Week 7 Summary Exercises

Due Aug 13 at 11:59pm **Points** 91 **Questions** 37

Available Aug 6 at 12am - Aug 13 at 11:59pm 8 days Time Limit 360 Minutes Allowed Attempts 2

Take the Quiz Again

Attempt History

7 160	ttempt 1	Time	Score
LATEST Att	tempt 1 4	45 minutes	75.22 out of 91

Score for this attempt: 75.22 out of 91

Submitted Aug 10 at 11:42am This attempt took 45 minutes.

	Question 1 2 / 2 pts	;
	Given an internet represented as a weighted undirected graph, the shortest path between node <i>X</i> and node <i>Y</i> is the path that	
	begins with the smallest weight on the first hop edge from node X	
Correct!	has the smallest sum of edge weights.	
	oconnects node X to node Y directly	
	has the smallest number of hops	
Correct!	has the smallest sum of edge weights. connects node X to node Y directly	

	Question 2	pts
	In a fragmented IP datagram, the "offset" IP header field value is exactly equal to the number of bytes of fragmented data preceding this fragment.	er
	□ True	
Correct!	False	

	Question 3	2 / 2 pts
	The "Identification" header field is unchanged by IP datagram fragmentation.	
	The Identification fleader field is differentiaged by in addagram flagmentation.	
Correct!	True	
	False	
	Question 4	2 / 2 pts
	It is the responsibility of a routing algorithm to find a datagram's path through a netwo	ork.
Correct!	True	
	False	
	Question 5	2 / 2 pts
	When encountering an IPv4-only router, an IPv6 datagram is encapsulated in an IPv6 datagram, with the next in-line IPv6 router as its destination.	4
	Answer 1:	
Correct!	encapsulated in	
	Answer 2:	
Correct!	next in-line IPv6 router	
	Question 6	2 / 2 pts
	Network address translation is strictly a Layer-3 protocol.	
	True	

10/2017 Week 7 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400		/
Correct!	• False	
		2 / 2 pts
	Question 7	
	IPv6 datagrams cannot be converted to IPv4 datagrams without losing any information	mation.
Correct!	True	
	False	
	Question 8	2 / 2 pts
	The transition from IPv4 to IPv6 requires that (Check all that app	oly)
	all IPv4 routers must have been phased out by January 1, 2015.	
Correct!	all IPv4 routers must have been phased out by January 1, 2015. IPv4 routers still in use must "tunnel" IPv6 datagrams, by fragmenting/encapsulating the IPv4 datagrams	nem in
Correct!	IPv4 routers still in use must "tunnel" IPv6 datagrams, by fragmenting/encapsulating the	nem in

Question 9

Network address translation has ameliorated the IP address shortage problem.

True

False

Correct!

Correct!

	Question 10	2 / 2 pts
	The "Hop Limit" IPv6 header field indicates how many remaining hops to the destina	ition.
	True	
Correct!	False	

Question 11	2 / 2 pts
In IPv6, datagram fragmentation is handled at the network edge .	
Answer 1:	
handled at the network edge	

NAPT devices translate IP address and port numbers.

True

False

Question 13 8 / 8 pts

A private network uses a NAPT device at public IP address 197.196.100.80 The computers in the network use addresses of the form 10.0.0.x/22. Suppose that computer inside the NATed network sends a request with

Source address: 10.0.50.10

Source port: 530

Destination address: 60.25.40.10

Destination port: 20

The next available port number on the NAPT device is 10123.

PART 1: What source and destination information do the request packet headers contain when the request is sent out by the sending host? Source address: [Select]

Destination port: 20

Destination address:

PART 2:

What source and destination information do the request packet headers contain when the request is sent out by the NAT box?

[Select]

PART 3:

What source and destination information do the response packet headers contain when the response is received by the NAT box?

PART 4:

What source and destination information do the response packet headers contain when the response is received by the original sending host?

	Source address: Select]
	Source port : Select]
	Destination address: Select]
	Destination port : [Select] ▼
	Answer 1:
Correct!	10.0.50.10
	Answer 2:
Correct!	530
	Answer 3:
Correct!	60.25.40.10
	Answer 4:
Correct!	20
	Answer 5:
Correct!	197.196.100.80
	Answer 6:
Correct!	10123
	Answer 7:
Correct!	60.25.40.10
	Answer 8:
Correct!	20
	Answer 9:
Correct!	60.25.40.10
	Answer 10:
Correct!	20
	Answer 11:

False

You Answered

	Question 16	3 / 3 pts
	::ffff:ABCD:DBCA is a valid preferred-format IPv6 address.	
	True	
Correct!	False	

