Schemi computazionalmente sicuri

Paolo D'Arco pdarco@unisa.it

Università di Salerno

Elementi di Crittografia

Contenuti

1 Schemi di cifratura computazionalmente sicuri

2 Indistinguibilità

Sicurezza Semantica

Schemi di cifratura computazionalmente sicuri

Definizione 3.7. Uno schema di cifratura a chiave privata è una tripla $\Pi = (Gen, Enc, Dec)$ di algoritmi PPT tale che

- **1** $k \leftarrow Gen(1^n)$, algoritmo probabilistico di generazione della chiave k
 - dove la chiave $k \in K$ è tale che $|k| \ge n$
- $c \leftarrow Enc_k(m)$, algoritmo probabilistico di cifratura
 - dove il messaggio $m \in \{0,1\}^*$, la chiave $k \in K$ e il cifrato $c \in \{0,1\}^*$
- - dove il cifrato $c \in \{0,1\}^*$, la chiave $k \in K$ e il messaggio $m \in \{0,1\}^*$
 - Dec(c) restituisce \perp in caso di errore

Correttezza. Per ogni n, per ogni k restituito da $Gen(1^n)$ e per ogni $m \in \{0,1\}^*$, risulta

$$Dec_k(Enc_k(m)) = m$$

Schemi di cifratura computazionalmente sicuri

Note e osservazioni:

- se lo spazio dei messaggi è $\{0,1\}^{\ell(n)}$, allora Π è uno schema di cifratura a chiave privata a lunghezza fissa, per messaggi di lunghezza $\ell(n)$.
- solitamente $Gen(1^n)$ restituisce stringhe di n bit scelte uniformemente a caso
- la definizione è senza stato (occasionalmente considereremo schemi con stato)

Schemi di cifratura computazionalmente sicuri

Definizione di sicurezza di base:

- Modello delle minacce. Adv è PPT. Osserva un singolo cifrato ottenuto usando una certa chiave. Può applicare qualsiasi strategia d'attacco.
- ② Garanzie di sicurezza. Adv non deve essere in grado di acquisire alcuna informazione aggiuntiva sul messaggio in chiaro m a partire dal cifrato c.

Sicurezza semantica ed indistinguibilità

La nozione di sicurezza semantica formalizza ciò.

 \downarrow

È difficile da maneggiare

 \Downarrow

Esiste una definizione equivalente più semplice

 \Downarrow

È la nozione di *Indistinguibilità*

Nel contesto della segretezza perfetta abbiamo considerato l'esperimento $PrivK_{A\Pi}^{eav}$

$PrivK_{A,\Pi}^{eav}$

- ② il challenger calcola $c \leftarrow Enc_k(m_b)$, dove $b \leftarrow \{0,1\}$ e $k \leftarrow Gen(1^n)$
- 3 A riceve c e dà in output $b' \in \{0, 1\}$
- Se b = b', l'output dell'esperimento è 1 (A vince); altrimenti, 0.

Lo schema Π è sicuro se A vince con probabilità 1/2, i.e., non c'è strategia migliore per indovinare che scegliendo a caso

Nel caso computazionale:

- A è PPT
- A può vincere con probabilità trascurabilmente migliore di 1/2
- L'esperimento dipende da n, il parametro di sicurezza

$PrivK_{A,\Pi}^{eav}(n)$

- **1** A ottiene 1^n e dà in output m_0, m_1 tali che $|m_0| = |m_1|$
- ② il challenger calcola $c \leftarrow Enc_k(m_b)$, dove $b \leftarrow \{0,1\}$ e $k \leftarrow Gen(1^n)$
- **3** $A(1^n)$ riceve c e dà in output $b' \in \{0,1\}$
- Se b = b', l'output dell'esperimento è 1 ($A(1^n)$ vince); altrimenti, 0.

