



# Alain Matthes

tkz-2d.sty v3.0

The package **tkz-2d.sty** is a set of convenient macros for drawing in a plane (fundamental two-dimensional object) with a Cartesian coordinate system. **tkz-2d.sty** is built on top of PGF and its associated front-end, TikZ and is a (La)TeX-friendly drawing package. The aim is to provide a high-level user interface to build graphics relatively simply. This document provides a collection of graduated examples around the definition of each macro. doc-tkz-2d v3.0 04 10 2007

- Firstly, I would like to thank **Till Tantau** for the beautiful LATEX package, namely TikZ.
- I am grateful to Michel Bovani for providing the fourier font.
- I received much valuable advice from **Jean-Côme Charpentier** and **Josselin Noirel**.

# **Contents**

| I. Installation .      |                                                                  | page | 11 |
|------------------------|------------------------------------------------------------------|------|----|
| II. Installation       | Test Procedures                                                  | page | 12 |
| Part Test              | of tkz-base                                                      | page |    |
|                        | of tkz-2d                                                        | page |    |
|                        |                                                                  |      |    |
| III. Gallery I - So    | ome examples                                                     | page | 16 |
| ex. n <sup>o</sup> 1   | White on Black                                                   | page | 16 |
| ex. n <sup>o</sup> 2   | How to get 1, $\sqrt{2}$ , $\sqrt{3}$ with a rule and a compass  | page | 17 |
| ex. n <sup>o</sup> 3   | Points on the same straight line                                 | page | 18 |
| ex. n <sup>o</sup> 4   | Tangent lines from a point to a circle with a rule and a compass | page | 19 |
| ex. n <sup>o</sup> 5   | Circle and tangent                                               | page | 20 |
| ex. n <sup>o</sup> 6   | How to trisect a line segment                                    | page | 21 |
| ex. n <sup>o</sup> 7   | About right triangle                                             | page |    |
| ex. n <sup>o</sup> 8   | From Archimedes                                                  | page | 23 |
| IV. Gallery II - P     | ythagoras' Theorem                                               | page | 24 |
| ex. n <sup>o</sup> 9   | The Pythagoras' theorem                                          | page | 24 |
| ex. nº 10              | Modern proof by algebra                                          | page | 25 |
| ex. n <sup>o</sup> 11  | Proof using similar triangles                                    | page | 27 |
| ex. n <sup>o</sup> 12  | Proof by rearrangement                                           | page | 29 |
| ex. n <sup>o</sup> 13  | Proof using area subtraction                                     | page | 30 |
| ex. nº 14              | Proof using area comparaison                                     | page | 31 |
| ex. nº 15              | Sum of two squares                                               | page |    |
| ex. nº 16              | Proof with InCircle                                              | page |    |
| ex. nº 17              | Proof with a trapezoid                                           | page | 36 |
| V. Gallery III - S     | Some Sangaku problems                                            | page | 37 |
| ex. nº 18              | Two Unrelated Circles                                            | page | 37 |
| ex. nº 19              | Sangaku in a square - I                                          | page | 43 |
| ex. nº 20              | Sangaku in a square - II                                         | page | 48 |
| ex. n <sup>o</sup> 21  | Sangaku in a square - III                                        | page | 51 |
| ex. nº 22              | Sangaku in a square - IV                                         | page |    |
| ex. n <sup>o</sup> 23  | Sangaku in a square - V                                          | page |    |
| ex. n <sup>o</sup> 24  | Circle Inscribing                                                | page |    |
| ex. nº 25              | Harmonic mean                                                    | page |    |
| ex. nº 26              | Three Tangent Circles                                            | page | 69 |
| VI. Basic Object       | s                                                                | page | 73 |
| macro n <sup>o</sup> 1 | \tkzPoint Define a point                                         | page | 73 |
| ex. nº 27              | 1                                                                | page | 73 |
| ex. n <sup>o</sup> 28  | ·                                                                | page |    |
| macro n <sup>o</sup> 3 | 1 1                                                              | page |    |
| ex. n <sup>o</sup> 29  | 0 1                                                              | page |    |
| ex. n <sup>o</sup> 30  | o i                                                              | page |    |
| macro n <sup>o</sup> 4 | 1 1 1                                                            | page |    |
| ex. n <sup>o</sup> 31  | ,                                                                | page |    |
| macro n <sup>o</sup> 5 | •                                                                | page |    |
| ex. n <sup>o</sup> 32  | 1                                                                | page |    |
| macro n <sup>o</sup> 6 | \tkzSegment Segments                                             | page | 77 |

| ex. n <sup>o</sup> 33   | Simple segment                                        | page | 77 |
|-------------------------|-------------------------------------------------------|------|----|
| macro n <sup>o</sup> 7  | \tkzMidPoint Define the MidPoint of a segment         | page | 78 |
| ex. n <sup>o</sup> 34   | MidPoint of a segment                                 | page | 78 |
| macro n <sup>o</sup> 8  | \tkzMidPoint* Star-form of MidPoint                   | page | 78 |
| ex. n <sup>o</sup> 35   | How to use the midpoint of a segment                  | page | 78 |
| macro n <sup>o</sup> 9  | \tkzPolySeg Lines                                     | page | 78 |
| ex. nº 36               | Lines with segments                                   | page | 79 |
| ex. n <sup>o</sup> 37   | Angle                                                 | page | 79 |
| macro n <sup>o</sup> 9  | \tkzLine Straight Line                                | page | 78 |
| ex. nº 38               | A line                                                | page | 79 |
| ex. n <sup>o</sup> 39   | A line, options kr, kl                                | page | 80 |
| ex. nº 40               | Half-line $kr = 0$                                    | page | 80 |
| ex. nº 41               | Half-line $kl = 0$                                    | page | 81 |
| ex. nº 42               | A line, option prefix                                 | page | 81 |
| macro nº11              | \tkzParaLL Parallel Lines                             | page | 82 |
| ex. nº 43               | Parallel lines                                        | page | 82 |
| macro nº12              | \tkzParaLL* Parallel Lines star-form                  | page |    |
| ex. nº 44               | Parallel lines star-form                              | page |    |
| macro nº13              | \tkzLineOrth Orthogonal Lines                         | page | 83 |
| ex. n <sup>o</sup> 45   | Orthogonal lines                                      | page |    |
| macro nº14              | \tkzLineOrth* Orthogonal Lines star-form              | page |    |
| ex. n <sup>o</sup> 46   | Orthogonal lines star-form                            | page |    |
| macro nº15              | \tkzCircle Circle of center O crossing A              | page |    |
| ex. nº 47               | Circle with a center and a point of the circumference | page |    |
| macro n <sup>o</sup> 16 | \tkzCircle* Define a circle of diameter AB            | page |    |
| ex. nº 48               | Circle with two diameterly opposed points             | page |    |
| ex. n <sup>o</sup> 49   | Circles: the two forms                                | page |    |
| macro nº17              | \tkzCircleR Define a circle of center A and a Radius  | page |    |
| ex. n <sup>o</sup> 50   | Circle with a radius and \tkzrayon                    | page |    |
| ex. n <sup>o</sup> 51   | Circle with a radius with cm or pt                    | page |    |
| ex. n <sup>o</sup> 52   | Circle with \tkzMathLength                            | page |    |
| ex. n <sup>o</sup> 53   | Circle with pgfmath                                   | page |    |
| macro nº18              | \tkzCircleR* Circle (center, Radius) with two points  | page |    |
| ex. n <sup>o</sup> 54   | Circle with a radius given by two points              | page |    |
|                         |                                                       |      |    |
| -                       |                                                       | page |    |
| macro n <sup>o</sup> 19 | \tkzPolygon Draw a Polygon                            | page |    |
| ex. n <sup>o</sup> 55   | polygon                                               | page |    |
| macro n <sup>o</sup> 20 | \SetUpMLine Set up line for polygons                  | page |    |
| ex. n <sup>o</sup> 56   | Set Up Line for Polygons                              | page |    |
| macro n <sup>o</sup> 21 | \tkzSquare Draw a square                              | page |    |
| ex. n <sup>o</sup> 57   | Squares                                               | page |    |
| macro n <sup>o</sup> 22 | \tkzSquare* Define a point with a square              | page |    |
| ex. n <sup>o</sup> 58   | Square star-form isosceles right triangle             | page |    |
| macro n <sup>o</sup> 23 | \tkzTrEquiEquilateral triangle                        | page |    |
| ex. n <sup>o</sup> 59   | Equilateral triangle                                  | page |    |
| macro n <sup>o</sup> 24 | \tkzTrEqui* Equilateral triangle star-form            | page |    |
| ex. n <sup>o</sup> 60   | Equilateral triangle star-form                        | page |    |
| macro n <sup>o</sup> 25 | \tkzLLgram Parallelogram                              | page |    |
| ex. n <sup>o</sup> 61   | Parallelogram                                         | page |    |
| macro n <sup>o</sup> 26 | \tkzLLgram* Parallelogram star-form                   | page |    |
| ex. n <sup>o</sup> 62   | Parallelogram star-form                               | page |    |
| macro n <sup>o</sup> 27 | \tkzRightAngleMark Angle                              | page |    |
| ex. n <sup>o</sup> 63   | Mark Angle                                            | page |    |
| macro nº28              | \tkzRightAngleMark Right Angle                        | page | 93 |

| ex. n <sup>o</sup> 64   | Mark Angle                                             | page 93              |
|-------------------------|--------------------------------------------------------|----------------------|
| macro nº29              | \tkzBisector Bisector Internal Angle                   | page 94              |
| ex. nº 65               | Bisector                                               | page 95              |
| macro nº30              | \tkzBisectorOut Bisector External Angle                | page 95              |
| ex. nº 66               | Bisector Out                                           | page 95              |
| macro nº31              | \tkzInCenter InCenter                                  | page 95              |
| ex. nº 67               | InCenter with the bisectors                            | page 95              |
| ex. nº 68               | InCenters                                              | page 96              |
| macro nº32              | \tkzInCenter* InCenter star-form                       | page 96              |
| ex. nº 69               | InCenter star-form                                     | page 96              |
| macro nº33              | \tkzInCircle InCircle                                  | page 97              |
| ex. nº 70               | InCircle                                               | page 97              |
| ex. nº 71               | InCircles                                              | page 97              |
| macro nº34              | \tkzMedian Median                                      | page 98              |
| ex. nº 72               | Medians                                                | page 98              |
| macro nº34              | \tkzGravityCenterGravity Center                        | page 98              |
| ex. n <sup>o</sup> 73   | The Gravity Center                                     | page 98              |
| macro nº36              | \tkzMediatorLineMediatorLine                           | page 99              |
| ex. nº 74               | Mediator Line                                          | page 99              |
| macro n°37              | \tkzCircumCenter CircumCenter                          | page 99              |
| ex. nº 75               | CircumCenter                                           | page 99              |
| macro n <sup>0</sup> 38 | \tkzCircumCircle CircumCircle                          | page 100             |
| ex. n <sup>o</sup> 76   | CircumCircle CircumCircle                              | page 100<br>page 100 |
| macro n <sup>0</sup> 39 | \tkzAltitudeAltitude                                   | page 100<br>page 100 |
| ex. n <sup>o</sup> 77   | Altitudes                                              |                      |
| macro n <sup>0</sup> 34 | \tkzOrthoCenter OrthoCenter                            | page 100             |
| ex. n <sup>o</sup> 78   | OrthoCenter OrthoCenter OrthoCenter                    | page 98              |
| ex. nº 78               |                                                        | page 101             |
| ex. n° 79<br>macro n°41 | OrthoCenter and projection                             | page 101             |
|                         | \tkzArc Arc of unknown radius                          | page 102             |
| ex. n <sup>o</sup> 80   | Arc of unknown radius with values                      | page 102             |
| macro n <sup>0</sup> 42 | \tkzArc* Arc of unknown radius star-form               | page 102             |
| ex. n <sup>o</sup> 81   | a) Arc of unknown radius with points                   | page 102             |
| ex. n <sup>o</sup> 82   | b) Arc of unknown radius with points                   | page 103             |
| ex. nº 83               | c) Arc of unknown radius with points                   | page 103             |
| macro n <sup>o</sup> 43 | \tkzArcR Arc of known radius with values               | page 103             |
| ex. nº 84               | Arc of known radius with values                        | page 103             |
| ex. nº 85               | Arc of known radius with values; out option            | page 104             |
| macro nº44              | \tkzArcR* Arc of known radius with points              | page 104             |
| ex. nº 86               | Arc of known radius with points                        | page 104             |
| macro nº45              | \tkzCompass Compass                                    | page 105             |
| ex. nº 87               | Compass equilateral triangle                           | page 105             |
| ex. nº 88               | Circle-Circle An isosceles triangle.                   | page 105             |
| ex. nº 89               | Circle-Circle An equilateral triangle                  | page 106             |
| ex. nº 90               | Circle-Circle Mediator Line                            | page 106             |
| ex. nº 91               | Bisector                                               | page 107             |
| macro nº46              | \tkzTgtFromPR Tangent to an circle with a known radius | page 108             |
| ex. nº 92               | a) Tangent to a circle from a point                    | page 108             |
| macro nº47              | Tangent to an circle with a known radius \tkzTgtFromP  | page 109             |
| ex. n <sup>o</sup> 93   | b) Tangent to a circle from a point                    | page 109             |
| macro nº48              | \tkzFillPolygon Fill Polygon                           | page 110             |
| ex. n <sup>o</sup> 94   | Fill Polygon                                           | page 110             |
| macro nº49              | \tkzFillCircle Fill Circle                             | page 110             |
| ex. n <sup>o</sup> 95   | Fill Circle                                            | page 110             |
| macro n <sup>o</sup> 50 | \tkzFillCircle* Fill Circle with unknown radius        | page 110             |
| ex n <sup>0</sup> 96    | Fill Circle with unknown radius                        | nage 110             |

