PERTEMUAN 12

LIMIT DAN FUNGSI KONTINU

A. TUJUAN PEMBELAJARAN

Setelah mempelajari materi ini, mahasiswa mampu menguasi materi limit dan fungsi kontinu dalam matematika dan kegunaannya.

B. URAIAN MATERI

1. Pengertian Limit

Konsep limit mempunyai peranan yang sangat penting di dalam kalkulus dan berbagai bidang matematika. Sehingga ini sangat perlu untuk dipahami. Konsep Limit adalah ide sentral yang membedakan kalkulus dari aljabar dan trigonometri. Sangat penting untuk menemukan garis singgung ke kurva atau kecepatan Sebuah Objek.

Dalam bab ini kita mengembangkan batas, pertama secara intuitif dan kemudian secara formal. Kami menggunakan batasan untuk menggambarkan cara fungsi f bervariasi. Beberapa fungsi bervariasi terus menerus; perubahan kecil di x hanya menghasilkan perubahan kecil dalam f (x). Fungsi lain dapat memiliki nilai yang melompat atau bervariasi tidak menentu. Gagasan limit memberikan cara yang tepat untuk membedakan antara perilaku ini. Aplikasi geometris menggunakan batas untuk menentukan garis singgung ke kurva mengarah sekaligus ke konsep penting turunan dari suatu fungsi.

2. Limit dalam kehidupan sehari-hari

Limit pada pelari cepat 100 m.

Berikut ini contoh limit. Waktu paling cepat yang ditempuh oleh juara juara dunia sprint 100 m dapat di catat sebagai berikut :

Waktu (detik)	Nama atlet	Tanggal
10,6	Don Lippincott	6 Juli 1912
10,4	Charlie Paddock	23 April 1921

Kalkulus 1 [79]

Waktu (detik)	Nama atlet	Tanggal	
10,3	Percy Williams	9 Agustus 1930	
10,2	Jesse Owens	20 Juni 1936	
10,1	Willie Williams	3 Agustus 1956	
10,0	Armin Hary	21 Juni 1960	
9,9	Jim Hines	21 Juni 1960	
9,95	Jim Hines	14 Oktober 1968	
9,93	Calvin Smith	3 Juli 1983	
9,83 [2]	Ben Johnson	30 Agustus-1987	
9,79 [2]	Ben Johnson	24 September-1988	
9,92	Carl Lewis	24 September 1988	
9,90	Leroy Burrell	14 Juni 1991	
9,86	Carl Lewis	25 Agustus 1991	
9,85	Leroy Burrell	6 Juli 1994	
9,84	Donovan Bailey	27 Juli 1996	
9,79	Maurice Greene	16 Juni 1999	
9,78 ^[3]	Tim Montgomery	14 September-2002	
9,77	Asafa Powell	14 Juni 2005	
9,74	Asafa Powell	9 September 2007	
9,72	Usain Bolt	31 Mei 2008	
9,69	Usain Bolt	16 Agustus 2008	
9,58	Usain Bolt	16 Agustus 2009	

Waktu makin turun tapi tidak pernah melewati 9 Kesimpulan manusia bumi limit waktu untuk lari 100 m adalah 9 detik.

Kalkulus 1 [80]

3. Limit fungsi

Untuk menyelesaikan limit fungsi perhatikan hal berikut:

Contoh 1.

Suatu fungsi $f(x) = x^2 + 3$. Grafik y = f(x) diberikan pada Gambar.1 di bawah ini.

Gambar 12. 1. Kurva limit

Hasil dari penyelasian fungsu f(x) apabila x cukup dekat dengan 2 dapat dilihat dengan perhitungan secara numeris. Seperti diperlihatkan pada tabel 12.1 berikut.

