lab2

April 15, 2022

1 lab 2

Amit Avigdor 316178144 & Barak Bonker 316177708

```
[]: import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline
```

```
[]: file = pd.read_csv('company_sales_data.csv')
file.head()
```

[]:	month_number	facecream	facewash	toothpaste	bathingsoap	${ t shampoo}$	\
0	1	2500	1500	5200	9200	1200	
1	2	2630	1200	5100	6100	2100	
2	3	2140	1340	4550	9550	3550	
3	4	3400	1130	5870	8870	1870	
4	5	3600	1740	4560	7760	1560	

```
moisturizer total_units total_profit
0
          1500
                      21100
                                    211000
1
          1200
                       18330
                                    183300
2
          1340
                       22470
                                    224700
3
          1130
                       22270
                                    222700
          1740
                       20960
                                    209600
```

```
[]: plt.plot(file["month_number"],file["total_profit"])
   plt.title("Company profit per month")
   plt.xlabel("Month Number")
   plt.ylabel("Total profit")
   plt.yticks(range(100000,6000000,100000))
   plt.xticks(range(1,13))
   plt.show()
```



```
Task 2
```

```
[]: file = pd.read_csv('company_sales_data.csv')
file.head()
```

```
[]:
        month_number
                       facecream
                                  facewash
                                             toothpaste
                                                         bathingsoap
                                                                       shampoo \
                                                   5200
                                                                 9200
                                                                           1200
                            2500
                                       1500
     1
                   2
                            2630
                                       1200
                                                   5100
                                                                 6100
                                                                          2100
     2
                    3
                                                   4550
                                                                 9550
                                                                           3550
                            2140
                                       1340
     3
                    4
                                                   5870
                                                                 8870
                                                                           1870
                            3400
                                       1130
                   5
                            3600
                                       1740
                                                   4560
                                                                 7760
                                                                           1560
        moisturizer
                     total_units total_profit
```

```
0
           1500
                        21100
                                       211000
1
           1200
                        18330
                                       183300
2
           1340
                        22470
                                       224700
3
           1130
                        22270
                                       222700
           1740
                        20960
                                       209600
```

```
[]: plt.plot(file["month_number"],file["total_profit"], linestyle='dashed', □

⇒linewidth=3, marker='o', color="r", markerfacecolor='k', label="Profit data□

⇒of last year")

plt.title("Company Sales data of last year")

plt.xlabel("Month Number")
```

```
plt.ylabel("Sold units number")
plt.yticks(range(100000,600000,100000))
plt.xticks(range(1,13))
plt.legend(loc=4)
plt.show()
```



```
plt.yticks([1000,2000,4000,6000,8000,10000,12000,15000,18000])
plt.xticks(range(1,13))
plt.legend()
plt.show()
```


${\it Task}\ 4$

${\it Task}\ 6$

```
[]: plt.bar(file["month_number"],file["bathingsoap"])
  plt.title("bathingsoap sales data")
  plt.xlabel("Month Number")
  plt.ylabel("Sales units in number")
  plt.grid(linestyle='--')
  plt.xticks(range(1,13))
  plt.savefig('bathingsoap sales data.png',dpi=400)
  plt.show()
```


${\it Task}\ 7$

```
[]: plt.hist(file["total_profit"],label="Profit date")
  plt.title("Profit date")
  plt.xlabel("profit range in dollar")
  plt.ylabel("Actual Profit in dollar")
  plt.xticks([150000,175000,200000,250000,300000,350000])
  plt.yticks(range(0,6,1))
  plt.legend(loc=2)
  plt.show()
```


Task 8

[]: Text(0.5, 1.0, 'Sales data of a facewash')


```
[]: data = []
for i in range(1,7):
         data.append(file[file.columns[i]].tolist())
plt.stackplot(file["month_number"], data, labels = file.columns[1:7].tolist())
plt.title("All product sales data using stack plot")
```

```
plt.xlabel("Month Number")
plt.ylabel("Sales units in Number")
plt.yticks(range(0,30001,5000))
plt.legend(loc=2)
plt.show()
```

All product sales data using stack plot

Task 11

```
[]: import seaborn as sns
file = pd.read_csv('us-marriages-divorces-1867-2014.csv')
print(file.head())
```

	Year	Marriages	Divorces	Population	Marriages_per_1000	\
0	1867	357000.0	10000.0	36970000	9.7	
1	1868	345000.0	10000.0	37885000	9.1	
2	1869	348000.0	11000.0	38870000	9.0	
3	1870	352000.0	11000.0	39905000	8.8	
4	1871	359000.0	12000.0	41010000	8.8	

