Banco de Dados II - Introdução à Otimização e Indexação de BD

Prof. Angelo Augusto Frozza, Dr.

http://about.me/TilFrozza

Roteiro

- Otimização
- Indexação

Roteiro

- Otimização
- Indexação

■ Visa aumentar o desempenho do BD.

■Técnicas:

- Tuning
 - ■Envolve configuração do SO, SGBD ou otimização de consultas.
- Otimização de consultas
 - Envolve analisar e reescrever as consultas que demandam maior desempenho.

■ Otimização de consultas

Usa álgebra relacional para analisar as consultas.

- ■Dica prática:
 - Reescrever as *queries*, colocando as partes mais restritivas da consulta para que executem antes das demais.
 - ■Usa '(...)' para destacar precedência.

- Otimização de consultas
 - Tens uma tabela de *Pessoas*, na qual tem uma chave estrangeira Sexo, que aponta para outra tabela com apenas 3 registros (Feminino, Masculino, Outros).

■Consulta:

Contar quantas pessoas de cada sexo tem?

```
SELECT sexo.descricao, COUNT(*)
FROM pessoas

JOIN sexo ON pessoas.fk_sexo = sexo.pk

GROUP BY sexo.descricao;
```


- Otimização de consultas
 - Consulta clássica:
 - Contar quantas pessoas de cada sexo tem?

```
SELECT sexo.descricao, COUNT(*)
FROM pessoas

JOIN sexo ON pessoas.fk_sexo = sexo.pk
GROUP BY sexo.descricao;
```

- ► Faz o JOIN de tudo, depois conta e faz o GROUP BY.
 - Se Pessoas = 1 milhão de tuplas, então faz o JOIN de 1 milhão de registros com 3 registros (de sexo).
 - Tempo de execução estimado: 3-4 segundos.

- Otimização de consultas
 - Consulta otimizada:
 - Contar quantas pessoas de cada sexo tem?

- ►Agora agrupa e conta os fk_sexo de Pessoa (vai retornar 3 registros em vez de 1 milhão).
- ■Depois faz o JOIN com Sexo (JOIN de 3 com 3).
- ■Tempo de execução estimado: 200 ms.

Roteiro

- Otimização
- . Indexação

Índices

São estruturas de dados otimizadas que permitem a localização de um determinado dado/tupla mais rapidamente.

- \blacksquare A busca em uma tabela se dá de maneira linear O(n).
 - ■Índices implementam algoritmos que tornam essa busca mais rápida (< O(n)).

11

Indexação

Índices

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

12

Indexação

Índices

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

Índices

/	codm	nroa	nome	idade	especialidade	cpf	cidade
	integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
	1	1	Joao	40	ortopedia	10000100000	Florianopolis
	2	2	Maria	42	traumatolog	10000110000	Blumenau
	3	2	Pedro	51	pediatria	11000100000	Sao Jose
	4		Carlos	28	ortopedia	11000110000	Joinvile
	5	3	Marcia	33	neurologia	11000111000	Biguacu

Índices

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

Índices

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

- Busque as informações do médico com código = 5:
 - Usando um índice binário

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

- Busque as informações do médico com código = 5:
 - Usando um índice binário

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

- Busque as informações do médico com código = 5:
 - Usando um índice binário

codm	nroa	nome	idade	especialidade	cpf	cidade
integer	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
1	1	Joao	40	ortopedia	10000100000	Florianopolis
2	2	Maria	42	traumatolog	10000110000	Blumenau
3	2	Pedro	51	pediatria	11000100000	Sao Jose
4		Carlos	28	ortopedia	11000110000	Joinvile
5	3	Marcia	33	neurologia	11000111000	Biguacu

- Busque as informações do médico com código = 5:
 - Usando um índice binário

C	odm	nroa	nome	idade	especialidade	cpf	cidade
in	teger	integer	character varying(40)	smallint	character(20)	numeric(11,0)	character varying(30)
	1	1	Joao	40	ortopedia	10000100000	Florianopolis
	2	2	Maria	42	traumatolog	10000110000	Blumenau
	3	2	Pedro	51	pediatria	11000100000	Sao Jose
	4		Carlos	28	ortopedia	11000110000	Joinvile
	5	3	Marcia	33	neurologia	11000111000	Biguacu

- ■Em um cenário maior...
 - Busque as informações do médico com código = 31:
 - ■Usando um índice

- Para criar um índice devem ser considerados alguns aspectos:
 - Chave que irá compor:
 - Chave primária, de ordenação ou mesmo chave de pesquisa;
 - É criado um novo documento apenas contendo os dados da chave e o ponteiro do dado
 - local pode ser a localização exata da tupla ou pode ser o cluster ou o bloco
 - Os índices podem ser densos ou esparsos

Índices

 Índices densos possuem entrada para todas as chaves de dados:

- Índices densos possuem entrada para todas as chaves de dados:
 - Vantagens (além de otimizar a consulta):
 - O número de blocos para armazenar o índice é, geralmente, menor do que para armazenar os dados;
 - Pode-se utilizar a busca binária para buscar um registro;
 - O índice pode caber na memória principal (buffer), diminuindo o número de I/Os em uma busca.

