

Qualcomm Technologies, Inc.

PM8937

Hardware Register Description

80-P2564-2X Rev. B April 15, 2016

For additional information or to submit technical questions go to https://createpoint.qti.qualcomm.com

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@gualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm Technologies, Inc. or its affiliated companies without the express approval of Qualcomm Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

MSM is a product of Qualcomm Technologies, Inc. Other Qualcomm products referenced herein are products of Qualcomm Technologies, Inc. or its subsidiaries.

Qualcomm and MSM are trademarks of Qualcomm Incorporated, registered in the United States and other countries. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A.

Technical assistance

For assistance or clarification on information in this document, submit a case to Qualcomm Technologies, Inc. (QTI) at https://createpoint.qti.qualcomm.com/. If you do not have access to the Qualcomm CreatePoint website, register for access or send email to support.cdmatech@qualcomm.com.

Revision history

Bars appearing in the left margin (as shown here) indicate where technical changes have occurred for this revision. The following tables list the technical content changes for all revisions.

Revision A, December 2015, initial release

Revision B, April 2016

Chapter	Section	Description
82	0x0001F145 CDC_A_TX_1_2_ATEST_CTL_2	Added TX1N configuration register details for CDC_A_TX_1_2_ATEST_CTL_2
	2018-09-21 oli Com 2018-su@mindreth.com	

Contents

1	Introduction	6
	1.1 Overview	6
	1.2 Slave ID	6
	1.3 Register description	7
	1.4 Peripheral register map	7
	1.5 Peripheral interrupts	8
	1.6 Interrupt configuration	9
	1.6.1 Set and forget registers	9
	1.6.2 Enabling interrupts	
	1.6.3 Interrupt detection	10
	1.6.4 Clearing interrupts	10
2	Revid_PM8937 Registers	. 11
3	Intbus_arb_dig Registers	.15
4	Intr_dig Registers	.18
5	Spmi_p_dig Registers	. 22
6	Pon Registers	.31
7	Misc_PM8937 Registers	.76
8	Vref_lpddr Registers	.80
9	Bua_ext_charger Registers	.84
1(Temp_alarm Registers	.96
11	Coincell Registers	105
12	2 Mbg_dig Registers	110
13	3 Vadc Registers	114
14	4 Vadc_adj Registers	136
1	5 Vadc_btm2 Registers	158
16	S Vadc_adj Registers	184
17	7 Bbclk Registers	206
18	B Bbclk Registers	211

19	Rfclk Registers	216
20	Rfclk Registers	221
21	Bbclk Registers	226
22	Slpclk Registers	231
23	Divclk Registers	235
24	Divclk Registers	239
25	Divclk Registers	243
	_ 0	247
27		251
28	Mpp_ult Registers	259
29	11= 0	271
30	Mpp_ult Registers	283
31	Mpp_ult Registers	295
32	Gpio Registers	307
33	Gpio Registers	318
34	1 4	329
35		340
		351
37	Gpio Registers	362
38		373
39		384
40	Bclk_gen_main Registers	395
41	Hfbuck2_ctrl Registers	398
42	Ultbuck_hc_ps_dig Registers	412
43	Bclk_gen_clk Registers	423
44	Hfbuck2_ctrl Registers	428
45	Ultbuck_hc_ps_dig Registers	442
46	Bclk_gen_clk Registers	45 3
47	Hfbuck2_ctrl Registers	45 8
48	Hfbuck2_ps Registers	472
49	Bclk_gen_clk Registers	475
50	Hfbuck2_ctrl Registers	480
51	Ultbuck_hc_ps_dig Registers	494
52	Bclk_gen_clk Registers	505
5 3	Fts2p5_ctrl Registers	510
54	Fts2p5_ps Registers	531

55	Bclk_gen_clk Registers5	38
56	Fts2p5_ctrl Registers5	43
	Fts2p5_ps Registers5	
5 8	Bclk_gen_clk Registers5	71
59	Ldo_ult_stepper_dig Registers5	76
60	Ldo_ult_stepper_dig Registers5	88
61	Ldo_ult_stepper_dig Registers6	00
	Ldo_ult_dig Registers6	
	Ldo_ult_dig Registers6	
64	Ldo_ult_dig Registers6	34
	Ldo_ult_dig Registers6	
	Ldo_ult_dig Registers6	
67	Ldo_ult_dig Registers6	67
68	Ldo_ult_dig Registers6	78
	Ldo_ult_dig Registers6	
70	Ldo_ult_dig Registers7	00
71	Ldo_ult_dig Registers7	'11
72	Ldo_ult_dig Registers7	22
73	Ldo_ult_dig Registers7	33
74	Ldo_ult_dig Registers7	44
75	Ldo_ult_dig Registers7	55
76	Ldo_ult_dig Registers7	66
77	Ldo_ult_stepper_dig Registers7	77
78	Ldo_ult_dig Registers7	89
79	Ldo_dig Registers8	00
80	Pwm_slice Registers8	15
81	Codec_digital Registers8	20
82	Codec_analog Registers8	38
83	Codec BOOST_FREQ_BCLK_gen_clk Registers8	84
84	Codec NCP_FREQ_BCLK_gen_clk Registers8	89
Ind	lex of Registers 8	94

1 Introduction

1.1 Overview

The PMIC (power management integrated circuit) device consists of two slave IDs. Each slave ID has 64K addresses. These addresses are subdivided into 256 groups of 256 addresses. Each of these groups is known as a peripheral.

Because each PMIC device has two slave IDs, the address map can support up to 512 peripherals. The MSMTM device supports up to only 256 peripherals.

The top eight bits are known as the peripheral address and the bottom eight bits are known as the *register offset*.

Two identical peripherals (for example, LDOs) have different peripheral IDs, but the registers within each peripheral have the same register offset. The unique slave ID (USID) allows the MSM device to access more peripherals by increasing the available register map.

Figure 1-1 Addressing structure

Peripheral IDs are predefined and specified.

1.2 Slave ID

The PMIC device has two unique slave IDs (USID):

- USID 0 and 1 are reserved for the primary PMIC (PM8937 device)
- USID 2 and 3 are reserved for the secondary PMIC (PM8937 device)

Internally, the USID is translated into a local slave ID (LSID).

- The first USID maps to LSID 0
- The second USID maps to LSID 1

The PMIC device could have up to four LSIDs, but only the first two are addressable from the SPMI bus.

1.3 Register description

Figure 1-2 illustrates each element of a register description.

Figure 1-2 PMIC register map

The address is broken down into LSID, PID, and register offset.

For example, in the address 0x11446, from left to right:

- 1 is the unique slave ID
- 14 is the peripheral ID
- 46 is the register offset

The LSID is provided in all the register maps. In most applications, where the PMIC device is accessed from the SPMI bus, the USID is used.

1.4 Peripheral register map

Each peripheral has 256 registers that are sub-divided into sections. The subsections of the peripheral register map are as follows:

- Peripheral status
- Interrupts
- Control
- Reserved

Figure 1-3 Peripheral register map

1.5 Peripheral interrupts

Each peripheral has interrupts contained within its register map. Each register is reserved for a different function. Each bit defines a different interrupt. For example, for the GPIO IN interrupt:

- Bit 0 is reserved
- 0x10[0] holds real-time status
- 0x11[0] defines type (level/edge)
- 0x12[0] defines polarity

This setup reduces the number of transactions required to service interrupts. All of the real-time status bits for the interrupts within the module can be read with a single read of the INT_RT_STS register.

Similarly, the status of the latched interrupts is acquired with a single read of the INT LATCHED STS register.

Table 1-1 Example of interrupt register map

Offset	Register	MSB	LSB	Bit	Default	Description
0x10	INT_RT_STS	1	1	GPIO_HI_RT_STS	0	Interrupt real time status bits
		0	0	GPIO_IN_RT_STS	0	
0x12	INT_POLARITY_HIGH	1	1	GPIO_HI_HIGH	0	1: Interrupt triggers on a level high
		0	0	GPIO_IN_HIGH	0	(rising edge) event.0: Level HIGH triggering is disabled.
0x13	INT_POLARITY_LOW	1	1	GPIO_HI_LOW	0	1: Interrupt triggers on a level low
		0	0	GPIO_IN_LOW	0	(falling edge) event. 0: Level low triggering is disabled.
0x14	INT_LATCHED_CLR	1	1	GPIO_HI_LATCHED_CLR	0	1: Rearms the interrupt when an
		0	0	GPIO_IN_LATCHED_CLR	0	interrupt is pending. Clears the internal latched status.
0x15	INT_EN_SET	1	1	GPIO_HI_EN_SET	0	0: Has no effect.
		0	0	GPIO_IN_EN_SET	0	Enables the corresponding interrupt. Reading this register returns enable status.
0x16	INT_EN_CLR	1	1	GPIO_HI_EN_CLR	0	0: Has no effect.
		0	0	GPIO_IN_EN_CLR	0	Disables the corresponding interrupt. Reading this register returns enable status.
0x18	INT_LATCHED_STS	1	\ ⁹ 1.©	GPIO_HI_LATCHED_STS	0	Latched Interrupt.
		0	110	GPIO_IN_LATCHED_STS	0	1: indicates the interrupt has triggered. Once the latched bit is set, it can be cleared by writing the clear bit.
0x19	INT_PENDING_STS	1	1	GPIO_HI_PENDING_STS	0	Pending is set if interrupt has been
		0	0	GPIO_IN_PENDING_STS	0	sent but not cleared.
0x1A	INT_MID_SEL	1	0	INT_MID_SEL	0	Selects the MID that receives the interrupt.
0x1B	INT_PRIORITY	0	0	INT_PRIORITY	0	SR = 0 A = 1

1.6 Interrupt configuration

1.6.1 Set and forget registers

INT_MID_SEL: There is only one master (the MSM), so the MID is 0x00 for every peripheral.

INT_PRIORITY: SPMI supports two levels of priority. Every interrupt should use low priority; there are no high priority use cases identified.

1.6.2 Enabling interrupts

Interrupts default to disabled. To enable an interrupt, set the TYPE, PRIORITY_HIGH, and PRORITY LOW fields. Use read-modify-write to control these registers.

Once the interrupts are configured, they can be enabled. There are two INT_EN registers: INT_EN_SET and INT_EN_CLR.

Enable the interrupt by setting the corresponding bit in INT_EN_SET. Disable the interrupt by setting the corresponding bit in INT_EN_CLR. No read-modify-write is required for these registers. Writing 0 to these registers has no effect. Reading either register returns an enable status.

1.6.3 Interrupt detection

Interrupts are sent to the master using the SPMI master write command. The interrupt message includes the peripheral ID and the triggered interrupt. In one message, all the interrupt information is communicated to the MSM device.

Figure 1-4 Interrupt message

1.6.4 Clearing interrupts

Assuming an interrupt is fired by GPIO 01 (peripheral ID 0x25):

- 1. The interrupt is generated in the PMIC device. The message is sent to the peripheral owner (RPM) via SPMI and the PMIC arbiter (in the MSM device). The message indicates that the interrupt came from GPIO_01 (PID = 0x25) and that the VREG_OK interrupt triggered.
- 2. (Optional) Software performs a 6-byte read starting at address 0x2510. Software is able to read status, type (level/edge), en high, en low, and enable state in a single read.
- 3. Software performs a 1-byte write of 0x01 to register 0x2516 to disable the interrupt.
- 4. The interrupt handler takes care of the interrupt.
- 5. When software is ready, a 2-byte write of 0x0101 to 0x2514 clears the interrupt and then reenables the interrupt.

2 Revid_PM8937 Registers

0x00000100 REVID_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

REVID_REVISION1

Bits	Name	Description
7:0	RFU CONTROL	Reserved for future use

0x00000101 REVID_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

REVID_REVISION2

Bits	Name	Description
7:0	VARIANT	This field indicates the chip variant

0x00000102 REVID_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

REVID_REVISION3

Bits	Name	Description
7:0	METAL	This number is incremented on a metal-only revision of the chip

0x00000103 REVID_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

REVID_REVISION4

Bits	Name	Description
7:0	ALL_LAYER	This number is incremented every time there is an all layer revision of the chip

0x00000104 REVID_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x51

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

REVID_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	REVID (This tells you that you are talking to a PMIC)

0x00000105 REVID_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19

Reset Name: N/A

Peripheral SubType

PMIC_CONSTANT

REVID_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	This is PM8937

0x00000108 REVID_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

REVID_STATUS1

Bits	Name	Description
3:2	OPTION2	Option Pin State 11: VDD 10: HiZ 00: GND
1:0	OPTION1	Option Pin State 11: VDD 10: HiZ 00: GND

0x00000150 REVID_SBL_ID_0

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: xVdd rb

REVID_SBL_ID_0

Bits	Name	Description
7:0	VERSION	Number associated with each SBL version

0x00000151 REVID_SBL_ID_1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: xVdd_rb

REVID_SBL_ID_1

Bits	Name	Description
7:0	VERSION	Number associated with each SBL version

0x00000154 REVID_PBS_OTP_ID_0

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: xVdd_rb

REVID_PBS_OTP_ID_0

Bits	Name	Description
7:0	VERSION	Number associated with each PBS_OTP version

0x000001D0 REVID_SEC_ACCESS

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: dVdd_rb

PMIC_LOCKING

REVID_SEC_ACCESS

Bits	Name	Description
7:0	SEC_UNLOCK	Unlock the Secure Registers (0xTBD) by writing 0xA5 to this register. Lock is rearmed after the next write to the module.

3 Intbus_arb_dig Registers

0x00000400 BUS_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

BUS REVISION1

Bits	Name	20,	Description
7:0	DIG_MINOR	3 . W.	

0x00000401 BUS_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

BUS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000404 BUS_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B Reset Name: N/A

Peripheral Type

BUS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0xB: INTERFACE

0x00000405 BUS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x02 Reset Name: N/A

Peripheral SubType

BUS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x2: INTBUS_ARB

0x00000408 BUS_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

BUS_STATUS1

Bits	Name	Description
3:0	INTBUS_ARB_GNT	Grant Values

0x00000444 BUS_TIMEOUT

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_SYNC=clk_19_2m:dVdd_rb

BUS_TIMEOUT

Bits	Name	Description
7:4	TIMEOUT_MANT	after TIMEOUT_MANT(2^(TIMEOUT_EXP+4))*52 ns that a master holds onto the bus, a new arbitration is forced. Write zero if no timeout desired.
3:0	TIMEOUT_EXP	after TIMEOUT_MANT(2^(TIMEOUT_EXP+4))*52 ns that a master holds onto the bus, a new arbitration is forced. Write zero if no timeout desired.
	2018:09:2101 2018:5m@mingte	OZZ PO

4 Intr_dig Registers

0x00000500 INT_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

INT_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000501 INT_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

INT_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000504 INT_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x0A

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

INT_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0xA: INTERRUPT

0x00000505 INT_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

INT_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x1: PNP_INTERRUPT

0x00000508 INT_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: dVdd_rb

Status Register 1

INT_STATUS1

Bits	Name	Description
1	CLK_REQ	Or of all clk_requests
		0x0: NO_CLOCK_REQ
		0x1: CLOCK_REQUESTED
0	SEND_REQ	Or of all send_requests
		0x0: NO_SEND_REQ
		0x1: SEND_REQUESTED

0x00000509 INT_STATUS2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: dVdd rb

Status Register 2

INT_STATUS2

Bits	Name	Description
7:0	LAST_WINNER	Last Arbitration Winner

0x00000540 INT_INT_RESEND_ALL

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

Clear all Sent bits and resend all interrupts.

INT_INT_RESEND_ALL

Bits	Name	Description
0	INT_RESEND_ALL	Clear all Sent bits and resend all interrupts. 0x1: RESEND_ALL

0x00000546 INT_EN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

INT_EN_CTL1

Bits	Name	Description
7	INTR_EN	INTR enable
		0 = disables INTR from sending messages
		1 = INTR is enabled and can send messages
		0x0: PERIPHERAL_DISABLED
		0x1: PERIPHERAL_ENABLED

2018.09.21.01.02.27 P.D.T.

5 Spmi_p_dig Registers

0x00000600 SPMI_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

SPMI_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000601 SPMI_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

SPMI_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000602 SPMI_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

SPMI_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000603 SPMI_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

SPMI_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00000604 SPMI_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

SPMI_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0xB: INTERFACE

0x00000605 SPMI_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

SPMI PERPH SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x1: SPMI

0x00000608 SPMI_ERROR_SYNDROME

Type: R

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: N/A

Status Register

SPMI_ERROR_SYNDROME

Bits	Name	Description
7:0	ERROR_SYNDROME	Error Syndrome from SPMI

0x0000060B SPMI_ERROR_DATA

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Register

SPMI_ERROR_DATA

Bits	Name	Description
7:0	ERROR_DATA	Data upon data parity error

0x0000060C SPMI_ERROR_ADDR_LO

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Register

SPMI_ERROR_ADDR_LO

Bits	Name	Description
7:0	ERROR_ADDR_LO	lower 8 bits of address upon data or addr parity error

0x0000060D SPMI_ERROR_ADDR_MD

Type: R

Clock: PBUS WRCLK

Reset State: 0x00

Reset Name: N/A

Status Register

SPMI_ERROR_ADDR_MD

Bits	Name	Description
7:0	ERROR_ADDR_MD	middle 8 bits of address upon data or addr parity error

0x0000060E SPMI_ERROR_ADDR_HI

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Register

SPMI_ERROR_ADDR_HI

Bits	Name	Description
3:0	ERROR_ADDR_HI	higher 4 bits of address upon data or addr parity error

0x00000610 SPMI_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Interrupt Real Time Status Bits

SPMI_INT_RT_STS

Bits	Name	Description
0	SPMI_INT_RT_STS	180

0x00000611 SPMI_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK

Reset State: 0x01

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

SPMI_INT_SET_TYPE

Bits	Name	Description
0	SPMI_INT_TYPE	

0x00000612 SPMI_INT_POLARITY_HIGH

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

SPMI_INT_POLARITY_HIGH

Bits	Name	Description
0	SPMI_INT_HIGH	

0x00000613 SPMI_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

SPMI_INT_POLARITY_LOW

Bits	Name	Description
0	SPMI_INT_LOW	180

0x00000614 SPMI_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

SPMI_INT_LATCHED_CLR

Bits	Name	Description
0	SPMI_INT_LATCHED_CLR	

0x00000615 SPMI_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

SPMI_INT_EN_SET

Bits	Name	Description
0	SPMI_INT_EN_SET	

0x00000616 SPMI_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

SPMI_INT_EN_CLR

Bits	Name	Description
0	SPMI_INT_EN_CLR	

0x00000618 SPMI_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

SPMI_INT_LATCHED_STS

Bits	Name	Description
0	SPMI_INT_LATCHED_STS	

0x00000619 SPMI_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

SPMI_INT_PENDING_STS

Bits	Name	Description
0	SPMI_INT_PENDING_STS	

0x0000061A SPMI_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

SPMI_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	

0x0000061B SPMI_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

SPMI_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	

0x00000640 SPMI_SPMI_BUF_CFG

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

SPMI_SPMI_BUF_CFG

Bits	Name	Description
1:0	BUFFER_STRENGTH	SPMI Buffer Drive Strength Configuration
		0x0: LOW10PF
		0x1: MID20PF
		0x2: HIGH40PF
		0x3: VERYHIGH50PF
1		

0x00000641 SPMI_SSC_DETECT_CFG

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

SCC Detection Configuration

SPMI_SSC_DETECT_CFG

Bits	Name	Description
2:0	SSC_DETECT_CFG	Bit0=Q1_DELAY_DISABLE
		when bit=1 then the delay between q1 and q2 is disabled, there is a mux between the flops and the bit is connected to the mux_select. When at default=0,q2 uses q1_delayed and glitch should be masked.
		Bit1=WINDOW_ENABLE
		when bit=1 then SSC detects only when it is expected,default=0 detect SSC all time.
		Bit2=Reserved
		0x0: WINDOW_DISABLED_Q1_DELAY_ENABLED
		0x1: WINDOW_DISABLED_Q1_DELAY_DISABLED
		0x2: WINDOW_ENABLED_Q1_DELAY_ENABLED
		0x3: WINDOW_ENABLED_Q1_DELAY_DISABLED

6 Pon Registers

0x00000800 PON_REVISION1

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

PON_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000801 PON_REVISION2

Type: R

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

PON_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000802 PON_REVISION3

Type: R

Clock: pbus_wrclk Reset State: 0x03

Reset Name: N/A

HW Version Register [23:16]

PON_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000803 PON REVISION4

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

PON_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00000804 PON_PERPH_TYPE

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

PON_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x1: PON

0x00000805 PON_PERPH_SUBTYPE

Type: R

Clock: pbus_wrclk
Reset State: 0x01

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

PON_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x1: LV_PON

0x00000807 PON_PON_PBL_STATUS

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: N/A

Stage 2 reset generation and register access error status.

PON_PON_PBL_STATUS

Bits	Name	Description
7	DVDD_RB_OCCURRED	DVDD_RB was asserted during the last power cycle 0x0: NO_RESET 0x1: RESET_OCCURRED
6	XVDD_RB_OCCURRED	XVDD_RB was asserted during the last power cycle 0x0: NO_RESET 0x1: RESET_OCCURRED
5	REG_WRITE_ERROR	A register field write was attempted when a block was enabled. Writing to this address clears field. 0x0: NO_ERROR 0x1: ERROR_OCCURRED

PON_PON_PBL_STATUS (cont.)

Bits	Name	Description
4	REG_RESET_ERROR	A register field write was attempted when reset was asserted. Writing to this address clears field. 0x0: NO_ERROR 0x1: ERROR_OCCURRED
3	REG_SYNC_ERROR	Indicates a synchronized register field was over written before it's contents were latched by logic. Writing to this address clears field.,'NO_ERROR=0, ERROR_OCCURRED=1',,,'

0x00000808 PON_PON_REASON1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw xVdd rb

Reasons that the PMIC left the off state. All zeros mean that no trigger received

PON_PON_REASON1

Bits	Name	Description
7	KPDPWR_N	Triggered from new KPDPWR press 0x1: TRIGGER RECEIVED
6	CBLPWR N	Triggered from CBL PWR1 N
	OBEI WICING	0x1: TRIGGER_RECEIVED
5	PON1	Triggered from PON1
		0x1: TRIGGER_RECEIVED
4	USB_CHG	Triggered from USB charger
		0x1: TRIGGER_RECEIVED
3	DC_CHG	Triggered from DC charger
		0x1: TRIGGER_RECEIVED
2	RTC	Triggered from RTC
		0x1: TRIGGER_RECEIVED
1	SMPL	Triggered from SMPL
		0x1: TRIGGER_RECEIVED
0	HARD_RESET	Triggered from a Hard Reset event (check POFF reason for the trigger)
		0x1: TRIGGER_RECEIVED

0x0000080A PON_WARM_RESET_REASON1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw xVdd rb

Reasons that PMIC entered the Warm Reset state (pst 13).

This register is automatically reset when the PMIC turns on (i.e.

PON_WARM_REASON_CLEAR register field 1) or by writing to this address. This is a synchronized address so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.

PON_WARM_RESET_REASON1

Bits	Name	Description
7	KPDPWR_N	Triggered by KPDPWR_N 0x1: TRIGGER_RECEIVED
6	RESIN_N	Triggered by RESIN_N 0x1: TRIGGER_RECEIVED
5	KPDPWR_AND_RESIN	Triggered by simultaneous KPDPWR_N + RESIN_N 0x1: TRIGGER_RECEIVED
4	GP2	Triggered by Keypad_Reset2 0x1: TRIGGER_RECEIVED
3	GP1	Triggered by Keypad_Reset1 0x1: TRIGGER_RECEIVED
2	PMIC_WD	Triggered by PMIC Watchdog 0x1: TRIGGER_RECEIVED
1	PS_HOLD	Triggered by PS_HOLD 0x1: TRIGGER_RECEIVED
0	SOFT	Triggered by Software 0x1: TRIGGER_RECEIVED

0x0000080B PON_WARM_RESET_REASON2

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw xVdd rb

Reasons that PMIC entered the Warm Reset state (pst_13). This register is automatically reset when the PMIC turns on (i.e. PON_WARM_REASON_CLEAR register field 1) or by writing to WARM RESET REASON1 register address.

PON_WARM_RESET_REASON2

Bits	Name	Description
4	AFP	Triggered AFP
		0x1: TRIGGER_RECEIVED

0x0000080C PON_POFF_REASON1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw_xVdd_rb

Reasons that the PMIC left the on state and commenced a shutdown sequence. All zeros mean that no trigger received or a master bandgap or phone power fault occurred.

PON_POFF_REASON1

Bits	Name	Description
7	KPDPWR_N	Triggered by KPDPWR_N 0x1: TRIGGER_RECEIVED
6	RESIN_N	Triggered by RESIN_N 0x1: TRIGGER_RECEIVED
5	KPDPWR_AND_RESIN	Triggered by simultaneous KPDPWR_N + RESIN_N 0x1: TRIGGER_RECEIVED
4	GP2	Triggered by Keypad_Reset2 0x1: TRIGGER_RECEIVED
3	GP1	Triggered by Keypad_Reset1 0x1: TRIGGER_RECEIVED
2	PMIC_WD	Triggered by PMIC Watchdog 0x1: TRIGGER_RECEIVED
1	PS_HOLD	Triggered by PS_HOLD 0x1: TRIGGER_RECEIVED
0	SOFT	Triggered by Software 0x1: TRIGGER_RECEIVED

0x0000080D PON_POFF_REASON2

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw_xVdd_rb

Reasons that the PMIC left the on state and commenced a shutdown sequence. All zeros mean that no trigger received or a master bandgap or phone power fault occurred.

PON_POFF_REASON2

Bits	Name	Description
7	STAGE3	Triggered by stage3 reset
		0x1: TRIGGER_RECEIVED
6	OTST3	Triggered by Overtemp
		0x1: TRIGGER_RECEIVED
5	UVLO	Triggered by UVLO
		0x1: TRIGGER_RECEIVED
4	AFP	Triggered by AFP
		0x1: TRIGGER_RECEIVED
3	CHARGER	Triggered by Charger (ENUM_TIMER, BOOT_DONE)
		0x1: TRIGGER_RECEIVED
2	AVDD_RB	Triggered by AVDD_RB
		0x1: TRIGGER_RECEIVED

0x0000080E PON_SOFT_RESET_REASON1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw xVdd rb

Reasons that the PMIC registers were reset. All zeros mean that no trigger received.

Clear both soft reason registers by writing to this register. This is a synchronized address so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.

PON_SOFT_RESET_REASON1

Bits	Name	Description
7	KPDPWR_N	Triggered by KPDPWR_N 0x1: TRIGGER_RECEIVED
6	RESIN_N	Triggered by RESIN_N 0x1: TRIGGER_RECEIVED
5	KPDPWR_AND_RESIN	Triggered by simultaneous KPDPWR_N + RESIN_N 0x1: TRIGGER_RECEIVED
4	GP2	Triggered by Keypad_Reset2 0x1: TRIGGER_RECEIVED

PON_SOFT_RESET_REASON1 (cont.)

Bits	Name	Description
3	GP1	Triggered by Keypad_Reset1
		0x1: TRIGGER_RECEIVED
2	PMIC_WD	Triggered by PMIC Watchdog
		0x1: TRIGGER_RECEIVED
1	PS_HOLD	Triggered by PS_HOLD
		0x1: TRIGGER_RECEIVED
0	SOFT	Triggered by Software
		0x1: TRIGGER_RECEIVED

0x0000080F PON_SOFT_RESET_REASON2

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: raw xVdd rb

Reasons that the PMIC registers were reset. All zeros mean that no trigger received. Clear the soft reason registers by writing to the SOFT RESET REASON1 register

PON_SOFT_RESET_REASON2

Bits	Name	Description
4	AFP	Triggered AFP 0x1: TRIGGER_RECEIVED

0x00000810 PON_INT_RT_STS

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: N/A

Interrupt Real Time Status Bits

PON_INT_RT_STS

Bits	Name	Description
7	SOFT_RESET_OCCURED	warning that a reset event has been triggered by the PMIC Watchdog timer 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH

PON_INT_RT_STS (cont.)

Bits	Name	Description
6	PMIC_WD_BARK	warning that a reset event has been triggered by the PMIC Watchdog timer 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
5	K_R_BARK	warning that a reset event has been triggered by asserting RESIN_N and KPDPWR_N simultaneously 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
4	RESIN_BARK	warning that a reset event has been triggered by RESIN_N 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
3	KPDPWR_BARK	warning that a reset event has been triggered by KPDPWR_N 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
2	CBLPWR_ON	CBLPWR_N has been asserted for longer than his debounce timer 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
1	RESIN_ON	RESIN_N has been asserted for longer than his debounce timer 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
0	KPDPWR_ON	KPDPWR_N has been asserted for longer than his debounce timer 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH

0x00000811 PON_INT_SET_TYPE

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: perph_rb

0 =use level trigger interrupts, 1 =use edge trigger interrupts

PON_INT_SET_TYPE

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: LEVEL
		0x1: EDGE
6	PMIC_WD_BARK	0x0: LEVEL
		0x1: EDGE

PON_INT_SET_TYPE (cont.)

Bits	Name	Description
5	K_R_BARK	0x0: LEVEL
		0x1: EDGE
4	RESIN_BARK	0x0: LEVEL
		0x1: EDGE
3	KPDPWR_BARK	0x0: LEVEL
		0x1: EDGE
2	CBLPWR_ON	0x0: LEVEL
		0x1: EDGE
1	RESIN_ON	0x0: LEVEL
		0x1: EDGE
0	KPDPWR_ON	0x0: LEVEL
		0x1: EDGE

0x00000812 PON_INT_POLARITY_HIGH

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph_rb

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

PON_INT_POLARITY_HIGH

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
6	PMIC_WD_BARK	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
5	K_R_BARK	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
4	RESIN_BARK	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
3	KPDPWR_BARK	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
2	CBLPWR_ON	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
1	RESIN_ON	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

PON_INT_POLARITY_HIGH (cont.)

Bits	Name	Description
0	KPDPWR_ON	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x00000813 PON_INT_POLARITY_LOW

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

PON_INT_POLARITY_LOW

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
6	PMIC_WD_BARK	0x0: LOW_TRIGGER_DISABLED
	2,0	0x1: LOW_TRIGGER_ENABLED
5	K_R_BARK	0x0: LOW_TRIGGER_DISABLED
	3. Ornins	0x1: LOW_TRIGGER_ENABLED
4	RESIN_BARK	0x0: LOW_TRIGGER_DISABLED
	1	0x1: LOW_TRIGGER_ENABLED
3	KPDPWR_BARK	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
2	CBLPWR_ON	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
1	RESIN_ON	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
0	KPDPWR_ON	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x00000814 PON_INT_LATCHED_CLR

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph_rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

PON_INT_LATCHED_CLR

Bits	Name	Description
7	SOFT_RESET_OCCURED	
6	PMIC_WD_BARK	
5	K_R_BARK	
4	RESIN_BARK	
3	KPDPWR_BARK	
2	CBLPWR_ON	2
1	RESIN_ON	
0	KPDPWR_ON	

0x00000815 PON_INT_EN_SET

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

PON_INT_EN_SET

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: INT_DISABLED
		0x1: INT_ENABLED
6	PMIC_WD_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
5	K_R_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
4	RESIN_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
3	KPDPWR_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
2	CBLPWR_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED

PON_INT_EN_SET (cont.)

Bits	Name	Description
1	RESIN_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED
0	KPDPWR_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x00000816 PON_INT_EN_CLR

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

PON INT EN CLR

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: INT_DISABLED
	3. Chill.	0x1: INT_ENABLED
6	PMIC_WD_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
5	K_R_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
4	RESIN_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
3	KPDPWR_BARK	0x0: INT_DISABLED
		0x1: INT_ENABLED
2	CBLPWR_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED
1	RESIN_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED
0	KPDPWR_ON	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x00000818 PON_INT_LATCHED_STS

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

PON_INT_LATCHED_STS

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
6	PMIC_WD_BARK	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
5	K_R_BARK	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
4	RESIN_BARK	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
3	KPDPWR_BARK	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
2	CBLPWR_ON	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
1	RESIN_ON	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED
0	KPDPWR_ON	0x0: NO_INT_RECEIVED 0x1: INTERRUPT_RECEIVED

0x00000819 PON_INT_PENDING_STS

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

PON_INT_PENDING_STS

Bits	Name	Description
7	SOFT_RESET_OCCURED	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING

PON_INT_PENDING_STS (cont.)

Bits	Name	Description
6	PMIC_WD_BARK	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
5	K_R_BARK	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
4	RESIN_BARK	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
3	KPDPWR_BARK	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
2	CBLPWR_ON	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
1	RESIN_ON	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING
0	KPDPWR_ON	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000081A PON_INT_MID_SEL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

PON_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
		0x3: MID3

0x0000081B PON_INT_PRIORITY

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: perph rb

PON_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x00000840 PON_KPDPWR_N_RESET_S1_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x0F

Reset Name: dVdd_rb

Stage 1 (Bark) Timer. Bark cannot be disabled, but interrupt can be disabled if necessary

PON_KPDPWR_N_RESET_S1_TIMER

	Description
3:0 S1_TIMER	Time that the debounced trigger must be held before bark is sent to MSM This field can only be updated when block is disabled (i.e. 5 sleep clock cycles after writing 0 to S2_RESET_EN and PON_TRIGGER_EN:KPDPWR_N fields). 0x0: MS_0 0x1: MS_32 0x2: MS_56 0x3: MS_80 0x4: MS_128
	_

0x00000841 PON_KPDPWR_N_RESET_S2_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x07

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_KPDPWR_N_RESET_S2_TIMER

Bits	Name	Description
2:0	S2_TIMER	Time that debounced trigger must be held before S2 reset occurs {0ms, 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2s}
		This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field). 0x0: MS_0 0x1: MS_10 0x2: MS_50 0x3: MS_100 0x4: MS_250 0x5: MS_500 0x6: S_1 0x7: S_2

0x00000842 PON_KPDPWR_N_RESET_S2_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_KPDPWR_N_RESET_S2_CTL

Bits	Name	Description
3:0	Name RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field). 0x0: RESERVED0 0x1: WARM_RESET 0x2: IMMEDIATE_XVDD_SHUTDOWN 0x3: RESERVED3 0x4: SHUTDOWN 0x5: DVDD_SHUTDOWN 0x6: XVDD_SHUTDOWN 0x7: HARD_RESET 0x8: DVDD_HARD_RESET 0x9: XVDD_HARD_RESET 0x9: XVDD_HARD_RESET 0xA: WARM_RESET_AND_DVDD_SHUTDOWN 0xB: WARM_RESET_AND_SHUTDOWN 0xC: WARM_RESET_AND_SHUTDOWN 0xC: WARM_RESET_THEN_HARD_RESET
	.0.	0xE: WARM_RESET_THEN_DVDD_HARD_RESET 0xF: WARM_RESET_THEN_XVDD_HARD_RESET

0x00000843 PON_KPDPWR_N_RESET_S2_CTL2

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_KPDPWR_N_RESET_S2_CTL2

Bits	Name	Description
7	S2_RESET_EN	Enable Stage 2 reset
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED

0x00000844 PON_RESIN_N_RESET_S1_TIMER

Type: RW

Clock: pbus_wrclk Reset State: 0x0F

Reset Name: dVdd rb

Stage 1 (Bark) Timer. Bark cannot be disabled, but interrupt can be disabled if necessary

PON_RESIN_N_RESET_S1_TIMER

Bits	Name	Description
3:0	S1_TIMER	Time that the debounced trigger must be held before bark is sent to MSM
		This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field).
		0x0: MS_0
		0x1: MS_32
		0x2: MS_56
		0x3: MS_80
		0x4: MS_128
		0x5: MS_184
	- 5	0x6: MS_272
		0x7: MS_408
	2 2 18	0x8: MS_608
	2018-08-01111gt	0x9: MS_904
	7.8 " C.	0xA: MS_1352
	20 5	0xB: MS_2048
	1	0xC: MS_3072
		0xD: MS_4480
		0xE: MS_6720
		0xF: MS_10256

0x00000845 PON_RESIN_N_RESET_S2_TIMER

Type: RW

Clock: pbus_wrclk Reset State: 0x07

Reset Name: dVdd_rb

Stage 2 (bite) configuration

PON_RESIN_N_RESET_S2_TIMER

Bits	Name	Description
2:0	S2_TIMER	Time that debounced trigger must be held before S2 reset occurs {0ms, 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2s}
		This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field). 0x0: MS 0
		0x1: MS_10
		0x2: MS_50 0x3: MS_100
		0x4: MS_250 0x5: MS_500
		0x6: S_1
		0x7: S_2

0x00000846 PON_RESIN_N_RESET_S2_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x04

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_RESIN_N_RESET_S2_CTL

Bits	Name	Description
3:0	RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field).
		0x0: RESERVED0
		0x1: WARM_RESET
		0x2: IMMEDIATE_XVDD_SHUTDOWN
		0x3: RESERVED3
		0x4: SHUTDOWN
		0x5: DVDD_SHUTDOWN
		0x6: XVDD_SHUTDOWN
		0x7: HARD_RESET
		0x8: DVDD_HARD_RESET
		0x9: XVDD_HARD_RESET
		0xA: WARM_RESET_AND_DVDD_SHUTDOWN
		0xB: WARM_RESET_AND_XVDD_SHUTDOWN
		0xC: WARM_RESET_AND_SHUTDOWN
		0xD: WARM_RESET_THEN_HARD_RESET
		0xE: WARM_RESET_THEN_DVDD_HARD_RESET
		0xF: WARM_RESET_THEN_XVDD_HARD_RESET

0x00000847 PON_RESIN_N_RESET_S2_CTL2

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_RESIN_N_RESET_S2_CTL2

Bits	Name	Description
7	S2_RESET_EN	Enable Stage 2 reset
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED

0x00000848 PON_RESIN_AND_KPDPWR_RESET_S1_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x0F

Reset Name: dVdd rb

Stage 1 (Bark) Timer. Bark cannot be disabled, but interrupt can be disabled if necessary

PON_RESIN_AND_KPDPWR_RESET_S1_TIMER

Bits	Name	Description
3:0	S1_TIMER	Time that the debounced trigger must be held before bark is sent to MSM
		This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field).
		0x0: MS_0
		0x1: MS_32
		0x2: MS_56
		0x3: MS_80
		0x4: MS_128 0x5: MS_184
		0x6: MS_184 0x6: MS_272
		0x7: MS 408
		0x8: MS_608
		0x9: MS_904
		0xA: MS_1352
		0xB: MS_2048
		0xC: MS_3072
		0xD: MS_4480
	- 4	0xE: MS_6720
	27	0xF: MS_10256

0x00000849 PON_RESIN_AND_KPDPWR_RESET_S2_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x07

Reset Name: dVdd_rb

Stage 2 (bite) configuration

PON_RESIN_AND_KPDPWR_RESET_S2_TIMER

Bits	Name	Description
2:0	S2_TIMER	Time that debounced trigger must be held before S2 reset occurs {0ms, 10ms, 50ms, 100ms, 250ms, 500ms, 1s, 2s}
		This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field). 0x0: MS 0
		0x1: MS 10
		0x2: MS_50
		0x3: MS_100
		0x4: MS_250
		0x5: MS_500
		0x6: S_1
		0x7: S_2

0x0000084A PON_RESIN_AND_KPDPWR_RESET_S2_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x04

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_RESIN_AND_KPDPWR_RESET_S2_CTL

Bits	Name	Description
3:0	RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field).
		0x0: RESERVED0
		0x1: WARM_RESET
		0x2: RESERVED2
		0x3: RESERVED3
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: HARD_RESET
		0x8: DVDD_HARD_RESET
		0x9: XVDD_HARD_RESET
		0xA: RESERVED10
		0xB: RESERVED11
		0xC: RESERVED12
		0xD: WARM_RESET_THEN_HARD_RESET
		0xE: WARM_RESET_THEN_DVDD_HARD_RESET
		0xF: WARM_RESET_THEN_XVDD_HARD_RESET

0x0000084B PON_RESIN_AND_KPDPWR_RESET_S2_CTL2

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_RESIN_AND_KPDPWR_RESET_S2_CTL2

Bits	Name	Description
7	S2_RESET_EN	Enable Stage 2 reset
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED

0x00000854 PON_PMIC_WD_RESET_S1_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x1F

Reset Name: dVdd rb

Stage 1 (Bark) Timer. Bark cannot be disabled, but interrupt can be disabled if necessary

PON_PMIC_WD_RESET_S1_TIMER

Bits	Name	Description
6:0	S1_TIMER	Time that the debounced trigger must be held before bark is sent to MSM (seconds) 0 - 127 seconds, default 31 seconds. Program hex value of decimal count desired (not binary coded).
6.0	SI_IIIVIER	to MSM (seconds) 0 - 127 seconds, default 31 seconds.
		0x1C: SEC_28
		0x1D: SEC_29 0x1E: SEC_30
		0x1F: SEC_31
		0x20: SEC_32 0x21: SEC_33
		0x21: SEC_33 0x22: SEC_34
		0x23: SEC_35
		0x24: SEC_36
		0x25: SEC_37 0x26: SEC_38
		0.20. 020_00

PON_PMIC_WD_RESET_S1_TIMER (cont.)

Bits	Name	Description
		0x27: SEC_39
		0x28: SEC_40
		0x29: SEC_41
		0x2A: SEC_42
		0x2B: SEC_43
		0x2C: SEC_44
		0x2D: SEC_45
		0x2E: SEC_46
		0x2F: SEC_47
		0x30: SEC_48
		0x31: SEC_49
		0x32: SEC_50
		0x33: SEC_51
		0x34: SEC_52
		0x35: SEC_53
		0x36: SEC_54
		0x37: SEC_55
		0x38: SEC_56
		0x39: SEC_57
		0x3A: SEC_58
	0,	0x3B: SEC_59
	2,10	0x3C: SEC_60
	2018-08 William	0x3D: SEC_61
	18 Out	0x3E: SEC_62
	30 EM	0x3F: SEC_63
	1	0x40: SEC_64
		0x41: SEC_65 0x42: SEC_66
		0x42: SEC_60 0x43: SEC_67
		0x44: SEC_68
		0x45: SEC_69
		0x46: SEC 70
		0x47: SEC_71
		0x48: SEC_72
		0x49: SEC_73
		0x4A: SEC_74
		0x4B: SEC_75
		0x4C: SEC_76
		0x4D: SEC_77
		0x4E: SEC_78
		0x4F: SEC_79
		0x50: SEC_80
		0x51: SEC_81
		0x52: SEC_82
		0x53: SEC_83
		0x54: SEC_84
		0x55: SEC_85
		0x56: SEC_86
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

PON_PMIC_WD_RESET_S1_TIMER (cont.)

Bits	Name	Description
		0x57: SEC_87
		0x58: SEC_88
		0x59: SEC_89
		0x5A: SEC_90
		0x5B: SEC_91
		0x5C: SEC_92
		0x5D: SEC_93
		0x5E: SEC_94
		0x5F: SEC_95
		0x60: SEC_96
		0x61: SEC_97
		0x62: SEC_98
		0x63: SEC_99
		0x64: SEC_100
		0x65: SEC_101
	10	0x66: SEC_102
		0x67: SEC_103
		0x68: SEC_104
		0x69: SEC_105
		0x6A: SEC_106
	, , , , ,	0x6B: SEC_107
	2 2	0x6C: SEC_108
	10° in 10°	0x6D: SEC_109
	18. 16. IL	0x6E: SEC_110 0x6F: SEC_111
	Cole on white	0x70: SEC_112
	1	0x71: SEC_113
		0x72: SEC_114
		0x73: SEC_115
		0x74: SEC 116
		0x75: SEC 117
		0x76: SEC_118
		0x77: SEC_119
		0x78: SEC_120
		0x79: SEC_121
		0x7A: SEC_122
		0x7B: SEC_123
		0x7C: SEC_124
		0x7D: SEC_125
		0x7E: SEC_126
		0x7F: SEC_127

0x00000855 PON_PMIC_WD_RESET_S2_TIMER

Type: RW

Clock: pbus wrclk Reset State: 0x01

Reset Name: dVdd rb

Stage 2 (bite) configuration

PON_PMIC_WD_RESET_S2_TIMER

Bits	Name	Description
6:0	Name S2_TIMER	Time that debounced trigger must be held before S2 reset occurs - 0 - 127 seconds (default = 32 seconds). Program hex value of decimal count desired (Not binary coded). Timer starts after WD bark expires This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles. 0x0: SEC_0 0x1: SEC_1 0x2: SEC_2 0x3: SEC_3 0x4: SEC_4 0x5: SEC_5 0x6: SEC_6 0x7: SEC_7 0x8: SEC_8
		0x9: SEC_9 0xA: SEC_10 0xB: SEC_11 0xC: SEC_12 0xD: SEC_13 0xE: SEC_14 0xF: SEC_15 0x10: SEC_16 0x11: SEC_17 0x12: SEC_18 0x13: SEC_19 0x14: SEC_20 0x15: SEC_21 0x16: SEC_22 0x17: SEC_23
		0x18: SEC_24 0x19: SEC_25 0x1A: SEC_26 0x1B: SEC_27 0x1C: SEC_28
		0x1D: SEC_29 0x1E: SEC_30 0x1F: SEC_31 0x20: SEC_32 0x21: SEC_33
		0x22: SEC_34 0x23: SEC_35 0x24: SEC_36

PON_PMIC_WD_RESET_S2_TIMER (cont.)

Bits	Name	Description
		0x25: SEC_37
		0x26: SEC_38
		0x27: SEC_39
		0x28: SEC_40
		0x29: SEC_41
		0x2A: SEC_42
		0x2B: SEC_43
		0x2C: SEC_44 0x2D: SEC_45
		0x2E: SEC_46
		0x2E: SEC_40 0x2F: SEC_47
		0x30: SEC_48
		0x31: SEC_49
		0x32: SEC 50
		0x33: SEC_51
		0x34: SEC 52
		0x35: SEC 53
		0x36: SEC_54
	. ()	0x37: SEC_55
		0x38: SEC_56
	0)	0x39: SEC_57
	2,70	0x3A: SEC_58
	97,01	0x3B: SEC_59
	2018:09 winds	0x3C: SEC_60
	30, 24,	0x3D: SEC_61
	1	0x3E: SEC_62
		0x3F: SEC_63
		0x40: SEC_64
		0x41: SEC_65 0x42: SEC_66
		0x43: SEC_67
		0x44: SEC_68
		0x45: SEC_69
		0x46: SEC_70
		0x47: SEC_71
		0x48: SEC_72
		0x49: SEC_73
		0x4A: SEC_74
		0x4B: SEC_75
		0x4C: SEC_76
		0x4D: SEC_77
		0x4E: SEC_78
		0x4F: SEC_79
		0x50: SEC_80
		0x51: SEC_81
		0x52: SEC_82

PON_PMIC_WD_RESET_S2_TIMER (cont.)

Bits	Name	Description
		0x53: SEC_83
		0x54: SEC_84
		0x55: SEC_85
		0x56: SEC_86
		0x57: SEC_87
		0x58: SEC_88
		0x59: SEC_89
		0x5A: SEC_90
		0x5B: SEC_91
		0x5C: SEC_92 0x5D: SEC_93
		0x5E: SEC_94
		0x5F: SEC_95
		0x60: SEC 96
		0x61: SEC_97
		0x62: SEC 98
		0x63: SEC 99
		0x64: SEC_100
	. ()	0x65: SEC_101
		0x66: SEC_102
	0)	0x67: SEC_103
	270	0x68: SEC_104
	9 ,01	0x69: SEC_105
	3. Only	0x6A: SEC_106
	2018-09 William	0x6B: SEC_107
	1	0x6C: SEC_108
		0x6D: SEC_109
		0x6E: SEC_110
		0x6F: SEC_111 0x70: SEC_112
		0x71: SEC_112
		0x72: SEC_114
		0x73: SEC_115
		0x74: SEC_116
		0x75: SEC 117
		0x76: SEC 118
		0x77: SEC_119
		0x78: SEC_120
		0x79: SEC_121
		0x7A: SEC_122
		0x7B: SEC_123
		0x7C: SEC_124
		0x7D: SEC_125
		0x7E: SEC_126
		0x7F: SEC_127

0x00000856 PON_PMIC_WD_RESET_S2_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x06

Reset Name: dVdd rb

Stage 2 (bite) configuration. This register can only be written when PMIC_WD_LOCK field is 0x0.

PON_PMIC_WD_RESET_S2_CTL

Bits	Name	Description
3:0	RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field).
		0x0: RESERVED0
		0x1: WARM_RESET
		0x2: IMMEDIATE_XVDD_SHUTDOWN
		0x3: RESERVED3
		0x4: SHUTDOWN
		0x5: DVDD_SHUTDOWN
		0x6: XVDD_SHUTDOWN
	5	0x7: HARD_RESET
		0x8: DVDD_HARD_RESET
	0, 48	0x9: XVDD_HARD_RESET
	.O. ville	0xA: WARM_RESET_AND_DVDD_SHUTDOWN
	75 400	0xB: WARM_RESET_AND_XVDD_SHUTDOWN
	2.5	0xC: WARM_RESET_AND_SHUTDOWN
	1	0xD: WARM_RESET_THEN_HARD_RESET
		0xE: WARM_RESET_THEN_DVDD_HARD_RESET
		0xF: WARM_RESET_THEN_XVDD_HARD_RESET

0x00000857 PON_PMIC_WD_RESET_S2_CTL2

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: dVdd rb

Stage 2 (bite) configuration. This register can only be written when PMIC_WD_LOCK field is

0x0.

PON_PMIC_WD_RESET_S2_CTL2

Bits	Name	Description	
7	S2_RESET_EN	Enable Stage 2 reset	
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED	
PON_PMIC_WD_RESET_PET			
Type: W Clock: pbus_wrclk Reset State: 0x00			
Reset I	Reset Name: dVdd_rb		
Stage 2 (bite) configuration			
PON_F	PON_PMIC_WD_RESET_PET		
Bits	Name	Description	

0x00000858 PON_PMIC_WD_RESET_PET

PON_PMIC_WD_RESET_PET

Bits	Name	Description
0	WATCHDOG_PET	Writing '1' to this bit will clear the PMIC WD timer. Writing '0' has no effect.
	***	This is a synchronized field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles. 0x1: PET_WD

0x0000085A PON_PS_HOLD_RESET_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: dVdd_rb

PON_PS_HOLD_RESET_CTL

Bits	Name	Description
3:0	RESET_TYPE	This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 8 sleep clock cycles. 0x0: RESERVED0 0x1: WARM_RESET 0x2: IMMEDIATE_XVDD_SHUTDOWN 0x3: RESERVED3 0x4: SHUTDOWN 0x5: DVDD_SHUTDOWN 0x6: XVDD_SHUTDOWN 0x7: HARD_RESET 0x8: DVDD_HARD_RESET 0x9: XVDD_HARD_RESET 0x9: XVDD_HARD_RESET 0x0: WARM_RESET_AND_DVDD_SHUTDOWN 0xC: WARM_RESET_AND_SHUTDOWN 0xC: WARM_RESET_AND_SHUTDOWN 0xC: WARM_RESET_THEN_HARD_RESET 0xE: WARM_RESET_THEN_DVDD_HARD_RESET 0xF: WARM_RESET_THEN_DVDD_HARD_RESET
		V 10

0x0000085B PON_PS_HOLD_RESET_CTL2

Type: RW

Clock: pbus_wrclk
Reset State: 0x80

Reset Name: dVdd rb

PON_PS_HOLD_RESET_CTL2

Bits	Name	Description
7	S2_RESET_EN	Enable reset Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles.
		0x0: DISABLED
		0x1: ENABLED

0x00000862 PON_SW_RESET_S2_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: dVdd rb

Software initiated shutdown (AFP)

PON_SW_RESET_S2_CTL

Bits	Name	Description
3:0	RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to SW_RESET_EN field).
		0x0: SOFT_RESET
		0x1: WARM_RESET
		0x2: IMMEDIATE_XVDD_SHUTDOWN
		0x3: RESERVED3
		0x4: SHUTDOWN
		0x5: DVDD_SHUTDOWN
		0x6: XVDD_SHUTDOWN
		0x7: HARD_RESET
	200	0x8: DVDD_HARD_RESET
	2	0x9: XVDD_HARD_RESET
	a grade	0xA: WARM_RESET_AND_DVDD_SHUTDOWN
	C.O. willis	0xB: WARM_RESET_AND_XVDD_SHUTDOWN
	O. P. M. C.	0xC: WARM_RESET_AND_SHUTDOWN
	2,5	0xD: WARM_RESET_THEN_HARD_RESET
	1	0xE: WARM_RESET_THEN_DVDD_HARD_RESET
		0xF: WARM_RESET_THEN_XVDD_HARD_RESET

0x00000863 PON_SW_RESET_S2_CTL2

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: dVdd_rb

Software initiated shutdown (AFP)

PON_SW_RESET_S2_CTL2

Bits	Name	Description
7	SW_RESET_EN	Enable SW reset
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED

0x00000864 PON_SW_RESET_GO

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: dVdd_rb

Initiate SW Reset by writing 0xA5 to this register

PON_SW_RESET_GO

Bits	Name	Description
7:0	SW_RESET_GO	Initiate SW Reset by writing 0xA5 to this register
	50, 2m	This is a synchronized field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.

0x00000866 PON_OVERTEMP_RESET_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: dVdd_rb

Over temperature stage 3 plus charger FLCB stage 2 reset/shutdown control.

Note: For safety reasons, only shutdown and hard reset events are supported by the overtemp reset trigger.

PON_OVERTEMP_RESET_CTL

Bits	Name	Description
3:0	Name RESET_TYPE	This field can only be updated when block is disabled (i.e. 8 sleep clock cycles after writing 0 to S2_RESET_EN field). 0x0: RESERVED0 0x1: RESERVED1 0x2: IMMEDIATE_XVDD_SHUTDOWN 0x3: RESERVED3 0x4: SHUTDOWN 0x5: DVDD_SHUTDOWN 0x6: XVDD_SHUTDOWN 0x7: HARD_RESET 0x8: DVDD_HARD_RESET 0x9: XVDD_HARD_RESET 0x0: RESERVED10 0xB: RESERVED11 0xC: RESERVED12 0xD: RESERVED13
	,0,	0xE: RESERVED14 0xF: RESERVED15

0x00000867 PON_OVERTEMP_RESET_CTL2

Type: RW

Clock: pbus_wrclk
Reset State: 0x80

Reset Name: dVdd rb

Over temperature stage 3 plus charger FLCB stage 2 reset/shutdown control.

PON_OVERTEMP_RESET_CTL2

Bits	Name	Description
7	S2_RESET_EN	Enable stage 2 reset
		Field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles. 0x0: DISABLED 0x1: ENABLED

PON_PULL_CTL 0x00000870

Type: RW

Clock: pbus_wrclk **Reset State:** 0x0F

Reset Name: soft_dVdd_rb

PON_PULL_CTL

Bits	Name	Description
3	PON1_PD_EN	0x0: PD_DISABLED
		0x1: PD_ENABLED
2	CBLPWR_N_PU_EN	0x0: PD_DISABLED
		0x1: PD_ENABLED
1	KPDPWR_N_PU_EN	0x0: PD_DISABLED
		0x1: PD_ENABLED
0	RESIN_N_PU_EN	0x0: PD_DISABLED
		0x1: PD_ENABLED
PON_DEBOUNCE_CTL Type: RW Clock: pbus_wrclk Reset State: 0x00 Reset Name: dVdd_rb		

0x00000871

PON_DEBOUNCE_CTL

Bits	Name	Description
5:3	WIPWR_DEBOUNCE	PON_1: Time delay for general purpose input de-bouncing during wireless charger power on sequences (i.e. PON_1 input signal and WIPWR_DEBOUNCE_DLY field asserted). Only signal assertion is de-bounced.
		if $X = 0$ then delay = 0, else delay = (1/1024) seconds * 2 ^(X-1) where $X = $ value of bits <2:0>
		This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles. 0x0: IMMEDIATE 0x1: MSEC_0P98 0x2: MSEC_1P95 0x3: MSEC_3P91 0x4: MSEC_7P81 0x5: MSEC_15P63 0x6: MSEC_31P25 0x7: MSEC_62P5
2:0	DEBOUNCE	KPD/CBL/GP_DLY/RESIN/RESIN_AND_KPD/GP1/GP2: Time delay for KPD, CBL, General Purpose PON, RESIN, RESIN_AND_KPD, GP1 and GP2 state change interrupt and triggering. Delay = (1/1024)* 2^ (x+4) This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles. 0x0: MS_15P6 0x1: MS_31P2 0x2: MS_62P5 0x3: MS_125 0x4: MS_250 0x5: MS_500 0x6: MS_1000 0x7: MS_2000

0x00000874 PON_RESET_S3_SRC

Type: RW

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: dVdd_rb

Choose source for stage 3 (Full Complete Shutdown). This is a write once register.

PMIC_WRITE_ONCE

PON_RESET_S3_SRC

Bits	Name	Description
1:0	RESET_S3_SOURCE	00=KPDPWR_N, 01=RESIN_N, 10=(KPDPWR_N and RESIN_N both need to be asserted, 11=either KPDPWR_N or RESIN_N)
		This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.
		For devices with dVdd_rb trim copy feature shadow register is loaded by writes to this or it's corresponding trim register field.
		0x0: KPDPWR_N
		0x1: RESIN_N
		0x2: KPDPWR_AND_RESIN
		0x3: KPDPWR_OR_RESIN

0x00000875 PON_RESET_S3_TIMER

Type: RW

Clock: pbus_wrclk
Reset State: 0x04

Reset Name: dVdd_rb

Time trigger must be held before S3 reset occurs (seconds)

PMIC_LOCKED=SEC_ACCESS

PON_RESET_S3_TIMER

Bits	Name	Description
2:0	S3_TIMER	Time trigger must be held before S3 reset occurs.
		000 = Instant, else 2 ^(x) seconds (2 to 128) for 50kHz LFRC
		F., 2011, 15D0
		For 32kHz LFRC
		0 = instant
		1 = 3.1s
		2 = 6.1s
		3 = 12.2s
		4 = 24.2s
		5 = 48.8s
		6 = 97.7s
		7 = 195.3s
		This is a shadowed field so, for reliable hardware operation, the
		minimum time allowed between write operations is 5 sleep clock
		cycles.
		0x0: IMMEDIATE
	. ()	0x1: SEC_2
		0x2: SEC_4
	0	0x3: SEC_8
	25	0x4: SEC_16
	3° 10°	0x5: SEC_32
	O. O. William	0x6: SEC_64
	OFENE	0x7: SEC_128

0x00000880 PON_PON_TRIGGER_EN

Type: RW

Clock: pbus_wrclk Reset State: 0xFE

Reset Name: soft_dVdd_rb

Power on trigger enables.

Each field is synchronized by a 2-stage shift register so, for reliable hardware operation, the minimum time allowed between write operations is 3 sleep clock cycles.

PON_PON_TRIGGER_EN

Bits	Name	Description
7	KPDPWR_N	Enable PON trigger for new KPDPWR press 0x0: DISABLED 0x1: ENABLED

PON_PON_TRIGGER_EN (cont.)

Bits	Name	Description
6	CBLPWR_N	Enable PON trigger for CBL_PWR_N 0x0: DISABLED 0x1: ENABLED
5	PON1	Enable PON trigger for PON1 0x0: DISABLED 0x1: ENABLED
4	USB_CHG	Enable PON trigger for USB CHG 0x0: DISABLED 0x1: ENABLED
3	DC_CHG	Enable PON trigger for DC CHG 0x0: DISABLED 0x1: ENABLED
2	RTC	Enable PON trigger for RTC 0x0: DISABLED 0x1: ENABLED
1	SMPL	Enable PON trigger for SMPL 0x0: DISABLED 0x1: ENABLED

0x00000883 PON_WATCHDOG_LOCK

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: shutdown2_rb

Write Once register that is reset at the end of the shutdown sequence

PMIC_WRITE_ONCE

PON_WATCHDOG_LOCK

Bits	Name	Description
7	PMIC_WD_LOCK	This is a write once register. '1' then PMIC_WD_RESET_S2_CTL is locked and the contents can no longer be modified. If '0' the register is programmable. 0x0: WD_UNLOCKED 0x1: WD_LOCKED

PON_UVLO 0x00000888

Type: RW

Clock: pbus_wrclk Reset State: 0x1D

Reset Name: soft_dVdd_rb

UVLO Delay

PON_UVLO

Bits	Name	Description
5:3	WIPWR_UVLO_DLY	Time delay for UVLO detection de-bouncing during wireless charger power on sequences (i.e. PON_1 input signal and WIPWR_DEBOUNCE_DLY field asserted). Only signal assertion is de-bounced.
	(if $X = 0$ then delay = 0, else delay = (1/1024) seconds * 2 ^(X-1) where $X = $ value of bits <2:0>
	(0)	This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.
		0x0: IMMEDIATE
	27	0x1: MSEC_0P98
	2018-09-22 THE SWEWINGTON	0x2: MSEC_1P95
	18, 16 m	0x3: MSEC_3P91 0x4: MSEC_7P81
	50, 24	0x5: MSEC_15P63
	1	0x6: MSEC 31P25
		0x7: MSEC_62P5
2:0	UVLO_DLY	Time delay for UVLO detection.
		if $X = 0$ then delay = 0, else delay = (1/1024) seconds * 2 ^(X-1) where $X = $ value of bits <2:0>
		This is a shadowed field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles.
		0x0: IMMEDIATE
		0x1: MSEC_0P98
		0x2: MSEC_1P95
		0x3: MSEC_3P91
		0x4: MSEC_7P81 0x5: MSEC_15P63
		0x6: MSEC_15F65 0x6: MSEC_31P25
		0x7: MSEC_62P5

0x0000088A PON_AVDD_VPH

Type: RW

Clock: pbus_wrclk
Reset State: 0x30

Reset Name: perph rb

Control for AVDD

PON_AVDD_VPH

Bits	Name	Description
5	AVDD_HPM_EN	1' = Enable LDO HPM, '0' = LDO LPM
		0x0: LPM
		0x1: HPM
4	AVDD_REF_OVR	aVdd regulator Reference Adjust Override
	.\(0 - aVdd regulator switches it's voltage reference to the PMIC MBG when MBG_OK = 1. If MBG_OK = 0, aVdd regulator uses the internal PON mini-bg as a voltage reference
	.0	1 - aVdd regulator always uses the internal PON mini-bg as a voltage reference
		0x0: AUTO
	.03	0x1: FORCE_MINI_BG

0x00000890 PON_PON1_INTERFACE

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: shutdown2_rb

PON module interface signaling.

PON_PON1_INTERFACE

Bits	Name	Description
7	PON_OUT	Field drives primary PMIC PON output buffer input. 0x0: LOW
		OXO. LOVV
		0x1: HIGH

0x00000891 PON_PBS_INTERFACE

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: shutdown2 rb

PON module interface signaling.

PON_PBS_INTERFACE

Bits	Name	Description
6	ACK_NACK	write 0x01 to ACK the PON module, write 0x00 to NACK the PON module. A NACK will cause the PMIC to shutdown.
		This is a synchronized field so, for reliable hardware operation, the minimum time allowed between write operations is 5 sleep clock cycles. 0x0: NACK 0x1: ACK
	2018.09.21.01. 2018.5m@mirdte	OZ.Z.

7 Misc_PM8937 Registers

0x00000900 MISC_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

MISC_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000901 MISC_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

MISC_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000902 MISC_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

MISC_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000903 MISC REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

MISC_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00000904 MISC_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x14

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

MISC_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x00000905 MISC_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x22

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

MISC PERPH SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	02.0

0x0000094A MISC_TX_GTR_THRES_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MISC_TX_GTR_THRES_CTL

Bits	Name	Description
7	TX_GTR_THRES_REG	A signal sent by modem to indicate that a high power GSM transmit is about to happen (~100us before PA on ramp starts). It is de-asserted when the Tx transmit is over. 0x1: GSM_TRANSMIT 0x0: TRANSMIT_OVER

0x000009D0 MISC_SEC_ACCESS

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: dVdd rb

PMIC LOCKING

MISC_SEC_ACCESS

Bits	Name	Description
7:0	SEC_UNLOCK	Unlock the Secure Registers by writing 0xA5 to this register. Lock is rearmed after the next write to the module.

8 Vref_lpddr Registers

0x00000A00 VREFLPDDR_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

VREFLPDDR_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000A01 VREFLPDDR_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

VREFLPDDR_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00000A02 VREFLPDDR_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [23:16]

VREFLPDDR_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00000A03 VREFLPDDR_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

VREFLPDDR_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00000A04 VREFLPDDR_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x14

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

VREFLPDDR_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x14: MISC

0x00000A05 VREFLPDDR_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral SubType

PMIC_CONSTANT

VREFLPDDR_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x6: VREF_LPDDR2

0x00000A08 VREFLPDDR_STATUS1

Type: R

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: N/A

Status Registers

VREFLPDDR_STATUS1

Bits	Name	Description
7	VREF_OK	0 = VREF_LPDDR2_PERPH_EN is low
		1 = VREF_LPDDR2_PERPH_EN is high
6	VREF_LPDDR_OK	0 = VREF is disabled
		1 = VREF is enabled
		(PERPH_EN & (REF_EN (FWE2 & HE2) (FWE1 & HE2)))

0x00000A44 VREFLPDDR_VREF_LPDDR2_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

If any of the conditions below are true, the block is on provided that the PERPH EN is set

VREFLPDDR_VREF_LPDDR2_EN

Bits	Name	Description
7	REF_EN	Enable the reference.
1	FOLLOW_HW_EN2	Enable the reference if the external HW_EN is set (Typically connects to sleep_b)
0	FOLLOW_HW_EN1	Enable the reference if the external HW_EN is set (Typically connects to VREG_OK from LPDDR regulator)

0x00000A46 VREFLPDDR EN CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

VREFLPDDR_EN_CTL1

Bits	Name	Description
7	PERPH_EN	LPDDR Reference Enable
		0 = Block is forcefully shut down
		1 = Reference state is controlled by individual enable controls

9 Bua_ext_charger Registers

0x00001C00 BUA_EXT_CHARGER_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

BUA_EXT_CHARGER_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00001C01 BUA_EXT_CHARGER_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

BUA_EXT_CHARGER_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00001C04 BUA_EXT_CHARGER_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1E Reset Name: N/A

Peripheral Type

BUA_EXT_CHARGER_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x1E: BATT_ALARM

0x00001C05 BUA_EXT_CHARGER_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x04
Reset Name: N/A
Peripheral SubType

BUA_EXT_CHARGER_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x1: BUA
		0x2: BUA_NO_CHARGER
		0x3: BUA_4UICC
		0x4: BUA_EXT_CHARGER
		0x5: BUA_BATT_ALARM
		0x6: BUA_4UICC_DUAL_BATT_ALARM

0x00001C08 BUA_EXT_CHARGER_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

BUA_EXT_CHARGER_STATUS1

Bits	Name	Description
7	BUA_OK	0 = BUA is disabled 1 = BUA is enabled
		0x1: BUA_ENABLED 0x0: BUA_DISABLED
6	BATT_GONE_DETECTED	0 = BATT_GONE is low 1 = BATT_GONE is high. External charger detected battery is gone. 0x1: BATT_GONE 0x0: BAT_PRESENT

0x00001C09 BUA_EXT_CHARGER_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Status Registers

BUA_EXT_CHARGER_STATUS2

Bits	Name	Description
3	UICC4_ALARM_DETECTED	0 = UICC4 Alarm Off 1 = UICC4 Alarm Received 0x1: ALARM_DETECTED 0x0: ALARM_NOT_DETECTED
2	UICC3_ALARM_DETECTED	0 = UICC3 Alarm Off 1 = UICC3 Alarm Received 0x1: ALARM_DETECTED 0x0: ALARM_NOT_DETECTED
1	UICC2_ALARM_DETECTED	0 = UICC2 Alarm Off 1 = UICC2Alarm Received 0x1: ALARM_DETECTED 0x0: ALARM_NOT_DETECTED
0	UICC1_ALARM_DETECTED	0 = UICC1 Alarm Off 1 = UICC1 Alarm Received 0x1: ALARM_DETECTED 0x0: ALARM_NOT_DETECTED

0x00001C10 BUA_EXT_CHARGER_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Interrupt Real Time Status Bits

BUA_EXT_CHARGER_INT_RT_STS

Bits	Name	Description
4	UICC4_ALARM_STS	0 = No Event 1 = UICC4 Alarm Received and LDO reset 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
3	UICC3_ALARM_STS	0 = No Event 1 = UICC3 Alarm Received and LDO reset 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
2	UICC2_ALARM_STS	0 = No Event 1 = UICC2 Alarm Received and LDO reset 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
1	UICC1_ALARM_STS	0 = No Event 1 = UICC1 Alarm Received and LDO reset 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH
0	BATT_ALARM_STS	0 = Battery Alarm Off 1 = Battery Alarm On (Battery has been removed) 0x0: INT_RT_STATUS_LOW 0x1: INT_RT_STATUS_HIGH

0x00001C11 BUA_EXT_CHARGER_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

BUA_EXT_CHARGER_INT_SET_TYPE

Bits	Name	Description
4	UICC4_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE
3	UICC3_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE
2	UICC2_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE
1	UICC1_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE
0	BATT_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE

0x00001C12 BUA_EXT_CHARGER_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

BUA_EXT_CHARGER_INT_POLARITY_HIGH

Bits	Name	Description
4	UICC4_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
3	UICC3_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
2	UICC2_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
1	UICC1_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED
0	BATT_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x00001C13 BUA_EXT_CHARGER_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

BUA_EXT_CHARGER_INT_POLARITY_LOW

Bits	Name	Description
4	UICC4_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
3	UICC3_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
2	UICC2_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
1	UICC1_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED
0	BATT_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
	2,7	0x1: LOW_TRIGGER_ENABLED

0x00001C14 BUA_EXT_CHARGER_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

BUA_EXT_CHARGER_INT_LATCHED_CLR

Bits	Name	Description
4	UICC4_ALARM_LATCHED_ CLR	
3	UICC3_ALARM_LATCHED_ CLR	
2	UICC2_ALARM_LATCHED_ CLR	
1	UICC1_ALARM_LATCHED_ CLR	

BUA_EXT_CHARGER_INT_LATCHED_CLR (cont.)

Bits	Name	Description
0	BATT_ALARM_LATCHED_C LR	

0x00001C15 BUA_EXT_CHARGER_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

BUA EXT CHARGER INT EN SET

Bits	Name	Description
4	UICC4_ALARM_EN_SET	0x0: INT_DISABLED
	2,0	0x1: INT_ENABLED
3	UICC3_ALARM_EN_SET	0x0: INT_DISABLED
	8. Orning	0x1: INT_ENABLED
2	UICC2_ALARM_EN_SET	0x0: INT_DISABLED
	1	0x1: INT_ENABLED
1	UICC1_ALARM_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED
0	BATT_ALARM_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x00001C16 BUA_EXT_CHARGER_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

BUA_EXT_CHARGER_INT_EN_CLR

Bits	Name	Description
4	UICC4_ALARM_EN_CLR	0x0: INT_DISABLED
		0x1: INT_ENABLED
3	UICC3_ALARM_EN_CLR	0x0: INT_DISABLED
		0x1: INT_ENABLED
2	UICC2_ALARM_EN_CLR	0x0: INT_DISABLED
		0x1: INT_ENABLED
1	UICC1_ALARM_EN_CLR	0x0: INT_DISABLED
		0x1: INT_ENABLED
0	BATT_ALARM_EN_CLR	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x00001C18 BUA EXT CHARGER INT LATCHED STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

BUA_EXT_CHARGER_INT_LATCHED_STS

Bits	Name	Description
4	UICC4_ALARM_LATCHED_ STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED
3	UICC3_ALARM_LATCHED_ STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED
2	UICC2_ALARM_LATCHED_ STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED
1	UICC1_ALARM_LATCHED_ STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED
0	BATT_ALARM_LATCHED_S TS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x00001C19 BUA_EXT_CHARGER_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

BUA_EXT_CHARGER_INT_PENDING_STS

Bits	Name	Description
4	UICC4_ALARM_PENDING_ STS	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING
3	UICC3_ALARM_PENDING_ STS	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING
2	UICC2_ALARM_PENDING_ STS	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING
1	UICC1_ALARM_PENDING_ STS	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING
0	BATT_ALARMPENDING_ST S	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING

0x00001C1A BUA_EXT_CHARGER_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Selects the MID that will receive the interrupt

BUA_EXT_CHARGER_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
		0x3: MID3

0x00001C1B BUA_EXT_CHARGER_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

SR=0 A=1

BUA_EXT_CHARGER_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR 0x1: A

0x00001C40 BUA_EXT_CHARGER_BUA_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x16

Reset Name: PERPH RB

TBD

BUA_EXT_CHARGER_BUA_CTL1

Bits	Name	Description
7	BAT_GONE_SEL	0' = Battery alarm from BATT_GONE (GPIO) pin; '1' = Battery alarm from bidirectional BUA (GPIO) pin,'FROM_BAT_GONE_GPIO=0,FROM_BUA_GPIO=1',RTL_RI FO=BUA_CTL1_BAT_GONE_SEL_rifo,'

BUA_EXT_CHARGER_BUA_CTL1 (cont.)

