Mecanică Generală

IV. Dinamica punctului material - 4

Liviu Marin^{1,†}

¹Facultatea de Matematică și Informatică, Universitatea din București, România

 $^{\dagger}\mathsf{E}\text{-}\mathsf{mail}\text{:}\ \mathsf{marin.liviu@gmail.com}$

10 decembrie 2013

IV. Dinamica punctului material - 4

Mecanică Generală

• Fie $\mathcal{B} \subset \mathcal{E}$ un corp continuu cu densitatea de masă ρ .

Definiție

Se numește momentul cinetic al corpului continuu $\mathcal B$ în raport cu polul $\mathbf O \in \mathcal E$ mărimea

$$|\vec{\mathbf{K}}_{\mathbf{O}}(t) = \int_{\mathcal{B}_t \equiv k_t(\mathcal{B})} \vec{\mathbf{x}}(t) \times \rho(t, \vec{\mathbf{x}}) \vec{\mathbf{v}}(t, \vec{\mathbf{x}}) \, dV(\vec{\mathbf{x}})$$
(3)

Teorema momentului cinetic

Mișcarea punctului material se face a.i., la orice moment de timp t, derivata momentului cinetic în raport cu $\mathbf{0} \in \mathcal{E}$ este egală cu momentul rezultant în raport cu $\mathbf{0}$ al forțelor ce acționează asupra punctului material, i.e.

 $\left| \frac{\mathsf{d}}{\mathsf{d}t} \vec{\mathsf{K}}_{\mathsf{O}}(t) = \vec{\mathsf{M}}_{\mathsf{O}}(\vec{\mathsf{F}}(t, \vec{\mathsf{x}})) \right| \tag{4}$

Demonstrație:

$$\vec{\mathbf{M}}_{\mathbf{O}}(\vec{\mathbf{F}}(t,\vec{\mathbf{x}})) \stackrel{\text{def}}{=} \vec{\mathbf{x}}(t) \times \vec{\mathbf{F}}(t,\vec{\mathbf{x}}) \stackrel{\text{Legea a II-a}}{=} \vec{\mathbf{x}}(t) \times m \ddot{\vec{\mathbf{x}}}(t)
= \vec{\mathbf{x}}(t) \times \frac{d}{dt} [m \dot{\vec{\mathbf{x}}}(t)] + \dot{\vec{\mathbf{x}}}(t) \times m \dot{\vec{\mathbf{x}}}(t) = \frac{d}{dt} [\vec{\mathbf{x}}(t) \times m \dot{\vec{\mathbf{x}}}(t)] = \frac{d}{dt} \vec{\mathbf{K}}_{\mathbf{O}}(t) \square$$

IV. Dinamica punctului material - 4

Mecanică Gener

- 2. Momentul cinetic. Teorema momentului cinetic
- Fie $\mathcal{B} = \{\mathbf{P}\}$ configurația corespunzătoare punctului material $\mathbf{P} \in \mathcal{E}$ de masă m și vector de poziție $\vec{\mathbf{x}}(t) \equiv \overrightarrow{\mathbf{OP}}(t)$.

Definiție

Se numește momentul cinetic al punctului material P în raport cu polul $O \in \mathcal{E}$ mărimea

$$\vec{\mathbf{K}}_{\mathbf{O}}(t) = \vec{\mathbf{x}}(t) \times \vec{\mathbf{H}}(t) = \vec{\mathbf{x}}(t) \times m \dot{\vec{\mathbf{x}}}(t) = \vec{\mathbf{x}}(t) \times m \vec{\mathbf{v}}(t)$$
(1)

• Fie $\{\mathbf{P}_i\}_{i=\overline{1,n}}\subset\mathcal{E}$ un sistem de puncte materiale $\mathbf{P_i}$, de mase m_i și vectori de poziție $\vec{\mathbf{x}}_i(t)=\overrightarrow{\mathbf{OP}_i}(t),\ i=\overline{1,n}$.

