92)

V/V	e1	e2	е3	e4	e5	е6	e7	e8	е9	e10	e11	e12
e1	0			5				4	1	4		1
e2		0			4		4		1			
e3			0	5		4	3	4		3	3	
e4	5		5	0			1					1
e5		4			0	4	4					5
e6			4		4	0	5		3			2
e7		4	3	1	4	5	0	2			5	
e8	4		4				2	0			1	
e9	1	1				3			0	4	4	
e10	4		3						4	0	5	5
e11			3				5	1	4	5	0	2
e12	1			1	5	2				5	2	0

Включаем в S вершину x1. $S=\{x1\}$

Возможная вершина: x4. S={x1,x4}

Возможная вершина: x3. S={x1,x4,x3}

Возможная вершина: x6. S={x1,x4,x3,x6}

Возможная вершина: x5. S={x1,x4,x3,x6,x5}

Возможная вершина: x2. S={x1,x4,x3,x6,x5,x2}

Возможная вершина: x7. S={x1,x4,x3,x6,x5,x2,x7}

Возможная вершина: x8. S={x1,x4,x3,x6,x5,x2,x7,x8}

Возможная вершина: x11. S={x1,x4,x3,x6,x5,x2,x7,x8,x11}

Гамильтонов цикл найден. S={x1,x4,x3,x6,x5,x2,x7,x8,x11,x9,x10,x12}

Матрица смежности с перенумерованными вершинами

0	1	0	0	0	0	0	1	0	1	1	1
1	0	1	0	0	0	1	0	0	0	0	1
0	1	0	1	0	0	1	1	1	0	1	0
0	0	1	0	1	0	1	0	0	1	0	1
0	0	0	1	0	1	1	0	0	0	0	1
0	0	0	0	1	0	1	0	0	1	0	0
0	1	1	1	1	1	0	1	1	0	0	0
1	0	1	0	0	0	1	0	1	0	0	0
0	0	1	0	0	0	1	1	0	1	1	1
1	0	0	1	0	1	0	0	1	0	1	0
1	0	1	0	0	0	0	0	1	1	0	1
1	1	0	1	1	0	0	0	1	0	1	0

До перенумерации x1 x4 x3 x6 x5 x2 x7 x8 x11 x9 x10 x12 После перенумерации x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Построение графа пересечений G'

Определим p212, для чего в матрице R выделим подматрицу R212.

Ребро (x2x12) пересекается c(x1x8),(x1x10),(x1x11)

Определим p311, для чего в матрице R выделим подматрицу R311.

Ребро (x3x11) пересекается c(x1x8),(x1x10),(x2x7)

Определим р39, для чего в матрице R выделим подматрицу R39.

Ребро (x3x9) пересекается c(x1x8),(x2x7)

Определим p38, для чего в матрице R выделим подматрицу R38.

Ребро (x3x8) пересекается c(x2x7)

Определим р412, для чего в матрице R выделим подматрицу R412.

Ребро (x4x12) пересекается c(x1x8),(x1x10),(x1x11),(x2x7),(x3x7),(x3x8),(x3x9),(x3x11)

Определим р410, для чего в матрице R выделим подматрицу R410.

Ребро (x4x10) пересекается c(x1x8),(x2x7),(x3x7),(x3x8),(x3x9)

Определим р512, для чего в матрице R выделим подматрицу R512.

Ребро (х5х12) пересекается с

(x1x8),(x1x10),(x1x11),(x2x7),(x3x7),(x3x8),(x3x9),(x3x11),(x4x7),(x4x10)

Определим p610, для чего в матрице R выделим подматрицу R610.

