

Hochschule Darmstadt

- Fachbereich Informatik -

Robustheit und Generalisierbarkeit in algorithmischen und Reinforcement Learning gestützten Lösungsansätzen: Eine Fallstudie mit Vier Gewinnt

Abschlussarbeit zur Erlangung des akademischen Grades
Bachelor of Science (B. Sc.)

vorgelegt von

Leo Herrmann

Matrikelnummer: 1111455

Referentin: Prof. Dr. Elke Hergenröther

Korreferent: Adriatik Gashi

1 Kurzfassung

Inhaltsverzeichnis

1	Kurzfassung	2
2	Einleitung	1
3	Grundlagen	2
	3.1 Vier Gewinnt	2
	3.2 Symbolische Algorithmen	4
	3.2.1 Minimax	4
	3.2.2 Alpha-Beta-Pruning	5
	3.2.3 Monte Carlo Tree Search	6
	3.3 Reinforcement Learning	8
	3.4 Robustheit und Generalisierbarkeit	8
4	Konzept	8
5	Realisierung	9
6	Ergebnisdiskussion	10
7	Zusammenfassung und Ausblick	11
R	Literaturverzeichnis	12

Abbildungsverzeichnis

Eigenständigkeitserklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit selbständig verfasst und keine anderen als die im Literaturverzeichnis angegebenen Quellen benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder noch nicht veröffentlichten Quellen entnommen sind, sind als solche kenntlich gemacht. Die Zeichnungen oder Abbildungen in dieser Arbeit sind von mir selbst erstellt worden oder mit einem entsprechenden Quellennachweis versehen.

Darmstadt, 21.03.2023

Leo Herrmann

2 Einleitung

Fortschreitende Automatisierung durchdringt zahlreiche Bereiche der Gesellschaft, so zum Beispiel die Fertigungsindustrie, das Gesundheitswesen oder den Straßenverkehr. Zwei fundamentale Ansätze sind dabei regelbasierte Algorithmen und Machine Learning. Die Einsatzbedingungen von Automatisierungssystemen unterscheiden sich häufig von den Bedingungen, unter denen sie entwickelt und getestet werden. Häufig müssen Systeme mit fehlerhaften oder veralteten Informationen arbeiten oder es treten Situationen ein, die bei der Konzipierung der Systeme nicht berücksichtigt werden können. Dabei sinkt die Leistungsfähigkeit dieser Systeme.

Im Rahmen dieser Arbeit werden Robustheit und Generalisierbarkeit eines algorithmischen Ansatzes und eines Reinforcement Learning (RL) basierten Ansatzes zur Lösung des Brettspiels "Vier Gewinnt" untersucht. Bei Robustheit und Generalisierbarkeit handelt es sich um Eigenschaften, die beschreiben, wie gut ein Algorithmus oder RL-Modell in der Praxis funktioniert, in der andere Bedingungen herrschen können als während der Entwicklung und Qualitätssicherung. Diese Kriterien sind besonders relevant für den Erfolg von Algorithmen und Modellen in der Praxis.

Spiele eignen sich zur Untersuchung von Algorithmen und Modellen, weil sie reale Probleme auf kontrollierbare Umgebungen abstrahieren und gleichzeitig reproduzierbare und vergleichbare Messungen ermöglichen. Die Untersuchungen dieser Arbeit erfolgen am Beispiel des Brettspiels "Vier Gewinnt", da aus früheren Untersuchungen ersichtlich wird, dass sich dafür sowohl algorithmische als auch Reinforcement Learning basierte Lösungen eignen.

Es wird Grundlagenforschung zu verbreiteten algorithmischen Ansätzen und Reinforcement Learning basierten Ansätzen betrieben. Anschließend werden die Aspekte Robustheit und Generalisierbarkeit von zwei Ansätzen aus den jeweiligen Bereichen am Beispiel von Vier Gewinnt empirisch untersucht. Dabei werden neue Erkenntnisse über Lösungsansätze von Vier Gewinnt herausgearbeitet, die sich auf vergleichbare Szenarien in der realen Welt übertragen lassen.

