1 Problema

O problema a seguir é o *Codeforces 632C*, do *Educational Codeforces Round 9*. Disponível em https://codeforces.com/problemset/problem/632/C.

Problema 1. You're given a list of n strings a_1, a_2, \ldots, a_n . You'd like to concatenate them together in some order such that the resulting string would be lexicographically smallest.

Given the list of strings, output the lexicographically smallest concatenation.

Input

The first line contains integer n — the number of strings $1 \le n \le 5 \cdot 10^4$.

Each of the next n lines contains one string at $(1 \le |a_i| \le 50)$ consisting of only lowercase English letters. The sum of string lengths will not exceed $5 \cdot 10^4$.

Output

Print the only string a — the lexicographically smallest string concatenation.

Solução. Primeiro, precisamos definir uma relação de ordem importante. Seja Ω^* o alfabeto de palavras finitas contendo apenas as 26 letras minúsculas do alfabeto latino (exceto a palavra vazia), e denote por \oplus : $(\Omega^*)^2 \to \Omega^*$ como a operação de concatenação.

Lema 1.1. A relação \prec definida em Ω^* por

$$a \prec b \iff a \oplus b <_L b \oplus a$$

(em que $<_L$ é a ordem lexicográfica tradicional) é uma relação de ordem estrita em Ω^* .

Prova da Afirmação. Interprete uma string em Ω^* como um número em base-26, isto é, dada a função única função monótona (com relação à ordem lexicográfica) $\eta: \{'a', \ldots, 'z'\} \to \{0, \ldots, 25\}$ podemos construir a (única) bijeção monótona (isomorfismo de ordem) $f: \Omega^* \to \mathbb{N}$ dada recursivamente por

$$f(\alpha) = \eta(\alpha) \text{ se } \alpha \in \{'a', \dots, 'z'\}$$

$$f(\alpha \oplus \beta) = 26f(\alpha) + \eta(\beta) \text{ para todo } \beta \in \{'a', \dots, 'z'\}$$

Então para todos $\alpha, \beta \in \Omega^*$, vale $f(\alpha \oplus \beta) = 26^{|\beta|} f(\alpha) + f(\beta)$. Portanto:

$$\alpha \prec \beta \iff \alpha \oplus \beta <_L \beta \oplus \alpha$$

$$\iff 26^{|\beta|} f(\alpha) + f(\beta) < 26^{|\alpha|} f(\beta) + f(\alpha)$$

$$\iff \frac{f(\alpha)}{26^{|\alpha|} - 1} < \frac{f(\beta)}{26^{|\beta|} - 1}$$

Isso já mostra trivialmente a assimetria de \prec . Por fim, podemos agora provar a transitividade de \prec : suponha que $\alpha \prec \beta$ e $\beta \prec \gamma$: então $\frac{f(\alpha)}{26^{|\alpha|}-1} < \frac{f(\beta)}{26^{|\beta|}-1} \in \frac{f(\beta)}{26^{|\beta|}-1}$, e segue que

$$\frac{f(\alpha)}{26^{|\alpha|}-1}<\frac{f(\gamma)}{26^{|\gamma|}-1}$$

pela transitivade da ordem em \mathbb{Q} . Logo $\alpha \prec \gamma$, e \prec é transitiva. Podemos concluir que \prec é ordem estrita em Ω^* .

Defina agora \leq como a extensão de \prec para o caso da igualdade: $\alpha \leq \beta \iff \alpha \prec \beta$ ou $\alpha = \beta$. Temos então a afirmação principal desse problema:

Teorema 1.1. (Afirmação principal) Sejam $\alpha_1, \ldots, \alpha_n \in \Omega^*$. Seja τ uma permutação tal que $\alpha_{\tau(1)} \preceq \alpha_{\tau(2)} \preceq \ldots \preceq \alpha_{\tau(n)}$. Então a menor (lexicograficamente) soma (concatenação) dessas n palavras, dentre todas as ordens possíveis, é aquela feita respeitando a ordem \prec :

$$\min_{\sigma} \bigoplus_{1 \leq i \leq n} \alpha_{\sigma(i)} = \bigoplus_{1 \leq i \leq n} \alpha_{\tau(i)}$$

