# Lista ANILLOS DE DIV.

1. Pruebe que cada subanillo con identidad de un campo es un dominio entero.

### Dem:

Sea K campo y T subunillo de K con identidad 17. Proburemos que T es dominio entero. Como Kes compo, entonces K es anillo de división connutativo, i.e K\*=K1{0}.

Sean ahora  $a,b \in T$ . Si ab=0 con  $a\neq 0$  enlonces  $\exists a' \in K^* \cap a \cdot a' = a' \cdot a = 1$ . Zuego:  $ab=0 \Rightarrow (a'a)b=a'0 \Rightarrow b=0$ 

Portunto, T no admite divisores de cero. Como T = K. T es conmulativo y tiene identidad 1. 2uego T es dominio entero.

2. Sea A un anillo conmutativo con identidad, y sea  $a \in A$ ,  $a \neq 0$ . Si a es divisor de cero de A, entonces pruebe que a no es unidad.

9. e.d

### Dem:

Suponya que a E A\* Entonces 3 u E A M a u = 1. Como a es divisor de cero, 3 b E Allol m
ab = 0

Luego:

$$au = 1 = \lambda b (au) = b$$

$$= \lambda (ab)u = b$$

$$= \lambda 0u = b$$

$$= \lambda b = 0$$

Luego, a no es unidad.

9. e.d.

3. Sea G el subconjunto de los cuaternios reales  $\mathbb H$  dado por

$$G = \{1, -1, i, -i, j, -j, k, -k\}.$$

Pruebe que G es grupo multiplicativo.



- 4. Sea A un anillo con más de un elemento tal que para cada elemento a de A no cero, existe un único elemento b de A tal que aba=a. Pruebe lo siguiente:
  - a) A no admite divisores de cero;
  - b) bab = b;
  - c) A tiene elemento identidad;
  - d) A es un anillo de división.

#### Dem:

De a): Supongu que existen  $x,y \in A \setminus \{0\}$  m = xy = 0. Como  $x \neq 0$ ,  $\exists ! a \in A = m = xax = x$ . Veamos:  $xy = 0 \Rightarrow xyx = 0$ 

$$\Rightarrow \chi \gamma \chi + \chi = \chi$$

$$=> xyx+xux = x$$

$$\Rightarrow \chi(y+u)\chi = \chi$$

Por unicidud: y+a=a => y=0 \*c. Por tunto A no admite divisores de caro

### De 5):

Sou u E A Ho}, 3! b E A m aba=a Veumos:

## De c):

Seu a  $\in$  Al{0} y  $x\in$  A, atirmumos que ab es la identidad de A, con be A el único elemento tul que aba = a. Si x=0, entonces xab=abx=x.

Six +0. 3! ye A m xyx = x veamos:

- 5. Si A es un anillo de división, entonces pruebe que Cent(A) es un campo.
- 6. Sea A un dominio entero, v sea  $\mathbb{Z} \cdot 1$  el subconjunto de A definido como:

## Dem:

Como A es anillo de división, enlonces A tiene identidad y A'= A 1601. (ent (A) es un subanillo de A Conmutativo, donde 1 \in Cent(A). Veamos que Cent(A) = Cent(A) 1601.

Seu xe Cent(A)/20] = A120 = At, entonces ] x'e A m

$$\chi \chi^{1} = \chi^{1} \chi = 1$$

Proburemos que z'e Cent(A). Como ze Cent(A):

$$\forall \alpha \in A, \alpha x = x\alpha = \forall \alpha \in A \quad x'\alpha x x' = x'x\alpha x'$$

Por tunto z'E Cent(A) => Cent(A) = Cent(A) \(\frac{1}{2}\) Por tunto Cent(A) es campo

6. Sea A un dominio entero, y sea  $\mathbb{Z} \cdot 1$  el subconjunto de A definido como:

9. e.d

$$\mathbb{Z} \cdot 1 = \{ n \cdot 1 \mid n \in \mathbb{Z} \}.$$

Pruebe que  $\mathbb{Z} \cdot 1$  es un subcampo de A si, y solo si A tiene característica positiva.

### Dem:

Como A es dorinio entero, A es anillo conmutativo con identidad que no admite divisores de cero.

