

TÀI LIỆU KHÓA HỌC ĐỘC QUYỂN

KHÓA BON SEASON 2026 STEP 1 | CHAPTER O. KIẾN THỰC TIỀN ĐỀ TOÁN 12

Theme 3. Hàm số liên tục

Xem bài giảng & thi online trên ngochuyenlb.edu.vn tai lớp:

STEP 1 | Nền tảng Toán 12 | 8 điểm

Trong **Theme 1** ta có **REMARK** về phân biệt giá trị của hàm số y = f(x) tại $x = x_0$ và $\lim_{x \to x_0} f(x)$ là khác nhau. Tuy nhiên, ta cũng thấy có trường hợp $\lim_{x \to x_0} f(x) = f(x_0)$. Vậy ta sẽ tìm hiểu về trường hợp này.

1. Hàm số liên tục tại một điểm

Cho hàm số y = f(x) xác định trên khoảng (a;b) chứa điểm x_0 . Hàm số f(x) được gọi là liên tục tại điểm x_0 nếu $\lim_{x \to x_0} f(x) = f(x_0)$. Hàm số f(x) không liên tục tại x_0 được gọi là **gián đoạn tại điểm đó.**

Kết hợp với sự tồn tại giới hạn của hàm số tại một điểm thì ta có ghi nhớ sau:

Hàm số
$$f(x)$$
 liên tục tại $x = x_0 \Leftrightarrow \lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = f(x_0)$.

REMARK

Hàm số không liên tục tại $x = x_0$ được biểu thị dưới đây

Giá trị của hàm số tại x_0 không tồn tại.

Giá trị của hàm số tại x_0 tồn tại. Giới hạn của hàm số tại x_0 không tồn tại.

Cả giá trị của hàm số và giới hạn của hàm số đều tồn tại tại $x_{\rm o}$ nhưng không bằng nhau.

Ví dụ 1

Cho hàm số
$$g(x) = \frac{|x-2|}{x-2} = \begin{cases} -1 & \text{khi } x < 2\\ 1 & \text{khi } x > 2 \end{cases}$$

•
$$\lim_{x \to 2^{-}} g(x) = \lim_{x \to 2^{-}} (-1) = -1.$$

 $\lim_{x \to 2^{+}} g(x) \neq \lim_{x \to 2^{-}} g(x) \to \text{Không tồn tại } \lim_{x \to 2} g(x).$

$$\Rightarrow$$
 Hàm số $g(x) = \frac{|x-2|}{x-2}$ gián đoạn tại $x = 2$.

Ví dụ 2 Xét tính liên tục của hàm số
$$s(x) = \begin{cases} 1 & (x > 0) \\ 0 & (x = 0) \end{cases}$$
 tại điểm $x_0 = 0$.

Lời giải

Ta thấy $\lim_{x\to 0^+} s(x) = 1$, $\lim_{x\to 0^-} s(x) = -1 \to \lim_{x\to 0^+} s(x) \neq \lim_{x\to 0^-} s(x)$. Do đó không tồn tại giới hạn $\lim_{x\to 0} s(x)$.

Vậy hàm số này gián đoạn tại 0.

2. Hàm số liên tục trên một khoảng

- Hàm số y = f(x) được gọi là liên tục trên khoảng (a;b) nếu nó liên tục tại mọi điểm thuộc khoảng này.
- Hàm số y = f(x) được gọi là liên tục trên đoạn [a;b] nếu nó liên tục trên khoảng (a;b) và $\lim_{x \to a^+} f(x) = f(a), \lim_{x \to b^-} f(x) = f(b).$

Các khái niệm hàm số liên tục trên nửa khoảng như (a;b], $\lceil a;+\infty \rangle$... được định nghĩa theo cách tương tự.

REMARK 1

Đồ thị của hàm số liên tục trên một khoảng là một "đường liền" trên khoảng đó (Hình 1).

Hình 1

Hình 2 cho ví dụ về đồ thị của một hàm số không liên tục trên khoảng (a;b).

Hình 2

Ví dụ 1 Cho hai hàm số
$$f(x) = \begin{cases} 2x \text{ nếu } 0 \le x \le \frac{1}{2} \\ 1 \text{ nếu } \frac{1}{2} < x \le 1 \end{cases}$$
 và $g(x) = \begin{cases} x \text{ nếu } 0 \le x \le \frac{1}{2} \\ 1 \text{ nếu } \frac{1}{2} < x \le 1 \end{cases}$ với đồ thị tương ứng như hình.

Hàm số y = f(x) liên tục trên (0;1)

Hàm số y = g(x) không liên tục trên (0;1)

Xét tính liên tục của hàm số $f(x) = \begin{cases} x - 1 & \text{nếu } x \in (0;1) \\ 0 & \text{nếu } x = 1 \end{cases}$ trên nửa khoảng (0;1]. Ví dụ 2

Lời giải

Lời giải Ta có f(x) = x - 1 với $x \in (0;1)$. Với $x_0 \in (0;1)$ bất kì, ta có $\lim_{x \to x_0} (x - 1) = x_0 - 1 = f(x_0)$.

Hon nữa, $\lim_{x\to 1^-} f(x) = 0 = f(1)$ nên f(x) liên tục trên nửa khoảng (0,1].

REMARK 2

- Hàm số đa thức và các hàm số $y = \sin x$, $y = \cos x$ liên tục trên \mathbb{R} .
- Các hàm số $y = \tan x$, $y = \cot x$, $y = \sqrt{x}$ và hàm phân thức hữu tỉ (thương của hai đa thức) liên tục trên từng khoảng xác định của chúng

Cho hàm số $f(x) = \frac{x+1}{x-1}$. Tìm các khoảng trên đó hàm số f(x) liên tục. Ví du 3

Tập xác định của hàm số là $(-\infty;1)\cup(1;+\infty)$. Vậy hàm số f(x) liên tục trên các khoảng $(-\infty;1)$ và $(1;+\infty)$.

Giả sử hai hàm số y = f(x) và y = g(x) liên tục tại điểm x_0 . Khi đó:

- Các hàm số y = f(x) + g(x), y = f(x) g(x) và y = f(x)g(x) liên tục tại x_0 .
- Hàm số $y = \frac{f(x)}{g(x)}$ liên tục tại x_0 nếu $g(x_0) \neq 0$.

Cho hàm số $h(x) = \begin{cases} \frac{2x^2 - 2x}{x - 1} & \text{nếu } x \neq 1 \\ 5 & \text{nếu } x = 1 \end{cases}$. Xét tính liên tục của hàm số trên tập xác định của nó Ví du 4

Lời giải

TXĐ của hàm số là \mathbb{R} .

• Nếu $x \ne 1$, thì $h(x) = \frac{2x^2 - 2x}{x + 1}$.

Đây là hàm phân thức hữu tỉ có tập xác định là $(-\infty;1)\cup(1;+\infty)$.

Vậy nó liên tục trên mỗi khoảng $(-\infty;1)$ và $(1;+\infty)$.

• Nếu x = 1, ta có h(1) = 5 và $\lim_{x \to 1} h(x) = \lim_{x \to 1} \frac{2x^2 - 2x}{x - 1} = \lim_{x \to 1} \frac{2x(x - 1)}{x - 1} = \lim_{x \to 1} 2x = 2$

Vì $\lim_{x\to 1} h(x) \neq h(1)$, nên hàm số đã cho không liên tục tại x=1.

Kết luận: Hàm số đã cho liên tục trên các khoảng $(-\infty;1)$, $(1;+\infty)$ và gián đoạn tại x=1.

Nếu hàm số y = f(x) trên đoạn [a;b] và f(a) f(b) < 0REMARK 4

thì tồn tại ít nhất một điểm $c \in (a;b)$ sao cho f(c)=0.

Kết quả này được minh họa bằng đồ thị như hình bên.

Ví dụ 5 Chứng minh rằng phương trình $x^5 + x^3 - 10 = 0$ có ít nhất một nghiệm.

Lời giải

Xét hàm số $f(x) = x^5 + x^3 - 10$. Ta có f(0) = -10 < 0, f(2) = 30 > 0 và vì f(x) là hàm đa thức nên nó liên tục trên [0;2]. Khi đó, phương trình f(x) = 0 có ít nhất một nghiệm trong khoảng (0;2).

⇒ Tính chất này sẽ áp dụng cho bài toán sử dụng phương pháp hàm số biện luận nghiệm của phương trình, bất phương trình vận dụng cao sau này.

Ví dụ 6 Hàm số y = f(x) có đồ thị dưới đây gián đoạn tại điểm có hoành độ bằng bao nhiều?

B. −1.

C. 2.

D. 1.

Ví dụ 7 Cho hàm số y = f(x) có đồ thị như hình vẽ.

Khẳng định nào sau đây là sai?

A. Hàm số liên tục tại x = -4.

B. Hàm số gián đoạn tại x = 2.

C. Hàm số gián đoạn tại x=-1.

D. Hàm số liên tục tại x = 0.

Ví dụ 8

Cho hàm số $f(x) = \begin{cases} \frac{\sqrt{x+3}-2}{x-1} & \text{khi } x > 1 \\ \frac{1}{4} & \text{khi } x = 1. \text{ Chọn khẳng định đúng.} \\ \frac{x^2-1}{x^2-7x+6} & \text{khi } x < 1 \end{cases}$

A. f(x) liên tục tại x = 6 và không liên tục tại x = 1.

B. f(x) liên tục tại x = 6 và x = 1.

C. f(x) không liên tục tại x = 6 và liên tục tại x = 1.

D. f(x) không liên tục tại x = 6 và x = 1.

Ví dụ 9 Cho hàm số $f(x) = \begin{cases} \sqrt{x^4 + 4x^2} & \text{khi } x \neq 0 \\ m - 3 & \text{khi } x = 0 \end{cases}$. Tìm tất cả các giá trị của tham số thực m để hàm số liên tục

tai x = 0?

