Вычмат 4.2

Методы решения интегральных уравнений.

1. Интегральные уравнения, классификация.

$$g(x)y(x)-\lambda\int_{\Omega}K(x,s)y(s)ds=f(x),\quad x\in Q$$

K(x,s) -- ядро интегрального оператора.

- 1. Если $\Omega=const$, то уравнение Фредгольма; Если $\Omega=\Omega(x)$, то Вольтерра.
- 2. Если $g(x) \equiv 0$, то уравнение 1 рода, иначе 2 рода.
- 3. Если $f(x) \equiv 0$, то ур. однородное, иначе неоднородное.
- 4. (?) При $g(x)\equiv 1$, λ собственное значение. $Ay\equiv \int_{\Omega}K(x,s)y(s)ds$ в операторном виде. A вполне непрерывный, т.е. $\not\exists A^{-1}$ ограниченного, но $(I-A)^{-1}$ ограниченный.

2.Метод квадратур решения интегральных уравнений Фредгольма и Вольтерры 2 рода.

Приближаем интеграл квадратурной формулой.

Используем общий вид квадратурной формулы на сетке $\{x_i\}_{i=\overline{1,m}}\subset [a,b]$:

$$\int_a^b arphi(x) dx = \sum_{i=1}^m A_i arphi(x_i) + R[arphi]$$

 $A_i \geq 0$, $\sum_{i=1}^m A_i = b-a$, R - погрешность формулы.

• Для Вольтерра 2 рода:

Матрица данной системы треугольная, можно вычислять постепенно.

$$egin{aligned} -\lambda \sum_{j=1}^{i-1} A_j K_{ij} y_j + (1-\lambda A_i K_{ii}) y_i &= f_i \ y_i &= rac{f_i + \lambda \sum_{j=1}^{i-1} A_j K_{ij} y_j}{1-\lambda A_i K_{ii}}, \quad i = \overline{1,n}, \quad 1-\lambda A_i K_{ii}
eq 0 \end{aligned}$$

• Для Фредгольма 2 рода:

$$egin{aligned} y(x) - \lambda \int_a^b K(x,s) y(s) ds &= f(x), \quad x \in [a,b] \ y_i - \lambda \sum_{i=1}^n A_j K_{ij} \, y_j &= f_i, \quad i = \overline{1,n} \end{aligned}$$

Получилась система линейных уравнений (СЛАУ), которая при решении даёт y_i .

3. Метод вырожденных ядер решения интегрального уравнения Фредгольма 2 рода.

Если ядро можно представить вырожденным ядром, то решение можно найти в аналитическом виде.

 $K(x,s) = \sum_{i=1}^m lpha_i(x) eta_i(s)$ - вырожденное ядро, где $lpha_i, eta_i$ - линейно независимые.

$$egin{aligned} y(x) - \lambda \int_a^b K(x,s) y(s) ds &= f(x), \quad x \in [a,b] \ y(x) - \lambda \int_a^b \left[\sum_{i=1}^m lpha_i(x) eta_i(s)
ight] y(s) ds &= f(x) \ y(x) - \lambda \sum_{i=1}^m lpha_i(x) \underbrace{\int_a^b eta_i(s) y(s) ds}_{C_i} &= f(x) \end{aligned}$$

Находим решение в виде:

$$y(x) = f(x) + \lambda \sum_{i=1}^m lpha_i(x) C_i$$

Подставим его в уравнение, чтобы найти C_i :

$$egin{align} f(x) + \lambda \sum_{i=1}^m lpha_i(x) C_i - \lambda \sum_{i=1}^m lpha_i(x) \int_a^b eta_i(s) \left[f(s) + \lambda \sum_{i=1}^m lpha_i(s) C_i
ight] ds = f(x) \ & \lambda \sum_{i=1}^m lpha_i(x) \left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s) eta_i(s)
ight] ds
ight) = 0 \ & \lambda \sum_{i=1}^m lpha_i(s) \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s) eta_i(s)
ight] ds
ight) = 0 \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s) eta_i(s)
ight] ds
ight] ds = f(x) \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s) eta_i(s)
ight] ds
ight] ds = f(x) \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s) eta_i(s)
ight] ds
ight] ds
ight] ds = f(x) \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s)
ight] ds
ight] ds
ight] ds
ight] ds = f(x) \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s)
ight] ds
ight] ds
ight] ds
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s)
ight] ds
ight] ds
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[eta_i(s) f(s) + \lambda \sum_{i=1}^m C_i lpha_i(s)
ight] ds
ight] ds
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - \int_a^b \left[\left(C_i - C_i - C_i \right] \left(C_i - C_i - C_i \right)
ight] ds
ight] ds
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i - C_i \right) \left[\left(C_i - C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i \right)
ight] ds \ & \lambda \sum_{i=1}^m \left[\left(C_i - C_i - C_i$$

