# Segmenting and Clustering Neighborhoods in Fredericton, NB

### Applied Data Science Capstone Week 5 Peer-Graded Project Report

By Sarthak Sureka May 2, 2019

# Introduction to the opportunity

Fredericton is the Capital City of the only Canadian fully-bilingual Province of New Brunswick and is beautifully located on the banks of the Saint John River. While one of the least populated provincial capital cities with a population base of less than 60 thousand residents, it offers a wide spectrum of venues and is a government, university and cultural hub.

As the city grows and develops, it becomes increasingly important to examine and understand it quantitiatively. The City of Fredericton provides open data for everyone and encourages entrepreneurial use to develop services for the benefit of its citzens.

Developers, investors, policy makers and/or city planners have an interest in answering the following questions as the need for additional services and citizen protection:

- 1. What neighbourhoods have the highest crime?
- 2. Is population density correlated to crime level?
- 3. Using Foursquare data, what venues are most common in different locations within the city?
- 4. Does the Knowledge Park really need a coffee shop?

Does the Open Data project have specific enough or thick enough data to empower decisions to be made or is it too aggregate to provide value in its current detail? Let's find out.

In [73]: from IPython.display import Image
 from IPython.core.display import HTML
 Image(url= "http://www.tourismfredericton.ca/sites/default/files/field/image/freder
 icton.jpg")

Out[73]:



#### **Data**

To understand and explore we will need the following City of Fredericton Open Data:

- 1. Open Data Site: http://data-fredericton.opendata.arcgis.com/ (http://data-fredericton.opendata.arcgis.com/)
- 2. Fredericton Neighbourhoods: <a href="http://data-fredericton.opendata.arcgis.com/datasets/neighbourhoods--quartiers">http://data-fredericton.opendata.arcgis.com/datasets/neighbourhoods--quartiers</a>)
- 3. Fredericton Crime by Neighbourhood: <a href="http://data-fredericton.opendata.arcgis.com/datasets/crime-by-neighbourhood-2017--crime-par-quartier-2017">http://data-fredericton.opendata.arcgis.com/datasets/crime-by-neighbourhood-2017--crime-par-quartier-2017</a> (<a href="http://data-fredericton.opendata.arcgis.com/datasets/crime-by-neighbourhood-2017--crime-par-quartier-2017">http://data-fredericton.opendata.arcgis.com/datasets/crime-by-neighbourhood-2017--crime-par-quartier-2017</a>)
- Fredericton Census Tract Demographics: <a href="http://data-fredericton.opendata.arcgis.com/datasets/census-tract-demographics--donn%C3%A9es-d%C3%A9mographiques-du-secteur-de-recensement">http://data-demographics--donn%C3%A9es-d%C3%A9mographiques-du-secteur-de-recensement</a>)
- 5. Fredericton locations of interest: <a href="https://github.com/JasonLUrquhart/Applied-Data-Science-">https://github.com/JasonLUrquhart/Applied-Data-Science-</a>
  <a href="mailto:Capstone/blob/master/Fredericton%20Locations.xlsx">https://github.com/JasonLUrquhart/Applied-Data-Science-</a>
  <a href="mailto:Capstone/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fredericton/blob/master/Fr
- 6. Foursquare Developers Access to venue data: https://foursquare.com/ (https://foursquare.com/)

Using this data will allow exploration and examination to answer the questions. The neighbourhood data will enable us to properly group crime by neighbourhood. The Census data will enable us to then compare the population density to examine if areas of highest crime are also most densely populated. Fredericton locations of interest will then allow us to cluster and quantitatively understand the venues most common to that location.

# Methodology

All steps are referenced beleow in the Appendix: Analysis section.

The methodology will include:

- 1. Loading each data set
- 2. Examine the crime frequency by neighbourhood
- 3. Study the crime types and then pivot analysis of crime type frequency by neighbourhood
- 4. Understand correlation between crimes and population density
- 5. Perform k-means statistical analysis on venues by locations of interest based on findings from crimes and neighbourhood
- 6. Determine which venues are most common statistically in the region of greatest crime count then in all other locations of interest.
- 7. Determine if an area, such as the Knowledge Park needs a coffee shop.

#### Loading the data

After loading the applicable libraries, the referenced geojson neighbourhood data was loaded from the City of Fredericton Open Data site. This dataset uses block polygon shape coordinates which are better for visualization and comparison. The City also uses Ward data but the Neighbourhood location data is more accurate and includes more details. The same type of dataset was then loaded for the population density from the Stats Canada Census tracts.

The third dataset, an excel file, "Crime by Neighbourhood 2017" downloaded from the City of Fredericton Open Data site is found under the Public Safety domain. This dataset was then uploaded for the analysis. It's interesting to note the details of this dataset are aggregated by neighbourhood. It is not an exhaustive set by not including all crimes (violent offenses) nor specific location data of the crime but is referenced by neighbourhood.

This means we can gain an understanding of the crime volume by type by area but not specific enough to understand the distribution properties. Valuable questions such as, "are these crimes occurring more often in a specific area and at a certain time by a specific demographic of people?" cannot be answered nor explored due to what is reasonably assumed to be personal and private information with associated legal risks.

There is value to the city to explore the detailed crime data using data science to predict frequency, location, timing and conditions to best allocated resources for the benefit of its citizens and it's police force. However, human behaviour is complex requiring thick profile data by individual and the conditions surrounding the event(s). To be sufficient for reliable future prediction it would need to demonstrate validity, currency, reliability and sufficiency.

#### **Exploring the data**

Exploring the count of crimes by neighbourhood gives us the first glimpse into the distribution.

One note is the possibility neighbourhoods names could change at different times. The crime dataset did not mention which specific neighbourhood naming dataset it was using but we assumed the neighbourhood data provided aligned with the neighbourhoods used in the crime data. It may be beneficial for the City to note and timestamp neighbourhood naming in the future or simply reference with neighbourhood naming file it used for the crime dataset.

An example of data errors: There was an error found in the naming of the neighbourhood "Platt". The neighbourhood data stated "Plat" while the crime data stated "Platt". Given the crime dataset was most simple to manipulate it was modified to "Plat". The true name of the neighbourhood is "Platt".

#### First Visualization of Crime

Once the data was prepared, a choropleth map was created to view the crime count by neighbourhood. As expected the region of greatest crime count was found in the downtown and Platt neighbourhoods.

Examining the crime types enables us to learn the most frequent occurring crimes which we then plot as a bar chart to see most frequenty type.

Theft from motor vehicles is most prevalent in the same area as the most frequent crimes. It's interesting to note this area is mostly residential and most do not have garages. It would be interesting to further examine if surveillance is a deterant for motor vehicle crimes in the downtown core compared to low surveillance in the Platt neighbourhood.

#### Examining 2nd most common crime given it is specific: theft from vehicles

After exploring the pivot table showing Crime\_Type by Neighbourhood, we drill into a specific type of crime, theft from vehicles and plot the choropleth map to see which area has the greatest frequency.

Again, the Platt neighbourhood appears as the most frequent.

Is this due to population density?

#### Introducing the Census data to explore the correlation between crime frequency and population density.

Visualising the population density enables us to determine that the Platt neighbourhood has lower correlation to crime frequency than I would have expected.

It would be interesting to further study the Census data and if this captures the population that is renting or more temporary/transient population, given the City is a University hub.

# Look at specific locations to understand the connection to venues using Foursquare data

Loading the "Fredericton Locations" data enables us to perform a statistical analysis on the most common venues by location.

We might wonder if the prevalence of bars and clubs in the downtown region has something to do with the higher crime rate in the near Platt region.

Plotting the latitude and longitude coordinates of the locations of interest onto the crime choropleth map enables us to now study the most common venues by using the Foursquare data.

#### **Analysing each Location**

Grouping rows by location and the mean of the frequency of occurance of each category we venue categories we study the top five most common venues.

Putting this data into a pandas dataframe we can then determine the most common venues by location and plot onto a map.

#### Results

The analysis enabled us to discover and describe visually and quantitatively:

- 1. Neighbourhoods in Fredericton
- 2. Crime frequency by neighbourhood
- 3. Crime type frequency and statistics. The mean crime count in the City of Fredericton is 22.
- 4. Crime type count by neighbourhood.

Theft from motor vehicles is most prevalent in the same area as the most frequent crimes. It's interesting to note this area is mostly residential and most do not have garages. It would be interesting to further examine if surveillance is a deterant for motor vehicle crimes in the downtown core compared to low surveillance in the Platt neighbourhood.

- Motor Vehicle crimes less than \$5000 analysis by neighbourhood and resulting statistics.
   The most common crime is Other Theft less than 5k followed by Motor Vehicle Theft less than 5k. There is a mean of 6 motor vehicle thefts less than 5k by neighbourhood in the City.
- 2. That population density and resulting visual correlation is not strongly correlated to crime frequency. Causation for crime is not able to be determined given lack of open data specificity by individual and environment.
- 3. Using k-menas, we were able to determine the top 10 most common venues within a 1 km radius of the centroid of the highest crime neighbourhood. The most common venues in the highest crime neighbourhood are coffee shops followed by Pubs and Bars.

While, it is not valid, consistent, reliable or sufficient to assume a higher concentration of the combination of coffee shops, bars and clubs predicts the amount of crime occurance in the City of Fredericton, this may be a part of the model needed to be able to in the future.

- 1. We were able to determine the top 10 most common venues by location of interest.
- 2. Statisically, we determined there are no coffee shops within the Knowledge Park clusters.

#### **Discussion and Recommendations**

The City of Fredericton Open Data enables us to gain an understanding of the crime volume by type by area but not specific enough to understand the distribution properties. Valuable questions such as, "are these crimes occuring more often in a specific area and at a certain time by a specific demographic of people?" cannot be answered nor explored due to what is reasonably assumed to be personal and private information with associated legal risks.

There is value to the city to explore the detailed crime data using data science to predict frequency, location, timing and conditions to best allocated resources for the benefit of its citizens and it's police force. However, human behaviour is complex requiring thick profile data by individual and the conditions surrounding the event(s). To be sufficient for reliable future prediction it would need to demonstrate validity, currency, reliability and sufficiency.

A note of caution is the possibility neighbourhoods names could change. The crime dataset did not mention which specific neighbourhood naming dataset it was using but we assumed the neighbourhood data provided aligned with the neighbourhoods used in the crime data. It may be beneficial for the City to note and timestamp neighbourhood naming in the future or simply reference with neighbourhood naming file it used for the crime dataset.

Errors exist in the current open data. An error was found in the naming of the neighbourhood "Platt". The neighbourhood data stated "Plat" while the crime data stated "Platt". Given the crime dataset was most simple to manipulate it was modified to "Plat". The true name of the neighbourhood is "Platt".

Theft from motor vehicles is most prevalent in the same area as the most frequent crimes. It is interesting to note this area is mostly residential and most do not have garages. It would be interesting to further examine if surveillance is a deterant for motor vehicle crimes in the downtown core compared to low surveillance in the Platt neighbourhood.

It would be interesting to further study the Census data and if this captures the population that is renting or more temporary/transient population, given the City is a University hub.

Given the findings of the top 10 most frequent venues by locations of interest, the Knowledge Park does not have Coffee Shops in the top 10 most common venues as determined from the Foursquare dataset. Given this area has the greatest concentration of stores and shops as venues, it would be safe to assume a coffee shop would be beneficial to the business community and the citizens of Fredericton.

#### Conclusion

Using a combination of datasets from the City of Fredericton Open Data project and Foursquare venue data we were able to analyse, discover and describe neighbourhoods, crime, population density and statistically describe quantitatively venues by locations of interest.

While overall, the City of Fredericton Open Data is interesting, it misses the details required for true valued quantitiatve analysis and predictive analytics which would be most valued by investors and developers to make appropriate investments and to minimize risk.

The Open Data project is a great start and empowers the need for a "Citizens Like Me" model to be developed where citizens of digital Fredericton are able to share their data as they wish for detailed analysis that enables the creation of valued services.

# **APPENDIX: Analysis**

#### **Load Libraries**

05/2/2019 Capstoneek5W

```
In [74]: import numpy as np # library to handle data in a vectorized manner
         import pandas as pd # library for data analysis
         pd.set option('display.max columns', None)
         pd.set option('display.max rows', None)
         import json # library to handle JSON files
         conda install -c conda-forge geopy --yes # uncomment this line if you haven't
         comp leted the Foursquare API lab
         from geopy.geocoders import Nominatim # convert an address into latitude and
         longit ude values
         import requests # library to handle requests
         from pandas.io.json import json normalize # tranform JSON file into a pandas
         datafr ame
         # Matplotlib and associated plotting
         modules import matplotlib.cm as cm
         import matplotlib.colors as colors
         # import k-means from clustering stage
         from sklearn.cluster import KMeans
         # for webscraping import Beautiful
         Soup from bs4 import BeautifulSoup
         import xml
         !conda install -c conda-forge folium=0.5.0 --yes
         import folium # map rendering library
         print('Libraries imported.')
         Solving environment: done
         # All requested packages already
         installed. Solving environment: done
         # All requested packages already
         installed. Libraries imported.
 In [3]: pwd
 Out[3]: '/Users/jasonkristaurquhart/Documents/GitHub/Coursera-IBM-Applied-Data-Science-Cap
         stone-Project'
In [75]: r = requests.get('https://opendata.arcgis.com/datasets/823d86e17a6d47808c6e4f1c2dd9
         7928_0.geojson')
         fredericton geo = r.json()
In [76]: neighborhoods_data = fredericton_geo['features']
```

In [77]: neighborhoods\_data[0]

05/2/2019

Out[77]: { 'type': 'Feature', 'properties': {'FID': 1, 'OBJECTID': 1, 'Neighbourh': 'Fredericton South', 'Shape Leng': 40412.2767429, 'Shape Area': 32431889.0002}, 'geometry': {'type': 'Polygon', 'coordinates': [[[-66.6193489311946, 45.8688925859664], [-66.5986068312843, 45.8934317575498], [-66.5998465063764, 45.8962889533894], [-66.6005561754508, 45.8987959122414], [-66.6007627879662, 45.9004150599189], [-66.6005112596866, 45.9020341603803], [-66.5993703992758, 45.9049409211054], [-66.5983912356161, 45.9066536507875], [-66.5950405196063, 45.9110977503182], [-66.5924713378938, 45.9137165396725], [-66.5975198697905, 45.9151915074375], [-66.6016161874861, 45.9165914405789], [-66.6063862416448, 45.9184662957134], [-66.6102310310608, 45.9201848572716], [-66.6193938469588, 45.9264149777787], [-66.6194297795702, 45.9243466803461], [-66.6206694546623, 45.9221345790227], [-66.6241459348118, 45.9181100781124], [-66.6249634017204, 45.9177976046497], [-66.6258796833102, 45.917910095299], [-66.6292124330143, 45.9200348758374], [-66.632733828928, 45.9225720071846], [-66.6356353872957, 45.924409167803], [-66.6362731911474, 45.9249840491044], [-66.6381955858555, 45.9258900999313], [-66.6400281490351, 45.9272147820915], [-66.6469721261813, 45.9309512150791], [-66.6492628301558, 45.9324257247173], [-66.6501521622871, 45.9331254782868], [-66.6504306400252, 45.9337564984884], [-66.6505653873178, 45.9347436246005], [-66.6503587748024, 45.9357182382069], [-66.6520745569951, 45.9352246860213], [-66.6532513500173, 45.9350872403269], [-66.6541855979128, 45.9351122304785], [-66.6557756159657, 45.9353808738969], [-66.6597461695215, 45.9365616400027], [-66.6692323789218, 45.9408659130747], [-66.6702205257343, 45.9411720097543], [-66.6705888350008, 45.9415718069541], [-66.6717027459531, 45.9418654061867], [-66.6805601346545, 45.9456570693391], [-66.6808206460869, 45.945613344883], [-66.690998558256, 45.9498794400526], [-66.6932353633134, 45.9503791076107], [-66.6956697977334, 45.9504478115476], [-66.6955530167465, 45.9498607024316], [-66.695014027576, 45.9498607024316], [-66.6956248819692, 45.948261735435], [-66.699766115429, 45.9452510552052], [-66.6993978061625, 45.9450511702315], [-66.6996762839006, 45.9448512845371], [-66.6992271262585, 45.9446139193389], [-66.7022364824603, 45.9407722096716], [-66.7041049782513, 45.9393666396225], [-66.7046080348104, 45.9387919073835], [-66.7061441539463, 45.9390980155132],

