Theory Of Computation Report

"A Tale of 3 Monkeys and 3 Humans"

A Project by :

Group 12 - S6 S7

Kshiteej Manoj Gilda U101115FCS110

Ujjwal Ranjan U101115FCS220

Sudarshan Raghavan U101115FCS215

Umesh Chidari U101115FCS169

The Problem Statement AKA The Tale

- There are six characters in this story A Big Monkey, Two Small Monkeys and Three humans.
- All the six characters wish to reach the other bank of a River, "Tears of TOC". xD
- At one time only two people can travel on the boat with the catch being only a human or the big monkey can row the boat!
- But you see the monkeys over here are of a special tribe, if they are more in number than the number of humans they can kill all the humans!
- In other words, the number of humans on each bank must always be equal or more than the number of monkeys.
- Can you help all our six protagonists in the story reach the other side of the bank?

Input Sequence format for the Turing Machine

- The sequence of travel of all the characters from Bank A to Bank B has to be separated by a '#'
- Aliases of our characters:

O Human:h

o Big monkey: b

o Small monkey: s

Eg) Lets say one sequence is,

A to B: bs
B to A: b
A to B: h

The above sequence would be represented as: bs#b#h#

Design of the Turing Machine

How is the Turing Machine Working?

The Turing Machine is following the following steps to figure out whether the entered sequence of travel is a valid answer to the puzzle:

- 1. Initialization of counters on both banks.
- 2. A Check for Maximum of two travellers on each boat trip and one of the rowers is a valid protagonist (h or b).
- 3. Increment / Decrement both the counters for all the travellers.
- 4. Condition Check Logic (To be explained later)
- 5. Loop to 3 until all the travellers on the boat have been processed.

How is the Condition Check Logic working?

The condition check logic checks whether the number of humans is more than or equal to the number of Monkeys at either bank.

Eg)

HHHMM : ValidHHMM : Valid

HHMMM : RejectedMMM : Works fine !

Turing Machine Simulation Code using Morphitt Turing machine Simulator

; Load a program from the menu or write your own! ; Turing machine to simulate river puzzle ;One possible solution: ;bs#b#bs#b#hh#hs#bh#hs#hh#b#bs#b#bs# ;'<current state> <current symbol> <new symbol> <direction> <new state>' 0 b b l 1 0 s s l 1 0 h h l 1 0 _ _ r rejectstart rejectstart _ : r rejectstarta rejectstarta _ - r rejectstartb rejectstartb * (* halt-rejectstartb 1__12 2 MI3 3 MI4 4 MI5 5_HI6 6 HI7 7 HI8 8 dr9 9 H H r 9

