EVOFEAT: GENETIC PROGRAMMING BASED FEATURE ENGINEERING APPROACH TO TABULAR DATA CLASSIFICATION

HENGZHE ZHANG, QI CHEN, BING XUE, YAN WANG, AIMIN ZHOU, MENGJIE ZHANG

VICTORIA UNIVERSITY OF WELLINGTON

23/05/2023

TABLE OF CONTENTS

- 1 Introduction
- 2 Related Work
- 3 Preliminaries
- 4 The Proposed Algorithm
- 5 Experiments

INTRODUCTION

Introduction

- **Tabular Data Learning:** Widely used in recommendation systems ¹ and advertising ².
- **Goal:** Capture the relationship between explanatory variables $\{x_1, \ldots, x_m\}$ and a response variable y.
- **Dataset Structure:** $\{(\{x_1^1, \dots, x_m^n\}, y^1), \dots, (\{x_1^n, \dots, x_m^n\}, y^n)\}$, where n is the number of instances.

Challenge

- Linear models assume linear relationships.
- Decision trees assume axis-parallel decision boundaries.
- Real-world data often violates these assumptions.

¹Ruoxi Wang et al., Proceedings of the Web Conference 2021 (2021)

²Haizhi Yang et al., Proceedings of the 30th ACM International Conference on Information & Knowledge Management (2021)

FEATURE ENGINEERING TECHNIQUES

- Manual Design: Based on domain knowledge.
- **Kernel Methods:** Use kernel tricks to transform data into higher dimensions.
- **Deep Learning:** Leverages neural networks to learn features automatically. ¹.

Limitations

- Manual Design: Labor-intensive.
- Kernel Methods: Hard to integrate with tree-based methods.
- Deep Learning: Requires large datasets, effectiveness debatable for small, heterogeneous datasets ².

¹Jianxun Lian et al., Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

²Yury Gorishniy et al., Advances in Neural Information Processing Systems (2021)

MOTIVATION

- **Objective:** Feature construction using genetic programming (GP).
- **GP Advantages:** Gradient-free, interpretable, and flexible.
- **Hypothesis:** GP-based feature engineering can outperform both traditional and deep learning methods on tabular data.

Our Approach: EvoFeat

- Constructs nonlinear features with GP.
- Enhances ensemble learning models.
- Uses cross-validation and feature importance for evaluation.

RELATED WORK

RELATED WORK

■ Beam Search Methods:

Greedy, lacks strong mechanisms to prevent overfitting.

■ Deep Learning Methods:

▶ Effectiveness in comparison to tree-based methods is still debated ¹.

BEAM SEARCH METHODS

■ Iterative Feature Generation:

- Starts with low-order features.
- ► Generates higher-order features based on important low-order features ¹.

■ Evaluation:

- Uses logistic regression accuracy, or XGBoost feature importance.
- Sole reliance on training loss can lead to overfitting.

Key Limitation

Lack of effective mechanisms to prevent overfitting restricts feature construction capabilities.

¹Yuanfei Luo et al., Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2019)

DEEP LEARNING METHODS

■ High-Order Feature Construction:

- Cross Network in DCN.
- ► Field-wise feature cross in xDeepFM ¹.
- ► Attention mechanism in AutoInt ².

Effectiveness

- Effectiveness over fully connected NN is debatable ³.
- Lack of comprehensive studies comparing with XGBoost 4.

¹Jianxun Lian et al., Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (2018)

²Weiping Song et al., Proceedings of the 28th ACM International Conference on Information and Knowledge Management (2019)

³Ruoxi Wang et al., Proceedings of the Web Conference 2021 (2021)

⁴Yury Gorishniy et al., Advances in Neural Information Processing Systems (2021)

EVOLUTIONARY FEATURE CONSTRUCTION

■ Single Learner:

- ► Traditionally, more focus on simple learner like single decision tree ¹.
- ► Gap in enhancing state-of-the-art algorithms.

■ Ensemble-based Feature Construction:

- ► Promising results in regression ².
- Requires adaptation for tabular classification.

Notes

Adapting evolutionary feature construction techniques for classification involves:

- Adapting loss functions.
- Using logistic regression models as base learners.

¹Binh Tran, Bing Xue, and Mengjie Zhang, Pattern Recognition (2019)

²Hengzhe Zhang, Aimin Zhou, and Hu Zhang, IEEE Transactions on Evolutionary Computation (2021)

PRELIMINARIES

FEATURE ENGINEERING PROCESS

34

■ Feature Initialization:

Construct initial features based on domain knowledge or randomly.

■ Feature Evaluation:

Evaluate features using cross-validation and calculate feature importance.

■ Feature Improvement:

Discard ineffective features and replace with new ones derived from important features.

Feature engineering workflow.

FEATURE EVALUATION AND IMPROVEMENT

■ Cross-Validation:

Evaluates generalization performance.

■ Feature Importance:

- ► Identifies useful features.
- Risky to rely solely on feature importance.

Key Insight

Constructing multiple sets of features and evaluating them using cross-validation can provide better insights into their generalization capabilities.

