UNFOLDING

On note H_n l'ensemble des matrices de la forme $\sigma\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix}\begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}\sigma^{-1}$ où X est dans M_n et g dans G_n . On pose $H_n^P = H_n \cap P_{2n}$. On note θ le caractère sur H_n défini par $\psi(Tr(X))$.

Proposition 0.1. Soit $f \in S(G_{2n})$, alors on a

$$(1)\quad \int_{\mathsf{H}_{\mathfrak{n}}}\mathsf{f}(s)\theta(s)^{-1}ds=\int_{\mathsf{H}_{\mathfrak{n}}^{P}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}^{P}}\int_{\mathsf{H}_{\mathfrak{n}}\cap\mathsf{N}_{2\mathfrak{n}}\backslash\mathsf{H}_{\mathfrak{n}}}W_{\mathsf{f}}(\xi_{p},\xi)\theta(\xi)^{-1}\theta(\xi_{p})d\xi d\xi_{p}.$$

 $où W_f$ est la fonction de $G_{2n} \times G_{2n}$ définie par

(2)
$$W_{f}(g_{1},g_{2}) = \int_{N_{2n}} f(g_{1}^{-1}ug_{2})\psi(u)^{-1}du$$

pour tous $g_1, g_2 \in G_{2n}$.

Démonstration. On montre la proposition par récurrence sur $\mathfrak n$. Pour $\mathfrak n=1,\ H_1^P$ est trivial, σ est trivial et $H_1\simeq N_2\mathsf Z(\mathsf G_2)$. Le membre de droite est alors

(3)
$$\int_{F^*} W_f \left(1, \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) dz = \int_{F^*} \int_{N_2} f \left(u \begin{pmatrix} z & 0 \\ 0 & z \end{pmatrix} \right) \psi(u)^{-1} du dz.$$

Ce qui est bien l'égalité voulue. Supposons maintenant que $\mathfrak{n}>1$ et que la proposition soit vraie au rang $\mathfrak{n}-1$.

L'ensemble Ω_n des matrices de la forme $\sigma\begin{pmatrix} 1 & Y \\ 0 & 1 \end{pmatrix}\begin{pmatrix} h & 0 \\ 0 & h \end{pmatrix}\sigma^{-1}$ où Y est une matrice triangulaire inférieure stricte de taille n et $h \in \overline{B}_n$ le sous-groupe des matrices triangulaire inférieure inversible, s'identifie à un ouvert dense du quotient $H_n \cap N_{2n} \setminus H_n$. On injecte Ω_{n-1} dans Ω_n , en rajoutant des 0 sur la dernière ligne et colonne de Y et voyant h comme un élément de \overline{B}_n . On note $\widetilde{\Omega}_n$ l'ensemble des

matrices de la forme
$$\sigma \begin{pmatrix} 1 & \widetilde{Y} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{h} & 0 \\ 0 & \widetilde{h} \end{pmatrix} \sigma^{-1}$$
 où \widetilde{Y} est de la forme $\begin{pmatrix} 0_{n-1} & 0 \\ \widetilde{y} & 0 \end{pmatrix}$ avec

$$\begin{split} \widetilde{y} \in F^{n-1} \text{ et } \widetilde{h} \text{ de la forme } \begin{pmatrix} \mathbf{1}_{n-1} & \mathbf{0} \\ \widetilde{\mathfrak{l}} & \widetilde{\mathfrak{l}}_n \end{pmatrix} \text{ avec } \widetilde{\mathfrak{l}} \in F^{n-1} \text{ et } \widetilde{\mathfrak{l}}_n \in F^*. \text{ On en déduit que } \\ \Omega_n = \Omega_{n-1} \widetilde{\Omega}_n. \end{split}$$

De même, on dispose d'une décomposition, $\Omega_n^P = \Omega_{n-1}^P \widetilde{\Omega}_{n-1}$, où Ω_n^P est l'ensemble des matrices de Ω_n avec $h \in P_n$ et $\widetilde{\Omega}_{n-1}$ est l'ensemble des matrices de $\widetilde{\Omega}_n$ avec $\widetilde{h} \in P_n$. De plus, Ω_n^P s'identifie à un ouvert dense du quotient $H_n^P \cap N_{2n} \setminus H_n^P$.

On utilise ces décompositions pour écrire le membre de droite de la proposition sous la forme

$$(4) \qquad \int_{\widetilde{\Omega}_{\mathfrak{n}-1}}\int_{\Omega_{\mathfrak{n}-1}^{\mathfrak{p}}}\int_{\widetilde{\Omega}_{\mathfrak{n}}}\int_{\Omega_{\mathfrak{n}-1}}W_{f}(\xi_{p}'\widetilde{\xi}_{\mathfrak{p}},\xi'\widetilde{\xi})|\det\xi_{p}'\xi'|^{-1}d\xi'd\widetilde{\xi}d\xi_{p}'d\widetilde{\xi}_{\mathfrak{p}},$$

où les mesures $d\xi'$, $d\widetilde{\xi}$, $d\xi'_p$ et $d\widetilde{\xi}_p$ sont respectivement des mesures de Haar à droite sur Ω_{n-1} , $\widetilde{\Omega}_n$, Ω^p_{n-1} et $\widetilde{\Omega}_{n-1}$. On a choisi les représentants des matrices Y et \widetilde{Y} de sorte à ce que le caractère θ soit trivial.

On fixe $\widetilde{\xi}_p \in \widetilde{\Omega}_{n-1}$ et $\widetilde{\xi} \in \widetilde{\Omega}_n$. On pose $f' = L(\widetilde{\xi}_p)R(\widetilde{\xi})f$, on a alors

$$\int_{\Omega_{n-1}^p} \int_{\Omega_{n-1}} W_f(\xi_p'\widetilde{\xi}_p,\xi'\widetilde{\xi}) |\det \xi_p'\xi'|^{-1} d\xi' d\xi_p' = \\ \int_{\Omega_{n-1}^p} \int_{\Omega_{n-1}} W_{f'}(\xi_p',\xi') |\det \xi_p'\xi'|^{-1} d\xi' d\xi_p'.$$

De plus,

(6)
$$W_{f'}(\xi_p', \xi') = \int_{N_{2n-2}} \int_{V} f'(\xi_p'^{-1} v u \xi') \psi(u)^{-1} \psi(v)^{-1} dv du,$$

où V est le sous-groupe des matrices de N_{2n} avec seulement les deux dernières colonnes non triviales, on dispose donc d'une décomposition $N_{2n}=N_{2n-2}V$. On effectue le changement de variable $\nu\mapsto {\xi'}_p\nu{\xi'}_p^{-1}$, ce qui donne

$$(7) \qquad W_{f'}(\xi'_p,\xi')=|\det \xi'_p|^2\int_{N_{2n-2}}\int_V f'(\nu\xi'_p^{-1}u\xi')\psi(u)^{-1}\psi(\nu)^{-1}d\nu du.$$

On note $\widetilde{f}'(g) = |\det g|^{-1} \int_V f'\left(\nu\begin{pmatrix} g & 0 \\ 0 & I_2 \end{pmatrix}\right) \psi(\nu)^{-1} d\nu$ pour $g \in G_{2n-2}$; alors $\widetilde{f}' \in \mathcal{S}(G_{2n-2})$. On obtient ainsi l'égalité

(8)
$$W_{f'}(\xi_p', \xi') = |\det \xi_p' \xi'| W_{\widetilde{f}'}(\xi_p', \xi').$$

Appliquons l'hypothèse de récurrence,

$$\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{f'}(\xi'_{p}, \xi') |\det \xi'_{p} \xi'|^{-1} d\xi' d\xi'_{p} =
\int_{\Omega_{n-1}^{p}} \int_{\Omega_{n-1}} W_{\widetilde{f'}}(\xi'_{p}, \xi') d\xi' d\xi'_{p} = \int_{H_{n-1}} \widetilde{f'}(s) \theta(s)^{-1} ds =
\int_{H_{n-1}} |\det s|^{-1} \int_{V} f(\widetilde{\xi}_{p}^{-1} v s \widetilde{\xi}) \theta(s)^{-1} \psi(v)^{-1} dv ds.$$

Il nous faut maintenant intégrer sur $\widetilde{\xi}_p$ et $\widetilde{\xi}$ pour revenir à notre membre de droite. Explicitons l'intégrale sur $\widetilde{\xi}_p$ en le décomposant sous la forme $\sigma\begin{pmatrix} 1 & \widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \widetilde{\mathsf{p}} & 0 \\ 0 & \widetilde{\mathsf{p}} \end{pmatrix}\sigma^{-1}$. On obtient alors

$$\int_{F^{n-2}\times F^*}\int_{F^{n-1}}\int_{\widetilde{\Omega}_n}\int_{H_{n-1}}|\det s|^{-1}\int_V f\left(\sigma\begin{pmatrix}\widetilde{p}^{-1}&0\\0&\widetilde{p}^{-1}\end{pmatrix}\begin{pmatrix}1&-\widetilde{\mathsf{Z}}\\0&1\end{pmatrix}\sigma^{-1}\nu s\widetilde{\xi}\right)\theta(s)^{-1}\psi(\nu)^{-1}d\nu ds d\widetilde{\xi}d\widetilde{\mathsf{Z}}d\widetilde{p}.$$

La conjugaison de ν par σ^{-1} s'écrit sous la forme $\begin{pmatrix} n_1 & y \\ t & n_2 \end{pmatrix}$ où n_1, n_2 sont dans U_n , les coefficients de y sont nuls sauf la dernière colonne et t est de la forme $\begin{pmatrix} 0_{n-1} & * \\ 0 & 0 \end{pmatrix}$. Le caractère $\psi(\nu)$ devient après conjugaison $\psi(\text{Tr}(y) + \text{Ts}(t))$, où $\text{Ts}(t) = t_{n-1,n}$. Les changements de variables $\widetilde{Z} \mapsto \widetilde{p}\widetilde{Z}\widetilde{p}^{-1}, \ n_1 \mapsto \widetilde{p}n_1\widetilde{p}^{-1},$

UNFOLDING 3

 $n_2 \mapsto \widetilde{\mathfrak{p}} n_2 \widetilde{\mathfrak{p}}^{-1}$, $t \mapsto \widetilde{\mathfrak{p}} t \widetilde{\mathfrak{p}}^{-1}$ et $y \mapsto \widetilde{\mathfrak{p}} y \widetilde{\mathfrak{p}}^{-1}$ transforme l'intégrale précédente en (11)

$$\begin{split} \int_{F^{\mathfrak{n}-2}\times F^*} \int_{F^{\mathfrak{n}-1}} \int_{\widetilde{\Omega}_{\mathfrak{n}}} \int_{H_{\mathfrak{n}-1}} |\det s|^{-1} \int_{\sigma^{-1}V\sigma} f\left(\sigma\begin{pmatrix}1 & -\widetilde{\mathsf{Z}} \\ 0 & 1\end{pmatrix}\begin{pmatrix}n_1 & y \\ t & n_2\end{pmatrix}\begin{pmatrix}\widetilde{\mathfrak{p}}^{-1} & 0 \\ 0 & \widetilde{\mathfrak{p}}^{-1}\end{pmatrix}\sigma^{-1}s\widetilde{\xi}\right) \\ \theta(s)^{-1} \psi(-\mathsf{Tr}(y)) \psi(-\mathsf{Ts}(\widetilde{\mathfrak{p}}t\widetilde{\mathfrak{p}}^{-1})) |\det \widetilde{\mathfrak{p}}|^3 d\begin{pmatrix}n_1 & y \\ t & n_2\end{pmatrix} ds d\widetilde{\xi} d\widetilde{\mathsf{Z}} d\widetilde{\mathfrak{p}}. \end{split}$$

On explicite maintenant l'intégrale sur s ce qui donne que $\sigma^{-1}s\sigma$ est de la forme $\begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix}$ avec X une matrice de taille n dont la dernière ligne et dernière colonne sont nulles et $g \in G_{n-1}$ vu comme élément de G_n . Le changement de variable $X \mapsto \widetilde{p}X\widetilde{p}^{-1}$ donne

$$\begin{split} &\int_{\mathbb{F}^{n-2}\times\mathbb{F}^*} \int_{\mathbb{F}^{n-1}} \int_{\widetilde{\Omega}_n} \int_{M_{n-1}} |\det\widetilde{\mathfrak{p}}^{-1}g|^{-2} \int_{\sigma^{-1}V\sigma} \\ (12) &\quad f\left(\sigma\begin{pmatrix}1 & -\widetilde{\mathsf{Z}}\\0 & 1\end{pmatrix}\begin{pmatrix}n_1 & y\\t & n_2\end{pmatrix}\begin{pmatrix}1 & X\\0 & 1\end{pmatrix}\begin{pmatrix}\widetilde{\mathfrak{p}}^{-1}g & 0\\0 & \widetilde{\mathfrak{p}}^{-1}g\end{pmatrix}\sigma^{-1}\widetilde{\xi}\right) \\ &\quad \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y}))\psi(-\mathsf{Ts}(\widetilde{\mathfrak{p}}\mathsf{t}\widetilde{\mathfrak{p}}^{-1}))|\det\widetilde{\mathfrak{p}}|d\begin{pmatrix}n_1 & y\\t & n_2\end{pmatrix}\mathrm{d}g\mathrm{d}\mathsf{X}\mathrm{d}\widetilde{\xi}\mathrm{d}\widetilde{\mathsf{Z}}\mathrm{d}\widetilde{\mathfrak{p}}. \end{split}$$

On effectue maintenant le changement de variables $g\mapsto\widetilde{p}g,$ notre intégrale devient alors

$$\begin{split} &\int_{\mathbb{F}^{n-2}\times\mathbb{F}^*}\int_{\mathbb{F}^{n-1}}\int_{\widetilde{\Omega}_n}\int_{M_{n-1}}\int_{G_{n-1}}|\det g|^{-2}\int_{\sigma^{-1}V\sigma}\\ (13) &\quad f\left(\sigma\begin{pmatrix}1&-\widetilde{Z}\\0&1\end{pmatrix}\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\sigma^{-1}\widetilde{\xi}\right)\\ &\quad \psi(-\mathsf{Tr}(X))\psi(-\mathsf{Tr}(y))\psi(-\mathsf{Ts}(\widetilde{p}t\widetilde{p}^{-1}))|\det\widetilde{p}|d\begin{pmatrix}n_1&y\\t&n_2\end{pmatrix}\mathrm{d}g\mathrm{d}X\mathrm{d}\widetilde{\xi}\mathrm{d}\widetilde{Z}\mathrm{d}\widetilde{p}. \end{split}$$

Lemme 0.1. *Soit* $F \in S(M_n)$, *alors*

(14)
$$\int_{\mathsf{F}^{n-2} \times \mathsf{F}^*} \int_{\mathsf{Lie}(\mathsf{LL}_n)} \mathsf{F}(\mathsf{t}) \psi(-\mathsf{T} \mathsf{s}(\widetilde{\mathsf{p}} \mathsf{t} \widetilde{\mathsf{p}}^{-1})) |\det \widetilde{\mathsf{p}}| d\mathsf{t} d\widetilde{\mathsf{p}} = \mathsf{F}(0).$$

On rappelle que l'on identifie $F^{n-2} \times F^*$ à l'ensemble des matrices de la forme $\begin{pmatrix} 1_{n-2} & 0 \\ \widetilde{l} & \widetilde{l}_{n-1} \end{pmatrix}$ avec $\widetilde{l} \in F^{n-2}$ et $\widetilde{l}_n \in F^*$.

Démonstration. La mesure $|\det \widetilde{\mathfrak{p}}| d\widetilde{\mathfrak{p}}$ correspond à la mesure additive sur F^{n-1} . En remarquant que $\mathsf{Ts}(\widetilde{\mathfrak{p}}\mathsf{t}\widetilde{\mathfrak{p}}^{-1})$ n'est autre que le produit scalaire des vecteurs dans F^{n-1} correspondant à $\widetilde{\mathfrak{p}}$ et t, le lemme n'est autre qu'une formule d'inversion de Fourier.

Le lemme précédent nous permet de simplifier notre intégrale en

$$\begin{split} \int_{\mathbb{F}^{n-1}} \int_{\widetilde{\Omega}_n} \int_{M_{n-1}} \int_{G_{n-1}} |\det g|^{-2} \int_{\sigma^{-1}V_0\sigma} f\left(\sigma\begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix}\begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix}\begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix}\sigma^{-1}\widetilde{\xi} \right) \\ \psi(-\mathsf{Tr}(\mathsf{X}))\psi(-\mathsf{Tr}(\mathsf{y})) d\begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix} d\mathsf{g} d\mathsf{X} d\widetilde{\xi} d\widetilde{\mathsf{Z}}, \end{split}$$

où $\sigma^{-1}V_0\sigma$ est le sous-groupe de $\sigma^{-1}V\sigma$ où t=0.

On explicite l'intégration sur $\widetilde{\xi}$ de la forme $\sigma\begin{pmatrix}1 & \widetilde{Y}\\0 & 1\end{pmatrix}\begin{pmatrix}\widetilde{h} & 0\\0 & \widetilde{h}\end{pmatrix}\sigma^{-1}$ où \widetilde{Y} est une matrice de la forme $\begin{pmatrix}0_{n-1} & 0\\\widetilde{y} & 0\end{pmatrix}$ avec $\widetilde{y}\in F^{n-1}$ et $\widetilde{h}\in F^{n-1}\times F^*$ que l'on identifie avec un élément de G_n dont seule la dernière ligne est non triviale. L'intégrale devient

$$\begin{split} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_{n-1}} |\det g|^{-2} \int_{\sigma^{-1} V_0 \sigma} \\ (16) \qquad & f\left(\sigma \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \widetilde{\mathsf{h}} & 0 \\ 0 & \widetilde{\mathsf{h}} \end{pmatrix} \sigma^{-1} \right) \\ & \psi(-\mathsf{Tr}(\mathsf{X})) \psi(-\mathsf{Tr}(\mathsf{y})) d\begin{pmatrix} \mathsf{n}_1 & \mathsf{y} \\ 0 & \mathsf{n}_2 \end{pmatrix} d\mathsf{X} d\mathsf{g} d\widetilde{\mathsf{h}} d\widetilde{\mathsf{Y}} d\widetilde{\mathsf{Z}}. \end{split}$$

On remarque que l'on a

$$\begin{pmatrix} \mathfrak{n}_1 & \mathsf{y} \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix} \begin{pmatrix} 1 & \widetilde{\mathsf{Y}} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{y} + \mathsf{X} + \mathsf{g} \widetilde{\mathsf{Y}} \mathsf{g}^{-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{g} & 0 \\ 0 & \mathsf{g} \end{pmatrix},$$

puisque $n_1y=y$. On effectue le changement de variable $Y\mapsto g^{-1}Yg$ et on combine les intégrales sur X, y et \widetilde{Y} en une intégration sur M_n dont on note encore la variable X. On obtient alors

$$\begin{split} & \int_{\mathbb{F}^{n-1}} \int_{\mathbb{F}^{n-1} \times \mathbb{F}^*} \int_{G_{n-1}} \int_{M_n} |\det g|^{-2} \int_{\mathcal{U}_n^2} \\ & f\left(\sigma \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathfrak{n}_1 & 0 \\ 0 & \mathfrak{n}_2 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} g\widetilde{\mathsf{h}} & 0 \\ 0 & g\widetilde{\mathsf{h}} \end{pmatrix} \sigma^{-1} \right) \psi(-\mathsf{Tr}(\mathsf{X})) d(\mathfrak{n}_1,\mathfrak{n}_2) d\mathsf{X} dg d\widetilde{\mathsf{h}} d\widetilde{\mathsf{Z}}. \end{split}$$

On effectue le changement de variable $n_2 \mapsto n_2 n_1$ et on remarque que l'on a

$$(19) \qquad \begin{pmatrix} 1 & -\widetilde{\mathsf{Z}} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_2 \mathsf{n}_1 \end{pmatrix} \begin{pmatrix} 1 & \mathsf{X} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathsf{n}_1 \mathsf{X} \mathsf{n}_1^{-1} - \widetilde{\mathsf{Z}} \mathsf{n}_2 \\ 0 & \mathsf{n}_2 \end{pmatrix} \begin{pmatrix} \mathsf{n}_1 & 0 \\ 0 & \mathsf{n}_1 \end{pmatrix}.$$

Le changement de variables $X \mapsto \mathfrak{n}_1^{-1}(X + \widetilde{Z}\mathfrak{n}_2)\mathfrak{n}_1$ nous donne alors (20)

$$\begin{split} \int_{F^{\mathfrak{n}-1}} \int_{F^{\mathfrak{n}-1} \times F^*} \int_{G_{\mathfrak{n}-1}} \int_{M_{\mathfrak{n}}} |\det g|^{-1} \int_{U_{\mathfrak{n}}^2} f\left(\sigma\begin{pmatrix}1 & X \\ 0 & n_2\end{pmatrix}\begin{pmatrix}n_1g\widetilde{h} & 0 \\ 0 & n_1g\widetilde{h}\end{pmatrix}\sigma^{-1}\right) \\ \psi(-Tr(X))\psi(-Tr(\widetilde{Z}n_2))d(n_1,n_2)dXdgd\widetilde{h}d\widetilde{Z}. \end{split}$$

