

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Робототехники и комплексной автоматизации

КАФЕДРА Системы автоматизированного проектирования (РК-6)

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине:

Методы математического моделирования сложных процессов и систем

Студент	Абидоков Рашид Ширамбиевич
Группа	PK6-11M
Тип задания	лабораторная работа
Тема лабораторной работы	Применение библиотек динамической
	компоновки для разработки программных
	реализаций вычислительных методов
Студент	Абидоков Р. Ш.
	подпись, дата фамилия, и.о.
Преподаватель	<u>Соколов А. П.</u>
	подпись, дата фамилия, и.о.
Опенка	

Оглавление

3a)	дание на лабораторную работу	. 3
Це	ль выполнения лабораторной работы	. 3
Вь	полненные задачи	. 3
1.	Аналитическое решение	. 4
2.	Описание программной реализации	. 4
3.	Графическое сравнение решений	. 6
4.	Вычисление максимально допустимых шагов интегрирования	. 7
5.	Вариант реализации решения задачи с интервально заданными	
	параметрами	. 8
Заг	ключение	.9

Задание на лабораторную работу

Тело, имеющее в начальный момент времени $T(0) = T_0$, поместили в среду, температура которой поддерживается неизменной и равна T_1 .

Экспериментально установлено, что при определенных упрощениях скорость изменения температуры тела пропорциональна разности температур тела и окружающей среды.

Требуемые для реализации численные методы: метод Эйлера, метод Хъюна.

Цель выполнения лабораторной работы

Цель выполнения лабораторной работы — получение практических навыков разработки и применения библиотек динамической компоновки на примере различных реализаций задачи численного решения ОДУ.

Выполненные задачи

- 1. По имеющейся математической модели в форме ОДУ получено аналитическое решение
- 2. На языке C++ написана программа, реализующая возможность численного решения ОДУ с использованием динамически подключаемых библиотек, реализующих методы Ньютона и Хойна. Обеспечена возможность подключения дополнительных методов решения
- 3. Проведено графическое сравнение методов Ньютона и Хойна с аналитическим решением
- 4. Вычислены максимально допустимые шаги интегрирования по времени для примененных численных методов
- 5. Предложен вариант доработки алгоритма для решения с заданием одного из параметров модели в интервальном виде

1. Аналитическое решение

Модель процесса представлена в виде ОДУ

$$\frac{dT(t)}{dt} = -\gamma(T(t) - T_1) \tag{1}$$

где $\gamma > 0$ — некоторый коэффициент пропорциональности,

T(t) — температура тела в момент времени t

 T_1 — температура окружающей среды

Аналитическим решением данного уравнения является

$$T(t) = T_1 + (T_0 - T_1)e^{-\gamma t}$$
 (2)

где T_0 — температура тела в начальный момент времени

2. Описание программной реализации

Исходный код программы разделен на файлы main.cpp, euler.cpp, heun.cpp, config.hpp и config.cpp. Файлы euler.cpp и heun.cpp являются реализациями методов Эйлера и Хойна соответственно и компилируются в динамические библиотеки euler.dll, heun.dll. Их сходный код приведен в Листингах 1 и 2.

Листинг 1. Метод Эйлера

```
#include <vector>
#include <utility>

using namespace std;

// Принимает функцию производной

extern "C" __declspec(dllexport)

vector<pair<double, double> >& solver(double (*der_func)(double), double y0, double begin, double end, unsigned n_steps) {

double step = (end - begin) / n_steps;

vector<pair<double, double> >& ret = *(new vector<pair<double, double> >());

double y_curr = y0;

for (unsigned i = 0; i <= n_steps; i++) {

ret.push_back(pair<double, double>(begin + i * step, y_curr));

y_curr += der_func(y_curr) * step;

};

return ret;

}
```

Листинг 2. Метод Хойна

```
#include <vector>
#include <utility>

using namespace std;

// Принимает функцию производной

extern "C" __declspec(dllexport)

vector<pair<double, double> >& solver(double (*der_func)(double), double begin, double end, unsigned n_steps) {

double step = (end - begin) / n_steps;

vector<pair<double, double> >& ret = *(new vector<pair<double, double> >());

double y_curr = y0;

double y_sh = y0;

for (unsigned i = 0; i <= n_steps; i++) {

ret.push_back(pair<double, double>(begin + i * step, y_curr));

y_sh = y_curr + step * der_func(y_curr);

y_curr += step / 2 * (der_func(y_curr) + der_func(y_sh));

};

return ret;
}
```

В main.cpp описана основная логика программы – чтение конфигурации из config.txt (в случае его отсутствия, создается файл по умолчанию), вызов решателей из подключаемых библиотек, запись полученных численных и аналитического результатов в выходной .csv-файл.

В свою очередь, config.hpp и config.cpp являются статической библиотекой, реализующей функционал работы с config-файлом.

