University of South Bohemia

Faculty of Science

Praktika IV

Milikanův experiment

Datum: 25.1.2024 Jmeno: Martin Skok

Obor: Fyzika Hodnoceni:

1 Úkoly

ullet experimetálně zjistit hodnotu elektrického elementárního náboje e pomocí Milikanova experimentu

2 Pomůcky

Základní deska, mikroskop s milimetrovou škálou, deskový kondenzátor, osvětlovací zařízení, olej, rozprašovač oleje, gumový balónek

3 Teorie

Millikan rozprašoval malé kapky oleje do komory. V jeho prvním experimentu jednoduše měřil, jak rychle kapky padají pod vlivem gravitace. Poté bylo možné vypočítat hmotnost jednotlivých kapek. Následně rozprašoval olejové kapky a aplikoval na ně elektrický náboj tím, že pomocí rentgenových paprsků svítil shora skrz spodní část zařízení. Rentgenové paprsky ionizovaly vzduch, což způsobilo, že se elektrony připojovaly k olejovým kapkám. Olejové kapky nabraly statický náboj a byly zavěšeny mezi dvěma nabitými destičkami. Millikan byl schopen sledovat pohyb olejových kapek mikroskopem a zjistil, že se kapky řadily do určitého uspořádání mezi destičkami v závislosti na počtu elektrických nábojů, které získaly.

Millikan využil tuto informaci k výpočtu náboje elektronu. Jeho výsledek byl náboj 1.5924×10^{-19} C, kde C značí coulomb. Dnes je přijímaná hodnota náboje elektronu $1.602176487\times10^{-19}$ C.

Sutherlandův vztah pro zjištěné dynamické vyskozity vzduchu

$$\eta_{vzduch} = \eta_0 \frac{T_0 + C}{T + C} \left(\frac{T}{T_0}\right)^{3/2} [uPa] \tag{1}$$

Kde $\eta_0=18,27\mu Pa,\,T_0=291.15K,\,C=120K$ je Sutherlandova konstanta. Tlak saturovaných par

$$p_{sat} = 6.1087 \cdot 10^{\frac{7.5T}{T + 237.3}} [hPa] \tag{2}$$

Kde teplota je v ${^{\circ}C}$

Tlak vodních par

$$p_v = \phi p_{sat}[hPa] \tag{3}$$

Kde ϕ je vlhkost vzduchu.

Parciální tlak suchého vzduchu

$$p_d = p - p_v[hPa] \tag{4}$$

Hustota vzduchu

$$\rho_1 = \frac{p_d}{R_d T} + \frac{p_v}{R_v T} [kg \cdot m^{-3}] \tag{5}$$

Kde $R_d=287.058[JKg^{-1}K^{-1}]$ je měrná plynová konstanta suchého vzduchu a $R_v=461.495[JKg^{-1}K^{-1}]$ je měrná plynová konstanta vodních par.

Poloměr kapky

$$r = \sqrt{\frac{9}{2} \frac{\eta \frac{\Delta x}{\Delta t}}{(p_2 - p_1)g}} \tag{6}$$

Kde η je viskozita vzduchu, $\rho_2=873$ je hustota oleje, g=9.81je gravitační zrychlení.

Náboj kapky

$$q = 9\pi \frac{d}{U} \sqrt{\frac{2\eta^3 v^3}{(p_2 - p_1)g}} \tag{7}$$

Kde d=6mmje vzdálenost mezi deskami kondenzátoru, Uje napětí.

Korekce náboje kapky

$$q_c = \frac{q}{\sqrt{\left(1 + \frac{A}{r}\right)^3}}\tag{8}$$

Kde $A=0.07776\mu m$ je koeficient tření olejové kapky

4 Postup

Během měření jsem jsem opakovaně zapisoval teplotu, tlak a relativní vlhkost v místnosti.

Zapojil jsem obvod podle schématu.

V rozprašovači byl dostatek oleje.

Zapnul jsem zdroj, napěťí jsem nastavil na 0V. Zaostřil jsem čočku, abych viděl milimetrovou škálu a pak ji nastavil do vertikální polohy.

Mezi desky kondenzátoru jsem vstřiknul olej.

Vybral jsem si kapku a zapnul jsem napětí.

Nastavil jsem napětí tak, aby se požadovaná kapka vlivem napětí přestala hýbat. Toto napětí jsem zaznamenal.

Poté jsem napětí vypnul a zmáčknul jsem na stopkách start.

Sledoval jsem, o kolik dílků se kapka pohnula a zmáčknul jsem na stopkách stop.

