Social-xLSTM with Internal Gate Injection

A Comprehensive Technical Specification for Grid–Based Social Pooling Integration

Social-xLSTM Research Team

July 14, 2025

Abstract

本文件提供 Social-xLSTM with Internal Gate Injection (IGI) 的完整技術規格。此方法直接將 Grid—based Social Pooling 向量 S_t^i 注入到 sLSTM 與 mLSTM 的所有門控計算與鍵值投影中,實現在記憶更新階段即時考慮鄰居影響的深度整合。與 post—fusion 方法相比,IGI 方法能在更細粒度上調節記憶寫入、遺忘與輸出過程,特別適用於需要即時空間交互的時空建模任務。本文詳細分析了數學公式、計算複雜度、架構設計與實現策略,為Social-xLSTM 的高性能實現提供了理論基礎和技術指導。

關鍵詞: Extended LSTM, Social Pooling, Gate Injection, 時空建模, 深度學習

Contents

1	\mathbf{Intr}	roduction	3			
	1.1	Background and Motivation	3			
	1.2		3			
	1.3		3			
${f 2}$	Mathematical Foundations 4					
	2.1	Notation and Preliminaries	4			
	2.2	Enhanced Grid-based Social Pooling	4			
		_	4			
			4			
		the depth of the same and the same	4			
3	\mathbf{sLS}	3	5			
	3.1	*	5			
	3.2	Exponential Gating and Memory Update	5			
	3.3	Social Influence Analysis	5			
4	mL	STM with Internal Gate Injection	6			
	4.1	Query, Key, Value Computation with Social Integration	6			
	4.2	• •, •,	6			
	4.3		6			
5	Cor	nputational Complexity Analysis	6			
	5.1		6			
	0	5.1.1 鄰居發現和網格構建				
			7			
	5.2	*******	7			
	٠.2		7			
		A:=:= M411	•			

		5.2.2 Social Integration 開銷	7
		5.2.3 總計	7
	5.3	mLSTM with IGI Complexity	7
		5.3.1 標準 mLSTM 操作	7
		5.3.2 Social Integration 開銷	7
		5.3.3 總計	7
	5.4	整體系統複雜度	7
	5.5	與 Post-Fusion 方法的複雜度比較	7
6	Arc	hitecture Design	8
	6.1	Hybrid Block Structure	8
	6.2	Multi-Layer Architecture	8
	6.3	Layer Configuration Strategy	8
7	Imn	plementation Strategy	9
•	7.1	Efficient Social Pooling Implementation	9
	1.1	7.1.1 批次處理優化	9
	7.2	Memory-Efficient IGI Implementation	9
	1.4	7.2.1 門控計算優化	9
	7.3		10
	1.0		$10 \\ 10$
			$10 \\ 10$
	7.4		11
	1.4	Try per parameter recommendations	11
8	The	eoretical Analysis	11
	8.1	Convergence Properties	11
		8.1.1 梯度流分析	11
		8.1.2 穩定性條件	11
	8.2	Expressive Power Analysis	11
		8.2.1 表達能力理論	11
	8.3	Generalization Bounds	12
9	Det	ailed Comparison with Post–Fusion	12
J	9.1		12
	9.2		$\frac{12}{12}$
	5.2		$\frac{12}{12}$
			$\frac{12}{12}$
	9.3		13
	5.0		13
			13
		and the same and t	13
10		•	13
	10.1	1 0 1	13
			13
			13
	10.2		13
			13
		10.2.2 動態圖剪枝	14

11	Futi	ure Extensions and Research Directions	14
	11.1	Multi-Scale Social Modeling	14
	11.2	Adaptive Gate Injection	14
	11.3	Causal Social Modeling	14
12	Con	clusion	14
	12.1	Key Technical Contributions	15
	12.2	Implementation Readiness	15
	12.3	Research Impact	15

1 Introduction

1.1 Background and Motivation

Extended Long Short-Term Memory (xLSTM) 架構通過引入指數門控機制和矩陣記憶體,顯著提升了傳統 LSTM 的記憶容量和長期依賴建模能力。同時, Social Pooling 機制在多智能體軌跡預測中展現了優秀的空間交互建模能力。然而,如何將這兩種先進技術有效結合,仍然面臨著重要的技術挑戰。

