Discovering the underlying topological space of extracted features

Hamid Karim¹ Harrison LeFrois²

¹Department of Computer Science and Engineering Michigan State University

> ²Department of Mathematics Michigan State University

> > April 2017

Table of Contents

Problem Description

2 Tools and Inspiration

What does our data look like?

What does our data look like?

• Data is maybe from a manifold?

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption
- Question 1: What if our data isn't from a manifold? Could the features be parametrized by a manifold?

What does our data look like?

- Data is maybe from a manifold?
- Manifold learning makes this assumption
- Question 1: What if our data isn't from a manifold? Could the features be parametrized by a manifold?
- Question 2: Neural networks often become a black box. What is happening inside?

Source: √in-bottle

Why do we care?

Why do we care?

• Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)

Why do we care?

- Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)
- Can assign coordinates on the manifold rather than in \mathbb{R}^n

Why do we care?

- Manifolds have nice mathematical structure (locally Euclidean, lots of structure, etc)
- ullet Can assign coordinates on the manifold rather than in \mathbb{R}^n
- This might help with prediction!

Tools

Topology and Machine Learning

- Persistent homology: used to deduce topological structure from data points. Comes from Topological Data Analysis (TDA)
- Convolutional Neural Network (CNN): Great for feature extraction from images

Quick Topology Intro

Concerned with properties that don't change under continuous deformations

- Like stretching, shrinking, and bending
- But NOT cutting, gluing, etc.

Example: Circle = Square = Triangle

Karimi, LeFrois (MSU)

Underlying Space

April 2017

7 / 19

Quick Topology Intro

Homology is a sequence of groups (an algebraic structure) that keeps track of "holes" and their higher dimensional analogues. So if X is a topological space, then:

- $H_0(X)$ counts the number of connected pieces
- $H_1(X)$ counts the number of loops
- $H_2(X)$ counts the number of "voids" (like the inside of a beach ball)

Inspiration

Persistent homology of rotations of everyday objects

Figure: Rotation of rubber duck

Inspiration

Our Data

Needed thousands of photos to train a neural network - so we used the CASIA-Webface dataset. It is a public dataset consisting of of 494,414 images [2].

Convolutional neural network

Architecture

layer	size-in	size-out	kernel	param
conv1	$220\times220\times3$	$110 \times 110 \times 64$	$7 \times 7 \times 3, 2$	9K
pool1	$110 \times 110 \times 64$	$55 \times 55 \times 64$	$3 \times 3 \times 64, 2$	0
rnorm1	$55 \times 55 \times 64$	$55 \times 55 \times 64$		0
conv2a	$55 \times 55 \times 64$	$55 \times 55 \times 64$	$1 \times 1 \times 64, 1$	4K
conv2	$55 \times 55 \times 64$	$55 \times 55 \times 192$	$3\times3\times64,1$	111K
rnorm2	$55 \times 55 \times 192$	$55 \times 55 \times 192$		0
pool2	$55 \times 55 \times 192$	$28 \times 28 \times 192$	$3\times3\times192, 2$	0
conv3a	$28 \times 28 \times 192$	$28 \times 28 \times 192$	$1 \times 1 \times 192, 1$	37K
conv3	$28 \times 28 \times 192$	$28 \times 28 \times 384$	$3\times3\times192,1$	664K
pool3	$28 \times 28 \times 384$	$14 \times 14 \times 384$	$3 \times 3 \times 384, 2$	0
conv4a	$14 \times 14 \times 384$	$14 \times 14 \times 384$	$1 \times 1 \times 384, 1$	148K
conv4	$14 \times 14 \times 384$	$14 \times 14 \times 256$	$3 \times 3 \times 384, 1$	885K
conv5a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K
conv5	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K
conv6a	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$1 \times 1 \times 256, 1$	66K
conv6	$14 \times 14 \times 256$	$14 \times 14 \times 256$	$3 \times 3 \times 256, 1$	590K
pool4	$14 \times 14 \times 256$	$7 \times 7 \times 256$	$3 \times 3 \times 256, 2$	0
concat	$7 \times 7 \times 256$	$7 \times 7 \times 256$		0
fc1	$7 \times 7 \times 256$	$1\times32\times128$	maxout p=2	103M
fc2	$1\times32\times128$	$1\times32\times128$	maxout p=2	34M
fc7128	$1\times32\times128$	$1\times1\times128$		524K
L2	$1\times1\times128$	$1\times1\times128$		0
total				140M

Shape of Data

Helena Bonham Carter - 254 images - Original features on left (pixels), 128 features on right (embedding from CNN)

New loss function

 We are basically interested in function f which embeds our data X in d-dimensional Euclidean space.

 $\mathcal{C}^i \leftarrow \mathsf{Data}$ with same labels as i-th instance $\mathcal{C}^i \leftarrow \mathsf{centroid}$ of \mathcal{C}^i in embedded space

[1]Previous,
$$L_{i,j,k} = \lambda d(f^{i}, f^{j}) + (1 - \lambda)[1 + d(f^{i}, f^{j}) - d(f^{i}, f^{j})]_{+}$$

Current, $L_{i,j,k} = d(f^{i}, f^{j}) + [1 + d(f^{i}, f^{j}) - d(f^{i}, f^{k})]_{+}$
 $+ d(f^{i}, C^{i}) + d(f^{j}, C^{i}) + d(f^{k}, C^{k})$
 $+ [1 - d(C^{i}, C^{k})]_{+}$
such that, $C^{i} = \frac{1}{|C^{i}|} \sum_{f^{s}} f^{s}$ centroid in embedded space

Karimi, LeFrois (MSU)

Figure: Graphical representation of loss function in the embedded space

Results on a toy data

Conclusions and Future Work

Conclusions thus far:

- From homology perspective, data appears to be connected with no loops
- Maybe other structure like a dendrite? Clusters?

Future work:

- Apply more tools from TDA (mapper algorithm check for dendrite structures)
- Other standard datasets (MNIST, natural images, spoken language)
 with appropriate NN architectures (CNN, RNN, etc)
- Scale space instead of pixel space for images

Bibliography

Recognition. 2015, pp. 815–823.

Dong Yi et al. "Learning Face Representation from Scratch". In:

CoRR abs/1411.7923 (2014). URL: http://arxiv.org/abs/1411.7923.

4 D > 4 A > 4 B > 4 B > B 9 9 0