Recherche Opérationnelle 1A Programmation Linéaire Théorie des Jeux

Zoltán Szigeti

Ensimag, G-SCOP

EXO 11.1.

Deux géants de la presse quotidienne : *LE FIGARO* et *LIBERATION* se partagent le marché de quelques millions de lecteurs. Supposons que les directeurs de chaque journal doivent choisir un titre à la "une" parmi les trois qui font l'actualité :

T₁ "Présidentielle 2022 : Le duel Macron-Le Pen s'annonce serré"

T₂ "Guerre en Ukraine : Société générale cesse ses activité en Russie"

 T_3 "Covid-19 : L'effet papillon des restrictions en Chine prêt à souffler sur l'économie mondiale"

Grâce aux sondages fréquents de l'opinion publique on peut estimer le comportement du marché. En fonction des titres à la "une" le partage du marché est donné par le tableau suivant :

		LE FIGARO		
		\mathcal{T}_1	T_2	T ₃
	T_1	40% : 60%	70% : 30%	60% : 40%
LIBERATION	T_2	60% : 40%	60% : 40%	70% : 30%
	T_3	50% : 50%	50% : 50%	40% : 60%

EXO 11.1.

Solution

- Les directeurs sont intelligents et ils réfléchissent correctement.
- ② On peut remarquer qu'on peut éliminer certaines stratégies :
 - le directeur du *FIGARO* n'utilisera jamais sa stratégie T_2 , car T_1 est plus avantageuse pour lui : $(60, 40, 50) \ge (30, 40, 50)$.
 - **Q** le directeur de *LIBERATION* n'utilisera jamais sa stratégie T_3 , car T_2 est plus avantageuse pour lui : $(60, 70) \ge (50, 40)$.
 - le directeur du *FIGARO* n'utilisera jamais sa stratégie T_3 , car T_1 est plus avantageuse pour lui : $(60, 40) \ge (40, 30)$.
 - le directeur de LIBERATION n'utilisera jamais sa stratégie T_1 , car T_2 est plus avantageuse pour lui : $60 \ge 40$.

		LE FIGARO		
		T_1 T_2 T_3		
	T_1	40% : 60%	70% : 30%	60% : 40%
LIBERATION	T_2	60% : 40%	60% : 40%	70% : 30%
	T_3	50% : 50%	50% : 50%	40% : 60%

EXO 11.1.

Solution

Point d'équilibre de ce jeu est (T_2, T_1) :

- le directeur de LIBERATION doit choisir sa stratégie T_2 et
- le directeur du *FIGARO* doit choisir sa stratégie T_1 .

Remarque

- Si un des deux change sa stratégie il risque de gagner moins qu'avant.
- 2 En répétant le jeu, on obtiendra chaque fois le même résultat.

		LE FIGARO		
		\mathcal{T}_1	T_2	T ₃
	T_1	40% : 60%	70% : 30%	60% : 40%
LIBERATION	T_2	60% : 40%	60% : 40%	70% : 30%
	T_3	50% : 50%	50% : 50%	40% : 60%

Jeu à somme nulle

Définition

Jeu à somme nulle :

- ① Deux joueurs X et Y s'affrontent (ils jouent un nombre fini de fois),
 - X a m stratégies (pures),
 - Y a n stratégies (pures).
- 2 Le jeu est déterminé par la matrice des gains $A = (a_{ij})$ (connue par les deux joueurs) où
 - ullet a_{ij} est la valeur ce que le joueur Y donne au joueur X si
 - si X joue sa stratégie i et
 - Y joue sa stratégie j.

Remarque

EXO 11.1. est aussi un jeu à somme nulle, la matrice des gains est :

40% : 60%	70% : 30%	60% : 40%
60% : 40%	60% : 40%	70% : 30%
50% : 50%	50% : 50%	40% : 60%

-10	+20	+10
+10	+10	+20
0	0	-10

Jeu à somme nulle

Définition

- stratégie mixte du joueur X: un vecteur $x = (x_1, x_2, \dots, x_m)$ tel que
 - $x_1 + x_2 + \cdots + x_m = 1$ et
 - $2 x_1 \ge 0, x_2 \ge 0, \dots, x_m \ge 0.$
- 2 stratégie mixte du joueur Y: un vecteur $y = (y_1, y_2, \dots, y_n)$ tel que
 - $y_1 + y_2 + \cdots + y_n = 1$ et
 - $2 y_1 \ge 0, y_2 \ge 0, \dots, y_n \ge 0.$
- 3 Ce sont les distributions de probabilité avec lesquelles les joueurs jouent leurs stratégies.