Die zentrale Fragestellung lautet: Inwiefern sind bei Vier Gewinnt algorithmische oder Reinforcement Learning basierte Ansätze robuster oder besser generalisierbar? Das Ziel dieser Arbeit besteht darin, ein detailliertes Verständnis über verschiedene Aspekte von Robustheit und Generalisierbarkeit der zu untersuchenden Ansätze zu bekommen.

3 Grundlagen

In diesem Kapitel wird durch Literaturrecherche eine fundierte theoretische Basis geschaffen, auf die im weiteren Verlauf dieser Arbeit Bezug genommen wird. Zunächst wird Vier Gewinnt als zu lösendes Problem untersucht und eingeordnet. Anschließend folgt eine Auswahl von jeweils einem algorithmischen und einem Reinforcement Learning basiertem Lösungsansatz. Die Funktionsweise beider Lösungsmethoden wird erklärt. Außerdem werden bestehende Theorien und Definitionen zum Thema Robustheit und Generalisierbarkeit zusammengetragen. Sie bilden die Grundlage für die Szenarien und Bewertungskriterien in den Experimenten des Hauptteils.

3.1 Vier Gewinnt

Vier Gewinnt ist ein Brettspiel, das aus einem 7 x 6 Spielfeld besteht. Die beiden Spieler werfen abwechselnd einen Spielstein in eine Spalte hinein, der in dieser Spalte bis zur untersten freien Position fällt. Es gewinnt der Spieler, der als erstes vier Spielsteine in einer horizontalen, vertikalen oder diagonalen Linie nebeneinander stehen hat [7].

Bei Vier Gewinnt handelt es sich um ein kombinatorisches Nullsummenspiel für zwei Spieler. Kombinatorische Spiele weisen "perfekte Information" auf. Das bedeutet, dass alle Spieler zu jeder Zeit den gesamten Zustand des Spiels kennen. So ist es bei vielen Brettspielen der Fall. Kartenspiele hingegen besitzen diese Eigenschaft meistens nicht, weil jedem Spieler die Handkarten ihrer Gegenspieler unbekannt sind. Bei kombinatorischen Spielen sind außerdem keine Zufallselemente enthalten. Die einzige Herausforderung beim Spielen kombinatorischer Spiele besteht darin, unter einer Vielzahl von Entscheidungsoptionen diejenige auszuwählen, die den besten weiteren Spielverlauf verspricht ([5], S. 96-100; [8], Kapitel 4.1).

Bei Zwei-Spieler-Nullsummenspielen verursacht der Gewinn eines Spielers zwangsläufig einen Verlust des anderen Spielers. Die beiden Spieler haben also entgegengesetzte Interessen ([5], S. 100; [4], S. 6). Das bedeutet, dass sich der Erfolg von verschiedenen Lösungsansätzen durch die durchschnittliche Gewinnrate im Spiel gegeneinander bewerten lässt. Bei Nullsummenspielen mit mehr als zwei Personen, kann es passieren, dass, wenn ein Spieler (bewusst oder versehentlich) nicht optimal spielt, ein zweiter Spieler davon profitiert, während ein dritter Spieler dadurch benachteiligt wird. Solche Wechselwirkungen sind bei Zwei-Personen-Nullsummenspielen ausgeschlossen ([5], S. 113 ff.). Das macht die Messergebnisse im Hauptteil besser vergleichbar.

Nach Victor Allis lässt sich die Komplexität eines Spiels von strategiebasierten Zwei-

Spieler-Nullsummenspielen durch ihre Zustandsraum- und Spielbaumkomplexität beschreiben. Die Zustandsraumkomplexität entspricht der Anzahl der verschiedenen möglichen Spielfeldkonfigurationen ab dem Start. Für ein Spiel kann dieser Wert oder zumindest dessen obere Schranke bestimmt werden, indem zunächst alle Konfigurationen des Spielfelds gezählt, dann Einschränkungen wie Regeln und Symmetrie berücksichtigt werden, und die Anzahl der illegalen und redundanten Zustände von der Anzahl aller möglichen Konfigurationen abgezogen wird ([4], S. 158 f.).

