Práctica 1

Apellidos: López Pérez

Nombre: Marta

Titulación: Grado de Ingeniería del Informática

Grupo: A

PC de la práctica: PC709

- 1.- Lea el enunciado de la práctica para obtener la traza de Wireshark necesaria para responder las siguientes preguntas
- 2.- Lea atentamente las notas al final del enunciado de la práctica (recuerde en guardar la traza fichero p1.pcapng y tomar capturas de pantallas justificando de dónde obtuvo las respuestas)
- 3.- No olvide rellenar arriba el equipo en el que realizó las prácticas (en el que capturó el tráfico)
- 4.- En la memoria entregada, puede borrar este cuadro

Ejercicio 1. Elija un mensaje dns, y localice en la cabecera Ethernet II la siguiente información (haga capturas de pantalla donde aparezcan estos datos):

- Número de trama elegida:
- Información de la dirección MAC de su computadora.

Dirección MAC (en hexadecimal): 40:a8:f0:55:12:10

Fabricante de NIC (en hexadecimal): 40:a8:f0 nombre: Hewlett Packard

Número de serie de NIC (en hexadecimal): 55:12:10

Información de la dirección MAC de gateway/router.

Dirección MAC (en hexadecimal): c4:b3:6a:0a:2e:75

Fabricante de NIC (en hexadecimal): c4:b3:6a nombre: Cisco Systems, Inc Número de serie de NIC (en hexadecimal): 0a:2e:75

Ejercicio 2. Indique qué filtro debe añadir para que se muestren las tramas donde no se utilice su dirección MAC.

- ¿Qué filtro has utilizado? eth.src ne 40:a8:f0:55:12:10 and eth.dst ne 40:a8:f0:55:12:10
- ¿Cuántas tramas recibe? 5041 de 6844
- ¿Por qué recibe esas tramas? (Para responder esta pregunta, observe las características de las direcciones MAC destino de esas tramas)
 - Porque hay tramas de tipo broadcast (ff:ff:ff:ff:ff:ff) y IPv4mcast_7f:ff:fa.

Ejercicio 3. Dibuje la torre de protocolos (tal como se ha visto en clase, es decir, en la parte inferior los protocolos de más bajo nivel) de un paquete ARP, uno ICMP, uno DNS y uno HTTP.

- Torre de protocolos de un paquete ARP (número de trama seleccionada: 195)
 - Frame 1562: 60 bytes on wire (480 bits), 60 bytes captured (480 bits) on interface \Device\NPF_{9BEE4EA5-203E-4E5A-9014-9C2EB5EA0CF3}, id 0
 - Ethernet II, Src: Apple_cb:61:52 (0c:4d:e9:cb:61:52), Dst: Broadcast (ff:ff:ff:ff:ff)
 - Address Resolution Protocol (request

- Torre de protocolos de un paquete ICMP (número de trama seleccionada: 10)
 - Frame 565: 370 bytes on wire (2960 bits), 370 bytes captured (2960 bits) on interface \Device\NPF_{9BEE4EA5-203E-4E5A-9014-9C2EB5EA0CF3}, id 0
 - Ethernet II, Src: VMware_9a:ec:cb (00:50:56:9a:ec:cb), Dst: HewlettP_55:12:10 (40:a8:f0:55:12:10)
 - Internet Protocol Version 4, Src: 192.168.167.201, Dst: 192.168.166.9
 - Internet Control Message Protocol

- Torre de protocolos de un paquete DNS (número de trama seleccionada: 28)
 - Frame 782: 84 bytes on wire (672 bits), 84 bytes captured (672 bits) on interface \Device\NPF_{9BEE4EA5-203E-4E5A-9014-9C2EB5EA0CF3}, id 0
 - Ethernet II, Src: HewlettP_55:12:10 (40:a8:f0:55:12:10), Dst: Cisco_0a:2e:75 (c4:b3:6a:0a:2e:75)
 - Internet Protocol Version 4, Src: 192.168.166.9, Dst: 150.214.57.
 - User Datagram Protocol, Src Port: 53906, Dst Port: 53
 - Domain Name System (query)

