UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Posgrado en Ciencia e. Ingeniería de la Computación

Aprendizaje Profundo

Redes convolucionales

Profesor: Gibran Fuentes Pineda

Ayudantes: Berenice & Ricardo Montalvo Lezama

Septiembre 2021

Problemática de usar redes densas para imágenes

ullet Supongamos que queremos entrenar una red que tome una imagen RGB de 200 imes 200.

- ¡Se requieren muchos parámetros!
 - Entrada = $200 \times 200 \times 3 = 120,000$.
 - Parámetros = $120,000 \times 1000 + 1000 = 120,001,000$.

Red neuronal convolucional

Filtro 2D

0 1 2

2 2 0 0 1 2

Convolución: entrada 5×5 , filtro 3x3, paso 1×1 ., salida 3×3 ,

Convolución 2D con relleno

Filtro 2D

0 1 2

2 2 0 0 1 2

Convolución: entrada 5×5 , filtro 3x3, paso 2×2 , relleno 1×1 , salida 3×3 ,.

5

Capa de convolución (I)

Convolución: entrada $5\times5\times3$, filtro $3\times3\times3$, paso 2×2 , relleno 1×1 , salida $3\times3\times2$.

Capa de convolución (II)

Convolución: entrada $5\times5\times3$, filtro $3\times3\times3$, paso 2×2 , relleno 1×1 , salida $3\times3\times2$.

Hiperparámetros de convolución

• Entrada: $C_I \times H_I \times W_I$

- Hiperparámetros:
 - K: número de filtros, profundidad de la salida.
 - F: tamaño del filtro, extensión espacial del filtro.
 - S: paso, cantidad de desplazamiento del filtro.
 - P: relleno, cantidad de aumento de ceros.
- Salida: $C_O \times H_O \times W_O$
 - $H_O = \frac{(H_I F + 2P)}{S} + 1$
 - $W_O = \frac{(W_I F + 2P)}{S} + 1$
 - $C_O = K$

Dumoulin et al. A guide to convolution arithmetic for deep learning. 2018.

Capa de convolución: ejercicio

• ¿Cuales serían las dimensiones del bloque de salida para una capa convolucional con siguientes características?

• Entrada:
$$1 \times 28 \times 28$$

•
$$H_O = \frac{(H_I - F + 2P)}{S} + 1$$

•
$$W_O = \frac{(W_I - F + 2P)}{S} + 1$$

Capa de submuestreo máximo

Muestreo máximo: entrada 5×5 , paso 1x1, salida 3×3 .

Capa de submuestreo promedio

Muestreo máximo: entrada 5×5 , paso 1x1, salida 3×3 .

Hiperparámetros de submuestreo

• Entrada: $C_I \times H_I \times W_I$

• Hiperparámetros:

• K: tamaño del filtro, extensión espacial.

ullet S: paso, cantidad de desplazamiento del filtro.

- Salida: $C_O \times H_2 \times W_2$
 - $\bullet \ \ H_O = \frac{H_I F}{S} + 1$
 - $W_O = \frac{W_I F}{S} + 1$
 - $C_O = C_I$

Capa de submuestreo: ejercicio

• ¿Cuales serían las dimensiones del bloque de salida para una capa de muestreo con siguientes características?

• Entrada:
$$4 \times 28 \times 28$$

•
$$H_O = \frac{H_I - F}{S} + 1$$

•
$$W_O = \frac{W_I - F}{S} + 1$$

•
$$C_O = C_I$$

Arquitecturas

Cronología de las arquitecturas convolucionales

Imagen tomada de diapositivas de http://datahacker.rs/deep-learning-vgg-16-vs-vgg-19/

Simonyan et al. Very deep convolutional networks for large-scale image recognition. 2014.

Factorización de convoluciones

 $Imagen\ tomada\ de\ https://inblog.in/Data-Science-Interview-Questions-30-days-of-Interview-Preparation-Day-14-asi4Xq3QNc$

¿Cómo construimos la siguiente arquitectura?

GoogLeNet (Inception v1)

Imagen tomada de https://inblog.in/Data-Science-Interview-Questions-30-days-of-Interview-Preparation-Day-14-asi4Xq3QNc

Szegedy et al. Going Deeper with Convolutions. 2014.

Módulo Inception v1

 $Imagen\ tomada\ de\ https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html$

Simonyan et al. Going Deeper with Convolutions. 2015.

Módulo Inception v2

Imagen tomada de https://research.googleblog.com/2016/03/train-your-own-image-classifier-with.html

- Inception v3: Utiliza factorización de convoluciones de 5×5 y 3×3 . La entrada de la red es de 299×299 .
- Inception v4: Utiliza más módulos Inception en comparación con la versión anterior.

Szegedy et al. Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 2016. Szegedy et al. Rethinking the Inception Architecture for Computer Vision. 2015.