

공공 자전거 데이터 분석

출퇴근 시간대 공공자전거 수요 예측

0. 목차

배경	01
탐색적 자료 분석 (EDA)	02
데이터 수집 및 전처리	03
모델 선정 및 분석	04
분석 결과 및 결론	05

1 배경

따릉이 소개

"서울시 공공자전거(따릉이)의 정확한 수요 예측 필요"

- 따릉이: 서울시의 무인 공공자전거 대여서비스
- 틈새 교통수단으로 자리 잡은 따름이 → 이용 건수의 절반이 출퇴근 시간대에 집중
- 이용자가 증가하면서 대여소의 효율성 문제 제기 → 정확한 수요 예측의 필요성

HOME > 뉴스 > 서울시 > 서울시

공공자전거 '따름이' 운영 효율성 지적

그러면서 "현재와 같은 이용률에서는 유지관리에 대한 적자운영으로 자전거 서비스 및 품질이 개선되기 어렵다"면서 "현재 따름이 구축과 운영을 유동인구 중심에서 실수요자 중심에 따른 위치 선정과 필요수량을 배치해야 한다"고 강조했다.

서울 '따릉이' 누적대여 3천만건 돌파했다...56% 출퇴근 이용

○ 이로운넷=양승희 기자 | ② 승인 2019.11.04 10:00 | ☞ 댓글 0

운영 4년차 데이터 분석해 4일 발표...166만명 회원, 6명 중 1명 가입 도심지 자전거도로 확충 필요, 외국인 관광 코스로도 주목

탐색적 자료 분석 (EDA)

연간 이용 현황 분석

"이용 횟수는 계절성 주기를 띄며 매해 상승함"

- 연도별로 이용 횟수는 매해 상승하며, 보관소도 확충되고 있다.
- 이용 횟수는 여름, 가을에 상승하고 겨울, 봄에 하강하는 계절성 주기를 띈다.

"출퇴근 시간대에 이용이 급증함"

- 출퇴근 시간대와 연관된 8시~9시, 18시~19시에 이용이 급증하는 경향을 보임
- 오전에 비해 오후에 평균 사용 시간이 높은 것을 볼 수 있음

) 탐색적 자료 분석 (EDA)

출 퇴근 시간대 운영 효율성 분석

"출 퇴근 시간대의 대여와 반납의 차이가 발생"

출퇴근 시간대 보관소 대여 및 반납 횟수

- 시간의 구간을 더 짧게 잡으면 더 큰 차이가 있을 것으로 예상됨
- 대여가 높은 보관소에 대해서 Paired-t test 결과 또한 유의미한 차이가 있는 것으로 나타남 (8시~9시 P-value : 1.36E-07 ...)

"대여가 높은 보관소는 대여,반납 순환이 이뤄지지 않음"

오후6시~7시 대여 상위 50개 보관소 자전거 유출 비율

(0, 0.25]

• 유출 비율을 (반납-대여)/(거치대 수)로 계산함

(-1, -0.75] (-0.75, -0.5] (-0.5, -0.25] (-0.25, 0]

• 대여 이용이 높은 보관소는 대여와 반납의 격차가 커 보다 정밀한 수요 예측 및 재배치 필요

탐색적 자료 분석 (EDA)

출 퇴근 시간대 자치구별 이용 현황 분석

서울시 따름이 대여소의 분포

"출퇴근 시간대에 특정 구의 이용 빈도가 높음"

자치구 별 출퇴근 시간대 이용횟수 및 대여소 수

- 거치대 수는 대여소 별로 5대 ~40대 사이로 차이가 있다.
- 출퇴근 시간대에 자전거를 가장 많이 사용하는 구는 영등포구이다.

