Guia completa del MAX232 (Transceptor RS-232 de doble canal)

Documento estructurado sin la seccion 'Diagrama (Mermaid)'

Objetivo de la tarea

- Revisar el datasheet del MAX232 y documentar: esquema electrico, funcionamiento, variantes y prestaciones tipicas.
- Indicar si se sigue usando hoy, aplicaciones, ventajas / desventajas y versiones relacionadas.
- Entregar una guia informativa lista para GitHub en formato PDF (sin el diagrama Mermaid).

Resumen rapido

- Transceptor RS-232 de doble canal (2 transmisores y 2 receptores).
- Alimentacion: +5 V; genera aprox. +8.5 V y -8.5 V mediante charge pump con 4 capacitores externos.
- Velocidad: hasta 120 kbit/s (MAX232); variantes E/A/3232 hasta 200 a 250 kbit/s.
- Compatibilidad: TIA/EIA-232-F e ITU V.28; entradas RS-232 toleran +/-30 V.
- Uso actual: industria, consolas de red, instrumentacion, retro-computacion y mantenimiento.

1. Que es el MAX232

El MAX232 es un circuito integrado que adapta niveles TTL/CMOS (5 V) y RS-232 (aprox. +/-6 a +/-10 V) en ambos sentidos. Usa una bomba de carga para duplicar e invertir una unica fuente de +5 V, integrando dos transmisores (TTL a RS-232) y dos receptores (RS-232 a TTL).

2. Esquema electrico tipico

El circuito tipico emplea cuatro capacitores externos para la bomba de carga (C1 a C4) y un capacitor de bypass en VCC. Para MAX232, los capacitores recomendados para C1 a C4 son 1 uF y la tasa tipica alcanza hasta 120 kbps.

2.1 Conexiones esenciales y valores

- C1 entre C1+ (pin 1) y C1- (pin 3): capacitor 'volador' para doblado de tension.
- C2 entre C2+ (pin 4) y C2- (pin 5): capacitor 'volador' para inversion de tension.
- C3 entre V+ (VS+) pin 2 y GND; C4 entre V- (VS-) pin 6 y GND.
- C_BYPASS entre VCC (pin 16) y GND (pin 15).
- Valores tipicos: 1 uF en C1 a C4 (MAX232). En MAX232A/MAX202 y MAX3232 se permiten 0.1 uF.

3. Funcionamiento interno

- La bomba de carga duplica e invierte +5 V para generar V+ y V-.
- Los drivers convierten niveles TTL a RS-232 e invierten la logica usando V+ y V-.
- Los receptores convierten RS-232 a TTL, con umbral aproximado de 1.3 V e histeresis de 0.5 V para robustez ante ruido.
- En RS-232, la logica es invertida: 'mark' (1) tiende a tension negativa y 'space' (0) a positiva.

4. Pinout (16 pines)

#	Nombre	Tipo	Descripcion breve		
1	C1+	-	Terminal positivo del capacitor C1		
2	VS+ / V+	0	Salida positiva de la bomba (almacenamiento)		
3	C1-	-	Terminal negativo del capacitor C1		
4	C2+	-	Terminal positivo del capacitor C2		
5	C2-	-	Terminal negativo del capacitor C2		
6	VS- / V-	0	Salida negativa de la bomba (almacenamiento)		
7	T2OUT	0	Salida RS-232 hacia conector		
8	R2IN	I	Entrada RS-232 desde conector		
9	R2OUT	0	Salida TTL/CMOS hacia UART		
10	T2IN	I	Entrada TTL/CMOS desde UART		
11	T1IN	I	Entrada TTL/CMOS desde UART		
12	R1OUT	0	Salida TTL/CMOS hacia UART		
13	R1IN	I	Entrada RS-232 desde conector		
14	T1OUT	0	Salida RS-232 hacia conector		
15	GND	-	Tierra		
16	VCC	-	+5 V		

5. Prestaciones tipicas

- Normas: TIA/EIA-232-F e ITU V.28.
- VCC: +5 V (4.5 a 5.5 V).
- Tasa de datos: hasta 120 kbit/s (MAX232). Variantes E/A/3232 hasta 200 a 250 kbit/s.
- Consumo: alrededor de 8 mA (MAX232).
- Entradas RS-232 toleran +/-30 V.
- ESD: aprox. 2 kV HBM (MAX232) y hasta +/-15 kV HBM en versiones E.

