Capítulo 1

Tabla de horarios

Biomátematicas pág. 3						
Hora	Lunes	Martes	Miércoles	Jueves	Viernes	
9:00-9:50		4.5	4.12	4.16	4.20	
10:00-10:20	Inauguración				4.21	
10:20-10:40		4.6	4.13	4.17	4.22	
10:40-11:00	PLENARIA				4.23	
11:00-11:30	1	Café				
11:40-12:00	Traslado	4.7	4.14	4.18	4.24	
12:00-12:50	4.1	4.8	4.15	4.19	4.25	
12:50-13:00	Traslado					
13:00-13:30		PLENARIA	PLENARIA	PLENARIA	PLENARIA	
13:30-13:50	4.2	2	3	4	5	
14:00-16:30	COMIDA			COMIDA		
16:40-17:00						
17:00-17:20	4.3	4.9				
17:20-17:40						
17:40-18:10	Café		Tarde Libre	Café		
18:10-18:30		4.10		PLENARIA	PLENARIA	
18:30-18:50	4.4	4.11		8	9	
18:50-19:00	Traslado			HOMENAJE	Traslado	
19:00-19:50	PLENARIA 6	PLENARIA 7		JORGE	Asamblea	
19:50-20:50	HOMENAJE	HOMENAJE		IZE	General	
20:50-21:00	ERNESTO	FRANCISCO			Traslado	
21:00-21:50	LACOMBA	RAGGI			Clausura	
		Salón	E3			

4.1 Identificación de patrones epidémicos del dengue en Roberto A. Sáenz (CI, Inv) México

Jorge X. Velasco Hernández (Invitado) (CDV, 2Lic)

4.2 La transmisión de enfermedades entre animales y humanos: un ejemplo de la leptospirosis

Ignacio Barradas Bribiesca (CI, 2Lic)

4.3 Sobre la dinámica del Mycobacterium tuberculosis en el granuloma

Eduardo Ibarguen Mondragón (CI, Inv)

4.4 Modelo anidado para la propagación de cepas de VIH resistentes a antirretrovirales

4.5 Una primera aproximación a la morfología teórica de Cichlasoma fenestratum utilizando un modelo morfométrico sistémico

Juan Rivera Cazares (CDV, 2Lic)

- 4.6 Patrones en Morfogénesis: curvatura y crecimiento Jorge Antonio Castillo Medina (CI, Pos)
- 4.7 Búsqueda del origen de la multiestabilidad en subpoblaciones de espermatozoides mediante un modelo matemático

Aarón Vázquez (RI, Inv)

4.8 Sincronización en sistemas biológicos: las bacterias hacen la ola

Enrique Escalante (RI, 1Lic)

4.9 Un mecanismo morfogenético: un recuerdo para Turing

Faustino Sánchez Garduño (CDV, 2Lic)

4.10 Difusión de patrones en la glucólisis

Mariela Nolasco Toledo (RT, 2Lic)

4.11 Patrones de Turing en sistemas biológicos

Aldo Ledesma Durán (RT, Pos)

4.12 Evolución de la función fotosintética en Paulinella chromatophora

Luis José Delaye Arredondo (Invitado) (CDV, 2Lic)

4.13 Matemáticas y Genómica: Avance tecnológico y retos en el análisis de datos

Iván Imaz Rosshandler (CI, Inv)

4.14 El cáncer como un Juego Evolutivo: Una perspectiva hacia el Control Óptimo de la enfermedad

Rodrigo Toledo Hernández (CPI, Pos)

4.15 Análisis no lineal del genoma

Pedro Miramontes (CDV, 2Lic)

4.16 La física estadística y la estadística bayesiana incursionan en la biología

José Héctor Morales Barcenas (CPI, 2Lic)

4.17 Análisis de EEG críticos mediante grafos

Aurora Espinoza Valdez (CI, Inv)

4.18 El Problema Inverso Electroencefalográfico considerando una geometría simple de la cabeza

José Julio Conde Mones (RT, Pos)

4.19 Modelo matemático de termorregulación en recién nacidos prematuros sometidos a tratamiento en incubadora

Andrés Fraguela Collar (Invitado) (CPI, Inv)

4.20 Dinámica de células madre en el nicho meristemo de raíz en Arabidopsis thaliana

María del Carmen Pérez Zarate (CDV, Pos)

4.21 Bifurcación de Hopf en un modelo sobre resistencia bacteriana a antibióticos

Saulo Mosquera López (RI, Inv)

4.22 Cadenas alimentarias tritróficas

Estela del Carmen Flores de Dios (CI, 2Lic)

4.23 Modelación de enfermedades infecciosas con información geográfica

Luis Alberto Zarate Siordia (RT, 2Lic)

4.24 Cambios en la estructura fractal de los potenciales dorsales espontáneos inducidos por lesiones de nervios periféricos y médula espinal en gatos anestesiados.

