DR-155 FEBRUARY 1967

AD

082208

METEOROLOGICAL DATA REPORT

NIKE-HYDAC STV (SR-46 and 47) (24 January 1967)

BY

JOHN M. SHARPE

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO



# METEOROLOGICAL DATA REPORT

MIKE-HYDAC STV (SR 46 and 47) (24 January 1967)

Вy

John M. Sharpe

DR-155

February 1967

DA Task IV650212A127-02

ATMOSPHERIC SCIENCES LABORATORY WHITE SANDS MISSILE RANGE, NEW MEXICO

Distribution of this document is unlimited.

### ABSTRACT

Meteorological data gathered for the launching of two (2) Nike-Hydre STV (SR 46 and 47) are presented for the Ballistic Systems Division, U.S. Air Force and for ballistic studies. The data appear, along with calculated ballistic data, in tabular form.

# CONTENTS

|          | F                                                           | ACE |
|----------|-------------------------------------------------------------|-----|
| ABSTRACT | *************************************                       | 111 |
| INTRODUC | PION                                                        | 1   |
| discussi | 01                                                          | 1   |
| TABLES   |                                                             |     |
| I.       | Theoretical Rocket Performance Values                       | 2   |
| II.      | Ballistic Factors                                           | 3   |
| III.     | Anemometer-Wind Speed and Direction                         | 4   |
| IV.      | Pilot-Balloon-Measured Wind Data                            | 6   |
| ٧.       | Rawinsonde Measured Wind Data                               | 9   |
| VI.      | Computer-Calculated Upper Air Data (Release Time: 0840 MST) | 10  |
| VII.     | Computer-Calculated Upper Air Data (Release Time: 1100 HST) | 17  |
| VIII.    | Impact Prediction Data (SR-46)                              | 24  |
| IX.      | Impact Prediction Data (SR-47)                              | 25  |

#### INTRODUCTION

Two Nike-Hydac STV (SR-46 and 47) were launched from Launch Complex 33/L-314 White Sands Hissile Range (WSR), New Mexico on 24 January 1967.

Nike-Hydac STV (SR-46) was launched at 1100 MST.

Nike-Hydac STV (SR-47) was launched at 1329 MST.

Meteorological data used in conjunction with theoretical calculations to predict rocket impact were collected by the Meteorological Support Division, Atmospheric Sciences Laboratory (ASL), WSSR, New Mexico. The Ballistics Neteorologists for this firing were John M. Sharpe and SFC Glen E. Hudson.

#### DISCUSSION

Wind data for the first 216 feet above the surface were obtained from a system composed of 5 Aerovanes mounted on  $\epsilon$  200-foot tower and cabled to component wind indicators.

From 216 to 4000 feet above the surface, wind data were obtained from T-9 RADAR observed balloon ascents.

Temperature, pressure and humidity data, along with upper wind data from 4000 to 100,000 feet above the surface, were obtained from standard rawinsonde observations.

Mean wind compenent values in each ballistic zone were determined from vertical cross sections by the equal-area method.

Theoretical rocket performance values and ballistic factors as a function of altitude were provided by ASL and are the basis for data appearing in Tables VIII and IX.

| Paytoad                                                                                               |           | 233.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Pounds</b> |
|-------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| CORICIES DISPLACIMENT                                                                                 | JSMA      | 4.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M12.00        |
|                                                                                                       | TOTAL     | 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Seconds       |
| SECOND-STACE IGNITION                                                                                 | ACOT LILA | 36,693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Feet MCL      |
|                                                                                                       | TOTA      | 232.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Seconds       |
| PEAK                                                                                                  | ALTITUDE  | 693,948                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Feet MSL      |
|                                                                                                       | HEAD      | 2.3815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nios/m        |
| UNIT WIND BEFEROT                                                                                     | CROSS     | 2.4678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Niles/APH     |
|                                                                                                       | TAIL      | 2.3815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Kiles/kfi     |
| TOWER TILT EFFECT                                                                                     |           | 13.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Miles/Dogree  |
| وسيسان يافيون سيوي الاستناسية والمستري والمستري والمستري والمستري والمستري والمستري والمستري والمستري |           | STATES OF THE ST |               |

TABLE I. THEORETICAL ADMON PERFORMANCE VALUES

| LAYERS IN FEST<br>ABOVE GROUND | BALLISTIC<br>FACTORS | LAYERS IN FEET<br>ABOVE GROUND | BALLI<br>FACT |
|--------------------------------|----------------------|--------------------------------|---------------|
| 11- 60                         | .1440                | 1000- 1000                     | \$0,          |
| 80" 108                        | 3960.                | 1400- 2000                     | \$0.          |
| 108- 148                       | .0629                | 2000- 2500                     | 20.           |
| 148- 184                       | .0502                | 2500- 3000                     | .00           |
| 184- 216                       | .0286                | 3000- 3300                     | ٥,            |
| 216- 300                       | .0724                | 3500- 4000                     | .00           |
| 300- 400                       | .0533                | 4000- 4253                     | 00,           |
| 400- 600                       | .0752                | 4253. 8000                     | 01            |
| 600- 800                       | 7880.                | 8000-15000                     | -,01          |
| 800-1000                       | .0400                | 15000-21000                    | 01            |

| LAYERS IN FEET<br>ABOVE GROUND | Balilistio<br>Factors | LATERS IN FESS. ABOVE GROUND | ralitieric<br>Factors |
|--------------------------------|-----------------------|------------------------------|-----------------------|
| 1000- 1400                     | 3550,                 | 21000-26000                  | -,0102                |
| 1400- 2000                     | 2,450.                | 26000-32691                  | 0110                  |
| 2000- 2500                     | .0288                 | 32691-54000                  | .0430                 |
| 2500- 3000                     | .0195                 | 34000-36000                  | .0411                 |
| 3000- 3300                     | .0112                 | 36000-41000                  | .0343                 |
| 3500- 4000                     | .0073                 | 41000-46000                  | .0239                 |
| 4000- 4253                     | .0012                 | 46000-31000                  | ,0154                 |
| 4253. 8000                     | 0135                  | \$1000-\$6000                | 8600.                 |
| 8000-15000                     | 0147                  | 36000-61000                  | .0060                 |
| 15000-21000                    | -,0166                | 61000-66000                  | 0400.                 |
|                                |                       | 66000-72168                  | 0800`                 |

TABLE II. BALLISTIC FACTORS

|               |          |      |          |                          | 100,000  |           |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | WALLAND MARKET BARK |          | CONTRACTOR | Mary Countries Creek |       |
|---------------|----------|------|----------|--------------------------|----------|-----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|----------|------------|----------------------|-------|
| ASHO-         |          |      |          | Derivation of the second | MEAN P   | ADD CIVIL | POVENT               | H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MEAN WIND COMPONENTS IN NITHS FER HOUR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HEAT                |          |            |                      |       |
| VANE<br>NO. * | COOD MST | MST  | OV20 MST | MST                      | TSM OE60 | MST       | 4<br>1000 MST        | Ker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3<br>1013 MST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14<br>80<br>12      | 7030 H8T | 1.85       | 1000 Ker             | 1 × × |
|               | S-N      | E-W  | N-S      | 7                        | N~S      | 香品        | รร                   | A-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7-2                 | ??<br>Z  | 7          | 2 N                  | N X   |
| Fá            | 12.0N    | 0.0  | 12.0N    | 6.08                     | 12.0N    | 4.0K      | 12.0N                | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.0% 8.CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.08                | No. A    | 0.0        | NO. C                | ac v  |
| œ             | 14.0     | 2.08 | 16.0     | 8<br>0.8                 | 16.0     | Ø.4       | 12.0                 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ص<br>ھ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                   | 0.4      | 6          |                      |       |
| en            | 14.0     | 0.4  | 18.0     | 8.0                      | 18.0     |           | 14.0                 | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.9                 | 0.4      | 0          | ) C                  | ) (c  |
| <i>a</i>      | 18.0     | 4.0  | 0.8      | Q.4                      | 20.0     | 4.0       | 18.0                 | 0,4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0;0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ç.<br>9             | 0,0      | 0.0        | 0                    | 0.4   |
| 5             | 20.0     | 0.0  | 42.0     | 0.0                      | 20.0     | 2.0       | 18.0                 | 2.0 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                   | 10.0     | 0,0        | 4                    | 0     |
|               |          |      |          |                          |          |           | CONCORRESPICAMENTAL. | Common Co | THE CHARLES AND ADDRESS OF THE PARTY AND ADDRE | 1                   |          | ,          | 2                    |       |

| ABBO  |      |          |      |          | MEAN N   | TOP CASE | MEAN WIND COMPONENTS IN MILES | W AT | LASS PERR | PER HOUR | THE THE PERSON ASSESSED. |            | Per Years, Principus |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|------|----------|------|----------|----------|----------|-------------------------------|------|-----------|----------|--------------------------|------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VANE  |      | 83       |      | 6        |          | 10       |                               |      | *         | 8        |                          |            |                      | Commence of the Commence of th |
| * °0N | 1050 | 1050 MST | 1100 | 1100 MST | 1145 M8T | MBT      | 1215 MBT                      | MSH  | 1230 M87  | 7.89.X   | 1345 NGT                 | T Z        | 1255 X8T             | 1.45<br>X 35 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | N.S  | M-E      | N=3  | N-E      | Six      | A N      | 9<br>2                        | ***  | 87° %     | A-S      | 87-N                     | 3.5        | N                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ч     | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      | 2.08                          | 0.0  | 6.08      | 3.58     | 7,08                     | 3.08       | \$ . D.8             | 4 G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C4    | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      | 64<br>C)                      | 0.0  | 0,0       | 9.0      | 2                        |            | 9                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| M     | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | o,<br>o  | e4                            | C    | 0.4       | 0        | · •                      | ) (C       | ) <u>1</u>           | ة بر<br>د                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3     | 0.0  | 0,0      | 0.0  | 0.0      | 0.0      | 0.0      | 0,8                           | 0.0  | 0.0       | 0        | 0.01                     | 2 0        |                      | y a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ห     | 0.0  | 0.0      | 0.0  | 0.0      | 0.0      | 0.0      | 3,0                           |      |           | 0.0      | 2.0                      | <b>3 6</b> | ) c                  | ک ک                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

ANEXCHETER WIND SPEED AND DIRECTION TABLE III.

a a section of the se # Heights corresponding to Aerovana Musbarat

3 m 126 Fost

5 w 200 Feet

|                       |          |           |                | MEAN W     | OND CON        | PONTENTIS | MBAN WIND COMPONENTS IN NILLS PER HOUR | S PER                                     | OUR | _     |     |             |
|-----------------------|----------|-----------|----------------|------------|----------------|-----------|----------------------------------------|-------------------------------------------|-----|-------|-----|-------------|
| VANE<br>VANE<br>NO. # | 1305 1   | 15<br>MBT | 16<br>1315 NBT | i 6<br>NBT | 17<br>1320 nst | ,<br>NST  | 18<br>1329: MBT                        | 187                                       |     | Ket   |     | <b>K</b> 84 |
|                       | 8-N      | W-I       | N-8            | W-M        | N.B            | 八十二回      | N=8                                    | A. S. | N=8 | 14-11 | N=8 | Ang.        |
| <u>-</u> 4            | 3,08     | 2.03      | 6.08           | 4,08       | 80.8           | 6.08      | 2,08                                   | 2.05                                      |     |       |     |             |
| œ                     | en<br>O: | 2.0       | 6.0            | 4.0        | 0.8            | 0,0       | 4.0                                    | <b>6</b> ,0                               |     |       |     |             |
| - 🦱                   | ٥. ﴿     | ڻ.<br>ن   | 6.0            | 0.4        | ်<br>မ<br>(၁)  | 6.0       | 6,4                                    | ¢.0                                       |     |       |     |             |
| 4                     | 4°0      | <b>ာ</b>  | 0.0            | 4.0        | 0.8            | 6.0       | <b>6.</b> 4                            | Ø, 4                                      |     |       |     |             |
| în                    | 2.0      | 2.0W      | 6.0            | 2.0        | 0.0            | 4.0       | 4.0                                    | ¢,0                                       |     |       |     | ,           |

TABLE III. AND CHARTER WIND SPREED AND DIRECTION, (Gent)

