NightScape Recommender

Content

01

Introduction and Background

02

Data and Project Overview

03

Model Development and Evaluation

04

Future Outlook and Conclusion

Enhancing your Late-Night Dining Experience

Addressing the Midnight Hunger Challenge

Late-night dining and exploration can be a challenge, especially when you're hangry and struggling to find a restaurant that fits your preferences.

Nightscape Recommender is our response to this common dilemma. By leveraging advanced recommendation techniques, we're here to guide you to restaurants that not only stay open late but also match your culinary preferences. No more wandering around hungry—let Nightscape Recommender be your guide to a delightful night out.

"Make late-night dining as seamless as ordering pizza, but with more sophisticated algorithms and fewer pineapple debates."

Data at the Heart of Recommendations

Data Prep

Yelp Business Data

State wise Distribution

Arizona's Nightlife

Exploratory Data Analysis

Data Preparation

Request:

- We want to find the **best night time restaurant** in Arizona.
- Build a recommendation system with content based modeling.

Data Pre-process:

- Find out the night time restaurants.
- Do the feature selection for the model building.

Data Filtering Process

yelp_academic_dataset_business

- 1. Selection of Arizona-based businesses.
- 2. Identifying operational businesses.
- 3. Categorizing nighttime enterprises.
- 4. Determining businesses operational post 10 pm.
- 5. Preprocessed list of 190 restaurants.

yelp_academic_dataset_review

- 6. Compilation of 40,000 reviews across these restaurants.
- 7. Extraction of top 10 valuable reviews per restaurant.
- 8. Final dataset comprises 1,880 reviews.

Categories Chosen (word cloud)

01

Nightlife Categories

Non Nightlife Categories

Topic Modeling (50 Topics)

Intertopic Distance Map

Top-30 Most Salient Terms

Feature Selection

01

Categories

Ex. Restaurants, Sports, Nightlife, Bars 02

Attributes

Ex. Alcohol, HappyHour, WiFi, OutdoorSeating

03

Review

Ex. Great place to meet friends for a meal, and maybe some darts...

04

Topic Modeling - LDA

Ex. 'place', 'whiskey', 'cheese', 'want', 'high', 'check', 'favorite', 'cowpony', 'apple', 'review'

Recommendation Algorithm

Content Based Recommendation

Imagine this: It's late at night, and your stomach grumbles with hunger. You find yourself craving the perfect slice of pizza to satisfy your nocturnal cravings. Suddenly, a recommendation pops up, suggesting pizzas that not only match your taste but also understand your late-night pizza preferences. How did they know?

Enter the content-based recommendation algorithm, the Midnight Maestro of pizza cravings. based modeling

Why Content Based Recommenation

Independence from User-Item Interactions:

- Unlike nosy neighbors who peek into your personal preferences, contentbased methods respect your privacy.
- They focus on understanding the inherent characteristics of each item.

Flexibility and Adaptability:

 These algorithms are incredibly versatile, capable of adapting to various types of items or content.

Why Content Based Recommendation

Reduced Information Overload:

• By analyzing the key features or attributes of each item, they streamline the recommendation process, even in complex and diverse datasets.

Transparency and Explainability:

 Content-based systems offer clear insights into why a particular item is recommended to you.

Mitigation of Data Sparsity:

 They rely on the intrinsic properties of items, rather than extensive user-item interaction data, making them well-suited for scenarios where traditional collaborative filtering approaches may struggle.

Who/What are they?

Code Snippet

```
import numpy as np
from sentence_transformers import SentenceTransformer
from sklearn.decomposition import PCA
from sklearn.metrics.pairwise import cosine similarity
# Encode text using SentenceTransformer
X = np.array(data.text)
text data = X
model = SentenceTransformer('distilbert-base-nli-mean-tokens')
embeddings = model.encode(text_data, show_progress_bar=True)
embed data = embeddings
X = np.array(embed data)
# Perform PCA
n comp = 5
pca = PCA(n components=n comp)
pca.fit(X)
pca data = pd. DataFrame(pca.transform(X))
# Compute cosine similarity matrix
cos_sim_data = pd. DataFrame(cosine_similarity(pca_data))
```


Explanation

Text Encoding: Prepare for your night out with ease! Our encoding model acts as your guide, translating reviews into personalized maps to your ideal destination. It's your nightlife GPS!