Erika Elizabeth Rodríguez Torres (RT, 2Lic)

4.25 Análisis de la dinámica de los priones: una proteína con comportamiento de virus

Alejandro Ricardo Femat Flores (Invitado) (CDV, 2Lic)

Capítulo 2

Resúmenes

4. Biomatemáticas

4.1. Identificación de patrones epidémicos del dengue en México (CDV, 2Lic)

Jorge X. Velasco Hernández, velasco@imp.mx (Instituto Mexicano del Petróleo)

Utilizando herramientas de minería de datos se presentarán, en esta charla, los resultados de un análisis de las series temporales y espaciales del dengue en México que comprenden varios estados de la república y los años del 2002 al 2006.

4.2. La transmisión de enfermedades entre animales y humanos: un ejemplo de la leptospirosis (CI, 2Lic)

Ignacio Barradas Bribiesca, barradas@cimat.mx (Centro de Investigación en Matemáticas, CIMAT)

Coautores: David Baca, Daniel Olmos Liceaga

La transmisión de enfermedades de animales a humanos y de humanos a animales es de gran importancia, no sólo epidemiológica, sino también social y económica. Los problemas de salud generados por el contacto animal; el hecho de que los animales sean reservorio de parásitos que afectan a los humanos; y que ambos grupos mantengan una fuerte interacción, obliga a entender la dinámica de enfermedades compartidas. En esta charla presentamos un modelo que describe la interacción de la leptospirosis entre poblaciones humanas y de animales. Se analiza el número reproductivo básico del sistema para diferentes configuraciones de poblaciones y se sugieren medidas de control para reducir el impacto de la enfermedad tanto en poblaciones humanas como en el ganado.

4.3. Sobre la dinámica del Mycobacterium tuberculosis en el granuloma (CI, Inv)

Eduardo Ibarguen Mondragón, edbargun@gmail.com (Universidad de Nariño (UDENAR) Dpto. de Matemáticas y Estadística)

Coautor: Lourdes Esteva Peralta

El propósito de este estudio es evaluar el impacto de la respuesta de las células T y los macrófagos en el control de Mtb dentro del granuloma. Con este fin, proponemos un sistema de ecuaciones diferenciales ordinarias para modelar la interacción entre macrófagos no infectados, macrófagos infectados, células T y bacilos de Mtb en el granuloma.

4.4. Modelo anidado para la propagación de cepas de VIH resistentes a antirretrovirales (CI, Inv)

Roberto A. Sáenz, roberto.saenz@env.ethz.ch (Escuela Politécnica Federal de Zurich (ETH Zürich))

La aparición de cepas resistentes a fármacos antiretrovirales (ARV) limita considerablemente el control de la epidemia de VIH. Varios modelos matemáticos han sido utilizados para el estudio de las dinámicas de cepas resistentes. Sin embargo, dichos modelos no toman en cuenta las dinámicas del virus dentro de un paciente, las cuales son importantes para determinar tanto las tasas de transmisión y mortalidad como también la evolución de resistencia del virus. En esta charla presentamos un modelo matemático anidado, que une las dinámicas de dos cepas del virus (sensibles o resistentes a ARV) dentro de un individuo con la dinámica epidemiológica, para el estudio de la propagación de cepas resistentes. Después de discutir las ventajas de este enfoque mostraremos algunos resultados, entre los que destaca el que el incremento de la cobertura de ARV podría no reducir, e inclusive podría aumentar, el número de infecciones con VIH.

4.5. Una primera aproximación a la morfología teórica de Cichlasoma fenestratum utilizando un modelo morfométrico sistémico (CDV, 2Lic)

Juan Rivera Cazares, juan.rivera@ibunam2.ibiologia.unam.mx (Instituto de Biología, Universidad Nacional Autónoma de México)

Los modelos morfométricos sistémicos, (MMS), surgen como una alternativa a los convencionales para describir y analizar

