2^η Θεματική Ενότητα : Άλγεβρα Boole και Λογικές Πύλες

Επιμέλεια διαφανειών: Χρ. Καβουσιανός

Βασικοί Ορισμοί

Δυαδικός Τελεστής (Binary Operator): σε κάθε ζεύγος από το Σ αντιστοιχίζει ένα στοιχείο του Σ.

Συνηθισμένα Αξιώματα $(\alpha, \beta, \gamma, e) \in \Sigma, \otimes, \bullet$ δυαδικοί τελεστές :

- 1. Κλειστότητα ως προς δυαδικό τελεστή: α ⊗ β ∈Σ
- 2. Προσεταιριστικός Νόμος: $(\alpha \otimes \beta) \otimes \gamma = \alpha \otimes (\beta \otimes \gamma)$
- 3. Αντιμεταθετικός Νόμος: α \otimes β= β \otimes α
- 4. Ουδέτερο Στοιχείο e: $\alpha \otimes e = e \otimes \alpha = \alpha$
- 5. Αντίστροφο: $\alpha \otimes \alpha' = e$
- 6. Επιμεριστικός Νόμος: $\alpha \bullet (\beta \otimes \gamma) = (\alpha \bullet \beta) \otimes (\alpha \bullet \gamma)$

Πεδίο: Αλγεβρική δομή με σύνολο στοιχείων και δύο δυαδικούς τελεστές όπου ο καθένας έχει τις ιδιότητες 1 έως 5 και που και οι δύο μαζί έχουν την ιδιότητα 6.

Παράδειγμα: Πεδίο Πραγματικών Αριθμών

Σύνολο: πραγματικών αριθμών Δυαδικοί τελεστές: +, •

+ ορίζει την πρόσθεση

Ουδέτερο στοιχείο πρόσθεσης: 0

Αντίστροφο (-α) ορίζει την αφαίρεση

• ορίζει τον πολλαπλασιασμό

Ουδέτερο στοιχείο πολλαπλασιασμού: 1

Αντίστροφο (1/α) ορίζει τη διαίρεση

Επιμεριστικός νόμος: $\alpha \bullet (\beta + \gamma) = \alpha \bullet \beta + \alpha \bullet \gamma$

Αξιωματικός Ορισμός Άλγεβρας Boole

<u>Άλγεβρα Boole</u>: είναι μία αλγεβρική δομή πάνω σε ένα σύνολο στοιχείων Β μαζί με τους δυαδικούς τελεστές +, •, αρκεί να ικανοποιούνται τα παρακάτω αξιώματα (Huntington):

- 1. Κλειστή ως προς τελεστή +, : $\alpha + \beta$, $\alpha \bullet \beta \in B$
- 2. Αντιμεταθετική ως προς +, : $\alpha + \beta = \beta + \alpha$, $\alpha \beta = \beta \alpha$
- 3. Ουδέτερο Στοιχείο 0(+), $1(\bullet)$: $\alpha + 0 = \alpha$, $\alpha \bullet 1 = \alpha$
- 4. Συμπλήρωμα ως προς +, : $\alpha + \alpha' = 1$, $\alpha \alpha' = 0$
- 5. Επιμεριστική ως προς +, : α •(β + γ)=(α • β)+(α • γ), α +(β • γ)=(α + β) (α + γ)
- 6. Υπάρχουν τουλάχιστον δύο στοιχεία $\alpha, \beta \in B$ με $\alpha \neq \beta$.

Διαφορές με συνήθη Άλγεβρα

- 1. Τα αξιώματα Huntington δεν περιλαμβάνουν τον προσεταιριστικό νόμο που όμως αποδεικνύεται ότι ισχύει.
- 2. Ο επιμεριστικός νόμος του + ως προς τον ισχύει για την άλγεβρα Boole αλλά όχι για την συνήθη άλγεβρα.
- 3. Η άλγεβρα Boole δεν έχει προσθετικά ή πολλαπλασιαστικά αντίστροφα άρα δεν υπάρχει αφαίρεση διαίρεση.
- 4. Το συμπλήρωμα δεν υπάρχει στην συνήθη άλγεβρα.
- 5. Η συνήθης άλγεβρα ασχολείται με το απειροσύνολο των πραγματικών. Η Boole έχει δύο στοιχεία, τα 0, 1.

