Amendments to the Claims

This listing of claims will replace all prior versions, and listings of claims in the application.

1. (Original) A composition comprising a synergistically effective <u>amount of a active</u> compound combination of compounds of the formula (I) (group 1)

$$A^{3} \xrightarrow{G^{1}} X \xrightarrow{Z_{m}} Y$$
 (I)

in which

X represents C₁-C₆-alkyl, bromine, C₁-C₆-alkoxy or C₁-C₃-haloalkyl,

Y represents hydrogen, C₁-C₆-alkyl, halogen, C₁-C₆-alkoxy, or C₁-C₃-haloalkyl,

Z represents C₁-C₆-alkyl, halogen, or C₁-C₆-alkoxy,

m represents a number 0-3,

A³ represents hydrogen or in each case optionally halogen-substituted straight-chain or branched C₁-C₁₂-alkyl, C₂-C₈-alkenyl, C₂-C₈-alkynyl, C₁-C₁₀-alkoxy-C₁-C₈-alkyl, C₁-C₈-polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-alkylthio-C₂-C₈-alkyl, cycloalkyl having 3-8 ring atoms which may be interrupted by oxygen and/or sulfur, or in each case optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-haloalkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkoxy, or nitro-substituted phenyl or phenyl-C₁-C₆-alkyl,

 $A^4 - C_6$ represents hydrogen, $C_1\text{-}C_6\text{-}alkyl$ or $C_1\text{-}C_6\text{-}alkoxy\text{-}C_1\text{-}C_4\text{-}alkyl}$ or in-which

A³ and A⁴ together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 8-membered ring which is optionally interrupted by oxygen and/or sulfur and optionally substituted by halogen, C₁-C6-alkyl, C₁-C6-alkoxy, C₁-C4-haloalkyl, C₁-C4-haloalkoxy, C₁-C4-alkylthio or optionally substituted phenyl or is optionally benzo-fused,

G¹ represents hydrogen (a) or represents the groups

$$-CO-R^{20} \quad -CO_{2}-R^{21} \quad -SO_{2}-R^{22} \quad -P < R^{23} \quad or \quad N < R^{25}$$
(b) (c) (d) (e) (f)

in which

R²⁰ represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₁-C₈-alkyl, C₁-C₈-alkylthio-C₁-C₈-alkyl, C₁-C₈-polyalkoxy-C₂-C₈-alkyl or cycloalkyl having 3-8 ring atoms which may be interrupted by oxygen and/or sulfur atoms, represents optionally halogen-, nitro-, C₁-C₆-alkyl-, C₁-C₆-alkoxy-, C₁-C₆-haloalkyl-, C₁-C₆-haloalkoxy-substituted phenyl; represents optionally halogen-, C₁-C₆-alkyl-, C₁-C₆-alkyl, represents in each case optionally halogen- and/or C₁-C₆-alkyl-substituted phenoxy-c₁-C₆-alkyl,

R²¹ represents in each case optionally halogen-substituted C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₈-alkoxy-C₂-C₈-alkyl or C₁-C₈-polyalkoxy-C₂-C₈-alkyl, represents in each case optionally halogen-, nitro-, C₁-C₆-alkyl, C₁-C₆-alkoxy, C₁-C₆-haloalkyl-substituted phenyl or benzyl,

R²² represents optionally halogen-substituted C₁-C₈-alkyl, represents or in each case optionally C₁-C₄-alkyl-, halogen-, C₁-C₄-haloalkyl-, C₁-C₄-alkoxy-, C₁-C₄-haloalkoxy-, nitro- or cyano-substituted phenyl or benzyl,
R²³ and R²⁴ independently of one another represent in each case optionally

halogen-substituted C₁-C₈-alkyl, C₁-C₈-alkoxy, C₁-C₈-alkylamino, di(C₁-C₈)alkylamino, C₁-C₈-alkylthio, C₂-C₅-alkenylthio, C₂-C₅-alkynylthio, or C₃-C₇-cycloalkylthio, represent in each case optionally halogen-, nitro-, cyano-, C₁-C₄-alkoxy-, C₁-C₄-haloalkyl-substituted kylthio-, C₁-C₄-haloalkylthio-, C₁-C₄-haloalkyl-substituted

