9.9 习题

张志聪

2024年12月8日

9.9.1

⇒

对于任意 $\epsilon > 0$,因为序列 $(a_n)_{n=1}^{\infty}$, $(b_n)_{n=1}^{\infty}$ 是等价的,由定义 9.9.5 两者是最终 $\epsilon -$ 接近的,即存在正整数 $N \geq 1$ 使得 $|a_n - b_n| \leq \epsilon$ 对任意 $n \geq N$ 均成立,即序列 $(a_n - b_n)_{n=1}^{\infty}$ 是最终 $\epsilon -$ 接近于 0,由定义 6.1.5 (序列的收敛)可知序列 $(a_n - b_n)_{n=1}^{\infty}$ 收敛于 0,即 $\lim_{n \to \infty} (a_n - b_n) = 0$ 。

• =

 $\lim_{n\to\infty}(a_n-b_n)=0$,那么,对于任意 $\epsilon>0$,都存在正整数 $N\geq 1$ 使得 $|a_n-b_n|\leq \epsilon$ 对任意 $n\geq N$ 均成立,于是可得,序列 $(a_n)_{n=1}^\infty,(b_n)_{n=1}^\infty$ 是最终 $\epsilon-$ 接近的。由定义 9.9.5 可知,序列 $(a_n)_{n=1}^\infty,(b_n)_{n=1}^\infty$ 是等价的。

9.9.2

• $(a) \implies (b)$

f 在 X 是一致连续的,则对任意 $\epsilon > 0$ 都存在 $\delta > 0$ 使得 $|f(x) - f(y)| \le \epsilon$ 对任意 $x, y \in X, |x - y| \le \delta$ 均成立。

因为 $(x_n)_{n=0}^{\infty}$ 和 $(y_n)_{n=0}^{\infty}$ 是由 X 中元素构成的等价序列,那么,存在 正整数 N 使得

 $|x_n - y_n| \le \delta$

此时

$$|f(x_n) - f(y_n)| \le \epsilon$$

由定义 9.9.5 可知 $(f(x_n))_{n=0}^{\infty}$ 和 $(f(y_n))_{n=0}^{\infty}$ 是等价的。

• $(b) \implies (a)$

反证法,假设 f 在 X 上不是一致连续的。那么,存在 $\epsilon_0 > 0$,对任意 $n \in \mathbb{N}$ 存在 $x_n, y_n \in X$ 当 $|x_n - y_n| < 1/n$ 都有 $|f(x_n) - f(y_n)| > \epsilon_0$ 。由定义 9.9.5 可知, $(x_n)_{n=1}^{\infty}, (y_n)_{n=1}^{\infty}$ 是等价的,但因为对任意 n 都有 $|f(x_n) - f(y_n)| > \epsilon_0$ 可知, $(f(x_n))_{n=1}^{\infty}, (f(y_n))_{n=0}^{\infty}$ 不是等价的。这与 题设 (b) 矛盾。

9.9.3

f 在 X 是一致连续的,则对任意 $\epsilon>0$ 都存在 $\delta>0$ 使得 $|f(x)-f(y)| \le \epsilon$ 对任意 $x,y\in X, |x-y|\le \delta$ 均成立。

因为 $(x_n)_{n=0}^{\infty}$ 是柯西序列,即存在 N 使得对任意 $n,m \geq N$ 都有

$$|x_n - x_m| \le \delta$$

此时

$$|f(x_n) - f(x_m)| \le \epsilon$$

于是可得 $(f(x_n))_{n=0}^{\infty}$ 是柯西序列。