Ανάλογα με την επιλογή των στοιχείων του Β και των κανόνων λειτουργίας των τελεστών μπορούμε να σχηματίσουμε πολλές άλγεβρες Boole.

Η δίτιμη άλγεβρα Boole

- Σύνολο στοιχείων: B = {0, 1}
- Δυαδικοί τελεστές: + (λογική πράξη H), (λογική πράξη ΚΑΙ), και τελεστής συμπληρώματος (λογική πράξη ΟΧΙ)

x	y	$x \cdot y$	X	y .	x + y	X	x'
0	0	0	0	0	. 0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1		
1	1	1	1	1	1 .		
		L					

• Ισχύουν τα αξιώματα Huntington

Η δίτιμη άλγεβρα Boole

0	. 0	0	1
4			
1	1	1	0
0	1		
1	1	†	
	0	0 1 1	0 1 1

- 1. Η κλειστότητα προφανώς ισχύει.
- 2. Τα ουδέτερα στοιχεία είναι 0 για το + και 1 για το : (0+0=0, 0+1=1+0=1) και (1 1=1, 1 0=0 1=0)
- 3. Οι αντιμεταθετικοί νόμοι είναι προφανείς από τη συμμετρία.
- 4. Από τον πίνακα συμπληρώματος έχουμε x+x'=1: 0+0'=0+1=1, 1+1'=1+0=1 και $x \cdot x'=0$: $0 \cdot 0'=0 \cdot 1=0$, $1 \cdot 1'=1 \cdot 0=0$
- 5. Η άλγεβρα έχει τουλάχιστον 2 στοιχεία αφού 1≠0.
- 6. Ο επιμεριστικός νόμος φαίνεται από τον παρακάτω πίνακα

Ο επιμεριστικός νόμος

X	У	Z	y + z	$x \cdot (y + z)$	$x \cdot y$	$X \cdot Z$	$(x \cdot y) + (x \cdot z)$
0	0	0	. 0	O	0	О	0
0	0	1	1	/ o \	O	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	o	0	O	0	0
1	0	1	1	1	0	1	1
1	1	0	1	\setminus 1	1	0	1
1	1	1	1	1	1	1	1

Δύο συναρτήσεις που δίνουν τις ίδιες λογικές τιμές για όλες τις πιθανές τιμές των μεταβλητών τους είναι ισοδύναμες

Δυισμός

Δυϊσμός: Ότι ισχύει από τα αξιώματα Huntigton για το + (•) μπορεί να προκύψει από το • (+) με εναλλαγή τελεστών και ουδέτερων στοιχείων.

Μια αληθής αλγεβρική έκφραση παραμένει αληθής αν εναλλάξω τελεστές και ουδέτερα στοιχεία (ΚΑΙ-Η, 0-1)

Η αρχή δυισμού αποτελεί απόδειξη ισχύος μίας λογικής έκφρασης και αξιοποιείται στα βασικά αξιώματα-θεωρήματα

Βασικά θεωρήματα και ιδιότητες

ΠΙΝΑΚΑΣ 2-1 Αξιώματα και θεωρήματα της άλγεβρας Boole

	-	
Αξίωμα 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Αξίωμα 5	(a) x + x' = 1	(b) $x \cdot x' = 0$
Θεώρημα 1	(a) $x + x = x$	(b) $x \cdot x = x$
Θεώρημα 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Θεώρημα 3, (δύο αρνήσεις)	(x')' = x	
Αξίωμα 3, αντιμεταθετική	(a) $x + y = y + x$	(b) $xy = yx$
Θεώρημα 4, προσεταιριστική	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Αξίωμα 4, επιμεριστική	(a) $X(y+z) = Xy + Xz$	(b) $x + yz = (x + y) (x + z)$
Θεώρημα 5, De Morgan	(a) $(x + y)' = x'y'$	(b) $(xy)' = x' + y'$
Θεώρημα 6, απορρόφηση	(a) $x + xy = x$	$(b) \ x(x+y) = x$

Τα θεωρήματα αποδεικνύονται:

- (α) με χρήση των αξιωμάτων και των θεωρημάτων που έχουν ήδη αποδειχθεί, ή
- (β) με τη βοήθεια των πινάκων αλήθειας

