Divide-and-Conquer Strategy

Divide-and-Conquer Strategy

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: Divide the input data S in two or more disjoint subsets S_1 , S_2 ,

• • •

- Recur: Solve each of these subproblems recursively
- Conquer: Combine the solutions for S_1 , S_2 , ..., into a solution for S
- Base-cases for recursion are subproblems of constant size
- Analysis can be done using Recurrence Equations

Merge-Sort Review

- Merge-sort on a given input sequence S with n elements consists of three steps:
 - Divide: Partition S into two sequences S_1 and S_2 of about n/2 elements each
 - Recur: Sort S₁ and S₂
 Recursively
 - Conquer: Merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S, C)

Input sequence *S* with *n* elements, comparator *C*

Output sequence S sorted according to C

if
$$S.size() > 1$$

$$(S_1, S_2) \leftarrow partition(S, n/2)$$

$$mergeSort(S_1, C)$$

$$mergeSort(S_2, C)$$

$$S \leftarrow merge(S_1, S_2)$$

- The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
- \bullet Likewise, the basis case (n < 2) will take at b most steps.
- \bullet Therefore, if we let T(n) denote the running time of merge-sort:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

- We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 - That is, a solution that has T(n) only on the left-hand side.

Iterative Substitution

Note that iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

$$= 2(2T(n/2^{2})) + b(n/2)) + bn$$

$$= 2^{2}T(n/2^{2}) + 2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$

$$= 2^{4}T(n/2^{4}) + 4bn$$

$$= ...$$

$$= 2^{i}T(n/2^{i}) + ibn$$

- Note that base, T(n)=b, case occurs when $2^{i}=n$. That is, i = log n.
- \bullet So, $T(n) = bn + bn \log n$; Thus, T(n) is O(n log n).

The Recursion Tree

Draw a Recursion Tree for a Recurrence Relation & Look for a Pattern:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

<u>Depth</u>	<u>T's</u>	<u>Size</u>	<u>Time</u>
0	1	n	bn
1	2	n /2	bn
i	2 ⁱ	$n/2^i$	bn
•••	•••	•••	•••

Total Time = $bn + bn \log n$ (Last Level plus All Previous Levels)

Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove that it is true by induction:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

♦ Guess #1: T(n) < cn log n.

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2)\log(n/2)) + bn \log n$$

$$= cn(\log n - \log 2) + bn \log n$$

$$= cn \log n - cn + bn \log n$$

♦ Wrong: We cannot make this last line be less than *cn* **log** *n*

Guess-and-Test Method

Recall the Recurrence Equation:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$$

♦ Guess #2: T(n) < cn log² n.</p>

$$T(n) = 2T(n/2) + bn \log n$$

$$= 2(c(n/2) \log^2(n/2)) + bn \log n$$

$$= cn(\log n - \log 2)^2 + bn \log n$$

$$= cn \log^2 n - 2cn \log n + cn + bn \log n$$

$$\leq cn \log^2 n$$

- If c > b, then T(n) is $O(n \log^2 n)$.
- In general, to use this method, we need to have a good guess and further we need to be good at induction proofs.

Master Method (Appendix)

Divide-and-Conquer Recurrence Equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

- The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$
 - The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

• Example: T(n) = 4T(n/2) + n

Solution: $log_b a = 2$, so Case-1 says T(n) is O(n²).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 2T(n/2) + n\log n$$

Solution: $log_b a = 1$, so Case-2 says T(n) is O(n $log^2 n$).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = T(n/3) + n\log n$$

Solution: $log_b a = 0$, so Case-3 says T(n) is O(n log n).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $log_b a = 3$, so Case-1 says T(n) is O(n³).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $log_b a = 2$, so Case-3 says T(n) is O(n³).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = T(n/2) + 1$$
 (Binary Search)

Solution: $log_b a = 0$, so Case-2 says T(n) is O(log n).

The form:
$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

The Master Theorem:

Case-1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

Case-2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

Case-3. if f(n) is $\Omega(n^{\log_b a + \varepsilon})$, then T(n) is $\Theta(f(n))$, provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 2T(n/2) + \log n$$
 (Heap Construction)

Solution: $log_b a = 1$, so Case-1 says T(n) is O(n).

Master Theorem Proof

Using iterative substitution, let us see if we can find a pattern:

$$T(n) = aT(n/b) + f(n)$$

$$= a(aT(n/b^{2})) + f(n/b)) + bn$$

$$= a^{2}T(n/b^{2}) + af(n/b) + f(n)$$

$$= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$$

$$= ...$$

$$= a^{\log_{b}n}T(1) + \sum_{i=0}^{(\log_{b}n)-1} a^{i}f(n/b^{i})$$

$$= n^{\log_{b}a}T(1) + \sum_{i=0}^{(\log_{b}n)-1} a^{i}f(n/b^{i})$$

- We then distinguish the three cases of Master theorem as
 - The first term is dominant
 - Each part of the summation is equally dominant
 - The summation is a geometric series

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits

$$I = I_h 2^{n/2} + I_l$$
$$J = J_h 2^{n/2} + J_l$$

We can then define I*J by multiplying the parts and adding:

$$I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$$
$$= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l$$

- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we already learnt.

Integer Multiplication

- Algorithm: Multiply two n-bit integers I and J.
 - Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_I$

$$J = J_h 2^{n/2} + J_l$$

Observe that there is a different way to multiply parts:

$$I * J = I_h J_h 2^n + [(I_h - I_l)(J_l - J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + [(I_h J_l - I_l J_l - I_h J_h + I_l J_h) + I_h J_h + I_l J_l] 2^{n/2} + I_l J_l$$

$$= I_h J_h 2^n + (I_h J_l + I_l J_h) 2^{n/2} + I_l J_l$$

- T(n) = 3T(n/2) + n, it implies T(n) is $O(n^{\log_2 3})$ (By Master Theorem)
- Thus, T(n) is O(n^{1.585}).