

Modellbildung und Simulation

Übung 3: Modelle mit konzentrierten Parametern – Analogien

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

www.kit.edu

Einführung

■ Wie würden Sie das Getriebe eines Traktors modellieren?

Leistungsverzweigtes Getriebe

2

Viele verschiedene Möglichkeiten

Einführung

■ Variante: Modellierung als Blackbox

Quelle: Fendt

Zusammenfassen der Trägheit als konzentrierter Parameter

Modelle aus konzentrierten Parametern

- Definition:
 - Ortsunabhängig
 - Beschreibung durch gewöhnliche DGL
 - Endliche Anzahl von Eigenkreisfrequenzen

03.11.2021

Lernziele

- Nach der Übung sind Studierende in der Lage:
 - Prozesselemente in Kategorien einteilen zu können.
 - Maschen- Knotengleichungen aufstellen zu können.
 - Die Trans-Per- und Potenzial-Strom-Darstellung unterscheiden zu können.
 - Mechanische in elektrische Systeme überführen zu können und umgekehrt.

Institutsteil Mobile Arbeitsmaschinen

Kontakt:

M.Sc. Alexander Stein
Karlsruher Institut für Technologie (KIT)
Institutsteil Mobile Arbeitsmaschinen
Rintheimer Querallee 2
76131 Karlsruhe

alexander.stein@kit.edu +49 721 608 41824

- Institutsteil des FAST
- Themen:
 - Antriebssysteme
 - Automatisierung
 - Hydraulik
 - Hybridlösungen

03.11.2021

Institutsteil Mobile Arbeitsmaschinen

■ Besuchen Sie unsere Website:

http://www.fast.kit.edu/mobima/index.php

- Hiwi-Jobs
- Abschlussarbeiten
- Gerne den direkten Kontakt suchen

Nichts passendes dabei?

Kommen Sie einfach vorbei und informieren sich bei uns persönlich.

Institutsteil Mobile Arbeitsmaschinen

Übersicht

Klassifizierung von Prozesselementen

- Berechnung von Netzen Maschen- und Knotengleichungen
 - Aufgabe 1.1
- Analogie- und Darstellungsvarianten
 - Aufgaben 1-3

Beispiele von Prozesselementen:

Ziel: Gemeinsame Zusammenhänge zwischen Potenzialund Stromgrößen ermitteln.

- Beschreibung durch Energieströme

 - Stromgrößen *f*Potenzialgrößen *e*

- Klassifizierung ähnlicher idealer Prozesselemente
 - Quellen
 - Speicher
 - Wandler
 - Übertrager
 - Senken

Meist durch einfache lineare Gleichungen beschreibbar

Zweipol (Eintor)

- Quellen:
 - Ideale Stromquellen:

Ideale Potenzialquellen:

- Beispiele:
 - Mechanik: Eingeprägte Kräfte oder Momente
 - Elektrotechnik: Ideale Strom- o. Spannungsquelle
 - Hydraulik: Ideale Pumpe o. Druckgeregelte Pumpe

Senken:

- Beschreiben Verluste durch Umwandlung in Wärmeenergie
- Bewirken eine Erhöhung der Entropie
- Beispiele:
 - El. Widerstand, hydr. Drosseln, mech. Dämpfer:
 - Elemente ohne lineare Zusammenhänge:
 - Hydr. Blenden oder mechanische Reibung

- Speicher:
 - Potenzialspeicher:
 - Potenzial proportional zum angesammelten Strom

- Beispiele:
 - Kondensator
 - Feder
 - Hydr. Speicher

- Stromspeicher:
 - Der Strom ist proportional zum angesammelten Potenzial
- Beispiele:
 - Induktivität
 - Masse

■ Übertrager:

- Ein-und Ausgangsleistung ist identisch:
- Strom- und Potenzialgrößen ändern sich

Beispiele:

- Transformatoren
- Hebel
- Getriebe
- Seilzug
- Druckübersetzer

Wandler:

Wandeln die Leistung aus einer Disziplin in eine andere

- Beispiele:
 - Elektromotor
 - Verbrennungsmotor
 - Hydraulische Pumpe

Übersicht

- Klassifizierung von Prozesselementen
- Berechnung von Netzen Maschen- und Knotengleichungen
 - Aufgabe 1.1
- Analogie- und Darstellungsvarianten
 - Aufgaben 1-3

Maschen- und Knotengleichung

Analyse von Netzwerken von Prozesselementen:

Maschengleichung:

Knotengleichung:

 R_2

Aufgabe 1

Aufgabe 1:

1. Stellen Sie die Maschen- und Knotengleichungen zum elektrischen Schaltbild auf. Formen Sie diese so um, dass diese nur noch von drei Unbekannten abhängen.

