Scilab Textbook Companion for Transmission & Distribution Of Electrical Power by P. Jain¹

Created by Harpreet Singh B TECH

Electrical Engineering
VYAS INSTITUTE OF ENGINEERING AND TECHNOLOGY

College Teacher

NA

Cross-Checked by

K. V. P. Pradeep

May 1, 2014

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Transmission & Distribution Of Electrical Power

Author: P. Jain

Publisher: Ashirwad Publications, Jaipur

Edition: 1

Year: 2012

ISBN: 978-93-80343-73-0

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

List of Scilab Codes		4
1	Supply System	8
2	Distribution System	12
3	Mechanical Features of Overhead Line	18
4	Transmission Line Parameters	30
5	Performance of Short and Medium Transmission Lines	43
6	Performance of Long Transmission Lines	60
7	Corona	82
8	Insulators	88
9	Underground Cables	94

List of Scilab Codes

Exa 1.1	Find the copper saving
Exa 1.4	Calculate volume of conductor required in 1 phase 2 wire
	and 3 phase 3 wire system
Exa 1.5	Calculate DC supply voltage
Exa 2.1	Calculate the most economical cross sectional area
Exa 2.2	Calculate the most economical current density
Exa 2.3	Calculate the most economical current density and di-
	ameter of conductor
Exa 2.4	Calculate the most economical cross sectional area
Exa 2.5	Calculate the most economical cross sectional area
Exa 2.6	Calculate the most economical cross sectional area
Exa 3.1	calculate the weight of the conductor required
Exa 3.2	Calculate the max sag
Exa 3.3	Calculate the hieght above ground at which conductor
	should be supported
Exa 3.4	Calculate horizontal component of tension and max sag
Exa 3.5	Calculate the max sag in still air and wind pressure
Exa 3.6	Calculate the max sag
Exa 3.7	Calculate the vertical sag
Exa 3.8	Calculate the minimum clearance of conductor and water
Exa 3.9	Calculate sag from taller of the two supports
Exa 3.10	find the clearance of conductor from ground
Exa 3.11	Find stringing tension in the conductor
Exa 3.12	find the clearance of conductor from water level at mid
	point
Exa 3.13	find the clearance of conductor from ground 1 At its
	lowest elevation 2 the min clearance of the line
Exa 3.14	Determine Sag and Tension under erection conditions

Exa 4.1	Find the loop inductance and reactance	30
Exa 4.2	Find the loop inductance	30
Exa 4.3	Calculate GMR pf ACSR conductor	31
Exa 4.4	Find the total inductance of the line	32
Exa 4.5	Find the loop inductance	32
Exa 4.6	Find the inductance per phase of 30 km line	33
Exa 4.7	Find the inductance of a 3 phase line situated at cornes	
	of a triangle	33
Exa 4.8	Find the inductance of a 3 phase line arranged in hori-	
	zontal plane	34
Exa 4.9	Find the loop inductance per phase	34
Exa 4.10	Find the loop inductance per phase	35
Exa 4.11	Find the inductance of an ASCR 3 phase line	36
Exa 4.12	Find inductive reactance of 3 phase bundled conductor	37
Exa 4.13	Find the capacitance of 1 phase line	38
Exa 4.14	Find the capacitance of 2 wire 1 phase line	38
Exa 4.15	Find the capacitance of 3 phase line	39
Exa 4.16	Find the capacitance of 3 phase 3 wire line	39
Exa 4.17	Find the capacitance and charging current	40
Exa 4.18	find capacitive reactance to neutral and charging current	40
Exa 4.19	Calculate the capacitance per phase	41
Exa 5.1	Find voltage at sending end and percentage regulation	
	and transmission efficiency	43
Exa 5.2	voltage at sending end and percentage regulation and	
	total line losses and transmission efficiency	44
Exa 5.3	find sending end voltage and regulation	44
Exa 5.4	Find sending end voltage and power factor and efficieny	
	and regulation	45
Exa 5.5	Find load end voltage and efficieny	46
Exa 5.6	Find current and voltage of sending end and percentage	
	regulation and line losses and sending end power factor	
	and transmission efficiency	47
Exa 5.7	Find current and voltage of sending end and percentage	
	regulation and transmission efficiency	48
Exa 5.8	Find current and voltage of sending end and percentage	
	regulation	49
Exa 5.9	Find current and voltage of sending end	50

Exa 5.10	Find regulation and charging current using nominal T method
Exa 5.11	find sending end voltage and current and power and
LX4 0.11	efficiency
Exa 5.12	Find ABCD parameters and sending end voltage and
LAG 0.12	current and power factor and transmission eficiency
Exa 5.13	find sending end voltage and current and power and
LX4 0.10	efficiency
Exa 5.14	Determine ABCD constant and sending end power factor
Exa 6.1	Determine auxiliary constants
Exa 6.2	Determine sending end voltage and current
Exa 6.3	Determine percentage rise in voltage
Exa 6.4	alculate constants of equivalent circuit of line
Exa 6.5	calculate constants of equivalent circuit of line
Exa 6.6	calculate Ao and Bo and Co and Do constants
Exa 6.7	calculate equivalent T and pi constants
Exa 6.8	find sending end reactive and active power
Exa 6.9	find sending end voltage and regulation and recieving
2110 0.0	end rective and synchornous power
Exa 6.10	find sending end voltage and charging current and power
Exa 6.11	Determine sending end voltage and current and power
2110 0111	factor and MVA and power angle
Exa 6.12	Find sending end voltage and current and power factor
Exa 6.13	Find characteristics impedance and propogation con-
	stant and ABCD constants
Exa 6.14	Determine recieving end voltage and current
Exa 6.15	Determine the induced voltage in the telephone line .
Exa 7.1	Determine line voltage for commencing of corona
Exa 7.2	Determine whether corona will be there or not
Exa 7.3	Determine critical discruptive voltage for line
Exa 7.4	Find spacing between the conductor
Exa 7.5	Determine critical discruptive voltage for line
Exa 7.6	Determine critical discruptive voltage for line and corona
	loss
Exa 7.7	Determine critical disruptive voltage and Visual critical
	voltage and Corona loss
Exa 7.8	Find corona characteristics

Exa 8.1	find voltage distribution across each insulator and string	
	efficiency	88
Exa 8.2	find max safe working voltage and string efficiency	89
Exa 8.3	find ratio of ground to mutual capacitance and system	
	line voltage and string efficiency	89
Exa 8.4	find system line voltage and string efficiency	90
Exa 8.5	find max safe working voltage	90
Exa 8.7	Find the values of line to pin capacitance	91
Exa 8.8	find string efficiency	91
Exa 8.9	Calculate voltage on line end unit and capacitance Cx	
	required	92
Exa 9.1	Determine insulation resistance	94
Exa 9.2	Determine resistivity of dielectric in a cable	94
Exa 9.3	Find max and min electrostatic stresses and capacitance	
	and charging current	95
Exa 9.4	Find max electrostatic stresses and charging kVA	96
Exa 9.5	Determine internal diameter of shealth D and diameter	
	of conductor d	96
Exa 9.6	Determine most economical value of diameter and over-	
	all diameter of insulation	97
Exa 9.7	Determine most economical value of diameter of single	
	core cable	97
Exa 9.8	find safe working voltage of cable	98
Exa 9.9	find radial thickness and safe working voltage of cable	99
Exa 9.10	find the voltage on the intersheaths	99
Exa 9.11	find the position and voltage on the intersheaths and	
	max and min stress	100
Exa 9.12	Calculate the charging current	102
Exa 9.13	Calculate the kVA taken	102
Exa 9 14	Calculate the charging current	103

Chapter 1

Supply System

Scilab code Exa 1.1 Find the copper saving

```
1 //Find the copper saving
2 clear;
3 clc;
4 //soltion
5 //given
6 v1=240; //volt//initial voltage of the system
7 v2=500;//volt //final voltage of the system
8 printf("Volume at 240 volts (vol1) = (4*P^2*d*1)/(%d
     *W) \ n", v1^2/4);
9 printf("Volume at 500 volts (vol2) = (4*P^2*d*1)/(%d
     *W) \n", v2^2/4);
10 printf("Percentage saving in copper = ((vol1-vol2)
     *100) / vol1 n");
11 s = (((1/v1^2) - (1/v2^2))/(1/v1^2))*100;
12 printf ("The percentage saving of the copper is, %.2f
      percent",s);
```

Scilab code Exa 1.4 Calculate volume of conductor required in 1 phase 2 wire and 3 phase 3 wire system

```
1 //Calculate volume of conductor required in 1 phase
      2 wire and 3 phase 3 wire system
2 clear;
3 clc;
4 //solution
5 //given
6 pf=0.8;//power factor
7 pMVA = (2.5*10^6); // volt ampere
8 v = (33*10^3); //volts
9 1=50*10^3; //m//length of the line
10 p=pMVA*pf;//watts//power trasmitted = power in MVA*
11 w=0.2*p; // watts // line losses = 20% of power
      transmitted
12 d=2.85/10<sup>8</sup>;//ohm meter//resistivity of aluminium
13 printf(" 1 phase 2 wire system\n");
14 i1 = pMVA/v;
15 a1=(2*i1^2*d*1)/w;
16 printf(" Load current in 1 phase 2 wire system= %f
      ampere\n",i1);
17 printf(" Cross sectional area of 1 phase 2 wire
      system = \%f m^2 n, a1);
18 \text{ vol1}=2*a1*1;
19 printf ("Volume of aluminium conductor required in 1
       phase 2 wire system = \%f meter cube \n\n", vol1);
20 printf(" 3 phase 3 wire system\n");
21 i2=pMVA/(3^0.5*v);
22 \quad a2 = (3*i2^2*d*1)/w;
23 printf(" Load current in 3 phase 3 wire system= %f
      ampere \n", i2);
24 printf(" Cross sectional area of 3 phase 3 wire
      system= \%f m<sup>2</sup>\n",a2);
25 \text{ vol2}=3*a2*1;
26 printf ("Volume of aluminium conductor required in 3
      phase 3 wire system = %f meter cube ",vol2);
```

Scilab code Exa 1.5 Calculate DC supply voltage

```
1 //find the DC supply voltage
2 clear;
3 clc;
4 //soltion
5 //given
6 //consider 1 phase AC system
7 pf = 0.8;
8 v = (33*10^3); //volts
9 r1=0.15; //ohm//total resistance of the 1 phase line
10 PD1=0.2; //percentage voltage drop in 1 phase AC
      system
11 Vd=PD1*v; //volt//voltage drop in the line
12 I1=Vd/r1; //ampere//load current
13 p=v*I1*pf;//watts//power recieved by the consumer
14 P=p/10<sup>8</sup>;
15 printf("1 phase AC system \n");
16 printf("Voltage drop= %d volts\n", Vd);
17 printf("Load current= %d ampere\n", I1);
18 printf ("Power recieved by consumer= %d watts or= %f
      *10^5 \text{ kW } \text{nn",p,P};
19 //consider DC 2 wire system
20 r2=0.1; //ohm//total resistance of the DC 2 wire line
21 PD2=0.25; //percentage voltage drop in DC 2 wire
      system
22 printf("DC 2 wire system\n");
23 printf ("Load current in DC system= \%f/V \setminus n",p);
24 printf("Voltage drop= Load curret*line resistance=
      I2*R2= (\%d/V)*\%f \ n", p, r2);
25 printf ("Given voltage drop is 25 percentage of max
      voltage = .25*V \ n ");
26 \ V = sqrt((p*r2)/PD2);
27 printf ("Equating above equation we get V= \%f KV", V
```

/1000);

Chapter 2

Distribution System

Scilab code Exa 2.1 Calculate the most economical cross sectional area

```
1 // Calculate the most economical cross sectional area
2 clear;
3 clc;
4 //soltion
5 //given
6 id=0.15; //interest & depreciation charges
7 i=260;//ampere//max current
8 d=0.173; //ohm//resistance of conductor
9 cst=.03; //rs// cost of energy per unit
10 t = (365*24)/2; //time of energy loss
11 printf("Annual cost of 2 core feeder cable is Rs(90a
     +10) per meter\n");
12 P3=(2*i^2*d*t*cst)/1000/kWh//annual cost of energy
13 printf("Energy loss per annum= P3/a = \%f/a \ n",P3);
14 P2=90*1000*id; //energy lost per annum
15 printf("Capital cost= P2*a= \%d*a \n", P2);
16 a=sqrt(P3/P2);
17 printf("Economic cross section of conductor is=
     P3/P2)= %f square cm",a);
```

Scilab code Exa 2.2 Calculate the most economical current density

```
1 // Calculate the most economical current density
2 clear;
3 clc;
4 //soltion
5 //given
6 id=0.1; //interest & depreciation charges
7 d=1.78*10^-8; //ohm m//resistivity
8 R=(d*1000)/10^-4;//ohm//resistance of conductor
9 cst=.50;//rs// cost of energy per unit
10 t=(365*24); //time of energy loss
11 lf=.7; //load factor of losses
12 printf("Annual cost of cable is Rs(2800a+1300)per km
     \n\n");
13 printf ("Resistance of each conductor= \%f/a \n", R);
14 P3=(R*t*cst*lf)/1000; //*I^2//kWh//annual cost of
     energy loss
15 printf ("Annual cost of energy loss= P3/a= (%f*I^2)/a
      \n", P3);
16 P2=2800*id; //energy lost per annum
17 printf("Annual charge on account of intrest and
      depreciation on variable cost of line= P2*a= %d*a
     \n", P2);
18 J=sqrt(P2/P3);//current density I/a
19 printf("Economic current density of conductor is %f
     A/cm square", J);
```

Scilab code Exa 2.3 Calculate the most economical current density and diameter of conductor

```
1 // Calculate the most economical current density and
      diameter of conductor
2 clear;
3 clc;
4 //soltion
5 //given
6 id=0.1; //interest & depreciation charges
7 cst=.02; //rs// cost of energy per unit
8 d=0.173; //ohm//resistance of conductor
9 pf=.8; //lagging
10 P=1500*10^3; //Watts//load
11 V=11000; //volts//supply voltage
12 t=200*8; //hours
13 printf("annual cost of 3 core feeder cable is Rs
      (8000 + 20000 \text{ a) per km/n"});
14 printf ("Resistance of each conductor= \%.3 \, f/a \, n", d)
15 i=P/(sqrt(3)*V*pf);//ampere
16 printf ("Current in each conductor= \%.3 f A\n", i);
17 P2=20000*id; //energy lost per annum
18 printf("Capital cost= P2*a= \%d*a \n", P2);
19 P3 = (3*i^2*d*t*cst)/1000; //kWh//annual cost of energy
       loss
20 printf ("Energy loss per annum = P3/a = \%f/a \ n", P3);
21 \quad a = sqrt(P3/P2);
22 printf("Economic cross section of conductor is=
      P3/P2) = %f square cm \n",a);
23 printf("Diameter of conductor= \%.1 \, f cm \n", sqrt(4*a
      /%pi));
24 printf ("Current density= %f A/cm square", i/a);
```

Scilab code Exa 2.4 Calculate the most economical cross sectional area

```
1 // Calculate the most economical cross sectional area
2 clear;
```

```
3 \text{ clc};
4 // soltion
5 //given
6 id=0.1; //interest & depreciation charges
7 pf = .8; // lagging
8 P=10^6; //Watts//load
9 V=11000; //volts//supply voltage
10 cst=.15; //rs// cost of energy per unit
11 d=1.75*10^-6; //ohm cm//specific resistance
12 l=1000/m/length of the cable
13 t = 3000; //hours
14 printf ("Annual cost of 2 core feeder cable is Rs(30)
     + 500a) per meter\n");
15 R=(d*1000*100); //ohm//resistance of conductor
16 printf ("Resistance of each conductor= \%f/a \n", R);
17 i=P/(V*pf); //ampere
18 printf ("Current in each conductor= \%f A\n", i);
19 P2=500*10^3*id; //energy lost per annum
20 printf("Capital cost= P2*a= \%d*a \n", P2);
21 P3=(2*i^2*R*t*cst)/1000; //kWh//annual cost of energy
       loss
22 printf ("Energy loss per annum = P3/a = \%f/a \ n", P3);
23 \quad a = sqrt(P3/P2);
24 printf("Economic cross section of conductor is=
      P3/P2)= %f square cm \n",a);
25 printf ("Diameter of conductor= \%f cm \n", sqrt (4*a/
      %pi));
```

Scilab code Exa 2.5 Calculate the most economical cross sectional area

```
1
2 // Calculate the most economical cross sectional area
3 clear;
4 clc;
5 // soltion
```

```
6 //given
7 id=0.1; //interest & depreciation charges
8 pf = .85; //lagging
9 Pm=10<sup>3</sup>; //Watts//Max Demand
10 Pt=5*10^6//kWh//Toatal energy consumption
11 V=11000; //volts//supply voltage
12 cst=.05; //rs// cost of energy per unit
13 d=1.72*10^-6; //ohm cm//specific resistance
14 t = (365*24); //time of energy loss
15 printf("Annual cost of cable is Rs(80000a + 20000)
      per km n");
16 lf=Pt/(Pm*t)//Annual load factor
17 printf("Annual load factor= \%f\n", lf);
18 llf=.25*lf+.75*lf^2; //Loss load factor
19 printf ("Loss load factor= \%f\n",11f);
20 i=Pm*1000/(sqrt(3)*V*pf); //ampere
21 printf ("Current in each conductor= \%.1 \text{ f A}\n", i);
22 P2=80000*id; //energy lost per annum
23 printf("Capital cost= P2*a= \%d*a*l \ n", P2);
24 R = d*100*1000; //ohm
25 P3 = (3*i^2*R*t*cst*llf)/1000; //kWh//annual cost of
      energy loss
26 printf ("Energy loss per annum= (P3*1)/a = (\%f*1)/a \setminus n
      ",P3);
27 \ a = sqrt(P3/P2);
28 printf("Economic cross section of conductor is=
      P3/P2)= %f square cm \n",a);
29 //THERE IS TYPOGRAPHICAL ERROR IN THE ANS IN BOOK IT
       IS 0.2404 \text{ cm}^2
```

Scilab code Exa 2.6 Calculate the most economical cross sectional area

```
1 // Calculate the most economical cross sectional area
2 clear;
3 clc;
```

```
4 //soltion
5 //given
6 id=0.1; //interest & depreciation charges
7 V=20000; //volts//supply voltage
8 d=1.72*10^-6; //ohm cm//specific resistance
9 cst=.6;//rs// cost of energy per unit
10 p1=1500//kilowatts
11 t1=8//hours
12 pf1=.8//power factor
13 p2=1000//kilowatts
14 t2 = 10 / hours
15 pf2=.9/power factor
16 p3=100//kilowatts
17 t3=6//hours
18 pf3=1//power factor
19 t = 365 //no. of days
20 i1=p1*1000/(sqrt(3)*V*pf1);//ampere//current at time
21 i2=p2*1000/(sqrt(3)*V*pf2);//ampere//current at time
22 i3=p3*1000/(sqrt(3)*V*pf3);//ampere//current at time
23 R=d*100*1000; //ohm
24 P2=8000*id;//Loss load factor
25 printf("Annual cost of cable is Rs(80000a + 20000)
      per km n");
26 printf("Capital cost= P2*a= \%d*a*l \ n", P2);
27 P3=(3*((i1^2*t1)+(i2^2*t2)+(i3^2*t3))*R*t*cst)/1000;
     //kWh//annual cost of energy loss
28 printf ("Energy loss per annum= (P3*1)/a = (\%f*1)/a \setminus n
     ",P3);
29 \quad a = sqrt(P3/P2);
30 printf("Economic cross section of conductor is=
     P3/P2) = %f square cm \n",a);
```

Chapter 3

Mechanical Features of Overhead Line

Scilab code Exa 3.1 calculate the weight of the conductor required

```
1 //calculate the weight of the conductor required
2 clear:
3 clc;
4 //soltion
5 //given
6 p=30*10^6; // watts// power to be transmitted
7 v=132*10^3; // volts // Line voltage
8 l=120*10^3; //m//length of 3 phase 3 wire line
9 n=0.9; // efficieny of the transmission line
10 pf = .8; //power factor
11 d1=1.78*10^-8; //ohm m//resistivity of copper
12 d2=2.6*10^-8; //ohm m//resistivity of aluminuim
13 D1=8.9*10^3; //(kg/m^3)//specific gravity of the
14 D2=2*10^3; //(kg/m^3)//specific gravity of the
     aluminium
15 printf ("Weight of the conductor required n\n");
16 printf ("W=(3*d*l^2*P*D)/((1-n)*V^2*pf^2) kg\n\n\n");
17 W1 = (3*d1*1^2*p*D1)/((1-n)*v^2*pf^2);
```

Scilab code Exa 3.2 Calculate the max sag

```
//Calculate the max sag
clear;
clc;
//soltion
//given
W=.6;//kg/m//Line conductor wieght
L=300;//meter//span of the line
T=1200;//kg//max allowable tension
printf("Max sag= (W*L^2)/(8*T)\n");
sag= (W*L^2)/(8*T);
printf("Sag= %.3 f m", sag);
```

Scilab code Exa 3.3 Calculate the hieght above ground at which conductor should be supported

```
// Calculate the hieght above ground at which
conductor should be supported
clear;
clc;
//soltion
//given
W=680; //kg/km//Line conductor weight
L=240; //meter//span of the line
U=3200; //kg// Ultimate strength
sf=2; //safety factor
```

```
10 T=U/sf;//kg//max allowable tension
11 gc=8;//m//ground clearance
12 w=W/1000;//kg/m//Weight of conductor in meter
13 printf("Max sag= (W*L^2)/(8*T)\n");
14 sag= (w*L^2)/(8*T);
15 printf("Sag= %.2 f m\n", sag);
16 H=gc+sag;
17 printf("Height above which conductor should be supported\n= ground clearance+ sag= %.2 f m",H);
```

Scilab code Exa 3.4 Calculate horizontal component of tension and max sag

```
1 // Calculate horizontal component of tension and max
      sag
2 clear;
3 clc;
4 //soltion
5 //given
6 W=750; //kg/km//Line conductor weight
7 L=300; //meter//span of the line
8 T=3400; //kg//max allowable tension
9 w=W/1000; //kg/m//Weight of conductor in meter
10 printf ("Max sag= (W*L^2)/(8*Th) n");
11 x = (w*L^2)/(8);
12 printf ("Sag= \%.1 \text{ f/Th/n/n}", x);
13 printf ("Max tension = Th + wS\n");
14 Th=(T+sqrt(T^2+4*w*x))/2;
15 printf ("Horizontal component of tension (Th) = \%.3 f
      kg \ n", Th);
16 sag= (w*L^2)/(8*Th);
17 printf ("Sag= \%.3 \text{ f m/n}", sag);
18 y=sag/2;
19 z = sqrt((2*Th*y)/w);
20 printf ("Point at which sag will be half= \%.3 \,\mathrm{f} m\n",
```

```
z);
21 //THERE IS TYPOGRAPHICAL ERROR IN BOOK DUE TO THAT
THERE IS A VARIATION
22 //IN BOOK Th=3448.191 kg
23 //MAX SAG=2.446 m
24 //Point at which sag will be half= 106.045 m
```

Scilab code Exa 3.5 Calculate the max sag in still air and wind pressure

```
1 // Calculate the max sag in still air and wind
      pressure
2 clear;
3 clc;
4 //soltion
5 //given
6 Wc=1.13; //kg/m//Line conductor weight
7 P=33.7//kg/m^2//Wind pressure
8 L=180; //meter//span of the line
9 fu=4220;//kg//Ultimate stress
10 sf=5; //safety factor
11 f=fu/sf;//kg//working stress
12 D=1.27; //cm//dia of copper
13 r=1.25; //cm//Radial thickness of ice
14 a=(\%pi*D^2)/4;//cm^2//area of cross section
15 printf ("Area of cross section = \%3f cm<sup>2</sup>\n",a);
16 T=f*a; //kg//max allowable tension
17 printf ("Working tension = \%.2 \, \text{f kg/n}", T);
18 sag1= (Wc*L^2)/(8*T); //sag in still air
19 printf ("Sag in sill air = \%. 2 f m\n", sag1);
20 Wi=2890.3*r*(D+r)*10^-4;
21 printf ("Weight of ice coating= \%.2 \, \text{fkg} \, \text{n}", Wi);
22 Ww=P*(D+2*r)*10^-2;
23 printf ("Wind force= \%.5 \, \text{fkg} \, \text{n}", Ww);
24 Wr = sqrt((Wc + Wi)^2 + Ww^2);
25 sag2= (Wr*L^2)/(8*T); //sag in wind + ice
```

```
26 printf("Max Sag= \%.3 \text{ f m/n}", sag2);
```

Scilab code Exa 3.6 Calculate the max sag

```
1 // Calculate the max sag
2 clear;
3 clc;
4 Wc=.85; // kg/m// Line conductor wieght
5 L=275; //meter//span of the line
6 U=8000; //kg//Ultimate strength
7 sf=2; //safety factor
8 P=39; // \text{kg/m}^2 // \text{Wind pressure}
9 T=U/sf;//kg//max allowable tension
10 D=19.5; //mm//dia of copper
11 r=13; //cm//Radial thickness of ice
12 Wi = 910 * \%pi * r * (D+r) * 10^-6;
13 Ww=P*(D+2*r)*10^-3; //Wind force/m lenght
14 Wr=sqrt((Wc+Wi)^2+Ww^2);//resultant sag
15 sag= (Wr*L^2)/(8*T);//sag in wind + ice
16 printf("Max Sag= \%.3 \text{ f m/n}", sag);
```

Scilab code Exa 3.7 Calculate the vertical sag

```
1 //Calculate the vertical sag
2 clear;
3 clc;
4 //soltion
5 //given
6 W=1170; //kg/km//Line conductor wieght
7 P=122; //kg/m^2//Wind pressure
8 L=200; //meter//span of the line
9 A=1.29; //cm^2//cross sectional area
10 U=4218*A; //kg//Breaking strength
```

Scilab code Exa 3.8 Calculate the minimum clearance of conductor and water

```
1 // Calculate the minimum clearance of conductor and
     water
2 clear;
3 clc;
4 //soltion
5 //given
6 W=1.5; //kg/m//Line conductor wieght
7 L=500; //meter//span of the line
8 T=1600; //kg//max allowable tension
9 T1=30; //m// height of the tower 1
10 T2=90; //m// height of the tower 2
11 h=T2-T1; //m// difference in the between support
12 printf ("Distance of support T1 from O(Lowest point)
     be x1\n");
13 printf ("Distance of support T2 from O(Lowest point)
     be x2 n");
```

```
14  printf("x1+x2= %dm\n",L);
15  dif=((h*2*T)/(W*L));//x2-x1
16  printf("x2-x1= %dm\n",dif);
17  x2=(L+dif)/2;//m
18  x1=L-x2;//m
19  printf("x1= %dm, x2= %dm\n",x1,x2);
20  sag= ((W*x1^2)/(2*T));//m
21  printf("Sag(From tower 1)= %d m\n",round(sag));
22  C=T1-sag;//Clearance
23  printf("Clearance of the lowest point from water level= %dm\n",C);
```

Scilab code Exa 3.9 Calculate sag from taller of the two supports

```
1 // Calculate sag from taller of the two supports
2 clear;
3 clc;
4 //soltion
5 //given
6 Wc=1.925; //kg/m//Line conductor wieght
7 L=600; //meter//span of the line
8 h=15/m/T1-T2
9 Wi=1//kg//Wieght of the ice
10 Wr=Wi+Wc; // resultant weight
11 A = 2.2 / \text{cm}^2
12 U=8000*A; //kg//Breaking strength
13 sf=5; //safety factor
14 T=U/sf;//kg//max allowable tension
15 printf("x1+x2=\%dm\n",L);
16 dif=((h*2*T)/(Wr*L));//x2-x1
17 printf ("x2-x1 = \%dm n", dif);
18 x2=(L+dif)/2;/m
19 x1=L-x2;/m
20 printf("x1 = %dm, x2 = %dm \setminus n", round(x1), round(x2));
21 sag= ((Wr*(round(x2))^2)/(2*T));/m
```

Scilab code Exa 3.10 find the clearance of conductor from ground

```
1 //find the clearance of conductor from ground
2 clear;
3 clc;
4 //soltion
5 //given
6 W=1; //kg/m//Line conductor wieght
7 L=300; //meter//span of the line
8 T=1500; //kg//max allowable tension
9 T1=22-2; //m// effective height of the towers
10 g=1/20; //\sin
                  //gradient
11 h=L*g//m//vertical distance between two towers
12 printf("x1+x2
                     %dm n, L);
13 dif=((h*2*T)/(W*L)); //x2-x1
14 printf("x2-x1= %dm n", dif);
15 x2=(L+dif)/2;/m
16 x1=L-x2;/m
17 printf("x1 = \%dm, x2 = \%dm \setminus n", round(x1), round(x2));
18 sag= ((W*x2^2)/(2*T)); //m
19 printf("Sag= \%.3 \text{ f m} n", sag);
20 T2=T1+h; //m//hieght of the second tower
21 gf=x1*tand(asind(1/20)); //m// elevation of the
      groundat max sag
22 OG=T2-sag-gf; //m//ground clearance
23 printf ("Clearance of the lowest point O from ground
      is \%.2\,\mathrm{fm}", OG);
24 //SINCE THERE IS NO REFRENCE OF WATERLEVEL IN THE
     QUESTION THEREFORE THE EXTRA SOLUTION IS AN
     TYPOGRAPHICAL ERROR
```

Scilab code Exa 3.11 Find stringing tension in the conductor

```
1 //Find stringing tension in the conductor
2 clear;
3 clc;
4 //soltion
5 //given
6 W=0.7; //kg/m//Line conductor wieght
7 L=250; //meter//span of the line
8 T1=25; //m// height of the tower 1
9 T2=75; //m//height of the tower 2
10 h=T2-T1; //m// difference in the between support
11 Tm=45; //m//hieght of midway between the towers
12 hm=Tm-T1; //m//midway point between the two towers
13 Lm=L/2; //m//half of the span
14 printf ("We know that \nh=(W*L*(L-2*x))/(2*T)\n");
15 printf ("For the two towers \n\%d = (\%.1 \text{ f} *\%d(\%d-2*x)) / (2*
      T) \setminus n", h, W, L, L);
16 printf ("For the mid point \n\%d=(\%.1 \text{ f}*\%d(\%d-2*x))/(2*
      T) \setminus n", hm, W, Lm, Lm);
17 x = -(2*L) + (2.5*Lm);
18 printf("By above equation x = \%d m n", x);
19 T = (W*L*(L-2*x))/(2*h);
20 printf ("Stringing Tension (T)=\%.2 f \text{ kg}", T)
```

Scilab code Exa 3.12 find the clearance of conductor from water level at mid point

```
1 //find the clearance of conductor from water level
    at mid point
2 clear;
3 clc;
```

```
4 //soltion
5 //given
6 W=.844; // kg/m// Line conductor wieght
7 L=300; //meter//span of the line
8 T=1800; //kg//max allowable tension
9 T1=40; //m//height of the tower 1
10 T2=80; //m//height of the tower 2
11 h=T2-T1; //m// difference in the between support
12 x=L/2-(T*h)/(W*L);
13 printf("Distance between midpoint and lowest point=
      \%.2 \, \text{fm} \, \text{n}", (L/2)-x);
14 Smid=(W*(L/2-x)^2)/(2*T);
15 printf ("Height between midpoint and lowest point= \%
       .3 \, \mathrm{fm} \setminus \mathrm{n}, Smid);
16 S2=(W*(L-x)^2)/(2*T);
17 printf("Height between taller tower and lowest point
      = \%.3 \,\mathrm{fm} \,\mathrm{n}", S2);
18 C=T2-(S2-Smid);
19 printf ("Clearance of conductor from water level at
      mid point= \%.3 \, \text{fm}", C)
```

Scilab code Exa 3.13 find the clearance of conductor from ground 1 At its lowest elevation 2 the min clearance of the line

```
//find the clearance of conductor from ground i)At
    its lowest elevation ii)the min clearance of the
    line

clear;

clc;

//soltion
//given

W=.8;//kg/m//Line conductor wieght

L=300;//meter//span of the line

T=1500;//kg//max allowable tension

T1=30;//m//height of the towers
```

```
10 g=1/20; //\tan
                    //ground slope
11 h=L*g//m//vertical distance between two towers
12 T2=T1+h; //m//height of the tower along the slope
13 x1=L/2-(T*h)/(W*L);
14 printf ("Distance between tower on ground and sag=x1=
       \%.2 \,\mathrm{fm} \,\mathrm{n}", x1);
15 S1 = (W * x1^2) / (2 * T);
16 printf("Sag for tower on ground(S1)= \%.5 \,\text{fm} \,",S1);
17 S2=(W*(L-x1)^2)/(2*T);
18 printf ("Sag for tower on hill (S2) = \%.5 \,\text{fm} \,", S2);
19 C=T1-S1-x1*g;
20 printf ("Clearance of conductor from lowest elevation
      = \%.5 \,\mathrm{fm} \,\mathrm{n}", C);
21 x = poly(0, 'x');
22 C1= poly([C -g W/(2*T)], 'x', 'c');
23 d=derivat(C1);
24 xa=roots(d);
25 \text{ Ca=C-g*xa+W/(2*T)*xa^2};
26 printf("Minimum clearance from ground= %dm", Ca);
```

Scilab code Exa 3.14 Determine Sag and Tension under erection conditions

```
//Determine Sag & Tension under erection conditions
clear;
clc;
//soltion
//given
W=.9;//kg/m//Line conductor wieght
L=300;//meter//span of the line
a=2.40*10^-4//m^2//area
D=19.5//mm//diameter
U=8000;//kg//Ultimate strength
sf=2;//safety factor
P=38.5;//kg/m^2//Wind pressure
```

```
13 T1=U/sf; //kg//max allowable tension
14 E=9320*10^6; // \text{kg/m}^2 // \text{Young's Modulus}
15 alp=18.44*10^-6; //1/ C // Linear expansion
16 t1=5// C//temperature under normal condition
17 t2=35// C//temperature under worst condition
18 dt=t2-t1; // C // difference in temperature
19 f1=T1/a;
20 Ww=P*(D)*10^-3; // weight due to wind
21 printf ("Wind force= \%.2 \, \text{fkg} \, \text{n}", Ww);
22 Wr=sqrt(W^2+Ww^2); //resultant weight
23 C1=W^2*L^2*E/(24*a^2);
24 C2=-f1+Wr^2*L^2*E/(24*f1^2*a^2)+dt*alp*E;
25 p=poly([-C1 0 C2 1], 'f2', 'c');
26 \text{ r=roots(p)};
27 f2= 11951292; //accepted value of f2
28 \text{ sag}=(W*L^2)/(8*f2*a);
29 printf ("Sag at erection = \%.3 \,\text{fm}", sag);
30 //The book has used in correct value of f2 and in it
       the sag is 2.121m
```

Chapter 4

Transmission Line Parameters

Scilab code Exa 4.1 Find the loop inductance and reactance

```
1 //Find the loop inductance and reactance
2 clear;
3 clc;
4 //soltion
5 //given
6 r=(1.213*10^-2)/2;//m//radius of the conductor
7 d=1.25;//m//spacing
8 f=50;//Hz//freq
9 re=r*exp(-1/4);
10 L=4*10^-7*log(d/re);
11 Lkm=L*1000;
12 printf("Inductance per km(L)=%.2f*10^-4 H/Km\n", Lkm *10^4);
13 X=2*%pi*f*Lkm;
14 printf("Reactance(X)= %.1f ohm/km", X);
```

Scilab code Exa 4.2 Find the loop inductance

```
//Find the loop inductance
clear;
clc;
//soltion
//given
r=(1*10^-2)/2;//m//radius of the conductor
d=2;//m//spacing
u=50//relative permeability of steel and copper
L=(1+4*log(d/r))*10^-7*1000;
LmH=L*1000;
printf("Inductance per km(L) copper conductor=%.3f mH\n",LmH);
Lr=(u+4*log(d/r))*10^-7*1000;
printf("Inductance per km(L) steel conductor=%.3f mH\n",LmH);
```

Scilab code Exa 4.3 Calculate GMR pf ACSR conductor

```
1 // Calculate GMR pf ACSR conductor
2 clear;
3 clc;
4 //soltion
5 //given
6 r=3;//mm//radius of the conductor
7 re=r*exp(-1/4);
8 d11=re;
9 d12=2*r/=d17=d16;
10 d14=4*r;
11 d13 = sqrt(d14^2 - d12^2); //=d15
12 Ds1=(d11*d12*d13*d14*d13*d12*d12);
13 Ds1_=Ds1/(r^7);
14 printf ("Ds1= (\%f) (1/7) *r n", Ds1_);
15 d71=2*r; //=d72=d73=d74=d75=d76
16 Ds7=(d71^6*re);
17 Ds7_=Ds7/(r^7);
```

```
18 printf("Ds7= (%f)^(1/7)*r\n",Ds7_);

19 Ds=(Ds1^6*Ds7)^(1/49);

20 printf("GMR= %.4fmm",Ds);
```

Scilab code Exa 4.4 Find the total inductance of the line

```
1 //Find the total inductance of the line
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1.4; //cm//radius of the conductor
7 re=r*exp(-1/4);
8 d12=20; //cm//spacing b/w 1&2
9 d11_=20+120; //cm//spacing b/w 1&1'
10 d12_=20+120+20; //cm//spacing b/w 1\&2
11 d21_=120; //cm//spacing b/w 2&1
12 d22_=20+120; //cm//spacing b/w 2&2
13 Dm = (d11_*d12_*d21_*d22_)^(1/4);
14 printf ("Mutual GMD= \%.2 \text{ fcm} \n", Dm);
15 Ds=floor((re*d12*re*d12)^(1/4)*100)/100;
16 printf ("Self GMD= \%.2 \text{ fcm} \n", Ds);
17 L=0.4*\log(Dm/Ds);
18 printf("Loop Inductance of line= \%.5 f mH/km", L);
```

Scilab code Exa 4.5 Find the loop inductance

```
1 //Find the loop inductance
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1/2; //cm//radius of the conductor
```

```
7 re=r*exp(-1/4);
8 d12=200; //cm//spacing b/w 1&2
9 d11_=300; //cm//spacing b/w 1&1'
10 d12_=sqrt((300)^2+(200)^2); //cm//spacing b/w 1&2'
11 d21_=d12_; //cm//spacing b/w 2&1'
12 d22_=300; //cm//spacing b/w 2&2'
13 Dm=(d11_*d12_*d21_*d22_)^(1/4);
14 printf("Mutual GMD= %.3 fcm\n", Dm);
15 Ds=(re*d12*re*d12)^(1/4);
16 printf("Self GMD= %.3 fcm\n", Ds);
17 L=0.4*log(Dm/Ds);
18 printf("Loop Inductance of line= %.3 fmH/km\n", L);
```

Scilab code Exa 4.6 Find the inductance per phase of 30 km line

```
//Find the inductance per phase of 30 km line
clear;
clc;
//soltion
//given
r=(15)/2;//mm//radius of the conductor
re=r*exp(-1/4);
d=1.5*1000;//mm//spacing
L=0.2*log(d/re);
printf("Loop Inductance of line= %.2 f mH/km\n",L);
Ll=L*30/1000;
printf("Inductance per phase of 30 km long line= %.4 f H",Ll);
```

Scilab code Exa 4.7 Find the inductance of a 3 phase line situated at cornes of a triangle

```
1 //Find the inductance of a 3 phase line(triangle)
```

```
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1; //cm//radius of the conductor
7 re=r*exp(-1/4);
8 d1=600; //cm//spacing of the triangular shaped system
9 d2=700; //cm//spacing of the triangular shaped system
10 d3=800; //cm//spacing of the triangular shaped system
11 L=0.2*log(((d1*d2*d3)^(1/3))/re);
12 printf("Loop Inductance of line= %.4 f mH/km\n",L);
```

Scilab code Exa 4.8 Find the inductance of a 3 phase line arranged in horizontal plane

```
1 //Find the inductance of a 3 phase line(plane)
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1; //cm//radius of the conductor
7 re=r*exp(-1/4);
8 d=300; //cm//spacing b/w conductors
9 C1=0.2*[log(d/re)+0.5*log(2)];
10 C2=0.2*((sqrt(3))/2)*log(2);
11 La=complex(C1,-C2);
12 Lb=0.2*\log(d/re);
13 Lc=complex(C1,C2);
14 printf("La= (\%.2 \text{ f } \%.2 \text{ fj})\text{mH/n}", real(La), imag(La));
15 printf ("Lb= \%.4 \, \text{fmH} \, \text{n}", Lb);
16 printf("Lc= (\%.2 \text{ f} + \%.2 \text{ fj})mH\n", real(Lc), imag(Lc));
```

Scilab code Exa 4.9 Find the loop inductance per phase

```
1 //Find the loop inductance per phase
2 clear;
3 clc;
4 //soltion
5 //given
6 r=5; //mm//radius of the conductor
7 re=r*exp(-1/4);
8 d=3500; //mm//spacing
9 L=2*10^(-7)*log(d/re);
10 L_=L*10^6;
11 printf("Inductance per km(L)=\%.4 f*10^-6 H\n", L_);
12 printf ("Lav=2*10^-7\{\log(dp/r)+1/3*\log(2)\}\n");
13 printf("Lav= L \setminus n");
14 Z=(L/(2*10^-7)-1/3*log(2));
15 dp=re*exp(Z);
16 dp_=dp/1000;
17 printf("After soving above equation\n");
18 printf ("Spacing between the conductors in the plane (
      dp = \%.3 \,fm'', dp_);
```

Scilab code Exa 4.10 Find the loop inductance per phase

```
//Find the loop inductance per phase
clear;
clc;
//soltion
//given
r=20;//mm//radius of the conductor
re=r*exp(-1/4);
d=7000;//mm//spacing
L=0.1*log((sqrt(3))*d/(2*re));
printf("Inductance per km(L)=%.4 f mH\n",L);
```

Scilab code Exa 4.11 Find the inductance of an ASCR 3 phase line

```
1 //Find the inductance of an ASCR 3 phase line
2 clear;
3 clc;
4 //soltion
5 //given
6 r=5/2; //mm//radius of the conductor
7 re=r*2.177*10^-3; //m
8 dx=6; //m// spacing in X direction
9 dy=8; //m//spacing in Y direction
10 daa_=sqrt(dx^2+(2*dy)^2);
11 dbb_=6;
12 dcc_=daa_;
13 dab=8;
14 dab_=sqrt(dx^2+dy^2);
15 \, dbc = 8;
16 dbc_=sqrt(dx^2+dy^2);
17 dca_=6;
18 dca=16;
19 Dsa=sqrt(re*daa_);
20 Dsb=sqrt(re*dbb_);
21 Dsc=sqrt(re*dcc_);
22 Ds=(Dsa*Dsb*Dsc)^(1/3);
23 printf ("Self GMD or GMR, Ds= \%.4 \,\mathrm{fm} \,\mathrm{n}", Ds);
24 Dab=sqrt(dab*dab_);
25 Dbc=sqrt(dbc*dbc_);
26 Dca=sqrt(dca*dca_);
27 Dm = (Dab * Dbc * Dca) ^ (1/3);
28 printf ("GMD, Dm= \%.2 \,\mathrm{fm} \,\mathrm{n}", Dm);
29 L=0.2*log(Dm/Ds);
30 printf ("Inductance of 100 km line (L)=\%.4 f H\n", L
      *0.1);
31 L_=0.1*log((2^(1/3))*(dy/re)*((dx^2+dy^2)/(4*dy^2+dx))
      ^2)) ^(1/3));
32 printf("Inductance(By another method) per phase per
      km(L)=\%.4 f H\n", L_*.1);
```

Scilab code Exa 4.12 Find inductive reactance of 3 phase bundled conductor

```
1 //Find inductive reactance of 3 phase bundled
      conductor
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1.75*10^-2; //m//radius of the conductor
7 re=r*exp(-1/4);
8 d=7; //spacing
9 S=0.4; //spacing between subconductors
10 Ds=sqrt(re*S);//GMR
11 \quad dab=7;
12 dab_=7.4;
13 da_b=6.6;
14 da_b_=7;
15 Dab=(dab*dab_*da_b*da_b_)^.25;
16 Dbc=Dab;
17 dca=14;
18 dca_=13.6;
19 dc_a=14.4;
20 dc_a_=14;
21 Dca=(dca*dca_*dc_a*dc_a_)^.25;
22 Dm = (Dab*Dca*Dbc)^(1/3); //GMD
23 L=0.2*log(Dm/Ds);
24 printf("Inductance(L)=\%.4 \text{ f mH/km}",L);
25 \text{ X1}=2*\%pi*50*L*10^-3;
26 printf("Inductive reactance= \%.1 \,\mathrm{f} /km\n", X1);
27 \text{ r1=sqrt}(2*((r*10^2)^2));
28 \text{ re1=r1*exp}(-1/4);
29 Dab1=7;
30 \, \text{Dbc1} = 7;
```

Scilab code Exa 4.13 Find the capacitance of 1 phase line

```
//Find the capacitance of 1 phase line
clear;
clc;
//soltion
//given
r=15/2;//mm//radius of the conductor
d=1500;//mm//spacing
L=30000;//m//length of the line
Eo=8.85*10^-12//permitivity of the air
C=%pi*Eo*L/(log(d/r));
C_=C*10^6;
printf("Capacitance of 30km line= %f F",C_);
```

Scilab code Exa 4.14 Find the capacitance of 2 wire 1 phase line

```
//Find the capacitance of 2 wire 1 phase line
clear;
clc;
//soltion
//given
r=0.25;//cm//radius of the conductor
d=150;//cm//spacing
L=50000;//m//length of the line
```

```
9 h=700//cm//height of conductor above earth
10 Eo=8.854*10^-12//permittivity of the air
11 C=%pi*Eo*L/(log(120/(sqrt(1+(d^2/(2*h)^2))*r)));
12 C_=C*10^6;
13 printf("Capacitance of 50km line= %.3 f F",C_);
```

Scilab code Exa 4.15 Find the capacitance of 3 phase line

```
//Find the capacitance of 3 phase line
clear;
clc;
//soltion
//given
r=1;//cm//radius of the conductor
d=250;//cm//spacing
L=100000;//m//length of the line
Eo=8.854*10^-12//permitivity of the air
C=2*%pi*Eo*L/(log(d/r));
C_=C*10^6;
printf("Capacitance of 100km line= %.4 f F",C_);
```

Scilab code Exa 4.16 Find the capacitance of 3 phase 3 wire line

```
//Find the capacitance of 3 phase 3 wire line
clear;
clc;
//soltion
//given
r=0.01;//m//radius of the conductor
d1=3.5;//m//spacing
d2=5;//m//spacing
L=1000;//m//length of the line
```

```
11 Eo=8.854*10^-12// permittivity of the air
12 de=(d1*d2*d3)^(1/3)
13 C=2*%pi*Eo*L/(log(de/r));
14 C_=C*10^6;
15 printf("Capacitance of line= %.4 f F",C_);
```

Scilab code Exa 4.17 Find the capacitance and charging current

```
1 //Find the capacitance and charging current
2 clear;
3 clc;
4 //soltion
5 //given
6 f=50; //frequency
7 Vph=220*1000/sqrt(3);//phase voltage
8 r=0.01; //m// radius of the conductor
9 d1=3; //m//spacing
10 d2=3; //m//spacing
11 d3=6; //m//spacing
12 L=1000; //m//length of the line
13 Eo=8.854*10^--12//permitivity of the air
14 de=(d1*d2*d3)^(1/3)
15 C=2*\%pi*Eo*L/(log(de/r));
16 \quad C_{=}C*10^{9};
17 printf("Capacitance of line= \%.4 \, f*10^-12F\n", C_);
18 Ic=2*%pi*f*C*Vph;
19 printf ("Charging current per phase is= \%.3 fmA", Ic);
```

Scilab code Exa 4.18 find capacitive reactance to neutral and charging current

```
1 //find capacitive reactance to neutral and charging current
```

```
2 clear;
3 clc;
4 // soltion
5 //given
6 r=1.25*10^-2; //m//radius of the conductor
7 f = 50 / / frequency
8 Vph=132*1000/sqrt(3);//phase voltage
9 Eo=8.85*10^--12//permittivity of the air
10 drr_=sqrt(7^2+(4+4)^2);
11 dbb_=drr_;
12 dyy_=9;
13 Dsr=sqrt(r*drr_);
14 Dsy=sqrt(r*dyy_);
15 Dsb=sqrt(r*dbb_);
16 Ds=(Dsr*Dsy*Dsb)^(1/3);
17 dry=sqrt(4^2+(4.5-3.5)^2);
18 dry_=sqrt((9-1)^2+4^2);
19 Dry=sqrt(dry*dry_);
20 Dyb=Dry;
21 Dbr=sqrt(8*7);
22 \quad Dm = (Dyb*Dbr*Dry)^(1/3);
23 C=2*\%pi*Eo/(log(Dm/Ds));
24 printf ("Capacitance per phase = \%.2 \, \text{f} * 10^- - 9 \, \text{F/km/n}", C
      *10^12);
25 \text{ Cr} = 1/(2*\%pi*f*C*1000);
26 printf ("Capacitance per phase= \%.2 \,\mathrm{f} k \n", Cr/1000);
27 Ic=(2*\%pi*f*C*1000)*Vph;
28 printf ("Charging current= %.4 f A/km", Ic);
```

Scilab code Exa 4.19 Calculate the capacitance per phase

```
1 // Calculate the capacitance per phase
2 clear;
3 clc;
4 // soltion
```

```
5 //given
6 Eo=8.85*10^-12//permitivity of the air
7 Vph=132*1000/sqrt(3);//phase voltage
8 d1=8;//m//distances
9 d2=6;//m
10 r=3*2.5*10^-3;//m//radius of conductor in m
11 C=4*%pi*Eo/log((2^(1/3))*(d1/r)*((d2^2+d1^2))/(4*d1^2+d2^2))^(1/3));
12 C_=C*100*1000;
13 printf("Capacitance of 100 km line= %.3 f f",C_*10^6);
```

Chapter 5

Performance of Short and Medium Transmission Lines

Scilab code Exa 5.1 Find voltage at sending end and percentage regulation and transmission efficiency

```
1 //Find voltage at sending end, percentage regulation
       and transmission efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 P = 3300; //kW//power
7 Vr=33000; //kV//recieving voltage
8 pf=0.8; //peak factor
9 R=2; //ohm//resistance
10 X=3; //ohm//loop reactance
11 I=P*1000/(Vr*pf);
12 Vs = sqrt((Vr*pf+I*R)^2+((Vr*sind(acosd(pf)))+I*X)^2);
13 printf ("Voltage at sending end (Vs) = \%.3 \,\text{fV} \,\text{n}", Vs);
14 Pr = ((Vs - Vr) * 100) / Vr;
15 printf("Percentage regulation= %f percent\n",Pr);
16 Ll=I*I*R/1000; //line losses
17 nt=P*100/(P+L1);
```

Scilab code Exa 5.2 voltage at sending end and percentage regulation and total line losses and transmission efficiency

```
1 //voltage at sending end, percentage regulation,
      total line losses and transmission efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 P = 5000; //kW//power
7 V=22000; //kV//recieving voltage
8 pf=0.8;//peak factor
9 R=4; //ohm//resistance
10 X=6; //ohm//loop reactance
11 Vr=V/sqrt(3);
12 I=P*1000/(3*round(Vr)*pf);
13 Vs=round(Vr)+(I*R*pf)+(I*X*sind(acosd(pf)));
14 Vsl=sqrt(3)*Vs;
15 printf ("Sending end line voltage= \%.3 \, \text{fkV} \, \text{n}", Vsl
      /1000)
16 Pr = ((Vsl - V) * 100) / V;
17 printf ("Percentage regulation = \%.2 f percent \n", Pr);
18 L1=3*(round(I))^2*R/1000; //line losses
19 printf("Total Line Losses= \%.3 \text{fkW} \ \text{n}",L1);
20 \text{ nt} = P * 100/(P + L1);
21 printf("Transmission efficiency= %.3f percent",nt)
```

Scilab code Exa 5.3 find sending end voltage and regulation

```
1 //find sending end voltage and regulation
2 clear;
```

```
3 \text{ clc};
4 //soltion
5 //given
6 P = 5000; //kW//power
7 V=11000; //kV//recieving voltage
8 pf=0.8;//peak factor
9 L=1.1*10^-3//H per km per phase//Line inductance
10 L1=0.12*P*1000;
11 Vr=V/sqrt(3);
12 I=P*1000/(3*round(Vr)*pf);
13 R=L1/(3*I^2);
14 X = 5.1836;
15 Vs=round(Vr)+(round(I)*R*pf)+(I*X*sind(acosd(pf)));
16 Vsl=sqrt(3)*Vs;
17 printf ("Line voltage at sending end= \%.3 \,\mathrm{f} \,\mathrm{kV} \,\mathrm{n}", Vsl
      /1000);
18 Pr = ((Vsl - V) * 100) / V;
19 printf("Percentage regulation= %.3f percent\n",Pr);
```

Scilab code Exa 5.4 Find sending end voltage and power factor and efficieny and regulation

```
//Find sending end voltage, power factor, efficieny
and regulation

clear;

clc;
//soltion
//given
S=12000;//kVA//power supplied
pf=0.8;//power factor
del=1.73*10^-6;
d=140//cm//distance of the conductor
l=50*10^3;
Vrl=33000;//V//recieving end voltage
l=S*1000/(sqrt(3)*Vrl);
```

```
13 L1=0.15*S*1000*pf;
14 R=L1/(3*I*I);
15 a=del*1*100/(R);
16 r=sqrt(a/%pi);
17 re=r*exp(-1/4);
18 L=0.2*50*(10^-3)*\log(d/re);
19 X=2*\%pi*50*L;
20 X_=floor(X*100)/100;
21 Vs=Vr1/sqrt(3)+(I*R*pf)+(I*X_*sind(acosd(pf)));
22 \text{ Vsl=sqrt}(3)*\text{Vs};
23 printf ("Sending end line voltage= \%.4 \, \text{fkV} \, \text{n}", Vsl
      /1000)
24 spf = (Vrl*pf/sqrt(3)+I*R)/Vs;
25 printf ("Sending end power factor = \%.3 \, \text{f lagging } \ \text{n}",
      spf);
26 \text{ nt}=S*pf*100/(S*pf+(L1/1000));
27 printf ("Transmission efficiency = \%.3 f percent \n", nt)
28 Pr=((Vsl-Vrl)*100)/Vrl;
29 printf ("Percentage regulation = \%.3 f percent \n", Pr);
```

Scilab code Exa 5.5 Find load end voltage and efficieny

```
//Find load end voltage and efficieny
clear;
clc;
//soltion
//given
P=3000//kW//output
Vsl=11000//volts
pf=0.8//lagging//power factor
R=3*0.4;//ohm//resistance of each conductor
X=3*0.8;//ohm//reactance of each conductor
Vs=Vsl/sqrt(3);
Z=(R*pf+X*sind(acosd(pf)));
Vs_=round(Vs);
```

Scilab code Exa 5.6 Find current and voltage of sending end and percentage regulation and line losses and sending end power factor and transmission efficiency

```
1 //Find current and voltage of sending end,
      percentage regulation, line losses, sending end
     power factor and transmission efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 R=0.6125*100; //ohm//total resistance
7 X=1*100; //ohm//reactance
8 Y=17.5*10^-4; //S//total susceptance
9 Vr = 66 * 1000; //V
10 pf=0.8; //power factor
11 P = 20 * 10^6; // watts
12 Ir=(P/(Vr*pf))*complex(pf,-0.6);
13 Ic=complex(0,Y*Vr);
14 Is=Ir+Ic;
15 theta1=atand((imag(Is)/real(Is)));
```

Scilab code Exa 5.7 Find current and voltage of sending end and percentage regulation and transmission efficiency

```
1 //Find current and voltage of sending end and
      percentage regulation and transmission efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 R=0.2*150; //ohm//total resistance
7 X=0.5*150; //ohm//reactance
8 Y=150*3*10^-6; \frac{S}{\sqrt{total}} susceptance
9 Vrl=132*1000; //V
10 pf=0.8; //power factor
11 P=40*10^6; //MVA
12 Vr=Vr1/sqrt(3);
13 Ir_=(P/(sqrt(3)*Vrl));
14 Ir=Ir_*complex(pf,-0.6);
15 Z=complex(R,X);//ohm//Load impedance
```

```
16 V_=Vr+Ir*(Z/2);
17 Ic=V_*(\%i)*Y;
18 Is=Ir+Ic;
19 theta1=atand((imag(Is)/real(Is)));
20 printf ("Sending end current= \%.3 \text{ f} \%.2 \text{ f} \text{ A/n}", abs (
      Is),theta1);
21 Vs = V_+ Is * (Z/2);
22 theta2=atand((imag(Vs)/real(Vs)));
23 Vls = sqrt(3) * abs(Vs) / 1000;
24 printf ("Sending end line voltage= \%.2 \, \text{fkV} \, \text{n}", Vls);
25 Pr = ((abs(Vs) - Vr) * 100) / Vr;
26 printf ("Percentage voltage regulation= %.1 f percent
      n", Pr);
27 phi=theta2-theta1;
28 nt=(Vrl*Ir_*pf*100)/(Vls*1000*abs(Is)*cosd(phi));
29 printf("Transmission efficiency= %.2f percent",nt);
```

Scilab code Exa 5.8 Find current and voltage of sending end and percentage regulation

```
//Find current and voltage of sending end and
    percentage regulation

clear;

clc;

//soltion
//given
R=0.1425*200;//ohm//total resistance
X=0.49*200;//ohm//reactance
Y=8*10^-4;//S//total susecptance
Vrl=132*1000;//V
pf=0.8;//power factor
P=50*10^6;//MVA
Vr=round(Vrl/sqrt(3));
Ir_=(P/(sqrt(3)*Vrl));
Ir=Ir_*complex(pf,-0.6);
```

```
15 Icr=0.5*(%i*Y)*Vr;
16 Il=Ir+Icr;
17 Z=complex(R,X);//ohm//Load impedance
18 Vs=Vr+Il*(Z);
19 theta=atand((imag(Vs)/real(Vs)));
20 printf ("Sending end voltage= \%.3 \text{ f} \%.3 \text{ f} \n", abs (Vs
      ),theta);
21 Vls = sqrt(3) * abs(Vs) / 1000;
22 printf ("Sending end line voltage= \%.2 \, \text{fkV} \, \text{n}", Vls);
23 M=1+0.5*(%i*Y)*Z;//THE BOOK HAS USED 0.9962 BUT IT
      IS 0.962
24 Vrlo=Vls/abs(M);
25 Pr=((Vrlo*1000-Vrl)*100)/Vrl;
26 printf ("Percentage voltage regulation = \%.1f percent\
      n", Pr);
27 //THE ANS OF THE REGULATION IS 21.4% BECAUSE OF
      TYPOLOGICAL ERROR
```

Scilab code Exa 5.9 Find current and voltage of sending end

```
//Find current and voltage of sending end
clear;
clc;
//soltion
//given
R=0.1*150;//ohm//total resistance
X=0.5*150;//ohm//reactance
Y=3*150*10^-6;//S//total susceptance
Vrl=110*1000;//V
pf=0.8;//power factor
P=50*10^6;//M watts
Vr=floor(Vrl/sqrt(3));
Ir_=(P/(sqrt(3)*Vrl*pf));
Ir=Ir_*complex(pf,-0.6);
Ic1=Vr*(%i*Y/2);
```

Scilab code Exa 5.10 Find regulation and charging current using nominal T method

```
1 //Find regulation and charging current using nominal
      T method
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
7
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
       endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
12
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
13 endfunction
14
15 //given
16 P=50*10^6; //M watts
17 Vrl = 132 * 1000; //V
18 pf=0.8//power factir
19 Vr=[floor(Vr1/sqrt(3)) 0];
```

```
20 Ir=[floor(P/(sqrt(3)*Vrl*pf)) -acosd(pf)];
21 \quad A = [0.95 \quad 1.4];
22 B = [96 78];
23 C = [0.0015 90];
24 D = A;
25 \quad Z1 = rxr(A, Vr);
26 \quad Z2=rxr(B,Ir);
27 \text{ AV} = r2p(Z1);
28 BI = r2p(Z2);
29 Vs = AV + BI;
30 theta1=atand((imag(Vs)/real(Vs)));
31 printf("Sending end voltage= %.0 f %.2 f Volts\n",
      abs(Vs),theta1);
32 Y1=rxr(C, Vr);
33 Y2=rxr(D, Ir);
34 \text{ CV=r2p(Y1)};
35 DI = r2p(Y2);
36 \text{ Is=CV+DI};
37 Ira=r2p(Ir);
38 Ic=Is-Ira;
39 theta2=atand(imag(Ic)/real(Ic));
40 Ic_=sqrt(round(imag(Ic))^2+round(real(Ic))^2);
41 printf ("Charging current= %.1 f % f A\n", Ic_,
      theta2);
42 Pr = ((abs(Vs)/A(1)-Vr)*100)/Vr;
43 printf ("Percentage regulation = \%.0 f percent \n", Pr);
44 //1. The Magnitude of Sending end voltage is 94066,
      it is due to rounding some of the values
45 //2. The angle in the book is 93.1
                                             in charging
      current
```