3 w 200 Feet 3 m 128 Feet 4 m 168 Feet 1 = 35 February | 1 = 35 Febru \* Heights corresponding to Aerovane Numberel

|                |          |      |           |      | MEAN K   | MEAN WIND COMPONENTS | PONERTO | IN MESES |          | Kyer leyon |          |       |             |      |
|----------------|----------|------|-----------|------|----------|----------------------|---------|----------|----------|------------|----------|-------|-------------|------|
| LAYERS IN      |          |      | ,         |      |          |                      | 7       |          |          |            | <b>Y</b> |       | Towns water |      |
| ABOVE          | 0900 MBT | ивт  | 091.5 MBT | MST  | 0930 MBT | MBT                  |         | MBT      | 1015 HBT | нвт        | 1030 MAT | HET   | 1040        | MBT  |
| CNOCATO        | N-S      | E-W  | N-S       | B-W  | S-N      | A-M                  | N-3     | Arrica   | 8753     | A          | 8-X      | A-X   | 57:1X       | M-E  |
| 216-300        | 19.0N    | 0.5E | 22.0N     | 3.04 | 20.0N    | 1.58                 | 16.0N   | 3.5%     | 11.0N    | 5.5%       | 9.0N     | 0.0   | 4.5N        | 2.58 |
| 300- 100       | 18.0     | 5.15 | 21.0      | 0.4  | 21.0     | 0.0                  | 11.0    | 6.0      | 10.0     | 11.0       | 9.0      | 1.58  | 6           | 3.0  |
| 009 ~00ti      | 17.6     | 2.0  | 24.0      | 7.0  | 22.0     | 1 . S.K              | 14.0    | 9.0      | 13.0     | 13.0       | 10.0     | 3.0   | 2.5         | 4.5  |
| 008 -009       | 16.0     | 3.5  | 20.0      | 0.0  | 16.0     | 4.0                  | 19.0    | 7.0      | 8.3      | 8.0        | 0.       | 0.9   | 9.0         | 4.0  |
| 800-1.008      | 17.0     | 4.0  | 18.0      | 2.0  | 9.0      | 3,0                  | 15.0    | 2.0      | 0.4      | 3.34       | 0.9      | 2.0   | 7.0         | 5.0  |
| 1300-1400 14.0 | 14.0     | 3.0W | 0.6       | 3.0W | 6.0      | 0'%                  | 0,3     | 3.04     | ٥.4      | 7.0        | 7.0      | 3.0W  | 6.0         | 0.0  |
| 11,00-2000     | 16.0     | 15.0 | 14.0      | 15.0 | ə. 9     | 10.0W                | 2,0     | 0'6      | 4.0      | 13.5       | 9.0      | 12.0  | 6.0         | 8.0W |
| 2000~2500      | 11.0     | 25.0 | 12.0      | 24.0 | 6.0      | 23.0                 | 6.0     | 13.0     | 2.0      | 23.0       | 0.5      | 20.02 | 8.0         | 17.0 |
| 2500-3000      | 0.0      | 26.0 | 2.08      | 31.0 | 0.0      | 28.0                 | 2.0     | 24.0     | 4.0      | 30.0       | 2.0      | 25.0  | 4.0         | 30.0 |
| 3000-3500      | 2.03     | 28.0 | 1.0       | 33.0 | 2.08     | 30.0                 | 3.08    | 30.0     | 2.0      | 30.0       | 80.3     | 29.62 | 3.08        | 29.0 |
| 3500-4000      | 0.0      | 34.0 | 0.9       | 30.0 | 4.0      | 35.0                 | 6.0     | 31.0     | 0.0      | 32.0       | 3,0      | 34.0  | 0.0         | 31.0 |

TABLE IV. PILLOT-BALLCON-MEMBUIED WIND DATA NIKE-HYDAC 87V (8R-46)

ં ૧૪ પ્ર**ી**ક્ષ

Ţ.

|            |      |               |      |               | XCKAN 1 | KRAN WIND COMPONIESTED | TO WINCOM   | 27. 27. 27 | TO MITTER THE STATE OF | 0     |          |      |      |       |
|------------|------|---------------|------|---------------|---------|------------------------|-------------|------------|------------------------|-------|----------|------|------|-------|
| LAYERS DN  |      |               |      |               |         |                        |             | AN 614     | TOY COT                | KOUK  |          |      |      |       |
| ABOVE      | 1050 | 8<br>1050 MST | 1100 | 9<br>1100 MST | 1145    | 10<br>Mar              | 11 1215 MRT | 11         | 200                    |       |          | 13   |      | 14    |
| GROUND     |      |               |      |               |         |                        |             | 1          |                        | 101   | TSM C421 | MST  | 1255 | M8T   |
|            | S-8  | E-W           | S-N  | E-W           | 8-X     | 平和                     | X-S         | 7.2        | Z.                     | 7-2   | S-X      | A-3  | 2    | 7     |
| 216-300    | 1.0N | 2.0%          | 2.05 | 3.03          | 2.58    | 0.0                    | 3.03        | 20.1       | 4.08                   | 2.0W  | 8.08     | 1.08 | 80 8 | A     |
| 300- 400   | 0.0  | 2.0           | 3.0  | 5.0           | 6.0     | 3.0%                   | s.0         | 2.0        | 9.0                    |       | 8.0      | 2:0  | , v. |       |
| 1,00- 600  | 2.0N | 0.E           | 2.0  | 4.0           | 8.0     | 2.0                    | 3.0         | 1.0        | 3.0                    | 1.0   | 7.0      | 5.0  | 5.0  | 5 0   |
| 600- 800   | 0.0  | ٥.<br>خ       | 0.0  | 4.0           | 0.9     | 3.0                    | 5.0         | 1.0        | 6.0                    | 0.0   | 0.9      | 6.0  | 5.0  |       |
| 800~1000   | 1.08 | 2.0           | 1.0% | 5.0           | ٠.٠     | 3.0                    | 4.0         | 1.0        | 3.0                    | 3.0W  | 4.0      | 0,9  | 3.0  | 9     |
| 1000-1100  | 4.0N | 2.0           | 0.0  | 4.0           | 3.0     | 0.0                    | 4.0         | 3.0        | 3.0                    | 2.0   | 3.0      | 0,0  | 0.0  | 200   |
| 11,00-2000 | 2.0  | 4.0W          | 0.0  | 3.0W          | 4.0N    | 6.0W                   | 1.0         | 4.0        | 0.58                   |       | 1.0      | 0.0  | NO.  | 2 0 2 |
| 2000-2500  | 2.08 | 10.0          | 2.08 | 11.5          | 6.0     | 13.0                   | 2.0N        | 11.0       | 0.0                    | 13.0  | NO.5     | 3.0x | 0.4  | 2 6   |
| 2500-3000  | 0.0  | 27.5          | 3.0  | 17.0          | . 0.9   | 21.0                   | 5.0         | 16.0       | 4.0X                   | 20.0  | 0.9      | 14.0 | 0,   |       |
| 3000-3500  | 3.0N | 31.0          | 4.0N | 28.0          | 0.0     | 20.0                   | 0.4         | 22.0       | 4.0                    | 20.02 | 0.0      | 14.0 | 1.0  | 2 0   |
| 3500-4,000 | 0.0  | 26.0          | 2.0  | 30.0          | 3.08    | 26.0                   | 0.0         | 24.0       | 0.4                    | 22.0  |          | 28.0 | 1.08 | 24.0  |
| •          |      |               |      |               | -       | Management of the last |             |            |                        |       |          | _    |      |       |

TABLE IV. FILKT.BALLOOK-PERSURED WIND DATA, (Cont) NIEE-HYDAC STV (SE-16 and SR-47)

|               |      | - C                 | OKTAN WIDED |                        | COMPONENTS | THE NUT OF | DI MILAS PER    | PER ROUR | 3    |    |
|---------------|------|---------------------|-------------|------------------------|------------|------------|-----------------|----------|------|----|
| FEET<br>ABOVE | 1305 | 15<br>5 <b>K</b> ST | 16          | 16<br>1315 <b>M</b> BT | 17         | 7<br>HST   | 18<br>1330      | . FSF    |      | 10 |
| GNOOND        | 77   | E-W                 | N-S         | 7 2                    | 5° 72      | 神殿         | Z-3             | *        | 50 × | 7  |
| 226-300       | 2.58 | 4.0E                | 5.08        | 2.5R                   | 4.5N       | 5.08       | 4.58            | .4.5E    |      |    |
| 300- 100      | 4.0  | 0.6                 | 3.0         | 3.0                    | 0.0        | 4.5        | 4.<br>n.        | ي.<br>ئ  |      | •  |
| 100- 600      | 6.0  | 8.0                 | 4.0         | 6.0                    | 1.08       | 3,0        | 0.5             | 0.9      |      | •  |
| 600- 800      | 8.0  | 4.0                 | 3.0         | · <b>6.</b> 0          | 2.0N       | 3.0        | 4.0             | 4.5      |      |    |
| 900-1000      | 0.6. | .7.0                | ,2.0        | 7.0                    | 1.08       | 0.0        | ٠<br>ق<br>ق     | 3.0      |      |    |
| ססיור-סססד    | 8.0  | 2.0                 | 4.0         | 4.0                    | ،٦.۶       | 0.0        | 1.0N            | 0.0      |      | •  |
| 1400-2000     | 1.0  | 0.0                 | 1.0N        | 3.0W                   | 2.0N       | 2.0W       | 0.0             | 0.0      |      | •  |
| 2000-2500     | 4.0N | 3.0W                | 1.9         | 5.0                    | 0.5        | 3.0        | 1.08            | 4.0W     | •    |    |
| 2500~3000     | 1.0  | 8.0                 | 3.0         | 10.0                   | ر<br>0.0   | 0.9        | 2.0N            | 0,6      |      |    |
| 3000-3500     | 0.0  | 20.0                | .7.0        | 17.0                   | 0.0        | 20.0       | 1.0             | 16.0     |      |    |
| 35,00-1,000   | 2.08 | 30.0                | 0'9         | 33.0                   | 1.08       | 26.0       | 2.08            | 23.0     |      |    |
| <b>(</b>      |      | J                   |             |                        |            |            | Annual Property | A        |      |    |

TABLE IV. FILMT-BALLOON-HEASUIMED WINE DATA, (Cont) NIKE-HYDAC STV (SR-47)

|             |          | MEAN WIND COMPONENTS | NTO COMP | ONENTS | IN KNOTS | δĵ  |
|-------------|----------|----------------------|----------|--------|----------|-----|
| LAYERS IN   |          |                      |          | 2      |          | * 6 |
| ABOVE       | 0840 MST | MST                  | 1100     | MST    | 1329     | MST |
| GHOUND      | N-S      | R-W                  | N-S      | 许田     | N-S      | H-H |
| 4000- 4253  | 0.0      | 30.0W                | 4.08     | 22.5W  | *        | *   |
| 4253- 9000  | 0.0      | 32.0                 | 5.5      | 30.5   |          |     |
| 9000-15000  | 8.08     | 44.5                 | 7.0      | 39.5   |          |     |
| 15000-21000 | 7.0      | 38.5                 | 7.0      | 40.5   |          |     |
| 21000-26000 | 0.0      | 47.0                 | 15.5     | 43.0   |          |     |
| 26000-32691 | 11.08    | 61.0                 | 9.5      | 54.0   |          |     |
| 32691-34000 | 0.0      | 45.0                 | 10.0     | 57.0   |          |     |
| 34000-36000 | 16.08    | 44.0                 | 18.5     | 50.5   |          |     |
| 36000-41000 | 18.0     | 50.0                 | 19.5     | 53.5   |          |     |
| 41000-46000 | 14.0     | 38.3                 | 19.5     | 53.5   |          |     |
| 46000-51000 | 16.5     | 45.0                 | 13.5     | 36.5   |          |     |
| 51000-56000 | 15.5     | 43.0                 | 19.5     | 34.0   |          |     |
| 56000-61000 | 16.5     | 20.0                 | 14.0     | 24.0   |          |     |
| 61000-66000 | 7.0      | 8. S                 | 7.5      | 12.0   |          |     |
| 66000-74168 | 0.0      | 7.5                  | 5.0N     | 8.58   |          |     |

TABLE V. RAHINSONDE-HEASURED WIND DATA

\* - Balloon Burst Below 15,000 Feat MSL.

| 3989.0 FEET MSL  | 0840 HRS MST | 46            |
|------------------|--------------|---------------|
| STATION ALTITUDE | 24 JAN. 67   | ASCENSION NO. |

