CONCOURS 2003 POUR LE RECRUTEMENT D'ELEVES NON FONCTIONNAIRES DE L'ECOLE NATIONALE DE LA STATISTIQUE ET DE L'ADMINISTRATION ECONOMIQUE - OPTION MATHEMATIQUES -

COMPOSITION DE MATHEMATIQUES

Durée 4 heures

Si le candidat détecte ce qu'il pense être une erreur d'énoncé, il le signale sur sa copie et poursuit sa composition en indiquant les raisons des initiatives qu'il est amené à prendre.

Notations:

Dans tout le problème, le corps des scalaires ets \mathbb{R} et les espaces vectoriels sont de dimension finie. Si X et Y sont deux espaces vectoriels normés, on note $\mathcal{L}(X,Y)$ l'espace des applications linéaires de X dans Y et on note |||f||| la norme subordonnée (ou norme opérateur ou norme triple) usuelle de toute application continue $f \in \mathcal{L}(X,Y)$. On note $E^* = \mathcal{L}(E,\mathbb{R})$ muni de la norme duale, c'est-à-dire de la norme subordonnée comme précédemment, où \mathbb{R} est muni de la valeur absolue.

Si X et Y sont deux espaces vectoriels, GL(X,Y) désigne comme d'habitude l'ensemble des isomorphismes de X sur Y.

On rappelle qu'une isométrie entre deux espaces vectoriels normés $(X, \|\cdot\|_X)$ et $(Y, \|\cdot\|_Y)$ est une application linéaire f de X dans Y qui conserve la norme : pour tout $x \in X$, $\|f(x)\|_Y = \|x\|_X$. On dit que deux espaces vectoriels normés de dimension finie sont isométriques s'il existe une isométrie de l'un sur l'autre.

Soit β une base d'un espace vectoriel E de dimension $n \ge 1$; on notera $\det_{\beta}(x_1, ..., x_n)$ le déterminant dans la base β de $x_1, ..., x_n \in E$.

Partie I. Espaces l_N^p et leur dual.

Dans cette partie, p et q sont deux réels strictement supérieurs à 1 vérifiant $\frac{1}{p} + \frac{1}{q} = 1$. Soit N un entier naturel supérieur ou égal à 1.

- 1) Soient x et y deux réels positifs. Montrer que $xy \le \frac{1}{n} x^p + \frac{1}{n} y^q$.
- 2) Soient $a_1, \ldots, a_N, b_1, \ldots, b_N$ des réels. Montrer que :

$$\left| \sum_{n=1}^{N} a_n b_n \right| \le \left(\sum_{n=1}^{N} |a_n|^p \right)^{\frac{1}{p}} \cdot \left(\sum_{n=1}^{N} |b_n|^q \right)^{\frac{1}{q}}.$$

On pourra d'abord envisager le cas où $\sum\limits_{n=1}^N |a_n|^p = \sum\limits_{n=1}^N |b_n|^q = 1.$

3) En déduire que pour tous réels a_1, \ldots, a_N , on a

$$\left(\sum_{n=1}^{N} |a_n|^p\right)^{\frac{1}{p}} = \sup \left\{ \left| \sum_{n=1}^{N} a_n b_n \right| ; \sum_{n=1}^{N} |b_n|^q = 1 \right\}.$$

4) Soient $a_1, \ldots, a_N, b_1, \ldots, b_N$ des réels. Montrer que pour tout $p \ge 1$, on a :

$$\left(\sum_{n=1}^{N} |a_n + b_n|^p\right)^{\frac{1}{p}} \le \left(\sum_{n=1}^{N} |a_n|^p\right)^{\frac{1}{p}} + \left(\sum_{n=1}^{N} |b_n|^p\right)^{\frac{1}{p}}$$

Indication : $|a_n + b_n|^p \le |a_n| \cdot |a_n + b_n|^{p-1} + |b_n| \cdot |a_n + b_n|^{p-1}$ et appliquer 2). On pose $\|(a_1, \ldots, a_N)\|_{\infty} = \max_{1 \le n \le N} |a_n|$ et on désigne par l_N^{∞} l'espace \mathbb{R}^N muni de la norme $\|\cdot\|_{\infty}$. Pour $p \ge 1$, on définit l_N^p comme l'espace \mathbb{R}^N muni de la norme $\|(a_1, \ldots, a_N)\|_p = \left(\sum_{n=1}^N |a_n|^p\right)^{\frac{1}{p}}$.

