3 Vertiefung der Theorie

Weiterhin sei $\emptyset \neq X \in \mathcal{B}_d$.

3.1 Nullmengen

Problem: $\mathcal{L}^1(X)$ ist Vektorraum, aber $||f||_1 = \int |f| dx$ ist keine Norm auf $\mathcal{L}^1(X)$, da $\int \mathbf{1}_N dx = 0$ für alle $N \in \mathcal{B}_d$ mit $\lambda(N) = 0$, z.B. $N = \mathbb{Q}, d = 1$.

Definition 3.1. Eine Menge $N \in \mathcal{B}_d$ mit $\lambda_d(N) = 0$ heißt (*d*-dimensionale, Borel-) Nullmenge (NM).

- **Bemerkung 3.2.** a) Wir haben bereits die eindimensionalen Nullmengen \mathbb{Q} und die Cantormenge C, sowie Nullmengen in höheren Dimensionen wie Hyperebenen und Graphen stetiger Funktionen gesehen.
 - b) Wenn $M, N \in \mathcal{B}_d$, $M \subset N$ und N eine Nullmenge ist, dann ist auch M eine Nullmenge.

Wenn $N_j \in \mathcal{B}_d$ Nullmengen sind, dann ist $N = \bigcup_{j \in \mathbb{N}} N_j$ eine Nullmenge.

Beweis. Dass $N=\bigcup_{j\in\mathbb{N}}N_j\in\mathcal{B}_d$ liegt, ist klar. Nach Satz 1.14 gilt:

$$0 \le \lambda_d(N) \le \sum_{j=1}^{\infty} \lambda_d(N_j) = \sum_{j=1}^{\infty} 0 = 0 \Rightarrow \lambda_d(N) = 0$$

Damit sind abzählbare Mengen Nullmengen. Ferner gilt:

$$\mathbb{Q} \times \mathbb{R}^{d-1} = \bigcup_{n=1}^{\infty} \{q_n\} \times \mathbb{R}^{d-1}$$

ist eine d-dimensionale Nullmenge, wobei $\mathbb{Q} = \{q_1, q_2, \dots\}$.

Beachte: $\mathbb{R} := \bigcup_{x \in \mathbb{R}} \{x\}$ ist keine eindimensionale Nullmenge (Vereinigung nicht abzählbar).

c) Sei $A \in \mathcal{B}_d$. Nach Thm 1.25 gilt, dass A genau dann eine Nullmenge ist, wenn offene Intervalle I_j $(j \in \mathbb{N})$ existieren mit:

$$A \subset \bigcup_{j=1}^{\infty} I_j, \ \sum_{j=1}^{\infty} \lambda(I_j) \le \epsilon.$$

d) Sei $N \in \mathcal{B}_d$ eine Borel-Nullmenge. Eine Teilmenge $M \subset N$ heißt dann Lebesque-Nullmenge. Es gibt ein $C \subset \mathbb{R}$ (Cantormenge) mit $C \notin \mathcal{B}_1$. \Rightarrow Dieses M ist keine Borel-Nullmenge (AE 3. kor IX 5.30) Nach Aufgabe 3.1 ist

$$\mathcal{L}_d = \{ A \subset \mathbb{R}^d : A = B \cup N, B \in \mathcal{B}_d, N \text{ ist Lebesgue-Nullmenge} \}$$

eine σ -Algebra und $\tilde{\lambda}_d(A) = \lambda_d(B)$ (wobei $A = B \cup N$ für $B \in \mathcal{B}_d$ und eine Nullmenge N) ist Maß auf \mathcal{L}_d . Ferner stimmt das Integral bezüglich $\tilde{\lambda}_d$ für Borelfunktionen f mit unserem Integral dem bezüglich λ_d überein.

Es gibt in (1.9) $\mathcal{L}_d = \mathcal{A}(\lambda_d)$ (AE 3: Theorem IX. 5. 7+8)

Ferner: Sei $f:[a,b]\to\mathbb{R}$ Riemannintegrierbar. Man kann zeigen, dass f außerhalb einer Lebesgueschen Nullmenge stetig ist. Da f beschränkt ist, ist es folglich integrierbar bezüglich dem fortgesetzen Lebesguemaß $\tilde{\lambda}_d$ und Riemannintegral und Lebesgueintegral stimmen überein (Elstrodt, Satz IV 6.1).

Definition 3.3. Eine Eigenschaft E besteht für fast alle (f.a.) $x \in X$ oder fast überall $(f.\ddot{u}.)$, wenn es eine Nullmenge N gibt, sodass E für alle $x \in X \setminus N$ gilt.

Beispiel 3.4. Sei $f: X \to \overline{\mathbb{R}}$ integrierbar. Nach Korollar 2.24 ist die Menge $N := \{|f| = \infty\}$ eine Nullmenge, also: $f(x) \in \mathbb{R}$ für alle $x \in X \setminus N$, also ist f fast überall endlich.

- **Lemma 3.5.** Sei $f: X \to \overline{\mathbb{R}}$ integrierbar und $g: X \to \overline{\mathbb{R}}$ messbar und sei f = g $(f.\ddot{u}.)$. Dann ist g integrierbar und $\int_X f dx = \int_X g dx$. Insbesondere kann man f durch $\tilde{f} := \mathbf{1}_{\{|f| < \infty\}} \cdot f$ ersetzen (vgl. Beispiel 3.4) und es gilt $\int_X f dx = \int_X \tilde{f} dx$).
 - Wenn $f, g: X \to [0, \infty]$ messbar und f = g (f.ü.), dann gilt auch $\int_X f dx = \int_X g dx$.

Beweis. Nach Voraussetzung: \exists NM N mit $f(x) = g(x) \forall x \in X \backslash N$. Da g messbar ist, existiert:

$$\int_{X} |g| dx = \int_{X} \mathbf{1}_{N} |g| dx + \int_{X} \mathbf{1}_{X \setminus N} \underbrace{|g|}_{=|f|} dx = \int_{X} \mathbf{1}_{N} |f| dx \stackrel{\text{Lem 2.18}}{=} 0$$

$$\stackrel{\text{Bem 2.26}}{=} \int_{X} |f| dx < \infty$$

Nach Voraussetzung folgt mit Satz 2.23, dass g integrierbar ist. Ferner liefert Satz 2.25:

$$0 \le \left| \int_{N} g(x) dx \right| \le \int_{N} |g(x)| dx \stackrel{\text{Lem 2.18}}{=} 0$$

$$\Rightarrow \int_{X} g dx \stackrel{\text{Bem2.26}}{=} \underbrace{\int_{N} g dx}_{=0 = \int_{N} f dx} + \int_{X \setminus N} g dx = \int_{X} f dx$$

Zweite Behauptung folgt genauso.

Definition 3.6. Funktionen $f_n: X \to \overline{\mathbb{R}}$ messbar $(\forall n \in \mathbb{N})$ sind fast überall konvergent, wenn $f_n(x)$ für $n \to \infty$ und fast alle $x \in \mathbb{R}$ konvergiert. Wenn $f_n(x) \xrightarrow{n \to \infty} f(x)$ für fast alle $x \in \overline{\mathbb{R}}$, dann konvergiert f_n fast überall gegen f.

Lemma 3.7. Seien $f_n: X \to \overline{\mathbb{R}}$ messbar für alle $n \in \mathbb{N}$ und fast überall konvergent. Dann existiert eine messbare Funktion $f: X \to \overline{\mathbb{R}}$, sodass $f_n \xrightarrow{n \to \infty} f$ $(f.\ddot{u}.)$. Jede andere messbare Funktion $g: X \to \overline{\mathbb{R}}$ mit $f_n \xrightarrow{n \to \infty} f$ $(f.\ddot{u}.)$ ist fast überall gleich f. Bemerkung: Nicht jeder fast überall Limes messbarer Funktionen ist messbar.

Beweis. Nach Voraussetzung existiert eine Nullmenge N, sodass $\exists \lim_{n\to\infty} f_n(x) \in \mathbb{R}, \ \forall x \in X \backslash N.$

Nach Satz 2.8 ist $\mathbf{1}_{X\backslash N}\cdot f_n$ messbar. Ferner konvergiert $\mathbf{1}_{X\backslash N}\cdot f_n$ für $n\to\infty$ punktweise

gegen
$$f: X \to \overline{\mathbb{R}}$$
 mit: $f(x) = \begin{cases} \lim_{n \to \infty} f_n(x), & x \in X \setminus N \\ 0, & x \in N \end{cases}$

Mit Satz 2.7 folgt, dass f messbar ist. Nach der Konstruktion gilt: $f_n \xrightarrow[f:\bar{u}]{n\to\infty} f$. Wenn $f_n(x) \xrightarrow{n\to\infty} g(x)$ fast überall für eine

messbare Funktion g, dann existiert eine Nullmenge N_1 , sodass $f_n(x) \xrightarrow{n \to \infty} g(x)$ $(\forall x \in$ $X\backslash N_1) \Rightarrow f_n(x) \to f(x)$ und $f_n(x) \to g(x) \ \forall x \notin N \cup N_1 =: N_2$ (Nullmenge). Mit der Eindeutigkeit des Limes folgt dann:

$$f(x) = g(x) \ \forall x \in X \backslash N_2.$$

Beispiel. Sei $M \notin \mathcal{B}_1$ die Lebesgue-Nullmenge aus Bemerkung 3.2d), wobei $M \subset C$. Dann konvergiert $f_n = 0$ (f.ü.) gegen $f = \mathbf{1}_M$, da $f_n(x) = f(x) = 0 \ \forall x \in \mathbb{R} \backslash C$. C ist eine Nullmenge.

Aber: $f = \mathbf{1}_M$ ist nicht messbar.

Bemerkung 3.8. Es gibt folgende Variante des Satzes von der Monotonen Konvergenz. Seien $f_n: X \to [0, \infty]$ messbar $(\forall n \in \mathbb{N})$, sodass für jedes $n \in \mathbb{N}$ $f_n \leq f_{n+1}$ $(f.\ddot{u}.)$. Dann existiert eine messbare Funktion $f: X \to [0, \infty]$ mit $f_n \xrightarrow[(f.\ddot{u}.)]{n \to \infty} f$ und $\lim_{n \to \infty} \int_X f_n dx = \int_X f_n dx$ $\int_X f dx$.

Beweis. Nach Voraussetzung: $\forall n \in \mathbb{N} \exists$ eine Nullmenge N_n mit $f_n(x) \leq f_{n+1}, \forall x \in$

Die Menge $N = \bigcup_{n \in \mathbb{N}} N_n$ ist eine Nullmenge. Daraus folgt $f_n(x) \leq f_{n+1}(x) \ \forall x \notin N, \ n \in$

Setze $\tilde{f}_n = \mathbf{1}_{X \setminus N} \cdot f_n \Rightarrow \tilde{f}_n = f_n \ (f.\ddot{u}.), \ \tilde{f}_n \leq \tilde{f}_{n+1}, \ (\forall n \in \mathbb{N}).$

Setze $f := \sup_{n \in \mathbb{N}} \tilde{f}_n$ ist messbar.

$$\int f dx \stackrel{\text{Thm 2.19}}{=} \lim_{n \to \infty} \int \tilde{f}_n dx \stackrel{\text{Lem 3.5}}{=} \lim_{n \to \infty} \int f_n dx$$

3.2 Der Lebesguesche Konvergenzsatz

Theorem 3.9 (Lemma von Fatou). Seien $f_n: X \to [0, \infty]$ für jedes $n \in \mathbb{N}$ messbar. Dann gilt:

$$\int_{X} \underline{\lim}_{n \to \infty} f_n(x) dx \le \underline{\lim}_{n \to \infty} \int_{X} f_n(x) dx$$

Speziell konvergiere f_n fast überall gegen ein $f: X \to [0, \infty]$. Dann folgt:

$$\int_{X} f(x)dx \le \lim_{n \to \infty} \int_{X} f_n(x)dx$$

(Damit ist f integrierbar, falls $(\int f_n(x)dx)_{n\in\mathbb{N}}$ beschränkt ist.)

