

Classmate Date Page

$$\begin{bmatrix} \frac{\partial L}{\partial \dot{q}} & Sq \end{bmatrix}_{t_1}^{t_2} - \int_{t_1}^{t_2} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) Sq dt$$

$$\Rightarrow SS = \int_{0}^{t_2} \left[\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial q} \right) \right] Sq dt$$

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) = 0$$

Now,
$$\frac{\partial L}{\partial q} = -\frac{\partial U}{\partial q}$$
 As $L = K(q) - U(q)$

force
$$\frac{d}{dt}\left(\frac{\partial L}{\partial \dot{q}}\right) = \text{rate of charge}$$

momentum

Scanned by CamScanner

· How do we get Hamiltonian from the lagrangian?

Calculate
$$\frac{\partial L}{\partial t} = \sum_{i=1}^{N} \frac{\partial L}{\partial q_i} \hat{q}_i + \sum_{i=1}^{N} \frac{\partial L}{\partial \dot{q}_i} \hat{q}_i$$

N generalized coordinates

Them Lagrange's Equation:

 $\frac{\partial L}{\partial t} = \sum_{i=1}^{N} \frac{\partial L}{\partial t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \sum_{i=1}^{N} \frac{\partial L}{\partial \dot{q}_i} \frac{\partial L}{\partial t} \left(\frac{\dot{q}_i}{\dot{q}_i} \right)$
 $\frac{\partial L}{\partial t} = \sum_{i=1}^{N} \frac{\partial L}{\partial t} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \sum_{i=1}^{N} \frac{\partial L}{\partial \dot{q}_i} \frac{\partial L}{\partial t} \left(\frac{\dot{q}_i}{\dot{q}_i} \right)$

$$\frac{dL}{dt} = \frac{2}{i} \frac{\dot{q}}{\dot{q}_i} \frac{\dot{d}}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) + \frac{2}{i} \frac{\partial L}{\partial \dot{q}_i} \frac{\dot{d}}{dt} \left(\dot{q}_i \right)$$

$$= \frac{2}{i} \frac{d}{dt} \left(\dot{q}_{i} \frac{\partial \dot{L}}{\partial \dot{q}_{i}} \right)$$

$$\Rightarrow \frac{d}{dt} \left[\underbrace{z}_{i} \frac{\partial L}{\partial \dot{q}_{i}} \right] - \frac{dL}{dt} = 0$$

$$\Rightarrow \frac{d}{dt} \left[\geq \frac{\dot{q}}{\dot{q}} \frac{\partial L}{\partial \dot{q}} - L \right] = 0$$

$$\frac{\partial L}{\partial \dot{q}_{i}} = \frac{\partial K}{\partial \dot{q}_{i}} = m\dot{q}_{i} \rightarrow \underbrace{\dot{q}_{i}(m\dot{q}_{i}) - L}_{i} = Constant}_{i}$$

$$\rightarrow K+V = Constant$$

Hamiltonian: 1-1= K+

Dimple Pendulum:

Step 1: Sonstruct L K(0) U(0)

$$\Delta L R \underline{d}(\partial L) - U(\theta)$$

$$\frac{90}{9\Gamma} \quad \frac{9r}{7} \left(\frac{9\theta}{9\Gamma} \right)$$

$$\frac{\partial L}{\partial \theta} = - \text{mgl sin}\theta$$
, $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}} \right) = \text{ml}^2 \dot{\theta}$

