Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського"

Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Проектування алгоритмів»

"Проектування і аналіз алгоритмів для виріш	NTD 111
- Πηραγτυράμμα ι άμαπιο απερημτικίο ππα ομημικ	Δυμα ΝΡ-ενποπμιν σοποιι II I''
IIDUCKI VDANNA I ANAJIIS AJII UDHIMID AJIA DHDILLI	Сппл 111 -Складпих задач 4.1

Виконав(ла)	<i>III-25 Карпов Л В</i> (шифр, прізвище, ім'я, по батькові)	
Перевірив	<u>Головченко М.Н.</u> (прізвище, ім'я, по батькові)	

3MICT

1	MET	А ЛАБОРАТОРНОЇ РОБОТИ	. 3
2	3AB /	ĮАННЯ	. 4
3	вик	ОНАННЯ1	10
	3.1 Пр	ОГРАМНА РЕАЛІЗАЦІЯ АЛГОРИТМУ	10
	3.1.1	Вихідний код	10
	3.1.2	Приклади роботи	12
	3.2 TE	СТУВАННЯ АЛГОРИТМУ1	15
	3.2.1	Значення цільової функції зі збільшенням кількості ітерацій . І	15
	3.2.2	Графіки залежності розв'язку від числа ітерацій	15
В	иснон	ЗОК 1	۱7
К	РИТЕР	IÏ ОППНЮВАННЯ1	18

1 МЕТА ЛАБОРАТОРНОЇ РОБОТИ

Мета роботи — вивчити основні підходи формалізації метаеврестичних алгоритмів і вирішення типових задач з їхньою допомогою.

2 ЗАВДАННЯ

Згідно варіанту, розробити алгоритм вирішення задачі і виконати його програмну реалізацію на будь-якій мові програмування.

Задача, алгоритм і його параметри наведені в таблиці 2.1.

Зафіксувати якість отриманого розв'язку (значення цільової функції) після кожних 20 ітерацій до 1000 і побудувати графік залежності якості розв'язку від числа ітерацій.

Зробити узагальнений висновок.

Таблиця 2.1 – Варіанти алгоритмів

№	Задача і алгоритм
1	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий по 50 генів, мутація з ймовірністю
	5% змінюємо тільки 1 випадковий ген). Розробити власний оператор
	локального покращення.
2	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0,4$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
3	Задача розфарбовування графу (200 вершин, степінь вершини не більше
	20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30 із них 2
	розвідники).
4	Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий порівну генів, мутація з
	ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити

	власний оператор локального покращення.
5	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).
6	Задача розфарбовування графу (250 вершин, степінь вершини не більше
	25, але не менше 2), бджолиний алгоритм АВС (число бджіл 35 із них 3
	розвідники).
7	Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів
	від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування рівномірний, мутація з ймовірністю 5% два
	випадкові гени міняються місцями). Розробити власний оператор
	локального покращення.
8	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho =$
	0,3, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
9	Задача розфарбовування графу (150 вершин, степінь вершини не більше
	30, але не менше 1), бджолиний алгоритм АВС (число бджіл 25 із них 3
	розвідники).
10	Задача про рюкзак (місткість Р=150, 100 предметів, цінність предметів
	від 2 до 10 (випадкова), вага від 1 до 5 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування рівномірний, мутація з ймовірністю 10% два
	випадкові гени міняються місцями). Розробити власний оператор
	локального покращення.
11	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 0(перехід заборонено) до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho =$

	0,6, Lmin знайти жадібним алгоритмом, кількість мурах M = 45,
	починають маршрут в різних випадкових вершинах).
12	Задача розфарбовування графу (300 вершин, степінь вершини не більше
	30, але не менше 1), бджолиний алгоритм АВС (число бджіл 60 із них 5
	розвідники).
13	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий 30% і 70%, мутація з ймовірністю
	5% два випадкові гени міняються місцями). Розробити власний
	оператор локального покращення.
14	Задача комівояжера (250 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм (α = 4, β = 2, ρ = 0,3, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (10 з них дикі, обирають
	випадкові напрямки), починають маршрут в різних випадкових
	вершинах).
15	Задача розфарбовування графу (100 вершин, степінь вершини не більше
	20, але не менше 1), класичний бджолиний алгоритм (число бджіл 30 із
	них 3 розвідники).
16	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий 30%, 40% і 30%, мутація з
	ймовірністю 10% два випадкові гени міняються місцями). Розробити
	власний оператор локального покращення.
17	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.7$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (15 з них дикі, обирають
	випадкові напрямки), починають маршрут в різних випадкових
<u> </u>	I

