Weak 2-randomness

Daniel Osherson and Scott Weinstein, Recognizing Strong Random Reals, 2008

Summary

- A random real should be impossible for us to compute
 - Not just directly, but also with machines that have the right bits as limiting values ("computably approximable")
- or to computably recognize as it streams in bit by bit
 - o with a machine that maps $2^{<\omega} \rightarrow \{Yes, No\}$
- These operations motivate "strong M-L" tests
 - $^{\circ}$ These are M-L tests but where the decreasing measure is not bounded by 2^{-n} (hence the name "strong 1-randomness")
 - $^{\circ}$ These are exactly the Π_2^0 sets of measure 0 (hence the name "weak 2-randomness")

Review: Borel hierarchy

- $^{\circ}$ Σ_1^0 : effectively open; unions of prefix-free cylinders
- ° Π_1^0 : effectively closed; complement of Σ_1^0
- ° Σ_2^0 : countable union of uniformly Π_1^0 sets (WLOG: nested)
- ° Π_2^0 : countable intersection of uniformly Σ_1^0 sets (WLOG: nested)

Computably approximable

aka limiting recursive

- O Computable sequence $P: \mathbb{N} \to \{0,1\}$. It emits bit j, marked final, and terminates.
- o The *limiting* version converges to a bit: $P: \mathbb{N} \to 2^{\omega}$, s.t. $\lim_{n \to \infty} P(j)_n$ exists for all j.
 - $^{\circ}$ Epistemic Note: as observers at finite time n we don't get to know if the limit is achieved

3 a computably approximable ML random

o Chaitin's
$$\Omega = \sum_{\sigma \in \text{dom} \mathcal{U}} 2^{-|\sigma|}$$
 is ML-random number

- o approximable from below by $\Omega_s = \sum_{\mathcal{U}(\sigma)[s]\downarrow} 2^{-|\sigma|}$
- $^{\circ}~\mathcal{U}$ is a universal prefix-free compression machine implementing Kolmogorov complexity.
- $^{\circ}$ So Ω is a left-c.e. real
- Hence computably approximable (each digit can be computed in finite steps)
- Such computability should be non-random, so let's tighten the definition.

Generalized ML tests

- O Uniformly Σ_1^0 sets $\{U_n\}$ with $\mu\left(\bigcap_n U_n\right)=0$
 - ° drops the condition $\mu\left(U_{n}\right) \leq 2^{-n}$ from ML randomness
 - $^{\circ}$ WLOG: U_n are nested, and each is a union of cylinders $[W_n]$ for some c.e. collection of prefix-free strings $W_n \subset 2^{<\omega}$
 - $^{\circ}$ O&W name the uniform enumeration f, so f_i is an enumeration of W_i
 - o equivalently $\lim_{n\to\infty}\mu(U_n)=0$
 - \circ a Π_2^0 set of measure 0
- o hence: there are more such tests than ML-randomness, and fewer randoms
- o also called: strong 1-randomness, weak 2-randomness

Weak 2-randoms are not computably approximable

- o weak 2-random \Longrightarrow no computable approximation
- o contrapositive: if x is c.a., i.e. $\exists P \lim_{n \to \infty} P(i)_n = x_i \implies x \in \bigcap_i [W_{f(i)}]$
- $^{\circ}$ Given P,
 - \circ Define $\langle j \rangle$, a sequence of length j, by $\langle j \rangle(i) = P(i)_j$
 - ° call this a "P-output": we have run P for j steps and j is also the length
 - $\circ W_{f(n)} = \{ \sigma \in 2^{<\omega} : (|\sigma| = n) \text{ and } \exists j > n . \sigma \subset \langle j \rangle \}$
 - $^{\circ}$ sequences of length n that are prefixes of P-outputs

$$[W_{f(n)}] \supseteq [W_{f(n+1)}]$$

Being a prefix of some $\langle j \rangle$ means your prefixes are as well.

If P limit-computes x then

$$\forall n \,\exists j \,.\, x[n] = \langle j \rangle [n].$$

Eventually P gets the first n bits of x right.