Scilab code Exa 5.11 find sending end voltage and current and power and efficiency

```
1 //find sending end voltage and current and power and
        efficiency
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
        z(1) = A(1) *B(1)
        z(2) = A(2) + B(2)
9
        endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
      polar
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
12
13 endfunction
14 //given
15 P=50*10^6; //VA
16 Vrl=110*1000; //V
17 pf=0.8//power factir
18 Vr=[Vrl/sqrt(3) 0];
19 Ir=[P/(sqrt(3)*Vrl) -acosd(pf)];
20 \quad A = [0.98 \quad 3];
21 B = [110 75];
22 C = [0.0005 80];
23 D = [0.98 3];
24 \quad Z1 = rxr(A, Vr);
25 \quad Z2=rxr(B,Ir);
26 \text{ AV=r2p(Z1)};
27 BI = r2p(Z2);
28 \text{ Vs} = \text{AV} + \text{BI};
29 theta1=atand((imag(Vs)/real(Vs)));
30 printf("Sending end voltage= \%.0 \, f \, V \ ", abs(Vs));
31 Y1=rxr(C, Vr);
32 Y2=rxr(D,Ir);
33 CV=r2p(Y1);
34 \text{ DI=r2p(Y2)};
35 \text{ Is=CV+DI};
```

Scilab code Exa 5.12 Find ABCD parameters and sending end voltage and current and power factor and transmission efficiency

```
1 //Find ABCD parameters and sending end voltage and
      current and power factor and transmission
      eficiency
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
7
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
       endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
      polar
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
12
13 endfunction
14
15 //given
16 P=80*10^6; //watts
```

```
17 Vr1 = 220 * 1000; //V
18 pf=0.8//power factir
19 Vr=[Vr1/sqrt(3) 0];
20 Ir_=[P/(sqrt(3)*Vrl*pf) -acosd(pf)];
21 Ir=r2p(Ir_);
22 Z = [200 80];
23 \quad Y = [0.0013 \quad 90];
24 \quad a=rxr(Z,Y);
25 \text{ Ac} = 1 + r2p(a)/2;
26 A=[abs(Ac) atand((imag(Ac)/real(Ac)))];
27 D = A;
29 b=rxr(Z,Y);
30 \text{ Bc}=1+r2p(b)/4;
31 B=[abs(Bc) atand((imag(Bc)/real(Bc)))];
32 B=rxr(Z,B);
33 printf("B= %.1 f % .2 f
                                ohm \ n", B(1), B(2));
34 \quad C=Y;
35 printf ("C=\%.4 f
                      % d
                             siemens n, C(1), C(2);
36 \quad Z1 = rxr(A, Vr);
37 Z2=rxr(B, Ir_);
38 \text{ AV=r2p(Z1)};
39 BI = r2p(Z2);
40 Vs = AV + BI;
41 theta1=atand((imag(Vs)/real(Vs)));
42 Vsl=sqrt(3)*abs(Vs);
43 printf ("Sending end voltage= \%dkV \ ", round (Vs1/1000)
      );
44 Y1=rxr(C, Vr);
45 Y2=rxr(D, Ir_);
46 \text{ CV=r2p(Y1)};
47 DI = r2p(Y2);
48 Is=CV+DI;
49 theta2=atand(imag(Is)/real(Is));
50 printf ("Sending end current= \%.1 \, \mathrm{f} \, \%.1 \, \mathrm{f} \, \mathrm{A} \, \mathrm{n}", abs (
      Is),theta2);
51 phis=theta2-theta1;
52 \text{ Ps}=3*abs(Vs)*abs(Is)*cosd(phis);
```

```
53 printf("Sending end power=%.2fMW\n",Ps/10^6);
54 n=P*100/Ps;
55 printf("Transmission Efficiency= %.1f percent",n);
```

Scilab code Exa 5.13 find sending end voltage and current and power and efficiency

```
1 //find sending end voltage and current and power and
       efficiency
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
       z(1) = A(1) *B(1)
7
       z(2) = A(2) + B(2)
       endfunction
9
10
11 function [a]=r2p(z)//Function for rectangular to
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
12
13 endfunction
14 //given
15 P=50*10^6; /VA
16 Vrl = 110 * 1000; //V
17 pf=0.8//power factir
18 Vr=[Vrl/sqrt(3) 0];
19 Ir=[P/(sqrt(3)*Vrl) -acosd(pf)];
20 \quad A = [0.98 \quad 3];
21 B = [110 75];
22 C = [0.0005 80];
23 D = [0.98 3];
24 \quad Z1 = rxr(A, Vr);
25 Z2=rxr(B,Ir);
```

```
26 \text{ AV} = \text{r2p}(Z1);
27 BI = r2p(Z2);
28 \text{ Vs} = \text{AV} + \text{BI};
29 theta1=atand((imag(Vs)/real(Vs)));
30 printf("Sending end voltage= \%.0 \, \text{f V/n}", abs(Vs));
31 Y1=rxr(C, Vr);
32 \quad Y2=rxr(D,Ir);
33 \text{ CV=r2p(Y1)};
34 \text{ DI} = r2p(Y2);
35 \text{ Is=CV+DI};
36 theta2=atand(imag(Is)/real(Is));
37 printf("Magnitude of sending end current= %d A\n",
      abs(Is));
38 phis=theta2-theta1;
39 Ps=3*abs(Vs)*abs(Is)*cosd(phis);
40 printf("Sending end power=%.1fMW\n",floor(Ps/10^5)
       /10);
41 \text{ Pr=P*pf};
42 n=Pr*100/(floor(Ps/10<sup>5</sup>)*10<sup>5</sup>);
43 printf("Transmission Efficiency= %.1f percent",n);
44 //The value of voltage is 87427 V
45 //this is same as ex 12 because of printing mistake
      in book
```

Scilab code Exa 5.14 Determine ABCD constant and sending end power factor

```
1 // Determine ABCD constant and sending end power
    factor
2 clear;
3 clc;
4 // soltion
5 // FUNCTIONS
6 function [z]=rxr(A,B) // Function for the
    multiplication in rectangular form
```

```
z(1) = A(1) *B(1)
7
        z(2) = A(2) + B(2)
9
        endfunction
10
  function [z]=rdr(A,B)//Function for the division in
      rectangular form
12
        z(1) = A(1)/B(1)
        z(2) = A(2) - B(2)
13
        endfunction
14
15
  function [a]=r2p(z)//Function for rectangular to
17
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
18 endfunction
19
20 //given
21 P = 100 * 10^6; // watts
22 Vrl=132*1000; //V
23 pf=0.8//power factir
24 Vr=[Vr1/sqrt(3) 0];
25 Ir=[P/(sqrt(3)*Vrl*pf) -acosd(pf)];
26 \quad A = [0.98 \quad 1];
27 B = [100 75];
28 \quad C = [0.0005 \quad 90];
29 \quad D = A;
30 \quad AB = rxr(A,B);
31 \text{ Ap=rdr(AB,B)};
32 printf("A(in parallel) = D = \%.2 \text{ f} % d \n", Ap(1), Ap
      (2));
33 BB=rxr(B,B);
34 \text{ Bp}_=\text{rdr}(BB,B);
35 Bp=[Bp_(1)/2 Bp_(2)];//Bp is a half vector of the
36 printf("B(in parallel) = \% d \% d ohm \ ", Bp(1), Bp(2)
37 printf("Here A1=A2 & D1=D2 therefore n");
38 Cp = [C(1) * 2 C(2)];
39 printf ("C(in parallel) = \%.3 f \% d
                                              siemens \n", Cp(1)
```

```
,Cp(2));
40 Z1=rxr(Ap, Vr);
41 Z2=rxr(Bp,Ir);
42 AV = r2p(Z1);
43 BI=r2p(Z2);
44 Vs = AV + BI;
45 theta1=atand((imag(Vs)/real(Vs)));
46 Y1=rxr(Cp, Vr);
47 Y2=rxr(Ap,Ir); //D = A
48 \text{ CV=r2p(Y1)};
49 DI = r2p(Y2);
50 Is=CV+DI;
51 theta2=atand(imag(Is)/real(Is));
52 phis=theta1-theta2;
53 Spf=cosd(phis); // Sending end power factor
54 printf("Sending end power factor= %.3f(lagging)",Spf
      );
```

Chapter 6

Performance of Long Transmission Lines

Scilab code Exa 6.1 Determine auxiliary constants

```
1 // Determine auxiliary constants
2 clear;
3 clc;
5 //soltion
6 //FUNCTIONS
7 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
10
       endfunction
11
12 function [a]=r2p(z)//Function for rectangular to
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
13
14 endfunction
15
16 function [v]=p2r(q)//Function for polar to
      rectangular
```

```
17
        v(1) = abs(q)
        v(2) = atand(imag(q)/real(q))
18
19 endfunction
20
21 //given
22 r = 0.25; //ohm
23 x = 0.48; //ohm
24 \text{ g}=4*10^-9; //\text{mho}
25 b=2.53*10^-6; //mho
26 f=50; //frequency
27 \quad 1 = 1000;
28 z = complex(r,x);
29 y = complex(g,b);
30 \quad Z_=z*1000;
31 Y_=y*1000;
32 Z=p2r(Z_);
33 \ Y = p2r(Y_);
34 \text{ YZ=rxr}(Z,Y);
35 \quad Y2Z2=rxr(YZ,YZ);
36 [Y3Z3] = rxr(Y2Z2, YZ);
37 A_{=1}+(r2p(YZ))/2+(r2p(Y2Z2))/24+(r2p(Y3Z3))/720;
38 \quad A=p2r(A_);
39 printf ("A = D = \%.4 \text{ f} % .2 f \n", A(1), A(2));
40 P_{=}(1+(r2p(YZ))/6+(r2p(Y2Z2))/120+(r2p(Y3Z3))/5040);
41 P=p2r(P_{-});
42 B=rxr(Z,P);
43 printf ("B= \%.2 \text{ f} \%.2 \text{ f}
                                 \operatorname{ohm} n, B(1), B(2));
44 C=rxr(Y,P);
45 printf ("C= \%.2 \text{ f} *10^-3 % .2 f siemens\n", C(1)
       *1000,C(2));
```

Scilab code Exa 6.2 Determine sending end voltage and current

```
1 // Determine sending end voltage and current
2 clear;
```

```
3 clc;
4
5 // soltion
6 //FUNCTIONS
7 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
8
       z(1) = A(1) *B(1)
        z(2) = A(2) + B(2)
        endfunction
10
11
  function [a]=r2p(z)//Function for rectangular to
13
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
14 endfunction
15
16 function [v]=p2r(q)//Function for polar to
      rectangular
       v(1) = abs(q)
17
        v(2) = atand(imag(q)/real(q))
18
19 endfunction
20
21
22 //given
23 P=80*10^6; /MW
24 \text{ Vrl} = 220*1000; //V
25 pf=0.8//power factir
26 Vr=[Vrl/sqrt(3) 0];
27 Ir=[P/(sqrt(3)*Vrl*pf) -acosd(pf)];
28 \quad Z = [200 \quad 80];
29 \quad Y = [0.0013 \quad 90];
30 \text{ YZ=rxr}(Z,Y);
31 Y2Z2=rxr(YZ,YZ);
32 [Y3Z3] = rxr(Y2Z2, YZ);
33 A_{=1}+(r2p(YZ))/2+(r2p(Y2Z2))/24+(r2p(Y3Z3))/720;
34 A = p2r(A_);
35 printf("A = D = \%.4 \text{ f} % .2 f \n", A(1), A(2));
36 P_{=}(1+(r2p(YZ))/6+(r2p(Y2Z2))/120+(r2p(Y3Z3))/5040);
37 P = p2r(P_);
```

```
38 B=rxr(Z,P);
39 printf ("B= %.2 f % .2 f
                                   ohm n, B(1), B(2);
40 \quad C=rxr(Y,P);
41 printf("C= %.6 f % .2 f
                                   siemens\n",C(1),C(2));
42 \quad D = A;
43 Z1=rxr(A, Vr);
44 Z2=rxr(B,Ir);
45 \text{ AV} = r2p(Z1);
46 \text{ BI} = r2p(Z2);
47 Vs = AV + BI;
48 theta1=atand((imag(Vs)/real(Vs)));
49 printf ("Sending end voltage= \%.3 \, \text{fkV} \, \text{n}", sqrt (3) * abs (
       Vs)/1000);
50 Y1=rxr(C, Vr);
51 Y2=rxr(D, Ir);
52 \text{ CV=r2p(Y1)};
53 DI = r2p(Y2);
54 Is_=CV+DI;
55 Is=p2r(Is_);
56 printf ("Magnitude of sending end current= \%.1 \text{ f} %.2
           A \setminus n", Is (1), Is (2));
```

Scilab code Exa 6.3 Determine percentage rise in voltage

```
//Determine percentage rise in voltage
clear;
clc;
//soltion
//given
f=50;//Hz//frequency
w=2*%pi*f;
l=200;//km//length
RiV=((w^2)*(l^2)*10^-8)/18;
printf("Rise in voltage= %.2f percent",RiV);
```

Scilab code Exa 6.4 alculate constants of equivalent circuit of line

```
1 //calculate constants of equivalent circuit of line
2 clear;
3 \text{ clc};
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
       endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
      polar
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
12
13 endfunction
14
15 //given
16 P=100*10^6; //VA
17 Vrl = 220*1000; //V
18 Zse_=complex(1,6);
19 Zseo=(Zse_*(Vrl^2))/(P*100);
20 Zse=[abs(Zseo) atand(imag(Zseo)/real(Zseo))];
21 \quad A = [1 \quad 0.8];
22 B=[169.52 84.6];
23 C = [0.00135 90];
24 D = A;
25 CZ=rxr(C,Zse);
26 \text{ Ao}_=\text{r2p(A)}+\text{r2p(CZ)};
27 Ao=[abs(Ao_) atand(imag(Ao_)/real(Ao_))];
28 printf("Ao = \%.5 \text{ f} % .2 f \n", Ao(1), Ao(2));
29 DZ = rxr(D, Zse);
30 Bo_=r2p(B)+r2p(DZ);
```

```
31 Bo=[abs(Bo_) atand(imag(Bo_)/real(Bo_))];
32 printf("Bo = %.2 f % .2 f ohm\n",Bo(1),Bo(2));
33 Co=C;
34 Do=A;
35 printf("Co = %.5 f % d siemens\n",Co(1),Co(2));
36 printf("Do = % d % .1 f ",Do(1),Do(2));
37 //the value of Ao is different because book has a calculation mistake and according to book it is 0.9799 11.49
```

