Московский физико-технический институт

Лабораторная работа 2.1.3 ОПРЕДЕЛЕНИЕ $\frac{C_p}{C_v}$ МЕТОДОМ ИЗОБАРИЧЕСКОГО РАСШИРЕНИЯ

Отчёт студента группы Б02-303 Долговой Екатерины

Лабораторная работа 2.1.3

Определение $\frac{C_p}{C_v}$ методом изобарического расширения

Цель работы: определение $\frac{C_p}{C_n}$ для воздуха.

В работе используются: стеклянный сосуд, U-образный жидкостный манометр, резиновая груша, секундомер.

Экспериментальная установка

Рис. 1: Экспериментальная установка

Экспериментальная установка состоит из стеклянного сосуда, снабженного краном К и U-образного жид-костного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показано на рис. 1.

С помощью резиновой груши, соединенной трубкой с краном K, в сосуде создается заданное избыточное давление p_1 воздуха. При этом газ оказывается перегретым.

Мысленно выделим в сосуде некоторый объем ΔV воздуха. Будем следить за изменением его состояния. Вследствие теплообмена со стенками сосуда через некоторое время газ остынетдо комнатной температуры T_0

(изохорное охлаждение, процесс $2 \to 3$). При этом давление воздуха понизится до $p_1 = p_0 + \rho g \Delta h_1$.

Откроем кран K_0 . За время Δt порядка 0.5 с произойдет адиабатическое расширение газа $(3 \to 4)$, и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться $(4 \to 6)$. Зададим время τ , в течение которого кран K_0 остается открытым, таким чтобы можно было пренебречь временем Δt адиабатического расширения воздуха. После закрытия крана K_0 газ станет изохорически нагреваться до комнатной температуры $(6 \to 7)$, причем давление внутри сосуда возрастет до $p_0 + \Delta p_2 = p_0 + \rho g \Delta h_2$.

Рис. 2: График процесса

Теоретические сведения

С хорошей точностью будем считать воздух в газгольдере идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для изменяющейся со временем массы газа $m=\frac{p_0V_0}{RT}\mu$:

$$c_p m dT = -\alpha (T - T_0) dt, (1)$$

где α — коэффициент теплообмена, c_p — удельная теплоемкость воздуха при постоянном давлении, V_0 — объем газгольдера.

$$c_p \frac{p_0 V_0}{RT} \mu dT = -\alpha (T - T_0) dt, \qquad (2)$$

или

$$\frac{dT}{T(T-T_0)} = -\frac{\alpha R}{c_p p_0 V_0 \mu} dt. \tag{3}$$

Заметим, что

$$\frac{1}{T(T-T_0)} = -\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T-T_0} \right).$$

Тогда получим

$$\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = \frac{\alpha R}{c_p p_0 V_0 \mu} dt = \frac{\alpha}{c_p m_0} dt, \tag{4}$$

где m_0 — начальная масса.

Проинтегрировав, получим

$$\ln\left(\frac{T_2}{T_1}\right) - \ln\left(\frac{T_2 - T_0}{T_1 - T_0}\right) = \frac{\alpha}{c_p m_0} \tau$$

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp\left(\frac{\alpha}{c_p m_0} \tau\right). \tag{5}$$

Для адиабатического расширения справедливо соотношение $T^{\gamma}=const\cdot p^{\gamma-1}$, здесь $\gamma=\frac{c_p}{c_n}$.

 $\overset{c_{v}}{\Pi}$ рологарифмируем и возьмем производные из данного соотношения:

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p},$$

или

$$\frac{dT}{T} = \frac{\gamma - 1}{\gamma} \frac{dp}{p}.$$

Переходя к конечным приращениям, получим

$$\frac{\Delta T_1}{T_1} = \frac{\gamma - 1}{\gamma} \frac{\Delta p_1}{p_0}.\tag{6}$$

При изохорическом нагреве газа выполняется условие $\frac{p}{T}=const.$ По аналогии с предыдущей формулой найдем, что $\frac{dp}{p}=\frac{dT}{T},$ что в конечных приращениях дает

$$\frac{\Delta T_2}{T_2} = \frac{\Delta p_2}{p_0}. (7)$$

С учетом (5)-(7) получим

$$\frac{\gamma - 1}{\gamma} \Delta h_1 = \Delta h_2 \exp\left(\frac{\alpha}{c_p m_0}\right) \tau,$$

