

45

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) Veröffentlichungsnummer:

0 115 640
A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 83113222.0

(51) Int. Cl.³: **C 07 D 403/04, C 07 D 403/12,**
A 61 K 31/415

(22) Anmeldetag: 30.12.83

(30) Priorität: 12.01.83 DE 3300795

(71) Anmelder: BAYER AG, Konzernverwaltung RP
Patentabteilung, D-5090 Leverkusen 1 Bayerwerk (DE)

(43) Veröffentlichungstag der Anmeldung: 15.08.84
Patentblatt 84/33

(72) Erfinder: Elbe, Hans-Ludwig, Dr., Dasnöckel 59,
D-5600 Wuppertal 11 (DE)
Erfinder: Perzborn, Elisabeth, Dr., Am Tescherbusch 13,
D-5600 Wuppertal 11 (DE)
Erfinder: Seuter, Friedel, Dr., Moospfad 16,
D-5600 Wuppertal 1 (DE)

(80) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU
NL SE

(64) Substituierte 4-Imidazolyl-pyrazole, Verfahren zu ihrer Herstellung sowie diese enthaltende Arzneimittel.

(57) Neue substituierte 4-Imidazolyl-pyrazole, mehrere Verfahren zu ihrer Herstellung sowie ihre Verwendung als Arzneimittel, insbesondere in Mitteln mit antithromboembolischer Wirkung.

EP 0 115 640 A2

0115640

- 1 -

BAYER AKTIENGESELLSCHAFT 5090 Leverkusen, Bayerwerk
Zentralbereich
Patente, Marken und Lizenzen Sft/Kü-c
Ia

Substituierte 4-Imidazolyl-pyrazole, Verfahren zu ihrer Herstellung sowie diese enthaltende Arzneimittel

Gegenstand der vorliegenden Erfindung sind neue substituierte 4-Imidazolyl-pyrazole der allgemeinen Formel (I),

in welcher

- 5 R¹ für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 12 Kohlenstoffatomen; für einen jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschiedenen substituierten Cycloalkylrest mit 3 bis 7 Kohlenstoffatomen oder Cycloalkylalkylrest mit 10 3 bis 7 Kohlenstoffatomen im Cycloalkylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil, wobei als Substituenten genannt seien: Halogen, Alkyl und Alkoxy mit jeweils 1 bis 4 Kohlenstoffatomen; für einen gegebenenfalls einfach oder mehrfach, gleich oder verschiedenen substituierten Phenoxyalkylrest mit 15 1 bis 4 Kohlenstoffatomen im Alkylteil, wobei als Phenylsubstituenten die bei Y genannten Phenylsubstituenten infrage kommen; oder für eine der Gruppierungen

0115640

- 2 -

wobei

X^1 und X^2 Halogenatome bedeuten,

γ für Halogen; Hydroxy; für einen Alkoxy- oder

5 Alkylthiorest mit jeweils 1 bis 4 Kohlenstoff-
atomen; für einen Halogenalkoxy- oder Halogen-
alkylthiorest mit jeweils 1 bis 2 Kohlenstoff-
atomen und 1 bis 5 gleichen oder verschiedenen
Halogenatomen, wie Fluor- und Chloratomen; für
10 einen Alkenyl- oder Alkinylrest mit jeweils 2
bis 6 Kohlenstoffatomen; für einen Alkoxy-
carbonyl- oder Alkylcarbonyloxyrest mit jeweils
1 bis 4 Kohlenstoffatomen im Alkylteil; für
einen gegebenenfalls einfach oder zweifach,
15 gleich oder verschieden durch Alkyl mit 1 bis 4 Koh-
lenstoffatomen oder jeweils gegebenenfalls ein-
fach bis dreifach, gleich oder verschieden substi-
tuiertes Phenyl oder Phenylalkyl mit 1 bis 2 Kohlen-
stoffatomen im Alkylteil, wobei jeweils der Phenyl-
20 rest als Substituenten Halogen, Alkyl mit 1 bis 4
Kohlenstoffatomen oder Trifluormethyl enthalten kann,
substituierten Carbamoyloxyrest, für einen Aldoxim-
oder Ketoim-Rest oder deren Ether-Derivate; für
einen jeweils gegebenenfalls einfach oder
25 mehrfach, gleich oder verschieden substituier-
ten Phenyl-, Phenoxy-, Phenylthio-, Phenyl-
alkoxy- oder Phenylalkylthiorest mit jeweils
1 bis 4 Kohlenstoffatomen im Alkylteil, wo-
bei jeweils der Phenylrest als Substituenten

30 Halogen, Alkylreste mit 1 bis 4 Kohlenstoff-
atomen, Hydroxy, Alkoxy oder Alkylthioreste

Le A 22 080

mit jeweils 1 bis 2 Kohlenstoffatomen, Halogen-
alkyl-, Halogenalkoxy- oder Halogenalkylthio-
reste mit jeweils 1 bis 2 Kohlenstoffatomen
und 1 bis 5 gleichen oder verschiedenen Halogen-
5 atomen, wie Fluor- und Chloratomen, Dialkyl-
aminoreste mit 1 bis 4 Kohlenstoffatomen in je-
dem Alkylteil, Hydroxycarbonyl-, Alkoxycarbonyl-,
Alkylcarbonyl- oder Alkylcarbonyloxyreste mit
jeweils 1 bis 4 Kohlenstoffatomen in jedem
10 Alkylteil, Nitro oder Cyano enthalten kann;
oder für einen gegebenenfalls einfach oder
mehrfach, gleich oder verschieden durch Alkyl-
reste mit 1 bis 2 Kohlenstoffatomen und/oder
Halogen substituierten 5- oder 6-gliedrigen
15 Heteroarylrest mit 1 bis 2 Heteroatomen, wie
vorzugsweise Stickstoff-, Sauerstoff- und
Schwefelatom, steht;

Het einen, gegebenenfalls durch Alkylreste mit 1
20 bis 4 Kohlenstoffatomen oder durch jeweils
gegebenenfalls einfach oder mehrfach, gleich
oder verschieden substituierte Phenyl- oder
Phenoxyalkylreste mit 1 bis 4 Kohlenstoff-
atomen im Alkylteil einfach oder mehrfach,
gleich oder verschieden substituierten, 5-
25 oder 6-gliedrigen heteroaliphatischen Rest
mit Sauerstoff und/oder Schwefel als Hetero-
atome darstellt, wobei die Phenylreste als
Substituenten Halogen, Alkylreste mit 1 bis 4
Kohlenstoffatomen, Alkoxy- oder Alkylthio-

