※ 细化需求

🜣 整体目录

细化需求

- 1.整体设计
- 2.各个模块以及涉及到的函数
 - 2.1主模块
 - 2.2功能模块
 - 2.2.1创建图的邻接矩阵的存储 结构
 - 2.2.2浏览图中任一景点介绍
 - 2.2.3輸出所有景点
 - 2.2.4游客系统
 - 2.2.5管理员系统
 - 2.2.6查找游客所在景点与其他 景点的距离
 - 2.2.7查找游客指定的两个景点间的最短路径长度
 - 2.2.8修改景点信息
 - 2.2.9添加景点
 - 2.2.10删除景点
 - 2.2.11 添加道路
 - 2.2.12 删除道路
 - 2.2.13输出路线信息

ॐ 1.整体设计

为了结构清晰,将模块分为<mark>几个头文件</mark>来存放。

<first.h>头文件定义一些结构体和常量

ॐ 2.各个模块以及涉及到的函数

ॐ 2.1主模块

1 int main()

主要用于判断用户权限信息,以及主要的交互面板。

采用命令行的格式进行输出。

※ 2.2功能模块

🔖 2.2.1创建图的邻接矩阵的存储结构

1 void create(void)

采用文件的形式存入顶点和边的信息。

数据结构:图的邻接矩阵。

❖ 2.2.2浏览图中任一景点介绍

1 void introduct(void);

正常交互逻辑

※ 2.2.3输出所有景点

1 void showInfo(void);

算法: 循环输出

🔖 2.2.4游客系统

1 void Visiter(void);

条件变量进行判断是游客还是管理员

※ 2.2.5管理员系统

1 void Administrator(void);

<mark>条件变量进行判断</mark>是游客还是管理员

≫ 2.2.6查找游客所在景点与其他景点的距离

void DijkstraHeap(void);

算法: Dijkstra算法。目前初步定的优化方案是采用最小堆进行优化

🍑 2.2.7查找游客指定的两个景点间的最短路径长度

1 void Floyd(void);

算法:采用图的存储结构,搭配最短路径算法。

🔖 2.2.8修改景点信息

1 void modifyInfo(void);

指定景点进行修改信息,修改值。

挙 2.2.9添加景点

1 void addInfo(void);

在景点数组上进行扩容,然后增加景点的信息。

2.2.10删除景点

1 void delInfo(void);

通过输入景点的值,查找数组,然后删除指定数组的值。

这 2.2.11 添加道路

1 void addPath(void);

通过输入道路的值, 然后循环处理数组里面的结构, 最后添加道路成功。

🔖 2.2.12 删除道路

1 void delPath(void);

通过输入要删除道路的值,循环处理数组里面的结构,最后删除成功。

※ 2.2.13输出路线信息

void printPath(int[], int, int);

算法:**使用递归的方法**输出路线!

以上是本次校园导航系统的大致函数设计!