

ISIS-1104-03 Matemática Estructural y Lógica Parcial 1

Fecha: Marzo 4, 2013

- Esta prueba es INDIVIDUAL.
- Sólo está permitido el uso de las dos hojas de fórmulas publicada en sicua+.
- Está prohibido el uso de cualquier dispositivo electrónico.
- El intercambio de información relevante a esta prueba con otro estudiante está terminantemente prohibido.
- Cualquier irregularidad con respecto a estas reglas podría ser considerada fraude.
- Responda el examen en los espacios proporcionados. No se aceptarán hojas adicionales.
- No olvide marcar el examen antes de entregarlo.

IMPORTANTE: Soy consciente de que cualquier tipo de fraude en los exámenes es considerado como una falta grave en la Universidad. Al firmar y entregar este examen doy expreso testimonio de que este trabajo fue desarrollado de acuerdo con las normas establecidas. Del mismo modo, aseguro que no participé en ningún tipo de fraude.

Nombre	Carné
Firma	Fecha

NO ESCRIBIR NADA BAJO ESTA LÍNEA

1.1	15 %	
1.2	15 %	
2.1	15 %	
2.2	20%	
3.1	15 %	
3.2	20%	
Total	100 %	

1. [30%] Demostraciones Cálculo Proposicional

Suponga que queremos agregar el siguiente operador lógico al cálculo proposicional:

$$p \star (q, r) \equiv (p \Rightarrow (q \land r)) \tag{1}$$

1.1. [15 %] Demuestre o refute la siguiente equivalencia: $(p \lor q) \, \star \, (p,q) \equiv (q \equiv p)$

1.2. $[15\,\%]$ Muestre que sería válido agregar la siguiente regla de inferencia

$$\begin{array}{c} \neg r \\ p \star (q,r) \\ \hline \neg p \end{array}$$

	Expresión	Justificación
1	$\lnot r$	Hipótesis
2	$p \star (q,r)$	Hipótesis
3	$p \Rightarrow (q \wedge r)$	Definción \star (2)
4	$(p \Rightarrow q) \land (p \Rightarrow r)$	Distrib $\Rightarrow / \land 3$
5	$(p \Rightarrow r)$	Simplificación 4
6	$\lnot p$	Modus Tollens 5,1

2. Cálculo deductivo [35%]

El profesor de Apoo encuentra que Simón recibió ayudas indebidas para el examen práctico del nivel 5. El profesor quiere saber quién o quienes ayudaron a Simón. Sabe lo siguiente:

- 1. Tiene cuatro suspechosos: Abel, Boris, Carlota y Damian.
- 2. Las cámaras de las salas demuestran que Damian le ayudó a Simón.
- 3. Al menos uno no ayudó a Simón (es decir no todos lo ayudaron).
- 4. Si Abel ayudó a Simón, también ayudaron Boris y Carlota
- 5. Si Boris participó también lo hizo Abel.
- 6. si Carlota no participó tampoco lo hicieron Abel ni Damian

2.1. Modelaje [15%]

Usando las siguientes variable boleanas:

- A: Abel le ayudó a Simón.
- B: Boris le ayudó a Simón.
- C: Carlota le ayudó a Simón.
- D: Damian le ayudó a Simón.

Modele las hipótesis y la conclusión de quien o quiénes partiparon en el fraude.

H1 Tiene cuatro suspechosos: Abel, Boris, Carlota y Damian.

$$A \lor B \lor C \lor D$$

H2 Las cámaras de las salas demuestran que Damian le ayudó a Simón.

D

H3 Al menos uno no ayudó a Simón (es decir no todos lo ayudaron).

$$\neg(A \land B \land C \land D)$$

H4 Si Abel ayudó a Simón, también ayudaron Boris y Carlota

$$A \Rightarrow B \wedge C$$

H5 Si Boris participó también lo hizo Abel.

$$B \Rightarrow A$$

H6 si Carlota no participó tampoco lo hicieron Abel ni Damian

$$\neg C \Rightarrow \neg A \wedge \neg D$$

C Los que ayudaron fueron únicamente Damian y Carlota

$$\neg A \land \neg B \land C \land D$$

2.2. Deducción [20%]

Demuestre FORMALMENTE que la conclusión es válida a partir de las hipótesis.

Lema 1: $\neg A$ Vamos a demostrar por contradicción. Suponemos A y llegamos a false

	Expresión	Justificación
1	A	Supuesto
2	$A \Rightarrow B \wedge C$	Hipótesis
3	$B \wedge C$	Modus Ponens (1,2)
4	D	Hipótesis
5	$A \wedge B \wedge C \wedge D$	Composición (1,3,4)
6	$\neg (A \land B \land C \land D)$	Hipóetesis
7	false	Contradicción (5,6)

Por lo tanto, el supuesto A es falso. Es decir demostramos $\neg A$.

		Expresión	Justificación
	1	$\neg A$	Lema 1
Lema 2: ¬ <i>B</i>	2	$B \Rightarrow A$	Hipótesis
	3	$\neg B$	Modus Tollens (1,2)

```
Lema 3: C
```

```
 \langle \text{ Hipótesis } \rangle 
\neg C \Rightarrow \neg A \land \neg D 
= \langle \text{ Por la hipótesis H2 sabemos que } D = true \rangle 
\neg C \Rightarrow \neg A \land \neg true 
= \langle \text{ Def. } false \rangle 
\neg C \Rightarrow \neg A \land false 
= \langle \text{ Dominancia } \land \rangle 
\neg C \Rightarrow false 
= \langle \text{ Definición } \Rightarrow \rangle 
\neg \neg C \lor false 
= \langle \text{ Indentidad } \lor \rangle 
\neg \neg C 
= \langle \text{ Doble negación } \rangle
```

		Expresión	Justificación
	1	$\neg A$	Lema 1
	2	$\neg B$	Lema 2
Conclusión: $\neg A \land \neg B \land C \land D$	3	C	Lema 3
	4	D	Hipótesis
	5	$\neg A \wedge \neg B \wedge C \wedge D$	conjunción 1,2,3,4

3. Cálculo de predicados [35%]

Tenemos las siguientes hipótesis:

- 1. Los habitantes del bosque son alfas, betas, o deltas.
- 2. Los habitantes con tres tres ojos no son alfas.
- 3. Los betas no son morados pero sí tienen tres ojos.
- 4. No hay dos habitantes que sean amigos y que sean los dos deltas.

Tenemos dos habitantes del bosque: A y B. Las siguientes son premisas acerca de estos habitantes:

- 1. Tanto A como B tienen 3 ojos
- 2. A es morado pero B no es morado
- 3. A y B son amigos

A partir de las hipótesis y las premisas, concluimos que A es delta y B es beta.

3.1. Modelaje [15%]

Modele el problema (hipótesis, premisas y conclusión) usando el predicados y cuantificadores usando los siguientes predicados:

- \blacksquare alfa(d) : d es un alfa
- beta(d) : d es un beta
- delta(d) : d es un delta
- \blacksquare morado(d) : d es morado
- amigos(a,b): a es amigo de b

- tres(d): d tiene tres ojos
- H1 Los habitantes del bosque son alfas, betas, o deltas.

$$(\forall h \mid : alfa(h) \lor beta(h) \lor delta(h))$$

H2 Los habitantes con tres tres ojos no son alfas.

$$(\forall \ h \mid tres(h) \ : \ \neg alfa(h) \)$$

H3 Los betas no son morados pero sí tienen tres ojos.

$$(\forall h \mid beta(h) : \neg morado(h) \land tres(h))$$

H4 No hay dos habitantes que sean amigos y que sean los dos deltas.

$$\neg(\exists h, g \mid amigos(h, g) : delta(h) \land delta(g))$$

Usando de Morgan Universal:

$$(\forall h, g \mid amigos(h, g) : \neg delta(h) \lor \neg delta(g))$$

P1 Tanto A como B tienen 3 ojos

$$tres(A) \wedge tres(B)$$

 $\mathbf{P1}_1 \ tres(A)$

 $\mathbf{P1}_2 \ tres(B)$

P2 A es morado pero B no es morado

$$morado(A) \land \neg morado(B)$$

 $\mathbf{P2}_1 \ morado(A)$

 $\mathbf{P2}_2 \neg morado(B)$

P3 A y B son amigos

amigo(A, B)

Conclusión A es delta y B es beta.

$$delta(A) \wedge beta(B)$$

3.2. Deducción $[20\,\%]$

Demuestre FORMALMENTE que la conclusión es válida a partir de las hipótesis y las premisas.

	Expresión	Justificación
1	$(\forall \ h \mid \ : \ alfa(h) \lor beta(h) \lor delta(h) \)$	Hipótesis
2	$(\forall \ h \mid tres(h) \ : \ \neg alfa(h) \)$	Hipótesis
3	tres(A)	Premisa
4	eg alfa(A)	Modus ponens \forall (2,3)
5	$beta(A) \vee delta(A)$	Silogismo Disyuntivo \forall (4,1)
6	$(\forall \ h \mid beta(h) \ : \ \neg morado(h) \land tres(h) \)$	Hipótesis
7	$(\forall \ h \mid beta(h) \ : \ \neg morado(h) \) \land (\forall \ h \mid beta(h) \ : \ tres(h) \)$	Distributividad (6)
8	$(\forall \ h \mid beta(h) \ : \ \neg morado(h) \)$	Simplificación (7)
9	morado(A)	Premisa
10	$\neg\neg morado(A)$	Doble Neg
11	$\neg beta(A)$	Modus Tollens (8,10)
12	delta(A)	Silogismo Disyuntivo (11, 5)
13	$(\forall \ h,g \mid amigos(h,g) \ : \ \neg delta(h) \lor \neg delta(g) \)$	Hipótesis
14	$\operatorname{amigo}(A,B)$	premisa
15	$\neg delta(A) \vee \neg delta(B)$	Modus Ponens (14, 13)
16	$\neg \neg delta(A)$	Doble Negación (12)
17	$\neg delta(B)$	Silogismo Disyuntivo (15, 16)
18	$alfa(B) \lor beta(B)$	Silogismo Disyuntivo \forall (17,1)
19	tres(B)	Premisa
20	$\neg alfa(B)$	Modus Ponens \forall (19,2)
21	beta(B)	Silogismo Disyuntivo (18,20)
22	$delta(A) \wedge beta(B)$	Conjunción (12,21)