0115640

- 4 -

reste mit jeweils 1 bis 2 Kohlenstoffatomen und
1 bis 5 gleichen oder verschiedenen Halogen-
atomen, wie vorzugsweise Fluor- und Chlora-
atomen enthalten können;

5 n eine der Zahlen 0, 1 oder 2 bedeutet und

m für 0 oder 1 steht; ferner

R² für Wasserstoff; für einen geradkettigen oder
verzweigten Alkylrest mit 1 bis 12 Kohlenstoff-
atomen; für einen Alkenyl- oder Alkinylrest

10 mit jeweils 3 bis 6 Kohlenstoffatomen; für
einen Alkylcarbonyl- oder Alkoxy carbonylrest
mit jeweils 1 bis 4 Kohlenstoffatomen im Alkyl-
teil; für einen jeweils gegebenenfalls einfach
oder mehrfach, gleich oder verschieden substi-
tuierten Phenyl- oder Benzylrest, wobei als
Substituenten die bei Y bereits genannten
Phenylsubstituenten infrage kommen; oder für
einen gegebenenfalls einfach oder mehrfach,
gleich oder verschieden durch Alkylreste mit

15 20 25 1 bis 2 Kohlenstoffatomen und/oder Halogen
substituierten 5- oder 6-gliedrigen Hetero-
arylrest mit 1 bis 2 Heteroatomen, wie Stick-
stoff-, Sauerstoff- oder Schwefelatomen steht,
sowie pharmakologisch unbedenkliche Säure-
additionssalze von Verbindungen der Formel (I).

Le A 22 080

Erfnungsgemäß bevorzugt sind diejenigen Verbindungen der Formel (I), in denen

R¹ für einen geradkettigen oder verzweigten Alkylrest mit 3 bis 8 Kohlenstoffatomen; für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituierten Cycloalkylrest mit 3 bis 7 Kohlenstoffatomen oder Cycloalkylmethylrest mit 3 bis 7 Kohlenstoffatomen im Cycloalkylteil, wobei als Substituenten Chlor, Brom, Methyl, Ethyl, Isopropyl, Methoxy und Ethoxy in Frage kommen; für einen jeweils einfach oder mehrfach, gleich oder verschieden substituierten Phenoxyethyl- oder Phenoxyethylrest, wobei als Phenylsubstituenten die bei Y genannten Phenylsubstituenten infrage kommen; oder für eine der Gruppierungen

steht, wobei

X¹ und X² ein Fluor-, Chlor- oder Bromatom bedeuten;

Y für Fluor, Chlor, Brom, Hydroxy, einen geradkettigen oder verzweigten Alkoxy- oder Alkylthiorest mit jeweils 1 bis 4 Kohlenstoffatomen,

0115640

- 6 -

einen Trifluormethoxy-, Trifluormethylthio-,
Vinyl-, Allyl-, Acetylenyl-, Propargyl-, Alkoxy-
carbonyl oder Alkylcarbonyloxyrest mit jeweils
1 bis 4 Kohlenstoffatomen im Alkylteil, einen
5 Alkyl- oder Dialkylcarbamoyloxyrest mit jeweils
1 bis 2 Kohlenstoffatomen in jedem Alkylteil,
einen Phenyl- oder Phenyl-alkyl-carbamoyloxy-
rest mit 1 bis 2 Kohlenstoffatomen im Alkyl-
teil, wobei der Phenylrest jeweils einfach bis
10 dreifach, gleich oder verschieden durch Fluor,
Chlor, Methyl oder Trifluormethyl substituiert
sein kann, für einen Hydroximinomethyl- oder
Alkoximinomethylrest mit 1 bis 4 Kohlenstoff-
atomen im Alkoxyteil, für einen 1-Hydroximino-
ethyl- oder 1-Alkoxyiminoethylrest mit 1 bis 4
15 Kohlenstoffatomen im Alkoxyteil, für einen je-
weils gegebenenfalls einfach bis dreifach,
gleich oder verschieden substituierten Phenyl-,
Phenoxy-, Phenylthio-, Phenylmethoxy- oder
Phenylmethylthiorest, wobei jeweils als Phenyl-
20 substituenten genannt seien: Fluor, Chlor,
Brom, Methyl, Ethyl, Hydroxy, Methoxy, Methyl-
thio, Trifluormethyl, Trifluormethoxy, Tri-
fluormethylthio, Dimethylamino, Hydroxycarbonyl,
25 Methoxycarbonyl, Ethoxycarbonyl, Methylcarbonyl,
Ethylcarbonyl, Methylcarbonyloxy, Ethylcarbonyl-
oxy, Nitro und Cyano; oder für einen jeweils
gegebenenfalls einfach oder zweifach, gleich
oder verschieden durch Fluor, Chlor, Brom,
30 Methyl oder Ethyl substituierten Pyridinyl-,
Pyrimidinyl-, Furyl- oder Thiophenylrest steht;

0115640

- 7 -

- Het für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituierten Dioxolanyl- oder Dioxanylrest steht, wobei als Substituenten Methyl, Ethyl, n-
5 Propyl, i-Propyl sowie jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl und Phenoxymethyl in Frage kommen;
- 10 n eine der Zahlen 0, 1 oder 2 bedeutet,
- m für 0 oder 1 steht; und
- R² für Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, Allyl, Propargyl, Methylcarbonyl, Ethylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, ferner für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituierten Phenyl- oder Benzylrest, wobei als Substituenten die bei Y bereits genannten
15 Phenylsubstituenten infrage kommen, oder für einen jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Fluor, Chlor, Brom, Methyl oder Ethyl substituierten Pyridinyl-, Pyrimidinyl-, Furyl- oder Thiophenylrest steht.
- 20
- 25

Le A 22 080

Erfindungsgemäß besonders bevorzugt sind diejenigen Verbindungen der allgemeinen Formel (I), in denen

R¹ für einen geradkettigen oder verzweigten Alkylrest mit 3 bis 4 Kohlenstoffatomen; für einen jeweils einfach oder mehrfach, gleich oder verschieden substituierten Phenoxyethyl- oder Phenoxyethylrest, wobei als Phenylsubstituenten die bei Y genannten Phenylsubstituenten infrage kommen; oder für eine der Gruppierungen

10 steht, wobei

X¹ und X² ein Fluor- oder Chloratom bedeuten;

Y für Fluor, Chlor, einen geradkettigen oder verzweigten Alkoxy- oder Alkylthiorest mit jeweils 1 bis 2 Kohlenstoffatomen, einen Trifluormethoxy- oder Trifluormethylthiorest, für einen Hydroximinomethyl- oder Alkoxyiminomethylrest mit 1 bis 2 Kohlenstoffatomen im Alkylteil, für einen 1-Hydroximinoethyl- oder 1-Alkoxyiminoethylrest mit 1 bis 2 Kohlenstoffatomen im Alkoxyteil, für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschiedenen substituierten Phenyl-, Phenoxy-, Phenylthio-, Phenylmethoxy- oder Phenylmethylthiorest, wobei jeweils als Phenylsubstituenten genannt seien: Fluor, Chlor, Brom, Methyl, Hydroxy, Methoxy, Methylthio, Trifluormethyl, Trifluormethoxy, Trifluormethylthio und Hydroxycarbonyl.