Beweis. Setze $g_j := \inf_{n \geq j} f_n$ für jedes $j \in \mathbb{N}$. Dann folgt $g_j \leq g_{j+1}$ und für alle $j \in \mathbb{N}$ ist g_j nach Satz 2.7 messbar. Ferner gilt $\sup_{j \in \mathbb{N}} g_j = \underline{\lim}_{n \to \infty} f_n$ und $g_j \leq f_n \ (\forall n \geq j)$. Damit gilt:

$$\int_{X} \underline{\lim}_{n \to \infty} f_n(x) dx = \int_{X} \sup_{j \in \mathbb{N}} g_j(x) dx \stackrel{\text{Def 2.9}}{=} \sup_{j \in \mathbb{N}} \int_{X} g_j(x) dx$$

Ferner: $g_j \leq f_n \ \forall n \geq j$. Mit Lem 2.18 folgt dann:

$$\int g_j(x)dx \le \int f_n(x)dx \ (\forall n \ge j)$$

$$\Rightarrow \int g_j(x)dx \le \inf_{n \ge j} \int f_n(x)dx$$

$$\Rightarrow \int \underline{\lim}_{n \to \infty} f_n(x)dx \le \sup_{j \in N} \inf_{n \ge j} \int f_n(x)dx = \underline{\lim}_{n \to \infty} \int f_n(x)dx$$

Für die zweite Behauptung: Sei N eine Nullmenge mit $f_n(x) \to f(x) \ \forall x \in X \backslash N$. Dann:

$$\int f(x)dx \stackrel{\text{Lem 3.5}}{=} \int \mathbf{1}_{X \setminus N} \cdot f(x)dx = \int \lim_{n \to \infty} \mathbf{1}_{X \setminus N} \cdot f_n(x)dx$$

$$\stackrel{\text{s.o.}}{\leq} \lim_{n \to \infty} \int \mathbf{1}_{X \setminus N} \cdot f_n(x)dx \stackrel{\text{Lem 3.5}}{=} \lim_{n \to \infty} \int f_n(x)dx.$$

Theorem 3.10 (Legesgue, majorisierte Konvergenz). Seien $f_n: X \to \overline{\mathbb{R}}$ messbar für alle $n \in \mathbb{N}$ und $g: X \to [0, \infty]$ integrierbar, sodass f_n fast überall konvergiert für $n \to \infty$ und $|f_n| \le g$ $(f.\ddot{u}.)$ für alle $n \in \mathbb{N}$. Dann gibt es ein integrierbares $f: X \to \overline{\mathbb{R}}$, sodass $f_n \xrightarrow{n \to \infty} f$ und

$$\lim_{n \to \infty} \int_X f_n(x) dx = \int_X f(x) dx \ und \ \int_X |f_n(x) - f(x)| dx \xrightarrow{n \to \infty} 0$$

Diese Aussage gilt auch für jedes $\tilde{f}: X \to \overline{\mathbb{R}}$ anstelle von f, wenn $\tilde{f} = f$ (f.ü.).

a) Sei $\lambda(X) < \infty$, $|f_n(x)| \leq M \ (\forall x, n) \Rightarrow g := M \cdot \mathbf{1}_X$ integrierbar und $|f_n| \leq g$ (einfache Majorante).

b) Sei $\{q_1, q_2, \dots\} = \mathbb{Q} \cap [0, 1]$, setze $f_n := \mathbf{1}_{\{q_1, \dots, q_n\}} \Rightarrow |f_n| \leq \mathbf{1}_{[0, 1]}$ und $f_n \to \mathbf{1}_{[0, 1]}$ $\mathbf{1}_{\mathbb{O}\cap[0,1]}=f$

Damit ist der Satz von Lebesgue anwendbar, aber f ist nicht Riemannintegrierbar, also ist Thm 3.10 für das Riemannintegral sinnlos.

Bemerkung 3.11. Ohne Majorante kann die Aussage von Thm 3.10 falsch sein. Beispiele für $X = \mathbb{R}$:

- a) $f_n = n \cdot \mathbf{1}_{(0,\frac{1}{n})} \to f = 0$ (p.w.), aber $\int_{\mathbb{R}} f_n(x) dx = 1$ und $\int_{\mathbb{R}} f(x) dx = 0$.
- b) $f_n = \mathbf{1}_{[m,\infty]} \to 0$ (p.w.). Hier gilt sogar $f_n \geq f_{n+1}$. Trotzdem ist: $\int f dx = 0 < \infty = \lim_{n \to \infty} \underbrace{\int f_n dx}.$

Ana III, 01.12.2008

Beweis von Thm 3.10. Nach Lem 3.7 existiert ein integrierbares $\hat{f}: X \to \overline{\mathbb{R}}$ mit $f_n \xrightarrow{n \to \infty}$ $f(f.\ddot{u}.).$

Wie im Beweis von Bemerkung 3.8. existiert eine Nullmenge N, sodass $|f(x)| \le g(x) \ (\forall x \notin N, n \in \mathbb{N}) \text{ und } f_n(x) \xrightarrow{n \to \infty} \hat{f}(x) \ (\forall x \in N)$

 $\Rightarrow |\hat{f}(x)| \le g(x) \ (\forall x \notin N).$

 $\overset{\text{Satz 2.23}}{\Rightarrow} \mathbf{1}_{X \setminus N} \cdot f, \ \mathbf{1}_{X \setminus N} \cdot \hat{f} \text{ sind integrierbar } (\forall n \in \mathbb{N}) \overset{\text{Lem 3.5}}{\Rightarrow} f_n, \hat{f} \text{ sind integrierbar.}$

Sei $N_1 = N \cup \{|\hat{f}| = \infty\} \cup \{g = \infty\}$. Nach Korollar 2.24 ist N_1 eine Nullmenge. Setze $g_n := |f| + \mathbf{1}_{X \setminus N_1} \cdot g - \mathbf{1}_{X \setminus N_1} \cdot |f - f_n|$ und $f = \mathbf{1}_{X \setminus N_1} \cdot \hat{f} : X \to \mathbb{R}$ ist integrierbar.

 $\Rightarrow f_n \xrightarrow{n \to \infty} f(f.\ddot{u}.).$ Es gilt: $g_n \xrightarrow{n \to \infty} |f| + g$ $(f.\ddot{u}.)$. Da $|f_n - f| \le |f_n| + |f| \le g + |f|$ (auf $X \setminus N_1$), ist $g_n \ge 0 \ (\forall n \in \mathbb{N}).$

Dann:

$$\int (|f|+g)dx \stackrel{\text{Fatou}}{\leq} \liminf_{n \to \infty} \int g_n dx$$

$$\stackrel{\text{Satz 2.25}}{=} \liminf_{n \to \infty} (\int_{X \setminus N_1} |f| + g dx - \int_{X \setminus N_1} |f - f_n| dx)$$

$$\stackrel{\text{Lem 3.5}}{=} \underbrace{\int_X (|f|+g) dx}_{<\infty, \text{ da } f, g \text{ int'bar}} - \underbrace{\lim_{n \to \infty} \int_X |f - f_n| dx}_{\geq 0}$$

 $\Rightarrow \lim_{n\to\infty} \int_X |f-f_n| dx = 0$. Damit folgt die Behauptung. (Beachte: g_n ist messbar nach Satz 2.8)

Korollar 3.12. Sei $f: X \to \overline{R}$ messbar und $A_n \in \mathcal{B}(X)$ mit $A_n \subset A_{n+1}$ $(\forall n \in \mathbb{N})$ und $X = \bigcup_{n \in \mathbb{N}} A_n$.

Weiter seien alle $f_n = \mathbf{1}_{A_n} \cdot f$ integrierbar und $\sup_{n \in \mathbb{N}} \int_{A_n} |f| dx < \infty$. Dann ist f integrierbar und es gilt:

$$\int_X f dx = \lim_{n \to \infty} \int_{A_n} f dx.$$

Falls zusätzlich $X \subset \mathbb{R}$ ein Intervall ist, sowie f stetig und |f| auf X uneigentlich Riemannintegrierbar sind, dann ist f integrierbar und das Riemann- und Lebesgueintegral stimmen überein.

Beweis. Sei $f_n = \mathbf{1}_{A_n} \cdot f$ ($\forall n \in \mathbb{N}$). Nach Voraussetzung gilt: $f_n \xrightarrow{n \to \infty} f$ (pw). Ferner: $|f_n| = \mathbf{1}_{A_n} \cdot |f| \le \mathbf{1}_{A_{n+1}} |\cdot f| = |f_{n+1}|$ ($\forall n \in \mathbb{N}$). Aus Thm 2.19 folgt:

$$\int_X f dx = \sup_{n \in \mathbb{N}} \int_X |f_n| dx = \sup_{n \in \mathbb{N}} \int_{A_n} |f| dx < \infty$$

 $\stackrel{\text{Satz}}{\Rightarrow}^{2.23} f$ ist integrierbar.

Weiter gilt $|f_n| \leq |f|$ ($\forall n \in \mathbb{N}$), also ist |f| eine Majorante der f_n . Nach Thm 3.10 gilt nun:

$$\int_{A_n} f dx = \int_X f_n dx \xrightarrow{n \to \infty} \int f dx$$

Für die letzte Behauptung wähle $a_n+1 \leq a_n < b_1 \leq b_{n+1} \ (n \in \mathbb{N})$ mit $X = \bigcup_{n \in \mathbb{N}} [a_n, b_n]$. Da |f| uneigentlich riemannintegrierbar ist, konvergiert $\int_{a_n}^{b_n} |f| dx$, ist aber beschränkt. Betrachte $A_n = [a_n, b_n]$. Dann folgt die Behauptung aus dem ersten Beweisteil und $R - \int_{a_n}^{b_n} f dx = \int_{[a_n, b_n]} f dx$. (siehe Bemerkung 2.26)

Beispiel. Sei $X = [1, \infty)$. Es gilt:

$$\int_{1}^{\infty} x^{-\frac{3}{2}} dx = \lim_{b \to \infty} \underbrace{\int_{1}^{b} x^{-\frac{3}{2}} dx}_{-2 \cdot \frac{1}{\sqrt{b}}} = \lim_{b \to \infty} \left(2 - \frac{2}{\sqrt{b}}\right) = 2$$

 $\stackrel{\text{Kor } 3.12}{\Rightarrow} g(x) := x^{-\frac{3}{2}}$ ist integrierbar auf X.

Setze $f_n(X) = x^{-\frac{3}{2}} \cdot \sin(\frac{x}{n})$ für $n \in \mathbb{N}, X \ge 1$. Dann folgt $f_n(x) \xrightarrow{n \to \infty} 0$ $(\forall x \ge 1)$. $|f_n| \le g \ (\forall n \in \mathbb{N}) \xrightarrow{\text{Thm } 3.10} \int f_n dx \to 0, \int |f_n| dx \to 0 \ (n \to \infty).$

Korollar 3.13. a) Seien $f_j, g: X \to \mathbb{R}$ integrierbar für jedes $j \in \mathbb{N}$. Sei N eine Nullmenge, sodass $g_n(x) = \sum_{j=1}^n f_j(x)$ in $\overline{\mathbb{R}}$ für $n \to \infty$ und alle $x \in X \setminus N$ konvergiert und sodass $|g_n(x)| \le g(x)$ $(\forall n \in \mathbb{N}, x \in X \setminus N)$. Setze $\sum_{j=1}^{\infty} f_j(x) := 0$ für $x \in N$. Dann ist $\sum_{j=1}^{\infty} f_j: X \to \overline{\mathbb{R}}$ integrierbar und es gilt

$$\int_{X} \sum_{j=1}^{\infty} f_j(x) dx = \sum_{j=1}^{\infty} \int_{X} f_j(x) dx.$$

b) Sei $f: X \to R$ integrierbar und $X = \bigcup_{j \in N} A_j$ für disjunkte $A_j \in \mathcal{B}(X)$. Dann gilt:

$$\int_X f(x)dx = \sum_{j=1}^{\infty} \int_{A_j} f(x)dx.$$

Beweis. a) Da $|g_n| \leq g$ (f.ü.) und $g_n \xrightarrow{n \to \infty} \sum_{j=1}^{\infty} f_j$ ((f.ü.), ist $\sum_{j=1}^{\infty} f_j$ integrierbar und

$$\exists \int_{X} \underbrace{\sum_{j=1}^{\infty} f_{j} dx}_{=f} = \int_{X} \lim_{n \to \infty} g_{n} dx \stackrel{\text{Thm 3.10}}{=} \lim_{n \to \infty} \int_{X} g_{n} dx$$

$$\stackrel{\text{Satz 2.25}}{=} \lim_{n \to \infty} \sum_{j=1}^{\infty} \int_{X} f_{j} dx = \sum_{j=1}^{\infty} \int_{X} f_{j} dx.$$

b) Setze $f_j := \mathbf{1}_{A_j} \cdot f$, g := |f|. Dann gilt $|\sum_{j=1}^n f_j| = |\mathbf{1}_{A_1 \cup \dots \cup A_n} \cdot f| \leq |f|$ und $\sum_{j=1}^\infty f_j = f$. Also folgt b) aus a).

Theorem 3.14 (Stetigkeitssatz). Seien $U \subset \mathbb{R}^k$ offen, $t_0 \in U$ und $f: U \times X \to \mathbb{R}$ mit den folgenden Eigenschaften gegeben.

- a) Für jedes $t \in U$ ist die Funktion $x \mapsto f(t, x)$ von X nach \mathbb{R} messbar.
- b) Es gibt ein integrierbares $g: X \to [0, \infty]$ und Nullmengen N_t für jedes $t \in U$, sodass $|f(t, x)| \le g(x)$ für alle $t \in U$ und alle $x \in X \setminus N_t$.
- c) Es gibt eine Nullmenge N, sodass die Funktion $t \mapsto f(t,x)$ von U nach \mathbb{R} für jedes $x \in X \setminus N$ bei t_0 stetig ist.

