UNIVERSIDADE DO MINHO ALGA—LCC

Teste A

1° Teste

 N^o Nome Data- 25/11/2016

Nas perguntas de escolha múltipla e verdadeira ou falsa, cada resposta certa vale 0.5 valor e cada resposta errada vale -0,1.

- 1. Se $A = \begin{bmatrix} -2 & 1 \\ -1 & 1 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 \\ -\frac{2}{3} & \frac{3}{2} \end{bmatrix}$, então $(A+B)^T$ é igual a:
- (a) $\begin{bmatrix} -3 & 2 \\ -\frac{5}{3} & -\frac{5}{2} \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 2 \\ \frac{5}{3} & -\frac{5}{2} \end{bmatrix}$ (c) $\begin{bmatrix} -3 & -\frac{5}{3} \\ 2 & \frac{5}{2} \end{bmatrix}$ (\checkmark) (d) $\begin{bmatrix} 1 & -2 \\ -1 & \frac{7}{5} \end{bmatrix}$
- 2. Qual é a dimensão do subespaço de \mathbb{R}^4 gerado pelos vetores
 - (1, 1, 2, 1),
- (1, -1, 2, 1),
- (3, 1, 6, 1),

(a) 1

(d) 4

3. Considere matrizes $n \times n$, A e B, em que A é simétrica e invertível. Então

$$\left[\left(A^{-1} \right)^T \left(AB + A^T + O_{n \times n} \right) A \right] - A =$$

- (a) B
- (b) $BA(\checkmark)$
- (c) A
- 4. Se $A = [a_{ij}]_{2\times 4}$ é definida por $a_{ij} = \begin{cases} (-1)^{i+j+1} (2i-j), & \text{se } i=1\\ 1, & \text{se } i=2 \end{cases}$, j = 1, 2, 3, 4, então:

 - (a) $A = \begin{bmatrix} -1 & 0 & 1 & -2 \\ 1 & 1 & 1 & 1 \end{bmatrix} (\checkmark)$ (c) $A = \begin{bmatrix} 2 & -1 \\ 1 & 0 \\ 0 & 1 \\ 2 & 2 \end{bmatrix}$

- (b) $A = \begin{bmatrix} 2 & 1 & 0 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$ (d) $A = \begin{bmatrix} -1 & 2 \\ 0 & 1 \\ 1 & 0 \\ 2 & 2 \end{bmatrix}$
- 5. Sejam $A = \begin{bmatrix} 3 & 0 & 0 \\ 3 & 3 & 0 \\ 3 & 0 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} -1 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 1 \end{bmatrix}$.
 - (a) A entrada (3,3) de (-A)(2B) é

(c) - 11

 $(d) 6(\checkmark).$

- (b) A é uma matriz:
 - (a) diagonal
- (b) triangular superior
- (c) triangular inferior(✓)
- (d) escalar.

- (c) A inversa de B é

 - (a) $\begin{vmatrix} -\frac{3}{2} & 1 & -\frac{2}{3} \\ -\frac{1}{2} & \frac{3}{8} & -\frac{1}{3} \\ -\frac{3}{2} & 1 & \frac{1}{2} \end{vmatrix}$ (b) $\begin{vmatrix} -\frac{3}{2} & 1 & -\frac{1}{2} \\ -1 & 1 & 0 \\ -\frac{1}{2} & 0 & \frac{1}{2} \end{vmatrix}$ (\checkmark) (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} \frac{2}{3} & -1 & \frac{3}{2} \\ 2 & -\frac{8}{3} & 3 \\ 2 & 1 & 2 \end{bmatrix}$.

- 6. Qual dos seguintes conjuntos é um subespaco vectorial?
 - (a) $S_1 = \{(x, y) \in \mathbb{R}^2 : y = 1 x\}.$
 - (b) $S_2 = \{(x, y, z) \in \mathbb{R}^3 : z = x + y + 1\}.$
 - (c) $S_3 = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}) : d = 2a \wedge b c = 0 \} (\checkmark)$
 - (d) $S_4 = \{a + bx \in P_2[x] : b = 2a + 3\}$
- 7. Considere o sistema de equações $\begin{cases} x_1 + x_2 + x_4 = 2 \\ 2x_1 2x_3 + 2x_4 = 0 \\ 3x_1 + x_2 2x_3 + 3x_4 = 2 \end{cases}$

(a) A matriz ampliada do sistema é:

$$(a) \begin{bmatrix} 1 & 1 & 0 & 1 & | & 2 \\ 2 & 0 & 1 & 1 & | & 0 \\ 3 & 0 & 2 & 0 & | & 2 \end{bmatrix}$$

$$(b) \begin{bmatrix} 1 & 1 & 0 & 1 \\ 2 & 0 & -2 & 2 \\ 3 & 1 & -2 & 3 \end{bmatrix}$$

$$(c) \begin{bmatrix} 1 & 1 & 0 & 1 & | & 2 \\ 2 & 0 & 2 & 1 & | & 0 \\ 3 & 1 & 2 & 0 & | & 2 \end{bmatrix}$$

$$(d) \begin{bmatrix} 1 & 1 & 0 & 1 & | & 2 \\ 2 & 0 & -2 & 2 & | & 0 \\ 3 & 1 & -2 & 3 & | & 2 \end{bmatrix} (\checkmark)$$

