NORME MATRICIALI Si vuole introdurre un concetto di distanza sullo spazio delle matrici per misurare la "vicinanza" tra due matrici $A, B \in \mathbb{C}^{n \times n}$. IDEA: si può interpretare una matrice $A \in \mathbb{C}^{n \times n}$ come un vettore di n^2 componenti e utilizzare come distanza una delle norme vettoriali già introdotte. Questo procedimento spesso conduce a norme che "non si comportano bene" rispetto al prodotto di matrici DEF. DI NORMA MATRICIALE: Una funzione $\|\cdot\|:\mathbb{C}^{n\times n}\to\mathbb{R}$ si dice norma matriciale se soddisfa le seguenti proprietà: (a) $\|A\| \ge 0$ per ogni $A \in \mathbb{C}^{n \times n}$ e $\|A\| = 0$ se e solo se A = O [positività]; (b) $\|\alpha A\| = |\alpha| \|A\|$ per ogni $\alpha \in \mathbb{C}$ e ogni $A \in \mathbb{C}^{n \times n}$ [omogeneita]; (c) $||A + B|| \le ||A|| + ||B||$ per ogni $A, B \in \mathbb{C}^{n \times n}$ [disuguaglianza triangolare]. Data una norma matriciale $\|\cdot\|:\mathbb{C}^{n\times n}\to\mathbb{R}$, definiamo la distanza fra due matrici $A,B\in\mathbb{C}^{n\times n}$ come $\|A-B\|$. Un esempio di norma matriciale è dato dall'analoga della norma ∞ dei vettori: data $A \in \mathbb{C}^{n \times n}$, s'immagina A come se fosse un vettore di n^2 componenti e si definisce la sua norma come se fosse la norma ∞ del vettore di n^2 componenti: $|A|_{\infty} = \max_{i,j=1,\dots,n} |a_{ij}|.$ La norma $|\cdot|_{\infty}$ "non si comporta bene" rispetto al prodotto di matrici perché non è submoltiplicativa: $B = \begin{bmatrix} A^{\mathsf{T}} \\ 1 \end{bmatrix},$ > Ecco un esempio: $AB = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix},$ $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},$ NORME MATRICIALI INDOTTE Data una norma vettoriale $\|\cdot\|$ in \mathbb{C}^n e una matrice $A \in \mathbb{C}^{n \times n}$, definiamo il numero $||A|| = \max_{\mathbf{x} \neq \mathbf{0}} \frac{||A\mathbf{x}||}{||\mathbf{x}||} = \max_{\mathbf{x} \neq \mathbf{0}} \left| A \frac{\mathbf{x}}{||\mathbf{x}||} \right| = \max_{||\mathbf{y}|| = 1} ||A\mathbf{y}||.$ pomgo $y = \frac{x}{||x||}$ e la norma di $y \in \frac{x}{||x||}$ $||y|| = \left| \frac{x}{||x||} \right| = \frac{1}{||x||} \cdot ||x|| = 1$ Si può dimostrare che $\|\cdot\|:\mathbb{C}^{n\times n}\to\mathbb{R}$ è una norma matriciale che prende il nome di norma matriciale indotta dalla norma vettoriale $\|\cdot\|$.

TEOREMA:							dalla n	orma v	vettoriale	$\ \cdot\ $ es
		$\mathbb{C}^{n\times n}$. Allow	a valgor	no le segu	uenti pro	prietà.				
	$=\frac{1.}{2.} \frac{\ I\ }{\ A\mathbf{x}\ }$	$=1.$ $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	per oa	$ni \mathbf{x} \in \mathbb{C}$	n					
	\parallel 3. \parallel A \parallel	è la più pic	cola cos	tante C	$che \ sodd$	$isfa A\mathbf{x} $	$ \leq C\ \mathbf{x} $	per og	$mi \ \mathbf{x} \in \mathbb{C}$	n
		$ A \le A A B $ $ A \le A A $	i subn	noltiplica	tivitaj.					
	DIMOS	STRIAMO	LE!	5 PRO	PRIETA	:				
						-				
	.1)	I =	max	$ I\mathbf{x} =$	max	$\ \mathbf{x}\ = 1$	1.			
			-1		X -1					
		Per ogni \mathbf{x}	≠ 0 si ha		1	ı I I	ı	ı	1 1	
	-2)	_		$ A\mathbf{x} $	$< \max \frac{\ A\ }{\ A\ }$	$\frac{\ \mathbf{y}\ }{\ \mathbf{y}\ } = \ A\ $	l ⇒	$ A\mathbf{x} $	$\leq A \mathbf{x} $	II. —
		 		- " "	+ + +	y "11		112.22	_	
		vale ovvia	-	+ + -	+ +					
		Presa una	qualsias							
	• 3)	_		$\frac{\ A\mathbf{x}\ }{\ \mathbf{x}\ } \le$	C per o	ogni $\mathbf{x} \neq$	$0 \implies$	$\ A\ $	$= \max_{\mathbf{x} \neq 0} \frac{\ \cdot \ }{\ \cdot \ }$	$\frac{A\mathbf{x}\ }{\ \mathbf{x}\ } \le C.$
									X-0	
	.4)	Per ogni x	$\mathbf{s} \in \mathbb{C}^n$ s	i ha						
	77	_			A	$B\mathbf{x}\ \leq \ $	$A \ \ B \mathbf{x} \ $	$\leq A $	$ B \mathbf{x} $. –
		Poichè 11/	vell (la	norma	di AR) è la c	نند منددما:	a cost:	ante C	tale che
		AB <u>x</u> <								
		tante C								
		ABI ≤ A								
							C RAGGIO	SPETIRI Di A	TE	
	.5)	Sia λ un au				nassimo e	$\sin \mathbf{x} \neq 0$	0 un co	rrisponde	nte autove
		Ciò Signi	fica:	$A\mathbf{x} = \lambda \mathbf{x}$	X					
		Otteniamo						I		
		$ A\mathbf{x} =$	$\ \lambda \mathbf{x}\ =$	$ \lambda \mathbf{x} =$	$= \rho(A) \mathbf{x} $	$ \implies$	$\rho(A) =$	$=\frac{\ A\mathbf{x}\ }{\ \mathbf{x}\ }$	$\leq \max \frac{\ \cdot \ _{2}}{2}$	$\frac{A\mathbf{y} }{\ \mathbf{y}\ } = \ A$
		_ " "				' 		$\ \mathbf{x}\ $	_ y≠0	y "

(\Longrightarrow) Viceversa, se $A^k\to O$ allora dall'equazione $A^k=XD^kX^{-1}$ si ottiene $D^k=X^{-1}A^kX$ e $\rho(A)^k = \|D^k\|_{\infty} = \|X^{-1}A^kX\|_{\infty} \le \|X^{-1}\|_{\infty} \|A^k\|_{\infty} \|X\|_{\infty} \to 0,$ per cui $\rho(A)^k \to 0$ cio
è $\rho(A) < 1.$