	ric posi ex quad solution i-b when when when when when when when when	itive drate A SOLV-S.	x defi ic for the x = b	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
where A is a given symmet This objective is a converted when $\nabla f(x) = Ax$ Notice that when $\nabla f(x) = Ax$ Notice that when $\nabla f(x) = Ax$ I may equations in n Aside: $f(x) = Ax$	ric posi ex quad solution i-b when when when when when when when when	itive drate A SOLV-S.	x defi ic for the x = b	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
where A is a given symmet This objective is a convertermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = Ax$	ric posi ex grace solution i-6 whenown: I N N N N N N N N N N N N N N N N N N N	itive drat	defi ic fu the x=t hon	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
where A is a given symmet This objective is a convertermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = Ax$	ric posi ex grace solution i-6 whenown: I N N N N N N N N N N N N N N N N N N N	itive drat	defi ic fu the x=t hon	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
Where A is a given symmet This objective is a converte Turthermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = Ax$	ric posi ex quad solution solution solution whenour mknown whenour and the and mknown and the and mknown and and and and and and and and and and	Jrat n i3 A SO IV	ic fu the x=b	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
This objective is a convertermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix Invar equations in n Aside: $f(x) = Ax$	ex quad Solution Solution Solution The a Micrown.	Jrat n i3 A SO IV	ic fu the x=b	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
This objective is a convertermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix Invar equations in n Aside: $f(x) = Ax$	ex quad Solution Solution Solution The a Micrown.	Jrat n i3 A SO IV	ic fu the x=b	ncti sta	ion in fine	so i ary this	s bo) unc	led of īza ìte	s:	n p	roblem
Furthermore, the unique $\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = Ax$	Solution Solution To b The a Menown The a The a	13 1 A 50 W 50 W 1 A K	the x=L tion e Xicx	51a	From a (po	ary this isite	Po op ve d	tim tim 2fin	of	\$:	n p	roblem
$\nabla f(x) = Ax$ Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n $Aside: f(x) = Ax$	x = 0 $y = 0$ $y =$, A 50 W. S, A K Ki XK	x=b	10 (30, - 0 (po	this site	op ve d	tīm 2fm	ile	ntio	n p	
Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = \frac{\partial f}{\partial x}$	menown: No the a Menown: No the a Menown: No the a Menown: No the a Menown: A the a Menown: A the a	50 W.	e XKX	to (a (po	SITP	b:	2fin	ite		50+	
Notice that when $\nabla f(x)$ is a fancy way to fix linear equations in n Aside: $f(x) = \frac{\partial f}{\partial x}$	menown: No the a Menown: No the a Menown: No the a Menown: No the a Menown: A the a Menown: A the a	50 W.	e XKX	to (a (po	SITP	b:	2fin	ite		50+	
is a fancy way to fix linear equations in n Aside: $f(x) = \frac{\partial f}{\partial x_i}$	od the a	50 W.	e XKX	to (a (po	SITP	b:	2fin	ite		50+	
Inter equations in n (Aside: $f(x) = \frac{\partial f}{\partial x}$	Mknown N N N N N N N N N N N N N	S. A K Ki X K	e XICX	n = 1	n N b	ŁXĸ	bi				0 0 0 0 0 0	7 N
Aside: $f(x) = \frac{\partial f}{\partial x_i}$	N N N N N N N N N N N N N N N N N N N	2 × 2	- b:	n ≥ 2 ℓ=1			b:					
∂f ∂x ¿		ki Xx	- b:	n ≥ 2 ℓ=1			b:					1
∂f ∂x ¿		ki Xx	- b:	n ≥ 2 ℓ=1			b:					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	E air	e ×e	-b:		RieXg	2 -				-		
	a;x-									-		1
	a;x-							1	_	a,	_	
							A			:		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Vf(x)									_	-an		
	= Ax.	-b										0 0 0 0
		• • • • • • • • • • • • • • • • • • • •	• • • • • •	• • • • • • •			• • • • • •					• • • •
Consider any set of con	jugate o	dire	ction	ns '	ξPo,	\mathcal{P}_{1}		, Pe	ζ		P_i^{\dagger}	P; =0
Then we can find the m												
Time searches along desc												(),000.
											• • • • • •	• • • •
$X_{k+1} = X_k + X_k$	r Pr		QK-	- ava	amin	f((XK-	- BT	>K)			0 0
									٠.			0 0 0
			=		A (0 0
			-	>	Ax	KPK		b-1	AX	4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
					X.	PKI	AD		> (Ax-)
									-	_	, , , , ,	0 0 0 0 0 0
					X _K	_=	PT	AP	-			0 0 0

A conjugate gradient algorithm for "linear systems" 1. Given: Xo 2. Set: 10 = Axo-b, Po = -ro, Ke 0 3. Compute next iterate ar = TriPr PrAPr XKH < XK+ XKPK Updates why? Each new conjugate direction 13 PKH - AXKHI-b chosen to be BEHI C PEAPE Pen = - Ten + Bren Pr for some Bun regume PKH APK = 0 => BKH as shown! PKH - CKH + BKH PK K- K+1 If rx = 0 then stop Notice that each successive conjugate otherwise goto step 3 direction depends only on the previous direction A, b, and ourrent residual r. Contrast this with a Gram-Schmidt method which regumes knowledge of all previous directions. Key Ideas on Convergence Theorem 5.4: If A has r distinct eigenvalues, then CG terminates in no more than r iterations. Theorem 5.5: If A has eigenvalues $\lambda_1 \neq \lambda_2 \leq \cdots \leq \lambda_n$, then co satisfies 11 Xxxxx - X = 1 = (\frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} + \lambda_1})^2 11 \text{X}_0 - \text{X} = 1 \\ \frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} - \lambda_1} \\ \frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} - \lambda_1} \\ \frac{\lambda_{n-k} - \lambda_1}{\lambda_{n-k} - \lambda_1} \\ \frac{\lambda_n}{\lambda_n} = \lambda_1 \\ \frac{\lambda_n}{\lamb example $\lambda = 1, 1, 1, 2, 3, 5, 8$ $|| x_1 - x^* ||^2 \leq |7/q| || x_0 - x^* ||^2$ $|| x_2 - x^* ||^2 \leq |4/6| || x_0 - x^* ||^2$ $|| x_3 - x^* ||^2 \leq |2/4| || x_0 - x^* ||^2$ $|| Y_5 - x^* ||^2 \leq (0) || X_0 - x^* ||^2$

Using the following properties of conjugate directions:

$$r_{k}^{T} p_{j} = 0$$
 $r_{k}^{T} r_{j} = 0$
 $j = 1, 2, ..., k-1$
 $p_{k}^{+} A p_{j} = 0$

We can rewrite the algorithm into a more symmetric and useful form:

- 1. Given: Xo
- 2. Set: 10 = Axo-b, Po - ro, KGO
- 3. Compute next iterate

$$\alpha_{k} \leftarrow \frac{r_{k}^{T}r_{k}}{P_{k}^{T}AP_{k}} = \frac{||r_{k}||^{2}}{||P_{k}||_{A}^{2}}$$

XKH < XK+ XKPK

4. Updales

5. If
$$r_k = 0$$
 then stop otherwise goto step 3

															-				
															+				
																		-	
						_	-								+				
															+				
															+				