

Ho Chi Minh City University of Technology

Faculty of Electrical and Electronics Engineering

iBot Hardware Description

Designed by FEEE Student Research Club - PayItForward

payitforward.edu.vn

Overview Main Controller Circuit Power Mechanical Circuit Frame iBot RF Wireless Sensors Data Transmis -sion (*) developed in 2015

Microcontroller

 MSP430G2 553 (16bit)

LED Display

- 2 statusindicating LEDs (blue – programmabl e)
- •1 power-on LED (yellow)

Buzzer

• 1 speaker (programm -able)

Buttons

2 buttons (programm -able)

Signal Bus

 Connecting between power circuit and sensors circuit.

- a) Connection diagram between signal pins from Launchpad Kit to other system modules.
- iBot uses MSP430 Launchpad Kit from Texas Instruments (TI), with 16-bit microcontroller (MCU) MSP430G2553

b) KIT MSP430 launchpad

at back side.

indicator LEDs R1 470R D1 PW LED 3.3V 0 1 VW 2 1 P2.0 1 W 2 1

SPEAKER LS₁ **SPEAKER** Q2SC1815 (Buzzer) soldered

a) LED and Buzzer digram

Student can program to control Indicator LED and Buzzer.

Buttons circuit diagram

- Student can use button 1 & 2 to finish tasks.
- Example: Press button 1 to run the robot, button 2 to stop

Connector circuit diagram between power circuit (left, 10-wire bus) and line detection sensor (right – 8-wire bus)/

HOLES

Complete Main Controller Circuit

10 2) Line Detection Sensor Circuit

Line detection circuit (line follower) consists of 3 pairs of LED photoresistor (LDR)

Working principle (updating)

Line Detection (line follower) Circuit

1 2) Line Detection Sensor Circuit

Line detection circuit (path tracking) consists of 3 pairs of LED – photoresistor (LDR)

Line follower circuit connects with main control circuit by one 8-wire bus.

12 3) Power Circuit: controlling DC motors

H-bridge circuit working principle:

3) Power Circuit: controlling DC motors

Main IC controlling the power circuit is the MSP430G2553

14 3) Power Circuit: controlling DC motors

Connecting bus to main controller (MCU MSP430G2553 on top plate)

Level-shifting buffer circuit for signals from MCU to power components

3) Power Circuit: controlling DC motors

H-Bridge circuit controls one motor (2 circuits for 2 motors)

3) Power Circuit: controlling DC motors

- a) Voltage measuring circuit
- b) Load current measuring circuit
- c) Power circuit: 6VDC input from batteries, converting to 3v3 for MCII

3) Power Circuit: controlling DC motors

Over-current protection circuit (checking signal from current measurement circuit)

18 4) Module CC110L RF BoosterPack

Texas Instrument's RF CC110L Module is placed on top, responsible for transmit wireless data through RF signal.

To be developed in 2015.

19 5) Robot Chassis

The robot chassis to be used is Magician Chassic from SparkFun Electronics (US).

Link: https://www.sparkfun.com/products/10825

Measurement: 110 x 174mm

Technical specifications:

- Maximum voltage for motor: 6VDC
- No-load speed: 90±10rpm
- No-load current: 190mA (max.250mA)
- Torque: 800gf.cm
- Stall Current: ~1A
- Wheel diameter: 65mm (30mm)

Wide)

5) Robot Chassis

Magician Chassis Kit's components: 2 DC Motor + Wheels + Encoder, omni wheel, 4 AA batteries package, acrylic plates and general mechanical items.

