UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA DEPARTAMENTO DE MATEMÁTICA CAMPUS SANTIAGO ANÁLISIS NUMÉRICO MAT270

Ayudantia 3.

1. Sea $g(x) = 2x - \cos(x)$ una función.

Se quiere utilizar la iteración de punto fijo para aproximar el valor de $x \in [1, 2]$ tal que se satisfaga:

$$\int_0^x g(\xi)d\xi = 1.$$

Encontrar una función de punto fijo adecuada para asegurar la convergencia para cualquier $x_0 \in [1, 2]$.

- ¿ Cuántas iteraciones necesita para aproximar el valor buscado con una precisión 10^{-3} , si $x_0 = \frac{\pi}{2}$? Encontrar dicha aproximación.
- 2. Considere la función $F(x) = e^{-x} \operatorname{sen}(x) 2$.
 - a) Demuestre que F(x) tiene una única raíz negativa.
 - b) Determinar un intervalo en el que el método de Newton converja cuadráticamente (basta con verificar las condiciones para asegurar convergencia local del método de Newton), y encontrar una aproximación con una precisión 10^{-5} .
 - c) ¿Converge el método para cualquier x < 0?
- 3. Sea $f(x) = (x-p)^3 h(x)$ con $h \in C^1(\mathbb{R})$ y $h(p), h'(p) \neq 0$. Es conocido que el método de Newton converge a la raíz x = p de f(x) con orden lineal. Demuestre que el método:

$$x_{k+1} = x_k - 3\frac{f(x_k)}{f'(x_k)}, \ k = 0, 1, \cdots$$

converge a la raíz x = p con orden cuadrático.

- 4. Considere la situación que un punto en \mathbb{R}^2 está de nido como punto de intersección entre las curvas dadas por las funciones $f_1(x) = ax$ y $f_2(x) = \sqrt{x}$ con x > 0 y parámetro a > 0.
 - i. Estudie el problema de encontrar el parámetro a, dada la coordenada x del punto de intersección . ¿Es bien condicionado este problema? Considere el condicionamiento absoluto y relativo.
- 5. Sea

$$A = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 0 & 4 & 1 \\ 0 & 0 & -2 \end{array}\right).$$

Calcular el $cond_{\infty}(A)$, $cond_{1}(A)$, y $cond_{2}(A)$.