Advanced tf weighting schemes, ranking and Graph of Words

Michalis Vazirgiannis

LIX @ Ecole Polytechnique

January 2017

Outline

- Advanced tf weighting schemes
- Graph-of-words

Term Frequency (1)

- term frequency tf(t,d),
 - simplest choice: use the *raw frequency* of a term in a document, i.e. tf(t,d) = f(t,d): the number of times that term t occurs in document d:
 - Other possibilities:
- boolean "frequencies": tf(t,d) = 1 if t occurs in d and θ otherwise;
- <u>logarithmically</u> scaled frequency: tf(t,d) = 1 + log f(t,d) (and 0 when f(t,d) = 0)
- <u>normalized frequency</u>, $tf(t,d) = \frac{f(t,d)}{\max\{f(w,d): wind\}}$
 - raw frequency divided by the maximum raw frequency of any term in the document.
 - prevent a bias towards longer documents,.

Term frequency: Log frequency weighting

•The log frequency weight of term t in d is defined as follows

$$w_{t,d} = \begin{cases} 1 + \log_{10} tf_{t,d} & \text{if } tf_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$$

$$\bullet tf_{t,d} \to w_{t,d}: 0 \to 0, 1 \to 1, 2 \to 1.3, 10 \to 2, 1000 \to 4, \dots$$

Score for a query document (q,d) pair:

$$tf(q,d) = \sum_{t \in q \cap d} (1 + \log t f_{t,d})$$

•The score is 0 if none of the query terms is present in the document.

Document frequency

- high weights for rare terms like Hypermnesia
- low (positive) weights for frequent words like GOOD, INCREASE and LINE.
- Factor document frequency into the matching score.
- The document frequency df_t is # of documents in the collection that the term occurs in.
- df_t is an inverse measure of the informativeness of term t.
- •We define the idf weight of term t as: $idf_t = log_{10} \frac{N}{df_t}$ (N: # documents in the collection.)
- idf_t is a measure of the informativeness of the term.
- $[log\ N/df_t\]$ instead of $[N/df_t\]$ to "dampen" the effect of idf

tf-idf weighting

■The tf-idf weight of a term is the product of its tf weight and its idf weight.

$$w_{t,d} = (1 + logt f_{t,d}) * log \frac{N}{df_t}$$

- increases with the number of occurrences within a document. (tf)
- increases with the rarity of the term in the collection. (idf)
- Best known weighting scheme in information retrieval

Term weighting in VSM

Term weighting with tf-idf (and variations)

$$w_{t,d} = t f_{t,d} \times i d f_t$$

tf models the importance of a term in a document

$$tf_{t,d} = f_{t,d} \qquad tf_{t,d} = \frac{f_{t,d}}{\max(f_{s,d})}$$

- $f_{t,d}$ is the frequency of term t in document d
- idf models the importance of a term in the document collection
 - Logarithm base not important
 - Information content of event "term t occurs in document d"

$$idf_t = -\log P(t \text{ occurs in } d) = -\log \frac{n_t}{N} = \log \frac{N}{n_t}$$

$$idf_t = \log \frac{N - n_t + 0.5}{n_t + 0.5}$$

- N is the total number of documents, n_t is the document frequency of term t

TF normalizations

- Fang et al. proposed a set of heuristic retrieval constraints for scoring functions to regularize the term frequency (tf) and the document frequency (df) in ad hoc IR.
- Research community developed a set of corresponding normalization functions to apply on tf (concave functions, document length normalization...)
- Intuitively, the more times a document contains a query term in ad hoc
 IR, the more relevant this document is for the query.
- Mathematically, this corresponds to a retrieval model that is an increasing function of the term frequency.
- However, use of raw term frequency proved to be non-optimal in ad hoc IR,
- Research community started normalizing the tf considering multiple heuristic retrieval constraints translated into mathematical functions to apply on top of the term frequency.