Lema 1.2. Sejam $b, b' \in \Omega^*$. Então $b <_L b'$ implica que para todas as palavras $a, c \in \Omega^* \cup \{\epsilon\}$ (em que ϵ é a palavra vazia)

$$a \oplus b \oplus c <_L a \oplus b' \oplus c$$

Prova do teorema principal. Suponha que o valor mínimo ocorre para uma permutação $\sigma \neq \tau$. Seja i o maior índice tal que $\sigma(j) = \tau(j)$ para todo $1 \leq j \leq i$. Como $\sigma \neq \tau$ temos $i \neq n$, e também $i \neq n-1$, pois se duas permutações de n elementos coincidem em n-1 pontos, coincidem também no último.

Assim, segue imediatamente que pela definição de i que $\tau^{-1}(\sigma(i+1)) > i+1$ (se fosse igual a i+1, teríamos uma subsequência ainda maior de posições coincidentes entre as permutações). Logo, pela ordenação gerada por τ , concluímos que $\alpha_{\sigma(i+1)} \geq_L \tau(i+2)$. O mesmo vale para todas as outras posições maiores que i, com exceção da pré-imagem de $\tau(i+1)$ por σ , a qual, é claro, é maior ou igual a i+2.

Seja $j = \sigma^{-1}(\tau(i+1))$. Então

$$\alpha_{\sigma(k)} \succeq (\alpha_{\sigma(j)} = \alpha_{\tau(i+1)}) \implies \alpha_{\sigma(k)} \oplus \alpha_{\tau(i+1)} \ge_L \alpha_{\tau(i+1)} \oplus \alpha_{\sigma(k)}$$

para todo i < k < j. Porém pelo Lema 1.2 isso implica na seguinte sequência de desigualdades:

$$\left(\bigoplus_{1\leq k\leq n}\alpha_{\sigma(k)}\right) = \left(\bigoplus_{1\leq k\leq j-2}\alpha_{\sigma(k)}\right) \oplus \left(\alpha_{\sigma(j-1)} \oplus \alpha_{\tau(i+1)}\right) \oplus \left(\bigoplus_{j+1\leq k\leq n}\alpha_{\sigma(k)}\right) \\
\geq_L \left(\bigoplus_{1\leq k\leq j-2}\alpha_{\sigma(k)}\right) \oplus \left(\alpha_{\tau(i+1)} \oplus \alpha_{\sigma(j-1)}\right) \oplus \left(\bigoplus_{j+1\leq k\leq n}\alpha_{\sigma(k)}\right) \\
\geq_L \dots \\
\geq_L \left(\bigoplus_{1\leq k\leq i}\alpha_{\sigma(k)}\right) \oplus \left(\alpha_{\tau(i+1)} \oplus \alpha_{\sigma(i+1)} \oplus \alpha_{\sigma(i+2)} \oplus \dots \oplus \oplus \alpha_{\sigma(j-1)}\right) \oplus \left(\bigoplus_{j+1\leq k\leq n}\alpha_{\sigma(k)}\right) \\
\text{usando a definição de } i \left(\bigoplus_{1\leq k< i+1}\alpha_{\tau(k)}\right) \oplus \left(\bigoplus_{i+1\leq k< n, \ k\neq j}\alpha_{\sigma(k)}\right)$$

e portanto após o deslocamento de $\alpha_{\tau(i+1)}$ para seu devido lugar, a i+1-ésima posição, obtemos uma nova permutação σ' que coincide com τ nas i+1 primeiras posições, em vez de apenas nas i primeiras, e que produz uma concatenação lexicograficamente menor ou igual àquela de σ .

Logo, é evidente que repetindo esse processo n-i vezes obteremos a permutação τ , e uma sequência decrescente (lexicograficamente) de somas (concatenações). Como a permutação σ foi **arbitrária** temos que para toda permutação σ

$$\bigoplus_{1 \le i \le n} \alpha_{\sigma(i)} \ge_L \bigoplus_{1 \le i \le n} \alpha_{\tau(i)}$$

e portanto

$$\bigoplus_{1 \le i \le n} \alpha_{\tau(i)} = \min_{\sigma} \bigoplus_{1 \le i \le n} \alpha_{\sigma(i)}$$

como queríamos demonstrar.