## Chapter 8

## Some Special Functions

## 8.1 Notes

3/7: • Plan:

1. Go over some of the hits in chapter 8.

2. Define sine.

3. Power series.

4. Exponential functions (log, sin, cos).

• Proposition (power series properties): If  $\sum_{n=0}^{\infty} a_n x^n$  converges for all |x| < R, and  $f : B_R(0) \to \mathbb{R}$  is defined by

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

then:

(a) f is continuous.

– From the root test,  $\sum_{n=0}^{\infty} a_n x^n$  is in fact absolutely convergent on (-R, R). Therefore, on any interval  $[-R + \epsilon, R - \epsilon]$   $(0 < \epsilon < R)$ , we have

$$|a_n x^n| \le |a_n||R + \epsilon|^n$$

so by the *M*-test,  $\sum_{n=0}^{\infty} a_n x^n$  converges uniformly on  $[-R+\epsilon, R-\epsilon]$ . Then since  $\sum_{n=0}^{\infty} a_n x^n$  converges uniformly on  $[-R+\epsilon, R-\epsilon]$ , we have (a) since all  $\sum_{n=0}^{N} a_n x^n$  are continuous.

(b) f is differentiable with  $f'(x) = \sum_{n=1}^{\infty} n a_n x^{n-1}$ .

- (b) follows similarly to (a) by uniform convergence.

- Note that  $\limsup \sqrt[n]{|na_n|} = \limsup \sqrt[n]{|a_n|}$  (since  $\lim_{n\to\infty} \sqrt[n]{n} = 1$ ).

– Therefore,  $\sum_{n=1}^{\infty} n a_n x^{n-1}$  converges on (-R, R).

(c) More generally, f is infinitely differentiable with

$$f^{(k)}(x) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} a_n x^{n-k}$$

- Now (c) follows as in the proof of (b).

(d) We have the identity

$$a_k = \frac{f^{(k)}(0)}{k!}$$

- (d) follows from (c) by plugging in zero.

- Note that historically, the analysis of power series motivated the development of all of the Chapter 7 theorems; we simply learned those first without motivation to present the proofs in an ordered manner.
- Aside: Consider the exponential function  $x^y$  for  $x, y \in \mathbb{R}$  with  $x \geq 0$ .
  - We define it for natural numbers and integers fairly easily, then rationals, and then for reals as the supremum of exponentials of the entries in the Dedekind cut below  $x \in \mathbb{R}$ .
  - Under this definition, we can confirm our normal exponential rules and then that  $x^y$  is continuous.
- Recall that

$$e = \sum_{n=0}^{\infty} \frac{1}{n!}$$

- So now we are going to construct E(x), L(x), C(x), and S(x) (which are just  $e^x$ ,  $\ln(x)$ ,  $\cos(x)$ , and  $\sin(x)$ ).
- Define  $E: \mathbb{C} \to \mathbb{C}$  by

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

- By the proposition, it converges and is continuous for all  $z \in \mathbb{C}$ .
- For the real numbers, E is differentiable. (E is also complex-differentiable, but we won't go into that).
- Proposition: E(z)E(w) = E(z+w) for all  $z, w \in \mathbb{C}$ .
  - We have by the Cauchy product (Mertens' theorem) that

$$E(z)E(w) = \left(\sum_{n=0}^{\infty} \frac{z^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{w^n}{n!}\right)$$
$$= \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{z^k w^{n-k}}{k!(n-k)!}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{n} \binom{n}{k} z^k w^{n-k}$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} (z+w)^n$$
$$= E(z+w)$$

- Corollary: E(z)E(-z) = E(0) = 1 for all  $z \in \mathbb{C}$ .
- E(x) > 0 for  $x \ge 0$ .
  - It follows since E(z+w)=E(z)E(w) that E(x)>0 for all  $x\in\mathbb{R}$ .
- dE/dx = E; E is the unique, normalized (E(0) = 1) function such that this is true.
  - We can prove this from the power series definition.
- $E(x) \to \infty$  as  $x \to \infty$  and  $E(x) \to 0$  as  $x \to -\infty$ . (Also from the power series definition.)
- $0 \le x_1 < x_2$  implies that  $E(x_1) < E(x_2)$ .
  - Either from dE/dx = E > 0 or from the power series definition.
  - It follows from E(z+w) = E(z)E(w) that  $x_1 < x_2$  implies  $E(x_1) < E(x_2)$ .

- 3/9: Plan:
  - 1. Keep going with E, L, C, and S.
  - 2. Prove the fundamental theorem of algebra.
  - Define

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

- Recall that E(z+w) = E(z)E(w).
- Theorem:  $E(x) = e^x$  for all  $x \in \mathbb{R}$ .
  - $-E(1) = e^1$  (by definition).
  - $E(n) = e^n \text{ (by } E(z+w) = E(z)E(w)).$
  - $[E(p/q)]^q = E(p) = e^p \text{ (by } E(z+w) = E(z)E(w)).$
  - $-E(p/q) = e^{p/q}$  for all  $p/q \in \mathbb{Q}$ .
  - $-E(x) = e^x$  for all  $x \in \mathbb{R}$  (since both LHS and RHS are continuous functions that agree on  $\mathbb{Q}$ ).
- Briefly:  $E: \mathbb{R} \to \mathbb{R}^+$  is a strictly increasing surjective function. Thus, we have an inverse function  $L: \mathbb{R}^+ \to \mathbb{R}$ .
- Theorem: L is differentiable (and therefore continuous).
  - Since E' = E > 0 everywhere, we may apply the inverse function theorem at every point.
- Now by the chain rule, E(L(x)) = x for all  $x \in \mathbb{R}^+$ , so taking derivatives yields

$$E'(L(x))L'(x) = 1$$

$$E(L(x))L'(x) = 1$$

$$xL'(x) = 1$$

$$L'(x) = \frac{1}{x}$$

- Proposition:
  - 1. L(uw) = L(u) + L(w).
  - 2.  $L(x) = \int_1^x t^{-1} dt$ .
- Trig functions:

$$C(x) = \frac{1}{2}[E(ix) + E(-ix)]$$
 
$$S(x) = \frac{1}{2i}[E(ix) - E(-ix)]$$

- You can use these definitions to prove trig identities, having derived them geometrically.
- Proposition: If  $x \in \mathbb{R}$ , then  $C(x), S(x) \in \mathbb{R}$ .
  - Key observation:  $E(\bar{z}) = \overline{E(z)}$ .
  - We have

$$\overline{C(x)} = \frac{1}{2} [\overline{E(ix)} + \overline{E(-ix)}]$$
$$= \frac{1}{2} [E(-ix) + E(ix)]$$
$$= C(x)$$

- Symmetric for S(x).
- Note that we could equally well define C, S by

$$C(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k}$$
 
$$S(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}$$

- Proposition: E(ix) = C(x) + iS(x).
- $\bullet$  Proposition: C, S are differentiable with

$$C'(x) = -S(x)$$

$$S'(x) = C(x)$$

- Proposition: For all  $x \in \mathbb{R}$ , |E(ix)| = 1.
  - We have that

$$|E(ix)|^2 = E(ix)\overline{E(ix)} = E(ix)E(-ix) = E(0) = 1$$

- Taking square roots of both sides yields the desired result.
- The above result proves that the imaginary axis maps onto the unit circle in the complex plane.
- We now define  $\pi$  and all that.
  - Goal: Show that for all  $z \in \mathbb{C}$  with |z| = 1, there exists a unique  $\theta \in [0, 2\pi)$  such that  $e^{i\theta} = z$ . Further, E(ix) has period  $2\pi$ .
- Proposition:  $C(x)^2 + S(x)^2 = 1$ .
  - Use E(ix) = C(x) + iS(x) and |E(ix)| = 1.
- Proposition: There exists some positive number x such that C(x) = 0.
  - Suppose (contradiction): C(x) > 0 for all x > 0 (since C(0) = 1).
  - Thus, S'(x) > 0 for all x > 0.
  - Consequently, given 0 < x < y,

$$S(x)(y-x) < \int_{x}^{y} S(t) dt = C(x) - C(y) \le 2$$

- But we can choose y large enough to make S(x)(y-x) > 2, a contradiction.
- $\pi$ : The real number such that  $\pi/2$  is the unique smallest positive real number with  $C(\pi/2) = 0$ .
  - We know that a unique smallest number exists because since C(0) = 1 and C is continuous, there exists a neighborhood around 0 where C is nonzero.
- Proposition:  $S(\pi/2) = 1$ .
  - We have

$$C(\pi/2)^2 + S(\pi/2)^2 = 1$$
  
 $S(\pi/2) = \pm 1$ 

- Furthermore, since S(0) = 0 and S'(x) = C(x) is positive on  $[0, \pi/2)$ , we know that S is increasing and thus  $S(\pi/2) = +1$ .