

CHUONG I: VECTO

🖎 GV: Trần Duy Thái

§ 1 : CÁC ĐỊNH NGHĨA

A. TÓM TẮT LÍ THUYẾT:

- Vecto là đoạn thẳng có hướng. Ký hiệu : \overrightarrow{AB} ; \overrightarrow{CD} hoặc \overrightarrow{a} ; \overrightarrow{b}
- Vecto không là vecto có điểm đầu trùng điểm cuối. Ký hiệu $\vec{0}$.
- Giá của vecto là đường thẳng đi qua điểm đầu và điểm cuối của vecto đó.
- Hai vecto cùng phương là hai vecto có giá song song hoặc trùng nhau.
- Hai vecto cùng phương thì hoặc cùng hướng hoặc ngược hướng
- Hai vecto cùng hướng thì luôn cùng phương.
- Độ dài vecto \overrightarrow{AB} chính là độ dài đoạn thẳng AB. Kí hiệu: $|\overrightarrow{AB}| = AB$
- Hai vecto bằng nhau nếu chúng cùng hướng và cùng độ dài

Vây:
$$\vec{a} = \vec{b} \Leftrightarrow \begin{cases} |\vec{a}| = |\vec{b}| \\ \vec{a}, \vec{b} \text{ cùng hướng} \end{cases}$$

- * Các phương pháp chứng minh:
 - Ba điểm A,B,C thẳng hàng $\Leftrightarrow \overrightarrow{AB}, \overrightarrow{AC}$ cùng phương.
 - Chứng minh $\overrightarrow{AB} = \overrightarrow{DC} \Leftrightarrow ABCD$ là hình bình hành.

B. CÁC DẠNG BÀI TẬP:

- *Dang 1: Xác định một vecto, sự cùng phương và hướng của hai vecto
- ♣ Phương pháp giải:
- Để xác định vectơ ta cần biết độ dài và hướng của vectơ, hoặc biết điểm đầu và điểm cuối của vectơ đó. Ví dụ 2 điểm phân biệt A, B ta có 2 vectơ khác nhau là \overrightarrow{AB} và \overrightarrow{BA} .
- Vector \vec{a} là vector-không khi và chỉ khi $|\vec{a}| = 0$ hoặc $\vec{a} = \overrightarrow{AA}$ với A là điểm bất kì.

☞Bài tập:

<u>Bài 1:</u> Cho $\triangle ABC$. Có bao nhiều vecto được lập ra từ các cạnh của tam giác đó.

<u>Bài 2:</u> Cho 4 điểm phân biệt A, B, C, D. Có bao nhiều vectơ được lập ra từ 4 điểm đã cho

Bài 3: Cho ngũ giác ABCDE.

- a). Có bao nhiều vecto được lập ra từ các canh và đường chéo của ngũ giác.
- b). Có bao nhiều vecto được lập ra từ các dinh của ngũ giác.
- *Dang 2: Khảo sát sự bằng nhau của 2 vecto.
- Phương pháp giải: Để chứng minh 2 vectơ bằng nhau có 3 cách:

•
$$|\vec{a}| = |\vec{b}|$$

 $\vec{a} \text{ và } \vec{b} \text{ cùng hướng}$ $\Rightarrow \vec{a} = \vec{b}$

- 1 -

- ABCD là hbh $\Rightarrow AB = DC$ và $\overrightarrow{BC} = \overrightarrow{AD}$
- $N\acute{e}u \vec{a} = \vec{b} \cdot \vec{b} = \vec{c} th \vec{a} = \vec{c}$

☞Bài tâp:

Bài 1: Cho tam giác ABC có D, E, F lần lượt là trung điểm của BC, CA, AB. Tìm các vecto bằng nhau và chứng minh.

Bài 2: Cho điểm M và \vec{a} . Dựng điểm N sao cho:

- a). $\overrightarrow{MN} = \overrightarrow{a}$ b). \overrightarrow{MN} cùng phương với \overrightarrow{a} và có đô dài bằng \overrightarrow{a} .

Bài 3: Cho hình vuông ABCD tâm O. Liệt kê tất cả các vecto bằng nhau (khác $\vec{0}$) nhân đỉnh và tâm của hình vuông làm điểm đầu và điểm cuối.

Bài 4: Cho tứ giác ABCD. Goi M, N lần lượt là trung điểm các canh AD, BC. Chứng minh rằng nếu $\overrightarrow{MN} = \overrightarrow{AB}$ và $\overrightarrow{MN} = \overrightarrow{DC}$, thì ABCD là hình bình hành.

<u>Bài 5:</u> Cho tứ giác ABCD, chứng minh rằng nếu $\overrightarrow{AB} = \overrightarrow{DC}$ thì $\overrightarrow{AD} = \overrightarrow{BC}$.

Bài 6: Cho hình bình hành ABCD. Gọi E là điểm đối xứng với C qua D. Chứng tỏ: $\overrightarrow{AE} = \overrightarrow{BD}$.

Bài 7: Cho hình bình hành ABCD. Lấy điểm M trên đoan AB và điểm N trên đoan CD sao cho AM=CN. Chứng minh: $\overrightarrow{AN} = \overrightarrow{MC}$ và $\overrightarrow{MD} = \overrightarrow{BN}$.

Bài 8: Cho hình bình hành ABCD. Gọi M và N lần lượt là trung điểm của AB và CD.

AN và CM lần lượt cắt BD tại E và F. Chứng ming rằng: DE = EF = FB.

Bài 9: Cho tam giác ABC và điểm M ở trong tam giác. Goi A', B', C' lần lượt là trung điểm của BC, CA, AB và M, N, P lần lượt là các điểm đối xứng với M qua A', B', C'. Chứng minh:

- a). $\overrightarrow{AO} = \overrightarrow{CN}$ và $\overrightarrow{AM} = \overrightarrow{PC}$
- b). AN, BP, CQ đồng quy.

Bài 10: Cho lục giác đều ABCDEF có tâm O.

- a). Tìm các vecto khác $\vec{0}$ và cùng phương với \overrightarrow{OA} .
- b). Tìm các vecto bằng vecto AB, OE.

Bài 11: Cho hình bình hành ABCD có tâm là O.Tìm các vectơ từ 5 điểm A,B,C,D,O:

- a). Bằng vector AB : OB.
- b). Có đô dài bằng |OB|.

Bài 12: Cho tam giác đều ABC. Các đẳng thức sau đây đúng hay sai?

- a). $\overrightarrow{AB} = \overrightarrow{BC}$
- b). $\overrightarrow{AB} = -\overrightarrow{AC}$
- c). $|\overrightarrow{AB}| = |\overrightarrow{AC}|$

Bài 13: Cho tứ giác ABCD, gọi M, N, P, Q lần lượt là trung điểm AB, BC, CD, DA. Chúng minh : MN = QP; NP = MQ.

Bài 14: Cho hình bình hành ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD. Goi I là giao điểm AM và BN, K là giao điểm DM và CN.

CMR: $\overrightarrow{AM} = \overrightarrow{NC} \cdot \overrightarrow{DK} = \overrightarrow{NI}$.

Bài 15: Cho tam giác ABC có trực tâm H và O tâm là đường tròn ngoại tiếp. Gọi B' là điểm đối xứng B qua O. Chứng minh : $\overrightarrow{AH} = \overrightarrow{B'C}$.

§ 2 : TÔNG VÀ HIỆU CỦA CÁC VECTO

A. TÓM TẮT LÍ THUYẾT:

- * Đinh nghĩa: Cho $\overrightarrow{AB} = \overrightarrow{a}$: $\overrightarrow{BC} = \overrightarrow{b}$. Khi đó $\overrightarrow{AC} = \overrightarrow{a} + \overrightarrow{b}$
- * **Tính chất**: * Giao hoán: $\vec{a} + \vec{b} = \vec{b} + \vec{a}$
 - * Kết hợp: $(\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$
 - * Tính chất vector không : $\vec{a} + \vec{0} = \vec{a}$
- * Quy tắc 3 điểm : Cho A, B, O tùy ý, ta có :
 - $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ (phép công)
 - $\overrightarrow{AB} = \overrightarrow{OB} \overrightarrow{OA}$ (phép trừ)
- * **Ouv tắc hình bình hành**: Nếu ABCD là hình bình hành thì $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$
- * Vecto đối: Vecto đối của vecto \vec{a} là một vecto có cùng độ dài nhưng ngược hướng.

Kí hiệu:
$$-\vec{a}$$
. Vậy $\vec{a} + (-\vec{a}) = \vec{0}$.

Chú ý:
$$\overrightarrow{AB} = -\overrightarrow{BA}$$

- * Tính chất trung điểm và tính chất trong tâm:
 - I là trung điểm AB $\Leftrightarrow \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$
 - G là trong tâm $\triangle ABC \Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

B. CÁC DANG BÀI TÂP:

- * Dang 1: Tìm tổng của hai vectơ và tổng của nhiều vectơ
- Phương pháp giải:

Dùng định nghĩa tổng của 2 vectơ, quy tắc 3 điểm, quy tắc hbh và các tính chất của tổng các vectơ

☞Bài tâp:

Bài 1: Cho hbh ABCD. Hai điểm M và N lần lượt là trung điểm của BC và AD.

- a). Tìm tổng của 2 vecto \overline{NC} và \overline{MC} ; \overline{AM} và \overline{CD} ; \overline{AD} và \overline{NC} .
- b). Chứng minh $\overrightarrow{AM} + \overrightarrow{AN} = \overrightarrow{AB} + \overrightarrow{AD}$.

Bài 2: Cho lục giác đều ABCDEFF tâm O. Chứng minh

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF} = \overrightarrow{0}$$
.

Bài 3: Cho năm điểm A, B, C, D, E. Hãy tính tổng $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$.

- * Dang 2: Tìm vectơ đối và hiệu của 2 vectơ
- Phương pháp giải:
 - Theo định nghĩa, tìm hiệu a b, ta làm hai bước sau:
 - Tìm vecto đối của b

- Tính tổng a+(-b)
- Vân dung quy tắc $\overrightarrow{OA} \overrightarrow{OB} = \overrightarrow{BA}$ với ba điểm O. A. B bất kì.

☞Bài Tân:

Bài 1: Cho tam giac ABC. Các điểm M, N và P lần lượt là trung điểm của AB, AC và

- a). Tîm hiệu $\overrightarrow{AM} \overrightarrow{AN} \cdot \overrightarrow{MN} \overrightarrow{NC} \cdot \overrightarrow{MN} \overrightarrow{PN} \cdot \overrightarrow{BP} \overrightarrow{CP}$.
- b). Phân tích \overrightarrow{AM} theo 2 vector \overrightarrow{MN} và \overrightarrow{MP} .

Bài 2: Cho 4 điểm A, B, C, D. Chứng minh $\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AC} - \overrightarrow{BD}$

Bài 3: Cho 2 điểm phân biệt A và B. Tìm điểm M thỏa mãn 1 trong các điều kiện sau:

a).
$$\overrightarrow{MA} - \overrightarrow{MB} = \overrightarrow{BA}$$

b).
$$\overrightarrow{MA} - \overrightarrow{MB} = \overrightarrow{AB}$$

c).
$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$$

Bài 4: Chứng minh rằng điểm I là trung điểm của đoan thẳng AB khi và chỉ khi IA = -IB.

* Dang 3: Chứng minh đẳng thức vecto:

Phương pháp giải:

- + Sử dung qui tắc ba điểm; quy tắc hình bình hành; trung điểm.
- + Vân dung các các chứng minh đẳng thức: biến đổi VT thành VP và ngược lại: biến đổi hai về cùng thành một đẳng thức; biến đổi đẳng thức đã cho thành một đẳng thức luôn đúng.

☞Bài tâp:

Bài 1: Cho 4 điểm bất kỳ A, B, C, D. Chứng minh các đẳng thức sau:

a).
$$\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$$
 b). $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$ c). $\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AC} - \overrightarrow{BD}$.

Bài 2: Cho 6 điểm A, B, C, D, E, F tùy ý. Chứng minh rằng:

$$\overrightarrow{AC} + \overrightarrow{BD} + \overrightarrow{EF} = \overrightarrow{AF} + \overrightarrow{BC} + \overrightarrow{ED}$$
.

Bài 3: Cho hình bình hành ABCD tâm O. Chứng minh:

$$\overrightarrow{BD} - \overrightarrow{BA} = \overrightarrow{OC} - \overrightarrow{OB}$$
 và $\overrightarrow{BC} - \overrightarrow{BD} + \overrightarrow{BA} = \overrightarrow{0}$.

Bài 4: Cho hình bình hành ABCD tâm O. M là điểm tùy ý. Chứng minh:

$$\overrightarrow{AB} + \overrightarrow{OA} = \overrightarrow{OB}$$
 và $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$.

Bài 5: Cho hình bình hành ABCD. Gọi M và N là trung điểm của AD và BC. Chứng minh rằng:

a).
$$\overrightarrow{AD} + \overrightarrow{MB} + \overrightarrow{NA} = \overrightarrow{0}$$

b).
$$\overrightarrow{CD} - \overrightarrow{CA} + \overrightarrow{CB} = \overrightarrow{0}$$

Bài 6: Cho 6 điểm A, B, C, D, E, F. CMR: (Bằng nhiều cách khác nhau)

a).
$$\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{AD} + \overrightarrow{CB}$$

b).
$$\overrightarrow{AB} - \overrightarrow{CD} = \overrightarrow{AC} + \overrightarrow{DB}$$

c).
$$\overrightarrow{AB} - \overrightarrow{AD} = \overrightarrow{CB} - \overrightarrow{CD}$$

d).
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \vec{0}$$

e).
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{AE} + \overrightarrow{BF} + \overrightarrow{CD}$$

f)
$$\overrightarrow{AC} + \overrightarrow{DE} - \overrightarrow{DC} - \overrightarrow{CE} + \overrightarrow{CB} = \overrightarrow{AB}$$

<u>Bài 7</u>: Cho hình bình hành ABCD, M tùy ý. Cm: $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$

Bài 8: Δ ABC có G là trọng tâm, các điểm M, N, P lần lượt là trung điểm của các cạnh AB, BC, CA. Chứng minh GM + GN + GP = 0

Bài 9: Cho hình bình hành ABCD có tâm O. CMR:

🖎 Gv : Trần Duy Thái

a).
$$\overrightarrow{CO} - \overrightarrow{OB} = \overrightarrow{BA}$$

b).
$$\overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{DB}$$

c).
$$\overrightarrow{DA} - \overrightarrow{DB} = \overrightarrow{OD} - \overrightarrow{OC}$$

d).
$$\overrightarrow{DA} - \overrightarrow{DB} + \overrightarrow{DC} = \overrightarrow{0}$$

Bài 10: Cho $\triangle ABC$. Bên ngoài của tam giác vẽ các hình bình hành ABIJ, BCPQ, CARS. Chứng minh: $\overrightarrow{RJ} + \overrightarrow{IO} + \overrightarrow{PS} = \overrightarrow{0}$.

Bài 11: Cho lu giác đều ABCDEF có tâm là O . CMR :

a).
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} + \overrightarrow{OE} + \overrightarrow{OF} = \vec{0}$$

b).
$$\overrightarrow{OA} + \overrightarrow{OC} + \overrightarrow{OE} = \vec{0}$$

c).
$$\overrightarrow{AB} + \overrightarrow{AO} + \overrightarrow{AF} = \overrightarrow{AD}$$

c).
$$\overrightarrow{AB} + \overrightarrow{AO} + \overrightarrow{AF} = \overrightarrow{AD}$$
 d). $\overrightarrow{MA} + \overrightarrow{MC} + \overrightarrow{ME} = \overrightarrow{MB} + \overrightarrow{MD} + \overrightarrow{MF}$ (M tùy ý)

Bài 12: Cho 7 điểm A; B; C; D; E; F; G. Chứng minh rằng:

a).
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EA} = \overrightarrow{CB} + \overrightarrow{ED}$$

b).
$$\overrightarrow{AD} + \overrightarrow{BE} + \overrightarrow{CF} = \overrightarrow{AE} + \overrightarrow{BF} + \overrightarrow{CD}$$

c).
$$\overrightarrow{AB} + \overrightarrow{CD} + \overrightarrow{EF} + \overrightarrow{GA} = \overrightarrow{CB} + \overrightarrow{ED} + \overrightarrow{GF}$$

d).
$$\overrightarrow{AB} - \overrightarrow{AF} + \overrightarrow{CD} - \overrightarrow{CB} + \overrightarrow{EF} - \overrightarrow{ED} = \overrightarrow{0}$$

Bài 13: Cho tam giác ABC. Gọi M,N,P là trung điểm AB, AC, BC. CMR: với điểm O bất kì: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OM} + \overrightarrow{ON} + \overrightarrow{OP}$

Bài 14: Cho tam giác ABC. Gọi A' la điểm đối xứng của B qua A, B' là điểm đối xứng với C qua B, C' là điểm đối xứng của A qua C. Với một điểm O bất kỳ, CMR:

$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OA'} + \overrightarrow{OB'} + \overrightarrow{OC'}$$

Bài 15: Cho tam giác ABC nổi tiếp trong đường tròn tâm O, trực tâm H, vẽ đường kính AD

- a). Chứng minh rằng $\overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HD}$
- b). Goi H' là đối xứng của H qua O . Chứng minh rằng $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = \overrightarrow{HH}'$

Bài 16: CMR: AB = CD khi và chỉ khi trung điểm của hai đoạn thẳng AD và BC trùng nhau.

