Derivatives

Implicit and Logarithmic

Milind Oka

July 21, 2020

Question: If $x + \sqrt{xy} + y = 1$, find $\frac{dy}{dx}$ Answer:

Given
$$x + \sqrt{xy} + y = 1$$

Differentiating w.r.t. x

$$1 + \frac{1}{2\sqrt{xy}} \left(x \frac{dy}{dx} + y \right) + \frac{dy}{dx} = 0$$

$$\therefore 1 + \frac{x}{2\sqrt{xy}} \frac{dy}{dx} + \frac{y}{2\sqrt{xy}} + \frac{dy}{dx} = 0$$

$$\therefore \left(\frac{x}{2\sqrt{xy}} + 1 \right) \frac{dy}{dx} = -1 - \frac{y}{2\sqrt{xy}}$$

$$\therefore \left(\frac{x}{2\sqrt{xy}} + 1 \right) \frac{dy}{dx} = -1 - \frac{y}{2\sqrt{xy}}$$

Given
$$x + \sqrt{xy} + y = 1$$

Differentiating w.r.t. x

$$1 + \frac{1}{2\sqrt{xy}} \left(x \frac{dy}{dx} + y \right) + \frac{dy}{dx} = 0$$

$$\therefore 1 + \frac{x}{2\sqrt{xy}} \frac{dy}{dx} + \frac{y}{2\sqrt{xy}} + \frac{dy}{dx} = 0$$

$$\therefore \frac{dy}{dx} = -\frac{2\sqrt{xy} + y}{2\sqrt{xy}}$$

$$\therefore (x + 2\sqrt{xy}) \frac{dy}{dx} = -2\sqrt{xy} - y$$

$$\therefore \frac{dy}{dx} = -\frac{x + 2\sqrt{xy}}{2\sqrt{xy} + y}$$

$$\therefore \frac{dy}{dx} = -\frac{x + 2\sqrt{xy}}{2\sqrt{xy} + y}$$

Question: If $x^p y^q = (x + y)^{p+q}$, the show that $\frac{dy}{dx} = \frac{y}{x}$ **Answer:**

Given
$$x^p y^q = (x + y)^{p+q}$$

 $\therefore \log(x^p y^q) = \log(x + y)^{p+q}$
 $\therefore p \log x + q \log y) = (p+q) \log(x+y)$
Differentiating w.r.t. x
 $\therefore \frac{p}{x} + \frac{q}{y} \frac{dy}{dx} = \frac{p+q}{x+y} \left(1 + \frac{dy}{dx}\right)$
 $\therefore \frac{p}{x} + \frac{q}{y} \frac{dy}{dx} = \frac{p+q}{x+y} + \frac{p+q}{x+y} \frac{dy}{dx}$
 $\therefore \left(\frac{q}{y} - \frac{p+q}{x+y}\right) \frac{dy}{dx} = \frac{p+q}{x+y} - \frac{p}{x}$

Question : If $x^p y^q = (x + y)^{p+q}$, the show that $\frac{dy}{dx} = \frac{y}{x}$ **Answer: Contd**

$$\therefore \frac{q(x+y) - (p+q)y}{y(x+y)} \frac{dy}{dx} = \frac{(p+q)x - p(x+y)}{(x+y)x}$$

$$\therefore \frac{qx + qy - py - qy}{y} \frac{dy}{dx} = \frac{px + qx - px - py}{x}$$

$$\therefore \frac{qx - py}{y} \frac{dy}{dx} = \frac{qx - py}{x}$$

$$\therefore \frac{dy}{dx} = \frac{y}{x}$$