Definiție

Se numește momentul cinetic al sistemului de puncte materiale $\left\{\mathbf{P}_i\right\}_{i=\overline{1,n}}$ în raport cu polul $\mathbf{O}\in\mathcal{E}$ mărimea

$$|\vec{\mathsf{K}}_{\mathsf{O}}(t) = \sum_{i=1}^{n} \vec{\mathsf{x}}_{i}(t) \times m_{i} \, \dot{\vec{\mathsf{x}}}_{i}(t) = \sum_{i=1}^{n} \vec{\mathsf{x}}_{i}(t) \times m_{i} \, \vec{\mathsf{v}}_{i}(t)|$$
(2)

IV. Dinamica punctului material - 4

Mecanică Generală

Corolar (integrale prime ale mișcării)

- (i) Dacă $\vec{\mathbf{x}} \times \vec{\mathbf{F}}(t, \vec{\mathbf{x}}) = \vec{\mathbf{0}}$, $\forall t \geq t_0$, atunci $\vec{\mathbf{K}}_{\mathbf{0}}(t) = \vec{\mathbf{K}}_{\mathbf{0}}(t_0)$, $\forall t \geq t_0$, reprezintă trei integrale prime ale mișcării.
- (ii) Dacă $\vec{\mathbf{x}} \times \vec{\mathbf{F}}(t, \vec{\mathbf{x}}) \neq \vec{\mathbf{0}}$ și $\exists \ \vec{\mathbf{u}} \in \mathcal{V}$ direcție fixă a.i. $\vec{\mathbf{M}}_{\mathbf{0}}(\vec{\mathbf{F}}) \cdot \vec{\mathbf{u}} = \mathbf{0}$, $\forall \ t \geq t_0$, atunci $\vec{\mathbf{K}}_{\mathbf{0}}(t) \cdot \vec{\mathbf{u}} = \vec{\mathbf{K}}_{\mathbf{0}}(t_0) \cdot \vec{\mathbf{u}}$, $\forall \ t \geq t_0$, este o integrală primă a mișcării.

Demonstrație:

- (i) $\vec{\mathbf{x}}(t) \times \vec{\mathbf{F}}(t, \vec{\mathbf{x}}) = \vec{\mathbf{0}}$, $\forall \ t \geq t_0 \stackrel{\mathsf{def}}{\Longrightarrow} \vec{\mathbf{M}}_{\mathbf{0}}(\vec{\mathbf{F}}) = \vec{\mathbf{0}}$, $\forall \ t \geq t_0 \stackrel{\mathsf{Teor. momentului}}{\Longrightarrow} \frac{\mathsf{d}}{\mathsf{d}t} \vec{\mathbf{K}}_{\mathbf{0}}(t) = \vec{\mathbf{0}}$, $\forall \ t \geq t_0 \Longrightarrow \vec{\mathbf{K}}_{\mathbf{0}}(t) = \vec{\mathbf{K}}_{\mathbf{0}}(t_0)$, $\forall \ t \geq t_0$
- (ii) $\vec{\mathbf{M}}_{\mathbf{O}}(\vec{\mathbf{F}}) \cdot \vec{\mathbf{u}} = 0$, $\forall \ t \geq t_0 \stackrel{\mathsf{Teor. } \mathbf{momentului}}{\Longrightarrow} \frac{\mathrm{d}}{\mathrm{d}t} \vec{\mathbf{K}}_{\mathbf{O}}(t) \cdot \vec{\mathbf{u}} = 0$, $\forall \ t \geq t_0 \Longrightarrow \frac{\mathrm{d}}{\mathrm{d}t} (\vec{\mathbf{K}}_{\mathbf{O}}(t) \cdot \vec{\mathbf{u}}) = 0$, $\forall \ t \geq t_0 \Longrightarrow \vec{\mathbf{K}}_{\mathbf{O}}(t) \cdot \vec{\mathbf{u}} = \vec{\mathbf{K}}_{\mathbf{O}}(t_0) \cdot \vec{\mathbf{u}}$, $\forall \ t \geq t_0 \Box$

Corolar

Dacă pozitia $\vec{\mathbf{x}}(t_0) = \vec{\mathbf{x}}_0$ si viteza initiale $\dot{\vec{\mathbf{x}}}(t_0) = \vec{\mathbf{v}}_0$ ale unui punct material nu sunt doi vectori coliniari, atunci miscarea imprimată de o fortă centrală asupra acelui punct material este plană (în planul lui $\vec{\mathbf{x}}_0$ si $\vec{\mathbf{v}}_0$).

Demonstrație:

Cf. corolarului anterior, are loc conservarea momentului cinetic:

$$\vec{\mathbf{K}}_{\mathbf{O}}(t) = \vec{\mathbf{K}}_{\mathbf{O}}(t_0), \quad \forall \ t \ge t_0 \Longrightarrow$$

$$\vec{\mathbf{x}}(t) \times \vec{\mathbf{v}}(t) = \vec{\mathbf{x}}(t_0) \times \vec{\mathbf{v}}(t_0) \equiv \vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0, \quad \forall \ t \ge t_0$$
(5)

