Supplementary Material for "A Class of Two-Timescale Stochastic EM Algorithms for Nonconvex Latent Variable Models"

A Proofs for the iSAEM Algorithm

A.1 Proof of Lemma 2

Lemma. Assume A3, A4. For all $s \in S$,

$$v_{\min}^{-1} \langle \nabla V(\mathbf{s}), \mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) \rangle \ge \|\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))\|^2 \ge v_{\max}^{-2} \|\nabla V(\mathbf{s})\|^2.$$
 (32)

Proof. Using A3 and the fact that we can exchange integration with differentiation and the Fisher's identity, we obtain

$$\nabla_{\mathbf{s}} V(\mathbf{s}) = \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} (\nabla_{\boldsymbol{\theta}} \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \mathbf{L}(\overline{\boldsymbol{\theta}}(\mathbf{s})))$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} (\nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \mathbf{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \mathbf{J}_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s})))$$

$$= \mathbf{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s})^{\top} \mathbf{J}_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} (\mathbf{s} - \overline{\boldsymbol{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))) .$$
(33)

Consider the following vector map:

$$\mathbf{s} \to \nabla_{\boldsymbol{\theta}} L(\mathbf{s}; \boldsymbol{\theta})|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})} = \nabla_{\boldsymbol{\theta}} \psi(\overline{\boldsymbol{\theta}}(\mathbf{s})) + \nabla_{\boldsymbol{\theta}} \operatorname{r}(\overline{\boldsymbol{\theta}}(\mathbf{s})) - \operatorname{J}_{\boldsymbol{\phi}}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top} \mathbf{s} \ .$$

Taking the gradient of the above map w.r.t. s and using assumption A3, we show that:

$$\mathbf{0} = -\operatorname{J}_{\phi}^{\boldsymbol{\theta}}(\overline{\boldsymbol{\theta}}(\mathbf{s})) + (\underbrace{\nabla_{\boldsymbol{\theta}}^{2}(\psi(\boldsymbol{\theta}) + r(\boldsymbol{\theta}) - \left\langle \phi(\boldsymbol{\theta}) \,,\, \mathbf{s} \right\rangle)}_{=\operatorname{H}_{L}^{\boldsymbol{\theta}}(\mathbf{s};\boldsymbol{\theta})} \Big|_{\boldsymbol{\theta} = \overline{\boldsymbol{\theta}}(\mathbf{s})} \operatorname{J}_{\overline{\boldsymbol{\theta}}}^{\mathbf{s}}(\mathbf{s}) \;.$$

The above yields

$$\nabla_{\mathbf{s}}V(\mathbf{s}) = \mathbf{B}(\mathbf{s})(\mathbf{s} - \overline{\mathbf{s}}(\overline{\boldsymbol{\theta}}(\mathbf{s}))),$$

where we recall $B(\mathbf{s}) = J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s}))(H_{L}^{\theta}(\mathbf{s}; \overline{\boldsymbol{\theta}}(\mathbf{s})))^{-1}J_{\phi}^{\theta}(\overline{\boldsymbol{\theta}}(\mathbf{s}))^{\top}$. The proof of (32) follows directly from the assumption A4.

A.2 Proof of Theorem 1

Beforehand, We present two intermediary Lemmas important for the analysis of the incremental update of the iSAEM algorithm. The first one gives a characterization of the quantity $\mathbb{E}[S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}]$:

Lemma. Assume A1. The update (1) is equivalent to the following update on the resulting statistics

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1} (S_{tts}^{(k+1)} - \hat{\mathbf{s}}^{(k)}) .$$

Also:

$$\mathbb{E}[S_{tts}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + (1 - 1/n)\mathbb{E}[\frac{1}{n}\sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}] + \frac{1}{n}\mathbb{E}[\eta_{i_{k}}^{(k+1)}],$$

where $\overline{\mathbf{s}}^{(k)}$ is defined by (4) and $\tau_i^k = \max\{k' : i_{k'} = i, k' < k\}$.

Proof. From update (1), we have:

$$\begin{split} S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} &= S_{\text{tts}}^{(k)} - \hat{\mathbf{s}}^{(k)} + \frac{1}{n} \big(\tilde{S}_{i_k}^{(k+1)} - \tilde{S}_{i_k}^{(\tau_i^k)} \big) \\ &= \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + S_{\text{tts}}^{(k)} - \overline{\mathbf{s}}^{(k)} - \frac{1}{n} \big(\tilde{S}_{i_k}^{(\tau_i^k)} - \tilde{S}_{i_k}^{(k+1)} \big) \;. \end{split}$$

Since $\tilde{S}_{i_k}^{(k+1)} = \overline{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)}) + \eta_{i_k}^{(k+1)}$ we have

$$S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)} + S_{\text{tts}}^{(k)} - \overline{\mathbf{s}}^{(k)} - \frac{1}{n} (\tilde{S}_{i_k}^{(\tau_i^k)} - \overline{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)})) + \frac{1}{n} \eta_{i_k}^{(k+1)}.$$

Taking the full expectation of both side of the equation leads to:

$$\mathbb{E}[S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}] = \mathbb{E}[\bar{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}] + \mathbb{E}[\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}^{(k)}] - \frac{1}{n} \mathbb{E}[\mathbb{E}[\tilde{S}_{i}^{(\tau_{i}^{k})} - \bar{\mathbf{s}}_{i_{k}}(\boldsymbol{\theta}^{(k)}) | \mathcal{F}_{k}]] + \frac{1}{n} \mathbb{E}[\eta_{i_{k}}^{(k+1)}].$$

Since we have $\mathbb{E}[\tilde{S}_i^{(\tau_i^k)}|\mathcal{F}_k] = \frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)}$ and $\mathbb{E}[\bar{\mathbf{s}}_{i_k}(\boldsymbol{\theta}^{(k)})|\mathcal{F}_k] = \bar{\mathbf{s}}^{(k)}$, we conclude the proof of the Lemma.

We also derive the following auxiliary Lemma which sets an upper bound for the quantity $\mathbb{E}[\|S_{\text{tts}}^{(k+1)} - \hat{s}^{(k)}\|^2]$:

Lemma. For any $k \ge 0$ and consider the iSAEM update in (1), it holds that

$$\mathbb{E}[\|S_{tts}^{(k+1)} - \hat{\mathbf{s}}^{(k)}\|^{2}] \le 4\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \frac{2L_{\mathbf{s}}^{2}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}] + 2\frac{c_{\eta}}{M_{k}} + 4\mathbb{E}[\|\frac{1}{n}\sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}].$$

Proof. Applying the iSAEM update yields:

$$\begin{split} \mathbb{E}[\|S_{\text{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] = & \mathbb{E}[\|S_{\text{tts}}^{(k)} - \hat{\boldsymbol{s}}^{(k)} - \frac{1}{n}(\tilde{S}_{i_k}^{(\tau_i^k)} - \tilde{S}_{i_k}^{(k)})\|^2] \\ \leq & 4\mathbb{E}[\|\frac{1}{n}\sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)} - \overline{\mathbf{s}}^{(k)}\|^2] + 4\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{2}{n^2}\mathbb{E}[\|\overline{\boldsymbol{s}}_{i_k}^{(k)} - \overline{\boldsymbol{s}}_{i_k}^{(t_{i_k}^k)}\|^2] + 2\frac{c_{\eta}}{M_k} \; . \end{split}$$

The last expectation can be further bounded by

$$\frac{2}{n^2} \mathbb{E}[\|\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{2}{n^3} \sum_{i=1}^n \mathbb{E}[\|\overline{\mathbf{s}}_i^{(k)} - \overline{\mathbf{s}}_i^{(t_i^k)}\|^2] \stackrel{(a)}{\leq} \frac{2 L_{\mathbf{s}}^2}{n^3} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2],$$

where (a) is due to Lemma 1 and which concludes the proof of the Lemma.

