Applied Deep Learning

Backpropagation for Optimization

February 21st, 2022 http://adl.miulab.tw

National Taiwan University

Parameter Optimization

最佳化參數

Notation Summary

```
a_i^l: output of a neuron
```

 a^l : output vector of a layer

 z_i^l : input of activation function

 \mathbf{Z}^l : input vector of activation function for a layer

 w_{ij}^l : a weight

 W^l : a weight matrix

 b_i^l : a bias

 h^l : a bias vector

Layer Output Relation – from a to z

$$z_{1}^{l} = w_{11}^{1} a_{1}^{l-1} + w_{12}^{1} a_{2}^{l-1} + \dots + b_{1}^{l}$$

$$z_{i}^{l} = w_{i1}^{1} a_{1}^{l-1} + w_{i2}^{1} a_{2}^{l-1} + \dots + b_{i}^{l}$$

$$\vdots$$

$$\begin{bmatrix} z_{1}^{l} \\ \vdots \\ z_{i}^{l} \end{bmatrix} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \end{bmatrix} \begin{bmatrix} a_{1}^{l-1} \\ \vdots \\ a_{i-1}^{l-1} \end{bmatrix} + \begin{bmatrix} b_{1}^{l} \\ \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$$z^{l} = W^{l} a^{l-1} + b^{l}$$

Layer Output Relation – from z to a

$$a_{i}^{l} = \sigma(z_{i}^{l})$$

$$\begin{bmatrix} a_{1}^{l} \\ a_{2}^{l} \\ \vdots \\ a_{i}^{l} \\ \vdots \end{bmatrix} = \begin{bmatrix} \sigma(z_{1}^{l}) \\ \sigma(z_{2}^{l}) \\ \vdots \\ \sigma(z_{i}^{l}) \\ \vdots \end{bmatrix}$$

$$a^l = \sigma(z^l)$$

Layer Output Relation

$$z^{l} = W^{l}a^{l-1} + b^{l}$$

$$a^{l} = \sigma(z^{l})$$

$$a^l = \sigma(W^l a^{l-1} + b^l)$$

Neural Network Formulation

• Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

Neural Network Formulation

• Fully connected feedforward network $f: \mathbb{R}^N \to \mathbb{R}^M$

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

Loss Function for Training

sum over the error of all training samples

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & & \ddots \end{bmatrix} \quad b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

$$\nabla C(\theta) = \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial C(\theta)} \end{bmatrix}$$

Algorithm Initialization: start at θ^0 while $(\theta^{(i+1)} \neq \theta^i)$ { compute gradient at θ^i update parameters $\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$

Computing the gradient includes millions of parameters. To compute it efficiently, we use **backpropagation**.

Backpropagation

如何有效率地計算大量參數呢?

Forward v.s. Back Propagation

- In a feedforward neural network
 - forward propagation
 - from input x to output y information flows forward through the network
 - during training, forward propagation can continue onward until it produces a scalar cost $C(\theta)$
 - back-propagation
 - allows the information from the cost to then <u>flow backwards</u> through the network, in order to compute the **gradient**
 - can be applied to any function

Chain Rule

$$\Delta w \to \Delta x \to \Delta y \to \Delta z$$

$$\frac{\partial z}{\partial w} = \frac{\partial z}{\partial y} \frac{\partial y}{\partial x} \frac{\partial x}{\partial w}$$

$$= f'(y)f'(x)f'(w)$$
forward propagation for cost
$$= f'(f(f(w)))f'(f(w))f'(w)$$
back-propagation for gradient

Gradient Descent for Neural Network

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

$$W^{l} = \begin{bmatrix} w_{11}^{l} & w_{12}^{l} & \cdots \\ w_{21}^{l} & w_{22}^{l} & \cdots \\ \vdots & & \ddots \end{bmatrix} b^{l} = \begin{bmatrix} \vdots \\ b_{i}^{l} \\ \vdots \end{bmatrix}$$

$\begin{array}{l} \textbf{Algorithm} \\ \textbf{Initialization: start at } \theta^0 \\ \textbf{while}(\theta^{(i+1)} \neq \theta^i) \\ \{ \\ \textbf{compute gradient at } \theta^i \\ \textbf{update parameters} \\ \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i) \\ \} \\ \end{array}$

$$\nabla C(\theta) = \begin{bmatrix} \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \end{bmatrix}$$

Computing the gradient includes millions of parameters. To compute it efficiently, we use **backpropagation**.

$$-\partial C(heta)/\partial w_{ij}^l$$

$-\partial z_i^l/\partial w_{ij}^l$ (l>1)