傳統的融合方法通常採用 post-fusion 策略,即在個體特徵處理完成後再進行空間聚合。這種方法雖然實現簡單,但存在以下限制:

- 1. 表達能力限制: 社交信息無法影響記憶更新過程, 僅能在最終階段發揮作用
- 2. 時空解耦: 時間和空間特徵處理相互獨立, 無法實現真正的時空耦合建模
- 3. 響應延遲: 鄰居狀態變化無法即時反映在記憶演化中

1.2 Internal Gate Injection 方法概述

為了克服上述限制,我們提出了 Internal Gate Injection (IGI) 方法。該方法的核心思想是將 Social Pooling 得到的空間特徵直接注入到 xLSTM 的門控計算中,實現以下技術創新:

- 深度整合: 社交信息參與每一步記憶更新過程
- 細粒度控制: 精確調節寫入、遺忘、輸出門的社交影響
- 即時響應: 鄰居變化立即反映在記憶狀態中
- 時空耦合: 在記憶層面實現時間和空間的深度融合

1.3 Technical Contributions

本技術規格的主要貢獻包括:

- 1. 提供了 IGI 方法的完整數學公式推導
- 2. 詳細分析了計算複雜度和性能特徵
- 3. 設計了完整的架構實現方案
- 4. 提供了詳細的實現指導和優化策略

Mathematical Foundations $\mathbf{2}$

Notation and Preliminaries

對於包含 N 個代理的系統, 在時間步 t, 定義以下符號:

$$x_t^i \in \mathbb{R}^{d_{\text{in}}}$$
 代理 i 的輸入特徵向量 (1)

$$h_{t-1}^i \in \mathbb{R}^{d_h}$$
 代理 i 在時間 $t-1$ 的隱藏狀態(僅 sLSTM) (2)

$$\mathbf{c}_i = (x_i, y_i)$$
 代理 i 的空間座標 (3)

$$\mathcal{N}_{i} = \{j : \|\mathbf{c}_{j} - \mathbf{c}_{i}\| \le R, j \ne i\}$$
 代理*i* 的鄰居集合 (4)

$$S_t^i \in \mathbb{R}^{d_s}$$
 代理 i 的 Social Pooling 向量 (5)

為簡化表示,下文省略上標 i,除非需要明確區分不同代理。

Enhanced Grid-based Social Pooling

Grid-based Social Pooling 機制通過空間網格將鄰居信息組織為結構化表示。給定半徑 R 和網 格大小 $M \times N$,構建過程如下:

2.2.1 空間網格構建

首先, 將鄰居相對位置映射到網格座標:

$$\Delta x_{ij} = x_j - x_i, \quad \Delta y_{ij} = y_j - y_i \tag{6}$$

$$m_{ij} = \left| \frac{\Delta x_{ij} + R}{2R/M} \right|, \quad m_{ij} \in [0, M - 1]$$
 (7)

$$n_{ij} = \left| \frac{\Delta y_{ij} + R}{2R/N} \right|, \quad n_{ij} \in [0, N - 1]$$
(8)

2.2.2 加權聚合機制

考慮距離權重的隱藏狀態聚合:

$$w_{ij} = \exp\left(-\frac{\|\mathbf{c}_j - \mathbf{c}_i\|}{R/3}\right) \tag{9}$$

$$H_t(m, n, :) = \sum_{j \in \mathcal{N}_t} w_{ij} \cdot \mathbf{1}_{mn} [\Delta x_{ij}, \Delta y_{ij}] \cdot h_{t-1}^j$$

$$\tag{10}$$

其中 $\mathbf{1}_{mn}[\cdot]$ 是網格指示函數:

$$\mathbf{1}_{mn}[\Delta x, \Delta y] = \begin{cases} 1 & \text{if } (m, n) = \left(\left\lfloor \frac{\Delta x + R}{2R/M} \right\rfloor, \left\lfloor \frac{\Delta y + R}{2R/N} \right\rfloor \right) \\ 0 & \text{otherwise} \end{cases}$$
 (11)

2.2.3 特徵嵌入和投影

空間網格經過兩階段處理得到最終的 Social Pooling 向量:

$$\mathbf{h}_{\text{flat}} = \text{flatten}(H_t) \in \mathbb{R}^{M \times N \times d_h} \tag{12}$$

$$S_t = \phi_{\text{soc}}(\mathbf{h}_{\text{flat}}) = \text{ReLU}(\mathbf{W}_2 \text{ReLU}(\mathbf{W}_1 \mathbf{h}_{\text{flat}} + \mathbf{b}_1) + \mathbf{b}_2)$$
(13)

