CS578 Statistical Machine Learning Lecture 7

Jean Honorio
Purdue University

(based on slides by Tommi Jaakkola, MIT CSAIL)

Today's topics

- Preface: regression
 - linear regression, kernel regression
- Feature selection
 - information ranking, regularization, subset selection

Linear regression

- We seek to learn a mapping from inputs to continuous valued outputs (e.g., price, temperature)
- The mapping is assumed to be linear in the feature space so that the predicted output is given by

$$\hat{y}(\underline{x}) = \underline{\theta} \cdot \underline{\phi}(\underline{x})$$

 Assuming that the noise in the observed outputs is additive zero mean Gaussian we can obtain the parameters from training samples by minimizing

$$J(\underline{\theta}) = \frac{1}{2} \sum_{t=1}^{n} \left(y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_t) \right)^2 + \frac{\lambda}{2} ||\underline{\theta}||^2$$
 squared prediction loss on the example training examples

 The regularization term guarantees that any unused parameter dimensions are set to zero

Linear regression

 We can easily obtain non-linear regression functions by considering different feature mappings

Linear regression solution

$$J(\underline{\theta}) = \frac{1}{2} \sum_{t=1}^{n} \left(y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_t) \right)^2 + \frac{\lambda}{2} ||\underline{\theta}||^2$$

$$\frac{d}{d\underline{\theta}} J(\underline{\theta}) = \sum_{t=1}^{n} - \underbrace{\left(y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_t) \right)}_{q} \underline{\phi}(\underline{x}_t) + \lambda \underline{\theta} = 0$$

$$\Rightarrow \underline{\theta}(\alpha) = \frac{1}{\lambda} \sum_{t=1}^{n} \alpha_t \underline{\phi}(\underline{x}_t)$$

scalar: positive, negative or zero

The solution lies in the span of the feature vectors (this
is due to the regularization term).

Dual linear regression

 The dual parameters are obtained as the solution to a linear equation

$$\begin{array}{rcl} \alpha_t &=& y_t - \underline{\theta}(\alpha) \cdot \underline{\phi}(\underline{x}_t) \\ &=& y_t - \frac{1}{\lambda} \sum_{i=1}^n \alpha_i [\underline{\phi}(\underline{x}_i) \cdot \underline{\phi}(x_t)] \\ &\stackrel{}{\Rightarrow} \alpha^* = (I + \frac{1}{\lambda} K)^{-1} y \\ &\stackrel{}{n \times 1} & \stackrel{}{n \times 1} \\ & & n \times n \text{ Gram matrix} \end{array}$$

Predicted output for a new input is given by

$$\hat{y}(\underline{x}) = \underline{\theta}(\alpha^*) \cdot \underline{\phi}(\underline{x}) = \frac{1}{\lambda} \sum_{i=1}^n \alpha_i^* [\underline{\phi}(\underline{x}_i) \cdot \underline{\phi}(\underline{x})] \frac{1}{\ker \operatorname{Net} K(\underline{x}_i, \underline{x})}$$

Today's topics

- Preface: regression
 - linear regression, kernel regression
- Feature selection
 - information ranking, regularization, subset selection

Coordinate selection

Linear models

classification
$$y = \mathrm{sign} \left(\underline{\theta} \cdot \phi(\underline{x}) \right) \in \{-1, 1\}$$
 regression $y = \underline{\theta} \cdot \phi(\underline{x}) \in \mathcal{R}$ etc.
$$\phi(\underline{x}) = \begin{bmatrix} \phi_1(\underline{x}) & \phi_2(\underline{x}) \\ \vdots & \vdots \\ \phi_d(\underline{x}) \end{bmatrix}$$

- We seek to identify a few feature coordinates that the class label or regression output primarily depends on
- This is often advantageous in order to improve generalization (as feature selection exerts additional complexity control) or to gain interpretability

