C++ Vtable Example

Revised 10 September 1999

[990910 IBM -- Brian] Added more examples, split out the two kinds of adjustments in Table 1a, and added a summary of the component counts for the two approaches.

Table 1a: Example Code and Call Semantics

Declarations	Call	Callee	Call-site Adjustment	Thunk/Entry-point Adjustment
<pre>struct A { virtual void f (); virtual void g (); virtual void h (); int ia; }; A *pa;</pre>	pa->f()	A::f()	none	none
	pa->g()	A::g()	none	none
	pa->h()	A::h()	none	none
	pb->f()	B::f()	none	none
<pre>struct B: public virtual A { void f (); void h ();</pre>	pb->A::f()	A::f()	B => A	none
	pb->g()	A::g()	B => A	none
int ib;	pb->h()	B::h()	none	none
};	pa_in_b->f()	B::f()	none	A => B
B *pb; A *pa_in_b = pb;	pa_in_b->g()	A::g()	none	none
	pa_in_b->h()	B::h()	none	A => B
	pa_in_b->A::f()	A::f()	none	none
	pc->f()	A::f()	C => A	none
struct C: public virtual A {	pc->g()	C::g()	none	none
void g ();	pc->A::g()	A::g()	C => A	none

void h ();	<u> </u>		<u> </u>		
int ic;	pc->h()	C::h()	none	none	
};	pa_in_c->f()	A::f()	none	none	
C *pc;	pa_in_c->g()	C::g()	none	A => C	
A *pa_in_c = pc;	pa_in_c->h()	C::h()	none	A => C	
	pa_in_c->A::g()	A::g()	none	none	
	pd->f()	B::f()	none [D => B]	none	
	pd->g()	C::g()	D => C	none	
	pd->h()	D::h()	none	none	
	pa_in_d->f()	B::f()	none	A => B	
	pa_in_d->g()	C::g()	none	A => C	
struct D: public B, public C {	pa_in_d->h()	D::h()	none	A => D	
<pre>int id; void h();</pre>	pb_in_d->f()	B::f()	none	none	
};	pb_in_d->g()	C::g()	B => A	A => C	
D *pd;	pb_in_d->h()	D::h()	none	B => D	
	pc_in_d->f()	B::f()	C => A	A => B	
A *pa_in_d = pd; B *pb_in_d = pd;	pc_in_d->g()	C::g()	none	none	
C *pc_in_d = pd;	pc_in_d->h()	D::h()	none	C => D	
	pa_in_b_in_d->f()		,	,	
A *pa_in_b_in_d = pb_in_d; A *pa_in_c_in_d = pc_in_d;	pa_in_b_in_d->g()		as for pa_in_d		
A pa_m_c_m_u - pc_m_u/	pa_in_b_in_d->h()	same as			
	pa_in_c_in_d->f()	5 35 TOT PU			
	pa_in_c_in_d->g()				
	pa_in_c_in_d->h()				
	pd->A::f()	A::f()	=> A	none	
	pd->A::g()	A::g()	=> A	none	

	1	JI.	1	
	pd->A::h()	A::g()	=> A	none
	pe->f()	E::f()	none	none
	pe->g()	C::g()	E => C	none
	pe->h()	E::h()	none	none
	pe->x()	X::x()	none [E=>X]	none
struct X {	pa_in_e->f()	E::f()	none	A => E
int ix;	pa_in_e->g()	C::g()	none	A => C
<pre>virtual void x(); }; struct E : X, D { int ie; void f(); void h(); };</pre>	pa_in_e->h()	E::h()	none	A => E
	pb_in_e->f()	E::f()	none	B => E
	pb_in_e->g()	C::g()	B => A	A => C
	pb_in_e->h()	E::h()	none	B => E
	pc_in_e->f()	E::f()	C => A	A => E
	pc_in_e->g()	C::g()	none	none
	pc_in_e->h()	E::h()	none	C => E
	pd_in_e->f()	E::f()	none [D=>B]	B => E
	pd_in_e->g()	C::g()	D => C	none
	pd_in_e->h()	E::h()	none	D => E

