**1.6.6** Evaluate each of the following without a calculator:

(b) 
$$(-2^4 \times 3^3)^3 \times \frac{8 \times 27}{(2^3 \times 3^3)^4}$$
 (c)  $\star \frac{(-40)^7}{2^{30} \times 25^3}$ 

the equation  $8^x = 2$  correction



- 1.7.1 Evaluate each of the following without a calculator:
  - (c)  $(-216)^{1/3}$

## CHAPTER 1. FOLLOW THE RULES

- 1.7.3 Evaluate each of the following without a calculator:
  - (b)  $(-1)^{36/5}$

- (-8)-4/3
- 1.7.5 Evaluate each of the following without a calculator:
  - (a)  $(5^{1/3})^2 \times 5^{4/3}$

(d)  $\star \frac{(8^2 \times 5^3)^{3/5}}{2^{3/5} \times 5^{-1/5}}$ 

**Problem** 1.38: Simplify  $\sqrt[3]{625} - \sqrt[3]{40} + 5\sqrt[3]{-135}$ .

1.8.1 Simplify each of the following without a calculator:

(d) 
$$\sqrt{6.76}$$

(f) 
$$\left(-\sqrt{27}\right)^3$$

1.8.2 Simplify each of the following Without a calculator:

(b) <del>√81</del>

1.8.4 Simplify each of the following without a calculator:

(a) 
$$\sqrt{28} + \sqrt{63} - \sqrt{175}$$

$$(d) \star \sqrt[3]{\frac{256}{27}} + \sqrt[3]{32} - \sqrt[3]{\frac{12}{81}}$$

1.8.5

(b)  $\star$  What number x makes the equation  $\sqrt{8} \times \sqrt[5]{4} = 2^x$  correct?

1.8.6 Find the integers a and b such that  $\frac{\sqrt{600} - \sqrt{150} + 3\sqrt{54}}{6\sqrt{32} - 2\sqrt{50} - \sqrt{288}} = a\sqrt{b}$ , and  $\sqrt{b}$  cannot be simplified.