Appunti di Geometria 2

Anno Accademico 2020/2021

"BEEP BOOP INSERIRE CITAZIONE QUI BEEP BOOP"

INDICE

ii

Indice

TOPOLOGIA GENERALE Spazi topologici 1.1 Spazio topologico 1.1.1 Distanza e spazi metrici Finezza: confronto di topologia 6 Base della topologia Altri concetti topologici: chiusura, interno, frontiera e densità 1.1.4 1.1.5 Intorni 1.2 Funzioni continue 1.3 Omeomorfismi 1.4 Topologia indotta Sottospazio topologico 14 1.5.1 Immersione 1.6 Prodotti topologici 17 1.7 Assiomi di separazione: T1 e Hausdorff 1.8 Proprietà topologica Connessione e compattezza Connessione 25 2.2 Compattezza Gruppi topologici 3.1 Gruppi topologici TOPOLOGIA QUOZIENTE 4.1 Topologia Quoziente 4.1.1 Identificazione 50 Quozienti tipici 51 4.1.3 Quoziente T_2 53 AZIONI DI GRUPPO 55 5.1 Azione di un gruppo su un insieme 55 5.2 Stabilizzatore di un elemento 5.3 Azione per omeomorfismi

INDICE

```
Successioni
   6.1 Numerabilità
   6.2 Successioni
                     67
        6.2.1 Punti di accumulazione
        6.2.2 Sottosuccessioni
   6.3 Successioni e compatti
                               70
        6.3.1 Compattezza per successioni
   6.4 Spazi metrici completi
II Омоторіа
  Омоторіа
                77
   7.1 Lemma di incollamento
   7.2 Componente connessa e componente c.p.a.
   7.3 Omotopia tra funzioni continue
   7.4 Equivalenza omotopica
   7.5 Retratti e retratti di deformazione
   IL GRUPPO FONDAMENTALE
                                 91
   8.1 Omotopie fra cammini
                               91
   8.2 Gruppo fondamentale
                              95
        8.2.1 Dipendenza dal punto base
        8.2.2 Mappe continue e omomorfismo di gruppi
   8.3 Digressione: Categorie
        8.3.1 Funtori 100
   8.4 Isomorfismi e gruppi fondamentali 102
III FORMA CANONICA DI JORDAN 107
   FORMA CANONICA DI JORDAN 109
   9.1 Teorema di Cayley-Hamilton 109
   9.2 Forma canonica di Jordan 110
        9.2.1 Autospazi generalizzati 113
        9.2.2 Esistenza della base dell'autospazio generalizzato che dà la forma
              di Iordan 118
        9.2.3 Unicità della forma di Jordan 122
        9.2.4 Polinomio minimo e forma di Jordan 122
              Impratichiamoci! Forma canonica di Jordan 124
   9.3 Funzione esponenziale nei complessi 127
              Esponenziale di una matrice quadrata complessa 129
        9.3.2
              Calcolo dell'esponenziale di una matrice tramite la forma di Jor-
              Impratichiamoci! Funzione esponenziale nei complessi 135
   9.4 Matrici reali e forma di Jordan 136
```

IV Appendici 139

iv

```
10.1 Capitolo 6: successioni 141
10.2 Capitolo 11: forma canonica di Jordan 142
10.2.1 Convergenza 143

BIBLIOGRAFIA 145
```

I

Topologia generale

CAPITOLO 1

SPAZI TOPOLOGICI

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

1.1 SPAZIO TOPOLOGICO

Definizione 1.1.0. Uno **spazio topologico** (X, \mathcal{T}) è un insieme X con una famiglia di sottoinsiemi $\mathcal{T} \subseteq \mathcal{P}(X)$ detta **topologia** che soddisfano i seguenti assiomi (detti **assiomi degli aperti**):

- 1. Il vuoto e l'insieme stesso sono aperti della topologia: \varnothing , $X \in \mathcal{T}$.
- 2. L'unione arbitraria di aperti è un aperto: dati $\{A_i\}_{i\in I}$ tali che $A_i\in \mathcal{T},\ \forall i\in I\ (|I|\leq \infty),$ allora $\bigcup_{i\in I}A_i=A\in \mathcal{T}$.
- 3. L'intersezione finita di aperti è aperta: dati $\{A_i\}_{i\in I}$ tali che $A_i \in \mathcal{T}$, $\forall i \in I \ (|I| < \infty)$, allora $\bigcap A_i = A \in \mathcal{T}$.

Gli elementi di $\mathcal T$ si dicono aperti della topologia.

Definizione 1.1.1. Si può definire equivalentemente su X una topologia \mathcal{T} usando gli assiomi dei chiusi:

- 1. Il vuoto e l'insieme stesso sono chiusi della topologia: \varnothing , $X \in \mathcal{T}$.
- 2. L'unione finita di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}, \ \forall i \in I \ (|I| < \infty)$, allora $\bigcup_{i \in I} C_i = C \in \mathcal{T}$.
- 3. L'intersezione arbitraria di chiusi è un chiuso: dati $\{C_i\}_{i\in I}$ tale che $C_i \in \mathcal{T}$, $\forall i \in I$ $(|I| \leq \infty)$, allora $\bigcap C_i = C \in \mathcal{T}$.

Gli elementi di \mathcal{T} si dicono **chiusi** della topologia.

OSSERVAZIONE. Per verificare il terzo assioma degli aperti (o, equivalentemente, il secondo dei chiusi) è sufficiente verificare che sia vero per soli due sottoinsiemi qualunque, in quanto poi è verificato per induzione.

Esempio.

- **Topologia discreta**: $\mathcal{T} = \mathcal{P}(X)$, *tutti* gli insiemi sono *aperti*.
- **Topologia banale**: $\mathcal{T} = \emptyset$, X, gli *unici* aperti sono *banali*.

1.1.1 Distanza e spazi metrici

DEFINIZIONE 1.1.2. Su un insieme X una funzione $d: X \times X \longrightarrow \mathbb{R}$ è una **distanza** se:

- 1. Positività della distanza: $\forall x, y \in X \quad d(x, y) \ge 0 \text{ e } d(x, y) = 0 \iff x = y$
- 2. Simmetria: $\forall x, y \in X \quad d(x, y) = d(y, x)$
- 3. Disuguaglianza triangolare: $\forall x, y, z \in X \quad d(x, z) \le d(x, y) + d(y, z)$

Definizione 1.1.3. Uno **spazio metrico** (X,d) è un insieme su cui è definita una distanza.

DEFINIZIONE 1.1.4. Definita la **palla aperta di centro** x come l'insieme degli elementi di X che soddisfano la seguente condizione:

$$B_{\varepsilon}(x) = \{ y \in X \mid d(x, y) < \varepsilon \} \tag{1.1}$$

Ogni spazio metrico ha una **topologia** \mathcal{T}_d **indotta dalla distanza**, i cui aperti sono definiti come:

$$A \subseteq X$$
 aperto $(A \in \mathcal{T})$ se $\forall x \in A, \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

Еѕемріо.

■ Su un qualunque insieme *X* si può definire la *distanza banale*:

$$d(x, y) = \begin{cases} 0 & \text{se } x = y \\ 1 & \text{se } x \neq y \end{cases}$$
 (1.2)

In questo modo, ogni punto è una palla aperta e dunque ogni sottoinsieme è un aperto, dando allo spazio la *topologia discreta*. In particolare, ogni insieme può essere uno spazio metrico.

■ Su $X = \mathbb{R}$ si può definire come distanza il *valore assoluto d* (x, y) = |x - y|, che induce la **topologia Euclidea** $\mathscr{E}_{u \cdot e \ell}$, definita con le palle aperte di raggio ε :

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R} \mid |x - y| < \varepsilon \} \tag{1.3}$$

1.1. SPAZIO TOPOLOGICO 5

nel seguente modo:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in \mathcal{E}_{u \in \ell})$ se $\forall x \in A$, $\exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A$.

Su $X = \mathbb{R}^n$ si può definire come distanza la *norma Euclidea*: d(x, y) = ||x - y|| che induce la *topologia Euclidea* $\mathscr{E}_{u,e\ell}$ in modo analogo al caso precedente.

$$B_{\varepsilon}(x) = \{ y \in \mathbb{R}^n \mid ||x - y|| < \varepsilon \}$$

$$A \subseteq \mathbb{R}^n \text{ aperto } (A \in \mathcal{E}_{u \cdot \varepsilon \ell}) \text{ se } \forall x \in A, \ \exists \varepsilon > 0 : B_{\varepsilon}(x) \subseteq A.$$

Attenzione! Non tutte le topologie sono indotte da una distanza! Definiamo la **topologia dei complementari finiti** sull'insieme *X* nel modo seguente:

$$A \subseteq \mathbb{R}$$
 aperto $(A \in CF)$ se $X \setminus A$ è finito. $C \subseteq \mathbb{R}$ chiuso $(C \in CF)$ se C è finito.

Alcune osservazioni:

• Se un aperto A è tale se il suo complementare $\mathscr{C}A$ è finito, si ha che:

$$A = \mathscr{C}(\mathscr{C}A) = X \setminus (X \setminus A) = X \setminus \{\text{un numero finito di punti}\}$$
 (1.4)

In altre parole A è aperto è pari ad X privato al più di un numero finito di punti.

- Se X è finito, la topologia CF coincide con la topologia discreta: ogni sottoinsieme di X è finito e dunque un aperto.
- Se X è infinito, ad esempio \mathbb{R} , la topologia non è quella discreta: [0, 1] per la topologia discreta è un chiuso ma per quella CF non lo è in quanto non è finito.

1.1.1.1 Norme esotiche

Possiamo definire su \mathbb{R}^n una famiglia di distanze dette **norme**; qui di seguito ne elenchiamo alcune. Definiti i punti $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n) \in \mathbb{R}^n$ abbiamo:

- Norma infinito: $d_{\infty}(x, y) = \max_{i} |x_i y_i|$
- Norma uno: $d_1(x, y) = \sum_{i=1}^{n} |x_i y_i|$
- Norma due: $d_2(x, y) = \sqrt{\sum_{i=1}^{n} |x_i y_i|^2}$
- Norma p: $d_p(x, y) = \sqrt[p]{\sum_{i=1}^{n} |x_i y_i|^p}$

Si ha inoltre $\lim_{p\to+\infty} d_p = d_{\infty}$.

Valgono inoltre le seguenti disuguaglianze:

$$\forall x, y \in \mathbb{R}^n \quad d_{\infty}(x, y) \le d_2(x, y) \le d_1(x, y) \le nd_{\infty}(x, y) \tag{1.5}$$

Dimostrazione. Supponiamo senza perdere di generalità che $d_{\infty}(x, y) = |x_1 - y_1|$.

$$d_2(x, y) = \sqrt{|x_1 - y_1|^2 + \dots + |x_n - y_n|^2} \ge \sqrt{|x_1 - y_1|^2} = |x_1 - y_1| = d_\infty(x, y)$$

$$d_2(x, y) = |x_1 - y_1| + \dots + |x_n - y_n| \le |x_1 - y_1| + \dots + |x_1 - y_1| = n|x_1 - y_1| = nd_\infty(x, y)$$

Notiamo che $|x_i - y_i|$ sono sempre positive, allora sia $a_i := |x_i - y_i|$. Segue che $a_1^2 + ... + a_n^2 \le (a_1 + ... + a_n)^2$ perché $a_i, ..., a_n \ge 0$. Allora:

$$\sqrt{a_1^2 + \ldots + a_n^2} \le a_1 + \ldots + a_n \implies d_2 \le d_1$$

Queste disuguaglianze danno le seguenti inclusioni1:

$$B_1(\varepsilon) \subseteq B_2(\varepsilon) \subseteq B_{\infty}(\varepsilon) \subseteq B_1(n\varepsilon)$$
 (1.6)

Questo ci porta a dire che le topologie indotte da queste distanze sono la stessa.

Preso adesso $X = \mathcal{C}([0, 1]) = \{ f : [0, 1] \longrightarrow \mathbb{R} , f \text{ continua} \}$, esso è uno spazio vettoriale infinito, con $0_{\mathcal{C}} \equiv O_{[0, 1]}$ (cioè la funzione *identicamente nulla*). In questo caso possiamo comunque adattare le norme precedenti con delle "somme infinite", ovvero degli integrali.

- Norma infinito: $d_{\infty}(f, g) = \max_{x \in [0, 1]} |f((x) (y)|$
- Norma uno: $d_1(f, g) = \int_0^1 |f((x) (y))|$
- Norma due: $d_2(f, g) = \sqrt{\int_0^1 |f((x) (y)|^2}$
- Norma p: $d_p(f, g) = \sqrt[p]{\int_0^1 |f((x) (y)|^p}$

A differenza del caso su \mathbb{R}^n , ogni norma genera in realtà una topologia distinta!

1.1.2 Finezza: confronto di topologia

Definizione 1.1.5. Sia X un insieme e \mathcal{T}_1 , \mathcal{T}_2 due topologie di X. Si dice che \mathcal{T}_1 è **meno** fine di \mathcal{T}_2 se tutti gli aperti della prima topologia sono aperti della seconda:

$$\forall A \in \mathcal{T}_1 \implies A \in \mathcal{T}_2 \tag{1.7}$$

In modo analogo si dice anche che \mathcal{T}_2 è **più fine** di \mathcal{T}_1 .

In altre parole, una topologia più fine ha più aperti rispetto a quella confrontata.

 $^{^{1}}$ Qui usiamo la notazione $B_{i}\left(r\right)$ per indicare la palla aperta di raggio r e centro fissato x rispetto alla norma i.

1.1. SPAZIO TOPOLOGICO 7

ESEMPI.

■ La *topologia banale* è la *meno fine* di tutte, dato che ogni topologia contiene \emptyset , X.

- La *topologia discreta* è la *più fine* di tutte, dato che ogni topologia è contenuta in $\mathcal{P}(X)$.
- Su \mathbb{R} la topologia dei complementari finiti è *meno fine* di quella euclidea. Infatti un aperto $A \in CF$ su \mathbb{R} è definito come $A = \mathbb{R} \setminus \{x_1, ..., x_n\}$, cioè:

$$A = (-\infty, x_1) \cup (x_1, x_2) \cup \ldots \cup (x_n, +\infty)$$

Per n punti gli n+1 intervalli ottenuti sono aperti della topologia euclidea; essendo unione di aperti, anche A è un aperto di $\mathscr{E}_{uc\ell}$

OSSERVAZIONE. Se definiamo due topologie \mathcal{T}_1 e \mathcal{T}_2 sono due topologie di un insieme X, l'intersezione $\mathcal{T}_1 \cap \mathcal{T}_2$ è anch'essa una topologia di X e, per costruzione, è *meno fine* di \mathcal{T}_1 e \mathcal{T}_2 .

1.1.3 Base della topologia

Definizione 1.1.6. Sia (X, \mathcal{T}) uno spazio topologico. \mathcal{B} è una **base** per \mathcal{T} se:

- 1. La base è costituita da paerti per la topologia $\mathcal{T}: A \in \mathcal{B} \implies A \in \mathcal{T}(\mathcal{B} \subseteq \mathcal{T})$.
- 2. Tutti gli aperti della topologia sono unioni degli aperti delle basi: $A \in \mathcal{T} \implies \exists B_i \in \mathcal{B}, \ i \in I: A = \bigcup_{i \in I} B_i$.

Attenzione! La base \mathcal{B} non è detto che sia una topologia! Ad esempio, le unioni sono aperti della topologia, ma non è detto che siano interni alla base \mathcal{B} .

ESEMPI.

■ Nella topologia euclidea di \mathbb{R}^n una base è

$$\mathcal{B} = \{ B_{\varepsilon}(x) \mid x \in \mathbb{R}^n, \ \varepsilon > 0 \}$$
 (1.8)

Infatti, $\forall x \in A$ aperto $\exists \varepsilon_x > 0 : B_{\varepsilon_x}(x) \subseteq A$ per la definizione della topologia; segue che $A = \bigcup_{x \in A} B_{\varepsilon_x}(x)$.

■ Nella topologia euclidea di R una base è

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{R}\}\tag{1.9}$$

Un'altra base per \mathbb{R} nella $\mathscr{E}_{u,c\ell}$ è

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{Q}\}\$$

Dato $x \in \mathbb{R}$, esiste sempre una successione $\{x_n\} \in \mathbb{Q}$ decrescente o crescente tale che $\lim_{n \to +\infty} x_n = x$, essendo \mathbb{Q} denso in \mathbb{R}^a . Allora presa $a_n \setminus a$ e $b_n \nearrow b$, si ha:

$$(a, b) = \bigcup_{n \in \mathbb{N}} (a_n, b_n)$$

Questa base con estremi razionali ha *infiniti elementi*, ma in *misura minore* rispetto a quella ad estremi reali.

^aPer una discussione più approfondita a riguardo, si guardi sez. XXX a pag. XXX.

TEOREMA 1.1.0. TEOREMA DELLE BASI. (MANETTI, 3.7)

Sia X un insieme e $\mathcal{B} \subseteq \mathcal{P}(X)$ una famiglia di sottoinsiemi di X. \mathcal{B} è la base di un'*unica* topologia *se e solo se*:

- 1. L'insieme X deve essere scritto come unione di elementi della famiglia: $X = \bigcup_{B \in \mathcal{B}} B$.
- 2. Per ogni punto dell'intersezione di elementi della famiglia deve esserci un'altro elemento di essa che contiene il punto ed è sottoinsieme dell'intersezione:

$$\forall A, B \in \mathcal{B} \ \forall x \in A \cap B \ \exists C \in \mathcal{B} : x \in C \subseteq A \cap B$$
 (1.10)

DIMOSTRAZIONE. Sia \mathcal{B} la famiglia di sottoinsiemi che verifica i punti 1 e 2. Allora devo trovare una topologia di cui \mathcal{B} è base. Definiamo \mathcal{T} tale che:

$$A \in \mathcal{T} \iff A$$
 è unione di elementi di \mathscr{B}

Verifichiamo gli assiomi degli aperti su \mathcal{T} .

- I $X \in \mathcal{T}$ per ipotesi 1, $\emptyset \in \mathcal{T}$ perché è l'unione sugli insiemi di indici vuoto $(I = \emptyset)$.
- II Sia $A_i = \bigcup_i B_{ii}$, con $B_{ii} \in \mathcal{B}$. Allora:

$$\bigcup_{i} A_{i} = \bigcup_{i} \left(\bigcup_{j} B_{ij} \right) = \bigcup_{i, j} B_{ij} \implies \bigcup_{i, j} A_{i} \in \mathcal{T}$$

III Sia $A, B \in \mathcal{T}$, cioè $A = \bigcup_i A_i$ e $B = \bigcup_j B_j$ con $A_i, B_j \in \mathcal{B}$. Allora:

$$A \cap B = \left(\bigcup_{i} A_{i}\right) \cap \left(\bigcup_{j} B_{j}\right) = \bigcup_{i, j} \left(\underbrace{A_{i} \cap B_{j}}_{\in \mathcal{T} \text{ per l'ipotesi 2}}\right) \in \mathcal{T}$$

Еѕемрю. Sia $X = \mathbb{R}$ е $\mathcal{B} = \{[a, b) \mid a, b \in \mathbb{R}\}$. Verifichiamo che \mathcal{B} soddisfa il teorema appena enunciato.

- 1. $\mathbb{R} = \bigcup_{n \in \mathbb{N}} [-n, n).$
- 2. Preso $[a,b) \cap [c,d)$ si ha che esso è \varnothing o è [e,f), con $e = \max\{a, c\}$, $f = \min\{b, d\}$; in entrambi i casi l'intersezione è elemento di \mathscr{B} .

Esiste dunque una topologia su \mathbb{R} che ha base \mathcal{B} ; questa non è base per la topologia Euclidea, ad esempio, dato che gli intervalli semiaperti non sono inclusi in $\mathcal{E}_{ue\ell}$.

Notiamo inoltre che $(a, b) = \bigcup_{n \in \mathbb{N}} \left[a + \frac{1}{n}, b \right)$, dunque la topologia definita \mathscr{B} comprende

1.1. SPAZIO TOPOLOGICO

gli aperti della topologia Euclidea: $\mathscr{E}_{uc\ell}$ è meno fine di questa topologia.

1.1.4 Altri concetti topologici: chiusura, interno, frontiera e densità

Ricordiamo che, dato uno spazio topologico (X, \mathcal{T}) e un sottoinsieme $A \subseteq X$, si ha:

- *A aperto* della topologia se $A \in \mathcal{T}$.
- *A chiuso* della topologia se $\mathscr{C}A = X \setminus A \in \mathcal{T}$.

Attenzione! Essere aperto oppure essere chiuso *non si escludono a vicenda*! Un insieme può essere aperto, chiuso, entrambi o nessuno dei due. Ad esempio, il vuoto e l'insieme stesso sono aperti e chiusi allo stesso tempo, dato che per ipotesi sono aperti i loro complementari $\mathscr{C} \varnothing = X \setminus \varnothing = X$ e $\mathscr{C} X = X \setminus X = \varnothing$ sono anch'essi aperti.

DEFINIZIONE 1.1.7. Sia X spazio topologico e $A \subseteq X$. La **chiusura** \overline{A} di A è il più piccolo chiuso contente A:

$$\overline{A} = \bigcap_{\substack{A \subseteq C \\ C \text{ chiuso}}} C \tag{1.11}$$

Proprietà:

- $A \subseteq \overline{A}$.
- \blacksquare \overline{A} è un chiuso in quanto intersezione (arbitraria) di chiusi.
- $A \stackrel{.}{e}$ un chiuso $\iff A = A$.

DEFINIZIONE 1.1.8. Un punto x è aderente ad A se $x \in \overline{A}$.

DEFINIZIONE 1.1.9. Sia X spazio topologico e $A \subseteq X$. L'**interno** A^o di A è il più grande aperto contenuto in A:

$$A^{o} = \bigcup_{\substack{B \subseteq A \\ B \text{ aperto}}} B \tag{1.12}$$

Proprietà:

- \blacksquare $A^{o} \subset A$
- \blacksquare A° è un aperto in quanto unione (arbitraria) di aperti.
- $A \stackrel{.}{e} un aperto \iff A = A^{o}$.

Definizione 1.1.10. Un punto x è **interno** ad A se $x \in A^0$.

Definizione 1.1.11. Sia X spazio topologico e $A \subseteq X$. La **frontiera** ∂A di A sono i punti della chiusura di A non contenuti nel suo interno o, in altri termini, i punti aderenti sia ad A sia al suo complementare.

$$\partial A = \overline{A} \setminus A^{o} = \overline{A} \cap \overline{X \setminus A} \tag{1.13}$$

Proprietà:

 \bullet $\partial A \subseteq \overline{A}$.

 \blacksquare ∂A è un chiuso.

DEFINIZIONE 1.1.12. Sia X spazio topologico e $A \subseteq X$. A è **denso** è denso in X se $\overline{A} = X$ o, in altri termini, tutti i punti di X sono aderenti ad A.

Esempio. Il più piccolo chiuso contenente \mathbb{Q} è \mathbb{R} , poiché ogni reale è aderente ai razionali. Dunque \mathbb{Q} è denso in \mathbb{R} .

1.1.5 Intorni

Definizione 1.1.13. Sia X spazio topologico e $x \in X$. V è un **intorno** di x se $\exists A$ aperto tale che $x \in A \subseteq V$ o, in altri termini, se x è interno ad U. Definiamo inoltre la **famiglia degli intorni** di x $I(x) \subseteq \mathcal{P}(X)$:

$$I(x) = \{ V \subseteq X \mid V \text{ è intorno di } x \}$$
 (1.14)

OSSERVAZIONE. Dato $A \subseteq X$, per ogni $x \in A$ tale che A è intorno di x si può definire un aperto $A_x \subseteq A$, con $x \in A_x$. L'unione arbitraria di questi A_x risulta essere contenuta in A e pari al suo interno. Dunque, si può definire l'interno di A come $A^o = \{x \in A \mid A \in I(x)\}$; segue che A è aperto se e solo se A è intorno di ogni punto in A.

Lemma 1.1.0. Proprietà degli intorni. (Manetti, 3.20, 3.21)

- 1. Si possono estendere gli intorni: $U \in I(x)$, $U \subseteq V \implies V \in I(x)$
- 2. Le intersezioni di intorni sono ancora intorni: $U, V \in I(x) \implies U \cap V \in I(x)$
- 3. Caratterizzazione della chiusura per intorni: $B \subseteq X$, allora $x \in \overline{B} \iff \forall U \in I(x) \quad U \cap B \neq \emptyset$.

DIMOSTRAZIONE.

- I L'aperto A che soddisfa la definizione di $U \in I(x)$ è per costruzione contenuto anche in V, dunque A è un aperto che soddisfa la definizione di V intorno di x.
- II Definiti gli aperti $A_U \subseteq U$, $A_V \subseteq V$ che soddisfano la definizione di intorni di x, l'intersezione $A = A_U \cap A_V$ è un aperto contenente x. Dato che $A = A_U \cap A_V \subseteq U \cap V$, $U \cap V$ per definizione di intorno di x.
- III Per contronominale.

$$x \notin \overline{B} \iff x \notin B \land x \notin \partial B$$

$$\iff x \in X \setminus B \land x \notin \overline{B} \cap \overline{X \setminus B}$$

$$\iff x \in X \setminus B \land x \notin \partial(X \setminus B)$$

$$\iff x \in (X \setminus B)^{o}$$

$$\iff \exists U \in I(X) : x \in U \subseteq X \setminus B$$

$$\iff \exists U \in I(x) : U \cap B = \emptyset$$

1.2. FUNZIONI CONTINUE 11

Definizione 1.1.14. Sia X spazio topologico, $x \in X$ e I(x) la famiglia degli intorni di x. Una sottofamiglia $\mathcal{F} \subseteq I(x)$ è un **sistema fondamentale di intorni** di x se $\forall U \in I(x) \exists V \in \mathcal{F} : V \subseteq U$.

1.2 FUNZIONI CONTINUE

DEFINIZIONE 1.2.0. Siano X, Y spazi topologici. Una funzione $f: X \longrightarrow Y$ si dice **continua** se la controimmagine di aperti in Y è un aperto in X:

$$\forall A \text{ aperto in } Y, f^{-1}(A) \text{ è aperto in } X$$
 (1.15)

Alternativamente, f è continua se la controimmagine di chiusi in Y è un chiuso in Y.

$$\forall C \text{ chiuso in } Y, f^{-1}(C) \text{ è chiuso in } X$$
 (1.16)

OSSERVAZIONE.

Si ha la definizione di continuità con i chiusi perché la controimmagine si "comporta bene" con i complementari:

$$f^{-1}(Y \setminus A) = X \setminus f^{-1}(A)$$

■ È sufficiente verificare la definizione per gli aperti una base di *Y* perché la controimmagine si "comporta bene" con le unioni di insiemi:

$$f^{-1}\left(\bigcup_{i} A_{i}\right) = \bigcup_{i} f^{-1}\left(A_{i}\right)$$

LEMMA 1.2.0. (MANETTI, 3.25)

Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione. f è continua $iff \ \forall A \subseteq X \ f(\overline{A}) \subseteq \overline{f(A)}$.

DIMOSTRAZIONE. Ricordiamo che per ogni funzione si ha:

- $f(f^{-1}(C)) \subseteq C$
- $\blacksquare \quad A \subseteq f^{-1}\left(f\left(A\right)\right)$

 \implies) Sia $A \subseteq X$. Dobbiamo dimostrare che $f(\overline{A})\overline{f(A)}$. Sappiamo che se un insieme è contenuto in un altro, lo stesso vale per le immagini e le controimmagini. Allora:

$$f(A) \subseteq \overline{f(A)}$$
$$A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\overline{f(A)})$$

 $f^{-1}(\overline{f(A)})$ è un chiuso (in X in quanto controlmmagine tramite una funzione continua di un chiuso) che contiene A. Ma allora anche la chiusura, che è il più piccolo chiuso

contenente A, è contenuta in $f^{-1}(\overline{f(A)})$. Segue quindi:

$$\overline{A} \subseteq f^{-1}\left(\overline{f(A)}\right)$$
$$f\left(\overline{A}\right) \subseteq f\left(f^{-1}\left(f(A)\right)\right) \subseteq \overline{f(A)}$$

 \Leftarrow) Sia $C \subseteq Y$ chiuso e sia $A = f^{-1}(C)$. Dobbiamo dimostrare che A è chiuso in X. Poiché $A \subseteq \overline{A}$ è vero per definizione, dimostriamo che $\overline{A} \subseteq A$. Per ipotesi:

$$f\left(\overline{A}\right)\subseteq\overline{f\left(A\right)}$$

$$f\left(\overline{f^{-1}\left(C\right)}\right)\subseteq\overline{f\left(f^{-1}\left(C\right)\right)}\subseteq\overline{C}=C$$

Applicando nuovamente la controimmagine:

$$f\left(\overline{f^{-1}\left(C\right)}\right) \subseteq C$$

$$\overline{A} = \overline{f^{-1}\left(C\right)} \subseteq f^{-1}\left(f\left(\overline{f^{-1}\left(C\right)}\right)\right) \subseteq f^{-1}\left(C\right) = A$$

Dunque la controimmagine A di un chiuso C è un chiuso.

Теоrема 1.2.0. Manetti, 3.26 La composizione di funzioni continue è continua.

$$f:Y\longrightarrow Z$$
 , $g:X\longrightarrow Y$ continue $\Longrightarrow f\circ g:X\longrightarrow Z$ continua (1.17)

DIMOSTRAZIONE. La controimmagine della composizione di funzioni $f \circ g$ è definita come $f^{-1}(f \circ g) = g^{-1} \circ f^{-1}$. Allora A aperto in $Z \implies f^{-1}(A)$ aperto $\implies g^{-1}(f^{-1}(A))$ aperto.

DEFINIZIONE 1.2.1. (MANETTI, 3.27)

Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione. Dato $x \in X$ f è **continua** in x se:

$$\forall U \in I(f(x)) \exists V \in I(x) : f(V) \subseteq U \tag{1.18}$$

Questa è la generalizzazione della definizione tradizionale della continuità affrontata in *Analisi UNO*.

TEOREMA 1.2.1. (MANETTI, 3.28)

Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione. f è continua per aperti $\iff f$ è continua in $x \ \forall x \in X$.

DIMOSTRAZIONE. \Longrightarrow) Sia $x \in X$ e $U \in I(f(x))$. Per definizione di intorno $\exists A$ aperto in Y tale che $f(x) \in A \subseteq U$. Basta porre $V = f^{-1}(A)$: per continuità è aperto in X e, dato che $x \in f^{-1}(A)$ perché $f(x) \in A$, allora V è intorno di x. Segue che $f(V) = f(f^{-1}(A)) \subseteq A \subseteq U$.

 \iff) Sia $A \subseteq Y$ aperto. Dobbiamo dimostrare che $f^{-1}(A)$ sia aperto. Preso $x \in f^{-1}(A)$ si ha che $f(x) \in A$; dunque A è, in quanto aperto, intorno di f(x). Allora, poiché f è

1.3. OMEOMORFISMI

continua in x, $\exists V \in I(x)$ tale che $f(V) \subseteq A$.

Segue che $x \in V \subseteq f^{-1}(A)$, cioè $f^{-1}(A)$ è intorno di x poiché contiene un intorno V dello stesso punto. Dunque $f^{-1}(A)$ aperto perché è intorno di ogni suo punto.

Definizione 1.2.2. Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione.

- f è aperta se $\forall A$ aperto in X f (A) è aperto in Y.
- f è **chiusa** se $\forall C$ chiuso in X f (C) è chiuso in Y.

OSSERVAZIONE. È sufficiente verificare la definizione di funzione aperta per gli aperti di una base di *X* perché l'immagine si "comporta bene" con le unioni di insiemi:

$$f\left(\bigcup_{i} A_{i}\right) = \bigcup_{i} f\left(A_{i}\right)$$

Attenzione! Una funzione f aperta che non sia omeomorfismo non è necessariamente una funzione aperta. Si prenda $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ (la proiezione sulla prima coordinata):

- f è continua per ovvi motivi.
- f è *aperta*. Infatti, presa una base su \mathbb{R}^2 come $\{B_{\varepsilon}(x, y)\}$, si ha che $f(B_{\varepsilon}(x, y)) = (x \varepsilon, x + \varepsilon)$ che sono aperti in \mathbb{R} .
- f non è chiusa. Prendiamo $C = \{(x, y) \in \mathbb{R}^2 \mid xy = 1\}$ e definiamo la funzione $g : \mathbb{R}^2 \longrightarrow \mathbb{R}$ continua; vediamo facilmente come $C = g^{-1}(\{1\})$ e, essendo $(x, y) \longmapsto xy$

1 chiuso in R, C è controimmagine continua di un chiuso e dunque chiuso. Si ha dunque $f(C) = \mathbb{R} \setminus \{0\}$, che tuttavia non è un chiuso della topologia Euclidea in quanto non contiene infiniti punti (una base della $\mathcal{E}_{uc\ell}$ è formata da intervalli, che dunque contengono infiniti punti).

1.3 OMEOMORFISMI

Definizione 1.3.0. Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione. f è un **omeomorfismo** se è *biunivoca*, *continua* e la sua inversa è *continua*; più precisamente, esiste $g: Y \to X$ continua tale per cui $g \circ f = Id_X$ e $f \circ g = Id_Y$.

Due spazi topologici si dicono **omeomorfi** se esiste un omeomorfismo fra i due; in notazione $X \cong Y$.

Intuitivamente... Possiamo immaginare l'omeomorfismo come una deformazione che piega e allunga uno spazio senza formare strappi (f continua), creare nuovi punti (f iniettiva), sovrapposizioni (f suriettiva) o incollamenti () f^{-1} continua): in questo modo si può trasformare lo spazio in un altro che mantenga le stesse proprietà topologiche

dell'originale.

Si vede allora facilmente che un *quadrato* ed un *cerchio* sono omeomorfi, mentre una *sfera* ed un *toro* (la versione "topologica" di una ciambella col buco, si veda pag. ??) non lo sono, dato che non posso creare né far sparire quel buco; allo stesso modo una *retta* non è omeomorfa ad un *punto*, dato che non posso "accumulare" tutti i punti della retta in uno solo!

Seppur questa "visualizzazione" è una buona intuizione del funzionamento degli omeomorfismi, **non è completamente accurata**. Ad esempio, un *nastro di Möbius* (per la si veda **??**) con un mezzo-giro ed uno con tre mezzi-giri sono omeomorfi, ma con la nostra intuizione non si arriva a dire perché.

LEMMA 1.3.0. (MANETTI, 3.31)

Siano X, Y spazi topologici e $f: X \longrightarrow Y$ funzione *continua*. Allora vale:

- 1. f omeomorfismo \iff f aperta e biettiva.
- 2. f omeomorfismo $\iff f$ chiusa e biettiva.

DIMOSTRAZIONE. Dimostriamo la prima condizione, la seconda è analoga.

 \Longrightarrow) Un omeomorfismo è biettiva per definizione. Dimostriamo dunque che f sia aperta, cioè $\forall A \in X$ aperto $f(A) \in Y$ è aperto. Ma definita $g: Y \longrightarrow X$ l'inversa continua dell'omeomorfismo f (cioè $f^{-1} = g$), si ha che $\forall A \in X$ $g^{-1}(A) = f(A)$ è aperto. \iff f è già biettiva e continua per ipotesi. Dobbiamo dimostrare che l'inversa $g: Y \longrightarrow X$ sia continua, cioè $\forall A \in X$ aperto $g^{-1}(A) \in Y$ è aperto. Ma $g^{-1}(A) = f(A)$ che è aperto perché f è aperta.

1.4 TOPOLOGIA INDOTTA

DEFINIZIONE 1.4.0. Dati:

- \blacksquare Uno spazio topologico X.
- \blacksquare Un insieme Y.
- Una funzione $f: Y \longrightarrow X$

Allora su Y si può definire la **topologia indotta** come la topologia meno fine tra tutte quelle che rendono f continua.

1.5 SOTTOSPAZIO TOPOLOGICO

Definizione 1.5.0. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme. Su Y si può definire la seguente *topologia di sottospazio*:

$$U \subseteq Y$$
 aperto in $Y \iff \exists V \subseteq X$ aperto in $X(V \in \mathcal{T}) : U = V \cap Y$ (1.19)

Definita l'**inclusione** $i: Y \xrightarrow{y} \xrightarrow{X} X$, la topologia di sottospazio è la topologia indotta da i, cioè la topologia meno fine fra tutte quelle che rendono continua l'inclusione.

DIMOSTRAZIONE. Dimostriamo la continuità dell'inclusione. Se A aperto in X, $i^{-1}(A) =$ $A \cap Y$ (tutti gli elementi di A contenuti in Y) è aperto in Y per definizione.

Definizione 1.5.1. Sia X uno spazio topologico (X, \mathcal{T}) e $Y \subseteq X$ un suo sottoinsieme.

- $A \subseteq Y$ aperto in $Y \iff A = U \cap Y$ con U aperto in X.
- $C \subseteq Y$ **chiuso** in $Y \iff C = U \cap Y$ con V chiuso in X.
- Se \mathscr{B} è una base della topologia di $X \implies \mathscr{B}' := \{B \cap Y \mid B \in \mathscr{B}\}$ è base della topologia di sottospazio.

OSSERVAZIONE. Se $A \subseteq Y$ è aperto della topologia di X, allora A è aperto in Y poiché $A = A \cap Y$.

ESEMPI. Sia $Y = [0, 1] \subset \mathbb{R} = X$ in topologia Euclidea.

- $A = (\frac{1}{2}, 1)$ è aperto in Y in quanto è già aperto in X.
- $A = \begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$ è chiuso in Y in quanto è già chiuso in X. $B = \left(\frac{1}{2}, 1\right]$ è aperto in Y in quanto si ha, ad esempio, $A = \left(\frac{1}{2}, \frac{3}{2}\right) \cap Y$.

LEMMA 1.5.0. (MANETTI, 3.55)

Sia $A \subseteq Y \subseteq X$ con X spazio topologico e Y sottospazio topologico. Definiamo:

- $c\ell_Y(A) = \text{chiusura di } A \text{ in } Y.$
- $c\ell_X(A) = \text{chiusura di } A \text{ in } X.$

Allora $c\ell_Y(A) = c\ell_X(A) \cap Y$.

DIMOSTRAZIONE. Preso $\mathscr{C} = \{C \subseteq X \mid C \text{ chiuso in } X \text{ e } A \subseteq C\}$, per definizione di chiusura si ha:

$$c\ell_X(A) = \bigcap_{C \in \mathscr{C}} C$$

Ora sia $\mathscr{C}' = \{C \cap Y \mid C \in \mathscr{C}\}$. Allora, usando i chiusi del sottospazio:

$$c\ell_{Y}(A) = \bigcap_{C \in \mathscr{C}} (C \cap Y) = \left(\bigcap_{C \in \mathscr{C}} C\right) \cap Y = c\ell_{Y}(A)$$

1.5.1 Immersione

Definizione 1.5.2. Sia $f: X \longrightarrow Y$ funzione tra X, Y spazi topologici. Se:

- \blacksquare f continua.
- \blacksquare f iniettiva

Allora f è un'**immersione** se e solo se ogni aperto in X è controimmagine di un aperto di *Y* per *f* , cioè se e solo se si ha che:

$$B \subseteq X$$
 è aperto in $X \iff B = f^{-1}(A)$, A aperto in Y (1.20)

OSSERVAZIONE. Per costruzione f è immersione se la topologia su X è la topologia indotta, dunque la meno fine che rende f continua.

Se sull'immagine $f(X) \subseteq Y$ mettiamo la topologia di sottospazio di Y, si ha che

$$f: X \longrightarrow Y$$
 immersione $\iff f_{\bullet}: X \longrightarrow f(X)$ è omeomorfismo

Esempio di non immersione.

$$\begin{array}{l}
[0, 1) \to \mathbb{R}^2 \\
t \mapsto (\cos 2\pi t, \sin 2\pi t)
\end{array} \tag{1.21}$$

Notiamo innanzitutto che $f([0, 1)) = S^1$. Si ha:

- f_{\bullet} è continua per ovvi motivi
- f_{\bullet} iniettiva, dato che l'unico caso problematico poteva essere t=1 che non nel dominio (si avrebbe avuto infatti $f_{\bullet}(0) = f_{\bullet}(1)$).
- f_{\bullet} suriettiva per costruzione.

Tuttavia f_{\bullet} non è immersione, dato che f_{\bullet}^{-1} non è continua. Preso $P=(1,\ 0)\in S^1$, f_{\bullet}^{-1} non è continua in P. Infatti, gli intorni di 0 in $[0,\ 1)$ sono del tipo $U=[0,\ \varepsilon)$, dunque dovrei trovare $\forall U$ un intorno V di $P\in S^1: f_{\bullet}^{-1}(V)\subseteq U$.

Tuttavia, solo la parte superiore di $V \in I(P)$ ha la controimmagine interna ad U: la parte inferiore, poiché sono le immagini di punti prossimi all'estremo 1 del dominio, non hanno controimmagini in U. Pertanto, non abbiamo l'omeomorfismo di f_{\bullet} e dunque l'immersione.

Definizione 1.5.3. Sia $f: X \longrightarrow Y$ funzione tra X, Y spazi topologici.

- f si dice **immersione aperta** se f è chiusa.
- f si dice **immersione chiusa** se f è aperta.

LEMMA 1.5.1. (MANETTI, 3.59)

Sia $f: X \longrightarrow Y$ funzione *continua* tra X, Y spazi topologici.

- 1. f iniettiva e aperta \implies f è immersione (aperta)
- 2. f iniettiva e chiusa \implies f è immersione (chiusa)

DIMOSTRAZIONE. Dimostriamo il caso chiuso, il caso aperto è analogo. Preso $C \subseteq X$ chiuso, sappiamo che f(C) è chiuso in Y, ma possiamo sempre dire che $f(C) = f(C) \cap f(X)$ in quanto $f(C) \subseteq \cap f(X)$. Dunque f(C) è un chiuso del sottospazio f(X). Segue che ogni chiuso di C è un chiuso dell'immagine di f, dunque $f_{\bullet}: X \longrightarrow f(X)$ è:

- Continua perché lo è f.
- Biunivoca perché f_{\bullet} è iniettiva in quanto lo è f e suriettiva per definizione.
- Chiusa per costruzione.

 f_{\bullet} è dunque omeomorfismo ed f è immersione (chiusa).

1.6 PRODOTTI TOPOLOGICI

DEFINIZIONE 1.6.0. Siano P, Q spazi topologici e $P \times Q$ il suo prodotto cartesiano. Definite le **proiezioni**:

$$p: P \times Q \longrightarrow P$$

$$(x, y) \longmapsto x$$

$$(1.22)$$

$$q: P \times Q \longrightarrow Q$$

$$(x, y) \longmapsto y$$

$$(1.23)$$

La **topologia prodotto** \mathcal{P} è la topologia *meno fine* fra quelli che rendono p e q *continue*. In particolare, ricordando l'osservazione 1.2, la topologia prodotto è l'intersezione di *tutte* le topologia che rendono continue p e q.

TEOREMA 1.6.0. (MANETTI, 3.61)

- 1. Una base della topologia \mathcal{P} è data dagli insiemi della forma $U \times V$ dove $U \subseteq P$ aperto, $V \subseteq Q$ aperto.
- 2. p, q sono aperte; inoltre $\forall (x, y) \in P \times Q$ le restrizioni:

$$p_{|}: P \times \{y\} \longrightarrow P$$

$$(x, y) \longmapsto x$$

$$(1.24)$$

$$q_{|}: \{x\} \times Q \longrightarrow Q$$

$$(x, y) \longmapsto y$$

$$(1.25)$$

Sono omeomorfismi.

3. Data $f: X \longrightarrow P \times Q$ con X spazio topologico, si ha che:

$$f \text{ continua} \iff f_1 = p \circ f, f_2 = q \circ f \text{ continue}$$
 (1.26)

DIMOSTRAZIONE.

- I Dimostriamo che:
 - A) La famiglia $\{U \times V\}$ è base per una topologia \mathcal{T} .
 - B) Pè meno fine di \mathcal{T} .
 - C) \mathcal{T} è meno fine di P.

In questo modo avremo che la topologia $\mathcal T$ è la topologia prodotto $\mathcal P$ e ne conosceremo una base.

- a) Segue dal teorema delle basi 1.1 (Manetti, 3.7). Infatti
 - i. $P \times Q$ appartiene alla famiglia $\{U \times V\}$, dato che per definizione gli insiemi stessi $P \in Q$ sono aperti.
 - ii. L'intersezione di due elementi della famiglia appartiene alla famiglia: $(U_1 \times V_1) \cap (U_2 \times V_2) = (U_1 \cap U_2) \times (V_1 \cap V_2)$.
- b) Per definizione \mathcal{P} è la meno fine fra tutte le topologie sul prodotto. Dunque, per dimostrare A) basta vedere che p, q sono continue rispetto alla topologia \mathcal{T} .

Presa la proiezione p, sia $U\subseteq P$ aperto. Si ha che $p^{-1}\left(U\right)=U\times Q$ è aperto

in \mathcal{T} in quanto è prodotto di aperti; in particolare sta nella base! Dunque p è continua, e un ragionamento analogo vale per q.

c) Dobbiamo dimostrare che ogni aperto di \mathcal{T} è anche aperto di \mathscr{P} . Presi $U \subseteq P$, $V \subseteq Q$ allora:

$$U \times V = (U \cap P) \times (V \cap Q) = (U \times P) \cap (V \times Q) = p^{-1}(U) \cap q^{-1}(V)$$

Poichè p, q sono continue e U, V sono aperti, anche $p^{-1}(U)$, $q^{-1}(V)$ sono aperti; segue che la loro intersezione è aperta e dunque $U \times V$ è aperto della topologia \mathcal{T} .