Tf concave function

- The marginal gain in relevance of seeing an additional occurrence of a term inside a document is decreasing.
- Mathematically, this corresponds to applying a concave function:
 - Log –concavity

$$TF_l(t,d) = 1 + ln(1 + ln(tf(t,d)))$$

K-concavity

$$TF_k(t,d) = \frac{(k_1+1) \times tf(t,d)}{k_1 + tf(t,d)}$$

Pivoted document length normalization

- Longer documents will as a result of containing more terms – have higher tf values without necessary containing more information
- needs re-balancing through the use of an inverse function of the document length:

$$TF_P(t,d) = \frac{tf(t,d)}{1 - b + b \times \frac{|d|}{avdl}}$$

Lower-bounding regularization

 There should be a sufficiently large gap in the score between the presence and absence of a query term even for very long documents where TFp tends to 0:

$$TF_{\delta}(t,d) = \begin{cases} tf(t,d) + \delta & \text{if } tf(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

BM25 Ranking Function

Ranking function assuming bag-of-words document representation

$$score(d,q) = \sum_{t \in d \cap q} idf_t \times \frac{tf_{t,d} \cdot (k_1 + 1)}{tf_{t,d} + k_1 \cdot \left(1 - b + b \frac{len_d}{avglen}\right)}$$

- len_d is the length of document d
- avglen is the average document length in the collection
- Score depends only on query terms
- Values of parameters k_1 and b depend on collection/task
 - $-k_1$ controls term frequency saturation
 - b controls length normalization
 - Default values: $k_1 = 1.2$ and b = 0.75

Composition framework

- We apply the various TF normalizations to the raw term frequency (tf) through composition.
- For example,

$$-\mathsf{TF}\boldsymbol{p}\circ\boldsymbol{I}\;(=\mathsf{TF}\boldsymbol{p}\;\circ\;\mathsf{TF}\boldsymbol{I}) =>\; \boldsymbol{TF}_{\boldsymbol{p}\circ\boldsymbol{I}}(t,d) = \frac{1+\ln[1+\ln[tf(t,d)]]}{1-b+b\times\frac{|d|}{avdl}}$$

$$-\operatorname{TF} k \circ p \ (= \operatorname{TF} k \circ \operatorname{TF} p) \ = \frac{(k_1 + 1) \times tf(t, d)}{k_1 \times [1 - b + b \times \frac{|d|}{avdl}] + tf(t, d)}$$

The TF components of TF/IDF ad BM25 resp.

Novel composition scheme

TFI∘δ∘p (= TFI ∘ TFδ ∘ TFp) =>

$$TF_{l\circ\delta\circ p}(t,d) = 1 + \ln[1 + \ln[\frac{tf(t,d)}{1-b+b \times \frac{|d|}{avdl}} + \delta]]$$

- TF $l \circ \delta \circ p$ as it is part of a novel retrieval model
- proved to perform significantly better than Piv+ and BM25+
- in practice on various standard TREC collections
- never been considered before

Experimental setup

- TREC collections
- Disks 4&5 (minus the Congressional Record) 528,155 news releases from early '90s WT10G – 1,692,096 crawled pages from a snapshot of the Web in 1997
 - .GOV2 25,205,179 crawled pages from various .gov sites in early 2004
- Evaluation metrics
- Precision at 10 (P@10)
 Mean Average Precision (MAP) only the topranked 1000 documents for each run

Experimental setup

Evaluation criteria

- compared weighting models that use the same functions but with a different order of composition (e.g. TFkop vs. TFpok) and select the best ones on both metrics.
- The statistical significance of improvement was assessed using the Student's paired t-test considering p-values less than 0.01 to reject the null hypothesis.

