I. Ejercicios (El cuerpo de los números reales. Supremo e ínfimo. Valor absoluto.)

1. Prueba las siguientes leyes de cancelación:

a)
$$x, y, z \in \mathbb{R}$$
, $x + z = y + z \implies x = y$

b)
$$x, y \in \mathbb{R}, z \in \mathbb{R}^*, xz = yz \implies x = y$$

Nótese que como consecuencia de los apartados anteriores se obtiene que el opuesto de un elemento y el inverso de un real no nulo es único.

2. Sean x, y, z números reales. Prueba las siguientes propiedades:

$$a) - (-x) = x, \forall x \in \mathbb{R}.$$

b)
$$-(x+y) = -x - y$$
, $\forall x, y \in \mathbb{R}$.

c)
$$x0 = 0, \ \forall x \in \mathbb{R}$$
.

d)
$$x(-y) = -(xy) = (-x)y, \forall x, y \in \mathbb{R}.$$

$$e) xy = 0 \Leftrightarrow x = 0 \circ y = 0$$

$$f) \ x \in \mathbb{R}^+, \ y \in \mathbb{R}^- \implies xy \in \mathbb{R}^-$$

$$h) 0 < x^2, \forall x \in \mathbb{R}^*.$$

3. Probar que efectivamente \leq es una relación de orden total en el conjunto \mathbb{R} y que el orden es total.

4. Probar las siguientes afirmaciones:

a)
$$x, y, z, w \in \mathbb{R}$$
, $x \le y$, $z < w \implies x + z < y + w$

b)
$$x, y, z, w \in \mathbb{R}$$
, $0 < x \le y$, $0 < z < w \implies xz < yw$

c)
$$x, y \in \mathbb{R}, x \leq y \Rightarrow -x \geq -y$$

d)
$$x, y \in \mathbb{R}, x < y \Rightarrow -x > -y$$

$$e) \ x, y, z \in \mathbb{R}, \ x \le y, \ z \le 0 \ \Rightarrow \ xz \ge yz$$

$$f) \ x, y \in \mathbb{R}, \ 0 < x \le y \ \Rightarrow \ x^{-1} \ge y^{-1}$$

g)
$$x, y \in \mathbb{R}, \ 0 < x < y \implies y^{-1} < x^{-1}$$

5. Para $x, y \in \mathbb{R}$, se define la distancia de x a y por:

$$d(x,y) = |y - x|.$$

Pruébense las siguientes propiedades de la distancia:

a)
$$d(x,y) \ge 0 \quad \forall x,y \in \mathbb{R}$$

b)
$$d(x,y) = 0 \Leftrightarrow x = y$$
 (no degeneración)

c)
$$d(x,y) = d(y,x) \ \forall x,y \in \mathbb{R}$$
 (simetría)

d)
$$d(x,z) \leq d(x,y) + d(y,z) \quad \forall x,y,z \in \mathbb{R}$$
 (designaldad triangular).

De hecho, una función se llama distancia si verifica las propiedades anteriores.

- 6. Sea A un conjunto no vacío de números reales. En cada uno de los siguientes casos, decidir si el conjunto dado puede coincidir con el conjunto de todos los mayorantes de A:
 - a) \mathbb{R} b) \varnothing c) \mathbb{R}^+ d) $\{x \in \mathbb{R} : 0 \le x < 1\}$ e) $\{x \in \mathbb{R} : 2 \le x\}$
- 7. Probar que el conjunto $A=\{x\in\mathbb{R}: |x^2-2x-1|<2|x-2|\}$ está acotado y calcular su supremo y su ínfimo.
- 8. Sean A y B conjuntos de números reales tales que $A \cap B \neq \emptyset$.
 - (i) Mostrar con un ejemplo que $A \cap B$ puede estar acotado, aunque A y B no estén mayorados ni minorados.
 - (ii) Suponiendo que A y B están mayorados, probar que

$$Sup(A \cap B) \le min \{Sup A, Sup B\}$$

(iii) Probar que, si A y B están minorados, entonces

$$Inf(A \cap B) \ge máx \{Inf A, Inf B\}$$

- (iv) Probar que, aunque A y B estén acotados, las dos desigualdades obtenidas en (ii) y (iii) pueden ser estrictas.
- 9. Sean A y B subconjuntos no vacíos de \mathbb{R} . Pruébese que A+B está mayorado si, y sólo si, A y B son conjuntos mayorados y que en ese caso se verifica

$$Sup A + B = Sup A + Sup B,$$

donde

$$A + B = \{a + b : a \in A, b \in B\}.$$

10. Sea A un conjunto no vacío y mayorado. Pruébese que -A está minorado y que además se verifica

$$-\operatorname{Sup} A = \operatorname{Inf}(-A),$$

 $donde -A = \{-a : a \in A\}.$

Indicación: Relacionar M(A) y m(-A) y el mínimo de un conjunto B con el máximo de -B.

- 11. Sean $\emptyset \neq A \subset B \subset \mathbb{R}$.
 - a) Si B está mayorado, pruébese que A también lo está y entonces $\sup A \leq \sup B$.
 - b) Si B está minorado, pruébese que A también lo está y entonces $InfA \ge InfB$.

Indicación: Relacionar M(B) y M(A) en a) y m(B) con m(A) para b).

- 12. Sean $\emptyset \neq A, B \subset \mathbb{R}$. Probar las siguientes afirmaciones:
 - a) Si A y B están mayorados, $A \cup B$ también lo está y entonces $Sup(A \cup B) = máx\{SupA, SupB\}$.
 - **b)** Si ambos subconjuntos están minorados, $A \cup B$ también está minorado y se verifica $Inf(A \cup B) = min\{InfA, InfB\}$.
- 13. Sean $\emptyset \neq A, B \subset \mathbb{R}$ y supongamos que se verifica

$$a < b, \forall a \in A, b \in B.$$

Probar que A está mayorado, B minorado y que se verifica $\operatorname{Sup} A \leq \operatorname{Inf} B$.

Como consecuencia, si se supone la existencia de supremo de cualquier subconjunto no vacío y mayorado de \mathbb{R} , entonces se verifica el axioma de Dedekind.