Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа Р3340

Лабораторная работа №11 "Исследование математической модели пьезоэлектрического исполнительного устройства" Вариант - 3

Выполнила	Баранов Г.В.	(фамилия, и.о.)	(подпись)
Проверил		(фамилия, и.о.)	(подпись)
""	20г.	Санкт-Петербург,	20г.
Работа выполнена	с оценкой _		
Дата защиты "	_" 20		

Цель работы: Изучение математических моделей и исследование характеристик исполнительного устройства, построенного на основе пьезоэлектрического двигателя микроперемещений.

Исходные данные. Исходные данные для выполнения работы приведены в таблице 1.

Таблица 1 – Исходные данные

C_P	m	K_O	K_d	T_u	F_B	U_{Pm}	U_m
Н/м	ΚΓ	H/B	Нс/м	мс	Н	В	В
$0.8 \cdot 10^{8}$	0.5	9.3	$0.8 \cdot 10^3$	0.08	75	300	10

$$K_u = U_{Pm}/U_m = 300/10 = 30$$

 $K_u = U_{Pm}/U_m = 300/10 = 30$ Коэффициенты передачи K_u^{-1}, K_F, K_V, K_X определяются так, чтобы обеспечить соответствие максимального значения измеряемого сигнала уровню 10 В на выходе измерительного устройства.

 $K_u^{-1} = 0.03333$

 $K_F = 0.00769$

 $K_V = 33.33333$

 $K_X = 183486.238532$

1 Математическое моделирование модели пьезоэлектрического исполнительного устройства

На основе структурной схемы, представленной на рисунке 1, составим схему моделирования $\Pi Д$ (рисунок 2).

Рисунок 1 – Структурная схема пьезоэлектрического исполнительного устройства

Рисунок 2 – Схема моделирования ПД

Построим графики переходных процессов при $F_B=0\mathrm{H}$ и U=10В:

Рисунок 3 – График переходного процесса напряжения

Рисунок 4 – График переходного процесса силы

Рисунок 5 – График переходного процесса скорости

Рисунок 6 – График переходного процесса координаты

2 Исследование влияния массы нагрузки m на вид переходных процессов

Диапазон изменения массы нагрузки m: $\pm 50\%$ от заданного значения. Графики переходных процессов представлены на рисунке

Рисунок 7 – Графики переходных процессов напряжения

Рисунок 8 – Графики переходных процессов силы

Рисунок 9 – Графики переходных процессов скорости

Рисунок 10 – Графики переходных процессов координаты

По временным диаграммам определим время переходного процесса t_{Π} , величину перерегулирования σ и установившееся значение X_y . Занесём результаты в таблицу 2.

Таблица 2 – Характеристики системы при меняющейся массе нагрузки

т, кг	$t_\Pi,$ MC	$\sigma,\%$	X_y
0.75	4.7	64.4	6.4
0.50	3.3	56.3	6.4
0.25	1.6	37.5	6.4

3 Исследование влияния T_u на вид переходных процессов

Изменение T_u в сторону увеличивая исходного значения постоянной времени в 2, 4 и 6 раз. Графики переходных процессов:

Рисунок 11 – Графики переходных процессов напряжения

Рисунок 12 – Графики переходных процессов силы

Рисунок 13 – Графики переходных процессов скорости

Рисунок 14 – Графики переходных процессов координаты

По результатам моделирования определим время переходных процессов t_{Π} , величину перерегулирования σ и установившееся значение X_y . Занесём результаты в таблицу 3.

