Final Project

ADS 505 Applied Data Science for Business

Team 6: Lai leng Chan, Ben Earnest, Saba Alemayehu

Import of Packages and Libraries

```
pip install dmba

Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/publication</a>
```

Requirement already satisfied: dmba in /usr/local/lib/python3.7/dist-packages (0.1.0)

```
%matplotlib inline
from pathlib import Path
from sklearn import preprocessing
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression, LogisticRegressionCV
from sklearn.model selection import train test split
from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier
import statsmodels.api as sm
import matplotlib.pylab as plt
import seaborn as sns
from dmba import classificationSummary, gainsChart, liftChart
from dmba.metric import AIC score
from sklearn.metrics import accuracy score
from sklearn.linear_model import LinearRegression, Lasso, Ridge, LassoCV, BayesianRidge
import statsmodels.formula.api as sm
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.model selection import train test split, cross val score, GridSearchCV
import matplotlib.pylab as plt
from dmba import plotDecisionTree, classificationSummary, regressionSummary
from dmba import regressionSummary, exhaustive_search
from dmba import backward elimination, forward selection, stepwise selection
from dmba import adjusted r2 score, AIC score, BIC score
from sklearn.neural network import MLPClassifier
from dmba import classificationSummary
from sklearn.preprocessing import MinMaxScaler
from imblearn.under sampling import NearMiss
from sklearn.impute import SimpleImputer
from sklearn.metrics import classification report
from sklearn import metrics
```

```
from sklearn.metrics import recall_score
from sklearn.metrics import classification_report, confusion_matrix
import warnings
warnings.filterwarnings('ignore')

no display found. Using non-interactive Agg backend
```

▼ Load Data

df = pd.DataFrame(pd.read_csv('/content/cross_sell_dataset (1).tab', sep='\t'))
df

	cross_buy	acad_title	age	calls	complaints	customer_tenure_months	directmai
0	0	0	60	0	0	221	
1	0	0	55	0	0	227	
2	0	0	61	0	0	221	
3	0	0	70	0	0	222	
4	0	1	61	0	0	227	
99995	1	0	53	0	0	206	
99996	1	0	25	0	0	206	
99997	1	0	19	0	0	205	
99998	1	0	58	0	0	204	
99999	1	0	55	0	0	205	

100000 rows × 35 columns

Summary Information about the variables and their types in the data:
data_desc = pd.DataFrame(pd.read_csv('/content/Data Set Description.tab - Data Set Descriptio
data_desc

10/6/22, 6:10 PM		ADS505 Final Project	_v1.ipynb - Colaboratory
8	logins_desktop	Desktop Logins	Number of logins in the last 180 days
9	logins_mobile	Mobile Logins	Number of mobile sessions in the last 180 days
10	nr_products	Number of Products	Total number of products (accounts)
11	outflows	Outflows	Total volume of outflows from savings account
12	prod_loan	Loans	Number of consumer loan accounts
13	prod_mortgages	Mortgages	Number of mortgage accounts
14	prod_brokerage	Brokerage	Number of investment accounts
15	prod_pensionplan	Pension Plan	Number of long term savings plans
16	prod_savings	Savings	Number of savings accounts
17	relocations	Relocations	Number of relocations/address changes in the l
18	volume_debit	Total Debit	Total balances of all debit (savings) accounts
19	volume_debit_6months	Total Debit Six Months	Credit balance all of products from 6 months a
20	Marketing Efforts	NaN	NaN
21			
4 1	directmails	Direct Mailing	Total number of mailing in the last year
22	directmails giro_mailing	Direct Mailing Giro Mailing	Total number of mailing in the last year Received an email about opening a checking acc
		_	Received an email about opening a
22	giro_mailing	Giro Mailing	Received an email about opening a checking acc
22	giro_mailing Customer Characteristics	Giro Mailing NaN	Received an email about opening a checking acc NaN Does the customer have an academic title:
22 23 24	giro_mailing Customer Characteristics acad_title	Giro Mailing NaN Academic Title	Received an email about opening a checking acc NaN Does the customer have an academic title: 1 (y
22 23 24 25	giro_mailing Customer Characteristics acad_title age	Giro Mailing NaN Academic Title Age	Received an email about opening a checking acc NaN Does the customer have an academic title: 1 (y Customer's age in years Customer has a joint bank account: 1 (yes),
22 23 24 25 26	giro_mailing Customer Characteristics acad_title age joint_account	Giro Mailing NaN Academic Title Age Joint Account	Received an email about opening a checking acc NaN Does the customer have an academic title: 1 (y Customer's age in years Customer has a joint bank account: 1 (yes), 0
22 23 24 25 26 27	giro_mailing Customer Characteristics acad_title age joint_account gender	Giro Mailing NaN Academic Title Age Joint Account Gender	Received an email about opening a checking acc NaN Does the customer have an academic title: 1 (y Customer's age in years Customer has a joint bank account: 1 (yes), 0 Customer's gender: 1 (male), 0 (female) Customer's marital status: divorced,
22 23 24 25 26 27 28	giro_mailing Customer Characteristics acad_title age joint_account gender marital_status	Giro Mailing NaN Academic Title Age Joint Account Gender Marital Status	Received an email about opening a checking acc NaN Does the customer have an academic title: 1 (y Customer's age in years Customer has a joint bank account: 1 (yes), 0 Customer's gender: 1 (male), 0 (female) Customer's marital status: divorced, married, Customer's occupation: white-collar worker,