其中 $\mathbf{W}_1 \in \mathbb{R}^{d_{\text{mid}} \times (M \times N \times d_h)}$, $\mathbf{W}_2 \in \mathbb{R}^{d_s \times d_{\text{mid}}}$ 是可學習參數。

3 sLSTM with Internal Gate Injection

3.1 Enhanced Gate Computation

標準 sLSTM 的門控計算擴展為包含 Social Pooling 信息:

$$\tilde{i}_t = \mathbf{W}_i^{(x)} x_t + \mathbf{R}_i h_{t-1} + \mathbf{U}_i S_t + b_i \tag{14}$$

$$\tilde{f}_t = \mathbf{W}_f^{(x)} x_t + \mathbf{R}_f h_{t-1} + \mathbf{U}_f S_t + b_f \tag{15}$$

$$\tilde{z}_t = \mathbf{W}_z^{(x)} x_t + \mathbf{R}_z h_{t-1} + \mathbf{U}_z S_t + b_z \tag{16}$$

$$\tilde{o}_t = \mathbf{W}_o^{(x)} x_t + \mathbf{R}_o h_{t-1} + \mathbf{U}_o S_t + b_o \tag{17}$$

其中:

- $\mathbf{W}^{(x)}_{\bullet} \in \mathbb{R}^{d_h \times d_{\text{in}}}$: 輸入權重矩陣
- $\mathbf{R}_{ullet} \in \mathbb{R}^{d_h \times d_h}$: 循環權重矩陣
- $\mathbf{U}_{\bullet} \in \mathbb{R}^{d_h \times d_s}$: Social Pooling 權重矩陣 (新增)
- $b_{\bullet} \in \mathbb{R}^{d_h}$: 偏置向量

3.2 Exponential Gating and Memory Update

應用 xLSTM 的指數門控機制:

$$i_t = \exp(\tilde{i}_t) \tag{18}$$

$$f_t = \sigma(\tilde{f}_t) \tag{19}$$

$$z_t = \tanh(\tilde{z}_t) \tag{20}$$

$$o_t = \sigma(\tilde{o}_t) \tag{21}$$

記憶狀態更新和輸出計算:

$$c_t = f_t \odot c_{t-1} + i_t \odot z_t \tag{22}$$

$$n_t = f_t \odot n_{t-1} + i_t \tag{23}$$

$$\tilde{h}_t = \frac{c_t}{n_t} \tag{24}$$

$$h_t = o_t \odot \tilde{h}_t \tag{25}$$

3.3 Social Influence Analysis

Social Pooling 向量 S_t 對 sLSTM 各個門控的影響可以分析如下:

- 輸入門 i_t : 控制新信息(包括社交信息)的寫入强度
- 遺忘門 ft: 決定是否保留或遺忘與社交背景相關的記憶
- 候選值 zt: 直接影響寫入記憶的内容, 實現社交調節
- 輸出門 o_t : 控制社交感知記憶的輸出程度

這種設計實現了社交信息對記憶寫入、遺忘、輸出全過程的細粒度調節。

4 mLSTM with Internal Gate Injection

4.1 Query, Key, Value Computation with Social Integration

mLSTM 的查詢、鍵、值計算融入 Social Pooling 信息:

$$q_t = \mathbf{W}_a^{(x)} x_t + \mathbf{U}_q S_t + b_q \tag{26}$$

$$k_t = \frac{1}{\sqrt{d_k}} \left(\mathbf{W}_k^{(x)} x_t + \mathbf{U}_k S_t \right) + b_k \tag{27}$$

$$v_t = \mathbf{W}_v^{(x)} x_t + \mathbf{U}_v S_t + b_v \tag{28}$$

其中 d_k 是鍵向量的維度,縮放因子 $1/\sqrt{d_k}$ 用於穩定訓練過程。

4.2 Social-Aware Gate Mechanisms

mLSTM 的門控計算同樣整合社交信息:

$$i_t = \exp(\mathbf{w}_i^{\top} x_t + \mathbf{u}_i^{\top} S_t + b_i) \tag{29}$$

$$f_t = \sigma(\mathbf{w}_f^{\top} x_t + \mathbf{u}_f^{\top} S_t + b_f)$$
(30)

$$o_t = \sigma(\mathbf{w}_o^{\top} x_t + \mathbf{u}_o^{\top} S_t + b_o) \tag{31}$$

注意 mLSTM 中的門控權重 wo, uo 是向量而非矩陣, 這是 mLSTM 架構的特點。

4.3 Matrix Memory Update and Retrieval

矩陣記憶體的更新和檢索過程:

$$\mathbf{C}_t = f_t \mathbf{C}_{t-1} + i_t v_t k_t^{\top} \tag{32}$$

$$\mathbf{n}_t = f_t \mathbf{n}_{t-1} + i_t k_t \tag{33}$$

$$h_t = o_t \odot \frac{\mathbf{C}_t q_t}{\max\{|\mathbf{n}_t^\top q_t|, 1\}}$$
(34)

其中:

- $\mathbf{C}_t \in \mathbb{R}^{d_h \times d_h}$: 矩陣記憶體狀態
- $\mathbf{n}_t \in \mathbb{R}^{d_h}$: 正規化向量
- 分母中的 max 操作防止數值不穩定

5 Computational Complexity Analysis

5.1 Social Pooling Complexity

對於每個代理 i, Social Pooling 的計算複雜度包括:

5.1.1 鄰居發現和網格構建

$$\mathcal{O}_{\text{neighbor}} = \mathcal{O}(|\mathcal{N}_i|) \approx \mathcal{O}(\pi R^2 \rho)$$
 (35)

$$\mathcal{O}_{\text{grid}} = \mathcal{O}(|\mathcal{N}_i| \cdot d_h) \approx \mathcal{O}(\pi R^2 \rho \cdot d_h)$$
 (36)

其中 ρ 是代理密度。

5.1.2 特徵嵌入

$$\mathcal{O}_{\text{embedding}} = \mathcal{O}(M \cdot N \cdot d_h \cdot d_{\text{mid}} + d_{\text{mid}} \cdot d_s)$$
(37)

5.2 sLSTM with IGI Complexity

每個時間步的 sLSTM 計算複雜度:

5.2.1 標準 sLSTM 操作

$$\mathcal{O}_{\text{sLSTM-std}} = \mathcal{O}(d_{\text{in}} \cdot d_h + d_h^2) \tag{38}$$

5.2.2 Social Integration 開銷

$$\mathcal{O}_{\text{sLSTM-social}} = \mathcal{O}(4 \cdot d_s \cdot d_h) \tag{39}$$

5.2.3 總計

$$\mathcal{O}_{\text{sLSTM-IGI}} = \mathcal{O}(d_{\text{in}} \cdot d_h + d_h^2 + d_s \cdot d_h)$$
(40)

5.3 mLSTM with IGI Complexity

mLSTM 的矩陣運算主導了計算複雜度:

5.3.1 標準 mLSTM 操作

$$\mathcal{O}_{\text{mLSTM-std}} = \mathcal{O}(d_{\text{in}} \cdot d_h + d_h^3) \tag{41}$$

5.3.2 Social Integration 開銷

$$\mathcal{O}_{\text{mLSTM-social}} = \mathcal{O}(3 \cdot d_s \cdot d_h + 3 \cdot d_s) \tag{42}$$

5.3.3 總計

$$\mathcal{O}_{\text{mLSTM-IGI}} = \mathcal{O}(d_{\text{in}} \cdot d_h + d_h^3 + d_s \cdot d_h) \tag{43}$$

5.4 整體系統複雜度

對於包含 N 個代理、L 層、T 個時間步的系統:

$$\mathcal{O}_{\text{total}} = \mathcal{O}(N \cdot T \cdot L \cdot (\pi R^2 \rho \cdot d_h + d_h^3 + d_s \cdot d_h))$$
(44)

5.5 與 Post-Fusion 方法的複雜度比較

操作	Post-Fusion	Internal Injection
Social Pooling	$\mathcal{O}(\mathcal{N}_i \cdot d_h)$	$\mathcal{O}(\mathcal{N}_i \cdot d_h)$
xLSTM 計算	$\mathcal{O}(d_h^3)$	$\mathcal{O}(d_h^3 + d_s \cdot d_h)$
融合計算	$\mathcal{O}(d_h^2)$	$\mathcal{O}(0)$
總計	$\mathcal{O}(\mathcal{N}_i \cdot d_h + d_h^3 + d_h^2)$	$\mathcal{O}(\mathcal{N}_i \cdot d_h + d_h^3 + d_s \cdot d_h)$

Table 1: 複雜度比較: Post-Fusion vs Internal Injection

當 $d_s \ll d_h$ 時,Internal Injection 方法的額外開銷較小,且省去了融合層的計算。

6 Architecture Design

6.1 Hybrid Block Structure

Social-xLSTM with IGI 採用混合區塊結構,結合 sLSTM 和 mLSTM 的優勢:

Algorithm 1 Social-xLSTM IGI Block

```
Require: Input sequence \{x_t\}, coordinates \{\mathbf{c}_i\}, previous hidden states \{h_{t-1}^i\}
Ensure: Updated hidden states \{h_t^i\}
 1: // Phase 1: Social Pooling Computation
 2: for each agent i do
      Find neighbors \mathcal{N}_i = \{j : \|\mathbf{c}_j - \mathbf{c}_i\| \le R\}
       Compute grid representation H_t^i using Eq. 10
      Extract social features S_t^i = \phi_{\text{soc}}(\text{flatten}(H_t^i))
 6: end for
 7: // Phase 2: sLSTM Processing with IGI
 8: for each agent i do
      Compute gates using Eqs. 14–17
       Apply activations using Eqs. 18–21
10:
       Update cell state using Eqs. 22–25
11:
       h_{\text{sLSTM}}^i \leftarrow h_t^i
12:
13: end for
14: // Phase 3: mLSTM Processing with IGI
15: for each agent i do
      Compute Q, K, V using Eqs. 26–28
16:
       Compute gates using Eqs. 29-31
17:
       Update matrix memory using Eqs. 32–34
      h_{\text{mLSTM}}^i \leftarrow h_t^i
20: end for
21: // Phase 4: Residual Connection and Normalization
22: for each agent i do
      h_t^i \leftarrow \text{LayerNorm}(x_t^i + h_{\text{mLSTM}}^i)
24: end for
25: return \{h_t^i\}
```

6.2 Multi-Layer Architecture

完整的 Social-xLSTM IGI 模型包含 L 個堆疊區塊:

$$\mathbf{h}^{(0)} = \text{InputEmbedding}(x_t) \tag{45}$$

$$\mathbf{h}^{(\ell)} = \text{SocialxLSTMBlock}_{\ell}(\mathbf{h}^{(\ell-1)}, S_t), \quad \ell = 1, \dots, L$$
(46)

$$\mathbf{y}_t = \text{OutputLayer}(\mathbf{h}^{(L)}) \tag{47}$$

6.3 Layer Configuration Strategy

根據實驗經驗,建議的層配置策略:

- 淺層 (1-2 層): 使用 sLSTM 進行基礎特徵學習
- 中層 (3-4 層): 交替使用 sLSTM 和 mLSTM
- 深層 (5-6 層): 使用 mLSTM 進行高階抽象

7 Implementation Strategy

7.1 Efficient Social Pooling Implementation

7.1.1 批次處理優化

Listing 1: 高效的 Social Pooling 實現

```
def efficient_social_pooling(hidden_states, coordinates, radius, grid_size)
    ....
    高效的 Social Pooling 實現
   Args:
       hidden_states: [N, d_h] - 所有代理的隱藏狀態
       coordinates: [N, 2] - 所有代理的座標
       radius: float - 空間半徑
       grid_size: (M, N) - 網格大小
   Returns:
       social_features: [N, d_s] - Social Pooling 特徵
   N, d_h = hidden_states.shape
   M, N_grid = grid_size
   # 向量化距離計算
   distances = torch.cdist(coordinates, coordinates)
   neighbor_mask = distances <= radius</pre>
   # 向量化網格映射
   relative_coords = coordinates.unsqueeze(1) - coordinates.unsqueeze(0)
   grid_coords = ((relative_coords + radius) / (2 * radius) *
                  torch.tensor([M, N_grid])).long()
   # 構建 Social Grid
   social_grids = []
   for i in range(N):
       grid = torch.zeros(M, N_grid, d_h)
       neighbors = neighbor_mask[i].nonzero().squeeze()
       if neighbors.numel() > 0:
           neighbor_coords = grid_coords[i, neighbors]
           neighbor_states = hidden_states[neighbors]
           # 使用 scatter_add 進行高效聚合
           grid.scatter_add_(0, neighbor_coords[:, 0:1].expand(-1, d_h).
               unsqueeze(1),
                           neighbor_states.unsqueeze(1))
       social_grids.append(grid.flatten())
    social_grids = torch.stack(social_grids)
   # 特徵嵌入
    social_features = social_embedding_net(social_grids)
    return social_features
```

7.2 Memory-Efficient IGI Implementation

7.2.1 門控計算優化

Listing 2: SocialInjectionsLSTM 實現

```
class SocialInjectionsLSTM(nn.Module):
   def __init__(self, input_dim, hidden_dim, social_dim):
       super().__init__()
       self.input_dim = input_dim
       self.hidden_dim = hidden_dim
       self.social_dim = social_dim
       # 合併輸入、循環和社交權重以減少計算
       self.input_weights = nn.Linear(input_dim, 4 * hidden_dim)
       self.recurrent_weights = nn.Linear(hidden_dim, 4 * hidden_dim, bias
       self.social_weights = nn.Linear(social_dim, 4 * hidden_dim, bias=
           False)
   def forward(self, x, h_prev, social_features):
       # 批次計算所有門控
       gates_input = self.input_weights(x)
       gates_recurrent = self.recurrent_weights(h_prev)
       gates_social = self.social_weights(social_features)
       gates = gates_input + gates_recurrent + gates_social
       # 分離各個門控
       i_tilde, f_tilde, z_tilde, o_tilde = gates.chunk(4, dim=-1)
       # 應用激活函數
       i = torch.exp(i_tilde)
       f = torch.sigmoid(f_tilde)
       z = torch.tanh(z_tilde)
       o = torch.sigmoid(o_tilde)
       return i, f, z, o
```

7.3 Training Strategies

7.3.1 梯度穩定化技術

1. 梯度裁剪: 限制梯度範數在合理範圍内

```
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)
```

2. 學習率調度: 使用 Cosine Annealing 或 ReduceLROnPlateau

```
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max
=100)
```

3. 權重初始化: Xavier 或 He 初始化, 社交權重使用較小的初始化值

```
nn.init.xavier_uniform_(self.social_weights.weight, gain=0.1)
```

7.3.2 正規化技術

1. **Dropout**: 在社交特徵上應用 dropout 2. **Layer Normalization**: 在每個區塊後使用層歸一化 3. **Weight Decay**: L2 正規化防止過擬合

7.4 Hyperparameter Recommendations

基於實驗經驗的超參數建議:

参數	建議值	説明
d_h (Hidden Dimension)	128-256	平衡表達能力和計算效率
d_s (Social Dimension)	$d_h/2$	避免社交特徵過度主導
R (Spatial Radius)	25000m	根據應用場景調整
(M, N) (Grid Size)	(8,8)	提供足夠的空間解析度
L (Number of Layers)	4-6	深度與性能的權衡
Learning Rate	0.001	使用 Adam 優化器
Batch Size	32-64	根據 GPU 記憶體調整
Dropout Rate	0.1-0.2	防止過擬合

Table 2: 推薦的超參數設置

Theoretical Analysis

8.1 Convergence Properties

8.1.1 梯度流分析

IGI 方法的梯度流特性可以通過以下分析理解: 設損失函數為 £, 則社交權重的梯度為:

$$\frac{\partial \mathcal{L}}{\partial \mathbf{U}_g} = \frac{\partial \mathcal{L}}{\partial \tilde{g}_t} \frac{\partial \tilde{g}_t}{\partial \mathbf{U}_g} = \frac{\partial \mathcal{L}}{\partial \tilde{g}_t} S_t^{\top}$$
(48)

其中 $g \in \{i, f, z, o\}$ 代表不同的門控。 由於 S_t 包含了鄰居信息,梯度能夠同時反映個體特徵和社交背景的影響,促進更穩定的收

8.1.2 穩定性條件

為確保訓練穩定性,需要滿足以下條件:

1. 社交權重範數約束:

$$\|\mathbf{U}_g\|_F \le \alpha \|\mathbf{W}_g^{(x)}\|_F, \quad \alpha \in [0.1, 0.5]$$
 (49)