9 M M r 9

9 _ _ r 10

10 h h r 10

10 b b r 10

10 s s r 10

10 # # r 10

10 _ _ r 11

11 _ e r 12

12 _ e r 13

13 _ e r 14

14 _ f r 15

15_fr16

16 _ f r 17

17 e e l 17

17 f f l 17

17 _ _ I 18

18 e e l 18

18 f f l 18

18 s s l 18

18 # # I 18

18 b b l 18

18 h h l 18

18 _ _ I 19

19 b b l 19

19 s s l 19

19 h h l 19

19 # # I 19

19 _ _ r 73

73 b b r 74

73 s s r 76

73 h h r 74

73 _ _ I 77

74 # # r 73

74 s s r 75

74 b b r 75

74 h h r 75

75 # # r 73

75 b b r rej1

75 h h r rej1

75 s s r rej1

76 # # I rej1

76 s s I rej1

76 b b r 75

76 h h r 75

77 # # | 77

77 s s l 77

77 b b l 77

77 h h l 77

77 _ _ r 20

20 # # r 20

20 \$ \$ r 20

20 b \$ I 21

20 s \$ I 21

20 h \$ I 67

20 _ _ r 61

21 \$ \$ | 21

21 # # | 21

21 _ _ I 22

22 f f l 22

22 M f r 23

- 23 ffr 23
- 23 _ _ r 24
- 24 \$ \$ r 24
- 24 # # r 24
- 24 b b r 24
- 24 s s r 24
- 24 h h r 24
- 24 _ _ r 25
- 25 e e r 25
- 25 H H r 25
- 25 M M r 25
- 25 f M I 26
- 26 M M I 26
- 26 H H I 26
- 26 _ _ I 26
- 26 s s l 26
- 26 b b l 26
- 26 h h l 26
- 26 e e l 26
- 26 # # 1 26
- 26 \$ \$ r 27
- 27 b b l 20
- 27 h h l 20
- 27 s s l 20
- 27 # # | 28
- 00 " " 1 00
- 28 # # | 28
- 28 \$ \$ 1 28
- 28 _ _ r 29
- 29 \$ \$ 1 30
- 30 ffl 30
- 30 e e l 30
- 30 H H I 30
- 30 M M I 30

- 30 _ _ I 30
- 30 d d r 31
- 31 e e r 31
- 31 Y Y r 31
- 31 ffr 31
- 31 _ _ I 34
- 31 M M I 34
- 31 H X r 32
- 32 Y Y r 32
- 32 H H r 32
- 32 e e r 32
- 32 | 134
- 32 f f r 32
- 32 M Y I 33
- 33 Y Y I 33
- 33 H H I 33
- 33 e e l 33
- 33 X X r 93
- 93 H X r 32
- 93 Y Y r 93
- 93 f f r 93
- 93 e e r 93
- 93 M M r rej2
- 93 _ _ I 34
- rej2 * * r rej2a
- rej2a _ _ r rej2b
- rej2b * * r rej2b
- rej2b _ _ r rej2c
- rej2c * * r rej2c
- rej2c _ _ I rej2ca
- rej2ca * _ I rej2ca
- rej2ca _ _ I rej2cb
- rej2cb * _ I rej2cb
- rej2cb d : r rej2cc

rej2cc * - r rej2cc rej2cc * (* halt-rej2cc

34 f f I 34

34 e e l 34

34 X H I 34

34 Y M I 34

34 H H I 34

34 d d r 35

35 f f r 35

35 e e r 35

35 H H r 35

35 M M r 35

35 _ _ r 36

36 \$ \$ r 36

36 # # r 36

36 b b r 36

36 s s r 36

36 h h r 36

36 _ _ r 37

37 ffr 37

37 e e r 37

37 H X r 38

37 M M I 41

38 f f r 38

38 e e r 38

38 Y Y r 38

38 H H r 38

38 M Y I 39

38 _ _ I 41

39 ffl 39

39 Y Y I 39

39 H H I 39

39 e e l 39

39 X X r 40

- 40 H X r 38
- 40 Y Y r 40
- 40 ffr 40
- 40 e e r 40
- 40 _ _ I 41
- 40 M M I rej3
- rej3 * * r rej3
- rej3 _ _ I rej3a
- rej3a * _ I rej3a
- rej3a d : r rej3b
- rej3b * r rej3c
- rej3c * (* halt-rej3c
- 41 # # | 41
- 41 h h l 41
- 41 e e l 41
- 41 ff l 41
- 41 | 141
- 41 b b l 41
- 41 s s I 41
- 41 h h l 41
- 41 H H I 41
- 41 X H I 41
- 41 Y M I 41
- 41 \$ \$ r 42
- 42 # # r 43
- 43 \$ \$ r 43
- 43 # # r 43
- 43 b \$ r 44
- 43 s \$ r 44
- 43 h \$ r 54
- 43 _ _ r 61
- 61 H H r 62
- 61 e e r rej3
- 62 H H r 63

