CAAM 336 · DIFFERENTIAL EQUATIONS

Midterm 1

Tuesday 7 October, 2014.

Please write your name and residential college on your homework.

- 1. [25 points: 5 points each]
 - (a) Let \mathcal{V} be the space of all continuously differentiable real valued functions on [a,b] and $(\cdot,\cdot): \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ defined by

$$(f,g) = \int_{a}^{b} f(x)g(x) dx + \int_{a}^{b} f'(x)g'(x) dx$$

where $\mathcal{V} = C^1[a, b]$.

Prove that (\cdot, \cdot) is an inner product on \mathcal{V} .

- (b) Let $\mathcal{V} = C^1[a, b]$. Define $||f|| = \int_a^b |f(x)| dx + \int_a^b |f'(x)| dx$. Prove that this defines a norm on \mathcal{V} but using the fact: if a continuous function is positive anywhere, its integral is also positive.
- (c) Let V be a finite dimensional vector space with an inner product and let u be a vector in V. Let $Lu: V \to V$ be the linear operator defined by

$$Lu(v) = v - 2(v, u)u$$

for all $v \in V$. Prove that Lu is unitary, i.e., (Lu(v), Lu(w)) = (v, w) for all $v, w \in V$.

(d) Let W be inner product space defined by $(f,g) = \int_0^1 f(x)g(x) dx$ where W = C[0,1]. Using the orthonormal bases

$$\{\phi_1, \phi_2, \phi_3\} = \{1, 2\sqrt{3}(x - \frac{1}{2}), 6\sqrt{5}(x^2 - x + \frac{1}{6})\}$$

- i Find the linear polynomial p(x) that best approximates $g(x) = \sin(\pi x)$.
- ii Find the quadratic polynomial k(x) that best approximates $g(x) = \sin(\pi x)$.

Hint:

$$\int x \sin(\pi x) dx = \frac{\sin(\pi x) - \pi x \cos(\pi x)}{\pi^2} + constant$$

and

$$\int x^2 \sin(\pi x) \, dx = \frac{2\pi x \sin(\pi x) + (2 - \pi^2 x^2) \cos(\pi x)}{\pi^3} + constant$$

2. [25 points: 5 points each]

Using Backward Euler method we can approximate second derivative as follows

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial u}{\partial x} \right) \approx \frac{\partial}{\partial x} \left(\frac{u(x) - u(x - \Delta x)}{\Delta x} \right)$$

$$\approx \frac{\frac{u(x) - u(x - \Delta x)}{\Delta x} - \frac{u(x - \Delta x) - u(x - 2\Delta x)}{\Delta x}}{\Delta x}$$

$$= \frac{u(x) - 2u(x - \Delta x) + u(x - 2\Delta x)}{\Delta x^2}$$

Then

$$\frac{\partial^2 u}{\partial x^2} \approx \frac{u(x) - 2u(x - \Delta x) + u(x - 2\Delta x)}{\Delta x^2}$$

where the term $\Delta x = x_{i+1} - x_i = x_i - x_{i-1}$ represents a constant spatial interval.

(a) Show that the second order backward finite difference approximation

$$u''(x) \approx \frac{u(x) - 2u(x - \Delta x) + u(x - 2\Delta x)}{\Delta x^2}$$

has accuracy $O(\Delta x)$. In other words, if u''(x) is the exact second derivative, show that

$$\left| u''(x) - \frac{u(x + \Delta x) - 2u(x) + u(x - \Delta x)}{\Delta x^2} \right| = O(\Delta x).$$

(b) Four point backward finite difference formula for the second derivative given as follows

$$u''(x) \approx \frac{2u(x) - 5u(x - \Delta x) + 4u(x - 2\Delta x) - u(x - 3\Delta x)}{\Delta x^2}$$

Show that this approximation has accuracy $O(\Delta x)^2$.

3. [25 points: 5 points each]

The periodic heat equation, namely

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \qquad x \in [-1, 1], 0 \le t \le \infty$$

$$u(-1, t) = u(1, t) \qquad 0 \le t \le \infty$$

$$\frac{\partial u}{\partial x}(-1, t) = \frac{\partial u}{\partial x}(1, t) \qquad 0 \le t \le \infty$$

$$u(x, 0) = \cos(\pi x) \qquad x \in [-1, 1], t = 0$$

Since we cannot solve the equation exactly, we want to approximate exact solution to a finite number of points (x_i, t_j) , such that

$$\frac{\partial u(x_i, t_j)}{\partial t} = \frac{\partial^2 u(x_i, t_j)}{\partial x^2}, \quad -1 \le x_i \le 1, \qquad 0 \le t_j < \infty$$

To do so, we will approximate time and space derivative using finite difference(FD) method for $u(x_i, t_j)$ at the 5 points

$$x_0 = -1$$
, $x_1 = \frac{-1}{2}$, $x_2 = 0$, $x_3 = \frac{1}{2}$, $x_4 = 1$ and $t_0 = 0$

- (a) Using forward difference in time and central difference in space around the point (x_i, t_j) write down the FD formula for the heat equation at $-1 \le x_0, x_1, x_2, x_3, x_4 \le 1$.
- (b) Using the fact

$$u(-1,t) = u(1,t)$$
 $0 \le t < \infty$
 $\frac{\partial u}{\partial x}(-1,t) = \frac{\partial u}{\partial x}(1,t)$ $0 \le t < \infty$

Show that $u(x_{-1}, t_j) = u(x_3, t_j)$ and $u(x_5, t_j) = u(x_1, t_j)$. Note that x_{-1} and x_5 is not in our region. However using the given information we can find the values of those points. This technique is called *qhost point* or *fictitious point* idea.

(c) Using the information from (a) and (b) construct explicitly the matrix system $\mathbf{U}^{\mathbf{j+1}} = \mathbf{A}\mathbf{U}^{\mathbf{j}}$ resulting from the finite difference approximation of $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$, where

$$\mathbf{U}^{\mathbf{j}} = \begin{bmatrix} u(x_0, t_j) \\ u(x_1, t_j) \\ u(x_2, t_j) \\ u(x_3, t_j) \\ u(x_4, t_j) \end{bmatrix}.$$

Write down the matrix A and U^0 explicitly.