

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[INVÁLIDO!! – NÃO RESOLVER (Procure o seu enunciado)]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.9$, $x_1 = 0.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{26}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[052204552 - Marco Paulo da Silva Veiga]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 33.6 \cdot x + 17.34$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 33.6 \cdot x + 17.34}{30 \cdot x - 33.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[070221144 - Gabriel Ricardo Costa Soromenho]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 90 \cdot x + 59.04$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{27 \cdot x^2 - 90 \cdot x + 59.04}{54 \cdot x - 90}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[090221026 – Fábio Miguel Rodrigues Faustino]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 31.8 \cdot x + 17.94$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-31.8\cdot x+17.94}{24\cdot x-31.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[130221093 - Claudiu Alexandru Marinel]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 90 \cdot x + 62.28$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 90 \cdot x + 62.28}{48 \cdot x - 90}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[140221038 – Edilson de Jesus Jamba]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{36 \cdot x - 36.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[140221040 - Miguel Figueiredo Mário]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[140221070 - Rui Filipe Moita Andrade de Sousa]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 99.6 \cdot x + 81.24$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 99.6 \cdot x + 81.24}{48 \cdot x - 99.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época Questão 3 de 5

Cotação: 4 val.

[150221020 - Ricardo Filipe Maia Lemos]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 45.2 \cdot x + 42.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.2, x_1 = 1.9$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{10 \cdot x^2 - 45.2 \cdot x + 42.22}{20 \cdot x - 45.2}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

* DISPONÍVEL ÀS 10:30H (17-07-2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-

FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[150221082 - David Jorge Conceição Luz]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 73.2 \cdot x + 41.7}{60 \cdot x - 73.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160210042 – Paulo Ruben de Faria Guapo]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 90 \cdot x + 62.28$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 90 \cdot x + 62.28}{48 \cdot x - 90}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221008 – André Miguel Martins Guerreiro]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 71.1 \cdot x + 96.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 3.0, x_1 = 2.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 71.1 \cdot x + 96.84}{11.25 \cdot x^2 - 71.1 \cdot x + 96.84}$ $22.5 \cdot x - 71.1$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.8737$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221011 - Francisco Maria Esteves Leal]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{30 \cdot x - 36.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221033 – João Pedro Carromeu Martins]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 47.4 \cdot x + 35.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 47.4 \cdot x + 35.76}{24 \cdot x - 47.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 1ª Época

Questão 3 de 5 Cotação: 4 val.

[160221044 - Rui Pinho de Almeida]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 94.8 \cdot x + 71.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 94.8 \cdot x + 71.52}{48 \cdot x - 94.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221046 - David Nuno Menoita Tavares]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 50.4 \cdot x + 37.17$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 50.4 \cdot x + 37.17}{30 \cdot x - 50.4}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.0368\,$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221049 - Daniel Ng dos Santos Faria]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 44.1 \cdot x + 22.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{18\cdot x^2-44.1\cdot x+22.32}{36\cdot x-44.1}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221050 - Bruno Miguel Gonçalves Dias]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 95.4 \cdot x + 68.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 95.4 \cdot x + 68.31}{54 \cdot x - 95.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9618$

⋆ DISPONÍVEL ÀS 10:30H (17-07-2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-

PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[160221093 – Daniel Inácio Lima]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 44.4 \cdot x + 27.69$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 44.4 \cdot x + 27.69}{30 \cdot x - 44.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8368$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221024 - Miguel Ângelo Cadimas Carromeu]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 45 \cdot x + 31.14}{24 \cdot x - 45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221029 - João Paulo Pinto dos Santos]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 42.6 \cdot x + 26.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 42.6 \cdot x + 26.76}{24 \cdot x - 42.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221037 - Frederico Albino Alcaria]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 73.2 \cdot x + 41.7}{60 \cdot x - 73.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=0.8864\,$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221049 – João Francisco Rodrigues dos Reis]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 67.5 \cdot x + 46.71$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 67.5 \cdot x + 46.71}{36 \cdot x - 67.5}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221057 - Hugo Alexandre da Silva Modesto]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 30.6 \cdot x + 14.13$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 30.6 \cdot x + 14.13}{30 \cdot x - 30.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221068 - Bruno Cunha Selistre]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 46.2 \cdot x + 29.67$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 46.2 \cdot x + 29.67}{30 \cdot x - 46.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221069 - Eugenio Duarte da Silva]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 63.9 \cdot x + 40.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 63.9 \cdot x + 40.14}{36 \cdot x - 63.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 1ª Época

Questão 3 de 5 Cotação: 4 val.

