Студент: Антон Клочков

Группа: М4140

Дата: 31 марта 2021 г.

1. Задание 1.

(а) Вариант 2.

Применим обратную лемму о накачке.

Возьмем слово: $\omega = b^n a^n$. Видим, что оно является словом языка.

Пусть

$$x = b^b, 0 \le b < n$$

$$y = b^{l}, 0 < l \le n$$

$$z = b^{n-l-b}a^n$$

Пусть k=2, тогда:

 $xy^kz=xz=b^bb^{2l}b^{n-l-b}a^n=b^{n+l}a^n$ — не принадлежит языку, а значит язык не является регулярным.

(b) Вариант 6.

Применим обратную лемму о накачке.

Возьмем слово: $\omega = b^n a a^{n-1}$. Видим, что оно является словом языка.

Пусть $x=\epsilon$, тогда $y=b^l, 0< l\leq n, z=b^{n-l}aa^{n-1}.$ Если k=0, то $xy^kz=z=b^{n-l}aa^{n-1}$ что не является словом языка.

Пусть $x \neq \epsilon$, тогда $x = b^b, 0 \leq l < n, y = b^l, 0 < l \leq n, z = b^{n-l-b}aa^{n-1}$. Если k = 0, то $xy^kz = xz = b^{n-l}aa^{n-1}$ что не является словом языка.

(с) Вариант 8.

Применим обратную лемму о накачке.

Возьмем слово: $\omega = b^n a^n$. Видим, что оно является словом языка.

Пусть

$$x = b^b, 0 \le b < n$$

$$y = b^l, 0 < l \le n$$

$$z = b^{n-l-b}a^n$$

Пусть k=2, тогда:

 $xy^kz=xz=b^bb^{2l}b^{n-l-b}a^n=b^{n+l}a^n$ — не принадлежит языку, а значит язык не является регулярным.

2. Задание 2.

(a) Первый символ должен быть каким угодно. При этом мы должны оставлять возможность, чтобы между символами $a \dots a$ или $b \dots b$ были другие символы. Но на самом деле между а могут быть b, в противном случае, если их нет, то мы возьмем 2 последние a, а остальное отдадим на откуп $(a|b)^*$. Аналогично c b, только там a.

Тогда упрощенное регулярное выражение: $(a|b)^*(a\ b^*\ a\ |\ b\ a^*\ b)$

(b) Раскроем, какая строка получается для регулярного выражения:

$$aa^{k_1}(ba)^{k_2}a^{k_3}\dots b^{k_m}$$

Заметим что её можем переписать в следующем виде:

$$aa^{k_1-1}(ab)^{k_2}a^{k_3+1}\dots a^{k_{m-1}-1}(ab)^{k_m}$$

В этой строке важно заметить, что если изначально $k_1=0$, то была перед ней буква a, которую мы могли взять.

Также заметим, что во втором случае мы так же сохраняем тот факт, что на конце как может быть b, так может и не быть.

Ну и так же заметим, что если в исходном выражении было ba, то оно останется в новом выражении:

```
было: ...a^m(ba)^n ...
стало: ...a^{m-1}(ab)^na ...
```

Заметим, что регулярное выражение так же принимает пустую строку.

Таким образом упрощенное регулярное выражение принимает вид: $(a|ab)^*$

(c) Для начала заметим, что регулярное выражение принимает пустую строку. А значит появление е или f свидетельствует о том, что строка далее должна совпадать с e^* или f^* соответственно. Но это значит, что регулярное выражение принимает много подстрок типа e или много подстрок типа f.

Таким образом упрощенное регулярное выражение принимает вид: $e^*|f^*$.