Situation: We have n data points (x_i, y_i) , i = 1, ..., n with $x_i \in \mathbb{R}^d$ and $y \in \{-1, 1\}$.

Probit Model: y_i is a realization of the random variable Y_i . $Y_1, ..., Y_n$ are independent. The distribution of Y_i is as follows:

$$P(Y_i = 1 | x_i; \beta) = \Phi(x_i^T \beta)$$

$$P(Y_i = -1 | x_i; \beta) = 1 - \Phi(x_i^T \beta)$$

where $\beta \in \mathbb{R}^d$. It follows that

$$P(Y_i = y_i | x_i; \beta) = \Phi(y_i x_i^T \beta)$$

Likelihood: The likelihood of a parameter vector β is given as follows:

$$L(\beta) = \prod_{i=1}^{n} P(Y_i = y_i | x_i; \beta) = \prod_{i=1}^{n} \Phi(y_i x_i^T \beta)$$

The negative log-likelihood that we wish to minimize is:

$$\mathcal{L}(\beta) = -\sum_{i=1}^{n} \log \Phi(y_i x_i^T \beta)$$

The weighted case: We introduce sample weights $w_i \in \mathbb{R}_{>0}$ comprising a weight vector $w \in \mathbb{R}^n_{>0}$. The weights sum to 1, i.e. $\sum_{i=1}^n w_i = 1$. Further, let $g(z) = -\log \Phi(-z)$. The objective function now becomes:

$$f_w(\beta) = \sum_{i=1}^n w_i g(-y_i x_i^T \beta)$$

To make the notation easier, we define $z_i = -y_i x_i^T$ and introduce the matrix $Z \in \mathbb{R}^{n \times d}$ with row vectors $Z_i = z_i$. This gives us:

$$f_w(\beta) = \sum_{i=1}^n w_i g(z_i \beta)$$

Lemma 1. Let $g(z) = -\log \Phi(-z)$. Then it holds for all $z \ge 0$ that:

$$\frac{1}{2}z^2 \le g(z)$$

For all $z \geq 2$ it holds that:

$$q(z) < 2z^2$$

Proof. TODO.

Definition 1. Let $Z \in \mathbb{R}^{n \times d}$. Then we define

$$\mu_w(Z) = \sup_{\beta \in \mathbb{R}^d \setminus \{0\}} \frac{\|(D_w Z \beta)^+\|_2^2}{\|(D_w Z \beta)^-\|_2^2} = \sup_{\beta \in \mathbb{R}^d \setminus \{0\}} \frac{\|(D_w Z \beta)^-\|_2^2}{\|(D_w Z \beta)^+\|_2^2}$$

Z weighted by w is called μ -complex if $\mu_w(Z) \leq \mu$.

Lemma 2. Let $Z \in \mathbb{R}^{n \times d}$ weighted by $w \in \mathbb{R}^n_{>0}$ be μ -complex. Let U be an orthonormal basis for the columnspace of $D_w Z$. If for index i, the supreme β in (TODO) satisfies $2 \leq z_i \beta$, then $w_i g(z_i \beta) \leq something$.

Proof. Let $D_w Z = UR$, where U is an orthonormal basis for the columnspace of $D_w Z$. It follows from $2 \le z_i \beta$ and from the monotonicity of g that

$$w_{i}g(z_{i}\beta) = w_{i}g\left(\frac{w_{i}z_{i}\beta}{w_{i}}\right) = w_{i}g\left(\frac{U_{i}R\beta}{w_{i}}\right) \leq w_{i}g\left(\frac{\|U_{i}\|_{2}\|R\beta\|_{2}}{w_{i}}\right)$$

$$= w_{i}g\left(\frac{\|U_{i}\|_{2}\|UR\beta\|_{2}}{w_{i}}\right) = w_{i}g\left(\frac{\|U_{i}\|_{2}\|D_{w}Z\beta\|_{2}}{w_{i}}\right)$$

$$\leq \frac{2}{w_{i}}\|U_{i}\|_{2}^{2}\|D_{w}Z\beta\|_{2}^{2} \leq \frac{2}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)\|(D_{w}Z\beta)^{+}\|_{2}^{2}$$

$$= \frac{2}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j: w_{j}z_{j}\beta\geq0}w_{j}^{2}(z_{j}\beta)^{2}$$

$$\leq \frac{4}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j: w_{j}z_{j}\beta\geq0}w_{j}g(z_{j}\beta)$$

$$\leq \frac{4}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j=1}^{n}w_{j}g(z_{j}\beta)$$

$$\leq \frac{4}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)\sum_{j=1}^{n}w_{j}g(z_{j}\beta)$$

$$= \frac{4}{w_{i}}\|U_{i}\|_{2}^{2}(1+\mu)f_{w}(\beta)$$

References