Die Spielbaumkomplexität beschreibt die Anzahl der Blattknoten des Lösungsbaums. Der Spielbaum ist ein Baum, der die Zustände eines Spiels als Knoten und die Züge als Kanten darstellt ([5], S. 102). Der Lösungsbaum beschreibt die Teilmenge des Spielbaums, der benötigt wird, um die Gewinnaussichten bei optimaler Spielweise beider Spieler zu berechnen. Die Spielbaumkomplexität lässt sich durch die durchschnittliche Spiellänge und der Anzahl der Entscheidungsmöglichkeiten pro Zug (entweder konstant oder abhängig vom Spielfortschritt) approximieren. Da in den meisten Spielen ein Zustand über mehrere Wege erreicht werden kann, fällt die Spielbaumkomplexität meist wesentlich größer aus als die Zustandsraumkomplexität ([4], S. 159 ff.).

Die Spielbaumkomplexität ist maßgeblich für die praktische Berechenbarkeit einer starken Lösung. Für Tic Tac Toe wurde durch Allis eine obere Grenze für die Spielbaumkomplexität von 362880 ermittelt und eine starke Lösung lässt sich innerhalb von Sekundenbruchteilen berechnen [12]. Für Schach wird die Spielbaumkomplexität auf 10³¹ geschätzt und die Aussichten auf eine starke Lösung liegen noch in weiter Ferne [15].

Für Vier Gewinnt wurde eine durchschnittliche Spiellänge von 36 Zügen und eine durchschnittliche Anzahl von Entscheidungsmöglichkeiten (freie Spalten) von 4 ermittelt. Damit wurde die Spielbaumkomplexität auf $4^{36} \approx 10^{21}$ geschätzt ([4], S. 163).

Verschiedene Lösungsverfahren von Vier Gewinnt sind bereits ausgiebig untersucht. Das Spiel wurde 1988 von James Dow Allen und Victor Allis unabhängig voneinander mit wissensbasierten Methoden schwach gelöst, was bedeutet, dass für die Anfangsposition eine optimale Strategie ermittelt wurde. Im Fall von Vier Gewinnt kann der Spieler, der den ersten Zug macht, bei optimaler Spielweise immer gewinnen [2][3].

1993 wurde das Spiel von John Tromp auch durch einen Brute-Force Ansatz stark gelöst. Bei dieser Lösung kam Alpha-Beta-Pruning zum Einsatz, um bei einer Zustandsraumkomplexität von 4.531.985.219.092 die optimalen Zugfolgen für beide Spieler zu berechnen. Das hat damals etwa 40.000 CPU-Stunden gedauert [19].

Lösungen, die alle Möglichkeiten durchrechnen, um die optimale Entscheidung zu treffen, sind für den Einsatz in der Praxis aufgrund des hohen Rechenaufwands bei

komplexeren Anwendungen auch heute noch selten praktikabel. Aus diesem Grund wird bevorzugt auf gute Heuristiken zurückgegriffen, die den Rechenaufwand minimieren, aber dennoch gute Ergebnisse liefern ([9], Kapitel 7.6).

Untersuchungen haben gezeigt, dass sich sowohl regelbasierte Tree-Search-Algorithmen als auch verschiedene RL-Ansätze eignen, um sogenannte Agents zu entwickeln, die das Spiel selbstständig spielen [1][18][20][17][16][13]. Wissensbasierte Methoden werden in dieser Arbeit nicht näher betrachtet, da ihre Ergebnisse stark an die jeweiligen Spielregeln gebunden und schwer zu verallgemeinern sind.

3.2 Symbolische Algorithmen

3.2.1 Minimax

Minimax ist ein Algorithmus, der aus Sicht eines Spielers ausgehend von einem beliebigen Ursprungsknoten im Spielbaum die darauf folgenden Knoten bewertet und den Kindknoten des Ursprungsknotens mit der besten Bewertung zurückgibt. Bei der Bewertung wird davon ausgegangen, dass der Gegner ebenfalls den Zug wählt, der für ihn am günstigsten ist. Der zu untersuchende Spieler versucht, die Bewertung zu maximieren, während der Gegenspieler versucht, sie zu minimieren.

Zunächst werden die Blattknoten des Spielbaums bewertet. Je günstiger ein Spielfeldzustand für den zu untersuchenden Spieler ist, desto größer ist die Zahl, die diesem Zustand zugeordnet wird. In Abhängigkeit der zuvor bewerteten Knoten, werden nun deren Elternknoten bewertet. Ist im betrachteten Zustand der zu untersuchende Spieler am Zug, übernimmt dieser Zustand die Bewertung des Kindknotens mit der höchsten Bewertung. Umgekehrt ist es, wenn der Gegenspieler Spieler am Zug ist. Dann bekommt der zu untersuchte Knoten die Bewertung des Kindknotens mit der niedrigsten Bewertung. Dieser Vorgang wird wiederholt, bis der Ursprungsknoten erreicht ist. Zurückgegeben wird der Kindknoten des Ursprungsknotens, dem die größte Bewertung zugeordnet wurde.

Erfolgt die Bewertung anhand der Gewinnchancen, führt das dazu, dass die Wahl des Knotens mit der besten Bewertung auch die Gewinnchancen maximiert. Um die Gewinnchancen zu ermitteln, müssen jedoch alle Knoten des Spielbaums untersucht werden. Die Laufzeit des Algorithmus steigt linear zur Anzahl der zu untersuchenden Knoten und damit bei konstanter Anzahl von Möglichkeiten pro Zug exponentiell zur Suchtiefe. Den gesamten Spielbaum zu durchsuchen, ist daher nur für wenig komplexe Spiele praktikabel. Damit die Bewertung in akzeptabler Zeit erfolgen kann, muss für

komplexere Spiele die Suchtiefe oder -breite begrenzt werden und die Bewertunt der Knoten muss auf Grundlage von Heuristiken erfolgen ([8], Kapitel 4; [9], Kapitel 7.6).

3.2.2 Alpha-Beta-Pruning

Beim Alpha-Beta-Pruning handelt es sich um eine Optimierung des Minimax-Algorithmus. Dabei werden die Teilbäume übersprungen, die das Ergebnis nicht beeinflussen können, weil bereits absehbar ist, dass diese Teilbäume bei optimaler Spielweise beider Spieler nicht erreicht werden. Alpha-Beta-Pruning liefert dieselben Ergebnisse wie der Minimax-Algorithmus, aber untersucht dabei wesentlich weniger Knoten im Spielbaum.

Dazu werden während der Suche die Werte Alpha und Beta aufgezeichnet. Alpha entspricht der Mindestbewertung, die der zu untersuchende Spieler garantieren kann, wenn beide Spieler optimal spielen. Beta entspricht der Bewertung, die der Gegenspieler bei optimaler Spielweise maximal zulassen wird. Zu Beginn der Suche wird Alpha auf minus unendlich und Beta auf plus unendlich initialisiert.

Alpha wird aktualisiert, wenn für einen Knoten, bei dem der zu untersuchende Spieler am Zug ist, ein Kindknoten gefunden wurde, dessen Bewertung größer ist als das bisherige Alpha. Beta hingegen wird aktualisiert, wenn für einen Knoten, bei dem der Gegenspieler am Zug ist, ein Kindknoten gefunden wurde, dessen Bewertung kleiner ist als Beta.

Sobald bei einem Knoten Alpha größer oder gleich Beta ist, kann die Untersuchung dessen Kindknoten aus folgenden Gründen abgebrochen werden:

- Ist bei diesem Knoten der zu untersuchende Spieler am Zug, hatte der Gegenspieler in einem zuvor untersuchten Teilbaum bessere Chancen, und wird den aktuellen untersuchten Teilbaum nicht auswählen.
- Ist bei diesem Knoten der zu Gegenspieler am Zug, hatte der zu untersuchende Spieler in eine zuvor untersuchten Teilbaum bessere Chancen, und wird den aktuell untersuchten Teilbaum nicht auswählen ([9], Kapitel 7.8; [8], Kapitel 4.5).

