3.51. In the circuit of Fig. 3.87, $R_1 = 500 \,\Omega$ and $R_2 = 1 \,\mathrm{k}\Omega$. Use SPICE to construct the input/output characteristic for $-2 \,\mathrm{V} < V_{in} < +2 \,\mathrm{V}$. Also, plot the current flowing through R_1 as a function of V_{in} .

Figure 3.87

- **3.52.** The rectifier shown in Fig. 3.88 is driven by a 60-Hz sinusoid input with a peak amplitude of 5 V. Using the transient analysis in SPICE,
 - (a) Determine the peak-to-peak ripple at the output.
 - (b) Determine the peak current flowing through D_1 .
 - (c) Compute the heaviest load (smallest R_L) that the circuit can drive while maintaining a ripple less than 200 mV_{pp}.

Figure 3.88

Figure 3.89

3.54. The circuit shown in Fig. 3.90 can provide an approximation of a sinusoid at the output in response to a triangular input waveform. Using the dc analysis in SPICE to plot the input/output characteristic for $0 < V_{in} < 4 \text{ V}$, determine the values of V_{B1} and V_{B2} such that the characteristic closely resembles a sinusoid.

Figure 3.90

