Planification d'itinéraires pour véhicules électriques Considération du temps d'attente et regroupement de bornes

Jaël Champagne Gareau

Séminaire INF889B Département d'informatique Université du Québec à Montréal

5 février 2020

Plan de la présentation

- 1 Mise en contexte et Motivation
- 2 Formalisme
- 3 Techniques existantes
 - Energy A*
 - Contraction hiérarchique de graphes
- 4 Contributions et résultats
 - Considération du temps d'attente
 - Regroupement de bornes
- 5 Algorithme complet

Pourquoi des véhicules électriques?

Mise en contexte et Motivation

•00000

Moins de GES

Plus économique à long terme

Moins bruyant

Moins d'entretien

Marché mondial des VÉ 2010-2018 1

http://www.ev-volumes.com/country/total-world-plug-in-vehicle-volumes

Prédiction de l'évolution des ventes de VÉ²

Sources: Data compiled by Bloomberg New Energy Finance, Marklines

5 / 45

2. Bloomberg, 25 février 2016, https://www.bloomberg.com/features/2016-ev-oil-crisis/

Jaël Champagne Gareau UQÀM Planification pour VÉ 5 février 2020

Comparaison entre un véhicule conventionnel et un VÉ

	Honda Civic	Nissan Leaf
Prix (C\$) ³	17 890 \$	42 298 \$
Autonomie	750 km	363 km
Temps de recharge	3 min	30 min
Stations service / Bornes de recharge 4	2924	225

Jaël Champagne Gareau UQÀM

^{3.} Modèle 2019, excluant les subventions gouvernementales

^{4.} Au Québec en 2019

- Le nombre de bornes rapide pour VÉ croit moins vite que le nombre de VÉ.
- L'attente risque d'augmenter.
- Certaines régions sont mal desservies.
- Les longs trajets nécessitent une ou plusieurs recharges.

Objectif

Avoir un planificateur d'itinéraires pour VÉ qui :

- tient compte des caractéristiques propres aux VÉ;
- considère les recharges à des bornes en milieu de trajet;
- 3 considère le temps d'attente à chaque borne ;
- minimise le temps de calcul.

7 / 45

Exemple visuel de la problématique

Formalisme - Problème

Réseau routier

Un réseau routier est représenté par un graphe orienté valué (V, E, λ) et par un ensemble S où :

- V est l'ensemble des positions considérées sur la carte ;
- E est l'ensemble des segments de routes ;
- \blacksquare $\lambda : E \to \mathbb{R}^+$ donne la longueur des arcs (ex : en km);
- \blacksquare *S* est l'ensemble des bornes de recharges (on suppose $S \subseteq V$).

Formalisme – Problème

Réseau routier

Un réseau routier est représenté par un graphe orienté valué (V, E, λ) et par un ensemble S où :

- V est l'ensemble des positions considérées sur la carte ;
- *E* est l'ensemble des segments de routes ;
- $\blacksquare \lambda : E \to \mathbb{R}^+$ donne la longueur des arcs (ex : en km);
- \blacksquare *S* est l'ensemble des bornes de recharges (on suppose $S \subseteq V$).

Planification pour VÉ

Un problème de planification pour VÉ (PPVÉ) est défini par le tuple $(M, \rho, \alpha, \omega)$ où :

- *M* est le réseau routier :
- $\rho \in \mathbb{R}^+$ est l'autonomie du VÉ (en km);
- $\alpha, \omega \in V$ sont les nœuds de départ et d'arrivée.

Formalisme - Solution

Solution

Une solution à un PPVÉ $(M, \rho, \alpha, \omega)$ est un tuple (P, Q), où

- \blacksquare $P \subseteq V$ est la suite de nœuds à traverser dans la solution ;
- \square $Q \subseteq P$ contient les bornes où charger (et α, ω);
- $\forall i, d(Q_i, Q_{i+1}) \leq \rho$, où d est la distance dans le graphe.

10 / 45

Formalisme – Solution

Solution

Mise en contexte et Motivation

Une solution à un PPVÉ $(M, \rho, \alpha, \omega)$ est un tuple (P, Q), où

- \blacksquare $P \subseteq V$ est la suite de nœuds à traverser dans la solution :
- \square $Q \subseteq P$ contient les bornes où charger (et α, ω);
- $\forall i, d(Q_i, Q_{i+1}) \leq \rho$, où d est la distance dans le graphe.

