ANSWERS

Chapter 1 Similarity

Practice set 1.1

1.
$$\frac{3}{4}$$

2.
$$\frac{1}{2}$$

4. 1:1 **5.** (1)
$$\frac{BQ}{BC}$$
, (2)

1.
$$\frac{3}{4}$$
 2. $\frac{1}{2}$ **3.** 3 **4.** 1:1 **5.** (1) $\frac{BQ}{BC}$, (2) $\frac{PQ}{AD}$, (3) $\frac{BC}{DC}$, (4) $\frac{DC \times AD}{QC \times PQ}$

Practice set 1.2

2.
$$\frac{PN}{NR} = \frac{PM}{MO} = \frac{3}{2}$$
, therefore line NM || side RQ 3. QP = 3.5 5. BQ = 17.5

3.
$$QP = 3.5$$

6.
$$QP = 22.4$$

7.
$$x = 6$$
; AE = 18 **8.** LT = 4.8 **9.** $x = 10$

8.
$$LT = 4.8$$

9.
$$x = 10$$

10. Given, XQ, PD, Given,
$$\frac{\overline{XR}}{\overline{RF}} = \frac{\overline{XQ}}{\overline{QE}}$$
, Basic propotionality theorem, $\frac{\overline{XP}}{\overline{PD}} =$

$$\frac{XR}{RF} = \frac{XQ}{QE}$$

$$\frac{XP}{PD} = \frac{XR}{RF}$$

Practice set 1.3

1.
$$\triangle$$
 ABC \sim \triangle EDC, AA test

2.
$$\triangle$$
 PQR \sim \triangle LMN; SSS test of similarity

4.
$$AC = 10.5$$

6.
$$OD = 4.5$$

Practice set 1.4

2.
$$PQ^2$$
, $\frac{4}{9}$

2.
$$\boxed{PQ^2}$$
, $\frac{4}{\boxed{9}}$ **3.** $\boxed{A(\Delta PQR)}$, $\frac{16}{25}$, $\frac{4}{5}$

6.
$$4\sqrt{2}$$

7.
$$\overline{PF}$$
; \overline{x} + $\overline{2x}$; $\overline{\angle FPQ}$; $\overline{\angle FQP}$; $\overline{PF^2}$; $\overline{20}$; $\overline{45}$; $\overline{45}$ - $\overline{20}$; $\overline{25}$ sq. unit

Problem set 1

$$(2) (B), \qquad (3) (B), \qquad (4) (D), \qquad (5) (A)$$

2.
$$\frac{7}{13}$$
, $\frac{7}{20}$, $\frac{13}{20}$ **3.** 9 cm **4.** $\frac{3}{4}$ **5.** 11 cm **6.** $\frac{25}{81}$

4.
$$\frac{3}{4}$$

6.
$$\frac{25}{81}$$

8. PQ = 80, QR =
$$\frac{280}{3}$$
, RS = $\frac{320}{3}$

8. PQ = 80, QR =
$$\frac{280}{3}$$
, RS = $\frac{320}{3}$
9. $\frac{\text{PM}}{\text{MQ}} = \frac{\text{PX}}{\text{XQ}}$, $\frac{\text{PM}}{\text{MR}} = \frac{\text{PY}}{\text{YR}}$,

10.
$$\frac{AX}{XY} = \frac{3}{2}$$

12.
$$\frac{\boxed{3}}{\boxed{2}}$$
, $\frac{\boxed{3}+\boxed{2}}{\boxed{2}}$, $\frac{\boxed{5}}{\boxed{3}}$, AA, $\frac{\boxed{5}}{\boxed{3}}$, $\boxed{15}$

Chapter 2 Pythagoras Theorem

Practice set 2.1

1. Pythagorean triplets;
$$(1)$$
, (3) , (4) , (6) **2.** NQ = 6

3.
$$QR = 20.5$$

4. RP = 12, PS = $6\sqrt{3}$

6. side = $5\sqrt{2}$ cm, perimeter = $20\sqrt{2}$ cm **7.** (1) 18 (2) $4\sqrt{13}$ (3) $6\sqrt{13}$ **8.** 37 cm

10. 8.2 metre.

Practice set 2.2

1. 12 **2.** $2\sqrt{10}$ **4.** 18 cm

Problem set 2

1. (1) (B), (2) (B), (3) (A), (4) (C), (5) (D), (6) (C), (7) (B), (8) (A).

2. (1) $a\sqrt{3}$, (2) form a right angled triangle. (3) 61 cm, (4) 15 cm, (5) $x\sqrt{2}$, (6) \angle PRQ.