Bits	Name	Description
6:4	BATT_RMV_DEB	BAT_GONE debounce timer
		3'b000: 0-1 sclk
		3'b001: 1-2 sclk (default)
		3'b010: 2-3 sclk
		3'b011: 5-6 sclk
		3'b100: 8-9 sclk
		3'b101: 11-12 sclk
		3'b110: 15-16 sclk
		3'b111: 31-32 sclk
		0x0: SCLK_0_TO_1
		0x1: SCLK_1_TO_2
		0x2: SCLK_2_TO_3
		0x3: SCLK_5_TO_6
		0x4: SCLK_8_TO_9
		0x5: SCLK_11_TO_12
	\ (0x6: SCLK_15_TO_16
		0x7: SCLK_31_TO_32
2:0	LDO_SHUTDOWN_DELAY	Programmable delay between Battery removal and start of UICC LDO reset
		3b000 = 2.5 sclk (~76us)
	0,	3b001 = 3.5 sclk (~107us)
	2,0	3b010 = 4.5 sclk (~137us)
	2013:09 swindy	3b011 = 5.5 sclk (~168us)
	S. Out	3b100 = 7.5 sclk (~229us)
	30, 2M	3b101 = 8.5 sclk (~259us)
	1	3b110 = 9.5 sclk (~290us) (default)
		3b111 = 11.5 sclk (~351us)
		0x0: SCLK2P5
		0x1: SCLK3P5
		0x2: SCLK4P5
		0x3: SCLK5P5
		0x4: SCLK6P5
		0x5: SCLK8P5
		0x6: SCLK9P5
		0x7: SCLK11P5

0x00001C46 BUA_EXT_CHARGER_EN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

BUA_EXT_CHARGER_EN_CTL1

Bits	Name	Description
7	BUA_EN	BUA enable
		0 = BUA is disabled
		1 = BUA is enabled
		0x1: BUA_ENABLED
		0x0: BUA_DISABLED

10 Temp_alarm Registers

0x00002400 TEMP_ALARM_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

TEMP_ALARM_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00002401 TEMP_ALARM_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

TEMP_ALARM_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00002402 TEMP_ALARM_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

TEMP_ALARM_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00002403 TEMP ALARM REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

TEMP_ALARM_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00002404 TEMP_ALARM_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: N/A

Peripheral Type

TEMP_ALARM_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x9: ALARM

0x00002405 TEMP_ALARM_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

TEMP_ALARM_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x8: TEMP_ALARM

0x00002408 TEMP_ALARM_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

TEMP ALARM STATUS1

Bits	Name	Description
7	TEMP_ALARM_OK	1: TEMP ALARM enabled 0: TEMP ALARM disabled 0x0: TEMP_ALARM_DISABLED 0x1: TEMP_ALARM_ENABLED
3	ST3_SHUTDOWN_STS	Writing 1 to ST3_SHUTDOWN_CLR clears this bit 0x0: NO_EVENT 0x1: ST3_EVENT_OCCURRED
2	ST2_SHUTDOWN_STS	Writing 1 to ST2_SHUTDOWN_CLR clears this bit 0x0: NO_EVENT 0x1: ST2_EVENT_OCCURRED
1:0	TEMP_ALARM_FSM_STATE	TEMP_ALARM_FSM_STATE 0x0: STAGE_0 0x1: STAGE_1 0x2: STAGE_2 0x3: STAGE_3

0x00002410 TEMP_ALARM_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

TEMP_ALARM_INT_RT_STS

Bits	Name	Description
0	TEMP_ALARM_RT_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x00002411 TEMP ALARM INT SET TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

TEMP_ALARM_INT_SET_TYPE

Bits	Name	Description
0	TEMP_ALARM_TYPE	0x0: LEVEL
		0x1: EDGE

0x00002412 TEMP_ALARM_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

TEMP_ALARM_INT_POLARITY_HIGH

Bits	Name	Description
0	TEMP_ALARM_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x00002413 TEMP_ALARM_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

TEMP_ALARM_INT_POLARITY_LOW

E	Bits	Name	Description
	0	TEMP_ALARM_LOW	0x0: LOW_TRIGGER_DISABLED
			0x1: LOW_TRIGGER_ENABLED

0x00002414 TEMP_ALARM_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

TEMP_ALARM_INT_LATCHED_CLR

Bits	Name	Description
0	TEMP_ALARM_LATCHED_ CLR	

0x00002415 TEMP_ALARM_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

TEMP_ALARM_INT_EN_SET

Bits	Name	Description
0	TEMP_ALARM_EN_SET	0x0: INT_DISABLED 0x1: INT_ENABLED

0x00002416 TEMP_ALARM_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

TEMP ALARM INT EN CLR

Bits	Name	Description
0	TEMP_ALARM_EN_CLR	0x0: INT_DISABLED
	97,018	0x1: INT_ENABLED

0x00002418 TEMP_ALARM_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

TEMP_ALARM_INT_LATCHED_STS

Bits	Name	Description
0	TEMP_ALARM_LATCHED_ STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x00002419 TEMP_ALARM_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

TEMP_ALARM_INT_PENDING_STS

Bits	Name	Description
0		0x0: NO_INT_PENDING
	TS	0x1: INTERRUPT_PENDING

0x0000241A TEMP ALARM INT MID SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

TEMP_ALARM_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000241B TEMP_ALARM_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

TEMP_ALARM_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x00002440 TEMP_ALARM_SHUTDOWN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

TEMP_ALARM_SHUTDOWN_CTL1

Bits	Name	Description
7	OVRD_ST3_EN	OVRD_ST3_EN : Override automatic shutdown in stage 3 0x0: NO_OVERRIDE 0x1: OVERTEMP_SHUTDOWN_BLOCKED
6	OVRD_ST2_EN	OVRD_ST2_EN: Override partial automatic shutdown in stage 2 0x0: NO_OVERRIDE 0x1: OVERTEMP_SHUTDOWN_BLOCKED
1:0	TEMP_THRESH_CNTRL	TEMP_THRESH_CNTRL: THRESH_STAGE1_STAGE2_STAGE3 0x0: THRESH_105C_125C_145C 0x1: THRESH_110C_130C_150C 0x2: THRESH_115C_135C_155C 0x3: THRESH_120C_140C_160C

0x00002442 TEMP_ALARM_SHUTDOWN_CTL2

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

TEMP_ALARM_SHUTDOWN_CTL2

Bits	Name	Description
7	ST3_SHUTDOWN_CLR	writing 1 clears ST3_SHUTDOWN_STS bit
6	ST2_SHUTDOWN_CLR	writing 1 clears ST2_SHUTDOWN_STS bit

0x00002446 TEMP_ALARM_EN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

TEMP_ALARM_EN_CTL1

Bits	Name	Description
7	TEMP_ALARM_EN	0x0: TEMP_ALARM_DISABLED
		0x1: TEMP_ALARM_FORCED_ON
0	FOLLOW_TEMP_ALARM_H W_EN	0x0: TEMP_ALARM_DISABLED 0x1: TEMP_ALARM_FOLLOWS_HW_EN

Coincell Registers

0x00002800 COIN_REVISION1

COIN	_REVISION1		
Clock: Reset S	Type: R Clock: PBUS_WRCLK Reset State: 0x01 Reset N/A		
HW Ve	HW Version Register [7:0] COIN_REVISION1		
Bits	Name	Description	
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.	

0x00002801 COIN_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

COIN_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00002802 COIN_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

COIN_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

N

COIN_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00002804 COIN_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

Peripheral Type

COIN_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x2: CHARGER

0x00002805 COIN_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: N/A

Peripheral SubType

COIN_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	0x20: COINCELL

JUNE

0x00002808 COIN_STATUS1

Type: R

Clock: PBUS WRCLK

Reset State: 0x00

Reset Name: N/A

Status Registers

COIN_STATUS1

Bits	Name	Description
7	COINCELL_OK	0 = coincell is disabled
		1 = coincell is enabled
		0x0: CC_DISABLED
		0x1: CC_ENABLED

0x00002844 COIN_COIN_CHG_RSET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft xVdd rb

Set Coincell Charge Current

COIN_COIN_CHG_RSET

Bits	Name	Description
1:0	COIN_CHG_RSET	sets the coin cell charger current limiting resistor value
		0 = 2.1k ohm
		1 = 1.7k ohm
		2 = 1.2k ohm
		3 = 800 ohm
		0x0: CC_RSET_2K1
		0x1: CC_RSET_1K7
		0x2: CC_RSET_1K2
		0x3: CC_RSET_0K8

0x00002845 COIN_COIN_CHG_VSET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb Set Coincell Charge Voltage

COIN_COIN_CHG_VSET

Bits	Name	Description
1:0	COIN_CHG_VSET	sets the coin cell charging voltage 0 = 2.5V 1 = 3.2V 2 = 3.1V 3 = 3.0V 0x0: CC_VSET_2V5 0x1: CC_VSET_3V2 0x2: CC_VSET_3V1 0x3: CC_VSET_3V0

0x00002846 COIN_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb

COIN_EN_CTL

Bits	Name	Description
7	COINCELL_EN	1 = Enable the Coincell, 0 = Disable the coincell 0x0: CC_DISABLED 0x1: CC_ENABLED

12 Mbg_dig Registers

0x00002C00 MBG1_REVISION1

MBG1	MBG1_REVISION1			
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x00			
Reset N	Name: n/a			
	HW Version Register [7:0]			
MBG1_	_REVISION1	100m		
Bits	Name	Description		
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.		

0x00002C01 MBG1_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [15:8]

MBG1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00002C02 MBG1_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

MBG1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00002C03 MBG1_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [31:24]

MBG1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00002C04 MBG1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0E

Reset Name: n/a

Peripheral Type

MBG1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0xE: MBG

0x00002C05 MBG1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

Peripheral SubType

MBG1_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	

0x00002C08 MBG1_STATUS1

MBG1 STATUS1

MBG1	MBG1_STATUS1			
Clock:	Type: R Clock: PBUS_WRCLK Reset State: Undefined			
Reset 1	Name: n/a	ign. Corn		
Status 1	Registers	i. S. Coliff		
	27	Egg.		
MBG1_	STATUS1			
Bits	Name	Description		
7	MBG_OK	1= MBG has started up and the Vref1p25 is charged up to at least		
		vbg_pon level 0x0: MBG_NOT_OK		
		0x1: MBG_OK		
		_		
1	NPM_TRUE	1 = MBG is on and in NPM		
		0x0: MBG_LPM		
1		0x1: MBG_NPM		

0x00002C44 MBG1_MODE_CTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x91

Reset Name: perph rb

MBG1_MODE_CTRL

Bits	Name	Description
7	FORCE_NPM	Force NPM whenever this bit is set 0x0: NO_FORCE_LPM 0x1: FORCE_NPM
4	NPM_FOLLOW_SLEEPB	1' = transition to NPM, whenever PMIC is awake, '0' = LPM (IPTAT_EN and IREF_EN must be set 0x0: NO_FOLLOW 0x1: FOLLOW_SLEEP_B
3	FORCE_FASTVBG	set this bit high will force fast charge mode always on instead of the auto mode controlled by the MBG_OK signal. 0x0: NORMAL_MODE 0x1: FORCE_FAST_VBG
2	FORCE_MBGCC_EN	set this bit high will force the curvature correction block on in both normal mode and sleep mode if Iref and Iptat is available 0x0: CC_DISABLED 0x1: CC_ENABLED
1	FORCE_IPTAT_EN	set this bit high will force the IPTAT block on in sleep mode 0x0: NO_FORCE_IPTAT 0x1: FORCE_IPTAT
0	FORCE_IREF_EN	set this bit high will force Iref block on in sleep mode 0x0: NO_FORCE_IREF 0x1: FORCE_IREF

0x00002C46 MBG1_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

MBG1_EN_CTL

Bits	Name	Description
7	MBG_EN	this bit is one of the multiple MBG_EN signals that are from different
		sources and ORed together to control the ON/OFF of MBG block 0x0: MBG_DISABLED 0x1: MBG_ENABLED

13 Vadc Registers

0x00003100 VADC1_LC_USR_REVISION1

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

VADC1_LC_USR_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003101 VADC1_LC_USR_REVISION2

Type: R

Clock: pbus_wrclk Reset State: 0x04

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

VADC1_LC_USR_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00003102 VADC1_LC_USR_REVISION3

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

VADC1_LC_USR_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003103 VADC1_LC_USR_REVISION4

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

VADC1_LC_USR_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00003104 VADC1_LC_USR_PERPH_TYPE

Type: R

Clock: pbus_wrclk Reset State: 0x08

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

VADC1_LC_USR_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ADC

0x00003105 VADC1_LC_USR_PERPH_SUBTYPE

Type: R

Clock: pbus_wrclk Reset State: 0x09

Reset Name: N/A

Peripheral SubType

VADC1_LC_USR_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	ADC sub type

0x00003108 VADC1_LC_USR_STATUS1

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

Status Registers

VADC1_LC_USR_STATUS1

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
		0x2: MEAS_INT_MODE
2	MEAS_INTERVAL_EN_STS	Interval Mode
		0x0: INTERVAL_MODE_DISABLED
		0x1: INTERVAL_MODE_ENABLED
1	REQ_STS	REQ_STS mirrors the REQ bit. When REQ is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed.
		0x0: REQ_NOT_IN_PROGRESS
		0x1: REQ_IN_PROGRESS

VADC1_LC_USR_STATUS1 (cont.)

Bits	Name	Description
0	EOC	End of conversion status flag. Bit is de-asserted when arbiter is servicing a conversion request and asserted when conversion is completed. After a conversion is requested, the EOC and REQ_STS bits can be polled to determine ADC conversion status as follows: REQ_STS EOC Arbiter state 1 1 Waiting for ADC to complete another process's conversion request. 1 0 ADC conversion occurring. 0 1 ADC conversion completed. 0 0 Invalid 0x0: CONV_NOT_COMPLETE 0x1: CONV_COMPLETE

0x00003110 VADC1_LC_USR_INT_RT_STS

Type: R

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Interrupt Real Time Status Bits

VADC1_LC_USR_INT_RT_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_RT_S TS	ADC minimum output lower than low threshold. Active high signal. 0x0: MIN_LOW_THR_INT_FALSE 0x1: MIN_LOW_THR_INT_TRUE
4	LOW_THR_INT_RT_STS	ADC output lower than low threshold. Active high signal. 0x0: LOW_THR_INT_FALSE 0x1: LOW_THR_INT_TRUE
3	HIGH_THR_INT_RT_STS	ADC output higher than high threshold. Active high signal. 0x0: HIGH_THR_INT_FALSE 0x1: HIGH_THR_INT_TRUE
2	CONV_SEQ_TIMEOUT_INT _RT_STS	Indicates conversion sequencer conversion was triggered by SBI register field conversion request time out. 0x0: CONV_SEQ_TIMEOUT_FALSE 0x1: CONV_SEQ_TIMEOUT_TRUE
1	FIFO_NOT_EMPTY_INT_RT _STS	Indicates conversion sequencer request written to FIFO when it was not empty. 0x0: FIFO_NOT_EMPTY_INT_FALSE 0x1: FIFO_EMPTY_INT_TRUE

VADC1_LC_USR_INT_RT_STS (cont.)

Bits	Name	Description
0	EOC_INT_RT_STS	Secure process end of conversion interrupt. Active high signal two tcxo_clk cycles wide. 0x0: CONV_COMPLETE_INT_FALSE 0x1: CONV_COMPLETE_INT_TRUE

0x00003111 VADC1_LC_USR_INT_SET_TYPE

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

0 =use level trigger interrupts, 1 =use edge trigger interrupts

VADC1_LC_USR_INT_SET_TYPE

Bits	Name	Description
5	MIN_LOW_THR_INT_SET_T YPE	Minimum Low threshold interrupt set type 0x0: MIN_LOW_THR_INT_LEVEL 0x1: MIN_LOW_THR_INT_EDGE
4	LOW_THR_INT_SET_TYPE	Low threshold interrupt set type 0x0: LOW_THR_INT_LEVEL 0x1: LOW_THR_INT_EDGE
3	HIGH_THR_INT_SET_TYPE	High threshold interrupt set type 0x0: HIGH_THR_INT_LEVEL 0x1: HIGH_THR_INT_EDGE
2	CONV_SEQ_TIMEOUT_INT _SET_TYPE	Conversion sequencer timeout interrupt set type 0x0: CONV_SEQ_TIMEOUT_LEVEL 0x1: CONV_SEQ_TIMEOUT_EDGE
1	FIFO_NOT_EMPTY_INT_SE T_TYPE	FIFO not empty interrupt set type 0x0: FIFO_NOT_EMPTY_LEVEL 0x1: FIFO_NOT_EMPTY_EDGE
0	EOC_SET_INT_TYPE	EOC interrupt set type 0x0: EOC_LEVEL 0x1: EOC_EDGE

0x00003112 VADC1_LC_USR_INT_POLARITY_HIGH

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

VADC1_LC_USR_INT_POLARITY_HIGH

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt high polarity enabled 0x0: MIN_LOW_THR_INT_POL_HIGH_DISABLED 0x1: MIN_LOW_THR_INT_POL_HIGH_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt high polarity enabled 0x0: LOW_THR_INT_POL_HIGH_DISABLED 0x1: LOW_THR_INT_POL_HIGH_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt high polarity enabled 0x0: HIGH_THR_INT_POL_HIGH_DISABLED 0x1: HIGH_THR_INT_POL_HIGH_ENABLED
2	CONV_SEQ_TIMEOUT_INT _HIGH	Conversion sequencer interrupt high polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_HIGH_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_HIGH_ENABLED
1	FIFO_NOT_EMPTY_INT_HI GH	FIFO not empty interrupt high polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_HIGH_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_HIGH_ENABLED
0	EOC_INT_HIGH	EOC interrupt high polarity enabled 0x0: EOC_INT_POL_HIGH_DISABLED 0x1: EOC_INT_POL_HIGH_ENABLED

0x00003113 VADC1_LC_USR_INT_POLARITY_LOW

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

VADC1_LC_USR_INT_POLARITY_LOW

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt low polarity enabled 0x0: MIN_LOW_THR_INT_POL_LOW_DISABLED 0x1: MIN_LOW_THR_INT_POL_LOW_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt low polarity enabled 0x0: LOW_THR_INT_POL_LOW_DISABLED 0x1: LOW_THR_INT_POL_LOW_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt low polarity enabled 0x0: HIGH_THR_INT_POL_LOW_DISABLED 0x1: HIGH_THR_INT_POL_LOW_ENABLED
2	CONV_SEQ_TIMEOUT_INT _LOW	Conversion sequencer interrupt low polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_LOW_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_LOW_ENABLED
1	FIFO_NOT_EMPTY_INT_LO W	FIFO not empty interrupt low polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_LOW_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_LOW_ENABLED
0	EOC_INT_LOW	EOC interrupt low polarity enabled 0x0: EOC_INT_POL_LOW_DISABLED 0x1: EOC_INT_POL_LOW_ENABLED

0x00003114 VADC1_LC_USR_INT_LATCHED_CLR

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing a '1' to a bit in this register will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

VADC1_LC_USR_INT_LATCHED_CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_CLR	Minimum Low threshold interrupt latched clear
4	LOW_THR_INT_LATCHED_ CLR	Low threshold interrupt latched clear
3	HIGH_THR_INT_LATCHED_ CLR	High threshold interrupt latched clear
2	CONV_SEQ_TIMEOUT_INT _LATCHED_CLR	Conversion sequencer interrupt latched clear

VADC1_LC_USR_INT_LATCHED_CLR (cont.)

Bits	Name	Description
1	FIFO_NOT_EMPTY_INT_LA TCHED_CLR	FIFO not empty interrupt latched clear
0	EOC_INT_LATCHED_CLR	EOC interrupt latched clear

0x00003115 VADC1_LC_USR_INT_EN_SET

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

VADC1_LC_USR_INT_EN_SET

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_S ET	Minimum Low threshold interrupt enable set 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_SET	Low threshold interrupt enable set 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_SET	High threshold interrupt enable set 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_SET	Conversion sequencer interrupt enable set 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _SET	FIFO not empty interrupt enable set 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_SET	EOC interrupt enable set 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003116 VADC1_LC_USR_INT_EN_CLR

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing a '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

VADC1_LC_USR_INT_EN_CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_C LR	Minimum Low threshold interrupt enable clear 0x0: MIN_LOW_THR_INT_DISABLED 0x1: MIN_LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_CLR	Low threshold interrupt enable clear 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_CLR	High threshold interrupt enable clear 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_CLR	Conversion sequencer interrupt enable clear 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _CLR	FIFO not empty interrupt enable clear 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_CLR	EOC interrupt enable clear 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003118 VADC1_LC_USR_INT_LATCHED_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

VADC1_LC_USR_INT_LATCHED_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_STS	Minimum Low threshold interrupt latched 0x0: MIN_LOW_THR_INT_LATCHED_FALSE 0x1: MIN_LOW_THR_INT_LATCHED_TRUE
4	LOW_THR_INT_LATCHED_ STS	Low threshold interrupt latched 0x0: LOW_THR_INT_LATCHED_FALSE 0x1: LOW_THR_INT_LATCHED_TRUE
3	HIGH_THR_INT_LATCHED_ STS	High threshold interrupt latched 0x0: HIGH_THR_INT_LATCHED_FALSE 0x1: HIGH_THR_INT_LATCHED_TRUE
2	CONV_SEQ_TIMEOUT_INT _LATCHED_STS	Conversion sequencer interrupt latched 0x0: CONV_SEQ_TIMEOUT_INT_LATCHED_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_LATCHED_TRUE
1	FIFO_NOT_EMPTY_INT_LA TCHED_STS	FIFO not empty interrupt latched 0x0: FIFO_NOT_EMPTY_INT_LATCHED_FALSE 0x1: FIFO_NOT_EMPTY_INT_LATCHED_TRUE
0	EOC_INT_LATCHED_STS	EOC interrupt latched 0x0: EOC_INT_LATCHED_FALSE 0x1: EOC_INT_LATCHED_TRUE

0x00003119 VADC1_LC_USR_INT_PENDING_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Debug: Pending is set if interrupt has been sent but not cleared.

VADC1_LC_USR_INT_PENDING_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_PENDI NG_STS	Minimum Low threshold interrupt pending 0x0: MIN_LOW_THR_INT_PENDING_FALSE 0x1: MIN_LOW_THR_INT_PENDING_TRUE
4	LOW_THR_INT_PENDING_ STS	Low threshold interrupt pending 0x0: LOW_THR_INT_PENDING_FALSE 0x1: LOW_THR_INT_PENDING_TRUE
3	HIGH_THR_INT_PENDING_ STS	High threshold interrupt pending 0x0: HIGH_THR_INT_PENDING_FALSE 0x1: HIGH_THR_INT_PENDING_TRUE

VADC1_LC_USR_INT_PENDING_STS (cont.)

Bits	Name	Description
2	CONV_SEQ_TIMEOUT_INT _PENDING_STS	Conversion sequencer interrupt pending 0x0: CONV_SEQ_TIMEOUT_INT_PENDING_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_PENDING_TRUE
1	FIFO_NOT_EMPTY_INT_PE NDING_STS	FIFO not empty interrupt pending 0x0: FIFO_NOT_EMPTY_INT_PENDING_FALSE 0x1: FIFO_NOT_EMPTY_INT_PENDING_TRUE
0	EOC_INT_PENDING_STS	EOC interrupt pending 0x0: EOC_INT_PENDING_FALSE 0x1: EOC_INT_PENDING_TRUE

0x0000311A VADC1_LC_USR_INT_MID_SEL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the MID that will receive the interrupt

VADC1_LC_USR_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Selects the MID that will receive the interrupt

0x0000311B VADC1_LC_USR_INT_PRIORITY

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the SPMI interrupt priority

VADC1_LC_USR_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Selects the SPMI interrupt priority 0x0: SR 0x1: A

0x00003140 VADC1_LC_USR_MODE_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: uvlo_perph_rb

Settings Common to Input and Output

VADC1_LC_USR_MODE_CTL

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation:
		00=Normal Mode - Single measurement
		01=Conversion Sequencer - Single measurement using conversion sequencer
		10=Measurement Interval - Single or Continuous measurements at specified delay/interval
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
		0x2: MEAS_INT_MODE
2	VREF_XO_THM_FORCE	When cleared, VDD_REF is connected to XO thermistor in active mode, disconnected in sleep mode
	27,10	When set, force VDD_REF to be connected to the XO thermistor regardless the status of sleepb
	OS villes	0x0: VREF_XO_THM_FORCE_FALSE
	Old Wen	0x1: VREF_XO_THM_FORCE_TRUE
1	RESERVED	
0	ADC_TRIM_EN	Enable ADC trim
		0x0: ADC_TRIM_DISABLED
		0x1: ADC_TRIM_ENABLED

0x00003146 VADC1_LC_USR_EN_CTL1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Enables ADC module.

VADC1_LC_USR_EN_CTL1

Bits	Name	Description
7	ADC_EN	Enables ADC module.
		0x0: ADC_DISABLED
		0x1: ADC_ENABLED

0x00003148 VADC1_LC_USR_ADC_CH_SEL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x06

Reset Name: uvlo perph rb

ADC Channel selection. See device specification for channel descriptions.

VADC1_LC_USR_ADC_CH_SEL_CTL

Bits	Name	Description
7:0	ADC_CH_SEL	ADC Channel selection. See device specification for channel descriptions.

0x00003150 VADC1_LC_USR_ADC_DIG_PARAM

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: uvlo perph rb

ADC Digital Parameters

VADC1_LC_USR_ADC_DIG_PARAM

Bits	Name	Description
3:2	DEC_RATIO_SEL	Decimation ratio: 0x0: DECI_512 0x1: DECI_1K 0x2: DECI_2K 0x3: DECI_4K
1:0	CLK_SEL	Select ADC clock rate: 0x0: CLK_SEL_2P4MHZ 0x1: CLK_SEL_4P8MHZ 0x2: CLK_SEL_9P6MHZ 0x3: CLK_SEL_19P2MHZ

0x00003151 VADC1_LC_USR_HW_SETTLE_DELAY

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Settle Delay

VADC1_LC_USR_HW_SETTLE_DELAY

Time between AMUX getting configured and the ADC starting conversion. Delay = 100us*(value) for value<11, and 2ms*(value- 10) otherwise 0x0: HW_SETTLE_DELAY_0US 0x1: HW_SETTLE_DELAY_100US 0x2: HW_SETTLE_DELAY_200US 0x3: HW_SETTLE_DELAY_300US 0x4: HW_SETTLE_DELAY_400US 0x5: HW_SETTLE_DELAY_500US 0x6: HW_SETTLE_DELAY_600US 0x7: HW_SETTLE_DELAY_700US 0x8: HW_SETTLE_DELAY_700US 0x8: HW_SETTLE_DELAY_800US 0x9: HW_SETTLE_DELAY_900US 0x4: HW_SETTLE_DELAY_900US 0x6: HW_SETTLE_DELAY_1MS	Bits	Name	Description
~ > 200			Time between AMUX getting configured and the ADC starting conversion. Delay = 100us*(value) for value<11, and 2ms*(value-10) otherwise 0x0: HW_SETTLE_DELAY_0US 0x1: HW_SETTLE_DELAY_100US 0x2: HW_SETTLE_DELAY_200US 0x3: HW_SETTLE_DELAY_300US 0x4: HW_SETTLE_DELAY_400US 0x5: HW_SETTLE_DELAY_500US 0x6: HW_SETTLE_DELAY_600US 0x7: HW_SETTLE_DELAY_700US 0x8: HW_SETTLE_DELAY_800US 0x9: HW_SETTLE_DELAY_900US 0x9: HW_SETTLE_DELAY_1MS 0xB: HW_SETTLE_DELAY_1MS
0xC: HW_SETTLE_DELAY_4MS 0xD: HW_SETTLE_DELAY_6MS		20, 34	
I DYB. HW. SELLLE DELAY 2MS		C 8.09 minute	0xA: HW_SETTLE_DELAY_1MS
			0xE: HW_SETTLE_DELAY_8MS 0xF: HW_SETTLE_DELAY_10MS

0x00003152 VADC1_LC_USR_CONV_REQ

Type: W

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: req_rb

Conversion Request

VADC1_LC_USR_CONV_REQ

Bits	Name	Description
7	REQ	Conversion request strobe. When bit is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed. 0x0: CONV_REQ_FALSE 0x1: CONV_REQ_TRUE

0x00003154 VADC1_LC_USR_CONV_SEQ_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x45

Reset Name: uvlo perph rb

Conversion Sequencer Control

VADC1_LC_USR_CONV_SEQ_CTL

Bits	Name	Description
7:4	CONV_SEQ_HOLDOFF	Select delay from conversion trigger signal (i.e. adc_conv_seq_trig) transition to ADC enable. Delay = 25us*(value+1). Actual delay will be longer if request is stored in a non empty FIFO and/or conversion needs to wait for LDO OK handshake.
	2 5	0x0: SEQ_HOLD_25US
		0x1: SEQ_HOLD_50US
		0x2: SEQ_HOLD_75US
		0x3: SEQ_HOLD_100US
		0x4: SEQ_HOLD_125US
		0x5: SEQ_HOLD_150US
		0x6: SEQ_HOLD_175US
		0x7: SEQ_HOLD_200US
		0x8: SEQ_HOLD_225US
		0x9: SEQ_HOLD_250US
		0xA: SEQ_HOLD_275US
		0xB: SEQ_HOLD_300US
		0xC: SEQ_HOLD_325US
		0xD: SEQ_HOLD_350US
		0xE: SEQ_HOLD_375US
		0xF: SEQ_HOLD_400US

VADC1_LC_USR_CONV_SEQ_CTL (cont.)

Bits	Name	Description
3:0	CONV_SEQ_TIMEOUT	Select delay (0 to 15ms) from conversion request to triggering conversion sequencer hold off timer.
		0x0: SEQ_TIMEOUT_0MS
		0x1: SEQ_TIMEOUT_1MS
		0x2: SEQ_TIMEOUT_2MS
		0x3: SEQ_TIMEOUT_3MS
		0x4: SEQ_TIMEOUT_4MS
		0x5: SEQ_TIMEOUT_5MS
		0x6: SEQ_TIMEOUT_6MS
		0x7: SEQ_TIMEOUT_7MS
		0x8: SEQ_TIMEOUT_8MS
		0x9: SEQ_TIMEOUT_9MS
		0xA: SEQ_TIMEOUT_10MS
		0xB: SEQ_TIMEOUT_11MS
		0xC: SEQ_TIMEOUT_12MS
		0xD: SEQ_TIMEOUT_13MS
		0xE: SEQ_TIMEOUT_14MS
		0xF: SEQ_TIMEOUT_15MS

0x00003155 VADC1_LC_USR_CONV_SEQ_TRIG_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Conversion Sequencer Trigger Select

VADC1_LC_USR_CONV_SEQ_TRIG_CTL

Bits	Name	Description
7	CONV_SEQ_TRIG_COND	Select conversion trigger condition(s) that starts ADC conversion hold off timer. 0x0 - Falling edge 0x1 - Rising edge 0x0: FALLING_EDGE 0x1: RISING_EDGE
1:0	CONV_SEQ_TRIG_SEL	Select conversion sequencer trigger input signal. 0x0: ADC_TRIG0 0x1: ADC_TRIG1 0x2: ADC_TRIG2 0x3: ADC_TRIG3

0x00003157 VADC1_LC_USR_MEAS_INTERVAL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Interval Mode Control

VADC1_LC_USR_MEAS_INTERVAL_CTL

Bits	Name	Description
3:0	Name MEAS_INTERVAL_TIME	Description Select measurement interval time (i.e., If value=0, use 0ms, else use 2^(value+4)/32768). 0x0: MEAS_INTERVAL_0MS 0x1: MEAS_INTERVAL_1P0MS 0x2: MEAS_INTERVAL_2P0MS 0x3: MEAS_INTERVAL_3P9MS 0x4: MEAS_INTERVAL_7P8MS 0x5: MEAS_INTERVAL_1P0MS
	2018.09.2101 2018.5m@minds	0x6: MEAS_INTERVAL_31P3MS 0x7: MEAS_INTERVAL_62P5MS 0x8: MEAS_INTERVAL_125MS 0x9: MEAS_INTERVAL_250MS 0xA: MEAS_INTERVAL_500MS 0xB: MEAS_INTERVAL_1S 0xC: MEAS_INTERVAL_2S 0xD: MEAS_INTERVAL_4S 0xE: MEAS_INTERVAL_4S 0xF: MEAS_INTERVAL_16S

0x00003159 VADC1_LC_USR_MEAS_INTERVAL_OP_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Interval mode select

VADC1_LC_USR_MEAS_INTERVAL_OP_CTL

Bits	Name	Description
7	MEAS_INTERVAL_OP	Interval mode select 0x0: INTERVAL_MODE_DISABLED 0x1: INTERVAL_MODE_ENABLED

0x0000315A VADC1_LC_USR_FAST_AVG_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Control

VADC1_LC_USR_FAST_AVG_CTL

Bits	Name	Description
3:0	FAST_AVG_SAMPLES	Select number of samples for use in fast average mode (i.e.
		2^(value).
		0x0: AVG_1_SAMPLE
		0x1: AVG_2_SAMPLES
		0x2: AVG_4_SAMPLES
		0x3: AVG_8_SAMPLES
		0x4: AVG_16_SAMPLES
		0x5: AVG_32_SAMPLES
		0x6: AVG_64_SAMPLES
		0x7: AVG_128_SAMPLES
		0x8: AVG_256_SAMPLES
	27	0x9: AVG_512_SAMPLES

0x0000315B VADC1_LC_USR_FAST_AVG_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Enable

VADC1_LC_USR_FAST_AVG_EN

Bits	Name	Description
7	FAST_AVG_EN	Select low latency for multiple conversions
		0x0: FAST_AVG_DISABLED
		0x1: FAST_AVG_ENABLED

0x0000315C VADC1_LC_USR_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 0

VADC1_LC_USR_LOW_THR0

Bits	Name	Description
7:0	LOW_THR_7_0	Low byte of low threshold detector

0x0000315D VADC1_LC_USR_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 1

VADC1_LC_USR_LOW_THR1

Bits	Name	Description
7:0	LOW_THR_15_8	High byte of low threshold detector

0x0000315E VADC1_LC_USR_HIGH_THR0

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo perph rb

High Threshold Byte 0

VADC1_LC_USR_HIGH_THR0

Bits	Name	Description
7:0	HIGH_THR_7_0	Low byte of high threshold detector

0x0000315F VADC1_LC_USR_HIGH_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0xFF

Reset Name: uvlo perph rb

High Threshold Byte 1

VADC1_LC_USR_HIGH_THR1

Bits	Name	Description
7:0	HIGH_THR_15_8	High byte of high threshold detector

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

ADC Sample Byte 0

VADC1_LC_USR_DATA0

Bits	Name	Description
7:0	DATA_7_0	Low byte of ADC output

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo_perph_rb

ADC Sample Byte 1

VADC1_LC_USR_DATA1

Bits	Name	Description
7:0	DATA_15_8	High byte of ADC output

0x00003162 VADC1_LC_USR_MIN_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 0

VADC1_LC_USR_MIN_LOW_THR0

Bits	Name	Description
7:0	MIN_LOW_THR_7_0	Low byte of minimum low threshold detector

0x00003163 VADC1_LC_USR_MIN_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 1

VADC1_LC_USR_MIN_LOW_THR1

Bits	Name	Description
7:0	MIN_LOW_THR_15_8	High byte of minimum low threshold detector

0x00003166 VADC1_LC_USR_MIN_DATA0

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

Minimum ADC Sample Byte 0

VADC1_LC_USR_MIN_DATA0

Bits	Name	Description
7:0	MIN_DATA_7_0	Low byte of minimum ADC output

0x00003167 VADC1_LC_USR_MIN_DATA1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

Minimum ADC Sample Byte 1

VADC1_LC_USR_MIN_DATA1

2018-09-21 of of other states of the state o

E	Bits	Name	Description
	7:0	MIN_DATA_15_8	High byte of minimum ADC output

14 Vadc_adj Registers

0x00003200 VADC3_LC_MDM_REVISION1

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

VADC3_LC_MDM_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003201 VADC3_LC_MDM_REVISION2

Type: R

Clock: pbus_wrclk Reset State: 0x04

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

VADC3_LC_MDM_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00003202 VADC3_LC_MDM_REVISION3

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

VADC3_LC_MDM_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003203 VADC3_LC_MDM_REVISION4

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

VADC3_LC_MDM_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00003204 VADC3_LC_MDM_PERPH_TYPE

Type: R

Clock: pbus_wrclk Reset State: 0x08

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

VADC3_LC_MDM_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ADC

0x00003205 VADC3_LC_MDM_PERPH_SUBTYPE

Type: R

Clock: pbus_wrclk Reset State: 0x0B

Reset Name: N/A Peripheral SubType

VADC3_LC_MDM_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	VADC1

0x00003208 VADC3_LC_MDM_STATUS1

Type: R

Clock: pbus_wrclk
Reset State: 0x01

Reset Name: N/A

Status Registers

VADC3_LC_MDM_STATUS1

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
		0x2: MEAS_INT_MODE
2	MEAS_INTERVAL_EN_STS	Interval Mode
		0x0: INTERVAL_MODE_DISABLED
		0x1: INTERVAL_MODE_ENABLED
1	REQ_STS	REQ_STS mirrors the REQ bit. When REQ is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed.
		0x0: REQ_NOT_IN_PROGRESS
		0x1: REQ_IN_PROGRESS

VADC3_LC_MDM_STATUS1 (cont.)

Bits	Name	Description
0	EOC	End of conversion status flag. Bit is de-asserted when arbiter is servicing a conversion request and asserted when conversion is completed. After a conversion is requested, the EOC and REQ_STS bits can be polled to determine ADC conversion status as follows: REQ_STS EOC Arbiter state 1 1 Waiting for ADC to complete another process's conversion request. 1 0 ADC conversion occurring. 0 1 ADC conversion completed. 0 0 Invalid 0x0: CONV_NOT_COMPLETE 0x1: CONV_COMPLETE

0x00003210 VADC3 LC MDM INT RT STS

Type: R

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Interrupt Real Time Status Bits

VADC3_LC_MDM_INT_RT_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_RT_S TS	ADC minimum output lower than low threshold. Active high signal. 0x0: MIN_LOW_THR_INT_FALSE 0x1: MIN_LOW_THR_INT_TRUE
4	LOW_THR_INT_RT_STS	ADC output lower than low threshold. Active high signal. 0x0: LOW_THR_INT_FALSE 0x1: LOW_THR_INT_TRUE
3	HIGH_THR_INT_RT_STS	ADC output higher than high threshold. Active high signal. 0x0: HIGH_THR_INT_FALSE 0x1: HIGH_THR_INT_TRUE
2	CONV_SEQ_TIMEOUT_INT _RT_STS	Indicates conversion sequencer conversion was triggered by SBI register field conversion request time out. 0x0: CONV_SEQ_TIMEOUT_FALSE 0x1: CONV_SEQ_TIMEOUT_TRUE
1	FIFO_NOT_EMPTY_INT_RT _STS	Indicates conversion sequencer request written to FIFO when it was not empty. 0x0: FIFO_NOT_EMPTY_INT_FALSE 0x1: FIFO_EMPTY_INT_TRUE

VADC3_LC_MDM_INT_RT_STS (cont.)

Bits	Name	Description
0	EOC_INT_RT_STS	Secure process end of conversion interrupt. Active high signal two tcxo_clk cycles wide. 0x0: CONV_COMPLETE_INT_FALSE 0x1: CONV_COMPLETE_INT_TRUE

0x00003211 VADC3_LC_MDM_INT_SET_TYPE

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

0 =use level trigger interrupts, 1 =use edge trigger interrupts

VADC3_LC_MDM_INT_SET_TYPE

Bits	Name	Description
5	MIN_LOW_THR_INT_SET_T YPE	Minimum Low threshold interrupt set type 0x0: MIN_LOW_THR_INT_LEVEL 0x1: MIN_LOW_THR_INT_EDGE
4	LOW_THR_INT_SET_TYPE	Low threshold interrupt set type 0x0: LOW_THR_INT_LEVEL 0x1: LOW_THR_INT_EDGE
3	HIGH_THR_INT_SET_TYPE	High threshold interrupt set type 0x0: HIGH_THR_INT_LEVEL 0x1: HIGH_THR_INT_EDGE
2	CONV_SEQ_TIMEOUT_INT _SET_TYPE	Conversion sequencer timeout interrupt set type 0x0: CONV_SEQ_TIMEOUT_LEVEL 0x1: CONV_SEQ_TIMEOUT_EDGE
1	FIFO_NOT_EMPTY_INT_SE T_TYPE	FIFO not empty interrupt set type 0x0: FIFO_NOT_EMPTY_LEVEL 0x1: FIFO_NOT_EMPTY_EDGE
0	EOC_SET_INT_TYPE	EOC interrupt set type 0x0: EOC_LEVEL 0x1: EOC_EDGE

0x00003212 VADC3_LC_MDM_INT_POLARITY_HIGH

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

VADC3_LC_MDM_INT_POLARITY_HIGH

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt high polarity enabled 0x0: MIN_LOW_THR_INT_POL_HIGH_DISABLED 0x1: MIN_LOW_THR_INT_POL_HIGH_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt high polarity enabled 0x0: LOW_THR_INT_POL_HIGH_DISABLED 0x1: LOW_THR_INT_POL_HIGH_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt high polarity enabled 0x0: HIGH_THR_INT_POL_HIGH_DISABLED 0x1: HIGH_THR_INT_POL_HIGH_ENABLED
2	CONV_SEQ_TIMEOUT_INT _HIGH	Conversion sequencer interrupt high polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_HIGH_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_HIGH_ENABLED
1	FIFO_NOT_EMPTY_INT_HI GH	FIFO not empty interrupt high polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_HIGH_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_HIGH_ENABLED
0	EOC_INT_HIGH	EOC interrupt high polarity enabled 0x0: EOC_INT_POL_HIGH_DISABLED 0x1: EOC_INT_POL_HIGH_ENABLED

0x00003213 VADC3_LC_MDM_INT_POLARITY_LOW

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

VADC3_LC_MDM_INT_POLARITY_LOW

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt low polarity enabled 0x0: MIN_LOW_THR_INT_POL_LOW_DISABLED 0x1: MIN_LOW_THR_INT_POL_LOW_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt low polarity enabled 0x0: LOW_THR_INT_POL_LOW_DISABLED 0x1: LOW_THR_INT_POL_LOW_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt low polarity enabled 0x0: HIGH_THR_INT_POL_LOW_DISABLED 0x1: HIGH_THR_INT_POL_LOW_ENABLED
2	CONV_SEQ_TIMEOUT_INT _LOW	Conversion sequencer interrupt low polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_LOW_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_LOW_ENABLED
1	FIFO_NOT_EMPTY_INT_LO W	FIFO not empty interrupt low polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_LOW_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_LOW_ENABLED
0	EOC_INT_LOW	EOC interrupt low polarity enabled 0x0: EOC_INT_POL_LOW_DISABLED 0x1: EOC_INT_POL_LOW_ENABLED

0x00003214 VADC3_LC_MDM_INT_LATCHED_CLR

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing a '1' to a bit in this register will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

VADC3_LC_MDM_INT_LATCHED_CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_CLR	Minimum Low threshold interrupt latched clear
4	LOW_THR_INT_LATCHED_ CLR	Low threshold interrupt latched clear
3	HIGH_THR_INT_LATCHED_ CLR	High threshold interrupt latched clear
2	CONV_SEQ_TIMEOUT_INT _LATCHED_CLR	Conversion sequencer interrupt latched clear

VADC3_LC_MDM_INT_LATCHED_CLR (cont.)

Bits	Name	Description
1	FIFO_NOT_EMPTY_INT_LA TCHED_CLR	FIFO not empty interrupt latched clear
0	EOC_INT_LATCHED_CLR	EOC interrupt latched clear

0x00003215 VADC3_LC_MDM_INT_EN_SET

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

VADC3_LC_MDM_INT_EN_SET

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_S ET	Minimum Low threshold interrupt enable set 0x0: MIN_LOW_THR_INT_DISABLED 0x1: MIN_LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_SET	Low threshold interrupt enable set 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_SET	High threshold interrupt enable set 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_SET	Conversion sequencer interrupt enable set 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _SET	FIFO not empty interrupt enable set 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_SET	EOC interrupt enable set 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003216 VADC3_LC_MDM_INT_EN_CLR

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing a '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

VADC3 LC MDM INT EN CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_C LR	Minimum Low threshold interrupt enable clear 0x0: MIN_LOW_THR_INT_DISABLED 0x1: MIN_LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_CLR	Low threshold interrupt enable clear 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_CLR	High threshold interrupt enable clear 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_CLR	Conversion sequencer interrupt enable clear 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _CLR	FIFO not empty interrupt enable clear 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_CLR	EOC interrupt enable clear 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003218 VADC3_LC_MDM_INT_LATCHED_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

VADC3_LC_MDM_INT_LATCHED_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_STS	Minimum Low threshold interrupt latched 0x0: MIN_LOW_THR_INT_LATCHED_FALSE 0x1: MIN_LOW_THR_INT_LATCHED_TRUE
4	LOW_THR_INT_LATCHED_ STS	Low threshold interrupt latched 0x0: LOW_THR_INT_LATCHED_FALSE 0x1: LOW_THR_INT_LATCHED_TRUE
3	HIGH_THR_INT_LATCHED_ STS	High threshold interrupt latched 0x0: HIGH_THR_INT_LATCHED_FALSE 0x1: HIGH_THR_INT_LATCHED_TRUE
2	CONV_SEQ_TIMEOUT_INT _LATCHED_STS	Conversion sequencer interrupt latched 0x0: CONV_SEQ_TIMEOUT_INT_LATCHED_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_LATCHED_TRUE
1	FIFO_NOT_EMPTY_INT_LA TCHED_STS	FIFO not empty interrupt latched 0x0: FIFO_NOT_EMPTY_INT_LATCHED_FALSE 0x1: FIFO_NOT_EMPTY_INT_LATCHED_TRUE
0	EOC_INT_LATCHED_STS	EOC interrupt latched 0x0: EOC_INT_LATCHED_FALSE 0x1: EOC_INT_LATCHED_TRUE

0x00003219 VADC3_LC_MDM_INT_PENDING_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Debug: Pending is set if interrupt has been sent but not cleared.

VADC3_LC_MDM_INT_PENDING_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_PENDI NG_STS	Minimum Low threshold interrupt pending 0x0: MIN_LOW_THR_INT_PENDING_FALSE 0x1: MIN_LOW_THR_INT_PENDING_TRUE
4	LOW_THR_INT_PENDING_ STS	Low threshold interrupt pending 0x0: LOW_THR_INT_PENDING_FALSE 0x1: LOW_THR_INT_PENDING_TRUE
3	HIGH_THR_INT_PENDING_ STS	High threshold interrupt pending 0x0: HIGH_THR_INT_PENDING_FALSE 0x1: HIGH_THR_INT_PENDING_TRUE

VADC3_LC_MDM_INT_PENDING_STS (cont.)

Bits	Name	Description
2	CONV_SEQ_TIMEOUT_INT _PENDING_STS	Conversion sequencer interrupt pending 0x0: CONV_SEQ_TIMEOUT_INT_PENDING_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_PENDING_TRUE
1	FIFO_NOT_EMPTY_INT_PE NDING_STS	FIFO not empty interrupt pending 0x0: FIFO_NOT_EMPTY_INT_PENDING_FALSE 0x1: FIFO_NOT_EMPTY_INT_PENDING_TRUE
0	EOC_INT_PENDING_STS	EOC interrupt pending 0x0: EOC_INT_PENDING_FALSE 0x1: EOC_INT_PENDING_TRUE

0x0000321A VADC3_LC_MDM_INT_MID_SEL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the MID that will receive the interrupt

VADC3_LC_MDM_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Selects the MID that will receive the interrupt

0x0000321B VADC3_LC_MDM_INT_PRIORITY

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the SPMI interrupt priority

VADC3_LC_MDM_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Selects the SPMI interrupt priority 0x0: SR 0x1: A

0x00003240 VADC3_LC_MDM_MODE_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: uvlo_perph_rb

Settings Common to Input and Output

VADC3_LC_MDM_MODE_CTL

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation:
		00=Normal Mode - Single measurement
		01=Conversion Sequencer - Single measurement using conversion sequencer
		10=Measurement Interval - Single or Continuous measurements at specified delay/interval
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
	. ()	0x2: MEAS_INT_MODE
2	VREF_XO_THM_FORCE	When cleared, VDD_REF is connected to XO thermistor in active mode, disconnected in sleep mode
	27,10	When set, force VDD_REF to be connected to the XO thermistor regardless the status of sleepb
	O'S willis	0x0: VREF_XO_THM_FORCE_FALSE
	OJS WEN	0x1: VREF_XO_THM_FORCE_TRUE
1	RESERVED	
0	ADC_TRIM_EN	Enable ADC trim
		0x0: ADC_TRIM_DISABLED
		0x1: ADC_TRIM_ENABLED

Go.

0x00003246 VADC3_LC_MDM_EN_CTL1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Enables ADC module.

VADC3_LC_MDM_EN_CTL1

Bits	Name	Description
7	ADC_EN	Enables ADC module.
		0x0: ADC_DISABLED
		0x1: ADC_ENABLED

0x00003248 VADC3_LC_MDM_ADC_CH_SEL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x06

Reset Name: uvlo perph rb

ADC Channel selection. See device specification for channel descriptions.

VADC3_LC_MDM_ADC_CH_SEL_CTL

Bits	Name	Description
7:0	ADC_CH_SEL	ADC Channel selection. See device specification for channel descriptions.

0x00003250 VADC3_LC_MDM_ADC_DIG_PARAM

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: uvlo perph rb

ADC Digital Parameters

VADC3_LC_MDM_ADC_DIG_PARAM

Bits	Name	Description
3:2	DEC_RATIO_SEL	Decimation ratio: 0x0: DECI_512 0x1: DECI_1K 0x2: DECI_2K 0x3: DECI_4K
1:0	CLK_SEL	Select ADC clock rate: 0x0: CLK_SEL_2P4MHZ 0x1: CLK_SEL_4P8MHZ 0x2: CLK_SEL_9P6MHZ 0x3: CLK_SEL_19P2MHZ

0x00003251 VADC3_LC_MDM_HW_SETTLE_DELAY

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Settle Delay

VADC3_LC_MDM_HW_SETTLE_DELAY

Bits	Name	Description
3:0	Name HW_SETTLE_DELAY	Description Time between AMUX getting configured and the ADC starting conversion. Delay = 100us*(value) for value<11, and 2ms*(value-10) otherwise 0x0: HW_SETTLE_DELAY_0US 0x1: HW_SETTLE_DELAY_100US 0x2: HW_SETTLE_DELAY_200US 0x3: HW_SETTLE_DELAY_300US 0x4: HW_SETTLE_DELAY_400US 0x5: HW_SETTLE_DELAY_500US 0x6: HW_SETTLE_DELAY_600US 0x7: HW_SETTLE_DELAY_700US 0x8: HW_SETTLE_DELAY_800US 0x9: HW_SETTLE_DELAY_900US 0xA: HW_SETTLE_DELAY_1MS 0xB: HW_SETTLE_DELAY_1MS 0xC: HW_SETTLE_DELAY_4MS 0xD: HW_SETTLE_DELAY_4MS
		0xE: HW_SETTLE_DELAY_8MS 0xF: HW_SETTLE_DELAY_10MS

0x00003252 VADC3_LC_MDM_CONV_REQ

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: req_rb

Conversion Request

VADC3_LC_MDM_CONV_REQ

Bits	Name	Description
7	REQ	Conversion request strobe. When bit is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed. 0x0: CONV_REQ_FALSE 0x1: CONV_REQ_TRUE

0x00003254 VADC3_LC_MDM_CONV_SEQ_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x45

Reset Name: uvlo perph rb

Conversion Sequencer Control

VADC3_LC_MDM_CONV_SEQ_CTL

Bits	Name	Description
7:4	CONV_SEQ_HOLDOFF	Select delay from conversion trigger signal (i.e. adc_conv_seq_trig) transition to ADC enable. Delay = 25us*(value+1). Actual delay will be longer if request is stored in a non empty FIFO and/or conversion needs to wait for LDO OK handshake. 0x0: SEQ_HOLD_25US 0x1: SEQ_HOLD_50US 0x2: SEQ_HOLD_75US 0x3: SEQ_HOLD_100US 0x4: SEQ_HOLD_125US 0x5: SEQ_HOLD_125US 0x6: SEQ_HOLD_175US 0x7: SEQ_HOLD_200US 0x8: SEQ_HOLD_225US 0x9: SEQ_HOLD_250US 0x9: SEQ_HOLD_250US 0xA: SEQ_HOLD_350US 0xC: SEQ_HOLD_325US 0xC: SEQ_HOLD_355US 0xC: SEQ_HOLD_355US
		0xF: SEQ_HOLD_400US

VADC3_LC_MDM_CONV_SEQ_CTL (cont.)

Bits	Name	Description
3:0	CONV_SEQ_TIMEOUT	Select delay (0 to 15ms) from conversion request to triggering conversion sequencer hold off timer.
		0x0: SEQ_TIMEOUT_0MS
		0x1: SEQ_TIMEOUT_1MS
		0x2: SEQ_TIMEOUT_2MS
		0x3: SEQ_TIMEOUT_3MS
		0x4: SEQ_TIMEOUT_4MS
		0x5: SEQ_TIMEOUT_5MS
		0x6: SEQ_TIMEOUT_6MS
		0x7: SEQ_TIMEOUT_7MS
		0x8: SEQ_TIMEOUT_8MS
		0x9: SEQ_TIMEOUT_9MS
		0xA: SEQ_TIMEOUT_10MS
		0xB: SEQ_TIMEOUT_11MS
		0xC: SEQ_TIMEOUT_12MS
	~ (0xD: SEQ_TIMEOUT_13MS
		0xE: SEQ_TIMEOUT_14MS
		0xF: SEQ_TIMEOUT_15MS

0x00003255 VADC3_LC_MDM_CONV_SEQ_TRIG_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Conversion Sequencer Trigger Select

VADC3_LC_MDM_CONV_SEQ_TRIG_CTL

Bits	Name	Description
7	CONV_SEQ_TRIG_COND	Select conversion trigger condition(s) that starts ADC conversion hold off timer. 0x0 - Falling edge 0x1 - Rising edge 0x0: FALLING_EDGE 0x1: RISING_EDGE
1:0	CONV_SEQ_TRIG_SEL	Select conversion sequencer trigger input signal. 0x0: ADC_TRIG0 0x1: ADC_TRIG1 0x2: ADC_TRIG2 0x3: ADC_TRIG3

0x00003257 VADC3_LC_MDM_MEAS_INTERVAL_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo perph rb

Interval Mode Control

VADC3_LC_MDM_MEAS_INTERVAL_CTL

3:0 MEAS_INTERVAL_TIME Select measurement interval time (i.e., If value=0, use 0ms, else use 2^(value+4)/32768). 0x0: MEAS_INTERVAL_0MS 0x1: MEAS_INTERVAL_1P0MS 0x2: MEAS_INTERVAL_2P0MS 0x3: MEAS_INTERVAL_3P9MS 0x4: MEAS_INTERVAL_7P8MS 0x5: MEAS_INTERVAL_15P6MS 0x6: MEAS_INTERVAL_31P3MS 0x7: MEAS_INTERVAL_62P5MS 0x8: MEAS_INTERVAL_125MS	Bits	Name	Description
0x9: MEAS_INTERVAL_250MS 0xA: MEAS_INTERVAL_500MS 0xB: MEAS_INTERVAL_1S 0xC: MEAS_INTERVAL_2S 0xD: MEAS_INTERVAL_4S 0xE: MEAS_INTERVAL_8S 0xF: MEAS_INTERVAL_16S			Select measurement interval time (i.e., If value=0, use 0ms, else use 2^(value+4)/32768). 0x0: MEAS_INTERVAL_0MS 0x1: MEAS_INTERVAL_1P0MS 0x2: MEAS_INTERVAL_2P0MS 0x3: MEAS_INTERVAL_3P9MS 0x4: MEAS_INTERVAL_7P8MS 0x5: MEAS_INTERVAL_15P6MS 0x6: MEAS_INTERVAL_31P3MS 0x7: MEAS_INTERVAL_62P5MS 0x8: MEAS_INTERVAL_125MS 0x9: MEAS_INTERVAL_250MS 0x9: MEAS_INTERVAL_500MS 0xA: MEAS_INTERVAL_1S 0xC: MEAS_INTERVAL_1S 0xC: MEAS_INTERVAL_2S 0xD: MEAS_INTERVAL_4S 0xE: MEAS_INTERVAL_4S

0x00003259 VADC3_LC_MDM_MEAS_INTERVAL_OP_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Interval mode select

VADC3_LC_MDM_MEAS_INTERVAL_OP_CTL

Bits	Name	Description
7	MEAS_INTERVAL_OP	Interval mode select 0x0: INTERVAL_MODE_DISABLED 0x1: INTERVAL_MODE_ENABLED

0x0000325A VADC3_LC_MDM_FAST_AVG_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Control

VADC3_LC_MDM_FAST_AVG_CTL

Bits	Name	Description
3:0	FAST_AVG_SAMPLES	Select number of samples for use in fast average mode (i.e. 2^(value).
		0x0: AVG_1_SAMPLE
		0x1: AVG_2_SAMPLES
		0x2: AVG_4_SAMPLES
	× (0x3: AVG_8_SAMPLES
		0x4: AVG_16_SAMPLES
		0x5: AVG_32_SAMPLES
		0x6: AVG_64_SAMPLES
		0x7: AVG_128_SAMPLES
		0x8: AVG_256_SAMPLES
	25	0x9: AVG_512_SAMPLES

0x0000325B VADC3_LC_MDM_FAST_AVG_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Enable

VADC3_LC_MDM_FAST_AVG_EN

Bits	Name	Description
7	FAST_AVG_EN	Select low latency for multiple conversions 0x0: FAST_AVG_DISABLED 0x1: FAST_AVG_ENABLED

0x0000325C VADC3_LC_MDM_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 0

VADC3_LC_MDM_LOW_THR0

Bits	Name	Description
7:0	LOW_THR_7_0	Low byte of low threshold detector

0x0000325D VADC3_LC_MDM_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 1

VADC3_LC_MDM_LOW_THR1

Bits	Name	Description
7:0	LOW_THR_15_8	High byte of low threshold detector

0x0000325E VADC3_LC_MDM_HIGH_THR0

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb

High Threshold Byte 0

VADC3_LC_MDM_HIGH_THR0

Bits	Name	Description
7:0	HIGH_THR_7_0	Low byte of high threshold detector

0x0000325F VADC3_LC_MDM_HIGH_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0xFF

Reset Name: uvlo perph rb

High Threshold Byte 1

VADC3_LC_MDM_HIGH_THR1

Bits	Name	Description
7:0	HIGH_THR_15_8	High byte of high threshold detector

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

ADC Sample Byte 0

VADC3_LC_MDM_DATA0

Bits	Name	Description
7:0	DATA_7_0	Low byte of ADC output

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo_perph_rb

ADC Sample Byte 1

VADC3_LC_MDM_DATA1

Bits	Name	Description
7:0	DATA_15_8	High byte of ADC output

0x00003262 VADC3_LC_MDM_MIN_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 0

VADC3_LC_MDM_MIN_LOW_THR0

Bits	Name	Description
7:0	MIN_LOW_THR_7_0	Low byte of minimum low threshold detector

0x00003263 VADC3_LC_MDM_MIN_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 1

VADC3_LC_MDM_MIN_LOW_THR1

Bits	Name	Description
7:0	MIN_LOW_THR_15_8	High byte of minimum low threshold detector

0x00003266 VADC3_LC_MDM_MIN_DATA0

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

Minimum ADC Sample Byte 0

VADC3_LC_MDM_MIN_DATA0

Bits	Name	Description
7:0	MIN_DATA_7_0	Low byte of minimum ADC output

0x00003267 VADC3_LC_MDM_MIN_DATA1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

Minimum ADC Sample Byte 1

VADC3_LC_MDM_MIN_DATA1

2018-09-21 of the Committee of the Commi

E	Bits	Name	Description
	7:0	MIN_DATA_15_8	High byte of minimum ADC output

15 Vadc_btm2 Registers

0x00003400 VADC2_LC_BTM_2_REVISION1

Type: R

Clock: pbus_wrclk Reset State: 0x02

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

VADC2_LC_BTM_2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003401 VADC2_LC_BTM_2_REVISION2

Type: R

Clock: pbus_wrclk Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

VADC2_LC_BTM_2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00003402 VADC2_LC_BTM_2_REVISION3

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

VADC2_LC_BTM_2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003403 VADC2_LC_BTM_2_REVISION4

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

VADC2_LC_BTM_2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00003404 VADC2_LC_BTM_2_PERPH_TYPE

Type: R

Clock: pbus_wrclk Reset State: 0x08

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

VADC2_LC_BTM_2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ADC

0x00003405 VADC2_LC_BTM_2_PERPH_SUBTYPE

Type: R

Clock: pbus_wrclk Reset State: 0x22

Reset Name: N/A

Peripheral SubType

VADC2_LC_BTM_2_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	ADC sub type

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

Status Registers

VADC2_LC_BTM_2_STATUS1

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
		0x2: MEAS_INT_MODE
2	MEAS_INTERVAL_EN_STS	Interval Mode
		0x0: INTERVAL_MODE_DISABLED
		0x1: INTERVAL_MODE_ENABLED
1	REQ_STS	REQ_STS mirrors the REQ bit. When REQ is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed.
		0x0: REQ_NOT_IN_PROGRESS
		0x1: REQ_IN_PROGRESS

VADC2_LC_BTM_2_STATUS1 (cont.)

Bits	Name	Description
0	EOC	End of conversion status flag. Bit is de-asserted when arbiter is servicing a conversion request and asserted when conversion is completed. After a conversion is requested, the EOC and REQ_STS bits can be polled to determine ADC conversion status as follows: REQ_STS EOC Arbiter state 1 1 Waiting for ADC to complete another process's conversion request. 1 0 ADC conversion occurring. 0 1 ADC conversion completed. 0 0 Invalid 0x0: CONV_NOT_COMPLETE 0x1: CONV_COMPLETE

0x0000340A VADC2_LC_BTM_2_STATUS_LOW

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

Indicates measurement(s) where VADC read is less than low threshold.

VADC2_LC_BTM_2_STATUS_LOW

Bits	Name	Description
1	M1_LOW	M1 measurement under low threshold 0x0: M1_LOW_FALSE 0x1: M1_LOW_TRUE
0	M0_LOW	M0 measurement under low threshold 0x0: M0_LOW_FALSE 0x1: M0_LOW_TRUE

0x0000340B VADC2_LC_BTM_2_STATUS_HIGH

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

Indicates measurement(s) where VADC read is greater than high threshold.

VADC2_LC_BTM_2_STATUS_HIGH

Bits	Name	Description
1	M1_HIGH	M1 measurement above high threshold 0x0: M1_HIGH_FALSE 0x1: M1_HIGH_TRUE
0	M0_HIGH	M0 measurement above high threshold 0x0: M0_HIGH_FALSE 0x1: M0_HIGH_TRUE

0x00003410 VADC2_LC_BTM_2_INT_RT_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

0 =use level trigger interrupts, 1 =use edge trigger interrupts

VADC2_LC_BTM_2_INT_RT_STS

Bits	Name	Description
4	LOW_THR_INT_RT_STS	Low threshold interrupt set type 0x0: LOW_THR_INT_LEVEL 0x1: LOW_THR_INT_EDGE
3	HIGH_THR_INT_RT_STS	High threshold interrupt set type 0x0: HIGH_THR_INT_LEVEL 0x1: HIGH_THR_INT_EDGE
2	CONV_SEQ_TIMEOUT_INT _RT_STS	Conversion sequencer timeout interrupt set type 0x0: CONV_SEQ_TIMEOUT_LEVEL 0x1: CONV_SEQ_TIMEOUT_EDGE
1	FIFO_NOT_EMPTY_INT_RT _STS	FIFO not empty interrupt set type 0x0: FIFO_NOT_EMPTY_LEVEL 0x1: FIFO_NOT_EMPTY_EDGE
0	EOC_INT_RT_STS	EOC interrupt set type 0x0: EOC_LEVEL 0x1: EOC_EDGE

0x00003411 VADC2_LC_BTM_2_INT_SET_TYPE

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

VADC2_LC_BTM_2_INT_SET_TYPE

Bits	Name	Description
4	LOW_THR_INT_SET_TYPE	Low threshold interrupt high polarity enabled 0x0: LOW_THR_INT_POL_HIGH_DISABLED 0x1: LOW_THR_INT_POL_HIGH_ENABLED
3	HIGH_THR_INT_SET_TYPE	High threshold interrupt high polarity enabled 0x0: HIGH_THR_INT_POL_HIGH_DISABLED 0x1: HIGH_THR_INT_POL_HIGH_ENABLED
2	CONV_SEQ_TIMEOUT_INT _SET_TYPE	Conversion sequencer interrupt high polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_HIGH_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_HIGH_ENABLED
1	FIFO_NOT_EMPTY_INT_SE T_TYPE	FIFO not empty interrupt high polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_HIGH_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_HIGH_ENABLED
0	EOC_SET_INT_TYPE	EOC interrupt high polarity enabled 0x0: EOC_INT_POL_HIGH_DISABLED 0x1: EOC_INT_POL_HIGH_ENABLED

0x00003412 VADC2_LC_BTM_2_INT_POLARITY_HIGH

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

VADC2_LC_BTM_2_INT_POLARITY_HIGH

Bits	Name	Description
4	LOW_THR_INT_HIGH	Low threshold interrupt low polarity enabled 0x0: LOW_THR_INT_POL_LOW_DISABLED 0x1: LOW_THR_INT_POL_LOW_ENABLED

VADC2_LC_BTM_2_INT_POLARITY_HIGH (cont.)

Bits	Name	Description
3	HIGH_THR_INT_HIGH	High threshold interrupt low polarity enabled 0x0: HIGH_THR_INT_POL_LOW_DISABLED 0x1: HIGH_THR_INT_POL_LOW_ENABLED
2	CONV_SEQ_TIMEOUT_INT _HIGH	Conversion sequencer interrupt low polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_LOW_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_LOW_ENABLED
1	FIFO_NOT_EMPTY_INT_HI GH	FIFO not empty interrupt low polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_LOW_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_LOW_ENABLED
0	EOC_INT_HIGH	EOC interrupt low polarity enabled 0x0: EOC_INT_POL_LOW_DISABLED 0x1: EOC_INT_POL_LOW_ENABLED

0x00003413 VADC2_LC_BTM_2_INT_POLARITY_LOW

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

VADC2_LC_BTM_2_INT_POLARITY_LOW

Bits	Name	Description
4	LOW_THR_INT_HIGH	Low threshold interrupt low polarity enabled 0x0: LOW_THR_INT_POL_LOW_DISABLED 0x1: LOW_THR_INT_POL_LOW_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt low polarity enabled 0x0: HIGH_THR_INT_POL_LOW_DISABLED 0x1: HIGH_THR_INT_POL_LOW_ENABLED
2	CONV_SEQ_TIMEOUT_INT _LOW	Conversion sequencer interrupt low polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_LOW_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_LOW_ENABLED
1	FIFO_NOT_EMPTY_INT_LO W	FIFO not empty interrupt low polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_LOW_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_LOW_ENABLED
0	EOC_INT_LOW	EOC interrupt low polarity enabled 0x0: EOC_INT_POL_LOW_DISABLED 0x1: EOC_INT_POL_LOW_ENABLED

0x00003414 VADC2_LC_BTM_2_INT_LATCHED_CLR

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing a '1' to a bit in this register will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

VADC2_LC_BTM_2_INT_LATCHED_CLR

Bits	Name	Description
4	LOW_THR_INT_LATCHED_ CLR	Low threshold interrupt latched clear
3	HIGH_THR_INT_LATCHED_ CLR	High threshold interrupt latched clear
2	CONV_SEQ_TIMEOUT_INT _LATCHED_CLR	Conversion sequencer interrupt latched clear
1	FIFO_NOT_EMPTY_INT_LA TCHED_CLR	FIFO not empty interrupt latched clear
0	EOC_INT_LATCHED_CLR	EOC interrupt latched clear

0x00003415 VADC2_LC_BTM_2_INT_EN_SET

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

VADC2_LC_BTM_2_INT_EN_SET

Bits	Name	Description
4	LOW_THR_INT_EN_SET	Low threshold interrupt enable set 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_SET	High threshold interrupt enable set 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED

VADC2_LC_BTM_2_INT_EN_SET (cont.)

Bits	Name	Description
2	CONV_SEQ_TIMEOUT_INT _EN_SET	Conversion sequencer interrupt enable set 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _SET	FIFO not empty interrupt enable set 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_SET	EOC interrupt enable set 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003416 VADC2_LC_BTM_2_INT_EN_CLR

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing a '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

VADC2_LC_BTM_2_INT_EN_CLR

Bits	Name	Description
4	LOW_THR_INT_EN_CLR	Low threshold interrupt enable clear 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_CLR	High threshold interrupt enable clear 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_CLR	Conversion sequencer interrupt enable clear 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _CLR	FIFO not empty interrupt enable clear 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_CLR	EOC interrupt enable clear 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003418 VADC2_LC_BTM_2_INT_LATCHED_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

VADC2_LC_BTM_2_INT_LATCHED_STS

Bits	Name	Description
4	LOW_THR_INT_LATCHED_ STS	Low threshold interrupt latched 0x0: LOW_THR_INT_LATCHED_FALSE 0x1: LOW_THR_INT_LATCHED_TRUE
3	HIGH_THR_INT_LATCHED_ STS	High threshold interrupt latched 0x0: HIGH_THR_INT_LATCHED_FALSE 0x1: HIGH_THR_INT_LATCHED_TRUE
2	CONV_SEQ_TIMEOUT_INT _LATCHED_STS	Conversion sequencer interrupt latched 0x0: CONV_SEQ_TIMEOUT_INT_LATCHED_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_LATCHED_TRUE
1	FIFO_NOT_EMPTY_INT_LA TCHED_STS	FIFO not empty interrupt latched 0x0: FIFO_NOT_EMPTY_INT_LATCHED_FALSE 0x1: FIFO_NOT_EMPTY_INT_LATCHED_TRUE
0	EOC_INT_LATCHED_STS	EOC interrupt latched 0x0: EOC_INT_LATCHED_FALSE 0x1: EOC_INT_LATCHED_TRUE

0x00003419 VADC2_LC_BTM_2_INT_PENDING_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

VADC2_LC_BTM_2_INT_PENDING_STS

Bits	Name	Description
4	LOW_THR_INT_PENDING_ STS	Low threshold interrupt pending 0x0: LOW_THR_INT_PENDING_FALSE 0x1: LOW_THR_INT_PENDING_TRUE

VADC2_LC_BTM_2_INT_PENDING_STS (cont.)

Bits	Name	Description
3	HIGH_THR_INT_PENDING_ STS	High threshold interrupt pending 0x0: HIGH_THR_INT_PENDING_FALSE 0x1: HIGH_THR_INT_PENDING_TRUE
2	CONV_SEQ_TIMEOUT_INT _PENDING_STS	Conversion sequencer interrupt pending 0x0: CONV_SEQ_TIMEOUT_INT_PENDING_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_PENDING_TRUE
1	FIFO_NOT_EMPTY_INT_PE NDING_STS	FIFO not empty interrupt pending 0x0: FIFO_NOT_EMPTY_INT_PENDING_FALSE 0x1: FIFO_NOT_EMPTY_INT_PENDING_TRUE
0	EOC_INT_PENDING_STS	EOC interrupt pending 0x0: EOC_INT_PENDING_FALSE 0x1: EOC_INT_PENDING_TRUE

0x0000341A VADC2_LC_BTM_2_INT_MID_SEL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo perph rb

Selects the MID that will receive the interrupt

VADC2_LC_BTM_2_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Selects the MID that will receive the interrupt

0x0000341B VADC2_LC_BTM_2_INT_PRIORITY

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the SPMI interrupt priority

VADC2_LC_BTM_2_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Selects the SPMI interrupt priority 0x0: SR 0x1: A

0x00003440 VADC2_LC_BTM_2_MODE_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: uvlo perph rb

Settings Common to Input and Output

VADC2_LC_BTM_2_MODE_CTL

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation: 00=Normal Mode - Single measurement 01=Conversion Sequencer - Single measurement using conversion sequencer 10=Measurement Interval - Single or Continuous measurements at specified delay/interval 0x0: NORM_MODE 0x1: CONV_SEQ_MODE 0x2: MEAS_INT_MODE
2	VREF_XO_THM_FORCE	When cleared, VDD_REF is connected to XO thermistor in active mode, disconnected in sleep mode When set, force VDD_REF to be connected to the XO thermistor regardless the status of sleepb 0x0: VREF_XO_THM_FORCE_FALSE 0x1: VREF_XO_THM_FORCE_TRUE
1	RESERVED	
0	ADC_TRIM_EN	Enable ADC trim 0x0: ADC_TRIM_DISABLED 0x1: ADC_TRIM_ENABLED

0x00003441 VADC2_LC_BTM_2_MULTI_MEAS_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x01

Reset Name: uvlo perph rb

Measurement enabled when bit is high

VADC2_LC_BTM_2_MULTI_MEAS_EN

Bits	Name	Description
1	M1_MEAS_EN	Enables measurement M1 in auto-sequence
		0x0: M1_MEAS_DISABLE
		0x1: M1_MEAS_ENABLE
0	M0_MEAS_EN	Enables measurement M0 in auto-sequence
		0x0: M0_MEAS_DISABLE
		0x1: M0_MEAS_ENABLE

0x00003442 VADC2_LC_BTM_2_LOW_THR_INT_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x01

Reset Name: uvlo perph rb

Measurement's low threshold is used to trigger threshold interrupt when bit is high,,,,'

VADC2_LC_BTM_2_LOW_THR_INT_EN

Bits	Name	Description
1	M1_LOW_THR_INT_EN	Enables M1 low threshold for interrupt
		0x0: M1_LOW_THR_INT_DISABLED
		0x1: M1_LOW_THR_INT_ENABLED
0	M0_LOW_THR_INT_EN	Enables M0 low threshold for interrupt
		0x0: M0_LOW_THR_INT_DISABLED
		0x1: M0_LOW_THR_INT_ENABLED

0x00003443 VADC2_LC_BTM_2_HIGH_THR_INT_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x01

Reset Name: uvlo perph rb

Measurement's high threshold is used to trigger threshold interrupt when bit is high,,,,,'

VADC2_LC_BTM_2_HIGH_THR_INT_EN

Bits	Name	Description
1	M1_HIGH_THR_INT_EN	Enables M1 high threshold for interrupt
		0x0: M1_HIGH_THR_INT_DISABLED
		0x1: M1_HIGH_THR_INT_ENABLED
0	M0_HIGH_THR_INT_EN	Enables M0 high threshold for interrupt
		0x0: M0_HIGH_THR_INT_DISABLED
		0x1: M0_HIGH_THR_INT_ENABLED

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Enables ADC module.

VADC2 LC BTM 2 EN CTL1

Bits		Name	Description
7	ADC_EN	JOJ SWE	Enables ADC module. 0x0: ADC_DISABLED 0x1: ADC_ENABLED

0x00003448 VADC2_LC_BTM_2_M0_ADC_CH_SEL_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo perph rb

M0 ADC Channel selection. See device specification for channel descriptions.

VADC2_LC_BTM_2_M0_ADC_CH_SEL_CTL

Bits	Name	Description
7:0	ADC_CH_SEL	M0 ADC Channel selection. See device specification for channel descriptions.

