Simplicial surfaces in GAP

Markus Baumeister

??.08.2017

2 Edge colouring and group properties

2 Edge colouring and group properties

Motivation

Goal: simplicial surfaces (and generalisations) in GAP

→ examples of polygonal complexes

No embedding

We do not work with embeddings (mostly)

- is very hard to compute
- if often unknown for an abstractly constructed surface
- is different from intrinsic structure
- ⇒ lengths and angles are not important
- → incidence structure is intrinsic

Incidence structure of polygonal complex

- set of vertices \mathcal{V} 2 3 5 7 11 • set of edges \mathcal{E} 6 8 9 10 12 13
- ullet set of faces ${\cal F}$
- ullet transitive relation $\subseteq (\mathcal{V} \times \mathcal{E}) \uplus (\mathcal{V} \times \mathcal{F}) \uplus (\mathcal{E} \times \mathcal{F})$

- Every edge has exactly two vertices
- Every face is a polygon
- Every vertex lies in an edge and every edge lies in a face

Polygonal complexes

A **polygonal complex** is a two–dimensional incidence structure of vertices, edges and faces, such that:

- Every edge has exactly two vertices. 2 6
- 2 Every face is a polygon.

- Every vertex lies in an edge
- Every edge lies in a face

Isomorphism testing

Incidence geometry allows "easy" isomorphism testing. Incidence structure can be interpreted as a coloured graph:

∼→ reduce to graph isomorphism problem
Solved by NautyTracesInterface (by Gutsche, Niemeyer, Schweitzer)

General properties

Some properties can be computed for all polygonal complexes:

- Connectivity
- Euler-Characteristic

Orientability is **not** one of them. Counterexample:

- ⇒ every edge lies in at most two faces (for well–definedness)
- → ramified polygonal surfaces

Why ramified?

Typical example of ramified polygonal surface:

 \Rightarrow It is not a surface – there is a *ramification* at the central vertex A **polygonal surface** does not have these ramifications.

2 Edge colouring and group properties

Embedding question

Given: A polygonal complex

- Can it be embedded?
- In how many ways?

Simplifications:

- Only polygonal surfaces (surface that is build from polygons)
- All polygons are triangles (simplicial surfaces)
- 3 All triangles are isometric
- → Edge-colouring encodes different lengths

Colouring as permutation

Consider tetrahedron with edge colouring

simplicial surface \Rightarrow at most two faces at each edge \rightsquigarrow every edge defines transposition of incident faces \rightsquigarrow every colour class defines permutation of the faces (1,2)(3,4), (1,3)(2,4), (1,4)(2,3) \rightsquigarrow group theoretic considerations

How do faces fit together?

Consider a face of the surface and a neighbouring face The neighbour can be coloured in two ways:

This gives an **mr-assignment** for the edges.

Permutations and mr-assignment uniquely determine the surface.

Constructing surfaces from groups

A general mr–assignment leads to complicated surfaces. Simplification: edges of same colour have the same type Example

has an rrr-structure

The easiest structure is an mmm-structure.

2 Edge colouring and group properties