Bài 17: Cho hình bình hành ABCD tâm O. Đặt $\overrightarrow{AO} = \overrightarrow{a}$; $\overrightarrow{BO} = \overrightarrow{b}$

Tính
$$\overrightarrow{AB}$$
 ; \overrightarrow{BC} ; \overrightarrow{CD} ; \overrightarrow{DA} theo \overrightarrow{a} và \overrightarrow{b}

Bài 18: Cho tam giác ABC. Xác định điểm M sao cho $\overline{MA} - \overline{MB} + \overline{MC} = \overline{0}$

- * Dạng 4: Tính độ dài của vecto:
- Phương pháp giải:

Đưa tổng hoặc hiệu của các vectơ về một vectơ có độ dài là một canh của đa giác.

☞Bài tập:

<u>Bài 1:</u> Cho tam giác ABC vuông tại A biết AB=a, AC=2a. Tính: $|\overline{AB} + \overline{AC}|$ và

$$|\overrightarrow{AB} - \overrightarrow{AC}|$$

<u>Bài 2:</u> Cho tam giác đều ABC cạnh a. Tính: $|\overrightarrow{AB} + \overrightarrow{BC}|$ và $|\overrightarrow{CA} - \overrightarrow{CB}|$.

Bài 3: Cho tam giác ABC vuông tại A biết AB=a và $\hat{B} = 60^{\circ}$. Tính: $|\overrightarrow{AB} + \overrightarrow{BC}|$ và $|\overrightarrow{AB} - \overrightarrow{AC}|$.

<u>Bài 4:</u> Cho tam giác đều ABC cạnh a và đường cao AH. Tính: $|\overrightarrow{AB} + \overrightarrow{AC}|$;

$$\left| \overrightarrow{AB} + \overrightarrow{BH} \right|$$
; $\left| \overrightarrow{AB} - \overrightarrow{AC} \right|$.

<u>Bài 5:</u> Cho hình vuông ABCD cạnh a . Tính $|\overrightarrow{BC} + \overrightarrow{AB}|$; $|\overrightarrow{AB} - \overrightarrow{AC}|$ theo a

Bài 6: Cho hình thoi ABCD có $\widehat{BAD} = 60^{\circ}$ và canh là a. Goi O là giao điểm hai đường chéo. Tính:

a.
$$\left| \overrightarrow{AB} + \overrightarrow{AD} \right|$$

b.
$$\left| \overrightarrow{BA} - \overrightarrow{BC} \right|$$
 c. $\left| \overrightarrow{OB} - \overrightarrow{DC} \right|$

c.
$$|\overrightarrow{OB} - \overrightarrow{DC}|$$

Bài 7: Cho hình vuông ABCD cạnh a có O là giao điểm hai đường chéo. Tính

a.
$$\left| \overrightarrow{OA} - \overrightarrow{CB} \right|$$

b.
$$|\overrightarrow{AB} + \overrightarrow{DC}|$$

c.
$$|\overrightarrow{CD} - \overrightarrow{DA}|$$

Bài 8: Cho hình chữ nhật ABCD. Gọi O là giao điểm của hai đường chéo AC và BD.

a. Với M tùy ý, Hãy chứng minh $\overrightarrow{MA} + \overrightarrow{MC} = \overrightarrow{MB} + \overrightarrow{MD}$

b. Chứng minh rằng:
$$|\overrightarrow{AB} + \overrightarrow{AD}| = |\overrightarrow{AB} - \overrightarrow{AD}|$$

<u>Bài 9:</u> Cho 2 véc to \vec{a} và \vec{b} cùng khác $\vec{0}$. Khi nào thì:

a)
$$\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| + \left| \vec{b} \right|$$
;

b)
$$\left| \vec{a} + \vec{b} \right| = \left| \vec{a} \right| - \left| \vec{b} \right|$$

b)
$$|\vec{a} + \vec{b}| = |\vec{a}| - |\vec{b}|$$
; C) $|\vec{a} - \vec{b}| = |\vec{a}| - |\vec{b}|$

Bài 10: Tìm tính chất tam giác ABC, biết rằng : $|\overrightarrow{CA} + \overrightarrow{CB}| = |\overrightarrow{CA} - \overrightarrow{CB}|$

§ 3. TÍCH CỦA VECTƠ VỚI MỘT SỐ

A. TÓM TẮT LÍ THUYẾT:

Cho số thực $k \neq 0$, $\vec{a} \neq \vec{0}$. Tích của một số thực k và vecto \vec{a} là 1 vecto, kí hiệu: \vec{ka} và được xác định:

Nếu k > 0 thì $k \vec{a}$ cùng hướng với \vec{a} ; k < 0 thì $k \vec{a}$ ngược hướng với \vec{a} .

ightharpoonup Độ dài: $|k.\vec{a}| = |k| |\vec{a}|$

*****Tính chất :

a).
$$k(m\vec{a}) = (km)\vec{a}$$

b).
$$(k + m) \vec{a} = k \vec{a} + m \vec{a}$$

c).
$$k(\vec{a} + \vec{b}) = k\vec{a} + k\vec{b}$$

d).
$$\vec{k} \cdot \vec{a} = \vec{0} \Leftrightarrow \vec{k} = 0 \text{ hoăc } \vec{a} = \vec{0}$$

- \vec{b} cùng phương \vec{a} ($\vec{a} \neq \vec{0}$) khi và chỉ khi có số k thỏa $\vec{b} = k\vec{a}$.
- Điều kiên cần và đủ để A, B, C thẳng hàng là có số k sao cho $\overrightarrow{AB} = k \overrightarrow{AC}$.
- Tính chất trung điểm và tính chất trong tâm:
 - ightharpoonup I trung điểm đoan thẳng AB, với moi điểm M bất kỳ: $\overline{MA} + \overline{MB} = 2\overline{MI}$.
 - ightharpoonup G là trong tâm $\triangle ABC$, với moi điểm M bất kỳ: $\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$
- Phân tích một vecto theo hai vecto không cùng phương:
 - ightharpoonup Cho \vec{b} , \vec{a} là hai vecto không cùng phương, với mọi \vec{x} tùy ý, khi đó:

$$\vec{x} = \vec{n} \vec{a} + \vec{n} \vec{b}$$
 (m, n duy nhất).

B. CÁC DANG BÀI TÂP:

***** Dang 1: Chứng minh đẳng thức vecto:

Bài 1: Cho hình bình hành ABCD. Cmr: $\overrightarrow{AB} + 2\overrightarrow{AC} + \overrightarrow{AD} = 3\overrightarrow{AC}$

Bài 2: Cho tam giác ABC có AM là trung tuyến, D là trung điểm của AM. Cm:

a).
$$2\overrightarrow{DA} + \overrightarrow{DB} + \overrightarrow{DC} = \vec{0}$$

b).
$$2\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = 4\overrightarrow{OD}$$
 (với O tùy ý)

Bài 3: Cho tam giác ABC có G là trong tâm. CMR: MA + MB + MC = 3MG, với M

Bài 4: Cho tứ giác ABCD. Gọi M, N lần lượt là trung điểm của 2 đường chéo AC và BD. CMR: $\overrightarrow{AB} + \overrightarrow{CD} = 2\overrightarrow{MI}$

Bài 5: Gọi I, J lần lượt là trung điểm của đoạn thẳng AB và CD.

Chứng minh rằng:
$$2 \overrightarrow{IJ} = \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC}$$

Bài 6: CMR nếu G và G' lần lượt là trọng tâm của Δ ABC và Δ A'B'C' thì $3\overrightarrow{GG'} = \overrightarrow{AA'} + \overrightarrow{BB'} + \overrightarrow{CC'}$

Bài 7: Cho tứ giác ABCD. Gọi E,F là trung điểm của AB, CD và O là trung điểm EF.

CMR: a).
$$\overrightarrow{EF} = \frac{1}{2} \left(\overrightarrow{AC} + \overrightarrow{BD} \right)$$
 b). $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$

b).
$$\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{0}$$

c).
$$\overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} + \overrightarrow{MD} = 4\overrightarrow{MO}$$
 (M là điểm bất kỳ)

Bài 8: Gọi M,N là trung điểm AB và CD của tứ giác ABCD. Cmr:

$$2\overrightarrow{MN} = \overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{BC} + \overrightarrow{AD}$$

Bài 9: Cho tam giác ABC. Goi M,N,P lần lượt là trung điểm của BC, CA, AB.

CMR:
$$\overrightarrow{AM} + \overrightarrow{BN} + \overrightarrow{CP} = \overrightarrow{0}$$
.

Bài 10: CMR: nếu G và G' là trọng tâm của hai tam giác ABC và A'B'C'

thì $AA^{'} + BB^{'} + CC^{'} = 3GG^{'}$. Suy ra điều kiện để hai tam giác có cùng trọng tâm.

