Applicant: SynTech

Inventors: Jai Gaikwad, Apurva, Anshika Singh

Chemical Product Formula: (C2H3Cl)n

Chemical Product Name: Polyvinyl Chloride

Process Title: Production of Polyvinyl Chloride using suspension method

EHS Summary:

a. List the wastes generated and their quantity of generation.

Unreacted Acetylene:

Acetylene flow rate = Acetylene flow rate from compound splitter

- = 0.5 kmol/day
- = 13 kg/day

Hydrogen Chloride (HCl) Gas:

HCl flow rate = HCl flow rate in compound splitter

- = 0.58 kmol/day
- = 18.2 kg/day

Benzyl Alcohol (Additive):

Benzyl Alcohol flow rate = Benzyl Chloride flow rate in dryer

= 6.633 kg/day

Wastewater:

Wastewater flow rate = Water flow rate in water removal unit + Water flow rate in dryer

- = 2122.2 kg/day + 100 kg/day
- = 2222.2 kg/day

Mercuric Chloride (HgCl₂) Catalyst Residue & Unteacted VCM:

Extremely small amount

What are the current regulations for the above waste materials? (Limits to which it

Chemical	Safety Concerns	Exposure Limits	Additional Information
Acetylene	Asphyxiant, Flammable	TWA : 2500 ppm	Ensure proper ventilation to prevent accumulation. Remove ignition sources.
Hydrogen Chloride (HCl) Gas	Corrosive, Irritant (respiratory, skin, eyes)	Ceiling : 5 ppm	Use appropriate personal protective equipment (PPE). Neutralize spills with a

			base (e.g., sodium bicarbonate).
Mercuric Chloride (HgCl2) Catalyst	Highly Toxic, Environmental Hazard, potential carcinogen.	0.01 mg/m3 (as Hg)	Requires specialized handling and disposal as hazardous waste. Mercury is a bioaccumulative toxin.
Benzyl Alcohol	Exposure can cause headache, dizziness, nausea, and in severe cases, respiratory failure.	TWA : 10 ppm	Use appropriate PPE. Minimize skin contact.
Vinyl Chloride Monomer (VCM)	Carcinogen, Flammable	TWA: 1 ppm, Ceiling: 5 ppm	VCM is a known human carcinogen. Strict regulations govern its handling and disposal.

c. Describe the treatment procedure for wastes with a block diagram. Your chemical plant must be a zero liquid discharge plant.

1) Wastewater Treatment:

01

2) Vent gases Treatment :

• Packed bed or spray tower

3) Separation of HCl and HgCl2 from water :

1. Are there any safety concerns for the chemicals? Give exposure limits: Time Weighted Average (TWA) for 8 hours and short-term exposure limit (STEL) for 15 minutes

Chemical	Hoolth Concerns	TWA (nnm)	CTEL (nnm)
	Health Concerns	TWA (ppm)	STEL (ppm)
Acetylene	High concentrations can cause dizziness, headache, and asphyxiation; it is also a highly flammable gas.	2500	Not Established
Hydrogen Chloride (HCI) Gas	Causes respiratory tract irritation, coughing, and choking; high concentrations can lead to pulmonary edema.	5 (Ceiling)	Not Established
Mercuric Chloride (HgCl2)	Highly toxic; can cause kidney damage, respiratory failure, and is a potential carcinogen.	0.01 (as Hg)	Not Established
Benzyl Alcohol	Exposure can cause headache, dizziness, nausea, and in severe cases, respiratory	10	20

1

failure.

Vinyl Chloride Monomer (VCM) Carcinogenic,cause s liver and kidney damage, leads to skin and eye irritation 5

References: Provide reference for a material safety data sheet/industrial safety report/weblink.

Unreacted Acetylene: - OSHA Table Z-1

Hydrogen Chloride (HCI) Gas: OSHA Chemical Data: Hydrogen Chloride

Mercuric Chloride (HgCl₂) Catalyst Residue: OSHA Table Z-2

Unreacted Vinyl Chloride Monomer: https://www.osha.gov/laws-regs/regulations/standardnumber/1910/1910.1017?utm_source=chatgpt.com

Benzyl Alcohol Waste: NIOSH Pocket Guide

https://www.crowcon.com/us-en/article/toxic-gas-exposure-limits-and-alarm-levels/

https://newcastlesafetyservicing.com/stel-and-twa/

https://www.chemtronicsindia.com/pdf/9.9%20ACGIH%20-%20threshold-limit-values-%28tlv%29.pdf

https://safety.fsu.edu/safety_manual/

Threshold%20Limit%20Values%20and%20Flammability%20of%20Some%20Commonly%20Used %20Gases.pdf

https://studylib.net/doc/25478437/threshold-limit-values--tlv-

https://automation.honeywell.com/content/dam/his-sandbox/marketing/gas-and-flame-detection/documents/RS_app-notes_technical-note-119_calculating-stel_2c-twa_2c-min_2c-max_2c.pdf

List the contributions of each author:

- Apurva determined the waste generation quantity.
- Apurva carried out the literature search and found the current regulations.
- Jai Gaikwad found the necessary treatment steps and prepared the block diagram.
- Anshika Singh obtained TWA and STEL data.

Name	Roll No	Signature
Anisha Nanda	230145	misher
Apurva	230180	Rowwa
Jai Gaikwad	230407	(kwad
Anshika Singh	230163	Anshika