

신용카드 사용자 연체 예측 시 경진대회

Team: Triple J (이현정, 전은진, 조심재)

Date: 2021.05.23

Dac

CONTENTS

신용카드 사용자 연체 예측 AI 경진대회

FEATURE ENGINEERING 데이터 전처리 및 가공

MODELING 모델 학습 및 튜닝

신용카드 사용자 연체 예측 AI 경진대회

#01 INTRODUCTION purpose of competition

신용카드 사용자 데이터를 보고 사용자의 대금 연체 정도를 예측하는 알고리즘 개발 목적

INTRODUCTION

DATA SET

	ROWS	COLS	SIZE(mb)
train	26,457	20	3.3
test	10,000	19	1.3
sample_submission	10,000	4	0.12

이 대회에서 사용되는 Dataset은 신용카드 대금 연체를 기준으로 가공한 feature이므로 대회에 사용된 데이터 셋은 일반 통계자료와 상이하다.

사용된 데이터: Xiong Xuetang (https://mp.weixin.qq.com/s/upjzuPg5AMIDsGxlpqnoCg)

Overview Of Competition

Competition Timeline

April 5th, 2021 ~ May 24th, 2021

Duration Of Participation

25 days (April 30th , 2021 ~ May 24th, 2021)

Participants

3 persons

EXPLORATORY DATA ANALYSIS (FDA)

EDA

변수 정의

EDA

변수 정의

Tableau를 사용하여 시각화를 진행

종속변수 - Credit

숫자가 작을수록 더 높은 신용도를 가진 사용자를 의미함

Credit이 2의 분포가 가장 높은 것을 확인할 수 있다

빅데이터 시각화

Tablea 从器

인텔리전스에 중점을 둔 대화 형 데이터 시각화 소프트웨어를 사용

시각화 진행

Tableau를 사용하여 시각화를 진행

#03

FEATURE ENGINEERING

데이터 가공 및 전처리

#03

FEATUREENGNEEING

데이터 가공 및 전처리

Logloss를 줄이기 위한 방법론

FEATURE ENGINEERING

방법 1) 변수 삭제

Flag Mobile & Credit

Flag Mobil

신용카드 사용자 예측 AI 경진대회

'Flag Mobil' feature의 경우 모두 1로 이루어져있다.

분석하는데 있어서 의미가 없다고 판단!

Drop한 변수	Log Loss	
Index	0.731	
Index, Flag Mobil	0.736	

모두 1로 이루어진 변수인 'Flag Mobil'을 Drop한 뒤의 "Log Loss"를 비교

오히려 더 높게 측정

방법 2) 그룹화 - Income Total

방법 2) 그룹화 - Child Num

- 'child_num'(자녀 수)이 1 이상일 경우
- '자녀 있음' 으로 그룹화
- child_num을 자녀 유무(0,1)로 변수를 재정의하였다.

FEATURE ENGINEERING

방법 2) 그룹화 - Begin Month

- 'begin_month'가 0개월~ 3개월까지의 신용도
- 낮은 신용도 분포
- 신용카드를 발급했을 때 신용도가 소폭 하락하는 경향을 보임
- 따라서 begin_month(카드 발급월)를 12개월 단위로 묶어서 'begin_year'로 재정의

FEATURE ENGINEERING

방법 2) 그룹화 - Day Employed

- 'day_employed'의 분포에서의 "365243"
 - NULL 값
- 'day_employed'를 365일로 나누어 **범주화** 하였다.

신용카드 사용자 예측 AI 경진대회

방법 2) 그룹화 - Day Birth

Age & Credit

'day_birth'를 365일로 나누어 'Age'로 재정의하였다.

변수 제거 & 그룹화 결론

과적합은 줄어들지만 정확도(Accuracy)까지 줄어들어 Log loss 는 커졌다.

사용하는 데이터셋이 프로그램으로 가공된 데이터이기 때문에 특정 경향을 띄고 있다.

따라서 EDA를 기반으로한 판단대로 변수를 제거하거나 그룹화하게되면 그 경향에서도 멀어지기 때문에 Log loss 또한 안좋게 나온 것으로 보인다.

방법 3) 중복 데이터

중복 데이터가 분석에 끼치는 영향은?

- 중복 데이터가 있을 경우, 분석에 안좋은 영향 끼칠 가능성 UP

이러한 영향을 최소화하기 위해서 "중복 데이터를 제거" 하였다.

1 over	lap_be	gin.groupby('c	redit')['credit'].value_counts()
credit 0.0 1.0 2.0 Name: c	0.0 1.0 2.0	2049 4390	

	Log loss
중복 데이터 제거 전	0.723
중복 데이터 제거 후	0.735

중복 데이터 제거 전의 Log loss가 더 좋게 나옴!