So kann im Vergleich zum Minimax-Algorithmus die Untersuchung von 80% bis 95% der Knoten übersprungen werden. Der Anteil der Knoten, die bei der Untersuchung übersprungen werden können, ist abhängig davon, wie schnell das Fenster zwischen Alpha und Beta verkleinert wird. Wenn die Reihenfolge, in der die Züge untersucht werden, geschickt gewählt wird, kann dies sogar zu einer Reduktion von über 99% führen ([9], Kapitel 7.8). In Schach ist dies beispielsweise möglich, indem Züge früher bewertet werden, je höherwertiger eine im Zug geworfene Figur ist.

Durch Alpha-Beta-Pruning kann der Spielbaum bei gleichbleibender Zeit wesentlich tiefer durchsucht werden, was beim Einsatz von Heuristiken als Bewertungsfunktion zu präziseren Ergebnissen führt. Die Laufzeit ist allerdings weiterhin exponentiell abhängig zur Suchtiefe. Den gesamten Spielbaum zu durchsuchen, um die Bewertung auf Grundlage von tatsächlichen Gewinnaussichten durchzuführen, bleibt bei komplexeren Spielen weiterhin unpraktikabel ([9], Kapitel 7.8).

Heuristische Bewertungsfunktionen sind in der Hinsicht problematisch, als dass sie spezifisch für die Regeln eines Spiels zugeschnitten sein müssen, bzw. dass es für bestimmte Anwendungsfälle keine guten Heuristiken gibt ([8], Kapitel 4.5). Das führt dazu, dass die Eigenschaften von Alpha-Beta-Pruning schwer auf verschiedene Anwendungsfälle übertragbar sind.

3.2.3 Monte Carlo Tree Search

Bei MCTS handelt es sich um einen heuristischen Algorithmus, der dazu dient, um in Bäumen, die aus sequentiellen Entscheidungen bestehen, und häufig als MDPs oder POMPDs modelliert werden, einen möglichst vielversprechenden Pfad auszuwählen. Dazu werden wiederholt zufällig verschiedene Entscheidungen simuliert und deren potentieller Erfolg statistisch ausgewertet.

Der Vorteil gegenüber des Alpha-Beta-Prunings besteht darin, dass es bei MCTS nicht notwendig ist, innere Knoten, also Nicht-Blattknoten, zu bewerten (AIAMA, GOG, IEEE). Lediglich die Endzustände müssen bewertet werden können. Dies lässt sich im Gegensatz zur Bewertung von inneren Knoten relativ einfach umsetzen. Bei Spielen bedeutet das die Auswertung des Endergebnisses, also die Punktzahl oder den Gewinner ([14], S. 161; [8], Kapitel 4.5, [6]).

MCTS ist eine weit verbreitete Lösung für kombinatorische Spiele und hat sich insbesondere beim Spiel Go als erfolgreich bewiesen, das einen besonders breiten und tiefen Spielbaum aufweist, woran frühere Verfahren daran gescheitert sind. Der Algorithmus wird auch abseits von Spielen in verschiedenen Variationen eingesetzt, so zum Beispiel in der Optimierung von Lieferketten und Zeitplanung von Prozessen ([14], S. 161; [6]).

Mit MCTS werden Entscheidungsmöglichkeiten statistisch ausgewertet, indem die vier Phasen Selection, Expansion, Simulation (auch Play-Out) und Backpropagation wiederholt durchlaufen werden. Dabei wird ein Baum verwaltet, der eine ähnliche Struktur wie der Spielbaum aufweist. Die Knoten beschreiben die Zustände der Umgebung und die Kanten Übergänge zwischen den Zuständen. Zu jedem Knoten im MCTS-Baum wird eine Statistik abgespeichert, die Informationen darüber enthält, wie oft der Knoten

selbst oder dessen Kindknoten die Simulation-Phase durchlaufen haben, und was die Ergebnisse der Simulationen waren ([14], S. 161 ff.; [8], Kapitel 4.5).

