Introduction to Distributed Systems

February 14, 2016

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

Distributed System

Definition A distributed system consists of a **collection of** distinct **processes** which are spatially separated and **which communicate** with one another by exchanging messages.

"A system is distributed if the message transmission delay is not negligible compared to the time between events in a single process." (L. Lamport, "Time, Clocks and the Order of Events in a Distributed System", CACM)

Message based communication

Message a sequence of bits

- Whose format and meaning are specified by a communication a protocol
- That is transported from its source to its destination by a communications network

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

Examples?

Other Distributed Systems/Applications.

- Web and Internet
- Google search service
- Email service
- Peer-to-peer applications, such as Bittorrent
- FEUP's file system
- Telecommunication networks
- ATM networks (SIBS)
- Home automation
- Factory automation
- ► Fly-by-wire, drive-by-wire.

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

Potencial Advantages

- Sharing of resources
- Access to remote resources
- Performance
 - Can use multiple computers to solve a problem
- Scalability:
 - ► Load (no. of users/request rate)
 - Geographical;
 - Administrative
- Fault tolerance
 - Reliability
 - Availability

Scalability: Challenges

- Centralization
 - processing;
 - data;
 - algorithms.
- Synchronous/blocking comunication
- Security and (lack of) trust

Scalability: Some Techniques (1/2)

Distribuition

processing:

data (partitioning):

Scalability: Some Techniques (2/2)

- Distributed (decentralized) algorithms:
 - System global state is unknown (relativity)
 - Can use only information locally available
 - Correctness must be ensured even in the presence of faults
 - No single physical clock
- Asynchronous/non-blocking communication
- Replication and caches:
 - + reduces communication latency;
 - + allow distributed processing;
 - raises consistency problems

Fault Tolerance: Challenges and Techniques

Challenges

- Distributed systems may exhibit partial-failure modes
- Fault detection is not always possible
 - How do you distinguish a slow computer from a crashed computer?
 - How do you know if a server has executed an action before crashing?
- Distributed consensus in the presence of faults is not always possible (in theory, and ... in practice)
 - Actually, this is a corollary of the previous on ailure detection

Tecnhiques

- Transactions
- Replication

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

Design Goals

Distribution transparency

"Hide" from users (and sometimes from programmers) the distributed nature of the application

Openness understood as the possibility

- 1. of implementing the application/system in different ways
 - this is a common goal of SW engineering
- 2. of expanding the application/system functionality
 - this is particularly relevant for service oriented architectures

Distribution Transparency Facets

location access without knowledge of the resource location; concurrency access as if the resources were not shared; fault access to resources even in the presence of faults; replication access as if there was a single instance of the resource

- There are at least two levels of transparency:
 - with respect to users;
 - with respect to developers/programmers.

Degree of Distribution Transparency

- Too much of a good thing can be bad
- Sometimes you do not want to hide the location of a resource:
 - ► For example, consider a distributed printing application
- Sometimes you cannot hide faults in the network or in computers (both in theory and in practice):
 - It is not always possible to distinguish a slow computer from a crashed computer
 - It is not always possible to learn if an operation was executed before the crash of a server
 - Even after recovery

Openess and Middleware

Interfaces must be public and well defined

Ensures that the code is portable

Protocols must be standard

Ensures interoperability

Middleware

- Allows an application to be independent of:
 - the platform (HW + OS)
 - the programming language (not always)

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

Challenges

- Partial failures
 - Some components may fail, while others continue to operate correctly
- IPC latency
 - ▶ IPC across the network has a larger and unpredictable latency, which usually cannot be bounded
- No global time
- No memory access
 - Pointers are meaningful only in the context of the respective address space
- Heterogeneity
 - Has several facets
- Lack of security and trust

Distributed Computing Fallacies (Sun People)

- The network is reliable.
- 2. Latency is zero.
- 3. Bandwidth is infinite.
- 4. The network is secure.
- 5. The topology does not change.
- 6. There is one administrator.
- 7. Transport cost (in \$) is zero.
- 8. The network is homogeneous.

The word **network** should not be interpreted in its narrower meaning.

What is a distributed system?

Examples

Why distribution?

Design Goals

Challenges

- Distributed Systems, 2nd Ed., Chapter 1
- Michael Schroeder (et. al.) State-of-the-Art Distributed System: Computing with BOB
 - Nice "vision" from leading distributed system's researchers of DEC's SRC around 1990
 - Read only Sections 1 and 2
- Jim Waldo, et. al, A Note on Distributed Computing
 - Somewhat language-oriented, by people who designed Java RMI
- Arnon Rotem-Gal-Oz, Fallacies of Distributed Computing Explained
 - ► Too much hype, almost ... "evangelist" style
- Stephen Asbury, The Eight Fallacies of Distributed Computing
 - An entertaining talk.