## ECE 3030 Spring 2025 HOMEWORK ASSIGNMENT NO. 10 Due: Thursday, April 17<sup>th</sup> 11:59 pm upload to Carmen 3030 SpeedGrader

- 1. (20 pts) Assume that the base of a Si p<sup>+</sup>-n-p transistor is doped with  $10^{16}$  donors/cm<sup>3</sup> and the collector with  $10^{15}$  acceptors/cm<sup>3</sup>. (a) Solve for the width  $x_{n0}$  of the depletion region on the base side of the collector junction for  $V_{CB} = -2 V$  and -10 V. If the base width at equilibrium is 1  $\mu$ m, is the Early effect for this device significant or not?
- 2. (20 pts) Calculate and plot the excess hole distribution  $\delta p(x)$  in the base of a p-n-p transistor from S&B Eq. 7-14 and Fig. 7-7(a) assuming  $W_b/L_p=1$  and 0.1. The calculations are simplified if the vertical scale is measured in units of  $\delta p/\Delta p_E$  and the horizontal scale in units of  $x_n/W_b$ .
- 3. **(20 pts) (a)** Redraw Fig. S&B 7-3 (Lecture 34, Slide 15) for an n<sup>+</sup>-p-n BJT with arrows for each electron and hole flow and their directions for normal active mode of operation. and <u>explain</u> the various components of current flow and current directions for the normal active mode of operation. **(b)** Draw the energy band diagram for equilibrium *and* this bias condition.
- 4. **(20 pts)** A p<sup>+</sup>-n-p Si transistor has a uniform area of 2 x 10<sup>-4</sup> cm<sup>2</sup> and base width  $W_b$  of 1  $\mu m$ . The emitter doping is  $10^{18} cm^{-3}$  and base doping is  $10^{16}$  cm<sup>-3</sup>. The hole lifetime in the base is 1  $\mu s$ , the base mobility  $\mu_p{}^n = 400$  cm<sup>2</sup>/V-s and the emitter mobility  $\mu_n{}^p = 250$  cm<sup>2</sup>/V-s. Assume  $\gamma \sim 1$ . (a) Calculate  $I_E$  and  $I_C$ , with  $V_{EB} = 0.6$  V and  $\Delta p_C$  negligible.
- (b) Find  $I_B$  from the Charge Control Approximation  $Q_b/\tau_p$  and compare with  $I_B = I_E-I_C$  in Slide 18, Lecture 35 or S&B Eq. 7—18(a), 18(b), and 19,
- 5. (20 Pts) A p-n-p transistor Si bipolar transistor has the following properties:  $A = 10^{-4} \text{ cm}^2$ ,  $W_b = 0.2 \mu \text{m}$ ,

| <u>Emitter</u>                           | <u>Base</u>                            | Collector                              |
|------------------------------------------|----------------------------------------|----------------------------------------|
| $N_a = 5 \times 10^{18} \text{ cm}^{-3}$ | $N_d = 10^{16} \text{ cm}^{-3}$        | $N_a = 10^{15} \text{ cm}^{-3}$        |
| $\tau_n = 100 \text{ ps}$                | $\tau_p = 2500 \text{ ps}$             | $\tau_n = 2 \mu s$                     |
| $\mu_n = 150 \text{ cm}^2/\text{V-s}$    | $\mu_n = 1500 \text{ cm}^2/\text{V-s}$ | $\mu_n = 1500 \text{ cm}^2/\text{V-s}$ |
| $\mu_p = 100 \text{ cm}^2/\text{V-s}$    | $\mu_p = 400 \text{ cm}^2/\text{V-s}$  | $\mu_p = 450 \text{ cm}^2/\text{V-s}$  |

Calculate the  $\beta$  of the transistor (a) from B and  $\gamma$  and (b) using the charge control model (Hint: Use Eqs. 7-20 & 7-76). (c) Comment on the comparison.

- 6. (Extra Credit: 10 Pts) For the BJT in Problem 5, calculate the charge stored in the base when  $V_{CB} = 0$  and  $V_{EB} = 0.7$  V. If the base transit time is the dominant delay component for the BJT, what is the cutoff frequency  $f_T$ ?
- 7. (Extra Credit: 15 pts) The symmetrical  $p^+$ -n- $p^+$  transistor of the figure below is connected as a diode in the four configurations shown. Assume that V >> kT/q. Sketch  $\delta p(x_n)$  in the base region for each case. Which connection seems most appropriate for use as a diode? Why?

