Interconnection of the Kirchhoff plate within the port-Hamiltonian framework

Andrea Brugnoli¹

¹ISAE-SUPAERO, Toulouse

- 1 The Kirchhoff plate as a port-Hamiltonian system
 - Classical formulation
 - Port-Hamiltonian formulation
- 2 Structure preserving discretization
 - The partitioned finite element method
 - Application to the Kirchhoff plate
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

- 1 The Kirchhoff plate as a port-Hamiltonian system
 - Classical formulation
 - Port-Hamiltonian formulation
- 2 Structure preserving discretization
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

The classical Kirchhoff model

Classical bilaplacian formulation

For an homogeneous isotropic material

$$\rho h \frac{\partial^2 w}{\partial t^2} + D\Delta^2 w = p, \quad \boldsymbol{x} \in \Omega \subset \mathbb{R}^2.$$

 $\Delta^2 = \partial_{xxxx} + 2\partial_{xxyy} + \partial_{yyyy}$ is the bilaplacian operator

- $ightharpoonup
 ho \left[\mathrm{kg/m^3} \right]$ is the mass density;
- *h* [m] is the plate thickness;
- $p [N/m^2]$ is an external distributed force;
- $lue{}$ D [Pa m] is the bending stiffness;

The classical Kirchhoff model

Bending moment formulation

$$\rho h \frac{\partial^2 w}{\partial t^2} + \operatorname{div} \operatorname{Div}(\boldsymbol{M}) = p, \quad \boldsymbol{x} \in \Omega \subset \mathbb{R}^2.$$

Where $M = \mathbb{D}\nabla^2 w \in \mathbb{R}^{2\times 2}_{\text{sym}}$ is the bending moment tensor and $\nabla^2 = \text{Grad} \circ \text{grad}$ the Hessian.

$$\operatorname{div}\operatorname{Div}(\boldsymbol{M}) = \partial_{xx}M_{11} + 2\partial_{xy}M_{12} + \partial_{yy}M_{22}$$

- $ightharpoonup
 ho \, [kg/m^3]$ is the mass density;
- *h* [m] is the plate thickness;
- $p [N/m^2]$ is an external distributed force;
- D is the bending rigidity tensor (symmetric, positive). For an homogeneous isotropic material

$$\mathbb{D}\boldsymbol{A} = D\left\{ (1 - \nu)\boldsymbol{A} + \nu \operatorname{Tr}(\boldsymbol{A})\boldsymbol{I} \right\};$$

Boundary conditions

For the boundary variables consider the definitions

Flexural moment $M_{nn} = \mathbf{M} : (\mathbf{n} \otimes \mathbf{n}),$

Torsional moment $M_{ns} = M : (n \otimes s),$

Effective shear force $\widetilde{q}_n = -(\operatorname{Div} \boldsymbol{M}) \cdot \boldsymbol{n} - \partial_s M_{ns}$,

where n, s are the normal and tangential versors along the boundary $\partial\Omega$.

 $A: B = \sum_{i,j} A_{ij} B_{ij}$ is the tensor contraction and $a \otimes b = ab^{\top} \in \mathbb{R}^{2 \times 2}$ is the dyadic product between vectors.

Consider a partition of the boundary: $\partial \Omega = \Gamma_c \cup \Gamma_s \cup \Gamma_f$.

- lacksquare Γ_c is the clamped part, i.e. $w,\ \partial_{m{n}} w$ known;
- lacksquare Γ_s is the simply supported part, i.e. $w,\ M_{nn}$ known;
- lacksquare Γ_f is the free part, i.e. $M_{nn},\ q_n$ known;

- 1 The Kirchhoff plate as a port-Hamiltonian system
 - Classical formulation
 - Port-Hamiltonian formulation
- 2 Structure preserving discretization
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

Hamiltonian and energy variables

The total energy of the system is given by the sum of kinetic and deformation energy

$$H = \frac{1}{2} \int_{\Omega} \left\{ \rho \left(\partial_t w \right)^2 + \mathbb{D} \nabla^2 w : \nabla^2 w \right\} d\Omega$$

Consider the following choice for the energy variables

$$\alpha_1 := \rho \partial_t w$$
, Linear momentum

$$A_2 := \nabla^2 w$$
, Curvature

This leads to the following co-energy variables

$$e_1 := \frac{\delta H}{\delta \alpha_1} = \partial_t w = (\rho h)^{-1} \alpha_1$$
, Velocity

$$m{E}_2 := rac{\delta H}{\delta m{A}_2} = m{M} = \mathbb{D} m{A}_2, \quad ext{Bending moment}$$

Port Hamiltonian formulation

The system

$$\frac{\partial}{\partial t} \begin{pmatrix} \alpha_1 \\ \mathbf{A}_2 \end{pmatrix} = \underbrace{\begin{bmatrix} 0 & -\operatorname{div}\operatorname{Div} \\ \nabla^2 & 0 \end{bmatrix}}_{\mathcal{J}} \begin{pmatrix} e_1 \\ \mathbf{E}_2 \end{pmatrix}, \quad \begin{pmatrix} e_1 \\ \mathbf{E}_2 \end{pmatrix} = \underbrace{\begin{bmatrix} (\rho h)^{-1} & 0 \\ 0 & \mathbb{D} \end{bmatrix}}_{\mathcal{Q}} \begin{pmatrix} \alpha_1 \\ \mathbf{A}_2 \end{pmatrix}$$

with homogeneous boundary conditions

$$w|_{\Gamma_c}=\partial_{\boldsymbol{n}}w|_{\Gamma_c}=0,\quad w|_{\Gamma_s}=M_{nn}|_{\Gamma_s}=0,\quad q_n|_{\Gamma_f}=M_{nn}|_{\Gamma_f}=0$$

defines a Stokes-Dirac structure.

Notice that
$$D(\mathcal{J}) = H^2_{\Gamma_c \cup \Gamma_s}(\Omega) \times H^{\operatorname{div}\operatorname{Div}}_{\Gamma_f \cup \Gamma_s}(\Omega)$$
:

$$H^2_{\Gamma_c \cup \Gamma_s}(\Omega) := \left\{ w \in L^2(\Omega) | \; \nabla^2 w \in L^2(\Omega, \, \mathbb{R}^{2 \times 2}_{\mathsf{sym}}), \, w|_{\Gamma_c \cup \Gamma_s} = \partial_{\pmb{n}} w|_{\Gamma_c} = 0 \right\},$$

$$H^{\operatorname{div}\operatorname{Div}}_{\Gamma_f\cup\Gamma_s}(\Omega):=\left\{\boldsymbol{M}\in L^2(\Omega,\mathbb{R}^{2\times 2}_{\operatorname{sym}}))|\ \operatorname{div}\operatorname{Div}\boldsymbol{M}\in L^2(\Omega),\ M_{nn}|_{\Gamma_f\cup\Gamma_s}=\widetilde{q}_n|_{\Gamma_f}=0\right\}$$

Port-Hamiltonian formulation

Consider the bond space $\mathcal{B} = \mathcal{F} \times \mathcal{E}$,

$$\mathcal{F} = \mathcal{E} := L^2(\Omega) \times L^2(\Omega, \mathbb{R}^{2 \times 2}_{\mathsf{sym}}), \qquad (\partial_t \alpha_1, \ \partial_t A_2) = \boldsymbol{f} \in \mathcal{F}, \quad (e_1, \ \boldsymbol{E}_2) = \boldsymbol{e} \in \mathcal{E}$$

It is necessary to show that the set

$$\mathcal{D}_{\mathcal{J}} := \{(oldsymbol{f}, oldsymbol{e}) \in \mathsf{Graph}(\mathcal{J}) | \ oldsymbol{e} \in D(\mathcal{J})\} \subset \mathcal{B}$$

equals its orthogonal complement

$$\mathcal{D}_{\mathcal{J}}^{\perp} = \{ b \in \mathcal{B} | \langle \boldsymbol{b}, \boldsymbol{b}' \rangle_{+} = 0, \ \forall \ \boldsymbol{b}' \in \mathcal{D}_{\mathcal{J}} \}$$

with respect to the canonical symmetrical pairing

$$\langle \boldsymbol{b}^1, \boldsymbol{b}^2 \rangle_+ = \langle \boldsymbol{f}^1, \boldsymbol{e}^2 \rangle_{L^2} + \langle \boldsymbol{e}^1, \boldsymbol{f}^2 \rangle_{L^2}, \quad \boldsymbol{b}^i = (\boldsymbol{f}^i, \boldsymbol{e}^i) \in \mathcal{B}, \quad i = 1, 2$$

