Материалы спецсеминара по теории вероятностей матмех, IV курс, весна 2009

М.А. Лифшиц

Аннотация

Целью спецсеминара является изучение разнообразных предельных теорем теории вероятности на примере единой прикладной задачи - изучения процесса нагрузки на узел обслуживания за длительный интервал времени. В зависимости от моментных характеристик случайных величин, описывающих процессы обслуживания, могут возникать различные предельные режимы: винеровский процесс, дробное броуновское движение, устойчивый процесс с независимыми приращениями, а также некоторые специальные "телеком-процессы". За основу изложения взята статья Кая и Такку [1].

Содержательной части семинара предшествует вводная, где слушатели могут познакомиться с важными понятиями, по большей части не попадающими в программу читаемых на мат-мехе курсов, но без которых невозможно представить современную теорию случайных процессов. Сюда относятся случайные меры с независимыми значениями (пуассоновская, устойчивая и гауссовский белый шум) и интегралы по этим мерам. Также сообщаются необходимые сведения из теории устойчивых случайных величин и процессов с однородными независимыми приращениями, в том числе сложных пуассоновских и устойчивых.

Содержание

1	Под	цготовительные материалы	4	
	1.1	Пуассоновские меры и интегралы	4	
	1.2	Случайные процессы и их сходимость	7	
	1.3	Гауссовские процессы: винеровский процесс и дробное броунов-		
		ское движение	8	
	1.4	Сложные пуассоновские процессы	9	
	1.5	Устойчивые процессы и величины	11	
	1.6	Устойчивые случайные меры с независимыми значениями и ин-		
		тегралы по ним	15	
2	Опі	исание модели узла обслуживания	17	
	2.1	Непрерывная модель	17	
	2.2	Дискретная модель	18	
3	Моментные предположения о распределениях			
	3.1	Основные гипотезы о времени и интенсивности обслуживания	19	
	3.2	Асимптотический анализ дисперсии	22	
		3.2.1 Слабая зависимость	22	
		3.2.2 Сильная зависимость	23	
4	Цен	нтрированный и нормированный процесс нагрузки	24	
5	Пре	едельные теоремы с конечной дисперсией	25	
	5.1	Слабая зависимость в непрерывной модели	25	
	5.2	Слабая зависимость в дискретной модели	27	
	5.3	Сильная зависимость	28	
6	Пре	едельные теоремы о сходимости к устойчивому процессу	30	
	6.1	Случай с доминирующей интенсивностью обслуживания	30	
	6.2	Случай с доминирующей длительностью обслуживания	32	
7	Пре	едельные теоремы о сходимости к телеком-процессам	35	
	7.1	Сходимость к устойчивому телеком-процессу	35	
	7.2	Сходимость к пуассоновскому телеком-процессу	37	

8	$\mathbf{M}\mathbf{H}$	огомерное обобщение	39
	8.1	Определение многомерной модели	39
	8.2	Связь с одномерной моделью	41
	8.3	Связь многомерных результатов с результатами одномерной	
		модели	41
	8.4	Многомерные обобщения понятий винеровского процесса и дроб-	
		ного броуновского движения	42
		8.4.1 Многомерный аналог винеровского процесса	42
		8.4.2 Многомерный аналог дробного броуновского движения	43

1 Подготовительные материалы

1.1 Пуассоновские меры и интегралы

Пусть (\mathcal{R}, μ) — измеримое пространство с мерой. Обозначим $\mathcal{A} = \{A \subset \mathcal{R}, \mu(A) < \infty\}$. Семейство случайных величин $\{N(A), A \in \mathcal{A}\}$ называется случайной мерой Пуассона¹ или пуассоновской случайной мерой, если выполнено следующее:

- величина N(A) имеет распределение Пуассона $\mathcal{P}(\mu(A))$;
- независимость: если A_1, \dots, A_m не пересекаются, то случайные величины $N(A_1), \dots, N(A_m)$ независимы.
- аддитивность: если A_1, \dots, A_m не пересекаются, то

$$N\left(\bigcup_{1}^{m}A_{j}\right)=\sum_{1}^{m}N(A_{j})$$
 почти наверное.

При этом мера μ называется мерой интенсивности 2 для N.

Пуассоновскую случайную меру можно также понимать как случайное локально конечное подмножество \mathcal{R} , состоящее из точек (x_j) . Иными словами $N(A) = \#\{j : x_j \in A\}$. Здесь и далее #V означает количество элементов в множествеV.

Семейство величин $\{\tilde{N}(A) = N(A) - \mu(A), A \in \mathcal{A}\}$ называется центрированной случайной мерой Пуассона.

Нам потребуются интегралы от функций $f: \mathcal{R} \to \mathbb{R}$ по мерам N и \tilde{N} . Для ступенчатых функций $f = \sum_j c_j \mathbf{1}_{A_j}$ интегралы определяются естественным образом:

$$\int_{\mathcal{R}} f dN = \sum_{j} c_{j} N(A_{j}), \qquad \int_{\mathcal{R}} f d\tilde{N} = \sum_{j} c_{j} \tilde{N}(A_{j}).$$

При этом легко проверяется, что

$$\mathbb{E} \int_{\mathcal{R}} f dN = \int_{\mathcal{R}} f d\mu, \qquad \mathbb{D} \int_{\mathcal{R}} f dN = \int_{\mathcal{R}} |f|^2 d\mu \tag{1}$$

¹Poisson point measure.

²Intensity measure.

И

$$\mathbb{E} \int_{\mathcal{R}} f d\tilde{N} = 0, \qquad \mathbb{D} \int_{\mathcal{R}} f d\tilde{N} = \int_{\mathcal{R}} |f|^2 d\mu. \tag{2}$$

Приближая функции общего вида ступенчатыми, можно определить интегралы и для них. Свойства (1) и (2) будут по-прежнему верны. Построенные интегралы будут аддитивны, т.е.

$$\int_{\mathcal{R}} (f+g)dN = \int_{\mathcal{R}} f dN + \int_{\mathcal{R}} g dN, \qquad \int_{\mathcal{R}} (cf)dN = c \int_{\mathcal{R}} f dN,$$

и аналогично для \tilde{N} .

Зная формулы для дисперсий, из линейности и соотношения

$$\frac{|f|^2 + |g|^2 - |f - g|^2}{2} = fg$$

выводим формулу для ковариаций:

$$cov\left(\int_{\mathcal{R}} f dN, \int_{\mathcal{R}} g dN\right) = cov\left(\int_{\mathcal{R}} f d\tilde{N}, \int_{\mathcal{R}} g d\tilde{N}\right) = \int_{\mathcal{R}} f g d\mu. \tag{3}$$

Сходимость пуассоновских интегралов к нормальному закону

Здесь нашей целью будет установить, при каких условиях последовательность величин $\int_{\mathcal{R}} f_n d\tilde{N}$ сходится к стандартному нормальному закону. Начнем с характеристических функций. Если N – пуассоновская случайная величина с параметром μ , то

$$\mathbb{E}\exp(itN) = \exp(\mu(e^{it} - 1)).$$

Следовательно, для любой ступенчатой функции $f = \sum_j c_j \mathbf{1}_{A_j}$

$$\mathbb{E} \exp \left(it \int_{\mathcal{R}} f dN \right) = \exp \left(\sum_{j} \mu(A_{j}) (e^{itc_{j}} - 1) \right)$$

$$= \exp \left(\int_{\mathcal{R}} (e^{itf} - 1) d\mu \right) \tag{4}$$

И

$$\mathbb{E} \exp\left(it \int_{\mathcal{R}} f d\tilde{N}\right) = \mathbb{E} \exp\left(it \int_{\mathcal{R}} f dN\right) \exp(-it \mathbb{E} \int_{\mathcal{R}} f dN)$$

$$= \exp\left(\int_{\mathcal{R}} (e^{itf} - 1) d\mu\right) \exp\left(-it \int_{\mathcal{R}} f d\mu\right)$$

$$= \exp\left(\int_{\mathcal{R}} (e^{itf} - 1 - itf) d\mu\right). \tag{5} \quad \text{chftN}$$

Эти тождества легко распространяются на случай произвольных пуассоновских интегралов. Таким образом, на языке характеристических функций сходимость к нормальному закону будет иметь вид

$$\int_{\mathbb{R}} (e^{itf_n} - 1 - itf_n) d\mu \to -\frac{t^2}{2}, \qquad \forall t \in \mathbb{R}.$$
 (6) toN

prop:ton Предложение 1.1 Предположени, что

$$\mathbb{D}\int_{\mathcal{R}} f_n dN = \int_{\mathcal{R}} f_n^2 d\mu \to 1$$

u для любого $\varepsilon > 0$ верно

$$\int_{|f_n|>\varepsilon} f_n^2 d\mu \to 0.$$

Тогда распределения величин $\int_{\mathcal{R}} f_n d\tilde{N}$ сходятся к стандартному нормальному закону.

Доказательство: Идея состоит в том, что при малых u верно $e^{iu} - 1 - iu \approx (iu)^2/2 = -u^2/2$. Более формально, если $|u| \leq 1$, то

$$\left| e^{iu} - 1 - iu - \frac{i^2 u^2}{2} \right| \le c|u|^3.$$

Если $|t|\varepsilon \leq 1$, то

$$\begin{split} &\int_{|f_n| \le \varepsilon} \left(e^{itf_n} - itf_n - 1 \right) d\mu \\ &= \int_{|f_n| \le \varepsilon} \left(e^{itf_n} - itf_n - 1 - \frac{i^2 t^2 f_n^2}{2} \right) d\mu - \int_{|f_n| \le \varepsilon} \frac{t^2 f_n^2}{2} d\mu. \end{split}$$

Первое слагаемое мало:

$$\int_{|f_n| \le \varepsilon} \left| e^{itf_n} - itf_n - 1 - \frac{i^2 t^2 f_n^2}{2} \right| d\mu \le \int_{|f_n| \le \varepsilon} c|t|^3 |f_n|^3 d\mu$$

$$\le c|t|^3 \varepsilon \int_{\mathcal{R}} f_n^2 d\mu \to c|t|^3 \varepsilon.$$

Второе слагаемое сходится:

$$\int_{|f_n| \le \varepsilon} \frac{t^2 f_n^2}{2} d\mu \to \frac{t^2}{2} \int_{\mathcal{R}} f_n^2 d\mu = \frac{t^2}{2}.$$

С другой стороны,

$$\int_{|f_n| \ge \varepsilon} \left| e^{itf_n} - itf_n - 1 \right| d\mu \le \int_{|f_n| \ge \varepsilon} \left(2 + t|f_n| \right) d\mu
\le \left(\frac{2}{\varepsilon^2} + \frac{t}{\varepsilon} \right) \int_{|f_n| \ge \varepsilon} |f_n|^2 d\mu \to 0.$$

Суммируя, а затем переходя к пределу по $\varepsilon \to 0$, легко приходим к (6). \square

Заметим в заключение, что интеграл $\int_{\mathcal{R}} f dN$ корректно определен, если верно соотношение $\int_{\mathcal{R}} (|f| \wedge 1) d\mu < \infty$, а интеграл $\int_{\mathcal{R}} f d\tilde{N}$ – если $\int_{\mathcal{R}} (|f|^2 \wedge |f|) d\mu < \infty$. Это можно понять, глядя на соответствующие характеристические функции (4) и (5).

1.2 Случайные процессы и их сходимость

Если T – некоторый интервал на вещественной оси, то семейство случайных величин $X(t), t \in T$, называется случайным процессом. Элементы T интерпретируются как моменты времени. Для любого набора t_1, \ldots, t_m случайный вектор $(X(t_1), \ldots, X(t_m))$ принимает значения в \mathbb{R}^m и имеет там распределение $\mathcal{P}_{t_1,\ldots,t_m}(A) = \mathbb{P}((X(t_1),\ldots,X(t_m)) \in A), A \subset \mathbb{R}^m$. Все распределения $\mathcal{P}_{t_1,\ldots,t_m}$ называются конечномерными распределениями процесса X. Они полностью определяют его свойства.

Говорят, что последовательность процессов X^n сходится к процессу X в смысле конечномерных распределений, если для любого $m \geq 1$, и любых t_1, \ldots, t_m имеет место слабая сходимость распределений $\mathcal{P}^{X^n}_{t_1,\ldots,t_m} \Rightarrow \mathcal{P}^X_{t_1,\ldots,t_m}$. Существуют и гораздо более интересные виды сходимости процессов (особенно слабая сходимость процессов, см. [3]).