UPPER AIR DAYA 0078603967 WHIVE SANDS SIKE TABLE VI

MSTM STTE COGRETINATES IE 482,580 PRET IN 185,045 PRET

| INDEX                 | REFRACTION  | .00026 | +00026 | .00025      | .00024   | C      | .00023 | .00033 | .00023 | . 60022 | .00022 | .00021 | .00021 | 12000       | .00020 | .00020   | .00020 | .00019 | 9100  | .00019   | .00018 | .00018 | .00018 | 00017 | .00017 | .00017   | .00016 | .00016 | -00016    | .00016 | 0015 |
|-----------------------|-------------|--------|--------|-------------|----------|--------|--------|--------|--------|---------|--------|--------|--------|-------------|--------|----------|--------|--------|-------|----------|--------|--------|--------|-------|--------|----------|--------|--------|-----------|--------|------|
| SPEED                 |             |        | \$     | 27%         | 83       |        | ň      | 5      |        | ç       | 0      | -      | -      | Ġ           |        | 0        | 0      | -      | •     | ó        | 6      | 'n     | 5      | *     | +      | *        | K;     | 5      | Ô         |        |      |
| WIND<br>DIRECTION     | GRE ES (    | 0      |        | <b>0</b> •6 | 386      | 4.00   | 863    | 79.    | 7.     | 71.     | 69.    | 66.    | 65.    | <b>6</b> 55 | 653    | 67.      | 69.    | 71.    | 72.   | 70,      | 68.    | 65     | 649    | 62.   | 62.    | 62.      | 62.    | 62.    | 61.       | 61.    | 61.  |
| PEED OF SOUND         | 2           | 50.    | 6      | 50.         | 510      | 650.8  | 49.    |        | 47.    | 46.     | 46.    | 46.    | 46.    | 45.         | 44     | 43.      | 42.    | 41.    |       | 41.      | 40.    | 39.    | 38.    | 36.   | 35.    | 33.      | 32.    | 31.    | 29.       | 28.    | 27.  |
| DENSITY S<br>GM/CUBIC |             | 100    | 100.   | 976         | 055      | 1038.5 | 022.   | .900   | 91.    | 78.     | 59.    | 39.    | 25     | 07.         | 93.    | 79.      | 68.    | 4      | r.    | 2%       | 90     | 46     | 82.    | 20.   | 58.    | 47.      | 50     | 24.    | 13.       | 02.    | 92.  |
| REL.HUM.<br>Percent   |             | 4      | ų      | <b>,</b>    | <b>F</b> | 27.0   | -      | ۲.     | -      | -       | è      | ş      | 'n     | ň           | j      | <b>-</b> | 8      | ċ      | ö     | ö        | Ġ      | è      | ģ      | å     | å      | <b>~</b> | -      | Ġ.     | ŝ         | 'n     | ις.  |
| RATURE                | 7 X C       | -6.0   |        | -11.8       |          | -11.7  | -12.4  |        | -14.0  | -14.7   | •      | •      | •      | *           |        | -16.7    | •      | ÷      | -17.3 | <b>;</b> | ~      | -18.1  | 0      | e     | ₹      | •        | -25.0  | ŝ      | -         | æ      | 6    |
| ALR                   | DEGREES     | •      | E o    | •           |          | 8.0    | •      | •      |        | •       | •      |        | •      | •           | •      |          |        |        | •     | -2.4     | •      | -3.7   |        | 0.9-  | •      |          | •      | ċ      | ة<br>إحدم |        | 30   |
| PRESSUR               | MILLIBARS   | 81.    | 80.    | 64.         | 48.      | 832.7  | 17.    | 02.    | 87.    | 72.     | 58.    | 44.    | 30.    | 16.         | 63°    | 89.      | 16.    | 64.    | 51.   | 39.      | 27.    | 14.    | 02.    | 91.   | 79.    | 68,      | 57     | 46.    | 35.       | 25     | 15.  |
| GEOMETRIC<br>ALTITUDE | ト<br>所<br>所 | 989.   | 000    | 500.        | 000      | 5500.0 | .000   | 500.   | 000    | 500.    | -000   | \$00°  | \$000° | 9500.       | 0000   | 500°     | 1000   | 1500.  | 000   | 2500.    | 3000   | 3500-  | 4000°  | 4500- | 5000-  | 5500.    | 6000   | 6500.  | 7000.     | 500.   | 8000 |

UPPER AIR DATA 0078003907 WHITE SANDS SITE TABLE VI (Cont)

WSTM SITE COURDINATES E 488,580 FEET N 185,045 FEET

| INDEX<br>OF<br>REFRACTION               | 1,000155           | .00014 | .0001- | .00014   | *1000)*  | . (10013 | .00013 | .00013 | .00013 | .00013 | .00012 | .00012 | .00012 | .00012 | .00012 | .00011 | .0001 | 11000" | .0001    | .00011 | .00010    | 0 000 × 0 | .00010 | .00010 | .00010 | <b>*0000</b> | <b>60000</b> | .00000 | 600        |
|-----------------------------------------|--------------------|--------|--------|----------|----------|----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|----------|--------|-----------|-----------|--------|--------|--------|--------------|--------------|--------|------------|
| TA<br>SPEED<br>KNOTS                    | 64.7<br>66.3       |        |        | ~        | <b>.</b> | ę,       | •      | ສຸ     | S.     |        | ë      | ä      | 4      | ÷.     | ċ      | ó      | Ġ     | •      |          |        |           |           | ÷      |        | +      | ÷            | 5            | 62.6   | å          |
| WIND DAT<br>DIRECTION<br>DEGREES(TN)    | 261.6              | 61,    | \$2.   | 62+      | 63,      | 64.      | 66.    | 68.    | 70.    | 71.    | 71.    | 21.    | 90     | 66.    | 66.    | 449    | 64.0  | 63.    | 62.      | 61.    | <b>60</b> | 59.       | 59.    | 59.    | 99     | 60.          | 62.          | 64.    | 63.        |
| SPEED OF<br>SOUND<br>KNOTS              | 625.0              | 23.    | 22.    | 20.      | 38       | 17.      | 160    | 14.    | 12.    | 17     | .60    | 69.    | 00.    |        | 03.    | 01.    | 00    | 86     | 96       | 0      | 93.       | 91.       | 90.    | 88.    | 0      | 85.          | 83.          | 82.    | 580.4      |
| DENSITY S<br>GM/CUBIC<br>METER          | 681.3              | 59.    | 483    | 37.      | 27.      | L7.      | 08.    | 98.    | 88     | 29.    | 70.    | 61.    | 52.    | 43.    | 33.    | 23.    | .0.   | 70.    | 22.      | 94.    | 80<br>80  | -21       | 69.    | ė      | 58.    | 46.          | ė            | 30     | ë          |
| REL.HUM.<br>PERCENT                     | 25.7               | 8      | •      | 6        | 0        | Ġ        | 5      | 6      | 6      | 6      | •      | ċ      | 6      | Š      | •      | Ġ,     | •     | ċ      |          | 8      | Ġ.        | 4.4       | •      | ### B  |        | •            | -0-          | -0-    | -0.        |
| EMPERATURE<br>Dewpoint<br>Es centigrade | -30.3              | 0      |        | ď        | 6        |          | 9      |        | 8      | •      |        | -41.6  | -42.8  | -43°9  | _      | •      | -47.2 | 8      | •        | -52.7  | E)        | ¢         | å      | •      |        |              | Ö            | ં      | <b>.</b> 0 |
| TEMP<br>AIR<br>Degrees                  | 1 1<br>4 10<br>0 8 | Ś      |        | <b>⇔</b> | c        | •        | 2      | •      | 5      | \$     | •      | 6      |        | *      | å      | 4      | 5     | ه<br>ج | <b>*</b> |        |           | •         |        |        | -46-1  | -47°3        | -48.6        | -49.B  | •          |
| PRESSURE<br>HILLIBARS                   | 505.2              | 80     | 7      | 65       | 55       | 46       |        | -      | 1.8    | 10     | Ö      | 93     | 8      | 46     | 68     | **     | 50    | \$     | 38       | 32     | 23        | 4         | 6      | 80     | 96.0   | 89.          | 82.          | -      | 6          |
| GEDMETRIC<br>ALTITUDE<br>MSL FEET       | 18500.0            |        |        |          |          |          | 4      |        | •      | •      | 24000. |        |        | •      | •      |        |       |        | -        |        |           |           | -      |        | 2      |              |              |        |            |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE MAS USED IN THE INTERPOLATION. \*

# UPPER AIR DATA 0078003907 WHITE SANDS SITE TABLE VI (CORE)

ASSIN SEME COORDENATES
TO 4881980 PRET

- ~<u>\*</u>\*\*.

|               | 1 6 6               |                                          |            |              | !           | ;<br>!   |                   |          |             |
|---------------|---------------------|------------------------------------------|------------|--------------|-------------|----------|-------------------|----------|-------------|
| LTITUD        | TRESCER             | * F. | . 2        | SEF SECTIONS | ,<br>,<br>, | SPEED OF | 23:4<br>23:4<br>4 | TA       | INCEX<br>OF |
| MSE FEET      | MILLIBARS           | DEGREES                                  | CENTIGRADE |              | FER         | KNOTS    | DEGREES (TR)      | KNOTS    | REFRACTION  |
| 3500.         | 40                  | N.                                       | 0          | ** 0-        | F.          | 78.      | 63                | 7.63.    | 1,000003    |
| <b>\$000</b>  |                     | -53.5                                    | 0          | •••          |             | 7.7      | 6.0               |          | 00000       |
| <b>5</b> 500. |                     | •                                        | •          | ** 0-        | 00          | 75.      |                   | 5        |             |
| 5000.         | 245.6               | 5                                        |            | -0-          | 60          | 33.0     |                   |          | - 00000 - C |
| 35500.0       | 239.9               | -57.1                                    | •          | **           | 0           |          | M                 |          |             |
| 5000.         | 4                   | æ                                        |            | *0 .0-       | 19.         | 71.      | 6.5               |          | 10000       |
| \$50¢.        | 8                   | •                                        | •          | -0-          | 717         | 69       | 9                 |          | 0000        |
| 7000          | 223.1               | -57.5                                    | •          | -0-          | 50.         | 77.      | 99                |          | 1 000000    |
| 7500.         | -                   | •                                        | •0         | -0-          | 53          | 70.      | 50                | =        | .0000       |
| 8000          | 3                   | •                                        | •          | -0°          | \$          | -69      | 63                |          | .00003      |
| 8000          | •                   | -59.8                                    | •          | ** 0-        | 38.         | 58.      | 98                |          | 00007       |
| 39000         | ä                   |                                          | ċ          | *****        | 31.         | 29       | N                 | =        | 00000       |
| 9500          | -                   |                                          | å          | ** *0~       | 24.         | 56.      | 47                | Û        | 0000°       |
| 0000          | N                   | •                                        | °O         | -0-          | 18.         | ž.       | 4                 | -        | 00007       |
| 500°          | 168.1               | -62.8                                    | •0         | -0° **       | ~           | 564.7    | 33                | N        | •           |
| 000           | in i                | •                                        | 0°         | ** *0 **     | 05.         | 50.0     | 38.               | \$ 000 M | .0000       |
| 1200          | 62                  |                                          | •          | ** *01       | 97.         | •        | ĝ                 | 77       | 90000       |
| 2000-         | 76.                 | -63.5                                    | °          | ** *0-       | 90.         | 53       | 43                | 77)      | •0000       |
| 2500.         | 40                  |                                          | ં          | ** *0-       | 83.         | 53.      | 68.               | ñ        | .0000       |
| 3000.         | 99                  | •                                        | •          | -0-          | 25.         | 54.      | 45                | å        | .0000       |
| 500.          | 8<br>10<br>10<br>10 | •                                        | •          | -0-          | 58.         | A        | 83                | •        | .0000       |
| •             | Ď,                  | -62-3                                    | ဝံ         | ** .0-       | 51.         | 565.4    | 55.               | ŝ        | 20000       |
| 2000          | ٠<br>۾<br>ا         |                                          | •          | ** *0-       | 55.         |          | 51.               |          | .00005      |
| 2000          |                     | å                                        | •          | -0-          | 69          | 55.      | 17.               | #        | .0000       |
| 200           | · ·                 |                                          | ċ          | ** *0-       | 13.         | Š        | *                 | . vi     | .00005      |
| 60000         | 400                 | رم<br>د                                  | •          | ** *0-       | 38.         | 54.      | ţ3.               | +        | .00005      |
| 6500          | ô                   | Ę                                        | •          | -0-          | 320         | 53.      | uri<br>A          |          | .0000       |
| 7000-         | 36                  | <b>W</b>                                 | ;          | ** *0-       | <b>5</b> 0° | 564.4    | 0.                |          | • 00000     |
| 00%           | (C)                 | 62.                                      | •          | -0- **       | 0.          | - 7      | S.W.              |          | 90000       |
| 48000.0       | င်                  | -62.3                                    | •          | -0-          | *           | 565.4    | 5                 | 54.4     | .0000       |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

UPPER AIR DATA 0078003907 WHITE SANDS SITE TABLE VI (CONT)

MSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

\*\* \*\*\*\*\*

| INDEX<br>OF<br>REFRACTION              | 1.000043                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +00000.    | 000  | .00004 | .00004  | 9      | .00003 | .00003 | .0000    | .00003 | 000      | .00003 | .00000  | * 00003 | .00000 | . 0000a.    | .00003 | • 00000  | .00002 | .00002 | ₹0000    | .00002 | 200   | .00002 | .00000 | .0000  | .0000      | 80  | . 00002                                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------|--------|---------|--------|--------|--------|----------|--------|----------|--------|---------|---------|--------|-------------|--------|----------|--------|--------|----------|--------|-------|--------|--------|--------|------------|-----|-----------------------------------------|
| SPEED<br>KNOTS                         | 2<br>2<br>2<br>3<br>3<br>4<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6          | }    | 4      | •       | ÷      | ÷      | +      | 52.1     | •      | ₩.<br>₩. | •      |         |         | ŝ      | •           | å      | į.       | •      | 43.7   | *        | m      | 32.4  | ó      |        | 'n     |            | N   | ٠ <u>.</u>                              |
| WIND DAT<br>DIRECTION<br>DEGREES(TN)   | 20 CE<br>20 CE | 38         | 57   | 56.    | 56.     | 56.    | 56.    | 200    | <b>9</b> | 500    | 46.      | 42.    | 37,     | 36.     | 36     | 6.<br>6.)   | 43.    | 40.      | 64     | 50.    | 50.      | 94     | _     | 39.    | 27.    | .5     | 18.        | 24, | 24.                                     |
| SOUND<br>KNOTS                         | 565.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 99         | 66.  | 650    | O       | 65     | •      | 67.    | 67.      | 67,    | 15       | 67.    | 68.     | 68.     | 67.    | 2.9         | 63.    | •        | 229    | 66.    | 66.      | 68.    | Ð     | 66.    | 66.    |        | Ş          |     | 66.                                     |
| DENSITY S<br>GM/CUBIC<br>METER         | 209.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 98.        | 45   | 89.    | 85.     | 81.    |        |        | 66.      | 62.    | ¢        | 55     | 51.     | 47.     | 44     | <b>4</b> 0, | 37.    | 34.      | 31.    | 28.    | 23,      | 22.    | 2.644 | 16.    | 13.    | -      | 90         | 9   | 0                                       |
| REL.HUM.<br>Percent                    | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | -0-  | -0- ** | -0-     | ** •0- | ** *0- | ** *0= | -0-      | -0° ** | ** °0-   | -0°    | -0-     | *6 .0.  | •••    | -0-         | -0.    | ** "0-   | .0.    | -0-    | -0-      | ** °0- | ** 0- | ** .0+ | -0-    | ** °0- | -0°        | -0- | ÷ • • • • • • • • • • • • • • • • • • • |
| EMPERATURE<br>Dewpoint<br>S centigrade | <b>်</b> ဝီ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | ं    |        | °       | •      | •      | •0     | •        | •      | ò        | •      | •       | ő       | ċ      | ċ           | ċ      | <b>;</b> | •      | °      | <b>.</b> | •      | •     | ċ      | •      | ó      | Ġ          |     | •                                       |
| TEMP<br>AIR<br>DEGREES                 | -61.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6<br>(2=4) | *    | •      | å       | •      | ė      | ô      | -60.6    | 6      | ö        | •      | -60.3   | •       |        | -60.6       | ;      |          | •      | •      | -61.4    | -61.5  | -     | -61.6  | -61.6  | -61.5  | -61.4      |     | -61.3                                   |
| PRESSURE<br>MILLIBARS                  | 126.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.        | 17.  | 15.    | 12.     | . 60   | 06.    | 04.    | 01.      | •      | 7        | •      | o<br>Ci | 0       | 8      | 5           | 1      | *        | Ġ      |        | 9        |        | d     | 6      | 5      | -      | <b>6</b> 3 |     | Š                                       |
| GEOMETRIC<br>ALTITUDE<br>MSL FEET      | 4<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9500       | 0000 | 0200   | \$000 × | 1500.  | 2000-  | 2500.  | 3000     | 3500.  | 4000     | 4500°  | 55000   | \$500.  | 6000   | 6500.       | 7000.  | 7500.    | 8000   | 8500.  | 9000     | 9500°  | 0000  | 0500.  | 10001  | \$500. | 2000-      | 250 | 3000                                    |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE HAS USED IN THE INTERPOLATION. \$ 5

UPPER AIR DATA 0078003907 WHITE SANDS SITE TARLE VI (Cont)

WSTM SITE COORDINATES E 468,580 FEET N 185,045 FEET

| INDEX<br>OF<br>REFRACTION             | 1.000022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00002 | 00000  | . 0000 | , 00002 | .0000 | 00000 | .00001 | .00001   | .00001 | .0000    | .0000 | .00001 | .00001 | .00001 | .00001 | 10    | 10000  | .00001 | .00001 | .0000       | 70       | .00001   | .0000   | .00001 | .00001  | .00001 | 7      | .0000     |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------|--------|---------|-------|-------|--------|----------|--------|----------|-------|--------|--------|--------|--------|-------|--------|--------|--------|-------------|----------|----------|---------|--------|---------|--------|--------|-----------|
| ATA<br>SPEED<br>KNOTS                 | 8.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0      | Š      | •      | å       | •     | 2     | *      | ä        | ÷      | •        | *     |        | w.     | è      | ő      | 8     | 2:     | ä      | +      | ÷           | ö        | <b>-</b> | 3       | ë      | 0       |        |        | 0         |
| WIND DA<br>DIRECTION<br>DEGREES(TN)   | 222.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10     | 03.    | 58.    | 15.     | Ň     | ó     |        | <u>.</u> | ř      | ŝ        | •     | 90     | 58.    | 59.    | 60.    | 260.1 | 57.    | 53.    | 95.    | 58.         | <b>.</b> | 8        | +       | 0      | 5       | •      | 36.    | 6         |
| SPEED OF<br>SOUND<br>KNOTS            | 50 50<br>50 50<br>50<br>50 50<br>50<br>50 50<br>50<br>50<br>50 50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>5 | 67.    | 67.    | 67.    | 67.     | 67.   | 67.   | 63.    | 67.      | 67.    | 67.      | 68.   | 68.    | 69.    | .69    | 70.    | 70.   | 71.    | 71.    | 720    | 72,         | 72.      | 3        | 73.     | 74.    | 74.     | 25.    | 75.    | 76.       |
| DENSITY<br>GM/CUBIC<br>METER          | 100.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S      | en.    | ċ      |         | è     | *     | å      | ċ        | 8      | ŝ        | *     | ~      | ö      | ÷      | •      | 'n    | *      | 2      | ċ      | Ġ           |          | ċ        | 'n      | å      | 2       | ö      | œ.     | <b>\$</b> |
| REL HUM.<br>PERCENT                   | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        | ** *0- | -0-    | ****    | -0.0- | -0-   | ** .0- | -0-      | -0-    | ## "O-   | -0°   | ** "0- | -0-    | -0-    | ** *0- | -0-   | ** *0- | -0-    | •• °0- | ** *0-      | ** "0"   | t# *0-   | ** • 0+ | ** ·0- | ** *0:- | -0-    | ** .0- | ** 0-     |
| MPERATURE<br>DEMPOINT<br>S CENTIGRADE | ဝိဝိ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | •      |        | ċ       | ċ     | •     | •      | •        | •      | <b>.</b> | ċ     |        | •      | •      | •      | ċ     | •      | •      | •      | ċ           | •        | •        |         | Ċ,     | •       |        |        | •         |
| TEMP<br>AIR<br>Degrees                | -61.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -      | •      | •      | •       | -60.8 | ٠     | -60.7  | •        | -60°5  | -60.4    | -60.1 |        | -59.4  | e      |        | -58.4 | 58.    | 1      | 9      | -           | \$       | -56.4    | Ġ       | いい     | Š       | ŝ      | •      | •         |
| PRESSURE<br>MILLIBARS                 | 61.0<br>59.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8      | è      | Š      | *       | d     | i     | •      | •        | 3      | •        |       | •      | 9      | •      | •      | 40.5  |        | •      |        |             |          |          |         | •      | •       | •      | 31.1   | •         |
| GEOMETRIC<br>ALTITUDE<br>MSL FEET     | 64000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4500   | ċ      | 500.   | Š       | ÷     | ÷     | ٦      |          | ÷      | å        | å     | 70000  | ;      | å      | å      |       | å      | å      | 3500.  | <b>4000</b> | 4 500°   | 5000.    | 5500.   | 6000.  | 6500.   | 7000   | 7500.  | 80008     |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. \*

UPPER AIR DATA 0078003907 WHITE SANDS SITE TABLE VI (Cont)

MSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

٢,٨٠

| INDEX<br>OF<br>REFRACTION                             | 10000      | .00001       | .0000         | 0000         | .00000       | 9            | .00000       | 0000         | • 00000      | .00000       | 00000        | 1,000008     | .00000       | 00000        | .0000        | 00000        | . 30000      | .00000    | 00000        | 0000.        | .00000          | . 00000      | 000          | 00000        | • 00000   | .0000        | .0000      | .00000          | 1.00000\$    | 8           |
|-------------------------------------------------------|------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|--------------|-----------------|--------------|--------------|--------------|-----------|--------------|------------|-----------------|--------------|-------------|
| TA<br>SPEED<br>KNOTS                                  | <b>6</b> 0 |              | •             | •            |              | •            | 'n           | 6            | ÷            | 'n           | ÷            | 17.7         | <b>;</b>     | •            | æ            | ø            | 8            | å         | ċ            | ÷            | å               | ÷            | 'n           | N            | ċ         | -            | ě          | •               | 5            | *           |
| WIND DAT<br>DIRECTION<br>DEGREES(TN)                  | 258.1      | 21.          | 45            | 5            | 19.          | 90           | ę,           | ۴            | ÷            | 3.           | •            | 60.5         | ÷            | <b>.</b>     |              | 3            | •            | +         |              | •            | m               |              | ż            |              | 0         | -            | G.         | Š               | •            |             |
| SPEED OF<br>SOUND<br>KNOTS                            | 576.4      | 76.          | ~<br>~        | 37.          | 78.          | 78.          | 79.          | 79.          | 79.          | 79.          | 79.          | 80.          | 80.          | 80.          | 80.          | 80.          | 80.          | 80.       | 80.          | 81.          | 81.             | 8 k.         | 81.          | A2.          | 82.       | 82.          | 82.        | 8               | 83.          | 20          |
| DENSITY<br>GM/CUBIC<br>METER                          | 47.2       | •            | ;             | ë            | 'n           | ,<br>,       | ó            | å            | <b>*</b>     | -            | j            | •            | ŝ            | \$           | ė            | ż            | ;            | -         | ċ            | ó            | Ġ.              | ë            | -            | -            | ÷         | 'n           | ń          | +               |              | 8           |
| ÷=                                                    | *          | *            | *             | •            | *            | *            | *            | *            | *            | *            | *            | *            | *            | *            | *            | *            | ÷            | 8         | *            | *            | •               | *            | *            | *            | *         | *            | *          | *               | *            | \$          |
| REL.HUM.<br>PERCENT                                   | • 0-       | 0            | -0-           | 0-           | •0-          | 0            | 0            | -0-          | 0            | -0           | -0           | 0            | 0-           | 0            | 0            | ė            | •0           | •         | 0            | ٠<br>10°     | 00.7            | -0-          | 0            | 10.          | 0         | 0            | 0          | 0               | 0            | -0-         |
| E REINT PE                                            | 0          | 0            | 0             | 0-           | 0-           | •            | •            | •            | •            | 0-           | 0-           | 01           | 0-           | 01           | 01           | 01           | 0-           | 0-        | 0-           | 0-           |                 | 0-           | 0-           | 0-           | 0-        | 0-           | 0-         | 01.             | 0-           | 1           |
| RATURE RE<br>DEWPOINT PE<br>ENTIGRADE                 | 00         | 3.7 00       | 3.4 00.       | 3.0 00       | 2.7 00       | 2.3          | 2.0          | 1.7          | 1.5          | 1.4 00.      | 1.3 00       | 0- 0-        | 1.2 00       | 1.1          | 1.0 00       | 0- 0 6-0     | 0.8 00       | 0-1 0 20  | 0- 0 9.0     | 0.4 00       | • a             | 0-1 0 -0     | 0- 0 6.      | 0- 0 8.      | 0- 0- 9-  | 0-           | 0-         | 0.              | 0- 0 6.      | • 00        |
| TEMPERATURE RE<br>AIR DEWPOINT PE<br>GREES CENTIGRADE | 24.0 0.    | 9.0 -53.7 00 | 8.3 -53.4 00. | 7.6 -53.0 00 | 7.0 -52.7 0. | 6.4 -52.3 0. | 5.7 -52.0 0. | 5.1 -51.7 0. | 4.6 -51.5 0. | 4.0 -51.4 0. | 3.4 -51.3 00 | 2.9 -51.2 00 | 2.4 -51.2 00 | 1.9 -51.1 O0 | 1.4 -51.0 00 | 0.9 -50.9 0. | 0.4 .50.8 00 | 0- 0 2000 | 9.5 -50.6 00 | 9.0 -50.4 00 | 8.6 ±50.3 0. ±0 | 8.2 -50.1 00 | 7.8 -49.9 00 | 7.3 -49.8 00 | 063-6 0-2 | 6.6 -49.4 00 | 6.249.3 00 | 5.8 -49.1 0. :0 | 5.5 -48.9 00 | 5.1 -48.8 0 |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. \*

UPPER AIR DATA 0078003907 WHITE SANDS SITE TABLE VI (CONE)

