Unidad 4: Cálculo Diferencial Analisis Matemático I

Iker M. Canut July 27, 2020

Motivacion 1

Recta tangente: fijando el punto A sobre la curva de una función, y otro punto $P \neq A$, la recta APes secante a la curva, y su pendiente es la tangente trigonométrica del ángulo BAP:

Pendiente de
$$AP = \tan(B\hat{A}P) = \frac{f(x) - f(a)}{x - a}$$

Luego, la pendiente de la recta tangente, es la tangente trigonométrica del ángulo BAT:

Pendiente de
$$AT = \tan(B\hat{A}T) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Velocidad Instantánea: Se define la velociad instantánea en el tiempo t = a como:

$$v(a) = \lim_{t \to a} \frac{f(t) - f(a)}{t - a}$$

2 Definición de Derivada

Sea f una función definida en un intervalo abierto y a un punto cualquiera de dicho intervalo, se

dice que la función f tiene **derivada** en el punto $a \iff$ existe el límite: $\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Proponiendo el **cambio de variable** h = x - a, f es derivable en $a \iff \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$

Llamamos **cociente incremental** a cualquiera de las expresiones: $\frac{f(x) - f(a)}{x - a}$ o $\frac{f(a + h) - f(a)}{h}$, y al límite, si existe, lo denominamos derivada de f en a, y lo denotamos con f'(a).

Algunas **notaciones** para referir a la derivada de la función f en un punto a son:

$$f'(a)$$
, $Df(a)$, $\frac{df}{dx}(a)$, $\frac{dy}{dx}(a)$, donde $y = f(x)$

3 Función Derivada y Derivadas Sucesivas

En el conjunto $\{x \in Dom(f) : f \text{ es derivable en } x\} \subseteq Dom(f)$ definimos la **función derivada primera** de f como $f': Dom(f') \to \mathbb{R}, x \to f'(x)$.

Dada la función derivada (n-1)-ésima de la función f, se llama derivada n-ésima de f a la función derivada primera de la función $f^{(n-1)}$ y se lo nota $f^{(n)} = (f^{(n-1)})'$. Para las funciones derivadas de orden n, notamos:

$$f^{(n)}(a),$$
 $D^n f(a),$ $\frac{d^n f}{dx^n}(a),$ $\frac{d^n y}{dx^n}(a),$ donde $y = f(x)$

Interpretaciones de la Derivada 4

Si f es una función derivable en un punto a, la **recta tangente** a la gráfica de f en el punto (a, f(a))es la recta que pasa por dicho punto, con pendiente f'(a). O en forma explicita, y = f'(a)(x-a) + f(a).

Si el cociente incremental no tiene limite en el punto, pero si tiene limites laterales diferentes, al punto se lo llama anguloso, y no cuenta con recta tangente allí.

La **recta normal** de una gráfica de una función f en el punto (a, f(a)) es la recta que pasa por dicho punto, con pendiente $\frac{-1}{f'(a)}$, si $f'(a) \neq 0$, de ecuación $-\frac{1}{f'(a)}(x-a) + f(a)$, o x = a si f'(a) = 0.

Dada una función y = f(x), el valor de la derivada f'(a) se interpreta como la **razón de cam**bio de la variable y, respecto de la variable x, cuando x = a. Es decir, $\frac{dy}{dx}(a) = f'(a)$, donde y = f(x).

La razón de cambio de la **posición** es la **velocidad**, y su razón de cambio es la **aceleración**.

Algunas Derivadas 5

5.1 Función Lineal

La función lineal
$$f(x) = m \cdot x + h$$
 es derivable en todo $a \in \mathbb{R}$ y vale $f'(a) = m$.
Demostración: $f'(a) = \lim_{x \to a} \frac{(mx+h) - (ma+h)}{x-a} = \lim_{x \to a} \frac{m(x-a)}{x-a} = m$

5.2 Función Potencia

Recordamos que
$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} \cdot y^k$$
, luego

Para $n \in \mathbb{N}$, la función $f(x) = x^n$ es derivable en todo $a \in \mathbb{R}$ y vale $f'(a) = n \cdot a^{n-1}$.

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^n - a^n}{h} = \lim_{h \to 0} \frac{\left(\sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot h^k\right) - a^n}{h} = \lim_{h \to 0} \frac{\left(a^n + \sum_{k=1}^n \binom{n}{k} a^{n-k} \cdot h^k\right) - a^n}{h}$$

$$= \lim_{h \to 0} \frac{\sum_{k=1}^n \binom{n}{k} a^{n-k} \cdot h^k}{h} = \lim_{h \to 0} \frac{\binom{n}{1} a^{n-1} h + \sum_{k=2}^n \binom{n}{k} a^{n-k} \cdot h^k}{h}$$

$$= \lim_{h \to 0} n \cdot a^{n-1} + \sum_{k=2}^n \binom{n}{k} a^{n-k} \cdot h^{k-1} = n \cdot a^{n-1} + 0 = n \cdot a^{n-1}$$

5.3 Funciones Trigonométricas

Recordando que:

$$\lim_{h \to 0} \frac{\sin h}{h} = 1$$

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = 0$$

 $\sin(a+h) = \sin a \cdot \cos h + \cos a \cdot \sin h$

$$\cos(a+h) = \cos a \cdot \cos h - \sin a \cdot \sin h$$

 $f(x) = \sin x$ y $g(x) = \cos x$ son derivables en todo $a \in \mathbb{R}$ y valen $f'(x) = \cos x$ y $g'(x) = -\sin x$ Demostración:

$$f'(a) = \lim_{h \to 0} \frac{\sin(a+h) - \sin a}{h} = \lim_{h \to 0} \frac{(\sin a \cdot \cos h + \cos a \cdot \sin h) - \sin a}{h}$$
$$= \lim_{h \to 0} \sin a \cdot \frac{\cos h - 1}{h} + \cos a \cdot \frac{\sin h}{h} = \sin a \cdot 0 \cos a \cdot 1 = \cos a$$

$$g'(a) = \lim_{h \to 0} \frac{\cos(a+h) - \cos a}{h} = \lim_{h \to 0} \frac{(\cos a \cdot \cos h - \sin a \cdot \sin h) - \cos a}{h}$$
$$= \lim_{h \to 0} \cos a \cdot \frac{\cos h - 1}{h} - \sin a \cdot \frac{\sin h}{h} = \cos a \cdot 0 - \sin a \cdot 1 = -\sin a$$

Continuidad de las Funciones Derivables

Teorema 1: Si una f
ncion f es derivable en un punto, entonces es continua en dicho punto.

Demostración: Sea
$$f$$
 derivable en un punto a y $x \neq a$, $f(x) - f(a) = \frac{f(x) - f(a)}{x - a} \cdot (x - a)$. Luego,

$$\lim_{x \to a} f(x) - f(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim_{x \to a} (x - a) = f'(a) \cdot 0 = 0 \therefore \lim_{x \to a} f(x) = f(a) \text{ y } f \text{ continua en } a. \blacksquare$$

7 Álgebra de Derivadas

Teorema 2: Sean f y g dos funciones derivables en un punto a y c una constante real:

•
$$(f+g)'(a) = \lim_{x \to a} \frac{(f+g)(x) - (f+g)(a)}{x-a} = \lim_{x \to a} \left(\frac{f(x) - f(a)}{x-a} + \frac{g(x) - g(a)}{x-a} \right) = f'(a) + g'(a)$$

•
$$(c \cdot f)'(a) = \lim_{x \to a} \frac{(c \cdot f)(x) - (c \cdot f)(a)}{x - a} = \lim_{x \to a} c \cdot \frac{f(x) - f(a)}{x - a} = c \cdot f'(a)$$

•
$$(f-g) - (a) = f'(a) - g'(a)$$

Teorema 3: Regla del Producto

$$(f \cdot g)(a) = \lim_{x \to a} \frac{f(x) \cdot g(x) - f(a) \cdot g(a)}{x - a} = \lim_{x \to a} \frac{f(x) \cdot g(x) - f(a) \cdot g(x) + f(a) \cdot g(x) - f(a) \cdot g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{(f(x) - f(a)) \cdot g(x) + f(a) \cdot (g(x) - g(a))}{x - a}$$

$$= \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \cdot g(x) + f(a) \cdot \frac{g(x) - g(a)}{x - a} \right) = f'(a) \cdot g(a) + f(a) \cdot g'(a)$$

Proposición 4: Derivada de una Potencia de Exponente Natural:

Si $n \in \mathbb{N}$ entonces $f(x) = x^n$ es derivable en a y vale $f'(a) = n \cdot a^{n-1}$.

Demostración: Sea n = 1, f(a) = a y $f'(a) = 1 = 1 \cdot a^{1} - 1$.