Énoncé

- 1 Le gain moyen par jeu qui résulte de l'application
 - ullet d'une stratégie mixte \overline{x} par le joueur X et
 - d'une stratégie mixte \overline{y} par le joueur Y peut être exprimé par : $\overline{x}^T \cdot A \cdot \overline{y}$.
- ② En adoptant une stratégie mixte \overline{x} le joueur X se garantit au moins le gain : $\min_{y}(\overline{x}^T \cdot A) \cdot y$, où le minimum est pris sur tous les $y \ge 0$ vérifiant $y_1 + y_2 + \cdots + y_n = 1$.
- **3** Ce minimum est atteint pour une stratégie pure du joueur Y, $y^* = (0, \dots, 1, \dots, 0)$, c'est-à-dire : $\min_y (\overline{x}^T \cdot A) \cdot y = \min_j \{\overline{x}^T \cdot a^j\}$.

Solution

- **①** Le gain moyen est $\sum_{i,j} \overline{x}_i \overline{y}_j a_{ij}$:
 - La case ij se joue avec probabilité $\overline{x}_i \overline{y}_i$ et
 - ② la valeur de cette case est a_{ij} , qui est $\overline{x}^T \cdot A \cdot \overline{y}$.
- Évident.

On cherche une solution optimale du PL
$$y = \mathbf{1}$$
 $y \geq 0$ $(\overline{x}^T \cdot A) \cdot y = w(\min)$

- Il existe un sommet du polyèdre qui donne l'optimum,
- es sommets de ce polyèdre sont les vecteurs unitaires.

Théorème min-max de **von Neumann** (version 1)

Pour toute matrice A de taille $m \times n$,

$$\max_{x} \min_{y} (x^{T} \cdot A) \cdot y = \min_{y} \max_{x} x^{T} \cdot (A \cdot y) \qquad \text{qui est la valeur du jeu}$$

où le maximum est pris sur toutes les stratégies mixtes x et le minimum sur toutes les stratégies mixtes y.

Théorème min-max de von Neumann (version 2)

Pour toute matrice A de taille $m \times n$, il existe des stratégies mixtes x^*, y^* :

$$\min_{y}((x^*)^T \cdot A) \cdot y = \max_{x} x^T \cdot (A \cdot y^*)$$

où le minimum est pris sur tous les $y \ge 0$ vérifiant $y_1 + y_2 + \cdots + y_n = 1$, et le maximum sur tous les x > 0 vérifiant $x_1 + x_2 + \cdots + x_m = 1$.

Solution

$$\max_{x} \{ \min_{y} \{ (x^{T} \cdot A) \cdot y \} \} = \max_{x} \{ \min_{j} \{ x^{T} \cdot a^{j} \} \}$$

$$= \max_{x} \{ z : z \le x^{T} a^{j} \ \forall j, \mathbf{1}^{T} x = 1, x \ge 0 \}$$

$$= \min_{y} \{ w : w \ge a_{i} y \ \forall i, \mathbf{1}^{T} y = 1, y \ge 0 \}$$

$$= \min_{y} \{ \max_{x} \{ a_{i} \cdot y \} \}$$

$$= \min_{y} \{ \max_{x} \{ x^{T} \cdot (A \cdot y) \} \},$$

et de plus il existe x^* et y^* tels que $z(\max) = w(\min)$.

Remarque

z(max) = w(min) est la valeur du jeu.

EXO. 11.7.

Énoncé

Étudions le jeu donné par la matrice des gains suivante :

4	1	2	-1
-2	2	-1	5

Montrer que la stratégie mixte $\overline{x} = (\overline{x}_1, \overline{x}_2) = (\frac{2}{3}, \frac{1}{3})$ est optimale pour X.

EXO. 11.7.

Solution

Considérons le PL pour X:

```
\begin{split} \max & \{z: z \leq 4x_1 - 2x_2, z \leq x_1 + 2x_2, z \leq 2x_1 - x_2, z \leq -x_1 + 5x_2, x_1 + x_2 = 1, x_1, x_2 \geq 0\} = \\ \max & \{\min\{4x_1 - 2x_2, x_1 + 2x_2, 2x_1 - x_2, -x_1 + 5x_2\}: x_1 + x_2 = 1, x_1 \geq 0, x_2 \geq 0\} = \\ \max & \{\min\{4(1 - x_2) - 2x_2, (1 - x_2) + 2x_2, 2(1 - x_2) - x_2, -(1 - x_2) + 5x_2\}: 0 \leq x_2 \leq 1\} = \\ \max & \{\min\{-6x_2 + 4, x_2 + 1, -3x_2 + 2, 6x_2 - 1\}: 0 \leq x_2 \leq 1\} = 1. \end{split}
```

On voit géométriquement que max est atteint sur l'intersection de la 3ème et la 4ème droite : $-3x_2+2=6x_2-1$, d'où $(\overline{x}_1,\overline{x}_2)=(\frac{2}{3},\frac{1}{3})$. La valeur du jeu est 1.

