SOLUTION FOR MORE EXERCISES FOR MIDTERM # 2

1. (Flip-Flops)

a. What is the difference between a latch and a flip flop? SOLUTION:

Latch is a level sensitive device.

Flip-flops are edge sensitive devices.

b. Implement a JK flip-flop with a T flip-flop and a minimal AND-OR-NOT network. Let us assume that the complements of J, K and Q signals are available. Draw the logic diagram to show your design.

SOLUTION:

Step 1: write the next state table

JK flip-flop next state table

J	K	Qcurrent	Q _{next}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

T flip-flop excitation table

T	Qcurrent	Q _{next}
0	0	0
0	1	1
1	0	1
1	1	0

Step 2: derive the excitation table from the next state tables

Excitation table

J	K	Qcurrent	T
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Step 3: derive next state logic

$$T = JQ' + KQ$$

2. (Design Specification)

Write the state table of the sequential circuit as the following figure.

SOLUTION:

From the circuit we directly get

$$T = x$$

$$J = Q1Q0'$$

$$K = Q1' + Q0'$$

$$y = Q1+Q0$$

We use these equations to get Q1(t+1) and Q0(t+1):

$Q_1 Q_0$	T	$Q_1(t+1)$	J	K	$Q_0(t+1)$
00	0	0	0	1	0
00	1	1	0	1	0
01	0	0	0	1	0
01	1	1	0	1	0
10	0	1	1	1	1
10	1	0	1	1	1
11	0	1	0	0	1
11	1	0	0	0	1

Finally, the State table:

0.0	Next	sate	Output (y)				
$Q_1 Q_0$	X=0	X=1	X=0	X=1			
00	00	10	0	0			
01	00	10	1	1			
10	11	01	1	1			
11	11	01	1	1			

3. (Sequential Circuit Design)

A state machine is described by the following state equations:

$$Q_1(t+1) = Q_0(t) \bigoplus x(t),$$

$$Q_1(t+1) = Q_0(t) \bigoplus x(t), Q_0(t+1) = Q_1(t)x'(t) + Q_0(t)x(t),$$

$$y(t) = Q_1'(t) + Q_0(t).$$

a. Write the state table

SOLUTION:

2-bit states: Q₁, Q₀

1 input: x 1 output: v

	10	utput. y			
X	Q1(t)	Q0(t)	Q1(t+1)	Q0(t+1)	у
0	0	0	0	0	1
0	0	1	1	0	1
0	1	0	0	1	0
0	1	1	1	1	1
1	0	0	1	0	1
1	0	1	0	1	1
1	1	0	1	0	0
1	1	1	0	1	1

b. Design the system with two JK flip-flops and a minimal AND-OR-NOT network.

X	Q1(t)	Q0(t)	Q1(t+1)	Q0(t+1)	J1	K1	J0	K0	у
0	0	0	0	0	0	Х	0	X	1
0	0	1	1	0	1	Х	x	1	1
0	1	0	0	1	x	1	1	X	0
0	1	1	1	1	х	0	x	0	1
1	0	0	1	0	1	Х	0	Х	1
1	0	1	0	1	0	Х	x	0	1
1	1	0	1	0	х	0	0	X	0
1	1	1	0	1	x	1	x	0	1

$$J_1 = X'Q_0 + XQ_0'$$

Kmap for Kl ✓ Q1Q0							
X	00	01	11	10			
0	x	x	0	1			
1	х	х	1	0			

$$K_1 = X'Q_0' + XQ_0$$

$$J_0 = X'Q_1$$

Kmap for K0

$$K_0 = X'Q_1'$$

Kmap for y

4. (Timing)

In the following circuit

Each flip flop has:

Setup time of 60ps

Hold time of 20ps

Clock-to-Q maximum delay of 70ps

Clock-to-Q minimum delay of 50ps

Each XOR gate has:

Propagation delay of 100ps

Contamination delay of 55ps

a. If there is no clock skew, what is the maximum operating frequency of this circuit? SOLUTION:

Tc \geq Tpcq + Tpd + Tsetup **Longest path:**Tc \geq Tpcq + 3*Tpd + Tsetup
Tc \geq 70 + 3*100 + 60 = 430 ps
Max Frequency = 1/Tc = 2.33 GHz

b. How much clock skew can the circuit tolerate before it might experience a hold time violation?

SOLUTION:

Tccq + Tcd≥Thold + Tskew

Shortest Path:

Tccq + Tcd≥Thold + Tskew

50 + 55 ≥ 20 + Tskew

Tskew≤ 85 ps

c. Redesign the circuit so that it can be operated at 3GHz frequency. How much clock skew can your circuit tolerate before it might experience a hold time violation? SOLUTION:

 $Tc \ge Tpcq + 2*Tpd + Tsetup + Tskew$ $Tc \ge 330 + Tskew$ $Tccq + 2Tcd \ge Thold + Tskew$ $Tskew \le 140 ps$

5. (Decoders and Multiplexers)

Given a three-input Boolean function $f(a; b; c) = \sum m(0, 1, 2, 3, 7)$.

a. Implement the function using a minimal network of 2:4 decoders and OR gates. SOLUTION:

$$f = a' + bc$$

b. Implement the function using a minimal network of 4:1 multiplexers. SOLUTION:

$$F = a'b' + a'b + abc$$

c. Implement the function using a minimal network of 2:1 multiplexers. SOLUTION:

