Algorithm	Citation	SVM type	Optimization type	Style	Runtime
SMO	[Platt, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
SVM ^{light}	[Joachims, 1999]	Kernel	Dual QP	Batch	$\Omega(n^2d)$
Core Vector Machine	[Tsang et al., 2005, 2007]	SL Kernel	Dual geometry	Batch	$O(s/ ho^4)$
SVM ^{perf}	[Joachims, 2006]	Linear	Dual QP	Batch	$O(ns/\lambda ho^2)$
NORMA	[Kivinen et al., 2004]	Kernel	Primal SGD	Online(-style)	$ ilde{O}(s/ ho^2)$
SVM-SGD	[Bottou, 2007]	Linear	Primal SGD	Online-style	Unknown
Pegasos	[Shalev-Shwartz et al., 2007]	Kernel	Primal SGD/SGP	Online-style	$ ilde{O}(s/\lambda ho)$
LibLinear	[Hsieh et al., 2008]	Linear	Dual coordinate descent	Batch	$O(nd \cdot \log(1/ ho))$
SGD-QN	[Bordes and Bottou, 2008]	Linear	Primal 2SGD	Online-style	Unknown
FOLOS	[Duchi and Singer, 2008]	Linear	Primal SGP	Online-style	$ ilde{O}(s/\lambda ho)$
BMRM	[Smola et al., 2007]	Linear	Dual QP	Batch	$O(d/\lambda ho)$
OCAS	[Franc and Sonnenburg, 2008]	Linear	Primal QP	Batch	O(nd)

Table 1: A comparison of various SVM solvers discussed in this document. "QP" refers to a quadratic programming technique, "SGD" to stochastic (sub)gradient descent, and "SGP" to stochastic (sub)gradient projection. "SL" means the method only works with square-loss. The runtime is for a problem with n training examples and d features, with an average of s non-zero features per example. λ is the SVM regularization parameter, and ρ the optimization tolerance. "Unknown" means there is no known formal bound on the runtime.