Theorem. Assume A1-A5. Consider the iSAEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ obtained with $\rho_{k+1} = 1$ for any $k \leq K_m$ where K_m is a positive integer. Let $\{\gamma_k = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of stepsizes, $c_1 = v_{\min}^{-1}$, $\alpha = \max\{8, 1 + 6v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\beta = c_1 \overline{L}/n$. Then:

$$\upsilon_{\max}^{-2} \sum_{k=0}^{K_m} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(K_m)})] + \sum_{k=0}^{K_m-1} \tilde{\Gamma}_k \mathbb{E}[\|\eta_{i_k}^{(k)}\|^2].$$

Proof. Under the smoothness of the Lyapunov function V (cf. Lemma 1), we can write:

$$V(\hat{\boldsymbol{s}}^{(k+1)}) \leq V(\hat{\boldsymbol{s}}^{(k)}) + \gamma_{k+1} \langle S_{\mathsf{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} \|S_{\mathsf{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2.$$

Taking the expectation on both sides yields:

$$\mathbb{E}[V(\hat{\boldsymbol{s}}^{(k+1)})] \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)})] + \gamma_{k+1}\mathbb{E}[\langle S_{\mathsf{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \nabla V(\hat{\boldsymbol{s}}^{(k)})\rangle] + \frac{\gamma_{k+1}^2 L_V}{2}\mathbb{E}[\|S_{\mathsf{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2].$$

Using Lemma 4, we obtain:

$$\begin{split} & \mathbb{E}[\left\langle S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] \\ = & \mathbb{E}[\left\langle \overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] + \left(1 - \frac{1}{n}\right) \mathbb{E}[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] \\ & + \frac{1}{n} \mathbb{E}[\left\langle \eta_{i_{k}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] \\ \stackrel{(a)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \left(1 - \frac{1}{n}\right) \mathbb{E}[\left\langle \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] \\ & + \frac{1}{n} \mathbb{E}[\left\langle \eta_{i_{k}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \right\rangle] \\ \stackrel{(b)}{\leq} - v_{\min} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}] \\ & + \frac{\beta(n-1)+1}{2n} \mathbb{E}[\|\nabla V(\hat{\mathbf{s}}^{(k)})\|^{2}] + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \\ \stackrel{(a)}{\leq} \left(v_{\max}^{2} \frac{\beta(n-1)+1}{2n} - v_{\min}\right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \frac{1 - \frac{1}{n}}{2\beta} \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}] \\ & + \frac{1}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}], \end{split}$$

where (a) is due to the growth condition (2) and (b) is due to Young's inequality (with $\beta \to 1$). Note $a_k = \gamma_{k+1} \left(v_{\min} - v_{\max}^2 \frac{\beta(n-1)+1}{2n} \right)$ and

$$a_{k}\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)}) - V(\hat{\boldsymbol{s}}^{(k+1)})] + \frac{\gamma_{k+1}^{2} L_{V}}{2} \mathbb{E}[\|S_{\mathsf{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{\gamma_{k+1}(1 - \frac{1}{n})}{2\beta} \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}] + \frac{\gamma_{k+1}}{2n} \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}].$$
(34)

We now give an upper bound of $\mathbb{E}[\|S_{\text{tts}}^{(k+1)} - \hat{s}^{(k)}\|^2]$ using Lemma 5 and plug it into (34):

$$(a_{k} - 2\gamma_{k+1}^{2} L_{V})\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] \leq \mathbb{E}[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})]$$

$$+ \gamma_{k+1} \left(\frac{1}{2\beta} (1 - 1/n) + 2\gamma_{k+1} L_{V}\right) \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}]$$

$$+ \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}]$$

$$+ \frac{\gamma_{k+1}^{2} L_{V} L_{\mathbf{s}}^{2}}{n^{3}} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_{i}^{k})}\|^{2}].$$

$$(35)$$

Next, we observe that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2]) ,$$

where the equality holds as i_k and j_k are drawn independently. For any $\beta > 0$, it holds

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle] \\ = & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 - 2\gamma_{k+1}\langle\hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}, \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\rangle] \\ \leq & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2 + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}\|^2 + \gamma_{k+1}\beta\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_i^k)}\|^2] \,, \end{split}$$

where the last inequality is due to Young's inequality. Subsequently, we have

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}]$$

$$\leq \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k+1)}\|^{2}].$$

Observe that $\hat{s}^{(k+1)} - \hat{s}^{(k)} = -\gamma_{k+1}(\hat{s}^{(k)} - S_{tts}^{(k+1)})$. Applying Lemma 5 yields

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k+1})}\|^{2}] \\ \leq &(\gamma_{k+1}^{2} + \frac{n-1}{n} \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|S_{\text{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \sum_{i=1}^{n} \mathbb{E}[\frac{1 - \frac{1}{n} + \gamma_{k+1}\beta}{n} \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\tau_{i}^{k})}\|^{2}] \\ \leq &4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + 2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] \\ &+ 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\boldsymbol{s}}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \mathbb{E}[\frac{1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}}(\gamma_{k+1} + \frac{1}{\beta})}{n} \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}] \;. \end{split}$$

Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(\tau_i^k)}\|^2].$$

From the above, we obtain

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1} L_{\mathbf{s}}^{2}}{n^{2}} (\gamma_{k+1} + \frac{1}{\beta})\right) \Delta^{(k)} + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + 2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] + 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}].$$

Setting $c_1 = v_{\min}^{-1}$, $\alpha = \max\{8, 1 + 6v_{\min}\}$, $\overline{L} = \max\{L_s, L_V\}$, $\gamma_{k+1} = \frac{1}{k\alpha c_1 \overline{L}}$, $\beta = \frac{c_1 \overline{L}}{n}$, we remark $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 6$ and we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1} L_{\mathbf{s}}^2}{n^2} (\gamma_{k+1} + \frac{1}{\beta}) \le 1 - \frac{c_1(k\alpha - 1) - 4}{k\alpha n c_1} \le 1 - \frac{2}{k\alpha n c_1},$$

which shows that $1 - \frac{1}{n} + \gamma_{k+1}\beta + \frac{2\gamma_{k+1}L_s^2}{n^2}(\gamma_{k+1} + \frac{1}{\beta}) \in (0,1)$ for any k > 0. Denote $\Lambda_{(k+1)} = \frac{1}{n} - \gamma_{k+1}\beta - \frac{2\gamma_{k+1}L_s^2}{n^2}(\gamma_{k+1} + \frac{1}{\beta})$ and note that $\Delta^{(0)} = 0$, thus the telescoping sum yields:

$$\Delta^{(k+1)} \leq 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} (1 - \Lambda_{(j)}) (\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta}) \mathbb{E}[\|\overline{s}^{(\ell)} - \hat{s}^{(\ell)}\|^{2}]$$

$$+ 2 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} (1 - \Lambda_{(j)}) (\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta}) \mathbb{E}[\|\eta_{i_{\ell}}^{(\ell)}\|^{2}]$$

$$+ 4 \sum_{\ell=0}^{k} \prod_{j=\ell+1}^{k} (1 - \Lambda_{(j)}) (\gamma_{\ell+1}^{2} + \frac{\gamma_{\ell+1}}{\beta}) \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{\ell})} - \overline{s}^{(\ell)}\|^{2}].$$

Note $\omega_{k,\ell} = \prod_{j=\ell+1}^k (1 - \Lambda_{(j)})$ Summing on both sides over k=0 to $k=K_m-1$ yields:

$$\sum_{k=0}^{K_{m}-1} \Delta^{(k+1)} = 4 \sum_{k=0}^{K_{m}-1} (\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \omega_{k,1} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + 2 \sum_{k=0}^{K_{m}-1} (\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \omega_{k,1} \mathbb{E}[\|\eta_{i_{\ell}}^{(k)}\|^{2}]
+ \sum_{k=0}^{K_{m}-1} 4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta}) \omega_{k,1} \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}]
\leq \sum_{k=0}^{K_{m}-1} \frac{4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}] + \sum_{k=0}^{K_{m}-1} \frac{2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} \mathbb{E}[\|\eta_{i_{\ell}}^{(k)}\|^{2}]
+ \sum_{k=0}^{K_{m}-1} \frac{4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}].$$
(36)