Листинг 3. Структура config.txt

```
# Имена библиотек с решателями без .dll
       # В каждом файле должен быть определена функция vector<pair<double, double> >& solver(double (*)(double), doub
solv names=euler,heun
       # Тип задания коэффициента гамма математической модели
       # 1 для точного значения, 2 для интервала, 3 для M(gam) и D(gam)
       # Коэффициент гамма математической модели. Для gam_type=1 - одно число, для 2 и 3 - два числа через запятую
gam=0.1
       # Температура окружающей среды
T_s=25.
       # Начальная температура тела
T beg=150.
       # Начальное время
time_beg=0.
       # Конечное время
time end=100.
       # Желаемое количество шагов интегрирования
n steps=1000
       # Имя выходного .csv файла
out_file_name=out.csv
      # Разделитель в выходном файле
csv_dlm=,
```

В config.txt задаются имена используемых файлов решателей, параметры математической модели, имя выходного файла и его разделитель.

3. Графическое сравнение решений

Графики построены с использованием библиотеки matplotlib языка python. Здесь и в дальнейшем интервал интегрирования [0, 100] секунд. Приведенные графики построены с количеством шагов 100, шаг интегрирования 1 с для наглядной разницы между решениями. Остальные параметры по умолчанию (см. Листинг 3)

Рис 1.

Рис 2.

Как можно видеть, метод Хойна обеспечивает лучшую точность, нежели метод Эйлера.

4. Вычисление максимально допустимых шагов интегрирования

Расчеты проводились при помощи скриптов на языке python с использованием библиотек numpy и pandas. Интервал интегрирования везде одинаковый, изменялось количество шагов интегрирования. Для каждого случая вычислялась величина шага и следующая метрика, основанных на L2-норме:

$$Q(h) = \frac{1}{N_h} \left[\sum_{i=1}^{N_h} \left(\frac{T_{an_i} - T_{num_i}}{T_{an_i}} \right)^2 \right]^{\frac{1}{2}}$$
 (3)

т.е., фактически, значение Евклидовой длины вектора относительных ошибок, разделенное на размерность этого вектора.

Рис 3. Большой масштаб

Рис 3. Малый масштаб

Откуда видно, что для обеспечения точности порядка 5%, максимально допустимыми шагами интегрирования являются 3 секунды для метода Эйлера и порядка 5.5 секунд для метода Хойна соответственно.

5. Вариант реализации решения задачи с интервально заданными параметрами

Данный раздел является размышлениями на тему "что можно было бы сделать, получив на вход параметр, заданный в интервальном виде либо матожиданием и дисперсией".

Один из параметров задан интервалом. Например, $\gamma \in [\gamma_1, \gamma_2]$. В этом случае интерес может представлять интервал значений некоторой выходной функции $F(T(t,\gamma))$, где $T(t,\gamma)$ — решение исходного уравнения. Т.е. фактически задача будет представлять собой поиск $F_{min}(T(t,\gamma))$ и $F_{max}(T(t,\gamma))$, в простейшем случае просто минимальное и максимальное возможные значения $T(t,\gamma)$.

Здесь возможно применение методов оптимизации, к примеру, градиентных. Саму производную можно было бы вычислить численно, если предположить, что уравнение может быть интерполировано как по t, так и по γ .

Задаемся некоторым начальным приближением (t_0, γ_0) , численно решаем уравнение с различными γ вокруг γ_0 (кол-во зависит от выбранного выражения производной), находим градиент искомой ф-ии, сдвигаемся и т.д. до тех пор, пока не найдем min/max либо не упремся в границу.

Один из параметров задан математическим ожиданием и дисперсией. Т.е. задано распределение вероятности параметра (предполагается, что оно имеет вид нормального распределения). В этом случае может представлять интерес распределение вероятности некоторой выходной функции $F(T(t,\gamma))$.

В этом случае можно было бы выбрать некоторый интервал, например, $[M_{\gamma}-3\sigma_{\gamma},\ M_{\gamma}+3\sigma_{\gamma}]$ и, равномерно разбив его на участки, для каждого найти численное решение и значение искомой функции

$$F_i = F(T(t, \gamma_i)) \tag{4}$$

И получить таким образом распределение \hat{f}_F (предположив его вид, например, также нормальное распределение), если бы γ имела постоянную вероятность внутри выбранного интервала. Т.е. фактически у нас имелось бы правило, по которому можно было преобразовать исходное распределение f_γ и получить итоговое f_F , но для предложения конкретного алгоритма вопрос требуется изучить более подробно.

Заключение

Реализована программа, осуществляющая численное решение ОДУ и сравнение полученных решений с аналитическим. Показано, что метод Хойна обеспечивает лучшую по сравнению с методом Эйлера точность. Получен практический опыт использования динамических библиотек позднего связывания.

Найдены предельно допустимые шаги интегрирования по времени, составляющие 3 секунды для метода Эйлера и порядка 5.5 секунд для метода Хойна соответственно.

Приведены возможные способы решения задачи с интервально заданным параметром.