32

▼ Exploratory Data Analysis

▼ Initial Investigation into the Dataset and the Response Variable

View columns, dimensions, and data types
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999
Data columns (total 35 columns):

Data	cordinis (cocar 33 cordinis)	•	
#	Column	Non-Null Count	Dtype
0	cross_buy	100000 non-null	int64
1	acad_title	100000 non-null	int64
2	age	100000 non-null	int64
3	calls	100000 non-null	int64
4	complaints	100000 non-null	int64
5	customer_tenure_months	100000 non-null	int64
6	directmails	100000 non-null	int64
7	gender	99998 non-null	float64
8	<pre>joint_account</pre>	99998 non-null	float64
9	inflows	99527 non-null	float64
10	<pre>last_acc_opening_days</pre>	100000 non-null	int64
11	logins_desktop	100000 non-null	int64
12	logins_mobile	100000 non-null	int64
13	marital_status	100000 non-null	object
14	member_get_member_active	100000 non-null	int64
15	<pre>member_get_member_passive</pre>	100000 non-null	int64
16	nr_products	100000 non-null	int64
17	occupation	48725 non-null	object
18	outflows	99527 non-null	float64
19	prod_loan	100000 non-null	int64
20	prod_mortgages	100000 non-null	int64
21	prod_brokerage	100000 non-null	int64
22	prod_pensionplan	100000 non-null	int64
23	prod_savings	100000 non-null	int64
24	relocations	100000 non-null	int64
25	volume_debit	100000 non-null	float64
26	volume_debit_6months	97002 non-null	float64

```
27 ext_city_size
                                                     float64
                                    97338 non-null
      28 ext_house_size
                                    96953 non-null
                                                     float64
      29 ext purchase power
                                    95435 non-null
                                                     float64
      30 ext_share_new_houses
                                    97338 non-null
                                                     float64
      31 ext_share_new_cars
                                    84845 non-null
                                                     float64
                                    89866 non-null
                                                     float64
      32 ext_car_power
      33 ext_living_duration
                                    90935 non-null
                                                     float64
                                    100000 non-null int64
      34 giro_mailing
    dtypes: float64(13), int64(20), object(2)
    memory usage: 26.7+ MB
# The dimension of the dataset
print('Number of Rows:', df.shape[0])
print('Number of Columns:', df.shape[1])
```

Number of Rows: 100000 Number of Columns: 35

check for missing values
df.isnull().sum()

cross_buy	0
acad_title	0
age	0
calls	0
complaints	0
customer_tenure_months	0
directmails	0
gender	2
joint_account	2
inflows	473
<pre>last_acc_opening_days</pre>	0
logins_desktop	0
logins_mobile	0
marital_status	0
<pre>member_get_member_active</pre>	0
<pre>member_get_member_passive</pre>	0
nr_products	0
occupation	51275
outflows	473
prod_loan	0
prod_mortgages	0
prod_brokerage	0
prod_pensionplan	0
prod_savings	0
relocations	0
volume_debit	0
volume_debit_6months	2998
ext_city_size	2662
ext_house_size	3047
ext_purchase_power	4565
ext_share_new_houses	2662
ext_share_new_cars	15155
ext_car_power	10134

ext_living_duration 9065 giro_mailing 0 dtype: int64

Response variable - cross_buy

"cross_buy" tells us if an existing customer opened a checking account. From here we see that 10,000 customers out of the 10,000 customers did.

For this problem, the class imbalancement might have an effect since 90% of the data are in one class and there aren't enough negative and positive classes for training. We should resample the data so that more customers would seemed to open the bank account.

Note, the cross buy rate for the existing customers is 10%. So our baseline suggests randomly selecting customers to contact for checking accounts will result in a 10% success rate.

