Pb Free Plating Product

P-CHANNEL ENHANCEMENT MODE
POWER MOSFET

- **▼** Simple Drive Requirement
- **▼** Low On-resistance
- **▼** Fast Switching Characteristic

BV _{DSS}	-30V		
R _{DS(ON)}	14m Ω		
I _D	-10.7A		

Description

The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The SO-8 package is universally preferred for all commercial-industrial surface mount applications and suited for low voltage applications such as DC/DC converters.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	-30	V
V_{GS}	Gate-Source Voltage	± 25	V
I _D @T _A =25°C	Continuous Drain Current ³	-10.7	Α
I _D @T _A =70°C	Continuous Drain Current ³	-8.6	Α
I _{DM}	Pulsed Drain Current ¹	-50	Α
P _D @T _A =25°C	Total Power Dissipation	2.5	W
	Linear Derating Factor	0.02	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$
T _J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$

Thermal Data

Symbol	Parameter		Value	Unit	
Rthj-a	Thermal Resistance Junction-ambient ³	Max.	50	°C/W	

AP4407GM

Electrical Characteristics@T_j=25°C(unless otherwise specified)

	,	-		•		
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =-250uA	-30	-	-	V
$\Delta BV_{DSS}/\Delta T_{j}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =-1mA	-	-0.015	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =-10V, I _D =-10A	-	-	14	$m\Omega$
		V_{GS} =-4.5V, I_D =-5A	-	-	20	$\mathbf{m}\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=-250uA$	-1	-	-3	V
g _{fs}	Forward Transconductance	V _{DS} =-10V, I _D =-10A	-	13	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V_{DS} =-30V, V_{GS} =0V	-	-	-1	uA
	Drain-Source Leakage Current (T _j =70°C)	V_{DS} =-24V, V_{GS} =0V	-	-	-25	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 25V$	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =-10.7A	-	29	46	nC
Q_{gs}	Gate-Source Charge	V _{DS} =-24V	-	6	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =-4.5V	-	14	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =-15V	-	15	-	ns
t _r	Rise Time	I _D =-1A	-	12	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega, V_{GS}=-10V$	-	100	-	ns
t _f	Fall Time	$R_D=15\Omega$	-	70	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	2600	4100	pF
C _{oss}	Output Capacitance	V _{DS} =-25V	-	500	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	370	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V_{SD}	Forward On Voltage ²	I _S =-10.7A, V _{GS} =0V	1	ı	-1.2	V
t _{rr}	Reverse Recovery Time	I _S =-10.7A, V _{GS} =0V,	1	31	-	ns
Q_{rr}	Reverse Recovery Charge	dl/dt=100A/µs	-	25	-	nC

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse width <300us, duty cycle <2%.
- 3.Surface mounted on 1 in 2 copper pad of FR4 board ; 125 $^{\circ}$ C/W when mounted on min. copper pad.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s. Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

Fig 11. Switching Time Waveform

Fig 8. Typical Capacitance Characteristics

Fig 10. Effective Transient Thermal Impedance

Fig 12. Gate Charge Waveform