第二章 线性规划

修贤超

https://xianchaoxiu.github.io

目录

- 2.1 线性规划问题及其数学模型
- 2.2 图解法
- 2.3 单纯形法原理
- 2.4 单纯形法计算步骤
- 2.5 单纯形法的进一步讨论
- 2.6 线性规划的对偶问题
- 2.7 对偶问题的基本性质

■ 美佳公司计划制造 I、II 两种家电产品。已知各制造一件时分别占用的设备 A、设备 B 的台时、调试工序时间及每天可用于这两种家电的能力、各售出 一件时的获利情况

项目	产品I	产品 II	每天可用能力
设备 A/h	0	5	15
设备 B/h	6	2	24
调试工序/h	1	1	5
利润/元	2	1	

■ 问该公司应制造两种家电各多少件,使获取的利润为最大

■ 设两种家电产量分别为变量 x_1, x_2 , 于是

$$\max z = 2x_1 + x_2$$
s.t.
$$\begin{cases} 5x_2 \le 15 \\ 6x_1 + 2x_2 \le 24 \\ x_1 + x_2 \le 5 \\ x_1, x_2 \ge 0 \end{cases}$$

- □ 决策变量: x₁, x₂
- \Box 目标函数: max $z = 2x_1 + x_2$
- 约束条件: $5x_2 \le 15$, $6x_1 + 2x_2 \le 24$, $x_1 + x_2 \le 5$, $x_1, x_2 \ge 0$

■ 捷运公司拟在下一年度的 1-4 月的 4 个月内需租用仓库堆放物资。已知各月份所需仓库面积

月份	1	2	3	4
所需仓库面积 (100m²)	15	10	20	12

仓库租借费用随合同期限而定,合同期越长折扣越大。租借仓库的合同每月初都可办理,每份合同具体规定租用面积和期限

合同租借期限	1 个月	2 个月	3 个月	4 个月
合同期内的租费 $(\pi/100m^2)$	2800	4500	6000	7300

■ 试确定该公司签订租借合同的最优决策,使所付租借费用最小

- 设 x_{ij} 表示在第 i (i = 1, 2, 3, 4) 个月初签订的租借期为 j (j = 1, 2, 3, 4) 个月的仓库面积的合同
 - 决策变量: x_{ij} (i, j = 1, 2, 3, 4)
 - □ 目标函数:

$$\min z = 2800(x_{11} + x_{21} + x_{31} + x_{41}) + 4500(x_{12} + x_{22} + x_{32} + x_{42}) + 6000(x_{13} + x_{23} + x_{33} + x_{43}) + 7300(x_{14} + x_{24} + x_{34} + x_{44})$$

□ 约束条件:

$$\begin{cases} x_{11} + x_{12} + x_{13} + x_{14} \ge 15 \\ x_{12} + x_{13} + x_{14} + x_{21} + x_{22} + x_{23} \ge 10 \\ x_{13} + x_{14} + x_{22} + x_{23} + x_{31} + x_{32} \ge 20 \\ x_{14} + x_{23} + x_{32} + x_{41} \ge 12 \\ x_{ij} \ge 0 \end{cases}$$

课堂练习1

■ 某工厂用三种原料 P_1 、原料 P_2 、原料 P_3 生产三种产品 Q_1 、产品 Q_2 、产品 Q_3 , 如表所示

单位产品所需原料数量	$ $ 产品 Q_1	产品 Q_2	产品 Q_3	原料可用量
原料 P_1 /公斤	2	3	0	1500
原料 P_2 /公斤	0	2	4	800
原料 P_3 /公斤	3	2	5	2000
位产品的利润/千元	3	5	4	

■ 试制订总利润最大的生产计划

■ 三要素: 决策变量, 目标函数, 约束条件

$$\max z = 3x_1 + 5x_2 + 4x_3$$
s.t.
$$\begin{cases} 2x_1 + 3x_2 \le 1500 \\ 2x_2 + 4x_3 \le 800 \\ 3x_1 + 2x_2 + 5x_3 \le 2000 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

- 。 决策变量的取值是连续的
- 目标函数是决策变量的线性函数
- 约束条件是含决策变量的线性等式或不等式

■ 一般形式

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

- □ x_j: 决策变量
- □ c_j: 价值系数
- □ bi: 资源量/右端项
- □ a_{ij}: 技术系数/工艺系数

■ 线性规划问题的数学模型

$$\max(\min) \ z = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$$
s.t.
$$\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n \le (=, \ge) b_1 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n \le (=, \ge) b_m \\ x_1, \dots, x_n \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \qquad \qquad \qquad \downarrow$$

$$\max(\min) \ z = \sum_{j=1}^n c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^n a_{ij} x_j \le (=, \ge) b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

■ 记

$$\mathbf{C} = \begin{bmatrix} c_1 \dots c_n \end{bmatrix} \quad \mathbf{X} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{A} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

■用矩阵和向量表示

$$\max(\min) z = \mathbf{CX}$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} \mathbf{P}_{j} x_{j} \leq (=, \geq) \mathbf{b} \\ \mathbf{X} \geq 0 \end{cases}$$

$$\max(\min) \ z = \mathbf{CX}$$

s.t.
$$\begin{cases} \mathbf{AX} \le (=, \ge) \mathbf{b} \\ \mathbf{X} \ge 0 \end{cases}$$

■标准形式

$$\max z = \sum_{j=1}^{n} c_j x_j$$
s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- □目标函数是求最大值
- □ 所有约束条件均用等式表示
- □ 所有决策变量均取非负数
- □ 所有右端项常数均为非负数

非标准型转化为标准形式

■基本思路

目标函数 ⇒ 约束条件 ⇒ 决策变量

■ 第一步: 目标函数的转换

$$\min z = \sum_{j=1}^{n} c_j x_j \implies \max z' = -\sum_{j=1}^{n} c_j x_j$$

非标准型转化为标准形式

- 第二步: 约束条件的转换
 - □ 右端项常数的转换

$$\sum_{j=1}^{n} a_{ij} x_j = b_i, \ b_i < 0 \quad \Rightarrow \quad -\sum_{j=1}^{n} a_{ij} x_j = -b_i$$

□ 不等式的转换——引入松弛变量

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j + \mathbf{s}_i = b_i, \ s_i \ge 0$$

□ 不等式的转换──引入剩余变量

$$\sum_{j=1}^{n} a_{ij} x_j \ge b_i \quad \Rightarrow \quad \sum_{j=1}^{n} a_{ij} x_j - \mathbf{s}_i = b_i, \ s_i \ge 0$$

非标准型转化为标准型

- 第三步: 决策变量的转换
 - □ 取值无约束的转化

$$x_k$$
取值无约束 \Rightarrow $x_k = x_k' - x_k'', x_k', x_k'' \ge 0$

□ 取值非正的转化

$$x_k \le 0 \quad \Rightarrow \quad x_k' = -x_k$$

■ 请将下式转化为线性规划标准形式

min
$$z = x_1 + 2x_2 + 3x_3$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 \le 9 \\
-3x_1 + x_2 + 2x_3 \ge 4 \\
4x_1 - 2x_2 - 3x_3 = -6 \\
x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

□ 第一步: 目标函数的转换

□ 第二步: 约束条件的转换

□ 第三步: 决策变量的转换

第一步: 目标函数的转换

 $\Rightarrow \varphi z' = -z$,于是

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 \le 9\\ -3x_1 + x_2 + 2x_3 \ge 4\\ 4x_1 - 2x_2 - 3x_3 = -6\\ x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

第二步: 约束条件的转换

■ 右端项常数的转换

max
$$z' = -x_1 - 2x_2 - 3x_3$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3 \le 9 \\ -3x_1 + x_2 + 2x_3 \ge 4 \\ -4x_1 + 2x_2 + 3x_3 = 6 \\ x_1 \le 0, \ x_2 \ge 0, \ x_3$$
取值无约束

■ 不等式的转换,松弛变量 x_4 ,剩余变量 x_5

max
$$z' = -x_1 - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$

s.t.
$$\begin{cases}
-2x_1 + x_2 + x_3 + x_4 = 9 \\
-3x_1 + x_2 + 2x_3 - x_5 = 4 \\
-4x_1 + 2x_2 + 3x_3 = 6 \\
x_1 \le 0, \ x_2, x_4, x_5 \ge 0, \ x_3$$
取值无约束

第三步 决策变量的转换

$$\max z' = -x_1 - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$

$$\begin{cases}
-2x_1 + x_2 + x_3' - x_3'' + x_4 = 9 \\
3x_1 + x_2 + 2x_3' - 2x_3'' + x_3 = 4
\end{cases}$$

s.t.
$$\begin{cases} -2x_1 + x_2 + x_3' - x_3'' + x_4 = 9\\ -3x_1 + x_2 + 2x_3' - 2x_3'' - x_5 = 4\\ -4x_1 + 2x_2 + 3x_3' - 3x_3'' = 6\\ x_1 \le 0, \ x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9\\ 3x_1' + x_2 + 2x_3' - 2x_3'' - x_5 = 4\\ 4x_1' + 2x_2 + 3x_3' - 3x_3'' = 6\\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

标准型

■标准型通常记为

$$\max z' = x_1' - 2x_2 - 3x_3' + 3x_3'' + 0x_4 + 0x_5$$
s.t.
$$\begin{cases} 2x_1' + x_2 + x_3' - x_3'' + x_4 = 9 \\ 3x_1' + x_2 + 2x_3' - 2x_3'' - x_5 = 4 \\ 4x_1' + 2x_2 + 3x_3' - 3x_3'' = 6 \\ x_1', x_2, x_3', x_3'', x_4, x_5 \ge 0 \end{cases}$$

$$\downarrow \qquad \qquad \downarrow$$

$$\max z = x_1 - 2x_2 - 3x_3 + 3x_4$$
s.t.
$$\begin{cases} 2x_1 + x_2 + x_3 - x_4 + x_5 = 9 \\ 3x_1 + x_2 + 2x_3 - 2x_4 - x_6 = 4 \\ 4x_1 + 2x_2 + 3x_3 - 3x_4 = 6 \\ x_1, x_2, x_3, x_4, x_5, x_6 \ge 0 \end{cases}$$

19 / 21

课堂练习 2

■ 请将下式转化为线性规划标准形式

min
$$z = -x_1 + 2x_2 - 3x_3$$

s.t.
$$\begin{cases} x_1 + x_2 + x_3 \le 7 \\ x_1 - x_2 + x_3 \ge 2 \\ x_1, x_2 \ge 0, \ x_3$$
取值无约束

小结

■ 线性规划问题的标准形式

max
$$z = \sum_{j=1}^{n} c_j x_j$$

s.t.
$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = b_i \ (i = 1, \dots, m) \\ x_j \ge 0 \ (j = 1, \dots, n) \end{cases}$$

- 三要素: 决策变量, 目标函数, 约束条件
- 非标准型转化为标准形式

目标函数 ⇒ 约束条件 ⇒ 决策变量

■ 课后作业: P43, 习题 1.2

Q&A

Thank you!

感谢您的聆听和反馈