Dann ist die Funktion $F: U \to \mathbb{R}, F(t) = \int_X f(t,x) dx$, für alle $t \in U$ definiert und bei t_0 stetiq. Das heißt:

$$\lim_{t \to t_0} F(t) = \lim_{t \to t_0} \int_X f(t, x) dx \stackrel{!}{=} \int_X f(t_0, x) = F(t_0).$$

Beweis. Nach a) und b) ist $x \mapsto f(t,x)$ für jedes $t \in U$ integrierbar. Seien $t_n \in U$ mit $t_n \xrightarrow{n \to \infty} t_0$. Setze $g_n(x) := f(t_n, x) \ (x \in X, n \in \mathbb{N})$.

 $\tilde{N} := \bigcup_{n=1}^{\infty} N_{t_1} \cup N$ ist eine Nullmenge.

Nach c) gilt: $g_n(x) \xrightarrow{n \to \infty} f(t_0, x) \ (\forall x \notin \tilde{N})$ und nach b): $|g_n(x)| \le g(x) \ (\forall n \in \mathbb{N}, x \notin \tilde{N})$. Mit Thm 3.10 folgt

$$\int_{X} g_n(x)dx \xrightarrow{n \to \infty} \int_{X} f(t_0, x)dx = F(t_0).$$

Korollar 3.15. Sei $I \subset \mathbb{R}$ ein Intervall, $f: I \to \overline{\mathbb{R}}$ integrierbar, $a = \inf I$. Dann ist $t \mapsto F(t) = \int_a^t f(s)ds$ auf I stetig und $F(t) \xrightarrow{t \to a} 0$.

Beweis. Es gilt $F(t) = \int_I \underbrace{\mathbf{1}_{(a,t)}(x) \cdot f(x)}_{-h(t,x)} dx \Rightarrow |h(t,x)| \leq |f(x)|, \ \forall t,x \text{ und } |f| \text{ ist inte-}$

grierbar. Sei $t_0 \in I$ fest aber beliebi

Es gilt:
$$h(t,x) = \begin{cases} f(x), & t > x, \xrightarrow{t \to t_0} h(t_0,x) \text{ für jedes } x \neq t_0. \\ 0, & t \leq x \end{cases}$$

Nun liefert Thm 3.14 die Behauptung mit $N = N(t_0) = \{t_0\}$ in c), denn:

$$F(t) = \int_{I} h(t, x) dx \xrightarrow{t \to t_0} \int_{I} h(t_0, x) = F(t_0).$$

Beispiel. Sei $f: \mathbb{R}_+ \to \mathbb{R}$ messbar und beschränkt. Sei t > 0 fest, aber beliebig. Wähle $\epsilon \in (0,t)$. Für x > 0 gilt dann $|e^{-tx} \cdot f(x)| \le ||f||_{\infty} \cdot e^{-\epsilon x}$ ist integrierbar auf \mathbb{R}_+ . Genauso: Sei $t \ge t_0 > 0$, $\epsilon \in (0, t_0)$. Dann ist $g(x) = e^{-\epsilon x} \cdot ||f||_{\infty}$ die Majorante in Thm 3.14 und somit existiert die "Laplacetransformation"

 $\hat{f}(t) = \int_0^\infty e^{-tx} \cdot f(x) dx$ und sie ist stetig für $t \ge 0$. Da t_0 beliebig war, gilt dies für alle

Ana III, 05.12.2008

Theorem 3.16. Sei $U \subset \mathbb{R}^k$ offen, $f: U \times X \to \mathbb{R}$ erfülle

- a) $\forall t \in U : x \mapsto f(t,x), X \to \mathbb{R}$ ist integrierbar
- b) \exists eine Nullmenge N_1 , sodass $t \mapsto f(t,x)$, $U \to \mathbb{R}$ partiell differenzierbar für alle $x \notin N_1$ und alle $t \in U$
- c) \exists eine Nullmenge N_2 und ein integrierbares $g: X \to [0, \infty]$, sodass

$$\left| \frac{\partial f}{\partial t_j}(t, x) \right| \le g(x), \ \forall x \notin N_2, \ j = 1, \dots, k, \ t \in U$$

Dann ist

$$F(t) := \int_{X} f(t, x) dx$$

in $t \in U$ partiell differenzierbar und

$$\frac{\partial}{\partial t_j} \int_X f(t,x) dx = \int_X \frac{\partial}{\partial t_j} f(t,x) dx \quad (\forall j \in \mathbb{N}, \ t \in U).$$

Beweis. Sei $j \in \{1, ..., k\}$, $t_0 \in U$ fest, aber beliebig. Sei $\tau_n \neq 0$ mit $\tau_n \xrightarrow{n \to \infty} 0$. Setze $s_1 := t_0 + \tau_n \cdot e_j$. Da U offen ist, gibt es ein r > 0 und ein $n_0 \in \mathbb{N}$, sodass $s_n \in B(t_0, r) \subset U$. Sei $N = N_1 \cup N_2$ eine Nullmenge.

Setze $g_n(x) := \frac{1}{\tau_n} (f(s_n, x) - f(t_0, x))$ für $n \in \mathbb{N}, x \in X$. Nach b) gilt dann $g_n(x) \xrightarrow{n \to \infty} \frac{\partial}{\partial t_i} f(t_0, x) \ \forall X \notin \mathbb{N}$.

Der Mittelwertsatz liefert: Es existieren σ_n mit $|\sigma_n| \leq |\tau_n|$ (abhängig von x, t_0, j), sodass

$$|g_n(x)| = \left| \frac{\partial f}{\partial t_i} (t_0 + \sigma_1 \cdot e_j, x) \right| \stackrel{c)}{\leq} g(x) \quad (\forall x \notin N, \ n \in \mathbb{N}).$$

Dann folgt:

$$\int_{X} \frac{\partial f}{\partial t_{j}}(t_{0}, x) dx \stackrel{\text{majorisierte}}{=} \lim_{n \to \infty} \int_{X} g_{n}(x) dx = \lim_{n \to \infty} \frac{1}{\tau_{n}} (F(s_{1}) - F(t_{0}))$$
$$= \frac{\partial}{\partial t_{j}} \int_{X} f(t_{0}, x) dx.$$

Beispiel. Sei $f: \mathbb{R}_+ \to \mathbb{R}$ messbar und beschränkt. Wir haben schon gesehen, dass $t \mapsto \hat{f}(t) = \int_0^\infty e^{-tx} \cdot f(x) dx$ für t > 0 existiert und stetig ist. Sei $\epsilon > 0$ beliebig und $t \ge \epsilon$. Dann gilt

$$\left| \frac{\partial}{\partial t} e^{-tx} \cdot f(x) \right| = \left| -xe^{-tx} \cdot f(x) \right| \le xe^{-\frac{\epsilon}{2}x} e^{-\frac{\epsilon}{2}x} \cdot ||f||_{\infty} \le \frac{2}{e\epsilon} ||f||_{\infty} \cdot e^{-\frac{\epsilon}{2}x}.$$

Und $\frac{2}{\epsilon\epsilon} ||f||_{\infty} \cdot e^{-\frac{\epsilon}{2}x}$ ist integrierbar. Da $\epsilon > 0$ beliebig war folgt mit Thm 3.16:

$$\exists \ \hat{f}'(t) = \int_0^\infty x e^{-tx} \cdot f(x) dx.$$

3.3 Iterierte Integrale

Schreibe $z \in \mathbb{R}^d$ als $z = (x, y) \in \mathbb{R}^k \times \mathbb{R}^l$ mit d = k + l. Sei $f : \mathbb{R}^d \to \overline{\mathbb{R}}$. Zeige

$$\int_{\mathbb{R}^d} f(z)dz = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} f(x,y)dy \right) dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} f(x,y)dx \right) dy.$$

Probleme:

- 1) Sind $y \mapsto f(x,y)$, $x \mapsto f(x,y)$ messbar und integrierbar?
- 2) Sind $x \mapsto \int f(x,y)dy$, $y \mapsto \int f(x,y)dx$ messbar und integrierbar?
- 3) Gilt die Formel?

Sei $p_1(x,y) = x$, $p_2(x,y) = y$. Dann folgt, dass $p_1 : \mathbb{R}^d \to \mathbb{R}^k$ und $p_2 : \mathbb{R}^d \to \mathbb{R}^l$ stetig und damit messbar sind.

Lemma 3.17. Wenn $A \in \mathcal{B}_k$ und $B \in \mathcal{B}_l$, dann gilt $A \times B \in \mathcal{B}_d$.

Beweis. Es gilt
$$A \times \mathbb{R}^l = p_1^{-1}(A) \in \mathcal{B}_d$$
 und $\mathbb{R}^k \times B = p_2^{-1}(B) \in \mathcal{B}_d$. Damit folgt $A \times B = (A \times \mathbb{R}^l) \cap (\mathbb{R}^k \times B) \in \mathcal{B}_d$.

Definition. Für $C \in \mathcal{B}_d$ definiere die Schnitte

$$C_y := \{x \in \mathbb{R}^k : (x, y) \in C\}$$
 (für jedes feste $y \in \mathbb{R}^l$)
 $C^x := \{y \in \mathbb{R}^l : (x, y) \in C\}$ (für jedes feste $x \in \mathbb{R}^k$)

Sei $A \subset \mathbb{R}^k$, $B \in \mathbb{R}^l$, $x \in \mathbb{R}^k$. Dann gilt für $C = A \times B$:

$$C^{x} = \begin{cases} B, & x \in A \\ \emptyset, & x \notin A \end{cases}$$
 (3.1)

Setze:

$$j_y : \mathbb{R}^k \to \mathbb{R}^d, \ j_y(x) = (x, y) \text{ (für jedes feste } y \in \mathbb{R}^l).$$

$$j^x : \mathbb{R}^l \to \mathbb{R}^d, \ j^x(y) = (x, y) \text{ (für jedes feste } x \in \mathbb{R}^k).$$

$$\Rightarrow j_y, j^x \text{ sind stetig und messbar.}$$
(3.2)

Dann gilt $C_y = j_y^{-1}(C)$, $C^x = (j^x)^{-1}(C)$ für alle $x \in \mathbb{R}^k$ und alle $y \in \mathbb{R}^l$. Für $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ definiere die Schnittfunktionen:

$$f_y = f \circ j_y : \mathbb{R}^k \to \overline{\mathbb{R}}, \ f_y(x) = f(x,y) \text{ (für jedes feste } y \in \mathbb{R}^l)$$

 $f^x = f \circ j^x : \mathbb{R}^l \to \overline{\mathbb{R}}, \ f^x(x) = f(x,y) \text{ (für jedes feste } x \in \mathbb{R}^k).$ (3.3)

Lemma 3.18. Seien $C \int \mathcal{B}_d$, $f : \mathbb{R}^d \to \overline{\mathbb{R}}$ messbar $x \in \mathbb{R}^k$ und $y \in \mathbb{R}^l$. Dann gelten:

- $C_u \in \mathcal{B}_k \text{ und } C^x \in \mathcal{B}_l$
- $f_y: \mathbb{R}^k \to \overline{\mathbb{R}} \ und \ f^x: \mathbb{R}^l \to \overline{\mathbb{R}} \ sind \ messbar$

Beweis. Folgt aus (3.2), (3.3) und der Messbarkeit von f_y , f^x .

Definition. Sei $C \in \mathcal{B}_d$. Dann definiere:

$$\varphi_C(x) = \lambda_l(C^x) = \int_{\mathbb{R}^l} \mathbf{1}_{C^x}(y) dy = \int_{\mathbb{R}^l} \mathbf{1}_C(x, y) dx \ (\forall x \in \mathbb{R}^k)$$

$$\psi_C(y) = \lambda_k(C_y) = \int_{\mathbb{R}^k} \mathbf{1}_{C_y}(x) dx = \int_{\mathbb{R}^k} \mathbf{1}_C(x, y) dx \ (\forall y \in \mathbb{R}^l)$$
(3.4)

(Diese Definition ist sinnvoll wegen Lem 3.18 und weil $\mathbf{1}_C > 0$) An dieser Stelle wird z.B. verwendet, dass

$$\mathbf{1}_{C^x}(y) = \begin{cases} 1, & y \in C^x \\ 0, & y \notin C^x \end{cases} = \begin{cases} 1, & (x,y) \in C \\ 0, & (x,y) \notin C \end{cases} = \mathbf{1}_C(x,y) \quad (\forall x \in \mathbb{R}^k, y \in \mathbb{R}^l)$$

gilt.

Lemma 3.19. Sei $C \in \mathcal{B}_d$. Dann sind $\varphi_C : \mathbb{R}^k \to [0, \infty], \ \psi_C : \mathbb{R}^l \to [0, \infty]$ messbar.

Beweis. Es reicht f_c zu betrachten. Sei dafür $I = I' \times I''$ mit $I' \in \mathcal{J}_k$, $I'' \in \mathcal{J}_l$. Dann gilt

$$f_I(x) \stackrel{\text{Def } 3.1}{=} \begin{cases} \lambda_l(I''), & x \in I' \\ 0, & x \notin I' \end{cases} = \lambda_l(I'') \cdot \mathbf{1}_{I'}(x) \quad (\forall x \in \mathbb{R}^k)$$

Damit folgt die Messbarkeit von f_i (+).

Somit $\mathcal{J}_d \subset \mathcal{D} = \{C \in \mathcal{B}_d : \varphi_c \text{ messbar}\}\ (*).$

Für $n \in \mathbb{N}$ setze $Q_n := (-n, n]^d$ und $\mathcal{D}_n := \{C \subset Q_n : C \in \mathcal{D}\}$. Wir schreiben $Q_n = Q'_n \times Q''_n$ mit $Q'_n = (-n, n]^k$, $Q''_n = (-n, n]^l$.

Damit ergeben sich folgenden Eigenschaften für D_n :

- (A1) Wegen (+) gilt $Q_n \in \mathcal{D}_n$.
- (A2) Da $\lambda_l(C^x) \leq \lambda_l(Q_n'') < \infty$, sind für $C \in \mathcal{D}_n \ \varphi_c, \varphi_{Q_n}, \varphi_{Q_n \setminus C} \ \mathbb{R}_+$ -wertig. Weiter gilt $\mathbf{1}_{Q_n \setminus C} = \mathbf{1}_{Q_n} - \mathbf{1}_C$. Damit ist $\varphi_{Q_n \setminus C} \stackrel{(3.4)}{=} \varphi_{Q_n} - \varphi_C$ messbar, da $C \in \mathcal{D}$ und (+) gilt $Q_n \setminus C \in \mathcal{D}_n$.
- (A3') Seien $\{C_j, j \in \mathbb{N}\} \subset \mathcal{D}_n$ disjunkt. Dann gilt $\biguplus_{j \in \mathbb{N}} C_j \in \mathcal{D}_n$. Denn

$$\begin{split} \varphi_{\biguplus_{j\in\mathbb{N}}}(x) &\stackrel{(3.4)}{=} \int_{\mathbb{R}^l} \mathbf{1}_{\biguplus_{j\in\mathbb{N}}\,C_j}(x,y) dy \stackrel{C_j \text{ disjunkt}}{=} \int_{\mathbb{R}^l} \sum_{j=1}^\infty \mathbf{1}_{C_j}(x,y) dy \\ &\stackrel{\text{Kor 2.20}}{=} \sum_{j=1}^\infty \int_{\mathbb{R}^l} \mathbf{1}_{C_j}(x,y) dy \stackrel{(3.4)}{=} \sum_{j=1}^\infty \varphi_{C_j}(x) \quad (\forall x\in\mathbb{R}^k). \end{split}$$

Nach Voraussetzung ist φ_{C_i} messbar. Damit folgt, dass $\varphi_{\biguplus_{j\in\mathbb{N}}C_j}$ als Reihe messbarer, positiver Funktionen messbar. Also gilt

$$\biguplus_{j\in\mathbb{N}} C_j \in \mathcal{D}_n.$$

Somit gilt (A3').

Ferner gilt nach $\mathcal{J}_d \cap Q_n \stackrel{\text{Lem 1.10}}{=} \{ F \in \mathcal{J}_d : I \subset Q_n \} \subset \mathcal{D}_n.$ Mit Lem 3.20 folgt dann $\mathcal{D}_n = \sigma(\mathcal{J}_d \cap Q_n) = \mathcal{B}(Q_n).$

Ana III, 08.12.2008

Sei $C \in \mathcal{B}_d$. Setze

$$\varphi_C(x) := \int_{\mathbb{R}^l} \mathbf{1}_C(x, y) dy \quad (\forall x \in \mathbb{R}^k)$$

Dann ist φ_C messbar für $C \in \mathcal{B}_d$ und $C \subset Q_n$ für ein $n \in \mathbb{N}$. Sei $C \in \mathcal{B}_d$ beliebig. Dann gilt $C \cap Q_n \subset Q_n$, $C \cap Q_n \in \mathcal{B}_d$. Somit ist auch $\varphi_{C \cap Q_n}$ messbar und es gilt $C \cap Q_n \subset C \cap Q_{n+1} \ (\forall n \in \mathbb{N}).$ Es gilt $C = \bigcup_{n=1}^{\infty} C \cap Q_n$. Daraus folgt

$$\mathbf{1}_{C \cap Q_n} \leq \mathbf{1}_{C \cap Q_{n+1}}, \ \mathbf{1}_{C \cap Q_n}(x, y) \xrightarrow{n \to \infty} \mathbf{1}_C(x, y) \quad \forall z = (x, y) \in \mathbb{R}^d = \mathbb{R}^k \times \mathbb{R}^l.$$

Mit Beppo Levi folgt dann

$$\varphi_{C\cap Q_n}(x) \stackrel{(3.4)}{=} \int_{\mathbb{R}^l} \mathbf{1}_{C\cap Q_n}(x,y) dy \xrightarrow{n\to\infty} \int_{\mathbb{R}^l} \mathbf{1}_C(x,y) dy \stackrel{(3.4)}{=} \varphi_C \quad (\forall x\in\mathbb{R}^k).$$

Damit ist φ_C messbar als punktweiser Limes messbarer Funktionen.

Lemma 3.20. Sei $\emptyset \neq \mathcal{E} \subset \mathcal{P}(X)$, $\mathcal{E} \subset \mathcal{D} \subset \sigma(\mathcal{E})$ und \mathcal{D} erfülle (A1), (A2) und (A3'). Dann gilt $\mathcal{D} = \sigma(\mathcal{E})$.

Beweis. Siehe Extravorlesung.

Satz 3.21. Sei $C \in \mathcal{B}_d$. Dann gilt

$$\lambda_d(C) = \int_{\mathbb{R}^k} \lambda_l(C^x) dx = \int_{\mathbb{R}^l} \lambda_k(C_y) dy.$$

Also gilt

$$\int_{\mathbb{R}^d} \mathbf{1}_C(z) dz = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \mathbf{1}_C(x, y) dy \right) dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} \mathbf{1}_C(x, y) dx \right) dy.$$

(Vergleiche (3.4).)

Beweis. Nach Lem 3.19 und da die Integranden positiv sind, existieren für alle $C \in \mathcal{B}_d$

$$\mu(C) = \int_{\mathbb{R}^k} \lambda_l(C^x) dx, \qquad \nu(C) = \int_{\mathbb{R}^l} \lambda_k(C_y) dy.$$

Sei $I \in \mathcal{J}_d$ Dann folgt $\exists I' \in \mathcal{J}_k, \ I'' \in \mathcal{J}_l \text{ mit } I = I' \times I''.$ Dann gilt

$$\mu(I) \stackrel{\text{(3.1)}}{=} \int_{\mathbb{R}^k} \lambda_l(I'') \cdot \mathbf{1}_{I'}(x) dx = \lambda_l(I'') \cdot \lambda_k(I') \stackrel{\text{(1.2)}}{=} \lambda_d(I).$$

Genauso zeigt man, dass $\mu(I) = \lambda_d(I)$ gilt.

Also gilt $\lambda_d = \mu = \nu$ auf \mathcal{J}_d .

Es ist klar, dass λ_d ein Maß ist und dass $\mu(\emptyset) = \nu(\emptyset) = 0$. Seien $C_j \in \mathcal{B}_d$ disjunkt $(j \in \mathbb{N})$. Dann gilt

$$\mu\left(\biguplus_{j\in\mathbb{N}}C_{j}\right) = \int_{\mathbb{R}^{k}} \lambda_{l}\left(\left(\biguplus_{j\in\mathbb{N}}C_{j}\right)^{x}\right) = \int_{\mathbb{R}^{k}} \lambda_{l}\left(\biguplus_{j\in\mathbb{N}}C_{j}^{x}\right) dx$$

$$\stackrel{(M2)}{=} \int_{\mathbb{R}^{k}} \sum_{j=1}^{\infty} \underbrace{\lambda_{l}(C_{j}^{x})}_{\geq 0} dx \stackrel{\text{Kor 2.20}}{=} \sum_{j=1}^{\infty} \int_{\mathbb{R}^{k}} \lambda_{l}(C_{j}^{x}) dx = \sum_{j=1}^{\infty} \mu(C_{j}^{x}).$$

Also ist μ ein Maß. Genauso zeigt man die Maßeigenschaft für ν .

Im Beweis von Thm 1.20 haben wir gesehen, dass \mathcal{J}_d die Voraussetzungen A), B) von Thm 1.19 (Eindeutigkeitssatz) erfüllt. Somit impliziert Thm 1.19, dass $\lambda_d = \mu = \nu$ auf \mathcal{B}_d gilt.

Korollar 3.22. Für $N \in \mathcal{B}_d$ sind äquivalent:

- a) $\lambda_d(N) = 0$
- b) Für (f.a.) $x \in \mathbb{R}^k$ gilt $\lambda_d(N^x) = 0$
- c) Für (f.a.) $x \in \mathbb{R}^l$ qilt $\lambda_k(N^x) = 0$

Beweis. Folgt direkt aus Satz 3.21 und Lem 2.18c).

Beispiel. Sei $M \subset \mathbb{R}^k$ eine Nullmenge. Setze $N := M \times \mathbb{R}^l$. Dann folgt mit Lem 3.17 $N \in \mathcal{B}_d$. Es gilt $N_y = M$ ($\forall y \in \mathbb{R}^l$) (vergleiche (3.1)). Schließlich folgt dann mit Kor 3.22, dass N ebenfalls eine Nullmenge ist.

Bemerkung 3.23. Es exisitert ein $M \subset [0,1]^2$, sodass M in keiner Nullmenge aus \mathcal{B}_2 liegt (und insbesondere ist M keine zweidimensionale Nullmenge), aber alle M^x , M_y höchstens ein Element haben. Damit folgt $\lambda(M^x) = \lambda(M_y) = 0 \ \forall x, y$. Also implizieren b) und c) in Kor 3.22 nicht einmal, dass $M \in \mathcal{B}_2$. (Vergleiche Elstrodt Bsp V. 1.9)

Bemerkung 3.24. Sei $\emptyset \neq D \in \mathcal{B}_d$ und $f: D \to \overline{\mathbb{R}}$ messbar. Setze

$$\tilde{f}(x) := \begin{cases} f(x), & x \in D \\ 0, & x \in \mathbb{R}^d \backslash D \end{cases}$$
 ("0-Fortsetzung")

Dann ist $\tilde{f}: \mathbb{R}^d \to \overline{\mathbb{R}}$ messbar.

Beweis. Sei $a \in \mathbb{R}$. Dann gilt

$$\{x \in \mathbb{R}^d : \tilde{f}(x) \le 0\} = \begin{cases} \{x \in D : f(x) \le a\} \cup D^c, & a \ge 0\\ \underbrace{\{x \in D : f(x) \le a\}}_{\in \mathcal{B}(C) \subset \mathcal{B}_d}, & a < 0 \in \mathcal{B}_d. \end{cases}$$

Also ist \tilde{f} messbar.

Beispiel 3.25. Sei $B := B(0, r) = \{(x, y) \in \mathbb{R}^2 : |x| < r, |y| < \sqrt{r^2 - x^2}\} \in \mathcal{B}_2$. Damit folgt

$$B^{x} = \begin{cases} \emptyset, & |x| \ge r \\ (-\sqrt{r^{2} - x^{2}}, +\sqrt{r^{2} - x^{2}}), & |x| < r. \end{cases}$$

Und damit

$$\lambda_1(B^x) = \begin{cases} 0, & |x| \ge r \\ w \cdot \sqrt{r^2 - x^2}, & |x| < r. \end{cases}$$

Mit Satz 3.21 folgt dann

$$\lambda_2(B) = \int_{\mathbb{R}} \lambda_1(B^x) dx = \int_{-r}^r 2 \cdot \sqrt{r^2 - x^2} dx \stackrel{\text{Anal}}{\underset{\text{Bsp 6.14}}{=}} \pi \cdot r^2.$$

Genauso zeigt man, dass $\lambda_2(\overline{B}) = \pi \cdot r^2$. Damit folgt für alle $A \in \mathcal{B}_2$ mit $B \subset A \subset \overline{B}$: $\lambda_2(A) = \pi \cdot r^2$.

