Tronc CS

PROF: ATMANI NAJIB

La projection dans le plan

- I) La projection sur une droite parallèlement à une autre droite
- II) Théorème de Thales et son théorème réciproque

I) La projection sur une droite parallèlement à une autre droite

1)Définition

Soient (D) et (Δ) deux droites sécantes en un pont A , et soit M un point du plan La droite qui passe par M et parallèle (Δ) coupe (D) en un point M' le point M' s'appelle la projection du point M sur (D) parallèlement à (Δ) ou le projeté M sur

(D) parallèlement a (Δ) ou l'**Image d'un point M** la projection $P_{(D;\Delta)}$ sur (D) parallèlement à (Δ) et

on écrit : $P_{(D;\Delta)}(M) = M$ ' ou P(M) = M '

la droite (Δ) s'appelle la direction de la projection

P(M) = M ' : M ' l'Image d'un point ${\bf M}$ la projection P

si $B \in (D)$ alors P(B) = B on dit alors que le point B est invariant par la projection P

2. Propriétés

- Chaque point de (D) est confondu avec sa projection
- Est tout point confondu avec sa projection est un point de (D)
- On dit que la droite (D) est invariante par la projection sur (D) parallèlement à (Δ)

Cas particulier

Si les droite (D) et (Δ) sont perpendiculaire (on dit aussi orthogonales) on dit que M'est la projection orthogonale de M sur (D)

Application1:

Soit ABC est un triangle et M le milieu de [AB]

1)Soit P_1 la projection sur (BC) parallèlement à $\left(AC\right)$

Déterminer : $P_1(A)$, $P_1(M)$, $P_1(B)$ $P_1(C)$,

2)Soit P_2 la projection sur (AC) parallèlement à (BC)

Déterminer $:P_{2}\left(A\right)$, $P_{2}\left(M\right)$, $P_{2}\left(B\right)$ $P_{2}\left(C\right)$,

Réponse : 1) soit: P_1 la projection sur (BC) parallèlement à $\left(AC\right)$

On a $A \in (AC)$ et $(AC) \cap (BC) = \{C\}$ donc $P_1(A) = C$

On a $B \in (BC)$ donc B est invariante par la projection P_1 donc $P_1(B) = B$

On a $C \in (BC)$ donc C est invariante par la projection P_1 donc $P_1(C) = C$

Soit $M' = P_1(M)$ on a M le milieu de [AB]

La parallèle à (AC) passant par M passe forcément par le milieu de [BC] donc M' est le milieu de [BC]

1) soit: P_2 la projection sur (AC) parallèlement à (BC)

On a $A \in (AC)$ donc $P_2(A) = A$

On a $C \in (AC)$ donc C est invariante par la projection P_2 donc $P_2(C) = C$

On a $B \in (BC)$ et $(AC) \cap (BC) = \{C\}$ donc $P_2(B) = C$

On a M le milieu de [AB] donc la parallèle à (BC) passant par M coupe [AC] en son milieu soit: M'' ce milieu donc $P_2(M) = M''$

3. La projection d'un segment et de son milieu sur une droite parallèlement à une autre droite Soi A et B deux points du plan et A' et B' sont respectivement leur projection P sur sur (D) parallèlement à (Δ)

<u>Propriété 1:</u> L'image du segment [AB] par la projection P est le segment [A'B'] et on écrit : $P(\lceil AB \rceil) = \lceil A'B' \rceil$

Propriété 2: Si I est le milieu de [AB] alors P(I) = I' est le milieu du segment [A'B']

On dit que la projection conserve les milieux

Remarque:

on a : P([AB]) = [A'B'] donc pour tout point M du segment

$$[AB]: P(M) = M' \in [A'B']$$

II)Théorème de Thales et son théorème réciproque

1)Théorème de Thales:

Soient (D) et (Δ) deux droites sécantes en un pont, et soient A; B; C trois points alignés du plan tel que (AB) et (Δ) ne sont pas parallèles soient A'; B'; C' respectivement les projetés des points A; B; C sur (D) parallèlement à

 (Δ)

Alors: $\frac{AB}{AC} = \frac{A'B'}{A'C'}$

2)Théorème de Thales avec les vecteurs :

Soient A'; B'; C' respectivement les projetés des points A; B; C sur droite (D) parallèlement à (Δ)

Si $\overrightarrow{AB} = k\overrightarrow{AC}$ avec $k \in \mathbb{R}$ Alors: $\overrightarrow{A'B'} = k\overrightarrow{A'C'}$

On dit que la projection conserve le coefficient d'alignement de trois points

Application1:

Soient ABC est un triangle et M un point définie par : $\overrightarrow{AM} = \frac{2}{3} \overrightarrow{AB}$