Scilab code Exa 6.5 calculate constants of equivalent circuit of line

```
1 //calculate constants of equivalent circuit of line
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication in rectangular form
7
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9 endfunction
10
11 function [z]=rdr(A,B)//Function for the division in
      rectangular form
       z(1) = A(1)/B(1)
12
       z(2) = A(2) - B(2)
13
14
       endfunction
15
  function [a]=r2p(z)//Function for rectangular to
17
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
18 endfunction
19
20 //given
```

```
21 \text{ Zse} = [12 80];
22 \quad A = [0.9 \quad 1];
23 B = [26 68];
24 D = A;
25 \text{ AD}_=\text{r2p}(\text{rxr}(A,D))-1;
26 AD=[abs(AD_) atand(imag(AD_)/real(AD_))];
27 C = rdr(AD, B);
28 CZ=rxr(C,Zse);
29 Ao_=r2p(A)+r2p(CZ);
30 Ao=[abs(Ao_) atand(imag(Ao_)/real(Ao_))];
31 printf("Ao = \%.4 \text{ f} \%.2 \text{ f} \ \text{n}", Ao(1), Ao(2));
32 DZ=rxr(D,Zse);
33 CZ2=rxr(CZ,Zse)
34 \text{ Bo}_=\text{r2p}(B) + 2 * \text{r2p}(DZ) + \text{r2p}(CZ2);
35 Bo=[abs(Bo_) atand(imag(Bo_)/real(Bo_))];
36 printf ("Bo = \%.2 \text{ f} % .2 f ohm\n", Bo(1), Bo(2));
37 \text{ Co=C};
38 \quad Do = Ao;
39 printf("Co = \%.5 f \% d siemens\n", Co(1), Co(2));
40 printf("Do = \%.4 \text{ f} % .2 f ",Do(1),Do(2));
41 //there is a mistake in the value of C(=0.00738)
       .55 ) so all the values are changed
```

Scilab code Exa 6.6 calculate Ao and Bo and Co and Do constants

```
1 // calculate Ao and Bo and Co and Do constants
2 clear;
3 clc;
4 // soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
        multiplication in rectangular form
7 z(1)=A(1)*B(1)
8 z(2)=A(2)+B(2)
9 endfunction
```

```
10
11 function [z]=rdr(A,B)//Function for the division in
      rectangular form
12
        z(1) = A(1)/B(1)
13
        z(2) = A(2) - B(2)
14
        endfunction
15
16 function [a]=r2p(z) // Function for rectangular to
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
17
18 endfunction
19
20 function[a]=p2r(z)//Funtion for polar to rectangular
21
        a(1) = abs(z);
        a(2) = atand(imag(z)/real(z));
22
23 endfunction
24
25 / given
26 \text{ Zt} = [100 70];
27 \text{ Yt} = [0.0002 -75];
28 \quad A = [0.92 \quad 5.3];
29 B = [65.3 81];
30 D = A;
31 AD_=r2p(rxr(A,D))-1;//A*D-1
32 AD=[abs(AD_) 180+atand(imag(AD_)/real(AD_))];
33 C = rdr(AD, B); //(A*D-1)/B
34 \text{ BYt}=\text{rxr}(\text{Yt},\text{B});
35 \text{ CZt}=\text{rxr}(C,Zt);
36 YtZt_=r2p(rxr(Yt,Zt))*2+1; //1+2*Yt*Zt
37 P=[abs(YtZt_) atand(imag(YtZt_)/real(YtZt_))];//Let
      P=1+2*Yt*Zt
38 YtZto=r2p(rxr(Yt,Zt))+1; //1+Yt*Zt
39 Q=[abs(YtZto) atand(imag(YtZto)/real(YtZto))];//Let
      Q=1+Yt*Zt
40 Ao_=r2p(rxr(A,P))+r2p(BYt)+r2p(rxr(CZt,Q)); //A*(1+2*
      Yt * Zt ) + B * Yt + C * Zt (1 + Yt * Zt )
41 Ao=[abs(Ao_) atand(imag(Ao_)/real(Ao_))];
42 printf ("Ao = \%.4 \text{ f} \%.2 \text{ f} \ \text{n}", Ao (1), Ao (2));
```

```
43 DZt=rxr(D,Zt); //D*Zt
44 CZt2=rxr(CZt,Zt);//C*Zt^2
45 Bo_=r2p(B)+2*r2p(DZt)+r2p(CZt2); //2*A*Zt+B+C*Zt^2
46 Bo=[abs(Bo_) atand(imag(Bo_)/real(Bo_))];
47 printf ("Bo = \%.2 \text{ f} % .2 f ohm\n", Bo(1), Bo(2));
48 BYt2=r2p(rxr(BYt,Yt)); //B(Yt^2)
49 AYt=rxr(A,Yt); //A*Yt
50 AYt_YZt=rxr(p2r(2*r2p(AYt)),p2r(1+YtZto)/2);//2*A*Yt
      (1+Y*Zt)
51 YtZt2=rxr(Q,Q); //(1+Yt*Zt)^2
52 Co_=r2p(AYt_YZt)+BYt2+r2p(rxr(C,YtZt2)); //2*A*Yt(1+Y)
      *Zt)+B*Yt^2+C*(1+Yt*Zt)^2
53 Co=[abs(Co_) atand(imag(Co_)/real(Co_))];;
54 \text{ Do=Ao};
55 printf ("Co = \%.4 \text{ f} % .1 f siemens\n", Co(1), Co(2));
56 printf("Do = \%.4 \text{ f} % .2 f ",Do(1),Do(2));
```

Scilab code Exa 6.7 calculate equivalent T and pi constants

```
1 //calculate equivalent T & constants
2 clear;
3 clc;
4 // soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication in rectangular form
       z(1) = A(1) *B(1)
7
       z(2) = A(2) + B(2)
9 endfunction
10
11 function [z]=rdr(A,B)//Function for the division in
      rectangular form
       z(1) = A(1)/B(1)
12
13
       z(2) = A(2) - B(2)
14
       endfunction
```

```
15
16 function [a]=r2p(z)//Function for rectangular to
      polar
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
17
18 endfunction
19
20 function[a]=p2r(z)//Funtion for polar to rectangular
       a(1) = abs(z);
21
22
       a(2) = 180 + atand(imag(z)/real(z));
23 endfunction
24
25 //given
26 \quad A = [0.9 \quad 1];
27 B = [85 75];
28 C = [0.0013 91];
29 \quad D=A;
30 Z=rdr(p2r(2*(r2p(A)-1)),C);
31 printf("Equivalent T network\n");
32 printf ("Series Impedance Z=\%.2 f % .2 f ohm\n", Z(1)
      (2), (2), (3), (4) BOOK Z=156.92 80.5 BECAUSE OF
      ROUNDING OFF THINGS
33 \quad Y = C;
34 printf ("Shunt Admitttance Y=\%.4 f \% .0 f siemens\n"
      , Y(1), Y(2));
35 printf ("Equivalent
                        network\n");
36 \text{ Zp=B};
37 Yp=rdr(p2r(2*(r2p(A)-1)),B);
38 printf ("Series Impedance Z=\%. f \% . f \quad \text{ohm\n", Zp(1)},
      Zp(2));
                                                siemens \n",
39 printf ("Shunt Admitttance Y=\%.4 f % d
      Yp(1), Yp(2));
```

Scilab code Exa 6.8 find sending end reactive and active power

```
1 //find sending end reactive and active power
```

```
2 clear;
3 clc;
4 // soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
       multiplication of rectangular
7
        z(1) = A(1) *B(1)
        z(2) = A(2) + B(2)
        endfunction
9
10
11 function [a]=r2p(z)//Function for rectangular to
12
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
13 endfunction
14 //given
15 Sr = 7.5 * 10^6; //VA
16 Vrl = 32*1000; //V
17 pf = 0.85 / power factir
18 Vr=[Vrl/sqrt(3) 0];
19 Ir=[Sr/(sqrt(3)*Vrl) -acosd(pf)];
20 \quad A = [1 \quad 0];
21 B = [11.18 63.43];
22 D = A;
23 C_{=r2p(rxr(A,D))-1};
24 \quad C = [abs(C_) \quad 0]
25 \text{ AV=r2p(rxr(A,Vr))};
26 BI=r2p(rxr(B,Ir));
27 \text{ Vs} = \text{AV} + \text{BI};
28 theta1=atand((imag(Vs)/real(Vs)));
29 printf ("Sending end voltage= \%. f \%.1 f V \n", abs (Vs
      ), theta1);
30 \text{ Y1=rxr(C,Vr)};
31 Y2=rxr(D, Ir);
32 \text{ CV=r2p(Y1)};
33 DI = r2p(Y2);
34 \text{ Is=CV+DI};
35 theta2=atand(imag(Is)/real(Is));
36 printf ("Sending end current= \%.2 \text{ f} \%.1 \text{ f} \text{ A}n", abs (
```

```
Is), theta2);

37 phis=theta1-theta2;

38 Pa=3*abs(Vs)*abs(Is)*cosd(phis); // Active power

39 printf("Sending end power=%.2 f MW\n", Pa/10^6);

40 Pr=3*abs(Vs)*abs(Is)*sind(phis); // Reactive power

41 printf("Reactive power= %.1 f MVAR", Pr/10^6)
```

Scilab code Exa 6.9 find sending end voltage and regulation and recieving end rective and synchornous power

```
1 //find sending end voltage, regulation, recieving
      end rective and synchornous power
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
7
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
       endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
12
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
13 endfunction
14 //given
15 P=50*10^6; /VA
16 Vrl=110*1000; //V
17 pf=0.8; //power factir
18 Vr=[Vr1/sqrt(3) 0];
19 Ir=[P/(sqrt(3)*Vrl*pf) -acosd(pf)];
20 \quad A = [0.96 \quad 1];
21 B = [100 80];
22 AV=r2p(rxr(A,Vr));
```

```
23 BI=r2p(rxr(B,Ir));
24 \text{ Vs} = \text{AV} + \text{BI};
25 theta1=atand((imag(Vs)/real(Vs)));
26 \text{ Vsl=} \text{sqrt}(3) * \text{abs}(\text{Vs});
27 printf ("Sending end voltage= \%.3 \, \text{fkV} \, \text{n}", \text{Vsl/1000});
28 \text{ vr} = (Vsl - Vrl) * 100 / Vrl;
29 printf ("Voltage regulation = \%.3 f percent \n", vr); //IN
        BOOK IT IS 20.786%
30 clear;
31 Pr = 70; / MW
32 \text{ Vsl} = 120; //kV
33 Vrl=110; //kV
34 \quad A = 0.96;
35 B = 100;
36 bta=80;
37 \text{ alp=1};
38 b_d = a\cos d((70+(A/B)*Vrl^2*\cos d(bta-alp)))/(Vrl*Vsl/B)
       ); // beta - del
39 Qr=Vrl*Vsl*sind(b_d)/B-(A/B)*Vrl^2*sind(bta-alp);
40 printf ("Recieving end reactive power= %.2 f MVAR\n",
       Qr);
41 Pc=Pr*tand(acosd(0.8))-Qr;
42 printf ("Power delivered by synchronous generator= %
       .3 f MVAR", Pc);
```

Scilab code Exa 6.10 find sending end voltage and charging current and power

```
1 //find sending end voltage, charging current, power
2 clear;
3 clc;
4 //soltion
5 //FUNCTIONS
6 function [z]=rxr(A,B)//Function for the
    multiplication of rectangular
```

```
7
        z(1) = A(1) *B(1)
        z(2) = A(2) + B(2)
9
        endfunction
10
11 function [a]=r2p(z)//Function for rectangular to
12
        a=z(1)*complex(cosd(z(2)),sind(z(2)))
13 endfunction
14
15 function [z]=rdr(A,B)//Function for the division in
       rectangular form
        z(1) = A(1)/B(1)
16
17
        z(2) = A(2) - B(2)
18
        endfunction
19
20 //given
21 Vrl = 230*1000; //V
22 Vs=[Vrl/sqrt(3) 0];
23 Ir=[0 0];
24 \quad A = [0.938 \quad 1.2];
25 B = [131.2 72.3];
26 \quad C = [0.001 \quad 90];
27 \text{ Vr}_=\text{r2p}(\text{rdr}(\text{Vs}, A));
28 theta1=atand((imag(Vr_)/real(Vr_)));
29 Vr=[abs(Vr_) theta1];
30 Vrl=sqrt(3)*abs(Vr_);
31 printf ("Sending end voltage= \%.1 \,\text{fkV} \,", Vrl/1000);
32 \text{ Ic=rxr}(C, Vr);
33 printf ("Line charging current= \%.2~\mathrm{f} \%.1~\mathrm{f} A \n", Ic
       (1), Ic(2));
34 \text{ Vrl}_=220; //kV
35 Vs1=230; //kV
36 \text{ Pr=Vrl}_*\text{Vsl/B}(1) - (A(1)/B(1))*(\text{Vrl}_^2)*(\text{cosd}(B(2)-A))
       (2)));//IN BOOK IT IS 272.58 MW DUE TO
      TYPOLOGICAL ERROR
37 printf("Maximum power transmitted= %f MW\n", Pr);
38 Qr = (A(1)/B(1))*(Vrl_^2)*(sind(B(2)-A(2)));
39 printf ("Recieving reactive power required at
```

Scilab code Exa 6.11 Determine sending end voltage and current and power factor and MVA and power angle

```
1 // Determine sending end voltage and current and
      power factor and MVA and power angle
2 clear;
3 clc;
4
5 //soltion
6 //FUNCTIONS
7 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
9
       endfunction
10
11
12 function [a]=r2p(z)//Function for rectangular to
      polar
13
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
14 endfunction
15
16 function [v]=p2r(q)//Function for polar to
      rectangular
       v(1) = abs(q)
17
       v(2) = atand(imag(q)/real(q))
18
19 endfunction
20
21 //given
22 P = 40 * 10^6; /MVA
23 Vrl = 220*1000; //V
24 pf=0.8//power factir
25 Vr=[Vr1/sqrt(3) 0];
26 Ir=[P/(sqrt(3)*Vrl) -acosd(pf)];
```

```
27 z = complex(0.105, 0.3768) *500;
28 Z=[floor(abs(z)*1000)/1000 atand(imag(z)/real(z))];
29 y = complex(0, 2.882*10^-6)*500;
30 \ Y = [abs(y) \ 90];
31 YZ=rxr(Z,Y);
32 Y2Z2=rxr(YZ,YZ);
33 A_=1+(r2p(YZ))/2+(r2p(Y2Z2))/24;
34 A = p2r(A_);
35 P_{=}(1+(r2p(YZ))/6+(r2p(Y2Z2))/120);
36 P = p2r(P_);
37 B=rxr(Z,P);
38 C=rxr(Y,P);
39 D = A;
40 AV=r2p(rxr(A,Vr));
41 BI=r2p(rxr(B,Ir));
42 Vs = AV + BI;
43 theta1=atand((imag(Vs)/real(Vs)));
44 Vsl=sqrt(3)*abs(Vs)/1000;
45 printf ("Sending end voltage= \%.3 \, \text{fkV} \, \text{n}", Vsl);
46 CV=r2p(rxr(C,Vr));
47 DI=r2p(rxr(D,Ir));
48 Is_=CV+DI;
49 Is=p2r(Is_);
50 \text{ theta2=Is}(2);
51 printf("Magnitude of sending end current= %.1 f A\n",
      Is(1));
52 Spf=cosd(theta2-theta1);
53 printf ("Sending end power factor = \%.3 f leading \n",
      Spf);
54 \text{ Ps=sqrt}(3)*Vsl*Is(1)/1000;
55 printf("Sending end MVA= \%.2 \text{ f MVA} \ \text{n}", Ps);
56 printf ("Power angle= \%.3 \text{ f} ", theta1);
57 //ALL THE ANS ARE DIFFRENT BECAUSE OF ROUND OFF IN
      THE BOOK
```