MSTR SETE COORDENATES E 488,580 FERT Z 185,045 FERT

| INDEX<br>OF<br>REFRACTION         | 1.000005             | . 00000     | 000000   | .00000 | 000000 | .00000 | 00000       | .0000  | 000000 | ,00000 | .000  | .00000   | .00000 | .00000 | .00000 | .00000   | .00000  | .00000 | 00000 | .00000 | .00000 | .00000 | 0000   | 0000   | .00000 | 00000 | 00000 | 000    | 4     | ) |
|-----------------------------------|----------------------|-------------|----------|--------|--------|--------|-------------|--------|--------|--------|-------|----------|--------|--------|--------|----------|---------|--------|-------|--------|--------|--------|--------|--------|--------|-------|-------|--------|-------|---|
| SPARC<br>SPARC<br>KNOTS           | 22° 50               | ň           | m        | -      | ÷      | -      |             | œ      | •      | 4      | •     | 8        | 8      | -      | -      | *        | 10      | +      | 'n    | å      | 0.81   | •      | -      |        |        |       |       |        |       |   |
| WIND DATECTION<br>DEGREES (TN)    | 40.0                 |             | \$       | ó      | 2      |        | 6           | •      | •      | 3      | 84.3  | 3        | -      | •      | 4      | 8        | 63.1    | -4     | -     | 0      | •      | 58.5   | -      |        |        |       |       |        |       | C |
| SPEED OF<br>SOUND<br>KNOTS        | 583.5                | 83.         | 8        | 84.    | 84.    | 84.    | 82          | 85.    | 85.    | 88     | 86.   | 87.      | 88.    | 89.    | 91.    | 92.      | 93.     | 93.    | 93.   | 93.    | 93.    | 93.    | 93.    | 93.    | O.     |       | O     | m      | 93.   |   |
| DENSITY S<br>GM/CUBIC<br>METER    | 20<br>20<br>20<br>40 | -           | <b>.</b> | ċ      | ö      | ő      | 6           | ċ      | 8      | - 6    | -     | -        | ċ      | •      | š      | ż        | •       | ;      | ÷     | •      | 13.8   | ë      |        | 2      | d      | e     | 2     |        | -     |   |
| REL.HUM.<br>PERCENT               | **                   |             | •••      | -0.    | -D.    | -0-    | -0-         | ++ .0- | -0-    | -0-    | -0-   | -0-      | -0-    | -0-    | ++ -0- | ** * 0-  | +0 · 0- | **     | -0-   | ** •0- | -0-    | -0.    | -0-    | ** •0- | •• ••  | -0.   | -0-   |        | -0-   |   |
| erature<br>Dewpoint<br>Centigrade | 00                   | o           | °        | •      | •      | •0     | <b>.</b>    | •0     | •      | •      | •     | ċ        | •      | ŏ      | ,      | Ö        | ં       | •      | ċ     | •0     | ဝိ     | •      | ¢      | •      | •      | •     | °     | 0      | •     |   |
| TEMPE<br>AIR<br>DEGREES C         | 48.6                 | -48.3       | •        | 9      |        | -47.6  |             | -47.3  | •      |        | 1.05- | Ω        | -44.7  | -43.8  | •      |          |         | •      | •     | -40.8  | •      |        | •      | 6.04-  | -40.9  | 6.04- | 6.0%- | •      | -41.0 |   |
| PRESSURE<br>HILLIBARS             | 14.8<br>14.4         | ÷           | 13.8     | m      | 'n     | 12.9   | ċ           | ŝ      | 2      | -      | •     | <b>.</b> | -      | ó      | ċ      | <b>.</b> | ċ       | •      |       | •      | •      | 9      | 4      |        | •      | •     |       | 7.9    | . 9   |   |
| GEOMETRIC<br>ALTITUDE<br>MSL FEET | 93500.0              | <b>4500</b> | 5000.    | 5500.  | 6000°  | 500.   | <b>3000</b> | 7500.  | 8000.  | 8500.  | 00066 | 9500.    | 00000  | 0500.  | 01000. | 01500.   | 02000   | 02500. | 03000 | 03500° | 04000  | 500.   | 02000. | 500.   | 000    | 500,  | .000  | 07500. | 7000  |   |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. \*\*

UPPER AIR DATA 0091003903 WHITE SANDS SITE TABLE VII

WSTM SITE COORDINATES E 488,580 PEET N 185,045 FEET

~

| INDEX<br>DF<br>Refraction           | .00025 | .00025 | .00025 | 1.000250 | .00024   | .00024          | . A0023 | . 00023 | .00022 | .00022 | .00022   | .00021 | .00021   | .00020 | .00020 | , 00020  | .00019   | .00019 | .00019 | .00018   | .00018 | .00018         | .0000 | .00017 | .00017 | .00016 | .00016   | .00016 | .00015 | ± 00015 |
|-------------------------------------|--------|--------|--------|----------|----------|-----------------|---------|---------|--------|--------|----------|--------|----------|--------|--------|----------|----------|--------|--------|----------|--------|----------------|-------|--------|--------|--------|----------|--------|--------|---------|
| TA<br>SPEED<br>KNOTS                | 9      | •      | -      | 7.9      | •        | €<br><b>€</b> 1 | •       |         | ċ      | e      | ÷        |        | •        | ċ      | ċ      | ċ        | •        | 0      | å      |          | 80     | ÷              | -     | 6      | Ç,     | ó      | -        | -      | ä      | -       |
| WIND DA<br>DIRECTION<br>DEGREES(TN) | 90     | 60.    | 82.    | 204.1    | 25.      | 47.             | 67.     | 66.     | 640    | 62.    | 59.      | 57°    | 55.      | 56.    | 58.    | 90.      | 62.      | 69     | 63.    | \$1.     | 60.    | e,             | 57.   | 57.    | 57.    | 800    | 58.      | 58.    | 59.    | 89.     |
| PEED OF<br>SOUND<br>KNOTS           | 56.    | 53.    | 54.    | 652.4    | 50.      | 49.             | 48.     | 47.     | 46.    | 45.    | 44       | 44.    | 45.      | 45.    | 44.    | 43.      | 410      | 42.    | 42.    | 41.      | 40,    | 39.            | 37.   | 36.    | 35.    | 33.    | 32.      | 30,    | 29,    | 27.     |
| DENCITY S<br>GM/CUBIC<br>METER      | 082.   | 082.   | 068.   | 1054.0   | 040      | 025.            | .600    | 93.     | 77.    | 61.    | 46.      | 29,    | .60      | 93.    | 78°    | 65.      | 52.      | 35.    | 18.    | 05.      | 92.    | 80.            | 68.   | 56.    | 43.    | 34.    | 230      | 12.    | 01.    | 91.     |
| REL.HUM.<br>Percent                 | Ö      | ċ      | ć      | 31.1     | <u>.</u> | -               | 0       | ö       | 6      | 8      | <b>;</b> | •      | 4        | 4      | Š      | <b>æ</b> | <u>د</u> | 6      | ?      | <b>-</b> | 0      | 5              | 7     | ę      | Ę      | 6      | å        | -      | Ġ      | 8       |
| ERATURE<br>Dewpoint<br>Centigrade   | •      |        | •      | 8.8      | •        | -10.9           | •       | -12.9   | •      | •      | 0        | 9      | <b>:</b> | 7      | ÷      | -16.5    | •        | •      | Ś      | •        |        | 6              | ċ     | 2      | +      | 'n     | <b>~</b> | 8      | ċ      | 2       |
| TEMP<br>AIR<br>Degrees              |        | 0      | •      | 7.2      | •        | •               |         | •       | •      | •      | •        | •      | •        | •      | •      | •        | •        | •      | •      | •        | •      | 0              | •     |        | •      | ¢      | 6        | •      | 2      | 3       |
| PRESSURE<br>MILLIBARS               | 81.    | 81.    | 65.    | 849.3    | 33.      | 18.             | 03%     | 88.     | 73.    | 59.    | 44.      | 30.    | 17.      | 03.    | 90.    | 17.      | 64.      | 52.    | 39.    | 27.      | 15.    | 03.            | 91.   | 80.    | 69.    | 58.    | 47.      | 36.    | 26.    | 15.     |
| GEONETRIC<br>ALTITUDE<br>MSL FEET   | 989.   | .000   | 500.   | 5000.0   | 500°     | 000             | 500.    | .000    | 500.   | .000   | 500°     | 000    | 500.     | .0000  | 0500°  | 11000.   | 1500.    | 2000.  | 2500°  | 3000.    | 3500,  | <b>.</b> 000\$ | 4500. | 5000°  | 5500°  | 60000  | 650C.    | 700C   | 7500°  | 200     |

STATION ALTITUDE 3989.0 FEET MSL 25 JAN. 67 ASCENSION ND. 47

UPPER AIR DAYA
0091003903
HHYTE SANDS SITE
TABLE VIT (Cont)

の現在をおける。 「日本のは、日本のでは、日本のは、 「日本のは、日本のでは、 「日本のは、 「

| Index<br>Of<br>Refraction               | 484000 · K                                | 41000                                                                              | .00014 | *000° | .00014 | .07014 | .00013   | .0003 | .00013      | .00013   | .00012 | .00012 | . OUULR | .00012       | 21000- | - (1000 L | ,000 a | .00011 | . 00011 | .00011 | .00010    | .00010    | .00010 | .00001 | .00010 | <b>60000</b> • | .0000 | .00009 | 60000-      |
|-----------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------|--------|-------|--------|--------|----------|-------|-------------|----------|--------|--------|---------|--------------|--------|-----------|--------|--------|---------|--------|-----------|-----------|--------|--------|--------|----------------|-------|--------|-------------|
| TA<br>SPEED<br>KHOTS                    | 42.1                                      | Ö                                                                                  |        | 0     | •      | •      | ć        | ċ     | ċ           | <u>.</u> | -      | *      | ż       | *            |        | •         | *      | *      | *       | ;      |           | *         | *      | *      | 'n     | \$             | 7     |        |             |
| MIND DA<br>DAMECTACH<br>DECRESSION      | 10 CE | , 20<br>00<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 | 27.    | \$6.  | 36.    | 56.    | 83<br>83 | 52.50 | 34.         | 52       | ~      | 40.    | 47.     | 46.          | 46,    | 45.       | 46.    | 46,    | 47.     | 48.    | <u>69</u> | \$000     | 50.    | 51.    | 3      | 525            | 3     | 4      | 55.         |
| SPRED OF<br>SOUND<br>KNOTS              | 626.4<br>408.4                            | 23.                                                                                | 22.    | 20.   | 19.    | 17.    | 76.      | *     | 13.         | - Z Z    | .0.    | . 80   | *90     | 05           | 50     | 150       | 00     | 90.    | 96.     | 93.    | 94.       | 92.       | 4      | 30.    | 86.    | 86.            | 4 4   | 82.    | <b>8</b> 0. |
| DENSITY CONTCONTCONTER                  | 5.080<br>5.084                            | 000                                                                                | 300    | 40.   | 30.    | 20.    | 10       | 00    | 90.         | 4 1 8    | 72.    | 63.    | 545     | 4<br>23<br>1 | 37.    | 12 CM     | 20.    | 11.    | 60      | 44.    | 96.       | 77.       | 64.    | 61.    | 33     | 430            | 37.   |        | *           |
| REL HUM.<br>PERCENT                     | 2.5                                       | י נ<br>זיט                                                                         | >      | Ċ.    | -      | 3      | 0        |       | œ.          | 0        | œ      | 4      | ö       | 100          | 5      | ,         | •      |        |         | ~      | _         | _         | 0      | \$     | 40.9   | 2.0*           | 8.0.8 | 4      | 0.10        |
| EMPERATURE<br>DEMPOINT<br>ES CENTIGRADE | 0 m m                                     | ) [F]                                                                              | Ś      |       | ~      |        | \$       |       | v.          | 8        | ŝ      |        |         | -42.8        |        | -         | _      |        | _       |        | •         | ٠         | ċ      | ô      | -52.1  |                | 9     | 3      |             |
| TEMP<br>AIR<br>DEGREES                  |                                           | 191                                                                                | 8      |       | 0      | -4     | ~        | 0     | ŝ           | •        |        | 6      | 0       | •            | 4      | \$        | 10     |        | 8       | ÷      | •         | <b>\$</b> | -42.6  | •      | •      | -46.5          | e     |        | 0           |
| PRESSURE<br>MILLIBARS                   | 505.7                                     | 86.                                                                                | 9      | 9     | 57,    | -      | 38.      | 29.   | <b>50</b> ° | 32.      | 603.   | 95°    | 84.     | 78.          | 10.    | 62.       | 54.    | 47.    | 39.     | 32.    | 24.       | 2 2 4     | 30.    | 03.    | 96.    | 89.            | 83    | 76.    | 70          |
| GEGMETRIC<br>ALTITUDE<br>MSL FEET       | 18500.0                                   | 9500                                                                               | .0000  | 0500  | 1000   | 1500.  | 20002    | 2500. | 3000.       | 3500.    | 4000   | 4500.  | 25000.  | 5500.        | 6000°  | 6500.     | 7000.  | .005£  | 8000    | 8500°  | -0006     | 9500.     | .0000  | 0500-  | 1000   | 1500.          | 2000, | 2500.  | 3000.       |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. \*

