DESIGN OF SINGLY REINFORCED RCC BEAM

GIVEN DETAILS

	mm	М
CLEAR SPAN	3000	3
WIDTH OF SUPPORT	200	0.2
b	200	0.2

WORKING LOAD	6	KN/M
fck	20	N/mm^2
fy	415	N/mm^2

L/d=20

d = L/20

	mm	М
d=	150	0.15
D=	200	0.2

1. EFFECTIVE LENGTH

L1=L+d 3.15 M

L2= C/C OF SUPPORT

(.2/2)+3+(.2/2) 3.2 M

leff= LI 3.15 M

2.LOAD

SELF WEIGHT

FACTORED LOAD(W*1.5)	
(Wu)	10.5 KN/M

3.BM AND SF

Mu=Wu*I^2/8	13.02 KN-M

Vu=Wu*L/2 16.54 KN

Mu lim=.138fck*b*d 22.08 KN-M

THE SECTION IS UNDER REINFORCED

4. AREA OF STEEL

Ast min=.87bd/fy 62.89

Mu=.87*fy*Ast*d(1-(Ast*415/b*d*fck))

Ast= 238.499 mm^2 ast= 113.09 mm^2

NO. OF BARS=Ast/ast 2.108931 ~3

Ast pro= 339.27 mm^2

9

PROVIDE 3-12mmdia bars

5. CHECK FOR SHEAR

NOMINAL COVER

|--|

PT=100Ast/bd

1.1 %

TOUc	0.632	N/mm^2
TOUc max	2.8	N/mm^2

SPACING OF STIRRUPS

a.Sv=.87fyAsv/.4b		
	226.8297	mm
b.75d=	112.5	mm
c.300mm	300	mm

PROVIDE 2L-8mm@110mmC/C

asv= 50.26

DESIGN OF DOUBLY REINFORCED RCC BEAM

GIVEN DETAILS

	mm		М
EFFECTIVE SPAN		7000	7
d'		50	0.05
d		250	0.25
b		200	0.2
D		550	0.55
fck		20	N/mm^2
fy		415	N/mm^2
WORKING LOAD		15	KN/M

2.LOAD

SELF WEIGHT

b*D*25	2.75 KN/M
LIVE LOAD	15 KN/M
DEAD LOAD	20 KN/M
TOTAL LOAD (W)	37.75 KN/M

FACTORED LOAD(W*1.5)	
(Wu)	56.625 KN/M

3.BM AND SF

Mu=Wu*l^2/8	346.83 KN-M
Vu=Wu*L/2	198.19 KN

Mu lim=.138fck*b*d 34.5 KN-M

Mu-Mulim=

THE SECTION IS OVER REINFORCED

4. AREA OF STEEL

Ast1=Mulim/.87fy(d-.42xu)

955.5485464 mm^2

312.33

fcs 538 N/mm^2

Asc 2162.637619

1248.527905 mm^2

Ast=Ast1+Ast2

Ast=	2204.076451 mm^2

Astpro=5*ast	2454.35	mm^2
Ascpro=asc*4	1257	mm^2

PROVIDE 5-25mm dia as tension reinforcement and 4-20mm as compression rei

5.CHECK FOR SHEAR

NOMINAL SHHEAR			
TOUv=Vu/bd	3.96375	N/mm^2	
TOUc	0.78	N/mm^3	
PT	1.96	%	

THE SECTION IS NOTSAFE AGAINST SHEAR

BALANCED SHEAR

Vus=Vu-Tcbd 159187.5 N/mm2

SPACING OF STIRRUPS

a.Sv=.87*fyAst*d/Vus 125.4055505 mm b.300 300 mm C. .75d 187.5

PROVIDE 2L-8mm vs @160mm c/c

ONE WAY SLAB DESIGN

GIVEN

Span = 3000 mm 3 m b = 1 m = 1000 mm

 I_{v}/I_{x} = 2.333333

one way slab

a) Effective Depth

$$Span/d = 20$$

d 150 mm = 0.15 m

= d+(15+10/2)D

D = 170 mm = 0.17 m

b) Effective Span

Span + bearing (L1) =
$$3.23 \text{ m}$$

CC + Eff.Depth (L2)= 3.15 m

I = L23.15 m

c) Calculation of Load

Self Weight = D*25*b

= 4.25 KN/m

Live Load = 3.5 KN/m Floor Finish = 1.2 KN/m 8.95 KN/m Total Load = Factored Load = 13.425 KN/m

