Statistical Learning IIT Madras

Assignment 1

Submitted by:

Vivek Kumar Agrawal

Roll No.: CS17M094

Question 1. Correlation Assignment:

1.1 Correlation among predictors and y:

Correlation	x1	x2	х3	у
x1	1.000000e+00	9.500000e-01	-5.730157e-18	0.8235151
x2	9.500000e-01	1.000000e+00	-1.694362e-16	0.7816903
х3	-5.730157e-18	-1.694362e-16	1.000000e+00	0.1343833
у	0.8235151	0.7816903	0.1343833	1.000000e+00

1.2 Scatter-Plot Matrix

Scatter-Plot Matrix

1.3 Predictors affecting y:

Predictors x1 and x2 has huge influence on y while the correlation between x3 and y is very low that is x3 won't affect y much.

1.4 Coefficients of fitted linear model to given data points:

Intercept	x1	x2	х3
4.99599	3.03724	-0.02436	0.49185

The significant predictors are those which have higher coefficient values compared to other predictors. Therefore, here the most significant predictor is **x1** after that **x3** and then **x2**.

Question 2. Regression- Polynomial Fitting:

2.1 Plot of function Q2_fun_01:

$$f(x) = exp(-5*(x-0.3)^2)+0.5*exp(-100*(x-0.5)^2)+0.5*exp(-100*(x-0.75)^2)$$

Plot of function Q2_fun_02:

$$f(x) = 2-3*x+10*x^4-5*x^9+6*x^14$$

2.2 Below is the code snippet of generating 100 random points from function *Q2_fun_01* & *Q2_fun_02* and adding normal distributed noise to their respected *y*.

```
#Q2_fun_01
set.seed(123)
x1_points = runif(100)
y1_points = Q2_fun_01(x1_points)
y1_noisy = y1_points + rnorm(100)

#Q2_fun_02
set.seed(123)
x2_points = runif(100)
y2_points = Q2_fun_02(x2_points)
y2_noisy = y2_points + rnorm(100)
```

2.3 Fit wrt. Q2_fun_01:

'x' vs 'y_noise' Regression

Fit wrt. Q2_fun_02:

'x' vs 'y_noise' Regression

2.4-2.5 Bias_Variance Plot for Q2_fun_01:

Bias / Variance Tradeoff

Bias_Variance Plot for Q2_fun_02:

Bias / Variance Tradeoff