EXO. 11.8.

Énoncé

Montrer que dans l'Exercice 11.2,

		Y ann	
		pair	impair
X avier	pair	-6	+9
	impair	+4	-6

les stratégies mixtes optimales pour Xavier et Yann sont

$$\overline{x} = (\frac{2}{5}, \frac{3}{5})$$
 et $\overline{y} = (\frac{3}{5}, \frac{2}{5})$.

EXO. 11.8.

Solution

Conditions des écarts complémentaires :

$$\overline{x}_1 = \frac{2}{5} > 0$$
, donc $0 = w + 6\overline{y}_1 - 9\overline{y}_2 = w + 6 \cdot \frac{3}{5} - 9 \cdot \frac{2}{5} = w$,

2
$$\overline{x}_2 = \frac{3}{5} > 0$$
, donc $0 = w - 4\overline{y}_1 + 6\overline{y}_2 = w - 4 \cdot \frac{3}{5} + 6 \cdot \frac{2}{5} = w$,

$$\overline{x}_1 + \overline{x}_2 = 1$$
, $\overline{y}_1 + \overline{y}_2 = 1$, $\Longrightarrow (\overline{x}_1, \overline{x}_2, \overline{z}) = (\frac{2}{5}, \frac{3}{5}, 0)$ et $(\overline{y}_1, \overline{y}_2, \overline{w}) = (\frac{3}{5}, \frac{2}{5}, 0)$ sont des solutions réalisables et ainsi optimales.

La valeur du jeu est $\overline{z} = \overline{w} = 0$.

EXO. 11.9.

Énoncé

- Chacun des deux joueurs doit
 - miser un nombre : 1 ou 3, et
 - parallèlement deviner la mise de son adversaire.
- ② On doit donc proposer une paire (m; p) où
 - m est le nombre misé et
 - p est le pari sur la mise de l'adversaire.
- Si les joueurs se sont trompés ou ont bien deviné tous les deux les mises de leurs adversaires, alors le résultat du jeu est nul.
- Dans le cas où un seul joueur a bien deviné la mise de son adversaire il reçoit de ce dernier la paie égale à la somme des deux nombres misés.
- Le problème de nature psychologique dans ce jeu est qu'en misant 3 vous aller augmenter la valeur de la paie sans pourtant être sûr de gagner cette valeur élevée vous risquez bien de la perdre.

EXO. 11.9.

Énoncé

Les quatre stratégies pures de chaque joueur sont

et la matrice des gains de ce jeu s'écrit :

	(1; 1)	(1; 3)	(3; 1)	(3; 3)
(1; 1)	0	2	-4	0
(1; 3)	-2	0	0	4
(3; 1)	4	0	0	-6
(3; 3)	0	-4	6	0

- (a) Ecrire les programmes linéaires duaux correspondants.
- (b) Montrer que $\overline{x} = (0, \frac{2}{3}, \frac{1}{3}, 0)$ et $\overline{y} = (0, \frac{3}{5}, \frac{2}{5}, 0)$ sont des solutions optimales.

EXO. 11.9.

Solution

(a) Les PL sont

(b) Conditions des écarts complémentaires :

$$\overline{x}_2 = \frac{2}{3} > 0$$
, donc $0 = w + 2\overline{y}_1 - 4\overline{y}_4 = w + 2 \cdot 0 - 4 \cdot 0 = w$,

$$\overline{x}_3 = \frac{1}{3} > 0$$
, donc $0 = w - 4\overline{y}_1 + 6\overline{y}_4 = w - 4 \cdot 0 + 6 \cdot 0 = w$,

$$\overline{y}_2 = \frac{3}{5} > 0$$
, donc $0 = z - 2\overline{x}_1 + 4\overline{x}_4 = z - 2 \cdot 0 + 4 \cdot 0 = z$,

$$\overline{y}_3 = \frac{2}{5} > 0$$
, donc $0 = z + 4\overline{x}_1 - 6\overline{x}_4 = z + 4 \cdot 0 - 6 \cdot 0 = z$,

$$(\overline{x}_1, \overline{x}_2, \overline{x}_3, \overline{x}_4, \overline{z}) = (0, \frac{2}{3}, \frac{1}{3}, 0, 0)$$
 et $(\overline{y}_1, \overline{y}_2, \overline{y}_3, \overline{y}_4, \overline{w}) = (0, \frac{3}{5}, \frac{2}{5}, 0, 0)$ sont des solutions réalisables \Longrightarrow optimales aussi.

La valeur du jeu est $\overline{z} = \overline{w} = 0$.