

United International University

Dept. of Computer Science & Engineering (CSE)

Trimester: Fall 2022

CSE1326: Digital Logic Design Laboratory

Lab Report-

ID	0	1	1	2	2	1	4	9	4
Name	Mezk	oah U	ddin						
Section									
Group No									
Experiment No									
Experiment Name	e								
Arbitrary sequence counter									
Date of Performa	nce			2 0) 2 3	3			
Date of Submissi	on			2 0) 2 3	3			
Disclaimer: I thereby certify that this lab report is prepared by me only. I did not copy any part of this from anybody and did not let other copy any part of my report.									
Signature of the T	eaching	Assis	tant		Si	gnature	of the	Studen	t

Experiment-01

♣ Step-01:

- **❖** Instrument:
 - use IC's
 - use Logism Software
 - Use J-k flip flop buildup state table
 - Use k-map for equation
 - And finally use Logism diagram for create circuit Diagram
- **Design circuit to count the sequence:**

♣ Step-02:

• Format Table:

IN	IPUT	OUT	PUT
Q(t)	Q(t+1)	J	K
0	0	0	X
0	1	1	X
1	0	X	1
1	1	X	0

• State Table:

NO.	Pre	esent Sta	ite	Next State				Inj	put			
	Q ₂	\mathbf{Q}_1	Qo	N ₂	N ₁	N ₀	J ₂	K ₂	J ₁	K ₁	Jo	K ₀
						Q ₂ \	N ₂	Q_1	\N ₁	Q_0	\N₀	
00	0	0	0	0	1	0	0	X	1	X	0	X
01	0	0	1	1	1	0	1	Х	1	X	X	1
02	0	1	0	1	1	1	1	X	X	0	1	Х
03	0	1	1	0	0	1	0	X	X	1	X	0
04	1	0	0	0	0	0	Х	1	0	X	0	Х
05	1	0	1	0	1	1	Х	1	1	X	X	0
06	1	1	0	0	0	0	Х	1	X	1	0	Х
07	1	1	1	1	0	1	Х	0	X	1	X	0

♣ Step-03:

\triangleright Use k-map for J_2 :

A BC	B'C'	B'c	ВС	BC'
A'		1		1
Α	X	х	Х	х

Equation $J_2 = B'C + BC'$

➤ Use k-map for K₂:

A BC	B'C'	B'c	ВС	BC'
A'	X	Х	Х	Х
Α	1	1		1

Equation $K_2 = B' + C'$

\triangleright Use k-map for J_1 :

	ab .a. a1.			
A BC	B'C'	B'c	ВС	BC'
A'	1	1	X	X
Α		1	х	Х

Equation $J_1 = C + A'$

➤ Use k-map for K₁:

A BC	B'C'	B'c	ВС	BC'
Α'	X	X	1	
Α	X	Х	1	1

Equation $K_1 = C + A$

> Use k-map for J₀:

A BC	B'C'	B'c	ВС	BC'
A'		X	X	1
Α		Х	Х	

Equation $J_0 = A'B$

➤ Use k-map for K₀:

BC A	B'C'	B'c	ВС	BC'
A'	Х	1		X
Α	Х			Х

Equation $K_0 = A'B'$

♣ Step-04:

• Circuit Diagram:

<u>END</u>