Поскольку $\alpha_i(x)$ - линейно независимые, то сумма = 0, только когда скобка = 0.

$$C_i - \underbrace{\int_a^b eta_i(s)f(s)ds}_{f_i} - \lambda \sum_{i=1}^m C_i \underbrace{\int_a^b lpha_i(s)eta_i(s)ds}_{a_{ij}} = 0$$

Получаем систему, из которой можно найти C_i :

$$C_i - \lambda \sum_{i=1}^m C_i a_{ij} = f_i, \quad i = \overline{1,n}$$

4.Преобразование уравнения Вольтерра 1 рода к уравнению 2 рода.

$$\int_a^x K(x,s)y(s)ds = f(x)$$

1. Производная

$$rac{d}{dx}(\ldots) \Rightarrow K(x,x)y(x) + \int_a^x K_x'(x,s)y(s)ds = f'(x)$$

$$y(x)+\int_a^xrac{K_x'(x,s)y(s)}{K(x,x)}ds=rac{f'(x)}{K(x,x)},\quad K(x,x)
eq 0$$

Если K(x,x)=0, то повторяем.

2. Интегрирование по частям. Пусть $Y(x)=\int_a^x y(s)ds$, тогда

$$(\ldots)\Rightarrow K(x,s)Y(s)\Big|_a^x-\int_a^x K_s'(x,s)Y(s)ds=f(x)$$

Т.к. Y(a) = 0:

$$K(x,x)Y(x)-\int_a^x K_s'(x,s)Y(s)ds=f(x)$$

$$Y(x)-\int_a^xrac{K_s'(x,s)Y(s)}{K(x,x)}ds=rac{f(x)}{K(x,x)}$$

Находим $Y(x) \Rightarrow y(x) = \frac{dY}{dx}$.

5.Интегральные уравнения Фредгольма 1 рода, общая характеристика.

$$\int_{a}^{b} K(x,s)y(s)ds = f(x); \qquad Ay = f$$

Покажем некорректность задачи, невыполнимость одного из условий корректности Адамара.

(Несуществование) На практике правая часть f получается с погрешностью, поэтому её производной в некоторых точках может и не существовать. Поскольку решение $y \in C[a,b]$, то взяв производную всего уравнения окажется, что f' необходимо быть

тоже из C. Значит первое условие существования решение не выполняется. (необходимо гладкое f, хотя бы из C^1)

(Неединственность) Например: $\int_0^1 xs\ y(s)ds = 0$.

1.
$$y = 0$$
,

2.
$$y = (x - 0.5)(x - 1) : x \int_0^1 s(s - 0.5)(s - 1)ds = 0.$$

(Неустойчивость) A - вполне непрерывный (переводит ограниченное подмножество X в предкомпактное (т.е. его замыкание компактно) подмножество Y), т.е. если существует A^{-1} , то он не обязательно ограниченный.

6.Метод регуляризации Тихонова. Корректность по Тихонову, регуляризирующий оператор. Псевдорешение, нормальное решение, сглаживающий функционал.

Корректность по Тихонову задачи Ay = f (условная корректность):

- 1. Априори известно, что $\exists y \in M$ некоторое заданное множество (мн-во корректности),
- 2. $\exists ! y \in M$ (единственное в классе функций множества M),
- 3. $Ay_1 = f_1: ||f f_1|| \le \delta, y_1 \in M \Rightarrow ||y y_1|| < \varepsilon$ (бесконечно малым вариациям f, не выводящим g за пределы g, соответствуют бесконечно малые вариации решения g).

f - точная правая часть, $ilde{f}_\delta$ - приближённое с погрешностью δ .