1.3 Гауссовские процессы: винеровский процесс и дробное броуновское движение

Если все конечномерные распределения процесса X нормальные, то X называется гауссовским. Как известно, нормальное распределение в \mathbb{R}^m полностью определяется своим математическим ожиданием и своей корреляционной матрицей. Поэтому гауссовский процесс полностью определен своим математическим ожиданием $\mathbb{E}X(t), t \in T$ и своей корреляционной функцией $K(s,t) = cov(X(s),X(t)), s,t \in T$. Более подробно о гауссовских процессах рассказано в [6].

Нас будет в первую очередь интересовать один важнейший класс гауссовских процессов – дробные броуновские движения (ДБД). Пусть $H \in (0,1]$ – параметр самоподобия (или параметр Херста⁴). Дробным броуновским движением с параметром H называется гауссовский процесс $B^H(t), t \in \mathbb{R}$, с нулевым средним и корреляционной функцией

$$K_H(s,t) = \frac{1}{2} \left(|s|^{2H} + |t|^{2H} - |s-t|^{2H} \right). \tag{7}$$

Наиболее интересными частными случаями являются H=1/2 и H=1. При H=1/2 получаем

$$K_H(s,t) = \begin{cases} \min(|s|,|t|), & \text{если } st \geq 0, \\ 0, & \text{если } st \leq 0. \end{cases}$$

Иными словами, на положительной и отрицательной полуосях расположены два независимых винеровских процесса.

При H=1 получаем K(s,t)=st, откуда следует, что $\mathbb{D}(B^1(t)-tB^1(1))=0$, иными словами, $B^1(t)=tB^1(1)$ – вырожденный процесс со случайными линейными траекториями.

Говоря о семействе ДБД в целом, можно сказать, что при H < 1/2 приращения процесса отрицательно зависимы, при H = 1/2 они независимы и при H > 1/2 приращения положительно зависимы, причем степень зависимости возрастает с ростом и достигает максимума при H = 1, где коэффициент корреляции приращений доходит до 1. В дальнейшем у нас будут появляться только ДБД с параметром $H \ge 1/2$, так как по своей природе изучаемые процессы обладают свойством неотрицательной зависимости приращений.

Для всех значений H ДБД обладает двумя замечательными свойствами:

³Fractional Brownian motions.

 $^{^4\}mathrm{Hurst.}$

- Самоподобие. Для любого c > 0 процесс $Y(t) = B^H(ct)/c^H$ также является ДБД с тем же параметром (проверьте);
- Стационарность приращений. Для любого $t_0 \in \mathbb{R}$ случайный процесс $Y(t) = B^H(t_0 + t) B^H(t_0)$ также является ДБД с тем же параметром.

Взятые вместе, гауссовость, стационарность приращений и самоподобие однозначно определяют класс дробных броуновских движений, что и объясняет его важность для предельных теорем.

В заключение заметим, что B^H характеризуется также более простыми формулами $EB^H(t) = 0$, $B^H(0) = 0$, $\mathbb{D}(B^H(t) - B^H(s)) = |t - s|^{2H}$. Проверьте, что отсюда следует выражение для корреляционной функции (7). Мы также видим, что значение H связано не только с самоподобием, но и с гладкостью (гельдеровским свойством) траекторий ДБД.

1.4 Сложные пуассоновские процессы

Простейший класс сложных пуассоновских процессов может быть получен следующим образом. Пусть $(r_j)_{1 \leq j \leq J}$, — ненулевые вещественные числа, $(X_j)_{1 \leq j \leq J}$ — независимые пуассоновские процессы с интенсивностями μ_j . Составим сложный пуассоновский процесс

$$\xi(t) = \sum_{j=1}^{J} r_j X_j(t)$$

и сопоставим ему меру Леви $\mu = \sum_{j=1}^J \mu_j \delta_{r_j}$. Тогда ξ – процесс с однородными и независимыми приращениями. Элементарные выкладки с использованием независимости и свойств пуассоновского распределения дают

$$\mathbb{E}\,\xi(t) = t\sum_{j=1}^{J} r_j \mu_j t = t \int r d\mu; \tag{8}$$

$$\mathbb{D}\,\xi(t) = t \sum_{j=1}^{J} r_j^2 \mu_j t = t \int r^2 d\mu; \tag{9}$$

$$\mathbb{E} \, e^{i\tau\xi(t)} = \exp\left\{t \sum_{i=1}^{J} \left(e^{i\tau r_j} - 1\right) \mu_j\right\} = \exp\left\{t \int \left(e^{i\tau r} - 1\right) d\mu\right\}. \tag{10} \quad \boxed{\mathtt{harfun_cp}}$$

⁵Compound Poisson processes.

Для центрированного процесса $\tilde{\xi}(t) = \xi(t) - \mathbb{E}\xi(t)$ имеем

$$\begin{split} \mathbb{E}\xi(t) &= 0; \\ \mathbb{D}\xi(t) &= t \int r^2 d\mu; \\ \mathbb{E}e^{i\tau\xi(t)} &= \exp\left\{t \int \left(e^{i\tau r} - 1 - i\tau r\right) d\mu\right\}. \end{split} \tag{11} \quad \boxed{\text{harfun_ccp}} \end{split}$$

Следующий шаг состоит в построении сложного пуассоновского процесса, отвечающего произвольной конечной мере Леви. Итак, пусть μ конечная мера в \mathbb{R} , не имеющая нагрузки в нуле. Пусть $|\mu| := \mu(\mathbb{R})$ – ее полная масса, а (R_j) – последовательность н.о.р. величин с общим распределением $\mu/|\mu|$. Наконец, пусть π – процесс Пуассона с интенсивностью $|\mu|$. Тогда сложный пуассоновский процесс с мерой Леви μ может быть получен по формуле

$$\xi(t) = \sum_{j=1}^{\pi(t)} R_j . \tag{12}$$

Можно показать, что это снова будет процесс с однородными и независимыми приращениями, и что все предыдущие формулы сохраняют силу (причем мат. ожидание конечно, если $\int |r| d\mu < \infty$, а дисперсия конечна, если $\int r^2 d\mu < \infty$).

Ограничимся только выводом формулы (10). Имеем

$$\mathbb{E}e^{i\tau\xi(t)} = \mathbb{E} \mathbb{E} \left(e^{i\tau\xi(t)} \middle| \pi \right)$$

$$= \sum_{k} \mathbb{P}(\pi(t) = k) \mathbb{E} e^{i\tau \sum_{1}^{k} R_{j}}$$

$$= e^{-t|\mu|} \sum_{k} \frac{(t|\mu|)^{k}}{k!} \left(\mathbb{E}e^{i\tau R} \right)^{k}$$

$$= \exp\left(-t|\mu| + t|\mu| \mathbb{E}e^{i\tau R} \right)$$

$$= \exp\left\{ t \int \left(e^{i\tau r} - 1 \right) d\mu \right\}.$$

В терминах величин R имеем

$$\mathbb{E}\xi(t) = t|\mu| \, \mathbb{E}R, \qquad \mathbb{D}\xi(t) = t|\mu| \, \mathbb{E}R^2. \tag{13}$$

Заметим еще, что количество скачков процесса ξ на любом интервале $[t_1,t_2]$ равно $\pi(t_2)-\pi(t_1)$ и имеет пуассоновское распределение с параметром $|\mu|(t_2-t_1)$. В частности, его математическое ожидание равно $|\mu|(t_2-t_1)$.

1.5 Устойчивые процессы и величины

Формула (11) дает идею представления общих процессов с однородными независимыми приращениями⁶. Пусть мера Леви μ не имеет нагрузки в нуле и удовлетворяет условию

$$\int |r| \wedge r^2 d\mu < \infty.$$

Тогда центрированный процесс с однородными независимыми приращениями и мерой Леви μ имеет хар. функцию (11). Подчеркнем, что здесь мы уже не предполагаем конечности меры μ (у нее может накапливаться бесконечная масса в окрестности нуля). В этом принципиальное отличие от случая сложных пуассоновских процессов. С точки зрения траекторий это означает, что новые процессы могут иметь бесконечное число скачков на любом невырожденном временном интервале.

Нас будет интересовать только одно конкретное семейство мер Леви, а именно

$$\mu(dr) = (c_{-}\mathbf{1}_{r<0} + c_{+}\mathbf{1}_{r>0}) \frac{dr}{|r|^{1+\alpha}}.$$

Здесь хотя бы один из параметров c_-, c_+ должен быть ненулевым, а условие интегрируемости дает $\alpha \in (1,2)$. Процессы, отвечающие этим мерам называются α -устойчивыми⁷. Если $c_- = c_+$, то процесс называется симметричным, а если $c_- = 0$ или $c_+ = 0$, то он называется односторонним. Нас будут интересовать, главным образом, односторонние процессы, так как скачки процесса всегда интерпретируют положительные нагрузки, т.е. $c_- = 0$.

Аналогичная терминология используется и для случайных величин: с.в. $\tilde{\xi}$ с характеристической функцией

$$\mathbb{E}e^{i\tau\tilde{\xi}} = \exp\left\{ \int \left(e^{i\tau r} - 1 - i\tau r \right) \left(c_{-} \mathbf{1}_{r<0} + c_{+} \mathbf{1}_{r>0} \right) \frac{dr}{|r|^{1+\alpha}} \right\}. \tag{14}$$

называется центрированной α -устойчивой, а ее распределение обозначается $\mathcal{S}(c_+,c_-,\alpha)$. В частности, для устойчивого процесса значение $\tilde{\xi}(t)$ имеет распределение $\mathcal{S}(c_+t,c_-t,\alpha)$. Для приведенной выше характеристической функции есть явная формула, но она нам не потребуется.

Рассмотрим свойство устойчивости, которому рассматриваемые случайные величины обязаны своим названием.

⁶Lévy processes.

 $^{^7\}alpha$ -stable.

Тредложение 1.2 Пусть случайные величины $\tilde{\xi}, \tilde{\xi}'$ независимы и имеют одинаковое распределение $S(c_+, c_-, \alpha)$, и пусть $a, a' \geq 0$. Тогда $a\tilde{\xi}$ имеет распределение $S(a^{\alpha}c_+, a^{\alpha}c_-, \alpha)$, а линейная комбинация $a\tilde{\xi} + a'\tilde{\xi}'$ – распределение $S((a^{\alpha} + (a')^{\alpha})c_+, (a^{\alpha} + (a')^{\alpha})c_-, \alpha)$. В частности,

$$a\tilde{\xi} + a'\tilde{\xi'} \stackrel{d}{=} (a^{\alpha} + (a')^{\alpha})^{1/\alpha}\tilde{\xi}.$$

Доказательство: Первое утверждение получается линейной заменой переменных.

$$\mathbb{E}e^{i\tau a\tilde{\xi}} = \exp\left\{ \int \left(e^{ia\tau r} - 1 - ia\tau r \right) \left(c_{-} \mathbf{1}_{r<0} + c_{+} \mathbf{1}_{r>0} \right) \frac{dr}{|r|^{1+\alpha}} \right\}$$

$$= \exp\left\{ \int \left(e^{i\tau v} - 1 - i\tau v \right) \left(c_{-} \mathbf{1}_{v<0} + c_{+} \mathbf{1}_{v>0} \right) \frac{a^{1+\alpha} dv}{a|v|^{1+\alpha}} \right\}$$

$$= \exp\left\{ \int \left(e^{i\tau v} - 1 - i\tau v \right) \left(a^{\alpha} c_{-} \mathbf{1}_{v<0} + a^{\alpha} c_{+} \mathbf{1}_{v>0} \right) \frac{dv}{|v|^{1+\alpha}} \right\}.$$

Второе утверждение получается применением первого и перемножением хар. функций. \square

Из предложения вытекает свойство самоподобия устойчивого процесса: для любого a>0 верно

$$\frac{\tilde{\xi}(at)}{a^{1/\alpha}} \stackrel{d}{=} \tilde{\xi}(t). \tag{15}$$
 self_st

Устойчивые величины и процессы играют важную роль в предельных теоремах для сумм независимых случайных величин. Например, верно следующее.

Теорема 1.3 Пусть (Y_j) – последовательность независимых одинаково распределенных случайных величин, причем $\mathbb{E}Y_j = 0$ и хвосты распределений слагаемых имеют степенной вид: при некотором $\alpha \in (1,2)$ верно

$$P(Y_j \ge r) \sim \frac{c_+}{\alpha r^{\alpha}}, \quad npu \ r \to \infty,$$

 $P(Y_j \le -r) \sim \frac{c_-}{\alpha |r|^{\alpha}}, \quad npu \ r \to \infty.$

Положим $S_n = \sum_{j=1}^n Y_j$. Тогда

$$\frac{S_n}{n^{1/\alpha}} \Rightarrow \mathcal{S}(c_+, c_-, \alpha).$$

Утверждение теоремы станет более понятно, если заметить, что величины с распределением $\mathcal{S}(c_+,c_-,\alpha)$ сами удовлетворяют его условиям и в этом случае $\frac{S_n}{n^{1/\alpha}}$ имеет такое же распределение $\mathcal{S}(c_+,c_-,\alpha)$, как и слагаемые.