Simple coordinate selection

- There are a number of different approaches to coordinate selection
- Information analysis
 - rank individual features according to their mutual information with the class label
 - limited to discrete variables
- I-norm regularization
 - replaces the two-norm regularizer with 1-norm that encourages some of the coordinates to be set exactly to zero
- Iterative subset selection
 - iteratively add (or prune) coordinates based on their impact on the (training) error

Information analysis

- Suppose the feature vector is just the input vector x whose coordinates take values in {1,...,k}
- Given a training set of size n, we can evaluate an empirical estimate of the mutual information between the coordinate values and the binary label

$$\hat{I}(Y, X_i) = \sum_{y \in \{-1, 1\}} \sum_{x_i = 1}^k \hat{P}(y, x_i) \log \frac{\hat{P}(y, x_i)}{\hat{P}(y) \hat{P}(x_i)}$$

$$\hat{P}(y, x_i) = \frac{1}{n} \sum_{t=1}^n \delta(y, y_t) \underline{\delta(x_i, x_{it})}$$

$$\hat{P}(y) = \frac{1}{n} \sum_{t=1}^n \delta(y, y_t)$$

$$\begin{cases} 1, & \text{if } x_i = x_{it} \\ 0, & \text{otherwise} \end{cases}$$

empirical estimates

$$\hat{P}(x_i) = \frac{1}{n} \sum_{t=1}^{n} \delta(x_i, x_{it})$$

Information analysis

- Suppose the feature vector is just the input vector x whose coordinates take values in {1,...,k}
- Given a training set of size n, we can evaluate an empirical estimate of the mutual information between the coordinate values and the binary label

$$\hat{I}(Y, X_i) = \sum_{y \in \{-1, 1\}} \sum_{x_i = 1}^k \hat{P}(y, x_i) \log \frac{\hat{P}(y, x_i)}{\hat{P}(y) \hat{P}(x_i)}$$

- provides a ranking of the features to include
- weights redundant features equally (would include neither or both)
- not tied to the linear classifier (may select features that the linear classifier cannot use, or omit combinations of features particularly useful in a linear classifier)

Information analysis

Υ	X ₁	X_2	X_3
-1	1	1	1
-1	1	2	1
-1	2	2	1
-1	2	3	2
+1	1	1	2
+1	1	1	2
+1	1	3	2
+1	2	3	2

$$\hat{I}(Y, X_2) = \frac{1}{8} \log \left[\frac{1}{8} / \left\{ \frac{4}{8} \frac{3}{8} \right\} \right] + \frac{2}{8} \log \left[\frac{2}{8} / \left\{ \frac{4}{8} \frac{2}{8} \right\} \right] + \frac{1}{8} \log \left[\frac{1}{8} / \left\{ \frac{4}{8} \frac{3}{8} \right\} \right] + \frac{2}{8} \log \left[\frac{2}{8} / \left\{ \frac{4}{8} \frac{3}{8} \right\} \right] + \frac{2}{8} \log \left[\frac{2}{8} / \left\{ \frac{4}{8} \frac{3}{8} \right\} \right] + \frac{2}{8} \log \left[\frac{2}{8} / \left\{ \frac{4}{8} \frac{3}{8} \right\} \right]$$

Regularization approach (Lasso)

 By using a 1-norm regularizer we will cause some of parameters to be set exactly to zero

$$J(\underline{\theta}) = \frac{1}{2} \sum_{i=1}^{n} \left(y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_i) \right)^2 + \lambda \|\underline{\theta}\|_1 \quad \text{where} \quad \|\underline{\theta}\|_1 = \sum_{i=1}^{d} |\theta_i|$$

Regularization example

• n=100 samples, d=10, training outputs generated from

$$y_t \sim N(\underline{\theta}^* \cdot \underline{x}_t, \sigma^2), t = 1, \dots, n$$

• If we increase the regularization penalty, we get fewer non-zero parameters in the solution to

$$J(\underline{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_i))^2 + \lambda \|\underline{\theta}\|_1$$