On reconnait une formule d'inversion de Fourier selon les variables \widetilde{Z} et n_2 ce qui nous permet de simplifier notre intégrale en

$$(21) \qquad \int_{\mathsf{F}^{\mathfrak{n}-1}\times\mathsf{F}^*} \int_{\mathsf{G}_{\mathfrak{n}-1}} \int_{\mathsf{M}_{\mathfrak{n}}} |\det \mathsf{g}|^{-1} \int_{\mathsf{U}_{\mathfrak{n}}} \mathsf{f}\left(\sigma\begin{pmatrix}1 & \mathsf{X} \\ 0 & 1\end{pmatrix}\begin{pmatrix} \mathsf{n}_1 \mathsf{g}\widetilde{\mathsf{h}} & 0 \\ 0 & \mathsf{n}_1 \mathsf{g}\widetilde{\mathsf{h}} \end{pmatrix} \sigma^{-1}\right) \\ \psi(-\mathsf{Tr}(\mathsf{X})) \mathsf{d} \mathsf{n}_1 \mathsf{d} \mathsf{X} \mathsf{d} \mathsf{g} \mathsf{d}\widetilde{\mathsf{h}}.$$

UNFOLDING 5

Après combinaison des intégrations sur \mathfrak{n}_1 , \mathfrak{g} , $\widetilde{\mathfrak{h}}$; on trouve bien notre membre de gauche

$$(22) \qquad \qquad \int_{G_n} \int_{M_n} f\left(\sigma\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}g & 0\\ 0 & g\end{pmatrix}\sigma^{-1}\right) \psi(-\text{Tr}(X)) dX dg.$$

On remarquera que l'on a pris garde à ne pas échanger l'intégrale sur V avec les intégrales sur \widetilde{H} , H_{n-1} , $\widetilde{\Omega}_{n-1}$ et H_{n-1}^P qui chacune est absolument convergente mais l'intégrale totale ne l'est pas. On s'est contenté d'échanger des intégrales sur les différents H d'une part, d'échanger des intégrales sur les n_1, n_2, t, y qui compose l'intégrale sur V d'autre part. On doit seulement vérifier qu'il n'y a pas de problème de convergence lorsque l'on combine l'intégration en X sur M_n (cf. intégrale 18) et lorsque l'on échange l'intégrale sur U_n et M_n (cf. intégrale 21). Pour ce qui est de la dernière intégrale, on intègre sur un sous-groupe fermé et $f \in \mathcal{S}(G_{2n})$ donc l'intégrale est absolument convergente. Pour ce qui est de l'intégrale 18, à part l'intégration sur \widetilde{Z} , on intègre sur un sous-groupe fermé donc on peut bien combiner les intégrales.

Finissons par montrer la convergence absolue de notre membre de droite. Notons $r(g)=1+\|e_ng\|_{\infty}.$ On a

(23)

$$\begin{split} W_{r^N|\det|^{-\frac{1}{2}}f}\left(\sigma\begin{pmatrix}1&X'\\0&1\end{pmatrix}\begin{pmatrix}\alpha'k'&0\\0&\alpha'k'\end{pmatrix}\sigma^{-1},\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\alpha k&0\\0&\alpha k\end{pmatrix}\sigma^{-1}\right) = \\ (1+|a_n|)^N|\det\alpha\alpha'|^{-1}W_f\left(\sigma\begin{pmatrix}1&X'\\0&1\end{pmatrix}\begin{pmatrix}\alpha'k'&0\\0&\alpha'k'\end{pmatrix}\sigma^{-1},\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}\alpha k&0\\0&\alpha k\end{pmatrix}\sigma^{-1}\right), \end{split}$$

pour tous $a \in A_n$, $a' \in A_{n-1}$, $k \in K_n$ et $k' \in K_{n-1}$.

