1

GATE XE 2015

AI25BTECH11003 - Bhavesh Gaikwad

GENERAL APTITUDE

	esented the chief guest with	options given below to conn a as token of ap	-	ntence.
a) momento	b) memento	c) momentum	d) moment	
2) Choose the appro (GATE 2015 XE		aplete the following sentence	ce: Frogs	
a) croak	b) roar	c) hiss	d) patter	
3) Choose the word (GATE 2015 XE	most similar in meaning t	to the given word: Educe		
a) Exert	b) Educate	c) Extract	d) Extend	
4) Operators, \Diamond and	\Box , are defined by: $a \diamondsuit b = \frac{c}{c}$	$\frac{a-b}{a+b}$; $a\Box b=rac{a+b}{a-b}=ab.$ Fi	nd the value of $(6 \diamondsuit 6) \Box$	$(6 \diamondsuit 6).$
			(GATE 20	15 XE)
a) -2	b) -1	c) 1	d) 2	
5) If $\log_x (\frac{5}{7}) = -\frac{1}{3}$, then the value of x is			
			(GATE 20	15 XE)
a) $\frac{343}{125}$	b) $\frac{125}{343}$	c) $\frac{-25}{49}$	d) $\frac{-49}{25}$	
•	ether with its effects, ranks	ed. Choose the most effects one of the leading causes		
b) rank as one of	of the leading causes of dear the leading causes of dear of one of the leading caus	th d) are one of the le	ading causes of death	

- 7) Read the paragraph and choose the correct statement. Climate change has reduced human security and threatened human well-being. An ignored reality is that human security largely depends upon environmental security. But on the contrary, human progress seems contradictory to environmental security. (GATE 2015 XE)
 - a) Human progress and security are positively c) Human security is contradictory to environassociated with environmental security.
 - mental security.
 - b) Human progress is contradictory to environ- d) Human progress depends upon environmental mental security.
 - security.

8) Fill in the missing value:

Fig. 8: Puzzle

(GATE 2015 XE)

- 9) A cube of side 3 units is formed using smaller cubes of side 1 unit. Find the proportion of faces visible to those NOT visible. (GATE 2015 XE)
 - a) 1:4

b) 1:3

c) 1:2

- d) 2:3
- 10) Humpty Dumpty sits on a wall every day while having lunch. The wall sometimes breaks. If the wall breaks, the person falls.

Which statement is logically valid?

(GATE 2015 XE)

- a) Humpty Dumpty always falls while having c) Humpty Dumpty never falls during dinner lunch
- b) Humpty Dumpty does not fall sometimes while having lunch
- d) When Humpty Dumpty does not sit on the wall, the wall does not break

ENGINEERING MATHEMATICS

9) The A_0 of Fourier series of $f(x) = x^2$ over $0 \le x \le 2\pi$ is (GATE 2015 XE)

a) $\frac{4\pi^2}{3}$

b) $\frac{2\pi^2}{3}$

- d) $\frac{\pi^2}{6}$

10) The general solution y(x) for $x \frac{d^2y}{dx^2} + \frac{dy}{dx} - 1 = 0$ is

(GATE 2015 XE)

- a) $\frac{C_1x^2}{2} + 2x + C_2$ b) $\frac{C_1x^2}{2} x + C_2$ c) $\frac{C_1x^2}{2} + x + C_2$ d) $\frac{C_1x^2}{2} 2x + C_2$
- 11) Minimum Newton–Raphson iterations to get $\sqrt{28}$ correct to 3 decimals starting at 5: _____ (GATE 2015 XE)

END OF SECTION- A

FLUID MECHANICS

- 1) The gap δ between two concentric cylinders, each of height h, is filled with an oil. The torque required to rotate the inner cylinder at angular velocity ω against the fixed outer cylinder is T. The diameter of the inner cylinder is d and $\delta \ll d$. The dynamic viscosity of the oil is (GATE 2015 XE)
 - a) $\frac{4\pi\delta T}{d^3\omega h}$
- b) $\frac{4\delta T}{\pi d^3 \omega h}$ c) $\frac{4\pi \delta T}{d^2 \omega h^2}$
- d) $\frac{4\delta T}{\pi d\omega h^3}$
- 2) Water is retained against a sluice gate in the form of a circular segment as shown in the figure. If ρ and q are the density of water and gravitational acceleration, respectively, the upward force exerted by the gate on the water per unit depth perpendicular to the plane of the figure is