Beispiel 3.26 (Rotationskörper). Seien $I \subset \mathbb{R}$ ein Intervall und $f: I \to [0, \infty]$ messbar. Setze f wie in Bem 3.24 messbar auf \mathbb{R} fort. Definiere dann

$$V := \{(x, y, z) \in \mathbb{R}^3 : z \in I, \ x^2 + y^2 < f(z)^2\} = \{(\tilde{f} \circ p_z)^2 - p_x^2 - p_y^2 > 0\} \in \mathcal{B}_3.$$

Setze weiter für $z \in I$ $V_2 := B(0, f(z))$ und für $z \notin I$ $V_2 := \emptyset$. Dann folgt mit Satz 3.21

$$\lambda_3(V) = \int_I \lambda_2(B(0, f(z))) dz \stackrel{\text{Bsp 3.25}}{=} \pi \cdot \int_I f(z)^2 dz.$$

Beispiel:

 $\overline{\text{Sei }I} = [1, \infty), \ f(z) = \frac{1}{z}, \ V = \{(x, y, z) \in \mathbb{R}^3 : z \ge 1, \ x^2 + y^2 < \frac{1}{z^2}\}.$ Dann folgt

$$\lambda_3(V) = \pi \cdot \int_1^\infty \frac{dz}{z^2} = \pi \cdot \lim_{b \to \infty} \int_1^b \frac{dz}{z^2} = \pi \cdot \lim_{b \to \infty} \left[-\frac{1}{z} \right]_1^b = \pi \cdot \lim_{b \to \infty} \left(1 - \frac{1}{b} \right) = \pi.$$

Sei $f: \mathbb{R}^d \to [0, \infty]$ messbar. Nach Lem 3.18 existieren dann

$$F(x) := \int_{\mathbb{R}^l} f(x, y) dy = \int_{\mathbb{R}^l} f^x(y) dy \qquad (\forall x \in \mathbb{R}^k)$$

$$G(x) := \int_{\mathbb{R}^k} f(x, y) dx = \int_{\mathbb{R}^k} f_y(x) dx \qquad (\forall y \in \mathbb{R}^l).$$
(3.5)

Theorem 3.27 (Fubini). Sei d = k + l, $\mathbb{R}^d = \mathbb{R}^k \times \mathbb{R}^l$.

a) Sei $f: \mathbb{R}^d \to [0, \infty]$ messbar. Dann sind $F: \mathbb{R}^k \to [0, \infty]$ und $G: \mathbb{R}^l \to [0, \infty]$ messbar und es gilt

$$\int_{\mathbb{R}^d} f(z)dz = \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} f(x, y)dy \right) dx = \int_{\mathbb{R}^l} \left(\int_{\mathbb{R}^k} f(x, y)dx \right) dy.$$
 (3.6)

b) Sei $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ integrierbar. Dann gibt es Nullmengen $M \in \mathbb{R}^k$, $N \in \mathbb{R}^k$, sodass $f^x: \mathbb{R}^l \to \overline{\mathbb{R}}$ integrierbar ist für alle $x \in \mathbb{R}^k \backslash M$ und $f_y: \mathbb{R}^k \to \overline{\mathbb{R}}$ integrierbar ist für alle $y \in \mathbb{R}^l \backslash N$.

Definiere F(x) für $x \in \mathbb{R}^k \setminus M$ und G(x) für $y \in \mathbb{R}^l \setminus N$ wie in (3.5) und setze

F(x) = 0 für alle $x \in M$ und G(y) = 0 für alle $y \in N$. Dann sind $F: \mathbb{R}^k \to \overline{\mathbb{R}}$ und $G: \mathbb{R}^l \to \overline{\mathbb{R}}$ integrierbar und es gilt

$$\int_{\mathbb{R}^d} f(z)dz = \int_{\mathbb{R}^k} F(x)dx = \int_{\mathbb{R}^l} G(y)dy.$$

Meist schreibt man dafür wieder (3.6).

Beweis. (Der Beweis erfolgt in den vier Schritten der Integraldefinition.)

- a) 0) Für $f = \mathbf{1}_C$, $C \in \mathcal{B}_d$ wurde a) schon in Lem 3.19 und Satz 3.21 gezeigt.
 - 1) Sei $f := \sum_{k=1}^m a_k \cdot \mathbf{1}_{C_k} \ge 0$ messbar. Dann ist $F \stackrel{(3.4)}{=} \sum_{k=1}^m a_k \cdot \varphi_{C_k}$ nach Satz 2.8 messbar (verwende Lem 3.19). Ferner gilt

$$\int_{\mathbb{R}^d} f(z)dz = \sum_{k=1}^m a_k \cdot \int_{\mathbb{R}^d} \mathbf{1}_{C_k}(z)dz$$

$$\stackrel{0)}{=} \sum_{k=1}^m a_k \cdot \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \mathbf{1}_{C_k}(x, y) dy \right) dx$$

$$= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} \sum_{k=1}^m a_k \cdot \mathbf{1}_{C_k}(x, y) dy \right) dx$$

$$= \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} f(x, y) \right) dx.$$

(Die andere Gleichheit in (3.6) zeigt man genauso.)

Ana III, 12.12.2008

2) Sei $f: \mathbb{R}^d \to [0,\infty]$ messbar. Dann gibt es einfache $f_n: \mathbb{R}^d \to \mathbb{R}_+$ mit $f_n(z) \leq f_{n+1}(z), f(z) = \sup_{n \in \mathbb{N}} f_n(z) \ (\forall n \in \mathbb{N}, z \in \mathbb{R}^d).$ Setze $F_n(x) := \int_{\mathbb{R}^l} f_n(x,y) dy \leq F_{n+1}(x) \ (\forall x \in \mathbb{R}^k, n \in \mathbb{N}).$ Mit 1) folgt dann die Messbarkeit von F_n ($\forall n \in \mathbb{N}$). Mit Beppo Levi für $(f_n)^x$ folgt

$$F_n(x) \xrightarrow{n \to \infty} \int_{\mathbb{R}^l} f(x, y) dy =: F(x) \quad (\forall x \in \mathbb{R}^k).$$

Damit ist $f: \mathbb{R}^k \to [0, \infty]$ als Grenzwert messbarer Funktionen messbar. Weiter gilt

$$\begin{split} \int_{\mathbb{R}^d} f(z) dz & \stackrel{\text{Beppo Levi}}{=} \lim_{n \to \infty} \int_{R^d} f_n(z) dz \\ & \stackrel{1)}{=} \lim_{n \to \infty} \int_{\mathbb{R}^k} \underbrace{\left(\int_{\mathbb{R}^l} f_n(x,y) dy \right)}_{=F_n(x)} dx \\ & \stackrel{\text{Beppo Levi}}{=} \int_{\mathbb{R}^k} \left(\int_{\mathbb{R}^l} f(x,y) dy \right) dx. \end{split}$$

Die Andere Gleichheit in (3.6) folgt genauso. Damit ist a) gezeigt.

b) Sei $f: \mathbb{R}^d \to \overline{\mathbb{R}}$ integrierbar. Dann folgt, dass $|f|: \mathbb{R}^d \to [0, \infty]$ integrierbar ist und dass $f^x: \mathbb{R}^l \to \overline{\mathbb{R}}$ nach Lem 3.18 messbar ist. Dann gilt

$$\infty > \int_{\mathbb{R}^d} |f(z)| dz = \int_{\mathbb{R}^k} \underbrace{\left(\int_{\mathbb{R}^l} |f(x,y)| dy \right)}_{=:\Phi(x) = \int_{\mathbb{R}^l} |f^x| dy} dx. \tag{+}$$

Dann folgt die Integrierbarkeit von $\Phi : \mathbb{R}^k \to [0, \infty]$ (Φ ist messbar nach Lem 3.19). Kor 2.24 impliziert, dass $M := \{\Phi = \infty\} \subset \mathbb{R}^k$ eine Nullmenge ist. Damit ist nach Kor 3.22 auch $M \times \mathbb{R}^l$ eine d-dimensionale Nullmenge. Mit (+) folgt nun, dass $f^x: \mathbb{R}^l \to \overline{\mathbb{R}}$ für alle $x \in \mathbb{R}^k \backslash M$ integrierbar ist. Setze

$$F(x) := \begin{cases} \int_{\mathbb{R}^l} f(x, y) dy, & x \in M \\ 0, & x \in M \end{cases} = \int_{\mathbb{R}^l} \tilde{f}(x, y) dy, \tag{*}$$

wobei $\tilde{f} = \mathbf{1}_{M^x \times \mathbb{R}^l} \cdot f$ ist. Also ist \tilde{f} messbar ist. Da $|\tilde{f}| = \mathbf{1}_{M^c \times \mathbb{R}^l} \cdot |f^x|$ gilt, folgt, dass $\tilde{f} : \mathbb{R}^l \to \overline{\mathbb{R}}$ ist für alle $x \in \mathbb{R}^k$ integrierbar

Ferner gilt

$$F(x) = \int_{\mathbb{R}^l} \tilde{f}_+(x, y) dy - \int_{\mathbb{R}^l} \tilde{f}_(x, y) dy =: F^+(x) - F^-(x) \quad (\forall x \in \mathbb{R}^k).$$

wobei $F^{\pm}(x) \in \mathbb{R}_+$ ($\forall x \in \mathbb{R}^k$). Nach a) sind damit F^{\pm} messbar und somit ist auch F messbar. Außerdem gilt $|F| \leq \Phi$, welches integrierbar ist. Mit Satz 2.23 ist dann F integrierbar. Dann gilt

$$\underbrace{\int_{\mathbb{R}^{l}\backslash M} \left(\int_{\mathbb{R}^{l}} f(x,y) dy \right) dx}_{(**)} = \int_{\mathbb{R}^{k}} F(x) dx$$

$$\underbrace{\operatorname{Satz 2.23}}_{\mathbb{R}^{k}} \int_{\mathbb{R}^{k}} F^{+}(x) dx - \int_{\mathbb{R}^{k}} F^{-}(x) dx$$

$$= \int_{\mathbb{R}^{k}} \left(\int_{\mathbb{R}^{l}} \tilde{f}_{+}(x,y) dy \right) dx - \int_{\mathbb{R}^{k}} \left(\int_{\mathbb{R}^{l}} \tilde{f}_{-}(x,y) \right) dx$$

$$\stackrel{a)}{=} \int_{\mathbb{R}^{d}} \tilde{f}_{+} dz - \int_{\mathbb{R}^{d}} \tilde{f}_{-}(z) dz \stackrel{\text{Def. des}}{=} \underbrace{\int_{\mathbb{R}^{d}} \tilde{f}(z) dz}_{(++)}$$

$$f = \tilde{f} = \underbrace{(f.\ddot{u}.)}_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} f(z) dz.$$

Die andere Gleichheit in (3.6) folgt analog.

Bemerkung. In Thm 3.27b) gilt (3.6), wenn man die iterierten Integrale wie in (**) und (++) modifiziert.

Bemerkung 3.28. a) Man kann Fubini auf endlich oft iterierte Integrale verallgemeinern. Es existiert also eine Variante für $f(z) = f(x_1, \ldots, x_m)$.

- b) Nach Bem 3.23 existiert $f = \mathbf{1}_M : \mathbb{R}^2 \to \mathbb{R}_+$, sodass die iterierten Integrale existieren und gleich sind (es gilt F = 0, G = 0), aber f ist nicht in $(x, y) \in \mathbb{R}^2$ messbar. Also muss man die Messbarkeit in Fubini vorausgesetzt werden.
- c) Wenn f weder integrierbar noch positiv ist, kann es passieren, dass die iterierten Integrale in (3.6) existieren und ungleich sind.

 $\frac{\text{Beispiel (Cauchy):}}{\text{Sei } f: \mathbb{R}^2 \to \mathbb{R} \text{ mit}}$

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2}, & (x,y) \in (0,1)^2\\ 0, & (x,y) \in \mathbb{R}^2 \setminus (0,1)^2. \end{cases}$$

Dann gilt für $(x,y) \in (0,1)^2$

$$f(x,y) = \frac{\partial \partial}{\partial y \partial x} \arctan\left(\frac{x}{y}\right) = \frac{\partial \partial}{\partial x \partial y} \arctan\left(\frac{x}{y}\right).$$

Sei x > 0. Dann existiert

$$\int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} dx = \int_0^1 \frac{\partial}{\partial y} \cdot \underbrace{\frac{\partial}{\partial x} \arctan\left(\frac{x}{y}\right)}_{=\frac{y}{x^2 + y^2}} = \left[\frac{y}{x^2 + y^2}\right]_{y=0}^{y=1} = \frac{1}{1 + x^2}.$$

Dann folgt die Existenz von

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx = \int_{0}^{1} \frac{dx}{1 + x^{2}} = \left[\arctan(x) \right]_{0}^{1} = \frac{\pi}{4}.$$

Entsprechend exsitiert auch

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy = \left[\arctan(x) \right]_0^1 = -\frac{\pi}{4},$$

aber es gilt

$$\int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dy \right) dx = \frac{\pi}{4} \neq -\frac{\pi}{4} = \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) dx \right) dy.$$

d) Selbst wenn f messbar (und nicht positiv) ist, folgt im Allgemeinen aus der Existienz und Gleichheit der iterierten Integrale in (3.6) <u>nicht</u> die Integrierbarkeit von $f: \mathbb{R}^d \to \mathbb{R}$.

Beispiel:

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2}, & (x,y) \in [-1,1] \setminus \{0,0\} \\ 0, & \text{sonst.} \end{cases}$$

Gebrauchsanweisung für Fubini. Seien $f: D \to \overline{\mathbb{R}}$ und $D \in \mathcal{B}_d$.