- Torre de protocolos de un paquete HTTP (número de trama seleccionada: 374)
 - Frame 529: 1181 bytes on wire (9448 bits), 1181 bytes captured (9448 bits) on interface \Device\NPF {9BEE4EA5-203E-4E5A-9014-9C2EB5EA0CF3}, id 0
 - Ethernet II, Src: VMware_9a:b3:8a (00:50:56:9a:b3:8a), Dst: HewlettP_55:12:10 (40:a8:f0:55:12:10)
 - Internet Protocol Version 4, Src: 192.168.167.202, Dst: 192.168.166.9
 - Transmission Control Protocol, Src Port: 3128, Dst Port: 52621, Seq: 1461, Ack: 1, Len: 1127
 - [2 Reassembled TCP Segments (2587 bytes): #528(1460), #529(1127)]
 - Hypertext Transfer Protocol
 - Online Certificate Status Protocol

Ejercicio 4. Observe el campo **tipo** de la cabecera Ethernet II para cada uno de los mensajes anteriores.

	Tipo en la cabecera Ethernet II	
	Hexadecimal	Texto
ARP	(0x0806)	ARP
HTTP	(0x0800)	IPv4
ICMP	(0x0800)	IPv4
DNS	(0x0800)	IPv4

- ¿Qué significa este campo?
 - Define varios protocolos en la capa de red.
- ¿Por qué en tramas diferentes es igual?
 - ARP / IPv4 representa la forma en que se transmite, por lo que puede haber distintos tramas que lo transmitan de la misma de la misma forma.

Ejercicio 5. En Wireshark observe la diferencia entre el tiempo de la primera petición icmp (Echo (ping) request) y su respuesta (Echo (ping) reply).

- Números de las tramas seleccionadas:
 - 3427,3428
- ¿Cuánto tiempo es (en milisegundos)?
 - [Response time: 0,609 ms
- ¿A qué concepto visto en la parte de teoría equivale dicho tiempo?
 - Round-trip time

Ejercicio 6. Según la teoría vista en clase, las tramas Ethernet deben tener un **tamaño mínimo** de 64 bytes. Wireshark no muestra el campo FCS (ya que es tratado automáticamente por la tarjeta de red), por lo que la trama mostrada en Wireshark tendrá un tamaño de 60 bytes o más.

- Busque una trama con tamaño 60 (filtro: frame.len == 60), proporciona el número de trama. ¿Cuántas tramas tienen esta característica?
 - Trama número 3252, se capturan 470 tramas con ese filtro.
- ¿Qué mecanismo se utiliza para completar el tamaño si los datos transmitidos son más pequeños de 46 bytes)?
 - Padding.

Ejercicio 7. Analizando esas trazas,

- ¿qué mecanismo de autenticación se usa?
 - PAP (password authentication protocol)
- ¿En qué tramas (indique el número) se negocia la utilización de dicho campo?
 - Tramas 9 y 10

рар					
		Time	Source	Destination	Protocol
	9	0.337184	20:28:18:a0:a9:d2	Unispher_a4:10:be	PPP PAP
	10	0.513587	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPP PAP

No.

Ejercicio 8. En la traza se ve el proceso correspondiente a las fases de establecer, autenticar y red vista en los apuntes.

• Indique cada trama (sin considerar las que excluyeron en el primer párrafo de este paso) a qué fase corresponde.

