Chapitre 36

Fonctions de deux variables

36	Fonctions de deux variables	1
	36.15Exemple	2
	36.17Exemple	2
	36.24Exemple	2
	36.35 Exemple	3

36.15 Exemple

Exemple 36.15

Les projections $(x,y) \mapsto \sqrt{x^2 + y^2}$ est continue sur \mathbb{R}^2 .

Soit $a = (x_0, y_0) \in \mathbb{R}^2$. On note:

$$p_1: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto x$

Soit $\epsilon > 0$, pour tout $(x, y) \in B(a, \epsilon)$.

$$|p_1(x,y) - p_1(x_0,y_0)| = |x - x_0| \le ||(x,y) - (x_0,y_0)||$$

Donc p_1 est bien continue en a, donc sur \mathbb{R}^2 .

36.17 Exemple

Exemple 36.17

Soi tI et J deux intervalles et $f \in \mathcal{C}(I,\mathbb{R})$ et $g \in \mathcal{C}(J,\mathbb{R})$. Alors :

$$I \times J \to \mathbb{R}^2$$
; $(x, y) \mapsto f(x) + g(y)$ et $I \times J \to \mathbb{R}^2$; $(x, y) \mapsto f(x)g(y)$

sont continues sur $I \times J$.

— Soit $(x_0, y_0) \in I \times J$.

Soit $\epsilon > 0$.

Par continuité de f et g on choisit $\alpha > 0$ tel que :

Soit $(x, y) \in B((x_0, y_0), \alpha)$.

$$|f(x) + g(y) - f(x_0) - g(y_0)| \le |f(x) - f(x_0)| + |g(y) - g(y_0)|$$

— De la même manière (voir le produit de fonctions de \mathcal{C}^0 , chap. 15).

36.24 Exemple

Exemple 36.24

Quelles sont les dérivées partielles de la fonction $f:(x,y)\mapsto e^{xy^2}$?

Sous réserve d'existence :

$$\forall (x,y) \in \mathbb{R}^2, \partial_1 f(x,y) = y^2 e^{xy^2}$$
$$\partial_2 f(x,y) = 2xy e^{xy^2}$$

Démonstration de la première :

Soit $(x,y) \in \mathbb{R}^2$.

$$\forall t \in \mathbb{R}, f((x,y) + t(1,0)) = f(x+t,y)$$

$$= e^{(x+t)y^2}$$

$$= e^{xy^2 + ty^2}$$

$$= g(t)$$

Donc $g \in \mathcal{D}'(\mathbb{R}, \mathbb{R})$ et :

$$\forall t \in \mathbb{R}, g'(t) = y^2 e^{xy^2 + ty^2}$$
$$g'(0) = y^2 e^{xy^2}$$

36.35 Exemple

Exemple 36.35

La fonction $(x,y) \mapsto e^{-x} \ln y$ est de classe \mathcal{C}^1 sur $\mathbb{R} \times \mathbb{R}_+^*$.

$$\forall (x,y) \in \mathbb{R}^2, \partial_1 f(x,y) \mapsto -e^{-x} \ln y \in \mathcal{C}^0(\Omega, \mathbb{R})$$
$$\partial_2 f(x,y) \mapsto \frac{e^{-x}}{y} \in \mathcal{C}^0(\Omega, \mathbb{R})$$

Par opérations.