

Pushdown Automata (PDA)

- PDA generalize nondeterministic finite automata (NFA) but have an extra component called a stack
- The stack provides additional memory beyond that available in NFA
- The stack allows PDA to recognize some nonregular languages
- PDA are equivalent in power to context-free grammars
 - This gives us two options for proving that a language L is context free:
 - Give a CFG generating L
 - 2) Give a PDA recognizing L

NFA vs PDA schematic

Regular languages

NFA

Context-free languages

PDA

state control:

states and transition function

PDA

- A PDA can write symbols on the stack and read them back later
- Writing a symbol "pushes down" all the other symbols on the stack
- At any time, the symbol on the top of the stack can be read and removed.
 - The remaining symbols then move back up
- Writing a symbol on the stack is referred to as pushing the symbol, and removing a symbol is referred to as popping it.
- A stack is a "Last In First Out" (LIFO) storage device

Revisiting the language B = {0ⁿ1ⁿ | n≥0}

- Recall that a finite automaton is unable to recognize B because it cannot store very large numbers (unbounded information) in its finite memory
- A PDA is able to recognize this language because it can use its stack to store the number of 0s it has seen
- Thus, the unlimited nature of a stack allows the PDA to store numbers of unbounded size

Revisiting the language B = {0ⁿ1ⁿ | n≥0}

Informal description of how PDA for the language B works

- Read symbols from the input
- As each 0 is read, push it onto the stack
- As soon as 1s are seen, pop a 0 off the stack for each 1 read
- If reading the input is finished exactly when the stack becomes empty of 0s, accept
- If
 - stack becomes empty while 1s remain OR
 - the 1s are finished while the stack still contains 0s OR
 - any 0s appear in the input following 1s

then **reject** the input

Formal definition of PDA: the ingredients

- Similar to NFA, except for the stack
- The machine may use different alphabets for its input and stack, so we
 now have an input alphabet Σ and a stack alphabet Γ
- Recall that $\Sigma_{\epsilon} = \Sigma \cup \{\epsilon\}$ and $\Gamma_{\epsilon} = \Gamma \cup \{\epsilon\}$
- Domain of the transition function: $\mathbf{Q} \times \mathbf{\Sigma}_{\varepsilon} \times \mathbf{\Gamma}_{\varepsilon}$
- Range of the transition function: Q × Γ_ε
- Nondeterminism allowed: transition function δ returns a member of $P(Q \times \Gamma_{\epsilon})$

Formal definition of PDA: put together

DEFINITION 2.13

A **pushdown automaton** is a 6-tuple $(Q, \Sigma, \Gamma, \delta, q_0, F)$, where Q, Σ , Γ , and F are all finite sets, and

- 1. Q is the set of states,
- **2.** Σ is the input alphabet,
- 3. Γ is the stack alphabet,
- **4.** $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\varepsilon})$ is the transition function,
- **5.** $q_0 \in Q$ is the start state, and
- **6.** $F \subseteq Q$ is the set of accept states.

How a PDA computes

- A PDA M = (Q, Σ, Γ, δ , q₀, F) computes as follows.
- It accepts input w if w can be written as $w = w_1w_2...w_m$, where each $w_i \in \Sigma_{\epsilon}$ and sequence of states $r_0, r_1, ..., r_m \in Q$ and strings $s_0, s_1, ..., s_m \in \Gamma^*$ exist that satisfy the following three conditions. The strings s_i represent the sequence of stack contents that M has on the accepting branch of the computation.
 - 1. $r_0 = q_0$ and $s_0 = \varepsilon$
 - For i = 0, ..., m-1, we have $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, where $s_i = at$ and $s_{i+1} = bt$ for some $a, b \in \Gamma_s$ and $t \in \Gamma^*$
 - $r_m \in F$

Example 1: Design PDA for the language B = {0ⁿ1ⁿ | n≥0}

A couple of notations before presenting the PDA

1) Testing for empty stack

- The formal definition of a PDA contains no explicit mechanism to allow the PDA to test for an empty stack
- The same effect can be attained by initially putting a special symbol (e.g., \$) on the stack

2) Short-hand notation

- for (state-input-stack) transitions we write $a, b \rightarrow c$ to signify that when the machine is reading an a from the input, it replaces the symbol b on the top of the stack with a c
- any of a, b, and c may be ε
 - $a = \varepsilon$ means machine may make this transition without reading any symbol from the input
 - b = ε means machine may make this transition without reading & popping any symbol from the stack
 - c = ε means machine does not write any symbol on the stack when going along this transition

Example 1: PDA for the language B = {0ⁿ1ⁿ | n≥0}

How would you go about designing a PDA for B?

How many states would you need?

Example 1: PDA for the language B = {0ⁿ1ⁿ | n≥0}

Example 2

Design a PDA that recognizes the language

 $\{ww^{R} \mid w \{0, 1\}^*\}$

Recall that w^R means w written backwards

Note that this language is a palindrome

How would you go about designing the PDA?

Example 2 (palindrome)

Example 3

Design a PDA that recognizes the language

$$D = \{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i = j \text{ or } i = k\}$$

How would you go about designing the PDA?

Example 3 (PDA for language D)