Scilab code Exa 6.12 Find sending end voltage and current and power factor

```
1 //Find sending end voltage and current and power
      factor
2 clear;
3 clc;
4
5 // soltion
6 //FUNCTIONS
7 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
8
       z(1) = A(1) *B(1)
9
       z(2) = A(2) + B(2)
10 endfunction
11
12 function [a]=r2p(z)//Function for rectangular to
13
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
14 endfunction
15
16 function [v]=p2r(q)//Function for polar to
      rectangular
       v(1) = abs(q)
17
       v(2) = atand(imag(q)/real(q))
18
19 endfunction
20
21 //given
22 P = 40 * 10^6; /MVA
23 Vrl = 220*1000; //V
24 Vr=[Vr1/sqrt(3) 0];
25 \text{ Ir} = [0 \ 0];
z = complex(0.105, 0.3768)*500;
Z = [floor(abs(z)*1000)/1000 at and(imag(z)/real(z))];
28 y = complex(0, 2.882*10^-6)*500;
29 Y = [abs(y) 90];
30 \text{ YZ=rxr}(Z,Y);
31 Y2Z2=rxr(YZ,YZ);
```

```
32 A_{=1}+(r2p(YZ))/2+(r2p(Y2Z2))/24;
33 A=p2r(A_);
34 P_{=}(1+(r2p(YZ))/6+(r2p(Y2Z2))/120);
35 P = p2r(P_);
36 C=rxr(Y,P);
37 D = A;
38 \text{ AV=rxr}(A, Vr);
39 Vs = AV;
40 Vsl = sqrt(3) * Vs(1) / 1000;
41 printf ("Sending end voltage= \%.3 \, \text{f kV} = \%.3 \, \text{j} / \text{IN}
      BOOK DUE TO PRINTING MISTAKE IT IS 119.51 kV
42 Is=rxr(C, Vr);
43 printf ("Sending end line current= \%.1 \text{ f A/n}", Is (1));
      //IN BOOK IT IS 171.4 A DUE TO ROUND OFF
44 Spf = cosd(Vs(2) - Is(2));
45 printf("Sending end power factor= %.4f leading", Spf)
```

Scilab code Exa 6.13 Find characteristics impedance and propogation constant and ABCD constants

```
rectangular form
        z(1) = A(1)/B(1)
13
        z(2) = A(2) - B(2)
14
15
        endfunction
16
17 function [v]=p2r(q)//Function for polar to
      rectangular
        v(1) = abs(q)
18
        v(2) = atand(imag(q)/real(q))
19
20 endfunction
21
22 / given
23 Z = complex(14.1,51.48);
24 Y = complex(0, 1.194*10^-3);
25 1=200; //length of the line
26 z = Z/1;
27 y = Y/1;
28 \text{ Zc=p2r(sqrt(z/y))};
29 printf ("Characteristics Impedance= %d %.2 f
                                                           ohm\n
      ", ceil(Zc(1)), Zc(2));
30 P=sqrt(z*y);//propogation constant
31 printf ("Propagation constants = \%f + i\%f\n", real (P),
      imag(P));
32 \text{ al=real}(P)*1;
33 bl=imag(P)*1;
34 \text{ yl=P*1};
35 \quad A=p2r(\cosh(y1));
36 printf("A = D = \%.4 \text{ f} % .2 f \n", A(1), A(2));
37 B=rxr(Zc,p2r(sinh(y1)));
38 printf ("B= \%.2 \text{ f} \%.2 \text{ f}
                                ohm \ n", B(1), B(2));
39 C=rdr(p2r(sinh(y1)),Zc);
40 printf ("C= %.6 f % .2 f
                                 mho \ n", C(1), C(2));
```

Scilab code Exa 6.14 Determine recieving end voltage and current

```
1 // Determine recieving end voltage and current
2 clear;
3 clc;
4
5 //soltion
6 //FUNCTIONS
7 function [z]=rxr(A,B)//Function for the
      multiplication of rectangular
       z(1) = A(1) *B(1)
       z(2) = A(2) + B(2)
10
       endfunction
11
12 function [a]=r2p(z)//Function for rectangular to
      polar
       a=z(1)*complex(cosd(z(2)),sind(z(2)))
13
14 endfunction
15
16 function [v]=p2r(q)//Function for polar to
      rectangular
       v(1) = abs(q)
17
       v(2) = atand(imag(q)/real(q))
18
19 endfunction
20
21 //given
22 P = 60 * 10^6; / MW
23 Vsl = 220*1000; //V
24 Vs=Vs1/sqrt(3);
25 pf=0.8//power factir
26 \quad Z = [200 \quad 80];
27 \quad Y = [0.0013 \quad 90];
28 \text{ YZ=rxr}(Z,Y);
29 \quad Y2Z2=rxr(YZ,YZ);
30 A_=1+(r2p(YZ))/2+(r2p(Y2Z2))/24;
31 A = p2r(A_);
32 printf("A = D = \%.3 \text{ f} \ \n", A(1), A(2));
33 P_{=}(1+(r2p(YZ))/6+(r2p(Y2Z2))/120);
34 B=rxr(Z,p2r(P_));//IN BOOK IT'S 1941.56 DUE TO
      TYPOLOGICAL ERROR
```

```
35 printf("B= \%.2 \text{ f} \%.2 \text{ f} ohm\n",B(1),B(2));
36 \quad D=A;
37 \text{ Vr}_{=poly}(0, 'Vr');
38 \text{ Ir}=[P/(3*pf) -acosd(pf)];
39 C1=A(1); // constant of A*Vr
40 C2=B(1)*Ir(1); // constant of B*I
41 BI_ang=B(2)+Ir(2); //angle between B and I
42 BI= C2*(cosd(BI_ang)+%i*sind(BI_ang));
43 AV= C1*(cosd(1.41)+%i*sind(1.41)); //1.41= Angle
      between A and V
44 com=numer(((real(AV)*Vr_+real(BI)/Vr_)^2+(imag(AV)*
      Vr_+imag(BI)/Vr_)^2-Vs^2);//considering only
      numerator part
45 Vr=roots(com);
46 Vr1=99746;//by selecting the positive value & near
      to sending end voltage
47 Vrl=sqrt(3)*Vr1/1000;
48 printf ("Receiving end line voltage= \%.2 \, \text{f kV} \, \text{n}", Vrl);
49 Irl=Ir(1)/Vr1;
50 printf ("Receiving end line current= \%.0 f A", Irl);
```

Scilab code Exa 6.15 Determine the induced voltage in the telephone line

```
//Determine the induced voltage in the telephone
line

clear;
clc;

//soltion
//given
Vl=132*1000;//Volt
P=28*10^6;//load in kw
pf=0.85;//power factor
f=50;//Hz
1 l=200;//length of the line
```

```
12 r=0.005; //radius of conductor
13 hA=20; //height of the line
14 Ao=4*sqrt(3)/2;
15 dAP = Ao + 5;
16 \quad dAQ = dAP + 1;;
17 dBP = sqrt(5*5+2*2);
18 dBQ = sqrt(6*6+2*2);
19 Ma=0.2*log(dAQ/dAP);
20 Mb=0.2*log(dBQ/dBP);
21 M = (Mb - Ma) * 10^{-3};
22 I=P/(sqrt(3)*V1*pf);
23 \text{ Vm} = 2 * \% pi * f * M * I;
24 printf("For 200 km line induced voltage= %.1f volts\
      n", Vm*1);
25 Va=V1/sqrt(3);
26 \text{ Vb=Va};
27 \quad Vpa=Va*log((2*(hA+Ao)-dAP)/dAP)/log((2*(hA+Ao)-r)/r)
28 \quad Vpb=Vb*log((2*(hA+Ao)-dBP)/dBP)/log((2*(hA+Ao)-r)/r)
29 Vp=Vpb-Vpa;
30 printf("The potential of telephone line= %d volts",
      Vp);
31 //the ans in the book is Vm = 90.4 volts and Vp = 4396
      because of using round off in some values
```

Chapter 7

Corona

Scilab code Exa 7.1 Determine line voltage for commencing of corona

Scilab code Exa 7.2 Determine whether corona will be there or not

```
1 //Determine whether corona will be there or not
```

```
2 clear;
3 clc;
4 //soltion
5 //given
6 Er=4; //relative permittivity
7 r=3.52/2; //cm
8 Vp=28; //kV// Voltage between conductor and an earthed
       clamp surrounding the porcelain
9 \text{ g1=poly}(0, "g1");
10 r1 = 4/2; //cm
11 r2=10/2; //cm
12 g2=r*g1/(Er*r1);
13 g1max = roots(g1 * r * log(r1/r) + g2 * r1 * log(r2/r1) - 28);
14 printf("Maximum gradient on conductor surface= %.3 f
      kV/cm n, g1max);
15 printf("If gradient exceeds dielectric strength of
      air (21.1 \text{kV/cm}) the corona will be present \n In
      this case it is present");
```

Scilab code Exa 7.3 Determine critical discruptive voltage for line

```
//Determine critical discruptive voltage for line
clear;
clc;
//soltion
//given
d=2*100;//cm
r=0.5;//cm
go=30/sqrt(2);//kV/cm... Dielectric strength of air
mo=0.8;//Irregularity factor
del=0.95//air density factor
Vdo=mo*go*del*r*log(d/r);
Vl=sqrt(3)*Vdo;
printf("Line voltage (R.M.S)= %.2 f kV",V1);
```

Scilab code Exa 7.4 Find spacing between the conductor

```
//Find spacing between the conductor
clear;
clc;
//soltion
//given
r=1;//cm
go=30/sqrt(2);//kV/cm... Dielectric strength of air
mo=1;//Irregularity factor
del=1//air density factor
Vdo=220/sqrt(3);
d=exp(Vdo/(mo*go*del*r));
printf("Spacing between the conductor (d)= %.2 f m",d /100)
```

Scilab code Exa 7.5 Determine critical discruptive voltage for line

```
//Determine critical discruptive voltage for line
clear;
clc;
//soltion
//given
d=2*100;//cm
r=1.2;//cm
go=30/sqrt(2);//kV/cm... Dielectric strength of air
mo=0.96;/Irregularity factor
b=72.2;//barometric pressure
t=20;//temperature
del=3.92*b/(273+t);//air density factor
Vdo=mo*go*del*r*log(d/r);
Vl=sqrt(3)*Vdo;
```

```
15 printf("Line voltage (R.M.S)= \%.2\,\mathrm{f} kV", V1);
16 //In book its 208 kV because of rounding of floating points
```

Scilab code Exa 7.6 Determine critical discruptive voltage for line and corona loss

```
1 //Determine critical discruptive voltage for line
      and corona loss
2 clear;
3 clc;
4 //soltion
5 //given
6 Vph1=106/\sqrt{(3)}; //\sqrt{kV}
7 Pc1=54; //kW//loss at Vph1
8 Vph2=110/sqrt(3); //kV
9 Pc2=95; /kW//loss at Vph2
10 Vphu=115/sqrt(3); //kV
11 printf("Pc
                  (Vph-Vdo)^2 n");
12 Vdo=poly(0,"Vdo");
13 A=roots((Vph1-Vdo)^2*Pc2-(Vph2-Vdo)^2*Pc1);
14 Vdo=54.123123; // after the solution of roots
15 Pcu=Pc1*((Vphu-Vdo)^2)/((Vph1-Vdo)^2)
16 printf ("Corona loss at 115 kV= \%.2 \text{ f kW} \text{ n}", Pcu);
17 printf ("Critical discruptive voltage= \%.2 f kV", sqrt
      (3)*Vdo);
```

Scilab code Exa 7.7 Determine critical disruptive voltage and Visual critical voltage and Corona loss

```
3 \text{ clc};
4 // soltion
5 //given
6 r=1.036/2; //cm//conductor radius
7 d=2.44*10^2; //cm//spacing
8 go=21.1; //kV/cm// Dielectric strength
9 mo=0.85; //irregularity factor
10 mv=0.72; //roughness factor
11 b=73.15; //pressure
12 t=26.6; //temperature
13 f=50; //frequency
14 del=3.92*b/(273+t);
15 Vph=110/sqrt(3); //kV//Voltage to which conductor are
       subjected
16 Vdo=go*del*mo*r*log(d/r);
17 Vvo=go*del*mv*r*(1+0.3/sqrt(del*r))*log(d/r);
18 printf ("Critical voltage to neutral = \%. 3 f kV (rms) \n"
      , Vdo);
19 printf ("Visual critical voltage to neutral= %.1 f kV(
      rms) \ n", Vvo);
20 Pc = (244/del)*(f+25)*sqrt(r/d)*(Vph-0.8*Vdo)^2*10^-5;
21 printf("Total corona loss for 160 km, 3 phase line=
      \%d kW\n", ceil (160*3*Pc));
22 \text{ ra=Vph/(0.8*Vdo)};
23 k=0.46;
24 printf ("For this value of the Vph/Vdo(\%.2f) K= \%.2f\
      n", ra, k);
25 Pc2=21*10^-6*f*((Vph)^2)*k/(log10(d/r))^2;
26 printf("Total corona loss(under bad weather) for 160
       km, 3 phase line=\%.2 \text{ f kW} \text{n}, 160*3*Pc2);
27 //IN BOOK THE CORONA LOSS UNDER BAD CONDITION IS
      1308.5 BECAUSE OF SOME TYPOLOGICAL ERROR
```

Scilab code Exa 7.8 Find corona characteristics

```
1 //Find corona characteristics
2 clear;
3 clc;
4 //soltion
5 //given
6 r=1/2; //cm//conductor radius
7 d=3*10^2; //cm//spacing
8 go=21.1; //kV/cm// Dielectric strength
9 mo=0.85; //irregularity factor
10 mv=0.72; //roughness factor
11 mv_=0.82; // for general corona
12 b=74; // pressure
13 t=26; //temperature
14 f=50; // frequency
15 del=3.92*b/(273+t);
16 Vph=110/sqrt(3);//kV//Voltage to which conductor are
       subjected
17 Vdo=go*del*mo*r*log(d/r);
18 Vvo_=go*del*mv*r*(1+0.3/sqrt(del*r))*log(d/r);
19 Vvo = Vvo_*(mv_/mv);
20 printf("Critical voltage to neutral= %.2 f kV(rms)\n"
      , Vdo);
21 printf ("Visual critical voltage to neutral = \%.1 f kV(
     rms) \ n", Vvo);
22 Pc = (244/del)*(f+25)*sqrt(r/d)*(Vph-Vdo)^2*10^-5;
23 printf("Total corona loss for 175 km, 3 phase line=
     \%d kW\n", ceil(175*3*Pc));
24 Pc_=(244/del)*(f+25)*sqrt(r/d)*(Vph-0.8*Vdo)
      ^2*10^-5;
25 printf ("Total corona loss for 175 km, 3 phase line=
     %d kW n, ceil (175*3*Pc_));
26 //THE ANS IN BOOK OF FAIR AND STORMY CONDITION IS
      253 kW AND 1464kW BECAUSE OF USING ROUND OFF
     VALUES
```

