Задание на третью неделю.

Булевы функции. Теорема Поста

- **Ех. 1.** Постройте СДНФ и СКНФ для функции $(xz + \overline{y}) \equiv (x \rightarrow y)$.
- **Ех. 2.** Постройте замыкание базиса $\{\neg, \oplus\}$.
- **Ех. 3.** Укажите существенные и несущественные (фиктивные) переменные функции $f(x_1, x_2, x_3) = 00111100$ и разложите ее в ДНФ и КНФ.
- **Ex. 4.** Докажите или опровергните полноту системы функций $\{+, \rightarrow\}$.
- **Ex. 5.** Пусть $f(x_1, ..., x_n)$ несамодвойственная функция. Докажите, что константы 0, 1 вычисляются в базисе $\{\neg, f\}$.
- **Ex. 6.** Запишите в виде КНФ функцию от п переменных, принимающую значение 0 лишь на $\vec{0}$ и на $\vec{1}$. Покажите, что эта функция равна дизъюнкции всевозможных скобок $(x_i + x_j)$, где $i \neq j$.
- **Ех. 7.** Функцию алгебры логики называют *симметрической*, если она не меняет своего значения при любой перестановке значений переменных местами. Покажите, что функция $\overline{xy} \lor \overline{yz} \lor \overline{zx}$ симметрическая. Найдите число симметрических функций от n переменных.
- **Ex. 8.** Докажите, что любая неконстантная симметрическая функция существенно зависит от всех своих переменных.
- **Ех. 9.** Докажите, что если система $\{f_1, \ldots, f_n\}$ полна, то и система двойственных функций $\{f_1^*, \ldots, f_n^*\}$ также полна.

Бонусная задача. Докажите, что штрих Шеффера и стрелка Пирса — единственные функции от двух переменных, через которые выражаются все функции алгебры логики.

Задание на третью неделю.

Булевы функции. Теорема Поста

- **Ех. 1.** Постройте СДНФ и СКНФ для функции $(xz + \overline{y}) \equiv (x \rightarrow y)$.
- **Ех. 2.** Постройте замыкание базиса $\{\neg, \oplus\}$.
- **Ех. 3.** Укажите существенные и несущественные (фиктивные) переменные функции $f(x_1, x_2, x_3) = 00111100$ и разложите ее в ДНФ и КНФ.
- **Ex. 4.** Докажите или опровергните полноту системы функций $\{+, \rightarrow\}$.
- **Ex. 5.** Пусть $f(x_1, ..., x_n)$ несамодвойственная функция. Докажите, что константы 0, 1 вычисляются в базисе $\{\neg, f\}$.
- **Ex. 6.** Запишите в виде КНФ функцию от п переменных, принимающую значение 0 лишь на $\vec{0}$ и на $\vec{1}$. Покажите, что эта функция равна дизъюнкции всевозможных скобок $(x_i + x_j)$, где $i \neq j$.
- **Ех. 7.** Функцию алгебры логики называют *симметрической*, если она не меняет своего значения при любой перестановке значений переменных местами. Покажите, что функция $\overline{xy} \lor \overline{yz} \lor \overline{zx}$ симметрическая. Найдите число симметрических функций от n переменных.
- **Ex. 8.** Докажите, что любая неконстантная симметрическая функция существенно зависит от всех своих переменных.
- **Ех. 9.** Докажите, что если система $\{f_1, \ldots, f_n\}$ полна, то и система двойственных функций $\{f_1^*, \ldots, f_n^*\}$ также полна.

Бонусная задача. Докажите, что штрих Шеффера и стрелка Пирса — единственные функции от двух переменных, через которые выражаются все функции алгебры логики.