Relatório ML Motores

Otávio A. de Almeida¹

¹Departamento de Ciências da Computação Universidade do Estado de Santa Catarina (UDESC) Caixa Postal 15.064 – 88.035-901 – Joinville – SC – Brasil

otavio.almeida435@edu.udesc.br

1. Etapa 1

1.1. Visualização Geral Inicial

Na figura 1, é mostrado a distribuição dos dados da corrente e tensão, deixando cada registro de captura separada. Nessa figura, podemos visualizar, a priori, alguns *outliers*, que dificultam a visualização dos demais registros.

Figura 1. Gráfico de Distribuição Tensão (X) | Registro (Y) | Corrente (Z)

1.2. Métricas

As tabelas 1 e 2 mostram algumas métricas, como a média, desvio padrão, valor mínimo e máximo, dos valores da tensão e corrente.

A tabela 1 mostra os valores agregados sem restrição, enquanto 2 mostra os valores agregados pelo identificador do teste, mas para facilitar a visualização, apenas alguns testes serão mostrados.

	Tensão	Corrente		
Média	21.969585	0.732191		
Desvio	2.419560	0.096716		
Mín	0.234658	0.595338		
Máx	21.124460	0.680154		
25%	21.756133	0.700813		
50%	22.589790	0.730608		
75%	1214.35600	11.55488		

Tabela 1. Métricas Gerais

	Teste 5 - 0		Teste 9 - 0		Teste 302 - 1		Teste 406 - 2	
	Tensão	Corrente	Tensão	Corrente	Tensão	Corrente	Tensão	Corrente
Média	22.08	0.67	22.08	0.67	21.68	0.9	21.99	0.71
Desvio	0.73	0.0048	0.78	0.005	2.97	0.1	2.21	0.01
Mín	20.87	0.66	20.82	0.66	18.13	0.76	18.46	0.67
Máx	24.55	0.7	24.71	0.7	31.61	1.09	41.34	0.75
25%	21.53	0.66	21.47	0.66	19.26	0.81	21.1	0.69
50%	21.99	0.67	21.97	0.67	20.57	0.89	21.63	0.71
75%	22.48	0.67	22.50	0.67	23.90	1.01	22.38	0.72

Tabela 2. Métricas para os testes 5, 9, 302 e 406

1.3. Limpeza

Com o gráfico da figura 1, podemos visualizar alguns dados *outliers* bem explícitos, e por serem poucos, a estratégia adotado foi a de remoção apenas daqueles registro.

A remoção foi feita de forma empírica, seguindo a lógica de remover qualquer registro, captura da tensão e corrente, onde a tensão for maior que 75, e a corrente for maior que 1.2.

1.4. Visualização Geral

Após a remoção dos registros indesejados, foi refeito a visualização do gráfico de distribuição Geral. As figuras 2 e 3 mostram o resultado, com os eixo rotacionado para melhorar a visualização.

Figura 2. Gráfico de Distribuição Tensão (X) | Registro (Y) | Corrente (Z)

Figura 3. Gráfico de Distribuição Corrente (X) | Tensão (Y) | Registro (Z)

1.4.1. Observações

Podemos observar que o estado 1 é bem separado dos demais estados, mas o estado 0 está no meio do estado 1, sendo a diferença o estado 1 tendo maior variância nos seus dados.

1.5. Visualização da Série de um Teste

Para continuar na observação da seção 1.4.1, as figuras 4 à 9 trazem a evolução da corrente e tensão de alguns testes, para podemos observar melhor como essas diferenças aparecem.

1.5.1. Observações

Podemos observar que os dados das figuras 4 e 7, de um teste de estado 0, são bem mais comportados, com um intervalo menor.

Podemos observar que os dados das figuras 5 e 8, de um teste de estado 1, tem uma variância alta, e seguem o mesmo padrão de subida e descida constante.

Podemos observar que os dados das figuras 6 e 9, de um teste de estado 2, permanecem em um intervalo restrito por um determinado tempo, mas há picos de tensão, com quedas de corrente ao mesmo tempo. A tensão se recupera mais rápido que a corrente.

Figura 4. Gráfico de Evolução Tensão ID 4 - Estado 0

Figura 5. Gráfico de Evolução Tensão ID 350 - Estado 1

Figura 6. Gráfico de Evolução Tensão ID 450 - Estado 2

Figura 7. Gráfico de Evolução Corrente ID 4 - Estado 0

Figura 8. Gráfico de Evolução Corrente ID 350 - Estado 1

Figura 9. Gráfico de Evolução Corrente ID 450 - Estado 2

1.5.2. Boxplots

Figura 10. Boxplot Tensão - Estado 0

Figura 11. Boxplot Tensão - Estado 1

Figura 12. Boxplot Tensão - Estado 2

Figura 13. Boxplot Corrente - Estado 0

Figura 14. Boxplot Corrente - Estado 1

Figura 15. Boxplot Corrente - Estado 2