A Data-dependent Theory of Overparameterization: Phase Transition, Double Descent, and Beyond Workshop on the Theory of Overparameterized Machine Learning (TOPML)

Zhenyu Liao

joint work with Romain Couillet@U Grenoble-Alpes and Michael Mahoney@UC Berkeley

School of Electronic Information and Communications, Huazhong University of Science & Technology

April 21, 2021

Sample covariance matrix in the large n, p regime

- For $\mathbf{x}_i \sim \mathcal{N}(\mathbf{0}, \mathbf{C})$, estimate population covariance $\mathbf{C} \in \mathbb{R}^{p \times p}$ from n data samples $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$.
- Maximum likelihood sample covariance matrix with entry-wise convergence

$$\hat{\mathbf{C}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^\mathsf{T} = \frac{1}{n} \mathbf{X} \mathbf{X}^\mathsf{T} \in \mathbb{R}^{p \times p}, \quad [\hat{\mathbf{C}}]_{ij} \to [\mathbf{C}]_{ij}$$

almost surely as $n \to \infty$ (law of large numbers): optimal for $n \gg p$ (or, for p "small").

▶ In the $n \sim p$ regime, conventional wisdom breaks down: for $\mathbf{C} = \mathbf{I}_p$ with n < p, $\hat{\mathbf{C}}$ has at least p - n zero eigenvalues.

$$\|\hat{\mathbf{C}} - \mathbf{C}\| \not\to 0, \quad n, p \to \infty$$

- ⇒ eigenvalue mismatch and NOT consistent!
- ▶ due to $\|\mathbf{A}\|_{\infty} \le \|\mathbf{A}\| \le p\|\mathbf{A}\|_{\infty}$ for $\mathbf{A} \in \mathbb{R}^{p \times p}$ and $\|\mathbf{A}\|_{\infty} \equiv \max_{ij} |\mathbf{A}_{ij}|$.
- Marčenko-Pastur law and many fundamental results in Random Matrix Theory!

Remainder on random Fourier features (RFFs)

Figure: Illustration of RFFs regression model.

- random Fourier features $\Sigma \in \mathbb{R}^{2N \times n}$ of data $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{p \times n}$ with standard Gaussian $\mathbf{W} \in \mathbb{R}^{N \times p}$, i.e., $\mathbf{W}_{ij} \sim \mathcal{N}(0,1)$
- ▶ RFF ridge regressor $\beta \in \mathbb{R}^{2N}$ given by

$$\beta \equiv \frac{1}{n} \mathbf{\Sigma} (\frac{1}{n} \mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma} + \lambda \mathbf{I}_n)^{-1} \mathbf{y} \cdot \mathbf{1}_{2N > n}$$
$$+ (\frac{1}{n} \mathbf{\Sigma} \mathbf{\Sigma}^\mathsf{T} + \lambda \mathbf{I}_{2N})^{-1} \frac{1}{n} \mathbf{\Sigma} \mathbf{y} \cdot \mathbf{1}_{2N < n}$$

- equivalent for any $\lambda > 0$
- a stylized model for the analysis of neural nets

Random Fourier features imply Gaussian kernel, but in which sense?

▶ [RR08]: entry-wise convergence of RFF Gram $\frac{1}{N}[\Sigma^{\mathsf{T}}\Sigma]_{ij} \to [\mathbf{K}_{\mathrm{Gauss}}]_{ij}$ Gaussian kernel matrix as $N \to \infty$ — Proof: (again) law of large numbers, for $\mathbf{w}_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_v)$,

$$\begin{split} \frac{1}{N} [\mathbf{\Sigma}^\mathsf{T} \mathbf{\Sigma}]_{ij} &= \frac{1}{N} \sum_{t=1}^{N} \left[\cos(\mathbf{x}_i^\mathsf{T} \mathbf{w}_t) \cos(\mathbf{w}_t^\mathsf{T} \mathbf{x}_j) + \sin(\mathbf{x}_i^\mathsf{T} \mathbf{w}_t) \sin(\mathbf{w}_t^\mathsf{T} \mathbf{x}_j) \right] \\ &\to \mathbb{E}_{\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_p)} \left[\cos(\mathbf{x}_i^\mathsf{T} \mathbf{w}) \cos(\mathbf{w}^\mathsf{T} \mathbf{x}_j) + \sin(\mathbf{x}_i^\mathsf{T} \mathbf{w}) \sin(\mathbf{w}^\mathsf{T} \mathbf{x}_j) \right] = [\mathbf{K}_{\mathsf{Gauss}}]_{ij} \end{split}$$

- ▶ similar to sample covariance: **not true** in spectral norm, $\|\mathbf{\Sigma}^{\mathsf{T}}\mathbf{\Sigma}/N \mathbf{K}_{\mathrm{Gauss}}\| \not\to 0$ unless $2N \gg n$
 - − e.g., $\Sigma^{\mathsf{T}}\Sigma \in \mathbb{R}^{n \times n}$ of rank at most 2*N* if 2*N* ≤ *n*, while $\mathbf{K}_{\text{Gauss}}$ of rank *n* (for distinct \mathbf{x}_i)
 - significant impact on various RFF-based algorithms

Figure: Training MSEs of RFF ridge regression on MNIST data (class 3 versus 7) as a function of regression penalty λ .

Z. Liao (EIC, HUST) RMT4ML April 21, 2021

¹Ali Rahimi and Benjamin Recht. "Random features for large-scale kernel machines". In: Advances in neural information processing systems.

Sharp analysis of RFF ridge regression performance via RMT

 \triangleright provides precise training and test performances of RFF for any ratio N/n and (almost) real data

Figure: MSEs of RFF ridge regression on Fashion- (left two) and Kannada-MNIST (right two).

Figure: Test MSEs of RFF regression as a function of the ratio N/n, on MNIST data set.

Conclusion and take-away message

- double descent test curves on real-world data? Yes, proved here for RFF!
- ▶ phase transition from under- to over-param of resolvent $(\frac{1}{n}\Sigma^{\mathsf{T}}\Sigma + \lambda \mathbf{I}_n)^{-1}$ in the ridgeless $\lambda \to 0$ limit

Take-away message:

- entry-wise \neq spectral norm convergence for large matrices:
 - inconsistency of sample covariance matrix in high dimensions $p \sim n$
 - random Fourier feature maps \neq Gaussian kernel if $N \gg n$
- ▶ RMT provides precise prediction of overparameterized ML algorithms on real-world data!

Ref: "A random matrix analysis of random Fourier features: beyond the Gaussian kernel, a precise phase transition, and the corresponding double descent" (NeurIPS 2020, https://arxiv.org/abs/2006.05013) and my homepage https://zhenyu-liao.github.io/ for more information!

Thank you!