CLAIMS

A disk drive system comprising:

an actuator having a head arm mounted with a slider having a head element for recording data in a disk recording medium and reading the recorded data, unloading said head arm to a parking position and loading said head arm from said parking position such that said slider comes close to a surface of said disk recording medium;

an inertial arm rotatably supported, engaging said actuator when said head arm is in or near said parking position and releasing the engagement with said actuator when said head arm is in or near a position close to said disk recording medium; and

energizing means for holding a position of said inertial arm in a position where the engagement with said actuator is released.

- 2. The disk drive system according to claim 1, wherein said actuator and said inertial arm have balanced mass with respect to respective centers of rotation.
- 3. The disk drive system according to claim 1, wherein a ratio of inertia of said actuator and said inertial arm is equal to a ratio of a distance from the center of rotation of said actuator to an engaging part and a distance from the center of rotation of said inertial arm to the engaging part.
- 4. A disk drive system comprising: an actuator having a head arm mounted with a slider

having a head element for recording data in a disk recording medium and reading the recorded data, unloading said head arm to a parking position and loading said head arm from said parking position such that said slider comes close to a surface of said disk recording medium;

an inertial arm rotatably supported, engaging said actuator when said head arm is in or near said parking position, releasing engagement with said actuator when said head arm is in or near a position close to said disk recording medium and having a wind receiver for receiving a force of air flow produced by rotation of said disk recording medium.

- 5. The disk drive system according to claim 4, wherein said actuator and said inertial arm have balanced mass with respect to respective centers of rotation.
- 6. The disk drive system according to claim 4, wherein a ratio of inertia of said actuator and said inertial arm is equal to a ratio of a distance from the center of rotation of said actuator to a engaging part and a distance from the center of rotation of said inertial arm to the engaging part.

7. A disk drive system comprising:

an actuator having a head arm mounted with a slider having a head element for recording data in a disk recording medium and reading the recorded data, unloading said head arm to a parking position and loading said head arm from said parking position such that said slider comes close to a surface of said disk recording medium;

an inertial arm rotatably supported, engaging said

actuator when said head arm is in or near said parking position and releasing engagement with said actuator when said head arm is in or near a position close to said disk recording medium;

first holding means for holding a position of said inertial arm in a position where engagement with said actuator is released; and

second holding means for holding said actuator or said inertial arm in said parking position.

- 8. The disk drive system according to claim 7, wherein said actuator and said inertial arm have balanced mass with respect to respective centers of rotation.
- 9. The disk drive system according to claim 7, wherein a ratio of inertia of said actuator and said inertial arm is equal to a ratio of a distance from the center of rotation of said actuator to a engaging part and a distance from the center of rotation of the inertial arm to the engaging part.

10. A disk drive system comprising:

an actuator having a head arm mounted with a slider having a head element for recording data in a disk recording medium and reading the recorded data, unloading said head arm to a parking position and loading said head arm from said parking position such that said slider comes close to a surface of said disk recording medium;

an inertial arm rotatably supported, engaging said actuator when said head arm is in or near said parking position and releasing engagement with said actuator when said

head arm is in or near a position close to said disk recording medium; and

first holding means for holding a position of said inertial arm in a position where the engagement with said actuator is released,

in said parking position, a line connecting the center of rotation and a mass center of gravity of said actuator making an acute angle with a line connecting the center of rotation and a mass center of gravity of said inertial arm.

11. The disk drive system according to claim 10, wherein a ratio of inertia of said actuator and said inertial arm is equal to a ratio of a distance from the center of rotation of said actuator to an engaging part and a distance from the center of rotation of said inertial arm to the engaging part.

12. A disk drive system comprising:

an actuator having a head arm mounted with a slider having a head element for recording data in a disk recording medium and reading the recorded data, unloading said head arm to a parking position and loading said head arm from said parking position such that said slider comes close to a surface of said disk recording medium;

an inertial arm rotatably supported, engaging said actuator when said head arm is in or near said parking position and releasing engagement with said actuator when said head arm is in or near a position close to said disk recording medium;

first holding means for holding a position of said inertial arm in a position where the engagement with said

actuator is released; and

second holding means for holding said actuator or inertial arm in said parking position,

in said parking position, a line connecting a center of rotation and a mass center of gravity of said actuator making an acute angle with a line connecting a center of rotation and a mass center of gravity of said inertial arm.

13. The disk drive system according to claim 12, wherein a ratio of inertia of said actuator and said inertial arm is equal to a ratio of a distance from the center of rotation of said actuator to an engaging part and a distance from the center of rotation of said inertial arm to the engaging part.