预备知识

凸集

对集合C内的任意两点 $x_1, x_2 \in C$,若它们之间连线上的所有点仍属于集合 C, 即

$$\theta \boldsymbol{x}_1 + (1 - \theta) \boldsymbol{x}_2 \in C \quad (\forall \ 0 \leqslant \theta \leqslant 1) \ , \tag{1.1}$$

则我们称集合C为"凸"的,即 C是一个凸集.

图 1.1 仅有第一个集合是凸的

凸函数和凹函数

对定义在凸集上的函数 $f: \mathbb{R}^d \mapsto \mathbb{R}$, 令 dom_f 表示其定义域,若 $\forall x, z \in \mathrm{dom}_f$ 均满足

$$f(\theta x + (1 - \theta) z) \leq \theta f(x) + (1 - \theta) f(z) \quad (\forall 0 \leq \theta \leq 1),$$
 (1.2)

则我们称函数 $f(\cdot)$ 为凸的,即 $f(\cdot)$ 是一个凸函数.

若将式1.2中的不等号反向,则函数 $f(\cdot)$ 是凹函数.

图 1.2 典型的凸函数和凹函数

常见的凸函数

表1.1列出了一些常见的凸函数.

表 1.1 常见凸函数

名称	函数形式	定义域	参数
1 维仿射函数	ax+b	$x \in \mathbb{R}$	$a, b \in \mathbb{R}$
1 维指数函数	e^{ax}	$x \in \mathbb{R}$	$a \in \mathbb{R}$
1 维幂函数	$ x^a$	$x \in \mathbb{R}_+$	$ a \geqslant 1 \stackrel{\mathbf{d}}{\otimes} a \leqslant 0$
1 维绝对值幂函数	$ x ^p$	$x \in \mathbb{R}$	$p \geqslant 1$
1 维负熵函数	$x \log x$	$x \in \mathbb{R}_+$	
d 维仿射函数	$ \mathbf{a}^{\top} \boldsymbol{x} + b $	$x \in \mathbb{R}^d$	$\mathbf{a} \in \mathbb{R}^d, b \in \mathbb{R}$
d 维范数	$\ x\ _p = (\sum_{i=1}^d x_i ^p)^{1/p}$	$x \in \mathbb{R}^d$	$p \geqslant 1$

梯度与凸函数

函数 $f: \mathbb{R}^d \to \mathbb{R}$ 的梯度(gradient)记为 $\nabla f(x) = \left(\frac{\partial f(x)}{\partial x_1}; \cdots; \frac{\partial f(x)}{\partial x_d}\right) \in \mathbb{R}^d$. 若函数 $f(\cdot)$ 可微,则它是凸函数当且仅当其定义域 dom_f 是凸集且 $\forall x, z \in \mathrm{dom}_f$ 都有

$$f(z) \geqslant f(x) + \nabla f(x)^{\mathrm{T}} (z - x)$$
 (1.4)

上式意味着 $f(\cdot)$ 在定义域中任意点的一阶泰勒展开是其下界. 例如,图1.3显示的凸函数 $f(x) = \frac{1}{2}x^2$ 及其在 (1, f(1)) 处的一阶泰勒展开.

图 1.3 凸函数 $f(x) = \frac{1}{2}x^2$ 及其在 (1, f(1)) 处的一阶泰勒展开

Hessian矩阵和凸函数

除了使用一阶信息,我们还可以基于二阶信息来判断函数的凸性.

函数 $f: \mathbb{R}^d \mapsto \mathbb{R}$ 在定义域 dom_f 中 x 处的二阶导数矩阵(即Hessian矩阵)记为 $\nabla^2 f(x) \in \mathbb{R}^{d \times d}$, 其中 $\nabla^2 f(x)_{ij} = \frac{\partial^2 f(x)}{\partial x_i \partial x_j}$.

若函数 $f(\cdot)$ 二阶可微,则它是凸函数当且仅当 dom_f 是凸集且 $\nabla^2 f(x) \succeq 0$,即 $\forall x \in \mathrm{dom}_f$ 的Hessian矩阵都是半正定的.

例如:二次函数 $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x + c$ 是凸函数当且仅当 $A \succeq 0$.

