CLAIMS

- 1/ A method of measuring the propagation time of an
 ultrasound signal between two spaced-apart transducers
 constituting an emitter and a receiver, the emitter

 5 transducer being subjected to an excitation signal
 comprising n successive pulses of period Te, thereby
 causing an ultrasound wave to be emitted towards the
 receiver transducer, said ultrasound wave generating a
 receive signal at the output from the receiver

 10 transducer, said method being comprising the following
 steps:
 - beginning a measurement of an intermediate propagation time when the emitter transducer begins to be excited;
- detecting the receive signal at the output from the receiver transducer and counting the oscillations in said receive signal;
 - . stopping measurement of the intermediate propagation time when an i^{th} oscillation is detected; and
- $\,$ · determining the propagation time of the signal by taking the difference $T_{\rm int}$ i \times $T_{\rm e}.$
- 2/ A method according to claim 1, wherein measurement of the intermediate propagation time is stopped for an ith oscillation of the receive signal that corresponds to the receive signal being at a maximum amplitude.

3/ A method according to claim 1, wherein measurement of the intermediate propagation time is stopped for an i^{th} oscillation of the receive signal, where $i \neq 1$.

5

- 4/ A method according to claim 1, wherein the measurement of the intermediate propagation time is stopped for an ith oscillation of the receive signal, where i=n.
- 10 5/ A method according to claim 1, wherein measurement of the intermediate propagation time is stopped for an i^{th} oscillation of the receive signal, where i=4.
- 6/ A method according to claim 1, wherein measurement of the intermediate propagation time is stopped for an i^{th} oscillation of the receive signal, where i=5.
 - 7/ A method according to claim 1, wherein the excitation signal is made up of \underline{n} pulses, where $n\neq 1$.

20

- 8/ A method according to claim 1, wherein the excitation signal is made up of \underline{n} pulses where n=4.
- 9/ A method according to claim 1, wherein the excitation signal is made up of \underline{n} pulses where n=5.

- 10/ Apparatus for measuring the propagation time of an ultrasound signal, the apparatus comprising:
 - · means for forming an excitation signal;
- an emitter transducer connected to said means for
 forming an excitation signal;
 - a receiver transducer to transform the ultrasound signal into a receive signal; and
 - comparator means connected to said receiver transducer to compare the amplitude of the receive signal with a trigger threshold voltage and to generate a signal representative of oscillations of said receive signal;

the apparatus being characterized in that it further comprises:

- means for measuring a fixed time connected to said
 means for forming an excitation signal in order to measure a fixed time from the instant at which the emitter transducer is excited;
 - · means for determining an ith oscillation, which means are connected to said comparator means, to count the number of oscillations in the receive signal and to detect the ith oscillation; and
 - \cdot means for measuring a variable time between the end of measuring the fixed time and detecting the i $^{\text{th}}$ oscillation.

20

10

11/ Apparatus for measuring the propagating time of an ultrasound signal according to claim 10, wherein the means for measuring a fixed time comprise a counter and a decoder.

5

12/ Apparatus for measuring the propagating time of an ultrasound sound according to claim 10, wherein the means for determining the $i^{\rm th}$ oscillation comprise a counter and a decoder.

10

13/ A device for measuring the propagation time T_p of an ultrasound signal according to claim 10, wherein the means for measuring the variable time comprise a time expander circuit.

15