Fig. 2: Diagram

(GATE 2015 XE)

a)
$$\rho R^2 \left(\theta - \frac{1}{2}\sin 2\theta\right) g$$

b) $\rho R^2 \left(\cos^2 \theta - \frac{1}{2}\sin \theta\right) g$

c)
$$\rho R^2 \left(\cos \theta - \frac{1}{2}\sin \theta\right) g$$

d) $\rho R^2 \left(\cos^2 \theta - \frac{1}{2}\sin^2 \theta\right) g$

3) A two-dimensional velocity field is given by $\vec{V} = 10(y^3 - x^2y) \mathbf{i} + 2Cxy^2 \mathbf{j}$, where \mathbf{i} and \mathbf{j} are unit vectors in x and y directions, respectively. If the flow is incompressible, the constant C should be

(GATE 2015 XE)

a)
$$-10$$

- 4) Let \vec{V} and T denote the velocity vector and temperature in a flow field. The rate of change of temperature experienced by a fluid particle at (x_1, y_1, z_1) at time t_1 is 2.5 °C/s. The rate of change of temperature at the fixed point (x_1, y_1, z_1) at time t_1 is 4.8 °C/s. The quantity $\vec{V} \cdot \nabla T$ at (x_1, y_1, z_1, t_1) in °C/s is ____ (GATE 2015 XE)
- 5) In a simple Couette flow apparatus, the gap h between parallel plates is filled with a liquid of density ρ and dynamic viscosity μ . One plate is dragged at velocity U parallel to itself, the other plate is fixed. The magnitude of vorticity at any point is

(GATE 2015 XE)

a) $\frac{\mu}{\rho h^2}$

b) 0

- c) $\frac{1}{h^2}\sqrt{\frac{\mu\nu h}{\rho}}$
- d) $\frac{U}{h}$
- 6) An open glass capillary tube of 2 mm bore is lowered into a cistern of mercury ($\rho = 13600 \text{ kg/m}^3$). Contact angle between mercury and glass is 140° , surface tension coefficient = 0.484 N/m, g = 9.81m/s². The depression of mercury in the tube, in mm, is _

Fig. 6: Diagram

(GATE 2015 XE)

- 7) Consider a combined forced-free vortex. The central region radius R, angular velocity ω is a forced vortex, the rest is free vortex. Pressure at the edge is p_0 . Fluid density is ρ . The pressure at the center (GATE 2015 XE)
 - a) $p_0 \rho \omega^2 R^2$ b) $p_0 \frac{1}{2}\rho \omega^2 R^2$

c) $p_0 + \frac{1}{2}\rho\omega^2 R^2$ d) $p_0 + \rho\omega^2 R^2$

- 8) Which one is true at a point of separation of a boundary layer?

(GATE 2015 XE)

- a) Transition occurs from laminar to turbulent
- c) The shear stress vanishes
- b) The flow re-laminarizes from turbulent regime d) The stress/strain relation ceases to be linear

9) A flow is described by Reynolds (Re), Weber (We) and Ohnesorge (Oh) numbers. $We = \rho UL/\sigma$, $Oh = \mu / \sqrt{\rho \sigma L}$. Which relation is correct? (GATE 2015 XE)

- a) $We = Oh Re^2$ b) $We = Oh^2 Re^2$ c) $We = Oh^2 Re$

10) A rectangular boat 6 m wide and 15 m long has a draught 2 m. The center of gravity is at the free surface level. The metacentric height (m) is

Fig. 10: Rectangular Boat

(GATE 2015 XE)

a) -1.0

b) 0.5

c) 1.5

d) 2.0

11) Water drains from a large tank through a small orifice at the bottom. If initial water column height is H, time to empty is proportional to (GATE 2015 XE)

a) $H^{1/2}$

b) *H*

- c) $H^{3/2}$
- d) H^2

12) 2D velocity field $\vec{V} = \pi y \, \mathbf{i} - \pi x \, \mathbf{j}$. A fluid particle initially at (-1,1) has position after unit time:

(GATE 2015 XE)

- a) (-2, -2) b) (1, -1) c) (1, 1)

d) (3, -1)

13) The figure shows a reducing conduit carrying water. If total head loss due to friction equals loss of potential head between inlet and outlet, V_2 in m/s is _____.

Fig. 13: Diagram

(GATE 2015 XE)

14) A control volume has inflow i and two outflows o_1 and o_2 , with given ρ , V, A for each. The rate of change of mass in the CV (kg/s) is _____.

Fig. 14: Diagram

(GATE 2015 XE)

15) A lawn sprinkler discharges 1 liter/min total. Jet speed at each arm end relative to the arm is $2\pi/30$ m/s, arm length 0.1 m, frictional torque at pivot $\pi/36$ mN·m. Rotational speed (rpm) is ____. (GATE 2015 XE)

Fig. 15: Lawn Sprinkler

16)	2D potential flow field: $V_r =$	$\frac{m}{2\pi m}$,	$V_{\theta} = \frac{k}{\pi}$. The	stream	function ψ	with	$\psi = 0$	at $r = a$	$\theta = 0$	is
	(GATE 2015 XE)	$Z\pi T$	T								

a)
$$\frac{m\theta}{2\pi} + k \ln \frac{r}{a}$$

b)
$$\frac{m\theta}{\pi} + k \ln \frac{r}{a}$$

a)
$$\frac{m\theta}{2\pi} + k \ln \frac{r}{a}$$
 b) $\frac{m\theta}{\pi} + k \ln \frac{r}{a}$ c) $\frac{m\theta}{2\pi} + \frac{k}{2\pi} \ln \frac{r}{a}$ d) $\frac{m\theta}{\pi} + \frac{k}{2\pi} \ln \frac{r}{a}$

d)
$$\frac{m\theta}{\pi} + \frac{k}{2\pi} \ln \frac{r}{a}$$

17) A steady, inviscid, incompressible 2D flow: u = ax, v = -ay, gravity along -y. Pressure distribution with p = 0 at origin is (GATE 2015 XE)

a)
$$-\frac{\rho a^2}{2}(x^2 + xy + y^2) - \rho gy$$

b) $-\frac{\rho a^2}{2}(x^2 - xy + y^2) - \rho gy$

c)
$$-\frac{\rho a^2}{2}(x^2 + y^2) - \rho gy$$

d) $-\frac{\rho a^2}{2}(x^2 - y^2) - \rho gy$

b)
$$-\frac{\rho a^2}{2}(x^2 - xy + y^2) - \rho gy$$

d)
$$-\frac{\rho a^2}{2}(x^2-y^2)-\rho gy$$

- 18) A cylinder radius 0.1 m rotates clockwise at angular velocity $100/\pi$ rad/s in a cross-flow 10 m/s, air density 1.2 kg/m³. The lift force per unit length (N/m) is _____ (GATE 2015 XE)
- 19) Turbulent pipe flow velocity profile:

$$\frac{u}{u_{max}} = \left(\frac{y}{R}\right)^{1/7} . Ratio \frac{U_{av}}{U_{max}} is \tag{2}$$

(GATE 2015 XE)

a)
$$\frac{15}{16}$$

b)
$$\frac{49}{60}$$

c)
$$\frac{3}{4}$$

d)
$$\frac{2}{3}$$

20) A steel sphere ($\rho = 7900 \text{ kg/m}^3$) diameter 0.1 m drops in water ($\rho = 1000 \text{ kg/m}^3$), $g = 9.81 \text{ m/s}^2$, drag coefficient 1.33. Terminal velocity (m/s) is _____ (GATE 2015 XE) 21) An inclined venturimeter with inverted manometer: inlet and throat areas 2×10^{-3} m² and 2×10^{-4} m²; water ($\rho = 1000$) and oil ($\rho = 800$). Flow rate $Q = 5 \times 10^{-3}$ m³/s. Neglect viscosity. Manometer reading h (m) is _____

Fig. 21: Venturimeter with Inverted Manometer

(GATE 2015 XE)

22) A plane jet $Q = 0.012 \text{ m}^3/\text{s}$, area $6 \times 10^{-4} \text{ m}^2$, strikes a stationary plate inclined at θ , splits into two streams in 3:1 discharge ratio. Uniform velocities, ignore friction, $\rho = 1000 \text{ kg/m}^3$. Magnitude of normal force (N) is _____

Fig. 22: Plate

(GATE 2015 XE)

