#importing various packages

import pandas as pd
import numpy as np
import seaborn as sns

In [2]:

#reading the dataset
df=pd.read_csv('/content/Heart Disease data.csv')

In [3]:

#checking the data
df.head()

Out[3]:

													Ծավել չյ.		
	Sl _N o	A g e	Ge nde r	C P	RBP(D iastolic	S C	F B S	R E R	M HR A	E I E	Old pea k	Sl op e		Thal lium Test	H D
0	1	5 2	Mal e	0	125	2 1 2	0	1	168	0	1.0	2	2	2	0
1	2	5	Mal e	0	140	2 0 3	1	0	155	1	3.1	0	0	2	0
2	3		Mal e	0	145	1 7 4	0	1	125	1	2.6	0	0	2	0
3	4	6 1	Mal e	0	148	2 0 3	0	1	161	0	0.0	2	1	2	0
4	5	6 2	Fe mal e	0	138	2 9 4	1	1	106	0	1.9	1	3	2	0

In [4]:

#checking null values
df.isna().sum()

Out[4]:

 S1_No
 0

 Age
 0

 Gender
 0

 CP
 0

 RBP(Diastolic)
 0

 SC
 0

 FBS
 0

RER	0
MHRA	0
EIE	0
Oldpeak	0
Slope	0
Flourosopy	0
Thallium Test	0
HD	0
1	

dtype: int64

#There are no null values in any of the columns

#now we will check for outliers

#checking outliers in Age Column
sns.boxplot(data=df,x='Age')

<AxesSubplot:xlabel='Age'>

Age

#there are no outliers in Age column

#checking outliers in RBP(Diastolic) Column
sns.boxplot(data=df,x='RBP(Diastolic)')

<AxesSubplot:xlabel='RBP(Diastolic)'>

In [5]:

In [6]:

In [7]:

Out[7]:

In [8]:

In [9]:

Out[9]:


```
In [10]:
#we can see there are some outliers in RBP(Diastolic) column. But we will
not remove them.
#We will replace those outliers with median value
                                                                        In [11]:
# Calculating the Interquartile Range (IQR)
q1 = df["RBP(Diastolic)"].quantile(0.25)
q3 = df["RBP(Diastolic)"].quantile(0.75)
iqr = q3 - q1
# Defining the lower and upper bounds for outliers
lower bound = q1 - 1.5 * iqr
upper bound = q3 + 1.5 * iqr
# Identifying outliers
outliers = (df["RBP(Diastolic)"] < lower bound) | (df["RBP(Diastolic)"] >
upper bound)
# Replace outliers with the median value
df.loc[outliers, "RBP(Diastolic)"] = df["RBP(Diastolic)"].median()
                                                                        In [12]:
#checking outliers in RBP(Diastolic) Column
sns.boxplot(data=df, x='RBP(Diastolic)')
                                                                       Out[12]:
<AxesSubplot:xlabel='RBP(Diastolic)'>
```


#there are no outliers left in the RBP(Diastolic) column

In [14]:

In [13]:

#checking outliers in SC Column
sns.boxplot(data=df,x='SC')

Out[14]:

<AxesSubplot:xlabel='SC'>


```
In [15]:
#there are some outliers. We will replace them with median value
                                                                         In [16]:
# Calculating the Interquartile Range (IQR)
q1 = df["SC"].quantile(0.25)
q3 = df["SC"].quantile(0.75)
iqr = q3 - q1
# Defining the lower and upper bounds for outliers
lower bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Identifying outliers
outliers = (df["SC"] < lower_bound) | (df["SC"] > upper_bound)
# Replace outliers with the median value
df.loc[outliers, "SC"] = df["SC"].median()
                                                                         In [17]:
#checking outliers in SC Column
sns.boxplot(data=df,x='SC')
                                                                        Out[17]:
<AxesSubplot:xlabel='SC'>
```


#there are no outliers left in the SC column

In [19]:

In [18]:

 $\begin{tabular}{ll} \# checking outliers in MHRA Column \\ \verbsns.boxplot(data=df,x='MHRA') \end{tabular}$

Out[19]:

<AxesSubplot:xlabel='MHRA'>


```
In [20]:
#there are some outliers. We will replace them with median value
                                                                         In [21]:
# Calculating the Interquartile Range (IQR)
q1 = df["MHRA"].quantile(0.25)
q3 = df["MHRA"].quantile(0.75)
iqr = q3 - q1
# Defining the lower and upper bounds for outliers
lower bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Identifying outliers
outliers = (df["MHRA"] < lower_bound) | (df["MHRA"] > upper_bound)
# Replace outliers with the median value
df.loc[outliers, "MHRA"] = df["MHRA"].median()
                                                                         In [22]:
#checking outliers in MHRA Column
sns.boxplot(data=df,x='MHRA')
                                                                        Out[22]:
<AxesSubplot:xlabel='MHRA'>
```


#there are no outliers left in the MHRA column

In [24]:

In [23]:

#checking outliers in Oldpeak Column
sns.boxplot(data=df,x='Oldpeak')

Out[24]:

<AxesSubplot:xlabel='Oldpeak'>


```
In [25]:
#there are some outliers. We will replace them with median value
                                                                        In [26]:
# Calculating the Interquartile Range (IQR)
q1 = df["Oldpeak"].quantile(0.25)
q3 = df["Oldpeak"].quantile(0.75)
iqr = q3 - q1
# Defining the lower and upper bounds for outliers
lower bound = q1 - 1.5 * iqr
upper_bound = q3 + 1.5 * iqr
# Identifying outliers
outliers = (df["Oldpeak"] < lower_bound) | (df["Oldpeak"] > upper_bound)
# Replace outliers with the median value
df.loc[outliers, "Oldpeak"] = df["Oldpeak"].median()
                                                                        In [27]:
#checking outliers in Oldpeak Column
sns.boxplot(data=df,x='Oldpeak')
                                                                        Out[27]:
<AxesSubplot:xlabel='Oldpeak'>
```


In [28]: #as the outliers are still there, we will repeat the same process one more time

```
In [29]:
# Calculating the Interquartile Range (IQR)
q1 = df["Oldpeak"].quantile(0.25)
q3 = df["Oldpeak"].quantile(0.75)
iqr = q3 - q1
# Defining the lower and upper bounds for outliers
lower_bound = q1 - 1.5 * iqr
upper bound = q3 + 1.5 * iqr
# Identifying outliers
outliers = (df["Oldpeak"] < lower_bound) | (df["Oldpeak"] > upper_bound)
# Replace outliers with the median value
df.loc[outliers, "Oldpeak"] = df["Oldpeak"].median()
                                                                        In [30]:
#checking outliers in Oldpeak Column
sns.boxplot(data=df,x='Oldpeak')
                                                                        Out[30]:
```

<AxesSubplot:xlabel='Oldpeak'>

In [31]:

#there are no outliers left in the Oldpeak column

In [34]:

 $\# But \ some \ values \ of \ Oldpeak \ column \ has \ value \ O, \ which \ is \ practically \ not \ correct.$

#So, we replace those values with the median of Oldpeak
Replace 0 values in "Oldpeak" with the median
df.loc[df["Oldpeak"] == 0, "Oldpeak"] = df["Oldpeak"].median()

In [35]:

df.sample(20)

Out[35]:

	Sl _N o	A g e	Ge nde r	C P	RBP(D iastolic	S C	F B S	R E R	M HR A	E I E	Old pea k	Sl op e	Flou roso py	Tha lliu m Test	H D
7 7	78	6	Ma le	0	140	1 8 7	0	0	144	1	4.0	2	2	2	0
7 5	76	4 7	Ma le	2	138	2 5 7	0	0	156	0	0.8	2	0	2	1

	Sl _N o	A g e	Ge nde r	C P	RBP(D iastolic	S C	F B S	R E R	M HR A	E I E	Old pea k	Sl op e	Flou roso py	Tha lliu m Test	H D
9 3 9	94	4 9	Fe mal e	1	134	2 7 1	0	1	162	0	0.8	1	0	2	1
6 5 3	65 4	5 6	Ma le	0	130	2 8 3	1	0	103	1	1.6	0	0	2	0
5 3 0	53 1	6	Fe mal e	0	150	2 5 8	0	0	157	0	2.6	1	2	2	0
1 6 0	16 1	7 7	Ma le	0	125	3 0 4	0	0	162	1	0.8	2	3	2	0
8 2 5	82 6	6 3	Fe mal e	2	135	2 5 2	0	0	172	0	0.8	2	0	2	1
1 0 0 8		4 2	Ma le	1	120	2 9 5	0	1	162	0	0.8	2	0	2	1
3 0 3	30 4	6	Ma le	0	145	2 8 2	0	0	142	1	2.8	1	2	2	0
1 7 5	17 6	5 6	Fe mal e	0	130	2 8 8	1	0	133	1	4.0	0	2	2	0
1 3 0	13 1	6 0	Fe mal e	3	150	2 4 0	0	1	171	0	0.9	2	0	2	1

	Sl _N o	\mathbf{g}	Ge nde r	C P	RBP(D iastolic	S C	F B S	R E R	M HR A	E I E	Old pea k	Sl op e	Flou roso py	Tha lliu m Test	H D
3 8	39	6 4	Ma le	0	128	2 6 3	0	1	105	1	0.2	1	1	2	1
6 5 5		4	Ma le	1	110	2 3 5	0	1	153	0	0.8	2	0	2	1
3 4 2	34	6 5	Fe mal e	2	155	2 6 9	0	1	148	0	0.8	2	0	2	1
1 6 2	16 3	7 7	Ma le	0	125	3 0 4	0	0	162	1	0.8	2	3	2	0
4 0 4	40 5	6 1	Ma le	0	140	2 0 7	0	0	138	1	1.9	2	1	2	0
6 6 1	66 2	5 8	Ma le	0	114	3 1 8	0	2	140	0	0.8	0	3	1	0
1 0 1 3	10 14	5 8	Ma le	0	114	3 1 8	0	2	140	0	0.8	0	3	1	0
1 5 2	15 3	5 8	Ma le	0	125	3 0 0	0	0	171	0	0.8	2	2	2	0
1 3 5	13 6	5 8	Fe mal e	0	170	2 2 5	1	0	146	1	2.8	1	2	1	0

#now our dataset is clean and without any outliers. We can do the analysis now

#lets export the dataframe as csv file

In [38]:

df.to_csv('/content/Heart Disease data.csv, index=False)

In []: