29.05.2012 Abgabe: 05.06.2012 10.00 Uhr, Tutorenfächer

Aufgabenblatt 6

zur Analysis II

16. Die Ungleichungen von Hölder und Young Seien reelle Zahlen x_1, \ldots, x_n und y_1, \ldots, y_n gegeben. (4+4 Punkte)

(i) Zeigen Sie, dass für

$$\frac{1}{p} + \frac{1}{q} = 1, \quad p, q > 1,$$

und für alle $x, y \ge 0$ die Youngsche Ungleichung

$$x^{\frac{1}{p}}y^{\frac{1}{q}} \le \frac{1}{p}x + \frac{1}{q}y$$

richtig ist.

Hinweis: Mit $z := \frac{y}{x}$, $x \neq 0$, ist $f(z) := \frac{1}{p} + \frac{1}{q}z - z^{\frac{1}{q}} \geq 0$ für alle z > 0 zu zeigen. Sie dürfen gerne differenzieren.

(ii) Zeigen Sie nun unter Verwendung der Youngschen Ungleichung die $H\"{o}ldersche$ Ungleichung

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |y_i|^q \right)^{\frac{1}{q}}.$$

Für welche p und q gewinnen Sie die Cauchy-Schwarz-Ungleichung?

 $17.\ Durchschnitt\ und\ Vereinigung\ von\ Mengen$

(4+4 *Punkte*)

Sei $M \subset \mathbb{R}^n$. Zeigen Sie

(i) $\overline{M} = \bigcap \{ A \subset \mathbb{R}^n : A \text{ abgeschlossen}, M \subset A \},$

(ii) $\mathring{M} = \bigcup \{\Omega \subset \mathbb{R}^n : \Omega \text{ offen}, \Omega \subset M\}.$

18. Durchmesser und Abstand von Mengen

(2+4+2 Punkte)

Sei $M \subset \mathbb{R}^n$. Man definiert

diam
$$M := \sup \{|x - y| : x, y \in M\}$$
.

(i) Zeigen Sie, dass diam $M = \operatorname{diam} \overline{M}$.

Für $x \in M$ und $M \subset \mathbb{R}^n$ definiert man den Abstand von x zu M durch

$$\operatorname{dist}\left(x,M\right):=\inf\left\{\left|x-y\right|\,:\,y\in M\right\}.$$

(ii) Zeigen Sie

$$\begin{array}{ccc} x \in \overline{M} & \iff & \mathrm{dist}\,(x,M) = 0, \\ x \in \mathring{M} & \iff & \mathrm{dist}\,(x,M^c) > 0, \\ x \; \mathrm{Randpunkt} \; \mathrm{von} \; M & \iff & \mathrm{dist}\,(x,M) = \mathrm{dist}\,(x,M^c) = 0. \end{array}$$

(iii) Für $\varepsilon > 0$ definiere die ε -Umgebung einer Menge M durch

$$M_{\varepsilon} := \left\{ x \in \mathbb{R}^n : \operatorname{dist}(x, M) < \varepsilon \right\}.$$

Zeigen Sie, dass für alle $\varepsilon>0$ die Menge M_ε offen ist, und bestimmen Sie

$$\bigcap_{\varepsilon>0}M_{\varepsilon}.$$

19. Umfang von Mengen

(2+2+4 Punkte)

- (i) Man zeige, dass es für jede beschränkte Menge $M \subset \mathbb{R}^n$, die aus mindestens zwei Punkten besteht, genau eine Kugel $K = \overline{B_R(a)}$ mit kleinstmöglichem Radius R > 0 gibt, die M enthält. Man nennt diese Kugel K die $Umkugel\ von\ M$ und den Radius R den $Umkugelradius\ von\ M$.
- (ii) Sei $M \subset \mathbb{R}^n$ symmetrisch um den Ursprung, dass heißt

$$x \in M \iff -x \in M.$$

Zeigen Sie, dass $M \subset \overline{B_{(\operatorname{diam} M)/2}(0)}$.

(iii) Man zeige, dass zwischen dem Umkugelradius R und dem Durchmesser $\delta := \operatorname{diam} M$ einer beschränkten Menge $M \subset \mathbb{R}^2$ mit mindestens zwei Elementen die Beziehung

$$R \le \frac{\delta}{\sqrt{3}}$$

besteht. Geben Sie ein Beispiel für eine dreipunktige Menge M, für die Gleichheit

$$R = \frac{\delta}{\sqrt{3}}$$

richtig ist.