	вершинах).
18	Задача розфарбовування графу (300 вершин, степінь вершини не більше
	50, але не менше 1), класичний бджолиний алгоритм (число бджіл 60 із
	них 5 розвідники).
19	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування триточковий 25%, мутація з ймовірністю 5% два
	випадкові гени міняються місцями). Розробити власний оператор
	локального покращення.
20	Задача комівояжера (200 вершин, відстань між вершинами випадкова
	від 1 до 40), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.7$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (10 з них елітні,
	подвійний феромон), починають маршрут в різних випадкових
	вершинах).
21	Задача розфарбовування графу (200 вершин, степінь вершини не більше
	30, але не менше 1), класичний бджолиний алгоритм (число бджіл 40 із
	них 2 розвідники).
22	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 30 (випадкова), вага від 1 до 25 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування триточковий 25%, мутація з ймовірністю 5%
	змінюємо тільки 1 випадковий ген). Розробити власний оператор
	локального покращення.
23	Задача комівояжера (300 вершин, відстань між вершинами випадкова
	від 1 до 60), мурашиний алгоритм ($\alpha = 3$, $\beta = 2$, $\rho = 0.6$, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 45 (15 з них елітні,
	подвійний феромон), починають маршрут в різних випадкових
	вершинах).

 50, але не менше 1), класичний бджолиний алгоритм (чис них 10 розвідники). Задача про рюкзак (місткість Р=250, 100 предметів, цінні від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), ген 	сть предметів етичний ому предмету,
25 Задача про рюкзак (місткість P=250, 100 предметів, цінні від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), ген	етичний ому предмету,
від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), ген	етичний ому предмету,
	ому предмету,
алгоритм (початкова популяція 100 осіб кожна по 1 різно	я з ймовірністю
оператор схрещування одноточковий по 50 генів, мутація	
5% змінюємо тільки 1 випадковий ген). Розробити власні	ий оператор
локального покращення.	
26 Задача комівояжера (100 вершин, відстань між вершинам	ии випадкова
від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 4$, $\rho = 0.4$, L1	min знайти
жадібним алгоритмом, кількість мурах М = 30, починают	гь маршрут в
різних випадкових вершинах).	
27 Задача розфарбовування графу (200 вершин, степінь верг	шини не більше
20, але не менше 1), бджолиний алгоритм АВС (число бд	жіл 30 із них 2
розвідники).	
28 Задача про рюкзак (місткість Р=200, 100 предметів, цінні	сть предметів
від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), ген	етичний
алгоритм (початкова популяція 100 осіб кожна по 1 різно	ому предмету,
оператор схрещування двоточковий порівну генів, мутац	г кі
ймовірністю 10% змінюємо тільки 1 випадковий ген). Ро	зробити
власний оператор локального покращення.	
29 Задача комівояжера (150 вершин, відстань між вершинам	ии випадкова
від 5 до 50), мурашиний алгоритм ($\alpha = 2$, $\beta = 3$, $\rho = 0.4$, Li	min знайти
жадібним алгоритмом, кількість мурах М = 35, починают	гь маршрут в
різних випадкових вершинах).	
30 Задача розфарбовування графу (250 вершин, степінь верг	шини не більше
25, але не менше 2), бджолиний алгоритм АВС (число бд	жiл 35 iз них 3
розвідники).	

31	Задача про рюкзак (місткість Р=250, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування одноточковий по 50 генів, мутація з ймовірністю
	5% змінюємо тільки 1 випадковий ген). Розробити власний оператор
	локального покращення.
32	Задача комівояжера (100 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 4, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 30, починають маршрут в
	різних випадкових вершинах).
33	Задача розфарбовування графу (200 вершин, степінь вершини не більше
	20, але не менше 1), бджолиний алгоритм АВС (число бджіл 30 із них 2
	розвідники).
34	Задача про рюкзак (місткість Р=200, 100 предметів, цінність предметів
	від 2 до 20 (випадкова), вага від 1 до 10 (випадкова)), генетичний
	алгоритм (початкова популяція 100 осіб кожна по 1 різному предмету,
	оператор схрещування двоточковий порівну генів, мутація з
	ймовірністю 10% змінюємо тільки 1 випадковий ген). Розробити
	власний оператор локального покращення.
35	Задача комівояжера (150 вершин, відстань між вершинами випадкова
	від 5 до 50), мурашиний алгоритм (α = 2, β = 3, ρ = 0,4, Lmin знайти
	жадібним алгоритмом, кількість мурах М = 35, починають маршрут в
	різних випадкових вершинах).