Ребро (x6x10) пересекается c(x1x8),(x2x7),(x3x7),(x3x8),(x3x9),(x4x7),(x5x7)

15 пересечений графа найдено, закончим поиск

	p1 8	p2 12	p1 10	p1 11	p3 11	p2 7	p3 9	p3 8	p4 12	p3 7	p4 10	p5 12	p4 7	p6 10	p 5 7
p1 8	1	1	0	0	1	0	1	0	1	0	1	1	0	1	0
p2 12	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0
p1 10	0	1	1	0	1	0	0	0	1	0	0	1	0	0	0
p1 11	0	1	0	1	0	0	0	0	1	0	0	1	0	0	0
p3 11	1	0	1	0	1	1	0	0	1	0	0	1	0	0	0
p 2 7	0	0	0	0	1	1	1	1	1	0	1	1	0	1	0
p3 9	1	0	0	0	0	1	1	0	1	0	1	1	0	1	0
p3 8	0	0	0	0	0	1	0	1	1	0	1	1	0	1	0
p4 12	1	0	1	1	1	1	1	1	1	1	0	0	0	0	0
p 3 7	0	0	0	0	0	0	0	0	1	1	1	1	0	1	0
p4 10	1	0	0	0	0	1	1	1	0	1	1	1	0	0	0
p5 12	1	0	1	1	1	1	1	1	0	1	1	1	1	0	0
p 4 7	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0
p6 10	1	0	0	0	0	1	1	1	0	1	0	0	1	1	1
p 5 7	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1

Построение семейства фС

В 1 строке ищем первый нулевой элемент - r1 3.

Записываем дизъюнкцию M1 3=r1 Vr3=11001010101010101010001001000=1110101010101010

В строке М1 3 находим номера нулевых элементов, составляем список Ј'={4,6,8,10,13,15}.

Записываем дизъюнкцию М1 3 4=М1 3 уч4=111010101011010 у010100001001000=111110101011010

В строке М1 3 4 находим номера нулевых элементов, составляем список Ј'={6,8,10,13,15}.

В строке М1 3 4 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

В строке М1 3 4 6 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

В строке М1 3 4 6 10 13 находим номера нулевых элементов, составляем список Ј'={15}.

В строке М1 3 4 6 10 13 15 все 1. Построено ψ1={u1 8,u1 10,u1 11,u2 7,u3 7,u4 7,u5 7}

В строке М1 3 4 6 10 15 остались незакрытые 0.

В строке М1 3 4 6 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет ноль на 10 позиции.

В строке М1 3 4 6 15 остались незакрытые 0.

В строке М1 3 4 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

В строке М1 3 4 8 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

В строке M1~3~4~8~10~13 находим номера нулевых элементов, составляем список $J'=\{15\}$.

В строке М1 3 4 8 10 13 15 все 1. Построено ψ2={u1 8,u1 10,u1 11,u3 8,u3 7,u4 7,u5 7}

В строке М1 3 4 8 10 15 остались незакрытые 0.

В строке М1 3 4 8 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет ноль на 10 позиции.

В строке М1 3 4 8 15 остались незакрытые 0.

Записываем дизъюнкцию M1 3 4 10=M1 3 4 Vr10=111110101011010 V0000000001111010=111110101111010

В строке М1 3 4 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 6, 8

Записываем дизьюнкцию M1 3 4 13=M1 3 4Vr13=111110101011010 v000000000001110=1111110101011110

В строке М1 3 4 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 6, 8, 10

Записываем дизъюнкцию М1 3 4 15=М1 3 4уг15=111110101011010 v000000000000011=111110101011011

В строке М1 3 4 15 остались незакрытые 0.

Записываем дизъюнкцию М1 3 6=М1 3 vr6=111010101011010 v000011111011010=111011111011010

В строке М1 3 6 находим номера нулевых элементов, составляем список J'={10,13,15}.

Строки 10, 13, 15 не закроют ноль на 4 позиции.

В строке М1 3 8 находим номера нулевых элементов, составляем список J'={10,13,15}.

Строки 10, 13, 15 не закроют ноль на 4 позиции.

Записываем дизъюнкцию М1 3 10=М1 3 Vr10=111010101010101010000000001111010=111010101111010

В строке М1 3 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 4, 6, 8

Записываем дизьюнкцию М1 3 13=М1 3 уг13=111010101011010 у000000000001110=111010101011110

В строке М1 3 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 4, 6, 8, 10

Записываем дизъюнкцию M1 3 15=M1 3 Vr15=111010101011010 V000000000000011=111010101011011

В строке М1 3 15 остались незакрытые 0.

В строке М1 4 находим номера нулевых элементов, составляем список Ј'={6,8,10,13,15}.

Строки 6, 8, 10, 13, 15 не закроют ноль на 3 позиции.