3. RS = 6 cm. ST = $6\sqrt{3}$ cm **4.** 20 cm **5.** side = 2 cm, perimeter = 6 cm

6. 7 **7.** AP = $2\sqrt{7}$ cm **10.** 7.5 km / hr **12.** 8 cm **14.** 8 cm

15. 192 sq.unit **17.** 58 **18.** 26

Chapter 3 Circle

Practice set 3.1

1. (1) 90°, tangent-radius theorem (2) 6 cm; perpendicular distance

(3) $6\sqrt{2}$ cm (4) 45°

2. (1) $5\sqrt{3}$ cm (2) 30° (3) 60° **4.** 9 cm

Practice set 3.2

5. $4\sqrt{6}$ cm **4.** (3) 110° 1. 1.3 cm 2. 9.7 cm

Practice set 3.3

1. $m(\text{arc DE}) = 90^{\circ}$, $m(\text{arc DEF}) = 160^{\circ}$

Practice set 3.4

1. (1) 60° (2) 30° (3) 60° (4) 300° **2.** (1) 70° (2) 220° (3) 110° (4) 55°

3. $\angle R = 92^{\circ}$; $\angle N = 88^{\circ}$

Practice set 3.5

2. (1) 7.5 (2) 12 or 6 1. PS = 18; RS = 10,

3. (1) 18 (2) 10 (3) 5 **4.** 4

Problem set 3

1. (1) D (2) B (3) B (4) C (5) B (6) D (7) A (8) B (9) A (10) C.

(2) in the interior of the circle (3) 2 locations, 12 cm **2.** (1) 9 cm

3. (1) 6 (2) $\angle K = 30^{\circ}$; $\angle M = 60^{\circ}$ 5. 10 6. (1) 9 cm (2) 6.5 cm

(3) 90°; MS : SR = 2 : 1 **9.** $4\sqrt{3}$ cm

13. (1) 180° (2) \angle AQP \cong \angle ASQ \cong \angle ATQ

(3) \angle QTS \cong \angle SQR \cong \angle SAQ (4) 65°, 130° (5) 100° **14.**(1) 70°

(2) 130° (3) 210° **15.** (1) 56° (2) 6 (3) 16 or 9 **16.** (1) 15.5°

(2) 3.36 (3) 6 **18.** (1) 68° (2) OR = 16.2, QR = 13 (3) 13 **21.** 13

Chapter 4 Geometric Constructions

Problem set 4

1. (1) C (2) A (3) A

Chapter 5 Co-ordinate Geometry

Practice set 5.1

1. (1) $2\sqrt{2}$ (2) $4\sqrt{2}$ (3) $\frac{11}{2}$ (4) 13 (5) 20 (6) $\frac{29}{2}$

2. (1) are collinear. (2) are not collinear. (3) are not collinear. (4) are collinear.

3.(-1,0)

7. 7 or -5

Practice set 5.2

1. (1, 3) **2.** (1) $\left(-\frac{1}{3}, -\frac{1}{3}\right)$ (2) $\left(\frac{4}{7}, -\frac{11}{7}\right)$ (3) $\left(0, \frac{13}{3}\right)$ **3.** 2:7 **4.** (-6, 3) **5.** 2:5, k = 6 **6.** (11, 18) **7.** (1) (1, 3) (2) (6, -2) (3) $\left(\frac{19}{3}, \frac{22}{3}\right)$

8. (-1, -7) **9.** h = 7, k = 18 **10.** (0, 2); (-2, -3)

11. (-9, -8), (-4, -6), (1, -4) **12.** (16, 12), (12, 14), (8, 16), (4, 18)

Practice set 5.3

1. (1) 1 (2) $\sqrt{3}$ (3) slope cannot be determined.

2. (1) 2 (2) $-\frac{3}{8}$ (3) $\frac{5}{2}$ (4) $\frac{5}{4}$ (5) $\frac{1}{2}$ (6) slope cannot be determined.

3. (1) are collinear. (2) are collinear. (3) are not collinear. (4) are collinear.

(5) are collinear. (6) are collinear.

4. -5; $\frac{1}{5}$; $-\frac{2}{3}$ 6. k = 5 7. k = 0 8. k = 5

Problem set 5

(2) D (3) C

(4) C

2. (1) are collinear. (2) are collinear. (3) are not collinear. 3. (6, 13) 4. 3:1

- **5.** (-7, 0) 6. (1) $a\sqrt{2}$ (2) 13 (3) 5a **7.** $\left(-\frac{1}{3}, \frac{2}{3}\right)$
- **8.** (1) Yes, scalene triangle (2) No. (3) Yes, equilateral triangle 9. k = 5
- **13.** 5, 2 $\sqrt{13}$, $\sqrt{37}$ **14.** (1, 3) **16.** $\left(\frac{25}{6}, \frac{13}{6}\right)$, radius = $\frac{13\sqrt{2}}{6}$ **17.** (7, 3)
- **18.** Parallelogram **19.** A(20, 10), P(16, 12), R(8, 16), B(0, 20). **20.** (3, -2)
- **21.** (7, 6) and (3, 6) **22.** 10 and 0