▼ Investigation in other Independent Variables

Selected Numerical features

```
# Subsetting the selected numerical features into a dataset
num_features = df[['age','calls', 'complaints', 'customer_tenure_months', 'nr_products', 'dir
# Return decription of the numerical features
num_features.describe()
```

	age	calls	complaints	customer_tenure_months	nr_product:
count	100000.000000	100000.000000	100000.000000	100000.000000	100000.000000
mean	49.892260	0.104600	0.003530	140.181700	1.433380
std	14.534085	0.564395	0.078598	74.901654	0.798579
min	18.000000	0.000000	0.000000	0.000000	1.000000
25%	39.000000	0.000000	0.000000	78.000000	1.000000
50%	51.000000	0.000000	0.000000	160.000000	1.000000
750/	00 000000	0.000000	0.000000	004 000000	0 000004

```
# Plot Features
%matplotlib inline
f, axs = plt.subplots(2, 2, figsize = (12, 8))
# Customer's age in years
sns.histplot(data = df, x = 'age', ax = axs[0,0])
# Number of months since customer onboarding
sns.histplot(data = df, x = 'customer_tenure_months', ax = axs[0,1])
# Number of complaints in the last year
sns.histplot(data = df, x = 'complaints', ax = axs[1,0])
# Number of calls customers get in the last 180 days
sns.histplot(data = df, x = 'calls', ax = axs[1,1])
axs[0, 0].title.set_text("Age Distribution")
axs[0, 1].title.set_text("Customer Onboarding Time Distribution")
axs[1, 0].title.set_text("Number of Complaints Customers Filed")
axs[1, 1].title.set_text("Number of Calls Customers Get")
plt.tight_layout()
```


Plot the financial products that consumers have
%matplotlib inline

```
f, axs = plt.subplots(3, 2, figsize = (12, 8))

# Distribution of number of loan accounts consumers have
sns.histplot(data = df, x = 'prod_loan', ax = axs[0,0])

# Distribution of number of mortgage accounts consumers have
sns.histplot(data = df, x = 'prod_mortgages', ax = axs[0,1])

# Distribution of number of investment accounts consumers have
sns.histplot(data = df, x = 'prod_brokerage', ax = axs[1,0])

# Distribution of number of long-term savings accounts consumers have
sns.histplot(data = df, x = 'prod_pensionplan', ax = axs[1,1])

# Distribution of number of savings accounts consumers have
sns.histplot(data = df, x = 'prod_savings', ax = axs[2,0])

plt.tight_layout()
```


We can see that most customers own a savings account but not the other financial accounts.

proa_savings

Visualizing Outliers

outflows

volume_debit

volume_debit_6months

→ Correlation Matrix

```
# Selecting more relevant variables to compute the correlation matrix
df_corr = df[['cross_buy','age', 'calls', 'customer_tenure_months', 'nr_products']]

corrMatrix = df_corr.corr()
plt.subplots(figsize = (10,8))
sns.set(font_scale = .8)
sns.heatmap(corrMatrix, annot = True, linewidths = 1)
plt.title(r'Correlation Matrix', fontsize = 14)
plt.savefig('Correlation Matrix')
```



```
corrMatrix = df.corr()
plt.subplots(figsize = (30,20))
sns.set(font_scale = .8)
sns.heatmap(corrMatrix, annot = True, linewidths = 1)
plt.title(r'Correlation Matrix', fontsize = 14)
```

Text(0.5, 1.0, 'Correlation Matrix')

▼ Pre-processing Data

Check for missing values
df.isnull().sum()

cross_buy	0
acad_title	0
age	0
calls	0
complaints	0
customer_tenure_months	0
directmails	0
gender	2
joint_account	2
inflows	473
<pre>last_acc_opening_days</pre>	0
<pre>logins_desktop</pre>	0
logins_mobile	0
marital_status	0
<pre>member_get_member_active</pre>	0
member_get_member_passive	0
nr_products	0

```
occupation
                              51275
outflows
                                473
prod loan
                                  0
prod mortgages
                                  0
prod_brokerage
                                  0
prod pensionplan
                                  0
prod savings
                                  0
                                  0
relocations
volume_debit
                                  0
volume debit 6months
                               2998
ext city size
                               2662
ext house size
                               3047
ext_purchase_power
                               4565
ext share new houses
                               2662
ext share new cars
                              15155
ext_car_power
                              10134
ext living duration
                               9065
giro_mailing
dtype: int64
```

```
# Columns including occupationshould be dropped since it contains mostly NaN values and
# won't provide a lot of meaningful information.
df = df.drop(columns=['occupation'])
```

The curse of dimensionality means that the error increases with the increase in the number of features. Since we have 35 features, there is a need to select the important features and remove the irrelevant ones for better performance of the model.

Regarding account balances, we have four features that describes the account balances:

- inflows It describes the total volume of inflows on savings account
- · outflows It describes the total volume of outflows on savings account
- volume_debit It describes the total balances of all debit (savings) accounts
- volume_debit_6months It describes the total balances of all debit (savings) accounts in six months

Since we are interested in knowing the account balances that customers have which will have a relationship with whether a customer will open a checking account, we will use the most relevant feature which is volume_debit, and drop the other features.

Regarding the days since the account opened, we have features that described it:

- customer_tenure_months Number of months since customer onboarding
- last_acc_opening_days Number of days since last account opening

We selected the customer_tenure_months since that gives us a better idea of the time customers are with the bank. Thus, we will remove the other feature.

```
# Since we will be using the total balances of all accounts, we can drop the redundant featur
df = df.drop(columns=['inflows','outflows','volume_debit_6months'])
# Also dropping duplicate feature last_acc_opening_days
df = df.drop(columns=['last_acc_opening_days'])
```

As mentioned above, most customers own 0 financial products except savings account, we would drop the irrelevant features and keep the prod_savings feature.

```
# Dropping the features of financial products that majority of consumers do not have since th
df = df.drop(columns=['prod_loan','prod_mortgages','prod_brokerage','prod_pensionplan'])
```

Looking at the external features including the following:

- ext_city_size City size
- ext_house_size Average number of households per building in the residential block
- ext_purchase_power Average purchase power in the residential block
- ext_share_new_houses Share of new buildings in the residential block
- ext_share_new_cars Share of new vehicle registrations in the residential block
- ext_car_power Predominant vehicle category in the neighborhood
- ext_living_duration Average duration of residence in the customer's building

The only features that are more relevant features to whether a customer will open a checking account will be the purchase power pf clients. The other features including city size, average number of households, etc. is a lot less relevant in impacting someone to open a checking account. Thus, we will remove the irrelevant features.

```
# Dropping irrelevant external factors that are less likely to affect if the consumer will op
df = df.drop(columns=['ext_city_size','ext_house_size','ext_share_new_houses','ext_share_new_
```

Lastly, there are some other less irrelevant features that we consider removing prior to the training of model:

- relocations Number of relocations/address changes in the last year
- acad_title Whether the customer have an academic title
- logins_desktop Number of logins in the last 180 days
- logins_mobile Number of mobile sessions in the last 180 days

```
# Dropping other less irrelevant factors to finalize the dataset for modeling
df = df.drop(columns=['relocations','acad_title','logins_desktop','logins_mobile','directmail
```

df

	cross_buy	age	calls	complaints	customer_tenure_months	gender	joint_account
0	0	60	0	0	221	0.0	0.0
1	0	55	0	0	227	0.0	1.0
2	0	61	0	0	221	1.0	0.0
3	0	70	0	0	222	0.0	0.0
4	0	61	0	0	227	1.0	0.0
•••							
99995	1	53	0	0	206	0.0	0.0
99996	1	25	0	0	206	0.0	0.0
99997	1	19	0	0	205	1.0	0.0
99998	1	58	0	0	204	1.0	0.0
99999	1	55	0	0	205	0.0	1.0

100000 rows × 15 columns

[#] Converting categorical variables to dummies

[#] Treat marital_status and ext_purchase_power as categorical, then convert to dummy variables
df['marital_status'] = df['marital_status'].astype('category')

df = pd.get_dummies(df, columns=['marital_status'], drop_first=True)
df.head(20)

	cross_buy	age	calls	complaints	customer_tenure_months	gender	joint_account m
0	0	60	0	0	221	0.0	0.0
1	0	55	0	0	227	0.0	1.0
2	0	61	0	0	221	1.0	0.0
3	0	70	0	0	222	0.0	0.0
4	0	61	0	0	227	1.0	0.0
5	0	67	0	0	227	0.0	1.0
6	0	55	0	0	227	0.0	1.0
7	0	78	0	0	227	0.0	1.0
8	0	58	0	0	227	1.0	0.0
9	0	47	0	0	221	1.0	0.0
10	0	65	0	0	221	0.0	1.0
11	0	56	0	0	227	1.0	0.0
12	0	63	0	0	222	0.0	0.0
13	0	54	0	0	227	1.0	0.0

df['ext_purchase_power'].value_counts()

```
7.0 22197
```

Name: ext_purchase_power, dtype: int64

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100000 entries, 0 to 99999

Data columns (total 20 columns):

_ 0. 0 0.	00-000-00-00-00-00-00-00-00-00-00-00-00	•	
#	Column	Non-Null Count	Dtype
0	cross_buy	100000 non-null	int64
1	age	100000 non-null	int64
2	calls	100000 non-null	int64
3	complaints	100000 non-null	int64
4	customer_tenure_months	100000 non-null	int64
5	gender	99998 non-null	float64
6	joint_account	99998 non-null	float64
7	<pre>member_get_member_active</pre>	100000 non-null	int64