Regularization example

• n=100 samples, d=10, training outputs generated from

$$y_t \sim N(\underline{\theta}^* \cdot \underline{x}_t, \sigma^2), t = 1, \dots, n$$

• If we increase the regularization penalty, we get fewer non-zero parameters in the solution to

$$J(\underline{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_i))^2 + \lambda \|\underline{\theta}\|_1$$

Regularization example

 The I-norm penalty term controls the number of nonzero coordinates but also reduces the magnitude of the coordinates

$$J(\underline{\theta}) = \frac{1}{2} \sum_{i=1}^{n} (y_t - \underline{\theta} \cdot \underline{\phi}(\underline{x}_i))^2 + \lambda ||\underline{\theta}||_1$$

Subset selection

 A greedy algorithm for finding a good subset of feature coordinates (feature functions) to rely on

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x}) \qquad \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S}$$

• For instance:

$$S = \{7, 10, 29\} \qquad \underline{\phi}_{S}(\underline{x}) = \begin{bmatrix} \phi_{7}(\underline{x}) \\ \phi_{10}(\underline{x}) \\ \phi_{29}(\underline{x}) \end{bmatrix} \in \mathbb{R}^{3}$$

$$\underline{\theta}_{S} = \begin{bmatrix} \theta_{7} \\ \theta_{10} \\ \theta_{29} \end{bmatrix} \in \mathbb{R}^{3}$$

Subset selection

 A greedy algorithm for finding a good subset of feature coordinates (feature functions) to rely on

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x}) \qquad \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S}$$

for each subset S, |S| = k, evaluate

$$J(S) = \min_{\underline{\theta}_S} \frac{1}{2} \sum_{t=1}^{n} \left(y_t - \underline{\theta}_S \cdot \phi_S(\underline{x}_t) \right)^2 \stackrel{\text{ex}}{\to}$$

each feature subset is assessed on the basis of the resulting training error

$$\hat{S} = \operatorname*{argmin}_{S} J(S) \quad \text{find the best subset}$$

- k is used for (statistical) complexity control
- computationally hard (exponential in k)

Greedy subset selection

 A greedy algorithm for finding a good subset of feature coordinates (feature functions) to rely on

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x}) \qquad \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S}$$

$$S = \emptyset$$
 for each $j \notin S$ evaluate try each new coordinate
$$J(S \cup j) = \min_{\underline{\theta}_{S \cup j}} \frac{1}{2} \sum_{t=1}^n \left(y_t - \underline{\theta}_{S \cup j} \cdot \phi_{S \cup j}(\underline{x}_t)\right)^2 \text{ re-estimate all the parameters in the context of the new coordinate}$$

$$\hat{j} = \underset{j \notin S}{\operatorname{argmin}} J(S \cup j) \text{ find the best coordinate to include}$$

$$S \leftarrow S \cup \{\hat{j}\}$$
 - each new feature is assessed in the context of those already included - the method is not guaranteed to find the optimal subset

- each new feature is assessed in the context of those already
- the method is not guaranteed to find the optimal subset

Forward-fitting

 We can also choose feature coordinates without reestimating the parameters associated with already included coordinates

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x})$$
 $\phi_S(\underline{x}) = {\phi_j(\underline{x})}_{j \in S}$
 $S = \emptyset, \ \hat{\theta}_\emptyset = 0$

associated with the new coordinate

$$\hat{j} = \operatorname*{argmin}_{j} J(\hat{\underline{\theta}}_{S}, j)$$
 select the best new feature

$$\underline{\hat{\theta}}_{S \cup j} = \{\underline{\hat{\theta}}_S, \hat{\theta}_{\hat{j}}\}, \quad S \leftarrow S \cup \{\hat{j}\},$$

- same feature may be included more than once

Myopic forward fitting

 We can also identify new features in a more limited way by focusing on how much "potential" each feature has for reducing the training error