3 ВИКОНАННЯ

3.1 Програмна реалізація алгоритму

3.1.1 Вихідний код

```
import copy
from copy import deepcopy
import networkx as nx
import matplotlib.pyplot as plt
from matplotlib import pylab
GRAPH SIZE = 150
EDGE PROBABILITY = 0.05
BEE COUNT = 22
SCOUT COUNT = 3
COLORS = [None, 'green', 'red', 'yellow', 'blue', 'purple', 'darkred', 'orange',
class Cell:
   def init (self, vertex count: int = GRAPH SIZE, skip rand gen: bool =
False):
        if skip rand gen:
            [Cell(random.randint(0, 99) < (EDGE PROBABILITY * 100)) for in
range(i)]
           res += enumerate(self. edge table[vertex])
```

```
res.append((i + 1, self. edge table[i + 1][vertex]))
       return [vert for vert, val in self.edges(vertex) if val]
       return set([self.color map[vert] for vert in
self.adjacent vertexes(vertex)])
       return sum(map(lambda x: x[1].val, self.edges(vertex)))
   def draw(self):
       visual = []
               if self. edge table[i][j].val:
                   visual.append([i, j])
       G.add edges from(visual)
       nx.draw_networkx(G, node color=color map, with labels=True)
       plt.show()
   @property
           used colors.add(self.color map[i])
       return len(used colors)
           pop = [i for i in range(self.count) if i not in self.visited]
           taken vertexes = random.sample(pop, SCOUT COUNT) if len(pop) >
       self.color map[vertex] = 0
       if self.power of vertex(vertex) == 0:
           self.color map[vertex] = 1
               nxt = random.sample(adjacent, BEE COUNT)
```

```
self.color map[nvert] = color
            self.color map[vertex] = color
    nectar = [self.power of vertex(i) for i in vertexes]
        visited = random.choices(vertexes, nectar)[0]
    self.color vertex(visited)
    self.visited.add(visited)
new. edge table = copy.deepcopy(self._edge_table)
new.color map = copy.deepcopy(self.color map)
states.append(g)
g = \overline{g.copy()}
g.improve_coloring(10)
g.draw()
```

3.1.2 Приклади роботи

На рисунках 3.1 і 3.2 показані приклади роботи програми.

Рисунок 3.1 –

Рисунок 3.2 –

3.2 Тестування алгоритму

3.2.1 Значення цільової функції зі збільшенням кількості ітерацій

У таблиці 3.1 наведено значення цільової функції зі збільшенням кількості ітерацій.

iterations	Chromatic number
0	7
10	7
20	6
30	7
40	7
50	7
60	6

3.2.2 Графіки залежності розв'язку від числа ітерацій

На рисунку 3.3 наведений графік, який показує якість отриманого розв'язку.

Рисунок 3.3 – Графіки залежності розв'язку від числа ітерацій

ВИСНОВОК

В рамках даної лабораторної роботи я розробив алгоритм розфарбування графа використовуючи симуляцію штучної колонії бджіл. Цей підхід забезпечує непогону точність в початкової стадії, а ітеративна стадія може як покращети результат так і погіршити його, тому якщо після останіх ітерацій хроматичне число зростало програма відновлює минулий стан та пробує знову. З спостережень амплітуда змінення хроматичного числа не перебільшувала 1, тому можна з впевненістю після декількох ітерацій вмзначити хроматичне число.

КРИТЕРІЇ ОЦІНЮВАННЯ

При здачі лабораторної роботи до 10.12.2023 включно максимальний бал дорівнює — 5. Після 10.12.2023 максимальний бал дорівнює — 4,5.

Критерії оцінювання у відсотках від максимального балу:

- програмна реалізація алгоритму 55%;
- − робота з гіт 20%;
- тестування алгоритму– 20%;
- висновок -5%.

⁺¹ додатковий бал можна отримати за виконання роботи до 3.12.2023