

Eric M. Kernfeld

Collaborative statistician and computational biologist seeking a Boston-area biotech role with opportunities to grow towards new technologies and biological questions.

Programming

Python ★★★★★

Machine learning, pipelining, data visualization, and benchmarking across multiple roles. PyTorch, numpy, scipy, Seaborn, scikit-learn, pandas, scanpy

R

Experimental design, data visualization, hypothesis testing, survival analysis, and machine learning across many roles. ggplot2, tidyverse, linear models, seurat, BioConductor

SQL

★★★☆☆
Efficient data retrieval via
manually written or automatically
constructed queries.

Julia

Fast biochemical simulations and related inverse problems.

Data Types

scRNA-seq

Used extensively in most of my research since 2016.

Perturb-seq ★★★★

Used extensively in much of my research since 2018.

ATAC-seq

Experience with end-to-end analysis of multiple types of scATAC data.

ChIP-seq

Used collections of data to screen for technical issues and test hypotheses from other sources.

Hi-C

★★☆☆
Brief experience with alignment,
QC, and background models.

Professional Experience

Diabetes Center of Excellence University of Massachusetts Medical School

Bioinformatician September 2016 – August 2020

Embedded in Rene Maehr's Laboratory for Stem Cell Biology and Applied Developmental Immunology, I supported and drove NGS-heavy projects to characterize production of thymic epithelium from pluripotent stem cells, as well as the corresponding embryonic process. We used scRNA-seq, Perturb-seq, ChIP-seq, ATAC-seq, and chromatin looping assays at various stages from endoderm (paper) to foregut (paper) to thymus (paper). I collaborated closely with stem cell biologist colleagues, and I drove projects all the way from base-calling through quality control, alignment, quantification, visualization, statistical analysis, interpretation, and in some cases construction of a publishable narrative.

Academic Experience

Department of Biomedical Engineering

Ph.D. Research Assistant

Supervised by Patrick Cahan and Alexis Battle, I built and evaluated diverse causal models of transcription. On the statistical side, we developed empirical checks of false discovery rate control on incomplete data, arguing that specific human, mouse, and *E. coli* datasets will never allow for error control in causal network inference. I collaborated with biologists to write this finding for a cell biology audience (paper). On the machine learning side, we established a benchmarking suite to evaluate counterfactual predictions. We included biologically and technologically diverse perturbation transcriptomics data. We demonstrated that a simple, previously-overlooked baseline typically outperformed diverse predictive methods (preprint), setting a new bar for gene regulatory networks and virtual cell models.

Division of Medical Genetics

Research Assistant

I contributed to analysis of age-at-onset of Alzheimer's Disease by accounting for known genetic effects (paper). I performed data visualization and survival analysis using R and PLINK.

Department of Statistics

Teaching Assistant

I lectured, prepared materials, graded, and held office hours for undergrad statistics courses.

Industry Internships

Data Science Team

Data Science Ph.D. Intern

I compared genome assemblies and antibiotic resistance predictions using short-read and long-read data, discovering key contamination events. I built a well-documented software pipeline spanning from raw Nanopore reads to biologically interpretable data displays.

Data Science Team

Statistics Intern

MedGenome, Inc.

June – August 2015

Johns Hopkins University

August 2020 - March 2025

University of Washington

University of Washington

Day Zero Diagnostics

July - September 2022

September 2014 – January 2016

January - June 2016

Using Python, I processed exome sequencing data to reduce PCR bias when identifying copy number variations. Using R, I planned experimental design for TCR sequencing.

Nanopore ★★☆☆ Brief experience with microbial genome assembly.

Software Tools

Snakemake

★★★★☆

Used at Day Zero and at UMass for NGS quantification pipelines.

Docker

Used throughout Ph.D. work.

Git

Used since 2014 as an individual with some team-project version control experience.

AWS

Used S3 and EC2 throughout Ph.D. work.

Education

Johns Hopkins University
Ph.D. Biomedical Engineering

University of Washington

M.S. Statistics

Tufts University

B.S. Mathematics, Summa Cum Laude

Baltimore, MD August 2020 – March 2025

Seattle, WA

September 2014 – June 2016 **Medford, MA**

September 2010 – May 2014

Selected Publications (†: equal contribution)

Kernfeld E., Yang Y., Weinstock J., Battle A., & Cahan P. (2023). A systematic comparison of computational methods for expression forecasting. bioRxiv, 2023-07.

Kernfeld E., Keener R., Cahan P., & Battle A. (2024). Transcriptome data are insufficient to control false discoveries in regulatory network inference. Cell Systems, 15(8), 709-724.

Kernfeld E.†, Genga R.†, Parsi K., Parsons T., Ziller M., & Maehr R. Single-Cell RNA-Sequencing-Based CRISPRi Screening Resolves Molecular Drivers of Early Human Endoderm Development. Cell Rep. 2019 Apr 16;27(3):708-718.e10.

Kernfeld E.†, Genga R.†, Neherin K., Magaletta M., Xu P., & Maehr R. (2018). A single-cell transcriptomic atlas of thymus organogenesis resolves cell types and developmental maturation. Immunity, 48(6), 1258-1270.

Kernfeld E.†, Magaletta M.†, Lobo M.†, Aliee H., Huey J., Parsons T., et al. Integration of single-cell transcriptomes and chromatin landscapes reveals regulatory programs driving pharyngeal organ development. Nat Commun. 2022 Jan 24;13(1):457.

Kearns N., Lobo M., Genga R., Abramowitz R., Parsi K., Min J, **Kernfeld E**. et al. Generation and molecular characterization of human pluripotent stem cell-derived pharyngeal foregut endoderm. Dev Cell. 2023 Sep 25;58(18):1801-1818.e15.

Blue E., Yu C., Thornton T., Chapman N., **Kernfeld E.**, Jiang N., et al. Variants regulating ZBTB4 are associated with age-at-onset of Alzheimer's disease. Genes Brain Behav. 2018 Jul;17(6):e12429.

Fischer D.†, Fiedler A.†, **Kernfeld E.**, Genga R., Bastidas-Ponce A., Bakhti M., et al. Inferring population dynamics from single-cell RNA-sequencing time series data. Nat Biotechnol. 2019 Apr 1;37(4):461–8.