0x00003450 VADC2_LC_BTM_2_ADC_DIG_PARAM

Type: RW

Clock: pbus_wrclk
Reset State: 0x04

Reset Name: uvlo_perph_rb

ADC Digital Parameters

VADC2_LC_BTM_2_ADC_DIG_PARAM

Bits	Name	Description
3:2	DEC_RATIO_SEL	Decimation ratio: 0x0: DECI_512 0x1: DECI_1K 0x2: DECI_2K
1:0	CLK_SEL	0x3: DECI_4K Select ADC clock rate: 0x0: CLK_SEL_2P4MHZ 0x1: CLK_SEL_4P8MHZ 0x2: CLK_SEL_9P6MHZ 0x3: CLK_SEL_19P2MHZ

0x00003451 VADC2_LC_BTM_2_HW_SETTLE_DELAY

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Settle Delay

VADC2_LC_BTM_2_HW_SETTLE_DELAY

Bits	Name	Description
3:0	HW_SETTLE_DELAY	Time between AMUX getting configured and the ADC starting conversion. Delay = 100us*(value) for value<11, and 2ms*(value-10) otherwise
		0x0: HW_SETTLE_DELAY_0US
		0x1: HW_SETTLE_DELAY_100US
		0x2: HW_SETTLE_DELAY_200US
		0x3: HW_SETTLE_DELAY_300US
		0x4: HW_SETTLE_DELAY_400US
		0x5: HW_SETTLE_DELAY_500US
		0x6: HW_SETTLE_DELAY_600US
		0x7: HW_SETTLE_DELAY_700US
		0x8: HW_SETTLE_DELAY_800US
		0x9: HW_SETTLE_DELAY_900US
		0xA: HW_SETTLE_DELAY_1MS
		0xB: HW_SETTLE_DELAY_2MS
		0xC: HW_SETTLE_DELAY_4MS
		0xD: HW_SETTLE_DELAY_6MS
		0xE: HW_SETTLE_DELAY_8MS
		0xF: HW_SETTLE_DELAY_10MS

0x00003452 VADC2_LC_BTM_2_CONV_REQ

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: req_rb

Conversion Request

VADC2_LC_BTM_2_CONV_REQ

Bits	Name	Description
7	REQ	Conversion request strobe. When bit is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed. 0x0: CONV_REQ_FALSE 0x1: CONV_REQ_TRUE

0x00003454 VADC2_LC_BTM_2_CONV_SEQ_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x45

Reset Name: uvlo_perph_rb

Conversion Sequencer Control

VADC2_LC_BTM_2_CONV_SEQ_CTL

Bits	Name	Description
7:4	CONV_SEQ_HOLDOFF	Select delay from conversion trigger signal (i.e. adc_conv_seq_trig) transition to ADC enable. Delay = 25us*(value+1). Actual delay will be longer if request is stored in a non empty FIFO and/or conversion needs to wait for LDO OK handshake. 0x0: SEQ_HOLD_25US 0x1: SEQ_HOLD_50US 0x2: SEQ_HOLD_75US 0x3: SEQ_HOLD_100US 0x4: SEQ_HOLD_125US 0x5: SEQ_HOLD_150US 0x6: SEQ_HOLD_155US 0x7: SEQ_HOLD_175US 0x7: SEQ_HOLD_200US 0x8: SEQ_HOLD_225US 0x9: SEQ_HOLD_255US 0x9: SEQ_HOLD_255US 0xA: SEQ_HOLD_300US 0xC: SEQ_HOLD_300US 0xC: SEQ_HOLD_355US 0xD: SEQ_HOLD_355US 0xF: SEQ_HOLD_375US 0xF: SEQ_HOLD_400US

VADC2_LC_BTM_2_CONV_SEQ_CTL (cont.)

Bits	Name	Description
3:0	CONV_SEQ_TIMEOUT	Select delay (0 to 15ms) from conversion request to triggering conversion sequencer hold off timer.
		0x0: SEQ_TIMEOUT_0MS
		0x1: SEQ_TIMEOUT_1MS
		0x2: SEQ_TIMEOUT_2MS
		0x3: SEQ_TIMEOUT_3MS
		0x4: SEQ_TIMEOUT_4MS
		0x5: SEQ_TIMEOUT_5MS
		0x6: SEQ_TIMEOUT_6MS
		0x7: SEQ_TIMEOUT_7MS
		0x8: SEQ_TIMEOUT_8MS
		0x9: SEQ_TIMEOUT_9MS
		0xA: SEQ_TIMEOUT_10MS
		0xB: SEQ_TIMEOUT_11MS
		0xC: SEQ_TIMEOUT_12MS
	~ (0xD: SEQ_TIMEOUT_13MS
		0xE: SEQ_TIMEOUT_14MS
		0xF: SEQ_TIMEOUT_15MS

0x00003455 VADC2_LC_BTM_2_CONV_SEQ_TRIG_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Conversion Sequencer Trigger Select

VADC2_LC_BTM_2_CONV_SEQ_TRIG_CTL

Bits	Name	Description
7	CONV_SEQ_TRIG_COND	Select conversion trigger condition(s) that starts ADC conversion hold off timer. 0x0: FALLING_EDGE 0x1: RISING_EDGE
1:0	CONV_SEQ_TRIG_SEL	Select conversion sequencer trigger input signal. 0x0: ADC_TRIG0 0x1: ADC_TRIG1 0x2: ADC_TRIG2 0x3: ADC_TRIG3

0x00003457 VADC2_LC_BTM_2_MEAS_INTERVAL_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo perph rb

Interval Mode Control

VADC2_LC_BTM_2_MEAS_INTERVAL_CTL

Bits	Name	Description
3:0	MEAS_INTERVAL_TIME1	Select measurement interval time (i.e., If value=0, use 0ms, else use 2^(value+4)/32768). 0x0: MEAS_INTERVAL1_0MS 0x1: MEAS_INTERVAL1_1P0MS 0x2: MEAS_INTERVAL1_2P0MS 0x3: MEAS_INTERVAL1_3P9MS 0x4: MEAS_INTERVAL1_3P9MS 0x5: MEAS_INTERVAL1_15P6MS 0x6: MEAS_INTERVAL1_31P3MS 0x7: MEAS_INTERVAL1_31P3MS 0x7: MEAS_INTERVAL1_62P5MS 0x8: MEAS_INTERVAL1_125MS 0x9: MEAS_INTERVAL1_250MS 0x0: MEAS_INTERVAL1_1500MS 0xA: MEAS_INTERVAL1_1S 0xC: MEAS_INTERVAL1_1S 0xC: MEAS_INTERVAL1_1S 0xC: MEAS_INTERVAL1_1S 0xC: MEAS_INTERVAL1_1AS 0xE: MEAS_INTERVAL1_1AS 0xF: MEAS_INTERVAL1_1AS

0x00003458 VADC2_LC_BTM_2_MEAS_INTERVAL_CTL2

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

VADC2_LC_BTM_2_MEAS_INTERVAL_CTL2

Bits	Name	Description
7:4	MEAS_INTERVAL_TIME2	Small timer: Select measurement interval time in 100ms
		increments.
		0x0: MEAS_INTERVAL2_0MS
		0x1: MEAS_INTERVAL2_100MS
		0x2: MEAS_INTERVAL2_200MS
		0x3: MEAS_INTERVAL2_300MS
		0x4: MEAS_INTERVAL2_400MS
		0x5: MEAS_INTERVAL2_500MS
		0x6: MEAS_INTERVAL2_600MS
		0x7: MEAS_INTERVAL2_700MS
		0x8: MEAS_INTERVAL2_800MS
		0x9: MEAS_INTERVAL2_900MS
		0xA: MEAS_INTERVAL2_1000MS
		0xB: MEAS_INTERVAL2_1100MS
		0xC: MEAS_INTERVAL2_1200MS
		0xD: MEAS_INTERVAL2_1300MS
		0xE: MEAS_INTERVAL2_1400MS
		0xF: MEAS_INTERVAL2_1500MS
3:0	MEAS_INTERVAL_TIME3	Large timer: Select measurement interval time in seconds.
	, 0,	0x0: MEAS_INTERVAL3_0S
	2,10	0x1: MEAS_INTERVAL3_1S
	OS indi	0x2: MEAS_INTERVAL3_2S
	S. On	0x3: MEAS_INTERVAL3_3S
	30 2 2 M	0x4: MEAS_INTERVAL3_4S
	1	0x5: MEAS_INTERVAL3_5S
		0x6: MEAS_INTERVAL3_6S
		0x7: MEAS_INTERVAL3_7S
		0x8: MEAS_INTERVAL3_8S
		0x9: MEAS_INTERVAL3_9S
		0xA: MEAS_INTERVAL3_10S
		0xB: MEAS_INTERVAL3_11S
		0xC: MEAS_INTERVAL3_12S
		0xD: MEAS_INTERVAL3_13S
		0xE: MEAS_INTERVAL3_14S
		0xF: MEAS_INTERVAL3_15S
	L	

0x00003459 VADC2_LC_BTM_2_MEAS_INTERVAL_OP_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo perph rb

Interval mode select

VADC2_LC_BTM_2_MEAS_INTERVAL_OP_CTL

Bits	Name	Description
7	MEAS_INTERVAL_OP	Interval mode select
		0x0: INTERVAL_MODE_DISABLED
		0x1: INTERVAL_MODE_ENABLED
1:0	M0_MEAS_INTERVAL_TIME	Select which interval timer to use
		0x0: M0_USING_TIMER1
		0x1: M0_USING_TIMER2
		0x2: M0_USING_TIMER3

0x0000345A VADC2_LC_BTM_2_FAST_AVG_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Fast Average Control

VADC2_LC_BTM_2_FAST_AVG_CTI

Bits	Name	Description
3:0	FAST_AVG_SAMPLES	Select number of samples for use in fast average mode (i.e. 2^(value). 0x0: AVG_1_SAMPLE 0x1: AVG_2_SAMPLES 0x2: AVG_4_SAMPLES 0x3: AVG_8_SAMPLES 0x4: AVG_16_SAMPLES 0x5: AVG_32_SAMPLES 0x6: AVG_64_SAMPLES 0x7: AVG_128_SAMPLES 0x8: AVG_128_SAMPLES
		0x9: AVG_512_SAMPLES

0x0000345B VADC2_LC_BTM_2_FAST_AVG_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Enable

VADC2_LC_BTM_2_FAST_AVG_EN

Bits	Name	Description
7	FAST_AVG_EN	Select low latency for multiple conversions 0x0: FAST_AVG_DISABLED 0x1: FAST_AVG_ENABLED

0x0000345C VADC2_LC_BTM_2_M0_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

M0 Low Threshold Byte 0

VADC2_LC_BTM_2_M0_LOW_THR0

Bits	Name	Description
7:0	LOW_THR_7_0	M0 Low byte of low threshold detector

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

M0 Low Threshold Byte 1

VADC2_LC_BTM_2_M0_LOW_THR1

Bits	Name	Description
7:0	LOW_THR_15_8	M0 High byte of low threshold detector

0x0000345E VADC2_LC_BTM_2_M0_HIGH_THR0

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb

M0 High Threshold Byte 0

VADC2_LC_BTM_2_M0_HIGH_THR0

Bits	Name	Description
7:0	HIGH_THR_7_0	M0 Low byte of high threshold detector

0x0000345F VADC2_LC_BTM_2_M0_HIGH_THR1

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb

M0 High Threshold Byte 1

VADC2_LC_BTM_2_M0_HIGH_THR1

Bits	Name	Description
7:0	HIGH_THR_15_8	M0 High byte of high threshold detector

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

M0 ADC Sample Byte 0

VADC2_LC_BTM_2_M0_DATA0

Bits	Name	Description
7:0	DATA_7_0	M0 Low byte of ADC output

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

M0 ADC Sample Byte 1

VADC2_LC_BTM_2_M0_DATA1

Bits	Name	Description
7:0	DATA_15_8	M0 High byte of ADC output

0x00003468 VADC2_LC_BTM_2_M1_ADC_CH_SEL_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo perph rb

M1 ADC Channel selection. See device specification for channel descriptions.

VADC2_LC_BTM_2_M1_ADC_CH_SEL_CTL

Bits	Name	Description
7:0	ADC_CH_SEL	M1 ADC Channel selection. See device specification for channel descriptions.

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb M1 Low Threshold Byte 0

VADC2_LC_BTM_2_M1_LOW_THR0

Bits	Name	Description
7:0	LOW_THR_7_0	M1 Low byte of low threshold detector

0x0000346A VADC2_LC_BTM_2_M1_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

M1 Low Threshold Byte 1

VADC2_LC_BTM_2_M1_LOW_THR1

Bits	Name	Description
7:0	LOW_THR_15_8	M1 High byte of low threshold detector

0x0000346B VADC2_LC_BTM_2_M1_HIGH_THR0

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb M1 High Threshold Byte 0

VADC2_LC_BTM_2_M1_HIGH_THR0

Bits	Name	Description
7:0	HIGH_THR_7_0	M1 Low byte of high threshold detector

0x0000346C VADC2_LC_BTM_2_M1_HIGH_THR1

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb

M1 High Threshold Byte 1

VADC2_LC_BTM_2_M1_HIGH_THR1

Bits	Name	Description
7:0	HIGH_THR_15_8	M1 High byte of high threshold detector

0x0000346D VADC2_LC_BTM_2_M1_MEAS_INTERVAL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

VADC2_LC_BTM_2_M1_MEAS_INTERVAL_CTL

Bits	Name	Description
1:0	M1_MEAS_INTERVAL_TIME	M1 Select which interval timer to use
		0x0: M1_USING_TIMER1
		0x1: M1_USING_TIMER2
		0x2: M1_USING_TIMER3

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

M1 ADC Sample Byte 0

VADC2_LC_BTM_2_M1_DATA0

Bits	Name	Description
7:0	DATA_7_0	M1 Low byte of ADC output

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

M1 ADC Sample Byte 1

VADC2_LC_BTM_2_M1_DATA1

Bits	Name	Description
7:0	DATA_15_8	M1 High byte of ADC output

16 Vadc_adj Registers

0x00003500 VADC4_LC_VBAT_REVISION1

Type: R

Clock: pbus_wrclk Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

VADC4_LC_VBAT_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003501 VADC4_LC_VBAT_REVISION2

Type: R

Clock: pbus_wrclk
Reset State: 0x04

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

VADC4_LC_VBAT_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00003502 VADC4_LC_VBAT_REVISION3

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

VADC4_LC_VBAT_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00003503 VADC4_LC_VBAT_REVISION4

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

VADC4_LC_VBAT_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00003504 VADC4_LC_VBAT_PERPH_TYPE

Type: R

Clock: pbus_wrclk Reset State: 0x08

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

VADC4_LC_VBAT_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ADC

0x00003505 VADC4_LC_VBAT_PERPH_SUBTYPE

Type: R

Clock: pbus_wrclk Reset State: 0x0C Reset Name: N/A

Peripheral SubType

VADC4_LC_VBAT_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	VADC1

0x00003508 VADC4_LC_VBAT_STATUS1

Type: R

Clock: pbus_wrclk
Reset State: 0x01

Reset Name: N/A

Status Registers

VADC4_LC_VBAT_STATUS1

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
		0x2: MEAS_INT_MODE
2	MEAS_INTERVAL_EN_STS	Interval Mode
		0x0: INTERVAL_MODE_DISABLED
		0x1: INTERVAL_MODE_ENABLED
1	REQ_STS	REQ_STS mirrors the REQ bit. When REQ is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed.
		0x0: REQ_NOT_IN_PROGRESS
		0x1: REQ_IN_PROGRESS

VADC4_LC_VBAT_STATUS1 (cont.)

Bits	Name	Description
0	EOC	End of conversion status flag. Bit is de-asserted when arbiter is servicing a conversion request and asserted when conversion is completed. After a conversion is requested, the EOC and REQ_STS bits can be polled to determine ADC conversion status as follows: REQ_STS EOC Arbiter state 1 1 Waiting for ADC to complete another process's conversion request. 1 0 ADC conversion occurring. 0 1 ADC conversion completed. 0 0 Invalid 0x0: CONV_NOT_COMPLETE 0x1: CONV_COMPLETE

0x00003510 VADC4_LC_VBAT_INT_RT_STS

Type: R

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Interrupt Real Time Status Bits

VADC4_LC_VBAT_INT_RT_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_RT_S TS	ADC minimum output lower than low threshold. Active high signal. 0x0: MIN_LOW_THR_INT_FALSE 0x1: MIN_LOW_THR_INT_TRUE
4	LOW_THR_INT_RT_STS	ADC output lower than low threshold. Active high signal. 0x0: LOW_THR_INT_FALSE 0x1: LOW_THR_INT_TRUE
3	HIGH_THR_INT_RT_STS	ADC output higher than high threshold. Active high signal. 0x0: HIGH_THR_INT_FALSE 0x1: HIGH_THR_INT_TRUE
2	CONV_SEQ_TIMEOUT_INT _RT_STS	Indicates conversion sequencer conversion was triggered by SBI register field conversion request time out. 0x0: CONV_SEQ_TIMEOUT_FALSE 0x1: CONV_SEQ_TIMEOUT_TRUE
1	FIFO_NOT_EMPTY_INT_RT _STS	Indicates conversion sequencer request written to FIFO when it was not empty. 0x0: FIFO_NOT_EMPTY_INT_FALSE 0x1: FIFO_EMPTY_INT_TRUE

VADC4_LC_VBAT_INT_RT_STS (cont.)

Bits	Name	Description
0	EOC_INT_RT_STS	Secure process end of conversion interrupt. Active high signal two tcxo_clk cycles wide. 0x0: CONV_COMPLETE_INT_FALSE 0x1: CONV_COMPLETE_INT_TRUE

0x00003511 VADC4_LC_VBAT_INT_SET_TYPE

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

0 =use level trigger interrupts, 1 =use edge trigger interrupts

VADC4_LC_VBAT_INT_SET_TYPE

Bits	Name	Description
5	MIN_LOW_THR_INT_SET_T YPE	Minimum Low threshold interrupt set type 0x0: MIN_LOW_THR_INT_LEVEL 0x1: MIN_LOW_THR_INT_EDGE
4	LOW_THR_INT_SET_TYPE	Low threshold interrupt set type 0x0: LOW_THR_INT_LEVEL 0x1: LOW_THR_INT_EDGE
3	HIGH_THR_INT_SET_TYPE	High threshold interrupt set type 0x0: HIGH_THR_INT_LEVEL 0x1: HIGH_THR_INT_EDGE
2	CONV_SEQ_TIMEOUT_INT _SET_TYPE	Conversion sequencer timeout interrupt set type 0x0: CONV_SEQ_TIMEOUT_LEVEL 0x1: CONV_SEQ_TIMEOUT_EDGE
1	FIFO_NOT_EMPTY_INT_SE T_TYPE	FIFO not empty interrupt set type 0x0: FIFO_NOT_EMPTY_LEVEL 0x1: FIFO_NOT_EMPTY_EDGE
0	EOC_SET_INT_TYPE	EOC interrupt set type 0x0: EOC_LEVEL 0x1: EOC_EDGE

0x00003512 VADC4_LC_VBAT_INT_POLARITY_HIGH

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

VADC4_LC_VBAT_INT_POLARITY_HIGH

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt high polarity enabled 0x0: MIN_LOW_THR_INT_POL_HIGH_DISABLED 0x1: MIN_LOW_THR_INT_POL_HIGH_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt high polarity enabled 0x0: LOW_THR_INT_POL_HIGH_DISABLED 0x1: LOW_THR_INT_POL_HIGH_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt high polarity enabled 0x0: HIGH_THR_INT_POL_HIGH_DISABLED 0x1: HIGH_THR_INT_POL_HIGH_ENABLED
2	CONV_SEQ_TIMEOUT_INT _HIGH	Conversion sequencer interrupt high polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_HIGH_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_HIGH_ENABLED
1	FIFO_NOT_EMPTY_INT_HI GH	FIFO not empty interrupt high polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_HIGH_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_HIGH_ENABLED
0	EOC_INT_HIGH	EOC interrupt high polarity enabled 0x0: EOC_INT_POL_HIGH_DISABLED 0x1: EOC_INT_POL_HIGH_ENABLED

0x00003513 VADC4_LC_VBAT_INT_POLARITY_LOW

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

VADC4_LC_VBAT_INT_POLARITY_LOW

Bits	Name	Description
5	MIN_LOW_THR_INT_HIGH	Minimum Low threshold interrupt low polarity enabled 0x0: MIN_LOW_THR_INT_POL_LOW_DISABLED 0x1: MIN_LOW_THR_INT_POL_LOW_ENABLED
4	LOW_THR_INT_HIGH	Low threshold interrupt low polarity enabled 0x0: LOW_THR_INT_POL_LOW_DISABLED 0x1: LOW_THR_INT_POL_LOW_ENABLED
3	HIGH_THR_INT_HIGH	High threshold interrupt low polarity enabled 0x0: HIGH_THR_INT_POL_LOW_DISABLED 0x1: HIGH_THR_INT_POL_LOW_ENABLED
2	CONV_SEQ_TIMEOUT_INT _LOW	Conversion sequencer interrupt low polarity enabled 0x0: CONV_SEQ_TIMEOUT_INT_POL_LOW_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_POL_LOW_ENABLED
1	FIFO_NOT_EMPTY_INT_LO W	FIFO not empty interrupt low polarity enabled 0x0: FIFO_NOT_EMPTY_INT_POL_LOW_DISABLED 0x1: FIFO_NOT_EMPTY_INT_POL_LOW_ENABLED
0	EOC_INT_LOW	EOC interrupt low polarity enabled 0x0: EOC_INT_POL_LOW_DISABLED 0x1: EOC_INT_POL_LOW_ENABLED

0x00003514 VADC4_LC_VBAT_INT_LATCHED_CLR

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing a '1' to a bit in this register will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

VADC4_LC_VBAT_INT_LATCHED_CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_CLR	Minimum Low threshold interrupt latched clear
4	LOW_THR_INT_LATCHED_ CLR	Low threshold interrupt latched clear
3	HIGH_THR_INT_LATCHED_ CLR	High threshold interrupt latched clear
2	CONV_SEQ_TIMEOUT_INT _LATCHED_CLR	Conversion sequencer interrupt latched clear

VADC4_LC_VBAT_INT_LATCHED_CLR (cont.)

Bits	Name	Description
1	FIFO_NOT_EMPTY_INT_LA TCHED_CLR	FIFO not empty interrupt latched clear
0	EOC_INT_LATCHED_CLR	EOC interrupt latched clear

0x00003515 VADC4_LC_VBAT_INT_EN_SET

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Writing '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

VADC4_LC_VBAT_INT_EN_SET

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_S ET	Minimum Low threshold interrupt enable set 0x0: MIN_LOW_THR_INT_DISABLED 0x1: MIN_LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_SET	Low threshold interrupt enable set 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_SET	High threshold interrupt enable set 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_SET	Conversion sequencer interrupt enable set 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _SET	FIFO not empty interrupt enable set 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_SET	EOC interrupt enable set 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003516 VADC4_LC_VBAT_INT_EN_CLR

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Writing a '0' to a bit in this register has no effect. Writing a '1' to a bit in this register will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

VADC4 LC VBAT INT EN CLR

Bits	Name	Description
5	MIN_LOW_THR_INT_EN_C LR	Minimum Low threshold interrupt enable clear 0x0: MIN_LOW_THR_INT_DISABLED 0x1: MIN_LOW_THR_INT_ENBLED
4	LOW_THR_INT_EN_CLR	Low threshold interrupt enable clear 0x0: LOW_THR_INT_DISABLED 0x1: LOW_THR_INT_ENBLED
3	HIGH_THR_INT_EN_CLR	High threshold interrupt enable clear 0x0: HIGH_THR_INT_DISABLED 0x1: HIGH_THR_INT_ENBLED
2	CONV_SEQ_TIMEOUT_INT _EN_CLR	Conversion sequencer interrupt enable clear 0x0: CONV_SEQ_TIMEOUT_INT_DISABLED 0x1: CONV_SEQ_TIMEOUT_INT_ENBLED
1	FIFO_NOT_EMPTY_INT_EN _CLR	FIFO not empty interrupt enable clear 0x0: FIFO_NOT_EMPTY_INT_DISABLED 0x1: FIFO_NOT_EMPTY_INT_ENBLED
0	EOC_INT_EN_CLR	EOC interrupt enable clear 0x0: EOC_INT_DISABLED 0x1: EOC_INT_ENBLED

0x00003518 VADC4_LC_VBAT_INT_LATCHED_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

VADC4_LC_VBAT_INT_LATCHED_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_LATC HED_STS	Minimum Low threshold interrupt latched 0x0: MIN_LOW_THR_INT_LATCHED_FALSE 0x1: MIN_LOW_THR_INT_LATCHED_TRUE
4	LOW_THR_INT_LATCHED_ STS	Low threshold interrupt latched 0x0: LOW_THR_INT_LATCHED_FALSE 0x1: LOW_THR_INT_LATCHED_TRUE
3	HIGH_THR_INT_LATCHED_ STS	High threshold interrupt latched 0x0: HIGH_THR_INT_LATCHED_FALSE 0x1: HIGH_THR_INT_LATCHED_TRUE
2	CONV_SEQ_TIMEOUT_INT _LATCHED_STS	Conversion sequencer interrupt latched 0x0: CONV_SEQ_TIMEOUT_INT_LATCHED_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_LATCHED_TRUE
1	FIFO_NOT_EMPTY_INT_LA TCHED_STS	FIFO not empty interrupt latched 0x0: FIFO_NOT_EMPTY_INT_LATCHED_FALSE 0x1: FIFO_NOT_EMPTY_INT_LATCHED_TRUE
0	EOC_INT_LATCHED_STS	EOC interrupt latched 0x0: EOC_INT_LATCHED_FALSE 0x1: EOC_INT_LATCHED_TRUE

0x00003519 VADC4_LC_VBAT_INT_PENDING_STS

Type: R

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Debug: Pending is set if interrupt has been sent but not cleared.

VADC4_LC_VBAT_INT_PENDING_STS

Bits	Name	Description
5	MIN_LOW_THR_INT_PENDI NG_STS	Minimum Low threshold interrupt pending 0x0: MIN_LOW_THR_INT_PENDING_FALSE 0x1: MIN_LOW_THR_INT_PENDING_TRUE
4	LOW_THR_INT_PENDING_ STS	Low threshold interrupt pending 0x0: LOW_THR_INT_PENDING_FALSE 0x1: LOW_THR_INT_PENDING_TRUE
3	HIGH_THR_INT_PENDING_ STS	High threshold interrupt pending 0x0: HIGH_THR_INT_PENDING_FALSE 0x1: HIGH_THR_INT_PENDING_TRUE

VADC4_LC_VBAT_INT_PENDING_STS (cont.)

Bits	Name	Description
2	CONV_SEQ_TIMEOUT_INT _PENDING_STS	Conversion sequencer interrupt pending 0x0: CONV_SEQ_TIMEOUT_INT_PENDING_FALSE 0x1: CONV_SEQ_TIMEOUT_INT_PENDING_TRUE
1	FIFO_NOT_EMPTY_INT_PE NDING_STS	FIFO not empty interrupt pending 0x0: FIFO_NOT_EMPTY_INT_PENDING_FALSE 0x1: FIFO_NOT_EMPTY_INT_PENDING_TRUE
0	EOC_INT_PENDING_STS	EOC interrupt pending 0x0: EOC_INT_PENDING_FALSE 0x1: EOC_INT_PENDING_TRUE

0x0000351A VADC4_LC_VBAT_INT_MID_SEL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the MID that will receive the interrupt

VADC4_LC_VBAT_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Selects the MID that will receive the interrupt

0x0000351B VADC4_LC_VBAT_INT_PRIORITY

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Selects the SPMI interrupt priority

VADC4_LC_VBAT_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Selects the SPMI interrupt priority 0x0: SR 0x1: A

0x00003540 VADC4_LC_VBAT_MODE_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x03

Reset Name: uvlo_perph_rb

Settings Common to Input and Output

VADC4_LC_VBAT_MODE_CTL

Bits	Name	Description
4:3	OP_MODE	Selects basic mode of operation:
		00=Normal Mode - Single measurement
		01=Conversion Sequencer - Single measurement using conversion sequencer
		10=Measurement Interval - Single or Continuous measurements at specified delay/interval
		0x0: NORM_MODE
		0x1: CONV_SEQ_MODE
	. ()	0x2: MEAS_INT_MODE
2	VREF_XO_THM_FORCE	When cleared, VDD_REF is connected to XO thermistor in active mode, disconnected in sleep mode
	27,10	When set, force VDD_REF to be connected to the XO thermistor regardless the status of sleepb
	O'S willis	0x0: VREF_XO_THM_FORCE_FALSE
	Old Wen	0x1: VREF_XO_THM_FORCE_TRUE
1	RESERVED	
0	ADC_TRIM_EN	Enable ADC trim
		0x0: ADC_TRIM_DISABLED
		0x1: ADC_TRIM_ENABLED

Go.

0x00003546 VADC4_LC_VBAT_EN_CTL1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Enables ADC module.

VADC4_LC_VBAT_EN_CTL1

Bits	Name	Description
7	ADC_EN	Enables ADC module.
		0x0: ADC_DISABLED
		0x1: ADC_ENABLED

0x00003548 VADC4_LC_VBAT_ADC_CH_SEL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x06

Reset Name: uvlo perph rb

ADC Channel selection. See device specification for channel descriptions.

VADC4_LC_VBAT_ADC_CH_SEL_CTL

Bits	Name	Description
7:0	ADC_CH_SEL	ADC Channel selection. See device specification for channel descriptions.

0x00003550 VADC4_LC_VBAT_ADC_DIG_PARAM

Type: RW

Clock: pbus_wrclk Reset State: 0x04

Reset Name: uvlo perph rb

ADC Digital Parameters

VADC4_LC_VBAT_ADC_DIG_PARAM

Bits	Name	Description
3:2	DEC_RATIO_SEL	Decimation ratio: 0x0: DECI_512 0x1: DECI_1K 0x2: DECI_2K 0x3: DECI_4K
1:0	CLK_SEL	Select ADC clock rate: 0x0: CLK_SEL_2P4MHZ 0x1: CLK_SEL_4P8MHZ 0x2: CLK_SEL_9P6MHZ 0x3: CLK_SEL_19P2MHZ

0x00003551 VADC4_LC_VBAT_HW_SETTLE_DELAY

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Settle Delay

VADC4_LC_VBAT_HW_SETTLE_DELAY

Bits	Name	Description
3:0	HW_SETTLE_DELAY	Time between AMUX getting configured and the ADC starting conversion. Delay = 100us*(value) for value<11, and 2ms*(value-10) otherwise 0x0: HW_SETTLE_DELAY_0US 0x1: HW_SETTLE_DELAY_100US 0x2: HW_SETTLE_DELAY_200US 0x3: HW_SETTLE_DELAY_300US 0x4: HW_SETTLE_DELAY_400US 0x5: HW_SETTLE_DELAY_500US 0x6: HW_SETTLE_DELAY_600US 0x7: HW_SETTLE_DELAY_700US 0x8: HW_SETTLE_DELAY_800US 0x9: HW_SETTLE_DELAY_900US 0x0: HW_SETTLE_DELAY_900US 0xA: HW_SETTLE_DELAY_1MS 0xB: HW_SETTLE_DELAY_2MS 0xC: HW_SETTLE_DELAY_4MS 0xD: HW_SETTLE_DELAY_6MS 0xE: HW_SETTLE_DELAY_8MS 0xF: HW_SETTLE_DELAY_10MS

0x00003552 VADC4_LC_VBAT_CONV_REQ

Type: W

Clock: pbus_wrclk Reset State: 0x00

Reset Name: req_rb

Conversion Request

VADC4_LC_VBAT_CONV_REQ

Bits	Name	Description
7	REQ	Conversion request strobe. When bit is asserted the arbiter stores a descriptor in the conversion request queue. Bit is cleared when ADC conversion is completed.
		0x0: CONV_REQ_FALSE 0x1: CONV_REQ_TRUE

0x00003554 VADC4_LC_VBAT_CONV_SEQ_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x45

Reset Name: uvlo perph rb

Conversion Sequencer Control

VADC4_LC_VBAT_CONV_SEQ_CTL

Bits	Name	Description
7:4	Name CONV_SEQ_HOLDOFF	Select delay from conversion trigger signal (i.e. adc_conv_seq_trig) transition to ADC enable. Delay = 25us*(value+1). Actual delay will be longer if request is stored in a non empty FIFO and/or conversion needs to wait for LDO OK handshake. 0x0: SEQ_HOLD_25US 0x1: SEQ_HOLD_50US 0x2: SEQ_HOLD_75US 0x3: SEQ_HOLD_100US 0x4: SEQ_HOLD_125US 0x5: SEQ_HOLD_15US 0x6: SEQ_HOLD_15US 0x7: SEQ_HOLD_175US
		0x8: SEQ_HOLD_225US 0x9: SEQ_HOLD_250US
		0xA: SEQ_HOLD_275US
		0xB: SEQ_HOLD_300US
		0xC: SEQ_HOLD_325US
		0xD: SEQ_HOLD_350US
		0xE: SEQ_HOLD_375US
		0xF: SEQ_HOLD_400US

VADC4_LC_VBAT_CONV_SEQ_CTL (cont.)

Bits	Name	Description
3:0	CONV_SEQ_TIMEOUT	Select delay (0 to 15ms) from conversion request to triggering conversion sequencer hold off timer.
		0x0: SEQ_TIMEOUT_0MS
		0x1: SEQ_TIMEOUT_1MS
		0x2: SEQ_TIMEOUT_2MS
		0x3: SEQ_TIMEOUT_3MS
		0x4: SEQ_TIMEOUT_4MS
		0x5: SEQ_TIMEOUT_5MS
		0x6: SEQ_TIMEOUT_6MS
		0x7: SEQ_TIMEOUT_7MS
		0x8: SEQ_TIMEOUT_8MS
		0x9: SEQ_TIMEOUT_9MS
		0xA: SEQ_TIMEOUT_10MS
		0xB: SEQ_TIMEOUT_11MS
		0xC: SEQ_TIMEOUT_12MS
	\ (0xD: SEQ_TIMEOUT_13MS
		0xE: SEQ_TIMEOUT_14MS
		0xF: SEQ_TIMEOUT_15MS

0x00003555 VADC4_LC_VBAT_CONV_SEQ_TRIG_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Conversion Sequencer Trigger Select

VADC4_LC_VBAT_CONV_SEQ_TRIG_CTL

Bits	Name	Description
7	CONV_SEQ_TRIG_COND	Select conversion trigger condition(s) that starts ADC conversion hold off timer. 0x0 - Falling edge 0x1 - Rising edge 0x0: FALLING_EDGE 0x1: RISING_EDGE
1:0	CONV_SEQ_TRIG_SEL	Select conversion sequencer trigger input signal. 0x0: ADC_TRIG0 0x1: ADC_TRIG1 0x2: ADC_TRIG2 0x3: ADC_TRIG3

0x00003557 VADC4_LC_VBAT_MEAS_INTERVAL_CTL

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Interval Mode Control

VADC4_LC_VBAT_MEAS_INTERVAL_CTL

Bits	Name	Description
3:0	Name MEAS_INTERVAL_TIME	Description Select measurement interval time (i.e., If value=0, use 0ms, else use 2^(value+4)/32768). 0x0: MEAS_INTERVAL_0MS 0x1: MEAS_INTERVAL_1P0MS 0x2: MEAS_INTERVAL_2P0MS 0x3: MEAS_INTERVAL_3P9MS 0x4: MEAS_INTERVAL_7P8MS 0x5: MEAS_INTERVAL_15P6MS 0x6: MEAS_INTERVAL_31P3MS 0x7: MEAS_INTERVAL_62P5MS 0x8: MEAS_INTERVAL_125MS 0x9: MEAS_INTERVAL_125MS 0x9: MEAS_INTERVAL_500MS 0xA: MEAS_INTERVAL_500MS 0xA: MEAS_INTERVAL_1S
	2018 3464	0xC: MEAS_INTERVAL_2S 0xD: MEAS_INTERVAL_4S 0xE: MEAS_INTERVAL_8S 0xF: MEAS_INTERVAL_16S

0x00003559 VADC4_LC_VBAT_MEAS_INTERVAL_OP_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Interval mode select

VADC4_LC_VBAT_MEAS_INTERVAL_OP_CTL

Bits	Name	Description
7	MEAS_INTERVAL_OP	Interval mode select 0x0: INTERVAL_MODE_DISABLED 0x1: INTERVAL_MODE_ENABLED

0x0000355A VADC4_LC_VBAT_FAST_AVG_CTL

Type: RW

Clock: pbus_wrclk
Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Control

VADC4_LC_VBAT_FAST_AVG_CTL

Bits	Name	Description
3:0	FAST_AVG_SAMPLES	Select number of samples for use in fast average mode (i.e. 2^(value).
		0x0: AVG_1_SAMPLE
		0x1: AVG_2_SAMPLES
		0x2: AVG_4_SAMPLES
		0x3: AVG_8_SAMPLES
		0x4: AVG_16_SAMPLES
		0x5: AVG_32_SAMPLES
		0x6: AVG_64_SAMPLES
		0x7: AVG_128_SAMPLES
		0x8: AVG_256_SAMPLES
	12	0x9: AVG_512_SAMPLES

0x0000355B VADC4_LC_VBAT_FAST_AVG_EN

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo_perph_rb

Fast Average Enable

VADC4_LC_VBAT_FAST_AVG_EN

Bits	Name	Description
7	FAST_AVG_EN	Select low latency for multiple conversions 0x0: FAST_AVG_DISABLED 0x1: FAST_AVG_ENABLED

0x0000355C VADC4_LC_VBAT_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 0

VADC4_LC_VBAT_LOW_THR0

Bits	Name	Description
7:0	LOW_THR_7_0	Low byte of low threshold detector

0x0000355D VADC4_LC_VBAT_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Low Threshold Byte 1

VADC4_LC_VBAT_LOW_THR1

Bits	Name	Description
7:0	LOW_THR_15_8	High byte of low threshold detector

0x0000355E VADC4_LC_VBAT_HIGH_THR0

Type: RW

Clock: pbus_wrclk
Reset State: 0xFF

Reset Name: uvlo_perph_rb

High Threshold Byte 0

VADC4_LC_VBAT_HIGH_THR0

Bits	Name	Description
7:0	HIGH_THR_7_0	Low byte of high threshold detector

0x0000355F VADC4_LC_VBAT_HIGH_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0xFF

Reset Name: uvlo perph rb

High Threshold Byte 1

VADC4_LC_VBAT_HIGH_THR1

Bits	Name	Description
7:0	HIGH_THR_15_8	High byte of high threshold detector

0x00003560 VADC4_LC_VBAT_DATA0

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

ADC Sample Byte 0

VADC4_LC_VBAT_DATA0

Bits	Name	Description
7:0	DATA_7_0	Low byte of ADC output

0x00003561 VADC4_LC_VBAT_DATA1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

ADC Sample Byte 1

VADC4_LC_VBAT_DATA1

Bits	Name	Description
7:0	DATA_15_8	High byte of ADC output

0x00003562 VADC4_LC_VBAT_MIN_LOW_THR0

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 0

VADC4_LC_VBAT_MIN_LOW_THR0

Bits	Name	Description
7:0	MIN_LOW_THR_7_0	Low byte of minimum low threshold detector

0x00003563 VADC4_LC_VBAT_MIN_LOW_THR1

Type: RW

Clock: pbus_wrclk Reset State: 0x00

Reset Name: uvlo perph rb

Minimum Low Threshold Byte 1

VADC4_LC_VBAT_MIN_LOW_THR1

Bits	Name	Description
7:0	MIN_LOW_THR_15_8	High byte of minimum low threshold detector

0x00003566 VADC4_LC_VBAT_MIN_DATA0

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo perph rb

Minimum ADC Sample Byte 0

VADC4_LC_VBAT_MIN_DATA0

Bits	Name	Description
7:0	MIN_DATA_7_0	Low byte of minimum ADC output

0x00003567 VADC4_LC_VBAT_MIN_DATA1

Type: R

Clock: pbus_wrclk
Reset State: Undefined

Reset Name: uvlo_perph_rb

Minimum ADC Sample Byte 1

VADC4_LC_VBAT_MIN_DATA1

2018-09-21 oli 02:27 bpf

Bits	Name	Description
7:0	MIN_DATA_15_8	High byte of minimum ADC output

17 Bbclk Registers

0x00005100 BB_CLK1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

BB_CLK1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005101 BB_CLK1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

BB_CLK1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005102 BB_CLK1_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

BB_CLK1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005103 BB_CLK1_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

BB_CLK1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00005104 BB_CLK1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

BB_CLK1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock 0x6: CLOCK

0x00005105 BB_CLK1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

BB_CLK1_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BB clock
	250	0x8: BB_CLK

0x00005108 BB_CLK1_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

BB_CLK1_STATUS1

Bits	Name	Description
7	CLK_OK	Indicates Hardware or Software enable and includes warm-up delay 0x0: BBCLK_OFF 0x1: BBCLK_ON

0x00005143 BB_CLK1_EDGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: PERPH RB

BB_CLK1_EDGE_CTL1

Bits	Name	Description
3:0	OUT_EDGE	Edge Rate Control:
		0000 - Invalid
		0001 - Slowest
		1111 - Fastest

0x00005144 BB_CLK1_DRV_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: PERPH RB

BB_CLK1_DRV_CTL1

Bits	Name	Description
1:0	OUT_DRV	Drive Strength Control
	2,72	0x0: ONE_X
	V	0x1: TWO_X
		0x2: THREE_X
		0x3: FOUR_X

0x00005146 BB_CLK1_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

BB_CLK1_EN_CTL

Bits	Name	Description
7	CLK_EN	0x0: BBCLK_NOT_FORCE 0x1: BBCLK_FORCE_EN
1	PC_POLARITY	0x0: POS_PINCONTROL_POLARITY 0x1: NEG_PINCONTROL_POLARITY

BB_CLK1_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN

18 Bbclk Registers

0x00005200 BB_CLK2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

BB_CLK2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005201 BB_CLK2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

BB_CLK2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005202 BB_CLK2_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

BB_CLK2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005203 BB_CLK2_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

BB_CLK2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00005204 BB_CLK2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

BB_CLK2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock 0x6: CLOCK

0x00005205 BB_CLK2_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

BB_CLK2_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BB clock
	250	0x8: BB_CLK

0x00005208 BB_CLK2_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Status Registers

BB_CLK2_STATUS1

Bits	Name	Description
7	CLK_OK	Indicates Hardware or Software enable and includes warm-up delay 0x0: BBCLK_OFF 0x1: BBCLK_ON

0x00005243 BB_CLK2_EDGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: PERPH RB

BB_CLK2_EDGE_CTL1

Name	Description
OUT_EDGE	Edge Rate Control:
	0000 - Invalid
	0001 - Slowest
	1111 - Fastest
(

0x00005244 BB_CLK2_DRV_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: PERPH RB

BB_CLK2_DRV_CTL1

Bits	Name	Description
1:0	OUT_DRV	Drive Strength Control
	2,72	0x0: ONE_X
	V	0x1: TWO_X
		0x2: THREE_X
		0x3: FOUR_X

0x00005246 BB_CLK2_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

BB_CLK2_EN_CTL

Bits	Name	Description
7	CLK_EN	0x0: BBCLK_NOT_FORCE 0x1: BBCLK_FORCE_EN
1	PC_POLARITY	0x0: POS_PINCONTROL_POLARITY 0x1: NEG_PINCONTROL_POLARITY

BB_CLK2_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN

19 Rfclk Registers

0x00005400 RF_CLK1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

RF_CLK1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005401 RF_CLK1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

RF_CLK1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005402 RF_CLK1_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

RF_CLK1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005403 RF_CLK1_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

RF_CLK1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00005404 RF_CLK1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

RF_CLK1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock 0x6: CLOCK

0x00005405 RF_CLK1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

RF_CLK1_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	RF clock
	25	0x9: RF_CLK

0x00005408 RF_CLK1_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

RF_CLK1_STATUS1

Bits	Name	Description
7	CLK_OK	0 = Clock is off
		1 =Clock is on. Indicates HW or SW enable
		0x0: RFCLK_OFF
		0x1: RFCLK_ON

0x00005443 RF_CLK1_EDGE_CTL1

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x0F

Reset Name: PERPH RB

RF_CLK1_EDGE_CTL1

Bits	Name	Description
3:0	OUT_EDGE	Edge Rate Control:
		0000 - Invalid
		0001 - Slowest
		1111 - Fastest

RF_CLK1_DRV_CTL1 0x00005444

RF_CLK1_DRV_CTL1

RF_C	RF_CLK1_DRV_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x02			
Reset N	Name: PERPH_RB	OT COM		
RF_CLK1_DRV_CTL1				
RF_CL	KI_DRV_CILI	XX ^C C.		
RF_CL Bits	Name	Description		
_		Description Drive Strength Control		
Bits	Name			
Bits	Name	Drive Strength Control		
Bits	Name	Drive Strength Control 0x0: ONE_X		

0x00005446 RF_CLK1_EN_CTL

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: PERPH_RB

RF_CLK1_EN_CTL

Bits	Name	Description
7	CLK_EN	0x0: RFCLK_NOT_FORCE 0x1: RFCLK_FORCE_EN
1	PC_POLARITY	0x0: POS_PINCONTROL_POLARITY 0x1: NEG_PINCONTROL_POLARITY

RF_CLK1_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_PC_EN	When set, clock can be enabled fRm an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN

20 Rfclk Registers

0x00005500 RF_CLK2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

RF_CLK2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005501 RF_CLK2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

RF_CLK2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005502 RF_CLK2_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

RF_CLK2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005503 RF_CLK2_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

RF_CLK2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00005504 RF_CLK2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

RF_CLK2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock 0x6: CLOCK

0x00005505 RF_CLK2_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

RF_CLK2_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	RF clock
	250	0x9: RF_CLK

0x00005508 RF_CLK2_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

RF_CLK2_STATUS1

Bits	Name	Description
7	CLK_OK	0 = Clock is off
		1 =Clock is on. Indicates HW or SW enable
		0x0: RFCLK_OFF
		0x1: RFCLK_ON

0x00005543 RF_CLK2_EDGE_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x0F

Reset Name: PERPH RB

RF_CLK2_EDGE_CTL1

Name	Description
T_EDGE	Edge Rate Control:
	0000 - Invalid
	0001 - Slowest
	1111 - Fastest
T	r_EDGE

0x00005544 RF_CLK2_DRV_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: PERPH RB

RF_CLK2_DRV_CTL1

Bits	Name	Description
1:0	OUT_DRV	Drive Strength Control
	2,73	0x0: ONE_X
	V	0x1: TWO_X
		0x2: THREE_X
		0x3: FOUR_X

0x00005546 RF_CLK2_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

RF_CLK2_EN_CTL

Bits	Name	Description
7	CLK_EN	0x0: RFCLK_NOT_FORCE 0x1: RFCLK_FORCE_EN
1	PC_POLARITY	0x0: POS_PINCONTROL_POLARITY 0x1: NEG_PINCONTROL_POLARITY

RF_CLK2_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_PC_EN	When set, clock can be enabled fRm an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN

21 Bbclk Registers

0x00005800 LN_BB_CLK_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

LN_BB_CLK_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005801 LN_BB_CLK_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

LN_BB_CLK_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005802 LN_BB_CLK_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

LN_BB_CLK_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005803 LN_BB_CLK_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

LN_BB_CLK_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00005804 LN_BB_CLK_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

LN_BB_CLK_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock 0x6: CLOCK

0x00005805 LN_BB_CLK_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

LN_BB_CLK_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BB clock
	27	0x8: BB_CLK

0x00005808 LN_BB_CLK_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

LN_BB_CLK_STATUS1

Bits	Name	Description
7	CLK_OK	Indicates Hardware or Software enable and includes warm-up delay 0x0: BBCLK_OFF 0x1: BBCLK_ON

0x00005843 LN_BB_CLK_EDGE_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x06

Reset Name: PERPH RB

LN_BB_CLK_EDGE_CTL1

Bits	Name	Description
3:0	OUT_EDGE	Edge Rate Control:
		0000 - Invalid
		0001 - Slowest
		1111 - Fastest

0x00005844 LN_BB_CLK_DRV_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: PERPH RB

LN_BB_CLK_DRV_CTL1

Bits	Name	Description
1:0	OUT_DRV	Drive Strength Control
	2,75	0x0: ONE_X
	V	0x1: TWO_X
		0x2: THREE_X
		0x3: FOUR_X

0x00005846 LN_BB_CLK_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

LN_BB_CLK_EN_CTL

Bits	Name	Description
7	CLK_EN	0x0: BBCLK_NOT_FORCE 0x1: BBCLK_FORCE_EN
1	PC_POLARITY	0x0: POS_PINCONTROL_POLARITY 0x1: NEG_PINCONTROL_POLARITY

LN_BB_CLK_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN

22 Slpclk Registers

0x00005A00 SLEEP_CLK1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

SLEEP_CLK1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005A01 SLEEP_CLK1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

SLEEP_CLK1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005A04 SLEEP_CLK1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

SLEEP_CLK1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock
		0x6: CLOCK

0x00005A05 SLEEP_CLK1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0C

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

SLEEP_CLK1_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	Sleep Clock 0xC: SLP_CLK

0x00005A46 SLEEP_CLK1_EN_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x00

Reset Name: PERPH_RB

SLEEP_CLK1_EN_CTL

Name	Description
SLP_CLK_PAD_EN	Enable Sleep Clock Driver
	0x0: SLP_CLK_BUF_DISABLED
	0x1: SLP_CLK_BUF_ENABLED

0x00005A48 SLEEP_CLK1_SMPL_CTL1

SLEEP_CLK1_SMPL_CTL1

SLEEP_CLK1_SMPL_CTL1		
Reset S Reset N	RW PBUS_WRCLK State: 0x00 Name: soft_xvdd_rbCLK1_SMPL_CTL1	
Bits	Name	Description
7	SMPL_EN	Enable SMPL timer
		0x0: SMPL_DISABLE
		0x1: SMPL_ENABLED
6	RESERVED	Not used. Used to be TRIGGER_SEL
	27.0	0x1: PON_RB_TRIGGER
	S OS INDIE	0x0: SHUTDOWN2_RB_TRIGGER
1:0	SMPL_DELAY	0x0: HALF_SEC
	20 3h	0x1: ONE_SEC
	1	0x2: ONEANDHALF_SEC
		0x3: TWO_SEC

0x00005A5A SLEEP_CLK1_CAL_RC3

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x01

Reset Name: soft dvdd rb

SLEEP_CLK1_CAL_RC3

	Bits	Name	Description
	0	LFRC_DRIFT_DET_EN_BAT	Ifrc drift detector enabled when battery is present
		Т	0x0: DRIFT_DET_DISABLED
			0x1: DRIFT_DET_ENABLED
L			

0x00005A5B SLEEP_CLK1_CAL_RC4

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xvdd_rb

SLEEP_CLK1_CAL_RC4

Bits	Name	Description
7	CALRC_EN	CalRC enable 0x0: CALRC_DISABLED 0x1: CALRC_ENABLED
6	COINCELL_GOOD	COINCELL_GOOD Indicate whether a qualified coin cell is installed 0x0: WEAK_COINCAP 0x1: STRONG_COINCAP
4	LFRC_DRIFT_DET_EN_COI	Ifrc drift detector enabled when coin cell/cap is present 0x0: DRIFT_DET_DISABLED 0x1: DRIFT_DET_ENABLED
0	CALRC_DTEST_EN	CALRC_DTEST_EN When High {DTEST3,DTEST2,DTEST1} = CalRC FSM state[2:0] 0x0: NORMAL 0x1: CALRC_STATE_ON_DTEST
	2018 24 CM	

23 Divclk Registers

0x00005B00 DIV_CLK1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

DIV_CLK1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005B01 DIV_CLK1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

DIV_CLK1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005B04 DIV_CLK1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

DIV_CLK1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock
		0x6: CLOCK

0x00005B05 DIV_CLK1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

DIV_CLK1_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	DIV_CLK 0xB: DIV_CLK

0x00005B08 DIV_CLK1_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

DIV_CLK1_STATUS1

Bits	Name	Description
7	DIVCLK_OK	0 = DIVCLK is off
		1 = DIVCLK is on
		0x0: DIVIDER_OFF
		0x1: DIVIDER_ON

0x00005B43 DIV_CLK1_DIV_CTL1

DIV_CLK1_DIV_CTL1

DIV_CLK1_DIV_CTL1 Type: RW Clock: PBUS_WRCLK Reset State: 0x00 Reset Name: PERPH_RB DIV_CLK1_DIV_CTL1		
Bits	Name	Description
2:0	DIV_FACTOR	Low power divided clock output to GPIO divide ratio 000 = XO / 1 001 = XO / 1 010 = XO / 2 011 = XO / 4 100 = XO / 8 101 = XO / 16 110 = XO / 32 111 = XO / 64 0x0: XO_DIV1_0 0x1: XO_DIV1 0x2: XO_DIV2 0x3: XO_DIV4 0x4: XO_DIV8 0x5: XO_DIV16 0x6: XO_DIV32 0x7: XO_DIV64

0x00005B46 DIV_CLK1_EN_CTL

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: PERPH RB

DIV_CLK1_EN_CTL

Bits	Name	Description
7	DIVCLK_EN	1 = DIVCLK is on, 0 = DIVCLK is disabled 0x0: DIVCLK_DIS 0x1: DIVCLK_EN
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN
	2018-09-21-01	OZZ POT DOTON

24 Divclk Registers

0x00005C00 DIV_CLK2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

DIV_CLK2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005C01 DIV_CLK2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

DIV_CLK2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005C04 DIV_CLK2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

DIV_CLK2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock
		0x6: CLOCK

0x00005C05 DIV_CLK2_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

DIV_CLK2_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	DIV_CLK 0xB: DIV_CLK

0x00005C08 DIV_CLK2_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

DIV_CLK2_STATUS1

Bits	Name	Description
7	DIVCLK_OK	0 = DIVCLK is off
		1 = DIVCLK is on
		0x0: DIVIDER_OFF
		0x1: DIVIDER_ON

0x00005C43 DIV_CLK2_DIV_CTL1

DIV_CLK2_DIV_CTL1

DIV_CLK2_DIV_CTL1 Type: RW Clock: PBUS_WRCLK Reset State: 0x00 Reset Name: PERPH_RB DIV_CLK2_DIV_CTL1		
Bits	Name	Description
2:0	DIV_FACTOR	Low power divided clock output to GPIO divide ratio 000 = XO / 1 001 = XO / 1 010 = XO / 2 011 = XO / 4 100 = XO / 8 101 = XO / 16 110 = XO / 32 111 = XO / 64 0x0: XO_DIV1_0 0x1: XO_DIV1 0x2: XO_DIV2 0x3: XO_DIV4 0x4: XO_DIV8 0x5: XO_DIV16 0x6: XO_DIV32 0x7: XO_DIV64

0x00005C46 DIV_CLK2_EN_CTL

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: PERPH RB

DIV_CLK2_EN_CTL

Bits	Name	Description
7	DIVCLK_EN	1 = DIVCLK is on, 0 = DIVCLK is disabled 0x0: DIVCLK_DIS 0x1: DIVCLK_EN
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN
	2018 Swamington	OZZA RUÍ JAN. ZOM

25 Divclk Registers

0x00005D00 DIV_CLK3_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

DIV_CLK3_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00005D01 DIV_CLK3_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

DIV_CLK3_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00005D04 DIV_CLK3_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

DIV_CLK3_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	Clock
		0x6: CLOCK

0x00005D05 DIV_CLK3_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

DIV_CLK3_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	DIV_CLK 0xB: DIV_CLK

0x00005D08 DIV_CLK3_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

DIV_CLK3_STATUS1

Bits	Name	Description
7	DIVCLK_OK	0 = DIVCLK is off
		1 = DIVCLK is on
		0x0: DIVIDER_OFF
		0x1: DIVIDER_ON

0x00005D43 DIV_CLK3_DIV_CTL1

DIV_CLK3_DIV_CTL1

DIV_CLK3_DIV_CTL1 Type: RW Clock: PBUS_WRCLK Reset State: 0x00 Reset Name: PERPH_RB DIV_CLK3_DIV_CTL1		
Bits	Name	Description
2:0	DIV_FACTOR	Low power divided clock output to GPIO divide ratio 000 = XO / 1 001 = XO / 1 010 = XO / 2 011 = XO / 4 100 = XO / 8 101 = XO / 16 110 = XO / 32 111 = XO / 64 0x0: XO_DIV1_0 0x1: XO_DIV1 0x2: XO_DIV2 0x3: XO_DIV4 0x4: XO_DIV8 0x5: XO_DIV16 0x6: XO_DIV32 0x7: XO_DIV64

0x00005D46 DIV_CLK3_EN_CTL

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: PERPH RB

DIV_CLK3_EN_CTL

Bits	Name	Description
7	DIVCLK_EN	1 = DIVCLK is on, 0 = DIVCLK is disabled 0x0: DIVCLK_DIS 0x1: DIVCLK_EN
0	FOLLOW_PC_EN	When set, clock can be enabled from an external signal. 0x0: NOT_FOLLOW_PIN 0x1: FOLLOW_PIN
	2018-09-21018 2018-09-21018	A. C.

26 Rtc_rw Registers

0x00006000 RTC_RW_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

RTC_RW_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00006001 RTC_RW_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

RTC_RW_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00006004 RTC_RW_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

RTC_RW_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	RTC
		0x7: RTC

0x00006005 RTC_RW_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

RTC_RW_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	RTC RW
		0x1: RTC_RW

0x00006008 RTC_RW_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

RTC_RW_STATUS1

Bits	Name	Description
7	RTC_OK	0 = RTC is disabled
		1 = RTC is enabled
		0x0: RTC_OFF
		0x1: RTC_ON

0x00006046 RTC_RW_EN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft xVdd rb

RTC_RW_EN_CTL1

Bits	Name		Description	
7	RTC_EN	7	RTC_EN - enables the real-time clock	
			0x1: RTC_COUNTER_EN	
		20,	0x0: RTC_COUNTER_DIS	

0x00006048 RTC RW RDATA0

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: xVdd rb

RTC_RW_RDATA0

Bits	Name	Description
7:0	RTC_RDATA0	RTC 32-bit counter [7:0] value

0x00006049 RTC_RW_RDATA1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: xVdd_rb

RTC_RW_RDATA1

Bits	Name	Description
7:0	RTC_RDATA1	RTC 32-bit counter [15:8] value

0x0000604A RTC_RW_RDATA2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: xVdd_rb

RTC_RW_RDATA2

Bits	Name	Description
7:0	RTC_RDATA2	RTC 32-bit counter [23:16] value

0x0000604B RTC_RW_RDATA3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: xVdd_rb

RTC_RW_RDATA3

Bit	Name	Description
7:0	RTC_RDATA3	RTC 32-bit counter [31:24] value

27 Rtc_alarm Registers

0x00006100 RTC_ALARM_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

RTC_ALARM_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00006101 RTC_ALARM_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

RTC_ALARM_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00006104 RTC_ALARM_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

RTC_ALARM_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	RTC
		0x7: RTC

0x00006105 RTC_ALARM_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

RTC_ALARM_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	RTC_ALARM 0x3: RTC_ALARM

0x00006108 RTC_ALARM_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Status Registers

RTC_ALARM_STATUS1

Bits	Name	Description
7	RTC_ALARM_OK	0 = ALARM is not enabled
		1 = ALARM is enabled
		0x0: RTC_ALARM_DIS
		0x1: RTC_ALARM_EN

0x00006110 RTC_ALARM_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

RTC_ALARM_INT_RT_STS

Bits	Name	Description
1	RTC_ALARM	0x0: RTC_ALARM_NOT_EXPIRED
	27.0	0x1: RTC_ALARM_EXPIRED

0x00006111 RTC_ALARM_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

RTC_ALARM_INT_SET_TYPE

Bits	Name	Description
1	RTC_ALARM	0x0: LEVEL
		0x1: EDGE

0x00006112 RTC_ALARM_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

RTC_ALARM_INT_POLARITY_HIGH

Bits	Name	Description
1	RTC_ALARM	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x00006113 RTC_ALARM_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

RTC ALARM INT POLARITY LOW

Bits	Name	Description
1	RTC_ALARM	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x00006114 RTC_ALARM_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

RTC_ALARM_INT_LATCHED_CLR

Bits	Name	Description
1	RTC_ALARM	

0x00006115 RTC_ALARM_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_SET_MASK

RTC_ALARM_INT_EN_SET

Bits	Name	Description
1	RTC_ALARM	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x00006116 RTC_ALARM_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC CLR MASK=INT EN SET

RTC_ALARM_INT_EN_CLR

Bits	Name	Description
1	RTC_ALARM	2.27

0x00006118 RTC_ALARM_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

RTC_ALARM_INT_LATCHED_STS

Bits	Name	Description
1	RTC_ALARM	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x00006119 RTC_ALARM_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

RTC_ALARM_INT_PENDING_STS

Bits	Name	Description
1	RTC_ALARM	0x0: NO_INT_PENDING 0x1: INTERRUPT_PENDING

0x0000611A RTC_ALARM_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Selects the MID that will receive the interrupt

RTC_ALARM_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
	27.0	0x3: MID3

0x0000611B RTC_ALARM_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

RTC_ALARM_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x00006140 RTC_ALARM_ALARM_DATA0

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft xVdd rb

RTC ALARM ALARM DATA0

Bits	Name	Description
7:0	RTC_ALARM_DATA0	RTC_ALARM_DATA0 - Real time alarm value [7:0].

0x00006141 RTC_ALARM_ALARM_DATA1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb

RTC_ALARM_ALARM_DATA1

Bits	Name	Description
7:0	RTC_ALARM_DATA1	RTC_ALARM_DATA1 - Real time alarm value [15:8].

0x00006142 RTC_ALARM_ALARM_DATA2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft xVdd rb

RTC_ALARM_ALARM_DATA2

Bits	Name	Description
7:0	RTC_ALARM_DATA2	RTC_ALARM_DATA2 - Real time alarm value [23:16].

0x00006143 RTC_ALARM_ALARM_DATA3

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb

RTC_ALARM_ALARM_DATA3

Bits	Name	Description
7:0	RTC_ALARM_DATA3	RTC_ALARM_DATA3 - Real time alarm value [31:24].

0x00006146 RTC_ALARM_EN_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb

RTC_ALARM_EN_CTL1

Bits	Name	Description
7	ALARM_EN	ALARM_EN - enables the real-time clock alarm
		0x0: RTC_ALARM_DIS
		0x1: RTC_ALARM_EN
0	ABORT_EN	ABORT_EN - Enable the abort on PERPH_RB feature. If the PMIC fails to power up within 4 seconds, the alarm will be masked to stop repeated power cycling.
	70	0x0: RTC_STARTUP_DOESNT_ABORT
	97,018	0x1: RTC_STARTUP_ABORT_EN

0x00006148 RTC_ALARM_ALARM_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: soft_xVdd_rb

RTC_ALARM_ALARM_CLR

Bits	Name	Description
0	ALARM_CLR	RTC alarm cleared by writing 1

28 Mpp_ult Registers

0x0000A000 MPP1_REVISION1

MPP1 REVISION1

Type: Clock:	MPP1_REVISION1 Type: R Clock: PBUS_WRCLK Reset State: 0x01		
Reset I	Name: N/A		
HW Ve	ersion Register [7:0]		
PMIC_	PMIC_CONSTANT		
_	REVISION1	in com	
Bits	Name	Description	
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.	

0x0000A001 MPP1_REVISION2

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

MPP1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000A002 MPP1_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

MPP1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A003 MPP1 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

MPP1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000A004 MPP1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x11

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

MPP1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x11: MPP

0x0000A005 MPP1_PERPH_SUBTYPE

Type: R

MPP1_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x06	
Reset Name: N/A		
Peripheral SubType		
MPP1_	PERPH_SUBTYPE	·O,
Bits	Name	Description
7:0	SUBTYPE	0x3: MPP_4CH_SINK
	. ()	0x4: ULT_MPP_4CH_SINK
		0x5: MPP_4CH_AOUT
		0x6: ULT_MPP_4CH_AOUT
	25.0	0x7: MPP_4CH_AOUT_SINK
	29 201	0xB: MPP_8CH_SINK
		OVD, MDD OCH ACHT
	C' CULI	0xD: MPP_8CH_AOUT 0xF: MPP_8CH_AOUT_SINK

800A000x0 MPP1_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

MPP1_STATUS1

Bits	Name	Description
7	MPP_OK	0 = MPP is disabled
		1 = MPP is enabled
		0x0: MPP_DISABLED
		0x1: MPP_ENABLED

MPP1_STATUS1 (cont.)

Bits	Name	Description
0	MPP_VAL	Value read by the input buffer, if enabled 0x0: MPP_INPUT_LOW 0x1: MPP_INPUT_HIGH

0x0000A010 MPP1_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

MPP1_INT_RT_STS

Bits	Name	Description
0	MPP_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000A011 MPP1 INT SET TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

MPP1_INT_SET_TYPE

Bits	Name	Description
0	MPP_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000A012 MPP1_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

MPP1_INT_POLARITY_HIGH

Bits	Name	Description
0	MPP_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000A013 MPP1_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

MPP1_INT_POLARITY_LOW

Bits	Name	Description
0	MPP_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000A014 MPP1_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

MPP1_INT_LATCHED_CLR

Bits	Name	Description
0	MPP_IN_LATCHED_CLR	

0x0000A015 MPP1_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

MPP1_INT_EN_SET

Bit	Name	Description
0	MPP_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000A016 MPP1_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

MPP1 INT EN CLR

Bits	Name	Description
0	MPP_IN_EN_CLR	0x0: INT_DISABLED 0x1: INT_ENABLED

0x0000A018 MPP1_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

MPP1_INT_LATCHED_STS

Bits	Name	Description
0	MPP_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000A019 MPP1_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

MPP1_INT_PENDING_STS

Bits	Name	Description
0	MPP_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000A01A MPP1_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

MPP1_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000A01B MPP1_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP1_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000A040 MPP1_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP Mode allows you to switch from one mode to another mode in a single register write.

MPP1_MODE_CTL

Bits	Name	Description
6:4	MODE	MPP Type:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
		0x2: DIGITAL_IN_AND_OUT
		0x3: RESERVED3
		0x4: ANALOG_INPUT
		0x5: ANALOG_OUTPUT
		0x6: CURRENT_SINK
	. ()	0x7: RESERVED7
	2018-09-21-01-02-01-01-01-01-01-01-01-01-01-01-01-01-01-	

MPP1_MODE_CTL (cont.)

Bits	Name	Description
3:0	EN_AND_SOURCE_SEL	When configured as a digital output Source select:
		0000 = 0
		0001 = 1
		0010 = paired MPP
		0011 = inverted paired MPP 0100 = Reserved
		0101 = Reserved
		0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3
		1110 = DTEST4
		1111 = inverted DTEST4
		1 P
		Enable control when configured as AOUT, or Current Sink. MPP is
		enable whenever the selected condition is true.
	, 0,	0000 = 0 (mpp is always disabled) 0001 = 1 (mpp is always Enabled)
	2 2	0010 = paired MPP
	09, 1110	0011 = inverted paired MPP
	J. 8. 16.1.	0100 = Reserved
	College Williams	0101 = Reserved
	1	0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3 1110 = DTEST4
		1111 = inverted DTEST4 0x0: LOW
		0x1: HIGH
		0x2: PAIRED MPP
		0x3: NOT_PAIRED_MPP
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7
		0x8: DTEST1
		0x9: NOT_DTEST1

MPP1_MODE_CTL (cont.)

Bits	Name	Description
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000A041 MPP1_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP1_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx) 0x0: VIN0 0x1: VIN1
	O 18:08 mills	0x2: VIN2 0x3: VIN3

0x0000A043 MPP1_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Enable DTEST buffers

MPP1_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

MPP1_DIG_IN_CTL (cont.)

Bits	Name	Description
1	DTEST2	Route to DTEST2 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

0x0000A046 MPP1_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP1_EN_CTL

Bits	Name	Description
7	PERPH_EN	MPP Master enable
		0 = puts MPP_PAD at high Z and disables the block
	27	1 = MPP is enabled
	29 00	0x0: MPP_DISABLED
	18.00 mills	0x1: MPP_ENABLED

0x0000A048 MPP1_ANA_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP1_ANA_OUT_CTL

Bits	Name	Description
2:0	RESERVED	

0x0000A04A MPP1_ANA_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP1_ANA_IN_CTL

Bits	Name	Description
2:0	ROUTE_SEL	AMUX Channel Control
		0: Route to hkadc5
		1: Route to hkadc6
		2: Route to hkadc7
		3: Route to hkadc8
		4: Reserved
		5: Reserved
		6: Reserved
		7: Reserved
		0x0: HKADC5
		0x1: HKADC6
		0x2: HKADC7
		0x3: HKADC8
		0x4: Reserved
	\ (0x5: Reserved
		0x6: Reserved
		0x7: Reserved

0x0000A04C MPP1_SINK_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH_RB

MPP1_SINK_CTL

Bits	Name	Description
2:0	CURRENT_SEL	Current Sink Output Control
		0x0: CURRENT_5MA
		0x1: CURRENT_10MA
		0x2: CURRENT_15MA
		0x3: CURRENT_20MA
		0x4: CURRENT_25MA
		0x5: CURRENT_30MA
		0x6: CURRENT_35MA
		0x7: CURRENT_40MA

29 Mpp_ult Registers

0x0000A100 MPP2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

MPP2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A101 MPP2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

MPP2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000A102 MPP2_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

MPP2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A103 MPP2 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

MPP2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000A104 MPP2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x11

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

MPP2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x11: MPP

0x0000A105 MPP2_PERPH_SUBTYPE

Type: R

MPP2_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x04	
Reset Name: N/A		
Periphe	eral SubType	
MDD2	DEDDU GUDTVDE	
	PERPH_SUBTYPE	
Bits	Name	Description
7:0	SUBTYPE	0x3: MPP_4CH_SINK
	. ()	0x4: ULT_MPP_4CH_SINK
		0x5: MPP 4CH AOUT
1		0X5. MFF_4CH_AOUT
	65	0x6: ULT_MPP_4CH_AOUT
	210	V 20 = =
	29-21 de	0x6: ULT_MPP_4CH_AOUT
	G 1.09-21.03	0x6: ULT_MPP_4CH_AOUT 0x7: MPP_4CH_AOUT_SINK

0x0000A108 MPP2_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

MPP2_STATUS1

Bits	Name	Description
7	MPP_OK	0 = MPP is disabled
		1 = MPP is enabled
		0x0: MPP_DISABLED
		0x1: MPP_ENABLED

MPP2_STATUS1 (cont.)

Bits	Name	Description
0	MPP_VAL	Value read by the input buffer, if enabled 0x0: MPP_INPUT_LOW 0x1: MPP_INPUT_HIGH

0x0000A110 MPP2_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

MPP2_INT_RT_STS

Bits	Name	Description
0	MPP_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000A111 MPP2 INT SET TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

MPP2_INT_SET_TYPE

Bits	Name	Description
0	MPP_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000A112 MPP2_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

MPP2_INT_POLARITY_HIGH

Bits	Name	Description
0	MPP_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000A113 MPP2_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

MPP2_INT_POLARITY_LOW

Bits	Name	Description
0	MPP_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000A114 MPP2_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

MPP2_INT_LATCHED_CLR

Bits	Name	Description
0	MPP_IN_LATCHED_CLR	

0x0000A115 MPP2_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

MPP2_INT_EN_SET

Bits	Name	Description
0	MPP_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000A116 MPP2_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

MPP2 INT EN CLR

Bits	Name	Description
0	MPP_IN_EN_CLR	0x0: INT_DISABLED 0x1: INT_ENABLED

0x0000A118 MPP2_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

MPP2_INT_LATCHED_STS

Bits	Name	Description
0	MPP_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000A119 MPP2_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

MPP2_INT_PENDING_STS

Bits	Name	Description
0	MPP_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000A11A MPP2_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

MPP2_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000A11B MPP2_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP2_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000A140 MPP2_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP Mode allows you to switch from one mode to another mode in a single register write.

MPP2_MODE_CTL

Bits	Name	Description
6:4	MODE	MPP Type:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
		0x2: DIGITAL_IN_AND_OUT
		0x3: RESERVED3
		0x4: ANALOG_INPUT
		0x5: ANALOG_OUTPUT
		0x6: CURRENT_SINK
	. ()	0x7: RESERVED7
2012 Swamingtern.com		

MPP2_MODE_CTL (cont.)

Bits	Name	Description
3:0	EN_AND_SOURCE_SEL	When configured as a digital output Source select:
		0000 = 0
		0001 = 1
		0010 = paired MPP
		0011 = inverted paired MPP 0100 = Reserved
		0101 = Reserved
		0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3
		1110 = DTEST4
		1111 = inverted DTEST4
		1 P
		Enable control when configured as AOUT, or Current Sink. MPP is
		enable whenever the selected condition is true.
	, 0,	0000 = 0 (mpp is always disabled) 0001 = 1 (mpp is always Enabled)
	2 2	0010 = paired MPP
	09, 1110	0011 = inverted paired MPP
	J. 8. 16.1.	0100 = Reserved
	Cole of thirth	0101 = Reserved
	1	0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3 1110 = DTEST4
		1111 = inverted DTEST4 0x0: LOW
		0x1: HIGH
		0x2: PAIRED MPP
		0x3: NOT_PAIRED_MPP
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7
		0x8: DTEST1
		0x9: NOT_DTEST1

MPP2_MODE_CTL (cont.)

Bits	Name	Description
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000A141 MPP2_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP2_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source:
		(refer to the device specification for the definition of VINx)
	, , , ,	0x0: VIN0
	2 2	0x1: VIN1
	, OS , if OS	0x2: VIN2
	OJS NEW	0x3: VIN3

0x0000A143 MPP2_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Enable DTEST buffers

MPP2_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

MPP2_DIG_IN_CTL (cont.)

Bits	Name	Description
1	DTEST2	Route to DTEST2 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

0x0000A146 MPP2_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP2_EN_CTL

Bits	Name	Description
7	PERPH_EN	MPP Master enable
		0 = puts MPP_PAD at high Z and disables the block
	27	1 = MPP is enabled
	20 00	0x0: MPP_DISABLED
	18. Onlin	0x1: MPP_ENABLED

0x0000A148 MPP2_ANA_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP2_ANA_OUT_CTL

Bits	Name	Description
2:0	RESERVED	

0x0000A14A MPP2_ANA_IN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

MPP2_ANA_IN_CTL

Bits	Name	Description
2:0	ROUTE_SEL	AMUX Channel Control
		0: Route to hkadc5
		1: Route to hkadc6
		2: Route to hkadc7
		3: Route to hkadc8
		4: Reserved
		5: Reserved
		6: Reserved
		7: Reserved
		0x0: HKADC5
		0x1: HKADC6
		0x2: HKADC7
		0x3: HKADC8
		0x4: Reserved
	\ (0x5: Reserved
		0x6: Reserved
		0x7: Reserved

0x0000A14C MPP2_SINK_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH_RB

MPP2_SINK_CTL

Bits	Name	Description
2:0	CURRENT_SEL	Current Sink Output Control
		0x0: CURRENT_5MA
		0x1: CURRENT_10MA
		0x2: CURRENT_15MA
		0x3: CURRENT_20MA
		0x4: CURRENT_25MA
		0x5: CURRENT_30MA
		0x6: CURRENT_35MA
		0x7: CURRENT_40MA

30 Mpp_ult Registers

0x0000A200 MPP3_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

MPP3_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A201 MPP3_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

MPP3_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000A202 MPP3_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

MPP3_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A203 MPP3 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

MPP3_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000A204 MPP3_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x11

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

MPP3_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x11: MPP

0x0000A205 MPP3_PERPH_SUBTYPE

Type: R

MPP3_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x06	
Reset Name: N/A		
Periphe	eral SubType	
MPP3_	PERPH_SUBTYPE	·O,
Bits	Name	Description
7:0	SUBTYPE	0x3: MPP_4CH_SINK
	. ()	0x4: ULT_MPP_4CH_SINK
		0x5: MPP_4CH_AOUT
		0x6: ULT_MPP_4CH_AOUT
	27	0x7: MPP_4CH_AOUT_SINK
	39 alie	0xB: MPP_8CH_SINK
	C. C. Mills	0xD: MPP_8CH_AOUT
	V V (O)	0xF: MPP 8CH AOUT SINK

0x0000A208 MPP3_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

MPP3_STATUS1

Bits	Name	Description
7	MPP_OK	0 = MPP is disabled
		1 = MPP is enabled
		0x0: MPP_DISABLED
		0x1: MPP_ENABLED

MPP3_STATUS1 (cont.)