- a) Prüfe, ob f in (x, y) messbar ist.
- b) Setze f messbar fort zu $\tilde{f}: \mathbb{R}^d \to \overline{\mathbb{R}}$ (etwa mit 0, vergleiche Bem 3.24). Dann folgt die messbarMessbarkeit von $\mathbf{1}_D \cdot \tilde{f}$.
- c) Falls nötig, zeige mit a)

$$\int_{\mathbb{R}^d} \mathbf{1}_D \cdot |\tilde{f}| dz = \int \int |\mathbf{1}_D \cdot \tilde{f}| dx dy = \int \int |\mathbf{1}_D \cdot \tilde{f}| dy dx < \infty.$$

Dann folgt $\mathbf{1}_D \cdot \tilde{f}$ ist integrierbar.

d) Fubini b)liefert dann

$$\begin{split} \int_{\mathbb{R}^d} \mathbf{1}_D \cdot \tilde{f}(z) dz &= \int_{\mathbb{R}^k} \int_{\mathbb{R}^l} \mathbf{1}_D(x,y) \cdot \tilde{f}(x,y) dy dx \\ &= \int_{\mathbb{R}^l} \int_{\mathbb{R}^k} \mathbf{1}_D(x,y) \cdot \tilde{f}(x,y) dx dy. \end{split}$$

Bemerkung 3.29. Sei $Q = X \times Y$ für $\emptyset \neq X \in \mathcal{B}_k$, $\emptyset \neq Y \in \mathcal{B}_l$. Sei $f : Q \to \overline{\mathbb{R}}$ integrierbar oder messbar und positiv. Sei $\tilde{f}(x,y) = \mathbf{1}_X(x) \cdot \mathbf{1}_Y(y) \cdot \tilde{f}(x,y)$. Dann folgt

$$\int_{Q} f(z)dz = \int_{\mathbb{R}^{d}} \tilde{f}(z)dz \stackrel{\text{Fubini}}{=} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \mathbf{1}_{X}(x) \cdot \mathbf{1}_{Y}(y) \cdot \tilde{f}(x,y)dydx$$
$$= \int_{X} \int_{Y} f(x,y)dydx \stackrel{\text{genauso}}{=} \int_{Y} \int_{X} f(x,y)dxdy.$$

Beispiel. a) Sei $D = \{(x,y) \in \mathbb{R}^2 : x \geq 1, \ 0 \leq y \leq \frac{1}{x}\}$. Da D abgeschlossen ist, gilt $D \in \mathcal{B}_2$. Seien $f(x,y) = \frac{1}{x}\cos(xy)$ für $(x,y) \in D$ und $\tilde{f}(x,y) = \frac{1}{x}\cos(xy)$, $(x,y) \in Q := (0,0) \times \mathbb{R}_+$. Dann sind f und \tilde{f} stetig und damit messbar und es gilt $\tilde{f}|_D = f$ (in (x,y)).

Ferner gilt

$$\int_{D} |f| d(x,y) = \int_{Q} \mathbf{1}_{D} |\tilde{f}| d(x,y)$$

$$\stackrel{\text{Fub}}{=} \int_{0}^{\infty} \int_{0}^{\infty} \underbrace{\mathbf{1}_{D}(x,y)}_{=1 \Leftrightarrow x \geq 1, 0 \leq y \leq \frac{1}{x}} \cdot \underbrace{\frac{1}{x} \cdot \underbrace{|\cos(xy)|}_{\leq 1} dy dx}_{\leq 1}$$

$$\leq \int_{1}^{\infty} \int_{0}^{\frac{1}{x}} \frac{1}{x} dy dx = \int_{1}^{\infty} \frac{1}{x^{2}} dx = 1.$$

Somit ist f integrierbar. Nun folgt

$$\int_{D} f(x,y)d(x,y) \stackrel{\text{Fub}}{=} \int_{0}^{\infty} \int_{0}^{\infty} \mathbf{1}_{D}(x,y) \cdot \frac{\cos(xy)}{x} dy dx$$

$$\stackrel{\text{s.o.}}{=} \int_{1}^{\infty} \int_{0}^{\frac{1}{x}} \frac{1}{x} dy dx = \int_{1}^{\infty} \frac{1}{x} \left[\frac{1}{x} \cdot \sin(xy) \right]_{y=0}^{y=\frac{1}{x}} dx$$

$$= \int_{1}^{\infty} \frac{\sin(1)}{x} dx = \sin(x).$$

Ana III, 15.12.2008

b) Sei $\alpha \in (0,1), g:(0,1) \to \overline{\mathbb{R}}$ integrierbar und $D:=\{(x,y)\in \mathbb{R}^2: 0\leq y\leq x\leq 1\}$. Setze $f:D\to \overline{\mathbb{R}}, \ f(x,y)=(x-y)^{-\alpha}\cdot g(x).$ \tilde{f} sei die Nullfortsetzung von f. Sei $G(x,y):=g(y)\ \forall (x,y)\in D$. Dann ist $G=g\circ p_2$ messbar auf D. Damit ist auch f in (x,y) als Produkt messbarer Funktionen messbar. Weiter gilt

$$\int_{D} |f| dz \stackrel{\text{Fub a}}{=} \int_{0}^{1} \left(\int_{0}^{1} \underbrace{\mathbf{1}_{D}(x, y)}_{=1 \Leftrightarrow y \leq x \leq 1 \Leftrightarrow x \in D_{y}} \cdot \tilde{f}(x, y) dx \right) dy$$

$$= \int_{0}^{1} \left(\int_{0}^{1} (x - y)^{-\alpha} \cdot |g(y)| dx \right) dy$$

$$\stackrel{t=x-y}{=} \int_{0}^{1} \underbrace{\int_{0}^{1-y} t^{-\alpha} dt}_{=dx} \cdot |g(y)| dy$$

$$\left[\underbrace{\frac{1}{1-\alpha} t^{1-\alpha}}_{0} \right]_{0}^{1-y} = \underbrace{\frac{1}{1-\alpha} (1-y)^{1-\alpha}}_{0}$$

$$= \underbrace{\frac{1}{1-\alpha} \int_{0}^{1} \underbrace{(1-y)^{1-\alpha}}_{\leq 1} \cdot |g(y)| dy}_{\leq 1} = \underbrace{\frac{1}{1-\alpha} \int_{0}^{1} |g(y)| dy}_{\leq 1} < \infty.$$

Also ist f integierbar, also existiert das Integral und es gilt

$$\int_{D} f(x)dz \stackrel{\text{Fub b}}{=} \int_{0}^{1} \left(\underbrace{\mathbf{1}_{D}(x,y)}_{=1 \Leftrightarrow 0 \leq y \leq x \Leftrightarrow yD^{x}} \cdot \tilde{f}(x,y)dy \right) dx$$

$$= \int_{0}^{1} \underbrace{\left(\int_{0}^{x} (x-y)^{-\alpha} \cdot g(y)dy \right)}_{=:F(x)} dx.$$

Beachte: für $g(y):=|\frac{1}{2}-y|^{\alpha-1},\ y\in(0,1)$ (integrierbar) gilt aber

$$F(0.5) = \int_0^{\frac{1}{2}} \left(\frac{1}{2} - y\right)^{-\alpha} \cdot \left(\frac{1}{2} - y\right)^{\alpha - 1} dy = \int_0^{\frac{1}{2}} \left(\frac{1}{2} - y\right)^{-1} dy = \infty.$$

c) In Anal haben wir bereits die Existenz von folgendem Limes gezeigt

$$\lim_{R \to \infty} \underbrace{\int_0^R \frac{\sin(x)}{x} dx}_{=:I_R, R>0}.$$

Für x > 0 gilt

$$\int_0^\infty e^{-xy} dy = \lim_{b \to \infty} \int_0^b e^{-xy} dy = \lim_{b \to \infty} \left[-\frac{1}{x} \cdot e^{-xy} \right]_0^b = \lim_{b \to \infty} \frac{1}{x} \cdot (1 - e^{-bx}).$$

Somit folgt

$$I_R = \int_0^R \int_0^\infty \underbrace{\sin(x) \cdot e^{-xy}}_{=:f(x,y)} dy dx$$

und $f:[0,R]\times\mathbb{R}_+\to\mathbb{R}$ ist stetig. Ferner gilt

$$\int_{D} |f| dz \stackrel{\text{Fub a}}{=} \int_{0}^{R} \int_{0}^{\infty} |\sin(x)| \cdot e^{-xy} dy dx = \int_{0}^{R} \frac{|\sin(x)|}{x} dx < \infty.$$

Da der Integrand stetig ist, folgt, dass $f:D\to\mathbb{R}$ integrierbar ist. Somit gilt

$$\begin{split} I_R \overset{\text{Fub b}}{=} & \int_D f dz = \int_0^\infty \int_0^R \sin(x) \cdot e^{-xy} dx dy \\ & \overset{2 \times \text{PI}}{=} \int_0^\infty \frac{1}{1+y^2} \cdot \left(1 - e^{-yR} \cdot (y \cdot \sin(R) + \cos(R))\right) dy \\ & = \underbrace{\int_0^\infty \frac{dy}{1+y^2}}_{[\arctan(y)]_0^\infty = \frac{\pi}{2}} - \underbrace{\int_0^\infty \frac{1}{1+y^2} \cdot e^{-yR} \cdot (y \cdot \sin(R) + \cos(R) dy}_{\leq \int_0^\infty \frac{1+y}{1+y^2} \cdot e^{-yR} dy \overset{(*)}{\leq} 2 \cdot \int_0^\infty e^{-yR} dy = \frac{2}{R} \overset{R \to \infty}{\longrightarrow} 0 \end{split}.$$

Dabei gilt (*): $\frac{1+y}{1+y^2} \le 2$. Also folgt $\lim_{R \to \infty} \int_0^R \frac{\sin(x)}{x} dx = \frac{\pi}{2}$.

3.4 Transformationssatz

Wir kennen aus Ana1 bereits die Substitutionsregel: Sei $f:[a,b] \to \mathbb{R}$ stetig, $\varphi \in C([a,b])$ mit $\varphi([a,b]) = [a,b]$. Dann gilt

$$\int_{a}^{b} f(y)dy = \int_{a}^{\beta} f(\varphi(x)) \cdot \varphi'(x)dx.$$

Unser Ziel ist es nun, dies auf Funktionen $\phi: \mathbb{R}^d \to \mathbb{R}^d$ zu verallgemeinern.

Definition. Schon in Ana2 haben wir folgendes definiert. Seien $X,Y \subset \mathbb{R}^d$ offen und nichtleer. Sei $\phi: X \to Y$ bijektiv mit $\phi \in C^1(X,\mathbb{R}^d)$ und $\phi^{-1} \in C^1(Y,\mathbb{R}^d)$. Dann heißt ϕ ein Diffeomorphismus.

TODO: Wie schreibe ich das schön auf...?

Bemerkung. Sei ϕ diffeomorph. Dann $x \in \phi'(\phi(x)) \Rightarrow I = (\phi)'(\phi(x))\phi'(x)$. Also ist $\phi'(x)$ invertierbar für alle x.

Satz (Grundversion des Transformationssatzes). Seien $\emptyset \neq X, Y \subset \mathbb{R}^d$ offen und ϕ : $X \to Y$ diffeomorph. Sei $f: Y \to \overline{\mathbb{R}}$ integrierbar oder messbar und positiv. Dann ist $g(x) := f(\phi(x)) \cdot |\det \phi'(x)|$ integrierbar oder messbar und positiv und es gilt

$$\int_{Y} f(y)dy = \int_{X} f(\phi(x)) \cdot |\det \phi'(x)| dx.$$

Beispiel (Polarkoordinaten für d=2). Sei $\phi(r,\varphi)=\begin{pmatrix} r\cdot\cos(\varphi)\\ r\cdot\sin(\varphi) \end{pmatrix}$. Dann ist $\phi\in C^1(\mathbb{R}^2,\mathbb{R}^2)$. Aus Ana2 wissen wir, dass $\det\phi'(r,\varphi)=r>0\ (\forall r>0,\ \varphi\in\mathbb{R})$ gilt und dass $\phi:(0,R)\times(0,2\pi)\to B(0,R)\setminus(\mathbb{R}_+\times\{0\})$ für alle R>0 bijektiv ist.

TODO: Blödes Bild... :-P

Für $\alpha \in (0, 2\pi)$ und R > 0 setze $V_{\alpha} := \phi((0, R) \times (0, \alpha))$. Dann gilt

$$\lambda_2(V_\alpha) = \int_{V_\alpha} 1 d(x, y) \stackrel{\text{Trafo}}{=} \int_{(0, R) \times (0, \alpha)} 1 \cdot r d(r, \varphi) \stackrel{\text{Fub}}{=} \int_0^\alpha \int_0^R r dr d\varphi$$
$$= \int_0^\alpha d\varphi \cdot \int_0^R r dr = \frac{\alpha R^2}{2}.$$

Problem: $B(0,R) = \phi(\underbrace{[0,R) \times [0,2\pi)}_{=:Q})$. Dann ist Q nicht offen und det $\phi'(0,\varphi)$. Außerdem gilt $\phi(0,\alpha) = \phi(0,\beta) \ \forall \alpha,\beta \in [0,2\pi]$, also ist ϕ nicht injektiv.

