

Institute for Computer Science Chair of Communication Networks

Prof. Dr.-Ing. Marco Pruckner

A comparative study of forecasting techniques for sustainable energy systems

Simon Baumgärtner

Motivation -

Increase in electification

Surge in *intermittend* energy sources (e.g. solar & wind)

Increase in energy curtailment (energy lost due to grid balancing)

Energy Forecasting

Improves predictability

Enables:

- Control of storage
- Coordinated EV Charging
- and more

Methodology

Training

24h Forecasts & Evaluation

- For attributes wind, solar & demand Using different accuracy metrics
- Recording several statistics

Evaluation

Naive Hour:

Uses the value of the last measured hour as the prediction

Naive Day:

Uses the value of the same hour of the previous day

Telescope:

An automatic feature extraction and transformation tool for Time Series

ANN (Artificial Neural Network): Common machine learning approach

LSTM (Long Short-Term Memory): Machine learning approach that uses neural networks & so called LSTM cells

Physical:

An approach using the wind turbines power curve in combination with the windspeeds

SARIMAX-Hybrid: Using SARIMAX in combination with a naive approach

■ Naive Day ■ ARIMA ■ SARIMAX ■ ANN ■ I mer ■ Telescope ■ Physical ■ SARIMAX-Hybrid ■ Naive Hour ■ N ■ Transformer 0.2 0.1

RMSE of the different forecasting attributes (high = bad)

Conclusion -

- Various approaches are useful for different applications
- Approaches using neural networks see much success
- Data collection & preprocessing is crucial
- · Parametrization of models highly affects outcome

Find the thesis