la estructura del plan corporal de los seres vivos pudiendo extender su uso a la caracterización del espacio fenotípico o morfoespacio de un taxa particular. Estos modelos han sido utilizados por el autor para estudiar las propiedades del plan corporal y el espacio fenotípico, la morfología teórica, de los cinco grupos de vertebrados. En el presente trabajo se construyó un MMS para una especie de mojarra, *Cichlasoma fenestratum* partiendo de mediciones de elementos de su morfología externa. El objetivo fue utilizar dicho modelo para simular la variación del plan corporal, analizar sus propiedades así como modelar y caracterizar el espacio fenotípico de dicha especie. Como parte de los resultados se presente el MMS de la especie de mojarra y una análisis de la relación entre las velocidades y trayectorias de desarrollo de algunos elementos de su morfología externa. También se presenta una representación gráfica del espacio fenotípico n-dimensional de *Cichlasoma fenestratum* estableciendo algunas propiedades como sus límites. Mientras la simulación de la variabilidad del plan corporal se puede realizar utilizando otros modelos morfométricos diferentes al sistémico, el uso de éste permite el cálculo de algunas propiedades del espacio fenotípico como sus limites, capacidad que no tiene antecedentes en la literatura. Algunas conclusiones de las propiedades del plan corporal y del espacio fenotípico obtenidas en este estudio pueden aplicarse a cualquier taxa de vertebrados o posiblemente a cualquier plan corporal.

4.6. Patrones en Morfogénesis: curvatura y crecimiento (CI, Pos)

Jorge Antonio Castillo Medina, jcastillo7701@gmail.com (UNAM-IIMAS)

Coautores: Pablo Padilla Longoria, Faustino Sánchez Garduño

En 1952 Turing propuso que dos morfógenos que simultáneamente se difunden y reaccionan pueden formar patrones espacialmente no homogéneos bajo condiciones adecuadas (bifurcación producida por la difusión). Esto despertó el interés de investigación en la formación de patrones biológicos y químicos, de forma experimental como matemática. Aplicando estas ideas se han descrito de manera adecuada algunos patrones como los de las conchas marinas, los de la piel de algunos mamíferos, la coloración de las alas de mariposas, etc.; también a algunas reacciones químicas, como BZ,CIMA. La posibilidad de sustentar esta propuesta en las redes de regulación genética para algunos sistemas biológicos ha renovado el interés puesto en ella. Por otro lado, se ha demostrado que contribuyen notablemente en la formación y estabilidad de tales patrones el efecto del crecimiento y de la curvatura de los dominios en donde se lleva a cabo el proceso de reacción-difusión. Otro aspecto que ha sido estudiado es el de la formación de patrones oscilantes, i.e. patrones debidos a la llamada bifurcación de Turing-Hopf, caracterizados por la aparición de un ciclo límite. En este trabajo se muestran algunos resultados relacionados con la influencia del crecimiento y de la geometría del dominio en la emergencia de patrones en el marco de sistemas de reacción difusión.

4.7. Búsqueda del origen de la multiestabilidad en sub-poblaciones de espermatozoides mediante un modelo matemático (RI, Inv)

Aarón Vázquez, jrodriguez@cinvestav.mx (Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav) Unidad Monterrey)

 $Coautor:\ Jes\'{u}s\ Rodr\'{i}guez$

La fecundación es el proceso más importante para la procreación de la especies, siendo la unión de dos gametos - espermatozoide y ovulo- para formar un individuo con genoma completo, dentro de este proceso los gametos tienen que tener mecanismo de adaptación al medio circundante que aumente las probabilidades de asegurar la fecundación; por ejemplo en el erizo de mar (Strongylocentrotus purpuratus) la fecundación es exógena por lo que el espermatozoide tiene que encontrar al ovulo en el medio marino, y se ve influenciado por las condiciones que el medio le imponga. En el caso de mamíferos, el medio vaginal tiene características comunes pero difiere en concentraciones de iones [K+, Cl-,, H+,Ca2+] y albumina entre especies e individuos, por lo que se ha visto la existencia de sub-poblaciones de espermatozoides adecuados a responder de manera diferente a favor de la conservación. Se propone un modelo matemático determinista que explica la existencia de las sub-poblaciones, en función de mecanismos moleculares de adaptación. Se analiza la multiestabilidad generada en el modelo biológico.

4.8. Sincronización en sistemas biológicos: las bacterias hacen la ola (RI, 1Lic)

Enrique Escalante, jesusenrique.escalante@gmail.com (Universidad Veracruzana)

Coautor: Pablo Padilla Padilla

La sincronización es un fenómeno universal en sistemas biológicos. En esta plática discutimos algunos de ellos: ritmos circadianos, fenómenos colectivos en comunidades de insectos, etc. Hacemos énfasis en colonias de bacterias que se sincronizan por mecanismos difusivos que provienen de experimentos en biología sintética. Se presenta un modelo matemático en términos

de ecuaciones diferenciales parciales, así como resultados analíticos y numéricos. En particular se interpreta la existencia de una onda viajera como un frente de sincronización y se hace una interpretación con resultados experimentales.