Maximum Bending Moment

$$M_u = (W_u * I^2)/8$$

= 16.6512 KN-m = 16651200 KN-mm

d) To Find 'd'

$$M_u = 0.138 * f_{ck} * b * d^2$$

d = $sqrt(M_u/(0.138*f_{ck}*b))$

= 77.67267 mm < 150mm

e) A_{st} Required

$$A_{st}$$
 = $(1.14*M_u*b*f_{ck})/f_y(b*d*f_{ck}-f_y)$
 A_{st} = 304.9798 mm²

Using 10mm dia Bars spacing required

 $a_{st} = 78.5 \text{ mm}^2$

s = 1000*a_{st}/A_{st}

s = 257.3941 mm

s = 250 mm

Provide 10mm dia bars at 240mm C/C

 A_{st} Provided = 1000* A_{st} /s

 A_{st} Provided = 314 mm²

Percentage Steel = $100*A_{st}/(b*d)$ Percentage Steel = 0.20332 %

f) <u>Distribution Reinforcement</u>

 $A_{st} = 0.12 \% *b*D$

 $A_{st} = 204 \text{ mm}^2$

Provide 8mm Dia Bars

 $a_{st} = 50.24 \text{ mm}^2$

 $S_v = 1000*a_{st}/A_{st}$

 $S_v = 246.2745 \text{ mm}$

 $S_v = 245 \text{ mm}$

Provide 8mm Dia Bars at 245mm C/C

Z

GIVEN	Span=	4750	mm	
	Lx=	4.75	m	
	Ly=	4.75	m	
	LL=	2.5	m	
	FF=	1	KN/m	
	Bearing=	0.15	m	
	fck=	15	N/mm^2	
	fy=	415	N/mm^2	
	b=	1	m	1000 mm
	Lx/Ly=	1		
	•	two way sl	ab	
		•		
a) Span/d=	30		
	d=	158.3333	mm	
	d=	160	mm	0.16 m
	D= 4	+(15+10/2)		
		180	mm	0.18 m
	dx=	D-(15+(10/	(2))	
			mm	0.16 m
	dv=	D-(15+10+		
		-	mm	0.15 m
				2.22
b)	effective sp	<u>oan</u>		
•	-			
i)	C.S+bearin	4.9	mm	
ii)	C.S+eff.deր	4.91		
	L=	#REF!		
	Lx=	4.9	m	
c)	Load calcula	ation		
Self	wt. of slab=	D*b*25		
		4.5	KN/m	
	L.L=	2.5	KN/m	
	F.F=	1	KN/m	
	Total load=	8	KN/m	
factor	red load W =	12	KN/m	
	Max. bendi	ing momen	nt	

Max. bending moment

Mux=Muy= $\alpha x^*W^*Lx^2$

17.86344 KN-m **17863440** N-mm

Mu= 0.138*fck*b*d^2 d= sqrt(Mu/(0.138*fck*b))

d) A_{st} requried

 $A_{st}(Lx)=A_{st}(Ly)$

A_{st =} (1.14*Mu*b*fck)/(fy(b*d*fck-fy)) **306.7446** mm^2

using 10mm dia bar spacing

 $S = 1000*a_{st}/A_{st}$

256.011 mm **255** mm

Ast provided= 1000*a_{st}/S

307.9608 mm^2

provide 10mm dia bars @ 310mm c/c

e) check for deflection

fs= $0.58*fy*(A_{st}req/A_{st}pro)$

239.7495 N-mm

% of steel= 100*Ast/(b*d)

0.192475 0.20%

((L/d)max): 20*1.72 34.4 mm

(L/d)= 0.030625 m **30.62** mm

Hence ok