555 时基电路应用实验报告

一、实验目的。

掌握 555 型集成时基电路的基本应用: 单稳态触发器、多谐振荡器、施密特触发器。了

解用两个 555 定时器组成的蜂鸣器电路。

二、实验原理。

- 1、555 定时器的引脚。
 - 1 脚为接地端 GND
 - 2 脚为低电平触发端,由此输入低电平触发脉冲;
 - 3 脚为输出端,输出电流可达 200mA(双极型);

- 4 脚为复位端, 输入负脉冲 (或使其电压低于 0.7V) 可使 555 定时器直接复位;
- 5 脚为电压控制端,在此端外加电压可以改变比较器的参考电压,不用时,经 0.01μF 的电容接地以防止引入干扰;
- 6 脚为高电平触发端,由此输入高电平触发脉冲;
- 7 脚为放电端, 555 定时器输出低电平时, 放电晶体管 To导通, 外接电容元件通过 To放电;
- 8 脚为电源电压 Vcc (双极型 5~16V, CMOS 型 3~18), 本实验为+5V。
- 2、555 定时器的构成。
 - (1) 三个分压电阻;
 - (2) 两个电压比较器;

当 V_{*}>V_{*}, V₀=1 (高电平) 当 V >V_{*}, V₀=0 (低电平)

(3) 一个由与非门组成的 SR 锁存器;

R'(v _{c1})	S'(V _{c2})	Q·
1	1	Q(保持)
0	1	0
1	0	1
0	0	1 (S' R'的 0 状态同时消失后状态不定)

- (4) 一个集电极开路的放电晶体管;
- (5) 一个缓冲门。

3、555 定时器的应用。

- (1) 当 V₁₁>V_{R1}、V₁₂>V_{R2} 时, V_{C1}=0, V_{C2}=1, SR 锁存器被置 0 (Q=0), 定时器输出 V_O=0 (为低电平), 同时 T_D导通;
- (2) 当 $V_{11} < V_{R1} \ V_{12} > V_{R2}$ 时, $V_{C1} = 1$, $V_{C2} = 1$,SR 锁存器的状态保持不变,因此 T_D 和输出 V_D 的状态也保持不变;
- (3) 当 V₁₁<V_{R1}、V₁₂<V_{R2}时, V_{C1}=1, V_{C2}=0, SR 锁存器被置 1 (Q=1), 定时器输出 V_o=1 (为 高电平), 同时 T_o截止;
- (4) 当 V₁₁>V_{R1}、V₁₂<V_{R2}时, V_{C1}=0, V_{C2}=0, SR 锁存器 Q=Q'=1, V₀=1 (为高电平), 同时 T₀截止。

4、用 555 定时器构成施密特触发器。

- (1) 刚上电: V₆=V₂=0, V_{C1}=1, V_{C2}=0, 锁存器置 1, Q=1, V_O=1。
- (2) 第一次翻转: 当 $v_1=v_6=v_2$ 上升到 $\frac{1}{3}$ V_{cc} , $v_{c1}=1$, $V_{c2}=1$, Q 保持在 1, $V_o=1$; 当 $V_1=V_6=V_2$ 上升到 $\frac{2}{3}$ V_{cc} , $V_{c1}=0$, $V_{c2}=1$, 锁存器置 0, Q=0, $V_o=0$ 。

- (3) 第二次翻转: 当 v_1 下降到 $\frac{2}{3}$ V_{cc} , v_{c1} =1, V_{c2} =1, Q 保持在 0, v_o =0; 当 v_i 下降到 $\frac{1}{3}$ V_{cc} , v_{c1} =1, v_{c2} =0, 锁存器置 1, Q=1, v_o =1。
 - (4) 循环往复。

5、用555定时器构成多谐振荡器

- (1) 刚上电: $v_c = v_6 = v_2 = 0$, $v_{c1} = 1$, $v_{c2} = 0$, 锁存器置 1, Q = 1, $v_o = 1$, T_o 截止, V_{cc} 给 C 充电, v_c 从 0 上升。
- (2) 第一次翻转: 当 $v_c=v_6=v_2$ 上升到 $\frac{1}{3}$ V_{cc} , $v_{c1}=1$, $v_{c2}=1$, Q 保持在 1, $v_o=1$; 当 $v_i=v_6=v_2$ 上升到 $\frac{2}{3}$ V_{cc} , $V_{c1}=0$, $V_{c2}=1$, 锁存器置 0, Q=0, $V_o=0$, T_D 导通, C 放电, $\tau=R_2$ C, T_{w2} 约等于 0.7 R_2 C。
- (3) 第二次翻转: 当 v_c下降到 ¹/₃ V_{cc}, v_{c1}=1, v_{c2}=0, Q 保持在 1, v_o=1, T_o截止, V_{cc}给 C 充电, τ=(R₁+R₂)C, T_{w2}约等于 0.7(R₁+R₂)C, 进入循环。