| macro nº51                          | \tkzFillSector Fill Sector                                         | page111              |
|-------------------------------------|--------------------------------------------------------------------|----------------------|
| ex. nº 97                           | a) Fill Sector                                                     | page 111             |
| ex. nº 98                           | b) Fill Sector                                                     | page111              |
| macro nº <mark>52</mark>            | \tkzFillSector* Fill Sector star-form                              | page 111             |
| ex. nº 99                           | Fill Sector star-form                                              | page 111             |
| macro nº53                          | \tkzClipPolygon Clip Polygon                                       | page112              |
| ex. n¶00                            | Clip Polygon                                                       | page112              |
| macro nº <mark>54</mark>            | \tkzClipCircle Clip Circle                                         | page112              |
| ex. n901                            | Clip Circle                                                        | page112              |
| macro nº <mark>55</mark>            | \tkzClipCircle* Clip Circle star-form                              | page112              |
| ex. n <sup>9</sup> 02               | Clip Circle star-form                                              | page112              |
| macro nº <mark>54</mark>            | \tkzClipSector Clip Sector                                         | page112              |
| ex. n903                            | Clip Sector                                                        | page113              |
| macro nº <mark>55</mark>            | \tkzClipSector* Clip Sector star-form                              | page112              |
| ex. n¶04                            | Clip Sector star-form                                              | page113              |
| VIII. Intersection                  |                                                                    | page114              |
| macro nº58                          | \tkzInterLL Intersection Line-Line                                 | page 114             |
| ex. n905                            | Line-Line                                                          | page114              |
| ex. n906                            | Line-Line OrthoCenter                                              | page115              |
| ex. n907                            | Line-Line CircumCenter                                             | page116              |
| ex. n908                            | Line-Line InCenter                                                 | page117              |
| ex. n 109                           | Line-Line GravityCenter                                            | page118              |
| macro n <sup>o</sup> 59             | \tkzInterLCR Intersection Line-Circle with a known radius          | page 119             |
| ex. n <sup>9</sup> 10               | Line-Circle general case                                           | page119              |
| ex. n <sup>9</sup> 11               | Line-Circle center on the line                                     | page119              |
| ex. n <sup>9</sup> 12               | Line-Circle vertical line                                          | page 120             |
| ex. n <sup>9</sup> 13               | Line-Circle horizontal line                                        | page 120             |
| macro n <sup>o</sup> 60             | \tkzInterLC Intersection Line-Circle with points                   | page 121             |
| ex. n <sup>9</sup> 14               | Line-Circle with points                                            | page 121             |
| macro n <sup>o</sup> 61             | \tkzInterCCR Intersection Circle-Circle with known radius          | page 122             |
| ex. n <sup>9</sup> 15               | Circle-Circle General case                                         | page 122             |
| ex. nº116                           | a) Circle-Circle Compass.                                          | page 123             |
| ex. n917                            | b) Circle-Circle Compass                                           | page 123             |
| ex. n918                            | Circle-Circle An isosceles triangle                                | page 123             |
| ex. n119                            | Circle-Circle An equilateral triangle                              | page 124             |
| ex. n <sup>9</sup> 20               | Circle-Circle Mediator Line                                        | page 124             |
| ex. n <sup>9</sup> 21               | Tangent to a circle from a given point                             | page 124<br>page 125 |
| macro n <sup>o</sup> 62             | \tkzInterCC Intersection Circle-Circle                             | page 125             |
| ex. n <sup>9</sup> 22               | Circle-Circle Mediator line of a segment                           | page 126             |
|                                     | nsformations                                                       | page 127             |
| macro nº63                          | \tkzTranslation Translation                                        |                      |
| ex. n <sup>9</sup> 23               | Translation                                                        | page 127<br>page 127 |
| ex. n <sup>9</sup> 24               | Translation star-form                                              |                      |
| macro n <sup>o</sup> 64             | \tkzCSym Central symmetry                                          | page 128             |
| ex. n <sup>9</sup> 25               | · · · · · · · · · · · · · · · · · · ·                              | page 129             |
| macro n <sup>o</sup> 65             | Central symmetry                                                   | page 129             |
| ex. n926                            | \tkzCSym Orthogonal Symmetry Orthogonal Symmetry                   | page 130             |
| macro n <sup>o</sup> 66             |                                                                    | page 130             |
| ex. n927                            | \tkzCSym Orthogonal projection                                     | page 131             |
| ex. n127<br>ex. n128                | Orthogonal projection                                              | page 131             |
| ex. n128<br>macro n <sup>0</sup> 67 | Orthogonal projection in a triangle\tkzRotate Rotation with degree | page 132             |
| macro n°67<br>ex. n°129             |                                                                    | page 133             |
| ex. n129<br>ex. n130                | Rotation 1                                                         | page 133             |
| ex. 11150                           | Rotation 2                                                         | page 134             |

| ex. n¶31                  | Rotation 3                                                 | page 135             |
|---------------------------|------------------------------------------------------------|----------------------|
| macro nº68                | \tkzRotateR Rotation with radian                           | page 136             |
| ex. n¶32                  | Rotation and radian                                        | page 136             |
| macro nº69                | \tkzHomo Homothety                                         | page 137             |
| ex. n¶33                  | Homothetie $-1$ ≤ ratio ≤ 0                                | page 137             |
| ex. n¶34                  | Homothetie $0 \le \text{ratio} \le 1$                      | page 138             |
| ex. n¶35                  | Homothetie ratio = $\sqrt{2}$                              | page 139             |
| X. Some Tools             |                                                            | page140              |
| macro nº70                | \tkzGetPointxy Get coordinates of a node                   | page 140             |
| ex. n¶36                  | tkzGetPointxy                                              | page 140             |
| macro nº71                | \tkzGetVectxy Get coordinates of a vector                  | page 140             |
| ex. n¶37                  | tkzGetVectxy                                               | page 140             |
| macro nº72                | \tkzDrawVector Draw vector(s)                              | page 141             |
| ex. n¶38                  | Drawing vectors                                            | page 141             |
| ex. n¶39                  | Drawing vectors and rotate                                 | page 141             |
| macro n <sup>o</sup> 73   | \tkzVectorNormalised Get a point with a vector Normalised. | page 141             |
| ex. n¶40                  | Vector Normalised                                          | page 141             |
| macro n <sup>o</sup> 74   | \tkzVectorKLinear Vector Collinear                         | page 142             |
| ex. n¶41                  | tkzVectorKLinear with $k = 1$                              | page 142             |
| ex. n942                  | tkzVectorKLinear $k = .75$                                 | page 142             |
| ex. n943                  | tkzVectorKLinear $k = \frac{\sqrt{3}}{2}$                  | page 142             |
| macro n <sup>0</sup> 75   | \tkzVectorOrth Vector orthogonal                           | page 142<br>page 143 |
| ex. n <sup>9</sup> 44     | tkzVectorOrth $k = 0.5$                                    | page 143             |
| ex. n144                  | Get the square root of a number with a ruler and a compass |                      |
| ex. n145                  | tkzVectorOrth $k = 0 - 1$                                  | page 144             |
| macro n <sup>o</sup> 76   |                                                            | page 144             |
|                           | \tkzVectorOrthNormalisedVectororthogonal and normalised    | page 145             |
| ex. n¶47                  | Vector orthogonal and normalised $k = 0.5$                 | page 145             |
| macro n <sup>o</sup> 77   | \tkzMathLength length of segment AB                        | page 146             |
| ex. n¶48                  | length of segment AB                                       | page 146             |
| macro n <sup>o</sup> 78   | \tkzDuplicateLength Get coordinates of a vector            | page 147             |
| ex. n¶49                  | Duplicate a segment                                        | page 147             |
| macro n <sup>o</sup> 79   | \tkzFindSlope Find a slope                                 | page 148             |
| ex. n450                  | tkzGetVectxy                                               | page 148             |
| A list of all macros in t | the order in which they appear in this documentation.      |                      |
|                           | e                                                          | 73                   |
|                           | ise                                                        |                      |
|                           | z-base                                                     |                      |
|                           | pase                                                       |                      |
| •                         |                                                            |                      |
|                           |                                                            |                      |
| •                         |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
| • •                       |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
|                           |                                                            |                      |
| • \tkzCircleK             |                                                            | 86                   |

| • | \tkzCircleR*        | . 88 |
|---|---------------------|------|
|   | \tkzPolygon         |      |
|   | \SetUpLine          |      |
|   | \tkzSquare          |      |
|   | \tkzSquare*         |      |
|   | \tkzTrEqui          |      |
|   | \tkzTrEqui*         |      |
|   | \tkzLLgram          |      |
|   | \tkzLLgram*         |      |
|   | \tkzMediatorLine    |      |
|   | \tkzMediatorLine*   |      |
|   | \tkzCircumCenter    |      |
|   | \tkzCircumCenter*   |      |
|   | \tkzCircumCircle    |      |
|   | \tkzInCenter        |      |
|   | \tkzInCenter*       |      |
|   | \tkzInCircle        |      |
|   | \tkzOrthoCenter     |      |
|   | \tkzOrthoCenter*    |      |
|   | \tkzMedian          |      |
|   | \tkzGravityCenter   |      |
|   | \tkzGravityCenter*  |      |
|   | \tkzAltitude\tkzArc |      |
|   | \tkzArc*            |      |
|   | \tkzArcR            |      |
|   | \tkzArcR*           |      |
|   | \tkzCompass         |      |
|   | \tkzBisector        |      |
|   | \tkzBisector*       |      |
|   | \tkzBisectorOut     |      |
|   | \tkzBisectorOut*    |      |
|   | \tkzMarkAngle       |      |
|   | \tkzRightAngle      |      |
|   | \tkzTgtFromPR       |      |
|   | \tkzTgtFromP        |      |
|   | \tkzFillPolygon     |      |
|   | \tkzFillCircle      |      |
| • | \tkzFillCircle*     | 110  |
| • | \tkzFillSector      | 111  |
|   | \tkzFillSector*     |      |
| • | \tkzClipPolygon     | 112  |
| • | \tkzClipCircle      | 112  |
| • | \tkzClipCircle*     | 112  |
| • | \tkzClipSector      | 113  |
| • | \tkzClipSector*     | 113  |
| • | \tkzInterLL         | 114  |
| • | \tkzInterLCR        | 119  |
| • | \tkzInterLC         | 121  |
|   | \tkzInterCCR        |      |
|   | \tkzInterCC         |      |
|   | \tkzTranslation     |      |
|   | \tkzTranslation*    |      |
| • | \tkzCSym            | 129  |

### Altermundus

| • \tkzCSym*                |     |
|----------------------------|-----|
| • \tkzSymOrth              |     |
| • \tkzSymOrth*             |     |
| • \tkzProjection           |     |
| • \tkzProjection*          |     |
| • \tkzRotate               |     |
| • \tkzRotate*              |     |
| • \tkzRotateR              |     |
| • \tkzRotateR*             |     |
| • \tkzHomo                 |     |
| • \tkzHomo*                |     |
| • \tkzGetPointxy           |     |
| • \tkzGetVectxy            |     |
| • \tkzDrawVector           |     |
| • \tkzVectorNormalised     | 141 |
| • \tkzVectorKLinear        |     |
| • \tkzVectorOrth           |     |
| • \tkzVectorOrthNormalised |     |
| • \tkzMathLength           |     |
| • \tkzDuplicateLength      |     |
| • \tkzFindSlope            |     |
| ^^^^                       |     |

## I. Installation.

You could simply create a folder (directory) prof which path is: texmf/tex/latex/prof. texmf is generally the personnal folder, here ways of this folder on my two computers:

- with OS X /Users/ego/Library/texmf;
- with Ubuntu /home/ego/texmf.

If you choose a custom location for your files, I suppose that you know why! The installation that I propose, is valid only for one user.