6. Variantes y versiones relacionadas

Dispositivo	VCC	Caps bomba	Tasa maxima	ESD (HBM)	Comentarios
MAX232	5 V	1 uF	120 kbit/s	~ 2 kV	Base, 2TX+2RX.
MAX232A / MAX202	5 V	0.1 uF	~ 200 kbit/s	-	Menor capacitor; mayor bitrate.
MAX232E	5 V	1 uF	hasta 250 kbit/s	+/-15 kV	Proteccion ESD elevada.
MAX3232	3.0 a 5.5 V	0.1 uF	hasta 250 kbit/s	+/-15 kV	Para MCUs a 3.3 V; pin compatible

7. Uso actual y aplicaciones

- Consolas de servicio y configuracion (routers/switches, equipos de telecom).
- Instrumentacion y laboratorio; PLC/CNC legados; HMI antiguas.
- Sistemas embebidos industriales, POS y retro-computacion.
- Para MCUs a 3.3 V se prefiere MAX3232 por compatibilidad de niveles.

8. Ventajas y desventajas

Ventajas

- Una sola fuente +5 V (o 3.3 a 5.5 V en MAX3232) gracias a la bomba de carga.
- Robustez: entradas +/-30 V y opciones con alta proteccion ESD.
- Simplicidad y bajo costo: pocos pasivos (4 capacitores).

Desventajas

- Velocidad moderada frente a interfaces modernas (120 a 250 kbps).
- La bomba de carga puede introducir rizado/EMI si se dimensiona o ruttea mal.
- Conectores DB9/DB25 voluminosos; RS-485/422 es preferible para largas distancias.

9. Buenas practicas de diseno

- Colocar C1 a C4 muy cerca de sus pines y con retornos cortos a GND.
- Bypass en VCC: 0.1 uF mas un capacitor de granel (1 a 10 uF) proximo al IC.
- Valores recomendados: MAX232 = 1 uF; MAX232A/MAX202 = 0.1 uF; MAX3232 = 0.1 uF.
- Usar ceramicos X7R; verificar tolerancias y ruteo para minimizar rizado/EMI.

10. Ejemplo de uso rapido

- 1 Conectar VCC=5 V al pin 16 y GND al pin 15.
- 2 Colocar C1 a C4 = 1 uF entre (1-3), (4-5), (2-GND) y (6-GND). Bypass 0.1 uF en VCC-GND.

- 3 UART a RS-232: T1IN (11) hacia UART TX; T1OUT (14) hacia DB9 TX.
- 4 RS-232 a UART: R1IN (13) desde DB9 RX; R1OUT (12) hacia UART RX.
- 5 Configurar UART (por ejemplo 9600 8N1) y probar loopback uniendo T1OUT y R1IN.

11. Referencias

- Texas Instruments MAX232 (datasheet): https://www.ti.com/lit/gpn/MAX232
- Texas Instruments MAX232E (datasheet): https://www.ti.com/lit/gpn/MAX232E
- Texas Instruments MAX3232 (datasheet): https://www.ti.com/lit/gpn/MAX3232
- Analog Devices (Maxim) MAX232: https://www.analog.com/en/products/max232.html
- Analog Devices (Maxim) MAX3232 (familia): https://www.analog.com/media/en/technical-documentation/data-sheets/max3222-max3241.pdf

Este PDF omite deliberadamente la seccion 'Diagrama (Mermaid)'.