抗菌薬-2 (抗真菌薬)

https://l-hospitalier.github.io

2**017. 6**

ウイルスとプリオンは除外し、微生物は<mark>細胞</mark>をもっ。 真正細菌は単細胞原核生物で他の生物は単あるいは多細胞真核生物。【真正細菌】細菌は原核生物で核を持たない(細胞質に核領域がある)。 DNA は環状で1本。一部の DNA はプラスミドとして存在。 DNA はスプライシング (編集) 無しに転写と翻訳を同時に行う、このため増殖は極めて急速。【古細菌】海底噴火口など高温、高圧化に生存する古細菌があり、真正細菌、古細菌、真菌で生物界の3ドメインを形成している。【真菌】7万種のうち300種が病原性。真核生物では DNA は核内に複数の染色体として存在。核は核膜に包まれ、転写には mRNA の合成が必要。 蛋白のアミノ酸配列を決める mRNA (エキソン) はゲノム DNA 上に分散してコードされ、不必要な部分 (イ

ントロン)はスプライシングで読み捨てられる。 翻訳は リボゾームで行われ、細胞内にはミトコンドリアなどの オルガネラ(細胞小器官)が存在する(ミトコンドリア も染色体とは別に母由来の DNA を持つ)。 真菌は酵母 菌(クリプトコッカス)、糸状菌(アスペルギルス)、 両方の形態をとる二形性真菌(カンジダ)がある。 真 菌はエネルギー産生や蛋白代謝経路が哺乳類と相同で選 択性のある抗真菌薬は困難。 発育が遅く培養は困難で、 検鏡も確実ではないので、近年は PCR やウエスタンブロット法等を開発している。 【抗真菌薬】は従来からのア

ゾール、ポリエンに加えエキノキャンディンが開発された。 抗真菌薬は①細胞膜は哺乳類ではコレステロールが利用されるが真菌ではエルゴステロールを使う。 アゾール系のイミダゾールやトリアゾールはエルゴステロールの合成阻害をして静真菌的に作用。②真菌細胞壁には哺乳類にはないキチン、β-D グルカン、マンノ蛋白質がある。 ③真菌の付着因子を阻害する(真菌ではアスパラチルプロテアーゼとホスホリパーゼが

宿主細胞の受容体に結合するので、これを阻害)などの特性を利用して開発される。 新薬のエキノキャンディンは β -Dグルカン合成を阻害する。 抗真菌薬の薬理学的分類は右表参照。

真菌核酸合成阻害薬	フルシトシン(5FU になる)
真菌有糸分裂阻害薬	グリセオフルビン
エルゴステロール合成阻害薬	イミダゾール、トリアゾール (主力)
真菌細胞膜安定化阻害薬	アンホテリシン B *1 (ポリエン系)
真菌細胞壁合成阻害薬	ミカファンギン (キャンディン系)