- 1/ Store the files tkz-2d.sty, tkz-base.sty and tkz-arith.sty in the folder prof.
- 2/ Open a terminal, then type sudo texhash

```
Last login: Mon Dec 11 23:32:11 on console
Welcome to Darwin!
altermundus:~ ego$ sudo texhash
Password:
texhash: Updating /usr/local/teTeX/share/texmf/ls-R...
texhash: Updating /usr/local/teTeX/share/texmf.gwtex/ls-R...
texhash: Updating /usr/local/teTeX/share/texmf.local/ls-R...
texhash: Updating /usr/local/teTeX/share/texmf.tetex/ls-R...
texhash: Updating /usr/local/teTeX/share/texmf.tetex/ls-R...
texhash: Updating /var/tmp/texfonts/ls-R...
texhash: Done.
altermundus:~ ego$
```

3/ Check that xkeyval, ifthen, fp et tikz 1.18 are installed because they are obligatory.

<u>↑ tikz 1.18</u> is now sufficient but it is preferable to update some files of the math folder. The path of this folder is **texmf/tex/generic/pgf/math**. You can download it here:

http://pgf.cvs.sourceforge.net/pgf/pgf/generic/pgf/math/

An other important file is "pgffor.code.tex" here: http://pgf.cvs.sourceforge.net/pgf/pgf/generic/pgf/utili
My folder texmf is structured as in the diagram below:



#### II. Tests

Firstly, you need to test if tkz-base is installed. To determine if this package is correctly installed you need to try the code of the file named "test1.tex".

This package needs the packages fp.sty, ifthen.sty and xkeyval (2.5) (or better).

If you want only to work with 2d.sty, you must know that 2d.sty calls tkz-base. 2d.sty is independent of fp.sty but for the moment, tkz-base uses fp.sty.

- A common mistake is to put space between arguments, so try to avoid this.
- The file pgfmathparser.code.tex of PGF 1.18 must be replace by that which is available in CVS. You can find this file here:

http://pgf.cvs.sourceforge.net/\*checkout\*/pgf/pgf/generic/pgf/math/pgfmathparser.code.tex A better solution is to take all the files of the directory generic/pgf/math

#### Partie A Test of tkz-base

You can type the next code or use the file test1.tex

```
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz,tkz-base}
\usetikzlibrary{arrows,plotmarks}%
\usepackage[english]{babel}
% pour les français \usepackage[frenchb]{babel}
\usepackage[np,autolanguage]{numprint}
\begin{document}
\begin{tikzpicture}[scale=.5]
\tkzInit
\tkzGrid
\tkzX[orig]
\tkzY
\end{tikzpicture}
\end{document}
```

The result must be:



An other test with Tikz 1.18 and the pgfmath library (test2.tex)



```
\begin{tikzpicture}%
   \tkzInit[xmin=-1,xmax=1.1,xstep=.2,ymin=-1,ymax=1.1,ystep=.2]
   \tkzX
   \tkzY
   \tkzPoint(0,0){0}
   \draw (0) circle (5cm);
   \tkzGrid(-1,-1)(1,1)
   \pgfmathparse{sqrt(3)/2}
   \let\Mx\pgfmathresult
   \pgfmathparse{1/2}
   \let\My\pgfmathresult
   \tkzPoint[pos
                  = right,%
                    coord,%
            M\left(\frac{3}{2}\right)^{2}\right)^{(Mx,My){M}}
   \tkzSegment[style=dashed](0/M)
\end{tikzpicture}
```

An other test with fp.sty but now it's easy to make the same thing with Tikz. (test3.tex) fp.sty is used to calculate the coordinates of the point M given by  $\widehat{xOM} = 1$ rad.



```
\begin{tikzpicture}
   \tkzInit[xmin=-1,xmax=1.2,xstep=.2,ymin=-1,ymax=1.2,ystep=.2]
   \tkzX[gradsize=\scriptstyle]\tkzY[gradsize=\scriptstyle]
   \tkzPoint(0,0){0}\tkzPoint[pos=above right](1,0){A}
   \FPcos\Mx{1}\FPsin\My{1}
   \tkzPoint[pos=above right](1,1){T}
   \tkzPoint[coord,mark = *,size = 1pt,%
             pos = above right](\Mx,\My){M}
   \tkzSegment[color=red,colorlabel=red,label=1\,u](A/T,O/M)
   \draw[color=blue] (0,0) circle (5cm);
   \path (A) arc (0:40:5) node[rotate=-45,above,color=red] \{1\,u\};
   \begin{scope}
      \path[clip](0)--(A)--(M)--cycle;
      \draw[color=blue,fill=red] (0,0) circle (.5cm);
   \end{scope}
   \begin{scope}
      \hat{C}(0) - (A) - (T) - (M) - cycle;
      \draw[color=red] (0,0) circle (5cm);
   \end{scope}
   \path[clip] (0,0) circle (5cm);
   \tkzGrid(-1,-1)(1,1)
   \text{tkzText[color= red]}(0.3,0.15){$1$\,rad}
   \tkzText[style={draw},color= red](0.55,-0.15){\$\scriptstyle\cos(1)\$}
   \tkzText[style={draw},color= red](-0.23,0.83){$\scriptstyle\sin(1)$}
\end{tikzpicture}
```

Partie B Test of Tkz-2d The code below is the code of the file test4.tex

```
\documentclass{article}
\usepackage{amsmath}
\usepackage{tikz,tkz-2d}
\usetikzlibrary{arrows,plotmarks}%
\usepackage[english]{babel}
  % pour les français \usepackage[frenchb]{babel}
\usepackage[np,autolanguage]{numprint}
\begin{document}
\begin{tikzpicture}
   \tkzInit
   \tkzPoint[noname](0,0){C}
   \tkzPoint[noname](4,0){A}
   \tkzPoint[noname](0,3){B}
   \tkzSquare*(B,A){E}{F}
   \tkzSquare*(A,C){G}{H}
   \tkzSquare*(C,B){I}{J}
   \tkzFillPolygon[color = green ](A,C,G,H)
   \tkzFillPolygon[color = blue ](C,B,I,J)
   \tkzFillPolygon[color = purple](B,A,E,F)
   \tkzPolygon[lw = 1pt](A,B,C)
   \tkzPolygon[lw = 1pt](A,C,G,H)
   \tkzPolygon[lw = 1pt](C,B,I,J)
   \tkzPolygon[lw = 1pt](B,A,E,F)
\end{tikzpicture}
\end{document}
```



## III. Gallery: Some examples

#### **Example n° 1** White on Black

This example shows how to get a segment with a length equal at  $\sqrt{a}$  from a segment of length a, only with a rule and a compass.



```
\begin{tikzpicture}[show background rectangle]
   \tkzInit[ymin=-1.5,ymax=7,xmin=-1,xmax=11]
   \tkzClip
   \tkzPoint*(0,0){0}
   \text{tkzPoint}*(1,0){I}
   \tkzPoint*(1,-1){I'}
   \tkzPoint*(10,0){A}
   \tkzPoint*(10,-1){A'}
   \tkzVectorOrth(I,A){H}
   \tkzMidPoint*(0,A){M}
   \tkzInterLC(I,H)(M,M,A){C}{B}
   \tkzSegment[color=white,lw=1pt](I/H,O/A)
   \tkzDrawPoint[size = 1.5pt,%
color = white,%
                 namecolor = white](0,I,A,B,M)
   \tkzSegmentMark[colorlabel = white,%
                   poslabel = -18pt,%
                             = $\sqrt{a}$](I/B)
                   label
   \tkzSegmentMark[colorlabel = white,%
                            = $1$](0/I)
                   label
   \tkzArc*[color=white,lw=1pt](M,M,A)(A,O)
   \draw[<->,color=white,line width=1pt]%
        (I') to node[midway,sloped,above,color=white]{$a$}(A');
   \tkzRightAngle[color=white](A/I/B)
\end{tikzpicture}
```

**Example n° 2** How to get 1,  $\sqrt{2}$ ,  $\sqrt{3}$  with a rule and a compass.



```
\begin{tikzpicture} [scale=2]
  \tkzInit[xmin=-3,xmax=4,ymin=-2,ymax=4]
  \tkzGrid
  \tkzPoint*(0,0){0}
  \tkzPoint*(1,0){a0}
  \tkzSegment[color=red](0/a0)
  \newcounter{tkzcounter}
  \setcounter{tkzcounter}{0}
  \foreach \i in {0,...,13}{%
    \stepcounter{tkzcounter}
    \tkzVectorOrthNormalised(a\i,0){a\thetkzcounter}
    \tkzPolySeg[color=red,lw=1pt](a\i,a\thetkzcounter,0)
    \tkzRightAngle[size=0.2,color=magenta](0/a\i/a\thetkzcounter)%
    }
\end{tikzpicture}
```

**Example n° 3** In this example, we want to shaw that points I,H and J are on the the same straight line.



```
\begin{tikzpicture}[scale=.8]
 \tkzInit[ymin=-5,ymax=10]
 \tkzClip[space=1]
 \tkzPoint[pos=below left](0,0){A}
 \tkzPoint(8,0){B}
 \tkzMidPoint[color=red](A,B){0}
 \tkzCircle*(A,B)
 \tkzPoint[pos=above right](3.5,10){I}
 \tkzSegment[lw=.5pt](I/A,I/B)
 \tkzInterLCR(I,A)(0,4 cm){A}{M}
 \tkzInterLCR(I,B)(0,4 cm){N}{B}
 \tkzDrawPoint[mark={},pos=left](M)
 \tkzDrawPoint[mark={},pos=right](N)
 \tkzSegment(A/B,B/M,A/N)
 \tkzRightAngle(A/M/B,A/N/B)
 \tkzProjection(A,B)(I/J)
 \tkzSegment[style=dashed,color=blue,lw=0.6pt](I/J)
 \tkzInterLL[color=red,namecolor=blue](A,N)(B,M){H}
\end{tikzpicture}
```

**Example n° 4** How to construct the tangent lines from a point to a circle with a rule and a compass.



```
\begin{tikzpicture}
  \tkzInit[xmin=-5,ymin=-5]
  \tkzClip
  \tkzPoint(0,0){0}\tkzPoint(9,2){P}
  \tkzMidPoint(0,P){I}
  \tkzCircleR(0,4cm)
  \tkzCircle*(0,P)
  \tkzMathLength(I,P)
  \tkzInterCCR(0,4cm)(I,\tkzmathLen pt){Q1}{Q2}
  \tkzDrawPoint[mark=*,size=1pt,color=red,pos=left](Q1)
  \tkzDrawPoint[mark=*,size=1pt,color=red,pos=right](Q2)
  \tkzLine(P/Q1,P/Q2,P/0)
  \tkzSegment(0/Q1,0/Q2)
  \end{tikzpicture}
```

## **Example n° 5** Circle and tangent



```
\tkzInit[xmax=14,ymin=-2,ymax=6]
  \tkzX[noticks,nograd,label=$(d)$]
  \tkzPoint[pos=above right](8,2){A};
  \tkzPoint[color=red,pos=above right](0,0){0};
  \draw[blue,line width=.8pt] (A) circle(3cm);%todo circle r=
  \tkzHLine[color=red,style=dashed]{4}
  \pgfmathparse{8-3*cos(asin(2/3))}
  \let\xB\pgfmathresult
  \tkzPoint[pos=above left](\xB,4){B};
  \tkzSegment[style=dotted,lw=1pt](A/B)
  \tkzLineOrth[kr=3,kl=1,prefix=t](A,B)(B)
  \tkzPoint*(1,0){i}
  \tkzInterLL(tl,tr)(0,i){B'}
  \end{tikzpicture}
```

**Example n° 6** How to divide a segment in three segments of the same length

The diagram below shows how to trisect a line segment [AB]



```
\begin{tikzpicture}
\tkzInit
\t \D (0,0){A} \t \D (3,3){B}
\tkzCircleR*[color=blue](B,B,A)
\tkzCircleR*[color=blue](A,A,B)
\t XInterCC(B,B,A)(A,A,B){A2}{F}
\tkzCircleR*[color=red](F,A,B)
\t XInterCC(F,A,B)(B,B,A){G}{A}
\tkzInterCC(F,A,B)(A,A,B){B}{E}
\tkzCircleR*[color=red](G,A,B)
\t XInterCC(G,A,B)(B,B,A){A7}{A8}
\tkzCircleR*[color=red](A7,A,B)
\t XInterCC(A7,A,B)(G,B,A){A9}{H}
\tkzDrawPoint[color=red](F,G,E,H)
\tkzInterLL(E,A)(H,B){0}
\t x = .6 pt] (A/B, O/H, O/E, E/H, F/O, G/O)
\end{tikzpicture}
```

## **Example n° 7** About right triangle

We have a segment [AB] and we want to determine a point C such as AC = 8cm and ABC is a right triangle in B.



#### Example n° 8 Archimedes

This is an ancient problem proved by the great Greek mathematician Archimedes . The figure below shows a semicircle, with diameter AB. A tangent line is drawn and touches the semicircle at B. An other tangent line at a point, C, on the semicircle is drawn. We project the point C on the segment[AB] on a point D . The two tangent lines intersect at the point T.