Записываем дизьюнкцию M1 6=r1 Vr6=110010101011010 V000011111011010=110011111011010

В строке М1 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют нули на позициях 3, 4

В строке М1 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют нули на позициях 3, 4

Записываем дизьюнкцию M1 10=r1 Vr10=110010101011010 V000000001111010=1100101011111010

В строке М1 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 3, 4, 6, 8

Записываем дизъюнкцию M1 13=r1 Vr13=110010101011010 V000000000001110=110010101011110

В строке $M1\ 13$ находим номера нулевых элементов, составляем список $J'=\{15\}$.

Строка 15 не закроет нули на позициях 3, 4, 6, 8, 10

Записываем дизъюнкцию M1 15=r1 Vr15=110010101011010 V000000000000011=110010101011011

В строке М1 15 остались незакрытые 0.

В 2 строке ищем первый нулевой элемент - r2 5.

Записываем дизъюнкцию M2 5=r2Vr5=111100000000000 V101011001001000=111111001001000

В строке М2 5 находим номера нулевых элементов, составляем список Ј'={7,8,10,11,13,14,15}.

```
В строке М2 5 7 находим номера нулевых элементов, составляем список Ј'={8,10,13,15}.
```

В строке М2 5 7 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

В строке $M2\ 5\ 7\ 8\ 10$ находим номера нулевых элементов, составляем список $J'=\{13,15\}$.

В строке М2 5 7 8 10 13 находим номера нулевых элементов, составляем список Ј'={15}.

В строке М2 5 7 8 10 13 15 все 1. Построено у3={u2 12,u3 11,u3 9,u3 8,u3 7,u4 7,u5 7}

В строке М2 5 7 8 10 15 остались незакрытые 0.

Записываем дизьюнкцию M2 5 7 8 13=M2 5 7 8 уг13=111111111011010 уд00000000001110=1111111111111110

В строке М2 5 7 8 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет ноль на 10 позиции.

В строке М2 5 7 8 15 остались незакрытые 0.

Записываем дизъюнкцию M2 5 7 10=M2 5 7 Vr10=111111101011010 v000000001111010=11111111011111010

В строке М2 5 7 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют ноль на 8 позиции.

Записываем дизьюнкцию M2 5 7 13=M2 5 7уг13=111111101011010 v000000000001110=1111111101011110

В строке М2 5 7 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 8, 10

Записываем дизъюнкцию М2 5 7 15=М2 5 7V:15=111111101011010 V00000000000011=1111111101011011

В строке М2 5 7 15 остались незакрытые 0.

Записываем дизъюнкцию M2 5 8=M2 5Vr8=111111001001000 v000001011011010=111111011011010

В строке М2 5 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют ноль на 7 позиции.

Записываем дизъюнкцию M2 5 10=M2 5 Vr10=111111001001000 V000000001111010=1111111001111010

В строке М2 5 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 7, 8

В строке М2 5 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

В строке М2 5 11 13 находим номера нулевых элементов, составляем список Ј'={15}.