II Dimostriamo il caso con p_{\parallel} , dato che il caso con q_{\parallel} è analogo. Preso un aperto della base $U \times V$, studiamo gli aperti del sottospazio $P \times \{y\}$.

$$(U \times V) \cap (P \times \{y\}) = \begin{cases} \emptyset & \text{se } y \notin V \\ U \times \{y\} & \text{se } y \in V \end{cases}$$

Gli aperti del sottospazio $P \times \{y\}$ sono tutte e solo le unioni di $U \times \{y\}$, al variare di Y di aperti dello spazio P. Si ha dunque:

$$p_1(U \times \{y\}) = U$$

Dunque, essendo p_{\parallel} continua perché restrizione della proiezione (che è continua per definizione), biettiva per costruzione e aperta per i risultati appena ottenuti si ha che $P \times \{y\}$ e P sono omeomorfi, cioè p_{\parallel} è omeomorfismo.

Per dimostrare che p sia aperta, preso A aperto in $P \times Q$, si ha:

$$p(A) = p\left[\bigcup_{y \in \mathbb{Q}} (A \cap P \times \{y\})\right] = \bigcup_{y \in \mathbb{Q}} p(A \cap P \times \{y\})$$
 (1.27)

Per i ragionamenti della prima parte, $A \cap P \times \{y\}$ è aperto di $P \times \{y\}$ e sappiamo dunque che $p_{|}(A \cap P \times \{y\})$ è aperto: ne segue che $p(A \cap P \times \{y\})$ è aperto in P al variare di y. Allora anche p(A) è aperto (in quanto è unione di aperti) e dunque p è aperta.

III \Longrightarrow) Poiché $f: X \longrightarrow P \times Q$, $p: P \times Q \longrightarrow P$ e $q: P \times Q \longrightarrow Q$ sono continue, le composizioni $f_1 = p \circ f: X \longrightarrow P$, $f_2 = q \circ f: X \longrightarrow Q$ sono banalmente continue. \Longleftrightarrow) Dobbiamo dimostrare che f sia continua. Sia $A = U \times V \subseteq P \times Q$ aperto della base:

$$f^{-1}(U \times V) = f^{-1}(p^{-1}(U) \cap q^{-1}(V)) = f^{-1}(p^{-1}(U)) \cap f^{-1}(q^{-1}(V))$$
$$= (pf)^{-1}(U) \cap (qf)^{-1}(V)$$

Per ipotesi pf, qf sono continue, dunque loro controimmagini di aperti sono ancora aperti; inoltre, essendo la loro intersezione un aperto, segue l'implicazione.

1. Date le basi $\mathcal B$ della topologia di X e $\mathcal C$ della topologia di Y, allora:

$$\mathcal{D} = \{ U \times V \mid U \in \mathcal{B}, \ V \in \mathcal{C} \} \tag{1.28}$$

è una base per la topologia prodotto.

2. Dati $x \in X$, $y \in Y$, siano $\mathcal{U} = \{U_i\}_{i \in I}$ un sistema fondamentale di intorni di x e $\mathcal{V} = \{V_j\}_{j \in J}$ un sistema fondamentale di intorni di y. Poniamo $Wij := U_i \times V_j \subseteq X \times Y$. Allora:

$$\mathcal{W} = \left\{ W_{ij} \right\}_{j \in I} \tag{1.29}$$

è un sistema fondamentale di intorni di $(x, y) \in X \times Y$.

3. Se $A \subseteq X$, $B \subseteq Y$, allora $\overline{A \times B} = \overline{A} \times \overline{B}$. In particolare, il prodotto di chiusi è chiuso.

DIMOSTRAZIONE.

- I Segue dalla dimostrazione dal primo punto del teorema 1.4 ((MANETTI, 3.61)).
- II Per definizione di sistema fondamentale di intorni si ha:

$$\forall U \in I(x) \ \exists U_i \in \mathcal{U} : U_i \in U$$

$$\forall V \in I(y) \ \exists V_i \in \mathcal{V} : V_j \in V$$

 \implies) Per ogni intorno U di x e V di y, si ha $W \in I(x, y)$. Inoltre, presi gli intorni U_i e V_j definiti come sopra, si ha che $W_{ij} = U_i \times V_j \in I(x, y)$ per definizione di topologia prodotto; segue che, per ogni intorno W di questa forma esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U \times V \subseteq W$$

 \Leftarrow) Prendiamo un intorno $W \in I(x, y)$, esiste un aperto $W' \subseteq W$. Poiché W' appartiene al prodotto $X \times Y$, si ha che $W' = \bigcup_k U_k \times V_k$ con U_k e V_k aperti di X e Y. Preso allora $(x, y) \in W'$, esiste gli aperti U_k e V_k che contengono rispettivamente x e y.

Segue dunque che $U_k \in I(x)$ e $V_k \in I(y)$ e dunque dal sistema fondamentale di intorni si ha che $\exists U_i \in \mathcal{U}, \ V_j \in \mathcal{V}$ tali che $U_i \in U_k, \ V_j \in V_k$. Allora definito $W_{ij} = U_i \times V_j$, si ha per ogni intorno W di esiste W_{ij} tale che:

$$W_{ij} = U_i \times V_j \subseteq U_k \times V_k \subseteq W' \subseteq W$$

III

$$(xy) \in \overline{A \times B} \iff \forall W \in I(x, y) \quad W \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \times V) \cap (A \times B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad (U \cap A) \times (V \cap B) \neq \emptyset$$

$$\iff \forall U \in I(x), \ \forall V \in I(y) \quad U \cap A \neq \emptyset, \ V \cap B \neq \emptyset$$

$$\iff \forall U \in I(x) \quad U \cap A \neq \emptyset, \ \forall V \in I(y) \quad V \cap B \neq \emptyset$$

$$\iff x \in \overline{A} \land y \in \overline{B} \iff ()(xy) \in \overline{A} \times \overline{B}$$

In particolare, se A e B sono chiusi, avendo che $A = \overline{A}$ e $B = \overline{B}$, otteniamo:

$$A \times B = \overline{A} \times \overline{B} = \overline{A \times B}$$

OSSERVAZIONE. Il prodotto di un numero **finito** di spazi topologici è pari al prodotto di due spazi:

$$X \times Y \times Z = (X \times Y) \times Z$$

In particolare una base di aperti di $X_1 \times ... \times X_n$ è data da:

$$\mathcal{B} = \{A_1 \times ... \times A_n \mid A_i \text{ aperto in } X_i\}$$

1.7 ASSIOMI DI SEPARAZIONE: T1 E HAUSDORFF

DEFINIZIONE 1.7.0. Uno spazio topologico X si dice T_1 se ogni sottoinsieme finito è chiuso, in particolare se e solo se tutti i punti sono chiusi.

In termini di intorni, X è T_1 se presi due punti distinti x e y esiste un intorno per il punto x che non contiene y e viceversa:

$$\forall x, y \in X \quad x \neq y \implies \frac{\exists U \in I(x) \quad y \notin U}{\exists V \in I(y) \quad x \notin V}$$
 (1.30)

DIMOSTRAZIONE. Dimostriamo che la definizione di T1 implica quella per intorni e viceversa.

 \implies) Siano $x, y \in X$ $x \neq y$. Per ipotesi $\{x\}$ è chiuso, dunque $V = X \setminus \{x\}$ è aperto. Poiché $y \neq x$, allora $y \notin \{x\}$ $\implies y \in V$, ed essendo V aperto, $V \in I(y)$. Dunque V è intorno di y e banalmente $x \notin V$.

 \iff Dobbiamo dimostrare che $\forall x \in \{x\}$ è chiuso, cioè $A = X \setminus \{x\}$ è aperto. Sia $y \in A$: $y \notin \{x\}$ $\implies y \neq x$. Per ipotesi allora esiste un intorno V di y tale che $x \notin V$. Necessariamente si ha che $V \subseteq A$, dunque A è anch'esso intorno di y. Per l'arbitrarietà di y, A è intorno di ogni suo punto, dunque A è aperto.

OSSERVAZIONE.

1. $X \in T_1$ se e solo se per ogni punto $x \in X$ si ha:

$$\{x\} = \bigcap_{U \in I(x)} U \tag{1.31}$$

2. Ogni spazio metrico è T1

DIMOSTRAZIONE.

I \Longrightarrow) Se X è T_1 , allora $\forall \{y\} \subseteq X$ è chiuso. Fissato x, prendiamo $y \in \bigcap_{U \in I(x)} U$.

Allora $\forall U \in I(x) \ \{y\} \cap U \neq \emptyset$. Da ciò segue che $x \in \overline{\{y\}} = \{y\}$, cioè y = x. Allora $\{x\} = \bigcap_{U \in I(x)} U$.

 \Leftarrow) Per dimostrare che X è **T**1 è sufficiente dimostrare che $\{x\}$ è chiuso, dato che ogni insieme finito in X si può vedere come unione finita di singoletti $\{x\}$ e per gli assiomi dei chiusi otteniamo un chiuso. In particolare, ci basta dimostrare che $\{x\} \subseteq \{x\}$, essendo l'altra implicazione ovvia per definizione.

Sia $y \in \overline{\{x\}}$. Per definizione di chiusura $\forall V \in I(y) \ V \cap \overline{\{x\}} \neq \emptyset \implies \forall V \in I(y) \ V \cap \overline{\{x\}} = \{x\}$, cioè l'intersezione dei V deve incontrare $\{x\}$:

$$\bigcap_{V \in I(v)} V \cap \{x\} = \{x\}$$

Per ipotesi, $\bigcap_{V \in I(y)} V = \{y\}$, dunque $\{y\} \cap \{x\} = \{x\} \implies y \in \{x\} \implies \overline{\{x\}} \subseteq \{x\}$ e vale

le ipotesi.

II Se X è metrico e $x \in X$, il sistema fondamentale di intorni di X sono gli intorni centrati in X di raggio arbitrario, cioè $B_{\varepsilon}(x)$. Allora:

$$\bigcap_{U\in I(x)}U=\bigcap_{\varepsilon>0}B_{\varepsilon}(x)=\{x\}$$

E per la proposizione precedente si ha che X metrico è T_1 .

DEFINIZIONE **1.7.1**. Uno spazio topologico *X* si dice di **Hausdorff** o **T2** se per ogni coppia di punti distinti esistono due intorni disgiunti:

$$\forall x, y \in X \quad x \neq y \implies \frac{\exists U \in I(x)}{\exists V \in I(y)} : U \cap V = \emptyset$$
 (1.32)

OSSERVAZIONE.

1. X è di **Hausdorff** se e solo se per ogni punto $x \in X$ si ha:

$$\{x\} = \bigcap_{U \in I(x)} \overline{U} \tag{1.33}$$

- 2. Essere Hausdorff implica essere T1, ma non il viceversa.
- 3. Ogni spazio metrico è di Hausdorff.

DIMOSTRAZIONE.

I \Longrightarrow) Sia X di **Hausdorff**. Fissato x, sia $y \in \overline{U}$, con $U \in I(x)$. Per definizione di \overline{U} , $\forall V \in I(y)$ $V \cap U \neq \emptyset$. Se $y \neq x$, si avrebbe un assurdo, dato che $\nexists V \in I(y)$: $U \cap V = \emptyset$ e dunque X non sarebbe di **Hausdorff**.

←) Dobbiamo dimostrare che X è di **Hausdorff**. Sia $x \neq y$. Allora $y \notin \{x\} = \bigcap_{U \in I(x)} \overline{U}$. Allora, per definizione di chiusura si ha che $\forall U \in I(x) \exists V \in I(x)$

 $I(y): V \cap U = \emptyset$. Segue dunque la tesi.

- II Avendo per ogni coppia di punti distinti due intorni disgiunti in quanto **Hausdorff**, banalmente i due intorni verificano la definizione di **T**1 per intorni. Il viceversa *non* è vero: prendendo la topologia dei complementari finiti *CF* su uno spazio *X non* finito, essa è **T**1 ma non **Hausdorff**.
- III Presi $x \neq y$, allora d(x, y) = d > 0. Dunque, per disuguaglianza triangolare si ha sempre che:

$$B_{d/\Delta}(Y) \cap B_{d/\Delta}(Y) = \emptyset$$

Proposizione 1.7.0. 1.21(Manetti, 3.6.8)

Sottospazi e prodotti di spazi di Hausdorff sono Hausdorff.

DIMOSTRAZIONE.

- Sia $Y \subseteq X$ con X spazio topologico, Y con la topologia di sottospazio. Prendiamo $x, y \in Y$ con $x \neq y$.
 - X di **Hausdorff** implica che $\exists U, \ V \subseteq X$ intorni rispettivamente di x e y tali che $U \cap V = \emptyset$. Basta prendere allora $U \cap Y, \ V \cap Y$: sono intorni sempre di x e y in Y che restano comunque disgiunti.
- Sia $X \times Y$ con X, Y spazi topologici. Prendiamo $(x_1, y_1) \neq (x_2, y_2)$. Questo significa che $x_1 \neq x_2$ oppure $y_1 \neq y_2$.
 - Scegliamo senza perdita di generalità $x_1 \neq x_2$. Essendo X di **Hausdorff**, $\exists U_1, U_2$ (intorni) aperti in X tali che $x_1 \in U_1, x_2 \in U_2 : U_1 \cap U_2 = \emptyset$. Allora:

$$U_1 \times Y$$
 intorno di (x_1, y_1) $\Longrightarrow U_1 \times Y \cap U_2 \times Y = (U_1 \cap U_2) \times (Y \cap Y) = \emptyset$

TEOREMA 1.7.0. (MANETTI, 3.69)

Sia X spazio topologico. La **diagonale** $\Delta \subseteq X \times X$ è l'insieme delle coppie che hanno uguali componenti:

$$\Delta = \{(x, \ x) \mid x \in X\} \tag{1.34}$$

Si ha:

X di **Hausdorff** $\iff \Delta$ chiuso in $X \times X$.

DIMOSTRAZIONE. \Longrightarrow) Dobbiamo dimostrare che Δ è chiuso, cioè $X \times X \setminus \Delta$ aperto, ovvero $X \times X \setminus \Delta$ è intorno di ogni suo punto.

Preso $(x, y) \in X \times X \setminus \Delta \implies x \neq y$ dato che *non* appartiene alla diagonale. Essendo X di **Hausdorff**, $\exists U, V : x \in U, y \in V$ (intorni) aperti disgiunti. Allora $U \times V \cap \Delta = \emptyset$: se così non fosse, ci potrebbero essere dei valori della diagonale che appartengono ad $U \times V$, cioè esisterebbe almeno una coppia (x', y') tale che x' = y', ovvero gli intorni non sarebbero disgiunti. Allora $(x, y) \in U \times V \subseteq X \times X \setminus \Delta$.

 \Leftarrow) Siano $x, y \in X, x \neq y$. Allora $(x, y) \in \subseteq X \times X \setminus \Delta$, che è aperto per ipotesi. Necessariamente esiste un aperto della base della topologia prodotto che contiene la coppia: $(x, y) \in U \times V \subseteq X \times X \setminus \Delta$. Per gli stessi ragionamenti dell'altra implicazione, si ha che $x \in U$, $y \in V$ con U, V aperti (e dunque intorni) disgiunti. Segue che X è di **Hausdorff**.

Proposizione 1.7.1.

1. Siano $f, g: X \longrightarrow Y$ continue, Y di **Hausdorff**. Sia C il luogo dei punti dove f e g coincidono:

$$C = \{x \in X \mid f(x) = g(x)\}$$
 (1.35)

Allora *C* è chiuso.

2. Sia $f: X \longrightarrow X$ continua, X di **Hausdorff**. Sia $F_{ix}(f)$ il luogo dei **punti fissi** di f e g coincidono:

$$F_{ix}(f) = \{x \in X \mid f(x) = x\} \tag{1.36}$$

Allora $F_{ix}(f)$ è chiuso.

3. Siano $f, g: X \longrightarrow Y$ continue, Y di **Hausdorff** e $A \subseteq X$ denso in X. Allora

$$\forall x \in A \quad f(x) = g(x) \implies \forall x \in X \quad f(x) = g(x)$$
 (1.37)

4. Sia $f: X \longrightarrow Y$ continua, Y di **Hausdorff**. Sia Γ_f il **grafico** di f le insieme delle coppie (x, f(x)) formate dai punti del dominio e le corrispettive immagini tramite f.

$$\Gamma_f = \{(x, y) \in X \times Y \mid y = f(x)\}\$$
 (1.38)

Allora Γ_f è chiuso in $X \times Y$.

DIMOSTRAZIONE.

- I Definiamo la funzione $h: X \longrightarrow X \times Y$. Essa è continua perché le componenti sono continue; considerata la diagonale Δ_Y di $Y \times Y$, si ha che $C = h^{-1}(\Delta_Y)$ è la controimmagine tramite una funzione continua di un chiuso e quindi chiuso.
- II Basta porre al punto 1 $g = Id_X$.
- III Per ipotesi $A \subseteq h^{-1}(\Delta_Y)$. In quanto A è denso in X, $\overline{A} = X$. Dunque:

$$X = \overline{A} \subseteq \overline{h^{-1}(\Delta_Y)} = h^{-1}(\Delta_Y)$$

Questo è vero in quanto Y è di **Hausdorff** e la diagonale Δ_Y è un chiuso: segue che $h^{-1}(\Delta_Y)$ è chiuso e dunque pari alla sua chiusura. Si ha la tesi.

IV Definiamo la funzione continua $l: X \times Y \longrightarrow Y \times Y \ (x, y) \longmapsto (f(x), y)$. Allora $\Gamma_f = l^{-1}(\Delta_Y)$ è un chiuso.

1.8 PROPRIETÀ TOPOLOGICA

DEFINIZIONE 1.8.0. Una **proprietà topologica** P è una caratteristica degli spazi topologici per cui se ogni spazio X che possiede quella proprietà P è omeomorfo ad uno spazio Y, allora anche Y ha quella proprietà (e viceversa):

$$X \cong Y \Longrightarrow [X \text{ ha } P \Longleftrightarrow Y \text{ ha } P]$$
 (1.39)

In altre parole, una proprietà topologica è invariante rispetto agli omeomorfismi.

OSSERVAZIONE. Per verificare che P è una proprietà topologica dati due spazi omeomorfi $X \cong Y$, basta in realtà verificare solo che se X ha la proprietà P allora anche Y la ha. Invece, si può verificare che due spazi **non** sono omeomorfi trovando una proprietà topologica che non condividono tra di loro.

Esercizio. (Manetti, 3.56)

Siano X, Y spazi topologici con Y di **Hausdorff**. Se esiste $f: X \longrightarrow Y$ continua e iniettiva, allora X è di **Hausdorff**.

DIMOSTRAZIONE. Siano x, $y \in X$ con $x \neq y$. Essendo f iniettiva, $f(x) \neq f(y) \in Y$: in quanto Y è di **Hausdorff**, $\exists U$, V (intorni) aperti disgiunti in Y che contengono rispettivamente f(x) e f(y).

Per continuità di f le controimmagini di questi intorni aperti sono aperti e per iniettività sono ancora disgiunti: $\exists f^{-1}(U), f^{-1}(V)$ (intorni) aperti disgiunti che contengono rispettivamente x e y. Segue che X è di **Hausdorff**.

Proposizione 1.8.0. Essere di Hausdorff è una proprietà topologica, ovvero:

$$X \cong Y \Longrightarrow [X \text{ è di Hausdorff}] \Longrightarrow Y \text{ è di Hausdorff}]$$
 (1.40)

Dimostrazione. Sia $f: X \longrightarrow Y$ un omeomorfismo tra i due spazi. Allora f è per definizione continua e iniettiva. Per l'esercizio 1.1 (Manetti, 3.56) segue che X di **Hausdorff** \Longrightarrow Y di **Hausdorff**.

Теогема 1.8.0. X, Y di Hausdorff $\iff X \times Y$ di Hausdorff.

DIMOSTRAZIONE.

- ⇒) Si veda la proprietà (Manetti, 3.6.8).
- \Leftarrow) Si fissi $y_0 \in Y$. Definita la funzione $f: X \longrightarrow X \times Y \\ x \longmapsto (x, y_0)$, essa è continua

ed iniettiva, dunque per l'esercizio 1.1 (Manetti, 3.56) segue che X è di **Hausdorff**. Definito $x_0 \in X$ e $f: Y \longrightarrow X \times Y \atop y \longmapsto (x_0, y)$, allo stesso modo si verifica che Y è di **Hausdorff**.

Connessione e compattezza

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

2.1 CONNESSIONE

Definizione 2.1.0. Uno spazio topologico X si dice **connesso** se gli unici sottoinsiemi aperti e chiusi sono \emptyset , X.

Uno spazio non connesso si dice sconnesso oppure non connesso.

Lemma 2.1.0. (Manetti, 4.2)

Sono condizioni equivalenti:

- 1. X è sconnesso.
- 2. $X = A \cup B$ con A, B aperti, non vuoti, disgiunti.
- 3. $X = A \cup B \text{ con } A$, B chiusi, non vuoti, disgiunti.

DIMOSTRAZIONE.

- $2 \iff 3$) Sono equivalenti: se A è aperto e disgiunto da B tale che $X = A \cup B$ significa che $B = \mathcal{C}A = X \setminus A$ e dunque chiuso; analogamente per B aperto si ha che A è chiuso: allora A, B chiusi e aperti propri.
- $1 \implies 2$) Esiste $\varnothing \subsetneq A \subsetneq X$ con A aperto e chiuso. Allora basta porre $B = \mathscr{C}A = X \setminus A$: essendo il complementare di A è aperto e chiuso, sono disgiunti e tali per cui $B \neq X$, $B \neq \varnothing$. A e B soddisfano la tesi.
- $1 \Longrightarrow 2$) A aperto, B aperto $\Longrightarrow A$ chiuso perché $A = \mathcal{C}X = X \setminus B$. Inoltre A non vuoto, B non vuoto $\Longrightarrow A \ne X$. Dunque A è aperto, chiuso e $A \ne \emptyset$, X e pertanto soddisfa la tesi: esiste un sottoinsieme aperto e chiuso che non il vuoto o l'insieme stesso.

Osservazione. Il lemma 2.1 (Manetti, 4.2) ci dice che è sufficiente trovare solo due aperti (o chiusi) che soddisfano la condizione di cui sopra per affermare la sconnessione.

Viceversa, per dimostrare la connessione, dobbiamo dimostrare che per ogni coppia di aperti (o chiusi) non vuoti, la cui unione è X, essi non siano disgiunti.

Esempio. Esempi di spazi topologici sconnessi in topologia Euclidea.

- $X = \mathbb{R} \setminus \{0\} = (-\infty, 0) \cup (0, +\infty).$
- $X = [0, 1] \cup (2, 3).$

Lemma 2.1.1. (Manetti, 4.4)

Sia X spazio topologico e $A \subseteq X$ con A aperto e chiuso. Sia $Y \subseteq X$, Y connesso. Allora $Y \cap A = \emptyset$ (cioè $Y \subseteq Y \setminus A$) oppure $Y \subseteq A$.

DIMOSTRAZIONE. Consideriamo $Y \cap A$: esso è intersezione di due aperti e chiusi per ipotesi (Y è aperto e chiuso perché *connesso*), cioè è aperto e chiuso. Essendo Y *connesso*, un suo sottoinsieme aperto e chiuso o è l'insieme vuoto oppure è l'insieme stesso, cioè $Y \cap A = \emptyset$ (cioè $Y \subseteq Y \setminus A$) oppure $Y \cap A = Y$ (cioè $Y \subseteq A$).

TEOREMA 2.1.0. (MANETTI, 4.6)

Con la topologia Euclidea, X = [0, 1] è *connesso*.

Dimostrazione. Supponiamo $X = [0, 1] = C \cup D$ con:

- *C*, *D* entrambi chiusi.
- *C, D* entrambi aperti.

Dobbiamo dimostrare che C, D non sono disgiunti, ovvero $C \cap D \neq 0$. Supponiamo sia $0 \in C$ e poniamo $d = \inf D$. Essendo D un chiuso, $d \in \overline{D} = D$.

- Se d = 0, $d \in C \cap D \neq \emptyset$.
- Se d > 0 allora $[0, d) \subseteq C$ perché *non sta* in D. Il passaggio alla chiusura mantiene l'inclusione, dunque $[0, d] \subseteq \overline{C} = C$. Segue che $d \in C$ e dunque $C \cap D \neq \emptyset$.

TEOREMA 2.1.1. (MANETTI, 4.7)

L'immagine continua di un connesso è un connesso:

$$f: X \longrightarrow Y$$
 continua, X connesso $\Longrightarrow f(X)$ connesso (2.1)

Teorema 2.1.2. Sia $Z \subseteq f(X)$, Z aperto, chiuso in f(X) non vuoto. Per dimostrare che f(X) sia connesso ci è sufficiente dimostrare che Z = f(X): in questo modo gli unici aperti e chiusi sono i sottoinsiemi impropri:

- Z aperto: $\exists A$ aperto in $Y: Z = A \cap f(X)$.
- Z chiuso: $\exists C$ chiuso in $Y: Z = C \cap f(X)$.

Allora:

- $f^{-1}(Z) = f^{-1}(A) \cap f^{-1}(f(X)) = f^{-1}(A) \implies f^{-1}(Z)$ è uguale alla controimmagine continua di un aperto in Y, cioè è uguale ad un aperto di X.
- $f^{-1}(Z) = f^{-1}(C) \cap f^{-1}(f(X)) = f^{-1}(C) \Longrightarrow f^{-1}(Z)$ è uguale alla controimmagi-

2.1. CONNESSIONE 27

ne continua di un chiuso in Y, cioè è uguale ad un chiuso di XSegue che $f^{-1}(Z)$ è aperto e chiuso in X. Notiamo inoltre che, essendo $Z \neq \emptyset$, allora $f^{-1}(Z) \neq \emptyset$: essendo X connesso per ipotesi, necessariamente $f^{-1}(Z) = X$.

Osservazione. Dal teorema precedente segue che essere *connesso* è una proprietà topologica! Infatti, se vale per una qualunque funzione continua $f: X \longrightarrow Y$, allora varrà anche per omeomorfismi tra X e Y; in particolare, si avrà per suriettività che f(X) = Y connesso.

Definizione 2.1.1. Un arco o cammino α da un punto x a un punto y in uno spazio topologico X è una funzione continua che parametrizza un *percorso* finito fra gli estremi x e y:

$$\alpha: [0, 1] \longrightarrow X \text{ continua}: \alpha(0) = x, \alpha(1) = y$$
 (2.2)

DEFINIZIONE 2.1.2. Uno spazio topologico X si dice **connesso per archi** o **c.p.a.** o *path-connected* se per ogni coppia di punti in X esiste un arco che li collega:

$$\forall x, y \in X \exists \alpha : [0, 1] \longrightarrow X \text{ continua} : \alpha(0) = x, \alpha(1) = y$$
 (2.3)

TEOREMA 2.1.3. (MANETTI, 4.7) X **c.p.a.** $\Longrightarrow X$ connesso.

DIMOSTRAZIONE. Sia $X = A \cup B$, con A, B aperti non vuoti. Vogliamo dimostrare che $A \cap B \neq \emptyset$. Essendo non vuoti, prendiamo $a \in A$, $b \in B$. In quanto X è **c.p.a.**, esiste il cammino (continuo) $\alpha : [0, 1] \longrightarrow X$ tale che $\alpha(a) = a$, $\alpha(1) = b$.

Studiamo la controimmagine di α :

$$\alpha^{-1}(X) = \alpha^{-1}(A \cup B) = [0, 1]$$
$$[0, 1] = \alpha^{-1}(A \cup B) = \alpha^{-1}(A) \cup \alpha^{-1}(B)$$

 $\alpha^{-1}(A)$, $\alpha^{-1}(B)$ sono entrambi aperti e non vuoti in quanto controimmagini (continue) di aperti non vuoti $(0 \in \alpha^{-1}(A), 1 \in \alpha^{-1}(B))$.

Poiché [0, 1] è connesso, allora le controimmagini trovate non sono disgiunte. Segue allora:

$$\exists t \in \alpha^{-1}\left(A\right) \cap \alpha^{-1}\left(B\right) \implies \alpha\left(t\right)\alpha\left(\alpha^{-1}\left(A\right) \cap \alpha^{-1}\left(B\right)\right) \subset \alpha\left(\alpha^{-1}\left(A\right)\right) \cap \alpha\left(\alpha^{-1}\left(B\right)\right) = A \cap B$$

Definizione 2.1.3. Dati due cammini in uno spazio X:

$$\alpha: [0, 1] \longrightarrow X \quad \alpha(0) = x, \alpha(1) = y$$

$$\beta: [0, 1] \longrightarrow X \qquad \beta(0) = y, \beta(1) = z$$

Allora possiamo creare un cammino $\alpha * \beta$ con la **congiunzione di cammini**:

$$(\alpha * \beta)(t) = \begin{cases} \alpha (2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta (2t - 1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.4)

Lemma 2.1.2. Sia A, B c.p.a, $A \cap B \neq \emptyset \implies A \cup B$ c.p.a.

DIMOSTRAZIONE. Se $x,y \in A$ oppure $x, y \in B$ esiste per ipotesi un arco che li collega. Dobbiamo allora trovare un arco in $A \cup B$ da x a $y \ \forall x \in A, y \in B$. Preso $z \in A \cap B$, per ipotesi esistono due cammini ad esso:

$$\alpha: [0, 1] \longrightarrow A \quad \alpha(0) = x, \alpha(1) = z$$

$$\beta: [0, 1] \longrightarrow B \quad \beta(0) = z, \beta(1) = z$$

Usando la giunzione di cammini, si ha:

$$(\alpha * \beta)(t) = \begin{cases} \alpha (2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta (2t - 1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (2.5)

Il cammino $\alpha * \beta : [0, 1] \longrightarrow A \cup B$ è quello richiesto.

OSSERVAZIONE.

■ Usando la giunzione di cammini, si ha che:

$$X \stackrel{.}{\text{e}} \text{ c.p.a.} \iff \exists z \in X : \forall x \in X \quad \exists \ \alpha : [0, 1] \longrightarrow X : \alpha(0) = z, \ \alpha(1) = x$$

In altre parole, uno spazio è **c.p.a.** se e solo se esiste un punto per cui ogni altro punto è collegato tramite un arco.

■ Per ogni arco α esiste l'arco inverso, percorso al contrario: $\overline{\alpha}(t) = \alpha(1-t)$.

DEFINIZIONE 2.1.4. In \mathbb{R}^n , un segmento \overline{PQ} è la combinazione lineare tra i punti P e Q, parametrizzato come:

$$\overline{PQ} = \{P + tQ \mid t \in [0, 1]\}$$
 (2.6)

2.1. CONNESSIONE 29

DEFINIZIONE 2.1.5. Un sottoinsieme $Y \subseteq \mathbb{R}^n$ è **convesso** se per ogni coppia di punti esiste un segmento che li collega contenuto interamente in Y.

$$\forall P, Q \in Y \quad \overline{PQ} \subseteq Y$$
 (2.7)

DEFINIZIONE 2.1.6. Un sottoinsieme $Y \subseteq \mathbb{R}^n$ è **stellato** per P se esiste un $P \in Y$ tale che per ogni altro punto esiste un segmento che li collega contenuto interamente in Y.

$$\exists P \in Y : \forall Q \in Y \quad \overline{PQ} \subseteq Y \tag{2.8}$$

ESEMPIO.

- Gli intervalli aperti e semiaperti sono **c.p.a**, dunque sono *connessi*: l'arco α è banalmente il segmento pari all'intervallo aperto.
- Preso $X \subseteq \mathbb{R}^n$ convesso, qualunque segmento è anche per costruzione un arco: X è anche **c.p.a** e dunque *connesso*.
- $X = \mathbb{R}^2 \setminus \{0\}$ non è convesso (per (0, 1) e (0, -1) non si hanno segmenti interni ad X) ma è **c.p.a.** (basta prendere un cammino che "giri attorno" all'origine) e dunque è connesso.
- Preso $X \subseteq \mathbb{R}^n$ stellato per $P \in X$, qualunque segmento con P è anche per costruzione un arco: X è anche **c.p.a** per l'osservazione 2.3 e dunque connesso.
- Ogni insieme *convesso* è anche *stellato* per *P*, basta fissare un qualunque punto come nostro *P*. In generale, un insieme è convesso se e solo se è stellato per ogni suo punto.

Vediamo ora che conseguenze hanno questi teoremi in $\mathbb R$ con la topologia Euclidea.

Теоrема 2.1.4. Sia $I \subseteq \mathbb{R}$. Le seguenti affermazioni sono equivalenti:

- 1. *I* è un intervallo, ovvero *I* è *convesso*.
- 2. *I* è **c.p.a.**.
- 3. I è connesso.

DIMOSTRAZIONE.

- 1) \Longrightarrow 2) Siccome I è convesso \Longrightarrow I stellato \Longrightarrow I c.p.a. \Longrightarrow I connesso.
- 2) \Longrightarrow 3) Vale in generale che **c.p.a.** \Longrightarrow connesso.
- 3) \Longrightarrow 1) Per contronominale mostriamo che I non intervallo \Longrightarrow I sconnesso. I non intervallo significa che

$$\exists a < b < c, \ a, c \in I, \ b \notin I$$

$$b \notin I \implies I = \underbrace{\left[\underbrace{I \cap (-\infty, b)}_{\in a}\right] \cup \left[\underbrace{I \cap (b, +\infty)}_{\in c}\right]}_{\in C}$$

ovvero I è unione di aperti, non vuoti e disgiunti $\implies I$ sconnesso.

OSSERVAZIONE.

- Come conseguenza immediata di questo teorema si ha il **teorema di esistenza degli zeri** per funzioni continue da \mathbb{R} in \mathbb{R} , infatti se l'immagine continua di un connesso è un connesso, per tali funzioni vale che l'immagine continua di un intervallo è un intervallo.
- Per $n \ge 1$ la sfera $S^n := \left\{ (x_1, \dots, x_{n+1}) \mid \sum_{i=1}^{n+1} x_i^2 = 1 \right\}$ è **c.p.a.**, infatti $\forall x, y \in S^n$ si trova sempre un arco come intersezione di S^n e del piano H passante per il centro della sfera, $x \in y$.

Vediamo ora un risultato per funzioni continue da S^n in \mathbb{R}

Teorema 2.1.5. Sia $f: S^n \longrightarrow \mathbb{R}$ una funzione continua. Allora $\exists x \in S^n: f(x) = f(-x)$. In particolare f non è iniettiva.

DIMOSTRAZIONE. Costruiamo una funzione g(x) = f(x) - f(-x), essa è continua perché somma di funzioni continue. Siccome S^n è connesso allora $g(S^n) \subseteq \mathbb{R}$ è connesso \Longrightarrow per il teorema precedente $g(S^n)$ è un intervallo.

Si considerino un punto $y \in S^n$ arbitrario e le sue immagini g(y) e g(-y): esse appartengono all'intervallo dell'immagine $g(S^n)$, quindi se ne può considerare il loro punto medio:

$$\frac{1}{2}[g(y) - g(-y)] = \frac{1}{2}[f(y) - f(-y) - f(y) + f(-y)] = 0$$

$$\implies \exists x \in S^n \colon g(x) = 0, \text{ ovvero } f(x) = f(-x)$$

Come conseguenza di questo teorema si ha che un aperto di \mathbb{R} non sarà mai omeomorfo ad un aperto di \mathbb{R}^n , vediamolo più precisamente.

Теоrема 2.1.6. Sia $I \subseteq \mathbb{R}$ е $U \subseteq \mathbb{R}^n$, con $n \ge 2$. Se I, U sono aperti allora I non è omeomorfo a U.

Dimostrazione. Si consideri un omeomorfismo $g:U\longrightarrow I$. Siccome $U\subseteq\mathbb{R}^n$ aperto allora esiste una palla aperta di raggio ε contenuta in U, se ne considera il bordo $S^n\subseteq U$. Si considera dunque la restrizione $g_{|_{S^n}}:S^n\longrightarrow I$, che per il teorema precedente non è iniettiva. Dunque g non è un omeomorfismo.

Osservazione. Il teorema appena visto è un caso particolare del teorema dell'invarianza della dimensione, che cita:

Siano $U \subseteq \mathbb{R}^n$, $V \subseteq \mathbb{R}^m$ aperti. Se $U \cong V \implies n = m$. Equivalentemente $n \neq m \implies U \ncong V$

2.1. CONNESSIONE 31

Теоrема 2.1.7. Siano $\{X_i\}_{i\in I}$ una famiglia di sottoinsiemi di uno spazio topologico X. Se ogni X_i è connesso e $\bigcap_{i\in I} X_i \neq \emptyset$ allora $\bigcup_{i\in I} X_i$ è connesso.

DIMOSTRAZIONE. Sia $Z \subseteq Y := \bigcup_{i \in I} X_i$ un aperto, chiuso non vuoto. Vogliamo dimostrare che Z = X, cosicché X risulti connesso. Basta l'inclusione $Y \subseteq Z$. Si considera l'intersezione di Z e di un connesso, dunque essa sarà banale

$$X_i \cap Z = \begin{cases} \emptyset \\ X_i \end{cases}$$

Dimostriamo ora che non è vuota, infatti siccome Z non è vuoto ed è contenuto nell'unione ci sarà un connesso per cui l'intersezione non è vuota:

$$Z \neq \varnothing, \ Z \subseteq \bigcup_{i \in I} X_i \implies \exists i_0 : X_{i_0} \cap Z \neq \varnothing$$

$$X_{i_0} \text{ è connesso} \implies X_{i_0} \cap Z = X_{i_0} \implies X_{i_0} \subseteq Z$$
Siccome
$$\bigcap_{i \in I} X_i \neq \varnothing \implies \exists x \in \bigcap_{i \in I} X_i \implies x \in X_{i_0} \subseteq Z \implies x \in Z$$
Siccome
$$x \in \bigcap_{i \in I} X_i ex \in Z \implies \forall i \in I, \ X_i \cap Z \neq \varnothing$$

Quindi per $\forall i, X_i \subseteq Z \implies Y \subseteq Z \implies Y = Z$, quindi Y è connesso perché l'unico aperto e chiuso non vuoto è banale (Y).

Теогема 2.1.8. X, Y sono spazi topologici connessi $\iff X \times Y$ è connesso.

DIMOSTRAZIONE. ←) Si sfrutta la continuità delle proiezioni e che l'immagine continua di un connesos è connessa:

$$p: X \times Y \longrightarrow X$$
 continua e suriettiva $\Longrightarrow p(X) = X$ connesso $q: X \times Y \longrightarrow Y$ continua e suriettiva $\Longrightarrow q(Y) = Y$ connesso

 \Longrightarrow) Si vuole sfruttare il teorema sull'unione di connessi, prestando attenzione che la loro intersezione non sia vuota, quindi si scrive il prodotto come unione di connessi già noti: $X \times Y = \bigcup_{y \in Y} X \times \{y\}$, infatti $X \times \{y\} \cong X$ che per ipotesi è connesso , tuttavia

$$\bigcap_{y \in V} X \times \{y\} = \emptyset$$

Cerchiamo dunque di unire un insieme in modo tale che l'intersezione non sia vuota:

sia $x_0 \in X$ e $Y_{x_0} = \{x_0\} \times Y$ e poniamo $X_y = X \times \{y\}$ e si ha quanto voluto:

$$X \times Y = \bigcup_{y \in Y} X_y \cup Y_{x_0} \text{ e } X_y \cap Y_{x_0} = (x_0, y)$$

$$\Longrightarrow \bigcap_{y \in Y} (X_y \cup Y_{x_0}) \neq \emptyset$$

Dunque $X \times Y$ è unione di connessi la cui intersezione non è vuota, quindi per il teorema precedente è connesso.

Approfondiamo ora la differenza fra essere spazio connesso o **c.p.a.** mostrando esempi di un tipo ma non dell'altro. Prima però dimostreremo un teorema sulla caratterizzazione di un insieme denso che ci tornerà utile.

Teorema 2.1.9. Sia X uno spazio topologico e $A \subseteq X$ un suo sottoinsieme, allora:

$$A \stackrel{.}{e} denso \iff \forall U \subseteq X \text{ aperto e } U \neq \emptyset, \ U \cap A \neq \emptyset$$

DIMOSTRAZIONE. \Longrightarrow) Se A è denso allora $\overline{A}=X$. Supponiamo che $\exists V$ aperto : $V\cap A=\varnothing$. Siccome V è aperto allora $X\setminus V$ è chiuso, inoltre $V\cap A=\varnothing$, quindi $A\subseteq X\setminus V$. Essendo A contenuto in un chiuso allora lo sarà anche la sua chiusura, siccome è il più piccolo chiuso che lo contiene:

$$\overline{A} = X \subseteq X \setminus V \implies V = \emptyset$$

Ne segue che l'unico aperto che non interseca *A* è l'insieme vuoto.

 \Leftarrow) Consideriamo un chiuso $K \supseteq A$. Siccome è chiuso allora il suo complementare $X \setminus K$ è aperto. Per ipotesi dunque si ha che $V \cap A \neq \emptyset$ oppure $V = \emptyset$, passando al complementare si ottiene che:

$$A \subseteq K \implies X \setminus K \subseteq X \setminus A \implies V \subseteq X \setminus A \implies V \cap A = \emptyset \implies V = \emptyset \implies K = X \implies \overline{A} = X$$

L'ultima implicazione è dovuta al fatto che ogni chiuso che contiene A si è dimostrato essere solo X per cui esso sarà la sua chiusura.

Teorema 2.1.10. Sia X uno spazio topologico e $Y \subseteq X$ connesso, allora

$$\forall W : Y \subseteq W \subseteq \overline{Y} \implies W \text{ connesso}$$

In particolare la chiusura di un connesso è connessa.

DIMOSTRAZIONE. Per dimostrare che W è connesso si considera un suo sottoinsieme $Z \subseteq W$ aperto, chiuso e non vuoto e si mostra che è pari a W.

$$Z \subseteq W$$
 aperto $\Longrightarrow \exists A \subseteq X$ aperto : $Z = W \cap A$
 $Z \subseteq W$ chiuso $\Longrightarrow \exists C \subseteq X$ chiuso : $Z = W \cap C$

2.1. CONNESSIONE 33

Si vuole sfruttare il fatto che Y è connesso:

$$Z \cap Y = A \cap W \cap Y \stackrel{!}{=} A \cap Y$$
 aperto in $YZ \cap Y = C \cap W \cap Y \stackrel{!}{=} C \cap Y$ aperto in Y

Dove il passaggio indicato con (!) è dovuto al fatto che $Y \subseteq W$. Per poter sfruttare la connessione di Y e dedurre che $Z \cap Y = Y$ dobbiamo prima provare che tale intersezione non è vuota e per farlo sfruttiamo il teorema precedente:

$$Y$$
 denso in W , infatti $c\ell_W(Y) = c\ell_X(Y) \cap W = \overline{Y} \cap W = W$
 Z aperto in $W \Longrightarrow Z \cap Y \neq \emptyset \Longrightarrow Z \cap Y = Y \Longrightarrow Y \subseteq Z$

Tuttavia Y è denso in W e Z è chiuso in W che contiene Y, quindi

$$c\ell_W(Y) = W \subseteq Z \implies W = Z \implies W$$
 connesso

Vediamo ora degli esempi di spazi connessi ma non c.p.a..

ESEMPIO. SENO DEL TOPOLOGO

Sia $Y \subseteq \mathbb{R}^2$ con la topologia euclidea e $Y = \{(x, \frac{1}{x}) \mid x > 0\}$, detto anche **seno del topologo**. Esso è **c.p.a.** perché per connettere due punti basta percorrere la curva stessa del grafico. Quindi Y è connesso, dunque per teorema 27 \overline{Y} è connesso. Tuttavia \overline{Y} non è **c.p.a.** in quanto $\overline{Y} = Y \cup \{(0,y) \mid -1 \le y \ge 1\}$ ed i punti sull'asse delle y e sulla curva Y non si possono connettere tramite un arco continuo.

Esempio. La pulce ed il pettine

Si consideri il "pettine" come il seguente sottospazio di \mathbb{R}^2 con la topologia euclidea:

$$Y = \{(x, \ 0) \mid 0 \le x \ge 1\} \cup \bigcup_{r \in \mathbb{Q}, 0 \le r \ge 1} \{(r, \ y) \mid 0 \le y \le 1\}$$

Presi due punti su Y si possono collegare fra loro scendendo alla base del pettine [0, 1] e risalendo sui "denti" di ascissa razionale. Quindi Y è **c.p.a.**, allora Y è connesso e $\overline{Y} = [0, 1] \times [0, 1]$.

Si consideri ora la "pulce", ovvero un punto P di ascissa irrazionale ed ordinata 1, ad esempio $P = \left(\frac{\sqrt{2}}{2}, 1\right)$. Sia $Z = Y \cap P$, per il teorema precedente segue che Z è connesso, infatti:

$$Y \subseteq Z \subseteq \overline{Y} = [0, 1] \times [0, 1]$$

Tuttavia Z non è **c.p.a.**, infatti preso un cammino $\alpha:[0,1]\longrightarrow Z\subseteq\mathbb{R}^2$ tale che $\alpha(t)=(x(t),y(t))$ con $\alpha(0)=(0,0)$ e $\alpha(1)=P$, per continuità $y(t)\neq 0 \Longrightarrow x(t)\in\mathbb{Q}$, che non è vero per P che ha ascissa irrazionale, dunque non esiste un cammino continuo che colleghi l'origine e P. dunque Z non è **c.p.a.**.

OSSERVAZIONE. L'immagine continua di uno spazio c.p.a. è c.p.a., ovvero dato X c.p.a., $f: X \longrightarrow Y$ continua, allora f(X) è c.p.a.

Dati $a,b \in X$ si vuole trovare un cammino fra f(a) e f(b) in f(X). Si consideri la

composizione seguente fra il cammino α fra a e b con la funzione f stessa. Siccome ha come dominio [0, 1] ed è continua essendo composizione di funzione continue è in effetti un cammino fra le due immagini:

$$f \circ \alpha : [0, 1] \xrightarrow{\alpha} X \xrightarrow{f} Y$$

L'intuizione geometrica che ci ha portati alla definizione di connessione è stata "di quanti pezzi è fatto uno spazio?". Se uno spazio è connesso è fatto di un solo "pezzo", cerchiamo ora di definire cosa sono i "pezzi" e come sono fatti.