Bits	Name	Description
0	MPP_VAL	Value read by the input buffer, if enabled 0x0: MPP_INPUT_LOW 0x1: MPP_INPUT_HIGH

0x0000A210 MPP3_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

MPP3_INT_RT_STS

Bits	Name	Description
0	MPP_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000A211 MPP3_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

MPP3_INT_SET_TYPE

Bits	Name	Description
0	MPP_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000A212 MPP3_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

MPP3_INT_POLARITY_HIGH

Bits	Name	Description
0	MPP_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000A213 MPP3_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

MPP3_INT_POLARITY_LOW

Bits	Name	Description
0	MPP_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000A214 MPP3_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

MPP3_INT_LATCHED_CLR

Bits	Name	Description
0	MPP_IN_LATCHED_CLR	

0x0000A215 MPP3_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

MPP3_INT_EN_SET

Bits	Name	Description
0	MPP_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000A216 MPP3_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

MPP3 INT EN CLR

Bits	Name	Description
0	MPP_IN_EN_CLR	0x0: INT_DISABLED 0x1: INT_ENABLED

0x0000A218 MPP3_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

MPP3_INT_LATCHED_STS

Bits	Name	Description
0	MPP_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000A219 MPP3_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

MPP3_INT_PENDING_STS

Bits	Name	Description
0	MPP_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000A21A MPP3_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

MPP3_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000A21B MPP3_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP3_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000A240 MPP3_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP Mode allows you to switch from one mode to another mode in a single register write.

MPP3_MODE_CTL

Bits	Name	Description	
6:4	MODE	MPP Type:	
		0x0: DIGITAL_INPUT	
		0x1: DIGITAL_OUTPUT	
		0x2: DIGITAL_IN_AND_OUT	
		0x3: RESERVED3	
		0x4: ANALOG_INPUT	
		0x5: ANALOG_OUTPUT	
		0x6: CURRENT_SINK	
	. ()	0x7: RESERVED7	
	2018-09-21 of October 2018 Shieming Echicom		

MPP3_MODE_CTL (cont.)

Bits	Name	Description
3:0	EN_AND_SOURCE_SEL	When configured as a digital output Source select:
		0000 = 0
		0001 = 1
		0010 = paired MPP
		0011 = inverted paired MPP 0100 = Reserved
		0101 = Reserved
		0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3
		1110 = DTEST4
		1111 = inverted DTEST4
		1 P
		Enable control when configured as AOUT, or Current Sink. MPP is
		enable whenever the selected condition is true.
	, 0,	0000 = 0 (mpp is always disabled) 0001 = 1 (mpp is always Enabled)
	2 2	0010 = paired MPP
	09, 1119	0011 = inverted paired MPP
	J. 8. 16.1.	0100 = Reserved
	Cole of thirth	0101 = Reserved
	1	0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3 1110 = DTEST4
		1111 = inverted DTEST4 0x0: LOW
		0x1: HIGH
		0x2: PAIRED MPP
		0x3: NOT_PAIRED_MPP
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7
		0x8: DTEST1
		0x9: NOT_DTEST1

MPP3_MODE_CTL (cont.)

Bits	Name	Description
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000A241 MPP3_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP3_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx) 0x0: VIN0
	C 18.09. Ningte	0x1: VIN1 0x2: VIN2 0x3: VIN3

0x0000A243 MPP3_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Enable DTEST buffers

MPP3_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

MPP3_DIG_IN_CTL (cont.)

Bits	Name	Description
1	DTEST2	Route to DTEST2 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

0x0000A246 MPP3_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP3_EN_CTL

Bits	Name	Description
7	PERPH_EN	MPP Master enable
		0 = puts MPP_PAD at high Z and disables the block
	27	1 = MPP is enabled
	29 201	0x0: MPP_DISABLED
	18. Onlin	0x1: MPP_ENABLED

0x0000A248 MPP3 ANA OUT CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP3_ANA_OUT_CTL

Bits	Name	Description
2:0	RESERVED	

0x0000A24A MPP3_ANA_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP3_ANA_IN_CTL

Bits	Name	Description
2:0	ROUTE_SEL	AMUX Channel Control
		0: Route to hkadc5
		1: Route to hkadc6
		2: Route to hkadc7
		3: Route to hkadc8
		4: Reserved
		5: Reserved
		6: Reserved
		7: Reserved
		0x0: HKADC5
		0x1: HKADC6
		0x2: HKADC7
		0x3: HKADC8
		0x4: Reserved
	\ (0x5: Reserved
		0x6: Reserved
		0x7: Reserved

0x0000A24C MPP3_SINK_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH_RB

MPP3_SINK_CTL

Bits	Name	Description
2:0	CURRENT_SEL	Current Sink Output Control
		0x0: CURRENT_5MA
		0x1: CURRENT_10MA
		0x2: CURRENT_15MA
		0x3: CURRENT_20MA
		0x4: CURRENT_25MA
		0x5: CURRENT_30MA
		0x6: CURRENT_35MA
		0x7: CURRENT_40MA

Mpp_ult Registers

0x0000A300 MPP4_REVISION1

MPP4 REVISION1

MPP4	_REVISION1		
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x01		
Reset I	Name: N/A		
HW Ve	ersion Register [7:0]	0.05	
PMIC_	CONSTANT	2.21	
MPP4_	MPP4_REVISION1		
Bits	Name Name	Description	
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.	

0x0000A301 MPP4_REVISION2

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

MPP4_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000A302 MPP4_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

MPP4_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000A303 MPP4 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

MPP4_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000A304 MPP4_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x11

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

MPP4_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x11: MPP

0x0000A305 MPP4_PERPH_SUBTYPE

Type: R

MPP4_PERPH_SUBTYPE

Clock: PBUS_WRCLK Reset State: 0x04		
Reset Name: N/A		
Periphe	eral SubType	N
MPP4_	PERPH_SUBTYPE	
Bits	Name	Description
7:0	SUBTYPE	0x3: MPP_4CH_SINK
	. ()	0x4: ULT_MPP_4CH_SINK
		0x5: MPP_4CH_AOUT
		0x6: ULT_MPP_4CH_AOUT
	7,0	0x6: ULT_MPP_4CH_AOUT 0x7: MPP_4CH_AOUT_SINK
	37.70	V
	G 1.09.21.01	0x7: MPP_4CH_AOUT_SINK

0x0000A308 MPP4_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

MPP4_STATUS1

Bits	Name	Description
7	MPP_OK	0 = MPP is disabled
		1 = MPP is enabled
		0x0: MPP_DISABLED
		0x1: MPP_ENABLED

MPP4_STATUS1 (cont.)

Bits	Name	Description
0	MPP_VAL	Value read by the input buffer, if enabled 0x0: MPP_INPUT_LOW 0x1: MPP_INPUT_HIGH

0x0000A310 MPP4_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

MPP4_INT_RT_STS

Bits	Name	Description
0	MPP_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000A311 MPP4_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

MPP4_INT_SET_TYPE

Bits	Name	Description
0	MPP_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000A312 MPP4_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

MPP4_INT_POLARITY_HIGH

Bits	Name	Description
0	MPP_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000A313 MPP4_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

MPP4_INT_POLARITY_LOW

Bits	Name	Description
0	MPP_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000A314 MPP4_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

MPP4_INT_LATCHED_CLR

Bits	Name	Description
0	MPP_IN_LATCHED_CLR	

0x0000A315 MPP4_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

MPP4_INT_EN_SET

Bits	Name	Description
0	MPP_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000A316 MPP4_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

MPP4 INT EN CLR

Bits	Name	Description
0	MPP_IN_EN_CLR	0x0: INT_DISABLED 0x1: INT_ENABLED

0x0000A318 MPP4_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

MPP4_INT_LATCHED_STS

Bits	Name	Description
0	MPP_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000A319 MPP4_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

MPP4_INT_PENDING_STS

Bits	Name	Description
0	MPP_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000A31A MPP4_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

MPP4_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000A31B MPP4_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP4_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000A340 MPP4_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP Mode allows you to switch from one mode to another mode in a single register write.

MPP4_MODE_CTL

Bits	Name	Description
6:4	MODE	MPP Type:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
		0x2: DIGITAL_IN_AND_OUT
		0x3: RESERVED3
		0x4: ANALOG_INPUT
		0x5: ANALOG_OUTPUT
		0x6: CURRENT_SINK
	. ()	0x7: RESERVED7
2018:09:22101:02in 2018:5m@minife.in.com		

MPP4_MODE_CTL (cont.)

Bits	Name	Description
3:0	EN_AND_SOURCE_SEL	When configured as a digital output Source select:
		0000 = 0
		0001 = 1
		0010 = paired MPP
		0011 = inverted paired MPP 0100 = Reserved
		0101 = Reserved
		0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3
	\ (1110 = DTEST4
		1111 = inverted DTEST4
		1 P
		Enable control when configured as AOUT, or Current Sink. MPP is
		enable whenever the selected condition is true.
	, 0,	0000 = 0 (mpp is always disabled) 0001 = 1 (mpp is always Enabled)
	2 2	0010 = paired MPP
	09, 1110	0011 = inverted paired MPP
	J. 8. 16.1.	0100 = Reserved
	Cole of thirth	0101 = Reserved
	1	0110 = Reserved
		0111 = Reserved
		1000 = DTEST1
		1001 = inverted DTEST1
		1010 = DTEST2
		1011 = inverted DTEST2
		1100 = DTEST3
		1101 = inverted DTEST3 1110 = DTEST4
		1111 = inverted DTEST4 0x0: LOW
		0x1: HIGH
		0x2: PAIRED MPP
		0x3: NOT_PAIRED_MPP
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7
		0x8: DTEST1
		0x9: NOT_DTEST1

MPP4_MODE_CTL (cont.)

Bits	Name	Description
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000A341 MPP4_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP4_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source:
		(refer to the device specification for the definition of VINx)
	, , , ,	0x0: VIN0
	2 2	0x1: VIN1
	, OS , if OS	0x2: VIN2
	OJS NEW	0x3: VIN3

0x0000A343 MPP4_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Enable DTEST buffers

MPP4_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

MPP4_DIG_IN_CTL (cont.)

Bits	Name	Description
1	DTEST2	Route to DTEST2 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1 0x0: DTEST_DISABLED 0x1: DTEST_ENABLED

0x0000A346 MPP4_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP4_EN_CTL

Bits	Name	Description
7	PERPH_EN	MPP Master enable
		0 = puts MPP_PAD at high Z and disables the block
	27	1 = MPP is enabled
	29 201	0x0: MPP_DISABLED
	18. Onlin	0x1: MPP_ENABLED

0x0000A348 MPP4_ANA_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

MPP4_ANA_OUT_CTL

Bits	Name	Description
2:0	RESERVED	

0x0000A34A MPP4_ANA_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

MPP4_ANA_IN_CTL

Bits	Name	Description
2:0	ROUTE_SEL	AMUX Channel Control
		0: Route to hkadc5
		1: Route to hkadc6
		2: Route to hkadc7
		3: Route to hkadc8
		4: Reserved
		5: Reserved
		6: Reserved
		7: Reserved
		0x0: HKADC5
		0x1: HKADC6
		0x2: HKADC7
		0x3: HKADC8
		0x4: Reserved
	\ (0x5: Reserved
		0x6: Reserved
		0x7: Reserved

0x0000A34C MPP4_SINK_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: PERPH_RB

MPP4_SINK_CTL

Bits	Name	Description
2:0	CURRENT_SEL	Current Sink Output Control
		0x0: CURRENT_5MA
		0x1: CURRENT_10MA
		0x2: CURRENT_15MA
		0x3: CURRENT_20MA
		0x4: CURRENT_25MA
		0x5: CURRENT_30MA
		0x6: CURRENT_35MA
		0x7: CURRENT_40MA

32 Gpio Registers

0x0000C000 GPIO1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C001 GPIO1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

GPIO1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C002 GPIO1_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C003 GPIO1_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C004 GPIO1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C005 GPIO1_PERPH_SUBTYPE

Type: R

GPIO1_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x05	
Reset N	Name: N/A	
Periphe	eral SubType	
GPIO1	_PERPH_SUBTYPE	
GPIO1_ Bits	_PERPH_SUBTYPE Name	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

0x0000C008 **GPIO1_STATUS1**

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO1_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C010 GPIO1_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO1_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C011 GPIO1_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO1_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C012 GPIO1_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO1_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C013 GPIO1_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO1_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C014 GPIO1 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO1_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C015 GPIO1_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO1_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C016 GPIO1_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO1 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	9,019	0x1: INT_ENABLED

0x0000C018 GPIO1_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO1_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C019 GPIO1_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO1_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C01A GPIO1_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO1_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000C01B GPIO1_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO1_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR 0x1: A

0x0000C040 GPIO1_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO1_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27.0	0x2: DIGITAL_IN_AND_OUT
	O' indie	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	30, 2M	(Note: bit zero is effectively an invert bit (every odd entry is
	14	inverted)
		0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C041 GPIO1_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

GPIO1_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx)
		0x0: VIN0 0x1: VIN1 0x2: VIN2 0x3: VIN3 0x4: RESERVED4 0x5: RESERVED5 0x6: RESERVED6 0x7: RESERVED7

0x0000C042 GPIO1_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

0

Reset Name: PERPH_RB

GPIO1_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open- drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C043 GPIO1_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO1_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	09 indi	0x1: DTEST_ENABLED

0x0000C045 GPIO1_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO1_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low) Open drain not supported in GPIOC flavor 0x0: CMOS
		0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO1_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C046 GPIO1_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

GPIO1_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block
		1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	20 7 de	0x1: GPIO_ENABLED

ONN

33 Gpio Registers

0x0000C100 GPIO2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C101 GPIO2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

GPIO2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C102 GPIO2_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C103 GPIO2 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C104 GPIO2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C105 GPIO2_PERPH_SUBTYPE

Type: R

GPIO2_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x05	
Reset N	Name: N/A	
Periphe	eral SubType	N
	_PERPH_SUBTYPE	·O,
GPIO2	_PERPH_SUBTYPE Name	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

0x0000C108 GPIO2_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO2_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C110 GPIO2_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO2_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C111 GPIO2_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO2_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C112 GPIO2_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO2_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C113 GPIO2_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO2_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C114 GPIO2 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO2_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C115 GPIO2_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO2_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C116 GPIO2_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO2 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	9,019	0x1: INT_ENABLED

0x0000C118 GPIO2_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO2_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C119 GPIO2_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO2_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C11A GPIO2_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO2_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000C11B GPIO2_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO2_INT_PRIORITY

Е	Bits	Name	Description
	0	INT_PRIORITY	0x0: SR 0x1: A

0x0000C140 GPIO2_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO2_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27	0x2: DIGITAL_IN_AND_OUT
	9' "19"	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	20, 24	(Note: bit zero is effectively an invert bit (every odd entry is
	1	inverted)
		0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C141 GPIO2_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO2_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source:
		(refer to the device specification for the definition of VINx)
		0x0: VIN0
		0x1: VIN1
		0x2: VIN2
		0x3: VIN3
		0x4: RESERVED4
		0x5: RESERVED5
	10	0x6: RESERVED6
		0x7: RESERVED7
		. **

0x0000C142 GPIO2_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x04

Reset Name: PERPH_RB

GPIO2_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open- drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C143 GPIO2_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO2_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	S OS MIND	0x1: DTEST_ENABLED

0x0000C145 GPIO2_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO2_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low) Open drain not supported in GPIOC flavor 0x0: CMOS
		0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO2_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C146 GPIO2_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO2_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block 1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	92 45	0x1: GPIO_ENABLED

Gpio Registers

0x0000C200 GPIO3_REVISION1

GPIO3_REVISION1

GPIO:	GPIO3_REVISION1			
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x01			
Reset N	Name: N/A			
HW Ve	ersion Register [7:0]			
PMIC_	CONSTANT			
GPIO3	GPIO3_REVISION1			
Bits	Name O Name	Description		
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.		

0x0000C201 GPIO3_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

GPIO3_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C202 GPIO3_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO3_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C203 GPIO3_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO3_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C204 GPIO3_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO3_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C205 GPIO3_PERPH_SUBTYPE

Type: R

GPIO3_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x01	
Reset Name: N/A		
Periphe	eral SubType	N
	_PERPH_SUBTYPE	·O,
GPIO3	_PERPH_SUBTYPE Name	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

0x0000C208 **GPIO3_STATUS1**

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO3_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED 0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled 0x0: GPIO_INPUT_LOW 0x1: GPIO_INPUT_HIGH

0x0000C210 GPIO3_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO3_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C211 GPIO3_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO3_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C212 GPIO3_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO3_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C213 GPIO3_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO3_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C214 GPIO3 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO3_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C215 GPIO3_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO3_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED 0x1: INT_ENABLED

0x0000C216 GPIO3_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO3 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	97 018	0x1: INT_ENABLED

0x0000C218 GPIO3_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO3_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C219 GPIO3_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO3_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C21A GPIO3_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO3_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000C21B GPIO3_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO3_INT_PRIORITY

Е	Bits	Name	Description
	0	INT_PRIORITY	0x0: SR 0x1: A

0x0000C240 GPIO3_MODE_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO3_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	25	0x2: DIGITAL_IN_AND_OUT
	09' indi	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	50x 34	(Note: bit zero is effectively an invert bit (every odd entry is inverted)
	V	0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C241 GPIO3_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO3_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source:
		(refer to the device specification for the definition of VINx)
		0x0: VIN0
		0x1: VIN1
		0x2: VIN2
		0x3: VIN3
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C242 GPIO3_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x04

Reset Name: PERPH_RB

GPIO3_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open- drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C243 GPIO3_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO3_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	5 .09 indi	0x1: DTEST_ENABLED

0x0000C245 GPIO3_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO3_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low)
		Open drain not supported in GPIOC flavor 0x0: CMOS 0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO3_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C246 GPIO3_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO3_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block
		1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	3 7 die	0x1: GPIO_ENABLED

35 Gpio Registers

0x0000C300 GPIO4_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO4_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C301 GPIO4_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

GPIO4_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C302 GPIO4_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO4_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C303 GPIO4_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO4_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C304 GPIO4_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO4_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C305 GPIO4_PERPH_SUBTYPE

Type: R

GPIO4_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x01	
Reset N	Name: N/A	
Periphe	eral SubType	N
GPIO4	_PERPH_SUBTYPE	·O,
GPIO4	_PERPH_SUBTYPE	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

0x0000C308 GPIO4_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO4_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED 0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled 0x0: GPIO_INPUT_LOW 0x1: GPIO_INPUT_HIGH

0x0000C310 GPIO4_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO4_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C311 GPIO4 INT SET TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO4_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C312 GPIO4_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO4_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C313 GPIO4_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO4_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C314 GPIO4 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO4_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C315 GPIO4_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO4_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C316 GPIO4_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO4 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	and the	0x1: INT_ENABLED

0x0000C318 GPIO4_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO4_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C319 GPIO4_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO4_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C31A GPIO4_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO4_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
		0x3: MID3

0x0000C31B GPIO4_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO4_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000C340 GPIO4_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO4_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	25	0x2: DIGITAL_IN_AND_OUT
	09' indi	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	50x 34	(Note: bit zero is effectively an invert bit (every odd entry is inverted)
	V	0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C341 GPIO4_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO4_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source:
		(refer to the device specification for the definition of VINx)
		0x0: VIN0
		0x1: VIN1
		0x2: VIN2
		0x3: VIN3
		0x4: RESERVED4
		0x5: RESERVED5
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C342 GPIO4_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset State. UAU4

Reset Name: PERPH_RB

GPIO4_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open-drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C343 GPIO4_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO4_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	5 .09 indi	0x1: DTEST_ENABLED

0x0000C345 GPIO4_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO4_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low) Open drain not supported in GPIOC flavor 0x0: CMOS
		0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO4_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C346 GPIO4_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO4_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block 1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	92 45	0x1: GPIO_ENABLED

36 Gpio Registers

0x0000C400 GPIO5_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO5_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C401 GPIO5_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

GPIO5_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C402 GPIO5_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO5_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C403 GPIO5_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO5_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C404 GPIO5_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO5_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C405 GPIO5_PERPH_SUBTYPE

Type: R

GPIO5_PERPH_SUBTYPE

Clock: PBUS_WRCLK Reset State: 0x01 Reset Name: N/A		
Periphe	eral SubType	
GPIO5	_PERPH_SUBTYPE	·O,
GPIO5	_PERPH_SUBTYPE Name	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

GPIO5_STATUS1 0x0000C408

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO5_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C410 GPIO5_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO5_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C411 GPIO5_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO5_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C412 GPIO5_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO5_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C413 GPIO5_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO5_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C414 GPIO5 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO5_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C415 GPIO5_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO5_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C416 GPIO5_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO5 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	and the	0x1: INT_ENABLED

0x0000C418 GPIO5_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO5_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C419 GPIO5_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO5_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C41A GPIO5_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO5_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
		0x3: MID3

0x0000C41B GPIO5_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO5_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000C440 GPIO5_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO5_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27.	0x2: DIGITAL_IN_AND_OUT
	9 ingle	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	50x 3m	(Note: bit zero is effectively an invert bit (every odd entry is inverted)
	V	0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C441 GPIO5_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO5_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx)
		0x0: VIN0 0x1: VIN1 0x2: VIN2 0x3: VIN3 0x4: RESERVED4 0x5: RESERVED5 0x6: RESERVED6 0x7: RESERVED7

0x0000C442 GPIO5_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: PERPH_RB

GPIO5_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open-drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C443 GPIO5_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO5_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	5 .09 indi	0x1: DTEST_ENABLED

0x0000C445 GPIO5_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO5_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low)
		Open drain not supported in GPIOC flavor 0x0: CMOS 0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO5_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C446 GPIO5_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO5_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block
		1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	3 7 die	0x1: GPIO_ENABLED

37 Gpio Registers

0x0000C500 GPIO6_REVISION1

GPIO6_REVISION1

GPIO	6_REVISION1	
	R PBUS_WRCLK State: 0x01	
Reset N	Name: N/A	
HW Ve	ersion Register [7:0]	0.05
PMIC_	CONSTANT	
GPIO6	GPIO6_REVISION1	
Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C501 GPIO6_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

GPIO6_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C502 GPIO6_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO6_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C503 GPIO6_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO6_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C504 GPIO6_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO6_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C505 GPIO6_PERPH_SUBTYPE

Type: R

GPIO6_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x01	
Reset N	Name: N/A	
Periphe	eral SubType	N
GPIO6	_PERPH_SUBTYPE	·O,
GPIO6	_PERPH_SUBTYPE	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

GPIO6_STATUS1 0x0000C508

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO6_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C510 GPIO6_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO6_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C511 GPIO6_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO6_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C512 GPIO6_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO6_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C513 GPIO6_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO6_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C514 GPIO6 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO6_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C515 GPIO6_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO6_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C516 GPIO6_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO6_INT_EN_CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	and the	0x1: INT_ENABLED

0x0000C518 GPIO6_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO6_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C519 GPIO6_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO6_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C51A GPIO6_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO6_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: MID0
		0x1: MID1
		0x2: MID2
		0x3: MID3

0x0000C51B GPIO6_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO6_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000C540 GPIO6_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO6_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27.0	0x2: DIGITAL_IN_AND_OUT
	O' indie	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	30, 2M	(Note: bit zero is effectively an invert bit (every odd entry is
	14	inverted)
		0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C541 GPIO6_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO6_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx)
		0x0: VIN0 0x1: VIN1 0x2: VIN2 0x3: VIN3 0x4: RESERVED4 0x5: RESERVED5 0x6: RESERVED6 0x7: RESERVED7

0x0000C542 GPIO6_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x04

Reset Name: PERPH_RB

GPIO6_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open-drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C543 GPIO6_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO6_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	2.0	0x0: DTEST_DISABLED
	S OS MINDE	0x1: DTEST_ENABLED

0x0000C545 GPIO6_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO6_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low)
		Open drain not supported in GPIOC flavor 0x0: CMOS 0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO6_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C546 GPIO6_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO6_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block 1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	92 45	0x1: GPIO_ENABLED

38 Gpio Registers

0x0000C600 GPIO7_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO7_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C601 GPIO7_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

GPIO7_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C602 GPIO7_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO7_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C603 GPIO7 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO7_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C604 GPIO7_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO7_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C605 GPIO7_PERPH_SUBTYPE

Type: R

GPIO7_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x01	
Reset N	Name: N/A	
Periphe	eral SubType	N
GPIO7	_PERPH_SUBTYPE	-O,
GPIO7	_PERPH_SUBTYPE	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

GPIO7_STATUS1 0x0000C608

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO7_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C610 GPIO7_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO7_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C611 GPIO7_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO7_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C612 GPIO7_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO7_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C613 GPIO7_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO7_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C614 GPIO7 INT LATCHED CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO7_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C615 GPIO7_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO7_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C616 GPIO7_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO7 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	97 018	0x1: INT_ENABLED

0x0000C618 GPIO7_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO7_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C619 GPIO7_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO7_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C61A GPIO7_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO7_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000C61B GPIO7_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO7_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR
		0x1: A

0x0000C640 GPIO7_MODE_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO7_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27.	0x2: DIGITAL_IN_AND_OUT
	9 ingile	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	50x 34	(Note: bit zero is effectively an invert bit (every odd entry is inverted)
	V	0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C641 GPIO7_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO7_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx)
		0x0: VIN0 0x1: VIN1 0x2: VIN2 0x3: VIN3 0x4: RESERVED4 0x5: RESERVED5 0x6: RESERVED6 0x7: RESERVED7

0x0000C642 GPIO7_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x04

Reset Name: PERPH_RB

GPIO7_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open- drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C643 GPIO7_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO7_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	5 .09 indi	0x1: DTEST_ENABLED

0x0000C645 GPIO7_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO7_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low)
		Open drain not supported in GPIOC flavor 0x0: CMOS 0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO7_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C646 GPIO7_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO7_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block 1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	92 45	0x1: GPIO_ENABLED

39 Gpio Registers

0x0000C700 GPIO8_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

GPIO8_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C701 GPIO8_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC_CONSTANT

GPIO8_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0000C702 GPIO8_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

GPIO8_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0000C703 GPIO8 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

GPIO8_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0000C704 GPIO8_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x10

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

GPIO8_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	0x10: GPIO

0x0000C705 GPIO8_PERPH_SUBTYPE

Type: R

GPIO8_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x01	
Reset N	Name: N/A	
Periphe	eral SubType	N
	_PERPH_SUBTYPE	·O,
GPIO8	_PERPH_SUBTYPE Name	Description
		Description 0x1: GPIO_4CH
Bits	Name	
Bits	Name	0x1: GPIO_4CH

GPIO8_STATUS1 0x0000C708

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

GPIO8_STATUS1

Bits	Name	Description
7	GPIO_OK	0x0: GPIO_DISABLED
		0x1: GPIO_ENABLED
0	GPIO_VAL	Value read by the input buffer, if enabled
		0x0: GPIO_INPUT_LOW
		0x1: GPIO_INPUT_HIGH

0x0000C710 GPIO8_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Interrupt Real Time Status Bits

GPIO8_INT_RT_STS

Bits	Name	Description
0	GPIO_IN_STS	0x0: INT_RT_STATUS_LOW
		0x1: INT_RT_STATUS_HIGH

0x0000C711 GPIO8_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

GPIO8_INT_SET_TYPE

Bits	Name	Description
0	GPIO_IN_TYPE	0x0: LEVEL
		0x1: EDGE

0x0000C712 GPIO8_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

GPIO8_INT_POLARITY_HIGH

Bits	Name	Description
0	GPIO_IN_HIGH	0x0: HIGH_TRIGGER_DISABLED
		0x1: HIGH_TRIGGER_ENABLED

0x0000C713 GPIO8_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

GPIO8_INT_POLARITY_LOW

Bits	Name	Description
0	GPIO_IN_LOW	0x0: LOW_TRIGGER_DISABLED
		0x1: LOW_TRIGGER_ENABLED

0x0000C714 GPIO8_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing a 1 to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

GPIO8_INT_LATCHED_CLR

Bits	Name	Description
0	GPIO_IN_LATCHED_CLR	

0x0000C715 GPIO8_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing 0 to this register has no effect. Writing a 1 will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

GPIO8_INT_EN_SET

Bits	Name	Description
0	GPIO_IN_EN_SET	0x0: INT_DISABLED
		0x1: INT_ENABLED

0x0000C716 GPIO8_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing 0 to this register has no effect. Writing a 1 will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

GPIO8 INT EN CLR

Bits	Name	Description
0	GPIO_IN_EN_CLR	0x0: INT_DISABLED
	and the	0x1: INT_ENABLED

0x0000C718 GPIO8_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

Debug: Latched (Sticky) Interrupt. 1 indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

GPIO8_INT_LATCHED_STS

Bits	Name	Description
0	GPIO_IN_LATCHED_STS	0x0: NO_INT_LATCHED 0x1: INTERRUPT_LATCHED

0x0000C719 GPIO8_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

Debug: Pending is set if interrupt has been sent but not cleared.

GPIO8_INT_PENDING_STS

Bits	Name	Description
0	GPIO_IN_PENDING_STS	0x0: NO_INT_PENDING
		0x1: INTERRUPT_PENDING

0x0000C71A GPIO8_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

GPIO8_INT_MID_SEL

Name	Description
NT_MID_SEL	0x0: MID0
	0x1: MID1
	0x2: MID2
	0x3: MID3
V	· · V

0x0000C71B GPIO8_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

GPIO8_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x0: SR 0x1: A

0x0000C740 GPIO8_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO Mode allows you to switch from one mode to another mode in a single register write.

GPIO8_MODE_CTL

Bits	Name	Description
6:4	MODE	GPIO Mode:
		0x0: DIGITAL_INPUT
		0x1: DIGITAL_OUTPUT
	27.	0x2: DIGITAL_IN_AND_OUT
	9 ingile	0x3: RESERVED
3:0	EN_AND_SOURCE_SEL	Output Source select:
	50x 34	(Note: bit zero is effectively an invert bit (every odd entry is inverted)
	V	0x0: LOW
		0x1: HIGH
		0x2: PAIRED_GPIO
		0x3: NOT_PAIRED_GPIO
		0x4: SPECIAL_FUNCTION1
		0x5: NOT_SPECIAL_FUNCTION1
		0x6: SPECIAL_FUNCTION2
		0x7: NOT_SPECIAL_FUNCTION2
		0x8: DTEST1
		0x9: NOT_DTEST1
		0xA: DTEST2
		0xB: NOT_DTEST2
		0xC: DTEST3
		0xD: NOT_DTEST3
		0xE: DTEST4
		0xF: NOT_DTEST4

0x0000C741 GPIO8_DIG_VIN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

GPIO8_DIG_VIN_CTL

Bits	Name	Description
2:0	VOLTAGE_SEL	Select Voltage source: (refer to the device specification for the definition of VINx)
		0x0: VIN0 0x1: VIN1 0x2: VIN2 0x3: VIN3 0x4: RESERVED4 0x5: RESERVED5 0x6: RESERVED6 0x7: RESERVED7

0x0000C742 GPIO8_DIG_PULL_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: PERPH_RB

GPIO8_DIG_PULL_CTL

Bits	Name	Description
2:0	PULLUP_SEL	Current source pulls:
		(Note: HW disables pulls for modes other than input and open- drain output)
		0x0: PULLUP_30UA
		0x1: PULLUP_1P5UA
		0x2: PULLUP_31P5UA
		0x3: PULLUP_1P5UA_30UA_BOOST
		0x4: PULLDOWN_10UA
		0x5: NO_PULL
		0x6: RESERVED6
		0x7: RESERVED7

0x0000C743 GPIO8_DIG_IN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Enable DTEST buffers

GPIO8_DIG_IN_CTL

Bits	Name	Description
3	DTEST4	Route to DTEST4
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
2	DTEST3	Route to DTEST3
		0x0: DTEST_DISABLED
	10	0x1: DTEST_ENABLED
1	DTEST2	Route to DTEST2
		0x0: DTEST_DISABLED
		0x1: DTEST_ENABLED
0	DTEST1	Route to DTEST1
	27.0	0x0: DTEST_DISABLED
	5 .09 indi	0x1: DTEST_ENABLED

0x0000C745 GPIO8_DIG_OUT_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

GPIO8_DIG_OUT_CTL

Bits	Name	Description
5:4	OUTPUT_TYPE	Output buffer configuration 10= open drain PMOS (only drive high) 01=open drain NMOS (only drive low, i.e. I2C) 00=CMOS (drive high and low) Open drain not supported in GPIOC flavor 0x0: CMOS
		0x1: OPEN_HIGH 0x2: OPEN_LOW

GPIO8_DIG_OUT_CTL (cont.)

Bits	Name	Description
1:0	OUTPUT_DRV_SEL	Output buffer drive strength:
		0x0: RESERVED
		0x1: LOW
		0x2: MED
		0x3: HIGH

0x0000C746 GPIO8_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

GPIO8_EN_CTL

Bits	Name	Description
7	PERPH_EN	GPIO Master Enable
		0 = puts GPIO_PAD at high Z and disables the block 1 = GPIO is enabled
	,0	0x0: GPIO_DISABLED
	92 45	0x1: GPIO_ENABLED

40 Bclk_gen_main Registers

0x00011000 BCLK_GEN_MAIN_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

BCLK_GEN_MAIN_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x00011001 BCLK_GEN_MAIN_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

BCLK_GEN_MAIN_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00011002 BCLK_GEN_MAIN_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

BCLK_GEN_MAIN_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x00011003 BCLK GEN MAIN REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

BCLK_GEN_MAIN_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00011004 BCLK_GEN_MAIN_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1D

Reset Name: N/A

Peripheral Type

BCLK_GEN_MAIN_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00011005 BCLK_GEN_MAIN_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

BCLK_GEN_MAIN_PERPH_SUBTYPE

2018-09-21 oli Oli Com 2018-09-21 oli Oli Com

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN MAIN

41 Hfbuck2_ctrl Registers

0x00011400 S1_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S1_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S1_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011402 S1_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [23:16]

S1_CTRL_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011403 S1_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: N/A

HW Version Register [31:24]

S1 CTRL REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible.

0x00011404 S1_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S1_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS 0x3: SMPS

0x00011405 S1_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

S1_CTRL_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	HFBUCK2 General Purpose Controller
		0x8: GENERAL_PURPOSE_CONTROLLER

0x00011408 S1_CTRL_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S1_CTRL_STATUS

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold,,,, 1 = VREG output voltage is above VREG_OK threshold 0x0: VREG_OK_FALSE 0x1: VREG_OK_TRUE
5	ILS	Illegal Limit Stop. This is triggered when UL_Voltage < LL_Voltage. For more details look at HW/SW document 0x0: ILEGAL_LIMIT_STOP_FALSE 0x1: ILEGAL_LIMIT_STOP_TRUE
4	UL_VOLTAGE	Last voltage set was above UL_Voltage 0x0: UL_INT_FALSE 0x1: UL_INT_TRUE
3	LL_VOLTAGE	Last voltage set was below LL_Voltage 0x0: LL_INT_FALSE 0x1: LL_INT_TRUE
2	PS_TRUE	0 = buck is not pulse skipping,,,, 1 = buck is pulse skipping 0x0: PS_FALSE 0x1: PS_TRUE

S1_CTRL_STATUS (cont.)

Bits	Name	Description
1	NPM_TRUE	1 = VREG_OK and BUCK is in NPM 0x0: NPM_VREGOK_FALSE 0x1: NPM_VREGOK_TRUE
0	STEPPER_DONE	1 = stepper is done 0x0: STEPPER_DONE_FALSE 0x1: STEPPER_DONE_TRUE

0x00011410 S1_CTRL_INT_RT_STS

S1_CTRL_INT_RT_STS

		0x0: STEPPER_DONE_FALSE 0x1: STEPPER_DONE_TRUE		
Type: Clock: Reset S Reset M	S1_CTRL_INT_RT_STS Type: R Clock: PBUS_WRCLK Reset State: 0x00 Reset Name: PERPH_RB Interrupt Real Time Status Bits S1_CTRL_INT_RT_STS			
Bits	Name	Description		
1	VREG_FAULT_INT	OCP event has occurred 0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE		
0	VREG_OK_INT	Regulator has been successfully enabled 0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE		

0x00011411 S1_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S1_CTRL_INT_SET_TYPE

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE

S1_CTRL_INT_SET_TYPE (cont.)

Bits	Name	Description
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011412 S1_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S1_CTRL_INT_POLARITY_HIGH

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
	20,	0x1: VREG_OK_INT_TRUE

0x00011413 S1 CTRL INT POLARITY LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S1_CTRL_INT_POLARITY_LOW

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011414 S1_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S1_CTRL_INT_LATCHED_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011415 S1_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S1 CTRL INT EN SET

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S1_CTRL_INT_EN_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011418 S1_CTRL_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S1 CTRL INT LATCHED STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011419 S1_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S1_CTRL_INT_PENDING_STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x0001141A S1_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Selects the MID that will receive the interrupt

S1_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
	27,10	0x1: INT_MID_TRUE

0x0001141B S1_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S1_CTRL_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x00011440 S1_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

PMIC_LATCHED_WRITE=VOLTAGE_CTL2

S1_CTRL_VOLTAGE_CTL1

Description
/ at steps of 12.5 mV (Vmin = 0.375 V, Vstep =
/ at steps of 25.0 mV (Vmin = 1.550 V, Vstep =
ALSE
RUE

0x00011441 S1_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x44

Reset Name: PERPH_RB

S1_CTRL_VOLTAGE_CTL2

Bits	Na	me	Description
6:0	V_SET	27.0	Voltage = Vmin + VSET*(Vstep)

0x00011444 S1 CTRL PFM CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH_RB

S1_CTRL_PFM_CTL

Bits	Name	Description
7	PFM_VOLT_CTL	1=PFM voltage 1% over PWM voltage; 0=PFM voltage same as PWM voltage
		0x0: PFM_VOLT_BOOST_FALSE
		0x1: PFM_VOLT_BOOST_TRUE
6	PFM_IBOOST	1=Boost PFM Comparator bias current to 2uA; 0=bias current is 0.5uA 0x0: PFM_IBOOST_FALSE 0x1: PFM_IBOOST_TRUE

S1_CTRL_PFM_CTL (cont.)

Bits	Name	Description
5	PFM_TYPE_I	1= Legacy PFM mode 0=Advanced PFM mode
		0x0: PFM_ADVANCED
		0x1: PFM_LEGACY
4	RESERVED	
3	RESERVED	
2	PFM_IPLIM_CTRL	0:Vdip_comp does not control IPLIM
		1:Set IPLIM same as PWM mode when Vdip_comp=1
		0x0: PFM_IPLIM_CTRL_FALSE
		0x1: PFM_IPLIM_CTRL_TRUE
1:0	PFM_IPLIM_DLY	00:Delay=75ns
		01:Delay=150ns
		10:Delay=300ns
		11:Delay=600ns
		0x0: PFM_IPLIM_CTRL_75NS
		0x1: PFM_IPLIMI_CTRL_150NS
		0x2: PFM_IPLIM_CTRL_300NS
		0x3: PFM_IPLIM_CTRL_600NS

0x00011445 S1_CTRL_MODE_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x80

Reset Name: PERPH_RB

Define Buck Mode Transitions

S1_CTRL_MODE_CTL

Bits	Name	Description
7	PWM	Force PWM 0x0: PWM_NO_FORCE
-	ALITO MODE	0x1: PWM_FORCE
6	AUTO_MODE	1=Automatically enter NPM based on current 0x0: AUTO_FALSE 0x1: AUTO_TRUE
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) = '1' 0x0: FOLLOW_PMIC_AWAKE_FALSE 0x1: FOLLOW_PMIC_AWAKE_TRUE

S1_CTRL_MODE_CTL (cont.)

Bits	Name	Description
3	FOLLOW_HWEN3	1' BUCK is in NPM when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is in NPM when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is in NPM when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is in NPM when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011446 S1_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S1_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	1' = Enable the BUCK, '0' = do not force BUCK on 0x0: BUCK_ENABLE_FALSE 0x1: BUCK_ENABLE_TRUE
3	FOLLOW_HWEN3	1' BUCK is enabled when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is enabled when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is enabled when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is enabled when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011448 S1_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

S1_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	1' = Enable the pull-down when the regulator is disabled, '0' = pull-down is always disabled. Preset by trim register CTL_TRIM4
		0x0: PD_ENABLE_FALSE
		0x1: PD_ENABLE_TRUE

0x00011468 S1_CTRL_UL_LL_CTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S1_CTRL_UL_LL_CTRL

Bits	Name	Description
7	UL_INT_EN	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_INT_EN_FALSE 0x1: UL_INT_EN_TRUE
6	LL_INT_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_INT_EN_FALSE 0x1: LL_INT_EN_TRUE

0x00011469 S1_CTRL_UL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7F

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S1_CTRL_UL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets upper limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x0001146B S1_CTRL_LL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC ACCESS

S1_CTRL_LL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets lower limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x0001147A S1_CTRL_CTLR_MISC

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S1_CTRL_CTLR_MISC

Bits	Name	Description
7	SPARE_7	
6	SPARE_6	

S1_CTRL_CTLR_MISC (cont.)

Bits	Name	Description
5	SPARE_5	
4	SPARE_4	
3	SPARE_3	
2	SPARE_2	1=OCP is reset when perph_en, en_ext, and when are all low, 0=OCP is reset by perph_en rising edge 0x1: SPARE_2_TRUE 0x0: SPARE_2_FALSE
1	SPARE_1	1=enable buck, 0=normal mode 0x1: SPARE_1_TRUE 0x0: SPARE_1_FALSE
0	SPARE_0	disable_ps_timeout 1=pulse skip timeout feature is disabled, 0=pulse skip timeout feature is enabled 0x1: SPARE_0_TRUE 0x0: SPARE_0_FALSE
2018-09-21 of Corn		

42 Ultbuck_hc_ps_dig Registers

0x00011500 S1_PS_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S1_PS_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011501 S1_PS_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S1_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011502 S1_PS_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S1_PS_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011503 S1_PS_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

S1_PS_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision.

0x00011504 S1_PS_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x22

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S1_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS
		0x16: SMPS

ONN

0x00011505 S1_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral SubType

S1_PS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	1 PS_LV2p5A: ultbuck power stage
		2 PS_LV3p0A: ultbuck power stage
		3 PS_LV1p8A: ultbuck power stage
	25	4 PS_MV1p5A: ultbuck power stage
	ag atte	5 PS_MV2p5A: ultbuck power stage
	C. Capilles	6 PS2_LV3p0A: ultbuck power stage
	O'TO WE	7 PS2_MV2p5A: ultbuck power stage
	77.5	0x1: PS_LV2P5A
	V	0x2: PS_LV3P0A
		0x3: PS_LV1P8A
		0x4: PS_MV1P5A
		0x5: PS_MV2P5A
		0x6: PS2_LV3P0A
		0x7: PS2_MV2P5A

0x00011510 S1_PS_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S1_PS_INT_RT_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	Buck current exceeds set level 2 0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	Buck current exceeds set level 1 0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S1_PS_INT_SET_TYPE

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011512 S1_PS_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S1_PS_INT_POLARITY_HIGH

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011513 S1_PS_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S1_PS_INT_POLARITY_LOW

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011514 S1_PS_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S1_PS_INT_LATCHED_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011515 S1_PS_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

S1_PS_INT_EN_SET

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011516 S1_PS_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S1_PS_INT_EN_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011518 S1_PS_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S1_PS_INT_LATCHED_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011519 S1_PS_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Debug: Pending is set if interrupt has been sent but not cleared.

S1_PS_INT_PENDING_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE
	27 118	0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE
	201, Che	0x1: HIGH_CURRENT_INT1_TRUE

0x0001151A S1_PS_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S1_PS_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
		0x1: INT_MID_TRUE

0x0001151B S1_PS_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S1_PS_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x0001154A S1_PS_PWM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0xB4

Reset Name: PERPH RB

S1_PS_PWM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable 1 = enable 0x0: CURRENT_LIM_EN_FALSE 0x1: CURRENT_LIM_EN_TRUE
5:3	CURRENT_LIM_AUTOINT_ SEL	These 3 bits are used to control the intermediate (hot PFM), current limit threshold whenever there is a mode transition between PFM and PWM mode under Auto-mode operation. Iplimit threshold depends on selected current rating of the power stage: HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA where m is the bit value of bit<5:3> Note: The preset value of these bits is set to around 1A. The final values are device specific and listed in the device SBI table. 0x0: CURRENT_LIM_AUTOINT_SEL_LC_2700MA_HC_4400MA 0x1: CURRENT_LIM_AUTOINT_SEL_LC_2380MA_HC_3870MA 0x2: CURRENT_LIM_AUTOINT_SEL_LC_2060MA_HC_3340MA 0x3: CURRENT_LIM_AUTOINT_SEL_LC_1740MA_HC_2810MA 0x4: CURRENT_LIM_AUTOINT_SEL_LC_11420MA_HC_2280MA 0x5: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_1750MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_1750MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA 0x7: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA

S1_PS_PWM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_PWM_SEL	These 3 bits are for current limit threshold programming when operating in PWM mode.
		Iplimit threshold depends on selected current rating of the power stage:
		HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA
		LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA
		where m is the bit value of bit<2:0>
		Note: The preset value of these bits is set by using Trim. Please refer to IPLIM_TRIM_OPT and Recommended defaults; however, the final values are device specific and listed in the
		device SBI table.
		0x0: CURRENT_LIM_PWM_SEL_LC_2700MA_HC_4400MA
		0x1: CURRENT_LIM_PWM_SEL_LC_2380MA_HC_3870MA
		0x2: CURRENT_LIM_PWM_SEL_LC_2060MA_HC_3340MA
		0x3: CURRENT_LIM_PWM_SEL_LC_1740MA_HC_2810MA
		0x4: CURRENT_LIM_PWM_SEL_LC_1420MA_HC_2280MA
		0x5: CURRENT_LIM_PWM_SEL_LC_1100MA_HC_1750MA
		0x6: CURRENT_LIM_PWM_SEL_LC_780MA_HC_1220MA
		0x7: CURRENT_LIM_PWM_SEL_LC_460MA_HC_690MA

0x0001154B S1_PS_PFM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x84

Reset Name: PERPH RB

S1_PS_PFM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable
		1 = enable
		0x0: CURRENT_LIM_EN_FALSE
		0x1: CURRENT_LIM_EN_TRUE

S1_PS_PFM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_SEL	Iplimit_sel<2:0> for current limit threshold programming when operating in PFM mode.
		Iplimit = 800 mA - m * 100 mA
		where m is the bit value of iplimit_sel<2:0>
		Note: The preset value and the final values of these bits are device specific and listed in the device SBI table.
		0x0: CURRENT_LIM_SEL_800MA
		0x1: CURRENT_LIM_SEL_700MA
		0x2: CURRENT_LIM_SEL_600MA
		0x3: CURRENT_LIM_SEL_500MA
		0x4: CURRENT_LIM_SEL_400MA
		0x5: CURRENT_LIM_SEL_300MA
		0x6: CURRENT_LIM_SEL_200MA
		0x7: CURRENT_LIM_SEL_100MA

0x00011580 S1_PS_HCINT_EN

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S1_PS_HCINT_EN

Bits	Name	Description
7	HCINT_EN	0 = INT disable
		1 = INT enable
		0x0: INT_DISABLE
		0x1: INT_ENABLE

0x00011581 S1_PS_HCINT_CONTROL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S1_PS_HCINT_CONTROL

Bits	Name	Description
5	SET_WINDOW_WIDTH	This bit controls the deglitch window to set interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to set 1 = 16cycles to set 0x0: CYCLES2 0x1: CYCLES16
4	RESET_WINDOW_WIDTH	This bit controls the deglitch window to reset interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to reset 1 = 16cycles to reset 0x0: CYCLESRESET2 0x1: CYCLESRESET16
3:2	INT2_CUR_THRESHOLD	rated current - 10%*(m+1) 0x0: RATED_CURRENT_90PCT 0x1: RATED_CURRENT_80PCT 0x2: RATED_CURRENT_70PCT 0x3: RATED_CURRENT_60PCT
1:0	INT1_CUR_THRESHOLD	rated current - 10%*(m+3) 0x0: RATED_CURRENT_70PCT 0x1: RATED_CURRENT_60PCT 0x2: RATED_CURRENT_50PCT 0x3: RATED_CURRENT_40PCT

43 Bclk_gen_clk Registers

0x00011600 S1_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S1_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x00011601 S1_FREQ_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S1_FREQ_REVISION2

Bit	S Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00011604 S1_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S1_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00011605 S1_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19

Reset Name: N/A

Peripheral SubType

S1_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00011646 S1_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH_RB

PMIC_LOCKED=SEC_ACCESS

S1_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S1_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00011650 S1_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x05

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S1_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,1 1,5	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	.O. ville	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	2018. 24 Chillip	0x0: FREQ_9M6HZ_0
	2.5	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00011651 S1_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S1_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x000116C0 S1_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S1_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000116C1 S1_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S1_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

44 Hfbuck2_ctrl Registers

0x00011700 S2_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S2_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011701 S2_CTRL_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S2_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011702 S2_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [23:16]

S2_CTRL_REVISION3

	on
7:0 ANA_MINOR Indicates expanded functionality. Mir while being backward compatibility for	,

0x00011703 S2_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: N/A

HW Version Register [31:24]

S2 CTRL REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision

0x00011704 S2_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S2_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS
		0x3: SMPS

0x00011705 S2_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

S2_CTRL_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	HFBUCK2 General Purpose Controller
		0x8: GENERAL_PURPOSE_CONTROLLER

0x00011708 S2_CTRL_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S2_CTRL_STATUS

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold,,,,
		1 = VREG output voltage is above VREG_OK threshold
		0x0: VREG_OK_FALSE
		0x1: VREG_OK_TRUE
5	ILS	Illegal Limit Stop. This is triggered when UL_Voltage < LL_Voltage.
		For more details look at HW/SW document
		0x0: ILEGAL_LIMIT_STOP_FALSE
		0x1: ILEGAL_LIMIT_STOP_TRUE
4	UL_VOLTAGE	Last voltage set was above UL_Voltage
		0x0: UL_INT_FALSE
		0x1: UL_INT_TRUE

S2_CTRL_STATUS (cont.)

Bits	Name	Description
3	LL_VOLTAGE	Last voltage set was below LL_Voltage
		0x0: LL_INT_FALSE
		0x1: LL_INT_TRUE
2	PS_TRUE	0 = buck is not pulse skipping,,,,
		1 = buck is pulse skipping
		0x0: PS_FALSE
		0x1: PS_TRUE
1	NPM_TRUE	1 = VREG_OK and BUCK is in NPM
		0x0: NPM_VREGOK_FALSE
		0x1: NPM_VREGOK_TRUE
0	STEPPER_DONE	1 = stepper is done
		0x0: STEPPER_DONE_FALSE
		0x1: STEPPER_DONE_TRUE

0x00011710 S2_CTRL_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S2_CTRL_INT_RT_STS

Bits	Name	Description
1	VREG_FAULT_INT	OCP event has occurred 0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	Regulator has been successfully enabled 0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011711 S2_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S2_CTRL_INT_SET_TYPE

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011712 S2_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S2 CTRL INT POLARITY HIGH

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
	027	0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
	201, CME	0x1: VREG_OK_INT_TRUE

0x00011713 S2_CTRL_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S2_CTRL_INT_POLARITY_LOW

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011714 S2_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S2_CTRL_INT_LATCHED_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011715 S2_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S2 CTRL INT EN SET

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

S2_CTRL_INT_EN_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011718 S2 CTRL INT LATCHED STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S2 CTRL INT LATCHED STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011719 S2_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S2_CTRL_INT_PENDING_STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x0001171A S2_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Selects the MID that will receive the interrupt

S2_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
	02 119	0x1: INT_MID_TRUE

0x0001171B S2_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S2_CTRL_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x00011740 S2_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

PMIC_LATCHED_WRITE=VOLTAGE_CTL2

S2_CTRL_VOLTAGE_CTL1

Bits	Name	Description
0	RANGE	0 : 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV)
		1 : 1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV)
		0x0: RANGE_HV_FALSE
		0x1: RANGE_HV_TRUE

0x00011741 S2_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x44

Reset Name: PERPH RB

S2_CTRL_VOLTAGE_CTL2

Bits		Name	0	Description
6:0	V_SET		2.0	Voltage = Vmin + VSET*(Vstep)

0x00011744 S2_CTRL_PFM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH RB

S2_CTRL_PFM_CTL

Bits	Name	Description
7	PFM_VOLT_CTL	1=PFM voltage 1% over PWM voltage; 0=PFM voltage same as PWM voltage
		0x0: PFM_VOLT_BOOST_FALSE
		0x1: PFM_VOLT_BOOST_TRUE
6	PFM_IBOOST	1=Boost PFM Comparator bias current to 2uA; 0=bias current is 0.5uA 0x0: PFM_IBOOST_FALSE 0x1: PFM_IBOOST_TRUE

S2_CTRL_PFM_CTL (cont.)

Bits	Name	Description
5	PFM_TYPE_I	1= Legacy PFM mode
		0=Advanced PFM mode
		0x0: PFM_ADVANCED
		0x1: PFM_LEGACY
4	RESERVED	
3	RESERVED	
2	PFM_IPLIM_CTRL	0:Vdip_comp does not control IPLIM
		1:Set IPLIM same as PWM mode when Vdip_comp=1
		0x0: PFM_IPLIM_CTRL_FALSE
		0x1: PFM_IPLIM_CTRL_TRUE
1:0	PFM_IPLIM_DLY	00:Delay=75ns
		01:Delay=150ns
		10:Delay=300ns
	\ (11:Delay=600ns
		0x0: PFM_IPLIM_CTRL_75NS
		0x1: PFM_IPLIMI_CTRL_150NS
	. ()	0x2: PFM_IPLIM_CTRL_300NS
		0x3: PFM_IPLIM_CTRL_600NS

S2_CTRL_MODE_CTL 0x00011745

Type: RW

Clock: PBUS WRCLK Reset State: 0x80

Reset Name: PERPH_RB

Define Buck Mode Transitions

S2_CTRL_MODE_CTL

Bits	Name	Description
7	PWM	Force PWM
		0x0: PWM_NO_FORCE
		0x1: PWM_FORCE
6	AUTO_MODE	1=Automatically enter NPM based on current
		0x0: AUTO_FALSE
		0x1: AUTO_TRUE
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) = '1'
		0x0: FOLLOW_PMIC_AWAKE_FALSE
		0x1: FOLLOW_PMIC_AWAKE_TRUE

S2_CTRL_MODE_CTL (cont.)

Bits	Name	Description
3	FOLLOW_HWEN3	1' BUCK is in NPM when HWEN3 ='1', '0'= ignore HWEN3
		0x0: FOLLOW_HWEN3_FALSE
		0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is in NPM when HWEN2 ='1', '0'= ignore HWEN2
		0x0: FOLLOW_HWEN2_FALSE
		0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is in NPM when HWEN1 ='1', '0'= ignore HWEN1
		0x0: FOLLOW_HWEN1_FALSE
		0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is in NPM when HWEN0 ='1', '0'= ignore HWEN0
		0x0: FOLLOW_HWEN0_FALSE
		0x1: FOLLOW_HWEN0_TRUE

0x00011746 S2_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S2_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	1' = Enable the BUCK, '0' = do not force BUCK on 0x0: BUCK_ENABLE_FALSE 0x1: BUCK_ENABLE_TRUE
3	FOLLOW_HWEN3	1' BUCK is enabled when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is enabled when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is enabled when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is enabled when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011748 S2_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

S2_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	1' = Enable the pull-down when the regulator is disabled, '0' = pull-down is always disabled. Preset by trim register CTL_TRIM4
		0x0: PD_ENABLE_FALSE
		0x1: PD_ENABLE_TRUE

0x00011768 S2_CTRL_UL_LL_CTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S2_CTRL_UL_LL_CTRL

Bits	Name	Description
7	UL_INT_EN	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_INT_EN_FALSE 0x1: UL_INT_EN_TRUE
6	LL_INT_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_INT_EN_FALSE 0x1: LL_INT_EN_TRUE

0x00011769 S2_CTRL_UL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7F

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S2_CTRL_UL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets upper limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x0001176B S2_CTRL_LL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC ACCESS

S2_CTRL_LL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets lower limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x0001177A S2_CTRL_CTLR_MISC

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S2_CTRL_CTLR_MISC

Bits	Name	Description
7	SPARE_7	
6	SPARE_6	

S2_CTRL_CTLR_MISC (cont.)

Bits	Name	Description
5	SPARE_5	
4	SPARE_4	
3	SPARE_3	
2	SPARE_2	1=OCP is reset when perph_en, en_ext, and when are all low, 0=OCP is reset by perph_en rising edge 0x1: SPARE_2_TRUE 0x0: SPARE_2_FALSE
1	SPARE_1	1=enable buck, 0=normal mode 0x1: SPARE_1_TRUE 0x0: SPARE_1_FALSE
0	SPARE_0	disable_ps_timeout 1=pulse skip timeout feature is disabled, 0=pulse skip timeout feature is enabled 0x1: SPARE_0_TRUE 0x0: SPARE_0_FALSE
2018-09-21 oli O		

45 Ultbuck_hc_ps_dig Registers

0x00011800 S2_PS_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S2_PS_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011801 S2_PS_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S2_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011802 S2_PS_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S2_PS_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011803 S2_PS_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

S2 PS REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision.

0x00011804 S2_PS_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x22

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S2_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS
		0x16: SMPS

ONN

0x00011805 S2_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: N/A

Peripheral SubType

S2_PS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	1 PS_LV2p5A: ultbuck power stage
		2 PS_LV3p0A: ultbuck power stage
		3 PS_LV1p8A: ultbuck power stage
	25	4 PS_MV1p5A: ultbuck power stage
	9 01° 01°	5 PS_MV2p5A: ultbuck power stage
	C. Capilles	6 PS2_LV3p0A: ultbuck power stage
	O'TO ME	7 PS2_MV2p5A: ultbuck power stage
	25	0x1: PS_LV2P5A
	V	0x2: PS_LV3P0A
		0x3: PS_LV1P8A
		0x4: PS_MV1P5A
		0x5: PS_MV2P5A
		0x6: PS2_LV3P0A
		0x7: PS2_MV2P5A

0x00011810 S2_PS_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S2_PS_INT_RT_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	Buck current exceeds set level 2 0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	Buck current exceeds set level 1 0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S2_PS_INT_SET_TYPE

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011812 S2_PS_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S2_PS_INT_POLARITY_HIGH

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011813 S2_PS_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S2_PS_INT_POLARITY_LOW

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011814 S2_PS_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S2_PS_INT_LATCHED_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011815 S2_PS_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

S2_PS_INT_EN_SET

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE
		0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE
		0x1: HIGH_CURRENT_INT1_TRUE

0x00011816 S2_PS_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S2_PS_INT_EN_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011818 S2_PS_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S2_PS_INT_LATCHED_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011819 S2_PS_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Debug: Pending is set if interrupt has been sent but not cleared.

S2_PS_INT_PENDING_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE
	27 118	0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE
	201, Che	0x1: HIGH_CURRENT_INT1_TRUE

0x0001181A S2_PS_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S2_PS_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
		0x1: INT_MID_TRUE

0x0001181B S2_PS_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S2_PS_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x0001184A S2_PS_PWM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0xB4

Reset Name: PERPH RB

S2_PS_PWM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable 1 = enable 0x0: CURRENT_LIM_EN_FALSE 0x1: CURRENT_LIM_EN_TRUE
5:3	CURRENT_LIM_AUTOINT_ SEL	These 3 bits are used to control the intermediate (hot PFM), current limit threshold whenever there is a mode transition between PFM and PWM mode under Auto-mode operation. Iplimit threshold depends on selected current rating of the power stage: HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA where m is the bit value of bit<5:3> Note: The preset value of these bits is set to around 1A. The final values are device specific and listed in the device SBI table. 0x0: CURRENT_LIM_AUTOINT_SEL_LC_2700MA_HC_4400MA 0x1: CURRENT_LIM_AUTOINT_SEL_LC_2380MA_HC_3870MA 0x2: CURRENT_LIM_AUTOINT_SEL_LC_2060MA_HC_3340MA 0x3: CURRENT_LIM_AUTOINT_SEL_LC_1740MA_HC_2810MA 0x4: CURRENT_LIM_AUTOINT_SEL_LC_1740MA_HC_2280MA 0x5: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_2280MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_1750MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA 0x7: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA

S2_PS_PWM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_PWM_SEL	These 3 bits are for current limit threshold programming when operating in PWM mode.
		Iplimit threshold depends on selected current rating of the power stage:
		HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA
		LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA
		where m is the bit value of bit<2:0>
		Note: The preset value of these bits is set by using Trim. Please refer to IPLIM_TRIM_OPT and Recommended defaults; however, the final values are device specific and listed in the
		device SBI table.
		0x0: CURRENT_LIM_PWM_SEL_LC_2700MA_HC_4400MA
		0x1: CURRENT_LIM_PWM_SEL_LC_2380MA_HC_3870MA
		0x2: CURRENT_LIM_PWM_SEL_LC_2060MA_HC_3340MA
		0x3: CURRENT_LIM_PWM_SEL_LC_1740MA_HC_2810MA
		0x4: CURRENT_LIM_PWM_SEL_LC_1420MA_HC_2280MA
		0x5: CURRENT_LIM_PWM_SEL_LC_1100MA_HC_1750MA
		0x6: CURRENT_LIM_PWM_SEL_LC_780MA_HC_1220MA
		0x7: CURRENT_LIM_PWM_SEL_LC_460MA_HC_690MA

0x0001184B S2_PS_PFM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x84

Reset Name: PERPH RB

S2_PS_PFM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable
		1 = enable
		0x0: CURRENT_LIM_EN_FALSE
		0x1: CURRENT_LIM_EN_TRUE

S2_PS_PFM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_SEL	Iplimit_sel<2:0> for current limit threshold programming when operating in PFM mode.
		Iplimit = 800 mA - m * 100 mA
		where m is the bit value of iplimit_sel<2:0>
		Note: The preset value and the final values of these bits are device specific and listed in the device SBI table.
		0x0: CURRENT_LIM_SEL_800MA
		0x1: CURRENT_LIM_SEL_700MA
		0x2: CURRENT_LIM_SEL_600MA
		0x3: CURRENT_LIM_SEL_500MA
		0x4: CURRENT_LIM_SEL_400MA
		0x5: CURRENT_LIM_SEL_300MA
		0x6: CURRENT_LIM_SEL_200MA
		0x7: CURRENT_LIM_SEL_100MA

0x00011880 S2_PS_HCINT_EN

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

S2_PS_HCINT_EN

Bits	Name	Description
7	HCINT_EN	0 = INT disable
		1 = INT enable
		0x0: INT_DISABLE
		0x1: INT_ENABLE

0x00011881 S2_PS_HCINT_CONTROL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S2_PS_HCINT_CONTROL

Bits	Name	Description
5	SET_WINDOW_WIDTH	This bit controls the deglitch window to set interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to set 1 = 16cycles to set 0x0: CYCLES2 0x1: CYCLES16
4	RESET_WINDOW_WIDTH	This bit controls the deglitch window to reset interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to reset 1 = 16cycles to reset 0x0: CYCLESRESET2 0x1: CYCLESRESET16
3:2	INT2_CUR_THRESHOLD	rated current - 10%*(m+1) 0x0: RATED_CURRENT_90PCT 0x1: RATED_CURRENT_80PCT 0x2: RATED_CURRENT_70PCT 0x3: RATED_CURRENT_60PCT
1:0	INT1_CUR_THRESHOLD	rated current - 10%*(m+3) 0x0: RATED_CURRENT_70PCT 0x1: RATED_CURRENT_60PCT 0x2: RATED_CURRENT_50PCT 0x3: RATED_CURRENT_40PCT

46 Bclk_gen_clk Registers

0x00011900 S2_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S2_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S2_FREQ_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00011904 S2_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S2_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00011905 S2_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x19

Reset Name: N/A

Peripheral SubType

S2_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00011946 S2_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S2_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S2_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00011950 S2_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x05

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S2_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,100	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	o dille	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	750 110	0x0: FREQ_9M6HZ_0
	2018-24 Chillip	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00011951 S2_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x0F

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S2_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x000119C0 S2_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S2_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000119C1 S2_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S2_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

47 Hfbuck2_ctrl Registers

0x00011A00 S3_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S3_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011A01 S3_CTRL_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S3_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011A02 S3_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [23:16]

S3_CTRL_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011A03 S3_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: N/A

HW Version Register [31:24]

S3 CTRL REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision

0x00011A04 S3_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S3_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS
		0x3: SMPS

0x00011A05 S3_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

S3_CTRL_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	HFBUCK2 General Purpose Controller
		0x8: GENERAL_PURPOSE_CONTROLLER

0x00011A08 S3_CTRL_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S3_CTRL_STATUS

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold,,,,
		1 = VREG output voltage is above VREG_OK threshold
		0x0: VREG_OK_FALSE
		0x1: VREG_OK_TRUE
5	ILS	Illegal Limit Stop. This is triggered when UL_Voltage < LL_Voltage.
		For more details look at HW/SW document
		0x0: ILEGAL_LIMIT_STOP_FALSE
		0x1: ILEGAL_LIMIT_STOP_TRUE
4	UL_VOLTAGE	Last voltage set was above UL_Voltage
		0x0: UL_INT_FALSE
		0x1: UL_INT_TRUE

S3_CTRL_STATUS (cont.)

Bits	Name	Description
3	LL_VOLTAGE	Last voltage set was below LL_Voltage
		0x0: LL_INT_FALSE
		0x1: LL_INT_TRUE
2	PS_TRUE	0 = buck is not pulse skipping,,,,
		1 = buck is pulse skipping
		0x0: PS_FALSE
		0x1: PS_TRUE
1	NPM_TRUE	1 = VREG_OK and BUCK is in NPM
		0x0: NPM_VREGOK_FALSE
		0x1: NPM_VREGOK_TRUE
0	STEPPER_DONE	1 = stepper is done
		0x0: STEPPER_DONE_FALSE
		0x1: STEPPER_DONE_TRUE

0x00011A10 S3_CTRL_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S3_CTRL_INT_RT_STS

Bits	Name	Description
1	VREG_FAULT_INT	OCP event has occurred 0x0: VREG FAULT INT FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	Regulator has been successfully enabled 0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A11 S3_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S3_CTRL_INT_SET_TYPE

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A12 S3_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S3_CTRL_INT_POLARITY_HIGH

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
	027	0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
	201, CME	0x1: VREG_OK_INT_TRUE

0x00011A13 S3_CTRL_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S3_CTRL_INT_POLARITY_LOW

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011A14 S3_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S3_CTRL_INT_LATCHED_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A15 S3_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S3 CTRL INT EN SET

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A16 S3_CTRL_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

S3_CTRL_INT_EN_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011A18 S3 CTRL INT LATCHED STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S3 CTRL INT LATCHED STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A19 S3_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S3_CTRL_INT_PENDING_STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011A1A S3_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Selects the MID that will receive the interrupt

S3_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
	27,10	0x1: INT_MID_TRUE

0x00011A1B S3_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S3_CTRL_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x00011A40 S3_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

PMIC_LATCHED_WRITE=VOLTAGE_CTL2

S3_CTRL_VOLTAGE_CTL1

Bits	Name	Description
0	RANGE	0 : 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV)
		1 : 1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV)
		0x0: RANGE_HV_FALSE
		0x1: RANGE_HV_TRUE

0x00011A41 S3_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x49

Reset Name: PERPH_RB

S3_CTRL_VOLTAGE_CTL2

Bits	Name		Description
6:0	V_SET	27.0	Voltage = Vmin + VSET*(Vstep)

0x00011A44 S3_CTRL_PFM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH_RB

S3_CTRL_PFM_CTL

Bits	Name	Description
7	PFM_VOLT_CTL	1=PFM voltage 1% over PWM voltage; 0=PFM voltage same as PWM voltage
		0x0: PFM_VOLT_BOOST_FALSE
		0x1: PFM_VOLT_BOOST_TRUE
6	PFM_IBOOST	1=Boost PFM Comparator bias current to 2uA; 0=bias current is 0.5uA 0x0: PFM_IBOOST_FALSE 0x1: PFM_IBOOST_TRUE

S3_CTRL_PFM_CTL (cont.)

Bits	Name	Description
5	PFM_TYPE_I	1= Legacy PFM mode
		0=Advanced PFM mode
		0x0: PFM_ADVANCED
		0x1: PFM_LEGACY
4	RESERVED	
3	RESERVED	
2	PFM_IPLIM_CTRL	0:Vdip_comp does not control IPLIM
		1:Set IPLIM same as PWM mode when Vdip_comp=1
		0x0: PFM_IPLIM_CTRL_FALSE
		0x1: PFM_IPLIM_CTRL_TRUE
1:0	PFM_IPLIM_DLY	00:Delay=75ns
		01:Delay=150ns
		10:Delay=300ns
		11:Delay=600ns
		0x0: PFM_IPLIM_CTRL_75NS
		0x1: PFM_IPLIMI_CTRL_150NS
	. ()	0x2: PFM_IPLIM_CTRL_300NS
		0x3: PFM_IPLIM_CTRL_600NS

0x00011A45 S3_CTRL_MODE_CTL

Type: RW

Clock: PBUS_WRCLK

Reset State: 0x80

Reset Name: PERPH_RB

Define Buck Mode Transitions

S3_CTRL_MODE_CTL

Bits	Name	Description
7	PWM	Force PWM
		0x0: PWM_NO_FORCE
		0x1: PWM_FORCE
6	AUTO_MODE	1=Automatically enter NPM based on current
		0x0: AUTO_FALSE
		0x1: AUTO_TRUE
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) = '1'
		0x0: FOLLOW_PMIC_AWAKE_FALSE
		0x1: FOLLOW_PMIC_AWAKE_TRUE

S3_CTRL_MODE_CTL (cont.)

Bits	Name	Description
3	FOLLOW_HWEN3	1' BUCK is in NPM when HWEN3 ='1', '0'= ignore HWEN3
		0x0: FOLLOW_HWEN3_FALSE
		0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is in NPM when HWEN2 ='1', '0'= ignore HWEN2
		0x0: FOLLOW_HWEN2_FALSE
		0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is in NPM when HWEN1 ='1', '0'= ignore HWEN1
		0x0: FOLLOW_HWEN1_FALSE
		0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is in NPM when HWEN0 ='1', '0'= ignore HWEN0
		0x0: FOLLOW_HWEN0_FALSE
		0x1: FOLLOW_HWEN0_TRUE

0x00011A46 S3_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S3_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	1' = Enable the BUCK, '0' = do not force BUCK on 0x0: BUCK_ENABLE_FALSE 0x1: BUCK_ENABLE_TRUE
3	FOLLOW_HWEN3	1' BUCK is enabled when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is enabled when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is enabled when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is enabled when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011A48 S3_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

S3_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	1' = Enable the pull-down when the regulator is disabled, '0' = pull-down is always disabled. Preset by trim register CTL_TRIM4
		0x0: PD_ENABLE_FALSE
		0x1: PD_ENABLE_TRUE

0x00011A68 S3_CTRL_UL_LL_CTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S3_CTRL_UL_LL_CTRL

Bits	Name	Description
7	UL_INT_EN	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_INT_EN_FALSE 0x1: UL_INT_EN_TRUE
6	LL_INT_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_INT_EN_FALSE 0x1: LL_INT_EN_TRUE

0x00011A69 S3_CTRL_UL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7F

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S3_CTRL_UL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets upper limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x00011A6B S3_CTRL_LL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S3_CTRL_LL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets lower limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x00011A7A S3_CTRL_CTLR_MISC

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S3_CTRL_CTLR_MISC

Bits	Name	Description
7	SPARE_7	
6	SPARE_6	

S3_CTRL_CTLR_MISC (cont.)

Bits	Name	Description
5	SPARE_5	
4	SPARE_4	
3	SPARE_3	
2	SPARE_2	1=OCP is reset when perph_en, en_ext, and when are all low, 0=OCP is reset by perph_en rising edge 0x1: SPARE_2_TRUE 0x0: SPARE_2_FALSE
1	SPARE_1	1=enable buck, 0=normal mode 0x1: SPARE_1_TRUE 0x0: SPARE_1_FALSE
0	SPARE_0	disable_ps_timeout 1=pulse skip timeout feature is disabled, 0=pulse skip timeout feature is enabled 0x1: SPARE_0_TRUE 0x0: SPARE_0_FALSE
2018-09-21 OILOUR 2018-09-21 PDT		

48 Hfbuck2_ps Registers

0x00011B00 S3_PS_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

HW Version Register [7:0]

PMIC CONSTANT

S3_PS_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011B01 S3_PS_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

HW Version Register [15:8]

PMIC CONSTANT

S3_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011B02 S3_PS_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

HW Version Register [23:16]

S3_PS_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011B03 S3_PS_REVISION4

S3_PS_REVISION4

S3_P	S3_PS_REVISION4			
Type: R Clock: PBUS_WRCLK Reset State: 0x01				
HW Version Register [31:24]				
S3_PS	S3_PS_REVISION4			
Bits	Name	Description		
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision.		

0x00011B04 S3_PS_PERPH_TYPE

Type: R

Clock: PBUS WRCLK Reset State: 0x03

Peripheral Type

PMIC CONSTANT

S3_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS 0x3: SMPS

0x00011B05 S3_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Peripheral SubType

S3_PS_PERPH_SUBTYPE

В	Bits	Name	Description
7	7:0	SUBTYPE	1 1X HFBUCK2 Power Stage 2 2X HFBUCK2 Power Stage (up to 1.5A)
			3 3X HFBUCK2 Power Stage (up to 2.5A)
			0x1: POWERSTAGE_1X
			0x2: POWERSTAGE_2X 0x3: POWERSTAGE_3X
		2018-09-21-018 2018-54@minds	CO.27 RDT

49 Bclk_gen_clk Registers

0x00011C00 S3_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S3_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x00011C01 S3_FREQ_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S3_FREQ_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00011C04 S3_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S3_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00011C05 S3_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19 Reset Name: N/A

Peripheral SubType

S3_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00011C46 S3_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH_RB

PMIC_LOCKED=SEC_ACCESS

S3_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S3_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00011C50 S3_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S3_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,1 1,5	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	.O. ville	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	2018. 24 Chillip	0x0: FREQ_9M6HZ_0
	2.5	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00011C51 S3_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x06

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S3_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x00011CC0 S3_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S3_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x00011CC1 S3_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S3_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

50 Hfbuck2_ctrl Registers

0x00011D00 S4_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S4_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011D01 S4_CTRL_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S4_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

0x00011D02 S4_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [23:16]

S4_CTRL_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	Indicates expanded functionality. Minor version adds functionality while being backward compatibility for existing features.