Port-Hamiltonian formulation

The proof is readily obtained considering that the following holds

$$(\operatorname{div}\operatorname{Div})^* = \nabla^2$$

This means that the operator $\mathcal J$ is formally skew-adjoint. By application of the Stokes theorem it is obtained $\mathcal D_{\mathcal J}=\mathcal D_{\mathcal J}^\perp.$

Inhomogeneous boundary conditions can be considered as well, but boundary variables have to be included in $\mathcal{D}_{\mathcal{J}}$.

It is worth noticing that the boundary variables are defined by the power balance

$$\dot{H} = \int_{\partial \Omega} \left\{ \partial_t w \, \widetilde{\mathbf{q}}_n + \partial_n (\partial_t w) \, \mathbf{M}_{nn} \right\} \, \mathrm{d}s.$$

- 1 The Kirchhoff plate as a port-Hamiltonian system
- 2 Structure preserving discretization
 - The partitioned finite element method
 - Application to the Kirchhoff plate
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

How to discretize pH systems?

Infinite dimensional pHs

PDE:

$$\partial_t x(z,t) = \mathcal{J}\delta_x H + B\mathbf{u}(z,t),$$

 $\mathbf{y}(z,t) = B^*\delta_x H.$

Boundary conditions:

$$u_{\partial} = \mathcal{B} \ \delta_x H, \quad y_{\partial} = \mathcal{C} \ \delta_x H$$

Power balance:

$$\dot{H} = u_{\partial}^T y_{\partial} + \int_{\Omega} u(z,t) y(z,t) d\Omega$$

Finite dimensional pHs

ODE:

$$\dot{x} = J\partial_x H + B_d u_d + B_\partial u_\partial,$$

$$y_d = B_d^T \partial_x H,$$

$$y_\partial = B_\partial^T \partial_x H$$

Power balance:

$$\dot{H} = u_{\partial}^T y_{\partial} + u_{d}^T y_{d}$$

Available methods

- Spectral methods (Moulla 2012);
- Finite differences (Trenchant 2018);
- Finite elements based (Golo 2004, Kotyczka 2018, Cardoso-Riberio 2019);

9 / 23

The partitioned finite element method

General form of a linear pH system in co-energy variables

$$\mathcal{M}\frac{\partial e}{\partial t} = \mathcal{J}e, \qquad \mathcal{M} = \mathcal{Q}^{-1}$$

General procedure for PFEM

1 Put the system into weak form:

$$\left(v, \mathcal{M} \frac{\partial e}{\partial t}\right)_{\Omega} = \left(v, \mathcal{J} e\right)_{\Omega}.$$

2 Apply integration by part on a partition of \mathcal{J} :

$$(v, \mathcal{J}e)_{\Omega} = j(v, e)_{\Omega} + b(v, u_{\partial})_{\partial\Omega},$$

so that $j(v,e)_{\Omega}$ is a skew-symmetric bilinear form.

3 Discretization by Galerkin method (same basis function for test and co-energy variables)

- 1 The Kirchhoff plate as a port-Hamiltonian system
- 2 Structure preserving discretization
 - The partitioned finite element method
 - Application to the Kirchhoff plate
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

10 / 23

Consider the Kirchhoff plate operators

$$\mathcal{M} = \mathsf{Diag}(
ho, \; \mathbb{D}^{-1}), \quad \mathcal{J} = egin{pmatrix} 0 & -\operatorname{div}\operatorname{Div} \
abla^2 & 0 \end{pmatrix}$$

Consider the Kirchhoff plate operators

$$\mathcal{M} = \mathsf{Diag}(
ho, \; \mathbb{D}^{-1}), \quad \mathcal{J} = egin{pmatrix} 0 & -\operatorname{div}\operatorname{Div} \
abla^2 & 0 \end{pmatrix}$$

