ECE 569 Midterm

Brandyn Tucknott

Due 31 October 2025

- 1. Show that the following sets or functions are convex
 - (a) $S = \{x \in \mathbb{R}^n : ||x||_1 + ||x||_2 \le 1\}.$

Proof. Let $x, y \in \mathcal{S}$ be arbitrary and $\theta \in [0, 1]$. Then

$$\begin{split} \|\theta x + (1-\theta)y\|_1 + \|\theta x + (1-\theta)y\|_2 &\leq \|\theta x\|_1 + \|(1-\theta)y\|_1 + \|\theta x\|_2 + \|(1-\theta)y\|_2 \\ &= \theta \left\|x\right\|_1 + (1-\theta) \left\|y\right\|_1 + \theta \left\|x\right\|_2 + (1-\theta) \left\|y\right\|_2 \\ &= \theta \left(\|x\|_1 + \|x\|_2\right) + (1-\theta) \left(\|y\|_1 + \|y\|_2\right) \\ &\leq \theta(1) + (1-\theta)(1) = 1. \end{split}$$

We conclude that S is convex by definition.

(b) $S = \{A \in \mathbb{S}^n : z^T A z \ge 1, z \in \mathcal{C}\}$, where $\mathcal{C} \subseteq \mathbb{R}^n$ (not necessarily convex).

Proof. Let $A, B \in \mathcal{S}, z \in \mathcal{C}$ be arbitrary with $\theta \in [0, 1]$. Then

$$z^{T} (\theta A + (1 - \theta)B) z = z^{T} \theta A z + z^{T} (1 - \theta)Bz$$
$$= \theta z^{T} A z + (1 - \theta)z^{T} B z$$
$$\geq \theta (1) + (1 - \theta)(1) = 1.$$

We conclude that S is convex by definition.

(c) $S = C_1 - C_2$ where C_1, C_2 are convex sets.

Proof. Let $a, b \in \mathcal{S}, x_a, x_b \in \mathcal{C}_1, y_a, y_b \in \mathcal{C}_2$ be arbitrary and $\theta \in [0, 1]$. Then

$$\theta a + (1 - \theta)b = \theta(x_a - y_a) + (1 - \theta)(x_b - y_b)$$

= $(\theta x_a + (1 - \theta)x_b) - (\theta y_a + (1 - \theta)y_b)$
= $c_1 - c_2$,

where $c_1 = \theta x_a + (1 - \theta)x_b \in \mathcal{C}_1$ and $c_2 = \theta y_a + (1 - \theta)y_b \in \mathcal{C}_2$ by definition of convex sets. Then certainly $c_1 - c_2 \in \mathcal{S}$, thus \mathcal{S} is convex.

(d) $f(x) = \sum_{i=1}^{n} \max 0, 1 - x_i$.

Proof. Let $x, y \in \text{dom}(f)$ and $\theta \in [0, 1]$. Then

$$\begin{split} f(\theta x + (1 - \theta)y) &= \sum_{i=1}^{n} \max \left\{ 0, 1 - (\theta x_i + (1 - \theta)y_i) \right\} \\ &= \sum_{i=1}^{n} \frac{0 + (1 - (\theta x_i + (1 - \theta)y_i)) + |(1 - (\theta x_i + (1 - \theta)y_i)) - 0|}{2} \\ &= \sum_{i=1}^{n} \frac{1 - \theta x_i - (1 - \theta)y_i + |1 - (\theta x_i - (1 - \theta)y_i)|}{2} \\ &= \sum_{i=1}^{n} \frac{\theta + (1 - \theta) - \theta x_i - (1 - \theta)y_i + |\theta + (1 - \theta) - \theta x_i - (1 - \theta)y_i|}{2} \\ &\leq \sum_{i=1}^{n} \frac{\theta + (1 - \theta) - \theta x_i - (1 - \theta)y_i + |\theta - \theta x_i| + |(1 - \theta) - (1 - \theta)y_i|}{2} \\ &= \sum_{i=1}^{n} \frac{\theta - \theta x_i + \theta |1 - x_i| + (1 - \theta) - (1 - \theta)y_i + (1 - \theta)|1 - y_i|}{2} \\ &= \theta \sum_{i=1}^{n} \frac{1 - x_i + |1 - x_i|}{2} + (1 - \theta) \sum_{i=1}^{n} \frac{1 - y_i + |1 - y_i|}{2} \\ &= \theta \sum_{i=1}^{n} \max \left\{ 0, 1 - x_i \right\} + (1 - \theta) \sum_{i=1}^{n} \max \left\{ 0, 1 - y_i \right\} \\ &= \theta f(x) + (1 - \theta) f(y). \end{split}$$

Since $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$, we conclude that f is convex.

(e)
$$f(x,t) = -\log(t - \|x\|_2)$$
, where dom $(f) = \{(x,t) \in \mathbb{R}^{n+1} : \|x\|_2 < t\}$.

Proof. Let $h: \mathbb{R}_{>0} \to \mathbb{R}$ as $h(x) = -\log(x)$ and $g: \mathbb{R}^{n+1} \to \mathbb{R}_{>0}$ as $g(x,t) = t - ||x||_2$. It is sufficient to Show that h is convex (non-increasing) and g is concave. First we consider h. We compute the first and second derivatives of h to be

$$h'(x) = -\frac{\log(e)}{x}, h''(x)$$
 $= \frac{\log(e)}{x^2}.$

Since h''(x) > 0 for all $x \in \mathbb{R}_{>0}$, we conclude h is convex. Furthermore, since h'(x) < 0 on the same domain, we know h is non-increasing. Now consider g. We are done if we can show -g is convex. Let $(x,t), (y,s) \in \text{dom}(g) = \text{dom}(f), \theta \in [0,1]$. Then

$$\begin{split} -g(\theta x + (1 - \theta)y, \theta t + (1 - \theta)s) &= \|\theta x + (1 - \theta)y\|_2 - (\theta t + (1 - \theta)s) \\ &\leq \theta \|x\|_2 + (1 - \theta) \|y\|_2 - \theta t - (1 - \theta)s \\ &= -\theta (t - \|x\|_2) - (1 - \theta)(s - \|y\|_2) \\ &= - (\theta g(x, t) + (1 - \theta)g(y, s)) \,. \end{split}$$

Thus -g is convex, or equivalently g is concave. Since h is convex (non-increasing) and g concave, $f = h \circ g$ is convex.

- 2. Answer the following questions and provide justifications.
 - (a) Is the following optimization problem convex?

$$\min_{x \in \mathbb{R}^2} \frac{1}{2} (x_1^2 + x_2) \text{ s.t. } -10 \le x_2 \le 10, x_1 \ge 5.$$

Proof. First, we show that $f: \mathbb{R}^2 \to \mathbb{R}$ defined as $f(x) = 1/2(x_1^2 + x_2)$ is convex. We compute the gradient and hessian of f to be

$$\nabla f = (x_1, 1/2)^T,$$
$$\nabla^2 f = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}.$$

Now for arbitrary $x \in \mathbb{R}^2$, compute

$$x^{T} \nabla^{2} f x = (x_{1}, x_{2}) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} (x_{1}, x_{2})^{T}$$
$$= (x_{1}, 0)(x_{1}, x_{2})^{T}$$
$$= x_{1}^{2} \geq 0.$$

Thus $\nabla^2 f \succeq 0$ and f is convex. Since f is convex and the optimization problem has convex constraints, we conclude that we have a convex optimization problem.

(b) Let $A, B \in \mathbb{R}^{n \times n}, x_0 \in \mathbb{R}^n$. Is the following optimization problem convex?

$$\min_{x \in \mathbb{R}^n} x^T A^T A x \text{ s.t. } x^T B^T B x \le 50, ||x - x_0|| \le 10.$$

Proof. First, observe that

$$x^{T}A^{T}Ax = (Ax)^{T}Ax = ||Ax||_{2}^{2}$$

We can then rewrite the optimization problem as

$$\min_{x \in \mathbb{R}^n} ||Ax||_2^2 \text{ s.t. } ||Bx||_2^2 \le 50, ||x - x_0|| \le 10.$$

Since $||Ax||_2^2$ is convex and all constraints are also convex, we conclude the given problem is a convex optimization problem.

(c) Let $A \in \mathbb{R}^{n \times n}$, $x_0 \in \mathbb{R}^n$. Is the following optimization problem convex?

$$\min_{x \in \mathbb{R}^n} x^T A^T A x \text{ s.t. } ||x - x_0||_2 \ge 10.$$

Proof. Although our given function is convex (just as in question 2.b), here our given constraint is the set of all points outside of the circle of radius 10 centered at x_0 in \mathbb{R}^2 . That set is clearly not convex, so our given optimization problem is not convex.

