Structural Estimation of Dynamic Stochastic Optimizing Models of Intertemporal Choice For Dummies!

Christopher Carroll¹

¹Johns Hopkins University and NBER ccarroll@jhu.edu

June 2012

http://www.econ2.jhu.edu/people/ccarroll/SolvingMicroDSOPs-Slides.pdf

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

- Efficient Solution Methods for Canonical C problem
 - CRRA utility
 - Plausible (microeconomically calibrated) uncertainty
 - Life cycle or infinite horizon
- How To Add a Second Choice Variable
- Method of Simulated Moments Estimation of Parameters

The Basic Problem at Date t

$$\max \mathbb{E}_t \left[\sum_{n=0}^{T-t} \beth^n \mathbf{u}(\mathbf{c}_{t+n}) \right]. \tag{1}$$

$$y_t = \boldsymbol{\rho}_t \theta_t \tag{2}$$

 $\mathbf{p}_{t+1} = \mathcal{G}_{t+1}\mathbf{p}_t$ - permanent labor income dynamics $\log \theta_{t+n} \sim \mathcal{N}(-\sigma_{\theta}^2/2, \sigma_{\theta}^2)$ - lognormal transitory shocks $\forall n > 0$. (3)

Bellman Equation

$$\mathbf{v}_{t}(\mathbf{m}_{t}, \mathbf{p}_{t}) = \max_{\mathbf{c}_{t}} \ \mathrm{u}(\mathbf{c}_{t}) + \mathbb{I}\mathbb{E}_{t}[\mathbf{v}_{t+1}(\mathbf{m}_{t+1}, \mathbf{p}_{t+1})] \tag{4}$$

m - 'market resources' (net worth plus current income)

p — permanent labor income

Trick: Normalize the Problem

$$v_{t}(m_{t}) = \max_{c_{t}} u(c_{t}) + \beta \mathbb{E}_{t}[\mathcal{G}_{t+1}^{1-\rho} v_{t+1}(m_{t+1})]$$
s.t.
$$a_{t} = m_{t} - c_{t}$$

$$k_{t+1} = a_{t}$$

$$m_{t+1} = \underbrace{(\mathbb{R}/\mathcal{G}_{t+1})}_{\equiv \mathcal{R}_{t+1}} k_{t+1} + \theta_{t+1},$$
(5)

where nonbold variables are bold ones normalized by p:

$$m_t = m_t/\boldsymbol{p}_t \tag{6}$$

Yields $c_t(m)$ from which we can obtain

$$c_t(m_t, \boldsymbol{p}_t) = c_t(m_t/\boldsymbol{p}_t)\boldsymbol{p}_t \tag{7}$$

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

- Non-CRRA utility
- Non-Friedman (transitory/permanent) income process
 - e.g., AR(1)
 - But micro evidence is consistent with Friedman

Trick: View Everything from End of Period

Define

$$\mathbf{v}_{t\to}(\mathbf{a}_t) = \beta \mathbf{v}_{\leftarrow t}(\mathbf{a}_{t+1}) \tag{8}$$

so

$$v_t(m_t) = \max_{c_t} u(c_t) + v_t(m_t - c_t)$$
 (9)

with FOC

$$\mathbf{u}^{c}(c_{t}) = \mathbf{v}_{t}^{a}(m_{t} - c_{t}). \tag{10}$$

and Envelope relation

$$\mathbf{u}^{c}(c_{t}) = \mathbf{v}_{t}^{m}(m_{t}) \tag{11}$$

Trick: Discretize the Risks

E.g. use an equiprobable 7-point distribution:

Trick: Discretize the Risks

$$v_t'(a_t) = \beta R \mathcal{G}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(c_{t+1}(\mathcal{R}_{t+1}a_t + \theta_i)\right)$$
(12)

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$u^{c}(c_{t}) = v_{t \to t}^{a}(m_{t} - c_{t}).$$
 (13)

Trick: Discretize the Risks

$$v_t'(a_t) = \beta R \mathcal{G}_{t+1}^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n u' \left(c_{t+1}(\mathcal{R}_{t+1}a_t + \theta_i)\right)$$
(12)

So for any particular m_{T-1} the corresponding c_{T-1} can be found using the FOC:

$$\mathbf{u}^{c}(c_{t}) = \mathbf{v}_{t\rightarrow}^{a}(m_{t} - c_{t}). \tag{13}$$

