WO 2005/008225 PCT/KR2004/001735

What is claimed is:

1. A device for counting fine particles comprising,

a transparent lower substrate having fine lattice patterns for counting the fine

5 particles formed on an upper surface thereof; and a transparent upper substrate stacked
on the lower substrate, wherein the upper substrate comprises a fill chamber having a
predetermined height from a bottom surface of the upper substrate and forming a
space for filling a sample including the fine particles on the fine lattice patterns and an
injecting hole for the sample communicated with the fill chamber.

10

- 2. The device according to claim 1, wherein the upper substrate further comprises a discharge hole communicated with the fill chamber for discharging the sample or an air bubble from the fill chamber.
- 3. The device according to claim 1, wherein the upper and lower substrates are bonded and thus form an integrated body.
- 4. The device according to claim 3, wherein the upper and lower substrates are bonded by a heating, an adhesive, a coating, a pressurization, a vibration or an ultrasonic bonding.
 - 5. The device according to claim 1, wherein the fill chamber is formed with a height of 50~200 μm .

WO 2005/008225 PCT/KR2004/001735

6. The device according to claim 1, wherein an area of the fill chamber in the upper and lower substrates is transparent and the fine lattice patterns are formed in a predetermined place of the area in which the fill chamber is formed on the lower substrate.

5

15

- 7. The device according to claim 1, wherein an indicative member is formed on the upper substrate for indicating a position of the fine lattice patterns.
- 8. The device according to claim 1, wherein the upper or lower substrate is 10 made of plastics.
 - 9. The device according to claim 1, wherein the fine particles are blood cells or bacteria.
 - 10. A manufacturing method of a device for counting fine particles comprising steps of;

forming fine lattice patterns on a predetermined place of a lower substrate;

forming a fill chamber having a predetermined height for filling a sample including the fine particles, an injecting hole and a discharge hole communicated with the fill chamber in an upper substrate; and

bonding the upper and lower substrates.