数学变换与函数的凸性

一些数学变换能够保持函数的凸性,例如

- f 是凸函数,则 $g(x) = f(\mathbf{A}x + \mathbf{b})$ 也是凸函数;
- f_1, \dots, f_n 是凸函数, $w_1, \dots, w_n \ge 0$, 则 $f(x) = \sum_{i=1}^n w_i f_i(x)$ 也是凸函数;
- f_1, \dots, f_n 是凸函数,则 $f(x) = \max\{f_1(x), \dots, f_n(x)\}$ 也是凸函数;
- $\forall z \in \mathcal{X}$ f(x,z)是关于x 的凸函数,则 $g(x) = \sup_{z \in \mathcal{X}} f(x,z)$ 也是关于x 的凸函数.

共轭函数

函数 $f: \mathbb{R}^d \to \mathbb{R}$ 的共轭函数定义为

$$f_*(\boldsymbol{z}) = \sup_{\boldsymbol{x} \in \text{dom } f} (\boldsymbol{z}^{\mathrm{T}} \boldsymbol{x} - f(\boldsymbol{x})) ,$$
 (1.5)

其定义域

$$\operatorname{dom} f_* = \left\{ \boldsymbol{z} \mid \sup_{\boldsymbol{x} \in \operatorname{dom} f} \left(\boldsymbol{z}^{\mathrm{T}} \boldsymbol{x} - f(\boldsymbol{x}) \right) < \infty \right\}. \tag{1.6}$$

直观来看,共轭函数 $f_*(z)$ 反映的是线性函数 z^Tx 与 f(x)之间的最大差值。图1.4为我们显示了一个实例。

图 1.4 函数 $f(x) = \frac{1}{2}x^2$ 的共轭函数在 z = 2 处的值的计算方法示意图

共轭函数

共轭函数有一些很好的性质:

- 无论原函数 f 是否是凸函数, 共轭函数 f_* 一定是凸函数.
- 若函数 f 可微,则:

$$f_*(\nabla f(\boldsymbol{x})) = \nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{x} - f(\boldsymbol{x}) = -\left[f(\boldsymbol{x}) + \nabla f(\boldsymbol{x})^{\mathrm{T}} (0 - \boldsymbol{x})\right].$$
 (1.7)

【Jensen 不等式】 对任意凸函数 $f(\cdot)$ 有

$$f(\mathbb{E}[X]) \leqslant \mathbb{E}[f(X)]$$
.

由Jensen不等式可知 $(\mathbb{E}[X])^2 \leq \mathbb{E}[X^2]$.

【Hölder 不等式】 对 $p, q \in \mathbb{R}_+$ 且 $\frac{1}{p} + \frac{1}{q} = 1$,有

$$\mathbb{E}\left[|XY|\right] \leqslant \left(\mathbb{E}\left[|X|^p\right]\right)^{\frac{1}{p}} \left(\mathbb{E}\left[|Y|^q\right]\right)^{\frac{1}{q}}.$$

【Cauchy-Schwartz 不等式】

$$\mathbb{E}[|XY|] \leqslant \sqrt{\mathbb{E}[X^2]E[Y^2]} .$$

【Liapounov 不等式】 对 $0 < r \le s$ 有

$$\sqrt[r]{(\mathbb{E}[|X|^r])} \leqslant \sqrt[s]{(\mathbb{E}[|X|^s])}$$
.

【Minkowski 不等式】 对 $1 \leq p$ 有

$$\sqrt[p]{\mathbb{E}[|X+Y|^p]} \leqslant \sqrt[p]{(\mathbb{E}[|X|^p] + \sqrt[p]{(\mathbb{E}[|Y|^p])}}.$$

【Bhatia - Davis 不等式】 对 $X \in [a, b]$ 有

$$\mathbb{V}[X] \leqslant (b - \mathbb{E}[X])(\mathbb{E}[X] - a) \leqslant \frac{(b - a)^2}{4}.$$

【联合界 (Union Bound) 不等式】

$$P(X \cup Y) \leqslant P(X) + P(Y)$$
.

【Markov 不等式】 对 $X \ge 0, \forall \epsilon > 0,$ 有

$$P(X \geqslant \epsilon) \leqslant \frac{\mathbb{E}[X]}{\epsilon}$$
.

【Chebyshev 不等式】 $\forall \epsilon > 0$ 有

$$P(|X - \mathbb{E}[X]| \ge \epsilon) \le \frac{\mathbb{V}[X]}{\epsilon^2}$$
.

【Cantelli 不等式】 $\forall \epsilon > 0$ 有

亦称单边 Chebyshev 不等式.

$$P(X - \mathbb{E}[X] \ge \epsilon) \le \frac{\mathbb{V}[X]}{\mathbb{V}[X] + \epsilon^2}$$
$$P(X - \mathbb{E}[X] \le -\epsilon) \le \frac{\mathbb{V}[X]}{\mathbb{V}[X] + \epsilon^2}.$$

【Chernoff 不等式】 对 m 个独立随机变量 $X_i \in [a,b]$ $(i=1,\ldots,m)$, 令

$$\bar{X} = \sum_{i=1}^{m} X_i/m, \, \hat{\mathbf{T}}$$

$$P(\bar{X} - \mathbb{E}[\bar{X}] \geqslant \epsilon) \leqslant e^{-2m\epsilon^2/(b-a)^2} ,$$

$$P(\bar{X} - \mathbb{E}[\bar{X}] \leqslant -\epsilon) \leqslant e^{-2m\epsilon^2/(b-a)^2} .$$

【Cantelli 不等式】 $\forall \epsilon > 0$ 有

亦称单边 Chebyshev 不等式.

$$P(X - \mathbb{E}[X] \ge \epsilon) \le \frac{\mathbb{V}[X]}{\mathbb{V}[X] + \epsilon^2}$$
$$P(X - \mathbb{E}[X] \le -\epsilon) \le \frac{\mathbb{V}[X]}{\mathbb{V}[X] + \epsilon^2}.$$

【Chernoff 不等式】 对 m 个独立随机变量 $X_i \in [a,b]$ $(i=1,\ldots,m)$, 令

$$\bar{X} = \sum_{i=1}^{m} X_i/m, \, \hat{\mathbf{T}}$$

$$P(\bar{X} - \mathbb{E}[\bar{X}] \geqslant \epsilon) \leqslant e^{-2m\epsilon^2/(b-a)^2} ,$$

$$P(\bar{X} - \mathbb{E}[\bar{X}] \leqslant -\epsilon) \leqslant e^{-2m\epsilon^2/(b-a)^2} .$$

在机器学习研究中常用到Chernoff不等式的另一种表达形式,若

$$P(\bar{X} \geqslant \mathbb{E}[\bar{X}] + \epsilon) \leqslant e^{-2m\epsilon^2} = \delta$$
,

则下式至少以 $1-\delta$ 的概率成立.

$$\bar{X} \leqslant \mathbb{E}[\bar{X}] + \sqrt{\frac{1}{2m} \ln \frac{1}{\delta}}$$
.

【Hoeffding 不等式】 对 m 个独立随机变量 $X_i \in [0,1]$ (i = 1, ..., m),令 $\bar{X} = \frac{1}{m} \sum_{i=1}^{m} X_i$,有

$$P\left(\bar{X} - \mathbb{E}[\bar{X}] \geqslant \epsilon\right) \leqslant e^{-2m\epsilon^2}$$
.

【McDiarmid **不等式** 】 对 m 个独立随机变量 $X_i \in \mathcal{X}$ (i = 1, ..., m),若 $f: \mathcal{X}^m \to \mathbb{R}$ 是关于 X_i 的实值函数且 $\forall x_1, ..., x_m, x_i' \in \mathcal{X}$ 都有

$$|f(x_1,\ldots,x_i,\ldots,x_m)-f(x_1,\ldots,x_i',\ldots,x_m)|\leqslant c_i,$$

则 $\forall \epsilon > 0$ 有

$$P(f(X_1,...,X_m) - \mathbb{E}[f(X_1,...,X_m)] \ge \epsilon) \le e^{-2\epsilon^2/\sum_{i=1}^m c_i^2}.$$
 (1.25)

【Bennett **不等式**】 对 m 个独立同分布的随机变量 X_i (i = 1, ..., m),令 $\bar{X} = \frac{1}{m} \sum_{i=1}^{m} X_i$,若 $X_i - \mathbb{E}[X_i] \leq 1$,则有

$$P(\bar{X} \geqslant \mathbb{E}[\bar{X}] + \epsilon) \leqslant \exp\left(\frac{-m\epsilon^2}{2\mathbb{V}[X_1] + 2\epsilon/3}\right).$$

在机器学习研究中常用到Bennett不等式的另一种表达形式,若

$$P(\bar{X} \geqslant \mathbb{E}[\bar{X}] + \epsilon) \leqslant \exp\left(\frac{-m\epsilon^2}{2\mathbb{V}[X_1] + 2\epsilon/3}\right) = \delta$$
,

则下式至少以 $1-\delta$ 的概率成立.

$$\bar{X} \leqslant \mathbb{E}[\bar{X}] + \epsilon \leqslant \mathbb{E}[\bar{X}] + \frac{2\ln 1/\delta}{3m} + \sqrt{\frac{2\mathbb{V}[X_1]}{m}\ln\frac{1}{\delta}}$$
.