- **①** Define a grid of points m (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$ • The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 'Connect-the-dots'

- ① Define a grid of points m (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- Define a grid of points m (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Construct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- **1** Define a grid of points m (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

- **1** Define a grid of points m (indexed m[i])
- ② Use numerical rootfinder to solve $u'(c) = v'_t(m[i] c)$
 - The c that solves this becomes c[i]
- Onstruct interpolating function è by linear interpolation
 - 'Connect-the-dots'

Problem: Numerical Rootfinding is *Slow*

Numerical search for values of c_{T-1} satisfying $u'(c) = v'_t(m[i] - c)$ at, say, 6 gridpoints of m_{T-1} may require hundreds or even thousands of evaluations of

$$v'_{T-1}(\overbrace{m_{T-1} - c_{T-1}}^{a_{T-1}}) = \beta_T \mathcal{G}_T^{1-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n \left(\mathcal{R}_T a_{T-1} + \theta_i\right)^{-\rho}$$

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v_t' at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

- Define vector of end-of-period asset values a
- For each a[j] compute $v'_t(a[j])$

Each of these $v'_t[j]$ corresponds to a unique c[j] via FOC:

$$c[j]^{-\rho} = v'_t(a[j])$$

$$c[j] = (v'_t(a[j]))^{-1/\rho}$$
(14)

But the DBC says

$$a_t = m_t - c_t$$

$$m[j] = a[j] + c[j]$$
(15)

So computing v'_t at a vector of **a** values has produced for us the corresponding **c** and **m** values at virtually no cost!

From these we can interpolate as before to construct $c_t(m)$.

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- ullet Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Why Directly Approximating v_t is a Bad Idea

Principles of Approximation

- ullet Hard to approximate things that approach ∞ for relevant m
 - ullet Not a prob for Rep Agent models: 'relevant' \emph{m} 's are pprox SS
- Hard to approximate things that are highly nonlinear

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2 = 0$ and testing whether numerical solution matches analytical!

Approximate Something That Would Be Linear in PF Case

Perfect Foresight Theory:

$$c_t(m) = (m + \mathfrak{h}_t)\underline{\kappa}_t \tag{16}$$

for market resources m and end-of-period human wealth \mathfrak{h} .

This is why it's a good idea to approximate c_t

Bonus: Easy to debug programs by setting $\sigma^2=0$ and testing whether numerical solution matches analytical!

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_{t}(m_{t}) = \mathbf{u}(\bar{c}_{t})\mathbb{C}_{t}^{T}
= \mathbf{u}(\bar{c}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}((\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t}^{1-\rho}\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t}^{-\rho}$$
(17)

This can be transformed as

$$egin{aligned} ar{\lambda}_t &\equiv \left((1-
ho)ar{\mathbf{v}}_t
ight)^{1/(1-
ho)} \ &= c_t (\mathbb{C}_t^T)^{1/(1-
ho)} \ &= (\mathbf{A}m_t + \mathbf{A}h_{t
ightarrow})\underline{\kappa}_t^{-
ho/(1-
ho)} \end{aligned}$$

which is linear.

If you need the value function, approximate the *inverted* value function to generate λ₊ and then obtain your approximation from

But What if You *Need* the Value Function?

Perfect foresight value function:

$$\bar{\mathbf{v}}_{t}(m_{t}) = \mathbf{u}(\bar{c}_{t})\mathbb{C}_{t}^{T}
= \mathbf{u}(\bar{c}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}((\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t})\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t}^{1-\rho}\underline{\kappa}_{t}^{-1}
= \mathbf{u}(\mathbf{A}m_{t} + \mathbf{A}h_{t\rightarrow})\underline{\kappa}_{t}^{-\rho}$$
(17)

This can be transformed as

$$\begin{split} \bar{\Lambda}_t &\equiv ((1-\rho)\bar{\mathbf{v}}_t)^{1/(1-\rho)} \\ &= c_t (\mathbb{C}_t^T)^{1/(1-\rho)} \\ &= (\blacktriangle m_t + \blacktriangle h_{t\rightarrow})\underline{\kappa}_t^{-\rho/(1-\rho)} \end{split}$$

which is linear.