1)Construire le point M' le projeté de M sur la droite (AC) parallèlement à (BC)

2)Montrer que $\overrightarrow{AM'} = \frac{2}{3}\overrightarrow{AC}$ et en déduire que $\overrightarrow{MM'} = \frac{2}{3}\overrightarrow{BC}$

Réponse : 1) soit: P la projection sur (AC) parallèlement à (BC)

On a $A \in (AC)$ donc A est invariante par la projection P donc P(A) = A

On a $C \in (BC)$ donc C est invariante par la projection P donc P(C) = C

On a aussi : P(B) = C

Et puisque $\overrightarrow{AM} = \frac{2}{3} \overrightarrow{AB}$ et la projection conserve le coefficient d'alignement de trois points

Alors:
$$\overrightarrow{AM'} = \frac{2}{3}\overrightarrow{AC}$$

On a
$$\overrightarrow{MM'} = \overrightarrow{MA} + \overrightarrow{AM'} = -\frac{2}{3}\overrightarrow{AB} + \frac{2}{3}\overrightarrow{AC} = \frac{2}{3}(-\overrightarrow{AB} + \overrightarrow{AC}) = \frac{2}{3}\overrightarrow{BC}$$

3)le théorème réciproque de Thales

Soient (D) et (D') deux droites non parallèles a une troisième (Δ) , et soient A; B deux points de la droite (D) tel que A' et B' respectivement les projetés des points A; B sur (D') parallèlement à (Δ)

Si C un point de la droite (D) et C' un point de la droite (D') tel que $\frac{AB}{AC} = \frac{A'B'}{A'C'}$

Et les points A; B et C sont dans le même ordre sur la droite (D) que les points A'; B' et C' sur la droite (D')

Alors : le point C' est la projection de C sur la droite(D') parallèlement à (Δ) et on a (AA') || (BB') || (CC')

<u>Propriété</u>

Soient (Δ) et (Δ') deux droites sécantes et A; B; C; D des points distinctes et $k \in \mathbb{R}$ tel que $\overrightarrow{AB} = k\overrightarrow{CD}$ ET si A'; B'; C' et D' respectivement les projetés des points A; B; C et D sur la droite (Δ) parallèlement à (Δ') Alors : $\overrightarrow{A'B'} = k\overrightarrow{C'D'}$

On dit que la projection conserve le coefficient de colinéarité de deux vecteurs

Application(réciproque de Thales):

Soient ABC est un triangle et I et I' deux points tel que :

$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$$
 et $\overrightarrow{AI'} = \frac{2}{3}\overrightarrow{AB}$

- 1) Montrer que I' est par la projection de I sur la droite (AB) parallèlement à (BC)
- 2) soit M est le milieu de [BC] ; la droite (AM) coupe la droite (II') en G

Montrer que
$$\overrightarrow{AG} = \frac{2}{3} \overrightarrow{AM}$$

Réponse : 1) On a
$$\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$$
 donc $\left\|\overrightarrow{AI}\right\| = \left\|\frac{2}{3}\overrightarrow{AC}\right\|$ donc $AI = \frac{2}{3}AC$ donc $\frac{AI}{AC} = \frac{2}{3}$ (1)

Et on a :
$$\overrightarrow{AI'} = \frac{2}{3}\overrightarrow{AB}$$
 donc $\|\overrightarrow{AI'}\| = \|\frac{2}{3}\overrightarrow{AB}\|$ donc $AI' = \frac{2}{3}AB$ donc $\frac{AI'}{AB} = \frac{2}{3}$ ②

D'après ① et ② on a
$$\frac{AI}{AC} = \frac{AI'}{AB}$$
 et d'après la réciproque de Thales : $(II') || (BC)$

Et puisque (AB) coupe (II') en I' donc I' est la projection de I sur la droite (AB) parallèlement à (BC)

2) On a I' est la projection de I sur la droite (AB) parallèlement à (BC) et M est le milieu de [BC] Mq: $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AM}$???

On considère P la projection sur (AM) parallèlement à (BC)

On a $A \in (AM)$ donc A est invariante par la projection P donc P(A) = A

la parallèle à (BC) passant par C est (BC) elle coupe (AM) en M donc P(C) = M

la parallèle à (BC) passant par I est (II') elle coupe (AM) en G donc P(I) = G

Et on a en plus $\overrightarrow{AI} = \frac{2}{3}\overrightarrow{AC}$ 4 donc D'après 1 et 2 et 3 et 4 on a $\overrightarrow{AG} = \frac{2}{3}\overrightarrow{AM}$ car la projection conserve le coefficient d'alignement de trois points