Grundlagen der Rechnerarchitektur

Tim Luchterhand, Paul Nykiel (Abgabegruppe 117)

7. Dezember 2018

1 Digitale Schaltungen

1.1

$2^3 = x_3$	$2^2 = x_2$	$2^1 = x_1$	$2^0 = x_0$	$ x_{10} $	f(x)
0	0	0	0	0	1
0	0	0	1	1	1
0	0	1	0	2	1
0	0	1	1	3	1
0	1	0	0	4	1
0	1	0	1	5	1
0	1	1	0	6	1
0	1	1	1	7	0
1	0	0	0	8	1
1	0	0	1	9	1
1	0	1	0	10	1
1	0	1	1	11	0
1	1	0	0	12	1
1	1	0	1	13	1
1	1	1	0	14	1
1	1	1	1	15	1

(a)

(b)

$$f(x) = \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, \overline{x_3} \\ + \overline{x_0} \, \overline{x_1} \, \overline{x_2} \, x_3 \\ + \overline{x_0} \, \overline{x_1} \, x_2 \overline{x_3} \\ + \overline{x_0} \, \overline{x_1} \, x_2 \overline{x_3} \\ + \overline{x_0} \, x_1 \overline{x_2} \, \overline{x_3} \\ + \overline{x_0} \, x_1 \overline{x_2} \, \overline{x_3} \\ + \overline{x_0} \, x_1 \overline{x_2} \, \overline{x_3} \\ + \overline{x_0} \, x_1 x_2 \overline{x_3} \\ + x_0 \overline{x_1} \, \overline{x_2} \, \overline{x_3} \\ + x_0 \overline{x_1} \, \overline{x_2} \, \overline{x_3} \\ + x_0 \overline{x_1} \, \overline{x_2} \, \overline{x_3} \\ + x_0 x_1 \overline{x_2} \, \overline{x_3} \\ + x_0 x_1 \overline{x_2} \, \overline{x_3} \\ + x_0 x_1 x_2 \overline{x_3}$$

(c)
$$f(x) = (x_0 + \overline{x_1} + \overline{x_2} + \overline{x_3}) \cdot (\overline{x_0} + x_1 + \overline{x_2} + \overline{x_3})$$

(d)

(e) Karnaugh-Veitch-Diagramm:

			x				
		0	1	1	0		
x_1	0	1	1	1	1	0	x_3
	1	1	1	0	1	0	
	1	1	0	1	1	1	
	0	1	1	1	1	1	
		0	0	1	1		
			x				

Daraus ergibt sich:

$$f_{\mathrm{Min}}(x) = \overline{x_2} \cdot \overline{x_3}$$

$$+ x_2 \cdot x_3$$

$$+ \overline{x_1} \cdot x_2 \cdot \overline{x_3}$$

$$+ \overline{x_0} \cdot x_2 \cdot \overline{x_3}$$

$$+ \overline{x_1} \cdot \overline{x_2} \cdot x_3$$

$$+ \overline{x_0} \cdot \overline{x_2} \cdot x_3$$

- (f)
- (g)

1.2

(a) Im Falle des "Durchschaltens" des Logikgatters fließt n- bzw- p-mos Logikgattern ein Strom durch den Schaltenden Transitor. Bei C-Mos fließen nur minimale Ströme. Dadurch erhitzt sich die Schaltung nicht so sehr und es können mehr Gattter auf kleinerem Platz ohne thermische Probleme platziert werden.