[170221078 – César Augusto Fonseca Fontinha]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 73.2 \cdot x + 41.7}{60 \cdot x - 73.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221082 - Filipe dos Santos Serra do Amaral]

Considere a função polinomial

$$p(x) = 20 \cdot x^2 - 90.4 \cdot x + 84.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{20 \cdot x^2 - 90.4 \cdot x + 84.44}{40 \cdot x - 90.4}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221084 - Rafael Alexandre Botas Rosado]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 31.8 \cdot x + 17.94$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-31.8\cdot x+17.94}{24\cdot x-31.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[170221100 – José Manuel Coelho Florindo]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 45.2 \cdot x + 42.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{10 \cdot x^2 - 45.2 \cdot x + 42.22}{20 \cdot x - 45.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221001 - Weshiley Felix Aniceto]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 54 \cdot x + 24.12$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 54 \cdot x + 24.12}{48 \cdot x - 54}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221010 – César Alves Caldeira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 58.2 \cdot x + 50.55$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.9,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.5.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 58.2 \cdot x + 50.55}{30 \cdot x - 58.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.2727\,$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221015 - Francisco Miguel Luzio Moura]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 45.2 \cdot x + 42.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{10 \cdot x^2 - 45.2 \cdot x + 42.22}{20 \cdot x - 45.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221022 - Carlos Emanuel Martins]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 29.4 \cdot x + 14.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-29.4\cdot x+14.88}{24\cdot x-29.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 1ª Época

Questão 3 de 5 Cotação: 4 val.

[180221029 - Daniel Mestre Lachkeev]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 28.8 \cdot x + 10.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.5.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 28.8 \cdot x + 10.32}{24 \cdot x - 28.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4357$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221037 – João Vidal Martins]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 49.2 \cdot x + 18.96$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 49.2 \cdot x + 18.96}{48 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[180221039 - António Carlos Marques da Silva Miranda]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 44.4 \cdot x + 27.69$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 44.4 \cdot x + 27.69}{30 \cdot x - 44.4}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8368$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221049 - Tomás Machado Correia]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 84.6 \cdot x + 50.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 84.6 \cdot x + 50.31}{54 \cdot x - 84.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221052 - António Pedro Guerreiro Milheiras]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 33.6 \cdot x + 16.56$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 33.6 \cdot x + 16.56}{24 \cdot x - 33.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6357$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221054 - Diogo Couchinho Rodrigues]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 85.2 \cdot x + 53.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 85.2 \cdot x + 53.52}{48 \cdot x - 85.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221060 - Bruno Alexandre da Silva Nunes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 58.2 \cdot x + 50.55$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.9,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.5.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 58.2 \cdot x + 50.55}{30 \cdot x - 58.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221068 – Guilherme Miguel de Azevedo Martins]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 41.4 \cdot x + 33.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.8$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 41.4 \cdot x + 33.66}{11.25 \cdot x^2 - 41.4 \cdot x + 33.66}$ $22.5 \cdot x - 41.4$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.1727$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221070 – Rafael André Anselmo Trindade]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 60.3 \cdot x + 33.93$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 60.3 \cdot x + 33.93}{36 \cdot x - 60.3}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221072 - Miguel Ângelo Candeias Messias]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 36.9 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.6$, $x_1 = 1.4$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Função de iteração de Newton-Raphson: Solução:
$$g(x) = x - \frac{11.25 \cdot x^2 - 36.9 \cdot x + 25.83}{22.5 \cdot x - 36.9}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221075 - Marco Alexandre Gonçalves Martins]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 49.2 \cdot x + 51.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.4,\,x_1=2.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8
- Q3-2a Função de iteração de Newton-Raphson:

PONDENTE DE MOODLE

Solução: $g(x) = x - \frac{10 \cdot x^2 - 49.2 \cdot x + 51.66}{20 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221079 - Daniel Tiago dos Santos Azevedo]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 49.8 \cdot x + 40.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 49.8 \cdot x + 40.62}{24 \cdot x - 49.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221080 - Alexandre Miguel Machado Ferreira]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 94.8 \cdot x + 71.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 94.8 \cdot x + 71.52}{48 \cdot x - 94.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221083 - Gonçalo Fernandes Costa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 53.4 \cdot x + 42.36$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 53.4 \cdot x + 42.36}{30 \cdot x - 53.4}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.1368\,$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 1º Época

Questão 3 de 5 Cotação: 4 val.

[180221088 – André Pinheiro Duarte]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 67.5 \cdot x + 46.71$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 67.5 \cdot x + 46.71}{36 \cdot x - 67.5}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221094 - Gonçalo Miguel dos Santos Pratas]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 47.4 \cdot x + 32.28$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

PONDENTE DE MOODLE

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 47.4 \cdot x + 32.28}{30 \cdot x - 47.4}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9368$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221096 - Nuno Miguel Prazeres Tavares]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 31.8 \cdot x + 17.94$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-31.8\cdot x+17.94}{24\cdot x-31.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221099 – Dionicio Odi Djú]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 94.8 \cdot x + 71.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 94.8 \cdot x + 71.52}{48 \cdot x - 94.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221100 - Pedro Miguel Martins Lima]

Considere a função polinomial

$$p(x) = 20 \cdot x^2 - 94.4 \cdot x + 93.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.3$, $x_1 = 2.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{20 \cdot x^2 - 94.4 \cdot x + 93.68}{40}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221104 - Vitor Nuno Valente Gomes]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 84.6 \cdot x + 50.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 84.6 \cdot x + 50.31}{54 \cdot x - 84.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221106 - Ana Catarina Sales Duarte]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 90 \cdot x + 62.28$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 90 \cdot x + 62.28}{48 \cdot x - 90}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[180221110 – Luís Miguel Dias Varela]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 71.1 \cdot x + 96.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 3.0, x_1 = 2.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 71.1}{1.25 \cdot x^2 - 71.1} \cdot x + 96.84$ $22.5 \cdot x - 71.1$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.8737$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221116 - Victor Castilho de Barros]

Considere a função polinomial

$$p(x) = 20 \cdot x^2 - 90.4 \cdot x + 84.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{20 \cdot x^2 - 90.4 \cdot x + 84.44}{40 \cdot x - 90.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

Exame Final 1^a Época

Questão 3 de 5 C

Cotação: 4 val.

