	Name:
	Pid:
1. Show that there does not exist the largest integer	er.
Solution:	

2. Show that there are irrational numbers a and b such that a^b is rational.

Solution:		

3. Show that $\sum_{i=1}^{n} (2i - 1) = n^2$.

Solution:

4. Prove that $\sum_{i=1}^{n} \frac{1}{i(i+1)} = \frac{n}{n+1}$.

Solution:

- 5. Let a_1, \ldots, a_n be a sequence of real numbers. We define inductively $\prod_{i=k}^n a_i$ as follows:
 - $\prod_{i=1}^{1} a_i = a_1$ and
 - $\bullet \prod_{i=1}^{k+1} a_i = \left(\prod_{i=1}^k a_i\right) \cdot a_{k+1}.$

Prove that $\prod_{i=1}^{n-1} \left(1 - \frac{1}{(i+1)^2}\right) = \frac{n+1}{2n}$ for all integers n > 1.

Solution: