Calibration Report for BE2022_08 - 25

Contents

Steps	1
Profiles	2
Fluxes	3
MicroProfiles	4
Parameters Values	5 5
Misfits	7
#Station	

Steps

Step	Profiles	Fluxes	Microprofiles	Parameters
Fit C	TOC		1	MeanFlux
				rSlow
Fit NP	NH3			NCrSdet
	NOx			mixL
	PO4			biot
				AlphIrr

Profiles

Fluxes

Fluxes at the sediment-water interface (positive upwards). Available observations are indicate as ranges on the plots.

MicroProfiles

Parameters

Values

Highlighted in red are parameter values that are close to the minimum/maximum, indicating that the calibration procedure is somehow "blocked" by the ranges imposed on those parameters.

	Guess	Fit C	Fit NP	Final	units	min	max
Temp Sal portop porbot pora	14 36 0.65 0.6 0.5	14 36 0.65 0.6 0.5	14 36 0.65 0.6 0.5	14 36 0.65 0.6 0.5	°C psu W. Cont. W. Cont.	5 36 0.5 0.4 0.25	26 38 0.95 0.7 0.75
biot mixL AlphIrr IrrEnh w	10 15 0.24932 1 0.04	10 15 0.24932 1 0.04	20.58565 6.32484 0.39569 1 0.04	20.58565 6.17639 0.49315 1 0.04	cm2/yr cm cm2/d - cm/yr	0.01 5 0 1 0.001	30 30 0.493 18 2
MeanFlux rFast rSlow pFast pRef	30 12 0.1 0.27 0.018	4.34257 12 1.64467 0.27 0.018	4.34257 12 1.64467 0.27 0.018	4.92166 12 1.59609 0.27 0.018	mmol/m2/d /yr /yr -	0.1 2 0.1 0.05 0.001	80 80 2 0.95 0.25
NCrFdet NCrSdet NCrref rSi SiCdet	0.15094 0.04 0.04 0.02 0.06667	0.15094 0.04 0.04 0.02 0.06667	0.15094 0.16361 0.04 0.02 0.06667	0.15094 0.14675 0.04 0.02 0.06667	molN/molC molN/molC molN/molC /yr	0.04 0.01 0.02 0.01 0.01667	0.333 0.167 0.167 10 0.5
EquilSiO PCrFdet PCrSdet rFePdesorp rFePadsorp	400 0.00943 0.00125 105 77	400 0.00943 0.00125 105 77	400 0.00943 0.00125 105 77	400 0.00943 0.00125 105 77	mmol/m3 molP/molC molP/molC /yr /yr	150 0.0025 0.00125 1 73	900 0.02 0.02 200 912.5
rCaPprod rCaPdiss CPrCaP PO4ads Q	0.001 0 104.73913 2 2	0.001 0 104.73913 2 2	0.001 0 104.73913 2 2	0.001 0 104.73913 2 2	/yr /yr /yr	0.0001 0.1 79.34783 1 1.5	10 50 317.391 400 2.5
pdepo NH3Ads rnit ksO2nitri rODUox	0.3 1.3 20 10 50	0.3 1.3 20 10 50	0.3 1.3 20 10 50	0.3 1.3 20 10 50	- /d umolO2/m3 /d	0.08 0 1 0.5	0.3 2 500 2 300
ksO2oduox ksO2oxic ksNOxdenit kinO2denit kinNOxanox	1 3 30 10 10	1 3 30 10 10	1 3 30 10 10	1 3 30 10 10	mmolO2/m3 mmolO2/m3 mmolO2/m3 mmolO2/m3	0.5 1 10 1 0.5	21 5 50 20 20
kinO2anox	8	8	8	8	$\rm mmolO2/m3$	0.5	20

[&]quot; in the table means that the parameter is same as in the previous column.

bwO2 bwNH3 bwNOx bwODU	300 55.52193 184.23248 0	300 55.52193 184.23248 0	300 55.52193 184.23248 0	300 55.52193 184.23248 0	mmol/m3 mmol/m3 mmol/m3	0 1 0 0	500 10 30 0.2
bwDIC	2240	2240	2240	2240	$\rm mmol/m3$	2400	3500
bwSIO	10	10	10	10	$\frac{1}{m}$	1	25
bwPO4	1.97907	1.97907	1.97907	1.97907	mmol/m3	0.01	1
DispO2	1.46948	1.46948	1.46948	1.46948	-	-	-
DispNOx	1.20022	1.20022	1.20022	1.20022	-	-	-
DispNH3	1.36727	1.36727	1.36727	1.36727	_	-	-
DispODU	0.82689	0.82689	0.82689	0.82689	-	-	-
DispDIC	0.81661	0.81661	0.81661	0.81661	-	-	-
DispSIO	0.64123	0.64123	0.64123	0.64123	-	-	-
DispPO4	0.37149	0.37149	0.37149	0.37149	-	-	-

Sensitivity

The next figure represents the model cost's sensitivity to perturbation of the parameters around their final calibrated value. In short the higher the metric, the most this parameter is having a high impact on the overall model misfit metric.

Misfits

The variables cost are estimated as the sum of squared weighted residuals for each:

$$C_j = \sum_{i=1}^{n_{obs,j}} \frac{Model_i - Obs_i}{Err_i}$$

The model cost is the scaled sum of variable costs:

$$C = \sum_{j=1}^{n_{var}} \frac{C_j}{n_{obs,j}}$$

Here the total height of each bar indicate the model cost, while colored fraction of the bar indicate the contribution of each type of observations in the model cost.

