Learning Hierarchical Features with Joint Latent Space Energy-Based Prior

Jiali Cui¹ Ying Nian Wu² Tian Han¹

¹Stevens Institute of Technology ²University of California, Los Angeles (UCLA)

September 21, 2023

Multi-layer Generator Model

• Generator Model can be specified using joint distribution:

$$p_{\beta}(\mathbf{x}, \mathbf{z}) = p_{\beta_0}(\mathbf{x}|\mathbf{z})p_{\beta_{>0}}(\mathbf{z})$$

 Multi-layer Generator Model consists of multiple layers of latent variables:

$$p_{\beta>0}(\mathbf{z}) = \prod_{i=1}^{L-1} p_{\beta_i}(\mathbf{z}_i|\mathbf{z}_{i+1})p(\mathbf{z}_L)$$

Conditional Gaussian Distribution

$$p_{\beta_i}(\mathbf{z}_i|\mathbf{z}_{i+1}) \sim \mathcal{N}(\mu_{\beta_i}(\mathbf{z}_{i+1}), V_{\beta_i}(\mathbf{z}_{i+1}))$$

Hierarchical Representation Learning

Limitation

- Such multi-layer generator models can learn most data representation at the bottom layer.
- Intra-layer relation among latent units is ignored.
- conditional independent

Model & Limitation

Hierarchical Representation Learning

Figure: Hierarchical Sampling.

Latent Space Energy-based Model

Latent space energy-based model (EBM) can be specified as:

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbf{Z}(\alpha)} \exp[f_{\alpha}(\mathbf{z})] p_0(\mathbf{z})$$

where $\mathbf{Z}(\alpha)$ is the normalizing function, $f_{\alpha}(\mathbf{z})$ is the energy function, and $p_0(\mathbf{z})$ is the referenced distribution.

Hierarchical Representation Learning

Limitation

- Single-layer latent space.
- Mixed representation learned.

non-hierarchical structure

Model & Limitation

Hierarchical Representation Learning

Figure: Latent traverse.

Joint Latent Space EBM

Joint Latent Space EBM Prior

$$p_{\alpha}(\mathbf{z}) = \frac{1}{\mathbf{Z}(\alpha)} \exp[f_{\alpha}([\mathbf{z}_1, \dots, \mathbf{z}_L])] p_0([\mathbf{z}_1, \dots, \mathbf{z}_L])$$

Architectural Generation Model

$$h_L = g_L(\mathbf{z}_L)$$

$$h_i = g_i([\mathbf{z}_i, h_{i+1}]), \quad i = 1, 2, \dots, L - 1$$

$$\mathbf{x} \sim \mathcal{N}(h_1, \sigma^2 I_D)$$

Joint Latent Space EBM

Figure: Illustration.

Experiments

Hierarchical Representation Learning

Figure: Latent traverse.

Figure: Hierarchical sampling on MNIST.

Figure: Hierarchical sampling on SVHN.

Background: Multi-layer Generator Model

Expressivity

Method	SVHN	CelebA-64
ABP	49.71	51.50
LVAE	39.26	53.40
BIVA	31.65	33.58
SRI	35.23	36.84
VLAE	43.95	44.05
2s-VAE	42.81	44.40
RAE	40.02	40.95
NCP-VAE	33.23	42.07
Multi-NCP	26.19	35.38
LEBM	29.44	37.87
Ours	24.16	32.15

Table: $IS(\uparrow)$ and $FID(\downarrow)$ on CIFAR-10.

Figure: Visualization of Latent Space.

Figure: Long-run Langevin traverse.