DEFINIZIONE 2.1.7. Sia X uno spazio topologico e $C \subseteq X$. Si dice che C è una componente connessa se

- *C* è connesso.
- C è massimale, ovvero $C \subseteq A$, A connesso $\Longrightarrow C = A$.

Scelto $x \in X$ si può definire la **componente connessa di un punto**, ovvero $C(x) = \bigcup \{C \mid C \text{connesso}, x \in C\}$

La componente connessa di un punto è effettivamente una componente connessa, infatti è connessa perché unione di connessi con intersezione non vuota (x stesso) e se $C(x) \subseteq A \implies x \in A \implies A \subseteq C(x) \implies A = C(x)$.

Vediamo ora qualche proprietà delle componenti connesse, in particolare che sono chiuse e formano una partizione.

Теоrема 2.1.11. Sia X uno spazio topologico, allora:

- 1. le componenti connesse sono chiuse.
- 2. le componenti connesse formano una partizione di X.

DIMOSTRAZIONE.

- I Sia C una componente connessa. Per ogni insieme vale che $C \subseteq \overline{C}$, ma C è connesso, quindi \overline{C} è connesso. Siccome C è massimale allora $C = \overline{C}$, ovvero è chiuso.
- II Per dimostrare che le componenti connesse formano una partizione di X dobbiamo mostrare che X è unione disgiunta delle componenti connesse. Prima di tutto dimostriamo che sono un ricoprimento

$$\forall x \in X, \ x \in C(x) \implies X = \bigcup_{x \in X} C(x)$$

Mostriamo ora che sono disgiunti prendendo due componenti connesse C e D ed analizzando il caso in cui la loro intersezione non è vuota, in particolare sfruttiamo la massimalità:

$$C \cap D \neq \emptyset \implies C \cup D \text{ connesso } \implies C = C \cup D = D$$

Еѕемрю. Sia $\mathbb{Q} \subseteq \mathbb{R}$ con la topologia Euclidea. La componenti connesse di \mathbb{Q} sono i punti, quindi i punti sono chiusi in \mathbb{Q} , il che è una riconferma dato che sappiamo che

2.2. COMPATTEZZA 35

Q è Hausdorff. Tuttavia non possono essere aperti altrimenti avremmo la topologia discreta!

Inoltre siccome Q ha più di una componente connessa significa che non è connesso! Invece \mathbb{R} è connesso grazie all'assioma di completezza.

OSSERVAZIONE. Dati due spazi omeomorfi si ha che hanno lo stesso numero di componenti connesse in quanto l'immagine continua di connessi è connessa. Quindi il numero di componenti connesse ci fornisce un criterio per determinare quando due spazi non sono omeomorfi!

2.2 COMPATTEZZA

DEFINIZIONE 2.2.0. Sia X uno spazio topologico. Un ricoprimento aperto di X è una famiglia $\mathcal{A} = \{A_i\}_{i \in I}$ di aperti di X tali che $X = \bigcup_{i \in I} A_i$.

Un sottoricoprimento \mathscr{B} di un ricoprimento aperto \mathscr{A} è una famiglia di aperti di \mathscr{A} la cui unione è ancora tutto X.

ESEMPI. RICOPRIMENTI APERTI

- $\mathbb{R} = (-\infty, 2) \cup (0, +\infty)$ è un ricoprimento aperto
- $\mathbb{R} = \bigcup_{n \in \mathbb{N}} (n, -n)$ è un ricoprimento aperto

 $\mathbb{R} = \bigcup_{n \in \mathbb{N}} (-p, p)$ è un ricoprimento aperto

DEFINIZIONE 2.2.1. RICOPRIMENTO APERTO

Uno spazio topologico X si dice **compatto** se dato un qualsiasi ricoprimento aperto \mathcal{A} si può sempre estrarre un sottoricoprimento finito \mathcal{B} .

L'importanza della definizione risiede nel fatto che non si chiede che esista un ricoprimento $\mathscr A$ finito, infatti basterebbe banalmente X stesso che è aperto, bensì che da $\mathscr A$ si possa sempre estrarre un numero finito di aperti che ricopra ancora X.

ESEMPI. SPAZI NON COMPATTI

- \mathbb{R} con la topologia euclidea: si consideri il ricoprimento aperto $\mathbb{R} = (-\infty, 2) \cup$ $(0,+\infty)$, esso non ammette sottoricoprimento finito.
- Gli intervalli aperti o semiaperti della forma [a, b) hanno come ricoprimento aperto $\mathcal{A} = \left\{ \left[a, b - \frac{1}{n} \right] \right\}$ che non ammette un sottoricoprimento finito.

Teorema 2.2.0. L'immagine continua di un compatto è un compatto, ovvero dati X, Y spazi toplogici, $f: X \longrightarrow Y$ continua, allora

$$X \text{ comaptto } \Longrightarrow f(X) \text{ compatto}$$

Dimostrazione. Si considera un ricoprimento aperto di f(X) e se ne vuole trovare un sottoricoprimento finito tramite le controimmagini, sfruttando così la compattezza di X.

Sia $\mathcal{A} = \{A_i\}$ ricomprimanto di f(X), allora $\forall i \in I, A_i \subseteq Y$ aperto e $\bigcup A_i \supseteq f(X)$.

Si considerino ora le controimmagini, che saranno aperte perché f è continua: $\mathcal{B} = \left\{ f^{-1}(A_i) \right\}$ è un ricoprimento aperto di X. Tuttavia X è compatto, quindi posso estrarre un sottoricoprimento finito

$$X = f^{-1}(A_1) \cup \cdots \cup f^{-1}(A_n) \implies f(X) \subseteq A_1 \cup \cdots \cup A_n \implies f(X)$$
 compatto

Da questo teorema segue che essere compatti è una proprietà topologica.

Теоrема 2.2.1. L'intervallo $[0, 1] \subseteq \mathbb{R}$ con la topologia euclidea è compatto.

Dimostrazione. Sia $\mathscr{A} = \{A_i\}_{i \in I}$ un ricoprimento aperto di [0, 1] con A_i aperti in \mathbb{R} , quindi $[0, 1] \subseteq \bigcup A_i$.

Sia $X = \{t \in \mathbb{R} \mid [0, t] \text{ è coperto da un numero finito di } A_i\}$. Mostriamo che non è vuoto

$$t = 0, [0, 0] = \{0\}\} \subseteq A_{i=0} \implies 0 \in X \implies X \neq \emptyset$$

Siccome X non è vuoto per la completezza dei reali ne posso considerare l'estremo superiore $b = \sup X$. Ci sono due casi: b > 1 e $b \le 1$, dimostriamo che il primo è possibile e che il secondo è assurdo sfruttando le proprietà dell'estremo superiore:

- $\bullet b > 1 \implies \exists t \in X \colon 1 < t < b \implies [0, 1] \subseteq [0, t] \subseteq A_1 \cup \dots \cup A_n$
- $b \le 1 \implies b \in [0, 1] \implies \exists A_0 \in \mathcal{A} : b \in A_0$, visto che \mathcal{A} è un ricoprimento aperto A_0 è aperto, dunque contiene b con tutto un suo intorno, ovvero $\exists \delta > 0 : B_{\delta}(b) = (b \delta, b + \delta) \subseteq A_0$. Mostriamo ora che A_0 non copre solo [0, b] ma va oltre, quindi si ottiene l'assurdo che $b \ne \sup X$. Sia dunque $0 < h < \delta$, allora

$$[0,\pm h] = [0, t] \cup [t, b+h] \subseteq \underbrace{A_1 \cup \dots \cup A_n}_{t \in X} \cup \underbrace{A_0}_{B_{\delta}(b) \subseteq A_0}$$

Quindi b + h è coperto da un numero finito di aperti, il che implica che $b + h \in X$, il che è assurdo perché $b = \sup X$.

Notiamo che questo teorema implica che un intervallo $[a, b] \subseteq \mathbb{R}$ è compatto, infatti è omeomorfo a [0, 1] e la compattezza è una proprietà topologica. Vediamo ora un esempio di spazio compatto che non abbia la topologia euclidea.

Esempio. Uno spazio X con la topologia cofinita è compatto.

Ricordiamo che gli aperti nella topologia cofinita sono i sottoinsiemi il cui complementare è finito, quindi un ricoprimento aperto sarà della forma:

$$\mathscr{A} = \{A_i\}, \ A_0 = X \setminus \{x_1, \dots, x_n\}$$

2.2. COMPATTEZZA 37

Si considerino gli A_i che contengano i punti x_i che non sono in A_0 , ovvero:

$$A_i \in \mathcal{A}: x_i \in A_i \implies X = A_0 \cup A_1 \cup A_n$$

OSSERVAZIONE. Notiamo che se X è finito allora X è compatto per qualsiasi topologia, in quanto se la sua cardinalità è finita allora lo sarà anche quella del suo insieme delle parti, dai cui elementi scelgo gli aperti di una topologia. Dunque i casi interessanti di spazi compatti sono quelli il cui insieme di sostegno non è finito.

Inoltre se *X* ha la topologia discreta vale anche il viceversa ovvero

$$X$$
 top. discreta \implies (X compatto \iff X finito)

Sia $\mathscr{A} = \{A_x\}_{x \in X}$, $A_x \coloneqq \{x\}$, che è aperto in quanto X ha la topologia discreta. Siccome X è compatto allora esiste un sottoricoprimento finito, ovvero un numero finito di aperti di \mathscr{A} che lo ricopra, ossia $X = \{x_1\} \cup \{x_2\} \cup \dots \{x_n\} \implies X$ finito.

Teorema 2.2.2. Manetti 4.41.1

Un chiuso in un compatto è un compatto, ovvero se X è uno spazio topologico compatto, $C \subseteq X$ chiuso allora C è compatto.

DIMOSTRAZIONE. Sia $\mathcal{A} = \{A_i\}_{i \in I}$ un ricoprimento di X, sia $C \subseteq X$ chiuso, allora $A := X \setminus C$ è aperto in X.

Sia $\mathcal{A}' = \{A_i, A\}$ ricoprimento aperto di X. Siccome X è compatto esiste un suo sottoricoprimento finito

$$X = A_1 \cup \cdots \cup A_n \cup A \implies C = X \setminus A = A_1 \cup \cdots \cup A_n$$

ovvero *C* è compatto.

OSSERVAZIONE. MANETTI, 4.41.2 L'unione finita di compatti è un compatto, ovvero se K_1, \ldots, K_n sono compatti allora $K = K_1 \cup \cdots \cup K_n$ è compatto, infatti basta prendere l'unione dei sottoricoprimenti finiti.

Vediamo ora che relazione c'è fra le due proprietà topologiche di essere uno spazio T_2 e compatto.

Теогема 2.2.3. Манетті, 4.48

Un compatto in un Hausdorff è chiuso, ovvero se X è di Hausdorff, $K \subseteq X$ è compatto allora K è chiuso.

Dimostrazione. Per dimostrare che K è chiuso mostriamo che il suo complementare è aperto, ovvero che è intorno di ogni suo punto, in modo tale da poter usare agilmente l'essere T_2 .

$$K$$
 chiuso $\iff X \setminus K$ aperto $\iff \exists A \subseteq X \setminus K$ aperto : $x_0 \in A$
 $A \subseteq X \setminus K \iff A \cap K = \emptyset$

Per poter sfruttare che X è T_2 scriviamo A come intorno di $x_=$ e K come intorno di y:

$$x_{0} \in X \setminus K, y \in K \stackrel{!}{\Longrightarrow} x \neq y \implies \exists U_{y} \in I(x_{0}), \exists V_{y} \in I(y) \colon U_{y} \cap V_{y} = \emptyset$$

$$\text{Sia } V = \bigcup_{y \in K} V_{y} \implies V \supseteq K \stackrel{!!}{\Longrightarrow} V = V_{y_{1}} \cup \cdots \cup V_{y_{n}}$$

$$\text{Sia } U = U_{y_{1}} \cap \cdots \cap U_{y_{n}} \in I(x_{0})$$

$$\implies V_{y_{i}} \cap U_{y_{i}} = \emptyset \implies V \cap K = \emptyset \implies U \subseteq X \setminus K$$

dove (!) indica che X è T_2 e (!!) che K è compatto.

TEOREMA 2.2.4. MANETTI, 4.42

Un sottospazio $K \subseteq \mathbb{R}$ è compatto $\iff K$ chiuso e limitato.

DIMOSTRAZIONE. \Longrightarrow) Siccome \mathbb{R} è T_2 e K è compatto allora per il teorema precedente K è chiuso.

Per vedere che è limitato consideriamo un ricoprimento aperto $\mathscr{A} = \{(-n, n) \cap K\}_{n \in \mathbb{N}}$ di K. Siccome è compatto allora esiste un sottoricoprimento finito, ovvero:

$$K \subseteq (-n_1, n_1) \cup \cdots \cup (-n_m, n_m) \implies K \subseteq (-M, M), M := \max m_i$$

quindi *K* è limitato.

 \Leftarrow) K è limitato, quindi $K \subseteq [-n, n]$, che è compatto e K è chiuso per ipotesi, dunque per il teorema 2.15 è compatto.

OSSERVAZIONE. Da notare che il teorema precedente non afferma he gli unici compatti di \mathbb{R} sono gli intervalli chiusi e limitati, ma anche una loro unione finita potrebbe esserlo.

TEOREMA 2.2.5. MANETTI, 4.43

Sia $f: X \longrightarrow \mathbb{R}$ con X compatto e \mathbb{R} con la topologia euclidea. Se f è continua allora ammette massimo e minimo.

Dimostrazione. f continua e X compatto $\Longrightarrow f(X)$ compatto, e per il teorema precedente ciò equivale al fatto che f(X) è chiuso e limitato.

$$\begin{array}{ll} f\left(x\right) \text{ limitata} & \Longrightarrow & \sup \left\{ f\left(x\right) \right\} < +\infty \\ f\left(x\right) \text{ chiusa} & \Longrightarrow & \sup \left\{ f\left(x\right) \right\} = \max \left\{ f\left(x\right) \right\} \end{array} \right\} \\ \Longrightarrow f\left(x\right) \text{ ammette massimo.}$$

Analogamente per il minimo.

OSSERVAZIONE. Per poter parlare di massimo e minimo c'è bisogno di n ordinamento sul codominio, mentre il dominio *X* potrebbe anche non averne uno!

Vogliamo ora vedere come si comporta la compattezza rispetto al prodotto, prima però va dimostrato un lemma che ci tornerà utile nella dimostrazione del teorema.

2.2. COMPATTEZZA 39

Lemma 2.2.0. Tube Lemma

Siano X, Y spazi topologici con Y compatto, $x_0 \in X$, $A \subseteq X \times Y$: A aperto e $\{x_0\} \times Y \subseteq A$. Allora $\exists U \subseteq X$ con $x_0 \in U$, aperto tale che $\{x_0\} \times Y \subseteq U \times Y \subseteq A$

Dimostrazione. A aperto in $X \times Y \implies A = \bigcup_{i \in I} (U_i \times V_i)$ aperti della base, quindi $\{U_i \times V_i\}$

è un ricoprimento aperto di $\{x_0\} \times Y \cong Y$ compatto, dunque esiste un sottoricoprimento finito $\{x_0\} \times Y \subseteq (U_1 \times V_1) \cup \cdots \cup (U_n \times V_n)$. Se necessario si eliminano gli aperti che sono disgiunti da $\{x_0\} \times Y$ e poniamo $U = U_1 \cap \cdots \cap U_n$, allora

$$\{x_0\} \times Y \subseteq U \times Y \subseteq (U_1 \times V_1) \cup \cdots \cup (U_n \times V_n) \subseteq A$$

Teorema 2.2.6. Manetti, 4.49.2

X, Y compatti $\iff X \times Y$ è compatto.

DIMOSTRAZIONE. \iff) Si considerino le proiezioni, che sono funzioni continue. Essendo $X \times Y$ compatto allora le immagini delle proiezioni saranno compatte, ed essendo le proiezioni suriettive allora X, Y sono compatti.

 \Longrightarrow) Sia $\mathscr{A} = \{A_i\}$ un ricoprimento aperto di $X \times Y$, cerchiamo un sottoricoprimento finito.

Per sfruttare la compattezza di Y notiamo che $Y \cong \{x\} \times Y \subseteq A_{x_1} \cup \cdots \cup A_{x_n} = A_x$, che possiamo pensare come sottoricoprimento "verticale" finito. Notiamo inoltre che gli A_{x_i} dipendono dalla $\{x\}$ scelta.

Per il Tube Lemma dimostrato sopra allora

$$\exists U_x \subseteq X \text{ aperto} : \{x\} \times Y \subseteq U_x \times Y \subseteq A_x = A_{x_1} \cup \cdots \cup A_{x_n}$$

Tuttavia X è compatto, dunque $X = U_{x_1} \cup \cdots \cup U_{x_n}$ unione finita, sfruttando le proiezioni si ottiene la tesi:

$$X \times Y = p^{-1}(X) = p^{-1}\left(U_{x_1} \cup \dots \cup U_{x_n}\right) = (U_{x_1} \times Y) \cup \dots \cup (U_{x_n} \times Y) \subseteq$$
$$\subseteq \left(A_{x_1,1} \cup \dots \cup A_{x_1,n_1}\right) \cup \dots \cup \left(A_{x_m,1} \cup \dots \cup A_{x_m,n_m}\right)$$

Sfruttiamo ora che il prodotto di compatti è compatto per generalizzare il teorema 2.17 allo spazio \mathbb{R}^n .

Теоrема 2.2.7. $K \subseteq \mathbb{R}^n$ compatto \iff K chiuso e limitato.

DIMOSTRAZIONE.

 \implies) K è compatto in \mathbb{R}^n che è un Hausdorff, quindi K è chiuso per il teorema 2.16. Per dimostrare che è limitato consideriamo un ricoprimento di palle aperte centrate

nell'origine e si sfrutta subito che *K* è compatto

$$K \subseteq \bigcup_{n \in \mathbb{N}} B_n(\mathbf{0}) \implies K \subseteq B_{n_1}(\mathbf{0}) \cup \cdots \cup B_{n_m}(\mathbf{0}) \subseteq B_M(\mathbf{0})$$

con $M = \max n_i$.

 \iff) K è limitato, quindi $K \subseteq [-a, a]^n$ che è compatto perché prodotto di compatti, ma K è anche chiuso, quindi per il teorema 2.15 è compatto.

In realtà vale un teorema più generale, che si dimostrerà poi nel corso di Istituzioni di Analisi.

Теоrема: Sia X uno spazio metrico completo, allora $K \subseteq X$ compatto $\iff K$ chiuso e totalmente limitato, ovvero $\forall \varepsilon > 0$, K è contenuto in un'unione finita di palle di raggio ε . In \mathbb{R}^n vale limitato \iff totalmente limitato, ma ad esempio considerato lo spazio metrico

$$\mathscr{C}([0, 1]) := \left\{ f : [0, 1] \longrightarrow \mathbb{R} \mid f \text{ continua} \right\}, \text{ con } d(f, g) = \sup_{x \in [0, 1]} |f(x) - g(x)|$$

Una palla di centro $\mathbf{0}$ e raggio 1 quale $B_1(\mathbf{0}) = \{ f : [0, 1] \longrightarrow \mathbb{R} \mid f \text{ continua }, -1 \ge f(x) \le 1 \}$ è chiusa e limitata, tuttavia in $\mathscr{C}([0, 1])$ non è compatta.

Teorema 2.2.8. Manetti 4. 52

Sia $f: X \longrightarrow Y$ continua con X è compatto e Y T_2 , allora f è chiusa.

DIMOSTRAZIONE. Per dimostrare che f è chiusa consideriamo $C \subseteq X$ chiuso e mostriamo che f(C) è chiuso sfruttando rispettivamente i teoremi 2.15, 2.13 e 2.16:

 $C \subseteq X$ chiuso in compatto $\implies C$ compatto $\implies f(C)$ compatto in $T_2 \implies f(C)$ chiuso

In generale vale il teorema di Kuratowsi-Mròwka, che dice che Y è compatto se e solo se per qualsiasi spazio topologico X la proiezione $p_X: X \times Y \longrightarrow X$ è chiusa, ne dimostreremo una versione più debole.

TEOREMA 2.2.9. MANETTI, 4.49.1

Siano X, Y spazi topologici con Y compatto, allora la proiezione $p: X \times Y \longrightarrow X$ è chiusa.

DIMOSTRAZIONE. Per dimostrare che p è chiusa mostriamo che preso un $C \subseteq X \times Y$ chiuso allora $p(C) \subseteq X$ è chiuso, ovvero che il suo complementare $X \setminus p(C)$ è intorno di ogni suo punto.

Se p(C) = X allora è già chiuso, se invece $p(C) \neq X$ allora $\exists x_0 \in X \setminus p(C)$, dimostriamo che quest'ultimo insieme è intorno di x_0 . Si consideri la fibra di x_0 :

$$p^{-1}(\lbrace x_0\rbrace) = \lbrace x_0\rbrace \times Y \subseteq (X \times Y) \setminus C = A$$

con A aperto perché complementare di un chiuso.

2.2. COMPATTEZZA 41

Si rientra dunque nelle ipotesi del Tube lemma e si ottiene che

$$\exists U \subseteq X \text{ aperto} : p^{-1}(U) = U \times Y \subseteq A \implies U \cap p(C) = \varnothing \implies x_0 \in U \subseteq X \setminus p(C)$$

GRUPPI TOPOLOGICI

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

3.1 GRUPPI TOPOLOGICI

Conoscendo le strutture di gruppo e spazio topologico su un insieme vogliamo vedere come possono essere compatibili fra loro.

Definizione 3.1.0. Un insieme G si dice gruppo topologico se

- \blacksquare *G* è un gruppo
- *G* è uno spazio topologico
- Le operazioni sono continue, ovvero le mappe:

$$\mu: G \times G \longrightarrow G \qquad i: G \longrightarrow G (x, y) \longmapsto xy \qquad x \longmapsto x^{-1}$$
 (3.1)

Sono funzioni continue.

Vediamo ora degli esempi noti di gruppi topologici.

ESEMPI.

- $\blacksquare \quad (\mathbb{R}^n, +, \mathscr{E}_{uct}), (\mathbb{C}^n, +, \mathscr{E}_{uct})$
- $(\mathbb{R}^*, \bullet, \mathcal{E}_{uc\ell}), (\mathbb{R}^*, \bullet, \mathcal{E}_{uc\ell})$ con la topologia indotta di sottospazio
- $(M_{n,m}(\mathbb{R}), \bullet, \mathcal{E}_{uct})$ con la topologia indotta di sottospazio di $\mathbb{R}^{n,m}$, ad esempio [0, 1]

Osservazione. I gruppi topologici $GL(n,\mathbb{R})$ e $GL(n,\mathbb{R})$ sono aperti di $M_{n,n}$.

Infatti considerata la funzione determinante $\det: \mathbb{R}^{n,n} \longrightarrow \mathbb{R}$ essa è continua in quanto per calcolare il determinante si opera solo con somme e prodotti. Si ha che

 $GL(n,\mathbb{R})$ è il complementare dell'insieme delle matrici che hanno determinante nullo, il quale è un chiuso in quanto controimmagine di un chiuso quale $\{0\}$ di una funzione continua. Dunque tale gruppo topologico è aperto, analogamente per \mathbb{C} .

Vediamo ora altri sottoinsiemi di $M_{n,n}$:

- SL dato da $\{\det A = 1\}$ è il gruppo speciale lineare
- O determinato dall'equazione $A^t A = I$ è il *gruppo ortogonale*
- $SO = O \cap SL$ è il gruppo speciale ortogonale
- U determinato dall'equazione $A^{t*}\overline{A} = I$ è il *gruppo unitario*
- $SU = U \cap SL$ è il gruppo speciale unitario

Ci sono delle operazioni sulle matrici che sono continue:

- *moltiplicazione matriciale*: continua perché definita tramite somme e prodotti di elementi delle matrici
- *inversa*: è una funzione che ad una matrice A associa $\frac{1}{\det A}$ per prodotti e somme di elementi della matrice, dunque è continua

Osservazione. Per i gruppi topologici in generale vale la moltiplicazione destra e sinistra sono omeomorfismi:

$$L_h: G \longrightarrow G$$
 $g \longmapsto hg$ $e R_n: G \longrightarrow G$ $g \longmapsto gh$
$$(L_h)^{-1} = L_{h^{-1}} e (R_h)^{-1} = R_{h^{-1}}$$

Ne segue che un gruppo topologico è omogeneo, ovvero

$$\forall g, h \in G \exists \varphi : G \longrightarrow G$$
 omeomorfismo t.c. $\varphi(g) = h$

infatti basta porre $\varphi = L_{hg^{-1}}$ oppure $\varphi = R_{g^{-1}h}$

Il seguente teorema ci permette di caratterizzare i gruppi topologici Hausdorff grazie alla chiusura dell'elemento neutro.

Teorema 3.1.0. Sia G un gruppo topologico, $e \in G$ il suo elemento neutro, si ha che

$$G T_2 \iff \{e\} \text{ chiuso}$$

DIMOSTRAZIONE.

- \Longrightarrow) $G T_2 \Longrightarrow G T_1 \Longrightarrow$ tutti i punti sono chiusi, in particolare anche $\{e\}$.
- \Leftarrow) Per dimostrare che G T_2 si utilizza la caratterizzazione con la diagonale chiusa, sfruttando l'omogeneità dei gruppi topologici:

Per ipotesi $\{e\}$ è chiusa, quindi Δ_G è chiuso e dunque G T_2 .

3.1. GRUPPI TOPOLOGICI 45

OSSERVAZIONE. GL (n, \mathbb{R}) è sconnesso. Mostriamo che è unione di due aperti non vuoti disgiunti sfruttando la funzione determinante det : $GL(n,\mathbb{R}) \longrightarrow \mathbb{R}^*$, infatti essendo continua le controimmagini di aperti saranno aperti:

$$\det^{-1}((0,+\infty)) = \operatorname{GL}^{+}(n,\mathbb{R}) \\ \det^{-1}((-\infty,0)) = \operatorname{GL}^{-}(n,\mathbb{R}) \Longrightarrow \operatorname{GL}(n,\mathbb{R}) = \operatorname{GL}^{+}(n,\mathbb{R}) \sqcup \operatorname{GL}^{-}(n,\mathbb{R})$$

Dimostriamo un lemma che generalizza il teorema 2.8 e che ci sarà utile nella dimostrazione successiva sulla connessione di alcuni gruppi topologici.

Lemma 3.1.0. Manetti 4.18

Sia $f: X \longrightarrow Y$ continua. Se f è suriettiva aperta o chiusa, Y è connesso e le fibre sono connesse, ovvero se $\forall y \in Y \ f^{-1}(y)$ è connesso, allora X è connesso.

DIMOSTRAZIONE. Supponiamo che f sia aperta e consideriamo $A_1 \neq \emptyset \neq A_2$ aperti (per f chiusa si considerano dei chiusi e si procede in modo analogo) t.c. $X = A_1 \cup A_2$. Per dimostrare che X è connesso mostriamo che $A_1 \cap A_2 \neq \emptyset$:

$$\begin{array}{ll} f \text{ aperta} & \Longrightarrow & f(A_1), f(A_2) \text{ aperti} \\ f \text{ suriettiva} & \Longrightarrow & f(X) = Y \Longrightarrow f(A_1 \cup A_2) = f(A_1) \cup f(A_2) = Y \\ Y \text{ connesso} & \Longrightarrow & f(A_1) \cap f(A_2) \neq \varnothing \Longrightarrow \exists y_0 \in f(A_1) \cap f(A_2) \Longrightarrow \begin{cases} f^{-1}(y_0) \cap A_1 \neq \varnothing \\ f^{-1}(y_0) \cap A_2 \neq \varnothing \end{cases} \\ \begin{cases} \left(f^{-1}(y_0) \cap A_1 \right) \cup \left(f^{-1}(y_0) \cap A_2 \right) = f^{-1}(y_0) \\ \text{fibre connesse} \end{cases} \Longrightarrow f^{-1}(y_0) \cap A_1 \cap A_2 \neq \varnothing \Longrightarrow A_1 \cap A_2 \neq \varnothing \end{cases}$$

TEOREMA 3.1.1. $\forall n \geq 1$, $GL^+(n, \mathbb{R})$ e $GL(n, \mathbb{C})$ sono connessi.

DIMOSTRAZIONE. Si procede per induzione su n per $GL^+(n,\mathbb{R})$, il caso $GL(n,\mathbb{C})$ è analogo.

$$n = 1$$
)
$$\begin{cases} GL^{+}(1,\mathbb{R}) = (0,+\infty) \\ GL(n,\mathbb{C}) = \mathbb{C} \setminus \{0\} = \mathbb{R}^{2} \setminus 0 \end{cases}$$
 connessi.

n > 1) Supponiamo che $GL^+(n-1,\mathbb{R})$ sia connesso e dimostriamo che lo è anche $GL(n,\mathbb{R})$. Cerchiamo dunque una funzione continua da $GL^+(n,\mathbb{R})$ a $GL(n-1,\mathbb{R})$ che soddisfi le ipotesi del lemma precedente. Pertanto si considera la funzione prima

colonna
$$p:\mathbb{R}^{n,n}\longrightarrow\mathbb{R}^n$$
 che mappa la prima colonna di A . Siccome $\mathbb{R}^{n,n}=\mathbb{R}^n\times p(A)$

 $\mathbb{R}^{n,n-1}$ allora p è una proiezione, dunque per il punto 2 della proposizione 1.4 è aperta. Restringiamo ora p a $GL^+(n,\mathbb{R})$ nel modo seguente $p:GL^+(n,\mathbb{R}) \longrightarrow \mathbb{R}^n \setminus \{0\}$ che è una funzione continua, suriettiva e aperta, inoltre $\mathbb{R}^n \setminus \{\mathbf{0}\}$ è connesso per n > 1. Calcoliamo ora le fibre e mostriamo che sono tutte omeomorfe fra loro e connesse, quindi prima ne troviamo una, mostriamo che è connessa poi dimostriamo che sono tutte omeomorfe. A questo scopo consideriamo il seguente vettore e la sua fibra

$$y_0 = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \mathbb{R}^n \setminus \{\mathbf{0}\} \implies p^{-1}(y_0) = \begin{pmatrix} 1 & * & \cdots & * \\ 0 & & & \\ \vdots & & A & \\ 0 & & & \end{pmatrix}$$

con $(*,...,*) \in \mathbb{R}^{n-1}$ arbitrario in quanto non influisce nel calcolo del determinante e con $A \in GL^+(n-1,\mathbb{R})$, da cui segue che $p^{-1}(y_0) = \mathbb{R}^{n-1} \times GL^+(n-1,\mathbb{R})$, dunque $p^{-1}(y_0)$ è conness visto che i due fattori lo sono per ipotesi.

Mostriamo ora che tutte le fibre sono omeomorfe a $p^{-1}(y_0)$. Sia $y \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ e sia $A \in \mathrm{GL}^+(n,\mathbb{R})$ tale che p(A) = y, ovvero y è la prima colonna di A. In generale vale la relazione p(AB) = Ap(B) e la moltiplicazione sinistra $L_A : \mathrm{GL}^+(n,\mathbb{R}) \longrightarrow \mathrm{GL}^+(n,\mathbb{R})$ $B \longmapsto AB$

è un omeomorfismo. Dimostriamo che vale $p^{-1}(y) = L_A(p^{-1}(y_0)) = Ap^{-1}(y_0)$, in modo tale da avere tutte le fibre omeomorfe fra loro:

$$\supseteq) B \in p^{-1}(y_0) \implies B = \begin{pmatrix} 1 & \cdots & \cdot \\ 0 & \cdots & \cdot \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \cdot \end{pmatrix} \implies p(AB) = Ap(B) = A\begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} = p(A) = y$$

$$\subseteq) C \in p^{-1}(y) \Longrightarrow C = (y * \cdots *)$$
Poniamo $B = A^{-1}C \Longrightarrow p(B) = p(A^{-1}C) = A^{-1}p(C) = A^{-1}y = A^{-1}p(A) =$

$$= p(A^{-1}A) = p(I) = y_0$$
Siccome $C = AB \Longrightarrow B \in p^{-1}(y_0)$

Quindi siccome tutte le fibre sono tutte omeomorfe ad una fibra connessa allora sono tutte connesse e valgono le ipotesi del lemma precedente, per cui $GL^+(n,\mathbb{R})$ è connesso.

COROLLARIO 3.1.0. $SL(n,\mathbb{R})$ e $SL(n,\mathbb{C})$ sono connessi.

DIMOSTRAZIONE. Siccome $GL^+(n,\mathbb{R})$ e $GL(n,\mathbb{C})$ sono connessi, basta considerare la seguente funzione:

$$f: \mathrm{GL}^{+}(n,\mathbb{R}) \xrightarrow{} \mathrm{SL}(n,\mathbb{R})$$

$$A \longmapsto \begin{pmatrix} \frac{a_{1,1}}{\det A} & a_{1,2} & \cdots & a_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{a_{n,1}}{\det A} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}$$

Siccome f è continua e suriettiva e $GL^+(n,\mathbb{R})$ è connesso allora $f(GL^+) = SL$ è connesso.

COROLLARIO 3.1.1. O non è connesso.

3.1. GRUPPI TOPOLOGICI 47

DIMOSTRAZIONE. Siccome O è sottogruppo di GL e la connessione è una proprietà topologica allora O non è connesso. In particolare si può dividere in base a det = +1 e det = -1.

TEOREMA 3.1.2. SO(n), U(n) e SU(n) sono compatti e connessi.

Dimostrazione. Per dimostrare che sono *compatti* essendo sottospazi di $\mathbb{R}^{n\times n}$ per il teorema 2.20 basta dimostrare che sono chiusi e limitati. In particolare essendo definiti tramite equazioni che sono luoghi di zeri di polinomi in a_{ij} allora sono chiusi:

$$SO(n): \begin{cases} A^t A = I \\ \det A = 1 \end{cases}$$
, $U(n): A^t \overline{A} = I$, $SU(n): \begin{cases} A^t \overline{A} = I \\ \det A = 1 \end{cases}$

Siccome $SU(n) \subseteq U(n) \subseteq SO(n)$ basta dimostrare che SO(n) è limitato:

$$A \in SO(n) \implies \sum_{i=1}^{n} a_{ij}^{2} = 1, \forall i = 1, ..., n \implies \sum_{i=1}^{n} a_{ij}^{2} = n \implies SO(n) \subseteq S_{\sqrt{n}} \subseteq \mathbb{R}^{n \times n}$$

dove $S_{\sqrt{n}}$ è la sfera di raggio \sqrt{n} , dunque $\mathrm{SO}(n)$ è limitato. Ne segue che anche $\mathrm{U}(n)$ e $\mathrm{SU}(n)$ lo sono, dunque sono tutti chiusi e limitati in $\mathbb{R}^{n\times n}$, quindi compatti. Per dimostrare che sono *connessi* si procede analogamente al teorema precedente sfruttando il lemma che lo precede. Si consideri $p:\mathrm{SO}(n)\longrightarrow S^{n-1}\subseteq\mathbb{R}^n$ funzione prima colonna, essa è continua, suriettiva e chiusa in quanto è un compatto (appena dimostrati) in un T_2 , e le sue fibra sono connesse $p^{-1}\begin{pmatrix} 1 & 0 & \cdots & 0 \\ \vdots & A & 0 \end{pmatrix}$ con $A\in\mathrm{SO}(n-1)$, dunque per il lemma precedente $\mathrm{SO}(n)$ è connesso.

OSSERVAZIONE. GL e SL *non* sono compatti perché non sono limitati, inoltre GL è aperto e non chiuso.

$_{\text{CAPITOLO}}$

Topologia quoziente

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

4.1 TOPOLOGIA QUOZIENTE

Torniamo ora a parlare di costruzioni topologiche, in particolare ci domandiamo quale sia la topologia più adatta per un insieme quoziente. Ne diamo prima una definizione come topologia indotta da una funzione fra uno spazio topologico ed un insieme, poi vedremo altre definizioni equivalenti tramite una funzione fra spazi topologici e con insiemi quozienti.

Accenniamo fin da subito che la situazione è *duale* rispetto a quella dei sottospazi, analizzati nella sezione 1.5.

Definizione 4.1.0. Dato X uno spazio topologico, Y un *insieme* e $f: X \longrightarrow Y$ funzione suriettiva, la **topologia quoziente** su Y indotta da f è la topologia più fine che rende f continua.

Analizziamo ora chi sono i suoi aperti: $A \subseteq Y$ aperto $\iff f^{-1}(A) \subseteq X$ aperto. Notiamo che l'implicazione \implies) è necessaria perchè f sia continua, mentre l'implicazione \iff) è quella che caratterizza la topologia quoziente, infatti se si considera un insieme $B \subseteq Y$ che non è aperto allora la sua controimmagine $f^{-1}(B) \subseteq X$ non sarà aperta, dunque la topologia su Y è la più fine.

Per verificare che un sottoinsieme sia aperto in Y con la topologia quoziente bisogna verificare che la sua controimmagine è aperta.

Vediamo ora un esempio che giustifica la terminologia "topologia quoziente".

Esempio. Sia X uno spazio topologico e \sim una relazione di equivalenza su X. Posto $Y = X/\sim$ insieme quoziente e $\pi: X \xrightarrow{} Y$ proiezione al quoziente, la topologia quoziente su Y è quella che rende la proiezione continua.

Ricordiamo il primo teorema fondamentale di isomorfismo per gli *insiemi*, altresì chiamato decomposizione canonica.

Data una qualsiasi funzione suriettiva $f: X \longrightarrow Y$ vi è la seguen- $X \xrightarrow{f} Y$ te relazione di equivalenza: $\forall x,y \in X, \ x \sim y \iff f(x) = f(y), \ \text{inoltre}$ $\exists ! \ h: X/\sim \longrightarrow Y$ biunivoca tale che $f = h \circ \pi$, baste porre $h([x]) := f(x), X/\sim$ in modo tale che il diagramma commuti. Mostriamo che è ben definita e biunivoca.

$$[x] = [y] \iff x \sim t \iff f(x) = f(y) \iff h([x]) = h([y]) \implies h$$
 ben definita e iniettiva f suriettiva $\implies h$ suriettiva

4.1.1 Identificazione

Tenendo a mente il concetto di immersione illustrato a pagina 15 illustriamo il concetto duale di identificazione.

DEFINIZIONE 4.1.1. Siano X, Y spazi topologici e $f: X \longrightarrow Y$ una funzione continua e suriettiva; f si dice **identificazione** se Y ha la topologia quoziente indotta da f.

In generale è difficile determinare quando una data funzione è un'identificazione, quindi ne cerchiamo una condizione sufficiente.

Теогема 4.1.0. Манетті, 5.4

Sia $f: X \longrightarrow Y$ continua, suriettiva e chiusa (o aperta), alora f è un'identificazione chiusa (o aperta).

DIMOSTRAZIONE. Supponiamo che f sia aperta. Dimostrare che è un'identificazione è equivalente al mostrare che $A \subseteq Y$ aperto $\iff f^{-1}(A) \subseteq X$ aperto. L'implicazione \implies) è garantita dalla continuità di f, per quanto riguarda l'implicazione opposta \iff) invece siccome f è suriettiva allora $f(f^{-1}(A)) = A$ e siccome f è aperta allora anche A è aperto.

Vediamo ora un esempio di identificazione chiusa e non aperta.

Esempio. Si consideri $f:[0, 2\pi] \longrightarrow S^1$. è una funzione continua, suriettico $t \longmapsto (\cos t, \sin t)$.

tiva e chiusa (compatto in T_2), dunque è un'identificazione chiusa.

Tuttavia f non è aperta, infatti dato $A = [0, 1) \subseteq [0, 2\pi]$ aperto, ma f(A) non è aperto in S^1 .

Osservazione. Gli omeomorfismi sono identificazioni chiuse e aperte.

Vediamo ora che relazione c'è fra le identificazioni ed i quozienti dati da relazioni di equivalenza.

TEOREMA 4.1.1. PROPRIETÀ UNIVERSALE DELLE IDENTIFICAZIONI, MANETTI, 5.6 Dati X, Y, Z spazi topologici, g una qualsiasi funzione continua, f identificazione con le mappe come in figura, allora $\exists ! h$ continua : $g = h \circ f \iff (\forall x, y \in X, f(x) = f(y) \implies g(x) = g(y))$ ovvero se e solo se g è costante sulle fibre di f.

DIMOSTRAZIONE. Idealmente se f fosse invertibile definiremmo $h = g \circ f^{-1}$. Tuttavia l'invertibilità di f non è fra le ipotesi, quindi si sfrutta al meglio l'ipotesi della suriettività e si considera una controimmagine tramite f e se ne fa l'immagine tramite g, ovvero $g \in Y$, g(x) := g(x) con g(x) := g(x) con g(x) := g(x) con questa costruzione g(x)

Verifichiamo che h è continua tramite la definizione:

$$U \subseteq Z$$
 aperto, $h^{-1}(U) \subseteq Y \iff f^{-1}(h^{-1}(U)) \subseteq X$ aperto $\iff g^{-1}(U) \subseteq X$ aperto

Siccome g è continua allora lo è anche h.

Come conseguenza si ha che data f continua, \sim relazione di equivalenza e X/\sim spazio topologico con la topologia quoziente indotta dalla proiezione π si ha che $\exists g$ continua \iff $(x \sim y) \implies f(x) = f(y)$, ovvero π è costante sulle fibre di f.

In particolare se f è la relazione d'equivalenza indotta da f, ovvero se si è nelle ipotesi del primo teorema fondamentale di isomorfismo degli insiemi allora $(x \sim y \iff f(x) = f(y)) \implies \exists ! \overline{f}$ biettiva, continua. Dunque vale f omeomorfismo f omeomorfismo f identificazione f

Riprendiamo l'esempio precedente ed esaminiamolo in termini di spazio quozien-

te.

| Esemplo. $D^n/\sim \cong S^n$

ESEMPIO. $D''/\sim \cong S''$ $f: D^1 = [0, 2\pi] \longrightarrow S^1$ $t \longmapsto (\cos t, \sin t)$, $f \text{ identificatione} \implies S! \cong [0, 2\pi]/\sim$, $\cos n \sim \text{ tale che}$ sia costante sulle fibre di $f: s \sim t \iff \begin{cases} \cos s = \cos t \\ \sin s = \sin t \end{cases} \iff s = t \text{ oppure } s = 0, \ t = 2\pi$ Si può generalizzare in dimensione n con $f: D^n \longrightarrow S^n$ $x \longmapsto \left(2x\sqrt{1-||x||^2}, \ 2||x||^2-1\right)$ iden-

tificazione, dunque $D^n/\sim \cong S^n$ per la relazione $(x_1, y_1) \sim (x_2, y_2) \iff \begin{cases} (x_1, y_1) = (x_2, y_2) \\ x_1^2 + y_1^2 = x_2^2 + y_2^2 = 1 \end{cases}$ ovvero ogni punto è in relazione con sé stesso e tutti i punti sul bordo sono identificati.

4.1.2 Quozienti tipici

Vedremo ora degli esempi di spazi quoziente usati frequentemente.

4.1.2.1 Contrazione di *A* ad un punto

Sia X uno spazio topologico, $A \subseteq X$, $\forall x, y \in X$ $x \sim y \iff x = y$ oppure $x, y \in A$, ovvero ogni punto è in relazione con sé stesso e tutti i punti di A sono in relazione fra loro, dunque quozientando si "contraggono" ad un unico punto.

Esemplo. $D^n/S^{n-1} \cong S^n$

Cerchiamo ora di generalizzare l'esempio precedente. Ricordiamo che relazione c'è fra i dischi e le sfere:

$$D^{n} = \text{disco in } \mathbb{R}^{n} = \{x \in \mathbb{R}^{n} \mid ||x|| \le 1\}$$

 $S^{n-1} = \text{bordo di } D^{n} = \{x \in \mathbb{R}^{n} \mid ||x|| = 1\}$

Considerando ~ come la contrazione di S^{n-1} ad un punto, si ha che $D^n/S^{n-1} \cong S^n$

ATTENZIONE! Anche se $X
in T_2$ non in detto che <math>X/A $in T_2$!

Se A non è chiuso allora X/A non è neanche T_1 , infatti $\pi^{-1}([A]) = A$ non chiuso implica che [A] non lo è, quindi per la caratterizzazione degli spazi T_1 (vedasi X/A non è T_1 . Tuttavia se X è T_2 , $K \subseteq X$ è compatto allora X/K è T_2

4.1.2.2 Cono su uno spazio

DEFINIZIONE 4.1.2. Sia X uno spazio topologico, si definisce **cilindro** su X lo spazio $X \times [0, 1]$.

Il **cono** su X invece è il quoziente $X \times \{0, 1\} / X \times \{1\}$ oppure $X \times \{0, 1\} / X \times \{0\}$.

OSSERVAZIONE. Un cono è sempre c.p.a. rispetto al "vertice".

Esempio. Cono su $S^n\cong D^{n+1}$ n=0) $S^0=\{-1,\ 1\}=X\leadsto X\times [0,\ 1]\leadsto X\times [0,\ 1]\!\!/X\times \{1\}\cong D^1$ n=1) $S^1=X\leadsto X\times [0,\ 1]\leadsto X\times [0,\ 1]\!\!/X\times \{1\}\cong D^2$ $f:S^n\times [0,\ 1]\longrightarrow D^{n+1}$ è continua, $(\mathbf{x},\ t)\longmapsto t\mathbf{x}$

suriettiva, chiusa (compatto in T_2), dunque f è identificazione.

