ld	Question	Response	Example	
A1	Scope			
A1.1	What are the primary objectives that the RL agent should accomplish?		Maximize throughput and minimize latency in an industrial robotic assembly line by dynamically adjusting movement patterns based on sensor feedback.	
A2	Users			
A2.1	What is the level of Al expertise of the user(s)?	Rate Expertise	Beginner: The user has little to no experience with AI, possibly unfamiliar with basic concepts or terminology. Novice: The user has a basic understanding of AI, but may still need guidance and support in applying AI techniques to real-world problems. Intermediate: The user has a solid understanding of AI and can implement standard models, but may require help with more complex or specialized tasks. Advanced: The user is skilled in AI, capable of developing and optimizing complex models, and can handle most AI-related challenges independently. Expert: The user has deep, specialized knowledge in AI, often contributing to research or development of new methodologies and technologies.	
A2.2	What is the level of interaction of the user(s) with the agent?	Rate Level of Interaction	Passive: The user is not actively involved with the agent, merely observing its operation or outcomes without direct interaction. Guided: The user oversees the agent's deployment, monitoring its performance and providing feedback or adjustments during its operation. Contributor: The user is actively involved in the creation or improvement of the agent, such as training the model or building its system components.	
А3	Learning			
A3.2	Online (adaption during interactions with environment) or Offline (learns solely from pre-collected dataset)?	Select	Online: A self-driving car continuously adapts to new road conditions, such as unexpected construction zones or weather changes, by updating its policy in real-time. Offline: A predictive maintenance system for industrial machinery is trained on a historical dataset of sensor readings and failure events, making inferences without further updates during deployment	
A3.3	Task Persistence: Persistent (agent can retry the task indefinitely) or non-persistent with reset (task can be retried, but only after a significant reset of the environment) or irreversible (agent can only perform task once)?	Select	Persistent: A robotic arm in a manufacturing line repeatedly attempts to grasp and assemble components, refining its strategy over hundreds of thousands of trials. Non-persistent with reset: A robotic barista preparing a drink must clean and reset the station before making another cup. Irreversible: A robotic chef slicing vegetables permanently alters their shape, preventing retries on the same item.	
A3.1	Reward			
A3.1.1	Immediate (feedback is provided right after an action is taken) or Delayed (feedback may span multiple actions or time steps)?	Select	Immediate: A robotic gripper receives a reward signal immediately after successfully picking up an object. Delayed: A delivery drone receives feedback only after it has successfully completed its entire delivery route, including takeoff, navigation, and drop-off, even though there were many intermediate actions involved. A	
A3.1.2	Stochastic (feedback contains randomness or uncertainty for a given action) or Deterministic (feedback is consistent and deterministic for a given action)?	Select	Stochastic: A robot navigating a cluttered environment receives varying feedback on its movement, depending on factors like object interaction or sensor noise. Deterministic: A robotic arm consistently receives the same feedback after executing a precise action, such as placing an object in a fixed position.	
A3.1.3	Sparse (feedback is only given occasionally or in specific situations) or Dense (feedback is frequent and consistently available)?	Select	Sparse: A robot playing chess receives feedback only when it wins or loses a game, not after each individual move. Dense: A robot playing chess receives feedback after every move it makes, adjusting its strategy constantly based on the outcome of each individual action.	

A4	Environment			
A4.1	Fully (agent has access to complete information about the current state) or partially observable (agent only receives partial or noisy information about the current state)?	Select	Fully observable: A robotic arm in a controlled factory environment has access to complete information about its surroundings, such as the exact position of all components and tools. Partially observable: A self-driving car has limited visibility due to obstacles or weather conditions, so it must rely on sensors and predictions to fill in gaps in its understanding of the environment.	
A4.2	State Transitions are Deterministic (completely predictable given the current state and action) or Stochastic (involving randomness or uncertainty)?	Select	Deterministic: A robotic arm moving along a fixed path in a factory will always reach the same destination given the same starting point and action, with no randomness involved. Stochastic: A drone navigating through varying wind conditions experiences unpredictable changes in its flight path, even if the action (e.g., moving forward) is the same.	
A4.3	State Space is: Discrete (finite set of states) or Continuous (infinite possible states) or High-dimensional (many variables contributing to the state)?	Select	Discrete: A grid-based robot navigation system, where the robot can only occupy specific grid points, such as a robot moving on a chessboard. Continuous: A self-driving car's position and velocity, where the car can be in any position and have any speed within a continuous range. High-dimensional: A drone navigating a visual scene, where the state includes multiple objects' positions and the drone's own location and orientation.	
A4.4	Training + testing distribution is: IID (drawn from the same distribution) or OOD (drawn from different distributions) or Non-stationary (drawn from time-variant, non-stationary distributions)?	Select	IID: A robot trained and tested on data from the same environment, such as a robotic arm in a factory using consistent conditions for both training and testing. OOD: A self-driving car trained on data from urban areas and tested in rural environments, where the distributions of road types and conditions differ. Non-stationary: A robot trained to navigate in a warehouse with seasonal changes in inventory, causing the environment to evolve over time.	
A4.5	Action space is: Discrete (a finite set of possible actions) or Continuous (an infinite range of possible actions)?	Select	Discretee: A robot can only perform a set of predefined actions, such as "pick up," "move forward," or "rotate 90 degrees," with a finite number of choices. Continuous: A robotic arm can adjust its position at any angle or with any speed, allowing for an infinite range of possible actions.	
A4.6	Single-agent or Multi-agent (cooperation vs. competition)?	Select	Single-agent: A robotic vacuum operates independently, navigating a home and performing cleaning tasks without interacting with other agents. Multi-agent (cooperation): Multiple drones work together to deliver packages, coordinating their paths to avoid collisions and optimize delivery time. Multi-agent (competition): In a competitive robot soccer game, each robot tries to score goals while preventing the opposing team from doing so.	
Δ4.7	What physical constraints must the agent adhere to during operation? These might include temperature limits, workspace boundaries, max-		The agent must operate within a temperature range of -10°C to 50°C, stay within a 10-meter workspace, and not exceed a	
7.4.7	velovity, etc.		maximum velocity of 5 m/s.	
A5	Hardware/Platform			
A5.1	Will the agent be executed locally on the device, or will it be run remotely on a server or cloud?	Select	Locally on the device: An autonomous vacuum cleaner processes sensor data and makes navigation decisions directly on-board without needing a connection to a remote server. Remotely on a server: A self-driving car may rely on a cloud server for real-time map updates and traffic data, while using onboard sensors for immediate navigation decisions.	
	What is the available processing power for the RL agent on the device?		The RL agent has 1.2 GHz processing power on a robotic vacuum with an embedded ARM processor.	
A5.3	What is the total available RAM and storage on the device for running the RL agent?		The RL agent has 4 GB of RAM and 64 GB of storage on a robotic vacuum with an embedded system.	

A5.4 What is the maximum acceptable latency (in milliseconds) for the RL agent to process inputs and produce outputs?	within 100	ent must process inputs and produce outputs) milliseconds on a robotic vacuum to ensure real- gation and obstacle avoidance.	
Will the RL agent be deployed across multiple devices with varying A5.5 hardware configurations, or will it run on a uniform set of hardware? (Note: if using multiple, assumptions should be provided for each different hardware configuration)	delivery roi sensors, a Select Multiple d RL agent o mobile rob	et of hardware: The RL agent runs on a fleet of bots, all equipped with identical processors, and cameras. levices with varying hardware configurations: The operates across a range of devices, such as a pot with limited processing power and a warehouse a high-performance GPU, each tailored to their apabilities.	