Medições

Flaviano Williams Fernandes

Instituto Federal do Paraná Campus Irati

14 de julho de 2022

Prof. Flaviano W. Fernandes IFPR-Irati

Sumário

Prof. Flaviano W. Fernandes

Por que usamos potências da base 10?

conteúdo...

Prof. Flaviano W. Fernandes

Notação científica

Um número qualquer pode ser expresso como o produto de um número (n) que seja maior ou igual a 1 menor do que 10, por uma potência de 10 com expoente (m) adequado,

ou na forma

$$n \times 10^m$$

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Transformando um número em notação científica

- Passo 1: Escrever o número incluindo a vírgula.
- Passo 2: Andar com a vírgula até que somente reste um número diferente de zero no lado esquerdo.
- Passo 3: Colocar no expoente da potência de 10 o número de casas decimais que tivemos que "andar"com a vírgula. Se ao andar com a vírgula o valor do número diminuiu, o expoente ficará positivo, se aumentou o expoente ficará negativo.

Exemplo

6 590 000 000 000 000, $0 = 6.59 \times 10^{15}$

Ordem de grandeza e os prefixos

- ✓ Ordem de grandeza de um número é a potência de 10 mais próxima desse número;
- ✓ A ordem de grandeza também pode ser expressa em prefixos (veja a tabela ao lado).

Notação científica descrita por prefixos.

exa	Е	10 ¹⁸
peta	Р	10 ¹⁵
tera	Т	10 ¹²
giga	G	10 ⁹
mega	M	10 ⁶
quilo	M	10 ³
hecto	M	10 ²
deca	М	10 ¹
:	÷	÷
mega quilo hecto	M M M	10 ⁶ 10 ³ 10 ²

Prof. Flaviano W. Fernandes IFPR-Irati

Conversão de unidades em uma dimensão

$$1 \text{ mm} = 1 \times 10^{(-1) \times 2} \text{ dm} \rightarrow 1 \times 10^{-2} \text{ dm}$$

$$2,5~kg=2,5\times10^{(1)\times6}~mg\rightarrow2,5\times10^6~mg$$

$$10 \text{ ms} = 10 \times 10^{(-1) \times 3} \text{ s} \rightarrow 10 \times 10^{-3} \text{ s}$$

Conversão de unidades em duas dimensões

$$1 \text{ mm}^2 = 1 \times 10^{(-2) \times \textcolor{red}{2}} \text{ dm}^2 \rightarrow 1 \times 10^{-4} \text{ dm}^2$$

$$2,5~\text{m}^2 = 2,5 \times 10^{(2) \times 3}~\text{mm}^2 \rightarrow 2,5 \times 10^6~\text{mm}^2$$

$$10 \text{ ms}^2 = 10 \times 10^{(-2) \times \textcolor{red}{3}} \text{ s}^2 \rightarrow 10 \times 10^{-6} \text{ s}^2$$

Conversão de unidades em três dimensões

$$1 \text{ mm}^3 = 1 \times 10^{(-3) \times 2} \text{ dm}^3 \rightarrow 1 \times 10^{-6} \text{ dm}^3$$

$$2,5~\text{m}^3 = 2,5 \times 10^{(3) \times 3}~\text{mm}^3 \rightarrow 2,5 \times 10^9~\text{mm}^3$$

$$2,5 \text{ km}^3 = 2,5 \times 10^{(3) \times 6} \text{ mm}^3 \rightarrow 2,5 \times 10^{18} \text{ mm}^3$$

Alfabeto grego

Alfa	Α	α
Beta	В	β
Gama	Γ	γ
Delta	Δ	δ
Epsílon	Ε	ϵ , ε
Zeta	Z	ζ
Eta	Η	η
Teta	Θ	heta
lota	1	ι
Capa	K	κ
Lambda	٨	λ
Mi	Μ	μ

V Ita

Ni	Ν	ν
Csi	Ξ	ξ
ômicron	0	0
Pi	П	π
Rô	Ρ	ρ
Sigma	Σ	σ
Tau	Τ	au
ĺpsilon	Υ	v
Fi	Φ	ϕ, φ
Qui	X	χ
Psi	Ψ	ψ
Ômega	Ω	ω

Referências e observações¹

A. Máximo, B. Alvarenga, C. Guimarães, Física. Contexto e aplicações, v.1, 2.ed., São Paulo, Scipione (2016)

Esta apresentação está disponível para download no endereço https://flavianowilliams.github.io/education

¹Este material está sujeito a modificações. Recomenda-se acompanhamento permanente.