Inmultim scalar cu $\vec{\mathbf{x}}(t)$ ecuatia (5):

$$\vec{\mathbf{x}}(t) \cdot (\vec{\mathbf{x}}(t) \times \vec{\mathbf{v}}(t)) = \vec{\mathbf{x}}(t) \cdot (\vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0), \quad \forall \ t \ge t_0 \Longrightarrow$$

$$\vec{\mathbf{x}}(t) \cdot (\vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0) = 0, \quad \forall \ t \ge t_0$$
(6)

Avem:

$$\vec{\mathbf{x}}_0 \nparallel \vec{\mathbf{v}}_0 \Longrightarrow \vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0 \neq \vec{\mathbf{0}}$$
 (7)

Din ecuatiile (6) si (7), rezultă:

$$\vec{\mathbf{x}}(t) \in \operatorname{\mathsf{span}}(\vec{\mathbf{x}}_0, \vec{\mathbf{v}}_0) \,, \quad \forall \ t \geq t_0 \qquad \Box$$

IV. Dinamica punctului material - 4

Dacă are loc (10a), atunci $\vec{\mathbf{x}}(t)$, $t \geq t_0$, este soluția următoarei probleme Cauchy:

$$\begin{cases}
\frac{d\vec{\mathbf{x}}(t)}{dt} = \vec{\mathbf{0}}, & \forall t > t_0 \\
\vec{\mathbf{x}}(t_0) = \vec{\mathbf{x}}_0
\end{cases} \Longrightarrow$$

$$\vec{\mathbf{x}}(t) = \vec{\mathbf{x}}_0, & \forall t \geq t_0$$
(11)

Dacă are loc (10b), atunci $\vec{x}(t)$, $t \geq t_0$, este soluția următoarei probleme Cauchy:

$$\vec{\mathbf{x}}(t) = \vec{\mathbf{x}}_0 \exp \int_{t_0}^t \lambda(s) \, \mathrm{d}s \,, \quad \forall \ t \ge t_0$$
 (12)

Soluțiile date de (11) și (12) corespund unor traiectorii rectilinii.

₽ •0 9 (0)

Corolar

Miscarea imprimată de o forță centrală este rectilinie dacă la un moment dat t_0 poziția $\vec{\mathbf{x}}(t_0) = \vec{\mathbf{x}}_0$ și viteza $\vec{\mathbf{x}}(t_0) = \vec{\mathbf{x}}_0 \equiv \vec{\mathbf{v}}_0$ sunt doi vectori coliniari, sensul miscării fiind dat de $\vec{\mathbf{v}}_0$.

Demonstratie:

Fie $t_0 > 0$ a.i. $\vec{\mathbf{x}}_0 \parallel \vec{\mathbf{v}}_0$, unde $\vec{\mathbf{x}}(t_0) = \vec{\mathbf{x}}_0$ si $\vec{\mathbf{v}}(t_0) = \vec{\mathbf{v}}_0$.

Atunci, are loc relația:

$$\vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0 = \vec{\mathbf{0}} \tag{8}$$

Cf. corolarului (integrale prime ale miscării), are loc conservarea momentului cinetic:

$$\vec{\mathbf{K}}_{\mathbf{O}}(t) = \vec{\mathbf{K}}_{\mathbf{O}}(t_0), \quad \forall \ t \ge t_0 \Longrightarrow$$

$$\vec{\mathbf{x}}(t) \times \vec{\mathbf{v}}(t) = \vec{\mathbf{x}}_0 \times \vec{\mathbf{v}}_0 = \vec{\mathbf{0}}, \quad \forall \ t \ge t_0$$
(9)

Din (9), rezultă că are loc una din următoarele situatii:

$$\vec{\mathbf{v}}(t) = \vec{\mathbf{0}} \,, \quad \forall \ t > t_0 \tag{10a}$$

$$\vec{\mathbf{x}}(t) \parallel \vec{\mathbf{v}}(t), \quad \forall \ t \geq t_0$$
 (10b)

IV. Dinamica punctului material - 4 Mecanică Generală

Viteza areolară

Considerăm o mișcare plană, $t \mapsto \vec{\mathbf{x}}(t)$, $t \ge t_0$, a unui punct material **P** în planul $x_1 \mathbf{O} x_2$.

Fie $P_0(t_0)$ pozitia punctului material considerat la momentul initial t_0 . P(t) poziția acestuia la un moment dat t și P'(t') poziția la un moment $t' = t + \Delta t$ ulterior lui t, unde $\Delta t > 0$ este suficient de mic.