4.9. Un mecanismo morfogenético: un recuerdo para Turing (CDV, 2Lic)

Faustino Sánchez Garduño, faustino@servidor.unam.mx (Ciencias, UNAM)

El 23 de junio de este año se cumplieron 100 años del natalicio del matemático y computólogo inglés, Alan Mathison Turing. Además de la lógica matemática, la computación y la criptografía, otro tema que cultivó y en el cual también hizo una contribución muy importante es el de la morfogénesis. En efecto, la explicación a la emergencia de estructuras ordenadas en los sistemas vivos, ha sido tema de estudio de muchos investigadores. A dos años de su muerte, Turing propuso un marco teórico para dicha explicación. En la plática: se revisarán los aspectos fundamentales de la propuesta turingiana y se expondrán algunas extensiones realizadas recientemente.

4.10. Difusión de patrones en la glucólisis (RT, 2Lic)

Mariela Nolasco Toledo, nolasco_freak13@hotmail.com (ESFM)

Coautor: Luis Alberto Cisneros Ake

La glucólisis es el proceso de degradación de la glucosa en piruvato y otros productos mediante una serie de pasos secuenciales, tal fenómeno se encuentra descrito por las siguientes ecuaciones:

$$\frac{\partial u}{\partial t} = D_u \nabla^2 u + \delta - ku - uv^2, \tag{2.1}$$

$$\begin{split} \frac{\partial \mathbf{u}}{\partial t} &= \mathbf{D}_{\mathbf{u}} \nabla^2 \mathbf{u} + \delta - k\mathbf{u} - \mathbf{u} \mathbf{v}^2, \\ \frac{\partial \mathbf{v}}{\partial t} &= \mathbf{D}_{\mathbf{v}} \nabla^2 \mathbf{v} + k\mathbf{u} + \mathbf{u} \mathbf{v}^2 - \mathbf{v}, \end{split} \tag{2.1}$$

donde u representa la concentración de glucosa y v la producción de piruvato. En el presente trabajo hacemos un análisis inicial del modelo para el caso unidimensional en el estado estacionario en una situación y con difusión cero en otra. Estos análisis nos permiten entender la dependencia paramétrica del modelo en las soluciones. En el caso unidimensional no lineal resolvemos numéricamente por medio de la Transformada Rápida de Fourier Pseudoespectral. Finalmente, extendemos algunos de estos resultados al caso bidimensional.

Patrones de Turing en sistemas biológicos (RT. Pos) 4.11.

Aldo Ledesma Durán, aldoledesmaduran@yahoo.com (Universidad Autónoma Metropolitana (UAM))

Uno de los problemas en la Biología del desarrollo en el mundo animal es la formación de los patrones espaciales en el embrión. Se han propuesto un gran número de teorías para dar cuenta de este fenómeno. Una de las teorías más ampliamente estudiadas es la teoría de reacción difusión (RD) debida a Alan Turing en 1952, la cual propone que un mecanismo RD establece un patrón químico previo en el medio celular, al cual las células responden formando patrones espaciales. Estos patrones conocidos como estructuras de Turing fueron identificadas en el laboratorio sólo recientemente. En este trabajo se estudia la evidencia, se establecen las ecuaciones que resultan en sistemas de EDP's acopladas, y se hace uso de los métodos de diferencias finitas y elemento finito para su resolución en diversas geometrías, así como diversas condiciones iniciales y de frontera. Finalmente se discute la posible relación que existe entre las inestabilidades de Turing y los patrones que aparecen en la piel de algunos animales.

Evolución de la función fotosintética en Paulinella chromatophora (CDV, 2Lic) 4.12.

Luis José Delaye Arredondo, ldelaye@ira.cinvestav.mx (CINVESTAV Unidad Irapuato Departamento de Ingeniería

Paulinella chromatophora es un protista de agua dulce que fue descrito inicialmente por Lauterborn en 1895. P. chromatophora contiene dos estructuras citoplasmáticas descritas por Lauterborn como cromatóforos, los cuales son en realidad cianobacterias simbiontes. Recientemente se descubrió que la simbiosis que dio origen a los cromatóforos ocurrió de forma independiente (y mucho más reciente) que la simbiosis que dio origen a los cloroplastos. Es por ello que los cromatóforos son un buen modelo para estudiar las etapas tempranas de la endosimbiosis que involucran a un huésped fotosintético. En este trabajo revisaremos la historia natural de esta simbiosis y propondremos utilizar herramientas de análisis metabólico (basadas en álgebra lineal) para estudiar la evolución del metabolismo fotosintético en las cianobacterias simbiontes de P. chromatophora.