Para n, sea $f(x) = x^{n+1}$, se puede reescribir $f(x) = g(x) \cdot h(x)$, $g(x) = x^n$ y h(x) = x. Luego

$$f'(a) = g'(a) \cdot h(a) + g(a) \cdot h'(a) = n \cdot a^n \cdot a + a^n \cdot 1 = n \cdot a^n + a^n = (n+1) \cdot a^n$$

y vale para n+1, luego vale para todo $n \in \mathbb{N}$ que $f(x) = x^n \Rightarrow f'(a) = (n+1) \cdot a^n$, $\forall a \in \mathbb{R}$

Teorema 4: Derivada del Cociente de dos Funciones: Sea $g(a) \neq 0$

$$\left(\frac{f'}{g}\right)(a) = \lim_{x \to a} \frac{\left(\frac{f}{g}\right)(x) - \left(\frac{f}{g}\right)(a)}{x - a} = \lim_{x \to a} \frac{f(x) \cdot g(a) + f(a) \cdot g(x)}{g(x) \cdot g(a) \cdot (x - a)}$$

$$= \lim_{x \to a} \frac{f(x) \cdot g(a) - f(a) \cdot g(a) + f(a) \cdot g(a) + f(a) \cdot g(x)}{g(x) \cdot g(a) \cdot (x - a)}$$

$$= \lim_{x \to a} \frac{(f(x) - f(a)) \cdot g(a) + f(a) \cdot (g(a) + g(x))}{g(x) \cdot g(a) \cdot (x - a)}$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot g(a) - f(a) \frac{g(x) - g(a)}{x - a}$$

$$= \lim_{x \to a} \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{(g(a))^2}$$

Proposición 5: Derivada de Potencias de Exponentes Enteros Negativos:

Sea $n \in \mathbb{N}$, entonces $f(x) = x^{-n} = \frac{1}{x^n}$ es derivable en todo $a \neq 0$ y vale $f'(a) = -n \cdot a^{-n-1}$ Definimos h(x) = 1 y $g(x) = x^n$, luego $f = \frac{h}{g}$, y como ambas son derivables en $a \neq 0$, y $g(a) \neq 0$,

$$f'(a) = \frac{0 \cdot a^n - 1 \cdot n \cdot a^{n-1}}{a^{2n}} = -n \cdot a^{-n-1}$$

Combinando todos los resultados, concluimos que los polinomios son derivables en todo \mathbb{R} , al igual que las funciones racionales en todo su dominio.

Teorema 5: Regla de la Cadena: Sean dos funciones f y g tal que $Rec(g) \subseteq Dom(f)$, y un punto a tal que g es derivable en a y f derivable en g(a), luego $(f \circ g)$ es derivable en a y vale:

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$

Demostración: Si para un incremento de h unidades de a, notamos con la variable k al incremento de la función g, entonces k = g(a + h) - g(a).

$$(f \circ g)'(a) = \lim_{h \to 0} \frac{(f \circ g)(a+h) - (f \circ g)(a)}{h} = \lim_{h \to 0} \frac{f(g(a)+k) - (f(g(a)))}{h}$$
$$= \lim_{h \to 0} \frac{f(g(a)+k) - (f(g(a)))}{k} \cdot \frac{g(a+h) - g(a)}{h}$$

Luego, tenemos que $h \to 0 \Rightarrow k = g(a+h) - g(a) \to 0$, y como f es derivable en g(a),

$$\lim_{h \to 0} \frac{f(g(a) + k) - (f(g(a)))}{k} = \lim_{k \to 0} \frac{f(g(a) + k) - (f(g(a)))}{k} = f'(g(a))$$

Por otro lado, como tenemos g derivable en a, $\lim_{h\to 0}\frac{g(a+h)-g(a)}{h}=g'(a)$ Y finalmente llegamos a que $(f\circ g)'(a)=f'(g(a))\cdot g'(a)$

Nota: Si tenemos $(f \circ g \circ h)$, tenemos que es derivable en los puntos a tales que $(g \circ h)$ sea derivable en a y f sea derivable en $(g \circ h)'(a)$. Luego, vale $(f \circ (g \circ h))(a) = f'(g(h(a))) \cdot g'(h(a)) \cdot h'(a)$

Nota: Luego, cobra sentido la notación de Leibniz para la derivada. Si notamos u = g(x),

$$\frac{d(f \circ g)}{dx} = \frac{df}{du} \cdot \frac{du}{dx}$$

8 Derivada de la Función Inversa

Teorema 6: Derivada de la Función Inversa: Sea f biyectiva, definida en el intervalo abierto I, derivable en $a \in I$, con $f'(a) \neq 0$, entonces su función inversa f^{-1} es derivable en f(a) y vale:

$$(f^{-1})(f(a)) = \frac{1}{f'(a)}$$

Demostración:
$$\lim_{h \to 0} \frac{f^{-1}(f(a) + h) - f^{-1}(f(a))}{h} = \lim_{h \to 0} \frac{f^{-1}(f(a) + h) - a}{h}$$

Y como todo punto f(a) + h en el dominio de f^{-1} es un punto en el recorrido de f, puede ser reescrito como f(a) + h = f(a + k), para un único k (por la biyectividad de f). Luego,

$$\lim_{h \to 0} \frac{f^{-1}(f(a) + h) - a}{h} = \lim_{h \to 0} \frac{f^{-1}(f(a+k)) - a}{f(a+k) - f(a)} = \lim_{h \to 0} \frac{k}{f(a+k) - f(a)}$$

Y surge que $f(a) + h = f(a+k) \Rightarrow f^{-1}(f(a)+h) = a+k \Rightarrow k = f^{-1}(f(a)+h) - f^{-1}(f(a))$. Por el Teorema de Continuidad de la Función Inversa, f^{-1} es continua en $f(a) \Rightarrow h \to 0 \Rightarrow k \to 0$:

$$\lim_{h \to 0} \frac{k}{f(a+k) - f(a)} = \lim_{k \to 0} \frac{k}{f(a+k) - f(a)} = \lim_{k \to 0} \frac{1}{\underbrace{f(a+k) - f(a)}_{k}} = \lim_{k \to 0} \frac{1}{f'(a)}$$

Proposición 6: Derivada de Potencias de Exponente Racional:

1. Si $n \in \mathbb{N}$, entonces $x^{\frac{1}{n}} = \sqrt[n]{x}$ es derivable en todo a del dominio con $a \neq 0$ y vale $f'(a) = \frac{1}{n} \cdot a^{\frac{1}{n}-1}$ **Demostración**: Sabemos que $f(x) = \sqrt[n]{x}$ es la inversa de $g(x) = x^n$. Luego, f es derivable en todo b = g(a), donde $g'(a) \neq 0$, en este caso, $b \neq 0$. Y vale

$$f'(b) = \frac{1}{g'(a)} = \frac{1}{n \cdot a^{n-1}} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{n \cdot b^{1-\frac{1}{n}}} = \frac{1}{n} \cdot b^{\frac{1}{n}-1}$$

2. Si $n = \frac{p}{q} \in \mathbb{Q} \Rightarrow f(x) = x^{\frac{p}{q}}$ es derivable en todo a del dominio, $a \neq 0$, y vale: $f'(a) = \frac{p}{q} a^{\frac{p}{q}-1}$

Demostración: $f(x) = x^{\frac{p}{q}} = (x^{\frac{1}{q}})^p$. Por la regla de la cadena,

$$f'(a) = p(a^{\frac{1}{q}})^{p-1} \cdot \frac{1}{q} a^{\frac{1}{q}-1} = \frac{p}{q} a^{\frac{p}{q}} - 1$$

9 Derivada de Funciones Trigonométricas Inversas

9.1 Derivada del Arco Seno

Sea $f: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1], \ f(x) = \sin x$, con la inversa $f^{-1}: [-1, 1] \to [-\frac{\pi}{2}, \frac{\pi}{2}], \ f^{-1}(x) = \arcsin x$, Para todos los puntos a donde $f'(a) = \cos a \neq 0$, es decir, $a \neq \pm \frac{\pi}{2}$, se tendrá que f^{-1} es derivable en b = f(a) y será:

$$(f^{-1})(f(a)) = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 a}} = \frac{1}{\sqrt{1 - (f(a))^2}}$$

9.2 Derivada del Arco Coseno

Sea $g:[0,\pi]\to[-1,1],\ g(x)=\cos x,$ con la inversa $g^{-1}:[-1,1]\to[0,\pi],\ g^{-1}(x)=\arccos x$ Para todos los puntos a donde $g'(a)=-\sin a\neq 0,$ es decir, $a\neq 0 \land a\neq \pi,$ se tendrá que g^{-1} es derivable en b=g(a) y será:

$$(g^{-1})(g(a)) = \frac{1}{-\sin x} = -\frac{1}{\sqrt{1 - \cos^2 a}} = -\frac{1}{\sqrt{1 - (g(a))^2}}$$

9.3 Derivada del Arco Tangente

Sea $h: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}, \ h(x) = \tan x$, con la inversa $h^{-1}: \mathbb{R} \to (-\frac{\pi}{2}, \frac{\pi}{2}), \ h(x) = \arctan x$

Para todos los puntos a donde $h'(a) = \frac{1}{\cos^2 a} = \sec a \neq 0$, se tendrá que h^{-1} es derivable en b = g(a) y será:

$$(h^{-1})(h(a)) = \frac{1}{\sec^2 a} = \frac{1}{\sqrt{1 + \tan^2 a}} = \frac{1}{\sqrt{1 + (h(a))^2}}$$

6

9.4 Pasando en Limpio

$$(\arcsin)'(b) = \frac{1}{\sqrt{1-b^2}}$$
 $(\arccos)'(b) = -\frac{1}{\sqrt{1-b^2}}$ $(\arctan)'(b) = \frac{1}{1+b^2}$