- Spartment of Electronics and Communication Engineering B. Tech First Semester End Semester Examinations – December 2024

EC1003E INTRODUCTION TO ELECTRONICS

Exam Date: 09-Dec-2024, 9.30 AM to 12.30 PM

Duration: 3 Hours

Max. Marks: 40

1. Obtain the equivalent resistance R_{a-b.}

(2 M)

Figure 1

2. Find the equivalent resistance between a and b (R_{a-b}) for the network shown in Fig. 2 using star-delta transformation. Assume all resistors in Fig. 2 are equal to $1k \Omega$.

Figure 2

(3.) Find **V**L in the circuit using the superposition theorem.

(3 M)

Name

(2 M)

4. Determine the RMS value for the waveform shown in the Fig 4.

Figure 4

5. Find the currents I₁, I₂ and I₃ in the circuit shown in Fig. 5.

 $200\sin(100\pi t)$

Figure 5.

j1Ω

 2Ω

6. Find the Thevenin and Norton equivalent circuits of the following network across a-b terminals.

(4 M)

Figure 6

7. Find the load impedance Z_L that maximizes the average power drawn from the circuit shown in Fig. What is the maximum average power?

8 0 (3 M)

Figure 7

Name	:.															No.
Roll No																

- 8. The voltage across a load is $v(t) = 40 \cos(\omega t + 10^{\circ})$ V and the current through the load in the direction of voltage drop is $i(t) = 1.5 \sin(\omega t + 40^{\circ})$ A. Find the complex power, apparent power, real power, reactive power, power factor, and the load Impedance. (3 M)
- 9. Find the output voltage V₀ in the circuit shown in Fig. 8. Consider the Op Amp as an ideal. (3 M)

Figure 8

10. Sketch the output $V_0(t)$, and calculate the time, t, at which $V_0(t)$ becomes 20mV. (3 M)

Figure 9

17. Sketch the output voltage $V_0(t)$ for the circuit shown in Fig. 10

Figure 10

(2 M)

12/Sketch the output voltage V₀(t) for the circuit shown in Fig. 11 and find the time constant.

Figure 11

 J_{13} . Plot the input and output characteristics of the common emitter configuration of BJT and (3 M)derive the relationship between current gains α and $\beta.$

14. Find the currents I_B, I_C, I_E, and the voltage V_{CE} of the circuit shown in Fig. 12. Consider β (2M)

Figure 12