

1/1

PATENT ABSTRACTS OF JAPAN

(11)Publication number: 2003-048707

(43) Date of publication of application: 21.02.2003

(51)Int.Cl. C01B 31/02

B01J 3/06

B82B 1/00

B82B 3/00

(21)Application number: 2001–238144 (71)Applicant: NATIONAL INSTITUTE OF

ADVANCED INDUSTRIAL &

TECHNOLOGY

(22)Date of filing: 06.08.2001 (72)Inventor: KOGA YOSHINORI

FUJIWARA SHUZO

(54) ULTRAHARD CARBON NANOTUBE AND METHOD FOR MANUFACTURING THE SAME

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an ultrahard carbon nanotube.

SOLUTION: The ultrahard carbon nanotube has the hardness higher than cubic boron nitride.

1 of 1 8/24/2010 2:37 PM

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-48707

(P2003-48707A)

(43)公開日 平成15年2月21日(2003.2.21)

(51) Int.Cl.7		識別記号	FΙ		÷	f-7J-ド(参考)
C 0 1 B	31/02	101	C 0 1 B	31/02	101F	4G046
B 0 1 J	3/06		B 0 1 J	3/06	Q	
B 8 2 B	1/00		B 8 2 B	1/00		
	3/00			3/00		

審査請求 未請求 請求項の数3 OL (全 3 頁)

		HEIMAN	水晶水 晶系列/yy 0 0 1 (主 0 以)
(21)出願番号	特願2001-238144(P2001-238144)	(71)出願人	301021533 独立行政法人産業技術総合研究所
(22)出願日	平成13年8月6日(2001.8.6)		東京都千代田区霞が関1-3-1
		(72)発明者	古賀 義紀
			茨城県つくば市東1-1-1 独立行政法
			人産業技術総合研究所 つくばセンター内
		(72)発明者	藤原 修三
			茨城県つくば市東1-1-1 独立行政法
			人産業技術総合研究所 つくばセンター内
		(74)代理人	100074505
		,	弁理士 池浦 敏明
		Fターム(参	考) 4CO46 CAOO CBO8 CCO2

(54) 【発明の名称】 超硬度カーボンナノチュープ及びその製造方法

(57)【要約】

【課題】 超硬度カーボンナノチューブを提供する。 【解決手段】 立方晶窒化ホウ素以上の硬さを有することを特徴とする超硬度カーボンナノチューブ。

【特許請求の範囲】

【請求項1】 立方晶窒化ホウ素以上の硬さを有するこ とを特徴とする超硬度カーボンナノチューブ。

【請求項2】 体積弾性率が400GPa以上である請 求項1に記載の超硬度カーボンナノチューブ。

【請求項3】 請求項1又は2に記載の超硬度カーボン ナノチューブを製造する方法において、カーボンナノチ ューブを、24GPa以上の加圧下に保持することを特 徴とする超硬度カーボンナノチューブの製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、超硬度カーボンナ ノチューブ及びその製造方法に関するものである。

[0002]

【従来の技術】カーボンナノチューブは、そのすぐれた 機械的物性や電気的物性等の点から、新しい工業素材と して注目されている。これまでに知られているカーボン ナノチューブの硬度は非常に低く、モース硬度におい て、1程度であった。

[0003]

【発明が解決しようとする課題】本発明は、超硬度カー ボンナノチューブ及びその製造方法を提供することをそ の課題とする。

[0004]

【課題を解決するための手段】本発明によれば、以下に 示す超硬度カーボンナノチューブ及びその製造方法が提 供される。

- (1) 立方晶窒化ホウ素以上の硬さを有することを特徴 とする紹硬度カーボンナノチューブ。
- (2) 体積弾性率が400GPa以上である前記(1) に記載の超硬度カーボンナノチューブ。
- (3) 前記(1) 又は(2) に記載の超硬度カーボンナ ノチューブを製造する方法において、カーボンナノチュ ーブを、24GPa以上の加圧下に保持することを特徴 とする超硬度カーボンナノチューブの製造方法。

[0005]

【発明の実施の形態】本発明で超硬度カーボンナノチュ ーブの製造原料として用いるカーボンナノチューブは、 従来公知のものであり、その平均直径は0.7 nm~5 nm、好ましくは1nm~1.5nm程度の中空の炭素 繊維である。その長さは、 $0.1\sim50\mu m$ 、好ましく は1~30µm程度である。本発明で用いるカーボンナ ノチューブには単層及び多層カーボンナノチューブが包 含される。

【0006】本発明の超硬度カーボンナノチューブを製 造するには、前記カーボンナノチューブを、24GPa 以上、好ましくは30GPa以上の高圧に剪断変形を加 えながら加圧すればよい。その加圧の上限値は特に制約 されず、その原料カーボンナノチューブが破壊される圧 力より低い圧力であればよい。原料として多層カーボン ナノチューブを用いる場合には、その圧力は単層カーボ ンナノチューブの場合よりも、高くなる傾向がある。加 圧時間は10~900秒、好ましくは60~120秒程 度である。加圧装置としては、剪断変形を加えることの できる加圧装置を好ましく用いることができる。

【0007】前記のようにして得られる製品は、カーボ ンナノチューブ壁部が超硬度の炭素に変換したものであ るが、その硬度は、立方晶窒化ホウ素以上の硬さであ る。モース硬度(15段階)で表わすと、その硬度は1 4以上である。また、ナノインデンテーション法 (nano indentation technique) で表わすと、その硬さは62 ~150GPaである。本発明の製品の硬さは、通常、 窒化ホウ素とダイヤモンドとの間の硬さであるが、場合 によっては、ダイヤモンドと同等又はそれ以上の硬さを 示す。本発明による超硬度カーボンナノチューブの体積 弾性率は、400~600GPa、特に462~546 GPaであり、高い弾性率を有する。

[0008]

【実施例】次に本発明を実施例によりさらに詳細に説明 する。

【0009】実施例1

カーボンナノチューブとして、その平均直径が1.2 n m、その長さが1~10 µmの単層カーボンナノチュー ブを用いた。この単層カーボンナノチューブ 0.2~ 1.0μ gを原料として用いて、以下の条件で加圧処理 した。

(1)加圧装置

加圧装置としては、剪断変形ダイヤモンドアンヴィルセ ルを用いた。

- (2)加圧条件
- (i) 圧力: 24GPa以上
- (ii)加圧時間:60~120秒

前記のようにして得られる製品の物性を表1に示す。な お、表中に示した硬さは、ナノインデンテーション法 (文献「Diamond andRilated Materials 9 (2000)」の 第170~第184頁参照)によるものである。

[0010]

【表1】

美釈	圧刀	便さ	体積押性率
No.	(G P a)	(G P a)	(GPa)
1	5	1~2	1~10
2	20	2~5	10~100
3	2 4	62~150	520~600
4	5 5	62~150	520~600

(3)開2003-48707(P2003-4C蹌繊

は、通常のカーボンナノチューブと同様に利用すること 例えば、切削用工具や、SAWデバイス用基板等に利用ができるが、そのダイヤモンド並みの硬さを利用して、 することができる。