More interactions and generalized linear models

ISTA 410 / INFO 510: Bayesian Modeling and Inference

U. of Arizona School of Information October 18, 2021

Generalized linear models

GLMs in a nutshell

Basic idea of a GLM:

- Want the mechanics of a linear regression, but outcomes aren't normally distributed
 - outcomes may be discrete/categorical
 - outcomes may have heavier tails than a normal distribution
- So, use an outcome distribution dependent on an expectation parameter E[y] and model

$$g(E[y_i]) = \beta_1 x_{1,i} + \beta_2 x_{2,i} + \dots$$

• What's g? The link function

Link functions

Link functions:

- Transform the linear model so that it takes on sensible values
- e.g., probabilities lie in [0,1], rates lie in $[0,\infty)$
- Most common include:
 - logit (common for binomial outcomes)
 - log (common for Poisson outcomes)
 - probit (similar to logit, but different tails)

Poisson regression

Salamander counting

- Salamanders like to hide from predators they want lots of forest coverage
- The average age of trees in the forest might have an effect?
- Predict salamander count as a function of coverage

Salamander counting

$$y_i \sim Poisson(\lambda_i)$$
 $\log \lambda_i = \alpha + \beta C_i$
 $\alpha \sim ?$
 $\beta \sim ?$

- Salamander count distributed as Poisson RV
- C_i forest coverage
- Log link λ is a rate, must be positive
- Priors on model coefficients to be determined

Salamander counting

Necessary sermon on priors

$$y_i \sim \text{Poisson}(\lambda_i)$$
 $\log \lambda_i = \alpha + \beta C_i$
 $\alpha \sim \text{Normal}(0, 1)$
 $\beta \sim \text{Normal}(0, 1)$

	SALAMAN	PCTCOVER	FORESTAGE
SITE			
1	13	85	316
2	11	86	88
3	11	90	548
4	9	88	64
5	8	89	43

After standardizing

$$y_i \sim \text{Poisson}(\lambda_i)$$

 $\log \lambda_i = \alpha + \beta C_i$
 $\alpha \sim \text{Normal}(0, 1)$
 $\beta \sim \text{Normal}(0, 1)$

	SALAMAN	PCTCOVER	FORESTAGE
SITE			
1	13	0.85	0.760627
2	11	0.86	-0.417586
3	11	0.90	1.959512
4	9	0.88	-0.541609
5	8	0.89	-0.650129

Posterior predictive check

	mean	sd	hdi_3%	hdi_97%
alpha	-0.897	0.333	-1.489	-0.272
bcov	2.524	0.403	1.796	3.254

- Model detects a strong influence of coverage on salamander rate
- Posterior predictive check doesn't look great

Back to the DAG

As soon as we're considering using both variables, let's write a DAG:

Model with two variables

Posterior predictive check

• Not much better, though we do get estimates for slopes

Posterior predictive check

- Not much better, though we do get estimates for slopes
- Try looking at an interaction?

Model with interactions

$$y_i \sim \text{Poisson}(\lambda_i)$$
 $\log \lambda_i = \alpha + \beta_C C_i + \beta_A A_i + \beta_{C,A} A_i C_i$
 $\alpha \sim \text{Normal}(0,1)$
 $\beta_A \sim \text{Normal}(0,1)$
 $\beta_C \sim \text{Normal}(0,1)$
 $\beta_{C,A} \sim \text{Normal}(0,0.5)$

Posterior predictive check

	mean	sd	hdi_3%	hdi_97%
bcov	2.297	0.468	1.390	3.152
bage	0.317	0.366	-0.402	0.995
bint	-0.314	0.409	-1.105	0.467

- Effect of age is positive, cover positive
- Interaction effect negative how can we interpret this coefficient?

Model with interactions

Another question about this interaction:

• what is the relationship between forest age and forest cover?