[-66.7051919397451, 45.9388543785676], [-66.7056949963042, 45.937405028971], [-66.706611277894, 45.9362430230541], [-66.7074107784969, 45.9356745059121], [-66.7087133356588, 45.9350435075345], [-66.7110938711618, 45.9342063302882], [-66.7122526978783, 45.9309262230525], [-66.7096026677901, 45.9293891917718], [-66.6746402369322, 45.9061285859908], [-66.6193489311946, 45.8688925859664]], [[-66.6934150263703, 45.938648223393], [-66.7001973067654, 45.9422339647247], [-66.6939180829294, 45.9467626619838], [-66.6912141539242, 45.9449262417569], [-66.6899475293736, 45.9445014828376], [-66.6890312477838, 45.9444702504357], [-66.6889683657139, 45.9443827996167], [-66.6899565125264, 45.9418404190785], [-66.6934150263703, 45.938648223393]], [[-66.6550120479742, 45.9291455121693], [-66.6557756159657, 45.9292704762017], [-66.6599797314954, 45.9309387190672], [-66.6629172224744, 45.9322757763752], [-66.6631867170597, 45.932475707408], [-66.6631238349898, 45.9327880982037], [-66.6619290756619, 45.9341813397283], [-66.6616146653125, 45.9340751297235], [-66.6601863440107, 45.934818595486], [-66.6591442982811, 45.9350997354041], [-66.6586053091106, 45.9351059829416], [-66.6564673187345, 45.9348748235837], [-66.6542933957469, 45.9340501391045], [-66.6529908385849, 45.9333129107794], [-66.652308118969, 45.9324569639043], [-66.652191337982, 45.9319696305845], [-66.6522721863576, 45.9313573339335], [-66.6520476075366, 45.9305825815444], [-66.6521284559121, 45.9301264722544], [-66.6524428662616, 45.9296016295261], [-66.6531166027247, 45.9293392062996], [-66.6540508506202, 45.9291580085852], [-66.6550120479742, 45.9291455121693]], [[-66.6318085641854, 45.8878357293373], [-66.6328775593735, 45.8879357750148], [-66.6341801165354, 45.8882108996987], [-66.6351502970423, 45.8885422980769], [-66.6362462416889, 45.8890987927924], [-66.6370098096804, 45.8896365239624], [-66.6381596532441, 45.8909183040123], [-66.6385818614276, 45.8918186586532], [-66.6387435581788, 45.8925689430378], [-66.6385908445805, 45.8940757335582], [-66.6327517952337, 45.900733882662], [-66.62923039932, 45.9050971942525], [-66.6276673307256, 45.9064848805016], [-66.626454605092, 45.9071974626627], [-66.6253856099039, 45.9076662617274], [-66.6230230407067, 45.9082913209882], [-66.6205077579111, 45.9084913384651], [-66.6180014582685, 45.9082413165064], [-66.6181092561025, 45.9082100636823], [-66.6170312777616, 45.9076037554142], [-66.6161239793246, 45.9068661756028], [-66.6150909167479, 45.9054972515047],

05/2/2019

```
Capstoneek5W
              [-66.6147944727041, 45.9047533927481],
              [-66.6146417591058, 45.9037907372083],
              [-66.6146956580229, 45.9030155998367],
              [-66.614974135761, 45.9020654166814],
              [-66.617345688111, 45.8989772091164],
              [-66.6203819937714, 45.8954199312614],
              [-66.6263468072579, 45.8892363524244],
              [-66.6281254715205, 45.8883672199348],
              [-66.6291315846387, 45.8880795903605],
              [-66.6304521081064, 45.8878732464875],
              [-66.6318085641854, 45.8878357293373]]]}}
In [78]: g = requests.get('https://opendata.arcgis.com/datasets/6179d35eacb144a5b5fdcc869f86
         dfb5 0.geojson')
         demog geo = g.json()
In [79]: demog data = demog geo['features']
         demog data[0]
Out[79]: {'type': 'Feature',
          'properties': {'FID': 1,
           'OBJECTID': 501,
           'DBUID': '1310024304',
           'DAUID': '13100243',
           'CDUID': '1310',
           'CTUID': '3200002.00',
           'CTNAME': '0002.00',
           'DBuid 1': '1310024304',
           'DBpop2011': 60,
           'DBtdwell20': 25,
           'DBurdwell2': 22,
           'Shape Leng': 0.00746165241824,
           'Shape Area': 2.81310751889e-06,
           'CTIDLINK': 3200002,
           'Shape__Area': 2.81310897700361e-06,
           'Shape Length': 0.00746165464503067},
           'geometry': {'type': 'Polygon',
            'coordinates': [[[-66.634784212921, 45.9519239912381],
              [-66.6351046935752, 45.9507605156138], [-
             66.6378263667982, 45.9510868696778], [-
             66.636944377136, 45.9521037018384], [-
             66.634784212921, 45.9519239912381]]]}}
 In [ ]:
```

05/2/2019 Capstoneek5W

```
In [80]:
           import os
          os.listdir('.')
           ['Capstone Project Course.ipynb',
Out[80]:
           'Fredericton Census Tract Demographics.csv',
           '.DS Store',
           'Fredericton Census Tract Demographics.xlsx',
           'Crime by neighbourhood 2017.xlsx',
           'Capstone Fredericton Crime and Police Station
           Location.ipynb', 'Boston_Neighborhoods (1).geojson',
           'Fredericton Locations.xlsx',
           'Week 3 Capstone - Segmenting and Clustering Neighbourhoods in Toronto_Part
          2.ipy nb',
           'Fredericton.jpg',
           'Week 3 Capstone - Segmenting and Clustering Neighbourhoods in Toronto Part
          2.pd f',
           'Boston Neighborhoods.geojson',
           '.ipynb checkpoints',
           'Week 3 Capstone - Segmenting and Clustering Neighbourhoods in Toronto.ipynb',
           'Week 4 Capstone - Segmenting and Clustering Neighbourhoods in Boston.ipynb',
           'Week 3 Capstone - Segmenting and Clustering Neighbourhoods in Toronto Part 2.ht
           'Week 4 Capstone - Segmenting and Clustering Neighbourhoods in
          Fredericton.ipyn b',
           'Week 4 Capstone - Segmenting and Clustering Neighbourhoods in Fredericton -
          Gith ub submit.ipynb',
           'Week 3 Capstone - Segmenting and Clustering Neighbourhoods in Toronto_Part
          2 fil es']
In [81]:
           opencrime = 'Crime by neighbourhood 2017.xlsx'
In [82]:
           workbook = pd.ExcelFile(opencrime)
          print(workbook.sheet names)
          ['Crime by neighbourhood 2017']
In [83]:
           crime df = workbook.parse('Crime by neighbourhood 2017')
          crime df.head()
Out[83]:
              Neighbourhood
                                  From_Date
                                                    To_Date
                                                            Crime_Code
                                                                         Crime_Type Ward
                                                                                              City FID
                                    2017-01-
                                                    2017-01-
                                                                          B&E NON-
                  Fredericton
            0
                                                                  2120
                                                                                      7 Fredericton
                      South
                             05T00:00:00.000Z
                                             26T00:00:00.000Z
                                                                         RESIDNCE
                  Fredericton
                                    2017-03-
                                                    2017-03-
                                                                          B&E NON-
            1
                                                                  2120
                                                                                         Fredericton
                                                                                                    2
                      South
                             04T00:00:00.000Z
                                             06T00:00:00.000Z
                                                                         RESIDNCE
                  Fredericton
                                    2017-05-
                                                                          B&E NON-
            2
                                                       NaN
                                                                  2120
                                                                                         Fredericton
                                                                                                    3
                      South
                             07T00:00:00.000Z
                                                                         RESIDNCE
                  Fredericton
                                    2017-06-
                                                    2017-06-
                                                                          B&E NON-
            3
                                                                  2120
                                                                                       Fredericton
                      South
                             20T00:00:00.000Z
                                             21T00:00:00.000Z
                                                                         RESIDNCE
                  Fredericton
                                    2017-07-
                                                    2017-07-
                                                                          B&E NON-
            4
                                                                  2120
                                                                                      7 Fredericton
                                                                                                    5
                                                                         RESIDNCE
                      South
                             09T00:00:00.000Z
                                             10T00:00:00.000Z
```

# What is the crime count by neighbourhood?

In [84]:

crime df.drop(['From Date', 'To Date'], axis=1,inplace=True)

| _0 | Neighbourhood               | Count |
|----|-----------------------------|-------|
| 1  | Barkers Point               | 47    |
| 2  | Brookside                   | 54    |
| 3  | Brookside Estates           | 9     |
| 4  | Brookside Mini Home Park    | 5     |
| 5  | College Hill                | 41    |
| 6  | Colonial heights            | 9     |
| 7  | Cotton Mill Creek           | 4     |
| 8  | Diamond Street              | 1     |
| 9  | Doak Road                   | 1     |
| 10 | Douglas                     | 3     |
| 11 | Downtown                    | 127   |
| 12 | Dun's Crossing              | 18    |
| 13 | Forest Hill                 | 12    |
| 14 | Fredericton South           | 85    |
| 15 | Fulton Heights              | 36    |
| 16 | Garden Creek                | 13    |
| 17 | Garden Place                | 4     |
| 18 | Gilridge Estates            | 3     |
| 19 | Golf Club                   | 7     |
| 20 | Grasse Circle               | 1     |
| 21 | Greenwood Minihome Park     | 2     |
| 22 | Hanwell North               | 8     |
| 23 | Heron Springs               | 3     |
| 24 | Highpoint Ridge             | 5     |
| 25 | Kelly's Court Minihome Park | 1     |
| 26 | Knob Hill                   | 4     |
| 27 | Knowledge Park              | 1     |
| 28 | Lian / Valcore              | 7     |
| 29 | Lincoln                     | 13    |
| 30 | Lincoln Heights             | 14    |
| 31 | Main Street                 | 78    |
| 32 | Marysville                  | 39    |
| 33 | McKnight                    | 4     |
| 34 | McLeod Hill                 | 3     |
| 35 | Monteith / Talisman         | 12    |
| 36 | Montogomery / Prospect East | 16    |
| 37 | Nashwaaksis                 | 25    |
| 38 | Nethervue Minihome Park     | 1     |
|    | North Devon                 | 113   |

05/2/2019  $Capstoneek5\underline{W}$ 

| Neighbourhood Count |
|---------------------|
|---------------------|

| 39 | Northbrook Heights                     | 10  |
|----|----------------------------------------|-----|
| 40 | Plat                                   | 198 |
| 41 | Poet's Hill                            | 4   |
| 42 | Prospect                               | 81  |
| 43 | Rail Side                              | 3   |
| 44 | Regiment Creek                         | 1   |
| 45 | Royal Road                             | 7   |
| 46 | Saint Mary's First Nation              | 25  |
| 47 | Saint Thomas University                | 1   |
| 48 | Sandyville                             | 9   |
| 49 | Serenity Lane                          | 2   |
| 50 | Shadowood Estates                      | 5   |
| 51 | Silverwood                             | 12  |
| 52 | Skyline Acrea                          | 27  |
| 53 | South Devon                            | 68  |
| 54 | Southwood Park                         | 16  |
| 55 | Springhill                             | 1   |
| 56 | Sunshine Gardens                       | 10  |
| 57 | The Hill                               | 44  |
| 58 | The Hugh John Flemming Forestry Center | 3   |
| 59 | University Of New Brunswick            | 15  |
| 60 | Waterloo Row                           | 9   |
| 61 | Wesbett / Case                         | 1   |
| 62 | West Hills                             | 5   |
| 63 | Williams / Hawkins Area                | 17  |
| 64 | Woodstock Road                         | 41  |
| 65 | Youngs Crossing                        | 16  |
|    |                                        |     |

In [153]: crime\_data.describe()

#### Out[153]:

|       | Count      |
|-------|------------|
| count | 66.000000  |
| mean  | 22.121212  |
| std   | 34.879359  |
| min   | 1.000000   |
| 25%   | 3.000000   |
| 50%   | 9.000000   |
| 75%   | 23.250000  |
| max   | 198.000000 |

#### Out[86]:

|    | Neighbourh                  | Crime_Count |
|----|-----------------------------|-------------|
| 0  | Barkers Point               | 47          |
| 1  | Brookside                   | 54          |
| 2  | Brookside Estates           | 9           |
| 3  | Brookside Mini Home Park    | 5           |
| 4  | College Hill                | 41          |
| 5  | Colonial heights            | 9           |
| 6  | Cotton Mill Creek           | 4           |
| 7  | Diamond Street              | 1           |
| 8  | Doak Road                   | 1           |
| 9  | Douglas                     | 3           |
| 10 | Downtown                    | 127         |
| 11 | Dun's Crossing              | 18          |
| 12 | Forest Hill                 | 12          |
| 13 | Fredericton South           | 85          |
| 14 | Fulton Heights              | 36          |
| 15 | Garden Creek                | 13          |
| 16 | Garden Place                | 4           |
| 17 | Gilridge Estates            | 3           |
| 18 | Golf Club                   | 7           |
| 19 | Grasse Circle               | 1           |
| 20 | Greenwood Minihome Park     | 2           |
| 21 | Hanwell North               | 8           |
| 22 | Heron Springs               | 3           |
| 23 | Highpoint Ridge             | 5           |
| 24 | Kelly's Court Minihome Park | 1           |
| 25 | Knob Hill                   | 4           |
| 26 | Knowledge Park              | 1           |
| 27 | Lian / Valcore              | 7           |
| 28 | Lincoln                     | 13          |
| 29 | Lincoln Heights             | 14          |
| 30 | Main Street                 | 78          |
| 31 | Marysville                  | 39          |
| 32 | McKnight                    | 4           |
| 33 | McLeod Hill                 | 3           |
| 34 | Monteith / Talisman         | 12          |
| 35 | Montogomery / Prospect East | 16          |
| 36 | Nashwaaksis                 | 25          |
| 37 | Nethervue Minihome Park     | 1           |
| 38 | North Devon                 | 113         |

|    | Neighbourh                             | Crime_Count |
|----|----------------------------------------|-------------|
| 39 | Northbrook Heights                     | 10          |
| 40 | Plat                                   | 198         |
| 41 | Poet's Hill                            | 4           |
| 42 | Prospect                               | 81          |
| 43 | Rail Side                              | 3           |
| 44 | Regiment Creek                         | 1           |
| 45 | Royal Road                             | 7           |
| 46 | Saint Mary's First Nation              | 25          |
| 47 | Saint Thomas University                | 1           |
| 48 | Sandyville                             | 9           |
| 49 | Serenity Lane                          | 2           |
| 50 | Shadowood Estates                      | 5           |
| 51 | Silverwood                             | 12          |
| 52 | Skyline Acrea                          | 27          |
| 53 | South Devon                            | 68          |
| 54 | Southwood Park                         | 16          |
| 55 | Springhill                             | 1           |
| 56 | Sunshine Gardens                       | 10          |
| 57 | The Hill                               | 44          |
| 58 | The Hugh John Flemming Forestry Center | 3           |
| 59 | University Of New Brunswick            | 15          |
| 60 | Waterloo Row                           | 9           |
| 61 | Wesbett / Case                         | 1           |
| 62 | West Hills                             | 5           |
| 63 | Williams / Hawkins Area                | 17          |
| 64 | Woodstock Road                         | 41          |
| 65 | Youngs Crossing                        | 16          |

