a	9 6	v v 3	
ชอ –	นามสกุลเอกรนทร์ องอาจ.	รหิสนักศกษา	64015172

Data Structures and Algorithm

ภาควิชาวิศวกรรมคอมพิวเตอร์ คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง

การทดลองที่ 8 : เปรียบเทียบการทำงานของ sequential search และ binary search จุดประสงค์

- 1. นักศึกษาเข้าใจการทำงานและผลลัพธ์ของ sequential search และ binary search พร้อมทั้ง สามารถเปรียบเทียบได้
- 2. นักศึกษาเข้าใจข้อจำกัดของ sequential search และ binary search ที่นำไปใช้ในงานต่างๆ

โปรแกรมตัวอย่าง

```
import random
comparecount = 0
def binary_search(arr, low, high, x):
 global comparecount
 if high >= low:
  mid = (high + low) // 2
  if arr[mid] == x:
    return mid
  elif arr[mid] > x:
    comparecount +=1
    print("comparecount = ",comparecount, "low = ",low, "high =",mid-1)
    return binary search(arr, low, mid - 1, x)
  else:
    comparecount +=1
    print("comparecount = ",comparecount, "low = ",mid+1, "high = ",high)
    return binary_search(arr, mid + 1, high, x)
 else:
  return -1
def sequential_search(arr,x):
 global comparecount
 for i in arr:
  comparecount +=1
  if i==x:
    return comparecount
 return -1
datcount = 100000
```

```
## incase of sequential search
#arr = [random.randint(1,10000000) for i in range(datcount)]
## in case of binary search
#arr = sorted([random.randint(1,10000000) for i in range(datcount)])
## in case of succesfully search
#x = arr[random.randint(1,datcount)]
## in case of unsuccessfully search
## worstcase successfully search
\#x = arr[-1]
print("key =",x)
print("data len = ",len(arr))
## in case of binary search
#result = binary_search(arr, 0, len(arr)-1, x)
## incase of sequential search
#result = sequential_search(arr,x)
print("compare count = " ,comparecount)
if result != -1:
         print("Element is present at index", str(result))
else:
         print("Element is not present in array")
```

จากโปรแกรมตัวอย่าง เป็นโปรแกรมสำหรับการทดสอบ sequential search และ binary search ใน 3 กรณี คือกรณีที่คันหาเจอแบบทั่วไป กรณีที่คันหาเจอแบบแย่ที่สุด และกรณีที่คันหาไม่เจอข้อมูลที่ ต้องการ โดยจะต้องมีการปรับแต่งโปรแกรมโดย uncomment บรรทัดที่ต้องใช้งานให้ถูกต้อง โดย จุดสำคัญคือข้อมูลที่ใช้สำหรับ binary search ต้องเป็นข้อมูลที่ทำการเรียงลำดับแล้ว และข้อมูลที่ใช้ สำหรับ sequential search ไม่จำเป็นต้องเรียงลำดับก็ได้

สำหรับการทดลองนี้จะใช้ขนาดข้อมูลคงที่คือ 100,000 ชุดข้อมูล และใช้การทดลองซ้ำ ๆ เพื่อหา ค่าเฉลี่ยของการทำงานพื้นฐาน โดยนับที่จำนวนของการเปรียบเทียบข้อมูลอ้างอิง กับข้อมูลที่ต้องการ ค้นหา หากมีจำนวนการเปรียบเทียบน้อยกว่าจะถือว่ามีการทำงานที่รวดเร็วกว่า

a	9 6	v v 3	
ชอ –	นามสกุลเอกรนทร์ องอาจ.	รหิสนักศกษา	64015172

ตอนที่ 1 : การทำงานของ Sequential Search

Successfully Search , Average Case :

1. ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น sequential search ที่ ข้อมูล 100,000 ชุดข้อมูล โดยกำหนด key ที่จะค้นหาเป็นแบบสุ่มตำแหน่งให้สามารถค้นหาเจอ

2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการคันหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	33829
2	69077
3	16899
4	686
5	99844
6	24057
7	13093
8	83357
9	23675
10	54773
ค่าเฉลี่ย	41929

ค่าเฉลี่ย / จำนวนชุดข้อมูลทั้งหมด = 41929 / 100000 = 0.41929

Successfully Search, Worst Case:

- 1. ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น sequential search ที่ ข้อมูล 100,000 ชุดข้อมูล โดยกำหนด key ที่จะค้นหาเป็นข้อมูลตัวสุดท้ายของรายการ
- 2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการค้นหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	100000
2	100000
3	100000
4	100000
5	100000

ชื่อ -	- นามสกลเคกรินทร์ คงคาจ	รหัสนักศึกษา	64015172
шы	N 104 011 101 111 111 111 111 111 111 111		

6	100000
7	100000
8	100000
9	100000
10	100000
ค่าเฉลี่ย	100000

ا ط	, y y	
คำเฉลย /	จำนวนชดขอมลทงหมด =	

Unsuccessfully Search:

