Minimum bases in permutation groups

Lawrence Chen

October 22, 2022

Honours presentation

Contents

Some basic (permutation) group theory

Permutations

Permutation groups

Generating a group

Group actions

Orbits and stabilisers

Blocks and primitivity

The Rubik's group (an

application)

Representing the cube and its

operations

The Rubik's group of permutations

Orbits and stabilisers

Transitive action of Rubik's group on corners

Bases and stabiliser chains Primitive subgroups of affine

groups

Affine groups

Large base permutation groups

Main result

Motivation: understanding the Rubik's cube

- How can we represent operations of a cube?
- How can we tell how many states a Rubik's cube can take?
- How can we better *understand* operations of a cube?

One answer: using permutations and computational group theory!

(J. A. Paulos, Innumeracy)

Ideal Toy Company stated on the package of the original Rubik cube that there were more than three billion possible states the cube could attain. It's analogous to McDonald's proudly announcing that they've sold more than 120 hamburgers.

Some basic (permutation) group

theory

Permutations

Definition (permutation)

Permutation of $[n] := \{1, ..., n\}$ is bijection $\sigma : [n] \to [n]$. **Symmetric group** Sym(n) is set of permutations of [n].

Write 1 = () for identity. Write i^{σ} not $\sigma(i)$ for *image*.

Cycle notation: $\sigma = (1, 4, 5)(2, 6) \in Sym(6)$ is:

It means

$$1^{\sigma} = 4, \ 4^{\sigma} = 5, \ 5^{\sigma} = 1, \ 2^{\sigma} = 6, \ 6^{\sigma} = 2, \ 3^{\sigma} = 3.$$

2

Permutations (ii)

Product/composition: for $\sigma, \tau \in \operatorname{Sym}(n), \sigma\tau$ means "first σ , then τ ", so $i^{\sigma\tau} = (i^{\sigma})^{\tau}$. E.g. $\sigma = (1, 2, 3), \tau = (1, 3)(2, 4) \in \operatorname{Sym}(4)$,

$$\sigma\tau = (1, 2, 3)(1, 3)(2, 4) = (1, 4, 2) \in \text{Sym}(4).$$

Note: here, $\sigma \tau \neq \tau \sigma$, since $1^{\sigma \tau} = 4$ but $1^{\tau \sigma} = (1^{\tau})^{\sigma} = 3^{\sigma} = 1$. Identity 1 = () satisfies $1\sigma = \sigma 1 = \sigma$ for $\sigma \in \operatorname{Sym}(n)$.

Permutation groups

Note: for $g, h, k \in \text{Sym}(n)$, (i) $gh \in \text{Sym}(n)$, (ii) $1 = () \in \text{Sym}(n)$, (iii) $g^{-1} \in \text{Sym}(n)$, (iv) (gh)k = g(hk). If true for subset:

Definition (permutation group)

Permutation group of degree *n* is subset $G \leq \text{Sym}(n)$ satisfying:

- (i) **(closure)** $gh \in G$ for $g, h \in G$;
- (ii) **(identity)** $1 = () \in G$;
- (iii) (inverses) $g^{-1} \in G$ for $g \in G$.

Example (alternating group)

Alternating group $Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\} < Sym(3).$

In general, Alt(n) is all *even* permutations of [n] (product of even # of *transpositions* (i, j), e.g. (1, 2, 3) = (1, 2)(1, 3)).

Generating a group

Definition (generator)

Set X **generates** G if every $g \in G$ is $g = x_1^{\pm 1} \cdots x_r^{\pm 1}$ for some $r \in \mathbb{N}$, $x_i \in X$ **generators**; write $G = \langle X \rangle$.

(If $G = \langle X \rangle$ for some X with |X| = 1, G is **cyclic**.)

Example (cyclic group)

Consider Alt(3) = {(), (1, 2, 3), (1, 3, 2)}: (1, 2, 3)² = (1, 3, 2), (1, 2, 3)³ = (), so Alt(3) = $\langle (1, 2, 3) \rangle$ is cyclic (only for n = 3).

Example (symmetric group)

Consider $Sym(3) = \{(), (1, 2), (1, 3), (2, 3), (1, 2, 3), (1, 3, 2)\}.$

Not cyclic, but $Sym(3) = \langle (1,2), (2,3) \rangle$ (adjacent swaps).

Also, $Sym(3) = \langle (1, 2), (1, 2, 3) \rangle$, e.g. (2, 3) = (1, 2, 3)(1, 2).

Group actions

Definition (group action)

For (perm) group G and set $\Omega \neq \emptyset$, a G-action is map $\Omega \times G \to \Omega$, $(\alpha, g) \mapsto \alpha^g$ s.t. $\alpha^1 = \alpha$ and $\alpha^{gh} = (\alpha^g)^h$ for $\alpha \in \Omega$ and $g, h \in G$.

Degree of action is $|\Omega|$.