0x00011D03 S4_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

HW Version Register [31:24]

S4 CTRL REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision

0x00011D04 S4_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S4_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS
		0x3: SMPS

0x00011D05 S4_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: N/A

Peripheral SubType

S4_CTRL_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	HFBUCK2 General Purpose Controller
		0x8: GENERAL_PURPOSE_CONTROLLER

0x00011D08 S4_CTRL_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S4_CTRL_STATUS

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold,,,,
		1 = VREG output voltage is above VREG_OK threshold
		0x0: VREG_OK_FALSE
		0x1: VREG_OK_TRUE
5	ILS	Illegal Limit Stop. This is triggered when UL_Voltage < LL_Voltage.
		For more details look at HW/SW document
		0x0: ILEGAL_LIMIT_STOP_FALSE
		0x1: ILEGAL_LIMIT_STOP_TRUE
4	UL_VOLTAGE	Last voltage set was above UL_Voltage
		0x0: UL_INT_FALSE
		0x1: UL_INT_TRUE

S4_CTRL_STATUS (cont.)

Bits	Name	Description
3	LL_VOLTAGE	Last voltage set was below LL_Voltage
		0x0: LL_INT_FALSE
		0x1: LL_INT_TRUE
2	PS_TRUE	0 = buck is not pulse skipping,,,,
		1 = buck is pulse skipping
		0x0: PS_FALSE
		0x1: PS_TRUE
1	NPM_TRUE	1 = VREG_OK and BUCK is in NPM
		0x0: NPM_VREGOK_FALSE
		0x1: NPM_VREGOK_TRUE
0	STEPPER_DONE	1 = stepper is done
		0x0: STEPPER_DONE_FALSE
		0x1: STEPPER_DONE_TRUE

0x00011D10 S4_CTRL_INT_RT_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S4_CTRL_INT_RT_STS

Bits	Name	Description
1	VREG_FAULT_INT	OCP event has occurred 0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	Regulator has been successfully enabled 0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011D11 S4_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S4_CTRL_INT_SET_TYPE

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011D12 S4_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S4_CTRL_INT_POLARITY_HIGH

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
	27 118	0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
	2010 CHE	0x1: VREG_OK_INT_TRUE

0x00011D13 S4_CTRL_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S4_CTRL_INT_POLARITY_LOW

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011D14 S4_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S4_CTRL_INT_LATCHED_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011D15 S4_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S4 CTRL INT EN SET

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE 0x1: VREG_OK_INT_TRUE

0x00011D16 S4_CTRL_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

S4_CTRL_INT_EN_CLR

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011D18 S4 CTRL INT LATCHED STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S4 CTRL INT LATCHED STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011D19 S4_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S4_CTRL_INT_PENDING_STS

Bits	Name	Description
1	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALSE
		0x1: VREG_FAULT_INT_TRUE
0	VREG_OK_INT	0x0: VREG_OK_INT_FALSE
		0x1: VREG_OK_INT_TRUE

0x00011D1A S4_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S4_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
	02 118	0x1: INT_MID_TRUE

0x00011D1B S4_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S4_CTRL_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x00011D40 S4_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH_RB

PMIC_LATCHED_WRITE=VOLTAGE_CTL2

S4_CTRL_VOLTAGE_CTL1

Bits	Name	Description
0	RANGE	0 : 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV)
		1 : 1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV)
		0x0: RANGE_HV_FALSE
		0x1: RANGE_HV_TRUE

0x00011D41 S4_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x14

Reset Name: PERPH_RB

S4_CTRL_VOLTAGE_CTL2

Bits	Na	me	Description
6:0	V_SET	27.0	Voltage = Vmin + VSET*(Vstep)

0x00011D44 S4_CTRL_PFM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH_RB

S4_CTRL_PFM_CTL

Bits	Name	Description
7	PFM_VOLT_CTL	1=PFM voltage 1% over PWM voltage; 0=PFM voltage same as PWM voltage
		0x0: PFM_VOLT_BOOST_FALSE
		0x1: PFM_VOLT_BOOST_TRUE
6	PFM_IBOOST	1=Boost PFM Comparator bias current to 2uA; 0=bias current is 0.5uA 0x0: PFM_IBOOST_FALSE 0x1: PFM_IBOOST_TRUE

S4_CTRL_PFM_CTL (cont.)

Bits	Name	Description
5	PFM_TYPE_I	1= Legacy PFM mode 0=Advanced PFM mode
		0x0: PFM_ADVANCED
		0x1: PFM_LEGACY
4	RESERVED	
3	RESERVED	
2	PFM_IPLIM_CTRL	0:Vdip_comp does not control IPLIM
		1:Set IPLIM same as PWM mode when Vdip_comp=1
		0x0: PFM_IPLIM_CTRL_FALSE
		0x1: PFM_IPLIM_CTRL_TRUE
1:0	PFM_IPLIM_DLY	00:Delay=75ns
		01:Delay=150ns
		10:Delay=300ns
		11:Delay=600ns
		0x0: PFM_IPLIM_CTRL_75NS
		0x1: PFM_IPLIMI_CTRL_150NS
		0x2: PFM_IPLIM_CTRL_300NS
		0x3: PFM_IPLIM_CTRL_600NS

0x00011D45 S4_CTRL_MODE_CTL

Type: RW

Clock: PBUS WRCLK Reset State: 0x80

Reset Name: PERPH_RB

Define Buck Mode Transitions

S4_CTRL_MODE_CTL

Bits	Name	Description
7	PWM	Force PWM
		0x0: PWM_NO_FORCE
		0x1: PWM_FORCE
6	AUTO_MODE	1=Automatically enter NPM based on current
		0x0: AUTO_FALSE
		0x1: AUTO_TRUE
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) = '1'
		0x0: FOLLOW_PMIC_AWAKE_FALSE
		0x1: FOLLOW_PMIC_AWAKE_TRUE

S4_CTRL_MODE_CTL (cont.)

Bits	Name	Description
3	FOLLOW_HWEN3	1' BUCK is in NPM when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is in NPM when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is in NPM when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is in NPM when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011D46 S4_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S4_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	1' = Enable the BUCK, '0' = do not force BUCK on 0x0: BUCK_ENABLE_FALSE 0x1: BUCK_ENABLE_TRUE
3	FOLLOW_HWEN3	1' BUCK is enabled when HWEN3 ='1', '0'= ignore HWEN3 0x0: FOLLOW_HWEN3_FALSE 0x1: FOLLOW_HWEN3_TRUE
2	FOLLOW_HWEN2	1' BUCK is enabled when HWEN2 ='1', '0'= ignore HWEN2 0x0: FOLLOW_HWEN2_FALSE 0x1: FOLLOW_HWEN2_TRUE
1	FOLLOW_HWEN1	1' BUCK is enabled when HWEN1 ='1', '0'= ignore HWEN1 0x0: FOLLOW_HWEN1_FALSE 0x1: FOLLOW_HWEN1_TRUE
0	FOLLOW_HWEN0	1' BUCK is enabled when HWEN0 ='1', '0'= ignore HWEN0 0x0: FOLLOW_HWEN0_FALSE 0x1: FOLLOW_HWEN0_TRUE

0x00011D48 S4_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

S4_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	1' = Enable the pull-down when the regulator is disabled, '0' = pull-down is always disabled. Preset by trim register CTL_TRIM4
		0x0: PD_ENABLE_FALSE
		0x1: PD_ENABLE_TRUE

0x00011D68 S4_CTRL_UL_LL_CTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S4_CTRL_UL_LL_CTRL

Bits	Name	Description
7	UL_INT_EN	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_INT_EN_FALSE 0x1: UL_INT_EN_TRUE
6	LL_INT_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_INT_EN_FALSE 0x1: LL_INT_EN_TRUE

0x00011D69 S4_CTRL_UL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7F

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS

S4_CTRL_UL_VOLTAGE

Name	Description
V_SET	Sets upper limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
	For EXT_RANGE = 0:
	VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
	For EXT_RANGE = 1:
	VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x00011D6B S4_CTRL_LL_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC ACCESS

S4_CTRL_LL_VOLTAGE

Bits	Name	Description
6:0	V_SET	Sets lower limit for the allowed output voltage range if LIMIT_LO_EN is asserted.
		For EXT_RANGE = 0:
		VLIMIT_STOP_LO = 0.375 to 1.5625 V at steps of 12.5 mV (Vmin = 0.375 V, Vstep = 12.5 mV), where m = <6:0>
		For EXT_RANGE = 1:
		VLIMIT_STOP_LO =1.550 to 3.1250 V at steps of 25.0 mV (Vmin = 1.550 V, Vstep = 25.0 mV), where m = <6:0>

0x00011D7A S4_CTRL_CTLR_MISC

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S4_CTRL_CTLR_MISC

Bits	Name	Description
7	SPARE_7	
6	SPARE_6	

S4_CTRL_CTLR_MISC (cont.)

Bits	Name	Description
5	SPARE_5	
4	SPARE_4	
3	SPARE_3	
2	SPARE_2	1=OCP is reset when perph_en, en_ext, and when are all low, 0=OCP is reset by perph_en rising edge 0x1: SPARE_2_TRUE 0x0: SPARE_2_FALSE
1	SPARE_1	1=enable buck, 0=normal mode 0x1: SPARE_1_TRUE 0x0: SPARE_1_FALSE
0	SPARE_0	disable_ps_timeout 1=pulse skip timeout feature is disabled, 0=pulse skip timeout feature is enabled 0x1: SPARE_0_TRUE 0x0: SPARE_0_FALSE
2018-09-22-101-101R Delta-communications of the second sec		

51 Ultbuck_hc_ps_dig Registers

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S4_PS_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	Indicates a change in the HW which is not intended to impact SW compatibility.

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S4_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	Indicates a change in the HW which is not intended to impact SW compatibility.

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S4_PS_REVISION3

	on
7:0 ANA_MINOR Indicates expanded functionality. Mir while being backward compatibility for	,

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

S4 PS REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	Indicates different interface version. Major version changes are not backward compatible. There will be a new Programming Guide document per major revision.

0x00011E04 S4_PS_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x22

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S4_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	SMPS 0x16: SMPS
		OXTO. GIVII G

ONN

0x00011E05 S4_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: N/A

Peripheral SubType

S4_PS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	1 PS_LV2p5A: ultbuck power stage
		2 PS_LV3p0A: ultbuck power stage
		3 PS_LV1p8A: ultbuck power stage
	25	4 PS_MV1p5A: ultbuck power stage
	9 01° 01°	5 PS_MV2p5A: ultbuck power stage
	C. Capilles	6 PS2_LV3p0A: ultbuck power stage
	O'TO ME	7 PS2_MV2p5A: ultbuck power stage
	25	0x1: PS_LV2P5A
	V	0x2: PS_LV3P0A
		0x3: PS_LV1P8A
		0x4: PS_MV1P5A
		0x5: PS_MV2P5A
		0x6: PS2_LV3P0A
		0x7: PS2_MV2P5A

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

Interrupt Real Time Status Bits

S4_PS_INT_RT_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	Buck current exceeds set level 2 0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	Buck current exceeds set level 1 0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E11 S4_PS_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S4_PS_INT_SET_TYPE

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E12 S4_PS_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S4_PS_INT_POLARITY_HIGH

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E13 S4_PS_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S4_PS_INT_POLARITY_LOW

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E14 S4_PS_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S4_PS_INT_LATCHED_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

S4_PS_INT_EN_SET

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE
		0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE
		0x1: HIGH_CURRENT_INT1_TRUE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S4_PS_INT_EN_CLR

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E18 S4_PS_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S4_PS_INT_LATCHED_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE 0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE 0x1: HIGH_CURRENT_INT1_TRUE

0x00011E19 S4_PS_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

Debug: Pending is set if interrupt has been sent but not cleared.

S4_PS_INT_PENDING_STS

Bits	Name	Description
1	HIGH_CURRENT_INT2	0x0: HIGH_CURRENT_INT2_FALSE
	027	0x1: HIGH_CURRENT_INT2_TRUE
0	HIGH_CURRENT_INT1	0x0: HIGH_CURRENT_INT1_FALSE
	201, ENG.	0x1: HIGH_CURRENT_INT1_TRUE

0x00011E1A S4_PS_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S4_PS_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x0: INT_MID_FALSE
		0x1: INT_MID_TRUE

0x00011E1B S4_PS_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

S4_PS_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	SR=0 A=1
		0x0: INT_PRIORITY_FALSE
		0x1: INT_PRIORITY_TRUE

0x00011E4A S4_PS_PWM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0xB4

Reset Name: PERPH RB

S4_PS_PWM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable 1 = enable 0x0: CURRENT_LIM_EN_FALSE 0x1: CURRENT_LIM_EN_TRUE
5:3	CURRENT_LIM_AUTOINT_ SEL	These 3 bits are used to control the intermediate (hot PFM), current limit threshold whenever there is a mode transition between PFM and PWM mode under Auto-mode operation. Iplimit threshold depends on selected current rating of the power stage: HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA where m is the bit value of bit<5:3> Note: The preset value of these bits is set to around 1A. The final values are device specific and listed in the device SBI table. 0x0: CURRENT_LIM_AUTOINT_SEL_LC_2700MA_HC_4400MA 0x1: CURRENT_LIM_AUTOINT_SEL_LC_2380MA_HC_3870MA 0x2: CURRENT_LIM_AUTOINT_SEL_LC_2060MA_HC_3340MA 0x3: CURRENT_LIM_AUTOINT_SEL_LC_1740MA_HC_2810MA 0x4: CURRENT_LIM_AUTOINT_SEL_LC_1740MA_HC_2280MA 0x5: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_1750MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_1100MA_HC_1750MA 0x6: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA 0x7: CURRENT_LIM_AUTOINT_SEL_LC_780MA_HC_1220MA

S4_PS_PWM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_PWM_SEL	These 3 bits are for current limit threshold programming when operating in PWM mode.
		Iplimit threshold depends on selected current rating of the power stage:
		HC (PS_LV2P5A, PS_LV3P0A, PS_MV2P5A, PS2_LV3P0A, PS2_MV2P5A)> Iplimit = 4400 mA - m*530 mA
		LC (PS_LV1P8A, PS_MV1P5A)> Iplimit = 2700 mA - m*320 mA
		where m is the bit value of bit<2:0>
		Note: The preset value of these bits is set by using Trim. Please refer to IPLIM_TRIM_OPT and Recommended defaults; however, the final values are device specific and listed in the
		device SBI table.
		0x0: CURRENT_LIM_PWM_SEL_LC_2700MA_HC_4400MA
		0x1: CURRENT_LIM_PWM_SEL_LC_2380MA_HC_3870MA
		0x2: CURRENT_LIM_PWM_SEL_LC_2060MA_HC_3340MA
		0x3: CURRENT_LIM_PWM_SEL_LC_1740MA_HC_2810MA
		0x4: CURRENT_LIM_PWM_SEL_LC_1420MA_HC_2280MA
		0x5: CURRENT_LIM_PWM_SEL_LC_1100MA_HC_1750MA
		0x6: CURRENT_LIM_PWM_SEL_LC_780MA_HC_1220MA
		0x7: CURRENT_LIM_PWM_SEL_LC_460MA_HC_690MA

0x00011E4B S4_PS_PFM_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x84

Reset Name: PERPH RB

S4_PS_PFM_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0 = disable
		1 = enable
		0x0: CURRENT_LIM_EN_FALSE
		0x1: CURRENT_LIM_EN_TRUE

S4_PS_PFM_CURRENT_LIM_CTL (cont.)

Bits	Name	Description
2:0	CURRENT_LIM_SEL	Iplimit_sel<2:0> for current limit threshold programming when operating in PFM mode.
		Iplimit = 800 mA - m * 100 mA
		where m is the bit value of iplimit_sel<2:0>
		Note: The preset value and the final values of these bits are device specific and listed in the device SBI table.
		0x0: CURRENT_LIM_SEL_800MA
		0x1: CURRENT_LIM_SEL_700MA
		0x2: CURRENT_LIM_SEL_600MA
		0x3: CURRENT_LIM_SEL_500MA
		0x4: CURRENT_LIM_SEL_400MA
		0x5: CURRENT_LIM_SEL_300MA
		0x6: CURRENT_LIM_SEL_200MA
		0x7: CURRENT_LIM_SEL_100MA

0x00011E80 S4_PS_HCINT_EN

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

S4_PS_HCINT_EN

Bits	Name	Description
7	HCINT_EN	0 = INT disable
		1 = INT enable
		0x0: INT_DISABLE
		0x1: INT_ENABLE

0x00011E81 S4_PS_HCINT_CONTROL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S4_PS_HCINT_CONTROL

Bits	Name	Description
5	SET_WINDOW_WIDTH	This bit controls the deglitch window to set interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to set 1 = 16cycles to set 0x0: CYCLES2 0x1: CYCLES16
4	RESET_WINDOW_WIDTH	This bit controls the deglitch window to reset interrupt based on no. of cycles of 32KHz clock 0 = 2cycles to reset 1 = 16cycles to reset 0x0: CYCLESRESET2 0x1: CYCLESRESET16
3:2	INT2_CUR_THRESHOLD	rated current - 10%*(m+1) 0x0: RATED_CURRENT_90PCT 0x1: RATED_CURRENT_80PCT 0x2: RATED_CURRENT_70PCT 0x3: RATED_CURRENT_60PCT
1:0	INT1_CUR_THRESHOLD	rated current - 10%*(m+3) 0x0: RATED_CURRENT_70PCT 0x1: RATED_CURRENT_60PCT 0x2: RATED_CURRENT_50PCT 0x3: RATED_CURRENT_40PCT

52 Bclk_gen_clk Registers

0x00011F00 S4_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S4_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x00011F01 S4_FREQ_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S4_FREQ_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00011F04 S4_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S4_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00011F05 S4_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19 Reset Name: N/A

Peripheral SubType

S4_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00011F46 S4_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S4_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S4_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00011F50 S4_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x0B

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S4_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,100	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	o dillis	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	750 110	0x0: FREQ_9M6HZ_0
	2018-24 Chillip	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00011F51 S4_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S4_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x00011FC0 S4_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S4_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x00011FC1 S4_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S4_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

53 Fts2p5_ctrl Registers

0x00012000 S5_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S5_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S5_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012002 S5_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S5_CTRL_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012003 S5_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

S5_CTRL_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00012004 S5_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1C

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S5_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x00012005 S5_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

S5_CTRL_PERPH_SUBTYPE

l	Bits	Name	Description
	7:0	SUBTYPE	oi.

0x00012008 S5_CTRL_STATUS_1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S5_CTRL_STATUS_1

Bits	Name	Description
7	VREG_READY_FLAG	Indicates that VREG has reached a value that is greater than or equal to the threshold of a comparator tasked for VREG monitoring; masked to '0' during voltage stepping 0x0: VREG_READY_FLAG_FALSE 0x1: VREG_READY_FLAG_TRUE
6	VREG_FAULT_FLAG	Indicates a probable short circuit condition at VREG since VREG is below the VREG fault voltage level and the softstart ramp is done; current limit foldback is in use. 0x0: VREG_FAULT_FLAG_FALSE 0x1: VREG_FAULT_FLAG_TRUE

S5_CTRL_STATUS_1 (cont.)

Bits	Name	Description
1	NPM_FLAG	Indicates normal power mode is in use 0x0: NPM_FLAG_FALSE 0x1: NPM_FLAG_TRUE
0	STEPPER_DONE_FLAG	Softstart stepper and voltage stepper done 0x0: STEPPER_DONE_FLAG_FALSE 0x1: STEPPER_DONE_FLAG_TRUE

S5_CTRL_STATUS_2 0x00012009

S5_CTRL_STATUS

0	STEPPER_DONE_FLAG	0x0: STEPPER_DONE_FLAG_FALSE
		0x1: STEPPER_DONE_FLAG_TRUE
SE C	TDI STATUS 2	
35_C	TRL_STATUS_2	
Type:		
	PBUS_WRCLK	19
Reset S	State: Undefined	
Reset 1	Name: N/A	
Status 1	Registers	
		180
S5_CT	RL_STATUS_2	N. C.
Bits	Name	Description
4	ILS FLAG	Illegal limit stop flag: either of the following:
	9 69 1119	The upper limit stop VSET_ULS has been programmed to a value
	18, O.M.	below the lower limit stop VSET_LLS, or the lower limit stop
	30, 34	VSET_LLS has been programmed to a value above the upper limit stop VSET_ULS
	1	0x0: ILS_FLAG_FALSE
		0x1: ILS_FLAG_TRUE
3	ULS_FLAG	Indicates that the voltage setpoint has been programmed to a
	_	value that is greater than or equal to the upper limit stop
		VSET_ULS 0x0: ULS_FLAG_FALSE
		0x1: ULS_FLAG_TRUE
	LLC FLAC	
2	LLS_FLAG	Indicates that the voltage setpoint has been programmed to a value that is less than or equal to the lower limit stop VSET_LLS
		0x0: LLS_FLAG_FALSE
		0x1: LLS_FLAG_TRUE
1	GPL_HI_FLAG	Indicates that the voltage setpoint has reached a value that is
		greater than or equal to the high general purpose limit
		VSET_GPL_HI 0x0: GPL_HI_FLAG_FALSE
		0x1: GPL_HI_FLAG_TRUE
0	GPL_LO_FLAG	Indicates that the voltage setpoint has reached a value that is less
	O. L_LO_1 L/10	than or equal to the low general purpose limit VSET_GPL_LO
		0x0: GPL_LO_FLAG_FALSE
		0x1: GPL_LO_FLAG_TRUE
	1	1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: PERPH RB

Interrupt Real Time Status Bits

S5_CTRL_INT_RT_STS

Bits	Name	Description
2	VREG_FAULT_INT	Interrupt Real Time Status 0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
1	VREG_READY_INT	Interrupt Real Time Status 0x0: VREG_READY_INT_FALSE 0x1: VREG_READY_INT_TRUE
0	VREG_ERROR_INT	Interrupt Real Time Status 0x0: VREG_ERROR_INT_FALSE 0x1: VREG_ERROR_INT_TRUE

0x00012011 S5_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S5_CTRL_INT_SET_TYPE

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_LEVEL_TRIGGERED 0x1: VREG_FAULT_INT_EDGE_TRIGGERED
1	VREG_READY_INT	0x0: VREG_READY_INT_LEVEL_TRIGGERED 0x1: VREG_READY_INT_EDGE_TRIGGERED
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_LEVEL_TRIGGERED 0x1: VREG_ERROR_INT_EDGE_TRIGGERED

0x00012012 S5_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S5_CTRL_INT_POLARITY_HIGH

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_FAULT_INT_RISING_EDGE_TRIGGER_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_READY_INT_RISING_EDGE_TRIGGER_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_ERROR_INT_RISING_EDGE_TRIGGER_ENABL

0x00012013 S5_CTRL_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S5_CTRL_INT_POLARITY_LOW

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_FAULT_INT_FALLING_EDGE_TRIGGER_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_READY_INT_FALLING_EDGE_TRIGGER_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_ERROR_INT_FALLING_EDGE_TRIGGER_ENABL

0x00012014 S5_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S5_CTRL_INT_LATCHED_CLR

Bits	Name	Description
2	VREG_FAULT_INT	
1	VREG_READY_INT	
0	VREG_ERROR_INT	0

0x00012015 S5_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S5_CTRL_INT_EN_SET

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_DISABL
		0x1: VREG_FAULT_INT_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_DISABL
		0x1: VREG_READY_INT_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_DISABL
		0x1: VREG_ERROR_INT_ENABL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S5_CTRL_INT_EN_CLR

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_DISABL
		0x1: VREG_FAULT_INT_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_DISABL
		0x1: VREG_READY_INT_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_DISABL
		0x1: VREG_ERROR_INT_ENABL

0x00012018 S5_CTRL_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S5_CTRL_INT_LATCHED_STS

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_NOT_TRIGGERED 0x1: VREG_FAULT_INT_TRIGGERED_AND_LATCHED
1	VREG_READY_INT	0x0: VREG_READY_INT_NOT_TRIGGERED 0x1: VREG_READY_INT_TRIGGERED_AND_LATCHED
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_NOT_TRIGGERED 0x1: VREG_ERROR_INT_TRIGGERED_AND_LATCHED

0x00012019 S5_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S5_CTRL_INT_PENDING_STS

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_NOT_PENDING 0x1: VREG_FAULT_INT_PENDING
1	VREG_READY_INT	0x0: VREG_READY_INT_NOT_PENDING 0x1: VREG_READY_INT_PENDING
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_NOT_PENDING 0x1: VREG_ERROR_INT_PENDING

0x0001201A S5_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S5_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Master ID that will receive the interrupt
		0x0: MID_0
		0x1: MID_1
		0x2: MID_2
		0x3: MID_3

0x0001201B S5_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

S5_CTRL_INT_PRIORITY

	Bits	Name	Description
ĺ	0	INT_PRIORITY	Interrupt Priority
			0x0: INT_PRIORITY_0
			0x1: INT_PRIORITY_1

0x00012040 S5_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LATCHED WRITE=VOLTAGE CTL2

S5_CTRL_VOLTAGE_CTL1

Bits	Name	Description
0	MV_RANGE	0 = Use low voltage range as specified by VSET and PFM_VOFFSET
	27	1 = Use medium voltage range as specified by VSET and PFM_VOFFSET
	OS MINS	0x0: MV_RANGE_FALSE
	018,1161	0x1: MV_RANGE_TRUE

0x00012041 S5_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0xE5

Reset Name: PERPH RB

PMIC GANGED

S5_CTRL_VOLTAGE_CTL2

Bits	Name	Description
7:0	VSET	Output voltage set point in PWM mode and in PFM mode. VSET is not ENUM'd.
		For MV_RANGE = 0:
		VSET => 0.005V * m + 0.08V, where m = <7:0>
		For MV_RANGE = 1:
		VSET => 0.010V * m + 0.160V, where m = <7:0>

0x00012042 S5_CTRL_VSET_VALID

Type: R

Clock: PBUS_WRCLK
Reset State: Undefined
Reset Name: PERPH RB

S5_CTRL_VSET_VALID

Bits	Name	Description
7:0	VSET_VALID	Readback the valid output voltage setpoint value. VSET_VALID is not ENUM'd.,,,,'

0x00012045 S5_CTRL_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

PMIC GANGED

S5_CTRL_MODE_CTL

Bits	Name	Description
7	NPM	FTS NON-AUTO mode control 0 = Low power mode (LPM) unless AUTO_MODE is asserted 1 = Normal power mode (PWM) 0x0: NPM_NOT_FORCED 0x1: NPM_FORCED_IF_ENABL
6	AUTO_MODE	When NPM is not asserted, FTS automatically enters and exits low power mode (PFM) based on load current qualifying triggers 0 = AUTO mode is disabled 1 = AUTO mode is enabled 0x0: AUTO_MODE_FALSE 0x1: AUTO_MODE_TRUE

0x00012046 S5_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED

S5_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	FTS enable control
		0 = Off
		1 = On
		0x0: FTS_DISABL
		0x1: FTS_ENABL

0x00012048 S5_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x88

Reset Name: PERPH RB

S5_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	0 = Strong pull-down is always disabled 1 = Strong pull-down is enabled when the regulator is disabled 0x0: STRONG_PD_ALWAYS_OFF 0x1: STRONG_PD_ON_WHEN_FTS_IS_DISABL
6	WEAK_PD_EN	0 = Weak pull-down is not enabled in OFF state 1 = Weak pull-down is enabled in OFF state 0x0: WEAK_PD_DISABL_IN_PMIC_OFF_STATE 0x1: SWEAK_PD_ENABL_IN_PMIC_OFF_STATE
5	WEAK_PD_PFM	0 = Weak pull-down is not enabled in PFM mode 1 = Weak pull-down is enabled in PFM mode 0x0: WEAK_PD_DISABL_IN_PFM 0x1: WEAK_PD_ENABL_IN_PFM
4	WEAK_PD_PWM	0 = Weak pull-down is not enabled in PWM mode (and in HCPFM mode) 1 = Weak pull-down is enabled in PWM mode (and in HCPFM mode) 0x0: WEAK_PD_DISABL_IN_PWM_AND_HCPFM 0x1: WEAK_PD_ENABL_IN_PWM_AND_HCPFM
3	LEAK_PD_EN	0 = Leakage pull-down is always disabled 1 = Leakage pull-down is always enabled 0x0: LEAKAGE_PD_ALWAYS_OFF 0x1: LEAKAGE_PD_ALWAYS_ENABL

0x00012050 S5_CTRL_FREQ_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: PERPH_RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_CTRL_FREQ_CTL

Bits	Name	Description
3:0	FREQ_CTL	Clock frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2.5 buck supports 0.8, 1.6, 3.2,4.8, and 6.4 MHz
		0000 = Not supported
		0001 = Not supported
		0010 = 6.4MHz
		0011 = 4.8MHz
		0100 = Not supported
		0101 = 3.2MHz
	. ()	0110 = Not supported
		0111 = Not supported
		1000 = Not supported
	27.0	1001 = Not supported
	3 3	1010 = Not supported
	G. OTHILL	1011 = 1.6MHz
	2018-09 winds	1100 = Not supported
	7	1101 = Not supported
	V	1110 = Not supported
		1111 = Not supported
		0x2: FS_6M4HZ
		0x3: FS_4M8HZ
		0x5: FS_3M2MHZ
		0xB: FS_1M6MHZ

0x00012053 S5_CTRL_PHASE_ID

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S5_CTRL_PHASE_ID

Bits	Name	Description
3:0	PHASE_ID	Unique phase identifier. If less than or equal to PHASE_CNT_MAX, phase is active. If greater than PHASE_CNT_MAX, phase is inactive. 0x0: PHASE_NUMBER_1 0x1: PHASE_NUMBER_2 0x2: PHASE_NUMBER_3 0x3: PHASE_NUMBER_4

0x00012054 S5_CTRL_PHASE_CNT_MAX

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED

S5_CTRL_PHASE_CNT_MAX

Bits	Name	Description
3:0	PHASE_CNT_MAX	Sets the maximum number of phases that the autonomous phase controller (APC) can use. If greater than or equal to PHASE_ID, the autonomous phase controller may or may not keep the phase active. If less than PHASE_ID, that phase will go to standby mode.

0x00012060 S5_CTRL_SS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC GANGED

S5_CTRL_SS_CTL

Bits	Name	Description
4:3	SS_STEP	Softstart stepping voltage step size 00 = SS voltage step of 1 * LSB of VSET 01 = SS voltage step of 2 * LSB 10 = SS voltage step of 4 * LSB 11 = SS voltage step of 8 * LSB 0x0: SOFT_START_VSTEP_1_LSB 0x1: SOFT_START_VSTEP_2_LSB 0x2: SOFT_START_VSTEP_4_LSB 0x3: SOFT_START_VSTEP_8_LSB
2:0	SS_DELAY	Softstart delay between steps = 2 ^ (m + 3) / Fsys, where m = <2:0> (Fsys = 19.2 MHz): 000 = 8-clock cycles (417ns) 001 = 16-clock cycles 010 = 32-clock cycles 011 = 64-clock cycles 100 = 128-clock cycles (6.67us) 101 = 256-clock cycles 110 = invalid 0x0: SOFT_START_TIME_STEP_417NS 0x1: SOFT_START_TIME_STEP_833NS 0x2: SOFT_START_TIME_STEP_1U67S 0x3: SOFT_START_TIME_STEP_3U3S 0x4: SOFT_START_TIME_STEP_6U7S 0x5: SOFT_START_TIME_STEP_13U3S 0x6: SOFT_START_TIME_STEP_13U3S 0x6: SOFT_START_TIME_STEP_26U7S 0x7: SOFT_START_TIME_STEP_53U3S

0x00012061 S5_CTRL_VS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH_RB

PMIC_GANGED

S5_CTRL_VS_CTL

Bits	Name	Description
7	VS_EN	Voltage stepping control 0x0: VSTEPPER_DISABL 0x1: VSTEPPER_ENABL

S5_CTRL_VS_CTL (cont.)

Bits	Name	Description
4:3	VS_STEP	Voltage stepping voltage step size 00 = VS voltage step of 1 * LSB of VSET 01 = VS voltage step of 2 * LSB 10 = VS voltage step of 4 * LSB 11 = VS voltage step of 8 * LSB 0x0: VSTEPPER_STEP_SIZE_1_LSB 0x1: VSTEPPER_STEP_SIZE_2_LSB 0x2: VSTEPPER_STEP_SIZE_4_LSB 0x3: VSTEPPER_STEP_SIZE_8_LSB
2:0	VS_DELAY	Voltage stepping delay between steps = 2 ^ (m + 3) / Fsys, where m = <2:0> (Fsys = 19.2 MHz): 000 = 8-clock cycles (417ns) 001 = 16-clock cycles 010 = 32-clock cycles 011 = 64-clock cycles 100 = 128-clock cycles (6.67us) 101 = 256-clock cycles 110 = invalid 111 = invalid 0x0: VSTEPPER_TIME_STEP_417NS 0x1: VSTEPPER_TIME_STEP_833NS 0x2: VSTEPPER_TIME_STEP_1U67S 0x3: VSTEPPER_TIME_STEP_3U3S 0x4: VSTEPPER_TIME_STEP_6U7S 0x5: VSTEPPER_TIME_STEP_13U3S 0x6: VSTEPPER_TIME_STEP_13U3S 0x6: VSTEPPER_TIME_STEP_26U7S 0x7: VSTEPPER_TIME_STEP_53U3S

0x00012066 S5_CTRL_CFG_VREG_OCP

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S5_CTRL_CFG_VREG_OCP

Bits	Name	Description
7	OCP_LAT_EN	0 = Do not latch off regulator during OCP conditions
		1 = Latch off regulator after OCP condition has been detected for at least 16 32kHz cycles outside of a stepper operation 0x0: OCP_LATCH_DISABL 0x1: OCP_LATCH_ENABL

S5_CTRL_CFG_VREG_OCP (cont.)

Bits	Name	Description
6	OCP_RETRY_EN	0 = Do not autonomously clear latched OCP condition 1 = Autonomously clear latched OCP condition after 5ms 0x0: OCP_RETRY_DISABL 0x1: OCP_RETRY_ENABL
5	OCP_CLR	Toggle to clear a latched OCP condition and enable the regulator when PERPH_EN is asserted

0x00012068 S5_CTRL_UL_LL_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_CTRL_UL_LL_CTL

Bits	Name	Description
7	ULEN 2018-09 miller	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_STOP_DISABL 0x1: UL_STOP_ENABL
6	LL_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_STOP_DISABL 0x1: LL_STOP_ENABL

0x00012069 S5_CTRL_VSET_ULS

Type: RW

Clock: PBUS_WRCLK Reset State: 0xFF

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_CTRL_VSET_ULS

Bits	Name	Description
7:0	VSET_ULS	If UL_EN is asserted, and VSET is set to a value greater than or equal to VSET_ULS, ULS_FLAG and VREG_READY_INT are asserted For MV_RANGE = 0: VSET_ULS => 0.005V * m + 0.080V, where m = <7:0>
		For MV_RANGE = 1:
		VSET_ULS => 0.010V * m + 0.160V, where m = <7:0>

0x0001206A S5_CTRL_ULS_VALID

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: PERPH_RB

S5_CTRL_ULS_VALID

Bits	Name	Description
7:0	ULS_VALID	Readback the valid upper limit stop value

0x0001206B S5_CTRL_VSET_LLS

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LOCKED=SEC ACCESS

S5_CTRL_VSET_LLS

Bits	Name	Description
7:0	VSET_LLS	If LL_EN is asserted, and VSET is set to a value less than or equal to VSET_LLS, LLS_FLAG and VREG_READY_INT are asserted For MV_RANGE = 0: VSET_LLS => 0.005V * m + 0.080V, where m = <7:0> For MV_RANGE = 1: VSET_LLS => 0.010V * m + 0.160V, where m = <7:0>

0x0001206C S5_CTRL_LLS_VALID

Type: R

Clock: PBUS_WRCLK
Reset State: Undefined
Reset Name: PERPH RB

S5_CTRL_LLS_VALID

Bits	Name	Description
7:0	LLS_VALID	Readback the valid lower limit stop value

0x0001206D S5_CTRL_GPL_HI

Type: RW

Clock: PBUS_WRCLK Reset State: 0xFF

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_CTRL_GPL_HI

Bits	Name	Description
7:0	VSET_GPL_HI	When output voltage setpoint reaches a value greater than or equal to VSET_GPL_HI, set GPL_HI_FLAG and VREG_READY_INT For MV_RANGE = 0: VSET_GPL_HI => 0.005V * m + 0.080V, where m = <7:0> For MV_RANGE = 1: VSET_GPL_HI => 0.010V * m + 0.160V, where m = <7:0>

0x0001206E S5_CTRL_GPL_LO

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_CTRL_GPL_LO

Bits	Name	Description
7:0	VSET_GPL_LO	When output voltage setpoint reaches a value less than or equal to VSET_GPL_LO value, set GPL_LO_FLAG and VREG_READY_INT
		For MV_RANGE = 0:
		VSET_GPL_LO => 0.005V * m + 0.80V, where m = <7:0>
		For MV_RANGE = 1:
		VSET_GPL_LO => 0.010V * m + 0.160V, where m = <7:0>

0x000120C0 S5_CTRL_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: shutdown2 rb

PMIC_LOCKED=SEC ACCESS

S5_CTRL_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000120C1 S5_CTRL_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: shutdown2 rb

PMIC_LOCKED=SEC_ACCESS

S5_CTRL_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANG_EN_FALSE
		0x1: GANG_EN_TRUE

54 Fts2p5_ps Registers

0x00012100 S5_PS_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S5_PS_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software.
	· · ·	Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012101 S5_PS_REVISION2

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S5_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012102 S5_PS_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S5_PS_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software.
		Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012103 S5_PS_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

S5_PS_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

Type: R

Clock: PBUS_WRCLK Reset State: 0x1C

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S5_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x00012105 S5_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: N/A

Peripheral SubType

S5_PS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	180

JUNG

0x00012140 S5_PS_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LATCHED WRITE=VOLTAGE CTL2

S5_PS_VOLTAGE_CTL1

Bits	Name	Description
0	MV_RANGE	0 = Use low voltage range as specified by VSET and PFM_VOFFSET
		1 = Use medium voltage range as specified by VSET and PFM_VOFFSET
		0x0: LV_RANGE
		0x1: MV_RANGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0xE5

Reset Name: PERPH RB

PMIC GANGED

S5_PS_VOLTAGE_CTL2

Bits	Name	Description
7:0	VSET	Output voltage set point in PWM mode and in PFM mode For MV RANGE = 0:
		VSET => 0.005V * m + 0.080V, where m = <7:0>
		For MV_RANGE = 1:
		VSET => 0.010V * m + 0.160V, where m = <7:0> If PFM VOFFSET EN is asserted and in PFM mode, add
		PFM_VOFFSET

0x00012145 S5_PS_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

PMIC GANGED

S5_PS_MODE_CTL

Bits	Name	Description
7	NPM	FTS NON-AUTO mode control
		0 = Low power mode (LPM) unless AUTO_MODE is asserted
		1 = Normal power mode (PWM)
		0x0: NPM_NOT_FORCED
		0x1: NPM_FORCED_IF_ENABL
6	AUTO_MODE	When NPM is not asserted, FTS automatically enters and exits low power mode (PFM) based on load current qualifying triggers
		0 = AUTO mode is disabled
		1 = AUTO mode is enabled
		0x0: AUTO_MODE_FALSE
		0x1: AUTO_MODE_TRUE

0x00012150 S5_PS_FREQ_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: PERPH_RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S5_PS_FREQ_CTL

Bits	Name	Description
3:0	FREQ_CTL	Clock frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2.5 buck supports 0.8, 1.6, 3.2,4.8, and 6.4 MHz
		0000 = Not supported
		0001 = Not supported
		0010 = 6.4MHz
		0011 = 4.8MHz
		0100 = Not supported
		0101 = 3.2MHz
		0110 = Not supported
		0111 = Not supported
		1000 = Not supported
	2.5	1001 = Not supported
	00'0118	1010 = Not supported
	C. Capille	1011 = 1.6MHz
	O' Me	1100 = Not supported
	2018-09 winds	1101 = Not supported
	V	1110 = Not supported
		1111 = Not supported
		0x2: FS_6M4HZ
		0x3: FS_4M8HZ
		0x5: FS_3M2MHZ
		0xB: FS_1M6MHZ

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S5_PS_PHASE_ID

Bits	Name	Description	
3:0	PHASE_ID	Unique phase identifier. If less than or equal to PHASE_CNT_MAX, phase is active. If greater than PHASE_CNT_MAX, phase is inactive. 0x0: PHASE_NUMBER_1 0x1: PHASE_NUMBER_2 0x2: PHASE_NUMBER_3 0x3: PHASE_NUMBER_4	
S5_PS_PHASE_CNT_MAX Type: RW Clock: PBUS_WRCLK Reset State: 0x00			
Reset N	Reset Name: PERPH_RB		
PMIC_GANGED			
S5_PS	_PHASE_CNT_MAX	01:700	
Bits	Name	Description	

0x00012154 S5_PS_PHASE_CNT_MAX

S5_PS_PHASE_CNT_MAX

Bits	Name	Description
3:0	PHASE_CNT_MAX	Sets the maximum number of phases that the autonomous phase controller (APC) can use. If greater than or equal to PHASE_ID, the autonomous phase controller may or may not keep the phase active. If less than PHASE_ID, that phase will go to standby mode.

0x000121C0 S5_PS_GANG_CTL1

Type: RW

Clock: PBUS WRCLK Reset State: 0x20

Reset Name: shutdown2 rb

PMIC LOCKED=SEC ACCESS

S5_PS_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: shutdown2 rb

PMIC LOCKED=SEC ACCESS

S5_PS_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral 0x0: GANG_EN_FALSE
		0x1: GANG_EN_TRUE
	2018-09-21-03	in con

55 Bclk_gen_clk Registers

0x00012200 S5_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S5_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S5_FREQ_REVISION2

Bit	S Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012204 S5_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S5_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00012205 S5_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19 Reset Name: N/A

Peripheral SubType

S5_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00012246 S5_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S5_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S5_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00012250 S5_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x05

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S5_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,100	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	o o nine	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	720 1101	0x0: FREQ_9M6HZ_0
	2018-24@minds	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00012251 S5_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S5_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x000122C0 S5_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x20

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S5_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000122C1 S5_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S5_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

56 Fts2p5_ctrl Registers

0x00012300 S6_CTRL_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

S6_CTRL_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012301 S6_CTRL_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S6_CTRL_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012302 S6_CTRL_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S6_CTRL_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012303 S6_CTRL_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: N/A

HW Version Register [31:24]

S6_CTRL_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00012304 S6_CTRL_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1C

Reset Name: N/A

Peripheral Type

PMIC CONSTANT

S6_CTRL_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x00012305 S6_CTRL_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: N/A

Peripheral SubType

PMIC_CONSTANT

S6_CTRL_PERPH_SUBTYPE

l	Bits	Name	Description
	7:0	SUBTYPE	oi.

0x00012308 S6_CTRL_STATUS_1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: N/A

Status Registers

S6_CTRL_STATUS_1

Bits	Name	Description
7	VREG_READY_FLAG	Indicates that VREG has reached a value that is greater than or equal to the threshold of a comparator tasked for VREG monitoring; masked to '0' during voltage stepping 0x0: VREG_READY_FLAG_FALSE 0x1: VREG_READY_FLAG_TRUE
6	VREG_FAULT_FLAG	Indicates a probable short circuit condition at VREG since VREG is below the VREG fault voltage level and the softstart ramp is done; current limit foldback is in use. 0x0: VREG_FAULT_FLAG_FALSE 0x1: VREG_FAULT_FLAG_TRUE

S6_CTRL_STATUS_1 (cont.)

Bits	Name	Description
1	NPM_FLAG	Indicates normal power mode is in use 0x0: NPM_FLAG_FALSE 0x1: NPM_FLAG_TRUE
0	STEPPER_DONE_FLAG	Softstart stepper and voltage stepper done 0x0: STEPPER_DONE_FLAG_FALSE 0x1: STEPPER_DONE_FLAG_TRUE

S6_CTRL_STATUS_2 0x00012309

S6_CTRL_STATUS

	OTEL TEN_BONE_TENO	0x0: STEPPER_DONE_FLAG_FALSE	
		0x1: STEPPER_DONE_FLAG_TRUE	
Type: Clock:	S6_CTRL_STATUS_2 Type: R Clock: PBUS_WRCLK Reset State: Undefined		
Reset N	Name: N/A		
Status 1	Registers		
	RL_STATUS_2	227	
Bits	Name	Description	
4	ILS_FLAG	Illegal limit stop flag: either of the following: The upper limit stop VSET_ULS has been programmed to a value below the lower limit stop VSET_LLS, or the lower limit stop VSET_LLS has been programmed to a value above the upper limit stop VSET_ULS 0x0: ILS_FLAG_FALSE 0x1: ILS_FLAG_TRUE	
3	ULS_FLAG	Indicates that the voltage setpoint has been programmed to a value that is greater than or equal to the upper limit stop VSET_ULS 0x0: ULS_FLAG_FALSE 0x1: ULS_FLAG_TRUE	
2	LLS_FLAG	Indicates that the voltage setpoint has been programmed to a value that is less than or equal to the lower limit stop VSET_LLS 0x0: LLS_FLAG_FALSE 0x1: LLS_FLAG_TRUE	
1	GPL_HI_FLAG	Indicates that the voltage setpoint has reached a value that is greater than or equal to the high general purpose limit VSET_GPL_HI 0x0: GPL_HI_FLAG_FALSE 0x1: GPL_HI_FLAG_TRUE	
0	GPL_LO_FLAG	Indicates that the voltage setpoint has reached a value that is less than or equal to the low general purpose limit VSET_GPL_LO 0x0: GPL_LO_FLAG_FALSE 0x1: GPL_LO_FLAG_TRUE	

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: PERPH RB

Interrupt Real Time Status Bits

S6_CTRL_INT_RT_STS

Bits	Name	Description
2	VREG_FAULT_INT	Interrupt Real Time Status 0x0: VREG_FAULT_INT_FALSE 0x1: VREG_FAULT_INT_TRUE
1	VREG_READY_INT	Interrupt Real Time Status 0x0: VREG_READY_INT_FALSE 0x1: VREG_READY_INT_TRUE
0	VREG_ERROR_INT	Interrupt Real Time Status 0x0: VREG_ERROR_INT_FALSE 0x1: VREG_ERROR_INT_TRUE

0x00012311 S6_CTRL_INT_SET_TYPE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

0 =use level trigger interrupts, 1 =use edge trigger interrupts

S6_CTRL_INT_SET_TYPE

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_LEVEL_TRIGGERED 0x1: VREG_FAULT_INT_EDGE_TRIGGERED
1	VREG_READY_INT	0x0: VREG_READY_INT_LEVEL_TRIGGERED 0x1: VREG_READY_INT_EDGE_TRIGGERED
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_LEVEL_TRIGGERED 0x1: VREG_ERROR_INT_EDGE_TRIGGERED

0x00012312 S6_CTRL_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

1= Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

S6_CTRL_INT_POLARITY_HIGH

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_FAULT_INT_RISING_EDGE_TRIGGER_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_READY_INT_RISING_EDGE_TRIGGER_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_RISING_EDGE_TRIGGER_DISABL 0x1: VREG_ERROR_INT_RISING_EDGE_TRIGGER_ENABL

0x00012313 S6 CTRL INT POLARITY LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

1' = Interrupt will trigger on a level low (falling edge) event, '0' = level low triggering is disabled

S6_CTRL_INT_POLARITY_LOW

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_FAULT_INT_FALLING_EDGE_TRIGGER_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_READY_INT_FALLING_EDGE_TRIGGER_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_FALLING_EDGE_TRIGGER_DISABL 0x1: VREG_ERROR_INT_FALLING_EDGE_TRIGGER_ENABL

0x00012314 S6_CTRL_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

S6_CTRL_INT_LATCHED_CLR

Bits	Name	Description
2	VREG_FAULT_INT	
1	VREG_READY_INT	
0	VREG_ERROR_INT	0

0x00012315 S6_CTRL_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

S6_CTRL_INT_EN_SET

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_DISABL
		0x1: VREG_FAULT_INT_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_DISABL
		0x1: VREG_READY_INT_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_DISABL
		0x1: VREG_ERROR_INT_ENABL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

S6_CTRL_INT_EN_CLR

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_DISABL
		0x1: VREG_FAULT_INT_ENABL
1	VREG_READY_INT	0x0: VREG_READY_INT_DISABL
		0x1: VREG_READY_INT_ENABL
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_DISABL
		0x1: VREG_ERROR_INT_ENABL

0x00012318 S6_CTRL_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Debug: Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

S6_CTRL_INT_LATCHED_STS

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_NOT_TRIGGERED 0x1: VREG_FAULT_INT_TRIGGERED_AND_LATCHED
1	VREG_READY_INT	0x0: VREG_READY_INT_NOT_TRIGGERED 0x1: VREG_READY_INT_TRIGGERED_AND_LATCHED
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_NOT_TRIGGERED 0x1: VREG_ERROR_INT_TRIGGERED_AND_LATCHED

0x00012319 S6_CTRL_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Debug: Pending is set if interrupt has been sent but not cleared.

S6_CTRL_INT_PENDING_STS

Bits	Name	Description
2	VREG_FAULT_INT	0x0: VREG_FAULT_INT_NOT_PENDING 0x1: VREG_FAULT_INT_PENDING
1	VREG_READY_INT	0x0: VREG_READY_INT_NOT_PENDING 0x1: VREG_READY_INT_PENDING
0	VREG_ERROR_INT	0x0: VREG_ERROR_INT_NOT_PENDING 0x1: VREG_ERROR_INT_PENDING

0x0001231A S6_CTRL_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

Selects the MID that will receive the interrupt

S6_CTRL_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	Master ID that will receive the interrupt
		0x0: MID_0
		0x1: MID_1
		0x2: MID_2
		0x3: MID_3

0x0001231B S6_CTRL_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

SR=0 A=1

S6_CTRL_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Interrupt Priority 0x0: INT_PRIORITY_0 0x1: INT_PRIORITY_1

0x00012340 S6_CTRL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LATCHED WRITE=VOLTAGE CTL2

S6_CTRL_VOLTAGE_CTL1

Bits	Name	Description
0	MV_RANGE	0 = Use low voltage range as specified by VSET and PFM_VOFFSET
	27	1 = Use medium voltage range as specified by VSET and PFM_VOFFSET
	OS MINS	0x0: MV_RANGE_FALSE
	018,1161	0x1: MV_RANGE_TRUE

0x00012341 S6_CTRL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0xE5

Reset Name: PERPH RB

PMIC GANGED

S6_CTRL_VOLTAGE_CTL2

Bits	Name	Description
7:0	VSET	Output voltage set point in PWM mode and in PFM mode. VSET is not ENUM'd.
		For MV_RANGE = 0:
		VSET => 0.005V * m + 0.08V, where m = <7:0>
		For MV_RANGE = 1:
		VSET => 0.010V * m + 0.160V, where m = <7:0>

0x00012342 S6_CTRL_VSET_VALID

Type: R

Clock: PBUS_WRCLK
Reset State: Undefined
Reset Name: PERPH RB

S6_CTRL_VSET_VALID

Bits	Name	Description
7:0	VSET_VALID	Readback the valid output voltage setpoint value. VSET_VALID is not ENUM'd.,,,,'

0x00012345 S6_CTRL_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH_RB

PMIC GANGED

S6_CTRL_MODE_CTL

Bits	Name	Description
7	NPM	FTS NON-AUTO mode control 0 = Low power mode (LPM) unless AUTO_MODE is asserted 1 = Normal power mode (PWM) 0x0: NPM_NOT_FORCED 0x1: NPM_FORCED_IF_ENABL
6	AUTO_MODE	When NPM is not asserted, FTS automatically enters and exits low power mode (PFM) based on load current qualifying triggers 0 = AUTO mode is disabled 1 = AUTO mode is enabled 0x0: AUTO_MODE_FALSE 0x1: AUTO_MODE_TRUE

0x00012346 S6_CTRL_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED

S6_CTRL_EN_CTL

Bits	Name	Description
7	PERPH_EN	FTS enable control
		0 = Off
		1 = On
		0x0: FTS_DISABL
		0x1: FTS_ENABL

0x00012348 S6_CTRL_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: PERPH_RB

S6_CTRL_PD_CTL

Bits	Name	Description
7	PD_EN	0 = Strong pulldown is always disabled 1 = Strong pulldown is enabled when the regulator is disabled 0x0: STRONG_PD_ALWAYS_OFF 0x1: STRONG_PD_ON_WHEN_FTS_IS_DISABL
6	WEAK_PD_EN	0 = Weak pulldown is not enabled in OFF state 1 = Weak pulldown is enabled in OFF state 0x0: WEAK_PD_DISABL_IN_PMIC_OFF_STATE 0x1: SWEAK_PD_ENABL_IN_PMIC_OFF_STATE
5	WEAK_PD_PFM	0 = Weak pulldown is not enabled in PFM mode 1 = Weak pulldown is enabled in PFM mode 0x0: WEAK_PD_DISABL_IN_PFM 0x1: WEAK_PD_ENABL_IN_PFM
4	WEAK_PD_PWM	0 = Weak pulldown is not enabled in PWM mode (and in HCPFM mode) 1 = Weak pulldown is enabled in PWM mode (and in HCPFM mode) 0x0: WEAK_PD_DISABL_IN_PWM_AND_HCPFM 0x1: WEAK_PD_ENABL_IN_PWM_AND_HCPFM
3	LEAK_PD_EN	0 = Leakage pulldown is always disabled 1 = Leakage pulldown is always enabled 0x0: LEAKAGE_PD_ALWAYS_OFF 0x1: LEAKAGE_PD_ALWAYS_ENABL

0x00012350 S6_CTRL_FREQ_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: PERPH_RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_CTRL_FREQ_CTL

Bits	Name	Description
3:0	FREQ_CTL	Clock frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2.5 buck supports 0.8, 1.6, 3.2,4.8, and 6.4 MHz
		0000 = Not supported
		0001 = Not supported
		0010 = 6.4MHz
	. (0011 = 4.8MHz
		0100 = Not supported
		0101 = 3.2MHz
		0110 = Not supported
		0111 = Not supported
		1000 = Not supported
	2.5	1001 = Not supported
	9 01	1010 = Not supported
	C. Capille	1011 = 1.6MHz
	O' Me	1100 = Not supported
	2018-09 winds	1101 = Not supported
	V	1110 = Not supported
		1111 = Not supported
		0x2: FS_6M4HZ
		0x3: FS_4M8HZ
		0x5: FS_3M2MHZ
		0xB: FS_1M6MHZ

0x00012353 S6_CTRL_PHASE_ID

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S6_CTRL_PHASE_ID

Bits	Name	Description
3:0	PHASE_ID	Unique phase identifier. If less than or equal to PHASE_CNT_MAX, phase is active. If greater than PHASE_CNT_MAX, phase is inactive. 0x0: PHASE_NUMBER_1 0x1: PHASE_NUMBER_2 0x2: PHASE_NUMBER_3 0x3: PHASE_NUMBER_4

0x00012354 S6_CTRL_PHASE_CNT_MAX

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED

S6_CTRL_PHASE_CNT_MAX

Bits	Name	Description
3:0	PHASE_CNT_MAX	Sets the maximum number of phases that the autonomous phase controller (APC) can use. If greater than or equal to PHASE_ID, the autonomous phase controller may or may not keep the phase active. If less than PHASE_ID, that phase will go to standby mode.

0x00012360 S6_CTRL_SS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC GANGED

S6_CTRL_SS_CTL

Bits	Name	Description
4:3	SS_STEP	Softstart stepping voltage step size 00 = SS voltage step of 1 * LSB of VSET 01 = SS voltage step of 2 * LSB 10 = SS voltage step of 4 * LSB 11 = SS voltage step of 8 * LSB 0x0: SOFT_START_VSTEP_1_LSB 0x1: SOFT_START_VSTEP_2_LSB 0x2: SOFT_START_VSTEP_4_LSB 0x3: SOFT_START_VSTEP_8_LSB
2:0	SS_DELAY	Softstart delay between steps = 2 ^ (m + 3) / Fsys, where m = <2:0> (Fsys = 19.2 MHz): 000 = 8-clock cycles (417ns) 001 = 16-clock cycles 010 = 32-clock cycles 011 = 64-clock cycles 100 = 128-clock cycles (6.67us) 101 = 256-clock cycles 110 = invalid 0x0: SOFT_START_TIME_STEP_417NS 0x1: SOFT_START_TIME_STEP_833NS 0x2: SOFT_START_TIME_STEP_1U67S 0x3: SOFT_START_TIME_STEP_3U3S 0x4: SOFT_START_TIME_STEP_6U7S 0x5: SOFT_START_TIME_STEP_13U3S 0x6: SOFT_START_TIME_STEP_13U3S 0x6: SOFT_START_TIME_STEP_26U7S 0x7: SOFT_START_TIME_STEP_53U3S

0x00012361 S6_CTRL_VS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: PERPH_RB

PMIC_GANGED

S6_CTRL_VS_CTL

Bits	Name	Description
7	VS_EN	Voltage stepping control 0x0: VSTEPPER_DISABL 0x1: VSTEPPER_ENABL

S6_CTRL_VS_CTL (cont.)

Bits	Name	Description
4:3	VS_STEP	Voltage stepping voltage step size 00 = VS voltage step of 1 * LSB of VSET 01 = VS voltage step of 2 * LSB 10 = VS voltage step of 4 * LSB 11 = VS voltage step of 8 * LSB 0x0: VSTEPPER_STEP_SIZE_1_LSB 0x1: VSTEPPER_STEP_SIZE_2_LSB 0x2: VSTEPPER_STEP_SIZE_4_LSB 0x3: VSTEPPER_STEP_SIZE_8_LSB
2:0	VS_DELAY	Voltage stepping delay between steps = 2 ^ (m + 3) / Fsys, where m = <2:0> (Fsys = 19.2 MHz): 000 = 8-clock cycles (417ns) 001 = 16-clock cycles 010 = 32-clock cycles 011 = 64-clock cycles 100 = 128-clock cycles (6.67us) 101 = 256-clock cycles 110 = invalid 111 = invalid 0x0: VSTEPPER_TIME_STEP_417NS 0x1: VSTEPPER_TIME_STEP_833NS 0x2: VSTEPPER_TIME_STEP_1U67S 0x3: VSTEPPER_TIME_STEP_3U3S 0x4: VSTEPPER_TIME_STEP_6U7S 0x5: VSTEPPER_TIME_STEP_13U3S 0x6: VSTEPPER_TIME_STEP_13U3S 0x6: VSTEPPER_TIME_STEP_26U7S 0x7: VSTEPPER_TIME_STEP_53U3S

0x00012366 S6_CTRL_CFG_VREG_OCP

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

S6_CTRL_CFG_VREG_OCP

Bits	Name	Description
7	OCP_LAT_EN	0 = Do not latch off regulator during OCP conditions
		1 = Latch off regulator after OCP condition has been detected for at least 16 32kHz cycles outside of a stepper operation 0x0: OCP_LATCH_DISABL 0x1: OCP_LATCH_ENABL

S6_CTRL_CFG_VREG_OCP (cont.)

Bits	Name	Description
6	OCP_RETRY_EN	0 = Do not autonomously clear latched OCP condition 1 = Autonomously clear latched OCP condition after 5ms 0x0: OCP_RETRY_DISABL 0x1: OCP_RETRY_ENABL
5	OCP_CLR	Toggle to clear a latched OCP condition and enable the regulator when PERPH_EN is asserted

0x00012368 S6_CTRL_UL_LL_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_CTRL_UL_LL_CTL

Bits	Name	Description
7	UL_EN 2018-5MENITER	0 = Disable upper limit stop 1 = Enable upper limit stop 0x0: UL_STOP_DISABL 0x1: UL_STOP_ENABL
6	LL_EN	0 = Disable lower limit stop 1 = Enable lower limit stop 0x0: LL_STOP_DISABL 0x1: LL_STOP_ENABL

0x00012369 S6_CTRL_VSET_ULS

Type: RW

Clock: PBUS_WRCLK Reset State: 0xFF

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_CTRL_VSET_ULS

Bits	Name	Description
7:0	VSET_ULS	If UL_EN is asserted, and VSET is set to a value greater than or equal to VSET_ULS, ULS_FLAG and VREG_READY_INT are asserted For MV_RANGE = 0: VSET_ULS => 0.005V * m + 0.080V, where m = <7:0>
		For MV_RANGE = 1:
		VSET_ULS => 0.010V * m + 0.160V, where m = <7:0>

0x0001236A S6_CTRL_ULS_VALID

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: PERPH_RB

S6_CTRL_ULS_VALID

Bits	Name	Description
7:0	ULS_VALID	Readback the valid upper limit stop value

0x0001236B S6_CTRL_VSET_LLS

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LOCKED=SEC ACCESS

S6_CTRL_VSET_LLS

Bits	Name	Description
7:0	VSET_LLS	If LL_EN is asserted, and VSET is set to a value less than or equal to VSET_LLS, LLS_FLAG and VREG_READY_INT are asserted For MV_RANGE = 0: VSET_LLS => 0.005V * m + 0.080V, where m = <7:0> For MV_RANGE = 1: VSET_LLS => 0.010V * m + 0.160V, where m = <7:0>

0x0001236C S6_CTRL_LLS_VALID

Type: R

Clock: PBUS_WRCLK
Reset State: Undefined
Reset Name: PERPH RB

S6_CTRL_LLS_VALID

Bits	Name	Description
7:0	LLS_VALID	Readback the valid lower limit stop value

0x0001236D S6_CTRL_GPL_HI

Type: RW

Clock: PBUS_WRCLK Reset State: 0xFF

Reset Name: PERPH_RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_CTRL_GPL_HI

Bits	Name	Description
7:0	VSET_GPL_HI	When output voltage setpoint reaches a value greater than or equal to VSET_GPL_HI, set GPL_HI_FLAG and VREG_READY_INT For MV_RANGE = 0: VSET_GPL_HI => 0.005V * m + 0.080V, where m = <7:0> For MV_RANGE = 1: VSET_GPL_HI => 0.010V * m + 0.160V, where m = <7:0>

0x0001236E S6_CTRL_GPL_LO

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_CTRL_GPL_LO

Bits	Name	Description
7:0	VSET_GPL_LO	When output voltage setpoint reaches a value less than or equal to VSET_GPL_LO value, set GPL_LO_FLAG and VREG_READY_INT For MV_RANGE = 0: VSET_GPL_LO => 0.005V * m + 0.80V, where m = <7:0> For MV_RANGE = 1: VSET_GPL_LO => 0.010V * m + 0.160V, where m = <7:0>

0x000123C0 S6_CTRL_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x23

Reset Name: shutdown2 rb

PMIC_LOCKED=SEC ACCESS

S6_CTRL_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000123C1 S6_CTRL_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: shutdown2 rb

PMIC_LOCKED=SEC_ACCESS

S6_CTRL_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANG_EN_FALSE
		0x1: GANG_EN_TRUE

57 Fts2p5_ps Registers

0x00012400 S6_PS_REVISION1

S6_PS_REVISION1

S6_P5	S_REVISION1			
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x02			
Reset N	Name: N/A			
HW Ve	rsion Register [7:0]	- of		
PMIC_	CONSTANT	2.21		
S6_PS_	S6_PS_REVISION1			
Bits	Name	Description		
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.		

0x00012401 S6_PS_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

S6_PS_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012402 S6_PS_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [23:16]

S6_PS_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software.
		Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00012403 S6_PS_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [31:24]

S6_PS_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

Type: R

Clock: PBUS_WRCLK Reset State: 0x1C

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

S6_PS_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x00012405 S6_PS_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: N/A

Peripheral SubType

S6_PS_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	180

JUNG

0x00012440 S6_PS_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC GANGED, PMIC LATCHED WRITE=VOLTAGE CTL2

S6_PS_VOLTAGE_CTL1

Bits	Name	Description
0	MV_RANGE	0 = Use low voltage range as specified by VSET and PFM_VOFFSET
		1 = Use medium voltage range as specified by VSET and PFM_VOFFSET
		0x0: LV_RANGE
		0x1: MV_RANGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0xC2

Reset Name: PERPH RB

PMIC GANGED

S6_PS_VOLTAGE_CTL2

Bits	Name	Description
7:0	VSET	Output voltage set point in PWM mode and in PFM mode
		For MV_RANGE = 0:
		VSET => 0.005V * m + 0.080V, where m = <7:0>
		For MV_RANGE = 1:
		VSET => $0.010V * m + 0.160V$, where $m = <7:0>$
	.\(If PFM_VOFFSET_EN is asserted and in PFM mode, add PFM_VOFFSET

0x00012445 S6_PS_MODE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

PMIC GANGED

S6_PS_MODE_CTL

Bits	Name	Description
7	NPM	FTS NON-AUTO mode control
		0 = Low power mode (LPM) unless AUTO_MODE is asserted
		1 = Normal power mode (PWM)
		0x0: NPM_NOT_FORCED
		0x1: NPM_FORCED_IF_ENABL
6	AUTO_MODE	When NPM is not asserted, FTS automatically enters and exits low power mode (PFM) based on load current qualifying triggers
		0 = AUTO mode is disabled
		1 = AUTO mode is enabled
		0x0: AUTO_MODE_FALSE
		0x1: AUTO_MODE_TRUE

0x00012450 S6_PS_FREQ_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: PERPH_RB

PMIC_GANGED, PMIC_LOCKED=SEC_ACCESS

S6_PS_FREQ_CTL

Bits	Name	Description
3:0	FREQ_CTL	Clock frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2.5 buck supports 0.8, 1.6, 3.2,4.8, and 6.4 MHz
		0000 = Not supported
		0001 = Not supported
		0010 = 6.4MHz
		0011 = 4.8MHz
		0100 = Not supported
		0101 = 3.2MHz
		0110 = Not supported
		0111 = Not supported
		1000 = Not supported
	2.5	1001 = Not supported
	00'0118	1010 = Not supported
	C. Capille	1011 = 1.6MHz
	O' Me	1100 = Not supported
	2018-09 winds	1101 = Not supported
	V	1110 = Not supported
		1111 = Not supported
		0x2: FS_6M4HZ
		0x3: FS_4M8HZ
		0x5: FS_3M2MHZ
		0xB: FS_1M6MHZ

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S6_PS_PHASE_ID

Bits	Name	Description
3:0	PHASE_ID	Unique phase identifier. If less than or equal to PHASE_CNT_MAX, phase is active. If greater than PHASE_CNT_MAX, phase is inactive.
		0x0: PHASE_NUMBER_1 0x1: PHASE_NUMBER_2
		0x2: PHASE_NUMBER_3 0x3: PHASE_NUMBER_4

0x00012454 S6_PS_PHASE_CNT_MAX

S6_PS_PHASE_CNT_MAX

S6_PS_PHASE_CNT_MAX					
Type: RW Clock: PBUS_WRCLK Reset State: 0x00					
Reset Name: PER	Reset Name: PERPH_RB				
PMIC_GANGED	PMIC_GANGED				
		2.1			
S6_PS_PHASE_C	S6_PS_PHASE_CNT_MAX				
Bits	Name	Description			
3:0 PHASE_CI	NT_MAX	Sets the maximum number of phases that the autonomous phase controller (APC) can use. If greater than or equal to PHASE ID,			
	J. 40.	the autonomous phase controller may or may not keep the phase			

0x000124C0 S6_PS_GANG_CTL1

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x23

Reset Name: shutdown2 rb

PMIC LOCKED=SEC ACCESS

S6_PS_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: shutdown2 rb

PMIC LOCKED=SEC ACCESS

S6_PS_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral 0x0: GANG_EN_FALSE
		0x1: GANG_EN_TRUE
	2018-09-21-03	in con

58 Bclk_gen_clk Registers

0x00012500 S6_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

S6_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

S6_FREQ_REVISION2

Bit	S Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00012504 S6_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1D

Reset Name: N/A

Peripheral Type

S6_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x00012505 S6_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19 Reset Name: N/A

Peripheral SubType

S6_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x00012546 S6_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S6_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

S6_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x00012550 S6_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x05

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

S6_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,1 1,5	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	.O. ville	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	2018. 24 Chillip	0x0: FREQ_9M6HZ_0
	2.5	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x00012551 S6_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S6_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x000125C0 S6_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x23

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

S6_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x000125C1 S6_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

S6_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

59 Ldo_ult_stepper_dig Registers

0x00014000 LDO1_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO1_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014001 LDO1_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO1_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014002 LDO1_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

LDO1_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014003 LDO1_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

HW Version Register [31:24]

LDO1_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014004 LDO1_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC_CONSTANT

LDO1_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ULT LDO

0x00014005 LDO1_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: n/a

Peripheral SubType

LDO1_PERPH_SUBTYPE

E	Bits	Name	Description
	7:0	SUBTYPE	N300_stepper: 0x15; N600_stepper: 0x06; N900_stepper: 0x14; N1200_stepper: 0x07

SINN

0x00014008 LDO1_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0bXXXXXXX1

Reset Name: n/a

Status Registers

LDO1_STATUS1

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold, 1 = VREG output voltage is above VREG_OK threshold. VREG_OK is also high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	1 = VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

LDO1_STATUS1 (cont.)

Bits	Name	Description
0	STEPPER_DONE	indicates if LDO voltage steppering is done 0x1: STEPPER_DONE 0x0: STEPPER_NOT_DONE

0x00014009 LDO1_STATUS2

LDO1_STATUS2

LDO1_STATUS2				
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x00			
Reset N	Reset Name: n/a			
Status 1	Registers			
LDO1_	STATUS2			
Bits	Name	Description		
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode		
	.07	0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE		

0x00014010 LDO1_INT_RT_STS

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO1_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR

0x00014011 LDO1_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO1_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014012 LDO1_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO1 INT POLARITY HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	Oliche	0x1: VREG_OK_LOW_TRIGGERED
	7	0x0: VREG_OK_LOW_DISABLED

0x00014013 LDO1_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO1_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014014 LDO1_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO1_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014015 LDO1_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO1_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014016 LDO1_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO1_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014018 LDO1_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO1_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27	0x0: LDO_VOLTAGE_OK
		P. Control of the Con

0x00014019 LDO1_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO1_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001401A LDO1_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO1_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001401B LDO1_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO1_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014041 LDO1_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x32

Reset Name: perph rb

Register for voltage programming bits going to LDO.

LDO1_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep). Vmin and Vsetp are minimal voltage and voltage step size, respectively. For ULT NMOS LDOs, Vmin=375mV, Vstep=12.5mV.

0x00014045 LDO1_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions. This register needs to be 0x00 for putting LDO in LPM.

LDO1_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	LDO is in active bypass mode when both BYPASS_ACT and BYPASS_EN are set to 1, while NPM is set to 0 0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	1' = (LDO is in NPM when PMIC_AWAKE (SLEEP_B) = '1') or (has no effect on LDO operation mode when PMIC_AWAKE = '0'), '0' = has no effect on LDO operation mode no matter PMIC_AWAKE is 0 or 1 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014046 LDO1_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

Enable control register.

LDO1_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE

LDO1_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_HW_EN0	NPM enable setting using HWEN0
		0x1: FOLLOW_HW_EN0_TRUE
		0x0: FOLLOW_HW_EN0_FALSE

0x00014048 LDO1_PD_CTL

LDO1_PD_CTL

Type: RW Clock: PBUS_WRCLK Reset State: 0x80		
Reset Name: perph_rb		
LDO pulldown control		40
LDO1_	PD_CTL	
Bits	Name	Description
7	PULLDN_EN	1' = Enable the pulldown when the regulator is disabled, '0' = pulldown is always disabled.
		0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001404C LDO1_SOFT_START_CTL

Type: RW

Clock: PBUS WRCLK Reset State: 0x80

Reset Name: perph_rb

Soft start control register

LDO1_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	1' = Enable LDO softstart function, '0' = Disable LDO softstart function. 0x1: SOFT_START_ENABLED 0x0: SOFT_START_DISABLED

0x00014052 LDO1_CONFIG_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph rb

Config control register.

LDO1_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	1' = LDO buffer stage is enabled when LDO is in active bypass mode, '0' = LDO buffer stage is disabled when LDO is in active bypass mode. 0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM-LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

0x00014061 LDO1_VS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: perph rb

LDO voltage stepper control register. NMOS LDO use only.

LDO1_VS_CTL

Bits	Name	Description
7	VS_EN	Enables the stepper
		0x1: STEPPER_ENABLED
		0x0: STEPPER_DIABLED

LDO1_VS_CTL (cont.)

Bits	Name	Description
2:0	VS_DELAY	Delay (clk_in = 19.2 MHz) -000 = 20 clock cycles (delay of 1 us) - 001 = 40 clock cycles (delay of 2 us) -010 = 80 clock cycles (delay of 4.1 us) -011 = 160 clock cycles (delay of 8.3 us) -100 = 320 clock cycles (delay of 16.6 us) -101 = 640 clock cycles (delay of 33.3 us) -110 = 1280 clock cycles (delay of 67 us) -111 = 2560 clock cycles (delay of 134 us) 0x7: DELAY_1_2560 0x6: DELAY_1_1280 0x5: DELAY_1_640 0x4: DELAY_1_320 0x3: DELAY_1_160 0x2: DELAY_1_80
		0x1: DELAY_1_40 0x0: DELAY_1_20

2018-09-21 of other or of the state of the s

60 Ldo_ult_stepper_dig Registers

0x00014100 LDO2_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO2_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014101 LDO2_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO2_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014102 LDO2_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

LDO2_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014103 LDO2 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

HW Version Register [31:24]

LDO2_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014104 LDO2_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO2_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ULT LDO

0x00014105 LDO2_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: n/a

Peripheral SubType

LDO2_PERPH_SUBTYPE

E	Bits	Name	Description
	7:0	SUBTYPE	N300_stepper: 0x15; N600_stepper: 0x06; N900_stepper: 0x14; N1200_stepper: 0x07

SUN

0x00014108 LDO2_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0bXXXXXXX1

Reset Name: n/a

Status Registers

LDO2_STATUS1

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold, 1 = VREG output voltage is above VREG_OK threshold. VREG_OK is also high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	1 = VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

LDO2_STATUS1 (cont.)

Bits	Name	Description
0	STEPPER_DONE	indicates if LDO voltage steppering is done 0x1: STEPPER_DONE 0x0: STEPPER_NOT_DONE

0x00014109 LDO2_STATUS2

LDO2_STATUS2

LDO2	_STATUS2	
	R PBUS_WRCLK State: 0x00	
Reset I	Name: n/a	
Status 1	Registers	
LDO2_	STATUS2	
Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
	.07	0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE

0x00014110 LDO2_INT_RT_STS

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO2_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR

0x00014111 LDO2_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO2_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014112 LDO2_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO2_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014113 LDO2_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO2_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014114 LDO2_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO2_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014115 LDO2_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO2_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014116 LDO2_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO2_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014118 LDO2_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO2_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014119 LDO2_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO2_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001411A LDO2_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO2_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001411B LDO2_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO2_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014141 LDO2_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x42

Reset Name: perph rb

Register for voltage programming bits going to LDO.