#### Out[87]:

|    | Neighbourh                  | Crime_Count |
|----|-----------------------------|-------------|
| 0  | Barkers Point               | 47          |
| 1  | Brookside                   | 54          |
| 2  | Brookside Estates           | 9           |
| 3  | Brookside Mini Home Park    | 5           |
| 4  | College Hill                | 41          |
| 5  | Colonial heights            | 9           |
| 6  | Cotton Mill Creek           | 4           |
| 7  | Diamond Street              | 1           |
| 8  | Doak Road                   | 1           |
| 9  | Douglas                     | 3           |
| 10 | Downtown                    | 127         |
| 11 | Dun's Crossing              | 18          |
| 12 | Forest Hill                 | 12          |
| 13 | Fredericton South           | 85          |
| 14 | Fulton Heights              | 36          |
| 15 | Garden Creek                | 13          |
| 16 | Garden Place                | 4           |
| 17 | Gilridge Estates            | 3           |
| 18 | Golf Club                   | 7           |
| 19 | Grasse Circle               | 1           |
| 20 | Greenwood Minihome Park     | 2           |
| 21 | Hanwell North               | 8           |
| 22 | Heron Springs               | 3           |
| 23 | Highpoint Ridge             | 5           |
| 24 | Kelly's Court Minihome Park | 1           |
| 25 | Knob Hill                   | 4           |
| 26 | Knowledge Park              | 1           |
| 27 | Lian / Valcore              | 7           |
| 28 | Lincoln                     | 13          |
| 29 | Lincoln Heights             | 14          |
| 30 | Main Street                 | 78          |
| 31 | Marysville                  | 39          |
| 32 | McKnight                    | 4           |
| 33 | McLeod Hill                 | 3           |
| 34 | Monteith / Talisman         | 12          |
| 35 | Montogomery / Prospect East | 16          |
| 36 | Nashwaaksis                 | 25          |
| 37 | Nethervue Minihome Park     | 1           |
| 38 | North Devon                 | 113         |

|    | Neighbourh                             | Crime_Count |
|----|----------------------------------------|-------------|
| 39 | Northbrook Heights                     | 10          |
| 40 | Plat                                   | 198         |
| 41 | Poet's Hill                            | 4           |
| 42 | Prospect                               | 81          |
| 43 | Rail Side                              | 3           |
| 44 | Regiment Creek                         | 1           |
| 45 | Royal Road                             | 7           |
| 46 | Saint Mary's First Nation              | 25          |
| 47 | Saint Thomas University                | 1           |
| 48 | Sandyville                             | 9           |
| 49 | Serenity Lane                          | 2           |
| 50 | Shadowood Estates                      | 5           |
| 51 | Silverwood                             | 12          |
| 52 | Skyline Acrea                          | 27          |
| 53 | South Devon                            | 68          |
| 54 | Southwood Park                         | 16          |
| 55 | Springhill                             | 1           |
| 56 | Sunshine Gardens                       | 10          |
| 57 | The Hill                               | 44          |
| 58 | The Hugh John Flemming Forestry Center | 3           |
| 59 | University Of New Brunswick            | 15          |
| 60 | Waterloo Row                           | 9           |
| 61 | Wesbett / Case                         | 1           |
| 62 | West Hills                             | 5           |
| 63 | Williams / Hawkins Area                | 17          |
| 64 | Woodstock Road                         | 41          |
| 65 | Youngs Crossing                        | 16          |

12/20/2018 Capstoneek5W

```
In [88]: address = 'Fredericton, Canada'

geolocator = Nominatim()

location = geolocator.geocode(address)

latitude = location.latitude

longitude = location.longitude

print('The geograpical coordinate of Fredericton, New Brunswick is {},

{}.'.format( latitude, longitude))
```

/anaconda3/lib/python3.7/site-packages/ipykernel\_launcher.py:3: DeprecationWarnin g: Using Nominatim with the default "geopy/1.18.1" `user\_agent` is strongly discouraged, as it violates Nominatim's ToS https://operations.osmfoundation.org/policies/nominatim/ and may possibly cause 403 and 429 HTTP errors. Please specify a cust om `user\_agent` with `Nominatim(user\_agent="my-application")` or by overriding the default `user\_agent`: `geopy.geocoders.options.default\_user\_agent = "my-application")`. In geopy 2.0 this will become an exception.

This is separate from the ipykernel package so we can avoid doing imports until The geograpical coordinate of Fredericton, New Brunswick is 45.966425, -66.645813.

Out[89]:



```
In [90]: fredericton_geo = r.json()

threshold_scale = np.linspace(crime_data['Crime_Count'].min(),crime_data['Crime_Count'].max(), 6,dtype=int)
threshold_scale = threshold_scale.tolist()
threshold_scale[-1] = threshold_scale[-1]+1

fredericton_1_map.choropleth(geo_data=fredericton_geo,
data=crime_data,columns=['Ne ighbourh', 'Crime_Count'],
    key_on='feature.properties.Neighbourh',
threshold_scale=threshold_scale,fill_color='YlOrRd', fill_opacity=0.7,
    line_opacity=0.1, legend_name='Fredericton_Neighbourhoods')
fredericton_1_map
```

Out[90]:



# **Examine Crime Types**

12/20/2018 Capstoneek5W

#### Out[131]:

|    | Crime_Type             | Count |
|----|------------------------|-------|
| 0  |                        | 4     |
| 1  | ARSON                  | 5     |
| 2  | ARSON BY NEG           | 1     |
| 3  | ARSON-DAM.PROP.        | 4     |
| 4  | B&E NON-RESIDNCE       | 51    |
| 5  | B&E OTHER              | 58    |
| 6  | B&E RESIDENCE          | 151   |
| 7  | B&E STEAL FIREAR       | 3     |
| 8  | MISCHIEF OBS USE       | 1     |
| 9  | MISCHIEF TO PROP       | 246   |
| 10 | MISCHIEF-DATA          | 2     |
| 11 | MOTOR VEH THEFT        | 40    |
| 12 | THEFT BIKE<\$5000      | 63    |
| 13 | THEFT FROM MV < \$5000 | 356   |
| 14 | THEFT FROM MV > \$5000 | 5     |
| 15 | THEFT OTH <\$5000      | 458   |
| 16 | THEFT OTH >\$5000      | 9     |
| 17 | THEFT OVER \$5000      | 1     |
| 18 | THEFT,BIKE>\$5000      | 2     |
|    |                        |       |

In [154]: crimetype\_data.describe()

#### Out[154]:

std

|       | Count     |
|-------|-----------|
| count | 19.000000 |
| mean  | 76.842105 |
|       |           |

133.196706

 min
 1.000000

 25%
 2.500000

 50%
 5.000000

 75%
 60.500000

 max
 458.000000

Out[140]:

City

| Crime_Type                     |   | AR<br>ARSON BY | SON | ARSON-    | B&E NON- | B&E   | B&E       | B&E<br>STEAL | MISCHIEF | MISCHI |
|--------------------------------|---|----------------|-----|-----------|----------|-------|-----------|--------------|----------|--------|
| - ••                           |   | NE             | G   | DAM.PROP. | RESIDNCE | OTHER | RESIDENCE | FIREAR       | OBS USE  | TO PRO |
| Neighbourhood                  |   |                |     |           |          |       |           |              |          |        |
| Barkers Point                  | 0 | 0              | 0   | 0         | 2        | 7     | 7         | 1            | 0        |        |
| Brookside                      | 0 | 0              | 0   | 0         | 2        | 0     | 0         | 0            | 0        |        |
| Brookside<br>Estates           | 0 | 0              | 0   | 0         | 1        | 1     | 0         | 0            | 0        |        |
| Brookside Mini<br>Home Park    | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 1            | 0        |        |
| College Hill                   | 0 | 2              | 0   | 0         | 0        | 2     | 13        | 0            | 0        |        |
| Colonial<br>heights            | 0 | 0              | 0   | 0         | 0        | 0     | 3         | 0            | 0        |        |
| Cotton Mill<br>Creek           | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Diamond<br>Street              | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Doak Road                      | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Douglas                        | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Downtown                       | 0 | 1              | 0   | 1         | 7        | 0     | 3         | 0            | 0        |        |
| <b>Dun's Crossing</b>          | 0 | 0              | 0   | 0         | 0        | 0     | 1         | 0            | 0        |        |
| Forest Hill                    | 0 | 0              | 0   | 0         | 1        | 0     | 0         | 0            | 0        |        |
| Fredericton<br>South           | 1 | 0              | 0   | 0         | 6        | 1     | 1         | 0            | 0        |        |
| Fulton Heights                 | 0 | 0              | 0   | 0         | 1        | 0     | 6         | 0            | 0        |        |
| Garden Creek                   | 0 | 0              | 0   | 0         | 2        | 1     | 1         | 0            | 0        |        |
| Garden Place                   | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Gilridge<br>Estates            | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Golf Club                      | 0 | 0              | 0   | 0         | 0        | 0     | 1         | 0            | 0        |        |
| Grasse Circle                  | 1 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Greenwood<br>Minihome Park     | 0 | 0              | 0   | 0         | 0        | 1     | 0         | 0            | 0        |        |
| Hanwell North                  | 0 | 0              | 0   | 0         | 0        | 1     | 2         | 0            | 0        |        |
| Heron Springs                  | 0 | 0              | 0   | 0         | 0        | 0     | 1         | 0            | 0        |        |
| Highpoint<br>Ridge             | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Kelly's Court<br>Minihome Park | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Knob Hill                      | 0 | 0              | 0   | 0         | 0        | 0     | 1         | 0            | 0        |        |
| Knowledge<br>Park              | 1 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Lian / Valcore                 | 0 | 0              | 0   | 0         | 0        | 0     | 0         | 0            | 0        |        |
| Lincoln                        | 0 | 0              | 0   | 0         | 2        | 2     | 2         | 0            | 0        |        |

City

| Crime_Type                     |   | ARSON BY | ON | ARSON-<br>DAM.PROP. | B&E NON- | B&E<br>OTHER  | B&E<br>RESIDENCE | B&E<br>STEAL<br>FIREAR | MISCHIEF<br>OBS USE | MISCHI<br>TO PRO |
|--------------------------------|---|----------|----|---------------------|----------|---------------|------------------|------------------------|---------------------|------------------|
| Neighbourhood                  |   | 20       |    |                     |          | • · · · · · · | NEOIDENOE        |                        | 020 002             | 101110           |
| Lincoln<br>Heights             | 0 | 0        | 0  | 0                   | 0        | 1             | 1                | 0                      | 0                   |                  |
| Main Street                    | 0 | 0        | 0  | 1                   | 2        | 4             | 8                | 0                      | 1                   |                  |
| Marysville                     | 0 | 1        | 0  | 0                   | 1        | 2             | 5                | 0                      | 0                   |                  |
| McKnight                       | 0 | 0        | 0  | 0                   |          |               |                  |                        |                     |                  |
| McLeod Hill                    | 0 | 0        | 0  | 0                   |          |               |                  |                        |                     |                  |
| Monteith /<br>Talisman         | 0 | 0        | 0  | 0                   |          |               |                  |                        |                     |                  |
| Montogomery /<br>Prospect East | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| Nashwaaksis                    | 0 | 0        | 0  | 1                   | 2        | 0             | 3                | 0                      | 0                   |                  |
| Nethervue<br>Minihome Park     | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| North Devon                    | 0 | 0        | 0  | 0                   | 5        | 4             | 11               | 0                      | 0                   |                  |
| Northbrook<br>Heights          | 0 | 0        | 0  | 0                   | 0        | 0             | 2                | 0                      | 0                   |                  |
| Plat                           | 0 | 0        | 0  | 0                   | 4        | 10            | 18               | 0                      | 0                   |                  |
| Poet's Hill                    | 0 | 0        | 0  | 0                   | 0        | 0             | 1                | 0                      | 0                   |                  |
| Prospect                       | 0 | 0        | 0  | 0                   | 1        | 0             | 2                | 0                      | 0                   |                  |
| Rail Side                      | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| Regiment<br>Creek              | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| Royal Road                     | 0 | 0        | 0  | 0                   | 3        | 2             | 2                | 0                      | 0                   |                  |
| Saint Mary's<br>First Nation   | 0 | 0        | 0  | 0                   | 0        | 0             | 1                | 0                      | 0                   |                  |
| Saint Thomas<br>University     | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| Sandyville                     | 0 | 0        | 0  | 0                   | 0        | 2             | 2                | 0                      | 0                   |                  |
| Serenity Lane                  | 0 | 0        | 0  | 0                   | 1        | 1             | 0                | 0                      | 0                   |                  |
| Shadowood<br>Estates           | 0 | 0        | 0  | 0                   | 0        | 0             | 0                | 0                      | 0                   |                  |
| Silverwood                     | 0 | 0        | 0  | 0                   | 0        | 0             | 3                | 0                      | 0                   |                  |
| Skyline Acrea                  | 0 | 1        | 0  | 0                   | 1        | 1             | 2                | 0                      | 0                   |                  |
| South Devon                    | 0 | 0        | 1  | 0                   | 0        | 6             | 16               | 0                      | 0                   |                  |
| Southwood<br>Park              | 0 | 0        | 0  | 0                   | 0        | 0             | 2                | 0                      | 0                   |                  |
| Springhill                     | 0 | 0        | 0  | 0                   | 0        | 0             | 1                | 0                      | 0                   |                  |
| Sunshine<br>Gardens            | 0 | 0        | 0  | 0                   | 0        | 1             | 0                | 0                      | 0                   |                  |
| The Hill                       | 0 | 0        | 0  | 0                   | 2        | 1             | 12               | 1                      | 0                   |                  |

City

| Crime_Type             | ARSON | ARSON<br>BY | ARSON-    | B&E NON- | B&E   | B&E       | B&E<br>STEAL | MISCHIEF | MISCH  |
|------------------------|-------|-------------|-----------|----------|-------|-----------|--------------|----------|--------|
|                        |       | NEG         | DAM.PROP. | RESIDNCE | OTHER | RESIDENCE | FIREAR       | OBS USE  | TO PRO |
| Neighbourhood          |       |             |           |          |       |           |              |          |        |
| The Hugh John          |       |             |           |          |       |           |              |          |        |
| Flemming 0<br>Forestry | 0     | 0           | 0         | 1        | 2     | 0         | 0            | 0        |        |
| Center                 |       |             |           |          |       |           |              |          |        |
| University Of<br>New 0 | 0     | 0           | 0         | 0        | 0     | 1         | 0            | 0        |        |
| Brunswick              |       |             |           |          |       |           |              |          |        |
| Waterloo Row 0         | 0     | 0           | 0         | 0        | 1     | 2         | 0            | 0        |        |
| Wesbett / Case 1       | 0     | 0           | 0         | 0        | 0     | 0         | 0            | 0        |        |
| West Hills 0           | 0     | 0           | 0         | 0        | 1     | 1         | 0            | 0        |        |
| Williams / 0           | 0     | 0           | 0         | 0        | 1     | 2         | 0            | 0        |        |
| Hawkins Area           |       |             |           |          |       |           |              |          |        |
| Woodstock 0            | 0     | 0           | 0         | 2        | 0     | 5         | 0            | 0        |        |
| Road                   |       |             |           |          |       |           |              |          |        |
| Youngs 0               | 0     | 0           | 1         | 0        | 0     | 2         | 0            | 0        |        |
| Crossing               |       |             |           |          |       |           |              |          |        |

```
In [92]: crimetype_data.plot(x='Crime_Type', y='Count', kind='barh')
```

Out[92]: <matplotlib.axes. subplots.AxesSubplot at 0x11682a860>



In []:

# Let's examine theft from vehicles

```
In [93]: mvcrime_df = crime_df.loc[crime_df['Crime_Type'] == 'THEFT FROM MV <
    $5000'] mvcrime_df</pre>
```

