QUILLEN'S CONJECTURE FOR GROUPS OF p-RANK 3

KEVIN IVÁN PITERMAN*, IVÁN SADOFSCHI COSTA**, AND ANTONIO VIRUEL***

ABSTRACT. Let G be a finite group and $\mathcal{A}_p(G)$ be the poset of nontrivial elementary abelian p-subgroups of G. Quillen conjectured that $O_p(G)$ is nontrivial if $\mathcal{A}_p(G)$ is contractible. We prove Quillen's conjecture for groups of p-rank 3.

1. Introduction

The poset $S_p(G)$ of nontrivial p-subgroups of G was introduced by K.S. Brown in [Bro75], where he proved that the Euler characteristic $\chi(\mathcal{K}(S_p(G)))$ of its order complex is 1 modulo the greatest power of p dividing the order of G. Some years later, Quillen [Qui78] studied some homotopy properties of $\mathcal{K}(S_p(G))$. In that article, Quillen considered the subposet $A_p(G)$ of nontrivial elementary abelian p-subgroups and proved that it is homotopy equivalent to $S_p(G)$ [Qui78, Proposition 2.1].

Quillen also proved that if $O_p(G)$, the largest normal p-subgroup of G, is nontrivial then $\mathcal{A}_p(G)$ is contractible [Qui78, Proposition 2.4] and conjectured that the converse should hold. In this paper we consider the following stronger version of Quillen's conjecture, stated by Aschbacher and Smith [AS93b].

Conjecture 1.1 (Quillen's conjecture). If $O_p(G) = 1$ then $\widetilde{H}_*(\mathcal{A}_p(G)) \neq 0$.

Quillen proved some cases of this conjecture. For example, he proved it for solvable groups [Qui78, Theorem 12.1]. In [AS93b], M. Aschbacher and S.D. Smith made a huge progress on the study of this conjecture. By using the classification of finite simple groups, they proved that Quillen's conjecture holds if p > 5 and G does not contain certain unitary components. Previously, Aschbacher and Kleidman [AK90] had proved Quillen's conjecture for almost simple groups (i.e. finite groups G such that $L \leq G \leq \operatorname{Aut}(L)$ for some simple group L).

In this paper we prove Quillen's conjecture 1.1 for groups of p-rank 3. Recall that the p-rank of G is the maximum possible rank of an elementary abelian p-subgroup of G. The p-rank 2 case was considered by Quillen [Qui78, Proposition 2.10] and follows from the fact that an action of a finite group on a tree has a fixed point.

C. Casacuberta and W. Dicks conjectured that every finite group acting on a contractible 2-complex has a fixed point [CD92]. This conjecture was studied by Aschbacher and Segev in [AS93a]. Posteriorly, Oliver and Segev classified groups that can act without fixed points on an

²⁰¹⁰ Mathematics Subject Classification. 57S17, 20D05, 57M20, 55M20, 55M35, 57M60.

Key words and phrases. Quillen's conjecture, poset, p-subgroups.

This work was partially done at the University of Málaga, during a research stay of the first two authors, supported by project MTM2016-78647-P.

 $[\]ast$ Supported by a CONICET doctoral fellowship and grants CONICET PIP 11220170100357CO and UBACyT 20020160100081BA.

^{**} Supported by a CONICET doctoral fellowship and grants ANPCyT PICT-2017-2806, CONICET PIP 11220170100357CO and UBACyT 20020160100081BA

^{***} Supported by...

acyclic 2-complex. The results of their work [OS02] are the basis of our proof of the p-rank 3 case of Quillen's conjecture. Our main result, Corollary 3.2 can also be seen as a special case of the Casacuberta-Dicks conjecture.

Note that Corollary 3.2 was not known, for the results of [AS93b] do not apply for p < 5.

I: ahora tenemos ejemplos para afirmar esto con mas confianza no?

2. The results of Oliver and Segev

In this section we review the results of [OS02] needed in the proof of Corollary 3.2. If X is a poset, $\mathcal{K}(X)$ denotes the order complex of X (i.e. the simplicial complex whose simplices are the finite nonempty totally ordered subsets of X). By a G-complex we mean a G-CW complex. Note that the order complex of a G-poset is always a G-complex.

Definition 2.1 ([OS02]). A G-complex X is essential if there is no normal subgroup $1 \neq N \triangleleft G$ such that for each $H \subseteq G$, the inclusion $X^{HN} \to X^H$ induces an isomorphism on integral homology.

The main results of [OS02] are the following two theorems.

Theorem 2.2 ([OS02, Theorem A]). For any finite group G, there is an essential fixed point free 2-dimensional (finite) \mathbb{Z} -acyclic G-complex if and only if G is isomorphic to one of the simple groups $\operatorname{PSL}_2(2^k)$ for $k \geq 2$, $\operatorname{PSL}_2(q)$ for $q \equiv \pm 3 \pmod 8$ and $q \geq 5$, or $\operatorname{Sz}(2^k)$ for odd $k \geq 3$. Furthermore, the isotropy subgroups of any such G-complex are all solvable.

Theorem 2.3 ([OS02, Theorem B]). Let G be any finite group, and let X be any 2-dimensional \mathbb{Z} -acyclic G-complex. Let N be the subgroup generated by all normal subgroups $N' \triangleleft G$ such that $X^{N'} \neq \emptyset$. Then X^N is \mathbb{Z} -acyclic; X is essential if and only if N = 1; and the action of G/N on X^N is essential.

The set of subgroups of G will be denoted by $\mathcal{S}(G)$.

Definition 2.4 ([OS02]). By a family of subgroups of G we mean any subset $\mathcal{F} \subseteq \mathcal{S}(G)$ which is closed under conjugation. A nonempty family is said to be separating if it has the following three properties: (a) $G \notin \mathcal{F}$; (b) if $H' \subseteq H$ and $H \in \mathcal{F}$ then $H' \in \mathcal{F}$; (c) for any $H \triangleleft K \subseteq G$ with K/H solvable, $K \in \mathcal{F}$ if $H \in \mathcal{F}$.

For any family \mathcal{F} of subgroups of G, a (G, \mathcal{F}) -complex will mean a G-complex all of whose isotropy subgroups lie in \mathcal{F} . A (G, \mathcal{F}) -complex is H-universal if the fixed point set of each $H \in \mathcal{F}$ is acyclic.

Lemma 2.5 ([OS02, Lemma 1.2]). Let X be any 2-dimensional acyclic G-complex without fixed points. Let \mathcal{F} be the set of subgroups $H \subseteq G$ such that $X^H \neq \emptyset$. Then \mathcal{F} is a separating family of subgroups of G, and X is an H-universal (G, \mathcal{F}) -complex.

If G is not solvable, the separating family of solvable subgroups of G is denoted by \mathcal{SLV} .

Proposition 2.6 ([OS02, Proposition 6.4]). Assume that L is one of the simple groups $PSL_2(q)$ or Sz(q), where $q = p^k$ and p is prime (p = 2 in the second case). Let $G \subseteq Aut(L)$ be any subgroup containing L, and let \mathcal{F} be a separating family for G. Then there is a 2-dimensional \mathbb{Z} -acyclic (G, \mathcal{F}) -complex if and only if G = L, $\mathcal{F} = \mathcal{SLV}$, and q is a power of 2 or $q \equiv \pm 3 \pmod 8$.

Definition 2.7 ([OS02, Definition 2.1]). For any family \mathcal{F} of subgroups of G define

$$i_{\mathcal{F}}(H) = \frac{1}{[N_G(H):H]} (1 - \chi(\mathcal{K}(\mathcal{F}_{>H}))).$$

Lemma 2.8 ([OS02, Lemma 2.3]). Fix a separating family \mathcal{F} , a finite H-universal (G, \mathcal{F}) complex X, and a subgroup $H \subseteq G$. For each n, let $c_n(H)$ denote the number of orbits of n-cells
of type G/H in X. Then $i_{\mathcal{F}}(H) = \sum_{n>0} (-1)^n c_n(H)$.