(d) Consider the following optimization problem:

$$\min_{x_1, x_2} e^{x_1} + \frac{1}{2} (x_1 - x_2)^2 - x_1 - x_2 = f(x).$$

Verify that the above problem is a convex optimization problem.

Proof. We begin by computing the gradient and hessian of f:

$$\nabla f = (e^{x_1} + (x_1 - x_2) - 1, -(x_1 - x_2) - 1)^T$$
$$\nabla^2 f = \begin{pmatrix} e^{x_1} + 1 & -1 \\ -1 & 1 \end{pmatrix}$$

Now let $v \in \mathbb{R}^2$ be arbitrary. Then

$$\begin{split} v^T \nabla^2 f(x) v &= (v_1, v_2) \begin{pmatrix} e^{x_1} + 1 & -1 \\ -1 & 1 \end{pmatrix} (v_1, v_2)^T \\ &= (v_1 (e^{x_1} + 1) - v_2, v_2 - v_1) (v_1, v_2)^T \\ &= v_1 (v_1 (e^{x_1} + 1) - v_2) + v_2 (v_2 - v_1) \\ &= v_1^2 (e^{x_1} + 1) - 2v_1 v_2 + v_2^2 \\ &> v_1^2 - 2v_1 v_2 + v_2^2 \text{ since } e^{x_1} + 1 > 0 \\ &= (v_1 - v_2)^2 \ge 0. \end{split}$$

We conclude that $\nabla^2 f > 0$ and by extension f is convex. Since f has no constraints and is convex, we can say that the given optimization problem is convex.

3. Let $b_{\ell} \in \mathbb{R}^n, \ell = 1, \ldots, m$ be fixed vectors. Consider the following optimization problem.

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \sum_{\ell=1}^m (x - b_{\ell})^T (x - b_{\ell}) = f(x).$$

(a) Verify that the above problem is a convex optimizatino problem.

Proof. Since $f(x) = 1/2 \sum_{\ell=1}^{m} (x - b_{\ell})^T (x - b_{\ell}) = 1/2 \sum_{\ell=1}^{m} \|x - b_{\ell}\|_2^2$, we know f is convex (sum of positively weighted convex functions is convex).

(b) Find the optimal solution to the above problem in closed form.

Proof. Since we have an unconstrained convex optimization problem, the optimal solution x^* occurs at $\nabla f = 0$.

$$\nabla f = 0$$

$$\frac{1}{2} \sum_{\ell=1}^{m} (2x^* - 2b_{\ell}^T) = 0$$

$$\sum_{\ell=1}^{m} x^* - b_{\ell} = 0$$

$$x^* m = \sum_{\ell=1}^{m}$$

$$x^* = \frac{1}{m} \sum_{\ell=1}^{m} b_{\ell}.$$

(c) Consider a robustified version of the problem. We focus on the setting where each b_i is only an estimate of the true vector $\overline{b_\ell}$ such that

$$\overline{b_\ell} \in \mathcal{B}(b_\ell, r) := \left\{ \hat{b_\ell} : \left\| \hat{b_\ell} - b_\ell \right\|_2 \le r \right\}$$

and the following reobust optimization:

$$\min_{x \in \mathbb{R}^n} \max_{\ell=1,\dots,m,\hat{b_{\ell}} \in \mathcal{B}(b_{\ell},r)} \frac{1}{2} \sum_{\ell=1}^m (\|x\|_2^2 - 2b_{\ell}^{\hat{T}}x). \tag{1}$$

Show that (1) is equivalent to the following convex optimization:

$$\min_{x \in \mathbb{R}^n} \frac{1}{2} \sum_{\ell=1}^m \left(\|x - b_\ell\|_2^2 + 2r \|x\|_2 \right).$$

Proof. Call $f(x) = 1/2 \sum_{\ell=1}^{m} \|x\|_2^2 - 2\hat{b}_{\ell}^T x$ and $g(x) = 1/2 \sum_{\ell=1}^{m} \|x - b_{\ell}\|_2^2 + 2r \|x\|_2$. We begin by computing the gradients for each function, and observe that we are done if we can find a mapping F such that $F(x_f^*) = x_g^*$ where x_f^*, x_g^* is an optimal solution to f and g respectively. We begin by

computing the gradient of f.

