Лекция 2

Ещё про оценивание

Описательная статистика

Напоминалка

Случайная выборка $X_1, ..., X_n$ имеет распределение с неизвестным параметром θ .

Оценка для θ : $\hat{\theta} = f(X_1, ..., X_n)$

Свойства оценок

- I. Несмещённость: $E(\hat{\theta})$ = θ $∀ \theta$ ∈ Θ .

 множество допустимых значений
- II. Состоятельность: $\lim_{n\to\infty} P(|\hat{\theta}_n \theta| \ge \epsilon) = 0 \quad \forall \epsilon > 0$, $\forall \theta \in \Theta$.
- III. Эффективность:

Несмещённая оценка $\hat{\theta}$ для параметра θ называется эффективной, если для любой несмещённой оценки $\tilde{\theta}$ параметра θ по той же выборке выполняется неравенство:

$$D(\hat{\theta}) \le D(\widetilde{\theta}) \quad \forall \theta \in \Theta.$$

Часто используемые оценки

Оценка для математического ожидания — выборочное среднее:

$$\bar{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$
.

Пусть
$$X_i \sim \text{i.i.d.}$$
, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Тогда оценка \bar{X} для μ :

- ▶ несмещённая;
- ▶ состоятельная;
- ► BLUE (Best Linear Unbiased Estimator);

эффективность?

Вспомним характеристики выборочного среднего:

$$E(\bar{X}) = \mu$$
, $D(\bar{X}) = \frac{\sigma^2}{n}$.

Часто используемые оценки

Оценки для дисперсии:

- выборочная дисперсия $S^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i \bar{X})^2;$
- скорректированная выборочная дисперсия $\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i \bar{X})^2$.

их свойства?

Упражнение. Докажите формулы для оценок дисперсии:

$$S^{2} = \frac{1}{n} \left(\sum_{i=1}^{n} X_{i}^{2} \right) - (\bar{X})^{2}, \quad \hat{\sigma}^{2} = \frac{1}{n-1} \left(\left(\sum_{i=1}^{n} X_{i}^{2} \right) - n(\bar{X})^{2} \right).$$

Эти формулы часто удобны для работы в классе, но при масштабных расчётах лучше ими не пользоваться — они вычислительно неустойчивы.

Пусть
$$X_i \sim \text{i.i.d.}$$
, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S² на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S^2 на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_i^2) = D(X_i) + (E(X_i))^2 = \sigma^2 + \mu^2$$

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S² на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_i^2) = D(X_i) + (E(X_i))^2 = \sigma^2 + \mu^2$$

$$E((\bar{X})^2) = D(\bar{X}) + (E(\bar{X}))^2 = \frac{\sigma^2}{n} + \mu^2$$

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S^2 на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_i^2) = D(X_i) + (E(X_i))^2 = \sigma^2 + \mu^2$$

$$E((\bar{X})^2) = D(\bar{X}) + (E(\bar{X}))^2 = \frac{\sigma^2}{n} + \mu^2$$

$$E(S^{2}) = E\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}^{2}\right) - (\bar{X})^{2}\right) = \frac{1}{n}\left(\sum_{i=1}^{n} E(X_{i}^{2})\right) - E((\bar{X})^{2}) = \frac{1}{n}\left(\sum_{i=1}^{n} E(X_{i}^{2})\right)$$

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S^2 на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_i^2) = D(X_i) + (E(X_i))^2 = \sigma^2 + \mu^2$$

$$E((\bar{X})^2) = D(\bar{X}) + (E(\bar{X}))^2 = \frac{\sigma^2}{n} + \mu^2$$

$$E(S^{2}) = E\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}^{2}\right) - (\bar{X})^{2}\right) = \frac{1}{n}\left(\sum_{i=1}^{n} E(X_{i}^{2})\right) - E((\bar{X})^{2}) = \frac{1}{n}n(\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right) = \frac{1}{n}n(\sigma^{2} + \mu^{2})$$

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S² на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_{i}^{2}) = D(X_{i}) + (E(X_{i}))^{2} = \sigma^{2} + \mu^{2}$$

$$E((\bar{X})^{2}) = D(\bar{X}) + (E(\bar{X}))^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$E(S^{2}) = E\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}^{2}\right) - (\bar{X})^{2}\right) = \frac{1}{n}\left(\sum_{i=1}^{n} E(X_{i}^{2})\right) - E((\bar{X})^{2}) = \frac{1}{n}n(\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right) = \sigma^{2} + \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} = \sigma^{2} + \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} = \sigma^{2} + \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} - \frac{\sigma^{2}}{n}$$

Пусть $X_i \sim \text{i.i.d.}$, $E(X_i) = \mu$, $D(X_i) = \sigma^2$.

Проверим выборочную дисперсию S^2 на несмещённость.

Воспользуемся формулой
$$S^2 = \frac{1}{n} \left(\sum_{i=1}^n X_i^2 \right) - (\bar{X})^2$$
.

Найдём нужные математические ожидания из формулы $D(X_i) = E(X_i^2) - (E(X_i))^2$:

$$E(X_{i}^{2}) = D(X_{i}) + (E(X_{i}))^{2} = \sigma^{2} + \mu^{2}$$

$$E((\bar{X})^{2}) = D(\bar{X}) + (E(\bar{X}))^{2} = \frac{\sigma^{2}}{n} + \mu^{2}$$

$$E(S^{2}) = E\left(\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}^{2}\right) - (\bar{X})^{2}\right) = \frac{1}{n}\left(\sum_{i=1}^{n} E(X_{i}^{2})\right) - E((\bar{X})^{2}) = \frac{1}{n}n(\sigma^{2} + \mu^{2}) - \left(\frac{\sigma^{2}}{n} + \mu^{2}\right) = \sigma^{2} + \mu^{2} - \frac{\sigma^{2}}{n} - \mu^{2} = \frac{n-1}{n}\sigma^{2}.$$

Смысл коррекции

Итак,
$$E(S^2) = \frac{n-1}{n}\sigma^2$$
.

То есть выборочная дисперсия — смещённая оценка для генеральной дисперсии σ^2 .

Убрать смещение просто.

Смысл коррекции

Итак,
$$E(S^2) = \frac{n-1}{n}\sigma^2$$
.

То есть выборочная дисперсия — смещённая оценка для генеральной дисперсии σ^2

Убрать смещение просто. Надо домножить S^2 на $\frac{n}{n-1}$. Получим:

$$\hat{\sigma}^2 = \frac{n}{n-1} S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

$$E(\hat{\sigma}^2) = E\left(\frac{n}{n-1}S^2\right) = \frac{n}{n-1} \cdot \frac{n-1}{n}\sigma^2 = \sigma^2.$$

Смысл коррекции

Итак,
$$E(S^2) = \frac{n-1}{n}\sigma^2$$
.

То есть выборочная дисперсия — смещённая оценка для генеральной дисперсии σ^2 .

Убрать смещение просто. Надо домножить S^2 на $\frac{n}{n-1}$. Получим:

$$\hat{\sigma}^2 = \frac{n}{n-1} S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2.$$

$$E(\hat{\sigma}^2) = E\left(\frac{n}{n-1}S^2\right) = \frac{n}{n-1} \cdot \frac{n-1}{n} \sigma^2 = \sigma^2.$$

Таким образом, скорректированная выборочная дисперсия — несмещённая оценка.

а так ли это важно?

Примечание. В англоязычной литературе термин «sample variance» используется для обозначения скорректированной оценки. Обычная выборочная дисперсия часто обходится без внимания.

В русскоязычной традиции слова «выборочная дисперсия» тоже часто относятся к несмещённой оценке.

Заметьте

Если бы нам было известно генеральное среднее μ , то мы могли бы использовать такую оценку для дисперсии:

$$\widetilde{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2.$$

Она была бы несмещённой — можете проверить.

И что?

Оценки для дисперсии

$$S^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$\hat{\sigma}^2 = \frac{1}{n-1} \sum_{i=1}^n \left(X_i - \bar{X} \right)^2$$

▶ смещённая;

▶ несмещённая;

▶ состоятельная.

▶ состоятельная.

Оценки для стандартного отклонения

$$S = \sqrt{S^2}$$

$$\hat{\sigma} = \sqrt{\hat{\sigma}^2}$$

▶ смещённая;

▶ смещённая;

состоятельная.

▶ состоятельная.

Статистические программы обычно выдают оценки $\hat{\sigma}$ и $\hat{\sigma}^2$.

Всё это хорошо для работы с количественными признаками.

А что делать с качественными?

Мы можем сопоставить категориям качественного признака некоторые числа и работать с таким признаком как со случайной величиной.

Вот только арифметические действия будут лишены смысла...

Выборочная доля

Пусть X_1, \dots, X_n независимы,

$$X_i \sim \begin{pmatrix} 0 & 1 \\ 1-p & p \end{pmatrix}.$$

$$E(X_i) = p; D(X_i) = p(1-p).$$

Такие признаки называют альтернативными.

