Lecture 1: 5 April, 2021

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Data Mining and Machine Learning April–July 2021

What is this course about?

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

What is this course about?

Data Mining

- Identify "hidden" patterns in data
- Also data collection, cleaning, uniformization, storage
 - Won't emphasize these aspects

Machine Learning

- "Learn" mathematical models of processes from data
- Supervised learning learn from experience
- Unsupervised learning search for structure
 Reinforcement learning X

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

"Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Supervised Learning

Extrapolate from historical data

- Predict board exam scores from model exams
- Should this loan application be granted?
- Do these symptoms indicate CoViD-19?

'Manually" labelled historical data is available

- Past exam scores: model exams and board exam
- Customer profiles: age, income, ..., repayment/default status
- Patient health records, diagnosis

Historical data \rightarrow model to predict outcome

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021

What are we trying to predict?

Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

What are we trying to predict?

Numerical values

- Board exam scores
- House price (valuation for insurance)
- Net worth of a person (for loan eligibility)

Categories

- Email: is this message junk?
- Insurance claim: pay out, or check for fraud?
- Credit card approval: reject, normal, premium
- · Topic assignment

Mcs/No Not Sinany

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences

Model generator

How do we predict?

- Build a mathematical model
 - Different types of models
 - Parameters to be tuned
- Fit parameters based on input data
 - Different historical data produces different models
 - e.g., each user's junk mail filter fits their individual preferences
- Study different models, how they are built from historical data

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Unsuperied - Patterns -> Superied

Unsupervised learning

- Supervised learning builds models to reconstruct "known" patterns given by historical data
- Unsupervised learning tries to identify patterns without guidance

Customer segmentation

- Different types of newspaper readers
- Age vs product profile of retail shop customers
- Viewer recommendations on video platform

Clustering

- Organize data into "similar" groups — clusters
- Define a similarity measure, or distance function
 - Clusters are groups of data items that are "close together"

Outliers

- Outliers are anomalous values
 - Net worth of Bill Gates, Mukesh Ambani
- Outliers distort clustering and other analysis
- How can we identify outliers?

Preprocessing for supervised learning

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021 9 / 2

Preprocessing for supervised learning

Need not be a good idea — perils of working blind!

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021 10 / 21

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

"Feature engineering"

Summary

Machine Learning

- Supervised learning
 - Build predictive models from historical data
- Unsupervised learning
 - Search for structure
 - Clustering, outlier detection, dimensionality reduction

If intelligence were a cake, unsupervised learning would be the cake, supervised learning would be the icing on the cake, . . .

Yann Le Cun, ACM Turing Award 2018

11/21

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021 12 / 21

Market-Basket Analysis

- lacksquare People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources.com/newsletters/66.php

Data Mining
- Finding an
unknown
pattern

Market-Basket Analysis

- People who buy X also tend to buy Y
- Rearrange products on display based on customer patterns
 - The diapers and beer legend
 - The true story, http://www.dssresources. com/newsletters/66.php
- Applies in more abstract settings
 - Items are concepts, basket is a set of concepts in which a student does badly
 - Students with difficulties in concept A also tend to do misunderstand concept B
 - Items are words, transactions are documents

Formal setting

- Set of items $I = \{i_1, i_2, \dots, i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, ..., t_M\}$

13/21

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$

X, Y are sels of items

Formal setting

- Set of items $I = \{i_1, i_2, ..., i_N\}$
- A transaction is a set $t \subseteq I$ of items
- Set of transactions $T = \{t_1, t_2, \dots, t_M\}$
- Identify association rules $X \rightarrow Y$
 - $X, Y \subseteq I, X \cap Y = \emptyset$
 - If $X \subseteq t_j$ then it is likely that $Y \subseteq t_j$
- Two thresholds
 - How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - How significant is this pattern overall?

People who buy
BMW's buy
Leaker upholstery

13 / 21

Madhavan Mukund Lecture 1: 5 April, 2021 DMML Apr-Jul 2021

■ For
$$Z \subseteq I$$
, Z .count = $|\{t_j \mid Z \subseteq t_i\}|$

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$ Count explicitly for T
- How frequently does $X \subseteq t_j$ imply $Y \subseteq t_j$?
 - lacktriangle Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$
- How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count}$
- How significant is this pattern overall?
 - \blacksquare Fix a support level σ

• Want
$$\frac{(X \cup Y).count}{M} \ge \sigma$$

- For $Z \subseteq I$, Z.count = $|\{t_j \mid Z \subseteq t_j\}|$ Can be computed

 How frequently does $X \subseteq t_i$ imply $Y \subseteq t_i$?
 - Fix a confidence level χ
 - Want $\frac{(X \cup Y).count}{X.count} \ge \chi$
- How significant is this pattern overall?
 - Fix a support level σ
 - Want $\frac{(X \cup Y).count}{M} \ge \sigma$
- Given sets of items I and transactions T, with confidence χ and support σ , find all valid association rules $X \to Y$

How after does anyone by X and I together?

thy Given K, to there is a precise correct answer

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$

If so, try splitting 2 as X,Y

Xuy cout > T

M

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$ For each $Z \subseteq t_j$ Increment the counter for Z
 - After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$

Court frequency book Python dictions Keys are words Value is come-

Frequent itemsets

- $X \to Y$ is interesting only if $(X \cup Y)$.count $\geq \sigma \cdot M$
- First identify all frequent itemsets
 - $Z \subseteq I$ such that Z.count $\geq \sigma \cdot M$
- Naïve strategy: maintain a counter for each Z
 - For each $t_j \in T$ For each $Z \subseteq t_j$ Increment the counter for Z
 - After scanning all transactions, keep Z with Z.count $\geq \sigma \cdot M$
- Need to maintai 2 | / | | counters
 - Infeasible amount of memory
 - Can we do better?

