THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS

MATH1903/1907 Integral Calculus and Modelling (Advanced)

November 2011 Lecturers: D Daners, J Parkinso

November 2011	LECTURERS: D Daner	rs, J Parkinson
TIME ALLOWED:	One and a half hours	
Family Name:		
Other Names:		
SID: Seat Number:		
This examination has two sections: Mult	iple Choice and Extended Answer.	Marker's use
The Multiple Choice Section is worth there are 20 questions; the questions may be	stions are of equal value;	
Answers to the Multiple Choice que the Multiple Choice A		
The Extended Answer Section is worth there are 4 questions; the questions may be working must be	tions are of equal value; e attempted;	
Approved non-programmable of	calculators may be used.	
THE QUESTION PAPER MUST NO EXAMINATION		

Extended Answer Section

There are four questions in this section, each with a number of parts. Write your answers in the space provided below each part. There is extra space at the end of the paper.

MARKS

- 1. (a) Calculate the volume of the solid obtained by revolving the region of \mathbb{R}^2 bounded by the curve $y = \sin x$ and the lines x = 0, $x = \pi$ and y = 0 about the y-axis.
 - (b) Calculate the length of the curve in \mathbb{R}^2 with parametric equations

3

$$x(t) = 3t^2 + 2,$$
 $y(t) = 4 - t^3,$

$$y(t) = 4 - t^3,$$

with $t \in [0, 1]$.

$$\int_0^\infty \frac{1}{(x+1)(x+2)} \, dx.$$

(c) Calculate the value of the improper integral
$$\int_0^\infty \frac{1}{(x+1)(x+2)} \, dx.$$
 (d) Find $\frac{d}{dx} \int_x^{e^x} \ln(1+t^2) \, dt.$

2. (a) (i) Let m, n be integers with m < n, and let f(x) be a monotone decreasing continuous function with $f(x) \ge 0$ for all x. Use upper and lower Riemann sums on the interval [m, n] to show that

$$f(n) \le \sum_{k=m}^{n} f(k) - \int_{m}^{n} f(x) dx \le f(m).$$

(ii) Hence, or otherwise, show that the series $\sum_{k=2}^{\infty} \frac{1}{k \ln k}$ diverges.

(b) You are given that the equation

$$ye^y = x$$

implicitly defines a function y = y(x) with domain $x \ge -e^{-1}$ and range $y \ge -1$, and that this function can be differentiated any number of times.

(i) Calculate the integral

3

$$\int_0^e \frac{1}{1 + y(x)} \, dx.$$

(ii) Find the second order Taylor polynomial for y(x) about x = 0.

3

1

 ${\bf 3.}\,$ (a) Find the general solution to the differential equation

$$y'\cos^2 x = y^2(1-\sin x).$$

(b) The diagram below shows a vector field of a system of two differential equations. In that diagram, draw the trajectory of the solution starting at the point (x_0, y_0) marked in the diagram.

M	ΑR	KS
TAT.		

- (c) (i) Find the general solution of homogeneous second order differential equation $\ddot{x}+\dot{x}-6x=0.$
 - (ii) Find a particular solution of the inhomogeneous differential equation $\ddot{x}+\dot{x}-6x=e^{2t}.$

3

(d) Solve the initial value problem

$$u' = 2xu + x^3, \qquad u(0) = 2.$$

- 4. (a) By infusion, the glucose concentration of blood is increased at a constant rate measured in mg/minute. At the same time, the glucose is converted and excreted from the blood at a rate proportional to the present concentration of the glucose.
 - (i) Carefully define all dependent and independent variables needed to model the concentration of the glucose in the blood.
 - (ii) Derive a differential equation describing the concentration of the glucose as a function of time. Use the variables you introduced in (i).

(b) Consider the nonlinear differential equation

$$xy' = y + ax\sqrt{x^2 + y^2}, \qquad x > 0,$$

where a > 0 is a constant.

- (i) Show that $v:=yx^{-1}$ satisfies the separable differential equation $v'=a\sqrt{1+v^2}$
- (ii) Use the differential equation in part (i) to get the general solution to the original differential equation. (Note the table of standard integrals.)

(i)

MARKS

1

(c) Consider the system of differential equations

$$x' = 2x - y$$
$$y' = x + 2y$$

- Determine the stability of the zero solution x = y = 0.
- (ii) Find the solution of the system for the initial values x(0) = 0 and y(0) = -1. 3