Αξιώματα

<u>Αξίωμα 2:</u> x + 0 = x

Αξίω	μα 5:	$\mathbf{x} + \mathbf{x}'$	' = 1

OR

	х	y	<i>x</i> + <i>y</i>
<	0	0	0>
	0	1	1
<	1	0	
	1	1	1

Για y = 0 αποδεικνύεται

Δυϊκο: $x \cdot 1 = x$

OR

	х	y	<i>x</i> + <i>y</i>
	0	0	0
<	0	1	1>
<	1	0	1>
	1	1	1

Για y = x' αποδεικνύεται

Δυϊκο: $x \cdot x' = 0$

X+X =

$$(x+x)\cdot 1 =$$
 αξίωμα $a\cdot 1 = a$

$$(x+x)\cdot(x+x') =$$
 αξίωμα $a+a'=1$

$$x+xx'=$$
 αξίωμα $a+bc=(a+b)(a+c)$

$$x+0 = \alpha \xi i \omega \mu \alpha \ a \cdot a' = 0$$

x αξίωμα a+0=a

x = Ο Πέτρος έγραψε 10 στην Ψηφιακή σχεδίαση

Εαν η πρόταση είναι αληθής τότε και η πρόταση "ο Πέτρος έγραψε 10 **H** ο Πέτρος έγραψε 10" είναι επίσης αληθής

<u>Θεώρημα 1b:</u> x·x=x (δυικό του 1<u>a</u>)

$$\mathbf{x} \cdot \mathbf{x} =$$

$$xx+0 = \alpha \xi i\omega \mu \alpha \ a+0 = a$$

$$xx+xx' = \alpha \xi i\omega \mu \alpha \ a \cdot a' = 0$$

$$x(x+x')=$$
 $\alpha\xi i\omega\mu\alpha \ a(b+c)=ab+ac$

$$x \cdot 1 = \alpha \xi i \omega \mu \alpha \ a + a' = 1$$

$$x$$
 αξίωμα $a \cdot 1 = a$

x = Ο Πέτρος έγραψε 10 στην Ψηφιακή σχεδίαση

Εαν η πρόταση είναι αληθής τότε και η πρόταση "ο Πέτρος έγραψε 10 '**KAI** ο Πέτρος έγραψε 10" είναι επίσης αληθής

$$x+1 =$$

$$1 \cdot (x+1) =$$
 αξίωμα $a \cdot 1 = a$

$$(x+x')\cdot(x+1) =$$
 αξίωμα $a+a'=1$

$$x+x'\cdot 1 = \alpha\xi i\omega\mu\alpha \ a+bc = (a+b)\cdot (a+c)$$

$$x+x' = \alpha \xi i\omega \mu \alpha a \cdot 1 = a$$

αξίωμα a+a'=1

<u>Θεώρημα 2b:</u> x·0=0 (δυικό του 2a)

x = Ο Πέτρος έγραψε 10 στην Ψηφιακή σχεδίαση

Είτε η πρόταση είναι αληθής είτε όχι, η πρόταση "ο Πέτρος έγραψε 10 '**H** το 10 είναι μεγαλύτερο του 9" είναι αληθής

<u>Θεώρημα 6b:</u> $x \cdot (x+y) = x$ (δυικό του 6a)

<u>Θεώρημα 5a (De Morgan): (</u>x+y)'=x'y'

X	y	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	0

x '	y '	x ' y '
1	1	1
1	0	0
0	1	0
0	0	0

<u>Θεώρημα 5b (De Morgan): (xy)'=x'+y'</u>

Προτεραιότητα Τελεστών

- 1. Παρένθεση
- 2. OXI
- 3. KAI
- 4. H

Παραδείγματα

(x + y)': 1) υπολογίζουμε το x + y.

2) παίρνουμε το συμπλήρωμα του αποτελέσματος.

χ΄ y΄ : 1) παίρνουμε τα συμπληρώματα των x και y.

2) παίρνουμε το ΚΑΙ των συμπληρωμάτων.

Συναρτήσεις Boole

Συνάρτηση: Έκφραση από δυαδικές μεταβλητές, τους δύο δυαδικούς τελεστές Η και ΚΑΙ, τον τελεστή ΌΧΙ, παρενθέσεις και ένα ίσον.

 F_1 =x+y'z είναι αληθής (1) μόνο αν (x=1) ή (y=0 και z=1).

Αλγεβρική έκφραση

$$F_1 = x + y'z$$

Κυκλωματικη Υλοποίηση

Συναρτήσεις Boole

Ο πίνακας αλήθειας είναι **ΜΟΝΑΔΙΚΟΣ**, ενώ υπάρχουν πολλαπλές αλγεβρικές εκφράσεις και κυκλωματικές υλοποιήσεις

Πίνακας Αλήθειας

X	y	Z	F ₂
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	0

ΑΠΛΟΠΟΙΗΣΗ!!!

Εύρεση απλούστερων εκφράσεων μιας συνάρτησης με χρήση αλγεβρικών μετασχηματισμών.

Παράδειγμα

$$F_{3} = x'y'z + x'yz + xy'$$

$$= x'z (y' + y) + xy'$$

$$= x'z1 + xy'$$

$$= x'z + xy'$$

$$= F_{4}$$

Να απλοποιηθεί η παράσταση:

$$1 \rightarrow [(x' + z)' \bullet y] + [(x + y) \bullet z] =$$

$$1 \rightarrow [(x'+z)' \bullet y] + [(x+y) \bullet z] =$$

$$2 \rightarrow [(x')' \cdot z' \cdot y] +$$

$$1 \rightarrow [(x' + z)' \cdot y] + [(x + y) \cdot z] =$$

$$2 \rightarrow [(x')' \cdot z' \cdot y] + [x \cdot z + y \cdot z]$$

$$1 \rightarrow [(x' + z)' \cdot y] + [(x + y) \cdot z] =$$

$$2 \rightarrow [(x')' \cdot z' \cdot y] + [x \cdot z + y \cdot z] =$$

$$3 \rightarrow (x \cdot z' \cdot y) + (x \cdot z + y \cdot z) =$$

$$1 \rightarrow [(x' + z)' \cdot y] + [(x + y) \cdot z] =$$

$$2 \rightarrow [(x')' \cdot z' \cdot y] + [x \cdot z + y \cdot z] =$$

$$3 \rightarrow (x \cdot z' \cdot y) + (x \cdot z + y \cdot z) =$$

$$4 \rightarrow x \cdot y \cdot z' + x \cdot z + y \cdot z$$

1.
$$x(x' + y) = xx' + xy = 0 + xy = xy$$
.

2.
$$x + x'y = (x + x')(x + y) = 1(x + y) = x + y$$
.

3.
$$(x + y)(x + y') = x + xy + xy' + yy' = x(1 + y + y') = x$$
.

4.
$$xy + x'z + yz = xy + x'z + yz(x + x')$$

= $xy + x'z + xyz + x'yz$
= $xy(1 + z) + x'z(1 + y)$
= $xy + x'z$.

5.
$$(x+y)(x'+z)(y+z)=(x+y)(x'+z)$$
, by duality from function 4.

Συμπλήρωμα Συνάρτησης Boole

Το συμπλήρωμα F' μιας συνάρτησης F είναι η συνάρτηση εκείνη που ισούται με 0 όταν F=1 και 1 όταν F=0.

Το συμπλήρωμα μιας συνάρτησης προκύπτει εφαρμόζοντας τα γενικευμένα θεωρήματα DeMorgan

$$(A + B + C + D + ... + F)' = A' B' C' D' ... F'$$

 $(ABCD...F)' = A' + B' + C' + D' + ... + F'$

εάν αλλάξουμε τα ΚΑΙ με τα Η και συμπληρώσουμε κάθε παράγοντα.

Το συμπλήρωμα προκύπτει εύκολα εάν πάρουμε το δυϊκό της συνάρτησης και συγχρόνως το συμπλήρωμα κάθε παράγοντα.

Συμπλήρωμα Συνάρτησης Boole

$$F'_1 = (x'yz' + x'y'z)' = (x'yz')'(x'y'z)' = (x + y' + z)(x + y + z')$$

$$F'_2 = [x(y'z' + yz)]' = x' + (y'z' + yz)' = x' + (y'z')'(yz)'$$

$$= x' + (y + z)(y' + z')$$

$$= x' + yz' + y'z$$

ΠΡΟΣΟΧΗ:

Το θεώρημα De Morgan πρέπει να εφαρμόζεται σταδιακά και ακολουθώντας την προτεραιότητα των τελεστών ανάποδα

<u>Minterm (Ελαχιστόρος)</u>: Το ΚΑΙ η μεταβλητών στην κανονική ή συμπληρωματική τους μορφή.

Παραδείγματα ελαχιστόρων με 4 μεταβλητές:

<u>Maxterm (Μεγιστόρος)</u>: Το Η΄ η μεταβλητών στην κανονική ή συμπληρωματική τους μορφή.

Παραδείγματα μεγιστόρων με 4 μεταβλητές:

$$x + y + z + w$$
, $x' + y + z' + w$, $x + y' + z + w$

			Ελαχιστόροι		Μεγιστόροι		
X	y	Z	Όρος	Ονομασία	Όρος	Ονομασία	
0	0	0	x'y'z'	$m_{ m o}$	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	X + y' + Z	M_2	
0	1	1	X'YZ	m_3	X + Y' + Z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x'+y'+z	M_6	
1	1	1	XYZ	m_7	x'+y'+z'	M_7	

Για η μεταβλητές έχουμε 2ⁿ ελαχιστόρους και μεγιστόρους. Οι μεταβλητές έχουν ανεστραμένες τιμές στους αντίστοιχους ελαχιστόρους / μεγιστόρους

Κάθε ελαχιστόρος είναι το συμπλήρωμα του αντίστοιχου μεγιστόρου και αντίστροφα, π.χ. m_0 =x'y'z', M_0 =x+y+z

X	y	Z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0		0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$

$$f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$$

X	y	Z	F	<u>F'</u>
0	0	0	1	0
0	0	1	1	0
0	1	0	0	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	1	0
1	1	1	1	0

$$F = \Sigma(0, 1, 4, 6, 7)$$

$$F' = \Sigma(2, 3, 5)$$

Όσοι ελαχιστόροι λείπουν από την F υπάρχουν στην συμπληρωματική της F'

F'=
$$m_2+m_3+m_5$$
 F = (F')' = m_2 ' m_3 ' m_5 ' = $M_2M_3M_5$
F = $\Sigma(0, 1, 4, 6, 7) = \Pi(2, 3, 5)$
0, 1, 2, 3, 4, 5, 6, 7

Κανονικές Μορφές

$$f_1 = x'y'z + xy'z' + xyz \begin{cases} f_1 = m_1 + m_4 + m_7 & f_1' = m_0 + m_2 + m_3 + m_5 + m_6 \\ f_1 = M_0 M_2 M_3 M_5 M_6 & f_1' = M_1 M_4 M_7 \end{cases}$$

x	y	z	Function f ₁
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Συνάρτηση Boole σε Αθροισμα Ελαχιστόρων

- 1. Αναπτύσσουμε τη συνάρτηση σε άθροισμα γινομένων.
- 2. Συμπληρώνουμε κάθε γινόμενο με τις μεταβλητές που λείπουν πολ/ ζοντας με μία παράσταση (x + x') για κάθε μεταβλητή που λείπει.

ή εναλλακτικά

- 1. Κατασκευάζουμε τον πίνακα αλήθειας της συνάρτησης κατ'ευθείαν από την αλγεβρική έκφραση.
- 2. Παίρνουμε τους ελαχιστόρους από τον πίνακα αλήθειας.

Παράδειγμα

$$F = A + B'C$$

$$= A(B + B')(C + C') + (A + A')B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

$$= A'B'C + AB'C' + AB'C + ABC' + ABC$$

$$= m_1 + m_4 + m_5 + m_6 + m_7 = \Sigma(1, 4, 5, 6, 7)$$

Συνάρτηση Boole σε Γινόμενο Μεγιστόρων

- 1. Αναπτύσσουμε τη συνάρτηση σε γινόμενο αθροισμάτων χρησιμοποιώντας τον επιμεριστικό κανόνα: x + yz = (x + y)(x + z).
- 2. Συμπληρώνουμε κάθε άθροισμα με τις μεταβλητές που λείπουν προσθέτοντας τον όρο (xx') για κάθε μεταβλητή που λείπει.

ή εναλλακτικά

- 1. Κατασκευάζουμε τον πίνακα αλήθειας της συνάρτησης κατ'ευθείαν από την αλγεβρική έκφραση.
- 2. Παίρνουμε τους μεγιστόρους από τον πίνακα αλήθειας.

Παράδειγμα

$$F = xy + x'z = (xy + x')(xy + z) = (x + x')(y + x')(x + z)(y + z)$$

$$= (x' + y)(x + z)(y + z) = (x' + y + zz')(x + z + yy')(y + z + xx')$$

$$= (x' + y + z)(x' + y + z')(x + y + z)(x + y' + z)(x + y + z)(x' + y + z)$$

$$= (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z') =$$

$$= M_0 M_2 M_4 M_5 = \Pi(0, 2, 4, 5)$$

Μετατροπή μεταξύ Κανονικών Μορφών

Βήματα μετατροπής από άθροισμα ελαχιστόρων σε γινόμενο μεγιστόρων:

- 1. Εκφράζω την F σε άθροισμα ελαχιστόρων. Έστω F(A,B,C)=Σ(1,4,5,6,7).
- 2. Βρίσκω την $F'=\Sigma(0,2,3)=m_0+m_2+m_3$.
- 3. Βρίσκω την F΄΄ ως εξής: F΄΄= $(m_0+m_2+m_3)$ ΄= m_0 ΄ m_2 ΄ m_3 ΄= $M_0M_2M_3$ = $\Pi(0,2,3)$

Πίνακας Αληθείας για την F = xy + x'z

X	У	Z	F N	Λεγιστόροι
0 0 0 0 1 1 1	0 0 1 1 0 0	0 1 0 1 0 1		Γ(x,y,z)=Σ(1,3,6,7) λαχιστόροι Γ(x,y,z)=Π(0,2,4,5) Εναλλάσσουμε τα σύμβολα Σ και Π και οησιμοποιούμε εκείνους τους δείκτες που λείπουν από την αρχική μορφή.

Πρότυπες Μορφές

Πρότυπες μορφές: Οι συναρτήσεις όπου οι όροι μπορούν να περιέχουν λιγότερους από η παράγοντες.

Άθροισμα γινομένων: μια έκφραση Boole που περιέχει όρους ΚΑΙ που ονομάζονται γινόμενα με έναν ή περισσότερους παράγοντες ο κάθε ένας. «Άθροισμα» λέμε το λογικό Η όλων αυτών των γινομένων.

Παράδειγμα:

$$F_1 = y' + xy + x'yz'$$

<u>Γινόμενο Αθροισμάτων</u>: μια έκφραση Boole που περιέχει όρους Η που ονομάζονται αθροίσματα. Κάθε άθροισμα περιέχει έναν ή περισσότερους παράγοντες. Το γινόμενο αποτελεί το λογικό ΚΑΙ των αθροισμάτων.

Παράδειγμα:

$$F_2 = x(y' + z)(x' + y + z' + w)$$

Υλοποίηση Δύο Επιπέδων

Οι συναρτήσεις σε πρότυπη μορφή υλοποιούνται σε δύο επίπεδα λογικής

Η απλοποίηση κυκλωμάτων δύο επιπέδων αποτελεί έναν από τους βασικότερους στόχους της Ψηφιακής Σχεδίασης

Υλοποίηση Πολλαπλών Επιπέδων

Η διεπίπεδη υλοποίηση δεν είναι η φθηνότερη καθώς δεν εκμεταλλεύεται κοινούς παράγοντες

Το κόστος ενός κυκλώματος σε υλικό εξαρτάται από τον αριθμό των πυλών και τον αριθμό των εισόδων τους.

Άλλες Λογικές Πράξεις

Για μία συνάρτηση η μεταβλητών έχουμε 2^n πιθανούς συνδυασμούς και άρα 2^n πιθανές εξόδους 0 ή 1. Άρα έχουμε 2^{2n} πιθανούς συνδυασμούς των εξόδων και ισάριθμες πιθανές συναρτήσεις.