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x}) \qquad \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S}$$

$$J(\underline{\hat{\theta}}_S, \theta_j) = \frac{1}{2} \sum_{t=1}^n \left(y_t - \underline{\hat{\theta}}_S \cdot \underline{\phi}_S(\underline{x}_t) - \theta_j \phi_j(\underline{x}_t) \right)^2$$

$$DJ(\underline{\hat{\theta}}_S, j) = \frac{\partial J(\underline{\hat{\theta}}_S, \theta_j)}{\partial \theta_j} \Big|_{\theta_j = 0} = -\sum_{t=1}^n \left(y_t - \underline{\hat{\theta}}_S \cdot \phi_S(\underline{x}_t) \right) \phi_j(\underline{x}_t)$$

|derivative| is large if the corresponding feature would have a large effect on the error

feature would to on the error
$$DJ(\hat{\underline{\theta}}_S,j) \, (\theta_j-0) + J(\hat{\underline{\theta}}_S,0) \qquad \qquad \theta_j$$

Myopic forward fitting

We can identify new features with minimal fitting

$$\phi_1(\underline{x}), \dots, \phi_d(\underline{x}) \qquad \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S}$$

$$S = \emptyset, \quad \underline{\hat{\theta}}_\emptyset = 0$$
 for each j evaluate fixed at this stage
$$DJ(\underline{\hat{\theta}}_S, j) = \frac{\partial J(\underline{\hat{\theta}}_S, \theta_j)}{\partial \theta_j} \Big|_{\substack{\theta_j = 0}}$$
 the criterion does not involve any parameter fitting
$$\hat{j} = \underset{j}{\operatorname{argmax}} |DJ(\underline{\hat{\theta}}_S, j)| \quad \underset{\text{coordinate}}{\operatorname{selection of best}}$$

$$\hat{\theta}_{\hat{j}} = \underset{\substack{\theta_j \\ \theta_S \cup \hat{j}}}{\operatorname{argmin}} J(\underline{\hat{\theta}}_S, \theta_{\hat{j}}) \quad \underset{\text{associated with the selected feature}}{\operatorname{estimate only the parameter}}$$

Forward-fitting example

I dimensional polynomial regression

$$\begin{array}{lllll} \phi(x) = [1,x,x_n^2,x^3,x^4]^T & \phi_S(\underline{x}) = \{\phi_j(\underline{x})\}_{j \in S} \\ J(\hat{\theta}_S,\theta_j) = \frac{1}{2} \sum_{t=1} \left(y_t - \hat{\theta}_S \cdot \phi_S(\underline{x}_t) - \theta_j \phi_j(\underline{x}_t)\right)^2 \\ & \text{iter deg} & \hat{\theta}_{\hat{j}} & J(\hat{\theta}) & \text{iter deg} & \hat{\theta}_{\hat{j}} & J(\hat{\theta}) \\ 1 & 0 & +1.089 & 0.874 & 1 & 0 & +1.089 & 0.874 \\ 2 & 1 & -0.553 & 0.163 & 2 & 1 & -0.553 & 0.163 \\ 3 & 2 & -0.288 & 0.085 & 3 & 0 & -0.085 & 0.091 \\ 4 & 1 & -0.101 & 0.062 & 4 & 1 & -0.056 & 0.084 \\ 5 & 0 & -0.033 & 0.051 & 5 & 2 & -0.127 & 0.069 \\ 6 & 3 & +0.053 & 0.049 & 6 & 0 & +0.021 & 0.065 \\ 7 & 1 & -0.043 & 0.045 & 7 & 1 & -0.031 & 0.063 \\ 8 & 3 & +0.088 & 0.041 & 8 & 2 & -0.078 & 0.057 \\ 9 & 1 & -0.035 & 0.039 & 9 & 0 & +0.013 & 0.055 \\ 10 & 3 & +0.072 & 0.036 & 10 & 1 & -0.018 & 0.054 \\ & & \text{forward-fitting} & \text{myopic forward-fitting} \end{array}$$

Forward-fitting example

• I dimensional polynomial regression

$$\phi(x) = [1, x, x^2, x^3, x^4]^T$$