Knotengleichung:

Maschengleichungen:

Übersicht

- Klassifizierung von Prozesselementen
- Berechnung von Netzen Maschen- und Knotengleichungen
 - Aufgabe 1.1
- Analogie- und Darstellungsvarianten
 - Aufgaben 1-3

Analogien

- Durch Klassifizierung: Analoge Prozesselemente unterschiedlicher Disziplinen zuordenbar
- Grundlegende Annahme: Potenzial und Stromgrößen sind definiert
- Analogievarianten:
 - Trans-Per-Darstellung:
 - Potenzial zwischen 2 Klemmen messbar
 - Strom an einer Klemme messbar
 - Potenzial-Strom-Darstellung:
 - Potenzial tritt als Differenz zwischen zwei Klemmen auf
 - Stromgrößen fließen in eine Klemme hinein

Analogietafeln

Übersicht über Analogien

Analogietafel: Potential-Strom-Darstellung				
	Elektrisch	Mechanisch		Hydraulisch
		Translation	Rotation	
Potentialdifferenz e	Spannung $oldsymbol{U} = oldsymbol{L} \ddot{oldsymbol{Q}}$	Kraft $F=m\ddot{x}$	Moment $\pmb{M} = \pmb{J}\ddot{\pmb{\varphi}}$	Druck $oldsymbol{p} = oldsymbol{L_h} \ddot{oldsymbol{V}}$
Stromgröße $m{f}$	Stromstärke $I=rac{dQ}{dt}$	Geschwindigkeit $v=rac{dx}{dt}$	Drehgeschwindigkeit $oldsymbol{w} = rac{d oldsymbol{arphi}}{dt}$	Volumenstrom $Q = \frac{dV}{dt}$
int. Potentialdifferenz p	Magn. Fluss $oldsymbol{\Phi} = oldsymbol{L}oldsymbol{I}$	Impuls $oldsymbol{p} = oldsymbol{m} oldsymbol{v}$	Drall $L=Jw$	Druckimpuls $\Gamma = L_h Q$
int. Stromgröße $m{q}$	Ladung $oldsymbol{Q}$	Verschiebung $oldsymbol{x}$	Winkel $oldsymbol{arphi}$	Volumen $\emph{ extbf{V}}$
Widerstand R	$\frac{U}{I}$	$rac{F}{v} (=d$, Dämpfer)	$\frac{M}{w}$ (Drehdämpfer)	$\frac{p}{Q}$
Kapazität <i>C</i>	$\frac{Q}{U}$	$\frac{x}{F} (= \frac{1}{c}, \text{Federkonstante})$	$\frac{arphi}{M}$	$\frac{V}{p}$
Induktivität <i>L</i>	U İ	$\frac{F}{\dot{v}}$ (= m , Masse)	$\frac{M}{\dot{w}}(=J, Trägheitsmoment)$	$rac{p}{\dot{Q}}$
Leistung $P = e \cdot f$	$U \cdot I$	$F \cdot v$	$M \cdot w$	$p\cdot Q$
Energie $E = \int f \cdot dp$	$\frac{1}{2}L\cdot I^2$	$rac{1}{2}m\cdot v^2$	$\frac{1}{2}J\cdot w^2$	$\frac{1}{2}L_h\cdot Q^2$
Maschenregel	$\sum U_i = 0$	$\sum v_i = 0$	$\sum \omega_i = 0$	$\sum p_i = 0$
Knotenregel	$\sum I_i = 0$	$\sum F_i = 0$	$\sum M_i = 0$	$\sum Q_i = 0$

2. Wandeln Sie die elektrischen Gleichungen mithilfe der Trans-Per-Darstellung in mechanische Gleichungen um.

M1:
$$U_A = I_a R_1 + \dot{I}_a L_1 + I_{a,1} R_2$$

M2:
$$0 = -I_{a,1}R_2 + \frac{1}{c} \int I_{a,2} dt$$

M3:
$$0 = -\frac{1}{C} \int I_{a,2} dt + (\dot{I}_a - \dot{I}_{a,1} - \dot{I}_{a,2}) L_2$$

M1:
$$v_A = F_a R_1 + \dot{F}_a L_1 + F_{a,1} R_2$$

M2:
$$0 = -F_{a,1}R_2 + \frac{1}{c} \int F_{a,2} dt$$

M3:
$$0 = -\frac{1}{c} \int F_{a,2} dt + (\dot{F}_a - \dot{F}_{a,1} - \dot{F}_{a,2}) L_2$$

3. Zeichnen Sie das zur Trans-Per-Darstellung zugehörige mechanische System.

M1:
$$v_A = F_a \frac{1}{d_1} + \dot{F}_a \frac{1}{k_1} + F_{a,1} \frac{1}{d_2}$$