Сходимость пуассоновских интегралов к устойчивому распределению

Сравнивая характеристические функции (14) и (5), мы видим, что интеграл $\int f d\tilde{N}$ по центрированной пуассоновской мере имеет в точности устойчивое распределение $\mathcal{S}(c_+, c_-, \alpha)$, если ядро f имеет соответствующее распределение относительно меры интенсивности μ , т.е. для любого x > 0 верно

$$\mu\{f > x\} = \int_{x}^{\infty} \frac{c_{+}dr}{r^{\alpha+1}} = \frac{c_{+}}{\alpha x^{\alpha}} , \qquad \mu\{f < -x\} = \frac{c_{-}}{\alpha x^{\alpha}} .$$

Поэтому основными условиями сходимости распределений последовательности $\int f_n d\tilde{N}$ к $\mathcal{S}(c_+, c_-, \alpha)$ будут

$$\lim_{n \to \infty} \mu\{f_n > x\} = \frac{c_+}{\alpha x^{\alpha}}, \quad \forall x > 0, \tag{16}$$

tailto_st2

$$\lim_{n \to \infty} \mu\{f_n < -x\} = \frac{c_-}{\alpha x^{\alpha}}, \quad \forall x > 0.$$
 (17)

Однако этими условиями нельзя ограничиваться, так как могут возникнуть проблемы в нуле и на бесконечности. Проиллюстрируем это на простейших примерах, в которых $c_+ = c_- = 0$.

Пример 1. Пусть $f_n = n^{-1/2} \mathbf{1}_{A_n}$ и $\mu\{A_n\} = n$. Тогда вышеуказанные пределы нулевые, но интегралы сходятся к стандартному нормальному закону по предложению 1.1.

Пример 2. Пусть $f_n = n \mathbf{1}_{A_n}$ и $\mu\{A_n\} = n^{-1}$. Снова вышеуказанные пределы нулевые, но интегралы сходятся к -1, так как соответствующие нецентрированные интегралы сходятся к нулю (по распределению), а их математические ожидания равны единице.

С учетом этих примеров следующее предложение уже не выглядит слишком громоздким.

prop:tos

Предложение 1.4 Предположим, что верны (16) и (17), а также

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \int_{|f_n| \le \varepsilon} f_n^2 d\mu = 0 \tag{18}$$

u для любого $\varepsilon > 0$

$$\lim_{\varepsilon \to 0} \limsup_{n \to \infty} \int_{|f_n| > \varepsilon} f_n d\mu = \int_{|r| > \varepsilon} \frac{r \left(c_- \mathbf{1}_{r < 0} + c_+ \mathbf{1}_{r > 0} \right) dr}{|r|^{\alpha + 1}} = \frac{c_+ - c_-}{(\alpha - 1)\varepsilon^{\alpha - 1}} \ . \tag{19}$$

Тогда распределения величин $\int_{\mathcal{R}} f_n d\tilde{N}$ сходятся к устойчивому закону $\mathcal{S}(c_+, c_-, \alpha)$.

Доказательство: Проверим сходимость характеристических функций. Для малого $\varepsilon > 0$ разделим выражение в экспоненте (5) на три части

$$\int_{|f_n| \le \varepsilon} (e^{itf_n} - 1 - itf_n) d\mu + \int_{|f_n| > \varepsilon} (e^{itf_n} - 1) d\mu + it \int_{|f_n| > \varepsilon} f_n d\mu.$$

Вторая часть сходится к соответствующей компоненте (14) в силу (16) и (17), а третья – в силу (19). Что касается первой части, то по неравенству

$$\left| e^{iu} - 1 - iu \right| \le c|u|^2$$

она может быть сделана сколь угодно малой как для предельного выражения так и для допредельного (с учетом (18)) за счет выбора малого параметра $\varepsilon.\square$

Можно дать и более простой критерий сходимости.

cor:tos Следствие 1.5 Предположим, что верны (16) и (17), а также равномерная оценка

$$\mu\{|f_n| > x\} \le \frac{C}{x^{\alpha}} , \qquad \forall x > 0, \forall n \ge 1.$$
 (20)

tailto_st3

Тогда распределения величин $\int_{\mathcal{R}} f_n d\tilde{N}$ сходятся к устойчивому закону $\mathcal{S}(c_+, c_-, \alpha)$.

Доказательство: Проверим условия предложения 1.4. Интегрируя по частям и используя равномерную оценку, найдем

$$\int_{|f_n| \le \varepsilon} f_n^2 d\mu = -\int_0^\varepsilon r^2 d\mu \{r \le |f_n| \le \varepsilon\}
= 2 \int_0^\varepsilon r\mu \{r \le |f_n| \le \varepsilon\} dr \le 2 \int_0^\varepsilon r\mu \{r \le |f_n|\} dr
\le 2C \int_0^\varepsilon r^{1-\alpha} dr = \frac{2C\varepsilon^{2-\alpha}}{2-\alpha},$$

откуда следует (18). Для проверки второго условия запишем, снова интегрируя по частям,

$$\int_{f_n>\varepsilon} f_n d\mu = -\int_\varepsilon^\infty r d\mu \{f_n \ge r\} = \varepsilon \mu \{f_n \ge \varepsilon\} + \int_\varepsilon^\infty \mu \{f_n \ge r\} dr.$$

Используя предел (16) и теорему Лебега о мажорированной сходимости, а затем выполняя обратное интегрирование по частям, найдем

$$\lim_{n\to\infty} \int_{f_n>\varepsilon} f_n d\mu = \frac{c_+}{(\alpha-1)\varepsilon^{\alpha-1}} .$$

Аналогично оценивается и отрицательная часть интеграла. \square

Больше об устойчивых величинах и процессах можно прочитать в методичке [7] и книгах Золотарева [4] и Ибрагимова и Линника [5].

1.6 Устойчивые случайные меры с независимыми значениями и интегралы по ним

Следующая конструкция очень напоминает построение пуассоновской случайной меры и соответствующего интеграла.

Пусть $S(c_+, c_-, \alpha)$ – некоторое устойчивое распределение, а (\mathcal{R}, μ) – измеримое пространство с мерой. Обозначим $\mathcal{A} = \{A \subset \mathcal{R}, \mu(A) < \infty\}$. Семейство случайных величин $\{M(A), A \in \mathcal{A}\}$ называется устойчивой случайной мерой с независимыми значениями⁸, если выполнено следующее:

- величина M(A) имеет распределение $S(c_{+}\mu(A), c_{-}\mu(A), \alpha)$;
- независимость: если A_1, \cdots, A_m не пересекаются, то случайные величины $M(A_1), \ldots, M(A_m)$ независимы.
- аддитивность: если A_1, \dots, A_m не пересекаются, то

$$M\left(\cup_{1}^{m}A_{j}\right)=\sum_{1}^{m}M(A_{j})$$
 почти наверное.

Мера μ называется мерой интенсивности 9 для M.

Определим интегралы от функций $f: \mathcal{R} \to \mathbb{R}$ по мере M. Для неотрицательных ступенчатых функций $f = \sum_j c_j \mathbf{1}_{A_j}$ с непересекающимися A_j интегралы определяются естественным образом:

$$\int_{\mathcal{R}} f dM := \sum_{j} c_{j} M(A_{j}).$$

⁸Independently scattered α -stable random measure.

⁹Intensity measure или Control measure.

При этом с помощью предложения 1.2 легко проверяется, что по распределению

$$\int_{\mathcal{R}} f dM \stackrel{d}{=} \mathcal{S}(||f||_{\alpha}^{\alpha} c_{+}, ||f||_{\alpha}^{\alpha} c_{-}, \alpha), \tag{21}$$

где

$$||f||_{\alpha}^{\alpha} = \int_{\mathcal{R}} |f|^{\alpha} d\mu = \sum_{j} c_{j}^{\alpha} \mu(A_{j}).$$

Приближая функции общего вида ступенчатыми, можно определить интегралы и для всех неотрицательных функций $f \in L_{\alpha}(\mathcal{R}, \mu)$. Свойство (21) будет по-прежнему верно. Построенный интегралы будет аддитивен, т.е.

$$\int_{\mathcal{R}} (f+g)dM = \int_{\mathcal{R}} fdM + \int_{\mathcal{R}} gdM, \qquad \int_{\mathcal{R}} (cf)dM = c \int_{\mathcal{R}} fdM.$$

Если устойчивое распределение симметрично $(c_{+}=c_{-})$, то условие неотрицательности интегранда можно отбросить.

Белый шум

Если повторить предыдущую конструкцию с заменой устойчивого распределения на центрированное нормальное, в частности, предполагая, что M(A) имеет распределение $\mathcal{N}(0,\mu(A))$, то получим меру с независимыми значениями, называемую белым шумом¹⁰. Интеграл по белому шуму определен для функций $f \in L_2(\mathcal{R},\mu)$ и по распределению

$$\int_{\mathcal{P}} f dM \stackrel{d}{=} \mathcal{N}(0, ||f||_2^2). \tag{22}$$

По аналогии с пуассоновским случаем (3) верно

$$cov\left(\int_{\mathcal{P}} f dM, \int_{\mathcal{P}} g dM\right) = \int_{\mathcal{P}} f g d\mu.$$
 (23) $\boxed{\text{cov_nor}}$

 $^{^{10}}$ White noise.

2 Описание модели узла обслуживания

В статье [1] рассматриваются две модели системы обслуживания – непрерывная и дискретная – отличающиеся характером расходования ресурсов.

2.1 Непрерывная модель

Наиболее подробно мы будем рассматривать непрерывную модель 11 . С нее и начнем.

Формальная модель узла обслуживания на основе случайных мер Пуассона выглядит следующим образом. Положим $\mathcal{R} = \{(s,u,r)\} = \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+$. Каждая точка (s,u,r) имеет смысл процесса обслуживания¹², который начинается в момент s, длится u единиц времени и имеет интенсивность обслуживания¹³ r. В узле могут одновременно выполняться несколько процессов обслуживания (без ограничения на суммарную интенсивность, т.е. нагрузку узла).

Исходными параметрами для описания работы узла являются

- $\lambda > 0$ интенсивность потока процессов обслуживания;
- $F_U(du)$ распределение длительности обслуживания;
- $F_R(dr)$ распределение интенсивности обслуживания.

Определим на \mathcal{R} меру интенсивности

$$\mu(ds, du, dr) = \lambda ds F_U(du) F_R(dr).$$

Пусть N — соответствующая ей случайная мера Пуассона. Реализации (множества троек) можно рассматривать как возможные траектории работы узла, а все характеристики этой работы выражаются в виде соответствующих интегралов.

В частности, нас будет интересовать мгновенная нагрузка 14 на узел в момент t:

$$W(t) = \int_{\mathcal{R}} r \mathbf{1}_{\{s \le t \le s + u\}} dN \tag{24}$$

¹¹Continuous flow.

 $^{^{12}}$ Session.

¹³Rewards, transmission rate, ...

¹⁴Instantaneous workload arrival rate.

и интегральная (накопленная) нагрузка¹⁵

$$W^{*}(t) = \int_{0}^{t} W(\tau)d\tau = \int_{\mathcal{R}} r \int_{0}^{t} \mathbf{1}_{\{s \leq \tau \leq s+u\}} d\tau dN$$

$$= \int_{\mathcal{R}} r \cdot \left| [s, s+u] \cap [0, t] \right| dN := \int_{\mathcal{R}} r \ell_{t}(s, u) dN.$$
(25) Wtstar
$$(26)$$

Появившееся здесь ядро

$$\ell_t(s, u) := \left| [s, s + u] \cap [0, t] \right| \tag{27}$$

нам многократно потребуется и в дальнейшем.

2.2 Дискретная модель

Есть еще альтернативная дискретная модель 16 . В этой модели параметры s и u сохраняют прежний смысл, но на интервале [s,s+u] процесс обслуживания происходит дискретными порциями 17 . Размеры порций независимы и имеют распределение F_R , а моменты обслуживания образуют пуассоновский процесс единичной интенсивности. В сумме нагрузка на узел со стороны процесса обслуживания между моментами s и s+u образует сложный пуассоновский процесс

$$\xi(u) = \sum_{j=1}^{\pi(u)} R_j,$$

где π – стандартный пуассоновский процесс. Это в точности формула составного пуассоновского процесса (12) с двумя особенностями – $|\mu| = 1$ и $R_j > 0$.

Для дискретной модели мгновенная нагрузка не имеет смысла, а интегральная может быть записана в виде интеграла по пуассоновской мере

$$W_{\#}^{*}(t) = \int_{\mathcal{R}_{\#}} \xi\left(\ell_{t}(s, u)\right) dN, \tag{28}$$
 Wdtstar

где $\mathcal{R}_{\#} = \mathbb{R} \times \mathbb{R}_{+} \times D$, а N имеет меру интенсивности

$$\mu_{\#} = \lambda ds F_U(du) \,\mu_{\xi}(d\xi).$$

Здесь D – пространство траекторий процесса ξ , а μ_{ξ} – его распределение.

¹⁵Aggregated workload.

¹⁶Compound Poisson.

¹⁷Packets.

3 Моментные предположения о распределениях

3.1 Основные гипотезы о времени и интенсивности обслуживания

В статье делаются некоторые предположения о распределениях F_R и F_U . Всегда предполагается, что математические ожидания конечны:

$$\nu := \mathbb{E}U = \int_0^\infty u F_U(du) < \infty,$$

$$\rho := \mathbb{E}R = \int_0^\infty r F_R(du) < \infty.$$

На самом деле предполагается нечто большее: либо величины имеют конечный второй момент, либо их распределения имеют регулярные хвосты. А именно, либо

$$\mathbb{P}(U > u) \sim \frac{c_U}{\gamma u^{\gamma}}, \quad u \to \infty, \quad 1 < \gamma < 2, c_U > 0,$$

либо

$$\mathbb{E}(U^2) < \infty.$$

В последнем случае формально полагаем $\gamma = 2$. Аналогично, либо

$$\mathbb{P}(R > r) \sim \frac{c_R}{\delta r^{\delta}}, \qquad r \to \infty, \qquad 1 < \delta < 2, c_R > 0,$$

либо

$$\mathbb{E}(R^2) < \infty.$$

В последнем случае формально полагаем $\delta = 2$.

Таким образом, поведение узла будет зависеть от значений параметров $\gamma, \delta \in (1,2].$

Например, среднее значение мгновенной нагрузки

$$\mathbb{E}W(t) = \mathbb{E}\int_{\mathcal{R}} r \mathbf{1}_{\{s \le t \le s + u\}} dN$$

$$= \int_{\mathcal{R}} r \mathbf{1}_{\{s \le t \le s + u\}} d\mu$$

$$= \lambda \int_{0}^{\infty} r F_{R}(dr) \int_{0}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_{\{s \le t \le s + u\}} ds F_{U}(du)$$

$$= \lambda \rho \int_{0}^{\infty} \int_{-\infty}^{\infty} \mathbf{1}_{\{t - u \le s \le t\}} ds F_{U}(du)$$

$$= \lambda \rho \int_{0}^{\infty} u F_{U}(du)$$

$$= \lambda \rho \nu.$$

Следовательно, $\mathbb{E}W^*(t) = \lambda \rho \nu t$.

Вычисление математического ожидания для дискретной модели приводит к тому же результату. Используя формулу для ожидания сложного пуассоновского процесса, $\mathbb{E}\xi(t) = \mathbb{E}R \cdot t = \rho t$, найдем

$$\mathbb{E}W_{\#}^{*}(t) = \int_{\mathcal{R}_{\#}} \xi \left(\ell_{t}(s, u)\right) \lambda ds F_{U}(du) \, \mu_{\xi}(d\xi),$$

$$= \int \mathbb{E}\xi \left(\ell_{t}(s, u)\right) \lambda ds F_{U}(du),$$

$$= \rho \lambda \int \ell_{t}(s, u) ds F_{U}(du).$$

Далее,

$$\int \ell_t(s, u) ds F_U(du) = \int \int_0^t \mathbf{1}_{s \le \tau \le s + u} d\tau ds F_U(du)$$

$$= \int_0^t \int \mathbf{1}_{s \le \tau \le s + u} ds F_U(du) d\tau$$

$$= \int_0^t \int u F_U(du) d\tau = t \int u F_U(du) = \nu t.$$
(29) inted

Получаем

$$\mathbb{E}W_{\#}^*(t) = \lambda \rho \nu t.$$

Аналогично проводится анализ дисперсий. Согласно общей формуле (1),

$$\mathbb{D}W(t) = \lambda \int_0^\infty r^2 F_R(dr) \int_0^\infty \int_{-\infty}^\infty \mathbf{1}_{\{s \le t \le s + u\}} ds F_U(du)$$
$$:= \lambda \rho_2^2 \nu.$$

Видим, что дисперсия конечна, если R имеет конечный второй момент, а U – первый.

Аналогично, для ковариации двух значений мгновенной нагрузки можем найти (проверьте с помощью (3)!)

$$cov(W(t_1), W(t_2)) = \lambda \ \rho_2^2 \int_{|t_1 - t_2|}^{\infty} (u - |t_1 - t_2|) F_u(du).$$

Теперь проанализируем дисперсию интегральной нагрузки

$$\mathbb{D}W_*(t) = \lambda \int_0^\infty r^2 F_R(dr) \int_0^\infty \int_{-\infty}^\infty \ell_t(s, u)^2 ds F_U(du).$$

Фиксируем переменную u и рассмотрим внутреннее выражение $\ell_t(s,u)$ как функцию переменной s. Здесь возникают два случая:

1) $0 \le u \le t$. Тогда ℓ_t равно нулю при s < -u и s > t, ℓ_t изменяется линейно (с единичной скоростью) на интервалах [-u,0] и [t-u,t], и имеет постоянное значение u на интервале [0,t-u]. Отсюда следует, что

$$\int_{-\infty}^{\infty} \ell_t(s, u)^2 ds = 2 \int_0^u s^2 ds + (t - u)u^2 = tu^2 - \frac{u^3}{3}.$$

2) $t \leq u < \infty$. Тогда ℓ_t равно нулю при s < -u и s > t, ℓ_t изменяется линейно (с единичной скоростью) на интервалах [-u, t-u] и [0, t], и имеет постоянное значение t на интервале [t-u, 0]. Отсюда следует, что

$$\int_{-\infty}^{\infty} \ell_t(s, u)^2 ds = 2 \int_0^t s^2 ds + (u - t)t^2 = t^2 u - \frac{t^3}{3}.$$

Отсюда заключаем, что

$$\mathbb{D}W_*(t) = \lambda \ \rho_2^2 \ \left(\int_0^t \left(tu^2 - \frac{u^3}{3} \right) F_U(du) + \int_t^\infty \left(t^2 u - \frac{t^3}{3} \right) F_U(du) \right) \ . \tag{30} \ \boxed{\text{varstar}}$$

Опять-таки дисперсия конечна, если R имеет конечный второй момент, а U – первый.

Для дискретной модели вычисление дисперсии сводится к предыдущему. Используя формулы (13) среднего и дисперсии сложного пуассоновского процесса $\mathbb{E}\xi(t) = \mathbb{E}R \cdot t$, $\mathbb{D}\xi(t) = \mathbb{E}R^2 \cdot t$, получим

$$\mathbb{E}\xi^{2}(t) = \mathbb{D}\xi(t) + (\mathbb{E}\xi(t))^{2} = \mathbb{E}R^{2} \cdot t + (\mathbb{E}R)^{2} \cdot t^{2} = \rho_{2}^{2}t + \rho^{2}t^{2},$$

и далее, используя (29),

$$\mathbb{D}W_{\#}^{*}(t) = \int_{\mathcal{R}_{\#}} \xi^{2} \left(\ell_{t}(s, u)\right) \lambda ds F_{U}(du) \, \mu_{\xi}(d\xi),$$

$$= \int \mathbb{E}\xi^{2} \left(\ell_{t}(s, u)\right) \lambda ds F_{U}(du)$$

$$= \lambda \int \left[\rho_{2}^{2}\ell_{t}(s, u) + \rho^{2}\ell_{t}^{2}(s, u)\right] ds F_{U}(du)$$

$$= \lambda \int \left[\rho_{2}^{2}\ell_{t}(s, u) + \rho^{2}\ell_{t}(s, u)^{2}\right] ds F_{U}(du)$$

$$= \lambda \rho_{2}^{2} \int \ell_{t}(s, u) ds F_{U}(du) + \lambda \rho^{2} \int \ell_{t}(s, u)^{2} ds F_{U}(du).$$

$$= \lambda \rho_{2}^{2} \nu t + \frac{\rho^{2}}{\rho_{2}^{2}} \, \mathbb{D}W_{*}(t).$$

3.2 Асимптотический анализ дисперсии

Проанализируем, как себя ведет дисперсия (30), когда $t \to \infty$. Здесь впервые возникает два принципиально различных случая: слабая зависимость и сильная зависимость за сильная зависимость.

3.2.1 Слабая зависимость

Этот случай в основном аналогичен суммированию независимых одинаково распределенных случайных величин и соответственно дисперсия будет расти как t. Математически слабая зависимость описывается условиями конечности вторых моментов $\delta = \gamma = 2$, или

$$\rho_2^2 = \int_0^\infty r^2 F_R(dr) < \infty, \ \nu_2^2 := \int_0^\infty u^2 F_U(du) < \infty.$$

 $^{^{18}}$ Weak dependence.

¹⁹Long range dependence.

Из четырех интегралов, присутствующих в (30), имеет значение только один:

$$t \int_0^t u^2 F_U(du) \sim \nu_2^2 t.$$

Остальные дают o(t). Действительно,

$$t^{3} \int_{t}^{\infty} F_{U}(du) \leq t \int_{t}^{\infty} u^{2} F_{U}(du) = t o(1),$$

$$t^{2} \int_{t}^{\infty} u F_{U}(du) \leq t \int_{t}^{\infty} u^{2} F_{U}(du) = t o(1),$$

и для любого $\varepsilon > 0$

$$\int_0^t u^3 F_U(du) = \int_0^{\varepsilon t} u^3 F_U(du) + \int_{\varepsilon t}^t u^3 F_U(du)$$

$$\leq \varepsilon t \, \nu_2^2 + t \int_{\varepsilon t}^\infty u^2 F_U(du) = \varepsilon t \, \nu_2^2 + t \, o(1).$$

Таким образом при слабой зависимости

$$\mathbb{D}W_*(t) \sim \lambda \ \rho_2^2 \ \nu_2^2 \ t, \qquad t \to \infty.$$
 (31) varweak

Для дискретной модели в условиях слабой зависимости получаем

$$\mathbb{D}W_{\#}^{*}(t) = \lambda \rho_{2}^{2} \nu t + \frac{\rho^{2}}{\rho_{2}^{2}} \, \mathbb{D}W_{*}(t) \sim \lambda (\rho_{2}^{2} \nu + \rho^{2} \nu_{2}^{2}) t.$$

3.2.2 Сильная зависимость

Математически сильная зависимость описывается условиями $\delta = 2, 1 < \gamma < 2,$

$$\rho_2^2 < \infty, \ P(U > u) \sim \frac{c_U}{\gamma u^{\gamma}}.$$

Для простоты вычислений вместо последнего условия предположим, что U имеет плотность распределения

$$f(u) \sim c_U u^{-(1+\gamma)}, \qquad u \to \infty.$$

Это совершенно не меняет выводов. В данном случае, все четыре интеграла, присутствующих в (30), имеет один и тот же порядок:

$$t \int_0^t u^2 F_U(du) = t \int_0^t u^2 f(u) du \sim c_U t \int_0^t u^{1-\gamma} du \sim c_U \frac{t^{3-\gamma}}{2-\gamma}$$

$$t^{3} \int_{t}^{\infty} F_{U}(du) = t^{3} \int_{t}^{\infty} f(u)du \sim c_{U} t^{3} \int_{t}^{\infty} u^{-1-\gamma} du \sim c_{U} \frac{t^{3-\gamma}}{\gamma} ,$$

$$t^{2} \int_{t}^{\infty} u F_{U}(du) = t^{2} \int_{t}^{\infty} u f(u) du \sim c_{U} t^{2} \int_{t}^{\infty} u^{-\gamma} du \sim c_{U} \frac{t^{3-\gamma}}{\gamma - 1} ,$$

$$\int_{0}^{t} u^{3} F_{U}(du) = \int_{0}^{t} u^{3} f(u) du \sim c_{U} \int_{0}^{t} u^{2-\gamma} du \sim c_{U} \frac{t^{3-\gamma}}{3-\gamma} .$$

Скомбинируем возникшие константы:

И

$$\frac{1}{2-\gamma} - \frac{1}{3(3-\gamma)} + \frac{1}{\gamma-1} - \frac{1}{3\gamma} = \frac{1}{(2-\gamma)(\gamma-1)} - \frac{1}{(3-\gamma)\gamma}$$
$$= \frac{2}{(2-\gamma)(\gamma-1)(3-\gamma)\gamma} .$$

Таким образом, при сильной зависимости

$$\mathbb{D}W_*(t) \sim \lambda \ \rho_2^2 \ \frac{2c_U}{(2-\gamma)(\gamma-1)(3-\gamma)\gamma} \ t^{3-\gamma}, \qquad t \to \infty. \tag{32}$$

Неудивительно, что при $\gamma=2$ из этой формулы тоже формально получается линейный рост дисперсии. При $\gamma<2$ рост дисперсии оказывается быстрее линейного благодаря положительной зависимости между значениями мгновенной нагрузки.

