Digitaltechnik Wintersemester 2021/2022 3. Vorlesung

Projekt Teil 1

- Seit Freitag, 29.10., in Moodle verfügbar
- Deadline: Sonntag, 05.12., 18:00 Uhr
- Einzelabgaben!
- Nach heutiger Vorlesung (+ Übung) können Sie alles bis einschließlich Aufgabe 1.3 a) lösen.

DT Präsenzbearbeitung

	Anmeldungen	Anwesend
Fr, 22.10.	100 / 100	ca. 70%
Fr, 29.10.	92 / 100	ca. 80%
Fr, 05.11.	??? / 100	> 80% ???

- Unsere Beobachtungen:
 - Bildung von Lerngruppen
 - ▶ Diskussion von Übungsaufgaben in kleiner Gruppe (auch mit Tutor*in)
- ⇒ Wir freuen uns, dass die DT Präsenzbearbeitung bisher auf durchweg positive Resonanz stieß ©

Erste Überlegungen zu eventueller DT Hybrid-Vorlesung

- Aktuelle Regelungen erlauben prinzipiell hybride Vorlesung: Mi, 9:50 11:30 Uhr am Innenstadtcampus
- ► Max. 50% Hörsaalbelegung im Schachbrettmuster unter 3G Bedingungen
- ► Erlaubt deutlich bessere Interaktion zwischen Dozent und Studierenden im Hörsaal als Online
- Vorlesung würde aufgezeichnet (wie bisher)
- Asynchrone Fragen zur Vorlesung via Moodle (wie bisher)
- Änderungen:
 - Falls LAN stabil würden wir versuchen, weiterhin live zu streamen mit Online Fragen im Chat (ohne Garantie)
 - Falls Regelungen es nicht mehr erlauben, würden wir wieder auf DT Online-Vorlesung wechseln

Umfrage: Wer von Ihnen hätte Stand JETZT prinzipiell Interesse an einer DT Hybrid-Vorlesung und würde in den Hörsaal kommen?

Inhalt

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5 CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Logikgatter: XOR : $\mathbb{B}^2 \to \mathbb{B}$

Logikgatter: XOR3 : $\mathbb{B}^3 \to \mathbb{B}$

Α	В	С	Υ
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

XOR mit mehreren Eingängen

- repräsentiert" die Anzahl der Einsen an Eingängen (modulo 2)
- \Rightarrow Paritätsfunktion p: $(a_{k-1} ... a_0) \in \mathbb{B}^k \mapsto a_{k-1} \oplus ... \oplus a_0 \in \mathbb{B}$
 - ▶ $p(a) = 0 \Rightarrow$ Quersumme von a ist gerade
 - ▶ $p(a) = 1 \Rightarrow$ Quersumme von a ist ungerade

Fehlerhafte Datenübertragung

Fehlererkennung mit Paritätsfunktion

Fehlererkennung mit Paritätsfunktion

- Paritätsbit PB = p(a) vor der Übertragung von a anhängen
- Gesamtparität (Nachricht und Paritätsbit) nach der Übertragung berechnen
 - ▶ $p(a || PB) = 0 \Rightarrow$ gerade Anzahl von Übertragungsfehlern
 - ▶ $p(a || PB) = 1 \Rightarrow$ ungerade Anzahl von Übertragungsfehlern
- ⇒ einzelnes Paritätsbit ist
 - 1-fehlererkennend
 - 0-fehlerkorrigierend

Fehlerkorrektur mit Paritätsfunktion

- mehrere Paritätsbits pro Nachricht für Fehlerkorrektur notwendig
- bspw. Längs- und Querparität:

- ⇒ Verhältnis von Nutzdaten zu Paritätsbits wird schlechter
- ⇒ In der Praxis verwendet man bessere fehlerkorrigierende Codes (z.B. Reed-Solomon Codes für CDs, DVDs, QR codes, DSL, DVB)

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Physikalische Realisierung von Logikgattern

- Spannungen als Logikpegel
- Feldeffekt-Transistoren
- CMOS-Gatter
- Moore'sches Gesetz

Harris 2013/2016 Kap. 1.6 - 1.9

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Binärwerte als Spannungspegel