2. 指數門控穩定性:

$$\tilde{i}_t \le \log(C), \quad C \in [10, 100]$$
 (50)

8.2 Expressive Power Analysis

8.2.1 表達能力理論

IGI 方法的表達能力可以通過以下定理刻畫:

定理 1 (社交增强表達能力). 設標準 xLSTM 的表達能力為 \mathcal{F}_{xLSTM} , IGI 方法的表達能力為 \mathcal{F}_{IGI} ,則:

$$\mathcal{F}_{IGI} \supseteq \mathcal{F}_{xLSTM} \cup \mathcal{F}_{Social} \tag{51}$$

其中 \mathcal{F}_{Social} 是純社交模式的函數空間。

證明大綱. 當社交權重 $\mathbf{U}_g = \mathbf{0}$ 時,IGI 退化為標準 xLSTM,故 $\mathcal{F}_{\mathrm{xLSTM}} \subseteq \mathcal{F}_{\mathrm{IGI}}$ 。當輸入權重 和循環權重適當設置時,IGI 可以學習純社交模式,故 $\mathcal{F}_{Social} \subseteq \mathcal{F}_{IGI}$ 。

8.3 Generalization Bounds

基於 PAC-Bayes 理論, IGI 方法的泛化界限為:

$$R(\hat{h}) \le \hat{R}(\hat{h}) + \sqrt{\frac{D_{KL}(P||P_0) + \log(2\sqrt{N}/\delta)}{2(N-1)}}$$
 (52)

其中: - $R(\hat{h})$ 是真實風險 - $\hat{R}(\hat{h})$ 是經驗風險 - $D_{KL}(P||P_0)$ 是參數分佈的 KL 散度 - N 是樣本數量

社交信息的引入通常能夠減小 D_{KL} 項,從而改善泛化能力。

9 Detailed Comparison with Post–Fusion

9.1 Technical Differences

方面	Post-Fusion	Internal Gate Injection
整合時機	xLSTM 處理後進行特徵融合	門控計算時直接注入
社交影響深度	僅影響最終預測層	影響整個記憶更新過程
計算圖結構	順序處理: 個體 → 社交 → 融	並行處理: 個體 + 社交同步
	合	
参數效率	需要額外融合層參數	直接擴展現有權重矩陣
梯度傳播	社交梯度需經過融合層	社交梯度直達門控
實現複雜度	模組化,易於調試	需要修改 xLSTM 内部結構

Table 3: Post-Fusion vs Internal Gate Injection 技術差異

9.2 Performance Characteristics

9.2.1 記憶動力學比較

設 $\mathbf{M}_{\mathrm{PF}}(t)$ 和 $\mathbf{M}_{\mathrm{IGI}}(t)$ 分別表示兩種方法在時間 t 的記憶狀態,則:

Post-Fusion:

$$\mathbf{M}_{PF}(t) = f_{\text{xLSTM}}(\mathbf{M}_{PF}(t-1), x_t)$$
(53)

$$\hat{y}_t = g_{\text{fusion}}(\mathbf{M}_{\text{PF}}(t), S_t) \tag{54}$$

Internal Gate Injection:

$$\mathbf{M}_{\mathrm{IGI}}(t) = f_{\mathrm{xLSTM-IGI}}(\mathbf{M}_{\mathrm{IGI}}(t-1), x_t, S_t)$$
(55)

$$\hat{y}_t = g_{\text{output}}(\mathbf{M}_{\text{IGI}}(t)) \tag{56}$$

IGI 方法中,社交信息 S_t 直接參與記憶演化,實現更深層的時空耦合。

9.2.2 響應速度分析

對於鄰居狀態的突變 $\Delta h_{\text{neighbor}}$:

- Post-Fusion: 響應延遲 1 個時間步 - IGI: 即時響應,響應强度與門控值相關這使得 IGI 方法特別適合需要快速空間適應的場景。

9.3 Advantages and Limitations

9.3.1 **IGI** 方法的優勢

1. 深度時空耦合: 社交信息在記憶層面與時間信息深度融合 2. 細粒度控制: 可以精確調節不同門控的社交敏感度 3. 即時響應: 鄰居變化立即反映在記憶更新中 4. 理論先進性: 代表了更先進的多智能體建模範式