=>) Suponya que Z·1 es subcampo de A, i.e Z·1\{0} Entonces, Y ne Z\{0\} = me Z\{0\} m (n.1) · (m.1) = 1 => nm. 1=1

En particular, para  $2 \in \mathbb{Z}$ ,  $\exists m \in \mathbb{Z}$   $m \in \mathbb{Z}$ 

Se cumple que (2K-1). 1 = 0. Seu ahoru a e A, entonces:

$$(2K-1)\cdot \alpha = (2K-1)\cdot 1\cdot \alpha$$

$$= 0 \cdot u = 0$$

donde 2K-1 > 0. Por tunto cur(A) > 0

(=) Suponga que K = cur(A) > O. Probusemos que Z·1 es sub cumpo de A i.e basta probus que (Z·1)\* = Z·11{0}. Como:

k · 1 = 0

Seu m. 1 E Z. 1/{0}. Entonces

7. Sea  $f: \mathbb{C} \longrightarrow \mathbb{C}$  dada por f(a+bi) = a-bi para cada  $a,b \in \mathbb{R}$ . Pruebe que f es un automorfismo de  $\mathbb{C}$ . Más aún, pruebe que exactamente existen dos automorfismos de  $\mathbb{C}$  tales que dejan fijo a  $\mathbb{R}$ . (Un homomorfismo  $f: \mathbb{C} \longrightarrow \mathbb{C}$  deja fijo a  $\mathbb{R}$ , si f(x) = x para cada  $x \in \mathbb{R}$ ).

#### Dam:

Sean u, b, a, b, & IR. Entonces:

$$f(a+b; +a_1+b_1;) = f(a+a_1+(b+b_1);) \qquad f((a+b;)\cdot(a_1+b_1)) = f(aa_1+ab_1;+a_1b_2-bb_1) \\
= a+a_1-(b+b_1); \qquad = (aa_1-bb_1)-(ab_1+a_1b_2); \\
= a-b;+a_1-b_1; \qquad = (aa_1-bb_1)+(a(-b_1)+a_1(-b)); \\
= f(a+b;)+f(a_1+b_2;) \\
= f(a+b;)+f(a_1+b_2;) \\
= f(a+b;)+f(a_1+b_2;)$$

Por tunto f es homomorfismo. Claramente f es bijección asi f es automorfismo. Seu h: C -> Cun automorfismo de C que dejutijo a IR, i.e:

$$h(x) = x \quad \forall x \in \mathbb{R}$$

Seun a, bell Entonces:

$$h(a+bi) = h(a) + h(bi)$$

$$= h(a) + h(b) \cdot h(i)$$

$$= a + bh(i)$$

 $P_{ero} h(-1) = -h(1) = h(i)h(i) = -1$ , pues h deju tijo u IR. Por tunto  $h(i)^2 = -1 = h(i) = \pm i$ .

Asi, silo pueden existir dos homomortismos que dejun tijo a IR

4. e. d

- 8. Encuentre el centro de los cuaternios reales  $\mathbb{H}$ .
- 9. Sea A el conjunto de todas las matrices en  $\mathfrak{M}_2(\mathbb{C})$  de la forma

### Dem:

Recordundo que:

Cent(A) = 
$$\{a \in A \mid ux = xu, \forall x \in A\}$$



9. Sea A el conjunto de todas las matrices en  $\mathfrak{M}_2(\mathbb{C})$  de la forma

$$\begin{pmatrix} z & w \\ -\bar{w} & \bar{z} \end{pmatrix}$$

con  $z,w\in\mathbb{C}$ . Pruebe que A es un anillo de división el cual es isomorfo al anillo de división  $\mathbb{H}$  de los cuaternios reales. (Sugerencia: Defina un isomorfismo de  $\mathbb{H}$  sobre A que aplique respectivamente los elementos 1,i,j,k de  $\mathbb{H}$  sobre las matrices

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{array}\right) \ .$$

#### Dem:

Seun w, ve C, como \(\overline{v} + \overline{v} = \overline{v} + \overline{v} \) entonces (A, +) es grupo abeliano. Claramente (no tanto), A es anillo. Veumos que es anillo de div. En etecto: A = A/20}, donde identificamos al O con:

$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Con identidad  $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ . Seu  $M = \begin{pmatrix} \frac{2}{3} & \overline{\omega} \\ -\overline{\omega} & \overline{z} \end{pmatrix} \in A$ , veumos que:

Siz=a+biyu-c+di, entonces:

$$det(M) = a^2 + b^2 - (c^2 + d^2 - 2cdi)$$

 $S_i \, C_i \, d \neq 0 \Rightarrow \det(M) \neq 0$ .  $S_i \, C_i = d = 0$  entonces  $\det(M) = 0 \iff a = b = 0$ , i.e  $M = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ .

Por ende det(M) \delta D, \delta M \in Allo}, asi M es intertible y su inversa es:

$$M^{-1} = \frac{1}{\sqrt{et(M)}} \begin{pmatrix} \frac{1}{2} & \bar{\omega} \\ -\bar{\omega} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} u & v \\ -\bar{v} & \bar{\omega} \end{pmatrix}$$

Donde  $u = \frac{2}{det(n)}$   $V = \frac{u}{det(n)}$ . Asi  $M \in A$ , i.e  $M \in A^*$ . Luego A es unillo de div. Defina ahorae f:

| a) El | centr  | o de .  | A con | ısiste | de to               | odas l | las m                                  | atrice     | es de  | la for | rma   |       |  |  |  |  |  |  |  |  |  |
|-------|--------|---------|-------|--------|---------------------|--------|----------------------------------------|------------|--------|--------|-------|-------|--|--|--|--|--|--|--|--|--|
|       |        |         |       |        |                     |        | $\begin{pmatrix} a \\ 0 \end{pmatrix}$ | 0          |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        | 0                                      | <i>a</i> ) | ,      |        |       |       |  |  |  |  |  |  |  |  |  |
| b) El | centr  | o de .  | A no  | es ui  | n idea              | l de . | A;                                     |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
| c) ¿( | Cuál e | s el ce | entro | de X   | $\mathfrak{N}_n(B)$ | done   | de B                                   | es ui      | n anil | lo de  | divis | sión? |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |
|       |        |         |       |        |                     |        |                                        |            |        |        |       |       |  |  |  |  |  |  |  |  |  |

| a |     |          | lemento                 |  | s A e | s ann | io de c | 11V1S10 | on si, y | y solo | S1 A |  |  |  |  |  |
|---|-----|----------|-------------------------|--|-------|-------|---------|---------|----------|--------|------|--|--|--|--|--|
|   |     |          | ales pro                |  |       |       |         |         |          |        |      |  |  |  |  |  |
| b |     |          | e ideale $= \{0\}$      |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          | $= \{0\}$<br>= $0\}$ es |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          | ncuentr                 |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   | amb | os lados | )).                     |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |
|   |     |          |                         |  |       |       |         |         |          |        |      |  |  |  |  |  |

12. Pruebe que el anillo  $A = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$  es un dominio entero bajo las operaciones usuales, pero que no es un campo exhibiendo un ideal no trivial de A.

### Dom:

Claramente A es un anillo. Veamos que es dominio entero. Seun o,b,c,d,e,t ∈ Z n a+b s2 ≠0. Veamos que s;:

$$(a+b52)(c+d52) = (a+b52)(e+b52)$$
=>  $(ac+2bd)+(ad+bc)52 = (aa+2bd)+(ad+be)52$ 
=>  $\begin{cases} ac+2bd-ae-2bf=0 \\ ad+bc-af-be=0 \end{cases}$ 

 $= \begin{cases} a(c-e) + 2b(d-f) = 0 \\ o(d-f) + b(c-e) = 0 \end{cases}$ 

S;  $\alpha \neq 0 \Rightarrow \alpha^2 > 0$ . Luego:

$$= \begin{cases} o^{2}(c-e)^{2} + 2ob(d-f)(c-e) = 0 \\ o^{2}(d-f)^{2} + ob(d-f)(c-e) = 0 \end{cases}$$

$$= \begin{cases} o^{2}(c-e)^{2} - 2o^{2}(d-f)^{2} = 0 \\ o(c-e)^{2} - 2(d-f)^{2} = 0 \end{cases}$$

$$= \begin{cases} (c-e)^{2} - 2(d-f)(c-e) - \sqrt{2}(d-f) = 0 \end{cases}$$

$$= \begin{cases} (c-e)^{2} - \sqrt{2}(d-f)(c-e) - \sqrt{2}(d-f) = 0 \end{cases}$$

Probusemos un resultado. Si  $x,y \in \mathbb{Z}$  son  $\pi$   $x^2 - 2y^2 = 0 = x = y = 0$ . Si  $x \neq 0$ , entoncos  $y \neq 0$ , pero la ec.  $x^2 - 2y^2 = 0$  no tiene sols. en  $\mathbb{Z}$  no triviales, luego x = y = 0. Por tanto, de (1):

=>  $C+\sqrt{2}d=e+\sqrt{2}f$  i.e A es dominio entero. Pero no escampo, pues el conjunto  $\overline{L}=\{2a+2\sqrt{2}b \mid a.b\in\mathbb{Z}\}$ 

es un : deal no trivial de A

13. Sean A un anillo y  $f, g: \mathbb{Q} \longrightarrow A$  homomorfismos tales que f(r) = g(r) para cada  $r \in \mathbb{Z}$ . Pruebe que f = g sobre  $\mathbb{Q}$ .

Dem:

Como Q es cumpo, entonces f y g son triviales, o son monomortismos. No puede suceder que uno sea trivial y el otro sea monomorf: smo, i.e ambos son triviales o son monomorfismos. Luego Q >>
A bajo f y g.