В строке М2 5 11 13 15 все 1. Построено ψ4={u2 12,u3 11,u4 10,u4 7,u5 7}

В строке М2 5 11 14 все 1. Построено ψ5={u2 12,u3 11,u4 10,u6 10}

В строке М2 5 11 15 остались незакрытые 0.

```
Записываем дизъюнкцию M2 5 13=M2 5 vr13=111111001001000 v000000000001110=1111111001001110
В строке М2 5 13 находим номера нулевых элементов, составляем список Ј'={15}.
Строка 15 не закроет нули на позициях 7, 8, 10, 11
В строке М2 5 14 остались незакрытые 0.
Записываем дизьюнкцию M2 5 15=M2 5Vr15=111111001001000 v000000000000011=1111111001001011
В строке М2 5 15 остались незакрытые 0.
В строке М2 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.
В строке М2 6 10 находим номера нулевых элементов, составляем список Ј'={13,15}.
В строке М2 6 10 13 находим номера нулевых элементов, составляем список Ј'={15}.
В строке М2 6 10 13 15 все 1. Построено у6={u2 12,u2 7,u3 7,u4 7,u5 7}
В строке М2 6 10 15 остались незакрытые 0.
В строке М2 6 13 находим номера нулевых элементов, составляем список Ј'={15}.
Строка 15 не закроет ноль на 10 позиции.
В строке М2 6 15 остались незакрытые 0.
Записываем дизьюнкцию M2 7=r2Vr7=111100000000000V10000110101010=111101101011010
В строке М2 7 находим номера нулевых элементов, составляем список Ј'={8,10,13,15}.
Строки 8, 10, 13, 15 не закроют ноль на 5 позиции.
Записываем дизъюнкцию M2 8=r2 Vr8=111100000000000 v000001011011010=111101011011010
В строке М2 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.
Строки 10, 13, 15 не закроют нули на позициях 5, 7
В строке М2 9 находим номера нулевых элементов, составляем список Ј'={11,12,13,14,15}.
В строке М2 9 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.
В строке М2 9 11 13 находим номера нулевых элементов, составляем список Ј'={15}.
В строке М2 9 11 13 15 все 1. Построено ψ7={u2 12,u4 12,u4 10,u4 7,u5 7}
В строке М2 9 11 14 все 1. Построено ψ8={u2 12,u4 12,u4 10,u6 10}
```

В строке М2 9 11 15 остались незакрытые 0.

В строке М2 9 12 находим номера нулевых элементов, составляем список Ј'={14,15}.

В строке М2 9 12 14 все 1. Построено у9={u2 12,u4 12,u5 12,u6 10}

В строке М2 9 12 15 все 1. Построено у10={u2 12,u4 12,u5 12,u5 7}

В строке М2 9 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет ноль на 11 позиции.

В строке М2 9 14 остались незакрытые 0.

В строке М2 9 15 остались незакрытые 0.

Записываем дизъюнкцию M2 10=r2 Vr10=111100000000000 V000000001111010=111100001111010

В строке М2 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 5, 6, 7, 8

Записываем дизьюнкцию M2 11=r2 Vr11=111100000000000 V100001110111000=111101110111000

В строке М2 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Строки 13, 14, 15 не закроют нули на позициях 5, 9

В строке М2 12 находим номера нулевых элементов, составляем список Ј'={14,15}.

Строки 14, 15 не закроют ноль на 9 позиции.

Записываем дизьюнкцию M2 13=r2 Vr13=111100000000000 V00000000001110=111100000001110

В строке М2 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 5, 6, 7, 8, 9, 10, 11

В строке М2 14 остались незакрытые 0.

Записываем дизъюнкцию M2 15=r2 Vr15=111100000000000 v00000000000011=111100000000011

В строке М2 15 остались незакрытые 0.

В 3 строке ищем первый нулевой элемент - r3 4.

Записываем дизьюнкцию МЗ 4=r3 уr4=011010001001000 у010100001001000=011110001001000

В строке МЗ 4 находим номера нулевых элементов, составляем список J'={6,7,8,10,11,13,14,15}.

Записываем дизьюнкцию МЗ 4 6=МЗ 4 Vr6=011110001001000 V000011111011010=0111111111011010

В строке МЗ 4 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют ноль на 1 позиции.

В строке МЗ 47 находим номера нулевых элементов, составляем список Ј'={8,10,13,15}.