6、用 555 定时器构成单稳态触发器

- (1) 稳态: $v_6 = 0$, $v_2 = 1$, $v_{c1} = 1$, $v_{c2} = 1$, 锁存器的状态保持。若 Q = 0 则保持 0, $v_0 = 0$; 若 Q = 1, 则 T_0 截止, V_{cc} 经 R 给 C 充电, 当 v_c 上升到 $\frac{2}{3}$ V_{cc} 时, $v_{c1} = 0$, $v_{c2} = 1$, 锁存器置零, Q = 0, $V_0 = 0$, T_0 导通, C 迅速放电, v_c 降到 0, $v_{c1} = 1$ 。
 - (2) 翻转: 当 v_1 下降到 $\frac{1}{3}$ V_{cc} 以下, v_{c2} =0, 此时 v_{c1} =1, Q=1, V_o =1, T_o 截止, V_{cc} 给 C 充电。

- (3) 暂稳态: V_{cc}经 R 给 C 充电, 充电回路: V_{cc}→R→C→地; 充电过程: v_c = v_s↑, 从 O→ ²/₃ V_{cc}; 充电时常数:RC, Tw=RCIn3 约等于 1.1RC。
- (4) 恢复: 当 $v_6=v_c>\frac{2}{3}V_{cc}$, $v_{c1}=0$; 此时若 v_1 回到高电平,则 $v_2=1$, $v_{c2}=1$, Q=0, $V_0=0$, $V_0=0$,

三、实验内容。

1、用 555 定时器构成单稳态触发器

- (1) 按图 (a) 连接电路, 输入信号 v₁加 0.5Hz 的连续脉冲(波形选择方波, A 路幅度设置为 5Vpp, A 路偏移设置为 2.5 V_{dc})。用示波器同时观测 v₁、v_c、v_o波形, 测定幅度与暂稳时间(示波器扫描速率设置为 200ms 或 500ms)。
- (2) 将 R 改为 1kΩ, C 改为 0.1μF(即 100nF), 输入信号 v_i加 2KHz 的连续脉冲, 观 测 v_i、v_c、v_o波形, 测定幅度与暂稳时间 (示波器扫描速率设置为 200μs)。

实验结果: (1) (2)

2、用 555 定时器构成多谐震荡器

如图(a)所示,由 555 定时器和外接元件 R_1 、 R_2 、C 构成多谐振荡器。电路没有稳态,仅存在两个暂稳态,电路亦不需要外加触发信号,利用电源通过 R_1 、 R_2 向 C 充电,以及 C 通过 R_2 向放电端放电使电路产生震荡。电容 C 在 $\frac{1}{3}$ V_{cc} 和 $\frac{2}{3}$ V_{cc} 之间充放电,输出信号的时间参数是: $T=T_{w_1}+T_{w_2}$, $T_{w_1}=0.7(R_1+R_2)C$ $T_{w_2}=0.7R_2C$ 。

(1) 按图(a) 连接电路, 用示波器观测并记录 v_c、v_o波形及参数。 实验结果:

(2) 按图连接电路, 调节电位器 (R_w) 组成占空比为 50%的方波信号发生器, 用示波器观测并记录 v_o、v_o波形及参数。T_{w1}=0.7R_aC, T_{w2}=0.7R_bC, P=R_a/(R_a+R_b).

实验结果:

3、用555定时器构成施密特触发器。

按图连接电路,输入信号 v_s 为 1KHz 正弦波,接通电源,逐步加大 v_s 的实测幅度至 9Vpp 观测 v_i 和 v_o 波形及参数,测绘电压传输特性,算出回差电压 ΔU 。 (v_s 的 offset 调为 0V)

实验结果:

4、用555定时器构成警笛电路。

- (1) 按图连接电路;
- (2) 在 R_{p1}最大及 R_{p2}最小时,观测记录 U₁的 3 端 U₀₁、6 端 V_{c1}及 U₂的 3 端 U₀₂波形及参数;
 - (3) 调节 R_{at}, 观测记录各波形的变化;
 - (4) 调节 R₁₂, 观测记录各波形的变化;

实验结果:

当 R_{p1}减小时, U_{o1}、v_{c1}的频率增大, 负脉宽不变, U_{o2}的频率不变;

当 Rpz 增大时, Uo1、Vc1的频率不变, 负脉宽增大, Uo2的频率增大。

四、思考题。

1、警笛电路的工作原理:

电路中使用了两个 555 定时器,都配置为无稳态模式,产生不同频率的方波信号。通过调节电位器 R_{p1}和 R_{p2},可以改变两个 555 定时器产生方波的频率,从而产生不同的音调两个不同频率的方波信号混合在一起,产生类似警笛的声音效果。

2、Uo1和 Uo2的幅度和周期的计算公式:

Uan的幅度: Van=Van

U₀₁的周期: T₁=0.7(R_{p1}+R₁)C₁

U。2的幅度: V。2=Va

U₀₂的周期: T₂=0.7×(R_{p2}+R₂)×C₂