9.3.2 **IGI** 方法的限制

1. 實現複雜性: 需要深度修改 xLSTM 内部結構 2. 調參挑戰: 更多的超參數需要精心調節 3. 穩定性要求: 對權重初始化和學習率更敏感 4. 計算開銷: 額外的社交權重計算

9.3.3 適用場景建議

- 選擇 IGI: 高性能要求、即時響應需求、研究探索
- 選擇 Post-Fusion: 快速原型、穩定性優先、團隊協作開發

10 Advanced Implementation Considerations

10.1 Parallel Computing Optimization

10.1.1 GPU 加速策略

1. **CUDA** 内核優化: 針對 Social Pooling 的自定義 CUDA 内核 2. 記憶體合併: 最小化 GPU 記憶體訪問延遲 3. 混合精度訓練: 使用 FP16 減少記憶體使用和計算時間

10.1.2 分布式訓練

Listing 3: 分布式 Social Pooling 實現

10.2 Memory Optimization Techniques

10.2.1 梯度檢查點

使用梯度檢查點減少記憶體使用:

```
from torch.utils.checkpoint import checkpoint

def memory_efficient_forward(self, x, social_features):
    return checkpoint(self._forward_impl, x, social_features)
```

10.2.2 動熊圖剪枝

在推理階段動態調整鄰居範圍:

Listing 4: 自適應鄰居選擇

```
def adaptive_neighbor_selection(coordinates, max_neighbors=50):
    """
    根據密度自適應選擇鄰居數量
    """
    distances = torch.cdist(coordinates, coordinates)
    k = min(max_neighbors, len(coordinates) - 1)
    _, neighbor_indices = torch.topk(distances, k, largest=False, dim=-1)
    return neighbor_indices
```

11 Future Extensions and Research Directions

11.1 Multi-Scale Social Modeling

考慮多尺度社交建模:

$$S_t^{\text{local}} = \text{SocialPooling}(\{h_j : \|\mathbf{c}_j - \mathbf{c}_i\| \le R_1\})$$
(57)

$$S_t^{\text{global}} = \text{SocialPooling}(\{h_j : R_1 < \|\mathbf{c}_j - \mathbf{c}_i\| \le R_2\})$$
 (58)

$$S_t^{\text{multi}} = \text{Fusion}(S_t^{\text{local}}, S_t^{\text{global}})$$
 (59)

11.2 Adaptive Gate Injection

根據局部密度自適應調整注入强度:

$$\tilde{g}_t = \mathbf{W}_g^{(x)} x_t + \mathbf{R}_g h_{t-1} + \alpha_t (\rho_{\text{local}}) \mathbf{U}_g S_t + b_g$$
(60)

其中 $\alpha_t(\rho_{local})$ 是基於局部密度的自適應權重。

11.3 Causal Social Modeling

整合因果推理機制:

$$S_t^{\text{causal}} = \text{CausalMask}(S_t) \odot S_t$$
 (61)

其中 CausalMask 根據因果圖過濾社交影響。

12 Conclusion

本技術規格詳細介紹了 Social-xLSTM with Internal Gate Injection 方法的完整設計。IGI 方法 通過將社交信息直接注入到 xLSTM 的門控計算中,實現了比傳統 post-fusion 方法更深層的時空耦合建模。

12.1 Key Technical Contributions

1. 深度整合設計: 首次實現社交信息在 xLSTM 記憶層面的深度整合 2. 完整技術規格: 提供從數學推導到實現優化的完整技術方案 3. 理論分析框架: 建立了收斂性、表達能力和泛化能力的理論基礎 4. 實用實現指導: 提供了詳細的實現策略和性能優化建議

12.2 Implementation Readiness

本規格提供的技術方案具備直接實現的條件: - 完整的數學公式定義 - 詳細的算法描述 - 具體的代碼實現建議 - 全面的超參數指導

12.3 Research Impact

IGI 方法代表了多智能體時空建模的新範式,為以下研究領域提供了重要參考: - 交通流量預測 - 人群動力學建模 - 多機器人系統協調 - 社交網絡分析

通過本技術規格的詳細描述,研究者和工程師可以深入理解 IGI 方法的技術細節,並根據具體應用需求進行適當的實現和優化。

Acknowledgments

感謝所有為 Social-xLSTM 技術發展做出貢獻的研究團隊成員。本技術規格在原有簡潔版本基礎上進行了全面擴展,旨在為學術研究和工程實現提供完整的技術指導。