

CSE 151A Intro to Machine Examing

Lecture 15 – Part 01
Supervised and
Unsupervised Learning

Supervised Learning

- ▶ We tell the machine the "right answer".
 - ► There is a ground truth.
- ► Data set: $\{(\vec{x}^{(i)}, y_i)\}$.
- ▶ **Goal**: learn relationship between features $\vec{x}^{(i)}$ and labels y_i .
- **Examples**: classification, regression.

Unsupervised Learning

- We don't tell the machine the "right answer".
 - ► In fact, there might not be one!
- ► Data set: $\vec{x}^{(i)}$ (usually no test set)
- ► **Goal**: learn the **structure** of the data itself.
 - ► To discover something, for compression, to use as a feature later.

Example: clustering

• We gather measurements $\vec{x}^{(i)}$ of a bunch of flowers.

Question: how many species are there?

► **Goal**: **cluster** the similar flowers into groups.

Clustering and Dimensionality

- Groups emerge with more features.
- But too many features, and groups disappear.
 - Curse of dimensionality.
- Also: We can't see in d > 3.

Ground Truth

- If we don't have labels, we can't measure accuracy.
- Sometimes, labels don't exist.
- Example: cluster customers into types by previous purchases.

Lecture 15 - Part 02 K-Means Clustering

Learning

Goal: turn clustering into optimization problem.

► Idea: clustering is like compression

K-Means Objective

- ▶ **Given**: data, $\{\vec{x}^{(i)}\} \in \mathbb{R}^d$ and a parameter k.
- ▶ **Find**: k cluster centers $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(k)}$ so that the average squared distance from a data point to nearest cluster center is small.
- ► The k-means objective function:

$$\operatorname{Cost}(\vec{\mu}^{(1)}, \dots, \vec{\mu}^{(k)}) = \frac{1}{n} \sum_{i=1}^{n} \min_{j \in \{1, \dots, k\}} \|\vec{x}^{(i)} - \vec{\mu}^{(j)}\|^2$$

Optimization

- ▶ **Goal**: find $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(k)}$ minimizing k-means objective function.
- Problem: this is NP-Hard.
- We use a heuristic instead of solving exactly.

Lloyd's Algorithm for K-Means

- ► Initialize centers, $\vec{\mu}^{(1)}$, ..., $\vec{\mu}^{(k)}$ somehow.
- Repeat until convergence:
 - Assign each point $\bar{\vec{x}}^{(i)}$ to closest center
 - Update each $\vec{\mu}^{(i)}$ to be mean of points assigned to it

Theory

► Each iteration reduces cost.

- This guarantees convergence to a **local** min.
- Initialization is very important.

Initialization Strategies

- Basic Approach: Pick k data points at random.
- Better Approach: k-means++:
 - Pick first center at random from data.
 - Let $C = {\vec{\mu}^{(1)}}$ (centers chosen so far)
 - Repeat k 1 more times:
 - Pick random data point \vec{x} according to distribution

$$\mathbb{P}(\vec{x}) \propto \min_{\vec{\mu} \in C} \|\vec{x} - \mu\|^2$$

Add \vec{x} to C

Picking k

How do we know how many clusters the data contains? **Plot of K-Means Objective**

Applications of K-Means

- Discovery
- Vector Quantization
 - Find a finite set of representatives of a large (possibly infinite) set.

Example #1

- Cluster animal descriptions.
- ▶ 50 animals: grizzly bear, dalmatian, rabbit, pig, ...
- ▶ 85 attributes: long neck, tail, walks, swims, ...
- ▶ 50 data points in \mathbb{R}^{85} . Run k-means with k = 10

Results

- zebra
- 2 spider monkey, gorilla, chimpanzee
- 3 tiger, leopard, wolf, bobcat, lion
- hippopotamus, elephant, rhinoceros
- (5) killer whale, blue whale, humpback whale, seal, walrus, dolphin
- 6 giant panda
- skunk, mole, hamster, squirrel, rabbit, bat, rat, weasel, mouse, raccoon
- 3 antelope, horse, moose, ox, sheep, giraffe, buffalo, deer, pig, cow
- beaver, otter
- grizzly bear, dalmatian, persian cat, german shepherd, siamese cat, fox, chihuahua, polar bear, collie

- zebra
- 2 spider monkey, gorilla, chimpanzee
- 3 tiger, leopard, fox, wolf, bobcat, lion
- hippopotamus, elephant, rhinoceros, buffalo, pig
 killer whale, blue whale, humpback
- whale, seal, otter, walrus, dolphin

 dalmatian, persian cat, german
 shepherd, siamese cat, chihuahua.
- giant panda, collie

 beaver, skunk, mole, squirrel, bat,
- rat, weasel, mouse, raccoon

 3 antelope, horse, moose, ox, sheep, giraffe, deer, cow
- namster, rabbit
- n grizzly bear, polar bear

Example #2

How do we represent images of different sizes as fixed length feature vectors for use in classification tasks?

Visual Bags-of-Words

- ldea: build a "dictionary" of image patches.
- Extract all \(\epsilon \) image patches from all training images.
- Cluster them with k-means.
 - Each cluster center is now a dictionary "word"
- Represent an image as a histogram over $\{1, 2, ..., k\}$ by associating each patch with nearest center.

Online Learning

- What if the dataset is huge?
 - It doesn't even fit in memory.
- What if we're continuously getting new data?
 - Don't want to retrain with every new point.
- ► We can update the model online.

Sequential k-Means

- Set the centers $\vec{\mu}^{(1)}, ..., \vec{\mu}^{(k)}$ to be first k points
- ► Set counts to be $n_1 = n_2 = ... = n_k = 1$.
- Repeat:
 - ightharpoonup Get next data point, \vec{x}
 - Let $\vec{\mu}^{(j)}$ be closest center
 - ▶ Update $\vec{\mu}^{(j)}$ and n_i :

$$\vec{\mu}^{(j)} = \frac{n_j \vec{\mu}^{(j)} + \vec{x}}{n_j + 1} \qquad n_j = n_j + 1$$

K-Means

- Perhaps the most popular clustering algorithm.
- Fast, easy to understand.
- Assumes spherical clusters.