Proposition 2.9 ([OS02, Tables 2,3,4]). Let G be one of the simple groups $PSL_2(2^k)$ for $k \ge 2$, $PSL_2(q)$ for $q \equiv \pm 3 \pmod{8}$ and $q \ge 5$, or $Sz(2^k)$ for odd $k \ge 3$. Then $i_{\mathcal{SLV}}(1) = 1$.

3. The case of p-rank 3

Theorem 3.1. If X is an acyclic and 2-dimensional G-invariant subcomplex of $\mathcal{K}(\mathcal{S}_p(G))$, then $O_p(G) \neq 1$.

Proof. Suppose $O_p(G)=1$. Then G acts fixed point freely on X. Consider the subgroup N generated by the subgroups $N' \triangleleft G$ such that $X^{N'} \neq \emptyset$. Clearly N is normal in G. By Theorem 2.3 $Y = X^N$ is acyclic (in particular it is nonempty) and the action of G/N on Y is essential and fixed point free. By Lemma 2.5 $\mathcal{F} = \{H \leq G/N : Y^H \neq \emptyset\}$ is a separating family and Y is an H-universal $(G/N, \mathcal{F})$ -complex. Thus, Theorem 2.2 asserts that G/N must be one of the groups $\mathrm{PSL}_2(2^k)$ for $k \geq 2$, $\mathrm{PSL}_2(q)$ for $q \equiv \pm 3 \pmod 8$ and $q \geq 5$, or $\mathrm{Sz}(2^k)$ for odd $k \geq 3$. In any case, by Proposition 2.6 we must have $\mathcal{F} = \mathcal{SLV}$. By Proposition 2.9, $i_{\mathcal{SLV}}(1) = 1$. Finally by Lemma 2.8, Y must have at least one free G/N-orbit. Therefore X has a G-orbit of type G/N. Let $\sigma = (A_0 < \ldots < A_j)$ be a simplex of X with stabilizer N. Since $A_0 \triangleleft N$, we have that $O_p(N)$ is nontrivial. Since $N \triangleleft G$ and $O_p(N)$ char N we have $O_p(N) \triangleleft G$ and therefore $O_p(N) \leq O_p(G)$. So $O_p(G)$ is nontrivial, a contradiction.

Since the p-rank of G is equal to dim $\mathcal{K}(\mathcal{A}_p(G)) + 1$ we obtain:

Corollary 3.2. Let G be a finite group of p-rank 3. If $\widetilde{H}_*(A_p(G)) = 0$ then $O_p(G) \neq 1$.

By Theorem 3.1, Quillen's conjecture also holds when $\mathcal{K}(\mathcal{B}_p(G))$ is 2-dimensional. Recall that the subposet $\mathcal{B}_p(G) = \{Q \in \mathcal{S}_p(G) : Q = O_p(N_G(Q))\}$ is homotopy equivalent to $\mathcal{S}_p(G)$. See [Smi11] for an account of the relations between the different p-group complexes.

Finally we mention that a possible approach to prove Conjecture 1.1 is to find an acyclic and G-invariant 2-dimensional subcomplex of $\mathcal{K}(\mathcal{S}_p(G))$. If Quillen's conjecture were true, then this would be possible. Therefore, by Theorem 3.1 we have the following equivalent version of the conjecture.

Conjecture 3.3 (Restatement of Quillen's conjecture). Assume $\mathcal{K}(\mathcal{S}_p(G))$ is acyclic. Then there exists a G-invariant acyclic subcomplex of $\mathcal{K}(\mathcal{S}_p(G))$ of dimension at most 2.

I: no me convence poner este restatement.

4. Some examples

One of the first reductions in the proof of the main theorem of Aschbacher-Smith [AS93b] is to assume that $O_{p'}(G) = 1$ (see [AS93b, Proposition 1.6]). In order to perform such reduction, they use [AS93b, Theorems 2.3 & 2.4]. The hypothesis p > 5 is the key of why they can carry on the proof and use such theorems. More precisely, they are not allowed to apply [AS93b, Theorem 2.3] if a component of $C_G(O_{p'}(G))$ is isomorphic to $L_2(8)$, $U_3(8)$ or $S_2(32)$ with p = 3, 3 or 5 respectively.

In view of this, we present some examples such that the reductions of [AS93b] cannot be carried out for p = 3 or 5 due to the presence of those components in $C_G(O_{p'}(G))$. Nevertheless, our theorem does hold in these examples.

Example 4.1. Let p = 3 and let $G = (\operatorname{Sz}(2^{3^n}) \times U_3(8)) \rtimes C_{3^n}$, where C_{3^n} acts by field automorphism on $\operatorname{Sz}(2^{3^n})$ and trivially on $U_3(8)$. Note that $O_{p'}(G) = \operatorname{Sz}(2^{3^n})$ and $C_G(O_{p'}(G)) = U_3(8)$. Therefore, the reduction to $O_{p'}(G) = 1$ cannot be performed in this group by using the techniques of [AS93b].

Moreover, $O_p(G/O_{p'}(G)) = C_{3^n} \neq 1$ and $O_p(G) = 1$. By [AS93b, Lemma 0.12], there is an inclusion $\tilde{H}_*(\mathcal{A}_p(G/O_{p'}(G))) \subseteq \tilde{H}_*(\mathcal{A}_p(G))$. However, we have $\tilde{H}_*(\mathcal{A}_p(G/O_{p'}(G))) = 0$, so we cannot produce non-trivial homology on $\mathcal{A}_p(G)$ in this way.

The p-rank of G is $m_p(G) = m_p(U_3(8) \times C_{3^n}) = m_p(U_3(8)) + 1 = 3$. Hence, the main theorem of [AS93b] does not apply but, by Corollary 3.2, Quillen's conjecture holds for G.

Example 4.2. Let p = 3 and consider the following group. Take $A = C_{3^n}$ and $B = C_3$. Let $G = (\operatorname{Sz}(2^{3^n})^3 \times U_3(8)) \times (A \times B)$ be the split extension with the following actions. The group A acts on $\operatorname{Sz}(2^{3^n})^3$ by field automorphism on each copy of the Suzuki group, while B acts by permuting the three copies of the Suzuki groups. The action of B on $U_3(8)$ is also by field automorphism but we let A act trivially on this group.

Now note that $O_p(G) = 1$, $O_{p'}(G) = \operatorname{Sz}(2^{3^n})^3$ and $C_G(O_{p'}(G)) = U_3(8)$. Therefore, the reduction of [AS93b] to $O_{p'}(G) = 1$ cannot be done in this group. Also, the conclusion of [AS93b, Lemma 0.12] does not produce non-trivial homology in $\mathcal{A}_p(G)$ since $O_p(G/O_{p'}(G)) = A \neq 1$.

The group G has p-rank 4 given that

$$m_p(G) = m_p(U_3(8) \rtimes (A \times B)) = m_p(A \times (U_3(8) \rtimes B)) = m_p(A) + m_p(U_3(8) \rtimes B) = 1 + 3 = 4.$$

In order to see that Quillen's conjecture holds for G and p=3, the aim is to find a G-invariant 2-dimensional subcomplex K of $\mathcal{K}(\mathcal{S}_p(G))$ which is also homotopy equivalent to $\mathcal{K}(\mathcal{S}_p(G))$. Note that $\mathcal{K}(\mathcal{A}_p(G))$ is 3-dimensional in this case. Suppose we find such subcomplex K. If Quillen's conjecture fails for G, then $\mathcal{K}(\mathcal{S}_p(G))$ is acyclic. Therefore, K is acyclic. By Theorem 3.1, $O_p(G) \neq 1$, a contradiction.

One candidate for K is $\mathcal{K}(\mathcal{B}_p(G))$. However, we do not know yet if this subcomplex has dimension 2.

Further examples can be built in a similar way for p = 5.

Example 4.3. Let p = 5. Let r be a prime number such that $r \equiv 2$ or 3 mod 5 and let $q = r^{5^n}$. Then, the simple groups $L_2(q)$, $G_2(q)$, ${}^3D_4(q^3)$ and ${}^2G_2(3^{5^n})$ have order prime to 5. We construct G similar to the previous examples. Let L be one of the simple groups above and let $A = C_{5^n}$ and $B = C_5$. Let $G = (L^5 \times \operatorname{Sz}(32)^2) \rtimes (A \times B)$, where A acts on each copy of L by field automorphism and trivially on $\operatorname{Sz}(32)^2$, and B acts by permuting the copies L and by field automorphism on each copy of $\operatorname{Sz}(32)$.

