HOMEWORK 9

- (1) Show that the following are equivalent for a topological space X.
 - \bullet X is disconnected.
 - There exist nonempty, disjoint, closed sets $A, B \subseteq X$ such that $X = A \sqcup B$.
 - There exist nonempty, disjoint sets $A, B \subseteq X$ such that $X = A \sqcup B$ and $\operatorname{Cl} A \cap B = \emptyset = A \cap \operatorname{Cl} B$.
 - There is a nontrivial clopen subset of X. That is, there is a subset $A \subseteq X$ that is both open and closed, and A is not X or \emptyset .
- (2) Show that if L is a linear continuum, then L is connected in the order topology and so are intervals and rays in L.
- (3) Complete the proof that an arbitrary product of connected spaces is connected.
- (4) Show that the connected components of X are connected disjoint subspaces of X whose union is X, such that each nonempty connected subspace of X intersects only one of them.
- (5) If X is a connected space, we call a point $p \in X$ a cut point if $X \setminus \{p\}$ is disconnected.
 - Show that homeomorphisms $f: X \to Y$ send cut points to cut points.
 - Show that if p is a cut point, and $f: X \to Y$ is a homeomorphism, then $f|_{X \setminus \{p\}} : X \setminus \{p\} \to Y \setminus \{f(p)\}$ is also a homeomorphism.
 - Show that for $n \in \mathbb{N}$, having n cut points is a topological invariant.
 - Show that \mathbb{R} is not homeomorphic to any \mathbb{R}^n for n > 1.
- (6) Think why we cannot generalize the above argument to *cut lines* for showing that \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n for n > 2. (That is, if you were to write the analogous proof, where would it fail?)
- (7) Let C be a countable subset of \mathbb{R}^2 . Show that $\mathbb{R}^2 \setminus C$ is connected as a subspace of \mathbb{R}^2 .
- (8) Topology (Munkres), Chapter 3, Section 23, Exercise (5).
- (9) Topology (Munkres), Chapter 3, Section 23, Exercise (9).
- (10) Topology (Munkres), Chapter 3, Section 23, Exercise (11).