•
$$f_2 = -\frac{n}{1-n}\overline{S_2C_2}$$
 $f_2 = 133, 3\,mm$ $f_2' = \frac{1}{1-n}\overline{S_2C_2}$ $f_2' = -83, 3\,mm$ 2. La relation de Newton appliquée au 1 er dioptre donne :

1. • $f_1 = -\frac{1}{n-1}\overline{S_1C_1}$ $f_1 = 83,3 \, mm$ $f_1' = \frac{n}{n-1}\overline{S_1C_1}$ $f_1' = -133,3 \, mm$

 $\overline{F_1 A} \cdot \overline{F_1' A_1} = f_1 \cdot f_1' \quad \text{donc} \quad \overline{F_1' A_1} = \frac{f_1 \cdot f_1'}{\overline{F_1} \cdot A} \quad \overline{\overline{F_1' A_1}} = 55, 5 \, mm$

Grandissement de l'image intermédiaire :
$$\frac{\overline{A_1B_1}}{\overline{AB}} = -\frac{f_1}{\overline{F_1A}} \left[\frac{A_1B_1}{\overline{AB}} = 0,42 \right]$$
Relation de Newton appliquée au 2ème dioptre : $\overline{F_2A_1} \cdot \overline{F_2'A'} = f_2 \cdot f_2'$ $\overline{F_2'A'} = \frac{f_2 \cdot f_2'}{\overline{F_2A_1}}$

avec $\overline{F_2A_1} = \overline{F_2S_2} + \overline{S_2S_1} + \overline{S_1F_1'} + \overline{F_1'A_1} = -f_2 - e + f_1' + \overline{F_1'A_1} = -223,6 \, mm$

avec
$$\overline{F_2 A_1} = \overline{F_2 S_2} + \overline{S_2 S_1} + \overline{S_1 F_1'} + \overline{F_1' A_1} = -f_2 - e + f_1' + \overline{F_1' A_1} = -223,6 \, mm$$

$$\overline{F_2' A'} = 49,6 \, mm$$

Grandissement de A'B' par rapport à A_1B_1 : $\frac{\overline{A'B'}}{\overline{A_1B_1}} = -\frac{\overline{F_2'A'}}{f_2'}$ $\frac{\overline{A_1B_1}}{\overline{AB}} = 0,59$

$$\boxed{F_2'A'=49,6\,mm}$$
 Grandissement de $A'B'$ par rapport à A_1B_1 :
$$\frac{\overline{A'B'}}{\overline{A_1B_1}}=-\frac{\overline{F_2'A'}}{f_2'} \boxed{\frac{\overline{A_1B_1}}{\overline{AB}}=0,59}$$

 $\frac{\overline{A'B'}}{\overline{AB}} = \frac{\overline{A_1B_1}}{\overline{AB}} \cdot \frac{\overline{A_1B_1}}{\overline{AB}} \quad \frac{\overline{A'B'}}{\overline{AB}} = 0,25$

Grandissement transversal de la lentille: