

Modelos Lineales Generalizados

Antonio Pita Lozano

Máster en Data Science

Modelos Lineales Generalizados Regresión Binomial Logística

- 1. Componentes
- 2. Interpretación de Coeficientes

Regresión Binomial Probit

- 1. Componentes
- 2. Interpretación de Coeficientes

Regresión Poisson

- 1. Componentes
- 2. Interpretación

Modelización Lineales Generalizados

Del Dato
al Conocimiento

Los modelos lineales generalizados son técnicas de modelización estadística que se utilizan cuando la variable dependiente se identifica con una distribución conocida incluida en la familia exponencial. Son una generalización de la regresión lineal.

Principales técnicas:

Regresión Bernoulli Logística

Regresión Bernoulli Probit

Regresión Poisson

Regresión Beta

Regresión Gamma

Regresión Geométrica

Regresión Chi-cuadrado

Regresión Exponencial

Regresión Bernoulli Logística

Objetivo

Estimar la relación entre una variable dependiente (variable explicada que sigue una distribución binaria Bernoulli) y varias variables independientes (variables explicativas) mediante una expresión lineal en coeficientes y la función link logit.

Desarrollo

Para la estimación de una relación líneas es necesario establecer el modelo a estimar, que será una combinación lineal de los regresores y una función link logit, también llamada función sigmoide:

$$P(y=1|x) = \frac{1}{1+e^{-z}} \text{ donde } z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$$

La estimación se realiza utilizando el estimador máximo verosímil y las estimaciones se obtienen mediante un algoritmo recursivo de mínimos cuadrados ponderados o la técnica de Newton-Raphson

Regresión Bernoulli Logística: Componentes

Datos

Modelo

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$
 donde P(Y=1|x)= $\frac{1}{1+e^{-z}}$

Función de coste

$$g(\beta_0, \beta_1, \dots, \beta_m) = \ln(L(\beta_0, \beta_1, \dots, \beta_m))$$

Algoritmo estimador

Estimador Máximo Verosímil mediante al algoritmo recursivo de Newton-Raphson

Regresión Bernoulli Logística: Interpretación Coeficientes

Del Dato al Conocimiento

Medidas de efecto de Riesgos

**	hhO	۵5	una	medida	de
.♦.	Ouus	C_{2}	ulla	IIICUIUa	ıuc

$$O(X) = \frac{P(Y = 1|x)}{1 - P(Y = 1|x)}$$

Odds Ratio o razón de monios es una medida del efecto entre dos situaciones

$$OR(X, X') = \frac{O(X)}{O(X')}$$

Risk Ratio es una medida de la ocurrencia ante un evento en comparación con la ausencia del evento.

$$RR(X, X') = \frac{R(X)}{R(X')}$$

	Afectado	No afectado	
Expuesto	EA	ENA	TE
No Expuesto	NEA	NENA	TNE
	TA	TNA	

	Afectado	No afectado	
Expuesto	70	30	100
No Expuesto	No Expuesto 50		200
	120	180	

$$O(Expuesto) = \frac{70/100}{30/100} = 2,33 \ veces$$

$$O(NoExpuesto) = \frac{50/200}{150/200} = 0.33 \ veces$$

$$OR(E, NE) = \frac{2,33}{0.33} = 7 \ veces$$

$$RR(E, NE) = \frac{70/100}{50/200} = 2,8 \ veces$$

Regresión Bernoulli Logística: Interpretación Coeficientes

Coeficiente de la regresión logística

Coeficiente o log-odds ratio

$$\beta_i = \log(OR(X_i, X)) = \log(\frac{O(X_i)}{O(X)})$$

Exponencial del coeficiente u odd-ratio

$$e^{\beta_i} = OR(X_i, X) = \frac{O(X_i)}{O(X)}$$

Regresión Bernoulli Probit

Objetivo

Estimar la relación entre una variable dependiente (variable explicada que sigue una distribución binaria Bernoulli) y varias variables independientes (variables explicativas) mediante una expresión lineal en coeficientes y la función link gausiana.

Desarrollo

Para la estimación de una relación líneas es necesario establecer el modelo a estimar, que será una combinación lineal de los regresores y una función link probit, que es precisamente la función de distribución de la distribución normal estandar:

$$P(y=1|x) = \theta(z) \text{ donde } z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$$

La estimación se realiza utilizando el estimador máximo verosímil y las estimaciones se obtienen utilizando algoritmos de optimización numéricos que convergen al óptimo global dado que la función es cóncava (problema de optimización conveza) y siempre tiene solución óptima.

Regresión Bernoulli Probit: Componentes

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$
 donde P(Y=1|x)= $\theta(z)$

$$g(\beta_0, \beta_1, \dots, \beta_m) = \ln(L(\beta_0, \beta_1, \dots, \beta_m))$$

Diversos algoritmos de optimización convexa como descenso del gradiente

Regresión Bernoulli Probit: Interpretación Coeficientes

No hay interpretación de coeficientes sencilla

Del Dato
al Conocimiento

Objetivo

Estimar la relación entre una variable dependiente (variable explicada que sigue una distribución discreta Poisson) y varias variables independientes (variables explicativas) mediante una expresión lineal en coeficientes y la función link logaritmo.

Desarrollo

Para la estimación de una relación líneas es necesario establecer el modelo a estimar, que será una combinación lineal de los regresores y una función link logit, también llamada función sigmoide:

$$E(y|x) = e^{z} \text{ donde } z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m + \varepsilon$$

La estimación se realiza utilizando el estimador máximo verosímil y las estimaciones se obtienen utilizando algoritmos de optimización numéricos que convergen al óptimo global dado que la función es cóncava (problema de optimización conveza) y siempre tiene solución óptima.

Regresión Poisson: Componentes

$$z = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$
 donde E(Y|x)= e^z

$$g(\beta_0, \beta_1, \dots, \beta_m) = \ln(L(\beta_0, \beta_1, \dots, \beta_m))$$

Diversos algoritmos de optimización convexa como descenso del gradiente

Regresión Poisson: Interpretación

Del Dato
al Conocimiento

Output de la regresión Poisson

$$E(Y|x) = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_m x_m} = \lambda$$

Coeficientes de la regresión Poisson

 \star X Variable binaria \rightarrow exp (β_i) es la razón de aumento de la media condicional

$$\exp(\beta_i) = \frac{P(Y|X_i = 1)}{P(Y|X_i = 0)}$$

> X Variable continua $> \beta_i$ es la semielasticidad

Función de densidad

Del Dato
al Conocimiento

Del Dato al Conocimiento

al Conocimiento

Del Dato

https://antoniopita.blog

Introducción a la Modelización Estadística

Antonio Pita Lozano

Máster en Data Science