Out[93]:

|     | Neighbourhood     | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|-------------------|------------|------------------------|------|-------------|-----|
| 18  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 19  |
| 19  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 20  |
| 20  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 21  |
| 21  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 22  |
| 22  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 23  |
| 23  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 24  |
| 24  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 25  |
| 25  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 26  |
| 26  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 27  |
| 27  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 28  |
| 28  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 29  |
| 29  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 30  |
| 30  | Fredericton South | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 31  |
| 51  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 52  |
| 52  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 53  |
| 53  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 54  |
| 54  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 55  |
| 55  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 56  |
| 56  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 57  |
| 57  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 58  |
| 58  | Barkers Point     | 2142       | THEFT FROM MV < \$5000 | 6    | Fredericton | 59  |
| 100 | Sandyville        | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 101 |
| 107 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 108 |
| 108 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 109 |
| 109 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 110 |
| 110 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 111 |
| 111 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 112 |
| 112 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 113 |
| 113 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 114 |
| 114 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 115 |
| 115 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 116 |
| 116 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 117 |
| 117 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 118 |
| 118 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 119 |
| 119 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 120 |
| 120 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 121 |
| 121 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 122 |
| 122 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 123 |
| 123 | South Devon       | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 124 |

|     | Neighbourhood             | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|---------------------------|------------|------------------------|------|-------------|-----|
| 124 | South Devon               | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 125 |
| 125 | South Devon               | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 126 |
| 126 | South Devon               | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 127 |
| 127 | South Devon               | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 128 |
| 128 | South Devon               | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 129 |
| 151 | Sandyville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 152 |
| 156 | Knob Hill                 | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 157 |
| 165 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 166 |
| 166 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 167 |
| 167 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 168 |
| 168 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 169 |
| 169 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 170 |
| 170 | Youngs Crossing           | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 171 |
| 201 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 202 |
| 252 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 253 |
| 278 | Douglas                   | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 279 |
| 280 | McLeod Hill               | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 281 |
| 281 | McLeod Hill               | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 282 |
| 301 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 0    | Fredericton | 302 |
| 302 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 303 |
| 303 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 304 |
| 304 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 305 |
| 305 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 306 |
| 306 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 307 |
| 307 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 308 |
| 308 | Marysville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 309 |
| 330 | Saint Mary's First Nation | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 331 |
| 349 | Sandyville                | 2142       | THEFT FROM MV < \$5000 | 5    | Fredericton | 350 |
| 354 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 355 |
| 355 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 356 |
| 356 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 357 |
| 357 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 358 |
| 358 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 359 |
| 359 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 360 |
| 360 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 361 |
| 361 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 362 |
| 362 | Nashwaaksis               | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 363 |
| 377 | Northbrook Heights        | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 378 |
| 378 | Northbrook Heights        | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 379 |

|     | Neighbourhood      | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|--------------------|------------|------------------------|------|-------------|-----|
| 379 | Northbrook Heights | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 380 |
| 380 | Northbrook Heights | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 381 |
| 381 | Northbrook Heights | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 382 |
| 388 | Heron Springs      | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 389 |
| 389 | Heron Springs      | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 390 |
| 400 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 401 |
| 401 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 402 |
| 402 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 403 |
| 403 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 404 |
| 404 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 405 |
| 405 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 406 |
| 408 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 409 |
| 410 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 411 |
| 411 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 412 |
| 412 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 413 |
| 413 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 414 |
| 414 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 415 |
| 415 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 416 |
| 416 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 417 |
| 417 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 418 |
| 418 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 419 |
| 419 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 420 |
| 420 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 421 |
| 421 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 422 |
| 422 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 423 |
| 506 | Downtown           | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 507 |
| 520 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 521 |
| 521 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 522 |
| 522 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 523 |
| 523 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 524 |
| 524 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 525 |
| 525 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 526 |
| 526 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 527 |
| 527 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 528 |
| 528 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 529 |
| 529 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 530 |
| 530 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 531 |
| 531 | Fulton Heights     | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 532 |
| 569 | Main Street        | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 570 |

| -   | Neighbourhood           | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|-------------------------|------------|------------------------|------|-------------|-----|
| 570 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 571 |
| 571 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 572 |
| 572 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 573 |
| 573 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 574 |
| 574 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 575 |
| 575 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 576 |
| 576 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 577 |
| 577 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 578 |
| 578 | Main Street             | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 579 |
| 604 | Golf Club               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 605 |
| 614 | Gilridge Estates        | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 615 |
| 622 | Nethervue Minihome Park | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 623 |
| 625 | Monteith / Talisman     | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 626 |
| 626 | Monteith / Talisman     | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 627 |
| 631 | Garden Creek            | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 632 |
| 640 | Highpoint Ridge         | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 641 |
| 641 | Highpoint Ridge         | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 642 |
| 642 | Highpoint Ridge         | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 643 |
| 643 | Highpoint Ridge         | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 644 |
| 650 | Golf Club               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 651 |
| 651 | Golf Club               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 652 |
| 653 | Golf Club               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 654 |
| 752 | Golf Club               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 753 |
| 764 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 765 |
| 765 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 766 |
| 766 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 767 |
| 767 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 768 |
| 768 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 769 |
| 769 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 770 |
| 770 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 771 |
| 771 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 772 |
| 772 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 773 |
| 773 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 774 |
| 774 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 775 |
| 775 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 776 |
| 776 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 0    | Fredericton | 777 |
| 777 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 778 |
| 778 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 779 |
| 779 | Woodstock Road          | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 780 |

|     | Neighbourhood    | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|------------------|------------|------------------------|------|-------------|-----|
| 780 | Woodstock Road   | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 781 |
| 781 | Woodstock Road   | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 782 |
| 787 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 788 |
| 788 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 789 |
| 789 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 790 |
| 790 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 791 |
| 791 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 792 |
| 792 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 793 |
| 793 | Sunshine Gardens | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 794 |
| 809 | Plat             | 2142       | THEFT FROM MV < \$5000 | 0    | Fredericton | 810 |
| 810 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 811 |
| 811 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 812 |
| 812 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 813 |
| 813 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 814 |
| 814 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 815 |
| 815 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 816 |
| 816 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 817 |
| 817 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 818 |
| 818 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 819 |
| 819 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 820 |
| 820 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 821 |
| 821 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 822 |
| 822 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 823 |
| 823 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 824 |
| 824 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 825 |
| 825 | Plat             | 2142       | THEFT FROM MV < \$5000 | 0    | Fredericton | 826 |
| 826 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 827 |
| 827 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 828 |
| 828 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 829 |
| 829 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 830 |
| 830 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 831 |
| 831 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 832 |
| 832 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 833 |
| 833 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 834 |
| 835 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 836 |
| 836 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 837 |
| 837 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 838 |
| 838 | Plat             | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 839 |
| 839 | Plat             | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 840 |

| 1   | Neighbourhood   | Crime_Code | Crime_Type             | Ward | City        | FID |
|-----|-----------------|------------|------------------------|------|-------------|-----|
| 840 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 841 |
| 841 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 842 |
| 842 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 843 |
| 843 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 844 |
| 844 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 845 |
| 845 | Plat            | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 846 |
| 846 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 847 |
| 847 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 848 |
| 848 | Plat            | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 849 |
| 849 | Plat            | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 850 |
| 855 | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 856 |
| 856 | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 857 |
| 857 | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 858 |
| 865 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 866 |
| 866 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 867 |
| 867 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 868 |
| 868 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 869 |
| 869 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 870 |
| 871 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 872 |
| 875 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 876 |
| 880 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 881 |
| 881 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 882 |
| 886 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 887 |
| 887 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 888 |
| 892 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 893 |
| 893 | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 894 |
| 898 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 899 |
| 899 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 900 |
| 900 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 901 |
| 901 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 902 |
| 902 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 903 |
| 903 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 904 |
| 904 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 905 |
| 905 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 906 |
| 906 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 907 |
| 907 | Skyline Acrea   | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 908 |
| 913 | Poet's Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 914 |
| 914 | Poet's Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 915 |
| 922 | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 923 |

|      | Neighbourhood   | Crime_Code | Crime_Type             | Ward | City        | FID  |
|------|-----------------|------------|------------------------|------|-------------|------|
| 923  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 924  |
| 924  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 925  |
| 925  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 926  |
| 926  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 927  |
| 927  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 928  |
| 928  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 929  |
| 929  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 930  |
| 930  | Dun's Crossing  | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 931  |
| 938  | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 939  |
| 939  | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 940  |
| 940  | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 941  |
| 941  | Southwood Park  | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 942  |
| 946  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 947  |
| 947  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 948  |
| 948  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 949  |
| 949  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 950  |
| 950  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 951  |
| 951  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 952  |
| 952  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 953  |
| 954  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 955  |
| 955  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 956  |
| 956  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 957  |
| 957  | The Hill        | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 958  |
| 969  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 970  |
| 970  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 971  |
| 971  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 972  |
| 972  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 973  |
| 973  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 974  |
| 974  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 975  |
| 975  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 976  |
| 976  | Forest Hill     | 2142       | THEFT FROM MV < \$5000 | 8    | Fredericton | 977  |
| 989  | Lincoln Heights | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 990  |
| 996  | Diamond Street  | 2142       | THEFT FROM MV < \$5000 | 1    | Fredericton | 997  |
| 1027 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1028 |
| 1028 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1029 |
| 1029 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1030 |
| 1030 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1031 |
| 1031 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1032 |
| 1032 | College Hill    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1033 |

|      | Neighbourhood               | Crime_Code | Crime_Type             | Ward | City        | FID  |
|------|-----------------------------|------------|------------------------|------|-------------|------|
| 1033 | College Hill                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1034 |
| 1034 | College Hill                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1035 |
| 1035 | College Hill                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1036 |
| 1036 | College Hill                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1037 |
| 1060 | Brookside Estates           | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1061 |
| 1061 | Brookside Estates           | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1062 |
| 1062 | Brookside Estates           | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1063 |
| 1116 | Lincoln                     | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 1117 |
| 1124 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1125 |
| 1125 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1126 |
| 1126 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1127 |
| 1127 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1128 |
| 1128 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1129 |
| 1129 | Colonial heights            | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1130 |
| 1131 | Garden Place                | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1132 |
| 1132 | Garden Place                | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1133 |
| 1133 | Garden Place                | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1134 |
| 1144 | Waterloo Row                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1145 |
| 1145 | Waterloo Row                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1146 |
| 1146 | Waterloo Row                | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1147 |
| 1151 | University Of New Brunswick | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1152 |
| 1152 | University Of New Brunswick | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1153 |
| 1153 | University Of New Brunswick | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1154 |
| 1154 | University Of New Brunswick | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1155 |
| 1163 | Saint Thomas University     | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1164 |
| 1173 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1174 |
| 1174 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1175 |
| 1175 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1176 |
| 1176 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1177 |
| 1177 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1178 |
| 1178 | Williams / Hawkins Area     | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1179 |
| 1181 | McKnight                    | 2142       | THEFT FROM MV < \$5000 | 2    | Fredricton  | 1182 |
| 1187 | Shadowood Estates           | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1188 |
| 1188 | Shadowood Estates           | 2142       | THEFT FROM MV < \$5000 | 2    | Fredericton | 1189 |
| 1240 | Lian / Valcore              | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1241 |
| 1284 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1285 |
| 1285 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1286 |
| 1286 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1287 |
| 1287 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1288 |
|      |                             |            |                        |      |             |      |

|      | Neighbourhood               | Crime_Code | Crime_Type             | Ward | City        | FID  |
|------|-----------------------------|------------|------------------------|------|-------------|------|
| 1288 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1289 |
| 1289 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1290 |
| 1290 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 4    | Fredericton | 1291 |
| 1302 | Rail Side                   | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1303 |
| 1306 | Rail Side                   | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1307 |
| 1316 | Silverwood                  | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1317 |
| 1317 | Silverwood                  | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1318 |
| 1339 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1340 |
| 1340 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1341 |
| 1341 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1342 |
| 1342 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1343 |
| 1343 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1344 |
| 1344 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1345 |
| 1345 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1346 |
| 1346 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1347 |
| 1347 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1348 |
| 1348 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1349 |
| 1349 | Prospect                    | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1350 |
| 1369 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1370 |
| 1370 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1371 |
| 1371 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1372 |
| 1372 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1373 |
| 1377 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1378 |
| 1380 | Hanwell North               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1381 |
| 1381 | Hanwell North               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1382 |
| 1382 | Hanwell North               | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1383 |
| 1387 | Montogomery / Prospect East | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1388 |
| 1388 | Montogomery / Prospect East | 2142       | THEFT FROM MV < \$5000 | 11   | Fredericton | 1389 |
| 1389 | Montogomery / Prospect East | 2142       | THEFT FROM MV < \$5000 | 9    | Fredericton | 1390 |
| 1403 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 7    | Fredericton | 1404 |
| 1408 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1409 |
| 1409 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1410 |
| 1410 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1411 |
| 1411 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1412 |
| 1412 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1413 |
| 1413 | Fredericton South           | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1414 |
| 1420 | Woodstock Road              | 2142       | THEFT FROM MV < \$5000 | 12   | Fredericton | 1421 |
| 1421 | Woodstock Road              | 2142       | THEFT FROM MV < \$5000 | 10   | Fredericton | 1422 |
| 1437 | North Devon                 | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1438 |

12/20/2018 Capstone<u>e</u>k5W

|      | Neighbourhood       | Crime_Code | Crime_Type             | Ward | City        | FID  |
|------|---------------------|------------|------------------------|------|-------------|------|
| 1438 | North Devon         | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1439 |
| 1439 | North Devon         | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1440 |
| 1440 | North Devon         | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1441 |
| 1441 | North Devon         | 2142       | THEFT FROM MV < \$5000 | 3    | Fredericton | 1442 |
| 1459 | Monteith / Talisman | 21/12      | THEET FROM MV ~ \$5000 | 12   | Fredericton | 1460 |

```
In [94]: mvcrime_data = mvcrime_df.groupby(['Neighbourhood']).size().to_frame(name='Count').
    reset_index()
    mvcrime_data
```

#### Out[94]:

|    | Neighbourhood               | Count |
|----|-----------------------------|-------|
| 0  | Barkers Point               | 8     |
| 1  | Brookside Estates           | 3     |
| 2  | College Hill                | 10    |
| 3  | Colonial heights            | 6     |
| 4  | Diamond Street              | 1     |
| 5  | Douglas                     | 1     |
| 6  | Downtown                    | 21    |
| 7  | Dun's Crossing              | 9     |
| 8  | Forest Hill                 | 8     |
| 9  | Fredericton South           | 20    |
| 10 | Fulton Heights              | 12    |
| 11 | Garden Creek                | 1     |
| 12 | Garden Place                | 3     |
| 13 | Gilridge Estates            | 1     |
| 14 | Golf Club                   | 5     |
| 15 | Hanwell North               | 3     |
| 16 | Heron Springs               | 2     |
| 17 | Highpoint Ridge             | 4     |
| 18 | Knob Hill                   | 1     |
| 19 | Lian / Valcore              | 1     |
| 20 | Lincoln                     | 1     |
| 21 | Lincoln Heights             | 11    |
| 22 | Main Street                 | 10    |
| 23 | Marysville                  | 10    |
| 24 | McKnight                    | 1     |
| 25 | McLeod Hill                 | 2     |
| 26 | Monteith / Talisman         | 3     |
| 27 | Montogomery / Prospect East | 3     |
| 28 | Nashwaaksis                 | 9     |
| 29 | Nethervue Minihome Park     | 1     |
| 30 | North Devon                 | 17    |
| 31 | Northbrook Heights          | 5     |
| 32 | Plat                        | 40    |
| 33 | Poet's Hill                 | 2     |
| 34 | Prospect                    | 11    |
| 35 | Rail Side                   | 2     |
| 36 | Saint Mary's First Nation   | 1     |
| 37 | Saint Thomas University     | 1     |
| 38 | Sandyville                  | 3     |

|    | Neighbourhood               | Count |
|----|-----------------------------|-------|
| 39 | Shadowood Estates           | 2     |
| 40 | Silverwood                  | 2     |
| 41 | Skyline Acrea               | 13    |
| 42 | South Devon                 | 22    |
| 43 | Southwood Park              | 7     |
| 44 | Sunshine Gardens            | 7     |
| 45 | The Hill                    | 11    |
| 46 | University Of New Brunswick | 4     |
| 47 | Waterloo Row                | 3     |
| 48 | Williams / Hawkins Area     | 6     |
| 49 | Woodstock Road              | 20    |
| 50 | Youngs Crossing             | 6     |

In [155]: mvcrime\_data.describe()

| Out[155]: |       |               |
|-----------|-------|---------------|
|           |       | MVCrime_Count |
|           | count | 51.000000     |
|           | mean  | 6.980392      |
|           | std   | 7.457855      |
|           | min   | 1.000000      |
|           | 25%   | 2.000000      |
|           | 50%   | 4.000000      |
|           | 75%   | 10.000000     |
|           | max   | 40.000000     |

#### Out[95]:

|    | Neighbourh                  | MVCrime_Count |
|----|-----------------------------|---------------|
| 0  | Barkers Point               | 8             |
| 1  | Brookside Estates           | 3             |
| 2  | College Hill                | 10            |
| 3  | Colonial heights            | 6             |
| 4  | Diamond Street              | 1             |
| 5  | Douglas                     | 1             |
| 6  | Downtown                    | 21            |
| 7  | Dun's Crossing              | 9             |
| 8  | Forest Hill                 | 8             |
| 9  | Fredericton South           | 20            |
| 10 | Fulton Heights              | 12            |
| 11 | Garden Creek                | 1             |
| 12 | Garden Place                | 3             |
| 13 | Gilridge Estates            | 1             |
| 14 | Golf Club                   | 5             |
| 15 | Hanwell North               | 3             |
| 16 | Heron Springs               | 2             |
| 17 | Highpoint Ridge             | 4             |
| 18 | Knob Hill                   | 1             |
| 19 | Lian / Valcore              | 1             |
| 20 | Lincoln                     | 1             |
| 21 | Lincoln Heights             | 11            |
| 22 | Main Street                 | 10            |
| 23 | Marysville                  | 10            |
| 24 | McKnight                    | 1             |
| 25 | McLeod Hill                 | 2             |
| 26 | Monteith / Talisman         | 3             |
| 27 | Montogomery / Prospect East | 3             |
| 28 | Nashwaaksis                 | 9             |
| 29 | Nethervue Minihome Park     | 1             |
| 30 | North Devon                 | 17            |
| 31 | Northbrook Heights          | 5             |
| 32 | Plat                        | 40            |
| 33 | Poet's Hill                 | 2             |
| 34 | Prospect                    | 11            |
| 35 | Rail Side                   | 2             |
| 36 | Saint Mary's First Nation   | 1             |
| 37 | Saint Thomas University     | 1             |
| 38 | Sandyville                  | 3             |