Experiments

Table: TF-IDF vs. BM25: an inverse order of composition; bold indicates significant performances

Weighting model	TREC 200	4 Robust	TREC9-	10 Web	TREC 04-06 Terabyte		
Weighting model	MAP	P@10	MAP	P@10	MAP	P@10	
IDF	0.1396	0.2040	0.0539	0.0729	0.0478	0.0651	
TF	0.0480	0.0867	0.0376	0.0833	0.0126	0.0617	
TF _p [b=0.20]	0.0596	0.1193	0.0531	0.1021	0.0228	0.0631	
TF_{p} [b=0.75]	0.0640	0.1289	0.0473	0.1000	0.0262	0.0550	
TF ₁	0.1591	0.3141	0.1329	0.2063	0.1412	0.4215	
TF _k	0.1768	0.3269	0.1522	0.2104	0.1569	0.4188	
TF _{p∘k}	0.0767	0.1932	0.0465	0.0604	0.0467	0.2081	
TF _{Iop}	0.1645	0.3651	0.0622	0.1854	0.1466	0.4658	
TF _{pol}	0.1797	0.3647	0.1260	0.1875	0.1853	0.4913	
TF _{kop}	0.2045	0.3863	0.1702	0.2208	0.2527	0.5342	
$TF_{p\circ k}\timesIDF$	0.1034	0.2293	0.0507	0.0833	0.0481	0.2168	
TF _{Iop} ×IDF	0.1939	0.3964	0.0750	0.2125	0.1677	0.4919	
$TF_{p \circ l} \times IDF [TF \cdot IDF]$	0.2132	0.4064	0.1430	0.2271	0.2068	0.4973	
$TF_{k \circ p} \times IDF [BM25]$	0.2368	0.4161	0.1870	0.2479	0.2738	0.5383	

Experiments

Table : $TF_{I\circ\delta\circ p}\times IDF$ vs. BM25+ and BM25L; bold indicates significant performances

Weighting model	TREC 200	4 Robust	TREC9-	10 Web	TREC 04-06 Terabyte		
Weighting model	MAP	P@10	MAP	P@10	MAP	P@10	
TF _{δopok}	0.1056	0.2349	0.0556	0.0771	0.0531	0.2352	
TF _{δ⊙I⊙p}	0.1807	0.3751	0.0668	0.2021	0.1566	0.4758	
TF _{Iοδοp}	0.2130	0.4064	0.1907	0.2625	0.2631	0.5597	
TF _{δ⊙p⊙I}	0.2002	0.3876	0.1436	0.2021	0.2055	0.5081	
TF _{koδop}	0.2155	0.3936	0.1806	0.2292	0.2647	0.5409	
TF _{δokop}	0.2165	0.3956	0.1835	0.2354	0.2654	0.5369	
$TF_{\delta \circ p \circ k} \times IDF$	0.1466	0.2723	0.0715	0.1000	0.0660	0.2396	
$TF_{\delta \circ I \circ p} \times IDF$	0.2096	0.4048	0.0806	0.2292	0.1745	0.4919	
$TF_{I\circ\delta\circ\mathbf{p}}\timesIDF$	0.2495	0.4305	0.2084	0.2771	0.2886	0.5705	
$TF_{\delta \circ \boldsymbol{p} \circ \boldsymbol{l}} \times IDF [Piv+]$	0.2368	0.4157	0.1643	0.2438	0.2293	0.5047	
$TF_{\boldsymbol{k}\circ\delta\circ\boldsymbol{p}}\timesIDF$ [BM25L]	0.2472	0.4217	0.2000	0.2563	0.2858	0.5423	
$TF_{\delta \circ \boldsymbol{k} \circ \boldsymbol{p}} \times IDF [BM25+]$		0.4145	0.2026	0.2521	0.2830	0.5383	

References

 Composition of TF Normalizations: New Insights on Scoring Functions for Ad Hoc IR, François Rousseau* and Michalis Vazirgiannis. SIGIR 2013

Ranked lists comparison

- Typical evaluation setting
 - Set of documents
 - Set of information needs, expressed as queries (typically 50 or more)
 - Relevance assessments specifying for each query the relevant and non-relevant documents

Evaluating ranked results

Average Precision (AP)

- average of precision after each relevant document is retrieved
- Example: AP = 1/1+2/3+3/5+4/7 = 0.7095
- Mean Average Precision (MAP)

Precision at K

- precision after K documents have been retrieved
- Example: Precision at 10 = 4/10 = 0.4000

R-Precision

- For a query with R relevant documents, compute precision at R
- Example: for a query with R=7 relevant docs,
 R-Precision = 4/7 = 0.5714