Prove that the line (AT) bisects (CD)



```
\begin{tikzpicture}
  \tkzInit[ymin=-1]
  \path[coordinate] (0,0) coordinate(A)%
                    (6,0) coordinate(D)
                    (8,0) coordinate(B)
                    (4,0) coordinate(I);
  \tkzDrawPoint[color=red](A,B,D)
  \tkzSegment(A/B)
  \clip (A)--(9,0)--(9,6)--(0,6)--cycle;
  \tkzCircle*(A,B)
  \tkzLineOrth[kr=1,kl=0](A,D)(D)
  \tkzInterLCR(D,dr)(I,4 cm){C}{J}
  \tkzDrawPoint[color=red,pos=above right](C)
  \tkzLineOrth[kr=1,kl=1,prefix=t1](I,C)(C)
  \tkzLineOrth[kr=1,kl=0,prefix=t2](A,B)(B)
  \tkzInterLL[color=red](C,t1r)(B,t2r){T}
  \tkzInterLL[color=red](A,T)(C,D){P}
  \tkzSegment(A/T)
\end{tikzpicture}
```

## IV. Gallery: Pythagoras' Theorem

The most well-known theorem in Euclid Geometry is about the right-angle triangle, commonly attributed to Pythagoras but Greek, Chinese and Babylonian mathematicians have known about this for a long time. The theorem is of fundamental importance in Euclidean Geometry where it serves as a basis for the definition of distance between two points.

#### The Pythagoras' theorem

In any right angled triangle, the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares whose sides are the two legs (the two sides other than the hypotenuse).





```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint[noname](0,0){C}
  \tkzPoint[noname](4,0){A}
  \tkzPoint[noname](0,3){B}
   \tkzSquare*(B,A){E}{F}
   \tkzSquare*(A,C){G}{H}
   \tkzSquare*(C,B){I}{J}
  \tkzFillPolygon[color = red ](A,C,G,H)
  \tkzFillPolygon[color = blue ](C,B,I,J)
   \tkzFillPolygon[color = purple](B,A,E,F)
   \t = 1pt](A,B,C)
   \tkzPolygon[lw = 1pt](A,C,G,H)
   \tkzPolygon[lw = 1pt](C,B,I,J)
   \tkzPolygon[lw = 1pt](B,A,E,F)
   \tkzSegmentMark[label = $a$](C/A)
   \tkzSegmentMark[label = $b$](B/C)
   \tkzSegmentMark[label = $c$,poslabel = -14pt](B/A)
\end{tikzpicture}
```

In this picture, the area of the blue square added to the area of the red square makes the area of the purple square.

#### This is usually summarised as:

The square on the hypotenuse is equal to the sum of the squares on the other two sides.

If we let c be the length of the hypotenuse and a and b be the lengths of the other two sides, the theorem can be expressed as the equation

$$a^2 + b^2 = c^2$$

or, solved for c:

$$c = \sqrt{a^2 + b^2}.$$

### **Example n° 10** Modern proof by algebra

Draw a rectangle with two sides of a and b (say the lower left).



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint[noname](-1,2){A} \tkzPoint[noname]( 3,4){C}
  \tkzPoint[noname]( 3,2){B} \tkzPoint[noname](-1,4){D}
  \tkzSegment[label = $a$,color = blue,lw = 1pt](C/D)
  \tkzSegment[label = $b$,color = blue,lw = 1pt](C/B)
  \tkzSegment[color = blue,lw = 1pt](D/A,A/B)
  \end{tikzpicture}
```

Draw a diagonal of this rectangle (call it c).



We add this code

```
\tkzSegment[label = $c$,colorlabel = red,color = red,lw = 1.5pt](D/B)
```

Draw a square using the diagonal as its side (shown in red).



```
\begin{tikzpicture}[scale=.75]
  \tkzInit
  \tkzPoint[noname](-1,2){A} \tkzPoint[noname]( 5,4){C}
  \tkzPoint[noname]( 5,2){B} \tkzPoint[noname](-1,4){D}
  \tkzSegment[label = $a$,colorlabel = blue,color = blue,lw = 1pt](C/D)
  \tkzSegment[label = $b$,colorlabel = blue,color = blue,lw = 1pt](C/B)
  \tkzSegment[color = blue,lw = 1pt](D/A,A/B)
  \tkzSquare*(B,D){I}{J}
  \tkzPolygon[color = red,lw = 1.5pt](B,D,I,J)
  \end{tikzpicture}
```

Replicate the original rectangle three times around the red square.



We add this code

```
\tkzRotate(0,90)(C/C1,D/D1,A/A1,B/B1)
\tkzPolygon[color = blue,lw = 1pt](A1,B1,C1,D1)
```



We have a square of side a + b, inscribed in it is a red square of side c, and four copies of the original right triangle.

$$4\frac{ab}{2} + c^{2} = (a+b)^{2}$$
$$2ab + c^{2} = a^{2} + 2ab + b^{2}$$
$$c^{2} = a^{2} + b^{2}$$

Another possibilty

Area of red square = Areas of 4 triangles + Area of small square.

The algebra here asserts that

$$4\frac{ab}{2} + (b-a)^{2} = c^{2}$$
$$2ab + b^{2} - 2ab + a^{2} = c^{2}$$
$$a^{2} + b^{2} = c^{2}$$

## **Example n° 11** Proof using similar triangles

Like many of the proofs of the Pythagoras' Theorem, this one is based on the proportionality of the sides of two similar triangles.

Let ABC represents a right triangle, with the right angle located at C, as shown on the figure.



```
\begin{tikzpicture}
  \tkzInit[ymax=6]\tkzClip[space=0.5]
  \tkzPoint(10,6){C}
  \tkzPoint[pos=below left]( 0,6){A}
  \tkzPoint(10,0){B}
  \SetUpSegment[colorlabel=blue,color=blue,lw=1pt]
  \tkzSegment[label=$c$](C/B)
  \tkzSegment[label=$b$](A/C)
  \tkzSegment[label=$a$](A/B)
  \tkzProjection[pos=below](B,A)(C/H)
  \tkzSegment[label=$h$,colorlabel=red,color=red](C/H)
  \tkzRightAngle(B/C/A,C/H/A)
  \end{tikzpicture}
```

We draw the altitude from point A, and call H its intersection with the side AB. The new triangle ACH is similar to the triangle ABC, because they both have a right angle (by definition of the altitude), and they share the angle at A. The triangle BCH is also similar to ABC. The two similarities lead to the two ratios:

$$\frac{a}{c} = \frac{\text{HB}}{a} \text{ and } \frac{b}{c} = \frac{\text{AH}}{b}$$

These can be written as

$$a^2 = c \times HB$$
 and  $b^2 = c \times AH$ .

Summing these two equalities, we obtain

$$a^2 + b^2 = c \times HB + c \times AH = c \times (HB + AH) = c^2$$
.

In other words, the Pythagoras' Theorem:

$$a^2 + b^2 = c^2$$

#### **Example n° 12** Proof by rearrangement

The area of each large square is  $(a + b)^2$ . In both figures, the area of four identical triangles is removed. The remaining areas in white,  $a^2 + b^2$  and  $c^2$ , are equal.





```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint[noname](0,0){A} \tkzPoint[noname](7,0){B}
  \tkzSquare*(A,B){C}{D}
  \tkzPolygon[color = blue](B,C,D,A)%
  \tkzPoint[noname](3,0){I} \tkzPoint[noname](7,3){J}
  \tkzSquare*(I,J){K}{L}
  \tkzPolygon[color = red](I,J,K,L)%
  \tkzFillPolygon[color = red!30](A,I,L)%
  \tkzFillPolygon[color = blue!30](I,B,J)%
  \tkzFillPolygon[color = orange!30](K,C,J)%
  \tkzFillPolygon[color = green!30](K,D,L)%
  \end{tikzpicture}
```

```
\tkzInit
\tkzPoint[noname](0,0){A} \tkzPoint[noname](7,0){B}
\tkzSquare*(A,B){C}{D}
\tkzSquare*(A,I){M}{L}
\tkzSquare*(A,I){M}{L}
\tkzSquare*(M,J){C}{P}
\tkzPolygon[color = red](A,I,M,L)%
\tkzPolygon[color = red](M,J,C,P)%
\tkzSegment[color = blue](I/J,D/M,I/B,B/J,P/D,D/L)
\tkzFillPolygon[color = red!30](M,J,I)%
\tkzFillPolygon[color = orange!30](I,B,J)%
\tkzFillPolygon[color = orange!30](D,P,M)%
\tkzFillPolygon[color = green!30](D,M,L)%
```

#### **Example n° 13** Proof using area subtraction

The red arrows show three translations of triangles.



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint*(0,0){A} \tkzPoint*(4,0){B}
  \tkzSquare*(A,B){C}{D}
  \tkzPoint*(4,3){I}
  \tkzSquare*(I,B){J}{K}
  \tkzSquare*(J,C){L}{M}
  \tkzPolygon[lw = 1pt](B,C,J)%
  \tkzProjection*(A,B)(M/T)
  \tkzInterLL*(A,B)(L,M){R}
  \tkzInterLL*(I,K)(C,J){S}
  \tkzFillPolygon[color = blue,opacity = .2](S,C,I)%
  \tkzFillPolygon[color = blue,opacity = .2](R,L,A)%
  \tkzFillPolygon[color = orange,opacity = .2](D,C,L)%
  \tkzFillPolygon[color = orange,opacity = .2](T,J,M)%
  \tkzFillPolygon[color = green,opacity = .2](J,K,S)%
  \tkzFillPolygon[color = green,opacity = .2](T,R,M)%
  \tkzDrawVector[color = red](D/B,A/I,T/K)
\end{tikzpicture}
```

## **Example n° 14** Proof using area comparaison

This is a variant of the above proof. Two regions - the red and the blue - are equal.



```
\begin{tikzpicture}
             \tkzInit
            \tkzSquare*(B,A){D}{E}
            \tkzSquare*(A,C){F}{G}
            \tkzSquare*(C,B){H}{I}
             \path[fill = blue, opacity = 1] (E) rectangle (F);
             \hat{B} = blue!80 (A)--(B)--(C)--cycle;
            \hat{B} - (B) - (B)
            \phi = red!80 (H)|-(I)--cycle;
            \mathbf{Path}[fill = red!80] (I)-|(C)--cycle;
            \tkzFillPolygon[color = blue](B,A,D,E)
            \tkzFillPolygon[color = blue](A,C,F,G)
            \tkzFillPolygon[color = red,opacity = 1](C,B,H,I)
             \tkzPolygon[lw = 1pt](A,B,C)
\end{tikzpicture}
```

### **Example n° 15** Sum of two squares

We start with two squares with sides a and b, respectively, placed side by side. The total area of the two squares is  $a^2 + b^2$ .



```
\begin{tikzpicture}[scale = 2]
  \tkzInit
  \tkzPoint*(0,0){A} \tkzPoint*(0,1){B}
  \tkzSquare*(A,B){C}{D}
  \tkzPoint*(2,0){I}\tkzPoint*(4,0){J}
  \tkzSquare*(I,J){K}{L}
  \tkzPolygon(A,B,C,D)%
  \tkzPolygon(I,J,K,L)%
  \tkzFillPolygon[color = blue](A,B,C,D)%
  \tkzFillPolygon[color = red](I,J,K,L)%
  \end{tikzpicture}
```

The aera of the orange square is  $a^2 + b^2$ 





```
\begin{tikzpicture}[scale = 2]
  \tkzInit
  \tkzPoint*(0,0){I'}%
 \tkzPoint*(2,0){J'}%
 \tkzPoint*(1,0){B'}
 \tkzSquare*(I',J'){K'}{L'}
 \tkzSquare*(I',B'){C'}{D'}
 \tkzSquare*(L',B'){M}{N}%
 \tkzPolygon(I',B',C',D')%
 \tkzPolygon(I',J',K',L')%
 \tkzFillPolygon[color = blue,%
                 opacity = .5](I',B',C',D')%
 \tkzFillPolygon[color = red,%
                 opacity = .5](I',J',K',L')%
 \tkzFillPolygon[color = orange,%
                 opacity = .5](L',B',M,N)%
 \tkzFillPolygon[color = red,%
                 opacity = .5](K',N,L')%
 \tkzPolygon(L',B',M,N)%
 \tkzInterLL*(L',K')(M,N){S}
 \tkzInterLL*(D',C')(J',K'){T}
 \tkzInterLL*(B',M)(J',K'){U}
 \tkzSegment(L'/B',K'/N,S/M,K'/S)
 \tkzFillPolygon[color = blue!50!red,%
                 opacity = .5](T,M,S,K')%
\end{tikzpicture}
```

#### **Example n° 16** Proof with InCircle



```
\begin{tikzpicture}
  \tkzInit \tkzClip[space=.5]
  \t \propto = below](0,0){C}\t pos = right](6,0){B}%
  \tkzPoint[pos = above](0,8){A}
  \tkzPolygon(A,B,C)%%
  \tkzInCenter(A,B,C){I}
  \tkzProjection(B,C)(I/H)
  \tkzProjection[pos = left](A,C)(I/K)
  \tkzProjection[pos = right](A,B)(I/L)
  \tkzSegment(I/L,I/H,I/K)
  \tkzCircle(I,H)
  \tkzRightAngle(A/L/I,B/H/I,C/K/I)
  \tkzSegmentMark[label = $r$,poslabel = -12pt](C/H)
  \tkzSegmentMark[label = $a-r$,poslabel = -12pt](H/B)
  \tkzSegmentMark[label = $r$](C/K)
  \tkzSegmentMark[label = $b-r$](K/A)
  \tkzSegmentMark[label = $a-r$](L/B)
  \tkzSegmentMark[label = $b-r$](A/L)
  \tkzSegmentMark[label = $r$](I/L)
\end{tikzpicture}
```

Let ABC represents a right triangle, with the right angle located at C, as shown on the figure. Let *a*, *b* and *c* the lengths of the three sides; *c* is the length of the hypothenuse.

