

4.2. Topological Sort Example 43. class prereq. structure as graph CS 201 (S207 CS115 MATH XX CS 301

MATH 122

CS 210 CS 401 CS315 CS340 produce a list of all nodes such that a course appears only after (to the right of) all its prereq.'s. ~> toposogical sort / ordering Definition 15. A topological sortfordering of a directed graph G= (V, E) is a list v,,..., vz of all vertices h V in which i < j implies that there is no path from v; to vi.

Properties	
· Not every graph has a topolog	r-cal sort
Graphs containing cycle	es don (f
· A graph may have more than	n out top sort.
Example 42 ctd.	V4 V5 V6 V7
a top. 500t: 1, 2, 5	, 4, 3, 7, 6
	, 4,7,3,6
Definition 16. Let G = CV, E)	
graph, VEV. The in-degree	
number of we V for which (w,	v) e E.
l'number of u-coming edges to	, (r
idea for top sort:	
· maintain in-degrees for all	
store those with in-degree	
· output a vertex w/ in-deg	
remove it, and decrement its adjacent vertices	in-augrees of all
· repeat	
Assume graph is infially give	en as adjacency list.

