

Artificial Intelligence
Mastery Program

Module

Artificial Intelligence Fundamental

Section

Machine Learning

Fundamental of **Machine Learning**

Supervised learning

Paradigma Pemrograman

Traditional Programming & Machine Learning Approach

Traditional Programming


```
if(speed<4){
   status=WALKING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else {
    status=RUNNING;
}</pre>
```



```
if(speed<4){
    status=WALKING;
} else if(speed<12){
    status=RUNNING;
} else {
    status=BIKING;
}</pre>
```


Images Source: https://developers.google.com/codelabs/tensorflow-1-helloworld#0

Machine Learning Approach

Supervised Learning

Semi-supervised Learning

Unsupervised Learning

Reinforced Learning

Image Source: Google Image

Bagaimana
ML Approach
dapat dibedakan dari
Traditional Programming?

Jawaban

Traditional Programming vs Machine Learning Approach

Approach

Traditional Approach vs Modern Approach

Experiment

Data + Role

Process

Answers

Traditional Approach

Modern Approach

Experiment

Data + Answers

Process

Role

Machine Learning Models

Supervised Learning

Determine relationships through training

Unsupervised Learning

Discover new Patterns

Supervised Learning vs Unsupervised Learning

WHAT IS MACHINE LEARNING?

Human v Machine Kompus Merdeko

MANUSIA Belajar dari pengalaman

MESIN Hanya mengikuti "Instruksi" yang diberikan

Segmentasi ML

Supervised Learning

- Estimation
- Prediction/Forecasting
- Classification

Unsupervised Learning

- Clustering
- Association

7 Langkah Dalam ML

Gathering Data

Preparing Data

Choosing a Model

Evaluation

Tuning Hyperparameter

Images Source: Google Image

ML Life Cycle

Images Source: Google Image

ML Workflow

Metrics Evaluation

Regression

- o MSPE
- o MSAE
- o R Square
- Adjusted R Square

Classification

- o Precision-Recall
- o ROC-AUC
- Accuracy
- o Log-Loss

Unsupervised Models

- Rand Index
- Mutual Information

Others

- CV Error
- Heuristic methods to find K
- BLEU Score (NLP)

Kelebihan dan Kekurangan ML

Kelebihan

- Mudah dalam mengidentifikasi trend dan pola pada data
- Tidak perlu campur tangan manusia
- Pengembangan dapat dilakukan secara berkelanjutan
- Mampu menangani data multidimensi dan multi-variasi
- Aplikasi/implementasi yang luas

Kekurangan

- Rentan terhadap kesalahan
- Akuisisi data
- Waktu dan sumber daya
- Hasil bersifat interpretasi (tafsiran)

Refleksi

Supervised Learning

Supervised Learning umumnya digunakan untuk menemukan pola dalam data masukan yang diberi label sehingga memungkinkan kita menghasilkan data keluaran yang benar secara efektif.

Ciri-ciri:

- Data training <u>telah diberi label</u>
- Algoritma memprediksi output dari input, contoh algoritma:
 - Klasifikasi (memetakan masukan ke label keluaran)
 - Regresi (memetakan masukan ke keluaran berkelanjutan)

Supervised Learning Workflow

Image Source: https://www.logpoint.com/sv/blogg-sv/explained-siemply-machine-learning/

Supervised Learning Experiment

https://teachablemachine.withgoogle.com/

Unsupervised Learning

Unsupervised Learning umumnya digunakan untuk mempelajari struktur karakteristik data kita tanpa menggunakan label yang disediakan secara eksplisit.

Ciri-ciri:

- Data training <u>tidak berlabel</u>
- Algoritma mempelajari struktur karakteristik dari data masukan, contoh algoritma:
 - Clustering (mempelajari hubungan antara fitur individu)
 - Dimensional Reduction (metode untuk mengurangi fitur)

Unsupervised Learning Workflow

Image Source: https://www.logpoint.com/sv/blogg-sv/explained-siemply-machine-learning/

https://experiments.withgoogle.com/ai/drum-machine/view/

Reinforcement Learning Workflow

Ragdol; Reinforcement Learning Experiment

https://keiwan.itch.io/evolution

Konsep Machine Learning

Supervised Learning

- Kita tahu apa yang sedang coba untuk kita prediksi. Kita menggunakan sejumlah data dan model machine learning kita mampu untuk men generate prediksi yang kita inginkan.
- Contoh: Memprediksi penjualan rumah berapa tahun kedepan. Mengindentifisi gender berdasarkan foto (computer vision)

Unsupervised Learning

- Kita tidak tahu apa yang kita coba prediksi. Kita mencoba untuk mengidentifikasi beberapa pola alami dalam data yang mungkin informatif.
- Contoh: Mengindentifikasi "clusters" kelas berdasarkan data dari mahasiswa program AI Mastery

Supervised Learning

Development

We train the model using past data Require Labaelled Data

Production

Trained model makes predictions in production and there is no real time training of model in production

Supervised Learning

Development

Build a model using some data Require unlabelled data

Production

The model discovers patterns, the model is frquently trained in production

Unsupervised Learning

The Common ML Algorithms

Source: https://www.moogsoft.com/blog/aiops/understanding-machine-learning-aiops-part-2/regression-class-clustering-graph

Review Concept

- AI Teknik apa pun yang memungkinkan komputer meniru kecerdasan manusia.
- Machine Learning Bagian dari Al yang memungkinkan mesin untuk mengerjakan tugas dengan lebih baik, dengan pengalaman.
- Deep Learning Bagian dari ML yang memungkinkan software melatih dirinya sendiri untuk melakukan tugas dengan data dalam jumlah besar.

Machine Learning vs Deep Learning

Machine Learning

Deep Learning

Machine Learning vs Deep Learning

NN; The Behind of Deep Learning and The Black Box

Pengantar Artificial Neural Network

Artificial Neural Networks

Artificial Neural Network (ANN) adalah teknologi Al yang meniru dan terinspirasi dari cara kerja neuron pada otak manusia.

Artificial Neural Networks

ANN merupakan cikal bakal dari teknologi *Deep Learning* yang tersusun atas banyak sekali lapisan *neuron* (*perceptron*).

Deep Learning mampu melatih dirinya sendiri dalam melakukan tugas dengan data yang besar.

Images Source: Google Image

Contoh Penerapan Deep Learning

1. Face Recognition (pengenalan wajah)

Contoh: smartphone yang mampu mendeteksi wajah user

2. Speech Recognition (pengenalan ucapan)

Contoh: memerintahkan smartphone untuk menyetel alarm

3. Character Recognition (pengenalan karakter)

Contoh: verifikasi tanda tangan seseorang

References

- "Artificial Intelligence and Machine Learning" by Zsolt Nagy
- "Machine Learning and Artificial Intelligence" by Ameet V Joshi

Artificial Intelligence Mastery Program

TERIMA KASIH

THANK YOU

Hubungi Kami

Director of Sales & Partnership ira@orbitventura.com +62 858-9187-7388

Social Media

Orbit Future Academy