Bài 11: Cho tam giác ABC. Chứng minh rằng:

G là trọng tâm tam giác ABC $\Leftrightarrow \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$$
.

Bài 12: Cho tam giác ABC nổi tiếp đường tròn tâm O, H là trực tâm của tam giác, D là điểm đối xứng của A qua O.

- 8 -

🖎 Gv : Trần Duy Thái

www.MATHVN.com

a). Chững minh từ giác HCDB là hình bình hành.

b). Chứng minh:

$$\overrightarrow{HA} + \overrightarrow{HD} = 2\overrightarrow{HO}$$
, $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$, $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \overrightarrow{OH}$.

c). Gọi G là trọng tâm tam giác ABC. CMR: $\overrightarrow{OH} = 3\overrightarrow{OG}$. Từ đó có kết luận gì về 3 điểm O,H,G.

Bài 13: Cho tứ giác ABCD.

a). Gọi M,N là trung điểm AD, BC, chứng minh:
$$\overrightarrow{MN} = \frac{1}{2} \left(\overrightarrow{AB} + \overrightarrow{DC} \right)$$

b). Gọi O là điểm nằm trên đoạn MN và OM = 2ON.

CMR:
$$\overrightarrow{OA} - 2\overrightarrow{OB} - 2\overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$$

<u>Bài 14</u>: Cho tam giác A, B, C. G là trọng tâm của tam giác và M là một điểm tuỳ ý trong mặt phẳng. CMR:

a).
$$\overrightarrow{GB} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$$

b).
$$\overrightarrow{MB} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG}$$
.

<u>Bài 15</u>: Cho hình bình hành ABCD tâm I. $\overrightarrow{AO} = \overrightarrow{a}; \overrightarrow{BO} = \overrightarrow{b}$

- a). Chứng minh rằng: $\overrightarrow{AB} + \overrightarrow{AD} = 2\overrightarrow{AI}$
- b). Tính \overrightarrow{AC} ; \overrightarrow{BD} ; \overrightarrow{AB} ; \overrightarrow{BC} ; \overrightarrow{CD} ; \overrightarrow{DA} theo \overrightarrow{a} ; \overrightarrow{b} .

<u>**Bài 16**</u>: Cho 4 điểm A, B, C, D; M, N lần lượt là trung điểm của AB, CD. Chứng minh rằng: $\overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{AC} + \overrightarrow{BC} = 4\overrightarrow{MN}$.

<u>Bài 17</u>: Gọi O; H; G lần lượt là tâm đường tròn ngoại tiếp, trực tâm; trọng tâm của tam giác ABC. Chứng minh rằng: a) $\overrightarrow{HA} + \overrightarrow{HB} + \overrightarrow{HC} = 2\overrightarrow{HO}$ b) $\overrightarrow{HG} = 2\overrightarrow{GO}$.

Bài 18: Cho tam giác đều ABC tâm O. M là một điểm tuỷ ý bên trong tam giác; D, E, F lần lượt là hình chiếu của nó trên BC, CA, AB. Chứng minh rằng: $\overrightarrow{MD} + \overrightarrow{ME} + \overrightarrow{MF} = \frac{3}{2}\overrightarrow{MO}$.

<u>Bài 19</u>: Cho 4 điểm A, B, C, D; I, F lần lượt là trung điểm của BC, CD. CM: $2(\overrightarrow{AB} + \overrightarrow{AI} + \overrightarrow{FA} + \overrightarrow{DA}) = 3\overrightarrow{DB}$.

<u>Bài 20</u>: Cho tam giác ABC với G là trọng tâm; H là điểm đối xứng với B qua G. CM:

a).
$$\overrightarrow{AH} = \frac{2}{3}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}$$
; $\overrightarrow{CH} = -\frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$.

b). M là trung điểm của BC. CM: $\overrightarrow{MH} = \frac{1}{6}\overrightarrow{AC} - \frac{5}{6}\overrightarrow{AB}$.

*Dang 2: Tìm một điểm thỏa một đẳng thức vecto cho trước.

* Phương pháp tìm điểm M thỏa một đẳng thức vecto cho trước:

- B_1 : Biến đổi đẳng thức đã cho về dạng: $\overrightarrow{AM} = \overrightarrow{u}$, trong đó A là điểm cố định, \overrightarrow{u} cố đinh.
- B_2 : Dung điểm M thỏa $\overrightarrow{AM} = \overrightarrow{u}$.

☞<u>Bài Tập</u>:

- **<u>Bài 1</u>**: Cho hai điểm phân biệt A và B. tìm điểm K sao cho: $3\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{0}$.
- Bài 2: Cho tam giác ABC.
 - a). Tìm điểm I sao cho $\overrightarrow{IA} + 2\overrightarrow{IB} = \overrightarrow{0}$
 - b). Tìm điểm O sao cho $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} = \vec{0}$
 - c). Tìm điểm K sao cho $\overrightarrow{KA} + 2\overrightarrow{KB} = \overrightarrow{CB}$
 - d). Tìm điểm M sao cho $\overrightarrow{MA} + \overrightarrow{MB} + 2\overrightarrow{MC} = \overrightarrow{0}$
- **<u>Bài 3</u>**: Cho tứ giác ABCD. Tìm điểm O sao cho $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \overrightarrow{0}$
- Bài 4: Cho tam giác ABC.
 - a). Tìm điểm I sao cho $2\overrightarrow{IB} + 3\overrightarrow{IC} = \overrightarrow{0}$
 - b). Tìm điểm J sao cho $\overrightarrow{JA} \overrightarrow{JB} 2\overrightarrow{JC} = \overrightarrow{0}$
 - c). Tìm điểm K sao cho $\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} = \overrightarrow{BC}$
 - d). Tìm điểm K sao cho $\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} = 2\overrightarrow{BC}$
 - e). Tìm điểm L sao cho $3\overrightarrow{LA} \overrightarrow{LB} + 2\overrightarrow{LC} = \overrightarrow{0}$

> HD:

- c). Gọi G là trọng tâm tam giác ABC, khi đó với mọi K ta có: $\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} = 3\overrightarrow{KG}$
- e). $3\overrightarrow{LA} \overrightarrow{LB} + 2\overrightarrow{LC} = (\overrightarrow{LA} \overrightarrow{LB}) + 2(\overrightarrow{LA} + \overrightarrow{LC})$. Sau đó áp dụng quy tắc 3 điểm và hệ thức trung điểm.
- **<u>Bài 5</u>**: Cho hai điểm A, B. Xác định điểm M biết: $2\overrightarrow{MA} 3\overrightarrow{MB} = \overrightarrow{0}$
- <u>Bài 6</u>: Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NC=2NA.
 - a). Xác định điểm K sao cho: $3\overrightarrow{AB} + 2\overrightarrow{AC} 12\overrightarrow{AK} = \overrightarrow{0}$
 - b). Xác định điểm D sao cho: $3\overrightarrow{AB} + 4\overrightarrow{AC} 12\overrightarrow{KD} = \vec{0}$
- Bài 7: Cho các điểm A, B, C, D, E. Xác định các điểm O, I, K sao cho:

$$a).\overrightarrow{OA} + 2\overrightarrow{OB} + 3\overrightarrow{OC} = \vec{0}$$

$$b).\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{0}$$

$$c).\overrightarrow{KA} + \overrightarrow{KB} + \overrightarrow{KC} + 3(\overrightarrow{KD} + \overrightarrow{KE}) = \vec{0}$$

<u>Bài 8</u>: Cho tam giác ABC. Xác định các điểm M, N sao cho:

a).
$$\overrightarrow{MA} + 2\overrightarrow{MB} = \overrightarrow{0}$$

b).
$$\overrightarrow{NA} + 2\overrightarrow{NB} = \overrightarrow{CB}$$
.

 $\underline{\underline{Bai\ 9:}}$ Cho hình bình hành ABCD. Xác định điểm M thoả mãn:

$$3\overrightarrow{AM} = \overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AD}$$
.

<u>Bài 10</u>: Cho tứ giác ABCD. Xác định vị trí điểm O thoả mãn: $\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC} + \overrightarrow{OD} = \vec{0}$

- 9 -

* Dang 3: Phân tích một vecto theo hai vecto không cùng phương.

* **Phương pháp**: Áp dung các kiến thức:

 $\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$ (phép công)

$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$
 (phép trừ)

* **Quy tắc đường chéo hình bình hành**: Nếu ABCD là hình bình hành thì

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$$

* **Tính chất trung điểm**: I là trung điểm $AB \iff \overrightarrow{IA} + \overrightarrow{IB} = \overrightarrow{0}$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI} \ (M \ b\acute{a}t \ k\mathring{y})$$

* Tính chất trọng tâm: G là trong tâm $\triangle ABC \iff \overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$

$$\Leftrightarrow \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} = 3\overrightarrow{MG} \ (M \ b\acute{a}t \ k\dot{y})$$

☞Bài Tâp:

Bài 1: Cho tam giác ABC có trong tâm G. Cho các điểm D,E,F lần lượt là trung điểm các canh BC, CA, AB. I là giao điểm AD và EF. Hãy phân tích các vecto AI, AG, DE, DC theo hai vecto AE, AF.