[180221118 - Daniel Franco Custódio]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 44.1 \cdot x + 22.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 44.1 \cdot x + 22.32}{36 \cdot x - 44.1}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221122 - Tiago Miguel Cotovio Fino]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 46.2 \cdot x + 29.67$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 46.2 \cdot x + 29.67}{30 \cdot x - 46.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221123 – Iuri Sanchez Fidalgo Amaral Tomé]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 50.4 \cdot x + 37.17$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 50.4 \cdot x + 37.17}{30 \cdot x - 50.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0368$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[180221132 - Rui M. Pitas de Almeida e Oliveira Nunes]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 95.4 \cdot x + 68.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{27 \cdot x^2 - 95.4 \cdot x + 68.31}{54 \cdot x - 95.4}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9618$

Exame Final 1^a Época Questão 3 de 5 Cotação: 4 val.

[190200040 - Rafael Bernardino Palma]

Considere a função polinomial

 $p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{30\cdot x^2-73.2\cdot x+41.7}{60\cdot x-73.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200043 - Pedro Miguel Viegas Ferreira]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 47.7 \cdot x + 26.91$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 47.7 \cdot x + 26.91}{36 \cdot x - 47.7}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200050 - Pedro Miguel Lima Fernandes]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 49.2 \cdot x + 18.96$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 49.2 \cdot x + 18.96}{48 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200051 – André Filipe Benjamim Castro]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 36.9 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.6$, $x_1 = 1.4$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 36.9}{12.25 \cdot x^2 - 36.9} \cdot x + 25.83$ $22.5 \cdot x - 36.9$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200054 - Tiago João Mateus de Lima]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 73.8 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 73.8 \cdot x + 25.83}{90 \cdot x - 73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200059 - Tiago Lopes Quaresma]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 95.4 \cdot x + 68.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 95.4 \cdot x + 68.31}{54 \cdot x - 95.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200060 – João Pedro Dias Daniel]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 27 \cdot x + 12.06$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 27 \cdot x + 12.06}{24 \cdot x - 27}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200061 – João Guilherme Peniche Massano]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 49.2 \cdot x + 18.96$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 49.2 \cdot x + 18.96}{48 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200063 – André Filipe Rocha dos Santos]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 84.6 \cdot x + 50.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 84.6 \cdot x + 50.31}{54 \cdot x - 84.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200064 - Rafael Carvalho Martins]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 52.2 \cdot x + 39.51$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 52.2 \cdot x + 39.51}{30 \cdot x - 52.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190200085 - Sergio Trentin Junior]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 67.2 \cdot x + 34.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 67.2 \cdot x + 34.68}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221001 - Rafael Viegas Caumo]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 45 \cdot x + 31.14}{24 \cdot x - 45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5Cotação: 4 val.

[190221002 - Israel Pereira]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 47.4 \cdot x + 35.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.7$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 47.4 \cdot x + 35.76}{24 \cdot x - 47.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

* DISPONÍVEL ÀS 10:30H (17-07-2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-

FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-

PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221003 – Geovani de Souza Pereira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 79.8 \cdot x + 92.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.6$, $x_1 = 2.3$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.0

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-79.8\cdot x+92.85}{30\cdot x-79.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.6591$

* DISPONÍVEL ÀS 10:30H (17-07-2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-

FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221005 – Lunay António Gomes Simão]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 73.8 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 73.8 \cdot x + 25.83}{90 \cdot x - 73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221006 - Armindo Filipe da Costa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 67.8 \cdot x + 63.33$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 67.8 \cdot x + 63.33}{30 \cdot x - 67.8}$$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=1.2591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221008 – André Miguel Lança Lisboa]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 67.2 \cdot x + 34.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 67.2 \cdot x + 34.68}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221009 - Bernardo Serra Mota]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 49.2 \cdot x + 34.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 49.2 \cdot x + 34.44}{30 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9727$

Exame Final 1^a Época

Questão 3 de 5 Cota

Cotação: 4 val.

[190221010 – João Pedro Freitas Caetano]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 80.4 \cdot x + 45.24$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 80.4 \cdot x + 45.24}{48 \cdot x - 80.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221013 - Sara Filomena Gonçalves Jorge]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 49.2 \cdot x + 17.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 49.2 \cdot x + 17.22}{60 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221014 – Tiago Miguel Galvão Simão]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 36.9 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.6$, $x_1 = 1.4$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 36.9 \cdot x + 25.83}{11.25 \cdot x^2 - 36.9 \cdot x + 25.83}$ $22.5 \cdot x - 36.9$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221015 - Pedro Miguel Teixeira Palma Rosa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 27.6 \cdot x + 11.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 27.6 \cdot x + 11.22}{30 \cdot x - 27.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221016 - Tiago Filipe de Deus Folgado Pereira]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 67.5 \cdot x + 46.71$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 67.5 \cdot x + 46.71}{36 \cdot x - 67.5}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221017 – André Fraga Pauli]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{36 \cdot x - 36.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221018 – Diogo António Bettencourt Santos Félix]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221020 - Gonçalo Filipe Mesquita Fernandes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 52.2 \cdot x + 39.51$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 52.2 \cdot x + 39.51}{30 \cdot x - 52.2}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221021 - Marco Neves Gomes]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 45.2 \cdot x + 42.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{10 \cdot x^2 - 45.2 \cdot x + 42.22}{20 \cdot x - 45.2}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

* DISPONÍVEL ÀS 10:30H (17–07–2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-

PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221022 - Duarte Mourão Pardal]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 28.8 \cdot x + 10.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.5.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 28.8 \cdot x + 10.32}{24 \cdot x - 28.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4357$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221023 - Jorge Filipe Carapinha Piteira]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 90 \cdot x + 59.04$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 90 \cdot x + 59.04}{54 \cdot x - 90}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221026 – João Tomás Ramos Ferreira]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 63.6 \cdot x + 35.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 63.6 \cdot x + 35.88}{48 \cdot x - 63.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221028 - Pedro Miguel Teixeira Alves]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221029 - Tomás Correia Barroso]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 55.2 \cdot x + 22.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.9$, $x_1 = 0.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 55.2 \cdot x + 22.44}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221032 - Tiago Miguel Camacho Branco]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 70.8 \cdot x + 70.26$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.3$, $x_1 = 2.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.7

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-70.8\cdot x+70.26}{30\cdot x-70.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221034 – Daniel Alexandre de Morais e Sousa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 76.8 \cdot x + 85.02$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.5$, $x_1 = 2.2$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-76.8\cdot x+85.02}{30\cdot x-76.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.5591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221036 – André Filipe Virtuoso Serrado]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 56.4 \cdot x + 47.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.5.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 56.4 \cdot x + 47.85}{30 \cdot x - 56.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2368$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221037 - Daniel Alexandre Andrade Singh]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 49.2 \cdot x + 34.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 49.2 \cdot x + 34.44}{30 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221039 – Hysa Mello de Alcântara]

Considere a função polinomial

$$p(x) = 20 \cdot x^2 - 94.4 \cdot x + 93.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.3$, $x_1 = 2.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.7
- Q3-2a Função de iteração de Newton-Raphson:

 $g(x) = x - \frac{20 \cdot x^2 - 94.4 \cdot x + 93.68}{12}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221040 - Sandro Miguel Sousa Santos]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 63.9 \cdot x + 40.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 63.9 \cdot x + 40.14}{36 \cdot x - 63.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221042 - Tiago Alexandre dos Santos Rosa]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 47.7 \cdot x + 26.91$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 47.7 \cdot x + 26.91}{36 \cdot x - 47.7}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221043 - Carolina Rabaçal da Cunha Lobo]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 45 \cdot x + 31.14}{24 \cdot x - 45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221044 - Eduardo Feliciano Ferra]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 73.8 \cdot x + 77.49$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.4$, $x_1 = 2.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-73.8\cdot x+77.49}{30\cdot x-73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221045 – João Carlos de Brito Bandeira]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 91.8 \cdot x + 42.39$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 91.8 \cdot x + 42.39}{90 \cdot x - 91.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221046 – Joao Miguel dos Santos Cabete]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 31.8 \cdot x + 17.94$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-31.8\cdot x+17.94}{24\cdot x-31.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221047 - Miguel Alexandre Marques Rodrigues]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 29.4 \cdot x + 14.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 29.4 \cdot x + 14.88}{24 \cdot x - 29.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221048 - Rafael da Rosa Marçalo]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 44.1 \cdot x + 22.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 44.1 \cdot x + 22.32}{36 \cdot x - 44.1}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221049 – André Luís da Cruz Santos]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{30 \cdot x^2 - 73.2 \cdot x + 41.7}{60 \cdot x - 73.2}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221050 - Bernardo Manuel Fernandes Vicente]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 61.2 \cdot x + 28.26$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.0, x_1 = 0.9$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 61.2 \cdot x + 28.26}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221051 – Bruno Miguel Lázaro Resende]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 52.2 \cdot x + 39.51$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 52.2 \cdot x + 39.51}{30 \cdot x - 52.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.0727\,$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221052 - Daniel Filipe Martins Roque]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 49.8 \cdot x + 40.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 49.8 \cdot x + 40.62}{24 \cdot x - 49.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221053 – Ivo Martinho Garraio]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 42.6 \cdot x + 26.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 42.6 \cdot x + 26.76}{24 \cdot x - 42.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221054 – João Alexandre dos Anjos Soeiro]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 73.8 \cdot x + 77.49$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.4$, $x_1 = 2.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-73.8\cdot x+77.49}{30\cdot x-73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221055 – João Filipe Lopes Jardin]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 31.8 \cdot x + 17.94$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-31.8\cdot x+17.94}{24\cdot x-31.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221056 – Rúben Pereira Lourenço]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 45.2 \cdot x + 42.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{10 \cdot x^2 - 45.2 \cdot x + 42.22}{20 \cdot x - 45.2}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

 \star DISPONÍVEL ÀS 10:30H (17–07–2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-

FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRESPONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221057 - Gabriel Soares Alves Dias Pais]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 66.6 \cdot x + 83.07$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.8$, $x_1 = 2.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 66.6 \cdot x + 83.07}{11.25 \cdot x^2 - 66.6 \cdot x + 83.07}$ $22.5 \cdot x - 66.6$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.6737$

Exame Final 1^a Época

Questão 3 de 5 C

Cotação: 4 val.