Let *r* and *s* be the radius of the incercle and the semiperimeter of the triangle.

a, b and c can be regarded in relation to r and they may be expressed with r: a = r + (a - r), b = r + (b - r) and c = (a - r) + (b - r).

In a right triangle, we have the relation r = s - c. From the diagram, the hypotenuse AB is split in two pieces: (a - r) and (b - r), the length of the hypothenuse is c = (a - r) + (b - r).

The perimeter is a function of r

$$2s = a + b + c = r + (a - r) + r + (b - r) + (a - r) + (b - r) = 2a + 2b - 2r$$

so we can expressed r with s and c

$$2r = a + b - c = 2s - 2c$$
 and  $r = s - c$ .

Compute the area of the triangle ABC in three different ways.

1/ ABC is a right triangle so,

Area(ABC) = 
$$\frac{1}{2}ab$$
.

**2/** The aera of a triangle is given by rs with  $s = \frac{1}{2}(a+b+c)$ .

$$Area(ABC) = Area(AIC) + Area(CIB) + Area(BIA)$$

The aera of triangle AIC is given by  $\frac{1}{2} \times AC \times IK = \frac{1}{2}br$ , therefore and by analogy:

Area(ABC) = 
$$\frac{1}{2}r(a+b+c) = rs$$

3/ In a right triangle, we have the relation r = s - c (see above) so,

$$Area(ABC) = rs = s(s - c)$$

$$rs = (s-c)s = \left(\frac{a+b+c}{2} - c\right)\left(\frac{a+b+c}{2}\right) = \frac{(a+b-c)(a+b+c)}{4} = \frac{1}{2}ab$$

Simplifications yield

$$(a+b)^2 - c^2 = 2ab$$

and

$$a^2 + b^2 = c^2$$

#### **Example n° 17** Proof with a trapezoid

This proof, discovered by President J.A. Garfield in 1876



```
\begin{tikzpicture}[scale=.5]
  \tkzInit
  \t \propto = below left](0,0){C}\t \propto = right](8,0){B}%
  \t Point[pos = left](0,6){A}\t point[pos = above left](0,14){D}%
  \tkzPoint[pos = above right](6,14){E}
  \tkzPolygon(A,B,C)%%
  \tkzPolygon(A,D,E,B)%%
  \tkzSegment(E/A)
  \tkzRightAngle(A/C/B,B/A/E)
  \tkzSegmentMark[label = $c$](A/B)
  \tkzSegmentMark[label = $b$](A/C)
  \tkzSegmentMark[label = $a$](B/C)
  \tkzSegmentMark[label = $b$](D/E)
  \tkzSegmentMark[label = $a$](D/A)
  \tkzSegmentMark[label = $c$](A/E)
\end{tikzpicture}
```

The formula for the area of a trapezoid is the key, but this aera can be computed as the sum of areas of the three triangles ABC, ADE and EAB (EAB is an isosceles right triangle)

$$\frac{1}{2}(a+b)(a+b) = \frac{1}{2}ab + \frac{1}{2}ab + \frac{1}{2}c^2$$

Simplifications yield  $a^2 + b^2 = c^2$ .

# V. Gallery: Some Sangaku Problems

#### Some references

- a Scientific American article by Tony Rothman written in co-operation with Hidetoshi Fukagawa;
- the book by H. Fukagawa and D. Pedoe.
- http://www.sangaku.info/
- http://mathworld.wolfram.com
- http://www.wasan.jp/english/
- http://www.cut-the-knot.org/pythagoras/Sangaku.shtml

## What are Sangaku or San Gaku?

Sangaku are colorful wooden tablets which were hung often in shinto shrines and sometimes in buddhist temples in Japan and posing typical and elegant mathematical problems. The problems featured on the sangaku are problems of japanese mathematics (wasan). The earliest sangaku found date back to the beginning of the 17th century.

#### Sangaku Two Unrelated Circles

Chord [ST] is perpendicular to diameter [CP] of a circle with center O at point R. Q is point of [CP] between P and R. [SQ] intersects the circle in V.

Let r be the radius of the circle inscribed into the curvilinear triangle TQV. Prove that

$$\frac{1}{r} = \frac{1}{PQ} + \frac{1}{QR}$$

#### **Example n° 18** Two Unrelated Circles



Figure 1: Sangaku Two Unrelated Circles

Now you can read the code to get the last picture.

```
\begin{tikzpicture}
             \text{tkzInit}[xmin = -5,ymin = -5,xmax = 5,ymax = 5]
             \t \times (0,0){0}\t \times (-2,-3){A}
             \t \ensuremath{\texttt{VkzPoint}}(2,-3){B}\t \ensuremath{\texttt{R}}(0,3){Q}
             \tkzCircleR(0,5 cm)
             \tkzInterLCR(A,B)(0,5 cm){S}{T}
             \tkzInterLCR(S,Q)(0,5 cm){V}{X}
             \tkzClipCircle(0,5 cm)
             \tkzLine[prefix = dm](S/Q)\tkzLine[prefix = dn](T/Q)
             \tkzMidPoint*(S,T){R}
             \tkzLineOrth(0,Q)(Q)
             \tkzMathLength(R,Q)\let\dRQ\tkzmathLen%
             \tkzMathLength(S,Q)\let\dSQ\tkzmathLen%
             \protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\pro
             \tkzProjection*[pos = above left](V,Q)(M/G)
             \t XInterLCR(0,M)(0,5 cm){W}{Y}
             \t Nd (A/B, O/Q, S/Q, T/Q)
             \tkzCircleR(M,1.5 cm)
             \tkzFillCircle[color = blue!50!Black](0,5cm)
             \tkzFillCircle[color = yellow](M,1.5cm)
             \tkzFillCircle[color = yellow](N,1.5cm)
             \tkzFillPolygon[color = purple](S,T,Q)
             \tkzFillPolygon[color = purple](dmr,dnr,Q)
\end{tikzpicture}
```

#### Explanation:



# Sangaku - Solution of Nathan Bowler

Take coordinates such that it is the unit circle (r = 1), with Q on the x axis. Let G = (a; b), W = (u; v). Then:

• The line (QV) has equation ax + by = 1,

• Q is at 
$$\left(\frac{1}{a};0\right)$$
,

• O is at 
$$\left(\frac{1}{a}; \frac{v}{au}\right)$$
.

• V satisfies

$$ax + by = 1$$
 and  $\left(x - \frac{1}{a}\right)^2 + \left(y - \frac{v}{au}\right)^2 = \left(1 - \frac{1}{au}\right)^2$ .

**Further** 

$$y^2 - \frac{av}{u}2y + 2\frac{a}{u} - a^2 - 1 = 0$$

so that

$$QR = -y$$

$$= -\frac{av}{u} - \sqrt{\left(\frac{a^2}{u^2} - 2\frac{a}{u} + 1\right)}$$

$$= -\frac{av}{u} + 1 - \frac{a}{u}$$

$$= 1 - \frac{a(1+v)}{u}.$$

and

$$PQ = 1 - \frac{1}{au} + \frac{v}{au} = 1 - \frac{1 - v}{au}.$$

So

$$(PQ-1)(QR-1) = \frac{(1-\nu)(1+\nu)}{u^2} = 1.$$

Equivalently,

$$\frac{1}{PQ} + \frac{1}{QR} = 1 = \frac{1}{r}.$$



**Figure 2:** Sangaku-Two Unrelated Circles: R = 6 cm, OR = -2 cm et RQ = 4 cm

\begin{tikzpicture}[scale = .7]
 \TwoUnrelatedCircles{6}{-2}{4}
\end{tikzpicture}

In the general case, some information will be needed. For instance, it is necessary to give the radius of the big circle, the position of points R and Q. I have decided to give R(0, r) relatively to O and Q relatively to P with the value of PQ.

The macro, below, is used to obtain some examples.

```
\newcommand*{\TwoUnrelatedCircles}[3]{
 \% #1 --> R ; #2 --> Y_P <0 or >0 ; #3 --> PQ > = 0
\xdef\ORadius{#1}
\xdef\tucR{#2}
\xdef\tucQR{#3}
\pgfmathparse{\tucQR+\tucR}
\xdef\tucQ{\pgfmathresult}
\pgfmathparse{\ORadius-(\tucQR+\tucR)}
\xdef\tucPQ{\pgfmathresult}
\pgfmathparse{(\tucPQ*\tucQR)/(\tucPQ+\tucQR)}
\let\tucr\pgfmathresult%
\pgfmathparse{\ORadius-\tucr}
\let\00Radius\pgfmathresult%
\tkzInit[xmin = -\ORadius,ymin = -\ORadius,%
         xmax = \ORadius, ymax = \ORadius]\tkzClip
\text{tkzPoint}(0,0)\{0\}
\tkzPoint*(-\ORadius,\tucR){A}
\tkzPoint*(\ORadius,\tucR){B}
\tkzPoint(0,\tucQ){Q}
\tkzCircleR(0,\ORadius cm)
\tkzInterLCR(A,B)(O,\ORadius cm){S}{T}
\tkzInterLCR(S,Q)(0,\ORadius cm){S}{V}
\tkzInterLCR(Q,T)(0,\ORadius cm){Y}{T}
\tkzClipCircle(0,\ORadius cm)
\t = 3, kr = 5](Q/V)
\t = 3, kr = 5](Q/Y)
\tkzPoint(0,\tucR){R}
\tkzPoint(-\ORadius,\tucQ){U}
\tkzInterLCR(U,Q)(0,\00Radius cm){M}{N}
\t (S/Q,T/Q)
\tkzCircleR(M,\tucr cm)
\tkzFillCircle[color = blue!50!Black](0,\ORadius cm)
\tkzFillCircle[color = purple](M,\tucr cm)
\tkzFillCircle[color = purple](N,\tucr cm)
\tkzFillPolygon[color = orange](S,T,Q)
\tkzFillPolygon[color = orange](V,Y,Q)
}%
```

#### New examples



\begin{tikzpicture}[scale = .75]
 \TwoUnrelatedCircles{6}{-5}{10}
 \end{tikzpicture}

**Figure 3:** Sangaku-Two Unrelated Circles: R = 6 cm, OR = -5 cm et RQ = 10 cm



\begin{tikzpicture}[scale = .75]
 \TwoUnrelatedCircles{6}{0}{3}
 \end{tikzpicture}

Figure 4: Sangaku-Two Unrelated Circles : R = 6 cm, OR = 0 cm et RQ = 3 cm



**Figure 5:** Sangaku-Two Unrelated Circles: R = 6 cm, OR = -3 cm et RQ = 3 cm

# Sangaku in a square - I

Here is an elegant sangaku that requires both geometric and algebraic skills and some perseverance: Two equilateral triangles are inscribed into a square as shown in the diagram. Their side lines cut the square into a quadrilateral and a few triangles. Find a relationship between the radii of the two incircles shown in the diagram.

