专业: 计算机[1191-1192]班,

课程名称: Graph Theory And 学分:

试 卷 编 号

计算机[1193-1194]班

(A) Modern Linear Algebra Credits: <u>2.5</u>

Major: 计算机[1191-1192]

Course Title: Graph Theory And Paper Number (A)

班,计算机[1193-1194]班

Modern Linear Algebra

课程编号:_1310700 Course Code: _1310700

考试方式: 报告 Test Method: Final Report(Open-Book) 考试时间: 4 Exam Time

Days

天

拟卷人(签字):

拟卷日期:

审核人(签字):

Designer Dr. Ammarah

Design Date: 05/06/2020

Reviewer

题号 Item Number	I	II	III	IV	V	VI	VII	总 分 Total
得分 Score	<u>14</u>	<u>13</u>	<u>10</u>	<u>14</u>	<u>14</u>	<u>14</u>	<u>21</u>	<u>100</u>

得分统计表:

Question I:

Part (a)

Student Number

小小

姓名 Name

班级 Class

Prove that the set of residue classes modulo p is a commutative ring with respect to addition and multiplication of residue classes. Further show that the ring of residue classes modulo pis a field if and only if p is a prime.

(10)

Part (b)

Show that the following graphs are isomorphic.

Question II:

Part (a)

Which of the graphs given in Figure below is Hamiltonian circuit. Give the circuits on the graphs that contain them.

Part(b)

Use Fleury's algorithm to construct a Euler circuit for the graph in Figure (1).

(08)

Question III:

Part (a)

Using Kruskal's algorithm, find the minimum spanning tree for the weighted graph of the Fig. given below.

Part (b)

Does there exists a simple graph with seven vertices having degree (1,3,3,4,5,6,6)? Give reason.

(02)

Question IV:

Part (a)

Student Number

小小

姓名 Name

班级 Class

Consider the groups $(G_1,*)$ and (G_2,\bigoplus) with identity elements e_1 and e_2 respectively. If $f:G_1\to G_2$ is a group homomorphism, then prove that

- (i) If H_1 is a sub group of G_1 and $H_2 = f(H_1)$, then H_2 is a sub group of G_2 .
- (ii) If f is an isomorphism from G_1 onto G_2 , then f^{-1} is an isomorphism from G_2 onto G_1 .

(10)

Part (b)

Show that the set of all positive rational numbers forms an abelian group under the composition * defined by $a * b = \frac{(ab)}{2}$.

(04)

Question V:

Part (a)

If R is the additive group of real numbers and R_+ be a group of all positive real numbers under multiplication. Show that the mapping $f: R \to R_+$ defined by $f(x) = e^x$ for all $x \in R$ is an isomorphism of R onto R_+ .

(07)

Part (b)

Show that the mapping $f: C \to R$ such that f(x + iy) = x is a homomorphism of the additive group of complex numbers onto additive group of real numbers and find the kernel of f.

(07)

Question VI:

Part(a)

Let C be the set of the ordered pairs (a,b) of real numbers. Define addition and multiplication in C by the equations

$$(a,b) + (c,d) = (a+c,b+d)$$

 $(a,b)(c,d) = (ac-bd,bc+ad)$

Prove that *C* is a field.

(10)

Part(b)

Prove that the set $G = \{1,2,3,4,5,6\}$ is a finite abelian group of order 6 with respect to multiplication modulo 7.

(04)

Question VII:

Part (a)

Let A be the set of all real valued functions on $(\infty, -\infty)$. Define

$$(f+g)(x) = f(x) + g(x)$$

 $(f,g)(x) = (fg(x))$

For every x in $(\infty, -\infty)$. Is A a ring with respect to these two operations?

(08)

Part (b)

Construct a 2×2 matrix and prove that it is a skew field but not a field.

(09)

Part (c)

Determine the number of edges in a graph with 6 vertices, 2 of degree 4 and 4 of degree 2. Draw two such graphs.

(04)