Łukasz Magnuszewski Weronika Jakimowicz

Pracownia z analizy numerycznej

Sprawozdanie do zadania **P.1.6.**Prowadzący: mgr. Filip Chudy

Wrocław, 20 listopada 2022, 21:37

Spis treści

1.	Wstęp
2.	Pierwsze próby
	2.1. Interpretacja geometryczna
	2.2. Algorytm Monte Carlo
	2.3. Szereg Taylora
3.	Wzór Viete'a
	3.1. Wyniki
4.	Wzór Ramanujana
5.	Algorytm Gaussa-Legendre'a

1. Wstęp

Indiana Bill

Metoda Chudowskiego - rekord cyfr pi z 2009, na podstawie wzoru Ramanujana

2. Pierwsze próby

2.1. Interpretacja geometryczna

Bardzo często π jest definiowane jako stosunek obwodu okręgu do jego średnicy. W historii pojawiało się wiele prób wyznaczenia π korzystając z obwodu wielokątów foremnych wpisanych w oraz opisanych na okręgu jednostkowym. Wraz ze wzrostem liczby boków zwiększa się dokładność oszacowań obwodu okręgu, co daje coraz to bliższe prawdy granice na wartość ludolfiny.

Takie podejście stosował już w starożytności Archimedes. Wyprowadził on wzór rekursyjny na obwód 2n-kąta foremnego wpisanego oraz opisanego na okręgu na podstawie obwodu n-kąta.

Wpiszmy n-kąt foremny w okrąg o promieniu 1. Teraz na tym samym okręgu opiszmy n-kąt tak, żeby wierzchołki wielokąta wpisanego były srodkami boków wielokąta opisywaneg. Dostajemy w ten sposob n-kąt foremny opisany na okręgu o promieniu 1. Nietrudno zauważyć, że teraz jeśli połączymy sąsiednie boki n-kąta opisanego odcinkami styczymi do okręgu o końcach w równej odległości od najbliższego wierzchołka, to dostaniemy 2n-kąt foremny. Sytuacja dla n=4 została przedstawiona na Rysunku 1.

Rozważmy teraz trójkąt $\Delta A'_1A_1A_2$. Zawuażmy, że odcinek $\overline{B_1B_2}$ dzieli go na dwa trójkąty podobne:

$$\Delta B_1 A_1 B_2 \sim \Delta A_1' A_1 A_2'$$
.

Rysunek 1. Wielokąty opisane i wpisane w okrąg o promieniu 1.

Dla przejżystości zapisów oznaczmy $|\overline{A_1A_2}|=A, |\overline{B_1B_2}|=B$ oraz $|\overline{A_1'A_2'}|=a.$ Z proporcji w trójkątach podobnych mamy:

$$\frac{B}{\frac{1}{2}A - \frac{1}{2}B} = \frac{a}{\frac{1}{2}A}$$

$$B = \frac{a}{A}(A - B)$$

$$B = a - \frac{a}{A}B$$

$$B = \frac{aA}{A + a}$$

Oznaczmy teraz obwód n-kąta wpisanego jako l_n , a n-kąta opisanego - L_n . Według Rysunku 1 są one równe:

$$l_n = na$$

$$L_n = nA$$

$$L_{2n} = 2nB = 2n\frac{aA}{A+a} = 2n^2\frac{aA}{An+an} = 2\frac{L_n l_n}{L_n + l_n}$$

Dalej, oznaczmy długość boku 2n-kąta wpisanego jako b. Zauważmy, że wówczas:

$$B = 2 \tan \frac{\pi}{2n}$$
$$a = 2 \sin \frac{\pi}{n}$$
$$b = 2 \sin \frac{\pi}{2n}$$

oraz:

$$l_{2n} = 2nb = 4n\sin\frac{\pi}{2n} = \sqrt{16n^2\sin^2\frac{\pi}{2n}} = \sqrt{8n^2\frac{\sin\frac{\pi}{2n}}{\cos\frac{\pi}{2n}}} 2\sin\frac{\pi}{2n}\cos\frac{\pi}{2n} =$$
$$= \sqrt{8n^2\tan\frac{\pi}{2n}\sin\frac{\pi}{n}} = \sqrt{2nBna} = \sqrt{L_{2n}l_n}.$$

Zauważmy, że $\lim_{k\to\infty}L_k=2\pi$ i $\lim_{k\to\infty}l_k=2\pi$ oraz dla każdego kmamy

$$l_n \leqslant 2\pi \leqslant L_n$$
,

Wykres 2. Wykres logarytmu dziesiętnego z błędu względnego dla przybliżenia π za pomocą metody geometrycznej.

a więc możemy przybliżać π jako

$$\pi \approx \frac{L_n - l_n}{4}$$

czyli jako środek przedziału $[l_n, L_n]$. Wybierzemy punkt startowy jako trójkąt równoboczny:

$$\begin{cases} l_3 = 3\sqrt{3} \\ L_3 = 6\sqrt{3} \end{cases}$$

2.2. Algorytm Monte Carlo

Tak jak w poprzedniej metodzie, możemy skorzystać z faktu, że dla koła jednostkowego π jest równe jego polu. Zauważmy, że jeżeli będziemy wybierać losowo punkty kwadratu o polu 1, to $\frac{\pi}{4}$ z nich powinno znaleźć się w ćwiartce koła o środku w jednym z wierzchołków tego kwadratu (Rysunek 3.).

Korzystając z algorytmu Monte Carlo możemy wybierać losowo współrzędne $x,y\in[0,1]$ kolejnych punktów, a następnie sprawdzać ile z nich spełnia warunek

$$x^2 + y^2 \leqslant 1.$$

Otrzymany stosunek będzie coraz bliższy $\frac{\pi}{4}$ wraz ze zwiększaniem ilości testowanych punktów.

