

Figure 1: Generator and Discriminator. (a) shows how the generator generates a fake graph from random noise and conditional vector input. (b) shows the discriminator's graph-level task process, which discriminates whether the input graph is real or fake. After passing through L GNN layers, all the node features of the final graph output are concatenated as a single vector. And we put it into the final fully connected layer. (c) shows the process of the discriminator's node-level task of predicting the target node value. After passing through GNN, the target node feature of the graph output is put into a fully connected layer.

Figure 2: Comparison of synthetic data histograms. These are the data distributions synthesized by DPGAN, Pate-GAN, CT-GAN, CTAB-GAN, CTAB-GAN+, CoDi, TabDDPM and CG-TGAN for the Diabetes dataset. The royal-blue color plot represents the real data distribution, and the orange-red color plot represents the synthesized data distribution. We can see that the data distribution synthesized by CG-TGAN best matches with the real data distribution.

Figure 3: t-SNE projection on Diabetes dataset. The royal-blue color plot represents the real data distribution, and the orange-red color plot represents the synthesized data distribution. We can see that the data distribution synthesized by CG-TGAN best matches with the real data distribution.

Figure 4: Comparison of synthetic data histograms. These are the data distributions synthesized by CTGAN, CTAB-GAN+, CoDi, TabDDPM and CG-TGAN for the Diabetes dataset. #1, Price. #2, Bedrooms. #3, Bathrooms. #4, SQFT Living. #5, SQFT Lot Mixed. #6, Floors. #7, Waterfront. #8, View. #9, Condition. #10, Grade. #11, SQFT Above. #12, SQFT Basement. #13, YR Built. #14, YR Renovated Mixed. #15, Lat. #16, Long. #17, SQFT Living15. #18, SQFT Lot15. The royal-blue color plot represents the real data distribution, and the orange-red color plot represents the synthesized data distribution. We can see that the data distribution synthesized by CG-TGAN best matches with the real data distribution.

Table 1: The datasets we used in our experiments. The N notation means the number of columns that were not used because they are meaningless.

Dataset	#Train	#Test	#C	#M	#CA	#N	Task Type
Abalone	3341	836	8	0	1	0	RG
Insurance	1070	268	4	0	3	0	RG
King	17290	4323	13	2	3	3	RG
Adult	32561	16281	4	2	9	0	BC
Diabetes	614	154	8	0	1	0	BC
Gesture	7898	1975	32	0	1	0	MC
Wilt	3871	968	5	0	1	0	BC

Table 2: CG-TGAN hyperparameters used in the experiments for each dataset. n_{dg} , the number of iterations of the discriminator's graph-level task per update. n_{update} , the number of updates for CG-TGAN learning. b, the batch size.

	Number of GC	Embedding Dimensions	Learning Rate	n_{dg}	n_{update}	$\mid b \mid$
Abalone	3	{64, 128, 64}	1e-4	5	5000	256
Insurance	3	{64, 128, 64}	1e-4	5	5000	256
King	3	{64, 128, 64}	1e-4	5	5000	256
Adult	4	{64, 128, 128, 64}	1e-4	5	5000	256
Diabetes	3	{64, 128, 64}	1e-4	5	5000	256
Gesture	3	{64, 128, 64}	1e-4	5	5000	256
Wilt	4	{64, 128, 128, 64}	1e-4	5	5000	256