Семинар 10. **ARIMA-2**

План

- 1. Вычисление прогнозов для АКІМА-процессов.
- 2. Моделирование на основе ARIMA: случай параболического тренда.
- 3. Устранение автокорреляции в остатках в ARIMA-моделях.
- 4. Структурные сдвиги в ARIMA-моделях.

Задание 1. Рассчитайте прогноз на 1-2 шаг вперед для ARIMA и 95% доверительный интервал:

- 1. $(1-0.1L)y_t = 1 + \varepsilon_t$, T = 50, $y_T = 10$, $y_{T-1} = 9$.
- 2. $(1-0.7L)\Delta y_t = 2 + \varepsilon_t + 0.1t$, T = 100, $y_T = 10$, $y_{T-1} = 8$.
- 3. $(1+0.3L)\Delta^2 y_t = 3 + (1-0.7L)\varepsilon_t$, T = 150, $y_T = 12$, $y_{T-1} = 6$.

Задание 2. Методология Бокса-Дженкинса

Исходные данные:

Файл: TFR_LE (Gretl).

Обозначение	Описание
переменной	
TFR	Коэффициент суммарной рождаемости в России (1990-2014 г.г.)
LE_M_m,	Ожидаемая продолжительность жизни при рождении в Москве (мужчины,
LE_M_f	женщины).
LE_r_m,	Ожидаемая продолжительность жизни при рождении в России (мужчины,
LE_R_f	женщины).

Данные Росстата http://www.gks.ru

Методология Бокса-Дженкинса.

- 1. Идентификация модели.
 - Получение стационарного ряда.
 - Подбор процесса ARMA к BP (выбор параметров ARIMA(p=?, d=?, q=?)).
- 2. Оценивание модели и проверка адекватности модели.
- 3. Прогнозирование.

Поведение ACF и PACF ARMA-моделей

	Hobedenne Het hillet hiddenen							
Вид модели	ACF	PACF						
ARMA(1,0)=AR(1)	Экспоненциально убывает	Пик на лаге 1						
ARMA(2,0)=AR(2)	Убывает	Пик на лаге 1,2						
ARMA(0,1)=MA(1)	Пик на лаге 1	Экспоненциально убывает						
ARMA(0,2)=MA(2)	Пик на лаге 1,2	Убывает						
ARMA(1,1)	Убывает	Убывает						

Замечание. ACF –автокорреляционная функция процесса; PACF - частная автокорреляционная функция процесса.

Вопросы:

- 1. Как определить порядок интегрируемости ряда?
- 2. Как проверить адекватность модели?

Задание:

- Подберите подходящую модель ARIMA,
- обоснуйте выбор модели,
- запишите полученную модель (математическую модель, через лаговый оператор).
- Проверьте адекватность модели (стационарность, обратимость, анализ остатков),
- Оцените качество прогноза
- постройте прогноз на 6 лет (точечная и интервальная оценка).

Задание 3. Параболический тренд. TFR - Коэффициент суммарной рождаемости в России (1990-2014 г.г.)

3.1. Проанализируйте стационарность ряда.

3.2. Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте

3.2. Опишите и сравните построснивие модели. Выосрите наизгучтую. Ответ обоснутте.					
модели ARIMA	Ошибка	Стационарность,	Анализ остатков	Качество прогноза	
	модели,	обратимость	(автокорреляция,		
	инф.критерии	процесса	нормальность)		
1. ARIMA(p,1,q)					
2. ARIMA(p,2,q)					
3. ARIMA(p,1,q)+лин.тренд					
4. ARIMA(p,0,q)+параб					
тренд					

Подсказка.

Модель 8: ARIMA,	использованы наблю	дения 1991-201	4 (T = 24)
Оценено при помо	щи фильтра Кальмана	(Kalman) (точ	ный метод МП)
Зависимая переме	нная: (1-L) TFR		
		(114211411) (104	iller ilered

Стандартные ошибки рассчитаны на основе Гессиана

2,0621

	Коэффициент	Ст. ошибка	z	Р-значение
const	-0,0272319	0,0582723	-0,4673	0,6403
phi 1	0,909270	0,131630	6,908	4,92e-012 ***
theta_1	-0,484943	0,259550	-1,868	0,0617 *
Среднее зав.	- '		откл. зав.	- '
Среднее инно	ваций 0,	011308 Cr.	откл. инно	ваций 0,063833
Лог. правдоп	одобие 31	,55210 Кри	г. Акаике	-55,10421
Крит. Шварца	-50	,39199 Кри	г. Хеннана-	Куинна -53,85406
	Действ. час	ть Мним. ча	сть Модуль	Частота
AR				
Корень 1	1,0998	0,0000	1,0998	0,0000