Bài 2: Cho tam giác ABC. Điểm M trên cạnh BC sao cho $\overrightarrow{MB} = 3\overrightarrow{MC}$. Hãy phân tích vecto \overrightarrow{AM} theo hai vecto \overrightarrow{AB} , \overrightarrow{AC} .

Bài 3: Cho tam giác ABC. Điểm M trên canh BC sao cho MB = 2MC. Hãy phân tích vecto AM theo hai vecto AB,AC.

Bài 4: Cho AK và BM là hai trung tuyến của tam giác ABC. Hãy phân tích các vecto $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$ theo hai vecto $\overrightarrow{AK}, \overrightarrow{BM}$.

Bài 5: Cho tam giác ABC với trong tâm G. Goi I là trung điểm của đoan AG, K là điểm trên cạnh AB sao cho $AK = \frac{1}{5}AB$. Hãy phân tích $\overrightarrow{AI}, \overrightarrow{AK}, \overrightarrow{CI}, \overrightarrow{CK}$ theo

 $\overrightarrow{CA}.\overrightarrow{CB}$.

Bài 6: Cho luc giác đều ABCDEF tâm O canh a.

a. Phân tích vecto \overrightarrow{AD} theo hai vecto $\overrightarrow{AB}, \overrightarrow{AF}$.

b. Tính độ dài $|\vec{u}| = \left| \frac{1}{2} \overrightarrow{AB} + \frac{1}{2} \overrightarrow{BC} \right|$ theo a.

Bài 7: Cho tam giác ABC có trung tuyến AM. Phân tích \overrightarrow{AM} theo hai vecto \overrightarrow{AB} , \overrightarrow{AC}

Bài 8: Cho tam giác ABC. Gọi M là trung điểm AB, N là điểm trên cạnh AC sao cho NA = 2NC. Goi K là trung điểm MN. Phân tích vecto \overrightarrow{AK} theo \overrightarrow{AB} , \overrightarrow{AC} .

- 11 -

🖎 Gv : Trần Duy Thái

Bài 9: Cho tam giác ABC. Gọi M là trung điểm AB, N là điểm trên canh AC sao cho NC = 2NA. Goi K là trung điểm MN.

a. Phân tích vecto \overrightarrow{AK} theo \overrightarrow{AB} , \overrightarrow{AC} .

b. Gọi D là trung điểm BC. Cm: $\overrightarrow{KD} = \frac{1}{4}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AC}$.

Bài 10: Cho tam giác ABC. Goi M,N,P là trung điểm BC,CA,AB. Tính các vecto $\overrightarrow{AB}, \overrightarrow{BC}, \overrightarrow{CA}$ theo các vecto $\overrightarrow{BN}, \overrightarrow{CP}$

Bài 11: Cho hình vuông ABCD, E là trung điểm CD. Hãy phân tích \overline{AE} theo hai vecto AD, AB.

Bài 12: Cho tam giác ABC, goi G là trong tâm và H là điểm đối xứng của B qua G.

a). Chứng minh:
$$\overrightarrow{AH} = \frac{2}{3}\overrightarrow{AC} - \frac{1}{3}\overrightarrow{AB}$$
, $\overrightarrow{BH} = -\frac{1}{3}(\overrightarrow{AB} + \overrightarrow{AC})$.

b). Gọi M là trung điểm BC, chứng minh: $\overrightarrow{MH} = \frac{1}{6}\overrightarrow{AC} - \frac{5}{6}\overrightarrow{AB}$.

Bài 13: Cho hình bình hành ABCD, tâm O. đặt AB = a, AD = b. Hãy tính các vecto sau đây theo \vec{a}, \vec{b} .

a). \overrightarrow{AI} (I là trung điểm BO).

b). \overrightarrow{BG} (G là trong tâm tam giác OCD).

* **ĐS:**
$$\overrightarrow{AI} = \frac{3}{4} \vec{a} + \frac{1}{4} \vec{b}$$
 $\overrightarrow{BG} = -\frac{1}{2} \vec{a} + \frac{5}{6} \vec{b}$

Bài 14: Cho tam giác ABC và G là trong tâm. B₁ đối xứng với B qua G. M là trung điểm BC. Hãy biểu diễn các véc tơ \overrightarrow{AM} , \overrightarrow{AG} , \overrightarrow{BC} , $\overrightarrow{CB_1}$, $\overrightarrow{AB_1}$, $\overrightarrow{MB_1}$ qua hai véc tơ \overrightarrow{AB} , \overrightarrow{AC} .

Bài 15: Cho tam giác ABC, goi I là điểm trên canh BC sao cho 2CI = 3BI và J thuộc BC kéo dài sao cho 5JB = 2JC.

a). Tính \overrightarrow{AI} , \overrightarrow{AJ} theo hai véc tơ \overrightarrow{AB} , \overrightarrow{AC} . Từ đó biểu diễn \overrightarrow{AB} , \overrightarrow{AC} theo \overrightarrow{AI} , \overrightarrow{AJ} .

b). Goi G là trong tâm tam giác ABC. Tính \overline{AG} theo $\overline{AI}, \overline{AJ}$.

* Dang 4: Chứng minh ba điểm thẳng hàng:

* **Phương pháp**: Ba điểm A,B,C thẳng hàng $\Leftrightarrow \overrightarrow{AB} = k.\overrightarrow{AC}$

Để chứng minh được điều này tạ có thể áp dụng một trong hai phương pháp:

+ Cách 1: Áp dung các quy tắc biến đổi véctơ.

+ Cách 2: Xác định hai véctơ trên thông qua tổ hợp trung gian.

- 12 -

<u>**Bài 1**</u>: Cho 4 điểm O, A, B, C sao cho $3\overrightarrow{OA} - 2\overrightarrow{OB} - \overrightarrow{OC} = \overrightarrow{0}$. CMR: A, B, C thẳng hàng.

<u>**Bài 2**</u>: Cho tam giác ABC có AM là trung tuyến. Gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = $\frac{1}{3}$ AC.

- a). Phân tích vecto $\overrightarrow{BK}, \overrightarrow{BI}$ theo hai vecto $\overrightarrow{BA}, \overrightarrow{BC}$
- b). Chứng minh ba điểm B, I, K thẳng hàng.

<u>Bài 3:</u> Cho \triangle ABC. I là điểm trên cạnh AC sao cho $CI = \frac{1}{4}AC$, J là điểm mà

$$\overrightarrow{BJ} = \frac{1}{2} \overrightarrow{AC} - \frac{2}{3} \overrightarrow{AB}$$

- a). Chứng minh rằng $\overrightarrow{BI} = \frac{3}{4} \overrightarrow{AC} \overrightarrow{AB}$
- b). Chứng minh B, I, J thẳng hàng.

<u>**Bài 4**</u>: Cho tam giác ABC. Gọi I là trung điểm của BC; D và E là hai điểm sao cho: $\overrightarrow{BD} = \overrightarrow{DE} = \overrightarrow{EC}$

- a). Chứng minh: $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD} + \overrightarrow{AE}$.
- b). Tính vécto: $\overrightarrow{AS} = \overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{AC} + \overrightarrow{AE}$ theo \overrightarrow{AI} .
- c). Suy ra ba điểm A, I, S thẳng hàng.

<u>Bài 5:</u> Cho tam giác ABC. Đặt $\overrightarrow{AB} = \overrightarrow{u}$; $\overrightarrow{AC} = \overrightarrow{v}$

- a). Gọi P là điểm đối xứng với B qua C. Tính \overrightarrow{AP} theo \overrightarrow{u} ; \overrightarrow{v} ?
- b). Qọi Q và R là hai điểm định bởi: $\overrightarrow{AQ} = \frac{1}{2}\overrightarrow{AC}$; $\overrightarrow{AR} = \frac{1}{3}\overrightarrow{AB}$. Tính \overrightarrow{RP} ; \overrightarrow{RQ} theo \overrightarrow{u} ; \overrightarrow{v} .
- c). Suy ra P, Q, R thẳng hàng.

<u>**Bài 6**</u>: Cho tam giác ABC, trọng tâm G. Lấy điểm I, J sao cho: $2\overrightarrow{IA} + 3\overrightarrow{IC} = \overrightarrow{0}$, $2\overrightarrow{JA} + 5\overrightarrow{JB} + 3\overrightarrow{JC} = \overrightarrow{0}$

- a). CMR: M, N, J thẳng hàng với M, N là trung điểm của AB và BC.
- b). CMR: J là trung điểm của BI.

