Institute of Business & Information Technology

University of the Punjab

Sheet	No.	
SHEEL	NO.	

Take Home

Mid Term Examination

Fall Term 2020

Code: IT~466 Degree: BBIT

Title: Analysis of Algorithm Batch: F16-IT Major

Max Time: 80 min Marks: 70

Instructions:

- 1. Do not forget to pray before starting to attempt the paper. Trust me it helps.

 Remember! <u>SOMEONE is always with you (Be Relaxed)</u>, and HE is also watching you (Be Honest)
- 2. Question Paper is SELF EXPLANATORY. Understanding the Question Paper is part of Solution.
- 3. Nothing Beyond the Finish Line will be Evaluated. Back Side of Pages is Beyond Finish Line.
- 4. Sharing of resources like Stationary etc. is strictly prohibited.
- 5. For Calculations etc. Use the back side of the pages.
- 6. Error in Question will be advantageous to Student.
- 7. Read the Questions carefully before attempting.
- 8. Solve your paper using Black/Blue Pen only.
- 9. Attempt All Questions in a Precise Fashion.
- 10. This Exam is Close Books, Close Notes.
- 11. Switch Off your Cellular Phones.
- 12. Manage Your Time Wisely.

Roll No:

Good Luck

Name:

	Class:	IT Ma	jor			Date:	Wedne	sday 1	Vovem	ber 18	, 2020	
•	Section:	□ A		В	Sig	nature:_						
	Q 01.	Q 02.	Q 03.	Q 04.	Q 05.	Q 06.	Q 07.	Q 08.	Q 09.	Q 10.	Total	
	15	15	15	15	10						70	
	·	Invigilator's	s Signature	•				·	Examiner	's Signature	9	

Take Home

```
Question No 01.
                                                                                      15
Find the Time complexity of the following iterative algorithms?
                                                                                       4
     int i, j, k;
     for(i=1; i<=n; i×=3)
         for(j=n/2; j <= n; j/=3)
             for(k=1; k <= n^3; k^* = 3)
                Write("IBIT");
Time Complexity of the following Algorithm
                                                                                       6
for (i = \frac{n}{2}; i > 1; i -= c)
    for (j = i+1; j \le n; j \times c)
       Print("IBIT");
    for (int m=1; m^2 \le n; m=i+2)
       for(int j=1; j <= 2*(m-1); j++)
       Print("IBIT-PU")
       for(int k=m; k \le (10-m); k++)
       Print("AoA")
                                                                                       5
Find the space Complexity of following Algorithm?
   M(A, int x, int y, int z)
   int S1=y-x+1;
   int S2=z-y;
   int L1[S1+1], L2[S2+1];
   for (i=0;i<S1;i++)
       L1[i]=A[x+i];
   for (j=0; j<S2; j++)
       L2[j]=A[y+j+1];
   L1[i]=\infty; L2[j]=\infty;
   i=0; j=0; k=0;
   while(i<=S1 && j<=S2)
       if(L1[i]<L2[j])
           A[x+k]=L1[i];
           i++;
       else
           A[x+k]=L2[j];
           j++;
       k++;
```

500	Take Home
	No 02. S(int X[], int a, int b) a <b) a,="" b)="" c="P(X," c-1)<="" ss(x,="" th=""></b)>
Find the Sp X[1,12], Ass	SS(X, c+1, b) ace Complexity of the algorithm; show the Recursion Tree for the instance with array time $c = \left[\frac{a+b}{4}\right]$ for every call for P(X, a, b).
Space E	
	e Complexity of the above algorithm when $c=\left\lceil \frac{a+b}{4} \right\rceil$ and $T(n)=n$ for P(X, a, b).2+6
Time E	
Recurs	on Tree:

Take Home

Time Complexity:	
Question No 03. Compute the Computational Complexity of following using Substitution Method? $T(n) = T(n-2) + 2n^{-2} \qquad \forall \ n>0$	15 8
What will be the Time Expression for the following recursive algorithm? MF(int n) int Q=1, a=1 if (n==1) return 1 if(n%2==0)	3
MF(n/2) Else	
for(a=1; a <n; a×="2)<br">MF(n/5)</n;>	
Write a Recursive Function to find the Maxima of an integer array?	4

Take Home

Question No 04. Formally State the Master Theorem	15 5
<u> </u>	
Find Time Complexity using Master Theorem	
$T(n) = 31 T\left(\frac{n}{3}\right) + n^2 \frac{1}{(\log n)^4}$	3
$T(n) = 5 T\left(\frac{2n}{5}\right) + n^{-1} \log^{-2} n$	1
$T(n) = 4 T\left(\frac{n}{4}\right) - n \log^{-3} n$	2
<pre>Find the Space Complexity of following code? int F(int n) if (n < 2) return 1 else return F(n-1) + F(n-2)</pre>	4

	Tale a I	•
ame:		

uestion No 05.	1
mpute the Time Complexity using Recursion Tree	-
mpute the Time Complexity using Recursion Tree $T(n) = 3T\left(rac{n}{3} ight) + n^3 orall n \geq 1$	
(3)	

Take Home

Finish Line

Nothing beyond this line will be evaluated