^{6.0 16750}

^{5.0 14529}

^{4.0 12370}

^{3.0 10802}

^{1.0 9491}

^{2.0 9296}

```
member get member passive
      8
                                     100000 non-null int64
      9
          nr_products
                                     100000 non-null int64
      10 prod savings
                                     100000 non-null int64
      11 volume debit
                                     100000 non-null float64
      12 ext_purchase_power
                                     95435 non-null
                                                      float64
      13 giro mailing
                                     100000 non-null int64
      14 marital_status_divorced
                                     100000 non-null uint8
      15 marital status married
                                     100000 non-null uint8
      16 marital_status_separated
                                     100000 non-null
                                                      uint8
      17 marital_status_single
                                     100000 non-null
                                                      uint8
      18 marital status unmarried
                                     100000 non-null
                                                      uint8
      19 marital status widowed
                                     100000 non-null
                                                     uint8
     dtypes: float64(4), int64(10), uint8(6)
    memory usage: 11.3 MB
# Converting categorical variables to dummies
# Treat marital status and ext purchase power as categorical, then convert to dummy variables
df['marital_status'] = df['marital_status'].astype('category')
df['ext purchase power'] = df['ext purchase power'].astype('category')
df = pd.get dummies(df, columns=['marital status','ext purchase power'], drop first=True)
df
                                               Traceback (most recent call last)
    KeyError
     /usr/local/lib/python3.7/dist-packages/pandas/core/indexes/base.py in get_loc(self,
    key, method, tolerance)
        3360
                         try:
     -> 3361
                             return self._engine.get_loc(casted_key)
        3362
                         except KeyError as err:
                                        4 frames
     pandas/ libs/hashtable class helper.pxi in
     pandas. libs.hashtable.PyObjectHashTable.get item()
     pandas/ libs/hashtable class helper.pxi in
    pandas. libs.hashtable.PyObjectHashTable.get item()
    KeyError: 'marital status'
    The above exception was the direct cause of the following exception:
                                               Traceback (most recent call last)
    KeyError
     /usr/local/lib/python3.7/dist-packages/pandas/core/indexes/base.py in get loc(self,
     key, method, tolerance)
        3361
                             return self._engine.get_loc(casted_key)
                         except KeyError as err:
        3362
     -> 3363
                             raise KeyError(key) from err
        3364
        3365
                     if is scalar(key) and isna(key) and not self.hasnans:
    KeyError: 'marital status'
```

```
# Check for missing values again
df.isnull().sum()
                                      0
     cross buy
                                      0
     age
                                      0
     calls
                                      0
     complaints
     customer_tenure_months
                                      0
                                      2
     gender
                                      2
     joint_account
     member_get_member_active
                                      0
                                      0
     member get member passive
                                      0
     nr_products
                                      0
     prod_savings
     volume debit
                                      0
                                   4565
     ext_purchase_power
     giro mailing
                                      0
     marital_status_divorced
     marital status married
                                      0
     marital status separated
                                      0
     marital status single
                                      0
                                      0
     marital status unmarried
     marital status widowed
                                      0
     dtype: int64
# imputation of missing data with mean imputer
mean imputer = SimpleImputer(strategy='mean')
df[['gender','joint account']] = pd.DataFrame(mean imputer.fit transform(df[['gender','joint
# imputation of missing data with mode imputer
mode imputer = SimpleImputer(strategy='most frequent')
df[['ext_purchase_power']] = pd.DataFrame(mode_imputer.fit_transform(df[['ext_purchase_power']])
df.isnull().sum()
     cross buy
                                   0
     age
                                   0
     calls
                                   0
                                   0
     complaints
     customer tenure months
                                   0
                                   0
     gender
                                   0
     joint_account
     member_get_member_active
                                   0
     member_get_member_passive
                                   0
     nr_products
                                   0
                                   0
     prod savings
     volume debit
                                   0
                                   0
     ext purchase power
                                   0
     giro mailing
     marital status divorced
                                   0
     marital status married
                                   0
```

0

marital_status_separated

```
0
     marital status single
     marital_status_unmarried
                                  0
     marital status widowed
                                  0
     dtype: int64
# Partition the data into training (60%) and validation (40%). Use seed = 1.
y = df['cross buy']
X = df.drop(columns=['cross buy'])
# Resampling the cross buy variables using over-sampling techniques
nm = NearMiss()
X_res, y_res = nm.fit_resample(X, y)
# Split the data in training and valid data
X train, X valid, y train, y valid = train test split(X res, y res, train size=0.4, random st
# Scaling the variables
norm = MinMaxScaler().fit(X_train)
X train = norm.transform(X train)
X valid = norm.transform(X valid)
```