Definizione 3.8. Uno schema di cifratura a chiave privata $\Pi = (Gen, Enc, Dec)$ ha *cifrature indistinguibili* in presenza di un avversario che ascolta (eavesdropper) o è EAV-sicuro se, per ogni Adv A PPT, esiste una funzione trascurabile *negl* tale che:

$$Pr[PrivK_{A,\Pi}^{eav}(n)=1] \leq \frac{1}{2} + negl(n),$$

dove la probabilità è calcolata su

- randomness usata da A
- randomness usata nell'esperimento
 - scelta della chiave
 - scelta del bit b
 - random bit usati da $Enc_k(\cdot)$

Nota: qualsiasi schema di cifratura *perfettamente segreto* ha cifrature indistinguibili in presenza di un eavesdropper.

Faremo vedere che esistono schemi con "chiavi più corte"

Esiste una formulazione equivalente: l'idea di fondo è che ogni Adv PPT si $comporta allo stesso modo sia che veda una cifratura di <math>m_0$ che di m_1

Definendo $PrivK_{A,\Pi}^{eav}(n,b)$ con $b\in\{0,1\}$ e l'output di A con $out_A(PrivK_{A,\Pi}^{eav}(n,b))$, diamo la seguente

Definizione 3.9. $\Pi = (Gen, Enc, Dec)$ è EAV-sicuro se, per ogni Adv A PPT, esiste una funzione trascurabile *negl* tale che, per tutti gli n si ha:

$$|\textit{Pr}[\textit{out}_{\textit{A}}(\textit{PrivK}^{\textit{eav}}_{\textit{A},\Pi}(\textit{n},0)) = 1] - \textit{Pr}[\textit{out}_{\textit{A}}(\textit{PrivK}^{\textit{eav}}_{\textit{A},\Pi}(\textit{n},1)) = 1]| \leq \textit{negl}(\textit{n}).$$

Nota: nella definizione *non* richiediamo ad uno schema di nascondere la lunghezza del messaggio da cifrare. Nei casi in cui questa informazione è importante occorre porre rimedio (e.g., estendendo i messaggi ad una lunghezza fissa)

Indistinguibilità e intuizione

Il concetto di indistinguibilità ricorda il concetto di travestimento. E le proprietà che desideriamo sono all'incirca le seguenti:

- Due persone travestite sono indistinguibili: una modella bellissima e l'uomo più brutto del mondo, travestiti, non possono essere distinti
- Ma le due persone devono essere della stessa altezza: altrimenti è immediato distinguere un gigante da un nano

Dovrebbe essere impraticabile per un Adv acquisire *alcuna informazione* aggiuntiva sul messaggio in chiaro dal cifrato.

Cominciamo con due nozioni più deboli:

- il cifrato non rivela alcuna informazione sui singoli bit del messaggio in chiaro
- 2 il cifrato non aiuta un Adv PPT nel *calcolo* di qualsiasi funzione del messaggio in chiaro

Proveremo che la nozione di indistinguibilità implica 1. e 2.

Notazione: solitamente Gen genera chiavi distribuite uniformemente a caso. Quando assumeremo ciò, useremo per semplicità $\Pi = (Enc, Dec)$

Teorema 3.10. Sia $\Pi = (Enc, Dec)$ uno schema di cifratura a chiave privata per messaggi di lunghezza ℓ EAV-sicuro. Allora, per ogni Adv A PPT ed ogni $i \in \{1, \dots, \ell\}$, esiste una funzione trascurabile negl tale che:

$$Pr[A(1^n, Enc_k(m)) = m^i] \leq \frac{1}{2} + negl(n),$$

dove la probabilità è calcolata su

- ullet scelta uniforme di $m \in \{0,1\}^\ell$
- scelta uniforme di $k \in \{0,1\}^n$
- random bit usati da A
- random bit usati da $Enc_k(\cdot)$

Dim. Idea: se fosse possibile, con probabilità non trascurabile, calcolare l'i-esimo bit m^i

sarebbe anche possibile, con probabilità non trascurabile, distinguere m_0 da m_1 che differiscono nell'i-esimo bit.