Solution optimale

Une solution optimale est une solution (P, Q) qui minimise

$$Z(P, Q) = DT(P) + CT(Q) + WT(Q),$$

où DT, CT et WT donnent le temps espéré de déplacement, de charge et d'attente.

Planificateur de base

Algorithme

Pour trouver le chemin le plus rapide de α à ω :

- Une matrice des distances entre chaque paire de bornes est précalculée ;
- La distance de α jusqu'à chaque borne, et de chaque borne jusqu'à ω est calculée (algorithme de Dijkstra 2 fois);
- Un graphe complet (V', E') est construit, où $V' = S \cup \{\alpha, \omega\}$.
- Les arcs plus longs que ρ sont retirés du graphe;
- L'algorithme de A* de α à ω est lancé sur le nouveau graphe.

La complexité asymptotique temporelle totale est $\mathcal{O}(|V| \log |V| + |E|)$.

Recharge à des bornes en milieu de trajet

Éléments à considérer

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)

Algorithme complet

Éléments à considérer

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)
- Calcul rapide de l'itinéraire

Éléments à considérer

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)
- Calcul rapide de l'itinéraire
- Minimisation du temps d'attente

Energy A*

Energy A*

Mise en contexte et Motivation

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)⁵
- Calcul rapide de l'itinéraire
- Minimisation du temps d'attente

^{5.} Sachenbacher, M., M. Leucker, A. Artmeier, et J. Haselmayr (2011). Efficient Energy-Optimal Routing to LOCAM
Electric Vehicles. In Proceedings of the AAAL pp. 1402–1402. AAAL P. Electric Vehicles. In Proceedings of the AAAI, pp. 1402–1407. AAAI Press.

Energy A* — Idée

- Considérer le poids des arêtes comme étant $c = c_L + c_P$;
- $C_L(e) = E_L(\ell(e), s(e))$, est la perte d'énergie dûe à l'environnement;
- $C_P(a,b) = \pi(b) \pi(a)$ est la différence d'énergie potentielle ;
- \(\ell(e)\) est la longueur de l'arête;
- s(e) est la limite de vitesse du segment de route;
- Il peut y avoir des arêtes négatives;
- Pas de cycle négatif.

Energy A* — Illustration

Energy A* — Algorithme

- Utiliser l'algorithme de Johnson pour réétiqueter les arêtes;
- Utiliser A* pour trouver le chemin optimal;
- L'heuristique est donnée par $E_L(||(a,b)||, s_{min})$;

Contraction de graphes

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)
- Calcul rapide de l'itinéraire 6
- Minimisation du temps d'attente

6. Geisberger, R., Sanders, P., Schultes, D., Vetter, C.: Exact Routing in Large Road Networks Using Connection Hierarchies. Transportation Science 46(3), 388-404 (2012)

Contraction de graphes — Idée

- Dans un graphe routier, la majorité des arêtes sont des routes secondaires;
- La majeure partie de chaque trajet se fait sur des autoroutes;
- On voudrait créer des raccourcis dans le graphe en ajoutant des arêtes.

Contraction hiérarchique de graphes

Contraction de graphes — Construction des contractions

Définition

Soit un noeud N ayant des arêtes entrantes partant des noeuds $\{u_1, u_2, \dots, u_k\}$ et ayant des arêtes sortantes allant aux noeuds $\{v_1, v_2, \dots, v_p\}$. La contraction du noeud N se fait en :

- retirant N et ses arêtes incidentes :
- ajoutant une arête entre chaque u_i et v_i tels que $\langle u_i, N, v_i \rangle$ est un plus court chemin de u_i à v_i .

Contraction de graphes — Construction des contractions

Définition

Soit un noeud N ayant des arêtes entrantes partant des noeuds $\{u_1, u_2, \dots, u_k\}$ et ayant des arêtes sortantes allant aux noeuds $\{v_1, v_2, \dots, v_p\}$. La contraction du noeud N se fait en :

- retirant N et ses arêtes incidentes :
- **a** ajoutant une arête entre chaque u_i et v_i tels que $< u_i, N, v_i >$ est un plus court chemin de u_i à v_i .
- Soit $S = \{s_1, s_2, \dots, s_n\}$ un ordonnancement des noeuds du graphe;
- On contracte les noeuds un par un dans cet ordre :
- G* est le graphe qui contient tous les noeuds et les arêtes initiales, ainsi que les raccourcis ajoutés par les contractions.