THE PROPOSED ALGORITHM

FEATURE REPRESENTATION

■ Symbolic Trees:

► Each individual has *k* GP trees representing *k* new features.

■ Tree Structure:

- Non-leaf nodes: Functions (e.g., $+, -, *, \log, \sin$).
- ► Leaf nodes: Original Features.

■ Base Learners:

Decision trees or linear regression models.

ALGORITHM FRAMEWORK

Initialization

Randomly initialize N individuals, each with k symbolic trees.

Evaluation

- Evaluate individuals using cross-validation loss.
- Calculate feature importance for each feature.

ALGORITHM FRAMEWORK

Selection

Use lexicase selection ¹ to select parent individuals based on cross-validation losses.

Generation

Generate new individuals using self-competitive crossover and guided mutation ².

Archive Update

Update archive with top-performing models using reduce-error pruning 3.

13

¹William La Cava et al., Evolutionary Computation (2019)

²Hengzhe Zhang et al., IEEE Transactions on Evolutionary Computation (2023)

³Rich Caruana et al., Proceedings of the Twenty-First International Conference on Machine Learning (2004)

FEATURE INITIALIZATION

■ Initialization Strategy:

- Ramped-half-and-half for symbolic trees.
- ► Half full trees, half random depth.

■ Base Learner Assignment:

Randomly assign decision tree or linear regression model.

FEATURE SELECTION

- Three selection operators in EvoFeat:
 - ► Base Learner Selection
 - ► Individual Selection: Lexicase Selection
 - ► Feature Selection: Softmax Selection

BASE LEARNER SELECTION

- Divide population into two subgroups (decision trees, logistic regression).
- Random mating probability (rmp = 0.5):
 - ► 50%: Select parents from different subgroups.
 - ► 50%: Select parents from the same subgroup.

Inspired by multitask GP 1

¹Fangfang Zhang et al., IEEE Transactions on Cybernetics (2021)

Individual Selection: Lexicase Selection

- Selects individuals based on a vector of cross-validation losses, one for each instance.
- Constructs filters based on each loss value 1:

$$\tau_j = \min_i \mathcal{L}_j' + \epsilon_j, \tag{1}$$

- Where:
 - ightharpoonup τ_i is the threshold,
 - $ightharpoonup \mathcal{L}_i^i$ is the loss of the *i*-th individual on the *j*-th instance,
 - \triangleright ϵ_i is the median absolute deviation.

¹William La Cava et al., Evolutionary Computation (2019)

SOFTMAX SELECTION

- Select features based on importance values $\{\theta_1, \dots, \theta_k\}$.
- Uses softmax function:

$$P(\theta_i) = \frac{e^{\theta_i/T}}{\sum_{i=1}^k e^{\theta_i/T}},\tag{2}$$

■ Good features sampled by $P(\theta_i)$, bad features by $P(-\theta_i)$.

OFFSPRING GENERATION: SELF-COMPETITIVE CROSSOVER

■ Self-Competitive Crossover:

- Transfers beneficial material from good features to bad features.
- ▶ Biased crossover, only modifies bad features, preserving good features ¹.
- ► Ensures top-performing features are preserved.

¹Su Nguyen et al., IEEE Transactions on Cybernetics (2021)

FEATURE IMPORTANCE

■ Decision Tree:

ightharpoonup Calculated by the total reduction of Gini impurity contributed by each feature ϕ .

■ Logistic Regression:

- Calculated by the absolute value of the model coefficients.
- Features are standardized to ensure equal influence on the coefficients.

OFFSPRING GENERATION: GUIDED MUTATION

■ Guided Mutation:

- Replaces subtree with a randomly generated subtree.
- ▶ Uses guided probability vector for terminal variable selection.
- Probability vector corresponds to the terminal usage of archived individuals.

FEATURE EVALUATION

■ Cross-Validation:

- ► Partition training set into five folds.
- Train on four folds, validate on one fold.

■ Loss Function:

Cross entropy:

$$\sum_{c \in C} p_c * \log(q_c), \tag{3}$$

 \blacktriangleright Where p_c is the true probability, q_c is the predicted probability.

EXPERIMENTS

EXPERIMENTS

- **Objective:** Compare EvoFeat with popular machine learning and deep learning methods.
- Datasets: 130 datasets from DIGEN and PMLB benchmarks.
 - ▶ DIGEN ¹: Diverse synthetic datasets using genetic programming.
 - ► PMLB ²: Real-world datasets from OpenML.

¹Patryk Orzechowski and Jason H Moore, Science Advances (2022)

²Joseph D Romano et al., *Bioinformatics* (2022)

EXPERIMENTAL SETTINGS

■ Evaluation Protocol:

- ► 80% training, 20% testing.
- ► 5-fold cross-validation on training set.
- Repeat experiments with 30 random seeds.

■ Hyperparameter Tuning:

► Use HEBO ¹ for tuning baseline algorithms.

24

¹Alexander I Cowen-Rivers et al., Journal of Artificial Intelligence Research (2022)

BASELINE ALGORITHMS

■ Machine Learning:

► XGBoost ¹, LightGBM ², Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), K-Nearest Neighbors (KNN).