We recall (35) where we have summed on both sides from k = 0 to $k = K_m - 1$:

$$\sum_{k=0}^{K_{m}-1} \left(a_{k} - 2\gamma_{k+1}^{2} L_{V} \right) \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(k)}\|^{2}]$$

$$\leq \mathbb{E}[V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K)})] + \sum_{k=0}^{K_{m}-1} \gamma_{k+1} \left(\frac{1}{2\beta} (1 - 1/n) + 2\gamma_{k+1} L_{V} \right) \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^{n} \widetilde{S}_{i}^{(\tau_{i}^{k})} - \overline{\mathbf{s}}^{(k)}\|^{2}] + \sum_{k=0}^{K_{m}-1} \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n} \right) \mathbb{E}[\|\eta_{i_{k}}^{(k)}\|^{2}] + \sum_{k=0}^{K_{m}-1} \frac{\gamma_{k+1}^{2} L_{V} L_{\mathbf{s}}^{2}}{n^{2}} \Delta^{(k)} . \tag{37}$$

Plugging (36) into (37) results in:

$$\sum_{k=0}^{K_m-1} \tilde{\alpha}_k \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \sum_{k=0}^{K_m-1} \tilde{\beta}_k \mathbb{E}[\|\frac{1}{n} \sum_{i=1}^n \tilde{S}_i^{(\tau_i^k)} - \overline{\mathbf{s}}^{(k)}\|^2] \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(K)})] + \sum_{k=0}^{K_m-1} \tilde{\Gamma}_k \mathbb{E}[\|\eta_{i_k}^{(k)}\|^2] ,$$

where

$$\tilde{\alpha}_{k} = a_{k} - 2\gamma_{k+1}^{2} L_{V} - \frac{\gamma_{k+1}^{2} L_{V} L_{s}^{2}}{n^{2}} \frac{4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} ,$$

$$\tilde{\beta}_{k} = \gamma_{k+1} \left(\frac{1}{2\beta} (1 - 1/n) + 2\gamma_{k+1} L_{V} \right) - \frac{\gamma_{k+1}^{2} L_{V} L_{s}^{2}}{n^{2}} \frac{4(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} ,$$

$$\tilde{\Gamma}_{k} = \gamma_{k+1} \left(\gamma_{k+1} L_{V} + \frac{1}{2n} \right) + \frac{\gamma_{k+1}^{2} L_{V} L_{s}^{2}}{n^{2}} \frac{2(\gamma_{k+1}^{2} + \frac{\gamma_{k+1}}{\beta})}{\Lambda_{(k+1)}} ,$$

and

$$\begin{split} a_k &= \gamma_{k+1} \left(\upsilon_{\min} - \upsilon_{\max}^2 \frac{\beta(n-1)+1}{2n} \right) \;, \\ \Lambda_{(k+1)} &= \frac{1}{n} - \gamma_{k+1} \beta - \frac{2\gamma_{k+1} \, \mathcal{L}_{\mathbf{s}}^2}{n^2} (\gamma_{k+1} + \frac{1}{\beta}) \;, \\ c_1 &= \upsilon_{\min}^{-1}, \alpha = \max\{8, 1 + 6\upsilon_{\min}\}, \overline{L} = \max\{\mathcal{L}_{\mathbf{s}}, \mathcal{L}_{V}\}, \gamma_{k+1} = \frac{1}{k\alpha c_1 \overline{L}}, \beta = \frac{c_1 \overline{L}}{n} \;. \end{split}$$

When, for any k > 0, $\tilde{\alpha}_k \ge 0$, we have by Lemma 2 that:

$$\sum_{k=0}^{K_m} \tilde{\alpha}_k \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq v_{\max}^2 \sum_{k=0}^{K_m} \tilde{\alpha}_k \mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2],$$

concluding the proof of the Theorem.

B Proofs for the vrTTEM and the fiTTEM Algorithms

B.1 Additional Intermediary Results

We introduce additional Lemmas below before getting into the proofs of the desired results.

Lemma 9. Consider the vrTTEM update (2) with $\rho_k = \rho$, it holds for all k > 0

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - S_{tts}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 L_{\mathbf{s}}^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - S_{tts}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i_*}^{(k+1)}\|^2],$$

where we recall that $\ell(k)$ is the first iteration number in the epoch that iteration k is in.

Proof. Beforehand, we provide an alternate expression of the quantity $\hat{s}^{(k+1)} - \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} = -\gamma_{k+1}(\hat{\mathbf{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}) = -\gamma_{k+1}(\hat{\mathbf{s}}^{(k)} - (1 - \rho)S_{\mathsf{tts}}^{(k)} - \rho \mathbf{S}^{(k+1)})
= -\gamma_{k+1} \left((1 - \rho)[\hat{\mathbf{s}}^{(k)} - S_{\mathsf{tts}}^{(k)}] + \rho[\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)}] \right) .$$
(38)

We observe, using the identity (38), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - S_{\text{tts}}^{(k)}\|^2]. \tag{39}$$

For the latter term, we obtain its upper bound as

$$\begin{split} \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] = & \mathbb{E}[\|\frac{1}{n}\sum_{i=1}^n (\overline{\boldsymbol{s}}_i^{(k)} - \tilde{\boldsymbol{S}}_i^{\ell(k)}) - (\overline{\boldsymbol{s}}_{i_k}^{(k)} - \tilde{\boldsymbol{S}}_{i_k}^{(\ell(k))})\|^2] \\ & \stackrel{(a)}{\leq} \mathbb{E}[\|\overline{\boldsymbol{s}}_{i_k}^{(k)} - \overline{\boldsymbol{s}}_{i_k}^{(\ell(k))}\|^2] + \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] \stackrel{(b)}{\leq} \mathbf{L}_{\mathbf{s}}^2 \, \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] \;, \end{split}$$

where (a) uses the variance inequality and (b) uses Lemma 1. Substituting into (39) proves the lemma.

Lemma 10. Consider the fiTTEM update (3) with $\rho_k = \rho$. It holds for all k > 0 that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - S_{tts}^{(k+1)}\|^2] \leq 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \frac{L_s^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - S_{tts}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2],$$

where L_s is the smoothness constant defined in Lemma 1.

Proof. Beforehand, we provide a rewriting of the quantity $\hat{s}^{(k+1)} - \hat{s}^{(k)}$ that will be useful throughout this proof:

$$\hat{\mathbf{s}}^{(k+1)} - \hat{\mathbf{s}}^{(k)} &= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - S_{\text{tts}}^{(k+1)}) \\
&= -\gamma_{k+1} (\hat{\mathbf{s}}^{(k)} - (1 - \rho) S_{\text{tts}}^{(k)} - \rho \mathbf{S}^{(k+1)}) \\
&= -\gamma_{k+1} \left((1 - \rho) [\hat{\mathbf{s}}^{(k)} - S_{\text{tts}}^{(k)}] + \rho [\hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)}] \right) \\
&= -\gamma_{k+1} \left((1 - \rho) [\hat{\mathbf{s}}^{(k)} - S_{\text{tts}}^{(k)}] + \rho [\hat{\mathbf{s}}^{(k)} - \overline{\mathbf{S}}^{(k)} - (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)})] \right) .$$
(40)

We observe, using the identity (40), that

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}\|^2] \le 2\rho^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2] + 2\rho^2 \mathbb{E}[\|\overline{\boldsymbol{s}}^{(k)} - \boldsymbol{\mathcal{S}}^{(k+1)}\|^2] + 2(1-\rho)^2 \mathbb{E}[\|\hat{\boldsymbol{s}}^{((k))} - S_{\mathsf{tts}}^{(k)}\|^2] . \tag{41}$$

For the latter term, we obtain its upper bound as

$$\mathbb{E}[\|\overline{\mathbf{s}}^{(k)} - \mathbf{\mathcal{S}}^{(k+1)}\|^{2}] = \mathbb{E}[\|\frac{1}{n}\sum_{i=1}^{n}(\overline{\mathbf{s}}_{i}^{(k)} - \overline{\mathbf{\mathcal{S}}}_{i}^{(k)}) - (\tilde{S}_{i_{k}}^{(k)} - \tilde{S}_{i_{k}}^{(t_{i_{k}}^{k})})\|^{2}]$$

$$\stackrel{(a)}{\leq} \mathbb{E}[\|\overline{\mathbf{s}}_{i_{k}}^{(k)} - \overline{\mathbf{s}}_{i_{k}}^{(\ell(k))}\|^{2}] + \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}],$$

where (a) uses the variance inequality. We can further bound the last expectation using Lemma 1:

$$\mathbb{E}[\|\overline{\mathbf{s}}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(t_{i_k}^k)}\|^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[\|\overline{\mathbf{s}}_i^{(k)} - \overline{\mathbf{s}}_i^{(t_i^k)}\|^2] \stackrel{(a)}{\leq} \frac{\mathbf{L}_{\mathbf{s}}^2}{n} \sum_{i=1}^n \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_i^k)}\|^2].$$

Substituting the above into (41) proves the lemma.

