Tutoría 13

Problema 1: Encuentre la función de transferencia $H(s) = I_o(s)/V_s(s)$ del circuito de la Figura 1.

Figura 1. Circuito para el problema 1

Problema 2: Si la entrada del siguiente sistema es $v_i(t)$ y la salida es $v_o(t)$. Determine:

- a. La función de transferencia del sistema H(s).
- b. La respuesta al impulso h(t).
- c. Si es o no estable.
- d. La respuesta al escalón $(v_i(t) = u(t) V)$.

Figura 2. Circuito para el problema $2\,$

Problema 3: Si la entrada del siguiente sistema es la corriente i(t) y la salida la tensión v(t). Determine:

- a. La función de transferencia del sistema H(s).
- b. La respuesta al impulso h(t).
- c. Si es o no estable.
- d. La respuesta de estado permanente y transitoria cuando $i(t) = 2\cos(2t)u(t)$ A.

Figura 3. Circuito para el problema 3

Problema 4: La respuesta al escalón (x(t) = u(t)) de una red lineal es $y(t) = (4 + 32e^{-90t})u(t)$. Determine:

- a. La función de transferencia H(s).
- b. La respuesta el impulso.
- c. Si es o no estable.
- d. La respuesta en frecuencia $H(\omega)$.

Problema 5: La entrada de una red lineal es $v_i(t)$ y la salida es $v_o(t)$. La función de transferencia es:

$$H(s) = \frac{V_o(s)}{V_i(s)}$$

El diagrama de polos y ceros de H(s) se muestra en la siguiente figura:

Figura 4. Diagrama de polos y ceros

Si la ganancia de la respuesta en frecuencia para $\omega = 5 \text{ rad/s}$ es 10. Determine:

- a. La función de transferencia H(s).
- b. La respuesta al impulso h(t).
- c. La respuesta en frecuencia $H(\omega)$.
- d. La respuesta el escalón u(t).
- e. La respuesta de estado estacionario si $v_i(t) = \sin(3t) u(t) \text{ V}$.

Problema 6: Considere la siguiente onda periódica g(t).

Figura 5. Señal periódica g(t)

Determine:

- a. El valor promedio de la función.
- b. Los coeficientes de la serie trigonométrica de Fourier.
- c. La síntesis de la función g(t) utilizando la serie trigonométrica de Fourier.
- d. La aproximación de la función g(t) en el instante t = 2 s utilizando los primeros 5 y 10 armónicos. Además incluya en la aproximación el nivel promedio de la función.
- e. El valor del sobreimpulso máximo que se genera debido al fenómeno de Gibbs al aproximar la función g(t) en $t=2\,s$ utilizando los primeros 10 armónicos de la serie trigonométrica de Fourier. Sugerencia: Utilice algún software que permita graficar la aproximación de la función para realizar el cálculo respectivo.
- f. La serie de Fourier amplitud-fase (serie de cosenos con desfase) de la función g(t).
- g. La gráfica de los espectros de amplitud y fase de la función g(t) para los primeros 6 términos.

Problema 7: Determine los coeficientes de la serie trigonométrica de Fourier a_0 , a_n y b_n . Defina la síntesis de la función f(t) a través de éstos coeficientes.

Figura 6. Señal periódica f(t)

Problema 8: Realice la síntesis de la función $v_b(t)$ según la serie de Fourier en su forma trigonométrica.

Figura 7. Señal periódica $\boldsymbol{v}_b(t)$

Problema 9: Determine la síntesis de la función f(t) a través de una serie trigonométrica de Fourier (coseno-seno).

Figura 8. Señal periódica f(t)