4 Центрированный и нормированный процесс нагрузки

Нас будет интересовать поведение процесса интегральной загрузки на больших интервалах времени. Для того, чтобы получить осмысленный предел, нужно

- центрировать процесс;
- разделить его на подходящий нормирующий множитель;
- сжать (шкалировать) время так, чтобы уместить его на стандартный временной интервал.

Примем за стандартный временной интервал [0,1]. Будем (в обозначениях статьи) исследовать нагрузку на длинном интервале времени [0,a], где $a \to \infty$. Это может быть записано в виде $W^*(at), t \in [0,1]$. Центрирование и нормирование на подходящий множитель b приводят нас к процессу

$$Z(t) = \frac{W^*(at) - \lambda \rho \nu at}{b} , \qquad t \in [0, 1].$$
 (33)

При этом a и λ могут рассматриваться как переменные (хотя бы одна из них должна стремиться к бесконечности), а нормировка b подбирается в зависимости от них, а также от параметров узла γ , δ .

Например, в самом простейшем варианте коротких и не очень интенсивных процессов обслуживания ($\gamma = \delta = 2$) будем иметь $b = (\lambda a)^{1/2}$, по аналогии с центральной предельной теоремой.

Для дискретной модели все аналогично: рассматривается

$$Z_{\#}(t) = \frac{W_{\#}^{*}(at) - \lambda \rho \nu at}{b}, \qquad t \in [0, 1].$$
 (34) Zdiscr

5 Предельные теоремы с конечной дисперсией

5.1 Слабая зависимость в непрерывной модели

Будем искать предельную теорему для Z в случае $\gamma = \delta = 2$, а нормировку выберем так, чтобы Z(1) имела асимптотически единичную дисперсию, т.е.

$$1 \sim \frac{\mathbb{D}W^*(a)}{b^2} \sim \frac{\lambda \ \rho_2^2 \ \nu_2^2 \ a}{b^2} \ .$$

Таким образом, можно положить

$$b = \lambda^{1/2} \; \rho_2 \; \nu_2 \; a^{1/2}. \tag{35}$$
 bweak

При такой нормировке будем иметь для каждого $t \in [0,1]$

$$\mathbb{D}Z(t) = \frac{\mathbb{D}W^*(at)}{h^2} \sim \frac{\lambda \ \rho_2^2 \ \nu_2^2 \ at}{h^2} = t.$$

Заметим также, что для $t_1, t_2 \in [0, 1]$ при $t_1 \le t_2$ верно

$$\mathbb{D}(Z(t_2) - Z(t_1)) = b^{-2} \mathbb{D} (W^*(t_2) - W^*(t_1))
= b^{-2} \mathbb{D} \int_{t_1}^{t_2} W(\tau) d\tau = b^{-2} \mathbb{D} \int_{0}^{t_2 - t_1} W(\tau) d\tau
= b^{-2} \mathbb{D} W^*(t_2 - t_1) = \mathbb{D} Z(t_2 - t_1) \to t_2 - t_1.$$
(36) \[\tau t_1 \]

Наконец из тождества

$$\mathbb{D}(Z(t_2) - Z(t_1)) = \mathbb{D}Z(t_1) + \mathbb{D}Z(t_2) - 2 cov(Z(t_1), Z(t_2))$$

находим

$$cov(Z(t_1), Z(t_2)) = \frac{1}{2} (\mathbb{D}Z(t_1) + \mathbb{D}Z(t_2) - \mathbb{D}(Z(t_2) - Z(t_1)))$$

$$\rightarrow \frac{1}{2} (t_1 + t_2 - (t_2 - t_1)) = t_1.$$
(37) ddd

Таким образом,

$$cov(Z(t_1), Z(t_2)) \rightarrow \min(t_1, t_2).$$

В пределе получается ковариация винеровского процесса.

Мы не будем доказывать сходимость всех конечномерных распределений, а ограничимся только сходимостью одномерных.

prop:ltweak

Предложение 5.1 *Если* $\gamma = \delta = 2$ *и* $a\lambda \to \infty$, то при нормировке (35)

$$Z(t) \Rightarrow \mathcal{N}(0,t) \quad \forall t \in [0,1].$$

Доказательство: Будем использовать предложение 1.1. Мы уже знаем, что $\mathbb{D}Z(t) \to t$, так что остается проверить только второе условие предложения. Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{(a\lambda)^{1/2} \rho_2 \nu_2} d\tilde{N},$$

где $\ell_{at}(s,u)$ – ядро из (27). Нам нужно проверить, что

$$\int_{r\ell_{at}/(\lambda a)^{1/2} > \varepsilon} \frac{r^2 \ell_{at}^2(s, u)}{(a\lambda)} F_R(dr) F_U(du) \lambda ds, \to 0.$$

Сначала отбросим зону (u > at). Мы на самом деле видели, что ее вклад в дисперсию пренебрежим, так как при этом условии

$$\int_{-\infty}^{\infty} \ell_{at}(s,u)^2 ds = (at)^2 u - \frac{(at)^3}{3} \le (at)^2 u .$$

И

$$\int_{(u>at)} \frac{r^2 \ell_{at}^2(s,u)}{(a\lambda)} F_R(dr) F_U(du) \lambda ds \leq \rho_2^2 a^{-1} \int_{at}^{\infty} (at)^2 u F_U(du)$$
$$\leq \rho_2^2 t \int_{at}^{\infty} u^2 F_U(du) \to 0.$$

Далее будем рассматривать зону $(u \le at)$, в которой

$$\int_{-\infty}^{\infty} \ell_{at}(s, u)^2 ds = (at)u^2 - u^3/3 \le (at)u^2.$$

Кроме того, в ней $\ell_{at} \leq u$, поэтому интересующую нас зону $r\ell_{at}/(\lambda a)^{1/2} > \varepsilon$ можем покрыть более широкой $ru/(\lambda a)^{1/2} > \varepsilon$, а эту последнюю накроем двумя более простыми $r > (\lambda a \varepsilon^2)^{1/4}$ и $u > (\lambda a \varepsilon^2)^{1/4}$. Соответственно, получим оценки

$$\int_{\substack{r\ell_{at}/(\lambda a)^{1/2} > \varepsilon \\ u < at}} f^2 d\mu \le \int_{\substack{r > (\lambda a \varepsilon^2)^{1/4} \\ u < at}} f^2 d\mu + \int_{\substack{u > (\lambda a \varepsilon^2)^{1/4}}} f^2 d\mu$$

Для первого интеграла получаем

$$\int_{(\lambda a \varepsilon^2)^{1/4}}^{\infty} r^2 F_R(dr) (a\lambda)^{-1} \lambda \int \int_{-\infty}^{\infty} \ell_{at}(s, u)^2 ds F_U(du)$$

$$\leq \int_{(\lambda a \varepsilon^2)^{1/4}}^{\infty} r^2 F_R(dr) a^{-1}(at) \int u^2 F_U(du) \to 0,$$

за счет первого множителя.

Для второго интеграла получаем

$$\int r^2 F_R(dr)(a\lambda)^{-1} \lambda \int_{(\lambda a\varepsilon^2)^{1/4}}^{\infty} \int_{-\infty}^{\infty} \ell_{at}(s,u)^2 ds F_U(du)$$

$$\leq \int r^2 F_R(dr)(a)^{-1}(at) \int_{(\lambda a\varepsilon^2)^{1/4}}^{\infty} u^2 F_U(du) \to 0,$$

за счет второго множителя. \square

5.2 Слабая зависимость в дискретной модели

Будем искать предельную теорему для $Z_{\#}$ в случае $\delta=2, \gamma=2,$ а нормировку выберем так, чтобы величина $Z_{\#}(1)$ в пределе имела единичную дисперсию, т.е.

$$1 = \frac{\mathbb{D} W_\#^*(a)}{b^2} \sim \frac{\lambda \ (\rho_2^2 \ \nu + \rho^2 \nu_2^2) \ a}{b^2} \,.$$

Таким образом, можно положить

$$b = (\lambda a)^{1/2} (\rho_2^2 \nu + \rho^2 \nu_2^2)^{1/2}.$$
 (38) bweakdiscr

При такой нормировке будем иметь для каждого $t \in [0,1]$

$$\mathbb{D}Z_{\#}(t) = \frac{\mathbb{D}W_{\#}^{*}(at)}{b^{2}} = \frac{\lambda \left(\rho_{2}^{2} \nu + \rho^{2} \nu_{2}^{2}\right) at}{b^{2}} = t.$$

Мы не будем доказывать сходимость всех конечномерных распределений, а ограничимся только сходимостью одномерных.

prop:ltweakdiscr

Предложение 5.2 Если $\delta = 2, \gamma = 2$ и $a\lambda \to \infty$, то при нормировке (38)

$$Z_{\#}(t) \Rightarrow \mathcal{N}(0,t), \quad \forall t \in [0,1].$$

Доказательство: Будем использовать предложение 1.1. Мы уже знаем, что $\mathbb{D}Z_{\#}(t) \to t$, так что остается проверить только второе условие предложения. Напомним, что

$$Z_{\#}(t) = \int_{\mathcal{R}_{\#}} \frac{\xi(\ell_{at}(s, u))}{(\lambda a)^{1/2} (\rho_2^2 \nu + \rho^2 \nu_2^2)^{1/2}} \ d\tilde{N}$$

Нам нужно проверить, что

$$\int_{\frac{\xi(\ell_{at}(s,u))}{(\lambda a)^{1/2}} > \varepsilon} \frac{\xi(\ell_{at}(s,u))^2}{a} F_U(du) ds \mu_{\xi}(d\xi) \to 0.$$

Используя (29), находим, что искомое выражение равно

5.3 Сильная зависимость

Обозначим $H=\frac{3-\gamma}{2}$. Будем искать предельную теорему для Z в случае $1<\gamma<2,\delta=2,$ а нормировку снова выберем так, чтобы Z(1) имела асимптотически единичную дисперсию, т.е.

$$1 \sim \frac{\mathbb{D}W^*(a)}{b^2} \sim \frac{2c_U}{(2-\gamma)(\gamma-1)(3-\gamma)\gamma} \frac{\lambda \rho_2^2 a^{2H}}{b^2}.$$

Таким образом, можно положить

$$b = \left(\frac{2c_U}{(2-\gamma)(\gamma-1)(3-\gamma)\gamma}\right)^{1/2} \lambda^{1/2} \rho_2 \ a^H.$$
 (39) bstrong

При такой нормировке будем иметь для каждого $t \in [0,1]$

$$\mathbb{D}Z(t) = \frac{\mathbb{D}W^*(at)}{b^2} \sim \frac{\lambda \ \rho_2^2 \ \nu_2^2 \ at}{b^2} = t^{2H}.$$

снова для $t_1, t_2 \in [0, 1]$ при $t_1 \le t_2$ применим (36)

$$\mathbb{D}(Z(t_2) - Z(t_1)) = \mathbb{D}Z(t_2 - t_1) \to (t_2 - t_1)^{2H}.$$

Наконец из тождества (37) находим

$$cov(Z(t_1), Z(t_2)) \to \frac{1}{2} (t_1^{2H} + t_2^{2H} - (t_2 - t_1)^{2H}).$$

Таким образом,

$$cov(Z(t_1), Z(t_2)) \to \frac{1}{2} (t_1^{2H} + t_2^{2H} - (t_2 - t_1)^{2H}).$$

В пределе получается ковариация дробного броуновского движения.