FUNKE *et al.* Appl. No. 10/578,512

(I.A. Date: October 30, 2004))

phenyl, phenoxy or phenylthio,

 R^{25} and R^{26} independently of one another represent in each case optionally halogen-substituted C_1 - C_{10} -alkyl, C_1 - C_{10} -alkoxy, C_3 - C_8 -alkenyl, or C_1 - C_8 -alkoxy- C_1 - C_8 -alkyl, represent optionally halogen-, C_1 - C_6 -haloalkyl-, C_1 - C_6 -alkyl- or C_1 - C_6 -alkoxy-substituted phenyl, represent optionally halogen-, C_1 - C_6 -alkyl-, C_1 - C_6 -haloalkyl- or C_1 - C_6 -alkoxy-substituted benzyl or together represent a 5- to 6-membered ring which is optionally interrupted by oxygen or sulfur and which may optionally be substituted by C_1 - C_6 -alkyl,

or an acaricidally active compound (group 2), selected from the group consisting of preferably

(2-1) the phenylhyrazine derivative of the formula

$$\begin{array}{c} & & \\$$

and/or

- (2-2) the macrolide with the common name abamectin, and/or
- (2-3) the naphthalenedione derivative of the formula

$$C_{12}H_{25}$$
 (acequinocyl),

and/or

(2-4) the pyrrole derivative of the formula

$$F_3C$$
 CN CI CH_2 CC_2H_5 (chlorfenapyr),

and/or

(2-5) the thiourea derivative of the formula

(diafenthiuron),

and/or

(2-6) the oxazoline derivative of the formula

(etoxazole),

and/or

(2-7) an organotin derivative of the formula

in which

R represents
$$= N$$
 (2-7-a = azocyclotin)

or R

represents -OH (2-7-b = cyhexatin),

and/or

(2-8) the pyrazole derivative of the formula

(tebufenpyrad),

and/or

(2-9) the pyrazole derivative of the formula

FUNKE et al.

Appl. No. 10/578,512

(I.A. Date: October 30, 2004))

$$H_3C$$
 $CH\equiv N-O-CH_2$
 $CH\equiv N-O-C(CH_3)_3$
 $CH= N-O-CH_2$

(fenpyroximate),

and/or

(2-10) the pyridazinone derivative of the formula

$$(CH_3)_3C-N$$
 $S-CH_2$
 $C(CH_3)_3$

(pyridaben),

and/or

(2-11) the benzoylurea derivative of the formula

(flufenoxuron),

and/or

(2-12) the pyrethroid of the formula

$$H_3C$$
 CH_3 $C=CH$ $C=CH$ $C=CH_2$ $C=CH_2$ $C=CH_3$ $C=CH_3$

(bifenthrin),

and/or

(2-13) the tetrazine-derivative of the formula

and/or

(2-14) the organotin-derivative of the formula

FUNKE *et al.* Appl. No. 10/578,512

(I.A. Date: October 30, 2004))

$$\begin{bmatrix} \begin{matrix} \begin{matrix} CH_3 \\ -C-CH_2 \end{matrix} \\ \begin{matrix} CH_3 \end{matrix} \end{bmatrix}_3 Sn-O-Sn - \begin{bmatrix} \begin{matrix} CH_2 \\ -CH_2 \end{matrix} \\ \begin{matrix} CH_3 \end{matrix} \end{bmatrix}_3 \end{bmatrix}$$

(fenbutatin oxide),

and/or

(2-15) the sulfenamide of the formula

$$\begin{array}{c} \text{CH}_{3} \\ \text{H}_{3}\text{C} \\ \text{S-CCl}_{2}\text{F} \end{array} \text{ (tolylfluanid)},$$

and/or

(2-16) the pyrimidyl phenol ethers of the formula

$$CI$$
 O
 O
 CF_3
 O
 O
 CF_3

in which

- R represents fluorine (2-16-a = 4-[(4-chloro- α , α , α -trifluoro-3-tolyl)oxy]-6-[(α , α , α -4-tetrafluoro-3-tolyl)oxy]pyrimidine)
- R represents nitro (2-16-b = 4-[(4-chloro- α , α , α -trifluoro-3-tolyl)oxy]-6-[(α , α , α -trifluoro-4-nitro-3-tolyl)oxy]pyrimidine)
- R represents bromine (2-16- = 4-[(4-chloro- α , α , α -trifluoro-3-tolyl)oxy]-6-[(α , α , α -trifluoro-4-bromo-3-tolyl)oxy]pyrimidine .

and/or

(2-17) the macrolide of the formula

$$(H_3C)_2N$$
 H_3C
 OCH_3
 O

a mixture comprising, preferably,

85% spinosyn A (R = H)

15% spinosyn B ($R = CH_3$).

