# Section 2.5 – Graphing Polynomial Functions

### **Polynomial Function**

A Polynomial function P(x) in x is a sum of the form is given by:

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0$$

Where the coefficients  $a_n$ ,  $a_{n-1}$ , ...,  $a_2$ ,  $a_1$ ,  $a_0$  are real numbers and the exponents are whole numbers.



Leading Coefficient

Non-polynomial Functions: 
$$\frac{1}{x} + 2x$$
;  $\sqrt{x^2 - 3} + x$ ;  $\frac{x - 5}{x^2 + 2}$ 

| Degree of f | Form of f(x)                   | Graph of f(x)                   |  |
|-------------|--------------------------------|---------------------------------|--|
| 0           | $f(x) = a_0$                   | A horizontal line               |  |
| 1           | $f(x) = a_1 x + a_0$           | A line with slope $a_1$         |  |
| 2           | $f(x) = a_2 x^2 + a_1 x + a_0$ | A parabola with a vertical axis |  |

All polynomial functions are *continuous functions*.

# End Behavior $\left(a_n x^n\right)$

If *n* (degree) is *even*:

If  $a_n < 0$  (in front  $x^n$  is negative).

Then the function falls from the left and right side

$$x \to -\infty \implies f(x) \to -\infty$$

$$x \to \infty \implies f(x) \to -\infty$$

If  $a_n > 0$  (in front  $x^n$  is positive).

Then the function rises from the left and right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to \infty$$



If *n* (degree) is *odd*:

If 
$$a_n < 0$$
 (negative).

Then the function rises from the left side and falls from the right side

$$x \to -\infty \implies f(x) \to \infty$$

$$x \to \infty \implies f(x) \to -\infty$$

If  $a_n > 0$  (positive).

Then the function falls from the left side and rises from the right side

$$x \to -\infty \implies f(x) \to -\infty$$

$$x \to \infty \implies f(x) \to \infty$$





## **Example**

Determine the end behavior of the graph of the polynomial function  $f(x) = -4x^5 + 7x^2 - x + 9$  **Solution** 

Leading term:  $-4x^5$  with 5th degree (*n* is odd)

$$x \to -\infty \implies f(x) = -(-)^5 = (-)(-) = + \to \infty \quad f(x) \text{ rises left}$$

$$x \to \infty \implies f(x) \to -\infty$$
  $f(x)$  falls right

#### The Intermediate Value *Theorem*

For any polynomial function f(x) with real coefficients and  $f(a) \neq f(b)$  for a < b, then f takes on every value between f(a) and f(b) in the interval [a, b]

f(a) and f(b) are the *opposite signs*. Then the function has a real zero between a and b.

### **Example**

Using the intermediate value theorem, determine, if possible, whether the function has a real zero between a and b.

a) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -4$ ,  $b = -2$ 

b) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -1$ ,  $b = 3$ 

#### Solution

a) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -4$ ,  $b = -2$   
 $f(-4) = (-4)^3 + (-4)^2 - 6(-4)$   
 $= -24$   $\Big|$   
 $f(-2) = (-2)^3 + (-2)^2 - 6(-2)$   
 $= 8$   $\Big|$   
 $f(x)$  has a zero between  $-4$  and  $-2$ 

b) 
$$f(x) = x^3 + x^2 - 6x$$
;  $a = -1$ ,  $b = 3$   
 $f(-1) = (-1)^3 + (-1)^2 - 6(-1)$   
 $= 6$   
 $f(3) = (3)^3 + (3)^2 - 6(3) = 18$   
 $= 18$ 

 $\therefore f(x)$  zeros can't be determined

# **Example**

Show that  $f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$  has a zero between 1 and 2.

#### Solution

$$f(1) = 1 + 2 - 6 + 2 - 3$$
$$= -4 \mid$$

$$f(2) = (2)^5 + 2(2)^4 - 6(2)^3 + 2(2) - 3$$
  
= 17

Since f(1) and f(2) have opposite signs.

Therefore, f(c) = 0 for at least one real number c between 1 and 2.

# Sketching

### **Example**

Let  $f(x) = x^3 + x^2 - 4x - 4$ . Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

### Solution

$$f(x) = x^{3} + x^{2} - 4x - 4$$

$$= x^{2}(x+1) - 4(x+1)$$

$$= (x+1)(x^{2} - 4)$$

$$= (x+1)(x+2)(x-2)$$

The zeros of f(x) (x-intercepts) are: -2, -1, and 2

| Interval       | $-\infty$  | -2       | -1                | 0        | 2    | 8            |
|----------------|------------|----------|-------------------|----------|------|--------------|
| Sign of $f(x)$ | _          |          | +                 | _        |      | +            |
| Position       | Below x-ax | kis Abov | ve <i>x</i> -axis | Below x- | axis | Above x-axis |



We can conclude from the chart and the graph that:

$$f(x) > 0$$
 if  $x$  is in  $(-2, -1) \cup (2, \infty)$ 

$$f(x) < 0$$
 if  $x$  is in  $(-\infty, -2) \cup (-1, 2)$ 

# Example

Let  $f(x) = x^4 - 4x^3 + 3x^2$ . Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f.