12/20/2018 Capstoneek5<u>W</u>

#### Neighbourh MVCrime\_Count

| 39 | Shadowood Estates           | 2  |
|----|-----------------------------|----|
| 40 | Silverwood                  | 2  |
| 41 | Skyline Acrea               | 13 |
| 42 | South Devon                 | 22 |
| 43 | Southwood Park              | 7  |
| 44 | Sunshine Gardens            | 7  |
| 45 | The Hill                    | 11 |
| 46 | University Of New Brunswick | 4  |
| 47 | Waterloo Row                | 3  |
| 48 | Williams / Hawkins Area     | 6  |
| 49 | Woodstock Road              | 20 |
| 50 | Youngs Crossing             | 6  |

#### Out[96]:



12/20/2018 Capstoneek5W

```
In [97]:
          ## Motor Vehicle Crime <$5000 Count
          fredericton_geo = r.json()
          threshold scale = np.linspace(mvcrime data['MVCrime Count'].min(),
          mvcrime data['MV Crime Count'].max(),6,dtype=int)
          threshold scale = threshold scale.tolist()
          threshold scale[-1] = threshold scale[-1]+1
          fredericton_c_map.choropleth(geo_data=fredericton_geo,data=mvcrime_data,columns=['N
          eighbourh', 'MVCrime Count'], key on='feature.properties.Neighbourh',
              threshold scale=threshold scale,
          fill color='YlOrRd', fill opacity=0.7, line opac ity=0.1, legend name='Fredericton
          Neighbourhoods') fredericton c map
Out[97]:
```

# Is it possible the higher rate of crime in the downtown area is due to population density?

```
In [98]: opendemog = 'Fredericton_Census_Tract_Demographics.xlsx'
    workbook = pd.ExcelFile(opendemog)
    print(workbook.sheet_names)

['Fredericton Census Tract Demogr']
```

12/20/2018 Capstoneek5W

```
In [99]: demog_df = workbook.parse('Fredericton_Census_Tract_Demogr')
    demog_df.head()
```

Out[99]:

|   | FID | OBJECTID | DBUID      | DAUID    | CDUID | CTUID   | CTNAME | DBuid_1    | DBpop2011 | DBtdwell20 D |
|---|-----|----------|------------|----------|-------|---------|--------|------------|-----------|--------------|
| 0 | 1   | 501      | 1310024304 | 13100243 | 1310  | 3200002 | 2      | 1310024304 | 60        | 25           |
| 1 | 2   | 502      | 1310032004 | 13100320 | 1310  | 3200010 | 10     | 1310032004 | 15        | 3            |
| 2 | 3   | 503      | 1310017103 | 13100171 | 1310  | 3200014 | 14     | 1310017103 | 0         | 0            |
| 3 | 4   | 504      | 1310018301 | 13100183 | 1310  | 3200012 | 12     | 1310018301 | 108       | 60           |
| 4 | 5   | 505      | 1310022905 | 13100229 | 1310  | 3200007 | 7      | 1310022905 | 129       | 47           |

```
In []:
```

In [ ]:

Out[100]:



## Let's look at specific locations in Fredericton

```
In [101]:
            pointbook = 'Fredericton Locations.xlsx'
            workbook 2 = pd.ExcelFile(pointbook)
            print(workbook_2.sheet_names)
            ['Sheet1']
In [102]:
             location df = workbook 2.parse('Sheet1')
            location df
Out[102]:
                               Location Neighbourh
                                                    Latitude Longitude
             0
                         Knowledge Park
                                             NaN 45.931143 -66.652700
             1
                          Fredericton Hill
                                             NaN
                                                  45.948512 -66.656045
                            Nashwaaksis
                                             NaN
                                                  45.983382 -66.644856
                University of New Brunswick
                                                  45.948121 -66.641406
              4
                                 Devon
                                             NaN
                                                  45.968802 -66.622738
                           New Maryland
             5
                                             NaN 45.892795 -66.683673
             6
                              Marysville
                                             NaN 45.978913 -66.589491
                            Skyline Acres
                                             NaN 45.931827 -66.640339
                                Hanwell
                                             NaN 45.902315 -66.755113
             9
                              Downtown
                                             NaN 45.958327 -66.647211
In [103]:
            location_df.drop(['Neighbourh'], axis=1,inplace=True)
            location df
Out[103]:
```

|   | Location                    | Latitude    | Longitude  |
|---|-----------------------------|-------------|------------|
| 0 | Knowledge Park              | 45.931143   | -66.652700 |
| 1 | Fredericton Hill            | 45.948512   | -66.656045 |
| 2 | Nashwaaksis 4               | 5.983382 -6 | 6.644856   |
| 3 | University of New Brunswick | 45.948121   | -66.641406 |
| 4 | Devon                       | 45.968802   | -66.622738 |
| 5 | New Maryland                | 45.892795   | -66.683673 |
| 6 | Marysville                  | 45.978913   | -66.589491 |
| 7 | Skyline Acres               | 45.931827   | -66.640339 |
| 8 | Hanwell                     | 45.902315   | -66.755113 |
| 9 | Downtown                    | 45.958327   | -66.647211 |

### Add location markers to map

12/20/2018 Capstoneek5W

```
In [104]: for lat, lng, point in zip(location df['Latitude'], location df['Longitude'],
          locat ion df['Location']):
              label = '{}'.format(point)
              label = folium.Popup(label, parse html=True)
              folium.CircleMarker([lat, lng],radium=1,popup=label,color='blue',fill=True,fill
           _color='#3186cc',fill_opacity=0.7,
                  parse html=False).add to(fredericton c map)
          fredericton c map
Out[104]:
  In [ ]:
```

## **Explore Fredericton Neighbourhoods**

#### **Define Foursquare Credentials and Version**

```
In [2]: CLIENT_ID = 'Nope' # your Foursquare ID
    CLIENT_SECRET = 'Secret' # your Foursquare Secret
    VERSION = '20181201' # Foursquare API version
    print('Your credentails:')
    print('CLIENT_ID: ' + CLIENT_ID)
    print('CLIENT_SECRET:' + CLIENT_SECRET)

Your credentails:
    CLIENT_ID: Nope
    CLIENT_SECRET:Secret
```

## Let's take a look at nearby venues

```
In [106]:
           def getNearbyVenues(names, latitudes, longitudes, radius=1000, LIMIT=100):
              venues list=[]
              for name, lat, lng in zip(names, latitudes, longitudes):
                   print(name)
                   # create the API request URL
                   url = 'https://api.foursquare.com/v2/venues/explore?&client id={}&client se
          cret={}&v={}&ll={},{}&radius={}&limit={}'.format(
                       CLIENT ID,
                       CLIENT SECRET,
                       VERSION,
                       lat,
                       lng,
                       radius,
                       LIMIT)
                   # make the GET request
                   results = requests.get(url).json()["response"]['groups'][0]['items']
                   # return only relevant information for each nearby
                   venue venues_list.append([(
                       name,
                       lat,
                       lng,
                       v['venue']['name'],
                       v['venue']['id'],
                       v['venue']['location']['lat'],
                       v['venue']['location']['lng'],
                       v['venue']['categories'][0]['name']) for v in results])
              nearby venues = pd.DataFrame([item for venue list in venues list for item in
          ve nue list])
              nearby_venues.columns = ['Location',
                             'Location Latitude',
                             'Location Longitude',
                             'Venue',
                             'Venue id',
                             'Venue Latitude',
                             'Venue Longitude',
                             'Venue Category'
                              1
              return (nearby_venues)
In [107]:
           fredericton data venues = getNearbyVenues(names=location df['Location'],
                                              latitudes=location df['Latitude'],
                                              longitudes=location df['Longitude']
          Knowledge Park
          Fredericton Hill
          Nashwaaksis
          University of New Brunswick
          Devon
          New Maryland
          Marysville
          Skyline Acres
          Hanwell
          Downtown
```

12/20/2018 Capstoneek5W

In [108]: print(fredericton\_data\_venues.shape)
 fredericton\_data\_venues

12/20/2018

(166, 8)

Out[108]:

|    | Location          | Location<br>Latitude | Location<br>Longitude | Venue                           | Venue id                 | Venue<br>Latitude | Venue<br>Longitude | Ca         |
|----|-------------------|----------------------|-----------------------|---------------------------------|--------------------------|-------------------|--------------------|------------|
| 0  | Knowledge<br>Park | 45.931143            | -66.652700            | Costco<br>Wholesale             | 4e18ab92183880768f43bff6 | 45.927034         | -66.663447         | War        |
| 1  | Knowledge<br>Park | 45.931143            | -66.652700            | PetSmart                        | 4bbca501a0a0c9b6078f1a0f | 45.929768         | -66.659939         | Pe         |
| 2  | Knowledge<br>Park | 45.931143            | -66.652700            | Montana's                       | 4e50406e62844166699b0780 | 45.931511         | -66.662507         | Res        |
| 3  | Knowledge<br>Park | 45.931143            | -66.652700            | Boston Pizza                    | 4b64944af964a52041bf2ae3 | 45.938123         | -66.660037         | Spo        |
| 4  | Knowledge<br>Park | 45.931143            | -66.652700            | Michaels                        | 4c489858417b20a13b82e1a9 | 45.929965         | -66.659548         | Arts &     |
| 5  | Knowledge<br>Park | 45.931143            | -66.652700            | Alcool NB<br>Liquor             | 4b77335df964a5202c872ee3 | 45.930680         | -66.664180         | Liquo      |
| 6  | Knowledge<br>Park | 45.931143            | -66.652700            | Best Buy                        | 5520124a498e0467bb6e81c8 | 45.937673         | -66.660380         | Elec       |
| 7  | Knowledge<br>Park | 45.931143            | -66.652700            | Wal-Mart                        | 4bad313ff964a5208c373be3 | 45.934081         | -66.663539         | В          |
| 8  | Knowledge<br>Park | 45.931143            | -66.652700            | Booster<br>Juice                | 4c42414e520fa59334f9caac | 45.935198         | -66.663602         | Sm         |
| 9  | Knowledge<br>Park | 45.931143            | -66.652700            | Dairy Queen                     | 4b86f05bf964a52009a731e3 | 45.938004         | -66.659442         | Fas<br>Res |
| 10 | Knowledge<br>Park | 45.931143            | -66.652700            | H&M                             | 509c3265498efdffc5739a0f | 45.935196         | -66.663290         | С          |
| 11 | Knowledge<br>Park | 45.931143            | -66.652700            | Dairy Queen<br>(Treat)          | 4cc6123cbde8f04d9ce0b44b | 45.934520         | -66.663988         | Fas<br>Res |
| 12 | Knowledge<br>Park | 45.931143            | -66.652700            | Winners                         | 4caa46a744a8224b96e42640 | 45.930427         | -66.659758         | С          |
| 13 | Knowledge<br>Park | 45.931143            | -66.652700            | East Side<br>Mario's            | 4b55d89bf964a520a2f227e3 | 45.931376         | -66.663417         | Res        |
| 14 | Knowledge<br>Park | 45.931143            | -66.652700            | McDonald's                      | 4c6e9ef665eda09377e951d0 | 45.934575         | -66.663319         | Fas<br>Res |
| 15 | Knowledge<br>Park | 45.931143            | -66.652700            | Home Sense                      | 54024f60498ee424eedb7bf9 | 45.930528         | -66.660103         | Depa       |
| 16 | Knowledge<br>Park | 45.931143            | -66.652700            | The Shoe company                | 4bd76dfa5cf276b0fb469b00 | 45.929636         | -66.660449         | Sho        |
| 17 | Knowledge<br>Park | 45.931143            | -66.652700            | Avalon Spa<br>Uptown            | 4cd99e0f51fc8cfa4369f05d | 45.930774         | -66.660927         |            |
| 18 | Knowledge<br>Park | 45.931143            | -66.652700            | Wicker<br>Emporium              | 4e6baff588772457c4fd1968 | 45.930897         | -66.661338         | Fur<br>Hom |
| 19 | Knowledge<br>Park | 45.931143            | -66.652700            | Dollarama                       | 4ba3dd18f964a520d86738e3 | 45.930897         | -66.661714         | Di         |
| 20 | Knowledge<br>Park | 45.931143            | -66.652700            | Bed Bath &<br>Beyond            | 5083f283e4b0bf87c15e9ea1 | 45.930097         | -66.662166         | Fur<br>Hom |
| 21 | Knowledge<br>Park | 45.931143            | -66.652700            | GAP Factory<br>Store            | 50a8f005e4b0e4f42e033a2a | 45.930211         | -66.662416         | С          |
| 22 | Knowledge<br>Park | 45.931143            | -66.652700            | carter's  <br>OshKosh<br>B'gosh | 50a51363e4b0a3e2f7db76bf | 45.929978         | -66.662966         | Kid        |
| 23 | Knowledge<br>Park | 45.931143            | -66.652700            | Deluxe Fish<br>& Chips          | 4e5d0b99fa76a4cf148d9a15 | 45.931722         | -66.663131         | S<br>Res   |
| 24 | Knowledge<br>Park | 45.931143            | -66.652700            | Hallmark                        | 4cd96cf651fc8cfa522eef5d | 45.930646         | -66.663745         | Gif        |

|    | Location                             | Location<br>Latitude | Location<br>Longitude | Venue                                       | Venue id                     | Venue<br>Latitude | Venue<br>Longitude | Ca              |
|----|--------------------------------------|----------------------|-----------------------|---------------------------------------------|------------------------------|-------------------|--------------------|-----------------|
| 25 | Knowledge<br>Park                    | 45.931143            | -66.652700            | NB Liquor                                   | 5985f08b6cf01a7e38b85fba     | 45.930228         | -66.664395         | Liquo           |
| 26 | Knowledge<br>Park                    | 45.931143            | -66.652700            | Corbett<br>Center                           | 57854d05498e301b3b5a4448     | 45.929733         | -66.664601         | Sh              |
| 27 | Knowledge<br>Park<br>Knowledge<br>Pa | 45.931143            | -66.652700            | Costco Food<br>Court<br>Sleep               | 53693053498ef3e4ea63560f     | 45.927383         | -66.663544         | Fas<br>Res<br>M |
| 28 | Knowledge Pa                         |                      |                       | Country Sport Chek                          | 555b5660498eae864c440e77     | 45.929074         | -66.664605         | S               |
| 29 |                                      |                      |                       | Regent Mall                                 | 4ca4ecae8a65bfb717422b22     | 45.935211         | -66.663525         | Good            |
| 30 | Knowledge Pa                         |                      |                       | Rôtisserie<br>St-Hubert                     | 57164569498e9bb9e88d52b0     | 45.929838         | -66.664749         | Res             |
| 31 | Fredericton                          |                      |                       | YMCA<br>Fredericton                         | 4e93476b8231bf0d17ba3e24     | 45.953217         | -66.649478         |                 |
| 32 | Fredericton                          |                      |                       | 20 Twenty<br>Club                           | 4c5388b0f5f3d13ac74ba5f8     | 45.951042         | -66.648112         |                 |
| 33 | Fredericton                          |                      |                       | Shoppers<br>Drug Mart                       | 4fb699dc7bebbeb2a6c7ba88     | 45.942627         | -66.655523         | Ph              |
| 34 | Fredericton                          |                      |                       | Subway                                      | 4bae3571f964a52076923be3     | 45.940931         | -66.657445         | Sa              |
| 35 | Fredericton <sub>H</sub>             |                      |                       | Canadian<br>Tire                            | 4bb52ba72ea19521201caa2f     | 45.944409         | -66.666820         | На              |
| 36 | Fredericton H                        | ill 45.948512        | -66.656045            | Tim Hortons                                 | 4dc29f89d4c07da169fbf84b     | 45.943720         | -66.646907         | Coffe           |
| 37 | Fredericton H                        | ┧   45.948512        | -66.656045            | The Aitken<br>University<br>Centre -<br>UNB | 4b6458eff964a52052ac2ae3     | 45.941644         | -66.663667         |                 |
| 38 | Fredericton H                        | ┧   45.948512        | -66.656045            | Queen<br>Square Park                        | 4b7acb0ef964a520113d2fe3     | 45.950961         | -66.648245         |                 |
| 39 | Fredericton H                        |                      |                       | Great<br>Canadian<br>Bagel                  | 4b784edbf964a52013c42ee3     | 45.941040         | -66.657545         |                 |
| 40 | Fredericton                          |                      |                       | Monkey<br>Cakes                             | 4ec147368231b62f43026067     | 45.940938         | -66.657346         |                 |
| 41 | Fredericton                          |                      |                       | Papa John's<br>Pizza                        | 4ecc29f59adfd1f5b5c7bbb1     | 45.956655         | -66.657285         | Pizz            |
| 42 | Fredericton <sub>H</sub>             | ill 45.948512        | -66.656045            | Greco                                       | 4cfc0660c51fa1cdd3d7e92b     | 45.954055         | -66.647290         | Pizz            |
| 43 | Fredericton H                        |                      |                       | Dick's<br>Grocery<br>Store                  | 4c545e5db426ef3b11cc7e8a     | 45.941957         | -66.663877         | Smok            |
| 44 | Fredericton H                        |                      |                       | Tingley's Ice<br>Cream                      | 4c13c001b7b9c9284e12aa37     | 45.957087         | -66.655855         | Ice             |
| 45 | Fredericton H                        | ill 45.948512        | -66.656045            | Domino's<br>Pizza                           | 50f9bbc75d24acebc259244d     | 45.957177         | -66.656638         | Pizz            |
| 46 | Fredericton -                        | 45.948512 -          | 66.656045 Ju          | mbo Video 4bc                               | :0d29a920eb71307a2192c 45.95 | 57286 -66.65      | 6312 Vide          |                 |
| 47 |                                      | Դ<br>Hill 45.948     | 3512 -66.6560         | )45 Goody Sho                               | op 4b8580edf964a5201d6231e3  | 3 45.951172       | -66.644000         |                 |
| 48 | Nashwaaksis 4                        |                      |                       | Peters Meat,<br>Seafood &                   | 4c4e04ecfb742d7fe7bba62d 4:  |                   |                    | G               |

http://localhost: 8888/nbconvert/html/Documents/GitHub/Coursera-IBM-Appliedeek 5-. Dataipynb? dow-Science load=false 54/72-Capstone-Projection and the projection of the pro