and/or

(2-18) ivermectin,

and/or

(2-19) milbemectin,

and/or

(2-20) endosulfan

$$\begin{array}{c} CI \\ CI \\ CI \\ CI \\ \end{array}$$

and/or

(2-21) fenazaquin

and/or

(2-22) pyrimidifen

$$\mathsf{H_5C_2} \underbrace{\mathsf{CI}}_{\mathsf{N}} \underbrace{\mathsf{H}}_{\mathsf{N}} \underbrace{\mathsf{OC_2H_6}}_{\mathsf{CH_3}} \mathsf{CH_3}$$

and/or

(2-23) triarathen

and/or

(2-24) tetradifon

$$CI - \begin{array}{c} CI \\ II \\ II \\ CI \end{array}$$

and/or

(2-25) propargite

$$\begin{array}{c} \text{HC} \equiv \text{C} - \text{CH}_{2} - \text{S} \\ \text{O} \\ \text{O} \\ \text{C} \\ \text{C$$

and/or

(2-26) hexythiazox

and/or

(2-27) bromopropylate

$$\mathsf{Br} = \bigcup_{\mathsf{O} = \mathsf{C} - \mathsf{OCH}(\mathsf{CH}_3)_2}^{\mathsf{OH}} \mathsf{Br}$$

and/or

(2-28) dicofol

$$\operatorname{CI} - \left(\begin{array}{c} \operatorname{OH} \\ \operatorname{C} \\ \end{array} \right) - \operatorname{CI}$$

and/or

(2-29) chinomethionat

FUNKE *et al.* Appl. No. 10/578,512

(I.A. Date: October 30, 2004))

and at least one active compound from the group of the anthranilamides of the formula (II)

in which

A¹ and A² independently of one another represent oxygen or sulfur,

 X^1 represents N or CR^{10} ,

- R¹ represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl or C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₄-alkoxycarbonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino and R¹¹,
- R² represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-alkoxy, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₂-C₆-alkoxycarbonyl or C₂-C₆-alkylcarbonyl,
- represents hydrogen, R¹¹ or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆-cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R⁶, halogen, cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl, R¹¹, phenyl, phenoxy and a 5- or 6-membered heteroaromatic ring, where each phenyl, phenoxy and 5- or 6-membered heteroaromatic ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or

R² and R³ may be attached to one another and form the ring M,

 \mathbb{R}^4 represents hydrogen, C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₃-C₆cycloalkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkenyl, C₂-C₆-haloalkynyl, C₃-C₆halocycloalkyl, halogen, cyano, nitro, hydroxyl, C1-C4-alkoxy, C1-C4-haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈dialkylamino, C3-C6-cycloalkylamino, C3-C6-trialkylsilyl or represents in each case optionally mono- or polysubstituted phenyl, benzyl or phenoxy, where the substituents independently of one another may be selected from the group consisting of C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, C₃-C₆-(alkyl)cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆alkoxycarbonyl, C2-C6-alkylaminocarbonyl, C3-C8-dialkylaminocarbonyl and C3-C₆-trialkylsilyl,

R⁵ and R⁸ in each case independently of one another represent hydrogen, halogen or represent in each case optionally substituted C₁-C₄-alkyl, C₁-C₄-haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl, where the substituents independently of one another may be selected from one to three radicals W or from the group consisting of R¹², C₁-C₁₀-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkynyl, C₁-C₄-alkoxy and C₁-C₄-alkythio, where each substituent may be substituted by one or more substituents independently of one another selected from the group consisting of G, J, R⁶, halogen, cyano, nitro, amino, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₆-trialkylsilyl, phenyl and phenoxy, where each phenyl or phenoxy ring may optionally be substituted and where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,

in each case independently of one another represents a 5- or 6-membered nonaromatic carbocyclic or heterocyclic ring which optionally contains one or two ring members from the group consisting of C(=O), SO and S(=O)₂ and which may optionally be substituted by one to four substituents independently of one another selected from the group consisting of C₁-C₂-alkyl, halogen, cyano,

nitro and C_1 - C_2 -alkoxy, or independently of one another represents C_2 - C_6 -alkenyl, C_2 - C_6 -alkynyl, C_3 - C_7 -cycloalkyl, (cyano) C_3 - C_7 -cycloalkyl, (C_1 - C_4 -alkyl) C_3 - C_6 -cycloalkyl, (C_3 - C_6 -cycloalkyl) C_1 - C_4 -alkyl, where each cycloalkyl, (alkyl)cycloalkyl and (cycloalkyl)alkyl may optionally be substituted by one or more halogen atoms,

