Lecture8: Metal-Oxide-Semiconductor

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Parallel plates

- A problem from "General Physics" course.
 - Consider a dielectric layer (whose thickness is d and area is A) sandwiched by two parallel metal plates. Its permittivity is ϵ .
 - A voltage difference, V, is applied.
 - The charges are +Q and -Q, respectively.
 - By applying the Gauss law,

$$Q = \epsilon |\mathbf{E}| A = \epsilon \frac{V}{d} A$$

Therefore, the capacitance per unit area becomes

$$C = \frac{\epsilon}{d}$$

Metal-Oxide-Semiconductor

- The key structure in the microelectronics
 - Question: Is the MOS a capacitor with $C_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$?

- Answer: No. Its thickness, t_{ox} \longrightarrow $\begin{array}{c} \text{Metal} \\ \text{Oxide} \\ \text{Semiconductor} \\ \text{(Usually p-type.} \\ \text{Many holes)} \\ & - \\ \end{array}$

What is the difference?

- Threshold behavior
 - Two ways to provide negative charges
 - Removal of holes
 - Mobile electrons
- Threshold voltage
 - It is written as V_{TH} .
 - Most important!

Inversion?

- Remember that the substrate is doped with the p-type dopants.
 - We expect that the holes are found in the silicon substrate.
 - However, when a sufficiently large gate voltage is applied, the electrons are found, as if it is doped with the n-type dopants.
 - Those electrons are called as the "inversion electrons."

Electron charge density

- When $V_G < V_{TH}$,
 - The electron charge density vanishes.

$$Q_{elec} = 0$$

- When $V_G > V_{TH}$,
 - The electron charge density is proportional to $V_G V_{TH}$.

$$|Q_{elec}| = C_{ox}(V_G - V_{TH})$$

- (Here, Q_{elec} and C_{ox} are quantites per area.)

$|Q_{elec}|$ versus V_G

- It is piecewise linear. Therefore, it is nonlinear.
 - Digital application: ON $(V_G = V_{DD})$ / OFF $(V_G = 0)$
 - Analog application: Linear part

Engineering questions

- Which one is good?
 - Large C_{ox} or small C_{ox} ?
 - High V_{TH} or low V_{TH} ?

MOS? MOSFET?

- MOS (Metal-Oxide-Semiconductor)
 - By changing the gate voltage, the charge density can be controlled.
- MOSFET (MOS Field-Effect Transistor)
 - Current conduction

Its operation

- The MOSFET has three terminals.
 - Source, drain, and gate
 - We always have

$$I_S(t) + I_D(t) + I_G(t) = 0.$$

- At low frequencies, the gate current is zero.
 - Source current + drain current = 0, $I_S + I_D = 0$
 - Source is regarded as the reference contact.
 - Gate voltage (V_{GS}) and drain voltage (V_{DS}) are variables.
- We are interested with $I_D(V_{GS}, V_{DS})$.

IV characteristics

- We will draw the two graphs.
 - $I_D(V_{GS})$ with fixed V_{DS} & $I_D(V_{DS})$ with fixed V_{GS}

Homework#4

- Due: 09:00, April 2
- Solve following problems of the 2018 mid-term exam.
 - P10
 - P16
 - P17
 - P18
 - P19
- Solve following problems of the 2017 mid-term exam.
 - P21
 - P22
 - (The remaining problems in the 2017 mid-term exam are your own exercise. Not for HW.)