MATERIALS SCIENCE

1)	Arrange the following minium, (S) Gold (GATE 2015 XE)	in order of increasing me	eltin	ng point: (P) Gallium,	(Q) Tungsten, (R) Alu-
	$a)\ P < R < Q < S$	$b) \ S < P < R < Q$	c)	P < R < S < Q	$d) \ R < S < Q < P$
2)	Coordination number of (GATE 2015 XE)	f carbon atoms in diamond	d st	ructure is	
	a) 2	b) 4	c)	6	d) 8
3)	For an edge dislocation (GATE 2015 XE)	, the Burgers vector is			
	a) parallel to the dislocationb) perpendicular to the state			perpendicular to the diparallel to the slip pla	
4)	Hall-Petch relation corr (GATE 2015 XE)	relates			
	a) grain size and ductilib) grain size and strengt	•		strength and ductility strength and modulus	
5)	Fatigue failure primarily (GATE 2015 XE)	y occurs			
	a) under static loadingb) under cyclic loading	c) under creep condi- tions	d)	above recrystallization temperature	
6)	The eutectoid composition (GATE 2015 XE)	ion of steel (wt% C) is			
	a) 0.02	b) 0.8	c)	1.2	d) 2.0
7)	Which one is NOT a ce (GATE 2015 XE)	eramic?			
	a) Alumina	b) Silicon carbide	c)	Polyethylene	d) Zirconia
8)	The electrical conductive (GATE 2015 XE)	vity of a pure metal decrea	ases	s with temperature beca	ause
	a) carrier concentrationb) carrier mobility decre			band gap increases lattice constant chang	es

9)	The ratio $\rho_{\text{ceramic}}/\rho_{\text{metal}}$ is (GATE 2015 XE)	s generally				
	a) < 1	b) ≈ 1	c)	> 1	d)	≈ 0.5
10)	Compressive strength of (GATE 2015 XE)	f ceramics is typically				
	a) higher than tensile strb) equal to tensile streng	_		lower than tensile struurrelated to tensile st	_	
11)	The process of heating (GATE 2015 XE)	and slow cooling to remo	ve i	internal stresses is		
	a) hardening	b) tempering	c)	annealing	d)	quenching
12)	A polymer with amorph (GATE 2015 XE)	nous arrangement is gener	ally	,		
	a) transparent	b) opaque	c)	brittle	d)	crystalline
13)	In polymers, increasing (GATE 2015 XE)	crosslinking generally				
	a) increases ductility			decreases stiffness decreases glass transi	tion	temperature
	b) increases brittleness		u)	E		
	The energy gap in a cor (GATE 2015 XE)	nductor is	u)	Ü		
14)	The energy gap in a con	nductor is b) zero		small		infinite
14)	The energy gap in a cor (GATE 2015 XE) a) large		c)	small	d)	
14) 15)	The energy gap in a cor (GATE 2015 XE) a) large Maximum solid solubili	b) zero	c) eute	small	d)	
14) 15)	The energy gap in a cor (GATE 2015 XE) a) large Maximum solid solubili (GATE 2015 XE)	b) zero ty of carbon in γ -iron at b) 0.76	c) eute	small ectic temperature (wt%	d)	is
14) 15)	The energy gap in a cor (GATE 2015 XE) a) large Maximum solid solubili (GATE 2015 XE) a) 0.02 Which is a non-ferrous	b) zero ty of carbon in γ -iron at b) 0.76	c) eute	small ectic temperature (wt%	d) b C) d)	is
14) 15)	The energy gap in a cor (GATE 2015 XE) a) large Maximum solid solubili (GATE 2015 XE) a) 0.02 Which is a non-ferrous (GATE 2015 XE)	b) zero ty of carbon in γ -iron at γ b) 0.76 metal?	c) eute	small ectic temperature (wt%) 2.14	d) b C) d)	6.67

18)	The Brinell hardness tes (GATE 2015 XE)	st uses a				
	a) steel ball indenterb) diamond pyramid			cylindrical punch knife edge		
19)	The main constituent of (GATE 2015 XE)	glass is				
	a) SiO ₂	b) Al ₂ O ₃	c)	CaO	d)	MgO
20)	The coordination number (GATE 2015 XE)	er in the FCC crystal struc	etur	re is		
	a) 6	b) 8	c)	12	d)	14
21)	Polymers with high cry (GATE 2015 XE)	stallinity generally have				
	a) higher densityb) lower density			same density as amor no correlation with de	-	- •
22)	22) The primary strengthening mechanism in precipitation-hardened alloys is (GATE 2015 XE)					
	a) grain boundary strengb) solid solution strengt			dispersion of coherent work hardening	t pro	ecipitates