<u>Bài 7:</u> Cho tam giác ABC, trọng tâm G. Lấy các điểm I, J thoả mãn: $\overrightarrow{IA} = 2\overrightarrow{IB}$; $3\overrightarrow{JA} + 2\overrightarrow{JC} = \overrightarrow{0}$. Chứng minh IJ đi qua trọng tâm G của tam giác ABC.

<u>Bài 8:</u> Cho tam giác ABC. Lấy các điểm M, N, P thoả mãn: $\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{0}$

 $3\overrightarrow{AN} - 2\overrightarrow{AC} = \overrightarrow{0}$; $\overrightarrow{PB} = 2\overrightarrow{PC}$. Chứng minh: M, N, P thẳng hàng.

<u>**Bài 9:**</u> Cho hình bình hành ABCD. Lấy các điểm I, J thoả mãn: $3\overrightarrow{JA} + 2\overrightarrow{JC} - 2\overrightarrow{JD} = \vec{0}$ $\overrightarrow{JA} - 2\overrightarrow{JB} + 2\overrightarrow{JC} = \vec{0}$.

- 13 -

🖎 Gv : Trần Duy Thái

Chứng minh: I, J, O thẳng hàng với O là giao điểm của AC và BD.

<u>Bài 10:</u> Cho tam giác ABC. Lấy các điểm M, N, P sao cho: $\overrightarrow{MB} - 3\overrightarrow{MC} = \overrightarrow{0}$,

 $\overrightarrow{AN} = 3\overrightarrow{NC}$, $\overrightarrow{PA} + \overrightarrow{PB} = \overrightarrow{0}$. Chứng minh rằng M, N, P thẳng hàng.

<u>Bài 11</u>: Cho tam giác ABC và điểm M thỏa $\overrightarrow{AM} = 3\overrightarrow{AB} - 2\overrightarrow{AC}$. Chứng minh B,M,C thẳng hàng

<u>Bài 12:</u> Cho tam giác ABC .Gọi M, N lần lượt là các điểm thuộc cạnh AB, AC sao cho

 $AM = \frac{1}{2} MB \; , \; AN = 3NC \; và \; \text{điểm} \; P \; \text{xác} \; \text{định bởi hệ thức} \; \; 4\overrightarrow{PB} + 9\overrightarrow{PC} = \overrightarrow{0} \; . \; \text{Gọi} \; K \; là trung \, \text{điểm} \; MN.$

- a). Chứng minh: $\overrightarrow{AK} = \frac{1}{6} \overrightarrow{AB} + \frac{3}{8} \overrightarrow{AC}$.
- b). Chứng minh: Ba điểm A, K, P thẳng hàng.

 $\underline{\underline{Bai}\; 13}$: Cho tam giác ABC. Hai điểm $\,M,\,N$ được xác định bởi các hệ thức

 $\overrightarrow{BC} + \overrightarrow{MA} = \overrightarrow{O}$; $\overrightarrow{AB} - \overrightarrow{NA} - 3\overrightarrow{AC} = \overrightarrow{O}$. Chứng minh MN // AC

* Dạng 4: Chứng minh hai điểm trùng nhau:

* Phương pháp:

Để chứng minh M và M' trùng nhau, ta lựa chọn một trong hai hướng:

- + Cách 1: Chứng minh $\overrightarrow{MM}' = \overrightarrow{0}$
- + Cách 2: Chứng minh $\overrightarrow{OM} = \overrightarrow{OM}'$ với O là điểm tuỳ ý.

<u>Bài 1:</u> Cho tứ giác lỗi ABCD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chứng minh rằng hai tam giác ANP và CMQ có cùng trong tâm.

<u>Bài 2</u>: Cho lục giác ABCDEF. Gọi M,N,P,Q,R,S lần lượt là trung điểm các cạnh AB, BC, CD, DE, EF, FA. Cmr hai tam giác MPR và NQS có cùng trong tâm.

<u>**Bài 3**</u>: Cho tứ giác ABCD. Gọi M,N,P,Q là trung điểm các cạnh AB,BC,CD,DA. Cmr hai tam giác ANP và CMQ có cùng trọng tâm.

Bài 4: Cho tứ giác ABCD. Gọi I,J là trung điểm của AB và CD.

- a). CMR: $\overrightarrow{AC} + \overrightarrow{BD} = \overrightarrow{AD} + \overrightarrow{BC} = 2\overrightarrow{IJ}$.
- b). Gọi G là trung điểm IJ. Cm: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} = \overrightarrow{0}$.
- c). Gọi P, Q là trung điểm các đoạn thẳng AC và BD, M và N là trung điểm AD và BC. CMR: Ba đoạn thẳng IJ, PQ, MN có chung trung điểm.

* Dạng 5: Quỹ tích điểm

*Phương pháp:

Đối với các bài toán quỹ tích, học sinh cần nhớ một số quỹ tích cơ bản sau:

- Nếu $|\overrightarrow{MA}| = |\overrightarrow{MB}|$ với A, B cho trước thì M thuộc đường trung trực của đoạn AB.
- Nếu $\left|\overline{MC}\right|=k.\left|\overline{AB}\right|$ với A, B, C cho trước thì M thuộc đường tròn tâm C, bán kính bằng $k.\left|\overline{AB}\right|$.
- Nếu $\overrightarrow{MA} = k\overrightarrow{BC}$ thì

🖎 Gv : Trần Duy Thái

- + M thuộc đường thăng qua A song song với BC nếu $k \in R$
- + M thuộc nửa đường thẳng qua A song song với BC và cùng hướng \overrightarrow{BC} nếu $k \in \mathbb{R}^+$
- + M thuộc nửa đường thẳng qua A song song với BC và ngược hướng \overrightarrow{BC} nếu $k \in R^-$

* Bài tập áp dụng:

Bài 1: Cho tam giác ABC. Tìm tập hợp những điểm M thoả mãn:

a).
$$\left| \overrightarrow{MA} + \overrightarrow{MB} + \overrightarrow{MC} \right| = \frac{3}{2} \left| \overrightarrow{MB} + \overrightarrow{MC} \right|$$

b).
$$\left| \overrightarrow{MA} + 3\overrightarrow{MB} - 2\overrightarrow{MC} \right| = \left| 2\overrightarrow{MA} - \overrightarrow{MB} - \overrightarrow{MC} \right|$$

Bài 2: Cho tam giác ABC. M là điểm tuỳ ý trong mặt phẳng.

- a). CMR: véctor $\vec{v} = 3\overrightarrow{MA} 5\overrightarrow{MB} + 2\overrightarrow{MC}$ không đổi.
- b). Tìm tập hợp những điểm M thoả mãn: $\left| 3\overline{MA} + 2\overline{MB} 2\overline{MC} \right| = \left| \overline{MB} \overline{MC} \right|$

§ 4. HỆ TRỰC TỌA ĐỘ

A. TÓM TẮT LÍ THUYẾT:

- 1. Định nghĩa tọa độ của một vecto, độ dài đại số của một vecto trên một trực
 - $\vec{a} = (a_1; a_2) \Leftrightarrow \vec{a} = a_1 \cdot \vec{i} + a_2 \cdot \vec{j}$
 - $M \ co' \ to a \ d\hat{o} \ l\grave{a} \ (x; \ y) \Leftrightarrow \overrightarrow{OM} = x \overrightarrow{i} + y \overrightarrow{j}$
 - $A(x_A; y_A)$ và $B(x_B; y_B) \Rightarrow \overrightarrow{AB} = (x_B x_A; y_B y_A)$
- 2. Tọa độ của $\vec{a} + \vec{b}$, $\vec{a} \vec{b}$, $\vec{k}\vec{a}$

* Cho
$$\vec{a} = (a_1; a_2), \ \vec{b} = (b_1; b_2), \ k \in \mathbb{R}$$

Ta có:
$$\vec{a} + \vec{b} = (a_1 + b_1; a_2 + b_2)$$
; $\vec{a} - \vec{b} = (a_1 - b_1; a_2 - b_2)$; $\vec{k} = (ka_1; ka_2)$

* Hai vector
$$\vec{a}$$
 và \vec{b} ($\vec{a} \neq \vec{0}$) cùng phương $\iff \exists k \in \mathbb{R}$:
$$\begin{cases} b_1 = ka_1 \\ b_2 = ka_2 \end{cases}$$

3. + I là trung điểm của đoạn thẳng AB ta có:
$$\begin{cases} x_{_I} = \frac{x_{_A} + x_{_B}}{2} \\ y_{_I} = \frac{y_{_A} + y_{_B}}{2} \end{cases}$$

+ G là trọng tâm của tam giác ABC ta có:
$$\begin{cases} x_G = \frac{x_A + x_B + x_C}{3} \\ y_G = \frac{y_A + y_B + y_C}{3} \end{cases}$$

- 15 -

🖎 Gv : Trần Duy Thái

B. CÁC DANG BÀI TÂP:

- * Dang 1: Xác định tọa độ của véctơ và của một điểm trên mp tọa độ Oxy:
- Phương pháp giải:

Căn cử vào định nghĩa tọa độ của vecto $^{\circ}$ và tọa độ của một điểm trêm mp tọa độ Oxy.