If you need the value function, approximate the *inverted* value function to generate λ_t and then obtain your approximation from

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$\mathfrak{c}_t(a) = (\mathfrak{v}_t'(a))^{-1/\rho}$$

$$\mathfrak{c}_t^a(a) = -(1/\rho) (\mathfrak{v}_t'(a))^{-1-1/\rho} \mathfrak{v}_t''(a)$$
(19)

and using chain rule it is easy to show that

$$c_t^m = c_t^a / (1 + c_t^a) \tag{20}$$

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho}
c_t^a(a) = -(1/\rho) (v_t'(a))^{-1-1/\rho} v_t''(a)$$
(19)

and using chain rule it is easy to show that

$$c_t^m = c_t^a / (1 + c_t^a) \tag{20}$$

Approximate Slope Too

Carroll (2023) shows that c_t^m exists everywhere.

Define consumed function and its derivative as

$$c_t(a) = (v_t'(a))^{-1/\rho}$$

$$c_t^a(a) = -(1/\rho) (v_t'(a))^{-1-1/\rho} v_t''(a)$$
(19)

and using chain rule it is easy to show that

$$\mathbf{c}_t^m = \mathfrak{c}_t^{\mathsf{a}}/(1+\mathfrak{c}_t^{\mathsf{a}}) \tag{20}$$

To Implement: Modify Prior Procedures in Two Ways

- Construct \mathbf{c}_t^m along with \mathbf{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial • Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \mathbf{c}_t^m along with \mathbf{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

To Implement: Modify Prior Procedures in Two Ways

- Construct \mathbf{c}_t^m along with \mathbf{c}_t in EGM algorithm
- ② Approximate $c_t(m)$ using piecewise Hermite polynomial
 - Exact match to both level and derivative at set of points

Problem: è Below Bottom m Gridpoint and Extrapolation

Consider what happens as a_{T-1} approaches $\underline{a}_{T-1} \equiv -\underline{\theta} \mathcal{R}_T^{-1}$,

$$\lim_{\substack{a \downarrow \underline{a}_{T-1}}} \mathfrak{v}'_{T-1}(a) = \lim_{\substack{a \downarrow \underline{a}_{T-1}}} \beta R \mathcal{G}_T^{-\rho} \left(\frac{1}{n}\right) \sum_{i=1}^n \left(a \mathcal{R}_T + \theta_i\right)^{-\rho}$$
$$= \infty$$

This means our lowest value in \mathbf{a}_{T-1} should be $> \underline{a}_{T-1}$.

Suppose we construct \grave{c} by linear interpolation:

$$\grave{\mathbf{c}}_{T-1}(m) = \grave{\mathbf{c}}_{T-1}(\mathbf{m}_{T-1}[1]) + \grave{\mathbf{c}}_{T-1}'(\mathbf{m}_{T-1}[1])(m - \mathbf{m}_{T-1}[1])$$

True c is strictly concave $\Rightarrow \exists m^- > \underline{m}_{T-1}$ for which $m^- - \grave{c}_{T-1}(m^-) < \underline{a}_{T-1}$

Theory says that

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}(m) = 0$$

$$\lim_{m \downarrow \underline{m}_{T-1}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine **a** relative to \underline{a}_{T-1}
- ② Construct corresponding m_{T-1} and c_{T-1}
- \odot Prepend \underline{m}_{T-1} to m_{T-1}
- 9 Prepend 0. to c_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to κ_{T-1}

Theory says that

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}(m) = 0$$

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine **a** relative to \underline{a}_{T-1}
- 2 Construct corresponding m_{T-1} and c_{T-1}
- \bigcirc Prepend \underline{m}_{T-1} to \mathbf{m}_{T-1}
- \bigcirc Prepend 0. to c_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to κ_{T-1}

Theory says that

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}(m) = 0$$

$$\lim_{\substack{m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine **a** relative to \underline{a}_{T-1}
- 2 Construct corresponding m_{T-1} and c_{T-1}
- 3 Prepend \underline{m}_{T-1} to \mathbf{m}_{T-1}
- \bullet Prepend 0. to c_{T-1}
- **o** Prepend $\bar{\kappa}_{T-1}$ to κ_{T-1}

Theory says that

$$\lim_{\substack{m \downarrow \underline{m}_{T-1} \\ m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = 0$$

$$\lim_{\substack{m \downarrow \underline{m}_{T-1} \\ m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine **a** relative to \underline{a}_{T-1}
- 2 Construct corresponding m_{T-1} and c_{T-1}
- **3** Prepend \underline{m}_{T-1} to \mathbf{m}_{T-1}
- Prepend 0. to c_{T-1}
- **6** Prepend $\bar{\kappa}_{T-1}$ to κ_{T-1}

