

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Program	B.Tech (All SoCS Branches)	Semester	I
Course	Engineering Mathematics	Course Code	MATH 1036

	Unit I: Matrices (5L)	References
Session 1-2:	Linear independence/dependence of vectors, Rank of a matrix: Row echelon form, normal form	T1: 7.4, T2: 3.3.2
Session 3:	Consistency of system of linear equations and its solution	T1: 7.4, T2: 3.3.2 and T2: 3.4.3
Session 4-5:	Eigen values and Eigen vectors, Cayley-Hamilton theorem and its application to find power of matrix.	T1: 8.1, T2: 3.5, T2: 3.4.4, T2: 3.5.1 and T2: 3.4.5
	fferential and Integral Calculus (12L)	
Session 6-8:	Higher order derivatives, successive differentiation, Leibnitz's theorem.	T3: 2.1, 2.2
Session 9-11:	Introduction to partial differentiation, Euler's theorem, Jacobians, Maxima and minima.	T3: 3.2,3.7,3.8, 4.2, T2: 2.5
Session 12-14:	Double integrals, Change of order of integration	T3: 7.1, 7.3, T2: 2.6.1
Session 15-17:	Change of variables, Triple integrals, Applications of double and triple integrals (area, volume).	T3: 7.5, 7.6, T2: 2.6.3, T2: 2.6.2
Unit	III: Differential Equations (9L)	
Session 18-20:	Linear differential equations with constant coefficients.	T3:9.3
Session 21-22:	Cauchy-Euler differential equation, Legendre linear differential equation.	T1:2.6, T3:9.6
Session 23-24:	Solution of second order differential equations when a part of complementary function is known, Solution of second order differential equations by reduction to normal form.	T3: 9.8

UNIVERSITY OF PETROLEUM & ENERGY STUDIES, DEHRADUN

Ī	Program	B.Tech (All SoCS Branches)	Semester	I
	Course	Engineering Mathematics	Course Code	MATH 1036

Session 25-26:	Solution of second order differential equations by changing the independent variable, Solution of second order differential equation by variation of parameters. V: Probability Distributions (5L)	T1:2.10, T3: 9.7
Unit I		
Session 27-38:	Discrete and continuous random variables, Probability mass and probability density functions,	T1:22.5, T3:27.1
Session 29-31:	Probability distribution: Mean, Variance and Standard Deviation, Binomial distribution, Poisson distribution, Normal distribution.	T1:22.7, 22.8, T3: 27.4, 27.6
Unit V: Numerical Methods (14L)		
Session 32-34:	Bisection method, Regula Falsi method, Secant Method and Newton-Raphson method,	T3:32.2, 32.4
Session 35-36:	Gauss Elimination method, Gauss-Jacobi and Gauss-Seidel methods,	T1:18.1,
Session 37-39:	Finite difference operators, difference tables, Newton forward and backward interpolation formula, Newton divided difference method,	T1:17.3, T3:32.3,32.10
Session 40-42:	Numerical differentiation, Newton-Cotes integral formula, Trapezoidal rule, Simpson's 1/3 and Simpson's 3/8 Rules,	T1:17.5
Session 43-45:	Picard's method, Taylor's Series method, Euler's method and Modified Euler's method, Runge-Kutta fourth order method.	T1:19.1, T3:33.2

Text Books:

- T1. E. Kreyszig, Advanced Engineering Mathematics, Wiley Publications. ISBN: 9788126531356.
- T2. R. K. Jain and S. R. K. Iyengar, Advanced Engineering Mathematics, Narosa Publications. ISBN: 9788184875607.
- T3. B. V. Ramana, Higher Engineering Mathematics, Tata McGraw Hill. ISBN: 9780071070089.
- T4. S. C. Chapra and R. P. Canale, Numerical methods for engineers, Mc Graw Hill Education. ISBN: 9780073397924.