e este o expresie regulata
care descrie multimea
regulata {e};

a ∈ **Σ** este o expresie regulata care descrie multimea regulata {**a**};

daca p,q sunt expresii regulate care descriu multimile regulate P, respectiv Q atunci:

(**pq**) este o expresie regulata care descrie multimea regulata **PQ**;

daca p,q sunt expresii regulate care descriu multimile regulate P, respectiv Q atunci:

(p + q) este o expresie regulata care descrie multimea regulata P U Q;

daca p expresie regulata care descrie multimea regulata P atunci :

(p)* expresie regulata care descrie mulţimea regulata P*.

ER → AFN

(a+b)* : constructia AFN

ER -> AFN

ER → AFN

AFN: (a+b)*

Conversia unui AFN intr-un AFD

• e-închidere : $P(Q) \rightarrow P(Q)$

• mutare : $P(Q) \times \Sigma \rightarrow P(Q)$

Conversia unui AFN intr-un AFD

• e- \hat{i} nchidere : $P(Q) \rightarrow P(Q)$

```
e-închidere(Q') = \int e-inchidere({s}) s \in Q'
```

e-inchidere({s}) = {s}, daca s ∈ Q
 este o stare care nu are e tranzitii

$$e$$
-inchidere($\{s\}$) = $\bigcup \{e$ -
inchidere($\{s'\}$) $\bigcup \{s\}$
 $s' \in m(s,e)$

Conversia unui AFN intr-un AFD

• mutare : $P(Q) \times \Sigma \rightarrow P(Q)$

$$mutare(Q',a) = \bigcup m(s,a)$$

 $s' \in m(s,a)$

Calcul e-inchidere(Q')

```
A = Q', B = \emptyset
 cat timp A \ B ≠ Ø execută
   fie t \in A \setminus B
   \mathsf{B} = \mathsf{B} \cup \{\mathsf{t}\}
   pentru fiecare u ∈ Q astfel incat
              m(t,e) = u executa
               A = A \cup \{u\}
```

e-inchidere(Q') = A

Constructia AFD

```
stari\_AFD = \{e-inchidere(\{q_0\})\}
A = \emptyset
cat timp stari_AFD \ A \neq \emptyset executa
  fie t \in stari\_AFD \setminus A
  A = A \cup \{t\}
  pentru fiecare a \in \Sigma executa
     B = e-inchidere(mutare(t,a))
     stari\_AFD = stari\_AFD \cup \{B\}
     tranz_AFD[t,a] = B
```

Exemplu 1

AFN: (a+b)*

Exemplu 2

AFN: (a+b)*abb

firstpos(ER) = multimea codurilor
frunzelor corespunzatoare pozitiilor
de inceput pentru subsirurile care pot
sa fie generate de catre expresia
regulata corespunzatoare.

ER =
$$(a|b)*abb$$

1 2 3 4 5
firstpos(ER) = {1, 2, 3}

lastpos(ER) = setul codurilor frunzelor
corespunzatoare pozitiei de sfarsit pentru
subsirurile care pot sa fie generate de catre
expresia regulata corespunzătoare.

ER =
$$(a|b)*abb$$

1 2 3 4 5
lastpos(ER) = {5}

followpos: $C \rightarrow P(C)$

followpos(i) = multimea codurilor j care
apar dupa simbolul cu codul i in sirurile
generate de expresia regulata

(a|b)*abb#

	followpos(i)
1	{1,2,3}
2	{1,2,3}
3	{4}
4	{5}
5	{6}
6	-

```
stari_AFD = { first_pos(ER) }
A = \emptyset
cat timp stari_AFD \ A ≠ Ø execută
   fie t \in \text{stari } AFD \setminus A
   A = A \cup \{t\}
   pentru fiecare a ∈ Σ execută
     X = \bigcup \{ followpos(p) \mid c^{-1}(p) = a \}
     p \in t
     daca X ≠ Ø
       stari\_AFD = stari\_AFD \cup \{X\}
       tranz_AFD(t,a) = X
```

Constructia ER pornind de la AF prin eliminarea starilor

Se elimina starea s

Constructia ER pornind de la AF prin eliminarea starilor

ER: R*

ER: (R + SU*T)*SU*

Exemplu

