H), 6. 77(s, 1H), 7. 09(t, 1H), 7. 71(d, 2H), 7. 88(d, 2H), 12. 0 (br, 1H)
	Z	OH	"	"	"
	2-0	- CH2-	"	− CH₂CH₂−	"
(1) 式 中	V-V	-N - O>-	,	- N $ O$	"
	X	S0 ₂	"	"	*
	Ar			ce-O>-	Br-O
右	11物 審 号	48	49	20	21

_	
O	
炭	
υlΔ	

1	語 次 (mb, C)	無色結晶 200~ 201	無色結晶 150~ 151	無色結晶 181~ 182
IR \(\nu_{\text{max}}\) Cm^{-1} 3400\(\sigma_2000\), 1700, 1340, 1160		3400~2000, 1700, 1340, 1160	3400~2000, 1700, 1340, 1160	3450, 3230, 1710, 1340, 1140, 1160
	NMR & ppm(CDC1s)	2. 48 (t, 2H), 2. 74 (t, 2H), 3. 03 (m, 4H), 3. 18 (m, 4H), 6. 67 (d, 1H), 6. 71 (dd, 1H), 6. 77 (br. s, 1H), 7. 53 (d, 2H), 8. 05 (d, 2H), 12. 0 (br. 1H)	2. 41 (s, 3H), 2. 47 (t, 2H), 2. 73 (t, 2H), 2. 99 (m, 4H), 3. 18 (m, 4H), 6. 66 (d, 1H), 6. 70 (dd, 1H), 7. 96 (t, 1H), 7. 46 (d, 2H), 7. 65 (d, 2H), 7. 65 (d, 2H), 7. 65 (d, 2H), 12. 0 (br., 1H)	1. 60 (s, 6H), 1. 70 (m, 2H), 2. 08 (m, 2H), 2. 74 (m, 2H), 3. 66 (br. d, 1H), 5. 90 (br. 1H), 6. 84 (m, 1H), 7. 10 (m, 2H), 7. 22 (t, 1H), 7. 58 (d, 2H), 7. 80 (d, 2H)
	R	HO	"	"
	Z-0	−CH2CH2−	"	- 30 - - 10 - CHs
(1) 式 中	V V	- N $ O$	"	
	Х	S0 ₂	"	*
	Ar	1-0-	CH ₃ -Q-	C#-{()}-
\ 24	n	25	23	54

	年 共 (mp, C)	無色結晶 168~ 169	無色結晶 194~ 195	無色結晶 164~ 166
	IR vmax cm-1	3525, 1715, 1340, 1160	3510, 1715, 1340, 1160	3400, 1735, 1590
	NMR & ppm(CDC1s)	1. 58 (s, 6H), 1. 50~1. 90 (m, 2H), 1. 90~2. 32 (m, 2H), 2. 54~2. 96 (m, 2H), 2. 92 (br, 1H), 3. 70 (m, 2H), 6. 80 (m, 1H), 7. 66 (s, 4H)	1. 50 (s, 6H), 1. 40~2. 20 (m, 4H), 2. 64 (m, 2H), 3. 54 (br. d, 2H), 3. 60 (br. 1H), 6. 66 (m, 1H), 6. 84~7. 30 (m, 3H), 7. 52 (d, 2H), 8. 02 (d, 2H)	1. 65~2. 15 (m, 4H), 3. 20~3. 70 (m, 4H), 3. 80 (br, 1H), 4. 60 (br, 1H), 4. 64 (s, 2H), 6. 80 (dd, 1H), 7. 07 (d, 1H), 7. 08 (d, 1H), 7. 27 (t, 1H), 7. 36 (d, 2H), 7. 39 (d, 2H)
	R	НО	"	*
	2-0	*HD - 0C HD	"	- OCH 2-
(1) 式 中	y-(()		"	"
	Х	- SO ₂ -	*	
	Ar	Br-O-	I-	ca-O-
名	D 物 等 可	55	56	57

က
0
椺

**************************************	(mp, C)	無色結晶 162~ 163	無色結晶 158~ 159	無色結晶 170~ 171
	IR v max cm ⁻¹	3200, 1740, 1595	3400, 1720, 1600	3510, 1720, 1590
		1. 52 (s, 6H), 1. 72 (m, 4H), 3. 40 (m, 4H), 4. 20 (br, 1H), 6. 68 (d. t, 1H), 7. 12 (m, 3H), 7. 40 (s, 5H)	1. 60 (s, 6H), 1. 55~2. 20 (m, 4H), 3. 15~3. 75 (m, 4H), 3. 80 (br, 1H), 4. 57 (br, 1H), 6. 81 (dd, 1H), 7. 07 (d, 1H), 7. 10 (br, d, 1H), 7. 23 (t, 1H), 7. 36 (d, 2H), 7. 39 (d, 2H)	1. 60 (s, 6H), 1. 60~2. 20 (m, 4H), 3. 15~3. 80 (m, 4H), 4. 60 (br, 1H), 6. 82 (dd, 1H), 7. 07 (d, 1H), 7. 09 (d, 1H), 7. 54 (d, 2H)
	R	но		*
	Z-0	-0-CH _s	*	"
(1) 为中	y 🔘	N -	"	"
	Х	1001	"	*
	Ar	6	-(G- #3)	₽ - O
治	() 物色	88	23	09

