Полезные формулы

Майнор "Астрофизика", 2 курс

2020 Декабрь

1 Формулы

Единицы измерения неочевидных величин приведены в квадратных скобках в системе СИ. Будте осторожны, в СГС могут быть другие константы или они могут вообще отсутствовать. В случае, если формула приведена в СГС, это обязательно будет указано сбоку.

1.1 Разрешающая способность

$$\theta = 1.22 \frac{\lambda}{d} \sim \frac{\lambda}{d}$$

 θ — угол в радианах, λ — длина волны, d — диаметр линзы (зеркала)

1.2 Связь светового потока и светимости

$$f = \frac{L}{4\pi d^2}$$

 $f\left[\mathrm{Bt/m^2}\right]$ — поток, $L\left[\mathrm{Bt}\right]$ — светимость, d— расстояние до звезды

1.3 Связь светового потока и видимой звездной величины

$$\frac{f_1}{f_2} = 100^{\frac{-(m_1 - m_2)}{5}}$$
 $m_1 - m_2 = -2.5 \log_{10} \left(\frac{f_1}{f_2}\right)$

 $f\left[\mathrm{Bt/m^2}\right]$ — потоки, $m\left[^\mathrm{m}\right]$ — видимые звездные величины

1.4 Третий закон Кеплера

$$\left(\frac{a_1}{a_2}\right)^3 = \left(\frac{T_1}{T_2}\right)^2$$

a — большие полуоси орбит, T — периоды

1.5 Связь большой полуоси и периода для задачи двух тел

$$a^3 = \frac{G\mu T^2}{4\pi^2}$$
 $T = \frac{2\pi a^{\frac{3}{2}}}{\sqrt{G\mu}}$

1

a — большая полуось, $\mu = m_1 + m_2$ — приведенная масса, T — период

1.6 Теорема Вириала

$$E_{\text{полн}} = -\frac{1}{2}|E_{\text{пот}}|$$

$$E_{\text{кин}} = \frac{1}{2}|E_{\text{пот}}| \quad \left(\text{частный случай}\right)$$

1.7 Время транзита

$$\frac{t}{T} = \frac{1}{\pi} \arcsin \frac{R}{a} = \frac{1}{\pi} \arcsin R \left(\frac{4\pi^2}{GMT^2} \right)^{\frac{1}{3}}$$

t — время транзита, T — период, R — радиус звезды, a — большая полуось, M — масса звезды

1.8 Плотность энергии магнитного поля

$$\varepsilon = \frac{B^2}{8\pi} \quad (C\Gamma C)$$

 $B\left[\Gamma \mathrm{c}\right]$ — магнитная индукция, $\varepsilon\left[\mathrm{Дж/м^3}\right]$ — плотность энергии

1.9 Эддингтоновская светимость

$$L_9 = 10^{38} \frac{M}{M_{\odot}} \left[\frac{\text{spr}}{\text{c}} \right] \quad (\text{C}\Gamma\text{C})$$

1.10 Шварцшильдский радиус

$$R_{\text{\tiny ч.д.}} = \frac{2GM}{c^2}$$

1.11 Уравнение Фридмана

$$H^{2} = \left(\frac{\dot{R}}{R}\right) = \frac{8\pi G}{3c^{2}}\varepsilon + c^{2}\frac{\Lambda}{3} - kc^{2}\frac{1}{R^{2}}$$

H [c⁻¹] — "постоянная Хаббла", R — "радиус" Вселенной, ε [Дж/м³] — плотность энергии вещества, Λ — космологическая постоянная, k — кривизна Вселенной

$$k = \begin{cases} 1, & \text{замкнутая (шар, Пуанкаре)} \\ 0, & \text{плоская (плоскость, Евклид)} \\ -1, & \text{открытая (гиперболоид, Лобачевский)} \end{cases}$$

2 Константы и соотношения

2.1 Звездные величины

Светило	Видимая зв. величина	
Вега	$0.03^{\rm m}$	
Сириус	$-1.46^{\rm m}$	
Луна	$-12.7^{\rm m}$	
Солнце	$-26.7^{\rm m}$	

Абсолютная звездная величина — это видимая на расстоянии 10 пк.

2.2 Единицы измерения

$$1\,\mathrm{9B}=1.6\cdot10^{-12}\,\mathrm{эрr}=1.6\cdot10^{-19}\,\mathrm{Дж}$$
 $1\,\mathrm{a.\,e.}=1.5\cdot10^{13}\,\mathrm{cm}=1.5\cdot10^{11}\,\mathrm{m}$ $1\,\mathrm{cb.}$ год $=9.5\cdot10^{17}\,\mathrm{cm}=63\,000\,\mathrm{a.\,e.}$ $1\,\mathrm{nk}=3.1\cdot10^{18}\,\mathrm{cm}=206\,000\,\mathrm{a.\,e.}=3.26\,\mathrm{cb.}$ года

2.3 Константы

Постоянная	Обозначение	Значение в СИ
Гравитационная	G	$6.67 \cdot 10^{-11} \text{ м}^3 \text{c}^{-2} \text{к} \Gamma^{-1}$
Скорость света	c	$300000000\ { m m/c}$
Планка	h	$6.6 \cdot 10^{-34} \ \mathrm{kr} \mathrm{m}^2 \mathrm{c}^{-1}$
Больцмана	k	$1.38 \cdot 10^{-23}$ Дж/К
Стефана-Больцмана	σ	$5.67 \cdot 10^{-8} \text{ Bt m}^{-2} \text{K}^{-4}$
Хаббла	H	$2.2 \cdot 10^{-18} \text{ c}^{-1}$