Chapter 8 - Statistical Modeling and Inference STAT 251

Lecture 28

Hypothesis Testing about Mean - Examples
Type I and Type II Errors

Dr. Lasantha Premarathna

Chapter 8 - Learning Outcomes

- Point Estimation for μ and σ
- Bias of an estimator
- Confidence Interval for μ
- Testing of Hypotheses about μ
- One sample problems
- Two sample problems

Decisions and Types of errors in Hypothesis Testing

Four possible outcomes

Type 17 of Type 2, cannot simulation

• Reject H_0

- ▶ In reality null is false: we've made the **correct decision!**
- ▶ In reality null is true: we've made an **error**
- Fail to reject H_0
 - ▶ In reality null is false: we've made an **error**
 - ▶ In reality null is true: we've made the **correct decision!**

- Type I error is rejecting H_0 when H_0 is true
- Type II error is not rejecting H_0 when H_0 is false

What test is a good test
 A test that rarely makes type I and type II errors

• There are probabilities associated with each type of error

$$P(\text{Type I error}) = \alpha$$

$$P(\text{Type II error}) = \beta$$

- We can control the probability of type I error by our choice of the significance level, α
- It's difficult to control the probability of making type II error
- Statisticians avoid the risk of making a type II error by using "Do not reject H_0 " and NOT "accept H_0 "
- $1-\beta$ referred to as the power of a test $1-\beta=1-P(\mbox{Type II error})=\mbox{power \scalebox{0.5}{N is before}}.$
- We want the power to be large
- α, β are test properties, independent of data

Power of a Test

Power is the probability of correctly rejecting the null hypothesis H_0 , when H_0 is false

power =
$$P(\text{Reject } H_0 \text{ when } H_0 \text{ is false})$$

= $1 - \beta$

Type I error

Suppose $H_0: \mu = 10$ vs. $H_1: \mu > 10$ and $\alpha = 5\%$.

If our null hypothesis $H_0: \mu = 10$ was actually true, what percent of the time would we wrongly reject H_0 ?

- The Type II error occurs when the null hypothesis is false, but we do not reject it.
- We control the Type I Error by specifying the significance level. However, the probability of Type II Error will depend on:
 - ► Effect size (i.e., the difference between the null hypothesis and reality)
 - ▶ The sample size
 - ► The probability of Type I Error

Suppose $H_0: \mu = 10$ vs. $H_1: \mu > 10$

The Type II error occurs when the null hypothesis is false, but we do not reject it.

Example: 3

A department store manager determines that the new billing system will be cost-effective only if the mean monthly account is more than \$170.

A random sample of 400 monthly accounts is drawn and the sample mean was found to be \$178. Assume that monthly accounts are

- approximately normally distributes with $\sigma_{\overline{\chi}} = \65 .

 (a) Can we conclude that the new system will be cost-effective? Use $\sigma = 0.05$
 - $\alpha = 0.05$ =) reject (to. - is effective.

- (d) When $\mu = 180$, find the probability of type II error.
- (e) Evaluate the power of the test when $\mu = 180$.

Before the next class ...

Visit the course website at canvas.ubc.ca

- Review Lecture 28 and related sections in the text book
- Topic of next class: Chapter 8: more on Hypothesis Testing about the Mean, Examples