50

Name -

Part A: (2 marks) What does it mean for the point a to be a boundary point of the set S.

 $a \in \partial S$ of (yr)o $B(r,a) \cap S \neq \emptyset$ & (c.b) $B(r,a) \cap S^c \neq \emptyset$

Part B: (3 marks) Find a boundary point of the set S = (0, 1) and prove your claim.

 $0 \in \partial S$ b_{rc} $\forall r > 0$ B(r, 0) = (-r, r) and $(-r, r) \cap (0, 1)$ (0, 1) (

Part C: (5 marks) Prove that for any set $S \subseteq \mathbb{R}^n$, $\partial S = \partial S^c$.

 $a \in \partial S \iff \forall r > 0$ $B(r, a) \cap S \neq \emptyset$ $B(r, a) \cap S \stackrel{c}{=} \emptyset$

One direction as Edse

Part A: (2 marks) What does it mean for the point a to be an interior point of the set S.

Part B: (3 marks) Find an interior point of the set S = (0,1) and prove your claim.

$$0.5 \in S^{int}$$
 b_{c} $B(4,0.5) \subset (0,1)$.

Part C: (5 marks) Prove that for any sets $A \subseteq B \subseteq \mathbb{R}^n$ $A^{int} \subseteq B^{int}$.

Let
$$a \in A^{int}$$
, Then $\exists r > 0$ $B(r, a) \subset A$, but $A \subseteq B$, $r > 0$ $B(r, a) \subset B$. $a \in B^{int}$

Part A: (2 marks) What does it mean for a set S to be open? (please be carefule not mistake the definition of closed and open with the equivalent statement 1.4)

Part B: (4 points) Show that for the set $S = \{(x,y) : y = x^2, 1 < x < 2\}$, we have $S \subset \partial S$.

pick (x,y)∈S and Consider B(r, (x,y)). Note That

 $B(r,(x,y)) \cap S \neq \emptyset$ as $(x,y) \in S \cap B(r,(x,y))$ and B() $\int_{-\infty}^{\infty} dx = \int_{-\infty}^{\infty} dx = \int_{-\infty}^$

assume $S \subseteq S^{int}$, and let $x \in \partial S$, Then $x \notin S^{int}$, so $x \notin S$.

Therefore $x \in S^c$, so $\partial S \subset S^c$.

Therefore $x \in S^c$, so $\partial S \subset S^c$. Part C: (4 points) Prove that a set S is open if $S \subseteq S^{int}$.

Part A: (2 marks) For a set $S \subset \mathbb{R}^n$ What does it mean for a point x to be a boundary point of S?

$$\forall r > 0$$
 $B(r,*) \cap S \neq \emptyset$ \bigcirc $B(r,*) \cap S^{c} \neq \emptyset$ \bigcirc

Part B: (4 marks) Show that any point on the unit circle is a boundary point of B(1,(0,0)).

let r, o be given, design $N = (1-\frac{r}{2}) \times$ and $N = (1+\frac{r}{2}) \times$ and note $N \in \mathbb{B}(1,(0,0)) \cap \mathbb{B}(r, \times)$

Show why ...

 $y_2 \in B(1, (0, 0)) \cap B(1, x)$

Part C: (4 marks) If r < s are real numbers, show that $\overline{B(r, a)} \subset B(s, a)$. (Hint: you may assume that the circle of radius r is exactly the boundary of the ball of radius r.)

Part A: (2 marks) What is S^{int} ?

$$S^{int} = \{ix \in S : \exists r>0 \ B(r, \alpha) \subset S\}$$

Part B: (5 marks) Determine S^{int} for the set $S = \{(x,y) : x^2 + y^2 = 1\}$

(1) Sint & be for any (x,y) & and any r>0 the two points $(x \pm \frac{r}{2}, y) \in B(r, (\alpha, y))$ by $|(\alpha(\pm \frac{r}{2}, y)) - (\alpha, y)| = \sqrt{(\alpha(\pm \frac{r}{2}, x))^2 + (y-y)^2}$ = $\sqrt{(\frac{1}{2})^2} = \frac{1}{2} < \frac{1}{2}$ But at least one of The two points in not in S (So B(r, (x,4)) & S,) Thus is bre $(x \pm \frac{r}{2})^2 + y^2 = x^2 \pm rx + \frac{r^2}{4} + y^2 = x^2 + y^2 \pm rx + \frac{r^2}{4} = 1 \pm rx + \frac{r^2}{4}.$ (2) Now either 1+rx+x² ≠1 (i.e (x+z,y) €S) or else

 $\frac{r^{2}}{4} = 1 \text{ Then } rx + \frac{r^{2}}{4} = 0 \text{ so } rx = -\frac{r^{2}}{4} \text{ so which }$ Case $1 - rx + \frac{r^{2}}{4} = 1 + \frac{r^{2}}{4} + \frac{r^{2}}{4} + \frac{r^{2}}{4} + \frac{r^{2}}{4} = 1 + \frac{r^{2}}{4} + \frac{r^{2}}{4} = 1 + \frac{r^{$

Part C: (3 marks) Prove that for any set S, if a given point $x \notin S^{int}$ then $\forall r > 0$ $B(r, \mathbf{a}) \cap S^c \neq \emptyset$

ie x & S'int Then ~ [3r>o B(r,a) CS], so That (1) Vr>0 B(r, a) & S >0 Bat

(1) Vr>0 B(r, a) OS & # 8

Part A: (2 marks) Present Cauchy's inequality for two vectors $a, b \in \mathbb{R}^n$

absolutevalue O norm in R

Part B:(4 marks) Use Cauchy's inequality to to prove the inequality $|a+b+c| \le \sqrt[4]{a^2+b^2+c^2}$.

Apply Cauchy used & Vectors X = [1] and Y = [4] and mote

 $x \circ y = a + b + c$ and $1 \times 1 = \sqrt{3}$ $1 \times 1 = \sqrt{a^2 + b^2 + c^2}$

1a+b+c1 < \(\sqrt{3} \sqrt{a^2 + b^2 + c^2}\)

Part C: (4 marks) Use Cauchy's inequality to prove triangle inequality.

 $|x+y|^{2} = (x+y)^{2} \cdot (x+y) = x \cdot x + x \cdot y + y \cdot x + y \cdot y$ $= |x|^{2} + 2x \cdot y + |y|^{2} \le |x|^{2} + 2|x||y| + |y|^{2} = 0$ $(|x|+|y|)^{2} \cdot \text{Therefore } |x+y|^{2} \le (|x|+|y|)^{2}, \text{ and } (|x|+|y|)^{2}, \text{ and } (|x|+|y|)^{2}, \text{ by } \text{Square rooting both Sides.}$

Part A: (2 mark) What does it mean for a set $S \subset \mathbb{R}^n$ to be closed? what does it mean for S to be open?

Part B: (4 marks) Prove that the set $S = \{a\}$, that is a set consisting of a single point is closed. (Please present all the necessary details.)

note That
$$\partial S = S$$
 by $\alpha \in \partial S$: $\forall r > 0$ $\forall y = (1+\frac{r}{2})\alpha \in S^c \cap B(r, \alpha)$ also if $b \notin S^c$, i.e. $b \neq \alpha$ Then $d = \frac{|b-\alpha|}{2}$, Then $\alpha \notin B(r, b)$ by $|\alpha - b| \notin r$, so $|\alpha - b| \notin r$, so $|\alpha - b| \notin r$.

a. $\partial S = \{0\}$, and $|\alpha - b| \notin r$, so $|\alpha - b| \notin r$.

Part C:(4 marks) Prove that if S is open then $S \subseteq S^{int}$.

Part C:(4 marks) Prove that if S is open then
$$S \subseteq S^{int}$$
.

Given $x \in S$ ω_e know $x \notin \partial S$ b_{ie} $\partial S \subseteq S^c$. so

 $B(r,x) \cap S = \emptyset$
 $A \subseteq S^{int}$
 $A \subseteq S^{int}$