Note that $O_{p'}(G) = L^5$ and $C_G(O_{p'}(G)) = \operatorname{Sz}(32)^2$. Therefore, the reduction to $O_{p'}(G) = 1$ cannot be carried out in this example by using [AS93b, Proposition 1.6].

On the other hand, $O_p(G) = 1$ and $O_p(G/O_{p'}(G)) = A \neq 1$. Also, the p-rank of G is

$$m_p(G) = m_p(\operatorname{Sz}(32)^2 \times (A \times B)) = m_p(A) + m_p(\operatorname{Sz}(32)^3 \times B) = 1 + 3 = 4.$$

Now the aim is to find a G-invariant 2-dimensional homotopy equivalent subcomplex of $\mathcal{K}(\mathcal{S}_p(G))$ to proceed like in Example 4.2.

Example 4.4. Similar to Example 4.1, with the notations of Example 4.3, if $G = (L \times \operatorname{Sz}(32)^2) \times A$ then $m_p(G) = 3$, $O_p(G) = 1$, $O_{p'}(G) = L$ and $O_p(G/O_{p'}(G)) = A \neq 1$. Therefore, the reductions of Aschbacher-Smith do not apply but by Corollary 3.2, Quillen's conjecture holds for G.

K: esto hay que terminar de ver

K: volver a revisar la cuenta

K: hay que terminar como el otro Finally, we remark that the prime 2 is not treated in the principal theorems used in [AS93b]. Therefore, our result does present new cases of Quillen's conjecture that does not follow from the techniques and reductions of [AS93b].

K:escribir mejor esta frase

References

- [AK90] Michael Aschbacher and Peter B. Kleidman, On a conjecture of Quillen and a lemma of Robinson, Arch. Math. (Basel) 55 (1990), no. 3, 209–217. MR 1075043
- [AS93a] Michael Aschbacher and Yoav Segev, A fixed point theorem for groups acting on finite 2-dimensional acyclic simplicial complexes, Proc. London Math. Soc. (3) 67 (1993), no. 2, 329–354. MR 1226605
- [AS93b] Michael Aschbacher and Stephen D. Smith, On Quillen's conjecture for the p-groups complex, Ann. of Math. (2) 137 (1993), no. 3, 473–529. MR 1217346
- [Bro75] Kenneth S. Brown, Euler characteristics of groups: the p-fractional part, Invent. Math. 29 (1975), no. 1, 1–5. MR 0385008
- [CD92] Carles Casacuberta and Warren Dicks, On finite groups acting on acyclic complexes of dimension two, Publ. Mat. 36 (1992), no. 2A, 463–466 (1993). MR 1209816
- [OS02] Bob Oliver and Yoav Segev, Fixed point free actions on Z-acyclic 2-complexes, Acta Math. 189 (2002), no. 2, 203–285. MR 1961198
- [Qui78] Daniel Quillen, Homotopy properties of the poset of nontrivial p-subgroups of a group, Adv. in Math. 28 (1978), no. 2, 101–128. MR 493916
- [Smi11] Stephen D. Smith, Subgroup complexes, Mathematical Surveys and Monographs, vol. 179, American Mathematical Society, Providence, RI, 2011. MR 2850680

Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática. Buenos Aires, Argentina.

CONICET-Universidad de Buenos Aires. Instituto de Investigaciones Matemáticas Luis A. Santaló (IMAS). Buenos Aires, Argentina.

DEPARTAMENTO DE ÁLGEBRA, GEOMETRÍA Y TOPOLOGÍA, UNIVERSIDAD DE MÁLAGA, CAMPUS DE TEATINOS, 29071 MÁLAGA, SPAIN.

E-mail address: kpiterman@dm.uba.ar E-mail address: isadofschi@dm.uba.ar

 $E ext{-}mail\ address: viruel@uma.es}$