Contraction de graphes — Exemple 1/2

Contraction de graphes — Exemple 1/2

20 / 45

Mise en contexte et Motivation

Contraction de graphes — Exemple 1/2

Contraction de graphes — Exemple 2/2

Contraction de graphes — Requête de s à t

- \blacksquare $G^*\uparrow = (S, \{(u, v) \in E : v > u\})$
- $G^* \downarrow = (S, \{(u, v) \in E : v < u\})$
- Faire un Dijkstra dans $G^* \uparrow$ à partir de s
- Faire un Dijkstra inversé dans $G^* \downarrow$ à partir de t
- Soit X l'ensemble des noeuds visités par les deux Dijkstras
- $d(s,t) = \min_{v \in X} (d(s,v) + d(v,t))$

22 / 45

Temps d'attente

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)
- Calcul rapide de l'itinéraire
- Minimisation du temps d'attente

Mise en contexte et Motivation

Temps d'attente — Motivation

- Sans considération de l'occupation, on obtient (Départ, Borne1, Arrivée)
- E[temps d'attente B1] = 0.8 * 15 = 12 min
- *E*[temps d'attente B2] = 0.1 * 15 = 1.5 min
- On attend en moyenne 12 1.5 = 10.5 min de plus à B1

FIGURE - Problème lorsqu'on ne considère pas l'occupation des bornes

Temps d'attente — Technique 1

- Utilisation des données historiques de chaque borne b.
- Réétiquetage du graphe pour considérer ces données.

Données d'occupation à priori

Pour chaque borne b, la probabilité dynamique d'occupation est donnée par :

$$f_b \colon \{Lundi, \dots, Dimanche\} \times \{0..23\} \to [0, 1]$$

 $(d, h) \mapsto \mathbb{P}(b \text{ est occupée} \mid Jour = d \land Heure = h).$

et le temps d'attente espéré lorsqu'occupée est donné par :

$$g_b \colon \{Lundi, \dots, Dimanche\} \times \{0..23\} \to \mathbb{R}^+$$

Réétiquetage dynamique

Étiquetage considérant le temps d'attente

Soit $e = (u, v) \in E$. On définit l'étiquetage dynamique comme étant

$$\xi \colon \textit{E} \times \{\textit{Lundi}, \dots, \textit{Dimanche}\} \times \{0..23\} \to \mathbb{R}^+$$

$$\xi(\textit{e},\textit{d},\textit{h}) = \begin{cases} \lambda(\textit{e}) & \text{si } \textit{u} \notin \textit{S} \\ \lambda(\textit{e}) + \textit{f}_\textit{u}(\textit{d},\textit{h}) \cdot \textit{g}_\textit{u}(\textit{d},\textit{h}) \cdot \mu(\textit{e}) & \text{si } \textit{u} \in \textit{S} \end{cases}$$

- Le poids des arcs dépend maintenant du temps d'arrivée;
- on doit donc modifier l'algorithme de recherche de chemins (ex : Dijkstra/A*) 7.

26 / 45

7. Daniel Delling and Dorothea Wagner. 2009. Time-dependent route planning. In Lecture Notes in Computational Science, Vol. 5868 LNCS 207, 220. https://doi.org/10.1007/2019 Science, Vol. 5868 LNCS. 207-230. https://doi.org/10. 1007/978-3-642-05465-5 8

Temps d'attente — Effet sur les plans obtenus

Chemin retourné par le planificateur lundi midi vs mardi midi

Défauts de la technique précédente

- Elle n'utilise que des données connues à priori :
- Le temps d'attente réel peut être bien pire que prévu;
- Nous supposons qu'on a accès au temps d'attente en temps réel lorsqu'on conduit:
- On peut alors réduire le temps de calcul en précalculant des plans alternatifs.

Deux cas extrêmes

- Pas de chemins alternatifs :
- In the politique totale π : État \rightarrow Action (ex : obtenue avec un MDP)

Nous voulons un compromis entre ces deux cas.

28 / 45

Temps d'attente — Technique 2

Générer un chemin alternatif pour chaque borne sur le chemin initial.

Temps d'attente — Technique 2

Générer un chemin alternatif pour chaque borne sur le chemin initial.

Temps d'attente — Technique 2

Générer un chemin alternatif pour chaque borne sur le chemin initial.

