

Environmental change in the Afro-alpine zone: a 16,000-year diatom record from Garba Guracha, Bale Mtns., Ethiopia.

David Grady

Study site: Garba Guracha, Bale Mtns., Ethiopia

The Bale Mtns.
form the
largest
continuous area
above 3000 m in
Africa

Garba Guracha:

A small (500 x 300 m) cirque lake between the Ericaceous belt and the Afroalpine zone

NE-SW transect SOUTH Tullu Dimtu NORTH (4400m)/ Garba EAST WEST Guracha Afroalpine Afroalpine Ericaceous Ericaceous Altitude (m) belt Upper montane 3000 fòrests Upper montane forests 2000 -Afromontane rainforest Kilometres

Umer *et al*. (2007)

Previous studies at Garba Guracha

Fossil Pollen

Quaternary Science Reviews 26 (2007) 2229-2246

Late Pleistocene and Holocene vegetation history of the Bale Mountains, Ethiopia

M. Umer^a, H.F. Lamb^{b,*}, R. Bonnefille^c, A.-M. Lézine^d, J.-J. Tiercelin^e, E. Gibert^f, J.-P. Cazet^d, J. Watrin^d

Core sedimentology & geochemistry

Quaternary Science Reviews 27 (2008) 449-467

High-resolution sedimentary record of the last deglaciation from a high-altitude lake in Ethiopia

J.-J. Tiercelin^{a,*}, E. Gibert^b, M. Umer^c, R. Bonnefille^d, J.-R. Disnar^c, A.-M. Lézine^f, D. Hureau-Mazaudier^g, Y. Travi^h, D. Keravis^c, H.F. Lambⁱ

Adding to the Garba Guracha story

Key questions to add to the story

What changes can we pick out in the diatom record?

 What role does environmental change play in driving changes in the diatom community at Garba Guracha?

 How do the changes at a high altitude site like Garba Guracha compare to changes inferred at lower altitudes in eastern Africa?

The cores: GGU17-BAL-1A & 1B

- Composite created from two 15 m Livingstone cores from the centre of the lake
- 24 radiocarbon dates in total from (i) compound class n-alkane (ii) micro-charcoal fragments and (iii) bulk organic samples
- Cs-Pb dating of the uppermost 50 cm of sediments at a 1 cm resolution

Sediment XRF-derived geochemistry

16,000 years of diatoms

Diatom changes ordinated

A principal curve (Simpson & Birks, 2012) fitted through the data explains ~67% of variance

Splits the distributions of taxa through the record showing the progression from a small Fragilarioid dominated assemblage (A) to a more diverse, periphytic community (B)

Subtle ecological change at Garba Guracha

- Diatom record of widely tolerant, largely oligotrophic species – at first seems difficult to interpret
- e.g.: if just plotting diatom—inferred conductivity the record shows fresher to... fresh waters at 5,500 cal. BP
- Nevertheless changes are evident in this sensitive system

Environmental changes at Garba Guracha

- Late Pleistocene/Early
 Holocene: High erosion
 in a glacial environment
 with sparse vegetation
 cover
- Difficult to detect
 considerable Younger
 Dryas aridity like at
 other sites in the region
 - site specific
 characteristics masking
 this change?

Change in productivity and conductivity as catchment stabilises and transitions from a glacial environment?

Environmental changes at Garba Guracha

- Interval of low productivity at 5,500 BP and more lake mixing at 4,500 BP. Expansion of Podocarpus-Juniperus forest (Umer et al., 2007): drier conditions?
- Transition from poor
 Fragilarioid productivity
 to expansion of suitable,
 littoral habitat by 4,500
 BP instigating high
 productivity among the
 periphytic and
 aerophilous community

Take away messages:

- Broadly, the Garba Guracha catchment likely experienced similar shifts in climate in the last 16,000 years to those identified at lower altitudes across eastern Africa
- The sensitivity of certain proxies to these changes are important to consider
- Ecological change driven by habitat availability in response to a changing climate in this sensitive system
- Overall changes are subtle through the record until 5,500-4,500 BP with reorganisation of the diatom community