Table 1b: Example Data Layout

Declarations	Size	Offset	Member
<pre>struct A { virtual void f (); virtual void g ();</pre>	16	0	A::vptr
<pre>virtual void h (); int ia; };</pre>		8	ia

struct B: public virtual A {		0	B::vptr	
<pre>void f (); void h (); int ib;</pre>	32	8	ib	
		16	A::vptr	
};		24	ia	
struct C: public virtual A {		0	C::vptr	
<pre>void g (); void h ();</pre>	32	8	ic	
int ic;		16	A::vptr	
};		24	ia	
		0	D/B::vptr	
		8		
<pre>struct D: public B, public C { void h ();</pre>		16	C::vptr	
int id;	48	24	ic	
};		28	id	
		32	A::vptr	
		40	ia	
		0	X/E::vptr	
<pre>struct X { int ix; virtual void x(); }; struct E : X, D { void f (); void h (); int ie; };</pre>		8	ix	
		16	D/B::vptr	
	64	24	ib	
		32	C::vptr	
		40	ic	
		48	id	
		56	A::vptr	
		64	ia	

Table 1c: Example Vtable Layout

Declarations	Vtable (HP) ^{1,2,3}	Vtable (Cygnus/IBM)
<pre>struct A { virtual void f (); virtual void g (); virtual void h (); int ia; };</pre>	A::offset_to_top (0) A::rtti A vtable address A::f() [] A::g() [] A::h() []	A::offset_to_top (0) A::rtti A vtable address A::f() [] A::g() [] A::h() []
<pre>struct B: public virtual A { void f (); void h (); int ib; };</pre>	B::offset_to_A (16) B::offset_to_top (0) B::rtti B vtable address B::f() [] B::h() [] A::offset_to_top (-16) A::rtti A-in-B vtable address B::f() [[-72] B::offset_to_A : thunk] A::g() [] B::h() [[-72] B::offset_to_A : thunk]	B::offset_to_A (16) B::offset_to_top (0) B::rtti B vtable address B::f() [] B::h() [] A::offset_for_h (-16) A::offset_for_g (0) A::offset_for_f (-16) A::offset_to_top (-16) A::rtti A-in-B vtable address B::f() [[-24]offset_for_f] A::g() [] B::h() [[-40]offset_for_h]
<pre>struct C: public virtual A { void g (); void h (); int ic; };</pre>	C::offset_to_A (16) C::offset_to_top (0) C::rtti C vtable address C::g() [] C::h() [] A::offset_to_top (-16) A::rtti A-in-C vtable address A::f() [] C::g() [[-72] C::offset_to_A : thunk] C::h() [[-72] C::offset_to_A : thunk]	<pre>C::offset_to_A (16) C::offset_to_top (0) C::rtti C vtable address C::g() [] C::h() [] A::offset_for_h (-16) A::offset_for_g (-16) A::offset_for_f (0) A::offset_to_top (-16) A::rtti A-in-C vtable address A::f() [] C::g() [[-32] offset_for_g]</pre>

```
total size 15*8 = 120 bytes
                                                                        C::h() [[-40] offset_for_h]
                                                                        total size 18*8 = 144 bytes
                                                                        D::offset_to_A (32)
                               D::offset_to_C (16)
                                                                        D::offset_to_top (0)
                                D::offset_to_A (32)
                                                                        D::rt.t.i
                                D::offset_to_top (0)
                                                                        -- D, B-in-D vtable address --
                                D::rtti
                                                                        B::f()[]
                                -- D, B-in-D vtable address --
                                                                        D::h() []
                                B::f()[]
                                D::h() []
                                                                        C::offset to A (16)
                                                                        C::offset_to_top (-16)
                                C::offset to A (16)
                                                                        C::rtti
                                C::offset_to_top (-16)
                                                                        -- C-in-D vtable address --
struct D: public B, public C {
                                C::rtti
                                                                        C::q() []
 void h ();
                                -- C-in-D vtable address --
                                                                        D::h()[-16]
 int id;
                                C::q() []
};
                                D::h() [[-88] D::offset_to_C]
                                                                        A::offset_for_h (-32)
                                                                        A::offset for q (-16)
                               A::offset_to_top (-32)
                                                                        A::offset_for_f (-32)
                                A::rtti
                                                                        A::offset_to_top (-32)
                                -- A-in-D vtable address --
                                                                        A::rtti
                                B::f() [[-128] D::offset to A : thunk]
                                                                        -- A-in-D vtable address --
                                C::q() [[-72] C::offset to A: thunk]
                                                                        B::f() [[-24] offset for f]
                                D::h() [[-128] D::offset_to_A : thunk]
                                                                        C::g() [[-32] offset_for_g]
                                                                        D::h() [[-40] offset_for_h]
                                total size 23*8 = 184 bytes
                                                                        total size 25*8 = 200 bytes
                                E::offset to D (16)
                                not used
                                                                        E::offset_to_A (56)
                                not used
                                                                        E::offset_to_top (0)
                                not used
                                                                        E::rt.t.i
                                not used
                                E::offset to C (32)
                                                                        -- E, X-in-E vtable address --
                                E::offset to A (56)
                                                                        X::x()
                                E::offset_to_top (0)
                                                                        E::f()[]
                                E::rtti
                                                                        E::h() []
                                -- E, X-in-E vtable address --
                               X::x() []
                                                                        D::offset to A (40)
                                                                        D::offset_to_top (-16)
                                E::f()[]
                                E::h() []
                                                                        D::rtti
                                                                        -- D, B-in-E vtable address
struct X {
```

```
int ix;
                                D::offset to A (40)
                                                                        E::f() [-16]
 virtual void x();
                                D::offset to top (-16)
                                                                        E::h() [-16]
                                D::rtti
                                -- D, B-in-E vtable address --
struct E : X, D {
                                                                        C::offset to A (24)
                                E::f() [[-144] E::offset to D]
                                                                        C::offset to top (-32)
  int ie;
                                E::h() [[-144] E::offset to D]
                                                                        C::rtti
  void f();
 void h ();
                                                                        -- C-in-E vtable address --
                                                                        C::g() []
                                C::offset_to_A (24)
                                C::offset to top (-32)
                                                                        E::h() [-32]
                                C::rtti
                                -- C-in-E vtable address --
                                                                        A::offset_for_h (-56)
                                C::q() []
                                                                        A::offset_for_g (-24)
                                E::h() [[-144] E::offset_to_C]
                                                                        A::offset_for_f (-56)
                                                                        A::offset to top (-56)
                               A::offset_to_top (-56)
                                                                        A::rtti
                                A::rtti
                                                                        -- A-in-E vtable address --
                                                                        E::f() [[-24] A::offset_for_f ]
                                -- A-in-E vtable address --
                                E::f() [[-200] E::offset to A : thunk]
                                                                        C::q() [[-32] A::offset for q ]
                                                                        E::h() [[-40] A::offset for h ]
                                C::q() [[-72] C::offset to A: thunk]
                                E::h() [[-200] E::offset_to_A : thunk]
                                                                        total size 34*8 = 272 bytes
                                total size 37*8 = 296 bytes
```

