Overheads: - Outline

Quiz #3

Recap Wednesday: Directing Effects

Reactions of Substituents on Benzene

- how to add more than the "5 Electrophiles"

Some we already know:

Br
$$\frac{\text{Mg}}{\text{THF or}}$$
 $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Mg}}{\text{ether}}$ $\frac{\text{Hg}}{\text{ether}}$ $\frac{\text$

NH₂ (+2 H₂O) - similar to adding H₂ to C=C, but breaks N-O bonds (or) neutralizes HCl base Oxidation of Alkyl Groups (--- more C-O bonds) → any group that has a benzylic
H is oxidized to Ar-CO₂H very strong oxidizing agent only works if there is a Can use others, e.g. $Na_2Cr_2O_7 / HCI / \Delta$ benzylic H these two CH₃ groups are no benzylic H "burned off" as CO₂ benzylic H : no reaction ⇒ Formation of <u>Diazonium</u> <u>Salts</u> $R-N\equiv N$: CI^{\ominus} Recall: normally can't do $S_N 1$ or $S_N 2$ on $sp^2 C$: - can't do backside attack (no S_N2)
- C⁺ very unstable (no S_N1) **But:** ⊕ •N≣N: CI[⊖] = diazonium salt mechanism in Ch. 19.23 / 16.12) a "super-leaving group"! - don't need to know → can leave, even from 1° or sp² C

e.g.
$$CH_3-NH_2 \xrightarrow{NaNO_2} CH_3-N\equiv N$$
; $CI^{\ominus} \xrightarrow{X} CH_3 + N_2$ (g)
- very stable
- gas (: gone)

 \Rightarrow Can use Ar-N₂⁺ to make many other groups: