Computational Linear Algebra: Low Rank Approximations with the Singular Value Decomposition

David Shuman

Approximations

0	1	2	5	0	1	4	0	2	0	1	9	0	15	0	1	Ö	10	5	36	1	8	0	0	1	0
1 1	Ō	0	Ő	5	Ö	Ö	Ö	1	Ö	Ō	1	ő	0	ĭ	ō	ŏ	2	Ö	0	2	Õ	Ŏ	Ŏ	ī	ŏ
12	Ö	0	Ö	4	Ö	ŏ	2	i	Ö	Ö	Ō	ŏ	Ö	7	ő	ő	4	ŏ	ĭ	ō	ŏ	Ŏ	ŏ	Ō	ŏ
2	Ö	1	6	14	Ö	Ö	3	13	Ö	Ö	ŏ	Ö	Ö	4	ĭ	ő	ò	4	4	ĭ	ĭ	4	Ŏ	ŏ	ŏ
16	3	8	26	3	5	2	7	6	Ö	ŏ	4	5	10	5	4	ĭ	22	9	12	2	4	8	ŏ	3	ő
3	0	0	1	0	ĭ	0	ó	5	Ö	Ö	Ō	Õ	0	10	Ö	Ö	3	ő	3	ī	Ö	Õ	ŏ	Ŏ	ő
5	1	0	ò	5	ò	ĩ	4	Ő	Ö	ŏ	ĭ	Ö	ő	3	ĭ	Ö	6	Ö	Ö	Ö	ŏ	ĭ	ŏ	ŏ	ŏ
24	Ö	0	Ö	32	2	Ö	Ō	7	Ö	ŏ	i	Ö	ő	8	ò	Ö	Ö	Ö	5	ĭ	ŏ	ò	ŏ	ŏ	ŏ
0	1	8	ĭ	3	Ō	2	Ö	Ó	ŏ	ŏ	2	Ö	16	9	ő	Ö	2	9	8	Ö	7	ŏ	ŏ	ŏ	ő
ŏ	ò	0	Ö	0	Ö	0	Ö	Ö	ŏ	ŏ	ō	Ö	0	ő	ő	Ö	Ō	Ő	0	Ö	Ó	ŏ	ŏ	ŏ	ŏ
l ŏ	Ö	Ö	Ö	ĭ	ő	. 0	Ö	ŏ	ŏ	ŏ	ŏ	Ö		ŏ	ŏ	ő	ĭ	ŏ	ŏ	Ŏ	ŏ	ĭ	ŏ	ŏ	ŏ
3	ő	Ö	4	6	Ö	ŏ	ĭ	6	ŏ	ŏ	8	2	0 3	3	ŏ	ŏ	i	ŏ	ĭ	Ŏ	ĭ	i	ŏ	2	ñ l
2	1	Ö	Ö	7	Ö	Ö	Ö	ĭ	ŏ	Ö	Ö	ō	Ö	Ö	ŏ	Ö	Ö	ŏ	2	Ö	Ö	ò	Ŏ		ŏ
10	Ō	5	9	4	ĭ	9	ő	2	ŏ	Ö	3	2	4	12	ő	ő	ŏ	4	8	ĭ	ĭ	ŏ	ŏ	0 2	ŏ
ľĭ	3	ĭ	3	Ö	6	í	ĭ	Ō	Ŏ	Ŏ	ĭ	4	20	2	5	Ö	17	3	13	7		3	Ö	ō	ŏ
Ö	Ö	Ö	Ö	5	Ö	ò	ò	ŏ	Ŏ	Ö	4	Ö	0	4	Ö	ŏ	2	Ö	Ö	0	2 0	3 0	Ŏ	Ŏ	ŏ
Ö	Ö	ŏ	ő	Õ	Ŏ	ŏ	ŏ	Ŏ	ŏ	Ŏ	ò	Õ	Ö	ó	ŏ	Ŏ	ō	Ŏ	Ŏ	ĭ	Ŏ	Ö	Ŏ	Ŏ	ŏ
8	Ö	Ö	ĭ	26	4	3	Ö	ĭ	Ö	ĭ	3	Ö	ĭ	6	2	Ö	Ö	5	12	3	Ö	3	Ö	Ö	ō l
4	2	2	Ö	10	2	ĭ	6	i	Ö	i	Ô	Ŏ	i	4	Ō	Ö	ĭ	Ö	8	ì		Ō	Ö	Ö	ŏ
4	ī	4	ĭ	11	5	i	47	18	Ö	Ö	0 3	Ŏ	2	11	ĭ	Ö	2	Ŏ	9	Ö	0	0 5	Ö	ĺ	Ō
li	Ö	ò	Ö	0	Ŏ	3	0	0	Ö	Ö	2	Ö	3	0	Ö	Ö	5	5	2	Ö	Ö	Ō	Ö	Ó	0
2	Ö	Ö	Ŏ	17	Ö	Ō	Ö	3	Ö	Ö	Ō	Ö	0	2	Ō	Ö	0	Ō	0	Ō	Ō	Ō	0	0	0
2	ĭ	ŏ	Ö	ii	Ö	Ö	8	Ĭ	Ö	Ö	Ö	Ö	ĭ	2	Ö	Ö	Ö	Ö	ĭ	Ö	Ö	ĺ	Ö	Ō	Ō
l ō	Ö	Ŏ	Ŏ	0	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ö	Ō	Ö	Ö	Ŏ	Ö	Ö	Ö	Ö	Ó	Ō	Ō	0
2	Ŏ	Ö	ĭ	ĭ	Ö	ĭ	ĭ	Ö	Ö	Ö	Ö	Ö	ĭ	Ö	Ö	Ö	ĭ	Ö	Ĭ	Ö	Ö	i	Ō	Ō	0
0	Ö	Ö	ò	0	Ö	0	0	Ö	Ö	Ö	Ö	Ö	Ö	Ŏ	Ö	Ö	Ö	Ö	Ò	Ö	Ö	Ó	Ō	Ō	0
		<u> </u>	<u>-</u> _		_ <u>-</u> _	_ <u> </u>											<u>-</u>								

Q1. Rank of an outer product

Let u, v be non-zero vectors in \mathbb{R}^3 . What is the rank of the 3×3 matrix $A = uv^{\top}$?

- (a) 0
- (b) 1
- (c) 2
- (d) 3
- (e) it depends on your choice of u and v

Singular value decomposition

Best rank 1 approximation: $\sigma_1 u_1 v_1^T$

Second rank 1 component: $\sigma_2 u_2 v_2^T$

Third rank 1 component: $\sigma_3 u_3 v_3^T$

Best rank 3 approximation

Further reading

D. Kalaman, "A singularly valuable decomposition: The SVD of a matrix," *College Math. Journal*, vol. 27, no. 1, Jan. 1996, pp. 2-23.

G. Strang, "The fundamental theorem of linear algebra," Amer. Math. Monthly, vol. 100, no. 9, Nov. 1993, pp. 848-855.