Either the first line of the operator \mathcal{J} is integrated by parts

$$\begin{split} (v, \mathcal{J}e)_{\Omega} &= \int_{\Omega} \left\{ -v_1 \mathrm{div} \, \mathrm{Div} \boldsymbol{E}_2 + \boldsymbol{V}_2 : \nabla^2 e_1 \right\} \, \mathrm{d}\Omega \\ &= \underbrace{\int_{\Omega} \left\{ -\nabla^2 v_1 : \boldsymbol{E}_2 + \boldsymbol{V}_2 : \nabla^2 e_1 \right\} \, \mathrm{d}\Omega}_{j_{\mathsf{Hess}}(\boldsymbol{v}, \boldsymbol{e})} + \underbrace{\int_{\partial\Omega} \left\{ v_1 \boldsymbol{q}_n + \partial_n v_1 \boldsymbol{M}_{nn} \right\} \, \mathrm{d}s}_{b_N(\boldsymbol{v}, \boldsymbol{u}_{\partial})_{\partial\Omega}} \end{split}$$

Consider the Kirchhoff plate operators

$$\mathcal{M} = \mathsf{Diag}(
ho, \; \mathbb{D}^{-1}), \quad \mathcal{J} = egin{pmatrix} 0 & -\operatorname{div}\operatorname{Div} \
abla^2 & 0 \end{pmatrix}$$

Either the second line of the operator \mathcal{J} is integrated by parts

$$(v, \mathcal{J}e)_{\Omega} = \int_{\Omega} \left\{ -v_1 \operatorname{div} \operatorname{Div} \mathbf{E}_2 + \mathbf{V}_2 : \nabla^2 e_1 \right\} d\Omega$$

$$= \underbrace{\int_{\Omega} \left\{ -v_1 \operatorname{div} \operatorname{Div} \mathbf{E}_2 + \operatorname{div} \operatorname{Div} \mathbf{V}_2 e_1 \right\} d\Omega}_{j_{\operatorname{div} \operatorname{Div}}(\mathbf{v}, \mathbf{e})} + \underbrace{\int_{\partial \Omega} \left\{ v_{q_n} \partial_t w + v_{m_n} \partial_n \partial_t w \right\} ds}_{b_D(\mathbf{v}, \mathbf{u}_{\partial})_{\partial \Omega}},$$

where $v_{q_n} = -(\text{Div } V_2) \cdot \boldsymbol{n} - \partial_{\boldsymbol{s}} v_{m_s}, \ v_{m_s} = V_2 : (\boldsymbol{n} \otimes \boldsymbol{s}), \ v_{m_n} = V_2 : (\boldsymbol{n} \otimes \boldsymbol{n})$

11/23

Consider the Kirchhoff plate operators

$$\mathcal{M} = \mathsf{Diag}(
ho, \; \mathbb{D}^{-1}), \quad \mathcal{J} = egin{pmatrix} 0 & -\operatorname{div}\operatorname{Div} \
abla^2 & 0 \end{pmatrix}$$

The selection depends on the control variables. For Neumann control the first line is integrated by parts. For Dirichlet control the second.

Finite element choice

Selecting as control variables the forces and torques (Neumann boundary conditions), the following weak form is obtained:

$$m(\boldsymbol{v}, \partial_t \boldsymbol{e}) = j_{\mathsf{Hess}}(\boldsymbol{v}, \boldsymbol{e}) + b_N(\boldsymbol{v}, \boldsymbol{u}_{\partial})_{\partial\Omega}$$

For both e_1 , E_2 the H^2 conforming Bell elements are selected. For the boundary variables Lagrange polynomials of order two are selected. Dirichlet boundary conditions are enforced by Lagrange multipliers

$$\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{pmatrix} e \\ \lambda \end{pmatrix} = \begin{bmatrix} J & G \\ -G^T & 0 \end{bmatrix} \begin{pmatrix} e \\ \lambda \end{pmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} u,$$
$$y = \begin{bmatrix} B^T & 0 \end{bmatrix} \begin{pmatrix} e \\ \lambda \end{pmatrix},$$

