Grundlagen der Robotik

5. Orientierungsrepräsentationen Denavit-Hartenberg-Parameter

Prof. Sven Behnke

Letzte Vorlesung

- Kinematik
 - Gelenkraum vs. Arbeitsraum
 - Vorwärts: Gelenkwinkel => Endeffektorpose
 - Invers: Endeffektorpose => Gelenkwinkel
 - Manipulator als Kette von 1DOF-Gelenken
- Homogene Transformationen
 - Koordinatensystem ${B} = {A \atop B} R A P_{Borg}$
 - Mapping

- Positionsrepräsentationen
 - Kartesisch (x, y, z)
 - Zylindrisch (ρ, θ, z)
 - Sphärisch $(\mathbf{r}, \theta, \phi)$
- Orientierungsrepräsentationen
 - Rotation um drei orthogonale Achsen
 - Rotationsmatrix mit sechs Nebenbedingungen
 - Einheitslänge:
 - Orthogonalität:

Repräsentation mit drei Winkeln

- Es gibt viele Möglichkeiten, die Reihenfolge von Elementar-Rotationen zu kombinieren.
- Die Rotationsachse kann fest oder beweglich sein.

Euler-Winkel

- Bewegliche Rotationsachsen
- Z.B. X-Y-Z, d.h. zuerst Rotation um X-Achse
- Anschließend Rotation um rotierte Y-Achse

- Dann Rotation um resultierende Z-Achse
- 12 Varianten, abhängig von Reihenfolge der Rotationen

Absolute Winkel

Feste Rotationsachsen

- Z.B. X-Y-Z, d.h. zuerst Rotation um X-Achse
- Anschließend Rotation um ursprüngliche Y-Achse

- Dann Rotation um ursprüngliche Z-Achse
- 12 Varianten, abhängig von Reihenfolge der Rotationen

(Z-Y-X)-Eulerwinkel

- Rotation um Z-Achse mit Winkel α
- Rotation um resultierende Y-Achse mit Winkel β
- Rotation um resultierende
 X-Achse mit Winkel γ
- Gesamtrotation

$$_{B}^{A}R = _{B'}^{A}R._{B''}^{B'}R._{B}^{B''}R$$

$$_{B}^{A}R = R_{Z}(\alpha).R_{Y}(\beta).R_{X}(\gamma)$$

(X-Y-Z)-Absolutwinkel

Drei Rotationen um die ursprünglichen Achsen

$$R_X(\gamma)$$
: $v \to R_X(\gamma).v$
 $R_Y(\beta)$: $(R_X(\gamma).v) \to R_Y(\beta).(R_X(\gamma).v)$
 $R_Z(\alpha)$: $(R_Y(\beta).R_X(\gamma).v) \to R_Z(\alpha).(R_Y(\beta).R_X(\gamma).v)$

Gesamtrotation

$$| {}_{B}^{A}R = {}_{B}^{A}R_{XYZ}(\gamma, \beta, \alpha) = R_{Z}(\alpha).R_{Y}(\beta).R_{X}(\gamma)$$

(Z-Y-X)-Eulerwinkel

Multiplikation elementarer Rotationsmatrizen

$$_{B}^{A}R = R_{Z}(\alpha).R_{Y'}(\beta).R_{X''}(\gamma)$$

$$= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}$$

Gesamtrotation

$${}_{B}^{A}R = {}_{B}^{A}R_{ZY'X''}(\alpha, \beta, \gamma) = \begin{bmatrix} c\alpha.c\beta & X & X \\ s\alpha.c\beta & X & X \\ -s\beta & c\beta.s\gamma & c\beta.c\gamma \end{bmatrix}$$

Wie kann man die Winkel aus der Matrix ablesen?

(Z-Y-Z) - Eulerwinkel

Multiplikation elementarer Rotationen

$$_{B}^{A}R = R_{Z}(\alpha).R_{Y'}(\beta).R_{Z''}(\gamma)$$

Gesamtrotation

$${}_{B}^{A}R = {}_{B}^{A}R_{ZY'Z''}(\alpha, \beta, \gamma) = \begin{bmatrix} X & X & c\alpha.s\beta \\ X & X & s\alpha.s\beta \\ -s\beta.c\gamma & s\beta.s\gamma & c\beta \end{bmatrix}$$

Beispiel: (Z-Y-X)-Eulerwinkel

$$R_{Z \; Y'X''}(\alpha, \beta, \gamma)$$
: $\alpha = 0$
 $\beta = 0$
 $\gamma = 90$