A new DAG

Including our new variable in the DAG:

Including the new variable in the model

Separate out parameters for the two clusters:

$$y_i \sim \operatorname{Poisson}(\lambda_i)$$
 $\log \lambda_i = \alpha_{\operatorname{BURNED}[i]} + \beta_{C,\operatorname{BURNED}[i]} C_i + \beta_{A,\operatorname{BURNED}[i]} A_i$
 $\alpha_i \sim \operatorname{Normal}(0,1)$
 $\beta_C \sim \operatorname{Normal}(0,1)$
 $\beta_A \sim \operatorname{Normal}(0,1)$

Varying intercepts

- We still don't have a great predictive model here posterior predictions don't resemble real data
- Inference: there is some difference between plots that depends on unobserved variables
- Add parameters to account for these unobserved variables
 - Let each forest plot get its own intercept α_i

Overdispersion in Poisson regression

This is a common issue in Poisson models:

- ullet Poisson distribution depends only on a rate parameter λ
- ullet Mean and variance are both equal to λ
- If there is more variation than the Poisson allows (overdispersion), we're stuck
- The offsets α_i allow for this extra variation
- \bullet Think of this as letting the likelihood actually be a mixture of Poissons with differing λ

Varying intercepts need regularization

Danger of varying intercepts:

- Particularly when we have a single observation per intercept
- Model equation is overdetermined:

$$\log \lambda_i = \alpha_i + \beta_C C_i + \beta_A A_i$$

• If α_i is allowed a lot of freedom, then just set $\beta_C = \beta_A = 0$ and fit each α_i

Solution: regularize

Add some multilevel structure

For regularization, we'll add multilevel structure

- Varying intercepts α_i account for overdispersion
- α_i drawn from a common distribution
- Allow the mean, SD of this common distribution to be learned

Multilevel model

$$y_i \sim \text{Poisson}(\lambda_i)$$
 $\log \lambda_i = \alpha + \beta_C C_i + \beta_A A_i$
 $\alpha_i \sim \text{Normal}(\mu, \sigma)$
 $\beta_C \sim \text{Normal}(0, 1)$
 $\beta_A \sim \text{Normal}(0, 1)$
 $\mu \sim \text{Normal}(0, 1)$
 $\sigma \sim \text{Exponential}(1)$

Putting it all in the pot

We can combine our multilevel model with all the other features:

- Interactions between age and cover
- Segregation into two clusters (interaction between burned-ness and effects)

Let's go take a look...

Binomial regression

Logistic regression

Most familiar GLM: binomial regression (aka logistic regression)

- Binomial outcome, logit link
- Underlying parameter

$$y_i \sim \text{Binomial}(p, n_i)$$

$$\text{logit}(p) = \alpha + \beta \cdot x$$

• In PyMC3, use pm.math.invlogit

Funding data for NWO grants

Example: funding data for NWO grants

- NWO (Dutch research council) awards funding to researchers in many fields
- We have a data set of application and approval counts for NWO grants, stratified by field and by applicant gender (in this data set, male or female)
- Research question: is there bias toward male applicants?

A simple model

A model:

$$y_i \sim \text{Binomial}(n_i, p_i)$$

 $\text{logit}(p_i) = \alpha_{\text{gender}(i)}$
 $\alpha \sim \text{Normal}(0, 2)$

Prior on α : quite vague, prefer log-odds between ± 4

A DAG

The computation suggests a noticeable gap between men and women: 3 percentage points on average, but with funding rates quite low, 3 percentage points is not so small.

But is this a direct causal effect, or mediated by an intermediate variable?

A DAG

The computation suggests a noticeable gap between men and women: 3 percentage points on average, but with funding rates quite low, 3 percentage points is not so small.

But is this a direct causal effect, or mediated by an intermediate variable?

Two causal paths:

- Direct path $G \rightarrow A$
- Indirect path $G \rightarrow D \rightarrow A$

Previous model measured the two combined. Question about bias: is the direct effect nonzero?

A simple model

A model including discipline:

$$y_i \sim \operatorname{Binomial}(n_i, p_i)$$

$$\operatorname{logit}(p_i) = \alpha_{\operatorname{gender}(i)} + \beta_{\operatorname{discipline}(i)}$$

$$\alpha_j \sim \operatorname{Normal}(0, 2)$$

$$\beta_j \sim \operatorname{Normal}(0, 1)$$

A multilevel model

Since the number of applications varies widely across disciplines (almost a factor of 10 from the least (physics) to most (social sciences)), we can also introduce partial pooling:

$$y_i \sim \operatorname{Binomial}(n_i, p_i)$$
 $\operatorname{logit}(p_i) = lpha_{\operatorname{gender}(i)} + eta_{\operatorname{discipline}(i)}$
 $lpha_j \sim \operatorname{Normal}(0, 2)$
 $eta_j \sim \operatorname{Normal}(0, \tau)$
 $au \sim \operatorname{HalfCauchy}(5)$

Summary

Today:

- GLM intro
- Poisson regression example

Next up:

- Multilevel linear regression
- Assembling more complex models