This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

IN THE CLAIMS:

1	1. (Original) A fluorescent lamp comprising:
2	a fluorescent tube that is composed of a glass tube having a phosphor layer
3	formed on an inner surface thereof and mercury and a rare gas enclosed therein; and
4	electrodes that cause an electrical discharge within the fluorescent tube,
5	wherein the glass tube is made of a glass material that contains an emissive
6	element, the emissive element emitting, when exposed to first ultraviolet light that is emitted due
7	to mercury excitation, second ultraviolet light that has a longer wavelength than the first
8	ultraviolet light.
1	2. (Original) The fluorescent lamp of Claim 1,
2	wherein the emissive element emits visible light together with the second
3	ultraviolet light, when exposed to the first ultraviolet light.
1	3. (Currently Amended) The fluorescent lamp of Claim 1,
2	wherein an entire luminous flux emitted from the fluorescent lamp includes:
3	a first luminous flux that is formed by visible light emitted from the phosphor
4	layer when exposed to the first ultraviolet light;
5	a second luminous flux that is formed by visible light emitted from the emissive
6	element when exposed to the first ultraviolet light; and
7	a third luminous flux that is formed by visible light emitted from the phosphor
8	layer when exposed to the second ultraviolet light,
9	wherein the second luminous flux and the third luminous flux together constitute
10	at least 2% of the entire luminous flux emitted from the fluorescent lamp.

357936.1

I	4.	(Original) The fluorescent lamp of Claim 1,
2		wherein a thickness of the glass tube is 0.62mm or less.
1	5.	(Original) The fluorescent lamp of Claim 1,
2		wherein a thickness of the phosphor layer is below 20 μ m.
1	6.	(Original) A fluorescent lamp comprising:
2		a fluorescent tube that is composed of a glass tube having a phosphor layer
3	formed on an	inner surface thereof and mercury and a rare gas enclosed therein; and
4		electrodes that cause an electrical discharge within the fluorescent tube,
5		wherein the glass tube is made of a glass material containing an oxide of at least
6	one element	selected from the group consisting of titanium, zirconium, vanadium, niobium,
7	tantalum, mo	lybdenum, tungsten, thallium, stannum, plumbum, bismuth, lanthanum, cerium,
8	praseodymiur	n, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium,
9	erbium, thuliu	m, ytterbium, and lutetium.
1	7.	(Original) The fluorescent lamp of Claim 6, wherein
2		the glass material contains 0.01wt% to 10wt% of an oxide of at least one element
3	selected from	the group consisting of titanium, zirconium, vanadium, niobium, tantalum,
4	molybdenum,	tungsten, lanthanum, cerium, praseodymium, neodymium, samarium, europium,
5	gadolinium, to	erbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.
1	8.	(Original) The fluorescent lamp of Claim 6, wherein
2		the glass material contains 0.01wt% to 0.5wt% of an oxide of at least one element
3	selected from	the group consisting of thallium, stannum, plumbum, and bismuth.

3

1	9-10.	(Cancelled)	
1	11.	(Previously presented) The fluorescent lamp of Claim 12,	
2		wherein an entire luminous flux emitted from the fluorescent lamp includes:	
3		a first luminous flux that is formed by visible light emitted from the phosphor	
4	layer when exposed to the first ultraviolet light;		
5		a second luminous flux that is formed by visible light emitted from the emissive	
6	element wher	n exposed to the first ultraviolet light; and	
7		a third luminous flux that is formed by visible light emitted from the phosphor	
8	layer when ex	xposed to the second ultraviolet light,	
9		wherein the second luminous flux and the third luminous flux together constitute	
10	at least 2% of	f the entire luminous flux emitted from the fluorescent lamp.	
1	12.	(Currently Amended) A fluorescent lamp comprising:	
2		a fluorescent tube having a protective layer formed on an inner surface thereof, a	
3	phosphor laye	er formed on the protective layer, and mercury and a rare gas enclosed therein; and	
4		electrodes that cause an electrical discharge within the fluorescent tube,	
5		wherein the protective layer contains an oxide of at least one emissive element	
6	selected from	n the group consisting of titanium, zirconium, vanadium, niobium, tantalum,	
7	molybdenum	, tungsten, thallium, stannum, plumbum, bismuth, praseodymium, neodymium,	
8	samarium, ga	dolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.	

1	13.	(Currently Amended) The fluorescent lamp of Claim 12, wherein
2		the protective layer contains 0.01wt% to 10wt% of an oxide of at least one
3	element select	ed from the group consisting of titanium, zirconium, vanadium, niobium, tantalum,
4	molybdenum,	tungsten, praseodymium, neodymium, samarium, gadolinium, dysprosium,
5 .	holmium, erbi	um, thulium, ytterbium, and lutetium.
1	14.	(Cancelled)
1	15.	(Original) A high intensity discharge lamp comprising:
2		an arc tube in which an emissive material is enclosed, the emissive material
3	emitting visib	le light and ultraviolet light when excited by an electric discharge; and
4		an envelop whose one surface surrounding the arc tube is covered with a
5	phosphor laye	r,
6		wherein the envelop is made of a glass material that contains an emissive element,
7	the emissive	element emitting, when exposed to first ultraviolet light that is emitted due to
8	excitation of	the emissive material by the electric discharge, second ultraviolet light that has a
9	longer wavele	ngth than the first ultraviolet light.
1	16.	(Original) The high intensity discharge lamp of Claim 15,
2		wherein the emissive element emits visible light together with the second
3	ultraviolet ligh	nt when exposed to the first ultraviolet light.