- J in each case independently of one another represents an optionally substituted 5or 6-membered heteroaromatic ring, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹²,
- independently of one another represent $-C(=E^1)R^{19}$, $-LC(=E^1)R^{19}$, $-C(=E^1)LR^{19}$, $-LC(=E^1)LR^{19}$, $-OP(=Q)(OR^{19})_2$, $-SO_2LR^{18}$ or $-LSO_2LR^{19}$, where each E^1 independently of the others represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN or N-NO₂,
- represents hydrogen, C₁-C₄-alkyl, C₁-C₄-haloalkyl, halogen, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-haloalkylsulfonyl,
- R⁹ represents C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylsulfinyl or halogen,
- $\frac{R^{10}}{\text{represents hydrogen, } C_1\text{-}C_4\text{-alkyl, } C_1\text{-}C_4\text{-haloalkyl, halogen, cyano or } C_1\text{-}$
- in each case independently of one another represents in each case optionally mono- to trisubstituted C_1 - C_6 -alkylthio, C_1 - C_6 -alkylsulfenyl, C_1 - C_6 -haloalkythio, C_1 - C_6 -haloalkylsulfenyl, phenylthio or phenylsulfenyl, where the substituents independently of one another may be selected from the list consisting of W, $-S(O)_nN(R^{16})_2, \quad -C(=O)R^{13}, \quad -L(C=O)R^{14}, \quad -S(C=O)LR^{14}, \quad -C(=O)LR^{13}, \\ -S(O)_nNR^{13}C(=O)R^{13}, \quad -S(O)_nNR^{13}C(=O)LR^{14} \text{ and } -S(O)_nNR^{13}S(O)_2LR^{14},$
- L in each case independently of one another represents O, NR¹⁸ or S,
- in each case independently of one another represents -B(OR¹⁷)₂, amino, SH, thiocyanato, C_3 - C_8 -trialkylsilyloxy, C_1 - C_4 -alkyl disulfide, -SF₅, -C(=E¹)R¹⁹, -LC(=E¹)LR¹⁹, -DP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ or -LSO₂LR¹⁹,
- Q represents O or S,
- R¹³ in each case independently of one another represents hydrogen or represents in each case optionally mono- or polysubstituted C₁-C₆-alkyl, C₂-C₆-alkenyl, C₂-C₆-alkenyl, C₂-C₆-alkyl, C₂-C

alkynyl or C_3 - C_6 -cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, cyano, nitro, hydroxyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_3 - C_6 -cycloalkylamino and $(C_1$ - C_4 -alkyl) C_3 - C_6 -cycloalkylamino,

- in each case independently of one another represents in each case optionally mono- or polysubstituted C_1 - C_{20} -alkyl, C_2 - C_{20} -alkenyl, C_2 - C_{20} -alkynyl or C_3 - C_6 -cycloalkyl, where the substituents independently of one another may be selected from the group consisting of R^6 , halogen, cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_3 - C_6 -cycloalkylamino and $(C_1$ - C_4 -alkyl) C_3 - C_6 -cycloalkylamino or represents optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R^{12} ,
- in each case independently of one another represent hydrogen or represent in each case mono- or polysubstituted C₁-C₆-haloalkyl or C₁-C₆-alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-haloalkylthio, C₁-C₄-haloalkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkyl-amino, C₂-C₆-alkoxycarbonyl, C₂-C₆-alkylcarbonyl, C₃-C₆-trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W or one or more radicals R¹², or N(R¹⁵)₂ represents a cycle which forms the ring M,
- R^{16} represents C_1 - C_{12} -alkyl or C_1 - C_{12} -haloalkyl, or $N(R^{16})_2$ represents a cycle which forms the ring M,
- in each case independently of one another represents hydrogen or C_1 - C_4 -alkyl, or $B(OR^{17})_2$ represents a ring, where the two oxygen atoms are attached via a chain to two or three carbon atoms which are optionally substituted by one or two substituents independently of one another selected from the group consisting of methyl and C_2 - C_6 -alkoxycarbonyl,
- R^{18} in each case independently of one another represents hydrogen, C_1 - C_6 -alkyl or C_1 - C_6 -haloalkyl, or $N(R^{13})(R^{18})$ represents a cycle which forms the ring M,
- R¹⁹ in each case independently of one another represents hydrogen or represents in

each case optionally mono- or polysubstituted C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, nitro, hydroxyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -alkylamino, C_2 - C_8 -dialkylamino, C_2 - C_6 -alkoxycarbonyl, C_2 - C_6 -alkylcarbonyl, C_3 - C_6 -trialkylsilyl and optionally substituted phenyl, where the substituents independently of one another may be selected from one to three radicals W, C_1 - C_6 -haloalkyl, C_3 - C_6 -cycloalkyl or phenyl or pyridyl, each of which is optionally mono- to trisubstituted by W,