LDO2_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep). Vmin and Vsetp are minimal voltage and voltage step size, respectively. For ULT NMOS LDOs, Vmin=375mV, Vstep=12.5mV.

0x00014145 LDO2_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions. This register needs to be 0x00 for putting LDO in LPM.

LDO2_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	LDO is in active bypass mode when both BYPASS_ACT and BYPASS_EN are set to 1, while NPM is set to 0 0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	1' = (LDO is in NPM when PMIC_AWAKE (SLEEP_B) = '1') or (has no effect on LDO operation mode when PMIC_AWAKE = '0'), '0' = has no effect on LDO operation mode no matter PMIC_AWAKE is 0 or 1 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014146 LDO2_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Enable control register.

LDO2_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE

LDO2_EN_CTL (cont.)

Bits	Name	Description
0	FOLLOW_HW_EN0	NPM enable setting using HWEN0
		0x1: FOLLOW_HW_EN0_TRUE
		0x0: FOLLOW_HW_EN0_FALSE

0x00014148 LDO2_PD_CTL

LDO2_PD_CTL

LDO2_PD_CTL			
RW PBUS_WRCLK tate: 0x80			
ame: perph_rb			
lldown control	-O/-		
PD_CTL			
Name	Description		
PULLDN_EN	1' = Enable the pulldown when the regulator is disabled, '0' = pulldown is always disabled. 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED		
] [RW PBUS_WRCLK tate: 0x80 ame: perph_rb Ildown control PD_CTL Name		

0x0001414C LDO2_SOFT_START_CTL

Type: RW

Clock: PBUS WRCLK Reset State: 0x80

Reset Name: perph_rb

Soft start control register

LDO2_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	1' = Enable LDO softstart function, '0' = Disable LDO softstart function. 0x1: SOFT_START_ENABLED 0x0: SOFT_START_DISABLED

0x00014152 LDO2_CONFIG_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph rb

Config control register.

LDO2_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	1' = LDO buffer stage is enabled when LDO is in active bypass mode, '0' = LDO buffer stage is disabled when LDO is in active bypass mode. 0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM-LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

0x00014161 LDO2_VS_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x85

Reset Name: perph rb

LDO voltage stepper control register. NMOS LDO use only.

LDO2_VS_CTL

Bits	Name	Description
7	VS_EN	Enables the stepper
		0x1: STEPPER_ENABLED 0x0: STEPPER_DIABLED

LDO2_VS_CTL (cont.)

Bits	Name	Description
2:0	VS_DELAY	Delay (clk_in = 19.2 MHz) -000 = 20 clock cycles (delay of 1 us) - 001 = 40 clock cycles (delay of 2 us) -010 = 80 clock cycles (delay of 4.1 us) -011 = 160 clock cycles (delay of 8.3 us) -100 = 320 clock cycles (delay of 16.6 us) -101 = 640 clock cycles (delay of 33.3 us) -110 = 1280 clock cycles (delay of 67 us) -111 = 2560 clock cycles (delay of 134 us) 0x7: DELAY_1_2560 0x6: DELAY_1_1280 0x5: DELAY_1_640 0x4: DELAY_1_320 0x3: DELAY_1_160 0x2: DELAY_1_80 0x1: DELAY_1_40
		0x0: DELAY_1_20

2018-09-21-01:02:27 p.Dr.

61 Ldo_ult_stepper_dig Registers

0x00014200 LDO3_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO3_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014201 LDO3_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO3_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014202 LDO3_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

LDO3_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014203 LDO3_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

HW Version Register [31:24]

LDO3_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014204 LDO3_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO3_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ULT LDO

0x00014205 LDO3_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: n/a

Peripheral SubType

LDO3_PERPH_SUBTYPE

E	Bits	Name	Description
	7:0	SUBTYPE	N300_stepper: 0x15; N600_stepper: 0x06; N900_stepper: 0x14; N1200_stepper: 0x07

Shar

0x00014208 LDO3_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0bXXXXXXX1

Reset Name: n/a

Status Registers

LDO3_STATUS1

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold, 1 = VREG output voltage is above VREG_OK threshold. VREG_OK is also high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	1 = VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

LDO3_STATUS1 (cont.)

Bits	Name	Description
0	STEPPER_DONE	indicates if LDO voltage steppering is done 0x1: STEPPER_DONE 0x0: STEPPER_NOT_DONE

0x00014209 LDO3_STATUS2

LDO3_STATUS2

LDO3_STATUS2			
	R PBUS_WRCLK State: 0x00		
Reset 1	Name: n/a		
Status 1	Registers		
LDO3_	STATUS2		
Bits	Name	Description	
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode 0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE	
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF	

0x00014210 LDO3_INT_RT_STS

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO3_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR

0x00014211 LDO3_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO3_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014212 LDO3_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO3_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014213 LDO3_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO3_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014214 LDO3_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO3_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014215 LDO3_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO3_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014216 LDO3_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO3_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED 0x0: VREG_OK_ERROR_DISABLED
		UXU. VREG_OK_ERROR_DISABLED

0x00014218 LDO3_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO3_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014219 LDO3_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO3_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001421A LDO3_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO3_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001421B LDO3_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO3_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014241 LDO3_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x44

Reset Name: perph rb

Register for voltage programming bits going to LDO.

LDO3_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep). Vmin and Vsetp are minimal voltage and voltage step size, respectively. For ULT NMOS LDOs, Vmin=375mV, Vstep=12.5mV.

0x00014245 LDO3_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions. This register needs to be 0x00 for putting LDO in LPM.

LDO3_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	LDO is in active bypass mode when both BYPASS_ACT and BYPASS_EN are set to 1, while NPM is set to 0 0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	1' = (LDO is in NPM when PMIC_AWAKE (SLEEP_B) = '1') or (has no effect on LDO operation mode when PMIC_AWAKE = '0'), '0' = has no effect on LDO operation mode no matter PMIC_AWAKE is 0 or 1 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014246 LDO3_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Enable control register.

LDO3_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE

LDO3_EN_CTL (cont.)

	Bits	Name	Description
Г	0	FOLLOW_HW_EN0	NPM enable setting using HWEN0
			0x1: FOLLOW_HW_EN0_TRUE
			0x0: FOLLOW_HW_EN0_FALSE
-1			

0x00014248 LDO3_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO pulldown control

LDO3_PD_CTL

Bits	Name	Description
7	PULLDN_EN	1' = Enable the pulldown when the regulator is disabled, '0' = pulldown is always disabled. 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

ONN

0x0001424C LDO3_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Soft start control register

LDO3_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	1' = Enable LDO softstart function, '0' = Disable LDO softstart function. 0x1: SOFT_START_ENABLED 0x0: SOFT_START_DISABLED

0x00014252 LDO3_CONFIG_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph rb

Config control register.

LDO3_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	1' = LDO buffer stage is enabled when LDO is in active bypass mode, '0' = LDO buffer stage is disabled when LDO is in active bypass mode. 0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM-LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

0x00014261 LDO3_VS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x85

Reset Name: perph rb

LDO voltage stepper control register. NMOS LDO use only.

LDO3_VS_CTL

Bits	Name	Description
7	VS_EN	Enables the stepper
		0x1: STEPPER_ENABLED
		0x0: STEPPER_DIABLED

LDO3_VS_CTL (cont.)

Bits	Name	Description
2:0	VS_DELAY	Delay (clk_in = 19.2 MHz) -000 = 20 clock cycles (delay of 1 us) - 001 = 40 clock cycles (delay of 2 us) -010 = 80 clock cycles (delay of 4.1 us) -011 = 160 clock cycles (delay of 8.3 us) -100 = 320 clock cycles (delay of 16.6 us) -101 = 640 clock cycles (delay of 33.3 us) -110 = 1280 clock cycles (delay of 67 us) -111 = 2560 clock cycles (delay of 134 us) 0x7: DELAY_1_2560 0x6: DELAY_1_1280 0x5: DELAY_1_640 0x4: DELAY_1_320 0x3: DELAY_1_160 0x2: DELAY_1_80
		0x1: DELAY_1_40 0x0: DELAY_1_20

2018-09-21-01:02:27 pDf

62 Ldo_ult_dig Registers

0x00014300 LDO4_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO4_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014301 LDO4_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO4_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014302 LDO4_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO4_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014303 LDO4 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO4_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014304 LDO4_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO4_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014305 LDO4_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x2D

Reset Name: n/a

Peripheral SubType

LDO4_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

Shar

0x00014308 LDO4_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO4_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014309 LDO4_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO4_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014310 LDO4_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO4_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014311 LDO4_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO4_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014312 LDO4_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO4_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	245	0x0: VREG_OK_LOW_DISABLED

0x00014313 LDO4_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO4_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014314 LDO4_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO4_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014315 LDO4_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO4_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014316 LDO4_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO4_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014318 LDO4_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO4_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014319 LDO4_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO4_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001431A LDO4_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO4_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001431B LDO4_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO4_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014341 LDO4_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: perph_rb

LDO4_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep).
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014345 LDO4_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO4_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014346 LDO4_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO4_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014348 LDO4_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO4_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED
		0x0: PULLDN_DIABLED

0x0001434A LDO4_OCP_CTL1

LDO4_OCP_CTL1

LDO4	_OCP_CTL1			
Type: RW Clock: PBUS_WRCLK Reset State: 0x80				
Reset 1	Reset Name: perph_rb			
LDO4_	LDO4_OCP_CTL1			
Bits	Name	Description		
7	OCP_EN	Enable the OCP feature		
	O'TO ME	0x1: OCP_ENABLED		
	27 9	O.O. OOD DIADIED		
	1	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
5	OCP_TEST_MODE	_		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		

0x0001434B LDO4_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO4_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001434C LDO4_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO4_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014352 LDO4_CONFIG_CTL

LDO4_CONFIG_CTL

LDO4	_CONFIG_CTL			
Clock: Reset S	Type: RW Clock: PBUS_WRCLK Reset State: 0x04 Reset Name: perph rb			
IXCSCI 1	value. perpii_10			
LDO4_	LDO4_CONFIG_CTL			
Bits	Name	Description		
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED		
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED		

63 Ldo_ult_dig Registers

0x00014400 LDO5_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO5_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014401 LDO5_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO5_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014402 LDO5_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO5_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014403 LDO5 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO5_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014404 LDO5_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC_CONSTANT

LDO5_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014405 LDO5_PERPH_SUBTYPE

Type: R

LDO5_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x2A	
Reset Name: n/a		
Peripheral SubType		M.
LDO5_	PERPH_SUBTYPE	-01
Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV P50: 0x28; LV P150: 0x29; LV P300: 0x2A;

LDO5_STATUS1 0x00014408

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO5_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014409 LDO5_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO5_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014410 LDO5_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO5_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014411 LDO5_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO5_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014412 LDO5_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO5_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014413 LDO5_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO5_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014414 LDO5_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO5_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014415 LDO5_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO5_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014416 LDO5_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO5_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014418 LDO5_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO5_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014419 LDO5_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO5_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001441A LDO5_INT_MID_SEL

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO5_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001441B LDO5_INT_PRIORITY

Type: RW

Clock: PBUS WRCLK Reset State: 0x00 Reset Name: perph rb

LDO5_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014441 LDO5_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: perph rb

LDO5_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

LDO5_MODE_CTL2 0x00014445

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO5_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE
LDO5_EN_CTL		
Type:	RW	

0x00014446

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO5_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014448 LDO5_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO5_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001444A LDO5_OCP_CTL1

LDO5_OCP_CTL1

LDO5	LDO5_OCP_CTL1		
Clock: Reset S	Type: RW Clock: PBUS_WRCLK Reset State: 0x80		
Reset I	Name: perph_rb	2.1	
LDO5_	LDO5_OCP_CTL1		
Bits	Name	Description	
7	OCP_EN	Enable the OCP feature	
	To Me	0x1: OCP_ENABLED	
	77.5	0x0: OCP_DIABLED	
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)	
		0x1: OCP_TEST_MODE	
		0x0: OCP_NORMAL_MODE	

0x0001444B LDO5_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO5_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001444C LDO5_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO5_SOFT_START_CTL

Bits	Name	Description	
7	SOFT_START	0x1: SOFT_START_ENABLED	
		0x0: SOFT_START_DISABLED	
LDO5	_CONFIG_CTL		
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Reset 1	Reset Name: perph_rb		
LDO5_CONFIG_CTL			
Bits	Name	Description	
3	ACT RYPASS BLIEF EN	0v1: ACT RVDASS BLIFE ENABLED	

0x00014452 LDO5_CONFIG_CTL

LDO5_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED
	8. Online	0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

64 Ldo_ult_dig Registers

0x00014500 LDO6_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO6_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014501 LDO6_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO6_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014502 LDO6_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO6_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014503 LDO6 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO6_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014504 LDO6_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO6_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014505 LDO6_PERPH_SUBTYPE

Type: R

LDO6_PERPH_SUBTYPE

Clock: PBUS_WRCLK Reset State: 0x2A		
Reset Name: n/a		
Peripheral SubType		
LDO6_PERPH_SUBTYPE		·O,
Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

LDO6_STATUS1 0x00014508

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO6_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014509 LDO6_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO6_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014510 LDO6_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO6_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014511 LDO6_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO6_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014512 LDO6_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO6_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO ME	0x1: VREG_OK_LOW_TRIGGERED
	245	0x0: VREG_OK_LOW_DISABLED

0x00014513 LDO6_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO6_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014514 LDO6_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO6_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014515 LDO6_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO6_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014516 LDO6_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO6_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED 0x0: VREG_OK_ERROR_DISABLED

0x00014518 LDO6_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO6_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014519 LDO6_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO6_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001451A LDO6_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO6_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001451B LDO6_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO6_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014541 LDO6_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: perph rb

LDO6_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014545 LDO6_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO6_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014546 LDO6_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO6_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014548 LDO6_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO6_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001454A LDO6_OCP_CTL1

LDO6_OCP_CTL1

LDO6	_OCP_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb			
LDO6_	LDO6_OCP_CTL1			
Bits	Name	Description		
7	OCP_EN	Enable the OCP feature		
	OFTENE	0x1: OCP_ENABLED		
	1	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
		0x1: OCP_TEST_MODE		
		0x0: OCP_NORMAL_MODE		

0x0001454B LDO6_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO6_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001454C LDO6_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO6_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014552 LDO6_CONFIG_CTL

LDO6_CONFIG_CTL

LDO6	_CONFIG_CTL	
Type: RW Clock: PBUS_WRCLK Reset State: 0x04 Reset Name: perph rb		
IXCSCt 1	vame: perpii_10	
LDO6_	CONFIG_CTL	O'm
Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

65 Ldo_ult_dig Registers

0x00014600 LDO7_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO7_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014601 LDO7_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO7_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014602 LDO7_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO7_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014603 LDO7 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO7_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014604 LDO7_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO7_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014605 LDO7_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x29

Reset Name: n/a

Peripheral SubType

LDO7_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014608 LDO7_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO7_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014609 LDO7_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO7_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014610 LDO7_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO7_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014611 LDO7_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO7_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014612 LDO7_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO7_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014613 LDO7_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO7_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014614 LDO7_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO7_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014615 LDO7_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO7_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014616 LDO7_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO7_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED 0x0: VREG_OK_ERROR_DISABLED
		UXU. VREG_OK_ERROR_DISABLED

0x00014618 LDO7_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO7_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014619 LDO7_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO7_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001461A LDO7_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO7_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001461B LDO7_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO7_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014641 LDO7_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: perph rb

LDO7_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014645 LDO7_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO7_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014646 LDO7_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO7_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014648 LDO7_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO7_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001464A LDO7_OCP_CTL1

LDO7_OCP_CTL1

		N	
LDO7	_OCP_CTL1		
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80		
Reset N	Name: perph_rb		
LD07_	OCP_CTL1	ozom m.com	
Bits	Name	Description	
7	OCP_EN	Enable the OCP feature	
	O'TO ME	0x1: OCP_ENABLED	
	2	0x0: OCP_DIABLED	
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)	
		0x1: OCP_TEST_MODE	
		0x0: OCP_NORMAL_MODE	

0x0001464B LDO7_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO7_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001464C LDO7_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO7_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED
LDO7	_CONFIG_CTL	
	RW PBUS_WRCLK State: 0x04	
Reset 1	Name: perph_rb	2180
LDO7_	CONFIG_CTL	1.02 M
Bits	Name	Description
3	ACT BYDASS BLIEF EN	0v1: ACT RVDASS RIFE ENARIED

0x00014652 LDO7_CONFIG_CTL

LDO7_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED
	8. Online	0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

66 Ldo_ult_dig Registers

0x00014700 LDO8_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO8_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014701 LDO8_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO8_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014702 LDO8_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO8_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014703 LDO8 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO8_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014704 LDO8_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO8_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014705 LDO8_PERPH_SUBTYPE

Type: R

LDO8_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x0B	
Reset I	Name: n/a	
Periphe	eral SubType	N
LDO8_	PERPH_SUBTYPE	·O,
Bits	Name	Description

LDO8_STATUS1 0x00014708

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO8_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014709 LDO8_STATUS2

Type: R

Clock: PBUS_WRCLK Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO8_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014710 LDO8_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO8_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014711 LDO8_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO8_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014712 LDO8_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO8_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014713 LDO8_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO8_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014714 LDO8_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO8_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00014715 LDO8_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO8_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014716 LDO8_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO8_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED 0x0: VREG_OK_ERROR_DISABLED

0x00014718 LDO8_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO8_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014719 LDO8_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO8_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001471A LDO8_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO8_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001471B LDO8_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO8_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014741 LDO8_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x5C

Reset Name: perph rb

LDO8_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014745 LDO8_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO8_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014746 LDO8_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO8_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014748 LDO8_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO8_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001474A LDO8_OCP_CTL1

LDO8_OCP_CTL1

LDO8	_OCP_CTL1				
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80				
Reset N	Name: perph_rb	22			
LDO8_	LDO8_OCP_CTL1				
Bits	Name	Description			
7	OCP_EN	Enable the OCP feature			
	O'TO ME	0x1: OCP_ENABLED			
	0x0: OCP_DIABLED				
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)			
		0x1: OCP_TEST_MODE			
		0x0: OCP_NORMAL_MODE			

0x0001474B LDO8_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO8_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001474C LDO8_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO8_SOFT_START_CTL

Bits	Name	Description		
7	SOFT_START	0x1: SOFT_START_ENABLED		
		0x0: SOFT_START_DISABLED		
LDO8	LDO8_CONFIG_CTL			
Type: RW Clock: PBUS_WRCLK Reset State: 0x04				
	Reset State: 0x04 Reset Name: perph_rb			
LDO8_CONFIG_CTL				
Bits	Name	Description		
2	ACT DVDAGG DIJEE	EN OVI ACT DVDACC DIEE ENADIED		

0x00014752 LDO8_CONFIG_CTL

LDO8_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED
	8. Online	0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

67 Ldo_ult_dig Registers

0x00014800 LDO9_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO9_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014801 LDO9_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO9_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014802 LDO9_REVISION3

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO9_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014803 LDO9 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO9_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014804 LDO9_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC_CONSTANT

LDO9_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014805 LDO9_PERPH_SUBTYPE

Type: R

LDO9_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x0B	
Reset Name: n/a		
Peripheral SubType		M. Comments
LDO9_	PERPH_SUBTYPE	·O,
Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

0x00014808 LDO9_STATUS1

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO9_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014809 LDO9_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO9_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014810 LDO9_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO9_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014811 LDO9_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO9_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014812 LDO9_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

LDO9_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	245	0x0: VREG_OK_LOW_DISABLED

0x00014813 LDO9_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO9_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014814 LDO9_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO9_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014815 LDO9_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO9_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014816 LDO9_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO9_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014818 LDO9_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO9_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014819 LDO9_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO9_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001481A LDO9_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO9_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001481B LDO9_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO9_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014841 LDO9_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x7C

Reset Name: perph rb

LDO9_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014845 LDO9_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Define LDO Mode Transitions

LDO9_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0,	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014846 LDO9_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO9_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014848 LDO9_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO9_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001484A LDO9_OCP_CTL1

LDO9_OCP_CTL1

LDO9	_OCP_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb			
LDO9_	LDO9_OCP_CTL1			
Bits	Name	Description		
7	OCP_EN	Enable the OCP feature		
	07. 40	0x1: OCP_ENABLED		
	2,47,3	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
		0x1: OCP_TEST_MODE		
		0x0: OCP_NORMAL_MODE		

0x0001484B LDO9_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO9_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001484C LDO9_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO9_SOFT_START_CTL

Bits	Name	Description	
7	SOFT_START	0x1: SOFT_START_ENABLED	
		0x0: SOFT_START_DISABLED	
LDO9	_CONFIG_CTL		
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Reset 1	Reset Name: perph_rb		
LDO9_	LDO9_CONFIG_CTL		
Bits	Name	Description	
2	ACT DVDACC DIEE	EN OVA: ACT DVDASS DIEE ENADIED	

0x00014852 LDO9_CONFIG_CTL

LDO9_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED
	8. Online	0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

68 Ldo_ult_dig Registers

0x00014900 LDO10_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO10_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014901 LDO10_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO10_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014902 LDO10_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO10_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014903 LDO10_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO10_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014904 LDO10_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO10_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014905 LDO10_PERPH_SUBTYPE

Type: R

LDO10_PERPH_SUBTYPE

	PBUS_WRCLK State: 0x09	
Reset I	Name: n/a	
Peripheral SubType		
LDO10	_PERPH_SUBTYPE	·O,
Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

LDO10_STATUS1 0x00014908

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO10_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014909 LDO10_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO10_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014910 LDO10_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO10_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014911 LDO10_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO10_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014912 LDO10_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO10_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014913 LDO10_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO10_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014914 LDO10_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO10_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00014915 LDO10_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET_MASK

LDO10_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014916 LDO10_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO10_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014918 LDO10_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO10_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014919 LDO10_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO10_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001491A LDO10_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO10_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001491B LDO10_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO10_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014941 LDO10_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x54

Reset Name: perph rb

LDO10_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014945 LDO10_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO10_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0,	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014946 LDO10_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO10_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014948 LDO10_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO10_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED
		0x0: PULLDN_DIABLED

0x0001494A LDO10_OCP_CTL1

LDO10_OCP_CTL1

LDO1	0_OCP_CTL1				
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80				
Reset N	Name: perph_rb				
LDO10	_OCP_CTL1	in cours			
Bits	Name	Description			
7	OCP_EN	Enable the OCP feature			
	O'L WE	0x1: OCP_ENABLED			
	7,5	0x0: OCP_DIABLED			
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)			
		0x1: OCP_TEST_MODE			
		0x0: OCP_NORMAL_MODE			

0x0001494B LDO10_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO10_OCP_CTL2

Bit	s Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001494C LDO10_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO10_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014952 LDO10_CONFIG_CTL

LDO10_CONFIG_CTL

LDO10_CONFIG_CTL				
Type: RW Clock: PBUS_WRCLK Reset State: 0x04				
Reset I	Name: perph_rb	21.8		
LDO10	_CONFIG_CTL	02/10		
Bits	Name	Description		
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED		
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED		

69 Ldo_ult_dig Registers

0x00014A00 LDO11_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO11_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014A01 LDO11_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO11_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014A02 LDO11_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO11_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014A03 LDO11_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO11_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014A04 LDO11_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO11_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014A05 LDO11_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: n/a

Peripheral SubType

LDO11_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014A08 LDO11_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO11_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014A09 LDO11_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO11_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014A10 LDO11_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO11_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014A11 LDO11_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO11_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014A12 LDO11_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO11_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014A13 LDO11_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO11_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014A14 LDO11_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO11_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00014A15 LDO11_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO11_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014A16 LDO11_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO11_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014A18 LDO11_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO11_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014A19 LDO11_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO11_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014A1A LDO11_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO11_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014A1B LDO11_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO11_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014A41 LDO11_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x60

Reset Name: perph rb

LDO11_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014A45 LDO11_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO11_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014A46 LDO11_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO11_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014A48 LDO11_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO11_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014A4A LDO11_OCP_CTL1

LDO11_OCP_CTL1

LDO1	LDO11_OCP_CTL1		
Clock: Reset S	Type: RW Clock: PBUS_WRCLK Reset State: 0x80		
Reset N	Name: perph_rb	N. C.	
LDO11	LDO11_OCP_CTL1		
Bits	Name	Description	
7	OCP_EN	Enable the OCP feature	
	O'TO ME	0x1: OCP_ENABLED	
	2	0x0: OCP_DIABLED	
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)	
		0x1: OCP_TEST_MODE	
		0x0: OCP_NORMAL_MODE	

0x00014A4B LDO11_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO11_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014A4C LDO11_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO11_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014A52 LDO11_CONFIG_CTL

LDO11_CONFIG_CTL

I DO1	LDO11_CONFIG_CTL		
Type: Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Reset I	Reset Name: perph_rb		
LDO11	LDO11_CONFIG_CTL		
Bits	Name	Description	
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED	
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED	

70 Ldo_ult_dig Registers

0x00014B00 LDO12_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO12_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014B01 LDO12_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO12_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014B02 LDO12_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO12_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014B03 LDO12_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO12_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014B04 LDO12_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO12_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014B05 LDO12_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: n/a

Peripheral SubType

LDO12_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014B08 LDO12_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO12_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014B09 LDO12_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO12_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014B10 LDO12_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO12_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR

0x00014B11 LDO12_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO12_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014B12 LDO12_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO12_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014B13 LDO12_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO12_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014B14 LDO12_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO12_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014B15 LDO12_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO12_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014B16 LDO12_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO12_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014B18 LDO12_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO12_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27	0x0: LDO_VOLTAGE_OK
		P. Control of the Con

0x00014B19 LDO12_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO12_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014B1A LDO12_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO12_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014B1B LDO12_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO12_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014B41 LDO12_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x60

Reset Name: perph rb

LDO12_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014B45 LDO12_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO12_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0,	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014B46 LDO12_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO12_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014B48 LDO12_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO12_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014B4A LDO12_OCP_CTL1

LDO12_OCP_CTL1

LDO1	LDO12_OCP_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb			
LDO12	LDO12_OCP_CTL1			
Bits	Name	Description		
7	OCP_EN	Enable the OCP feature		
	O'T WE	0x1: OCP_ENABLED		
	2,45	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
		0x1: OCP_TEST_MODE		
		0x0: OCP_NORMAL_MODE		

0x00014B4B LDO12_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO12_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014B4C LDO12_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO12_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014B52 LDO12_CONFIG_CTL

LDO12_CONFIG_CTL

LDO12_CONFIG_CTL		
Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Name: perph_rb	180	
LDO12_CONFIG_CTL		
Name	Description	
ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED	
3. Online	0x0: ACT_BYPASS_BUFF_DISABLED	
MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error	
1	amp are short circuited during NPM?LPM transition	
-	0x1: MODE_TRAN_ENH_ENABLED	
	0x0: MODE_TRAN_ENH_DISABLED	
	RW PBUS_WRCLK State: 0x04 Name: perph_rb _CONFIG_CTL Name ACT_BYPASS_BUFF_EN	

71 Ldo_ult_dig Registers

0x00014C00 LDO13_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO13_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014C01 LDO13_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO13_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014C02 LDO13_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO13_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014C03 LDO13_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO13_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014C04 LDO13_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO13_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014C05 LDO13_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: n/a

Peripheral SubType

LDO13_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014C08 LDO13_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO13_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014C09 LDO13_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO13_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014C10 LDO13_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO13_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014C11 LDO13_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO13_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00014C12 LDO13_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO13_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014C13 LDO13_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO13_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014C14 LDO13_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO13_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014C15 LDO13_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO13_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014C16 LDO13_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO13_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED 0x0: VREG_OK_ERROR_DISABLED

0x00014C18 LDO13_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO13_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014C19 LDO13_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO13_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014C1A LDO13_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO13_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014C1B LDO13_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO13_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014C41 LDO13_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x6A

Reset Name: perph rb

LDO13_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014C45 LDO13_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO13_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014C46 LDO13_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO13_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014C48 LDO13_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO13_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014C4A LDO13_OCP_CTL1

LDO13_OCP_CTL1

LDO13_OCP_CTL1					
Type: RW Clock: PBUS_WRCLK Reset State: 0x80					
Keset 1	Reset Name: perph_rb				
LDO13_OCP_CTL1					
Bits	Name	Description			
7	OCP_EN	Enable the OCP feature			
	O' ME	0x1: OCP_ENABLED			
	2,45	0x0: OCP_DIABLED			
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)			
		0x1: OCP_TEST_MODE			
		0x0: OCP_NORMAL_MODE			

0x00014C4B LDO13_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO13_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014C4C LDO13_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO13_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014C52 LDO13_CONFIG_CTL

LDO13_CONFIG_CTL

LDO1	3_CONFIG_CTL	
Type: RW Clock: PBUS_WRCLK Reset State: 0x04 Reset Name: perph_rb LDO13_CONFIG_CTL		
Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED
	3. Onlins	0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED
		0x0: MODE_TRAN_ENH_DISABLED

72 Ldo_ult_dig Registers

0x00014D00 LDO14_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO14_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014D01 LDO14_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC_CONSTANT

LDO14_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014D02 LDO14_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO14_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014D03 LDO14 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO14_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014D04 LDO14_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO14_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014D05 LDO14_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: n/a

Peripheral SubType

LDO14_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014D08 LDO14_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO14_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014D09 LDO14_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO14_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014D10 LDO14_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO14_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014D11 LDO14_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO14_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014D12 LDO14_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

LDO14_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014D13 LDO14_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO14_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014D14 LDO14_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO14_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00014D15 LDO14_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO14_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014D16 LDO14_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO14_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014D18 LDO14_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO14_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014D19 LDO14_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO14_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014D1A LDO14_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO14_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014D1B LDO14_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO14_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014D41 LDO14_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph rb

LDO14_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014D45 LDO14_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO14_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014D46 LDO14_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO14_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014D48 LDO14_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO14_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014D4A LDO14_OCP_CTL1

LDO14_OCP_CTL1

LDO1	LDO14_OCP_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb			
LDO14_OCP_CTL1				
LDOIT	_001_0121	W.		
Bits	Name	Description		
		Description Enable the OCP feature		
Bits	Name	•		
Bits	Name	Enable the OCP feature		
Bits	Name	Enable the OCP feature 0x1: OCP_ENABLED		
Bits 7	Name OCP_EN	Enable the OCP feature 0x1: OCP_ENABLED 0x0: OCP_DIABLED		

0x00014D4B LDO14_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO14_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014D4C LDO14_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO14_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014D52 LDO14_CONFIG_CTL

LDO14_CONFIG_CTL

	L DOMA CONFIG. OT		
LDO1	LDO14_CONFIG_CTL		
Type: RW Clock: PBUS_WRCLK Reset State: 0x04			
Reset I	Name: perph_rb	18	
LDO14	LDO14_CONFIG_CTL		
Bits	Name	Description	
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED	
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED	

73 Ldo_ult_dig Registers

0x00014E00 LDO15_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO15_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014E01 LDO15_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO15_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014E02 LDO15_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO15_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014E03 LDO15_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO15_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014E04 LDO15_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO15_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014E05 LDO15_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: n/a

Peripheral SubType

LDO15_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014E08 LDO15_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO15_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014E09 LDO15_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO15_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014E10 LDO15_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO15_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014E11 LDO15_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO15_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014E12 LDO15_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO15_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014E13 LDO15_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO15_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014E14 LDO15_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO15_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014E15 LDO15_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO15_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014E16 LDO15_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO15_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014E18 LDO15_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO15_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014E19 LDO15_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO15_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014E1A LDO15_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO15_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014E1B LDO15_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO15_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014E41 LDO15_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph_rb

LDO15_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014E45 LDO15_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO15_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0,	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014E46 LDO15_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO15_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014E48 LDO15_PD_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO15_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014E4A LDO15_OCP_CTL1

LDO15_OCP_CTL1

LDO1	5_OCP_CTL1			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb			
LDO15	LDO15_OCP_CTL1			
Bits	Name Description			
7	OCP_EN	Enable the OCP feature		
	O'T WE	0x1: OCP_ENABLED		
	2,45	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
		0x1: OCP_TEST_MODE		
		0x0: OCP_NORMAL_MODE		

0x00014E4B LDO15_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO15_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014E4C LDO15_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO15_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014E52 LDO15_CONFIG_CTL

LDO15_CONFIG_CTL

LDO1	LDO15_CONFIG_CTL			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04			
Reset I	Reset Name: perph_rb			
LDO15	LDO15_CONFIG_CTL			
Bits	Name	Description		
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED		
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED		

74 Ldo_ult_dig Registers

0x00014F00 LDO16_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO16_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014F01 LDO16_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO16_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00014F02 LDO16_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO16_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00014F03 LDO16_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO16_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00014F04 LDO16_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO16_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00014F05 LDO16_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x28

Reset Name: n/a

Peripheral SubType

LDO16_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00014F08 LDO16_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO16_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00014F09 LDO16_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO16_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00014F10 LDO16_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO16_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00014F11 LDO16_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO16_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00014F12 LDO16_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO16_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00014F13 LDO16_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO16_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00014F14 LDO16_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO16_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00014F15 LDO16_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO16_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014F16 LDO16_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO16_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00014F18 LDO16_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO16_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00014F19 LDO16_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO16_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x00014F1A LDO16_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO16_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x00014F1B LDO16_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO16_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00014F41 LDO16_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph rb

LDO16_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00014F45 LDO16_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Define LDO Mode Transitions

LDO16_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	277	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00014F46 LDO16_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO16_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00014F48 LDO16_PD_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x80

Reset Name: perph rb

LDO16_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x00014F4A LDO16_OCP_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x80

Reset Name: perph rb

LDO16_OCP_CTL1

Bits	Name	Description
7	OCP_EN	Enable the OCP feature
	Or Ma	0x1: OCP_ENABLED
	2 2 3	0x0: OCP_DIABLED
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)
		0x1: OCP_TEST_MODE
		0x0: OCP_NORMAL_MODE

0x00014F4B LDO16_OCP_CTL2

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO16_OCP_CTL2

Bit	s Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x00014F4C LDO16_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK **Reset State:** 0x80

Reset Name: perph rb

LDO16_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00014F52 LDO16_CONFIG_CTL

LDO16_CONFIG_CTL

LDO1	LDO16_CONFIG_CTL		
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Reset I	Reset Name: perph_rb		
LDO16	LDO16_CONFIG_CTL		
Bits	Name	Description	
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED	
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED	

75 Ldo_ult_dig Registers

0x00015000 LDO17_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO17_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015001 LDO17_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO17_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00015002 LDO17_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO17_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015003 LDO17_REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO17_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00015004 LDO17_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC_CONSTANT

LDO17_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00015005 LDO17_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: n/a

Peripheral SubType

LDO17_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00015008 LDO17_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO17_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00015009 LDO17_STATUS2

Type: R

Clock: PBUS_WRCLK Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO17_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00015010 LDO17_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO17_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00015011 LDO17_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO17_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00015012 LDO17_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO17_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00015013 LDO17_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO17_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00015014 LDO17_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO17_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00015015 LDO17_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO17_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015016 LDO17_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO17_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015018 LDO17_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO17_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00015019 LDO17_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO17_INT_PENDING_STS

E	Bits	Name	Description
	0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001501A LDO17_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO17_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001501B LDO17_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO17_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A
		0x0: INT_PRIORITY_SR

0x00015041 LDO17_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x58

Reset Name: perph rb

LDO17_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00015045 LDO17_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Define LDO Mode Transitions

LDO17_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00015046 LDO17_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO17_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00015048 LDO17_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO17_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001504A LDO17_OCP_CTL1

LDO17_OCP_CTL1

LDO1	LDO17_OCP_CTL1			
	Type: RW Clock: PBUS_WRCLK Reset State: 0x80			
Reset N	Name: perph_rb	an'		
LDO17	LDO17_OCP_CTL1			
Bits	Name	Description		
7	OCP_EN	Enable the OCP feature		
	O'TO WE	0x1: OCP_ENABLED		
	1,1	0x0: OCP_DIABLED		
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)		
		0x1: OCP_TEST_MODE		
		0x0: OCP_NORMAL_MODE		

0x0001504B LDO17_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO17_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001504C LDO17_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO17_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00015052 LDO17_CONFIG_CTL

LDO17_CONFIG_CTL

LDO1	LDO17_CONFIG_CTL			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04			
Reset I	Name: perph_rb	.2180		
LDO17	LDO17_CONFIG_CTL			
Bits	Name	Description		
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED		
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED		

76 Ldo_ult_dig Registers

0x00015100 LDO18_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO18_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015101 LDO18_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO18_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00015102 LDO18_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO18_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015103 LDO18_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO18_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00015104 LDO18_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO18_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00015105 LDO18_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x09

Reset Name: n/a

Peripheral SubType

LDO18_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00015108 LDO18_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO18_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00015109 LDO18_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO18_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VPEC ON	indicate whether the regulator is on
	VREG_ON	0x1: LDO ON
	05	0x0: LDO_OFF

0x00015110 LDO18_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO18_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00015111 LDO18_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO18_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00015112 LDO18_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO18_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00015113 LDO18_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO18_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00015114 LDO18_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO18_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM 0x0: VREG_OK_ERROR_NOT_REARM

0x00015115 LDO18_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO18_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015116 LDO18_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO18_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015118 LDO18_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO18_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00015119 LDO18_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO18_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001511A LDO18_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO18_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001511B LDO18_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO18_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00015141 LDO18_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x4C

Reset Name: perph rb

LDO18_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

LDO18_MODE_CTL2 0x00015145

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions

LDO18_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

LDO18_EN_CTL 0x00015146

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO18_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00015148 LDO18_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO18_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED
		0x0: PULLDN_DIABLED

0x0001514A LDO18_OCP_CTL1

LDO18_OCP_CTL1

LDO1	8_OCP_CTL1				
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80				
Reset N	Name: perph_rb				
LDO18	LDO18_OCP_CTL1				
Bits	Name	Description			
7	OCP_EN	Enable the OCP feature			
	O'TO THE	0x1: OCP_ENABLED			
	2,45	0x0: OCP_DIABLED			
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)			
		0x1: OCP_TEST_MODE			
		0x0: OCP_NORMAL_MODE			

0x0001514B LDO18_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO18_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001514C LDO18_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO18_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00015152 LDO18_CONFIG_CTL

LDO18_CONFIG_CTL

LDO18_CONFIG_CTL				
Type: RW Clock: PBUS_WRCLK Reset State: 0x04				
Reset I	Reset Name: perph_rb			
LDO18_CONFIG_CTL				
Bits	Name	Description		
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED		
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED		

77 Ldo_ult_stepper_dig Registers

0x00015200 LDO19_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO19_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015201 LDO19_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC_CONSTANT

LDO19_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00015202 LDO19_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

LDO19_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015203 LDO19 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [31:24]

LDO19_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00015204 LDO19_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO19_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	ULT LDO

0x00015205 LDO19_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x07

Reset Name: n/a

Peripheral SubType

LDO19_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	N300_stepper: 0x15; N600_stepper: 0x06; N900_stepper: 0x14; N1200_stepper: 0x07

SINN

0x00015208 LDO19_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0bXXXXXXX1

Reset Name: n/a

Status Registers

LDO19_STATUS1

Bits	Name	Description
7	VREG_OK	0 = VREG output voltage is below VREG_OK threshold, 1 = VREG output voltage is above VREG_OK threshold. VREG_OK is also high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	1 = VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

LDO19_STATUS1 (cont.)

Bits	Name	Description
0	STEPPER_DONE	indicates if LDO voltage steppering is done
		0x1: STEPPER_DONE
		0x0: STEPPER_NOT_DONE

0x00015209 LDO19_STATUS2

LDO19_STATUS2

LDO19_STATUS2			
	R PBUS_WRCLK State: 0x00		
Reset N	Name: n/a		
Status 1	Registers		
LDO19	_STATUS2		
Bits	Name	Description	
		Description	
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode 0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE	

0x00015210 LDO19_INT_RT_STS

Type: R

Clock: PBUS WRCLK **Reset State:** 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO19_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR

0x00015211 LDO19_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO19_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level
		0x1: VREG_OK_LEVEL_TRIGGERED
		0x0: VREG_OK_EDGE_TRIGGERED

0x00015212 LDO19_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

LDO19_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	243	0x0: VREG_OK_LOW_DISABLED

0x00015213 LDO19_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO19_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

Ldo_ult_stepper_dig Registers

0x00015214 LDO19_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO19_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00015215 LDO19_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO19_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015216 LDO19_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO19_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015218 LDO19_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO19_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00015219 LDO19_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO19_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001521A LDO19_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO19_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001521B LDO19_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO19_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00015241 LDO19_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x4A

Reset Name: perph rb

Register for voltage programming bits going to LDO.

LDO19_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep). Vmin and Vsetp are minimal voltage and voltage step size, respectively. For ULT NMOS LDOs, Vmin=375mV, Vstep=12.5mV.

0x00015245 LDO19_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

Define LDO Mode Transitions. This register needs to be 0x00 for putting LDO in LPM.

LDO19_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM 0x1: FORCED_NPM 0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	LDO is in active bypass mode when both BYPASS_ACT and BYPASS_EN are set to 1, while NPM is set to 0 0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	1' = (LDO is in NPM when PMIC_AWAKE (SLEEP_B) = '1') or (has no effect on LDO operation mode when PMIC_AWAKE = '0'), '0' = has no effect on LDO operation mode no matter PMIC_AWAKE is 0 or 1 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00015246 LDO19_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Enable control register.

LDO19_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE

LDO19_EN_CTL (cont.)

	Bits	Name	Description
Г	0	FOLLOW_HW_EN0	NPM enable setting using HWEN0
			0x1: FOLLOW_HW_EN0_TRUE
			0x0: FOLLOW_HW_EN0_FALSE
-1			

0x00015248 LDO19_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO pulldown control

LDO19_PD_CTL

Bits	Name	Description
7	PULLDN_EN	1' = Enable the pulldown when the regulator is disabled, '0' = pulldown is always disabled. 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

ONN

0x0001524C LDO19_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Soft start control register

LDO19_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	1' = Enable LDO softstart function, '0' = Disable LDO softstart function. 0x1: SOFT_START_ENABLED 0x0: SOFT_START_DISABLED

0x00015252 LDO19_CONFIG_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x04

Reset Name: perph_rb

Config control register.

LDO19_CONFIG_CTL

Bits	Name	Description
3	ACT_BYPASS_BUFF_EN	1' = LDO buffer stage is enabled when LDO is in active bypass mode, '0' = LDO buffer stage is disabled when LDO is in active bypass mode. 0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM-LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED

0x00015261 LDO19_VS_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x85

Reset Name: perph rb

LDO voltage stepper control register. NMOS LDO use only.

LDO19_VS_CTL

Bits	Name	Description
7	VS_EN	Enables the stepper
		0x1: STEPPER_ENABLED
		0x0: STEPPER_DIABLED

LDO19_VS_CTL (cont.)

Bits	Name	Description
2:0	VS_DELAY	Delay (clk_in = 19.2 MHz) -000 = 20 clock cycles (delay of 1 us) - 001 = 40 clock cycles (delay of 2 us) -010 = 80 clock cycles (delay of 4.1 us) -011 = 160 clock cycles (delay of 8.3 us) -100 = 320 clock cycles (delay of 16.6 us) -101 = 640 clock cycles (delay of 33.3 us) -110 = 1280 clock cycles (delay of 67 us) -111 = 2560 clock cycles (delay of 134 us) 0x7: DELAY_1_2560 0x6: DELAY_1_1280 0x5: DELAY_1_640 0x4: DELAY_1_320 0x3: DELAY_1_160 0x2: DELAY_1_80
		0x1: DELAY_1_40 0x0: DELAY_1_20

2018-09-21-01:02:27 pDf

78 Ldo_ult_dig Registers

0x00015500 LDO22_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

LDO22_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015501 LDO22_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO22_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00015502 LDO22_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [23:16]

LDO22_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015503 LDO22 REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO22_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00015504 LDO22_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x21

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO22_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00015505 LDO22_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0A

Reset Name: n/a

Peripheral SubType

LDO22_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50: 0x08; P150: 0x09; P300: 0x0A; P600: 0x0B; P1200: 0x0C; P450: 0x0D; LV_P50: 0x28; LV_P150: 0x29; LV_P300: 0x2A; LV_P600: 0x2B; LVP1200: 0x2C; LV_P450: 0x2D

SUNC

0x00015508 LDO22_STATUS1

Type: R

Clock: PBUS_WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO22_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
2	BYPASS_LDO	LDO is ON and in bypass mode 0x1: ON_AND_BYPASSED 0x0: OFF_OR_NON_BYPASS
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00015509 LDO22_STATUS2

Type: R

Clock: PBUS_WRCLK
Reset State: 0b0X000000

Reset Name: n/a
Status Registers

LDO22_STATUS2

Bits	Name	Description
7	SOFTSTART_DONE	indicates that the startup is complete LDO in normal mode
		0x1: SOFTSTART_DONE
		0x0: SOFTSTART_NOT_DONE
6	OCP_LATCHED	sticky status bit, once OCP is detected, this bit is set, and remain set until SW write OCP_LATCHED_CLR to clear it 0x1: OCP_LATCHED 0x0: OCP_NOT_LATCHED
5	VREG_ON	indicate whether the regulator is on 0x1: LDO_ON 0x0: LDO_OFF

0x00015510 LDO22_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

LDO22_INT_RT_STS

Bits	Name	Description
0	VREG_OK_RT_STS	Regulator has been successfully enabled
		0x1: LDO_ENABLE_SUCCESS
		0x0: LDO_ENABLE_ERR

0x00015511 LDO22_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

LDO22_INT_SET_TYPE

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00015512 LDO22_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO22_INT_POLARITY_HIGH

Bits	Name	Description
0	VREG_OK_HIGH	Edge type, rising or Level type, high true
	O'TO WE	0x1: VREG_OK_LOW_TRIGGERED
	245	0x0: VREG_OK_LOW_DISABLED

0x00015513 LDO22_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

LDO22_INT_POLARITY_LOW

Bits	Name	Description
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00015514 LDO22_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO22_INT_LATCHED_CLR

Bits	Name	Description
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
		0x0: VREG_OK_ERROR_NOT_REARM

0x00015515 LDO22_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

LDO22_INT_EN_SET

Bits	Name	Description
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015516 LDO22_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC_CLR_MASK=INT_EN_SET

LDO22_INT_EN_CLR

Bits	Name	Description
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015518 LDO22_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO22_INT_LATCHED_STS

Bits	Name	Description
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled
		0x1: LDO_VOLTAGE_LOW
	27.0	0x0: LDO_VOLTAGE_OK

0x00015519 LDO22_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO22_INT_PENDING_STS

Bits	Name	Description
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001551A LDO22_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO22_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
		0x0: INT_MID_SEL_0

0x0001551B LDO22_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00
Reset Name: perph rb

LDO22_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR

0x00015541 LDO22_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x54

Reset Name: perph rb

LDO22_VOLTAGE_CTL2

Bits	Name	Description
6:0	VSET	Voltage = Vmin + VSET*(Vstep)
		Vmin and Vstep are minimal voltage and voltage step size respectively.
		For ULT PMOS LDOs, Vmin=1.75 V, Vstep=12.5 mV.

0x00015545 LDO22_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Define LDO Mode Transitions

LDO22_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE
		0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode
		0x1: BYPASS_ENABLED
		0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B)
	0	0x1: FOLLOW_PMIC_AWAKE_TRUE
	27,48	0x0: FOLLOW_PMIC_AWAKE_FALSE

0x00015546 LDO22_EN_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

LDO22_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on 0x1: EN_LDO_INT_TRUE 0x0: EN_LDO_INT_FALSE
0	FOLLOW_HW_EN0	LDO enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00015548 LDO22_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO22_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled 0x1: PULLDN_ENABLED 0x0: PULLDN_DIABLED

0x0001554A LDO22_OCP_CTL1

LDO22_OCP_CTL1

LDO2	2_OCP_CTL1		
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x80		
Reset N	Name: perph_rb	222	
LDO22	_OCP_CTL1	Com	
Bits	Name	Description	
7	OCP_EN	Enable the OCP feature	
	To Me	0x1: OCP_ENABLED	
	27.5	0x0: OCP_DIABLED	
5	OCP_TEST_MODE	SW write this bit to enable the OCP test mode (current limited)	
		0x1: OCP_TEST_MODE	
		0x0: OCP NORMAL MODE	

0x0001554B LDO22_OCP_CTL2

Type: W

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO22_OCP_CTL2

Bits	Name	Description
6	OCP_LATCHED_CLR	SW write this bit to clear the OCP_LATCHED status bit 0x1: OCP_LATCHED_CLR

0x0001554C LDO22_SOFT_START_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph rb

LDO22_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00015552 LDO22_CONFIG_CTL

LDO22_CONFIG_CTL

LDO22_CONFIG_CTL			
Clock:	Type: RW Clock: PBUS_WRCLK Reset State: 0x04		
Reset I	Reset Name: perph_rb		
LDO22	_CONFIG_CTL	02/10	
Bits	Name	Description	
3	ACT_BYPASS_BUFF_EN	0x1: ACT_BYPASS_BUFF_ENABLED 0x0: ACT_BYPASS_BUFF_DISABLED	
2	MODE_TRAN_ENH_EN	PMOS LDO only, when set high, the internal nodes in the error amp are short circuited during NPM?LPM transition 0x1: MODE_TRAN_ENH_ENABLED 0x0: MODE_TRAN_ENH_DISABLED	

79 Ldo_dig Registers

0x00015600 LDO23_REVISION1

LDO23_REVISION1

LDO2	LDO23_REVISION1		
Clock:	Type: R Clock: PBUS_WRCLK Reset State: 0x00		
Reset 1	Name: n/a		
HW Ve	ersion Register [7:0]		
PMIC_	PMIC_CONSTANT		
LDO23	LDO23_REVISION1		
Bits	Name Description		
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.	

0x00015601 LDO23_REVISION2

Type: R

Clock: PBUS WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

LDO23_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x00015602 LDO23_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

LDO23_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x00015603 LDO23 REVISION4

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: n/a

HW Version Register [31:24]

LDO23_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x00015604 LDO23_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

LDO23_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LDO

0x00015605 LDO23_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: n/a

Peripheral SubType

LDO23_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	P50 for example

0x00015608 LDO23_STATUS1

Type: R

Clock: PBUS_WRCLK
Reset State: 0bXX000XX

Reset Name: n/a

Status Registers

LDO23_STATUS1

Bits	Name	Description
7	VREG_OK	VREG output voltage level. VREG_OK is always high when LDO is in bypass mode 0x1: LDO_VOLTAGE_OK 0x0: LDO_VOLTAGE_LOW
	# 0 DETECTED	
5	ILS_DETECTED	upper limit is programmed to a value less than the lower limit 0x1: UPPER_LIMIT_SETTING_ERR
		0x0: UPPER_LIMIT_SETTING_OK
4	UL_VOLTAGE_DETECTED	Last voltage set was above UL_Voltage 0x1: VOLTAGE_LEVEL_SETTING_OVERLIMIT 0x0: VOLTAGE_LEVEL_SETTING_OK

LDO23_STATUS1 (cont.)

Bits	Name	Description
3	LL_VOLTAGE_DETECTED	Last voltage set was below LL_Voltage 0x1: VOLTAGE_LEVEL_SETTING_UNDERLIMIT 0x0: VOLTAGE_LEVEL_SETTING_OK
1	NPM_TRUE	VREG_OK and LDO is in NPM 0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK

0x00015609 LDO23_STATUS2

LDO23_STATUS2

1		0x1: NPM_VOLTAGE_OK 0x0: NOT_NPM_OR_VOLTAGE_NOT_OK
Type: Clock: Reset S Reset M	3_STATUS2 R PBUS_WRCLK State: 0b0000000X Name: n/a Registers _STATUS2	22.27 RDT
Bits	Name	Description
Bits 7	Name SOFTSTART_DONE	Description indicates that the startup is complete LDO in normal mode 0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE
		indicates that the startup is complete LDO in normal mode 0x1: SOFTSTART_DONE
7	SOFTSTART_DONE OVER_CURRENT_DETECT	indicates that the startup is complete LDO in normal mode 0x1: SOFTSTART_DONE 0x0: SOFTSTART_NOT_DONE current limit of the LDO is reached 0x1: OVER_CURRENT_DETECTED

0x0001560A LDO23_STATUS3

Type: R

Clock: PBUS WRCLK Reset State: Undefined

Reset Name: n/a

Status Registers

LDO23_STATUS3

Bits	Name	Description
7	LDO_RANGE_SEL	range selection control bit going to LDO 0x1: LDO_RANGE_SELECTED 0x0: LDO_RANGE_NOT_SELECTED
6:0	LDO_VSET	voltage programming bits going to LDO 0x1: LDO_PROGRAM_SELECTED 0x0: LDO_PROGRAM_NOT_SELECTED

0x00015610 LDO23_INT_RT_STS

LDO23_INT_RT_STS

		0x0: LDO_PROGRAM_SELECTED 0x0: LDO_PROGRAM_NOT_SELECTED	
LDO2	LDO23_INT_RT_STS		
	R PBUS_WRCLK State: 0x00		
Reset N	Name: n/a		
Interruj	Interrupt Real Time Status Bits		
LDO23	LDO23_INT_RT_STS		
Bits	Name	Description	
1	LIMIT_ERROR_RT_STS	Last voltage set was below or equal to LL_Voltage 0x1: VOLTAGE_LEVEL_SETTING_UNDERLIMIT 0x0: VOLTAGE_LEVEL_SETTING_OK	
0	VREG_OK_RT_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_ERR	

0x00015611 LDO23_INT_SET_TYPE

Type: RW

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO23_INT_SET_TYPE

Bits	Name	Description
1	LIMIT_ERROR_TYPE	Interrupt type, edge or level
		0x1: LIMIT_ERROR_LEVEL_TRIGGERED 0x0: LIMIT_ERROR_EDGE_TRIGGERED

LDO23_INT_SET_TYPE (cont.)

Bits	Name	Description
0	VREG_OK_TYPE	Interrupt type, edge or level 0x1: VREG_OK_LEVEL_TRIGGERED 0x0: VREG_OK_EDGE_TRIGGERED

0x00015612 LDO23_INT_POLARITY_HIGH

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO23_INT_POLARITY_HIGH

Bits	Name	Description
1	LIMIT_ERROR_HIGH	Edge type, rising or Level type, high true 0x1: LIMIT_ERROR_HIGH_TRIGGERED 0x0: LIMIT_ERROR_HIGH_DISABLED
0	VREG_OK_HIGH	Edge type, rising or Level type, high true 0x1: VREG_OK_LOW_TRIGGERED 0x0: VREG_OK_LOW_DISABLED

0x00015613 LDO23_INT_POLARITY_LOW

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO23_INT_POLARITY_LOW

Bits	Name	Description
1	LIMIT_ERROR_LOW	Edge type, falling or Level type, low true 0x1: LIMIT_ERROR_RISING_TRIGGERED 0x0: LIMIT_ERROR_FALLING_TRIGGERED
0	VREG_OK_LOW	Edge type, falling or Level type, low true 0x1: VREG_OK_RISING_TRIGGERED 0x0: VREG_OK_FALLING_TRIGGERED

0x00015614 LDO23_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing a '1' to this interrupt will rearm the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

LDO23_INT_LATCHED_CLR

Bits	Name	Description
1	LIMIT_ERROR_LATCHED_	0x1: LIMIT_ERROR_REARM
	CLR	0x0: LIMIT_ERROR_NOT_REARM
0	VREG_OK_LATCHED_CLR	0x1: VREG_OK_ERROR_REARM
	. (0x0: VREG_OK_ERROR_NOT_REARM

0x00015615 LDO23_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC_SET_MASK

LDO23 INT EN SET

Bits	Name	Description
1	LIMIT_ERROR_EN_SET	0x1: LIMIT_ERROR_ENABLED
		0x0: LIMIT_ERROR_DISABLED
0	VREG_OK_EN_SET	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015616 LDO23_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

LDO23_INT_EN_CLR

Bits	Name	Description
1	LIMIT_ERROR_EN_CLR	0x1: LIMIT_ERROR_ENABLED
		0x0: LIMIT_ERROR_DISABLED
0	VREG_OK_EN_CLR	0x1: VREG_OK_ERROR_ENABLED
		0x0: VREG_OK_ERROR_DISABLED

0x00015618 LDO23_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

LDO23 INT LATCHED STS

Bits	Name	Description
1	LIMIT_ERROR_LATCHED_S TS	Last voltage set was below or equal to LL_Voltage 0x1: VOLTAGE_LEVEL_SETTING_UNDERLIMIT 0x0: VOLTAGE_LEVEL_SETTING_OK
0	VREG_OK_LATCHED_STS	Regulator has been successfully enabled 0x1: LDO_VOLTAGE_LOW 0x0: LDO_VOLTAGE_OK

0x00015619 LDO23_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Debug: Pending is set if interrupt has been sent but not cleared.

LDO23_INT_PENDING_STS

Bits	Name	Description
1	LIMIT_ERROR_PENDING_S TS	Last voltage set was below or equal to LL_Voltage 0x1: VOLTAGE_LEVEL_SETTING_UNDERLIMIT 0x0: VOLTAGE_LEVEL_SETTING_OK
0	VREG_OK_PENDING_STS	Regulator has been successfully enabled 0x1: LDO_ENABLE_SUCCESS 0x0: LDO_ENABLE_FALSE

0x0001561A LDO23_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Selects the MID that will receive the interrupt

LDO23_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	0x1: INT_MID_SEL_1
	J. S. M. Chr.	0x0: INT_MID_SEL_0

0x0001561B LDO23_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

LDO23_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	0x1: INT_PRIORITY_A 0x0: INT_PRIORITY_SR
		0x0. INT_FRIORITI_5R

0x00015640 LDO23_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: perph rb

This register is latched to VOLTAGE_CTL2 register. Need to write to VOLTAGE_CTL2 register after writing to this register to update the RANGE value.

LDO23_VOLTAGE_CTL1

Bits	Name	Description
2:0	RANGE	See details on following sheet

0x00015641 LDO23_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x2C

Reset Name: perph_rb

LDO23_VOLTAGE_CTL2

Bits		Name	Description
6:0	VSET	30, 24	Voltage = Vmin + VSET*(Vstep)
		1	Vmin and Vstep are minimal voltage and voltage step size respectively.
			For ULT PMOS LDOs, Vmin=0.75 V, Vstep=12.5 mV.

0x00015645 LDO23_MODE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

Define LDO Mode Transitions

LDO23_MODE_CTL2

Bits	Name	Description
7	NPM	Force NPM
		0x1: FORCED_NPM
		0x0: FORCED_NPM_FALSE

LDO23_MODE_CTL2 (cont.)

Bits	Name	Description
6	BYPASS_ACT	0x1: BYPASS_ACT_TRUE 0x0: BYPASS_ACT_FALSE
5	BYPASS_EN	Enable LDO bypass mode 0x1: BYPASS_ENABLED 0x0: BYPASS_DISABLED
4	FOLLOW_PMIC_AWAKE	NPM when PMIC_AWAKE (SLEEP_B) 0x1: FOLLOW_PMIC_AWAKE_TRUE 0x0: FOLLOW_PMIC_AWAKE_FALSE
3	NPM_FOLLOW_HW_EN3	NPM mode setting using HWEN3 0x1: NPM_FOLLOW_HW_EN3_TRUE 0x0: NPM_FOLLOW_HW_EN3_FALSE
2	NPM_FOLLOW_HW_EN2	NPM mode setting using HWEN2 0x1: NPM_FOLLOW_HW_EN2_TRUE 0x0: NPM_FOLLOW_HW_EN2_FALSE
1	NPM_FOLLOW_HW_EN1	NPM mode setting using HWEN1 0x1: NPM_FOLLOW_HW_EN1_TRUE 0x0: NPM_FOLLOW_HW_EN1_FALSE
0	NPM_FOLLOW_HW_EN0	NPM mode setting using HWEN0 0x1: NPM_FOLLOW_HW_EN0_TRUE 0x0: NPM_FOLLOW_HW_EN0_FALSE

0x00015646 LDO23_EN_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

LDO23_EN_CTL

Bits	Name	Description
7	EN_LDO_INT	1' = Enable the LDO, '0' = do not force LDO on
		0x1: EN_LDO_INT_TRUE
		0x0: EN_LDO_INT_FALSE
3	FOLLOW_HW_EN3	NPM enable setting using HWEN3
		0x1: FOLLOW_HW_EN3_TRUE
		0x0: FOLLOW_HW_EN3_FALSE
2	FOLLOW_HW_EN2	NPM enable setting using HWEN2
		0x1: FOLLOW_HW_EN2_TRUE
		0x0: FOLLOW_HW_EN2_FALSE

LDO23_EN_CTL (cont.)

Bits	Name	Description
1	FOLLOW_HW_EN1	NPM enable setting using HWEN1 0x1: FOLLOW_HW_EN1_TRUE 0x0: FOLLOW HW EN1 FALSE
0	FOLLOW_HW_EN0	NPM enable setting using HWEN0 0x1: FOLLOW_HW_EN0_TRUE 0x0: FOLLOW_HW_EN0_FALSE

0x00015648 LDO23_PD_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

LDO23_PD_CTL

Bits	Name	Description
7	PULLDN_EN	Enable the pulldown when the regulator is disabled
		0x1: PULLDN_ENABLED
	22.	0x0: PULLDN_DIABLED

0x0001564A LDO23_CURRENT_LIM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x80

Reset Name: perph_rb

LDO23_CURRENT_LIM_CTL

Bits	Name	Description
7	CURRENT_LIM_EN	0x1: CURRENT_LIM_ENABLED 0x0: CURRENT_LIM_DISABLED
5	CURRENT_LIM_TESTMOD E_EN	Current Limit for test mode (lower limit) 0x1: CURRENT_LIM_TESTMODE_ENABLED 0x0: CURRENT_LIM_TESTMODE_DISABLED

0x0001564C LDO23_SOFT_START_CTL

Type: RW

Clock: PBUS WRCLK Reset State: 0x80

Reset Name: perph rb

LDO23_SOFT_START_CTL

Bits	Name	Description
7	SOFT_START	0x1: SOFT_START_ENABLED
		0x0: SOFT_START_DISABLED

0x00015652 LDO23_CONFIG_CTL

LDO23_CONFIG_CTL

LDO23_CONFIG_CTL			
Type: RW Clock: PBUS_WRCLK Reset State: 0xF0			
	Reset Name: perph_rb		
LDO23	_CONFIG_CTL	Oam	
Bits	Name	Description	
7:6	CLAMP CTRL		
1.0	CLAIVIP_CTRL	For N1200 LDO only, changes the clamp voltage for undershoot improvement	
5	CLAMP_EN		
	8.0 Willis	improvement For N1200 LDO only, undershoot improvement 0x1: CLAMP_ENABLED	

0x00015668 LDO23_LL_VOLTAGE_CTL1

Type: RW

Clock: PBUS WRCLK Reset State: 0x00

Reset Name: perph rb

PMIC_LOCKED=SEC_ACCESS

LDO23_LL_VOLTAGE_CTL1

Bits	Name	Description
2:0	LL_RANGE	See details on following sheet

0x00015669 LDO23_LL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

PMIC_LOCKED=SEC ACCESS

LDO23_LL_VOLTAGE_CTL2

Bits	Name	Description
6:0	LL_VSET	See details on following sheet

N

0x0001566A LDO23_UL_VOLTAGE_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: perph_rb

PMIC LOCKED=SEC ACCESS

LDO23_UL_VOLTAGE_CTL1

Bits	Name	Description
2:0	UL_RANGE	See details on following sheet

0x0001566B LDO23_UL_VOLTAGE_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7F

Reset Name: perph rb

PMIC_LOCKED=SEC_ACCESS

LDO23_UL_VOLTAGE_CTL2

Bits	Name	Description
6:0	UL_VSET	See details on following sheet

0x000156D0 LDO23_SEC_ACCESS

Type: RW

LDO23_SEC_ACCESS

	PBUS_WRCLK State: 0x00	
Reset Name: dVdd_rb		N
PMIC_LOCKING		N
LDO23	S_SEC_ACCESS	·O,
Bits	Name	Description
	Name	Description

80 Pwm_slice Registers

0x0001BC00 PWM_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

PMIC CONSTANT

PWM_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x0001BC01 PWM_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: N/A

HW Version Register [15:8]

PMIC CONSTANT

PWM_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0001BC04 PWM_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x13

Reset Name: N/A

Peripheral Type

PMIC_CONSTANT

PWM_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	LPG

0x0001BC05 PWM PERPH SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: N/A

Peripheral SubType

PMIC CONSTANT

PWM_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	PWM Channel

0x0001BC41 PWM_PWM_SIZE_CLK

Type: RW

Clock: PBUS_WRCLK Reset State: 0x04

Reset Name: PERPH_RB

This register sets the PWM frequency according to the foll. formula

PWM FREQ =

PWM FREQ CLK SELECT/(2^(PWM SIZE))*(2^(PWM FREQ EXPONENT)*PWM FRE

Q PRE DIVIDE)

PWM_PWM_SIZE_CLK

Bits	Name	Description
2	PWM_SIZE	0 = 6-bit PWM
		1 = 9-bit PWM
		0x0: PWM_6BIT
		0x1: PWM_9BIT
1:0	PWM_FREQ_CLK_SELECT	sets the PWM master clock
		00 = no clock
		01 = 1 kHz
		10 = 32 kHz
		11 = 19.2 MHz
		0x0: NOCLK
		0x1: CLK_1KHZ
		0x2: CLK_32KHZ
		0x3: CLK_19P2MHZ

0x0001BC42 PWM_PWM_FREQ_PREDIV_CLK

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

This register selects the pre-divide and exponent values to divide down the PWM master clock

PWM_PWM_FREQ_PREDIV_CLK

Bits	Name	Description
6:5	PWM_FREQ_PRE_DIVIDE	00 = 1
		01 = 3
		10 = 5
		11 = 6
		0x0: PREDIV_ONE
		0x1: PREDIV_THREE
		0x2: PREDIV_FIVE
		0x3: PREDIV_SIX

PWM_PWM_FREQ_PREDIV_CLK (cont.)

Bits	Name	Description
2:0	PWM_FREQ_EXPONENT	000 = 0
		001 = 1
		111 = 7
		0x0: EXP_ZERO
		0x1: EXP_ONE
		0x2: EXP_TWO
		0x3: EXP_THREE
		0x4: EXP_FOUR
		0x5: EXP_FIVE
		0x6: EXP_SIX
		0x7: EXP_SEVEN
1		

0x0001BC43 PWM_PWM_TYPE_CONFIG

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH_RB

PWM PWM TYPE CONFIG

Bits	Name	Description
5	EN_GLITCH_REMOVAL	0 = no glitch removal, PWM outputs are updated immediately 1 = glitch removal, PWM outputs are updated only on PWM period boundaries 0x0: GLITCH_REMOVE_DIS 0x1: GLITCH_REMOVE_EN

0x0001BC44 PWM_PWM_VALUE_LSB

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH_RB

PWM VALUE LSB

PWM_PWM_VALUE_LSB

Bits	Name	Description
7:0	PWM_VALUE_LSB	lower 8 bits of PWM

0x0001BC45 PWM_PWM_VALUE_MSB

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PWM VALUE MSB

PWM_PWM_VALUE_MSB

Bits	Name	Description
0	PWM_VALUE_MSB	MSB (bit 9) of PWM

0x0001BC46 PWM_ENABLE_CONTROL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

Enables PWM output

PWM_ENABLE_CONTROL

Bits	Name	Description
7	EN_MODULE	0 = Module disabled (High Z)
		1 = Module enabled
		0x0: PWM_DISABLE
		0x1: PWM_ENABLE

0x0001BC47 PWM_PWM_SYNC

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PWM_PWM_SYNC

Bits	Name	Description
0	SYNC_PWM	Writing 1 to this register will update the 6/9-bit PWM value. This bit is auto-cleared

81 Codec_digital Registers

0x0001F000 CDC_D_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

CDC_D_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0001F001 CDC_D_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [15:8]

PMIC_CONSTANT

CDC_D_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0001F004 CDC_D_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x23

Reset Name: n/a

Peripheral Type

PMIC CONSTANT

CDC_D_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x0001F005 CDC D PERPH SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x03

Reset Name: n/a

Peripheral SubType

PMIC CONSTANT

CDC_D_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	

0x0001F010 CDC_D_INT_RT_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

CDC_D_INT_RT_STS

Bits	Name	Description
7	MBHC_SWITCH_INT	

CDC_D_INT_RT_STS (cont.)

Bits	Name	Description
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	
5	MBHC_BUTTON_PRESS_D ET	
4	MBHC_BUTTON_RELEASE _DET	
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	
2	D_CDC_SPKR_OCP_INT	72
1	D_CDC_SPKR_CLIP_INT	
0	D_CDC_SPKR_CNP_INT	

0x0001F011 CDC_D_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0xFF

Reset Name: perph_rb

0 = use level trigger interrupts, 1 = use edge trigger interrupts

CDC_D_INT_SET_TYPE

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F012 CDC_D_INT_POLARITY_HIGH

Type: R

Clock: PBUS_WRCLK
Reset State: 0xFF

Reset Name: perph rb

1 = Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

CDC_D_INT_POLARITY_HIGH

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F013 CDC_D_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

CDC_D_INT_POLARITY_LOW

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above

CDC_D_INT_POLARITY_LOW (cont.)

Bits	Name	Description
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F014 CDC_D_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

1 = rearms the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

0 = has no effect

CDC_D_INT_LATCHED_CLR

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F015 CDC_D_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt.

Reading this register will readback enable status

PMIC_SET_MASK

CDC_D_INT_EN_SET

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F016 CDC_D_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

CDC_D_INT_EN_CLR

Bits	Name	Description
7	MBHC_SWITCH_INT	Read register description above

CDC_D_INT_EN_CLR (cont.)

Bits	Name	Description
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	Read register description above
5	MBHC_BUTTON_PRESS_D ET	Read register description above
4	MBHC_BUTTON_RELEASE _DET	Read register description above
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	Read register description above
2	D_CDC_SPKR_OCP_INT	Read register description above
1	D_CDC_SPKR_CLIP_INT	Read register description above
0	D_CDC_SPKR_CNP_INT	Read register description above

0x0001F018 CDC_D_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

CDC_D_INT_LATCHED_STS

Bits	Name	Description
7	MBHC_SWITCH_INT	
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	
5	MBHC_BUTTON_PRESS_D ET	
4	MBHC_BUTTON_RELEASE _DET	
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	
2	D_CDC_SPKR_OCP_INT	
1	D_CDC_SPKR_CLIP_INT	
0	D_CDC_SPKR_CNP_INT	

0x0001F019 CDC_D_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

Pending is set if interrupt has been sent but not cleared.

CDC_D_INT_PENDING_STS

Bits	Name	Description
7	MBHC_SWITCH_INT	2
6	MBHC_MIC_ELECTRICAL_I NS_REM_DET	
5	MBHC_BUTTON_PRESS_D ET	0.
4	MBHC_BUTTON_RELEASEDET	1 POT
3	MBHC_MIC_ELECTRICAL_I NS_REM_DET1	02.00
2	D_CDC_SPKR_OCP_INT	
1	D_CDC_SPKR_CLIP_INT	
0	D_CDC_SPKR_CNP_INT	

0x0001F01A CDC_D_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

Selects the MID that will receive the interrupt

CDC_D_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	indicates ID of the master which is supposed to process the interrupt

0x0001F01B CDC_D_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Choosing priority type - SR or A

CDC_D_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	Writing 0 selects SR priority, writing 1 selects A priority.

0x0001F043 CDC_D_PIN_STATUS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

These register bits contain the current state of the pads to allow software, read access.

CDC_D_PIN_STATUS

Bits	Name	Description
4	PAD_STATUS4	State of the cdc_pdm_clk pad
3	PAD_STATUS3	State of the cdc_pdm_sync pad
2	PAD_STATUS2	State of the cdc_pdm_rx2 pad
1	PAD_STATUS1	State of the cdc_pdm_rx1 pad
0	PAD_STATUS0	State of the cdc_pdm_rx0 pad

0x0001F044 CDC_D_HDRIVE_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

PDM Buffer Drive Strength Configuration

CDC_D_HDRIVE_CTL

Bits	Name	Description
1:0	HDRIVE_CTL	0x0: LOW10PF
		0x1: MID20PF
		0x2: HIGH40PF
		0x3: VERYHIGH50PF

0x0001F046 CDC_D_CDC_RST_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_D_CDC_RST_CTL

Bits	Name		Description
7	DIG_SW_RST_N	202	CDC_DIG_RST_N (active low) is AND with System Reset to generate the Digital core reset. 0x0: RESET 0x1: REMOVE_RESET

0x0001F048 CDC D CDC TOP CLK CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Top ClockControl Register. This register enables or disables the registers in the Main Clock

Domains

CDC_D_CDC_TOP_CLK_CTL

Bits	Name	Description
3	A_MCLK2_EN	Specifies Analog MCLK Div by 2 Clock EnableState 0x0: DISABLE 0x1: ENABLE
2	A_MCLK_EN	Specifies Analog MCLK Clock EnableState 0x0: DISABLE 0x1: ENABLE

0x0001F049 CDC_D_CDC_ANA_CLK_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

RX Analog Path Clock Control Register. This register enables clocks to Analog RX domains.

CDC_D_CDC_ANA_CLK_CTL

Bits	Name	Description
5	TXA_CLK25_EN	Specifies TX0 and Tx1 Analog Path Clock Enable State
		0x0: DISABLE
		0x1: ENABLE
4	SPKR_CLK_EN	Specifies RX4 Analog Path Clock Enable State
		0x0: DISABLE
		0x1: ENABLE
1	EAR_HPHL_CLK_EN	Specifies RX1 Analog Path Clock Enable State
		0x0: DISABLE
		0x1: ENABLE
0	EAR_HPHR_CLK_EN	Specifies RX0 Analog Path Clock Enable State
	27.0	0x0: DISABLE
	Og ingl	0x1: ENABLE

0x0001F04A CDC_D_CDC_DIG_CLK_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

This register enables clocks to all of the main digital data paths

CDC_D_CDC_DIG_CLK_CTL

Bits	Name	Description
7	RXD_PDM_CLK_EN	Specifies RXD_PDM Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE
6	NCP_CLK_EN	Specifies NCP Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE

CDC_D_CDC_DIG_CLK_CTL (cont.)