$$\nabla f(x_f^*) = 0$$

$$\frac{1}{2} \sum_{\ell=1}^{m} 2x_f^* - 2\hat{b}_{\ell} = 0$$

$$\sum_{\ell=1}^{m} x_f^* - \hat{b}_{\ell} = 0$$

$$mx_f^* - \sum_{\ell=1}^{m} \hat{b}_{\ell} = 0$$

$$x_f^* = \frac{1}{m} \sum_{\ell=1}^{m} \hat{b}_{\ell}.$$

Now we compute the gradient of g.

$$\nabla g(x_g^*) = 0$$

$$\frac{1}{2} \sum_{\ell=1}^m 2(x_g^* - b_\ell) + 2r \frac{x_g^*}{\|x_g^*\|_2} = 0$$

$$\sum_{\ell=1}^m x_g^* - b_\ell + r \frac{x_g^*}{\|x_g^*\|_2} = 0$$

$$x_g^* + \frac{r x_g^*}{\|x_g^*\|_2} = \frac{1}{m} \sum_{\ell=1}^m b_\ell$$

$$x_g^* \left(1 + \frac{r}{\|x_g^*\|_2} \right) = \frac{1}{m} \sum_{\ell=1}^m b_\ell$$

for $x \neq 0$. This tells us there is some scalar $\alpha \geq 0$ for which $\alpha x_g^* = 1/m \sum b_\ell$. Using this, we continue to evaluate the gradient. Let $s = 1/m \sum_{\ell=1}^m b_\ell$. Then

$$x_g^* + \frac{r x_g^*}{\|x_g^*\|_2} = \frac{1}{m} \sum_{\ell=1}^m b_\ell$$

$$\alpha \frac{1}{m} \sum_{\ell=1}^m b_\ell + \frac{r \alpha \frac{1}{m} \sum_{\ell=1}^m b_\ell}{\|\alpha \frac{1}{m} \sum_{\ell=1}^m b_\ell\|_2} = \frac{1}{m} \sum_{\ell=1}^m b_\ell$$

$$\alpha s + \frac{r \alpha s}{\alpha \|s\|_2} = s$$

$$\left(\alpha + \frac{r}{\|s\|_2}\right) s = s,$$

so $\alpha + r/\left\|s\right\|_2 = 1$ and $\alpha = 1 - r/\left\|s\right\|_2$, allowing us to conclude that

$$\alpha x_g^* = s \longrightarrow x_g^* = \frac{s}{\alpha} = \frac{1}{\alpha m} \sum_{\ell=1}^m b_\ell.$$

Observe that since $\hat{b}_{\ell} \in B_r(b_{\ell})$, there exists $u_{\ell} \in B_r(b_{\ell})$ such that $\hat{b}_{\ell} - u_{\ell} = b_{\ell}$. Then we can write

a function $F: \mathbb{R}^n \to \mathbb{R}^n_{\neq 0}$ defined as $F(x) = \frac{1}{\alpha} x - \frac{1}{m} \sum_{\ell=1}^m u_\ell$.

$$F(x_f^*) = \frac{1}{\alpha} x_f^* - \frac{1}{m} \sum_{\ell=1}^m u_\ell$$

$$= \frac{1}{\alpha} \frac{1}{m} \sum_{\ell=1}^m \hat{b}_\ell - \frac{1}{m} \sum_{\ell=1}^m u_\ell$$

$$= \frac{1}{\alpha} \frac{1}{m} \sum_{\ell=1}^m b_\ell + u_\ell - \frac{1}{m} \sum_{\ell=1}^m u_\ell$$

$$= \frac{1}{\alpha} \frac{1}{m} \sum_{\ell=1}^m b_\ell$$

$$= x_q^*.$$

Since there exists a mapping from x_f^* to x_g^* , the two given convex problems are equivalent (sidenote: u_ℓ is guaranteed fixed since it depends on b_ℓ [fixed by assumption] and \hat{b}_ℓ [chosen first; fixed while choosing x]).

- 4. Answer the following questions on constrained optimization problems.
 - (a) Consider the following optimization problem

$$\min_{x_1, x_2} 2x_1 + \frac{1}{2}(x_2 - 6)^2$$
s.t. $x_1 + 2x_2 = 4$.

Write down the KKT conditions for the equality constrained problem. You may let λ be the Lagrange multiplier. Find a KKT point $(x_1^*, x_2^*, \lambda^*)$ to the problem.

