Cluster Improvement on Features from Neural Network

By:

Sai Kiran Putta

Dataset

Experimentation has been done on Human Gender data. Features include:

Frequency – Mean, SD, Median, Q25, Q75, Centroid, Peak

Fundamental Freq – Mean, SD, Median, Max, Min

Dominant Freq – Mean, Min, Max, range

Modulation Index

Skewness

Kurtosis

Label - Male or Female

Scope of the project

- > Run Kmeans on original data, features from Neural Networks and compare them.
- >Run more experiments. They are as follows:
 - Create 10% of data as outlier for one feature. Rerun above step
 - Create 10% of data as outlier for all features. Rerun above step
 - Mislabel 10% of targets (Can Neural Network handle it?)
 - Mislabel 50% of targets

Primary Metrics

Cluster Purity:

Sum of Maximum class in each cluster / Total Number of obs Value ranges from 0 – 1

Improvement:

How well off are we as compared to original Purity.

((Current_purity/Original_purity)-1) * 100

Value ranges from 0 – 100%

Outlook of data - This is what we are dealing with

PCA on the original features

Classes are overlapping. Not in a great position to cluster both classes properly.

Cluster Purity: 0.65

Is there a way to seperate the data space?

Here come Neural Networks!

Let's change the underlying structure of data using Neural Networks!

Features:

We extract the value out of the Activation Function for all the neurons in the network.

Neural Network and Kmeans settings

Since we have 2 classes we are assuming k should be 2

- >With a little trail and error, here are our hyper-parameters.
- Learning Rate 0.01

Activation Function – Tanh

Epochs – 15

<u>Hidden Layer and Neurons</u> – Variable

Changing Feature Space

Purity Comparison

The best purity is obtained by a Neural Network with 6, 2 as Hidden Layer setting with purity – 0.97

A significant increase from 0.65!

Result Summary

Experiment – 1 10% of data into outlier for one feature

Experiment1 – Purity Comparison

The best purity is obtained by a Neural Network with 2, 1 as Hidden Layer setting with purity – 0.87

Experiment1 - Result Summary

NN Improvement summarization on 10% outliers on single feature

Experiment – 2 10% of data into outlier for all features

Experiment2 – Purity Comparison

The best purity is obtained by a Neural Network with 2, 1 as Hidden Layer setting with purity – 0.8

Experiment2 – Result Summary

Experiment – 3 10% of mislabels

Experiment3 – Purity Comparison

The best purity is obtained by a Neural Network with 1, 2 as Hidden Layer setting with purity – 0.87

Experiment3 – Result Summary

Experiment – 4 50% of mislabels

Experiment4 - Purity Comparison

Neural Network doesn't do well when big number of targets are mismatched.

The best purity we obtained is 0.52 for a Neural Network setting 0,1

But it still leads by 0.01!

Experiment4 – Result Summary

For better results apply Neural Networks somehow!

Any Questions?

Thank
you :