Mise en contexte et Motivation

Temps d'attente — Technique 2

Algorithme 1 Génération de chemins alternatifs

```
    chemin de base ← planificateur de base (incluant technique 1)
```

- pour toute $s_i \in Q$ faire
- supposer temporairement que $f_{s_i} \equiv 1$ 3: ⊳ Simule que s_i est occupée
- nouveau chemin ← planificateur de base (incluant technique 1) 4:
- 5. si nouveau chemin = ancien chemin alors
- continue > Pas d'alternative pour cette borne 6:
- $b_i \leftarrow$ dernier nœud en commun du préfixe des deux chemins 7:
- 8: mettre le nouveau chemin comme alternative sur le nœud bi

L'algorithme nous retourne la politique partielle

$$\pi \colon V \to V^{2}$$

$$\pi(x) = \begin{cases} (s_{i+1}, -) & \text{if } x = s_{i} \land \nexists b_{i+1} \\ (b_{i}, -) & \text{if } x = s_{i} \land \exists b_{i+1} \\ (s_{i}, c_{i1}) & \text{if } x = b_{i} \\ (c_{i,i+1}, -) & \text{if } x = c_{ij}, \end{cases}$$

Utilisation de la politique

Algorithme 2 Exécution du plan

```
1: procédure EXECUTER_PLAN(\pi)
2: n \leftarrow \alpha
```

- 3: tant que $n \neq \omega$ faire
- 4: $(x,y) \leftarrow \pi(n)$
- 5: **si** $y = \lor \neg \text{occup\'ee}(x)$ **alors**
- 6: *n* ← *x*
- 7: sinon
- 8: *n* ← *y*
- 9: déplacer le VÉ jusqu'au nœud n

Méthodologie de test

- Les données réelles de la carte proviennent du projet OpenStreetMap.
- Les données des bornes (position et données historique d'occupation) proviennent du Circuit Électrique.
- Le territoire utilisé est la province du Québec :
 - 2 923 013 nœuds;
 - 5 907 672 arcs;
 - 1318 bornes de recharge (1178 L2 et 140 L3).
- 1000 requêtes générées :
 - Autonomie variant entre 100 et 550 km;
 - \blacksquare α et ω sont choisis au hasard parmi tous les nœuds;
 - Longueur des itinéraires entre 200 et 1500 km

Mise en contexte et Motivation

Temps d'attente — Résultats

Paramètres		Base		Réétiquetage				Chemins alternatifs			
RB	MP	А	AD	Α	AD .	RA	RT	Α	AD	RA	RT
		min	min	min	min	%	min	min	min	%	min
R140	× 1	10.2	350.1	3.3	343.9	-67.5	-6.2	2.2	342.8	-78.8	-7.2
R140	× 2	22.7	362.5	6.0	347.0	-73.6	-15.5	4.1	345.3	-82.0	-17.2
R140	× 3	37.5	377.3	7.7	349.0	-79.3	-28.3	7.2	348.5	-80.9	-28.7
R140	Aléa	51.3	391.2	10.9	352.6	-78.7	-38.5	9.8	351.6	-80.9	-39.5
R1318	× 1	19.4	356.0	2.2	339.2	-88.6	-16.7	1.7	338.7	-91.5	-17.3
R1318	× 2	37.5	374.0	4.0	341.2	-89.3	-32.8	3.0	340.3	-92.0	-33.7
R1318	× 3	50.5	387.1	6.5	343.9	-87.1	-43.1	4.7	342.3	-90.6	-44.8
R1318	Aléa	62.0	398.6	6.9	345.3	-88.8	-53.3	6.0	344.4	-90.4	-54.2
A250	Aléa	29.3	368.2	12.0	354.2	-59.0	-13.9	10.3	353.1	-64.8	-15.1
A500	Aléa	28.9	363.4	9.4	346.9	-67.6	-16.5	8.3	346.1	-71.2	-17.3
A1000	Aléa	28.7	362.5	7.4	343.8	-74.2	-18.7	6.5	343.1	-77.3	-19.4
A2000	Aléa	27.1	359.9	4.9	340.0	-81.9	-19.9	3.8	339.0	-86.0	-20.9

RB: Réseau de bornes (où R = réelles et A = artificielles):

MP: Modificateur des probabilités; A: Temps d'attente moyen; AD: Temps total moyen (Attente + Déplacement); RA: Réduction de l'attente (vs Base); RT: Réduction du total (vs Base).