- 1. Numbers in parentheses after offset_to_top entries are actual values.
- 2. Class prefixes for functions identify class where defined.
- 3. Information in square brackets after function pointer entries indicates entry-point adjustment:

 [] no adjustment required, use primary entry point
 - [n] use adjusting entry point that adds "n" to this
 - [[n] blurb] use adjusting entry point that dereferences *vptr+n* and subtracts (HP) or adds (Cygnus/IBM) that value to *this. blurb* is the name of the accessed field
 - [[n] blub: thunk] use adjusting 3rd party thunk that dereferences vptr+n and subtracts that value from this

Notes: 1) Each function descriptor in the vtable is 16 bytes but the offset and data pointers are only 8, the earlier versions of this table didn't take that into account

- 2) In the HP column for struct E, I have omitted the D::offset_to_C field because the overrides in E render it unnecessary. However, if maintaining navigability inside the nonvirtual parts of the vtable is important then this "cleanup" can only be done for direct nonvirtual bases and not for more deeply nested ones.
- 3) I have taken Christophe at his word that thunks are used for adjusting vtable entries in virtual bases in the HP proposal. Some of them could be done with entry points though.

When all is said and done we have

C++ Vtable Example

x = # direct secondary entries y = # "reach back" secondary entries

z = # 3rd-party thunks

		Cygnus/IBM
A::f	0/0/0	
A::g	0/0/0	
A::h	0/0/0	
	0/0/2	
B::h	0/0/1	
C::g	0/0/1	
C::h	0/0/1	
D::h	0/1/1	1/1/0
E::f	0/1/1	1/1/0
E::h	0/1/1	2/1/0