

02291 System Integration

Goal-oriented Requirements Engineering

© Giovanni Meroni

Motivations

- Need to define the context in which an application works
 - Time
 - Place
 - Information
 - Operations
 - Stakeholders
- Need to define the motivations why an application works in a specific way
 - The same outcome could be reached in multiple ways
- Need to consider these aspects together, and not in isolation
- Goal-oriented requirements engineering help us do so

Goal-oriented Requirements Engineering

- Use of goals as a starting point to identify, elicit, document, specify and analyze requirements
- Goals are objectives that the system aims to achieve
- Goals are meant to specify why a requirement is needed, which tasks are required to reach it, and which ones may hamper its achievement

Zachman Framework

	DATA What	FUNCTION How	NETWORK Where	PEOPLE Who	TIME When	MOTIVATION #7ay	
SCOPE (CONTEXTUAL)	List of Things Important to the Business	List of Processes the Business Performs	List of Locations in which the Business Operates	List of Organizations Important to the Business	List of Events/Cycles Significant to the Business	List of Business Goals/Stratgles	SCOPE (CONTEXTUAL)
Planner	ENTITY = Class of Business Thing	Process = Class of Business Process	Node = Major Business Location	People = Major Organization Unit	Time = Major Business Event/Cycle	Ends/Means = Major Business Goal/Strategy	Planner
BUSINESS MODEL (CONCEPTUAL)	e.g. Semantic Model	e.g. Business Process Model	e.g. Business Logistics System	e.g. Work Flow Model	e.g. Master Schedule	e.g. Business Plan	BUSINESS MODEL (CONCEPTUAL)
Owner	Ent = Business Entity Rein = Business Relationship	Proc. = Business Process I/O = Business Resources	Node = Business Location Link = Business Linkage	People = Organization Unit Work = Work Product	Time = Business Event Cycle = Business Cycle	End = Business Objective Means = Business Strategy	Owner
SYSTEM MODEL (LOGICAL)	e.g. Logical Data Model	e.g. Application Architecture	e.g. Distributed System Architecture	e.g. Human Interface Architecture	e.g. Processing Structure	e.g., Business Rule Model	SYSTEM MODEL (LOGICAL)
Designer	Ent = Data Entity Rein = Data Relationship	Proc .= Application Function I/O = User Views	Node = I/S Function (Processor, Storage, etc) Link = Line Characteristics	People = Role Work = Deliverable	Time = System Event Cycle = Processing Cycle	End = Structural Assertion Means =Action Assertion	Designer
TECHNOLOGY MODEL (PHYSICAL)	e.g. Physical Data Model	e.g. System Design	e g. Technology Architecture	e.g. Presentation Architecture	e.g. Control Structure	e.g. Rule Design	TECHNOLOGY MODEL (PHYSICAL)
Builder	Ent = Segment/Table/etc. Rein = Pointer/Key/etc.	Proc.= Computer Function VO = Data Elements/Sets	Node = Hardware/Systems Software Link = Line Specifications	People = User Work = Screen Format	Time = Execute Cycle = Component Cycle	End = Condition Means = Action	Builder
DETAILED REPRESEN- TATIONS (OUT-OF- CONTEXT) Sub- Contractor	e.g. Data Definition Ent = Field Roln = Address	e.g. Program Proc = Language Statement I/O = Control Block	e.g. Network Architecture Node = Address Link = Protocol	e.g. Security Architecture People = Identity Work = Job	e.g. Timing Definition Time = Interrupt Cycle = Machine Cycle	e.g. Rule Specification End = Sub-condition Means = Step	DETAILED REPRESEN- TATIONS (OUT-OF CONTEXT) Sub- Contractor
FUNCTIONING ENTERPRISE	e.g. DATA	e.g. FUNCTION	e.g. NETWORK	e.g. ORGANIZATION	e.g. SCHEDULE	e.g. STRATEGY	FUNCTIONING ENTERPRISE

© John A. Zachman, Zachman International

Zachman Framework

© John A. Zachman, Zachman International

Zachman Framework

© John A. Zachman, Zachman International

Goal modelling

- Different languages exist to support goal-oriented requirements engineering:
 - KAOS
 - EEML
 - I-star
 - ArchiMate

Participants

The role of an individual, team or organisation (or classes thereof) that represents their interest in the outcome of the application.

A business entity that is capable of performing behaviour.

the responsibility for performing specific behaviour, or the part one plays in a particular action or event.

Specialization

Technical University ISA University MSc student Student Student

ArchiMate

Specialization relation

Playing a role

I-star ArchiMate

Assignment relation

10

Composition

I-star ArchiMate

Composition relation

Intentional elements

A high-level statement of intent, direction or desired end state for an organisation and its stakeholders.

a statement of need that must be met by the architecture.

A set of actions that achieves a specific outcome.

A concept used within a particular business domain

Associating intentional elements to participants

31 January 2024 DTU Compute Module 0: Welcome!

Refining goals

Goal decomposition

Goal specialization

Refining goals

Goal realization (inclusive)

Refining goals

Goal realization (exclusive)

Refining tasks

31 January 2024 DTU Compute Module 0: Welcome!

Resources for task execution

I-star ArchiMate

Access relation

Contribution links

31 January 2024 DTU Compute Module 0: Welcome!

Qualification

31 January 2024 DTU Compute Module 0: Welcome!

Example

31 January 2024 DTU Compute Module 0: Welcome!

ArchiMate-exclusive intentional elements

An external or internal condition that motivates an organisation to define its goals and implement the changes necessary to achieve them.

The result of an analysis of the state of affairs of the enterprise with respect to some driver.

A factor that prevents or obstructs the realisation of goals.