**Example n° 19** Sangaku in a square - I



The code of the last figure is

```
\begin{tikzpicture}[scale = 1.75]
                   \tkzInit
                   \t \times (0,0){B} \t \times (8,0){C}
                   \t \times (0,8){A} \t \times (8,8){D}
                   \tkzSquare*(B,C){D}{A}
                   \t Polygon(B,C,D,A) \cdot [clip] (B) -- (C) -- (D) -- (A) -- cycle;
                   \displaystyle \operatorname{draw}[fill = blue!50!black] (B)--(C)--(D)--(A)--cycle;
                   \tkzTrEqui*(B,C){M}
                   \draw[fill = red] (B)--(C)--(M)--cycle;
                   \tkzInterLL*(D,M)(A,B){N}
                   \text{tkzRotate*}(N,-60)(D/L)
                   \tkzBisector*(M,B,C){x}
                   \tkzBisector*(N,L,B){y}
                   \text{tkzInterLL*(L,y)(B,x){H}}
                   \tkzBisector*(M,C,D){u}
                   \tkzBisector*(L,D,C){v}
                   \tkzProjection*(C,B)(H/I)
                   \displaystyle \frac{1}{2} = \frac{
                   \tkzCircle[style = {fill = yellow}](H,I)
                   \tkzInterLL*(C,u)(D,v){K}
                   \tkzProjection*(C,D)(K/J)
                   \tkzProjection*(B,C)(M/E)
                   \tkzCircle[style = {fill = yellow}](K,J)
\end{tikzpicture}
```

Firstly, we need to prove that it is possible that two equilateral triangles are inscribed into a square as shown in the diagram. A theorem exists but it is nice to find a solution in this particuler case. Let ABCD a square, BCM an equilateral triangle. The line (DM) intersects [AB] at point N. Then we construct a point L on the side [BC] and the angle  $\widehat{NDL} = 60^{\circ}$ 

The triangle MCD is an isosceles triangle with two sides MC and CD of the same length *a*. It follows that

```
\widehat{\text{MDC}} = \widehat{\text{DMC}} = 75^{\circ} \text{ because } \widehat{\text{MCD}} = 30^{\circ}
```

Now we we can determine the angular size of all the angles

$$\widehat{LDC} = 15^{\circ} \text{ so } \widehat{ADN} = 15^{\circ} \text{ and } \widehat{AND} = 75^{\circ}$$

AN = LC then BL = BN and 
$$\widehat{BLN} = \widehat{LNB} = \widehat{NMB} = \widehat{MQD} = \widehat{LQC} = 45^{\circ}$$



```
\begin{tikzpicture}
     \tkzInit
     \tkzPoint(0,0){B}
     \tkzPoint(8,0){C}
     \t (0,8){A}
     \text{tkzPoint}*(8,8)\{D\}
     \tkzPolygon(B,C,D,A)
     \tkzTrEqui*(B,C){M}
     \tkzDrawPoint[pos = above](M,A,D)
     \tkzInterLL*(D,M)(A,B){N}
     \tkzRotate(N,-60)(D/L)
     \tkzDrawPoint(L)
     \tkzSegment(D/N,N/L,L/D,B/M,M/C)
     \tkzInterLL*(N,L)(M,B){P}
     \tkzInterLL*(M,C)(D,L){Q}
     \tkzDrawPoint[pos = left](N,P,Q)
     \tkzMarkAngle[fillcolor = green,dist = .40,label = 15^{\circ}](L/D/C)
     \tkzMarkAngle[fillcolor = green,dist = .35,label = 15^{\circ}](A/D/N)
     \tkzMarkAngle[fillcolor = yellow,dist = .20,label = 30^{\circ}](M/C/D,A/B/M)
     \tkzMarkAngle[fillcolor = magenta,dist = .20,label = 45^{\circ}]%
                  (B/L/N,L/N/B,N/M/B,M/Q/D,L/Q/C)
     \tkzMarkAngle[fillcolor = blue,dist = .20,label = 75^{\circ}]%
                  (A/N/D, N/P/M, B/P/L, C/L/D, C/M/D)
     \tkzMarkAngle[fillcolor = red,dist = .20,label = 60^{\circ}]%
                  (M/B/C,C/M/B,M/C/B,N/D/L)
     \tikzstyle{ai} = [draw,line width = .2cm]
     \tkzMarkAngle[size = .6,color = blue](C/D/M)
\end{tikzpicture}
```

We can see that the angles  $\widehat{DNL}$  and  $\widehat{NLD}$  have the same degree measurements 60°. DNL is an equilateral triangle and it is the largest equilateral triangle which can be inscribed in the square (Madachy 1979). We prove lately that the side is  $s = (\sqrt{6} - \sqrt{2})a$ .



```
\begin{tikzpicture}
    \tkzInit[xmin = -1,ymin = -1]\tkzClip
    \tkzPoint(0,0){B}
    \text{tkzPoint}(8,0)\{C\}
    \text{tkzPoint}(0,8)\{A\}
    \text{tkzPoint}(8,8)\{D\}
    \tkzSquare(B,C){D}{A}
    \tkzPolygon(B,C,D,A)
    \tkzTrEqui(B,C){M}
    \tkzInterLL(D,M)(A,B){N}
    \tkzRotate(N,-60)(D/L)
    \tkzDrawPoint(L)
    \tkzSegment(D/N,N/L,L/D)
    \tkzInterLL(N,L)(M,B){P}
    \tkzInterLL(M,C)(D,L){Q}
    \tkzProjection(B,C)(P/H)
    \tkzProjection(C,D)(Q/G)
    \tkzProjection(B,C)(M/J)
    \tkzProjection(D,A)(M/I)
    \tkzSegment[style = dashed](M/I,M/J,P/H,Q/G)
\end{tikzpicture}
```

We need some preliminaries to find the ratio between the radii of the two incircles shown in the first diagram.

Assume the side of the square equals *a* 

First, we determine MI

$$MJ = \frac{\sqrt{3}}{2}a$$
 and  $MI = a - \frac{\sqrt{3}}{2}a = \frac{(2 - \sqrt{3})}{2}a$ 

Thus we can find AN and NB

$$AN = 2MI = (2 - \sqrt{3})a$$

and

BN = AB - AN = 
$$a - (2 - \sqrt{3})a = (\sqrt{3} - 1)a$$

ADN is a right triangle with hypotenuse ND. We have,  $AD^2 + AN^2 = ND^2$  by the Pythagorean theorem. Using this, we continue:

$$ND^{2} = a^{2} + (2 - \sqrt{3})^{2} a^{2} = a^{2} (8 - 4\sqrt{3})$$

$$ND = NL = LD = (\sqrt{6} - \sqrt{2}) a$$

The value of tan (15°) which will be useful later on.

$$\tan 15^{\circ} = \frac{AN}{AD} = \frac{(2 - \sqrt{3})a}{a} = 2 - \sqrt{3}$$

Now we can apply the standard formula in a triangle to determine the inradius

$$r = \frac{sh}{p}$$

where r, p, s, h are respectively the inradius, perimeter, a side and the altitude to the side in a triangle. A good idea is to find a relationship between p and h

Let BPL the first triangle, here h = PH, l = BL and p = BP + PL + LB.

$$\sin(60^\circ) = \frac{\sqrt{3}}{2} = \frac{\text{PH}}{\text{BP}} = \frac{h}{\text{BP}}$$

thus

$$BP = \frac{2h}{\sqrt{3}}$$

HPL is an isosceles right triangle. The hypotenuse PL has length  $\sqrt{2}h$ . And finally the relation between BL and h can be obtain like this

$$BL = BH + HL = \frac{h}{\sqrt{3}} + h$$

In an other way

$$BL = BN = (\sqrt{3} - 1)a$$

The inradius  $r_1$  of BLP is

$$r_1 = \frac{sh}{p} = \frac{(\sqrt{3} - 1)ah}{\frac{2h}{\sqrt{3}} + \sqrt{2}h + \frac{h}{\sqrt{3}} + h} = \frac{(\sqrt{3} - 1)a}{1 + \sqrt{2} + \sqrt{3}}$$

For CQD, similarly the inradius  $r_2$  can be found with

$$r_2 = \frac{ah}{p}$$

with p = CQ + QD + DC and h = QG or

$$\frac{\text{QD}}{\text{DL}} = \frac{\text{QG}}{\text{LC}} = \frac{h}{(2 - \sqrt{3})a}$$

from which

$$QD = \frac{(\sqrt{6} - \sqrt{2})ah}{(2 - \sqrt{3})a} = (\sqrt{6} + \sqrt{2})h$$

We continue

$$\frac{\text{QG}}{\text{QC}} = \frac{1}{2} = \frac{h}{\text{GC}}$$

from which

$$OC = 2h$$

and finally DC = DG + GC =

$$\frac{h}{DG} = \tan(15^\circ) = 2 - \sqrt{3}$$

from which

$$DG = \frac{h}{2 - \sqrt{3}} = (2 + \sqrt{3})h$$

and

$$\frac{\mathrm{GC}}{\mathrm{QC}} = \frac{\mathrm{GC}}{2h} = \frac{\sqrt{3}}{2}$$

Thus we can find

$$GC = \sqrt{3}h$$

Finally

$$p = (\sqrt{6} + \sqrt{2})h + 2h + (2 + \sqrt{3})h + \sqrt{3}h$$

The second radius is

$$r_2 = \frac{ah}{p} = \frac{ah}{(\sqrt{6} + \sqrt{2})h + 2h + (2 + \sqrt{3})h + \sqrt{3}h} = \frac{a}{4 + \sqrt{2} + 2\sqrt{3} + \sqrt{6}}$$

Without a special effort, we conclude that  $r_1 = 2r_2$ 

#### Sangaku in a square - II

A very simple sangaku.

Find a relationship between the radius of the yellow circle and the side of the square.

#### **Example n° 20** Sangaku in a square - II



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint*(0,0){A} \tkzPoint*(8,0){B}
  \tkzSquare*(A,B){C}{D}
  \tkzProjection*(A,C)(B/F)
  \tkzBisector*(A,C,B){K}
  \tkzInterLL*(C,K)(B,F){I}
  \tkzCircle(I,F)
  \tkzMathLength(I,F)
  \tkzFillPolygon[color = blue!50!black](A,C,D)%
  \tkzFillPolygon[color = red](A,B,C)%
  \tkzFillCircle[color = yellow](I,\tkzmathLen pt)%
  \end{tikzpicture}
```

Firstly, we can found the relationship between the inradius and the sides of a right triangle. If *r* is the inradius of a circle inscribed in a right triangle with sides a and b and hypotenuse c, then

$$r = \frac{1}{2}(a+b-c).$$

Let ABC represents a right triangle, with the right angle located at C, as shown on the figure. Let *a*, *b* and *c* the lengths of the three sides; *c* is the length of the hypothenuse.

Let *r* and *p* be the radius of the incercle and the semiperimeter of the triangle.

a, b and c can be regarded in relation to r and they may be expressed with r: a = r + (a - r), b = r + (b - r) and c = (a - r) + (b - r).

In a right triangle, we have the relation r = p/2 - c. From the diagram, the hypotenuse AB is split in two pieces: (a-r) and (b-r), the length of the hypothenuse is c = (a-r) + (b-r).

The perimeter is a function of r

$$p = a + b + c = r + (a - r) + r + (b - r) + (a - r) + (b - r) = 2a + 2b - 2r$$

so we can expressed *r* with *s* and *c* 

$$2r = a + b - c = p - 2c$$
 and  $r = \frac{p}{2} - c = \frac{a + b - c}{2}$ 



```
\begin{tikzpicture}
     \tkzInit\tkzClip[space = 0.5]
     \tkzPoint[pos = above](0,8){A}
     \tkzPoint[pos = right](6,0){B}
     \t \propty = below](0,0){C}
     \tkzPolygon(A,B,C)%%
     \tkzInCenter(A,B,C){I}
     \tkzProjection(B,C)(I/H)
     \tkzProjection[pos = left](A,C)(I/K)
     \tkzProjection[pos = right](A,B)(I/L)
     \tkzSegment(I/L,I/H,I/K)
     \tkzCircle(I,H)
     \tkzRightAngle(A/L/I)
     \tkzRightAngle(B/H/I)
     \tkzRightAngle(C/K/I)
     \tkzSegmentMark[label = $r$,poslabel = -12pt](C/H)
     \tkzSegmentMark[label = $a-r$,poslabel = -12pt](H/B)
     \tkzSegmentMark[label = $r$](C/K)
     \tkzSegmentMark[label = $b-r$](K/A)
     \tkzSegmentMark[label = $a-r$](L/B)
     \tkzSegmentMark[label = $b-r$](A/L)
     \tkzSegmentMark[label = $r$](I/L)
\end{tikzpicture}
```

Now, let ABC represents a isosceles right triangle with AB = AC = a, then AC =  $\sqrt{2a}$  and  $a+b-c=2a-\sqrt{2}a$ So the inradius in this case is

 $r = \frac{2 - \sqrt{2}}{2}a$ 

Now we can obtain the incenter without the bisectors



```
\begin{tikzpicture}[scale = 1.25]
  \text{tkzInit}[xmin = -1, ymin = -1, xmax = 9, ymax = 9]
  \tkzClip
  \tkzPoint(0,0){A}
  \tkzPoint(8,0){B}
  \tkzPoint[pos = above right](8,8){C}
  \tkzPoint[pos = above right](0,8){D}
  \tkzSegment(A/B,B/C,C/D,D/A,A/C,B/D)
  \tkzInterLL(A,C)(B,D){I}
  \tkzDuplicateLength(C,I)(C,B){H}
  \tkzClipPolygon(A,B,C)
  \tkzCircle(C,I)
  \tkzCircle(H,B)
  \tkzMathLength(H,B)
  \tkzInterLCR(B,D)%
  (H,\tkzmathLen pt){M}{N}
  \tkzDrawPoint[color = red](M)
  \tkzCircle(M,H)
\end{tikzpicture}
```

## Sangaku in a square - III

In the following diagram, a triangle is formed by a line that joins the base of a square with the midpoint of the opposite side and a diagonal. Find the radius of the two inscribed circles.

**Example n° 21** Sangaku in a square - III



