Communication Quantization for Dataparallel Training of Deep Neural Networks MLHPC 2016

November 14, 2016

Nikoli Dryden^{1,3}, Tim Moon^{2,3}, Sam Ade Jacobs³, Brian Van Essen³

- ¹ University of Illinois at Urbana-Champaign
- ² Stanford University
- ³ Lawrence Livermore National Laboratory

Motivation

- Training DNNs is very intensive
- Datasets continue to become larger and larger
- Let's try to take advantage of HPC resources

Summary

- Quantize gradient updates and use a custom communication algorithm
 - Reduces bandwidth during data-parallel training
- Outperform baseline for large layers (1.76x)
- Code available: https://github.com/LLNL/lbann

Why is this hard?

- Communication-computation imbalance
 - You spend more time communicating than doing useful work!
 - Bandwidth-dominated regime
- Existing work more focused on heterogeneous cloud infrastructure, not HPC

Quantization

- Map a large set of values to a smaller set
- Quantized data is reconstructed using a precomputed dictionary
- Introduces some amount of quantization error
- In our case: map 32-bit floats (gradient updates) to 1 bit

Quantization algorithms

- Trade increased (local) computation for reduced data movement
- Existing approaches:
 - One-bit quantization [F. Seide et al. 1-bit stochastic gradient descent and its application to data-parallel distributed training of speech DNNs. INTERSPEECH 2014]
 - Threshold quantization [N. Strom. Scalable distributed DNN training using commodity GPU cloud computing. INTERSPEECH 2015]
- New: Adaptive quantization

One-bit quantization

- Aggressively quantize every update to 1 bit
- Compute column-wise means of non-negative/negative gradient updates
- Gradient updates ≥ 0 → µ⁺
 Gradient updates < 0 → µ⁻
- Encoded as a 0 or 1 bit, data volume reduced 32x with packing
- Introduces error feedback to correct quantization error

One-bit quantization: visual

Features

Neurons

Error feedback

- Aggressive quantization introduces error
 - Ignoring it leads to poor models or divergence
- Instead retain the quantization error locally and add it to the gradient updates in the next mini-batch before quantization
- Ensures the full gradient signal is—eventually—used, just over multiple updates

Threshold quantization

- Instead of sending every update, send only the largest
- User chooses a fixed threshold τ in advance
- Gradient updates ≥ τ → τ
 Gradient updates ≤ -τ → -τ
- Encoded as 0 or 1 bit
- Error feedback used to reduce error
- Other updates are fed into error feedback but not used
- Updates are now sparse: each quantized gradient is sent as a 31-bit index and a 1-bit quantized value

Threshold quantization: visual

Adaptive quantization

- Motivation
 - 1. Threshold quantization can be fast with a good τ
 - 2. ... But τ is hard to choose in practice
 - 3. ... And τ /- τ are not great reconstruction values
 - 4. One-bit quantization seems to be more consistent
 - 5. And has no parameters to choose
- Adaptive quantization tries to get the best of both worlds

Adaptive quantization

- User chooses a fixed proportion of updates to send
- Algorithm determines the appropriate thresholds τ^+ , τ^- to achieve this
 - Then determines the mean μ^+ of the updates greater than τ^+ and the mean μ^- of the updates less than τ^-
- Gradient updates ≥ τ⁺ → μ⁺
 Gradient updates < τ⁻ → μ⁻
- Error feedback used to reduce error
- Updates are sparse and use the same format as threshold quantization

Additional optimizations

- One-bit and adaptive:
 - Approximate some computations using random sampling
- Threshold and adaptive:
 - Delta and Golomb-Rice coding for additional compression to reduce data volume

Allreduce

- Key communication operation for updates
- MPI_Allreduce is good in theory, but not in practice
 - Uses default algorithm with custom datatypes
 - Troublesome to associate reconstruction dictionaries
 - Does not handle changing data sizes well
- Implement using pairwise exchange reduce-scatter then ring-based allgather
 - O((p-1/p)nβ) versus O(nlog(p)β) (default) bandwidth
 - [R. Thakur et al. "Optimization of collective communication operations in MPICH." IJHPC, 2005]

Quantization benchmark

- Uniformly random square matrices
- 128 nodes, 2 processes/ node
- Simulates gradient updates with 128-way data parallelism
- Adaptive quantization superior for large matrices: 1.76x faster for largest matrix

Test setup

- MNIST handwritten digit dataset
- 3 4096-neuron fully-connected hidden layers
 - ReLU activations
 - Adagrad optimizer
- 16 nodes, 192 ranks
 - 4-way data parallelism
 - 48-way model parallelism

Data volume reduction

- Bytes sent in each minibatch during training
- Adaptive quantization closely follows one-bit quantization (expected)
- Threshold quantization is degenerate and sends very little data (using best τ we found)

Communication time

- Total time spent in the allreduce in each minibatch
- Times in line with the quantization benchmark
- Threshold quantization sends very little data, so is much faster

Accuracy

- Important that quantization does not degrade accuracy
- Normal, one-bit, and adaptive quantization lead to comparable accuracies
- Threshold accuracy is comparable to that of a single model replica

	Test accuracy (%) after 20 epochs
Normal	98.51
One-bit	98.49
Threshold	98.12
Adaptive	98.53

Layer scaling

- Increase neurons in each layer: 1.18x faster for largest layer
 - Validates the quantization benchmark in a more realistic training situation
 - Adaptive quantization has the advantage for larger problems

Discussion

- Bandwidth reduction through quantization and custom communication routines help scale data parallel training
- Adaptive quantization is fast and easy to tune
- Next steps:
 - Further optimization
 - Convolutional layers and GPUs
 - Larger datasets (ImageNet)