[190221058 – Diogo André Fernandes dos Santos]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 54 \cdot x + 24.12$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 54 \cdot x + 24.12}{48 \cdot x - 54}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=0.6059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221059 - Marco Antonio Coelho Teodoro]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 71.1 \cdot x + 53.64$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.7$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2

Q3-2a Função de iteração de Newton-Raphson: Solução:
$$g(x)=x-\frac{18\cdot x^2-71.1\cdot x+53.64}{36\cdot x-71.1}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221060 - Ricardo Filipe Sobral Ribeiro]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 33.6 \cdot x + 17.34$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 33.6 \cdot x + 17.34}{30 \cdot x - 33.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221061 - Tiago Alexandre Morgado Rosa]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{36 \cdot x - 36.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221062 – João Filipe Rodrigues Silva]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 67.5 \cdot x + 46.71$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 67.5 \cdot x + 46.71}{36 \cdot x - 67.5}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221063 – Gonçalo Mestre Páscoa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 67.8 \cdot x + 63.33$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 67.8 \cdot x + 63.33}{30 \cdot x - 67.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

 \star DISPONÍVEL ÀS 10:30H (17–07–2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTI-

ASSINAR E ENTREGAR ATE II:00H A RESPOSTA MANUSCRITA JUSTI-FICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRES-PONDENTE DE MOODLE

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221064 - Henrique Candeias Madureira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221065 – José Eduardo Lopes Castanhas]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 49.2 \cdot x + 17.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 49.2 \cdot x + 17.22}{60 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221066 – Rúben Miguel da Costa Videira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 27.6 \cdot x + 11.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.9$, $x_1 = 0.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.7

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-27.6\cdot x+11.22}{30\cdot x-27.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221067 - David Rodrigues Cerdeira]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 73.8 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 73.8 \cdot x + 25.83}{90 \cdot x - 73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221068 – André Carlos Fernandes Dias]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 55.2 \cdot x + 44.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 55.2 \cdot x + 44.88}{30 \cdot x - 55.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=1.1727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221069 – Luís Manuel Gonçalves Martins]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 82.8 \cdot x + 33.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 82.8 \cdot x + 33.66}{90 \cdot x - 82.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221070 - Margarida Maunu]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 49.2 \cdot x + 51.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.4,\,x_1=2.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{10 \cdot x^2 - 49.2 \cdot x + 51.66}{20 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221071 – André Filipe Gonçalves Paiva]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 36 \cdot x + 20.04$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 36 \cdot x + 20.04}{24 \cdot x - 36}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7357$

Departamento de Matemática Análise Numérica 2^o Semestre 2019/20Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221074 - Miguel Costa Coelho]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 71.1 \cdot x + 96.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 3.0, x_1 = 2.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.4
- Q3-2a Função de iteração de Newton-Raphson:

Função de iteração de Newton-Raphson: Solução:
$$g(x) = x - \frac{11.25 \cdot x^2 - 71.1 \cdot x + 96.84}{22.5 \cdot x - 71.1}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.8737$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221075 – André Galveia Castanho]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 74.7 \cdot x + 60.93$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.8$, $x_1 = 1.7$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{18\cdot x^2-74.7\cdot x+60.93}{36\cdot x-74.7}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221076 - Filipe Alexandre Ribeiro Domingos]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221077 – Duarte Vieira Nunes da Conceição]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 45 \cdot x + 31.14}{24 \cdot x - 45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221078 – João Pedro Botelheiro Matias]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 73.8 \cdot x + 25.83$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 73.8 \cdot x + 25.83}{90 \cdot x - 73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221079 – Adalberto Camará King]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 40.2 \cdot x + 22.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 40.2 \cdot x + 22.62}{24 \cdot x - 40.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221080 - Melo Carlos Pereira]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 58.8 \cdot x + 29.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 58.8 \cdot x + 29.76}{48 \cdot x - 58.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221081 – Pedro de Castro Vitória]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 46.2 \cdot x + 29.67$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 46.2 \cdot x + 29.67}{30 \cdot x - 46.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221082 - Ricardo Luís Pinto Cabrito]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 63.9 \cdot x + 40.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 63.9 \cdot x + 40.14}{36 \cdot x - 63.9}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=0.7935$

Departamento de Matemática Análise Numérica

2° Semestre 2019/20 Exame Final 1ª Época

Questão 3 de 5

Cotação: 4 val.