$-\partial C(\theta)/\partial w_{ij}^{l}$

$$\frac{\partial C(\theta)}{\partial w_{ij}^{l}} = \frac{\partial C(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

$$\vdots \vdots \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}} = \begin{cases} a_{j}^{l-1}, l > 1 \\ x_{j}, l = 1 \end{cases}$$

$$\text{Layer} l$$

$$-\partial C(heta)/\partial w_{ij}^l$$

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$-\partial C(heta)/\partial z_i^l$$

$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

 δ_i^l : the propagated gradient corresponding to the *l*-th layer

Idea: computing δ^l layer by layer (from δ^L to δ^1) is more efficient

- $\partial C(\theta)/\partial z_i^l = \delta_i^l$
 - Idea: from L to 1
 - ① Initialization: compute δ^L
 - ② Compute δ^l based on δ^{l+1}

$$\partial C(\theta)/\partial z_i^l = \delta_i^l$$

- Idea: from L to 1
 - ① Initialization: compute δ^L
 - 2 Compute δ^l based on δ^{l+1}

$$\delta_i^L = \frac{\partial C}{\partial z_i^L} \qquad \Delta z_i^L \to \Delta a_i^L = \Delta y_i \to \Delta C$$
$$= \underbrace{\frac{\partial C}{\partial y_i}}_{\partial z_i^L} \underbrace{\frac{\partial y_i}{\partial z_i^L}}_{\partial z_i^L}$$

 $\partial C/\partial y_i$ depends on the loss function

- Idea: from L to 1
 - ① Initialization: compute δ^L
 - 2 Compute δ^l based on δ^{l+1}

$$\delta_{i}^{L} = \frac{\partial C}{\partial z_{i}^{L}} \qquad \Delta z_{i}^{L} \rightarrow \Delta a_{i}^{L} = \Delta y_{i} \rightarrow \Delta C$$

$$= \frac{\partial C}{\partial y_{i}} \frac{\partial \mathcal{O}}{\partial z_{i}^{L}} = a_{i}^{L} = \sigma(z_{i}^{L}) \qquad \sigma'(z^{L}) = \begin{bmatrix} \sigma'(z_{1}^{L}) \\ \sigma'(z_{2}^{L}) \\ \vdots \\ \sigma'(z_{i}^{L}) \end{bmatrix} \nabla C(y) = \begin{bmatrix} \frac{\partial C}{\partial y_{1}} \\ \frac{\partial C}{\partial y_{2}} \\ \vdots \\ \frac{\partial C}{\partial y_{i}} \\ \vdots \end{bmatrix}$$

$$= \frac{\partial C}{\partial z_{i}} \sigma'(z_{i}^{L}) \qquad \text{s. T. } \sigma(z_{i}^{L}) \qquad \text{s. T. } \sigma(z_{i}^{L})$$

- Idea: from L to 1
 - ① Initialization: compute δ^L
 - **2** Compute δ^l based on δ^{l+1}

$$\Delta z_{i}^{l} \rightarrow \Delta a_{i}^{l} \xrightarrow{\Delta z_{1}^{l+1}} \Delta C$$

$$\frac{\partial C}{\partial z_{i}^{l}} = \sum_{k} \left(\frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial a_{i}^{l}} \frac{\partial a_{i}^{l}}{\partial z_{i}^{l}} \right)$$

$$= \frac{\partial a_{i}^{l}}{\partial z_{i}^{l}} \sum_{k} \left(\frac{\partial C}{\partial z_{k}^{l+1}} \frac{\partial z_{k}^{l+1}}{\partial z_{k}^{l}} \frac{\partial z_{k}^{l+1}}{\partial z_{i}^{l}} \right) \delta_{i}^{l+1}$$

- Idea: from L to 1
 - ① Initialization: compute δ^L
 - **2** Compute δ^l based on δ^{l+1}

$$\begin{split} \delta_i^l &= \frac{\partial a_i^l}{\partial z_i^l} \sum_k \frac{\partial z_k^{l+1}}{\partial a_i^l} \delta_k^{l+1} \\ &= \sum_k w_{ki}^{l+1} a_i^l + b_k^{l+1} \\ &= \sigma'(z_i) \sum_k \frac{\partial z_k^{l+1}}{\partial a_i^l} \delta_k^{l+1} \\ &= \sigma'(z_i) \sum_k w_{ki}^{l+1} \delta_k^{l+1} \end{split}$$

$$-\partial C(\theta)/\partial z_i^l = \delta_i^l$$

Rethink the propagation

$$\delta_i^l = \sigma'(z_i) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$

$$\delta_i^l = \sigma'(z_i) \sum_k w_{ki}^{l+1} \delta_k^{l+1}$$

$$\sigma'(z^l) = \begin{bmatrix} \sigma'(z_1^l) \\ \sigma'(z_2^l) \\ \vdots \\ \sigma'(z_i^l) \\ \vdots \end{bmatrix}$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

- ② Compute δ^{l-1} based on δ^l

Initialization: compute δ^L

Layer 1+1

 $\times \sigma'(z_1^{l+1})$

 $\times \sigma'(z_2^{l+1})$

 $(W^{l+1})^T$

Layer

 $\times \sigma'(z_2^l)$

 $\delta_{\scriptscriptstyle 1}^l$

 δ_i^l

 $\delta^L = \sigma'(z^L) \odot \nabla C(y)$

 $\times \sigma'(z_1^L)$

 $\times \sigma'(z_2^L)$

Layer *L-1* Layer *L*

 $\times \sigma'(z_2^{L-1})$

m

 $\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$

 $\nabla C(y)$

 ∂C

 ∂y_1

 ∂C

 ∂y_2

 ∂C

 ∂y_n

Backpropagation
$$\frac{\partial C(\theta)}{\partial w_{ij}^l} = \frac{\partial C(\theta)}{\partial z_i^l} \frac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\frac{\partial z_i^l}{\partial w_{ij}^l} = \begin{cases} a_j^{l-1}, l > 1\\ x_j, l = 1 \end{cases}$$

$$\begin{aligned} & \underline{\textit{Forward Pass}} \\ z^1 = \underset{:}{W}^1 x + b^1 & a^1 = \sigma(z^1) \\ z^l = \underset{:}{W}^l a^{l-1} + b^l & a^l = \sigma(z^l) \\ & \vdots \end{aligned}$$

Backpropagation

$$rac{\partial C(heta)}{\partial w_{ij}^l} = rac{\partial C(heta)}{\partial z_i^l} rac{\partial z_i^l}{\partial w_{ij}^l}$$

$$\frac{\partial C(\theta)}{\partial z_i^l} = \delta_i^l$$

Backward Pass

$$\delta^{L} = \sigma'(z^{L}) \odot \nabla C(y)$$

$$\delta^{L-1} = \sigma'(z^{L-1}) \odot (W^{L})^{T} \delta^{L}$$

$$\vdots$$

$$\delta^{l} = \sigma'(z^{l}) \odot (W^{l+1})^{T} \delta^{l+1}$$

$$\vdots$$

Gradient Descent for Optimization

$$y = f(x) = \sigma(W^L \cdots \sigma(W^2 \sigma(W^1 x + b^1) + b^2) \dots + b^L)$$

$$\theta = \left\{ W^1, b^1, W^2, b^2, \dots W^L, b^L \right\}$$

$$W^l = \begin{bmatrix} w_{11}^l & w_{12}^l & \cdots \\ w_{21}^l & w_{22}^l & \cdots \\ \vdots & & \ddots \end{bmatrix} \quad b^l = \begin{bmatrix} \vdots \\ b_i^l \\ \vdots \end{bmatrix}$$

$$= \begin{bmatrix} \vdots \\ \frac{\partial C(\theta)}{\partial w_{ij}^l} \\ \vdots \\ \frac{\partial C(\theta)}{\partial b_i^l} \end{bmatrix}$$

$\begin{array}{|c|c|} \textbf{Algorithm} \\ \textbf{Initialization: start at } \theta^0 \\ \textbf{while} (\theta^{(i+1)} \neq \theta^i) \\ \textbf{\{} \\ \textbf{compute gradient at } \theta^i \\ \textbf{update parameters} \\ \theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i) \\ \textbf{\}} \\ \end{array}$

Concluding Remarks

$$\frac{\partial C(\theta)}{\partial w_{ij}^{l}} = \frac{\partial C(\theta)}{\partial z_{i}^{l}} \frac{\partial z_{i}^{l}}{\partial w_{ij}^{l}}$$

$$\begin{cases} a_{j}^{l-1} & l > 1 \\ x_{j} & l = 1 \end{cases}$$

$$\frac{\operatorname{rd} \operatorname{Pass}}{\sum_{i=1}^{l} \operatorname{Pass}} \frac{\operatorname{Forward} \operatorname{Pass}}{\sum_{i=1}^{l} \operatorname{Pass}} z_{i}^{l} = W^{l}x + b^{l}$$

$$z_{i}^{l} = W^{l}a^{l-1} + b^{l}$$

$$z_{i}^{l} = \sigma(z^{l})$$

Layerl-1Layer *l* W_{ij}^{ι}

Backward Pass $\delta^L = \sigma'(z^L) \odot \nabla C(y)$ $\delta^{L-1} = \sigma'(z^{L-1}) \odot (W^L)^T \delta^L$: $\delta^l = \sigma'(z^l) \odot (W^{l+1})^T \delta^{l+1}$

Compute the gradient based on two pre-computed terms from backward and forward passes