```
\begin{tikzpicture}[scale = 1.25]
  \tkzInit\tkzClip
  \tkzPoint*(0,0){A}\tkzPoint*(8,0){B}
  \tkzPoint*(4,8){E}\tkzSquare*(A,B){C}{D}
  \tkzBisector*(C,A,B){I}\tkzBisector*(A,B,E){J}
  \tkzInterLL(A,I)(B,J){K}\tkzProjection*(A,B)(K/H)
  \tkzBisector*(D,C,A){II}\tkzBisector*(C,E,B){JI}
  \tkzInterLL(C,I1)(E,J1){KI}\tkzProjection*(C,D)(KI/HI)
  \tkzFillPolygon[color = blue!50!black](A,B,C,D)
  \tkzFillPolygon[color = purple](A,C,E,B)
  \tkzCircle[style = {fill = yellow}](K,H)
  \tkzSegment(E/B,A/C)
  \end{tikzpicture}
```



```
\begin{tikzpicture}[scale = .7]
  \text{tkzInit[xmin = -1,ymin = -1,}%
           xmax = 9, ymax = 9
  \tkzClip
  \tkzPoint(0,0){A}
  \text{tkzPoint}(8,0)\{B\}
  \tkzPoint[pos = above right](4,8){E}
  \tkzPoint[pos = above right](8,8){C}
  \tkzPoint[pos = above right](0,8){D}
  \tkzPolygon(A,B,C,D)
  \tkzInterLL(A,C)(B,E){I}
  \tkzProjection(A,B)(I/P)
  \tkzProjection[pos = above right](C,D)(I/Q)
  \tkzRightAngle(A/P/I,D/Q/I)
  \tkzSegment(E/B,A/C,Q/P)
\end{tikzpicture}
```

QC is parallel to the base AB and is half as long which implies that the two triangles QIC and QAB are similar. I divides the segments QP and AD in ratio 2:1 so that

$$IP = \frac{2}{3}QP = \frac{2a}{3}$$

$$AI = \frac{2}{3}AC$$

Thus assuming AB = a, we have AC =  $\sqrt{2}a$ 

$$AI = \frac{2\sqrt{2}}{3}a$$

and

$$BI = \frac{2}{3}BE$$

we can apply the Pythagorean theorem to find BE

$$BE = \frac{\sqrt{5}}{2}a$$

This means that

$$BI = \frac{\sqrt{5}}{3}a$$

In any triangle,

$$r \times p = s \times h$$

where r is the inradius, p the perimeter, s the side and h the altitude of the triangle. In other words

$$r\left(1 + \frac{\sqrt{5}}{3} + \frac{2\sqrt{2}}{3}\right)a = a \times \frac{2a}{3}$$

from which r is found:

$$r = \frac{2a}{3 + 2\sqrt{2} + \sqrt{5}}$$

#### Sangaku in a square - IV

Find a relationship between the radius of the yellow circle and the side of the square.

# **Example n° 22** Sangaku in a square - IV



```
\begin{tikzpicture}[scale = 1.5]
   \t xInit
   \tkzPoint*(0,0){A} \tkzPoint*(8,0){B}
   \tkzSquare*(A,B){C}{D}
   \tkzPolygon(B,C,D,A)
   \hat{B} -(C) -(D) -(A) - cycle;
   \text{tkzPoint}*(4,8){F}
   \tkzTrEqui(C,D){I}
   \tkzDrawPoint(I)
   \tkzProjection*(B,C)(I/J)
   \tkzInterLL*(D,B)(I,J){K}
   \tkzCSym*(K)(B/M)
   \tkzCircle(M,I)
   \tkzMathLength(M,I)
   \tkzFillPolygon[color = orange](A,B,C,D)
   \tkzFillCircle[color = yellow](M,\tkzmathLen pt)
   \tkzFillCircle[color = blue!50!black](F,4 cm)%
\end{tikzpicture}
```



## Proof:

FNE is a right triangle with hypotenuse EF. We have,  $EN^2 + NF^2 = EF^2$  by the Pythagorean theorem. In terms of a and r, the theorem appears as

$$\left(\frac{a}{2} - r\right)^2 + (a - r)^2 = \left(\frac{a}{2} + r\right)^2$$

which is equivalent to

$$4ar = a^2 + r^2$$

And finally

$$r = a(2 - \sqrt{3})$$

# Sangaku in a square - V

This sangaku requires to determine the relative radii of the circles shown can be solved by an application of the Pythagorean theorem. Find a relationship between the radius of the circle and the side of the square.

**Example n° 23** Sangaku in a square - V



```
\begin{tikzpicture}[scale = 1.75]
  \tkzInit[xmax = 8] \tkzClip
   \tkzPoint*(0,0){B} \tkzPoint*(8,0){C}
   \tkzPoint*(0,8){A} \tkzPoint*(8,8){D}
   \tkzPolygon(B,C,D,A)
   \path[clip] (B)--(C)--(D)--(A)--cycle;
   \t TgtFromP(F,F,A)(B){G}{H}
  \tkzInterLL*(F,G)(C,D){J}
  \tkzInterLL*(A,J)(F,E){K}
   \tkzProjection*(B,A)(K/M)
   \tkzFillPolygon[color = green](A,B,C,D)
   \tkzCircle[style = {fill = orange}](B,A)
   \tkzCircle[style = {fill = blue!50!black}](M,A)
   \tkzCircle[style = {fill = purple}](E,B)
   \tkzCircle[style = {fill = yellow}](K,Q)
\end{tikzpicture}
```



Assume the radius AM equal r and the side of the square is a.

**step 1.** Firstly, ME<sup>2</sup> = BE<sup>2</sup> + BM<sup>2</sup> and the two circles are tangent if ME =  $r + \frac{a}{2}$ . The equality becomes

$$\left(r + \frac{a}{2}\right)^2 = \left(\frac{a}{2}\right)^2 + (a - r)^2$$

$$r = \frac{a}{3}$$

we have

$$ME = BK = \frac{5}{6}a$$

step 2.

$$KQ = KE - QE = \frac{2a}{3} - \frac{a}{2} = \frac{a}{6}$$

and

$$MK - \frac{a}{3} = \frac{a}{2} - \frac{a}{3} = \frac{a}{6}$$

The circle K is tangent mutually at the circle E and the circle M. **step 3.** The little circle with center K is tangent at the circle B.

$$a - \frac{5a}{6} = \frac{a}{6}$$

**step 4.** A goog method to obtain K is finally to place I such as DI =  $\frac{a}{4}$ . Therefore, BI intercepts the big circle in G with GI =  $\frac{a}{4}$ , FG =  $\frac{a}{2}$  and FG orthogonal to BG. FG intercepts BC in J such as DJ =  $\frac{2a}{3}$ . K is the common point between AJ and EF.

## Sangaku - Circle Inscribing

Construct the figure consisting of a circle centered at O, a second smaller circle centered at  $O_2$  tangent to the first, and an isosceles triangle whose base [AB] completes the diameter of the larger circle [XB] through the smaller [XA]. Now inscribe a third circle with center  $O_3$  inside the large circle, outside the small one, and on the side of a leg of the triangle.

# Example n° 24 Circle Inscribing

# References Weisstein, Eric W. "Circle Inscribing." From MathWorld-A Wolfram Web <a href="http://mathworld.wolfram.com/CircleInscribing.html">http://mathworld.wolfram.com/CircleInscribing.html</a> Alexander Bogomolny <a href="http://www.cut-the-knot.org/">http://www.cut-the-knot.org/</a>

In this problem, from an 1803 sangaku found in Gumma Prefecture, the base of an isosceles triangle sits on a diameter of the large blue circle. This diameter also bisects the purple circle, which is inscribed so that it just touches the inside of the blue circle and one vertex of the orange triangle, as shown. The yellow circle is inscribed so that it touches the outsides of both the purple circle and the triangle, as well as the inside of the blue circle. A line segment connects the center of the yellow circle and the intersection point between the purple circle and the orange triangle. Show that this line segment is perpendicular to the drawn diameter of the blue circle.



```
\begin{tikzpicture}[scale = 1]
   \text{tkzInit}[xmin = -7, xmax = 7, ymin = -7, ymax = 7]
   \tkzClip
   \xdef\ORadius{6}
   \xdef\00Radius{4}
   \pgfmathparse{(2*(\ORadius-\OORadius))/(\ORadius/\OORadius+1)}%
   \global\let\000Radius\pgfmathresult%
   \pgfmathparse{\ORadius-\OOORadius}%
   \global\let\0000Radius\pgfmathresult%
   \pgfmathparse{2*\00Radius-\0Radius}%
   \global\let\XA\pgfmathresult%
   \text{tkzPoint}*(0,0)\{0\}
   \left( XA pt = 0pt\right)
      \tkzPoint[pos = below right](\XA,0){A}
   \else%
      \t XA,0){A}
   \fi%
   \tkzPoint*(\OORadius,0){D}
   \tkzPoint*(-\ORadius,0){X}
   \tkzPoint*(\ORadius,0){B}
   \tkzPoint*(\OORadius-\ORadius,0){02}
   \tkzMediatorLine*[prefix = m](A,B)
   \tkzInterLCR(ml,mr)(0,\ORadius cm){C}{E}
   \tkzLineOrth*[prefix = p](X,A)(A)
   \ifdim\XA pt < 0 pt\relax%
      \tkzInterLCR(pl,pr)(0,\0000Radius cm){04}{03}
   \else%
      \tkzInterLCR(pr,pl)(0,\0000Radius cm){03}{04}
   \tkzInterLCR(0,03)(0,\ORadius cm){W}{Z}
   \tkzFillCircle[color = blue!50!black](0,\ORadius cm)%
   \tkzFillPolygon[color = orange](A,B,C)%
   \tkzFillCircle[color = yellow](03,\000Radius cm)%
   \tkzFillCircle[color = purple](02,\00Radius cm)%
   \tkzSegment(C/B,C/A)
   \tkzCircleR(0,\ORadius)
   \tkzCircleR(02,\00Radius)
   \tkzCircleR(03,\000Radius)
\end{tikzpicture}
```



To find the explicit position and size of the circle, let the circle with center O have radius R and be centered at O and let the circle with center  $O_2$  have radius r.

$$(r+a)^2 = r^2 + y^2$$

$$(R-a)^2 = (R-2r)^2 + v^2$$

for a and y gives

$$a = 2r \frac{R - r}{R + r}$$

$$y = AO_3 = 2\sqrt{2R}r \frac{\sqrt{R-r}}{R+r}$$

but now we need to prove that the circle is tangent to the line AC. Let  $\alpha$  the angle ACD and the angle  $O_3AC$ 

$$\sin(\alpha) = \frac{AD}{AC}$$

OD = r and AD = R - r

OCD is a right triangle with hypotenuse OC = R. We have,  $OD^2 + CD^2 = OC^2$  by the Pythagorean theorem. In terms of r, the theorem appears as

$$r^2 + CD^2 = R^2$$

which is equivalent to

$$CD^2 = R^2 - r^2$$

and with the right triangle ADC and the Pythagorean theorem

$$AC^2 = AD^2 + CD^2 = (R - r)^2 + R^2 - r^2 = 2R(R - r)$$

finally

$$\sin(\alpha) = \frac{AD}{AC} = \frac{R-r}{\sqrt{2R(R-r)}} = \frac{\sqrt{R-r}}{\sqrt{2R}}$$

Let H the projection point of  $O_3$  on the line AC, and d the length of  $O_3$ H

$$\sin(\alpha) = \frac{O_3H}{AO_3} = \frac{d}{y} = \frac{d}{2\sqrt{2R}r} \frac{d}{\sqrt{R-r}}$$

Using the two forms of  $sin(\alpha)$ 

$$\frac{d}{2\sqrt{2R}r\frac{\sqrt{R-r}}{R+r}} = \frac{\sqrt{R-r}}{\sqrt{2R}}$$

So

$$d = 2r \frac{R - r}{R + r} = a$$

The code on the page is needed to get the examples.

