```
"""19BCP093-Assgn-2-Decision-Tree.ipynb
Automatically generated by Colaboratory.
Original file is located at
    https://colab.research.google.com/drive/1LmqUjMpoV4J5IMCF41AXj_qU6q
DbmiYk
import numpy as np #math library
import pandas as pd #data analysis (Working on data)
import seaborn as sns #importing files dataset (graph plot also)
import matplotlib.pyplot as plt #graph plot
import random #random number generator
iris = sns.load_dataset("iris") #lodaing iris into variable iris
print(iris)
def train_test_split(dataframe, test_size):                                   #randomly splitting into tr
ain and test variable 2D arrays
  indices = iris.index.tolist()
  #print(indices)
 test indices = random.sample(population = indices, k = test size) #ra
ndomly assigning index of some data rows from iris to our variable
 #print(test_indices)
 test_df = iris.loc[test_indices] #dataframe corresponding to test_ind
ices
 train_df = iris.drop(test_indices) #dataframe with left overs
 return train_df, test_df
train_df, test_df = train_test_split(iris, 30)
def check_purity(data): #yes no checker for purity
 label_column = data[: , -1] #making array of species column
 #print(label column)
 unique_classes = np.unique(label_column) #making array of unique elem
ents(species) in label_column
 if(len(unique_classes) == 1):
    return True #pure
  return False #impure
def classify_data(data): #classify into sub class , basically returns t
he most similar species match from dataset when compared to entered num
ber entry data
```

```
label column = data[:, -1]
 unique classes, count unique classes = np.unique(label column, return
counts = True)#making array of unique elements(species) in label colum
ı / #making array of how many same data entry(same species) of label co
lumns in data
 #print(unique classes)
 #print(count unique classes)
 classification = unique_classes[count_unique_classes.argmax()]
 return classification
classify_data(test_df.values)
def get potential splits(data): #gives us from where we can split our d
ata for each column
 potential splits = {} #dictionary
 _, n_columns = data.shape #shape returns number of rows and number of
 for column index in range (n columns -
1): #4 times loop runs dont need species
   potential_splits[column_index] = [] #make empty array in dictionary
   values = data[:,column index] #value has our current column from da
ta
   #print(values)
   unique values = np.unique(values) #no point in splitting data from
same values twice
   #print(unique_values)
   for index in range(len(unique_values)): # now calculate potenial sp
lits
       if index != 0:
            current_value = unique_values[index]
            previous value = unique values[index - 1]
            potential_split = (current_value + previous_value) / 2 #
            potential_splits[column_index].append(potential_split)
 return potential_splits
#print(get_potential_splits(test_df.values))
def split_data(data, split_column, split_value): #decides one value fro
m get_potential_splits() to split the data set
 split column values = data[:, split column]
 data_below = data[split_column_values <= split_value]</pre>
 data_above = data[split_column_values > split_value]
 return data_below, data_above
```

```
def calculate_entropy(data): #function to calculate entropy for purity
in numbers
 label column = data[:, -1]
  , counts = np.unique(label column, return counts=True)
 probabilities = counts / counts.sum()
 entropy = sum(probabilities * -np.log2(probabilities))
  return entropy
def calculate_overall_entropy(data_below, data_above): #Function using
above one to calculate total entropy from our two splits
 n = len(data below) + len(data above)
 p_data_below = len(data_below) / n
 p data above = len(data above) / n
 overall entropy = (p data below * calculate entropy(data below) + p d
ata_above * calculate_entropy(data_above))
  return overall_entropy
def determine best split(data, potential splits):                            #after running all sp
lit potentials this function returns the best one wrt entropy
 overall entropy = 999
 for column_index in potential_splits:
    for value in potential splits[column index]:
      data_below, data_above = split_data(data, split_column=column_ind
ex, split_value=value)
      current_overall_entropy = calculate_overall_entropy(data_below, d
ata above)
      if current overall entropy <= overall entropy:</pre>
        overall_entropy = current_overall_entropy
        best split column = column index#return column for classificati
on
        best split value = value #return value to split the data
 return best_split_column, best_split_value
# Main Algorithm
def decision_tree_algorithm(df, counter=0, min_samples=2, max_depth=5):
#grows trees xD i m proud!
 # data preparations
 if counter == 0: #Converting padas (CSV) into numpy [Change file fomr
at]
    global COLUMN_HEADERS
   COLUMN HEADERS = df.columns
```

```
data = df.values #seperated column headers and entries into COLUMN_
Headers and data
 else:
    data = df #saving already converted file
 # base cases
 if (check_purity(data)) or (len(data) < min_samples) or (counter == m
ax depth):
    classification = classify data(data)
   return classification #answer
 # recursive part
 else:
    counter += 1
   #calling functions
    potential_splits = get_potential_splits(data)
    split_column, split_value = determine_best_split(data, potential_sp
lits)
    data_below, data_above = split_data(data, split_column, split_value)
   # instantiate sub-tree
   feature_name = COLUMN_HEADERS[split_column]
   question = "{} <= {}".format(feature_name, split_value) #feature_na</pre>
me <= split value || text represntation of determine best split()</pre>
   sub_tree = {question: []} #this is a tree for dictionary x array
   # find answers (recursion)
   yes answer = decision tree algorithm(data below, counter, min sampl
es, max_depth) #
    no_answer = decision_tree_algorithm(data_above, counter, min_sample
s, max depth)
   if yes_answer == no_answer:
      sub_tree = yes_answer
   else:
      sub_tree[question].append(yes_answer)
      sub_tree[question].append(no_answer)
    #print(sub_tree)
    return sub_tree
tree = decision_tree_algorithm(train_df, max_depth=3)                      #final answer
#print(tree)
def classify_example(example, tree): #compare example with our formed t
```

```
question = list(tree.keys())[0]
 feature name, comparison operator, value = question.split() #seperati
ng question string into 3 different variable strings
 if example[feature name] <= float(value):</pre>
   answer = tree[question][0]
 else:
    answer = tree[question][1]
 if not isinstance(answer, dict):
    return answer
 # recursive part
 else:
    residual tree = answer
   return classify_example(example, residual_tree)
# example = test df.iloc[8]
# print(example)
# example_ans = classify_example(example, tree)
# print("classification : ", example_ans)
def calculate_accuracy(df, tree): #how
 df["classification"] = df.apply(classify_example, axis=1, args=(tree,)
 df["classification_correct"] = df["classification"] == df["species"]
 accuracy = df["classification correct"].mean()
 print(df[["species", "classification", "classification_correct"]])
 return accuracy
accuracy = calculate_accuracy(test_df, tree)
print("\naccuracy : ", accuracy)
```

Output:

	species	classification	classification correct
31	setosa	setosa	True
142	virginica	virginica	True
65	versicolor	versicolor	True
45	setosa	setosa	True
120	virginica	virginica	True
74	versicolor	versicolor	True
53	versicolor	versicolor	True
85	versicolor	versicolor	True
63	versicolor	versicolor	True
108	virginica	virginica	True
122	virginica	virginica	True
75	versicolor	versicolor	True
143	virginica	virginica	True
0	setosa	setosa	True
104	virginica	virginica	True
10	setosa	setosa	True
93	versicolor	versicolor	True
111	virginica	virginica	True
105	virginica	virginica	True
38	setosa	setosa	True
73	versicolor	versicolor	True
20	setosa	setosa	True
23	setosa	setosa	True
15	setosa	setosa	True
77	versicolor	virginica	False
64	versicolor	versicolor	True
112	virginica	virginica	True
71	versicolor	versicolor	True
81	versicolor	versicolor	True
129	virginica	virginica	True
	170	27.00	

accuracy: 0.966666666666667