

Systèmes embarqués

Les timers du MSP430

Pierre-Yves Rochat

Introduction aux interruptions

Pierre-Yves Rochat

Les timers

- Gestion du temps
- Timers, prédivision, logique de gestion et registres de comparaison
- Mise en œuvre : exemple du MSP430
- Interruptions des timers

Le timer A du MSP430

Le registre de contrôle

12.3.1 TACTL, Timer_A Control Register

15	14	13	12	11	10	9	8		
	Unused						TASSELx		
rw-(0)	rw-(0)	rw-(0) rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)		
7	6	5	4	3	2	1	0		
ID:	x		MCx	Unused	TACLR	TAIE	TAIFG		
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)		
nused	Bits 15-10	Unuse	Unused						
ASSELx	Bits 9-8	Timer_A clock source select							
		00	TACLK						
		01	ACLK						
		10	SMCLK						
		11	INCLK (INCLK device-specific		ific and is ofte	en assigned to	the inverted T		
Dx	Bits 7-6	Input divider. These bits select the divider for the input clock.							
		00	/1						
		01	/2						
		10	/4						
		11	/8						

Le registre de contrôle

12.3.1 TACTL, Timer_A Control Register

15	14	13	12	11	10	9	8
		Unused				TASSELx	
rw-(0)	rw-(0)	rw-(0) rw-(0)		rw-(0)	rw-(0)	rw-(0)	rw-(0)
7	6	5	4	3	2	1	0
IDx		М	Cx	Unused	TACLR	TAIE	TAIFG
w-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)
	Bits 5-4	Mode control. Setting MCx = 00h when Timer_A is not in use conserves power. Stop mode: the timer is halted. Up mode: the timer counts up to TACCR0. Continuous mode: the timer counts up to 0FFFFh.					
	Bit 3	11 Up/down mode: the timer counts up to TACCR0 then down to 0000h. Unused					
R	Bit 2	Timer_A clear. Setting this bit resets TAR, the clock divider, and the count direction. The TACLF automatically reset and is always read as zero.					
	Bit 1	0 Inte	errupt enable. errupt disabled errupt enabled		s the TAIFG in	terrupt reques	t.
	Bit 0	Timer_A into	errupt flag interrupt pend	ling			

Interrupt pending

Programme de mise en oeuvre

```
1 int main() {
   WDTCTL = WDTPW + WDTHOLD; // Watchdog hors service
   BCSCTL1 = CALBC1 1MHZ;
  DCOCTL = CALDCO 1MHZ; // Fréquence CPU
  P1DIR |= (1<<0); // P1.0 en sortie pour la LED
   TACTL0 = TASSEL 2 + ID 3 + MC 2;
  while (1) {
              // Boucle infinie
    if (TACTL0 & TAIFG) {
      TACTLO &= ~TAIFG;
      P10UT ^= (1<<0); // Inversion LED
```


Les registres de comparaison

Les registres de comparaison

Timer_A Registers www.ti.com

12.3.4 TACCTLx, Capture/Compare Control Register

15	14	13	12	11	10	9	8
CMx		CCISx		scs	SCCI	Unused	CAP
rw-(0)	rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	r0	rw-(0)
7	6	5	4	3	2	1	0
OUTMODx			CCIE	CCI	OUT	cov	CCIFG
rw-(0)	rw-(0)	rw-(0)	rw-(0)	r	rw-(0)	rw-(0)	rw-(0)

CCIE	Bit 4	Capture/compare interrupt enable. This bit enables the interrupt request of the corresponding CCIFG flag.					
		0 Interrupt disabled					
		1 Interrupt enabled					
CCI	Bit 3	Capture/compare input. The selected input signal can be read by this bit.					
OUT	Bit 2	Output. For output mode 0, this bit directly controls the state of the output.					
		0 Output low					
		1 Output high					
cov	Bit 1	Capture overflow. This bit indicates a capture overflow occurred. COV must be reset with software.					
		0 No capture overflow occurred					
		1 Capture overflow occurred					
CCIFG	Bit 0	Capture/compare interrupt flag					
		0 No interrupt pending					
		1 Interrupt pending					

Les registres de comparaison

```
14 int main() {
 15
    TACCR0 = 62500; // 62500 * 8 us = 500 ms
     while (1) {  // Boucle infinie
 18
       if (TACCTL0 & CCIFG) {
 19
         TACCTLO &= ~CCIFG;
 20
         TACCR0 += 62500;
 21
         P10UT ^= (1<<0); // Inversion LED
22
```


L'interruptions de dépassement de capacité

```
14 int main() {
16 TACTL |= TAIE; // Interruption de l'overflow 
17 BIS_SR (GIE); // Autorisation générale des i
   _BIS_SR (GIE); // Autorisation générale des interruptions
18 while (1) { // Boucle infinie vide
19 }
20 }
21 // Timer_A1 Interrupt Vector (TAIV) handler
22 #pragma vector=TIMERO_A1_VECTOR
interrupt void Timer A1 (void) {
    switch (TAIV) { // discrimination des sources d'interruption
252627
    case 2: // CCR1 : not used
      break;
    case 4: // CCR2 : not used
28
      break;
29
    case 10: // Overflow
30
      P10UT ^= (1<<0); // Inversion LED
31
      break;
```


L'interruption de comparaison

```
14 int main() {
15
TACCTLO |= CCIE; // Interruption de la comparaison
   _BIS_SR (GIE); // Autorisation générale des interruptions
while (1) { // Boucle infinie vide
20 }
21 #pragma vector=TIMER0 A0 VECTOR
interrupt void Timer A0 (void) {
   CCR0 += 62500;
24 P10UT ^= (1<<0); // Inversion LED
25 }
```


PWM par interruption

```
14 int main() {
15
    TACTL |= TAIE; // Interruption de l'overflow
    TACCTLO |= CCIE; // Interruption de la comparaison
    _BIS_SR (GIE); // Autorisation générale des interruptions
    while (1) {      // Boucle infinie vide
19
20
21 }
22 #pragma vector=TIMERO_A1_VECTOR
23 __interrupt void Timer_A1 (void) {
    switch (TAIV) { // discrimination des sources d'interruption
25
    case 2: // CCR1 : not used
26
     break;
   case 4:
                      // CCR2 : not used
28
    break;
2930
    case 10: // Overflow
    P10UT |= (1<<0); // Activer le signal au début du cycle
3132
      break;
33 }
34 #pragma vector=TIMERO_AO_VECTOR
35 __interrupt void Timer_A0 (void) {
    P10UT &=~(1<<0); // Désactiver le signal au moment donné
37 }
                     // par le registre de comparaison
```

Les timers

- Gestion du temps
- Timers, prédivision, logique de gestion et registres de comparaison
- Mise en œuvre : exemple du MSP430
- Interruptions des timers