Zu Beginn besteht der MCTS-Baum lediglich aus dem Ursprungsknoten.

In der Phase **Selection** wird zunächst der Ursprungsknoten aus dem MCTS-Baum betrachtet und es werden basierend auf den bisher gesammelten Statistiken so lange Folgeknoten gewählt, bis ein Blattknoten erreicht wird, der in den folgenden Phasen untersucht werden soll. Dabei besteht jeweils die Möglichkeit, einen Knoten zu wählen, der vielversprechend erscheinent, um genauere Informationen darüber zu erhalten (Exploitation), oder einen Knoten zu wählen, der noch nicht so oft untersucht wurde, um ggf. neue Bereiche im Spielbaum zu erkunden, die bessere Chancen versprechen (Exploration). Es gibt verschiedene Auswahlstrategien, wobei UCT (Upper Confidence Bound applied for Trees) die am weitesten verbreitete ist. Sie bewertet die Kinder eines Knotens n mit der Formel UCB1 und wählt den Knoten mit der höchsten Bewertung ([14], S. 163). Die Formel lautet wie folgt:

$$UCB1 = \frac{U(n)}{N(n)} + c * \sqrt{\frac{log(N(Parent(n)))}{N(n)}}$$

Dabei ist U(n) der summierte Wert der Ergebnisse der bisher durchgeführten Simulationen ab Knoten n. In Vier Gewinnt entspricht das der Anzahl, wie oft der zu untersuchende Spieler in den bisher durchgeführten Simulationen gewonnen hat. N(n) entspricht der Anzahl der Simulationen, die bisher ab Knoten n durchgeführt wurden. Damit stellt der Teil links vom plus den Exploitation-Teil dar. Er wächst mit den Erfolgsaussichten des untersuchten Knotens. — N(Parent(n)): Anzahl wie oft Elternknoten von n simuliert wurde — N(n): Anzahl der Simulationen, die vom betrachteten Node gestartet ist — rechts vom Plus: Exploration. Größer, je weniger oft ein Knoten untersucht wurde — n: Konstante, die die Exploitation- und Exploration-Teile der Formel ausbalanciert. Als Standard wird hier die Wurzel von 2 empfohlen.

Im Zuge der **Expansion** wird vom zuvor ausgewählten Knoten ein zufälliger Zug ausgeführt und der neue Zustand wird als Kindknoten hinzugefügt.

In der **Simulation**-Phase werden vom zuvor hinzugefügten Knoten so oft zufällige Entscheidungen hintereinander simuliert, bis ein Endzustand erreicht wurde. Es ist dabei zu beachten, dass dabei die getroffenen Entscheidungen nicht in den MCTS-Baum aufgenommen werden.

Als letztes erfolgt die Phase **Backpropagation**. Das Ergebnis der Simulation wird für den untersuchten Knoten im MCTS-Baum abgespeichert und die Statistik der Knoten,

die vom Ursprungsknoten zum untersuchten Knoten geführt haben, wird aktualisiert.

Mit jeder Wiederholung der vier Phasen wird die Statistik über die Erfolgschancen der Entscheidungsmöglichkeiten akkurater. Nach einer bestimmten Anzahl von Wiederholungen wird basierend auf den gesammelten Statistiken eine Entscheidung getroffen.

Da die Phasen Expansion und Simulation basierend auf Zufall erfolgen, ist MCTS nicht deterministisch und liefert keine perfekten Vorhersagen. Außerdem besteht vor allem bei wenigen Iterationen besteht die Gefahr, dass wenn es wenige Züge gibt, die den Verlauf des Spiels wesentlich beeinflussen, diese Züge unentdeckt bleiben, und die Statistik inakkurat wird ([14], S. 164).

Dadurch, dass Iterationen beliebig oft durchgeführt werden können, um die Vorhersagen zu verbessern, ist die Laufzeit von MCTS schwer mit der von den zuvor genannten Methoden vergleichbar. Untersuchungen zeigen, dass bei kleinen Problemen und der Verfügbarkeit von präzisen Heuristiken Alpha Beta mit begrenzter Suchtiefe schneller und besser arbeitet. MCTS schneidet im Verleich besser ab, je tiefer und stärker verzweigt die zu lösenden Entscheidungsbäume sind ([14], S. 163 f.). Es wurde außerdem gezeigt, dass die Ergebnisse von MCTS unter Verwendung von UCT als Selection-Strategie bei unbegrenzten Ressourcen zu Minimax konvergiert [6].