A qualitative statement of intent that should be met by the architecture

ArchiMate-exclusive intentional elements

31 January 2024 DTU Compute Module 0: Welcome!

ArchiMate-exclusive contribution links

Extended example in ArchiMate

- Represent social relationships
 - Depender: an actor that depends for something (the dependum) to be provided

- Represent social relationships
 - Depender: an actor that depends for something (the dependum) to be provided
 - DependerElement: an intentional element within the depender's boundary where the dependency starts from, which explains why the dependency exists

- Represent social relationships
 - Depender: an actor that depends for something (the dependum) to be provided
 - DependerElement: an intentional element within the depender's boundary where the dependency starts from, which explains why the dependency exists
 - Dependum: an intentional element that is the object of the dependency

- Represent social relationships
 - Depender: an actor that depends for something (the dependum) to be provided
 - DependerElement: an intentional element within the depender's boundary where the dependency starts from, which explains why the dependency exists
 - Dependum: an intentional element that is the object of the dependency
 - Dependee: the actor that should provide the dependum

29

- Represent social relationships
 - Depender: an actor that depends for something (the dependum) to be provided
 - DependerElement: an intentional element within the depender's boundary where the dependency starts from, which explains why the dependency exists
 - Dependum: an intentional element that is the object of the dependency
 - Dependee: the actor that should provide the dependum
 - DependeeElement: the intentional element that explains how the dependee intends to provide the dependum

Extended example in I-star

31 January 2024 DTU Compute Module 0: Welcome!

Reasoning

- Goals and Tasks can be characterized with label indicating to which extent they are achieved:
 - Denied
 - Partially denied
 - Partially satisfied
 - Satisfied
- By doing so, it is possible to identify their effect on the model

32

• For goal/task decomposition and inclusive goal realization, the minimum value of all the child nodes is taken.

33

• For goal/task decomposition and inclusive goal realization, the minimum value of all the child nodes is taken.

• For goal/task specialization and exclusive goal realization, the maximum value of all the child nodes is taken.

OR-Decomposition

• For goal/task specialization and exclusive goal realization, the maximum value of all the child nodes is taken.

- For contribution links, the value of the goal is propagated to the quality depending on the link type:
 - Make links propagate the value as-is
 - Help links propagate the value as partial
 - Hurt links invert and propagate the value as partial

37

Break links invert the value

- For contribution links, the value of the goal is propagated to the quality depending on the link type:
 - Make links propagate the value as-is
 - Help links propagate the value as partial
 - Hurt links invert and propagate the value as partial
 - Break links invert the value

Source	Destination for each Link Type							
	Depends	Makes	Helps	Hurts	Breaks			
~	✓	√	√.	X.	×			
√.	✓.	√.	√.	X.	X,			
×	×,	X	X	√.	√.			
X	X	X	X	√.	√.			

38

- When different contribution links affect the same quality, we may also get:
 - Unknown: it is unclear if the quality will be satisfied or not
 - Conflict: contributions contradict each other

digital cop

- When different contribution links affect the same quality, we may also get:
 - Unknown: it is unclear if the quality will be satisfied or not
 - Conflict: contributions contradict each other

31 January 2024 DTU Compute Module 0: Welcome!

received

Forward analysis – Example

Forward analysis – Results

Study material

- Books and articles:
 - Dalpiaz et al. iStar 2.0 Language Guide
 - Available at: https://sites.google.com/site/istarlanguage/home
 - Lankhorst et al. Enterprise Architectures at Work (4th Edition)
 - Available at: https://link.springer.com/book/10.1007/978-3-662-53933-0
 - Chapter 5.6
- Modeling tools:
 - piStar: http://www.cin.ufpe.br/~jhcp/pistar/
 - (alternatively) Leaf: https://www.cs.toronto.edu/~amgrubb/leaf-2.0/Tool.html
 - Archi: https://www.archimatetool.com/
 - (alternatively) SAP Signavio: https://academic.signavio.com/p/login

Exercises

Please answer all exercises to demonstrate your skills.

Solutions will be available at 11:45

Exercise 1 – Speedy

Speedy is an international delivery company that needs to refocus on which markets it should operate. Indeed, Speedy lacks a clear understanding on which markets are the most profitable. Thus, to address this issue, Speedy's top management aims at improving their governance. To achieve this, the top management requires sales reports containing timely information. Thus, the top management decided to build a new reporting system to automatically produce such reports. After inspecting the sales reports, the top management may also need to query the existing ERP system to get detailed sales and HR information.

Prepare an ArchiMate and an I-star model that captures the formalizes Speedy's new architecture.

• Can you model all the elements and relations described in this exercise with both languages? If not, which elements can be captured only in ArchiMate? Which ones in I-star?

Exercise 2 – IC

IC is an insurance company which wants to offer a new insurance service for small assets (<2000\$) managed completely online for reliable customers.

To achieve this, a customer who wants his assets to be insured has to provide its credentials and photo of the asset and its details (serial number, purchase date) to IC. To ensure that the customer is reliable and the asset inexpensive, IC will then check the customers credentials and past history and estimate the asset's price.

Prepare an ArchiMate and an I-star model that captures the formalizes IC's requirements.

 Can you model all the elements and relations described in this exercise with both languages? If not, which elements can be captured only in ArchiMate? Which ones in I-star?

Exercise 3 – University travel reimbursement

- This I-star model represents a university travel reimbursement system
- Prepare an ArchiMate model representing the same system
 - Can you model all the elements and relations in this I-star model?
 - If not, which elements and relations cannot be modeled?

Model from: F. Dalpiaz, X. Franch, and J. Horko – iStar 2.0 Language Guide https://arxiv.org/abs/1605.07767