- 3 Interconnection with rigid elements

12 / 23

Boundary interconnection of the Kirchhoff plate

The system is composed by a cantilever plate connected to a rigid rod. The interconnection is given by a compact operator.

$$\mathsf{dpH} \begin{cases} \frac{\partial x_1}{\partial t} = \mathcal{J} \frac{\delta H_1}{\delta x_1} \\ u_{\partial,1} = \mathcal{B} \frac{\delta H_1}{\delta x_1} \\ y_{\partial,1} = \mathcal{C} \frac{\delta H_1}{\delta x_1} \end{cases} \qquad \mathsf{pH} \begin{cases} \frac{dx_2}{dt} = J \frac{\partial H_2}{\partial x_2} + Bu_2 \\ y_2 = B^T \frac{\partial H_2}{\partial x_2} + Du_2 \end{cases},$$

where $x_1 \in \mathcal{X}$, $u_{\partial,1} \in \mathcal{U}$, $y_{\partial,1} \in \mathcal{Y} = \mathcal{U}'$ belong to some Hilbert spaces (the prime denotes the topological dual of a space) and $x_2 \in \mathbb{R}^n$, $u, y \in \mathbb{R}^m$. The duality pairings for the boundary ports are denoted by

$$\langle u_{\partial,1}, y_{\partial,1} \rangle_{\mathscr{U} \times \mathscr{Y}}, \qquad \langle u_2, y_2 \rangle_{\mathbb{R}^m}.$$

For the interconnection, consider the compact operator $\mathcal{W}: \mathscr{Y} \to \mathbb{R}^m$ and the following power preserving interconnection

$$u_2 = -\mathcal{W} y_{\partial,1}, \qquad u_{\partial,1} = \mathcal{W}^* y_2,$$

Andrea Brugnoli (ISAE)

Boundary interconnection of the Kirchhoff plate

$$\begin{aligned} & \text{Plate } (\Omega = [0, L_x] \times [0, L_y]) & \text{Rigid rod} \\ \begin{bmatrix} \rho h & 0 \\ 0 & \mathbb{D}^{-1} \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} \partial_t w \\ \boldsymbol{M} \end{bmatrix} & = \begin{bmatrix} 0 & -\operatorname{div}\operatorname{Div} \\ \nabla^2 & 0 \end{bmatrix} \begin{bmatrix} \partial_t w \\ \boldsymbol{M} \end{bmatrix} & \begin{bmatrix} M & 0 \\ 0 & J_G \end{bmatrix} \frac{d}{dt} \begin{pmatrix} v_G \\ \omega_G \end{pmatrix} = \begin{pmatrix} F_z \\ T_x \end{pmatrix} = \boldsymbol{u}_{\mathrm{rod}}, \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & \\ & &$$

Space \mathscr{Y} is the space of square-integrable functions with support on $\Gamma_{\text{int}} = \{(x,y) | x = L_x, 0 \le y \le L_y\}$. The compact interconnection operator then reads

$$\mathcal{W}y_{\partial,\mathsf{pl}} = \begin{pmatrix} \int_{\Gamma_{\mathsf{int}}} y_{\partial,\mathsf{pl}} \, \mathrm{d}s \\ \int_{\Gamma_{\mathsf{int}}} (y - L_y/2) \, y_{\partial,\mathsf{pl}} \, \mathrm{d}s \end{pmatrix}.$$

The adjoint operator is then obtained considering that $u_{\text{rod}} = \mathcal{W}y_{\partial,\text{pl}}$ and that the inner product of \mathbb{R}^m is easily converted to an inner product on the space $L^2(\Gamma_{\text{int}})$

$$\begin{split} \left\langle \mathcal{W} y_{\partial, \mathrm{pl}}, \; \boldsymbol{y}_{\mathrm{rod}} \right\rangle_{\mathbb{R}^m} &= \left\langle y_{\partial, \mathrm{pl}}, \, \mathcal{W}^* \boldsymbol{y}_{\mathrm{rod}} \right\rangle_{L^2(\Gamma_{\mathrm{int}})}, \\ \mathcal{W}^* y_{\mathrm{rod}} &= v_G + \omega_G \left(y - L_y / 2 \right). \end{split}$$