【Bernstein **不等式** 】 对 m 个独立同分布的随机变量 X_i (i = 1, ..., m),令 $\bar{X} = \frac{1}{m} \sum_{i=1}^{m} X_i$,若存在 b > 0 使得 $\forall k \geq 2$ 有 $\mathbb{E}[|X_i|^k] \leq k!$ $b^{k-2}\mathbb{V}[X_1]/2$ 成立,则有

$$P(\bar{X} \geqslant \mathbb{E}[\bar{X}] + \epsilon) \leqslant \exp\left(\frac{-m\epsilon^2}{2\mathbb{V}[X_1] + 2b\epsilon}\right).$$

【Azuma 不等式】 对于均值为 μ 的 鞅 (martingale) $\{Z_m, m \ge 1\}$, 令 $Z_0 = \mu$, 若 $-c_i \le Z_i - Z_{i-1} \le c_i$, 则 $\forall \epsilon > 0$ 有

$$P(Z_m - \mu \geqslant \epsilon) \leqslant e^{-\epsilon^2/2 \sum_{i=1}^m c_i^2} ,$$

$$P(Z_m - \mu \leqslant -\epsilon) \leqslant e^{-\epsilon^2/2 \sum_{i=1}^m c_i^2} .$$

令 $X_i = Z_i - Z_{i-1}$ 可以得到 鞅差序列 (martingale difference sequence) X_1, X_2, \ldots, X_m , 于是有

$$P\left(\sum_{i=1}^{m} X_{i} \geqslant \epsilon\right) \leqslant e^{-\epsilon^{2}/2\sum_{i=1}^{m} c_{i}^{2}},$$

$$P\left(\sum_{i=1}^{m} X_{i} \leqslant -\epsilon\right) \leqslant e^{\epsilon^{2}/2\sum_{i=1}^{m} c_{i}^{2}}.$$

最小二乘问题和线性规划问题

一种最简单的优化问题是最小二乘问题

$$\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^{m} (\mathbf{a}_{i}^{\mathrm{T}} \mathbf{x} - b_{i})^{2} = \|\mathbf{A} \mathbf{x} - \mathbf{b}\|_{2}^{2} , \qquad (1.28)$$

其中 $x = (x_1; ...; x_d) \in \mathbb{R}^d$ 为 d 维优化变量, $\mathbf{A} = (\mathbf{a}_1; ...; \mathbf{a}_m) \in R^{m \times d}$, $\mathbf{b} = (b_1; ...; b_m) \in R^m$. 该问题存在闭式最优解 $x^* = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{b}$. 计算复杂度为 $O(md^2)$.

线性规划问题形如

$$\min_{\boldsymbol{x}} \quad \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}
\text{s. t.} \quad \boldsymbol{a}_{i}^{\mathrm{T}} \boldsymbol{x} \leq b_{i} \quad (i = 1, \dots, m) ,$$
(1.29)

其中 $c, a_1, \ldots, a_m \in R^d, b_1, \ldots, b_m \in R$.

该问题虽无闭式解,但已有许多成熟的求解算法,当 $m \ge d$ 时计算复杂度仅为 $O(md^2)$.

一般优化问题形式

一般的,一个优化问题可以表示为

$$\min_{\boldsymbol{x}} f(\boldsymbol{x})$$
s. t. $h_i(\boldsymbol{x}) \leq 0 \quad (i = 1, \dots, m)$,

其中 $f: \mathbb{R}^d \to \mathbb{R}$ 称为优化目标函数, $h_i: \mathbb{R}^d \to \mathbb{R}$ (i = 1, ..., m) 称为约束函数.

该问题的最优解可以表达为 $\{x^* \mid f(x^*) \le f(x) \ (\forall x \in \Omega)\}$, 其中 $\Omega = \{x \mid h_i(x) \le 0 \ (i = 1, ..., m)\}$ 称为可行域.

凸优化及其最优解

若式(1.30)中的目标函数和约束函数都是凸的,则该优化问题就是凸优化问题.

当目标函数 $f(\cdot)$ 可微时, x^* 是凸优化问题的最优解当且仅当 $x^* \in \Omega$ 且 $\nabla f(x^*)^{\mathrm{T}}(z-x^*) \geq 0 \ (\forall z \in \Omega)$. 直观来看, $-\nabla f(x)$ 在 x^* 处定义了可行域 Ω 的一个支撑面. 如下图1.5所示.

