An Example Calculation of the Distributed Replica Potential Energy (DRPE):

There are five possible temperatures in this case (λ_i) which are exponentially spaced. There are five corresponding values for $\lambda_{i, \text{ unit}}$ which are uniformly spaced:

λ _{i, unit} (uniform spacing)	1	2	3	4	5
λ _i (temperatures, K)	280	288	296	305	314

There are five replicas of the system, and their temperatures currently are: 305K, 296K, 288K, 280K, and 288K. The move which will be attempted will be for replica 1 to change its temperature from 305K to 296K. First we compute the DRPE for the current state:

STEP 1: Sort the current temperatures into ascending order.

STEP 2: Transform this list into the corresponding uniformly spaced values.

STEP 3: Compute the DRPE

$$DRPE = c_{1} \sum_{m=1}^{M} \sum_{n=1}^{M} \left[\left(\lambda_{m,unit} - \lambda_{n,unit} \right) - \left(m - n \right) \right]^{2} + c_{2} \left[\sum_{m=1}^{M} \lambda_{m,unit} - \sum_{m=1}^{M} m \right]^{2}$$

$$\begin{bmatrix} \left[(1-1) - (1-1) \right]^2 + \left[(1-2) - (1-2) \right]^2 + \left[(1-2) - (1-3) \right]^2 + \\ \left[(1-3) - (1-4) \right]^2 + \left[(1-4) - (1-5) \right]^2 + \left[(2-1) - (2-1) \right]^2 + \\ \left[(2-2) - (2-2) \right]^2 + \left[(2-2) - (2-3) \right]^2 + \left[(2-3) - (2-4) \right]^2 + \\ \left[(2-4) - (2-5) \right]^2 + \left[(2-1) - (3-1) \right]^2 + \left[(2-2) - (3-2) \right]^2 + \\ \left[(2-2) - (3-3) \right]^2 + \left[(2-3) - (3-4) \right]^2 + \left[(2-4) - (3-5) \right]^2 + \\ \left[(3-1) - (4-1) \right]^2 + \left[(3-2) - (4-2) \right]^2 + \left[(3-2) - (4-3) \right]^2 + \\ \left[(3-3) - (4-4) \right]^2 + \left[(3-4) - (4-5) \right]^2 + \left[(4-1) - (5-1) \right]^2 + \\ \left[(4-2) - (5-2) \right]^2 + \left[(4-2) - (5-3) \right]^2 + \left[(4-3) - (5-4) \right]^2 + \\ \left[(4-4) - (5-5) \right]^2$$

We use c_1 =0.02 and c_2 =0.05, and we find the DRPE is:

$$DRPE = c_1 \begin{cases} (0+0+1+1+1) + (0+0+1+1+1) + (1+1+0+0+0) \\ + (1+1+0+0+0) + (1+1+0+0+0) \end{cases} + c_2 \left[(1+2+2+3+4) - (1+2+3+4+5) \right]^2$$

$$DRPE = (0.02)(12) + (0.05)(9)$$

$$DRPE = 0.24 + 0.45$$

$$DRPE = 0.69$$

Next, we compute the DRPE for the proposed move:

STEP 1: Sort the temperatures into ascending order.

STEP 2: Transform this list into the corresponding uniformly spaced values.

STEP 3: Compute the DRPE

$$DRPE = c_1 \sum_{m=1}^{M} \sum_{n=1}^{M} \left[\left(\lambda_{m,unit} - \lambda_{n,unit} \right) - (m-n) \right]^2 + c_2 \left[\sum_{m=1}^{M} \lambda_{m,unit} - \sum_{m=1}^{M} m \right]^2$$

$$\left[\left[(1-1) - (1-1) \right]^2 + \left[(1-2) - (1-2) \right]^2 + \left[(1-2) - (1-3) \right]^2 + \left[(1-3) - (1-4) \right]^2 + \left[(1-3) - (1-5) \right]^2 + \left[(2-1) - (2-1) \right]^2 + \left[(2-2) - (2-2) \right]^2 + \left[(2-2) - (2-3) \right]^2 + \left[(2-3) - (2-4) \right]^2 + \left[(2-3) - (2-5) \right]^2 + \left[(2-3) - (3-1) \right]^2 + \left[(2-3) - (3-3) \right]^2 + \left[(2-3) - (3-4) \right]^2 + \left[(2-3) - (3-5) \right]^2 + \left[(3-1) - (4-1) \right]^2 + \left[(3-2) - (4-2) \right]^2 + \left[(3-2) - (4-3) \right]^2 + \left[(3-3) - (4-4) \right]^2 + \left[(3-3) - (4-5) \right]^2 + \left[(3-1) - (5-1) \right]^2 + \left[(3-2) - (5-2) \right]^2 + \left[(3-2) - (5-3) \right]^2 + \left[(3-3) - (5-4) \right]^2 + \left[(3-2) - (5-2) \right]^2 + \left[(3-2) - (5-3) \right]^2 + \left[(3-3) - (5-4) \right]^2 + \left[(3-2) - (5-2) \right]^2 + \left[(3-2) - (5-3) \right]^2 + \left[(3-2) - (5-2) \right]^2 + \left[(3-2)$$

The difference in the DRPEs is:

DRPE(proposed move) – DRPE(current) = 1.36 - 0.69 = 0.67

Since the acceptance ratio in STDR has the form:

$$p(T_i \to T_j) = \min \left\{ 1 \atop e^{-(\beta_j - \beta_i)E + (a_j - a_i) - (DRPE_j - DRPE_i)} \right\}$$

the addition of the DRPE is the same as multiplying the acceptance ratio of ST by a factor of $e^{-0.67}$, decreasing the likelihood of the move by approximately 51%, which is the same as applying a penalty of -0.67kcal/mol. This move is unfavourable because there is already a replica at 296K, and because it would cause more replicas to be at the lower end of the temperature range. The constants c_1 and c_2 control the degree of energetic penalty imposed for these unfavourable moves.