(b) A solução geral do sistema é:

- 8. Sejam W_1 e W_2 subespaços do espaço vetorial V de dimensão finita, e $dimW_1=9$, $dimW_2=5$ e $dim(W_1+W_2)=13$. Então,
 - (a) $W_1 \cap W_2$ não é necessariamente um subspaço de V. V
 - (b) Existe um vetor não nulo v tal que $W_1 \cap W_2$ é gerado por v. $V(\checkmark)$
 - (c) Existem dois vetores u_1 e $u_2 \in W_1 \cap W_2$ tais que u_1 e u_2 fomam uma base de $W_1 \cap W_2$. V $F(\checkmark)$
 - (d) $5 \le dim(W_1 \cap W_2) \le 7$.
- 9. Em \mathbb{R}^3 , considere o seguinte conjunto:

$$S = \{(0, 1, 4), (3, 5, 1), (1, 2, 1)\}.$$

- (a) $S \text{ gera } \mathbb{R}^3$. $V(\checkmark)$
- (b) $S = \{(x, y, z) \in \mathbb{R}^3 : z = 4y 7x\}.$ V
- (c) O terceiro vector de S é combinação linear dos restantes. V $\mathrm{F}(\checkmark)$
- $(d) (2,4,3) \in \langle S \rangle$ $V(\checkmark)$ F
- 10. Considere um sistema de equações lineares Ax = b de coeficientes reais e nas incógnitas x_1, x_2, x_3, x_4 .
 - (a) Se Ax = b é impossível, o sistema Ax = 0 também é impossível. V $F(\checkmark)$
 - (b) Se Ax = b tem solução única, também o sistema Ax = 0 tem solução única.
- $V(\checkmark)$ F
- (c) Se A uma matriz do tipo 2×4 , o sistema Ax = b é indeterminado. V $F(\checkmark)$
- (d) Se $\alpha \in \mathbb{R}^4$ é solução de Ax = b e $\lambda \in \mathbb{R}$, então $\lambda \alpha$ é solução de $Ax = \lambda b$.
- $V(\checkmark)$ F
- 11. Sejam $S = \{(x, y, z) \in \mathbb{R}^3 : z \ge 0\} \in T = \{(2a, b, a 3b) : a, b \in \mathbb{R}\}.$
 - (a) $(7, -1, 13) \in T$ V $F(\checkmark)$
 - (b) Se $u, v \in S$ então $u + 4v \in S$. $V(\checkmark)$
 - (c) S é um subespaço do espaço vetorial real \mathbb{R}^3 . V $F(\checkmark)$
 - (d) Qualquer elemento de T é combinação linear dos vectores (-4,0,-2) e (0,1,-3).
 - $\mathrm{V}(\checkmark)$ F
- 12. Sejam V um espaço vectorial sobre \mathbb{K} tal que dim V=n e $v_1,...,v_n,v_{n+1}$ elementos de V tais que $V=\langle v_1,v_2,...,v_n\rangle$. Seja $\alpha\in\mathbb{K}$.
 - (a) $(v_1, v_2..., v_n)$ é uma base de V. $V(\checkmark)$
 - (b) Os vectores $v_1, v_2, ..., v_n, v_{n+1}$ são linearmente dependentes. $V(\checkmark)$
 - (c) Qualquer conjunto de vetores de V que contenha o vetor nulo é linearmente independentes.
 - $ext{V} ext{F}(\checkmark)$
 - (d) V contém dois subespaços disjuntos.

 $V F(\checkmark)$

A questão que se segue deverá ser resolvida integralmente e devidamente justificada.

(5 valores) SejamUo subespaço do espaço vectorial real ${\rm I\!R}^4$ gerado pelos vectores

$$u_1 = (0, 0, 1, 1), \ u_2 = (0, 1, 1, 1), \ u_3 = (1, 1, 1, 2) \ e \ u_4 = (-1, 0, 1, 0)$$

e V o subconjunto

$$V = \{(a, b, c, d) \in \mathbb{R}^4 : a - b = b - c = 2a - d = 0\} \text{ de } \mathbb{R}^4.$$

- (a) Determine uma base e a dimensão de U.
- (b) Verifique que V = <(1, 1, 1, 2)>.
- (c) Justifique se U+V é soma direta.
- (d) Determine o valor de α de modo que o vector $(1,-1,0,\alpha)$ pertença a U.