Ch10.교차분석(χ²분석)

연구방법의 이해

- 범주형자료(Categorical Data)와 분할표
 - 관측치들이 몇 개의 범주에 의해서 분류되어 각 범주에 해당되는 도수 로 정리된 자료
 - 예) 성별, 연령별, 지역별 특성에 따라서 분석된 자료
 - 외국교육기관이 들어오는 것을 찬성, 반대
 - 연령에 따른, 시간대에 따른 시청자들의 시청 프로그램 선호도 비교
 - χ² 분석법에 의해 분석

- 범주형자료(Categorical Data)와 분할표
 - 관측치들이 몇 개의 범주에 의해서 분류되어 각 범주에 해당되는 도수 로 정리된 자료
 - 예) 성별, 연령별, 지역별 특성에 따라서 분석된 자료
 - 외국교육기관이 들어오는 것을 찬성, 반대
 - 연령에 따른, 시간대에 따른 시청자들의 시청 프로그램 선호도 비교
 - χ² 분석법에 의해 분석

- K 병원에서는 비타민과 감기와의 관계를 연구하고자 한다.
- 감기가 걸리지 않은 사람을 대상으로 비타민을 투여할 실험군과 가짜 약을 투여할 대조군으로 구분하고 겨울동안 감기가 걸렸는지를 확인하 였다.
- 과연 비타민이 감기에 효과가 있었는지 검증해 보라
- (12.PreCRO.sav).
- 가설
 - 귀무가설(H_0): 비타민처치와 감기발병은 관계가 없다.

$$H_0: \pi_1 = \pi_2$$

• 연구가설(H_1): 비타민처치와 감기발병은 관계가 있다.

$$H_1: \pi_1 \neq \pi_2$$

■ 기대치 산출

$$E(x_1) = 50 \times \hat{\pi}_i = 50 \times \frac{45}{100} = 22.5$$
$$E(x_2) = 50 \times \hat{\pi}_i = 50 \times \frac{55}{100} = 27.5$$

■ 검정통계량

$$\chi_0^2 = \sum_{j=1}^r \sum_{j=1}^c \frac{(O_{ij} - \hat{\mathcal{E}}_{ij})^2}{\hat{\mathcal{E}}_{ij}} = \frac{(33 - 22.5)^2}{22.5} + \dots = 17.818$$

■ 검정결과

$$\chi_0^2 = 17.818 > \chi^2(1) = 3.841$$
이므로 H_0 를 기각($p - value = 0.000$)

	감기	계	
	유	무	711
비타민	17	33	50
			\longrightarrow
Placebo	38	12	50

$$P_1 = \frac{17}{50} = 0.515$$

$$P_2 = \frac{38}{50} = 0.760$$

$$d = P_1 - P_2 = 0.515 - 0.760 = -0.255$$

* 소량의 아스피린을 복용하면 심금경색을 일으키는 사람이 25.5% 준다

$$RR = \frac{17/50}{38/50} = \frac{0.515}{0.760} = 0.678$$

* 상대위험율이 1보다 작으므로 아스피린을 복용했을 경우 안 복용했을때보다 심근경색을 일으킬 위험이 상대적으로 적다는 것을 의미

■프로젝트 생성

- #### 사전 교차분석: 동질성 (chi-square) #####
- # 01.데이터 불러오기
- precroData <- read.csv("./data/12.preCro.csv",
- header=TRUE,
- na.strings = ".")
- precroData\$group <- factor(precroData\$group,
- levels=c(1,2),
- labels=c("비타민","Placebo"))
- precroData\$cold <- factor(precroData\$cold,
 - levels=c(1,2),
- labels=c("noCold","Cold"))

```
Console C:/Users/leecho/Desktop/RStat/Ch10/
> #### 사전 교차분석: 동질성 (chi-square) #####
> # 01.데이터 불러오기
> precroData <- read.csv("./data/12.preCro.csv",</pre>
                       header=TRUE.
                       na.strings = ".")
> precroData$group <- factor(precroData$group,
                        levels=c(1,2).
                        labels=c("비타민", "Placebo"))
> precroData$cold <- factor(precroData$cold,</pre>
                              levels=c(1.2).
                              labels=c("noCold","Cold"))
> str(precroData)
'data.frame': 100 obs. of 2 variables:
$ group: Factor w/ 2 levels "비타민", "Placebo": 1 1 1 1 1 1 1 1 1 1 ...
 $ cold : Factor w/ 2 levels "noCold", "Cold": 1 1 1 1 1 1 1 1 2 ...
```

- attach(precroData)
- #01.분할표 만들기
- nTable <- table(group, cold)
- addmargins(nTable)
- pTable <- prop.table(nTable)
- addmargins(pTable)

```
Console C:/Users/leecho/Desktop/RStat/Ch10/
> attach(precroData)
> #01.분할표 만들기
> nTable <- table(group, cold)</pre>
> addmargins(nTable)
        cold
group noCold Cold Sum
 비타민 33 17 50
 Placebo 12 38 50
      45 55 100
 Sum
> pTable <- prop.table(nTable)</pre>
> addmargins(pTable)
        cold
group noCold Cold Sum
 비타민 0.33 0.17 0.50
 Placebo 0.12 0.38 0.50
 Sum 0.45 0.55 1.00
```

- #02.그래프 그리기
- barplot(nTable, beside=TRUE,
- legend=TRUE, ylim=c(0, 50),
- ylab="명",
- main="비타민섭취에 따른 감기유병률")
- # 모자이크 그래프
- mosaicplot(nTable, shade=TRUE,
- xlab = "treat", ylab = "outcome",
- main="비타민섭취에 따른 감기유병률")

- #03.카이스케어 분석결과
- chisq.test(nTable)
- #04.패키지이용
- install.packages("gmodels")
- library(gmodels)
- precroResult <- CrossTable(nTable,
- expected=TRUE,
- chisq=TRUE)

```
Console C:/Users/leecho/Desktop/RStat/Ch10/
> #03.카이스케어 분석결과
> chisq.test(nTable)
        Pearson's Chi-squared test with Yates' continuity correction
data: nTable
X-squared = 16.162, df = 1, p-value = 5.816e-05
> library(gmodels)
> precroResult <- CrossTable(nTable,</pre>
                   expected=TRUE,
                    chisq=TRUE)
   Cell Contents
               Expected N
  Chi-square contribution
            N / Row Total
            N / Col Total
          N / Table Total
```


	0.267	27.500 4.009 0.760 0.691 0.380	0.500	
Column Total		- 55 0.550 }	100	
Statistics for A		ctors		
$Chi^2 = 17.818$	18 d.f.	= 1 p =	2.430496	e-05
Pearson's Chi-so	quared test	with Yates'	continuity	correction
Chi^2 = 16.1616	62 d.f.	= 1 p =	5.816079	e-05

- #05.상대위험율 계산
- **0.309/0.691**
- detach(precroData)

```
Console C:/Users/leecho/Desktop/RStat/Ch10/ 
> #05.상대위험율 계산
> 0.309/0.691
[1] 0.447178
> |
```

■ 문제의 정의

- K병원에서는 흡연을 많이 하는 사람일수록 폐암에 걸릴 확률일 높다는 것을 발표하였다. 과연 흡연이 폐암과 연관이 있는지를 검증해 보자.
- 흡연자와 비흡연자를 대상으로 폐암발생여부를 파악하여 분석하고자 한다. 이때 국립보건소를 통해 다음과 같은 2차 자료를 구했다고 하자.
- 흡연을 많이 하면 폐암이 걸리는지를 검증해 보자(13.PostCRO.sav)

가설

■ 귀무가설 (H_0) : 흡연유무와 폐암유무와는 관계가 없다.

$$H_0: \pi_1 = \pi_2$$

• 연구가설(H_1): 흡연유무와 폐암유무와는 관계가 있다.

