Matrix Inversion

Group 23

Introduction

Algorithm
Cholesky
Decomposition
Levinson-Durbi

Implementatio

References

Matrix Inversion

Group 23

UM-SJTU Joint Institute

October 17, 2018

Matrix Inversion

Group 23

Introduction

.

Algorithm
Cholesky
Decomposition
Levinson-Du

Implementation

References

1 Introduction

- 2 Algorithm
 - Cholesky Decomposition
 - Levinson-Durbin Recursion
- 3 Implementation
- 4 References

Matrix Inversion

Group 23

Introduction

Algorithm Cholesky Decomposition Levinson-Durb

Recursion

IIIIpieilieiliati

References

Definition

The **inverse** of a $n \times n$ matrix **A**, denoted as \mathbf{A}^{-1} , is a matrix that satisfies the expression

$$\mathbf{A}\mathbf{A}^{-1}=\mathbf{A}^{-1}\mathbf{A}=\mathbf{I}_n$$

Where I_n is a $n \times n$ matrix with 1 on its diagonal and 0 otherwise.

Naive Matrix Inversion Method

Group 23

Introduction

Algorithm
Cholesky
Decomposition
Levinson-Durb

Levinson-Durbin Recursion

References

The naive method to solve matrix inversion is to treat the expression $\mathbf{A}\mathbf{A}^{-1} = \mathbf{I_n}$ as a linear equation system whose unknowns are $1 \times n$ vectors (rows of \mathbf{A}^{-1})

Solving this equation is of $\mathcal{O}(n^4)$ complexity (Gaussian Elimination)

Two Matrix Inversion Algorithms

Group 23

Introduction

Algorithm

Cholesky Decomposi

...........

References

■ Cholesky Decomposition

■ Complexity: $\mathcal{O}(n^3)$

Application: Positive Definite Hermitian matrices

■ Levinson-Durbin Recursion

■ Complexity: $\mathcal{O}(n^3)$

■ Application: Symmetric Toeplitz matrices

Cholesky Decomposition

Group 23

Introduction

Algorithm
Cholesky
Decomposition
Levinson-Durbi

Implomontati

References

A positive definite symmetric matrix **A** can be represented as product of two transpose triangular matrix as the following

$$\mathbf{A} = \mathbf{U}^{\mathsf{T}}\mathbf{U}$$

where **U** is an $n \times n$ upper triangular matrix.

Note: The implementation of finding **U** for a certain **A** can be in-place, so that no extra space is needed.

Based on the Cholesky decomposition, the euqation can be transformed as

$$\mathbf{U}^\mathsf{T}\mathbf{U}\mathbf{A}^{-1} = \mathbf{I}_\mathsf{n} \Rightarrow \begin{cases} \mathbf{U}^\mathsf{T}\mathbf{B} &= \mathbf{I}_\mathsf{n} \\ \mathbf{U}\mathbf{A}^{-1} &= \mathbf{B} \end{cases}$$

and solving these two equations is simple because back/forward substitution can be directly applied.

What's more, the symmetric property of **A** will also cause a reduction in the calculation.

Levinson-Durbin Recursion

Matrix Inversion

Group 23

Introduction

Cholesky Decomposition

Levinson-Durbin Recursion

Implementatio

References

The first step of Levinson Durbin is to partition the matrix into blocks

$$\mathbf{A} = \begin{bmatrix} B_{(n-1)\times(n-1)} & C_{(n-1)\times 1} \\ D_{1\times(n-1)} & E_{1\times 1} \end{bmatrix}$$

The algorithm will first find a inversion of B, denoted as B^{-1} using recursive call and also find a **backward vector** of A, denoted as u which satisfies

$$\mathbf{Au} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix}$$

Append a row of zeros to the bottom of B^{-1} , and it can be seen that

$$\begin{bmatrix} B_{(n-1)\times(n-1)} & C_{(n-1)\times 1} \\ D_{1\times(n-1)} & E_{1\times 1} \end{bmatrix} \begin{bmatrix} B_{(n-1)\times(n-1)}^{-1} \\ 0_{1\times(n-1)} \end{bmatrix} = \begin{bmatrix} I_{(n-1)} \\ error_{1\times(n-1)} \end{bmatrix}$$

Then what should we do is add scaled ${\bf u}$ on the columns of the new matrix to eliminate the errors. At last append ${\bf u}$ to the right, then ${\bf A}^{-1}$ is calculated.

Python specifics included to improve coding efficiency

Matrix Inversion

Group 23

Introduction

Algorithm
Cholesky
Decomposition
Levinson-Dur

Implementation

References

The basic object used is **numpy.mat** to store the matrices. There are several reasons

- It is more convenient for storing and generating test matrices using numpy commands
- Many loops and case statement in the implementation can be substituted by matrices operations (row operation, matrix partition, matrix multiplication, etc.), and numpy mat has adequette implementations of these operations.

References

Matrix Inversion

Group 23

Introductio

Algorithm Cholesky Decomposition Levinson-Durbi Recursion

Implementatio

References

- Aravindh Krishnamoorthy, Deepak Menon (2013), "Matrix Inversion Using Cholesky Decomposition"
- Trench, W. F. (1964). "An algorithm for the inversion of finite Toeplitz matrices." J. Soc. Indust. Appl. Math., v. 12, pp. 515522.
- Musicus, B. R. (1988). "Levinson and Fast Choleski Algorithms for Toeplitz and Almost Toeplitz Matrices." RLE TR No. 538, MIT