В строке МЗ 4 7 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

В строке МЗ 4 7 8 10 находим номера нулевых элементов, составляем список Ј'={13,15}. В строке МЗ 4 7 8 10 13 находим номера нулевых элементов, составляем список Ј'={15}. В строке МЗ 4 7 8 10 13 15 все 1. Построено ψ11={u1 10,u1 11,u3 9,u3 8,u3 7,u4 7,u5 7} В строке МЗ 4 7 8 10 15 остались незакрытые 0. В строке МЗ 4 7 8 13 находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет ноль на 10 позиции. В строке МЗ 4 7 8 15 остались незакрытые 0. В строке МЗ 4 7 10 находим номера нулевых элементов, составляем список Ј'={13,15}. Строки 13, 15 не закроют ноль на 8 позиции. Записываем дизьюнкцию M3 4 7 13=M3 4 7 Vr13=111111101011010 V000000000001110=1111111101011110 В строке МЗ 4 7 13 находим номера нулевых элементов, составляем список Ј'={15}. Строка 15 не закроет нули на позициях 8, 10 Записываем дизьюнкцию МЗ 4 7 15=МЗ 4 7уг15=111111101011010 v000000000000011=1111111101011011 В строке МЗ 4 7 15 остались незакрытые 0. Записываем дизъюнкцию МЗ 4 8=МЗ 4 Vr8=011110001001000 v000001011011010=011111011011010 В строке МЗ 4 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}. Строки 10, 13, 15 не закроют нули на позициях 1, 7 Записываем дизъюнкцию МЗ 4 10=МЗ 4Vr10=011110001001000 V000000001111010=011110001111010 В строке МЗ 4 10 находим номера нулевых элементов, составляем список Ј'={13,15}. Строки 13, 15 не закроют нули на позициях 1, 6, 7, 8 В строке МЗ 4 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}. В строке МЗ 4 11 13 находим номера нулевых элементов, составляем список Ј'={15}. В строке МЗ 4 11 13 15 все 1. Построено у12={u1 10,u1 11,u4 10,u4 7,u5 7} В строке МЗ 4 11 14 все 1. Построено у13={u1 10,u1 11,u4 10,u6 10} В строке МЗ 4 11 15 остались незакрытые 0.

Записываем дизьюнкцию M3 4 13=M3 4Vr13=011110001001000 v00000000001110=011110001001110
В строке M3 4 13 находим номера нулевых элементов, составляем список J'={15}.

Строка 15 не закроет нули на позициях 1, 6, 7, 8, 10, 11

В строке МЗ 4 14 остались незакрытые 0.

Записываем дизьюнкцию M3 4 15=M3 4Vr15=011110001001000 V0000000000011=011110001001011

В строке МЗ 4 15 остались незакрытые 0.

Записываем дизьюнкцию МЗ 6=r3 Vr6=011010001001000 V000011111011010=011011111011010

В строке МЗ 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют нули на позициях 1, 4

В строке M3 7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,15\}$.

Строки 8, 10, 13, 15 не закроют ноль на 4 позиции.

Записываем дизъюнкцию M3 8=r3 Vr8=011010001001000 V000001011011010=0110110110110110

В строке МЗ 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют нули на позициях 1, 4, 7

Записываем дизъюнкцию M3 10=r3 Vr10=011010001001000 V000000001111010=011010001111010

В строке МЗ 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 1, 4, 6, 7, 8

В строке МЗ 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Строки 13, 14, 15 не закроют ноль на 4 позиции.

Записываем дизъюнкцию M3 13=r3 Vr13=011010001001000 V00000000001110=011010001001110

В строке МЗ 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 1, 4, 6, 7, 8, 10, 11

Записываем дизьюнкцию M3 14=r3 Vr14=011010001001000 V100001110100111=111011111101111

В строке МЗ 14 остались незакрытые 0.

Записываем дизъюнкцию M3 15=r3 Vr15=011010001001000 V0000000000011=011010001001011

В строке МЗ 15 остались незакрытые 0.

В 4 строке ищем первый нулевой элемент - r4 5.

Записываем дизъюнкцию M4 5=r4 Vr5=010100001001000 V101011001001000=1111111001001000

В строке М4 5 находим номера нулевых элементов, составляем список J'={7,8,10,11,13,14,15}.

В строке M4~5~7 находим номера нулевых элементов, составляем список $J'=\{8,10,13,15\}$.

В строке $M4\ 5\ 7\ 8$ находим номера нулевых элементов, составляем список $J'=\{10,13,15\}$.

В строке М4 5 7 8 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

В строке М4 5 7 8 10 13 находим номера нулевых элементов, составляем список Ј'={15}.

В строке М4 5 7 8 10 13 15 все 1. Построено у14={u1 11,u3 11,u3 9,u3 8,u3 7,u4 7,u5 7}

В строке М4 5 7 8 10 15 остались незакрытые 0.

В строке М4 5 7 8 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет ноль на 10 позиции.

В строке М4 5 7 8 15 остались незакрытые 0.

В строке М4 5 7 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют ноль на 8 позиции.