р — доля «единичек» в генеральной совокупности.

Естественная оценка для p — доля «единичек» в выборке. Она совпадает с выборочным средним:

$$\hat{p} = \bar{X} = \frac{X_1 + \dots + X_n}{n}.$$

Из ранее доказанных свойств выборочного среднего следует, что

$$E(\hat{p}) = p$$
, $D(\hat{p}) = \frac{p(1-p)}{n}$.

Свойства:

▶ несмещённая;

▶ состоятельная;

▶ эффективная.

Оценка функции распределения

(Теоретическая) функция распределения:

$$F(x) = P(X \le x)$$

Выборочная (эмпирическая) функция распределения:

$$\hat{F}(x) = \frac{\sum\limits_{i=1}^n I_{X_i \le x}}{n} =$$
 доля наблюдений, не превышающих x

Какие свойства у этой оценки?

Что вообще такое — оценка для функции?

Пример. График выборочной функции распределения для выборки

1 3 2 2 5

Оценка функции квантилей

(Теоретическая) функция квантилей:

$$Q(p) = \min\{x: F(x) \ge p\}$$

Выборочная (эмпирическая) функция квантилей:

$$\hat{Q}(p) = \min\{x : \hat{F}(x) \ge p\}$$

а вдруг не так?

Пример. График выборочных функций распределения и квантилей для выборки

Оценивание функции плотности. Гистограмма.

Область значений признака разбивается на интервалы.

Оценка функции плотности в интервале [I; r) рассчитывается так:

$$\hat{f}(x) = \frac{\partial o$$
ля наблюдений в интервале $[l;r]$ среди всех наблюдений $r-l$, $l \le x < r$.

График оценённой функции плотности называют гистограммой.

Пример. Гистограммы, полученные по выборкам из равномерного, показательного и нормального распределений:

Есть альтернатива: ядерная оценка плотности (kernel density estimator).

Описательная статистика

Выборочные характеристики (среднее, дисперсия и т. п.) могут рассматриваться не только как оценки, но и просто как способы описания данных. При этом не важно, действительно ли данные получены в результате наблюдения за случайной выборкой, стоит ли какая-либо вероятностная модель за этими данными.

Пример: оценки за контрольную работу 2019 г. в разбивке по полу.

пол	число наблюдений	среднее	станд. откл.	мин.	макс.
юноши	95	22.52	8.17	0	36
девушки	20	25.75	7.39	12	35

Впрочем, мне больше нравится описание через квартили (five-point summary):

пол	число наблюдений	мин.	25%	50%	75%	макс.
юноши	95	0	17	22	29	36
девушки	20	12	22	29	32	35

Какие выводы можно сделать из этих таблиц?

Описательная статистика качественных признаков

Среднее и дисперсия — негодные характеристики (арифметические операции над данными нечисловой природы).

Альтернативный признак можно описать долей одной из категорий. Доля девушек среди писавших контрольную: 17.4%.

А если категорий больше двух?

Можем рассчитать выборочные доли для каждой из категорий.

При желании — отобразить их на графике. Например, в виде круговой диаграммы или гистограммы.

При построении гистограммы не нужно делать поправку на длину интервала группировки — её можно считать равной единице.

Для описания порядковых признаков можно использовать и квантили, ведь они опираются на отношение порядка, но не на арифметические операции. Квантили могут быть полезны при большом числе категорий.

К сожалению, меры разброса, основанные на квантилях, всё же теряют смысл, ведь они опираются на вычитание или деление.

Есть в теории вероятностей понятие энтропии, которое можно применять для описания разброса качественных (даже номинальных) величин, но мы обойдём его.

Применимость методов описательной статистики к разным классам признаков

Способ представления	количественные	порядковые	номинальные
Функция распределения	+	+*	-
Функция квантилей	+	+*	-
Гистограмма, таблица частот	+	+	+

- расстояние по горизонтальной оси на графике функции распределения лишено смысла оно полностью условно;
 - на графике функции квантилей лишено смысла расстояние по вертикальной оси.

^{*} Описывая распределение порядкового признака, помните:

Применимость методов описательной статистики к разным классам признаков (2)

Характеристика	количественные	порядковые	номинальные
среднее (мат. ожидание)	+	-	-
дисперсия, станд. отклонение, коэффициент вариации	+	-	-
медиана и прочие квантили	+	+	-
квартильный размах, децильный коэффициент	+	-	-
мода	+	+	+
частота попадания в категории или интервалы значений	+	+	+

Пример описания данных

Данные выборочного обследования 200 респондентов:

Зарплата, тыс. руб.

