No.	SOLUTION
A1	A
A2	A
A3	С
A4	D
A5	В
Bla	$LHS = \mathbf{A}^2 = \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 44 & -14 \\ -28 & 9 \end{bmatrix}$
	$RHS = 7\mathbf{A} + 2\mathbf{I} = 7\begin{bmatrix} 6 & -2 \\ -4 & 1 \end{bmatrix} + 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
	$ = \begin{bmatrix} 42 & -14 \\ -28 & 7 \end{bmatrix} + \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 44 & -14 \\ -28 & 9 \end{bmatrix} $
Blb	$\mathbf{A}^2 = 7\mathbf{A} + 2\mathbf{I}$
	$\mathbf{A}^{-1}\mathbf{A}^2 = 7\mathbf{A}^{-1}\mathbf{A} + 2\mathbf{A}^{-1}\mathbf{I}$
	$\mathbf{A} = 7\mathbf{I} + 2\mathbf{A}^{-1}$
	$\mathbf{A}^{-1} = \frac{1}{2} (\mathbf{A} - 7\mathbf{I})$
B2a	$\mathbf{C} = \mathbf{T_2} \mathbf{T_1} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
B2b	$\mathbf{S'} = \mathbf{CS} = \begin{bmatrix} 0 & -\frac{1}{2} & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -2 & 2 & 2 & -2 \\ 2 & 2 & -2 & -2 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -1 & 1 & 1 \\ -4 & 4 & 4 & -4 \\ 1 & 1 & 1 & 1 \end{bmatrix}$
B2c	$\mathbf{C}^{-1} = \mathbf{T}_{1}^{-1} \mathbf{T}_{2}^{-1} = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & \frac{1}{2} & 0 \\ -2 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

No.	SOLUTION								
ВЗа	1142 = 2(571) + 0 $571 = 2(285) + 1$ $285 = 2(142) + 1$ $142 = 2(71) + 0$ $71 = 2(35) + 1$ $35 = 2(17) + 1$ $17 = 2(8) + 1$ $8 = 2(4) + 0$ $4 = 2(2) + 0$ $2 = 2(1) + 0$ $1 = 2(0) + 1$								
	$\therefore 1142.125 = 100 \ 0$ $= 476.2_{16}$	111011	0.001 ₂						
B3b	A1F.7B ₁₆ = $10 \times 16^2 + 1 \times 16^1 + 15 \times 16^0 + 7 \times 16^{-1} + 11 \times 16^{-2}$ = 2591.4805								
B4a	$U = \{-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8\}$ $R = \{-4, -2, 0, 2, 4, 6, 8\}$ $S = \{1, 2, 3, 4, 5, 6\}$								
B4b									
В5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} q \lor r \\ \hline F \\ T \\ T \\ \hline T \\ T \\ \hline T \\ T \\ are 'tree$		$ \begin{array}{c} P \wedge q \\ \hline F \\ F \\ F \\ F \\ \hline F \\ T \\ \hline T \\ \text{ition is} \end{array} $		ans T T T T T T T T T T			

No.	SOLUTION
B6a	8! = 40320
B6b	5!=120
B6c	8!-6! = 40320 - 720 = 39600
B6d	$3! \times 5! = 720$
B7a	$P(F) = \frac{37}{80} (=0.4625)$
B7b	$P(M \cap 4B) = \frac{26}{80} \left(= \frac{13}{40} = 0.325 \right)$
В7с	$P(M \cup 4B) = \frac{58}{80} \left(= \frac{29}{40} = 0.725 \right)$
B7d	$P(4A F) = \frac{22}{37} \left(=0.\overline{594}\right)$

Cla	p = F, q = T, r = F, s = T								
	Since $(\neg p \land q) \Rightarrow (r \lor \neg s)$ is false, $(\neg p \land q)$ is true and $(r \lor \neg s)$ is								
	false. For $(\neg p \land q)$ to be true, p must be false and q must be true.								
	For $(r \lor \neg s)$ to be false, r must be false and s must be true.								
C1b	$\overline{a}(a+b)+(a+c)(a+\overline{b})$								
	$= \overline{a}b + a + \overline{b}c$								
	$= a + b + \overline{b} c$								
	=a+b+c								
C1c	а	b	С	f(a,b,c)					
(i)	0	0	0	0					
	0	0	1	1					
	0	1	0	1					
	0	1	1	0					
	1	0	0	1					
	1	0	1	0					
	1	1	0	0					
	1	1	1	1					
C1c (ii)	$f(a,b,c) = \overline{ab}c + \overline{abc} + \overline{abc} + a\overline{bc} + abc$								
C2a	$({}^{5}C_{4} \times {}^{13}C_{6}) + ({}^{5}C_{5} \times {}^{13}C_{5}) = 9867$								
C2b	(5C ×	r^7C	±(5C	$(\times^7C)+(^5C)$	× ⁷ C) - 66				
	or ^{12}C	$C_{10} = 6$	6 6	$(4 \times {}^{7}C_6) + ({}^{5}C_5)$	$5 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot = 00$				
C2-									
C2c				on = ${}^{18}C_{10} = 43$					
	Only squash and tennis = $({}^5C_4 \times {}^6C_6) + ({}^5C_5 \times {}^6C_5) = 11$								
	or ¹¹ C								
	Only tennis and badminton = $\binom{^{6}C_{3} \times {^{7}C_{7}} + \binom{^{6}C_{4} \times {^{7}C_{6}} + \binom{^{6}C_{5} \times {^{7}C_{5}} + \binom{^{6}C_{6} \times {^{7}C_{4}}}{2} = 286$								
	or $^{13}C_{10} = 286$								
	Only squash and badminton = 66 (from part b) At least 1 player from each sport = 42758 11 286 66 - 42205								
	At least 1 player from each sport = $43758-11-286-66=43395$								

C3a
$$\mathbf{R}_{a} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos(-\alpha) & -\sin(-\alpha) \\ \sin(-\alpha) & \cos(-\alpha) \end{bmatrix} \\
= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix} \\
= \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \begin{bmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{bmatrix} \\
= \begin{bmatrix} \cos^{2} \alpha - \sin^{2} \alpha & 2\sin \alpha \cos \alpha \\ 2\sin \alpha \cos \alpha & \sin^{2} \alpha - \cos^{2} \alpha \end{bmatrix} \\
= \begin{bmatrix} \cos^{2} \alpha - \sin^{2} \alpha & 2\sin \alpha \cos \alpha \\ 2\sin \alpha \cos \alpha & \sin^{2} \alpha - \cos^{2} \alpha \end{bmatrix} \\
= \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} \\
= \begin{bmatrix} \cos 2\beta & \sin 2\beta \\ \sin 2\beta & -\cos 2\beta \end{bmatrix} \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix} \\
= \begin{bmatrix} \cos 2\beta \cos 2\alpha + \sin 2\beta \sin 2\alpha & \cos 2\beta \sin 2\alpha - \sin 2\beta \cos 2\alpha \\ \sin 2\beta \cos 2\alpha - \cos 2\beta \sin 2\alpha & \sin 2\beta \sin 2\alpha + \cos 2\beta \cos 2\alpha \end{bmatrix} \\
= \begin{bmatrix} \cos(2\beta - 2\alpha) & -\sin(2\beta - 2\alpha) \\ \sin(2\beta - 2\alpha) & \cos(2\beta - 2\alpha) \end{bmatrix}$$
C3c
$$\alpha = 45^{\circ}, \quad \beta = 135^{\circ}$$

$$\theta = 2\beta - 2\alpha = 180^{\circ}$$