Il suffit de vérifier la convergence de l'intégrale

$$\int_{\bar{\mathfrak{n}}_{\mathfrak{n}}} \int_{A_{\mathfrak{n}-1}} \int_{\bar{\mathfrak{n}}_{\mathfrak{n}}} \int_{A_{\mathfrak{n}}} (1+|\mathfrak{a}_{\mathfrak{n}}|)^{-N} |\det \mathfrak{a}\mathfrak{a}'|$$

$$W_{r^N|\det|^{-\frac{1}{2}}f}\left(\sigma\begin{pmatrix}1 & X'\\ 0 & 1\end{pmatrix}\begin{pmatrix}\alpha'k' & 0\\ 0 & \alpha'k'\end{pmatrix}\sigma^{-1}, \sigma\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}\alpha k & 0\\ 0 & \alpha k\end{pmatrix}\sigma^{-1}\right)\delta_{B_{\mathfrak{n}}}(\mathfrak{a})^{-1}\delta_{B_{\mathfrak{n}-1}}(\mathfrak{a}')^{-1}d\alpha dXd\alpha'dX'$$

pour N suffisamment grand. On introduit les variables \mathfrak{u}_X et $\mathfrak{u}_{X'}$ ainsi que leur décomposition d'Iwasawa ¹. On a alors

$$\sigma\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}\alpha k & 0\\ 0 & \alpha k\end{pmatrix}\sigma^{-1}=b\mathfrak{u}_{(\alpha k)^{-1}X(\alpha k)},$$

où $b = diag(a_1, a_1, a_2, a_2, ...).$

On effectue les changements de variables $X \mapsto (\alpha k) X(\alpha k)^{-1}$ et $X' \mapsto (\alpha' k') X(\alpha' k')^{-1}$, l'intégrale 24 est alors majorée à une constante près par

(26)

$$\begin{split} &\int_{\bar{\mathfrak{n}}_n} \int_{A_{n-1}} \int_{\bar{\mathfrak{n}}_n} \int_{A_n} (1+|a_n|)^N |\det \alpha \alpha' | \mathfrak{m}(X)^{-\alpha N} \prod_{i=1}^{n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(bt_X) \log(\|bt_X\|)^d \\ & \mathfrak{m}(X')^{-\alpha' N} \prod_{i=1}^{n-1} (1+|\frac{a_i'}{a_{i+1}'}|)^{-N} \delta_{B_{2n}}^{\frac{1}{2}}(b't_{X'}) \log(\|b't_{X'}\|)^d \delta_{B_n}^{-2}(\alpha) \delta_{B_{n-1}}^{-2}(\alpha') d\alpha dX d\alpha' dX'. \end{split}$$

 $^{1.\} https://github.com/nicolasduhamel/carre-exterieur/blob/master/carre-exterieur.pdf$

6

Cette dernière intégrale est majorée (à une constante près) par le maximum du produit des intégrales

$$\int_{\bar{n}_n} m(X)^{-\alpha N} \delta_{B_{2n}}^{\frac{1}{2}}(t_X) \log(\|t_X\|)^{d-j} dX,$$

$$\int_{\bar{n}_n} \mathfrak{m}(X')^{-\alpha' N} \delta_{B_{2n}}^{\frac{1}{2}}(t_{X'}) \log(\|t_{X'}\|)^{d-j'} dX',$$

$$(29) \qquad \qquad \int_{A_{\mathfrak{n}}} \prod_{i=1}^{n-1} (1+|\frac{\alpha_{i}}{\alpha_{i+1}}|)^{-N} (1+|\alpha_{\mathfrak{n}}|)^{-N} \log(||b||)^{j} |\det \alpha| d\alpha,$$

 et

$$(30) \qquad \int_{A_{n-1}} \prod_{i=1}^{n-2} (1+|\frac{\alpha_i'}{\alpha_{i+1}'}|)^{-N} (1+|\alpha_{n-1}'|)^{-N} \log(\|b'\|)^{j'} |\det \alpha'| d\alpha',$$

pour j,j' compris entre 0 et d. Ces dernières intégrales convergent pour N assez grand, voir la proposition 5.5 de Jacquet-Shalika pour les deux premières intégrales et le lemme 1.3^2 pour les deux dernières.

 $^{2.\} https://github.com/nicolasduhamel/carre-exterieur/blob/master/carre-exterieur.pdf$