Quaderno di laboratorio

Francesco Pasa

francescopasa@gmail.com - Gruppo A5

1 Sorgente di corrente costante e sommatore pesato

16 settembre 2014

1.1 Obbiettivo

Nella prima sessione di laboratorio abbiamo ripassato gli amplificatori operazionali, costruendo due semplici circuiti: un generatore di corrente costante e un sommatore pesato di tensioni.

1.2 Materiali e circuiti

Per costruire i due circuiti in esame, mostrati in Figura 2, abbiamo utilizzato i seguenti materiali:

- Breadboard, cavi a banana e cavetti da breadboard.
- Amplificatore operazionale UA741.
- Resistenze: $3.9 \,\mathrm{k}\Omega$, $50 \,\mathrm{k}\Omega$, $100 \,\mathrm{k}\Omega$ e una variabile per simulare un carico con impedenza non costante. Nel nostro caso abbiamo usato una resistenza con un range operativo da 0 a $10 \,\mathrm{k}\Omega$.
- Alimentatore di corrente continua.
- Generatore di funzioni d'onda Agilent 33120A.
- Multimetro Agilent 34410A.
- Oscilloscopio Agilent DSO-X 2002A, con generatore di funzioni d'onda integrato (purtroppo questo modello ha solo 2 canali di input, per il test del sommatore sarebbe stato meglio avere un oscilloscopio con almeno 3 input).

1.3 Dati e risultati

Generatore di corrente costante. Il generatore di corrente costante è stato costruito come nello schema in Figura 1a. La scelta della tensione di input V è stata dettata dal valore della resistenza R a nostra disposizione e dalla corrente che volevamo generare: 1 mA. Infatti il polo invertente dell'operazionale è un ground virtuale (cioè $V_A = 0$), quindi la corrente I_0 , tenuto conto del fatto che il polo assorbe una corrente trascurabile, vale V/R (1 mA appunto).

Poiché abbiamo usato una resistenza R con una tolleranza del 5%, che assumo come incertezza sul valore della stessa, e che l'incertezza di risoluzione sulla tensione V è di 0.005 V, il valore atteso della corrente con l'incertezza è $I_0=1\pm0.05$ mA.

Abbiamo misurato con il multimetro la corrente I_0 al variare del valore della resistenza R_v , per verificare il funzionamento del generatore. La noiosa Tabella 1 mostra che la corrente non varia al

(a) Generatore di corrente costante

(b) Sommatore pesato di tensioni

Figura 1: Circuiti costruiti durante l'esperienza

variare della resistenza di carico, proprio come volevamo realizzare. Il circuito si comporta come una sorgente di corrente costante.

Tabella 1: La corrente nel circuito 1a rimane costante al variare della resistenza di carico R_v . Le incertezze riportare sul valore di corrente sono incertezze di risoluzione del multimetro (metà della risoluzione), mentre sui valori di resistenza non sono riportate perchè non rilevanti (sono comunque dell'ordine di qualche ohm).

$I_0[\mathrm{mA}]$	$R_v[\mathbf{k}\Omega]$
1.009 ± 0.0005	10
1.009 ± 0.0005	9
1.009 ± 0.0005	8
1.009 ± 0.0005	7
1.009 ± 0.0005	6
1.009 ± 0.0005	5
1.009 ± 0.0005	4
1.009 ± 0.0005	3
1.009 ± 0.0005	2
1.009 ± 0.0005	1

Sommatore pesato di tensioni. Il sommatore pesato di tensioni che abbiamo realizzato è il circuito 1b, ed è pensato per fornire il seguente output

$$V_{\text{out}} = R \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} \right)$$
 (1.1)

Come nel circuito precedente si ha che $V_A = 0$ (ground virtuale) e che l'amplificatore operazionale assorbe una quantità di corrente trascurabile, per cui la corrente di retroazione I_R è data dalla somma di I_1 e I_2 (per la conservazione della carica). Le resistenze R_1 e R_2 trasformano le tensioni in ingresso nelle correnti I_1 e I_2 , pesandole secondo l'inverso dei valori delle stesse. Questo implica che I_R dipende dalle tensioni in input pesate, e quindi anche $V_{\text{out}} = RI_R$ dipende da esse.

La resistenza R determina il guadagno del circuito. Per esempio per la tensione V_1 il guadagno vale

$$G = \frac{V_{\text{out}}}{V_1} = \frac{R}{R_1} = 0.078 \pm 0.006$$
 (1.2)

dove ho considerato incertezze sulle resistenze pari al 5%.

Per verificare il corretto funzionamento del circuito abbiamo generato due segnali, usando il generatore di forme d'onda a nostra disposizione e quello integrato nell'oscilloscopio, e li abbiamo dati in input al circuito. Poi con l'oscilloscopio abbiamo verificato che l'output si comportasse secondo la (1.1). Il risultato è stato positivo: abbiamo provato diverse combinazioni di sinusoidi, onde quadre, rampe e triangoli e in tutti i casi il circuito si è comportato correttamente.

Purtroppo l'oscilloscopio a nostra disposizione non ha 3 canali in ingresso (che sarebbero stati utili per vedere contemporaneamente i due input e l'output), per cui abbiamo dovuto usare la funzione di persistenza, che non permette di salvare i dati.

1.4 Conclusione

Purtroppo a causa del disguido nel salvataggio dei dati di persistenza non sono riuscito ad inserire nemmeno un grafico dell'output del sommatore pesato.

Tuttavia questa è stata la sessione introduttiva, volta più che altro a familiarizzare con il nuovo corso, e la giornata è stata più che altro un introduzione e un ripasso degli amplificatori operazionali. Come tale posso dire che l'esperienza è stata positiva, sia perché siamo riusciti a montare i circuiti correttamente sia perché abbiamo usato per la prima volta il generatore integrato nell'oscilloscopio. Inoltre, ora che abbiamo capito meglio come funziona questo strumento, eviteremo di fare errori simili nelle prossime esperienze.

2 Sorgente di corrente costante e sommatore pesato

16 settembre 2014

2.1 Obbiettivo

Osservare praticamente le caratteristiche di un amplificatore operazionale reale che lo differenziano da un operazionale ideale. Tra queste ci concentreremo sulla tensione di offset e sulle correnti di polarizzazione, misurando queste quantità per avere un idea del loro ordine di grandezza e quindi di quando diventi importante considerarle nelle applicazioni.

2.2 Materiali e Circuiti

Abbiamo realizzato i circuiti schematizzati in Figura 2. Ci siamo serviti dei seguenti materiali:

- Breadboard, cavi a banana e cavetti da breadboard.
- Amplificatore operazionale UA741.
- Resistenze: 10Ω , $10 k\Omega$, $100 k\Omega$ e una variabile per aggiustare l'offset dell'amplificatore operazionale. Nel nostro caso abbiamo usato una resistenza trimmer con un range operativo da 0 a $10 k\Omega$.
- Alimentatore di corrente continua.
- Multimetro Agilent 34410A.
- Oscilloscopio Agilent DSO-X 2002A.

2.3 Dati e risultati

Tensione di offset La tensione di offset

2.4 Conclusione

- (a) Circuito per misurare $V_{\rm offset}$. Questo circuito sfrutta l'amplificatore per amplificare il valore della tensione di offset e renderla più facilmente misurabile.
- (b) Circuito per la misura della corrente di polarizzazione I_p^- . Questo circuito richiede la cancellazione della tensione di offset per funzionare.

Figura 2: Circuiti costruiti durante l'esperienza