Lemma 11. Considering a decreasing stepsize $\gamma_k \in (0,1)$ and a constant $\rho \in (0,1)$, we have

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - S_{tts}^{(k)}\|^2] \le \frac{\rho}{1 - \rho} \sum_{\ell=0}^{k} (1 - \gamma_{\ell})^2 (\boldsymbol{\mathcal{S}}^{(\ell)} - \tilde{S}^{(\ell)}) ,$$

where $S^{(k)}$ is defined either by Line 2 (vrTTEM) or Line 3 (fiTTEM).

Proof. We begin by writing the two-timescale update:

$$S_{\text{tts}}^{(k+1)} = S_{\text{tts}}^{(k)} + \rho(\mathbf{S}^{(k+1)} - S_{\text{tts}}^{(k)}),$$

$$\hat{\mathbf{s}}^{(k+1)} = \hat{\mathbf{s}}^{(k)} + \gamma_{k+1}(S_{\text{tts}}^{(k+1)} - \hat{\mathbf{s}}^{(k)}),$$
(42)

where $\mathbf{S}^{(k+1)} = \frac{1}{n} \sum_{i=1}^{n} \tilde{S}_{i}^{(t_{i}^{k})} + (\tilde{S}_{i_{k}}^{(k)} - \tilde{S}_{i_{k}}^{(t_{i_{k}}^{k})})$ according to (3). Denote $\delta^{(k+1)} = \hat{\mathbf{s}}^{(k+1)} - S_{\text{tts}}^{(k+1)}$. Then from (42), doing the subtraction of both equations yields:

$$\delta^{(k+1)} = (1 - \gamma_{k+1})\delta^{(k)} + \frac{\rho}{1 - \rho}(1 - \gamma_{k+1})(\boldsymbol{\mathcal{S}}^{(k+1)} - S_{\text{tts}}^{(k+1)}).$$

Using the telescoping sum and noting that $\delta^{(0)} = 0$, we have

$$\delta^{(k+1)} \le \frac{\rho}{1-\rho} \sum_{\ell=0}^{k} (1-\gamma_{\ell+1})^2 (\mathbf{S}^{(\ell+1)} - \tilde{S}^{(\ell+1)}) .$$

B.2 Proofs of Auxiliary Lemmas (Lemma 6, Lemma 8 and Lemma 3)

Lemma. At iteration k+1, the drift term of update (3), with $\rho_{k+1}=\rho$, is equivalent to the following:

$$\begin{split} \hat{\boldsymbol{s}}^{(k)} - S_{tts}^{(k+1)} = & \rho(\hat{\boldsymbol{s}}^{(k)} - \overline{\mathbf{s}}^{(k)}) + \rho \eta_{i_k}^{(k+1)} + \rho[(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}]] \\ & + (1 - \rho) \left(\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\right) \;, \end{split}$$

where we recall that $\eta_{i_k}^{(k+1)}$, defined in (13), which is the gap between the MC approximation and the expected statistics.

Proof. Using the fiTTEM update $S_{\text{tts}}^{(k+1)} = (1-\rho)S_{\text{tts}}^{(k)} + \rho \mathbf{S}^{(k+1)}$ where $\mathbf{S}^{(k+1)} = \overline{\mathbf{S}}^{(k)} + (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)})$ leads to the following decomposition:

$$\begin{split} &S_{\text{tts}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} \\ = &(1 - \rho)S_{\text{tts}}^{(k)} + \rho \left(\overline{\boldsymbol{\mathcal{S}}}^{(k)} + (\tilde{S}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)})\right) - \hat{\boldsymbol{s}}^{(k)} + \rho \overline{\mathbf{s}}^{(k)} - \rho \overline{\mathbf{s}}^{(k)} \\ = &\rho(\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}) + \rho(\tilde{S}_{i_k}^{(k)} - \overline{\mathbf{s}}_{i_k}^{(k)}) + (1 - \rho) \left(S_{\text{tts}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\right) + \rho \left(\overline{\boldsymbol{\mathcal{S}}}^{(k)} - \overline{\mathbf{s}}^{(k)} + (\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)})\right) \\ = &\rho(\overline{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}) + \rho \eta_{i_k}^{(k+1)} - \rho[(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}]] \\ + &(1 - \rho) \left(S_{\text{tts}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\right) \;, \end{split}$$

where we observe that $\mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}] = \overline{\mathbf{s}}^{(k)} - \overline{\boldsymbol{\mathcal{S}}}^{(k)}$ and which concludes the proof.

Important Note: Note that $\bar{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}$ is not equal to $\eta_{i_k}^{(k+1)}$, defined in (13), which is the gap between the MC approximation and the expected statistics. Indeed $\tilde{S}_{i_k}^{(t_{i_k}^k)}$ is not computed under the same model as $\bar{\mathbf{s}}_{i_k}^{(k)}$.

B.3 Proof of Theorem 2

Theorem. Assume A1-A5. Consider the vrTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq K_m$ where K_m is a positive integer. Let $\{\gamma_{k+1} = 1/(k^a\overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of stepsizes, $\overline{L} = \max\{L_{\mathbf{s}}, L_V\}$, $\rho = \mu/(c_1\overline{L}n^{2/3})$, $m = nc_1^2/(2\mu^2 + \mu c_1^2)$ and a constant $\mu \in (0,1)$. Then:

$$\mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(K)})\|^2] \leq \frac{2n^{2/3}\overline{L}}{\mu P_m v_{\min}^2 v_{\max}^2} \left(\mathbb{E}[\Delta V] + \sum_{k=0}^{K_m-1} \tilde{\eta}^{(k+1)} + \chi^{(k+1)} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \right) .$$

Proof. Using the smoothness of V and update (2), we obtain:

$$V(\hat{\boldsymbol{s}}^{(k+1)}) \leq V(\hat{\boldsymbol{s}}^{(k)}) + \langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \rangle + \frac{L_V}{2} \|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2$$

$$\leq V(\hat{\boldsymbol{s}}^{(k)}) - \gamma_{k+1} \langle \hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k+1)}, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} \|\hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k+1)}\|^2.$$
(43)

Denote $H_{k+1} := \hat{s}^{(k)} - S_{\text{tts}}^{(k+1)}$ the drift term of the fiTTEM update in (8) and $h_k = \hat{s}^{(k)} - \overline{s}^{(k)}$. Taking expectations on both sides show that

$$\mathbb{E}[V(\hat{\mathbf{s}}^{(k+1)})] \\
\stackrel{(a)}{\leq} \mathbb{E}[V(\hat{\mathbf{s}}^{(k)})] - \gamma_{k+1}(1-\rho)\mathbb{E}[\langle \hat{\mathbf{s}}^{(k)} - S_{\text{tts}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle] \\
- \gamma_{k+1}\rho\mathbb{E}[\langle \hat{\mathbf{s}}^{(k)} - \mathbf{S}^{(k+1)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle] + \frac{\gamma_{k+1}^2 \mathcal{L}_V}{2} \mathbb{E}[\|\mathbf{H}_{k+1}\|^2] \\
\stackrel{(b)}{\leq} \mathbb{E}[V(\hat{\mathbf{s}}^{(k)})] - \gamma_{k+1}\rho\mathbb{E}[\langle \mathbf{h}_k, \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle] - \gamma_{k+1}(1-\rho)\mathbb{E}[\langle \hat{\mathbf{s}}^{(k)} - S_{\text{tts}}^{(k)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle] \\
- \gamma_{k+1}\rho\mathbb{E}[\langle \eta_{i_k}^{(k+1)}, \nabla V(\hat{\mathbf{s}}^{(k)}) \rangle] + \frac{\gamma_{k+1}^2 \mathcal{L}_V}{2} \mathbb{E}[\|\mathbf{H}_{k+1}\|^2] \\
\stackrel{(c)}{\leq} \mathbb{E}[V(\hat{\mathbf{s}}^{(k)})] - (\gamma_{k+1}\rho v_{\min} + \gamma_{k+1}v_{\max}^2) \mathbb{E}[\|\mathbf{h}_k\|^2] + \frac{\gamma_{k+1}^2 \mathcal{L}_V}{2} \mathbb{E}[\|\mathbf{H}_{k+1}\|^2] \\
- \gamma_{k+1}\rho\mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] - \gamma_{k+1}(1-\rho)\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2],$$
(44)

where we have used (38) in (a) and $\mathbb{E}[S^{(k+1)}] = \overline{\mathbf{s}}^{(k)} + \mathbb{E}[\eta_{i_k}^{(k+1)}]$ in (b), the growth condition in Lemma 2 and Young's inequality with the constant equal to 1 in (c). Furthermore, for $k+1 \leq \ell(k) + m$ (i.e., k+1

is in the same epoch as k), we have

$$\begin{split} &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)} + \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] \\ = &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}, \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\rangle] \\ = &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2 \|\mathbf{H}_{k+1}\|^2 \\ &-2\gamma_{k+1}\langle\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}, \rho(\mathbf{h}_k - \eta_{i_k}^{(k+1)}) + (1 - \rho)(\hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k)})\rangle] \\ \leq &\mathbb{E}[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \gamma_{k+1}^2 \|\mathbf{H}_{k+1}\|^2 + \frac{\gamma_{k+1}\rho}{\beta}\|\mathbf{h}_k\|^2 \\ &+ \frac{\gamma_{k+1}\rho}{\beta}\|\eta_{i_k}^{(k+1)}\|^2 + \frac{\gamma_{k+1}(1 - \rho)}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k)}\|^2], \end{split}$$

where we first used (38) and the last inequality is due to Young's inequality. Consider the following sequence:

$$R_k := \mathbb{E}[V(\hat{s}^{(k)}) + b_k || \hat{s}^{(k)} - \hat{s}^{(\ell(k))} ||^2]$$

where $b_k := \bar{b}_{k \mod m}$ is a periodic sequence where:

$$\bar{b}_i = \bar{b}_{i+1}(1 + \gamma_{k+1}\beta + 2\gamma_{k+1}^2\rho^2 L_s^2) + \gamma_{k+1}^2\rho^2 L_V L_s^2, \quad i = 0, 1, \dots, m-1 \text{ with } \bar{b}_m = 0.$$

Note that \overline{b}_i is decreasing with i and this implies

$$\bar{b}_i \leq \bar{b}_0 = \gamma_{k+1}^2 \rho^2 \, \mathcal{L}_V \, \mathcal{L}_s^2 \, \frac{(1 + \gamma_{k+1} \beta + 2\gamma_{k+1}^2 \rho^2 \, \mathcal{L}_s^2)^m - 1}{\gamma_{k+1} \beta + 2\gamma_{k+1}^2 \rho^2 \, \mathcal{L}_s^2}, \ i = 1, 2, \dots, m \ .$$

For $k+1 \le \ell(k) + m$, we have the following inequality

$$\begin{split} R_{k+1} &\leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)}) - \left(\gamma_{k+1}\rho \upsilon_{\min} + \gamma_{k+1}\upsilon_{\max}^{2}\right)\|\mathbf{h}_{k}\|^{2} + \frac{\gamma_{k+1}^{2} \mathbf{L}_{V}}{2}\|\mathbf{H}_{k+1}\|^{2}] \\ &+ \gamma_{k+1}\mathbb{E}[\rho\left\|\eta_{i_{k}}^{(k+1)}\right\|^{2} - (1-\rho)\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^{2}] \\ &+ b_{k+1}\mathbb{E}[(1+\gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^{2} + \gamma_{k+1}^{2}\|\mathbf{H}_{k+1}\|^{2} + \frac{\gamma_{k+1}\rho}{\beta}\|\mathbf{h}_{k}\|^{2}] \\ &+ b_{k+1}\mathbb{E}[\frac{\gamma_{k+1}\rho}{\beta}\|\eta_{i_{k}}^{(k+1)}\|^{2} + \frac{\gamma_{k+1}(1-\rho)}{\beta}\|\hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k)}\|^{2}] \;. \end{split}$$

And using Lemma 6 we obtain:

$$R_{k+1}$$

$$\leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)}) - \left(\gamma_{k+1}\rho v_{\min} + \gamma_{k+1}v_{\max}^2 - \gamma_{k+1}^2\rho^2 \,\mathcal{L}_V\right) \|\mathbf{h}_k\|^2 + \gamma_{k+1}^2\rho^2 \,\mathcal{L}_V \,\mathcal{L}_s^2 \,\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] \\ + b_{k+1}\mathbb{E}[(1 + \gamma_{k+1}\beta + 2\gamma_{k+1}^2\rho^2 \,\mathcal{L}_s^2) \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2 + \left(\frac{\gamma_{k+1}\rho}{\beta} + 2\gamma_{k+1}^2\rho^2\right) \|\mathbf{h}_k\|^2] \\ + \gamma_{k+1}\mathbb{E}[(\rho + \rho^2\gamma_{k+1} \,\mathcal{L}_V) \,\left\|\eta_{i_k}^{(k+1)}\right\|^2 - (1 - \rho - (1 - \rho)^2\gamma_{k+1} \,\mathcal{L}_V) \|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2] \\ + b_{k+1}\mathbb{E}[(\frac{\gamma_{k+1}\rho}{\beta} + 2\gamma_{k+1}^2\rho^2) \|\eta_{i_k}^{(k+1)}\|^2 + (\frac{\gamma_{k+1}(1 - \rho)}{\beta} + 2\gamma_{k+1}^2(1 - \rho)^2) \|\hat{\boldsymbol{s}}^{(k)} - \boldsymbol{S}_{\mathsf{tts}}^{(k)}\|^2] .$$

Rearranging the terms yields:

$$R_{k+1} \leq \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)})] - \gamma_{k+1}(\rho \upsilon_{\min} + \upsilon_{\max}^2 - \gamma_{k+1}\rho^2 L_V - b_{k+1}(\frac{\rho}{\beta} + 2\gamma_{k+1}\rho^2))\mathbb{E}[\|\mathbf{h}_k\|^2]$$

$$+ \underbrace{(b_{k+1}(1 + \gamma\beta + 2\gamma^2\rho^2 L_{\mathbf{s}}^2) + \gamma^2\rho^2 L_V L_{\mathbf{s}}^2)}_{=b_k \text{ since } k+1 \leq \ell(k) + m} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(\ell(k))}\|^2] + \tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)},$$

where

$$\tilde{\eta}^{(k+1)} = \left(\gamma_{k+1}(\rho + \rho^2 \gamma_{k+1} L_V) + b_{k+1} \left(\frac{\gamma_{k+1} \rho}{\beta} + 2 \gamma_{k+1}^2 \rho^2 \right) \right) \mathbb{E}[\left\| \eta_{i_k}^{(k+1)} \right\|^2]$$

$$\chi^{(k+1)} = \left(b_{k+1} \left(\frac{\gamma_{k+1} (1 - \rho)}{\beta} + 2 \gamma_{k+1}^2 (1 - \rho)^2 \right) - \gamma_{k+1} (1 - \rho - (1 - \rho)^2 \gamma_{k+1} L_V) \right)$$

$$\tilde{\chi}^{(k+1)} = \chi^{(k+1)} \mathbb{E}[\| \hat{\boldsymbol{s}}^{(k)} - S_{\text{tts}}^{(k)} \|^2] .$$