Записываем дизъюнкцию М4 5 7 13=М4 5 71/13=1111111101011010 v000000000001110=1111111101011110

В строке М4 5 7 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 8, 10

Записываем дизъюнкцию M4 5 7 15=M4 5 7 Vr15=111111101011010 v000000000000011=1111111101011011

В строке М4 5 7 15 остались незакрытые 0.

Записываем дизъюнкцию М4 5 8=М4 5 Уг8=111111001001000 V0000010110110110=111111011011010

В строке М4 5 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют ноль на 7 позиции.

Записываем дизъюнкцию M4 5 10=M4 5 Vr10=111111001001000 V000000001111010=111111001111010

В строке М4 5 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 7, 8

В строке М4 5 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

В строке М4 5 11 13 находим номера нулевых элементов, составляем список Ј'={15}.

В строке М4 5 11 13 15 все 1. Построено ψ15={u1 11,u3 11,u4 10,u4 7,u5 7}

В строке М4 5 11 14 все 1. Построено ψ16={u1 11,u3 11,u4 10,u6 10}

В строке М4 5 11 15 остались незакрытые 0.

Записываем дизьюнкцию M4 5 13=M4 5 Vr13=111111001001000 v000000000001110=1111111001001110

В строке М4 5 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 7, 8, 10, 11

В строке М4 5 14 остались незакрытые 0.

Записываем дизьюнкцию M4 5 15=M4 5 Vr15=111111001001000 V00000000000011=1111111001001011

В строке М4 5 15 остались незакрытые 0.

Записываем дизъюнкцию M4 6=r4 Vr6=010100001001000 V000011111011010=010111111011010

В строке М4 6 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

```
Строки 10, 13, 15 не закроют нули на позициях 1, 3
```

В строке М4 7 находим номера нулевых элементов, составляем список Ј'={8,10,13,15}.

Строки 8, 10, 13, 15 не закроют нули на позициях 3, 5

Записываем дизьюнкцию М4 8=r4 Vr8=010100001001000 V000001011011010=010101011011010

В строке М4 8 находим номера нулевых элементов, составляем список Ј'={10,13,15}.

Строки 10, 13, 15 не закроют нули на позициях 1, 3, 5, 7

Записываем дизъюнкцию M4 10=r4 vr10=010100001001000 v000000001111010=010100001111010

В строке М4 10 находим номера нулевых элементов, составляем список Ј'={13,15}.

Строки 13, 15 не закроют нули на позициях 1, 3, 5, 6, 7, 8

Записываем дизьюнкцию M4 11=r4 Vr11=010100001001000 V1000011101111000=1101011111111000

В строке М4 11 находим номера нулевых элементов, составляем список Ј'={13,14,15}.

Строки 13, 14, 15 не закроют нули на позициях 3, 5

Записываем дизьюнкцию М4 13=r4 уг13=010100001001000 у00000000001110=010100001001110

В строке М4 13 находим номера нулевых элементов, составляем список Ј'={15}.

Строка 15 не закроет нули на позициях 1, 3, 5, 6, 7, 8, 10, 11

Записываем дизъюнкцию M4 14=r4 Vr14=010100001001000 V100001110100111=1101011111101111

В строке М4 14 остались незакрытые 0.

Записываем дизъюнкцию М4 15=r4 уr15=010100001001000 у000000000011=010100001001011

В строке М4 15 остались незакрытые 0.

Из матрицы R(G') видно, что строки с номерами j > 4 не смогут закрыть ноль в позиции 2.

Семейство максимальных внутренне устойчивых множеств у G построено.

```
\psi 1 = \{u1\ 8, u1\ 10, u1\ 11, u2\ 7, u3\ 7, u4\ 7, u5\ 7\}
```

$$\psi$$
2={u1 8,u1 10,u1 11,u3 8,u3 7,u4 7,u5 7}

ψ4={u2 12,u3 11,u4 10,u4 7,u5 7}

$$\psi$$
5={*u*2 *1*2,*u*3 *1*1,*u*4 *1*0,*u*6 *1*0}

$$\psi 6 = \{u2\ 12, u2\ 7, u3\ 7, u4\ 7, u5\ 7\}$$

$$\psi 9 = \{u2\ 12, u4\ 12, u5\ 12, u6\ 10\}$$

$$\psi$$
10={u2 12,u4 12,u5 12,u5 7}

$$\psi$$
11={u1 10,u1 11,u3 9,u3 8,u3 7,u4 7,u5 7}

$$\psi$$
14={u1 11,u3 11,u3 9,u3 8,u3 7,u4 7,u5 7}

Выделение из G' максимального двудольного подграфа H'

