

Peter Woollard + Josie Burgin & Guy Cochrane

Data Standards Biocurator, Data Coordination and Archiving

European Nucleotide Archive, EMBL-EBI, UK

What are ENA and the International Nucleotide Sequence Database Collaboration (INSDC)?

- INSDC:
 - A long-standing foundational initiative that operates between DDBJ,
 EMBL-EBI and NCBI https://www.insdc.org/
 - Covers the spectrum of data raw reads, through alignments and assemblies to functional annotation, enriched with contextual information relating to samples and experimental configuration
 - All sequence data and contextual information(metadata) are shared
- European Nucleotide Archive (ENA):
 - The part of EMBL-EBI focused on nucleotide sequencing information
 - Recognised as a Global Core Biodata resource

Checklist

- A checklist is a set of fields and values
- The purpose is to collect consistent metadata collection
- Fields may be mandatory or optional
- Values may be controlled or free text
- A "sample" checklist example is on the right

Why do we need a Sequence Experiment Checklist System? Two main use cases:

1) Generate and Deposit data

Why do we need a Sequence Experiment Checklist System? Two main use cases:

1) Generate and Deposit data

Increasingly Complex: NGS etc., analysing much of the cell and environment

metabarcoding, chromosome structure, transcriptomics etc Many dependencies between library_selection, library_strategy_etc.

Why do we need a Sequence Experiment Checklist System? Two main use cases:

1) Generate and Deposit data

Increasingly Complex: NGS etc., analysing much of the cell and environment

metabarcoding, chromosome structure, transcriptomics etc 2) Find and re-use the ever increasing data

All easier, if data follows:

https://www.go-fair.org/fair-principles/

N.B. Investigational experiment metadata in biosamples

Many dependencies between library_selection, library_strategy_etc.

What Exists in ENA?

Other Existing Infrastructure

JSON SCHEMA

ELIXIR BIOVALIDATOR (can use from web or local CLI)

Requirements for the new Experimental Checklist

Proposing a checklist system for sequencing experiments which has the same conceptual design as the sample checklist system. However it will have some key improvements*

From

One size fits all input template

field	value	
Organism	soil metagenome	
Experiment Accession	ERX2625649	
Instrument Platform	LS454	
Instrument Model	454 GS FLX Titanium	
Center Name	PAU UNIVERSITY	
Library Layout	SINGLE	
Library Strategy	AMPLICON	
Library Source	METAGENOMIC	
Library Name	unspecified	
Library Selection	PCR	

From

One size fits all input template

field	value	
Organism	soil metagenome	
Experiment Accession	ERX2625649	
Instrument Platform	LS454	
Instrument Model	454 GS FLX Titanium	
Center Name	PAU UNIVERSITY	
Library Layout	SINGLE	
Library Strategy	AMPLICON	
Library Source	METAGENOMIC	
Library Name	unspecified	
Library Selection	PCR	

Experiment Type specific template

- -with certain fields omitted
- -with some fields values pre-filled with the most likely value

additional fields and relevant values in this example:

field	value
Experiment type	METABARCODING
Target loci	16S rRNA
PCR primers	"pcr_primers": {

validation of combinations:

Library Strategy	+	Library Source
Platform	+	Model

Major Aspects to Implement:

For each experiment type

checklist template

useful experiment fields

checklist schema Contains the dependencies: data types, between fields

Method of user validating filled out templates

Method of submitting templates

Short term: JSON will be converted to XML and validated against SRA_experiment.xml and SRA common.xml

Documentation of this process and details

Currently the details for each experiment type are automatically generated as md

Example Schema - with built in validator

https://github.com/enasequence/ena-experiment-checklist/blob/main/data/schema/METABARCODING schema.json

E.g. snippet of a example experiment checklist and the validator

Field	Value
instrument platform	ILLUMINA
instrument model	Illumina HiSeq X"

```
"if": {
  "properties": {
    "instrument platform": {
       "const": "ILLUMINA"
"then": {
  "properties": {
    "instrument": {
       "enum": [
         "Illumina HiSeq 4000",
         "Illumina HiSeq 2500",
         "Illumina HiScanSQ",
         "Illumina Genome Analyzer IIx",
         "Illumina MiSeg",
          "Illumina HiSeq X",
          "unspecified",
          "Illumina Genome Analyzer II",
          "Illumina HiSeq 100",
          "Illumina HiSeg 3000",
         "Illumina HiSeg 2000".
```

