A GRADUATE COURSE IN OPTIMIZATION

A GRADUATE COURSE

IN

OPTIMIZATION

CIE6010 Notebook

Prof. Yin Zhang

The Chinese University of Hongkong, Shenzhen

Contents

Ackno	owledgments	ix
Notati	ions	xi
1	Week1	1
1.1	Monday	1
1.1.1	Introduction to Optimizaiton	1
1.2	Wednesday	2
1.2.1	Reviewing for Linear Algebra	2
1.2.2	Reviewing for Calculus	2
1.2.3	Introduction to Optimization	3
2	Week2	7
2.1	Monday	7
2.1.1	Reviewing and Announments	7
2.1.2	Quadratic Function Case Study	8
2.2	Wednesday	11
2.2.1	Convex Analysis	11
3	Week3	17
3.1	Wednesday	17
3.1.1	Convex Analysis	17
3.1.2	Iterative Method	18
3.2	Thursday	22
3.2.1	Announcement	22
3.2.2	Sparse Large Scale Optimization	22

4	Week4	27
4.1	Wednesday	27
4.1.1	Comments for MATLAB Project	27
4.1.2	Local Convergence Rate	28
4.1.3	Newton's Method	29
4.1.4	Tutorial: Introduction to Convexity	30
5	Week5	33
5.1	Monday	33
5.1.1	Review	33
5.1.2	Existence of solution to Quadratic Programming	36
5.2	Wednesday	39
5.2.1	Comments about Newton's Method	39
5.2.2	Constant Step-Size Analysis	40
6	Week6	45
6.1	Monday	45
6.1.1	Announcement	45
6.1.2	Introduction to Quasi-Newton Method	45
6.1.3	Constrainted Optimization Problem	46
6.1.4	Announcement on Assignment	47
6.1.5	Introduction to Stochastic optimization	49
6.2	Tutorial: Monday	49
6.2.1	LP Problem	49
6.2.2	Gauss-Newton Method	50
6.2.3	Introduction to KKT and CQ	51
6.3	Wednesday	52
6.3.1	Review	52
632	Dual-Primal of LP	53

7	Week7	57
7.1	Monday	57
7.1.1	Announcement	. 57
7.1.2	Recap about linear programming	. 57
7.1.3	Optimization over convex set	. 60
7.2	Wednesday	62
7.2.1	Motivation	. 62
7.2.2	Convex Projections	. 63
7.2.3	Feasible diection method	. 65
8	Week8	69
8.1	Monday	69
8.1.1	Constraint optimization	. 70
8.1.2	Inequality Constraint Problem	. 71
8.2	Monday Tutorial: Review for CIE6010	71
9	Week9	7 9
9.1	Monday	79
9.1.1	Reviewing for KKT	. 79
9.2	Monday Tutorial: Reviewing for Mid-term	82
10	Week10	83
10.1	Monday	83
10 1 1	Penalty Algorithms	86

Acknowledgments

This book is from the CIE6010 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

X

Set

```
\inf X \subseteq \mathbb{R} Infimum over the set X
\mathbb{R}^{m \times n}
                  set of all m \times n real-valued matrices
\mathbb{C}^{m \times n}
                  set of all m \times n complex-valued matrices
                  ith entry of column vector \boldsymbol{x}
x_i
                  (i,j)th entry of matrix \boldsymbol{A}
a_{ij}
                  ith column of matrix A
\boldsymbol{a}_i
\boldsymbol{a}_{i}^{\mathrm{T}}
                  ith row of matrix A
                  set of all n \times n real symmetric matrices, i.e., \mathbf{A} \in \mathbb{R}^{n \times n} and a_{ij} = a_{ji}
\mathbb{S}^n
                  for all i, j
                  set of all n \times n complex Hermitian matrices, i.e., \mathbf{A} \in \mathbb{C}^{n \times n} and
\mathbb{H}^n
                  \bar{a}_{ij} = a_{ji} for all i, j
\boldsymbol{A}^{\mathrm{T}}
                  transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}} means b_{ji} = a_{ij} for all i,j
                  Hermitian transpose of \boldsymbol{A}, i.e, \boldsymbol{B} = \boldsymbol{A}^{H} means b_{ji} = \bar{a}_{ij} for all i,j
A^{H}
trace(A)
                  sum of diagonal entries of square matrix A
1
                  A vector with all 1 entries
0
                  either a vector of all zeros, or a matrix of all zeros
                  a unit vector with the nonzero element at the ith entry
e_i
C(A)
                  the column space of \boldsymbol{A}
\mathcal{R}(\boldsymbol{A})
                  the row space of \boldsymbol{A}
\mathcal{N}(\boldsymbol{A})
                  the null space of \boldsymbol{A}
\operatorname{Proj}_{\mathcal{M}}(\mathbf{A}) the projection of \mathbf{A} onto the set \mathcal{M}
```

