Міністерство освіти і науки України Національний технічний університет України "КПІ" Факультет інформатики та обчислювальної техніки

Кафедра автоматизованих систем обробки інформації та управління

3BIT

до лабораторної роботи № 1 з предмету:

"ОСНОВИ ТЕХНОЛОГІЙ ПРОГРАМУВАННЯ"

Виконав студент	ІП-61 Кушка Михайло Олександрович, 2-й курс, ІП-6116	
	(№ групи, прізвище, ім'я, по батькові, курс, номер залікової книжки)	
Прийняв	Подрубайло О.О.	
	(посала прізвище ім'я по батькові)	

Київ 2018

3MICT

1.	ПОСТАНОВКА ЗАДАЧІ	3
2.	висновок	4
3.	КОД ПРОГРАМИ	5

1. ПОСТАНОВКА ЗАДАЧІ

- 1. Визначити C_2 як остачу від ділення номера залікової книжки студента на 2, C_3 як остачу від ділення номера залікової книжки студента на 3, C_5 як остачу від ділення номера залікової книжки студента на 5, C_7 як остачу від ділення номера залікової книжки студента на 7.
- 2. В залежності від С₂ визначити операцію О1:

C_2	Операція О1
0	+
1	_

- 3. Визначити константу С, яка дорівнює значенню С₃.
- 4. В залежності від C₅ визначити операцію О2:

C_5	Операція О2	
0	*	
1	/	
2	%	
3	+	
4	-	

5. В залежності від C_7 визначити тип індексів *і* та *j*:

C_7	тип індексів i та j	
0	byte	
1	short	
2	int	
3	long	
4	char	
5	float	
6	double	

- 6. Створити клас, який складається з виконавчого методу, що виконує обчислення значення функції $S = \sum_{i=0}^{n} \sum_{j=0}^{m} \frac{i \text{ O2 } j}{i \text{ O1 C}}$ із зазначеним типом індексів (п.5), операціями
 - $(п.2 \ ta \ n.4)$ та константою (п.3). Результатом виконання дії ε єдине значення дійсного типу. Необхідно обробити всі виключні ситуації, що можуть виникнути під час виконання програмного коду. Всі змінні повинні бути описані та значення їх задані у виконавчому методі.

$$6116 \% 2 == 0 (O_1 == ' + ')$$

$$6116 \% 3 == 2 (C_3 == 2)$$

$$6116 \% 5 == 1 (O_2 == '/')$$

$$6116 \% 7 == 5 (type == 'float')$$

2. ВИСНОВОК

Оскільки основною метою цієї лабораторної роботи було ознайомитися з основними особливостями мови програмування Java, то сама структура програми була не складною. Тому і складностей у її реалізації такою мовою програмування було не складно.

3. КОД ПРОГРАМИ

```
/**
 * Java labs- Lab1
 * @version 1.0 2018-02-09
 * @author Misha Kushka
import java.util.Scanner;
class Expression {
      double result;
      double i, j;
      int n, m;
      final int C;
      Expression(int _C, int _n, int _m) {
            n = _n;
            m = _m;
            C = C;
            result = 0;
      }
      double calcExpression() {
            double after_op1, after_op2;
            for (float i = 0; i \le n; i++) {
                   for (float j = 0; j \leftarrow m; j++) {
                         after_op1 = i / (float)j;
                         after_op2 = i + C;
                         result += after_op1 / after_op2;
                         if (Double. isNaN(result)) {
                                System.out.println("NaN - try another start number.");
                                System.exit(0);
                         }
                   }
            }
            return result;
      }
}
public class First {
    public static void main(String[] args) {
        final int C = 2;
        String <u>n_str</u>, <u>m_str</u>;
        int n = -1, m = -1;
        // Enter n and m
        Scanner scanner = new Scanner(System. in);
        // Read n
        while (true) {
```

```
System.out.print("Enter n: ");
          try {
                    n = Integer.parseInt(scanner.nextLine());
                    if (n < 0) {
                          System.out.println("n must be positive");
          } catch (NumberFormatException e) {
                    System.out.println("n must be an int number");
          }
          if (n >= 0) {
                    break;
          }
    }
 // Read m
    while (true) {
          System.out.print("Enter m: ");
          try {
                    m = Integer.parseInt(scanner.nextLine());
                    if (m < 0) {
                          System.out.println("m must be positive");
          } catch (NumberFormatException e) {
                    System.out.println("m must be an int number");
          }
          if (m >= 0) {
                    break;
          }
    }
    System.out.println("n = " + n);
    System.out.println("m = " + m);
    Expression exp = new Expression(C, n, m);
    System. out. println(String. format("S = %.5g%n", exp.calcExpression()));
}
```

}