0,0000

2,0621

0,0000

Задание 4. Устранение автокорреляции в остатках. LE_M_m

- Ожидаемая продолжительность жизни при рождении в Москве (мужчины)

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

		<u> </u>	<u> </u>	
модели ARIMA	Ошибка	Стационарность,	Анализ остатков	Качество прогноза
	модели,	обратимость	(автокорреляция,	
	инф.критерии	процесса	нормальность)	
1. ARIMA(1,1,0)				
2. ARIMA(3,1,1) с 1-м и				
3-м лагом				
3. на свой выбор				

4.2. Ожидаемая продолжительность жизни при рождении в России (мужчины) LE_r_m

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

модели ARIMA	Ошибка	Стационарность,	Анализ остатков	Качество прогноза
	модели,	обратимость	(автокорреляция,	
	инф.критерии	процесса	нормальность)	
1. ARIMA(0,2,0)				
2. ARIMA(1,0,0) с квадратичным трендом				
3. на свой выбор				

Вопрос: Согласно майским указам Президента (2018 г.) одной из национальных целей и стратегических задач развития РФ на период до 2024 г. является «повышение ожидаемой продолжительности жизни до 78 лет». Проверим реалистичность данной цели, используя статистические подходы.

Задача 5. Оценивание ARIMA со структурным сдвигом

Исходные данные: ОПЖ в США в период с 1900 по 1999

Файл с данными: LE_USA.gdt

Замечание. Необходимо учитывать структурный сдвиг 1918 года, связанный с эпидемией гриппа «Испанки».

Сравните ОПЖ белых и чернокожих. Какие изменения происходили на протяжении 20 века?

1. ОПЖ белых. Проведите тесты единичного корня с учетом структурных сдвигов, сравните с ADF/KPSS-тестом.

```
Расширенный тест Дики-Фуллера для le_w testing down from 12 lags, criterion Крит. Акаике
объем выборки 89
нулевая гипотеза единичного корня: а = 1
  тест с константой
  включая 10 лага(-ов) для (1-L)le_w
  модель: (1-L)y = b0 + (a-1)*y(-1) + \dots + e оценка для (a-1): -0,0825419
  тестовая статистика: tau c(1) = -2,88849
  асимпт. р-значение 0,04668
  коэф. автокорреляции 1-го порядка для е: 0,020
 лаг для разностей: F(10, 77) = 5,931 [0,0000]
  с константой и трендом
  включая 10 лага(-ов) для (1-L)le w
 модель: (1-L)y = b0 + b1*t + (a-1)*y(-1) + \dots + e оценка для (a-1): -0,109297
                                                               Расширенный тест Дики-Фуллера для d le w
                                                                testing down from 12 lags, criterion Крит. Акаике
  тестовая статистика: tau_ct(1) = -0,903438
                                                               объем выборки 89
  асимпт. р-значение 0,9542
  коэф. автокорреляции 1-го порядка для е: 0,021
                                                               нулевая гипотеза единичного корня: а = 1
  лаг для разностей: F(10, 76) = 3,153 [0,0020]
                                                                  тест с константой
  with constant, linear and quadratic trend
                                                                 включая 9 лага(-ов) для (1-L)d le w
  модель: (1-L)y = b0 + b1*t + b2*t^2 + (a-1)*y(-1) + \dots + e оценка для (a-1): -0,917252
                                                                 тестовая статистика: tau_c(1) = -5,50955
  тестовая статистика: tau ctt(1) = -5,897
                                                                 асимпт. р-значение 1,651e-006
  асимпт. р-значение 1,349e-005
                                                                 коэф. автокорреляции 1-го порядка для е: 0,041
  коэф, автокорреляции 1-го порядка для е: 0,014
                                                                 лаг для разностей: F(9, 78) = 2,897 [0,0052]
  лаг для разностей: F(3, 89) = 2,571 [0,0592]
```

Kapetanios unit-root test

Замечание. The trimming parameter, this is, the number of obs. (as % of the sample size) that must be forced between breaks and between break and end-points of the sample size.

```
? Kapetanios(le_w, 1, 1, 0.1, 1)
Kapetanios unit-root test against the alternative of an exogenous number of structural breaks for le_w, with 1 maximum breaks.
```


Можно ли предположить, что ряд является трендстационарным? Какая точка структурного сдвига?