⇒ d [= mq.] = 0 ⇒ E mq. = Constant i e total linear momentum should be conserved. Conservation of Angular Momentum → isotropy of shace → L is invariant under the rotation of the whole system by an arbitrary angle. charge in \$\vec{n}\$ due to rotation by \$\vec\$ angle. gin \$\vec{n}\$ & \$\vec{n}\$ & \$\vec{n}\$ & \$\vec{n}\$ • \$\vec{n}\$ has magnitude of \$\vec{n}\$ & direction along orgle of rotation. Similarly, for shange in velocity: \$\vec{n}\$ = \$\vec{n}\$ \times \$\vec{n}\$
Lonserwation of Angular Momentum → isotropy of shace → L is invariant under the rotation of the whole system by an arbitrary angle. Janis charge in \$\vec{n}\$ due to rotation by \$\phi\$ angle. igin \$\vec{n}\$ = \$\vec{p}\$ \times \$\vec{n}\$ • \$\vec{p}\$ has magnitude of \$\vec{p}\$ \$\vec{p}\$ direction along angle of rotation.
charge in \vec{r} due to rotation by $\vec{s}\phi$ angle. $\vec{s}\vec{r} = \vec{s}\vec{\phi} \times \vec{r}$ • $\vec{s}\vec{\phi}$ has magnitude of $\vec{s}\phi$ & direction along angle of rotation.
charge in \vec{r} due to rotation by $\vec{s}\phi$ angle. $\vec{s}\vec{r} = \vec{s}\vec{\phi} \times \vec{r}$ • $\vec{s}\vec{\phi}$ has magnitude of $\vec{s}\phi$ & direction along angle of rotation.
charge in \vec{r} due to rotation by $\vec{s}\phi$ angle. $\vec{s}\vec{r} = \vec{s}\vec{\phi} \times \vec{r}$ • $\vec{s}\vec{\phi}$ has magnitude of $\vec{s}\phi$ & direction along angle of rotation.
charge in \vec{r} due to rotation by $\vec{s}\phi$ angle. $\vec{s}\vec{r} = \vec{s}\vec{\phi} \times \vec{r}$ • $\vec{s}\vec{\phi}$ has magnitude of $\vec{s}\phi$ 8 direction along angle of rotation.
· S\$ has magnitude of S\$ & direction along ongle of rotation.
· S\$ has magnitude of 5\$ & direction along ongle of rotation.
Similarly, for change in velocity:
$BV - B\phi \cdot V$
$SL = \sum_{i} \left(\frac{\partial L}{\partial \vec{n}_{i}} \cdot S\vec{n}_{i} + \frac{\partial L}{\partial \vec{v}_{i}} \cdot S\vec{v}_{i} \right)$
Isotropy of space: $6L = 0$ Use Lagrange's egn: $\sum_{i} \left\{ \overrightarrow{P_{i}} \cdot \left(\overrightarrow{S} \overrightarrow{\phi} \times \overrightarrow{r_{i}} \right) + \overrightarrow{P_{i}} \left(\overrightarrow{S} \overrightarrow{\phi} \times \overrightarrow{v_{i}} \right) \right\}$
= ^
Permite factors: $(\vec{a}(\vec{b} \times \vec{c})) = \vec{b} \cdot (\vec{c} \times \vec{a})$ = $\vec{c} \cdot (\vec{a} \times \vec{b})$ $5\vec{\phi} \cdot \vec{z} \cdot (\vec{n}_i \times \vec{P}_i + \vec{v}_i \times \vec{P}_i) = 0$
$\vec{\delta \phi} \cdot \vec{z} \cdot (\vec{n}_i \times \vec{P}_i + \vec{v}_i \times \vec{P}_i) = 0$
$S\vec{\phi} \cdot \frac{1}{d\tau} \left(\sum_{i} \vec{r}_{i} \times \vec{p}_{i} \right) = 0$
Since SB is arbitrary → d (₹ n; ×P;) = 0

1D Random Walk

N: total # stops

P[n. out of N steps taken to the right]
= N! p q" = Wn (n,)

Simple Case: N=3, n,=2, n2=1

 $P_{N}(m) = \frac{N+m}{N-m} \left[\frac{N-m}{2} \right] \left[\frac{N-m}{2} \right]$

with L=1

· Mean # steps to the right · $\langle n_i \rangle = \frac{N}{N_1 - 0} W_N(n_i) \cdot n_i$

 $\langle n_{1} \rangle = \frac{1}{N_{1} + 0} \frac{W_{N}(N_{1}) \cdot N_{1}}{N_{1} + 0} \frac{N_{1}(N_{1} - N_{1})}{N_{1}(N_{1} - N_{1})} \frac{N_{1}(N_{1} - N_{1})}{N_{1} + 0} \frac{N_{1}(N_$

 $\langle n_1 \rangle = \sum_{N} \frac{N!}{N!} = \frac{1}{p} \frac{1}{p} \frac{1}{p} \frac{1}{q} \frac{1}{q} \frac{1}{q}$

- Interchange the order of summation & differentiation

PDP [N | Pn | qN-n |

PDP [n | N | (N-n |)!

 $\langle n_1 \rangle = p \frac{\partial}{\partial P} \left(p + q \right)^N = p N \left(p + q \right)^{N-1}$

 $\langle n_1 \rangle = N_p$ } if p+q=1 i.e $P[Vot bimilarly \langle n_2 \rangle = N_q$ } Young] = 0.

	classmate	0
0	Date	1
(Page	
3		

Mean Displacement $\langle m \rangle = \langle n_1 - n_2 \rangle = \langle n_1 \rangle - \langle n_2 \rangle$

electrons in a metal wire w/o bias - drunk person -same random walk model.

Mean Aquared Displacement: <m²> ≠ 0.

