"same" gene in different species

Homology

- Gene A in species S and gene B in species T are:
 - Homologous if they share a common ancestor
- Two homologous genes are:
 - Orthologous if they diverged at a speciation event
 - Paralogous if they diverged at a duplication event
 - Xenologous if one of them went through a lateral transfer

Evolution of a gene

Pairs of orthologs	Pairs of paralogs
(A1,B1)	(C1,C2)
(A1,C1)	(D1,D2)
(A1,C2)	(C1,D2)
(C1,D1)	(C2,D1)
(C2,D2)	(C2,E1)
	(D2,E1)

Operational definitions

- Orthologs are more similar at nucleotide level than paralogs, because the paralog started diverging before speciation
- We ignore the existence of xenologs (lateral gene transfer) because otherwise evolution is not a tree anymore

Strategy

- Collect all protein sequences for each genome (translated from genes)
- Perform Smith-Waterman alignment of every pair of proteins from all genomes
- Reciprocal best hits: pairs (A,B) of genes from genomes
 (X,Y) such that A is the gene in X most similar to B, and B is the gene in Y most similar to A
- Look for a third genome as a proof of orthology
- Make clusters of triangular relations (orthologous groups)

http://omabrowser.org/

In/Out-paralogs

In/Out-paralogs

R L Tatusov et al. Science 1997;278:631-637

Synteny

- Synteny is the conservation of gene order between species
- A synteny block is useful to make orthology inference when there is no other information

Synteny

- Synteny is the conservation of gene order between species
- A synteny block is useful to make orthology inference when there is no other information

Synteny

- Synteny is the conservation of gene order between species
- A synteny block is useful to make orthology inference when there is no other information

References

- Fitch, W. M. (2000). Homology a personal view on some of the problems Trends in genetics, 16(5), 227–231.
- Sonnhammer, E. L. L., & Koonin, E.V. (2002). Orthology, paralogy and proposed classification for paralog subtypes Trends in genetics, 18(12), 619–620.
- Roth, A. C. J., Gonnet, G. H., & Dessimoz, C. (2008). Algorithm of OMA for large-scale orthology inference. BMC Bioinformatics, 9, 518.
- Boeckmann, B., Robinson-Rechavi, M., Xenarios, I., & Dessimoz, C. (2011).
 Conceptual framework and pilot study to benchmark phylogenomic databases based on reference gene trees Briefings in Bioinformatics, 12(5), 423–435.