Богатство — ответ респондента на следующий вопрос: «Представьте себе лестницу из 9 ступеней, где на нижней, первой ступени, стоят нищие, а на высшей, девятой — богатые. На какой ступени находитесь сегодня вы лично?»

Семейное положение — один из четырёх вариантов: «не женат и никогда не был», «состоит в браке», «разведён/разведена», «вдовец/вдова».

первые 10 наблюдений:

Nº	Зарплата	Богатство	Семейное положение
1	42	7	в браке
2	47	6	в браке
3	46	9	вдовец/вдова
4	58	9	в браке
5	27	*	разведён/разведена
6	29	5	не женат/не замужем
7	57	4	разведён/разведена
8	58	5	не женат/не замужем
9	51	4	в браке
10	28	5	не женат/не замужем

Зарплата

200 наблюдений,

Наименьшее значение: 13 Наибольшее значение: 102

Среднее: 38.9

Стандартное отклонение: 13.7

Квантили:

25% - 28 **50% - 39** 75% - 46

Гистограмма:

Выборочная функция распределения:

Субъективное ощущение богатства

196 наблюдений
(4 пропуска),

Наименьшее значение: 1 Наибольшее значение: 9

Квантили:

25% - 4 **50% - 6** 75% - 7

Мода: 6

subjwealth	Freq.	Percent	Cum.
1 2 3 4 5 6 7 8	2 4 15 29 43 52 35 11	1.02 2.04 7.65 14.80 21.94 26.53 17.86 5.61 2.55	1.02 3.06 10.71 25.51 47.45 73.98 91.84 97.45 100.00
Total	; + 196	100.00	

Гистограмма:

Выборочная функция распределения:

Семейное положение

Категория	Число наблюдений	Доля
не женат/не заму	/жем 56	28,0%
в браке	71	35,5%
разведён/развед	цена 37	18,5%
вдовец/вдова	36	18,0%
Итого	200	100,0%

Распределение респондентов по семейному положению

мода

Box-and-whiskers plot

Как это перевести? «Ящик-с-усами», «ларь-да-усы», «ящичковая диаграмма»?

Этот график — наглядное представление распределения признака по квартилям.

Вот усатый ящик для оценок за контрольную (юноши и девушки вместе):

На самом деле, усы — это не всегда минимум и максимум. Об этом потом.

Два ящика и четыре уса

Графики box-and-whiskers особенно удобны при сравнении выборок:

юноши:

девушки:

Вообще-то, слово «выборка» здесь неуместно— не было никакого отбора.

Пять ящиков, десять усов и одна точка

А вот разбивка оценок по группам:

Часто при построении ящиков стат. программы отделяют «выбросы» (outliers) — наблюдения, далеко отстоящие от основной массы. Вот один из возможных алгоритмов отделения выбросов.

Пусть $I\hat{Q}R(X) = \hat{Q}_{X}(0.75) - \hat{Q}_{X}(0.25)$ — межквартильный размах признака в выборке.

Тогда основная часть — те наблюдения, которые находятся в границах

$$\{\hat{Q}_{X}(0.25)-1.5I\hat{Q}R(X); \hat{Q}_{X}(0.75)+1.5I\hat{Q}R(X)\}.$$

Усы — это минимум и максимум основной части. Отдельные точки — выбросы.

Правило это берётся с потолка, относиться к нему серьёзно не стоит.

Уточнение в конце

Существует три типа данных:

- пространственные (перекрёстные?) данные (cross-section data): данные обследования различных объектов приблизительно в один момент времени;

примеры : результаты опросов, выборочных обследований качества продукции...

- *временные ряды* (time series): данные об одном объекте в разные моменты времени;

примеры : динамика числа посетителей сайта, объёмы продаж...

- панельные данные (panel or longitudinal data): результаты продолжительного наблюдения за группой объектов (несколько наблюдений за объектом в разные периоды времени).

примеры: PMЭ3, NLSY, World Bank и т.п.

То, что было в сегодняшней лекции (кроме определений из мат. статистики) относится, в основном, к анализу пространственных данных. Для описания временных рядов и панельных данных, как и для оценивания параметров соответствующих им вероятностных моделей, разработаны свои подходы.

Следующая лекция

Выборка из нормальной генеральной совокупности

Распределение среднего, дисперсии и доли в выборке

График «квантиль-квантиль»