Data Structures for Efficient Inference and Optimization

in Expressive Continuous Domains

Scott Sanner

Ehsan Abbasnejad Zahra Zamani Karina Valdivia Delgado Leliane Nunes de Barros Cheng Fang

Inference for Continuous HMMs

Continuous Inference Solved?

- How is inference done in piecewise models?
 - (Adaptively) discretize model:
 - Approximate, O(N^D)
 - Adaptivity is an artform

- Projective approximation: variational, EP
 - Choose approximating class a priori
 - Often Gaussian best choice?
- Sampling: Monte Carlo, Gibbs
 - May not converge for (near) deterministic distributions
 - Not for evidence as a free variable E[X | O=?]

What has everyone been missing?

Symbolic representations and operations on piecewise functions

General Form for Continuous Distributions?

Probability density functions (pdfs), e.g.

$$- N(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{\sigma^2}}$$

- Could be piecewise or deterministic
 - Stochastic programs (conditionals)
 - Utilities (step), decision-making (max), preferences (≥)
 - Dynamical controlled systems (switching control)
 - Deterministic (δ)

Piecewise Functions (Cases)

Linear constraints and value

Linear constraints, constant value

Quadratic constraints and value

Formal Problem Statement

 General continuous graphical models represented by piecewise functions (cases)

- Exact closed-form solution inferred via the following piecewise calculus:
 - $f_1 \oplus f_2$, $f_1 \otimes f_2$
 - max(f₁, f₂), min(f₁, f₂)
 - $\int_{x} f(x)$
 - max_x f(x), min_x f(x)

Question: how do we perform these operations in closed-form?

Polynomial Case Operations: ⊕, ⊗

$$egin{cases} \phi_1: & f_1 \ \phi_2: & f_2 \end{cases} \oplus egin{cases} \psi_1: & g_1 \ \psi_2: & g_2 \end{cases} = egin{cases} igwidge{2} \ ig$$

Polynomial Case Operations: ⊕, ⊗

$$\begin{cases} \phi_1: & f_1 \\ \phi_2: & f_2 \end{cases} \oplus \begin{cases} \psi_1: & g_1 \\ \psi_2: & g_2 \end{cases} = \begin{cases} \phi_1 \wedge \psi_1: & f_1 + g_1 \\ \phi_1 \wedge \psi_2: & f_1 + g_2 \\ \phi_2 \wedge \psi_1: & f_2 + g_1 \\ \phi_2 \wedge \psi_2: & f_2 + g_2 \end{cases}$$

- Similarly for ⊗
 - Polynomials closed under +, *
- What about max?
 - Max of polynomials is not a polynomial ☺

Polynomial Case Operations: max

$$\max \left(\begin{cases} \phi_1 : & f_1 \\ \phi_2 : & f_2 \end{cases}, \begin{cases} \psi_1 : & g_1 \\ \psi_2 : & g_2 \end{cases} \right) =$$

Polynomial Case Operations: max

$$\max \left(\begin{cases} \phi_1 : & f_1 \\ \phi_2 : & f_2 \end{cases}, \begin{cases} \psi_1 : & g_1 \\ \psi_2 : & g_2 \end{cases} \right) =$$

$$\max \left(\begin{cases} \phi_{1}: & f_{1} \\ \phi_{2}: & f_{2} \end{cases}, \begin{cases} \psi_{1}: & g_{1} \\ \psi_{2}: & g_{2} \end{cases} \right) = \begin{cases} \phi_{1} \wedge \psi_{1} \wedge f_{1} > g_{1}: & f_{1} \\ \phi_{1} \wedge \psi_{1} \wedge f_{1} \cdot g_{1}: & g_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} > g_{2}: & f_{1} \\ \phi_{1} \wedge \psi_{2} \wedge f_{1} \cdot g_{2}: & g_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} > g_{1}: & f_{2} \\ \phi_{2} \wedge \psi_{1} \wedge f_{2} \cdot g_{1}: & g_{1} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} > g_{2}: & f_{2} \\ \phi_{2} \wedge \psi_{2} \wedge f_{2} \cdot g_{2}: & g_{2} \end{cases}$$

Still a piecewise polynomial!

Size blowup? We'll get to that...