Definition. Wir nennen weiter für eine beliebige Menge $A \subset \mathbb{R}^d$

$$A^{0} = \{x \in A : \exists r > 0 : B(x, r) \subset A\}$$

das Innere von A.

Theorem 3.30 (Transformationssatz). Sei $U \subset \mathbb{R}^d$ offen, $\phi \in C^1(U, \mathbb{R}^d)$, $A \in \mathcal{B}_d$, $A \subset U$, sodass $X := A^0 \neq \emptyset$ gilt und $A \setminus A^0$ eine Nullmenge ist. Ferner sei $B := \phi(A) \in \mathcal{B}_d$, ϕ sei auf X inkjektiv det $\phi'(x) \neq 0 \ \forall x \in X$.

Dann ist $Y = \phi(X)$ offen, $\phi: X \to Y$ diffeomorph, $B \setminus Y$ ist eine Nullmenge. Weiter gelten

a) Sei $f: B \to [0, \infty]$ messbar. Dann gilt

$$\int_{B} f(y)dy = \int_{A} \underbrace{f(\phi(x)) \cdot |\det \phi'(x)|}_{:=g(x)} dx. \tag{3.7}$$

b) Sei $f: B \to \overline{\mathbb{R}}$ messbar. Dann ist f integrierbar auf B äquivalent dazu, dass g integrierbar auf A ist. In diesem Fall gilt (3.7).

Beweis. Extra Vorlesung am 16.12.2008.

Bemerkung. a) Grundversion folgt aus Thm 3.30, falls A = X = U offen, nach der Vorbemerkung über Ana2.

- b) Die Funktion g in Thm 3.30 ist messbar, da f messbar ist und $\phi \in C^1$ nach Kapitel 2.
- c) $A = \mathbb{R} \setminus \mathbb{Q} \in \mathcal{B}_d$, $\lambda_1(A) = \infty$, aber $A^0 = \emptyset$.
- d) Sei $A = [0, R) \times [0, 2\pi)$. Dann ist $A^0 = (0, R) \times (0, 2\pi)$, also ist $A \setminus A^0$ eine zweidimensionale Nullmenge. Sei ϕ die Polarkoordinatenabbildung. Dann gilt $\phi(A) = B(0, R)$ und $\phi: A^0 \to B(0, R) \setminus (\mathbb{R}_+ \times \{0\})$ diffeomorph. Mit dem Trafo folgt

$$\begin{split} \lambda(B(0,R)) &= \int_{B(0,R)} 1 dy = \int_A 1 \cdot r d(r\varphi) \overset{\text{Fub}}{=} \int_0^{2\pi} \int_0^R r dr d\varphi \\ &= \frac{2\pi R^2}{2} = \pi R^2. \end{split}$$

Lemma 3.31. Sei $T \in L(\mathbb{R}^d)$ invertierbar, $v \in \mathbb{R}^d$, $A \in \mathcal{B}_d$. Dann gelten $B = TA + v = \{y \in \mathbb{R}^d : \exists x \in A : y = Tx + v\} \in \mathcal{B}_d$ und $\lambda_d(TA + v) = |\det T|\lambda_d(A)$. Also gilt für jede Bewegung T (d.h., $\det T = \pm 1$) $\lambda(TA + v) = \lambda(A)$. Somit ist λ bewegungsinvariant.

Ana III, 19.12.2008

Beweis. Sei $\phi(x) = Tx + v$. Dann gilt $B := \phi(A) = (\phi^{-1})^{-1}(A) \in \mathcal{B}_d$, da ϕ^{-1} stetig und damit messbar. Satz 1.24 sagt dann $\lambda(TA + v) = \lambda(TA)$. Für $A \in \mathcal{B}_d$ setze $\mu(A) := \lambda(TA)$. Dann gilt sofort $\mu(\emptyset) = \lambda(\emptyset) = 0$.

Seien $A_j \in \mathcal{B}_d$ $(j \in \mathbb{N})$ disjunkt. Da T injektiv ist, sind auch die TA_j $(j \in \mathbb{N})$ disjunkt. Ferner gilt $T \biguplus_{j \in \mathbb{N}} A_j = \{y \in \mathbb{R}^d : \exists! x \in A_j \text{ mit } y = Tx\} = \biguplus_{j \in \mathbb{N}} TA_j$. Damit gilt

$$\mu\left(\biguplus_{j\in\mathbb{N}}A_j\right) = \lambda\left(T\biguplus_{j\in\mathbb{N}}A_j\right) = \lambda\left(\biguplus_{j\in\mathbb{N}}A_j\right) = \sum_{j=1}^{\infty}\lambda(TA_j) = \sum_{j=1}^{\infty}\mu(A_j).$$

Also ist μ ein Maß.

Sei $x \in \mathbb{R}^d$. Dann gilt $\mu(A+x) = \lambda(TA+Tx) \stackrel{\text{Satz 1.24}}{=} \lambda(TA) = \mu(A)$, womit μ Translationsinvariant ist. Mit Satz 1.24 folgt dann

$$\mu(A) = c(T) \cdot \lambda(A), \tag{*}$$

wobei $c(T) = \mu([q_1]^d) = \lambda(T[q_1]^d)$ gilt. Demnach müssen wir $c(T) = |\det T|$ zeigen. Dies erledigen wir in drei Schritten:

- 1) Sei speziell $T = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \ddots & \lambda_d \end{pmatrix}$ mit $\lambda_j \in \mathbb{R} \setminus \{0\}$. Dann ist $T[0,1)^d$ ein Würfel mit 0^d als Ecke und den Kantenlängen $|\lambda_1|, \dots, |\lambda_d|$. Also gilt für sein Volumen $\lambda(T[0,1)^d) = |\lambda_1| \cdots |\lambda_d| = |\det T|$.
- 2) Sei speziell T orthogonal (d.h. $\exists T^{-1} = T^T$). Dann gilt

$$|Tx|_2^2 = (Tx|Tx) = (T^TT|x) = |x|_2^2.$$

Genauso gilt

$$|T^{-1}x| = |x|_2 \implies TB(0,1) = B(0,1).$$
 (+)

Damit folgt

$$c(T) \cdot \lambda(B(0,1)) \stackrel{(*)}{=} \mu(B(0,1)) = \lambda(TB(0,1)) \stackrel{(+)}{=} \lambda(B(0,1)).$$

Also gilt $c(T) = 1 = |\det T|$, da $T^{-1} = T^T$.

3) Sei nun T beliebig invertierbar.

Beh: \exists orthogonale Matrizen Q, S und eine Matrix $D = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_d \end{pmatrix}, \lambda_j \in \mathbb{R} \setminus \{0\},$ mit $T^{-1} = Q^{-1}DS$.

Ist Beh gezeigt, dann folgt $|\det T| = |\det Q^{-1}| \cdot |\det D| \cdot |\det S| = |\det D|$. Weiter gilt dann

$$\begin{split} c(T) &= \lambda \left(T[0,1)^d \right) = \lambda \left(Q^{-1} DS[0,1)^d \right) \stackrel{2)}{\underset{(*)}{\rightleftharpoons}} \lambda \left(DS[0,1)^d \right) \stackrel{1)}{\underset{(*)}{\rightleftharpoons}} |\det D| \\ &= \lambda \left(S[0,1)^d \right) \stackrel{2)}{\underset{=}{\rightleftharpoons}} |\det D| = \lambda \left([0,1)^d \right) = 1. \end{split}$$

Das bedeutet, dass wir den Beweis erbracht haben, sobald Beh gezeigt ist.

Beweis von <u>Beh</u>. Die Matrix T^TT ist symmetrisch, da $(T^TT)^T = T^T(T^T)^T = T^TT$, und positiv definit nach (+). Aus der Linearen Algebra wissen wir, dass $Q^{-1} = Q^T$ und D^2 wie oben exisitieren, sodass

$$T^T T = Q^T D^2 Q \tag{++}$$

gilt. Setze $S := D^{-1}QT$. Dann gelten $Q^{-1}DS = T$ und

$$SS^T = D^{-1}QTT^TQ^TD^{-1} \stackrel{(++)}{=} D^{-1}\underbrace{QQ^T}_{=I}D^2\underbrace{QQ^T}_{=I}D^{-1} = I.$$

Damit ist das Lemma gezeigt.

Lemma 3.32. Seien $\emptyset \neq X, Y \subset \mathbb{R}^d$ offen, $\phi : X \to Y$ diffeomorph, $A \in \mathcal{B}(X)$. Dann ist $\phi(A) \in \mathcal{B}_d$ und es gilt

П

$$\lambda_d(\phi(A)) = \int_A |\det \phi'(x)| dx.$$

Beweis. Extra Vorlesung.

Lemma 3.33. Sei $U \subset \mathbb{R}^d$ offen, $F \in C^1(U, \mathbb{R}^d)$ und $N \subset U$ eine d-dim. Nullmenge. Dann ist F(N) auch eine d-dimensionale Nullmenge.

Beweis von Thm 3.30. Vorberkung: Nach Voraussetzung gilt $B \setminus Y \in \mathcal{B}_d$ und $A \setminus X$ ist eine Nullmenge. Ferner gilt $B \setminus Y = \phi(A) \setminus \phi(X) \subset \phi(A \setminus X) \subset \mathbb{Z}$ Nullmenge. Damit ist $B \setminus Y$ eine Nullmenge.

a) Sei $f \geq 0$. Dann gilt $\int_{B \setminus Y} f dx = 0 = \int_{A \setminus X} g dx$. Daraus folgt

$$\int_{B} f dy = \int_{Y} f dy, \quad \int_{A} g dx = \int_{X} g dx.$$

b) $f = \mathbf{1}_Y \cdot f$ (f. \ddot{u} .), $g = \mathbf{1}_X \cdot g$ (f. \ddot{u} .). Lem 3.5 zeigt

f integrierbar auf $B \Leftrightarrow f$ integrierbar auf Y und dann gilt

$$\int_{Y} f dx = \int_{B} f dy.$$

Entsprechendes gilt für g. Fazit: Das Theorem muss nur für A = X und B = Y gezeigt werden.

Nach Ana2 ist $\phi: X \to Y$ diffeomorph und Y ist offen.

a) 1) Sei $f \geq 0$ einfach mit $f = \sum_{k=1}^{m} z_k \cdot \mathbf{1}_{B_k}$, $B_k \in \mathcal{B}(Y)$. Da ϕ stetig ist, folgt $\phi^{-1}(B_k) =: A_k \in \mathcal{B}(X) \ \forall k \in \mathbb{N}$. Weiter ist $B_k = \phi(A_k)$ und es gilt für alle $x \in X, k = 1, \ldots, m$

$$\mathbf{1}_{A_k}(x) = \begin{cases} 1, & x \in A_k \\ 0, & x \notin A_k \end{cases} = \begin{cases} 1, & \phi(x) \in \mathcal{B}_k \\ 0, & \phi(x) \notin \mathcal{B}_k \end{cases} = \mathbf{1}_{B_k}(\phi(x)).$$

Damit gilt

$$\int_{Y} f dy = \sum_{k=1}^{m} z_{k} \cdot \int_{Y} \mathbf{1}_{B_{k}} dy \stackrel{\text{s.o.}}{=} \sum_{k=1}^{m} z_{k} \cdot \lambda(\phi(A_{k}))$$

$$\stackrel{\text{Lem 3.32}}{=} \sum_{k=1}^{m} z_{k} \cdot \int_{A_{k}} |\det \phi'(x)| dx$$

$$= \int_{X} \sum_{k=1}^{m} z_{k} \cdot \underbrace{\mathbf{1}_{A_{k}}(x)}_{=\mathbf{1}_{B_{k}}(\phi(x))} \cdot |\det \phi'(x)| dx$$

$$= \int_{X} f(\phi(x)) \cdot |\det \phi(x)| dx.$$

2) Sei $f: Y \to [0, \infty]$ messbar. Dann existieren einfache $f_n: Y \to \mathbb{R}_+$ mit $f_n \leq f_{n+1} \ (\forall n \in \mathbb{N})$ und $f_n \xrightarrow{n \to \infty} f$. Dann gilt

$$\int_{Y} f dy \stackrel{\text{BL}}{=} \lim_{n \to \infty} \int_{Y} f_{n} dy \stackrel{1)}{=} \lim_{n \to \infty} \int_{X} \underbrace{f_{n}(\phi(x)) \cdot |\det \phi'(x)|}_{=:g_{n}(x) \leq g_{n+1} \xrightarrow{n \to \infty} g(x)} dx$$

$$\stackrel{\text{BL}}{=} \int_{X} f(\phi(x)) \cdot |\det \phi'(x)| dx.$$

Damit ist a) gezeigt.

b) 3) Sei $f: Y \to \overline{\mathbb{R}}$ messbar. Dann ist $g_{\pm}(x) = f_{\pm}(\phi(x)) \cdot |\det \phi'(x)|$ für alle $x \in X$. Aus 2) folgt, dass (3.7) für f_{\pm} und g_{\pm} gilt. Damit gelten

f integrierbar $\Leftrightarrow f_{\pm}$ integrierbar $\overset{a)}{\Leftrightarrow} g_{\pm}$ integrierbar $\Leftrightarrow g$ integrierbar

und

$$\int_Y f dy = \int_Y f_+ dy - \int_Y f_- dy \stackrel{(3.7)}{=} \int_X g_+ dx - \int_X g_- dx = \int_X g dx.$$

Damit ist b) gezeigt.