Мы не будем доказывать сходимость всех конечномерных распределений, а ограничимся только сходимостью одномерных.

prop:ltstrong

Предложение 5.3 Если $\gamma < 2$ и $\delta = 2$ и $\frac{\lambda}{a^{\gamma-1}} \to \infty$, то при нормировке (39)

$$Z(t) \Rightarrow \mathcal{N}(0, t^{2H}) \qquad \forall t \in [0, 1].$$

Доказательство: Будем опять использовать предложение 1.1. Мы уже знаем, что $\mathbb{D}Z(t) \to t^{2H}$, так что остается проверить только второе условие предложения. Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{K\lambda^{1/2}a^{(3-\gamma)/2}\rho_2} d\tilde{N},$$

где ядро $\ell_t(\cdot,\cdot)$ из (27) удовлетворяет неравенству $\ell_{at}(s,u) \leq at$. Нам нужно проверить, что

$$\int_{r\ell_{at}/\lambda^{1/2}a^{(3-\gamma)/2}>\varepsilon}\frac{r^2\ell_{at}^2(s,u)}{\lambda a^{3-\gamma}}F_R(dr)F_U(du)\lambda ds\to 0.$$

Пусть сначала $R \leq r_0$ – ограниченная величина. Тогда при достаточно больших a область интегрирования просто окажется пустой. Действительно,

$$\frac{r\ell_{at}}{\lambda^{1/2}a^{(3-\gamma)/2}} \le \frac{r_0 at}{\lambda^{1/2}a^{(3-\gamma)/2}} = r_0 t \left(\frac{a^{\gamma-1}}{\lambda}\right)^{1/2} \to 0.$$

Теперь рассмотрим общий случай. Здесь

$$\int_{|f|>\varepsilon} f^2 d\mu = \int_{\substack{|f|>\varepsilon\\r\leq r_0}} f^2 d\mu + \int_{\substack{|f|>\varepsilon\\r>r_0}} f^2 d\mu \leq \int_{\substack{|f|>\varepsilon\\r\leq r_0}} f^2 d\mu + \int_{r>r_0} f^2 d\mu,$$

причем первый интеграл, как мы выяснили, исчезает. Для второго легко получается оценка $\int_{r_0}^{\infty} r^2 F_R(dr) \ t^{2H}$, которую можно сделать сколь угодно малой за счет выбора параметра r_0 большим. \square

6 Предельные теоремы о сходимости к устойчивому процессу

Мы докажем две теоремы, в которых процесс нагрузки сходится в пределе к устойчивому процессу, причем интерпретация происходящего несколько различна.

6.1 Случай с доминирующей интенсивностью обслуживания

Будем доказывать предельную теорему для Z в случае $\delta < \gamma \leq 2$, а нормировку выберем по формуле

$$b = B(\lambda a)^{1/\delta},\tag{40}$$

bweak_str

где постоянная B определяется соотношением $B^{\delta}=c_{R}\,\mathbb{E}(U^{\delta})$. Заметим, что при $\delta<\gamma$ соответствующее ожидание заведомо конечно, так как

$$\mathbb{E}(U^{\delta}) = \int_0^{\infty} \mathbb{P}(U^{\delta} > r) dr = \int_0^{\infty} \mathbb{P}(U > r^{1/\delta}) dr \leq 1 + const \int_1^{\infty} r^{-\gamma/\delta} dr < \infty.$$

Мы не будем доказывать сходимость всех конечномерных распределений к распределениям устойчивого процесса, а ограничимся только сходимостью одномерных.

prop:weak_str

Предложение 6.1 Если $\delta < \gamma \le 2$ и $a \to \infty, a\lambda \to \infty$, то при нормировке (40) в непрерывной модели

$$Z(t) \Rightarrow \mathcal{S}(t, 0, \delta) \quad \forall t \in [0, 1].$$

Доказательство: Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{B(a\lambda)^{1/\delta}} d\tilde{N},$$

где $\ell_{at}(s,u)$ – ядро из (27).

Будем использовать следствие 1.5 предложения 1.4. Нужно проверить предельные соотношения (16) и (17), а также равномерную оценку (20). Ввиду положительности интегрируемых функций соотношение (17) тривиально. Поэтому мы сосредоточимся на проверке (16). Равномерная оценка (20) устанавливается теми же выкладками.

Нам нужно проверить, что

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \ge x\right\} \to t \, x^{-\delta}, \qquad a \to \infty.$$

Сначала отбросим зону (u > ha) для сколь угодно малого, но фиксированного h > 0. Воспользовавшись неравенством $\ell_{at}(s,u) \le at$ мы видим, что из неравенства $\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \ge x$ следует $r \ge \frac{xB(\lambda a)^{1/\delta}}{at}$. Поэтому

$$\mu \left\{ \frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \ge x, u > ha \right\} \le \mathbb{P} \left(R \ge \frac{xB(\lambda a)^{1/\delta}}{at} \right) \cdot \lambda \cdot \mathbb{E} \left((U + at) \mathbf{1}_{U > ha} \right)$$

$$\le const \left(\frac{xB(\lambda a)^{1/\delta}}{at} \right)^{-\delta} \cdot \lambda \cdot \mathbb{E} \left(U \mathbf{1}_{U > ha} \right)$$

$$= const \left(\frac{(xB)^{-\delta}a^{-1}}{(at)^{-\delta}} \right) \cdot (ha)^{1-\gamma}$$

$$= const \cdot x^{-\delta} a^{\delta - \gamma} \to 0,$$

так как $\delta < \gamma$ и $a \to \infty$.

Теперь перейдем к зоне $(u \leq ha)$ с малым h. Начнем с верхней оценки интересующей нас меры. Поскольку $\ell_{at}(s,u) \leq u$, то из неравенства $\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \geq x$ следует $ru \geq xB(\lambda a)^{1/\delta}$. С другой стороны, при фиксированных r,u,t длина носителя функции $\ell_{at}(\cdot,u)$ по переменной s не превосходит $at+u \leq (t+h)a$. Значит,

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \ge x, u \le ha\right\} \le \mathbb{P}\left(RU \ge xB(\lambda a)^{1/\delta}\right) \cdot \lambda \cdot (t+h)a.$$

Воспользуемся тем, что при $x \to \infty$

$$\mathbb{P}(RU \ge x) = \mathbb{E}_U \mathbb{P}(R \ge \frac{x}{U}) \sim \mathbb{E} \frac{c_R U^{\delta}}{\delta x^{\delta}} = \frac{c_R \mathbb{E}(U^{\delta})}{\delta x^{\delta}} . \tag{41}$$

 ${\bf C}$ учетом определения константы B мы приходим к нужной оценке

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \geq x, u \leq ha\right\} \leq \frac{c_R \mathbb{E}(U^\delta)}{\delta x^\delta B^\delta(\lambda a)} \cdot \lambda \cdot (t+h)a = \frac{c_R \mathbb{E}(U^\delta)}{\delta x^\delta B^\delta}(t+h) = \frac{t+h}{\delta x^\delta} \ .$$

Наконец, дадим нижнюю оценку интересующей нас меры. Воспользуемся тем, что на достаточно большом множестве $\ell_{at}(s,u)=u$. Имеем по определению B и (41)

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \ge x, u \le ha\right\} \ge \mu\left\{\frac{ru}{B(\lambda a)^{1/\delta}} \ge x, s \in [0,at-u], u \le ha\right\}$$

$$\ge \mathbb{P}\left\{\frac{RU}{B(\lambda a)^{1/\delta}} \ge x, U \le ha\right\} \cdot \lambda \cdot (t-h)a \succeq \frac{t-h}{\delta x^{\delta}}.$$

6.2 Случай с доминирующей длительностью обслуживания

Будем доказывать предельную теорему для Z в случае $\gamma < \delta \leq 2$, а нормировку выберем по формуле

$$b = B(\lambda a)^{1/\gamma},\tag{42}$$

bweak_stu

где постоянная B определяется соотношением $B^{\gamma} = c_U \mathbb{E}(R^{\gamma})$. Опять-таки при $\delta > \gamma$ соответствующее ожидание заведомо конечно.

Мы не будем доказывать сходимость всех конечномерных распределений к распределениям устойчивого процесса, а ограничимся только сходимостью одномерных.

prop:weak_stu

Предложение 6.2 Если $\gamma < \delta \le 2$, $a \to \infty$, $a\lambda \to \infty$, $a\lambda \to \infty$, $b\lambda \to \infty$,

$$\frac{\lambda}{a^{\gamma-1}} \to 0,$$
 (43) slow_rate

то при нормировке (42) в непрерывной модели

$$Z(t) \Rightarrow \mathcal{S}(t, 0, \gamma) \qquad \forall t \in [0, 1].$$

Доказательство: Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{B(a\lambda)^{1/\gamma}} d\tilde{N},$$

где $\ell_{at}(s,u)$ – ядро из (27).

Будем использовать следствие 1.5 предложения 1.4. Нужно проверить предельные соотношения (16) и (17), а также равномерную оценку (20). Ввиду положительности интегрируемых функций соотношение (17) тривиально. Поэтому мы сосредоточимся на проверке (16). Равномерная оценка (20) устанавливается теми же выкладками.

Нам нужно проверить, что

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\gamma}} \ge x\right\} \to t \, x^{-\gamma}, \qquad a \to \infty.$$

По аналогии с (41) мы на этот раз имеем

$$\mathbb{P}(RU \ge x) = \mathbb{E}_R \mathbb{P}(U \ge \frac{x}{R}) \sim \mathbb{E} \frac{c_U R^{\gamma}}{\gamma x^{\gamma}} = \frac{c_U \mathbb{E}(R^{\gamma})}{\gamma x^{\gamma}} . \tag{44}$$

Мы снова покажем, что можно отбросить зону (u > ha) для сколь угодно малого, но фиксированного h > 0. Как и прежде, будем пользоваться оценкой длины носителя функции $\ell_{at}(\cdot, u)$ величиной

$$u + at = u + ah \frac{t}{h} \le (1 + \frac{t}{h})u := const \cdot u.$$

Поэтому

$$\mu \left\{ \ell_{at}(\cdot, u) > 0, u > ha \right\} \leq \lambda \cdot const \cdot \mathbb{E} \left(U \mathbf{1}_{U > ha} \right)$$

$$= const \cdot \lambda \cdot (ha)^{1-\gamma}$$

$$= const \cdot z,$$

где $z=\frac{\lambda}{a^{\gamma-1}}$ — соотношение из (43), стремящееся к нулю. Мы видим, что полученная оценка стремится к нулю, следовательно мера изучаемого множества пренебрежима.

Теперь перейдем к основной зоне $(u \leq ha)$ с малым h. Начнем с верхней оценки интересующей нас меры. Поскольку $\ell_{at}(s,u) \leq u$, то из неравенства $\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\gamma}} \geq x$ следует $ru \geq xB(\lambda a)^{1/\gamma}$. С другой стороны, при фиксированных

r,u,t длина носителя функции $\ell_{at}(\cdot,u)$ по переменной s не превосходит $at+u\leq (t+h)a$. Значит,

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\gamma}} \ge x, u \le ha\right\} \le \mathbb{P}\left(RU \ge xB(\lambda a)^{1/\gamma}\right) \cdot \lambda \cdot (t+h)a.$$

Воспользуемся оценкой (44) и определением константы B. В результате приходим к нужной оценке

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\delta}} \geq x, u \leq ha\right\} \leq \frac{c_U \mathbb{E}(R^\gamma)}{\gamma x^\gamma B^\gamma(\lambda a)} \cdot \lambda \cdot (t+h)a = \frac{c_U \mathbb{E}(R^\gamma)}{\gamma x^\gamma B^\gamma}(t+h) = \frac{t+h}{\gamma x^\gamma} \ .$$

Наконец, дадим нижнюю оценку интересующей нас меры. Воспользуемся тем, что на достаточно большом множестве $\ell_{at}(s,u)=u$. Имеем с учетом (44)

$$\begin{split} &\mu\left\{\frac{r\ell_{at}(s,u)}{B(\lambda a)^{1/\gamma}} \geq x, u \leq ha\right\} \geq \mu\left\{\frac{ru}{B(\lambda a)^{1/\gamma}} \geq x, s \in [0,at-u], u \leq ha\right\} \\ \geq & \mathbb{P}\left\{\frac{RU}{B(\lambda a)^{1/\gamma}} \geq x, U \leq ha\right\} \cdot \lambda \cdot (t-h)a. \end{split}$$

Выберем две константы: малую r_0 и большую M и заметим, что в силу (43)

$$\frac{(\lambda a)^{1/\gamma}}{r} \ll ha$$

равномерно по $r \ge r_0$. Поэтому

$$\mathbb{P}\left\{\frac{RU}{B(\lambda a)^{1/\gamma}} \geq x, U \leq ha\right\} \\
= \mathbb{E}_{R}\mathbb{P}_{U}\left\{\frac{xB(\lambda a)^{1/\gamma}}{R} \leq U \leq ha\right\} \\
\geq \mathbb{E}_{R}\mathbf{1}_{R \geq r_{0}}\mathbb{P}_{U}\left\{\frac{xB(\lambda a)^{1/\gamma}}{R} \leq U \leq \frac{MxB(\lambda a)^{1/\gamma}}{R}\right\} \\
\sim \mathbb{E}_{R}\mathbf{1}_{R \geq r_{0}}(1 - M^{-\gamma})\frac{c_{U}}{\gamma}\left(\frac{xB(\lambda a)^{1/\gamma}}{R}\right)^{-\gamma} \\
= \mathbb{E}\left(\mathbf{1}_{R \geq r_{0}}R^{\gamma}\right)(1 - M^{-\gamma})\frac{c_{U}}{\gamma}\frac{c_{U}}{R^{\gamma}}x^{-\gamma}(\lambda a)^{-1}.$$

Соединяя с результатом предыдущей оценки и переходя к пределам по r_0, M, h , получим оценку вида $\mathbb{E}(R^{\gamma}) \frac{c_U}{\gamma B^{\gamma}} t x^{-\gamma}$. Остается лишь воспользоваться определением константы B. \square

7 Предельные теоремы о сходимости к телекомпроцессам

В этом разделе рассматриваются оригинальные предельные теоремы из [1], в которых предельные процессы не относятся к какому-то широко известному в теории предельных теорем классу, а всего лишь записываются как интегралы по устойчивой или пуассоновской случайной мере. В [1] такие процессы названы телеком-процессами — по области моделируемых явлений.

