EXERCICE 1.

On définit par récurrence pour tout $n \in \mathbb{N}$ une application $F_n: (t_0, \ldots, t_n) \longmapsto F_n(t_0, \ldots, t_n)$ de $(\mathbb{R}_+^*)^{n+1}$ dans \mathbb{R}_+^* en posant pour tout $t_0 > 0$, $F_0(t_0) = t_0$ et pour tous $n \in \mathbb{N}$ et $t_0, \ldots, t_{n+1} > 0$:

$$F_{n+1}(t_0, \dots, t_{n+1}) = t_0 + \frac{1}{F_n(t_1, \dots, t_{n+1})}$$

On admet qu'une telle définition est bien possible et que pour tous $n \in \mathbb{N}$ et $t_0, \ldots, t_n > 0, \quad F_n(t_0, \ldots, t_n) > 0.$

Les applications ainsi construites sont appelées des fractions continues. Par exemple:

$$F_3(1,2,3,4) = 1 + \frac{1}{F_2(2,3,4)} = 1 + \frac{1}{2 + \frac{1}{F_1(3,4)}} = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{F_2(4)}}} = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}$$

Un exemple 1

- On pose pour tout $n \in \mathbb{N}$, $u_n = F_n(2, \dots, 2)$ (a) Vérifier que pour tout $n \in \mathbb{N}$ on a : $u_{n+1} = 2 + \frac{1}{u_n}$ puis étudier rapidement la fonction $f: x \longmapsto 2 + \frac{1}{x}$ sur $[2, +\infty[$ (sens de variation, limites aux bornes).
 - (b) Montrer que pour tout $p \in \mathbb{N}$ on a: $\begin{cases} u_{2p} \leqslant u_{2p+2} \leqslant \frac{5}{2} \\ u_{2p+1} \geqslant u_{2p+3} \geqslant 2 \end{cases}$ (c) Déterminer le(s) point(s) fixe(s) de $f \circ f$ et en déduire que la suite $(u_n)_{n \in \mathbb{N}}$
- converge. On précisera sa limite.

2 Une nouvelle définition récursive

Montrer par récurrence que pour tout $n \in \mathbb{N}$ et pour tous $t_0, \ldots, t_{n+1} > 0$:

$$F_{n+1}(t_0,\ldots,t_{n+1}) = F_n\left(t_0,\ldots,t_{n-1},t_n + \frac{1}{t_{n+1}}\right)$$