[190221084 - Carlos Manuel da Palma Oliveira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 55.2 \cdot x + 44.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 55.2 \cdot x + 44.88}{30 \cdot x - 55.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.1727\,$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221085 - David Eduardo Maia]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 85.2 \cdot x + 53.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 85.2 \cdot x + 53.52}{48 \cdot x - 85.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Departamento de Matemática Análise Numérica 2^o Semestre 2019/20Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221086 – André Filipe Lamas Rebelo]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 66.6 \cdot x + 83.07$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.8$, $x_1 = 2.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 66.6 \cdot x + 83.07}{11.25 \cdot x^2 - 66.6 \cdot x + 83.07}$ $22.5 \cdot x - 66.6$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.6737$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221087 - Bruno Bispo Gibellino]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 80.4 \cdot x + 45.24$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 80.4 \cdot x + 45.24}{48 \cdot x - 80.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221088 - Pedro Alexandre Santos Vicente]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 74.7 \cdot x + 60.93$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.8$, $x_1 = 1.7$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{18\cdot x^2-74.7\cdot x+60.93}{36\cdot x-74.7}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221090 – Daniel Corrêa Saes]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 36 \cdot x + 20.04$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 36 \cdot x + 20.04}{24 \cdot x - 36}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7357$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221091 – Gonçalo Marchão Sousa Martins]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 27 \cdot x + 12.06$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 27 \cdot x + 12.06}{24 \cdot x - 27}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221092 - Alberto Miguel Jardino Pereira]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 42.6 \cdot x + 26.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 42.6 \cdot x + 26.76}{24 \cdot x - 42.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221093 - Alexandre Manuel Parreira Coelho]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 47.4 \cdot x + 35.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 47.4 \cdot x + 35.76}{24 \cdot x - 47.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221094 – André Alexandre da Costa Pereira]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 82.8 \cdot x + 33.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{45 \cdot x^2 - 82.8 \cdot x + 33.66}{90 \cdot x - 82.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Departamento de Matemática Análise Numérica 2º Semestre 2019/20 Exame Final 1ª Época

Questão 3 de 5 Cotação: 4 val.

[190221095 – André Rodrigues Batista]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 33.6 \cdot x + 16.56$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 33.6 \cdot x + 16.56}{24 \cdot x - 33.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6357$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221096 – Bernardo José Lopes Batista Paulino]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{36 \cdot x - 36.9}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221097 - Bruno Miguel Lopes Revez]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 44.1 \cdot x + 22.32$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.1,\,x_1=1.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

PONDENTE DE MOODLE

Solução: $g(x) = x - \frac{18 \cdot x^2 - 44.1 \cdot x + 22.32}{36 \cdot x - 44.1}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221099 - Carlos Eduardo Lúcio Antunes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221100 - Catarina Filipa Balugas Alves]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 71.1 \cdot x + 53.64$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.7$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2

Q3-2a Função de iteração de Newton-Raphson: Solução:
$$g(x)=x-\frac{18\cdot x^2-71.1\cdot x+53.64}{36\cdot x-71.1}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221101 - Daniel Domingos Cordeiro]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 40.2 \cdot x + 22.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 40.2 \cdot x + 22.62}{24 \cdot x - 40.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221102 - David Eduardo Passos Gomes]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 47.2 \cdot x + 46.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.3,\,x_1=2.0,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{10 \cdot x^2 - 47.2 \cdot x + 46.84}{20 \cdot x - 47.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221103 - Diogo Alexandre Serra Pereira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 70.8 \cdot x + 70.26$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.3$, $x_1 = 2.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.7

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-70.8\cdot x+70.26}{30\cdot x-70.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221104 - Diogo Alexandre Sobral Ferreira]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 73.8 \cdot x + 77.49$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.4$, $x_1 = 2.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-73.8\cdot x+77.49}{30\cdot x-73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221105 - Francisco M. Serralha N. Belchior Zacarias]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 49.2 \cdot x + 18.96$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 49.2 \cdot x + 18.96}{48 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221106 – Iúri Miguel Francês Pêta]

Considere a função polinomial

$$p(x) = 45 \cdot x^2 - 91.8 \cdot x + 42.39$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{45 \cdot x^2 - 91.8 \cdot x + 42.39}{90 \cdot x - 91.8}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221107 – João Grácio Coelho Rodrigues]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 63.6 \cdot x + 35.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9
- Q3-2a Função de iteração de Newton-Raphson:

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 C

Cotação: 4 val.

[190221108 – João José Lopes Batista da Silva Pinto]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 53.4 \cdot x + 42.36$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 53.4 \cdot x + 42.36}{30 \cdot x - 53.4}$$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^*=1.1368\,$

* DISPONÍVEL ÀS 10:30H (17–07–2020). ASSINAR E ENTREGAR ATÉ 11:00H A RESI

ASSINAR E ENTREGAR ATÉ 11:00H A RESPOSTA MANUSCRITA JUSTIFICADA, NUMA PÁGINA A4 DIGITALIZADA, NA ATIVIDADE CORRESPONDENTE DE MOODLE

Departamento de Matemática Análise Numérica 2^o Semestre 2019/20Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221109 – João Pedro Pereira Rosete]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 27.6 \cdot x + 11.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.9$, $x_1 = 0.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.7

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-27.6\cdot x+11.22}{30\cdot x-27.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221110 – Jorge André Gomes de Sousa]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 30.6 \cdot x + 14.13$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.0,\,x_1=0.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.8.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.8
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 30.6 \cdot x + 14.13}{30 \cdot x - 30.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221111 – José Manuel Almeida Sousa Mendes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 55.2 \cdot x + 44.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 55.2 \cdot x + 44.88}{30 \cdot x - 55.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.1727$

Exame Final 1^a Época

Questão 3 de 5

Cotação: 4 val.

