Chapter 51 Calcul différentiel dans \mathbb{R}^2

51.1 Calcul différentiel

Exercice 51.1

Calculer les dérivées partielles des fonctions de deux variables définies sur \mathbb{R}^2 par

1.
$$f(x, y) = x^3(y^2 - 1)^4$$
;

2.
$$g(x, y) = \cos(x^2 y) \sin(x^2)$$
.

Exercice 51.2

La fonction suivante définie sur \mathbb{R}^2 est-elle de classe \mathscr{C}^1 sur \mathbb{R}^2 ?

$$f(x,y) = \begin{cases} x^2 y^2 \ln(x^2 + y^2) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}.$$

Exercice 51.3

Les fonctions suivantes sont-elles de classe \mathscr{C}^1 sur \mathbb{R}^2 ?

1.
$$f:(x,y) \mapsto \begin{cases} \frac{x^2y^2}{x^2+y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$
 2. $f:(x,y) \mapsto \begin{cases} x^2 \sin\left(\frac{y}{x}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$

2.
$$f:(x,y) \mapsto \begin{cases} x^2 \sin\left(\frac{y}{x}\right) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Exercice 51.4

On considère la fonction

$$f: \mathbb{R}^2 \to \mathbb{R} \ .$$
$$(x,y) \mapsto xy^2 \ .$$

- **1.** Calculer les dérivées partielles de f en a = (-1, 3).
- **2.** Déterminer la dérivée de f en a suivant le vecteur h = (2, 3).
- **3.** Écrire la différentielle de f en a.

Exercice 51.5

Trouver l'équation du plan tangent pour chaque surface ci-dessous.

1.
$$z = \sqrt{19 - x^2 - y^2}$$
 au point $(x_0, y_0, z_0) = (1, 3, 3)$;

2.
$$z = \sin(\pi xy) \exp(2x^2y - 1)$$
 au point $(x_0, y_0, z_0) = (1, 1/2, 1)$.

Exercice 51.6

Restituer à chaque fonction son graphe, ses courbes de niveau et son champ de vecteurs gradients.

51.2 **Composition**

Exercice 51.7

Soit f la fonction définie sur \mathbb{R}^2 par

$$f(x, y) = xy + \sin(x) e^{y} - \cos(x + y)$$

et g la fonction définie sur \mathbb{R} par $g(t) = f(e^t, t^3)$. Sans calculer explicitement g, déterminer g'. Exercice 51.8

Soit $F: \mathbb{R}^2 \to \mathbb{R}$, $(u, v) \mapsto F(u, v)$ une fonction de classe \mathscr{C}^1 et

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto F(x+y,2x+y)$

Calculer $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ en fonction de $\frac{\partial F}{\partial u}$ et $\frac{\partial F}{\partial v}$. **Exercice 51.9**

Soit $f: \mathbb{R}^2 \to \mathbb{R}, (u,v) \mapsto f(u,v)$ une fonction de classe \mathscr{C}^1 et

$$g: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto f(x^2 - y^2, 2xy)$

Calculer $\frac{\partial g}{\partial x}$ et $\frac{\partial g}{\partial y}$ en fonction de $\frac{\partial f}{\partial u}$ et $\frac{\partial f}{\partial v}$.

51.3 Changements de variables

Exercice 51.10

Soit le changement de variable

$$\varphi: \begin{cases} u = \frac{x}{1+y^2} \\ v = \frac{xy}{1+y^2}. \end{cases}$$

- **1.** Déterminer $\varphi(\mathbb{R}^2)$.
- **2.** Montrer que φ définit une bijection de $\Omega =]0, +\infty[\times \mathbb{R}$ dans lui-même et déterminer la bijection réciproque.
- 3. Soient f et g deux fonctions de $\mathscr{C}^1(\Omega)$ vérifiant g(x,y)=f(u,v). Calculer les dérivées partielles de g en fonction de celles de f, et réciproquement.

Exercice 51.11

Soit f une fonction de classe \mathcal{C}^1 sur \mathbb{R}^2 . On pose

$$F(\rho, \theta) = f(\rho \cos \theta, \rho \sin \theta)$$
.

- 1. Calculer les dérivées partielles de F en fonction de celles de f.
- 2. En transformant

$$\frac{\partial F}{\partial \rho}(\rho, \theta) \vec{u}(\theta) + \frac{1}{\rho} \frac{\partial F}{\partial \theta}(\rho, \theta) \vec{v}(\theta),$$

retrouver l'expression du gradient en coordonnées polaires.

Exercice 51.12

Soit

$$\varphi: \mathbb{R}^2 \to \mathbb{R} \times]0, +\infty[$$

$$(u, v) \mapsto (x, y) = (ue^v, e^{-v})$$

- **1.** Justifier que φ est de classe \mathscr{C}^1 sur \mathbb{R}^2 et qu'elle réalise une bijection de \mathbb{R}^2 sur $\Omega = \mathbb{R} \times]0, +\infty[$.
- **2.** Pour tout $(x, y) \in \Omega$, exprimer $\varphi^{-1}(x, y)$ et justifier que φ^{-1} est de classe \mathscr{C}^1 sur Ω .
- **3.** Soit $f: \Omega \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur Ω telle que

$$\forall (x, y) \in \Omega, x \frac{\partial f}{\partial x}(x, y) - y \frac{\partial f}{\partial y}(x, y) = xy.$$
 (E)

On pose $g = f \circ \varphi$, on peut donc écrire g(u, v) = f(x, y).

