Representación Interna de la información

Representación Interna de la información

- Sistemas de numeración: Código binario
- Representación de enteros
- Representación de caracteres
- Representación de reales
- Representación de tipos complejos

Sistemas de numeración

Decimal, (Base 10)

- 10 Símbolos (0,1,2,3,4,5,6,7,8,9)
- -234 = 2 * 10² + 3 * 10¹ + 4 * 10⁰

Binario (Base 2)

- 2 Símbolos (0, 1)
- -11011 = 1*24+1*23 + 0*22+1*21 + 1*20 = 27

Octal (Base 8)

- 8 Símbolos (0, 1,2,3,4,5,6,7)
- -231 = 2*82 + 3*81 + 1*80 =**153**

Hexadecimal (Base 16)

- 16 Símbolos (0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F)
- A1C = $A_{(10)}*16^2+1*16^1+C_{(12)}*16^0$ = **2588**

El código binario

 Ver el video: https://youtu.be/f9b0wwhTmeU

Pasar de binario a decimal → Multiplicar por la potencia de 2: 1,2,4,8,16,32,....

$$-10_{(2} = 1x2 + 0x1 = 2$$

$$-100_{(2} = 1x4 + 0x2 + 0x1 = 4$$

$$-101_{(2)} = 1x4 + 0x2 + 1x1 = 5$$

$$-1010_{(2)} = 1x8 + 0x4 + 1x2 + 0x1 = 10$$

$$-10110_{(2)} = 1x16+0x8+1x4+1x2+0x1 = 22$$

El código binario

• Pasar de decimal a binario: Método de restas sucesivas, hasta que el resto sea 0 o 1.

2

21

42

- $42_{(10)} \rightarrow 101010_{(2)}$
- Otro método: Suma de las potencias

de dos: 1,2,4,8,16,32,128,256,512,1024,2048....

$$42 = 32 + 8 + 2 = 100000 + 1000 + 10 = 101010$$

Representación de enteros

- El ordenador representa los enteros en grupos de bytes 1,2,3,4 (8,16,32,64 bits) → Tiene un valor máximo, no existe el infinito.
- Ej .- El n.º 12 en dos byte | 00000000 | 00001100 |

1º byte

2 byte

¿Cual es el entero más grande con dos byte?

Número más grandes → más byte

Ojo: La mayor parte de los lenguajes de programación no controlan el **desbordamientos**: Efecto 2000 y efecto 2038

Representación de enteros

Suma de números binarios:

```
00001110 14
+00000101 +5
-----
00010011 19
```

$$0+0 = 0$$
 $0+1 = 1$
 $1+0 = 1$ $1+1 = 10$ (0 y me llevo 1)

los números negativos

- Complemento a 2 (Invertir y sumar 1)

```
2 \rightarrow 00000010 -2 \rightarrow 111111101 +1 \rightarrow 11111110
```

Representación de números reales

• Número real: parte entera y parte decimal 3,1416

La precisión (número de dígitos significativos) está limitada por la representación interna del ordenador normalmente utilizas 32 bit float / 64 bit double.

Pueden ser número muy grandes o muy pequeños. Se representan en mantisa y exponente (notación normalizada)

 $0,000002123 \rightarrow 2,123 \times 10^{-6}$

 $8939844400000 \rightarrow 8,9398444 \times 10^{12}$

Representación de caracteres

El código ASCII ha sido la representación habitual de los caracteres. Cada carácter le corresponde un número

Consultar tabla ASCII

ASCII (8 bits)un byte $2^8 = 256$ caracteres posibles Tipos

- Alfabéticos: A,d,F,s,d...
- Numéricos : 0,1,2,3....
- Especiales: +,* (,/,?,-
- Control: NULL,CR,CAN,SP

Problema: caracteres castellanos (á,Ü,ñ..), lenguajes no latinos (chino, árabe, hindú..) solución: Unicode →UF-8 Caracteres de 1,2, 3 o 4 bytes.

Representación de caracteres TABLA ASCII

DEC	HEX	OCT	CHAR	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН	DEC	HEX	OCT	СН
0	0	000	NUL	32	20	040		64	40	100	@	96	60	140	`
1	1	001	SOH	33	21	041	ļ	65	41	101	Ă	97	61	141	а
2	2	002	STX	34	22	042	"	66	42	102	В	98	62	142	b
3	3	003	ETX	35	23	043	#	67	43	103	С	99	63	143	С
4	4	004	EOT	36	24	044	\$	68	44	104	D	100	64	144	d
5	5	005	ENQ	37	25	045	%	69	45	105	Ε	101	65	145	е
6	6	006	ACK	38	26	046	&	70	46	106	F	102	66	146	f
7	7	007	BEL	39	27	047	1	71	47	107	G	103	67	147	g
8	8	010	BS	40	28	050	(72	48	110	H	104	68	150	h
9	9	011	TAB	41	29	051)	73	49	111	1	105	69	151	İ
10	Α	012	LF	42	2A	052	*	74	4A	112	J	106	6A	152	j
11	В	013	VT	43	2B	053	+	75	4B	113	K	107	6B	153	k
12	С	014	FF	44	2C	054	,	76	4C	114	L	108	6C	154	1
13	D	015	CR	45	2D	055	- 4	77	4D	115	M	109	6D	155	m
14	Е	016	SO	46	2E	056	. d.	78	4E	116	N	110	6E	156	n
15	F	017	SI	47	2F	057	1	79	4F	117	0	111	6F	157	0
16	10	020	DLE	48	30	060	0	80	50	120	80	112	70	160	р
17	11	021	DC1	49	31	061	1	81	51	121	Q	113	71	161	q
18	12	022	DC2	50	32	062	2	82	52	122	R	114	72	162	r
19	13	023	DC3	51	33	063	3	83	53	123	S	115	73	163	S
20	14	024	DC4	52	34	064	4	84	54	124	Τ	116	74	164	t
21	15	025	NAK	53	35	065	5	85	55	125	U	117	75	165	u
22	16	026	SYN	54	36	066	6	86	56	126	V	118	76	166	٧
23	17	027	ETB	55	37	067	7	87	57	127	W	119	77	167	W
24	18	030	CAN	56	38	070	8	88	58	130	Χ	120	78	170	Х
25	19	031	EM)	57	39	071	9	89	59	131	Υ	121	79	171	У
26	1A	032	SUB	58	3A	072	:	90	5A	132	Ζ	122	7A	172	Z
27	1B	033	ESC	59	3B	073	1	91	5B	133	[123	7B	173	{
28	1C	034	FS	60	3C	074	<	92	5C	134	1	124	7C	174	
29	1D	035	GS	61	3D	075	=	93	5D	135]	125	7D	175	}
30	1E	036	RS	62	3E	076	≻	94	5E	136	٨	126	7E	176	~
31	1F	037	US	63	3F	077	?	95	5F	137	_	127	7F	177	DEL

Código hexadecimal

 El código hexadecimal (base 16) es muy utilizado pues permite la rápida conversión en binario y ocupando menos espacio al visualizarse.

16 valores: **1,2,3,4,5,6,7,8,9,A,B,C,D,E,F**

Ejemplos:

$$0010\ 0011 \rightarrow 23_{(16)} \rightarrow 35_{(10)}$$

$$1000\ 1100 \rightarrow 8C_{(16)} \rightarrow 140_{(10)}$$

Ej.- Codificación de colores en

HTML5 (RGB)

Hexadecimal	Decimal	Binario
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
O	12	1100
О	13	1101
Е	14	1110
F	15	1111

Representación de datos complejos

Todo se codifica con números que se almacenan en binario:

Digitalizar → codificar en binario

Imágenes: tabla de colores RGB: los colores son números

Sonidos: Se recogen valores de la señal y se codifican en binario

Video: Secuencias de imágenes