- : P(t), $\vec{x}(t)$, $\theta(t)$;
- $t' = t + \Delta t$: $\mathbf{P}'(t')$, $\mathbf{x}(t') = \mathbf{x}(t) + \Delta \mathbf{x}$, $\theta(t') = \theta(t) + \Delta \theta$;

Fie $\mathcal{A}(t)$ aria măturată de raza vectoare $\vec{\mathbf{x}}(t) = \overrightarrow{\mathbf{OP}}(t)$ de la momentul initial t_0 la un moment dat t, i.e. $\mathcal{A}(t) = \text{Aria}(\mathbf{OP}_0(t_0)\mathbf{P}(t)\mathbf{O})$.

Definitie

Se numește viteză areolară A(t) a punctului material P(t) față de polul **O** derivata în raport cu timpul a ariei A(t) măturate de raza vectoare $\vec{\mathbf{x}}(t) = \overrightarrow{\mathbf{OP}}(t)$ de la momentul inițial t_0 la un moment dat t

$$A(t) := \frac{dA(t)}{dt} = \lim_{\Delta t \to 0} \frac{A(t + \Delta t) - A(t)}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta A}{\Delta t}$$
(13)

Figure : Aria $\mathcal{A}(t)$ măturată de raza vectoare $\vec{\mathbf{x}}(t) = \overrightarrow{\mathbf{OP}}(t)$ de la momentul inițial t_0 la un moment dat t.

◆ロト ◆昼 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ○ ○

IV. Dinamica punctului material - 4

Mecanică Generală

Au loc relatiile:

$$\mathcal{A}(t) = \text{Aria}(\mathbf{OP_0PO}) = \iint_{\mathbf{OP_0PO}} dA = \frac{1}{2} \oint_{\mathbf{OP_0PO}} (x_1 \, dx_2 - x_2 \, dx_1) =$$

$$= \frac{1}{2} \underbrace{\int_{\mathbf{OP_0}} (x_1 \, dx_2 - x_2 \, dx_1)}_{=0} + \frac{1}{2} \int_{\mathbf{P_0P}} (x_1 v dx_2 - x_2 \, dx_1) +$$

$$+ \frac{1}{2} \underbrace{\int_{\mathbf{PO}} (x_1 \, dx_2 - x_2 \, dx_1)}_{=0} = \frac{1}{2} \int_{\mathbf{P_0P}} (x_1 \, dx_2 - x_2 \, dx_1) =$$

$$= \frac{1}{2} \int_{t_0}^t (x_1 \, \frac{dx_2}{ds} - x_2 \, \frac{dx_1}{ds}) ds = \frac{1}{2} \int_{t_0}^t (x_1 \, \dot{x}_2 - x_2 \, \dot{x}_1) ds$$

Obținem expresia vitezei areolare în coordonate carteziene:

$$A(t) := \frac{dA(t)}{dt} = \frac{1}{2} [x_1(t) \dot{x}_2(t) - x_2(t) \dot{x}_1(t)]$$
 (17)

イロト イラト イラト ラ からべ

Fie $\Delta A = A(t') - A(t) = A(t + \Delta t) - A(t)$ aria măturată de raza vectoare $\vec{x}(t) = \overrightarrow{OP}(t)$ în $\Delta t = t' - t$.

Atunci:

$$\frac{\|\vec{\mathbf{x}}(t)\|^2 \Delta \theta}{2} \le \Delta \mathcal{A} \le \frac{\|\vec{\mathbf{x}}(t) + \Delta \vec{\mathbf{x}}\|^2 \Delta \theta}{2}$$
(14)

Impărțim ecuația (14) la Δt și trecem la limită după $\Delta t \rightarrow 0$:

$$\frac{\|\vec{\mathbf{x}}(t)\|^2}{2}\lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} \leq \lim_{\Delta t \to 0} \frac{\Delta \mathcal{A}}{\Delta t} \leq \lim_{\Delta t \to 0} \frac{\|\vec{\mathbf{x}}(t) + \Delta \vec{\mathbf{x}}\|^2}{2}\lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t}$$

i.e.

$$\frac{\rho^2(t)\dot{\theta}(t)}{2} \le \lim_{\Delta t \to 0} \frac{\Delta \mathcal{A}}{\Delta t} \le \frac{\rho^2(t)\dot{\theta}(t)}{2} \tag{15}$$

unde $ho(t) := \|\vec{\mathbf{x}}(t)\|$

Din relația (15), obținem expresia vitezei areolare în coordonate polare:

$$A(t) := \frac{dA(t)}{dt} = \frac{1}{2} \rho^2(t) \dot{\theta}(t)$$
(16)

IV. Dinamica punctului material - 4

Mecanică General

Definiție

Se numește vector viteză areolară $\vec{\mathbf{A}}(t)$ a punctului material $\mathbf{P}(t)$ vectorul

$$\left| \vec{\mathbf{A}}(t) = \frac{1}{2} \vec{\mathbf{x}}(t) \times \vec{\mathbf{v}}(t) \right| \tag{18}$$

