Exercicio Pratico 01

734497 – Lucas Zegrine Duarte

- 1 Somador ½ soma logsim.
- 2 Tabela Verdade.

3 - Datasheet - componentes XOR, AND, OR.

XOR - 74LS86

AND - 74LS08

OR - 74HC32

4 - Pinos VCC / GND & Pinos de entrada e saida.

XOR

14 -VCC

7 -GND

1;2 / 4;5 / 9;10 / 12;13 Portas de entrada

3/6/8/11 - Pontas de Saida

2 2 A

9

AND

14 -VCC

7 -GND

1;2 / 4;5 / 9;10 / 12;13 Portas de entrada

3/6/8/11 – Portas de Saida

OR

14 -VCC

7 - GND

A1;B1 / A2;B2 / A3;B3 / A4;B4 – Portas de entrada

C1/C2/C3/C4 – Portas de Saida

5 – Procure no simulador-97 os mesmos componentes.

Não consegui utilizar o .exe do sim-97, aparentemente o ubuntu não executa .exe, utilizei o Tinkercad como alternativa.

Pergunta 1:

Porta logica não conectada em 0 ou 1. Se não conectado em nenhuma saida logica não haverá output.

Caso seja a entrada que não esteja conectada, não haverá entrada, em ambos os casos o programa/microprocessador não funcionará.

6 - ½ somador no Tinkercad.

7 – ½ somador outra porta, mesmo chip.

8 - Somador completo de 1 bit.

9 - Tablea verdade.

Cin	a1	b1	S	Cout
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

10 - Explicar funcionamento de somador de 4 bits + logsim

Possui cin e cout, reservado aos carrys, recebe 8 bits ao todo das entradas, sendo 4a e 4b (4bit - 2 entradas) e realiza a soma utilizando somadores completos de 1bit, consegue fazer apenas operação de soma.

Perguntas

2 - Atraso medio 10ns

Soma – 20ns Cout - 30ns

3 - Soma Cout 4bit

Cout – 90ns

4 - Somador 32 bits

4 Ulas de 4 bits

6 – Tornar soma mais veloz

Utilizar CLA \rightarrow Carry Look Ahead

- melhora a velocidade reduzindo assim o tempo de execucao

Somador completo 4 bits