Absolutwinkel vs. Eulerwinkel

(X-Y-Z) – Absolutwinkel

$$R_{XYZ}(\gamma, \beta, \alpha) = R_Z(\alpha).R_Y(\beta).R_X(\gamma)$$

(Z-Y-X) – Eulerwinkel

$$R_{ZY'X''}(\alpha,\beta,\gamma) = R_Z(\alpha).R_{Y'}(\beta).R_{X''}(\gamma)$$

Identität

$$R_{ZYX''}(\alpha, \beta, \gamma) = R_{XYZ}(\gamma, \beta, \alpha)$$

Inverses Problem

- Gegeben: Rotationsmatrix $\frac{A}{B}R$
- Gesucht: Winkel (α, β, γ)
- Z-Y-X Eulerwinkel

■ Bestimme Winkel $-\pi/2 < \beta <= \pi/2$:

$$(\cos \alpha)^{2} + (\sin \alpha)^{2} = 1 \implies \cos \beta = c\beta = \sqrt{r_{11}^{2} + r_{21}^{2}} \\ \sin \beta = s\beta = -r_{31}$$
 $\Rightarrow \beta = A \tan 2(-r_{31}, \sqrt{r_{11}^{2} + r_{21}^{2}})$

■ Für $cos(\beta)=0$ ($\beta=\pm90^{\circ}$) Singularität der Repräsentation (nur ($\alpha+\gamma$) oder ($\alpha-\gamma$) ist definiert)

Beispiel für Singularität

Z-Y-X Eulerwinkel

$$c\beta = 0$$
, $s\beta = +1$

$${}_{B}^{A}R = \begin{pmatrix} 0 & -s(\alpha - \gamma) & c(\alpha - \gamma) \\ 0 & c(\alpha - \gamma) & s(\alpha - \gamma) \\ -1 & 0 & 0 \end{pmatrix}$$

$$c\beta = 0$$
, $s\beta = -1$

$${}_{B}^{A}R = \begin{pmatrix} 0 & -s(\alpha + \gamma) & -c(\alpha + \gamma) \\ 0 & c(\alpha + \gamma) & -s(\alpha + \gamma) \\ 1 & 0 & 0 \end{pmatrix}$$
 = 90°-Rotation um Y_B macht X-Achse zur 7-Achse

Z-Achse

Rotation um Vektor K: $R_{\kappa}(\theta)$

- Man kann immer einen Einheitsvektor K finden, um den man mit θ rotieren kann
- mit θ rotieren kann Repräsentation: $X_r = \theta.K = \begin{bmatrix} \theta.k_X \\ \theta.k_Y \\ \theta.k_Z \end{bmatrix}$

$$mit \quad v\theta = 1 - c\theta$$

$$R_{K}(\theta) = \begin{bmatrix} k_{x}.k_{x}.v\theta + c\theta \\ k_{x}.k_{y}.v\theta + k_{z}.s\theta \\ k_{x}.k_{z}.v\theta - k_{y}.s\theta \end{bmatrix}$$

$$k_x.k_y.v\theta - k_z.s\theta$$
 $k_x.k_z.v\theta + k_y.s\theta$
 $k_y.k_y.v\theta + c\theta$ $k_y.k_z.v\theta - k_x.s\theta$
 $k_y.k_z.v\theta + k_x.s\theta$ $k_z.k_z.v\theta + c\theta$

- mit $v\theta = 1 c\theta$ $R_{K}(\theta) = \begin{bmatrix} k_{x}.k_{x}.v\theta + c\theta & k_{x}.k_{y}.v\theta k_{z}.s\theta & k_{x}.k_{z}.v\theta + k_{y}.s\theta \\ k_{x}.k_{y}.v\theta + k_{z}.s\theta & k_{y}.k_{y}.v\theta + c\theta & k_{y}.k_{z}.v\theta k_{x}.s\theta \\ k_{x}.k_{z}.v\theta k_{y}.s\theta & k_{y}.k_{z}.v\theta + k_{x}.s\theta & k_{z}.k_{z}.v\theta + c\theta \end{bmatrix}$ $R_{K}(\theta) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$ Berecha
 - Berechne: $\theta = Ar\cos(\frac{r_{11} + r_{22} + r_{33} 1}{2})$ $AK = \frac{1}{2.\sin\theta} \begin{bmatrix} r_{32} r_{23} \\ r_{13} r_{31} \\ r_{21} r_{12} \end{bmatrix}$
 - Singularität für $\sin \theta = 0$

$${}^{A}K = \frac{1}{2 \cdot \sin \theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Euler-Parameter (Quaternion)