방법 4) 불균형 데이터

- 불균형 데이터인 변수들: reality, income_total, income_type, edu_type, family_type, house_type, family_size 등

대부분 Feature 들이 불균형한 데이터 분포를 띄는 것을 확인할 수 있다.

방법 4) 불균형 데이터

불균형 데이터로 인한 발생 문제

① 과적합 문제가 발생

✓ ② 정확도는 높아질 수 있지만 분포가 작은 값에 대한 정밀도와 클래스의 재 현율이 낮아지는 문제가 발생할 수 있다.

데이터셋의 불균형 문제를 해결하기 위해 Over Sampling과 Under Sampling의 단점을 보완한 Combine Sampling 기법을 채택하였다!

	Log loss
Before 불균형 데이터 처리	0.7936
After SMOTE	0.7128
After SMOTE + ENN	0.5615
After SMOTE + TOMEK	0.7043

중복 데이터 & 불균형 데이터 처리 결론

불균형 데이터 처리

정확도는 높아지지만 변수선택, 그룹화의 결론과 같이 Test 데이터 셋의 경향에서 벗어남

크게 과적합되어 결과적으로 Logloss가 커짐

- 만약 가상의 데이터 셋이 아닌 실제 데이터 셋이라면 중복 데이터 삭제 후 불균형 데이터 처리하는 것이 굉장히 좋은 Skill이 될 것이라 생각한다.

방법 5) High Cardinality 처리

Cardinality

- ① 전체 행에 대한 특정 컬럼의 중복 수치를 나타내는 지표
- ② 중복도가 낮을 수록 Cardinality가 높으며 중복도가 높을 수록 Cardinality가 낮다.
- ③ 여러 컬럼을 동시에 인덱싱할 때 Cardinality가 높은 컬럼(중복이 적은 컬럼)을 우선순위를 두는 것이 인덱싱 전략에 유리하다.

High Cardinality 처리하는 Encoding 방식

- Encoding 방법
- One-hot, Label, Binary, BaseN, Hashmap Encoding
- 데이터 타입에 따른 Encoding 방법
- ☑ Binary Encoder: 서열척도이며 High Cardinality인 경우
- Hashing Encoder: 명목척도이며 High Cardinality인 경우

Occyp Type & Credit

FEATURE ENGINEERING

방법5) High Cardinality 처리

High Cardinality Feature

명목형 family_type, house_type, edu_type, occup_type

순서형 Days_employ, begin_month

데이터 전처리 및 가공

High cardinality 사용하여 인코딩을 하였을때 logloss는 향상되지 않았다.

✓ High cardinality를 사용하면 과적합이 큰 폭으로 줄어듬

High Cardinality 결론

#04 MODELING

모델링 학습 및 튜닝

MODELING

Optuna

- 하이퍼파라미터 튜닝에 쓰고 있는 최신 Automl 기법이다.
- 빠르게 튜닝이 가능하다는 장점이 있다.
- 하이퍼파라미터 튜닝 방식을 지정할수 있다. 직관적인 api인 튜닝된 lightgbm도 제공해준다.
- 다른 라이브러리들에 비해 직관적인 장점이 있어 코딩하기 용이하다.

기본 LightGBM 0.7281 File LightGBM 0.7107

MODELING

최종 결론

- 의 우리가 사용하는 data set의 경향을 해치는 것은 좋지않을것이라고 판단.
- o train set과같은 평균과 분산의 데이터셋을 만들어 합쳐 좀더 강력한 모델을 만들면 logloss가 상향될 것이라 판단.

그 가정대로 모델링을 한 결과, logloss가 상향되었다.

	최종 등수	점수
트리플 J	259	0.71072

#05

REFERENCES

REFERENCES

- [1] Jun, E. J. (2021, May 5). 신용카드연체예측대회_시각화. Tableau Public. (https://public.tableau.com/profile/eunjin.jun#!/vizhome/credit_eda_jej/creditcard_ai_jej)
- [2] Lee, H. J. (2021, May 5). 신용카드연체예측대회_시각화. Tableau Public. (https://public.tableau.com/profile/.56695351#!/vizhome/HJ_credit_eda/incomeTotal?publish=yes)
- [3] LEE, H. J. 깃허브 everyGit/Dacon_credit (https://github.com/ggaggu/everyGit.git)

신용카드 사용자 예측 AI 경진대회

THANKYOU

신용카드 사용자 연체 예측 AI 경진대회

Team: 이현정, 전은진, 조심재

Triple J