$$H_1:\pi_1\neq\pi_2$$

■ 위험요인과 질병 발생간의 연관성을 1을 기준으로 나타낸 척도

		폐암유무		
		유(1)	무(2)	
흡연유무	유(1)	73	18	
	무(2)	141	196	
계		214	214	

$$odds_1 = \frac{73/214}{141/214} = 0.518$$

$$odds_2 = \frac{18/214}{196/214} = 0.092$$

$$OR = \frac{0.518}{0.092} = 5.63$$

* 흡연군의 폐암발생이 비흡연군에 비해 5.6배 많다

- #### 사후 교차분석: 독립셩 (chi-square) #####
- ### 표로 정리되어 있는 2차 데이터로 처리
- # 01.데이터 불러오기
- postcroData <- read.csv("./data/13.postCro.csv",
- header=TRUE,
- na.strings = ".")
- postcroData\$smoking <- factor(postcroData\$smoking,
- levels=c(1,2),
- labels=c("smok","nsmok"))
- postcroData\$lung <- factor(postcroData\$lung,
- levels=c(1,2),
- labels=c("cancer","health"))
- str(postcroData)

- attach(postcroData)
- #01.분할표 만들기
- nTable <- xtabs(count ~ smoking + lung, data=postcroData)
- addmargins(nTable)
- pTable <- prop.table(nTable)
- addmargins(pTable)

■ 사후설계 교차분석


```
Console C:/Users/leecho/Desktop/RStat/Ch10/
> attach(postcroData)
> #01.분할표 만들기
> nTable <- xtabs(count ~ smoking + lung, data=postcroData)</pre>
> addmargins(nTable)
      lung
smoking cancer health Sum
 smok 73 18 91
 nsmok 141 196 337
 Sum 214 214 428
> pTable <- prop.table(nTable)</pre>
> addmargins(pTable)
      lung
smoking cancer health
  smok 0.17056075 0.04205607 0.21261682
 nsmok 0.32943925 0.45794393 0.78738318
 Sum 0.50000000 0.50000000 1.00000000
```

- #02.그래프 그리기
- barplot(pTable, beside=TRUE,
- legend=TRUE, ylim=c(0, 0.5),
- ylab="명",
- main="흡연에 따른 폐암발생율")
- # 모자이크 그래프
- mosaicplot(nTable, shade=TRUE,
- xlab = "Smoking", ylab = "Lung Cancer",
- main = "흡연에 따른 폐암발생율생")

- #03.카이스케어 분석결과
- chisq.test(nTable)
- #04.패키지이용
- install.packages("gmodels")
- library(gmodels)
- postcroResult <- CrossTable(nTable,
- expected=TRUE,
- chisq=TRUE)
- detach(postcroData)

```
Console C:/Users/leecho/Desktop/RStat/Ch10/
> chisq.test(nTable)
        Pearson's Chi-squared test with Yates' continuity correction
data: nTable
X-squared = 40.697, df = 1, p-value = 1.778e-1\emptyset
> #04.패키지이용
> install.packages("gmodels")
Error in install.packages : Updating loaded packages
> library(qmodels)
> postcroResult <- CrossTable(nTable,
                              expected=TRUE,
                              chisq=TRUE)
   Cell Contents
               Expected N
  Chi-square contribution
            N / Row Total
            N / Col Total
          N / Table Total
```

Console C:/Users/leecho	/Desktop/RStat/Ch10	1 🖈		8
	168.500 4.488 0.418 0.659 0.329	168.500 4.488 0.582 0.916 0.458	0.787	
Column Total	214 0.500	214 0.500	428	
Statistics for Pearson's Chi-s		actors		
$Chi^2 = 42.218$	302 d.f.	= 1 p =	8.164427	e-11
Pearson's Chi-	squared test	with Yates'	continuity	correction
Chi^2 = 40.696	578 d.f.	= 1 p =	1.777803	e-10
>				