

DeepKeyStego: Protecting Communication by Key-dependent Steganography with Deep Networks

Zheng Li¹, Ge Han¹, Chengyu Hu² and Shanqing Guo*²

¹School of Computer Science and Technology, Shandong University

²School of Cyber Science and Technology, Shandong University

01 Motivation

 Goal: protect privacy-sensitive communication against eavesdropping over public communication channels

- Tranditional steganographic schemes are cool, but
 - designed with prescribed human based rules
 - effectively detected by existing steganalysis tools

- Deep Neural Networks are applied to increasingly complex tasks,
 - end-to-end objectives that go beyond simple functional specifications
 - without being taught specific algorithms for these purposes.

02 Related Works

- Classical Methods:
 - the Least Significant Bit (LSB) algorithm
 - WOW, HUGO, S-UNIWARD

- DNN-based Methods:
 - steganographic generative adversarial network (SGAN)
 - ste-GAN-ography

03 Framework overview

- Two settings: symmetric and asymmetric
- Four models: Alice, Bob, Eve, and pK Generator

Fig. 1. Symmetric steganography

- Model **Alice**: an encoder that can hide the secret message into a cover image.
- Model Bob: a decoder that can recover the secret message from stego image with the aid of key
- Model Eve: a discriminative adversary that attempts to distinguish stego images from real ones
- Model **pK Generator**: a public-key generator

Fig. 2. Asymmetric steganography

04 Asymmetric workflow

Fig. 3. The asymmetric workflow of DeepKeyStego

05 Loss Function

Eve:
$$p(\tilde{I}) = \begin{cases} 1, \ \tilde{I} = I \\ 0, \ \tilde{I} = I' \end{cases}$$

$$argmin_{\theta_E} \log(1 - p(I)) + \log(p(I'))$$

Alice, Bob and pk Generator:

$$argmin_{\theta_A\theta_B\theta_{DK}} \alpha MSE(I,I') + \beta SSIM(I,I') + \gamma L_1(M,M') + \delta \log(1-p(I'))$$

06 Implementation

Dataset:

ImageNet

• Training Set: **80000**, Testing Set: **10000**

ImageSize: **128** * **128** ***3**

Key Length: **1024bits**

Message Length: 1024bits or 8192 bits

o.o6bpp or 0.5bpp (the number of bits per pixel)

(b) Bob decoding success for asymmetric

07 Evaluation

invisibility, the alteration made to cover images

Visual effects of resultant steganographic encoders.

08 Evaluation

undetectability, the stego images can evade steganalysis detections

Accuracy of distinguishing between cover and stego images for the steganalyzers ATS

Method	Bits per pixel	Detection Rate (ATS) (%)
WOW	0.5	75%
HUGO	0.5	85%
S-UNIWARD	0.5	83%
DeepKeyStego (symmetric)	0.5	51%
DeepKeyStego (asymmetric)	0.5	50%

09 Evaluation

unrecoverability, the degree to which attackers can recover the content of secret messages
integrity, the performance of the decoder in a practical situation

An example in simulated communication

Secret Message	Before encode	Key	After decode	Decoded Message
			01010100 01110111	Two months ago, across an
				assembly-room tcble in a factory in
assembly-room table in a factory in Jacksonville, Fla., President Barack Obama was talking to Obama was talking to	01010100 01110111	Correct	01110100 011000 <mark>1</mark> 1	Jacksonville, Fla., President Barack
				Obama was talking to
			01110 <mark>0</mark> 01 01110100	me aboqt
	01110100 01100001 01110101 01110100	Wrong	10111111 10101111 11010100 10101001 	¿¯°Úÿ¿òNpu¶QÖ•[9³gýUr×å[ö~m³ÒTμÖf [¦ÝV=û¼\vÑÔ▷•}ÏÊkÕå4W/ Ë3*ÕæëvGoÎZ½R®É&ÖªÝ− ÖdÄQþU>sW\$~βc?ò8ò▷Ý¢άÖ°_•Û:å
			00111010 11100101	

10 Conclusion

- Symmetric (secret-key) and Asymmetric (public-key) steganographic scheme are separately proposed
- DeepKeyStego achieved excellent invisibility and outstanding undetectability better than previous methods.
- taking advantage of keys to enhance the security of steganography against any adversary.
- our scheme is effective and practical for information hiding in communication.

Thanks!