rostros

November 14, 2020

Identificación de rostros

0.0.1 Temas Principales

• Matrices

0.1 Introducción

Utilizando una base de datos, con rostros de personas (datos de *entrenamiento*) es posible preparar un **modelo** que ayude a identificar rostros en un nuevo conjunto de datos con rostros de personas (datos de *prueba*). La técnica que se va a utilizar en este proyecto, está basada en la idea de encontrar un conjunto de *eigenvectores* para cada persona y luego utilizarlo para **clasificar** nuevos rostros.

La idea fue presentada originalmente por Sirovich y Kirby en 1987 (L. Sirovich and M. Kirby (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4 (3): 519-524) e implementada por Turk y Pentland en 1991 (M. Turk and A. Pentland (1991). Face recognition using eigenfaces. Proc. IEEE Conference on Computer Vision and Pattern Recognition. pp. 586-591.).

0.2 Preguntas a responder

- 1. Descarga un conjunto de prueba del **LFW**, verifica que todos las imagenes están estandarizadas en tamaño y vienen en escala de grises. Tiene que haber 10 clases. Guarda estas imágenes en una carpeta llamada originales. Esto es muy importante, ya que los resultados deben de ser reproducibles.
- 2. Describe las imagenes obtenidas ¿Cuáles son las etiquetas? ¿Cuántas imágenes hay de cada etiqueta? Crea carpetas con los nombres de las etiquetas y guarda las imágenes correspondientes ahí.
- 3. Crea una función que muestre en una matriz de imágenes de $m \times n$ un conjunto aleatorio del conjunto de datos en originales.
- 4. Crea una función que calcule el rostro promedio de un personaje en particular.
- 5. Crea una función que muestre el rostro promedio de un personaje en particular.
- 6. Guarda los rostros promedios en una carpeta promedios usando el nombre de la etiqueta.
- 7. De cada etiqueta, separala en dos grupos, uno de *entrenamiento* (cada personaje con el mismo número de imagenes) y uno de *prueba* (el restante).
- 8. Crea una matriz \mathcal{M} con las imagenes de *entrenamiento* puestas en un vector.
- 9. Calcula la matriz de **correlación** $\mathcal{C} = \mathcal{M}^T \mathcal{M}$. Por qué es una matriz de correlación?
- 10. Obtén los primeros 30 vectores y valores propios de \mathcal{C} .
- 11. Toma cada uno de los vectores propios y muéstralos como imagen.

- 12. Muestra en una gráfica los valores propios, ordenados de mayor a menor.
- 13. Crea una función que calcule la representación de una imagen en los *vectores propios*. Esto se hace tomando la *proyección* de la imagen en los *vectores propios*. ¿Por qué?
- 14. Utiliza esa función con las imágenes promedio, esto te da la representación única de cada personaje. Dibuja los coeficientes de esta proyección en una gráfica, esto de da la *firma* de cada personaje.
- 15. Muestra la imagen reconstruida a partir de los vectores propios.
- 16. Crea una función que devuelva la diferencia:

$$E_j = \frac{||c_j - c_{nueva}||}{||c_j||}$$

donde c_j es cada una de las imágenes del personaje en el conjunto de entrenamiento y c_{nueva} es una imagen que no es de entrenamiento. Muestra en una gráfica la distancia por cada imagen.

17 Utiliza una **matriz de confusión** para mostrar que tan efectivo es el reconocimiento de imágenes.

0.3 Datos

Utilizar imágenes del Labeled Faces in the Wild. Para obtenerlas de una manera más fácil, se puede usar la función sklearn.datasets.fetch_lfw_people.

0.4 Preguntas extra

- (a) Prepara imágenes de los miembros del equipo ¿A quiénes se parecen?
- (b) Utilizando los datos de *entrenamiento* cuales son los valores máximo y mínimo en promedio de la distancia E_i .
- (c) Se dice lo siguiente:

The input face is consider to belong to a class if k is bellow an established threshold θ_{ϵ} . Then the face image is considered to be a known face. If the difference is above the given threshold, but bellow a second threshold, the image can be determined as a unknown face. If the input image is above these two thresholds, the image is determined NOT to be a face.

¿Se comprueba con las imágenes del equipo? ¿Qué pasa con imágenes que no son humanos?¿Y animales?

(d) Otra técnica que puede mejorar los resultados es restarle a todas las imágenes una *imagen* promedio de todas las imágenes antes de calcular C. Repite los pasos ¿Cambia la matriz de confusión?

0.5 Bibliografía

- Wikipedia
- Labeled Faces in the Wild (LFW) people dataset
- L. Sirovich and M. Kirby (1987). Low-dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A 4 (3): 519-524
- M. Turk and A. Pentland (1991). Face recognition using eigenfaces. Proc. IEEE Conference on Computer Vision and Pattern Recognition. pp. 586-591.

• J. Nathan Kutz (2013) $Data\text{-}Driven\ Modeling\ &\ Scientific\ Computation,\ Oxford\ University\ Presslink.$