4.13. Matemáticas y Genómica: Avance tecnológico y retos en el análisis de datos (CI, Inv)

Iván Imaz Rosshandler, iimaz@inmegen.gob.mx (Instituto Nacional de Medicina Genómica (INMEGEN))

Coautor: Claudia Rangel Escareño

El creciente esfuerzo por entender el genoma de los seres vivos, principalmente el humano, conlleva la necesidad de manipular y entender cantidades de información sin precedente. La genómica, incrementa la dificultad con respecto a la genética al estudiar la función, los efectos y las interacciones de todos los genes en conjunto. El volumen de datos, a la fecha ya en petabyes y su complejidad, requiere de alta capacidad de almacenamiento y de procesamiento, así como el desarrollo de sofisticados algoritmos que desafían a los profesionales en Matemáticas y Computación. Aunado a lo anterior, las tecnologías de secuenciación masiva evolucionan a un ritmo superior a la Ley de Moore, lo cual implica que dichos algoritmos deben adaptarse rápidamente a las nuevas necesidades. Dentro de las aplicaciones a más de una década de la secuenciación del genoma humano, está la búsqueda de mutaciones en el ADN que predisponen el desarrollo de enfermedades tan complejas como el cáncer. Mutaciones conocidas como somáticas. Diferentes centros de investigación en el mundo desarrollan sus propios métodos y los resultados correspondientes suelen diferir de forma importante, dejando en duda la eficiencia de estos en cuanto a la tasa de falsos positivos y falsos negativos que se obtiene. En este trabajo, utilizando 20 muestras pareadas de cáncer de pulmón, se llevó a cabo una comparación de cuatro métodos cuya función es identificar mutaciones somáticas. Dada la dificultad que representa el validar la gran cantidad de mutaciones obtenidas mediante una técnica de secuenciación alternativa, la comparación se basa en el desarrollo de diversos gráficos y un análisis estadístico a partir de los resultados provenientes de cada algoritmo. Así mismo, para cada uno de ellos se estableció un estricto criterio sobre los umbrales de selección de los parámetros respectivos. Se identificaron algunas de las causas que repercuten en la obtención de falsos positivos y se evidenció la necesidad de colaboración y estandarización para el mejoramiento de estos algoritmos.

4.14. El cáncer como un Juego Evolutivo: Una perspectiva hacia el Control Óptimo de la enfermedad (CPI, Pos)

Rodrigo Toledo Hernández, ilico384@gmail.com (Centro de Ciencias de la Complejidad, UNAM)

El proceso de progresión tumoral se refiere a la evolución fenotípica de las células cancerosas mediante una selección somática, como consecuencia de ello sobreviven células altamente malignas con la capacidad de invadir por completo al organismo. Este tipo de selección puede ser modelado a través de ecuaciones replicadoras de la Teoría de Juegos Evolutivos. Asimismo es posible controlar el sistema dinámico involucrado en la progresión tumoral, utilizando la Teoría de Control Óptimo para dirigir la dinámica de la enfermedad, del estado alterado hacia el estado sano. Este trabajo permitirá generar Estrategias de Control de fármacos, para proponer alternativas terapéuticas que aseguren la supervivencia del paciente. Se presentan resultados preliminares, tanto analíticos como numéricos. Referencias: 1.-Nowak M, et al. (2004); Evolutionary Dynamics of Biological Games, Science 303: 793.2. -Nowak M & Ohtsuki H. (2006); The replicator equation on graphs, J Theor Biol. 243(1): 86-97.

4.15. Análisis no lineal del genoma (CDV, 2Lic)

Pedro Miramontes, pmv@ciencias.unam.mx (Departamento de Matemáticas, Facultad de Ciencias, UNAM)

Desde los primeros años de la década de los noventa del siglo pasado, surgió un gran interés por estudiar el material genético de los seres vivos empleando herramientas de la teoría de los sistemas dinámicos. A partir de esa época la interacción entre estas disciplinas ha sido fructífera para el desarrollo de ambas. En esta presentación se ilustra como algunos temas clásicos de la dinámica no lineal: El teorema de recurrencia de Poincaré, los sistemas de funciones iteradas y los atractores extraños pueden ser de gran utilidad para analizar el genoma de los organismos. Se muestran algunos casos de estudio y se mencionarán algunos problemas abiertos en este campo.

4.16. La física estadística y la estadística bayesiana incursionan en la biología (CPI, 2Lic)

José Héctor Morales Barcenas, hector.moqueur@gmail.com (Universidad Autónoma Metropolitana (UAMI), Departamento de Matemáticas)

En este platica damos una introducción a los aspectos mas relevantes de la física estadística y a la estadística bayesiana, sus analogías y limitaciones, con las que se pretende llevar al cabo modelación matemática en la biología y en la medicina. El objetivo es llamar la atención sobre un área de investigación interdisciplinaria que cuantifica, en los modelos matemáticos clásicos en biología, las fluctuaciones como portadoras de información sobre cambios cuantitativos del comportamiento que predicen dichos modelos.

4.17. Análisis de EEG críticos mediante grafos (CI, Inv)

Aurora Espinoza Valdez, aurora. espinoza@cucei.udg.mx (Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI-UDG))

Coautores: Hugo Vélez-Pérez, Rebeca Romo-Vázquez

La epilepsia es una enfermedad cerebral caracterizada por la presencia de crisis epilépticas recurrentes. Según la OMS, esta enfermedad constituye un problema de salud pública por su alta frecuencia y sus enormes costos. Dentro de las técnicas utilizadas para la exploración de la actividad cerebral, la más empleada es la Electroencefalografía (EEG). Esta técnica da cuenta de la actividad eléctrica del cerebro de una forma no invasiva a través de electrodos de superficie, que transmiten las señales eléctricas a equipos donde son desplegadas en forma de onda conocidas como electroencefalograma (EEG). La identificación de la potencia y la dirección del flujo de información así como la estimación de relaciones causales (conectividad) son esenciales para la comprensión de los diferentes procesos cerebrales. Este análisis se realiza mediante métodos derivados del modelo autorregresivo (AR), como la *Directed Transfer Function* (DTF) y la *Partial Directed Coherence* (PDC). En este trabajo, se estudia la dinámica de relaciones causales en EEG críticos (conteniendo una crisis epiléptica identificada por un experto) hechas por la DTF y la PDC. Los resultados muestran que es posible analizar las crisis epilépticas utilizando la herramienta matemática de teoría de grafos.

4.18. El Problema Inverso Electroencefalográfico considerando una geometría simple de la cabeza (RT, Pos)

José Julio Conde Mones, juliocondem@hotmail.com (Benemérita Universidad Autónoma de Puebla (BUAP))
El Problema Inverso Electroencefalográfico (PIE) consiste en determinar las fuentes de actividad bioeléctrica en el cerebro a partir de mediciones electroencefalográficas sobre el cuero cabelludo. Este es un problema inverso mal planteado ya que existe una gran cantidad de configuraciones de fuentes que pueden producir la misma medición y además porque pequeños errores en la medición pueden producir grandes variaciones en la localización de la fuente. Para la modelación matemática del PIE, se considera a la cabeza compuesta por capas conductoras con conductividad constante y positiva en cada capa. Haciendo uso de las ecuaciones de Maxwell y de datos experimentales, se obtiene un problema elíptico de valores en la frontera a través del cual se realiza el planteamiento operacional del PIE. En este trabajo se considerarán fuentes volumétricas concentradas en el interior del cerebro y se propone un método de minimización para hallar una fuente aproximada en un conjunto de funciones constantes a trozos que este a distancia mínima de la fuente teórica que reproduce el electroencefalograma (EEG). Este método nos permite hallar aproximadamente la ubicación de la fuente en el interior del cerebro.

4.19. Modelo matemático de termorregulación en recién nacidos prematuros sometidos a tratamiento en incubadora (CPI, Inv)

Andrés Fraguela Collar, fraguela@fcfm.buap.mx (Facultad de Ciencias Físico Matemáticas Benemérita Universidad Autónoma de Puebla (BUAP))

Los recién nacidos de bajo peso y sobre todo los bebes prematuros tienen dificultad para mantener su temperatura en los rangos considerados normales. Diversos estudios revelaron la importancia del ambiente térmico y de la humedad para incrementar la tasa de supervivencia de los recién nacidos. En este trabajo se modelizó el proceso de intercambio de calor y balance energético en niños prematuros sometidos a tratamiento en una incubadora cerrada. Asociado a dicho modelo se planteó y resolvió un problema de control para mantener en estabilidad térmica a los recién nacidos prematuros con el fin de que incrementen su tasa de supervivencia y su peso. A través del modelo propuesto se verificó que el ambiente térmico recomendado por los neonatólogos es adecuado. Además propusimos un algoritmo de control para variar la temperatura del interior de la incubadora en función de las mediciones de la temperatura central del recién nacido de manera que la temperatura ambiente en el interior de la incubadora se mantenga lo más cerca posible de los rangos de neutralidad térmica y la temperatura del bebé se encuentre en el rangos de mínimo gasto metabólico, recomendado por los neonatólogos. Referencias: [1] Hernán L. Manual de pediatría, termorregulación en recién nacido; Servicio de neonatología, Hospital Nacional de Chile, 2001. [2] Hill, June; Rahimtulla, Kulsum; Heat Balance and the metabolic rate of new-born babies in relation to environmental temperature; and the effect of age and of weight on basal metabolic rate, J. Physiol. 1965, 180, pp.239-265. [3] Pennes, H.H., Analysis of Tissue and Arterial Blood Temperature in the Resting Human Forearm, J. of Applied Physiology, Vol. 1, pp. 93-102. 1948. [4] Wissler Eugene, A mathematical model of the human thermal system; Bulletin of Mathematical Biophysics, Vol 26, 1964.

4.20. Dinámica de células madre en el nicho meristemo de raíz en Arabidopsis thaliana (CDV, Pos)

María Del Carmen Pérez Zarate, carpeza3@gmail.com (Universidad Autónoma de la Ciudad de México (UACM))
Los estudios realizados en Arabidopsis thaliana han demostrado que los meristemos controlan el desarrollo de los órganos de las plantas a través de un balance entre proliferación y diferenciación en el nicho de células madre. Con el propósito de entender la dinámica en los meristemos de raíz, hemos desarrollado un modelo matemático espacio-temporal que considera: El patrón que se forma desde la embriogénesis, en el cual la posición de las células meristemáticas desempeña un papel fundamental en el destino celular debido a las señales de corto y largo alcance. Las primeras provienen de células vecinas, mientras que las segundas de células maduras del resto de la planta, que refuerzan el destino celular. A las células iniciales alrededor del centro quiescente como un reservorio para remplazar células dañadas y como suministrador de células en el crecimiento de la misma. Al centro quiescente como organizador del patrón celular: inhibidor de la diferenciación y regulador de la división de células madre iniciales. Con este modelo basado en autómatas celulares se pretende mostrar que la geometría de la raíz está acoplada con los mecanismos de señalización arriba mencionados para generar una dinámica y una arquitectura funcional robusta.

4.21. Bifurcación de Hopf en un modelo sobre resistencia bacteriana a antibióticos (RI, Inv)

Saulo Mosquera López, samolo@udenar.edu.co (Dpto. de Matemáticas y Estadística Universidad de Nariño) Coautores: Lourdes Esteva, Eduardo Ibarguen Mondragón

En el 2011 Romero J. en su tesis de maestría "Modelos matemáticos para la resistencia bacteriana a los antibióticos" formuló y analizó un sistema no lineal de ecuaciones diferenciales ordinarias que describe la adquisición de resistencia bacteriana a través de dos mecanismos: acción de plásmidos y suministro de antibióticos. Bajo ciertas condiciones el sistema posee tres puntos de equilibrio y en uno de ello coexisten tanto bacterias sensibles como resistentes. Simulaciones numéricas realizadas en este trabajo sugieren que alrededor de este punto de equilibrio existe una bifurcación de Hopf. A partir de estas observaciones se ha elaborado un proyecto el cual pretende analizar las condiciones que deben satisfacer los parámetros del modelo para garantizar la existencia de esta bifurcación y clasificar su estabilidad. El objetivo de esta ponencia consiste en presentar los avances obtenidos en el desarrollo de este proyecto.

4.22. Cadenas alimentarias tritróficas (CI, 2Lic)

Estela del Carmen Flores de Dios, dediosanita@gmail.com (Universidad Juárez Autónoma de Tabasco (UJAT))
Coautor: Ingrid Quilantán Ortega

Cada ser vivo se alimenta de diferentes tipos de presas y, a su vez, es presa de distintos depredadores; esto determina que en un ecosistema se formen redes tróficas (redes alimentarias) que incluyan muchas cadenas alimentarias interrelacionadas. En las últimas décadas una de las motivaciones importantes de la ecología matemática ha sido el estudio de cadenas alimentarias tritróficas, por medio de diferentes sistemas diferenciales en el plano, bajo el nombre común de modelos depredador-presa. En esta plática, se analiza la dinámica a la que da lugar un sistema de tres ecuaciones diferenciales que describe un par de interacciones de tipo depredación (presa - depredador - súper depredador) considerando que su respuesta funcional es de Holling II.

4.23. Modelación de enfermedades infecciosas con información geográfica (RT, 2Lic)

Luis Alberto Zarate Siordia, luisiordia@hotmail.com (Universidad Autónoma Metropolitana - Iztapalapa, Departamento de Matemáticas)

Debido al brote del virus A(H1N1) en México, nos dimos a la tarea de proponer un modelo matemático que describa la propagación de la enfermedad. Para esto utilizamos un modelo epidemiológico SIR de ecuaciones diferenciales que divide a lapoblación en diferentes clases de acuerdo al estado de la enfermedad, estas son susceptibles, infectados y removidos. Buscamos estimar los parámetros del sistema, para adaptar de una manera mas precisa los datos reales con las aproximaciones obtenidas con nuestro modelo, por lo que utilizamos el método de evolución diferencial, en combinación con los datos reales proporcionados por la secretaria de salud y del consejo estatal de población del estado de Jalisco, y así, modelar la propagación del virus en la zona metropolitana de Guadalajara (ZMG) en el período de abril del 2009 a agosto del 2010.

