

Curvature of Indifference Curves

Decaf coffees

* IMPERFECT SUBSTITUTES

(a) Almost Straight Indifference Curves

(b) Very Curved Indifference Curves

Tortilla chips (bags)

Guacamole (pints)

iClicker

A dermatologist puts 1oz of sunscreen on her body every 2 hours she is in the sun. Consider a graph of her indifference curves, where ounces of sunscreen is on the x-axis and time in the sun is on the y-axis. Her indifference curves are most likely:

- (A.) To be L-shaped PERFECT WMPS
 - B. To have a constant MRS (marginal rate of substitution)
- C. To be curved and relatively flat IMPERFECT SUBS
- D. To have a constant slope PERFECT SUBS

The Consumer's Income and the Budget Constraint

In addition to preferences, consumers also have budgets

- Goods cost money!
- Income is limited!

Budget constraint: the entire set of consumption bundles a consumer can purchase when spending all their income.

The Consumer's Income and the Budget Constraint

The Effects of Price or Income Changes on the Budget Constraint

Consumer Choice: Utility Maximization

Choice depends on preferences and budgets

- Preferences

 utility and indifference curves
- Budgets → budget constraint

This is a **constrained optimization problem**: how do consumers maximize utility subject to income and market prices?

Consumer Choice: Utility Maximization

Consumer Choice: Utility Maximization

The tangency condition is key to solving many of these problems

Slopes of the indifference curve and budget constraint are equal

Let's practice!

Kevin gets utility from soda (S) and hotdogs (H); his utility function is given by $U = S^{0.5}H^{0.5}$. His marginal utility for soda is $\underline{MU_S} = 0.5S^{-0.5}H^{0.5}$. His marginal utility for hot dogs is $\underline{MU_H} = 0.5S^{0.5}H^{-0.5}$. Kevin's income is \$12, and the prices of sodas and hotdogs are \$2 and \$3, respectively.

Answer the following:

What is Kevin's utility-maximizing bundle of sodas and hotdogs?

Let's practice!

EXPONENT RULES:

$$\chi^{-n} = \frac{1}{\chi^n} \frac{\chi^n}{\chi^m} = \chi^{n-m}$$

$$\frac{\chi^n}{\chi^m} = \chi^{n-m}$$

$$U = S^{0.5}H^{0.5}$$
, $MU_S = 0.5S^{-0.5}H^{0.5}$, $MU_H = 0.5S^{0.5}H^{-0.5}$, I=\$12, P_S = \$2, P_H = \$3

$$MRS_{SH} = \frac{Ps}{PH} \Rightarrow \frac{Mus}{MuH} = \frac{Ps}{PH}$$

$$\frac{0.5 \, \mathrm{S}^{-0.5} \, \mathrm{H}^{0.5}}{0.5 \, \mathrm{S}^{0.5} \, \mathrm{H}^{-0.5}} = \mathrm{S}^{-0.5-0.5} \cdot \mathrm{H}^{0.5--0.5}$$

$$= S^{-1} \cdot H' = \frac{H}{S}$$

$$\frac{H}{S} = \frac{2}{3}$$
 => 3H = 2S => $H = \frac{2}{3}S$

H

"OPTIMAL CONSUMPTION RATIO" (OCR)