Divorces_per_1000

- 0 0.3 1 0.3 2 0.3
- 3 0.3

4 0.3

```
[]: sns.lineplot(x="Year",y="Marriages",label ="Marriages",data=file).

⇒set(title="Marriages & Divorces in US from 1867 to 2014")

sns.lineplot(x="Year",y="Divorces",label ="Divorces",data=file)

plt.show()
```



```
file = file.dropna()
plt.style.use('ggplot')
plt.plot(file['Year'], file['Marriages'], "-g", label="Marriages")
plt.plot(file['Year'], file['Divorces'], "-r", label="Divorces")
plt.title("Marriages & Divorces in US from 1867 to 2014")
plt.xlabel("Year")
plt.ylabel("Number of (in millions)")
plt.legend()
plt.show()
```



```
p = figure(x_range=Years, height=250, title="comparing the number of marriages_\( \)
      \hookrightarrow and divorces per capita in the U.S.",
                toolbar_location=None, tools="")
     p.vbar(x=dodge('Years', -0.1, range=p.x_range), top='Marriages', width=0.2,
      ⇒source=source,
            color="#c9d9d3", legend_label="Marriages")
     p.vbar(x=dodge('Years', 0.1, range=p.x_range), top='Divorces', width=0.2, u
      ⇒source=source,
            color="#718dbf", legend_label="Divorces")
     p.x_range.range_padding = 0.1
     p.xgrid.grid_line_color = None
     p.legend.location = "top_left"
     p.legend.orientation = "horizontal"
     show(p)
    Task 14
[]: import seaborn as sns
     file = pd.read_csv('actor_kill_counts.csv')
     file
[]:
                        Actor Count
       Arnold Schwarzenegger
                                  369
                 Chow Yun-Fat
                                  295
     1
     2
               Clint Eastwood
                                  207
                   Clive Owen
     3
                                  194
     4
               Dolph Lundgren
                                  239
                       Jet Li
     5
                                  201
     6
                 Nicolas Cage
                                  204
     7
           Sylvester Stallone
                                  267
```

```
[]: sns.barplot(x=file['Count'], y=file["Actor"])
plt.title("Actors kill count")
plt.show()
```

226

193

8

9

Tomisaburo Wakayama

Wesley Snipes


```
[]: file = pd.read_csv("roman-emperor-reigns.csv") file
```

[]:		Emperor	Length_of_Reign	Cause_of_Death
	0	Augustus	40.58	Possibly assassinated
	1	Tiberius	22.50	Possibly assassinated
	2	Caligula	4.83	Assassinated
	3	Claudius	13.75	Possibly assassinated
	4	Nero	13.67	Suicide
		•••	•••	
	63	Valentinian I	11.00	Natural causes
	64	Valens	14.00	Killed in battle
	65	Gratian	16.00	Assassinated
	66	Valentinian II	17.00	Possibly assassinated
	67	Theodosius I	16.00	Natural causes

[68 rows x 3 columns]

```
[]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

assassinated_emperors = file[file['Cause_of_Death'].apply(lambda x:

→'assassinated' in x.lower())]
```



```
[]: from bokeh.plotting import figure, show, output_notebook
file = pd.read_csv('arcade-revenue-vs-cs-doctorates.csv')
file
```

```
Г1:
      Year Total Arcade Revenue (billions) \
    0 2000
                                      1.196
    1 2001
                                      1.176
    2 2002
                                      1.269
    3 2003
                                      1.240
    4 2004
                                      1.307
    5 2005
                                      1.435
    6 2006
                                      1.601
    7 2007
                                      1.654
    8 2008
                                      1.803
```

9 2009 1.734

```
Computer Science Doctorates Awarded (US)
0
1
                                            830
2
                                            809
3
                                            867
4
                                            948
                                           1129
5
6
                                           1453
7
                                           1656
8
                                           1787
9
                                           1611
```

```
[]: graph = figure(title = "Arcade renenue to Computer Science Doctorates Awarded")
output_notebook()
graph.xaxis.axis_label = 'Total Arcade Revenue (billions)'
graph.yaxis.axis_label = 'Computer Science Doctorates Awarded (US)'
graph.circle(file["Total Arcade Revenue (billions)"], file["Computer Science
→Doctorates Awarded (US)"], size=12)
show(graph)
```

```
[]: import matplotlib.pyplot as plt
import numpy as np

file = file.dropna()
plt.style.use('fivethirtyeight')
plt.plot(file['Year'], file['Marriages'], label="Marriages")
plt.plot(file['Year'], file['Divorces'], label="Divorces")
plt.title("Marriages & Divorces in US from 1867 to 2014")
plt.xlabel("Year")
plt.ylabel("Number of (in millions)")
plt.legend()
plt.show()
```


Task 18 & 19

Task 20

```
[]: file = pd.read_csv('roman-emperor-reigns.csv') file.head()
```

[]:	Emperor	Length_of_Reign	Cause_of_Death
0	Augustus	40.58	Possibly assassinated
1	Tiberius	22.50	Possibly assassinated
2	Caligula	4.83	Assassinated
3	Claudius	13.75	Possibly assassinated
4	Nero	13.67	Suicide
		•••	•••
63	Valentinian I	11.00	Natural causes
63 64			
	Valentinian I	11.00	Natural causes
64	Valentinian I Valens	11.00 14.00	Natural causes Killed in battle
64 65	Valentinian I Valens Gratian	11.00 14.00 16.00	Natural causes Killed in battle Assassinated

