<u>Preferred Mode of Transport – Work</u>

We need to predict whether or not an employee will use Car as a mode of transport. Also, which variables are a significant predictor behind this decision.

Problem Statement:

Employee will use Car as a mode of transport

Data in below format:

<u>Variables</u>	Description
Age	Age of employee
Gender	Gender of employee (Male or Female)
Engineer	Whether an Engineer 1- Yes 0 - No
MBA	Whether an MBA 1- Yes 0 - No
Work Exp	Number of work- exp
Salary	Salary in Numbers
Distance	Commute Distance
license	Whether Driving License 1 - Yes and 0 - No
Transport	Option for Transport - Public Transport / 2 - Wheeler / Car

Steps to be followed:

- Import Cars Input data files in R Studio
- Install required libraries for data analysis and building model
- Read and carry explanatory data analysis
- Prepare data (SMOTE)
- Study imported data using various graphs/plots
- Identify correlated variable
- Build predictive model with KNN model and Naïve Bayes Model
- Use Bagging / Boosting techniques

Exploratory Data Analysis –

Environment setup - install required libraries and built a function for doing EDA.

```
rm(list=ls())
library(xlsx)
setwd('C:/Users/ashwi/Downloads')
mydata=read.csv("Cars_edited.csv")
```

Running below commands in R to perform EDA which includes

```
str(mydata)
names(mydata)
summary(mydata)
head(mydata)
glimpse(mydata)
df_status(mydata)

profiling_num(mydata)
plot_num(mydata)
describe(mydata)
```

- Glimpse This makes it possible to see every column in a data frame
- <u>Df_status</u> For each variable it returns: Quantity and percentage of zeros (q_zeros and p_zeros respectively). Same metrics for NA values (q_NA/p_na), and infinite values (q_inf/p_inf). Last two columns indicate data type and quantity of unique values. This function print and return the results.
- Freq basis of estimating population sizes, their standard error, and symmetric as well as asymmetric confidence intervall.
- <u>Profiling_num</u> Get a metric table with many indicators for all numerical variables, automatically skipping the non-numerical variables. Current metrics are: mean, std_dev: standard deviation, all the p_XX: percentile at XX number, skewness, kurtosis, iqr: inter quartile range, variation_coef: the ratio of sd/mean, range_98 is the limit for which the 98
- <u>Plot_num</u> Retrieves one plot containing all the histograms for numerical variables.
 NA values will not be displayed
- <u>Describe</u> Describes a vector or the columns in a matrix or data frame.
- <u>Summary</u> To produce result summaries of the results of various model fitting functions
- Names This function prints the header of each column.
- <u>Head</u> This function shows the first n number of rows. This helps to check if the data has been properly imported to R.

Observation noted after running above R commands for EDA

- a) data. Frame: 444 obs. of 9 variables:
- b) <u>Variable name</u>

```
"Age" "Gender" "Engineer" "MBA" "Work.Exp" "Salary" "Distance" "license" "Transport"
```

- c) Summary observation
 - Transport is a dependent variable and a factor variable
 - Other factor variables are Gender / Engineer / MBA / License

> summary(my	data)	,		'	,		'	
Age	Gender	Engineer	MBA	Work.Exp	Salary	Distance	license	Transport
Min. :18	Female:128	Min. :0.00	Min. :0.00	Min. : 0.0	Min. : 6	Min. : 3.2	Min. :0.00	2Wheeler : 83
1st Qu.:25	Male :316	1st Qu.:1.00	1st Qu.:0.00	1st Qu.: 3.0	1st Qu.:10	1st Qu.: 8.8	1st Qu.:0.00	Car : 61
Median :27		Median :1.00	Median :0.00	Median: 5.0	Median :14	Median :11.0	Median :0.00	Public Transport:300
Mean :28		Mean :0.75	Mean :0.25	Mean : 6.3	Mean :16	Mean :11.3	Mean :0.23	
3rd Qu.:30		3rd Qu.:1.00	3rd Qu.:1.00	3rd Qu.: 8.0	3rd Qu.:16	3rd Qu.:13.4	3rd Qu.:0.00	
Max. :43		Max. :1.00	Max. :1.00	Max. :24.0	Max. :57	Max. :23.4	Max. :1.00	
			NA's :1					