This leads, using Lemma 2, that for any γ_{k+1} , ρ and β such that $\rho v_{\min} + v_{\max}^2 - \gamma_{k+1} \rho^2 L_V - b_{k+1} (\frac{\rho}{\beta} + 2\gamma_{k+1}\rho^2) > 0$,

$$\begin{aligned} v_{\max}^{2} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^{2}] &\leq \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^{2}] \leq \frac{R_{k} - R_{k+1}}{\gamma_{k+1}(\rho v_{\min} + v_{\max}^{2} - \gamma_{k+1}\rho^{2} L_{V} - b_{k+1}(\frac{\rho}{\beta} + 2\gamma_{k+1}\rho^{2}))} \\ &+ \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{\gamma_{k+1}(\rho v_{\min} + v_{\max}^{2} - \gamma_{k+1}\rho^{2} L_{V} - b_{k+1}(\frac{\rho}{\beta} + 2\gamma_{k+1}\rho^{2}))} \ . \end{aligned}$$

We first remark that

$$\gamma_{k+1}(\rho v_{\min} + v_{\max}^2 - \gamma_{k+1}\rho^2 L_V - b_{k+1}(\frac{\rho}{\beta} + 2\gamma_{k+1}\rho^2)) \ge \frac{\gamma_{k+1}\rho}{c_1}(1 - \gamma_{k+1}c_1\rho L_V - b_{k+1}(\frac{c_1}{\beta} + 2\gamma_{k+1}\rho c_1)),$$

where $c_1 = v_{\min}^{-1}$. By setting $\overline{L} = \max\{L_s, L_V\}$, $\beta = \frac{c_1\overline{L}}{n^{1/3}}$, $\rho = \frac{\mu}{c_1\overline{L}n^{2/3}}$, $m = \frac{nc_1^2}{2\mu^2 + \mu c_1^2}$ and $\{\gamma_{k+1}\}$ any sequence of decreasing stepsizes in (0,1), it can be shown that there exists $\mu \in (0,1)$, such that the following lower bound holds

$$1 - \gamma_{k+1}c_{1}\rho L_{V} - b_{k+1}\left(\frac{c_{1}}{\beta} + 2\gamma_{k+1}\rho c_{1}\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \overline{b}_{0}\left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\geq 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{L_{V}\mu^{2}}{c_{1}^{2}n^{\frac{4}{3}}} \frac{(1 + \gamma\beta + 2\gamma^{2} L_{s}^{2})^{m} - 1}{\gamma\beta + 2\gamma^{2} L_{s}^{2}} \left(\frac{n^{\frac{1}{3}}}{\overline{L}} + \frac{2\mu}{\overline{L}n^{\frac{2}{3}}}\right)$$

$$\stackrel{(a)}{\geq} 1 - \frac{\mu}{n^{\frac{2}{3}}} - \frac{\mu}{c_{1}^{2}} (e - 1)(1 + \frac{2\mu}{n}) \geq 1 - \mu - \mu(1 + 2\mu) \frac{e - 1}{c_{1}^{2}} \stackrel{(b)}{\geq} \frac{1}{2},$$

where the simplification in (a) is due to

$$\frac{\mu}{n} \leq \gamma \beta + 2 \gamma^2 \, \mathbf{L}_{\mathbf{s}}^2 \leq \frac{\mu}{n} + \frac{2 \mu^2}{c_1^2 n^{\frac{4}{3}}} \leq \frac{\mu c_1^2 + 2 \mu^2}{c_1^2} \frac{1}{n} \ \ \text{and} \ \ (1 + \gamma \beta + 2 \gamma^2 \, \mathbf{L}_{\mathbf{s}}^2)^m \leq \mathbf{e} - 1 \; ,$$

and the required μ in (b) can be found by solving the quadratic equation. Finally, these results yield:

$$v_{\max}^2 \sum_{k=0}^{K_m-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \le \frac{2(R_0 - R_{K_m})}{v_{\min}\rho} + 2 \sum_{k=0}^{K_m-1} \frac{\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}}{v_{\min}\rho} .$$

Note that $R_0 = \mathbb{E}[V(\hat{s}^{(0)})]$ and if K_m is a multiple of m, then $R_{max} = \mathbb{E}[V(\hat{s}^{(K_m)})]$. Under the latter condition, we have

$$\sum_{k=0}^{K_m-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2] \leq \frac{2n^{2/3}\overline{L}}{\mu v_{\min}^2 v_{\max}^2} \mathbb{E}[V(\hat{\boldsymbol{s}}^{(0)}) - V(\hat{\boldsymbol{s}}^{(K_m)})] + \frac{2n^{2/3}\overline{L}}{\mu v_{\min}^2 v_{\max}^2} \sum_{k=0}^{K_m-1} [\tilde{\eta}^{(k+1)} + \tilde{\chi}^{(k+1)}] \; .$$

This concludes our proof.

B.4 Proof of Theorem 3

Theorem. Assume A1-A5. Consider the fiTTEM sequence $\{\hat{\mathbf{s}}^{(k)}\}_{k>0} \in \mathcal{S}$ for any $k \leq K_m$ where K_m be a positive integer. Let $\{\gamma_{k+1} = 1/(k^a \alpha c_1 \overline{L})\}_{k>0}$, where $a \in (0,1)$, be a sequence of positive stepsizes, $\alpha = \max\{2, 1 + 2v_{\min}\}$, $\overline{L} = \max\{L_{\mathbf{s}}, L_{V}\}$, $\beta = 1/(\alpha n)$, $\rho = 1/(\alpha c_1 \overline{L} n^{2/3})$ and $c_1(k\alpha - 1) \geq c_1(\alpha - 1) \geq 2$. Then:

$$\mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(K)})\|^2] \leq \frac{4\alpha \overline{L} n^{2/3}}{P_m v_{\min}^2 v_{\max}^2} \left(\mathbb{E}[\Delta V] + \sum_{k=0}^{K_m - 1} \Xi^{(k+1)} + \Gamma^{(k+1)} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2] \right) .$$

Proof. Using the smoothness of V and update (3), we obtain:

$$V(\hat{\boldsymbol{s}}^{(k+1)}) \leq V(\hat{\boldsymbol{s}}^{(k)}) + \langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \rangle + \frac{L_V}{2} \|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2$$

$$\leq V(\hat{\boldsymbol{s}}^{(k)}) - \gamma_{k+1} \langle \hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \rangle + \frac{\gamma_{k+1}^2 L_V}{2} \|\hat{\boldsymbol{s}}^{(k)} - S_{\mathsf{tts}}^{(k+1)}\|^2.$$
(45)

