

HOME TOP CATALOG CONTESTS GYM PROBLEMSET GROUPS RATING EDU API CALENDAR HELP

PROBLEMS SUBMIT CODE MY SUBMISSIONS STATUS HACKS STANDINGS CUSTOM INVOCATION

E. Cells Arrangement

time limit per test: 2 seconds memory limit per test: 256 megabytes input: standard input output: standard output

You are given an integer n. You choose n cells $(x_1,y_1),(x_2,y_2),\ldots,(x_n,y_n)$ in the grid $n\times n$ where $1\leq x_i\leq n$ and $1\leq y_i\leq n$.

Let \mathcal{H} be the set of **distinct** Manhattan distances between any pair of cells. Your task is to maximize the size of \mathcal{H} . Examples of sets and their construction are given in the notes.

If there exists more than one solution, you are allowed to output any.

Manhattan distance between cells (x_1, y_1) and (x_2, y_2) equals $|x_1 - x_2| + |y_1 - y_2|$.

Input

6/30/24, 12:28 AM

The first line contains a single integer t ($1 \le t \le 50$) — the number of test cases.

Each of the following t lines contains a single integer n ($2 \le n \le 10^3$).

Output

For each test case, output n points which maximize the size of \mathcal{H} . It is not necessary to output an empty line at the end of the answer for each test case.

Example

Codeforces Round 943 (Div. 3) Finished Practice

\rightarrow Virtual participation

Virtual contest is a way to take part in past contest, as close as possible to participation on time. It is supported only ICPC mode for virtual contests. If you've seen these problems, a virtual contest is not for you -solve these problems in the archive. If you just want to solve some problem from a contest, a virtual contest is not for you -solve this problem in the archive. Never use someone else's code, read the tutorials or communicate with other person during a virtual contest.

Start virtual contest

→ Contest materials	·
Announcement (en)	×
• Tutorial (en)	\times

Note

In the first testcase we have n=2. One of the possible arrangements is:

The arrangement with cells located in (1,1) and (1,2).

In this case

$$\mathcal{H} = \{|1-1| + |1-1|, |1-1| + |2-2|, |1-1| + |1-2|\} = \{0, 0, 1\} = \{0, 1\}.$$

Hence, the size of ${\cal H}$ is 2. It can be shown that it is the greatest possible answer.

In the second testcase we have n=3. The optimal arrangement is:

The arrangement with cells located in (2,1), (2,3) and (3,1).

$$\begin{array}{l} \mathcal{H}\text{=} \\ \{|2-2|+|1-1|,|2-2|+|3-3|,|3-3|+|1-1|,|2-2|+|1-3|,|2-3|+|1-1|,|2-3|+|3-1|\} \\ \text{=}\{0,0,0,2,1,3\}\text{=}\{0,1,2,3\}. \end{array}$$

For n=4 a possible arrangement is:

For n=5 a possible arrangement is:

For n=6 a possible arrangement is:

Codeforces (c) Copyright 2010-2024 Mike Mirzayanov
The only programming contests Web 2.0 platform
Server time: Jun/30/2024 00:27:58^{UTC+6} (i2).
Desktop version, switch to mobile version.

Privacy Policy

Supported by

