

https://astra-vision.github.io/FAMix/

A Simple Recipe for Language-guided Domain Generalized Segmentation

Mohammad Fahes¹, Tuan-Hung Vu^{1,2}, Andrei Bursuc^{1,2}, Patrick Pérez³, Raoul de Charette¹

What is FAMix?

A recipe for Domain Generalized Semantic Segmentation using CLIP pretraining.

Training on GTA5 with ResNet-50 backbone and DeepLab v3+

MixStyle is applied with CLIP and our minimal fine-tuning component.

Motivation

CLIP exhibits distributional robustness and offers the language modality which can help visual task.

Naive end-to-end is not satisfying!

Qualitative results

Removing one ingredient spoils the recipe!

Freeze	Augment	Mix	C	В	M	S	AN	AS	AR	AF	Mean
X	X	X	16.81	16.31	17.80	27.10	2.95	8.58	14.35	13.61	14.69
X	\checkmark	X	22.48	26.05	24.15	25.40	4.83	17.61	22.86	19.75	20.39
X	×	\checkmark	20.07	21.24	22.91	26.52	1.28	14.99	22.09	20.51	18.70
X	\checkmark	\checkmark	27.53	26.59	26.27	26.91	4.90	18.91	25.60	22.14	22.36
\checkmark	×	X	37.83	38.88	44.24	31.93	12.41	29.59	31.56	33.05	32.44
\checkmark	\checkmark	X	36.65	35.73	37.32	30.44	14.72	34.65	34.91	38.98	32.93
\checkmark	×	\checkmark	43.43	43.79	48.19	33.70	11.32	<u>35.55</u>	<u>36.15</u>	38.19	36.29
√	✓	√	48.15	45.61	52.11	34.23	14.96	37.09	38.66	40.25	38.88

→ One can "mine" random styles using random language prompts and feature patches

→ Training only the last layers preserves CLIP robustness and helps adapting to the segmentation task

→ Applying style mixing between original and augmented statistics significantly outperforms MixStyle on single source domain generalization

20 SNR (dB)

Any prompt improves generalization in our framework!

45.64 44.59 49.13 33.64 **15.33 37.32** 35.98 38.85 37.56

<u>47.83</u> <u>44.83</u> <u>50.38</u> <u>34.27</u> <u>14.43</u> <u>37.07</u> <u>37.07</u> <u>38.76</u> <u>38.08</u>

48.15 45.61 52.11 34.23 14.96 <u>37.09</u> **38.66 40.25 38.88**

PØDA, Fahes et al., ICCV 23 WildNet, Lee et al., CVPR 22 TLDR, Kim et al., ICCV 23 SHADE, Zhao et al., ECCV 22 MixStyle, Zhou et al., ICLR 21