CS5014 Machine Learning

Lecture 2 Maths background review

Lei Fang

School of Computer Science, University of St Andrews

21 Jan 2021

So why this review session?

Maths is essential . . .

- for CS5014 (all other (data) science modules)
- we use a lot of maths
 - · rigorous and concise way of communicating results
 - help us understand why and why not algorithms work

Review some key concepts

- not complete; just a small subset
- set the level of math maturity we expect

Self-assessment for yourself

- find the weak or rusty area
- do self studies

So why this review session?

Maths is essential . . .

- for CS5014 (all other (data) science modules)
- we use a lot of maths
 - · rigorous and concise way of communicating results
 - help us understand why and why not algorithms work

Review some key concepts

- not complete; just a small subset
- set the level of math maturity we expect

Self-assessment for yourself

- find the weak or rusty area
- do self studies

So why this review session?

Maths is essential . . .

- for CS5014 (all other (data) science modules)
- we use a lot of maths
 - · rigorous and concise way of communicating results
 - help us understand why and why not algorithms work

Review some key concepts

- not complete; just a small subset
- set the level of math maturity we expect

Self-assessment for yourself

- find the weak or rusty area
- do self studies

Mathematics for machine learning

Linear algebra

- leap forward from scalar maths e.g. a + b = c
 - a, b, c are scalars: 1 + 2 = 3
 - a, b, c are vectors: $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

Calculus

- study of continuous (real-valued) functions (using approximation polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Mathematics for machine learning

Linear algebra

- leap forward from scalar maths e.g. a + b = c
 - a, b, c are scalars: 1 + 2 = 3
 - a, b, c are vectors: $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

Calculus

- study of continuous (real-valued) functions (using approximation polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Mathematics for machine learning

Linear algebra

- leap forward from scalar maths e.g. a + b = c
 - a, b, c are scalars: 1 + 2 = 3
 - a, b, c are vectors: $\begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Probability theory and statistics

- study of uncertainty: uncertainty is the norm
 - e.g. rain tomorrow? blood pressure measurement (reading error)?
- how to generalise your results
 - from one sample to the universe: vaccine trial

Calculus

- study of continuous (real-valued) functions (using approximation polynomial)
 - y = sin(x) is well approximated by y = x when $x \approx 0$
- useful when we do optimisation

Linear algebra: Basic concepts

- vectors
- norms and distances
- linear independence
- matrices, linear transformation
- matrix arithmetics
- rank, determinant, trace

Vector

A vector is a collection of n salars

- $a \in \mathbb{R}^n$, default option is column vector i.e. $n \times 1$
- represents a **displacement** from $\mathbf{0}$ to \mathbf{a} in \mathbb{R}^n

• e.g.
$$\mathbf{a} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 (or $\mathbf{a} = [2, 1]^T$ to save space)

experiment