Useremo una dimostrazione per riduzione (... ci torneremo su a breve).

Fissiamo un Adv arbitrario A PPT ed $i \in \{1, \dots, \ell\}$.

Vogliamo usare A (e la sua capacità di calcolare m^i con prob. non trascurabile) per costruire un Adv A' che usa A per distinguere con prob. non trascurabile m_0 da m_1 che differiscono nell'i-esimo bit.

Siano:

 $I_0\subset\{0,1\}^\ell$ insieme di stringhe con *i*-esimo bit uguale a 0 $I_1\subset\{0,1\}^\ell \text{ insieme di stringhe con }i\text{-esimo bit uguale a 1}$ Essendo $|I_0|=|I_1|=2^{\ell-1}$ ed m scelto in modo uniforme, risulta

$$\begin{aligned} Pr[A(1^n, Enc_k(m)) &= m^i] &= Pr[m \in I_0] \cdot Pr[A(1^n, Enc_k(m)) = 0 | m \in I_0] \\ &+ Pr[m \in I_1] \cdot Pr[A(1^n, Enc_k(m)) = 1 | m \in I_1] \end{aligned}$$

$$= \frac{1}{2} \cdot Pr[A(1^n, Enc_k(m_0)) = 0] + \frac{1}{2} \cdot Pr[A(1^n, Enc_k(m_1)) = 1]$$

Costruiamo A' come segue:

Adv A'

- **①** sceglie uniformemente $m_0 \in I_0$ e $m_1 \in I_1$ e li passa al challenger
- ② dopo aver ricevuto c dal challenger, invoca $A(1^n, c)$
- **3** Se A dà in output 0, allora dà in output b' = 0; altrimenti, b' = 1.

A' gioca nell'esperimento $PrivK_{A',\Pi}^{eav}(n)$ e usa A, che calcola m^i , come subroutine.

A' è PPT poichè A è PPT e fa poco più che invocare A.

Dalla definizione di $PrivK_{A',\Pi}^{eav}(n)$, A' ha successo se e solo se A restituisce b dopo aver ricevuto $Enc_k(m_b)$. Pertanto, risulta:

$$Pr[PrivK^{eav}_{A',\Pi}(n)=1] = Pr[A(1^n, Enc_k(m_b))=b]$$
 (dato che b viene scelto uniform. nell'esperimento)

$$= \frac{1}{2} \cdot Pr[A(1^n, Enc_k(m_0)) = 0] + \frac{1}{2} \cdot Pr[A(1^n, Enc_k(m_1)) = 1]$$

= $Pr[A(1^n, Enc_k(m)) = m^i]$

Poichè abbiamo assunto che $\Pi = (Enc, Dec)$ è EAV-sicuro, esiste una funzione trascurabile negl tale che

$$Pr[PrivK^{eav}_{A',\Pi}(n) = 1] \le 1/2 + negl(n)$$
 \Downarrow
 $Pr[A(1^n, Enc_k(m)) = m^i] \le 1/2 + negl(n).$

Circa il punto 2., mostreremo che:

un Adv A che calcola f(m) con una certa probabilità quando riceve $Enc_k(m)$

un Adv A' che calcola f(m) con la stessa probabilità, senza conoscere $Enc_k(m)$.