Es existieren verschiedene Variationen und Verbesserungen für die Strategien in den Phasen Selection und Expansion, die unter bestimmten Umständen für bessere Vorhersagen sorgen. Dazu gehören auch welche, die Machine Learning einsetzen, um in der Selection-Phase fundiertere Entscheidungen zu treffen [6]. Diese werden im Rahmen dieser Arbeit nicht betrachtet. MCTS soll hier klar von Machine Learning Verfahren abgegrenzt sein. Es wird davon ausgegangen, dass die Verbesserungen für die Untersuchung der Robustheit nicht relevant sind, und dass sich die Beobachtungen auch auf Varianten von MCTS übertragen lassen.

3.3 Reinforcement Learning

3.4 Robustheit und Generalisierbarkeit

Verschiedene RL-Ansätze wurden bereits auf ihre Robustheit untersucht und es gibt verschiedene Verfahren, um RL-Modelle auf Robustheit zu optimieren [11].

4 Konzept

In diesem Kapitel wird erklärt, wie eine Messumgebung aufgesetzt wurde, um die Eigenschaften der Lösungsansätze Robustheit und Generalisierbarkeit empirisch zu bewerten. In dieser Messumgebung spielen zwei Agents, die die zu untersuchenden Ansätze implementieren, das Spiel wiederholt gegeneinander. Dabei werden deren Gewinnraten und die Spieldauer gemessen.

Die Messungen werden unter verschiedenen Szenarien durchgeführt, in denen die Spielumgebung verschiedene Eigenschaften besitzt. Diese Szenarien enthalten unter anderem gestörte Daten, stochastische Elemente oder veränderte Spielregeln:

- Neutrale Umgebung als Grundlage für die folgenden Messungen.
- Rauschen: Agents erhalten fehlerhafte Informationen über das Spielfeld.
- Stochastik: Mit einer bestimmten Wahrscheinlichkeit landet ein Spielstein nicht in der vorgesehenen Spalte sondern in einer benachbarten Spalte.
- Stochastik: Mit einer bestimmten Wahrscheinlichkeit führt ein Spieler nicht den Zug aus, den er für am besten hält, sondern einen zufälligen Zug.
- Stochastik: Mit einer bestimmten Wahrscheinlichkeit führt ein Spieler mehrere Züge hintereinander durch.
- Generalisierbarkeit: Zum Gewinnen werden nicht vier Spielsteine in einer Reihe benötigt, sondern fünf.

Als Grundlage für die Messumgebung dient das PettingZoo-Toolkit. Es abstrahiert Probleme in Umgebungen und stellt eine Schnittstelle für Agents bereit, die mit verschiedene Lösungsstrategien mit den Umgebungen interagieren. Eine Umgebung, die das Spiel Vier Gewinnt abstrahiert, ist Teil des PettingZoo Toolkits. Es kommen Reinforcement Learning Modelle zum Einsatz, die aus RL-Bibliotheken wie CleanRL oder Stable-Baselines bereitgestellt werden. Falls vorhanden, wird auf fertig implementierte Algorithmen zurückgegriffen.