- in each case represents an optionally mono- to tetrasubstituted ring which, in addition to the nitrogen atom which is attached to the substituent pair R¹³ and R¹⁸, (R¹⁵)₂ or (R¹⁶)₂, contains two to six carbon atoms and optionally additionally a further nitrogen, sulfur or oxygen atom, and where the substituents independently of one another may be selected from the group consisting of C₁-C₂-alkyl, halogen, cyano, nitro and C₁-C₂-alkoxy,
- in each case independently of one another represents C₁-C₄-alkyl, C₂-C₄-alkenyl, C₂-C₄-alkynyl, C₃-C₆-cycloalkyl, C₁-C₄-haloalkyl, C₂-C₄-haloalkenyl, C₂-C₄-haloalkynyl, C₃-C₆-halocycloalkyl, halogen, cyano, nitro, C₁-C₄-alkoxy, C₁-C₄-haloalkoxy, C₁-C₄-alkylthio, C₁-C₄-alkylsulfinyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylsulfonyl, C₁-C₄-alkylamino, C₂-C₈-dialkylamino, C₃-C₆-cycloalkylamino, (C₁-C₄-alkyl)C₃-C₆-cycloalkylamino, C₂-C₄-alkylcarbonyl, C₂-C₆-alkoxycarbonyl, CO₂H, C₂-C₆-alkylaminocarbonyl, C₃-C₆-trialkylsilyl,
- n in each case independently of one another represents 0 or 1,
- p in each case independently of one another represents 0, 1 or 2.

where in the case that (a) R⁵ represents hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkynyl, C₁-C₄-haloalkynyl, C₁-C₆-haloalkynyl, C₁-C₆-haloalkyl, C₂-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₆-haloalkyl, C₂-C₆-haloalkynyl, C₁-C₄-haloalkoxy, C₁-C₄-haloalkylthio, halogen, C₂-C₄-alkylcarbonyl, C₂-C₆-alkylaminocarbonyl or C₃-C₈ dialkylaminocarbonyl, (c) at least one substituent selected from the group consisting of R⁶, R¹¹ and R¹² is present and (d), if R¹² is not present, at least one R⁶ or R¹¹ is different from C₂-C₆-alkylaminocarbonyl, C₂-C₆ alkylaminocarbonyl and C₃-C₈-dialkylaminocarbonyl.

- (Currently Amended) The composition as claimed in according to claim 1,
 comprising at least one compound of the formula (I) in which
 - X represents C₁-C₄-alkyl, bromine, C₁-C₄-alkoxy or C₁-C₃-haloalkyl,
 - Y represents hydrogen, C₁-C₄-alkyl, fluorine, chlorine, bromine, C₁-C₄-alkoxy, <u>or</u> C₁-C₃-haloalkyl,
 - Z represents C₁-C₄-alkyl, chlorine, bromine, or C₁-C₄-alkoxy,
 - m represents a number 0-2,
 - A³ represents hydrogen or in each case optionally mono- to trifluoro-substituted straight-chain or branched C₁-C₆-alkyl, C₂-C₆-alkenyl, C₁-C₄-alkoxy-C₁-C₂-alkyl, or cycloalkyl having 3-8 ring atoms which may optionally be interrupted by oxygen and/or sulfur or represents benzyl or phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C₁-C₂-alkyl, C₁-C₂-haloalkyl, C₁-C₂-alkoxy, C₁-C₂-haloalkoxy, or nitro,
 - A^4 represents hydrogen, C_1 - C_2 -alkyl or C_1 - C_2 -alkoxy- C_1 - C_2 -alkyl or $\frac{1}{100}$ or $\frac{1}{100}$ much hydrogen, C_1 - C_2 -alkyl or $\frac{1}{100}$ much hydrogen, C_1 - C_2 -alkyl or $\frac{1}{100}$ much hydrogen, C_1 - C_2 -alkyl or C_1 - C_2 - C_2
 - A³ and A⁴ together with the carbon atom to which they are attached form a saturated or unsaturated 3- to 7-membered ring which is optionally interrupted by oxygen and/or sulfur and optionally mono- to disubstituted by fluorine, chlorine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or C₁-C₂-alkylthio,
 - G¹ represents hydrogen (a) or represents groups