Índices

Índices esparsos possuem chaves que apontam para blocos de dados:

Índices

 Índices esparsos possuem chaves que apontam para blocos de dados:

Características:

- São menores que os índices densos;
- Faz um scan no bloco de dados;
- A busca é feita no índice esparso valor ≥ key
- O arquivo de dados deve estar ordenado pela chave de busca.

■Tipos de índices

- Primário

- A chave do índice é composta pela chave primária da tabela.
 - A maioria dos SGBD cria índices primários automaticamente.
- Não permitem duplicatas.
- Podem ser agrupados.

- Secundário

- Outras colunas da tabela participam.
- Permitem duplicatas.

■Tipos de índices

- Simples
 - Envolve apenas uma coluna.
- Composto
 - Envolve várias colunas.
- Algoritmos (depende de cada SGBD)
 - B-Tree
 - R-Tree
 - Gist
 - Hash

■Tipos de índices

- Simples
 - Envolve apenas uma coluna.
- Composto
 - Envolve várias colunas.
- Algoritmos (depende de cada SGBD)
 - B-Tree
 - R-Tree
 - Gist
 - Hash

■ B-Tree

- É o índice padrão para a maioria dos BDs
- Utilizado para operações com qualquer operador matemático: =, <>, >, <, >=, <=
- A B-Tree implementada pelo PostgreSQL apenas armazena os ponteiros nos nodos folha.
- As folhas armazenam os dados e são mantidas como uma lista encadeada.

■ B-Tree

■ B-Tree

- O tamanho da árvore dita o número mínimo de operações.
- Qual a altura máxima de uma árvore B com m chaves?
 - Sendo N o maior número de chaves na árvore:

$$h = \log_{\frac{m}{2}}(\frac{N+1}{2})$$

- **■** B-Tree
 - Mas como funciona isso?
 - Let's play

https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html

■Tipos de índices

- Simples
 - Envolve apenas uma coluna.
- Composto
 - Envolve várias colunas.
- Algoritmos (depende de cada SGBD)
 - B-Tree
 - R-Tree
 - Gist
 - Hash

■ Hash

- Possui um desempenho elevado.
 - A busca usualmente é O(1).
- Apenas pode ser utilizado em buscas por igualdade (=)

- Já utilizaram algum tipo de hash?

■ Hash

- Possui um desempenho elevado.
 - A busca usualmente é O(1).
- Apenas pode ser utilizado em buscas por igualdade (=)

- Já utilizaram algum tipo de hash?
 - Uma tabela de dispersão ou tabela de hash (hash table) é um vetor em que cada uma de suas posições armazena zero, uma ou mais chaves (e valores associados).

■ Hash

- Tabela de hash ou bucket
 - Uma tabela de hash armazena os dados em buckets.

- Bucket é considerado uma unidade de armazenamento.
- Normalmente armazena um bloco de disco completo, que por sua vez pode armazenar um ou mais registros.
- Função de *hash* ou função de dispersão
 - A função hash mapeia o conjunto de chaves de pesquisa para o endereço no qual os registros reais são armazenados.
 - De maneira geral é uma chave de acesso para cada bucket.

Índices no PostgreSQL

Como criar um índice

CREATE [UNIQUE] INDEX nome ON tabela (atr₁, atr_n)

• Exemplo:

CREATE INDEX esp med ON medicos (especialidade)

Excluir índice

DROP INDEX nome;

Índices no PostgreSQL

Como criar um índice

```
CREATE [ UNIQUE ] INDEX [ CONCURRENTLY ]
  nome_indice

ON tabela [ USING method ] ( {column|(
    expression ) }

[ ASC | DESC ] [ NULLS { FIRST | LAST } ] [,
    ...] )
```

• Exemplo:

```
CREATE INDEX esp_med ON medicos USING hash
  (especialidade)
```

CREATE INDEX nro_med ON medicos USING btree (nroa
ASC NULLS FIRST)

Contato

Prof. Angelo Augusto Frozza, Dr.

angelo.frozza@ifc.edu.br

http://www.ifc-camboriu.edu.br/~frozza

@TilFrozza

http://www.twitter.com/TilFrozza

http://about.me/TilFrozza