탐색적 데이터 분석 (Exploratory Data Analysis, EDA)은 데이터 분석의 첫 번째 단계로, 데이터를 깊이 이해하고 데이터의 구조, 패턴, 이상치, 상관 관계 등을 파악하는 과정입니다. EDA는 모델링을 위한 기반을 마련하고, 데이터의 품질을 평가하며, 분석의 방향성을 정하는 데 매우 중요한 역할을 합니다.

EDA는 주로 시각화와 기술적 통계를 통해 이루어지며, 데이터의 주요 특성, 분포, 상관 관계, 이상치 등을 파악하는 데 유용합니다. 이제 EDA의 주요 단계와 기법을 좀 더 자세히 설명하겠습니다.

1. EDA의 목표

EDA의 주요 목표는 데이터에 대한 직관적인 이해를 돕고, 분석에 필요한 의사 결정을 내리기 위한 정보를 제공하는 것입니다. 이를 통해:

- 데이터의 분포와 특징을 파악합니다.
- 이상치나 결측치를 탐지하고 처리 방법을 결정합니다.
- 변수들 간의 상관 관계를 확인하여 모델링 방향을 설정합니다.
- 데이터의 패턴과 구조를 확인하여 적합한 분석 방법을 선택합니다.

2. EDA의 주요 단계

A. 기술 통계 분석 (Descriptive Statistics)

기술 통계는 데이터셋의 주요 특성을 요약하고, 기초적인 통계적 값을 제공합니다. 이를 통해 데이터를 간략하게 이해할 수 있습니다.

- 기술 통계량:
 - 평균 (Mean): 데이터의 평균값
 - 중앙값 (Median): 데이터의 중간값
 - 최대값 / 최소값 (Max / Min): 데이터의 최대값과 최소값
 - 표준편차 (Standard Deviation): 데이터가 평균값에서 얼마나 퍼져 있는지를 나타냄
 - 사분위수 (Quartiles): 데이터의 분포를 4등분하는 값 (Q1, Q2, Q3)
 - 왜도 (Skewness): 데이터의 비대칭 정도
 - 첨도 (Kurtosis): 데이터의 분포가 중심으로부터 얼마나 뾰족한지를 나타냄

B. 결측치 확인 및 처리

결측치는 분석에 큰 영향을 미칠 수 있으므로, 이를 적절하게 처리해야 합니다.

• 결측치 확인:

데이터셋에 결측치가 있는지 확인하고, 결측치가 있는 변수와 행을 찾아냅니다.

- 결측치 처리 방법:
 - 삭제: 결측치가 있는 행이나 열을 삭제
 - 대체: 평균, 중앙값, 최빈값 등으로 결측치를 대체
 - 예측 모델링: 결측치를 다른 변수들로 예측하여 채우기

C. 이상치 탐지 (Outlier Detection)

이상치는 데이터 분석의 품질을 저하시킬 수 있으므로 이를 확인하고 처리하는 것이 중요합니다.

- 이상치 탐지 방법:
 - 박스플롯(Box Plot): IQR(Interquartile Range)을 활용해 이상치를 시각적으로 식별
 - **Z-Score**: 표준편차 기준으로 3배 이상 벗어난 값을 이상치로 정의
 - IQR (Interquartile Range): 상위 사분위수와 하위 사분위수 간의 범위를 계산하여 그 외의 값을 이상치로 판별

D. 데이터 분포 분석

데이터가 어떻게 분포되어 있는지 시각적으로 확인하여 변수 간의 특성을 파악합니다.

- 히스토그램 (Histogram):
 - 연속형 변수의 분포를 시각적으로 확인할 수 있는 도구입니다. 예를 들어, 연봉이나 경력 연수의 분포를 파악할 수 있습니다.
- 확률 밀도 함수 (Density Plot):

데이터가 연속적일 때, 히스토그램과 함께 사용하여 데이터의 분포를 매끄럽게 시각화할 수있습니다.

● 박스 플롯 (Box Plot):

데이터의 중앙값, 사분위수, 이상치 등을 시각적으로 보여주는 그래프입니다. 데이터의 분포와 이상치를 쉽게 확인할 수 있습니다.

E. 변수 간 상관 관계 분석 (Correlation Analysis)

변수들 간의 관계를 파악하여, 분석 또는 모델링 시 중요한 변수 간의 상호작용을 이해할 수 있습니다.

• 상관 행렬 (Correlation Matrix):

변수 간의 상관 관계를 계산하고 이를 시각적으로 표현한 행렬입니다. 상관 계수는 -1에서 1까지의 값으로 표현되며, 1에 가까운 값은 강한 양의 상관 관계를, -1에 가까운 값은 강한 음의 상관 관계를 의미합니다.

• 산점도 (Scatter Plot):

두 변수 간의 관계를 시각적으로 표현합니다. 예를 들어, 연봉과 경력 연수 간의 관계를 산점도로확인할 수 있습니다.

• Heatmap:

상관 행렬을 색깔로 나타내어 변수 간의 관계를 한눈에 파악할 수 있습니다.

F. 시각적 탐색

EDA에서 중요한 것은 시각화입니다. 데이터를 시각적으로 나타내면 숨겨진 패턴이나 트렌드를 더 쉽게 발견할 수 있습니다.

- 히스토그램 (Histogram), 산점도 (Scatter Plot), 상자 수염 그림 (Box Plot), 산점도 행렬 (Pair Plot) 등의 다양한 시각화를 사용해 데이터를 탐색합니다.
- 파이 차트 (Pie Chart): 범주형 데이터의 분포를 확인할 때 유용합니다. 예를 들어, 채용 공고가 어느 산업군에 속하는지 시각적으로 나타낼 수 있습니다.

3. EDA 도구와 기법

- Python 라이브러리:
 - Pandas: 데이터의 요약 통계 및 결측치 확인, 데이터 조작 등 기본적인 작업에 사용됩니다.
 - o Matplotlib / Seaborn: 시각화 라이브러리로, 다양한 그래프를 그릴 수 있습니다.
 - NumPy: 수치 계산을 위한 라이브러리로, 기술 통계와 배열 연산에 사용됩니다.
 - o Scikit-learn: 데이터 전처리와 머신러닝을 위한 라이브러리로, 모델링 전 데이터 분석에 유용합니다.

R:

- o **ggplot2**: 강력한 시각화 라이브러리로, 데이터의 다양한 측면을 시각적으로 표현하는 데 유용합니다.
- o **dplyr**: 데이터 조작 및 처리에 유용한 라이브러리입니다.

4. EDA의 최종 목표

EDA의 주요 목표는 데이터에 대한 직관적인 이해를 통해 분석의 방향성을 잡고, 모델링에 적합한데이터를 준비하는 것입니다. 이를 통해, 채용 정보 분석 플랫폼에서 사용자가 더 쉽게 데이터를이해하고. 의미 있는 패턴과 인사이트를 도출할 수 있게 됩니다.