transfer film comprises polysilsesquioxone.

What is claimed:

2

1. 1 A method for forming a head suspension assembly, comprising: forming a sacrificial layer in or on a portion of a substrate; 2 forming a transfer film across the substrate; 3 4 patterning a photoresist layer on top of the transfer film; transferring the image of the patterned photoresist layer through the transfer film; 5 removing the patterned photoresist layer; and 6 removing the sacrificial layer to form a cavity extending a distance into the substrate. 7 A method as in claim 1, wherein the transfer film includes silicon. 1 2. 1 3. A method as in claim 1, wherein the transferring the image of the patterned 2 photoresist layer through the transfer film is done using reactive ion etching. 1 4. A method as in claim 1, wherein the substrate comprises silicon and the 2 sacrificial layer is formed by etching a trench in the substrate and filling the trench with a 3 metal. A method as in claim 4, wherein removing the sacrificial layer comprises 1 5. 2 etching the metal from the trench. 1 6. A method as in claim 1, further comprising forming the transfer film from a 2 polymer material. 1 7. A method as in claim 1, wherein the substrate comprises silicon and the

Docket No. SJO920000168US3 Firm No. 38.11D2

1	8. A method as in claim 1, wherein the cavity extends a width that is no greater
2	than that of the suspension arm and the cavity extends a depth that is less than the depth of
3	the suspension arm.
1	9. A method as in claim 1, further comprising forming an adhesion layer
2	between the substrate and the transfer film.
1	10. A method as in claim 3, wherein the transfer film comprises a resin, and
2	positioning a slider on the resin after the removing the sacrificial layer.
1	11. A method for forming a head suspension assembly, comprising:
2	forming a polysilsesquioxone layer over a portion of a substrate;
3	forming a photoresist layer on the polysilsesquioxone layer;
4	patterning the photoresist layer; and
5	etching the polysilsesquioxone layer using the patterned photoresist layer as a mask;
6	and
7	removing the patterned photoresist layer.
1	12. A method as in claim 11, further comprising, prior to forming the photoresis
2	layer, curing the polysilsesquioxone layer.
1	13. A method as in claim 12, further comprising, prior to forming the
2	polysilsesquioxone layer, forming a trench in the substrate and forming a sacrificial layer in
3	the trench, wherein the polysilsesquioxone layer is formed over the sacrificial layer.
1	14. A method as in claim 13, further comprising forming the sacrificial layer
2	from a motal material

- 1 15. A method as in claim 13, further comprising forming the sacrificial layer 2 from copper.
- 1 16. A method as in claim 13, further comprising removing the sacrificial material 2 from the trench after the etching the polysilsesquioxone layer.
- 1 17. A method as in claim 12, further comprising positioning a slider on the cured polysilsesquioxone layer after the removing the patterned photoresist layer.