MANAGED BY RUBY THALIB AI & DATA CONSULTANT

DATA ENGINEERING

MOST SCOPE

INTERACTIVE CLASS, 2024

- Data Ingestion
- Database Introduction

Data Ingestion

MANAGED BY RUBY THALIB AI & DATA CONSULTANT

DATA ENGINEERING

AOST SCOPE

Data Ingestion

Data Ingestion – common data type

tabular source

Year	Weight	Height	Age	ID	
271116.000000	208241.000000	210945.000000	261642.000000	271116.000000	count
1978.378480	70.702393	175.338970	25.556898	68248.954396	mean
29.877632	14.348020	10.518462	6.393561	39022.286345	std
1896.000000	25.000000	127.000000	10.000000	1.000000	min
1960.000000	60.000000	168.000000	21.000000	34643.000000	25%
1988.000000	70.000000	175.000000	24.000000	68205.000000	50%
2002.000000	79.000000	183.000000	28.000000	102097.250000	75%
2016.000000	214.000000	226.000000	97.000000	135571.000000	max
					1

compressed source

json source

```
"orders": [
       "orderno": "748745375",
       "date": "June 30, 2088 1:54:23 AM",
       "trackingno": "TN0039291",
       "custid": "11045",
       "customer": [
               "custid": "11045",
               "fname": "Sue",
               "lname": "Hatfield",
               "address": "1409 Silver Street",
               "city": "Ashland",
               "state": "NE",
               "zip": "68003"
```

Database Introduction

Analytic	Transaction
OLAP helps you analyze large volumes of data to support decision-making.	OLTP helps you manage and process real-time transactions.
OLAP uses historical and aggregated data from multiple sources.	OLTP uses real-time and transactional data from a single source.
OLAP uses multidimensional (cubes) or relational databases.	OLTP uses relational databases.
OLAP uses star schema, snowflake schema, or other analytical models.	OLTP uses normalized or denormalized models.
OLAP has large storage requirements. Think terabytes (TB) and petabytes (PB).	OLTP has comparatively smaller storage requirements. Think gigabytes (GB).
OLAP has longer response times, typically in seconds or minutes.	OLTP has shorter response times, typically in milliseconds

RUBY THALIB AI & DATA CONSULTANT Volume of data

Example applications

Response time

Purpose

Data source

Data structure

Data model

OLAP is good for analyzing trends, predicting customer behavior, and identifying profitability.

OLTP is good for processing payments, customer data management, and order processing.

Database Introduction

Analytic	Transaction
OLAP helps you analyze large volumes of data to support decision-making.	OLTP helps you manage and process real-time transactions.
OLAP uses historical and aggregated data from multiple sources.	OLTP uses real-time and transactional data from a single source.
OLAP uses multidimensional (cubes) or relational databases.	OLTP uses relational databases.
OLAP uses star schema, snowflake schema, or other analytical models.	OLTP uses normalized or denormalized models.
OLAP has large storage requirements. Think terabytes (TB) and petabytes (PB).	OLTP has comparatively smaller storage requirements. Think gigabytes (GB).
OLAP has longer response times, typically in seconds or minutes.	OLTP has shorter response times, typically in milliseconds

RUBY THALIB AI & DATA CONSULTANT Volume of data

Example applications

Response time

Purpose

Data source

Data structure

Data model

OLAP is good for analyzing trends, predicting customer behavior, and identifying profitability.

OLTP is good for processing payments, customer data management, and order processing.

Database Introduction – Basic Concept

- Schema
- Tables
- Data types (INTEGER, VARCHAR, TIMESTAMP, etc.)
- Constraints (NOT NULL, UNIQUE, PRIMARY KEY, FOREIGN KEY)

MANAGED BY RUBY THALIB AI & DATA CONSULTANT

DATA ENGINEERING

OST SCOPE

MANAGED BY RUBY THALIB AI & DATA CONSULTANT

DATA ENGINEERING

MOST SCOPE

INTERACTIVE CLASS, 2024

DAY 2 TRIAL:D