Bits	Name	Description
5	BOOST_CLK_EN	Specifies BOOST Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE
4	TXD_CLK_EN	Specifies TX Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE
3	D_MBHC_CLK_EN	Specifies Digital MBHC Clock EnableState 0x0: DISABLE 0x1: ENABLE
2	RXD3_CLK_EN	Specifies RX3 Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE
1	RXD2_CLK_EN	Specifies RX2 Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE
0	RXD1_CLK_EN	Specifies RX1 Digital Path Clock Enable State 0x0: DISABLE 0x1: ENABLE

0x0001F050 CDC_D_CDC_CONN_TX1_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: perph_rb

CDC_D_CDC_CONN_TX1_CTL

Bits	Name	Description
1:0	SERIAL_TX1_MUX	Configures connectivity mux, to choose the input to serializer in the TX1 path 0x0: ADC_1 0x1: RX_PDM_LB 0x2: ZERO

0x0001F051 CDC_D_CDC_CONN_TX2_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

CDC_D_CDC_CONN_TX2_CTL

Bits	Name	Description
1:0	SERIAL_TX2_MUX	Configures connectivity mux, to choose the input to serializer in the TX2 path 0x0: ADC_2 0x1: RX_PDM_LB 0x2: ZERO

0x0001F052 CDC_D_CDC_CONN_HPHR_DAC_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_D_CDC_CONN_HPHR_DAC_CTL

Bits	Name	Description
0	RX_SEL	Configures connectivity mux, to choose the input to HPHR DAC input path. 0x0: RX1 0x1: RX2

0x0001F053 CDC_D_CDC_CONN_RX1_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

CDC_D_CDC_CONN_RX1_CTL

Bits	Name	Description
1:0	RX1_INP_SEL	Configures connectivity mux, to choose the serial input to the deserializer in the RX1 input path.
		0x0: RX1
		0x1: TX_LB_ADC1
		0x2: TX_LB_ADC2

0x0001F054 CDC_D_CDC_CONN_RX2_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_D_CDC_CONN_RX2_CTL

Bits	Name	Description
1:0	RX2_INP_SEL	Configures connectivity mux, to choose the serial input to the deserializer in the RX2 input path.
		0x0: RX2
		0x1: TX_LB_ADC1
		0x2: TX_LB_ADC2

0x0001F055 CDC_D_CDC_CONN_RX3_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph rb

CDC_D_CDC_CONN_RX3_CTL

Bits	Name	Description
1:0	RX3_INP_SEL	Configures connectivity mux, to choose the serial input to the deserializer in the RX3 input path. 0x0: RX3 0x1: TX_LB_ADC1 0x2: TX_LB_ADC2

0x0001F056 CDC_D_CDC_CONN_RX_LB_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_D_CDC_CONN_RX_LB_CTL

Bits	Name	Description
1:0	RX_LB_SEL	Configures connectivity mux, to choose loopback Rx fir data. 0x0: RX1_FIR_DATA 0x1: RX2_FIR_DATA 0x2: RX3_FIR_DATA

0x0001F058 CDC_D_CDC_RX_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x7C

Reset Name: perph_rb

CDC_D_CDC_RX_CTL1

Bits	Name	Description
6	DEM_DITHER_ENABLE	When set to 1, enables Dither bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE
5	DEM_MID_ENABLE	When set to 1, enables Mid bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE
4	DEM_MOD_SWITCHING_B LOCK_ENABLE	When set to 1, enables Modified Switching Block (S41), defaults to 1 0x0: DISABLE 0x1: ENABLE
3	DEM_SWITCHING_BLOCK_ ENABLE	When set to 1, enables Switching Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
2	DEM_SEGMENTING_BLOC K_ENABLE	When set to 1, enables Segmenting Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
1	DEM_BYPASS	DEM bypass test data (26 bits) is defined by the 4 DEM_BYPASS_DATA registers, described later in this document. 0x0: NO_BYPASS 0x1: BYPASS
0	FIR_BYPASS	When set = 1, enables the bypass of the FIR filter. Only lower 4 bits of 9 bit output will be non zero. Default to 0. 0x0: NO_BYPASS 0x1: BYPASS

0x0001F059 CDC_D_CDC_RX_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7C

CDC_D_CDC_RX_CTL2

Bits	Name	Description
6	DEM_DITHER_ENABLE	When set to 1, enables Dither bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE
5	DEM_MID_ENABLE	When set to 1, enables Mid bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE
4	DEM_MOD_SWITCHING_B LOCK_ENABLE	When set to 1, enables Modified Switching Block (S41), defaults to 1 0x0: DISABLE 0x1: ENABLE
3	DEM_SWITCHING_BLOCK_ ENABLE	When set to 1, enables Switching Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
2	DEM_SEGMENTING_BLOC K_ENABLE	When set to 1, enables Segmenting Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
1	DEM_BYPASS	DEM bypass test data (26 bits) is defined by the 4 DEM_BYPASS_DATA registers, described later in this document. 0x0: NO_BYPASS 0x1: BYPASS
0	FIR_BYPASS	When set = 1, enables the bypass of the FIR filter. Only lower 4 bits of 9 bit output will be non zero. Default to 0. 0x0: NO_BYPASS 0x1: BYPASS

0x0001F05A CDC_D_CDC_RX_CTL3

Type: RW

Clock: PBUS_WRCLK Reset State: 0x7C

Reset Name: perph_rb

CDC_D_CDC_RX_CTL3

Bits	Name	Description
6	DEM_DITHER_ENABLE	When set to 1, enables Mid bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE
5	DEM_MID_ENABLE	When set to 1, enables Dither bits generation, defaults to 1 0x0: DISABLE 0x1: ENABLE

CDC_D_CDC_RX_CTL3 (cont.)

Bits	Name	Description
4	DEM_MOD_SWITCHING_B LOCK_ENABLE	When set to 1, enables Modified Switching Block (S41), defaults to 1 0x0: DISABLE 0x1: ENABLE
3	DEM_SWITCHING_BLOCK_ ENABLE	When set to 1, enables Switching Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
2	DEM_SEGMENTING_BLOC K_ENABLE	When set to 1, enables Segmenting Block, defaults to 1 0x0: DISABLE 0x1: ENABLE
1	DEM_BYPASS	DEM bypass test data (26 bits) is defined by the 4 DEM_BYPASS_DATA registers, described later in this document. 0x0: NO_BYPASS 0x1: BYPASS
0	FIR_BYPASS	When set = 1, enables the bypass of the FIR filter. Only lower 4 bits of 9 bit output will be non zero. Default to 0. 0x0: NO_BYPASS 0x1: BYPASS

0x0001F05B CDC_D_DEM_BYPASS_DATA0

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

CDC_D_DEM_BYPASS_DATA0

Bits	Name	Description
7:0	DEM_BYPASS_DATA0	Lowest 8 bits of 26 bit DEM output test data field for DEM bypass testing

0x0001F05C CDC_D_DEM_BYPASS_DATA1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

CDC_D_DEM_BYPASS_DATA1

Bits	Name	Description
7:0	DEM_BYPASS_DATA0	bits 8 to 15 of 26 bit DEM output test data field for DEM bypass testing

0x0001F05D CDC_D_DEM_BYPASS_DATA2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_D_DEM_BYPASS_DATA2

Bits	Name	Description
7:0	DEM_BYPASS_DATA0	bits 16 to 24 of 26 bit DEM output test data field for DEM bypass testing

0x0001F05E CDC_D_DEM_BYPASS_DATA3

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

CDC_D_DEM_BYPASS_DATA3

Bits	Name	Description
1:0	DEM_BYPASS_DATA0	upper 2 bits of 26 bit DEM output test data field for DEM bypass testing

82 Codec_analog Registers

0x0001F100 CDC_A_REVISION1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [7:0]

PMIC CONSTANT

CDC_A_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0001F101 CDC_A_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

HW Version Register [15:8]

PMIC CONSTANT

CDC_A_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0001F102 CDC_A_REVISION3

Type: R

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: n/a

HW Version Register [23:16]

CDC_A_REVISION3

Bits	Name	Description
7:0	ANA_MINOR	This number is incremented for analog change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Software changes may be required to take advantage of the new features. Minor resets to zero when Major increments.

0x0001F103 CDC_A_REVISION4

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: n/a

HW Version Register [31:24]

CDC_A_REVISION4

Bits	Name	Description
7:0	ANA_MAJOR	This number is incremented when changes are made to the analog HW that are not backwards compatible with existing software.

0x0001F104 CDC_A_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x23

Reset Name: n/a

Peripheral Type

PMIC_CONSTANT

CDC_A_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	

0x0001F105 CDC_A_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x0B

Reset Name: n/a

Peripheral SubType

PMIC CONSTANT

CDC A PERPH SUBTYPE

l	Bits	Name	Description
	7:0	SUBTYPE	oi.

0x0001F110 CDC_A_INT_RT_STS

Type: R

Clock: PBUS_WRCLK

Reset State: 0x00

Reset Name: n/a

Interrupt Real Time Status Bits

CDC_A_INT_RT_STS

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	0 =
		1 =
4	D_CDC_HPHR_CNP_INT	1 = 0 =
3	D_CDC_EAR_CNP_INT	1 = 0 =
2	D_CDC_HPHL_OCP_INT	1 = 0 =

CDC_A_INT_RT_STS (cont.)

Bits	Name	Description
1	D_CDC_HPHR_OCP_INT	1 =
		0 =
0	D_CDC_EAR_OCP_INT	1 =
		0 =

0x0001F111 CDC_A_INT_SET_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x3F

Reset Name: perph_rb

0 =use level trigger interrupts, 1 =use edge trigger interrupts

CDC_A_INT_SET_TYPE

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F112 CDC_A_INT_POLARITY_HIGH

Type: R

Clock: PBUS_WRCLK
Reset State: 0x3F

Reset Name: perph_rb

1 = Interrupt will trigger on a level high (rising edge) event, 0 = level high triggering is disabled

CDC_A_INT_POLARITY_HIGH

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above

CDC_A_INT_POLARITY_HIGH (cont.)

Bits	Name	Description
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F113 CDC_A_INT_POLARITY_LOW

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

1 = Interrupt will trigger on a level low (falling edge) event, 0 = level low triggering is disabled

CDC_A_INT_POLARITY_LOW

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F114 CDC_A_INT_LATCHED_CLR

Type: W

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

1 = rearms the interrupt when an interrupt is pending. It clears the internal sticky and sent bits

0 = has no effect

CDC_A_INT_LATCHED_CLR

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above

CDC_A_INT_LATCHED_CLR (cont.)

Bits	Name	Description
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F115 CDC_A_INT_EN_SET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

writing '0' to this register has no effect. Writing a '1' will enable the corresponding interrupt. Reading this register will readback enable status

PMIC SET MASK

CDC_A_INT_EN_SET

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F116 CDC_A_INT_EN_CLR

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

writing '0' to this register has no effect. Writing a '1' will disable the corresponding interrupt. Reading this register will readback enable status

PMIC CLR MASK=INT EN SET

CDC_A_INT_EN_CLR

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F118 CDC_A_INT_LATCHED_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Latched (Sticky) Interrupt. '1' indicates that the interrupt has triggered. Once the latched bit is set it can only be cleared by writing the clear bit.

CDC_A_INT_LATCHED_STS

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F119 CDC_A_INT_PENDING_STS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: n/a

Pending is set if interrupt has been sent but not cleared.

CDC_A_INT_PENDING_STS

Bits	Name	Description
5	D_CDC_HPHL_CNP_INT	Read register description above
4	D_CDC_HPHR_CNP_INT	Read register description above
3	D_CDC_EAR_CNP_INT	Read register description above
2	D_CDC_HPHL_OCP_INT	Read register description above
1	D_CDC_HPHR_OCP_INT	Read register description above
0	D_CDC_EAR_OCP_INT	Read register description above

0x0001F11A CDC_A_INT_MID_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

Selects the MID that will receive the interrupt

CDC_A_INT_MID_SEL

Bits	Name	Description
1:0	INT_MID_SEL	indicates ID of the master which is supposed to process the interrupt

0x0001F11B CDC_A_INT_PRIORITY

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

Choosing priority type - SR or A

CDC_A_INT_PRIORITY

Bits	Name	Description
0	INT_PRIORITY	

0x0001F140 CDC_A_MICB_1_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

CDC_A_MICB_1_EN

Bits	Name	Description
7	MICB_EN	0x0: DISABLE
		0x1: ENABLE
6	CAP_MODE	0x0: EXT_BYP_CAP
		0x1: NO_EXT_BYP_CAP
5	PULL_DOWN_EN	0x0: DISABLE
		0x1: ENABLE
4	PULL_UP_EN	0x0: DISABLE
		0x1: ENABLE
3:1	OPA_STG3_TAIL_CURR	0x0: I_30_UA
		0x1:1_45_UA
		0x2: I_60_UA
	0	0x3: I_75_UA
	2 2	0x4: I_90_UA
	,0° ,in ⁰	0x5: I_105_UA
	18. O. M.	0x6: I_120_UA
	20 54	0x7: I_135_UA
0	TX3N_GND_SEL	0x0: TX_GND
		0x1: HPH_REF

0x0001F141 CDC_A_MICB_1_VAL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

CDC_A_MICB_1_VAL

Bits	Name	Description
7:3	MICB_OUT_VAL	0x0: V1P60V
		0x1: V1P65V
		0x2: V1P70V
		0x3: V1P75V
		0x4: V1P80V
		0x5: V1P85V
		0x6: V1P90V
		0x7: V1P95V
		0x8: V2P00V
		0x9: V2P05V
		0xA: V2P10V
		0xB: V2P15V
		0xC: V2P20V
		0xD: V2P25V
	10	0xE: V2P30V
		0xF: V2P35V
		0x10: V2P40V
		0x11: V2P45
		0x12: V2P50V
	,0,	0x13: V2P55V
	2,18	0x14: V2P60V
	10 in	0x15: V2P65V
	2018:09:21 III.	0x16: V2P70V
	30, 24	0x17: V2P75V 0x18: V2P80V
	1	0x19: V2P80V
		0X19. V2F03V
2:1	IFILT_RES_VAL	0x0: R_3600M_OHM
		0x1: R_1800M_OHM
		0x2: R_1200M_OHM
		0x3: R_900M_OHM
0	MICB_PWR_SWCH_OVRD_	0x0: AUTO
	EN	0x1: VDD_MIC_BIAS

0x0001F142 CDC_A_MICB_1_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

CDC_A_MICB_1_CTL

Bits	Name	Description
7	REF_OPA_EN	0x0: DISABLE
		0x1: ENABLE
6	INT_PRECHRG_BYP	0x0: INT_PRECHRG_SEL
		0x1: EXT_PRECHRG_SEL
5	EXT_PRECHRG_EN	0x0: DISABLE
		0x1: ENABLE
4:2	RESERVED	
1	CFILT_REF_SEL	0x0: CDC_GND_CFILT
		0x1: HPH_REF
0	PLUG_PNP_OVRD	0x0: ENABLE
		0x1: DISABLE

0x0001F143 CDC_A_MICB_1_INT_RBIAS

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x49

Reset Name: perph_rb

CDC_A_MICB_1_INT_RBIAS

Bits	Name	Description
7	TX1_INT_RBIAS_EN	0x0: DISABLE 0x1: ENABLE
6	TX1N_INT_PULLUP_EN	0x0: TX1N_TO_GND 0x1: TX1N_TO_MBIAS
5	TX1N_GND_SEL	0x0: TX_GND 0x1: HPH_REF
4	TX2_INT_RBIAS_EN	0x0: DISABLE 0x1: ENABLE
3	TX2N_INT_PULLUP_EN	0x0: TX2N_TO_GND 0x1: TX2N_TO_MBIAS
2	TX2N_GND_SEL	0x0: TX_GND 0x1: HPH_REF
1	TX3_INT_RBIAS_EN	0x0: DISABLE 0x1: ENABLE
0	TX3_INT_PULLUP_EN	0x0: TX2N_TO_GND 0x1: TX2N_TO_MBIAS

0x0001F144 CDC_A_MICB_2_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: perph rb

CDC_A_MICB_2_EN

Bits	Name	Description
7	MICB_EN	0x0: DISABLE
		0x1: ENABLE
6	PULL_UP_EN	0x0: DISABLE
		0x1: ENABLE
5	PULL_DOWN_EN	0x0: DISABLE
		0x1: ENABLE
4:3	MBHC_AZ_CTL	0x0: DEFAULT_AZ_EQ_MICB_EN_B
		0x1: DISABLE_AZ
		0x2: ENABLE_AZ
2:0	ZDET_IBIAS_CTRL	0x0: ZDET_IBIAS_1UA
		0x1: ZDET_IBIAS_4UA
		0x2: ZDET_IBIAS_11UA
	27 18	0x3: ZDET_IBIAS_14UA
	O'S airig	0x4: ZDET_IBIAS_0P5UA
	18, 164	0x5: ZDET_IBIAS_2UA
	20, 24	0x6: ZDET_IBIAS_5P5UA
	1	0x7: ZDET_IBIAS_7UA

0x0001F145 CDC_A_TX_1_2_ATEST_CTL_2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

CDC_A_TX_1_2_ATEST_CTL_2

Bits	Name	Description
7:2	RESERVED	RESERVED
1	TX1N_FLOAT_EN	0: DISABLE 1: ENABLE
0	TX1N_CFILT_REF_SEL	0: CFILT_REF 1: IN1_M

0x0001F146 CDC_A_MASTER_BIAS_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_A_MASTER_BIAS_CTL

Bits	Name	Description
5	MASTER_BIAS_EN	0x0: DISABLE
		0x1: ENABLE
4	V2I_BUFFER_EN	0x0: DISABLE
		0x1: ENABLE
3:2	RESERVED	
1	RESERVED	
0	SPKR_BIAS	0x0: IPOLY
	.0	0x1: ITRIM

0x0001F147 CDC_A_MBHC_DET_CTL_1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x35

Reset Name: perph rb

CDC_A_MBHC_DET_CTL_1

Bits	Name	Description
7	L_DET_EN	0x0: DISABLE
		0x1: ENABLE
6	GND_DET_EN	0x0: DISABLE
		0x1: ENABLE
5	MECH_DETECTION_TYPE	0x0: REMOVAL
		0x1: INSERTION
4:3	MIC_CLAMP_CTL	0x0: MANUAL_CONTROL_CLAMP_OFF
		0x1: MANUAL_CONTROL_CLAMP_ON
		0x2: AUTOMATIC_CONTROL_CLAMP_MIC
2	MBHC_BIAS_EN	0x0: DISABLE
		0x1: ENABLE
1	ZDET_LEGACY_EN	0x0: RAMP
		0x1: LEGACY

CDC_A_MBHC_DET_CTL_1 (cont.)

Bits	Name	Description
0	ELECT_DETECTION_TYPE	0x0: REMOVAL 0x1: INSERTION

0x0001F150 CDC_A_MBHC_DET_CTL_2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: perph rb

CDC_A_MBHC_DET_CTL_2

Bits	Name	Description
7:6	HS_L_DET_PULL_UP_CTR	0x0: OFF
	L	0x1: I_IP0_UA
		0x2: I_2P0_UA
		0x3: I_3P0_UA
5	HS_L_DET_COMPARATOR	0x0: OFF
	_CTRL	0x1: V_0P9_VDD
4	HPHL_PLUG_TYPE	0x0: NC
	3.09 ming	0x1: NO
3	GND_PLUG_TYPE	0x0: NC
	27.5	0x1: NO
2:1	ELECT_SCHMT_ISRC_CTR	0x0: DISABLE_ALL
	L	0x1: ENABLE_MIC_HPHL_HPHR
		0x2: ENABLE_HPHL_HPHR
		0x3: ENABLE_MIC_HPHL
0	SW_HPH_LP_100K_TO_GN	0x0: DISABLE
	D	0x1: ENABLE

0x0001F151 CDC_A_MBHC_FSM_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

CDC_A_MBHC_FSM_CTL

Bits	Name	Description
7	MBHC_FSM_EN	0x0: DISABLE 0x1: ENABLE
6:4	BTN_ISRC_CTRL	0x0: OFF 0x1: I_50_UA 0x2: I_75_UA 0x3: I_100_UA 0x4: I_125_UA 0x5: I_150_UA 0x6: I_175_UA 0x7: I_200_UA
3	ZDET_L_MEAS_EN	0x0: DISABLE 0x1: ENABLE
2	ZDET_R_MEAS_EN	0x0: DISABLE 0x1: ENABLE
1	ZDET_CHG	0x0: DISCHG 0x1: CHG
0	ZDET_DISCHG_CAP_CTL	0x0: DISABLE 0x1: ENABLE

0x0001F152 CDC_A_MBHC_DBNC_TIMER

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x98

CDC_A_MBHC_DBNC_TIMER

Bits	Name	Description
7:4	INSREM_DBNC	0x0: T_0_MS 0x1: T_8_MS 0x2: T_16_MS 0x3: T_32_MS 0x4: T_48_MS 0x5: T_64_MS 0x6: T_96_MS 0x7: T_128_MS 0x8: T_192_MS 0x9: T_256_MS 0xA: T_384_MS 0xB: T_512_MS 0xC: T_768_MS 0xD: T_1024_MS 0xE: T_1536_MS 0xF: T_2048_MS
3:2	BTN_DBNC	0x0:T_0_MS 0x1:T_8_MS 0x2:T_16_MS 0x3:T_32_MS
1	ZDET_DISCHG_FAST_RAM P_CTL	0x0: FAST_RAMP 0x1: NOM_RAMP
0	RESERVED	

0x0001F153 CDC_A_MBHC_BTN_ZDET_CTL_0

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

CDC_A_MBHC_BTN_ZDET_CTL_0

Bits	Name	Description
7:5	BTN0_VREF_COARSE	0x0: V_0_MV 0x1: V_100_MV 0x2: V_200_MV 0x3: V_300_MV 0x4: V_400_MV 0x5: V_500_MV 0x6: V_600_MV 0x7: V_700_MV

CDC_A_MBHC_BTN_ZDET_CTL_0 (cont.)

Bits	Name	Description
4:2	BTN0_VREF_FINE	0x0: V_0P0_MV
		0x1: V_12P5_MV
		0x2: V_25P0_MV
		0x3: V_37P5_MV
		0x4: V_50P0_MV
		0x5: V_62P5_MV
		0x6: V_75P0_MV
		0x7: V_87P5_MV
1	ZDET_CONN_RAMP_L	0x0: DISCONNECT
		0x1: CONNECT
0	ZDET_CONN_RAMP_R	0x0: DISCONNECT
		0x1: CONNECT

0x0001F154 CDC_A_MBHC_BTN_ZDET_CTL_1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: perph_rb

CDC_A_MBHC_BTN_ZDET_CTL_1

Bits	Name	Description
7:5	BTN1_VREF_COARSE	0x0: V_0_MV
		0x1: V_100_MV
		0x2: V_200_MV
		0x3: V_300_MV
		0x4: V_400_MV
		0x5: V_500_MV
		0x6: V_600_MV
		0x7: V_700_MV
4:2	BTN1_VREF_FINE	0x0: V_0P0_MV
		0x1: V_12P5_MV
		0x2: V_25P0_MV
		0x3: V_37P5_MV
		0x4: V_50P0_MV
		0x5: V_62P5_MV
		0x6: V_75P0_MV
		0x7: V_87P5_MV
1	ZDET_CONN_FIXED_L	0x0: DISCONNECT
		0x1: CONNECT
0	ZDET_CONN_FIXED_R	0x0: DISCONNECT
		0x1: CONNECT

0x0001F155 CDC_A_MBHC_BTN_ZDET_CTL_2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x40

Reset Name: perph_rb

CDC_A_MBHC_BTN_ZDET_CTL_2

Bits	Name	Description
7:5	BTN2_VREF_COARSE	0x0: V_0_MV
		0x1: V_100_MV
		0x2: V_200_MV
		0x3: V_300_MV
		0x4: V_400_MV
		0x5: V_500_MV
		0x6: V_600_MV
	. (0x7: V_700_MV
4:2	BTN2_VREF_FINE	0x0: V_0P0_MV
		0x1: V_12P5_MV
	. ()	0x2: V_25P0_MV
		0x3: V_37P5_MV
		0x4: V_50P0_MV
	27	0x5: V_62P5_MV
	0 0 die	0x6: V_75P0_MV
	S. Owills	0x7: V_87P5_MV
1	ZDET_RAMP_CAP_CTL	0x0: AUTO_SWITCH_CAP
	1	0x1: MANUAL_SWITCH_CAP
0	ZDET_RAMP_RATE_CTL	0x0: R_1P0X_RAMP_RATE
		0x1: R_1P2X_RAMP_RATE

0x0001F156 CDC_A_MBHC_BTN3_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x61

CDC_A_MBHC_BTN3_CTL

Bits	Name	Description
7:5	BTN3_VREF_COARSE	0x0: V_0_MV 0x1: V_100_MV 0x2: V_200_MV 0x3: V_300_MV 0x4: V_400_MV 0x5: V_500_MV 0x6: V_600_MV 0x7: V_700_MV
4:2	BTN3_VREF_FINE	0x0: V_0P0_MV 0x1: V_12P5_MV 0x2: V_25P0_MV 0x3: V_37P5_MV 0x4: V_50P0_MV 0x5: V_62P5_MV 0x6: V_75P0_MV 0x7: V_87P5_MV
1:0	HS_VREF	0x0: V_1P4_V 0x1: V_1P5_V 0x2: V_1P6_V 0x3: V_1P7_V

0x0001F157 CDC_A_MBHC_BTN4_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x80

Reset Name: perph_rb

CDC_A_MBHC_BTN4_CTL

Bits	Name	Description
7:5	BTN4_VREF_COARSE	0x0: V_0_MV 0x1: V_100_MV 0x2: V_200_MV 0x3: V_300_MV 0x4: V_400_MV 0x5: V_500_MV 0x6: V_600_MV 0x7: V_700_MV

CDC_A_MBHC_BTN4_CTL (cont.)

Bits	Name	Description
4:2	BTN4_VREF_FINE	0x0: V_0P0_MV
		0x1: V_12P5_MV
		0x2: V_25P0_MV
		0x3: V_37P5_MV
		0x4: V_50P0_MV
		0x5: V_62P5_MV
		0x6: V_75P0_MV
		0x7: V_87P5_MV
1:0	RESERVED	

0x0001F158 CDC_A_MBHC_RESULT_1

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

CDC_A_MBHC_RESULT_1

Bits	Name	Description
5	ZDETB5_RESULT	0x0: COMP_LOW
	18. Onill	0x1: COMP_HIGH
4	BTN4_ZDETB4_RESULT	0x0: COMP_LOW
	1	0x1: COMP_HIGH
3	BTN3_ZDETB3_RESULT	0x0: COMP_LOW
		0x1: COMP_HIGH
2	BTN2_ZDETB2_RESULT	0x0: COMP_LOW
		0x1: COMP_HIGH
1	BTN1_ZDETB1_RESULT	0x0: COMP_LOW
		0x1: COMP_HIGH
0	BTN0_ZDETB0_RESULT	0x0: COMP_LOW
		0x1: COMP_HIGH

0x0001F159 CDC_A_MBHC_RESULT_2

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

CDC_A_MBHC_RESULT_2

Bits	Name	Description
7:5	RESERVED	
4	AUTO_CLAMP_CTL	0x0: AUTO_CLAMP_CTL_OFF 0x1: AUTO_CLAMP_CTL_ON
3	HPHL_SCHMT_RESULT	0x0: REMOVED 0x1: INSERTED
2	HPHR_SCHMT_RESULT	0x0: REMOVED 0x1: INSERTED
1	MIC_SCHMT_RESULT	0x0: REMOVED 0x1: INSERTED
0	HS_COMP_RESULT	0x0: COMP_LOW 0x1: COMP_HIGH

0x0001F160 CDC_A_TX_1_EN

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: perph_rb

CDC_A_TX_1_EN

Bits	Name	Description
7	CH1_EN	0x0: DISABLE
		0x1: ENABLE
6:3	CH1_GAIN	0x0: G_0_DB
		0x2: G_6_DB
		0x4: G_12_DB
		0x6: G_18_DB
		0x7: G_21_DB
		0x8: G_24_DB
2:0	TXFE1_AAF2_CURR_CTL	0x0: I_1_NA
		0x1: I_6_NA
		0x2: I_11_NA
		0x3: I_16_NA
		0x4: I_21_NA
		0x5: I_26_NA
		0x6: I_31_NA
		0x7: I_36_NA

0x0001F161 CDC_A_TX_2_EN

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x03

Reset Name: perph rb

CDC_A_TX_2_EN

Bits	Name	Description
7	CH2_EN	0x0: DISABLE
		0x1: ENABLE
6:3	CH2_GAIN	0x0: G_0_DB
		0x2: G_6_DB
		0x4: G_12_DB
		0x6: G_18_DB
		0x7: G_21_DB
		0x8: G_24_DB
2:0	TXFE2_AAF2_CURR_CTL	0x0: I_1_NA
		0x1: I_6_NA
		0x2: I_11_NA
		0x3: I_16_NA
	, 0,	0x4: I_21_NA
	2,0	0x5: I_26_NA
	10m 60	0x6: I_31_NA
	J.B. W. Chill	0x7: I_36_NA

0x0001F165 CDC_A_TX_1_2_OPAMP_BIAS

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x4B

Reset Name: perph_rb

CDC_A_TX_1_2_OPAMP_BIAS

Bits	Name	Description
7:5	ADC_INT1_OPAMP_BIAS	0x0: I_2_UA 0x1: I_3_UA 0x2: I_4_UA 0x3: I_5_UA 0x4: I_6_UA
		0x5: I_7_UA 0x6: I_8_UA 0x7: I_9_UA

CDC_A_TX_1_2_OPAMP_BIAS (cont.)

Bits	Name	Description
4:3	ADC_INT2_OPAMP_BIAS	0x0: I_0P5_UA
		0x1: I_1_UA
		0x2: I_1P5_UA
		0x3: I_2_UA
2:0	ADC_REF_BIAS	0x0: I_1_UA
		0x1: I_1P5_UA
		0x2: I_2_UA
		0x3: I_2P5_UA
		0x4: I_3_UA
		0x5: I_3P5_UA
		0x6: I_4_UA
		0x7: I_4P5_UA

0x0001F166 CDC_A_TX_1_2_TXFE_CLKDIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x51

Reset Name: perph_rb

CDC_A_TX_1_2_TXFE_CLKDIV

Bits	Name	Description
7:5	TXFE_1_2_CLK_DIV_RATIO	0x0: DIV_BY_1
	_A1	0x1: DIV_BY_2
		0x2: DIV_BY_4
		0x3: DIV_BY_8
		0x4: DIV_BY_16
		0x5: DIV_BY_32
		0x6: DIV_BY_64
		0x7: DIV_BY_128
4	TXFE_1_2_CLK_DIV_RATIO	0x0: DIV_BY_1
	_A2	0x1: DIV_BY_25
3:1	TXFE_1_2_CLK_DIV_RATIO	0x0: DIV_BY_1
	_B1	0x1: DIV_BY_2
		0x2: DIV_BY_4
		0x3: DIV_BY_8
		0x4: DIV_BY_16
		0x5: DIV_BY_32
		0x6: DIV_BY_64
		0x7: DIV_BY_128
0	TXFE_1_2_CLK_DIV_RATIO	0x0: DIV_BY_1
	_B2	0x1: DIV_BY_25

0x0001F167 CDC_A_TX_3_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: perph rb

CDC_A_TX_3_EN

Bits	Name	Description
7	CH3_EN	0x0: DISABLE
		0x1: ENABLE
6:3	CH3_GAIN	0x0: G_0_DB
		0x2: G_6_DB
		0x4: G_12_DB
		0x6: G_18_DB
		0x7: G_21_DB
	\((0x8: G_24_DB
2:0	TXFE_1_2_OPAMP_CURR_	0x0: I_1P5_UA
	CTL	0x1: I_2P0_UA
		0x2: I_2P5_UA
		0x3: I_3P0_UA
	, 0,	0x4: I_3P5_UA
	2,8	0x5: I_4P0_UA
	10 09 indi	0x6: I_4P5_UA
	018, 46 M	0x7: I_5P0_UA

0x0001F180 CDC_A_NCP_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x26

Reset Name: perph_rb

CDC_A_NCP_EN

Bits	Name	Description
5	NCP_CLIM_EN	0x0: DISABLE
		0x1: ENABLE
4	NCP_BYPASS	0x1: BYPASS_NCP_GND
		0x0: NO_BYPASS_NCP
3	FB_BYPASS	0x0: ENABLE_FB_LOOP
		0x1: BYPASS_FB_LOOP
2	CURR_STARVE_EN	0x0: DISABLE
		0x1: ENABLE

CDC_A_NCP_EN (cont.)

Bits	Name	Description
1	GLITCH_SUP_EN	0x0: DISABLE
		0x1: ENABLE
0	NCP_EN	0x0: DISABLE
		0x1: ENABLE

0x0001F181 CDC_A_NCP_CLK

CDC_A_NCP_CLK

CDC_	A_NCP_CLK	
Reset S Reset N	RW PBUS_WRCLK State: 0x23 Name: perph_rb	
Bits	Name	Description
5	CLK_SEL	0x1: CODEC_MCLK 0x0: RESERVED
4	CLK_INV	0x0: NON_INV_CLK 0x1: INVERTED_CLK
3:0	CLK_DIV	0x0: DIV_BY_2 0x1: DIV_BY_4 0x2: DIV_BY_6 0x3: DIV_BY_8 0x4: DIV_BY_10 0x5: DIV_BY_12 0x6: DIV_BY_14 0x7: DIV_BY_14 0x7: DIV_BY_16 0x8: DIV_BY_18 0x9: DIV_BY_20 0xA: DIV_BY_22 0xB: DIV_BY_24 0xC: DIV_BY_24 0xC: DIV_BY_28 0xE: DIV_BY_30 0xF: DIV_BY_32

0x0001F182 CDC_A_NCP_DEGLITCH

Type: RW

Clock: PBUS WRCLK **Reset State:** 0x5B

CDC_A_NCP_DEGLITCH

Bits	Name	Description
7:6	IB_DG_CTRL	0x0: I_1_UA 0x1: I_2_UA 0x2: I_3_UA 0x3: I_4_UA
5:3	NON_TOVP_OUT	0x0: NON_OVP_TIME_7_NS 0x1: NON_OVP_TIME_12_NS 0x2: NON_OVP_TIME_17P5_NS 0x3: NON_OVP_TIME_22P8_NS 0x4: NON_OVP_TIME_28P9_NS 0x5: NON_OVP_TIME_34P6_NS 0x6: NON_OVP_TIME_40P8_NS 0x7: NON_OVP_TIME_46P8_NS
2:0	NON_TOVP_IN	0x0: NON_OVP_TIME_7_NS 0x1: NON_OVP_TIME_12_NS 0x2: NON_OVP_TIME_17P5_NS 0x3: NON_OVP_TIME_22P8_NS 0x4: NON_OVP_TIME_28P9_NS 0x5: NON_OVP_TIME_34P6_NS 0x6: NON_OVP_TIME_40P8_NS 0x7: NON_OVP_TIME_46P8_NS

0x0001F183 CDC_A_NCP_FBCTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0xA8

Reset Name: perph_rb

CDC_A_NCP_FBCTRL

Bits	Name	Description
7	FB_LIMIT_EN	0x0: DISABLE
		0x1: ENABLE
6	FB_EN_SWCLK	0x0: CONTROLS_SWTICHING_CLK
		0x1: NOT_CONTROL_SWITCHING_CLK
5	FB_CLK_INV	0x0: NON_INVERTED_CLK
		0x1: INVERTED_CLK
4	SAMPLE_BYP	0x0: SAMPLE_WITH_CLK
		0x1: WITHOUT_SAMPLER
3	SAMPLE_SWCLK_BYP	0x0: CLOCK_DIVIDER_OR_MCLK
		0x1: SWITCHING_CLOCK

CDC_A_NCP_FBCTRL (cont.)

Bits	Name	Description
2	SAMPLE_MCLK_BYP	0x0: CLOCK_DIVIDER 0x1: MCLK
1:0	SAMPLE_FREQ_DIV	0x0: DIV_FREQ_0P5 0x1: DIV_FREQ_2 0x2: DIV_FREQ_4 0x3: DIV_FREQ_8

0x0001F184 CDC_A_NCP_BIAS

Type: RW

Clock: PBUS_WRCLK Reset State: 0x29

Reset Name: perph_rb

CDC_A_NCP_BIAS

Bits	Name	Description
7:5	IB_LDO_1UA	0x0: I_0P5_UA
	0)	0x1: I_1_UA
	2,5	0x2: I_1P5_UA
	10 m	0x3: I_2_UA
	S. Owill	0x4: I_2P5_UA
	2018-09-21 tyle	0x5: I_3_UA
	7	0x6: I_3P5_UA
	· V	0x7: I_4_UA
4:3	IB_DG_CTRL2	0x0: I_5_UA
		0x1: I_10_UA
		0x2: I_15_UA
		0x3: I_20_UA
2:0	IB_COMP1_5UA	0x0: I_2P5_UA
		0x1: I_5_UA
		0x2: I_7P5_UA
		0x3: I_10_UA
		0x4: I_12P5_UA
		0x5: I_15_UA
		0x6: I_17P5_UA
		0x7: I_20_UA

0x0001F185 CDC_A_NCP_VCTRL

Type: RW

Clock: PBUS_WRCLK Reset State: 0xA4

Reset Name: perph_rb

CDC_A_NCP_VCTRL

Bits	Name	Description
7:6	SEL_FB_FLIM	0x0: SW_CLK_DIV_8 0x1: SW_CLK_DIV_16 0x2: SW_CLK_DIV_32 0x3: SW_CLK_DIV_64
5:3	LDO_VCTRLB	0x0: VDR_2P2V 0x1: VDR_2P4V 0x2: VDR_2P6V 0x3: VDR_2P8V 0x4: VDR_3V 0x5: VDR_3P2V 0x6: VDR_3P4V 0x7: VDR_3P6V
2:0	VNEG_OUT	0x0: VNEG_1P1V 0x1: VNEG_1P2V 0x2: VNEG_1P3V 0x3: VNEG_1P4V 0x4: VNEG_1P5V 0x5: VNEG_1P6V 0x6: VNEG_1P7V 0x7: VNEG_1P8V

0x0001F187 CDC_A_NCP_CLIM

Type: RW

Clock: PBUS_WRCLK Reset State: 0xD5

Reset Name: perph_rb

CDC_A_NCP_CLIM

Bits	Name	Description
7:5	IN_SW_2_DELAY	0x0: SW_2_DELAY_CLK_DIV_2
		0x1: SW_2_DELAY_CLK_DIV_4
		0x2: SW_2_DELAY_CLK_DIV_8
		0x3: SW_2_DELAY_CLK_DIV_16
		0x4: SW_2_DELAY_CLK_DIV_32
		0x5: SW_2_DELAY_CLK_DIV_64
		0x6: SW_2_DELAY_CLK_DIV_128
		0x7: SW_2_DELAY_CLK_DIV_256
4:3	IN_SW_1_DELAY	0x0: SW_1_DELAY_CLK_DIV_32
		0x1: SW_1_DELAY_CLK_DIV_64
		0x2: SW_1_DELAY_CLK_DIV_128
		0x3: SW_1_DELAY_CLK_DIV_256
2:0	IN_SW_0_DELAY	0x0: SW_0_DELAY_CLK_DIV_2
		0x1: SW_0_DELAY_CLK_DIV_4
		0x2: SW_0_DELAY_CLK_DIV_8
		0x3: SW_0_DELAY_CLK_DIV_16
	. ()	0x4: SW_0_DELAY_CLK_DIV_32
		0x5: SW_0_DELAY_CLK_DIV_64
	03	0x6: SW_0_DELAY_CLK_DIV_128
	27	0x7: SW_0_DELAY_CLK_DIV_256

0x0001F190 CDC_A_RX_CLOCK_DIVIDER

Type: RW

Clock: PBUS_WRCLK
Reset State: 0xE8

Reset Name: perph_rb

CDC_A_RX_CLOCK_DIVIDER

Bits	Name	Description
7:1	RX_CLK_DIVIDER	0x0: DIV_4 0x32: DIV_72 0x74: DIV_96 0x7F: DIV_512
0	DTEST_EN	0x0: DISABLE 0x1: ENABLE

0x0001F191 CDC_A_RX_COM_OCP_CTL

Type: RW

Clock: PBUS_WRCLK
Reset State: 0xCF

Reset Name: perph rb

CDC_A_RX_COM_OCP_CTL

Bits	Name	Description
7:5	OCP_CURR_LIMIT	0x0: I_280MA
		0x2: I_370MA
		0x3: I_440MA
		0x4: I_140MA
		0x6: I_185MA
		0x7: I_220MA
4	OCP_FSM_EN	0x0: DISABLE
	\((0x1: ENABLE
3:0	N_CONN_ATTEMPTS	0x0: N_0
		0x1: N_1
		0xF: N_15

0x0001F192 CDC_A_RX_COM_OCP_COUNT

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x6E

Reset Name: perph rb

CDC_A_RX_COM_OCP_COUNT

Bits	Name	Description
7:5	RUN_N_CYCLES	0x0: N_511
		0x3: N_2047
		0x7: N_4095
4:2	WAIT_N_CYCLES	0x0: N_511
		0x3: N_2047
		0x7: N_4095
1	FSM_LOCK_EN	0x0: DISABLE
		0x1: ENABLE

0x0001F193 CDC_A_RX_COM_BIAS_DAC

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x10

Reset Name: perph rb

CDC_A_RX_COM_BIAS_DAC

Bits	Name	Description
7	RX_BIAS_EN	0x0: DISABLE 0x1: ENABLE
6:5	TEST_BIAS_CURR	0x0: I_0UA 0x1: I_1UA 0x2: I_2UA 0x3: I_3UA
4	DAC_CLK_SEL	0x0: ANALOG 0x1: DIGITAL
3:2	DAC_GAIN	0x0: G_0DB 0x1: G_0P27DB 0x2: G_0P54DB
0	DAC_REF_EN	0x0: DISABLE 0x1: ENABLE

0x0001F194 CDC_A_RX_HPH_BIAS_PA

Type: RW

Clock: PBUS_WRCLK Reset State: 0x5A

Reset Name: perph rb

CDC_A_RX_HPH_BIAS_PA

Bits	Name	Description
7:4	DAC_BIAS_CURR	0x0: I_0P0UA
		0x1: I_0P5UA
		0x5: I_2P5UA
		0xA: I_5P0UA
		0xF: I_7P5UA
3:0	PA_BIAS_CURR	0x0: I_0P0UA
		0x1: I_0P5UA
		0x5: I_2P5UA
		0xA: I_5P0UA
		0xF: I_7P5UA

0x0001F195 CDC_A_RX_HPH_BIAS_LDO_OCP

Type: RW

Clock: PBUS_WRCLK Reset State: 0x69

Reset Name: perph rb

CDC_A_RX_HPH_BIAS_LDO_OCP

Bits	Name	Description
7:6	LDO_OTA_BIAS_CURR	0x0: I_1P5UA 0x1: I_2P0UA 0x2: I_2P5UA 0x3: I_3P0UA
5:4	LDO_OUT_BIAS_CURR	0x0: I_3P0UA 0x1: I_3P5UA 0x2: I_4P0UA 0x3: I_4P5UA
3:2	OCP_REF_CURR	0x0: I_4P0UA 0x1: I_4P5UA 0x2: I_5P0UA 0x3: I_5P5UA
1:0	SPK_DAC_BIAS_CURR	0x0: I_2P0UA 0x1: I_2P5UA 0x2: I_3P0UA 0x3: I_3P5UA

0x0001F196 CDC_A_RX_HPH_BIAS_CNP

Type: RW

Clock: PBUS_WRCLK Reset State: 0x29

Reset Name: perph rb

CDC_A_RX_HPH_BIAS_CNP

Bits	Name	Description
7:4	WG_CURR	0x0: I_0P0UA 0x1: I_0P5UA 0x5: I_2P5UA 0xA: I_5P0UA 0xF: I_7P5UA
3:2	OTA_BIAS_CURR	0x0: I_3P0UA 0x1: I_3P5UA 0x2: I_4P0UA 0x3: I_4P5UA

CDC_A_RX_HPH_BIAS_CNP (cont.)

Bits	Name	Description
1:0	VBAT_LDO_CURR	0x0: I_0P5UA
		0x1: I_1P0UA
		0x2: I_1P5UA
		0x3: I_2P0UA

0x0001F197 CDC_A_RX_HPH_CNP_EN

CDC_A_RX_HPH_CNP_EN

CDC_A_RX_HPH_CNP_EN		
Type: RW Clock: PBUS_WRCLK Reset State: 0x80 Reset Name: perph_rb CDC_A_RX_HPH_CNP_EN		
Bits	Name	Description
7	FSM_CLK_EN	0x0: DISABLE 0x1: ENABLE
6	FSM_RESET	0x0: NORMAL_OP 0x1: RESET
5:4	HPH_PA_EN	0x0: NONE 0x1: HPHR 0x2: HPHL 0x3: HPHR_HPHL
3	FSM_OVERRIDE_EN	0x0: DISABLE 0x1: ENABLE
2	RESERVED	
1	RESERVED	
0	RESERVED	

0x0001F198 CDC_A_RX_HPH_CNP_WG_CTL

Type: RW

Clock: PBUS WRCLK Reset State: 0xDA

Reset Name: perph_rb

CDC_A_RX_HPH_CNP_WG_CTL

Bits	Name	Description
7	GM3_BOOST_EN	0x0: DISABLE
		0x1: ENABLE

CDC_A_RX_HPH_CNP_WG_CTL (cont.)

Bits	Name	Description
6	PWR_DN_SEQ_EN	0x0: DISABLE
		0x1: ENABLE
5:3	VREF_TIMER	0x0: T_0US
		0x1: T_1X0P72US
		0x3: T_3X0P72US
		0x7: T_7X0P72US
2:0	CURR_LDIV_CTL	0x0: DIV_250
		0x1: DIV_333
		0x2: DIV_500
		0x3: DIV_1000
		0x7: DIV_2000

0x0001F199 CDC_A_RX_HPH_CNP_WG_TIME

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x16

Reset Name: perph_rb

CDC_A_RX_HPH_CNP_WG_TIME

Bits	Name	Description
7:2	WG_FINE_TIMER	0x0: T_0MS 0x1: T_1MS 0x5: T_5MS 0x3F: T_60MS
1:0	VBAT_LDO_OUT	0x0: V_1P9V 0x1: V_2P8V 0x2: V_3P0V 0x3: V_3P2V

0x0001F19B CDC_A_RX_HPH_L_PA_DAC_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: perph rb

CDC_A_RX_HPH_L_PA_DAC_CTL

Bits	Name	Description
7:4	GM3_IBIAS_CTL	0x1: GM_400_PCT
		0x2: GM_200_PCT
		0x4: GM_100_PCT
		0x8: GM_50_PCT
		0xC: GM_33_PCT
3	DAC_DATA_EN	0x0: DISABLE
		0x1: ENABLE
2	DAC_SAMPLE_EDGE_SEL	0x0: FALLING
		0x1: RISING
1	DATA_RESET	0x0: NORMAL_OP
		0x1: RESET
0	INV_DATA	0x0: DISABLE
		0x1: ENABLE

0x0001F19D CDC_A_RX_HPH_R_PA_DAC_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x20

Reset Name: perph_rb

CDC_A_RX_HPH_R_PA_DAC_CTL

Bits	Name	Description
7:4	GM3_IBIAS_CTL	0x1: GM_400_PCT
		0x2: GM_200_PCT
		0x4: GM_100_PCT
		0x8: GM_50_PCT
		0xC: GM_33_PCT
3	DAC_DATA_EN	0x0: DISABLE
		0x1: ENABLE
2	DAC_SAMPLE_EDGE_SEL	0x0: FALLING
		0x1: RISING
1	DATA_RESET	0x0: NORMAL_OP
		0x1: RESET
0	INV_DATA	0x0: DISABLE
		0x1: ENABLE

0x0001F19E CDC_A_RX_EAR_EN

Type: RW

Clock: PBUS_WRCLK Reset State: 0x12

Reset Name: perph_rb

CDC_A_RX_EAR_EN

Bits	Name	Description
7	PA_SEL	0x0: HPH 0x1: EAR
6	EAR_PA_EN	0x0: DISABLE 0x1: ENABLE
5	GAIN	For EAR: 0x0: POS_1P5_DB 0x1: POS_6_DB For HPH: 0x0: POS_M4P5_DB 0x1: POS_0_DB
4:3	EAR_CM_SEL	0x0: VCM_1P5V 0x1: VCM_1P56V 0x2: VCM_1P6V 0x3: VCM_1P65V
2:1	EAR_CMBUF_BIAS_CURR	0x0: I_1P5UA 0x1: I_2P0UA 0x2: I_2P5UA 0x3: I_3P0UA
0	SPK_VBAT_LDO_EN	0x0: DISABLE 0x1: ENABLE

0x0001F1A0 CDC_A_RX_HPH_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: 0x0C

Reset Name: perph rb

CDC_A_RX_HPH_STATUS

Bits	Name	Description
7:0	STATUS	

0x0001F1A1 CDC_A_RX_EAR_STATUS

Type: R

Clock: PBUS_WRCLK
Reset State: 0x10

Reset Name: perph rb

CDC_A_RX_EAR_STATUS

Bits	Name	Description
7:5	EAR_STATUS	
4	FRZ_B_STATUS	0: FREEZE_ASSERT 1: FREEZE_DEASSERT

0x0001F1B0 CDC_A_SPKR_DAC_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x83

Reset Name: perph_rb

CDC_A_SPKR_DAC_CTL

Bits	Name	Description
7	REF_EN	0x0: DISABLE
	20,5%	0x1: ENABLE
6:5	DAC_GAIN	0x0: POS_0P00_DB
		0x1: POS_0P27_DB
		0x2: POS_0P54_DB
4	DAC_RESET	0x0: NORMAL
		0x1: RESET
3	CLK_POLARITY	0x0: FALLING
		0x1: RISING
2	MCLK_SEL	0x0: MCLK
		0x1: NCPCLK
1	CAL_BYPASS	0x1: NORMAL
		0x0: BYPASS
0	CLK_4X_B	0x0: NORMAL_4XCLK
		0x1: NORMAL_CLK

0x0001F1B1 CDC_A_SPKR_DRV_CLIP_DET

Type: RW

Clock: PBUS_WRCLK Reset State: 0x91

Reset Name: perph rb

CDC_A_SPKR_DRV_CLIP_DET

Bits	Name	Description
7:5	CLIP_LIMIT	0x0: N_0 0x1: N_1 0x2: N_2 0x3: N_3 0x4: N_4 0x5: N_5 0x6: N_6 0x7: N_7
4:2	FIFO_LEN	0x0: N_1 0x1: N_2 0x2: N_3 0x3: N_4 0x4: N_5 0x5: N_6 0x6: N_7 0x7: N_8
1:0	CLIP_MODE	0x0: DISABLE 0x1: ENABLE_CLIP_DET 0x2: CNP_TEST_START_UP 0x3: CNP_TEST_SHUT_DOWN

0x0001F1B2 CDC_A_SPKR_DRV_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x69

Reset Name: perph_rb

CDC_A_SPKR_DRV_CTL

Bits	Name	Description
7	CLASSD_PA_EN	0x0: DISABLE
		0x1: ENABLE
6	CAL_EN	0x0: DISABLE
		0x1: ENABLE

CDC_A_SPKR_DRV_CTL (cont.)

Bits	Name	Description
5	SETTLE_EN	0x0: DISABLE
		0x1: ENABLE
4	PWM_STATES	0x1: PWM_2STATE
		0x0: PWM_3STATE
3	FW_EN	0x0: DISABLE
		0x1: ENABLE
2	BOOST_SET	0x0: DISABLE
		0x1: ENABLE
1	CMFB_SET	0x0: I_200UA
		0x1: I_300UA
0	GAIN_SET	0x1: G12DB
		0x0: Reserved

0x0001F1B3 CDC_A_SPKR_ANA_BIAS_SET

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x41

Reset Name: perph_rb

CDC_A_SPKR_ANA_BIAS_SET

Bits	Name	Description
7:5	INT1_CMFB_CURR	0x0: I_9P00UA
		0x1: I_9P50UA
		0x2: I_10P00UA
		0x3: I_10P50UA
		0x4: I_11P00UA
		0x5: I_11P50UA
		0x6: I_12P00UA
		0x7: I_12UA50
4:2	SAR_DAC_CURR	0x0: I_2P5UA
		0x1: I_4P5UA
		0x2: I_6P5UA
		0x3: I_8P5UA
		0x4: I_10P5UA
		0x5: I_12P5UA
		0x6: I_14P5UA
		0x7: I_16P5UA

CDC_A_SPKR_ANA_BIAS_SET (cont.)

Bits	Name	Description
1:0	INT2_OPAMP_CURR	0x0: I_7P00UA
		0x1: I_7P50UA
		0x2: I_8P00UA
		0x3: I_8P50UA

0x0001F1B4 CDC_A_SPKR_OCP_CTL

CDC_A_SPKR_OCP_CTL

CDC_A_SPKR_OCP_CTL			
Clock: Reset S Reset M	Type: RW Clock: PBUS_WRCLK Reset State: 0xE1 Reset Name: perph_rb CDC_A_SPKR_OCP_CTL		
Bits	Name	Description	
7	OCP_EN	0x0: DIABLE 0x1: ENABLE	
6	OCP_HOLD	0x0: DIABLE 0x1: ENABLE	
5:4	OCP_CURR_LIMIT	0x0: ZEROP5A 0x1: TWOP5A 0x2: THREEP0A 0x3: FOURP0A	
3:2	GLITCH_FILTER	0x0: T160NS 0x1: T120NS 0x2: T80NS 0x3: T40NS	
1:0	INT2_SF_CURR	0x0: I_10P00UA 0x1: I_15P00UA 0x2: I_20P00UA 0x3: I_25P00UA	

0x0001F1B5 CDC_A_SPKR_PWRSTG_CTL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x1E

Reset Name: perph_rb

CDC_A_SPKR_PWRSTG_CTL

Name	Description
BBM_EN	0x0: DIABLE
	0x1: ENABLE
HBRDGE_EN	0x0: DIABLE
	0x1: ENABLE
CLAMP_EN	0x0: DIABLE
	0x1: ENABLE
DEADTIME	0x0: T20NS
	0x1: T15NS
	0x2: T10NS
	0x3: T05NS
SLEW	0x0: T20NS
	0x1: T15NS
\ (0x2: T10NS
	0x3: T05NS
DAC_EN	0x0: DIABLE
	0x1: ENABLE
	BBM_EN HBRDGE_EN CLAMP_EN DEADTIME SLEW

0x0001F1B6 CDC_A_SPKR_DRV_MISC

Clock: PBUS_WRCLK **Reset State:** 0xCB

Reset Name: perph rb

CDC_A_SPKR_DRV_MISC

Bits	Name	Description
7:5	CMP_CURR	0x0: I_2P25UA
		0x1: I_3P00UA
		0x2: I_3P50UA
		0x3: I_4P00UA
		0x4: I_4P50UA
		0x5: I_5P00UA
		0x6: I_5P50UA
		0x7: I_6P00UA
4:3	INT1_OTA1_CURR	0x0: I_14UA
		0x1: I_15UA
		0x2: I_16UA
		0x3: I_17UA

CDC_A_SPKR_DRV_MISC (cont.)

Bits	Name	Description
2:1	INT2_OTA2_CURR	0x0: I_14UA 0x1: I_15UA 0x2: I_16UA 0x3: I_17UA
0	PWM_CLK_SEL	0x0: CLK_600KHZ 0x1: CLK_300KHZ

0x0001F1C0 CDC_A_BOOST_CURRENT_LIMIT

Type: RW

Clock: PBUS_WRCLK Reset State: 0xE2

Reset Name: perph rb

CDC_A_BOOST_CURRENT_LIMIT

Bits	Name	Description
7	MAX_CURR_LIM_ENABLE	0: DISABLE 1: ENABLE
6	ENABLE_OCPON_PS	0: FOLLOW_PS 1: ALWAYS_ON_WITH_PS_MODE
5	ENABLE_SOFTSTART	0: DISABLE 1: ENABLE
4	SOFTSTART_DELAY	0: DEL_240US 1: DEL_400US
2:0	SET_CURRENT_MAX	0x0: I_0P5A 0x1: I_1P0A 0x2: I_1P5A 0x3: I_2P0A 0x4: I_2P5A 0x5: I_3P0A 0x6: I_3P5A 0x7: I_4P0A

0x0001F1C1 CDC_A_BOOST_OUTPUT_VOLTAGE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x14

Reset Name: perph rb

CDC_A_BOOST_OUTPUT_VOLTAGE

Bits	Name	Description
4:0	SET_OUTPUT_VOLTAGE	0x0: VOUT_4P000V
		0x1: VOUT_4P050V
		0x2: VOUT_4P100V
		0x3: VOUT_4P150V
		0x4: VOUT_4P200V
		0x5: VOUT_4P250V
		0x6: VOUT_4P300V
		0x7: VOUT_4P350V
		0x8: VOUT_4P400V
		0x9: VOUT_4P450V
		0xA: VOUT_4P500V
		0xB: VOUT_4P550V
		0xC: VOUT_4P600V
		0xD: VOUT_4P650V
	\ (0xE: VOUT_4P700V
		0xF: VOUT_4P750V
		0x10: VOUT_4P800V
		0x11: VOUT_4P850V
		0x12: VOUT_4P900V
	0	0x13: VOUT_4P950V
	27.0	0x14: VOUT_5P000V
	9 19	0x15: VOUT_5P050V
	2018:54 CWINTER	0x16: VOUT_5P100V
	20) EM	0x17: VOUT_5P150V
		0x18: VOUT_5P200V
		0x19: VOUT_5P250V
		0x1A: VOUT_5P300V
		0x1B: VOUT_5P350V
		0x1C: VOUT_5P400V
		0x1D: VOUT_5P450V
		0x1E: VOUT_5P500V
		0x1F: VOUT_5P550V

0x0001F1C2 CDC_A_BOOST_BYPASS_MODE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x18

Reset Name: perph_rb

CDC_A_BOOST_BYPASS_MODE

Bits	Name	Description
7	EN_PFET_BYPASS	0: DISABLE_BYPASS 0: BYPASS_PFET
6	PFET_FORCE	0: FORCE_PFET_OFF 1: FORCE_PFET_ON
5	BYPASS_MODE_EN	0: DISABLE_BYPASS_MODE 1: ENABLE_BYPASS_MODE
4	EN_MONITOR	0: DISABLE_MONITOR 1: ENABLE_MONITOR
3	EN_VCOMPARE	0: DISABLE_VCOMPARE 1: ENABLE_VCOMPARE
2	OUTPUT_PULLDOWN_EN	0: DISABLE_PULLDOWN 1: ENABLE_PULLDOWN
1	EN_NFET_BYPASS	0: PWM_CTL_NFET 1: EXTERNAL_CTL_NFET
0	NFET_FORCE	0: FORCE_NFET_OFF 1: FORCE_NFET_ON

0x0001F1C3 CDC_A_BOOST_EN_CTI

Type: RW

Clock: PBUS_WRCLK Reset State: 0x5F

Reset Name: perph_rb

CDC_A_BOOST_EN_CTL

Bits	Name	Description
7	BOOST_ENABLE	0x0: MODULE_DISABLE
		0x1: MODULE_ENABLE
6	PULSE_SKIP_MODE	0x0: DISABLE
		0x1: ENABLE
5:4	PULSE_SKIP_THRES	0x0: PULSESKIP_THRES_50MA
		0x1: PULSESKIP_THRES_100MA
		0x2: PULSESKIP_THRES_150MA
		0x3: PULSESKIP_THRES_200MA
3:2	LOOP_COMP_CAP	0x0: C_40PF
		0x1: C_60PF
		0x2: C_80PF
		0x3: C_100PF

CDC_A_BOOST_EN_CTL (cont.)

Bits	Name	Description
1:0	LOOP_COMP_RES	0x0: R_100K 0x1: R_200K 0x2: R_500K 0x3: R_600K

0x0001F1C5 CDC_A_RDSON_MAX_DUTY_CYCLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0xC0

Reset Name: perph rb

CDC_A_RDSON_MAX_DUTY_CYCLE

Bits	Name	Description
7	NFET_SW_SIZE	0x0: TWOBY3_FULL_SIZE
		0x1: FULL_SIZE
6	EN_MAX_DUTY_CYCLE	0x0: DISABLE
	277	0x1: ENABLE

0x0001F1C8 CDC_A_SPKR_SAR_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph rb

CDC_A_SPKR_SAR_STATUS

Bits	Name	Description
6:0	SAR_ADC	Default is x00 only if SPKR PA is enabled (xB2 bit 7 is 1).

0x0001F1C9 CDC_A_SPKR_DRV_STATUS

Type: R

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

CDC_A_SPKR_DRV_STATUS

Bits	Name	Description
7	CAL_STOP	
6	POS_PMOS_OCP_1	
5	POS_NMOS_OCP_2	
4	NEG_PMOS_OCP_1	
3	NEG_NMOS_OCP_2	
1	CLIP_DET_P	
0	CLIP_DET_N	<i>N</i>

0x0001F1CE CDC_A_PBUS_ADD_CSR

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: perph_rb

SW write to this pointer register before read from analog register to avoid read back timing

CDC_A_PBUS_ADD_CSR

Bits	Name	Description
7:0	REG	

0x0001F1CF CDC_A_PBUS_ADD_SEL

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: perph_rb

This register is used to select PBUS address or PBUS_ADD_CSR

CDC_A_PBUS_ADD_SEL

Bits	Name	Description
0	REG	

83 Codec BOOST_FREQ_BCLK_gen_clk Registers

0x0001F200 CDC_BOOST_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

CDC_BOOST_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x0001F201 CDC_BOOST_FREQ_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

CDC_BOOST_FREQ_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0001F204 CDC_BOOST_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1D

Reset Name: N/A

Peripheral Type

CDC_BOOST_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x0001F205 CDC_BOOST_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x19 Reset Name: N/A

Peripheral SubType

CDC_BOOST_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x0001F246 CDC_BOOST_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

CDC_BOOST_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

CDC_BOOST_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x0001F250 CDC_BOOST_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK Reset State: 0x05

Reset Name: PERPH_RB

PMIC LOCKED=SEC ACCESS, PMIC GANGED

CDC BOOST FREQ CLK DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,1 1,5	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	.O. ville	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	2018. 24 Chillip	0x0: FREQ_9M6HZ_0
	2.5	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x0001F251 CDC_BOOST_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x08

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

CDC_BOOST_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x0001F2C0 CDC_BOOST_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

CDC_BOOST_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x0001F2C1 CDC_BOOST_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

CDC_BOOST_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

84 Codec NCP_FREQ_BCLK_gen_clk Registers

0x0001F300 CDC_NCP_FREQ_REVISION1

Type: R

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: N/A

HW Version Register [7:0]

CDC_NCP_FREQ_REVISION1

Bits	Name	Description
7:0	DIG_MINOR	This number is incremented for digital change that is not intended to affect software or any change that adds a new feature but is backwards compatible with old software. Minor resets to zero when Major increments

0x0001F301 CDC_NCP_FREQ_REVISION2

Type: R

Clock: PBUS_WRCLK Reset State: 0x02

Reset Name: N/A

HW Version Register [15:8]

CDC_NCP_FREQ_REVISION2

Bits	Name	Description
7:0	DIG_MAJOR	This number is incremented when changes are made to the digital HW that are not backwards compatible with existing software.

0x0001F304 CDC_NCP_FREQ_PERPH_TYPE

Type: R

Clock: PBUS_WRCLK Reset State: 0x1D

Reset Name: N/A

Peripheral Type

CDC_NCP_FREQ_PERPH_TYPE

Bits	Name	Description
7:0	TYPE	BCLK GEN

0x0001F305 CDC_NCP_FREQ_PERPH_SUBTYPE

Type: R

Clock: PBUS_WRCLK
Reset State: 0x19

Reset Name: N/A

Peripheral SubType

CDC_NCP_FREQ_PERPH_SUBTYPE

Bits	Name	Description
7:0	SUBTYPE	BCLK GEN CLK

0x0001F346 CDC_NCP_FREQ_CLK_ENABLE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x01

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

CDC_NCP_FREQ_CLK_ENABLE

Bits	Name	Description
7	EN_CLK_INT	0 = do not force the clock on
		1 = enable the clock
		0x0: FORCE_EN_DISABLED
		0x1: FORCE_EN_ENABLED

CDC_NCP_FREQ_CLK_ENABLE (cont.)