Modeling

▼ Logistic Regression Model

```
# Training logistic regression model
   model = LogisticRegression()
   grid = {"C": np.logspace(-3,3,7),
          "penalty":["11", "12"],# 11 lasso 12 ridge
          "solver": ['liblinear']}
   logreg cv = GridSearchCV(model, grid, cv=10)
   logreg_cv.fit(X_train, y_train)
   print("tuned hpyerparameters :(best parameters) ", logreg_cv.best_params_)
   print("accuracy :",logreg_cv.best_score_)
   log pred = logreg cv.predict(X valid)
   # Evaluation
   print(classification_report(y_valid,log_pred))
   # Plot the cumulative gains chart of the expected spending
   gains_df = pd.DataFrame({'actual': y_valid,
                              'prob': log pred})
   gains_df = gains_df.sort_values(by=['prob'], ascending=False).reset_index(drop=True)
   gainsChart(gains df.actual)
https://colab.research.google.com/drive/1hA mCF0cgTviAZ9JErk0gEavmE6FRxJM?authuser=1#scrollTo=MROXbOOuK2N0&printMode=true
```

plt.show()

tuned hpyerparameters :(best parameters) {'C': 10.0, 'penalty': 'l1', 'solver': 'liblir accuracy : 0.8215

	precision	recall	f1-score	support
0	0.80	0.87	0.83	5959
1	0.86	0.78	0.82	6041
accuracy			0.83	12000
macro avg	0.83	0.83	0.83	12000
weighted avg	0.83	0.83	0.83	12000

Plot Confusion Matrix from sklearn.metrics import plot_confusion_matrix plot_confusion_matrix(logreg_cv, X_valid, y_valid) plt.title('Confusion Matrix on Valid Data') plt.show()


```
# Train logistic regression model
log = LogisticRegression(penalty="12", C=1e42, solver='liblinear')
log.fit(X_train, y_train)
# Training performance
classificationSummary(y train, log.predict(X train))
# Validation performance
classificationSummary(y valid, log.predict(X valid))
print(classification report(y valid,log.predict(X valid)))
     Confusion Matrix (Accuracy 0.8631)
            Prediction
     Actual
                    1
               0
          0 3962
                   79
          1 1016 2943
     Confusion Matrix (Accuracy 0.8649)
            Prediction
     Actual
               0
                    1
          0 5838 121
          1 1500 4541
                   precision
                               recall f1-score
                                                    support
                        0.80
                                  0.98
                                             0.88
                                                       5959
                0
                1
                        0.97
                                  0.75
                                             0.85
                                                       6041
                                             0.86
         accuracy
                                                      12000
                                  0.87
                                             0.86
                        0.88
                                                      12000
        macro avg
```

Support Vector Machine

weighted avg

```
from sklearn.svm import SVC
svclassifier = SVC(kernel='linear')
svclassifier.fit(X_train, y_train)
#Making Predictions
Svm_pred = svclassifier.predict(X_valid)
#Evaluating the Algorithm
classificationSummary(y_valid, svclassifier.predict(X_valid))
print(classification report(y valid,Svm pred))
# Plot the cumulative gains chart of the expected spending
gains_df = pd.DataFrame({'actual': y_valid,
                         'prob': Svm pred})
```

0.89

0.86

0.86

12000

gains_df = gains_df.sort_values(by=['prob'], ascending=False).reset_index(drop=True)
gainsChart(gains_df.actual)
plt.show()

Confusion Matrix (Accuracy 0.7908)

	Predi	iction
Actual	0	1
0	4490	1469
1	1041	5000

	precision	recall	f1-score	support
0	0.81	0.75	0.78	5959
1	0.77	0.83	0.80	6041
accuracy			0.79	12000
macro avg	0.79	0.79	0.79	12000
weighted avg	0.79	0.79	0.79	12000

Plot Confusion Matrix
from sklearn.metrics import plot_confusion_matrix
plot_confusion_matrix(svclassifier, X_valid, y_valid)
plt.title('Confusion Matrix on Valid Data')
plt.show()

from sklearn.model selection import GridSearchCV

```
grid = GridSearchCV(SVC(), param_grid, refit = True, verbose = 3)
```