4.24. Cambios en la estructura fractal de los potenciales dorsales espontáneos inducidos por lesiones de nervios periféricos y médula espinal en gatos anestesiados (RT, 2Lic)

Erika Elizabeth Rodríguez Torres, erika_itza@hotmail.com (Universidad Autónoma del Estado de Hidalgo (UAEH) Área Académica de Matemáticas)

El funcionamiento del sistema nervioso central (cerebro y médula espinal) es importante para entender la integración sensorial y motora. Registros sobre el dorso de la médula espinal en el gato anestesiado presentan potenciales espontáneos de diferentes formas y tamaños. Los potenciales espontáneos son definidos como la actividad de fondo del sistema nervioso central (médula espinal) en la ausencia de cualquier tipo de estimulación. Estos potenciales pueden estar en un solo segmento lumbar o bien estar sincronizados en varios segmentos lumbares de L4 a L7, en un lado de la médula espinal o en ambos. Recientemente, se estableció que esta sincronización no es consecuencia de un mecanismo aleatorio sino es debido a activación sincrónica de agregados neuronales organizados estructuralmente. La sincronización intersegmental se analizó con métodos de fractales. Además para probar la sensibilidad del método se examinaron los cambios de estructura fractal producidos por lesiones en nervios periféricos y espinales. Indicando, que el uso de fractales puede tener aplicaciones clínicas.

4.25. Análisis de la dinámica de los priones: una proteína con comportamiento de virus (CDV, 2Lic)

Alejandro Ricardo Femat Flores, rfemat@ipicyt.edu.mx (IPICYT)

Los priones son proteínas codificadas por un gene celular normal que se comporta como virusen el sentido de que infecta células y luego se replica hasta que induce enfermedades neurodegenerativas (por ejemplo, encefalopatía espongiforme bovina, scrapie en ovinos y enfermedad de Creutzfeldt-Jakob). La forma celular del prion, llamado PrPC, es benigno pero se puede convertir en una forma causante de enfermedad (llamado scrapie), PrPSc, mediante un cambio conformacional de a-hélices en hojas-b. Los priones se replican a través de este cambio conformacional; es decir, PrPSc interactúa con PrPC produciendo una nueva molécula de PrPSc. En este trabajo se modela la replicación de los priones como un proceso auto catalítico. El modelo cinético da cuenta de dos de las tres manifestaciones epidemiológicas: esporádicas e infecciosas. Suponiendo irreversibilidad de la replicación del PrPSc y describiendo una reacción de primer grado para la degradación del tejido celular, exploramos los escenarios dinámicos de progresión de priones, tales como oscilaciones y condiciones para multiplicidad de equilibrios. Se explota la teoría de Feinberg de redes de reacciones químicas para identificar estados estacionarios múltiples y sus constantes cinéticas asociadas. Adicionalmente, las ecuaciones diferenciales ordinarias de ley de acción de masas tienen tres escenarios dinámicos distintos: múltiples estados estacionarios, oscilaciones sostenidas y un estado estacionario degenerado. En este trabajo hacemos análisis de los estados de equilibro de cada escenario dinámico.

Índice de expositores

В	N
Barradas Bribiesca Ignacio	Nolasco Toledo Mariela
4.2	4.105
\mathbf{C}	Р
Castillo Medina Jorge Antonio	Pérez Zarate María Del Carmen
4.64	4.208
Conde Mones José Julio	
4.187	\mathbf{R}
D	Rivera Cazares Juan
D	4.5
Delaye Arredondo Luis José 4.12	Rodríguez Torres Erika Elizabeth 4.249
4.12	4.249
\mathbf{E}	S
Escalante Enrique	Sáenz Roberto A.
4.84	4.4
Espinoza Valdez Aurora 4.17	Sánchez Garduño Faustino
4.17	4.95
F	\mathbf{T}
– Femat Flores Alejandro Ricardo	Toledo Hernández Rodrigo
4.25	4.146
Flores de Dios Estela del Carmen 4.22	
Fraguela Collar Andrés	\mathbf{V}
4.197	Vázquez Aarón
	4.74
I	Velasco Hernández Jorge X 4.1
– Ibarguen Mondragón Eduardo	4.1
4.3	7
Imaz Rosshandler Iván 4.13	Zonata Ciandia Luia Albanta
1.19	4.23
${f L}$	
Ledesma Durán Aldo	
4.115	
M	
Miramontes Pedro	
4.15	
Morales Barcenas José Héctor	
4.16	
4.218	