- 5) a) Soit p > 1, justifier que l_N^p est bien un espace vectoriel normé dont le dual $(l_N^p)^*$ est isométrique à l_N^q .

 Indication : on pourra considérer l'application θ de l_N^q dans $(l_N^p)^*$ définie par $\theta(b)(a) = \sum_{n=1}^N a_n b_n$.
 - b) Déterminer le dual de l_N^1 et celui de l_N^{∞} .

Partie II. Hahn-Banach fini-dimensionnel.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé de dimension finie. Soient F un sous-espace vectoriel de E, distinct de E, et f une forme linéaire sur F.

- 1) Soit x_0 un vecteur de E n'appartenant pas à F. On note $\tilde{F} = F \oplus \mathbb{R}x_0$.
 - a) Montrer que

$$\sup_{v \in F} (f(v) - |||f||| \cdot ||v - x_0||) \le \inf_{v \in F} (|||f||| \cdot ||v + x_0|| - f(v)).$$

b) En déduire qu'il existe un réel α tel que pour tout $v \in F$, on ait :

$$f(v) + \alpha \le |||f||| \cdot ||v + x_0||$$
 et $f(v) - \alpha \le |||f||| \cdot ||v - x_0||$.

On pose pour $x = v + tx_0 \in \tilde{F}$, où $v \in F$ et $t \in \mathbb{R} : \tilde{f}(x) = f(v) + \alpha t$.

- c) Montrer que \tilde{f} est une forme linéaire continue sur \tilde{F} dont la restriction à F est f et que $|||f||| = |||\tilde{f}|||$.
- 2) Montrer qu'il existe une forme linéaire continue g sur E, dont la restriction à F est f, telle que |||f||| = |||g|||.
- 3) Soit $x \in E$. Montrer que $||x|| = \sup\{|f(x)|; f \in E^* \text{ avec } |||f||| = 1\}$.

Partie III. Distance de Banach-Mazur. Généralités.

Soient E et F deux espaces vectoriels normés de même dimension finie. ON définit

$$d(E, F) = \inf \{ \ln (|||u||| \cdot |||u^{-1}|||); u \in GL(E, F) \}.$$

1) a) Montrer que $0 \le d(E, F)$.

- b) Montrer que d(E, F) = d(F, E).
- 2) a) Montrer que la borne inférieur est atteinte.
 - b) En déduire que E et F sont isométriques si et seulement si d(E,F)=0.
- 3) Soient E, F et G trois espaces vectoriels normés de même dimension finie. Montrer que

$$d(E,G) \le d(E,F) + f(F,G)$$
.

- 4) a) Soit $u \in \mathcal{L}(E, F)$. On définit $u^*(\zeta) = \zeta \circ u$, pour $\zeta \in F^*$. Montrer que $u^* \in \mathcal{L}(\mathcal{F}^*, \mathcal{E}^*)$ et que $|||u||| = |||u^*|||$.
 - b) En déduire que $d(E, F) = d(E^*, F^*)$.

Partie IV. Distance de Banach-Mazur entre espaces l_n^p .

On note $E = l_n^p$ (qui est \mathbb{R}^n muni de la norme $\|\cdot\|_p$), où $p \ge 1$ et $F = l_n^2$. On note ω_n l'ensemble des applications de $\{1, \ldots, n\}$ dans $\{-1, 1\}$.

1) Soit m un entier supérieur ou égal à 1. Montrer que pour tous $x_1, \ldots, x_m \in F$, on a :

$$2^{-m} \sum_{\varphi \in \omega_n} \left\| \sum_{i=1}^m \varphi(i) x_i \right\|_2^2 = \sum_{i=1}^m \|x_i\|_2^2.$$

Soit $u: l_n^p \to l_n^2$ un isomorphisme. On note (e_1, \ldots, e_n) la base canonique de \mathbb{R}^n et

$$A(u) = \sum_{\varphi \in \omega_n} \left\| \sum_{i=1}^n \varphi(i) u(e_i) \right\|_2^2$$

- 2) a) Montrer que $A(u) \le n2^n |||u|||^2$.
 - b) Montrer que $A(u) \ge 2^n n^{2/p} |||u^{-1}|||^{-2}$
- 3) Montrer que $d(l_n^p, l_n^2) \ge \left| \frac{1}{2} \frac{1}{p} \right| \ln(n)$.
- 4) a) Montrer que pour tout $p' \ge p \ge 1$ et tout $x \in \mathbb{R}^n$, on a : $||x||_{p'} \le ||x||_p$.
 - b) Montrer que $d(l_n^p, l_n^2) = \left| \frac{1}{2} \frac{1}{p} \right| \ln(n)$. Indication : on pourra considérer l'identité sur \mathbb{R}^n .
 - c) Que se passe-t-il pour $p = \infty$?