Idea: $\alpha \in \Omega$ is *state*, apply *move* $g \in G$ to get state $\alpha^g \in \Omega$, in way that respects permutation product.

Example (natural action)

 $G \leq \operatorname{Sym}(n)$ acts on $\Omega = [n]$ by $\alpha^g := \alpha^g$ (image) for $\alpha \in [n], g \in G$.

Example (right regular action)

Perm group G acts on $\Omega = G$ (itself) via $\alpha^g := \alpha g$ for $\alpha, g \in G$. (Check: $\alpha^1 = \alpha 1 = \alpha$ and $\alpha^{gh} = \alpha(gh) = (\alpha g)h = (\alpha^g)^h$.)

6

Group actions (ii)

Example (dihedral group)

Let $r = (1, 2, 3, 4), s = (1, 4)(2, 3) \in \text{Sym}(4)$. **Dihedral group** is $D_8 := \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\}$, "symmetries of square".

Note: sr = (2,4), $sr^2 = (1,2)(3,4)$. Action of D_8 on vertices of square (labelled by [4]): $g \in D_8$ sends vertex at i to i^g .

Orbits and stabilisers

Definition (orbit)

If G acts on Ω , then **orbit** of $\alpha \in \Omega$ is $\alpha^G := \{\alpha^g : g \in G\}$. *Idea:* states $\alpha^g \in \Omega$ reachable from fixed $\alpha \in \Omega$ by moves $g \in G$.

Definition (stabiliser)

If G acts on Ω , then **stabiliser** of $\alpha \in \Omega$ is $G_{\alpha} := \{g \in G : \alpha^g = \alpha\}$. *Idea:* moves $g \in G$ that fix given $\alpha \in \Omega$.

Example (natural action)

 $G = Alt(3) = \{(), (1, 2, 3), (1, 3, 2)\}$ acts on $\Omega = [3]$ naturally. Orbit of 1 is $1^G = \{1, 2, 3\} = [3]$; stabiliser of 1 is $G_1 = \{()\} = 1$.

One orbit only: **transitive** action.

Orbits and stabilisers (ii)

Orbit α^G : states $\alpha^g \in \Omega$ reachable from fixed α by moves $g \in G$. Stabiliser G_α : moves $g \in G$ that fix given α .

Example (dihedral group)

Recall
$$G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$$
 where $r = (1, 2, 3, 4), s = (1, 4)(2, 3).$

Orbit of 1:
$$1^1 = 1$$
, $1^r = 2$, $1^{r^2} = 3$, $1^{r^3} = 4$, so $1^G = [4]$ (transitive).

Stabiliser of 1:
$$sr = (2, 4)$$
, $sr^2 = (1, 2)(3, 4)$, $sr^3 = (1, 3)$, so $G_1 = \{(), (2, 4)\} = \{1, sr\}$.

Note:
$$|1^G||G_1| = 4 \cdot 2 = 8 = |G|$$
. Coincidence?

Theorem (orbit-stabiliser)

If G acts on Ω , then for $\alpha \in \Omega$, $|\alpha^G| |G_\alpha| = |G|$.

Blocks and primitivity

Definition (block)

If G acts transitively on Ω and $\Delta \subseteq \Omega$, let $\Delta^g := \{\alpha^g : \alpha \in \Delta\}$.

A **block** is $\Delta \subseteq \Omega$ with $\Delta^g = \Delta$ or $\Delta^g \cap \Delta = \emptyset$ for all $g \in G$.

Block is **nontrivial** if $|\Delta| > 1$ and $\Delta \neq \Omega$.

Examples of blocks: singletons, Ω , orbits.

Definition (primitivity)

A *transitive G*-action is **primitive** if there are no nontrivial blocks; otherwise it is **imprimitive**.

If *G* is perm group with primitive natural action, *G* is **primitive**.

For block Δ , define **block system** $\Sigma = \{\Delta^g : g \in G\}$ (partitions Ω); then G acts on Σ ; if Δ is *maximal*, then acts primitively.

Blocks and primitivity (ii)

Example (dihedral group)

Recall $G = D_8 = \langle r, s \rangle = \{1, r, r^2, r^3, s, sr, sr^2, sr^3\} \le \text{Sym}(4)$ where r = (1, 2, 3, 4), s = (1, 4)(2, 3), sr = (2, 4).

Block is $\Delta = \{1, 3\}$ (nontrivial) with block system $\Sigma = \{\{1, 3\}, \{2, 4\}\}$ (opposite vertices stay opposite):

e.g.
$$\Delta^r = \{2, 4\}, \Delta^s = \{4, 2\}, \Delta^{sr} = \{1, 3\} = \Delta$$
.

 D_8 acts imprimitively on [4] but primitively on Σ (degree 2).

The Rubik's group (an application)

Representing the cube and its operations

Rubik's cube has 6 faces, each with 3×3 small *stickers*.