Chapter 8

Insulators

Scilab code Exa 8.1 find voltage distribution across each insulator and string efficiency

```
1 //find voltage distribution across each insulator
       and string efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 \text{ k=1/6; // ratio}
7 V = poly(0, "V");
8 V1=100/(k^3+6*k^2+10*k+4);
9 V2 = (1+k) * V1;
10 V3 = (1+3*k+k*k)*V1;
11 V4 = (1+6*k+5*k^2+k^3)*V1;
12 printf ("V1= \%.2 f percent of V\n V2= \%.2 f percent of
      V \setminus n \ V3 = \%.2 f \ percent of \ V \setminus n \ V4 = \%.2 f \ percent of \ V
      n, V1, V2, V3, V4);
13 \text{ se} = 100*100/(4*V4);
14 printf ("String efficiency = \%.1 \, \text{f}", se);
```

Scilab code Exa 8.2 find max safe working voltage and string efficiency

```
//find max safe working voltage and string
    efficiency

clear;
clc;
//soltion
//given
k=0.08;//ratio
V3=15;
V1=V3/(1+3*k+k*k);
V2=V1*(1+k);
V=V1+V2+V3;
printf("Max and safe working voltage= %.2 f kV\n",V);
Se=V*100/(3*V3);
printf("String efficiency %.2 f percent",Se);
```

Scilab code Exa 8.3 find ratio of ground to mutual capacitance and system line voltage and string efficiency

Scilab code Exa 8.4 find system line voltage and string efficiency

```
1 //find system line voltage and string efficiency
2 clear;
3 clc;
4 // soltion
5 //given
6 V2=20; //kV
7 V3=30; //kV
8 k = poly(0,"k");
9 k = roots(V2*(1+3*k+k*k)-V3*(1+k));
10 k=0.28; // Considering only positive part
11 V1=V2/(1+k);
12 V4=V1*(1+6*k+5*k^2+k^3);
13 V = V1 + V2 + V3 + V4;
14 Se=V*100/(4*V4);
15 printf ("System line voltage (V) = \%.3 f kV \nString
      Efficiency = \%.3 f percent", sqrt(3) *V, Se);
```

Scilab code Exa 8.5 find max safe working voltage

```
1 //find max safe working voltage
2 clear;
3 clc;
4 //soltion
5 //given
6 V3=11; //kV
7 k=12.5/100; //shunt/self cpacitance
8 V=poly(0,"V");
9 V1=V/(3+4*k+k*k);
10 V3_=V1*(1+3*k+k*k);
```

```
11 V=roots(V3-V3_);
12 printf("Maximum Voltage for string= %.2 fkV", V);
```

Scilab code Exa 8.7 Find the values of line to pin capacitance

Scilab code Exa 8.8 find string efficiency

```
1 //find string efficiency
2 clear;
3 clc;
4 //soltion
5 //given
6 V1 = poly(0, "V1");
7 V2 = poly(0, "V2");
8 V3 = poly(0, "V3");
9 \ V = poly(0, "V");
10 //Since wC is common so its cancelled
11 function x=%c_sign(a)
                x = (1.05*V2/1.2) + a + (0.05*V3/1.2)
12
13
                endfunction
14 printf("V1=");
15 disp(sign('+'));
```

```
16 function x=%c_sin(a)
                x = '-1.2*V2/0.2' + a + '1.05*V3/0.2'
17
18
                endfunction
19 printf("\nV1=");
20 disp(sin('+'));
21 \quad V2 = 25/23.25 * V1;
22 \quad V3=1.65/1.1625*V1;
23 printf("\n\nOn solving above equation\n\nV2=");
24 disp(V2);
25 printf("V3=");
26 disp(V3);
27 V = V1 + V2 + V3;
28 V1=roots(1-V); //ignoring 'V' for making calculation
      easy
29 V2=25/23.25*V1*poly(0,"V");
30 \quad V3=1.65/1.1625*V1;
31 Se=100/(3*V3);
32 printf("\n\nString Efficiency= %.1f percent", Se);
```

Scilab code Exa 8.9 Calculate voltage on line end unit and capacitance Cx required

Chapter 9

Underground Cables

Scilab code Exa 9.1 Determine insulation resistance

Scilab code Exa 9.2 Determine resistivity of dielectric in a cable

```
1 // Determine resistivity of dielectric in a cable
2 clear;
3 clc;
```

```
4 //soltion
5 //given
6 Rins=1840*10^6; //ohm
7 l=2*10^3; //m
8 r1=2/2; //mm
9 r2=6/2; //mm
10 row=Rins*(2*%pi*1)/log(r2/r1);
11 printf("Resistivity of Dielectric= %.3f*10^12 ohm-m", row/10^12);
```

Scilab code Exa 9.3 Find max and min electrostatic stresses and capacitance and charging current

```
1 //Find max and min electrostatic stresses and
      capacitance and charging current
2 clear;
3 clc;
4 //soltion
5 //given
6 a=0.645; //cm^2
7 d=sqrt(4*a/\%pi)*0.01;//m//Diameter of conductor
8 V = 11000; // Volts
9 f = 50; //Hz
10 Er=3.5; // permitivity of the dielectric used
11 D=0.0218; //m//Internal diameter of sheath
12 gmax = 2*V/(d*log(D/d))/10^5;
13 printf ("Maximum electrostatic stresses = \%.2 \text{ f kV/cm/n}
      ",gmax);
14 gmin=2*V/(D*log(D/d))/10^5;
15 printf ("Minimum electrostatic stresses = %.1 f kV/cm\n
      ",gmin);
16 C=0.024*Er*10^-6/(log10(D/d));
17 printf ("Capacitance of cable= \%.2 \text{ f}*10^-6 \text{ farad} n", C
      *10^6);
18 Ic=2*%pi*f*C*V/sqrt(3);
```

Scilab code Exa 9.4 Find max electrostatic stresses and charging kVA

```
1 //Find max electrostatic stresses and charging kVA
2 clear;
3 clc;
4 // soltion
5 //given
6 \text{ r=0.6}; //\text{cm}
7 d=0.025; //m// Diameter of conductor
8 V = 33000; // Volts
9 f = 50; //Hz
10 1=3.4; //km
11 Er=3.1; // permitivity of the dielectric used
12 D=d+2*r*10^-2; //m//Internal diameter of sheath
13 gmax=2*V/(d*log(D/d));
14 printf("Maximum electrostatic stresses= %.1f*10^6 V/
     m n, gmax/10<sup>6</sup>);
15 C=0.024*Er*l*10^-6/(log10(D/d));
16 printf ("Capacitance of cable= \%.4 \text{ f}*10^-6 \text{ farad} ", C
      *10^6);
17 Ic=2*%pi*f*C*(V/sqrt(3));
18 printf ("Charging current per phase per km length= %
      .2 f A \ n", Ic);
19 kVA=sqrt(3)*V*Ic*10^-3;
20 printf ("Total Charging= \%.2 \text{ f kVAR}", kVA);
21 //THERE ARE SOME CALCULATION ERRORS IN THE BOOK
      BECAUSE OF WHICH 1c = 0.3078 A AND TOTAL CHARGING
      CURRENT= 17.57kVAR
```

Scilab code Exa 9.5 Determine internal diameter of shealth D and diameter of conductor d

```
//Determine internal diameter of shealth D and
diameter of conductor d

clear;
clc;
//soltion
//given
gmax=23*10^5;//V/cm
V=10000;//Volts
d=2*V/gmax;
D=exp(1)*d*1000;
printf("Diameter of conductor(d)= %.1f mm \nInternal diameter of shealth (D)= %.2f mm",d*1000,D);
```

Scilab code Exa 9.6 Determine most economical value of diameter and overall diameter of insulation

```
//Determine most economical value of diameter and
    overall diameter of insulation

clear;

clc;

//soltion
//given
gmax=60;//kV/cm
V=132*sqrt(2)/sqrt(3);//kV
d=2*V/gmax;
D=exp(1)*d;
printf("Diameter of conductor(d)= %.1 f cm \nInternal diameter of shelath= %.2 f cm",d,D);
```

Scilab code Exa 9.7 Determine most economical value of diameter of single core cable

```
// Determine most economical value of diameter of
single core cable

clear;
clc;
//soltion
//given
gmax=40;//kV/cm
V=50*sqrt(2);//kV
d=2*V/gmax;
printf("Diameter of conductor(d)= %.3 f cm",d);
```

Scilab code Exa 9.8 find safe working voltage of cable

```
1 //find safe working voltage of cable
2 clear;
3 clc;
4 //soltion
5 //given
6 d=4; //cm
7 D=10; //cm
8 e1=5; // realtive permeabilty
9 e2=4; //realtive permeabilty
10 e3=3; // realtive permeabilty
11 d1=e1*d/e2;
12 d2=e1*d/e3;
13 gmax=40; //kV/cm
14 Vper = (gmax/2) * [d*log(d1/d)+d1*log(d2/d1)+d2*log(D/d2)
      )];
15 Vsafe1=Vper/sqrt(2);
16 printf ("Safe working voltage (rms) of a cable = \%.2 f
      kV \ n", Vsafe1);
17 Vpeak = (gmax/2) * [d*log(D/d)];
```

Scilab code Exa 9.9 find radial thickness and safe working voltage of cable

```
1 //find radial thickness and safe working voltage of
      cable
2 clear;
3 clc;
4 //soltion
5 / given
6 d=6; //cm
7 D=18; //cm
8 e1=5; // realtive permeabilty
9 e2=4; // realtive permeabilty
10 g1max=30; //kV/cm
11 g2max = 20; //kV/cm
12 d1=g1max*e1*d/(g2max*e2);
13 tin=(d1-d)/2;
14 printf("Radial thickness of inner dielectric= %.3 f
      cm \setminus n", tin);
15 tout=(D-d1)/2;
16 printf ("Radial thickness of outer dielectric= %.3 f
      cm \n", tout);
17 Vper = (g1max/2) * [d*log(d1/d)] + (g2max/2) * (d1*log(D/d1))
      );
18 Vsafe=Vper/sqrt(2);
19 printf ("Safe working voltage for a cable (rms) = \%.2 f
      kV \ n", Vsafe);
```

Scilab code Exa 9.10 find the voltage on the intersheaths

```
1 //find the voltage on the intersheaths
2 clear;
3 clc;
4 //soltion
5 //given
6 d=2.5; //cm
7 d1=3.1; //cm
8 d2=4.2; //cm
9 D=6; //cm
10 V=66*sqrt(2/3);/kV
11 V1 = poly(0,"V1");
12 V2 = poly(0, "V2");
13 V3 = poly(0, "V3");
14 g1max = V1/((d/2)*log(d1/d)); //kV/cm
15 g2max=V2/((d1/2)*log(d2/d1)); //kV/cm
16 g3max=V3/((d2/2)*log(D/d2)); //kV/cm
17 V2 = g1max/2.1244605;
18 V3 = g1max/1.3350825;
19 V1=roots (V1+V2+V3-V);
20 V2=V1*1.7542; // after solving g1max=g2max
21 V3=V1*2.7857; // after solving g1max=g3max
22 \text{ Vf} = \text{V} - \text{V1};
23 \ Vs = V - V1 - V2;
24 printf("Voltage on first intersheath(i.e. near to
      the core) = \%.3 \, f \, kV \ n", Vf);
25 printf("Voltage on second intersheath = \%.3 f kV", Vs);
26 //THERE IS A SLIGHT ERROR DUE TO THE USAGE OF
      FLOATING POINT
27 / IN BOOK Vf = 44.237 kV \& Vs = 27.147kV
```

Scilab code Exa 9.11 find the position and voltage on the intersheaths and max and min stress

```
1 //find the position and voltage on the intersheaths and max and min stress
```

```
2 clear;
3 clc;
4 //soltion
5 //given
6 d=2; //cm
7 D=5.3; /cm
8 V=66*sqrt(2/3);/kV
9 V1 = poly(0, "V1");
10 V2 = poly(0, "V2");
11 V3 = poly(0, "V3");
12 d1 = poly(0, "d1")
13 d1d2=D*d; //d1*d2
14 d2 = (d1^2)/2;
15 printf("d2= ");
16 disp(d2);
17 d1=(2*d1d2)^(1/3); // after putting value of d2 in d1*
      d2
18 d2=(d1^2)/2;
19 printf ("d1= \%.3 \text{ f cm } \text{ nd2} = \%.1 \text{ f cm } \text{ n",d1,d2});
20 V2 = (d1/d) * V1;
21 V3 = (d2/d) * V1;
22 V1 = roots (V1 + V2 + V3 - V);
23 V2 = (d1/d) * V1;
24 V3 = (d2/d) * V1;
25 \text{ Vf} = V - V1;
26 \ Vs = V - V1 - V2;
27 printf ("Voltage on first intersheath (i.e. near to
      the core) = \%.3 \, f \, kV n, Vf);
  printf("Voltage on second intersheath = \%. f kV \ ", Vs)
29 Gmax = V1/((d/2) * log(d1/d));
30 Gmin=V1/((d1/2)*log(d1/d));
31 printf ("Maximum stress = \%. f kV/cm \nMinimum stress =
      \%.2 \text{ f kV/cm}, Gmax, Gmin);
32 //There is an error in in book it is Voltage on
      second intersheath= 23.91 kV & Gmax and Gmin in
      book it is 39kV/cm & Gmin= 28.35 kV/cm
```

Scilab code Exa 9.12 Calculate the charging current

```
//Calculate the charging current
clear;
clc;
//soltion
//given
C3=(0.4*10^-6)*5;//farad
Vph=11*10^3/sqrt(3);
f=50;//Hz
Cn=2*C3;
Cn=2*C3;
reflection current = %.2 f A",Ic)
```

Scilab code Exa 9.13 Calculate the kVA taken

```
1 // Calculate the kVA taken
2 clear;
3 clc;
4 // soltion
5 // given
6 C3=(0.2*10^-6)*20; // farad
7 Vph=11*10^3/sqrt(3);
8 f=50; // Hz
9 Cn=2*C3;
10 Ic=2*%pi*f*Vph*Cn;
11 printf("Charging current= %.2 f A\n", Ic)
12 kVA=3*Vph*Ic*10^-3;
13 printf("kVA taken by the cable= %.2 f kVA", kVA);
14 // IN BOOK IT IS 24.75 kVA DUE TO SOME PRINTING
MISTAKE
```

Scilab code Exa 9.14 Calculate the charging current

```
1 // Calculate the charging current
2 clear;
3 clc;
4 // soltion
5 //given
6 C1=14*10^-6; //farad
7 C2=8*10^-6; //farad
8 \text{ Ce}=C1/3;
9 Cc = (C2 - Ce)/2;
10 Vph=66*10^3/sqrt(3);
11 f = 50; //Hz
12 Cn=Ce+3*Cc;
13 Ic=2*%pi*f*Vph*Cn;
14 printf("Charging current= %.2 f A", Ic);
15 //In book it is 115.82 A due to some printing
      mistake
```