Anticipating "power" users testing their filled out template against the JSON schema, by using biovalidator

Experiment Types

current list of experiment types: CHROMATIN_RELATED,
CHROMOSOME_CONFORMATION_CAPTURE, DNA_BARCODING, EPIGENOMIC,
EXOME_SEQUENCING, GENOMIC, GENOTYPING, METABARCODING,
METAGENOMIC_SEQUENCING, METATRANSCRIPTOMIC, SPATIAL_TRANSCRIPTOMIC,
TRANSCRIPTOMIC, VIRAL_RNA_GENOME

Example

"experiment_type": "METABARCODING",

"experiment_type_definition": "Metabarcoding is the barcoding of DNA/RNA (or eDNA/eRNA) in a manner that allows for the simultaneous identification of many taxa within the same sample. The main difference between barcoding and metabarcoding is that metabarcoding does not focus on one specific organism, but instead aims to determine species composition within a sample.[WIKIPEDIA]",

"experiment_type_ontology_id": "EDAM:320",

Trying to use existing ontologies and definitions. Seeking to align with EGA

Current Example (for reference)

Focusing on the Metabarcoding:

- Template: https://github.com/enasequence/ena-experiment-checklist/blob/main/data/output/METABARCODING.json
- Specific doc for each template:

https://github.com/enasequence/ena-experiment-checklist/blob/main/docs/experiment_types/METABARCODING.md

Schema: https://github.com/enaseguence/ena-experiment-checklist/blob/main/data/schema/METABARCODING schema.json

Input Configuration file

https://github.com/enasequence/ena-experiment-checklist/blob/main/data/input/ExperimentChecklistIn.json

Summary

- Main aim: make the sequence data easier to find and reuse
- Near Future:
 - Checklists specific to experiment types
 - Consistency of terms in related fields
 - Users can validate metadata themselves without submitting
 - Using modern technologies: e.g. JSON schemas

Feedback and suggestions welcome

Acknowledgement

Internal

EMBL- EBI ENA Team

- Josie Burgin and Guy Cochrane
- Contents team, especially: Zarah Waheed, Gabi Rinck and Joana Paperio
- Technical team: Rasko Leinonen

Biosample Biovalidator team

Technical team: Isuru Liynage

EMBL- EBI EGA Team

Coline Thomas and Marcos Casado

External

GSC and also GA4GH Sequencing Experiment Metadata workstream

Informative discussions

JSON Schema - it is amazingly elegant and powerful

Project Funders:

1) MGP-IV

Biotechnology and Biological Sciences Research Council 2) European Advanced Infrastructure for Innovative Genomics

Components in place (alpha release)

Abstract

- Core and diverse sample metadata has been explicitly captured with checklist templates for a number of years, by the European Nucleotide
 Archive(ENA) and other INSDC partners. There is now a broader and more complex spread of sequencing experiment related metadata that
 could usefully be collected too, due to the increasing use of sequencing technologies to study the general biological world, particularly for
 human health and the environment. Capturing experiment metadata information more accurately and consistently will increase the usefulness of
 the data, by making it more FAIR.
- We are exploring experimental checklists conceptually similar to existing sample level checklists to tailor metadata provided for different 'types' of sequencing experiments. We have integrated learnings from sample checklists, including the need to have checklist versioning and dependency validation. To do the initial validation for the experiment checklists, we are using: JSON, JSON schema and ELIXIR bio validation technologies. These can rapidly catch most validation issues and provide immediate feedback to users. Deeper automated validation will still be performed to ensure INSDC standards.
- Currently, we have a dozen "experiment type" checklists ranging from metabarcoding to spatial transcriptomics. These experiment type checklist JSON and accompanying JSON schema files are all driven from a single JSON configuration file. It will be straightforward and sustainable to add further experiment types.
- A pilot use and submission of experiment type checklists is planned for later this year. All code and documentation is publicly accessible: https://github.com/enaseguence/ena-experiment-checklist/
- In this talk, we will outline what we are doing and illustrate how it will improve the standardisation of sequence experimental metadata.

