Задание 2

Коновалов Андрей, 074

1	2	3	4	5	σ	

Задача 1

(i) В задаче это явно не указано, но будем предпологать, что N - язык в алфавите $\{a,b\}$. Изходя из этого N состоит из слов, которые содержат либо подслово aab, либо подслово abb. Построенный автомат $\mathcal A$ изображен на диаграмме ниже.

Опишем процесс построения. Сначала "склеим" строки aab и abb в корневое дерево префиксов. Получим ту часть \mathcal{A} , которая состоит из всех его состояний и ребер, которые на диаграмме изображены прямыми отрезками. В состояния q_{abb} и q_{aab} автомат должен переходить после того, как было найдено вхождение подстрок abb и aab соответственно. "Замкнем" эти состояния и сделаем их финальными. После перехода в одно из этих состояний \mathcal{A} из него уже не выйдет.

Остается только построить ребра, которые соответствуют переходам в состояние, соответствующее концу максимального собственного префикса, совпадающего с суффиксом текущей строки (то есть переход в соответствии со значением префикс-функции). Текущей строкой для любого состояния называется строка, полученная конкатенацией меток ребер вдоль пути от корня до текущей вершины, и буквы, по которой мы в данный момент строим ребро. Так и сделаем.

Вершине q_{ab} соответствует строка aba, максимальным собственным префиксом совпадающим с суффиксом которой является a. Соответственно проведем ребро с меткой a в вершину q_a . Вершине q_{aa} соответствует строка aaa, максимальным собственным префиксом совпадающим с суффиксом которой является aa. Соответственно проведем ребро с меткой a в вершину q_{aa} . Из корня дерева недостающее ребро проведем в корень.

 $\mathcal A$ корректен и принимает язык N по построению, корректность которого, в свою очередь, следует из корректности КМП (а точнее Axo-Корасик) алгоритма.

(ii)

Задача 2

(i) Для начала построим следующие автоматы: \mathcal{A}_1 - автомат, принимающий язык L_1 , все слова которого начинается с b, а заканчиваются на a; \mathcal{A}_2 - автомат, принимающий язык L_2 , все слова которого не содержат подслова bbb. Эти автоматы изображены диаграмме ниже. Заметим, что построенные автоматы не полные, это облегчит процесс их перемножения.

Докажем, что \mathcal{A}_1 принимает L_1 . Сразу заметим, что \mathcal{A}_1 пустое слово ε не принимает и далее будем рассматривать слова ненулевой длины. Из начального состояния q_0 нет перехода по букве a, это означает, что \mathcal{A}_1 может принимать только те слова, которые начинаются с b. Остается доказать, что \mathcal{A}_1 может принимать только те слова, которые заканчиваются на a. Докажем это индукцией по длине слова n. Поскольку после обработки первой буквы слова \mathcal{A}_1 либо останавливается (если слово начинается с a), либо переходит в состояние q_1 (если слово начинается с b), а в состояние q_0 больше не возвращается, то при доказательстве будем рассматривать лишь подмножество состояний $\{q_1,q_2\}$, считая q_1 начальным состоянием. Также, вместо полных слов, начинающихся с b, будем рассматривать их суффиксы, длины на 1 меньше, чем длина слова.

 $\mathit{База}.$ Слово $\{a\}$ длины n=1 принимается $\mathcal{A}_1.$ База доказана.

 Π ереход. Пусть слова длины меньше n, заканчивающиеся на a, принимаются \mathcal{A}_1 . Докажем, что слова длины n, заканчивающиеся на a, принимаются \mathcal{A}_1 . Возьмем некоторое слово длины n. Пропустим через автомат первые n-1 букву. Сейчас \mathcal{A}_1 находится либо в q_1 , либо в q_2 . Если b - последняя буква слова, то \mathcal{A}_1 прейдет в q_1 и не примет данное слово. Если a - последняя буква слова, то \mathcal{A}_1 прейдет в q_2 и примет данное слово. Переход доказан.