	Question 17 2 / 2 pts
	A multiple access scheme which divides the usable medium into "chunks" and allows each device sole acces to some number of "chunks" is called
	random access protocol
Correct!	channel partitioning protocol
	collision avoidance protocol

	Question 18	0 / 2 pts
	Select all Random Access schemes below.	
	□ TDMA	
Correct!	✓ ALOHA	
You Answered	✓ Token Ring Multiple Access	
Correct!	✓ CSMA	

0/2017	Week 7 Summary Exercises: INTRO TO COMPUTER NETWORKS ((CS_372_400_U2017)
Correct!	hardware framing characters	
	Answer 2:	
Correct!	hardware frame header	
	Answer 3:	
Correct!	IP header	
	Answer 4:	
Correct!	TCP/UDP header	
	Question 21	2 / 2 pts
	A network with a bus topology must terminate the endpoints, but in with a are connected so there is no endpoint.	a ring topology they
	Answer 1:	
Correct!	bus	
	Answer 2:	
Correct!	ring	
	Question 22	2 / 2 pts
	There are reserved MAC addresses unusable for devices.	
Correct!	True	
	False	

Bus Ethernet uses a random access scheme.

Week 7 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_40	0_U2017)
True	
○ False	
Question 24	1.33 / 2 pts
Which are functions of the Ethernet preamble? (Check all that apply)	
Address switching.	
Circuit wake-up	
✓ Clock synchronization	
✓ Start signal	
Error detection/correction	
Stop signal	
Question 25	2 / 2 pts
A link-layer link between only two adjacent nodes is called a/an point to point link.	
Answer 1:	
point to point	
Question 26	2 / 2 pts
The link-layer device at the center of an ethernet star is a	
	True False Question 24 Which are functions of the Ethernet preamble? (Check all that apply) Address switching. Circuit wake-up Clock synchronization Start signal Error detection/correction Stop signal Question 25 A link-layer link between only two adjacent nodes is called a/an point to point link. Answer 1: point to point Question 26

node

A protocol designed to control access to a medium is most commonly called a

multiple access protocol

Correct!

8/10/2017

Question 30 2 / 2 pts

The address table shown below would be maintained by a host, router, or switch by...

Hardware Address	IP Address
00-13-72-BA-C0-23	10.0.1.142
00-13-72-BA-9E-F0	10.0.2.5
00-13-72-BA-33-7A	10.0.3.213

media access control protocol

Correct!

- ARP
- NIC
- TCP/IP
- □ ICMP

	Question 31	0 / 2 pts
	A "collision" is best described as	
	when two or more frames are in the channel at the same time.	
	when two or more nodes transmit frames at the same time.	
Correct Answer	when a node receives two or more frames at the same time.	
You Answered	all of these	

	Question 32	2 / 2 pts
	Which of the following are used in a wired Ethernet network? (Check all that apply)	
	Collision Avoidance (CA)	
Correct!	Exponential back-off/retry for collision resolution	
Correct!	Collision Detection (CD)	
	Reservation system with Request to Send (RTS) and Clear to Send (CTS)	
Correct!	✓ Carrier Sense Multi-Access (CSMA)	

	Question 33	2 / 2 pts
	Given the following received byte on an even-parity machine, there is definitely at lea	ast one
	01001101	
	□ True	
Correct!	False	

C

	Question 35	2 / 2 pts
	A MAC address is permanent and unique.	
	True	
orrect!	False	

	1. A finds that D belongs to a different subnet by checking
	[Select]
	2. A looks up RouterA's NIC#2 IP address in its routing table.
	3. A uses ARP to get [Select] .
	4. A creates frame with RouterA's NIC#1 MAC address as destination. Frame contains IP
	datagram with Select] as destination.
	5. A's NIC sends frame and RouterA's NIC receives it.6. RouterA removes IP datagram from frame, learns that its destination is
	[Select] ▼
	7. RouterA uses ARP to get Select .
	8. RouterA creates frame with Select] as destination. Frame
	contains IP datagram with Select] as destination.
	9. RouterA's NIC sends frame and D's NIC receives it.
	Answer 1:
Correct!	D's IP address
	Answer 2:
You Answered	RouterA's NIC#2 IP address
Correct Answer	RouterA's NIC#1 IP address
	Answer 3:
Correct!	RouterA's NIC#1 MAC address
	Answer 4:
Correct!	RouterA's NIC#1 MAC address
	Answer 5:
Correct!	D's IP address
	Answer 6:
Correct!	D's IP address
	Answer 7:

Week 7 Summary Exercises: INTRO TO COMPUTER NETWORKS (CS_372_400_U2017)	
D's MAC address	
Answer 8:	
D's MAC address	
Answer 9:	
D's IP address	

Quiz Score: **75.22** out of 91