Proof. Let $f(x) = 2x_1 + 1/2(x_2 - 6)^2$, $h(x) = x_1 + 2x_2 - 4$, and λ a Lagrange multiplier. Then we require the following KKT conditions:

$$\nabla f(x) + \lambda \nabla h(x) = 0,$$

$$h(x) = 0.$$

Observe that $h(x) = x_1 + 2x_2 - 4 = 0 \longrightarrow x_1 = 4 - 2x_2$. We can then compute the gradients of f and h to be

$$\nabla f = \begin{pmatrix} 2 \\ x_2 - 6 \end{pmatrix}, \nabla h = \begin{pmatrix} 1 \\ 2 \end{pmatrix},$$

giving us a system of equations

$$\nabla f(x) + \lambda \nabla h(x) = 0 \longrightarrow \begin{cases} 2 + \lambda = 0 \\ x_2 - 6 + 2\lambda = 0 \end{cases}$$
.

From this system, we obtain $\lambda = -2, x_2 = 10$, from which we compute $x_1 = 4 - 2x_2 = -16$. Thus a KKT point to the given problem is $(x_1^* = -16, x_2^* = 10, \lambda^* = -2)$.

(b) Consider the optimization problem

$$\min_{x_1, x_2} \frac{1}{2} (x_1 - 3)^2 + \frac{1}{2} (x_2 + 3)^2$$

s.t. $x_1 + 2x_2 \ge 0$
 $x_1^2 + x_2^2 \le 1$.

Write down the KKT conditions for the above problem. You may let μ_1, μ_2 be the dual variables corresponding to the first and second inequality, respectively. Find a KKT point $(x_1^*, x_2^*, \mu_1^*, \mu_2^*)$ to the problem.

Proof. For notational ease, let

$$f(x) = \frac{1}{2}(x_1 - 3)^2 + \frac{1}{2}(x_2 + 3)^2$$

$$g_1(x) = -x_1 - 2x_2$$

$$g_2(x) = x_1^2 + x_2^2 - 1.$$

The KKT conditions for this problem are as follows:

$$\mu_1, \mu_2 \ge 0$$

$$g_1(x), g_2(x) \le 0$$

$$\mu_1 g_1(x), \mu_2 g_2(x) = 0$$

$$\nabla f(x) + \mu_1 \nabla g_1(x) + \mu_2 \nabla g_2(x) = 0.$$

Suppose we have that $g_1 = g_2 = 0$. The first equality $g_1 = 0$ allows us to derive a relationship between x_1 and x_2

$$g_1(x) = 0 \longrightarrow -x_1 - 2x_2 = 0 \longrightarrow x_1 = -2x_2,$$

and the second equation allows us to find values find them.

$$g_2(x) = 0$$

$$x_1^2 + x_2^2 - 1 = 0$$

$$(-2x_2)^2 + x_2^2 = 1$$

$$5x_2^2 = 1$$

$$x_2 = \pm \frac{\sqrt{5}}{5}.$$

Let us consider $x_2 = -\sqrt{5}/5$. Then we know x_1, x_2 to be $\frac{2\sqrt{5}}{5}$ and $-\frac{\sqrt{5}}{5}$ respectively. Next we compute the gradients for f, g_1, g_2 to be

$$\nabla f(x) = \begin{pmatrix} x_1 - 3 \\ x_2 + 3 \end{pmatrix}$$
$$\nabla g_1(x) = \begin{pmatrix} -1 \\ -2 \end{pmatrix}$$
$$\nabla g_2(x) = \begin{pmatrix} 2x_1 \\ 2x_2 \end{pmatrix}.$$

Solving for the system of equations given by the last KKT condition

$$\nabla f(x) + \mu_1 \nabla g_1(x) + \mu_2 \nabla g_2(x) = 0 \longleftrightarrow \begin{cases} (x_1 - 3) - \mu_1 + 2\mu_2 x_1 = 0 \\ (x_2 + 3) - 2\mu_1 + 2\mu_2 x_2 = 0 \end{cases}$$

yields $\mu_1 = 3/5, \mu_2 = (9\sqrt{5}-5)/10$. This allows us to conclude a solution to the given KKT problem is $(x_1^* = 2\sqrt{5}/5, x_2^* = -\sqrt{5}/5, \mu_1^* = 3/5, \mu_2^* = (9\sqrt{5}-5)/10)$.