или

$$\frac{\Delta h_1}{\Delta h_2} = \frac{\gamma}{\gamma - 1} \exp\left(\frac{\alpha}{c_p m_0}\right) \tau.$$

Прологарифмируя, получим

$$\ln\left(\frac{\Delta h_1}{\Delta h_2}\right) = \ln\left(\frac{\gamma}{\gamma - 1}\right) + \left(\frac{\alpha}{c_p m_0}\right) \tau.$$

Тогда из графика $\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)(\tau) = k\tau + b$ найдем γ как $1 + \frac{1}{\exp(b)-1}$.

Ход работы

- 1. Проверим исправность установки.
- 2. Закроем кран K_0 и убедимся, что уровни жидкости в манометре одинаковы.
- 3. Откроем кран K и наполним сосуд газом так, чтобы разность уровней жидкости в манометре составила примерно 20-25 см.
- 4. Закроем кран К. После того, как давление в сосуде перестанет меняться, измерим разность показаний в манометре Δh_1 .
- 5. Откроем кран K на время $\tau=5$ с.
- 6. После того, как давление в сосуде перестанет меняться, измерим разность показаний в манометре Δh_2 .
- 7. Откроем краны K и K_0 на 3-4 минуты.
- 8. Повторим пп. 1-7 не менее 7 раз, увеличивая τ от 5 до 20 с.

$h_{\rm B}$, cm	$h_{\rm H}, { m cm}$	Δh , cm	№∆h
27,8	7,6	20,2	1
19,5	15,8	3,7	2
28,3	7,1	21,2	1
19,4	16,0	3,4	2
28,8	6,7	22,1	1
19,3	16,2	3,1	2
29,1	6,3	22,8	1
19,2	16,5	2,7	2
29,8	6,1	23,7	1
19,1	16,8	2,3	2
29,9	6,0	23,9	1
19,0	17,1	1,9	2
30,5	5,9	24,6	1
19,0	17,3	1,7	2

Таблица 1: Показания для манометра

9. Построим график зависимости $\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)$. И найдем с помощью графика значение γ .

$$b = 1,293 = \ln\left(\frac{\gamma}{\gamma - 1}\right)$$

$$\gamma = 1 + \frac{1}{\exp(b) - 1} = 1{,}378$$

10. Оценим погрешности измерений

$$b = 1,293$$

$$\gamma = 1,378$$

$$\sigma_b^{\text{MHK}} = 0,008$$

$$\varepsilon_b^{\text{MHK}} = 0,006$$

$$\varepsilon_b^{\text{KOCB}} = \varepsilon_{\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)} = 0,024$$

$$\varepsilon_b = \sqrt{(\varepsilon_b^{\text{MHK}})^2 + (\varepsilon_b^{\text{KOCB}})^2} = 0,025$$

$$\sigma_b = 0,03$$

$$b = (1,29 \pm 0,03)$$

Рассмотрим гамму:

$$\frac{d\gamma}{db} = \left(1 + \frac{1}{\exp(b) - 1}\right)' = -\frac{\exp(b)}{(\exp(b) - 1)^2} = -\frac{1}{\exp(b)} \left(\frac{\exp(b)}{(\exp(b) - 1)}\right)^2 = -\frac{1}{\exp(b)} \left(\frac{\exp(b)}{(\exp(b)}\right)^2 = -\frac{1}{\exp(b)} \left(\frac{$$

$$= -\frac{1}{\exp(b)} \left(1 + \frac{1}{(\exp(b) - 1)} \right)^2 = -\frac{1}{\exp(b)} \gamma^2$$

Отсюда получим, что

$$\sigma_{\gamma} = \frac{\sigma_b}{\exp(b)} \gamma^2$$

$$\sigma_{\gamma} = 0,016$$

Окончательный результат:

$$\gamma = (1,378 \pm 0,016)$$

Вывод

В ходе эксперимента мы получили показатель адиабаты для воздуха $\gamma=\frac{c_p}{c_v}$, который составил $\gamma=(1,378\pm0,016)$. Это значение довольно близко к известному нам со школы показателю для воздуха $\frac{7}{5}$, поэтому результат считаем достоверным.