* Nếu biết tọa độ hai điểm A (x_A,y_A) , $B(x_B,\ y_B)$ thị ta tính được tọa độ của

$$\overrightarrow{AB}$$
: $\overrightarrow{AB} = (x_B - x_A; y_B - y_A)$.

* Nếu M và N có tọa độ lần lượt là a, b thì $\overline{MN} = b - a$

☞Bài tập:

<u>Bài 1:</u> Trên trục (O, \vec{i}) cho hai điểm M và N có tọa độ lần lượt là -5; 3. tìm tọa độ

diễm P trên trục sao cho
$$\frac{\overline{PM}}{\overline{PN}} = \frac{1}{2}$$

<u>**Bài 2:**</u> Cho hình bình hành ABCD có AD=4 và chiều cao ứng với cạnh AD=3, góc BAD=60°, chọn hệ trục (A; \vec{i} , \vec{j}) sao cho \vec{i} và \overrightarrow{AD} cùng hướng. Tìm tọa độ các vector \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{CD} , \overrightarrow{AC} .

Bài 3: Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là −2 và 5.

- a). Tìm tọa độ của $\stackrel{\rightarrow}{AB}$.
- b). Tìm tọa độ trung điểm I của đoạn thẳng AB.
- c). Tìm tọa độ của điểm M sao cho $2 \stackrel{\rightarrow}{MA} + 5 \stackrel{\rightarrow}{MB} = \vec{0}$.
- d). Tìm toa đô điểm N sao cho $2\overline{NA} + 3\overline{NB} = -1$.

Bài 4: Trên trục x'Ox cho 3 điểm A, B, C có tọa độ lần lượt là a, b, c.

- a). Tìm tọa độ trung điểm I của AB.
- b). Tìm tọa độ điểm M sao cho $\overrightarrow{MA} + \overrightarrow{MB} \overrightarrow{MC} = \vec{0}$.
- c). Tìm toa đô điểm N sao cho $2 \stackrel{\rightarrow}{NA} 3 \stackrel{\rightarrow}{NB} = \stackrel{\rightarrow}{NC}$.

Bài 5: Trên trục x'Ox cho 2 điểm A, B có tọa độ lần lượt là −3 và 1.

- a). Tìm tọa độ điểm M sao cho $3\overline{MA} 2\overline{MB} = 1$.
- b). Tìm tọa độ điểm N sao cho $\overline{NA} + 3\overline{NB} = \overline{AB}$.

<u>Bài 6:</u> Trên trục x'Ox cho 4 điểm A (-2); B(4); C(1); D(6)

a). CMR:
$$\frac{1}{\overline{AC}} + \frac{1}{\overline{AD}} = \frac{2}{\overline{AB}}$$

- b). Gọi I là trung điểm AB. CMR: $\overline{IC}.\overline{ID} = \overline{IA}^2$
- c). Gọi J là trung điểm CD. CMR: $\overline{AC}.\overline{AD} = \overline{AB}.\overline{AJ}$

<u>Bài 7:</u> Cho hình bình hành ABCD có A(-1;3); B(2;4), C(0;1). Tìm tọa độ đỉnh D.

<u>Bài 8:</u> Cho Δ ABC, các điểm M(1;0); N(2;2) và P(-1;3) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ các đỉnh của tam giác.

<u>Bài 9:</u> Cho Δ ABC, các điểm M(1;1); N(2;3) và P(0;4) lần lượt là trung điểm của các cạnh BC; CA; AB. Tìm tọa độ các đỉnh của tam giác.

🕾 Gv : Trần Duy Thái

www.MATHVN.com Bài 10: Cho Δ ABC, các điểm A(-5;6); B(-4;-1) và C(4;3). Tìm tọa độ trung điểm I

của AC. Tìm toa đô điểm D sao cho tứ giác ABCD là hình bình hành.

Bài 11: Cho 3 điểm A(2;5); B(1;1); C(3;3).

- a). Tìm toa đô điểm D sao cho $\overrightarrow{AD} = 3\overrightarrow{AB} 2 \overrightarrow{AC}$.
- b). Tìm toa đô điểm E sao cho tứ giác ABCE là hình bình hành. Tìm toa đô tâm hình bình hành đó.

Bài 12: Cho tam giác ABC có A(-1;1), B(5;-3), C nằm trên Oy và trong tâm G nằm trên Ox. Tìm toa đô C.

- * Dang 2: Tìm tọa độ của các vector u + v; u v; ku
- **Phương pháp giải:** Tính theo công thức tọa độ u + v; u v; ku
- ☞Bài tâp:

<u>Bài 1:</u> Cho $\vec{a} = (2;1); \vec{b} = (3;4); \vec{c} = (7;2)$.

- a). Tìm toa độ của vecto $\vec{u} = 2\vec{a} 3\vec{b} + \vec{c}$.
- b). Tîm toa đô vecto $\vec{x} + \vec{a} = \vec{b} \vec{c}$.
- c). Tìm hai số i; k sao cho $\vec{c} = k\vec{a} + l\vec{b}$.

Bài 2: Cho $\vec{a} = (1,2); \vec{b} = (-3,1); \vec{c} = (-4,-2)$

a). Tìm tọa độ các vector
$$\vec{u} = 2\vec{a} - 4\vec{b} + \vec{c}$$
; $\vec{v} = -\vec{a} + \frac{1}{3}\vec{b} - \frac{1}{2}\vec{c}$; $\vec{u} = 3\vec{a} + 2\vec{b} + 4\vec{c}$.

và xem vecto nào trong các vecto cùng phương với vécto \vec{i} và cùng phương với \vec{i} .

b). Tìm các số m, n sao cho a = mb + nc.

Bài 3: Tìm x để các cặp vectơ sau cùng phương

a).
$$\vec{a} = (2,3)$$
 và $\vec{b} = (4,x)$.

b).
$$\vec{u} = (0.5)$$
 và $\vec{b} = (x.7)$.

c).
$$\vec{m} = (x; -3) \vec{v} \cdot \vec{n} = (-2; 2x)$$
.

Bài 4: Biểu diễn véc tơ \vec{c} theo các véc tơ \vec{a} ; \vec{b} biết:

a).
$$\vec{a}(2;-1)$$
; $\vec{b}(-3;4)$; $\vec{c}(-4;7)$ b). $\vec{a}(1;1)$; $\vec{b}(2;-3)$; $\vec{c}(-1;3)$.

b).
$$\vec{a}(1;1)$$
; $\vec{b}(2;-3)$; $\vec{c}(-1;3)$.

Bài 5: Cho bốn điểm A(1;1); B(2;-1); C(4;3); D(16;3). Hãy biểu diễn véc tơ \overrightarrow{AD} theo các véc to \overrightarrow{AB} ; \overrightarrow{AC} .

<u>Bài 6:</u> Biểu diễn véc to \vec{c} theo các véc to \vec{a} ; \vec{b} biết:

a).
$$\vec{a}(-4;3)$$
; $\vec{b}(-2;-1)$; $\vec{c}(0;5)$ b). $\vec{a}(4;2)$; $\vec{b}(5;3)$; $\vec{c}(2;0)$.

b).
$$\vec{a}(4;2)$$
; $\vec{b}(5;3)$; $\vec{c}(2;0)$

Bài 7: Cho bốn điểm A(0;1); B(2;0); C(-1;2); D(6;-4). Hãy biểu diễn véc tơ \overrightarrow{AD} theo các véc to \overrightarrow{AB} ; \overrightarrow{AC}

- 17 -

🖎 Gv : Trần Duy Thái

* Dang 3: Chứng minh 3 điểm thẳng hàng:

→Phương pháp giải:

Sử dung điều kiên cần và đủ sau:

- * Hai vecto \vec{a} , $\vec{b} \neq \vec{0}$) cùng phương khi và chỉ khi có số k để $\vec{a} = k\vec{b}$
- * Ba điểm phân biệt A, B, C thẳng hàng khi và chỉ khi có số k để $\overrightarrow{AB} = k\overrightarrow{AC}$

☞Bài tâp:

Bài 1: Cho 3 điểm A(-1;1); B(1;3) và C(-2;0). Chứng minh rằng 3 điểm A; B; C thẳng

<u>Bài 2:</u> Cho 3 điểm $M(\frac{4}{3}; \frac{7}{3})$; N(2;1) và P(1;3). Chứng minh rằng 3 điểm M; N; P

thẳng hàng. **Bài 3:** Cho 3 điểm A(3; 4); B(2; 5) và C(1; 5). Tìm x để (-7; x) thuộc đường thẳng AB.