对于无约束的凸优化问题, x^* 是最优解当且仅当 $x^* \in \Omega$ 且 $\nabla f(x^*) = 0$.

值得注意的是凸优化问题的一些性质:

- 任意一个局部最优解都是全局最优解
- 通常可以在多项式时间内求解

图 1.5 $-\nabla f(x)$ 在 x^* 处定义了可行域 Ω 的一个支撑面

主问题

一个优化问题可以从两个角度来考察,即主问题和对偶问题.

主问题是(1.30)这样的原问题,或显示列出n 个不等式约束和 n 个等式约束写为

$$\min_{\boldsymbol{x}} \quad f(\boldsymbol{x})$$
s.t. $h_i(\boldsymbol{x}) \leq 0 \quad (i = 1, \dots, m)$,
$$g_j(\boldsymbol{x}) = 0 \quad (j = 1, \dots, n)$$
. (1.31)

我们假设其可行域 $\Omega \subset \mathbb{R}^d$ 非空,并将目标函数最优值记为 p^* .

对偶问题

对优化问题(1.31),引入拉格朗日乘子 $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_m)^T$ 和 $\mu = (\mu_1, \mu_2, \dots, \mu_n)^T$, 相应的拉格朗日函数 $L : \mathbb{R}^d \times \mathbb{R}^m \times \mathbb{R}^n \mapsto \mathbb{R}$ 为

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^{n} \mu_j g_j(\boldsymbol{x}) , \qquad (1.32)$$

其中 λ_i 和 μ_j 是分别针对不等式约束 $h_i(\mathbf{x}) \leq 0$ 和等式约束 $g_j(\mathbf{x}) = 0$ 引入的拉格朗日乘子.

相应的拉格朗日对偶函数 $\Gamma: \mathbb{R}^m \times \mathbb{R}^n \mapsto \mathbb{R}$ 为

$$\Gamma(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x} \in \Omega} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

$$= \inf_{\boldsymbol{x} \in \Omega} \left(f(\boldsymbol{x}) + \sum_{i=1}^{m} \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^{n} \mu_j g_j(\boldsymbol{x}) \right) . \tag{1.33}$$

对偶问题

由(1.31)可知,对于任意 $\lambda \succeq 0$ 都有

$$\sum_{i=1}^{m} \lambda_i h_i(\boldsymbol{x}) + \sum_{j=1}^{n} \mu_j g_j(\boldsymbol{x}) \leqslant 0 , \qquad (1.34)$$

对于任意 $\tilde{x} \in \Omega$ 有

$$\Gamma(\lambda, \mu) = \inf_{x \in \Omega} L(x, \lambda, \mu) \leqslant L(\tilde{x}, \lambda, \mu) \leqslant f(\tilde{x}), \qquad (1.35)$$

于是,对任意 λ ≥ 0 都有

$$\Gamma(\lambda, \mu) \leqslant p^* \,\,\,(1.36)$$

即对偶函数(1.33)给出了主问题(1.31)的目标函数最优值 p^* 的下界

对偶问题

基于对偶函数(1.33)可以定义

$$\max_{\boldsymbol{\lambda}, \boldsymbol{\mu}} \Gamma(\boldsymbol{\lambda}, \boldsymbol{\mu}) \quad \text{s.t. } \boldsymbol{\lambda} \succeq 0 , \qquad (1.37)$$

这就是主问题(1.31)的对偶问题,其中 λ 和 μ 称为对偶变量.

由于 $\Gamma(\lambda,\mu)$ 是一个凹函数,而对偶问题(1.37)试图最大化一个凹函数,因此它是凸优化问题,且该问题的目标函数最优值 d^* 是主问题的目标函数最优值 p^* 的下界,即

$$d^* \leqslant p^*, \tag{1.38}$$

这称为弱对偶性. 若

$$d^* = p^* \tag{1.39}$$

则称为强对偶性.

强对偶性的成立条件

对于一般的优化问题, 强对偶性通常不成立.

但是, 若主问题为凸优化问题, 例如:

- (1.31)中的 f(x) 和 $h_i(x)$ 均为凸函数, $g_j(x)$ 为仿射函数
- 可行域 Ω 中至少有一处使不等式约束严格成立

则强对偶性成立.

此时,将拉格朗日函数(1.32)分别对原变量和对偶变量求导,再令导数等于零即可求解。

KKT条件可以刻画主问题与对偶问题的最优解之间的关系.