Bits	Name	Description
0	FOLLOW_CLK_SX_REQ	0 = ignore smps_clk_req <x></x>
		1 = clock is enabled when the clocks request is high smps_clk_req <x>='1'</x>
		0x0: FALLOW_CLK_REQ_DISABLED
		0x1: FALLOW_CLK_REQ_ENABLED

0x0001F350 CDC_NCP_FREQ_CLK_DIV

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x01

Reset Name: PERPH_RB

PMIC_LOCKED=SEC_ACCESS, PMIC_GANGED

CDC_NCP_FREQ_CLK_DIV

Bits	Name	Description
3:0	CLK_DIV	clock_ frequency = 19.2MHz / (CLK_DIV + 1)
		FTS2 Buck supports 3.2, 4.8, 6.4 and 9.6 MHz
	0,1 1,5	HF2 Buck supports 1.6, 2.4, 2.74, 3.2, 3.8, 4.8, and 6.4 MHz
	.O. ville	CLK_DIV = 0 is not supported, it will generate 9.6 MHz
	2018. 24 Chillip	0x0: FREQ_9M6HZ_0
	2.5	0x1: FREQ_9M6HZ
	1	0x2: FREQ_6M4HZ
		0x3: FREQ_4M8HZ
		0x4: FREQ_3M8HZ
		0x5: FREQ_3M2HZ
		0x6: FREQ_2M7HZ
		0x7: FREQ_2M4HZ
		0x8: FREQ_2M1HZ
		0x9: FREQ_1M9HZ
		0xA: FREQ_1M7HZ
		0xB: FREQ_1M6HZ
		0xC: FREQ_1M5HZ
		0xD: FREQ_1M4HZ
		0xE: FREQ_1M3HZ
		0xF: FREQ_1M2HZ

0x0001F351 CDC_NCP_FREQ_CLK_PHASE

Type: RW

Clock: PBUS_WRCLK Reset State: 0x0F

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

CDC_NCP_FREQ_CLK_PHASE

Bits	Name	Description
3:0	CLK_PHASE	Distributed clock phase select:
		clock phase delay = clock period * (CLK_PHASE / 16)

0x0001F3C0 CDC_NCP_FREQ_GANG_CTL1

Type: RW

Clock: PBUS_WRCLK
Reset State: 0x00

Reset Name: PERPH RB

PMIC LOCKED=SEC ACCESS

CDC_NCP_FREQ_GANG_CTL1

Bits	Name	Description
7:0	GANG_LEADER_PID	When GANG_EN (GANG_CTL2[7]) is set, this peripheral will write the same data that is written to the gang leader Peripheral ID. Reads to the gang leader Peripheral ID are ignored by this peripheral. Ganged peripherals must reside within the same Slave ID

0x0001F3C1 CDC_NCP_FREQ_GANG_CTL2

Type: RW

Clock: PBUS_WRCLK Reset State: 0x00

Reset Name: PERPH RB

PMIC_LOCKED=SEC_ACCESS

CDC_NCP_FREQ_GANG_CTL2

Bits	Name	Description
7	GANG_EN	0 = disable
		1 = enable
		When enabled, this peripheral will write the same data that is written to the gang leader PID. Reads to the gang leader PID are ignored by this peripheral
		0x0: GANGING_DISABLED
		0x1: GANGING_ENABLED

Index of Registers

BB CLK1 DRV CTL1, 209	BUA EXT CHARGER STATUS2, 86
BB CLK1 EDGE CTL1, 209	BUS PERPH SUBTYPE, 16
BB CLK1 EN CTL, 209	BUS_PERPH_TYPE, 16
BB CLK1 PERPH SUBTYPE, 208	BUS REVISION1, 15
BB CLK1 PERPH TYPE, 207	BUS REVISION2, 15
BB CLK1 REVISION1, 206	BUS STATUS1, 16
BB CLK1 REVISION2, 206	BUS TIMEOUT, 17
BB CLK1 REVISION3, 207	CDC A BOOST BYPASS MODE, 880
BB CLK1 REVISION4, 207	CDC A BOOST CURRENT LIMIT, 879
BB_CLK2_DRV_CTL1, 214	CDC_A_BOOST_OUTPUT_VOLTAGE, 879
BB CLK2 EDGE CTL1, 214	CDC A INT EN CLR, 843
BB CLK2 EN CTL, 214	CDC A INT EN SET, 843
BB CLK2 PERPH SUBTYPE, 213	CDC A INT LATCHED CLR, 842
BB CLK2 PERPH TYPE, 212	CDC_A_INT_LATCHED_STS, 844
BB CLK2 REVISION1, 211	CDC_A_INT_MID_SEL, 845
BB_CLK2_REVISION2, 211	CDC_A_INT_PENDING_STS, 844
BB_CLK2_REVISION3, 212	CDC A INT POLARITY HIGH, 841
BB CLK2 REVISION4, 212	CDC A INT POLARITY LOW, 842
BB_CLK2_STATUS1, 213	CDC_A_INT_PRIORITY, 845
BB_CLK1_STATUS1, 208 BB_CLK2_DRV_CTL1, 214 BB_CLK2_EDGE_CTL1, 214 BB_CLK2_EN_CTL, 214 BB_CLK2_PERPH_SUBTYPE, 213 BB_CLK2_PERPH_TYPE, 212 BB_CLK2_REVISION1, 211 BB_CLK2_REVISION2, 211 BB_CLK2_REVISION3, 212 BB_CLK2_REVISION4, 212 BB_CLK2_STATUS1, 213 BCLK_GEN_MAIN_PERPH_SUBTYPE, 397	CDC_A_INT_RT_STS, 840
BCLK GEN MAIN PERPH TYPE, 396	CDC A INT SET TYPE, 841
BCLK_GEN_MAIN_REVISION1, 395	CDC_A_MASTER_BIAS_CTL, 850
BCLK GEN MAIN REVISION2, 395	CDC A MBHC BTN ZDET CTL 0, 853
BCLK_GEN_MAIN_REVISION3, 396	CDC_A_MBHC_BTN_ZDET_CTL_1, 854
BCLK GEN MAIN REVISION4, 396	CDC_A_MBHC_BTN_ZDET_CTL_2, 855
BUA EXT CHARGER BUA CTL1, 93	CDC A MBHC BTN3 CTL, 855
BUA EXT CHARGER EN CTL1, 94	CDC_A_MBHC_BTN4_CTL, 856
BUA_EXT_CHARGER_INT_EN_CLR, 90	CDC_A_MBHC_DBNC_TIMER, 852
BUA EXT CHARGER INT EN SET, 90	CDC A MBHC DET CTL 1,850
BUA EXT CHARGER INT LATCHED CLR, 89	CDC A MBHC DET CTL 2, 851
BUA_EXT_CHARGER_INT_LATCHED_STS, 91	CDC_A_MBHC_FSM_CTL, 851
BUA EXT CHARGER INT MID SEL, 92	CDC A MBHC RESULT 1, 857
BUA EXT CHARGER INT PENDING STS, 92	CDC A MBHC RESULT 2, 857
BUA_EXT_CHARGER_INT_POLARITY_HIGH, 88	CDC_A_MICB_1_CTL, 847
BUA EXT CHARGER INT POLARITY LOW, 89	CDC A MICB 1 EN, 846
BUA EXT CHARGER INT PRIORITY, 93	CDC A MICB 1 INT RBIAS, 848
BUA EXT CHARGER INT RT STS, 87	CDC_A_MICB_1_VAL, 846
BUA EXT CHARGER INT SET TYPE, 87	CDC A MICB 2 EN, 849
BUA EXT CHARGER PERPH SUBTYPE, 85	CDC A NCP BIAS, 864
BUA_EXT_CHARGER_PERPH_TYPE, 85	CDC_A_NCP_CLIM, 865
BUA_EXT_CHARGER_REVISION1, 84	CDC_A_NCP_CLK, 862
BUA_EXT_CHARGER_REVISION2, 84	CDC_A_NCP_DEGLITCH, 862
BUA_EXT_CHARGER_STATUS1, 85	CDC_A_NCP_EN, 861

CDC_A_NCP_FBCTRL, 863	CDC_D_CDC_RX_CTL1, 834
CDC_A_NCP_VCTRL, 865	CDC_D_CDC_RX_CTL2, 834
CDC_A_PBUS_ADD_CSR, 883	CDC_D_CDC_RX_CTL3, 835
CDC_A_PBUS_ADD_SEL, 883	CDC_D_CDC_TOP_CLK_CTL, 829
CDC A PERPH SUBTYPE, 840	CDC D DEM BYPASS DATA0, 836
CDC A PERPH TYPE, 839	CDC D DEM BYPASS DATA1, 836
CDC A RDSON MAX DUTY CYCLE, 882	CDC D DEM BYPASS DATA2, 837
CDC A REVISION1, 838	CDC D DEM BYPASS DATA3, 837
CDC A REVISION2, 838	CDC D HDRIVE CTL, 828
CDC A REVISION3, 839	CDC D INT EN CLR, 825
CDC A REVISION4, 839	CDC D INT EN SET, 825
CDC A RX CLOCK DIVIDER, 866	CDC D INT LATCHED CLR, 824
CDC A RX COM BIAS DAC, 868	CDC D INT LATCHED STS, 826
CDC A RX COM OCP COUNT, 867	CDC D INT MID SEL, 827
CDC A RX COM OCP CTL, 867	CDC D INT PENDING STS, 827
CDC A RX EAR EN, 873	CDC D INT POLARITY HIGH, 823
CDC A RX EAR STATUS, 874	CDC D INT POLARITY LOW, 823
CDC A RX HPH BIAS CNP, 869	CDC D INT PRIORITY, 828
CDC A RX HPH BIAS LDO OCP, 869	CDC D INT RT STS, 821
CDC A RX HPH BIAS PA, 868	CDC D INT SET TYPE, 822
CDC A RX HPH CNP EN, 870	CDC D PERPH SUBTYPE, 821
CDC A RX HPH CNP WG CTL, 870	CDC_D_PERPH_TYPE, 821
CDC_A_RX_HPH_CNP_WG_TIME, 871	CDC D PIN STATUS, 828
CDC A RX HPH L PA DAC CTL, 871	CDC D REVISION1, 820
CDC A DV HDL CTATUS 972	CDC_D_REVISION2, 820
CDC_A_RX_HPH_STATUS, 873	CDC_NCP_FREQ_CLK_DIV, 891
CDC_A_SPKR_ANA_BIAS_SET, 876	CDC_NCP_FREQ_CLK_ENABLE, 890
CDC_A_SPKR_DAC_CTL, 874	CDC_NCP_FREQ_CLK_PHASE, 892
CDC_A_SPKR_DRV_CLIP_DET, 875	CDC_NCP_FREQ_GANG_CTL1, 892
CDC A RX HPH R PA DAC CTL, 872 CDC A RX HPH STATUS, 873 CDC A SPKR ANA BIAS SET, 876 CDC A SPKR DAC CTL, 874 CDC A SPKR DRV CLIP DET, 875 CDC A SPKR DRV CTL, 875 CDC A SPKR DRV MISC, 878 CDC A SPKR DRV STATUS, 882 CDC A SPKR OCP CTL, 877 CDC A SPKR PWRSTG CTL, 877 CDC A SPKR SAR STATUS, 882 CDC A SPKR SAR STATUS, 882 CDC A SPKR SAR STATUS, 882	CDC_NCP_FREQ_GANG_CTL2, 892
CDC_A_SPKR_DRV_MISC, 878	CDC_NCP_FREQ_PERPH_SUBTYPE, 890
CDC_A_SPKR_DRV_STATUS, 882	CDC_NCP_FREQ_PERPH_TYPE, 890
CDC_A_SPKR_OCP_CTL, 877	CDC_NCP_FREQ_REVISION1, 889
CDC_A_SPKR_PWRSTG_CTL, 877	CDC_NCP_FREQ_REVISION2, 889
CDC_A_SPKR_SAR_STATUS, 882	COIN_COIN_CHG_RSET, 107
CDC_A_TA_T_2_OFAMIF_BIAS, 839	COIN_COIN_CHO_VSE1, 108
CDC_A_TX_1_2_TXFE_CLKDIV, 860	COIN_EN_CTL, 108
CDC_A_TX_1_EN, 858	COIN_PERPH_SUBTYPE, 107
CDC_A_TX_2_EN, 859	COIN_PERPH_TYPE, 106
CDC_A_TX_3_EN, 861	COIN_REVISION1, 105
CDC_BOOST_FREQ_CLK_DIV, 886	COIN_REVISION2, 105
CDC_BOOST_FREQ_CLK_ENABLE, 885	COIN_REVISION3, 106
CDC_BOOST_FREQ_CLK_PHASE, 887	COIN_REVISION4, 106
CDC_BOOST_FREQ_GANG_CTL1, 887	COIN_STATUS1, 107
CDC_BOOST_FREQ_GANG_CTL2, 887	DIV_CLK1_DIV_CTL1, 237
CDC_BOOST_FREQ_PERPH_SUBTYPE, 885	DIV_CLK1_EN_CTL, 237
CDC_BOOST_FREQ_PERPH_TYPE, 885	DIV_CLK1_PERPH_SUBTYPE, 236
CDC_BOOST_FREQ_REVISION1, 884	DIV_CLK1_PERPH_TYPE, 236
CDC_BOOST_FREQ_REVISION2, 884	DIV_CLK1_REVISION1, 235
CDC_D_CDC_ANA_CLK_CTL, 830	DIV_CLK1_REVISION2, 235
CDC_D_CDC_CONN_HPHR_DAC_CTL, 832	DIV_CLK1_STATUS1, 236
CDC_D_CDC_CONN_RX_LB_CTL, 833	DIV_CLK2_DIV_CTL1, 241
CDC_D_CDC_CONN_RX1_CTL, 832	DIV_CLK2_EN_CTL, 241
CDC_D_CDC_CONN_RX2_CTL, 833	DIV_CLK2_PERPH_SUBTYPE, 240
CDC_D_CDC_CONN_RX3_CTL, 833	DIV_CLK2_PERPH_TYPE, 240
CDC_D_CDC_CONN_TX1_CTL, 831	DIV_CLK2_REVISION1, 239
CDC_D_CDC_CONN_TX2_CTL, 831	DIV_CLK2_REVISION2, 239
CDC_D_CDC_DIG_CLK_CTL, 830	DIV_CLK2_STATUS1, 240
CDC_D_CDC_RST_CTL, 829	DIV_CLK3_DIV_CTL1, 245

DIV CLK3 EN CTL, 245 GPIO3 INT EN CLR, 334 DIV CLK3 PERPH SUBTYPE, 244 GPIO3 INT EN SET, 333 DIV CLK3 PERPH TYPE, 244 GPIO3 INT LATCHED CLR, 333 DIV CLK3 REVISION1, 243 GPIO3 INT LATCHED STS, 334 DIV CLK3 REVISION2, 243 GPIO3 INT MID SEL, 335 DIV CLK3 STATUS1, 244 GPIO3 INT PENDING STS, 335 GPIO1 DIG IN CTL, 316 GPIO3 INT POLARITY HIGH, 332 GPIO3 INT POLARITY LOW, 333 GPIO1 DIG OUT CTL, 316 GPIO3 INT PRIORITY, 335 GPIO1 DIG PULL CTL, 315 GPIO1 DIG_VIN_CTL, 315 GPIO3 INT RT STS, 332 GPIO1 EN CTL, 317 GPIO3_INT_SET_TYPE, 332 GPIO1 INT EN CLR, 312 GPIO3 MODE CTL, 336 GPIO1 INT EN SET, 311 GPIO3 PERPH SUBTYPE, 331 GPIO1 INT LATCHED CLR, 311 GPIO3 PERPH TYPE, 330 GPIO1 INT LATCHED STS, 312 GPIO3 REVISION1, 329 GPIO1 INT MID SEL, 313 GPIO3 REVISION2, 329 GPIO1 INT PENDING STS, 313 GPIO3 REVISION3, 330 GPIO1 INT POLARITY HIGH, 310 GPIO3 REVISION4, 330 GPIO1 INT POLARITY LOW, 311 GPIO3 STATUS1, 331 GPIO1 INT PRIORITY, 313 GPIO4 DIG IN CTL, 349 GPIO1 INT RT STS, 310 GPIO4 DIG OUT CTL, 349 GPIO1 INT_SET_TYPE, 310 GPIO4 DIG PULL CTL, 348 GPIO1 MODE CTL, 314 GPIO4 DIG VIN CTL, 348 GPIO1 PERPH SUBTYPE, 309 GPIO4 EN CTL, 350 GPIO1 PERPH TYPE, 308 GPIO4 INT EN CLR, 345 GPIO1 REVISION1, 307 GPIO4 INT EN SET, 344 GPIO1 REVISION2, 307 GPIO4 INT LATCHED CLR, 344 GPIO1 REVISION3, 308 GPIO4 INT LATCHED STS, 345 GPIO1 REVISION4, 308 GPIO4 INT MID SEL, 346 GPIO1 STATUS1, 309 GPIO4 INT PENDING STS, 346 GPIO2 DIG IN CTL, 327 GPIO4 INT POLARITY HIGH, 343 GPIO2 DIG OUT CTL, 327 GPIO4 INT POLARITY LOW, 344 GPIO2 DIG PULL CTL, 326 GPIO4 INT PRIORITY, 346 GPIO2 DIG VIN CTL, 326 GPIO4 INT RT STS, 343 GPIO2 EN CTL, 328 GPIO4_INT_SET_TYPE, 343 GPIO2 INT EN CLR, 323 GPIO4 MODE CTL, 347 GPIO2 INT EN SET, 322 GPIO4 PERPH SUBTYPE, 342 GPIO2 INT LATCHED CLR, 322 GPIO4 PERPH TYPE, 341 GPIO2 INT LATCHED STS, 323 GPIO4 REVISION1, 340 GPIO2 INT MID SEL, 324 GPIO4 REVISION2, 340 GPIO2 INT PENDING STS, 324 GPIO4 REVISION3, 341 GPIO2 INT POLARITY HIGH, 321 GPIO4 REVISION4, 341 GPIO2 INT POLARITY LOW, 322 GPIO4 STATUS1, 342 GPIO2 INT PRIORITY, 324 GPIO5 DIG IN CTL, 360 GPIO2 INT RT STS, 321 GPIO5 DIG OUT CTL, 360 GPIO2 INT_SET_TYPE, 321 GPIO5 DIG PULL CTL, 359 GPIO2 MODE CTL, 325 GPIO5_DIG_VIN_CTL, 359 GPIO2 PERPH SUBTYPE, 320 GPIO5 EN CTL, 361 GPIO2 PERPH TYPE, 319 GPIO5 INT EN CLR, 356 GPIO2 REVISION1, 318 GPIO5 INT EN SET, 355 GPIO2 REVISION2, 318 GPIO5 INT LATCHED CLR, 355 GPIO2 REVISION3, 319 GPIO5 INT LATCHED STS, 356 GPIO2 REVISION4, 319 GPIO5 INT MID SEL, 357 GPIO2 STATUS1, 320 GPIO5 INT PENDING STS, 357 GPIO3 DIG IN CTL, 338 GPIO5 INT POLARITY HIGH, 354 GPIO5 INT POLARITY LOW, 355 GPIO3 DIG OUT CTL, 338 GPIO3 DIG PULL CTL, 337 GPIO5 INT PRIORITY, 357 GPIO3 DIG VIN CTL, 337 GPIO5 INT RT STS, 354 GPIO3 EN CTL, 339 GPIO5 INT SET TYPE, 354

GPIO5 MODE CTL, 358 GPIO8 DIG VIN CTL, 392 GPIO5 PERPH SUBTYPE, 353 GPIO8 EN CTL, 394 GPIO5 PERPH TYPE, 352 GPIO8 INT EN CLR, 389 GPIO5 REVISION1, 351 GPIO8 INT EN SET, 388 GPIO5 REVISION2, 351 GPIO8 INT LATCHED CLR, 388 GPIO5 REVISION3, 352 GPIO8 INT LATCHED STS, 389 GPIO5 REVISION4, 352 GPIO8 INT MID SEL, 390 GPIO5 STATUS1, 353 GPIO8 INT PENDING STS, 390 GPIO6 DIG IN_CTL, 371 GPIO8 INT POLARITY HIGH, 387 GPIO6 DIG OUT CTL, 371 GPIO8 INT POLARITY LOW, 388 GPIO6 DIG PULL CTL, 370 GPIO8 INT PRIORITY, 390 GPIO6 DIG VIN CTL, 370 GPIO8 INT RT STS, 387 GPIO6 EN CTL, 372 GPIO8 INT SET TYPE, 387 GPIO6 INT EN CLR, 367 GPIO8 MODE CTL, 391 GPIO6 INT EN SET, 366 GPIO8 PERPH SUBTYPE, 386 GPIO6 INT LATCHED CLR, 366 GPIO8 PERPH TYPE, 385 GPIO6 INT LATCHED STS, 367 GPIO8 REVISION1, 384 GPIO6 INT MID SEL, 368 GPIO8 REVISION2, 384 GPIO6 INT PENDING STS, 368 GPIO8 REVISION3, 385 GPIO6 INT POLARITY HIGH, 365 GPIO8 REVISION4, 385 GPIO6 INT POLARITY LOW, 366 GPIO8 STATUS1, 386 GPIO6 INT PRIORITY, 368 INT EN CTL1, 21 GPIO6 INT RT STS, 365 INT INT RESEND ALL, 20 GPIO6 INT SET TYPE, 365 INT PERPH SUBTYPE, 19 GPIO6 MODE CTL, 369 INT PERPH TYPE, 19 GPIO6 PERPH SUBTYPE, 364 INT REVISION1, 18 GPIO6 PERPH TYPE, 363 INT REVISION2, 18 GPIO6 REVISION1, 362 INT STATUS1, 19 GPIO6 REVISION2, 362 INT STATUS2, 20 GPIO6 REVISION3, 363 LDO1 CONFIG CTL, 586 GPIO6 REVISION4, 363 LDO1 EN CTL, 584 GPIO6 STATUS1, 364 LDO1 INT EN CLR, 581 GPIO7 DIG IN CTL, 382 LDO1 INT EN SET, 581 GPIO7 DIG OUT CTL, 382 LDO1 INT LATCHED CLR, 581 GPIO7 DIG PULL CTL, 381 LDO1 INT LATCHED STS, 582 GPIO7_DIG_VIN_CTL, 381 LDO1 INT MID SEL, 583 GPIO7 EN CTL, 383 LDO1 INT PENDING STS, 582 GPIO7 INT EN CLR, 378 LDO1 INT POLARITY HIGH, 580 GPIO7 INT EN SET, 377 LDO1 INT POLARITY LOW, 580 GPIO7 INT LATCHED CLR, 377 LDO1 INT PRIORITY, 583 GPIO7 INT LATCHED STS, 378 LDO1 INT RT STS, 579 GPIO7 INT MID SEL, 379 LDO1 INT SET TYPE, 580 GPIO7 INT PENDING STS, 379 LDO1 MODE CTL2, 584 GPIO7 INT POLARITY HIGH, 376 LDO1 PD CTL, 585 GPIO7 INT POLARITY LOW, 377 LDO1 PERPH SUBTYPE, 578 GPIO7 INT PRIORITY, 379 LDO1 PERPH TYPE, 577 GPIO7 INT RT STS, 376 LDO1 REVISION1, 576 GPIO7 INT SET TYPE, 376 LDO1 REVISION2, 576 GPIO7 MODE CTL, 380 LDO1 REVISION3, 577 GPIO7 PERPH SUBTYPE, 375 LDO1 REVISION4, 577 LDO1 SOFT_START_CTL, 585 GPIO7 PERPH TYPE, 374 GPIO7 REVISION1, 373 LDO1 STATUS1, 578 GPIO7 REVISION2, 373 LDO1 STATUS2, 579 GPIO7 REVISION3, 374 LDO1 VOLTAGE CTL2, 583 GPIO7 REVISION4, 374 LDO1 VS CTL, 586 GPIO7 STATUS1, 375 LDO10 CONFIG CTL, 688 LDO10_EN_CTL, 686 GPIO8 DIG IN CTL, 393 GPIO8 DIG OUT CTL, 393 LDO10 INT EN CLR, 683 GPIO8 DIG PULL CTL, 392 LDO10 INT EN SET, 683

LDO10 INT LATCHED CLR, 683
LDO10_INT_LATCHED_CLR, 683 LDO10_INT_LATCHED_STS, 684
LDO10_INT_MID_SEL, 685
LDO10_INT_PENDING_STS, 684
LDO10_INT_POLARITY_HIGH, 682
LDO10 INT POLARITY LOW 682
LDO10 INT PRIORITY 685
LDO10_INT_POLARITY_LOW, 682 LDO10_INT_PRIORITY, 685 LDO10_INT_RT_STS, 681
LDO10_INT_SET_TYPE, 682
LDO10 MODE CTL2, 686
LDO10_OCP_CTL1, 687
LDO10_OCP_CTL2, 687
LDO10_PD_CTL, 687
LDO10 PERPH SUBTYPE, 680
LDO10_PERPH_TYPE, 679
LDO10_REVISION1, 678
LDO10_REVISION2, 678
LDO10_REVISION2, 078 LDO10_REVISION3, 679
LDO10_REVISION3, 679 LDO10_REVISION4, 679
LDO10 SOFT START CTL, 688
LDO10_STATUS1, 680 LDO10_STATUS2, 681
LDO10_VOLTAGE_CTL2, 685
LDO11_CONFIG_CTL, 699
LDO11_EN_CTL, 697 LDO11_INT_EN_CLR, 694
LDO11_IN1_EN_CLR, 694 LDO11_INT_EN_SET, 694
LDUII_INI_EN_SEI, 694
LDO11_INT_LATCHED_CLR, 694
LDO11_INT_LATCHED_STS, 695
LDOII_INI_MID_SEL, 696
LDO11_INT_PENDING_STS, 695
LDO11_INT_MID_SEL, 696 LDO11_INT_PENDING_STS, 695 LDO11_INT_POLARITY_HIGH, 693
LDO11 INT POLARITY LOW, 693
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1_689
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_OCP_CTL2, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS2, 692
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PCTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN CLR, 705
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PCTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN CLR, 705
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PCTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN CLR, 705
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN_CLR, 705 LDO12_INT_EN_SET, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_STS, 706
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN_SET, 705 LDO12_INT_EN_SET, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_STS, 706 LDO12_INT_MID_SEL, 707
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN_CLR, 705 LDO12_INT_EN_SET, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_STS, 706 LDO12_INT_MID_SEL, 707 LDO12_INT_PENDING_STS, 706
LDO11_INT_POLARITY_LOW, 693 LDO11_INT_PRIORITY, 696 LDO11_INT_RT_STS, 692 LDO11_INT_SET_TYPE, 693 LDO11_MODE_CTL2, 697 LDO11_OCP_CTL1, 698 LDO11_PD_CTL, 698 LDO11_PD_CTL, 698 LDO11_PERPH_SUBTYPE, 691 LDO11_PERPH_TYPE, 690 LDO11_REVISION1, 689 LDO11_REVISION2, 689 LDO11_REVISION3, 690 LDO11_REVISION4, 690 LDO11_SOFT_START_CTL, 699 LDO11_STATUS1, 691 LDO11_STATUS1, 691 LDO11_STATUS2, 692 LDO11_VOLTAGE_CTL2, 696 LDO12_CONFIG_CTL, 710 LDO12_EN_CTL, 708 LDO12_INT_EN_SET, 705 LDO12_INT_EN_SET, 705 LDO12_INT_LATCHED_CLR, 705 LDO12_INT_LATCHED_STS, 706 LDO12_INT_MID_SEL, 707

LDO12 INT POLARITY LOW, 704 LDO12 INT PRIORITY, 707 LDO12 INT RT STS, 703 LDO12 INT SET TYPE, 704 LDO12 MODE CTL2, 708 LDO12 OCP CTL1, 709 LDO12 OCP CTL2, 709 LDO12 PD CTL, 709 LDO12 PERPH SUBTYPE, 702 LDO12 PERPH TYPE, 701 LDO12 REVISION1, 700 LDO12 REVISION2, 700 LDO12 REVISION3, 701 LDO12 REVISION4, 701 LDO12 SOFT START CTL, 710 LDO12 STATUS1, 702 LDO12 STATUS2, 703 LDO12 VOLTAGE CTL2, 707 LDO13 CONFIG CTL, 721 LDO13 EN CTL, 719 LDO13 INT EN CLR, 716 LDO13 INT EN SET, 716 LDO13 INT LATCHED CLR, 716 LDO13 INT LATCHED STS, 717 LDO13 INT MID SEL, 718 LDO13 INT PENDING STS, 717 LDO13 INT POLARITY HIGH, 715 LDO13 INT POLARITY LOW, 715 LDO13 INT PRIORITY, 718 LDO13 INT RT STS, 714 LDO13 INT SET TYPE, 715 LDO13 MODE CTL2, 719 LDO13 OCP CTL1, 720 LDO13 OCP CTL2, 720 LDO13 PD CTL, 720 LDO13 PERPH SUBTYPE, 713 LDO13 PERPH TYPE, 712 LDO13 REVISION1, 711 LDO13 REVISION2, 711 LDO13 REVISION3, 712 LDO13 REVISION4, 712 LDO13 SOFT START CTL, 721 LDO13 STATUS1, 713 LDO13 STATUS2, 714 LDO13 VOLTAGE CTL2, 718 LDO14 CONFIG CTL, 732 LDO14 EN CTL, 730 LDO14 INT EN CLR, 727 LDO14 INT EN SET, 727 LDO14 INT LATCHED CLR, 727 LDO14 INT LATCHED STS, 728 LDO14 INT MID SEL, 729 LDO14 INT PENDING STS, 728 LDO14 INT POLARITY HIGH, 726 LDO14 INT POLARITY LOW, 726 LDO14 INT PRIORITY, 729 LDO14 INT RT STS, 725 LDO14 INT SET TYPE, 726 LDO14 MODE CTL2, 730

LDO14 OCP CTL1, 731 LDO16 REVISION1, 744 LDO14 OCP CTL2, 731 LDO16 REVISION2, 744 LDO14 PD CTL, 731 LDO16 REVISION3, 745 LDO14 PERPH SUBTYPE, 724 LDO16 REVISION4, 745 LDO14 PERPH TYPE, 723 LDO16 SOFT START CTL, 754 LDO14 REVISION1, 722 LDO16 STATUS1, 746 LDO14 REVISION2, 722 LDO16 STATUS2, 747 LDO16 VOLTAGE CTL2, 751 LDO14 REVISION3, 723 LDO14 REVISION4, 723 LDO17 CONFIG CTL, 765 LDO17 EN CTL, 763 LDO14 SOFT START CTL, 732 LDO14 STATUS1, 724 LDO17 INT EN CLR, 760 LDO14 STATUS2, 725 LDO17 INT EN SET, 760 LDO14 VOLTAGE CTL2, 729 LDO17 INT LATCHED CLR, 760 LDO17 INT LATCHED STS, 761 LDO15 CONFIG CTL, 743 LDO15 EN CTL, 741 LDO17 INT MID SEL, 762 LDO15 INT EN CLR, 738 LDO17 INT PENDING STS, 761 LDO15 INT EN SET, 738 LDO17 INT POLARITY HIGH, 759 LDO15 INT LATCHED CLR, 738 LDO17 INT POLARITY LOW, 759 LDO15 INT LATCHED STS, 739 LDO17 INT PRIORITY, 762 LDO15 INT MID SEL, 740 LDO17 INT RT STS, 758 LDO15 INT PENDING STS, 739 LDO17 INT SET TYPE, 759 LDO17 MODE CTL2, 763 LDO15 INT POLARITY HIGH, 737 LDO15_INT_POLARITY_LOW, 737 LDO17 OCP CTL1, 764 LDO17 OCP CTL2, 764 LDO15 INT PRIORITY, 740 LDO15 INT RT STS, 736 LDO17 PD CTL, 764 LDO15 INT SET TYPE, 737 LDO17 PERPH SUBTYPE, 757 LDO15 MODE CTL2, 741 LDO17 PERPH TYPE, 756 LDO15 OCP CTL1, 742 LDO17 REVISION1, 755 LDO15 OCP CTL2, 742 LDO17 REVISION2, 755 LDO15 PD CTL, 742 LDO17 REVISION3, 756 LDO15 PERPH SUBTYPE, 735 LDO17 REVISION4, 756 LDO15 PERPH TYPE, 734 LDO17 SOFT START CTL, 765 LDO15 REVISION1, 733 LDO17 STATUS1, 757 LDO15 REVISION2, 733 LDO17 STATUS2, 758 LDO15 REVISION3, 734 LDO17 VOLTAGE CTL2, 762 LDO18 CONFIG CTL, 776 LDO15 REVISION4, 734 LDO15 SOFT START CTL, 743 LDO18 EN CTL, 774 LDO15 STATUS1, 735 LDO18 INT EN CLR, 771 LDO15 STATUS2, 736 LDO18 INT EN SET, 771 LDO15 VOLTAGE CTL2, 740 LDO18 INT LATCHED CLR, 771 LDO16 CONFIG CTL, 754 LDO18 INT LATCHED STS, 772 LDO16 EN CTL, 752 LDO18 INT MID SEL, 773 LDO16 INT EN CLR, 749 LDO18 INT PENDING STS, 772 LDO16 INT EN SET, 749 LDO18 INT POLARITY HIGH, 770 LDO16 INT LATCHED CLR, 749 LDO18 INT POLARITY LOW, 770 LDO16 INT LATCHED STS, 750 LDO18 INT PRIORITY, 773 LDO16 INT MID SEL, 751 LDO18 INT RT STS, 769 LDO16 INT PENDING STS, 750 LDO18 INT SET TYPE, 770 LDO16 INT POLARITY HIGH, 748 LDO18 MODE CTL2, 774 LDO16 INT POLARITY LOW, 748 LDO18 OCP CTL1, 775 LDO16 INT PRIORITY, 751 LDO18 OCP CTL2, 775 LDO16 INT RT STS, 747 LDO18 PD CTL, 775 LDO16 INT SET TYPE, 748 LDO18 PERPH SUBTYPE, 768 LDO16 MODE CTL2, 752 LDO18 PERPH TYPE, 767 LDO16 OCP CTL1, 753 LDO18 REVISION1, 766 LDO16_OCP_CTL2, 753 LDO18 REVISION2, 766 LDO16_PD CTL, 753 LDO18 REVISION3, 767 LDO16 PERPH SUBTYPE, 746 LDO18 REVISION4, 767 LDO16 PERPH TYPE, 745 LDO18 SOFT START CTL, 776

LDO18 STATUS1, 768 LDO18 STATUS2, 769 LDO18 VOLTAGE CTL2, 773 LDO19 CONFIG CTL, 787 LDO19 EN CTL, 785 LDO19 INT EN CLR, 782 LDO19_INT_EN_SET, 782 LDO19 INT LATCHED CLR, 782 LDO19 INT LATCHED STS, 783 LDO19 INT MID SEL, 784 LDO19 INT PENDING STS, 783 LDO19_INT_POLARITY_HIGH, 781 LDO19 INT POLARITY LOW, 781 LDO19 INT PRIORITY, 784 LDO19 INT RT STS, 780 LDO19 INT SET TYPE, 781 LDO19 MODE CTL2, 785 LDO19 PD CTL, 786 LDO19 PERPH SUBTYPE, 779 LDO19 PERPH TYPE, 778 LDO19 REVISION1, 777 LDO19 REVISION2, 777 LDO19 REVISION3, 778 LDO19 REVISION4, 778 LDO19 SOFT START CTL, 786 LDO19 STATUS1, 779 LDO19 STATUS2, 780 LDO19 VOLTAGE CTL2, 784 LDO19 VS CTL, 787 LDO2 CONFIG CTL, 598 LDO2 EN CTL, 596 LDO2 INT EN CLR, 593 LDO2 INT EN SET, 593 LDO2 INT LATCHED CLR, 593 LDO2 INT LATCHED STS, 594 LDO2 INT MID SEL, 595 LDO2 INT PENDING STS, 594 LDO2 INT POLARITY HIGH, 592 LDO2 INT POLARITY LOW, 592 LDO2 INT PRIORITY, 595 LDO2 INT RT STS, 591 LDO2 INT SET TYPE, 592 LDO2 MODE CTL2, 596 LDO2 PD CTL, 597 LDO2 PERPH SUBTYPE, 590 LDO2 PERPH TYPE, 589 LDO2 REVISION1, 588 LDO2 REVISION2, 588 LDO2 REVISION3, 589 LDO2 REVISION4, 589 LDO2 SOFT START CTL, 597 LDO2 STATUS1, 590 LDO2 STATUS2, 591 LDO2 VOLTAGE CTL2, 595 LDO2 VS CTL, 598 LDO22 CONFIG CTL, 799 LDO22_EN_CTL, 797 LDO22 INT EN CLR, 794 LDO22 INT EN SET, 794

LDO22 INT LATCHED CLR, 794 LDO22 INT LATCHED STS, 795 LDO22 INT MID SEL, 796 LDO22 INT PENDING STS, 795 LDO22 INT POLARITY HIGH, 793 LDO22 INT POLARITY LOW, 793 LDO22 INT PRIORITY, 796 LDO22 INT RT STS, 792 LDO22 INT SET TYPE, 793 LDO22 MODE CTL2, 797 LDO22 OCP CTL1, 798 LDO22 OCP CTL2, 798 LDO22 PD CTL, 798 LDO22 PERPH SUBTYPE, 791 LDO22 PERPH TYPE, 790 LDO22 REVISION1, 789 LDO22 REVISION2, 789 LDO22 REVISION3, 790 LDO22 REVISION4, 790 LDO22 SOFT START CTL, 799 LDO22 STATUS1, 791 LDO22 STATUS2, 792 LDO22 VOLTAGE CTL2, 796 LDO23 CONFIG CTL, 812 LDO23 CURRENT LIM CTL, 811 LDO23 EN CTL, 810 LDO23 INT EN CLR, 806 LDO23 INT EN SET, 806 LDO23 INT LATCHED CLR, 806 LDO23 INT LATCHED STS, 807 LDO23 INT MID SEL, 808 LDO23 INT PENDING STS, 807 LDO23 INT POLARITY HIGH, 805 LDO23 INT POLARITY LOW, 805 LDO23 INT PRIORITY, 808 LDO23 INT RT STS, 804 LDO23 INT SET TYPE, 804 LDO23 LL VOLTAGE CTL1, 812 LDO23 LL VOLTAGE CTL2, 813 LDO23 MODE CTL2, 809 LDO23 PD CTL, 811 LDO23 PERPH SUBTYPE, 802 LDO23 PERPH TYPE, 801 LDO23 REVISION1, 800 LDO23 REVISION2, 800 LDO23 REVISION3, 801 LDO23 REVISION4, 801 LDO23 SEC ACCESS, 814 LDO23 SOFT START CTL, 812 LDO23 STATUS1, 802 LDO23 STATUS2, 803 LDO23 STATUS3, 803 LDO23 UL VOLTAGE CTL1, 813 LDO23 UL VOLTAGE CTL2, 813 LDO23 VOLTAGE CTL1, 809 LDO23 VOLTAGE CTL2, 809 LDO3 CONFIG_CTL, 610 LDO3 EN CTL, 608 LDO3 INT EN CLR, 605

LDO3 INT EN SET, 605 LDO3 INT LATCHED CLR, 605 LDO3 INT LATCHED STS, 606 LDO3 INT MID SEL, 607 LDO3 INT PENDING STS, 606 LDO3 INT POLARITY HIGH, 604 LDO3 INT POLARITY LOW, 604 LDO3 INT PRIORITY, 607 LDO3 INT RT STS, 603 LDO3 INT_SET_TYPE, 604 LDO3 MODE CTL2, 608 LDO3 PD CTL, 609 LDO3 PERPH SUBTYPE, 602 LDO3 PERPH TYPE, 601 LDO3 REVISION1, 600 LDO3 REVISION2, 600 LDO3 REVISION3, 601 LDO3 REVISION4, 601 LDO3 SOFT START CTL, 609 LDO3 STATUS1, 602 LDO3 STATUS2, 603 LDO3 VOLTAGE CTL2, 607 LDO3 VS CTL, 610 LDO4 CONFIG CTL, 622 LDO4 EN CTL, 620 LDO4 INT EN CLR, 617 LDO4 INT EN SET, 617 LDO4 INT LATCHED CLR, 617 LDO4 INT LATCHED STS, 618 LDO4 INT MID SEL, 619 LDO4 INT PENDING STS, 618 LDO4 INT POLARITY HIGH, 616 LDO4 INT POLARITY_LOW, 616 LDO4 INT PRIORITY, 619 LDO4 INT RT STS, 615 LDO4 INT SET TYPE, 616 LDO4 MODE CTL2, 620 LDO4 OCP CTL1, 621 LDO4 OCP CTL2, 621 LDO4 PD CTL, 621 LDO4 PERPH SUBTYPE, 614 LDO4 PERPH TYPE, 613 LDO4 REVISION1, 612 LDO4 REVISION2, 612 LDO4 REVISION3, 613 LDO4 REVISION4, 613 LDO4 SOFT START CTL, 622 LDO4 STATUS1, 614 LDO4 STATUS2, 615 LDO4 VOLTAGE CTL2, 619 LDO5 CONFIG CTL, 633 LDO5 EN CTL, 631 LDO5 INT EN CLR, 628 LDO5 INT EN SET, 628 LDO5 INT LATCHED CLR, 628 LDO5 INT LATCHED STS, 629 LDO5 INT MID SEL, 630 LDO5 INT PENDING STS, 629 LDO5 INT POLARITY HIGH, 627

LDO5 INT POLARITY LOW, 627 LDO5 INT PRIORITY, 630 LDO5 INT RT STS, 626 LDO5 INT SET TYPE, 627 LDO5 MODE CTL2, 631 LDO5 OCP CTL1, 632 LDO5 OCP CTL2, 632 LDO5 PD CTL, 632 LDO5 PERPH SUBTYPE, 625 LDO5 PERPH TYPE, 624 LDO5 REVISION1, 623 LDO5 REVISION2, 623 LDO5 REVISION3, 624 LDO5 REVISION4, 624 LDO5 SOFT START CTL, 633 LDO5 STATUS1, 625 LDO5 STATUS2, 626 LDO5 VOLTAGE CTL2, 630 LDO6 CONFIG CTL, 644 LDO6 EN CTL, 642 LDO6 INT EN CLR, 639 LDO6 INT EN SET, 639 LDO6 INT LATCHED CLR, 639 LDO6 INT LATCHED STS, 640 LDO6 INT MID SEL, 641 LDO6 INT PENDING STS, 640 LDO6 INT POLARITY HIGH, 638 LDO6 INT POLARITY LOW, 638 LDO6 INT PRIORITY, 641 LDO6 INT RT STS, 637 LDO6 INT SET TYPE, 638 LDO6 MODE CTL2, 642 LDO6 OCP CTL1, 643 LDO6 OCP CTL2, 643 LDO6 PD CTL, 643 LDO6 PERPH SUBTYPE, 636 LDO6 PERPH TYPE, 635 LDO6 REVISION1, 634 LDO6 REVISION2, 634 LDO6 REVISION3, 635 LDO6 REVISION4, 635 LDO6 SOFT START CTL, 644 LDO6 STATUS1, 636 LDO6 STATUS2, 637 LDO6 VOLTAGE CTL2, 641 LDO7 CONFIG CTL, 655 LDO7 EN CTL, 653 LDO7 INT EN CLR, 650 LDO7 INT EN SET, 650 LDO7 INT LATCHED CLR, 650 LDO7 INT LATCHED STS, 651 LDO7 INT MID SEL, 652 LDO7 INT PENDING STS, 651 LDO7 INT POLARITY HIGH, 649 LDO7 INT POLARITY LOW, 649 LDO7 INT PRIORITY, 652 LDO7 INT RT STS, 648 LDO7 INT_SET_TYPE, 649 LDO7 MODE CTL2, 653

LDO7 OCP CTL1, 654 LDO9 REVISION1, 667 LDO7 OCP CTL2, 654 LDO9 REVISION2, 667 LDO7 PD CTL, 654 LDO9 REVISION3, 668 LDO7 PERPH SUBTYPE, 647 LDO9 REVISION4, 668 LDO7 PERPH TYPE, 646 LDO9 SOFT START CTL, 677 LDO7 REVISION1, 645 LDO9 STATUS1, 669 LDO7 REVISION2, 645 LDO9 STATUS2, 670 LDO7 REVISION3, 646 LDO9 VOLTAGE CTL2, 674 LDO7 REVISION4, 646 LN BB CLK DRV CTL1, 229 LDO7 SOFT START CTL, 655 LN BB CLK EDGE CTL1, 229 LDO7 STATUS1, 647 LN BB CLK EN CTL, 229 LN BB CLK PERPH SUBTYPE, 228 LDO7 STATUS2, 648 LDO7 VOLTAGE CTL2, 652 LN BB CLK PERPH TYPE, 227 LN BB CLK REVISION1, 226 LDO8 CONFIG CTL, 666 LDO8 EN CTL, 664 LN BB CLK REVISION2, 226 LDO8 INT EN CLR, 661 LN BB CLK REVISION3, 227 LDO8 INT EN SET, 661 LN BB CLK REVISION4, 227 LDO8 INT LATCHED CLR, 661 LN BB CLK STATUS1, 228 LDO8 INT LATCHED STS, 662 MBG1 EN CTL, 113 LDO8 INT MID SEL, 663 MBG1 MODE CTRL, 112 MBG1 PERPH_SUBTYPE, 112 LDO8 INT PENDING STS, 662 MBG1 PERPH TYPE, 111 LDO8 INT POLARITY HIGH, 660 LDO8 INT POLARITY LOW, 660 MBG1 REVISION1, 110 LDO8 INT PRIORITY, 663 MBG1 REVISION2, 110 LDO8 INT RT STS, 659 MBG1 REVISION3, 111 LDO8 INT SET TYPE, 660 MBG1 REVISION4, 111 LDO8 MODE CTL2, 664 MBG1 STATUS1, 112 LDO8 OCP CTL1, 665 MISC PERPH SUBTYPE, 78 LDO8 OCP CTL2, 665 MISC PERPH TYPE, 77 LDO8 PD CTL, 665 MISC REVISION1, 76 LDO8 PERPH SUBTYPE, 658 MISC REVISION2, 76 LDO8 PERPH TYPE, 657 MISC REVISION3, 77 LDO8 REVISION1, 656 MISC REVISION4, 77 LDO8 REVISION2, 656 MISC SEC ACCESS, 78 MISC_TX_GTR THRES CTL, 78 LDO8 REVISION3, 657 LDO8 REVISION4, 657 MPP1_ANA_IN_CTL, 269 LDO8 SOFT START CTL, 666 MPP1 ANA OUT CTL, 269 LDO8 STATUS1, 658 MPP1 DIG IN CTL, 268 LDO8 STATUS2, 659 MPP1 DIG VIN CTL, 268 LDO8 VOLTAGE CTL2, 663 MPP1 EN CTL, 269 LDO9 CONFIG CTL, 677 MPP1 INT EN CLR, 264 LDO9 EN CTL, 675 MPP1 INT EN SET, 263 LDO9 INT EN CLR, 672 MPP1 INT LATCHED CLR, 263 MPP1 INT LATCHED STS, 264 LDO9 INT EN SET, 672 LDO9 INT LATCHED CLR, 672 MPP1 INT MID SEL, 265 LDO9 INT LATCHED STS, 673 MPP1 INT PENDING STS, 265 LDO9 INT MID SEL, 674 MPP1 INT POLARITY HIGH, 262 LDO9 INT PENDING STS, 673 MPP1 INT POLARITY LOW, 263 LDO9 INT POLARITY HIGH, 671 MPP1 INT PRIORITY, 265 LDO9 INT POLARITY LOW, 671 MPP1 INT RT STS, 262 LDO9 INT PRIORITY, 674 MPP1 INT SET TYPE, 262 LDO9 INT RT STS, 670 MPP1 MODE CTL, 266 LDO9 INT SET TYPE, 671 MPP1 PERPH SUBTYPE, 261 LDO9 MODE CTL2, 675 MPP1 PERPH TYPE, 260 LDO9 OCP CTL1, 676 MPP1 REVISION1, 259 LDO9_OCP_CTL2, 676 MPP1 REVISION2, 259 LDO9 PD CTL, 676 MPP1 REVISION3, 260 LDO9 PERPH SUBTYPE, 669 MPP1 REVISION4, 260 LDO9 PERPH TYPE, 668 MPP1 SINK CTL, 270

MPP1 STATUS1, 261 MPP4 INT LATCHED STS, 300 MPP2 ANA IN CTL, 281 MPP4 INT MID SEL, 301 MPP2 ANA OUT CTL, 281 MPP4 INT PENDING STS, 301 MPP2 DIG IN CTL, 280 MPP4 INT POLARITY HIGH, 298 MPP2 DIG VIN CTL, 280 MPP4 INT POLARITY LOW, 299 MPP2 EN CTL, 281 MPP4 INT PRIORITY, 301 MPP2 INT EN CLR, 276 MPP4 INT RT STS, 298 MPP2 INT EN SET, 275 MPP4 INT SET TYPE, 298 MPP2 INT LATCHED_CLR, 275 MPP4 MODE CTL, 302 MPP2 INT LATCHED STS, 276 MPP4 PERPH SUBTYPE, 297 MPP2 INT MID SEL, 277 MPP4 PERPH TYPE, 296 MPP2 INT PENDING STS, 277 MPP4 REVISION1, 295 MPP2 INT POLARITY HIGH, 274 MPP4 REVISION2, 295 MPP2 INT POLARITY LOW, 275 MPP4 REVISION3, 296 MPP2 INT PRIORITY, 277 MPP4 REVISION4, 296 MPP2 INT RT STS, 274 MPP4 SINK CTL, 306 MPP2 INT SET TYPE, 274 MPP4 STATUS1, 297 MPP2 MODE CTL, 278 PON AVDD VPH, 74 MPP2 PERPH SUBTYPE, 273 PON DEBOUNCE CTL, 68 MPP2 PERPH TYPE, 272 PON INT EN CLR, 43 PON INT EN_SET, 42 MPP2 REVISION1, 271 PON INT LATCHED CLR, 41 MPP2 REVISION2, 271 PON INT LATCHED_STS, 44 MPP2 REVISION3, 272 MPP2 REVISION4, 272 PON INT MID SEL, 45 MPP2 SINK CTL, 282 PON INT PENDING STS, 44 MPP2 STATUS1, 273 PON INT POLARITY HIGH, 40 MPP3 ANA IN CTL, 293 PON INT POLARITY LOW, 41 MPP3 ANA OUT CTL, 293 PON INT PRIORITY, 45 MPP3 DIG IN CTL, 292 PON INT RT STS, 38 MPP3 DIG VIN CTL, 292 PON INT SET TYPE, 39 PON_KPDPWR_N_RESET S1 TIMER, 46 MPP3 EN CTL, 293 MPP3 INT EN CLR, 288 PON KPDPWR N RESET S2 CTL, 47 MPP3 INT EN SET, 287 PON KPDPWR N RESET S2 CTL2, 48 MPP3 INT LATCHED CLR, 287 PON KPDPWR N RESET S2 TIMER, 47 MPP3 INT LATCHED STS, 288 PON OVERTEMP RESET CTL, 66 MPP3 INT MID SEL, 289 PON OVERTEMP RESET CTL2, 67 MPP3 INT PENDING STS, 289 PON PBS INTERFACE, 75 MPP3 INT POLARITY HIGH, 286 PON PERPH SUBTYPE, 33 PON PERPH TYPE, 32 MPP3 INT POLARITY LOW, 287 MPP3 INT PRIORITY, 289 PON PMIC WD RESET PET, 63 MPP3 INT RT STS, 286 PON PMIC WD RESET S1 TIMER, 54 PON PMIC WD RESET S2 CTL, 62 MPP3 INT SET TYPE, 286 MPP3 MODE CTL, 290 PON PMIC WD RESET S2 CTL2, 62 PON PMIC WD RESET S2 TIMER, 58 MPP3 PERPH SUBTYPE, 285 MPP3 PERPH TYPE, 284 PON POFF REASON1, 36 PON POFF REASON2, 36 MPP3 REVISION1, 283 MPP3 REVISION2, 283 PON PON PBL STATUS, 33 MPP3 REVISION3, 284 PON PON REASON1, 34 MPP3 REVISION4, 284 PON PON TRIGGER EN, 71 MPP3 SINK CTL, 294 PON PON1 INTERFACE, 74 PON PS HOLD RESET_CTL, 63 MPP3 STATUS1, 285 MPP4 ANA IN CTL, 305 PON PS HOLD RESET CTL2, 64 MPP4 ANA OUT CTL, 305 PON PULL CTL, 68 MPP4 DIG IN CTL, 304 PON RESET S3 TIMER, 70 MPP4 DIG VIN CTL, 304 PON RESIN AND KPDPWR RESET S1 TIMER, 51 MPP4 EN CTL, 305 PON RESIN AND KPDPWR RESET S2 CTL, 53 MPP4 INT EN CLR, 300 PON RESIN AND KPDPWR RESET S2 CTL2, 54 MPP4 INT EN SET, 299 PON RESIN AND KPDPWR RESET S2 TIMER, 52 MPP4 INT LATCHED CLR, 299 PON RESIN N RESET S1 TIMER, 49

PON RESIN N RESET S2 CTL, 50 RTC ALARM ALARM DATA0, 257 PON RESIN N RESET S2 CTL2, 51 RTC ALARM ALARM DATA1, 257 PON RESIN N RESET S2 TIMER, 49 RTC ALARM ALARM DATA2, 257 PON REVISION1, 31 RTC ALARM ALARM DATA3, 257 PON REVISION2, 31 RTC ALARM EN CTL1, 258 PON REVISION3, 32 RTC ALARM INT EN CLR, 255 PON REVISION4, 32 RTC ALARM INT EN SET, 254 RTC ALARM INT LATCHED CLR, 254 PON SOFT RESET REASON1, 37 RTC ALARM INT LATCHED STS, 255 PON SOFT RESET REASON2, 38 RTC ALARM INT MID SEL, 256 PON SW RESET GO, 66 PON SW RESET S2 CTL, 65 RTC_ALARM_INT_PENDING_STS, 255 PON_SW_RESET_S2_CTL2, 65 RTC ALARM INT POLARITY HIGH, 253 PON UVLO, 73 RTC ALARM INT POLARITY LOW, 254 RTC ALARM INT PRIORITY, 256 PON WARM RESET REASON1, 35 PON WARM RESET REASON2, 35 RTC ALARM INT RT STS, 253 PON WATCHDOG LOCK, 72 RTC ALARM INT SET TYPE, 253 PWM ENABLE CONTROL, 819 RTC ALARM PERPH SUBTYPE, 252 PWM PERPH SUBTYPE, 816 RTC ALARM PERPH TYPE, 252 PWM PERPH TYPE, 816 RTC ALARM REVISION1, 251 PWM PWM FREQ PREDIV CLK, 817 RTC ALARM REVISION2, 251 PWM PWM SIZE CLK, 816 RTC ALARM STATUS1, 252 RTC RW EN CTL1, 249 PWM PWM SYNC, 819 PWM PWM TYPE CONFIG, 818 RTC RW PERPH SUBTYPE, 248 PWM PWM VALUE LSB, 818 RTC RW PERPH TYPE, 248 PWM PWM VALUE MSB, 819 RTC RW RDATA0, 249 PWM REVISION1, 815 RTC RW RDATA1, 249 PWM REVISION2, 815 RTC RW RDATA2, 250 REVID PBS OTP ID 0, 14 RTC RW RDATA3, 250 REVID PERPH SUBTYPE, 13 RTC RW REVISION1, 247 REVID PERPH TYPE, 12 RTC RW REVISION2, 247 **REVID REVISION1, 11** RTC RW_STATUS1, 248 **REVID REVISION2, 11** S1 CTRL CTLR MISC, 410 **REVID REVISION3, 12** S1 CTRL EN CTL, 408 REVID REVISION4, 12 S1 CTRL INT EN CLR, 403 REVID SBL ID 0, 13 S1 CTRL INT EN SET, 403 REVID_SBL_ID_1, 14 S1 CTRL INT LATCHED CLR, 403 REVID SEC ACCESS, 14 S1 CTRL INT LATCHED STS, 404 S1 CTRL INT MID SEL, 405 REVID STATUS1, 13 RF CLK1 DRV CTL1, 219 S1 CTRL INT PENDING STS, 404 RF CLK1 EDGE CTL1, 219 S1 CTRL INT POLARITY HIGH, 402 RF CLK1 EN CTL, 219 S1 CTRL INT POLARITY LOW, 402 RF CLK1 PERPH SUBTYPE, 218 S1 CTRL INT PRIORITY, 405 RF CLK1 PERPH TYPE, 217 S1 CTRL INT RT STS, 401 S1 CTRL INT SET TYPE, 401 RF CLK1 REVISION1, 216 RF CLK1 REVISION2, 216 S1 CTRL LL VOLTAGE, 410 S1 CTRL MODE CTL, 407 RF CLK1 REVISION3, 217 RF CLK1 REVISION4, 217 S1 CTRL PD CTL, 409 RF CLK1 STATUS1, 218 S1 CTRL PERPH SUBTYPE, 400 RF CLK2 DRV CTL1, 224 S1 CTRL PERPH TYPE, 399 RF CLK2 EDGE CTL1, 224 S1 CTRL PFM CTL, 406 RF CLK2 EN CTL, 224 S1 CTRL REVISION1, 398 RF CLK2 PERPH SUBTYPE, 223 S1 CTRL REVISION2, 398 S1 CTRL REVISION3, 399 RF CLK2 PERPH TYPE, 222 RF CLK2 REVISION1, 221 S1 CTRL REVISION4, 399 RF CLK2_REVISION2, 221 S1 CTRL STATUS, 400 RF CLK2 REVISION3, 222 S1 CTRL UL LL CTRL, 409 RF CLK2 REVISION4, 222 S1 CTRL UL VOLTAGE, 409 RF CLK2 STATUS1, 223 S1 CTRL VOLTAGE CTL1, 405 RTC ALARM ALARM CLR, 258 S1 CTRL VOLTAGE CTL2, 406

S1 FREQ CLK DIV, 425 S1 FREQ CLK ENABLE, 424 S1 FREQ CLK PHASE, 426 S1 FREQ GANG CTL1, 426 S1 FREQ GANG CTL2, 426 S1 FREQ PERPH SUBTYPE, 424 S1 FREQ PERPH TYPE, 424 S1 FREQ REVISION1, 423 S1 FREQ REVISION2, 423 S1 PS HCINT CONTROL, 421 S1 PS HCINT_EN, 421 S1 PS INT EN CLR, 417 S1 PS INT EN SET, 416 S1 PS INT LATCHED CLR, 416 S1 PS INT LATCHED STS, 417 S1 PS INT MID SEL, 418 S1 PS INT PENDING STS, 418 S1 PS INT POLARITY HIGH, 415 S1 PS INT POLARITY LOW, 416 S1 PS INT PRIORITY, 419 S1 PS INT RT STS, 414 S1 PS INT SET TYPE, 415 S1 PS PERPH SUBTYPE, 414 S1 PS PERPH TYPE, 413 S1 PS PFM CURRENT LIM CTL, 420 S1 PS PWM CURRENT LIM CTL, 419 S1 PS REVISION1, 412 S1 PS REVISION2, 412 S1 PS REVISION3, 413 S1 PS REVISION4, 413 S2 CTRL CTLR_MISC, 440 S2 CTRL EN CTL, 438 S2 CTRL INT EN CLR, 433 S2 CTRL INT EN SET, 433 S2_CTRL_INT LATCHED CLR, 433 S2 CTRL INT LATCHED STS, 434 S2 CTRL INT MID SEL, 435 S2 CTRL INT PENDING STS, 434 S2 CTRL INT POLARITY HIGH, 432 S2 CTRL INT POLARITY LOW, 432 S2 CTRL INT PRIORITY, 435 S2 CTRL INT RT STS, 431 S2 CTRL INT SET TYPE, 431 S2 CTRL LL VOLTAGE, 440 S2 CTRL MODE CTL, 437 S2 CTRL PD CTL, 439 S2 CTRL PERPH SUBTYPE, 430 S2 CTRL PERPH TYPE, 429 S2 CTRL PFM CTL, 436 S2 CTRL REVISION1, 428 S2 CTRL REVISION2, 428 S2 CTRL REVISION3, 429 S2 CTRL REVISION4, 429 S2 CTRL STATUS, 430 S2 CTRL UL LL CTRL, 439 S2 CTRL_UL_VOLTAGE, 439 S2 CTRL VOLTAGE CTL1, 435 S2 CTRL VOLTAGE CTL2, 436 S2 FREQ CLK DIV, 455

S2 FREQ CLK ENABLE, 454 S2 FREQ CLK PHASE, 456 S2 FREQ GANG CTL1, 456 S2 FREQ GANG CTL2, 456 S2 FREQ PERPH SUBTYPE, 454 S2 FREQ PERPH TYPE, 454 S2 FREQ REVISION1, 453 S2 FREQ REVISION2, 453 S2 PS HCINT CONTROL, 451 S2 PS HCINT EN, 451 S2 PS INT EN CLR, 447 S2 PS INT EN SET, 446 S2 PS INT LATCHED CLR, 446 S2 PS INT LATCHED STS, 447 S2 PS INT MID SEL, 448 S2 PS INT PENDING STS, 448 S2 PS INT POLARITY HIGH, 445 S2 PS INT POLARITY LOW, 446 S2 PS INT PRIORITY, 449 S2 PS INT RT STS, 444 S2 PS INT SET TYPE, 445 S2 PS PERPH SUBTYPE, 444 S2 PS PERPH TYPE, 443 S2 PS PFM CURRENT LIM CTL, 450 S2 PS PWM CURRENT_LIM_CTL, 449 S2 PS REVISION1, 442 S2 PS REVISION2, 442 S2 PS REVISION3, 443 S2 PS REVISION4, 443 S3 CTRL CTLR MISC, 470 S3_CTRL_EN_CTL, 468 S3 CTRL INT EN CLR, 463 S3 CTRL INT EN SET, 463 S3 CTRL INT LATCHED CLR, 463 S3 CTRL INT LATCHED STS, 464 S3 CTRL INT MID SEL, 465 S3 CTRL INT PENDING STS, 464 S3 CTRL INT POLARITY HIGH, 462 S3 CTRL INT POLARITY LOW, 462 S3 CTRL INT PRIORITY, 465 S3 CTRL INT RT STS, 461 S3 CTRL INT SET TYPE, 461 S3 CTRL LL VOLTAGE, 470 S3 CTRL MODE CTL, 467 S3 CTRL PD CTL, 469 S3 CTRL PERPH SUBTYPE, 460 S3 CTRL PERPH TYPE, 459 S3 CTRL PFM CTL, 466 S3 CTRL REVISION1, 458 S3 CTRL REVISION2, 458 S3 CTRL REVISION3, 459 S3 CTRL REVISION4, 459 S3_CTRL STATUS, 460 S3 CTRL UL LL CTRL, 469 S3 CTRL UL VOLTAGE, 469 S3 CTRL VOLTAGE CTL1, 465 S3 CTRL VOLTAGE CTL2, 466 S3 FREQ CLK DIV, 477 S3 FREQ CLK ENABLE, 476

S3_FREQ_CLK_PHASE, 478
S3_FREQ_GANG_CTL1, 478
S3 FREQ GANG CTL2, 478
S3 FREQ PERPH SUBTYPE, 476
S3 FREQ PERPH TYPE, 476
S3 FREQ REVISION1, 475
S3_FREQ_REVISION2, 475
S3_PS_PERPH_SUBTYPE, 474
S3 PS PERPH TYPE, 473
S3 PS REVISION1, 472
S3 PS REVISION2, 472
S3 PS REVISION3, 473
S3_PS_REVISION4, 473
S4 CTRL CTLR MISC, 492
S4 CTRL EN CTL, 490
S4_CTRL_INT_EN_CLR, 485
S4_CTRL_INT_EN_SET, 485
S4_CTRL_INT_LATCHED_CLR, 485
S4_CTRL_INT_LATCHED_STS, 486
S4_CTRL_INT_MID_SEL, 487 S4_CTRL_INT_PENDING_STS, 486
S4_CTRL_INT_PENDING_STS, 486
S4_CTRL_INT_POLARITY_HIGH, 484
S4_CTRL_INT_POLARITY_LOW, 484
S4_CTRL_INT_PRIORITY, 487
S4_CTRL_INT_RT_STS, 483
S4_CTRL_INT_SET_TYPE, 483
S4_CTRL_LL_VOLTAGE, 492
S4_CTRL_MODE_CTL, 489
S4_CTRL_PD_CTL, 491
S4_CTRL_PERPH_SUBTYPE, 482
S4_CTRL_PERPH_TYPE, 481
S4_CTRL_PFM_CTL, 488 S4_CTRL_REVISION1, 480 S4_CTRL_REVISION2, 480
S4_CTRL_REVISION1, 480
S4_CTRL_REVISION2, 480
54_CTKL_KEVISION3, 461
S4_CTRL_REVISION4, 481
S4_CTRL_STATUS, 482
S4_CTRL_UL_LL_CTRL, 491 S4_CTRL_UL_VOLTAGE, 491
S4_CTRL_VOLTAGE, 491 S4_CTRL_VOLTAGE_CTL1, 487
S4_CTRL_VOLTAGE_CTL1, 487 S4_CTRL_VOLTAGE_CTL2, 488
S4_FREQ_CLK_DIV, 507
S4_FREQ_CLK_ENABLE, 506
S4_FREQ_CLK_PHASE, 508
S4 FREQ GANG CTL1, 508
S4_FREQ_GANG_CTL2, 508
S4_FREQ_PERPH_SUBTYPE, 506
S4 FREQ PERPH TYPE, 506
S4_FREQ_REVISION1, 505
S4_FREQ_REVISION2, 505
S4 PS HCINT CONTROL, 503
S4 PS HCINT EN, 503
S4 PS INT EN CLR, 499
S4 PS INT EN SET, 498
S4_PS_INT_LATCHED_CLR, 498
S4_PS_INT_LATCHED_STS, 499
S4_PS_INT_LATCHED_STS, 499 S4_PS_INT_MID_SEL, 500
S4_PS_INT_PENDING_STS, 500
S4_PS_INT_POLARITY_HIGH, 497

```
S4 PS INT POLARITY LOW, 498
S4 PS INT PRIORITY, 501
S4 PS INT RT STS, 496
S4 PS INT SET TYPE, 497
S4 PS PERPH SUBTYPE, 496
S4 PS PERPH TYPE, 495
S4 PS PFM CURRENT LIM CTL, 502
S4 PS PWM CURRENT LIM CTL, 501
S4 PS REVISION1, 494
S4 PS REVISION2, 494
S4 PS REVISION3, 495
S4 PS REVISION4, 495
S5 CTRL CFG VREG OCP, 525
S5_CTRL_EN_CTL, 520
S5 CTRL FREQ CTL, 522
S5 CTRL GANG CTL1, 529
S5 CTRL GANG CTL2, 529
S5 CTRL GPL HI, 528
S5 CTRL GPL LO, 528
S5 CTRL INT EN CLR, 517
S5 CTRL INT EN SET, 516
S5 CTRL INT LATCHED CLR, 516
S5 CTRL INT LATCHED STS, 517
S5 CTRL INT MID SEL, 518
S5 CTRL INT PENDING STS, 518
S5_CTRL_INT_POLARITY_HIGH, 515
S5 CTRL INT POLARITY LOW, 515
S5 CTRL INT PRIORITY, 518
S5 CTRL INT RT STS, 514
S5 CTRL INT SET TYPE, 514
S5 CTRL LLS VALID, 528
S5 CTRL MODE CTL, 520
S5 CTRL PD CTL, 521
S5 CTRL PERPH SUBTYPE, 512
S5_CTRL_PERPH_TYPE, 511
S5_CTRL_PHASE_CNT_MAX, 523
S5 CTRL PHASE ID, 522
S5 CTRL REVISION1, 510
S5 CTRL REVISION2, 510
S5 CTRL REVISION3, 511
S5 CTRL REVISION4, 511
S5 CTRL SS CTL, 523
S5 CTRL STATUS 1,512
S5_CTRL_STATUS_2, 513
S5 CTRL UL LL CTL, 526
S5 CTRL ULS VALID, 527
S5_CTRL_VOLTAGE_CTL1, 519
S5_CTRL_VOLTAGE_CTL2, 519
S5_CTRL_VS_CTL, 524
S5_CTRL_VSET_LLS, 527
S5 CTRL VSET ULS, 526
S5 CTRL VSET VALID, 520
S5 FREQ CLK DIV, 540
S5 FREQ CLK ENABLE, 539
S5 FREQ CLK PHASE, 541
S5_FREQ_GANG_CTL1, 541
S5 FREQ GANG CTL2, 541
S5 FREQ PERPH SUBTYPE, 539
S5 FREQ PERPH TYPE, 539
```

```
S5 FREQ REVISION1, 538
                                                     S6 FREQ GANG CTL1, 574
S5 FREQ REVISION2, 538
                                                     S6 FREQ GANG CTL2, 574
S5 PS FREQ CTL, 535
                                                     S6 FREQ PERPH SUBTYPE, 572
S5 PS GANG CTL1, 536
                                                     S6 FREQ PERPH TYPE, 572
S5 PS GANG CTL2, 537
                                                     S6 FREO REVISION1, 571
S5 PS MODE CTL, 534
                                                     S6 FREO REVISION2, 571
S5 PS PERPH SUBTYPE, 533
                                                     S6 PS FREQ CTL, 568
S5 PS PERPH TYPE, 532
                                                     S6 PS GANG CTL1, 569
S5 PS PHASE CNT MAX, 536
                                                     S6 PS GANG CTL2, 570
S5 PS PHASE ID, 535
                                                     S6 PS MODE CTL, 567
S5 PS REVISION1, 531
                                                     S6 PS PERPH SUBTYPE, 566
S5 PS REVISION2, 531
                                                     S6 PS PERPH TYPE, 565
                                                     S6 PS PHASE_CNT_MAX, 569
S5 PS REVISION3, 532
S5 PS REVISION4, 532
                                                     S6 PS PHASE ID, 568
S5 PS VOLTAGE CTL1, 533
                                                     S6 PS REVISION1, 564
S5 PS VOLTAGE CTL2, 534
                                                     S6 PS REVISION2, 564
S6 CTRL CFG VREG OCP, 558
                                                     S6 PS REVISION3, 565
S6 CTRL EN CTL, 553
                                                      S6 PS REVISION4, 565
S6 CTRL FREQ CTL, 555
                                                      S6 PS VOLTAGE CTL1, 566
                                                      S6 PS VOLTAGE CTL2, 567
S6 CTRL GANG CTL1, 562
S6 CTRL GANG CTL2, 562
                                                     SLEEP CLK1 CAL RC3, 233
S6 CTRL GPL HI, 561
                                                      SLEEP CLK1 CAL RC4, 234
S6_CTRL_GPL_LO, 561
                                                     SLEEP CLK1 EN CTL, 232
S6 CTRL INT EN CLR, 550
                                                     SLEEP CLK1 PERPH SUBTYPE, 232
S6 CTRL INT EN SET, 549
                                                     SLEEP CLK1 PERPH TYPE, 232
S6 CTRL INT LATCHED CLR, 549
                                                     SLEEP CLK1 REVISION1, 231
S6 CTRL INT LATCHED STS, 550
                                                     SLEEP CLK1 REVISION2, 231
S6 CTRL INT MID SEL, 551
                                                     SLEEP CLK1 SMPL CTL1, 233
S6 CTRL INT PENDING STS, 551
                                                      SPMI ERROR ADDR HI, 25
S6 CTRL INT POLARITY HIGH, 548
                                                     SPMI ERROR ADDR LO, 25
S6 CTRL INT POLARITY LOW, 548
                                                     SPMI ERROR ADDR MD, 25
S6 CTRL INT PRIORITY, 551
                                                     SPMI ERROR DATA, 24
S6 CTRL INT RT STS, 547
                                                     SPMI ERROR SYNDROME, 24
S6_CTRL_INT_SET_TYPE, 547
                                                     SPMI INT EN CLR, 28
S6_CTRL_LLS_VALID, 561
                                                     SPMI INT EN SET, 27
S6 CTRL MODE CTL, 553
                                                     SPMI INT LATCHED CLR, 27
                                                     SPMI_INT_LATCHED STS, 28
S6 CTRL PD CTL, 554
S6 CTRL PERPH SUBTYPE, 545
                                                     SPMI INT MID SEL, 29
S6 CTRL PERPH TYPE, 544
                                                     SPMI INT PENDING STS, 29
S6 CTRL PHASE CNT MAX, 556
                                                     SPMI INT POLARITY HIGH, 26
S6 CTRL PHASE ID, 555
                                                     SPMI INT POLARITY LOW, 27
S6 CTRL REVISION1, 543
                                                     SPMI INT PRIORITY, 29
S6 CTRL REVISION2, 543
                                                     SPMI INT RT STS, 26
                                                     SPMI INT SET TYPE, 26
S6 CTRL REVISION3, 544
S6 CTRL REVISION4, 544
                                                     SPMI PERPH SUBTYPE, 24
S6 CTRL SS CTL, 556
                                                     SPMI PERPH TYPE, 23
S6 CTRL STATUS 1,545
                                                     SPMI REVISION1, 22
S6 CTRL STATUS 2,546
                                                     SPMI REVISION2, 22
S6 CTRL UL LL CTL, 559
                                                     SPMI REVISION3, 23
S6 CTRL ULS VALID, 560
                                                     SPMI REVISION4, 23
S6 CTRL VOLTAGE CTL1, 552
                                                     SPMI SPMI BUF CFG, 30
S6 CTRL VOLTAGE CTL2, 552
                                                     SPMI SSC DETECT CFG, 30
S6 CTRL VS CTL, 557
                                                     TEMP ALARM EN CTL1, 103
S6 CTRL VSET LLS, 560
                                                     TEMP ALARM INT EN CLR, 101
S6 CTRL VSET ULS, 559
                                                     TEMP ALARM INT EN SET, 100
S6 CTRL VSET VALID, 553
                                                     TEMP ALARM INT LATCHED CLR, 100
                                                     TEMP ALARM INT LATCHED STS, 101
S6 FREQ CLK DIV, 573
                                                     TEMP ALARM INT MID SEL, 102
S6 FREQ CLK ENABLE, 572
S6 FREQ CLK PHASE, 574
                                                     TEMP ALARM INT PENDING STS, 102
```

TEMP_ALARM_INT_POLARITY_HIGH, 99	VADC2_LC_BTM_2_FAST_AVG_CTL, 178
TEMP_ALARM_INT_POLARITY_LOW, 100	VADC2_LC_BTM_2_FAST_AVG_EN, 178
TEMP_ALARM_INT_PRIORITY, 102	VADC2_LC_BTM_2_HIGH_THR_INT_EN, 170
TEMP_ALARM_INT_RT_STS, 99	VADC2_LC_BTM_2_HW_SETTLE_DELAY, 172
TEMP_ALARM_INT_SET_TYPE, 99	VADC2_LC_BTM_2_INT_EN_CLR, 166
TEMP ALARM PERPH SUBTYPE, 98	VADC2 LC BTM 2 INT EN SET, 165
TEMP ALARM PERPH TYPE, 97	VADC2_LC_BTM_2_INT_LATCHED_CLR, 165
TEMP_ALARM_REVISION1, 96	VADC2_LC_BTM_2_INT_LATCHED_STS, 167
TEMP ALARM REVISION2, 96	VADC2_LC_BTM_2_INT_MID_SEL, 168
TEMP ALARM REVISION3, 97	VADC2_LC_BTM_2_INT_PENDING_STS, 167
TEMP_ALARM_REVISION4, 97	VADC2 LC BTM 2 INT POLARITY HIGH, 163
TEMP ALARM SHUTDOWN CTL1, 103	VADC2 LC BTM 2 INT POLARITY LOW, 164
TEMP ALARM SHUTDOWN CTL2, 103	VADC2_LC_BTM_2_INT_PRIORITY, 168
TEMP_ALARM_STATUS1, 98	VADC2_LC_BTM_2_INT_RT_STS, 162
VADC1_LC_USR_ADC_CH_SEL_CTL, 126	VADC2 LC BTM 2 INT SET TYPE, 163
VADC1 LC USR ADC DIG PARAM, 126	VADC2 LC BTM 2 LOW THR INT EN, 170
VADC1_LC_USR_CONV_REQ, 127	VADC2_LC_BTM_2_M0_ADC_CH_SEL_CTL, 171
VADC1 LC USR CONV SEQ CTL, 128	VADC2 LC BTM 2 M0 DATA0, 180
VADC1 LC USR CONV SEQ TRIG CTL, 129	VADC2 LC BTM 2 M0 DATA1, 180
VADC1_LC_USR_DATA0, 133	VADC2_LC_BTM_2_M0_HIGH_THR0, 179
VADC1 LC USR DATA1, 133	VADC2 LC BTM 2 M0 HIGH THR1, 180
VADC1 LC USR EN CTL1, 125	VADC2 LC BTM 2 M0 LOW THR0, 179
VADC1_LC_USR_FAST_AVG_CTL, 131	VADC2_LC_BTM_2_M0_LOW_THR1, 179
VADC1 LC USR FAST AVG EN, 131	VADC2 LC BTM 2 M1 ADC CH SEL CTL, 181
VADC1 LC USR HIGH THR0, 132	VADC2 LC BTM 2 M1 DATA0, 183
	*
VADC1_LC_USR_HW_SETTLE_DELAY, 127	VADC2 LC BTM 2 M1 HIGH THR0, 182
VADC1 LC USR INT EN CLR, 122	VADC2 LC BTM 2 M1 HIGH THR1, 182
VADC1_LC_USR_INT_EN_SET, 121	VADC2_LC_BTM_2_M1_LOW_THR0, 181
VADC1_LC_USR_HIGH_THR1, 133 VADC1_LC_USR_HW_SETTLE_DELAY, 127 VADC1_LC_USR_INT_EN_CLR, 122 VADC1_LC_USR_INT_EN_SET, 121 VADC1_LC_USR_INT_LATCHED_CLR, 120 VADC1_LC_USR_INT_LATCHED_STS, 122 VADC1_LC_USR_INT_MID_SEL_124	VADC2 LC BTM 2 M1 LOW THR1, 181
VADC1 LC USR INT LATCHED STS, 122	VADC2 LC BTM 2 M1 MEAS INTERVAL CTL, 182
VADC1_LC_USR_HIGH_THR1, 133 VADC1_LC_USR_HW_SETTLE_DELAY, 127 VADC1_LC_USR_INT_EN_CLR, 122 VADC1_LC_USR_INT_EN_SET, 121 VADC1_LC_USR_INT_LATCHED_CLR, 120 VADC1_LC_USR_INT_LATCHED_STS, 122 VADC1_LC_USR_INT_MID_SEL, 124 VADC1_LC_USR_INT_PENDING_STS, 123 VADC1_LC_USR_INT_POLARITY_HIGH, 119	VADC2_LC_BTM_2_MEAS_INTERVAL_CTL, 176
VADC1 LC USR INT PENDING STS, 123	VADC2 LC BTM 2 MEAS INTERVAL CTL2, 176
VADC1 LC USR INT POLARITY HIGH, 119	VADC2 LC BTM 2 MEAS INTERVAL OP CTL, 177
VADC1_LC_USR_INT_POLARITY_LOW, 119	VADC2_LC_BTM_2_MODE_CTL, 169
VADC1 LC USR INT PRIORITY, 124	VADC2 LC BTM 2 MULTI MEAS EN, 170
VADC1 LC USR INT RT STS, 117	VADC2 LC BTM 2 PERPH SUBTYPE, 160
VADC1_LC_USR_INT_SET_TYPE, 118	VADC2_LC_BTM_2_PERPH_TYPE, 159
VADC1 LC USR LOW THR0, 132	VADC2 LC BTM 2 REVISION1, 158
VADC1 LC USR LOW THR1, 132	VADC2 LC BTM 2 REVISION2, 158
VADC1_LC_USR_MEAS_INTERVAL_CTL, 130	VADC2_LC_BTM_2_REVISION3, 159
VADC1 LC USR MEAS INTERVAL OP CTL, 130	VADC2 LC BTM 2 REVISION4, 159
VADC1 LC USR MIN DATA0, 134	VADC2 LC BTM 2 STATUS HIGH, 161
VADC1_LC_USR_MIN_DATA1, 135	VADC2_LC_BTM_2_STATUS_LOW, 161
VADC1 LC USR MIN LOW THR0, 134	VADC2 LC BTM 2 STATUS1, 160
VADC1 LC USR MIN LOW THR1, 134	VADC3 LC MDM ADC CH SEL CTL, 148
VADC1 LC USR MODE CTL, 125	VADC3 LC MDM ADC DIG PARAM, 148
VADC1 LC USR PERPH SUBTYPE, 116	VADC3_LC_MDM_CONV_REQ, 149
VADC1 LC USR PERPH TYPE, 115	VADC3 LC MDM CONV SEQ CTL, 150
VADC1_LC_USR_REVISION1, 114	VADC3_LC_MDM_CONV_SEQ_TRIG_CTL, 151
VADC1 LC USR REVISION2, 114	VADC3 LC MDM DATA0, 155
VADC1 LC USR REVISION3, 115	VADC3 LC MDM DATA1, 155
VADC1 LC USR REVISION4, 115	VADC3 LC MDM EN CTL1, 147
VADC1 LC USR STATUS1, 116	VADC3 LC MDM FAST AVG CTL, 153
VADC2 LC BTM 2 ADC DIG PARAM, 172	VADC3 LC MDM FAST AVG EN, 153
VADC2_LC_BTM_2_CONV_REQ, 173	VADC3_LC_MDM_HIGH_THR0, 154
VADC2_LC_BTM_2_CONV_SEQ_CTL, 174	VADC3_LC_MDM_HIGH_THR1, 155
VADC2_LC_BTM_2_CONV_SEQ_TRIG_CTL, 175	VADC3_LC_MDM_HW_SETTLE_DELAY, 149
VADC2_LC_BTM_2_EN_CTL1, 171	VADC3_LC_MDM_INT_EN_CLR, 144

```
VADC3 LC MDM INT EN SET, 143
VADC3 LC MDM INT LATCHED CLR, 142
VADC3 LC MDM INT LATCHED STS, 144
VADC3 LC MDM INT MID SEL, 146
VADC3 LC MDM INT PENDING STS, 145
VADC3 LC MDM INT POLARITY HIGH, 141
VADC3 LC MDM INT POLARITY LOW, 141
VADC3 LC MDM INT PRIORITY, 146
VADC3 LC MDM INT RT STS, 139
VADC3 LC MDM INT SET TYPE, 140
VADC3 LC MDM LOW THR0, 154
VADC3 LC MDM LOW THR1, 154
VADC3 LC MDM MEAS INTERVAL CTL, 152
VADC3 LC MDM MEAS INTERVAL OP CTL, 152
VADC3 LC MDM MIN DATA0, 156
VADC3 LC MDM MIN DATA1, 157
VADC3 LC MDM MIN LOW THR0, 156
VADC3 LC MDM MIN LOW THR1, 156
VADC3 LC MDM MODE CTL, 147
VADC3 LC MDM PERPH SUBTYPE, 138
VADC3 LC MDM PERPH TYPE, 137
VADC3 LC MDM REVISION1, 136
VADC3 LC MDM REVISION2, 136
VADC3 LC MDM REVISION3, 137
VADC3_LC_MDM_REVISION4, 137
VADC3 LC MDM STATUS1, 138
VADC4 LC VBAT ADC CH SEL CTL, 196
VADC4 LC VBAT ADC DIG PARAM, 196
VADC4 LC VBAT CONV REO, 197
VADC4 LC VBAT CONV SEQ CTL, 198
VADC4 LC VBAT CONV SEQ TRIG CTL, 199
VADC4 LC VBAT DATA0, 203
VADC4 LC VBAT DATA1, 203
VADC4_LC_VBAT_EN_CTL1, 195
VADC4_LC_VBAT_FAST_AVG_CTL, 201
VADC4_LC_VBAT_FAST_AVG_EN, 201
VADC4 LC VBAT HIGH THR0, 202
VADC4 LC VBAT HIGH THR1, 203
VADC4_LC_VBAT HW SETTLE DELAY, 197
VADC4 LC VBAT INT EN CLR, 192
VADC4 LC VBAT INT EN SET, 191
VADC4 LC VBAT INT LATCHED CLR, 190
VADC4 LC VBAT INT LATCHED STS, 192
VADC4 LC VBAT INT MID SEL, 194
VADC4 LC VBAT INT PENDING STS, 193
VADC4_LC_VBAT_INT_POLARITY_HIGH, 189
VADC4_LC_VBAT_INT_POLARITY_LOW, 189
VADC4_LC_VBAT_INT_PRIORITY, 194
VADC4 LC VBAT INT RT STS, 187
VADC4 LC VBAT INT SET TYPE, 188
VADC4_LC_VBAT LOW THR0, 202
VADC4 LC VBAT LOW THR1, 202
VADC4 LC VBAT MEAS INTERVAL CTL, 200
VADC4 LC VBAT MEAS INTERVAL OP CTL, 200
VADC4 LC VBAT MIN DATA0, 204
VADC4 LC VBAT MIN DATA1, 205
VADC4 LC VBAT MIN LOW THR0, 204
VADC4 LC VBAT MIN LOW THR1, 204
VADC4 LC VBAT MODE CTL, 195
```

VADC4 LC VBAT PERPH SUBTYPE, 186 VADC4 LC VBAT PERPH TYPE, 185 VADC4 LC VBAT REVISION1, 184 VADC4 LC VBAT REVISION2, 184 VADC4 LC VBAT REVISION3, 185 VADC4 LC VBAT REVISION4, 185 VADC4 LC VBAT_STATUS1, 186 VREFLPDDR EN CTL1, 83 VREFLPDDR PERPH SUBTYPE, 82 VREFLPDDR PERPH TYPE, 81 VREFLPDDR REVISION1, 80 VREFLPDDR REVISION2, 80 VREFLPDDR REVISION3, 81 VREFLPDDR REVISION4, 81 VREFLPDDR STATUS1, 82 VREFLPDDR VREF LPDDR2 EN, 83 CDC A TX 1 2 ATEST CTL 2, 849 PON_RESET_S3_SRC, 69