Het für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituierten Dioxolanyl- oder Dioxanylrest steht, wobei als Substituenten Methyl, Ethyl, n-Propyl, i-Propyl sowie jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Fluor, Chlor, Methyl, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl und Phenoxy methyl in Frage kommen;

n eine der Zahlen 0, 1 oder 2 bedeutet,

10 m für 0 oder 1 steht; und

15 R² für Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit 1 bis 2 Kohlenstoffatomen, Allyl, Propargyl, Methylcarbonyl, Methoxycarbonyl, ferner für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituierten Phenyl- oder Benzylrest, wobei als Substituenten die bei Y bereits genannten Phenylsubstituenten infrage kommen.

Die erfindungsgemäßen Verbindungen der Formel (I) können auch in der isomeren Form der allgemeinen Formel (Ia)

aufreten. Beide isomeren Formen werden erfindungsgemäß beansprucht.

ch
Die erfindungsgemäßen 4-Imidazolylpyrazole der Formel (I) können hergestellt werden, indem man entweder

25 a) Imidazolyl-Ketoamine der Formel (II),

in welcher

Le A 22 080

R¹ die oben angegebene Bedeutung hat und

R³ und R⁴ gleich oder verschieden sind und für
Alkylreste mit 1 bis 4 Kohlenstoff-
atomen stehen; oder gemeinsam mit dem
N-Atom, an das sie gebunden sind, einen
jeweils gegebenenfalls einfach bis drei-
fach durch Alkylreste mit 1 bis 4
Kohlenstoffatomen substituierten Piperi-
danyl-, Pyrrolidinyl- oder Morpholinyl-
rest bilden,

10

mit Hydrazinen der Formel (III),

in welcher

R² die oben angegebene Bedeutung hat,

15

gegebenenfalls in Gegenwart eines Verdünnungsmittels
umsetzt, oder

- b) gegebenenfalls die nach dem Verfahren (a) erhält-
lichen Imidazolyl-pyrazol-Derivate der Formel (Ib),

20

in welcher

R¹ die oben angegebene Bedeutung hat,

0115640

- 11 -

mit Halogeniden der Formel (IV)

Hal-R⁵ (IV)

in welcher

5 R⁵ für die Bedeutungen von R², außer für Wasser-
stoff, steht und

Hal ein Halogenatom bedeutet,

in Gegenwart einer Base und gegebenenfalls in Gegen-
wart eines Verdünnungsmittels umsetzt.

10 An die so erhaltenen Verbindungen der Formel (I) kann
gegebenenfalls anschließend eine Säure addiert werden.

Überraschenderweise besitzen die Verbindungen der all-
gemeinen Formel (I) eine stärkere und spezifischere
Hemmung auf die Thromboxansynthese als die aus dem
Stand der Technik bekannten Stoffe. Darüber hinaus
15 hemmen die Verbindungen der Formel (I) die Thrombo-
zytenaggregation. Ihre Verwendung in Arzneimitteln mit
thromboxansynthetasehemmender Wirkung stellt eine Be-
reicherung der Pharmazie dar.

20 Im einzelnen seien außer den Verbindungen der Her-
stellungsbeispiele die folgenden Verbindungen der all-
gemeinen Formel (I) genannt, bei welchen R² für Wasser-
stoff steht (angegeben ist jeweils die Bedeutung des
Restes R¹):

Le A 22 080

0115640

- 12 -

	$(CH_3)_2CH-$
	$(CH_3)_2CH-C(CH_3)_2-$
	$n-C_3H_7-C(CH_3)_2-$
	$n-C_4H_9-C(CH_3)_2-$
	$(CH_3)_3C-CH_2-C(CH_3)_2-$
	$CH_2=CH-C(CH_3)_2-$
	$HO-CH_2-C(CH_3)_2-$
	$Cl-CH_2-C(CH_3)_2-$
	$F-CH_2-C(CH_3)_2-$
	$CH_3-C(CH_2Cl)_2-$
	$Cl-CH_2CH_2-C(CH_3)_2-$
	$F-CH_2CH_2-C(CH_3)_2-$
	$CH_3CO-O-CH_2-C(CH_3)_2-$
$CH_2=CH-CH_2-C(CH_3)_2-$	
$CH\equiv C-CH_2-C(CH_3)_2-$	
$NC-CH_2-C(CH_3)_2-$	

Le A 22 080

0115640

- 13 -

CL

Le A 22 080

0115640

- 14 -

Le A 22 080

0115640

- 15 -

Le A 22 080

0115640

- 16 -

In der nachfolgenden Tabelle sind erfahrungsgemäße Verbindungen aufgeführt, bei denen $R^2 \neq H$:

R^1	R^2
	$-CH_3$
"	$-COCH_3$

Le A 22 080

0115640

- 17 -

Le A 22 080

0115640

- 18 -

Nachstehend seien die Verfahren zur Herstellung der erfindungsgemäßen Verbindungen näher erläutert.

5 Verwendet man beispielsweise 1-Dimethylamino-4,4-dimethyl-2-(imidazol-1-yl)-1-penten-3-on und Hydrazin als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema wiedergegeben werden:

10 Verwendet man beispielsweise 1-Dimethylamino-4,4-dimethyl-2-(imidazol-1-yl)-1-penten-3-on und Methylhydrazin als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema wiedergegeben werden:

15 Verwendet man beispielsweise 3-tert.-Butyl-4-(imidazol-1-yl)-pyrazol und Acetylchlorid als Ausgangsstoffe, so kann der Ablauf des erfindungsgemäßen Verfahrens (b) durch das folgende Formelschema wiedergegeben werden:

0115640

- 19 -

Die im erfindungsgemäßen Verfahren (a) als Ausgangsstoffe zu verwendenden Imidazolyl-Ketoamine sind durch die obige Formel (II) allgemein definiert.

- 5 Die Imidazolyl-Ketoamine der Formel (II) sind bekannt (vgl. DE-OS 3 000 643 bzw. die deutsche Patentanmeldung P 32 29275 vom 04.08.1982) und können erhalten werden, indem man Imidazolylketone der Formel (V),

- 10 in welcher

R^1 die oben angegebene Bedeutung hat,

mit Amidacetalen bzw. Aminalestern der Formeln

beziehungsweise

Le A 22 080

0115640

- 20 -

in welcher

R^3 und R^4 die oben angegebenen Bedeutungen haben und

R^6 für Alkyl mit 1 bis 4 Kohlenstoffatomen steht,

5 in an sich bekannter Art und Weise in Gegenwart eines
inerten organischen Lösungsmittels, wie beispielsweise
eines aromatischen Kohlenwasserstoffes, in der Siede-
hitze umsetzt, wobei man vorzugsweise Amidacetal bzw.
10 Aminalester der Formel (VIIa) bzw. (VIIb) im Überschuß
einsetzt (vgl. hierzu auch Chem. Ber. 101, 41 - 50
(1968); J. Org. Chem. 43, 4248 - 4250 (1978) sowie die
Herstellungsbeispiele).

Die Imidazolylketone der Formel (V) sind bekannt (vgl.
beispielsweise DE-OS 3 048 266 und DE-OS 31 45 858) bzw.
15 können sie nach üblichen Methoden hergestellt werden,
indem man z.B. die entsprechenden Halogen-Ketone in
Gegenwart eines Säurebinders mit Imidazol umsetzt.

Die außerdem für das erfindungsgemäße Verfahren (a) als
Ausgangsstoffe zu verwendenden Hydrazine sind durch die
20 Formel (III) allgemein definiert. Die Hydrazine der
Formel (III) sind allgemein bekannte Verbindungen der
organischen Chemie.

Le A 22 080

0115640

- 21 -

Die im erfindungsgemäßen Verfahren (b) als Ausgangsstoffe zu verwendenden Derivate der Formel (Ib) sind erfindungsgemäße Stoffe.

5 Die außerdem für das erfindungsgemäße Verfahren (b) als Ausgangsstoffe zu verwendenden Halogenide sind durch die Formel (IV) allgemein definiert.

Auch die Halogenide der Formel (IV) sind allgemein bekannte Verbindungen der organischen Chemie.

- 10 Als Verdünnungsmittel kommen für das erfindungsgemäße Verfahren (a) unter den Reaktionsbedingungen inerte organische Lösungsmittel infrage. Hierzu gehören vorzugsweise Ether, wie z.B. Diethylether, Diisopropylether, Dimethoxyethan, Dioxan oder Tetrahydrofuran; Nitrile, wie z.B. Acetonitril oder Propionitril; aromatische Kohlenwasserstoffe, wie z.B. Benzol, Toluol oder Chlorbenzol; aliphatische Kohlenwasserstoffe, wie z.B. Cyclohexan oder 1,2-Dichlorethan; Amide, wie z.B. Dimethylformamid oder Dimethylacetamid; Sulfoxide, wie z.B. Dimethylsulfoxid; sowie Hexamethylphosphorsäuretriamid.
- 15 20 Die Reaktionstemperaturen können beim erfindungsgemäßen Verfahren (a) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man zwischen 0 und 150°C, vorzugsweise zwischen 10 und 100°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens
5 (a) setzt man in der Regel auf 1 Mol Imidazolyl-Ketoenamin
der Formel (II) 1 bis 2 Mol, vorzugsweise 1 bis 1,1 Mol
Hydrazin der Formel (III) ein. Die Isolierung der Endpro-
dukte erfolgt in üblicher Weise.

Als Verdünnungsmittel kommen für das erfindungsgemäße
Verfahren (b) alle unter den Reaktionsbedingungen inner-
10 ten organischen Lösungsmittel infrage. Hierzu gehören
vorzugsweise Ether, wie z.B. Diethylether, Dimethoxy-
methan, Tetrahydrofuran oder Dioxan; Nitrile, wie z.B.
Acetonitril oder Propionitril; Amide, wie z.B. Dimethyl-
formamid oder Dimethylacetamid; Sulfoxide, wie z.B.
Dimethylsulfoxid; sowie Hexamethylphosphorsäuretriamid.

15 Das erfindungsgemäße Verfahren (b) wird in Gegenwart
einer Base durchgeführt. Geeignete Basen sind bei-
spielsweise Alkalihydroxide, wie Natriumhydroxid oder
Kaliumhydroxid; Alkalialkoholate, wie Natriummethylat
oder Kalium-tert.-butylat; Alkalihydride, wie Natrium-
hydrid; sowie metallorganische Verbindungen, wie Butyl-
20 lithium, tert.-Butyllithium oder Phenyllithium.

Die Reaktionstemperaturen können beim erfindungsgemäßen
Verfahren (b) in einem größeren Bereich variiert werden.
Im allgemeinen arbeitet man zwischen 0 und 150 °C, vor-
zugsweise zwischen 10 und 100 °C.

Bei der Durchführung des erfindungsgemäßen Verfahrens
(b) setzt man in der Regel auf 1 Mol Imidazolyl-pyrazol-
Derivat der Formel (Ia) 1 bis 2 Mol, vorzugsweise 1 bis
1,2 Mol an Halogenid der Formel (IV) ein. Die Isolierung
5 der Endprodukte erfolgt in üblicher Weise.

Die nach den erfindungsgemäßen Verfahren erhältlichen
Verbindungen der Formel (I) können in Säureadditions-
Salze überführt werden.

Zur Herstellung von physiologisch verträglichen Säure-
10 additions-Salzen der Verbindungen der Formel (I) kommen
vorzugsweise folgende Säuren infrage: Die Halogenwasser-
stoffsäuren, wie z.B. Chlorwasserstoffsäure und die
Bromwasserstoffsäure, insbesondere die Chlorwasserstoff-
säure, ferner Phosphorsäure, Salpetersäure, Schwefel-
15 säure, mono- und bifunktionelle Carbonsäuren und Hy-
droxycarbonsäuren, wie z.B. Essigsäure, Maleinsäure,
Bernsteinsäure, Fumarsäure, Weinsäure, Zitronensäure,
Salicylsäure, Sorbinsäure, Milchsäure sowie Sulfon-
säuren wie z.B. p-Toluolsulfonsäure und 1,5-Naphthalin-
20 disulfonsäure.

Die Säureadditions-Salze der Verbindungen der Formel (I)
können in einfacher Weise nach üblichen Salzbildungs-
methoden, z.B. durch Lösung einer Verbindung der Formel
(I) in einem geeigneten inerten Lösungsmittel und Hin-
25 zufügen der Säure, z.B. Chlorwasserstoffsäure, erhalten
werden und in bekannter Weise, z.B. durch Abfiltrieren,
Isolieren und gegebenenfalls durch Waschen mit einem
inerten organischen Lösungsmittel gereinigt werden.

0115640

- 24 -

Bei ihrer pharmazeutischen Anwendung können die erfindungsgemäßen Verbindungen als solche der in Form ihrer physiologisch unbedenklichen Salze eingesetzt werden.

- 5 Als Zubereitungsformen kommen die üblichen galenischen Applikationsformen infrage, beispielsweise Cremes, Tabletten, Pillen, Kapseln, Suppositorien, Emulsionen, Infusions- und Injektionslösungen. Diese Zubereitungsformen werden nach an sich bekannten Methoden hergestellt unter Verwendung üblicher Hilfs- und/oder Trägerstoffe.
- 10 Der Einsatz der so hergestellten Arzneimittel erfolgt je nach Bedarf z.B. durch lokale, parenterale oder orale Verabreichung.

15 Besonders geeignet sind Formulierungen, die die erfindungsgemäßen Verbindungen in einer Konzentration von etwa 0,1 bis 10 Gew.-% enthalten. Besonders bevorzugt sind wäßrige Lösungen, die gegebenenfalls auf einen pH-Wert von 6 bis 2 gepuffert sind.

20 Die Dosierung der erfindungsgemäßen Verbindungen liegt vorzugsweise in einem Bereich von 0,05 bis 100 mg/kg, insbesondere von 0,1 bis 20 mg/kg Körpergewicht.

Le A 22 080

0115640

- 25 -

Herstellungsbeispiele

Beispiel 1

(Verfahren a)

5 22,1 g (0,1 Mol) 1-Dimethylamino-4,4-dimethyl-2-(imidazol-1-yl)-1-penten-3-on und 10 g (0,2 Mol) Hydrazinhydrat werden 15 Minuten unter Rückfluß erhitzt. Man läßt abkühlen und versetzt das Reaktionsgemisch mit Wasser.
10 Der wasserunlösliche Rückstand wird abgetrennt und in Diethylether verrührt. Der kristalline Rückstand wird abgesaugt und bei 60°C im Vakuum getrocknet. Man erhält 10,5 g (55,3 % der Theorie) 4-tert.-Butyl-4-(imidazol-1-yl)-pyrazol vom Schmelzpunkt 165°C.

Herstellung des Ausgangsproduktes

41,6 g (0,25 Mol) 3,3-Dimethyl-1-(imidazol-1-yl)-butan-2-on werden mit 35,7 g (0,3 Mol) Dimethylformamid-dimethylacetal 5 Stunden unter Rückfluß erhitzt. Danach

Le A 22 080

wird das überschüssige Acetal abdestilliert. Das zurückbleibende Öl kristallisiert beim Abkühlen. Man erhält 50 g (90,5 % der Theorie) 4,4-Dimethyl-1-dimethylamino-2-(imidazol-1-yl)-1-penten-3-on vom Schmelzpunkt 45 bis 50 °C.

Beispiel 2

(Verfahren a)

10 22,1 g (0,1 Mol) 1-Dimethylamino-4,4-dimethyl-2-(imidazol-1-yl)-1-penten-3-on und 4,6 g (0,1 Mol) Methylhydrazin werden bei 80°C gerührt. Man lässt abkühlen und verröhrt das Reaktionsgemisch mit Wasser. Der kristalline Niederschlag wird abfiltriert, mit Wasser gewaschen und im Vakuum bei 60°C getrocknet.

15 Man erhält 10,4 g (51 % der Theorie) 3-tert.-Butyl-1-methyl-4-(imidazol-1-yl)-pyrazol vom Schmelzpunkt 74 bis 76°C.

Beispiel 3

0115640

- 27 -

(Verfahren b)

11,4 g (0,06 Mol) 3-tert.-Butyl-4-(imidazol-1-yl)-pyrazol (Beispiel 1) werden bei Raumtemperatur zu einer Suspension von 1,44 g (0,06 Mol) Natriumhydrid in 100 ml Tetrahydrofuran gegeben. Man röhrt das Reaktionsgemisch bis zur Beendigung der Wasserstoffentweichung nach und versetzt dann mit 4,95 g (0,063 Mol) Acetylchlorid. Man läßt 4 Stunden unter Rückfluß röhren, kühl ab und gießt auf Wasser. Danach wird mit Methylenchlorid extrahiert.
5 Die vereinigten Methylenchloridphasen werden mit Natriumhydrogencarbonat und Wasser gewaschen, über Natriumsulfat getrocknet und eingeengt. Der Rückstand kristallisiert beim Verrühren in Petrolether. Die Kristalle werden abgesaugt und im Vakuum bei 60°C getrocknet. Man erhält 9,9 g (71,1 % der Theorie) 1-Acetyl-3-tert.-butyl-
10 15 4-(imidazol-1-yl)-pyrazol vom Schmelzpunkt 80°C.

In analoger Weise und entsprechend den erfundungsgemäßen Verfahren werden die Verbindungen der allgemeinen Formel (I)

20

der nachfolgenden Tabelle 2 erhalten:

Le A 22 080

0115640

- 28 -

Beisp.-Nr.	R ¹	R ²	Schmp. °C 20 bzw. n _D
4	(CH ₃) ₃ C-		174
5		H	143
6	C ₂ H ₅ O-CH ₂ -C(CH ₃) ₂ -	H	84
7		H	158
8		H	108
9		H	140-141
10	CH ₃ -C(CH ₂ F) ₂ -	H	158-160
11		H	148
12		H	48
13		H	134
14	i-C ₃ H ₇ -	H	103
15		-CH ₃	1,5644
16		H	122
17		H	254
18		H	150
19		H	156-158

Le A 22 080

0115640

- 29 -

Beisp.-Nr.	R ¹	R ²	Schmp. °C bzw. n _D ²⁰
20	<chem>CH3Oc1ccccc1OCC(C)C</chem>	H	zähes Oel
21	<chem>Fc1ccccc1OCC(C)C</chem>	H	133
22	<chem>(C)3C(c1ccccc1)OCC(C)C</chem>	-Cl	98
23	<chem>ClC1OCOC1C(C)C</chem>	H	181
24	<chem>CC1(OCC1)OC</chem>	H	190
25	<chem>CC(=O)C1OCOC1OCC(C)C</chem>	H	154

Le A 22 080

0115640

- 30 -

Verwendungsbeispiele

Beispiel A

Thrombozytenaggregationshemmung

Für die Bestimmung der thrombozytenaggregationshemmenden
5 Wirkung wurde Blut von gesunden Spendern, die mindestens
14 Tage lang kein Medikament eingenommen hatten, verwendet.
Das Blut wurde in 3,8 %-iger Natriumcitratlösung aufge-
nommen. Plättchenreiches Plasma (PRP) wurde durch 20 Mi-
nuten Zentrifugation bei 150 g und Raumtemperatur ge-
wonnen (Jürgens/Beller: Klinische Methoden der Blutge-
rinnungsanalyse; Thieme-Verlag Stuttgart 1959). Die
10 Plättchenaggregation wurde nach der turbidometrischen
Methode (Born, G.V.R.: J. Physiol. 162, 67 (1962)) im
Aggregometer bei 37°C bestimmt. Hierzu wurde PRP mit
15 Prüfsubstanz bei 37°C inkubiert und anschließend die
Aggregation durch Zugabe einer Kollagensuspension aus-
gelöst. Bestimmt wurde die minimale Konzentration einer
Prüfsubstanz, die die Thrombozytenaggregation hemmte.

In diesem Test wird die Thrombozytenaggregation insbe-
20 sondere durch die Verbindungen folgender Herstellungs-
beispiele gehemmt: 1, 2, 9 und 15.

Le A 22 080

0115640

- 31 -

Beispiel B

Thromboxansynthetasehemmung

Der Arachidonsäuremetabolismus in Human-Thrombozyten wurde mit Hilfe von Tritium-markierter Arachidonsäure untersucht. Die Thrombozyten metabolisieren die Arachidonsäure über den Cyclooxygenaseweg vor allem zu TXA₂ und HHT und über den Lipoxygenaseweg zu 12-HETE, die dünnenschichtchromatographisch getrennt werden können (Bailey, J.M. et al., Prostaglandins 13, 479 - 492 (1977)). Inhibitoren der einzelnen enzymatischen Reaktionen verändern das chromatographische Verteilungsmuster in charakteristischer Weise.

Gewaschene Human-Thrombozyten von gesunden Spendern, die mindestens seit 14 Tagen kein Medikament eingenommen hatten, wurden mit Prüfsubstanz 2 Minuten bei 37°C inkubiert und anschließend mit ³H-Arachidonsäure weitere 10 Minuten bei 37°C inkubiert. Die Suspension wurde angesäuert und mit Essigester extrahiert. Der Essigester wurde unter N₂ abgedampft und der Rückstand in CH₃OH/CHCl₃ (1:1) aufgenommen und auf DC-Plastikfolien aufgetragen. Die Trennung erfolgte mit einem Fließmittelgemisch CHCl₃/CH₃OH/Eisessig/H₂O (80 : 8 : 1 : 0,8). Die Verteilung der Radioaktivität wurde mittels eines Radioscanners gemessen. Bestimmt wurde die minimale Konzentration einer Prüfsubstanz, die zu signifikanten Veränderungen des Verteilungsmusters der Eikosanoide führte.

Le A 22 080

0115640

- 32 -

In diesem Test wird die TXA₂-Synthese insbesondere durch die Verbindungen folgender Herstellungsbeispiele gehemmt, ohne daß die Cyclooxygenase signifikant beeinflußt wird:
1, 2, 9, 10 und 15.

5 Tabelle zu Beispielen A und B

Substanz gemäß Bei- spiel-Nr.	TXA ₂ -Synthetasehemmung	Hemmung der Throm- bozytenaggregation
	minimal effektive Konzentration (g/ml)	
1	3-1x10 ⁻⁶	3-1x10 ⁻⁵
2	1x10 ⁻⁶ -3x10 ⁻⁷	3-1x10 ⁻⁵
10	3-1x10 ⁻⁶	--
15	1x10 ⁻⁶ -3x10 ⁻⁷	3x10 ⁻⁵
9	1x10 ⁻⁴ -3x10 ⁻⁵	3-1x10 ⁻⁵
Imidazol ^{x)}	1x10 ⁻⁴ -3x10 ⁻⁵	3x10 ⁻⁵

x) Imidazol ist ein spezifischer TXA₂-Synthetasehemmer (Needleman, P., Raz, A., Ferrendelli, J.A., Minkes, M.: Proc. Natl. Acad. Sci. USA 74, 1716 - 1720, (1977)).

0115640

- 33 -

Patentansprüche

1. Verbindungen der allgemeinen Formel (I)

in welcher

5 R^1 für einen geradkettigen oder verzweigten Alkylrest mit 1 bis 12 C-Atomen; für einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen oder C_1-C_4 -Alkyl- oder
10 Alkoxyreste substituierten Cycloalkylrest mit 3 bis 7 C-Atomen oder Cycloalkylalkylrest mit 3 bis 7 C-Atomen im Cycloalkylteil und 1 bis 4 C-Atomen im Alkylteil; für einen gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch einen der bei Y genannten Phenyl-
15 substituenten substituierten Phenoxyalkylrest mit 1 bis 4 Kohlenstoffatomen im Alkylteil;
oder für eine der Gruppierungen

Le A 22 080

wobei

x^1 und x^2 Halogenatome bedeuten,

y für Halogen; für Hydroxy; für einen Alkoxy- oder Alkylthiorest mit jeweils 1 bis 4 Kohlenstoffatomen; für einen Halogenalkoxy- oder Halogenalkylthiorest mit jeweils 1 bis 2 Kohlenstoffatomen und 1 bis 5 gleichen oder verschiedenen Halogenatomen; für einen Alkenyl- oder Alkinylrest mit jeweils 2 bis 6 Kohlenstoffatomen; für einen Alkoxy carbonyl- oder Alkylcarbonyloxyrest mit jeweils 1 bis 4 Kohlenstoffatomen im Alkylteil; für einen gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Alkyl mit 1 bis 4 Kohlenstoffatomen oder jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden substituiertes Phenyl oder Phenylalkyl mit 1 bis 2 Kohlenstoffatomen im Alkylteil, wobei jeweils der Phenylrest als Substituenten Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen oder Trifluormethyl enthalten kann, substituierten Carbamoyloxyrest; für einen Aldoxim- oder Ketoxim-Rest oder deren Ether-Derivate; für einen jeweils gegebenenfalls einfach oder mehrfach, gleich oder verschieden durch Halogen, Alkylreste mit 1 bis 4 Kohlenstoffatomen, Hydroxy, Alkoxy- oder Alkylthioste mit jeweils 1 bis 2 Kohlenstoffatomen, Halogenalkyl-, Halogenalkoxy- oder Halogenalkylthioste mit jeweils 1 bis 2 Kohlenstoffatomen und 1 bis 5 gleichen oder verschiedenen Halogenatomen, Dialkylaminorest mit 1 bis 4 Kohlenstoffatomen in jedem

0115640

- 35 -

Alkylteil, Hydroxycarbonyl-, Alkoxycarbonyl-,
Alkylcarbonyl- oder Alkylcarbonyloxyreste mit
jeweils 1 bis 4 Kohlenstoffatomen in je-
dem Alkylteil, Nitro oder Cyano substitu-
ierten Phenyl-, Phenoxy-, Phenylthio-,
Phenylalkoxy- oder Phenylalkylthioreste mit
jeweils 1 bis 4 C-Atomen im Alkylteil;
oder für einen gegebenenfalls einfach
oder mehrfach, gleich oder verschieden
durch Alkylreste mit 1 bis 2 Kohlenstoff-
atomen und/oder Halogen substituierten
5- oder 6-gliedrigen Heteroarylrest mit
1 bis 2 Heteroatomen, steht;

Het einen gegebenenfalls einfach oder mehr-
fach, gleich oder verschieden durch Alkyl-
reste mit 1 bis 4 Kohlenstoffatomen oder
durch jeweils gegebenenfalls einfach oder
mehrfach, gleich oder verschieden substi-
tuierte Phenyl- oder Phenoxyalkylreste mit
1 bis 4 Kohlenstoffatomen im Alkylteil,
substituierten 5- oder 6-gliedrigen hetero-
aliphatischen Rest mit Sauerstoff und/oder
Schwefel als Heteroatome darstellt, wobei
die Phenylreste durch Halogen, Alkylreste
mit 1 bis 4 Kohlenstoffatomen, Alkoxy-
oder Alkylthioreste mit jeweils 1 bis 2
Kohlenstoffatomen sowie Halogenalkyl-,
Halogenalkoxy- oder Halogenalkylthioreste
mit jeweils 1 bis 2 Kohlenstoffatomen und
1 bis 5 gleichen oder verschiedenen Halo-
genatomen substituiert sein können;

Le A 22 080

n eine der Zahlen 0, 1 oder 2 bedeutet und

m für 0 oder 1 steht; ferner

R² für Wasserstoff; für ein geradkettigen
oder verzweigten Alkylrest mit 1 bis 12

5 Kohlenstoffatomen; für einen Alkenyl-
oder Alkinylrest mit jeweils 3 bis 6
Kohlenstoffatomen; für einen Alkylcar-
bonyl- oder Alkoxy carbonylrest mit je-
weils 1 bis 4 Kohlenstoffatomen im Alkyl-
teil; für einen jeweils gegebenenfalls
einfach oder mehrfach, gleich oder ver-
schieden durch die bei Y bereits genann-
ten Phenylsubstituenten substituierten

10 Phenyl- oder Benzylrest; oder für
einen gegebenenfalls einfach oder mehr-
fach, gleich oder verschieden durch
Alkylreste mit 1 bis 2 Kohlenstoffatomen
und/oder Halogen substituierten 5- oder
15 6-gliedrigen Heteroarylrest mit 1 bis 2
Heteroatomen steht,

20 sowie pharmakologisch unbedenkliche Säureadditions-

salze von Verbindungen der Formel (I).

2. Verbindungen gemäß Anspruch 1, dadurch gekenn-
zeichnet, daß

0115640

- 37 -

R¹ für einen geradkettigen oder verzweigten
Alkylrest mit 3 bis 8 Kohlenstoffatomen;
für einen jeweils gegebenenfalls einfach
bis dreifach, gleich oder verschieden
durch Chlor, Brom, Methyl, Ethyl, Iso-
propyl, Methoxy oder Ethoxy substituier-
ten Cycloalkylrest mit 3 bis 7 Kohlen-
stoffatomen oder Cycloalkylmethylrest
mit 3 bis 7 Kohlenstoffatomen im Cyclo-
alkylteil; für einen jeweils einfach oder
mehrfach, gleich oder verschieden durch
die bei Y genannten Phenylsubstituenten
substituierten Phenoxyethyl- oder Phen-
oxyethylrest; oder für eine der Grup-
pierungen
5
10
15

steht, wobei

X¹ und X² ein Fluor-, Chlor- oder Bromatom bedeu-
ten;

20 Y für Fluor, Chlor, Brom, Hydroxy, einen
geradkettigen oder verzweigten Alkoxy-
oder Alkylthiorest mit jeweils 1 bis 4
Kohlenstoffatomen, einen Trifluor-
methoxy-, Trifluormethylthio-, Vinyl-,

0115640

- 38 -

Allyl-, Acetylenyl-, Propargyl-, Alkoxy-
carbonyl oder Alkylcarbonyloxyrest mit
jeweils 1 bis 4 Kohlenstoffatomen im
Alkylteil, einen Alkyl- oder Dialkylcar-
bamoyloxyrest mit jeweils 1 bis 2 Kohlen-
stoffatomen in jedem Alkylteil, einen
Phenyl- oder Phenyl-alkyl-carbamoyloxy-
rest mit 1 bis 2 Kohlenstoffatomen im
Alkylteil, wobei der Phenylrest jeweils
einfach bis dreifach, gleich oder ver-
schieden durch Fluor, Chlor, Methyl oder
Trifluormethyl substituiert sein kann,
für einen Hydroximinomethyl- oder Al-
koximinomethylrest mit 1 bis 4 Kohlen-
stoffatomen im Alkoxyteil, für einen 1-
Hydroximinoethyl- oder 1-Alkoximino-
ethylrest mit 1 bis 4 Kohlenstoffatomen
im Alkoxyteil, für einen jeweils gege-
benenfalls einfach bis dreifach, gleich
oder verschieden durch Fluor, Chlor, Brom,
Methyl, Ethyl, Hydroxy, Methoxy, Methyl-
thio, Trifluormethyl, Trifluormethoxy,
Trifluormethylthio, Dimethylamino, Hy-
droxycarbonyl, Methoxycarbonyl, Ethoxy-
carbonyl, Methylcarbonyl, Ethylcarbonyl,
Methylcarbonyloxy, Ethylcarbonyloxy,
Nitro oder Cyano substituierten Phenyl-,
Phenoxy-, Phenylthio-, Phenylmethoxy-
oder Phenylmethylthiorest; oder für einen
jeweils gegebenenfalls einfach oder zwei-

0115640

- 39 -

fach , gleich oder verschieden durch Fluor, Chlor, Brom, Methyl oder Ethyl substituierten Pyridinyl-, Pyrimidinyl-, Furyl- oder Thiophenylrest steht;

- 5 Het für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden durch Methyl, Ethyl, n-Propyl, i-Propyl sowie jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden durch
- 10 10 Fluor, Chlor, Methyl, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl oder Phenoxyethyl substituierten Dioxolanyl- oder Dioxanylrest steht;
- n eine der Zahlen 0,1 oder 2 bedeutet,
- 15 m für 0 oder 1 steht; und
- R² für Wasserstoff, einen geradkettigen oder verzweigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, Allyl, Propargyl, Methylcarbonyl, Ethylcarbonyl, Methoxycarbonyl, Ethoxycarbonyl, ferner für einen jeweils gegebenenfalls einfach bis dreifach, gleich oder verschieden durch einen der bei Y bereits genannten Phenylsubstituenten substituierten
- 20 20 Phenyl- oder Benzylrest, oder für einen jeweils gegebenenfalls einfach oder zweifach, gleich oder verschieden durch Fluor,
- 25 25

0115640

- 40 -

Chlor, Brom, Methyl und Ethyl substituierten Pyridinyl-, Pyrimidinyl-, Furyl- oder Thiophenylrest steht.