END OF SECTION- C

THERMODYNAMICS

		$PV^n = \text{constant fr}$ cement work is obtain		$,V_{1})$ to	$V_2 = 2V_1.$		values of n given (GATE 2015 XE)
a) $n = -$	-1	b) $n = 0$	c)	n = 1		d) n =	= 1.4
		ed steadily by passing entropy of the universe			_		roundings at 30°C (GATE 2015 XE)
-	Clausius inequal 2015 XE)	lity, a system operating	g on an	irreversi	ble cycle tra	nsfers	
the so	ource ach entropy to th	sink than it receives from the sink as it receives from		the sour	ce		
	cical point of a s 2015 XE)	substance is the state					
are ir b) beyon	n equilibrium	iquid, and vapour phas id requires very lar come vapour		vapour beyond		distinctio	-
	e cooling of 60% 2015 XE)	70 RH air at constant pr	ressure:				
b) Hum	•	elative humidity increa ases continuously due	to	tempera	b temperatur ture increase y ratio rema	es	
a revers		e refrigerator operating operating between the				4.0. The	efficiency (%) of
7) For a re	,	rapour (non-ideal gas),	the diff	erential	change in sp	ecific en	thalpy is given by
a) dh =b) dh =	$C_p dT C_p dT + \frac{\partial h}{\partial v} dv$		c) d)	$dh = C_{r}$ $dh = C_{r}$, $dT + \frac{\partial h}{\partial p} dp$, $dT + \frac{\partial p}{\partial T} dp$		
	_	O_2 (MW=32) and CO ure is 200 kPa. The pa					-

9)	For an ideal Rankine cy	ycle, increasing the superl	neat of steam at boiler exi	it will (GATE 2015 XE)		
	a) decrease net work oub) increase cycle efficient	1	c) decrease cycle efficie d) decrease quality of st	•		
10)		tm, 21.1°C pass into an a ld stream (1.6 mol, -17.7	-			
	a) Total entropy changeb) Total entropy change		c) Device violates Secondd) Device violates First			
11)	For a real gas through (GATE 2015 XE)	a porous plug with coeffi	cient α , Joule-Thomson α	cooling is observed when		
	a) $0 < \alpha T < 1$	b) $\alpha T = 1$	c) $\alpha T > 1$	$d) \alpha T = 0$		
12)		moving at 500 m/s strike = 108 kJ/kg. The percentage				
13)	3) Air–water vapour mixture, 100 m ³ at $p=100$ kPa, $T=35$ °C, RH=75%, p_{sat} =5.63 kPa. Mass of water vapour (kg) = (GATE 2015 XE)					
14)	1 kg ideal gas at $T = 1$ obtainable = (GATE 2015 XE)	200 K, $C_v = 718$ J/kgK in	n rigid vessel, ambient 300	OK. Maximum work (kJ)		
	a) 646.2	b) 484.7	c) 387.7	d) 347.6		
15)	Boiling point of water of bar is	changes from 99.62°C at	1 bar to 105.99°C at 1.25	bar. Boiling point at 1.5 (GATE 2015 XE)		
16)		patically in a frictionless n inetic energy. Exit velocit		to 1 bar. $C_p = 1$ kJ/kgK, (GATE 2015 XE)		
	a) 32	b) 500	c) 707	d) 1000		
17)) mixes with one kmol N 1 bar, 300 K. Entropy ch		ar, 300 K, in an adiabatic		
	a) -5.76	b) 0	c) 5.76	d) 11.53		

18)	A cycle 1–2 constant pressure expansion, 2–3 rever compression. Which is true? (GATE 2015 XE)	sible adiabatic expansion, 3–1 irr	eversible adiabatic
	a) Net work = 0 (no heat transfer)b) Feasible and net positive work	c) Impossible by Kelvin–Planchd) Impossible by First Law	k statement
19)	1 kg saturated liquid-vapour water at 150 kPa ($v_g = 1.159 \mathrm{m}^3/\mathrm{kg}$), quality $x = 0.7$, is he input =50 kJ, final state = saturated vapour. Heat	ated at constant pressure with p	
20)	A 2 kg metal block at 500 K is brought into conta environment until equilibrium is reached. Both me universe $(kJ/K) = $	etals have $C_p = 0.4$ kJ/kgK. Entr	
21)	A rigid insulated tank is divided into two equal pa 350 K, the other side is a vacuum. The partition 2015 XE)	• •	