Definite Integration: $\int_{x=-\infty}^{\infty}$

- Closed for polynomials
 - But how to compute for case?

$$\int_{x=-\infty}^{\infty} \begin{cases} \phi_1 : f_1 \\ \vdots & \vdots dx \\ \phi_k : f_k \end{cases}$$

– Just integrate case partitions, ⊕ results!

Partition Integral

1. Determine integration bounds

$$\int_{x=-\infty}^{\infty} [\phi_1] \cdot f_1 dx$$

$$\phi_1 := [x > -1] \wedge [x > y - 1] \wedge [x \cdot z] \wedge [x \cdot y + 1] \wedge [y > 0]$$

$$f_1 := x^2 - xy$$

UB and LB are symbolic!

What constraints here?

- independent of x
- pairwise UB > LB

How to evaluate?

Definite Integral Evaluation

How to evaluate integral bounds?

$$\int_{x=LB}^{UB} x^2 - xy = \frac{1}{3}x^3 - \frac{1}{2}x^2y \bigg|_{LB}^{UB}$$

· Can do polynomial operations on cases!

Symbolically, exactly evaluated!

Exact Graphical Model Inference!

(directed and undirected)

Can do general probabilistic inference

$$p(x_2|x_1) = \frac{\int_{x_3} \cdots \int_{x_n} \bigotimes_{i=1}^k case_i \ dx_n \cdots dx_3}{\int_{x_2} \cdots \int_{x_n} \bigotimes_{i=1}^k case_i \ dx_n \cdots dx_2}$$

Or an exact expectation of any polynomial

- poly = Mean, variance, skew, curtosis, ..., x^2+y^2+xy

All computed by Symbolic Variable Elimination (SVE)

Voila: Closed-form Exact Inference via SVE!

Computational Complexity?

- In theory for SVE on graphical models
 - Best-case complexity Ω (#operations)
 - Worst-case complexity is O(exp(#operations))
 - Not explicitly tree-width dependent!
 - But worse: integral may invoke 100's of operations!

Fortunately decision diagrams can mitigate worst-case complexity

BDD / ADDs

Quick Introduction

Function Representation (Tables)

- How to represent functions: Bⁿ → R?
- How about a fully enumerated table...
- ...OK, but can we be more compact?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (Trees)

How about a tree? Sure, can simplify.

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Function Representation (ADDs)

Why not a directed acyclic graph (DAG)?

а	b	С	F(a,b,c)
0	0	0	0.00
0	0	1	0.00
0	1	0	0.00
0	1	1	1.00
1	0	0	0.00
1	0	1	1.00
1	1	0	0.00
1	1	1	1.00

Exploits context-specific independence (CSI) and shared substructure.

Binary Operations (ADDs)

- Why do we order variable tests?
- Enables us to do efficient binary operations...

Case → XADD

XADD = continuous variable extension of algebraic decision diagram

Efficient XADD data structure for cases

- strict ordering of atomic inequality tests
- → compact, minimal case representation
- efficient case operations

Case → XADD

$$V = \begin{cases} x_1 + k > 100 \land x_2 + k > 100 : & 0 \\ x_1 + k > 100 \land x_2 + k \cdot 100 : & x_2 \\ x_1 + k \cdot 100 \land x_2 + k > 100 : & x_1 \\ x_1 + x_2 + k > 100 \land x_1 + k \cdot 100 \land x_2 + k \cdot 100 \land x_2 > x_1 : x_2 \\ x_1 + x_2 + k > 100 \land x_1 + k \cdot 100 \land x_2 + k \cdot 100 \land x_2 \cdot x_1 : x_1 \\ x_1 + x_2 + k \cdot 100 : & x_1 + x_2 \\ \vdots & \vdots & \vdots \end{cases}$$

*With non-trivial extensions over ADD, can reduce to a minimal canonical form!

Compactness of (X)ADDs

 Linear in number of decisions φ_i

 Case version has exponential number of partitions!

XADD Maximization

Operations exploit structure: O(|f||g|)

Maintaining XADD Orderings

Max may get decisions out of order

Correcting XADD Ordering

- Obtain ordered XADD from unordered XADD
 - key idea: binary operations maintain orderings

Maintaining Minimality

Node unreachable – x + y < 0 always false if x > 0 & y > 0

If **linear**, can detect with feasibility checker of LP solver & prune

More subtle prunings as well.