### Solution

$$f(x) = x^{2} (x^{2} - 4x + 3)$$
$$= x^{2} (x-1)(x-3)$$

The zeros are: 0, 1, 3.

Since the factor  $x^2$  is always positive, it has no factor





$$f(x) > 0 \implies x \text{ is in } (-\infty, 0) \cup (0, 1) \cup (3, \infty)$$
  
 $f(x) < 0 \implies x \text{ is in } (1, 3)$ 

# **Exercises** Section 2.5 – Polynomial Functions

(1-12) Determine the end behavior of the graph of the polynomial function

1. 
$$f(x) = 5x^3 + 7x^2 - x + 9$$

2. 
$$f(x) = 11x^3 - 6x^2 + x + 3$$

3. 
$$f(x) = -11x^3 - 6x^2 + x + 3$$

4. 
$$f(x) = 2x^3 + 3x^2 - 23x - 42$$

5. 
$$f(x) = 5x^4 + 7x^2 - x + 9$$

6. 
$$f(x) = 11x^4 - 6x^2 + x + 3$$

7. 
$$f(x) = -5x^4 + 7x^2 - x + 9$$

8. 
$$f(x) = -11x^4 - 6x^2 + x + 3$$

9. 
$$f(x) = 5x^5 - 16x^2 - 20x + 64$$

**10.** 
$$f(x) = -5x^5 - 16x^2 - 20x + 64$$

11. 
$$f(x) = -3x^6 - 16x^3 + 64$$

12. 
$$f(x) = 3x^6 - 16x^3 + 4$$

(13 – 32) Use the Intermediate Value Theorem to show that each polynomial has a real zero between the given integers.

**13.** 
$$f(x) = x^3 - x - 1$$
; between 1 and 2

**14.** 
$$f(x) = x^3 - 4x^2 + 2$$
; between 0 and 1

**15.** 
$$f(x) = 2x^4 - 4x^2 + 1$$
; between  $-1$  and  $0$ 

**16.** 
$$f(x) = x^4 + 6x^3 - 18x^2$$
; between 2 and 3

17. 
$$f(x) = x^3 + x^2 - 2x + 1$$
; between  $-3$  and  $-2$ 

**18.** 
$$f(x) = x^5 - x^3 - 1$$
; between 1 and 2

**19.** 
$$f(x) = 3x^3 - 10x + 9$$
; between  $-3$  and  $-2$ 

**20.** 
$$f(x) = 3x^3 - 8x^2 + x + 2$$
; between 2 and 3

**21.** 
$$f(x) = 3x^3 - 8x^2 + x + 2$$
; between 1 and 2

**22.** 
$$f(x) = x^5 + 2x^4 - 6x^3 + 2x - 3$$
; between 0 and 1

**23.** 
$$P(x) = 2x^3 + 3x^2 - 23x - 42$$
,  $a = 3$ ,  $b = 4$ 

**24.** 
$$P(x) = 4x^3 - x^2 - 6x + 1$$
,  $a = 0$ ,  $b = 1$ 

**25.** 
$$P(x) = 3x^3 + 7x^2 + 3x + 7$$
,  $a = -3$ ,  $b = -2$ 

**26.** 
$$P(x) = 2x^3 - 21x^2 - 2x + 25$$
,  $a = 1$ ,  $b = 2$ 

**27.** 
$$P(x) = 4x^4 + 7x^3 - 11x^2 + 7x - 15$$
,  $a = 1$ ,  $b = \frac{3}{2}$ 

**28.** 
$$P(x) = 5x^3 - 16x^2 - 20x + 64$$
,  $a = 3$ ,  $b = \frac{7}{2}$ 

**29.** 
$$P(x) = x^4 - x^2 - x - 4$$
,  $a = 1$ ,  $b = 2$ 

**30.** 
$$P(x) = x^3 - x - 8$$
,  $a = 2$ ,  $b = 3$ 

**31.** 
$$P(x) = x^3 - x - 8$$
,  $a = 0$ ,  $b = 1$ 

**32.** 
$$P(x) = x^3 - x - 8$$
,  $a = 2.1$ ,  $b = 2.2$ 

(33 – 91) Find all values of x such that f(x) > 0 and all x such that f(x) < 0, and then sketch the graph of f

