Towards Recognizing Phrase Translation Processes

Experiments on English-French

Yuming Zhai, Pooyan Safari, Gabriel Illouz, Alexandre Allauzen, Anne Vilnat LIMSI-CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Orsay, France

Introduction

1.EN: and then finally, just as they're running out of time

↓ non-literal

2.FR: et puis, à la fin, juste quand le délai se rapproche

↓ literal

3.EN: and then finally, just as the deadline approaches

Literal translation vs. other translation processes (Vinay and Darbelnet, 1958; Newmark 1981, Chuquet and Paillard, 1989, Molina and Hurtado Albir, 2002, etc.)

Translation Processes in Parallel Corpus

Translation Process and nb. instances	Typical example		
Literal (3771)	certain kinds of \rightarrow certains types de		
Equivalence (289)	$back then \rightarrow \grave{a} l'\acute{e}poque$ ('at that time')		
	Birds of a feather flock together.		
	→ Qui se ressemble s'assemble.		
	('(those) who resemble each other, assemble together.')		
Transposition (289)	unless something changes		
	→ à moins qu' un changement ait lieu		
	('unless a change occurs')		
Modulation (195)	that scar has stayed with him		
	→ il a souffert de ce traumatisme		
	('he has suffered from this traumatism')		
Mod+Trans (53)	this is a completely unsustainable pattern		
	→ il est absolument impossible de continuer		
	sur cette tendance		
	('it is completely impossible to continue on this trend')		
Generalization (86)	as we sit here in		
	\rightarrow alors que nous sommes à ('as we are at')		
Particularization (215)	the idea I want to put out is		
	→ l'idée que je veux diffuser c'est		

Corpus: TED Talks, manual annotation (Zhai et al., 2018)

Non Literal class: 1127 instances

Transposition and Mod+Trans combined into Contain Transposition

('the idea I want to spread is ...')

Experimental Results

The evaluation is done by cross validation of five-folds.

End-to-end Neural Network Architectures using only embeddings:

Architecture Accuracy F1 (L) F1 (NL) Randomly initialized character embedding 59.99% 0.60 0.60 71.16% 0.71 Pre-trained fasttext word embedding MLP **71.25**% 0.71 0.71

Architecture	Accuracy	Micro-F1	Macro-F	
Randomly initialized character embedding				
CNN	34.08%	0.34	0.20	
MLP	40.74%	0.41	0.34	
Pre-trained fasttext word embedding				
MLP	43.22%	0.43	0.34	

Binary classification, balanced distribution

5 non-literal classes

Statistical methods with feature engineering:

Distribution of classes	Classifier	Accuracy	Micro-F1	Macro-F1
Six classes		,		
aiv alagana with 0771 Litaral	Dummy	60.76%	0.61	0.15
six classes, with 3771 Literal	RandomForest	83.10%	0.83	0.44
oiv alagana with 000 Litaral	Dummy	18.92%	0.19	0.16
six classes, with 200 Literal	RandomForest	57.04%	0.57	0.52
Two classes				
Literal (0) + Nen literal (1)	Dummy	65.84%	0.66	0.52
Literal (3): Non_literal (1)	RandomForest	90.16%	0.90	0.86
Literal (O) + Nlan literal (1)	Dummy	56.43%	0.56	0.51
Literal (2): Non_literal (1)	RandomForest	88.85%	0.89	0.88
Litaral (1) + Nlan litaral (1)	Dummy	53.19%	0.53	0.53
Literal (1): Non_literal (1)	RandomForest	87.09%	0.87	0.87
Five classes				
Five non-literal classes	Dummy	20.32%	0.20	0.18
rive non-illeral classes	RandomForest	55.10%	0.55	0.47
Classification results under	or different confid	gurations	ucina all fa	naturac

Classification results under different configurations, using all features

Feature ablation study:

Binary classification: word alignment contributes the most Multi-class classification: external_resource contributes the least PoS tagging and syntactic analysis contribute the most

Classifier (RandomForest)	average accuracy	average F1-scores	
binary classification (balanced distribution)	87.09%	0.87 (Literal)	0.88 (Non_literal)
five non-literal classes	55.20%	0.55 (micro average)	0.48 (macro average)

Results after feature ablation study

Configuration	average accuracy	average F1 (class1)	average F1 (class2)
L vs NL	85.24%	0.84	0.86
LE vs non-LE	75.32%	0.74	0.77
LET vs non-LET	79.42%	0.78	0.81

Results after grouping classes, every class has 549 instances

Automatic Classification: Two possible approaches

End-to-end Neural Network Architectures:

MLP: averaged source and target representations classifier input: character or word embeddings

Feature Engineering:

- Surface, PoS_tagging, Syntactic_analysis toolkit Scikit-Learn
- External resource, Word alignment

Conclusion and Perspectives

- First exploitation of translation processes in NLP
- New NLP task: automatic classification of translation processes
- Best experimental results: RandomForest with feature engineering
- Restrained by the limited dataset, but directions to follow are shown
- + Finer error analysis to help developing the annotation guidelines
- + Combine neural network architecture with feature engineering
- + Improve the classifier, extend the work to the pair English-Chinese
- ++ Better paraphrase extraction from bilingual parallel corpora (Bannard and Callison-Burch, 2005)

Contact Information

Code and dataset https://github.com/YumingZHAI/ctp Personal Page https://yumingzhai.github.io/