Graph Algorithms Comparison

Here's a comparison of **BFS**, **DFS**, **Dijkstra**, **Bellman-Ford**, **and Warshall's algorithm**, along with their applications:

Algorithm	Туре	Time Complexity	Space Complexity	Applications
BFS (Breadth-First Search)	Graph Traversal	O(V + E)	O(V)	- Finding the shortest path in an unweighted graph - Level-order traversal in trees - Web crawling - Social networking sites (finding friends at a certain distance)
DFS (Depth- First Search)	Graph Traversal	O(V + E)	O(V)	Detecting cycles in graphsTopological sortingSolving puzzles (like mazes)Pathfinding in AI
Dijkstra	Shortest Path	O((V + E) log V) with a priority queue	O(V)	 - Finding the shortest path in weighted graphs (nonnegative weights) - GPS navigation systems - Network routing protocols (like OSPF)
Bellman-Ford	Shortest Path	O(V × E)	O(V)	 Finding shortest paths with negative weights Detecting negative weight cycles Used in routing algorithms like RIP
Warshall (Floyd- Warshall)	All-Pairs Shortest Path	O(V ³)	O(V²)	- Finding shortest paths between all pairs of vertices - Network analysis

Algorithm	Туре	Time Complexity	Space Complexity	Applications
				- Transitive closure of a graph

Key Differences:

1. Graph Type:

- **BFS/DFS**: Works on both directed and undirected graphs.
- **Dijkstra**: Works only with **non-negative** weighted graphs.
- **Bellman-Ford**: Handles **negative** weights and detects negative cycles.
- Warshall: Finds shortest paths between all pairs of nodes.

2. Efficiency:

- BFS/DFS: Fastest for simple traversal.
- Dijkstra: Faster for single-source shortest paths in dense graphs.
- **Bellman-Ford**: Slower but handles negative weights.
- Warshall: Inefficient for large graphs due to cubic complexity.

3. Use Case:

- Use **BFS** for the shortest path in **unweighted** graphs.
- Use **DFS** for exploring all paths or checking cycles.
- Use **Dijkstra** for efficient shortest paths in **non-negative weighted** graphs.
- Use **Bellman-Ford** for graphs with **negative weights**.
- Use Warshall when you need all pairs shortest paths.

This should give you a clear understanding of their differences and where each is best applied!