

Анализ данных на практике

Байесовские методы классификации и регрессии

Виктор Кантор

Байесовские методы

- 1. Наивный Байес и его истоки: фильтр спама
- 2. Восстановление плотности распределения
- 3. Функции потерь и функционалы риска

Вероятностная модель данных

1. Наивный Байес

Простая идея фильтрации спама

Примеры спама:

 "Hi!:) Purchase Exclusive Tabs Online http://..."

 "We Offer Loan At A Very Low Rate Of 3%. If Interested, Kindly Contact Us, Reply by this email@hotmail.com"

Простая идея фильтрации спама

- Посчитать для слова w количество его вхождений n_{ws} в спам (spam) и n_{wh} в не спам (ham)
- 2. Вероятность появления слова **w**:

$$P(w|spam) = n_{ws} / \sum_{w'} n_{w's}$$

$$P(w|ham) = n_{wh} / \sum_{w'} n_{w'h}$$

3. «Наивное» предположение:

$$P(\text{text}|C) = P(w_1|C) P(w_2|C) ... P(w_N|C)$$

C — "spam" или "ham"

4. a(new text) = argmax_c P(new text | C)

Простая идея фильтрации спама

Ho это же неправильно!

a(new text) = argmax_c P(new text | C)

Мы уже знаем какие слова вошли в новый текст, значит нам нужна вероятность **P(C|new text)**

a(new text) = argmax_c P(C|new text)

Однако по теореме Байеса:

argmax_c P(C|new text) = argmax_c P(new text|C)

если P(spam) = P(ham)

Наивный байесовский классификатор

1. Байесовский классификатор:

$$a(x) = argmax_C P(C|x) = argmax_C P(x|C) P(C)$$
 (Теорема Байеса: $P(C|x) = P(x|C) P(C) / P(x)$)

2. С «наивной» гипотезой:

$$P(x|C) = P(f_1(x)|C) P(f_2(x)|C) ... P(f_N(x)|C)$$

 $f_i(x) - i$ -ый признак объекта х

Сглаживание оценок вероятностей

Если
$$n_{ws} = n_{wh} = 0$$
, $P(w|C) = 0$?

Когда мы ничего не знаем про слово, можно предположить, что оно характеризует каждый класс с равными вероятностями:

$$P(w|spam) = (n_{ws}+1)/(n_s+2)$$

 $P(w|ham) = (n_{ws}+1)/(n_h+2)$

Такая более устойчивая оценка называется сглаживанием Лапласа (Laplas smoothing)

Общая формула: $P(f|c) = (1 + n_{fc})/(|C| + n_{c})$

2. Восстановление плотности

Случай дискретных признаков

Для бинарных признаков была интуитивная оценка:

$$P(f|c) \approx n_{fc}/n_{c}$$

 \mathbf{n}_{fc} — точное число примеров в классе \mathbf{c} , в которых признак $\mathbf{f} = \mathbf{1}$

А если f — дискретный признак, принимающий значение из множества {f(1), f(2), ..., f(k)}?

Простая идея обобщения - гистограммы.

Случай дискретных признаков

Histogram of arrivals

Дискретный признак сведется к бинарным – попаданиям в секции гистограммы.

Непрерывные (вещественные) признаки

Что же делать с признаками, принимающими действительные значения? (0.2, 0.7, 0.333...)

• Сделать их дискретными ©

• И сгладить

Непараметрическое восстановление плотности

Histogram and density estimation

Ядерные оценки плотности

$$\hat{p}_h(x) = \frac{1}{mV(h)} \sum_{i=1}^m K(\frac{\rho(x, x_i)}{h})$$

Параметрическое восстановление плотности

Другой способ – выбрать одно семейство распределений (например, нормальное распределение) и оценить параметры Θ_{ci} распределения каждого класса:

$$P(f_i(x) = t | c) = \phi(\Theta_{ci}; t)$$

Для оценки **Ө**_с часто используется метод максимального правдоподобия:

$$\Theta_c$$
 = argmax_Θ $\phi(\Theta; f_i(x_{c1})) \phi(\Theta; f_i(x_{c2})) ... \phi(\Theta; f_i(x_{cm}))$

 \mathbf{x}_{ck} - \mathbf{k} -ый пример из класса \mathbf{c} в обучающей выборке

Рекомендации по выбору распределения

- Тексты/другие данные с разреженными дискретными признаками мультиномиальное распределение
- Непрерывные признаки с маленьким разбросом нормальное распределение
- Непрерывные признаки с выбросами в обучающей выборке – распределения с «тяжелыми хвостами»

Байесовский классификатор без наивной гипотезы

- Обобщение методов восстановления плотности параметрическое и непараметрическое восстановление плотности в многомерном пространстве
- Параметрическое восстановление:
 - Вместо представления $P(f_i(x) = t | c) = \phi(\Theta_{ci}; t)$ используется $P(f(x) = t | c) = \phi(\Theta_c; t)$, где f(x) вектор признаков
- Непараметрические оценки:
 - Обобщение сглаживания гистограмм

3. Функции потерь и функционалы риска

Обобщение: функции потерь

- Пусть алгоритм a дает прогноз $\hat{y} = a(x)$ в задаче регрессии или классификации, и \hat{y} отличается от правильного ответа y. Допустим, нам стал известен y. Как измерить различие между y и \hat{y} ?
- Базовые идеи: $(\hat{y} y)^2$ или $|\hat{y} y|$ для регрессии, $\lambda_{y\hat{y}}$ (costs matrix) или $\lambda_y[y \neq \hat{y}]$ или $[y \neq \hat{y}]$ для классификации
- В общем случае: $L(\hat{y}, y)$ функция потерь

Функционал риска

 $R(a(x),x) = \mathbf{\it E} ig(L(a(x),y) ig| x ig)$ – матожидание штрафа

(нам известен алгоритм и х, мы хотим оценить ожидаемый штраф на объекте х для этого алгоритма)

В задаче классификации:

$$E(L(a(x),y)|x) = \sum_{y} L(a(x),y) P(y|x)$$

В задаче регрессии:

$$E(L(a(x),y)|x) = \int_{y} L(a(x),y) dP(y|x)$$

Байесовский классификатор с функцией потерь

$$a(x) = argmin_s R(s, x)$$

$$a(x) = argmin_s \sum_{y} L(s, y) P(y) P(x|y)$$

Если
$$L(s, y) = \lambda_y[y \neq \hat{y}]$$
:
$$a(x) = argmax_y \ \lambda_y P(y) P(x|y)$$

Байесовский классификатор с функцией потерь

$$a(x) = argmin_s R(s, x)$$

$$a(x) = argmin_s \sum_{y} L(s, y) P(y) P(x|y)$$

Если P(y) = const, $L(s, y) = [y \neq \hat{y}]$:

 $a(x) = argmax_y P(x|y)$

Байесовская регрессия с функцией потерь

$$a(x) = argmin_s R(s, x)$$

$$a(x) = \underset{y}{argmin_s} \int_{y} L(a(x), y) dP(y|x)$$

Если $L(s, y) = (\hat{y} - y)^2$:

$$a(x) = \int_{y} y \, dP(y|x)$$

Функционал среднего риска

$$R(a) = EL(a(x), y) = ER(a(x), x)$$

Теорема

$$a(x) = argmin_s R(s, x)$$
 минимизирует R(a)

Доказательство:

Очевидно.