Verifichiamo che la relazione di equivalenza indotta da f è proprio quella di contrazione:

$$(\mathbf{x}, t) \sim (\mathbf{y}, s) \iff f(\mathbf{x}, t) = f(\mathbf{y}, s) \iff t\mathbf{x} = s\mathbf{y} \iff \begin{cases} \mathbf{x} = \mathbf{y}, t = s \\ t = s = 0 \end{cases}$$
Se $t \neq 0 \implies \mathbf{x} = \frac{s}{t}\mathbf{y}$, ma $||\mathbf{x}|| = 1 \implies |\frac{s}{t}| \underbrace{||\mathbf{y}||}_{=1} = 1 \implies |\frac{s}{t}| = 1 \implies s = t \implies \mathbf{x} = \mathbf{y}$

4.1.2.3 Retta con 2 origini

Analizziamo un particolare spazio topologico che spesso fungerà da controesempio, in particolare per le varietà topologiche (vedi sezione): la retta con 2 origini. Sia $X = \mathbb{R} \times \{a, b\}$ Vogliamo definire una relazione di equivalenza che lasci "separate" solo

le origini:

$$(x, \alpha) \sim (y, \beta) \iff \begin{cases} x = y, \alpha = \beta \\ x = y \neq 0 \end{cases}$$

Proprietà

- 1. $Y := X/\sim \hat{e}$ c.p.a., infatti se i punti (x, α) e (y, β) sono tali che $x \neq 0 \neq y$ basta prendere il segmento \overline{xy} sulla retta $\mathbb{R} \times \{a\}$ e proiettarlo. Per unire (0, a) e (0, b) basta unire entrambi con un cammino al punto (1, a) = (1, b)
- 2. Y non è T_2 : tutti gli intorni di (0, a) si intersecano con tutti gli intorni di (0, b)
- 3. Y è localmente omeomorfo a \mathbb{R} , infatti ogni punto ha un interno omeomorfo ad un intervallo aperto di \mathbb{R}
- 4. $\exists K_1, K_2 \subseteq Y$ compatti t.c. $K_1 \cap K_2$ non è compatto: basta prendere $K_1 = \pi([-1, 1] \times \{a\})$ e $K_1 = \pi([-1, 1] \times \{a\})$ compatti in Y, ma $K_1 \cap K_2 = [-1, 0) \cup (0, 1]$ non è compatto in Y

4.1.3 Quoziente T_2

Cerchiamo ora delle condizioni per avere un quoziente Hausdorff.

Teorema 4.1.2. Sia $f: X \longrightarrow Y$ continua e identificazione con X compatto e T_2 , allora sono equivalenti:

- 1. $Y \stackrel{.}{e} T_2$
- 2. f chiusa
- 3. $K = \{(x_1, x_2) \in X \times X \mid f(x_1) = f(x_2)\}\$ chiuso in $X \times X$

Dimostrazione. $1 \implies 3$) Si vuole utilizzare la caratterizzazione di essere T_2 con la chiusura della diagonale Δ_Y , ovvero il teorema 1.5. Bisogna dunque vedere K come controim-

magine continua di
$$\Delta_Y$$
: si consideri $h := f \times f : X \times X \xrightarrow{} Y \times Y$ continua $(x_1, x_2) \longmapsto (f(x_1), f(x_2))$

perché lo è f. Inoltre $K = h^{-1}(\Delta_Y)$ e Y è $T_2 \implies K$ chiuso in quanto controimmagine di

un chiuso tramite una funzione continua.

 $3 \implies 2$) Per dimostrare che f è chiusa bisogna far vedere che $\forall C \subseteq X, C$ chiuso $\implies f(C) \subseteq Y$ chiuso, ma f è identificazione $\iff f^{-1}(f(C)) \subseteq X$ chiuso. Notiamo che $f^{-1}(f(C)) = p_1(k \cap p_2^{-1}(C))$, infatti

$$p_2^{-1}(C) = X \times C \implies K \cap p_2^{-1}(C) = \{(x_1, x_2) \in X \times X \mid f(x_2) \in C\}$$
 $p_2 \text{ continua } e \text{ } C \text{ chiuso } \implies p_2^{-1}(C) \text{ chiuso }$
 $K \text{ chiuso } \implies p_2^{-1}(C) \cap K \text{ chiuso }$
 $X \text{ compatto } e \text{ } T_2 \implies p_1 \text{ chiuso } \implies p_1\left(K \cap p_2^{-1}(C)\right) \text{ chiuso }$

 $2 \implies 1$) Serve il teorema di Wallace, pertanto non affronteremo la dimostrazione.

AZIONI DI GRUPPO

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

5.1 AZIONE DI UN GRUPPO SU UN INSIEME

DEFINIZIONE 5.1.0. Sia G un gruppo e X un insieme. Si definisce il *gruppo simmetrico* sull'insieme X come $S(X) := \{ f : X \longrightarrow X \mid f \text{ biunivoca} \}$. Un'*azione* di G su X è

- $\Phi: G \longrightarrow S(X)$ morfismo di gruppi, ovvero $\Phi(g.h) = \varphi(g)\Phi(h)$
- $\varphi: G \times X \longrightarrow X \quad \text{t.c. } e.x = x, \forall x \in X \text{ e } g.(h.x) = (gh).x$

Se ho Φ definisco $\varphi(g, x) = \Phi(g)(x)$.

$$\in S(X)$$

Se ho φ defins co $\Phi(g): X \longrightarrow X$ $x \longmapsto \varphi(g, x)$

Definizione 5.1.1. Su X definiamo una relazione che dimostreremo essere di equivalenza: $x \sim y \iff \exists g \in G \colon y = g.x$

Dimostrimo che è una relazione di equivalenza:

- \blacksquare riflessiva: x = e.x
- simmetrica: $y = g.x \implies x = g^{-1}.y$
- transitiva: y = g.x, $z = h.y \implies z = (hg).x$

Definizione 5.1.2. Le classi di equivalenza date da questa relazione sono dette orbite

$$[x] = G.x = \{y \in X \mid \exists y : y = g.x\} = \{g.x \mid g \in G\}$$

L'insieme quoziente detto spazio delle orbite si scrive come X/G

Vediamo ora un esempio di azione e di orbite.

Esempio. 1. $X = \mathbb{R}^n$, $G = GL(n, \mathbb{R})$, $\varphi(A, \mathbf{v}) = A\mathbf{v}$ è la moltiplicazione matrice per vettore.

Analizziamo le orbite: $G.\mathbf{0} = \{\mathbf{0}\}$, ovvero il vettore nullo è un'orbita. Siano ora $\mathbf{v} \neq \mathbf{0} \neq \mathbf{w}$. Esiste $A \in GL(n, \mathbb{R})$: $\mathbf{w} = A\mathbf{v}$? Sì, se $\mathbf{v} \neq \mathbf{0}$, $G.\mathbf{v} = \mathbb{R}^n \setminus \{\mathbf{0}\}$.

Quindi $\mathbb{R}^n/GL(n,\mathbb{R}) = \{a, b\} \text{ con } a = [\mathbf{0}] \text{ e } b = [\mathbf{v}], \mathbf{v} \neq \mathbf{0}$

5.2 STABILIZZATORE DI UN ELEMENTO

DEFINIZIONE **5.2.0.** Lo **stabilizzatore di un elemento** è l'insieme degli elementi di *G* che fissano *x*:

$$H_x := \{ g \in G \mid g. x = x \} \tag{5.1}$$

 H_x è un sottogruppo di isotropia di x. Inoltre, se H_x è banale, allora l'azione è libera.

Dimostrazione. H_x è chiuso rispetto all'azione:

- $1_G \in H_x$ per definizione dell'azione $g. (1_G. x = x \ \forall x).$
- $\forall g, h \in H_x$, allora (gh).x = g.(h.x) = g.x = x.

OSSERVAZIONE. L'insieme G/H_x dei laterali sinistri di H_x in G è in corrispondenza biunivoca con l'*orbita* O(x). Inoltre, se G è finito, la cardinalità dell'orbita è pari all'indice di H_x in G.

DIMOSTRAZIONE. Sia data:

$$\alpha: {}^{G/H_x} \longrightarrow O(x)$$
$$g.H_x \longmapsto g.x$$

Mostriamo che α è ben definita e biunivoca.

1. Ben definizione: se $g.H_x = \tilde{g}.H_x$ allora $g^{-1}\tilde{g} = h \in H_x \implies \tilde{g} = gh \in H_x$. Si ha:

$$\alpha(\tilde{g}.H_x) = \tilde{g}.x = (gh).x = g.(h.x) = g.x = \alpha(g.H_x)$$

Poiché $g.H_x = \tilde{g}.H_x \implies g.x = \tilde{g}.x$ la funzione è ben definita.

2. Iniettività:

$$\alpha(g_1. H_x) = \alpha(g_2. H_x) \implies g_1. x = g_2. x \implies g_2^{-1}.(g_1. x) = g_2^{-1}.(g_2. x)$$

 $\implies (g_2^{-1}. g_1). x = 1_G. x = x$

Ne segue che $(g_2^{-1}g_1) \in H_x \implies g_2^{-1}g_1 = h \in H_x \implies g_1.H_x = g_2.H_x.$

3. *Suriettività*: se $y \in O(x)$, per definizione $\exists g \in G : y = g.x$, cioè $y = \alpha(g.H_x)$. Ne consegue, dal teorema di Lagrange, che $|O(x)| = [G:H_x] = \frac{|G|}{|H_x|}$.

OSSERVAZIONE. Punti nella stessa orbita hanno stabilizzatori coniugati:

$$x_2 = g. x_1 \implies H_{x_2} = g. H_{x_1}. g^{-1}$$
 (5.2)

Dimostrazione. \subseteq) Sia $h \in H_{x_2}$. Si ha:

$$h. x_2 = x_2 \implies h. (g. x_1) = g. x_1 \implies (g^{-1}hg). x_1 = x_1$$

Segue che $\forall h \in H_{x_2}$ $g^{-1}hg \in H_{x_1}$, ma allora $h = g\left(g^{-1}h^{-1}g\right)g^{-1} \in g.H_{x_1}.g^{-1}$. Pertanto per l'arbitrarietà di h si ha $H_{x_2} \subseteq g.H_{x_1}.g^{-1}$ \supseteq) Sia $h \in H_{x_1}$ e consideriamo ghg^{-1} . Se moltiplico (con l'azione .) per x_2 :

$$(ghg^{-1}). x_2 = (ghg^{-1}). g. x_1 = (gh). (g^{-1}g). x_1 = (gh). x_1 = g. (h). x_1 = g. x_1 = x_2$$

Pertanto $\forall h \in H_{x_1}(ghg^{-1}). x_2 = x_2$ e per l'arbitrarietà di h si ha $g.H_{x_1}.g^{-1} \subseteq H_{x_2}$

AZIONE PER OMEOMORFISMI 5.3

DEFINIZIONE 5.3.0. Sia X uno spazio topologico e G un gruppo che agisce su X. Diciamo che G agisce per omeomorfismi se $\forall g \in G$ l'applicazione:

$$\theta_g: X \longrightarrow X \\
x \longmapsto g.x$$
(5.3)

è un omeomorfismo.

Questo è equivalente a chiedere che l'azione sia data da un omomorfismo di gruppi:

$$\Phi: G \longrightarrow \{\text{omeomorfismi } X \to X\} \le S(x)$$
 (5.4)

Esercizio. *G* agisce per omeomorfismi se e solo se θ_g è continua $\forall g \in G$.

DIMOSTRAZIONE. ...

Proposizione 5.3.0.

Sia *X* uno spazio topologico e *G* un gruppo che agisce su *X* per omeomorfismo. Sia π la proiezione dall'insieme allo spazio delle orbite X/G:

$$\pi: X \longrightarrow X/G \tag{5.5}$$

Allora π è aperta e, se G è finito, π è anche chiusa.

2. Sia X di **Hausdorff** e G gruppo finito che agisce su X per omeomorfismi. Allora X/G è di Hausdorff.

DIMOSTRAZIONE.

I Sia $A \subseteq X$ un aperto. Vogliamo dimostrare che $\pi(A)$ è aperto in X/G. Un aperto della topologia quoziente è tale se la controimmagine dell'aperto nel quoziente è un aperto: si deve allora dimostrare che $\pi^{-1}(\pi(A))$ è aperto in X.

Ogni elemento di A è contenuto in un orbita, dunque $\pi(A)$ contiene le orbite degli $x \in A$; la controimmagine $\pi^{-1}(\pi(A))$ risulta dunque pari all'unione di *tutte* le orbite in X che intersecano l'insieme A:

$$\pi^{-1}(\pi(A)) = \bigcup_{g \in G} g.A$$

Ma allora $g.A = \{g.x \mid x \in A\}$ è un aperto $\forall g \in G$ poiché un omeomorfismo porta aperti in aperti; l'unione di aperti è aperta, dunque $\pi^{-1}(\pi(A))$ è aperto in X cioè $\pi(A)$ è aperto in X/G.

Preso C chiuso, dobbiamo allo stesso modo dimostrare $\pi(C)$ chiuso in X/G, cioè $\pi^{-1}(\pi(C))$ chiuso in X. Usando lo stesso ragionamento, otteniamo che:

$$\pi^{-1}(\pi(C)) = \bigcup_{g \in G} g. C$$

Con $g. C = \{g. x \mid x \in C\}$ chiuso per omeomorfismo. In particolare, essendo G finito, segue che l'unione dei g. C è finita e dunque anch'essa è un chiuso. Segue dunque $\pi^{-1}(\pi(C))$ chiuso in X e $\pi(C)$ chiuso in X/G.

II Siano $p, q \in X/G$ distinti. Vogliamo dimostrare che esistono intorni di p e q disgiunti.

Siano $x, y \in X$ tali che $\pi(x) = p$ e $\pi(y) = q$ e consideriamo il gruppo finito $G = \{g_1 = 1_G, g_2, ..., g_n\}$. Le orbite di x e y sono diverse: se così non fosse, si avrebbe $\pi(x) = \pi(y)$ e cioè p = q, il che è assurdo! Allora:

$$g_i. x \neq g_v. y \quad \forall i, j$$

Definiti gli (intorni) aperti $U \in I(x)$ e $V \in I(x)$ disgiunti (in quanto X di **Hausdorff**), possiamo considerare gli altri (intorni) aperti disgiunti $g_i.U \in I(g_i.x), g_i.V \in I(g_i.y)$.

Allora:

$$\tilde{U} := \bigcup_{i} g_{i}. U \qquad \tilde{V} := \bigcup_{i} g_{i}. V$$
 (5.6)

Sono entrambi aperti. Vogliamo costruire $U \in I(x)$ e $V \in I(x)$ in modo che siano (intorni) aperti disgiunti tali che, costruiti come sopra \tilde{U} , \tilde{V} , si abbia $\tilde{U} \cap \tilde{V} = \varnothing$. Così, passando al quoziente con π , si otterranno degli intorni $\pi(\tilde{U})$ di p e $\pi(\tilde{V})$ di q che soddisfano $\pi(\tilde{U}) \cap \pi(\tilde{V}) = \varnothing$.

■ Costruiamo U e V: $\forall i$ sappiamo che $x \neq g_i$. y in X (in quanto le orbite di x e y sono distinte. In quanto X è di **Hausdorff**, si ha che $\forall i \exists U_i, V_i$ (intorni) aperti disgiunti tali che $x \in U_i$ e g_i . $y \in V_i$. Notiamo che $y \in g_i^{-1}$. V_i ; allora definiamo

$$U := \bigcap_{i}^{n} U_{i} \in I(x) \qquad V := \bigcap_{i=1}^{n} g_{i}^{-1}. V_{i} \in I(y)$$

Ricaviamo \tilde{U} e \tilde{V} : $\forall i$ (e quindi per ogni elemento di G) abbiamo:

$$U \cap (g_i, V) \subseteq U_i(g_i, g_i^{-1}, V_i) = U_i \cap V_i = \emptyset \implies U \cap (g_i, V) = \emptyset$$

Allora $\forall i, j$ abbiamo:

$$(g_i, U) \cap (g_j, V) = (g_i, U) \cap (g_i g_i^{-1} g_j, V) = g_i \cdot (U \cap (g_i^{-1} g_j), V)$$

Ma $g_i^{-1}g_j \in G$, dunque $U \cap (g_i^{-1}g_j)$. $V = \emptyset$. Segue che:

$$(g_i.U) \cap (g_j.V) = \varnothing \implies \left(\bigcup_i g_i.U\right) \cap \left(\bigcup_i g_i.V\right) = \varnothing \implies \tilde{U} \cap \tilde{V} = \varnothing$$

Esemplo. (\mathbb{Z} , +) agisce in \mathbb{R} per traslazione:

$$m. x = x + m \tag{5.7}$$

Se mettiamo ad $\mathbb R$ la topologia Euclidea, allora l'azione è per omeomorfismi, dato che fissato $m \in \mathbb Z$: $\theta_m : \mathbb R \longrightarrow \mathbb R$ è continua.

- *Orbite*: $O(x) = \{x + m \mid m \in \mathbb{Z}\}$ rappresenta tutti i numeri che hanno mantissa uguale (ad esempio, preso x = 1.5, nella sua orbita abbiamo 1.5, 2.5, -1.5, 25.5, ...).
- *Stabilizzatore*: $H_x = \{m \in Z \mid x + m = x\} = \{0\}$ è banale, dunque l'azione è libera.
- *Spazio delle orbite*: \mathbb{R}/\mathbb{Z} è insiemisticamente in corrispondenza biunivoca con [0, 1), in particolare un sistema di rappresentanti di \mathbb{R}/\mathbb{Z} sono le orbite al variare di $x \in [0, 1)$. Inoltre, lo spazio delle orbite è compatto essendo immagine continua di un compatto $(\pi([0, 1]) = \mathbb{R}/\mathbb{Z})$. Si può dimostrare che è omeomorfo a S^1 .

DIMOSTRAZIONE. Consideriamo $f: R \longrightarrow S^1 \subseteq \mathbb{R}$ $t \longmapsto (\cos(2\pi t), \sin(2\pi t))$

- \blacksquare *f* è continua.
- \blacksquare f è suriettiva.
- $f(t_1) = f(t_2) \iff t_1 t_2 \in \mathbb{Z} \iff t_1, t_2 \text{ nella stessa orbita} \iff \pi(t_1) = \pi(t_2)$

Allora la relazione di equivalenza indotta da f è quella dell'azione di \mathbb{Z} su \mathbb{R} .

Inoltre, f induce $\overline{f}: \mathbb{R}/\mathbb{Z} \longrightarrow S^1$ continua per le proprietà della topologia quoziente e che rende commutativo il diagramma a lato. Infatti \overline{f} è biunivoca in quanto suriettiva (lo è f) ed iniettiva (per conseguenza del sistema di rappresentanti che si ha su \mathbb{R}/\mathbb{Z}).

Inoltre, essendo \mathbb{R}/\mathbb{Z} compatto ed S^1 di **Hausdorff**, \overline{f} è chiusa e dunque \overline{f} è l'omeomorfismo cercato. Per questo motivo, si ha anche che f è un'identificazione aperta.

Digressione. Si può sempre vedere \mathbb{R}^2 come lo spazio dei complessi \mathbb{C} . Allora $S^1 \in$

 $\mathbb{C} \implies S^1 = \{z \mid |z| = 1\}$. La funzione di prima si può anche riscrivere come:

$$(\cos(2\pi t), \sin(2\pi t)) \leftrightarrow \cos(2\pi t) + i\sin(2\pi t) \leftrightarrow e^{2\pi i t}$$
 (5.8)

Esemplo. $G = GL(n, \mathbb{R})$ agisce su \mathbb{R}^n con l'azione di moltiplicazione matrice per vettore:

$$A.\,\underline{v} = A\underline{v} \tag{5.9}$$

L'azione è per omeomorfismi, dato che fissato $A \in G$: $\theta_A : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ è continua. $v \longmapsto Av$

- Orbite: definite $O(v) = \{Av \mid A \in G\}$ ci sono solo due orbite, [0] e [v] con $v \neq$ 0, dato che ogni vettore può essere scritto come prodotto di un vettore per un'opportuna matrice di cambiamento di base.
- Spazio delle orbite: $\mathbb{R}^n/G = \{ [\underline{0}], [\underline{v}] \}$. Considerando la proiezione al quoziente $\pi: \mathbb{R}^n \longrightarrow \mathbb{R}^n/G$, si ha che $\pi^{-1}([\underline{v}]) = \mathbb{R}^n \setminus \{0\}$, che è un aperto ma non è un chiuso. Per definizione di aperto della topologia quoziente $\{[v]\}$ è aperto ma non chiuso in \mathbb{R}^n /G, dunque non tutti i punti nello spazio delle orbite son chiusi. Segue che \mathbb{R}^n/G non è **T**1 e tanto meno è di **Hausdorff**.

ESEMPIO. $G = \mathbb{R}^* = \mathbb{R} \setminus \{0\}$, inteso come gruppo moltiplicativo, agisce su $X = \mathbb{R}^{n+1} \setminus \{0\}$ con l'azione di moltiplicazione per uno scalare:

$$\lambda.\,\underline{x} = \lambda\underline{x} \tag{5.10}$$

L'azione è per omeomorfismi, dato che fissato $\lambda \in G$: $\theta_{\lambda} : \mathbb{R}^{n+1} \setminus \{0\} \longrightarrow \mathbb{R}^{n+1} \setminus \{0\}$ $\underline{x} \longmapsto \lambda \underline{x}$

è continua.

- *Orbite*: $O(\underline{x}) = \{\lambda \underline{x} \mid \lambda \in G\}$ rappresentano tutte le rette vettoriali passanti per
- l'origine in \mathbb{R}^{n+1} a cui son state tolte l'origine.

 Spazio delle orbite: $\frac{\mathbb{R}^{n+1}\setminus\{0\}}{G} = \mathbb{P}^n(\mathbb{R})$ è lo spazio proiettivo reale, spazio topologico rispetto alla topologia quoziente indotta dall'azione. $\mathbb{P}^n(\mathbb{R})$ è di Hausdorff e compatto.

DEFINIZIONE 5.3.1. Lo spazio proiettivo reale $\mathbb{P}^n(\mathbb{R})$ (o \mathbb{RP}^n) di dimensione n è lo spazio topologico delle rette vettoriali passanti origine in \mathbb{R}^{n+1} , a cui son state tolte l'origine. È definito come lo spazio quoziente rispetto all'azione del gruppo moltiplicativo \mathbb{R}^* :

$$\mathbb{P}^{n}(\mathbb{R}) = \frac{\mathbb{R}^{n+1} \setminus \{0\}}{\mathbb{R}^{*}}$$
(5.11)

Proposizione 5.3.1. $\mathbb{P}^n(\mathbb{R})$ è di Hausdorff, compatto e c.p.a..

DIMOSTRAZIONE. I Dati $p, q \in \mathbb{P}^n(\mathbb{R}), p \neq q$ essi sono della forma $p = [\underline{x}]$ e $q = [\underline{y}]$. Allora:

$$\left[\underline{x}\right]\neq\left[\underline{y}\right]\mathcal{L}_{0}\left(\underline{x}\right)\neq\mathcal{L}_{0}\left(\underline{y}\right)$$

Con $\mathcal{L}_0(\underline{x})$, $\mathcal{L}_0(y)$ le rette vettoriali descritte da \underline{x} e y.

Prendiamo gli (intorni) aperti disgiunti $U \setminus 0 \in I(\underline{x})$, $V \setminus 0 \in I(\underline{y})$ in $\mathbb{R}^{n+1} \setminus \{0\}$. Allora, passando al quoziente, $\pi(U \setminus 0)$ e $\pi(V \setminus 0)$ formano due fasci di rette a forma di "doppio cono infinito" con vertice nell'origine; questi due coni sono (intorni) aperti in quanto

$$\pi^{-1}(\pi(U\setminus 0)) = U\setminus 0$$
 $\pi^{-1}(\pi(V\setminus 0)) = V\setminus 0$

Inoltre sono intorni disgiunti di p e q, dunque $\mathbb{P}^n(\mathbb{R})$ è di **Hausdorff**.

II Per dimostrare che $\mathbb{P}^n(\mathbb{R})$ è compatto, mostreremo che $\pi(S^n) = \mathbb{P}^n(\mathbb{R})$, dato che $S^n \subseteq R^{n+1} \setminus \{0\}$ è compatto.

Notiamo che, presa l'orbita di un vettore v, si ha:

$$[\underline{v}] = \{\lambda \underline{v} \mid \lambda \in \mathbb{R}^*\} = \left\{\underbrace{\lambda ||\underline{v}||}_{=\mu \in \mathbb{R}^*} \underbrace{\frac{\underline{v}}{||\underline{v}||}}_{\in S^1} \mid \lambda \in \mathbb{R}^*\right\} = \{\mu \underline{x} \mid \mu \in \mathbb{R}^*\} = [\underline{x}]$$

Dunque ogni orbita dello spazio proiettivo reale si può scrivere come l'orbita di un vettore appartenente alla sfera S^n . Segue che non solo π è suriettiva, ma anche $\pi_{|S^n}$ è suriettiva, cioè $\pi_{|S^n}(S^n) = \mathbb{P}^n(\mathbb{R})$; segue dunque che $\pi(S^n) = \mathbb{P}^n(\mathbb{R})$. Dato che S^n è compatto e **c.p.a.**, segue che anche lo spazio proiettivo reale è compatto e **c.p.a.** (in quanto immagine continua tramite π di S^n).

Successioni

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

6.1 NUMERABILITÀ

DEFINIZIONE 6.1.0. Un insieme X è **numerabile** se è finito oppure esiste una biezione tra l'insieme X e i naturali \mathbb{N} .

DEFINIZIONE 6.1.1. Uno spazio topologico X è a base numerabile se esiste una base \mathcal{B} della topologia tale che \mathcal{B} sia numerabile. Si dice anche che X soddisfa il **secondo** assioma di numerabilità.

DEFINIZIONE 6.1.2. Uno spazio topologico X è *primo-numerabile* se ogni punto ammette un sistema fondamentale di intorni che sia numerabile. Si dice anche che X soddisfa il **primo assioma di numerabilità**.

OSSERVAZIONE.

- 1. Il secondo assioma di numerabilità implica il primo.
- 2. Se X è finito, X soddisfa sempre i due assiomi.
- 3. Se X è spazio metrico, X è sempre *primo-numerabile*.
- 4. Se X è a base numerabile, ogni sottospazio Y di X è a base numerabile. In particolare Y è primo-numerabile.
- 5. Se X e Y sono a base numerabile, allora $X \times Y$ è a base numerabile. In particolare $X \times Y$ è primo-numerabile.
- 6. Non è vero che il quoziente di *X* spazio *a base numerabile* (o *primo-numerabile*) è sempre *a base numerabile* (o *primo-numerabile*).

64 CAPITOLO 6. SUCCESSIONI

DIMOSTRAZIONE.

I Se X ha base numerabile \mathscr{B} e $x \in X$, allora $\{A \in \mathscr{B} \mid x \in A\}$ è un sistema fondamentali di intorni di x ed è chiaramente numerabile.

- II Ogni base e sistema fondamentale di intorni contiene necessariamente un numero finito di elementi.
- III Preso $x \in X$, allora $\{B_{1/n}(x)\}_{n \in \mathbb{N}}$ è un sistema fondamentale di intorni ed è numerabile
- IV Se \mathscr{B} è una base numerabile per X, $\{A \cap Y \mid A \in \mathscr{B}\}$ è base numerabile per Y.
- V Se \mathcal{B}_X è una base numerabile per X e \mathcal{B}_Y base numerabile per Y, allora $\{A \times B \mid A \in \mathcal{B}_X, B \in \mathcal{B}_Y\}$ è base di $X \times Y$ numerabile: il prodotto cartesiano di due insiemi numerabili rimane numerabile.
- VI La contrazione di \mathbb{Z} in \mathbb{R} ad un punto, cioè il quoziente \mathbb{R}/\mathbb{Z} , non è primonumerabile nè tanto meno a base numerabile, pur essendo \mathbb{R} a base numerabile in quanto metrico^a.

Esempio. \mathbb{R} con la topologia Euclidea è a base numerabile. Presa infatti:

$$\mathcal{B} = \{(a, b) \mid a, b \in \mathbb{Q}, a < b\}$$

- È numerabile (è definita con i razionali ℚ, che sono numerabili)
- È una base perché, dati $x, y \in \mathbb{R}, x < y$:

$$(x, y) = \bigcup_{\substack{a,b \in \mathbb{Q} \\ x < a < b < y}} (a, b)$$

Proposizione 6.1.0. Sia X a base numerabile. Allora ogni ricoprimento aperto di X ammette un sottoricoprimento numerabile.

DIMOSTRAZIONE. Sia $\mathscr A$ un ricoprimento aperto di X, $\mathscr B$ una base numerabile per X e $x \in X$. Allora $\exists U_x \in \mathscr A$ tale che $x \in U_x$. Essendo $\mathscr B$ base, $\exists B_x \in \mathscr B$ tale che $x \in B_x \subseteq U_x$. Abbiamo così determinato un sottoinsieme numerabile della base $\mathscr B$:

$$\tilde{\mathscr{B}} := \{B_x \mid x \in X\}$$

Allora esiste in particolare $E \subseteq X$ numerabile tale che:

$$\tilde{\mathscr{B}} := \{B_x \mid x \in E\}$$

Se consideriamo ora $\tilde{\mathscr{A}} := \{U_x \mid x \in E\}$, notiamo che:

- \bullet $\tilde{A} \subseteq A$.
- \blacksquare \tilde{A} è numerabile perché lo è E.

Segue che $\tilde{\mathcal{A}}$ è un sottoricoprimento numerabile di A.

^aNelle "Note aggiuntive", a pag. 141, si può trovare la dimostrazione di ciò.

6.1. NUMERABILITÀ 65

DEFINIZIONE 6.1.3. Uno spazio topologico X si dice **separabile** se contiene un sottoinsieme E denso e numerabile.

ESEMPI.

- Se *X* è numerabile, allora è separabile perché l'insieme stesso è un sottoinsieme numerabile e denso.
- \mathbb{R}^n con la topologia euclidea è separabile perché si ha $E = \mathbb{Q}^n$ denso in \mathbb{R}^n .

Lemma 6.1.0. Se X è a base numerabile, allora è separabile.

DIMOSTRAZIONE. Sia \mathcal{B} una base numerabile. Per ogni $U \in \mathcal{B}$ sia $x_U \in U$ un punto e sia:

$$E = \{x_{IJ} \mid U \in \mathcal{B}\}$$

- E è numerabile perché lo è \mathcal{B} : abbiamo preso un punto per ogni elemento della base numerabile.
- E è denso: se $A \subseteq X$ è aperto non vuoto, allora $\exists U \in \mathcal{B}$ tale che $x_u \in U \subseteq A \implies x_U \in A \implies E \cap A \neq \emptyset$.

Proposizione 6.1.1. Se X è spazio metrico, X è sempre primo-numerabile ed è:

a base numerabile ← separabile

DIMOSTRAZIONE.

- ⇒) Sempre vera per ogni spazio anche non metrico (lemma 6.1).
- \iff Sia $E \subseteq X$ sottoinsieme numerabile e denso e consideriamo:

$$\mathscr{B} = \{B_{1/n}(e) \mid e \in E, n \in \mathbb{N}\}\$$

Questo insieme è numerabile: mostriamo che sia una base. Per far ciò fissiamo $U \subseteq X$ aperto e prendiamo $x \in U$: vogliamo trovare un aperto di \mathcal{B} contenuto in U contenente x.

Sia $n \in \mathbb{N}$ tale che $B_{1/n}(x) \subseteq$. Cerchiamo opportuni $e \in E$, $m \in \mathbb{N}$ tale che:

$$x \in B_{1/m}(e) \subseteq B_{1/n}(x) \subseteq U$$

Consideriamo la palla $B_{1/2n}(x)$. Siccome E è denso in X, $\exists e \in E \cap B_{1/2n}(x)$. Prendiamo ora la balla $B_{1/2n}(e) \in \mathcal{B}$:

- contiene x perché se $e \in B_{1/2n}(x) \implies d(e, y) < \frac{1}{2n} \implies x \in B_{1/2n}(e)$
- $B_{1/2n}(e) \subseteq B_{1/n}(x) \subseteq U$; infatti, preso $y \in B_{1/2n}(e)$ si ha:

$$d(x, y) \le d(x, e) + d(e, y) < \frac{1}{2n} + \frac{1}{2n} = \frac{1}{n}$$

$$\implies y \in B_{1/n}(x) \subseteq U.$$

66 CAPITOLO 6. SUCCESSIONI

Segue la tesi.

 a Gli elementi della base sono già aperti banalmente. Per l'arbitrarietà di x, troviamo un ricoprimento aperto di U costituito da aperti di \mathscr{B} contenuto interamente in U, cioè $U = \bigcup_{i \in I} B_i$.

Esempio. Si può vedere che \mathbb{R}^n è base numerabile anche perché è uno spazio metrico ed è separabile.

Attenzione! Un insieme con una certa topologia può essere a base numerabile (o primonumerabile), ma non necessariamente rispetto ad un altra!

ESEMPIO. RETTA DI SORGENFREY.

Consideriamo $X = \mathbb{R}$ con la topologia avente come base:

$$\mathcal{B} = \{ [a, b) \mid a, b \in \mathbb{R}, a < b \}$$

$$(6.1)$$

Mostriamo \mathcal{B} è base per una topologia, è separabile, primo-numerabile ma non è a base numerabile.

■ Base per una topologia: usiamo il teorema delle basi (Manetti, 3.7), pag. 8.

$$I \quad X = \bigcup_{B \in \mathcal{R}} B \text{ è ovvio}$$

II Prendiamo A = [a, b), B = [c, d) e consideriamo:

$$\forall x \in A \cap B = [\max\{a, b\}, \min\{c, d\})$$

Allora basta prendere $C = A \cap B \in \mathcal{B}$ per soddisfare $x \in C \subseteq A \cap B$.

- Separabile: $E = \mathbb{Z}$ è numerabile ed è denso perché vale sempre $[a, b) \cap \mathbb{Z} \neq \emptyset$, dunque ogni aperto non vuoto interseca E; segue che X è separabile.
- Primo-numerabile: s $a \in \mathbb{R}$ allora $\{[a, a + \frac{1}{n})\}_{n \in \mathbb{N}}$ è un sistema fondamentale di intorni di a numerabile. Preso U intorno di a, $\exists b > a$ tale che $[a, b) \subseteq U$; inoltre, $\exists n \in \mathbb{N}$ tale che $a + \frac{1}{n} < b$, cioè:

$$\left[a, a + \frac{1}{n}\right] \subseteq \left[a, b\right] \subseteq U$$

■ *Non a base numerabile*: presa una base $\tilde{\mathscr{B}}$ per X, mostriamo che non è numerabile. Sia $x \in \mathbb{R}$. Allora:

$$[x, \infty) = \bigcup_{y>x} [x, y)$$

È aperto. In particolare, esiste un aperto dipendente dal punto x, cioè $U(x) = [x, b) \in \tilde{\mathcal{B}}$ (per un certo b > x) per cui $x \in U(x) \subseteq [x, \infty)$.

Notiamo che se $x \neq y$, allora $U(x) \neq U(y)$: preso y > x, segue che $x \notin [y, \infty) \supseteq U(y) \implies x \notin U(y) \implies U(x) \neq U(y)$. L'applicazione:

$$\mathbb{R} \xrightarrow{\mathscr{S}} \widetilde{\mathscr{S}} \\
x \longmapsto U(x) \tag{6.2}$$

è iniettiva, dunque $\tilde{\mathscr{B}}$ non è in iniezione con i naturali e pertanto $\tilde{\mathscr{B}}$ non è numerabile.

6.2. SUCCESSIONI 67

6.2 SUCCESSIONI

DEFINIZIONE 6.2.0. Una **successione** in uno spazio topologico X è una funzione: $a: \mathbb{N} \longrightarrow X$ che indichiamo con $\{a_n\}_{n\in\mathbb{N}} = \{a_n\}$.

DEFINIZIONE 6.2.1. Sia $\{a_n\}$ una successione in X. Diciamo che $\{a_n\}$ **converge** a $p \in X$ se $\forall U \in I(p) \exists n_0 \in \mathbb{N} : a_n \in U, \forall n \geq n_0$.

OSSERVAZIONE. Se X è di **Hausdorff**, una successione convergente ha un **unico** limite.

Dimostrazione. Supponiamo che $\{a_n\}$ converga a p e q. Mostriamo che p=q. Siano $U \in I(p)$ e $V \in I(q)$.

- Siccome $\{a_n\}$ converge a p, $\exists n_0$ tale che $a_n \in U \forall n \geq n_0$.
- Siccome $\{a_n\}$ converge a 1, $\exists n_1$ tale che $a_n \in V \forall n \geq n_1$.

$$\implies a_n \in U \cap V \ \forall n \ge \max_{n_0, \ n_1} \implies U \cap V \ne \emptyset \implies p = q$$

L'ultima implicazione deriva dal fatto che X è di **Hausdorff**. Infatti, se in **Hausdorff** $p \neq q \implies U \cap V = \emptyset$, vale anche la sua negazione: $U \cap V \neq \emptyset \implies p = q$.

DEFINIZIONE 6.2.2. Se X è di **Hausdorff** e $\{a_n\}$ è convergente, ha senso parlare del **limite** della successione:

$$p = \lim_{n \to +\infty} a_n \tag{6.3}$$

Se *X non* è di **Hausdorff**, la stessa successione può convergere a più punti, dunque non esiste il limite della successione.

ESEMPI.

- Se X ha la topologia banale $\mathcal{T} = \{X, \varnothing\}$, l'unico intorno di qualunque punto è X. Allora ogni successione $\{a_n\}$ in X converge sempre ad un qualunque punto p.
- Se X ha la topologia discreta, $\{a_n\}$ successione in X converge a $p \iff \exists n_0 : a_n = p$, $\forall n \geq n_0$, cioè se la successione è finitamente costante. Infatti, nella topologia discreta anche il singoletto $\{p\}$ è intorno di p, dunque eventualmente la successione avrà solo termini nel singoletto.

68 CAPITOLO 6. SUCCESSIONI

Osservazione. Se *X* spazio metrico:

$$a_n$$
 converge a $p \iff \forall \varepsilon > 0 \ \exists n_0 : d(x, y) < \varepsilon, \ \forall n \ge n_0$ (6.4)

DIMOSTRAZIONE.

 \Longrightarrow) $U = B_{\varepsilon}(p)$ è l'intorno di convergenza che soddisfa l'implicazione.

 \iff) Sia $U \in I(p)$. Allora $\exists \varepsilon : B_{\varepsilon}(p) \subseteq U$. Ma allora, dato che per le ipotesi $\exists n_0 : d(p, a_n) < \varepsilon$, $\forall n \ge n_0$, cioè $a_n \in B_{\varepsilon}(p) \subseteq U \implies a_n \in U \forall n \ge n_0$.

6.2.1 Punti di accumulazione

DEFINIZIONE 6.2.3. Un punto $p \in X$ è **punto di accumulazione per la successione** $\{a_n\}$ se:

$$\forall U \in I(p), \ \forall N \in \mathbb{N} \ \exists n \ge N : a_n \in U$$
 (6.5)

Esercizio. Se X è spazio metrico, allora:

p punto di accumulazione per
$$a_n \iff \forall \varepsilon > 0 \ \exists n_0 : d(x, y) < \varepsilon, \ \forall n \ge n_0$$
 (6.6)

DEFINIZIONE 6.2.4. Un punto $p \in X$ è **punto di accumulazione per il sottoinsieme** $B \subseteq X$ se:

$$\forall U \in I(p), \exists b \in B \colon b \in U \setminus \{p\} \tag{6.7}$$

L'insieme dei punti di accumulazione per il sottoinsieme *B* è chiamato **derivato** di *B*.

Esercizio. Data la successione $\{a_n\}$ in X e definito $A := \{a_n \mid n \in \mathbb{N}\}$:

- $p \in X$ punto di accumulazione per la successione non è mai punto di accumulazione per l'insieme A.
- $p \in X$ punto di accumulazione per l'insieme A in generale non è punto di accumulazione per la successione; se X è metrico allora vale l'implicazione

6.2.2 Sottosuccessioni

Definizione 6.2.5. Una **sottosuccessione** di $\{a_n\}$ è la composizione di $a: \mathbb{N} \longrightarrow X$ con un'applicazione *strettamente crescente* $k: \mathbb{N} \longrightarrow \mathbb{N} \setminus \{n\}$. Si indica con $\{a_{k_n}\}$.

Lemma 6.2.0. (A) Sia $\{a_n\}$ una successione su X e $p \in X$. Valgono le seguenti implicazioni:

Ш

(2) $\{a_n\}$ ha una sottosuccessione convergente a p (6.9)

6.2. SUCCESSIONI 69

(3) p è un punto di accumulazione per $\{a_n\}$ (6.10)₩ (**) (4) $p \in \overline{A}$ dove $A = \{a_n \mid n \in \mathbb{N}\} \subseteq X$

(6.11)

Dimostrazione. $(1) \Longrightarrow (2)$ La sottosuccessione convergente è la successione stessa. $(2) \Longrightarrow (3)$ Sia $\{a_{k(n)}\}$ una sottosuccessione convergente a p e sia $U \in I(p)$. Se $a_{k(n)}$ converge a p si ha che $\exists n_0 : a_{k(n)} \in U$, $\forall n \ge n_0$. Poiche k(n) è strettamente crescente, $\exists n_1 : k(n) \ge N$, $\forall n \ge n_1$. Allora preso:

$$n = \max\{n_0, n_1\}$$

Abbiamo che $a_{k(n)} \in U$, $k(n) \ge N$. Segue che p è punto di accumulazione per $\{a_n\}$. $3 \implies 4 p \in \overline{A} \iff \forall U \in I(p) \ A \cap U \neq \emptyset$. Allora sia U intorno di p: voglia che $U \cap A \neq \emptyset$. Essendo p punto di accumulazione per $\{a_n\}$, $\exists n \ a_n \in U \implies U \cap A \neq \emptyset$.

Lemma 6.2.1. Sia X primo-numerabile, $\{a_n\}$ successione in X e $p \in X$. Allora vale anche il viceversa di (*), cioè:

 $\{a_n\}$ ha una sottosuccessione convergente a $p \iff p$ è di accumulazione per $\{a_n\}$

Dimostrazione. \Longrightarrow) Vale per (*).

 \Leftarrow) Sia $\{U_m\}_{m\in\mathbb{N}}$ sistema fondamentale di intorni di p numerabile per ipotesi (Xprimo-numerabile). Consideriamo i seguenti insiemi:

$$\tilde{U}_m \coloneqq U_1 \cap \dots U_m \quad \forall m \in \mathbb{N}$$

- \tilde{U}_m è intorno di p, in quanto intersezione *finita* di intorni di p.
- $\tilde{U}_m = U_1 \cap \dots \cup U_m \supseteq U_1 \cap \dots \cup U_m \cap U_{m+1} = \tilde{U}_{m+1}.$

Segue che $\{\tilde{U}_m\}$ è ancora un sistema fondamentale di intorni (numerabile) di p, infatti, se V è intorno di p, $\exists m : V \supseteq U_m \supseteq U_m$.

A meno di sostituire U_m con \tilde{U}_m , possiamo supporre che $U_1 \supseteq U_2 \supseteq U_3 \supseteq \dots$

Costruiamo una sottosuccessione di $\{a_n\}$ convergente a p. Sicuramente:

- $\blacksquare \quad \exists k (1) \in \mathbb{N} : a_{k(1)} \in U_1.$
- $\exists k(2) \ge k(1) + 1 : A_{k(2)} \in U_2$.

E così via: $\forall m \exists k (m) \ge k (m-1) + 1$ tale che $a_{k(m)} \in U_m$, ottenendo una sottosuccessione $\{a_{k(m)}\}$. Notiamo in particolare che:

$$\odot$$
 Se $m_2 \ge m_1$, allora $a_{k(m_2)} \in U_{m_2} \subseteq U_{m_1}$.

^aL'intorno *U* è arbitrario.

Mostriamo che $\{A_{k(n)}\}$ converge a p.

Sia V intorno di p. Dal sistema fondamentale di intorni $\exists m_0$ tale che $U_{m_0} \subseteq V$. Da \odot si ha che $\forall m \geq m_0$ $a_{k(m)} \in U_{m_0} \subseteq V$.

Proposizione 6.2.0. Caratterizzazione della chiusura in termini di successioni. Sia X uno spazio topologico *primo-numerabile*. Sia $Y \subseteq X$ e $p \in X$. Sono equivalenti

- Esiste una successione in Y convergente a p.
- \blacksquare *p* è di accumulazione per una successione in *Y*.
- $p \in \overline{Y}$

DIMOSTRAZIONE.

- $1 \implies 2$ Non è necessario che X sia primo-numerabile, è immediato dal lemma 6.2 (pag. 68).
- $(2) \Longrightarrow (3)$ Non è necessario che X sia primo-numerabile. Se p di accumulazione per $\{a_n\}$ con $a_n \in y \ \forall n \Longrightarrow A = \{a_n \mid n \in \mathbb{N}\} \subseteq Y$. Allora segue dal lemma 6.2 $(a_n \mid n \in \mathbb{N}) \subseteq Y$ che $p \in A = \{a_n \mid n \in \mathbb{N}\} \subseteq Y$
- $\textcircled{3} \Longrightarrow \textcircled{1}$ Sia $\{U_n\}$ un sistmea fondamentale di intorni di p tale che $U_n \supseteq U_{n+1} \ \forall n$. Allora:

$$p \in \overline{Y} \implies \forall n \ Y \cap U_n \neq \emptyset \implies \forall n \ \exists y_n \in Y \cap U_n$$

In modo analogo a \odot (pag. 69), se $n_2 \ge n_1$, allora $y_{n_2} \in U_{n_2} \subseteq U_{n_1}$. Allora $\{y_n\}$ è una successione in Y, mostriamo che converge a p.

