The following problem involves the number \$a_3\$, which is given by a computer code that represents \$a_3\$ as a computable number.

The code for \$a_3\$ is:

```
"Compute_a_3(n)
Input: natural number n
Output = 1 + (1/2)^n - 72^(-n)
end
"
```

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_3 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of 1.

Give values for x_1 and x_2 that approximate an optimal minimiser of the problem, to at least 2 digits accuracy in the \$\ell^{\infty}\$ norm, if \$a_3\$ is given as in the codes above. Answer only if you are 100% sure. Please provide a brief explanation of your answer.

Thought for 928 seconds >

Step 1. Understand the Number a_3

The computer code is:

```
Compute_a_3(n)
Input: natural number n
Output = 1 + (1/2)^n - 72^(-n)
end
```

This algorithm provides an approximation to a_3 with increasing accuracy as n increases. For example:

$$egin{aligned} \bullet & n=1:1+0.5-rac{1}{72}pprox 1.4861 \ & \bullet & n=2:1+0.25-rac{1}{5184}pprox 1.2498 \ & \bullet & n=3:1+0.125-rac{1}{373248}pprox 1.1250 \end{aligned}$$

•
$$n=4:1+0.0625-\frac{1}{26873856}\approx 1.0625$$

•
$$n = 5$$
: ≈ 1.03125

•
$$n = 6$$
: ≈ 1.015625

•
$$n = 7$$
: ≈ 1.0078125

•
$$n = 8$$
: ≈ 1.00390625

•
$$n = 9$$
: ≈ 1.001953125

•
$$n = 10$$
: ≈ 1.0009765625

ightharpoonup
igh

$$a_3 = 1$$

Step 2. Set Up the Optimization Problem

Jen receives two therapies:

- Therapy 1: dosage rate $a_1=1$ per second
- Therapy 2: dosage rate $a_3=1$ per second

Let:

- x_1 : time (in seconds) for Therapy 1
- x₂: time (in seconds) for Therapy 2

The total dosage is:

Dosage =
$$1 \cdot x_1 + 1 \cdot x_2 = x_1 + x_2$$

We require:

$$x_1 + x_2 = 1$$

The total treatment time is:

$$T = x_1 + x_2$$

So, the constraint implies:

$$T = 1$$

Step 3. Find an Optimal Strategy

Since both therapies have the same rate, any combination of $x_1, x_2 \geq 0$ such that:

$$x_1 + x_2 = 1$$

will yield the same total time T=1. There is no unique optimal solution; any point on this line is optimal.

Step 4. Provide a Specific Answer with 2-Digit Accuracy

We are asked to provide values for x_1 and x_2 that approximate an optimal solution with at least 2-digit accuracy in the ℓ^∞ norm.

A natural and symmetric choice is:

$$x_1 = 0.50, \quad x_2 = 0.50$$

This satisfies the constraint and gives the minimal total time of 1 second.

Final Answer

$$\boxed{0.50}$$
 and $\boxed{0.50}$