Chapter 10

Week10

10.1. Monday

Announcement. No assignment in this week, so you may take a break. However, in next week new assignments and projects will be updated, which requires you to apply penalty algorithms.

Theorem 10.1 — Farka's Lemma. Let $a_1, ..., a_r \in \mathbb{R}^n$, and

$$m{A} = egin{pmatrix} m{a}_1^{ ext{T}} \ m{a}_2^{ ext{T}} \ dots \ m{a}_r^{ ext{T}} \end{pmatrix}$$
 ,

then for any $\mathbf{c} \in \mathbb{R}^n$,

$$c^{\mathrm{T}} y \leq 0$$
, $\forall y \text{ such that } A^{\mathrm{T}} y \leq 0$, (10.1a)

if and only if

$$\mathbf{c} = \mathbf{A}\mathbf{u}, \forall \mathbf{u} \ge 0, \mathbf{u} \in \mathbb{R}^r \tag{10.1b}$$

The interpretation is that the vector \mathbf{c} has more than 90 degrees angle with all vectors \mathbf{a}_i in the polar cone, if and only if \mathbf{c} is in the polar cone.

Proof. To show the converse, we have

$$\boldsymbol{c}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{u}^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}\boldsymbol{y},$$

with $\boldsymbol{u} \ge 0$, $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \le 0$, and thereofre $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{y} \le 0$.

Proof.

Convex Program.

min
$$f(x)$$
 such that $\mathbf{A}\mathbf{x} = \mathbf{b}$ $g(\mathbf{x}) \le 0$

with f, g to be convex. The Lagrangian function is given by:

$$L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) = f(\boldsymbol{x}) + \boldsymbol{\lambda}(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}) + \boldsymbol{\mu}^{\mathrm{T}}g(\boldsymbol{x}),$$

with $\mu \ge 0$. This function is convex in x. Therefore the dual function is given by:

$$Q(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \inf_{\boldsymbol{x}, \boldsymbol{\mu} \ge 0} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\mu})$$

Proposition 10.1 — Weak Deality.

$$Q(\boldsymbol{\lambda}, \boldsymbol{\mu}) \leq f(\boldsymbol{x})$$

for dual feasible λ , μ and primal feasible x.

We are curious on the tightest lower bound on LHS, thus maximizing the dual function to obtain the dual program:

max
$$Q(\lambda, \mu)$$
 such that $\mu \ge 0$

Proposition 10.2 — Strong Duality. For convex programming, we have

$$d^* = p^*$$
,

with d^* , p^* to be the optimal value from dual and primal problems, respectively.

QC: one of the followings is satisfied

- $g_i(\mathbf{x})$ are linear
- $Ax = b, g(x) \leq 0$
- Regularity

Under QC, the primal and dual could attain optimality togethoer iff

- $Ax = b, g(x) \le 0$
- $\mu \geq 0$
- $\mu \circ g(x) = 0$

We have derive the dual formula for linear programming, but how about the quadratic programming?

