Discrete case	Continuous case
$a_{ij} \leftarrow \text{transProbs}[i, j]$	
$b_i(k) = \text{emissionProbs[i, k]}$	$b_i(k) = \mathcal{N}(\mu_i, \sigma_i) \Big _{X=k}$
$\forall t, i; \alpha_t(i) = \left[\sum_{j=0}^{N-1} $	$\alpha_{t-1}(j) \cdot a_{ji} \left] \cdot b_i(\mathcal{O}_t)$
$\forall t, i; \beta_t(i) = \sum_{j=0}^{N-1} a_{ji} \cdot b_j(\mathcal{O}_{t+1}) \cdot \beta_{t+1}(j)$	
$\forall t, i; \tilde{\gamma}_t(i) = \alpha_t(i) \cdot \beta_t(i)$ $\forall t; \text{denom}_t = \sum_{i=0}^{N-1} \tilde{\gamma}_t(i)$	
$\forall t, i; \gamma_t(i) = \tilde{\gamma}_t(i) / \text{denom}_t$	
$\forall t, i; \tilde{\xi}_t(i, j) = \alpha_t(i) \cdot a_{ij} \cdot \beta_{t+1}(j) \cdot b_j(\mathcal{O}_{t+1})$ $\forall t, i; \xi_t(i, j) = \tilde{\xi}_t(i, j) / \text{denom}_t$	
$\forall i; n_i = \sum_{t=0}^{T-1} \gamma_t(i)$	
$\forall i, j; a_{ij}^+ \leftarrow \sum_{t=1}^{T-1} \xi_t(i, j) / n_i$	
$\forall i, k; \ b_i(k) \leftarrow \sum_{t \neq \mathcal{O}_t = k} \gamma_t(i) / n_i$	$\forall i; \mu_i \leftarrow \sum_t \left[\gamma_t(i) \cdot \mathcal{O}_t \right] / n_i$ $\forall i, \sigma_i^2 \leftarrow \sum_t \left[\gamma_t(i) \cdot (\mathcal{O}_t - \mu_i)^2 \right] / n_i$
	$= \sum_{t} \left[\gamma_{t}(i) \cdot \mathcal{O}_{t}^{2} \right] / n_{i} - \mu_{i}^{2}$