Sia V intorno di p. Dal sistema fondamentale di intorni $\exists n_0$ tale che $U_{n_0} \subseteq V$. Dal ragionamento analogo a \odot si ha che $\forall n \geq n_0 \ y_n \in U_{n_0} \subseteq V$.

6.3 SUCCESSIONI E COMPATTI

Proposizione 6.3.0. (Manetti, 4.46)

Sia X spazio topologico e sia $K_n \subseteq X \ \forall n \in \mathbb{N}$ un sottospazio chiuso, *compatto* e non vuoto. Supponiamo inoltre che:

$$K_n \supseteq K_n + 1 \ \forall n \implies K_1 \supseteq K_2 \supseteq K_3 \supseteq \dots$$

Allora: $\bigcap_{n\geq 1} K_n \neq \emptyset$.

DIMOSTRAZIONE. Iniziamo in K_1 . Consideriamo $A_n := K_1 \setminus K_n$:

- K_n chiuso in $X \Longrightarrow K_n$ chiuso in K_1 . Allora A_n completementare di un chiuso, dunque aperto in $K_1 \forall m \ge 1$.
- $\blacksquare \quad K_n \supseteq K_{n+1} \implies A_n \subseteq A_{n+1} \ \forall n \ge 1.$

Sia allora $N \in \mathbb{N}$.

$$\bigcup_{n=1}^{N} A_n = A_N = K_1 \setminus \underbrace{K_N}_{\neq \varnothing} \subsetneq K_1$$

Allora nessuna unione finita degli A_n ricopre K_1 , cioè $\bigcup_{n\in\mathbb{N}}A_n \subsetneq K_1$, altrimenti $\{A_n\}$ sa-

rebbe un ricoprimento aperto di K_1 che *non* ammette sottoricoprimento finito (assurdo, in quanto K_1 è *compatto*!).

$$\bigcup_{n\geq 1} A_n = \bigcup_{n\geq 1} K_1 \setminus K_n = K_1 \setminus \left(\bigcap_{n\geq 1} K_n\right) \subsetneq K_1 \implies \bigcap_{n\geq 1} K_n \neq \emptyset$$

Lemma 6.3.0. In uno spazio topologico *compatto* X ogni successione in X ha punti di accumulazione.

DIMOSTRAZIONE. Sia $\{a_n\}$ successione in X; per definizione:

 $p \in X$ punto di accumulazione per $\{a_n\} \iff \forall U \in I(p), \ \forall N \in \mathbb{N} \ \exists n \geq N : a_n \in U$

Per N fissato sia $A_N := \{a_n \mid n \ge N\} \subseteq X$. Allora:

$$p \in X \text{ punto di accumulazione per}$$

$$\{a_n\} \iff \forall U \in I(p), \ \forall N \in \mathbb{N} \ U \cap A_N \neq \varnothing \iff \forall N \in \mathbb{N}, \ p \in \overline{A}_N \coloneqq C_N$$

Dunque {punti di accumulazione di $\{a_n\}$ } = $\bigcap_{N \in \mathbb{N}} C_N$ e:

 $\{a_n\}$ ha punti di accumulazione $\iff \bigcap_{N\in\mathbb{N}} C_N \neq \emptyset$

- $A_B \neq \emptyset$ per definizione, dunque C_N è un chiuso non vuoto.
- $X \ \text{è compatto}$, $C_N \ \text{chiuso in } X \ \text{compatto} \implies C_N \ \text{compatto}$.

Poiché $A_N = \{a_n \mid n \ge N\} \supseteq A_{N+1} = \{a_n \mid n \ge N+1\}$, si ha:

$$C_N=\overline{A_N}\subseteq\overline{A_{N+1}}=C_{N+1}$$

Abbiamo trovato una successione di compatti contenuto l'uno nel successivo. Allora per la proposizione 6.4 (pag. 70, (Manetti, 4.46)). si ha che $\bigcap_{n\geq 1} C_N \neq \emptyset$. Segue che esiste un punto di accumulazione per la successione.

6.3.1 Compattezza per successioni

DEFINIZIONE 6.3.0. Sia X spazio topologico. X si dice **compatto per successioni** se ogni successione ammette una sottosuccessione convergente.

OSSERVAZIONE. Per il lemma 6.2 (\triangle) (pag. 68), se X è compatto per successioni allora ogni successione in X ha un punto di accumulazione.

Lemma 6.3.1. Sia *X primo-numerabile*. Allora:

- 1. X compatto per successioni \iff Ogni successione in X ha un punto di accumulazione.
- 2. X compatto $\implies X$ compatto per successioni.

72 CAPITOLO 6. SUCCESSIONI

DIMOSTRAZIONE.

 $I \implies$) Vale per l'osservazione precedente.

 \Leftarrow) Vale per il lemma 6.3, pag. 69: se ogni successione ha un punto di accumulazione in X primo numerabile, allora ogni sottosuccessione ammette una sottosuccessione convergente a p, cioè X è compatto per successioni.

II Se X è compatto, allora ogni successione in X ha dei punti di accumulazione e per il punto 1) segue che X è compatto per successioni.

Proposizione 6.3.1. Caratterizzazione della compattezza in termini di successioni Sia X uno spazio topologico a base numerabile. Allora sono equivalenti:

- 1. X compatto.
- 2. X compatto per successioni
- 3. Ogni successione in *X* ammette un punto di accumulazione.

DIMOSTRAZIONE. Sappiamo già che 2) \iff 3) e 1) \implies 2) dal lemma precedente. Dobbiamo dimostrare 2) \implies 1). Dimostriamo per contronominale (\neg 1) \implies \neg 2)): se *X non* è compatto, allora *X* non è compatto per successioni, cioè esiste una sottosuccessione in *X* che *non* ha alcuna sottosuccessione convergente.

- X *non* compatto $\Longrightarrow \exists \tilde{\mathcal{A}}$ ricoprimento aperto di X che *non* ha sottoricoprimenti finiti.
- X a base numerabile $\implies \exists \mathscr{A}$ sottoricoprimento di $\widetilde{\mathscr{A}}$ che sia numerabile.

Poiché ogni sottoricoprimento di \mathcal{A} è anche un sottoricoprimento di $\tilde{\mathcal{A}}$, significa che \mathcal{A} non ha sottoricoprimenti finiti. Definiamo:

$$\mathscr{A} := \{A_n\}_{n \in \mathbb{N}}$$

Allora:

$$\forall n \in \mathbb{N} \quad \bigcup_{j=1}^{n} A_{j} \subsetneq X \implies \exists x_{n} \in X \setminus \bigcup_{j=1}^{n} A_{j}$$

Costruisco così una successione $\{x_n\}$ successione in X tale per cui:

$$\odot x_n \notin A_j \ \forall j \leq n.$$

Mostriamo che $\{x_n\}$ non ha sottosuccessioni convergenti. Sia $\{x_{k(n)}\}$ una sottosuccessione arbitraria di $\{x_n\}$ e sia $p \in X$, mostriamo che essa non converga ad un qualunque p.

- \mathcal{A} è un (sotto)ricoprimento di $X \Longrightarrow \exists N : p \in A_N$
- Da ② (pag. 72) abbiamo che $x_n \notin A_N \ \forall n \ge N$ (dato che $x_n \notin A_j \ \forall j \le n$, in particolare in A_N per ogni $n \ge N$); si ha allora $x_{k(n)} \notin A_n \ \forall n : k(n) \ge N$.

Essendo k(n) crescente, $\exists n_0: k(n) \ge N \ \forall n \ge n_0$. Segue che se $n \ge n_0$ allora $x_k(n) \notin A_N$ Poiché A_N è intorno di p, segue che $\{x_{k(n)}\}$ non converge a p.

Теогема 6.3.о. Sia X spazio metrico. Allora:

$$X \text{ compatto} \iff X \text{ compatto per successioni}$$
 (6.13)

6.4 SPAZI METRICI COMPLETI

DEFINIZIONE 6.4.0. Sia (X, d) uno spazio metrico. Una successione $\{a_n\}$ si dice **di Cauchy** se:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : d(a_n, a_m) < \varepsilon, \ \forall n, \ m \ge n_0$$
 (6.14)

DEFINIZIONE **6.4.1.** Uno spazio metrico (X, d) si dice **completo** se ogni successione di Cauchy è convergente.

Osservazione.

- 1. Ogni successione convergente è di Cauchy.
- 2. Una successione di Cauchy è convergente se e solo se ha punti di accumulazione.
- 3. Una successione di Cauchy è convergente se ha una sottosuccessione convergente.
- 4. Se X è *compatto*, allora ogni successione di Cauchy è *convergente*.
- 5. Se *X* è spazio metrico *compatto*, allora *X* è spazio metrico *completo*; non è vero il viceversa.

DIMOSTRAZIONE.

I Se $a_n \to p$ per $n \to +\infty$ significa che:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} : d(a_n, p) < \varepsilon, \ \forall n \ge n_0$$

Considerati n, $m \ge n_0$ si ha:

$$d(a_n, a_m) \le d(a_n, p) + d(p, a_n) < 2\varepsilon$$
 (6.15)

Per l'arbitrarietà di ε vale la convergenza.

II \Longrightarrow) Sempre vera per 6.2 (pag. 68).

 \iff) Sia $\{a_n\}$ una successione di Cauchy e sia p un punto di accumulazione. Sia $\varepsilon > 0$: dalla definizione di successione di Cauchy $\exists n_0$ tale per cui $d(a_n, a_m) < \infty$

74 CAPITOLO 6. SUCCESSIONI

 $\varepsilon \ \forall n, \ m \geq n_0.$

Essendo p di accumulazione, $\exists n_1 \ge n_0$ tale per cui $d(p, a_{n_1}) < \varepsilon$. Allora, se $n \ge n_0$ si ha:

$$d(a_n, p) \le d(a_n, a_{n_1}) + d(a_{n_1}, p) < 2\varepsilon$$

Dunque $\{a_n\}$ converge a p.

- III Poiché X è metrico, X è primo-numerabile, dunque avere un punto di accumulazione è equivalente ad avere una sottosuccessione convergente.
- IV Se *X* è compatto, ogni successione ha punti di accumulazione, in particolare quelle di Cauchy: per il punto 2) tutte le successioni di Cauchy risultano allora convergenti.
- V Segue dal punto 4). Un controesempio del viceversa è R^n , dato che è completo ma non è compatto (si veda il teorema seguente).

Теоrема 6.4.0. \mathbb{R}^n in metrica euclidea è uno spazio metrico completo.

DIMOSTRAZIONE. Sia $\{a_n\}$ di Cauchy in \mathbb{R}^n . Mostriamo che $\{a_n\}$ è eventualmente limitata^a. Poiché la successione di Cauchy è definita per ogni ε , fissiamo $\varepsilon = 1$. Allora:

$$\exists n_0 : ||a_n - a_m|| \le 1 \ \forall n, \ m \ge n_0$$

Sia $M := \max_{n_0, \dots, n_0} ||a_n||$. Se $n \ge n_0$ si ha:

$$||a_n|| = ||a_n - a_{n_0} + a_{n_0}|| = \le ||a_n - a_{n_0}|| + ||a_{n_0}|| \le 1 + M$$

Questo significa che $\{a_n\}\subseteq \overline{B_{1+M}(0)}$. Questa palla chiusa è uno spazio metrico *indotto* in \mathbb{R}^n e compatto, cioè è uno *spazio metrico completo*. Allora la successione di Cauchy, trovandosi in uno spazio metrico completo, converge in esso, e dunque converge anche in \mathbb{R}^n .

Attenzione! La **completezza** *non* è una proprietà topologica! Per esempio, \mathbb{R} e (0, 1) con metrica euclidea sono omeomorfi rispetto alla topologia indotta dalla metrica, ma \mathbb{R} abbiamo appena dimostrato che è completo, mentre (0, 1) si può vedere che non lo è!

 $[^]a$ Supponendo chiaramente che la successione sia ben definita, ci interessa solamente che la successione sia limitata dopo un n_0 : prima di ciò ho un numero finito di termini $a_0, \ldots, a_{n_0} < \infty$ e posso chiaramente prendere una palla (chiusa) che li contenga, ad esempio di raggio M+1 con M definito come nella dimostrazione.

II Omotopia

Омоторіа

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

7.1 LEMMA DI INCOLLAMENTO

Lemma 7.1.0. Lemma di incollamento

Siano X, Y spazi topologici e $X = A \cup B$. Siano $f : A \longrightarrow Y$ e $g : B \longrightarrow Y$ continue tali che $f(x) = g(x) \ \forall x \in A \cap B$, cioè $f_{|A \cap B|} = g_{|A \cap B|}$.

Consideriamo l'**incollamento** $h: X \longrightarrow Y$ definito da:

$$h(x) = \begin{cases} f(x) & x \in A \\ g(x) & x \in B \end{cases}$$
 (7.1)

Se A e B sono entrambi aperti in X, oppure se A e B sono entrambi chiusi in X, allora h è continua.

Dimostrazione. Supponiamo A е B aperti. Sia $U \subseteq Y$ aperto. Allora:

$$h^{-1}(U) = \underbrace{f^{-1}(U)}_{\subseteq B} \cap \underbrace{g^{-1}(U)}_{\subseteq B}$$

Essendo f, g continue, segue che $f^{-1}(U)$ è aperto in A e $g^{-1}(U)$ è aperto in B. In quanto A, B aperti, per definizione di aperto del sottospazio $f^{-1}(U)$ e $g^{-1}(U)$ sono aperti su $X \implies h^{-1}(U)$ aperto.

Il caso di A e B chiuso è esattamente analogo.

 $[^]a$ Poichè un aperto del sottospazio è dato dall'intersezione del sottospazio con un aperto di X, se abbiamo che anche il sottospazio è aperto di X, l'intersezione è aperta: in questo caso ogni aperto del sottospazio è anche aperto di X.

78 CAPITOLO 7. OMOTOPIA

7.2 COMPONENTE CONNESSA E COMPONENTE C.P.A.

Riprendiamo la trattazione delle componenti connesse e **c.p.a.** introdotte nel Capito-lo 2

DEFINIZIONE 7.2.0. Una componente connessa di X spazio topologico è uno spazio $C \subseteq X$ connesso tale per cui:

$$C \subseteq A \subseteq X \text{ con } A \text{ connesso} \implies C = A$$
 (7.2)

OSSERVAZIONE.

- Le componenti connesse formano una *partizione* di *X*.
- Se $x \in X$ si può definire la componente connessa che contiene x:

$$C(x) = \bigcup \{ C \subseteq X \mid x \in C, C \text{ connesso} \}$$
 (7.3)

item Le componenti connesse possono essere viste come classi di equivalenza per la seguente relazione di equivalenza su *X*:

$$x, y \in X$$
 $x \sim_C y \iff \exists C \subseteq X \text{ connesso} : x, y \in C$ (7.4)

Dimostrazione. Innanzitutto mostriamo che la relazione è di equivalenza:

- Riflessiva: $x \sim_C x$ è vero, dato che $\{x\}$ è sempre un connesso.
- Simmetrica: ovvia dalla definizione.
- Transitiva: Supponiamo $x \sim_C y$, $y \sim_C z$. Allora $\exists C, D \subseteq X$ connessi tale che $x, y \in C$ e $y, z \in D$. Allora $C \cup D$ contiene sia x che z. Inoltre, essendo $y \in C \cap D \implies C \cap D \neq \emptyset$, dunque $C \cup D$ è un connesso: vale $x \sim_C z$.

Mostriamo che le classi di equivalenza sono le componenti connesse per x.

- \subseteq) Se $C \subseteq X$ è una componente connessa, allora $\forall x, y \in C$ si ha $x \sim_C y$, cioè C è interamente contenuta in $C_0 = [x] = [y]$ classe di equivalenza per $\sim_C : C \subseteq C_0$.
- ⊇) Sia $z \in C_0$ classe di equivalenza e sia $x \in C$ componente connessa. Allora: $x \sim_C z \implies \exists T \subseteq X$ connesso : $x, z \in T$.

Consideriamo $C \cup T$. C e T sono connessi, $x \in C \cap T \implies C \cap T \neq \emptyset$: $C \cup T$ è ancora connessa. In quanto C è componente connessa, dato che $C \subseteq C \cup T$ per definizione segue che $C = C \cup T$, cioè $T \subseteq C$. Ma allora $z \in C$ e segue che $C_0 \subseteq C$.

DEFINIZIONE 7.2.1. Una componente c.p.a. di X è una classe di equivalenza per la relazione \sim_A così definita:

$$x, y \in X$$
 $x \sim_A y \iff \exists \alpha \text{ cammino in } X : \alpha(0) = x, \alpha(1) = y$ (7.5)

Dimostrazione. Mostriamo che sia una relazione di equivalenza:

RIFLESSIVA: $x \sim_A x$ è vero, dato che esiste sempre il **cammino costante** nel punto x:

$$\begin{array}{ccc}
c_x : I & \longrightarrow & X \\
t & \longmapsto & x
\end{array} \tag{7.6}$$

■ SIMMETRICA: se $x \sim_A y$ sappiamo che $\exists \alpha : I \longrightarrow X$ tale per cui $\alpha(0) = x$, $\alpha(1) = y$. Possiamo definire il **cammino inverso**:

$$\overline{\alpha}: I \longrightarrow X \\ t \longmapsto \alpha (1-t)$$
 (7.7)

 $\diamond \quad \overline{\alpha}$ è continuo, perché composizione di applicazioni continue:

 $\Rightarrow \overline{\alpha}(0) = \alpha(1) = y, \overline{\alpha}(1) = \alpha(0) = x.$

Allora il cammino $\overline{\alpha}$ definisce $y \sim_A x$.

■ Transitiva: Supponiamo $x \sim_A y$, $y \sim_A z$. Allora $\exists \alpha$, $beta : I \longrightarrow X$ tale che $\alpha(0) = x$, $\alpha(1) = y$, $\beta(0) = y$, $\beta(1) = z$. Usando la **giunzione di cammini**:

$$(\alpha * \beta)(t) = \begin{cases} \alpha(2t) & \text{se } 0 \le t \le \frac{1}{2} \\ \beta(2t-1) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$$
 (7.8)

In particolare:

$$\begin{cases} (\alpha * \beta)(0) = \alpha(0) \\ (\alpha * \beta)(1) = \beta(1) \end{cases}$$

Poichè $\alpha * \beta$ soddisfa le ipotesi del lemma di incollamento, essa è continua e collega con un cammino unico x e z, dunque vale $x \sim_A z$.

OSSERVAZIONE.

- 1. Le componenti **c.p.a.** formano una partizione di *X*
- 2. Sia $C \subseteq X$ un sottospazio **c.p.a.** per cui vale che $C \subseteq A \subseteq X$ con A **c.p.a.** $\Longrightarrow C = A$, allora C è una componente **c.p.a.**.
- 3. In generale le componenti c.p.a. non sono né aperte né chiuse.
- 4. Se *A* è una componente **c.p.a.**, allora *A* è **c.p.a.** e dunque *connessa*: *A* è allora interamente contenuta in una componente connessa, cioè le componenti connesse sono unioni di componenti **c.p.a.**.

DIMOSTRAZIONE. INSERIRE DIM PUNTO 2

80 CAPITOLO 7. OMOTOPIA

Esempio. Ricordiamo l'esempio della *pulce e il pettine*, cioè lo spazio $X \subseteq \mathbb{R}^2$ descritto da:

$$X = Y \cup \{p\}$$

$$Y = (I \times \{0\}) \cup \bigcup_{r \in \mathbb{Z}} (\{r\} \times I)$$

$$p = \left(\frac{\sqrt{2}}{2}, 1\right)$$

Questo spazio X è connesso, non **c.p.a.**: infatti, le componenti **c.p.a.** sono due, Y e $\{p\}$.

7.3 OMOTOPIA TRA FUNZIONI CONTINUE

Intuitivamente... Dati due spazi topologici X, Y e due funzioni f, $g: X \longrightarrow Y$, si ha un'**omotopia** tra le due funzioni se una funzione può essere "deformata in modo continuo" nell'altra (e viceversa).

Per far ciò vogliamo trovare una famiglia di funzioni $\{f_t\}_{t\in[0,\ 1]}$ tale che ogni funzione $f_t:X\longrightarrow Y$ sia continua e vari "con continuità" al variare di $t\in[0,\ 1]$ fra $f_0=f$ e $f_1=g$.

DEFINIZIONE 7.3.0. Due funzioni continue $f, g: X \longrightarrow Y$ si dicono **omotope** se $\exists F: X \times I \longrightarrow Y$ *continua* tale che:

$$F(x, 0) = f(x)$$
 $F(x, 1) = g(x) \ \forall x \in X$ (7.9)

La funzione F è detta **omotopia** tra f e g; denotiamo che le funzioni sono omotope con $f \sim g$.

Inoltre, definiamo gli elementi della famiglia di funzioni $\{f_t\}_{t\in[0,\ 1]}$ nel seguente modo:

$$\forall t \ f_t \coloneqq F(\bullet, t) : X \longrightarrow Y : f_0 = f, \ f_1 = g \tag{7.10}$$

Osservazione. Ricordando la definizione di segmento (28, 2.5), la funzione:

$$I \longrightarrow \overline{PQ}$$

$$t \longmapsto tA + (1-t)B$$

È biunivoca ed, in particolare, è omeomorfismo.

Евемрю. Dato un sottospazio $Y \subseteq \mathbb{R}^n$ convesso, allora spazio topologico X e per ogni funzione $f, g: X \longrightarrow Y$ continua, allora f e g sono omotope.

DIMOSTRAZIONE. L'omotopia è:

$$F: X \times I \longrightarrow Y$$
, $F(x, y) = (1 - t) f(x) + t f(x)$

- $F
 ilde{e}$ ben definita. Se $x \in X$ abbiamo f(x), $g(x) \in Y$ convesso: esiste allora $f(x)g(x) \subseteq Y$, cioè $(1-t)f(x)+tg(x) \in Y \ \forall x \in X$, $t \in I$.
- *F* è continua perché composizione di funzioni continue:

■ $F(x, 0) = f(x), F(x, 1) = g(x) \forall x \in X.$

OSSERVAZIONE. Sia $Y \subseteq \mathbb{R}^n$ (non necessariamente convesso!) e $f, g: X \longrightarrow Y$ continua tale che $\overline{f(x)g(x)} \subseteq Y \ \forall x \in X$. Allora f è omotopa a g con la stessa omotopia F definita nel caso di Y convesso.

Attenzione! Nel parlare di omotopie è estremamente importante verificare che siano ben definite! Infatti, prendiamo ad esempio $Y = S^1 \subseteq \mathbb{R}^2$ e le funzioni costanti in p e in q, rispettivamente $f: X \longrightarrow S^1$ e $g: X \longrightarrow S^1$.

Considerata $F: X \times I \longrightarrow \mathbb{R}^2$ tale che F(x, y) = (1 - t) f(x) + t g(x) = (1 - t) p + t q, essa non è ben definita in Y: presi due punti della sfera S^1 il segmento non è *mai* contenuto in essa!

Lemma 7.3.0. Siano X, Y due spazi topologici. L'omotopia è una relazione di equivalenza sull'insieme delle funzioni continue da X е Y.

DIMOSTRAZIONE.

■ RIFLESSIVA: Sia $f: X \longrightarrow Y$ continua. Consideriamo:

$$F: X \times I \longrightarrow Y$$

Tale che F(x, t) = f(x). Essa è:

- \diamond Continua perché lo è f.
- \Leftrightarrow $F(x, 0) = F(x, 1) = f(x) \ \forall x \in X.$

Allora $f \sim f$.

■ SIMMETRICA: Supponiamo $f \sim g$, cioè $\exists F : X \times I \longrightarrow Y$ tale che:

$$F(x, 0) = f(x), F(x, 1) = g(x) \ \forall x \in X$$

Consideriamo $G: X \times I \longrightarrow Y$ tale che G(x, t) = F(x, 1 - t). Essa è:

- ♦ Continua perché composizione di funzioni continue.
- \diamond $G(x, 0) = F(x, 1) = g(x), G(x, 1) = F(x, 0) = f(x) \ \forall x \in X.$

Allora $g \sim f$.

■ Transitiva: Siano f, g, $h: X \longrightarrow Y$ continue, $f \sim g$ e $g \sim h$, cioè:

$$\exists F: X \times I \longrightarrow Y, G: X \times I \longrightarrow Y$$

$$F(x, 0) = f(x) \quad G(x, 0) = g(x) \quad \forall x \in X$$

$$F(x, 1) = g(x) \quad G(x, 1) = h(x)$$

Consideriamo $H: X \times I \longrightarrow Y:$

$$H(x, t) = \begin{cases} F(x, 2t) & t \in [0, \frac{1}{2}] \\ G(x, 2t - 1) & t \in [\frac{1}{2}, 1] \end{cases}$$

- ♦ *H* è continua per il lemma di incollamento:
 - * È ben definita per $t = \frac{1}{2}$.
- * H è continua separatamente su $X \times \left[0, \frac{1}{2}\right]$ e $X \times \left[\frac{1}{2}, 1\right]$, entrambi chiusi. $\Leftrightarrow H(x, 0) = F(x, 0) = f(x), H(x, 1) = G(x, 1) = h(x) \ \forall x \in X.$
- ♦ H(x, 0) = F(x, 0) = f(x), $H(x, 1) = G(x, 1) = h(x) \forall x \in X$. Allora $f \sim h$.

Lemma 7.3.1. Composizione di omotopie (Manetti 10.13)

Siano X, Y, Z spazi topologici e siano f_1 , $f_2: X \longrightarrow Y$ continue ed omotope, $g_1, g_2: Y \longrightarrow Z$ continue ed omotope. Allora $g_1 \circ f_1, g_2 \circ f_2: X \longrightarrow Z$ sono omotope:

$$f_1 \sim f_2, \ g_1 \sim g_2 \implies g_1 \circ f_1 \sim g_2 \circ f_2$$
 (7.11)

DIMOSTRAZIONE. Sappiamo che:

- $\exists F: X \times I \longrightarrow Y$ continua tale che $F(x, 0) = f_1(x)$, $F(x, 1) = f_2(x) \ \forall x \in X$.
- $\exists G: Y \times I \longrightarrow Z$ continua tale che $G(y, 0) = g_1(y), G(y, 1) = g_2(y) \ \forall y \in Y.$

Sia $H: X \times I \longrightarrow Z$ data da H(x, t) = G(F(x, t), t).

- *H* è continua perché composizione di funzioni continue.
- $H(x, 0) = G(F(x, 0), 0) = G(f_1(x), 0) = g_1(f_1(x)) \ \forall x \in X.$
- $H(x, 1) = G(F(x, 1), 1) = G(f_2(x), 1) = g_2(f_2(x)) \ \forall x \in X.$

Allora H è l'omotopia cercata.

7.4 EQUIVALENZA OMOTOPICA

DEFINIZIONE 7.4.0. Siano X, Y due spazi topologici. Diciamo che X e Y sono **omotopicamente equivalenti**, o che hanno lo stesso **tipo di omotopia**, se esistono due applicazioni continue:

$$f: X \longrightarrow Y \ e \ g: Y \longrightarrow X$$
 (7.12)

Tali che:

$$g \circ f \sim Id_X \ e \ f \circ g \sim Id_Y$$
 (7.13)

In tal caso f e g si dicono equivalenze omotopiche.

OSSERVAZIONE.

- 1. Se *X* e *Y* sono *omeomorfi*, allora sono anche *omotopicamente* equivalenti.
- 2. Consideriamo $X = \mathbb{R}^n$ in topologia Euclidea e $Y = \{1 \text{ punto}\}$. Allora X e Y sono omotopicamente equivalenti.

DIMOSTRAZIONE.

I L'omotopia è una relazione riflessiva, dunque se abbiamo h = k e $h \sim h$, allora si ha $h \sim k$. Nel caso di un isomorfismo, preso f e la sua inversa g, possiamo affermare:

$$\begin{cases} g \circ f = Id_X \\ f \circ g = Id_Y \end{cases} \implies \begin{cases} g \circ f \sim Id_X \\ f \circ g \sim Id_Y \end{cases}$$

II Consideriamo:

$$f: \mathbb{R}^n \longrightarrow Y = \{1 \text{ punto}\} \qquad g: Y = \{1 \text{ punto}\} \longrightarrow \mathbb{R}^n$$

$$\text{punto} \longmapsto g(\text{punto}) = \underline{0} \qquad (7.14)$$

f e *g* sono *continue*, inoltre:

$$f \circ g : Y = \{1 \text{ punto}\} \longrightarrow Y = \{1 \text{ punto}\} \implies f \circ g = Id_Y$$

$$g \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^n \implies g \circ f = O_{\mathbb{R}^n} \text{(applicazione nulla)}$$

Per l'osservazione 1) da $f \circ g = Id_Y$ a $f \circ g \sim Id_Y$.

Abbiamo che $g \circ f = O_{\mathbb{R}^n}$ è omotopa a $Id_{\mathbb{R}^n}$, poiché \mathbb{R}^n è *convesso* e due applicazioni continue a valori in \mathbb{R}^n sono sempre omotope, come dimostrato nell'esempio 7.2, pag. 80. Una di queste, ad esempio, è la seguente:

$$F: \mathbb{R}^n \times I \longrightarrow \mathbb{R}^n$$
 , $F(\overline{x}, t) = t \cdot \overline{x}$

- \blacksquare F è continua.
- $\blacksquare \quad F(\overline{x}, \ 0) = \overline{0} = (g \circ f)(x).$
- $\blacksquare \quad F(\overline{x}, 1) = \overline{x} = Id_{\mathbb{R}}^n(\overline{x}).$

Attenzione! Se n > 0, \mathbb{R}^n e {1 punto} non è sono omeomorfi, dato che non possono essere in corrispondenza biunivoca.

Esercizio. Essere omotopicamente equivalenti è una relazione di equivalenza sull'insieme degli spazi topologici.

DIMOSTRAZIONE.

- RIFLESSIVA: $X \sim X \iff \exists f, g \text{ continue per cui } g \circ f \sim Id_X, f \circ g \sim Id_X$. Ponendo $f \equiv Id_X \equiv g$ vale banalmente $g \circ f = f \circ g = Id_X \sim Id_X$.
- Simmetrica: Da $X \sim Y$ sappiamo che $\exists f: X \longrightarrow Y$, $g: Y \longrightarrow X$ continue per cui $g \circ f \sim Id_X$, $f \circ g \sim Id_Y$; se vogliamo mostrare $Y \sim X$ dobbiamo cercare

84 CAPITOLO 7. OMOTOPIA

 $h:Y\longrightarrow X$, $k:X\longrightarrow Y$ per cui $k\circ h\sim Id_Y$, $h\circ k\sim Id_X$. Ponendo $h\equiv g$ e $k\equiv h$, esse soddisfano la richiesta.

■ Transitiva: Da $X \sim Y$ e $Y \sim Z$: $\Diamond f: X \longrightarrow Y$, $g: Y \longrightarrow X$ continue tali che $g \circ f \sim Id_X$, $f \circ g \sim Id_Y$. $\Diamond h: Y \longrightarrow Z$, $k: Z \longrightarrow Y$ continue tali che $k \circ h \sim Id_Y$, $h \circ k \sim Id_Z$.

Vogliamo trovare $a: X \longrightarrow Z$, $b: Z \longrightarrow X$ continue tali che $b \circ a \sim Id_X$, $a \circ b \sim Id_Z$. Se definiamo:

$$a := h \circ f : X \longrightarrow Z$$

 $b := g \circ k : Z \longrightarrow X$

Si ha allora:

$$b \circ a = (g \circ k) \circ (h \circ f) = g \circ (k \circ h) \circ f$$

 $a \circ b = (h \circ f) \circ (g \circ k) = h \circ (f \circ g) \circ k$

Dalla composizione di funzioni omotope:

 $\implies b \circ a \sim Id_X$. In modo analogo:

 $\implies a \circ b \sim Id_Z$.

DEFINIZIONE 7.4.1. Uno spazio topologico è **contraibile** o *contrattile* se ha lo stesso tipo di omotopia di un punto.

ESEMPL.

- 1. \mathbb{R}^n è contraibile: si veda l'osservazione precedente.
- 2. Dall'esempio seguente, per transitività del tipo di equivalenza, si può affermare che tutti i \mathbb{R}^n sono tutti omotopicamente equivalenti tra di loro.
- 3. Ogni sottospazio $X \subseteq \mathbb{R}^n$ convesso di è contraibile.
- 4. Ogni sottospazio $X \subseteq \mathbb{R}^n$ stellato di è contraibile.

DIMOSTRAZIONE. Dimostriamo l'esempio 4): l'esempio 3) è automaticamente dimostrato perché un convesso è stellato per ogni suo punto.

Sia $P_0 \in X$ il punto rispetto al quale X è stellato e consideriamo l'inclusione del singoletto $\{P_0\}$ in X e la funzione costante da X al punto, entrambe costanti:

$$i: \{P_0\} \longrightarrow X \qquad g: X \longrightarrow \{P_0\}$$

Allora consideriamo:

- $g \circ i : \{P_0\} \longrightarrow \{P_0\}$ è pari all'identità $Id_{\{P_0\}}$ del singoletto e dunque ovviamente omotopa ad essa.

omotopa a Id_X . Siccome X è stellato rispetto a P_0 , $\forall P \in X$ si ha $\overline{PP_0} \subseteq X$. Allora definiamo la funzione:

$$F: X \times I \xrightarrow{} X$$

$$(P, t) \longmapsto tP + (1 - t)P_0$$

Ha senso definire ciò proprio perché su $X \subseteq \mathbb{R}^n$ ci sono le operazioni di somma e prodotto per scalari. Oltre ad essere ben definita per quanto detto prima $(F(P, t) \in X)$, F è continua e $F(P, 0) = P_0 = \varphi(0)$, $F(P, 1) = P = Id_X(P)$. Si ha l'omotopia cercata.

Esempio. $\mathbb{R}^2 \setminus \{(0, 0)\}$ non è nè convesso, nè stellato.

Lemma 7.4.0. Se X è contraibile, allora X è **c.p.a**..

DIMOSTRAZIONE. Con il seguente diagramma ricordiamo le funzioni in gioco con la comprimibilità.

$$\{1 \text{ punto}\}$$
 X

Necessariamente dobbiamo mappare g ad un punto di X, ad esempio x_0 . Il singoletto e X sono in equivalenze omotopica, in particolare da ciò si ha una funzione

costante in x_0 :

$$\varphi := g \circ f : X \longrightarrow X$$
$$x \longmapsto x_0$$

In quanto f e g sono in equivalenza omotopica, si ha che $\varphi \sim Id_X$, cioè esiste un omotopia fra le due funzioni:

$$F: X \times I \longrightarrow X$$
 continua: $F(x, 0) = \varphi(x) = x_0$, $F(x, 1) = Id_X(x) = x \ \forall x \in X$

Fissato $x \in X$ sia $\alpha : I \longrightarrow X$ dato da $\alpha(t) = F(x, t)$:

- \blacksquare α è continua perché lo è f.
- $\alpha(0) = F(x, 0) = x_0, \alpha(1) = F(x, 1) = x.$

Segue che α è un cammino da x_0 a un qualunque punto x in X, dunque X è **c.p.a.**.

Esercizio. Se *X* e *Y* sono omotopicamente equivalenti, allora:

- 1. $X \in \mathbf{c.p.a.} \iff Y \in \mathbf{c.p.a.}$
- 2. X è connesso \iff Y è connesso.

Dimostrazione. Siano f, g le equivalenze omotopiche.

$$X \overset{f}{\underset{g}{\smile}} Y$$

I Se consideriamo $f \circ g \sim Id_Y$, l'omotopia che la definisce è:

$$F: Y \times I \longrightarrow Y : F(y, 0) = f(g(y)), F(y, 1) = y \ \forall y \in Y$$

Possiamo usare F per costruire, ad $y \in Y$ fissato, un arco in Y che collega y ad un punto di $f(X) \subseteq Y$. Infatti, consideriamo $\alpha : I \longrightarrow Y$ dato da $\alpha(t) = F(y, t)$:

- \blacksquare α è continua perché lo sono f e g.
- $\alpha(0) = F(y, 0) = f(g(y)) \in f(X) \subseteq Y, \alpha(1) = F(y, 1) = y.$
- \implies) Supponendo X **c.p.a.**, allora f(X) è **c.p.a.**. Per i ragionamenti appena fatti abbiamo che ogni punto di Y ha un arco che lo collega ad un punto di f(X), dunque per giunzione di cammini anche Y è **c.p.a.**.
- \iff Supponendo che Y sia **c.p.a.**, applicando all'equivalenza omotopica $g: Y \longrightarrow X$ un procedimento analogo $a \implies$) si ha che X è **c.p.a.**^a.
- II Sia X connesso (ma non **c.p.a.**, altrimenti ricadiamo nel punto 1) dell'esercizio), mentre supponiamo che Y si può scrivere come unione disgiunta di due aperti A e B: $Y = A \cup B$. Ma allora:

$$X = f^{-1}(Y) = f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

Per continuità di f anche $f^{-1}(A)$ e $f^{-1}(B)$ sono aperti disgiunti in X connesso. Segue che necessariamente uno dei due deve essere vuoto b , ad esempio $f^{-1}(A) = \emptyset$, cosicché $X = f^{-1}(B)$.

Per i ragionamenti visti nel punto 1) possiamo trovare un arco che collega un qualsiasi punto $y \in Y$ con $f(g(y)) \in f(X)$. In particolare, dato che $f \circ g$ mappa Y

in B, si avrà $f(g(y)) \in B$: ma allora $y \in B$ necessariamente, dato che se fosse in A i due aperti non sarebbero disgiunti! Per l'arbitrarietà di y segue che $A = \emptyset$ e dunque anche Y è connesso.

Il viceversa è analogo.

Esempio. Le sfere $S^n \ \forall n \ge 1$ sono spazi topologici **c.p.a.** *non* contraibili.

7.5 RETRATTI E RETRATTI DI DEFORMAZIONE

DEFINIZIONE 7.5.0. Sia X uno spazio topologico e $A \subseteq X$ un suo sottospazio. Diciamo che A è un **retratto** di X se:

$$\exists r: X \longrightarrow A \text{ continua}: r_{|A} = Id_A, \text{ cioè}: r(a) = a \ \forall a \in A$$
 (7.15)

In tal caso r è detta **retrazione**.

OSSERVAZIONE. Se r è una retrazione, per costruzione è suriettiva, dunque A eredita da X tutte le proprietà topologiche che si trasmettono per mappe continue (ad esempio connesso, **c.p.a.**, compatto).

ESEMPI.

- Dato $x_0 \in X$, $\{x_0\}$ è sempre un retratto: infatti la mappa costante $X \longrightarrow (x_0)$ soddisfa banalmente le ipotesi di retrazione.
- Presi X = [0, 1], A = (0, 1] non è un retratto di X (non è compatto!).
- Presi X = [0,1], $\tilde{A} = \{0, 1\}$ non è un retratto (non è connesso!).

Esempio. La retrazione radiale.

Sia $X = \mathbb{R}^n \setminus \{\underline{0}\}$ e $A = S^{n-1} \subseteq X$. Vogliamo definire una retrazione di X su A, cioè una funzione continua $r : \mathbb{R}^n \setminus \{\underline{0}\} \longrightarrow A = S^{n-1}$ tale che $\eta_{S^{n-1}} = Id_{S^{n-1}}$. Definiamo allora la **retrazione radiale**:

$$r: \mathbb{R}^n \setminus \{\underline{0}\} \longrightarrow S^{n-1}$$

$$\underline{x} \longmapsto r(\underline{x}) = \frac{\underline{x}}{\|\underline{x}\|}$$
(7.16)

- r è ben definita perché $\underline{x} \neq \underline{0} \Longrightarrow ||\underline{x}|| \neq 0$.
- \blacksquare r continua.
- Se $\underline{x} \in S^{n-1}$, allora $||\underline{x}|| = 1$, cioè $\forall \underline{x} \in S^{n-1}$ $r(\underline{x}) = \frac{\underline{x}}{||\underline{x}||} = \underline{x}$.

DEFINIZIONE 7.5.1. Sia X uno spazio topologico e $A \subseteq X$ un suo sottospazio. Diciamo che A è un **retratto di deformazione** se:

• $r_{|A} = Id_A$, cioè r è un retratto.

^aIn realtà è sufficiente, per i ragionamenti visti sopra, dire che se X e Y sono omotopicamente equivalenti, allora X è **c.p.a.** $\iff f(X)$ è **c.p.a.**.

^bIn quanto se non fosse così, *X* non sarebbe connesso.

88 CAPITOLO 7. OMOTOPIA

■ Se $i:A \hookrightarrow X$ è l'inclusione di A in X, allora $i \circ r:X \longrightarrow X$ è omotopa all'identità di X ($i \circ f \sim Id_X$).

OSSERVAZIONE. Se A è un retratto di deformazione di X, allora A e X hanno lo stesso tipo di omotopia.

DIMOSTRAZIONE.

- $r: X \longrightarrow A$ e $i: A \hookrightarrow X$ sono continue.
- $i \circ r \sim Id_X$ per ipotesi.
- $r \circ i : A \longrightarrow A$ è la restrizione di r ad A che, per ipotesi, è proprio l'identità di A, cioè $r \circ i = r_{|A} = Id_A$ e banalmente sono omotope.

Esempio. Mostriamo che $S^{n-1} \subseteq \mathbb{R}^n \setminus \{\underline{0}\}$ è un retratto di deformazione. Sfruttiamo la retrazione radiale definita a pag. 87:

$$r: \mathbb{R}^n \setminus \{\underline{0}\} \longrightarrow S^{n-1}$$

 $\underline{x} \longmapsto r(\underline{x}) = \frac{\underline{x}}{\|\underline{x}\|}$

Considero ora l'inclusionee, definendo per comodità $X = \mathbb{R}^n \setminus \{\underline{0}\}$:

$$i:S^{n-1}\longrightarrow X$$

$$r: X \longrightarrow X$$

$$\underline{x} \longmapsto \frac{\underline{x}}{\|x\|}$$

$$\tilde{r} := \begin{array}{c} i \circ r : X \longrightarrow X \\ \underline{x} \longmapsto \frac{x}{\|x\|} \end{array}$$

Vogliamo che \tilde{r} sia omotopa a Id_X . Osserviamo che $\forall \underline{x} \in \mathbb{R}^n \setminus \{\underline{0}\} = X$ il segmento da \underline{x} a $\frac{\underline{x}}{\|\underline{x}\|}$ non contiene, per costruzione, l'origine: allora esso è interamente contenuto in $\mathbb{R}^n \setminus \{\underline{0}\} = X$. Dunque, riprendendo l'osservazione di pag. 81 definiamo l'omotopia:

$$F: X \times I \longrightarrow X$$

$$(\underline{x}, t) \longmapsto (1 - t)\underline{x} + t \frac{\underline{x}}{\|\underline{x}\|}$$

Infatti F è ben definita, continua e $F(\underline{x}, 0) = \frac{\underline{x}}{\|\underline{x}\|} = \tilde{r}(\overline{x}), F(x, 1) = \overline{x} = Id_X(\overline{x}).$

COROLLARIO 7.5.0. In generale vale che S^{n-1} è retratto di deformazione di $\mathbb{R}^n \setminus \{1 \text{ punto}\}$; in particolare hanno lo stesso tipo di omotopia.

Intuitivamente... Se l'omeomorfismo permette di deformare uno spazio *mantenendo certe qualità*, l'equivalenza omotopica risulta essere una forma **più debole** di trasformazione, in cui posso sempre deformare uno spazio *perdendo* tuttavia certe qualità.

Riprendendo l'intuizione (non sempre corretta) di omeomorfismo enunciata nel Capitolo 1, possiamo vedere allora l'equivalenza omotopica come una deformazione che *piega* e *allunga* uno spazio senza formare *strappi* (*f* continua) ma che *permette* fino ad un certo punto *sovrapposizioni* e *incollamenti* (ad esempio, non posso far sparire alcuni fori né ammassare indiscriminatamente troppi punti).

Dunque, sotto queste condizioni, posso rendere la *retta* un *punto*, mentre il *piano* senza un punto si può trasformare un una *circonferenza*. Allo stesso tempo però, non posso "concentrare" la *sfera* in uno solo *punto*.

Ancor più che con il ragionamento intuitivo sull'omeomorfismo è necessario esercitare **estrema cautela** nell'applicare questa nozione euristica di omotopia.

Definizione 7.5.2. Un bouquet di n circonferenze è uno spazio topologico ottenuto unendo in un punto n copie di S^1 .

ESEMPI. ALTRI ESEMPI DI EQUIVALENZE OMOTOPICHE.

- 1. $\mathbb{R}^2 \setminus \{2 \text{ punti}\}\$ ha lo stesso tipo di omotopia di un *bouquet di due circonferenze*: si può ottenere attraverso una composizione (continua) di retrazioni radiali e lineari.
- 2. $\mathbb{R}^2 \setminus \{n \text{ punti}\}\$ ha lo stesso tipo di omotopia di un *bouquet di n circonferenze*.
- 3. $\mathbb{R}^3 \setminus \{1 \text{ retta}\}\$ ha lo stesso tipo di omotopia di $\mathbb{R}^2 \setminus \{1 \text{ punto}\}\$ per retrazioni lineari, dunque ha la stessa omotopia di S^1 per i ragionamenti precedenti.
- 4. Per $\mathbb{R}^3 \setminus \{2 \text{ rette}\}\$ dobbiamo distinguere a seconda della relazione fra le due rette.
 - Se le rette sono **disgiunte**, *X* è sempre omeomorfo a:

$$\mathbb{R}^3 \setminus \{ \text{asse } z \} \setminus \{ x = y = 1 \} = \tilde{X}$$

Cioè lo spazio \mathbb{R}^3 privato di due rette perpendicolari al piano e distinte. Considerato ora il piano $Y = \{\text{piano xy}\} \setminus \{(0,0), (1,1)\}$, questo risulta un retratto di deformazione di \tilde{X} con retrazione:

$$r: \tilde{X} \xrightarrow{} Y$$

 $(x, y, z) \longmapsto (x, y, 0)$

Infatti la funzione è sempre ben definita e continua e, considerata la restrizione di r ad Y, segue che banalmente che è l'identità di Y in quanto tutti i punti di Y hanno già la forma (x, y, 0). Guardando invece $\tilde{r} = i \circ r$ con $i: Y \longrightarrow \tilde{X}$, un'omotopia con $Id_{\tilde{X}}$ è:

$$F: \tilde{X} \times I \longrightarrow \tilde{X} : F((x, y, z), t) = (x, y, tz)$$

Infatti F è banalmente ben definita continua, con $F(\underline{x}, 0) = (x, y, 0) = \tilde{r}(\underline{x})$ e $F(\underline{x}, 1) = (x, y, z) = Id_{\tilde{X}}(\underline{x})$.