Таблица 3 – Характеристики системы при меняющейся постоянной времени

T_u , MC	$t_\Pi,$ MC	$\sigma,\%$	X_y	s_1	s_2	s_3
0.16	2.4	24.875	6.4	-6250	-800-12623.8i	$-800\!+\!12623.8\mathrm{i}$
0.32	1.9	6.82	6.4	-3125	-800-12623.8i	-800+12623.8i
0.48	1.6	1.748	6.4	-2083.33	-800-12623.8i	-800+12623.8i

Чтобы рассчитать значения корней характеристического уравнения получим передаточную функцию. Для этого будем рассматривать исполнительное пьезоэлектрическое устройство как упругую механическую систему. В этом случае математическая модель может быть получена на основе уравнения баланса сил в пьезодвигателе:

$$F_y = F_O + F_{\perp} + F_d + F_B,$$
 (1)

где $F_y=C_px$ — усилие упругой деформации $\Pi Д$, $F_O=K_O U_p$ — усилие, вызванное обратным пьезоэффектом, $F_{\mathcal{I}}=-m\frac{d^2x}{dt^2}$ — динамическое усилие в $\Pi Д$, $F_d=-K_d\frac{dx}{dt}$ — демпфирующее усилие, обусловленное механическими потерями, F_B — внешнее воздействие, \mathbf{x} — перемещение, C_p — коэффициент упругости, K_O — коэффициент обратного пьезоэффекта, U_p — напряжение на электродах $\Pi Д$, \mathbf{m} — масса перемещаемой нагрузки, K_d — коэффициент демпфирования.

Подставив перечисленные равенства в уравнение (1), получим:

$$m\ddot{x} + K_d\dot{x} + C_p x = K_O U_p + F_B \tag{2}$$

Составленная по уравнению (2) передаточная функция будет выглядеть следующем образом:

$$W_{\rm BY}(s) = \frac{K_O U_p + F_B}{ms^2 + K_d s + C_p} \tag{3}$$

Управление $\Pi Д$ осуществляется от высоковольтного усилителя, который, в нашем случае, описывается апериодическим звеном первого порядка:

$$W(s) = \frac{K_u}{T_u s + 1} \tag{4}$$

Исходя из того, что ВУ и $\Pi Д$ соединены последовательно, имеем передаточную следующую функцию:

 $W(s) = \frac{K_u(K_O U_p + F_B)}{(T_u s + 1)(ms^2 + K_d s + C_p)}$ (5)

Найдем корни характеристического уравнения для всех сочетаний параметров и запишем результат в таблицу 3.

4 Исследование влияния коэффициента упругости C_p на вид переходных процессов

Исследования проводились при значениях коэффициента упругости $0.5C_p$ и $2C_p$ при $F_B=80{\rm H}$ и U=0B. Графики переходных процессов:

Рисунок 15 – Графики переходных процессов скорости

Рисунок 16 – Графики переходных процессов координаты

5 Построение асимптотической ЛАЧХ исполнительного устройства

Представим передаточную функцию (3) в виде колебательного звена:

$$W(s) = \frac{\frac{K_0}{C_p}}{\frac{m}{C_p}s^2 + \frac{K_d}{C_p}s + 1}.$$
 (6)

Асимптотическая логарифмическая амплитудная характеристика будет иметь нулевой наклон на уровне

$$20\lg\frac{K_0}{C_p} = 20\lg\frac{9.3}{0.8 \cdot 10^8} = -138.692дБ$$
 (7)

до сопрягающей частоты

$$\omega_c = \sqrt{\frac{C_p}{m}} = \sqrt{\frac{0.8 \cdot 10^8}{0.5}} = 12649.11$$
рад/с. (8)

После сопрягающей частоты график пойдёт под наклоном в -40 дБ/дек. Таким образом асимптотическая ЛАЧХ будет выглядить так как показано на рисунке 17:

Рисунок 17 – Асимптотическая ЛАЧХ исполнительного устройства

Вывод

В ходе лабораторной работы было проведено исследование пьезоэлектрического устройства. Были выявлены изменения в переходных процессах системы путём изменения таких параметров как масса нагрузки, постоянная времени, коэффициент упругости.

Как видно из таблицы 2 при уменьшении массы нагрузки установившееся значение перемещения остаётся постоянным, а значение времени переходного процесса и перерегулирования уменьшается.

При исследовании влияния постоянной времени вольтного усилителя было показано, что её увеличение ведёт к уменьшению перерегулирования, а также к уменьшению одного из корней характеристического уравнения, что можно увидеть в таблице 3.

Из графиков видно, что при увеличении значения коэффициента упругости пьезоэлемента увеличивается установившееся значение перемещения пьезокерамических пластин.