[190221112 - Leonardo Costeira Costa]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 40.2 \cdot x + 22.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 40.2 \cdot x + 22.62}{24 \cdot x - 40.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221113 – Luís Carlos de Veloso Fernandes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 67.8 \cdot x + 63.33$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.2,\,x_1=1.9,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.6.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução:
$$g(x) = x - \frac{15 \cdot x^2 - 67.8 \cdot x + 63.33}{30 \cdot x - 67.8}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.2591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221114 – Marco António Botelho da Silva]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 40.2 \cdot x + 22.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 40.2 \cdot x + 22.62}{24 \cdot x - 40.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.6935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221115 – Martim Antunes de Oliveira]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 63.6 \cdot x + 35.88$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 63.6 \cdot x + 35.88}{48 \cdot x - 63.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221117 - Miguel Ângelo Pereira Morgado]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 70.8 \cdot x + 70.26$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.3$, $x_1 = 2.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.7.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.7

Q3-2a Função de iteração de Newton-Raphson: Solução:
$$g(x)=x-\frac{15\cdot x^2-70.8\cdot x+70.26}{30\cdot x-70.8}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.3591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221118 - Nicole Alexandra Martins Vieira]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 42.6 \cdot x + 26.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 42.6 \cdot x + 26.76}{24 \cdot x - 42.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221119 - Nuno Miguel Cortiço Viola]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 49.2 \cdot x + 17.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.8$, $x_1 = 0.7$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 49.2 \cdot x + 17.22}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221120 – Pedro Afonso D' Além Dionísio]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 67.2 \cdot x + 34.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 67.2 \cdot x + 34.68}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221122 – Pedro Manuel Gonçalves Paiva de Carvalho]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 36.9 \cdot x + 14.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.9$, $x_1 = 0.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 36.9 \cdot x + 14.22}{22}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221123 – Renato André Claro Nunes]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 53.4 \cdot x + 42.36$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 53.4 \cdot x + 42.36}{30 \cdot x - 53.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.1368$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221124 - Ricardo Diogo Gonçalves Caetano]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 47.4 \cdot x + 35.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 47.4 \cdot x + 35.76}{24 \cdot x - 47.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221125 - Rodrigo Nave da Costa]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 41.4 \cdot x + 33.66$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.8$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 41.4}{2} \cdot x + 33.66$ $22.5 \cdot x - 41.4$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.1727$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221126 - Rodrigo Roque Fontinha]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 42.6 \cdot x + 26.76$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.5,\,x_1=1.4,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 42.6 \cdot x + 26.76}{24 \cdot x - 42.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221127 - Sara Conceição Catarino de Jesus]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 71.1 \cdot x + 96.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 3.0, x_1 = 2.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{11.25 \cdot x^2 - 71.1}{1.25 \cdot x^2 - 71.1} \cdot x + 96.84$ $22.5 \cdot x - 71.1$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.8737$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221128 – Sérgio Manuel Pinhal Veríssimo]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 73.2 \cdot x + 41.7$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.2,\,x_1=1.1,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 73.2 \cdot x + 41.7}{60 \cdot x - 73.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221129 – Tiago Miguel de Albuquerque Eusébio]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 94.8 \cdot x + 71.52$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 94.8 \cdot x + 71.52}{48 \cdot x - 94.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221130 - Tiago Miguel Fumega Henriques]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 73.8 \cdot x + 77.49$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 2.4$, $x_1 = 2.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.8.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.8

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{15\cdot x^2-73.8\cdot x+77.49}{30\cdot x-73.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.4591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221131 - Tim Tetelepta Rodrigues]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.6,\,x_1=1.5,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 45 \cdot x + 31.14}{24 \cdot x - 45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221132 – Vasco Miguel Ucha de Pinho]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 27.6 \cdot x + 11.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.7.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.7
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 27.6 \cdot x + 11.22}{30 \cdot x - 27.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.5864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221133 – António Pedro Resende Rebelo]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 53.4 \cdot x + 42.36$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.7,\,x_1=1.6,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.4
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 53.4 \cdot x + 42.36}{30 \cdot x - 53.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.1368$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221134 – Miguel do Paço A. D'Albuquerque Serrano]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 71.1 \cdot x + 53.64$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.7$, $x_1 = 1.6$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.2.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.2

Q3-2a Função de iteração de Newton-Raphson: Solução:
$$g(x)=x-\frac{18\cdot x^2-71.1\cdot x+53.64}{36\cdot x-71.1}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.9935$

Departamento de Matemática Análise Numérica

 2^o Semestre 2019/20 Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221136 – Vítor Luís Domingues Nunes]

Considere a função polinomial

$$p(x) = 27 \cdot x^2 - 84.6 \cdot x + 50.31$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{27 \cdot x^2 - 84.6 \cdot x + 50.31}{54 \cdot x - 84.6}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7618$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221138 – João Sá Santos Mendes]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 67.2 \cdot x + 34.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.1, x_1 = 1.0$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.9.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 67.2 \cdot x + 34.68}{60}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.7864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221140 - Ricardo Margarido Oliveira]

Considere a função polinomial

$$p(x) = 30 \cdot x^2 - 49.2 \cdot x + 17.22$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{30 \cdot x^2 - 49.2 \cdot x + 17.22}{60 \cdot x - 49.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Departamento de Matemática Análise Numérica 2^o Semestre 2019/20Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221141 - Gonçalo Santos Alves]

Considere a função polinomial

$$p(x) = 11.25 \cdot x^2 - 71.1 \cdot x + 96.84$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 3.0, x_1 = 2.8$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 2.4.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=2.4
- Q3-2a Função de iteração de Newton-Raphson:

Função de iteração de Newton-Raphson: Solução:
$$g(x) = x - \frac{11.25 \cdot x^2 - 71.1 \cdot x + 96.84}{22.5 \cdot x - 71.1}$$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.8737$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221142 – Francisco José dos Santos Vicente]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 36.6 \cdot x + 20.85$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.2, x_1 = 1.1$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.0.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.0
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 36.6 \cdot x + 20.85}{20}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221143 – João Pedro Vicente Rei]

Considere a função polinomial

$$p(x) = 60 \cdot x^2 - 98.4 \cdot x + 34.44$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 0.8$, $x_1 = 0.7$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 0.6
- Q3-2a Função de iteração de Newton-Raphson:

 $g(x) = x - \frac{60 \cdot x^2 - 98.4 \cdot x + 34.44}{2}$ $120 \cdot x - 98.4$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4864$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221144 - Rodrigo Miguel Portilho Nunes]

Considere a função polinomial

$$p(x) = 18 \cdot x^2 - 33.3 \cdot x + 10.71$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.8,\,x_1=0.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.5.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.5
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{18 \cdot x^2 - 33.3 \cdot x + 10.71}{36 \cdot x - 33.3}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.4059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221146 - Rafael Santos Mordomo]

Considere a função polinomial

$$p(x) = 24 \cdot x^2 - 49.2 \cdot x + 18.96$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=0.9,\,x_1=0.8,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 0.6.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=0.6
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{24 \cdot x^2 - 49.2 \cdot x + 18.96}{48 \cdot x - 49.2}$

Q3-2
b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução:
 $x^{\ast}=0.5059$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221147 – Ricardo Sinaré Torres Ferreira]

Considere a função polinomial

$$p(x) = 10 \cdot x^2 - 51.2 \cdot x + 56.68$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=2.5,\,x_1=2.2,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.9.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.9
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{10 \cdot x^2 - 51.2 \cdot x + 56.68}{20 \cdot x - 51.2}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.5591$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221148 – André Ricardo Nascimento Guerreiro]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 49.8 \cdot x + 40.62$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.8,\,x_1=1.7,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.3.

\star PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.3
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{12 \cdot x^2 - 49.8 \cdot x + 40.62}{24 \cdot x - 49.8}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 1.0935$

Exame Final 1^a Época

Questão 3 de 5 Cotação: 4 val.

[190221149 - Thiers Pinto de Mesquita Neto]

Considere a função polinomial

$$p(x) = 15 \cdot x^2 - 44.4 \cdot x + 27.69$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0=1.4,\,x_1=1.3,$ para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a=1.1
- Q3-2a Função de iteração de Newton-Raphson:

Solução: $g(x) = x - \frac{15 \cdot x^2 - 44.4 \cdot x + 27.69}{30 \cdot x - 44.4}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8368$

Exame Final 1^a Época

Questão 3 de 5Cotação: 4 val.

[Modelo – Docente]

Considere a função polinomial

$$p(x) = 12 \cdot x^2 - 45 \cdot x + 31.14$$

- 1. Aplique o método da secante em duas iterações, a partir dos valores iniciais $x_0 = 1.6$, $x_1 = 1.5$, para obter um valor aproximado x_3 duma raiz de p(x).
- 2. Determine a expressão analítica da função de iteração g(x) usada no método de Newton-Raphson para obter um valor aproximado duma raiz de p(x) e aplique uma iteração a partir do ponto inicial 1.1.

* PARA RESPOSTA BREVE NO INQUÉRITO MOODLE ATÉ 10:55H

- Q3-1 Raiz aproximada obtida depois de duas iterações do método da secante: Solução: a = 1.1

Q3-2a Função de iteração de Newton-Raphson: Solução: $g(x)=x-\frac{12\cdot x^2-45\cdot x+31.14}{24\cdot x-45}$

Q3-2b Raiz aproximada obtida na primeira iteração de Newton-Raphson Solução: $x^* = 0.8935$

Resolução do modelo do docente

1

No algoritmo da secante usamos os valores iniciais x_0, x_1 para construir uma sucessão através da regra recursiva

$$x_{k+1} = \frac{p(x_k) \cdot x_{k-1} - p(x_{k-1}) \cdot x_k}{p(x_k) - p(x_{k-1})}$$

Se chamamos $p_k = p(x_k)$, podemos calcular rápidamente estes valores através da seguinte tabela:

Temos assim, após duas iterações, a raiz aproximada $x_3=1.1\,$

 $\mathbf{2}$

A função de iteração de Newton-Raphson associada à função p(x) é a seguinte:

$$g(x) = x - \frac{p(x)}{p'(x)} = x - \frac{12x^2 - 45x + 31.14}{24x - 45} = \frac{12x^2 - 31.14}{24x - 45}$$

Se aplicamos esta função no ponto $x_1 = 1.1$ temos uma raiz aproximada de p(x):

$$x_2 = p(x_1) = p(1.1) = \frac{12 \cdot (1.1)^2 - 31.14}{24 \cdot 1.1 - 45} = 0.89355$$