d) <u>DF_STATUS observation:</u>

>	df_status((mydata)						
	variable	q_zeros	p_zeros	q_na p_na	q_inf	p_inf	type	unique
1	Age	0	0.0	0 0.00	0	0	integer	25
2	Gender	0	0.0	0 0.00	0	0	factor	2
3	Engineer	109	24.6	0 0.00	0	0	integer	2
4	MBA	331	74.5	1 0.23	0	0	integer	2
5	Work.Exp	29	6.5	0 0.00	0	0	integer	24
6	Salary	0	0.0	0 0.00	0	0	numeric	122
7	Distance	0	0.0	0 0.00	0	0	numeric	137
8	license	340	76.6	0 0.00	0	0	integer	2
9	Transport	0	0.0	0 0.00	0	0	factor	3
>	C:3:							

- Numbers of zeroes is indicated by q_zeros which will be higher for factor variable.
- Q_na column indicates **null values** on column which is on MBA column and number of occurrences are 1, which needs to be treated.

e) Graph for the value distribution for each numeric variable:

- Age is left skewed graph, where commuter is more in 25 30 age range
- > Engineer are more compared to MBA
- ► Majority of people has experience in range from 2 8 years
- Majority for people do not have license

Observation from Co-relation graph:

- Salary / Work Experience / Age are highly correlated with each other
- Age and Transport are also corelated

All the correlation would be considered when building model.

As the variables are correlated removed Work-experience which removed correlation, below are the vif values without work-experience variable:

Additional Graph and its observations

Age and mode of transport:

- Mode of transport car is preferred only after age 30
- Popular mode of transport is public and common till age 30

Age and mode of transport against license:

- Left side as 0 indicates as no license and right side as 1 indicates as license
- Car is popular after age 30 and also driven by people with no license

Age and mode of transport against Engineer:

- Engineer are driving more Cars compared to MBA degree employee
- For distance more than 18 people don't prefer public transport
- Preferred transport for longer distance is 2-wheeler or car

Data-Setup for building model

Train and Test data-set:

1) Split the data in train and test in proportion = 0.7

Observations after data split

	Train Dataset	<u>Test Dataset</u>
Number of rows	312	131
Number of columns	8	8
Percentage of Car users	0.1346	0.145

SMOTE Data-set:

The parameters perc.over and perc.under control the amount of over-sampling of the minority class and under-sampling of the majority classes, respectively

perc.over: means that 1 minority class will be added for every value of perc.over

perc.under: taking out of the majority class

Before SMOTE train dataset has 42 minority variables in total on 312 rows

In order to have equal distribution (126/126)

perc.over 200 : 2*42+42

perc.over 150: 144 records has to be removed hence used 150

test\$CarUsage<-as.factor(test\$CarUsage)
train\$CarUsage<-as.factor(train\$CarUsage)
smote_train <- SMOTE(CarUsage ~ ., train , perc.over = 200, k = 5, perc.under = 150)
table(smote_train\$CarUsage)
smote_features_train<-as.matrix(smote_train[,1:7])
smote_label_train<-as.matrix(smote_train\$CarUsage)

Model Building

a) Logistic-regression:

Used STEP function to fist understand important variable and remove the other.

- Age / Distance / license / MBA are important variable in logistic model
- AIC score of model is 75.98 which will be used to relative quality of statistical model
- The model having least AIC Score would be the most preferred and optimized one

```
Call:
glm(formula = smote_train$CarUsage ~ . . Engineer - Salary -
Gender, family = binomial(link = "logit"), data = smote_train)
Deviance Residuals:
Min 1Q Median 3Q Max
-3.0364 -0.0929 -0.0001 0.0220 1.9401
Coefficients:
| Coefficients: | Estimate Std. Error z value Pr(>|z|) | (Intercept) -37.827 | 6.794 | -5.57 | 2.6e-08 *** | Age | 1.126 | 0.209 | 5.38 | 7.6e-08 *** | MBA | -1.408 | 0.834 | -1.69 | 0.091 | 0.91 | 0.5tance | 0.259 | 0.130 | 1.99 | 0.704 | 1.6ense | 0.993 | 0.791 | 1.26 | 0.209 |
Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '.' 0.1 ', 1
 (Dispersion parameter for binomial family taken to be 1)
Null deviance: 349.346 on 251 degrees of freedom
Residual deviance: 65.985 on 247 degrees of freedom
pR2(m1)
                   llhNull G2 McFadden r2ML r2CU
   llh
    -32.99
                  -174.67 283.36 0.81 0.68 0.90
Model 1: smote_train$CarUsage ~ (Age + Gender + Engineer + MBA + Salary +
  Distance + license) - Engineer - Salary - Gender
Model 2: smote_train$CarUsage ~ 1
 #Df LogLik Df Chisq Pr(>Chisq)
1 5 -33
                 1 -175 -4 283 <2e-16 ***
       2
```

Parameters for model / Graph:

	Logistic Regression
AUC	0.99
KS	0.97
Gini	0.83
Accuracy	0.98
Sensitivity	1
Specificity	0.97
Predicted Positive Rate	0.86
Predicted Negative Rate	1
Error	0.023

b) Navie Bayes:

The e1071 package holds the naiveBayes function. It allows continuous and categorical features to be used in the naive bayes model. It is count-based classifier i.e. only thing it does is – count how often each variable's distinct values occur for each class.

Prior probabilities and conditional probabilities:

Model Performance and Graph:

c) KNN - Model

KNN is supervised classifier, which uses neighbor data points' information to predict outcome variable. Neighbors are identified using distance measures such as Euclidean distance.

Value used for model was K = 5

Resampling: Cross-Validated (5 fold) Summary of sample sizes: 202, 201, 202, 202, 201 Resampling results across tuning parameters: Accuracy Kappa 5 0.88 7 0.87 0.74 9 0.84 0.68 11 0.85 13 0.85 0.69 15 0.84 17 0.84 0.68 0.68 19 0.83 0.65 21 0.82 0.64 23 0.82 0.64

Accuracy was used to select the optimal model using the largest value. The final value used for the model was k = 5.

Model Performance and Graph:

	KNN							
AUC	1	0.1						
KS	1	œ						
Gini	0.83	o rat						
Accuracy	1	sitiv 0.						
Sensitivity	1	en O						
Specificity	1	0.2						
Predicted Positive Rate	1	0:0		-			<u> </u>	
Predicted Negative Rate	1		0.0	0.2	0.4	0.6	8.0	1.0
Error	0	0 False positive rate						

d) Bagging -Model

Bootstrap aggregating, also called bagging, is a machine learning ensemble meta-algorithm designed to improve the stability and accuracy of machine learning algorithms used in statistical classification and regression

Model Performance and Graph:

	Bagging								
AUC	0.98		6. -L						
KS	0.96		8.0	1					
Gini	0.12	e rate		1					
Accuracy	0.97	Sitive	9.0	1					
Sensitivity	1	ne b	4.0						
Specificity	0.96	Ë	0.5						
Predicted Positive Rate	0.83		0: -	+					
Predicted Negative Rate	1		(0.0	0.2	0.4	0.6	0.8	1.0
Error	0.031					False p	ositive rate		

e) Boosting -Model

Boosting
0.96
0.92
0.12
0.97
0.95
0.97
0.86
0.99
0.031

Comparison for all models

- KNN model shows better predictive rate compared to all models
- Error rate is less in Logistic Regression model
- Navi Bayes is least preferred model compared to all model
- All models are showing good results in predicting Transport

	Logistic Regression	Navi Bayes	KNN	Bagging	Boosting
AUC	0.99	0.89	1	0.98	0.96
KS	0.97	0.79	1	0.96	0.92
Gini	0.83	0.67	0.83	0.12	0.12
Accuracy	0.98	0.82	1	0.97	0.97
Sensitivity	1	1	1	1	0.95
Specificity	0.97	0.79	1	0.96	0.97
Predicted Positive Rate	0.86	0.44	1	0.83	0.86
Predicted Negative Rate	1	1	1	1	0.99
Error	0.023	0.18	0	0.031	0.031

CONCLUSION

- Comparing build 5 models on Accuracy, we conclude KNN is competitively accurate in prediction data
- Accuracy was approx. 100 %, which indicates KNN is good for predictive model
- Variables below are factors due to which people discontinue existing service

Age: odds of 1.13 and 76% of information can be predicted just with age parameter Distance: odds of .26 and 56% of information can be predicted just with distance parameter License: odds of .99 and 73 % of information can be predicted just with distance parameter MBA: Has a negative correlation odds of negative 1.41 and 20% of information can be

predicted just with distance parameter