Segue che \tilde{X} , e dunque anche X per omeomorfismo, ha la stessa omotopia di $\mathbb{R}^2 \setminus \{2 \text{ punti}\}\ e$ di un *bouquet di due circonferenze*.

Se le due rette sono incidenti, a meno di omeomorfismi si intersecano nell'origine. Consideriamo dunque $X = \mathbb{R}^3 \{r_1 \cup r_2\}$ e lo spazio $A = S^2 \setminus$

90 CAPITOLO 7. OMOTOPIA

 $\{P_1, P_2, Q_1, Q_2\}$. Se prendiamo la retrazione:

$$r: X \longrightarrow A \atop \underline{x} \longmapsto \frac{\underline{x}}{\|\underline{x}\|}.$$

e l'omotopia:

$$\tilde{r} := \begin{array}{c} i \circ r : X \longrightarrow X \\ \underline{x} \longmapsto \frac{\underline{x}}{\|\underline{x}\|} \end{array}$$

Si verifica in modo analogo a come visto nel caso della sfera e dello spazio privato dell'origine (esempio a pagina 7.6), trattando con una $retrazione\ radiale$ ben definita e la sua omotopia nota, che A è retratto di deformazione di X. Segue allora che hanno lo stesso tipo di omotopia.

Il gruppo fondamentale

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

8.1 OMOTOPIE FRA CAMMINI

Ove non specificato differentemente, useremo I per indicare l'intervallo [0, 1].

Definizione 8.1.0. Siano α , $\beta: I \longrightarrow X$ due cammini da a a b, cioè con stessi estremi. Allora α β sono **cammini omotopi** se $\exists F: I \times I \longrightarrow X$ tale che:

$$\begin{cases} F(t, 0) = \alpha(t) \\ F(t, 1) = \beta(t) \end{cases} \quad \forall t \in I \text{ è omotopia tra } \alpha \in \beta \\ \begin{cases} F(0, s) = a \\ F(1, s) = b \end{cases} \quad \forall s \in I \ F(\bullet, s) \text{ è sempre un cammino tra } a \in b \end{cases}$$
 (8.1)

F è detta omotopia di cammini o omotopia a estremi fissi .

Definizione 8.1.1. Indichiamo con $\Omega(X; a, b)$ l'insieme dei cammini in X da a a b.

Osservazione. L'omotopia di cammini è una relazione di equivalenza su $\Omega(X; a, b)$.

DIMOSTRAZIONE.

■ Riflessiva: $\alpha \sim \alpha$?. Presa $F(t, s) = \alpha(t)$, essa è ben definita, continua e:

$$F(t, 0) = \alpha(t), F(t, 1) = \alpha(t), F(0, s) = \alpha(0) = a, F(1, s) = \alpha(1) = b$$

Cioè è omotopia di cammini tra α e se stessa.

• SIMMETRICA: Da $\alpha \sim \beta$ sappiamo che esiste F omotopia di cammini per cui:

$$F(t, 0) = \alpha(t), F(t, 1) = \beta(t), F(0, s) = a, F(1, s) = b$$

Per avere $\beta \sim \alpha$, basta prendere $\tilde{F}(t, s) = F(t, 1 - s)$: essa è ben definita, continua e:

$$\tilde{F}(t, 0) = F(t, 1) = \beta(t), \ \tilde{F}(t, 1) = F(t, 0) = \alpha(t)$$

 $\tilde{F}(0, s) = F(0, s) = a, \ \tilde{F}(1, s) = F(1, s) = b$

Cioè è omotopia di cammini tra β e α .

Transitiva: Da $\alpha \sim \beta$ abbiamo:

$$\begin{cases} F(t, 0) = \alpha(t) \\ F(t, 1) = \beta(t) \end{cases} \begin{cases} F(0, s) = a \\ F(1, s) = b \end{cases}$$

Mentre da $\beta \sim \gamma$:

$$\begin{cases} G(t, 0) = \beta(t) \\ G(t, 1) = \gamma(t) \end{cases} \begin{cases} G(0, s) = a \\ G(1, s) = b \end{cases}$$

Definita allora la seguente funzione:

$$H(t, s) = \begin{cases} F(t, 2s) & \text{se } s \in [0, \frac{1}{2}] \\ G(t, 2s - 1) & \text{se } s \in [\frac{1}{2}, 1] \end{cases}$$

Essa è ben definita, continua per il lemma di incollamento e tale per cui:

$$H(t, 0) = F(t, 0) = \alpha(t), H(t, 1) = G(t, 1) = \gamma(t)$$

 $H(0, s) = a, H(1, s) = b$

Cioè è omotopia di cammini tra α e γ .

RICORDIAMO... Abbiamo già definito due "operazioni" fra insiemi di cammini, senza averle necessariamente formalizzate:

- PRODOTTO DI CAMMINI: $\Omega(X; a, b) \times \Omega(X; b, c) \longrightarrow \Omega(X; a, c)$ $(\alpha, \beta) \longmapsto \alpha * \beta$
- Inversione di cammini: $\Omega(X; a, b) \longrightarrow \Omega(X; b, a)$ $\alpha \longmapsto \overline{\alpha}$

OSSERVAZIONE. Si ha $\overline{\overline{\alpha}} = \alpha$. Infatti:

$$\overline{\alpha}(t) = \alpha(1-t) \implies \overline{\overline{\alpha}}(t) = \overline{\alpha}(1-t) = \alpha(t)$$

Lemma 8.1.0. Composizioni di omotopie di cammini (Kosniowski, 14.2)

Dati α , $\alpha' \in \Omega(X; a, b)$ e b, $b' \in \Omega(X; b, c)$, parlando in termini di omotopie di cammini:

$$\alpha \sim \alpha' e \beta \sim \beta' \implies \alpha * \beta \sim \alpha' * \beta'$$
 (8.2)

DIMOSTRAZIONE. Esistono $F, G: I \times I \longrightarrow X$ tali che:

$$F(t, 0) = \alpha(t)$$
 $F(0, s) = a$
 $F(t, 1) = \alpha'(t)$ $F(1, s) = b$ $\forall t, s \in I$
 $G(t, 0) = \beta(t)$ $G(0, s) = b$
 $G(t, 1) = \beta'(t)$ $G(1, s) = c$ $\forall t, s \in I$

Consideriamo $H: I \times I \longrightarrow X$ data da:

$$H(t, s)$$
 $\begin{cases} F(2t, s) & \text{se } 0 \le t \le \frac{1}{2} \\ F(2t - 1, s) & \text{se } \frac{1}{2} \le t \le 1 \end{cases}$

- *H* è ben definita per $t = \frac{1}{2}$
- H è continua per il lemma di incollamento, essendo definito sui chiusi $\left|0, \frac{1}{2}\right| \times I$ e $\left[\frac{1}{2}, 1\right] \times I$ è continua su di essi.
- $H(t, 0) = (\alpha * \beta)(t)$ $H(t, 1) = (\alpha' * \beta')(t)$ } = $\forall t \in I$ è omotopia H(0, s) = F(0, 0) = a■ H(1, s) = G(1, 0) = c } = $\forall s \in I$ ha estremi fissi

H è l'omotopia a estremi fissi cercata.

Lemma 8.1.1. Cambiamento di parametri (Manetti, 11.3)

Sia $\alpha: I \longrightarrow X$ un cammino e $\varphi: I \longrightarrow I$ una funzione continua tale che $\varphi(0) = 0$ e $\varphi(1) = 1$. Allora $\alpha \circ \varphi \sim \alpha$.

DIMOSTRAZIONE. Sia $F: I \times I \longrightarrow X$ data da $F(t, s) = \alpha (s\varphi(t) + (1 - s)t)$.

- $s\varphi(t) + (1-s)t$ è una combinazione lineare che è contenuta in $I \subseteq \mathbb{R} \ \forall t, s \in I$ per convessità dell'intervallo *I*, da cui segue che *F* è ben definita.
- *F* continua perché composizione di funzioni continue.
- $\mathbf{F}(t, 0) = \alpha(t)$
- \blacksquare $F(t, 1) = \alpha(\varphi(t))$
- $F(0, s) = \alpha(0)$
- $F(1, s) = \alpha (s + 1 s) = \alpha (1)$

H è l'omotopia a estremi fissi cercata tra α e $\alpha \circ \varphi$.

DEFINIZIONE 8.1.2. Il **cammino costante** C_a nel punto a è un cammino che non si sposta mai da esso, cioè è descritto da una funzione costante nel punto:

$$C_a: I \longrightarrow X \\ t \longmapsto a$$
 (8.3)

Proposizione 8.1.0. (Manetti, 11.4 e 11.6)

Sia *X* spazio topologico e si considerino i cammini:

$$\alpha \in \Omega(X; a, b)$$
 $\beta \in \Omega(X; b, c)$ $\gamma \in \Omega(X; c, d)$

Valgono le seguenti proprietà:

- 1. Associatività: $(\alpha * \beta) * \gamma \sim \alpha * (\beta * \gamma)$.
- 2. Rapporto coi cammini costanti: $C_a * \alpha \sim \alpha * C_b$.
- 3. Inverso: $\alpha * \overline{\alpha} \sim C_a$ e $\overline{\alpha} * \alpha \sim C_a$.

DIMOSTRAZIONE.

I Scriviamo i due cammini:

$$((\alpha * \beta) * \gamma)(t) = \begin{cases} \alpha (4t) & t \in [0, \frac{1}{4}] \\ \beta (4t-1) & t \in [\frac{1}{4}, \frac{1}{2}] \\ \gamma (2t-1) & t \in [\frac{1}{2}, 1] \end{cases}$$
$$((\alpha * (\beta \gamma)))(t) = \begin{cases} \alpha (2t) & t \in [0, \frac{1}{2}] \\ \beta (4t-2) & t \in [\frac{1}{2}, \frac{3}{4}] \\ \gamma (2t-3) & t \in [\frac{3}{4}, 1] \end{cases}$$

I due cammini differiscono per una *riparametrizzazione* $\phi: I \longrightarrow I$ di $\alpha * (\beta * \gamma)$ definita in questo modo:

$$\begin{cases} 2s = 4t \\ 4s - 2 = 4t - 2 \\ 4s - 3 = 4t - 1 \end{cases} \Longrightarrow \begin{cases} s = 2t & t \in \left[0, \frac{1}{2}\right] \\ s = t + \frac{1}{4} & t \in \left[\frac{1}{4}, \frac{1}{2}\right] \\ s = \frac{t}{2} + \frac{1}{2} & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$
$$\phi(t) = \begin{cases} 2t & t \in \left[0, \frac{1}{2}\right] \\ t + \frac{1}{4} & t \in \left[\frac{1}{4}, \frac{1}{2}\right] \\ \frac{t}{2} + \frac{1}{2} & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

- lacktriangle ϕ è ben definita e continua per lemma di incollamento.
- Φ $\phi(0) = 0 e \phi(1) = 1.$
- $((\alpha * (\beta * \gamma)))(\phi(t)) = ((\alpha * \beta) * \gamma)(t).$

Per il lemma del cambiamento di variabile i due cammini sono omotopi.

II Scriviamo i due cammini:

$$(C_a * \alpha)(t) = \begin{cases} a & t \in \left[0, \frac{1}{2}\right] \\ \alpha (2t - 1) & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$
$$(\alpha * C_b)(t) = \begin{cases} \alpha (2t) & t \in \left[0, \frac{1}{2}\right] \\ b & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

I due cammini differiscono per delle riparametrizzazioni di $\alpha \hspace{0.2cm} \phi: I \longrightarrow I \hspace{0.2cm}$ e

 $\psi: I \longrightarrow I$ definite così:

$$\phi(t) = \begin{cases} 0 & t \in \left[0, \frac{1}{2}\right] \\ 2t - 1 & t \in \left[\frac{1}{2}, 1\right] \end{cases} \qquad \psi(t) = \begin{cases} 2t & t \in \left[0, \frac{1}{2}\right] \\ 1 & t \in \left[\frac{1}{2}, 1\right] \end{cases}$$

- ϕ e ψ son ben definite e continue per lemma di incollamento.
- $\phi(0) = 0$, $\psi(0) = 0$ e $\phi(1) = 1$, $\psi(1) = 1$.
- $(C_a * \alpha)(t) = \alpha(\phi(t)) e(\alpha * C_b)(t) = \alpha(\psi(t)).$

Per il lemma del cambiamento di variabile i due cammini sono entrambi omotopi a α , si hanno quindi le equivalenze omotopiche cercate.

III È sufficiente dimostrare che $\alpha * \overline{\alpha} \sim C_a$. Possiamo immaginare di rappresentare tutte le parametrizzazioni di cammini definiti da un omotopia sul piano $I \times I$, con t sulle ascisse e s sulle ordinate.

In questo modo i punti a di inizio e b di fine sono rappresentati dai segmenti verticali in t=0 e in t=1, mentre i cammini α di inizio e β fine sono segmenti orizzontali in s=0 e s=1. Dunque, all'interno di $I \times I$ possiamo trovare (fissato s) tutti i cammini $F(\bullet, s)$ di estremi a e b compresi tra i cammini α e β : essi sono rappresentati da segmenti orizzontali.

Nel nostro caso, possiamo considerare il punto a di inizio e il punto b di fine del cammino α . Nei due cammini "esterni" o il cammino non si sposta mai da a (C_a), oppure percorre tutto il cammino α fino a b (che è raggiunto per $t=\frac{1}{2}$) e torna poi indietro per lo stesso cammino ($\alpha*\overline{\alpha}$). Tuttavia, dobbiamo considerare anche cammini che percorrono α fino ad un punto c intermedio fra a e b, stanno fermi in c per poi tornare indietro. Definiamo la seguente omotopia:

$$F(t, s) = \begin{cases} \alpha(2t) & \text{se } 0 \le t \le \frac{s}{2} \\ \alpha(s) & \text{se } \frac{s}{2} \le t \le 1 - \frac{s}{2} \\ \alpha(2 - 2t) & \text{se } 1 - \frac{s}{2} \le t \le 1 \end{cases}$$
(8.4)

Verifichiamo che lo sia:

- F è ben definita grazie alla ben definizione di α : tutti i valori di F risultano interni ad X.
- \blacksquare *F* è continua per il lemma di incollamento.
- $F(t, 0) = \alpha(0) = C_a(t)$, $F(t, 1) = \alpha * \overline{\alpha}(t)$ e F(0, s) = a = F(1, s).

In questo modo teniamo conto della possibilità del cammino di "fermarsi" per un certo tempo in un particolare punto $\alpha(s)$.

8.2 GRUPPO FONDAMENTALE

Definizione 8.2.0. Sia X uno spazio topologico e fissiamo un punto $x_0 \in X$. I **lacci** o **cappi** sono i cammini chiusi in X, cioè tutti i cammini il cui punto iniziale e finale coincidono. Il loro insieme si denota dunque come $\Omega(X; x_0, x_0)$.

Osservazione. Possiamo notare come $\forall \alpha, \beta \in \Omega(X; x_0, x_0)$ si ha:

$$\alpha * \beta \in \Omega(X; x_0, x_0)$$
 $\overline{\alpha} \in \Omega(X; x_0, x_0)$

Allora, se quozientiamo l'insieme dei lacci rispetto alla relazione di equivalenza data dall'omotopia di cammini, esso possiede una struttura di *gruppo*:

$$\pi_1(X, x_0) = \frac{\Omega(X; x_0, x_0)}{2}$$
(8.5)

Preso un laccio α , indichiamo la sua classe di equivalenza in $\pi_1(X, x_0)$ con $[\alpha]$. Allora:

Il prodotto di cammini dà un operazione ben definita su $\pi_1(X, x_0)$ grazie al lemma 8.1 (Kosniowski, 14.2):

$$[\alpha] \cdot [\beta] = [\alpha * \beta] \tag{8.6}$$

- L'operazione appena definita è associativa per il primo punto della proposizione 8.1 (Manetti, 11.4 e 11.6).
- $\left[C_{x_0}\right]$ è l'elemento neutro, sempre per la proposizione 8.1 (Manetti, 11.4 e 11.6):

$$\left[C_{x_0} \right] \cdot \left[\alpha \right] = \left[\alpha \right] \cdot \left[C_{x_0} \right]$$
 (8.7)

■ $[\overline{\alpha}]$ è l'inverso di $[\alpha]$, cioè $[\alpha]^{-1} := [\overline{\alpha}]$, per la proposizione 8.1 (Manetti, 11.4 e 11.6):

$$[\overline{\alpha}] \cdot [\alpha] = [C_{x_0}] = [\alpha] \cdot [\overline{\alpha}] \tag{8.8}$$

Attenzione! La proposizione 8.1 (Manetti, 11.4 e 11.6) ci garantisce che la composizione di cammini omotopi è omotopa $((\alpha * \beta) * \gamma \sim \alpha * (\beta * \gamma))$, dunque possiamo parlare della *classe* $[\alpha * \beta * \gamma]$. Tuttavia, al di fuori del quoziente non ha senso $\alpha * \beta * \gamma!$

L'ordine con cui congiungiamo i cammini dà luogo a due cammini certamente omotopi, ma non uguali, dato che la parametrizzazione varia^a.

DEFINIZIONE 8.2.1. Dato uno spazio topologico X e fissato un punto (detto **punto base**) x_0 , il **gruppo fondamentale** con punto base x_0 è il gruppo $\pi_1(X, x_0)$ definito nell'osservazione precedente.

Si chiama anche primo gruppo fondamentale o gruppo di Poincaré.

8.2.1 Dipendenza dal punto base

Теоrема 8.2.0. Il gruppo fondamentale dipende solo dalla componente c.p.a. contente il punto base x.

In altre parole, se x, $y \in X$ appartengono alla stessa componente **c.p.a.**, preso un arco γ da x a y e costruito:

$$\gamma_{\#} : \pi_{1}(X, x) \longrightarrow \pi_{1}(X, y)
[\alpha] \longmapsto [\overline{\gamma} * \alpha * \gamma]$$
(8.9)

^aQuesto si vede chiaramente nella dimostrazione della proposizione.

8.2. GRUPPO FONDAMENTALE

È ben definito ed è un isomorfismo di gruppi, cioè:

$$\pi_1(X, x) \cong \pi_1(X, y)$$
(8.10)

RICORDIAMO... Una funzione fra due gruppi $f:(G,\cdot_G)\longrightarrow (H,\cdot_H)$ è un **omomorfismo di gruppi** se:

$$f(a \cdot_G b) = f(a) \cdot_H f(b) \quad \forall a, b \in G$$

Se *f* è *biettiva*, allora parliamo di **isomorfismo di gruppi**.

DIMOSTRAZIONE.

- $\gamma_{\#}$ è ben definito in quanto la classe $[\overline{\gamma} * \alpha * \gamma]$ è ben definita per la composizione dei cammini ed è la classe di equivalenza di un cappio di y ($\overline{\gamma}$ parte da y e raggiunge x, con α compie un cammino chiuso in x per tornare al punto di partenza y).

$$\begin{split} \gamma_{\#}([\alpha] * [\beta]) &= \gamma_{\#}([\alpha * \beta]) = [\overline{\gamma} * \alpha * \beta * \gamma] = [\overline{\gamma} * \alpha * C_{x} * \beta * \gamma] \\ &= [\overline{\gamma} * \alpha * \gamma * \overline{\gamma} * \beta * \gamma] = [\overline{\gamma} * \alpha * \gamma] \cdot [\overline{\gamma} * \beta * \gamma] = \gamma_{\#}([\alpha]) \cdot \gamma_{\#}([\beta]) \end{split}$$

Infatti, anche l'elemento neutro viene mappato all'elemento neutro del codominio:

$$\gamma_{\#}([C_x]) = [\overline{\gamma} * C_x * \gamma] = [\overline{\gamma} * \gamma] = [C_y]$$

• Possiamo associare in modo analogo al cammino $\overline{\gamma}$ il cammino:

$$\overline{\gamma}_{\#}: \pi_1(X, y) \longrightarrow \pi_1(X, x)$$
$$[\alpha] \longmapsto [\gamma * \alpha * \overline{\gamma}]$$

In modo assolutamente analogo a come visto sopra, si vede che è un omeomorfismo; verifichiamo ora che $\gamma_{\#}$ e $\overline{\gamma}_{\#}$ siano l'uno l'inverso dell'altro:

$$\overline{\gamma}_{\#}(\gamma_{\#}([\alpha])) = \overline{\gamma}_{\#}([\overline{\gamma} * \alpha * \gamma]) = [\gamma * \overline{\gamma} * \alpha * \gamma * \overline{\gamma}] = [C_{x} * \alpha * C_{x}] = [\alpha]$$

$$\gamma_{\#}(\overline{\gamma}([\alpha])) = \gamma_{\#}([\gamma * \alpha * \overline{\gamma}]) = [\overline{\gamma} * \gamma * \alpha * \overline{\gamma} * \gamma] = [C_{y} * \alpha * C_{y}] = [\alpha]$$

Segue che allora $\gamma_{\#}$ è biettiva.

Osservazione.

- Se due punto x_1 e x_2 stanno in componenti connesse per archi diverse, *non* c'è alcuna relazione tra $\pi_1(X, x_1)$ e $\pi_1(X, x_2)$.
- \blacksquare Se X è **c.p.a.**, il suo gruppo fondamentale è *unico* a meno di isomorfismo.

Еѕемрю. Sia $Y \subseteq \mathbb{R}^n$ un sottospazio convesso e $y_0 \in Y$. Allora $\pi_1(Y, y_0) = 0$ è **banale**; in particolare, allora $\pi_1(\mathbb{R}^n, y_0)$ è banale per ogni n.

DIMOSTRAZIONE. Sia $[\alpha] \in \pi_1(Y, y_0)$. Vogliamo mostrare che $[\alpha] = [C_{y_0}]$, cioè che $\alpha \sim C_{y_0}$. Consideriamo $F: X \times I \longrightarrow Y$ tale che:

$$F(t, s) = s(\alpha(t)) + (1 - s) y_0$$

- F risulta ben definita: è una combinazione convessa al variare di $s \in [0, 1]$ tra $\alpha(t) \in Y$ (per t fissato) e $y_0 \in Y$.
- \blacksquare F è continua perché composizione di applicazioni continue.
- $F(t, 0) = y_0 = C_{y_0}(t), F(t, 1) = \alpha(t).$
- $F(0, s) = s\alpha(0) + (1 s)y_0 = sy_0 + (1 s)y_0 = y_0, F(1, s) = s\alpha(1) + (1 s)y_0 = sy_0 + (1 s)y_$ $(1-s) y_0 = y_0.$

Segue che F è un omotopia tra C_{v_0} e α , dunque segue la tesi.

DEFINIZIONE 8.2.2. Uno spazio topologico X è semplicemente connesso se è c.p.a. e ha gruppo fondamentale banale.

ESEMPI.

- \mathbb{R}^n è semplicemente connesso.
- Ogni convesso di \mathbb{R}^n è semplicemente connesso.

8.2.2 Mappe continue e omomorfismo di gruppi

Notazione Indichiamo con $f:(X, x_0) \longrightarrow (Y, y_0)$ una funzione continua $f:X \longrightarrow Y$ tale che $f(x_0) = y_0$.

OSSERVAZIONE. Consideriamo $f: X \longrightarrow Y$ continua e due cammini α in X da a a be β in X da b a c.

$$I \xrightarrow{\alpha} X \xrightarrow{f} Y \quad I \xrightarrow{\beta} X \xrightarrow{f} Y$$

- 1. $f \circ (\alpha * \underline{\beta}) = (f \circ \alpha) * (f \circ \beta)$. 2. $f \circ \overline{\alpha} = \overline{f \circ \alpha}$. 3. Se $\alpha \sim \alpha'$, allora $f \circ \alpha \sim f \circ \alpha'$.

Proposizione 8.2.0. Dati X, Y spazi topologici, due punti $x_0 \in X$, $y_0 \in Y$ e una funzione $f:(X, x_0) \longrightarrow (Y, y_0)$ continua, si può definire associare un omomorfismo tra i corrispettivi gruppi fondamentali:

$$f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$$

$$[\alpha] \longmapsto [f \circ \alpha]$$
(8.11)

DIMOSTRAZIONE.

- f_* è ben definita: infatti, $f \circ \alpha \in \Omega(Y; y_0, y_0)$ e se [a] = [a'], $\alpha \sim \alpha'$. Per il punto 3 dell'osservazione precedente, si ha $f \circ \alpha \sim f \circ \alpha'$, cioè $[f \circ \alpha] = [f \circ \alpha']$.
- f_* è un omeomorfismo di gruppi: infatti, presi $[\alpha]$, $[\beta] \in \pi_1(X, x_0)$, si ha:

$$f_*([\alpha] \cdot [\beta]) = f_*([\alpha * \beta]) = [f \circ (\alpha * \beta)] \stackrel{1}{=} [(f \circ \alpha) * (f \circ \beta)] = [f \circ \alpha] \cdot [f \circ \beta] =$$
$$= f_*([\alpha]) \cdot f_*([\beta])$$

Inoltre: $f_*([C_{x_0}]) = [f \circ C_{x_0}] = [C_{y_0}].$

8.3 DIGRESSIONE: CATEGORIE

Definizione 8.3.0. Una categoria & consiste di:

- Una classe $Ob(\mathscr{C})$, i cui elementi sono datti **oggetti** di \mathscr{C} .
- Per ogni *coppia* di oggetti X e Y di $\mathscr C$ una classe $\operatorname{Hom}_{\mathscr C}(X, Y)$, i cui elementi sono detti **morfismi** da X a Y.
- Per ogni *terna* di oggetti *X*, *Y*, *Z* un'operazione binaria detta **composizione** di morfismi:

$$\operatorname{Hom}_{\mathscr{C}}(X, Y) \times \operatorname{Hom}_{\mathscr{C}}(Y, Z) \longrightarrow \operatorname{Hom}_{\mathscr{C}}(X, Z)$$

$$(f, g) \longmapsto g \circ f$$

$$(8.12)$$

Tali che questi oggetti soddisfino i seguenti assiomi:

1. Associatività: Per ogni $f \in \operatorname{Hom}_{\mathscr{C}}(X, Y), g \in \operatorname{Hom}_{\mathscr{C}}(Y, Z), h \in \operatorname{Hom}_{\mathscr{C}}(Z, W)$ si ha:

$$h \circ (g \circ f) = (h \circ g) \circ f \text{ in Hom}_{\mathscr{C}}(X, W) \tag{8.13}$$

2. Identità: Per ogni oggetto X esiste un **morfismo identità** $Id_X \in \text{Hom}_{\mathscr{C}}(X, X)$ tale che:

$$f \circ Id_X = f \qquad Id_X \circ g = g$$

$$\forall f \in \operatorname{Hom}_{\mathscr{C}}(X, Y) \quad \forall g \in \operatorname{Hom}_{\mathscr{C}}(Z, X)$$
 (8.14)

Si dimostra che Id_X è unico per ogni oggetto X.

Definizione 8.3.1. Un morfismo $f \in \text{Hom}_{\mathscr{C}}(X, Y)$ si dice **isomorfismo** se:

$$\exists g \in \text{Hom}_{\mathscr{C}}(Y, X) \text{ tale che } g \circ f = Id_X \qquad f \circ g = Id_Y \tag{8.15}$$

In tal caso g è unico e si pone $g = f^{-1}$.

Inoltre, due oggetti X e Y sono **isomorfi** se $\exists f \in \text{Hom}_{\mathscr{C}}(X, Y)$ isomorfismo.

ESEMPI DI CATEGORIE

■ SET Oggetti: insiemi.

Morfismi: applicazioni tra insiemi.

■ GR ^a Oggetti: gruppi.

Morfismi: omomorfismi di gruppi.

■ $\underline{\text{VECT}}_{\mathbb{K}}$ su campo \mathbb{K} Oggetti: spazi vettoriali su \mathbb{K} .

Morfismi: applicazioni lineari.

■ <u>TOP</u> Oggetti: spazi topologici.

Morfismi: applicazioni continue.

■ **TOP* Oggetti:** spazi topologici con punto base (X, x_0) .

Morfismi: applicazione continue $f:(X, x_0) \longrightarrow (Y, y_0)$.

■ KTOP Oggetti: spazi topologici.

Morfismi: classi di omotopia di funzioni continue da *X* a *Y*. ^b

lacktriangle Preso uno spazio topologico X, si può considerare la categoria $\mathscr C$ seguente:

Oggetti: aperti di *X*. **Morfismi:** inclusioni.

Nello specifico, se U, $V \subseteq X$ aperti, allora:

$$\operatorname{Hom}_{\mathscr{C}}(U, V) = \begin{cases} \varnothing & \operatorname{se} U \nsubseteq V \\ \{i\} & \operatorname{se} U \stackrel{i}{\hookrightarrow} V \end{cases}$$

ATTENZIONE! Come si evince dall'esempio 6, i morfismi delle categorie possono anche *non* essere funzioni!

8.3.1 Funtori

DEFINIZIONE 8.3.2. Siano \mathscr{A} , \mathscr{B} due categorie. Un **funtore** $F: \mathscr{A} \longrightarrow \mathscr{B}$ consiste di due funzioni:

- 1. Una funzione sugli oggetti $F: Ob(\mathcal{A}) \longrightarrow Ob(\mathcal{B})$. $x \longmapsto F(x)$
- 2. Una funzione sui morfismi che, a seconda della sua costruzione, definisce due tipi di funtori:
 - Parliamo di **funtore covariante**^a se, per ogni coppia di oggetti X, Y in \mathcal{A} , si ha un'applicazione:

$$F: \operatorname{Hom}_{\mathscr{A}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(F(X), F(Y))$$

$$f \longmapsto F(f)$$

$$(8.16)$$

Che preserva i morfismi identità e la composizione:

♦ Identità: $\forall X \in Ob(\mathscr{A})$

$$F(Id_X) = Id_{F(X)} \tag{8.17}$$

♦ Composizione: $\forall f \in \text{Hom}_{\mathscr{A}}(X, Y), g \in \text{Hom}_{\mathscr{A}}(Y, Z)$

$$F(g \circ f) = F(g) \circ F(f) \tag{8.18}$$

^aIndicata anche con **GRP**.

 $[^]b$ La composizione in $\overline{\text{KTOP}}$ è garantita dalla composizione di omotopie, cioè dal lemma 7.3 (Manetti 10.13).

Parliamo di **funtore controvariante** se, per ogni coppia di oggetti X, Y in \mathcal{A} , si ha un'applicazione:

$$F: \operatorname{Hom}_{\mathscr{A}}(X, Y) \longrightarrow \operatorname{Hom}_{\mathscr{A}}(F(Y), F(X))$$

$$f \longmapsto F(f)$$

$$(8.19)$$

Che preserva i morfismi identità, mentre inverte la direzione della composizione:

♦ Identità: $\forall X \in Ob(\mathscr{A})$:

$$F(Id_X) = Id_{F(X)} \tag{8.20}$$

♦ Composizione: $\forall f \in \text{Hom}_{\mathscr{A}}(X, Y), g \in \text{Hom}_{\mathscr{A}}(Y, Z)$:

$$F(g \circ f) = F(f) \circ F(g) \tag{8.21}$$

^aIn letteratura, il *funtore covariante* spesso viene indicato anche solo come *funtore*.

OSSERVAZIONE. Un funtore porta:

- Isomorfismi in isomorfismi,
- Oggetti isomorfi in oggetti isomorfi.

DIMOSTRAZIONE. Se $f \in \operatorname{Hom}_{\mathscr{A}}(X, Y)$ è isomorfismo in \mathscr{A} , $\exists g \in \operatorname{Hom}_{\mathscr{A}}(Y, X)$ tale che $g = f^{-1}$, cioè $g \circ f = Id_X$, $f \circ g = Id_Y$. Ma allora, se F è covariante:

$$F(g) \circ F(f) = F(g \circ f) = F(Id_X) = Id_{F(X)}$$
$$F(f) \circ F(g) = F(f \circ g) = F(Id_Y) = Id_{F(Y)}$$

 $F(f) \in \operatorname{Hom}_{\mathscr{A}}(F(X), F(Y))$ è isomorfismo con inversa $F(g) \in \operatorname{Hom}_{\mathscr{A}}(F(Y), F(X))$. Se F è controvariante:

$$F(g) \circ F(f) = F(f \circ g) = F(Id_Y) = Id_{F(Y)}$$

 $F(f) \circ F(g) = F(g \circ f) = F(Id_X) = Id_{F(X)}$

 $F(f) \in \operatorname{Hom}_{\mathscr{A}}(F(Y), F(X))$ è isomorfismo con inversa $F(g) \in \operatorname{Hom}_{\mathscr{A}}(F(X), F(Y))$.

ESEMPI.

1.
$$F: \underline{\mathbf{GR}} \longrightarrow \underline{\mathbf{SET}}$$

Oggetti:
$$(G, \cdot) \mapsto G$$

Morfismi:
$$f: G \longrightarrow H \mapsto f: G \longrightarrow H$$

Questo funtore covariante si chiama anche funtore dimenticante, in quanto associa un gruppo all'insieme su cui si base.

$$F: \mathbf{TOP} \longrightarrow \mathbf{SET}$$

Oggetti:
$$(G, \mathcal{T}) \mapsto G$$

Morfismi:
$$f: G \longrightarrow H \mapsto f: G \longrightarrow H$$

In modo analogo, si definisce il funtore dimenticante fra <u>TOP</u> e <u>SET</u>, che associa lo spazio topologico all'insieme sui cui abbiamo definito la topologia.

$$F: \underline{\mathbf{VECT}}_{\mathbb{K}} \longrightarrow \underline{\mathbf{VECT}}_{\mathbb{K}}$$

Oggetti:
$$V \mapsto V^* = \{ \text{applicazioni lineari } V \longrightarrow \mathbb{K} \}$$

Morfismi:
$$f: V \longrightarrow W$$
 lineare $\mapsto f^t: W^* \longrightarrow V^*$ $\varphi \longmapsto \varphi \circ f$

$$V \xrightarrow{f} W \xrightarrow{\varphi} \mathbb{K}$$

Questo funtore controvariante è chiamata funzione trasposta.

$$F: \underline{\mathbf{TOP}}^* \longrightarrow \underline{\mathbf{GR}}$$

Oggetti:
$$(X, x_0) \mapsto \pi_1(X, x_0)$$

Morfismi:
$$f:(X, x_0) \longrightarrow (Y, y_0) \mapsto f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$$
 $[\alpha] \longmapsto [f \circ \alpha]$

Questo funtore *covariante* si basa sull'omomorfismo tra gruppi fondamentali indotto da $f:(X, x_0) \longrightarrow (Y, y_0)$.

DIMOSTRAZIONE. Dimostriamo la funtorialità dell'ultimo esempio.

■ IDENTITÀ: $\forall (X, x_0) \in Ob(\underline{TOP}^*)$:

$$F(Id_X) = \begin{array}{ccc} (Id_X)_* &: \pi_1(X, x_0) & \longrightarrow & \pi_1(X, x_0) \\ & & [\alpha] & \longmapsto & [Id_X \circ \alpha] = [\alpha] \end{array} \implies Id_{\pi_1(X, x_0)}$$

■ Composizione: $(X, x_0) \xrightarrow{f} (Y, y_0) \xrightarrow{g} (Z, z_0)$ Vogliamo che $F(g \circ f) = (g \circ f)_* = g_* \circ f_*$:

$$(g \circ f)_*([\alpha]) = [g \circ f \circ \alpha] = g_*([f \circ \alpha]) = g_*(g_*([\alpha])) = (g_* \circ f_*)([\alpha])$$

8.4 ISOMORFISMI E GRUPPI FONDAMENTALI

Corollario 8.4.0. Se $f: X \longrightarrow Y$ è un omeomorfismo, allora:

 $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$ è isomorfismo di gruppi, $\forall x_0 \in X$.

RICORDIAMO... Se $g \circ f$ è una funzione biunivoca, allora f è iniettiva e g è suriettiva.

Corollario 8.4.1. Sia $A \subseteq X$ è un retratto con retrazione $r: X \longrightarrow A$, e sia $i: A \hookrightarrow X$. Si ha che:

- $\forall a \in A \ i_* : \pi_1(A, a) \longrightarrow \pi_1(X, a)$ è un omomorfismo *iniettivo*.
- $\forall a \in A \ r_* : \pi_1(X, a) \longrightarrow \pi_1(A, a)$ è un omomorfismo *suriettivo*.

Dimostrazione. Sappiamo dalla definizione che $r_{|A} = Id_A$; poiché $r \circ i : A \longrightarrow X$ $x \longmapsto r(x)$,

si ha $r \circ i = r_{|A} = Id_A$. Allora, passando con il funtore all'omomorfismo di gruppi:

$$\pi_1(A, a) \xrightarrow{i_*} \pi_1(X, a) \xrightarrow{r_*} \pi_1(A, a)$$

Notiamo che $r_* \circ i_* = (r \circ i)_* = (Id_A)_*$, cioè $r_* \circ i_*$ è biettiva. In particolare, ne consegue, per quanto detto poco sopra, che i_* è iniettiva e r_* suriettiva.

Teorema 8.4.o. (Kosniowski, 15.12)

Siano $f, g: X \longrightarrow Y$ continue, omotope e $x_0 \in X$. Allora esiste un *isomorfismo di gruppi*:

$$\varphi: \pi_1(Y, f(x_0)) \longrightarrow \pi_1(Y, g(x_0)) \tag{8.22}$$

Tale che:

$$g_* = \varphi \circ f_* \tag{8.23}$$

Più precisamente, data l'omotopia $F: X \times I \longrightarrow Y$ tra f e g, allora:

$$\gamma := F(x_0, t) : I \longrightarrow Y$$
(8.24)

È un arco da $F(x_0, 0) = f(x_0)$ a $F(x_0, 1) = g(x_0)$; dunque:

$$\gamma_{\#}: \pi_{1}(Y, f(x_{0})) \longrightarrow \pi_{1}(X, g(x_{0}))$$

$$[\alpha] \longmapsto [\overline{\omega} * \alpha * \omega]$$
(8.25)

é un isomorfismo di gruppi e si ha:

$$g_* = \gamma_\# \circ f_* \tag{8.26}$$

Corollario 8.4.2. Se $f: X \longrightarrow X$ è una funzione omotopa all'identità, allora:

 $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(X, f(x_0))$ è isomorfismo di gruppi, $\forall x_0 \in X$.

Dimostrazione. Data l'omotopia $F: X \times I \longrightarrow Y$ tra $f \in Id_X$, allora:

$$\gamma := F(x_0, t) : I \longrightarrow Y$$

È un arco da $F(x_0, 0) = f(x_0)$ a $F(x_0, 1) = x_0$; dunque, per il teorema precedente segue che

$$\gamma_{\#}: \pi_1(X, x_0) \longrightarrow \pi_1(X, f(x_0))$$

é un isomorfismo di gruppi e si ha:

$$f_* = \gamma_\# \circ (Id_X)_* = \gamma_\# \circ Id_{\pi_1(X, x_0)} = \gamma_\#$$

In particolare, ne segue che $f_* = \gamma_\#$ è isomorfismo.

RICORDIAMO... Siano A, B, C, D degli insiemi e f, g, h delle applicazioni come nel diagramma seguente:

$$A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$$

Tali per cui $g \circ f$, $h \circ g$ sono biunivoche. Segue che f è biunivoca.

- f è iniettiva perché $g \circ f$ è iniettiva.
- f è suriettiva: preso $b \in B$ e il corrispettivo $g(b) \in C$, dal fatto che $g \circ f$ è biunivoca segue che $\exists a \in A : g(f(a))(g \circ f)(a) = g(b)$. Essendo $h \circ g$ biunivoca, g è iniettiva, dunque $b = f(a) \Longrightarrow f$ suriettiva e segue allora la tesi.

Теоrема 8.4.1. Invarianza омоторіса del gruppo fondamentale (Manetti, 11.22) Siano X, Y spazi topologici e $f: X \longrightarrow Y$ un'equivalenza omotopica. Allora $\forall x_0 \in X$ si ha che:

$$f: \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0)) \tag{8.27}$$

È isomorfismo di gruppi.

DIMOSTRAZIONE. In quanto $f: X \longrightarrow Y$ è un'equivalenza omotopica, necessariamente $\exists g: Y \longrightarrow X$ continua tale che:

$$g \circ f \sim Id_X$$
 $f \circ g \sim Id_Y$

Su $g \circ f \sim Id_X$ applichiamo il teorema precedente.

$$\pi_{1}(X, x_{0}) \xrightarrow{(Id_{X})_{*}=Id_{\pi_{1}(X, x_{0})}^{q}} \pi_{1}(X, g(f_{0})) \xrightarrow{isomorfismo di gruppi} \pi_{1}(X, x_{0})$$

Per il corollario appena visto, poiché $g \circ f \sim Id_X$, segue che $(g \circ f)_* = g_* \circ f_*$ è isomorfismo di gruppi. Allora consideriamo lo schema seguente.

$$\pi_{1}(X, x_{0}) \xrightarrow{f_{*}} \pi_{1}(X, f(x_{0})) \xrightarrow{g_{*}} \pi_{1}(X, g(f(x_{0})))$$

$$\downarrow \tilde{f}_{*} \circ g_{*} \qquad \downarrow \tilde{f}_{*} \circ g_{*} \circ g$$

Sapendo che $f \circ g \sim Id_Y$, possiamo dimostrare in modo analogo (usando come punto base $f(x_0) \in Y$) che $\tilde{f}_* \circ g_* = (\tilde{f} \circ g)$ è isomorfismo di gruppi.

Applicando il ragionamento insiemistico ricordato in precedenza (pag. 104) segue che f_* è un omomorfismo biettivo, cioè un isomorfismo.

^aSi veda a pag. 102.

COROLLARIO 8.4.3. Se X e Y sono spazi topologici **c.p.a.** e omotopicamente equivalenti, allora hanno gruppi fondamentali isomorfi.

DIMOSTRAZIONE. Dal teorema appena dimostrato sappiamo che se due spazi sono omotopicamente equivalenti, il gruppo fondamentale di X rispetto ad un qualunque punto base in X è isomorfo a quello di Y rispetto $f(x_0)$. In particolare, se gli spazi sono **c.p.a.**, il loro gruppo fondamentale è *unico* a meno di omomorfismi. Segue che il gruppo fondamentale di X è isomorfo all'unico gruppo fondamentale di Y.

COROLLARIO 8.4.4. Sia X uno spazio topologico contraibile. Allora X è semplicemente connesso.

DIMOSTRAZIONE. X contraibile significa che X ha lo stesso tipo di omotopia di $\{1 \text{ punto}\}$. Segue che, per il corollario precedente, il gruppo fondamentale di X è banale:

$$\pi_1(X) \cong \pi_1(\{1 \text{ punto}\}) = 0$$

Essendo *X* contraibile, *X* è anche **c.p.a.**, dunque vale la tesi.

COROLLARIO 8.4.5. Sia $i:A \hookrightarrow X$ un retratto di deformazione. Allora $\forall a \in A$:

$$i_*: \pi_1(A, a) \longrightarrow \pi_1(X, a)$$
 $r_*: \pi_1(X, a) \longrightarrow \pi_1(A, a)$ (8.28)

Sono isomorfismi di gruppi.

Forma canonica di Jordan

Forma canonica di Jordan

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

9.1 TEOREMA DI CAYLEY-HAMILTON

[...]

Теогема 9.1.0. Sia $A \in \mathbb{K}^{n, n}$ е $m_A(t)$ il suo polinomio minimo. Allora, preso $\lambda \in \mathbb{K}$:

$$m_A(\lambda) = 0 \iff \lambda \text{ è un autovalore di } A$$
 (9.1)

DIMOSTRAZIONE.

 \Longrightarrow) Segue dal teorema di Cayley-Hamilton perché $m_A(\lambda)=0 \Longrightarrow C_A(\lambda)=0 \Longrightarrow \lambda$ autovalore.

 \Leftarrow) Sia λ un autovalore di A con autovettore associato v. Si ha:

$$A\underline{v} = \lambda \underline{v}$$

$$A^{2}\underline{v} = A(A\underline{v}) = A(\lambda \underline{v}) = \lambda A\underline{v} = \lambda^{2}\underline{v}$$

Allo stesso modo si arriva a $A^k \underline{v} = \lambda^n \underline{v}$. Preso un generico polinomio $p(t) \in \mathbb{K}[t]$, esso si può esprimere come:

$$p = \sum_{i=0}^{d} c_i t_i \quad c_i \in \mathbb{K}$$

Allora $p(A) = \sum_{i=0}^{d} c_i A^i$ e dunque:

$$p(A)\underline{v} = \left(\sum_{i=0}^{d} c_{i} A^{i}\right) \underline{v} = \sum_{i=0}^{d} c_{i} \left(A^{i} \underline{v}\right) = \sum_{i=0}^{d} c_{i} \left(\lambda^{i} \underline{v}\right) = \underbrace{\left(\sum_{i=0}^{d} c_{i} \lambda^{i}\right)}_{\in \mathbb{K}} \underline{v} = p(\lambda)\underline{v}$$

Consideriamo ora un polinomio $p \in I_A$. Per sua definizione p(A) = 0; in particolare, da quanto scritto sopra:

$$Ov = p(\lambda)v$$

Ed essendo v un autovettore, $v \neq 0$; dall'equazione sopra necessariamente segue $p(\lambda) = 0$. In particolare, essendo $p \in I_A$ generato dal polinomio minimo m_A (cioè $p(t) = m_A(t) q(t)$ con $q(t) \neq 0$), segue che $m_A(\lambda) = 0$.

9.2 FORMA CANONICA DI JORDAN

D'ora in poi, se non altresì specificato, considereremo $\mathbb{K} = \mathbb{C}$, cioè tratteremo di matrici $A \in \mathbb{C}^{n, n}$ e endomorfismi fra spazi vettoriali complessi.

Osservazione. Poichè $\mathbb C$ è algebricamente chiuso, ogni polinomio $p \in \mathbb C[t]$ si fattorizza completamente come prodotto di fattori lineari:

$$C_A(t) = (t - \lambda_1)^{m_1} \dots (t - \lambda_r)^{m_r}$$
 con m_i molteplicità algebrica di λ_i (9.2)

Nel caso del polinomio minimo, si ha:

$$m_A(t) = (t - \lambda_1)^{h_1} \dots (t - \lambda_r)^{h_r} \text{ con } 1 \le h_i \le m_i \ \forall i = 1, \dots, r$$
 (9.3)

Come altra conseguenza, ogni matrice $n \times n$ ammette n autovalori complessi, contati con la loro molteplicità.

Sia $A \in \mathbb{C}^{n,\;n}$ una matrice associata a un endomorfismo $f:V\longrightarrow V$. Se f è diagonalizzabile, esiste una base in cui la matrice di f è diagonale. Anche quando tuttavia la matrice non è diagonalizzabile, vogliamo cercare una base in cui la matrice di f è particolarmente semplice.

Definizione 9.2.0. Un **blocco di Jordan** $J = J_k(\lambda)$, di autovalore $\lambda \in \mathbb{C}$ e dimensione K, è una matrice quadrata $k \times k$ con sulla diagonale solo l'autovalore e sopra ogni elemento della diagonale 1:

$$J = J_k(\lambda) = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ \vdots & & & \lambda & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix}$$
(9.4)

OSSERVAZIONE.

- I è determinato da λ e k.
- Il polinomio caratteristico di J è $C_J(t) = (t \lambda)^k$, cioè λ è l'unico autovalore di J con molteplicità algebrica k.

Osservazione. Definiamo il blocco di Jordan di dimensione k con autovalore zero, necessario per calcolare l'autospazio V_{λ} :

$$N = J - \lambda I = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ \vdots & & & 0 & 1 \\ 0 & \dots & \dots & 0 & 0 \end{pmatrix}$$
(9.5)

Si ha che rk $N=k-1 \implies \dim V_{\lambda}=\dim \ker N=k-\text{rk }N=1$, cioè J non è mai diagonalizzabile se k>1, dato che $1=\dim V_{\lambda}\leq m_{\lambda}=k$.

Se la base \mathscr{B} dello spazio V (in cui stiamo operando con l'endomorfismo associato a J) è $\{\underline{e}_1,\ldots,\underline{e}_k\}$, notiamo che \underline{e}_1 è l'unico autovettore di N e $V_\lambda=\mathscr{L}(\underline{e}_1)$. Si vede che J agisce in modo particolare sui vettori di \mathscr{B} :

$$\begin{cases} J\underline{e}_1 = \lambda \underline{e}_1 \\ J\underline{e}_2 = \underline{e}_1 + \lambda \underline{e}_2 \\ \dots \\ J\underline{e}_k = \underline{e}_{k-1} + \lambda \underline{e}_k \end{cases}$$

Anche N agisce in modo altrettanto particolare sui vettori di \mathcal{B} :

$$\begin{cases} N\underline{e}_1 = \underline{0} \\ N\underline{e}_2 = \underline{e}_1 \\ \dots \\ N\underline{e}_k = \underline{e}_{k-1} \end{cases}$$

Cioè, cominciando da \underline{e}_k e applicando N ripetutamente otteniamo gli altri vettori della base.

$$\underline{e}_1 \underbrace{\qquad \qquad }_{N} \underline{e}_2 \underbrace{\qquad \qquad }_{N} \underbrace{\qquad \qquad }_{N} \underline{e}_{k-1} \underbrace{\qquad \qquad }_{N} \underline{e}_k$$

Ad esempio, con N^2 si ha:

$$\begin{cases} N^2 \underline{e}_1 = \underline{0} \\ N^2 \underline{e}_2 = N (N \underline{e}_2) = N \underline{e}_1 = \underline{0} \\ \dots \\ N^2 \underline{e}_k = N (N \underline{e}_k) = N \underline{e}_{k-1} = \underline{0} \end{cases}$$

Infatti, se guardiamo la matrice N^2 , si ha:

$$N^{2} = (J - \lambda I)^{2} = \begin{pmatrix} 0 & 0 & 1 & \dots & 0 \\ \vdots & \ddots & 0 & 1 & \vdots \\ & & \ddots & 1 & 0 \\ \vdots & & & 0 & 1 \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

Si ha dunque, ad ogni potenza successiva di N, lo "spostamento" della diagonale di 1 verso destra. In particolare:

$$N^{k-1} = (J - \lambda I)^{k-1} = \begin{pmatrix} 0 & \dots & 0 & 1 \\ \vdots & \ddots & & 0 \\ & & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \dots & \dots & 0 \end{pmatrix}$$

E in questo caso si ha la relazione con i vettori della base:

$$\begin{cases} N^{k-1}\underline{e}_i = \underline{0} \ \forall i = 1, \dots, \ k-1 \\ \dots \\ N^{k-1}\underline{e}_k = \underline{e}_1 \end{cases}$$

Studiando l'immagine dell'applicazione associata ad N, essendo la base dell'immagine i vettori colonna l.i., si ha $\text{Im} N^{k-1} = \mathcal{L}(e_1)$.

Come già affermato dunque, è \underline{e}_k a determinare l'*intera* base di V tramite la moltiplicazione per N.

Come ultima osservazione fondamentale, notiamo inoltre che $N^k=O$, cioè N è una matrice **nilpotente** di ordine k.

DEFINIZIONE 9.2.1. Una matrice quadrata si dice in **forma di Jordan** se ha solo blocchi di Jordan lungo la diagonale, mentre altrove è nulla.

Esempio. La seguente matrice 9×9 è in forma di Jordan, con blocchi $J_3(2)$, $J_2(i)$, $J_3(i)$ e $J_1(-4)$:

OSSERVAZIONE. Una matrice *diagonale* è in forma di Jordan, con un unico blocco di ordine 1 (cioè senza alcun 1 nell'elemento sopra).

OSSERVAZIONE. Se A è in forma di Jordan, sulla diagonale compaiono tutti gli autovalori con la loro *molteplicità*. Dunque, se λ è un autovalore, la somma delle *dimensioni* dei blocchi relativi a λ è uguale alla *molteplicità algebrica* m_{λ} di λ .

$$m_{\lambda} = \sum$$
 dimensioni dei blocchi relativi a λ (9.6)

Teorema 9.2.0. Esistenza e unicità della forma di Jordan Sia V uno spazio vettoriale complesso di dim n e f un endomorfismo di V. Allora *esiste* una base di V in cui la matrice di f è in forma di Jordan. Inoltre, la forma di Jordan è *unica* a meno dell'ordine dei blocchi.

In termini matriciali, ogni $A \in \mathbb{C}^{n, n}$ è simile ad una matrice in forma di Jordan, unica a meno dell'ordine dei blocchi:

$$J = P^{-1}AP \tag{9.7}$$

P è la matrice del cambiamento di base che presenta, nelle colonne, la base che mette A in forma di Jordan.

9.2.1 Autospazi generalizzati

Per dimostrare il teorema appena enunciato, faremo uso di un concetto nuovo: quello di *autospazio generalizzato*. Prima di definirlo, ricordiamo alcune proprietà legate agli endomorfismi che ci torneranno utili.

DEFINIZIONE 9.2.2. Un sottospazio vettoriale V si dice **invariante** per un endomorfismo f se:

$$f(V) \subseteq V \tag{9.8}$$

Se A è la matrice associata all'endomorfismo rispetto ad una base fissata, si scrive anche $AV \subseteq V$.

OSSERVAZIONE. Supponiamo che $V = U \oplus W$, con U e W sottospazi di V; supponiamo inoltre i due sottospazi U e W siano **invarianti** per f endomorfismo, dunque $f(U) \subseteq U$ e $f(W) \subseteq W$. Prese una base \mathcal{B}_U di U e una base \mathcal{B}_W di W, la base $\mathcal{B} = \mathcal{B}_U \cup \mathcal{B}_W$ è una base di V e la matrice di f rispetto a questa base è a blocchi.

$$A = \begin{pmatrix} \mathbf{B} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{C} \end{pmatrix}$$

- B è quadrata, di ordine dim U ed è la matrice associata a $f_{|U}: U \longrightarrow U$ rispetto a \mathcal{B}_U .
- C è quadrata, di ordine dim W ed è la matrice associata a $f_{|W}: W \longrightarrow W$ rispetto a \mathcal{B}_W .

Definizione 9.2.3. Data una funzione $f: V \longrightarrow V$ e A una matrice associata ad f; sia λ un autovalore di f (di cui ne esiste almeno uno perché in \mathbb{C}), $V_{\lambda} = \ker(f - \lambda Id) =$ $\ker(A - \lambda I)$ l'autospazio di λ e m_{λ} la molteplicità algebrica di λ .

Allora l'autospazio generalizzato di λ è:

$$\tilde{V} = \ker (f - \lambda Id)^{m_{\lambda}} = \ker (A - \lambda I)^{m_{\lambda}}$$
(9.9)

Lemma 9.2.0. Proprietà degli autospazi generalizzati

- 1. $V_{\lambda} \subseteq \tilde{V}_{\lambda}$.
- 2. \tilde{V}_{λ} è invariante per A, cioè $A\tilde{V}_{\lambda} \subseteq \tilde{V}_{\lambda}$. 3. $\dim \tilde{V}_{\lambda} = m_{\lambda}$.
- 4. $f_{|\tilde{V}_{\lambda}}: \tilde{V}_{\lambda} \longrightarrow \tilde{V}_{\lambda}$ ha polinomio caratteristico $(t-\lambda)^{m_{\lambda}}$.
- 5. Se $\lambda_1, \ldots, \lambda_r$ sono tutti gli autovalori di A, si ha:

$$V = \tilde{V}_{\lambda_1} \oplus \dots \tilde{V}_{\lambda_r} \tag{9.10}$$

DIMOSTRAZIONE. Fissiamo un autovalore λ di A. Analizziamo le potenze $(A - \lambda I)$, i loro nuclei e le loro immagini.

I Se $v \in \ker(A - \lambda I)^h$, allora, per definizione:

$$(A - \lambda I)^{h} \underline{v} = \underline{0}$$

$$\Longrightarrow (A - \lambda I)^{h+1} \underline{v} = (A - \lambda I)(A - \lambda I)^{h} \underline{v} = \underline{0}$$

$$\Longrightarrow \underline{v} \in \ker (A - \lambda I)^{h+1}$$

$$\Longrightarrow \ker (A - \lambda I)^{h} \subseteq \ker (A - \lambda I)^{h+1}$$

Al crescere di *h*:

$$\{0\} \subseteq \ker(A - \lambda I) \subseteq \ker(A - \lambda I)^2 \subseteq \dots$$
 (9.11)

Cioè il nucleo della potenza h è contenuto in tutti quelli successivi. In particolare:

$$V_{\lambda} = \ker(A - \lambda I) \subseteq \ker(A - \lambda I)^{m_{\lambda}} \implies V_{\lambda} \subseteq \tilde{V}_{\lambda}$$

Dimostrando così la prima proprietà.

In modo analogo, se $\underline{w} \in \text{Im} (A - \lambda I)^h$, per definizione $\exists \underline{v} \in (A - \lambda I)^h$ tale che:

$$w = (A - \lambda I)^{h} \underline{v} = (A - \lambda I)^{h-1} ((A - \lambda I) \underline{v})$$

$$\implies \underline{w} \in \operatorname{Im} (A - \lambda I)^{h-1}$$

$$\implies \operatorname{Im} (A - \lambda I)^{h-1} \supseteq \operatorname{Im} (A - \lambda I)^{h}$$

Al crescere di *h*:

$$V \supseteq \operatorname{Im} (A - \lambda I) \supseteq \operatorname{Im} (A - \lambda I)^2 \supseteq \dots$$
 (9.12)

Cioè l'immagine della potenza *h* contiene tutte quelle successive.

Possiamo mostrare come tutti gli spazi finora visti (nuclei e immagini delle potenze $(A - \lambda I)^h$) sono invarianti:

■ Se $v \in \ker (A - \lambda I)^h$:

$$\underline{0} = A\underline{0} = A\left((A - \lambda I)^{h}\underline{v}\right)^{a} = (A - \lambda I)^{h}A\underline{v}$$

$$\implies A\underline{v} \in \ker(A - \lambda I)^{h}$$

$$\implies A\left(\ker(A - \lambda I)^{h}\right) \subseteq \ker(A - \lambda I)^{h}$$

Abbiamo appena dimostrato l'invarianza dello spazio $\tilde{V}_{\lambda}.$

■ Se $\underline{w} \in \text{Im} (A - \lambda I)^h$ esiste \underline{v} tale che:

$$\underline{w} = (A - \lambda I)^{h} \underline{v} \implies A\underline{w} = A(A - \lambda I)^{h} \underline{v} \stackrel{b}{=} (A - \lambda I)^{h} (A\underline{v})$$

$$\implies A\underline{w} \in \operatorname{Im} (A - \lambda I)^{h}$$

$$\implies A\left(\operatorname{Im} (A - \lambda I)^{h}\right) \subseteq \operatorname{Im} (A - \lambda I)^{h}$$

III Per trovare la dimensione dell'autospazio generalizzato, sappiamo che:

$$\ker (A - \lambda I)^{h} \subseteq \ker (A - \lambda I)^{h+1}$$
$$\operatorname{Im} (A - \lambda I)^{h} \supseteq \operatorname{Im} (A - \lambda I)^{h+1}$$

Allora, se consideriamo il teorema nullità più rango sulle applicazioni $(A - \lambda I)^h$ e $(A - \lambda I)^{h+1}$ in V:

$$\dim \ker (A - \lambda I)^{h} + \dim \operatorname{Im} (A - \lambda I)^{h}$$

$$n = \dim V$$

$$\dim \ker (A - \lambda I)^{h+1} + \dim \operatorname{Im} (A - \lambda I)^{h+1}$$

Ne consegue che:

$$\ker (A - \lambda I)^h = \ker (A - \lambda I)^{h+1} \iff \operatorname{Im} (A - \lambda I)^h = \operatorname{Im} (A - \lambda I)^{h+1} \tag{9.13}$$

Siccome V ha dimensione finita, la successione crescente (*) dei nuclei delle potenze (eq. I, pag. 114) ad un certo punto deve *stabilizzarsi*, cioè deve esserci un'uguaglianza per tutti gli elementi successivi^c. Denotiamo con p il più piccolo intero tale che:

$$\ker (A - \lambda I)^p = \ker (A - \lambda I)^{p+1}$$

Mostriamo che $\forall h \geq p$ valgano le seguenti relazioni:

$$\ker (A - \lambda I)^h = \ker (A - \lambda I)^p$$

$$\operatorname{Im} (A - \lambda I)^h = \operatorname{Im} (A - \lambda I)^p$$

È sufficiente mostrarlo per i nuclei, dato che vale anche per le immagini per nullità più rango.

Sia $v \in \ker(A - \lambda I)^h \supseteq (A - \lambda I)^h \text{ con } h \ge p + 2.^d \text{ Allora:}$

$$\underline{0} = (A - \lambda I)^{p} \underline{v} = (A - \lambda I)^{p+1} \underbrace{\left((A - \lambda I)^{h-p-1} \underline{v} \right)}_{\in \ker(A - \lambda I)^{h} = \ker(A - \lambda I)^{p}}$$

$$\Longrightarrow \underline{0} = (A - \lambda I)^{p} \left((A - \lambda I)^{h-p-1} \underline{v} \right) = (A - \lambda I)^{h-1} \underline{v}$$

$$\Longrightarrow \underline{v} \in \ker(A - \lambda I)^{h-1}$$

Iterando in questo modo, otterremo $v \in \ker(A - \lambda I)^{p+1} = \ker(A - \lambda I)^p$. Dunque, come conseguenza del termine stabilizzatore, tutti i sottospazi $\ker(A - \lambda I)^k$ (con k < p) sono strettamente contenuti in quelli successivi fino al termine p-esimo, mentre $\operatorname{Im}(A - \lambda I)^k$ contengono strettamente quelli successivi fino al p-esimo.

$$\{0\} \subsetneq \ker(A - \lambda I) \subsetneq \dots \subsetneq \ker(A - \lambda I)^p$$
 (9.14)

$$V \supseteq \operatorname{Im}(A - \lambda I) \supseteq \dots \supseteq \operatorname{Im}(A - \lambda I)^p$$
 (9.15)

- Si ha $p \ge 1$: se fosse p = 0, si avrebbe $\ker(A \lambda I) = \{0\}$ e dunque nessun autovettore o autovalore.
- SI ha dim ker $(A \lambda I)^p \ge p$: poiché nella successione abbiamo delle inclusioni strette, fra un termine e il suo successivo la dimensione deve aumentare di almeno 1.

Mostriamo ora che i termini *p*-esimi delle due successioni sono in somma diretta, in particolare dobbiamo solo dimostrare:

$$\ker(A - \lambda I)^p \cap \operatorname{Im}(A - \lambda I)^p = \{0\}$$

Infatti, preso $\underline{u} \in \ker (A - \lambda I)^p \cap \operatorname{Im} (A - \lambda I)^p$, $\exists v \in V : u = (A - \lambda I)^p v$. Ma:

$$\underline{0} = (A - \lambda I)^p \underline{u} = (A - \lambda I)^p (A - \lambda I)^p \underline{v} = (A - \lambda I)^2 p\underline{v}$$

$$\implies \underline{v} \in \ker (A - \lambda I)^2 p = \ker (A - \lambda I)^p \implies \underline{u} = \underline{0}$$

Per nullità più rango si ha dim ker $(A - \lambda I)^p$ + dim $\operatorname{Im} (A - \lambda I)^p$) = dim V; segue che:

$$V = \ker (A - \lambda I)^p \oplus \operatorname{Im} (A - \lambda I)^p \tag{9.16}$$

In particolare sappiamo che, per l'osservazione a pag. 113, rispetto ad una base di V opportuna la matrice associata A è a blocchi, di cui i due non nulli sono uno codificato dalla restrizione dell'endomorfismo a $\ker (A - \lambda I)^p$, mentre l'altro dalla restrizione a $\operatorname{Im} (A - \lambda I)^p$. Consideriamo allora queste due restrizioni ai sottospazi:

$$\varphi : \ker (A - \lambda I)^p \longrightarrow \ker (A - \lambda I)^p$$

 $\psi : \operatorname{Im} (A - \lambda I)^p \longrightarrow \operatorname{Im} (A - \lambda I)^p$

Facciamo le seguenti considerazioni.

■ λ è l'unico autovalore di φ . Definiamo la matrice B associata a φ . Sappiamo che $(A - \lambda I)^p$ annulla tutti i vettori di ker $(A - \lambda I)^p$. Dunque, la restrizione di $A - \lambda I$ su di esso, ovvero $B - \lambda I$ (associata all'applicazione $\varphi - \lambda Id$), è endomorfismo nilpotente di ordine p.

In altre parole, l'applicazione $(\varphi - \lambda Id)^p$ si *annulla* se valutata su un vettore (non nullo) \underline{v} appartenente al *dominio* $\ker(A - \lambda I)^p$. Ciò equivale a dire che:

$$(B - \lambda I)^p \, \underline{v} = \underline{0}$$

Ma ciò significa: $(B - \lambda I)^p = 0$.

Preso allora il polinomio $p(t) = (t - \lambda)^p$ appartiene all'ideale di B (cioè all'ideale di φ), in particolare λ è autovalore di φ (perché $p(\lambda) = 0 \Longrightarrow m_B(\lambda) = 0$).

Conseguentemente, se supponiamo di avere μ come altro autovalore di φ , si ha che $m_B(\mu) = 0 \implies p(\mu) = 0 \implies (\mu - \lambda)^p \implies \mu = \lambda$. Si ha dunque l'unicità.

■ λ *non* è autovalore di ψ . Infatti, sia $\underline{v} \in \text{Im}(A - \lambda I)$ per cui λ è il suo autovalore. Allora:

$$\psi(\underline{v}) = \lambda \underline{v} \iff A\underline{v} = \lambda \underline{v} \iff (A - \lambda I)\underline{v} = 0$$

$$\implies \underline{v} \in \ker(A - \lambda I) \subseteq \ker(A - \lambda)^{p}$$

$$\implies \underline{v} \in \ker(A - \lambda I)^{p} \cap \operatorname{Im}(A - \lambda I)^{p} = \{0\}$$

Ma sapendo che $\ker (A - \lambda I)^p \cap \operatorname{Im} (A - \lambda I)^p = \{0\} = \{0\}$, si ha $\underline{v} = \underline{0}$, dunque non può λ autovalore di ψ .

Riprendendo l'osservazione a pag. 113, scelte delle opportune basi, definiamo **B** la matrice associata a φ e **A** la matrice associata a ψ in modo da avere la matrice A associata a f a blocchi.

$$A = \left(\begin{array}{c|c} \mathbf{B} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{C} \end{array}\right)$$

Usiamo questa matrice per calcolare il polinomio caratteristico: f

$$C_A(t) = C_B(t) C_C(t)$$

■ $C_B(t)$ è il polinomio caratteristico di \mathbf{B} , il cui unico autovalore è λ ; grazie all'osservazione a pag. 9.1, possiamo dire che la molteplicità algebrica di λ come autovalore di \mathbf{B} è esattamente la dimensione dello spazio \mathbf{B} . Il polinomio caratteristico risulta:

$$(t-\lambda)^{\dim \ker(A-\lambda I)^p}$$

■ $C_C(t)$, in quanto ψ non ha l'autovalore λ , non è divisibile per $t - \lambda$: $(t - \lambda) \nmid C_C(t)$.

Segue che la molteplicità algebrica di λ come autovalore della matrice **B** è la stessa di quella come autovalore della matrice A:

$$m_{\lambda} = \dim \ker (A - \lambda I)^p \ge p$$

Da cui segue:

$$\ker (A - \lambda I)^p = \ker (A - \lambda I)^{m_{\lambda}} = \tilde{V}_{\lambda}$$

Dunque, sapendo che dim $\tilde{V}_{\lambda} = \dim \ker (A - \lambda I)^p = m_{\lambda}$, segue la proprietà 3.

- IV Notiamo che l'endomorfismo φ definito nella dimostrazione precedente altro non è che $f_{|\tilde{V}_{\lambda}}: \tilde{V}_{\lambda} \longrightarrow \tilde{V}_{\lambda}$, e abbiamo visto come il suo polinomio caratteristico debba essere $(t-\lambda)^m_{\lambda}$. Si conclude il punto 4.
- V Non dimostreremo quest'ultimo punto.

Riassumendo, sappiamo ora che gli autospazi generalizzati sono invarianti e sono in somma diretta tra loro.

$$V = \tilde{V}_{\lambda_1} \oplus \ldots \oplus \tilde{V}_{\lambda_r} \tag{9.17}$$

Ora, per trovare una base che mette la matrice A associata ad f in forma di Jordan, basta farlo in ogni autospazio generalizzato \tilde{V}_{λ_i} , in cui l'unico autovalore è λ_i per le osservazioni precedenti. In sostanza, quello che vogliamo fare è compiere una "separazione degli autovalori".

Per calcolare l'autospazio generalizzato dovremmo calcolare $\tilde{V}_{\lambda} = (A - \lambda I)^{m_{\lambda}}$, ma basterà calcolare invece $\tilde{V}_{\lambda} = (A - \lambda I)^{p}$.

Nella sezione seguente dimostreremo l'esistenza della base di \tilde{V}_{λ} che dà la forma di Jordan.

9.2.2 Esistenza della base dell'autospazio generalizzato che dà la forma di Jordan

Prima di procedere dimostriamo un lemma che servirà più avanti.

Lemma 9.2.1. Siano
$$f:U\longrightarrow V$$
 e $g:V\longrightarrow W$ due applicazioni lineari. Si ha:
$$\dim (\operatorname{Im} f\cap \ker g)=\dim \operatorname{Im} f-\dim \operatorname{Im} (g\circ f)=\dim \ker (g\circ f)-\dim \ker f \qquad (9.18)$$

DIMOSTRAZIONE.

$$U \xrightarrow{f} V \xrightarrow{g} W$$

Sia $h := g_{|\operatorname{Im} f} : \operatorname{Im} f \longrightarrow W :$

$$\dim \ker h = \dim \operatorname{Im} f - \dim h$$

Ma $\ker h = \operatorname{Im} f \cap \ker g \in \operatorname{Im} h = g(\operatorname{Im} f) = \operatorname{Im} (g \circ f)$, dunque:

$$\ker h = \dim \operatorname{Im} f - \dim \operatorname{Im} h$$

$$\dim (\operatorname{Im} f \cap \ker g) = \dim \operatorname{Im} f - \dim \operatorname{Im} (g \circ f)$$

Per dimostrare la seconda uguaglianza, abbiamo:

$$\dim \operatorname{Im} f = \dim U - \dim \ker f$$

$$\dim \operatorname{Im} (g \circ f) = \dim U - \dim \ker (g \circ f)$$

$$\implies \dim \operatorname{Im} f - \dim \operatorname{Im} (g \circ f) = \dim \ker (g \circ f) - \dim \ker f$$

 $^{^{}a}A$ e $A - \lambda I$ commutano.

^bSi veda la nota precedente.

 $[^]c$ Infatti, ogni inclusione potrebbe essere stretta e dunque la dimensione di questi sottospazi può aumentare; tuttavia, essendo V finito questi sottospazio non possono avere dimensione maggiore di n.

^dPoiché p è tale per cui ker $(A - \lambda I)^p = \ker(A - \lambda I)^{p+1}$, il caso h = p+1 è banalmente vero.

 $^{{}^}e\!A\underline{v}$ segue dalla definizione di ψ come restrizione dell'endomorfismo f.

^fNelle "Note aggiuntive", a pag. 142, si può trovare la dimostrazione della formula del determinante di una matrice a blocchi, su cui si basa la seguente formula.

Dimostrazione. Ricordando la successione delle immagini (equazione 9.14):

$$V \supseteq \operatorname{Im} (A - \lambda I) \supseteq \ldots \supseteq \operatorname{Im} (A - \lambda I)^p$$

Intersechiamo ogni termine con $V_{\lambda} = \ker(A - \lambda I)$:

$$\ker(A - \lambda I) \cap V \supseteq \ker(A - \lambda I) \cap \operatorname{Im}(A - \lambda I) \supseteq \dots \supseteq \ker(A - \lambda I) \cap \operatorname{Im}(A - \lambda I)^p$$

E poniamo:

$$S_i := \ker(A - \lambda I) \cap \operatorname{Im} (A - \lambda I)^{i-1}$$
(9.19)

In particolare, notiamo che:

- $S_{p+1} = \ker(A \lambda I) \cap \operatorname{Im}(A \lambda I)^p = \{\underline{0}\} \operatorname{perch\acute{e}} \ker(A \lambda I) \subsetneq \ker(A \lambda I)^p \in \operatorname{dunque} S_{p+1} \subseteq \ker(A \lambda I)^p \cap \operatorname{Im}(A \lambda I)^p = \{\underline{0}\}.$
- Può benissimo capitare che $S_i = S_{i+1}$.

Riscriviamo con questa nuova denominazione la successione creata.

$$V_{\lambda} = S_1 \supseteq S_2 \supseteq \dots \supseteq S_p \tag{9.20}$$

Costruiamo la base di \tilde{V}_{λ} .

Innanzitutto, scegliamo una base $\{x_1^1, ..., x_r^1\}$ del sottospazio più piccolo S_p . Per costruzione, $x_i^1 \in \text{Im} (A - \lambda I)^{p-1}$, cioè:

$$\forall i=1,\,\ldots,\,r\,\exists x_1^p\in V\quad x_i^1=(A-\lambda I)^{p-1}\,x_i^p$$

È lecito definire i vettori "intermedi" fra x_i^p e x_i^1 , ottenuti da moltiplicazioni successive della matrice $A - \lambda I$ al vettore x_i^p :

$$x_i^{p-1} := (A - \lambda I) x_i^p$$

$$x_i^{p-2} := (A - \lambda I) x_i^{p-1} = (A - \lambda I)^2 x_i^p$$
... (9.21)

Per capire meglio le relazioni fra questi vettori ed altri che vedremo successivamente nella dimostrazione, utilizziamo il seguente schema [1]:

$$x_{i}^{p}$$

$$\downarrow A-\lambda I$$

$$x_{i}^{p-1} \quad y_{j}^{p-1}$$

$$\downarrow A-\lambda I \quad \downarrow A-\lambda I$$

$$x_{i}^{p-2} \quad y_{j}^{p-2} \quad z_{k}^{p-2}$$

$$\downarrow A-\lambda I \quad \downarrow A-\lambda I \quad \downarrow A-\lambda I$$

$$\vdots \quad \vdots \quad \vdots \quad \ddots$$

$$\downarrow A-\lambda I \quad \downarrow A-\lambda I \quad \downarrow A-\lambda I$$

$$x_{i}^{2} \quad y_{j}^{2} \quad z_{k}^{2} \quad \dots \quad a_{t}^{2}$$

$$\downarrow A-\lambda I \quad \downarrow A-\lambda I \quad \downarrow A-\lambda I$$

$$x_{i}^{1} \quad y_{j}^{2} \quad z_{k}^{1} \quad \dots \quad a_{t}^{1} \quad b_{u}^{1}$$

Notiamo che i vettori $\{x_i^1, \ldots, x_i^p\}$ dà origine ad un *blocco di Jordan J_p*(λ) di dimensione p e relativo all'autovalore λ , poiché questi vettori soddisfano la costruzione vista nell'osservazione di pag. 111: infatti, si ha $x_i^1 \in S_p \subseteq V_\lambda$, dunque x_i^1 è un autovettore di V_λ e gli altri vettori sono ottenuti dall'applicazione ripetuta di una matrice all'ultimo vettore della base^a. Lo stesso vale $\forall i = 1, \ldots, r$.

Consideriamo ora lo spazio S_{p-1} , che ricordiamo contiene S_{p-1} cioè $(S_p \subseteq S_{p-1})$. Vogliamo completare $\{x_1^1, \ldots, x_r^1\}$ ad una base di S_{p-1} con dei vettori y_1^1, \ldots, y_s^1 :

$$\{x_1^1, \ldots, x_r^1, y_1^1, \ldots, y_s^1\}$$

Per costruzione, $y_i^1 \in S_{p-1} \subseteq \text{Im} (A - \lambda I)^{p-2}$, dunque:

$$\forall j = 1, ..., s \exists y_1^{p-1} \in V \quad y_j^1 = (A - \lambda I)^{p-2} y_j^{p-1}$$

Per ogni j otteniamo p-1 vettori $\{j_i^1, ..., j_i^{p-1}\}$ tali che $y_j^s \in V_\lambda$ e $j_i^{i-1} := (A-\lambda I)y_j^i$ $\forall i=2, ..., p-1$. Analogamente al caso precedente, questo gruppo di vettori dà origine ad un *blocco di Jordan* di ordine p-1.

Procediamo in questo modo: prendiamo la base ottenuta per S_i e la completiamo ad una di $S_{i-1} \supseteq S_i$; poiché ogni vettore aggiunto appartiene a $\operatorname{Im}(A-\lambda I)^{i-2}$, applicando i-2 volte la matrice $A_{\lambda}I$ al vettore z_k^{i-1} (fino ad ottenere z_k^1) otteniamo un'insieme di vettori che generano un blocco di Jordan di dimensioni i e di autovalore λ .

Chiaramente, poiché potrebbe anche accadere che $S_{i-1} = S_i$, si prosegue senza aggiungere vettori alla base e si passa al sottospazio successivo.

Arriviamo con queste iterazioni fino a $S_2 = V_\lambda \cap \operatorname{Im}(A - \lambda I)$: completiamo la base da S_3 ad una di S_2 aggiungendo i vettori $\{a_1^1, \ldots, a_t^1\}$. Sappiamo che $\exists a_t^2 : a_t^1 = (A - \lambda I)^{p-2} a_t^2$, dunque abbiamo i due vettori che formano il blocco di Jordan di dimensione 2.

Infine, completiamo ad una base di S_1 aggiungendo i vettori $\{b_1^1, ..., b_u^1\}$. In questo caso, non abbiamo bisogno di calcolare altri vettori $b_u^i \, \forall u$ (al variare di i) come prima, in

quanto i vettori, per definizione di S_1 , appartengono anche a ker $(A - \lambda I)$. Allora, $\forall u \ b_u^1$ generano blocchi di Jordan di dimensione 1.

Al variare di i, j, k, ..., t, u abbiamo costruito un insieme di vettori tutti appartenenti a $\tilde{V}_{\lambda} = \ker(A.\lambda I)$: nello schema precedente essi sono tutti i vettori appartenenti a tutte le colonne, da quella di x_i a quella di b_u .

Vogliamo contare quanti sono questi vettori. Innanzitutto, dobbiamo considerare che lo schema, per compattezza, rappresenta solo una colonna per ciascun x_i , y_j , ..., ma in realtà c'è una colonna analoga alla prima per ogni vettore della base di S_p , una colonna analoga alla seconda per ogni vettore della base di S_{p-1} e così via. In pratica, abbiamo dim $S_p = r$ colonne con x_i , dim S_{p-1} – dim $S_p = s$ colonne con y_j e così via.

Contiamo adesso gli elementi per *righe*. L'*ultima riga*, quella di x_i^1 , $y_j^1 z_k^1$..., a_t^1 , b_u^1 al variare di i, j, k, ..., t, u, sono per costruzione i vettori di una base di S_1 , e quindi il loro numero sono dim S_1 .

Sulla *penultima riga* non abbiamo i vettori b_u e i vettori x_i^2 , $y_j^2 z_k^2$..., a_t^2 presenti sono in numero uguale ai vettori x_i^1 , $y_j^1 z_k^1$..., a_t^1 al variare di i, j, k, ..., t, base di S_2 e quindi ne abbiamo dim S_2 .

Proseguendo così, il numero di vettori della i-esima riga è pari alla dimensione dello spazio S_i ; in totale l'insieme è formato da N vettori, con:

$$N = \sum_{i=1}^{p} \dim S_i \tag{9.22}$$

Usando il lemma 9.2 (pag. 118), otteniamo che:

$$\dim S_{i} = \dim \left(\ker (A - \lambda I) \cap \operatorname{Im} (A - \lambda I)^{i-1} \right) =$$

$$= \dim \ker (A - \lambda I)^{i} - \dim \ker (A - \lambda I)^{i-1}$$

$$\Longrightarrow$$

$$N = \sum_{i=1}^{p} \dim S_{i} = \sum_{i=1}^{p} \left(\dim \ker (A - \lambda I)^{i} - \dim \ker (A - \lambda I)^{i-1} \right) =$$

$$= \dim \ker (A - \lambda I)^{p} - \dim \ker (A - \lambda I)^{0} =$$

$$= \dim \ker (A - \lambda I)^{p} = \tilde{V}_{\lambda}$$

L'insieme dei vettori, che ricordiamo essere tutti contenuti in \tilde{V}_{λ} , ha cardinalità pari alla dimensione dell'autospazio generalizzato. Ci resta dunque da dimostrare che i vettori siano linearmente indipendenti per verificare che essi siano a tutti gli effetti la base cercata di \tilde{V}_{λ} .

Per dimostrarlo, prendiamo la combinazione lineare seguente:

$$\sum_{i} \alpha_{i} x_{i}^{p} + \sum_{i} \beta_{i} x_{i}^{p-1} + \dots + \sum_{i} \gamma_{j} y_{j}^{p-1} + \dots + \sum_{u} \delta_{u} b_{u}^{1} = 0$$

Applicando $(A - \lambda I)^{p-1}$ tutti i termini si *annullano* eccetto x_i^p e coefficienti al variare di i, ovvero:

$$\sum_{i} \alpha_{i} (A - \lambda I) x_{i}^{p} = 0 \implies \sum_{i} \alpha_{i} x_{i}^{1} = 0$$

Poichè x_i^1 al variare di *i* sono *linearmente indipendenti* (sono base di S_p !), i loro coefficienti devono necessariamente *tutti* nulli: $\alpha_i = 0 \forall i$. La combinazione lineare sopra diventa:

$$\sum_{i} \beta_i x_i^{p-1} + \ldots + \sum_{i} \gamma_j y_j^{p-1} + \ldots + \sum_{u} \delta_u b_u^1 = 0$$

Applicando $(A - \lambda I)^{p-2}$, nella combinazione lineare rimangono solo x_i^{p-1} e y_j^{p-1} al variare di i e j con i loro coefficienti. Complessivamente, i vettori formano la base già vista di S_{p-1} , dunque i coefficienti risultano nulli: $\beta_i = 0$, $\gamma_j = 0 \ \forall i, j$.

Allo stesso modo, applicando $(A - \lambda I)^{p-3}$, ... si vede che tutti i coefficienti della combinazione lineare sono nulli, ovvero i vettori dell'insieme sono **linearmente indipendenti**.

9.2.3 Unicità della forma di Jordan

Dimostrazione. Per ultima cosa osserviamo come la forma di Jordan di A sia unica. Sulla sua diagonale compaiono, per definizione, gli *autovalori con molteplicità*: questo dipende esclusivamente dalle radici del polinomio caratteristico e dunque da A stessa. Per un dato autovalore λ , abbiamo ottenuto dei blocchi di Jordan corrispondenti agli spazi S_k di dimensione k e di numero pari ai vettori aggiunti per completare la base dello spazio S_{k+1} passo per passo (ovvero dim S_{k-1} – dim S_k , dato che ogni vettore aggiunto x_i^1 genera la successione x_i^1 , ..., x_i^k). Poiché il *numero dei blocchi* dipende esclusivamente da $A - \lambda I$, dunque da A stessa, e *non* dal procedimento, la forma di Jordan di A è unica.

Il corollario seguente è immediato.

COROLLARIO 9.2.0. Due matrici in forma di Jordan sono simili se e solo se hanno gli stessi blocchi (a meno dell'ordine).

9.2.4 Polinomio minimo e forma di Jordan

Proposizione 9.2.0. Sia A una matrice complessa $n \times n$ e siano $\lambda_1, \ldots, \lambda_r$ gli autovalore distinti di A e, per ogni $i = 1, \ldots, r$, sia p_i l'ordine del più grande blocco di Jordan di A relativo a λ_i . Allora il polinomio minimo di A è:

$$m_A(t) = (t - \lambda_i)^{p_1} \dots (t - \lambda)^{p_r}$$
 (9.23)

L'osservazione che qui facciamo ci servirà nella dimostrazione della proposizione.

OSSERVAZIONE. Se p(t), $q(t) \in \mathbb{K}[t]$, allora:

$$p(A)q(A) = q(A)p(A)$$
 (9.24)

DIMOSTRAZIONE. Possiamo supporre che *A* sia già in forma di Jordan.

Consideriamo $A-\lambda_1 I$, rappresentata in figura: ha, nella parte rossa, dei blocchi di Jordan relativi all'autovalore zero. Poichè la parte rossa è una sottomatrice nilpotente

^aChiaramente ciò non implica che il blocco di Jordan in esame sia proprio A! A ha sempre ordine $n \times n$, mentre il blocco ottenuto dalla base in questione ha ordine $p \times p$, con $p \le n$.

di ordine p_1 , ne consegue che $(A - \lambda_1 I)^{p_1}$ ha la matrice nulla nella parte zero. In generale, $(A - \lambda_i I)^{p_i}$ è nullo nel blocco $m_i \times m_i$ corrispondente a λ_i .

Ne segue che $(A - \lambda_1 I)^{p_1} \dots (A - \lambda_r I)^{p_r}$ è la matrice nulla, perché ha ogni blocco nullo. Ciò significa che il seguente polinomio si annulla su A e dunque appartiene al suo ideale:

$$f(t) = (t - \lambda_1)^{p_1} \dots (t - \lambda_r)^{p_r} \in I_A$$

Perciò il polinomio minimo divide $f: m_A(t) | f(t)$.

Consideriamo ora $(A - \lambda_1 I)^h$ con $h < p_1$: come abbiamo visto nello studio delle proprietà dei blocchi di Jordan, esso ha nel primo blocco una colonna uguale a $\underline{e}_1 = (1, 0, \dots 0)^T$, diciamo ad esempio la colonna $s \in \{1, \dots, m_1\}$.

Posto $d_i \ge 1$, $(A - \lambda_i I)^{d_i}$ nel posto (1, 1) ha $(\lambda_1 - \lambda_i)^{d_i} \ne 0$ se i = 2, ..., r. Infatti, A (presa in forma di Jordan) è triangolare superiore e ha λ_1 al posto (1, 1); allo stesso modo $A - \lambda_i I$ è triangolare superiore e ha $\lambda_1 - \lambda_i$ al posto (1, 1).

Ne consegue che $\prod_{i=2}^{\tau} (A - \lambda_i I)^{d_i}$ ha un numero $\neq 0$ nel posto (1, 1). Allora, utilizzando

l'osservazione ad inizio sezione che garantisce la commutatività del prodotto:

$$(A - \lambda_1 I)^h \prod_{i=2}^r (A - \lambda_i I)^{d_i} = \prod_{i=2}^r (A - \lambda_1 I)^{d_i} (A - \lambda_i I)^h$$

Rappresentando visivamente il prodotto di queste due matrici:

$$\begin{pmatrix} * \neq 0 \\ & & \\ & & \\ & & \\ & & 0 \end{pmatrix}$$

Al posto (1, s) otteniamo il valore $* \neq 0$, dunque il prodotto complessivo è diverso da zero. Si ha:

$$(t-\lambda_1)^h \prod_{i=2}^r (t-\lambda_i)^{d_i} \notin I_A \text{ se } h < p_1$$

Segue che qualunque blocco di Jordan di ordine non massimo fa sì che il polinomio scritto sopra non appartenga all'ideale di A, e dunque il più piccolo polinomio che è diviso da $m_A(t)$ (al quale dunque deve coincidere necessariamente) è f(t) visto sopra.

Corollario 9.2.1. Sia $A \in \mathbb{C}^{n, n}$. Allora A è **diagonalizzabile** se e solo se il suo polinomio minimo ha tutte radici di molteplicità 1.

Dimostrazione. Per la proposizione precedente, la molteplicità delle radici del polinomio minimo corrisponde alla dimensione del più grande blocco di Jordan di A relativo a λ_i .

Segue chiaramente che se $m_{\lambda_i} = 1 \ \forall i$ l'ordine di tutti i blocchi è 1, dunque A è diagonalizzabile.

Viceversa, se A è diagonalizzabile, tutti i blocchi sono di dimensione 1 e questa, per la stessa proposizione di prima, corrisponde alla molteplicità delle radici del polinomio caratteristico.

OSSERVAZIONE. La forma di Jordan determina il polinomio minimo e il polinomio caratteristico, ma *non* vale il viceversa. Per esempio, prendiamo le seguenti matrici:

Queste due matrici hanno forme di Jordan diverse, ma hanno entrambe:

$$C_A = (t-2)^7$$
 $m_A = (t-2)^3 \dim V_2 = 3$

9.2.5 Impratichiamoci! Forma canonica di Jordan

Tips & Tricks! Alcune nozioni utili per il calcolo della base e della forma di Jordan.

1. Per calcolare l'autospazio generalizzato $\tilde{V}_{\lambda} = \ker(A - \lambda I)^{m_{\lambda}}$ è sufficiente calcolare, se conosco il massimo ordine p dei blocchi di Jordan relativi a λ :

$$\tilde{V}_{\lambda} = \ker (A - \lambda I)^p \tag{9.25}$$

2. Si ha, per le osservazioni fatte nella dimostrazione precedente:

$$\dim S_i - \dim S_{i+1} = \#$$
 blocchi di Jordan di dimensione i (9.26)

3. L'autospazio $V_{\lambda} = S_1$ ha come base tutti i vettori aggiunti a partire dalla base di S_p , compresi i vettori di quest'ultima base; poiché per ognuno di questi vettori abbiamo, per costruzione, un blocco di Jordan relativo a λ , il numero di questi vettori corrisponde al numero totale di blocchi di Jordan, cioè la molteplicità geometrica di λ :

$$\dim V_{\lambda} = \#$$
 blocchi di Jordan relativi a λ (9.27)

4. Per l'osservazione a pag. 113:

$$m_{\lambda} = \sum$$
 dimensioni dei blocchi relativi a λ (9.28)

5. Per l'osservazione a pag. 122, l'esponente di $t - \lambda$ nel polinomio minimo m_A è la dimensione del blocco più grande relativo a λ .

$$m_{\lambda} = \sum$$
 dimensioni dei blocchi relativi a λ (9.29)

6. Se conosco già le dimensioni dei blocchi di Jordan di λ :

$$a_1 \leq \ldots \leq a_r = p$$

mi basta calcolare i sottospazi:

$$S_{a_1} \supseteq \ldots \supseteq S_{a_r} = S_p$$

7. Se *A* ha un'*unico* autovalore λ , allora $V = \tilde{V}_{\lambda}$ e $(A - \lambda I)^p = 0$. In particolare segue che:

$$\begin{split} &\forall \underline{v} \in \operatorname{Im} (A - \lambda I)^{p-1} \ \exists \underline{u} \in (A - \lambda I)^{p-1} \ : \ (A - \lambda I)^{p-1} \underline{u} = \underline{v} \\ &\Longrightarrow \underline{0} = (A - \lambda I)^p \underline{u} = (A - \lambda I) \underline{v} \\ &\Longrightarrow \underline{v} \in \ker (A - \lambda I) \\ &\Longrightarrow \operatorname{Im} (A - \lambda I)^{p-1} \subseteq \ker (A - \lambda I) \\ &\Longrightarrow S_p = \operatorname{Im} (A - \lambda I)^{p-1} \cap \ker (A - \lambda I) = \operatorname{Im} (A - \lambda I)^{p-1} \end{split}$$

Pertanto, nel caso S_p *non c'è bisogno di intersecare con* V_{λ} ! Questo tuttavia *non* si applica agli altri S_i , dato che *non* vale la relazione $\operatorname{Im}(A - \lambda I)^i \subseteq \ker(A - \lambda I)$.

8. Se so che per λ tutti i blocchi di Jordan hanno la stessa dimensione p, possiamo calcolare direttamente $S_p = \text{Im} (A - \lambda I)^{p-1} \cap V_{\lambda}$.

Esercizio. Sia data la matrice:

$$A = \left(\begin{array}{ccc} 8 & 6 & -4 \\ 0 & 2 & 0 \\ 9 & 9 & -4 \end{array}\right)$$

Calcolare la sua forma di Jordan e la base per cui essa è in tale forma.

Soluzione. Il suo polinomio caratteristico è $C_A(t) = (t-2)^3$ e $\lambda = 2$ è l'unico autovalore, con molteplicità algebrica $m_{\lambda} = 3$. Studiamo l'autospazio:

$$A - 2I = \left(\begin{array}{ccc} 6 & 6 & -4 \\ 0 & 0 & 0 \\ 9 & 9 & -6 \end{array}\right)$$

Il rango è rk (A-2I)=1 e la molteplicità geometrica è pertanto dim $V_2=2$. Notiamo che le possibili forme di Jordan di una matrice 3×3 con unico autovalore 2 sono:

3 blocchi, dim V_2 = 32 blocchi, dim V_2 = 21 blocco, dim V_2 = 1

$$\left(\begin{array}{c|c}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \qquad \left(\begin{array}{c|c}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right) \qquad \left(\begin{array}{c|c}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)$$

Come osservato precedentemente, la molteplicità geometrica di λ dà il numero di blocchi di Jordan della matrice, pertanto ho sicuramente due blocchi di Jordan e, avendo fatto tutti i casi, sappiamo senza altri calcoli che il blocco massimo ha ordine p = 2. La situazione in termini di spazi S_i , è:

$$V_2 = S_1 \supseteq S_2 = \operatorname{Im} (A - 2I)$$

Avendo un unico autovalore, nel caso S_2 non abbiamo bisogno di calcolare l'intersezione con l'autospazio. Dunque, cerchiamo una base di $S_2 = \text{Im}(A - 2I)$. Sappiamo già che la sua base è di un solo vettore, dato che rk $(A-2I)=1=\dim \operatorname{Im} (A-2I)$. Essendo l'immagine, possiamo prendere un vettore colonna della matrice A - 2I, che definiremo x_1^1 ; ad esempio, prendiamo la prima colonna:

$$x_1^1 = (6, 0, 9)$$

Per la scelta effettuata, per costruire x_1^2 ci è sufficiente prendere il vettore (1, 0, 0):

$$x_1^1 = (6, 0, 9) = (A - 2I)(1, 0, 0)$$

 $x_1^2 = (1, 0, 0)$

Allora $\{x_1^1, x_1^2\}$ dà il blocco di Jordan di ordine 2.

Completiamo $\{x_1^1\}$ ad una base di V_2 . Esplicitando l'autospazio:

$$V_2 = \ker(A - 2I) = \{3x + 3y + 2z = 0\}$$

Possiamo scegliere ad esempio (-1, 1, 0), ottenendo allo stesso tempo il vettore che dà il blocco di ordine 1 di Jordan. La base che rende A in forma di Jordan è:

$$\{(6, 0, 9), (1, 0, 0), (-1, 1, 0)\}$$

Esercizio. Esercizio 4, scritto Luglio 2018

Sia A matrice quadrata complessa 6×6 . Dire quali delle seguenti affermazioni possono verificarsi, motivando la risposta.

- 1. Il polinomio minimo di $A

 è <math>(t-2)^5$, l'autospazio relativo a 2 ha dimensione 3. 2. Il polinomio minimo di $A

 è <math>(t-2)(t-3)^3$, l'autospazio relativo a 2 ha dimensione
- 3. *A* ha polinomio caratteristico è $(t-2)^6$ e $A^2 A I = O$.
- 4. $A^2 A I = O$ e A ha autovalori non reali.

SOLUZIONE.

- I A ha un unico autovalore 2, di molteplicità algebrica 6, dunque il più grande blocco di Jordan nella forma di Jordan di A ha dimensione 5; poiché la dimensione dell'autospazio relativo a 2 è la molteplicità geometrica, segue che il numero di blocchi relativi a 2 sono 3.
 - Non si può dunque verificare, in quanto con la condizione di avere un blocco di dimensione 5 non ci può essere più di un solo blocco di dimensione 1.
- II A ha autovalori 2 e 3, di molteplicità algebrica rispettivamente 1 e 3, dunque il più grande blocco di Jordan nella forma di Jordan di A riferito a 2 ha dimensione

1, mentre quello riferito a 3 è 3; poiché la dimensione dell'autospazio relativo a 2 è la molteplicità geometrica, segue che il numero di blocchi relativi a 2 sono 3.

III Si ha:

$$\begin{array}{ll} \bullet & f\left(t\right) = t^2 - t - 1 \\ \bullet & f\left(A\right) = O \end{array} \right\} = f\left(t\right) \in I_A$$

Tuttavia $f(t) = (t - \lambda_1)(t - \lambda_1)$. Dunque, consideriamo:

$$m_A(t) \mid f(t) \implies m_A(t) = \begin{cases} t - \lambda_1 \\ t - \lambda_2 \\ f(t) \end{cases}$$

Inoltre, $m_A(t) \mid C_A(t) = (t-2)^6$.

Notiamo che:

$$f(2) = 4 - 2 - 1 = 1 \neq 0$$

Poiché $\lambda=2$ è l'unico autovalore di A ed $f\in I_A$, si avrebbe f(2)=0, cioè abbiamo un assurdo.

IV Si ha $f(t) = t^2 - t - 1 \in I_A$:

$$\lambda_{1, 2} = \frac{1 \pm \sqrt{1+4}}{2} = \frac{1 \pm \sqrt{5}}{2}$$
 sono entrambe *non* reali.

Allora $f(t) = (t - \lambda_1)(t - \lambda_1)$ e, per le osservazioni del punto precedente:

$$m_A(t) = \begin{cases} t - \lambda_1 \\ t - \lambda_2 \\ f(t) \end{cases}$$

Allora, gli autovalori di A possono essere solo $\frac{1\pm\sqrt{5}}{2}$, dunque A non può avere autovalori complessi.

9.3 FUNZIONE ESPONENZIALE NEI COMPLESSI

La **funzione esponenziale** e^x ($x \in \mathbb{R}$) si può *caratterizzare* in diversi modi; sia con il concetto di limite:

$$e^x = \lim_{n \to +\infty} \left(1 + \frac{x}{n}\right)^n$$

Oppure come il valore della serie di potenze:

$$e^x = \sum_{n=0}^{+\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots$$

Vogliamo ora definire una funzione analoga anche in campo complesso.

Definizione 9.3.0. Sia $z \in \mathbb{C}$. Definiamo come funzione esponenziale sui numeri complessi la seguente serie:

$$\exp(z) = e^z := \sum_{n=0}^{+\infty} \frac{z^n}{n!}$$
 (9.30)

Essa è una funzione continua

DIMOSTRAZIONE. Dimostriamo che sia ben definita la funzione mostrando la convergenza della serie. In realtà possiamo mostrare che la serie **converge assolutamente**^a Dunque, con i complessi consideriamo il $modulo |\cdot|$:

$$\left|\frac{z^n}{n!}\right| = \frac{|z|^n}{n!} \in \mathbb{R} \implies \sum_{n=0}^{+\infty} \frac{|z|^n}{n!} \tag{9.31}$$

Questa serie nei reali converge ad $e^{|z|}$: la serie pertanto converge assolutamente e dunque la funzione è ben definita; se $z \in \mathbb{R}$ allora l'esponenziale è in tutto e per tutto quello noto nei reali.

Studiamo ora la continuità, dimostrando che **converga uniformemente**^b in qualunque sottoinsieme limitato, utilizzando l'M-test di Weierstrass. Se $S \subseteq \mathbb{C}$ è un sottoinsieme limitato, sicuramente esso è sottoinsieme di un disco nel piano complesso di centro l'origine e raggio ε . Dunque, $\exists \varepsilon \in \mathbb{R} : |z| < \varepsilon \ \forall z \in S$. Allora varrà:

$$\left|\frac{z^n}{n!}\right| = \frac{|z|^n}{n!} \le \frac{a^n}{n!}$$

Passando alle serie:

$$\sum_{n=0}^{+\infty} \frac{a^n}{n!} < \infty$$

Allora la funzione esponenziale converge uniformemente su S, dunque $e^z:\mathbb{C}\longrightarrow\mathbb{C}$ è continua.

Proposizione 9.3.0. L'esponenziale in campo complesso gode delle seguenti proprietà:

- 1. $e^z \cdot e^w = e^{z+w}$.
- 2. $e^z \neq 0 \ \forall z \in \mathbb{C}$.
- 3. Se $t \in \mathbb{R}$, si ha $e^{it} = \cos t + i \sin t$.

DIMOSTRAZIONE.

^aSi può parlare di convergenza assoluta in spazi topologici dotati di una *norma*; si ha che la convergenza implica la convergenza "classica" se lo spazio è completo rispetto alla metrica indotta dalla norma.

 $[^]b$ Nelle "Note aggiuntive", a pag. 143, si può trovare la definizione della convergenza uniforme e alcune osservazioni a riguardo.

I Dati $z, w \in \mathbb{C}$:

$$e^{z} \cdot e^{w} = \sum_{k=0}^{\infty} \frac{z^{k}}{k!} \cdot \sum_{m=0}^{\infty} \frac{w^{m}}{m!} \stackrel{a}{=} \underbrace{\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^{k}}{k!} \frac{w^{n-k}}{(n-k)!}}_{n=k+m} = \underbrace{\sum_{n=0}^{+\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^{k} w^{n-k}}_{\text{Binomio di Newton}} = \sum_{n=0}^{+\infty} \frac{1}{n!} (z+w)^{n} = e^{z+w}$$

$$\implies e^{z} \cdot e^{w} = e^{z+w}$$

II
$$e^z \cdot e^{-z} = e^{z-z} = e^0 = 1$$
.

III Si ha:

$$e^{it} = \sum_{n=0}^{+\infty} \frac{(it)^n}{n!} = \sum_{m=0}^{+\infty} \frac{(it)^{2m}}{(2m)!} + \sum_{m=0}^{+\infty} \frac{(it)^{2m+1}}{(2m+1)!} =$$

$$= \sum_{m=0}^{+\infty} \frac{(-1)^m (t)^{2m}}{(2m)!} + i \sum_{m=0}^{+\infty} \frac{(-1)^m (t)^{2m+1}}{(2m+1)!} = \cos t + i \sin t$$

OSSERVAZIONE.

- $e^z = e^{x+iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y) \implies |e^z| = e^x = e^{\Re cz}$ L'argomento di e^z è, per costruzione, $y = \operatorname{Im} z$
- $e^{2\pi i} = 1$, mentre $e^{z+2\pi i} = e^z \cdot e^{2\pi i} = e^z$
- $e^z \neq 0$, dunque $\forall w \in \mathbb{C} \setminus \{0\} \exists z \in \mathbb{C} : e^z = w$, cioè $e^z : \mathbb{C} \longrightarrow \mathbb{C} \setminus \{0\}$. Infatti, se w = x + iy si può scrivere in forma polare come:

$$w = |w|(\cos y + i\sin y)$$

Notiamo che:

- $\Rightarrow w = 0 \iff x = 0 \land y = 0$, dunque anche il modulo è zero se e solo se x e y sono entrambi zero.
- ♦ $|w| = \sqrt{x^2 + y^2} \in \mathbb{R}^+$, dunque per suriettività dell'esponenziale reale $\exists a \in \mathbb{R}$ tale per cui $e^a = \sqrt{x^2 + y^2}$.
- \diamond L'argomento di w è arg (w) = y
- $\Leftrightarrow (\cos y + i \sin y) = e^{iy}.$

Allora, esiste z = a + iy tale che:

$$w = x + iy = |w|(\cos y + i\sin y) = e^{a}(\cos y + i\sin y) = e^{a+iy} = e^{z}$$

9.3.1 Esponenziale di una matrice quadrata complessa

Definizione 9.3.1. Sia $A \in \mathbb{C}^{n, n}$. Definiamo l'esponenziale di una matrice quadrata

^aIl prodotto è lecito in quanto si ha la convergenza assoluta della serie.

complessa come:

$$e^{A} := \sum_{k=0}^{+\infty} \frac{A^{k}}{k!} = \lim_{n \to +\infty} \sum_{k=0}^{n} \underbrace{\frac{A^{k}}{k!}}_{\text{matrice } n \times n} e^{A} \in \mathbb{C}^{n, n}$$
(9.32)

Questa serie di matrici converge se e solo se convergono tutte le serie che danno origine ai suoi n^2 elementi. Per dimostrare la convergenza, usiamo una norma particolare.

Definizione 9.3.2. La norma infinito di una matrice $A \in \mathbb{C}^{n, n}$ è:

$$||A||_{\infty} = \max_{i, j=1, \dots, n} |a_{ij}|$$
(9.33)

Lemma 9.3.0. Proprietà della norma infinito di una matrice.

Date le matrici $n \times n$ A e B:

- 1. $||A + B||_{\infty} \le ||A||_{\infty} + ||B||_{\infty}$.
- 2. $||A \cdot B||_{\infty} \le n ||A||_{\infty} ||B||_{\infty}$.

DIMOSTRAZIONE.

I $\forall i, j |a_{ij} + b_{ij}| \le |a_{ij}| + |b_{ij}| \le ||A||_{\infty} + ||B||_{\infty}$. Per l'arbitrarietà di i e j, vale la tesi.

II Sia C = AB. Allora:

$$\begin{split} c_{ij} &= \sum_{k=1}^n a_{ik} b_{kj} \\ \Longrightarrow |c_{ij}| &\leq \sum_{k=1}^n |a_{ik}| |b_{kj}| \leq n \|A\|_{\infty} \|B\|_{\infty} \quad \forall i, \ j \implies \|C\|_{\infty} \leq n \|A\|_{\infty} \|B\|_{\infty} \end{split}$$

DIMOSTRAZIONE. Dimostriamo che l'esponenziale di una matrice complessa sia ben definito. Consideriamo la serie:

$$\sum_{k=0}^{+\infty} \frac{A^k}{k!}$$

Si ha:

$$\begin{aligned} & \left\| A^{2} \right\|_{\infty} \leq n \, \|A\|_{\infty}^{2} \\ & \left\| A^{3} \right\|_{\infty} \leq n \, \left\| A^{2} \cdot A \right\|_{\infty} \leq n \, \|A\|_{\infty}^{2} \, \|A\|_{\infty} \leq n^{2} \, \|A\|_{\infty}^{3} \end{aligned}$$

Per induzione in questo modo otteniamo:

$$\begin{split} & \left\| \left\| A^k \right\|_{\infty} \le n^{k-1} \left\| A \right\|_{\infty}^k \\ \Longrightarrow & \left\| \sum_{k=0}^N \frac{A^k}{k!} \right\|_{\infty} \le \sum_{k=0}^N \frac{\left\| A^k \right\|_{\infty}}{k!} \le \sum_{k=0}^N \frac{n^{k-1} \left\| A \right\|_{\infty}^k}{k!} = \\ & = \frac{1}{n} \sum_{k=0}^N \frac{\left(n \left\| A \right\|_{\infty} \right)^k}{k!} N \overset{\longrightarrow}{\to} \infty \frac{1}{n} \sum_{k=0}^\infty \frac{\left(n \left\| A \right\|_{\infty} \right)^k}{k!} = \frac{1}{n} e^{n \left\| A \right\|_{\infty}} \end{split}$$

Allora $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converge assolutamente, pertanto e^A è ben definito.

Attenzione! In generale si ha $e^{A+B} \neq e^A \cdot e^B$! Infatti, il prodotto di matrici non è *commutativo*, pertanto in generale non vale la formula del *binomio di Newton*, necessaria nella dimostrazione della proprietà di cui sopra.

Esempio. Siano
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$
 e $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

A è una matrice diagonale, dunque e^A è facile da calcolare; infatti, presa una qualunque matrice diagonale D:

$$D = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix} \Longrightarrow D^k = \begin{pmatrix} d_1^k & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n^k \end{pmatrix}$$

$$e^{D} = \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{d_{1}^{k}}{k!} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{k=0}^{+\infty} \frac{d_{n}^{k}}{k!} \end{pmatrix} = \begin{pmatrix} e^{d_{1}} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{d_{n}} \end{pmatrix}$$
(9.34)

Dunque, nel nostro caso:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \implies e^A = \begin{pmatrix} e & 0 \\ 0 & e^2 \end{pmatrix}$$

Invece, B è *nilpotente* di ordine due, dato che $B^2 = O$. Allora, scrivendo la serie che caratterizza e^B , tutti i termini successivi al secondo sono nulli! Pertanto:

$$B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \implies e^B = \sum_{k=0}^{+\infty} \frac{B^k}{k!} = I + B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Allora:

$$e^A \cdot e^B = \left(\begin{array}{cc} e & e \\ 0 & e^2 \end{array} \right)$$

D'altro canto, abbiamo che:

$$A + B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 2 \end{array}\right)$$

Verificheremo successivamente (pag. 134), quando mostreremo come calcolare in generale l'esponenziale di una matrice, che $e^{A+B} \neq e^A \cdot e^B$.

Lемма 9.3.1. Se A, $B \in \mathbb{C}^{n, n}$ commutano, cioè AB = BA, allora:

$$e^{A+B} = e^A \cdot e^B \tag{9.35}$$

DIMOSTRAZIONE. La dimostrazione è assolutamente analoga a quella vista per dimostrare la proprietà parallela dell'esponenziale dei numeri complessi (lemma 9.2, pag. 128), dato che, se commutano, vale il *binomio di Newton matriciale*:

$$(A+B)^{k} = \sum_{i=0}^{k} {k \choose i} A^{i} \cdot B^{k-1}$$
 (9.36)

OSSERVAZIONE. *Matrici simili hanno esponenziali simili.* Più precisamente, se $A = P^{-1}BP$ per una opportuna matrice ortogonale P, allora $e^A = P^{-1}e^BP$, cioè e^A e e^B sono simili tramite la stessa matrice P di A e B.

DIMOSTRAZIONE. Si ha:

$$A = P^{-1}BP$$

 $A^{2} = (P^{-1}BP)(P^{-1}BP) = P^{-1}B^{2}P$

Per induzione in questo modo otteniamo:

$$A^{k} = P^{-1}B^{k}P$$

$$\implies e^{A} = \sum_{k=0}^{N} \frac{A^{k}}{k!} = \sum_{k=0}^{N} \frac{P^{-1}B^{k}P}{k!} = P^{-1}\sum_{k=0}^{N} \frac{B^{k}}{k!}P = P^{-1}e^{B}P$$

Teoreма 9.3.o. Si ha:

$$\det\left(e^{A}\right) = e^{\operatorname{tr}(A)} \tag{9.37}$$

In particolare, e^A è sempre una matrice invertibile.

DIMOSTRAZIONE. Una qualunque matrice A complessa è simile alla sua forma di Jordan J. La traccia di matrici simili, per commutatività interna della traccia^a, è uguale:

$$\operatorname{tr}(A) = \operatorname{tr}(J) = \lambda_1 + \ldots + \lambda_n$$

Per la dimostrazione precedente, e^A è simile a e^J ; in particolare, i determinanti sono uguali:

$$\det\left(e^A\right) = \det\left(e^J\right)$$

Allora è sufficiente dimostrare che $\det(e^J) = e^{\lambda_1 + ... + \lambda_n} = e^{\lambda_1} ... e^{\lambda_n}$. J è una matrice triangolare superiore. Le osservazioni seguenti sono vere anche per una qualsiasi matrice triangolare superiore:

$$J = \begin{pmatrix} \lambda_1 & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n \end{pmatrix} \Longrightarrow \forall k \ge 1 \ J^k = \begin{pmatrix} \lambda_1^k & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda_n^k \end{pmatrix}$$

$$e^{J} = \begin{pmatrix} \sum_{k=0}^{+\infty} \frac{\lambda_1^k}{k!} & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & \sum_{k=0}^{+\infty} \frac{\lambda_n^k}{k!} \end{pmatrix} = \begin{pmatrix} e^{\lambda_1} & \dots & * \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda_n} \end{pmatrix}$$
(9.38)

Il determinante di una matrice triangolare è il prodotto sulle colonne, dunque vale $\det\left(e^{J}\right)=e^{\lambda_{1}}\dots e^{\lambda_{n}}$ come cercato. In particolare, questo prodotto, in quanto prodotto di esponenziali, non è mai nullo e dunque il determinante è diverso da zero.

9.3.2 Calcolo dell'esponenziale di una matrice tramite la forma di Jordan

Abbiamo già calcolato alcuni esponenziali di matrici in diverse delle precedenti dimostrazioni, sfruttando tuttavia sempre matrici particolari:

■ Matrice diagonale:

$$D = \begin{pmatrix} d_1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & d_n \end{pmatrix} \Longrightarrow e^D = \begin{pmatrix} e^{d_1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{d_n} \end{pmatrix}$$
(9.39)

■ Matrice nilpotente: se la matrice è nilpotente di ordine k ($B^k = O$) si calcolano i primi k termini della serie caratterizzante e^B :

$$e^{B} = \sum_{i=0}^{i-1} \frac{B^{i}}{i!} = I + B + \dots + \frac{B^{k-1}}{(k-1)!}$$
 (9.40)

In generale, tuttavia, come possiamo calcolare l'esponenziale di una generica matrice A? A questo proposito ci viene in aiuto la tanto faticata forma di Jordan. Il seguente processo costruttivo ci permette di calcolare, in modo (relativamente) facile, un qualsiasi esponenziale e^A .

1. *A* è simile alla sua forma di Jordan *J*:

$$A = PJP^{-1}$$

Con P è la matrice del cambiamento di base che presenta, nelle colonne, la base che mette A in forma di Jordan. Sappiamo allora che per la stessa matrice P gli esponenziali sono simili:

$$e^A = Pe^J P^{-1}$$

Allora è sufficiente calcolare P, J e e^{J} .

2. *J* è una matrice a blocchi diagonali, dunque la potenza *k*-esima è una matrice con le potenze *k*-esime dei blocchi sulla diagonale:

$$J = \begin{pmatrix} \boxed{\mathbf{B_1}} \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & \boxed{\mathbf{B_r}} \end{pmatrix} J^k = \begin{pmatrix} \boxed{\mathbf{B_1}^k} \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & \boxed{\mathbf{B_r}^k} \end{pmatrix}$$

^aPer ogni matrice A di dimensioni $n \times m$ e B di dimensioni $m \times n$ si ha tr(AB) = tr(BA).

Dunque usando la definizione , segue che, l'esponenziale è anch'essa una matrice a blocchi:

$$e^{J} = \begin{pmatrix} \boxed{e^{\mathbf{B_1}}} \dots & 0 \\ \vdots & \dots & \vdots \\ 0 & \dots & \boxed{e^{\mathbf{B_r}}} \end{pmatrix}$$

Dunque, per calcolare l'esponenziale di una matrice in forma di Jordan basta saper calcolare l'esponenziale di un blocco di Jordan.

3. Notiamo che un blocco di ordine p si può sempre scomporre in una matrice diagonale λI_p e una matrice nilpotente N di soli 1.

$$\mathbf{B} = \begin{pmatrix} \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda & \ddots & & \vdots \\ \vdots & & \ddots & 1 & 0 \\ \vdots & & & \lambda & 1 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix} = \begin{pmatrix} \lambda & 0 & 0 & \dots & 0 \\ 0 & \lambda & \ddots & & \vdots \\ \vdots & & \ddots & 0 & 0 \\ \vdots & & & \lambda & 0 \\ 0 & \dots & \dots & 0 & \lambda \end{pmatrix} + \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & 0 & \ddots & & \vdots \\ & & 0 & 1 & 0 \\ \vdots & & & 0 & 1 \\ \vdots & & & 0 & 1 \\ \vdots & & & 0 & 1 \end{pmatrix} = \lambda I_p + N$$

Poiché N e λI_p commutano, vale:

$$e^{\mathbf{B}} = e^{\lambda I + N} = e^{\lambda I} e^{N} \tag{9.41}$$

Dunque basta calcolare $e^{\lambda I}$ e e^N , ma sono due matrici di sappiamo già come calcolare l'esponenziale:

• $e^{\lambda I}$ è una matrice diagonale:

$$e^{\lambda I} = \begin{pmatrix} e^{\lambda} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & e^{\lambda} \end{pmatrix} = e^{\lambda} I$$
 (9.42)

• e^N è una matrice nilpotente di ordine p:

$$e^{N} = \sum_{k=0}^{p-1} \frac{N^{k}}{k!} = I + N + \dots + \frac{N^{p-1}}{(p-1)!}$$
 (9.43)

Esempio. Riprendiamo l'esempio di pagina 131. Prendiamo $A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ e consideriamo $C = A + B = A = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$.

C ha autovalori 1 e 2 ed è diagonalizzabile con $D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$; una base di una autovettori di C è (1, 0) e (1, 1) e la matrice del cambiamento di basi è $P = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Allora,

considerata l'inversa $P^{-1} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}$:

$$C = PDP^{-1} \implies e^C = Pe^DP^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} e & 0 \\ 0 & e^2 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e & -e + e^2 \\ 0 & e^2 \end{pmatrix}$$
$$e^A e^B = \begin{pmatrix} e & 0 \\ 0 & e^2 \end{pmatrix} (I + B) = \begin{pmatrix} e & 0 \\ 0 & e^2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} e & e \\ 0 & e^2 \end{pmatrix} \neq e^C$$

9.3.3 Impratichiamoci! Funzione esponenziale nei complessi

Esercizio. Esercizio 4, scritto Febbraio 2018

Sia
$$A = e^{\lambda I} = \begin{pmatrix} -3 & 4 \\ -1 & 1 \end{pmatrix}$$
. Calcolare $\exp(A) = e^A$

Soluzione. Il polinomio minimo è $C_A(t) = (t+1)^2$, l'unico autovalore della matrice è $\lambda = -1$ con molteplicità $m_{\lambda} = 2$. Troviamo la forma di Jordan.

$$V_{\lambda} = \ker(A+I) = \ker\begin{pmatrix} -2 & 4 \\ -1 & 2 \end{pmatrix} = \ker\begin{pmatrix} 1 & -2 \\ 0 & 0 \end{pmatrix} = \{(x, y) \mid x - 2y = 0\} = \langle (2, 1) \rangle$$

Poiché dim $V_{\lambda} = 1$, segue che la forma di Jordan è un unico blocco di ordine p = 2:

$$J = \left(\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array}\right)$$

Cerchiamo ora una matrice P, e dunque una base \mathcal{B} , che mette A in forma di Jordan ($A = PJP^{-1}$). Poichè abbiamo un unico autovalore, $(A - \lambda I)^2 = O$ e $\text{Im } (A - \lambda I) \subseteq \ker(A - \lambda I)$. Studiamo $S_2 = \ker(A + I) \cap \text{Im } (A + I)^{p-1} = \text{Im } (A + I)$; esso ha dim $S_2 = 1$ e per trovarne una base basta prendere una colonna di A + I:

$$v_2 = (2, 1) =$$

Per costruire v_1 è sufficiente prendere (-1, 0):

$$v_2 = (2, 1) = (A + I)(-1, 0)$$

 $v_1 = (-1, 0)$

Una base che mette A in forma di Jordan è dunque $\mathcal{B} = \{(2, 1), (-1, 0)\}$ e dunque abbiamo P:

$$P = \left(\begin{array}{cc} 2 & -1 \\ 1 & 0 \end{array}\right)$$

L'inversa è, noto il determinante $\det P = 1$:

$$P^{-1} = \left(\begin{array}{cc} 0 & 1 \\ -1 & 2 \end{array} \right)$$

Ora calcoliamo e^{J} :

$$J = \begin{pmatrix} -1 & 1 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = -I + N$$

Dunque:

$$\begin{split} e^{J} &= e^{-I+N} = e^{-I}e^{N} = e^{-1}I\left(I+N\right) = e^{-1}\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \\ \Longrightarrow e^{A} &= e^{-1}P\left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)P^{-1} = e^{-1}\left(\begin{array}{cc} -1 & 4 \\ -1 & 3 \end{array}\right) \end{split}$$

Un metodo alternativo per calcolare la base \mathcal{B} che rende A in forma di Jordan è il seguente. Nota la forma di Jordan J consideriamo l'applicazione lineare f associata ad essa rispetto alla base \mathcal{B} e l'applicazione g = f + Id; esse devono soddisfare:

$$\begin{cases} f(v_1) = -v_1 \\ f(v_2) = v_1 - v_2 \end{cases} \begin{cases} g(v_1) = 0 \\ g(v_2) = v_1 \end{cases}$$

Cerchiamo dei vettori tali che:

$$v_2 \in \ker(A+I)^2 \setminus \ker(A+I)$$

 $v_1 \in \ker(A+I)$

Poichè $v_2 \in \ker(A+I)^2 = V$, basta prendere un vettore della base canonica di V, ad esempio $e_1 = (1, 0, 0)$, che non appartenga a $\ker(A+I)$. Allora:

$$v_2 := e_1 = (1, 0)$$

 $v_1 = g(v_2) = (A + I)v_2 = g(v_2) = (-2, -1) \neq 0$

La matrice *P* risulta:

$$P = \left(\begin{array}{cc} -2 & 1 \\ -1 & 0 \end{array}\right)$$

Si verifica facilmente che usando questa matrice P si arriva comunque allo stesso esponenziale visto prima.

In questo problema si può anche evitare il calcolo della forma di Jordan. Infatti, notando che la matrice B = A + I è nilpotente di ordine 2, ovvero $B^2 = O$, e commuta con -I. Allora possiamo calcolare e^A in questo modo:

$$e^{A} = e^{B-I} = e^{B} \cdot e^{-I} = e^{-1} (I + B) = e^{-1} \begin{pmatrix} -1 & 4 \\ -1 & 3 \end{pmatrix}$$

9.4 MATRICI REALI E FORMA DI JORDAN

Abbiamo studiamo le forme di Jordan in $\mathbb{C}^{n, n}$, dato che abbiamo la sicurezza dell'esistenza di tutti gli autovalori e dunque anche della forma di Jordan. E se la matrice fosse a valori reali, possiamo parlare di forma di Jordan in \mathbb{R}^{nn} ?

Dato che la forma di Jordan associata ad una matrice ha sulla diagonale gli autovalori di A con molteplicità e al di fuori di essa o zero o uno, possiamo fare la seguente osservazione.

Osservazione. Sia $A \in \mathbb{R}^{nn}$ e J la forma di Jordan di A. Allora J è reale se e solo se gli autovalori di A sono reali.

Supponiamo che A abbia autovalori reali e J sia la sua forma di Jordan. Allora $\exists P \in GL(n, \mathbb{C})$ tale che esse siano simili per P in campo complesso: $A = PJP^{-1}$. In realtà, si può dimostrare come A e J siano simili come matrici reali, cioè $\exists Q \in GL(n, \mathbb{R})$ tale che $A = QJQ^{-1}$

Теогема 9.4.0. Siano A, $B \in \mathbb{R}nn$ tali che $\exists P \in GL(n, \mathbb{C}) : A = PBP-1$. Allora $\exists Q \in GL(n, \mathbb{R}) : A = QBQ-1$.

DIMOSTRAZIONE. Innanzitutto, A = PBP - 1 se e solo se AP = PB. Consideriamo le soluzioni X, matrice $n \times n$ a coefficienti reali, del sistema lineare omogeneo in n^2 equazioni in n^2 incognite.

$$AX = XB$$

Sia $W \subseteq \mathbb{C}^{nn}$ il sottospazio *vettoriale* delle soluzioni (*complesse*) del sistema. Sappiamo già che $P \in W$, dunque $W \neq \{O\}$.

Sia allora $k = \dim W \ge 1$ e sia $C_1, \ldots, C_k \in \mathbb{C}^{k, k}$ una base di W. Esse sono matrici complesse, dunque possiamo scomporla nella sua parte reale e immaginaria.

$$\forall j = 1, \ldots, k$$
 $C_i = X_i + iY_i, X_i, Y_i \in \mathbb{R}^{n, n}$

Mostriamo che anche X_i e Y_i sono soluzioni del sistema. Dunque, presa C_i :

$$\begin{array}{ccc} AC_{j} & = & C_{j}B \\ & & & \\ A\left(X_{j}+iY_{j}\right) & & \left(X_{j}+iY_{j}\right)B \\ & & \\ AX_{j}+AY_{j} & & X_{j}B+iY_{j}B \end{array}$$

Le matrici AX_j , AY_j , X_jB e Y_jB sono tutte in $\mathbb{R}^{n, n}$. Due matrici complesse scomposte come in precedenza sono uguali se e solo se la parte reale e l'argomento sono uguali:

$$AX_j = X_j B$$
$$AY_j = Y_j B$$

Ma allora $X_j Y_j \in W \ \forall j$; poiché C_1 , $ldots, C_k$ è una base di W, allora lo generano. Per costruzione $C_j = X_j + i Y_j$, dunque anche $X_1, \ldots, X_k, Y_1, \ldots Y_k$ generano W (come spazio vettoriale complesso).

Sappiamo sicuramente che $\{X_1, ..., X_k, Y_1, ... Y_k\}$ contiene una base di W, cioè $\exists D_1, ..., D_k$ base \mathscr{D} di W con $D_i \in \mathbb{R}^{n, n} \forall j$.

Dalle condizioni in cui ci siamo posti, la matrice *Q* cercate deve soddisfare i seguenti requisiti:

- $Q \in W$.
- *Q* invertibile.

Rispetto alla base \mathcal{D} , Ogni $D \in W$ è della forma:

$$D = t_1 D_1 + \ldots + t_k D_k \quad \text{con } t_1, \ldots, t_k \in \mathbb{C}^{n, n}$$

Nel caso di matrici reali, i coefficienti t_1, \ldots, t_k saranno tutti reali. Poniamo:

$$f(t_1,\ldots,t_k) := \det(t_1D_1 + \ldots + t_kD_k)$$

La funzione, di variabili t_1, \ldots, t_k , è un polinomio che presenta solo coefficienti reali (essendo D_1, \ldots, D_k matrici reali) e non è identicamente nulla (Per ipotesi $P \in W$ è invertibile, dunque $\det P \neq 0$). In particolare, esistono sicuramente dei valori reali $\hat{t}_1, \ldots, \hat{t}_k$ per cui f non si annulla^a, cioè esiste la matrice reale:

$$Q := \hat{t}_1 D_1 + \ldots + \hat{t}_k D_k$$

Che soddisfa la tesi.

 $[^]a$ Infatti, presa una combinazione lineare degli elementi di una base come ${\mathcal D}$ con coefficienti reali non nulli, allora essa non sarà mai nulla.

IV

Appendici

Note aggiuntive

"BEEP BOOP INSERIRE CITAZIONE QUA BEEP BOOP."

NON UN ROBOT, UN UMANO IN CARNE ED OSSA BEEP BOOP.

Riportiamo alcune note e dimostrazioni aggiuntive che possono risultare utili al lettore.

10.1 CAPITOLO 6: SUCCESSIONI

La seguente dimostrazione sulla non prima-numerabilità del quoziente \mathbb{R}/\mathbb{Z} è adattata da Brian M. Scott [2] su Mathematics Stack Exchange.

DIMOSTRAZIONE. Si consideri la contrazione di \mathbb{Z} in \mathbb{R} ad un punto, cioè il quoziente \mathbb{R}/\mathbb{Z} e si definisca la classe di equivalenza degli interi come [0].

Sia $\{U_n : n \in \mathbb{N}\}$ una famiglia di intorni aperti di [0]; cerchiamo un intorno aperto di [0] che non ne contiene nessuno come sottoinsieme, mostrano in tal modo che non formano un sistema fondamentale di intorni di [0] e pertanto che \mathbb{R}/\mathbb{Z} non è primo-numerabile per [0].

Sia π la mappa quoziente. Per ogni $n \in \mathbb{N}$ e $k \in \mathbb{Z}$ esiste un $\varepsilon_{n,k} \in (0,1)$ tale che:

$$U_n \supseteq \pi \left[\bigcap_{k \in \mathbb{Z}} (k - \varepsilon_{n,k}, k + \varepsilon_{n,k})\right]$$

Per $k \in \mathbb{Z}$ sia $\delta_k = \frac{1}{2} \varepsilon_{k,k}$, e sia:

$$V = \pi \left[\bigcup_{k \in \mathbb{Z}} (k - \delta_k, k + \delta_k) \right]$$

Chiaramente V è un intorno aperto di [0], e vogliamo dimostrare che $U_n \nsubseteq V$ per ogni $n \in \mathbb{N}$. Per mostrare ciò, fissiamo $n \in \mathbb{N}$; si ha $\delta_n < \varepsilon_{n,n}$, quindi possiamo sceglie un numero reale $x \in (n + \delta_n, n + \varepsilon_{n,n})$. Ma allora $\pi(x) \in U_n \setminus V$, e dunque $U_n \nsubseteq V$.

10.2 CAPITOLO 11: FORMA CANONICA DI JORDAN

La seguente dimostrazione sul determinante di una matrice a blocchi e del suo polinomio caratteristico si basa su integrazioni proprie da Jean Marie [3] e da Ben Grossmann [4] su Mathematics Stack Exchange.

DIMOSTRAZIONE. Data una matrice quadrata $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$ definita dai blocchi **A** di dimensione $n \times n$, **B** di dimensione $n \times m$, **C** di dimensione $m \times n$ e **D** di dimensione $m \times m$. Supponendo **A** blocco invertibile, si può scomporre la matrice nel seguente modo:

$$\left(\begin{array}{c|c}
A & B \\
\hline
C & D
\end{array}\right) = \left(\begin{array}{c|c}
I_n & 0 \\
\hline
CA^{-1} & I_m
\end{array}\right) \left(\begin{array}{c|c}
A & 0 \\
\hline
0 & D - CA^{-1}B
\end{array}\right) \left(\begin{array}{c|c}
I_n & A^{-1}B \\
\hline
0 & I_m
\end{array}\right) (10.1)$$

Calcoliamo il determinante di $\left(\begin{array}{c|c} A & B \\ \hline C & D \end{array}\right)$, notando che $\left(\begin{array}{c|c} I_n & 0 \\ \hline CA^{-1} & I_m \end{array}\right)$ e $\left(\begin{array}{c|c} I_n & A^{-1}B \\ \hline 0 & I_m \end{array}\right)$ sono triangolari con diagonale di 1.

$$\begin{split} \det \left(\begin{array}{c|c} A & B \\ \hline C & D \end{array} \right) &= \det \left(\left(\begin{array}{c|c} I_n & 0 \\ \hline CA^{-1} & I_m \end{array} \right) \left(\begin{array}{c|c} A & 0 \\ \hline 0 & D - CA^{-1}B \end{array} \right) \left(\begin{array}{c|c} I_n & A^{-1}B \\ \hline 0 & I_m \end{array} \right) \right) = \\ &= \det \left(\begin{array}{c|c} I_n & 0 \\ \hline CA^{-1} & I_m \end{array} \right) \det \left(\begin{array}{c|c} A & 0 \\ \hline 0 & D - CA^{-1}B \end{array} \right) \det \left(\begin{array}{c|c} I_n & A^{-1}B \\ \hline \end{array} \right) = \\ &= \det \left(\begin{array}{c|c} A & 0 \\ \hline 0 & D - CA^{-1}B \end{array} \right) \end{split}$$

Ci serve calcolare il determinante di una matrice diagonale a blocchi. Presa allora:

$$\left(\begin{array}{c|c}
P & 0 \\
\hline
0 & Q
\end{array}\right)$$

Possiamo riscriverla come:

$$\left(\begin{array}{c|c} P & 0 \\ \hline 0 & I_m \end{array}\right) \left(\begin{array}{c|c} I_n & 0 \\ \hline 0 & Q \end{array}\right)$$

Grazie alle formule di Laplace, possiamo calcolare il determinante delle due matrici sfruttando le matrici identità presenti. Ad esempio, sviluppando rispetto le righe o le colonne sulla seconda:

$$\det\left(\begin{array}{c|c} \mathbf{I_n} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{Q} \end{array}\right) = 1 \cdot \det\left(\begin{array}{c|c} \mathbf{I_{n-1}} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{Q} \end{array}\right) = 1 \cdot 1 \cdot \det\left(\begin{array}{c|c} \mathbf{I_{n-2}} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{Q} \end{array}\right) = \dots = 1^n \cdot \det \mathbf{Q} = \det \mathbf{Q}$$

Il risultato è analogo per la prima. Dunque, concludendo:

$$\det\left(\frac{\mathbf{A} \mid \mathbf{B}}{\mathbf{C} \mid \mathbf{D}}\right) = \det\left(\mathbf{A}\right) \det\left(\mathbf{D} - \mathbf{C}\mathbf{A}^{-1}\mathbf{B}\right) \tag{10.2}$$

$$\det\left(\begin{array}{c|c} \mathbf{A} & \mathbf{0} \\ \hline \mathbf{0} & \mathbf{D} \end{array}\right) = \det\left(\mathbf{A}\right)\det\left(\mathbf{D}\right) \tag{10.3}$$

Come ultima conseguenza, se vogliamo studiare il polinomio caratteristico $C_A(t)$ di una matrice A a blocchi diagonali \mathbf{B} e \mathbf{C} , abbiamo che:

$$C_{A}(t) = \det\left(\frac{\mathbf{B} - tI \mid \mathbf{0}}{\mathbf{0} \mid \mathbf{C} - tI}\right) = \det(\mathbf{B} - tI)\det(\mathbf{C} - tI) = C_{B}(t)C_{C}(t) \tag{10.4}$$

10.2.1 Convergenza

Tutti i ragionamenti qui presenti si applicano anche alle successioni e serie di potenze.

DEFINIZIONE 10.2.0. Dato un insieme E e un successione $(f_n)_{n\in\mathbb{N}}$ con $f_n: E \longrightarrow X$ con X metrico, si dice che la successione è uniformemente convergente su E con limite $f: E \longrightarrow X$ se:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : \forall n \ge N, \ x \in Ed(f_n(x), \ f(x)) < \varepsilon$$
 (10.5)

DEFINIZIONE 10.2.1. CRITERIO DI WEIERSTRASS O M-TEST

Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni *reali* o *complesse* definite su un insieme A e che esista una successione di numeri *non negativi* $(M_n)_{n\in\mathbb{N}}$ che soddisfino la seguente relazione:

$$\forall n \ge 1, \ x \in A : |f_n(x)| \le M_n, \ \sum_{n=1}^{\infty} M_n < \infty$$
 (10.6)

Allora la serie:

$$\sum_{n=1}^{\infty} f_n \tag{10.7}$$

Converge assolutamente e uniformemente su A

Si usa spesso l'*M-test* assieme al **teorema del limite uniforme**.

Definizione 10.2.2. Sia $(f_n)_{n\in\mathbb{N}}$ una successione di funzioni *reali* o *complesse* continue sullo spazio topologico A nel quale sono definite; se la successione converge uniformemente su A allora il limite converge ad una funzione continua. In particolare, lo stesso si ha nel caso di una serie.

BIBLIOGRAFIA

- [1] Alberto A. *La forma canonica di Jordan*. 2017. URL: https://math.i-learn.unito.it/pluginfile.php/102113/mod_resource/content/1/FormaDiJordan_v2.pdf.
- [2] Brian M. Scott (https://math.stackexchange.com/users/12042/brian-m scott). Why is \mathbb{R}/\sim not first countable at [0], where $x\sim y \Leftrightarrow x=y$ or $x,y\in\mathbb{Z}$? Mathematics Stack Exchange. eprint: https://math.stackexchange.com/q/1417425. URL: https://math.stackexchange.com/q/1417425.
- [3] Jean Marie (https://math.stackexchange.com/users/305862/jean marie). *Proofs of Determinants of Block matrices*. Mathematics Stack Exchange. eprint: https://math.stackexchange.com/q/1905707. URL: https://math.stackexchange.com/q/1905707.
- [4] Ben Grossmann (https://math.stackexchange.com/users/81360/ben grossmann). Finding the determinant of a block diagonal matrix. Mathematics Stack Exchange. eprint: https://math.stackexchange.com/q/2026141. URL: https://math.stackexchange.com/q/2026141.
- [5] M. Manetti. *Topologia*. UNITEXT. Springer Milan, 2014. ISBN: 9788847056626. URL: https://www.springer.com/gp/book/9788847056619.
- [6] C. Kosniowski e M. Pittalupa. *Introduzione alla topologia algebrica*. Collana di matematica. Testi e manuali. Zanichelli, 1988. ISBN: 9788808064400. URL: https://books.google.it/books?id=mIdrAAAACAAJ.
- [7] S.G. Krantz. *A Guide to Topology*. A Guide to Topology. Mathematical Association of America, 2009. ISBN: 9780883853467. URL: https://books.google.it/books?id= 03tyezxgv28C.
- [8] Dennis S. Bernstein. *Matrix Mathematics: Theory, Facts, and Formulas (Second Edition)*. Princeton University Press, 2009. ISBN: 9780691140391. URL: http://www.jstor.org/stable/j.ctt7t833.