O2 Full bit Comp

Truth table for input 'a' and 'b' and outfuts 'g', 'l' and outfuts 'g', 'l'

a	b	g (a>b)	I (a <b)< th=""><th>e (a==b)</th></b)<>	e (a==b)
00	00	0	0	1
00	01	0	1	0
00	10	0	1	0
00	11 .	. 0	1	0
01	00	1	0	0
01	01	0	0	1
01	10	0	1	0
01	11	0	1	0
10	00	1	0	0
10	01	1	0	0
10	10	0	0	1
10	11	0	1	0
11	00	1	0	0
11	01	1	0	0
11	10	1	0	0
11	11	0	0	1

K-Map redudion: -

g		1- mplicant							
	b,b0 \	00	٥١	1.1	10 2- inplicant				
	00	٥	1	1					
	01	٥	۵	1	1				
	1 /	٥	٥	0	٥				
	ιD	0	0		0				
					2 inflicant				

$$g = \sum m(1,2,3,6,7,11)$$

$$g = a_1b_1 + a_0a_1b_0 + a_0b_0b_1$$
(using K-nap)

0 0 2- Puplicant

$$Q = \sum m(4, 8, 9, 12, 13, 14)$$

$$l = \overline{a_1b_1} + \overline{a_0a_1b_0} + \overline{a_0b_0b_1}$$
(using K-map)

0

bib.	00	01	u	l D
00	0	0	٥	٥
01	٥	0	0	٥
1.1	0	٥		б
10	٥	0	O	1

All ove 0 inflicents. So, no reduction for sible using K-Maps.

But we can write e as follows to reduce the no. of MUXs required By Som of min-terms, we know that $1 = g + l + e = \sum_{i=0}^{15} m_i^2 \qquad -(1)$

and ge=0, de=0 (as they have 0 common min-terms) (g+1)e=0 — (2)

Multiplying
$$\overline{(g+1)}$$
 $\stackrel{\circ}{\text{ln}}(1)$ —
$$\overline{(g+1)} = 0 + e.\overline{(g+1)} \qquad \text{(wing } p.\overline{p} = 0\text{)}$$

$$e.\overline{(g+1)} = \overline{g+1}$$

$$e.\overline{(g+1)} = \overline{g+1} \qquad \text{(Adding}(2))$$

$$e = \overline{g}.\overline{1}$$