 Jede Rotations-Repräsentation mit drei Parametern hat Singularität

= > nutze vier Parameter

$$\varepsilon_{1} = W_{x} \cdot \sin \frac{\theta}{2}$$

$$\varepsilon_{2} = W_{y} \cdot \sin \frac{\theta}{2}$$

$$\varepsilon_{3} = W_{z} \cdot \sin \frac{\theta}{2}$$

$$\varepsilon_{4} = \cos \frac{\theta}{2}$$

= => ε ist Punkt auf 4D-Einheitskugel

Beispiel

Rotation 60° um X-Achse

Euler-Parameter:

$$\boldsymbol{\varepsilon} = \begin{bmatrix} 1/2 \\ 0 \\ 0 \\ \sqrt{3}/2 \end{bmatrix}$$

■ Rotationsmatrix:
$${}_{B}^{A}R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & -\sqrt{3}/2 \\ 0 & \sqrt{3}/2 & 1/2 \end{bmatrix}$$

Inverses Problem

- Gegeben: Rotationsmatrix $\frac{A}{B}R$
- Gesucht: Euler-Parameter ε
- Berechne:

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = \begin{bmatrix} 1 - 2\varepsilon_2^2 - 2\varepsilon_3^2 & 2(\varepsilon_1\varepsilon_2 - \varepsilon_3\varepsilon_4) & 2(\varepsilon_1\varepsilon_3 + \varepsilon_2\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_2 + \varepsilon_3\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_3^2 & 2(\varepsilon_2\varepsilon_3 - \varepsilon_1\varepsilon_4) \\ 2(\varepsilon_1\varepsilon_3 - \varepsilon_2\varepsilon_4) & 2(\varepsilon_2\varepsilon_3 + \varepsilon_1\varepsilon_4) & 1 - 2\varepsilon_1^2 - 2\varepsilon_2^2 \end{bmatrix}$$

$$r_{11} + r_{22} + r_{33} = 3 - 4(\varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2)$$

$$(1 - \varepsilon_4^2)$$

$$\varepsilon_4 = \frac{1}{2} \sqrt{1 + r_{11} + r_{22} + r_{33}}$$

$$\varepsilon_1 = \frac{r_{32} - r_{23}}{4\varepsilon_4}, \quad \varepsilon_2 = \frac{r_{13} - r_{31}}{4\varepsilon_4}, \quad \varepsilon_3 = \frac{r_{21} - r_{12}}{4\varepsilon_4}$$

■ Problem: $\varepsilon_4 = 0$

Inverses Problem

- Man kann zeigen, dass es immer einen Parameter ε_i≥0.5 gibt
- => Teile durch den größten Parameter
 - \bullet ϵ_1 maximal:

$$\varepsilon_1 = \frac{1}{2} \sqrt{r_{11} - r_{22} - r_{33} + 1}$$

$$\varepsilon_2 = \frac{(r_{21} + r_{12})}{4\varepsilon_1}, \quad \varepsilon_3 = \frac{(r_{31} + r_{13})}{4\varepsilon_1}, \quad \varepsilon_4 = \frac{(r_{32} - r_{23})}{4\varepsilon_1}$$

- ε_2 maximal: $\varepsilon_2 = \frac{1}{2} \sqrt{-r_{11} + r_{22} r_{33} + 1}$
- ε_3 maximal: $\varepsilon_3 = \frac{1}{2} \sqrt{-r_{11} r_{22} + r_{33} + 1}$
- ε_4 maximal: $\varepsilon_4 = \frac{1}{2} \sqrt{1 + r_{11} + r_{22} + r_{33}}$

Denavit-Hartenberg-Parameter

Kinematische Kette

Beschreibung eines Verbindungsglieds

Sich Schneidende Achsen

Achsen häufig parallel oder schneidend

- Winkel α_{i-1} in der von den
 Achsen aufgespannten Ebene
- Vorzeichen frei wählbar

Verbindung zum nächsten Glied

Achsen an der Basis

- a_i und α_i hängen von den Achsen i und i+1 ab
- Achsen 1,...,n legen a_1 , ..., a_{n-1} und α_1 , ..., α_{n-1} fest
- Konvention: $a_0 = a_n = 0$ und $\alpha_0 = \alpha_n = 0$