- definiere Spannungspegel für die Werte 0 und 1
 - ► Logikpegel (logic levels)
- ► Beispiel:
 - 0 V → 0 (Erde, GND, V_{SS} "Voltage Source Source")
 - ▶ $5 \text{ V} \mapsto 1$ (Versorgungsspannung, V_{DD} "Voltage Drain Drain")
- aber: reale Spannungspegel unterliegen Rauschen
 - Temperaturabhängige Widerstände
 - Instabile Betriebsspannungen
 - Übersprechen zwischen benachbarten Leitungen

Beispiel für Rauschen

- Ausgang eines Gatters ("Treiber") treibt Ausgangsleitung auf 5 V
- lange Leitung zum nächsten Gatter ("Empfänger") hat hohen Widerstand
- Spannungsabfall bspw. 0,5 V
- Empfänger sieht nur 4,5 V
- ist das noch eine "Fins"?

Binärwerte als Spannungsbereiche

- definiere Spannungsbereiche für die Werte 0 und 1
- steigere Robustheit durch unterschiedliche Bereiche für Ein-/Ausgänge
 - V_{OL}: größte Spannung, die Treiber als 0 ausgibt ("Voltage Output Low")
 - V_{IH}: kleinste Spannung, die Empfänger als 1 interpretiert ("Voltage Input High")
 - V_{OH}: kleinste Spannung, die Treiber als 1 ausgibt ("Voltage Output High")
 - V_{IL}: größte Spannung, die Empfänger als 0 interpretiert ("Voltage Input Low")

Störabstände

- ▶ oberer Störabstand $NM_H = V_{OH} V_{IH}$ ("Noise Margin High")
- ▶ unterer Störabstand $NM_L = V_{IL} V_{OL}$ ("Noise Margin Low")

Gleichstrom-Transferkurve

Gleichstrom-Transferkurve

Absenken der Versorgungsspannung V_{DD}

- $V_{DD} = 5 \text{ V in } 1970 \text{ er-} 80 \text{ er Jahren}$
- Verbesserte Chip-Fertigungstechnologie erfordert/ermöglicht Absenkung
 - hohe Spannungen würden immer kleinere Transistoren beschädigen
 - Energiebedarf reduzieren
 - $\blacksquare \ \ 3,3 \ V \rightarrow 2,5 \ V \rightarrow 1,8 \ V \rightarrow 1,5 \ V \rightarrow 1,2 \ V \rightarrow 1,0 \ V$
- ⇒ Vorsicht beim Verbinden von Chips mit unterschiedlichen Versorgungsspannungen!

Logikfamilien mit kompatiblen Spannungspegeln

Logikfamilie	TTL	CMOS	LVTTL	LVCMOS
min V _{DD}	4,75 V	4,5 V	3 V	3 V
typ V_{DD}	5 V	5 V	3,3 V	3,3 V
$\max V_{DD}$	5,25 V	6 V	3,6 V	3,6 V
V _{OL}	0,4 V	0,33 V	0,4 V	0,36 V
V_{IL}	0,8 V	1,35 V	0,8 V	0,9 V
V_{IH}	2,0 V	3,15 V	2,0 V	1,8 V
V_{OH}	2,4 V	3,84 V	2,4 V	2,7 V

TTL: Transistor Transistor Logic

CMOS: Complementary Metal-Oxide Semiconductor Logic

LVTTL: Low Voltage TTL LVCMOS: Low Voltage CMOS

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Transistoren

- Logikgatter werden üblicherweise aus Transistoren aufgebaut
 - heute überwiegend Feldeffekttransistor (FET, "Field Effect Transistor")
- Transistoren sind spannungsgesteuerte Schalter
 - zwei Anschlüsse (Source s & Drain d), werden je nach Spannung am dritten Eingang (Gate g) verbunden oder getrennt

Der Feldeffekt

- zwei metallische Streifen mit dünner isolierender Zwischenlage
- Streifen bilden Plattenkondensator (Kapazität C)
- Steuerspannung V_g an Kondensator lädt diesen auf
- \Rightarrow jeweils Ladung $Q = C \cdot V_q$ auf beiden Streifen (gegensätzliche Ladung)
- $\Rightarrow V_g$ beeinflußt Menge der freien Ladungsträger, also Widerstand R_{sd}

Der Feldeffekt

- etwa 10^{14} zusätzliche freie Ladungsträger pro Kubikzentimeter bei Steuerspannung $V_{\alpha} = 1 \text{ V}$
- etwa 10²² freie Ladungsträger pro Kubikzentimeter in Metallen
- ⇒ Ladungsträgeranreicherung durch Feldeffekt in Metallen unerheblich
- aber etwa 10¹³ freie Ladungsträger pro Kubikzentimeter in Halbleitern
- ⇒ erst mit Halbleitern wird Feldeffekt technisch nutzbar

Silizium-basierte Halbleiter

- reines Silizium ist schlechter Leiter (keine freien Ladungsträger)
- Dotierung ermöglicht gezieltes einbringen freier Ladungsträger

	Тур	freie Ladungsträger	dotierte Eleme	ente	
	n	Elektronen (-)	Arsen (As), Ph	nosphor (P)	
	p	Löcher (+)	Bor (B), Galliu	ım (Ga)	
Silizium	1	n-Typ Siliz	zium	p-Typ Siliziu	m
- -	9	- -	-	• •	-
• Si 8 Si	Si	• Si 8 Si 8	Si •	Si 8 Si 8	Si
\Leftrightarrow	⊙	ϕ ϕ_{\bullet}		$\stackrel{\bullet}{\Leftrightarrow}$	~
OSi Si Si	Si	• Si 8 P 8	Si O	Si 8 B o	Si
\Leftrightarrow	~	\rightleftharpoons	•	\Leftrightarrow	~
- Si	Si)	• Si 8 Si 8	Si c	Si 8 Si 8	Si
<u> </u>	<u>-</u>	<u> </u>	<u>-</u>	<u> </u>	<u>-</u>

P/N Übergang = Diode

Übergang zwischen p-Typ und n-Typ Silizium

р-Тур	n-Typ
Anode	Kathode
->-	

Schwellenspannung V_{th} (technologieabhängig, z.B. 0, 7 V f. Si); Spannung an Anode V_A ; Spannung an Kathode V_C

- Vorwärtsspannung
 - $V_A > V_C + V_{th}$
 - Stromfluss von Anode zu Kathode
- Sperrspannung
 - $ightharpoonup V_A < V_C + V_{th}$
 - kein Stromfluss

MOS Feldeffekttransistoren (MOSFETs)

- ► Metalloxid-Halbleiter (MOS) Transistoren
 - Undotiertes Silizium (früher Metallschicht) für Gate
 - Oxid (Siliziumdioxid = Glas) für Isolator
 - Dotiertes Silizium für Substrat und Anschlüsse (Source, Drain)

nMOS

- ► Gate = 0, ausgeschaltet (keine Source-Drain Verbindung)
- ► Gate = 1, eingeschaltet (leitfähiger Source-Drain Kanal)
- Majoritätsladungsträger sind Elektronen
- ⇒ leiten 0'en gut von Source nach Drain weiter

pMOS

- ► Gate = 1, ausgeschaltet (keine Source-Drain Verbindung)
- ► Gate = 0, eingeschaltet (leitfähiger Source-Drain Kanal)
- Majoritätsladungsträger sind Löcher
- ⇒ leiten 1'en gut von Source nach Drain weiter

MOSFET Schaltverhalten

pMOS
$$g \rightarrow \downarrow$$
 d

Grundschaltung eines MOSFET Inverters

► Nachteil: Betriebszustand mit statischem Leistungsumsatz (A = 1)

Umfrage

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

CMOS: Kombinieren Transistoren

komplementärer

- pMOS Transistoren leiten 1'en "gut" von Source nach Drain weiter
 - ⇒ Source an V_{DD} anschließen
- nMOS Transistoren leiten 0'en "gut" von Source nach Drain weiter
 - ⇒ Source an GND anschließen

⇒ Complementary Metal-Oxide-Semiconductor (CMOS) Logik

 V_{DD} pMOS pull-up Netz Eingänge > Ausgang nMOS pull-down Netz GND

CMOS Gatter: NOT

Α	Р	Ν	Υ
0	EIN	AUS	1
1	AUS	EIN	0

CMOS Gatter: NAND

Struktur eines CMOS Gatters

pMOS Serienschaltung†nMOS Parallelschaltung

Aufbau eines NOR-Gatters mit drei Eingängen

Pseudo-nMOS Gatter

- Ersetzen des Pull-Up Netzes durch schwachen, immer eingeschalteten pMOS
- ⇒ Pull-Up kann durch das Pull-Down Netz "überstimmt" werden
- nützlich, um lange Reihen von Transistoren zu vermeiden

