Теория графов (паросочетания)

Обозначения

o(G) – количество компонентов связанности с нечетным числом вершин

Множество вершин $U \subset V(G)$ называется **независимым**, если никакие две его вершины не смежны.

lpha(G) - количество вершин в максимальном независимом множестве графа G.

Множество ребер $M \subset E(G)$ называется **паросочетанием**, если никакие два его ребра не имеют общей вершины.

lpha'(G) - количество ребер в максимальном паросочетании графа G.

Множество вершин $W\subset V(G)$ покрывает ребро $e\in E(G)$, если существует вершина $w\in W$, инцидентная е.

Множество ребер $F\subset E(G)$ покрывает вершину $v\subset V(G)$, если существует ребро $f\in F$, инцидентное v.

Совершенное паросочетание – паросочетание, покрывающее все вершины графа.

Вершинное покрытие – множество вершин $W \subset V(G)$, покрывающее все ребра графа.

 $\beta(G)$ - минимальное количество вершин в минимальном вершинном покрытии графа G.

Реберное покрытие - множество ребер $F \subset E(G)$, покрывающее все вершины графа G.

eta'(G) – количество ребер в минимальном реберном покрытии графа G.

Стабильное паросочетание М для множества предпочтений \leq , если для любого ребра $f \notin M$ существует такое ребро $e \in M$, что е и f имеют общий конец v и $f \leq e$

Замыкание графа: метод Хватала

Рассмотрим произвольный граф G. Если существует две несмежных вершины $a,b\in V(G)$, для которых $d_G(a)+d_G(b)\geq v(G)$, то добавим в граф ребро ab. Далее продолжим процесс с полученным графом, и так далее, до тех пор, пока это возможно. Полученный в результате граф назовем замыканием графа G и обозначим через C(G).

Гамильтонов цикл в кубе графа

Для графа G и натурального числа d обозначим через G^d граф на вершинах из V(G), в котором вершины x, y смежны тогда и только тогда, когда ${\rm dist}_G(x,y) \leq d$

Чередующиеся и дополняющие пути

Пусть М – паросочетание в графе G.

- 1. **М-чередующийся путь** путь в котором чередуются ребра из M и ребра, не входящие в M.
- 2. **М-дополняющий путь** М-дополняющий путь, у которого начало и конец не совпадают с паросочетанием М.

Факторы регулярного графа

k-фактором графа G называет остовный регулярный подграф степени k.

Множество Татта. Дефицит графа

Пусть $S \subset V(G)$ такого, что o(G-S) > |S|. Мы будем называть S множеством Татта граф G.

Дефицитом граф G мы будем называть величину $def(G) := v(G) - 2\alpha'(G)$.

Дефицит графа G – это количество вершин, не покрытых максимальным паросочетанием графа G.

Теоремы и лемы

1. $U\subset V(G)$ – независимое множество, если и только если $V(G)\setminus U$ – вершинное покрытие 2. $\alpha(G)+\beta(G)=v(G)$

Теорема Галлаи

Пусть G – граф с
$$\delta(G) > 0 \Rightarrow \alpha'(G) + \beta'(G) = v(G)$$

Теорема Бержа

Паросочетание M в графе G является максимальным тогда и только тогда, когда нет М-дополняющий путей.

Теорема Холла (паросочетания в двудольном графе)

• Пусть $G = (V_1, V_2, E)$ – двудольный граф с долями V_1 и V_2 .

В двудольном графе G есть паросочетание, покрывающее все вершины доли V_1 , если и только если для любого множества $U\subset V_1$ выполняется $|U|\leq |N_G(U)|$.

Следствие 1 из теоремы Холла

В двудольном графе $G=(V_1,V_2,E)$ все вершины V_1 имеют степень не меньше k, а все вершины V_2 имеют степени больше k. Тогда есть паросочетание, покрывающее V_1 .

Следствие 2 из теоремы Холла

Пусть $G=(V_1,V_2,E)$ – регулярный двудольный граф степени k. Тогда G есть объединение k своих совершенных паросочетаний.

Теорема о гареме

В одной стране проживает юноши $\{A_1,...,A_n\}$. Для каждого $i\in\{1,...,n\}$, юноша A_i хочет завести гарем из k_i знакомых ему девушек (естественно $k_i\in\mathbb{N}$). Они могут это сделать одновременно тогда и только тогда, когда длю любого множества юношей количество знакомых хотя бы одному из них девушек не меньше, чем сумма желаемых ими размеров гаремов.

Теорема Кенига

Пусть G – двудольный граф. Тогда $\alpha'(G) = \beta(G)$

Следствие из теоремы Кенига и Галлаи

Пусть G – двудольный граф с $\delta(G) > 0$. Тогда $\alpha(G) = \beta'(G)$

Stable marriage theorem

Пусть G – двудольный граф. Тогда для любого множества предпочтений \leq в графе G существует стабильное паросочетание.

Теорема Татта

В графе G существует совершенное паросочетание тогда и только тогда, когда для любого $S \in V(G)$ выполняется условие $o(G-S) \leq |S|$

Теорема Петерсена

Пусть G - связанный кубический граф, в котором не более двух мостов. Тогда в графе G есть совершенное паросочетание.

Факторы регулярного графа

У регулярного графа степени 2k есть 2-фактора (граф связанный).