fitting the model for grid search
grid.fit(X train, y train)

```
[CV 1/J] END C-0.1, gamma-0.0001, KCTHC1-11HCaL,, 3COLC-0.774 COCAL CIMC-
[CV 2/5] END C=0.1, gamma=0.0001, kernel=linear;, score=0.767 total time=
                                                                             1.5s
[CV 3/5] END C=0.1, gamma=0.0001, kernel=linear;, score=0.782 total time=
                                                                             1.5s
[CV 4/5] END C=0.1, gamma=0.0001, kernel=linear;, score=0.771 total time=
                                                                             1.4s
[CV 5/5] END C=0.1, gamma=0.0001, kernel=linear;, score=0.771 total time=
                                                                             1.5s
[CV 1/5] END ......C=1, gamma=1, kernel=linear;, score=0.787 total time=
                                                                             2.0s
[CV 2/5] END ......C=1, gamma=1, kernel=linear;, score=0.783 total time=
                                                                             1.9s
[CV 3/5] END ......C=1, gamma=1, kernel=linear;, score=0.782 total time=
                                                                             2.3s
[CV 4/5] END ......C=1, gamma=1, kernel=linear;, score=0.786 total time=
                                                                             2.0s
[CV 5/5] END ......C=1, gamma=1, kernel=linear;, score=0.769 total time=
                                                                             2.2s
[CV 1/5] END .....C=1, gamma=0.1, kernel=linear;, score=0.787 total time=
                                                                             2.1s
[CV 2/5] END .....C=1, gamma=0.1, kernel=linear;, score=0.783 total time=
                                                                             1.9s
[CV 3/5] END .....C=1, gamma=0.1, kernel=linear;, score=0.782 total time=
                                                                             2.3s
[CV 4/5] END .....C=1, gamma=0.1, kernel=linear;, score=0.786 total time=
                                                                             2.0s
[CV 5/5] END .....C=1, gamma=0.1, kernel=linear;, score=0.769 total time=
                                                                             2.3s
[CV 1/5] END ....C=1, gamma=0.01, kernel=linear;, score=0.787 total time=
                                                                             2.1s
[CV 2/5] END ....C=1, gamma=0.01, kernel=linear;, score=0.783 total time=
                                                                             1.9s
[CV 3/5] END ....C=1, gamma=0.01, kernel=linear;, score=0.782 total time=
                                                                             2.3s
[CV 4/5] END ....C=1, gamma=0.01, kernel=linear;, score=0.786 total time=
                                                                             2.0s
[CV 5/5] END ....C=1, gamma=0.01, kernel=linear;, score=0.769 total time=
                                                                             2.3s
[CV 1/5] END ...C=1, gamma=0.001, kernel=linear;, score=0.787 total time=
                                                                             2.0s
[CV 2/5] END ...C=1, gamma=0.001, kernel=linear;, score=0.783 total time=
                                                                             1.9s
[CV 3/5] END ...C=1, gamma=0.001, kernel=linear;, score=0.782 total time=
                                                                             3.2s
[CV 4/5] END ...C=1, gamma=0.001, kernel=linear;, score=0.786 total time=
                                                                             2.5s
[CV 5/5] END ...C=1, gamma=0.001, kernel=linear;, score=0.769 total time=
                                                                             2.3s
[CV 1/5] END ..C=1, gamma=0.0001, kernel=linear;, score=0.787 total time=
                                                                             2.1s
[CV 2/5] END ..C=1, gamma=0.0001, kernel=linear;, score=0.783 total time=
                                                                             1.9s
[CV 3/5] END ..C=1, gamma=0.0001, kernel=linear;, score=0.782 total time=
                                                                             2.3s
[CV 4/5] END ..C=1, gamma=0.0001, kernel=linear;, score=0.786 total time=
                                                                             2.1s
[CV 5/5] END ..C=1, gamma=0.0001, kernel=linear;, score=0.769 total time=
                                                                             2.3s
[CV 1/5] END .....C=10, gamma=1, kernel=linear;, score=0.787 total time=
                                                                             5.1s
[CV 2/5] END .....C=10, gamma=1, kernel=linear;, score=0.783 total time=
                                                                             4.7s
[CV 3/5] END .....C=10, gamma=1, kernel=linear;, score=0.782 total time=
                                                                             6.7s
[CV 4/5] END .....C=10, gamma=1, kernel=linear;, score=0.786 total time=
                                                                             4.7s
[CV 5/5] END .....C=10, gamma=1, kernel=linear;, score=0.769 total time=
                                                                             5.9s
[CV 1/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.787 total time=
                                                                             5.3s
```

