UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea

Numărul legitimației de bancă

Prenumele

Numele

Prenumele tatălui

CHESTIONAR DE CONCURS

DISCIPLINA: Algebră și Elemente de Analiză Matematică M1

VARIANTA **D**

- 1. Funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \begin{cases} mx+1, & x < 1 \\ x-1, & x \ge 1 \end{cases}$ este continuă pentru: (5 pct.)
 - a) m = -1; b) m = 0; c) m = 2; d) $m = \frac{1}{2}$; e) m = 1; f) m = -2.
- 2. Să se calculeze $\lim_{x\to 1} \frac{x^2-1}{x-1}$. (5 pct.)
 - a) -1; b) 1; c) 2; d) 3; e) 0; f) ∞ .
- 3. Coordonatele punctului de extrem al funcției $f:(0,\infty)\to\mathbb{R}$, $f(x)=x\ln x$ sunt: (5 pct.)
 - a) $\left(\frac{1}{e}, -\frac{1}{e}\right)$; b) (1,-1); c) $\left(\frac{1}{e}, e\right)$; d) (1,0); e) (e,-e); f) (1,1).
- **4.** Derivata funcției $f: \mathbb{R} \to \mathbb{R}$, $f(x) = (x+1)e^x$ este: (5 pct.)
 - a) $(x+1)e^x$; b) 0; c) e^x ; d) $(x+2)e^x$; e) x^2e^x ; f) xe^x .
- 5. Valoarea integralei $\int_{0}^{1} (3x^2 2x) dx$ este: (5 pct.)
 - a) $\frac{1}{2}$; b) -1; c) 2; d) 1; e) 0; f) -2.
- **6.** Fie $A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$. Atunci matricea $B = A^2 A$ este: (5 pct.)
 - a) $\begin{pmatrix} 8 & 10 \\ 12 & 18 \end{pmatrix}$; b) $\begin{pmatrix} 2 & 4 \\ 6 & 8 \end{pmatrix}$; c) 0_2 ; d) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$; e) $\begin{pmatrix} 6 & 8 \\ 12 & 18 \end{pmatrix}$; f) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- 7. Valoarea limitei $l = \lim_{n \to \infty} \left(\sqrt{n^2 + n} \sqrt{n^2 n} \right)$ este: (5 pct.)
 - a) $-\infty$; b) -1; c) 1; d) ∞ ; e) 0; f) limita nu există.
- 8. Să se calculeze $x_1^2 + x_2^2$, unde x_1, x_2 sunt soluțiile ecuației $x^2 4x + 3 = 0$. (5 pct.)
 - a) 8; b) 10; c) 9; d) 16; e) 0; f) 12.

9. Valoarea integralei $I = \int_{0}^{\infty} e^{-x^2} dx$ satisface inegalitatea: (5 pct.)

a)
$$I < \frac{1}{e}$$
; b) $I < \frac{1}{3}$; c) $I < 0,1$; d) $I < 0$; e) $I < \frac{\pi}{4}$; f) $I < \frac{\pi}{10}$.

10. Să se scrie în ordine crescătoare numerele 2, π , $\sqrt{3}$. (5 pct.)

a)
$$\pi$$
, 2, $\sqrt{3}$; b) $\sqrt{3}$, π , 2; c) π , $\sqrt{3}$, 2; d) 2, $\sqrt{3}$, π ; e) $\sqrt{3}$, 2, π ; f) 2, π , $\sqrt{3}$.

11. Să se determine domeniul maxim de definiție D al funcției $f: D \to \mathbb{R}$, $f(x) = \sqrt{2x+6}$. (5 pct.)

a)
$$[3,\infty)$$
; b) $(-\infty,-4]$; c) $[0,\infty)$; d) $[-3,\infty)$; e) $[-3,3]$; f) \mathbb{R} .

12. Să se calculeze $x - \frac{1}{x}$ pentru $x = \frac{1}{2}$. (5 pct.)

a)
$$\frac{1}{2}$$
; b) 1; c) $\frac{3}{2}$; d) $-\frac{3}{2}$; e) -1; f) $-\frac{1}{2}$.

13. Valoarea expresiei $E = i^5 + i^7$ este: (5 pct.)

a) 1; b)
$$i+1$$
; c) 0; d) $i-1$; e) $2i$; f) i .

14. Câte perechi distincte $(x, y) \in \mathbb{Z} \times \mathbb{Z}$ de numere întregi verifică inegalitatea $x^2 + y^2 \le 5$? (5 pct.)

a) 21; b) 19; c) 11; d) 8; e) 20; f) 13.

a) 21, 0) 15, c) 11, d) 6, c) 20, 1) 15.

- 15. Fie $a_1,...,a_{10}$ o progresie aritmetică cu $a_1 = 10$ și rația r = -3. Câți termeni pozitivi are progresia? (5 pct.)
 - a) 3; b) 4; c) 10; d) 5; e) 2; f) 6.

16. Să se determine $m \in \mathbb{R}$ astfel încât ecuația $x^2 - mx + 4 = 0$ să admită soluție dublă. (5 pct.)

a) $m \in \mathbb{R}$; b) $m \in [-4, 4]$; c) $m \in \{-2, 2\}$; d) m = 5; e) m = 0; f) $m \in \{-4, 4\}$.

17. Să se rezolve inecuația $3^{4-x} \le 3^x$. (5 pct.)

a) $x \in \mathbb{R}$; b) \emptyset ; c) $x \in \{-1,1\}$; d) $x \in [-1,1]$; e) $x \in [2,\infty)$; f) $x \in [0,2]$.

18. Să se determine $a \in \mathbb{R}$ astfel încât $\begin{vmatrix} 1 & 2 \\ -1 & a \end{vmatrix} = 0$. (5 pct.)

a) a = -1; b) a = 0; c) $a \in [-1,1]$; d) a = 3; e) a = 2; f) a = -2.