Kalkulus 1 [81]

Tabel Simulasi Kuadrat

Х	$f(x) = x^2 + 3$	х	$f(x) = x^2 + 3$
3	12	1,5	5,25
2,05	7,2025	1,95	6,8025
2,001	7,004001	1,999	6,996001
2,0001	7,00040001	1,9999	6,99960001

Dari tabel tersebut diatas terlihat bahwa apabila x cukup dekat dengan 2, maka f(x) mendekati 7. Karena apabila dihitung secara langsung (subtitusi) didapatkan $f(2) = 2^2 + 3 = 7$. Dalam hal ini dikatakan bahwa *limit f(x) x mendekati 2 sama dengan* 7, ditulis:

Untuk
$$f(x) = x^2 + 3$$

$$\lim_{x\to 2} f(x) = 7$$

Contoh 2.

Perhatikan fungsi f yang ditentukan oleh rumus:

$$f(x) = \frac{x^2 - 1}{x - 1}$$

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

Jika dilakukan penyelesaian secara langsung dengan memasukkan nilai x pada fungsi tersebut maka fungsi f(x) tersebut tidak terdefinisikan di x = 1 karena di titik ini nilai f(x) berbentuk $\frac{0}{0}$. Tetapi masih dapat dipertanyakan apa yang terjadi pada

f(x) bilamana x mendekati 1 tetapi $x \ne 1$. Untuk $x \ne 1$. Cara subitusi langsung diatas gagal untuk mendapatkan nilai limit yang sebenarnta. Oleh karena nya dilakukan cara kedua yaitu dengan melakukan penguraian sebagai berikut:

$$f(x) = \frac{x^2 - 1}{x - 1} = \frac{(x - 1)(x + 1)}{x - 1} = x + 1 = g(x)$$
$$f(x) = x + 1 = 1 + 1 = 2$$

Gambar 12. 2. Kurva penyelesaian limit

Dari tabel 1 di bawah terlibat bahwa apabila x cukup dekat dengan 1, maka nilai f(x) mendekati 2. Jadi,

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Kita dapat juga melakukan penyelesaian dengan metode numeris, seperti ditunjukkan pada tabel berikut:

Tabel 12. 2. Penyelesaian limit dengan numerik

х	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1$	х	$f(x) = \frac{x^2 - 1}{x - 1} = x + 1$
2	3	0,5	1,5
1,05	2,05	0,99	1,99
1,001	2,001	0,999975	1,999975
1,00000017	2,0000017	0,9999999	1,999999

Sehingga dapat diberikan diberikan definisi limit.

Definisi: Limit f(x) x mendekati c sama dengan L, ditulis:

$$\lim_{x \to c} f(x) = L$$

jika untuk setiap x yang cukup dekat dengan c, tetapi $x \neq c$, maka f(x) mendekati I

C. SOAL LATIHAN/TUGAS

- 1. Carilah $\lim_{x\to 1} x^2 + 3x$.
- 2. Carilah $\lim_{x \to -2} NIMx^2 + NIMx$.
- 3. Hitung $\lim_{x\to 2} \frac{x^2-3x+2}{x^2-4}$.
- 4. Tentukan $\lim_{x\to 1} \frac{x-1}{\sqrt{x}-\sqrt{1}}$.
- 5. Tentukan $\lim_{x \to -2} \frac{x^3 + 8}{x^4 16}$.
- 6. Tentukan $\lim_{x \to -2} \sqrt{\frac{x+8}{x-1}}$.
- 7. Tentukan $\lim_{x\to 2} \left(\frac{x+8}{x-1}\right) \left(\frac{2x+5}{x^2-1}\right)$.
- 8. Cari $\lim_{h\to 0} \sqrt{h+8}$
- 9. Selesaikan : $\lim_{x\to 3} \frac{x^2-9}{x-3}$
- 10. Carilah $\lim_{x\to 3} \frac{x^2-9}{x-3} \frac{x^2-9}{x-3}x^2-9x^2-9$

D. DAFTAR PUSTAKA

Thomas (2005), Calculus 11e with Differential Equations, Pearson Wesley

Weltner, Klaus (2009), Mathematics-for-physicists-and-engineers-fundamentals-andinteractive-study-guide, Springer

Kalkulus 1 [85]