Factor Graph and Constraint Satisfaction Problems (CSPs) 1

Hwanjo Yu POSTECH

http://di.postech.ac.kr/hwanjoyu

Search problem

Constraint satisfaction problems

Markov decision processes

Markov networks

Reinforcement learning & games

Bayesian networks

Reflex

States

Variables

Logic

"Low-level intelligence"

"High-level intelligence"

Machine learning

State-based models

[Modeling]

Framework search problems MDPs/games

Objective minimum cost paths maximum value policies

[Algorithms]

Tree-based backtracking minimax/expectimax

Graph-based DP, UCS, A* value/policy iteration

[Learning]

Methods structured Perceptron Q-learning, TD learning

State-based models: takeaway 1

Key idea: specify locally, optimize globally

- Modeling: specifies local interactions (e.g., action cost or reward)
- Algorithms: find globally optimal solutions (e.g., finding minimum cost paths)

State-based models: takeaway 2

Key idea: state

- A **state** is a summary of all the past actions sufficient to choose future actions **optimally**.
- Thinking about taking a sequence of actions where order is important.
- In some tasks, order is irrelevant => variable-based models

Map coloring

Question: how can we color each of the 7 provinces {red, green, blue} so that no two neighboring provinces have the same color?

Map coloring

(one possible solution)

Hwanjo Yu, POSTECH

As a search problem

- State: partial assignment of colors to provinces
- Action: assign next uncolored province a compatible color

Can we do better? Exploit the problem structure!

- Variable ordering doesn't affect correctness => choose a better ordering by "lookahead" rather than trying all orderings
- Variables are interdependent in a local way => Tasmania is independent. Do something!

Variable-based models

Variable-based models (or graphical models):

- Constraint satisfaction problems (CSP)
- Probabilistic Graphical Model (PGM): Markov networks (undirected graphical model), Bayesian networks (directed graphical model), HMMs, CRFs, etc.
- Problem => assignments of values to variables (modeling)
- How to find the assignment? => algorithm

Applications

- Delivery/routing: how to assign packages to trucks to deliver to customers
- Sports scheduling: when to schedule pairs of teams to minimize travel
- Formal verification: ensure circuit/program works on all inputs

Roadmap

Modeling

Definitions

Examples

Backtracking (exact) search

Dynamic ordering

Arc consistency

Approximate search

Beam search

Local search

Factor graph example: voting

Three people X_1, X_2, X_3 vote for a color, and we know that...

- X_1 must have B (f_1)
- X_1 and X_2 must have the same color (f_2)
- X_2 and X_3 weakly prefer to have the same color (f_3)
- X_3 is leaning toward R (f_4)

$$\begin{bmatrix} x_1 & f_1(x_1) \\ R & 0 \\ B & 1 \end{bmatrix}$$

$$f_1(x_1) = [x_1 = B]$$

$$x_1$$
 x_2 $f_2(x_1, x_2)$
 $\begin{array}{cccc} R & R & 1 \\ R & B & 0 \\ B & R & 0 \\ B & B & 1 \\ \end{array}$

$$x_2$$
 x_3 $f_3(x_2, x_3)$
R R B 2
B R 2
B B 3

$$x_3$$
 $f_4(x_3)$
R 2
B 1
 $f_4(x_3) = [x_3 = R] + 1$

$$f_2(x_1, x_2) = [x_1 = x_2]$$
 $f_3(x_2, x_3) = [x_2 = x_3] + 2$

- A variable X_i assigns a value from **Domain** (e.g., R or B).
- A factor f_i (a table or a function) assigns a non-negative number describing how good the assignment to a subset of the variables is.

Factor graph

Definition: factor graph

• Variables:

$$X = (X_1, ..., X_n)$$
, where $X_i \in Domain_i$

• Factors:

$$f_1, \dots, f_m$$
, with each $f_j(X) \ge 0$

Example: map coloring

Variables:

- X = (WA, NT, SA, Q, NSW, V, T)
- Domain_i $\in \{R, G, B\}$

Factors:

- $f_1(X) = [WA \neq NT]$ ([...] is the indicator function.)
- $f_2(X) = [NT \neq Q]$

• ...

Factors

Definition: scope and arity

- **Scope** of a factor f_i : set of variables it depends on.
- **Arity** of f_i : the number of variables in the scope.
- Unary factors (arity 1); Binary factors (arity 2).
- Constraints are factors that return 0 or 1.

Example: map coloring

- Scope of $f_1(X) = [WA \neq NT]$ is $\{WA, NT\}$
- f_1 is a binary factor

Assignment weights example: voting

```
x_1 f_1(x_1)
R 0
B 1
```

```
x_1 x_2 f_2(x_1, x_2)
\begin{array}{cccc} R & R & 1 \\ R & B & 0 \\ B & R & 0 \\ B & B & 1 \\ \end{array}
```

```
x_3 f_4(x_3)
R 2
B 1
```

```
x_1 x_2 x_3 Weight

R R R R 0 \cdot 1 \cdot 3 \cdot 2 = 0

R R B 0 \cdot 1 \cdot 2 \cdot 1 = 0

R B R 0 \cdot 0 \cdot 2 \cdot 2 = 0

R B B 0 \cdot 0 \cdot 3 \cdot 1 = 0

B R R 1 \cdot 0 \cdot 3 \cdot 2 = 0

B R B 1 \cdot 0 \cdot 2 \cdot 1 = 0

B R R 1 \cdot 1 \cdot 2 \cdot 2 = 4

B B B R 1 \cdot 1 \cdot 3 \cdot 1 = 3
```

Example: map coloring

Assignment: $x = \{WA: R, NT: G, SA: B, Q: R, NSW: G, V: R, T: G\}$

Weight: Weight(x) = $1 \cdot 1 = 1$

Assignment: $x' = \{WA: R, NT: R, SA: B, Q: R, NSW: G, V: R, T: G\}$

Weight: Weight(x') = $0 \cdot 0 \cdot 1 = 0$

*all the factors are multiplied (not added) thus any factor has veto power.