Beispiel 3.34 (Affiner Transformationssatz). Sei $\phi(x) = Tx + v$ für festes $v \in \mathbb{R}^d$ und $T \in L(\mathbb{R}^d)$ mit det $T \neq 0$. Sei $A \in \mathcal{B}_d$, sodass $A \setminus A^0$ eine Nullmenge ist, $A^0 \neq \emptyset$. Daraus folgt $B = TA + v \in \mathcal{B}_d$. Für $f : B \to \overline{\mathbb{R}}$ (integrierbar oder messbar und positiv) gilt

$$\int_{B} f(y)dy = |\det T| \cdot \int_{A} f(Tx + v)dx.$$

Beispiel 3.35 (d-dimensionale Polarkoordinaten). Sei $(r, \varphi, \Theta_1, \dots \Theta_{d-2}) =: (r, \varphi, \Theta) \in \mathbb{R}^d, \ d \geq 2$. Setze

$$\phi_{d}(r,\varphi,\Theta) := \begin{pmatrix} r \cdot \cos(\varphi) & \cos(\Theta_{1}) & \cos(\Theta_{2}) & \cdots & \cos(\Theta_{d-2}) \\ r \cdot \sin(\varphi) & \cos(\Theta_{1}) & \cos(\Theta_{2}) & \cdots & \cos(\Theta_{d-2}) \\ & r \cdot \sin(\Theta_{1}) & \cos(\Theta_{2}) & \cdots & \cos(\Theta_{d-2}) \\ & & \ddots & & \vdots \\ & & & r \cdot \sin(\Theta_{d-2}) \end{pmatrix}. \tag{3.8}$$

Klar: $\phi_d \in C^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$.

Sei $H_d = \mathbb{R}_+ \times \{0\} \times \mathbb{R}^{d-2}$, wobei $H_2 = \mathbb{R}_+ \times \{0\}$. $W_d = (0, 2\pi) \times (-\frac{\pi}{2}, \frac{\pi}{2})^{d-2}$, wobei $H_2 = (0, 2\pi)$.

Beh: Seien R > 0, $(r, \varphi, \Theta) \in \mathbb{R}^d$. Dann gelten $|\phi_d(r, \varphi, \Theta)| = r$ und

$$\det \phi'(r, \varphi, \Theta) = r^{d-1} \cdot \cos(\Theta_1) \cdot \cos^2(\Theta_2) \cdots \cos^{d-2}(\Theta_{d-2}) = r^{d-1} \cdot TODO.$$

$$\begin{aligned} \phi_d : (0, \infty) \times W_d &\to \mathbb{R}^d \text{ ist injektiv, } \phi_d((0, \infty) \times W_d) = \mathbb{R}^d \backslash H_d, \\ \phi_d(\mathbb{R}_+ \times \overline{W}_d) &= \mathbb{R}^d, \, \phi_d((0, R) \times W_d) = B(0, R), \, \phi_d([0, R) \times \overline{W}_d) = B(0, R) \backslash H_d. \end{aligned}$$

Zum Beweis siehe. Aman/Escher III, Lemma X.8.8.

Sei $A = [0, R) \times \overline{W}_d$ Dann folgt $A^0 = (0, R) \times \overline{W}_d \Leftarrow \lambda_d(A \setminus A^0) = 0$. Ferner ist $B(0, R) = \phi(A)$. Damit gilt

$$\begin{split} &\lambda(B(0,R)) = \int_{B(0,R)} 1 dy \overset{\text{Trafo}}{=} \int_{(0,R)} |\det \phi| dx \\ &\overset{(3.8)}{=} \int_{0}^{R} \int_{0}^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} r^{d-1} \cos(\Theta_{1}) \cdots \cos^{d-1}(\Theta_{d-2}) d\Theta_{d-2} \cdots d\Theta_{1} d\varphi dr \\ &= \underbrace{\int_{0}^{R} r^{d-1} dr}_{\frac{1}{2}R^{d}} \cdot \underbrace{\int_{0}^{2\pi} d\varphi}_{=2\pi} \cdot \prod_{k=1}^{d-2} 2 \cdot \underbrace{\int_{0}^{\frac{\pi}{2}} \cos^{k}(t) dt}_{=:I_{k}} = \underbrace{\frac{2^{d-1}}{d} \cdots \pi \cdot I_{1} \cdot I_{2} \cdots I_{d-2}}_{=:I_{k}}. \end{split}$$

<u>Dabei</u>: $I_k \stackrel{\text{PI}}{=} \frac{k-1}{k} \cdot I_{k-2}$ mit $I_1 = 1, \ I_2 = \pi$. Per Induktion folgt

$$\lambda(B(0,R)) = \begin{cases} \frac{\pi^{\frac{d}{2}}}{\frac{d}{2}!} \cdot R^d, & d \text{ gerade} \\ \frac{2 \cdot (2\pi)^{\frac{d-1}{2}}}{d \cdot (d-2) \cdot \cdot \cdot 3 \cdot 1} \cdot R^d, & d \text{ ungerade} \end{cases} \stackrel{!}{=} \frac{2\pi^{\frac{d}{2}}}{d \cdot \Gamma(\frac{d}{2})} \cdot R^d.$$

Setze

$$\kappa_d := \lambda_d(B(0,1)) = \frac{2\pi^{\frac{d}{2}}}{d\Gamma(\frac{d}{2})}, \text{ wobei } \kappa_1 = 2, \ \kappa_2 = \pi, \ \kappa_3 = \frac{4}{3}\pi \text{ gilt.}$$
(3.9)

Dabei ist $\Gamma(x) = \int_0^\infty t^{x-1} \cdot e^{-t} dt$. Es gelten

$$\Gamma(1) = 1, \ x \cdot \Gamma(x) = \Gamma(x+1). \tag{3.10}$$

Also $\Gamma(n) = n! \ (\forall n \in \mathbb{N})$. Und es gilt $\Gamma(\frac{1}{2}) = \sqrt{\pi}$, siehe Ana1.

Ana III, 22.12.2008

Beispiel 3.36 (rotationssymmetrische Funktion). Sei $I \subset \mathbb{R}_+$ ein Intervall, $a = \inf I_+$, $b = \sup I$, $\phi: I \to \overline{\mathbb{R}}$ messbar. Setze $f(y) := \phi(|y|_2)$ für $y \in R = \{y \in \mathbb{R}^d : |y|_2 \in I\}$ in \mathbb{R}^2 .

TODO: Bild

Mit Bsp 3.35: $\phi_d: A:=I\times \overline{W}_d\to R$ surjektiv. $\phi_d: A^0\to R^0$ ist diffeomorph, $A^0=I^0\times W_d$. Damit ist $A\backslash A^0$ eine Nullmenge. Mit Thm 3.30 folgt:

f auf \mathbb{R} integrierbar $\Leftrightarrow g = f \circ \phi_d(\det \phi'_d)$ integrierbar auf A,

wobei $g(r, \varphi, \Theta) = \phi(r) \cdot r^{d-1} \cdot \underbrace{\cos(\Theta) \cdots \cos^{d-2}(\Theta_{d-2})}_{=:w(\Theta)}$ und w > 0 stetig und beschränkt

auf W_d ist.

Fubinisagt:

fintegrierbar $\Leftrightarrow g$ integrierbar $\Leftrightarrow r \mapsto r^{d-1}\phi(r)$ integrierbar auf I

und

$$\int_{R} f(y)dy \stackrel{\text{Trafo}}{=} \int_{a}^{b} \int_{0}^{2\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cdots \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \phi(r) \cdot r^{d-1} \cdot w(\Theta) d\Theta d\varphi dr$$

$$= \int_{a}^{b} r^{d-1} \phi(r) dr \cdot \underbrace{\int_{0}^{2\pi} d\varphi}_{=2\pi} \cdot \underbrace{\int_{W_{d}}^{w(\Theta)} d\Theta}_{(3.9)} \underbrace{\int_{W_{d}}^{w(\Theta)} d\Theta}_{=\kappa_{d} \frac{d}{2\pi}}$$

$$= d \cdot \kappa_{d} \cdot \int_{a}^{b} r^{d-1} \phi(r) dr = \frac{2\pi^{\frac{d}{2}}}{r(\frac{d}{2})} \cdot \int_{a}^{b} r^{d-1} \phi(r) dr.$$
(3.11)

(3.11) gilt stets für $\phi \geq 0$. Wir setzen

$$w_d = \frac{2\pi^{\frac{d}{2}}}{r(\frac{d}{2})} = d \cdot \kappa_d. \tag{3.12}$$

Speziell $w_2 = 2\pi$, $w_3 = 4\pi$.

Beispiel. $d=3, \ \phi(r)=\frac{1}{r}, \ I=(0,R)$. Dann gilt

$$\int_{B(0,R)} \frac{dx}{|x|_2} \stackrel{(3.11)}{=} w_B \cdot \int_0^R r^2 \cdot \frac{1}{r} dr = 4\pi \cdot \int_0^R r dr = 2\pi \cdot R^2.$$

Hier gilt $f(y) = \frac{1}{|y|_2}$.

Satz 3.37. Sei $f: \mathbb{R}^d \to \mathbb{R}$ messbar, es gebe Konstanten $c, \epsilon > 0$ mit

$$|f(x)| = \begin{cases} c \cdot |x|_2^{-d+\epsilon}, & 0 \le |x|_2 \le 1 \\ c \cdot |x|_2^{-d-\epsilon}, & |x|_2 \ge 1 \end{cases}.$$

Dann ist f integrierbar.

Beweis. Sei $\phi(r) = c \cdot r^{-d+\epsilon}$ für $0 < r \le 1$, $\phi(r) = c \cdot r^{-d-\epsilon}$ für $r \ge 1$. Sei $g(x) = \phi(|x|_2)$ für $x \in \mathbb{R}^d \setminus \{0\}$ und g(0) = 0. Dann ist $g \ge 0$ und messbar. Mit Bsp 3.36 folgt nun

$$\begin{split} \int_{\mathbb{R}^d} g(x) dx &= w_d \cdot \int_0^\infty r^{d-1} \phi(r) dr \\ &= c \cdot \underbrace{\int_0^1 r^{d-r} r^{-d+\epsilon}}_{-x^{-1+\epsilon}} dr + c \cdot \int_1^\infty \underbrace{r^{d-1} r^{-d-\epsilon}}_{=r^{-1-\epsilon}} dr < \infty. \end{split}$$

Somit ist g integrierbar. Da $|f| \leq g$, folgt mit Satz 2.23, dass auch f integrierbar ist. \square

Beispiel 3.38.

$$J := \int_{\mathbb{R}^d} e^{-|x|_2^2} dx = \pi^{\frac{d}{2}}.$$

Beweis.

$$J \stackrel{\text{Fub}}{=} \underbrace{\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} e^{-x_1^2} \cdots e^{-x_d^2} dx_d \dots dx_1}_{= \left(\int_{\mathbb{R}} e^{-t^2} dt \right)^d.$$

Im Falle d=2 gilt

$$\begin{split} \left(\int_{\mathbb{R}} e^{-t^2} dt\right)^2 &= \int_{\mathbb{R}} e^{-x^2} dx \cdot \int_{\mathbb{R}} e^{-y^2} dy \overset{\text{Fub}}{=} \int_{\mathbb{R}^2} e^{-(x^2+y^2)} d(x,y) \\ &\overset{\text{Trafo}}{=} \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} dr d\varphi = \int_{0}^{2\pi} d\varphi \int_{0}^{\infty} e^{-r^2} \cdot r dr \\ &\overset{s=r^2=\phi(r)}{=} 2\pi^{\frac{1}{2}} \cdot \int_{0}^{\infty} e^{-s} ds = \pi. \end{split}$$

Also gilt

$$\int_{\mathbb{R}} e^{-t^2} dt = \sqrt{\pi},$$

woraus die Behauptung folgt.

Folgerung:

$$\Gamma\left(\frac{1}{2}\right) = \int_0^\infty \frac{1}{\sqrt{t}} \cdot e^{-t} dt \stackrel{t=s^2=\phi(s)}{\underset{ds}{=}} \int_0^\infty \frac{1}{s} c^{-s^2} 2s \stackrel{\text{s.o.}}{=} \sqrt{\pi} = 2 \cdot \int_0^\infty e^{-s^2} ds.$$