Для каждой пары множеств вычислим значение критерия $\alpha \gamma \beta = |\psi \gamma| + |\psi \beta| - |\psi \gamma \cap \psi \beta|$:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	8	11	10	11	8	10	11	11	10	9	8	9	10	9	10
2	-	0	10	10	11	9	10	11	11	10	8	8	9	9	9	10
3	-	-	0	8	9	8	9	10	10	9	9	10	11	8	9	10
4	-	1	-	0	6	7	6	7	8	7	10	7	8	9	6	7
5	-	-	-	-	0	8	7	5	6	7	11	8	6	10	7	5
6	-	-	•	-	•	0	7	8	8	7	9	8	9	9	8	9
7	-	-	-	-	-	_	0	6	7	6	10	7	8	10	7	8
8	-	-	-	-	-	-	-	0	5	6	11	8	6	11	8	6
9	-	-	-	-	-	-	-	-	0	5	11	9	7	11	9	7
10	-	-	-	-	-	-	-	-	-	0	10	8	8	10	8	8
11	-	-	-	-	-	-	-	-	-	-	0	8	9	8	9	10
12	-	-	-	-	-	-	-	-	-	-	-	0	6	9	6	7
13	-	-	-	-	-	-	-	-	-	-	-	-	0	10	7	5
14	-	1	-	-	-	-	-	1	-	-	-	-	-	0	8	9
15	-	-	-	-	1	-	-	1	-	-	-	-	-	-	0	6
16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0

Max $\alpha \gamma \delta = \alpha 1 \ 3 = \alpha 1 \ 5 = \alpha 1 \ 8 = \alpha 1 \ 9 = \alpha 2 \ 5 = \alpha 2 \ 8 = \alpha 2 \ 9 = \alpha 3 \ 13 = \alpha 5 \ 11 = \alpha 8 \ 14 = \alpha 9 \ 11 = \alpha 9 \ 14 = 11$

Дают пары

$$\psi 1 \ \psi 3$$
 $\psi 1 \ \psi 5$ $\psi 1 \ \psi 8$ $\psi 1 \ \psi 9$ $\psi 2 \ \psi 5$ $\psi 2 \ \psi 8$ $\psi 2 \ \psi 9$ $\psi 3 \ \psi 13$ $\psi 5 \ \psi 11$ $\psi 8 \ \psi 11$ $\psi 8 \ \psi 14$ $\psi 9 \ \psi 11$

ψ9 ψ14

Возьмем множества ү1 ү3

ψ1={u1 8,u1 10,u1 11,u2 7,u3 7,u4 7,u5 7}

*ψ*3={*u*2 12,*u*3 11,*u*3 9,*u*3 8,*u*3 7,*u*4 7,*u*5 7}

В сурграфе Н, содержащем

максимальное число непересекающихся

ребер, ребра, вошедшие в $\psi 1$,

проводим внутри гамильтонова цикла,

а в *ψ3* – вне его.

Удалим из ΨG ' ребра, вошедшие в $\psi 1$ и $\psi 3$ и объединим одинаковые множества

$$\psi 8 = \{ u4\ 12,\ u4\ 10,u6\ 10 \}$$

Max αγδ = α8 9=4 Дают пары *Ψ8 Ψ9*

Возьмем множества $\psi 8 \ \psi 9$ $\psi 8 = \{ u4\ 12, u4\ 10, u6\ 10 \}$ $\psi 9 = \{ u4\ 12, u5\ 12, u6\ 10 \}$ В сурграфе H, содержащем
максимальное число непересекающихся
ребер, ребра, вошедшие в $\psi 4$,
проводим внутри гамильтонова цикла,
а в $\psi 9$ — вне его.

Оставшихся нереализованных ребер нет. Толщина графа 2. Все ребра реализованы