Dimensionality Reduction: In the midst of nightlife's chaos, PCA acts as your **guide**, sifting through the noise to spotlight the main attractions. It's like zooming in on the city's excitement, capturing its vibrant essence without the overwhelm

Cosine Similarity: As you explore various recommendations, cosine similarity serves as your **compass,** pointing out the similarities between options. The closer they align, the better they match your nightlife preferences. It's like finding your tribe in the bustling crowd!

Building Similarity Matrix: Imagine navigating the streets, connecting glowing storefronts and lively venues. Each review pair forms a link, illuminating potential paths. The similarity matrix becomes your **roadmap**, guiding you through choices and uncovering hidden gems.

Cosine Similiarity Matrix

Cosine Similiarity Matrix

Results

Recommendations for watched business: IBT's

	Watched Business	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4	Recommendation 5
0	IBT's	The Mint	Frog & Firkin	Kon Tiki Restaurant & Lounge	Club Congress	Danny's Baboquivari Restaurant & Lounge

Recommendations for watched business: Thunder Canyon Brewery

	Watched Business	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4	Recommendation 5
9	Thunder Canyon Brewery	Beer Garden At Reilly Craft Pizza	Dillinger Brewing Company	Arizona Beer House	Crooked Tooth Brewing	Casa Marana Craft Beer + Wine

Recommendations for watched business: El Berraco

	Watched Business	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4	Recommendation 5
0	El Berraco	Bob Dobbs	Perche' No Italian Bistro	Bar Passé	Primo with Patio Dining	Trident Grill II

Recommendations for watched business: Button Brew House

	Watched Business	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4	Recommendation 5
0	Button Brew House	Barrio Brewing	Noble Hops Gastropub	Gentle Ben's Brewery	Bar 77	Crooked Tooth Brewing

Recommendations for watched business: Empire Pizza & Pub

	Watched Business	Recommendation 1	Recommendation 2	Recommendation 3	Recommendation 4	Recommendation 5
0	Empire Pizza & Pub	Casa Marana Craft Beer + Wine	Sauce Pizza & Wine	Sauce Pizza & Wine	Magpies Gourmet Pizza	Sauce Pizza & Wine

Future Outlook and Conclusion

Future Enhancements of the Recommendation System

01	Expanding the dataset- To include more businesses and address Sparsity/Cold Start issues	05	Integrating with business listing/review APIs- Keep recommendations fresh with new user-generated content
02	Improve profiling and collaborative filtering- by collecting actual user feedback data	06	Weighting different features- Text, categories and attributes to refine recommendations
03	Experimenting with deep learning models- RNNs on review texts for topic modeling	07	Adding explanations to recommendations- Improve transparency and trust
04	Developing a hybrid content- collaborative approach- Leverage both business profiles and user patterns	08	A/B testing- different algorithms and parameter settings on live user traffic to further optimize the system

仑

Posted by u/p_syche 10 months ago =

c'mon Netflix recommendation algorithm, what did I do to you???

20 APRIL

Comedy

Fantasy

Rom

A rebellious vampire with a broken tooth falls for a shy dentist on the streets of Kolkata but will human and mystical forces keep them apart?

To Summarize, estimates of Datasets

To Summarize,

We started with a large dataset of restaurants and reviews, which we carefully filtered and processed and combined multiple sources

We built a content-based recommendation engine that suggests similar businesses to users based on these topic profiles modeled on the common themes and keywords in user reviews

We demonstrated how our system works and addressed challenges like cold starts through randomization and explored the limitations, challenges and enhancements

In Conclusion...

- Moving forward, the system can be improved through additional data, user feedback, and more sophisticated algorithms. With continued refinement, it has strong potential to meaningfully impact how residents and visitors explore Arizona's vibrant nightlife scene.
- By surfacing new and interesting dining and entertainment options tailored to individual tastes, the recommendation system aims to reinforce Arizona's reputation as a top destination for a fun and engaging night out on the town.

Thanks!

Do you have any questions?