Andrea Brugnoli (ISAE)

$$p = \begin{cases} \text{Distributed load } (t_{\mathsf{end}} = 10 [\mathrm{ms}]) \\ 10^5 \left[y + 10 \left(y - L_y / 2 \right)^2 \right] [Pa], & \forall \, t < 0.2 \, t_{\mathsf{end}}, \\ 0, & \forall \, t \geq 0.2 \, t_{\mathsf{end}}, \end{cases}$$

- 1 The Kirchhoff plate as a port-Hamiltonian system
- 2 Structure preserving discretization
- 3 Interconnection with rigid elements
- 4 Stabilization by boundary injection

15 / 23

Boundary stabilization of the Kirchhoff plate

Consider the problem

$$\begin{bmatrix} \rho h & 0 \\ 0 & \mathbb{D}^{-1} \end{bmatrix} \frac{\partial}{\partial t} \begin{bmatrix} \partial_t w \\ \mathbf{M} \end{bmatrix} = \begin{bmatrix} 0 & -\operatorname{div}\operatorname{Div} \\ \nabla^2 & 0 \end{bmatrix} \begin{bmatrix} \partial_t w \\ \mathbf{M} \end{bmatrix} \quad (x, y) \in \Omega = [0, 1] \times [0, 1]$$

subjected to the following boundary conditions

$$\begin{aligned}
\partial_t w | \Gamma_D &= 0, \\
\partial_x \partial_t w | \Gamma_D &= 0,
\end{aligned} \qquad \Gamma_D = \{x = 0\} \\
\mathbf{M} : (n \otimes n) | \Gamma_N &= u_M, \\
\mathbf{DM} | \Gamma_N &:= \widetilde{q} | \Gamma_N &= u_F,
\end{aligned} \qquad \Gamma_N = \{x = 0, x = 1, y = 1\}$$

with initial conditions (compatible with the constraints):

$$w_t(x, y, 0) = x^2;$$
 $\Sigma(x, y, 0) = 0.$

Boundary stabilization of the Kirchhoff plate

Obtain a finite-dimensional uncontrolled system

$$\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{pmatrix} \mathbf{e} \\ \mathbf{\lambda} \end{pmatrix} = \begin{bmatrix} J & G \\ -G^T & 0 \end{bmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{\lambda} \end{pmatrix} + \begin{bmatrix} B \\ 0 \end{bmatrix} \mathbf{u},$$
$$y = \begin{bmatrix} B^T & 0 \end{bmatrix} \begin{pmatrix} \mathbf{e} \\ \mathbf{\lambda} \end{pmatrix},$$

Apply the control law u = -Ky, K > 0

$$\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \frac{d}{dt} \begin{pmatrix} \mathbf{e} \\ \boldsymbol{\lambda} \end{pmatrix} = \begin{bmatrix} J - R & G \\ -G^T & 0 \end{bmatrix} \begin{pmatrix} \mathbf{e} \\ \boldsymbol{\lambda} \end{pmatrix},$$

with $R = BKB^T \succeq 0$.

The Hamiltonian $\dot{H} = -e^T Re \le 0$ is a non increasing function and by La Salle principle the equilibrium point e = 0 is asymptotically stable.

Stabilization by boundary injection

$$K = 100$$

Stabilization by boundary injection

Conclusion

The following has been presented:

- the Kirchhoff plate model as a port Hamiltonian system;
- a structure preserving discretization method capable of dealing with generic interconnections;
- interconnection with rigid elements (multibody framework);
- a simple control application by damping injection;

Still no rigorous proof of convergence for the finite elements. Existing solutions (only for static problems):

- The Hellan-Herrmann-Johnson method¹, but difficulties when dealing with inhomogeneous bcs;
- New discretization method capable that handles inhomogeneous bcs²

¹H. Blum and R. Rannacher. "On mixed finite element methods in plate bending analysis". In: *Computational Mechanics* 6.3 (1990), pp. 221–236. ISSN: 1432-0924. DOI: 10.1007/BF00350239.

