Intervals, Transformations, and Slope Solution (version 24)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7, -3) \cup (1, 9)$
Negative	$(-8, -7) \cup (-3, 1)$
Increasing	$(-8, -4) \cup (-2, 7)$
Decreasing	$(-4, -2) \cup (7, 9)$
Domain	(-8,9)
Range	(-3,6)

Intervals, Transformations, and Slope Solution (version 24)

2. In the four graphs below, y = f(x) is graphed as a dotted line. Please add the indicated transformed graphs indicated by the equations below using a solid line.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=36$ and $x_2=50$. Express your answer as a reduced fraction.

\overline{x}	g(x)
36	51
50	61
51	50
61	36

$$\frac{f(50) - f(36)}{50 - 36} = \frac{61 - 51}{50 - 36} = \frac{10}{14}$$

The greatest common factor of 10 and 14 is 2. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{5}{7}$$

2