강북구

관악구

광진구 구로구

금천구

동작구

1 함색적 자료 분석 (EDA)

자치구별 이용 현황 분석

"한강 근처 자전거 도로를 주변으로 반납 대여가 많음"

대여량 상위 10% 대여소

반납량 상위 10% 대여소

탐색적 자료 분석 (EDA)

자치구별 이용 현황 분석

"출근 시간대에는 직장, 지하철역 근처, 퇴근 시간대에는 지하철역 및 한강 근처에 반납 및 대여가 많음"

출근 시간대 이용 상위 20개 대여소

퇴근 시간대 이용 상위 20개 대여소

함색적 자료 분석 (EDA)

날씨와의 연관성 분석

"따릉이 이용량과 기온 사이의 연관성을 볼 수 있음"

따릉이 이용량과 평균기온 추이

함색적 자료 분석 (EDA)

연구 범위 설정

최근 1년 간의 데이터 (2018년 11월 ~ 2019년 10월)

출퇴근 시간대 (7시~9시 & 18시~20시)

영등포구 보관소 데이터 (총 89개의 보관소) 날씨 데이터 (기온, 습도, 강수량, 미세먼지, 풍속)

데이터 수집 및 전처리

데이터 수집

	Α	В	С	D
1	자전거번호	대여일시	대여 대여소번호	대여 대여소명
2	SPB-21062	2019-09-03 8:44	646	장한평역 1번출구 (국민은행앞)
3	SPB-20126	2019-09-04 0:10	1372	KEB은행 고대점
4	SPB-00958	2019-09-04 0:41	1337	돈암성당 옆
5	SPB-06836	2019-09-04 8:48	529	장한평역 8번 출구 앞
6	SPB-16611	2019-09-05 8:46	646	장한평역 1번출구 (국민은행앞)
7	SPB-18891	2019-09-05 8:51	529	장한평역 8번 출구 앞
8	SPB-22839	2019-09-09 8:33	646	장한평역 1번출구 (국민은행앞)
9	SPB-16146	2019-09-10 8:41	646	장한평역 1번출구 (국민은행앞)
10	SPB-18250	2019-09-10 8:51	529	장한평역 8번 출구 앞

	Α	В	С	D	Е	F	G	Н
1	구	ID	대여소명	대여소주소	lat	lon	기준시작일자	거치대수
2	마포구	101	101. (구)합	서울특별시	37.54956	126.9058	2015-09-06 23:40	5
3	마포구	102	102. 망원역	서울특별시	37.55565	126.9106	2015-09-06 23:42	20
4	마포구	103	103. 망원역	서울특별시	37.55495	126.9108	2015-09-06 23:43	14
5	마포구	104	104. 합정 ⁹	서울특별시	37.55063	126.915	2015-09-06 23:44	13
6	마포구	105	105. 합정 ^Q	서울특별시	37.55001	126.9148	2015-09-06 23:45	5
7	마포구	106	106. 합정 ^Q	서울특별시	37.54865	126.9128	2015-09-06 23:46	10
8	마포구	107	107. 신한은	서울특별시	37.55751	126.9185	2015-09-06 23:47	5
9	마포구	108	108. 서교등	서울특별시	37.55275	126.9186	2015-09-06 23:51	10
10	마포구	109	109. 제일팀	서울특별시	37.54769	126.92	2015-09-07 1:27	10

서울특별시 공공자전거 대여정보 [서울 열린데이터 광장]

서울특별시 공공자전거 대여소 정보 [서울 열린데이터 광장]

4	Α	В	С	D	E
1	날짜	지점	평균기온(℃)	최저기온(℃)	최고기온(℃)
2	2020-05-01	108	20.2	16.4	26.2
3	2020-05-02	108	20.3	18	23.9
4	2020-05-03	108	21.8	17	27.4
5	2020-05-04	108	20.2	14.8	25.3
6	2020-05-05	108	16	13.1	19.3
7	2020-05-06	108	19.4	11.1	27.6
8	2020-05-07	108	20.7	14.9	26.5
9	2020-05-08	108	19.9	14.3	27.3
10	2020-05-09	108	14.2	12.7	16.8

	Α	В	С	D	E	F
1	측정일자	권역코드	권역명	측정소코드	측정소명	미세먼지(µg/m³)
2	20180101	100	도심권	111121	중구	32
3	20180101	104	동남권	111273	송파구	52
4	20180101	104	동남권	111262	서초구	49
5	20180101	104	동남권	111261	강남구	34
6	20180101	103	서남권	111301	양천구	37
7	20180101	103	서남권	111281	금천구	39
8	20180101	103	서남권	111251	관악구	38
9	20180101	103	서남권	111241	동작구	40
10	20180101	103	서남권	111231	영등포구	47

	A	В	С	D	E	F
1	format: day	hour	value locat	tion:60_127	Start : 201	81101
2	1	0	50			
3	1	100	44			
4	1	200	36			
5	1	300	32			
6	1	400	29			
7	1	500	29			
8	1	600	32			
9	1	700	38			
10	1	800	45			

기온 데이터 (서울시/일별) [기상청 기상자료개방포털] 미세먼지 농도 데이터 (구별/일별) [서울 열린데이터 광장] 습도/강수량/풍속 데이터 (구별/시간별) [기상청 기상자료개방포털]

🤰 데이터 수집 및 전처리

데이터 전처리

대여 정보 데이터를 바탕으로 대여 및 반납 대수 집계

2018년 11월 1일 ~ 2019년 10월 31일 사이의 대여 정보의 대여날짜, 시각 대여소를 바탕으로 대여 및 반납 대수를 집계함

위치 정보를 기반으로 대여소와 기후 데이터를 Join

2018년 11월 1일 ~ 2019년 10월 31일 사이의 기후관련 데이터를 대여소의 지역, 위치 정보와 날씨데이터의 위치 정보를 바탕으로

```
# select "borrow" data that has time between 7,9 and 18,20, 4개 구 선택
bo = data['borrow_date'].apply(lambda x: xif str(x.hour)=='8' or str(x.hour)=='18' or str(x.hour)=='19' else np.nan)
.dropna().index
data_borrow = data_iloc[bo,:][['borrow_date','borrow_id','number','weekdate']]
data_borrow = data_borrow[data_borrow['borrow_date'].apily(lambda x: str(x.hour)+'00')
borrow_hour = data_borrow['borrow_date'].apply(lambda x: str(x.year))
borrow_wonth = data_borrow['borrow_date'].apply(lambda x: '0'+str(x.month) if x.month < 10 else str(x.month))
borrow_day = data_borrow['borrow_date'].apply(lambda x: '0'+str(x.day) if x.day<10 else str(x.day))
data_borrow['time']= borrow_hour
data_borrow['date']=borrow_para+borrow_month+borrow_day
data_borrow.rename(columns = ('borrow_id' : 'id'), inplace = True)
data_borrow.drop(['borrow_date'],axis='columns',inplace=True)

# groud by borrow_id and time and counts
grouped1 = data_borrow_found('id, 'date', 'weekdate', 'time'])['number'].count()
borrow = pd.DataFrame(grouped1)
borrow.columns = ['count']
borrow.columns = ['count']
borrow
```

```
for filepath in glob.iglob('r_gu/*.csv'):
   df = pd.read_csv(filepath)
   indicator = filepath[-6]
   count_row = df.shape[0]
   if count_row != 1460:
      print(filepath, 'row number not 1460')
   for index, row in df.iterrows():
      d = day_count(int(row.iloc[3]))
      g = d_gu[filepath[7:-8]]
      t = d_time[int(row.iloc[1])]
      value = row.iloc[2]
      if indicator == '1':
          main.loc[idx, '습도'] = value
      elif indicator == '2':
          main.loc[idx, '강수량'] = value
      elif indicator == '4':
          main.loc[idx, '풍속'] = value
          print('indicator error')
```

🤰 데이터 수집 및 전처리

데이터 전처리

① 대여 이력 데이터 결측치 제거

대여 이력 데이터 중 2019년 9월 7일의 데이터가 없음. 그 시기의 태풍 링링의 영향으로 보이며 제거.

② 날씨 데이터 결측치 전날 데이터로 대체

미세먼지 데이터에 총 10일 분량의 데이터가 없음. 미세먼지 농도는 연속적이라고 가정, 전 날의 데이터로 대체.

③ 대여/반납 횟수 이상치 제거

보관소 별 모델을 학습시키면서, 모델의 성능을 높이기 위해 양극단의 $mean \pm 3 * \sigma$ 밖의 값을 제거. (이상치 비율 1.04%) 이는 공휴일 혹은 지역 내 행사 등으로 발생.

최종 데이터 완성

Row: 129940 Variables: 9

Α	В	С	D	E	F	G	Н	1	J	K
	대여소ID	구	일자	요일	시간	기온	습도	강수량	풍속	미세먼지
1	200	영등포구	20181101	4	700	8.4	39	0	1.3	43
2	200	영등포구	20181101	4	800	8.4	42	0	1.1	43
3	200	영등포구	20181101	4	1800	8.4	70	0	2.1	43
4	200	영등포구	20181101	4	1900	8.4	75	0	2.4	43
5	200	영등포구	20181102	5	700	10.6	40	0	1.8	46
6	200	영등포구	20181102	5	800	10.6	38	0	2	46
7	200	영등포구	20181102	5	1800	10.6	78	0	1.5	46
8	200	영등포구	20181102	5	1900	10.6	75	0	1.2	46
9	200	영등포구	20181103	6	700	11.2	49	0	2.1	57
10	200	영등포구	20181103	6	800	11.2	49	0	1.6	57
11	200	영등포구	20181103	6	1800	11.2	81	0	0	57
12	200	영등포구	20181103	6	1900	11.2	73	0	1.4	57
13	200	영등포구	20181104	7	700	11.6	43	0	2.5	48
14	200	영등포구	20181104	7	800	11.6	45	0	1.9	48
15	200	영등포구	20181104	7	1800	11.6	89	0	1.6	48
		~		_				-		

▲ 모델 선정 및 분석

모델 선정

변수 설정

독립변수	정량형 변수	기온(℃), 습도(%), 강수량(mm), 풍속(m/s), 미세먼지 농도(μg/㎡)
	범주형 변수	요일(월 ~ 금), 시간(1 hour)
종속변수	따릉이 대여량(건수) 따릉이 반납량(건수)	

예측 모델

- 회귀 (Regression): Ridge, Lasso, Elastic Net, Polynomial Regression, Support Vector Regression
- 분류 (Classification): Random Forest, Xgboost, Logistic Regression

┗ 분석 결과 및 결론

분석 결과 & 예측 성능

"Ridge와 Xgboost 모델의 성능이 높게 나타남"

MAE (Mean Absolute Error)

	출근시간대 대여	출근시간대 반납	퇴근시간대 대여	퇴근시간대 반납
Ridge	1.62	1.71	2.63	2.13
Lasso	1.79	1.94	2.78	2.21
Elastic Net	1.78	1.98	2.79	2.21
Polynomial Regression	1.67	1.71	3.19	2.23
Logistic Regression	1.86	2.02	3.1	2.51
Random Forest	1.81	1.84	3.13	2.37
Xgboost	1.78	1.9	3.08	2.36

┗ 분석 결과 및 결론

분석 결과 & 예측 성능

"기온과 습도의 영향력이 가장 큰 것으로 나타남"

Random Forest

feature importances temp hum : pre : wind : dust : weekdate_1 weekdate 2 weekdate 3 weekdate 4 weekdate 5 time 700 time_800 0.00 0.05 0.10 0.15 0.20 0.25 0.30

Xgboost

🕻 🧼 분석 결과 및 결론

분석 결과 & 예측 성능

"사용량이 높은 보관소의 예측 성능이 떨어짐"

7 8 9 10 11 12 13 14 15 16 17 18 19 20

🕻 🧼 분석 결과 및 결론

분석 결과 & 예측 성능

"반납 및 대여량의 표준 편차가 큰 대여소의 예측 성능이 떨어짐"

5 분석 결과 및 결론

시사점 & 추후 연구

"교통 시설, 주택지, 회사 밀집 지역으로 대여소 분류를 통한 모델 정밀화"

주거지역을 중심으로 예측이 잘되는 보관소가 분포 출근시간 반납↓ 퇴근시간 대여↓

회사 밀집 지역을 중심으로 예측이 안되는 보관소가 분포 출근시간 반납 ↑ 퇴근시간 대여 ↑