Considere J(Q), g(Q) = A.

|      |      |  | Pru | ebe q | ue K | ( ⊆ 1 | $\ker(f)$ | ) ó <i>E</i> | 3 con | tiene | un s | suban | illo e | el cua | l es |  |  |  |  |  |  |  |
|------|------|--|-----|-------|------|-------|-----------|--------------|-------|-------|------|-------|--------|--------|------|--|--|--|--|--|--|--|
| isom | orfo |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |
|      |      |  |     |       |      |       |           |              |       |       |      |       |        |        |      |  |  |  |  |  |  |  |

| Sea : |    | nero j | prime | o, y s | ea $K$ | $= \{a$ | $a+b_{\mathbf{V}}$ | $\sqrt{p} \mid a$ | $b \in \mathbb{Q}$ | Q}. P | ruebe | e que | $K \in K$ es | s un s | ubcar | mpo |  |  |  |  |  |  |  |
|-------|----|--------|-------|--------|--------|---------|--------------------|-------------------|--------------------|-------|-------|-------|--------------|--------|-------|-----|--|--|--|--|--|--|--|
| de k  | 2. |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |
|       |    |        |       |        |        |         |                    |                   |                    |       |       |       |              |        |       |     |  |  |  |  |  |  |  |

 $de \mathbb{R}$ . 16. Pruebe las siguientes afirmaciones: a) El elemento identidad de un subcampo es el mismo que el del campo; b) Si  $\{K_i\}_i$  es una familia de subcampos de un campo K, entonces  $\cap_i K_i$  es también un subcampo de K; c) Un subanillo F de un campo K es un subcampo de K si, y solo si F contiene al menos un elemento no cero, y  $a^{-1} \in F$  para cada  $a \in F$ ; d) Un subconjunto F de un campo finito Kes un subcampo de Ksi, y solo si Fcontiene más de un elemento, y es cerrado bajo la adición y multiplicación.

| D | nobe | 0110 -: | <i>V</i> ~- | 1122 | amn- | do    | root.  | miati-  | no ~ ` | > 0    | nta-  | 000 - | oda - | nih a- | mno | do |  |  |  |  |  |  |
|---|------|---------|-------------|------|------|-------|--------|---------|--------|--------|-------|-------|-------|--------|-----|----|--|--|--|--|--|--|
|   |      |         | K es        |      |      | ae ca | ıracte | eristic | :a p   | ≥ U, € | enton | ces c | ada s | subca  | mpo | ae |  |  |  |  |  |  |
|   |      |         |             | P    |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |
|   |      |         |             |      |      |       |        |         |        |        |       |       |       |        |     |    |  |  |  |  |  |  |

| $a) P_{I}$ | $_{\mathcal{C}}\cong\mathbb{Z}/p$ | $p\mathbb{Z}$ si $p$ | 0 > 0; |  |  |  |  |  |  |  |  |  |  |  |  |  |
|------------|-----------------------------------|----------------------|--------|--|--|--|--|--|--|--|--|--|--|--|--|--|
|            | $_{3}\cong\mathbb{Q} \text{ s}$   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |
|            |                                   |                      |        |  |  |  |  |  |  |  |  |  |  |  |  |  |



- 20. Sean K un campo y F subcampo de K. Si f es un automorfismo de K, decimos que f deja fijo a un elemento a de F si f(a) = a. Pruebe lo siguiente:
  - a) El conjunto de todos los automorfismos de K forman un grupo con la operación de composición;
  - b) El conjunto de automorfismo de K que dejan fijo a los elementos de F es un subgrupo del grupo de automorfismos de K;
  - c) Si G es un subgrupo del grupo de automorfismos de K, entonces el conjunto

$$\{a \in K \mid f(a) = a \ \forall f \in G\}$$

es un subcampo de K llamado el **campo fijo de** K **por** G y es denotado por  $K^G$ .

1)em:

De a): Es inmediata

De b): Sea

€7¢ pues id ∈ €. Sean J, y ∈ €, entonces:

$$\int \circ g'(\alpha) = \int (g'(\alpha))$$

$$=\int (\alpha)$$

: E < Aut(G)

De c): Probomos que KG es subanillo de K. KG + & pues f(0) = 0, Y J F G (por ser foulomor.

Jismo), luego DEKG. Seun a, bEKG y seu fe G:

$$=> f(ab) = f(a)f(b)$$
  $f(a-b) = f(a) - f(b)$ 

Lueyo K es subunillo de K. Si a E K (10) entonces

$$f(\sigma') = f(\sigma)' = \sigma'$$
 pues  $f(\alpha) \neq 0$  y Kes compo

Luego a' es dejado fijo por J. Por tanto (KG)\* = KG1/03, i.e KG es subcumpo de K.

9.0.d