Regroupement de bornes

Mise en contexte et Motivation

Regroupement de bornes

- Recharge à des bornes en milieu de trajet
- Récupération d'énergie par le véhicule (topographie, freinage, etc.)
- Calcul rapide de l'itinéraire
- Minimisation du temps d'attente

Regroupement de bornes — Idée

- II y a 140 bornes rapides (L3) et 1178 bornes L2;
- La plupart d'entres elles sont situées dans les mêmes secteurs (grandes villes, sites touristiques, etc.);
- Regrouper les bornes rapprochées diminuerait grandement la taille du graphe.

Regroupement de bornes — Idée

Regroupement de bornes — Algorithme

 d_{max} : distance maximale entre une borne et le nœud central de son regroupement

Algorithme 3 Génération des regroupements de bornes de recharge

- 1: Trouver les bornes $S_1, S_2 \in S$ les plus rapprochées
- 2: tant que distance $(S_1, S_2) \le d_{\text{max}}$ faire
- 3: Trouver le nœud m à mi-chemin de S_1 et S_2
- 4: Trouver $C = \{s \in S | dist(s, m) \leq d_{max}\}$

$$\triangleright \textit{S}_{1},\textit{S}_{2} \in \textit{C}$$

- 5: $S \leftarrow (S \setminus C) \cup \{m\}$
- 6: Trouver les bornes $S_1, S_2 \in S$ les plus rapprochées

La complexité temporelle du regroupement est $\mathcal{O}(K(|S|^2 + |V|))$ où K est le nombre de clusters générés.

Regroupement de bornes — Modification à l'autonomie

Ajustement de l'autonomie considéré

Pour que le chemin retourné par le planificateur soit réalisable, l'autonomie considérée doit être :

- $\rho' = \rho d_{\text{max}}$ pour le premier et dernier regroupement;
- $\rho' = \rho 2d_{\text{max}}$ entre les regroupements.

Regroupement de bornes — Résultats

Param	iètres	Regroup	ements	Version	on base	Version amortie	
Bornes	$d_{\sf max}$	Regroup.	JDIR	FR	CT	FR	CT
#	km	#	%	%	ms	%	ms
1162	0.0	1162	0.0	0.0	26.563	0	26.563
1162	2.5	487	0.0	0.0	3.385	0	3.385
1162	5.0	342	0.2	0.4	1.541	0	1.647
1162	10.0	236	0.2	0.8	0.588	0	0.801
1162	15.0	188	0.6	0.9	0.523	0	0.762
1162	20.0	150	1.0	1.4	0.382	0	0.754
1162	30.0	111	2.3	2.0	0.265	0	0.796
1162	40.0	87	2.8	8.2	0.226	0	2.404

JDIR: Journey duration increase rate; FR: Failure rate; CT: Computation time

Regroupement de bornes — Résultats

Algorithme global

Algorithme 4 Planification complète pour VÉ

- 1: Calculer la matrice D et le chemin le plus court reliant chaque paire de bornes
- Construire le s-graphe contenant chaque borne de recharge
- 3: pour toute requête (ρ, α, ω) faire
- Exécuter Dijkstra partant de α sur le graphe original 4:
- Exécuter Dijkstra partant de ω sur le graphe transposé 5.
- Ajouter α et ω au s-graphe et ajouter les arcs de longueur $< \rho$ 6.
- Exécuter l'algorithme A* de α à ω sur le s-graphe pour trouver la suite Q7:
- si le chemin est impossible alors 8. ⊳ Stratégie amortie
- Exécuter A* sur le s-graphe (sans regroupements) pour trouver Q 9:
- Trouver la suite P à l'aide de Q en utilisant les chemins déjà calculés 10:
- Retirer α et ω du s-graphe et réajuster les arcs 11:
- Envoyer la solution (P, Q)12:

Exemple 1/3: Réseau routier

Range = 8
$$d_{max} = 2$$

$$\alpha = \mathbf{A}$$

$$\omega = \mathbf{Z}$$

Exemple 2/3: Regroupement de bornes

Range = 8
$$d_{max} = 2$$

$$\alpha = \mathbf{A}$$

$$\omega = \mathbf{Z}$$

43 / 45

5 février 2020

Algorithme complet

Exemple 3/3: Construction du graphe simplifié

Algorithme complet ○○○●○

Conclusion

- Le regroupement de bornes de recharge permet de réduire d'un facteur 35 le temps de calcul:
- Les techniques pour la considération de l'attente ont divisé par 4 le temps d'attente (17.3 minutes de moins en moyenne).

Reconnaissance

Fonds de recherche sur la nature et les technologies

Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG) et le Fonds de recherche du Québec — Nature et technologies (FRQNT).

