Задание 7 Сибгатуллин Булат

Задание 1

Есть 6 вариантов на место первого кандидата, 5 на место второго и так далее. $6 \cdot 5 \cdot 4 \cdot ... = 6! = 720$

Ответ: 720.

Задание 2

а) Посчитаем количество чисел от 0 до 999999 в которых нет единицы. На первое место можем поставить 9 цифр, на второе 9 и так далее. $9 \cdot 9 \cdot ... = 9^6 = 531441$. Тогда чисел с единицей будет 1000000 - 531441 = 468559

Чисел без единицы больше

б) Так как же как в пункте а посчитаем количество цифр, в которых нет единицы. $9^7=4782969$. Тогда чисел с единицей будет 10000000-4782969=5217031

Чисел с единицей больше.

Ответ: а)без единицы, б)с единицей

Задание 3

Посчитаем вероятность того, что в шестизначном числе все цифры различны: $\frac{10\cdot9\cdot8\cdot7\cdot6\cdot5}{10^6}=0,1512$

Тогда искомая вероятность равна: 1-0,01512=0,8488

Ответ: 0,8488

Задание 4

Все возможные исходы $= C_3 6^4$

Количество вариантов выбрать две красные или две черные = $\frac{C_1 8^2}{C_3 6^4}$ = 0,397

Ответ: 0,397

Задание 5

Если будет 3 четных цифры, то нечетных тоже будет 3, значитнужно найти количество шестизначных чисел, в которых будет 3 четные цифры.

На первое место можно поставить любую цифру не равную нулю (9 способов), выберем еще два места ($C_5^2=10\,$ способов) и поставим на них цифры той же четности, что и первая ($5^2\,$ способов).

Оставшиеся 3 места: 5^3

Итого $9 \cdot 10 \cdot 5^2 \cdot 5^3 = 281250$ вариантов

Ответ: 281250

Задание 6

Число состоит из 5 нечетных цифр и 2 четных. Разделим их на 3 нечетные, 2 четные и 2 нечетные перед ними.

Объединим Объединим четную и стоящую перед ней нечетную цифру в одну. Нам нужно выбрать 2 места из 5 для такой комбинации: c_5^2

Выбрать одну нечетную и четную цифру для такой комбинации: $5\cdot 5$

Выбрать 3 цифры из 5 нечетных: 5^3 Итого: $C_5^2 \cdot 5^3 \cdot 5 \cdot 5 \cdot 5 \cdot 5 = 781250$

Ответ: 781250

Задание 7

Выберем 4 студентов для поселения в 4-местную комнату, из оставшихся 3 студентов выберем 2 в 2-местную комнату, оставшегося селим в однокомнатную. Итого: $C_7^4 \cdot C_3^2 = 105$

Ответ: 105

Задание 8

Количество диаметров это количеству способов составить пути из листов находящихся в разных половинах.

В каждой из половин находится 2^{n-1} листов (лист это вершина степени 1). Выберем один лист из одной половины и один лист из другой, получим: $2^{n-1} \cdot 2^{n-1} = 2^{n-2}$

Ответ: 2^{2n-2}

Рис. 1. Полное бинарное дерево

Задание 9

Пусть P(N+k,k) - количество разбиений числа N+k на ровно k слагаемых. Из разбиений N на k слагаемых можно получить разбиение N+k на k слагаемых к каждому слагаемому добавив 1. Но это будут не все возможные разбиения. Так же из разбиений числа N+k на k-1 слагаемой можно получить разбиение N+k на k, вычив единицу из каждого слагаемого и добавиви ещё одно слагаемое k-1, таким образом P(N+k,k)=P(N+k,k-1)+P(N,k).

Раскроем первое слагаемое справа

```
P(N+k, k-1) = P(N+k, k-2) + P(N, k-1).
```

 $P(N+k,k) = P(N+k,0) + P(N,1) + P(N+,1) + P(N,2) + P(N+k,2) + P(N,3) + \dots + P(N+k,k-1) + P(N,k).$

 $P(N,1)+P(N,2)+\ldots+P(N,k)$ - количество разбиений числа N на не более чем k слагаемых. Значит, количество разбиений числа N+k ровно на k слагаемых больше.

Ответ: разбиений числа N + k ровно на k слагаемых.

Задание 10

Обозначим '(' за +1, а ')' за -1. Тогда для каждой последовательности скобок существует последовательность $(x_1, x_2, ..., x_{2n})$.

Обратно неверно, так как количество скобок '(' равно количеству скобок ')', а для второй последовательности ограничений нет.

Пусть последовательность скобок - X, последовательность элементов $\pm 1 - Y$.

Тогда каждому элементу из X соответствует один элемент из Y, но существуют элементы из Y, для которых не существует элемента из X. Значит, мы построили инъекцию из X в Y. Значит последовательностей $(x_1,x_2,...,x_{2n})$ больше.

Ответ: последовательностей $(x_1, x_2, ..., x_{2n})$ больше.