A STATE OF THE PROPERTY OF THE

CTATION ALTITUDE 3989.0 FEET MSL 24 JAN. 67 1100 MRS MST ASCENSION NO. 47

UPPER AIR DATA 0091003903 WHITE SANDS SITE TABLE VII (Cont)

WSTN SITE CUCADINATES E 488,580 FEET N 185,045 FEET

| PRESSURE<br>MILLIBARS | TÄ<br>AIK<br>Degaer | MPERATURE<br>DEWPOINT<br>S CENTIGRADE      | REL "HUM.<br>PERCENT | DENSITY<br>GN/CURIC<br>MEYER | SPEED OF SOUND KNOTS | MIND DA<br>DIRECTION<br>DEGREES(IN) | NYA<br>SPEED<br>KNOTS | INDEX<br>OF<br>REFRACTION |
|-----------------------|---------------------|--------------------------------------------|----------------------|------------------------------|----------------------|-------------------------------------|-----------------------|---------------------------|
| 263                   | ر.<br>ر.            |                                            | 4                    | 20<br>20<br>20               | 78.                  | د<br>در                             | 39                    | 0                         |
|                       | 100                 | 1 6 10 10 10 10 10 10 10 10 10 10 10 10 10 |                      | 408                          | 577.1                | 2.55.2                              | 50.2                  | 60000                     |
| 51                    | 35                  |                                            | 9                    | 01,                          | 2                    | 3 4 55                              | 3                     | 0:                        |
| ₹.<br>₹.              | 9                   | 1                                          | *                    | 46                           | 73.                  | 45                                  | *                     | .00000                    |
| \$0                   | -                   | *                                          | 0                    | 86.                          | 71.                  | \$                                  | ;                     | .0000                     |
| 34.                   | 5                   | 8                                          | 3                    | 81,                          | . 69                 | 500                                 | +                     | .0000                     |
| 29                    | d                   | E,                                         |                      | 75,                          | 67.                  | 57.                                 | •                     | .00000                    |
| 23.                   | -                   | •                                          |                      | 67.                          | 66.                  | 300                                 | +                     | .0000                     |
| 8.                    | •                   |                                            |                      | 30                           | \$6.                 | 58.                                 | ë                     | .0000                     |
| 12.                   | -                   |                                            | ** 0                 | رم<br>سر                     | £ 3                  | 30                                  | M                     | .0000                     |
| 07.                   |                     | 0                                          |                      | # m                          | 35.9                 | i<br>i                              | *                     | .00001                    |
| 02.                   | 8                   |                                            |                      | 35.                          | 65.                  | 52.                                 | ay<br>,               | .0000                     |
| 97.                   | ·                   |                                            | -0.                  | 27.                          | *                    | <b>4</b>                            | **                    | .0000                     |
| 92.                   |                     |                                            | * · · · · · ·        | 9                            | 64.                  |                                     | -                     | .00007                    |
| 88.                   | 9                   | •                                          | -0-                  | 12.                          | 64.                  |                                     | *                     | .0000                     |
| 83.                   | \$                  | •                                          | -0-                  | 06,                          | 63                   | ₩<br>₩                              | *                     | .0000                     |
| 79.                   | •                   |                                            | -0-                  | 666                          | 61.                  | 41.                                 | 'n                    | •00300                    |
| 74.                   | sy.                 |                                            |                      | 930                          | 60.                  | **                                  | -                     | .00006                    |
| 70,                   | *                   | •                                          | -0-                  | 85.                          | 61.                  | Š                                   | •                     | .00006                    |
| <b>66.</b>            |                     | ő                                          | *                    | 77.                          | ₩.                   | i<br>i                              | č                     | .0000                     |
| 62.                   |                     | •                                          |                      | 69.                          | 64.                  | 58.                                 | ä                     | 00000                     |
| 58.                   | -62.4               | °                                          |                      | 61.                          | 65.                  | 9                                   | -                     | .00005                    |
| 3.4                   | •                   | ċ                                          | -0-                  | 35                           | \$3                  | 3.5°                                | •                     | .00005                    |
| 50.                   |                     | °O                                         |                      | 40.                          | 45                   | 87.                                 | ۶                     | -00000                    |
| 470                   |                     |                                            | ** *0-               | 43.                          | 64.                  | 35.55                               | -\$                   | .0000                     |
| 43.                   | 4                   | •                                          | •                    | 61                           | 63.                  | S.                                  | ÷                     | .00000                    |
| 39.                   | •                   |                                            | ** *OI               | 33.                          | 63.                  | S.                                  | å                     | .00003                    |
| 36.                   | *                   | ó                                          |                      | 27.                          | 62.                  | 52.                                 | •                     | .00000                    |
| 33.                   | 4                   |                                            | .0.                  | 21.                          | 63.                  | 53                                  |                       | .00004                    |
| 29.                   | 3                   |                                            | -0-                  | 5                            | 63                   | 3.                                  | •                     | 40000                     |

よりほんかんといちらむきょりのできゃとりむす せんさいりか

Commence the said

C.C.A.

3.3

UPPER AIR DATA 0091003903 WHITE SAMUS SITE TABLE VII (CONE)

MOSTAL IN STRI

| INDEX<br>OF<br>SEFRACTION               | 40000                                   | .0000      | 1,000044 | +0000 · | •00000• | 40000 | +0000°  | E0000 + | £0000  | .0000  | * 0000 ° | EON 00. | #0000° | £00003 | .00000    | . 00003     | .00000  | £0000.   | £0000° | -00003 | .0000 | .0000 | .00005 | * 00005 | .0000 | .0000  | .00002 | *0000 | *0000  |     |
|-----------------------------------------|-----------------------------------------|------------|----------|---------|---------|-------|---------|---------|--------|--------|----------|---------|--------|--------|-----------|-------------|---------|----------|--------|--------|-------|-------|--------|---------|-------|--------|--------|-------|--------|-----|
| 4                                       | 36                                      | 4          | 52,7     | -5      | Š       | *     | *       | ö       | 3      | 5      | -        |         | *      | *      | ກ້        |             |         | Ġ        | ö      | *      | ë     | ÷     | ň      | N       | ċ     | 'n     | ö      | å     | e.     | -   |
| VIND DA<br>DEGREESTED                   | 256.0                                   | 30         | 4.80     | 93.     | S<br>S  | 88    | 37      | ÷       | +4     | 4.50   | \$0      | -       | 22.    | 28.    | K         | 35          | 38.     | 47.      | 43.    | 40.    | 48+   | 46.   | 44     | *<br>** | 39.   | ₩<br>₩ | 36     | 36.   | ₩<br>₩ | 20. |
| SCUND<br>KNOTS                          | 80                                      | 9          | 30 S     | 43.     | 64.     | *     | 64.     | *       | 65.    | 65.    | 65.      | 99      | 99     | 499    | 63.       | <b>6</b> 55 | e<br>S  | 65.      | 66.    | 66.    | 67.   | 67.   | 67.    | 66.     | 66.   | 65.    | 64.    | 64.   | 66.    | 66. |
| DENSITY S<br>GN/CUBIC<br>METER          | 200                                     |            | 199.4    | 94.     | 90°     | 86.   | € 7°    | 16.     | 72.    | 67.    | 53       | 56.     | \$ 05. | 32.    | <b>*8</b> | 44.         | 47.4    | 37.      | 34.    | 30.    | 27.   | 24.   | 21.    | £ 40    | 16.   | 761    | 1.1.   | 90    | 03.    | 02. |
| REL.HUM.<br>PERCENT                     | •                                       | ***        |          | 0       |         |       | ** * 0- | * 0 ·   | ** *0" | ** ·0- | ***      | ****    | ** *0- | *      | -0-       | ** ·0-      | ** *0-  | ******** | •• •0- | *      | 8     | •     | •      | •       | -0-   | ** 0-  | -0-    | -0-   | 8      | *0~ |
| EMPERATURE<br>DEMPOINT<br>FS CENTIGRADE | 52                                      |            | 0        | ီဝီ     | ó       | •     | င်      | •       | °      | ဝံ     | å        | ó       | •      | •      | °         | ó           | ċ       | •<br>•   | ċ      | •<br>• | °     | •     | ŏ      | ċ       | o     | ő      | •      | •     | °C     | •0  |
| TEMP<br>AIR<br>Degrees                  | ·                                       | ا و<br>ح غ |          | ~       | 6       | 8     | •       | 20      | 2      | •      |          |         |        | •      | Ú         | *           | 8       | *        | -61.8  | -61.3  | 6.09- | -60.5 | -60.6  | -61.2   | •     | -62.4  | 6      | ¢     | -61.5  |     |
| PRESSURE                                | 136 7                                   | 3 6        | 120.7    | 04      | و<br>چي | 14    | Ó       | 06.     | 04.    | 01.    | •        | 9       | 9      | *      | •         | -           | sy.     | 3,       | 81.5   | 6      | -     | Ŋ     | ě      | ~       | ċ     | 8      | -      | S     | 63.8   | 2   |
| GEOMETRIC<br>ALTITUDE<br>MSI FEFT       | 1 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 0.0000     | 9500     | 3000    | 0       | 1000° | \$500°  | 2000.   | 2500.  | 3000.  | 3500.    | £000+   | £ 500. | 88000° | 2500.     | 5000        | 6 5 0 O | 3000     | 7500.  | #000 # | 8500. | 9000  | 9500.  | 0000    | 0050  | 1000.  | 1500   | 2000. | 2500.  | ċ   |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERFOLATION. \*

UPPER AIR DATA 0091003903 WHITE SANDS SITE TABLE VII (CORC)

WSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

| INDEX<br>OF<br>REFRACTION               | 000            | .00002   | .00002                                  | .00002       | .00001  | .0000    | .00001  | .00001 | .00001  | .00001      | .00001    | .00001 |         | 10000    | .00001  | .0000   | .0000    | .0000   | .0000   | .00001   | .0000   | .0000   | .00001  | .0000 | .00001     | 10000  | 10000 | .0000   |  |
|-----------------------------------------|----------------|----------|-----------------------------------------|--------------|---------|----------|---------|--------|---------|-------------|-----------|--------|---------|----------|---------|---------|----------|---------|---------|----------|---------|---------|---------|-------|------------|--------|-------|---------|--|
| TA<br>SPEED<br>KNOTS                    | 16.6           | •        | - P                                     | -            | ó       | ,<br>,-4 |         | •      | •       |             | •         |        |         |          | •       |         |          |         | •       | •        | •       | 0.0     |         | ŧ     | •          |        | •     |         |  |
| WIND DAT DIRECTION DEGREES(TN)          |                | 25.      | 4                                       | 22.          | 31.     | 35.      | 33.0    | 37.    | 43.     | 50.         | 38.       | 22.    | 87.     | 28.      | 'n      | 20.     | 67.      | 9       | 16.     | 73.1     | *       | 6.44    | *       | Ġ     | \$         | 6      |       | •       |  |
| SPEED OF<br>SOUND<br>KNOTS              | 12 10<br>• • • | 65       | <b>.</b>                                | 64.          | 65.     | čs<br>s  | 66.     | . 29   | 68.     | <b>69</b> ° | 68.       | 70.    | 71.     | 72.      | 72.     | 72,     | 72.      | 73.     | 730     | 74.      | 4.      | 75.     | 76.     | 76.   | 76.        | 77.    |       | 77.     |  |
| DENSITY S<br>GM/CUBIC<br>METER          | 100.3          | <b>S</b> | , c                                     |              | •       | ÷        | 2       | ċ      |         | 57          |           | *      |         |          |         | ;       |          | -       | ခို     |          | *       |         |         | å     | •          | å      | 6     | •       |  |
| REL.HUM.<br>Percent                     | ***            | ** *0-   | • • • • • • • • • • • • • • • • • • • • | •• • • • • • | ** *0 ! | -0-      | ** *0-  | ***    | ** *0-  | -0-         | -0-       | ** ≎   | -0-     | ** *0    | -0-     | ** 20   | ** *0-   | "O-     | ***     | -0-      | ** *01  | ** *0-  | -0-     | +0°0+ | 10.01      |        | ****  | ** 0-   |  |
| EMPERATURE<br>Dempoint<br>Es centigrade | 0              | 0        | • ·                                     |              | •       | °        | •       | °      | 0       | o           | •         | ŏ      | ô       | ċ        | •       | •       | •<br>0   | •       | ċ       | å        | ċ       | °       | •       | ပံ    |            | •      |       | •0      |  |
| TEMP<br>AIR<br>Degrees                  | -62.3          | 2        | 163.8                                   | 2            | ~       | ė        | •       | 6.09-  | ŧ       | -59.6       |           | 9      | -57.6   |          | •       | 9       |          | -56.6   | -56.2   | - 55 S 1 | S       | 154.6   | *       | ä     | - 53° J    | 9      | -53.3 | •       |  |
| PRESSURE<br>MILLIBARS                   | 60.7           | 2        | o in                                    |              | e<br>N  |          | •       | å      | 47.6    | •           | 33        |        | 43.2    | å        |         |         |          |         |         | •        |         | 34.8    |         | G)    | 32.<br>53. | •      |       | ö       |  |
| GEDMETRIC<br>ALTITUDE<br>MSL FEET       | 63500.0        | 64500.0  | 45000.0                                 |              | 66500.0 |          | 0.00519 | - 3    | 68500.0 | 0.00069     | 0.00569 2 | 70000  | 70500-0 | \$1000°C | 71500.0 | 72000-0 | \$250000 | 13000°0 | 0.00gez | 240000-0 | 24500-0 | 75000,0 | 75500.0 |       | E          | \$000£ | 500   | 78900.0 |  |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE MAS USED IN THE INTERPOLATION. \* \*