■ Deep Learning:

► Multilayer Perceptron (MLP), ResNet, DCN V2 ³, FT-Transformer ⁴.

¹Tianqi Chen and Carlos Guestrin, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016)

²Guolin Ke et al., Advances in Neural Information Processing Systems (2017)

³Ruoxi Wang et al., Proceedings of the Web Conference 2021 (2021)

⁴Yury Gorishniy et al., Advances in Neural Information Processing Systems (2021)

LARGE-SCALE EXPERIMENTS

■ Comparison:

► Evaluate EvoFeat against traditional and deep learning methods.

■ Results:

- ► EvoFeat outperforms state-of-the-art methods on average accuracy.
- ▶ Demonstrates large improvements in predictive performance.

(a) Balanced testing accuracy.

(b) Improvement in accuracy.

COMPARISON WITH TRADITIONAL METHODS

■ Baseline: XGBoost, LightGBM, RF, DT, LR, KNN.

■ Results:

- EvoFeat achieves better the best accuracy.
- Significant improvements over XGBoost and LightGBM.

Statistical results of balanced testing accuracy on 90 PMLB and 40 DIGEN datasets.

	XGBoost	LightGBM	RF	LR	KNN	EvoFeat
DT	0/48/82	2/47/81	0/43/87	60/36/34	60/27/43	0/34/96
XGBoost	_	13/107/10	43/79/8	72/50/8	107/16/7	4/67/59
LightGBM	_	_	45/75/10	74/42/14	107/15/8	5/72/53
RF	_	_	_	73/47/10	102/20/8	7/62/61
LR	_	_	_	_	54/13/63	7/44/79
KNN	_	_	_	_	_	3/15/112

COMPARISON WITH DEEP LEARNING METHODS

- Baseline: MLP, ResNet, DCN V2, FT-Transformer.
- **■** Results:
 - ▶ Deep learning methods perform comparably to RF.
 - ► EvoFeat outperforms these deep learning methods significantly.

Statistical results of balanced testing accuracy on 90 PMLB and 40 DIGEN datasets.

	ResNet	DCN V2	FT-Transformer	EvoFeat
MLP	18/96/16	9/118/3	10/76/44	4/33/93
ResNet	_	8/99/23	46/73/11	3/32/95
DCN V2	_	_	45/79/6	2/35/93
FT-Transformer	_	_	_	4/34/92
EvoFeat	_	_	_	_

ABLATION STUDIES

- **Objective:** Validate improvements from heterogeneous base learners and feature importance-guided search.
- **■** Components:
 - Heterogeneous base learners: Compare EvoFeat with different combinations of base learners.
 - ► Feature importance-guided search: Evaluate the effectiveness of feature importance-guided operators.

BASE LEARNERS

- **Objective:** Compare heterogeneous base learners (DT+LR) with single base learners (DT, LR).
- Results:
 - DT+LR achieves better average performance.
 - ► Significant improvements over single learners.

Comparison of balanced testing accuracy across different base learners on 90 PMLB datasets.

	LR	DT+LR
DT I R	12(+)/47(~)/31(-) —	o(+)/62(~)/28(-) 5(+)/7o(~)/15(-)
LR	_	5(+)/70(~)/15(-)

BASE LEARNERS

■ **Objective:** Compare heterogeneous base learners (DT+LR) with single base learners (DT, LR).

■ Results:

- ► DT+LR achieves better average performance.
- ► Significant improvements over single learners.

Balanced testing accuracy with different base learners.

FEATURE IMPORTANCE-GUIDED SEARCH

- **Objective:** Evaluate effectiveness of feature importance-guided operators.
- Methods:
 - Compare random crossover and mutation (Random) with softmax-based self-competitive crossover and guided mutation (SS+GM).
- Results:
 - ► Feature importance-guided search achieves better performance.

Comparison of balanced testing accuracy across different selection operators on 40 DIGEN datasets.

	SC+GM	GM	Random
SS+GM	12(+)/26(~)/2(-)	5(+)/34(~)/1(-)	12(+)/28(~)/0(-)
SC+GM	—	0(+)/30(~)/10(-)	5(+)/30(~)/5(-)
GM	—	—	5(+)/35(~)/0(-)

FEATURE IMPORTANCE-GUIDED SEARCH

- **Objective:** Evaluate effectiveness of feature importance-guided operators.
- **■** Methods:
 - ► Compare random crossover and mutation (Random) with softmax-based self-competitive crossover and guided mutation (SS+GM).
- **■** Results:
 - ► Feature importance-guided search achieves better performance.

Balanced testing accuracy with different selection operators.

CONCLUSION

■ Summary:

- EvoFeat outperforms state-of-the-art methods.
- Heterogeneous base learners and feature importance-guided search improve performance.

■ Future Work:

- Investigate modularization techniques for improved interpretability.
- ▶ Use diversity optimization to enhance ensemble performance.

THANKS FOR LISTENING!

EMAIL: HENGZHE.ZHANG@ECS.VUW.AC.NZ

GITHUB PROJECT: HTTPS://GITHUB.COM/HENGZHE-ZHANG/EVOLUTIONARYFOREST/