Теорема Томсона (о почти регулярном факторе почти регулярного графа)

Пусть G - граф, степени всех вершин которого равны k или k+1, а r < k. Тогда существует остовный граф H графа G, степени всех вершин которого равны либо r, либо r+1.

Формула Бержа

$$\operatorname{def}(G) = \operatorname{max}_{S \subset V(G)}(o(G-S) - |S|)$$

Доказательства

Теорема Бержа

 \Rightarrow Пусть в графе G существует M-дополняющий путь $S=a_1a_2...a_{2k}.$

Тогда заменим входящие в M ребра на $a_2a_3,...,a_{2k-2}a_{2k-1}$ на не входящие в M ребра $a_1a_2,...,a_{2k-1}a_{2k}$, и тем самым получим большее паросочетание. Противоречие.

 \Leftarrow Пусть M - не максимальное паросочетание, тогда рассмотрим максимальное паросочетание M', |M'| > |M|.

Пусть $N=M\bigtriangleup M', H=G(N)$. Для любой вершины $v\in V(H)$ мы имеем $d_H(v)\in\{1,2\},$ следовательно, H - объединение нескольких путей и циклов.

В каждой из этих путей и циклов ребра паросочетаний M И M' чередуются. Так как ребер из M' в E(H) больше, хотя бы одна компонента P графа H - путь нечетной длины, в котором больше ребер из M', Легко понять, что P - это M-дополняющий путь. Противоречие.

Связность (продолжение)

Алгоритм разделения связного графа на блоки

- Выберем точку сочленения а и разрежем по ней G заменим граф G на полученные при этом графы $G_1, G_2, ..., G_n$.
- Каждый следующим шагом мы будем брать один из имеющихся графов, выбирать в нем точку сочленения и разрезать по ней.
- И так далее, пока хотя бы один из полученных графов имеет точку сочленения.

Теорема 2

В результате описанного выше алгоритма разрезания графа по точкам сочленения вне зависимости от порядка действий получатся блоки графа G.

Рекурсивный алгоритм построения дерева блоков и точек сочленения

- Выберем точку сочленения а и разрежем по ней G заменим граф G на полученные при этом графы $G_1,...,G_k$
- В каждом из графов $G_1,...,G_k$ построим дерево блоков и точек сочленения. Пусть, скажем, $B(G_i)=T_i.$
- В графе G_i по лемме 4 вершина а не является точкой сочленения.
- Значит, по лемме 1 в G_i есть единственный блок B_i , содержащий а.
- Построим дерево B(G), присоединим в точке а деревья $T_1,...,T_n$ (дерево T_i присоединяем ребрами aB_i).

Теорема 3

В результате описанного выше алгоритма будет построено дерево блоков и точек сочленения графа G.

Теорема 4

Пусть G – двусвязный граф, $n_1,n_2\in\mathbb{N},v(G)=n_1+n_2.$ Тогда $G=G_1\cup G_2$, где $v(G_1)=n_1,v(G_2)=n_2$ и оба графа G_1 и G_2 связные.

Разделяющие множества

Пусть $X, Y \subset V(G), R \subset V(G) \cup E(G)$.

- 1. Назовем множество R разделяющим, если граф G R несвязен.
- 2. Пусть $X \not\subset R, Y \not\subset R$. Будем говорить, что R разделяет множества X и Y (или что, то же самое, отделяет множества X и Y друг от друга), если никакие две вершины $v_X \in X$ и $v_Y \in Y$ не лежат в одном компоненте связности графа G-R.
- Любой неполный граф имеет вершинное разделяющее множество.
- Любой граф более чем из одной вершины имеет реберное разделяющие множество.
- Граф G называется k-связным, если $v(G) \ge k+1$ и минимальное разделяющие множество в графе G содержат хотя бы k вершин.

Вершинная связность

- 1. Пусть $x,y\in V(G)$ несмежные вершины. Обозначим через $\kappa_G(x,y)$ размер минимального разделяющего множество $R\subset V(G)$ такого, что R разделяет x и y. Если x и y смежны, то положим $\kappa_G(x,y)=+\infty$. Назовем $\kappa_G(x,y)$ связностью вершин x и y.
- 2. Пусть $X,Y\in V(G)$ несмежные вершины. Обозначим через $\kappa_G(X,Y)$ размер минимального разделяющего множество $R\subset V(G)$ такого, что R разделяет X и Y. Если такого множества нет, то положим $\kappa_G(x,y)=+\infty$.

Теорема Менгера

Пусть $X,Y\in V(G), \kappa_G(X,Y)\geq k, |X|\geq k, |Y|\geq k.$ Тогда в графе G существуют к непересекающихся XY-путей.

Следствие 1

Пусть вершины $x,y\in V(G)$ несмежны, $\kappa_G(x,y)\geq k$. Тогда существует k независимых путей x из в y.

Следствие 2

Пусть $x \in V(G), Y \in V(G), x \notin Y, k = \min(|Y|, \kappa_G(x, Y))$. Тогда существуют k путей от х до различных вершин из множества Y, не имеющих общих внутренних вершин.

Теорема 6 (Уитни)

Пусть G – k-связный граф. Тогда для любых двух вершин $x,y\in V(G)$ существует k независимых ху-путей.

Теорема 7 (Дирака)

Пусть $k \geq 2$. В k-связном графе для любых k вершин существует простой цикл, содержащий все эти вершины.