Erste Achse an der Basis

■ Achse 0 parallel zu Achse 1: α_0 =0, Achsabstand Null a_0 =0

Endeffektor-Koordinaten

- Koordinaten des Endeffektors durch Werkzeug und Aufgabe bestimmt
- Betrachte Schnittpunkt der Achsen im "Handgelenk"

Letzte Achse am Endeffektor

■ Achse n+1 parallel zu Achse n: $\alpha_n=0$, Achsabstand Null $a_n=0$

Basis und Endeffektor

- θ_i und d_i hängen von den Achsen i-1 und i ab
- Achsen 1,...,n-1 legen θ_2 , ..., θ_{n-1} und d_2 , ..., d_{n-1} fest
- Konvention: Setze konstanten Parameter Null (abhängig vom Gelenktyp) θ_1 oder $d_1=0$; θ_n oder $d_n=0$

Denavit-Hartenberg-Parameter

- Beschreibung eines Gelenks i durch vier
 DH-Parameter: (α_i, a_i, d_i, θ_i)
 - Drei konstante Parameter
 - Ein variabler Parameter, abhängig vom Gelenktyp
 - d_i variabel für Lineargelenk
 - θ_i variabel für Rotationsgelenk
- α_i und a_i beschreiben das Glied
 (Verdrehung und Achsabstand)
- d_i und θ_i beschreiben die Verbindung zum nächsten Glied (Rotation und Linearbewegung)

Platzierung der Koordinatensysteme

- Ursprung in Schnittpunkt mit kürzestem Normalenvektor zur nächsten Gelenk-Achse
- Z-Achse entlang der Gelenk-Achse
- X-Achse entlang gemeinsamen Normalenvektor
- Y-Achse ergibt sich durch Rechte-Hand-Regel (Daumen=X, Zeigefinger=Y, Mittelfinger=Z)

Mehrere Achsen

- 1. Normalen finden
- 2. Ursprung festlegen
- 3. Z-Achse bestimmen
- 4. X-Achse bestimmen

Sich Schneidende Achsen

Häufiger Spezialfall

Vorzeichen von Verdrehung α_i hängt von Richtung

der X-Achse ab

Erstes Gelenk: Paramterwahl

Rotationsgelenk

$$a_0 = 0$$

 $\alpha_0 = 0$
 $d_1 = 0$

$$\theta_1 = 0 \longrightarrow \{0\} \equiv \{1\}$$

Lineargelenk

$$a_0 = 0$$
$$\alpha_0 = 0$$
$$\theta_1 = 0$$

$$d_1 = 0 \longrightarrow \{0\} \equiv \{1\}$$

Letztes Gelenk

Rotationsgelenk $d_{n} = 0$ $\theta_{n} = 0 \longrightarrow x_{n} = x_{n-1}$ x_{n-1}

Lineargelenk

DH-Zusammenfassung

- a_i: Distanz (z_i, z_{i+1}) entlang x_i
- \bullet α_i : Winkel (z_i, z_{i+1}) um x_i
- d_i: Distanz (x_{i-1}, x_i) entlang z_i
- \bullet θ_i : Winkel (x_{i-1}, x_i) um z_i

Beispiel: Planarer Arm mit drei Rotationsgelenken

Beispiel: RPRR-Arm

Schematische Darstellung:

Beispiel: RPRR-Arm

Festlegung der Achsen und Ursprünge

Beispiel: RPRR-Arm

DH-Parameter:

- a_i : Distanz (z_i, z_{i+1}) entlang x_i
- \bullet α_i : Winkel (z_i, z_{i+1}) um x_i
- d_i: Distanz (x_{i-1}, x_i) entlang z_i
- θ_i : Winkel (x_{i-1}, x_i) um z_i

	1.1			
1	0	0	0	(θ_1)
2	-90	0	$\overline{\mathbf{d}_{2}}$	-90
3	-90	L_2	0	(θ_3)
4	90	0	L ₅	θ_{4}
5	0	L ₄	0	0

DH-Vorwärtskinematik

Vier elementare Transformationen:

DH-Vorwärtskinematik

Vorwärtskinematik für kinematische Kette

Multipliziere Einzelgelenkstransformationen

$$_{N}^{0}T = _{1}^{0}T _{2}^{1}T _{N}^{N-1}T$$