令 x^* 为主问题的(1.31)的最优解, (λ^*, μ^*) 为对偶问题(1.37)的最优解. 当强对偶性成立时,

$$f(\boldsymbol{x}^*) = \Gamma(\boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \inf_{\boldsymbol{x} \in \Omega} \left\{ f(\boldsymbol{x}) + \sum_{i=1}^m \lambda_i^* h_i(\boldsymbol{x}) + \sum_{j=1}^n \mu_j^* g_j(\boldsymbol{x}) \right\}$$

$$\leqslant f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* h_i(\boldsymbol{x}^*) + \sum_{j=1}^n \mu_j^* h_j(\boldsymbol{x}^*)$$

$$\leqslant f(\boldsymbol{x}^*)$$

$$(1.40)$$

显然, (1.40)中的不等式应该取等号. 于是有以下两个条件必定成立:

• 互补松弛条件:

$$\lambda_i^* h_i(\mathbf{x}^*) = 0 \quad (i = 1, \dots, m) ,$$
 (1.41)

即
$$\lambda_i^* > 0 \Rightarrow h_i(\boldsymbol{x}^*) = 0$$
以及 $h_i(\boldsymbol{x}^*) < 0 \Rightarrow \lambda_i^* = 0$

x*是下面问题的最优解:

$$\mathbf{x}^* = \underset{\mathbf{x} \in \Omega}{\operatorname{arg \, min}} L(\mathbf{x}, \boldsymbol{\lambda}^*, \boldsymbol{\mu}^*)$$

$$= \underset{\mathbf{x} \in \Omega}{\operatorname{arg \, min}} \left\{ f(\mathbf{x}) + \sum_{i=1}^m \lambda_i^* h_i(\mathbf{x}) + \sum_{j=1}^n \mu_j^* g_j(\mathbf{x}) \right\} . \tag{1.42}$$

通常 Ω 为全集或 x^* 位于 Ω 内部,因此拉格朗日函数 $L(x, \lambda^*, \mu^*)$ 在 x^* 处的梯度为0.

相应的,KKT条件由以下几部分组成:

(1) 主问题约束:

$$\begin{cases} h_i(\boldsymbol{x}^*) \leqslant 0 & (i = 1, \dots, m) \\ g_j(\boldsymbol{x}^*) = 0 & (j = 1, \dots, n) \end{cases}$$

- (2) 对偶问题约束: **λ*** ≥ 0
- (3) 互补松弛条件: $\lambda_i^* h_i(x^*) = 0 \ (i = 1, ..., m)$
- (4) 拉格朗日函数在 x^* 处的梯度为0:

$$\nabla f(\boldsymbol{x}^*) + \sum_{i=1}^m \lambda_i^* \nabla h_i(\boldsymbol{x}^*) + \sum_{j=1}^n \mu_j^* \nabla g_j(\boldsymbol{x}^*) = 0$$

KKT条件具有如下重要性质:

- 强对偶性成立时,对于任意优化问题,KKT条件是最优解的必要条件,即主问题 最优解和对偶问题最优解一定满足KKT条件;
- 对于凸优化问题,KKT条件是充分条件,即满足KKT条件的解一定是最优解;
- 对于强对偶性成立的凸优化问题,KKT条件是充分必要条件,即 x^* 是主问题最优解当且仅当存在 (λ^*, μ^*) 满足KKT条件.

支持向量机是一类经典的机器学习方法.

给定训练样本集 $D = \{(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)\}, y_i \in \{-1, +1\}$,支持向量机试图找到恰好位于两类训练样本"正中间"的划分超平面.

如下图1.6所示,距离超平面最近的这几个训练样本点被称为支持向量,两个异类支持向量到超平面的距离之和 $\gamma = \frac{2}{\|\mathbf{w}\|}$ 称为间隔.