UPPER AIR DATA 0091003903 WHITE SANDS SITE

SHARE COURCECTER STATE OF SHEET SHEET STATE OF SHEET SHEE

TABLE VII (Cont)

| ECHETR  | PRESSURE  | TEMP     | EMPERATURE<br>Demontat | REL.HUN.    | ¥.⊀   | SPEED OF | WIND D  |           | INORT<br>STORY |
|---------|-----------|----------|------------------------|-------------|-------|----------|---------|-----------|----------------|
|         | MILLIBARS | DEGREES  | , <u> </u>             | 1<br>5<br>1 | METER | KNOTS    | GREES ( | KNOTS     | REFRACTION     |
| 00.     |           | -53.0    | ċ                      | ***         | Ş     | 577.     | 62.     | ***       | •              |
| 000     |           | 52       | o                      |             |       | 577      | 30.     |           | .00001         |
| 0       | 28.2      | -52.7    | ō                      | ** 0        | 44.6  | 57       | 1 58. P | W.4       | 1.000010       |
| 0000    | 27.       | 2        | •                      | -0-         |       | 278      | 49.     | 8.2       | .00001         |
| 0500    | 26.       |          | •                      | -0-         |       |          | 78.     |           | 00000          |
| 81000-0 | 26.       | 6        | •                      | -0-         |       | 578.     | ~       | •         | , nooo         |
| 1500    | 25.       | 9<br>124 | 0,                     | ** 07       | 6     | 579.     | ċ       |           | 00000          |
| 200     | 25.       |          | 0                      | ** *D-      | ÷     | 579.     | 6.82    |           | \$00000 T      |
| 2500    | 24.       | -        | ő                      | ** *0-      | *     | 579.     |         |           | 000000         |
| 83000.0 | 26.       | ,<br>1   | •                      | -0-         |       | 579.     | ż       | m         | .00000         |
| 83500.0 | 23.       |          | •                      | -0-         | ŝ     | 579.     | ë       | ກຸ        | e              |
| 84000.0 | 22.       | ,        | •                      | -0-         | 5     | 200      | ä       | •         | .00000         |
| 84500.0 | 22.       |          |                        | -0-         | 8     | 580.     | •       | ņ         | 000            |
| 85000   | 21.       | ,        |                        |             | +     | \$80.    | è       | e.        | - 000          |
| 0.00588 | 21.       |          |                        |             | ë     | 580.     | *       | ä         | - 000          |
| 86000.0 | 20.       | 50.5     | ဝံ                     | -0- **      |       | 560      | 64.3    | 11.4      | 1.00000        |
| 86500.0 |           |          | 0                      | *****       | ~     | 581.     | ÷       | ö         | - 000          |
| 87000.0 | •         |          | •                      | -0-         |       | 581.     | •       | 0         | .000           |
| 87500.0 |           | •        | 0                      | -0-         |       | 581.     | 63.9    | ċ         | •              |
| 0.00088 |           |          | •                      | ** · :      | 5     | 185      | ë       | 0         | •              |
| 88500.0 |           |          | •                      | -0-         | 6     | 581.     | š       | _         | •              |
| 89000.0 |           | 1.64-    | •                      | -0.         | 8     | 502.     | 0       | Č         |                |
| 89500.0 |           | -49.5    | ö                      | -0-         | -     | 582      | *       | ¢         | •              |
| 0000    |           |          | ċ                      | -0-         | -     | 582      | ÷       | *         | •              |
| 0200    |           | -48.3    | 9                      | -0-         | •     | 58       | ŝ       | ņ         |                |
| .000    |           | -49.1    | ó                      | -0-         | ķ     | 582.     | \$      | <b>57</b> | 1.000006       |
| \$ 5000 | •         | 0.64-    | 0                      | -0-         | 5     | 583.     | 9       | •         | - 7            |
| 2000-   |           | -48.8    | •                      |             | +     | 583.     | 2       | ċ         |                |
|         |           | 7-84-    | •0                     | -0. 83      |       |          |         | -         |                |
| 3000    |           | -48.5    | •0                     | -0-         | 6     | 583      | ~       | -         | τ              |
|         |           |          |                        |             |       |          |         |           |                |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION. \$ \*

| FEET MSL<br>HRS MST |               |
|---------------------|---------------|
| FEET                |               |
| 3989.0<br>1100      | .7            |
| JOE                 | 7             |
| ALTITUDE<br>67      | ASCENSION NO. |

UPPER AIR DATA 0091003903 WHITE SANDS SITE YABLE VII (Cont)

MSTM SITE COORDINATES E 488,580 FEET N 185,045 FEET

| GEOMETRIC<br>ALTITUDE<br>MSL FEET | PRESSURE<br>MILLIBARS | TEME<br>AIR<br>DEGREES | EMPERATURE<br>DEWPOINT<br>ES CENTIGRADE | REL HUM.<br>Percent | DENSITY GM/CUBIC METER | SPEED OF<br>SOUND<br>KNOTS | WIND DA<br>DIRECTION<br>DEGREES(TN) | TA<br>SPEED<br>KNOTS | INDEX<br>OF<br>REFRACTION |
|-----------------------------------|-----------------------|------------------------|-----------------------------------------|---------------------|------------------------|----------------------------|-------------------------------------|----------------------|---------------------------|
| 500                               |                       | 484-                   | Ċ                                       | • 0 -               | N                      | 83.                        | 3                                   | Q                    | .00000                    |
|                                   |                       | 8                      | 60                                      | O                   | EN                     | 83                         | š                                   | 6                    | .00000                    |
| 94500.0                           | 4                     | 8                      | ဝ                                       |                     | 21.8                   | *                          | 76.5                                | 10.1                 | 1.000005                  |
| 95000-0                           | 6                     | 48.0                   | •                                       | .0-                 | 7                      | 86.                        | 7.                                  | ٠<br>ح               | .0000                     |
| 95500.0                           | 3.                    | •                      | •                                       | ** *0               | ċ                      | 84.                        | Ġ                                   | ,                    | .00000                    |
| 96000-0                           | W.                    | 9                      | •                                       | -0.                 | •                      | 84.                        | ŝ                                   | -                    | .00000                    |
| 96500.0                           | 2                     | 8                      | ó                                       | -0-                 |                        | 85.                        |                                     | \$                   | 00000                     |
| 0.00076                           | 12.6                  | -46.1                  | ő                                       | -0. **              | 6                      | 86.                        | -                                   | ÷                    | .00000                    |
| 97500.0                           | 2                     | -45.1                  | ō                                       | -0. **              | 8                      | 88.                        | ċ                                   | ij.                  |                           |
| 280000                            | 2.                    | -44-1                  | •                                       | *0.                 | 8                      | 89.                        | •                                   | ä                    | 1.000004                  |
| 98500.0                           | *                     | -44.1                  | •0                                      | -0. **              |                        | 89.                        | ë                                   | ÷                    |                           |
| 99000                             | -4                    | -44.1                  | 0                                       | -0°                 | -                      | 89.                        |                                     | 3                    |                           |
| 0.00866                           | e<br>0=4              | -44.1                  | <b>.</b>                                | ** *0               | ÷                      | 89.                        | •                                   | •                    | •                         |
| gaooc                             | <b>—</b> 4            | -44.1                  | •                                       | -0-                 | •                      | 89.                        | <b>C</b> 3                          | 4                    | 00000                     |
| 00200                             | 0                     | 0.44-                  | ő                                       | -0-                 | ÷                      | 89.                        |                                     | 2-2                  | 1.000004                  |
| 01000                             | 0                     | 0.44-                  | •                                       | * * 0-              | Š                      | 589.4                      | 36.                                 |                      | oopou-                    |
| 03540                             | ċ                     | 0.44-                  | 0                                       | ** *0-              | 80                     | 89.                        | ्<br>व्य<br>व्य                     | 3                    | .00000                    |
| 02200                             | ó                     | -44.0                  | •0                                      | ** *0-              | 'n                     | 589.4                      | 'n                                  |                      |                           |
| 02500                             |                       | -44.0                  | °                                       | ** °0-              |                        | 68                         | 59.                                 |                      | . 00000                   |
| 03000                             |                       | -44.0                  | ô                                       | -0" **              | *                      | 89.                        |                                     |                      | .00000                    |
| 03500                             |                       | 0.44-                  | Ö                                       | -0.                 | +                      | 89.                        |                                     |                      | ,00000                    |
| 04000                             |                       | -44.0                  | •                                       | *0 .0               | 3                      | 89.                        |                                     |                      | .00000                    |
| 04500                             | •                     | 0.44-                  | •                                       | ** .0-              | *                      | 89.                        |                                     |                      | .00000                    |
| 09000                             | •                     | -43.9                  | •0                                      | -O-                 | ě                      | 589.5                      |                                     |                      | .00000                    |
| 05500                             | 3.8                   | -43.9                  | ં                                       | ** 0-               | 6                      | 89.                        |                                     |                      | .00000                    |
| 00090                             | ₽.°                   | 6.64-                  | •                                       | ** 0-               | •                      | -160                       |                                     |                      | .00000                    |
| 06590                             | 8.2                   | -43.9                  | •                                       | •                   | N                      | * #: B                     |                                     |                      | .00000                    |
| 107000.0                          | •                     | 6784-                  | •0                                      | ***                 | 2                      | 110                        |                                     |                      | 000                       |
| •                                 |                       |                        |                                         |                     |                        |                            |                                     |                      |                           |

AT LEAST ONE ASSUMED RELATIVE HUMIDITY VALUE WAS USED IN THE INTERPOLATION.

|        |        |           | *************************************** |                                  | *************************************** | *************************************** | ****   | *************************************** | *************************************** |          | ومنسنت  |                              | *************************************** |
|--------|--------|-----------|-----------------------------------------|----------------------------------|-----------------------------------------|-----------------------------------------|--------|-----------------------------------------|-----------------------------------------|----------|---------|------------------------------|-----------------------------------------|
| (MST)  | S TIME | SEC       | OND-STAC                                | SECOND-STAGE IMPACT DISPLACEMENT | DISFLAC                                 | EMERT IN                                | MILES  | DUE TO WI                               | QUICIA.                                 | AZZ      | THEORY  | THEOMETICAL INPACT           | NPACT                                   |
| DALITA |        | 11-216 FT | 6 FT                                    | 216-40                           | 6-4000 FT                               | 4000-72168                              | 168 FT | OI.                                     | TOTAL                                   |          | E ~     | (THE MATERIAL (THE MATERIAL) | SEE<br>SEE                              |
| SONDE  | PIBAL  | N-S       | E-W                                     | N-S                              | 海阳                                      | Σ-⊠                                     | 泽如     | N-S                                     | A-Si                                    | (STEELS) | RABELLE | γ<br><b>π</b>                | A-82                                    |
| 0840   | 0060   | 13.2N     | 1.6E                                    | 14.1N                            | 4.5W                                    | 6.08                                    | 16.4W  | 21.3N                                   | 19.3W                                   | 354.8    | 81.4    | 81.1N                        | 7.48                                    |
| 0840   | 0915   | 14.4N     | 5.7E                                    | 17.2N                            | 4.4W                                    | 6.03                                    | 16.4W  | 26.5W                                   | 15.1W                                   | 357.9    | \$.98   | 86.3N                        | 3,24                                    |
| 0840   | 0830   | 14.5N     | 3.68                                    | 12.7N                            | 4.1W                                    | 6.08                                    | 16.4W  | 21.2N                                   | 16.9W                                   | 356.5    | 81.2    | 81.0N                        | #0. e                                   |
| 0840   | 1000   | 12.6N     | 3.6E                                    | 12.1N                            | 1.1W                                    | 6.08                                    | 16.4W  | 18.7W                                   | 13.9W                                   | 358.5    | 78.5    | 78.5N                        | 20.                                     |
| 0840   | 1015   | 7.5N      | 4°8E                                    | 8.5N                             | 1.9W                                    | 6.08                                    | 16.4W  | 10.0N                                   | 13.5W                                   | 358.7    | 89.69   | 69.8N                        | 79                                      |
| 0840   | 1030   | 4.1N      | 0.0                                     | 8.1N                             | 3.57                                    | 6.08                                    | 16.4W  | 6.2N                                    | 19.9W                                   | 353.1    | 66.5    | 66.0N                        | 2                                       |
| 0840   | 1040   | 2.0N      | 3.68                                    | 5.3N                             | 1.8%                                    | 6.03                                    | 16.4W  | 1.3W                                    | 14.6W                                   | 357.5    | 61.2    | 61.1N                        | 7                                       |
| 0840   | 1050   | 0.0       | 0.0                                     | 1.0N                             | 1.3W                                    | , 6.08                                  | 16.4W  | 5,08                                    | 17.78                                   | 353 9    | 84.8    | . 5N                         | 5.80                                    |
| 1100   | 1100   | 0.0       | 0.0                                     | 1.28                             | 0.0                                     | 7.58                                    | 20.1W  | 8.78                                    | 20.1W                                   | 2)       | 51.8    | 51.1N                        | 27. 24                                  |

|                                              | AZEMUTH MILES FROM LAUNCHER | MILES | FROM LA    | LUNCHER                                |
|----------------------------------------------|-----------------------------|-------|------------|----------------------------------------|
|                                              | REES                        | RANGE | RANGE N-8  | 3-10                                   |
| LAUNCHER SETTING (ELEVATION 85.5 DEGREES QE) | ł                           | 62.0  | 50 AN      | #5 9T                                  |
| NO WIND IMPACT                               | 011.2                       | 60.9  | 60.9 59.8N | 200                                    |
| PREDICTED SECOND-STAGE IMPACT                |                             | 58.0  | 58. OK     | 3                                      |
| SECOND-STAGE IMPACT, KADAR IRACK             |                             | 45.0  | 44. 8N     | 200                                    |
| PREDICTED BOOSTER IMPACT                     | 018.0                       | 2.1   | 2. CN      | 0.68                                   |
| ACTUAL BOOSTER IMPACT                        | W/W                         | A/K   | X/A        | \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |

TABIE VIII. IMPACT PREDICTION DATA NIKE-HYDAC STV (SR-46)

|                                                       |               | 1               |       |       |       |       |       |       | -     | -     |       |
|-------------------------------------------------------|---------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| MPACT                                                 | S)            | E-W             | 9.4W  | 11.1W | 10.2W | 8.9W  | 6.3W  | 2.0W  | 0.2E  | 0.8W  | 2.1W  |
| THEORETICAL IMPACT                                    | (IN MILES)    | N-S             | 75.0N | 72.4N | N5.69 | 65.5N | 70.3N | N8.69 | 71.7% | 69.7N | 71.9N |
| THEOREM                                               | <b>2</b>      | RANGE           | 75.6  | 73.2  | 70.1  | 66.2  | 9.02  | 70.5  | 71.7  | 69.7  | 71.9  |
| AZI-                                                  | (DEC          | PEES)           | 352.8 | 351.3 | 351.6 | 352.3 | 355.0 | 358.4 | 355.8 | 359.3 | 358.3 |
| Q)                                                    | TOTAL         | N-M             | 22.6W | 24.3W | 23.4W | 22.1W | 19.4W | 15.2W | 13.0W | 14.0W | 15.3W |
| TE TO WI                                              | T             | N-S             | 10.28 | 12.88 | 15.38 | 19.78 | 14.98 | 15.48 | 13.58 | 15.58 | 13.38 |
| MILES DI                                              | .68 FT        | E-W             | 20.1W |
| PAENT IN                                              | 4000-72168 FT | N-S             | 7.58  | 7.58  | 7.58  | 7.58  | 7.58  | 7.58  | 7.58  | 7.58  | 7.58  |
| DISPLACE                                              | O FT          | E-W             | 2.5W  | 4.2W  | 5.0W  | 1.1E  | M6.0  | 3.3k  | 1.5E  | 0.78  | 1.8E  |
| SECOND-STAGE IMPACT DISPLACEMENT IN MILES DUE TO WIND | 216-4000 FT   | N-S             | 2.78  | 3.48  | 2.78  | 5.0s  | 2.18  | 4.9S  | 2.48  | 0.68  | 2.88  |
| ND-STAGE                                              | FT            | E-W             | 0.0   | 0.0   | 1.7E  | 3.14  | 1.6E  | 1.6E  | 5.6E  | 5.4E  | 3.0E  |
| Sec                                                   | 11-216 FT     | N-S             | 0.0   | 1.98  | 5.68  | 7.28  | 5.38  | 3.0s  | 3.68  | 7.48  | 3.08  |
| TIME                                                  |               | PIBAL           | 1145  | 1215  | 1230  | 1245  | 1255  | 1305  | 1315  | 1320  | 1329  |
| RELEASE TIME                                          | (ISW)         | RAWIN-<br>SONDE | 1100  | 1100  | 1100  | 1100  | 1100  | 1100  | 1100  | 1100  | 1100  |

|                                              | AZIMUTH MILES FROM LAUNCHER | MILES | FROM LA             | UNCHER |
|----------------------------------------------|-----------------------------|-------|---------------------|--------|
|                                              | REES)                       | RANGE | RERS) RANGE N-S E-W | M1     |
| LAUNCHER SETTING (FLEVATION 83.7 DEGREES QE) | 011.8                       | 87.1  | 85.2N               | 17.88  |
| NO WIND IMPACT                               | 6.800                       | 86.4  | 85.2N               | 13.2E  |
| PREDICTED SECOND-STAGE INFACT                | 358.6 70.0 70.0N 2.0W       | 70.0  | 70.0N               | 2.0W   |
| AR TRACK                                     | 0.800                       | 91.8  | 90.9N               | 12.8E  |
| PREDICTED BOOSTER IMPACT                     | 0.910                       | 1.8   | 1.7N                | 0.5E   |
|                                              | W/W                         | 13/4  | N/A                 | ٧/٧    |

TABLE IX. IMPACT PREDICTION DATA NIKE-HYDAC (SR-47)

# UNCLASSIFIED

Security Classification

| DOCUMENT CO (Security classification of title, body of plained and index | NTROL DATA - R&E                  |           | the constil conset is classified:  |  |  |
|--------------------------------------------------------------------------|-----------------------------------|-----------|------------------------------------|--|--|
| 1 ORIGINATING ACTIVITY (Conserve Luthor)                                 |                                   |           | ST SECURITY C LASSIFICATION        |  |  |
|                                                                          |                                   | ប         | nclassified                        |  |  |
| U.S. Army Electronics Command                                            |                                   | 2 DEROUG  | 2                                  |  |  |
| Fort Monmouth, New Jersey                                                |                                   |           |                                    |  |  |
| 3. REPORT TITLE                                                          |                                   |           |                                    |  |  |
| METEOROLOGICAL DATA REPORT, NIK                                          | E-HYDAC STV (SE-                  | -46 & 4   | 7) ·                               |  |  |
| 4- DESCRIPTIVE NOTES (Type of report and Inchcoive dates)                |                                   |           |                                    |  |  |
| 5. AUTHOR(8) (Lost name. Rest name, Initial)                             |                                   |           |                                    |  |  |
|                                                                          |                                   |           |                                    |  |  |
| SHARPE, John M.                                                          |                                   |           |                                    |  |  |
| 6. REPGRT DATE                                                           | 74. 7GTAL HO. OF PA               | 655       | 74. HO. OF REPS                    |  |  |
| February 1967                                                            | 25                                |           | None                               |  |  |
| SA. CONTRACT OR GRANT NO.                                                | 94. ORIGINATOR'S REPORT NUMBER(S) |           |                                    |  |  |
| A PROJECT NO.                                                            | DR-155                            |           |                                    |  |  |
| c. DA Task IV650212A127-02                                               | SA OTHER REPORT H                 | o(i) (Any | ether numbers that may be seeigned |  |  |
| d.                                                                       |                                   |           |                                    |  |  |
| 10. AVAILABILITY/LIMITATION NOTICE)                                      |                                   |           |                                    |  |  |
| Distribution of this document i                                          | s unlimited.                      |           |                                    |  |  |
| 12. SUPPLEMENTARY NOTES                                                  | 12. SPONSORING MILIT              | ARY ACTI  | VITY                               |  |  |
|                                                                          | U.S. Army I                       | Electro   | nics Command                       |  |  |
|                                                                          |                                   |           | ces Laboratory                     |  |  |
|                                                                          | White Sands                       | Missi     | le Range, New Mexico               |  |  |
| 13- ABSTRACT                                                             |                                   |           |                                    |  |  |

Meteorological data gathered for the launching of two (2) Nike-Hydac STV (SR-46 & 47) are presented for the Ballistic Systems Division, U.S. Air Force and for ballsitic studies. The data appear, along with calculated ballistic data, in tabular form.

DD .5084. 1473

UNCLASSIFIED
Security Classification

#### UNCLASSIFIED

Security Classification

| KEY WORDS                             | LIN  | X A | LIN  | K E | Lil  | ik C |
|---------------------------------------|------|-----|------|-----|------|------|
|                                       | ROLE | WY  | ROLE | W¢  | ROLE | WT   |
| 1. Ballistics 2. Winds 3. Meteorology | *OLE | WY  | ROLE |     | ROLE | WT   |
|                                       |      |     |      |     |      |      |

#### INSTRUCTIONS

- 1. ORIGINATING ACTIVITY: Enter the same and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (corporate author) issuing the report.
- 2s. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whother "Restricted Date" is included. Marking is to be in accordance with appropriate security regulations.
- 2b. GROUP: Automatic downgrading is specified in DoD Directive 5200, 10 and Armod Forces Industrial Manual. Enter the group number. Aims, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete raport title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in pererthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- S. ATTHOR(8): Exter the name(s) of author(s) as shown on or in the report. Exter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.
- 6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.
- 7s. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.
- 76. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- 8s. CONTRACT OR GRANT NUMBER: If eppropriate, enter the applicable number of the contract or grant under which the report was written.
- \$5, &c, & \$d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, teak number, etc.
- 9e. ORIGINATOR'S REPORT RUMBER(8): Enter the official report number by which the document will be identified sed controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (either by the originator or by the sponeor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
  - "Qualified requesters may obtain copies of this report from DDC."
  - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
  - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through
  - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
  - (5) "All distribution of this report is controlled. Quelified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.

- SUPPLEMENTARY NOTES: Use for additional emplanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shell end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identies, such an equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

| KEY WORDS      | LIN         | K A         | LIN  | K B | LIN  | K C |
|----------------|-------------|-------------|------|-----|------|-----|
|                | ROLE        | WT          | ROLE | WT  | MOLE | WT  |
|                |             | }           | Į    | Ì   |      |     |
| 1. Ballistics  |             |             |      |     |      |     |
|                | Ì           |             |      |     |      |     |
| 2. Winds       |             |             | l    |     | l i  |     |
| 3. Meteorology |             |             |      |     | }    |     |
|                |             |             |      |     |      |     |
|                |             |             | 1    |     |      |     |
|                |             |             |      |     |      |     |
|                |             |             |      |     |      |     |
|                | ]           |             |      |     |      |     |
|                |             |             | İ    |     |      |     |
|                |             |             | İ    |     | 1    |     |
|                |             |             |      |     |      |     |
|                |             |             |      |     | 1 5  |     |
| ,              |             |             |      |     |      |     |
|                |             |             |      |     | 1    |     |
|                | NSTRUCTIONS | <del></del> |      |     |      |     |

- 1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defence activity or other organization (corporate author) issuing the report.
- 24. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordence with appropriate security regulations.
- 25. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armod Forces Industrial Manual. Exter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.
- 3. REPORT TITLE: Enter the complete report title in all capital letters. Titles is all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.
- 4. DESCRIPTIVE NOTES: If appropriate, eater the type of report, e.g., interim, progress, Summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.
- 5. AUTHOR(3): Enter the neme(s) of suthor(s) as shown on or in the report. Enter lest name, first name, middle initial. If military, show rank and branch of service. The same of the principal author is an absolute minimum requirement.
- 5. REPORT DATE: Enter the date of the report as day, month, year, or month, year, if more than one date appears on the report, use date of publication.
- 7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., outer the number of pages containing information.
- 7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.
- So. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.
- 2b, 2c, & 3d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.
- 9a. ORIGINATOR'S REPORT NUMBER(5): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.
- 9b. OTHER REPORT NUMBER(8): If the report has been assigned any other , sport numbers (either by the originator or by the sponsor), also enter this number(s).

- 10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:
  - "Qualified requesters may obtain copies of this report from DDC."
  - (2) "Foreign announcement and dissemination of this report by DDC is not authorized."
  - (3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shell request through
  - (4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through
  - (5) "All distribution of this report is controlled. Qualified DDC users shall request through

If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if knows.

- 11. SUPPLEMENTARY NOTES: Use for additional emplanatory notes.
- 12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual aummary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.

It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms or short phreses that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identies, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.

| Į | JN | IC1 | نك | S | LF | IE | J |
|---|----|-----|----|---|----|----|---|
|   |    |     |    |   |    |    |   |
|   |    |     |    |   |    |    |   |