Hodnoty uplynulého času Δt a vzdálenosti, které kapka za tu dobu urazila Δs jsem si poznamenal.

Toto jsem udělal několikrát, aby měl více měření.

5 Data

Tabulka 1:

Napětí $U[V]$	Vzdálenost $\Delta s[mm]$	$\operatorname{\check{C}as} \Delta t[s]$	Teplota $T[K]$	Tlak $p[hPa]$	Vlhkost ϕ [%]
323	0.5	4.362	21.6	964.7	40
425	1.5	1.588	-	-	-
424	2.0	4.579	-	-	-
64	0.5	21.303	-	-	-
112	0.5	21.303	-	-	-
168	0.5	2.128	-	-	-
173	0.5	2.04	-	-	-
78	0.5	6.738	22.0	965.0	40
116	0.5	13.675	-	-	-
130	0.5	9.521	-	-	-
150	0.5	7.563	-	-	-
80	0.5	11.318	-	-	-
36	0.5	11.456	22.1	965.2	39
120	0.5	18.594	-	-	-
42	0.5	11.659	-	-	-

Následující hodnoty jsem počítal podle vzorců 1 až 5 a potom jsem tři hodnoty, které mi vyšli, aritemticky zprůměroval.

Dynamická viskozita vzduchu $\eta_{vzduch} = 18.463 [\mu Pa]$

Tlak saturovaných par $p_{sat} = 26.278[hPa]$

Tlak vodních par $p_v = 10.422[hPa]$ Parciální tlak suchého vzduchu $p_d = 954.543[hPa]$ Hustota vzduchu $\rho_1 = 1.134[kgm^{-3}]$

Poloměr kapky, náboj kapky a korekci náboje kapky jsem počítal podle vzorců 6 až 8.

Počet elektronů v kapce jsem počítal jako

$$n = \frac{q_c}{e_t}$$

Kde njsem zaokrouhlil na nejbližší celé číslo a \boldsymbol{e}_t je hodnota náboje elektronu z tabulky.

Můj naměřený náboj jsem spočetl jako

$$e = \frac{q_c}{n}$$

Tabulka 1:

Poloměr kapky	Náboj kapky	korekce náboje kapky	počet elektronů	náboj
$r[m \cdot 10^{-6}]$	$q[C \cdot 10^{-19}]$	$q_c[C \cdot 10^{-19}]$	n	$e[C \cdot 10^{-19}]$
1.055	7.82	7.029	4	1.757
3.029	140.583	135.338	84	1.611
2.06	44.308	41.912	26	1.612
0.477	3.657	2.916	2	1.458
0.477	2.089	1.666	1	1.666
1.511	44.121	40.922	26	1.574
1.543	45.648	42.403	26	1.631
0.849	16.866	14.789	9	1.643
0.596	3.923	3.263	2	1.632
0.714	6.025	5.16	3	1.72
0.801	7.375	6.419	4	1.605
0.655	7.554	6.384	4	1.596
0.651	16.484	13.918	9	1.546
0.511	2.392	1.934	1	1.934
0.645	13.762	11.603	7	1.658

$$\overline{e} = \sum_{i=1}^{n} \frac{e_i}{n}$$

$$\overline{e} = 1.642848 \cdot 10^{-19}$$

$$\sigma_e = \sqrt{\frac{\sum_{i=1}^n (g_i - \overline{e})^2}{n-1}}$$

Figure 1: Závislost náboje na poloměru kapky $q(\boldsymbol{r})$

Figure 2: Histogram četnosti náboje

6 Diskuse

Úspěšně jsem změřil elementární náboj pomocí Milikanova oil drop experimentu. Hodnota, která my višla, se liší od skutečné hodnoty, ale spadá do odchylky chyby.

Skutečná hodnota je $e = 1.602176634 \cdot 10^{-19} [C]$.

Chyby mohli být způsobeny nepřesným zastavováním stopek, nepřesným určením napětí, při kterém se kapka neměla hýbat, ale stále se hýbala nebo špatným zrakem, když jsem se koukal mikroskopem na mřížku a určoval kapky.

7 Závěr

Finální naměřená hodnota elementárního náboje

$$e = (1.642847 \pm 0.102798) \cdot 10^{-19} [C]$$

8 Zdroje

- https://en.wikipedia.org/wiki/Oil_drop_experiment
- https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/ Introductory_Chemistry_(CK-12)/04%3A_Atomic_Structure/4.12%3A_ Oil_Drop_Experiment
- https://elearning.jcu.cz/pluginfile.php/434390/mod_resource/content/ 2/1_Millikan%C5%AFv_experiment.pdf