Nearest Neighbor Search

X₁ = [1100...0]

Given

X_n = [10110...10]

a query vector

q = [110...1]

Objective:
find X:

S.t. X: = ax

S.t. $X_i = \underset{\forall x_j}{\operatorname{argmin}} \operatorname{dist}(q, x_j)$

(assume Hammily distance is Considered)

Bruteforce: O(Nd)

question: what Type of Datastructures (indices) to build, so that queries Can be answered faster?

For Itamming Dist.: Range Trees. Enclidean dist: Voronoi Diag. L> O(d logn)

Challenge: these indices work for bw-D
i.e., d is a Small Constant

How to answer NN queries in High D spaces?
Land is not Small

if $\exists x_i \text{ s.t. } d.\text{ist}(q, x_i) \leqslant R$ return any point x_j where $d.\text{ist}(q, x_j) \leqslant CR$ $\star \text{ i.e.}(q, x_j) \leqslant CR$

* [6(1, n] 16(1, n]

is a function that given an input X maps it to a Binary value

X H(X)

Criven a System (), d)
Universe of Possible
Imputs of Possible
function

a binary hash belongs to the class Local Sansitive hash (LSH)

 \forall dist(x,y) \leq R:

 $P(H(X) = H(Y)) \ge P_1$ $\forall dist(X,y) \ge CR$ $P(H(X) = H(Y)) \le P_2$ $AND P_1 > P_2$

P(X and y fall into the Same) = P(H(y) = H(x)) $= \left(1 - \frac{\text{dist}(X,y)}{d}\right) + \frac{1}{d}$

Step 2: Build L Buckets

Bucketication Buck. 2

Buck. 2

Buck. L

Steps:

given theo query point q,
return any x; that falls into
the backet of q in at least
one of the backetizations

 $P(\exists B_i \text{ s.t. } H^i(X) = H^i(\xi)) =$

 $P((H'(x) = H'(y)) \vee (H^{2}(x) = H^{2}(y)) \vee \cdots (H^{L}(x) = H^{L}(y)))$ $= (-P((H'(x) = H^{L}(x) + H^{L}(x)))$

 $= 1 - \left(1 - \left(1 - \frac{\operatorname{dist}(x, y)}{d}\right)^{k}\right)^{k}$

A Sigmoid function

