WISHI Semantic Interop IETF 101 Hackathon

Planning and Materials

WISHI Interop Planning

- Focus Areas
- Implementation Guidance
- Survey of standards, tools, and implementations
- Participant Questionnaire

Focus Area: Semantic Interoperability and Hypermedia

- What to do => How to Do It
- Across the application workflow
 - Discovery
 - Configuration
 - Operation
- Description and classification model
 - Thing type
 - Capability
 - Interaction
 - Data Shape

Semantic Description and Classification Model

- Layered descriptive model
 - Thing type (A Thing is a type of thing)
 - luminaire, washing machine, door
 - Capability (A Thing has a Capability)
 - on/off, brightness, opening, closing, sensing
 - Interaction (A Capability provides an Interaction)
 - open, turn on, read temperature
 - Data Shape (An Interaction exchanges a Data representation of a particular Shape)
 - Integer, 0 <= value <= 255

Implementation Guidance

- Goals and scenarios related to use cases and application workflow
 - Discovery First Objective
 - Configuration
 - Operation
 - Security, Accessibility, Privacy Considerations
- Survey of standards, tools, and implementations
 - Standards and community organizations
 - Representation Formats
 - Examples to be submitted and collected
 - Development tools
 - Open source implementations
 - Other interops, e.g. W3C plugfests

Application Workflow

Discovery

- How does an application find what it needs to configure an instance of some functional capability, e.g. a thermostat in a room?
- Inputs, outputs, controls, and settings

Configuration

 How do I select from multiple possibilities, how do I integrate diverse things into the application? e.g. device selection, units and scale adaptation

Operation

 How is information communicated and processed in the application? e.g. protocol adaptation, CoAP Observe, MQTT Subscribe

Standards, Semantic Descriptions, and Serialization Formats

- OCF Resource formats, oneiota definitions
- LWM2M/IPSO Smart Object format
- WoT Thing Description
- iotschema Definitions; schemas and examples
- QUDT, SSN, SOSA
- CORAL
- SenML, CoRE Link-Format, HSML
- JSON-Hyperschema

Example Implementations

- Thing Directory from Thingweb
- Node-Wot WoT Servient from Thingweb
- ARM mbed, LWM2M implementation for constrained devices, CoAP libraries
- OCF iotivity CoAP Client and Server, C and nodejs
- Experimental
 - iot-toolkit (RDF+REST cross-proxy library in python, http, MQTT, CoAP)
 - MachineHypermediaToolkit (link-format+SenML, python)

Semantic Repositiries

- iotschema definitions
- Project Haystack

Interop Participant Questionnaire

- Collect information from participants and implementers
- Enable exchange of ideas and concepts to converge on some common patterns
- Mostly optional but more information is better
 - Scenario description, what is the high level design pattern
 - Implementation description
 - What system roles are implemented; application, thing, proxy, directory,?
 - How are discovery, configuration, and operation handled?
 - What protocols and representation formats are supported?
 - What semantic capabilities are needed for the application?
 - What semantic capabilities are provided by the things?

Thing Directory

- https://github.com/thingweb/thingweb-directory
- REST API using OpenAPI (Swagger) definition
- POST to upload and register a Thing Description
- SPARQL endpoint using GET + query parameters to discover a Thing Description that matches a semantic specification
- Also the node-wot servient:
 - https://github.com/thingweb/node-wot

Annotation Example: Thing Type, Capability, Interaction, Data Shape

```
"base": "coap://example.net:5683/",
"@type": [ "Thing", "iot:SensorThing", "iot:TemperatureCapability" ],
"name": "Temperature Sensor",
"interaction": [
   "name": "Temperature",
    "@type": ["Property", "iot:TemperatureProperty"],
    "outputData": {
      "type": "object",
      "field": [
          "name": "temperature",
          "@type": ["iot:TemperatureData"],
          "type": "number",
          "minimum": -50,
          "maximum": 100,
          "unit": "Celsius"
```

Example iotschema Definition

```
"type": "TemperatureCapability",
"id": "iotschema: Temperature Capability",
"subClassOf": "iot:Capability",
"description": "Temperature Sensing and Control Capability",
"providesInteractionPattern": {
    "type": "Property",
    "subClassOf": "iot:Property",
    "name": "TemperatureProperty",
    "@id": "iot:TemperatureProperty",
    "providesOutputData": {
      "type": "schema: Number",
      "@id": "iot:TemperatureData",
      "schema:valueName": "temperatureData"
      "schema:unitCode": { "@id": "iot:TemperatureUnit" },
      "schema:minValue": "schema:Number",
      "schema:maxValue": "schema:NUmber"
```