3. Verbindungen gemäß Ansprüchen 1 und 2, dadurch gekennzeichnet, daß

R¹ für einen geradkettigen oder verzweigten Alkylrest mit 3 bis 4 Kohlenstoffatomen; für einen jeweils einfach oder mehrfach, gleich oder verschieden substituierten Phenoxymethyl- oder Phenoxyethylrest, wobei als Phenylsubstituenten die bei Y genannten Phenylsubstituenten infrage kommen; oder für eine der Gruppierungen

steht, wobei

15 X¹ und X² ein Fluor- oder Chloratom bedeuten;

Y für Fluor, Chlor, einen geradkettigen oder verzweigten Alkoxy- oder Alkylthiorest mit jeweils 1 bis 2 Kohlenstoffatomen, einen Trifluormethoxy- oder Trifluormethylthiorest, für einen Hydroximinomethyl- oder Alkoxyimino-methylrest mit 1 bis 2 Kohlenstoffatomen im Alkylteil, für einen 1-Hydroximinoethyl- oder 1-Alkoxyiminoethylrest mit 1 bis 2 Kohlenstoffatomen im Alkoxyteil, für

0115640

- 41 -

einen jeweils gegebenenfalls einfach bis dreifach, gleich
oder verschieden substituierten Phenyl-, Phenoxy-,
Phenylthio-, Phenylmethoxy- oder Phenylmethylthiorest,
wobei jeweils als Phenylsubstituenten genannt seien:
5 Fluor, Chlor, Brom, Methyl, Hydroxy, Methoxy, Methyl-
thio, Trifluormethyl, Trifluormethoxy, Trifluormethyl-
thio und Hydroxycarbonyl,

Het für einen jeweils gegebenenfalls einfach bis dreifach,
gleich oder verschieden substituierten Dioxolanyl- oder
10 Dioxanylrest steht, wobei als Substituenten Methyl,
Ethyl, n-Propyl, i-Propyl sowie jeweils gegebenenfalls

15 einfach bis dreifach, gleich oder verschieden durch
Fluor, Chlor, Methyl, Trifluormethyl oder Trifluor-
methoxy substituiertes Phenyl und Phenoxyethyl in
Frage kommen;

n eine der Zahlen 0, 1 oder 2 bedeutet,

m für 0 oder 1 steht; und .

20 R² für Wasserstoff, einen geradkettigen oder verzweigten
Alkylrest mit 1 bis 2 Kohlenstoffatomen, Allyl, Propargyl,
Methylcarbonyl, Methoxycarbonyl, ferner für einen
jeweils gegebenenfalls einfach bis dreifach, gleich
oder verschieden substituierten Phenyl- oder Benzylrest,
wobei als Substituenten die bei Y bereits genannten
Phenylsubstituenten infrage kommen.

0115640

- 42 -

4. Verfahren zur Herstellung von Verbindungen gemäß Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man entweder

a) Imidazolyl-Verbindungen der Formel (II)

5

in welcher

R¹ die in Ansprüchen 1 bis 3 angegebene Bedeutung hat und

10

R³ und R⁴ gleich oder verschieden sind und für Alkylreste mit 1 bis 4 Kohlenstoffatomen stehen; oder gemeinsam mit dem N-Atom, an das sie gebunden sind, einen jeweils gegebenenfalls einfach bis dreifach durch Alkylreste mit 1 bis 4 Kohlenstoffatomen substituierten Piperidinyl-, Pyrrolidinyl- oder Morpholinylrest bilden,

15

mit Hydrazinen der Formel (III),

Le A 22 080

0115640

- 43 -

in welcher

R^2 die in Ansprüchen 1 bis 3 angegebene Bedeutung hat,

5 gegebenenfalls in Gegenwart eines Verdünnungsmittels umsetzt, oder

b) gegebenenfalls die nach dem Verfahren (a) erhältlichen Imidazolyl-pyrazol-Derivate der Formel (Ib),

10 in welcher

R^1 die in Ansprüchen 1 bis 3 angegebene Bedeutung hat,

mit Halogeniden der Formel (IV)

Hal- R^5

15 in welcher

R^5 für die Bedeutungen von R^2 außer für Wasserstoff steht,
und Hal ein Halogenatom bedeutet,

Le A 22 080

0115640

- 44 -

in Gegenwart einer Base und gegebenenfalls in
Gegenwart eines Verdünnungsmittels umsetzt

und an die so erhaltenen Verbindungen der Formel
(I) gegebenenfalls anschließend eine Säure addiert.

5. 5. Verbindungen nach Ansprüchen 1 bis 3 und deren Säure-additionssalze zur Verwendung bei der Bekämpfung von Kreislauferkrankungen.
- 10 6. Verbindungen nach Ansprüchen 1 bis 3 und deren Säure-additionssalze zur Verwendung bei der Therapie und Prophylaxe von thromboembolischen und ischämischen Erkrankungen.
- 15 7. Verwendung von Verbindungen nach Ansprüchen 1 bis 3 bzw. von deren Säureadditionssalzen bei der Bekämpfung von Kreislauferkrankungen.
- 20 8. Verwendung von Verbindungen nach Ansprüchen 1 bis 3 bzw. von deren Säureadditionssalzen bei der Therapie und Prophylaxe von thromboembolischen und ischämischen Erkrankungen.
9. Arzneimittel, gekennzeichnet durch einen Gehalt an Verbindungen nach Ansprüchen 1 bis 3 bzw. deren Säureadditionssalzen.

Le A 22 080

0115640

- 45 -

10. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 9, dadurch gekennzeichnet, daß man eine Verbindung nach Ansprüchen 1 bis 3 bzw. deren Säure-additionssalz unter Verwendung üblicher Hilfs- und/oder Trägerstoffe in eine geeignete galenische Applikationsform überführt.

5

Le A 22 080