

Stochastic Integration by Parts and Functional Itô Calculus

Advanced Courses in Mathematics CRM Barcelona

Centre de Recerca Matemàtica

Managing Editor: Enric Ventura

More information about this series at http://www.springer.com/series/5038

Stochastic Integration by Parts and Functional Itô Calculus

Editors for this volume:

Frederic Utzet, Universitat Autònoma de Barcelona Josep Vives, Universitat de Barcelona

Vlad Bally Université de Marne-la-Vallée Marne-la-Vallée, France

Rama Cont Department of Mathematics Imperial College London, UK

and

Centre National de Recherche Scientifique (CNRS) Paris, France

Lucia Caramellino Dipartimento di Matematica Università di Roma "Tor Vergata" Roma Italy

Rama Cont dedicates his contribution to Atossa, for her kindness and constant encouragement.

ISSN 2297-0304 ISSN 2297-0312 (electronic)
Advanced Courses in Mathematics - CRM Barcelona
ISBN 978-3-319-27127-9 ISBN 978-3-319-27128-6 (eBook)
DOI 10.1007/978-3-319-27128-6

Library of Congress Control Number: 2016933913

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This book is published under the trade name Birkhäuser.

The registered company is Springer International Publishing AG (www.birkhauser-science.com)

Foreword

During July 23th to 27th, 2012, the first session of the *Barcelona Summer School on Stochastic Analysis* was organized at the Centre de Recerca Matemàtica (CRM) in Bellaterra, Barcelona (Spain). This volume contains the lecture notes of the two courses given at the school by Vlad Bally and Rama Cont.

The notes of the course by Vlad Bally are co-authored with her collaborator Lucia Caramellino. They develop integration by parts formulas in an abstract setting, extending Malliavin's work on abstract Wiener spaces, and thereby being applicable to prove absolute continuity for a broad class of random vectors. Properties like regularity of the density, estimates of the tails, and approximation of densities in the total variation norm are considered. The last part of the notes is devoted to introducing a method to prove existence of density based on interpolation spaces. Examples either not covered by Malliavin's approach or requiring less regularity are in the scope of its applications.

Rama Cont's notes are on Functional Itô Calculus. This is a non-anticipative functional calculus extending the classical Itô calculus to path-dependent functionals of stochastic processes. In contrast to Malliavin Calculus, which leads to anticipative representation of functionals, with Functional Itô Calculus one obtains non-anticipative representations, which may be more natural in many applied problems. That calculus is first introduced using a pathwise approach (that is, without probabilities) based on a notion of directional derivative. Later, after the introduction of a probability on the space of paths, a weak functional calculus emerges that can be applied without regularity conditions on the functionals. Two applications are studied in depth; the representation of martingales formulas, and then a new class of path-dependent partial differential equations termed functional Kolmogorov equations.

We are deeply indebted to the authors for their valuable contributions. Warm thanks are due to the Centre de Recerca Matemàtica, for its invaluable support in the organization of the School, and to our colleagues, members of the Organizing Committee, Xavier Bardina and Marta Sanz-Solé. We extend our thanks to the following institutions: AGAUR (Generalitat de Catalunya) and Ministerio de Economía y Competitividad, for the financial support provided with the grants SGR 2009-01360, MTM 2009-08869 and MTM 2009-07203.

Frederic Utzet and Josep Vives

Contents

Ι		egration by Parts Formulas, Malliavin Calculus, l Regularity of Probability Laws			
	Vla	nd Bally and Lucia Caramellino	1		
Pı	eface	}			
1	Inte	egration by parts formulas and the Riesz transform	ę		
	1.1	Sobolev spaces associated to probability measures	11		
	1.2	The Riesz transform	13		
	1.3	Malliavin–Thalmaier representation formula	15		
	1.4	Estimate of the Riesz transform	17		
	1.5	Regularity of the density	21		
	1.6	Estimate of the tails of the density	23		
	1.7	Local integration by parts formulas and local densities	25		
	1.8	Random variables	27		
2	Con	struction of integration by parts formulas	33		
	2.1	Construction of integration by parts formulas	34		
		2.1.1 Derivative operators	34		
		2.1.2 Duality and integration by parts formulas	36		
		2.1.3 Estimation of the weights	38		
		2.1.4 Norms and weights	47		
	2.2	Short introduction to Malliavin calculus	50		
		2.2.1 Differential operators	50		
		2.2.2 Computation rules and integration by parts formulas	57		
	2.3	Representation and estimates for the density	62		
	2.4	Comparisons between density functions	64		
		2.4.1 Localized representation formulas for the density	64		
		2.4.2 The distance between density functions	68		
	2.5	Convergence in total variation for a sequence of Wiener functionals	73		
3	Reg	gularity of probability laws by using an interpolation method	83		
	3.1	Notations	83		
	3.2	Criterion for the regularity of a probability law	84		
	3.3	Random variables and integration by parts	91		
	3.4	Examples	94		
		3.4.1 Path dependent SDE's	94		
		3.4.2 Diffusion processes	95		
		3.4.3 Stochastic heat equation	97		

viii Contents

	3.5	Appendix A: Hermite expansions and density estimates $\ \ \ldots \ \ \ldots$	100
	3.6	Appendix B: Interpolation spaces	106
	3.7	Appendix C: Superkernels	108
Bi	bliogi	raphy	111
II	Ec	unctional Itô Calculus and Functional Kolmogorov quations	115
Pr	eface		117
4	Ove	rview	119
	4.1	Functional Itô Calculus	119
	4.2	Martingale representation formulas	120
	4.3	Functional Kolmogorov equations and path dependent PDEs	121
	4.4	Outline	121
5	Path	nwise calculus for non-anticipative functionals	125
	5.1	Non-anticipative functionals	126
	5.2	Horizontal and vertical derivatives	128
		5.2.1 Horizontal derivative	129
		5.2.2 Vertical derivative	130
		5.2.3 Regular functionals	131
	5.3	Pathwise integration and functional change of variable formula	135
		5.3.1 Pathwise quadratic variation	135
		5.3.2 Functional change of variable formula	139 142
	5.4	Functionals defined on continuous paths	142 145
	$5.4 \\ 5.5$	Application to functionals of stochastic processes	$143 \\ 151$
6	Tho	functional Itô formula	153
U	6.1	Semimartingales and quadratic variation	153
	6.2	The functional Itô formula	155
	6.3	Functionals with dependence on quadratic variation	158
7	Wea	k functional calculus for square-integrable processes	163
	7.1	Vertical derivative of an adapted process	164
	7.2	Martingale representation formula	167
	7.3	Weak derivative for square integrable functionals $\ \ldots \ \ldots \ \ldots$	169
	7.4	Relation with the Malliavin derivative	172
	7.5	Extension to semimartingales	175
	7.6	Changing the reference martingale	179

Contents ix

8	Fun	ctional Kolmogorov equations (with D. Fournié)	183
	8.1	Functional Kolmogorov equations and harmonic functionals	184
		8.1.1 SDEs with path dependent coefficients	184
		8.1.2 Local martingales and harmonic functionals	186
		8.1.3 Sub-solutions and super-solutions	188
		8.1.4 Comparison principle and uniqueness	189
		8.1.5 Feynman–Kac formula for path dependent functionals	190
	8.2	FBSDEs and semilinear functional PDEs	191
	8.3	Non-Markovian control and path dependent HJB equations	193
	8.4	Weak solutions	196