Denote $H_{k+1} := \hat{s}^{(k)} - S_{tts}^{(k+1)}$ the drift term of the fiTTEM update in (8) and $h_k = \hat{s}^{(k)} - \bar{s}^{(k)}$. Using Lemma 7 and the additional following identity:

$$\mathbb{E}[(\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}) - \mathbb{E}[\overline{\mathbf{s}}_{i_k}^{(k)} - \tilde{S}_{i_k}^{(t_{i_k}^k)}]] = 0, \qquad (46)$$

we have

$$\begin{split} \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k+1)})] \leq & \mathbb{E}[V(\hat{\boldsymbol{s}}^{(k)})] - \gamma_{k+1}\rho \mathbb{E}[\left\langle \mathsf{h}_{k} \,,\, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \right\rangle] \\ & - \gamma_{k+1} \mathbb{E}[\left\langle \rho \mathbb{E}[\eta_{i_{k}}^{(k+1)} | \mathcal{F}_{k}] + (1-\rho) \mathbb{E}[\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}] \,,\, \nabla V(\hat{\boldsymbol{s}}^{(k)}) \right\rangle] + \frac{\gamma_{k+1}^{2} \mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \\ & \stackrel{(a)}{\leq} - v_{\min} \gamma_{k+1} \rho \mathbb{E}[\|\mathsf{h}_{k}\|^{2}] - \gamma_{k+1} \mathbb{E}[\left\| \nabla V(\hat{\boldsymbol{s}}^{(k)}) \right\|^{2}] \\ & - \frac{\gamma_{k+1} \rho^{2}}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] + \frac{\gamma_{k+1}^{2} \mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \\ & \stackrel{(b)}{\leq} - (v_{\min} \gamma_{k+1} \rho + \gamma_{k+1} v_{\max}^{2}) \mathbb{E}[\|\mathsf{h}_{k}\|^{2}] - \frac{\gamma_{k+1} \rho^{2}}{2} \xi^{(k+1)} - \frac{\gamma_{k+1} (1-\rho)^{2}}{2} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] \\ & + \frac{\gamma_{k+1}^{2} \mathcal{L}_{V}}{2} \|\mathsf{H}_{k+1}\|^{2} \,, \end{split}$$

where $\xi^{(k+1)} := \mathbb{E}[\|\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k]\|^2]$. Next, we bound the quantity $\mathbb{E}[\|\mathsf{H}_{k+1}\|^2]$. Using Lemma 8, we obtain

$$\gamma_{k+1}(v_{\min}\rho + v_{\max}^{2} - \gamma_{k+1}\rho^{2} L_{V})\mathbb{E}[\|\mathbf{h}_{k}\|^{2}]$$

$$\leq \mathbb{E}[V(\hat{\mathbf{s}}^{(k)}) - V(\hat{\mathbf{s}}^{(k+1)})] + \tilde{\xi}^{(k+1)} + \left((1-\rho)^{2}\gamma_{k+1}^{2} L_{V} - \frac{\gamma_{k+1}(1-\rho)^{2}}{2}\right)\mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}]$$

$$+ \frac{\gamma_{k+1}^{2} L_{V} \rho^{2} L_{\mathbf{s}}^{2}}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \hat{\mathbf{s}}^{(t_{i}^{k})}\|^{2}], \tag{47}$$

where $\tilde{\xi}^{(k+1)} = \gamma_{k+1}^2 \rho^2 L_V \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2] - \frac{\gamma_{k+1}\rho^2}{2} \xi^{(k+1)}$. Next, we observe that

$$\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^{k+1})}\|^2] = \frac{1}{n} \sum_{i=1}^{n} (\frac{1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2] + \frac{n-1}{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2]), \quad (48)$$

where the equality holds as i_k and j_k are drawn independently. Then,

$$\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\rangle].$$

Note that $\hat{s}^{(k+1)} - \hat{s}^{(k)} = -\gamma_{k+1}(\hat{s}^{(k)} - S_{\text{tts}}^{(k+1)}) = -\gamma_{k+1}\mathsf{H}_{k+1}$ and that in expectation we recall that $\mathbb{E}[\mathsf{H}_{k+1}|\mathcal{F}_k] = \rho\mathsf{h}_k + \rho\mathbb{E}[\eta_{i_k}^{(k+1)}|\mathcal{F}_k] + (1-\rho)\mathbb{E}[S_{\text{tts}}^{(k)} - \hat{s}^{(k)}]$ where $\mathsf{h}_k = \hat{s}^{(k)} - \overline{s}^{(k)}$. Thus, for any $\beta > 0$, it holds

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] = \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\langle\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\rangle] \\ \leq & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2]] \,, \end{split}$$

where the last inequality is due to Young's inequality. Plugging this into (48) yields:

$$\begin{split} & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2] \\ = & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + \|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + 2\langle \hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}, \, \hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\rangle] \\ \leq & \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^2 + (1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\|\mathbf{h}_k\|^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\mathbb{E}[\|\boldsymbol{\eta}_{i_k}^{(k+1)}\|^2] \\ & + \frac{\gamma_{k+1}(1-\rho)^2}{\beta}\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2]] \; . \end{split}$$

Subsequently, we have

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_{i}^{k+1})}\|^{2}] \\ \leq &\mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] + \frac{n-1}{n^{2}} \sum_{i=1}^{n} \mathbb{E}[(1 + \gamma_{k+1}\beta)\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\|\mathbf{h}_{k}\|^{2} \\ &+ \frac{\gamma_{k+1}\rho^{2}}{\beta} \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] + \frac{\gamma_{k+1}(1-\rho)^{2}}{\beta} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}|^{2}]] \; . \end{split}$$

We now use Lemma 8 on $\|\hat{s}^{(k+1)} - \hat{s}^{(k)}\|^2 = \gamma_{k+1}^2 \|\hat{s}^{(k)} - S_{\text{tts}}^{(k+1)}\|^2$ and obtain:

$$\begin{split} &\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k+1)} - \hat{\boldsymbol{s}}^{(t_{i}^{k+1})}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \left(\frac{\gamma_{k+1}^{2}\rho^{2} \operatorname{L}_{\mathbf{s}}^{2}}{n} + \frac{(n-1)(1+\gamma_{k+1}\beta)}{n^{2}}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \\ &\leq \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^{2}] \\ &+ \sum_{i=1}^{n} \left(\frac{1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^{2}\rho^{2} \operatorname{L}_{\mathbf{s}}^{2}}{n}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_{i}^{k})}\|^{2}] \\ &+ \gamma_{k+1}(1-\rho)^{2} \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^{2}] + \left(2\gamma_{k+1}^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right) \mathbb{E}[\|\eta_{i_{k}}^{(k+1)}\|^{2}] \;. \end{split}$$

Let us define

$$\Delta^{(k)} := \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(t_i^k)}\|^2].$$

From the above, we obtain

$$\Delta^{(k+1)} \leq \left(1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2 \rho^2 L_{\mathbf{s}}^2\right) \Delta^{(k)} + \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta}\right) \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2]$$

$$+ \gamma_{k+1}(1 - \rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right) \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^2] + \gamma_{k+1} \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}[\|\eta_{i_k}^{(k+1)}\|^2].$$

Setting $c_1=v_{\min}^{-1}$, $\alpha=\max\{2,1+2v_{\min}\}$, $\overline{L}=\max\{\mathrm{L_s},\mathrm{L}_V\}$, $\gamma_{k+1}=\frac{1}{k}$, $\beta=\frac{1}{\alpha n}$, $\rho=\frac{1}{\alpha c_1 \overline{L} n^{2/3}}$, then we have that $c_1(k\alpha-1)\geq c_1(\alpha-1)=\max\{\frac{1}{v_{\min}},2\}\geq 2$. Hence, we observe that

$$1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2\rho^2 L_{\mathbf{s}}^2 \le 1 - \frac{1}{n} + \frac{1}{\alpha kn} + \frac{1}{\alpha^2 c_1^2 k^2 n^{\frac{4}{3}}} \le 1 - \frac{c_1(k\alpha - 1) - 1}{k\alpha nc_1} \le 1 - \frac{1}{k\alpha nc_1},$$

which shows that $1 - \frac{1}{n} + \gamma_{k+1}\beta + \gamma_{k+1}^2\rho^2 L_s^2 \in (0,1)$ for any k > 0. Denote $\Lambda_{(k+1)} = \frac{1}{n} - \gamma_{k+1}\beta - \gamma_{k+1}^2\rho^2 L_s^2$ and note that $\Delta^{(0)} = 0$, thus the telescoping sum yields

$$\Delta^{(k+1)} \leq \sum_{\ell=0}^{k} \omega_{k,\ell} \left(2\gamma_{\ell+1}^{2} \rho^{2} + \frac{\gamma_{\ell+1}^{2} \rho^{2}}{\beta} \right) \mathbb{E}[\|\bar{\mathbf{s}}^{(\ell)} - \hat{\boldsymbol{s}}^{(\ell)}\|^{2}]$$

$$+ \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} (1-\rho)^{2} \left(2\gamma_{\ell+1} + \frac{1}{\beta} \right) \mathbb{E}[\|\tilde{S}^{(\ell)} - \hat{\boldsymbol{s}}^{(\ell)}\|^{2}] + \sum_{\ell=0}^{k} \omega_{k,\ell} \gamma_{\ell+1} \tilde{\epsilon}^{(\ell+1)} ,$$

where $\omega_{k,\ell} = \prod_{j=\ell+1}^k (1 - \Lambda_{(j)})$ and $\tilde{\epsilon}^{(\ell+1)} = \left(2\gamma_{k+1} + \frac{\rho^2}{\beta}\right) \mathbb{E}\left[\left\|\eta_{i_k}^{(k+1)}\right\|^2\right]$.