7.1 Сходимость к устойчивому телеком-процессу

Будем доказывать предельную теорему для нагрузки Z в случае $\gamma < \delta < 2$, а нормировку выберем по формуле

$$b = B\lambda^{1/\delta} a^{(\delta+1-\gamma)/\delta}, \tag{45}$$
 bweak_tel

где постоянная B определяется соотношением $B^\delta = \frac{c_R c_U}{\delta}$.

Мы не будем доказывать сходимость всех конечномерных распределений к распределениям устойчивого процесса, а ограничимся только сходимостью одномерных.

prop:weak_tel

Предложение 7.1 Если $1<\gamma<\delta<2,\ a\to\infty, a\lambda\to\infty,\ u$ выполнено условие высокой интенсивности обслуживания:

$$\frac{\lambda}{a^{\gamma-1}} \to \infty,$$
 (46) [fast_rate]

то при нормировке (45) в непрерывной модели

$$Z(t) \Rightarrow \mathcal{Z}_{\gamma,\delta}(t) \qquad \forall t \in [0,1],$$

где процесс $\mathcal{Z}_{\gamma,\delta}(t)$ записывается в виде интеграла

$$\mathcal{Z}_{\gamma,\delta}(t) = \int \int \ell_t(s,u) M(ds,du).$$

 $3 decb \ \ell_t(s,u)$ – ядро из (27), а M – δ -устойчивая случайная мера с интенсивностью $u^{-\gamma-1} ds du$, отвечающая центрированному одностороннему устойчивому распределению $S(1,0,\delta)$.

Доказательство: Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{B\lambda^{1/\delta} a^{(\delta+1-\gamma)/\delta}} \ d\tilde{N}.$$

С другой стороны, в силу (21) величина $\mathcal{Z}_{\gamma,\delta}(t)$ имеет устойчивое распределение $\mathcal{S}(\sigma_t, 0, \delta)$, где параметр σ_t находится по формуле

$$\sigma_t = \sigma_t(\gamma, \delta) = \|\ell_t\|_{\delta}^{\delta} = \int \int \ell_t(s, u)^{\delta} \frac{dsdu}{u^{\gamma+1}}.$$

Поэтому при проверке сходимости $Z(t) \Rightarrow \mathcal{Z}_{\gamma,\delta}(t)$ мы можем пользоваться критериями сходимости распределений пуассоновских интегралов к устойчивому закону.

Будем использовать следствие 1.5 предложения 1.4. Нужно проверить предельные соотношения (16) и (17), а также равномерную оценку (20). Ввиду положительности интегрируемых функций соотношение (17) тривиально. Поэтому мы сосредоточимся на проверке (16). Равномерная оценка (20) устанавливается теми же выкладками.

Нам нужно проверить, что при каждом x > 0 верно

$$\mu\left\{\frac{r\ell_{at}(s,u)}{B\lambda^{1/\delta}a^{(\delta+1-\gamma)/\delta}} \ge x\right\} \to \sigma_t \, x^{-\delta}, \qquad a \to \infty. \tag{47} \quad \boxed{\text{limmu_tel}}$$

Не слишком строгие рассуждения таковы. Применяя асимптотику больших уклонений R, найдем

$$\mu \left\{ \frac{r\ell_{at}(s,u)}{B\lambda^{1/\delta}a^{(\delta+1-\gamma)/\delta}} \ge x \right\} = \lambda \int ds \, \mathbb{E}_{U} \mathbb{P} \left\{ R \ge \frac{B\lambda^{1/\delta}a^{(\delta+1-\gamma)/\delta}x}{\ell_{at}(s,U)} \right\}$$

$$\sim \lambda \int ds \, \mathbb{E}_{U} \frac{c_{R}}{\delta} \cdot \left(\frac{B\lambda^{1/\delta}a^{(\delta+1-\gamma)/\delta}x}{\ell_{at}(s,U)} \right)^{-\delta}$$

$$= \frac{c_{R}}{B^{\delta}\delta} \int ds \, \mathbb{E}_{U} \left(\frac{\ell_{at}(s,U)^{\delta}}{a^{\delta+1-\gamma}} \right) \cdot x^{-\delta}.$$

Далее сделаем замены переменной $s=a\tilde{s},\,u=a\tilde{u}$ и воспользуемся формулой самоподобия

$$\ell_{at}(s, u) = a \,\ell_t(\tilde{s}, U/a). \tag{48} \quad \boxed{\text{ell_ssim}}$$

Получим

$$\int ds \, \mathbb{E}_{U} \left(\frac{\ell_{at}(s, U)^{\delta}}{a^{\delta+1-\gamma}} \right) = \int d\tilde{s} \, \mathbb{E}_{U} \left(\frac{\ell_{t}(\tilde{s}, U/a)^{\delta}}{a^{-\gamma}} \right)
= \int d\tilde{s} \, \int F_{U}(du) \left(\frac{\ell_{t}(\tilde{s}, u/a)^{\delta}}{a^{-\gamma}} \right)
\sim \int d\tilde{s} \, \int \frac{c_{U}du}{u^{1+\gamma}} \left(\frac{\ell_{t}(\tilde{s}, u/a)^{\delta}}{a^{-\gamma}} \right)
= c_{U} \int d\tilde{s} \, \int \frac{d\tilde{u}}{\tilde{u}^{1+\gamma}} \left(\ell_{t}(\tilde{s}, \tilde{u})^{\delta} \right).$$

Определение постоянной B позволяет избавиться от лишних констант и прийти к (47). \square

Замечание 1. Нуждается в пояснении роль условия (46). Зафиксируем "приведенные" параметры \tilde{s}, \tilde{u} . Им соответствует исходное выражение $\ell_{at}(a\tilde{s}, a\tilde{u})$, имеющее порядок роста a. Таким образом барьер, с которым сравнивается величина R, имеет порядок $\frac{\lambda^{1/\delta}a^{(\delta+1-\gamma)/\delta}}{a} = \left(\lambda a^{-(\gamma-1)}\right)^{1/\delta}$. Последнее выражение стремится к бесконечности как раз, если выполнено (46).

Замечание 2. Параметр σ_t зависит от t нелинейно. Это показывает, что телеком-процесс $\mathcal{Z}_{\gamma,\delta}(t)$ не является устойчивым процессом с однородными независимыми приращениями.

Замечание 3. Поясним, почему интеграл в определении σ_t конечен. Разбивая интеграл, как обычно, на две области, получим (при $\delta > \gamma$)

$$\int \int_{\{u \le t\}} \ell_t(s, u)^{\delta} \frac{ds du}{u^{\gamma + 1}} \le 2t \int_{\{u \le t\}} \frac{u^{\delta} du}{u^{1 + \gamma}} < \infty,$$
$$\int \int_{\{u \ge t\}} \ell_t(s, u)^{\delta} \frac{ds du}{u^{\gamma + 1}} \le 2t^{\delta} \int_{\{u \ge t\}} \frac{du}{u^{\gamma}} < \infty.$$

7.2 Сходимость к пуассоновскому телеком-процессу

В этом разделе рассматривается предельная теорема для процесса нагрузки Z в случае критической интенсивности обслуживания

$$\frac{\lambda}{a^{\gamma-1}} \to L, \qquad 0 < L < \infty.$$
 (49) crit_rate

Мы не будем доказывать сходимость всех конечномерных распределений к распределениям предельного процесса, а ограничимся только сходимостью одномерных.

prop:weak_telc

Предложение 7.2 Если $1 < \gamma < \delta \le 2$, $a \to \infty$, и выполнено условие критической интенсивности (49), то в непрерывной модели при нормировке b = a верно

$$Z(t) \Rightarrow Y_{\gamma,R}(t) \quad \forall t \in [0,1],$$

где процесс $Y_{\gamma,R}(t)$ записывается в виде интеграла

$$Y_{\gamma,R}(t) = \int_{\mathcal{R}} r \,\ell_t(s,u) \tilde{N}'(ds,du,dr).$$

 $3 dec b \ \ell_t(s,u)$ – ядро из (27), а \tilde{N}' – центрированная пуассоновская случайная мера с интенсивностью

$$\nu(ds, du, dr) = \frac{c_U L ds du}{u^{1+\gamma}} F_R(dr).$$

Доказательство: Напомним, что

$$Z(t) = \int_{\mathcal{R}} \frac{r\ell_{at}(s, u)}{a} \ d\tilde{N}.$$

Нам нужно всего лишь проверить, что при каждом x > 0 верно

$$\mu\left\{\frac{r\ell_{at}(s,u)}{a} \ge x\right\} \to \nu\left\{r\ell_t(s,u) \ge x\right\}, \qquad a \to \infty. \tag{50} \quad \boxed{\texttt{limmu_telc}}$$

Действительно, применяя, как и в предыдущем пункте, замены переменной $s=a\tilde{s},\ u=a\tilde{u}$ и формулу самоподобия (48), найдем

$$\mu\left\{\frac{r\ell_{at}(s,u)}{a} \geq x\right\} = \lambda \mathbb{E}_{R} \int ds \, \mathbb{P}\left\{r\,\ell_{at}(s,U) \geq ax\right\}$$

$$= \lambda a \, \mathbb{E}_{R} \int d\tilde{s} \, \mathbb{P}\left\{r\,\ell_{t}(\tilde{s},U/a) \geq x\right\}.$$

$$= \lambda a \, \mathbb{E}_{R} \int d\tilde{s} \, \int \mathbf{1}_{\{r\,\ell_{t}(\tilde{s},u/a) \geq x\}} f_{U}(u) du$$

$$= \lambda a^{2} \, \mathbb{E}_{R} \int d\tilde{s} \, \int \mathbf{1}_{\{r\,\ell_{t}(\tilde{s},\tilde{u}) \geq x\}} f_{U}(a\tilde{u}) d\tilde{u}.$$

Далее используем асимптотику больших уклонений U,

$$\int \mathbf{1}_{\{r \, \ell_t(\tilde{s}, \tilde{u}) \geq x\}} f_U(a\tilde{u}) d\tilde{u} \sim \int \mathbf{1}_{\{r \, \ell_t(\tilde{s}, \tilde{u}) \geq x\}} c_U(a\tilde{u})^{-1-\gamma} d\tilde{u}$$

$$= c_U a^{-1-\gamma} \int \mathbf{1}_{\{r \, \ell_t(\tilde{s}, \tilde{u}) \geq x\}} \frac{d\tilde{u}}{\tilde{u}^{1+\gamma}}.$$

Получим

$$\mu \left\{ \frac{r\ell_{at}(s, u)}{a} \ge x \right\} \sim c_U \lambda a^{1-\gamma} \mathbb{E}_R \int \mathbf{1}_{\{r\ell_t(\tilde{s}, \tilde{u}) \ge x\}} \frac{d\tilde{u}}{\tilde{u}^{1+\gamma}}$$

$$\sim c_U L \mathbb{E}_R \int \mathbf{1}_{\{r\ell_t(\tilde{s}, \tilde{u}) \ge x\}} \frac{d\tilde{u}}{\tilde{u}^{1+\gamma}}$$

$$= \nu \left\{ r\ell_t(s, u) \ge x \right\}.$$

Соотношение (50) доказано. \square

Замечание. Если $1 < \delta < \gamma \le 2$, то и в случае критической интенсивности будет применимо предложение 6.1 о сходимости к δ -устойчивому процессу.

8 Многомерное обобщение

8.1 Определение многомерной модели

В этом разделе мы вкратце рассмотрим многомерное обобщение предыдущих результатов, следуя работе Кая, Лескелы, Норроса и Шмидта [2]. Речь идет о процессах с многомерным временем, т.е. о случайных полях.

