

AMPLIFICADORES DE RF DE ALTO RENDIMIENTO

TRABAJO PRÁCTICO Nº 6.2

URL: http://www.ing.unlp.edu.ar/electrotecnia/electronicos2/

Trabajo Práctico Nº 6.2

AMPLIFICADORES DE RF DE ALTO RENDIMIENTO

Problema Nº 1:

Diseñar un amplificador de potencia clase D con MOSFET con el circuito que se muestra y las siguientes características:

$$Vi = 3 \ Vcc$$
 $f_0 = 433 \ MHz$ $R_{DS(ON)} = 0.1 \ \Omega$ $Q_C = 7 \ Q_D = 150$ $R_L = 2 \ \Omega$

Suponer los dispositivos sin capacidades parásitas, tiempo de conmutación 0 y que el Q es lo suficientemente alto para suponer corriente sinusoidal.

- a) Calcular L y C.
- b) Obtener la corriente, tensión y potencia en la carga.
- c) Calcular el rendimiento.
- d) Obtener la tensión máxima sobre el capacitor.
- e) Considerar que el MOSFET tiene una capacidad C_{DS} = 10 pF y calcular las pérdidas por conmutación que se producen. Obtener nuevamente el rendimiento total del amplificador con esta consideración.
- f) Simular el circuito y obtener las formas de onda de tensión y corriente en la carga y sobre los MOSFET.

Problema Nº 2:

Se desea realizar un amplificador clase D como el de la figura con las siguientes características:

Tensión de alimentación: 25V

Frecuencia de operación: 1 MHz

L1 = 22uHy

RL = 50 Ohms

Considerando condiciones ideales calcular:

- a) V_O y P_O en la carga RL.
- **b)** $I_{DC} y P_{CC}$
- c) Calcular el rendimiento.
- d) Calcular el valor de C1 para que resuene a f_0 con L1.
- e) Si los transistores utilizados tienen $V_{CE(SAT)} = 0.5V$ y un tiempo de conmutación de 10 ns y Q_d del inductor L1 es de 50 a la frecuencia de operación, calcular el rendimiento de la etapa.
- f) Simular el amplificador obteniendo las formas de onda de tensión en la entrada del circuito resonante y en la carga, además de las formas de onda de corriente en los transistores y en la carga.

Problema Nº 3:

Se desea realizar un pequeño transmisor de onda continua CW en la banda de radioaficionados de 7 MHz, conocida como banda de 40 Metros (¿Por qué?). Como el transmisor va a funcionar con una batería de 12 Volts, se eligió como amplificador, un clase E como el que muestra la figura.

- 1. Si la potencia requerida en R_L es de 10 Watts, usando las ecuaciones de diseño calcule el valor de los componentes. Considere Q_{Lo} = 10.
- 2. Si la capacidad típica de salida C_{oss} del IRF510 es de 81pF, ¿cuánto debería valer C_S?
- 3. Simular el amplificador utilizando una llave ideal en el lugar del transistor y obtener las formas de onda de tensión y corriente en ella, además la tensión en la carga y la corriente en el choque ($L_{ch} > 5*(L_o+L_{ext})$). Medir la potencia en la batería y en la carga, y calcular el rendimiento.