MPIDR EL1, Multiprocessor Affinity Register

The MPIDR EL1 characteristics are:

Purpose

In a multiprocessor system, provides an additional PE identification mechanism for scheduling purposes.

Configuration

AArch64 System register MPIDR EL1 bits [31:0] are architecturally mapped to AArch32 System register MPIDR[31:0].

In a uniprocessor system, Arm recommends that each Aff<n> field of this register returns a value of 0.

Attributes

MPIDR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0						Aff3		
RES1 U	RES0	MT	Aff2	Aff1		Aff0		
31 30	29 28 27 26 2	5 24 2	23 22 21 20 10 18 17 16	15 1/13 12 11 10 0 8	7	6 5 / 3 2	1 0	

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4

Bits [63:40]

Reserved, res0.

Aff3, bits [39:32]

Affinity level 3. See the description of Aff0 for more information.

Aff3 is not supported in AArch32 state.

Bit [31]

Reserved, res1.

U, bit [30]

Indicates a Uniprocessor system, as distinct from PE 0 in a multiprocessor system.

U	Meaning
0d0	Processor is part of a
	multiprocessor system.
0b1	Processor is part of a uniprocessor
	system.

Bits [29:25]

Reserved, res0.

MT, bit [24]

Indicates whether the lowest level of affinity consists of logical PEs that are implemented using a multithreading type approach. See the description of Aff0 for more information about affinity levels.

MT	Meaning
0b0	Performance of PEs with different
	affinity level 0 values, and the same
	values for affinity level 1 and
	higher, is largely independent.
0b1	Performance of PEs with different
	affinity level 0 values, and the same
	values for affinity level 1 and
	higher, is very interdependent.

Aff2, bits [23:16]

Affinity level 2. See the description of Aff0 for more information.

Aff1, bits [15:8]

Affinity level 1. See the description of Aff0 for more information.

Aff0, bits [7:0]

Affinity level 0. This is the affinity level that is most significant for determining PE behavior. Higher affinity levels are increasingly less significant in determining PE behavior. The assigned value of the MPIDR. {Aff2, Aff1, Aff0} or MPIDR_EL1. {Aff3, Aff2, Aff1, Aff0} set of fields of each PE must be unique within the system as a whole.

Accessing MPIDR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MPIDR EL1

op0	op1	CRn	CRm	op2
0b11	0b000	0b0000	0b0000	0b101

```
if PSTATE.EL == ELO then
    if IsFeatureImplemented(FEAT_IDST) then
        if EL2Enabled() && HCR EL2.TGE == '1' then
            AArch64.SystemAccessTrap(EL2, 0x18);
        else
            AArch64.SystemAccessTrap(EL1, 0x18);
        UNDEFINED;
elsif PSTATE.EL == EL1 then
    if EL2Enabled() &&
IsFeatureImplemented(FEAT_FGT) && (!HaveEL(EL3) | |
SCR_EL3.FGTEn == '1') && HFGRTR_EL2.MPIDR_EL1 == '1'
then
        AArch64.SystemAccessTrap(EL2, 0x18);
    elsif EL2Enabled() then
        X[t, 64] = VMPIDR\_EL2;
    else
        X[t, 64] = MPIDR\_EL1;
elsif PSTATE.EL == EL2 then
    X[t, 64] = MPIDR\_EL1;
elsif PSTATE.EL == EL3 then
   X[t, 64] = MPIDR\_EL1;
```

AArch32 Registers AArch64 Registers AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.