Corolar (Interpretare geometrică a integralelor prime ale mișcării)

- (i) Dacă un punct material se mișcă sub acțiunea unei forțe $\vec{\mathbf{F}}(t,\vec{\mathbf{x}})$ a.i. $\vec{\mathbf{x}} \times \vec{\mathbf{F}}(t,\vec{\mathbf{x}}) = \vec{\mathbf{0}}, \ \forall \ t \geq t_0$, (e.g. forțe centrale), atunci mișcarea se face cu viteză areolară constantă.
- (ii) Teorema ariilor: Dacă un punct material se mișcă sub acțiunea unei forțe $\vec{\mathbf{F}}(t,\vec{\mathbf{x}})$ a.i. $\vec{\mathbf{x}}\times\vec{\mathbf{F}}(t,\vec{\mathbf{x}})\neq\vec{\mathbf{0}}$ și \exists $\vec{\mathbf{u}}\in\mathcal{V}$ direcție fixă cu $\vec{\mathbf{M}}_{\mathbf{0}}(\vec{\mathbf{F}})\cdot\vec{\mathbf{u}}=0, \ \forall \ t\geq t_0,$ atunci proiecția punctului material respectiv pe orice plan perpendicular pe direcția $\vec{\mathbf{u}}$ se mișcă cu viteză areolară constantă, i.e. descrie arii egale în intervale de timp egale.

Demonstrație:

(i) Cf. corolarului (integrale prime ale mișcării), are loc conservarea momentului cinetic:

$$\vec{\mathbf{K}}_{\mathbf{O}}(t) = \vec{\mathbf{K}}_{\mathbf{O}}(t_0), \quad \forall \ t \ge t_0 \tag{19}$$

i.e.

$$\vec{\mathbf{A}}(t) = \frac{1}{2}\vec{\mathbf{x}}(t) \times \vec{\mathbf{v}}(t) = \frac{1}{2}\vec{\mathbf{x}}(t_0) \times \vec{\mathbf{v}}(t_0) =: \vec{\mathbf{C}}, \quad \forall \ t \ge t_0$$
 (20)

(ii) Cf. corolarului (integrale prime ale mișcării), are loc relația:

$$\vec{\mathbf{K}}_{\mathbf{O}}(t) \cdot \vec{\mathbf{u}} = \vec{\mathbf{K}}_{\mathbf{O}}(t_0) \cdot \vec{\mathbf{u}} =: C, \quad \forall \ t \ge t_0$$
 (21)

Fie reperul relativ $\mathcal{R}(\mathbf{0}; \left\{ \vec{\varepsilon}_{\alpha} \right\}_{1 \leq \alpha \leq 3})$ a.i. $\vec{\varepsilon}_{3} = \vec{\mathbf{u}}$.

Din relația (21) obținem:

$$C = \left[\vec{\mathbf{x}}(t) \times m \, \dot{\vec{\mathbf{x}}}(t)\right] \cdot \vec{\mathbf{u}} = \begin{vmatrix} 0 & 0 & 1 \\ x_1(t) & x_2(t) & x_3(t) \\ m \, \dot{x}_1(t) & m \, \dot{x}_2(t) & m \, \dot{x}_3(t) \end{vmatrix}, \quad \forall \ t \geq t_0 \quad (22)$$

IV. Dinamica punctului material - 4

Mecanică Generală

Din (22) rezultă:

$$x_2(t)\dot{x}_1(t) - x_1(t)\dot{x}_2(t) = \frac{C}{m}, \quad \forall \ t \ge t_0$$
 (23)

Obtinem:

$$A(t) := \frac{dA(t)}{dt} = \frac{1}{2} \left[x_2(t) \dot{x}_1(t) - x_1(t) \dot{x}_2(t) \right] = \frac{C}{2m}, \quad \forall \ t \ge t_0 \quad (24)$$

Integrând relația (24) și folosind condiția inițială $\mathcal{A}(t_0)=0$, obținem:

$$\left| \mathcal{A}(t) = \frac{C}{2m} (t - t_0), \quad \forall \ t \ge t_0 \right| \qquad \qquad (25)$$

Figure : Mișcarea punctului material $\mathbf{P}(t)$ în raport cu reperul relativ $\mathcal{R}(\mathbf{O}; \left\{\vec{\varepsilon}_{\alpha}\right\}_{1 < \alpha < 3})$.

IV. Dinamica punctului material - 4

Mecanică General