REMARKS

The Official Action and the cited references have again been carefully reviewed. The review indicates that the claims, as newly amended, recite patentable subject matter and should be allowed. Reconsideration and allowance are therefore respectfully requested.

In advance of addressing the grounds upon which the rejections are founded, a summarization of the essentials of the invention process for converting biomass into a blending component for a petroleum-derived fuel is set forth to facilitate easier grasp of the invention process and to establish a clearer line of distinction between the invention process and the processes disclosed in Shabtai et al. '167, Jelks '010, and Lucas '916.

In the art of converting a biomass into a blending component for petroleum-derived fuel in which lignin is extracted in a reaction medium from the biomass to provide a lignin feed material that is depolymerized and subsequently hydroprocessed to provide a blending component for use in a petroleum or petroleum-derived fuel, applicants are the first to use water as an inexpensive reaction medium along with alkali hydroxide to obtain high base-catalyzed depolymerization (BCD) activity to ether solubles (about 73 to 74.5 weight percent) at low concentrations of the alkali hydroxide—unlike the use of low concentrations of alkali hydroxides in super critical alcohol reaction medium such as methanol and ethanol.

Claims 1-16, 19, 21, 25, 27-32, 39-42 and 44-50 were rejected as being unpatentable over Shabtai et al. '167 in view of Jelks or Lucas et al. under 35 USC §103 (a).

Applicants respectfully traverse the rejection and request reconsideration for the following reasons.

Shabtai '167 only efficiently converts lignin into a blending component for petroleum-derived fuel by extracting a lignin-containing fraction in a <u>super critical alcohol</u> from biomass using a base-catalyzed depolymerization reaction at 10% or more of the base by weight, prior to hydroprocessing to produce a blending component. As stressed in Shabtai et al. '167, at col. 7, lines 14-36, a <u>super critical alcohol such methanol or ethanol is indispensable to its process</u>.

By contrast, the <u>invention process utilizes water</u> as the reaction medium, wherein the alkali hydroxide is dissolved at low concentrations of 2-5 weight percent to obtain 73 to 74.5% ether-solubles from depolymerization to provide a major technoeconomic advantage of markedly

exists between 2 weight percent to 10 weight percent inclusion of alkali hydroxide and water (see page 10, line 6 – 25 of present specification). Applicants' results are drastically different from Shabtai et al. '167 in which alkali hydroxide in the supercritical alcohols depolymerizes efficiently, but at high concentrations of alkali hydroxide equal or greater than 10 weight percent.

Although Shabtai et al. '167 may use alkali hydroxides in alcohol-water mixtures (column 7, lines 37-53), no where does Shabtai '167 suggest or teach use of water alone with alkali.

This glaring deficiency of Shabtai et al. '167 is not compensated for by any teachings in the secondary references of Jelks or Lucas et al.

Jelks only disclose a process for delignification of cellulosic biomass comprising:

- (a) providing a defiberized, lignin-containing biomass of cellulosic material;
- (b) reducing the biomass to a fiber slurry of lignin-containing cellulosic material;
- (c) modifying the lignin in the fiber slurry by a step comprising in situ formation of nascent oxygen, not occurring as a result of hydrogen peroxide decomposition, in the fiber slurry; and
- (d) extracting at least a portion of the lignin from the fiber slurry by washing the fiber slurry with an aqueous solution of an alkaline material.

Thus, Jelks lacks depolymerizing using alkali with water alone, and there is no reference to or mention of suitability of the final product as a blend in petroleum based fuel.

Lucas et al. only disclose a process for producing ethyl alcohol (no reference of use of same as blend in petroleum-based fuels) by:

a continuous treatment of plant biomass using state-of-the-art counter-current extractors to extract salts, proteins and hemicellulose (first extractor); obtaining lignin and silica from the residue coming from the first extractor (second extractor); separating the lignin from the silicate using an ultrafiltration unit, in plants containing a high percentage of silica; producing of ethyl alcohol (ethanol) from the cellulose coming from the second extractor; and producing a mixture of lignin and ethyl alcohol (ethanol) as a high energy fuel.

Thus, only a mixture of lignin and ethanol is produced – and no aromatic hydrocarbon comprising C_7 - C_{10} alkylbenzenes useful as a blend to enhance octane rating of petroleum derived fuel.

Accordingly, even if the methods of obtaining and treating lignin from Jelks or Lucas et al. were substituted for the lignin modification process of Shabtai et al. '167, applicants' invention using water as the reaction medium alone would not result.

Withdrawal of the rejection is respectfully requested.

Claims 17, 18 and 20 were rejected as being unpatentable over the references as applied to claim 1, further in view of Shabtai et al. '272 under 35 USC §103(a).

All of the references used to reject claim 1 have been discussed above.

Shabtai '272 disclose a process for converting lignin into reformulated, partially oxygenated gasoline by:

- (a) providing a lignin material;
- (b) subjecting the lignin material to a base-catalyzed depolymerization reaction in the presence of a supercritical alcohol, followed by a selective hydrocracking reaction in the presence of a superacid catalyst to produce a high oxygen-content depolymerized lignin product; and
- (c) subjecting the depolymerized lignin product to an etherification reaction to produce a reformulated, partially oxygenated/etherified gasoline product.

Even though Shabtai et al. '272 may use a super based catalyst with methanol, ethanol, or a alcohol-water mixture to affect base-catalyzed depolymerization, no where does Shabtai '272 suggest or teach the use of water per se with base to affect the base-catalyzed depolymerization of lignin. And, there is no teaching equating the use of a base catalyzed depolymerization using an alcohol-water mixture or alcohol alone to the use of water alone in the base catalyzed depolymerization process.

Accordingly, even if the depolymerization as taught by Shabtai '272 were substituted for or combined with the references used to reject claim 1, applicants' invention would not result, for the reason that, the use of water as an efficient reaction medium for base-catalyzed depolymerization of the lignin affects lignin conversion using a 2-5 weight percent alkali solution that results in a 73-74.5 weight percent conversion of ether-solubles - whereas the use of alkali in

supercritical alcohol reaction medium <u>requires 10 weight percent or more alkali to affect similar</u> lignin conversion, as indicated in the specification at page 10, lines 6-25.

Withdrawal of the rejection is respectfully requested. ·

In view of the foregoing amendments, remarks and arguments, it is believed that the application is now in condition for allowance and early notification of the same is earnestly solicited.

Dated: July 27, 2005.

and

Attorney for Applicants Registration No. 30,436

Respectfully submitted,

NATIONAL RENEWABLE ENERGY LABORATORY

1617 Cole Boulevard

Golden, Colorado 80401-3393 Telephone: (303) 384-7575

Facsimile: (303) 384-7499