Summing on both sides over k = 0 to $k = K_m - 1$ yields:

$$\begin{split} \sum_{k=0}^{K_m-1} \Delta^{(k+1)} &\leq \sum_{k=0}^{K_m-1} \frac{2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1} \rho^2}{\beta}}{\Lambda_{(k+1)}} \mathbb{E}[\|\bar{\mathbf{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k)}\|^2] \\ &+ \sum_{k=0}^{K_m-1} \frac{\gamma_{k+1} (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta}\right)}{\Lambda_{(k+1)}} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{\boldsymbol{S}}^{(k)}\|^2] + \sum_{k=0}^{K_m-1} \frac{\gamma_{k+1}}{\Lambda_{(k+1)}} \tilde{\boldsymbol{\epsilon}}^{(k+1)} \;. \end{split}$$

We recall (47) where we have summed on both sides from k = 0 to $k = K_m - 1$:

$$\mathbb{E}[V(\hat{\mathbf{s}}^{(K_{m})}) - V(\hat{\mathbf{s}}^{(0)})] \\
\leq \sum_{k=0}^{K_{m}-1} \left\{ \gamma_{k+1}(-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} L_{V})\mathbb{E}[\|\mathbf{h}_{k}\|^{2}] + \gamma^{2} L_{V} \rho^{2} L_{\mathbf{s}}^{2} \Delta^{(k)} \right\} \\
+ \sum_{k=0}^{K_{m}-1} \left\{ \tilde{\xi}^{(k+1)} + \left((1-\rho)^{2} \gamma_{k+1}^{2} L_{V} - \frac{\gamma_{k+1}(1-\rho)^{2}}{2} \right) \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] \right\} \\
\leq \sum_{k=0}^{K_{m}-1} \left\{ \gamma_{k+1} \left[-(v_{\min}\rho + v_{\max}^{2}) + \gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2} \gamma_{k+1} L_{V} L_{\mathbf{s}}^{2} \left(2\gamma_{k+1}^{2} \rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta} \right)}{\Lambda_{(k+1)}} \right] \mathbb{E}[\|\mathbf{h}_{k}\|^{2}] \right\} \\
+ \sum_{k=0}^{K_{m}-1} \mathbb{E}^{(k+1)} + \sum_{k=0}^{K_{m}-1} \Gamma^{(k+1)} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}] , \tag{49}$$

where

$$\Xi^{(k+1)} = \tilde{\xi}^{(k+1)} + \frac{\gamma_{k+1}^3 L_V \rho^2 L_{\mathbf{s}}^2}{\Lambda_{(k+1)}} \tilde{\epsilon}^{(k+1)}$$

and

$$\Gamma^{(k+1)} = \left((1-\rho)^2 \gamma_{k+1}^2 \, \mathcal{L}_V - \frac{\gamma_{k+1} (1-\rho)^2}{2} \right) + \frac{\gamma_{k+1}^3 \, \mathcal{L}_V \, \rho^2 \, \mathcal{L}_s^2 (1-\rho)^2 \left(2\gamma_{k+1} + \frac{1}{\beta} \right)}{\Lambda_{(k+1)}} \, .$$

Furthermore, given the values set for c_1 , α , \overline{L} , γ_{k+1} , β and ρ , then

$$\gamma_{k+1}\rho^{2} L_{V} + \frac{\rho^{2}\gamma_{k+1} L_{V} L_{s}^{2} \left(2\gamma_{k+1}^{2}\rho^{2} + \frac{\gamma_{k+1}\rho^{2}}{\beta}\right)}{\frac{1}{n} - \gamma_{k+1}\beta - \gamma_{k+1}^{2}\rho^{2} L_{s}^{2}} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}(k\alpha^{2}c_{1}^{2}n^{4/3})^{-1}(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}})}{\frac{1}{n} - \frac{1}{k\alpha n} - \frac{1}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}}} \\
= \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\overline{L}(\frac{2}{k^{2}\alpha^{2}c_{1}^{2}\overline{L}^{2}n^{4/3}} + \frac{1}{k\alpha c_{1}^{2}\overline{L}^{2}n^{1/3}})}{(k\alpha c_{1}n^{1/3})(k\alpha - 1)c_{1} - 1} \\
\leq \frac{1}{k\alpha^{2}c_{1}^{2}\overline{L}n^{4/3}} + \frac{\frac{1}{k\alpha c_{1}^{2}\overline{L}n^{1/3}}(\frac{2}{k\alpha n} + 1)}{2(\alpha c_{1}n^{1/3}) - 1} \leq \frac{1}{k^{2}\alpha c_{1}^{2}\overline{L}n^{4/3}} + \frac{1}{4k\alpha^{2}c_{1}^{3}\overline{L}n^{2/3}} \leq \frac{3/4}{\alpha c_{1}^{2}\overline{L}n^{2/3}},$$
(50)

where (a) is due to $c_1(k\alpha - 1) \ge c_1(\alpha - 1) \ge 2$ and $k\alpha c_1 n^{1/3} \ge 1$. Note also that

$$-(\upsilon_{\min}\rho + \upsilon_{\max}^2) \le -\rho\upsilon_{\min} = -\frac{1}{\alpha c_1^2 \overline{L} n^{2/3}},$$

which yields that

$$\left[-(v_{\min}\rho + v_{\max}^2) + \gamma_{k+1}\rho^2 L_V + \frac{\rho^2 \gamma_{k+1} L_V L_s^2 \left(2\gamma_{k+1}^2 \rho^2 + \frac{\gamma_{k+1}\rho^2}{\beta} \right)}{\Lambda_{(k+1)}} \right] \le -\frac{1/4}{\alpha c_1^2 \overline{L} n^{2/3}} .$$

Using the Lemma 2, we know that $v_{\text{max}}^2 \|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^2 \le \|\hat{\boldsymbol{s}}^{(k)} - \overline{\boldsymbol{s}}^{(k)}\|^2$ and using (50) on (49) yields:

$$v_{\max}^{2} \sum_{k=0}^{K_{m}-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\boldsymbol{s}}^{(k)})\|^{2}] \leq \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^{2}} [V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K_{m})})] + \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^{2}} \sum_{k=0}^{K_{m}-1} \Xi^{(k+1)} + \sum_{k=0}^{K_{m}-1} \Gamma^{(k+1)} \mathbb{E}[\|\hat{\boldsymbol{s}}^{(k)} - \tilde{S}^{(k)}\|^{2}],$$

proving the bound on the second order moment of the gradient of the Lyapunov function:

$$\sum_{k=0}^{K_m-1} \gamma_{k+1} \mathbb{E}[\|\nabla V(\hat{\mathbf{s}}^{(k)})\|^2] \leq \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} [V(\hat{\mathbf{s}}^{(0)}) - V(\hat{\mathbf{s}}^{(K_m)})]
+ \frac{4\alpha \overline{L} n^{2/3}}{v_{\min}^2 v_{\max}^2} \sum_{k=0}^{K_m-1} \Xi^{(k+1)} + \sum_{k=0}^{K_m-1} \Gamma^{(k+1)} \mathbb{E}[\|\hat{\mathbf{s}}^{(k)} - \tilde{S}^{(k)}\|^2].$$