图 1.6 支持向量与间隔

假设超平面(w, b) 能将训练样本正确分类,即对于(x_i , y_i) $\in D$,若 $y_i = +1$,则有 $w^Tx_i + b > 0$;若 $y_i = -1$,则有 $w^Tx_i + b < 0$.令

$$\begin{cases}
\mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \geqslant +1, & y_i = +1; \\
\mathbf{w}^{\mathrm{T}} \mathbf{x}_i + b \leqslant -1, & y_i = -1,
\end{cases} (1.44)$$

则求解最大间隔划分超平面对应于优化问题

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^{2}
\text{s.t. } y_{i}(\boldsymbol{w}^{\mathrm{T}}\boldsymbol{x}_{i} + b) \geqslant 1, \quad i = 1, 2, \dots, m.$$
(1.45)

由(1.32)可知, (1.45)的拉格朗日函数为:

$$L(\boldsymbol{w}, b, \boldsymbol{\alpha}) = \frac{1}{2} \|\boldsymbol{w}\|^2 + \sum_{i=1}^{m} \alpha_i \left(1 - y_i(\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}_i + b)\right) , \qquad (1.46)$$

其中拉格朗日乘子 $\alpha_i \geq 0$, $\alpha = (\alpha_1; \alpha_2; \dots; \alpha_m)$.

 $\diamondsuit L(\boldsymbol{w}, b, \boldsymbol{\alpha})$ 对 \boldsymbol{w} 和 b 的偏导为零可得

$$\boldsymbol{w} = \sum_{i=1}^{m} \alpha_i y_i \boldsymbol{x}_i , \qquad (1.47)$$

$$0 = \sum_{i=1}^{m} \alpha_i y_i \ . \tag{1.48}$$

将(1.47)代入(1.46),即可将 $L(\boldsymbol{w},b,\boldsymbol{\alpha})$ 中的 \boldsymbol{w} 和 b 消去,再考虑(1.48)的约束,就得到主问题(1.45)的对偶问题

$$\min_{\boldsymbol{\alpha}} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{\mathrm{T}} \boldsymbol{x}_{j} - \sum_{i=1}^{m} \alpha_{i}$$
s.t.
$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0,$$

$$\alpha_{i} \geqslant 0, \quad i = 1, 2, \dots, m.$$
(1.49)

上述过程需满足KKT条件

$$\begin{cases} \alpha_i \geqslant 0 ; \\ y_i f(\boldsymbol{x}_i) - 1 \geqslant 0 ; \\ \alpha_i (y_i f(\boldsymbol{x}_i) - 1) = 0 . \end{cases}$$
 (1.50)

线性不可分问题

对原始空间中线性不可分的问题,可将样本从原始空间映射到一个高维特征空间.

例如图1.7中所示的"异或问题"在原始二维空间中线性不可分,但若将原始二维空间映射到合适的三维空间则变得线性可分.

图 1.7 异或问题与非线性映射

线性不可分问题

引入非线性映射 $\phi(x)$ 后,支持向量机求解的主问题(1.45)变成

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2$$
s.t. $y_i(\boldsymbol{w}^{\mathrm{T}}\phi(\boldsymbol{x}_i) + b) \geqslant 1, \quad i = 1, 2, \dots, m,$

相应的,对偶问题(1.49)变成

$$\min_{\boldsymbol{\alpha}} \quad \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \phi(\boldsymbol{x}_{i})^{T} \phi(\boldsymbol{x}_{j}) - \sum_{i=1}^{m} \alpha_{i}$$
s.t.
$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 ,$$

$$\alpha_{i} \geqslant 0 , \quad i = 1, 2, \dots, m .$$

$$(1.52)$$

核函数

注意到,(1.52)涉及到计算 x_i 与 x_j 映射到特征空间之后的内积 $\phi(x_i)^T\phi(x_j)$,当特征空间维数很高时,直接计算 $\phi(x_i)^T\phi(x_j)$ 通常很困难. 为此,考虑核函数

$$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \phi(\boldsymbol{x}_i), \phi(\boldsymbol{x}_j) \rangle = \phi(\boldsymbol{x}_i)^{\mathrm{T}} \phi(\boldsymbol{x}_j) , \qquad (1.53)$$

即 x_i 与 x_j 在特征空间的内积等于它们在原始样本空间中通过 $\kappa(\cdot,\cdot)$ 计算的结果.

此时, (1.52)可重写为

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j \kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) - \sum_{i=1}^{m} \alpha_i$$
 (1.54)

s.t.
$$\sum_{i=1}^{m} \alpha_i y_i = 0 ,$$

$$\alpha_i \geqslant 0$$
, $i = 1, 2, \ldots, m$.

核函数

关于核函数有下面的定理:

定理 1.1 核函数 令 \mathcal{X} 为输入空间, $\kappa(\cdot,\cdot)$ 是定义在 $\mathcal{X} \times \mathcal{X}$ 上的对称函数,则 κ 是核函数当且仅当对于任意数据 $D = \{x_1, x_2, \dots, x_m\}$, 核矩阵(kernel matrix) **K** 总是半正定的. 这里 **K** 是一个 m 阶方阵, $\mathbf{K}_{ij} = \kappa(x_i, x_j)$.

