International TOR Rectifier

Data Sheet No. PD60201 Rev.D

IR2301(S) & (PbF)

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 5 to 20V
- Undervoltage lockout for both channels
- 3.3V, 5V and 15V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Outputs in phase with inputs
- Also available LEAD-FREE (PbF)

Description

The IR2301(S) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel

2106/2301//2108//2109/2302/2304 Feature Comparison

				-	
Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	
2106/2301	HIN/LIN	no	none	COM	
21064	TIIIN/LIIN	110	none	VSS/COM	
2108	HIN/LIN	1/05	Internal 540ns	COM	
21084	TIIIN/LIIN	yes	Programmable 0.54~5 μs	VSS/COM	
2109/2302	IN/SD	1/05	Internal 540ns	COM	
21094	טטאוו ו	yes	Programmable 0.54~5 μs	VSS/COM	
2304	HIN/LIN	yes	Internal 100ns	COM	

can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

Typical Connection

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage		-0.3	625	
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
Vcc	Low side and logic fixed supply voltage		-0.3	25	V
V _{LO}	Low side output voltage	-0.3	V _{CC} + 0.3		
VIN	Logic input voltage		COM - 0.3	V _{CC} + 0.3	
dV _S /dt	Allowable offset supply voltage transient		_	50	V/ns
PD	Package power dissipation @ T _A ≤ +25°C	(8 lead PDIP)	_	1.0	
	_	(8 lead SOIC)	_	0.625	W
RthJA	Thermal resistance, junction to ambient	(8 lead PDIP)	_	125	
		(8 lead SOIC)	_	200	°C/W
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)		_	300	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 5	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	,,
V _{CC}	Low side and logic fixed supply voltage	5	20	V
V _{LO}	Low side output voltage	0	V _C C	
V _{IN}	Logic input voltage	COM	Vcc	
T _A	Ambient temperature	-40	150	°C

Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Dynamic Electrical Characteristics

V_{BIAS} (V_{CC}, V_{BS}) = 15V, C_L = 1000 pF, T_A = 25°C.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	220	300		V _S = 0V
toff	Turn-off propagation delay	_	200	280		V _S = 0V or 600V
MT	Delay matching, HS & LS turn-on/off	_	0	50	nsec	
t _r	Turn-on rise time	_	130	220		V _S = 0V
tf	Turn-off fall time	_	50	80		V _S = 0V

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to COM and are applicable to the respective input leads. The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage	2.9	_	_		V _{CC} = 10V to 20V
.V _{IL}	Logic "0" input voltage	_	_	0.8	V	V _{CC} = 10V to 20V
VoH	High level output voltage, V _{BIAS} - V _O	_	0.8	1.4	V	I _O = 20 mA
V _{OL}	Low level output voltage, VO	_	0.3	0.6		I _O = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	60	100		V _{IN} = 0V or 5V
Iqcc	Quiescent V _{CC} supply current	50	120	190	μA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	5	20		V _{IN} = 5V
I _{IN-}	Logic "0" input bias current	_	_	2		V _{IN} = 0V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive	3.3	4.1	5		
V _{BSUV+}	going threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative	3	3.8	4.7	V	
V _{BSUV} -	negative going threshold				ľ	
Vccuvh	Hysteresis	0.1	0.3	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	120	200	_		V _O = 0V,
					mA	PW ≤ 10 µs
Io-	Output low short circuit pulsed current	250	350	_	IIIA	V _O = 15V,
						PW ≤ 10 µs

Functional Block Diagrams

Lead Definitions

Symbol	Description
HIN	Logic input for high side gate driver output (HO), in phase
LIN	Logic input for low side gate driver output (LO), in phase
V _B	High side floating supply
НО	High side gate drive output
Vs	High side floating supply return
Vcc	Low side and logic fixed supply
LO	Low side gate drive output
COM	Low side return

Lead Assignments

Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

Figure 3. Delay Matching Waveform Definitions

Figure 4A. Turn-on Propagation Delay vs. Temperature

Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

Figure 5A. Turn-off Propagation Delay vs. Temperature

Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

Figure 6A. Turn-on Rise Time vs. Temperature

Figure 6B. Turn-on Rise Time vs. Supply Voltage

Figure 7A. Turn-off Fall Time vs. Temperature

Figure 7B. Turn-off Fall Time vs. Supply Voltage

Figure 8A. Logic "1" Input Voltage vs. Temperature

Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

Figure 9A. Logic "0" Input Voltage vs. Temperature

Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

6

Figure 10A. High Level Output Voltage vs. Temperature

Figure 10B. High Level Output Voltage vs. Supply Voltage

Figure 11A. Low Level Output Voltage vs. Temperature

Figure 11B. Low Level Output Voltage vs. Supply Voltage

Figure 12A. Offset Supply Leakage Current vs. Temperature

Figure 12B. Offset Supply Leakage Current vs. Supply Voltage

Figure 13B. Quiescent VBS Supply Current vs. Supply Voltage

400 (%) the same of the same o

Figure 14A. Quiescent VCC Supply Current vs. Temperature

Figure 14B. Quiescent VCC Supply Current vs. VCC Supply Voltage

Figure 15A. Logic "1" Input Bias Current vs. Temperature

Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage

Figure 16A. Logic "0" Input Bias Current vs. Temperature

Figure 16B. Logic "0" Input Bias Currentt vs. Supply Voltage

Figure 17. V_{CC} and V_{BS} Undervoltage Threshold (+) vs. Temperature

Figure 18. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

400 (YE) true 300 200 200 Typ. 5 10 15 20 Supply Voltage (V)

Figure 19A. Output Source Current vs. Temperature

Figure 19B. Output Source Current vs. Supply Voltage

Figure 20A. Output Sink Current vs. Temperature

Figure 20B. Output Sink Current vs. Supply Voltage

Figure 21. Maximum Vs Negative Offset vs. VBS Floating Supply Voltage

Figure 22. IR2301 vs. Frequency (IRFBC20), ${\rm R_{\rm tate}}{=}33\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 23. IR2301 vs. Frequency (IRFBC30), $\rm R_{\rm qate}$ =22W, $\rm V_{\rm cc}$ =15V

Figure 24. IR2301 vs. Frequency (IRFBC40), $R_{\text{qate}} \! = \! \! 15\Omega, \, V_{\text{CC}} \! = \! \! 15V$

Figure 25. IR2301 vs. Frequency (IRFPE50), $R_{\text{gate}} \! = \! \! 10 \Omega, \, V_{\text{CC}} \! = \! \! 15 V$

Figure 26. IR2301S vs. Frequency (IRFBC20), $\rm R_{\rm qate}$ =33 Ω , $\rm V_{\rm CC}$ =15 V

Figure 27. IR2301S vs. Frequency (IRFBC30), ${\rm R_{\rm pate}}{=}22\Omega,\,{\rm V_{\rm CC}}{=}15{\rm V}$

Figure 28. IR2301S vs. Frequency (IRFBC40), $R_{\text{tate}} \! = \! \! 15\Omega, \, V_{\text{CC}} \! = \! \! 15V$

Figure 29. IR2301S vs. Frequency (IRFPE50), R_{qate} =10 Ω , V_{cc} =15V

Case Outlines

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2301 order IR2301 8-Lead SOIC IR2301S order IR2301S

Leadfree Part

8-Lead PDIP R2301 order IR2301PbF 8-Lead SOIC IR2301S order IR2301SPbF

International TOR Rectifier

This product has been designed and qualified for the Automotive market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

9/7/2004