Blatt 2

Repetitorium Theoretische Quantenmechanik, WS 08/09

FORMELSAMMLUNG

- 1. Eindimensionaler harmonischer Oszillator
 - (a) Analytische Behandlung:

Hamiltonoperator: $\mathcal{H} = -\frac{\hbar^2}{2m}\partial_x^2 + \frac{1}{2}m\omega^2 x^2$

Energieeigenwerte: $E_n = \hbar\omega \left(n + \frac{1}{2}\right)$

Analytische Lösung:

 $\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2} \qquad H_n(y) = (-1)^n e^{y^2} \frac{\mathrm{d}^n}{\mathrm{d}y^n} e^{-y^2}$

(b) Algebraische Behandlung:

Erzeugungs- und Vernichtungsoperatoren:

$$a := \frac{1}{\sqrt{2m\hbar\omega}}(m\omega x + ip), \qquad a_j^+ = \frac{1}{\sqrt{2m\hbar\omega}}(m\omega x - ip)$$

Umkehrformeln: $x = \sqrt{\frac{\hbar}{2m\omega}}(a^+ + a), \quad p = i\sqrt{\frac{m\hbar\omega}{2}}(a^+ - a)$

Hamiltonoperator: $\mathcal{H} = \hbar\omega \left(a^+a + \frac{1}{2}\right)$

Wirkung auf Eigenzustände:

$$a|n\rangle = \sqrt{n}|n-1\rangle$$
 $a^{+}|n\rangle = \sqrt{n+1}|n+1\rangle$ $a^{+}a|n\rangle = n|n\rangle$

Vertauschungsrelationen: $[a, a^+] = 1$ $[\mathcal{H}, a] = -\hbar\omega a$ $[\mathcal{H}, a^+] = \hbar\omega a^+$

- 2. Dreidimensionale Probleme
 - (a) Separationsansatz für $V(x,y,z) = V_1(x) + V_2(y) + V_3(z)$

$$\Rightarrow$$
 Ansatz: $\psi(x, y, z) = u(x)v(y)w(z)$ $E = E_1 + E_2 + E_3$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}u(x) + V_1(x)u(x) = E_1u(x)$$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dy^2}v(y) + V_2(y)v(y) = E_2v(y)$$

$$-\frac{\hbar^2}{2m}\frac{d^2}{dz^2}w(z) + V_3(z)w(z) = E_3w(z)$$

(b) Zweiteilchenproblem und Zentralpotential

Hamiltonoperator für zwei Teilchen: $\mathcal{H} = -\frac{\hbar^2}{2m_1}\Delta_1 + -\frac{\hbar^2}{2m_2}\Delta_2 + \mathcal{V}(\mathbf{x}_1, \mathbf{x}_2)$

Zweiteilchenpotential hängt nur vom Abstand ab: $\mathcal{V}(\mathbf{x}_1, \mathbf{x}_2) = V(|\mathbf{x}_1 - \mathbf{x}_2|)$ Schwerpunkts- und Relativbewegung:

$$\mathbf{X} = \frac{m_1 \mathbf{x}_1 + m_2 \mathbf{x}_2}{m_1 + m_2}$$
 $\mathbf{x} = \mathbf{x}_1 - \mathbf{x}_2$ $M = m_1 + m_2$ $\mu = \frac{m_1 m_2}{m_1 + m_2}$

Vereinfachung als Zentralpotentialproblem: $V(\mathbf{x}) = V(|\mathbf{x}|) = V(r)$

$$\Rightarrow$$
 Ansatz: $\psi(x, y, z) = \underbrace{\frac{u(r)}{r}}_{R(r)} Y_{lm}(\theta, \varphi)$

Radiale Schrödingergleichung:
$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + V(r) + \frac{\hbar^2 l(l+1)}{2\mu r^2}\right)u(r) = Eu(r)$$

ZENTRALÜBUNG

2.1 Harmonischer Oszillator und Zeitentwicklung

Ein Teilchen befindet sich im Potential des eindimensionalen harmonischen Oszillators

$$V(x) = \frac{1}{2}m\omega^2 x^2$$

Die Wellenfunktion zum Zeitpunkt t = 0 ist gegeben durch:

$$\Psi(x,0) = A[3\psi_0(x) + 4\psi_1(x)]$$

Dabei sind

$$\psi_n(x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}} \frac{1}{\sqrt{2^n n!}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{1}{2}\frac{m\omega}{\hbar}x^2} \qquad H_0(\xi) = 1, \quad H_1(\xi) = 2\xi, \dots$$

die normierten Wellenfunktionen der stationären Zustände des harmonischen Oszillators.

- 1. Bestimmen Sie die Normierungskonstante A. Hinweis: Sie müssen die Integrale nicht explizit berechnen, führen Sie Symmetriebetrachtungen durch und benutzen Sie die Tatsache, dass ψ_0 und ψ_1 bereits normiert sind.
- 2. Bestimmen Sie $\Psi(x,t)$ und $|\Psi(x,t)|^2$.
- 3. Berechnen Sie den Erwartungswert von x als Funktion der Zeit. Führen Sie Symmetriebetrachtungen durch und benutzen Sie $\int_{-\infty}^{\infty} x^2 \exp(-a^2 x^2) dx = \sqrt{\pi}/(2a^3)$.
- 4. Bestimmen Sie den Erwartungswert von p als Funktion der Zeit und überprüfen Sie die Gültigkeit des Ehrenfest'schen Theorems für diese Wellenfunktion.