2. Создание фиктивной переменной. d1918=1, если (obs=1918).

3. На основе коррелограммы сделайте предположение относительно параметров р и q.

4. Рассмотрите и сравните следующие модели:

To Taccino princip	4. Тассмотрите и сравните следующие модели.					
модели ARIMA	Ошибка	Стационарность,	Анализ остатков	Качество прогноза		
	модели,	обратимость	(автокорреляция,			
	инф.критерии	процесса	нормальность)			
1. ARIMA(p,1,q) (свой						
выбор) обосновать						
2. ARIMA(p,1,q) c						
квадратичным трендом						
3. $ARIMA(p,1,q)$ co						
структурным сдвигом						
4. ARIMA(3,1,(3)) +d1918						

Запишите модель:

ARIMA(3,1,(3)) +d1918

Модель 12: ARMAX, использованы наблюдения 1901—1999 (T = 99) Estimated using AS 197 (точный метод МП) Ѕависимая переменная: (1-L) le_w

Стандартные ошибки рассчитаны на основе Гессиана						
		Коэффициент	Ст. ошибка	z	Р-значен	ие
const		0,293191	0,0568301	5,159	2,48e-07	***
phi 1		-0,354195	0,0934691	-3,789	0,0002	***
phi 2		-0,452402	0,0908780	-4,978	6,42e-07	***
phi 3		0,393878	0,102839	3,830	0,0001	***
theta	3	-0,331820	0,114533	-2,897	0,0038	***
d1918	•	-16,9701	0,922775	-18,39	1,57e-07	5 ***
Среднее	зав.	перемен 0,	300000 Ст.	откл. зав.	перемен	2,510549
Среднее	инно	ваций 0,	009951 Ст.	откл. инно	ваций	1,176271
R-квадра	T	0,	983959 Испр	о. R-квадра:	r	0,983277
Лог. пра	вдопо	одобие -15	7,1139 Крит	г. Акаике		328,2278
Крит. Шв	арца	34	6,3936 Крит	г. Хеннана-1	Куинна	335,5777
		Действ. час	ть Мним. час	сть Модуль	Частота	a
AR						
Корень	1	-0.4908	-0,9752	1.0917	-0,3242	2
-	2	•	0,9752	•	0,324	
Корень	3	2,1302		•		
MA		_,	-,,-	-,	-,	
Корень	1	-0,7222	1,2509	1,4444	0,333	3
-	2	-0,7222				
_	3	1.4444		1.4444	0.000	

- 5. auto_arima. Используйте встроенную процедуру auto_arima для подбора параметров р и д.
- 6. Прогноз. Постройте в одной системе координат исх график+предсказанные по модели.

Замечание. Свойства модели улучшатся, если ограничить диапазон наблюдений t>1945.

Задача 6. (самостоятельно) Анализ структурных сдвигов: суммарный коэффициент рождаемости (TFR).

Gretl (файл: TFR LE).

Анализ структурных сдвигов.

- 1. **T=2006.** С целью оказания дополнительной материальной поддержки российских семей, имеющих двух детей и более, по инициативе Президента РФ Владимира Путина в 2006 г. был принят федеральный закон от 29.12.2006 № 256-ФЗ, положивший начало новой федеральной программе материнского капитала, которая призвана создать «условия, обеспечивающие этим семьям достойную жизнь». (http://materinskiy-kapital.molodaja-semja.ru/programma/)
- 2. Т=1999. С чем можно связать структурное изменение в данных с 1999 г.?

Задание. Проверьте влияние программы «материнский капитал» на TFR путем введения фиктивной переменной и постройте прогноз на основе ARIMA.

5. Самостоятельная работа. Файл: Russia_dem

Опишите и сравните построенные модели. Выберите наилучшую. Ответ обоснуйте.

			<u> </u>		
модели	Значимость	Ошибка	Стационарность,	Анализ остатков	Характеристики
ARIMA	коэфф-тов	модели,	обратимость	(автокорреляция,	качество
		инф.критерии	процесса (корни)	нормальность)	прогноза
1. ARIMA (свой					
выбор) обосновать					
2. ARIMA c					
квадратичным/лин					
трендом					
3. ARIMA co					
структурным					
сдвигом					

ТДЗ нет. Подготовка СР1 (см задание в ЛМС)