4.6s

6.6s

4.7s

5.9s

5.2s

4.9s

7.3s

4.8s

6.0s

5.1s

4.6s

6.6s

4.7s

5.9s

5.2s

4.7s

6.7s

4.7s

5.9s

8.2s

8.7s

9.5s

6.2s

```
[CV 2/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.783 total time=
     [CV 3/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.782 total time=
     [CV 4/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.786 total time=
     [CV 5/5] END ....C=10, gamma=0.1, kernel=linear;, score=0.769 total time=
     [CV 1/5] END ...C=10, gamma=0.01, kernel=linear;, score=0.787 total time=
     [CV 2/5] END ...C=10, gamma=0.01, kernel=linear;, score=0.783 total time=
     [CV 3/5] END ...C=10, gamma=0.01, kernel=linear;, score=0.782 total time=
     [CV 4/5] END ...C=10, gamma=0.01, kernel=linear;, score=0.786 total time=
     [CV 5/5] END ...C=10, gamma=0.01, kernel=linear;, score=0.769 total time=
     [CV 1/5] END ..C=10, gamma=0.001, kernel=linear;, score=0.787 total time=
     [CV 2/5] END ..C=10, gamma=0.001, kernel=linear;, score=0.783 total time=
     [CV 3/5] END ..C=10, gamma=0.001, kernel=linear;, score=0.782 total time=
     [CV 4/5] END ..C=10, gamma=0.001, kernel=linear;, score=0.786 total time=
     [CV 5/5] END ..C=10, gamma=0.001, kernel=linear;, score=0.769 total time=
     [CV 1/5] END .C=10, gamma=0.0001, kernel=linear;, score=0.787 total time=
     [CV 2/5] END .C=10, gamma=0.0001, kernel=linear;, score=0.783 total time=
     [CV 3/5] END .C=10, gamma=0.0001, kernel=linear;, score=0.782 total time=
     [CV 4/5] END .C=10, gamma=0.0001, kernel=linear;, score=0.786 total time=
     [CV 5/5] END .C=10, gamma=0.0001, kernel=linear;, score=0.769 total time=
     [CV 1/5] END .....C=100, gamma=1, kernel=linear;, score=0.787 total time=
     [CV 2/5] END .....C=100, gamma=1, kernel=linear;, score=0.783 total time=
     [CV 3/5] END .....C=100, gamma=1, kernel=linear;, score=0.782 total time=
     [CV 4/5] END .....C=100, gamma=1, kernel=linear;, score=0.786 total time=
# print best parameter after tuning
print(grid.best params )
# print how our model looks after hyper-parameter tuning
print(grid.best_estimator_)
best grid = grid.best estimator
     {'C': 1000, 'gamma': 1, 'kernel': 'linear'}
    SVC(C=1000, gamma=1, kernel='linear')
grid_predictions = best_grid.predict(X_valid)
# print classification report
print(classification report(y valid, grid predictions))
                   precision
                                recall f1-score
                                                   support
                                  0.78
                0
                        0.81
                                            0.80
                                                      5959
                1
                        0.79
                                  0.82
                                            0.80
                                                      6041
```

Linear Discriminant Analysis

accuracy

macro avg

weighted avg

from sklearn.model selection import RepeatedStratifiedKFold

0.80

0.80

0.80

0.80

0.80

0.80

0.80

12000

12000

12000

```
from sklearn.discriminant analysis import LinearDiscriminantAnalysis
model = LinearDiscriminantAnalysis()
model.fit(X_train, y_train)
classificationSummary(y valid, model.predict(X valid))
print(classification_report(y_valid, model.predict(X_valid)))
# Plot the cumulative gains chart of the expected spending
gains df = pd.DataFrame({'actual': y valid,
                         'prob': model.predict(X_valid)})
gains_df = gains_df.sort_values(by=['prob'], ascending=False).reset_index(drop=True)
gainsChart(gains df.actual)
plt.show()
# Plot Confusion Matrix
from sklearn.metrics import plot_confusion_matrix
plot confusion matrix(model, X valid, y valid)
plt.title('Confusion Matrix on Valid Data')
plt.show()
```

Confusion Matrix (Accuracy 0.7965)

```
Prediction
Actual
          0
     0 4750 1209
     1 1233 4808
              precision
                           recall f1-score
                                                support
                              0.80
                                         0.80
                                                   5959
           0
                    0.79
           1
                    0.80
                              0.80
                                         0.80
                                                   6041
                                         0.80
                                                  12000
    accuracy
   macro avg
                    0.80
                              0.80
                                         0.80
                                                  12000
weighted avg
                    0.80
                              0.80
                                         0.80
                                                  12000
```

/ /

Naive Bayes Classifiers

```
from sklearn.naive_bayes import MultinomialNB
NB bayes = MultinomialNB(alpha=0.001)
NB bayes.fit(X train, y train)
classificationSummary(y_valid, NB_bayes.predict(X_valid))
print(classification report(y valid, NB bayes.predict(X valid)))
# Plot the cumulative gains chart of the expected spending
gains df = pd.DataFrame({'actual': y valid,
                         'prob': NB bayes.predict(X valid)})
gains_df = gains_df.sort_values(by=['prob'], ascending=False).reset_index(drop=True)
gainsChart(gains df.actual)
plt.show()
# Plot Confusion Matrix
from sklearn.metrics import plot confusion matrix
plot_confusion_matrix(NB_bayes, X_valid, y_valid)
plt.title('Confusion Matrix on Valid Data')
plt.show()
```