THERMAL-OPTIMIZATION COUPLING ANALYSIS

Field Manual for Energy Systems Engineer

Document Title:	Thermal-Optimization Coupling Analysis		
Document Type:	Field Manual		
Revision:	1.0		
Date:	2025-10-28		
Author:	RLE Scientific Instrument		
Classification:	Technical Documentation		
Target Audience:	Energy Systems Engineers		
SAFETY NOTICE:			
	Exercise caution when handling electrical loads and thermal sensors.		
	Ensure proper grounding and follow electrical safety protocols.		
	Monitor system temperatures to prevent thermal damage.		
DOCUMENT CONTROL:			
	Prepared by: RLE Scientific Instrument		
	Reviewed by:		
	Approved by:		
	This document provides procedures for measuring thermal-optimization		
	coupling in AI training workloads using RLE monitoring systems.		

THERMAL-OPTIMIZATION COUPLING ANALYSIS

Field Manual for Energy Systems Engineer

PURPOSE

This procedure measures the coupling between computational optimization dynamics and thermal system response in AI training workloads. We quantify the energy balance between optimization instability (gradient norm spikes) and thermal efficiency degradation (heat transfer rate changes) to

enable predictive thermal management.

Why this matters: Traditional thermal monitoring detects problems after they occur. This procedure predicts thermal instability 1 second before collapse, enabling proactive energy management.

HEAT-TRANSFER ANALOGUE MAPPING

RLE Term	Heat-Transfer Analogue	Description
η_util	System efficiency	Fraction of input power converted to useful work
η_stability	hA stability	Effective heat-transfer coefficient stability
A_load	m ■ or velocity term	Represents convective intensity / load acceleration
τ_sustain	τ_th	Thermal time constant (transient response)

Translation Note: The RLE formulation maps directly to classical heat-transfer analysis. Use this table to connect the computational metrics to familiar thermal systems concepts.

SYSTEM BOUNDARIES AND VARIABLES

Primary Measurements

Variable	Symbol	Units	Sensor	Range
Thermal Efficiency	RLE	dimensionless	Computed	0.0 - 1.0
Gradient Norm	ablaf	dimensionless	Training log	0 - 50
Heat Transfer Rate	Q■	W	Power sensor	0 - 300W
Temperature Rise	ΔΤ	°C	Thermocouple	0 - 50°C
Time Constant	τ	S	Computed	1 - 10s

Derived Quantities

Variable	Symbol	Units	Calculation
Thermal Time Constant	τ_th	S	ΔT / (dT/dt)
Power Efficiency	η_p	dimensionless	Q■_useful / Q■_total
Optimization Instability	σ_opt	dimensionless	$\operatorname{std}(\nabla f) / \operatorname{mean}(\nabla f)$
Thermal Lag	t_lag	S	Cross-correlation peak

ENERGY BALANCE EQUATIONS

Primary Conservation Equation

```
RLE = (\eta_{\text{util}} \times \eta_{\text{stability}}) / (A_{\text{load}} \times (1 + 1/\tau_{\text{sustain}}))
```

Where: $\eta_{util} = utilization$ efficiency (dimensionless), $\eta_{stability} = thermal$ stability factor (dimensionless), $\lambda_{stability} = thermal$ sustainment time (s)

```
Q \blacksquare = hA \times \Delta T + m \blacksquare \times cp \times dT/dt
```

Where: hA = heat transfer coefficient \times area (W/°C), Δ T = temperature difference (°C), m \blacksquare = mass flow rate (kg/s), cp = specific heat capacity (J/kg·°C)

Optimization-Thermal Coupling

```
dRLE/dt = -k \times \nabla f(t - t_lag)
```

Where: $k = \text{coupling coefficient (s} \blacksquare 1)$, $t_{\text{lag}} = \text{thermal response lag (s)}$

PROCEDURE

Step 1: System Initialization

- Verify all sensors: GPU temp, power, utilization
- Initialize training workload: DistilGPT-2, 200 steps
- Set sampling rate: 1 Hz
- Record ambient conditions: T_ambient = 21°C

Step 2: Synchronized Data Collection

- Start thermal monitoring: hardware_monitor_v2.py --mode both --sample-hz 1
- Start optimization logging: extended_training_with_sync.py
- Run for 90 seconds (steady-state thermal response)
- Stop both processes simultaneously

Step 3: Data Alignment

- Align timestamps using shared clock reference
- Merge thermal and optimization data streams
- Verify alignment tolerance: ±2 seconds
- Record aligned sample count: N_samples

Step 4: Correlation Analysis

- ullet Calculate cross-correlation: RLE vs ∇f
- Perform lag analysis: ±3 second window
- Identify peak correlation: r_peak at t_lag
- Determine causal order: $\nabla f \rightarrow RLE$ or $RLE \rightarrow \nabla f$

Step 5: Energy Balance Validation

- Check thermal time constant: $\tau_{t} = \Delta T / (dT/dt)$
- Verify heat transfer rate: Q■ = P measured
- Calculate efficiency drop: ∆RLE = RLE_max RLE_min
- Confirm energy conservation: Q■_in = Q■_out + Q■_stored

DATA SHEET TEMPLATE

Session Information

Session ID:	Date:
Duration:s	Ambient Temp:°C
Model:	

INTERPRETATION GUIDELINES

Thermal Response Analysis

- If t_lag < 0: ∇f spikes precede RLE drops → Optimization instability causes thermal degradation
- If t_lag > 0: RLE drops precede ∇f spikes \rightarrow Thermal throttling affects optimization
- If t_lag ≈ 0: Simultaneous coupling → Strong thermal-optimization coupling

Energy Efficiency Assessment

- If r_peak > 0.5: Strong thermal-optimization coupling → Predictive capability confirmed
- If 0.3 < r_peak < 0.5: Moderate coupling → Requires controlled conditions
- If r_peak < 0.3: Weak coupling → Insufficient thermal stress or measurement issues

Thermal Time Constant

- If τ_th < 2s: Fast thermal response → High thermal coupling
- If $2s < \tau_{t} + < 5s$: Normal thermal response \rightarrow Standard thermal behavior
- If $\tau_{t} > 5s$: Slow thermal response \to Thermal isolation or large thermal mass

Power Efficiency

- If $\eta_p > 0.8$: High efficiency \rightarrow Optimal thermal management
- If 0.6 < η_p < 0.8: Moderate efficiency \to Room for improvement
- If $\eta_p < 0.6$: Low efficiency \rightarrow Thermal management issues

COMMAND REFERENCE

Quick Start

Single session analysis

```
python run_joint_session.py --model distilgpt2 --duration 90 --output
results/
```

Reproducibility analysis

```
python analysis/reproducibility_analysis.py
```

Calibration dataset

python calibration_dataset.py

NOTES FOR ENGINEER

This procedure measures the energy balance between computational optimization and thermal system response. The key insight is that optimization instability (high gradient norms) creates thermal stress that degrades efficiency before temperature limits are reached.

Practical application: Use this to implement predictive thermal management in AI training systems. When gradient norms spike, reduce workload intensity 1 second before thermal collapse occurs.

Validation: Run multiple sessions under identical conditions to establish reproducibility. The coupling should be consistent within $\pm 20\%$ across sessions.

Extension: This procedure can be adapted for any thermal system with computational workload coupling (mobile devices, edge computing, data centers).