END OF SECTION- D

POLYMER SCIENCE

1) The biodegradable poly	mer among the following	pol	ymers is		(GATE 2015 XE)
a) poly(lactic acid)b) poly(butylene terepht	halate)		polystyrene polypropylene		
2) Notched impact strength	h of a plastic decreases w	ith			(GATE 2015 XE)
a) increase in notch tipb) increase in notch dep			increase in temperatu decrease in notch dep		
3) The compound used as	a reactive diluent in unsa	ıtura	ted polyester resins is	;	(GATE 2015 XE)
a) benzene	b) cresol	c)	styrene	d) ad	ipic acid
4) The diameter of a die o of 2 is mm.	f an extruder producing e	extru	date of diameter 2.4 i	nm wi	th a die-swell ratio (GATE 2015 XE)
5) The degree of polymeris	zation of Nylon 6 (ignore	end	-groups) with molar i	nass of	F 1,00,000 g mol ⁻¹ (GATE 2015 XE)
6) Ring opening polymeriz	zation is used for the synt	thesi	s of		(GATE 2015 XE)
a) Nylon 6b) poly(acrylic acid)			Nylon 66 poly(ethylene terepht	halate)	
7) Which among the follow P. K_2SO_4 Q. K_2S_2O	_	s for	free radical polymer	ization	?
R. AlBN S.t-butyl Hy					(GATE 2015 XE)
a) P, Q & S only	b) Q, R & S only	c)	P, R & S only	d) P,	Q & R only
8) Weight average molecul	lar weight can be determine	ned	by		(GATE 2015 XE)
a) Osmometry	b) Ebullimetry	c)	End group analysis	d) Li	ght scattering
9) Butyl rubber is a copoly	ymer of				(GATE 2015 XE)
a) isobutylene and butacb) butadiene and 1-buter			isobutylene and isoprisoprene and 1-buten		

10) Match the characterization technique with the polymer property it is used to determine.

TABLE 10: Table-1

Technique

Property

P. X-ray diffraction Q. Differential scanning calorimetry R. Thermogravimetric analysis S. Dynamic mechanical analysis

- 1. Melting temperature 2. Crystallinity & crystal size 3. Glass transition temperature
 - 4. Ash content

(GATE 2015 XE)

- a) P-3, Q-1, R-4, S-2 b) P-3, Q-4, R-2, S-1 c) P-2, Q-4, R-1, S-3 d) P-2, Q-1, R-4, S-3
- 11) Match the following plastic additives with their function.

TABLE 11: Table-2

P. Di-isotyl phthalate 1. Antioxidant Q. 4-Methyyl-2,6-t-butylphenol 2. Plasticizer R. Dicumyl peroxide 3. Antistatic agent S. Quaterrnary ammonium compound 4. Cross-linking agent

(GATE 2015 XE)

Fuction

- d) P-3; Q-1; R-4; S-2
- 12) The correct statement with respect to electrical property of polymeric materials is (GATE 2015 XE)

Additive

- independent of frequency & temperature
- a) For non polar materials, dielectric constant is c) For non polar materials, power losses are high and depend on temperature & frequency
- b) For polar materials, dielectric constant depends d) For polar materials, power losses are low and on frequency but not on temperature
 - independent of frequency
- 13) The order of melting point for the given polymers is (GATE 2015 XE)
 - a) Nylon 66 > PTFE > Nylon 6 > PP
- c) PTFE > Nylon 66 > Nylon 6 > PP
- b) Nylon 66 > Nylon 6 > PTFE > PP
- d) PTFE > Nylon 6 > Nylon 66 > PP

14) Match the processing technique used to manufacture the appropriate product.

TABLE 14: Table-3

TA	BLE 14: Table-3					
Processing T	Sechnique Prod	lucct				
P. Calend Q. Extra R. Injection S. Thermos	usion 2. Dispos moulding 3. Sl	ripes able cups heets on gears				
			(GATE 2015 XE)			
a) P-3; Q-2; R-1; S-4 b) P-3; Q-1; R-2; S-4		; Q-1; R-4; S-2 ; Q-2; R-4; S-1				
15) Match the thermosetting resins to the ra-	w materials they	are synthesized fro	om.			
TABLE 15: Table-4						
Resin	Raw I	Material				
P. Epoxy Q. Phenolic R. Unsaturated polyester S. Allyl	2. Diethylene glyce r 3. Bisphenol A	l + furfural ol + diallyl phthalate + epichlorohydrin 1,2-propylene glycol				
			(GATE 2015 XE)			
a) P-4; Q-2; R-3; S-1 b) P-3; Q-1; R-2; S-4		; Q-2; R-1; S-4 ; Q-1; R-4; S-2				
16) The damping factor of a solid polymer 80 percent recovery in modulus is	under sinusoidal	loading in single c	antilever mode showing (GATE 2015 XE)			
17) A styrene–butadiene random copolymer polybutadiene ($T_g=-100^{\circ}{\rm C}$) shows a si $^{\circ}{\rm C}$.						
18) In a unidirectional carbon fibre reinforce and the fibres take up 50% of the cross fibres is						
19) The viscoelastic behavior of a plastic is r of 2 GN m ⁻² and 90 GN s m ⁻² , respe strain predicted by Maxwell model after	ectively. If a cons					

20) Match the elastomers given below to their suitable application.

