Reply to Office Action of November 17, 2003

IN THE CLAIMS

Please amend the claims as follows.

1. (Currently Amended) A catalyst system comprising an activator and one or more heteroatom substituted phenoxide metal compounds wherein the metal is bound to the oxygen of the phenoxide group, the compounds; being represented by the following formulae:

$$R^2$$
 Q_{n-1}
 Q_{n-1}
 Q_{n-1}
 Q_{n-1}
 Q_{n-1}
 Q_{n-1}

Reply to Office Action of November 17, 2003

wherein:

 R^1 , is hydrogen, a C_4 to C_{100} group, a tertiary alkyl group, a C_4 to C_{20} alkyl group, a C_4 to C_{20} alkyl group, or a neutral C_4 to C_{100} group, R^2 , R^4 and R^5 are independently hydrogen, a heteroatom containing group or a C_1 to C_{100} group, with the proviso that when M is titanium, the hetero atom in R^1 and R^5 is not oxygen, R^3 is hydrogen, or a C_1 to C_{100} group, provided that at least one of R^2 , R^4 or R^5 is a group containing a heteroatom, said hetero atom being selected from the group consisting of boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, selenium and tellurium, and any of R^1 to R^5 is or is not bound directly to the metal M, O is oxygen,

M is a selected from the group consisting of titanium, zirconium, hafnium, chromium, molybdenum, a Group 3, a Group 5 and a Group 7-10 transition metal or a lanthanide metal, with the proviso that M is not tungsten,

n is the valence state of M.

Q is an anionic ligand or a bond to an R group containing a heteroatom which may be either of R^1 or R^5 , and

further provided that:

- a) if more than one heteroatom substituted phenoxide is present it is not bridged to another heteroatom substituted phenoxide.
- b) if the metal is a Group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide is not bound to an aldehyde or an ester,
- c) the carbon ortho to the carbon bound to the oxygen of the phenoxide is not bound to the C¹ carbon in a group represented by the formula:

wherein R⁶ and R⁷ are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, a sulfur containing group, a phosphorus containing

Reply to Office Action of November 17, 2003

group, a silicon containing group, a germanium containing group, or a tin containing group, and R⁶ and R⁷ may be bonded to each other to form a ring,

- d) if the metal is a Group 4 metal then the ortho and meta carbons do not form a pyridine ring, and
- e) the carbon ortho to the carbon bound to the oxygen of the phenoxide is not bound to a sulfur atom directly bound to a nitrogen atom.
- 2. (Original) The catalyst system of claim 1 wherein the activator is selected from the group consisting of an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate, a non-coordinating anion or combinations thereof.
- 3. Cancelled
- 4. (Previously Presented) The catalyst system of claim 1 wherein M is zirconium.
- 5. (Previously Presented) The catalyst system of claim 1 wherein the heteroatom substituted phenoxide transition metal compound is selected from the group consisting of:

bis(N-benzylidene-2-aminomethyl-4,6-di-t-butylphenoxide)zirconium(IV) dibenzyl;

bis(N-benzylidene-2-aminomethyl-4,6-di-t-butylphenoxide)zirconium(IV) dichloride;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dichloride;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV)

di(bis(dimethylamide));

bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1',1'-dimethylbenzyl)phenoxide)zirconium(IV)

dibenzyl;

bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) titanium(TV) dibenzyl;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)titanium(IV) dibenzyl;

Reply to Office Action of November 17, 2003

bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1',1'-dimethylbenzyl)phenoxide)titanium(IV) dibenzyl;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1',1'-dimethylbenzyl)phenoxide)titanium(IV) dichloride;

bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1',1'-dimethylbenzyl)phenoxide)hafnium(IV) dibenzyl; and

(N-phenyl-2,4-bis(2-phenyl-2-propyl)-6-iminomethylphenoxide)zirconium(IV) tribenzyl.

- 6. (Previously Presented) The catalyst system of claim 5 wherein said activator comprises one or more of an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate or a non-coordinating anion.
- 7. (Currently Amended) The catalyst system of claim 1 wherein the transition metal compound, or the activator, or both are placed on a support.
- 8. (Original) The catalyst system of claim 1 further comprising a Ziegler-Natta catalyst.
- 9. (Original) The catalyst system of claim 1 further comprising a mono-or biscyclopentadienyl Group 4, 5 and 6 transition metal compound and an optional second activator.
- 10. (Original) The catalyst system of claim 1 further comprising a second activator.
- 11. (Previously Presented) The catalyst system of claim 1 wherein the activator is one or more of an alumoxane, tris(2,2',2"-nonafluorobiphenyl)aluminum, triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, a triaryl borane, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron, trisperfluorophenyl boron, or diethylaluminum chloride.

1998U020A.D1.US.111.02.17.04

Reply to Office Action of November 17, 2003

12. (Currently Amended) A catalyst system comprising the reaction product of an activator and one or more heteroatom substituted phenoxide transition metal compounds represented by the following formulae:

$$R^2$$
 R^3
 R^4
 R^5
 R^6

$$R^2$$
 R^1
 Q_{n-2}
 $Q_$

wherein:

 R^1 , R^2 , R^4 and R^5 are independently hydrogen, a heteroatom containing group or a C_1 to C_{100} group, with the proviso that when M is titanium, the hetero atom in R^1 and R^5 is not oxygen, R^3 is hydrogen or a C_1 to C_{100} group, provided that at least one of R^2 , R^4 or R^5 is a group containing a heteroatom, said hetero atom being selected from the group consisting of boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, selenium and tellurium, and any of R^1 to R^5 is or is not bound directly to the metal M, O is oxygen,

1998U020A.D1.US.111.02.17.04

Reply to Office Action of November 17, 2003

M is a selected from the group consisting of titanium, zirconium, hafnium, chromium, molybdenum, a Group 3, a Group 5 and a Group 7-10 transition metal or a lanthanide metal, with the proviso that M is not tungsten,

n is the valence state of M.

Q is an anionic ligand or a bond to either of R¹ or R⁵ containing a heteroatom, and further provided that:

- a) if M is a Group 4 metal then R⁵ is not an aldehyde or an ester group;
- b) the R⁴ and R⁵ groups do not form part of a pyridine ring in the first formula if M is a Group 4 metal;
- c) the R⁴ and R⁵ groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal; and
- d) neither R¹ nor R⁵ may be a group represented by the formula:

$$-c = N - R^{6}$$

wherein R^6 and R^7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R^6 and R^7 may be bonded to each other to form a ring.

- 13. (Original) The catalyst system of claim 12 wherein the activator is an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borane, a non-coordinating anion or a mixture thereof.
- 14. Cancelled
- 15. (Original) The catalyst system of claim 12 wherein the heteroatom containing group is a triazole or an oxyzole.

1998U020A.D1.US.111.02.17.04

Reply to Office Action of November 17, 2003

- 16. (Original) The catalyst system of claim 12 wherein the heteroatom in the heteroatom containing group is nitrogen and/or oxygen.
- 17. (Original) The catalyst system of claim 12 wherein the R^1 group is a C_4 to C_{20} alkyl group.
- 18. (Original) The catalyst system of claim 12 wherein R¹ is a tertiary alkyl group.
- 19. (Original) The catalyst system of claim 12 wherein R⁵ is bound to the metal.
- 20. (Original) The catalyst system of claim 12 wherein the R² group is a butyl, isobutyl, tertiary butyl, pentyl, hexyl, heptyl, isobexyl, octyl, isooctyl, decyl, nonyl, or dodecyl group.
- 21. (Previously Presented) The catalyst system of claim 12 wherein two or more R¹ to R⁵ groups form a five or six membered ring.
- 22. (Previously Presented) The catalyst system of claim 12 wherein two or more R^1 to R^5 groups form a fused-ring system.
- 23. (Original) The catalyst system of claim 12 wherein M is zirconium, titanium or hafnium.
- 24. (Original) The catalyst system of claim 12 wherein n is 4.
- 25. (Original) The catalyst system of claim 12 wherein n is 3.
- 26. (Original) The catalyst system of claim 12 wherein Q is a halogen or an alkyl group.

Reply to Office Action of November 17, 2003

- 27. (Original) The catalyst system of claim 12 wherein Q is an amide, carboxylate, carbamate, thiolate, hydride or alkoxide group.
- 28. (Original) The catalyst system of claim 12 further comprising a support.
- 29. (Currently Amended) The catalyst system of claim 12 wherein the transition metal compound, the activator or their reaction product thereof are placed on a support selected from the group consisting of tale, silica, magnesium chloride, alumina, silica-alumina, polyethylene, polypropylene, polystyrene, or a mixture thereof.
- 30. (Previously Presented) The catalyst system of claim 12 wherein prior to being combined with the transition metal compound and/or the activator and/or the reaction product thereof a support is partially or completely dehydrated.
- 31. (Previously Presented) The catalyst system of claim 12 wherein the transition metal compound and the activator are combined in molar ratios of about 1000:1 to about 0.5:1.
- 32. (Previously Presented) The catalyst system of claim 12 wherein the transition metal compound and the activator are combined in molar ratios of about 300:1 to about 1:1.
- 33. (Previously Presented) The catalyst system of claim 12 wherein the activator is a borane and the transition metal compound and the borane are combined in molar ratios of about 1:1 to about 10:1
- 34. (Previously Presented) The catalyst system of claim 12 wherein the activator is an alkyl aluminum compound and the transition metal compound and the alkyl aluminum compound are combined in molar ratios of about 0.5:1 to about 10:1

Reply to Office Action of November 17, 2003

- 35. (Previously Presented) The catalyst system of claim 12 wherein two or more R^1 to R^5 groups do not form a five membered ring.
- 36. (Original) The catalyst system of claim 13 wherein M is zirconium.