Lobster Market

|    | Location                          | Location<br>Latitude | Location<br>Longitude | Venue                               | –<br>Venue id            | Venue<br>Latitude | Venue<br>Longitude | Ca         |
|----|-----------------------------------|----------------------|-----------------------|-------------------------------------|--------------------------|-------------------|--------------------|------------|
| 49 | Nashwaaksis                       | 45.983382            | -66.644856            | Tim Hortons                         | 4b742f31f964a520b7cb2de3 | 45.975294         | -66.646977         | Coffe      |
| 50 | Nashwaaksis                       | 45.983382            | -66.644856            | The<br>Northside<br>Market          | 50270b2ae4b042eaf816ee61 | 45.977779         | -66.635003         | F          |
| 51 | Nashwaaksis                       | 45.983382            | -66.644856            | Shoppers<br>Drug Mart               | 4c745e08db52b1f781f775dc | 45.976515         | -66.648534         | Ph         |
| 52 | Nashwaaksis                       | 45.983382            | -66.644856            | Subway                              | 4bc5db23693695213a9a8488 | 45.976886         | -66.648661         | Sa         |
| 53 | Nashwaaksis                       | 45.983382            | -66.644856            | Subway                              | 4c87f3b4bf40a1cd09fd08b4 | 45.989114         | -66.652061         | Sa         |
| 54 | Nashwaaksis                       | 45.983382            | -66.644856            | Kentucky<br>Fried<br>Chicken        | 4eefb90ba69ddc7bcb336081 | 45.975903         | -66.646846         | Fas<br>Res |
| 55 | Nashwaaksis                       | 45.983382            | -66.644856            | Nashwaaksis<br>Field House          | 4b73436cf964a52016a52de3 | 45.984849         | -66.643635         |            |
| 56 | Nashwaaksis                       | 45.983382            | -66.644856            | KFC                                 | 4c9267139199bfb7786c14df | 45.975907         | -66.646870         | Fas<br>Res |
| 57 | Nashwaaksis                       | 45.983382            | -66.644856            | Tim Hortons                         | 4c0104cf360a9c74bb11d9a0 | 45.989221         | -66.652208         | Coffe      |
| 58 | Nashwaaksis                       | 45.983382            | -66.644856            | Thai spice                          | 503658e5e4b00b386cc5d972 | 45.975890         | -66.647424         | Res        |
| 59 | Nashwaaksis                       | 45.983382            | -66.644856            | Mike's Old<br>Fashioned<br>Bakery   | 4d67fde7709bb60c5eacb014 | 45.976560         | -66.650030         |            |
| 60 | Nashwaaksis                       | 45.983382            | -66.644856            | Cox<br>Electronics                  | 4d07eab6611ff04d4f4718fb | 45.976112         | -66.649222         | Elec       |
| 61 | Nashwaaksis                       | 45.983382            | -66.644856            | A Pile Of<br>Scrap!                 | 4e9f0e9b93ad5d11f3d36ba1 | 45.984398         | -66.633329         | Arts &     |
| 62 | Nashwaaksis                       | 45.983382            | -66.644856            | Jim Gilberts<br>Wheels And<br>Deals | 4b9a7ef5f964a520b6ba35e3 | 45.980784         | -66.633311         | Dea        |
| 63 | Nashwaaksis                       | 45.983382            | -66.644856            | Trailway<br>Brewery                 | 574a1b86cd10af189e38500e | 45.975442         | -66.649496         | Bee        |
| 64 | Nashwaaksis                       | 45.983382            | -66.644856            | The North<br>Side Market            | 501c19f7e4b01c57ff1b1212 | 45.977837         | -66.635168         | F          |
| 65 | Nashwaaksis                       | 45.983382            | -66.644856            | Avalon<br>SalonSpa                  | 4bc31784920eb71312ec1c2c | 45.974591         | -66.644756         |            |
| 66 | Nashwaaksis                       | 45.983382            | -66.644856            | Tony<br>Pepperoni<br>The Richard    | 4c88f56dbbec6dcbe9f2d758 | 45.991888         | -66.648599         | Pizz       |
| 67 | University of<br>New<br>Brunswick | 45.948121            | -66.641406            | J. CURRIE<br>Center -<br>UNB        | 4dbae5806e815ab0de5d2637 | 45.946698         | -66.637891         | Bas        |
| 68 | University of<br>New<br>Brunswick | 45.948121            | -66.641406            | Charlotte<br>Street Arts<br>Centre  | 4b7f0318f964a5203d1030e3 | 45.955620         | -66.639324         | Art        |
| 69 | University of<br>New<br>Brunswick | 45.948121            | -66.641406            | Sobeys                              | 4b6727daf964a520493e2be3 | 45.954891         | -66.645920         | G          |
| 70 | University of<br>New<br>Brunswick | 45.948121            | -66.641406            | YMCA<br>Fredericton                 | 4e93476b8231bf0d17ba3e24 | 45.953217         | -66.649478         |            |
| 71 | University of<br>New<br>Brunswick | 45.948121            | -66.641406            | 20 Twenty<br>Club                   | 4c5388b0f5f3d13ac74ba5f8 | 45.951042         | -66.648112         |            |

12/20/2018 Capstoneek5<u>W</u>

|    |                                   | Location     | Location      | Опрои                                                      | oneeko <u>v</u>               | Venue         | Venue         |            |
|----|-----------------------------------|--------------|---------------|------------------------------------------------------------|-------------------------------|---------------|---------------|------------|
|    | Location                          | Latitude     | Longitude     | Venue                                                      | Venue id                      | Latitude      | Longitude     | Ca         |
| 72 | University of<br>New<br>Brunswick | 45.948121    | -66.641406    | The Cellar<br>Pub & Grill -<br>UNB                         | 4b7ac93ef964a520b53c2fe3      | 45.945434     | -66.641626    |            |
| 73 | University of<br>New 45           | 5.948121 -66 | .641406 Harve | ey's 4bbdff85f57                                           | ba59320bdaeb9 45.953544 -66.0 | 645021 Burg   | Brunswick     |            |
| 74 | University of<br>New 45           | 5.948121 -66 | .641406 Tim H | Hortons 4c865c1                                            | 774d7b60c3f41a3d8 45.945185   | -66.641545 (  | Coffe Brunswi | ck         |
| 75 | University of<br>New<br>Brunswick | 45.948121    | -66.641406    | Tim Hortons                                                | 4dc29f89d4c07da169fbf84b      | 45.943720     | -66.646907    | Coffe      |
| 76 | University of<br>New<br>Brunswick | 45.948121    | -66.641406    | College Hill<br>Social Club                                | 4b7aca23f964a520df3c2fe3      | 45.945162     | -66.641472    |            |
| 77 | Devon 45.96                       | 68802 -66.62 | 2738England   | New<br>4c09984e7e3fc9                                      | 928b64bf282 45.967675 -66.629 | 905 Pizz Pizz | za            |            |
| 78 | Devon                             | 45.968802    | -66.622738    | Wolastoq<br>Wharf                                          | 4fbaafb0e4b0c7f68a419500      | 45.969975     | -66.632568    | S<br>Res   |
| 79 | Devon                             | 45.968802    | -66.622738    | Dairy Queen                                                | 4c5cab2894fd0f473c69c945      | 45.969077     | -66.632059    | Fas<br>Res |
| 80 | Devon                             | 45.968802    | -66.622738    | Pharmacie<br>Jean Coutu                                    | 4eb9523077c8972738ac89b2      | 45.967766     | -66.630551    | Ph         |
| 81 | Devon                             | 45.968802    | -66.622738    | Tim Hortons                                                | 4b5b0812f964a520d8df28e3      | 45.969381     | -66.632730    | Coffe      |
| 82 | Devon                             | 45.968802    | -66.622738    | Henry Park                                                 | 4c8e283dad01199c7923726d      | 45.963992     | -66.620283    | В          |
| 83 | Devon                             | 45.968802    | -66.622738    | Giant Tiger                                                | 4c95354f58d4b60c80443029      | 45.967715     | -66.630410    | Depa       |
| 84 | Devon                             | 45.968802    | -66.622738    | york arena                                                 | 4b6c4f10f964a520792f2ce3      | 45.964888     | -66.617110    |            |
| 85 | Devon                             | 45.968802    | -66.622738    | St. Mary's<br>Supermarket                                  | 4b9fa6adf964a520c93137e3      | 45.971945     | -66.631248    | G          |
| 86 | Devon                             | 45.968802    | -66.622738    | Dixie Lee                                                  | 4c5cacc5d25320a103fdc37a      | 45.962257     | -66.624952    | Fas<br>Res |
| 87 | Devon                             | 45.968802    | -66.622738    | St Marys<br>Smoke Shop                                     | 4ebddf8a4690d233887bf4a6      | 45.972270     | -66.631348    | Smok       |
| 88 | Devon                             | 45.968802    | -66.622738    | Carleton<br>Park                                           | 4bce2eeb29d4b7138521a8dc      | 45.961182     | -66.626310    |            |
| 89 | New<br>Maryland                   | 45.892795    | -66.683673    | New York<br>Fries<br>Centre De                             | 4d8771fc651041bd194d9b30      | 45.890420     | -66.683580    | Fas<br>Res |
| 90 | New<br>Maryland                   | 45.892795    | -66.683673    | Danse Roca<br>Dance<br>Center                              | 55fdfc2b498ed76a0f7aa3f6      | 45.890978     | -66.692237    |            |
| 91 | New<br>Maryland                   | 45.892795    | -66.683673    | Baseball,<br>Basketball,<br>Tennis and<br>Hockey In<br>One | 4e48415862e148603b8b3fc2      | 45.890726     | -66.692814    | В          |
| 92 | New<br>Maryland                   | 45.892795    | -66.683673    | Circle K                                                   | 4b9e633ef964a5202fdf36e3      | 45.885412     | -66.688995    | Gas        |
| 93 | Marysville                        | 45.978913    | -66.589491    | Tim Hortons                                                | 4baa1b40f964a520174b3ae3      | 45.978193     | -66.593041    | Coffe      |
| 94 | Marysville                        | 45.978913    | -66.589491    | Royals Field                                               | 4c573f916201e21edff8736e      | 45.980267     | -66.588412    | B<br>S     |

|     | Location         | Location<br>Latitude | Location<br>Longitude | Venue                               | Venue id                 | Venue<br>Latitude | Venue<br>Longitude | Ca       |
|-----|------------------|----------------------|-----------------------|-------------------------------------|--------------------------|-------------------|--------------------|----------|
| 95  | Marysville       | 45.978913            | -66.589491            | Northside<br>Pharmacy               | 4c8bee978018a1cdd1f2e7d2 | 45.980194         | -66.588628         | Ph       |
| 96  | Marysville       | 45.978913            | -66.589491            | Marysville<br>Place                 | 4ce6d19be1eeb60c512d99ae | 45.980243         | -66.588277         |          |
| 97  | Marysville       | 45.978913            | -66.589491            | Circle K                            | 4bb88fe853649c74431847fb | 45.979250         | -66.593232         | Gas      |
| 98  | Skyline<br>Acres | 45.931827            | -66.640339            | Grant Harvey<br>Centre              | 4f915a7ee4b01406ebc873ae | 45.925002         | -66.641004         |          |
| 99  | Skyline<br>Acres | 45.931827            | -66.640339            | Kimble Field                        | 4fdaa8c2e4b08f3358b1b3d1 | 45.930535         | -66.631233         | В        |
| 100 | Skyline<br>Acres | 45.931827            | -66.640339            | Mandarin<br>Palace                  | 4b786998f964a5204ecc2ee3 | 45.935440         | -66.631007         | C<br>Res |
| 101 | Skyline<br>Acres | 45.931827            | -66.640339            | Oriental<br>Pearl                   | 4ec68431775bf65c02417199 | 45.930085         | -66.629518         | C<br>Res |
| 102 | Hanwell 4        | \$5.902315 -6        | 6.755113              | Advanced<br>Fabrics                 | 53c133a4498e933c415c6118 | 45.905297         | -66.750944         |          |
| 103 | Hanwell 4        | l5.902315 -6         | 6.755113              | Country<br>Style                    | 56356c83498e17f8ed69a38  | 0 45.905937       | -66.751084         | Coffe    |
| 104 | Downtown 4       | 5.958327 -66         | 6.647211              | Cafe Loka &<br>Bistro               | 4e70d116152073dd03c2c50e | 45.957570         | -66.647978         |          |
| 105 | Downtown 4       | 5.958327 -66         | 6.647211              | Boyce<br>Farmers<br>Market          | 4b5163b4f964a5204d4c27e3 | 45.958354         | -66.639654         | F        |
| 106 | Downtown 4       | 5.958327 -66         | 6.647211              | Second Cup                          | 4b7067c6f964a5205a182de3 | 45.961385         | -66.642372         | Coffe    |
| 107 | Downtown 4       | 5.958327 -66         | 6.647211              | Lunar Rogue                         | 4b8c53e7f964a520d4ca32e3 | 45.959998         | -66.639116         |          |
| 108 | Downtown 4       | 5.958327 -66         | 6.647211              | Jonnie Java<br>Roasters             | 4bc47e80920eb71369c71e2  | c 45.962226       | -66.643852         | Coffe    |
| 109 | Downtown 4       | 5.958327 -66         | 6.647211              | Picaroon's<br>Brewtique             | 4ced5cfe7b943704ea782653 | 45.962701         | -66.642731         | В        |
| 110 | Downtown 4       | 5.958327 -66         | 6.647211              | Sobeys                              | 4b6727daf964a520493e2be3 | 45.954891         | -66.645920         | G        |
| 111 | Downtown 4       | 5.958327 -66         | 6.647211              | Luna Pizza                          | 4be47e9b2468c92811dbfe42 | 45.962246         | -66.643788         | Res      |
| 112 | Downtown 4       | 5.958327 -66         | 6.647211              | Palate<br>Restaurant &<br>Cafe      | 4c2e0e6ae760c9b69bdf4549 | 45.962338         | -66.641776         | Res      |
| 113 | Downtown 4       | 5.958327 -66         | 6.647211              | Alcool NB<br>Liquor                 | 4d9a52120d5f224bc5f7a34e | 45.956140         | -66.647558         | Liquo    |
| 114 | Downtown 4       | 5.958327 -66         | 6.647211              | coffee and friends                  | 4b533f74f964a520009427e  | 3 45.961842       | -66.643479         | Coffe    |
| 115 | Downtown 4       | 5.958327 -66         | 6.647211              | Chess Piece<br>Pâtisserie &<br>Cafe | 53c00bcc498e1f34dc3687ae | 45.963354         | -66.644017         |          |
| 116 | Downtown 4       | 5.958327 -66         | 6.647211              | Victory Meat<br>Market              | 4bd1ffd341b9ef3bcb19fde5 | 45.962661         | -66.645820         | G        |
| 117 | Downtown 4       | 5.958327 -66         | 6.647211              | Exhibition<br>Grounds               | 4c76d45d07818cfafe94d2e3 | 45.960078         | -66.655522         | Ra       |
| 118 | Downtown 4       | 5.958327 -66         | 6.647211              | The Abbey<br>Café &<br>Gallery      | 57178722498e4222f7d5b298 | 45.961301         | -66.640188         |          |
| 119 |                  | 5.958327 -66         |                       | Charlotte<br>Street Arts<br>Centre  | 4b7f0318f964a5203d1030e3 | 45.955620         | -66.639324         | Art      |
| 120 | Downtown 4       | 5.958327 -66         | 0.04/211              | Isaac's Way                         | 51c8a824498ef33c708ac9e9 | 45.960944         | -66.637796         | Res      |