TABLE 20: Table-5

Elastomer	Application
P. EPDM	1. Golf balls
Q. Polyurethane	2. Fuel transfer hose
R. Nitrile rubber	3. Cable insulation
S. Polybutadiene	4. Footwear

(GATE 2015 XE)

a) P-3; Q-4; R-2; S-1

c) P-3; Q-2; R-4; S-1

b) P-4; Q-3; R-2; S-1

- d) P-1; Q-4; R-2; S-3
- 21) Match the following reagents to their function in natural rubber latex technology.

TABLE 21: Table-6

Reagent	Function
P.Ammonia Q. Hydroxylamine R. Formic acid S. Ethephone	Prevent storage hardening Delay plugging mechanism Stabilizer Coagulating agent

(GATE 2015 XE)

a) P-3; Q-1; R-2; S-4

c) P-3; Q-1; R-4; S-2

b) P-3; Q-2; R-4; S-1

- d) P-3; Q-4; R-1; S-2
- 22) 1.0 g of a polybutadiene sample with carboxylic acid groups at both the ends requires 2.5 mL of 0.1 M KOH for complete neutralization. The molecular weight of the polymer in g mol⁻¹ is ____ (GATE 2015 XE)

END OF SECTION-E

FOOD TECHNOLOGY

1) Standard pasteurization protocol for milk is adequate for destroying					(GATE 2015 XE)
	a) Clostridium sporo- genes	b) Bacillus cereus c) Clostridium bo-	d)	tulinum Listeria monocyto-	genes
2)	Which one of the follow (GATE 2015 XE)	wing is NOT a component	of	an evaporator?	
	a) Heat exchanger	b) Vacuum separator	c)	Condenser	d) Cyclone separator
3)	Among the following at (GATE 2015 XE)	nimal foods, the fat conter	nt is	s least in	
	a) Beef	b) Chicken meat	c)	Pork	d) Lamb flesh
4)	4) The enzyme that hydrolyzes starch to maltose is (GATE 2015 XE)				
	a) α -amylase b) β -amylase	c) glucoamylased) cyclodextrin glucan-		otransferase	
5)	Which one of the follow (GATE 2015 XE)	wing is NOT enriched in e	endo	osperm during parboil	ing of paddy?
	a) Thiamine	b) Niacin	c)	Iron	d) Fat
6)	6) Heat-treated legume seed proteins are more digestible than those of untreated legume seed proteins due to (GATE 2015 XE)				
	a) reaction of reducing sugars with ε -amino group c) thermolabile nature of lectins and Kunitz-type				
	of lysine b) increased binding of cosal cells	lectins to intestinal mu-	d)	protease inhibitors thermolabile nature of inhibitor	of Bowman-Birk type of
7) What is the percent relative humidity at which both the dry bulb and wet bulb thermometers would record equal temperatures? (GATE 2015 XE)					
	a) 0	b) 10	c)	50	d) 100
8) How many fold would the g-number of a centrifuge increase by doubling both the spinning speed and bowl diameter? (GATE 2015 XE)					
	a) 2	b) 4	c)	8	d) 16

- 9) The gradual decrease in viscosity of tomato paste during storage can be prevented by quickly heating it to 82°C, because (GATE 2015 XE)
 - a) water soluble pectin interacts with calcium
- c) lignin prevents decrease in viscosity
- b) hemicellulose prevents decrease in viscosity
- d) pectin methyl esterase is inactivated
- 10) Match the enzyme in Group I with its corresponding application in Group II.