X	у	F ₀	F ₁	F ₂	F_3	F ₄	F ₅	F ₆ .	F ₇	F ₈	F ₉	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	ı	0									0					
1	0		0	1								1					
1		0	1	0	. 1	0	1	0	1	0	1	, 0	1	0	1.	0	1
Σύμ																	
٠.	στή			/		/		\oplus	+	1	ŰO	,	\subset	,	\supset	1	

Κατηγορίες Συναρτήσεων:

- 1. Δυο σταθερές 0, 1.
- 2. Τέσσερις unary συμπληρώματος/μεταφοράς.
- 3. Δέκα συναρτήσεις με δυαδικούς τελεστές.

Άλλες Λογικές Πράξεις

Εκφράσεις Boole για τις 16 συναρτήσεις δύο μεταβλητών

Συναρτήσεις Boole	Σύμβολο τελεστή	Όνομα	Σχόλια
$F_0 = 0$		Ουδέτερη	Δυαδική σταθερά 0
$F_1 = xy$	$X \cdot y$	KAI (AND)	x KAI y
$F_2 = xy'$	X/y	Αποτροπή	x αλλά όχι y
$F_3 = X$		Μεταφορά	X
$F_4 = x'y$	y/x	Αποτροπή	<i>y</i> αλλά όχι <i>x</i>
$F_5 = y$		Μεταφορά	y
$F_6 = xy' + x'y$	$x \oplus y$	Αποκλειστικό- ή	x ή y αλλά όχι και τα δύο
$F_7 = X + Y$	X + Y	H (OR)	<i>x</i> 'H <i>y</i>
$F_8 = (x + y)'$	$x \downarrow y$	OYTE (NOR)	OXI- 'H
$F_9 = xy + x'y'$	$x \odot y$	Ισοδυναμία*	<i>x</i> ίσον <i>y</i>
$F_{10} = y'$	y'	Συμπλήρωμα	OXI y
$F_{11} = x + y'$	$X \subset Y$	Συνεπαγωγή	Αν y τότε x
$F_{12} = x'$	x '	Συμπλήρωμα	OXI x
$F_{13} = X' + Y$	$X\supset Y$	Συνεπαγωγή	Αν x τότε y
$F_{14} = (xy)'$	$x \uparrow y$	NAND (OXI-KAI)	OXI-KAI
$F_{15} = 1$		Ταυτότητα	Δυαδική σταθερά 1

^{*} Η ισοδυναμία ("equivalence") λέγεται επίσης και "ισότητα" ("equality"), "σύμπτωση" ("coincidence") ή "αποκλειστικό-ΟΥΤΕ" ("exclusive NOR").

Ψηφιακές Λογικές Πύλες

			x y F
AND	<i>x</i> — <i>F</i>	$F = x \cdot y$	$\begin{array}{cccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ \end{array}$
			$ \begin{array}{c cccc} 1 & 0 & 0 \\ 1 & 1 & 1 \end{array} $
			x y F
OR	$rac{x}{y}$	F = x + y	$egin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ \end{array}$
			1 1 1
Inverter	x— F	$F = \mathbf{v}'$	x F
111,0101		$\Gamma - \lambda$	$egin{array}{c c} 0 & 1 \\ 1 & 0 \end{array}$
Buffer	, N	F	x F
Dullei	x— F	F = x	$egin{array}{c c} 0 & 0 \\ 1 & 1 \end{array}$

Ψηφιακές Λογικές Πύλες

Οι πύλες εκτός από τους αντιστροφείς και τους απομονωτές μπορούν να επεκταθούν σε περισσότερες από δύο εισόδους. Βασική προϋπόθεση η λογική πράξη να είναι αντιμεταθετική και προσεταιριστική.

Οι πράξεις ΚΑΙ και Η είναι αντιμεταθετικές και προσεταιριστικές, αφού

$$x + y = y + x$$

 $(x + y) + z = x + (y + z) = x + y + z$

επομένως οι πύλες ΚΑΙ και Η μπορούν να επεκταθούν σε περισσότερες από δύο εισόδους.

Οι πράξεις ΌΧΙ-ΚΑΙ και ΟΥΤΕ είναι αντιμεταθετικές αλλά όχι προσεταιριστικές.

Για αυτό τις ορίζουμε ως: $x \downarrow y \downarrow z = (x+y+z)'$, $x \uparrow y \uparrow z = (xyz)'$

Οι πράξεις Αποκλειστικό-Η και ισοδυναμίας είναι αντιμεταθετικές και προσεταιριστικές.