Beispiel für Pseudo-nMOS Gatter

- Pseudo-nMOS NOR5
- verbraucht aber mehr Energie: schwacher Dauerkurzschluss bei Y = 0

Transmissionsgatter

- nMOS leitet 0'en "gut" von Source nach Drain weiter
- pMOS leitet 1'en "gut" von Source nach Drain weiter
- nach Drain weiter
- Transmissionsgatter ist ein besserer Schalter
 - leitet 0'en und 1'en gut weiter
- \triangleright EN = 1 und \overline{EN} = 0 \rightarrow Schalter ist EIN (A mit B verbunden)
- ► EN = 0 und $\overline{EN} = 1 \rightarrow Schalter$ ist AUS (A nicht mit B verbunden)

Agenda

- 1. XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5 CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8 7usammenfassund

Leistungsaufnahme

- alternative Begriffe: Leistungsumsatz, Leistungsverbrauch
- Leistung = Energieverbrauch pro Zeiteinheit
- zwei Arten der Leistungsaufnahme:
 - statische Leistungsaufnahme
 - dynamische Leistungsaufnahme

Statische Leistungsaufnahme

- Leistungsbedarf wenn kein Gatter schaltet
- verursacht durch Leckstrom IDD
 - immer kleinere Transistoren schalten nicht mehr vollständig ab
 - Pseudo-nMOS, ...
- ightharpoonup statische Leistungsaufnahme ist also $P_{\text{static}} = I_{\text{DD}} \cdot V_{\text{DD}}$

Dynamische Leistungsaufnahme

- ► Aufladen der Gate-Kapazität C von 0 A s auf $Q = C \cdot V_{DD}$
- Schaltung wird mit Frequenz f betrieben
- ⇒ Transistoren schalten f-mal pro Sekunde
- nur die Hälfte davon sind Aufladungen
- $I = \frac{Q}{t} = Q \cdot \frac{f}{2} = C \cdot V_{DD} \cdot \frac{f}{2}$
- dynamische Leistungsaufnahme ist:

$$P_{\text{dynamic}} = I \cdot V = (C \cdot V_{\text{DD}} \cdot \frac{f}{2})(V_{\text{DD}}) = \frac{1}{2}C \cdot V_{\text{DD}}^2 \cdot f$$

Beispielrechnung Leistungsaufnahme

Abschätzen der Leistungsaufnahme für einen Netbook-Prozessor

> '	Versorgungsspannung	$V_{\rm DD} = 1.2 \rm V$
•	Taktfrequenz	f = 1 GHz
	∑ Transistorkapazitäten	C = 20 nF
	\(\sum_{\text{Leckströme}} \)	$I_{DD} = 20 \text{mA}$

$$P = P_{\text{static}} + P_{\text{dynamic}}$$

$$= I_{\text{DD}} \cdot V_{\text{DD}} + \frac{1}{2} \cdot C \cdot V_{\text{DD}}^{2} \cdot f$$

$$= 24 \text{ mW} + 14.4 \text{ W}$$

Stromfluß beim CMOS Inverter

- ▶ nur beim Umschalten fließt kurzzeitig ein Strom
- im Wesentlichen: dynamische Leistungsaufnahme

Agenda

- L XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5. CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Gordon Moore, 1929 -

- PhD am California Institute of Technology
- Mitbegründer von Intel
- Treibende Kraft in der Halbleiter-Technologie

Moore'sches Gesetz - Exponentielles Wachstum

Alle 18 Monate verdoppelt sich die Anzahl der Transistoren auf einem Chip.

Prozessoren

Agenda

- 1 XOR Gatter als Paritätsfunktion
- 2. Physikalische Realisierung von Logikgattern
- 3. Spannungen als Logikpegel
- 4. Feldeffekt-Transistoren
- 5 CMOS-Gatter
- 6. Leistungsaufnahme
- 7. Moore'sches Gesetz
- 8. Zusammenfassung

Zusammenfassung und Ausblick

- Logikgatter
 - Anwendung: XOR als Paritätsfunktion
- Physikalische Realisierung von Logikgattern
 - Logikpegel
 - Feldeffekt-Transistoren
 - CMOS-Gatter
 - Leistungsaufnahme
 - Moore'sches Gesetz
- Nächste Vorlesung behandelt
 - Boole'sche Algebra