Zhang YY, Niu L, Makihara Y et al. Natural Image Matting with Attended Global Context. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 38(3)

Natural Image Matting with Attended Global Context

1 Supplementary

1.1 Comparison with the State-of-the-art

We report four widely acknowledged metrics are used for evaluation: SAD (sum of absolution difference), MSE (mean square error), gradient, and connectivity of different methods on the alphamatting.com benchmark in Table 1 – Table 4. We compare the proposed method with five state-of-the-art deep learning-based methods. As a result, we observe that our method achieves competitive results among the state-of-the-art matting methods, especially in SAD and MSE metric.

Table 1. SAD Comparison with Top 6 State-Of-The-Art Baselines on the Alphamatting.com Online

SAD	overall	AVG				Troll		Doll			Donkey			Elephant			Plant			Pineapple			Pl	astic b	ag	Net			
	overan	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	
Ours	10.6	13.9	8.6	9.3	9	9.6	10.2	4.9	4.7	5.6	2.9	3.1	2.7	1.1	1.1	1.3	5.9	6.2	7.2	2.8	2.9	3.3	16.3	17	15.9	19.9	20.9	22.8	
HDMatt [1]	11	13	9.8	10.1	9.5	10	10.7	4.7	4.8	5.8	2.9	3	2.6	1.1	1.2	1.3	5.2	5.9	6.7	2.4	2.6	3.1	17.3	17.3	17	21.5	22.4	23.2	
AdaMatting [2]	13.5	12	12.5	16	10.2	11.1	10.8	4.9	5.4	6.6	3.6	3.4	3.4	0.9	0.9	1.8	4.7	6.8	9.3	2.2	2.6	3.3	19.2	19.8	18.7	17.8	19.1	18.6	
A2U Matting [3]	13.6	12.8	10.5	17.5	9.3	9.7	10.9	4.8	4.9	5.3	3	3.1	2.8	1	1.1	1.4	5.1	6.7	8.5	2.5	3	5.9	17.3	18.4	18.1	20.6	20.6	27.3	
SampleNet [4]	14	11.4	14.1	16.5	9.1	9.7	9.8	4.3	4.8	5.1	3.4	3.7	3.2	0.9	1.1	2	5.1	6.8	9.7	2.5	4	3.7	18.6	19.3	19.1	20	21.6	23.2	
GCA Matting [5]	15.3	16.4	12.6	17	8.8	9.5	11.1	4.9	4.8	5.8	3.4	3.7	3.2	1.1	1.2	1.3	5.7	6.9	7.6	2.8	3.1	4.5	18.3	19.2	18.5	20.8	21.7	24.7	

Note: S, L, U stand for small, large, user trimap respectively. The lowest errors are in bold.

Table 2. MSE Comparison with Top 6 State-Of-The-Art Baselines on the Alphamatting.com Online

MSE		AVG			Troll			Doll			Donkey			Elephant			Plant			Pineapple			Pl	astic b	ag	Net		
	overall	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U
Ours	11	14.8	10.4	8	0.3	0.3	0.4	0.2	0.2	0.3	0.1	0.1	0.1	0	0	0	0.5	0.5	0.6	0.2	0.2	0.2	0.9	0.9	0.9	0.8	0.8	0.8
HDMatt [1]	11.2	13.9	9.8	10	0.3	0.3	0.4	0.2	0.2	0.3	0.1	0.1	0.1	0	0	0	0.4	0.4	0.6	0.1	0.2	0.2	0.9	0.9	0.9	0.8	0.8	0.8
AdaMatting [2]	14.2	11.5	13.1	18	0.3	0.4	0.4	0.2	0.2	0.3	0.2	0.2	0.2	0	0	0.1	0.4	0.6	1	0.1	0.2	0.3	1.1	1.2	1.1	0.6	0.6	0.6
SampleNet [4]	14.6	10.6	15.1	18	0.3	0.3	0.3	0.1	0.2	0.2	0.2	0.2	0.2	0	0	0.1	0.4	0.6	1.2	0.1	0.3	0.3	1.1	1.1	1.2	0.7	0.8	0.8
A2U Matting [3]	16.1	13.8	12.6	21.9	0.3	0.3	0.4	0.2	0.2	0.3	0.2	0.2	0.1	0	0	0.1	0.4	0.6	0.8	0.2	0.2	0.8	1	1	1	0.7	0.7	1.2
GCA Matting [5]	16.3	16.3	14.9	17.6	0.3	0.3	0.4	0.2	0.2	0.3	0.2	0.2	0.2	0	0	0.1	0.5	0.6	0.8	0.2	0.2	0.5	1	1.1	1.1	0.7	0.8	0.9

Note: S, L, U stand for small, large, user trimap respectively. The lowest errors are in bold.

Table 3. Gradient Comparison with Top 6 State-Of-The-Art Baselines on the Alphamatting.com Online

Gradient	overall	AVG				Troll		Doll			Donkey			Elephant			Plant			Pineapple			Pla	astic b	ag	Net		
	Overan	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U
HDMatt [1]	9	9.8	7.4	9.9	0.2	0.2	0.2	0.1	0.1	0.3	0.1	0.1	0.2	0.2	0.2	0.3	1.1	1.2	1.6	0.6	0.6	0.9	0.5	0.5	0.6	0.3	0.4	0.4
Ours	11.9	14.3	10.6	10.8	0.2	0.1	0.2	0.2	0.1	0.3	0.1	0.2	0.2	0.2	0.2	0.3	1.3	1.4	1.5	0.7	0.8	0.9	0.6	0.8	0.6	0.4	0.4	0.5
A2U Matting [3]	12.3	11.4	8.5	16.9	0.2	0.2	0.2	0.1	0.1	0.2	0.1	0.2	0.2	0.2	0.2	0.4	1.1	1.3	1.9	0.6	0.7	1.7	0.6	0.6	0.6	0.3	0.3	0.4
AdaMatting [2]	13.7	9.6	11.4	20	0.2	0.2	0.2	0.1	0.1	0.4	0.2	0.2	0.2	0.1	0.1	0.3	1.1	1.4	2.3	0.4	0.6	0.9	0.9	1	0.9	0.3	0.4	0.4
GCA Matting [5]	14.1	14.1	12.6	15.6	0.1	0.1	0.2	0.1	0.1	0.3	0.2	0.2	0.2	0.2	0.2	0.3	1.3	1.6	1.9	0.7	0.8	1.4	0.6	0.7	0.6	0.4	0.4	0.4
SampleNet [4]	15.5	10.9	13.4	22.3	0.1	0.1	0.2	0.1	0.1	0.2	0.2	0.3	0.3	0.1	0.2	0.5	1.1	1.5	2.7	0.6	0.9	1	0.8	0.9	0.9	0.4	0.4	0.4

Note: S, L, U stand for small, large, user trimap respectively. The lowest errors are in bold.

Table 4. Connectivity Comparison with Top 6 State-Of-The-Art Baselines on the Alphamatting.com Online

Connectivity	orronall	overall AVG				Troll		Doll			Donkey			Elephant				Plant		Pineapple			Pl	astic b	ag	Net		
	Overan	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U	S	L	U
GCA Matting [5]	23.1	26.4	20.9	22	1.1	1.1	1	0.2	0.2	0.2	0.2	0.2	0.2	0	0	0	0.1	0.1	0.1	0.1	0.1	0.1	1.1	1.3	1.3	1.9	1.5	1.6
AdaMatting [2]	23.6	21	26.1	23.8	1.1	1.1	1.1	0.1	0.2	0.2	0.2	0.2	0.2	0	0	0	0.1	0.1	0.1	0	0	0.1	6.8	13.3	1.4	1.3	1.3	1.3
SampleNet [4]	27.1	28.7	24.3	28.5	0.9	0.9	0.8	0.1	0.1	0.1	0.2	0.2	0.2	0	0	0	0.1	0.1	0.2	0	0.1	0.2	1.5	1.5	1.8	3.8	3.9	3.8
A2U Matting [3]	28	30.7	28.7	24.9	0.8	0.8	0.8	0.2	0.2	0.1	0.2	0.2	0.2	0	0	0	0.1	0.2	0.3	0.1	0.1	0.1	1	0.9	1.1	4.8	4.6	4.5
HDMatt [1]	31.7	36.7	28	30.3	1.5	1.3	1.3	0.3	0.3	0.3	0.3	0.3	0.3	0	0	0	0.1	0.1	0.1	0	0	0	0.9	0.9	1.2	2.4	2.2	2.3
Ours	35.2	40	29.5	36.9	1.7	1.7	1.6	0.2	0.2	0.2	0.3	0.3	0.3	0	0	0	0.1	0.2	0.2	0.1	0.1	0.1	1.6	1.7	1.8	3.2	2.9	2.7

Note: S, L, U stand for small, large, user trimap respectively. The lowest errors are in bold.

References

- [1] H Yu, N Xu, Z Huang, Y Zhou, and H Shi. High-resolution deep image matting. In *Thirty-Fifth AAAI Conference on Artificial Intelligence*, AAAI 2021, pages 3217–3224, 2021.
- [2] S Cai, X Zhang, H Fan, H Huang, J Liu, J Liu, J Liu, J Wang, and J Sun. Disentangled image matting. In 2019 IEEE/CVF International Conference on Computer Vision, pages 8818–8827, 2019.

- [3] Y Dai, H Lu, and C Shen. Learning affinity-aware upsampling for deep image matting. In 2021 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 6841–6850, 2021.
- [4] J Tang, Y Aksoy, C Öztireli, M H Gross, and T O Aydin. Learning-based sampling for natural image matting. In 2019 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 3055–3063, 2019.
- [5] Y Li and H Lu. Natural image matting via guided contextual attention. In *The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020*, pages 11450–11457, 2020.