$$f(x) = x^4 - 4x^2$$

**34.** 
$$f(x) = x^4 + 3x^3 - 4x^2$$

**35.** 
$$f(x) = x^3 + 2x^2 - 4x - 8$$

**36.** 
$$f(x) = x^3 - 3x^2 - 9x + 27$$

37. 
$$f(x) = -x^4 + 12x^2 - 27$$

**38.** 
$$f(x) = x^2(x+2)(x-1)^2(x-2)$$

**39.** 
$$f(x) = 2x^3 + 11x^2 - 7x - 6$$

**40.** 
$$f(x) = x^3 + 2x^2 - 5x - 6$$

**41.** 
$$f(x) = x^3 + 8x^2 + 11x - 20$$

**42.** 
$$f(x) = x^4 + x^2 - 2$$

**43.** 
$$f(x) = x^4 - x^3 - 6x^2 + 4x + 8$$

**44.** 
$$f(x) = 4x^5 - 8x^4 - x + 2$$

**45.** 
$$f(x) = 2x^4 - x^3 - 5x^2 + 2x + 2$$

**46.** 
$$f(x) = x^3 - x^2 - 10x - 8$$

**47.** 
$$f(x) = x^3 + x^2 - 14x - 24$$

**48.** 
$$f(x) = 2x^3 - 3x^2 - 17x + 30$$

**49.** 
$$f(x) = 12x^3 + 8x^2 - 3x - 2$$

**50.** 
$$f(x) = x^3 + x^2 - 6x - 8$$

**51.** 
$$f(x) = x^3 - 19x - 30$$

**53.** 
$$f(x) = 3x^3 + 11x^2 - 6x - 8$$

**54.** 
$$f(x) = 2x^3 + 9x^2 - 2x - 9$$

**55.** 
$$f(x) = x^3 + 3x^2 - 6x - 8$$

**56.** 
$$f(x) = 3x^3 - x^2 - 6x + 2$$

**57.** 
$$f(x) = x^3 - 8x^2 + 8x + 24$$

**58.** 
$$f(x) = x^3 - 7x^2 - 7x + 69$$

**59.** 
$$f(x) = x^3 - 3x - 2$$

**60.** 
$$f(x) = x^3 - 2x + 1$$

**61.** 
$$f(x) = x^3 - 2x^2 - 11x + 12$$

**62.** 
$$f(x) = x^3 - 2x^2 - 7x - 4$$

**63.** 
$$f(x) = x^3 - 10x - 12$$

**64.** 
$$f(x) = x^3 - 5x^2 + 17x - 13$$

**65.** 
$$f(x) = 6x^3 + 25x^2 - 24x + 5$$

**66.** 
$$f(x) = 8x^3 + 18x^2 + 45x + 27$$

**67.** 
$$f(x) = 3x^3 - x^2 + 11x - 20$$

**68.** 
$$f(x) = x^4 - x^3 - 9x^2 + 3x + 18$$

**69.** 
$$f(x) = 2x^4 - 9x^3 + 9x^2 + x - 3$$

**70.** 
$$f(x) = 6x^4 + 5x^3 - 17x^2 - 6x$$

71. 
$$f(x) = x^4 - 2x^2 - 16x - 15$$

72. 
$$f(x) = x^4 - 2x^3 - 5x^2 + 8x + 4$$

73. 
$$f(x) = 2x^4 - 17x^3 + 4x^2 + 35x - 24$$

**52.** 
$$f(x) = 2x^3 + x^2 - 25x + 12$$

74. 
$$f(x) = x^4 + x^3 - 3x^2 - 5x - 2$$

**75.** 
$$f(x) = 6x^4 - 17x^3 - 11x^2 + 42x$$

**84.** 
$$f(x) = x^4 + 3x^3 - 30x^2 - 6x + 56$$

**76.** 
$$f(x) = x^4 - 5x^2 - 2x$$

**85.** 
$$f(x) = 3x^5 - 10x^4 - 6x^3 + 24x^2 + 11x - 6$$

77. 
$$f(x) = 3x^4 - 4x^3 - 11x^2 + 16x - 4$$

**86.** 
$$f(x) = 6x^5 + 19x^4 + x^3 - 6x^2$$

**78.** 
$$f(x) = 6x^4 + 23x^3 + 19x^2 - 8x - 4$$

87. 
$$f(x) = x^5 + 5x^4 + 10x^3 + 10x^2 + 5x + 1$$

79. 
$$f(x) = 4x^4 - 12x^3 + 3x^2 + 12x - 7$$

**88.** 
$$f(x) = x^5 - x^4 - 7x^3 + 7x^2 + 12x - 12$$

**80.** 
$$f(x) = 2x^4 - 9x^3 - 2x^2 + 27x - 12$$

**89.** 
$$f(x) = x^5 - 2x^3 - 8x$$

**81.** 
$$f(x) = 2x^4 - 19x^3 + 51x^2 - 31x + 5$$

**90.** 
$$f(x) = x^5 - 7x^4 + 19x^3 - 37x^2 + 60x - 36$$

**82.** 
$$f(x) = 4x^4 - 35x^3 + 71x^2 - 4x - 6$$

**91.** 
$$f(x) = 3x^6 - 10x^5 - 29x^4 + 34x^3 + 50x^2 - 24x - 24$$

**83.** 
$$f(x) = 2x^4 + 3x^3 - 4x^2 - 3x + 2$$