- 1. Genetic Algorithm For LoRa
- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- 5. Discussion

1. Genetic Algorithm For LoRa

- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- 5. Discussion

- 1. MCDM
- 2. Genetic Algorithm
- 3. Fuzzy Logic

1. Genetic Algorithm For LoRa

- 1. Background
- Method
- Experiments
- 4. Results
- 5. Discussion

1. MCDM

- 2. Genetic Algorithm
- 3. Fuzzy Logic

Multi criteria decision making

Background

- Configuration parameters:
 - → Spreading Factor (SF)
 - → Coding Rate (CR)
 - → Transmission Power (Ptx)
 - → Bandwidth (BW)
 - → Payload size (PS)
- Configuration metrics:
- → Data Rate (DR)
 - → Packet delivery ratio (PDR)
 - → Round-Trip Delay (RTD)
 - → Time on Air (ToA)

		Metric 1	Metric 2		Metric M
<i>Qn, m</i> =	Configuration 1 Configuration 2	$\begin{pmatrix} q_{11} \\ q_{21} \end{pmatrix}$	9 ₁₂ 9 ₂₂		9 _{1M} 9 _{2M}
	: Configuration N	: q _{N1}	; 9 _{N2}	·	: g _{NM}

1. Genetic Algorithm For LoRa

- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- Discussion

- I. MCDM
- 2. Genetic Algorithm
- Fuzzy Logie

Genetic Algorithm Background [1]

Definition: stopping criteria, population size P, and mutation probability p_m **Generate** randomly the initial configurations

repeat: . . . for each configuration do

.... Train a model & compute configuration's fitness

. . end

. . . for each reproduction 1 ... P/2 do

. Select: 2 configurations based on fitness

. Crossover: Produce 2 child configurations

..... Mutate: child configurations with p_m

. . . end

until stopping criterion is met

1. Genetic Algorithm For LoRa

- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- 5. Discussion

- MCDM
- 2. Genetic Algorithn
- 3. Fuzzy Logic

Fuzzy Logic

Assign a degree of membership between 0 and 1

- → We have a temperature value (16°), and we want to represent this value with 3 weighted vales.
 - → 0% hot
 - → 0.4% warm
 - → 0.6 % cold

Figure 1. Temperature example.

- 1. Genetic Algorithm For LoRa
- Background
- 2. Method
- Experiments
- 4. Results
- Discussion

Selection framework

Methods

Figure 2. The proposed scheme for LoRa transmission parameters selection based on GA, FL and MCDM..

- 1. Genetic Algorithm For LoRa
- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- Discussion

Experimentation

Experimentation

Inputs:

- Data structure
 - * Voice, Images and Text transmission.
- → Environment conditions
 - * Rural/Urban
 - * Static/Mobile
 - * Temperature
 - * Interference/Noise
- → QoS metrics:
 - * User layer: Cost
 - * Network metrics: DR, Payload length.
 - * Radio metrics: Receiver sensitivity, SNR, DR, Air time,
- → MAC configuration (SF, CR, BW, Tx)
- Outputs:
 - \rightarrow (SF_i, CR_j, BW_k, Tx_l) optimal

- 1. Genetic Algorithm For LoRa
- Background
- Method
- Experiments
- 4. Results
- 5. Discussion

Results

Comparison

Figure 3. Impact of SF on ToA.

Figure 4. Impact of BW on ToA.

Figure 5. Impact of CR on ToA.

Figure 6. ToA distribution.

- 1. Genetic Algorithm For LoRa
- 1. Background
- 2. Method
- 3. Experiments
- 4. Results
- 5. Discussion

Multi criteria decision making

Layer	Maximize (Reward)	Minimize (Cost)
Application	Sec security	Service Cost (SC)
Network	Range	Jitter (<i>Jit</i>)
	PDR	Traffic congestion (TC)
	<i>PS</i>	RTD
	DR	Packet Error Rate (PER)
		Time Complexity (Otime)
		Space Complexity (O _{space})
Radio	Mobility (<i>Mob</i>)	Bit Error Rate (BER)
	Symbol Rate (SR)	P ^{tx}
	Bit Rate (BR)	Co-channel Interference (CCI)
	Sensitivity (Sen)	Duty cycle (DC)
	Received Signal Strength Indication (RSSI)	ToA
	Signal-to-interference & noise ratio (SINR)	Path loss (<i>PL</i>)
	Signal Noise Rate (SNR)	
	Signal-to-Interference Ratio (SIR)	

Table 1. Network selection inputs and classification of parameters [2] [3]

References

[1]

[3]

- F. Bendaoud, M. Abdennebi, and F. Didi, * Network Selection in Wireless Heterogeneous Networks: A Survey ", Journal of Telecommunications and Information Technology, vol. 4, pp. 64–74, Jan. 2019, 00000.
- [2]
 - A. Chowdhury and S. A. Raut, " A Survey Study on Internet of Things Resource Management ", Journal of Network and Computer Applications, vol. 120, pp. 42–60, Oct. 15, 2018, 00002.

M. Alkhawlani and A. Avesh. * Access Network Selection Based on Fuzzy Logic and Genetic Algorithms *. Advances in Artificial Intelligence, vol. 2008, pp. 1–12, 2008, 00089.