|     | Location    | Locatio                    |                 | Venue                               | Venue id                  | Venue                    |              | 0-           |
|-----|-------------|----------------------------|-----------------|-------------------------------------|---------------------------|--------------------------|--------------|--------------|
| 121 | Downtown 45 | <b>Latitud</b><br>5.958327 |                 | YMCA                                | 4e93476b8231bf0d17ba3e24  | 45.953217                | -66.649478   | <u>Ca</u>    |
| 122 | Downtown 45 | 5.958327                   | -66.647211      | Fredericton<br>Read's<br>News Stand | 4b4b6bf2f964a5200a9b26e3  | 45.961859                | -66.643464   | Coffe        |
| 123 | Downtown 45 | 5.958327                   | -66.647211      | King Street Ale House               | 5283fd1c498e138a8297590c  | 45.960460                | -66.641012   |              |
| 124 | Downtown 45 | 5.958327                   | -66.647211      | 540 Kitchen and Bar                 | 53ab370e498e91a454f49e67  | 45.961657                | -66.640152   | Gas          |
| 125 | Downtown 45 | 5.958327                   | -66.647211      | Dimitri's<br>Souvlaki               | 4bacf7e8f964a520571f3be3  | 45.963093                | -66.644479   | Res          |
| 126 | Downtown 45 | 5.958327                   | -66.647211      | Smoke's<br>Poutinerie               | 51756ac6498ece19b79a31    | f6 45.962032             | 2 -66.644021 | Fas<br>Res   |
| 127 | Downtown 45 | 5.958327                   | -66.647211      | Snooty Fox                          | 4b4ca053f964a52006b826e3  | 45.960794                | -66.638927   |              |
| 128 | Downtown 45 | 5.958327                   | -66.647211      | Officer's<br>Square                 | 4c83b0df2f1c236a4bc54443  | 45.961754                | -66.639084   |              |
| 129 | Downtown 45 | 5.958327                   | -66.647211      | Fredericton<br>Playhouse            | 4b516b64f964a520df4c27    | e3 45.96010 <sup>7</sup> | 1 -66.636969 | Perf<br>Arts |
| 130 | Downtown 45 | 5.958327                   | -66.647211      | Willie O'Ree<br>Place               | 4b76879ef964a520a5502ee3  | 45.963017                | -66.646100   |              |
| 131 | Downtown 45 | 5.958327                   | -66.647211      | The Joyce                           | 4b624863f964a5203b402ae3  | 45.960309                | -66.636806   |              |
| 132 | Downtown 45 | 5.958327                   | -66.647211      | Cora's<br>Breakfast &<br>Lunch      | 4b8130c7f964a520e99930e3  | 45.962282 -              | 66.641607    | Br           |
| 133 | Downtown 45 | 5.958327                   | -66.647211      | Strange<br>Adventures               | 4babdcbdf964a5200cd03ae3  | 45.962733                | -66.643315   | Hobb         |
| 134 | Downtown 45 | 5.958327                   | -66.647211      | Naru<br>Japanese<br>Cuisine         | 50461342e4b0c55b9639accc  | 45.961721                | -66.640125   | Res          |
| 135 | Downtown 45 | 5.958327                   | -66.647211      | Mexicali<br>Rosas                   | 4c65dd9a19f3c9b697769eff  | 45.962811 -              | 66.646079    | M<br>Res     |
| 136 | Downtown 45 | 5.958327                   | -66.647211      | Brewbakers                          | 4b6754faf964a5208d482be3  | 45.960703 -6             | 6.640935 Res |              |
| 137 | Downtown 45 | 5.958327                   | -66.647211      | Dolan's Pub                         | 4b516ddbf964a520144d27e3  | 45.962886 -60            | 6.644615     |              |
| 138 | Downtown 45 | 5.958327                   | -66.647211      | Beaverbrook<br>Art Gallery          | 4c13a7f7b7b9c92865dea937  | 45.959878                | -66.635858   | Art M        |
| 139 | Downtown 45 | 5.958327                   | -66.647211      | McGinnis<br>Landing                 | 4b6df601f964a5203d9f2ce3  | 45.963013                | -66.646536   | Stea         |
| 140 | Downtown 45 | 5.958327                   | -66.647211      | Atlantic<br>Superstore              | 4b5b0a91f964a5205fe028e3  | 45.958260                | -66.658048   | Super        |
| 141 | Downtown 45 | 5.958327                   | -66.647211      | 20 Twenty<br>Club                   | 4c5388b0f5f3d13ac74ba5f8  | 45.951042                | -66.648112   |              |
| 142 | Downtown 45 | 5.958327                   | -66.647211      | Geek Chic                           | 4b516f03f964a520324d27e3  | 45.960573 -              | 66.639225    | Toy /        |
| 143 | Downtown 45 | 5.958327                   | -66.647211      | Wilser's<br>Room                    | 4ba01983f964a520f15937e3  | 45.963192                | -66.644089   |              |
| 144 | Downtown 45 | 5.958327                   | -66.647211      | Tim Hortons                         | 4b6455b0f964a52067ab2ae3  | 45.959873                | -66.639259   | Coffe        |
| 145 | Downtown 45 | 5.958327                   | -66.647211      | TD Canada<br>Trust                  | 4b6d8261f964a52022792ce3  | 45.963891                | -66.645782   |              |
| 146 | Downtown 45 | 5.958327                   | -66.647211Fit4L | .ess 4c9381ab                       | 94a0236a70ac8312 45.95863 | 4 -66.657319             |              |              |
| 147 | Downtown 45 | 5.958327                   | -66.647211Harv  | ey's 4bbdff85f                      | 57ba59320bdaeb9 45.953544 | -66.645021               | Burg         |              |

12/20/2018 Capstone<u>e</u>k5W

|     | Location | Location  | Location   | Venue                    | Venue id                 | Venue       | Venue      | 0-        |
|-----|----------|-----------|------------|--------------------------|--------------------------|-------------|------------|-----------|
|     |          | Latitude  | Longitude  | 01                       |                          | Latitude    | Longitude  | Ca        |
| 148 | Downtown | 45.958327 | -66.647211 | Shoppers<br>Drug Mart    | 4db07df34df03036e8bbb640 | 45.961351   | -66.644493 | Ph        |
| 149 | Downtown | 45.958327 | -66.647211 | Shan                     | 4dfb6fc31f6eeef806aacc25 | 45.961818   | -66.643706 | C<br>Res  |
| 150 | Downtown | 45.958327 | -66.647211 | bulgogi                  | 4b605f0ff964a5203de229e3 | 45.961522   | -66.642742 | Res       |
| 151 | Downtown | 45.958327 | -66.647211 | William's<br>Seafood     | 4b7c26f5f964a52061802fe3 | 45.959296   | -66.655663 | S<br>Res  |
| 152 | Downtown | 45.958327 | -66.647211 | Subway                   | 4b6b883df964a5205a0e2ce3 | 45.962580   | -66.645032 | Sa        |
| 153 | Downtown | 45.958327 | -66.647211 | Capital<br>Complex       | 4b6faa7cf964a52073f92ce3 | 45.963245   | -66.644123 |           |
| 154 | Downtown | 45.958327 | -66.647211 | boom!<br>Nightclub       | 4ba240eef964a52050e737e3 | 45.962315   | -66.641645 | Ni        |
| 155 | Downtown | 45.958327 | -66.647211 | Tim Hortons              | 4ba8bdb3f964a5204ceb39e  | 3 45.959933 | -66.655493 | Coffe     |
| 156 | Downtown | 45.958327 | -66.647211 | King's Place<br>Mall     | 4bc61ba4d35d9c74292de23a | 45.961679   | -66.643267 | Sh        |
| 157 | Downtown | 45.958327 | -66.647211 | Running<br>Room          | 4c6d4adb23c1a1cdffc81bcf | 45.961812   | -66.643510 | S<br>Good |
| 158 | Downtown | 45.958327 | -66.647211 | The Happy<br>Baker       | 4b703d21f964a5204c0d2de3 | 45.960536   | -66.641465 |           |
| 159 | Downtown | 45.958327 | -66.647211 | Owl's Nest<br>Bookstore  | 4d6ea0c98df1548152778123 | 45.963051   | -66.643872 | Во        |
| 160 | Downtown | 45.958327 | -66.647211 | Tingley's Ice<br>Cream   | 4c13c001b7b9c9284e12aa37 | 45.957087   | -66.655855 | Ice       |
| 161 | Downtown | 45.958327 | -66.647211 | Jumbo Video              | 4bc0d29a920eb71307a2192c | 45.957286   | -66.656312 | Vide      |
| 162 | Downtown | 45.958327 | -66.647211 | Enterprise<br>Rent-A-Car | 4d3ae3edbf6d5481b26fd1e1 | 45.957743   | -66.656527 | Ren<br>L  |
| 163 | Downtown | 45.958327 | -66.647211 | Domino's<br>Pizza        | 50f9bbc75d24acebc259244d | 45.957177   | -66.656638 | Pizz      |
| 164 | Downtown | 45.958327 | -66.647211 | Papa John's<br>Pizza     | 4ecc29f59adfd1f5b5c7bbb1 | 45.956655   | -66.657285 | Pizz      |
| 165 | Downtown | 45.958327 | -66.647211 | Queen<br>Square Park     | 4b7acb0ef964a520113d2fe3 | 45.950961   | -66.648245 |           |

There are 73 unique venue categories.

```
In [110]: print('There are {} unique venues.'.format(len(fredericton_data_venues['Venue
    id']. unique())))
```

There are 153 unique venues.

12/20/2018 Capstoneek5W

Out[111]:

|                                | Location Local |   | Location<br>Longitude | Venue | Venue<br>id | Venue<br>Latitude | Venue<br>Longitude | Venue<br>Category |
|--------------------------------|----------------|---|-----------------------|-------|-------------|-------------------|--------------------|-------------------|
| Location                       |                |   |                       |       |             |                   |                    |                   |
| Devon                          | 1              | 1 | 1                     | 12    | 12          | 12                | 12                 | 11                |
| Downtown                       | 1              | 1 | 1                     | 61    | 62          | 62                | 62                 | 44                |
| Fredericton Hill               | 1              | 1 | 1                     | 17    | 17          | 17                | 17                 | 13                |
| Hanwell                        | 1              | 1 | 1                     | 2     | 2           | 2                 | 2                  | 2                 |
| Knowledge Park                 | 1              | 1 | 1                     | 31    | 31          | 31                | 31                 | 23                |
| Marysville                     | 1              | 1 | 1                     | 5     | 5           | 5                 | 5                  | 5                 |
| Nashwaaksis                    | 1              | 1 | 1                     | 17    | 19          | 19                | 19                 | 15                |
| New Maryland                   | 1              | 1 | 1                     | 4     | 4           | 4                 | 4                  | 4                 |
| Skyline Acres                  | 1              | 1 | 1                     | 4     | 4           | 4                 | 4                  | 3                 |
| University of New<br>Brunswick | 1              | 1 | 1                     | 9     | 10          | 10                | 10                 | 8                 |

In [112]: fredericton\_data\_venues.groupby('Venue Category').nunique()

Out[112]:

|                           | Location Location | Location<br>Longitude |   |   | Venue<br>id | Venue<br>Latitude | Venue<br>Longitude | Venue<br>Category |
|---------------------------|-------------------|-----------------------|---|---|-------------|-------------------|--------------------|-------------------|
| Venue Category            |                   |                       |   |   |             |                   |                    |                   |
| Art Gallery               | 2                 | 2                     | 2 | 1 | 1           | •                 | 1                  | 1 1               |
| Art Museum                | 1                 | 1                     | 1 | 1 | 1           | •                 | 1                  | 1 1               |
| Arts & Crafts<br>Store    | 2                 | 2                     | 2 | 2 | 2           | 2                 | 2 2                | 2 1               |
| Auto Dealership           | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Bakery                    | 3                 | 3                     | 3 | 5 | 5           | į                 | 5 5                | 5 1               |
| Bank                      | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Bar                       | 3                 | 3                     | 3 | 4 | 4           | 2                 | 1 4                | 1 1               |
| Baseball Field            | 3                 | 3                     | 3 | 3 | 3           | 3                 | 3                  | 3 1               |
| Baseball Stadium          | 1                 | 1                     | 1 | 1 | 1           |                   | 1                  | 1 1               |
| Basketball Court          | 1                 | 1                     | 1 | 1 | 1           |                   | 1                  | 1 1               |
| Beer Store                | 1                 | 1                     | 1 | 1 | 1           |                   | 1                  | 1 1               |
| Big Box Store             | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Bookstore                 | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Breakfast Spot            | 1                 | 1                     | 1 | 1 | 1           |                   | 1                  | 1 1               |
| Brewery                   | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Burger Joint              | 2                 | 2                     | 2 | 1 | 1           | ,                 | 1                  | 1 1               |
| Café                      | 1                 | 1                     | 1 | 3 | 3           | 3                 | 3                  | 3 1               |
| Chinese<br>Restaurant     | 2                 | 2                     | 2 | 3 | 3           | 3                 | 3                  | 3 1               |
| Clothing Store            | 1                 | 1                     | 1 | 3 | 3           | 3                 | 3                  | 3 1               |
| Coffee Shop               | 7                 | 7                     | 7 | 6 | 13          | 13                | 3 13               | 3 1               |
| Dance Studio              | 1                 | 1                     | 1 | 1 | 1           | ,                 | 1                  | 1 1               |
| Department Store          | 2                 | 2                     | 2 | 2 | 2           | 2                 | 2 2                | 2 1               |
| Discount Store            | 1                 | 1                     | 1 | 1 | 1           | •                 | 1                  | 1 1               |
| Electronics Store         | 2                 | 2                     | 2 | 2 | 2           | 2                 | 2 2                | 2 1               |
| Farmers Market            | 2                 | 2                     | 2 | 3 | 3           | 3                 | 3                  | 3 1               |
| Fast Food<br>Restaurant   | 5                 | 5                     | 5 | 9 | 10          | 10                | ) 10               | ) 1               |
| Furniture / Home<br>Store | 1                 | 1                     | 1 | 2 | 2           | 2                 | 2 2                | 2 1               |
| Gas Station               | 2                 | 2                     | 2 | 1 | 2           | 2                 | 2 2                | 2 1               |
| Gastropub                 | 1                 | 1                     | 1 | 1 | 1           | •                 | 1                  | 1 1               |
| Gift Shop                 | 1                 | 1                     | 1 | 1 | 1           | •                 | 1                  | 1 1               |
| Greek Restaurant          | 1                 | 1                     | 1 | 1 | 1           | •                 | 1                  | 1 1               |
| Grocery Store             | 4                 | 4                     | 4 | 4 | 4           | 4                 | 1 4                | 1 1               |
| Gym                       | 4                 | 4                     | 4 | 2 | 2           | 2                 | 2 2                | 2 1               |
| Gym / Fitness<br>Center   | 1                 | 1                     | 1 | 1 | 1           |                   | 1                  | 1 1               |

|                        |                   |           |    | _      |          |           |          |      |
|------------------------|-------------------|-----------|----|--------|----------|-----------|----------|------|
|                        | Location<br>Venue | Location  | Lo | cation | Venue    | Venue     | Venue    | Veni |
|                        | Latitude          | Longitude |    | id     | Latitude | Longitude | Category |      |
| Venue Category         |                   |           |    |        |          |           |          | _    |
| Hardware Store         | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Hobby Shop             | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Hockey Arena           | 3                 | 3         | 3  | 3      | 3        | 3         | 3        | 1    |
| Ice Cream Shop         | 2                 | 2         | 2  | 1      | 1        | 1         | 1        | 1    |
| Italian Restaurant     | 2                 | 2         | 2  | 2      | 2        | 2         | 2        | 1    |
| Kids Store             | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Korean                 |                   | 4         | 4  | 4      | 4        | 4         | 4        | 4    |
| Restaurant             | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Liquor Store           | 2                 | 2         | 2  | 2      | 3        | 3         | 3        | 1    |
| Mattress Store         | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Mexican<br>Restaurant  | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Nightclub              | 4                 | 4         | 4  | 4      | 4        | 4         | 4        | 4    |
| Park                   | 1                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Performing Arts        | 4                 | 4         | 4  | 4      | 4        | 4         | 4        | 1    |
| Venue                  | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Pet Store              | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Pharmacy               | 5                 | 5         | 5  | 3      | 5        | 5         | 5        | 1    |
| Pizza Place            | 4                 | 4         | 4  | 5      | 5        | 5         | 5        | 1    |
| Pub                    | 2                 | 2         | 2  | 6      | 6        | 6         | 6        | 1    |
| Racetrack              | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Rental Car             | ,                 | 4         | 4  | 4      | 4        | 4         | 4        | 4    |
| Location               | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Rental Service         | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Restaurant             | 2                 | 2         | 2  | 5      | 5        | 5         | 5        | 1    |
| Sandwich Place         | 3                 | 3         | 3  | 1      | 4        | 4         | 4        | 1    |
| Seafood<br>Restaurant  | 3                 | 3         | 3  | 3      | 3        | 3         | 3        | 1    |
| Shoe Store             | 4                 |           |    | 4      |          | 4         | 4        | 4    |
| Shopping Mall          | 1                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Shopping Plaza         | ·                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Skating Rink           | 1                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Smoke Shop             | '                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
|                        | 2                 | 2         | 2  | 2      | 2        | 2         |          | 1    |
| Smoothie Shop          | '                 | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Spa                    | 2                 | 2         | 2  | 2      | 2        | 2         | 2        | 1    |
| Sporting Goods<br>Shop |                   | 2         | 2  | 2      | 2        | 2         | 2        | 1    |
| Sports Bar             | 1                 | 1         | 1  | 1      | 1        | 1         | 1        | 1    |
| Steakhouse             |                   | 1         | 1  | 1      | 1        | 1         |          | 1    |
| Supermarket            |                   | 1         | 1  | 1      | 1        | 1         |          | 1    |