- 1. ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น sequential search ที่ ข้อมูล 100,000 ชุดข้อมูล โดยกำหนด key ที่จะค้นหาเป็นข้อมูลที่ไม่อยู่ในรายการ
- 2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการค้นหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	100000
2	100000
3	100000
4	100000
5	100000
6	100000
7	100000
8	100000
9	100000
10	100000
ค่าเฉลี่ย	100000

ค่าเฉลี่ย / จำนวนชุดข้อมูลทั้งหมด = _____100000 / 100000 = 1______

ตอนที่ 2 : การทำงานของ Binary Search

Successfully Search , Average Case :

ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น binary search ที่ข้อมูล
 100,000 ชุดข้อมูล โดยกำหนด key ที่จะคันหาเป็นแบบสุ่มตำแหน่งให้สามารถคันหาเจอ

2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการค้นหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	16
2	17
3	16
4	17
5	16
6	17
7	16
8	17
9	16
10	17
ค่าเฉลี่ย	16.5

Successfully Search , Worst Case :

- 1. ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น binary search ที่ข้อมูล 100,000 ชุดข้อมูล โดยกำหนด key ที่จะค้นหาเป็นข้อมูลตัวสุดท้ายของรายการ
- 2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการคันหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	16
2	16
3	16
4	16
5	16
6	16
7	16
8	16
9	16
10	16

ชื่อ – นามสกุลเอกรินทร์ องอาจ......รหัสนักศึกษา......64015172......

ค่าเฉลี่ย	16

Unsuccessfully Search:

- 1. ให้นักศึกษาทดลองโปรแกรมที่กำหนดให้ โดยกำหนดให้การทำงานเป็น binary search ที่ข้อมูล 100,000 ชุดข้อมูล โดยกำหนด key ที่จะค้นหาเป็นข้อมูลที่ไม่อยู่ในรายการ
- 2. ทำการทดลองรันโปรแกรมทั้งหมด 10 ครั้งแล้วหาค่าเฉลี่ยของจำนวนการค้นหาทั้งหมด

ครั้งที่	จำนวนครั้งที่เทียบ
	ข้อมูล
1	16
2	16
3	16
4	16
5	16
6	16
7	16
8	16
9	16
10	16
ค่าเฉลี่ย	16

ค่าเฉลี่ย / จำนวนชุดข้อมูลทั้งหมด = _____16 / 100000 = 0.00016

ชื่อ – นามส	กุลเอกรินทร์ องอาจรหัสนักศึกษา64015172
ตอนที่ 3 :	ตอบคำถามและวิเคราะห์การทำงาน
	nary search มีข้อจำกัดอย่างไรบ้าง
1.ไม่เหมา	าะกับการเปลี่ยนแปลงข้อมูลบ่อยๆ
	ta ที่น้อย การหาไม่ค่อยต่างกับ o(n)
	บ็นข้อมูลที่ไม่มีการเรียงลำดับ ใน binary search นักศึกษาคิดว่าจะเกิดผลการทำงานเป็น ข่างไร
ถ้าไม่เรียง เรียงเลยเท์	ลำดับมันจะหาข้อมูล แล้วหาไม่เจอเพราะมันอ้างออิงว่าที่เจอมีค่าน้อย หรือมากกว่ามันถ้าไม่ งี้ยน
	. v d . v ૧
	กกจำนวนข้อมูลที่เท่ากัน ใน worst case และกรณีที่ค้นหาไม่เจอ การทำงานของ search แบบ หนไวกว่ากัน
แบบ linea	ır ยังไงก็ช้ากว่าอยู่ดี เพราะไม่มีการหั่นข้อมูลแบบ binary
Linear เป็	นแบบ o(n) ส่วน binary เป็น o(n)
3. จ	ากจำนวนข้อมูลที่เท่ากัน ในกรณีทั่วไป การทำงานของ search แบบไหนไวกว่ากัน
ถ้าจำนวน	ที่ไม่มาก แบบ linear จะไวกว่าเพราะขั้นตอนการหามันน้อย
ในกรณีที่	update ข้อมูลบ่อยๆ แบบ linear จะไวว่าเพราะเอาข้อมูลไปต่อท้ายเสมอไม่สนใจว่าต้อง
เรียงลำดับ	หรือไม่ Big O ก็ยังเป็น o(n) เสมอ แต่ต่างจาก binary ที่ต้องการเรียงใหม่ ทุกรอบก่อนจำทำ
การ searc	h มันทำให้ช้าตรงที่ sort ก่อนเสมอ จากที่ binary เป็นแบบ o(log n) ถ้าเพิ่ม ขบวนการ sort
	guick sort หรือ merge sort ที่เป็น 0(n log n) ที่ทำแบบ linear ที่เป็นแบบ o(n) อีก
มันเลยช้าเ	าว่ากัน เพราะฉะนั้นต้องเลือกให้เหมาะกับงานที่สุด

ชื่อ – นามสกุลเอกรินทร์ องอาจรหัสนักศึกษา64015172