$$-CO-R^{20} \cdot -CO_{2}-R^{21} \cdot -SO_{2}-R^{22} \cdot -P \cdot R^{23} \cdot or \cdot N \cdot R^{25} \cdot R^{26}$$
(b) (c) (d) (e) (f)

in which

R²⁰ represents in each case optionally mono- to pentafluoro- or –chloro-substituted C₁-C₁₆-alkyl, C₂-C₁₆-alkenyl, C₁-C₄-alkoxy-C₁-C₄-alkyl, C₁-C₄-alkylthio-C₁-C₄-alkyl or cycloalkyl having 3-6 ring atoms which may be interrupted by oxygen and/or sulfur atoms, represents phenyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, nitro, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, or

C₁-C₄-haloalkoxy,

alkoxy, or C₁-C₄-haloalkyl,

represents benzyl which is optionally mono to disubstituted by fluorine, chlorine, bromine, C₁-C₄-alkyl, C₁-C₄-alkoxy, C₁-C₄-haloalkyl, C₁-C₄-haloalkoxy,

represents pyridyl, pyrimidyl, thiazolyl or pyrazolyl, each of which is optionally mono- to disubstituted by chlorine, bromine and/or C₁-C₄-alkyl,

- R²¹ represents C₁-C₂₀-alkyl, C₂-C₂₀-alkenyl, C₁-C₆-alkoxy-C₂-C₆-alkyl, or C₁-C₆-polyalkoxy-C₂-C₆-alkyl, each of which is optionally monot opentasubstituted by fluorine or chlorine, represents phenyl or benzyl, each of which is optionally monot odisubstituted by fluorine, chlorine, bromine, nitro, C₁-C₆-alkyl, C
- R^{22} represents C_1 - C_4 -alkyl which is optionally mono- to pentasubstituted by fluorine or chlorine, represents phenyl or benzyl, each of which is optionally mono- to disubstituted by C_1 - C_4 -alkyl, fluorine, chlorine, bromine, C_1 - C_4 -haloalkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, nitro or cyano,
- R^{23} and R^{24} independently of one another represent C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, C_1 - C_4 -alkylamino, $di(C_1$ - C_4)alkylamino, C_1 - C_4 -alkylthio, C_2 - C_4 -alkenylthio, \underline{or} C_3 - C_6 -cycloalkylthio, each of which is optionally monot to trisubstituted by fluorine or chlorine, represent phenyl, phenoxy or phenylthio, each of which is optionally monot disubstituted by fluorine, chlorine, bromine, nitro, cyano, C_1 - C_2 -alkoxy, C_1 - C_2 -haloalkoxy, C_1 - C_2 -alkylthio, C_1 - C_2 -haloalkyl,
- R²⁵ and R²⁶ independently of one another represent C₁-C₆-alkyl, C₁-C₆-alkoxy, C₃-C₆-alkenyl, or C₁-C₄-alkoxy-C₁-C₂-alkyl, each of which is optionally mono- to trisubstituted by fluorine or chlorine, represent benzyl which is optionally mono- to disubstituted by fluorine, chlorine, bromine, C₁-C₂-haloalkyl, C₁-C₄-alkyl or C₁-C₄-alkoxy or together represent a 5- to 6-membered ring which is optionally interrupted by oxygen or sulfur and

which may optionally be substituted by C₁-C₂-alkyl₇

and at least one anthranilamide of the formula (II).

- 3. (Currently Amended) The composition as claimed in according to claim 2 1 or 2, comprising at least one compound of the formula (I) in which
 - X represents C₁-C₄-alkyl, C₁-C₄-alkoxy or trifluoromethyl,
 - Y represents hydrogen, C₁-C₄-alkyl, chlorine, bromine, C₁-C₄-alkoxy, <u>or</u> C₁-C₂-haloalkyl,
 - Z represents C₁-C₄-alkyl, chlorine, bromine, or C₁-C₄-alkoxy,
 - m represents 0 or 1,
 - A^3 and A^4 together with the carbon atom to which they are attached represent a saturated 5- to 6-membered ring which is optionally monosubstituted by C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy,
 - G¹ represents hydrogen (a) or represents the groups

$$-CO-R^{20}$$
 or $-CO_2-R^{21}$, in which (b) (c)

 R^{20} represents in each case optionally mono- to trifluoro- or -chloro-substituted C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, C_1 - C_4 -alkoxy- C_1 - C_2 -alkyl, or cycloalkyl having 3-6 ring atoms which may be interrupted by 1 to 2 oxygen atoms,

represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy, trifluoromethyl or trifluoromethoxy;

 R^{21} represents C_1 - C_{12} -alkyl, C_2 - C_{12} -alkenyl, or C_1 - C_4 -alkoxy- C_2 - C_4 -alkyl, represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, C_1 - C_4 -alkyl, C_1 - C_4 -alkoxy or trifluoromethyl,

and at least one anthranilamide of the formula (II).

- 4. (Currently Amended) The composition according to as claimed in claim 1, 2 or 3 claim 3, comprising at least one compound of the formula (I) in which
 - X represents methyl, ethyl, methoxy, ethoxy or trifluoromethyl,

Y represents hydrogen, methyl, ethyl, chlorine, bromine, methoxy or trifluoromethyl,

Z represents methyl, ethyl, chlorine, bromine or methoxy,

m represents 0 or 1,

A³ and A⁴ together with the carbon atom to which they are attached form a saturated 5to 6-membered ring which is optionally monosubstituted by methyl, ethyl, propyl, methoxy, ethoxy, propoxy, butoxy or isobutoxy,

G¹ represents hydrogen (a) or represents the groups

$$-CO-R^{20}$$
 or $-CO_2-R^{21}$, in which (b) (c)

 R^{20} represents in each case mono- to trifluoro- or -chloro-substituted C_1 - C_8 -alkyl, C_2 - C_8 -alkenyl, C_1 - C_3 -alkoxy- C_1 - C_2 -alkyl, or cycloalkyl having 3-6 ring atoms which may be interrupted by 1 to 2 oxygen atoms, represents phenyl which is optionally monosubstituted by fluorine, chlorine, bromine, methyl, methoxy, trifluoromethyl or trifluoromethoxy;

R²¹ represents C₁-C₈-alkyl, C₂-C₈-alkenyl, <u>or</u> C₁-C₄-alkoxy-C₂-C₃-alkyl, represents phenyl or benzyl, each of which is optionally monosubstituted by fluorine, chlorine, bromine, nitro, methyl, methoxy or trifluoromethyl, and at least one anthranilamide of the formula (II).

5. (Currently Amended) The composition according to claim 1 or 2 wherein said compound of formula (I) is as claimed in claim 1, 2, 3 or 4, comprising the compound of the formula (I-1)

$$\begin{array}{c} O \\ C - CH_{2} - C(CH_{3})_{3} \\ H_{3}C \\ O \\ H_{3}C \end{array}$$

$$CH_{3} \qquad (I-1)$$

and/or or the compound of the formula (I-2)

and at least one anthranilamide of the formula (II).

6. (Cancelled)

7. (Currently Amended) The composition according to as claimed in claim 1, 2, 3, 4, 5 or 6 claim 1, comprising an anthranilamide wherein said compound of formula (II) is a compound of the formula (II-1)

in which

R² represents hydrogen or C₁-C₆-alkyl,

 R^3 represents C_1 - C_6 -alkyl which is optionally substituted by a radical R^6 ,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, $N-R^{15}$, $N-OR^{15}$, $N-N(R^{15})_2$, and each L independently of the others represents O or NR^{18} ,

R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_DC₁-C₂-haloalkyl or halogen,

 R^{15} in each case independently of one another represents hydrogen or represents in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfinyl, C_1 - C_4 -haloalkylsulfonyl,

- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,
- p independently of one another represents 0, 1, 2.
- 8. (Currently Amended) The composition according to as claimed in claim-1, 2, 3, 4, 5, 6 or 7 claim 1, comprising compounds wherein said compound of the formula (I) (group 1) or at least one acaricidally active compound (group 2), and at least one anthranilamide compound of the formula (II) are present in a ratio of from 500:1 to 1:50.
- 9. (Currently Amended) The use of a A method of controlling an animal pest comprising contacting a composition according to synergistically effective mixture as defined in claims 1, 2, 3, 4, 5 6 or 7 claim 1 for controlling animal pests to with an animal pest.
- 10. (Currently Amended) A process for preparing pesticides, <u>comprising mixing a composition according to eharacterized in that a synergistically effective mixture as defined in claims 1, 2, 3, 4, 5 6 or 7 claim 1 is mixed with extenders and/or surfactants.</u>
- 11. (New) The composition according to claim 2, wherein said compound of formula (II) is a compound of formula (II-1)

in which

- R² represents hydrogen or C₁-C₆-alkyl,
- R^3 represents C_1 - C_6 -alkyl which is optionally substituted by R^6 ,
- R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, $N-R^{15}$, $N-OR^{15}$, $N-N(R^{15})_2$, and each L independently of the others represents O or NR^{18} ,
- R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_pC₁-C₂-haloalkyl or halogen,