12/20/2018 Capstone<u>ek</u>5W

|                  | Location L | ocation.atitude | Location<br>Longitude |   | Venue | Venue<br>id | Venue<br>Latitude | Venue<br>Longitude | Venue<br>Category |   |
|------------------|------------|-----------------|-----------------------|---|-------|-------------|-------------------|--------------------|-------------------|---|
| Venue Category   |            |                 |                       |   |       |             |                   |                    |                   |   |
| Sushi Restaurant | 1          |                 | 1                     | 1 | 1     | 1           |                   | 1                  | 1                 | 1 |
| Thai Restaurant  | 1          |                 | 1                     | 1 | 1     | 1           |                   | 1                  | 1                 | 1 |
| Toy / Game Store | 1          |                 | 1                     | 1 | 1     | 1           |                   | 1                  | 1                 | 1 |
| Video Store      | 2          |                 | 2                     | 2 | 1     | 1           |                   | 1                  | 1                 | 1 |
| Warehouse Store  | 1          |                 | 1                     | 1 | 1     | 1           |                   | 1                  | 1                 | 1 |

## **Analyze each Location**

```
In [113]: # one hot encoding
    freddy_onehot = pd.get_dummies(fredericton_data_venues[['Venue Category']],
    prefix= "", prefix_sep="")

# add neighbourhood column back to dataframe
    freddy_onehot['Location'] = fredericton_data_venues['Location']

# move neighbourhood column to the first column
    fixed_columns = [freddy_onehot.columns[-1]] + list(freddy_onehot.columns[:-1])
    freddy_onehot = freddy_onehot[fixed_columns]
```

Out[113]:

In [ ]:

|   | Location          | Art<br>Gallery |   | Arts &<br>Crafts<br>Store | Auto<br>Dealership | Bakery | Bank | Bar | Baseball<br>Field | Baseball<br>Stadium | Basketball<br>Court | Beer<br>Store |
|---|-------------------|----------------|---|---------------------------|--------------------|--------|------|-----|-------------------|---------------------|---------------------|---------------|
| 0 | Knowledge<br>Park | 0              | 0 | 0                         | 0                  | 0      | 0    | 0   | 0                 | 0                   | 0                   | 0             |
| 1 | Knowledge<br>Park | 0              | 0 | 0                         | 0                  | 0      | 0    | 0   | 0                 | 0                   | 0                   | 0             |
| 2 | Knowledge<br>Park | 0              | 0 | 0                         | 0                  | 0      | 0    | 0   | 0                 | 0                   | 0                   | 0             |
| 3 | Knowledge<br>Park | 0              | 0 | 0                         | 0                  | 0      | 0    | 0   | 0                 | 0                   | 0                   | 0             |
| 4 | Knowledge<br>Park | 0              | 0 | 1                         | 0                  | 0      | 0    | 0   | 0                 | 0                   | 0                   | 0             |

```
In [114]: freddy_onehot.shape
Out[114]: (166, 74)
```

## Group rows by location and by the mean of the frequency of occurrence of each category

12/20/2018 Capstoneek5W

```
In [115]:
           freddy_grouped = freddy_onehot.groupby('Location').mean().reset_index()
          freddy_grouped
Out[115]:
```

Arts & Art Art Auto Location Crafts Dealership Bakery Bar Gallery Museum Bank Store 0 0.000000 0.000000 0.000000 0.000000 Devon

Stadium Field 0.000000 0.000000 0.000000 0.083333 0.0 1 0.000000 Downtown 0.016129 0.016129 0.000000 0.016129 0.016129 0.048387 0.000000 0.0 2 0.176471 Fredericton 0.000000 0.000000 0.000000 0.000000 0.000000 0.058824 0.000000 0.0 Hill 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 Hanwell 0.000000 0.000000 4 Knowledge 0.000000 0.000000 0.032258 0.000000 0.000000 0.000000 0.000000 0.000000 0.0 Park 0.000000 5 Marysville 0.000000 0.2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 Nashwaaksis 0.000000 0.000000 0.052632 0.052632 0.052632 0.000000 0.0 7 New 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.250000 0.0 Maryland 8 Skyline 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.250000 0.0 Acres University of 9 0.100000 0.000000 0.000000 0.0 New  $0.000000 \quad 0.000000 \quad 0.000000 \quad 0.200000 \quad 0.000000$ Brunswick

Baseball Baseball Ba

```
In [116]:
            freddy_grouped.shape
Out[116]:
            (10, 74)
```

Print each Location with the top 5 most common venues

```
----Devon----
```

venue freq
0 Fast Food Restaurant 0.17
1Coffee Shop 0.08
2Grocery Store 0.08
3Seafood Restaurant 0.08
4Skating Rink 0.08

#### ----Downtown----

 venue
 freq

 0
 Coffee Shop
 0.10

 1
 Pub
 0.08

 2
 Café
 0.05

 3
 Restaurant
 0.05

 4
 Bar
 0.05

----Fredericton Hill----

venue freq
0 Bakery 0.18
1 Pizza Place 0.18
2 Hockey Arena 0.06
3 Smoke Shop 0.06
4 Ice Cream Shop 0.06

#### ----Hanwell----

venue freq

Coffee Shop 0.5

Rental Service 0.5

Art Gallery 0.0

Rental Car Location 0.0

Racetrack 0.0

#### ----Knowledge Park----

venue freq
0 Fast Food Restaurant 0.13
1Clothing Store 0.10
2Liquor Store 0.06
3 Restaurant 0.06
4 Furniture / Home Store 0.06

#### ----Marysville----

venue freq
Coffee Shop 0.2
Pharmacy 0.2
Park 0.2
Baseball Stadium 0.2
Gas Station 0.2

#### ----Nashwaaksis----

venue freq
Farmers Market 0.11
Sandwich Place 0.11
Coffee Shop 0.11
Fast Food Restaurant 0.11
Beer Store 0.05

#### ----New Maryland----

```
venue freq
0 Fast Food Restaurant 0.25
        Baseball Field 0.25
1
           Gas Station 0.25
3
          Dance Studio 0.25
           Art Gallery 0.00
----Skyline Acres----
               venue freq
0 Chinese Restaurant 0.50
1
        Hockey Arena 0.25
2
      Baseball Field 0.25
           Pet Store 0.00
       Rental Service 0.00
----University of New Brunswick----
              venue freq
0
        Coffee Shop 0.2
               Bar 0.2
1
2 Basketball Court 0.1
3
                Gym 0.1
4
    Grocery Store 0.1
```

### Now into a pandas dataframe

```
In [118]: def return_most_common_venues(row, num_top_venues):
    row_categories = row.iloc[1:]
    row_categories_sorted = row_categories.sort_values(ascending=False)
    return row_categories_sorted.index.values[0:num_top_venues]
```

```
In [119]: | num_top_venues = 10
          indicators = ['st', 'nd', 'rd']
          # create columns according to number of top
          venues columns = ['Location']
          for ind in
              np.arange(num top venues): try:
                  columns.append('{}{} Most Common Venue'.format(ind+1,
              indicators[ind])) except:
                  columns.append('{}th Most Common Venue'.format(ind+1))
          # create a new dataframe
          location_venues_sorted = pd.DataFrame(columns=columns)
          location_venues_sorted['Location'] = freddy_grouped['Location']
          for ind in np.arange(freddy grouped.shape[0]):
              location_venues_sorted.iloc[ind, 1:] = return_most_common_venues(freddy_grouped
           .iloc[ind, :], num_top_venues)
          location_venues_sorted
```

#### Out[119]:

|   | Location                          | 1st Most<br>Common<br>Venue | 2nd<br>Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue  | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue | 6th Most<br>Common<br>Venue | 7th Most<br>Common<br>Venue | 8th Most<br>Common<br>Venue |
|---|-----------------------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0 | Devon                             | Fast Food                   | Grocery                        | Smoke                        | Pharmacy                    | Coffee                      | Seafood                     | Park                        | Department                  |
|   |                                   | Restaurant                  | Store                          | Shop                         |                             | Shop                        | Restaurant                  |                             | Store                       |
| 1 | Downtown                          | Coffee<br>Shop              | Pub                            | Bar                          | Café                        | Restaurant                  | Park                        | Pizza<br>Place              | Grocery<br>Store            |
| 2 | Fredericton                       | Bakery                      | Pizza                          | Hockey                       | Smoke                       | Hardware                    | Video Store                 | Ice Cream                   | Park P                      |
|   | Hill                              | Dakery                      | Place                          | Arena                        | Shop                        | Store                       | video Store                 | Shop                        | Falk F                      |
| _ |                                   | Rental                      | Coffee                         | Warehouse                    | Dance                       | Department                  | Discount                    | Electronics                 | Farmers F                   |
| 3 | Hanwell                           | Service                     | Shop                           | Store                        | Studio                      | Store                       | Store                       | Store                       | Market R                    |
| 4 | Knowledge<br>Park                 | Fast Food<br>Restaurant     | Clothing<br>Store              | Furniture /<br>Home<br>Store | Liquor<br>Store             | Restaurant                  | Warehouse<br>Store          | Shoe Store                  | Pet Store                   |
| 5 | Marysville                        | Baseball<br>Stadium         | Gas<br>Station                 | Pharmacy                     | Park                        | Coffee<br>Shop              | Gift Shop                   | Gastropub                   | Greek F<br>Restaurant       |
| 6 | Nashwaaksis                       | Coffee                      | Sandwich                       | Farmers                      | Fast Food                   | Gym                         | Spa                         | Electronics                 | Beer Store                  |
|   |                                   | Shop                        | Place                          | Market                       | Restaurant                  |                             |                             | Store                       |                             |
| 7 | New                               | Gas                         | Dance                          | Fast Food                    | Baseball                    | Furniture /<br>Home         | Department                  | Discount                    | Electronics                 |
|   | Maryland                          | Station                     | Studio                         | Restaurant                   | Field                       | Store                       | Store                       | Store                       | Store                       |
| 8 | Skyline<br>Acres                  | Chinese<br>Restaurant       | Baseball<br>Field              | Hockey<br>Arena              | Arts &<br>Crafts<br>Store   | Coffee<br>Shop              | Gym /<br>Fitness<br>Center  | Gym                         | Grocery<br>Store R          |
| 9 | University of<br>New<br>Brunswick | Bar                         | Coffee<br>Shop                 | Art Gallery                  | Pub                         | Burger<br>Joint             | Basketball<br>Court         | Grocery<br>Store            | Gym                         |

## **Cluster Fredericton Locations**

#### Run k-means to cluster Locations into 5 clusters

```
In [120]: # set number of clusters
kclusters = 5
freddy_grouped_clustering = freddy_grouped.drop('Location', 1)

# run k-means clustering
kmeans = KMeans(n_clusters=kclusters,
random_state=0).fit(freddy_grouped_clustering)

# check cluster labels generated for each row in the
dataframe kmeans.labels_[0:10]
Out[120]: array([1, 1, 1, 0, 1, 4, 1, 3, 2, 1], dtype=int32)
```

Now creating a new dataframe including the cluster as well as the top 10 venues for each Location

#### Out[121]:

|   | Location                          | Latitude  | Longitude  | Cluster<br>Labels | 1st Most<br>Common<br>Venue | 2nd<br>Most<br>Common<br>Venue | 3rd Most<br>Common<br>Venue  | 4th Most<br>Common<br>Venue | 5th Most<br>Common<br>Venue  | 6th<br>Com<br>V |
|---|-----------------------------------|-----------|------------|-------------------|-----------------------------|--------------------------------|------------------------------|-----------------------------|------------------------------|-----------------|
| 0 | Knowledge<br>Park                 | 45.931143 | -66.652700 | 1                 | Fast Food<br>Restaurant     | Clothing<br>Store              | Furniture /<br>Home<br>Store | Liquor<br>Store             | Restaurant                   | Wareh           |
| 1 | Fredericton<br>Hill               | 45.948512 | -66.656045 | 1                 | Bakery                      | Pizza<br>Place                 | Hockey<br>Arena              | Smoke<br>Shop               | Hardware<br>Store            | Video           |
| 2 | Nashwaaksis                       | 45.983382 | -66.644856 | 1                 | Coffee<br>Shop              | Sandwich<br>Place              | Farmers<br>Market            | Fast Food<br>Restaurant     | Gym                          |                 |
| 3 | University of<br>New<br>Brunswick | 45.948121 | -66.641406 | 0                 | Bar                         | Coffee<br>Shop                 | Art Gallery                  | Pub                         | Burger<br>Joint              | Bask            |
|   |                                   |           |            |                   | Fast Food                   | Grocery                        | Smoke                        |                             | Coffee                       | Sea             |
| 4 | Devon                             | 45.968802 | -66.622738 | 1                 | Restaurant                  | Store                          | Shop                         | Pharmacy                    | Shop                         | Resta           |
| 5 | New<br>Maryland                   | 45.892795 | -66.683673 | 4                 | Gas<br>Station              | Dance<br>Studio                | Fast Food<br>Restaurant      | Baseball<br>Field           | Furniture /<br>Home<br>Store | Depart          |
| 6 | Marysville                        | 45.978913 | -66.589491 | 1                 | Baseball<br>Stadium         | Gas<br>Station                 | Pharmacy                     | Park                        | Coffee<br>Shop               | Gift            |
| 7 | Skyline<br>Acres                  | 45.931827 | -66.640339 | 3                 | Chinese<br>Restaurant       | Baseball<br>Field              | Hockey<br>Arena              | Arts &<br>Crafts<br>Store   | Coffee<br>Shop               | G<br>Fi<br>C    |
| 8 | Hanwell                           | 45.902315 | -66.755113 | 2                 | Rental<br>Service           | Coffee<br>Shop                 | Warehouse<br>Store           | Dance<br>Studio             | Department<br>Store          | Disc            |
| 9 | Downtown                          | 45.958327 | -66.647211 | 1                 | Coffee<br>Shop              | Pub                            | Bar                          | Café                        | Restaurant                   |                 |

```
In [122]:
           # create map
           map clusters = folium.Map(location=[latitude, longitude], zoom_start=11)
           # set color scheme for the
           clusters x = np.arange(kclusters)
           ys = [i+x+(i*x)**2 \text{ for } i \text{ in range (kclusters)}]
           colors_array = cm.rainbow(np.linspace(0, 1, len(ys)))
           rainbow = [colors.rgb2hex(i) for i in colors_array]
           # add markers to the map
           markers colors = []
           for lat, lon, poi, cluster in zip(freddy_merged['Latitude'], freddy_merged['Longitu
           de'], freddy merged['Location'], freddy merged['Cluster Labels']):
               label = folium.Popup(str(poi) + ' Cluster ' + str(cluster), parse_html=True)
               folium.CircleMarker([lat, lon], radius=5,popup=label,color=rainbow[cluster-1],f
           ill=True, fill color=rainbow[cluster-1],
                   fill_opacity=0.7).add_to(map_clusters)
           map_clusters
```

#### Out[122]:





Leaflet (http://leafletjs.com)

In [ ]: