The Bayes decision function is:
$$f^*=argminP(f(X) \neq Y)$$

= argmax
$$\sum_{x} P(Y=fcx)|X=x) \cdot P(X=x)$$

It apparently holds if, for every x, f^* satisfies with: $P(Y=f^*cx)|X=x|=maxPfY=y|X=x$.

So if $f^*(x) = argmax P(Y=Y|X=x)$, f^* can be Bayes decision function of 0-1 loss function

3.
$$P(Y=y, X=x) = P(Y=y|X=x) \cdot P(X=x)$$

$$f^*(x) = E(Y(x))$$

$$= \sum_{y} y \cdot P(Y = y | X = x)$$

$$=\sum_{y=1}^{\chi}\frac{y}{\chi}$$

$$=\frac{\chi+1}{2}$$

$$A = \mathcal{Y}$$
, so. $f^*(x) = \lfloor \frac{\chi+1}{2} \rfloor$ or $\lceil \frac{\chi+1}{2} \rceil$

$$=\sum_{x=1}^{10}\sum_{y=1}^{x}|f(x)-y|\cdot\frac{1}{10x}$$

If for every x, f satisfies with:

$$f(x) = \underset{Kx}{\operatorname{argmin}} \sum_{y=1}^{x} |K_x - y|,$$

(3) For 0-1 loss function.	then f=f*
f*cx1= argmax PCY=y(x=x)	If x is even, $\sum_{y=1}^{x} K_{x}-y = \sum_{h=1}^{x/2} K_{x}-h + x-K_{x}-h $
Because YIX is uniform distribution,	y=(
f*(x) can be arbitrary number	$e(se, \sum_{y=1}^{X} k_x - y = \sum_{n=1}^{(x-1)/2} k_x - N + x - k_x - N + \frac{x+1}{2} - k_x $
belonging to {1,,x}	$\Rightarrow \sum_{y=1}^{ \chi-1 /2} \chi-2 / $
	In both cases, the equal condition can be
	achieved if Kx is the median of y sequence.
	Therefore, $f^*(x) = \lfloor \frac{\chi+1}{2} \rfloor$ or $\lceil \frac{\chi+1}{2} \rceil$
v .	
2. We have: E(Y)=ELE(Y X)], f*(X)=E(Y X)	
$R(f^*) = E\{[Y - E(Y X)]^2\}$	
= E {E{[Y-E(Y X)]^(X}}	
$= \overline{E[Var(Y X)]}$	
$Var(Y)=E[[Y-E(YI]^2]$	
= E[Var(Y(X)]+2E{[Y-E(Y X)][E(Y(X)-E(Y)]}+ E[[E(Y(X)-E(Y)]]}	
	`

= ELVar(YIX)]+2E{[Y-E(YIX)]·E(YIX)}-2E(Y)·{E(Y)-ELE(Y[X)]}

+ EffE(YIX) - ELE(YIX)]} }

4.
$$\hat{R}_{i}(f) = \frac{1}{n} \sum_{i=1}^{n} l(f(X_{i}), Y_{i})$$

Var [Rn(f)] = Var[] [1 [(f(Xi), Yi)]

=
$$\frac{1}{h}$$
 Var[$f(x), Y$]

lim Var[Rnff] = 0. So Rnff is consistent.

So Ru(f) is the unbiased estimation of R(f).

5.(a) Because F, is the hypothesis space of constant function

The ER should be:
$$\hat{R}(f) = \frac{1}{h} \sum_{i=1}^{h} 1(c \neq Y_i)$$

In this data set, c should be 3 or J.

EM is 3/1

(b) One choice of
$$\hat{f}$$
 is: $\hat{f}(x) = \begin{cases} 5.05 \times (0.15) & \text{with } EM = 2/5 \\ 3.0.15 \cdot 1 \times 1 \end{cases}$

It is not unique,
$$\hat{f}(x)$$
 can also be like: $\hat{f}(x) = \begin{cases} 3,0 \le x < 0.95 \\ 5,0.95 \le x \le 1. \end{cases}$

6. Ca) For 0-1 loss function.
$$1(f^*(x) \neq Y)$$
 equals to 1 almost everywhere

(c). EM is O for full hypothesis space.

For example, if
$$f^*(x)$$
 is a stair function which is properly set

$$\hat{\omega} = CX^T X)^T X^T y$$

$$\chi = \begin{pmatrix} 0 & 1 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \quad y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 \cdot 1 \\ -2 \cdot 1 \end{bmatrix}, \quad \hat{\omega} = \begin{pmatrix} 0.856 \\ 1.468 \end{pmatrix}$$

So
$$\hat{R}_{+}(\hat{T}) = -\frac{1}{12} |\hat{X} \cdot \hat{w} - y||_{2}^{2} = 0.247$$

. 2 -1, 2

(e1. Let
$$X = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \\ 2.5 & 6.25 & 1 \\ -4 & 16 & 1 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 3 & 1 \\ -2.1 \end{bmatrix}$.

then,
$$\hat{\omega} = (X^T \cdot X)^{-1} \cdot X \cdot y = \begin{pmatrix} 0.755 \\ -0.052 \end{pmatrix}$$
.

$$\hat{R}_{r}(\hat{f}) = \frac{1}{r} \| X \cdot \hat{\omega} - y \|_{2}^{2} = 0.193$$