CÁLCULO DIFERENCIAL E INTEGRAL I LEEC, LEGI, LEIC (Tagus) e LERC 1⁰ TESTE (Versão A)

Duração: 1h30m

14 /Novembro /2009

Ι

Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : |x - 1| \ge \frac{2}{x} \right\}, \qquad B = \left\{ x \in \mathbb{R} : x \log \frac{x}{2} \le 0 \right\}.$$

- **1.** Mostre que $A =]-\infty, 0[\cup [2, +\infty[$ e identifique o conjunto B.
- **2.** Indique, caso existam em \mathbb{R} , sup A, inf B, min $(A \cap B)$, max $(B \setminus A)$, sup $(B \setminus \mathbb{Q})$.

II

Calcule (caso existam em $\overline{\mathbb{R}}$):

$$\lim \frac{n\sqrt{n}-1}{1-n}, \quad \lim \frac{(-1)^n n}{n^4 + \cos n}, \quad \lim \sqrt[n]{\frac{n}{3+4^n}}$$

Considere a sucessão de números reais definida por

$$a_1 = 1,$$
 $a_{n+1} = \frac{4}{4 - a_n}$ se $n \ge 1$

Mostre por indução que se tem $a_n = \frac{2n}{n+1}$, para todo o $n \in \mathbb{N}$

- 1. Considere a função f definida por $f(x) = \frac{\sqrt{1 \log(x+1)}}{xe^x}$.
- a) Determine o domínio de f.
- b) Estude a função f quanto a continuidade.
- **2.** Considere a função h definida por

$$h(x) = \begin{cases} \frac{\pi - x^2}{1+x} & \text{se } x \ge 0\\ e^x \sin x & \text{se } x < 0 \end{cases}$$

- a) Justificando, diga se h é contínua, contínua à direita ou contínua à esquerda no ponto 0. b) Calcule, se existirem em $\overline{\mathbb{R}}$, $\lim_{x\to -\infty} h(x)$ e $\lim_{x\to +\infty} h(x)$.
- 3. Seja φ uma função definida e contínua em \mathbb{R} . Supondo que se tem

$$\varphi\left((-1)^n + \frac{n}{n+2}\right) = \arcsin\left(\frac{n}{n+1}\right) \qquad \forall n \in \mathbb{N}$$

indique, justificando, os valores de $\varphi(0)$ e de $\varphi(2)$.

CÁLCULO DIFERENCIAL E INTEGRAL I LEEC, LEGI, LEIC (Tagus) e LERC

 1° TESTE (Versão B)

Duração: 1h30m

14 /Novembro /2009

Ι

Considere os seguintes subconjuntos de \mathbb{R} :

$$A = \left\{ x \in \mathbb{R} : |2x - 1| \ge \frac{1}{x} \right\}, \qquad B = \left\{ x \in \mathbb{R} : e^x \log x \le 0 \right\}.$$

- **1.** Mostre que $A =]-\infty, 0[\cup [1, +\infty[$ e identifique o conjunto B.
- **2.** Indique, caso existam em \mathbb{R} , sup A, inf B, min $(A \cap B)$, max $(B \setminus A)$, sup $(B \setminus \mathbb{Q})$.

 \mathbf{II}

1. Calcule (caso existam em $\overline{\mathbb{R}}$):

$$\lim \frac{n+1}{1-2\sqrt{n}}, \quad \lim \frac{(-1)^n n}{n^3 + \sin n}, \quad \lim \sqrt[n]{\frac{2+3^n}{n}}$$

2. Considere a sucessão de números reais definida por

$$b_1 = \frac{1}{4}$$
, $b_{n+1} = \frac{1}{4(1 - b_n)}$ se $n \ge 1$

Mostre por indução que se tem $b_n = \frac{n}{2(n+1)}$, para todo o $n \in \mathbb{N}$.

III

- 1. Considere a função g definida por $g(x) = \frac{e^x}{x\sqrt{1-\log(x+2)}}$.
- a) Determine o domínio de g.
- **b)** Estude a função g quanto a continuidade.
- **2.** Considere a função f definida por

$$f(x) = \begin{cases} e^{-x} \cos x & \text{se } x > 0 \\ \frac{x^2 + 2}{x - \pi} & \text{se } x \le 0 \end{cases}$$

- a) Justificando, diga se f é contínua, contínua à direita ou contínua à esquerda no ponto 0.
- **b)** Calcule, se existirem em $\overline{\mathbb{R}}$, $\lim_{x \to -\infty} f(x)$ e $\lim_{x \to +\infty} f(x)$.
- 3. Seja ψ uma função definida e contínua em \mathbb{R} . Supondo que se tem

$$\psi\left((-1)^n + \frac{2n}{n+1}\right) = \arccos\left(\frac{-n}{n+2}\right) \qquad \forall n \in \mathbb{N}$$

indique, justificando, os valores de $\psi(1)$ e de $\psi(3)$.