Rank	Relevant?
1	1
2	0
3	1
4	0
5	1
6	0
7	1
8	0
9	0
10	0

Non-binary relevance

- So far, relevance has been binary
 - a document is either relevant or non-relevant
- The degree to which a document satisfies the user's information need varies

Perfect match: rel = 3

- Good match: rel = 2

Marginal match: rel = 1

- Bad match: rel = 0

- Evaluate systems assuming that
 - highly relevant documents are more useful than marginally relevant documents, which are more useful than non-relevant ones
 - highly relevant documents are more useful when having higher ranks in the search engine results

Discounted Cumulative Gain

Cumulative Gain (CG) at rank position p

$$CG_p = \sum_{i=1}^p rel_i$$

- Independent of the order of results among the top-p positions
- Discounted Cumulative Gain(DCG) at rank position p

$$DCG_p = rel_1 + \sum_{i=2}^{p} \frac{rel_i}{\log_2 i}$$

- Normalized Discounted Cumulative Gain (nDCG) at rank position p
 - allows comparison of performance across queries
 - compute ideal DCG_p ($IDCG_p$) from perfect ranking of documents in decreasing order of relevance

$$nDCG_p = \frac{DCG_p}{IDCG_p}$$

Outline

- Advanced tf weighting schemes
- Ranked Lists comparison
- Graph-of-words

Graph of Word – a novel approach for text mining

- For efficiency reasons, we used to make the term independence assumption through the bag-of-word representation and the term frequency weighting
- We challenge this assumption by taking into account word dependence and word order through a graphbased representation of a document at indexing time (graph-of-word)
- Graphs have been successfully used in IR to encompass relations between entities and propose meaningful weights (e.g. PageRank[Page et al., 1999])

Graph-based Text Mining

• Instead of the traditional *bag-of-words* (i.e. multiset of terms), we represent a document as a *graph-of-words* to capture *word order* and *word dependency*.

Graph of Word – a novel approach for text mining

- For efficiency reasons, we used to make the term independence assumption through the bag-of-word representation and the term frequency weighting
- We challenge this assumption by taking into account word dependence and word order through a graphbased representation of a document at indexing time (graph-of-word)
- Graphs have been successfully used in IR to encompass relations between entities and propose meaningful weights (e.g. PageRank[Page et al., 1999])

Graph-based Ad Hoc IR I

Ad Hoc Information Retrieval [1,2]

- Unweighted directed graph
- ➤ The weight of a word in the document: number of neighbors in the graph => favor words that occur with many different other words
- ➤ Robust to varying document length: weight of a word increases only with **new context** of co-occurrences as opposed to the word frequency that increases with any new co-occurrence.

Indegree-BASED TW

• The weight of a term in a document is its **indegree** (numbers of incoming edges)

in the graph-of-word

It represents the number of distinct contexts of occurrence

• We store the document as a vector of weights in the direct index and similarly in the inverted index

index and similarly in the inverted index

For example:

information	5
retrieval 1	
is	2
the	2
activity	2
of	3
obtaining	2
resources	3
relevant 2	
to	2
an	2
need	2
from	2
a	2
collection	2

TF-IDF and BM25

• Term t, document d, collection of size N, term frequency tf(t, d), document frequency df(t), document length |d|, average document length avdl, asymptotical marginal gain k_1 (1.2), slope parameter b

• TF-IDF_[Singhal et al., TREC-7]

$$TF-IDF(t, d) = TF_{pol}-IDF(t, d) = TF_{po}TF_{l}(t, d) \times IDF(t) = \left(\frac{1 + \log\left(1 + \log\left(tf(t, d)\right)\right)}{1 - b + b \times \frac{|d|}{avdl}}\right) \times \log\left(\frac{N+1}{df(t)}\right)$$

• BM25[Lv and Zhai, CIKM '11]

BM25(t, d) =
$$\left(\frac{(k_1 + 1) \times tf(t, d)}{k_1 \times \left(1 - b + b \times \frac{|d|}{avdl}\right) + tf(t, d)} \right) \times \log \left(\frac{N + 1}{df(t)} \right)$$