Bài 4: Cho 3 điểm A(-3; 4); B(1; 1) và C(9; -5).

- a). Chứng minh rằng 3 điểm A; B; C thẳng hàng.
- b). Tìm toa đô điểm D sao cho A là trung điểm của BD.
- c). Tìm toa đô điểm E trên trục Ox sao cho A; B; E thẳng hàng.

Bài 5: Cho A(2;1); B(6;-1). Tìm toa đô:

- a). Điểm M trên truc hoành sao cho A,B,M thẳng hàng.
- b). Điểm N trên trục tung sao cho A, B, N thẳng hàng.
- c). Điểm P khác điểm B sao cho A, B, P thẳng hàng và $PA = 2\sqrt{5}$.

Bài 6: Cho A(-1;-4); B(3;4). Tìm toa đô:

- a). Điểm M trên truc hoành sao cho A,B,M thẳng hàng.
- b). Điểm N trên trục tung sao cho A, B, N thẳng hàng.
- c). Điểm P khác điểm B sao cho A, B, P thẳng hàng và $PA = 3\sqrt{5}$.

Bài 7: Tìm điểm P trên đường thẳng (d): x+y=0 sao cho tổng khoảng cách từ P tới A và B là nhỏ nhất, biết:

a). A(1:1) và B(-2:-4)

b). A(1:1) và B(3:-2)

* Dang 4: Xác định điểm thỏa mãn một đẳng thức vecto, đô dài:

☞Bài tâp:

Bài 1: Cho tam giác ABC với A(1;0); B(-3;-5); C(0;3)

- a). Xác định toa đô điểm E sao cho $\overrightarrow{AE} = 2\overrightarrow{BC}$
- b). Xác định toa đô điểm F sao cho AF=CF=5

Bài 2: Cho tam giác ABC với A(-1;3); B(2;4); C(0;1). Xác đinh toa đô:

- a). Trong tâm G
- b). Véc tơ trung tuyến AA₁
- c). Tâm I của đường tròn ngoại tiếp tam giác.
- d). Điểm D sao cho ABCD là hình bình hành.

<u>Bài 3:</u> Cho M(1+2t; 1+3t). Hãy tìm điểm M sao cho $x_M^2 + y_M^2$ nhỏ nhất.

<u>Bài 4:</u> Cho tam giác ABC với A(4;6); B(1;4); C(7; $\frac{3}{2}$)

www.MATHVN.com a). CM: ΔABC vuông b). Tìm toạ độ tâm đường tròn ngoại tiếp ΔABC.

Bài 5: Cho tam giác ABC với A(1;-2); B(0;4); C(3;2). Tìm toa đô của:

- a). Trong tâm G của tam giác.
- b). Vecto trung tuyến ứng với canh BC.
- c). Điểm D sao cho ABCD là hình bình hành.
- d). Tâm I đường tròn ngoại tiếp tam giác ABC.
- e). Điểm M biết: $\overrightarrow{CM} = 2\overrightarrow{AB} 3\overrightarrow{AC}$.
- f). Điểm N biết: $\overrightarrow{AN} + 2\overrightarrow{BN} 4\overrightarrow{CN} = \overrightarrow{0}$.

Bài 6: Cho tam giác ABC với A(0;3); B(4;6); C(3;3). Tìm toa đô điểm D sao cho ABCD là hình bình hành.

* Bài Tập Tổng Hơp:

Bài 1: Trong hệ truc Oxy, cho A(1; 2), B(-2; 3), C(-4;6)

- a). Tîm toa đô $\overrightarrow{AB} + 2\overrightarrow{BC} 3\overrightarrow{AC}$.
- b). Tìm toa đô trung điểm M của BC.
- c). Tìm toa đô trong tâm G của tam giác ABC.
- d). Biểu diễn \overrightarrow{AG} theo $\overrightarrow{AB}, \overrightarrow{AC}$.
- e). Tìm toa đô điểm D sao cho ABCD là hình bình hành. Tìm toa đô tâm I của hình bình hành này.
- f). Tìm toa đô điểm E thuộc Ox sao cho ABCE là hình thang. Tìm toa đô giao điểm hai đường chéo của hình thang này.

Bài 2: Trong hệ truc toa đô oxy, cho tam giác ABC có A(4;-1), B(-2;-4), C(-2;2)

- a). Tính chu vi tam giác ABC.
- b). Tìm toa độ trực tâm H của tam giác ABC.
- c). Tìm toa đô điểm I biết $\overrightarrow{AI} + 3\overrightarrow{BI} + 2\overrightarrow{CI} = \vec{0}$

Bài 3: Trong mặt phẳng Oxy cho A(4; 3), B(2; 7), C(-3: 8).

a). Chứng minh rằng A, B, C là 3 đỉnh của một tam giác.

Tìm toa đô trong tâm G của tam giác.

- b). Tìm D để BCGD là hình bình hành. Biểu diễn \overrightarrow{AG} theo hai $\overrightarrow{AB}, \overrightarrow{AD}$.
- c). Tìm toa đô M thỏa $\overrightarrow{AM} + \overrightarrow{AG} + 2\overrightarrow{MB} + \overrightarrow{CM} = -5\overrightarrow{BC}$.
- d). Tìm N thuộc canh BC sao cho diện tích tam giác ANB gấp 7 lần diện tích tam giác ANC.

Bài 4: Trong mặt phẳng Oxy cho các điểm A(-1;2); B(2;3) và C(1; -4).

- a). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.
- b). Tìm toa đô điểm N trên truc hoành sao cho ba điểm A, B, N thẳng hàng.
- c). Tìm tọa độ M thuộc BC thỏa $S_{\Lambda AMB} = 7S_{\Lambda ABC}$
- d). Gọi M, P lần lượt là trung điểm cuả AB và BC. Phân tích \overrightarrow{AC} theo hai vector \overrightarrow{AP} và \overrightarrow{CM} .

Bài 5: : Cho hai điểm A(3, 4); B(2; 5).

- a). Tìm toa đô điểm A' đối xứng với A qua B.
- b). Tìm toa độ điểm D trên Ox sao cho 3 điểm A, B, D thẳng hàng.

Mình Học 10

🖎 Gv : Trần Duy Thái

c). Tìm toa đô điểm C sao cho O là trọng tâm của tam giác ABC.

Bài 6: Trong mặt phẳng với hệ toa đô Oxy cho tam giác ABC có A(4; 0), B(2; -4),

C(0; -2) Goi G là trong tâm của tam giác ABC và M, N, P lần lượt là trung điểm của các canh BC, CA, AB. Chứng minh hai tam giác ABC và tam giác MNP có cùng trong tâm.

Bài 7: Trong mặt phẳng toa đô Oxy cho G(1; 2). Tìm toa đô điểm A thuộc Ox và B thuộc Oy sao cho G là trọng tâm tam giác OAB.

Bài 8: Trong hệ trục Oxy cho các vécto $\vec{a} = (2; -1), \vec{b} = (-1; -3), \vec{c} = (3; 1)$.

- a). Tìm toạ độ của các véctor $\vec{u} = \vec{a} + \vec{b}$, $\vec{v} = \vec{a} \vec{b} + \vec{c}$, $\vec{w} = 2\vec{a} 3\vec{b} + 4\vec{c}$.
- b). Biểu diễn véctor \vec{c} theo hai véctor \vec{a} và \vec{b} .
- c). Tìm toa đô của véctor \vec{d} sao cho $\vec{a} + 2\vec{d} = \vec{b} 3\vec{c}$.

Bài 9: Trong mặt phẳng toạ độ Oxy cho ba điểm A (1;3), B (-5; 7), C (3; 5).

- a). Xác định toa đô điểm M sao cho $\overrightarrow{AB} 2\overrightarrow{AC} + \overrightarrow{AM} = \overrightarrow{0}$
- b). Xác định toa đô điểm P trên trục tung sao cho P thẳng hàng với A và B.

Bài 10: Trong mặt phẳng Oxy cho A(4; 3), B(2; 7), C(-3: 8).

- a). Chứng minh rằng A, B, C là 3 đỉnh của một tam giác. Tìm tọa độ trong tâm G của tam giác.
- b). Tìm D để BCGD là hình bình hành. Biểu diễn \overrightarrow{AG} theo hai $\overrightarrow{AB}.\overrightarrow{AD}$.
- c). Tìm toa đô M thỏa $\overrightarrow{AM} + \overrightarrow{AG} + 2\overrightarrow{MB} + \overrightarrow{CM} = -5\overrightarrow{BC}$.

.....Hết.....

"Trên bước đường thành công, không có dấu chân của những kẻ lười biếng"

- 20 -