■ Example 10.1

$$p^* = \min \quad \frac{1}{2} \pmb{x}^{\mathrm{T}} \pmb{Q} \pmb{x} + \pmb{c}^{\mathrm{T}} \pmb{x}, \quad \pmb{Q} \succ 0$$
 such that $\pmb{A} \pmb{x} \leq \pmb{b}$

The Lagrangian function $L(\pmb{x},\pmb{\mu}) = \frac{1}{2}\pmb{x}^{\mathrm{T}}\pmb{Q}\pmb{x} + \pmb{c}^{\mathrm{T}}\pmb{x} + \pmb{\mu}^{\mathrm{T}}(\pmb{A}\pmb{x} - \pmb{b})$, and therefore

$$Q(\boldsymbol{\mu}) = \min_{\boldsymbol{x}, \boldsymbol{\mu} \ge 0} L(\boldsymbol{x}, \boldsymbol{\mu}) \tag{10.3}$$

The optimality condition implies that

$$\nabla_{\mathbf{x}}L(\mathbf{x},\boldsymbol{\mu}) = \mathbf{Q}\mathbf{x} + \mathbf{c} + \mathbf{A}^{\mathrm{T}}\boldsymbol{\mu} = 0 \implies \mathbf{x} = -\mathbf{Q}^{-1}(\mathbf{c} + \mathbf{A}^{\mathrm{T}}\boldsymbol{\mu})$$

Thus substituting optimal x into (10.3), we derive

$$Q(\pmb{\mu}) = -\frac{1}{2} \pmb{\mu}^{\mathrm{T}} \pmb{A} \pmb{Q}^{-1} \pmb{A}^{\mathrm{T}} \pmb{\mu} - \pmb{t}^{\mathrm{T}} \pmb{\mu} + \mathsf{constant}$$

Thus we derive the dual program:

$$d^* = \min \quad \frac{1}{2} \pmb{\mu}^{\mathrm{T}} \pmb{P} \pmb{\mu} + \pmb{t}^{\mathrm{T}} \pmb{\mu},$$
 such that $\pmb{\mu} \geq 0$

where $\mathbf{\textit{P}} := \mathbf{\textit{A}}\mathbf{\textit{Q}}^{-1}\mathbf{\textit{A}}^{\mathrm{T}}$.

10.1.1. Penalty Algorithms

Logarithm Penalty. Consider the inequality constraint problem

$$\min \quad f(\mathbf{x})$$

$$g_i(\mathbf{x}) \le 0$$

The Barrier problem is given by:

$$\min f(x) - \mu \sum_{i} \log(-g_i(\boldsymbol{x})), \quad \mu > 0$$

As $\mu \to 0$, $x(\mu)$ converges to the optimal solution. We pick big μ at first and obtain a good initial guess, and then we continue to decrease μ .

Quadratic Penalty. For the constraint problem

$$\min \quad f(\mathbf{x})$$

$$h(\mathbf{x}) = 0$$

$$\mathbf{x} \in X$$

The quadratic penalty algorithm aims to solve

$$\min \quad f(\boldsymbol{x}) + \lambda^{\mathrm{T}} h(\boldsymbol{x}) + \frac{c}{2} \|h(\boldsymbol{x})\|_{2}^{2}$$
$$\boldsymbol{x} \in X,$$

where λ is **bounded**. Conversely, as $c \to \infty$, $\mathbf{x}(c)$ converges to the optimal solution. We pick small c at first and obtain a good initial guess, and then we continue to increase c.

■ Example 10.2

min
$$\frac{1}{2}(x_1^2 + x_2^2)$$

 $x_1 = 1$

The quadratic penalty function is

$$L_c(x) = \frac{1}{2}(x_1^2 + x_2^2) + \lambda(x_1 - 1) + \frac{c}{2}(x_1 - 1)^2$$

and therefore

$$\nabla_{\boldsymbol{x}} L_c(\boldsymbol{x}) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 0 \end{pmatrix} + c \begin{pmatrix} x_1 - 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

which follows that

$$x_1(\lambda,c) = \frac{c-\lambda}{c+1}, \quad x_2(\lambda,c) = 0$$

We can apply two algorithm to converge to optimal solution:

- 1. Quadratic Pendlty Method: As $c \to \infty$ with λ bounded, we derive $x_1(\lambda,c) \to 1$.
- 2. Lagrangian Multiplier Method: We set $\nabla L(\boldsymbol{x},\lambda)=0$ to obtain an appropriate $\lambda^*=-1$. As $\lambda\to\lambda^*$, we obtain $x_1(\lambda,c)\to 1$ for c>1 (the key for this kind of algorithm is to choose big c).

Such an algorithm can also be applied for the non-convex problem, e.g.,

min
$$\frac{1}{2}(-x_1^2 + x_2^2)$$

 $x_1 = 1$