Problem Set #10

November 19, 2019

1. Let DOUBLE-SAT = { $\langle \emptyset \ \rangle | \ \emptyset$ has at least two satisfying assignments} Show DOUBLE-SAT is NP-complete

Proof:

Show that DOUBLE-SAT is NP:

On input \emptyset a nondeterministic polynomial machine can guess two different assignments, and accept if \emptyset returns true for both.

Show that DOUBLE-SAT is NP-complete by mapping SAT \leq_p DOUBLE-SAT.

TM M = "On input $\langle \emptyset \rangle$ where $\langle \emptyset \rangle$ is the encoding of a boolean formula.

- 1. Create a new variable x.
- 2. Let $\emptyset_2 = \emptyset \wedge (\mathbf{x} \vee \bar{x})$
- 3. Output \emptyset_2

Validation: If $\emptyset \in SAT$, then \emptyset has a least 1 satisfying assignment. Due to this we know that \emptyset_2 has two satisfying assignments:

The assignment that satisfied $\emptyset \land x=True$

The assignment that satisfied $\emptyset \land x=False$

Therefore If $\emptyset \in SAT$, then $\emptyset_2 \in DOUBLE\text{-SAT}$.

Otherwise $\emptyset \notin SAT$, then \emptyset has no satisfying assignment, therefore $\emptyset \land (x \lor \bar{x})$ will always evaluate to false, because false and (anything) is always false.

Therefore If $\emptyset \notin SAT$, then $\emptyset_2 \notin DOUBLE$ -SAT.

Thus, SAT \leq_p DOUBLE-SAT and DOUBLE-SAT is NP-complete.