62 e e r rej3

63 H H r 64

63 e e r rej3

64 M M r 65

64 f f r rej3

65 M M r 66

65 f f rej3

66 M M r accept

66 f f rej3

accept * _ I accept

accept d: r accept1

accept1 _ - r accept1

accept1 _) * halt-accept1

44 h h r 44

44 # # r 44

44 b b r 44

44 s s r 44

44 _ _ r 45

45 e e r 45

45 H H r 45

45 f f r 45

45 M f I 46

46 f f I 46

46 e e l 46

46 H H I 46

46 _ _ I 47

47 * * | 47

47 _ _ I 48

48 f f I 48

48 M M r 49

48 H H r 49

48 e e r 49

49 f M r 50

50 ffr 50

50 _ _ r 51

51 \$ \$ r 51

51 # # r 51

51 b b r 51

51 s s r 51

51 h h r 51

51 _ _ I 52

52 b b l 52

52 # # | 52

52 h h l 52

52 s s l 52

52 \$ \$ r 53

53 # # 1 78

53 b b l 43

53 h h l 43

53 s s l 43

54 h h r 54

54 # # r 54

54 b b r 54

54 s s r 54

54 _ _ r 55

55 e e r 55

55 H e I 56

56 e e I 56

56 _ _ I 57

57 * * | 57

57 _ _ I 58

58 ffl 58

58 M M I 58

58 e e l 58

58 d d r 59

58 H H r 59

59 e H r 60

60 e e r 60

60 ffr 60

60 M M r 60

60 _ _ r 51

78 # # | 78

78 \$ \$ 1 78

78 _ _ r 79

79 \$ \$ 1 80

80 _ _ I 80

80 ffl 80

80 e e l 80

80 H H I 80

80 M M I 80

80 d d r 81

81 e e r 81

81 Y Y r 81

81 ffr 81

81 _ _ I 84

81 M M I 84

81 H X r 82

82 Y Y r 82

82 ffr 82

82 e e r 82

82 H H r 82

82 M Y I 83

82 _ _ I 84

83 Y Y I 83

83 H H I 83

83 e e l 83

83 X X r 94

94 H X r 82

94 Y Y r 94

94 ffr 94

94 e e r 94

94 M M r rej2

94 _ _ I 84

84 f f l 84

84 e e l 84

84 X H I 84

84 Y M I 84

84 H H I 84

84 d d r 85

85 ffr85

85 e e r 85

85 H H r 85

85 M M r 85

85 _ _ r 86

86 * * r 86

86 _ _ r 87

87 ffr87

87 e e r 87

87 H X r 88

87 M M I 91

88 e e r 88

88 Y Y r 88

88 f f r 88

88 H H r 88

88 M Y I 89

88 _ _ I 91

89 Y Y I 89

89 f f I 89

89 e e l 89

89 H H I 89

89 X X r 90

90 M M I rej3

90 H X r 88

90 Y Y r 90

90 e e r 90

90 ffr 90

90 _ _ I 91

91 # # 1 91

91 h h l 91

91 e e l 91

91 ffl 91

91 _ _ I 91

91 b b l 91

91 s s l 91

91 h h l 91

91 H H I 91

91 X H I 91

91 Y M I 91

91 \$ \$ r 92

92 # # r 20

67 \$ \$ 1 67

67 # # 1 67

67 _ _ I 68

68 M M I 68

68 f f I 68

68 e e l 68

68 H e r 69

69 M M r 69

69 ffr 69

69 e e r 69

69 _ _ r 70

70 # # r 70

70 \$ \$ r 70

70 b b r 70

70 s s r 70

70 h h r 70

70 _ _ r 71

71 H H r 71

71 e H I 72

72 H H I 72

72 _ _ | 72

72 # # | 72

72 s s l 72

72 b b l 72

72 h h l 72

72 \$ \$ r 27

rej1 * _ r rej1

rej1 f _ r rej1a

rej1a f _ r rej1b

rej1b f _ I rej1c

rej1c * _ I rej1c

rej1c d: r rej1d

rej1d _ - r rej1d

rej1d _ (r halt-rej1d