Assignment weights (product of all factors)

Definition: assignment weight

• Each assignment $x = (x_1, ..., x_n)$ has a weight:

Weight(
$$x$$
) = $\prod_{j=1}^{m} f_j(x)$

Objective: find the maximum weight assignment

$$\underset{x}{arg} \max_{x} Weight(x)$$

Constraint satisfaction problems

Definition: constraint satisfaction problem (CSP)

• A CSP is a factor graph where all factors are **constraints**:

$$f_j(x) \in \{0,1\} \text{ for all } j = 1, ..., m$$

• The constraint is satisfied iff $f_i(x) = 1$.

Definition: consistent assignments

• An assignment x is **consistent** iff Weight(x) = 1 (i.e., **all** constraints are satisfied).

Summary so far

Factor graph (general) CSP (all or nothing)

variables

factors constraints

maximum weight assignment consistent assignment

Example: LSAT question

Three sculptures (A, B, C) are to be exhibited in rooms 1, 2 of an art gallery.

The exhibition must satisfy the following conditions:

- Sculptures A and B cannot be in the same room.
- Sculptures B and C must be in the same room.
- Room 2 can only hold one sculpture.

Example: object tracking

- (O) Noisy sensors report positions: 0, 2, 2.
- (T) Objects can't teleport.

What trajectory did the object take?

Factor graph:

x_1	$o_1(x_1)$
0	2
1	1
2	0

$$x_2 \ o_2(x_2)$$
0 0
1 1
2 2

$$\begin{bmatrix} x_3 & o_3(x_3) \\ 0 & 0 \\ 1 & 1 \\ 2 & 2 \end{bmatrix}$$

$$|x_i - x_{i+1}| \ t_i(x_i, x_{i+1})$$
0 2
1 1
2 0

- Variables $X_i \in \{0,1,2\}$: position of object at time i
- Observation factors $o_i(x_i)$: noisy information compatible with position
- Transition factors $t_i(x_i, x_{i+1})$: object positions can't change too much

Example: event scheduling

Have *E* events and *T* time slots

- (C1) Each event *e* must be put in **exactly one** time slot
- (C2) Each time slot t can have at most one event
- (C3) Event e allowed in time slot t only if $(e, t) \in A$

Example: event scheduling (formulation 1)

Have E events and T time slots

- (C1) Each event e must be put in exactly one time slot
- (C2) Each time slot t can have at most one event
- (C3) Event e allowed in time slot t only if $(e, t) \in A$

CSP formulation 1:

- Variables: for each event $e, X_e \in \{1, ..., T\}$; satisfies (C1)
- Constraints (only one event per time slot): for each pair of events $e \neq e'$, enforce $[X_e \neq X_{e'}]$; satisfies (C2) => How many factors?
 - E.g., $\{X_1: 1, X_2: 1, X_3: 3\}$ is bad because $\{X_1 = X_2\}$
- Constraints (only schedule allowed times): for each event e, enforce $[(e, X_e) \in A]$; satisfies (C3)
 - E.g., $\{X_1: 1, X_2: 4, X_3: 3\}$ is bad because $\{(2,4) \text{ not in } A\}$

Example: event scheduling (formulation 2)

Have E events and T time slots

- (C1) Each event *e* must be put in **exactly one** time slot
- (C2) Each time slot t can have at most one event
- (C3) Event e allowed in time slot t only if $(e, t) \in A$

CSP formulation 2:

- Variables: for each time slot $t, Y_t \in \{1, ..., E\} \cup \{\emptyset\}$; satisfies (C2)
- Constraints (each event is scheduled exactly once): for each event e, enforce $[Y_t = e \text{ for exactly one } t]$; satisfies (C1)
- Constraints (only schedule allowed times): for each time slot t, enforce $[Y_t = \emptyset \text{ or } (Y_t, t) \in A]$; satisfies (C3)

Example: program verification

```
def foo(x, y):
    a = x * x
    b = a + y * y
    c = b - 2 * x * y
    return c
```

Specification: $c \ge 0$ for all x and y

CSP formulation:

- Variables: *x*, *y*, *a*, *b*, *c*
- Constraints (program statements): $[a=x^2]$, $[b=a+y^2]$, [c=b-2xy] (Note: program is assignment, and CSP is mathematical equality)
- Constraint (negation of specification): [c < 0]

Program satisfies specification iff CSP has no consistent assignment.

Summary: modeling CSP

- Decide on variables and domains
- Translate each desideratum into a set of factors
- Try to keep CSP small (variables, factors, domains, arities)
- When implementing each factor, think in terms of checking a solution rather than computing the solution