M2:
$$0 = -F_{a,1} \frac{1}{d_2} + \frac{1}{m} \int F_{a,2} dt$$

M3:
$$0 = -\frac{1}{m} \int \vec{F}_{a,2} dt + (\dot{F}_a - \dot{F}_{a,1} - \dot{F}_{a,2}) \frac{1}{k_2}$$

03.11.2021

4. Verwenden Sie nun die Potenzial-Strom-Darstellung um die Gleichungen aus 1. in mechanische Gleichungen umzuwandeln.

M1:
$$U_A = I_a R_1 + \dot{I}_a L_1 + I_{a,1} R_2$$

M2:
$$0 = -I_{a,1}R_2 + \frac{1}{c} \int I_{a,2} dt$$

M3:
$$0 = -\frac{1}{C} \int I_{a,2} dt + (\dot{I}_a - \dot{I}_{a,1} - \dot{I}_{a,2}) L_2$$

M1:
$$F_A = v_a R_1 + \dot{v}_a L_1 + v_{a,1} R_2$$

M2:
$$0 = -v_{a,1}R_2 + \frac{1}{c} \int v_{a,2} dt$$

M3:
$$0 = -\frac{1}{c} \int v_{a,2} dt + (\dot{v}_a - \dot{v}_{a,1} - \dot{v}_{a,2}) L_2$$

5. Zeichnen Sie das zur Potenzial-Strom-Darstellung zugehörige mechanische System.

M1: $F_A = v_a d_1 + \dot{v}_a m_1 + v_{a,1} d_2$

M2: $0 = -v_{a,1}d_2 + k \int v_{a,2}dt$

M3: $0 = -k \int v_{a,2} dt + (\dot{v_a} - \dot{v}_{a,1} - \dot{v}_{a,2}) m_2$

03.11.2021

Zusammenfassung Ergebnisse Aufgabe 1

Trans-Per-Darstellung

- Potenzial-Strom-Darstellung
 - "schaltungsreziprok"

Aufgabe 2.1

1. Schneiden Sie die beiden Massen des mechanischen Systems frei und stellen Sie deren Differentialgleichungen auf.

2. Verwenden Sie die Trans-Per-Darstellung, um die Differentialgleichungen in ihr elektrisches Äquivalent umzuwandeln. Zeichnen Sie anschließend das elektrische System.

I:
$$F(t) = \dot{x_1}m_1 + (\dot{x_1} - \dot{x_2})d$$

II:
$$(\dot{x_1} - \dot{x}_2)d = \ddot{x}_2 m_2 + k x_2$$

Aufgabe 2.2

I:
$$I(t) = \dot{U}_1 C_1 + (U_1 - U_2) \frac{1}{R}$$

II:
$$(U_1 - U_2)\frac{1}{R} = \dot{U_2}C_2 + \frac{1}{L}\int_{-L}^{R} U_2 dt$$

Aufgabe 2.3

3. Verwenden Sie nun die Potenzial-Strom-Darstellung, um die Differentialgleichungen in ihr elektrisches Äquivalent umzuwandeln und das elektrische System zu zeichnen.

I:
$$F(t) = \dot{x_1}m_1 + (\dot{x_1} - \dot{x_2})d$$

II:
$$(\dot{x_1} - \dot{x}_2)d = \ddot{x}_2 m_2 + k x_2$$

- Potenzial-Strom Darstellung am häufigste verwendet.
- Vorteile der Analogietransformationen:
 - Systeme mit unterschiedlichen Disziplinen in einer Simulation simulierbar
 - Methoden anderer Disziplinen anwendbar.

Aufgabe 3.1

1. Welches sind die Wandler des Systems? Zeichnen Sie deren Vierpole und geben Sie die Potenzial- und Stromgrößen an Ein- und Ausgang an. Verwenden Sie die Potenzial-Strom-Darstellung.

03.11.2021

Aufgabe 3.2

2. Wandeln Sie das System mithilfe der Potenzial-Strom-Darstellung in einen elektrischen Schaltplan um. Die Trägheit des Fluids in der Leitung kann vernachlässigt werden. Die Wandler können aus Aufgabe 3.1 als Black-Box übernommen werden.

Aufgabe 3.3

3. Welches sind die Stromgrößen des Systems und wie viele Freiheitsgrade gibt es?

Ausblick

- Übung 4 Modelle mit konzentrierten Parametern:
 - Grundlagen der Hydraulik
 - Erstellen von Zustandsgleichungen
 - Co-Simulation

Modellbildung und Simulation

Kontakt:

M.Sc. Alexander Stein alexander.stein@kit.edu 0721 608-41824