1	(Ongmai) The high intensity discharge lamp of Claim 13,
2	wherein an entire luminous flux emitted from the high intensity discharge lamp
3	includes:
4	a first luminous flux that is formed by the visible light emitted due to the
5	excitation of the emissive material by the electric discharge;
6	a second luminous flux that is formed by visible light emitted from the emissive
7 .	element when exposed. to the first ultraviolet light; and
8	a third luminous flux that is formed by visible light emitted from the phosphor
9	layer when exposed to the second ultraviolet light.
1	18. (Original) A high intensity discharge lamp comprising:
2	an arc tube in which an emissive material is enclosed, the emissive material
3	emitting visible light and ultraviolet light when excited by an electric discharge; and
4	an envelop whose one surface surrounding the arc tube is covered with a
5	phosphor layer,
6	wherein the envelop is made of a glass material that contains an oxide of at least
7	one element selected from the group consisting of titanium, zirconium, vanadium, niobium,
8	tantalum, molybdenum, tungsten, thallium, stannum, plumbum, bismuth, lanthanum, cerium,
9	praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium,
10	erbium, thulium, ytterbium, and lutetium.

6

1	19. (Original) A high intensity discharge lamp comprising:
2	an arc tube in which an emissive material is enclosed, the emissive material
3	emitting visible light and ultraviolet light when excited by an electric discharge; and
4	an envelop that is provided so as to envelop the arc tube,
5	wherein the envelop is made of a glass material that contains an emissive element,
6	the emissive element emitting visible light, when exposed to ultraviolet light that is emitted due
7	to excitation of the emissive material by the electric discharge.
1	20. (Original) The high intensity discharge lamp of Claim 19,
2	wherein an entire luminous flux emitted from the high intensity discharge lamp
3	includes:
4	a first luminous flux that is formed by the visible light emitted due to the
5	excitation of the emissive material by the electric discharge; and
6	a second luminous flux that is formed by visible light emitted from the emissive
7	element when exposed to the ultraviolet light that is emitted due to the excitation of the emissive
8	material by the electric discharge.
1	21. (Original) A high intensity discharge lamp comprising:
2	an arc tube in which an emissive material is enclosed, the emissive material
3	emitting visible light and ultraviolet light when excited by an electric discharge; and
4	an envelop that is provided so as to envelop the arc tube,
5	wherein the envelop is made of a glass material that contains an oxide of at least
6	one element selected from the group consisting of titanium, zirconium, vanadium, niobium,
7	tantalum, molybdenum, tungsten, thallium, stannum, plumbum, bismuth, lanthanum, cerium,

357936.1

praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, 8 9 erbium, thulium, ytterbium, and lutetium. 22. (Cancelled) 1 (Previously presented) A fluorescent lamp comprising: 1 23. a fluorescent tube having a protective layer formed on an inner surface thereof, a 2 3 phosphor layer formed on the protective layer, and mercury and a rare gas enclosed therein; and electrodes that cause an electrical discharge within the fluorescent tube. 4 wherein the protective layer contains an oxide of at least one element selected 5 from the group consisting of titanium, zirconium, vanadium, niobium, tantalum, molybdenum, 6 tungsten, thallium, stannuin, plumbum, bismuth, praseodymium, neodymium, samarium, 7 8 gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, wherein the protective layer contains 0.0lwt% to 0.5wt% of an oxide of at least 9 one element selected from the group consisting thallium, stannum, plumbum, and bismuth. 10 24. (Previously presented) The fluorescent lamp of Claim 12, 1 wherein an entire luminous flux emitted from the fluorescent lamp includes: 2 a first luminous flux that is formed by visible light emitted from the phosphor 3 layer when exposed to ultraviolet light that is emitted due to mercury excitation; 4 5 a second luminous flux that is formed by visible light emitted from an emissive element contained in the protective layer when exposed to ultraviolet light that is emitted due to 6

8

7

mercury excitation; and

a third luminous flux that is formed by visible light emitted from the phosphor 8 layer when exposed to ultraviolet light that is emitted from the emissive element when exposed 9 to ultraviolet light that is emitted due to mercury excitation, and 10 wherein the second luminous flux and the third luminous flux together constitute 11 at least 2% of the entire luminous flux emitted from the fluorescent lamp. · 12 (Currently Amended) A fluorescent lamp comprising: 1 25. a fluorescent glass tube; 2 a phosphor layer formed on an inner surface of the glass tube; 3 mercury enclosed within the glass tube; 4 a gas enclosed within the glass tube having a characteristic of enabling a the 5 mercury excitation for emitting a first ultraviolet light when excited by an electrical discharge, 6 the first ultraviolet light exciting the phosphor layer to emit a first visible luminous flux for 7 8 transmission through the fluorescent glass tube; electrodes within the fluorescent glass tube for causing an the electrical discharge; 9 10 and an emissive element embedded within the fluorescent glass tube having a 11 characteristic of emitting a second visible luminous flux within the fluorescent glass tube when 12 activated by the first ultraviolet light, while permitting transmission of at least a portion of the 13 first visible luminous flux and the second visible luminous flux to an exterior of the fluorescent 14 glass tube. 15

9

357936.1

- 1 26. (Previously presented) The fluorescent lamp of Claim 25 wherein the emissive
- 2 element further has a characteristic of emitting a second ultraviolet light when activated by the
- 3 first ultraviolet light, the second ultraviolet light activates the phosphor light to emit a third
- 4 visible luminous flux to the exterior of the fluorescent glass tube.
- 1 27. (Previously presented) The fluorescent lamp of Claim 26 wherein the emissive
- 2 element is selected from an oxide of at least one element selected from the group consisting of
- 3 titanium, zirconium, vanadium, niobium, tantalum, molybdenum, tungsten, thallium, stannum,
- 4 plumbum, bismuth, lanthanum, cerium, praseodymium, neodymium, samarium, europium,
- 5 gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium.

10