Регуляризирующий оператор для случая $Ay= ilde{f}$:

R(f, lpha) - рег. оператор для уравнения в окрестности f, если

- 1. R(f,lpha) определён $orall ilde{f}_\delta \in F$, где $0 \leq \delta \leq \delta_0, 0 \leq lpha \leq lpha_0.$
- $\begin{array}{l} 2. \,\, \exists \alpha = \alpha(\delta): \forall \varepsilon > 0 \,\, \exists \delta = \delta(\varepsilon): \rho_F(\tilde{f}_\delta, f) \leq \delta \Rightarrow \rho_Y(\tilde{y}_\alpha, y) \leq \varepsilon, \, (\delta \to 0 \Rightarrow \alpha \to 0, \varepsilon \to 0) \\ \tilde{y}_\alpha = R(\tilde{f}_\delta, \alpha(\delta)) \end{array}$

Решения:

- 1. Точное (классическое) решение $ilde{y}:Ay=f$: $||A ilde{y}-f||_F=0$
- 2. Псевдорешение y_1 : $||Ay_1 f||_F = \min_{y} ||Ay f||_F$
- 3. Нормальное решение псевдорешение $y_0: ||y_0||_Y = \min_y ||y||$

Метод регуляризации:

 $Ay = f, y \in Y, f \in F$ - гильбертовы пространства, A - вполне непрерывный оператор (Фредгольма).

A,f - неизвестные, $ilde{A}, ilde{f}$ - известные приближённые: $|| ilde{f}-f||\leq \delta, || ilde{A}-A||\leq \xi.$

Сглаживающий функционал:

$$\Phi_{lpha}[y, ilde{f}] = || ilde{A}y - ilde{f}||_F^2 + lpha\Omega[y]$$

 $\Omega[y]>0$ - стабилизирующий функционал. Чаще всего $\Omega[y]=||y||_Y^2.$ Минимум функционала - решение задачи регуляризации.

7.Задача минимизации сглаживающего функционала. Уравнение Эйлера.

Задача: найти $y_lpha:\Phi_lpha[y, ilde f] o \min$, т.е. $\Phi_lpha[y_lpha, ilde f]=\inf_{y\in Y}\Phi_lpha[y, ilde f]$

Уравнение Эйлера - изначальное уравнение/задача, которому соответствует задача минимизации функционала.

Пример: для Ay = f имеем J(y) = (Ay, y) - 2(f, y).

Для уравнения Фредгольма 1 рода имеем функционал:

$$egin{aligned} \Phi_{lpha}[y, ilde{f}] &= (ilde{A}y- ilde{f}, ilde{A}y- ilde{f})+lpha(y,y)=(ilde{A}y, ilde{A}y)-(ilde{A}y, ilde{f})-(ilde{f}, ilde{A}y)+(ilde{f}, ilde{f})+lpha(y,y)=\ &= (ilde{A}^* ilde{A}y,y)-2(ilde{A}^* ilde{f},y)+(ilde{f}, ilde{f})+(lpha y,y)=\ &= (ilde{A}^* ilde{A}y+lpha y,y)-2(ilde{A}^* ilde{f},y)+(ilde{f}, ilde{f}) \end{aligned}$$

Т.к. $(\tilde{f},\tilde{f})=const$ и для вариации (нахождения минимума) не влияет, поэтому соответствующее уравнение Эйлера:

$$ilde{A}^* ilde{A}y+lpha y= ilde{A}^* ilde{f}$$

Получили уравнение Фредгольма 2 рода. При этом решение y_{lpha} - нормальное.

8.Метод регуляризации Тихонова для решения интегрального уравнения Фредгольма 1 рода. Определение параметра регуляризации по невязке.

Конкретной регуляризации уравнения Фредгольма не было на лекциях.

Определение α по невязке:

Имеем $||f_{\delta} - f||_F \leq \delta$.

Поэтому будем искать по невязке $||Ay_{\alpha}-f_{\delta}||_F=\delta$.

Выбираем монотонную последовательность $\{lpha_i\}$ (например $lpha_k=lpha_0q^k,q>0$)

Для каждого значения находим решение y_{α_k} и подставляем в невязку:

 $||Ay_{lpha_k}-f_\delta||_Fpprox \delta$ и выбираем решение, при котором невязка ближе всего.

9. Метод подбора решения. Метод Иванова.

Не нужен