Η συνάρτηση Αποκλειστικό-Η είναι περιττή συνάρτηση, δηλαδή ισούται με 1 εάν οι μεταβλητές εισόδου έχουν περιττό αριθμό άσσων.

Η συνάρτηση ισοδυναμίας είναι άρτια συνάρτηση, δηλαδή ισούται με 1 εάν οι μεταβλητές εισόδου έχουν άρτιο αριθμό άσσων.

Θετική – Αρνητική Λογική

Η αναπαράσταση των λογικών τιμών χρησιμοποιώντας ηλεκτρικά δυναμικά καθορίζει τον τύπο της λογικής

Ολοκληρωμένα Κυκλώματα

Επίπεδα Ολοκλήρωσης

Μικρής Κλίμακας SSI: 10 πύλες / chip

Μεσαίας Κλίμακας **MSI**: 10-1000 πύλες / chip

Μεγάλης Κλίμακας LSI: μερικές χιλιάδες πύλες / chip

Πολύ Μεγάλης Κλίμακας **VLSI**: >1.000.000 πύλες / chip

Ολοκληρωμένα Κυκλώματα

ΤΤL Transistor-Transistor Logic: Πρότυπη Λογική Οικογ.

Οικογένειες ΙCs
ΜΟS Metal Oxide Semiconductor: Υψηλή Πυκνότητα.

CMOS Complementary MOS: Χαμηλή Κατανάλωση.

Χαρακτηριστικά Κατανάλωση Ισχύος Καθυστέρηση Διάδοσης Περιθώριο Θορύβου

Ολοκληρωμένα Κυκλώματα

ΤΤΙ 5400: Πλατιά ζώνη θερμοκρασιών (Στρατιωτική Χρήση)

ΤΤΙ 7400: Βιομηχανικές εφαρμογές

Σχεδίαση με χρήση Η/Υ

Τα ολοκληρωμένα κυκλώματα κατασκευάζονται με οπτική προβολή σχεδίου σε πυρίτιο και χημική επεξεργασία για απομόνωση συγκεκριμένων περιοχών.

Επίτευξη μεγεθών κάτω των 100nm

Εκατομμύρια πύλες χωρούν σε μία επιφάνεια 1 mm²

Αυτοματοποίηση της σχεδίασης: από την εισαγωγή της σχεδίασης μέχρι την κατασκευή σε πυρίτιο ή σε FPGAs

Σχεδίαση με σχηματικό

Σημαντική επιτάχυνση σχεδίασης και επαλήθευσης

Για μεγάλες σχεδιάσεις δεν είναι αρκετή

Σχεδίαση με HDL

```
1 library ieee;
 2 use ieee.std logic 1164.all;
 4 ENTITY MUX16 1 is port(
           D : in std logic vector (0 to 15);
           SEL:in std logic vector (3 downto 0);
           F: out std logic);
 8 END MUX16 1;
10 ARCHITECTURE RTL OF MUX16 1 IS
   COMPONENT MUX4 1
12
       port (
           D: in std logic vector (0 to 3);
           SEL: in std logic vector (1 downto 0);
14
           Y: out std logic);
16 END COMPONENT:
17
18
19
       SIGNAL Y : STD LOGIC VECTOR (3 downto 0);
20 BEGIN
21
22 uO: MUX4 1 port map(D=>D(O to 3), SEL=>Sel(1 downto 0), Y=>Y(O));
23 u1: MUX4 1 port map(D=>D(4 to 7), SEL=>Sel(1 downto 0), Y=>Y(1));
24 u2: MUX4 1 port map(D=>D(8 to 11), SEL=>Sel(1 downto 0), Y=>Y(2));
25 u3: MUX4 1 port map(D=>D(12 to 15), SEL=>Sel(1 downto 0), Y=>Y(3));
26 u4: MUX4 1 port map(D=>Y, SEL=>Sel(3 downto 2), Y=>F);
27
28 END RTL;
29
```

Ο σχεδιαστής περιγράφει, ο Η/Υ σχεδιάζει

Δυνατότητα αξιόπιστης σχεδίασης χιλιάδων πυλών σε λίγα δευτερόλεπτα