XADD Makes Possible all Previous Inference

Could not even do a single integral or maximization without it!

Applications

Expressive Closed-form Bayesian Inference

An Expressive Conjugate Prior for Bayesian Inference

General Bayesian Inference

- Prior & likelihood for computational convenience?
 - No, choose as appropriate for your problem!

Approximate Inference

Sometimes no DD is compact, but bounded approximation is...

Problem: Approximate an ADD?

• Sum: $(\sum_{i=1...3} 2^i \cdot x_i) + x_4 \cdot \varepsilon$ -Noise

How to approximate?

Solution: APRICODD Trick

Merge ≈ leaves and reduce:

Error is bounded!

Can use ADD to Maintain Bounds!

- Change leaf to represent range [L, U]
 - Exact leaf is [V, V]
 - When merging leaves...
 - keep track of min and max values contributing

For operations, use "interval arithmetic"

XADD Approximation

 Can we extend APRICODD-style approximations to XADDs?

 Yes, but not as simple as averaging leaves...

Linear XADD Leaf Merging

Linear XADD Leaf Merging

 $\min_{ec{c}^*,\epsilon} \epsilon$

Constraint generation: for c*, use **LP** to generate max violated constraint

$$s.t. \ \epsilon \geq \left| \vec{c_i}^T \begin{bmatrix} \vec{x_{ij}^k} \\ 1 \end{bmatrix} - \vec{c^*}^T \begin{bmatrix} \vec{x_{ij}^k} \\ 1 \end{bmatrix} \right|; \ \forall i \in \{1,2\}, \forall \theta_{ij}, \forall k \in \{1 \dots N_{ij}\}$$

Linear Approximation Example

(b) Value at 6^{th} iteration for 5% approximate SDP.

Nonlinear XADD Approximation?

1D Example

- Questions
 - What approximating class?
 - What error function?
 - Max not feasible
 - Volume of squared error? Integral is exact.

But many caveats vs. linear case

Applications

Optimal Sequential Decision-making

Continuous State MDPs

- 2-D Navigation
- State: $(x,y) \in \mathbb{R}^2$
- Actions:
 - move-x-2
 - x' = x + 2
 - y' = y
 - move-y-2
 - x' = x
 - y' = y + 2

Feng et al (UAI-04) Assumptions:

- Continuous transitions are deterministic and linear
- 2. Discrete transitions can be stochastic
- 3. Reward is piecewise rectilinear convex

Reward:

$$- R(x,y) = I[(x > 5) \land (x < 10) \land (y > 2) \land (y < 5)]$$

Exact Solutions to DC-MDPs: Regression

Continuous regression is just translation of "pieces"

Exact Solutions to DC-MDPs: Maximization

Q-value maximization yields piecewise rectilinear solution

Previous Work Limitations I

Exact regression when transitions nonlinear?

Previous Work Limitations II

max(.,.) when reward/value arbitrary piecewise?

A solution to previous limitations:

Symbolic Dynamic Programming (SDP)

n.b., motivated by SDP from Boutilier *et al* (IJCAI-01) but here continuous instead of relational

Symbolic Dynamic Programming

- Value Iteration for h∈0..H
 - Regression step:

$$Q_a^{h+1}(\vec{b},\vec{x}) = R_a(\vec{b},\vec{x}) + \gamma \cdot$$
 are δ functions
$$\sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^n P(b_i'|\vec{b},\vec{x},a) \prod_{j=1}^m P(x_j'|\vec{b},\vec{b}',\vec{x},a) \right) V^h(\vec{b}',\vec{x}') d\vec{x}'$$

Due to deterministic

assumption, these

– Maximization step:

$$V_{h+1}(\vec{b}, \vec{x}) = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})$$

SDP Regression Step

Continuous variables x_i

$$-\int_x \delta[x-y]f(x)dx = f(y)$$
 triggers symbolic substitution

- More complex: $\int_{x_j'} \delta[x_j' - g(\vec{x})] V' dx_j' = V' \{x_j'/g(\vec{x})\}$

$$\int_{x_1'} \delta[x_1' - (x_1^2 + 1)] \left(\begin{cases} \underline{x_1'} < 2 : & \underline{x_1'} \\ \underline{x_1'} \ge 2 : & \underline{x_1'}^2 \end{cases} \right) dx_1' = \begin{cases} \underline{x_1^2 + 1} < 2 : & \underline{x_1^2 + 1} \\ \underline{x_1^2 + 1} \ge 2 : & (\underline{x_1^2 + 1})^2 \end{cases}$$

