STAT 333 Summary of Probability Rules

Basic Axioms:

Let S be the sample space for an experiment. Then a probability rule P must satisfy:

- (i) P(S) = 1
- (ii) $0 \le P(A) \le 1$ for all $A \subseteq S$
- (iii)* If $A_1, A_2, \ldots, A_m, \ldots$ is a sequence (finite or countably infinite) of disjoint events (i.e. $A_j \cap A_k = \emptyset$), then

$$P(\bigcup_{n} A_n) = \sum_{n} P(A_n)$$
 (general additivity axiom)

If S is finite, then (iii)* can be replaced by:

(iii) If A_1, A_2, \ldots, A_m are disjoint events (i.e. $A_j \cap A_k = \emptyset$), then

$$P(\bigcup_{n=1}^{m} A_n) = \sum_{n=1}^{m} P(A_n)$$
 (finite additivity axiom)

Rules Which Follow From The Axioms:

- 1. If $A \subseteq B$ then $P(A) \leq P(B)$ and $P(B \setminus A) = P(B) PA$.
- 2. $P(\bar{A}) = 1 P(A)$; in particular $P(\emptyset) = 0$.
- 3. For any sequence of events A_1, A_2, \ldots (finite or countably infinite),

$$P(\bigcup_{n} A_n) \le \sum_{n} P(A_n)$$

Equality holds if the events are disjoint.

- 4. $P(A \cup B) = P(A) + P(B) P(A \cap B)$ for any events A and B.
- 5. $P(A \cup B \cup C) = P(A) + P(B) + P(C) P(A \cap B) P(A \cap C) P(B \cap C) + P(A \cap B \cap C)$.

Conditional Probability, Independence, and Multiplication Rules:

- conditional probability $P(A|B) = P(A \cap B)/P(B)$.
- basic multiplication rule $P(A \cap B) = P(A)P(B|A)$.
- extended multiplication rule $P(A_1 \cap A_2 \cap ... \cap A_m) = P(A_1)P(A_2|A_1) \cdots P(A_m|A_1 \cap ... \cap A_{m-1})$.
- A and B are **independent** if $P(A \cap B) = P(A)P(B)$.
- If an experiment consists of a sequence of **independent trials**, and A_1, \ldots, A_m are events such that A_j depends only on the j^{th} trial, then A_1, \ldots, A_m are independent, and

$$P(A_1 \cap A_2 \cap \ldots \cap A_m) = P(A_1)P(A_2)\cdots P(A_m).$$