5 Realisierung

6 Ergebnisdiskussion

7 Zusammenfassung und Ausblick

8 Literaturverzeichnis

- [1] E. Alderton, E. Wopat, J. Koffman. Reinforcement Learning for Connect Four. Techn. Ber. Stanford University, Stanford, California 94305, USA, 2019.
- [2] James Dow Allen. The complete book of Connect 4: history, strategy, puzzles. New York, NY: Puzzle Wright Press, 2010.
- [3] Victor Allis. "A Knowledge-Based Approach of Connect-Four". In: *J. Int. Comput. Games Assoc.* 11 (1988), S. 165. URL: https://api.semanticscholar.org/CorpusID: 24540039.
- [4] Victor Allis. "Searching for solutions in games and artificial intelligence". In: 1994. URL: https://api.semanticscholar.org/CorpusID:60886521.
- [5] Jörg Bewersdorff. Glück, Logik und Bluff: Mathematik im Spiel Methoden, Ergebnisse und Grenzen. 7. Aufl. Springer Spektrum Wiesbaden, 8. Mai 2018. ISBN: 978-3-658-21764-8. DOI: 10.1007/978-3-658-21765-5.
- [6] Cameron B. Browne u.a. "A Survey of Monte Carlo Tree Search Methods". In: *IEEE Transactions on Computational Intelligence and AI in Games* 4.1 (2012), S. 1–43. DOI: 10.1109/TCIAIG.2012.2186810.
- [7] Milton Bradley Company. Connect Four. https://www.unco.edu/hewit/pdf/giant-map/connect-4-instructions.pdf. [Letzer Zugriff am 17. Dezember 2024]. 1990.
- [8] Kevin Ferguson, Max Pumperla. Deep Learning and the Game of Go. Manning Publications, January 2019.
- [9] George T. Heineman, Gary Pollice, Stanley Selkow. *Algorithms in a Nutshell*. O'Reilly Media, Inc., October 2008.

- [10] "IEEE Standard Glossary of Software Engineering Terminology". In: *IEEE Std* 610.12-1990 (1990), S. 1–84. DOI: 10.1109/IEEESTD.1990.101064.
- Janosch Moos u. a. "Robust Reinforcement Learning: A Review of Foundations and Recent Advances". In: Machine Learning and Knowledge Extraction 4.1 (2022),
 S. 276-315. ISSN: 2504-4990. DOI: 10.3390/make4010013. URL: https://www.mdpi.com/2504-4990/4/1/13.
- [12] Aditya Jyoti Paul. "Randomized fast no-loss expert system to play tic tac toe like a human". In: CoRR abs/2009.11225 (2020). arXiv: 2009.11225. URL: https://arxiv.org/abs/2009.11225.
- [13] Yiran Qiu, Zihong Wang, Duo Xu., Comparison of Four AI Algorithms in Connect Four". In: MEMAT 2022; 2nd International Conference on Mechanical Engineering, Intelligent Manufacturing and Automation Technology. 2022, S. 1–5.
- [14] S.J. Russell, S. Russell, P. Norvig. Artificial Intelligence: A Modern Approach. Pearson series in artificial intelligence. Pearson, 2020. ISBN: 9780134610993. URL: https://books.google.de/books?id=koFptAEACAAJ.
- [15] Jonathan Schaeffer u. a. "Checkers Is Solved". In: Science 317 (Okt. 2007), S. 1518–1522. DOI: 10.1126/science.1144079.
- [16] Kavita Sheoran u.a. "Solving Connect 4 Using Optimized Minimax and Monte Carlo Tree Search". In: Advances and Applications in Mathematical Sciences 21.6 (2022), S. 3303–3313.
- [17] Henry Taylor, Leonardo Stella. An Evolutionary Framework for Connect-4 as Test-Bed for Comparison of Advanced Minimax, Q-Learning and MCTS. 2024. arXiv: 2405.16595 [cs.AI]. URL: https://arxiv.org/abs/2405.16595.
- [18] Markus Thill, Patrick Koch, Wolfgang Konen. Reinforcement Learning with N-tuples on the Game Connect-4. Techn. Ber. Department of Computer Science, Cologne University of Applied Sciences, 51643 Gummersbach, Germany, 2012.

- [19] John Tromp. John's Connect Four Playground. https://en.wikipedia.org/w/index.php?title=Wine&oldid=1262619132. [Letzer Zugriff am 13. Dezember 2024].
- [20] Stephan Wäldchen, Felix Huber, Sebastian Pokutta. Training Characteristic Functions with Reinforcement Learning: XAI-methods play Connect Four. 2022. arXiv: 2202.11797 [cs.LG]. URL: https://arxiv.org/abs/2202.11797.