表1.2列出了几种常用的核函数

表 1.2 常用核函数

名称	表达式	参数
线性核	$\kappa(oldsymbol{x}_i, oldsymbol{x}_j) = oldsymbol{x}_i^{ ext{T}} oldsymbol{x}_j$	
多项式核	$\kappa(oldsymbol{x}_i,oldsymbol{x}_j) = (oldsymbol{x}_i^{\mathrm{T}}oldsymbol{x}_j)^d$	d ≥ 1 为多项式的次数
高斯核	$\kappa(oldsymbol{x}_i,oldsymbol{x}_j) = \expig(-rac{\ oldsymbol{x}_i-oldsymbol{x}_j\ ^2}{2\sigma^2}ig)$	$\sigma > 0$ 为高斯核的带宽(width)
拉普拉斯核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \exp\left(-\frac{\ \boldsymbol{x}_i - \boldsymbol{x}_j\ }{\sigma}\right)$	$\sigma > 0$
Sigmoid 核	$\kappa(\boldsymbol{x}_i, \boldsymbol{x}_j) = \tanh(\beta \boldsymbol{x}_i^{\mathrm{T}} \boldsymbol{x}_j + \theta)$	\tanh 为双曲正切函数, $\beta > 0$, $\theta < 0$

每个核函数都隐式地定义了一个特征空间, 称为再生希尔伯特空间, 其好坏对支持向量机的性能至关重要.

软间隔

目前为止,我们一直假设训练样本在样本空间或特征空间中线性可分.然而,在现实任务中往往很难确定合适的满足这一条件的核函数,有时貌似可分的结果甚至可能是由于过拟合而造成的.因此有必要允许支持向量机在少量样本上出错.

为此,引入软间隔的概念,允许某些样本不满足约束:

$$y_i(\boldsymbol{w}^{\mathrm{T}}\phi(\boldsymbol{x}_i) + b) \geqslant 1$$
 (1.55)

在最大化间隔的同时,不满足约束的样本应尽可能少.于是得到如下优化目标

$$\min_{\boldsymbol{w},b} \ \frac{1}{2} \|\boldsymbol{w}\|^2 + \beta \sum_{i=1}^{m} \ell_{0/1} \left(y_i \left(\boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}_i) + b \right) - 1 \right) , \qquad (1.56)$$

其中 $\beta > 0$ 是一个常数,

$$\ell_{0/1}(x) = \begin{cases} 1, & \text{if } x < 0; \\ 0, & \text{otherwise.} \end{cases}$$
 (1.57)

软间隔

由于 $\ell_{0/1}$ 非凸、不连续,(1.56)不易求解,因此支持向量机用hinge损失函数 $\ell_{hinge}(x) = \max(0, 1-x)$ 作为替代损失得到(1.56)的等价形式(1.59)

$$\min_{\boldsymbol{w},b} \frac{1}{2} \|\boldsymbol{w}\|^2 + \beta \sum_{i=1}^{m} \max \left(0, 1 - y_i \left(\boldsymbol{w}^{\mathrm{T}} \phi(\boldsymbol{x}_i) + b\right)\right) . \tag{1.59}$$

同时引入松弛变量 $\xi_i \geq 0$,可将(1.59)重写为

$$\min_{\boldsymbol{w},b,\xi_{i}} \frac{1}{2} \|\boldsymbol{w}\|^{2} + \beta \sum_{i=1}^{m} \xi_{i}$$
s.t.
$$y_{i}(\boldsymbol{w}^{T} \phi(\boldsymbol{x}_{i}) + b) \geqslant 1 - \xi_{i}$$

$$\xi_{i} \geqslant 0 , i = 1, 2, \dots, m,$$

$$(1.60)$$

即软间隔支持向量机优化的主问题.

软间隔

相应的, 软间隔支持向量机优化的对偶问题为

$$\min_{\alpha} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} \kappa(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}) - \sum_{i=1}^{m} \alpha_{i}$$
s.t.
$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0,$$

$$0 \leqslant \alpha_{i} \leqslant \beta, \quad i = 1, 2, \dots, m.$$

对比(1.61)和硬间隔下的对偶问题(1.54)可看出,两者的唯一差别就在于对偶变量的约束不同:前者是 $0 \le \alpha_i \le \beta$,后者是 $0 \le \alpha_i$.