If $y \neq x$ then

$$\forall n \exists j . \forall k \geq j . y[n] \neq \langle k \rangle[n]$$

if you differ from x at some bit, then eventually so does $\langle k \rangle$.

$$\therefore \bigcap_{n} [W_{f(n)}] = \{x\} \text{ and so } f \text{ is a}$$

GML test

Weak 2-tests = computable learners

- ° Computable learner: $L: 2^{<\omega} \to \{\text{Yes}, \text{No}\}$
- \circ L recognizes $x \in 2^{\omega}$ if $\exists S . \mu(S) = 0, x \in S$, and s.t. $y \in S \iff L(y[n]) = Y$ es infinitely often
 - O Note: this means $\{L(y[n])\}$ does not converge to No (might or might not converge to Yes)
 - $^{\circ}$ It's like saying "I never stop resonating with x and its friends in S"
 - O Note: later we'll consider learners that converge to Yes
 - $^{\circ}$ Note: having a whole set S that the learner recognizes instead of just x is confusing!
- $^{\circ}$ Claim: strong ML test $\iff L$

Given a learner L for a set $X \ni x$

 $W_{f(n)} = \{b \in 2^{<\omega} : \exists c \subset b, |c| \geq n, L(c) = \text{Yes} \}$ descending chain because such c works for level n-1 as well.

$$\bigcap_{n} [W_{f(n)}] = S \operatorname{so} f \operatorname{is a GML test.}$$

Given a GML test f

Enumerate the elements of

$$W_{f(n)}:W_{f(n),1},W_{f(n),2},\dots$$
 these are each single strings w/ two parameters

Define $g: 2^{<\omega} \to \mathbb{N}$ by $g(b) = \max(\{j : \exists \sigma \subset b : \sigma \in \text{some } W_{f(j), \leq |b|}\})$ length of longest prefix seen in an expanding set

L will detect jumps in g:

For $\beta \in \{0,1\}$ define $L(b\beta) = \text{Yes if}$ $g(b\beta) > g(b)$, else No. oh look, I see a longer string in one of the GML test sets I'm visiting

Strong recognition

- $^{\circ}$ The learner L strongly recognizes x if it converges to Yes (is Yes cofinitely often in O&W's terminology).
- We will prove this is equivalent to weak 1-randomness, a.k.a. Kurtz randomness.
- $^{\circ}$ A number is Kurtz random iff it is in every measure-1 Σ_1^0 set.
- This is the largest set of randoms in the zoo.

Given a strong learner L for a set $Y \ni x \Longrightarrow x$ is not Kurtz random

$$Y_m = \{b \in 2^\omega . \forall n > m, L(b[n]) = Yes\}$$

 $\int Y_m$ is everything recognized by L

m

and $x \in \text{some } Y_m$, call it Y_k .

$$S_m = \{b \in 2^{\omega} . |b| > m \text{ and } L(b) = No\}$$

$$[S_m] = 2^\omega - Y_m.$$

 S_k is a Kurtz test and $x \notin S_k$.

 \leftarrow recognized by L starting at bit m

 $\leftarrow Y, Y_m$ measure 0 by hypothesis

 \leftarrow not recognized by L at bit m

Not Kurtz random ⇒ strongly recognized

Given S with $x \notin [S]$, $\mu([S]) = 1$.

Enumerate the elements of S:

$$S_1, S_2, \dots$$

$$L(b) = \begin{cases} \text{No } \exists \sigma \subset b . \exists i . \sigma \in S_{\leq i} \\ \text{Yes otherwise} \end{cases}$$

 $\{n: L(y[n]) = Yes\}$ is cofinite iff $y \notin [S]$, hence includes x.

 \leftarrow No means "in [S]" because to be in S means being in some S_n

Here's the Deal

We have finite minds and computing machines are good models of this.

"Random" should mean "numbers we cannot identify with our minds."

If we strongly recognize a number, it is definitely non-random. But we can weaken this and say that even more numbers are non-random.

To weakly recognize a number you have to answer "Yes" infinitely many times.

This is "minimally infinite" and so is the right demarcation line.

A couple counterpoints

- O Computable learners might spend 10 million years between Yeses.
- O Do we really recognize such a number in practical terms?
- Maybe it's OK for these to be called "random" since they are not superaccessible to us and our computers.