In **solved state** 1, label stickers (except each centre) using [48]:

6 **generators** (*moves* in CC): *U*, *L*, *F*, *R*, *B*, *D* (rot. *clockwise*).

Representing the cube and its operations (ii)

From *solved state* 1, consider *F* which rotates front face clockwise:

$$F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)$$

$$(7, 28, 42, 13)(8, 30, 41, 11) \in Sym(48).$$

The Rubik's group of permutations

Generators as permutations of labels [48]:

- U = (1, 3, 8, 6)(2, 5, 7, 4)(9, 33, 25, 17)(10, 34, 26, 18)(11, 35, 27, 19)
- L = (9, 11, 16, 14)(10, 13, 15, 12)(1, 17, 41, 40)(4, 20, 44, 37)(6, 22, 46, 35)
- F = (17, 19, 24, 22)(18, 21, 23, 20)(6, 25, 43, 16)(7, 28, 42, 13)(8, 30, 41, 11)
- R = (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(8, 33, 48, 24)
- B = (33, 35, 40, 38)(34, 37, 39, 36)(3, 9, 46, 32)(2, 12, 47, 29)(1, 14, 48, 27)
- $\bullet \ \ D=(41,43,48,46)\,(42,45,47,44)\,(14,22,30,38)\,(15,23,31,39)\,(16,24,32,40)$

Operation is sequence of generators and inverses. E.g. $RUR^{-1}U^{-1}$, $URU^{-1}L^{-1}UR^{-1}U^{-1}L$, $RUR^{-1}URU^{2}R^{-1}U^{2}$, 1 = ().

Definition (Rubik's group)

 $\mathcal{G} = \langle U, L, F, R, B, D \rangle \leq \operatorname{Sym}(48)$ is permutation group of degree 48, called **Rubik's group**.

Clearly G is finite, but what is |G|?

The Rubik's group of permutations (ii)

GAP code to define generators and $G = \langle U, L, F, R, B, D \rangle$ (as G):

```
1 \cup 1 = (1, 3, 8, 6)(2, 5, 7, 4)(9,33,25,17)(10,34,26,18)
      (11.35.27.19)::
2 L := (9,11,16,14)(10,13,15,12)(1,17,41,40)(4,20,44,37)(
      6.22.46.35)::
3 \text{ F} := (17,19,24,22)(18,21,23,20)(6,25,43,16)(7,28,42,13)(
      8,30,41,11);;
4 R := (25, 27, 32, 30)(26, 29, 31, 28)(3, 38, 43, 19)(5, 36, 45, 21)(
      8.33.48.24)::
5 B := (33,35,40,38)(34,37,39,36)(3,9,46,32)(2,12,47,29)(
      1,14,48,27);;
6 D := (41,43,48,46)(42,45,47,44)(14,22,30,38)(15,23,31,39)
      (16,24,32,40);;
7 G := Group( U, L, F, R, B, D );
```

Order cmd: $|\mathcal{G}| = 43\,252\,003\,274\,489\,856\,000 \approx 4.3 \cdot 10^{19}$. How?

Orbits and stabilisers

Two \mathcal{G} -orbits: corner pieces $1^{\mathcal{G}}$, edge pieces $2^{\mathcal{G}}$.

Transitive action of Rubik's group on corners

 ${\mathcal G}$ acts transitively on corner stickers $1^{{\mathcal G}}.$ In this action:

FRU corner $\{8, 25, 19\}$ is maximal block (3 stickers never separate);

$$\Sigma = \{\{1, 35, 9\}, \{6, 11, 17\}, \{40, 46, 14\}, \{27, 3, 33\}, \\ \{8, 25, 19\}, \{16, 41, 22\}, \{32, 48, 38\}, \{24, 43, 30\}\}$$

is system of imprimitivity (containing 8 corners).

 \mathcal{G} acts primitively on Σ (degree 8); $g \in \mathcal{G}$ induces permutation of Σ . Overall, \mathcal{G} induces every perm of Σ (so Sym(8) "is inside" \mathcal{G}).

Bases and stabiliser chains

Primitive subgroups of affine groups

Affine groups

Definition

Large base permutation groups

Definition

Large base permutation groups (ii)

Liebeck

Moscatiello, Roney-Dougal

Main result

Statement

Main result (ii)

Approach (dot points/observations)

Main result (iii)

Conjecture

Concluding remarks

References and resources

- Analyzing Rubik's cube with GAP: https://www.gap-system.org/Doc/Examples/rubik.html
- J.A. Paulos *Innumeracy* (book)
- Holt *Handbook of Computational Group Theory* (textbook)
- Dixon and Mortimer Permutation Groups (textbook)
- Orders of elements in Rubik's group (1260 largest, 13 smallest without, 11 rarest, 60 most common, median 67.3, 73 options): https://www.jaapsch.net/puzzles/cubic3.htm#p34
- Thistlethwaite's 52 move algorithm (using group theory): https://www.jaapsch.net/puzzles/thistle.htm