4	
2	
表	

#	(m) 分	無色結晶 154~ 155	無色結晶 113~ 115
	IR v max cm-1	3420, 1720, 1590	3420, 1610
	NMR Ø ppm(CDC1s)	1. 50 (s, 6H), 1. 60~2. 20 (m, 4H), 3. 40 (br, 4H), 4. 30 (br, 1H), 6. 68 (dt, 1H), 6. 90~7. 24 (m, 3H), 7. 24 (d, 2H), 7. 80 (d, 2H)	1. 49 (s, 6H), 1. 60 (m, 2H), 1. 90 (m, 2H), 3. 10~3. 60 (br, 4H), 4. 43 (br, 1H), 6. 68 (m, 1H), 6. 90~7. 23 (m, 3H), 7. 47 (m, 1H), 7. 87 (m, 1H), 8. 65 (m, 2H)
	R	Ю	"
	Z-0	-0-C-	"
(1) 式中	Y 💮		"
	Х	-00-	"
	Ar	- -	ON N
名	- 多海中	61	79

産業上の利用可能性

本発明のアリールアミド誘導体(1)は、強い出血時間延長作用を有し、また、トロンボキサンA2受容体拮抗作用に基づく血小板凝集抑制作用及び、血管拡張作用を有し、さらに抗高脂血作用が認められるため、脳血栓症、冠状動脈血栓症、肺血栓症等の各種血栓症及び肺塞栓症、末梢血管塞栓症等の塞栓症並びに、動脈硬化症、高血圧症などの循環器系疾患の治療及び予防のために有用である。

WO 93/12086 PCT/JP92/01614

請求の範囲

1. 次の一般式(1)

し、 R^4 は水酸基又は $-NH(CH_2)_mCDDH$ (式中、m は $1 \sim 3$ の数を示す)を示す〕で表わされるアリールアミド誘導体。

2. 請求項1記載のアリールアミド誘導体又はその塩を有効成分とする循環器官用剤。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP92/01614

			- / / 4		
211/	 CLASSIFICATION OF SUBJECT MATTER Int. C1⁵ C07D211/26, 211/44, 211/70, 211/96, 213/71, 295/22, 401/06, 401/12, 405/06, 405/12, 409/06, 409/12, A61K31/445, 31/47, 31/475, 31/495 According to International Patent Classification (IPC) or to both national classification and IPC 				
B. FIEL					
211/ 405/	cumentation searched (classification system followed by 44, 211/70, 211/96, 213/71, 12, 409/06, 409/12, A61K31/	295/22, 401/06, 401/ 445, 31/47, 31/475, 3	12, 405/06, 1/495		
Documentati	ion searched other than minimum documentation to the ex	xtent that such documents are included in th	e fields searched		
i	ata base consulted during the international search (name of $ONLINE$	of data base and, where practicable, search t	erms used)		
C. DOCU	MENTS CONSIDERED TO BE RELEVANT				
Category*	Citation of document, with indication, where ap	opropriate, of the relevant passages	Relevant to claim No.		
х	JP, A, 58-72575 (Beringer April 30, 1983 (30. 04. 83 & EP, A, 76996 & US, A, 46)	1, 2		
х	<pre>X US, A, 3801581 (Ciba-Geigy Corporation), April 2, 1974 (02. 04. 74) & DE, A, 2025518</pre>				
A	A JP, A, 61-44817 (Otsuka Pharmaceutical Co., Ltd.), March 4, 1986 (04. 03. 86), (Family: none)				
A	JP, B2, 1-41128 (Otsuka Ph Co., Ltd.), September 4, 1989 (04. 09. (Family: none)		1-2		
X Furthe	er documents are listed in the continuation of Box C.	See patent family annex.			
* Special "A" docume	categories of cited documents: ent defining the general state of the art which is not considered particular relevance	"T" later document published after the inte date and not in conflict with the appli the principle or theory underlying the	cation but cited to understand		
"E" earlier d	ocument but published on or after the international filing date	sten when the document is taken alon	dered to involve an inventive		
special "O" docume means	cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means				
i	Date of the actual completion of the international search February 19, 1993 (19. 02. 93) March 9, 1993 (09. 03. 93)				
Name and m	nailing address of the ISA/	Authorized officer			
I -	Japanese Patent Office				
Facsimile N	U	20.0phono 110.			

A. 発明の属する分野の分類 (国際特許分類 (IPC)) Int. Oe C07D211/26,211/44, 211/70,211/96,213/71,295/22,401/06,401/12,405/06 405/12,409/06,409/12,A61K31/445,31/47,31/475,31/495

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC)) Int. Ce* C07D211/26,211/44, 211/70,211/96,213/71,295/22,401/06,401/12,405/06 405/12,409/06,409/12,A61K31/445,31/47,31/475,31/495

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語)

CAS ONLINE

C. 関連すると認められる文献

引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
х	JP, A, 58-72575 (ベーリンガー・マンハイム・ゲゼルシャフト・ミット・ペシュレンクテル・ハフツング), 30, 4月, 1983(30, 04, 83) &EP, A, 76996&US, A, 4616086	1, 2
X	US, A, 3801581 (Cibs-Geigy Corporation), 2. 4月. 1974(02. 04. 74) &DE, A, 2025518	1

C欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示すもの
- 「E」先行文献ではあるが、国際出願日以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行日 若しくは他の特別な理由を確立するために引用する文献 (理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願の日 の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって出願と 矛盾するものではなく、発明の原理又は理論の理解のため に引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明の新規 性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 19.02.93	国際調査報告の発送日 09.03.93		
名称及びあて先 日本国特許庁(ISA/JP) 郵便番号100 東京都千代田区霞が関三丁目4番3号	特許庁審査官(権限のある職員) 4 C 9 1 6 5 横尾俊一 6		
	電話番号 03-3581-1101 内線 3452		

国際資金報告

C (統含). 関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	JP, A, 61-44817(大塚製楽株式会社), 4. 3月。1986(04. 03. 86)(ファミリーなし)	1-2
Á	JP, B2, 1-41128(大塚製薬株式会社) 4. 9月, 1989(04, 09, 89)(ファミリーなし)	1-2
-		
		,
	•	
_		