Partie V. Distance de Banach-Mazur à l_N^1 .

Soit n un entier supérieur ou égal à 1 et $(E, \|\cdot\|)$ un espace vectoriel normé de dimension n. On note S_E la sphère unité de E.

1) Montrer qu'il existe n vecteurs b_1, \ldots, b_n de E de norme 1 et n formes linéaires $\varphi_1, \ldots, \varphi_n$ de norme (opérateur) égale à 1 telles que pour tous $1 \le i, j \le n$, on ait $\varphi_i(b_j) = 0$ si i = j et 0 sinon.

Indication : on pourra considérer l'application : $\Lambda: S_E \times \ldots \times S_E$ à valeurs dans \mathbb{R} qui à un n-uplet de vecteurs $(x_1, ;, x_n)$ associe leur déterminant dans une base β ; ainsi que l'application, à i fixé et quand $\Lambda(x_1, \ldots, x_n)$ est non nul, qui à $x \in E$ associe

$$\frac{\det_{\beta}(x_1,\ldots,x_{i-1},x,x_{i+1},\ldots,x_n)}{\det_{\beta}(x_1,\ldots,x_n)}.$$

- 2) On pose pour tout $x \in E : \nu(x) = \sum_{i=1}^{n} |\varphi_i(x)|$. Montrer que ν est une norme sur E et qu'en notant E_1 l'espace E muni de cette norme, E_1 et l_n^1 sont isométriques.
- 3) Montrer que $d(E, l_n^1) \le \ln(n)$.

Partie VI. Compact de Minkowski.

Soit n un entier supérieur ou égal à 1, on note M_n l'ensemble des normes sur \mathbb{R}^n . On considère l'ensemble \mathcal{E}_n des espaces vectoriels normés $(\mathbb{R}^n, \|\cdot\|)$, où $\|\cdot\| \in M_n$.

Pour X et Y dans \mathcal{E}_n , on définit la relation $X\mathcal{R}Y$ si X et Y sont isométriques.

- 1) Montrer que \mathcal{R} est une relation d'équivalence sur \mathcal{E}_n . Justifier la notation $\hat{d}(\hat{X}, \hat{Y}) = d(X, Y)$ (où \hat{X} , resp. \hat{Y} , est la classe de X, resp. de Y) est cohérente.
 - On note $\hat{\mathcal{E}}_n$ l'ensemble des classes d'équivalence pour cette relation d'équivalence. On note B_1 la boule unité (fermée) de l'espace l_n^1 et $C(B_1)$ est l'espace des fonctions continues sur B_1 , à valeurs réelles, muni de la norme $N_{\infty}(f) = \sup\{|f(x)|; x \in B_1\}$. On note Φ_n l'ensemble des fonctions continues sur B_1 qui sont la restriction à B_1 d'une norme $\|\cdot\|$ sur \mathbb{R}^n vérifiant pour tout $x \in \mathbb{R}^n$, $\|x\| \leq \|x\|_1$ et $\|x\|_1 \leq n \|x\|$.
- 2) a) Montrer que Φ_n est une partie fermée bornée de $C(B_1)$.
 - b) Montrer que pour tout $\varepsilon > 0$, il existe $\delta > 0$ tel que pour tout $x, y \in B_1$:

$$||x - y||_1 \le \delta \Rightarrow \sup \{|f(x) - f(y)|; f \in \Phi_n\} \le \varepsilon.$$

On admet dans la suite que ces deux résultats impliquent que Φ_n est une partie compacte de $C(B_1)$ (Th. d'Ascoli).

- 3) On considère l'application τ de Φ_n dans $\hat{\mathcal{E}}_n$ qui à f associe la classe de $(\mathbb{R}^n, \|\cdot\|)$, où $\|\cdot\|$ est la norme associée à f par définition de Φ_n .
 - a) Montrer que τ est bien définie et surjectie.
 - b) Montrer que si $(f_j)_{j\in\mathbb{N}}$ converge vers f dans Φ_n alors $\lim_{j\to\infty} \hat{d}(\tau(f_j),\tau(f)) = 0$.
- 4) En déduire que $(\hat{\mathcal{E}}_n, \hat{d})$ est un espace métrique compact.