Формальная многомерная модель обслуживания на основе случайных мер Пуассона выглядит следующим образом. Положим $\mathcal{R} = \{(s,v)\} = \mathbb{R}^d \times \mathbb{R}_+$. Каждая точка (s,v) имеет смысл элементарного процесса, который протекает в окрестности точки s, а v определяет масштаб территории, охваченной процессом. Подчеркнем, что \mathbb{R}^d играет ту же роль, которую в исходной модели играло время, а v соответственно обобщает понятие длительности обслуживания. В новой модели не будет аналога случайной интенсивности обслуживания R.

Исходными параметрами для описания работы узла являются

• $\lambda > 0$ – интенсивность потока процессов обслуживания;

- $F_V(dv)$ распределение масштаба охвата;
- множество $C \subset \mathbb{R}^d$, определяющее форму части пространства, охваченной элементарным процессом.

Определим на \mathcal{R} меру интенсивности

$$\mu(ds, dv) = \lambda ds F_V(dv)$$
.

Пусть N — соответствующая ей случайная мера Пуассона. Реализации (множества пар) можно рассматривать как возможные траектории работы узла, а все характеристики этой работы выражаются в виде соответствующих интегралов.

В модели будет присутствовать скалярный масштабный параметр $\rho > 0$, имеющий примерно тот же смысл, что параметр a из исходной модели.

Нам важны: мгновенная нагрузка в точке пространства $t \in \mathbb{R}^d$ – это количество элементарных процессов, захватывающих точку:

$$J(t) = \int_{\mathcal{R}} \mathbf{1}_{\{t \in \left(s + (\rho v)^{1/d}C\right)\}} dN$$

и интегральная (накопленная) нагрузка на множестве $A \subset \mathbb{R}^d$

$$J^{*}(A) = \int_{A} J(\tau)d\tau = \int_{\mathcal{R}} |A \cap \{s + (\rho v)^{1/d}C\}| dN.$$

Соответственно, центрированная и нормированная интегральная нагрузка будет иметь вид

$$Z^{(d)}(A) := \frac{1}{b} \left(J^*(A) - \mathbb{E}J^*(A) \right) = \frac{1}{b} \int_{\mathcal{R}} \left| A \cap \{ s + (\rho v)^{1/d} C \} \right| d\tilde{N}.$$

Функции J(t), $J^*(A)$ и $Z^{(d)}(A)$ являются стационарными, т.е. их распределение не меняется при сдвиге на любой фиксированный вектор благодаря инвариантности меры μ по переменной s.

Заменяя индикаторы множеств функциями ϕ достаточно общего вида, можно определить

$$J^*(\phi) = \int_{\mathbb{R}^d} \phi(\tau) J(\tau) d\tau = \int_{\mathcal{R}} \int_{\{s + (\rho v)^{1/d}C\}} d\tau dN.$$

Это выражение, как и его последующие аналоги, *линейно* по аргументу ϕ . Именно этот, несколько более общий объект и исследуется в работе [2].

8.2 Связь с одномерной моделью

Покажем, почему при R=1 одномерная модель получается как частный случай многомерной. Поскольку некоторые обозначения параметров дублируются, то мы пишем $b^{(d)}, \lambda^{(d)}$ для соответствующих параметров многомерной модели, взятой при d=1. прежде всего, положим C=[0,1] и V=U. С обычной заменой переменной $\tilde{s}=s/a$ получим

$$W^{*}(at) = \int_{\mathcal{R}} |[0, at] \cap [s, s + u]| d\tilde{N}(s, u) = a \int_{\mathcal{R}} |[0, t] \cap [\tilde{s}, \tilde{s} + u/a]| d\tilde{N}(s, u)$$
$$= a \int_{\mathcal{R}} |[0, t] \cap (\tilde{s} + a^{-1}C)| d\tilde{N}(\tilde{s}, u) = aJ^{*}([0, t]),$$

при условии, что $\rho=a^{-1}$ и мера интенсивности \tilde{N} в последней формуле равна $\lambda ad\tilde{s}F_U(du)$. Таким образом,

$$Z(t) = \frac{1}{b} W^*(at) = Z^{(d)}([0, t])$$

если

$$\rho = a^{-1}, \ \lambda^{(d)} = \lambda a, \ \text{и} \ b^{(d)} = ba^{-1}.$$
(51) $\boxed{\mathtt{d}}_{-}$

1) d_equal_one

8.3 Связь многомерных результатов с результатами одномерной модели

Из приведенного выше соответствия становится ясно, что при d=1 результаты [2] должны давать то же самое, что [1] дает при $\delta=2$ (так как R – константа).

И действительно, теорема 1, теорема 2(i), теорема 2(ii), теорема 2(iii) из [2] родственны соответственно предложению 5.1^{20} (сходимость к винеровскому процессу), предложению 5.3^{21} (сходимость к дробному броуновскому движению), предложению 7.2^{22} (сходимость к пуассоновскому телеком-процессу), и предложению 6.2^{23} (сходимость к устойчивому процессу).

Рассмотрим выражения, определяющие режим высокой, низкой, или критической интенсивности. В [2] режим определяется выражением $\lambda^{(d)}\bar{F}_{\rho}(1)=$

²⁰См. [1], теорема 4i.

²¹См. [1], теорема 2i.

²²См. [1], теорема 1i.

²³См. [1], теорема 3i.

 $\lambda^{(d)}(1-F_V(1/\rho))$. При сравнении с одномерным случаем $F_V=F_U$ и 1 — $F_V(1/\rho)\approx \rho^\gamma$. Получаем что режим определяется выражением

$$\lambda^{(d)} \rho^{\gamma} = \lambda a \cdot a^{-\gamma} = \frac{\lambda}{a^{\gamma - 1}}$$
,

как это и должно быть.

Для полноты картины убедимся в идентичности порядка нормировок в теоремах.

В первом случае

$$ab^{(d)} \approx a\rho\lambda^{(d)^{1/2}} = a \ a^{-1}(\lambda a)^{1/2} = (\lambda a)^{1/2} \approx b.$$

Во втором случае

$$ab^{(d)} \approx a \left(\lambda^{(d)} \bar{F}_{\rho}(1)\right)^{1/2} \approx a \left(\lambda a \ a^{-\gamma}\right)^{1/2} = \left(\lambda a^{3-\gamma}\right)^{1/2} \approx b.$$

В третьем случае

$$ab^{(d)} = a \cdot 1 = b.$$

В четвертом случае в определении нормировки фигурирует более сложная величина $(1/\bar{F}_{\rho})^{-1}(\gamma\lambda^{(d)})$, причем -1 в показателе степени означает обратную функцию. Решая относительно x уравнение

$$\gamma \lambda^{(d)} = \frac{1}{\bar{F}_{\rho}(x)} = \frac{1}{\bar{F}(x/\rho)} \approx \frac{1}{(x/\rho)^{-\gamma}} = \frac{x^{\gamma}}{\rho^{\gamma}},$$

найдем $(1/\bar{F}_{
ho})^{-1}(\gamma\lambda^{(d)})=xpprox
ho[\lambda^{(d)}]^{1/\gamma}$. Отсюда

$$ab^{(d)} \approx a(1/\bar{F}_{\rho})^{-1}(\gamma\lambda^{(d)}) \approx a \ \rho \ [\lambda^{(d)}]^{1/\gamma} = [\lambda^{(d)}]^{1/\gamma} = (\lambda a)^{1/\gamma} \approx b.$$

8.4 Многомерные обобщения понятий винеровского процесса и дробного броуновского движения

8.4.1 Многомерный аналог винеровского процесса

В теореме 1 из [2] в пределе появляется обобщенный случайный процесс $W(\phi), \phi \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$ с нулевым средним и корреляцией

$$\mathbb{E}W(\phi)W(\psi) = \int_{\mathbb{R}^d} \phi(t)\psi(t)dt. \tag{52}$$

Подчеркнем, что в соответствии с (23) он может быть получен просто как интеграл по белому шуму на \mathbb{R}^d с интенсивностью, равной мере Лебега.

$$W(\phi = \int_{\mathbb{R}^d} \phi(t) dM.$$

Связь с винеровским процессом состоит в том, что при d=1 процесс $\tilde{W}(t):=W(\mathbf{1}_{[0,t]})$ будет винеровским.

8.4.2 Многомерный аналог дробного броуновского движения

В теореме 2(i) из [2] в пределе появляется обобщенный случайный процесс $W(\phi), \phi \in L_1(\mathbb{R}^d) \cap L_2(\mathbb{R}^d)$ с нулевым средним и корреляцией

$$\mathbb{E}W(\phi)W(\psi) = \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \phi(t_1)\psi(t_2)K_{\gamma,C}(t_1 - t_2)dt_1dt_2,$$

Причем в наиболее интересном сферически симметричном случае согласно формуле (17) из [2] ядро K имеет простой вид и получается

$$\mathbb{E}W_{H}(\phi)W_{H}(\psi) = \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \phi(t_{1})\psi(t_{2})|t_{1} - t_{2}|^{-(\gamma - 1)d}dt_{1}dt_{2},$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \phi(t_{1})\psi(t_{2})|t_{1} - t_{2}|^{-(2 - 2H)d}dt_{1}dt_{2},$$

где, как и в одномерном случае, $H=(3-\gamma)/2\in (1/2,1)$. Обобщенный процесс W_H может рассматриваться как аналог дробного броуновского движения.

Прежде всего установим связь с формулой (52). Переходя к преобразованиям Φ урье²⁴, найдем

$$\int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \phi(t_1) \psi(t_2) |t_1 - t_2|^{-(2-2H)d} dt_1 dt_2 = const \int_{\mathbb{R}^d} \hat{\phi}(u) \overline{\hat{\psi}(u)} |u|^{-(2H-1)d} du.$$

При H=1/2 получим с точностью до константы как раз

$$\int_{\mathbb{R}^d} \hat{\phi}(u) \overline{\hat{\psi}(u)} du = \int_{\mathbb{R}^d} \phi(t) \psi(t) dt.$$

Таким образом, дело сводится к (52).

 $^{^{24}}$ Здесь можно использовать тот факт, что преобразованием Фурье функции $|t|^{-\beta}$ является функция $|u|^{-(d-\beta)}$.

С другой стороны, в одномерном случае при $ilde{W}(t) := W_H(\mathbf{1}_{[0,t]})$ получаем

$$\mathbb{E}|\tilde{W}(t)|^{2} = \int_{0}^{t} \int_{0}^{t} |t_{1} - t_{2}|^{-(2-2H)} dt_{1} dt_{2},$$

$$= 2 \int_{0}^{t} \int_{0}^{t_{1}} (t_{1} - t_{2})^{-(2-2H)} dt_{2} dt_{1}$$

$$= 2 \int_{0}^{t} \int_{0}^{t_{1}} v^{-(2-2H)} dv dt_{1}$$

$$= 2 \int_{0}^{t} \frac{t_{1}^{-(1-2H)}}{2H - 1} dt_{1} = \frac{t^{2H}}{H(2H - 1)}.$$

При $s \leq t$ найдем

$$\mathbb{E}|\tilde{W}(t) - \tilde{W}(s)|^2 = \mathbb{E}(W_H(\mathbf{1}_{[0,t]}) - W_H(\mathbf{1}_{[0,s]}))^2$$

$$= \mathbb{E}W_H(\mathbf{1}_{(s,t]})^2 = \mathbb{E}W_H(\mathbf{1}_{(0,t-s]})^2 = \frac{(t-s)^{2H}}{H(2H-1)},$$

и это приводит нас к корреляционной функции дробного броуновского движения (7) с точностью до константы.

Список литературы

- [1] Kaj I., Taqqu M. (2008) Convergence to fractional Brownian Motion and to the Telecom process: the integral representation approach. In: In and out of Equilibrium. II., ser.: Progress in Probability, vol.60, 383–427.
- KLNS [2] Kaj I., Leskelä L., Norros I., Schmidt V. (2007) Scaling limits for random fields with long-range dependence, *Annals of Probability*, vol.35, 528–550.
- Вії [3] Биллингсли П. Сходимость вероятностных мер, изд-во Мир, 1977.
- [Zol] [4] Золотарев В.М. Одномерные устойчивые распределения, изд-во Наука, 1983.
- [5] Ибрагимов И.А., Линник Ю.В. *Независимые и стационарно связанные* величины, изд-во Наука, 1965.
- [6] Лифшиц М.А. *Гауссовские случайные функции*, изд-во ТВиМС, Киев, 1995.
- [7] Лифшиц М.А. Устойчивые распределения, случайные величины и процессы, СПбГУ, 2007.