2.2 Landau-Niveaus

Für ein freies Elektron der Ladung q=-e (mit e>0) im Magnetfeld ist der Hamiltonoperator gegeben durch

$$\mathcal{H} = \frac{1}{2m} \left(\mathbf{p} + e\mathbf{A} \right)^2 \tag{1}$$

Dabei ist A das Vektorpotential. Bestimmen Sie für ein Vektorpotential der Form:

$$\mathbf{A} = \frac{1}{2}\mathbf{B} \times \mathbf{x} \qquad \mathbf{B} = B\mathbf{e}_z$$

das Energiespektrum von \mathcal{H} .

2.3 Coulomb-Potential

Betrachten Sie ein einzelnes Elektron um einen Z-fach geladenen Kern. Das Problem lässt sich nach Separation in Schwerpunkts- und Relativbewegung letzt sich letztere beschreiben als Bewegung eines Teilchens mit reduzierter Masse μ im Coulomb-Potential

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r}$$

Nach Transformation der Schrödinger-Gleichung in Kugelkoordinaten erhält man bekanntlich durch den Ansatz:

$$\psi(r, \theta, \varphi) = \frac{u(r)}{r} Y_{lm}(\theta, \varphi)$$

die radiale Schrödingergleichung:

$$\left(-\frac{\hbar^2}{2\mu}\frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2\mu r^2} - \frac{Ze^2}{4\pi\varepsilon_0 r}\right)u(r) = Eu(r)$$

1. Begründen Sie, dass die Größe

$$\kappa = \frac{\sqrt{-2\mu E}}{\hbar}$$

für gebundene Zustände reell ist und leiten Sie unter Verwendung von

$$x = \kappa r$$
 $x_0 = \frac{\mu Z e^2}{2\pi \varepsilon_0 \hbar^2 \kappa}$ und $f(\underbrace{\kappa r}_r) = u(r)$

folgende reduzierte Form der Schrödingergleichung in Kugelkoordinaten her:

$$f''(x) = \left[1 - \frac{x_0}{x} + \frac{l(l+1)}{x^2}\right] f(x)$$

- 2. Wie verhält sich f für $x \to 0$ und $x \to \infty$, wenn $\psi(r, \theta, \varphi) = [f(\kappa r)/r] Y_{lm}(\theta, \varphi)$ Wellenfunktion eines gebundenden Zustands darstellen soll. Bestimmen Sie dazu Funktionen f_0 und f_∞ , die das Verhalten von f bei $x \to 0$ und $x \to \infty$ charakterisieren
- 3. Durch den Ansatz $f(x) = f_0(x) f_\infty(x) v(x)$ erhält man folgende neue Differentialgleichung in v(x):

$$xv''(x) + 2(l+1-x)v'(x) + [x_0 - 2(l+1)]v(x) = 0$$

Lösen Sie diese Differentialgleichung mit einen Potenzreihenansatz der Form:

$$v(x) = \sum_{j=0}^{\infty} a_j x^j$$

und begründen Sie, dass die Reihe abbrechen muss (d.h. es existiert ein j_{max} sodass $\forall k > j_{max}$: $a_k = 0$) um eine physikalisch sinnvolle Wellenfunktion zu erhalten. Bestimmen Sie aus der Abbruchsbedingung die Energieeigenwerte.

4. Bestimmen Sie für $j_{max} = 0$ und l = 0 die zugehörige normierte Wellenfunktion ψ (Hinweis $Y_{00} = const$). Verwenden Sie dabei $n := j_{max} + l + 1$ und $a_B := 1/(\kappa n)$.

AUFGABEN ZUM SELBSTSTÄNDIGEN ÜBEN

2.4 d-dimensionaler harmonischer Oszillator

Geben Sie die Energieeigenwerte und den jeweiligen Entartungsgrad eines isotropen ddimensionalen harmonischen Oszillators an, dessen Hamiltonoperator gegeben ist durch

$$\mathcal{H} = \frac{1}{2m} \sum_{i=1}^{d} p_i^2 + \frac{m}{2} \omega^2 \sum_{i=1}^{d} x_i^2$$

2.5 Harmonischer Oszillator und Zeitentwicklung (Klausur 2006)

Der Zustand eines eindimensionalen harmonischen Oszillators mit dem Hamiltonoperator

$$\mathcal{H} = \frac{1}{2m}p^2 + \frac{1}{2}m\omega^2 x^2$$

wird zur Zeit t = 0 durch

$$|\psi(0)\rangle = \sum_{n=0}^{\infty} c_n |n\rangle \qquad c_n \in \mathbb{C}$$

beschrieben, wobei $|n\rangle$ der Eigenzustand von \mathcal{H} zur Quantenzahl n bezeichnet. Nehmen Sie an, dass $\langle x \rangle_{t=0} < \infty$ gilt. Zeigen Sie, dass die Zeitentwicklung des Ortserwartungswerts gegeben ist durch

$$\langle x \rangle_t = \langle \psi(t) | x | \psi(t) \rangle = A \cos \left[\omega(t - t_0) \right]$$

mit reellen Konstanten A und t_0 .

2.6 Sphärische Potentialtöpfe

1. Bestimmen Sie die l=0 Eigenzustände und deren Energieeigenwerte eines Teilchens mit Masse m im unendlich hohen sphärischen Potentialtopf

$$V(r) = \begin{cases} 0, & \text{für } r < a \\ \infty & \text{für } r > a \end{cases}$$

2. Betrachten Sie nun den endlich hohen sphärischen Potentialtopf

$$V(r) = \begin{cases} -V_0, & \text{für } r \le a \\ 0 & \text{für } r > a \end{cases}$$

Bestimmen Sie die Grundzustandswellenfunktion, indem Sie die radiale Schrödingergleichung mit l=0 lösen. Zeigen Sie, dass es keine gebundenen Zustände gibt, wenn $V_0a^2 < \pi^2\hbar^2/(8m)$ gilt.