18 / 23

²Katharina. Rafetseder and Walter. Zulehner. "A Decomposition Result for Kirchhoff Plate Bending Problems and a New Discretization Approach". In: *SIAM Journal on Numerical Analysis* 56.3 (2018), pp. 1961–1986. DOI: 10.1137/17M1118427.

Thanks for your attention Questions?

References I

- C. Beattie et al. "Linear port-Hamiltonian descriptor systems". In: *Mathematics of Control, Signals, and Systems* 30.4 (2018), p. 17. URL: https://link.springer.com/article/10.1007%2Fs00498-018-0223-3.
- K. Bell. "A refined triangular plate bending finite element". In: International Journal for Numerical Methods in Engineering 1.1 (1969), pp. 101–122. DOI: 10.1002/nme.1620010108.
- H. Blum and R. Rannacher. "On mixed finite element methods in plate bending analysis". In: *Computational Mechanics* 6.3 (1990), pp. 221–236. ISSN: 1432-0924. DOI: 10.1007/BF00350239.
- A. Brugnoli et al. "Port-Hamiltonian formulation and symplectic discretization of plate models. Part II: Kirchhoff model for thin plates". In: Applied Mathematical Modelling 75 (2019), pp. 961—981. ISSN: 0307-904X. DOI: https://doi.org/10.1016/j.apm.2019.04.036.

References II

- F. L. Cardoso-Ribeiro, D. Matignon, and L. Lefèvre. "A structure-preserving Partitioned Finite Element Method for the 2D wave equation". In: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control. Valparaíso, CL, 2018, pp. 1–6. URL: https://doi.org/10.1016/j.ifacol.2018.06.033.
- V. Duindam et al. *Modeling and Control of Complex Physical Systems*. Springer Verlag, 2009. URL: https://www.springer.com/us/book/9783642031953.
- G. Golo et al. "Hamiltonian Discretization of Boundary Control Systems". In: Automatica 40.5 (May 2004), pp. 757–771. DOI: http://dx.doi.org/10.1016/j.automatica.2003.12.017.
- B. Jacob and H. Zwart. *Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces*. Operator Theory: Advances and Applications 223. Germany: Springer Verlag, 2012. DOI: 10.1007/978-3-0348-0399-1. URL: https://link.springer.com/book/10.1007/978-3-0348-0399-1.

References III

- P. Kotyczka, B. Maschke, and L. Lefèvre. "Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems". In: *Journal of Computational Physics* 361 (2018), pp. 442 –476. ISSN: 0021-9991. DOI: https://doi.org/10.1016/j.jcp.2018.02.006.
- A. Macchelli, C. Melchiorri, and L. Bassi. "Port-based Modelling and Control of the Mindlin Plate". In: *Proceedings of the 44th IEEE Conference on Decision and Control*. 2005, pp. 5989–5994. DOI: 10.1109/CDC.2005.1583120.
- R. Moulla, L. Lefevre, and B. Maschke. "Pseudo-spectral methods for the spatial symplectic reduction of open systems of conservation laws". In: *Journal of Computational Physics* 231.4 (2012), pp. 1272–1292. URL: https://doi.org/10.1016/j.jcp.2011.10.008.
- Dirk Pauly and Walter Zulehner. "On Closed and Exact Grad-grad-and div-Div-Complexes, Corresponding Compact Embeddings for Tensor Rotations, and a Related Decomposition Result for Biharmonic Problems in 3D". In: arXiv preprint arXiv:1609.05873 (2016).

References IV

Katharina. Rafetseder and Walter. Zulehner. "A Decomposition Result for Kirchhoff Plate Bending Problems and a New Discretization Approach". In: *SIAM Journal on Numerical Analysis* 56.3 (2018), pp. 1961–1986. DOI: 10.1137/17M1118427.

F. Rathgeber et al. "Firedrake: automating the finite element method by composing abstractions". In: ACM Transactions on Mathematical Software (TOMS) 43.3 (2017), p. 24.

Institut Supérieur de l'Aéronautique et de l'Espace 10 avenue Édouard Belin - BP 54032 31055 Toulouse Cedex 4 - France Phone: +33 5 61 33 80 80 www.isae-supaero.fr

