

WHAT IS CLAIMED IS:

1. A method for detecting a marker in an image, comprising the steps of:

selecting one of a first marker recognition process
5 based on a normalized correlation and a second marker
recognition process based on gray value histograms;

extracting image features associated with an input
image of a ROI (region of interest); and

comparing the extracted image features with a
10 trained model associated with the selected recognition
process to determine if a marker is present in the input
image.

2. The method of claim 1, wherein if the first
15 marker recognition process is selected, the trained model
comprises at least one template image and the step of
comparing comprises the steps of:

normalizing the template image and input image with
respect to brightness;

20 computing a correlation between the normalized
template image and input image; and

determining that a marker is present in the input
image if the computed correlation meets a threshold.

3. The method of claim 2, wherein the step of

normalizing comprises computing $I(i) = \frac{(I(i) - \mu)}{\sigma}$, where $I(i)$ is
the gray value of pixel I and where μ and σ denote the
average brightness and contrast, respectively.

5

4. The method of claim 2, wherein the step of

computing a correlation comprises computing $\rho = \sum_{allpixels} I(i) * T(i)$
where ρ comprises the correlation coefficient, I
comprises the input image, and T comprises the template
image.

10

5. The method of claim 2, wherein the at least one
template image comprises an image comprising a target
marker, an image not comprising a target marker, and
both.

15

6. The method of claim 2, further comprising the
step of computing the template image from the average of
a plurality of template images.

20

7. The method of claim 2, wherein the step of
computing a correlation further comprises computing a
correlation between at least one other normalized
template image and the input image; and wherein the step

of determining if a marker is present in the input image
is based on a maximum computed correlation.

8. The method of claim 2, further comprising the
5 step of reducing the resolution of the input image and
the template image by a predetermined factor prior to the
comparing step.

9. The method of claim 1, wherein if the second
10 marker recognition process is selected, the trained model
comprises a sample image histogram comprising a gray
value distribution of a sample image and the step of
comparing comprises the steps of:

15 generating an input image histogram comprising a
gray value distribution of the input image;

computing a distance measure between the input image
histogram and the sample image histogram; and

determining if a marker is present in the input
image based on the computed distance measure.

20

10. The method of claim 9, wherein the step of
generating an input image histogram comprises generating
a global histogram.

11. The method of claim 9, wherein the step of generating an input image histogram comprises generating a plurality of local histograms.

5 12. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for detecting a marker in an image, the method comprising the steps of:

10 selecting one of a first marker recognition process based on a normalized correlation and a second marker recognition process based on gray value histograms;

15 extracting image features associated with an input image of a ROI (region of interest); and

20 comparing the extracted image features with a trained model associated with the selected recognition process to determine if a marker is present in the input image.

25 13. The program storage device of claim 12, wherein if the first marker recognition process is selected, the trained model comprises at least one template image and the step of comparing comprises instructions for:

30 normalizing the template image and input image with respect to brightness; and

35 computing a correlation between the normalized template image and input image;

determining that a marker is present in the input image if the computed correlation meets a threshold.

14. The program storage device of claim 13, wherein
5 the instructions for normalizing comprise instructions
for computing $I(i) = \frac{(I(i) - \mu)}{\sigma}$, where $I(i)$ is the gray value of
pixel I and where μ and σ denote the average brightness
and contrast, respectively.

10 15. The program storage device of claim 13, wherein
the instructions for computing a correlation comprise
instructions for computing $\rho = \sum_{allpixels} I(i) * T(i)$ where ρ
comprises the correlation coefficient, I comprises the
input image, and T comprises the template image.

15
16. The program storage device of claim 13, wherein
the at least one template image comprises an image
comprising a target marker, an image not comprising a
target marker, and both.

20
17. The program storage device of claim 13, further
comprising instructions for computing the template image
from the average of a plurality of template images.

18. The program storage device of claim 13, wherein
the instructions for computing a correlation further
comprise instructions for computing a correlation between
at least one other normalized template image and the
5 input image; and wherein the step of determining if a
marker is present in the input image is based on a
maximum computed correlation.

19. The program storage device of claim 13, further
10 comprising instructions for the step of reducing the
resolution of the input image and the template image by a
predetermined factor prior to the comparing step.

20. The program storage device of claim 12, wherein
15 if the second marker recognition process is selected, the
trained model comprises a sample image histogram
comprising a gray value distribution of a sample image
and the instructions for the step of comparing comprise
instructions for:

20 generating an input image histogram comprising a
gray value distribution of the input image;
computing a distance measure between the input image
histogram and the sample image histogram; and
determining if a marker is present in the input
25 image based on the computed distance measure.

FOREGO-TTE6960

21. The program storage device of claim 20, wherein
the instructions for generating an input image histogram
comprise instructions for generating a global histogram.

5 22. The program storage device of claim 20, wherein
the instructions for generating an input image histogram
comprise instructions for generating a plurality of local
histograms.

10 23. A system for recognizing a marker in an image,
comprising:

an image capture module for extracting image
features associated with an input image of a ROI (region
of interest);

15 an image processor comprising a first marker
recognition processor for recognizing a marker in the
input image based on a normalized correlation and a
second marker recognition processor for recognizing a
marker in the input image based on gray value histograms;

20 and

 a database comprising one of trained template images
and trained histograms and a combination thereof, which
are used by the image processor during a recognition
process.

24. The system of claim 23, wherein the system is implemented in an automated placement system for detecting markers on printed circuit boards.

00619240004