Introduction to Logic for Computer Science

Spring 2025

Assignment 3 (Deadline: 6:00pm on 30 May 2025)

Prof Hongseok Yang

Submit your solutions in KLMS. (Reminder: We adopt a very strict policy for handling dishonest behaviours. If a student is found to copy answers from fellow students or other sources in his or her homework submission, she or he will get F.)

- 1. In this question we work with first-order logic without equality.
 - (a) Consider a signature σ containing only a binary relation symbol R. For each positive integer n, show that there is a satisfiable σ -formula F_n such that every model \mathcal{A} of F_n has at least n elements. (10 points)
 - (b) Consider a signature σ containing only unary predicate symbols P_1, \ldots, P_k . Show that any satisfiable σ -formula has a model with at most 2^k elements. (10 points)
- 2. Express the following by formulas of first-order logic, using predicate H(x) for "x is happy", R(x) for "x is rich", G(x) for "x is a graduate", and C(x,y) for "y is a child of x".
 - (a) Any person is happy if all their children are rich.
 - (b) All graduates are rich.
 - (c) Someone is a graduate if she or he is a child of a graduate.
 - (d) All graduates are happy.

Use first-order resolution (i.e. unification-based resolution) to show that (d) is entailed by (a), (b), and (c). Indicate the substitutions in each resolution step.

(20 points)

3. Give an example of a finite set of clauses F in first-order logic such that $Res^*(F)$ is infinite.

(20 points)

4. Let σ be a fixed signature with at least one constant symbol. Professor Long claims that given closed formulas F and G over σ in Skolem form, if every Herbrand model of F over σ is a Herbrand model of G, then $F \models G$. Is Professor Long correct? Justify your answer.

(20 points)

- 5. A closed formula (i.e., formula without free variables) is in the class $\exists^* \forall^*$ if it has the form $\exists x_1 \dots \exists x_m \forall y_1 \dots \forall y_n F$, where F is quantifier-free and $m, n \geq 0$.
 - (a) Prove that if a closed $\exists^*\forall^*$ -formula over a signature with no function symbols has a model, then it has a finite model.

(6 points)

(b) Suggest an algorithm for deciding whether a given closed $\exists^*\forall^*$ -formula over a signature with no function symbols has a model.

(6 points)

(c) A closed formula is in the class \exists^* if it has the form $\exists x_1 \dots \exists x_m F$, where F is quantifier-free and $m \geq 0$. Prove that the validity problem for the class of closed \exists^* -formulas that may mention function symbols is undecidable.

(8 points)