Time	Source	Destination	Protocol
11 0.514567	20:28:18:a0:a9:d2	Unis RED 10:be	PPP IPCP
13 0.535927	Unispher_a4:10:be	20:2 0:10:a0: a9:d2	PPP IPCP
14 0.536027	20:28:18:a0:a9:d2	Unispher_a4:10:be	PPP IPCP
16 0.556887	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPP IPCP
17 0.716309	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPP IPCP
18 0.716449	20:28:18:a0:a9:d2	Unispher_a4:10:be	PPP IPCP
12 0.514647	20:28:18:a0:a9:d2	Unispher a4:10:be	PPP IPV6CP
5 0.133822	20:28:18:a0:a9:d2	Un ESTABLECER be	PPP LCP
6 0.336644	Unispher_a4:10:be	20:20:10:00:00:d2	PPP LCP
7 0.336664	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPP LCP
8 0.336824	20:28:18:a0:a9:d2	Unispher_a4:10:be	PPP LCP
15 0.536187	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPP LCP
9 0.337184	20:28:18:a0:a9:d2	U	PPP PAP
10 0.513587	Unispher a4:10:be	20.20.10.00.03.d2	PPP PAP
1 0.000000	20:28:18:a0:a9:d2	Broadcast	PPPoED
2 0.024960	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPPoED
3 0.025060	20:28:18:a0:a9:d2	Unispher_a4:10:be	PPPoED
4 0.114162	Unispher_a4:10:be	20:28:18:a0:a9:d2	PPPoED

- ¿Qué protocolo del nivel de red se va a usar para transmitir los datos?
 - Protocolo PPPoE.

No.	Time	Source	Des	
	3 0.025060	20:28:18:a0:a9:d2	Uni	
	4 0.114162	Unispher_a4:10:be	20:	
	5 0.133822	20:28:18:a0:a9:d2	Uni	
<				
>	Frame 4: 60 bytes or	n wire (480 bits), 60	byt	
٧	Ethernet II, Src: Un	nispher_a4:10:be (00:9	90:1	
	> Destination: 20:2	28:18:a0:a9:d2 (20:28:	18:	
> Source: Unispher_a4:10:be (00:90:1a:a4:10				
Type: PPPoE Discovery (0x8863)				
>	PPP-over-Ethernet D	iscovery		

Ejercicio 9. Desarrolle un código Java que usando la clase previa liste todos los interfaces de red activos mostrando su nombre y MAC.

Incluya una captura de pantalla con la salida obtenida.

```
package pr1;
  3⊖ import java.net.NetworkInterface;
     import java.net.SocketException;
     import java.util.Enumeration;
     public class InterfacesRed
  8
  9⊝
         public static void main(String[] args)
 10
 11
             Enumeration<NetworkInterface> listaInterfaz;
 12
 13
 14
 15
                 listaInterfaz = NetworkInterface.getNetworkInterfaces();
 17
                 while(listaInterfaz.hasMoreElements())
 18
 19
                     NetworkInterface interfaz = listaInterfaz.nextElement();
 20
                     StringBuilder sb = new StringBuilder();
                     if(interfaz.isUp() && interfaz != null)
                         byte[] dirMac=interfaz.getHardwareAddress();
 25
                         if(dirMac!=null)
                             int i = 0, longitud = dirMac.length;
 29
                             while(i < longitud)
 30
 31
                                 if(i != (longitud - 1))
 33
                                      sb.append(String.format("%02X:", dirMac[i]));
 35
 36
                                 else
 37
 38
                                      sb.append(String.format("%02X", dirMac[i]));
 39
 40
 43
                             System.out.println("Interfaz " + interfaz.getName()+ ": MAC = " + sb.toString());
 44
                         }
 45
                     }
                 }
             catch (SocketException se)
 48
 49
 50
                 System.out.println(se.toString());
             ł
 51
         }
 53
    }
 54
■ Console ※
                                                                                                     ram Files\Java\jdk-12.0.2\bin\javaw.exe (9 may. 2020 16:54:14)
Interfaz eth4: MAC = 0A:00:27:00:00:0D
```

Explique el código.

Interfaz wlan1: MAC = 84:EF:18:41:77:F6

Se crea una lista enumerada y la completamos con las distintas interfaces. Mientras la lista creada tenga elementos vamos a ir comprobando que el siguiente elemento no sea null y que esté activo. Si todo esto se cumple y existe una dirección mac para esa interfaz se va a ir agregando esta dirección byte a byte.

Por pantalla se va a mostrar el resultado en el formato

→ Interfaz *nombre*: MAC = *dirección mac*.

En caso que se encontrase algún error se mostraría también por pantalla gracias a que recogemos todo el código con el try y capturamos las excepciones que puedan aparecer.