Na Wykresie 4. Zaprezentowany jest logarytm dziesiętny z błędu względnego metody Monte Carlo. Szacowanie zbieżności tej metody jest trudne, ale możemy zauważyć, że jest ona gorsza niż zbieżność liniowa.

Rysunek 3. Stosunek pola ćwiartki koła jednostkowego do kwadratu o boku 1

Wykres 4. Wykres logarytmu dziesiętnego z błędu względnego uzyskanego dla metody przybliżenia π z pomocą algorytmu Monte Carlo.

2.3. Szereg Taylora

W matematyce bardzo często w celu przybliżania porządanych wartości używa się szeregów Taylora. Tak dla przykładu, korzystając z rozszerzenia funkcji arctan x w punkcie 0 możemy oszacować wartość $\frac{\pi}{4}$:

(1)
$$\frac{\pi}{4} = \arctan 1 = \sum_{k=0}^{\infty} \frac{\arctan^{(k)} 0}{k!} (1-0)^k = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \sum_{k=0}^{\infty} \frac{(-1)^k}{2k+1}.$$

W obliczeniach praktycznych nie możliwe jest dodawanie kolejnych elementów sumy w nieszkończoność. Konieczne jest więc zatrzymanie się na pewnym N, co daje pewien błąd, R_N :

$$\frac{\pi}{4} \approx \sum_{k=0}^{N} \frac{(-1)^k}{2k+1} + R_N.$$

Oznaczmy tę sumę jako P_N . Ponieważ dla przybliżeń funkcji szeregiem Taylora coraz wyższego stopnia dostajemy coraz dokładniejszy wynik, to P_{N+1} powinno być dokładniejsze niż P_N . Zauważamy też, że

$$P_{N+1} - P_N = \frac{(-1)^{N+1}}{2N+3}$$

w takim razie możemy oszacować błąd dla szeregu Taylora N-tego stopnia za pomocą

$$R_N \approx \max \frac{(-1)^{N+1}}{2N+3},$$

co daje zbieżność liniową.

Problem tego przybliżenia π został prze
analizowany już przez Madhawa z Sangamagramy w XIV wieku. Zaproponował on następującą korekcję wzoru dla skończonych sum:

(2)
$$\frac{\pi}{4} \approx \sum_{k=0}^{N} \frac{(-1)^k}{2k+1} \pm \frac{N^2+1}{4N^3+5N}.$$

Wykres zbieżności metody: Szereg Taylora

Wykres 5. Wykres logarytmu dziesiętnego z błędu względnego uzyskanego dla metody przybliżenia π za pomocą szeregu Taylora.

3. Wzór Viete'a

Viete wyprowadził swoją formułę na π obserwując stosunek pola 2^n -kata foremnego do pola 2^{n+1} -kata foremnego. Poprzez zwiększanie n w nieskończoność, jesteśmy w stanie dostać stosunek 2^2 -kąta foremnego, czyli kwadratu, do pola koła w które został on wpisany. Można ją też wyprowadzić za pomocą tożsamości udowodnionej przez Eulera ponad 100 lat po śmierci Viete'a.

Wzór zaproponowany przez Viete'a, uznawany za prekursor analizy matematycznej w matematyce poprzez pierwsze wykorzystanie nieskończonego ilorazu, jest następujący:

$$\frac{2}{\pi} = \prod_{k=1}^{n} \frac{a_k}{2},$$

gdzie $a_1 = \sqrt{2}$ oraz

$$a_k = \sqrt{2 + a_{n-1}}.$$

Wiemy, że

$$\frac{\sin x}{x} = \cos \frac{x}{2} \cos \frac{x}{4} \dots = \lim_{n \to \infty} \prod_{k=1}^{n} \cos \frac{x}{2^n}$$

oraz

$$\cos\frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}}.$$

Jeśli wstawimy $x = \frac{\pi}{2}$ i oznaczymy $b_k = \cos \frac{x}{2^k}$, $b_1 = \frac{\sqrt{2}}{2}$, dostaniemy

$$\frac{\sin\frac{\pi}{2}}{\frac{\pi}{2}} = \frac{2}{\pi} = \lim_{n \to \infty} \prod_{k=1}^{n} \cos\frac{x}{2^2} = \lim_{n \to \infty} \prod_{k=1}^{n} b_k = \lim_{n \to \infty} \prod_{k=1}^{n} \frac{a_k}{2},$$

gdzie

$$a_k = 2b_k = 2\sqrt{\frac{1+b_{k-1}}{2}} = \sqrt{2+2b_{k-1}} = \sqrt{2+a_{k-1}}$$

i
$$a_1 = \sqrt{2}$$
.

3.1. Wyniki

Na Wykresie 6. zaprezentowany jest wykres zbieżności algorytmu Viete'a. Eksperymentalne wyznaczenie rzędu zbieżności, tak jak i gradient prezentowanego wykresu, sugerują liniową zbieżność tej metody wyliczania Viete. Od około 8750 iteracji wartość zwracana przez metodę Viete'a pokrywa się z wartością wyliczaną bibliotecznie.

Wykres 6. Wykres logarytmu dziesiętnego z błędu względnego dla przybliżenia π za pomocą metody Viete'a.

Zbieżność liniowa jest dobrym wynikiem, tak samo jak w podejściu geometrycznym opisanym w Sekcji 2.1

4. Wzór Ramanujana

Tutaj trzeba ogarnąć co się odpierdala bo w sumie to nawet porządni matematycy nie są pewni, to co dopiero student debil.

5. Algorytm Gaussa-Legendre'a