Chapter 6 Trigonometry

Practice set 6.1

1.
$$\cos\theta = \frac{24}{25}$$
; $\tan\theta = \frac{7}{24}$ 2. $\sec\theta = \frac{5}{4}$; $\cos\theta = \frac{4}{5}$

3.
$$\csc\theta = \frac{41}{9}$$
; $\sin\theta = \frac{9}{41}$ **4.** $\sec\theta = \frac{13}{5}$; $\cos\theta = \frac{5}{13}$; $\sin\theta = \frac{12}{13}$

5.
$$\frac{\sin\theta + \cos\theta}{\sec\theta + \csc\theta} = \frac{1}{2}$$

Practice set 6.2

- 1. Height of the church is 80 metre.
- **2.** The ship is 51.90 metre away from the lighthouse.
- **3.** Height of the second building is $(10 + 12\sqrt{3})$ metre.
- **4.** Angle made by the wire with the horizontal line is 30°.
- **5.** Height of the tree is $(40 + 20\sqrt{3})$ metre.
- **6.** The length of the string is 69.20 metre.

Problem set 6

2.
$$\cos\theta = \frac{60}{61}$$
 3. $\sin\theta = \frac{2}{\sqrt{5}}$; $\cos\theta = \frac{1}{\sqrt{5}}$; $\csc\theta = \frac{\sqrt{5}}{2}$; $\sec\theta = \sqrt{5}$; $\cot\theta = \frac{1}{2}$

4.
$$\sin\theta = \frac{5}{13}$$
; $\cos\theta = \frac{12}{13}$; $\csc\theta = \frac{13}{5}$; $\tan\theta = \frac{5}{12}$; $\cot\theta = \frac{12}{5}$

- **6.** Height of the building is $16\sqrt{3}$ metre.
- 7. The ship is $100\sqrt{3}$ metre away from the lighthouse.
- **8.** Height of the second building is $(12 + 15\sqrt{3})$ metre.
- **9.** The maximum height that ladder can reach is 20.80 metre.

10. the plane was 1026 metre high at the time of landing.

Chapter 7 Mensuration

Practice set 7.1

- **1.** 11.79 cm³
 - **2.** 113.04 cm³ **3.** 1413 sq.cm (by taking $\pi = 3.14$) **4.** 616 sq.cm
- **5.** 21 cm
- **6.** 12 jugs
- 7.9 cm
- **8.** 273π sq.cm
- **9.** 20 tablets

- **10.** 94.20 cm³, 103.62 sq.cm
- **11.** 5538.96 sq.cm, 38772.72 cm³
- 12. 1468.67π cm³

Practice set 7.2

- **1.** 10.780 litre
- **2.** (1) 628 sq.cm (2) 1356.48 sq.cm (3) 1984.48 cm³

Practice set 7.3

- **1.** 47.1 sq.cm
- **2.** 25.12 cm
- **3.** 3.85 sq.cm
- **4.** 214 sq.cm
- **5.** 4 cm

- **6.** (1) 154 sq.cm (2) 25.7 sq.cm
- (3) 128.3 sq.cm
- 7. 10.2 sq.cm
- **8.** 7.3 cm; 22 cm **9.** (1) 90° (2) 22 cm
 - - (2) 89.83 sq.cm (3) 115.5 sq.cm
- 11. 3.5 cm
- **12.** x = 154 sq.cm; y = 38.5 sq.cm; z = 101.5 sq.cm
- **13.** (1) 84.87 sq.cm

10.(1) 12.83 sq.cm

- (2) 25.67 sq.cm (3) 77.01 sq.cm (4) 7.86 sq.cm

Practice set 7.4

- 1. 3.92 sq.cm
- **2.** 9.08 sq.cm
- **3.** 0.65625 sq.unit
- **4.** 20 cm

5. 20.43 sq.cm; 686.07 sq.cm

Problem set 7

- **1.** (1) A, (2) D, (3) B, (4) B, (5) A, (6) A, (7) D, (8) C.

- **2.** 20.35 litre
- **3.** 7830 balls
- **4.** 2800 coins (by taking $\pi = \frac{22}{7}$) **5.** Rs. 6336
- **6.** 452.16 sq.cm; 3385.94 gm
- 7. 2640 sq.cm

8. 243 metre

9. 150° ; 5π cm

10. 39.28 sq.cm