[68 rows x 3 columns]

```
[]: sns.histplot(data=file, x="Length_of_Reign", kde=True) plt.show()
```


we can see that most of the emperors didnt reigned much, most of them even reigned less then 5 years and very little more then 25 years

Task 21

4

5

2417

2405

```
[39]: file = pd.read_csv('recent-college-grads-earnings.csv')
      file.head()
[39]:
         Rank
              Major_code
                                                                 Major
                                                                          Total \
                     2419
                                                PETROLEUM ENGINEERING
                                                                         2339.0
      0
            1
            2
      1
                     2416
                                       MINING AND MINERAL ENGINEERING
                                                                          756.0
      2
            3
                     2415
                                            METALLURGICAL ENGINEERING
                                                                          856.0
      3
                           NAVAL ARCHITECTURE AND MARINE ENGINEERING
```

1258.0

32260.0

CHEMICAL ENGINEERING

	Men	Women	Major_category	ShareWomen	Sample_size	Employed	 \
0	2057.0	282.0	Engineering	0.120564	36	1976	
1	679.0	77.0	Engineering	0.101852	7	640	
2	725.0	131.0	Engineering	0.153037	3	648	
3	1123.0	135.0	Engineering	0.107313	16	758	
4	21239.0	11021.0	Engineering	0.341631	289	25694	

	Part_time	Full_time_year_round	Unemployed	Unemployment_rate	Median	\
0	270	1207	37	0.018381	110000	
1	170	388	85	0.117241	75000	

```
0.024096
2
         133
                               340
                                                                     73000
                                            16
3
         150
                               692
                                            40
                                                          0.050125
                                                                     70000
4
        5180
                                                          0.061098
                                                                     65000
                             16697
                                           1672
   P25th
           P75th
                  College_jobs Non_college_jobs Low_wage_jobs
0 95000
         125000
                          1534
                                                             193
                                              364
1 55000
           90000
                           350
                                              257
                                                              50
2 50000
         105000
                           456
                                                               0
                                              176
           80000
3 43000
                           529
                                                               0
                                              102
4 50000
           75000
                         18314
                                             4440
                                                             972
```

[5 rows x 21 columns]

[40]: Text(0.5, 0, 'Men')

Yes, we can see a significant differences because of the gap between the median of the groups.

Task 22

```
[58]: file = pd.read_csv('us-marriages-divorces-1867-2014.csv')
file = file.dropna()
fig, axes = plt.subplots(2, 1, figsize=(18, 10), sharex=True)

sns.lineplot(ax=axes[0], data=file, x='Year', y='Marriages')
sns.lineplot(ax=axes[1], data=file, x='Year', y='Divorces')

axes[0].set_title('Marriages 1867-2014 in US')
axes[1].set_title('Divorces 1867-2014 in US')
```

[58]: Text(0.5, 1.0, 'Divorces 1867-2014 in US')

Task 23

1	1971	5.452797	12.003106	3		59.9	29.39	4403	9.5031	87
2	1972	7.420710	13.214594	4		60.4	29.81	0221	10.5589	62
3	1973	9.653602	14.791613	3		60.2	31.14	7915	12.8046	02
4	1974	14.074623	17.444688	3		61.9	32.99	6183	16.2048	50
	Communi	cations and	Journalism	Computer	Science	Educ	ation	Engi	neering	\
0			35.3		13.6	74.5	35328		0.8	

(0	35.3	13.6	74.535328	0.8
-	1	35.5	13.6	74.149204	1.0
2	2	36.6	14.9	73.554520	1.2
3	3	38.4	16.4	73.501814	1.6
2	4	40.5	18.9	73.336811	2.2

	English	Foreign Languages	Health Professions	Math and Statistics	\
0	65.570923	73.8	77.1	38.0	
1	64.556485	73.9	75.5	39.0	
2	63.664263	74.6	76.9	40.2	
3	62.941502	74.9	77.4	40.9	
4	62.413412	75.3	77.9	41.8	

Physical Sciences Psychology Public Administration \

```
13.8
                                 44.4
                                                         68.4
    0
     1
                     14.9
                                 46.2
                                                         65.5
     2
                     14.8
                                 47.6
                                                         62.6
     3
                                                         64.3
                     16.5
                                 50.4
     4
                     18.2
                                 52.6
                                                         66.1
        Social Sciences and History
    0
                               36.8
                               36.2
     1
    2
                               36.1
                               36.4
     3
     4
                               37.3
[]: features = ['Agriculture', 'Architecture', 'Art and Performance', 'Biology',
            'Business', 'Communications and Journalism', 'Computer Science',
            'Education', 'Engineering', 'English', 'Foreign Languages',
            'Health Professions', 'Math and Statistics', 'Physical Sciences',
            'Psychology', 'Public Administration', 'Social Sciences and History']
[]: plt.figure(figsize = (30, 40))
     for i in enumerate(features):
         plt.subplot(3, 6,i[0]+1)
         sns.lineplot(x='Year',y=i[1], data = file)
         plt.xticks(rotation = 45)
         plt.ylim(0, 90)
```