TW-IDF

- Term t, document d, collection of size N, term weight tw(t, d), document frequency df(t), document length |d|, average document length avdl, asymptotical marginal gain k_1 (1.2), slope parameter b
- TW-IDF(t, d) = $\left(\frac{tw(t,d)}{1 b + b \times \frac{|d|}{avdl}} \right) \times \log \left(\frac{N+1}{df(t)} \right)$
- In the bag-of-word representation, tw is usually defined as the term frequency or sometimes just the presence/absence of a term (binary tf)
- In our graph-of-word representation, *tw* is the indegree of the vertex representing the term in the graph

EXPERIMENTS

- DATASETS
- PLATFORM
- EVALUATION
- RESULTS

Datasets

Disks 1 & 2 (TREC)

741,856 news articles from Wall Street Journal (1987-1992), Federal Register (1988-1989), Associated Press (1988-1989 and Information from the Computer Select disks (1989-1990)

 Disks 4 & 5 (TREC, minus the Congressional Record)

528,155 news releases from Federal Register (1994), Financial Times (1991-1994), Foreign Broadcast Information Service (1996) and Los Angeles Times (1989-1990)

WT10G (TREC)

1,692,096 crawled pages from a snapshot of the Web in 1997

.GOV2 (TREC)

25,205,179 crawled Web pages from .gov sites in early 2004

Datasets (cont.)

Dataset Statistic	Disks 1 & 2	Disks 4 & 5	WT10G	.GOV2	
# of documents	741,856	528,155	1,692,096	25,205,179	
# of unique terms	535,001	520,423	3,135,780	15,324,292	
average # of terms (avdl)	237	272	398	645	
average # of vertices	125	157	165	185	
average # of edges	608	734	901	1,185	

Table 1: Statistics on the four TREC datasets used; Disks 4&5 excludes the Congressional Record.

The average values are computed per document.

EVALUATION

 Mean Average Precision (MAP) and Precision at 10 (P@10)

considering only the top-ranked 1000 documents for each run

- Statistical significance of improvement was assessed using the Student's paired t-test
 - R implementation (t.test {stats} package), trec_eval output as input
 - Two-sided p-values less than 0.05 and 0.01 to reject the null hypothesis
- Likelihood of relevance vs. likelihood of retrieval [Singhal et al., SIGIR '96]
- 4 baseline models: TF-IDF, BM25, Piv+ and BM25+
 - Tuned slope parameter b for pivoted document length normalization (2-fold cross-validation, odd vs. even topic ids, MAP maximization)
 - Default (1.0) lower-bounding gap δ [Lv and Zhai, CIKM '11]

Graph-based Ad Hoc IR II

- Evaluation in terms of:
 - ➤ Mean Average Precision
 - ➤ Precision@10
 - ➤ Probability of relevance vs. probability of retrieval

Model	b	TREC1-3 Ad Hoc		TREC 2004 Robust		TREC9	-10 Web	TREC 2004-2006 Terabyte		
		MAP	P@10	MAP	P@10	MAP	P@10	MAP	P@10	
$\mathrm{TF}_{p \circ l}$	0.20	0.1471	0.3960	0.1797	0.3647	0.1260	0.1875	0.1853	0.4913	
$\mathrm{TF}_{k \circ p}$	$\mid 0.75 \mid$	0.1346	0.3533	0.2045	0.3863	0.1702	0.2208	0.2527	0.5342	
$\mid \text{TW} \mid$	none	0.1502	0.3662	0.1809	0.3273	0.1430	0.1979	0.2081	0.5021	
$\mid \mathrm{TW}_p \mid$	0.003	0.1576**	0.4040**	0.2190**	0.4133**	0.1946**	0.2479**	0.2828**	0.5407**	
TF-IDF	0.20	0.1832	0.4107	0.2132	0.4064	0.1430	0.2271	0.2068	0.4973	
BM25	$\mid 0.75 \mid$	0.1660	0.3700	0.2368	0.4161	0.1870	0.2479	0.2738	0.5383	
TW-IDF	0.003	0.1973**	0.4148*	0.2403**	0.4180*	0.2125**	0.2917**	0.3063**	0.5633**	

Likelihood of relevance vs. likelihood of retrieval

GoW for keyword extraction for documents

Keywords are used everywhere:

- looking up information on the Web (e. g., via a search engine bar)
- finding similar posts on a blog (e. g., tag cloud)
- for ads matching (e. g., AdWords' keyword planner)
- for research paper indexing and retrieval (e. g., SpringerLink)
- for research paper reviewer assignment (e. g., ECIR '15!)