Теперь докажем, что \mathcal{A}_2 принимает L_2 . По построению \mathcal{A}_2 является КДА КМП. Единственное отличие от аналогичного ему ПДКА КМП в том,

что отсутствует еще одно состояние, переход в которое осуществлялся бы по букве b из состояния p_2 . Доказательство его корректности аналогично доказательству корректности автомата из задачи 1.

Теперь построим автомат \mathcal{A}_3 , принимающий язык $L_1 \cap L_2 = T$. Для этого воспользуемся конструкцией произведения автоматов $L_3 = L_1 \times L_2$. Поскольку \mathcal{A}_1 и \mathcal{A}_2 не полные, то \mathcal{A}_3 будет иметь всего 4 состояния. Теперь, для того, что бы воспользоваться теоремой 2 необходимо дополнить \mathcal{A}_3 до ПДКА. После этого инвертируем начальность / финальность вершин и получим автомат \mathcal{A}_4 , принимающий язык \bar{T} . Корректность \mathcal{A}_4 следует из построения. \mathcal{A}_3 и \mathcal{A}_4 изображены на диаграмме ниже.

(ii) Пронумеруем состояния автомата \mathcal{A}_4 (на диаграмме выше состояния уже пронумерованы). Теперь, пройдем по приведенному в условии алгоритму в обратном порядке, "раскрывая" соотношения вида $D_{a,b,\{...\}}$.

$$\begin{split} D_{1,3,\{1,2,3\}} &= D_{1,3,\{1,2\}} + D_{1,3,\{1,2\}} \cdot D_{3,3,\{1,2\}}^* \cdot D_{3,3,\{1,2\}} \\ D_{3,3,\{1,2\}}^* &= \varepsilon^* = \{\varepsilon\} \\ D_{1,3,\{1,2\}} &= D_{1,3,\{1\}} + D_{1,2,\{1\}} \cdot D_{2,2,\{1\}}^* \cdot D_{2,3,\{1\}} \\ D_{1,3,\{1\}} &= \varnothing \\ D_{1,2,\{1\}} &= \{b\} \\ D_{2,2,\{1\}}^* &= \varepsilon^* = \{\varepsilon\} \\ D_{2,3,\{1\}} &= \{b\} \\ D_{1,3,\{1,2\}} &= \varnothing + \{b\} \cdot \{\varepsilon\} \cdot \{b\} = \{bb\} \\ D_{1,3,\{1,2,3\}} &= \{bb\} + \{bb\} \cdot \{\varepsilon\} \cdot \{\varepsilon\} = \{bb\} \end{split}$$

Простой проверкой можно убедиться, что полученное выражение действительно верно.

Задача 5 Пронумеруем символы в заданной строке:

a	b	b	a	b	b	b	a	b	b	a	b	b	b
0	1	2	3	4	5	6	7	8	9	10	11	12	13
a	b	b	b	a	b	a	b	b	a	b	b	a	
14	15	16	17	18	19	20	21	22	23	24	25	26	

Будем записывать конфигурации BMA_{aab} в следующем виде: (n,(p,q)), где (p,q) - соответствует состоянию BMA_{aab} согласно определению из условия,

а n - номер символа исходной строки, соответствующего позиции 1-го элемента, видимого в "окошке" q.

Последовательность конфигураций BMA_{aab} :

```
(0, (3, \#\#\#))
                           (0,(2,\#\#b))
                                                    (3, (3, \#\#\#))
                                                                              (3,(2,\#\#b))
                           (6, (2, \#\#b))
                                                     (6, (1, \#ab))
(6, (3, \#\#\#))
                                                                              (9, (3, \#\#\#))
 (9, (2, \#\#b))
                           (9, (1, \#ab))
                                              \vdash
                                                   (12, (3, \# \# \#)) \vdash
                                                                              (13, (3, \#a\#))
 (13, (1, \#ab))
                    \vdash
                                                                              (17, (1, \#ab))
                          (16, (3, \#\#\#))
                                             \vdash
                                                    (17, (3, \#a\#))
(20, (3, \#\#\#))
                          (20, (2, \#\#b))
                                             \vdash
                                                   (23, (3, \#\#\#)) \vdash
                                                                              (23, (2, \#\#b))
```

Во время выполнения BMA_{aab} для данной строки, образец ни разу не был найден.