 $\langle m^2 \rangle \neq 0$ $\langle (\Delta n_i)^2 \rangle = \langle (n_i - \langle n_i \rangle)^2 \rangle = \langle n_i^2 \rangle - \langle n_i \rangle^2$

 $\langle n_1^2 \rangle = \frac{N}{\sum_{N_1=0}^{N_1} \frac{N!}{n! (N-n_1)!} p^{n_1} q^{N-n_1} n_1^2}$

Mse n,2 p" = n, (p 3 p")

 $= P \frac{\partial}{\partial P} \left(N, P^{n_i} \right) = P \frac{\partial}{\partial P} \left[P \frac{\partial}{\partial P} P^{n_i} \right]$

 $\langle N_1^2 \rangle = \frac{N_1}{N_1} \left[\frac{N_1 \cdot N_2}{N_1} \left[\frac{\partial P}{\partial P} \left(\frac{\partial P}{\partial P} \right) \right] \right]^{N_1 - N_2}$

= P & (P & {N N! P' 9N-n;})

= P & (P & {P+9} &)

= P 2 (P.N(P+9)) = P(N(P+9)) + P.N(N-1) + P.N(N-1)

= P[N(p+q)^{N-1} + PN(N-1)(p+q)^{N-2}] = P(p+q)^{N-2}[Np+Nq+PN^2-pN

 $= \frac{1}{2} \left(\frac{1}{2} \right)^{2} \cdot \frac{1}{2} \cdot \frac{1}$

= $(pN)^2 + Npq$ [j + p = 1] = $(n_1)^2 + Npq$

< (Dn)2> - Npq < m27 - 4 < (Dn,)27 - 4 NPQ P=9=1/2 \(\langle m^2 \rangle = 4 \langle (\Dn)^2 \rangle = 4 NPQ
\) - 4.1/2.1/z.N = N <m'> = N Now, M= N,- N2 = 2n, -N $\Delta m = 2 \Delta n,$ $\langle m \rangle = 2 \langle n_i \rangle - N$ $\langle (\Delta m)^2 \rangle = \langle (m - \langle m \rangle)^2 \rangle = \langle m^2 \rangle$ As <m>=0. $\langle (\Delta m)^2 \rangle = \langle m^2 \rangle = 4 \langle (\Delta n_i)^2 \rangle = N$ i e Mean Squared Displacement varies linearly with time OR # steps taken.

Lu 16	Derive Diffusion equation from Random Walk Model
	4 possible changes in probability.
	-00 N-20N N-DN N - N+DN N+20N +00
	on step length. if Dn → O, two space becomes continuous -> diffusion.
	At - time step. Random walker Random walker - count velocity
	Kandom watker -> Count velocity
	P(n,t) = P[finding random walker at n at time t]
	change in pocobability at n
	$\mathbb{P}(n,t+\Delta t)-\mathbb{P}(n,t)=\frac{1}{2}\mathbb{P}(n+\Delta n,t)-\frac{1}{2}\mathbb{P}(n,t)$
	$+\frac{1}{2}\mathbb{P}(n-\Delta n,t)-\frac{1}{2}\mathbb{P}(n,t)$
	$\mathbb{P}(1,t+\Delta t)-\mathbb{P}(n,t)=\frac{1}{2}\left[\mathbb{P}(n+\Delta n,t)-2\mathbb{P}(n,t)\right]$ $+\mathbb{P}(n-\Delta n,t)$
	+: + exateal variation
	time variation spatial variation — Dividing by (Dt) (Dn) on both sides,
	$P(n, t+\Delta t) - P(n,t) = (\Delta n)^2 \left[P(n+\Delta n, t) + P(n-\Delta n, t)\right]$
	Δt $2\Delta t \left[-2P(n,t) \right]$ $(\Delta n)^2$
Set:	$\Delta t \rightarrow 0$ $\Delta x \rightarrow 0$
(D- Diffusion court
- {	$\frac{\partial P(n,t)}{\partial t} = \frac{\partial^2 P(n,t)}{\partial n^2} $ Gefends on medium - for environmental
_	or J- for builting

Scanned by CamScanner

In 17 Recop - diffusion - nondorn walk mean displacement $\langle m \rangle = 0$ mean aguared displacement (m') a N - diffusion equation: 2P(n,t). D 2 IP(n,t) $\frac{\partial C(n,t)}{\partial t} = D \frac{\partial^2 C(n,t)}{\partial n^2}$ - One Dimensional P(n,t) x e - 4 Dt - Three Dimensional P(T, t) x e : 3D diffusion equations at P(x,t) $\begin{array}{c|c}
- D & \frac{\partial^2}{\partial n^2} & \mathbb{P}(\vec{n},t) + \frac{\partial^2}{\partial y^2} & \mathbb{P}(\vec{n},t) + \frac{\partial^2}{\partial z^2} & \mathbb{P}(\vec{n},t) \\
\end{array}$ isotropic diffusion. Draw parallel with Random walk experiment n = dn m di = damping force + random force $= -\alpha \dot{n} + F(t)$ Positive Constant (Friction Constant)