Applications are numerous:

- summarization (to get a gist of the content of a document)
- information filtering (to select specific documents of interest)
- indexing (to answer keyword-based queries)
- query expansion (using additional keywords from top results)

Graph-based Keyword Extraction

Single-Document Keyword Extraction [3]

- ➤ Elect the most cohesive sets of words in the graph as keywords
- Use k-core decomposition to extract the main core of the graph
- Weighted edges as opposed to Ad Hoc IR (single-document => no normalization)

A method for solution of systems of linear algebraic equations with m-dimensional lambda matrices.

A system of linear algebraic equations with m-dimensional lambda matrices is considered. The proposed method of searching for the solution of this system lies in reducing it to a numerical system of a special kind.

Keywords manually assigned by human annotators linear algebra equat; numer system; m-dimension lambda matric

Graph-based keyword extraction

Two existing graph-based keyword extractors: PageRank [Mihalcea and Tarau, 2004] HITS [Litvak and Last, 2008]

Two iterative graph algorithms that assign an influence score to a node based on its centrality (top ones supposedly the most representative).

⇒ we propose to retain the main core of the graph to extract the nodes based on their centrality and

cohesiveness.

K-core decomposition of the graph

Pagerank vs. main core

Keywords manually assigned by human annotators linear algebra equat; numer system; m-dimension lambda matric

WK-core	9	PageRank				
system	6	system	1.93			
matric	6	matric	1.27			
lambda	6	solut	1.10			
linear	6	lambda	1.08			
equat	6	linear	1.08			
algebra	6	equat	0.90			
m-dim	6	algebra	0.90			
method	5	m-dim	0.90			
solut	5	propos	0.89			
propos	4	method	0.88			
numer	3	special	0.78			
specia	2	numer	0.74			
kind	2	kind	0.55			

Graph-based Keyword Extraction II

Evaluation in terms of:

- Precision
- > Recall
- > F1-score
- Precision/recall
- # of keywords

(46,84]

Graph D	Dataset	Macro-averaged precision (%)			Macro-averaged recall (%)				Macro-averaged F1-score (%)				
	Dataset	PageRank	HITS	K-core	WK-core	PageRank	HITS	K-core	WK-core	PageRank	HITS	K-core	WK-core
undirected	Hulth2003	58.94	57.86	46.52	61.24*	42.19	41.80	62.51*	50.32*	47.32	46.62	49.06*	51.92*
edges	Krapi2009	50.23	49.47	40.46	53.47*	48.78	47.85	78.36*	50.21	49.59	47.96	46.61	50.77*
forward	Hulth2003	55.80	54.75	42.45	56.99*	41.98	40.43	72.87*	46.93*	45.70	45.03	51.65*	50.59*
edges	Krapi2009	47.78	47.03	39.82	52.19*	44.91	44.19	79.06*	45.67	45.72	44.95	46.03	47.01*
backward	Hulth2003	59.27	56.41	40.89	60.24*	42.67	40.66	70.57*	49.91*	47.57	45.37	45.20	50.03*
edges	Krapi2009	51.43	49.11	39.17	52.14*	49.96	47.00	77.60*	50.16	50.51	47.38	46.93	50.42

References

- Main core retention on graph-of-words for single-document keyword extraction F Rousseau, M Vazirgiannis, European Conference on Information Retrieval, 382-393
- Graph-of-word and TW-IDF: new approach to ad hoc IRF
 Rousseau, M Vazirgiannis Proceedings of the 22nd ACM CIKM