Zadanie 1

Wyniki:

test	Czas operacji	koszty I/O	Koszty CPU	Ilość wierszy
Z kluczem A	0ms	0,003125	0,0001581	1
Bez klucza A	10ms	0,915718	0,133606	121317
Z kluczem B	13ms	0,203125	0,133606	121317
Bez klucza B	17ms	0,915718	0,133606	121317

Spostrzeżenia:

Można zauważyć, że obecność klucza głównego ma ogromny wpływ na wydajność operacji. Bez niego operacja jest bardziej czasochłonna i generuje wyższe koszty I/O, co może prowadzić do spowolnienia działania kwerendy. Zmiana słowa kluczowego AND na OR również wpływa na czas operacji, powodując znaczące zwiększenie czasu wykonywania zapytania oraz kosztów I/O, bez zmiany kosztów CPU czy ilości wczytywanych wierszy.

Wnioski:

Prawidłowo znormalizowana tabela wykazuje się znacząco wyższą wydajnością wykonywanych zapytań, niezależnie od powierzonego zadania.

Zadanie 2

Zapytanie:

SELECT FirstName FROM Person.Person WHERE FirstName LIKE 'Julio%'

Wyniki:

test	Czas operacji	koszty I/O	Koszty CPU	Ilość wierszy
Bez indeksu	2ms	0,00786806	0,0221262	19972
Z indeksem	0ms	0,003125	0,0001788	24

Spostrzeżenia i wnioski:

Dodanie indeksowania do kolumny potrafi znacząco zmniejszyć koszty CPU i czas potrzebny na wykonanie zapytania poprzez zmniejszenie ilość wczytywanych wierszy