S.No	Journal Details	Objective	Methodology used	Dataset / input details	Hardware / Software details used in the journal	Any compariso ns with existing methods. If yes, give the details	Future work	Any other details
1.	Journal name: Handwri tten Digit Recogni tion System Based on Convolu tional Neural Network Date of Publicat ion: 25-27 August 2020 Publish ed in: 2020 IEEE Internati onal	an offline recognition system for handwritt en digits based on convolutional neural networks.	convolutiona l neural network	MINST dataset, LeNet-5	Opency toolkit, Softmax regression model	The application of this system greatly reduce labor costs and improve work efficiency, which is of great significance in many fields.		

	_			
Confere				
nce on				
Advance				
s in				
Electrica				
$\frac{1}{1}$				
Enginee Enginee				
ring and				
Comput				
er er				
Applicat				
ions(
AEECA				
Authors				
: <u>Jinze</u>				
<u>Li;</u>				
Gongbo				
Sun;				
<u>Leiye</u>				
Yi; Qian				
Cao;				
<u>Fusen</u>				
Liang;				
Yu Sun				

	1	Γ	T	T		
	Journal			MODI	Gives very	
2.	name:	Implemen	This project is	manuscrip	high	
	Handwritte	tation of a	to propose a	ts	accuracy and	
	n Character	feature	novel feature		is better	
	Recognition of MODI		extraction		compared to	
	Script using	extraction	model by		the most	
	Convolution	method	learning a Bag		accurate	
	al Neural Network	using	of Features			
	Based	CNN			MODI	
	Feature Extraction		Framework for		character	
	Method and	autoenco	handwritten		recognition method	
	Support Vector	der for	text		method	
	Machine Classifier	MODI	recognition			
		script	based on Deep			
	Date of	character	Sparse Auto-Encoder			
	Publicat	recognitio	Auto-Elicodei			
	ion:	n	CNN			
	23-25		autoencoder			
	October		and Support			
	2020		Vector			
	Publish		Machine			
	ed in:					
	2020		Classifier			
	IEEE 5th					
	Internatio					
	nal					
	Conferenc					
	e on Signal and					
	Image					
	Processing					
	(ICSIP)					
	Solley					
	Joseph; Jossy					
	George					
	Authors					
	:Solley					

	Incomb.					
	Joseph; Jossy					
	George					
					Most of the	
3.	JOURNA	To propose		IAM	methods in	
	L NAME:	a 1 1i4:		dataset	the	
	Handwr	handwritin g			literature	
	itten	recognition			use	
	English	technique			lexicon-base d	
	word	to			approaches	
	recognit	recognize handwritte			and train	
	ion	n			their models	
	using a	F 1: 1			on large datasets	
	deep	English text based			having near	
	learning	on a			50 K word	
	based	YOLOv3			samples to achieve	
	object	object			good results.	
	detectio	recognition model that			This results	
	n	is	YOLO V3		in high	
	architec	lexicon-fre	TOLO V3		computation al require-	
	ture	e and that	Deep		ments.	
		per-	learning		While these	
	DATE OF	forms	based object		models use	
	DATE OF PUBLICA	sequential	1		around 50K words in	
	TION:	character detection	recognition.		their	
	20	and			dictionary	
	Septem	identificati			when	
	ber 2021	on with a			recognizing handwritten	
	PUBLISH	low number of			English text,	
	ED IN:	training			the actual	
		sam-			number of	

Springer Link - Multimedi a tools and applicatio ns(2022) AUTHOR S: RiktimM ondal, SamirM alakar, ElisaH.B arneyS mith, RamSar kar	Ples.		words in the dictionary is much higher than this. This model works well without any dependency on writers' style of writing. This is tested on the IAM dataset and it is able to achieve 29.21% Word Error Rate and 9.53% Character Error Rate without a predefined vocabulary, which is on par with the state-of-the-art lexicon-base d word recognition models.	

4.	JOURN AL NAME: Handwriting Recognition for Medical Prescriptions using a CNN-Bi-LSTM Model DATE OF PUBLIC ATION: 10 May 2021, IEEE Explore PUBLIS HED IN: 2021 6th International Conference for Convergence in Technology (I2CT) AUTHO RS: Tavish Jain, Rohan Sharma,	To develop a technique that is specially trained to recognize medical prescriptions correctly.	Deep convolutiona I neural network, CNN-Bi-LS TM model along with Connectionis t Temporal Classificatio n.	IAM dataset	They have self built a corpus manually containing the terms widely used in the medical domain, commonly used in prescription s. We then use string matching algorithms, and string distance functions to find the nearest word in the corpus, so that bias is given to medical terms for increasing accuracy of the predicted output.	