Theory says that

$$\lim_{\substack{m \downarrow \underline{m}_{T-1} \\ m \downarrow \underline{m}_{T-1}}} c_{T-1}(m) = 0$$

$$\lim_{\substack{m \downarrow \underline{m}_{T-1} \\ m \downarrow \underline{m}_{T-1}}} c_{T-1}^{m}(m) = \bar{\kappa}_{T-1}$$
(21)

- **1** Redefine **a** relative to \underline{a}_{T-1}
- 2 Construct corresponding m_{T-1} and c_{T-1}
- **3** Prepend \underline{m}_{T-1} to \mathbf{m}_{T-1}
- Prepend 0. to c_{T-1}
- **5** Prepend $\bar{\kappa}_{T-1}$ to κ_{T-1}

Trick: Improving the a Grid

Grid Spacing: Uniform

$$(u_{T-1}(a_{T-1}))^{-1/\rho}$$
, $\dot{c}_{T-1}(a_{T-1})$

5

4

3

2

1

2

3

4

 $a_{T-1}(a_{T-1})$

Trick: Improving the a Grid

Grid Spacing: Same $\{\underline{a}, \bar{a}\}$ But Triple Exponential $e^{e^{e^{\cdots}}}$ Growth

$$(u_{T-1}(a_{T-1}))^{-1/\rho}$$
, $\dot{c}_{T-1}(a_{T-1})$

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

The Method of Moderation

- Further improves speed and accuracy of solution
- See my talk at the conference!

$$v_{T-1}(m_{T-1}) = \max_{c_{T-1}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \mathcal{G}_T^{1-\rho} v_T(m_T)]$$
s.t.
$$a_{T-1} = m_{T-1} - c_{T-1}$$

$$m_T = \mathcal{R}_T a_{T-1} + \theta_T$$

$$a_{T-1} \ge 0.$$

Define \grave{c}_t^* as soln to unconstrained problem. Then

$$\hat{c}_{T-1}(m_{T-1}) = \min[m_{T-1}, \hat{c}_{T-1}^*(m_{T-1})].$$
 (22)

$$v_{T-1}(m_{T-1}) = \max_{c_{T-1}} u(c_{T-1}) + \mathbb{E}_{T-1}[\beta \mathcal{G}_T^{1-\rho} v_T(m_T)]$$
s.t.
$$a_{T-1} = m_{T-1} - c_{T-1}$$

$$m_T = \mathcal{R}_T a_{T-1} + \theta_T$$

$$a_{T-1} > 0.$$

Define \grave{c}_t^* as soln to unconstrained problem. Then

$$\grave{c}_{T-1}(m_{T-1}) = \min[m_{T-1}, \grave{c}_{T-1}^*(m_{T-1})]. \tag{22}$$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in a
- $\bullet \Rightarrow m[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in a
- $\bullet \Rightarrow m[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in a
- $\bullet \Rightarrow m[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in a
- $\bullet \Rightarrow m[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $\grave{c}_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Point where constraint makes transition from binding to not is

$$u'(m_{T-1}^{\#}) = v'_{T-1}(0.)$$

 $m_{T-1}^{\#} = (v'_{T-1}(0.))^{-1/\rho}$

- Add 0. as first point in a
- $\bullet \Rightarrow m[1] = m_{T-1}^{\#}$
- Above $m_{T-1}^{\#}$, $c_{T-1}(m)$ obtained as before
- Below $m_{T-1}^{\#}$, $c_{T-1}(m) = m$

Figure: Constrained (solid) and Unconstrained (dashed) Consumption

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\bar{t},i} = \left(v_{t_{\rightarrow}}^{a}(a_{t,i})\right)^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_{\leftarrow t} \left[\mathsf{R} \mathcal{G}_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \theta_{t+1}))^{-\rho}\right]\right)^{-1/\rho},$$
(23)

- ② Call the result c_t and generate the corresponding $m_t = c_t + a_t$
- Interpolate to create $c_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\overline{t},i} = \left(v_{t_{\rightarrow}}^{\mathsf{a}}(a_{t,i})\right)^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_{\leftarrow t} \left[\mathsf{R} \mathcal{G}_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \theta_{t+1}))^{-\rho} \right] \right)^{-1/\rho},$$
(23)

- 2 Call the result c_t and generate the corresponding $m_t = c_t + a_t$
- Interpolate to create $c_t(m)$

Recursion: Period t Solution Given Period t + 1

Construct

$$c_{\overline{t},i} = \left(v_{t_{\rightarrow}}^{a}(a_{t,i})\right)^{-1/\rho},$$

$$= \left(\beta \mathbb{E}_{\leftarrow t} \left[\Re \mathcal{G}_{t+1}^{-\rho} (\grave{c}_{t+1}(\mathcal{R}_{t+1}a_{t,i} + \theta_{t+1}))^{-\rho} \right] \right)^{-1/\rho},$$
(23)

- 2 Call the result c_t and generate the corresponding $m_t = c_t + a_t$
- **1** Interpolate to create $\dot{c}_t(m)$

Consumption Rules c_{T-n} Converge

Figure: Converging $\grave{\mathbf{c}}_{\mathcal{T}-\textit{n}}(\textit{m})$ Functions for $\textit{n} = \{1, 5, 10, 15, 20\}$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset.

The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = \mathbf{R} + (\mathbf{R}_{t+1} - \mathbf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = \mathbf{R} + (\mathbf{R}_{t+1} - \mathbf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$v_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} u(c_{t}) + \beta \mathbb{E}_{t}[v_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = R + (\mathbf{R}_{t+1} - R)\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1,$$

Portfolio Choice

Now the consumer has a choice between a risky and a safe asset. The portfolio return is

$$\mathfrak{R}_{t+1} = \mathsf{R}(1 - \varsigma_t) + \mathbf{R}_{t+1}\varsigma_t$$

= $\mathsf{R} + (\mathbf{R}_{t+1} - \mathsf{R})\varsigma_t$ (24)

so (setting $\mathcal{G}=1$) the maximization problem is

$$\mathbf{v}_{t}(m_{t}) = \max_{\{c_{t}, \varsigma_{t}\}} \mathbf{u}(c_{t}) + \beta \mathbb{E}_{t}[\mathbf{v}_{t+1}(m_{t+1})]$$
s.t.
$$\mathfrak{R}_{t+1} = \mathbf{R} + (\mathbf{R}_{t+1} - \mathbf{R})\varsigma_{t}$$

$$m_{t+1} = (m_{t} - c_{t})\mathfrak{R}_{t+1} + \theta_{t+1}$$

$$0 < \varsigma_{t} < 1.$$

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$\mathbf{u}^{c}(c_{t}) = \mathbb{E}_{t}[\beta \mathfrak{R}_{t+1} \mathbf{u}^{c}(c_{t+1})]. \tag{25}$$

while the FOC with respect to the portfolio share yields

$$0 = \mathbb{E}_{t}[\mathbf{v}_{t+1}^{m}(m_{t+1})(\mathbf{R}_{t+1} - \mathbf{R})a_{t}]$$

= $a_{t}\mathbb{E}_{t}[\mathbf{u}^{c}(\mathbf{c}_{t+1}(m_{t+1}))(\mathbf{R}_{t+1} - \mathbf{R})]$

Portfolio Choice

The FOC with respect to c_t now yields an Euler equation

$$\mathbf{u}^{c}(c_{t}) = \mathbb{E}_{t}[\beta \mathfrak{R}_{t+1} \mathbf{u}^{c}(c_{t+1})]. \tag{25}$$

while the FOC with respect to the portfolio share yields

$$\begin{aligned} 0 &= \mathbb{E}_t[\mathbf{v}_{t+1}^m(m_{t+1})(\mathbf{R}_{t+1} - \mathsf{R})a_t] \\ &= a_t \mathbb{E}_t\left[\mathbf{u}^c\left(\mathbf{c}_{t+1}(m_{t+1})\right)(\mathbf{R}_{t+1} - \mathsf{R})\right]. \end{aligned}$$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

Convergence

When the problem satisfies certain conditions (Carroll (2023)), it defines a 'converged' consumption rule with a 'target' ratio \check{m} that satisfies:

$$\mathbb{E}_t[m_{t+1}/m_t] = 1 \text{ if } m_t = \check{m} \tag{26}$$

Define the target m implied by the consumption rule c_t as \check{m}_t .

Then a plausible metric for convergence is to define some value ϵ and to declare the solution to have converged when

$$|\check{m}_{t+1} - \check{m}_t| < \epsilon \tag{27}$$

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points
- Solve for period T n 1 assuming c_{T-n}
- Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **o** Construct finer grid for θ (say, 7 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- Solve for period T n 1 assuming c_{T-n}
- © Continue to convergence

- Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- © Continue to convergence

- **1** Start with coarse grid for θ (say, 3 points)
- Solve to convergence; call period of convergence n
- **3** Construct finer grid for θ (say, 7 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- Start with coarse grid for **a** (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- Onstruct finer grid for a (say, 20 points)
- Solve for period T n 1 assuming c_{T-n}
- Continue to convergence

- Start with coarse grid for a (say, 5 gridpoints)
- ② Solve to convergence; call period of convergence n
- Occupant of the occupant of th
- Solve for period T n 1 assuming c_{T-n}
- Ontinue to convergence

- Start with coarse grid for a (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- Onstruct finer grid for a (say, 20 points)
- Solve for period T n 1 assuming c_{T-n}
- Ontinue to convergence

- Start with coarse grid for **a** (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- Onstruct finer grid for a (say, 20 points)
- **4** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

- Start with coarse grid for a (say, 5 gridpoints)
- Solve to convergence; call period of convergence n
- Onstruct finer grid for a (say, 20 points)
- **9** Solve for period T n 1 assuming \grave{c}_{T-n}
- Ontinue to convergence

Life Cycle Maximization Problem

$$v_t(m_t) = \max_{c_t} \quad u(c_t) + \exists \mathcal{L}_{t+1} \hat{\beta}_{t+1} \mathbb{E}_t [(\Psi_{t+1} \mathcal{G}_{t+1})^{1-\rho} v_{t+1}(m_{t+1})]$$
s.t.
$$a_t = m_t - c_t$$

$$m_{t+1} = a_t \underbrace{\left(\frac{\mathsf{R}}{\Psi_{t+1} \mathcal{G}_{t+1}}\right)}_{\equiv \mathcal{R}_{t+1}} + \theta_{t+1}$$

 \mathcal{L}_t^{t+n} : probability to \mathcal{L} ive until age t+n given alive at age t $\hat{\beta}_t^{t+n}$: age-varying discount factor between ages t and t+n Ψ_t : mean-one shock to permanent income \beth : time-invariant 'pure' discount factor

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Details follow Cagetti (2003)

- Parameterization of Uncertainty
- Probability of Death
- ullet Demographic Adjustments to eta

Empirical Wealth Profiles

Figure: m from SCF (means (dashed) and medians (solid))

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\mathbf{\Psi}}^2, \sigma_{\theta}^2$
- \bullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\pmb{\Psi}}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\mathbf{\Psi}}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\Psi}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t

 $\Rightarrow m$ distribution by age

Given a set of parameter values $\{\rho, \beth\}$:

- Start at age 25 with empirical m data
- Draw shocks using calibrated $\sigma_{\pmb{\Psi}}^2, \sigma_{\theta}^2$
- ullet Consume according to solved \mathbf{c}_t
- $\Rightarrow m$ distribution by age

Choose What to Simulate

```
\label{eq:construct} \begin{split} & \operatorname{GapEmpiricalSimulatedMedians}[\rho, \beth] := \\ & [ & \operatorname{ConstructcFuncLife}[\rho, \beth]; \\ & \operatorname{Simulate}; \\ & \sum_{i}^{N} \omega_{i} \, |\varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi)| \\ & ]; \end{split}
```

Calculate Match Between Theory and Data

$$\xi = \{\rho, \beth\} \tag{28}$$

solve

$$\min_{\xi} \sum_{i}^{N} \omega_{i} \left| \varsigma_{i}^{\tau} - \mathbf{s}^{\tau}(\xi) \right| \tag{29}$$

Bootstrap Standard Errors (Horowitz (2001))

Yields estimates of

Table: Estimation Results

ρ	
3.69	0.88
(0.047)	(0.002)

Contour Plot

Figure: Point Estimate and Height of Minimized Function

References |

- CAGETTI, MARCO (2003): "Wealth Accumulation Over the Life Cycle and Precautionary Savings," <u>Journal of</u> <u>Business and Economic Statistics</u>, 21(3), 339–353.
- CARROLL, CHRISTOPHER D. (2023): "Theoretical Foundations of Buffer Stock Saving," Revise and Resubmit,
 Quantitative Economics.
- HOROWITZ, JOEL L. (2001): "The Bootstrap," in Handbook of Econometrics, ed. by James J. Heckman, and Edward Leamer, vol. 5. Elsevier/North Holland.