- R^{15} in each case independently of one another represents hydrogen or in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl, and C_1 - C_4 -haloalkylsulfonyl,
- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,
- p independently of one another represents 0, 1, 2.
- 12. (New) The composition according to claim 3, wherein said compound of formula (II) is a compound of formula (II-1)

in which

- R² represents hydrogen or C₁-C₆-alkyl,
- R³ represents C₁-C₆-alkyl which is optionally substituted by R⁶,
- R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, $N-R^{15}$, $N-OR^{15}$, $N-N(R^{15})_2$, and each L independently of the others represents O or NR^{18} ,
- R⁷ represents C₁-C₄-haloalkyl or halogen,
- $R^9 \qquad \text{represents C_1-C_2-haloalkyl, C_1-C_2-haloalkoxy, $S(O)_p$C$_1$-C_2-haloalkyl or halogen,} \\$
- in each case independently of one another represents hydrogen or in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylthio, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylthio, C_1 - C_4 -haloalkylsulfinyl and C_1 - C_4 -

haloalkylsulfonyl,

- R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,
- R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,
- p independently of one another represents 0, 1, 2.
- 13. (New) The composition according to claim 4, wherein said compound of formula (II) is a compound of the formula (II-1)

in which

- R² represents hydrogen or C₁-C₆-alkyl,
- R³ represents C₁-C₆-alkyl which is optionally substituted by R⁶,
- R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,
- R^5 represents hydrogen, C_1 - C_4 -alkyl, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy or halogen,
- represents $-C(=E^2)R^{19}$, $-LC(=E^2)R^{19}$, $-C(=E^2)LR^{19}$ or $-LC(=E^2)LR^{19}$, where each E^2 independently of the others represents O, S, $N-R^{15}$, $N-OR^{15}$, $N-N(R^{15})_2$, and each L independently of the others represents O or NR^{18} ,
- R⁷ represents C₁-C₄-haloalkyl or halogen,
- R^9 represents C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy, $S(O)_pC_1$ - C_2 -haloalkyl or halogen,
- R^{15} in each case independently of one another represents hydrogen or in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfonyl, C_1 - C_4 -haloalkylsulfonyl,
- R^{18} in each case represents hydrogen or C_1 - C_4 -alkyl,
- R^{19} in each case independently of one another represents hydrogen or C_1 - C_6 -alkyl,
- p independently of one another represents 0, 1, 2.
- 14. (New) The composition according to claim 5, wherein said compound of formula (II) is

a compound of the formula (II-1)

$$\mathbb{R}^{3}$$
 \mathbb{N}
 \mathbb{N}

in which

R² represents hydrogen or C₁-C₆-alkyl,

R³ represents C₁-C₆-alkyl which is optionally substituted by R⁶,

R⁴ represents C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

R⁵ represents hydrogen, C₁-C₄-alkyl, C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy or halogen,

represents -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ or -LC(=E²)LR¹⁹, where each E² independently of the others represents O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, and each L independently of the others represents O or NR¹⁸.

R⁷ represents C₁-C₄-haloalkyl or halogen,

R⁹ represents C₁-C₂-haloalkyl, C₁-C₂-haloalkoxy, S(O)_pC₁-C₂-haloalkyl or halogen,

in each case independently of one another represents hydrogen or in each case optionally substituted C_1 - C_6 -haloalkyl or C_1 - C_6 -alkyl, where the substituents independently of one another may be selected from the group consisting of cyano, C_1 - C_4 -alkoxy, C_1 - C_4 -haloalkoxy, C_1 - C_4 -alkylsulfinyl, C_1 - C_4 -alkylsulfonyl, C_1 - C_4 -haloalkylsulfinyl, and C_1 - C_4 -haloalkylsulfonyl,

R¹⁸ in each case represents hydrogen or C₁-C₄-alkyl,

R¹⁹ in each case independently of one another represents hydrogen or C₁-C₆-alkyl,

p independently of one another represents 0, 1, 2.