Teorema 3.11. Sia $\Pi=(Enc,Dec)$ uno schema di cifratura a chiave privata per messaggi di lunghezza ℓ EAV-sicuro. Allora, per ogni Adv A PPT, esiste un Adv A' PPT tale che, per ogni distr. di prob. $\mathcal D$ su $\{0,1\}^\ell$ ed ogni $f:\{0,1\}^\ell \to \{0,1\}$ esiste una funzione trascurabile negl tale che:

$$|Pr[A(1^n, Enc_k(m)) = f(m)] - Pr[A'(1^n) = f(m)]| \le negl(n),$$

dove la prima probabilità è calcolata su

- ullet scelta di m in accordo a $\mathcal D$ e uniforme di $k\in\{0,1\}^n$
- random bit usati da A
- random bit usati da $Enc_k(\cdot)$

e la seconda su

ullet scelta di m in accordo a ${\mathcal D}$ e uniforme dei random bit usati da A'

Dim. (Sketch) Poichè Π è EAV-sicuro, per ogni distribuzione \mathcal{D} , nessun Adv PPT può distinguere tra $Enc_k(m)$ ed $Enc_k(1^\ell)$

Consideriamo la probabilità con cui A calcola f(m) data $Enc_k(m)$.

A dovrebbe calcolare f(m) data $Enc_k(1^{\ell})$ con \approx la stessa probabilità.

Altrimenti A potrebbe essere usato per distinguere tra $Enc_k(m)$ ed $Enc_k(1^{\ell})$.

Distinguisher

- **9** sceglie m in accordo a $\mathcal D$ e passa al challenger $m_0=m$ e $m_1=1^\ell$
- ② dopo aver ricevuto c dal challenger, invoca $A(1^n, c)$
- **3** Se A dà in output f(m), allora dà in output b' = 0; altrimenti, b' = 1

Se A dà in output f(m) con una probabilità significativamente migliore nel caso in cui riceve $Enc_k(m)$ rispetto a quando riceve $Enc_k(1^\ell)$, allora l'algoritmo Distinguisher viola la Definizione 3.8.

Detto ciò, possiamo costruire A' come segue

Adv $A'(1^n)$

- **①** sceglie uniformemente $k \in \{0,1\}^n$
- 2 invoca $A(1^n, Enc_k(1^\ell))$
- 3 dà in output qualsiasi cosa A dà in output

A dà in output f(m) quando viene eseguito come subroutine di A' con \approx la stessa probabilità di quando riceve $Enc_k(m)$. Pertanto A' ha i requisiti richiesti dal teorema.

La garanzia offerta dalla sicurezza semantica è più forte della garanzia offerta dal Teorema 3.11

- la lunghezza dei messaggi dipende dal parametro di sicurezza n
- ullet la distribuzione di probabilità su M è arbitraria
 - unica condizione: sia efficientemente campionabile (samplable). Cioè, esiste $Samp(1^n)$, algoritmo PPT, che dà in output messaggi in accordo alla distribuzione di probabilità definita su M
- inoltre, la definizione tiene anche conto di eventuali informazioni aggiuntive h(m) sul messaggio m che l'avversario può ottenere attraverso altri mezzi

Definizione 3.12. Uno schema di cifratura a chiave privata $\Pi = (Gen, Enc, Dec)$ è semanticamente sicuro in presenza di un eavesdropper se, per ogni Adv A PPT, esiste un Adv A' PPT tale che, per qualsiasi $Samp(1^n)$ PPT e per ogni coppia di funzioni f ed h, calcolabili in tempo polinomiale, esiste una funzione trascurabile negl per cui si ha:

$$|Pr[A(1^n, Enc_k(m), h(m)) = f(m)] - Pr[A'(1^n, |m|, h(m)) = f(m)]| \le negl(n),$$

dove la prima probabilità è calcolata su

- scelta uniforme di $k \in \{0,1\}^n$
- random bit usati da $Samp(1^n)$
- random bit usati da A
- random bit usati da $Enc_k(\cdot)$

e la seconda su

• random bit usati da $Samp(1^n)$ e random bit usati da A'

Teorema 3.13. $\Pi = (Enc, Dec)$ ha cifrature indistinguibili in presenza di un eavesdropper se e solo se è semanticamente sicuro in presenza di un eavesdropper.

Possiamo usare la definizione più semplice di indistinguibilità come definizione di lavoro!