TABLE 10: Table-7

Group-IGroup-IIP. Chymosin1. Removal of cooked flavor from milkQ. Sulfhydryl oxidase2. Soyabean milk coagulationR. β-Galactosidase3. For rennet puddingsS. Microbial proteases4. Lactose removal

(GATE 2015 XE)

a) P-2, Q-1, R-4, S-3

c) P-1, Q-2, R-3, S-4

b) P-3, Q-1, R-4, S-2

- d) P-4, Q-3, R-2, S-1
- 11) Milk is flowing at $0.12~{\rm m^3,min^{-1}}$ in a $2.5~{\rm cm}$ diameter pipe. The temperature of the milk is $21^{\circ}{\rm C}$ and the corresponding viscosity and density are $2.1\times10^{-3}~{\rm Pa,s}$ and $1029~{\rm kg,m^{-3}}$, respectively. If the flow is found to be turbulent under the given conditions, the Reynolds number is ____. (GATE 2015 XE)
- 12) Whole milk (34,950 kg) containing 4% fat is to be separated in 6 h period into skim milk with 0.45% fat and cream with 45% fat. The flow rate of cream stream (kg/h) from the separator is _____ (GATE 2015 XE)
- 13) Match the edible plant tissue in Group I with the type of carotenoid given in Group II.

TABLE 13: Table-8

Group-I	Group-II
P. Corn	1. Lycopene
Q. Red pepper	2. β -Carotene
R. Pumpkin	3. Capsanthin
S. Tomato	4. Lutein

(GATE 2015 XE)

a) P-4, Q-3, R-2, S-1

c) P-3, Q-4, R-2, S-1

b) P-2, Q-4, R-3, S-1

- d) P-4, Q-1, R-2, S-3
- 14) Undesirable bitterness frequently encountered in cured cheese is due to the (GATE 2015 XE)
 - a) presence of naringen c) overall hydrophobic- side-chains in pep- d) conversion of humu-
 - b) formation of limonin ity of amino acid tide lone to isohumulone

15)) Green tea is considered to be a more healthy option than black tea because it (GATE 2015 XE)					
	a) has high content of polyphenols preparation b) is richer in thearubigin d) has no microbial load c) does not require any sweetener during tea					
16)	Multiple effect evaporation leads to (GATE 2015 XE)					
	 a) reduction in operating cost and reduction in capital cost b) increase in operating cost and increase in cap- ital cost c) increase in operating cost and reduction in capital cost d) reduction in operating cost and increase in cap- ital cost 					
17)	7) A dilute pineapple juice is heated in a double pipe heat exchanger from 28°C to 75°C by heat exchanging with hot water flowing in shell in counter current direction. Hot water is entering the shell at 95°C and leaving at 85°C. The log mean temperature difference (°C) is (GATE 2015 XE)					
18)	Heat is transferred by radiation to a loaf of bread in an oven at a uniform temperature of 177° C. The total surface area and temperature of the loaf are $0.0645~\text{m}^2$ and 100° C, respectively. The surface emissivity of the loaf is 0.85 and the value of Stefan–Boltzmann constant is $5.67 \times 10^{-8}~\text{W}, \text{m}^{-2}, \text{K}^{-4}$. The net heat transfer (W) is (GATE 2015 XE)					
19)	Granulated sugar, having an average particle size of $500~\mu m$, is milled to produce icing sugar having an average particle size of $25~\mu m$. The power requirement was $10~kW$ as obtained by Rittinger's law. If the same mill were to be used to produce fondant sugar having an average particle size of $20~\mu m$ at the same capacity, the power requirement (kW) would be (GATE 2015 XE)					
20)	One ton of soybean containing 18% oil, 35% protein, 27.1% carbohydrates, 9.4% of fibre and ash, and 10.5% moisture is crushed and pressed. The residual oil content in the pressed cake is 6%. Assuming that there is no loss of protein and water with oil, the amount of oil (kg) obtained from the crusher is (GATE 2015 XE)					
21)	Match the processing method in Group I with the operation carried out in Group II.					
TABLE 21: Table-9						
	Group-II Group-II					
	P. Degumming Q. Deacidifying R. Bleaching S. Winterizing 1. Crystallization of triacylglycerol by cooling to remove fat crystals 2. Passing heated oil over charcoal 3. Using alkaline solution to remove fatty acids 4. Wetting with water to remove lecithin					
	(GATE 2015 XE)					

c) P-4, Q-3, R-2, S-1

d) P-3, Q-1, R-2, S-4

a) P-3, Q-1, R-4, S-2

b) P-4, Q-3, R-1, S-2

- 22) The order of succession of microbes in the spoilage of milk, involving (P) Lactobacillus, (Q) protein digesting bacteria, (R) Lactococcus lactis, (S) yeasts and molds, is (GATE 2015 XE)

 - $\text{a) } S>R>Q>P \qquad \text{b) } S>Q>R>P \qquad \text{c) } R>P>S>Q \qquad \text{d) } Q>S>P>R$

END OF SECTION- F