(a) Justifier que la fonction g est de classe \mathscr{C}^1 sur \mathbb{R}^2 et calculer

$$\frac{\partial g}{\partial u}$$
 et $\frac{\partial g}{\partial v}$

les dérivées partielles premières de g.

- (b) En déduire que g vérifie une équation aux dérivées partielles simple (E').
- (c) Résoudre (E').
- (d) En déduire les solutions de (E)

Exercice 51.13

Déterminer toutes les fonctions f de classe \mathscr{C}^1 sur \mathbb{R}^2 vérifiant l'équation

$$\frac{\partial f}{\partial x}(x, y) - \frac{\partial f}{\partial y}(x, y) = 2.$$
 (E)

On pourra poser $g(u, v) = f\left(\frac{u+v}{2}, \frac{u-v}{2}\right)$ et chercher une équation différentielle simple vérifiée par g.

Exercice 51.14

Trouver toutes les applications $f: \mathbb{R}^2 \to \mathbb{R}$ de classe \mathscr{C}^1 sur \mathbb{R}^2 telles que

$$\forall (x, y) \in \mathbb{R}^2, \frac{\partial f}{\partial x}(x, y) + \frac{\partial f}{\partial y}(x, y) = x^2 + xy$$

en utilisant le changement de variable défini par $\begin{cases} x = u + v \\ y = u - v \end{cases}$

Exercice 51.15

En passant en cordonnées polaires, déterminer les fonctions f de classe \mathscr{C}^1 sur $U = \{(x, y) \in \mathbb{R}^2 \mid x > 0\}$ telles que

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = x^2 + y^2. \tag{1}$$

51.4 Dérivées partielles d'ordre supérieur

Exercice 51.16

Soit l'application F de \mathbb{R}^2 dans \mathbb{R}^2 : $(x, y) \mapsto (s, p)$ avec s = x + y et p = xy.

- 1. Soit Ω l'ensemble de \mathbb{R}^2 : y < x. Montrer que Ω est un ouvert et que F induit un \mathscr{C}^{∞} -difféomorphisme de Ω sur un ouvert Ω' de \mathbb{R}^2 , à expliciter.
- 2. On considère F comme un changement de variable. Exprimer les dérivées partielles d'ordre un et deux par rapport à x et y à l'aide des dérivées par rapport à s et p. Exprimer le laplacien $\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

Exercice 51.17

On note $U=\mathbb{R}\times\mathbb{R}_+^*$. Trouver toutes les applications $f:]-1,1[\to\mathbb{R}$ de classe \mathscr{C}^2 sur telle que l'application $F:U\to\mathbb{R}$ définie par

$$\forall (x, y) \in U, F(x, y) = f\left(\frac{\cos x}{\operatorname{ch} y}\right)$$

soit de laplacien nul.

Exercice 51.18

Soit U le plan \mathbb{R}^2 privé de l'origine (0,0) et f une fonction de classe \mathscr{C}^2 définie dans l'ouvert U. Le Laplacien Δf de la fonction f est défini par

$$\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

En utilisant les expressions de $\frac{\partial F}{\partial \rho}$ et $\frac{\partial F}{\partial \theta}$ calculées dans l'exercice ??, trouver l'expression du Laplacien en coordonnées polaires.

Exercice 51.19

Soient f une fonction d'une variable de classe \mathscr{C}^2 et $U = \{(x, y) \in \mathbb{R}^2 \mid x > 0 \}$. Vérifier que la fonction $\varphi : U \to \mathbb{R}$ définie par

$$\varphi(x,y) = xf\left(\frac{y}{x}\right)$$

est solution de l'équation aux dérivées partielles

$$\frac{\partial^2 \varphi}{\partial x^2} \frac{\partial^2 \varphi}{\partial y^2} = \left(\frac{\partial^2 \varphi}{\partial x \partial y}\right)^2. \tag{1}$$

Exercice 51.20

Soit
$$f: \mathbb{R}^2 \setminus \{ (0,0) \} \to \mathbb{R}, (x,y) \mapsto \frac{xy(x^2 - y^2)}{x^2 + y^2}.$$

- **1.** Montrer que f admet un prolongement continu sur \mathbb{R}^2 . On le note encore f.
- **2.** Montrer que f est \mathcal{C}^1 sur \mathbb{R}^2 .
- 3. Montrer que f n'est pas \mathscr{C}^2 sur \mathbb{R}^2 . On pourra mettre en défaut le résultat du théorème de Schwarz.

