

Automatic Generation of Simulated Data in Dymola for Training of the Deep Learning Model Used in Power System

Shunyao Xu

ECSE-4170 Modeling and Simulation for Cyber-Physical Systems Spring 2021

Overview

- Build the Model in Dymola
 - The Signal Model and The Power System Model
 - Construct the Replaceable Model
 - Propagate Parameters
 - Simulate the Model in Dymola
- Data Generation and Model Training in Python
 - Simulate the Model and Extract the Data using Dymola Python Interfaces
 - Training of the ML Model Using the Generated Data
- Automatic Data Generation
- Compare with Previous Models
- Conclusion

Build the Model in Dymola

Signal Model

- Generate synthetic data with oscillation
- Amplitude, start time, and end time for the oscillation event is adjustable

Power System Model

Construct the Replaceable Model

Construct the Replaceable Model

Propagate Parameters

Simulate the Model in Dymola

Data Generation and Model Training in Python

Simulate the Model Using Dymola Python Interfaces

• Insert the path of the "dymola.egg"

```
dymola = DymolaInterface() # Instantiate the Dymola interface and start Dymola
dymola.openModel("E:/Spring2021/MnS4CPS/Final Project/2018 AmericanModelicaConf PowerGrid plus PowerSystems/Modelica Models/OpenConference of the Conference of the Conference
dymola.cd("E:/Spring2021/MnS4CPS/Final Project/") # change the working directory
dymola.simulateExtendedModel("OpenCPS D53B.MLTraining.Configurations.SMIB normal noise signalB test",
                                                                                                 startTime = 0,
                                                                                                 stopTime = 300,
                                                                                                 outputInterval = 0.001.
                                                                                                 method = "Radau",
                                                                                                 tolerance = 0.0001,
                                                                                                resultFile = 'MLtraining',
                                                                                               initialNames = ["signal.sine.amplitude", "signal.greaterThreshold.threshold", "signal.greaterThreshold1.threshold.
                                                                                               initialValues = [osci amp, osci start, osci end],
                                                                                                 finalNames = ["signal.sine.amplitude", "signal.greaterThreshold.threshold", "signal.greaterThreshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshold1.threshol
num of rows = dymola.readTrajectorySize("MLtraining.mat")
data = dymola.readTrajectory("MLtraining.mat", ["Time", "power System.pMU.freq", "power System.BUS3.V"], num of rows)
time = data[0]
PMU Freq = data[1]
BUS3 V = data[2]
```

- Instantiating the Dymola interface
- simulateExtendedMode function
- readTrajectory function

Simulate the Model Using Dymola Python Interfaces

Data Generation Using Dymola Python Interfaces

- Reshape the generated dataset into small groups for ML training
- Label each group with 1 and 0

Training of the ML Model

Prediction Result of the Model Trained by Dymola Data

Automatic Data Generation

Workflow of the Automatic Data Generation Program

- User Interface
 - Enter the number
- Data Generation
 - Simulation
 - Data Extraction
- Data Processing
 - Reshape
 - Labeling
 - Check the number

Automatic Data Generation


```
# Set the Parameters of the Dymola model
  osci amp = 4 # Oscillation Amplitude
 osci start = 120 # Oscillation Start Time
  osci end = 200 # Oscillation End Time
  simulation_end = 300 # Simulation End Time
6
  # Set the amount of data that need to be generated
  osci data num = 1000
                                                    that needs to be generated
  nois data num = 1000 # Number of noisy data that needs to be generated
                                   Enter the number of noisy data that
                                   needs to be generated, e.g. 1000.
```

Enter the number of oscillation data that needs to be generated, e.g. 1000.

Prediction Result of the Model Trained by Dymola Data

Num of Oscillation Data = 4000

Num of Noisy Data = 4000

Total Inferences = 756

Number of Error = 2

Accuracy = 0.99735

Experiments by Varying the Number of Data

Num of Oscillation Data	Num of Noisy Data	Num of Error	Accuracy
1000	1000	16	0.97884
2000	2000	14	0.98148
3000	3000	7	0.99074
4000	4000	2	0.99735

Compare with Previous Models

Prediction Result of the Model Trained by Python Data

Prediction Result of the Model Trained by Analog Discovery Board Data

Conclusion

- The model is a very good approximation of the power system
- The model is constructed with replaceable structure
- Successful implementation of Dymola Python API to generate ML training data from the simulation
- Data Generation Process is automatic
- Data Generated by Dymola model is close-to-reality
 - Better than Python Data and Analog Discovery Data
- Accuracy of the ML model is increased by generating more data