

(Structure-Preserving) Numerical Integration (of Dynamical Systems) using Transformer Neural Networks

Benedikt Brantner, Zeyuan Li, Guillaume de Romemont and Michael Kraus (benedikt.brantner@ipp.mpg.de)

Max-Planck-Institut für Plasmaphysik Technische Universität München, Zentrum Mathematik

Reduced Complexity Modelling

Motivation: Parametric PDEs and Solution Manifolds

- multi-query contexts (optimisation, inverse problems, control, ...) require the repeated solution of parametric partial differential equations
- lacktriangle denote the parameter space by $\mathbb{P} \subset \mathbb{R}^p$ and the solution space by V
- lacktriangle parametrised ODE problem (e.g. semi-discretised PDE) for $z \in V$ and $\mu \in \mathbb{P}$

$$F(z(\mu);\mu) = 0$$

- numerical algorithms seek approximate solutions $z_h \approx z$ in finite-dimensional spaces $V_h \approx V$; typically z_h is represented by a degree-of-freedom vector $\hat{z} \in \mathbb{R}^{N_h} \simeq V_h$ where $N_h = \dim V_h$
- ullet with traditional numerical methods, the space V_h is typically not adapted to the problem and therefore needs to be rather large, resulting in high computational costs
- the actual solution manifold ${\mathcal M}$ is a much smaller space

$$\mathcal{M} = \{ z(\mu) \in V : F(z(\mu); \mu) = 0, \ \mu \in \mathbb{P} \} \subset V_h$$

Motivation: Parametric PDEs and Solution Manifolds

• the solution manifold $\mathcal{M}=\{z(\mu)\in V: F(z(\mu);\mu)=0,\;\mu\in\mathbb{P}\}\subset V$ is a very small space

lacktriangledown goal: construct an approximation of the solution manifold \mathcal{M}_h and the embedding map $\mathcal{M}_h\hookrightarrow V_h$

Data-driven Model Order Reduction

- Strategy: Learn a low-dimensional representation of a system that captures relevant physical properties
- from a dataset M of solutions $\hat{z}(\mu)$ for different values of the parameter μ construct
 - lacksquare a mapping ${\mathcal P}$ from V_h to the low-dimensional space V_r (reduction)
 - a mapping ${\mathcal R}$ from the low-dimensional space V_r to V_h (reconstruction)
 - a reduced system of equations $\tilde{F}(\tilde{z}(\mu);\mu)=0$, i.e. a low dimensional ODE V_{μ}
- lacktriangledown the mappings ${\mathcal P}$ and ${\mathcal R}$ are chosen such that they minimize the reconstruction error:

$$\min_{\mathcal{P},\mathcal{R}} \frac{1}{2} ||\mathsf{M} - \mathcal{R} \circ \mathcal{P}(\mathsf{M})||^2$$

• important properties of the high order model, such as **symplecticity** or conservation of invariants, need to be accounted for in the construction of \mathcal{P} , \mathcal{R} and \tilde{F}

Caveat

 $TP \circ V \circ \mathcal{R}$ is very expensive to evaluate!!!!!

The vector field still has to be evaluated and this is (one of) the most expensive part(s) of the high-order model.

Neural Networks for Learning

Low-Dimensional Dynamics

LSTMs

SympNets

- SympNets can approximate arbitrary canonical symplectic maps
- universal model representing the solution of Hamiltonian systems
- no traditional symplectic integration methods required (in contrast to HNNs)
- the SympNet itself provides a time-stepping method for a Hamiltonian system

application: non-intrusive, structure-preserving time integration of reduced systems

Transformers

- Transformers were originally devised for Natural Language Processing (NLP).
- They have gradually replaces LSTMs and other recurrent neural network architectures for these kinds
 of data and are competing with CNNs in image processing.

Multihead Attention

- Can find correlations in the input data.
- MHA : $X \mapsto [P_1^V X \sigma((P_1^K X)^T P_1^Q X), \dots, P_{N_h}^V X \sigma((P_{N_h}^K X)^T P_{N_h}^Q X)]$, where the P^V , P^K and P^Q are projection matrices.
- More concisely a MHA layer performs N_h single head attention operations: SHA: $(V,K,Q)\mapsto V\sigma(K^TQ)$, where $\sigma=\mathrm{softmax}$. Therefore:

$$MHA(X) = [SHA(X_1^V, X_1^K, X_1^Q), \dots, SHA(X_{N_h}^V, X_{N_h}^K, X_{N_h}^Q)]$$
 and $X_i^V = P_i^V X$ etc.

Optimization on Manifolds

GeometricMachineLearning

- $\label{eq:loss} 1. \ \ model = Lux. Chain(Transformer(patch_length2, n_heads, L, Stiefel = false), \\ Classification(patch_length2, 10)), \\$
- $2. \ \, model = Lux.Chain(Transformer(patch_length2, n_heads, L, Stiefel = true), \\ Classification(patch_length2, 10)) \\$

Plan for Project

- $1. \ \mbox{Get familiar}$ with the transformer and find what is important for training it.
- 2. Find an ODE for which transformers are outperforming ResNets (and LSTMs).
- 3. Make it structure-preserving and see how it compares with $\ensuremath{\mathsf{SympNets}}.$