Exercice 51.21 Équation des cordes vibrantes

Soit c > 0. On se propose de déterminer dans cet exercice toutes les fonctions f de classe \mathscr{C}^2 sur \mathbb{R}^2 vérifiant l'équation aux dérivées partielles

$$\forall (x,y) \in \mathbb{R}^2, \frac{\partial^2 f}{\partial x^2}(x,y) - \frac{1}{c^2} \frac{\partial^2 f}{\partial y^2}(x,y) = 0.$$
 (E)

1. Montrer que le changement de variables u = x + cy, v = x - cy permet de se ramener à une équation plus simple de la forme

$$\forall (u, v) \in \mathbb{R}^2, \frac{\partial^2 g}{\partial u \partial v}(u, v) = 0.$$

2. En déduire les solutions de (E).

Exercice 51.22

Déterminer les fonctions réelles de classe \mathscr{C}^2 sur $\mathbb{R}^* \times \mathbb{R}$ qui vérifient

$$\frac{\partial^2 f}{\partial x^2} - \frac{\partial^2 f}{\partial y^2} = \frac{y}{x^3}.$$

On pourra utiliser x = u + v et y = u - v.

Exercice 51.23

À l'aide d'un passage en coordonnées polaires, déterminer toutes les fonctions f de classe \mathscr{C}^1 sur $U = \mathbb{R}_+^* \times \mathbb{R}$ telles qu'en tout point $(x, y) \in U$, on ait :

$$x\frac{\partial f}{\partial x}(x,y) + y\frac{\partial f}{\partial y}(x,y) = \sqrt{x^2 + y^2}$$
 (1)

51.5 Extrémums locaux

Exercice 51.24

Étudier les extrémums locaux de la fonction définie sur \mathbb{R}^2 par

$$f(x, y) = x^2 + y^2 - x^3$$
.

Exercice 51.25

Déterminer les extrémums locaux de la fonction

$$f(x, y) = x^2y^2 - x^2 - y^2 + 1.$$

Exercice 51.26

Déterminer les extremums de la fonction

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x, y) \mapsto (x^2 - y)(3x^2 - y)$

Exercice 51.27

Diagonaliser en base orthonormée la matrice

$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Exercice 51.28

Diagonaliser en base orthonormée les matrices suivantes

1.
$$M_1 = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
. **2.** $M_2 = \begin{pmatrix} 0 & 3 \\ 3 & -8 \end{pmatrix}$. **3.** $M_3 = \begin{pmatrix} 6 & 2 \\ 2 & 3 \end{pmatrix}$.

Exercice 51.29 (*)

Déterminer les extrémums locaux et globaux de $f: \mathbb{R} \times]0, +\infty[\to \mathbb{R}$ définie par

$$f(x, y) = y\left(x^2 + (\ln(y))^2\right).$$

Exercice 51.30

Pour chacune des fonctions suivantes étudier la nature du point critique donné.

- 1. $f(x, y) = x^2 xy + y^2$ au point critique (0, 0);
- **2.** $f(x, y) = x^2 + 2xy + y^2 + 6$ au point critique (0, 0);
- 3. $f(x, y) = x^3 + 2xy^2 y^4 + x^2 + 3xy + y^2 + 10$ au point critique (0,0).

Exercice 51.31

Rechercher si la fonction

$$f: (x, y) \mapsto (y - x)^2 (1 - x^2 - y^2)$$

admet un extrémum.

Exercice 51.32

Rechercher si la fonction

$$g:(x,y)\mapsto (y-x^2)(y-2x^2)$$

admet un extrémum.

Exercice 51.33

Rechercher si la fonction

$$f: (x, y) \mapsto x^3 + xy^2 - x^2y - y^3$$

admet un extrémum.

Exercice 51.34

Montrer que la fonction

$$f: (x, y) \mapsto x^2 + y^2 + (ax + by + c)^2$$

admet un minimum et trouver la valeur de ce minimum.

Compléments

51.6 Potentiel scalaire

Exercice 51.35

Montrer que les champs suivants dérivent d'un potentiel scalaire et déterminer leurs potentiels.

1.
$$F: (x, y) \mapsto (2xy^3 + y^2, 3x^2y^2 + 2xy) \text{ sur } \mathbb{R}^2$$
.

2.
$$F: (x,y) \mapsto \left(-\frac{y}{(x-y)^2}, \frac{x}{(x-y)^2}\right) \text{ sur } U = \left\{ (x,y) \in \mathbb{R}^2 \mid x > y \right\}.$$

51.7 Brève extension aux fonctions de trois variables

Exercice 51.36

1. Démontrer que l'application f de \mathbb{R}^3 dans \mathbb{R}^2 définie par

$$f(x, y, z) = (x + y^2, xy^2z)$$

est \mathscr{C}^1 en tout point (x, y, z) de \mathbb{R}^3 . Écrire la matrice jacobienne au point (x, y, z) de \mathbb{R}^3 .

2. Mêmes questions pour l'application g de \mathbb{R}^2 dans \mathbb{R}^3 définie par

$$g(u, v) = (u^2 + v, uv, e^v).$$

3. Calculer la matrice jacobienne de go f au point (x, y, z) de \mathbb{R}^3 de deux manières différentes.