- 1. Suppose that **A** is not diagonalizable. Construct a matrix **E** such that for sufficiently small $\epsilon > 0$ the matrix $\mathbf{A} + \epsilon \mathbf{E}$ is diagonalizable.
- 2. Prove that if **A** is skew symmetric, then $e^{\mathbf{A}}$ is orthogonal.
- 3. (a) Consider the linear, autonomous system of ODEs

$$\frac{\mathrm{d}\vec{x}}{\mathrm{d}t} = \mathbf{A}\vec{x}, \ \vec{x}(t=0) = \vec{b}.$$

Write an explicit expression for a matrix $\mathbf{L}(t)$ such that

$$\vec{x}(t) = \mathbf{L}(t)\vec{b}.$$

- (b) Consider the problem of finding a direction for the vector \vec{b} that will lead to the largest \vec{x} (amplitude measured using the 2-norm) at a fixed time T. Explain how to find both the forcing vector \vec{b} and the solution vector \vec{x} using the SVD of \mathbf{L} .
- (c) Suppose that **A** is symmetric. How is the optimal vector \vec{b} from (b) related to the eigenvectors of **A**?
- 4. Prove the following: If $\|\mathbf{F}\| < 1$ where $\|\cdot\|$ is an operator norm, then

$$(\mathbf{I} - \mathbf{F})^{-1} - \mathbf{I} = \mathbf{F}(\mathbf{I} - \mathbf{F})^{-1}.$$

- 5. Consider the matrix $\vec{u}\vec{v}^T$ where \vec{u} and \vec{v} are unit vectors and $\vec{u} \cdot \vec{v} \neq 0$.
 - (a) What are the eigenvalues and eigenvectors of this matrix?
 - (b) Is the matrix diagonalizable?
 - (c) Find an explicit expression for a matrix **X** such that $\mathbf{X}^2 = \mathbf{I} + \vec{u}\vec{v}^T$.
 - (d) Find an explicit expression for $(\mathbf{I} + \vec{u}\vec{v}^T)^{-1}$ assuming that $\vec{u} \cdot \vec{v} \neq -1$.
- 6. Prove the following: the iteration defined by $\vec{x}_{k+1} = \mathbf{B}\vec{x}_k$, where $\mathbf{B} \in \mathbb{R}^{n \times n}$ and $\vec{x}_k \in \mathbb{R}^n$, converges to $\vec{0}$ for every initial condition \vec{x}_0 if and only if $\rho(\mathbf{B}) < 1$ where $\rho(\mathbf{B})$ is the spectral radius of \mathbf{B} .