- General case: g is case need conditional substitution
 - See UAI-11 paper

SDP for Continuous State MDPs

Value Iteration for h∈0..H

Symbolic Dynamic Programming (SDP)... exact closed-form solution for **any** continuous state MDP!

Regression step: XADD

$$Q_a^{h+1}(\vec{b},\vec{x}) = R_a(\vec{b},\vec{x}) + \gamma \cdot$$

$$\sum_{\vec{b}'} \int_{\vec{x}'} \left(\prod_{i=1}^n P(b_i'|\vec{b},\vec{x},a) \prod_{j=1}^m P(x_j'|\vec{b},\vec{b}',\vec{x},a) \right) V^h(\vec{b}',\vec{x}') d\vec{x}'$$

Maximization step:

$$V_{h+1} = \max_{a \in A} Q_a^{h+1}(\vec{b}, \vec{x})$$

That's SDP! 3D Value Function Gallery

Exact value functions in case form:

- Arbitrary transitions, reward (not just polynomial)
- (non)linear piece boundaries and function surfaces!

Continuous Actions?

If we can solve this, can solve multivariate inventory control – closed-form policy unknown for 50+ years!

Continuous Actions

- Inventory control
 - Reorder based on stock, future demand
 - Action: $a(\vec{\Delta}); \vec{\Delta} \in \mathbb{R}^{|a|}$

Need max , in Bellman backup

$$V_{h+1} = \max_{a \in A} \max_{\vec{\Delta}} Q_a^{h+1}(\vec{b}, \vec{x}, \vec{\Delta})$$

- How to do max ,?
 - And track maximizing \triangle substitutions to recover π ?

Max-out Case Operation

- max_x case(x) like ∫_x case(x), can reduce to single partition max
 - In a single case partition ... max w.r.t. critical points
 - LB, UB
 - Derivative is zero (Der0)
 - max(case(x/LB), case(x/UB), case(x/Der0))

See UAI 2011, AAAI 2012 papers for more details

 Can even track substitutions through max to recover function of maximizing assignments!

Illustrative Value and Policy

Continuous Actions, Nonlinear

Robotics

- Continuous position, joint angles
- Represent exactly with polynomials
 - Radius constraints

- 2D, 3D, 4D (time)
- Don't discretize!
 - Grid worlds
- But nonlinear ☺

Multilinear, quadratic extensions.

In general: algebraic geometry.

Sequential Control Summary

- Continuous state, action, observation (PO)MDPs
 - Discrete action MDPs (UAI-11)
 - Continuous action MDPs (incl. exact policy) AAAI-12b
 - Continuous observation POMDPs
 NIPS-12
 - Robust solutions with continuous noise

 IJCAI-13
 - Multilinear, quadratic extensions [In progress]

Applications

Constrained Optimization

max_x case(x) = Constrained Optimization!

- Conditional constraints
 - E.g., if (x > y) then (y < z)
 - MILP, MIQP equivalent
- Factored / sparse constraints
 - Constraints may be sparse!

```
X_1 > X_2, X_2 > X_3, ..., X_{n-1} > X_n
```

- Dynamic programming for continuous optimization!
- Parameterized optimization
 - $f(y) = \max_{x} f(x,y)$
 - Maximum value, substitution as a function of y

Recap

- Defined a calculus for piecewise functions
 - $f_1 \oplus f_2$, $f_1 \otimes f_2$
 - max(f₁, f₂), min(f₁, f₂)
 - $\int_{X} f(X)$
 - max_x f(x), min_x f(x)
- Defined XADD to efficiently compute with cases
- Makes possible
 - Exact inference in continuous graphical models
 - First exact solutions to planning, control, and OR problems
 - New paradigms for optimization

Symbolic Piecewise Calculus + XADD = Expressive Continuous Inference, Optimization, & Control

Thank you!

Questions?