```
\newcommand*{\CircleInscribing}[2]{%
    \xdef\ORadius{#1}
    \xdef\00Radius{#2}
    \pgfmathparse{(2*(\ORadius-\OORadius))/(\ORadius/\OORadius+1)}%
    \global\let\000Radius\pgfmathresult%
    \pgfmathparse{\ORadius-\000Radius}%
    \global\let\0000Radius\pgfmathresult%
    \pgfmathparse{2*\00Radius-\0Radius}%
    \global\let\XA\pgfmathresult%
     \tkzPoint[pos = below left](0,0){0}
    \left( XA pt = 0pt\right)
        \tkzPoint[pos = below right](\XA,0){A}
    \else%
        \tkzPoint[pos = below left](\XA,0){A}
    \fi%
    \tkzPoint[pos = below left](\00Radius,0){D}
    \tkzPoint[pos = below left](-\ORadius,0){X}
    \tkzPoint[pos = below right](\ORadius,0){B}
    \tkzPoint[name = $0_2$,pos = below left](\00Radius-\0Radius,0){02}
    \tkzSegmentMark[symbol = /](D/B,D/A)
    \tkzCircleR(0,\ORadius)
    \tkzCircleR(02,\00Radius)
    \tkzMediatorLine[prefix = m,kr = 2,kl = 0,style = dashed](A,B)
    \tkzInterLCR(ml,mr)(0,\ORadius cm){C}{E}
    \tkzLineOrth*[prefix = p](X,A)(A)
    \  \fi < 0 pt\relax\%
        \tkzInterLCR(pl,pr)(0,\0000Radius cm){04}{03}
    \else%
        \fi%
   \tkzRightAngle(X/D/C,X/A/O3)
   \tkzCircleR(03,\000Radius)
   \tkzDrawPoint[name = $0_3$,pos = right](03)
   \tkzDrawPoint[pos = above right](C)
   \tkzSegment[style = dashed](0/03)
   \tkzSegment(A/O3,C/B,C/A,X/B)
   \t XInterLCR(0,03)(0,\CRadius cm){W}{Z}
   \tkzSegment[label = $a$,time = .85,style = dashed](0/Z)
}%
```



```
\begin{tikzpicture}[scale = 1]
  \tkzInit[xmin = -7,xmax = 7,ymin = -7,ymax = 7]
  \tkzClip
  \CircleInscribing{6}{4}
\end{tikzpicture}
```

**Figure 6:** Sangaku problem (1803) : R1 = 6 cm et R2 = 4 cm



```
\begin{tikzpicture}[scale = 1]
  \tkzInit[xmin = -7,xmax = 7,ymin = -7,ymax = 7]
  \tkzClip
  \CircleInscribing{6}{3}
  \end{tikzpicture}
```

Figure 7: Sangaku problem (1803) : R1 = 6 cm et R2 = 3 cm



```
\begin{tikzpicture}[scale = 1]
  \tkzInit[xmin = -7,xmax = 7,ymin = -7,ymax = 7]
  \tkzClip
  \CircleInscribing{6}{2}
\end{tikzpicture}
```

**Figure 8:** Sangaku problem (1803) : R1 = 6 cm et R2 = 2 cm



```
\begin{tikzpicture}[scale = 1]
  \tkzInit[xmin = -7,xmax = 7,ymin = -7,ymax = 7]
  \tkzClip
  \CircleInscribing{6}{1}
\end{tikzpicture}
```

**Figure 9:** Sangaku problem (1803) : R1 = 6 cm et R2 = 1 cm

#### Sangaku - Harmonic mean

Two vertical segments AI, BJ (AI = a and BJ = b), the intersection C of the diagonals is at the height that depends solely on AI and BJ. In fact

 $\frac{1}{\text{CK}} = \frac{1}{\text{AI}} + \frac{1}{\text{BJ}} = \frac{1}{a} + \frac{1}{b}$ 

#### **Example n° 25** Harmonic mean



```
\begin{tikzpicture}
  \tkzInit[xmin = -1,xmax = 9,ymax = 7]\tkzClip
  \t Point(0,6){A}\t Point(0,0){I}
  \txPoint(6,4){B}\txPoint(8,4){B'}
  \t \D (6,0){J}\t \D (8,0){J'}
  \tkzInterLL*(A,J)(B,I){C}
  \tkzProjection(I,J)(C/K)
  \tkzInterLL(A,J')(B',I){C'}
  \tkzProjection(I,J)(C'/K')
  \tkzSegment[color = orange](A/J,B/I,I/J)
  \tkzSegment[color = purple](A/J',B'/I)
  \tkzSegment[lw = 4pt,color = red](C/K,A/I,B/J)
  \tkzSegment[lw = 4pt,color = blue](C'/K',B'/J')
  \tkzDrawPoint[color = red,size = 4pt](A,I,C,K,B,J)
  \tkzDrawPoint[color = blue,size = 4pt](C',K',B',J')
\end{tikzpicture}
```

Let's denote AI = a, BJ = b, CK = c, IK =  $\alpha$  and KJ =  $\beta$ .

Then from similar triangles AIJ and IBJ we have the proportion

$$\frac{c}{a} = \frac{\beta}{\alpha + \beta}$$
 and  $\frac{c}{b} = \frac{\alpha}{\alpha + \beta}$ 

We can add the two equalities

$$\frac{c}{a} + \frac{c}{b} = \frac{\beta}{\alpha + \beta} + \frac{\alpha}{\alpha + \beta} = 1$$

A division by *c* gives the desired result:

$$\frac{1}{a} + \frac{1}{b} = \frac{1}{c}$$

which says that c is the double of the harmonic mean of a and b.

Remark: a and b two numbers such as OA = a and AB = b



```
\begin{tikzpicture}
   \tkzInit[xmin = -1,ymin = -1,xmax = 11,ymax = 6]\tkzClip
   \txPoint(0,0){0}\txPoint(8,0){A}%
   \t \D (10,0) B} \t \D (5,0) I
   \tkzPoint*(5,5){K}
   \tkzSegment[color = blue,lw = 1pt](0/B)
   \tkzClipSector(I,5 cm)(0,180)
   \tkzCircleR[color = blue,lw = 1pt](I,5 cm)
   \tkzLineOrth[prefix = h](0,B)(A)
   \tkzInterLCR(A,hr)(I,5 cm){G}{G'}
   \tkzSegment[lw = 1pt,color = purple](I/K)
   \tkzSegment[lw = 1pt,color = orange](A/G)
   \tkzProjection*(I,G)(A/H)
   \tkzSegment[lw = 1pt,color = green](H/G)
   \tkzSegment[lw = 1pt,style = dashed](I/H)
   \tkzRightAngle(0/I/K,0/A/G,A/H/I)
   \tkzSegment(A/H)
   \tkzSegmentMark[label = $A$](I/K)
   \tkzSegmentMark[label = $G$](A/G)
   \tkzSegmentMark[label = $H$](H/G)
\end{tikzpicture}
```

It is easy to find

$$\frac{H}{G} = \frac{G}{A}$$

In this case, we have  $G^2 = A \times H$  and  $H = \frac{G^2}{A}$ For two numbers a and b,  $A = \frac{a+b}{2}$  and  $G = \sqrt{ab}$ , so

$$\frac{1}{H} = \frac{A}{G^2} = \frac{a+b}{2ab}$$

Finally

$$\frac{1}{H} = \frac{1}{2} \left( \frac{1}{a} + \frac{1}{b} \right)$$

#### Sangaku - Three Tangent Circles

Given three circles tangent to each other and to a straight line, express the radius of the middle circle via the radii of the other two. This problem was given as a Japanese temple problem on a tablet from 1824 in the Gumma Prefecture (MathWorld)

#### **Example n° 26** Three Tangent Circles



```
\texint[xmin = -1,ymin = -1,xmax = 16]\tkzClip
\tkzPoint*(4,4){A}\tkzPoint*(10.928,3){B}
\tkzPoint*(0,0){0}\tkzPoint*(15,0){X}
\tkzSegment[color = red](0/X)
\tkzCircleR[style = {fill = orange}](A,4 cm)
\tkzCircleR[style = {fill = purple}](B,3 cm)
\pgfmathparse{4+8*sqrt(3)/(2+sqrt(3))}
\edef\cx{\pgfmathresult}
\pgfmathparse{12/((2+sqrt(3))*(2+sqrt(3)))}
\edef\cy{\pgfmathresult}
\tkzPoint(\cx,\cy){C}
\tkzSegment[color = red](0/X)
\tkzCircleR[style = {fill = yellow}](C,\cy cm)
\end{tikzpicture}
```

As the diagram below shows we have three right triangles with the hypotenuses joining the centers of the three circles.

Using x and y to denote the horizontal distances between pairs of the circles, and R, R1, R2 at their radii, the triangles have the following sides:

$$(r_1 - r)^2 + x^2 = (r_1 + r)^2 (r_2 - r)^2 + y^2 = (r_2 + r)^2 (r_2 - r_1)^2 + (x + y)^2 = (r_2 + r_1)^2$$
. After simplification the equations become

$$(x+y)2 = 4r_1r_2$$



ABH is a right triangle with hypotenuse  $AB = r_1 + r_2$ . We have,  $AH^2 + HB^2 = AB^2 = d^2$  by the Pythagorean theorem.

If two circles A and B and of radii  $r_1$  and  $r_2$  ( $r_1 > r_2$ ) are mutually tangent to each other and a line OX, then their centers are separated by a horizontal distance given by solving

$$d^2 = (r_1 + r_2)^2 - (r_1 - r_2)^2$$

After simplification the equation gives

$$d = 2\sqrt{r_1 r_2}$$



Using  $d_1$  and  $d_2$  to denote the horizontal distances between pairs of the circles, and r,  $r_1$ ,  $r_2$  at their radii, the triangles have the following sides:

$$2\sqrt{r_1r_2} = 2\sqrt{r_1r} + 2\sqrt{rr_2}$$

Divide now by  $\sqrt{r}\sqrt{r_1}\sqrt{r_2}$  to obtain

$$\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{r_1}} + \frac{1}{\sqrt{r_2}}$$

$$\sqrt{r} = \frac{\sqrt{r_1}\sqrt{r_2}}{\sqrt{r_1} + \sqrt{r_2}}$$

$$d_1 = 2\sqrt{rr_1} = 2\sqrt{r_1}\frac{\sqrt{r_1}\sqrt{r_2}}{\sqrt{r_1}+\sqrt{r_2}} = \frac{2r_1\sqrt{r_2}}{\sqrt{r_1}+\sqrt{r_2}}$$

How to make this construction with a ruler and a compass

- **step 1.** We want to draw two circles with centers A and B of radii  $r_1 = 7cm$  and  $r_2 = 4cm$  mutually tangent to each other and a line OX. OA = 7cm, OP = 4cm and P' is the symmetric point of p relatively the center O.
- **step 2.** The circle with diameter AP' intercepts the OX axis in a point I such as the length OI =  $\sqrt{ab}$ . It is easy to obtain H such OH =  $\sqrt{ab}$ . B is a point such as OHBP is a rectangle. We can draw the circle with center B and radius BH.
- **step 3.** Now we can use the sangaku about harmonic mean. The line OB intercepts the line AH in a point K such as

$$\frac{1}{KJ} = \frac{1}{OA} + \frac{1}{HB} = \frac{1}{a} + \frac{1}{b}$$

$$\frac{1}{\sqrt{r}} = \frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}}$$

$$\frac{1}{r} = \frac{1}{a} + \frac{1}{b} + \frac{2}{\sqrt{ab}}$$

$$\frac{1}{r} = \frac{1}{KJ} + \frac{1}{\frac{\sqrt{ab}}{2}}$$

To find r , we need only to represent  $\frac{\sqrt{ab}}{2}$  .

$$OI = \sqrt{ab}$$
,  $OM = \frac{\sqrt{ab}}{2}$  and  $ON = OM$ 

- **step 4.** The line NJ intercepts the line OK in a point R, if W is the projection of R on OX axis, we have RW = r. Let S the projection point of R on OY axis.
- **step 5.** The point C is the intersection of the circle with center A and radius a + r and the line (SR).



```
\begin{tikzpicture}
 \t = -3, ymin = -5, xmax = 13, ymax = 8.5 \t zClip
 \txPoint(0,7){A}\txPoint(0,0){0}
 \t Point[pos = right](0,4){P}\times [pos = right](0,-4){P'}
 \t \D (0,1){V}\times [noname](1,0){U}
 \t xPoint*(16,0){X}\t xPoint*(-5,0){X'}
 \t XPoint*(0,16){Y}\t XPoint*(0,-4){Y'}
 \tkzSegment[color = blue](X'/X,Y'/Y)
 \tkzCircleR[color = blue](A,7 cm)\tkzCircle*[color = green](A,P')
 \tkzMidPoint[noname](A,P'){pt1}
 \t \LCR(0,X)(pt1,5.5 cm){BB}{I}\t \LCSym(I)(0/H)
 \tkzTranslation[color = red](0,H)(P/B)\tkzCircle[color = red](B,H)
  \tkzSegment[color = green](A/H,0/B)
 \tkzInterLL[color = red,pos = above](A,H)(O,B){K}
 \tkzProjection(0,X)(K/J)\tkzMidPoint[color = red](0,I){M}
 \tkzRotate[color = red](0,90)(M/N)
 \tkzInterLL[color = red,pos = above](N,J)(O,B){R}
 \tkzProjection[color = red,pos = left](0,A)(R/S)
 \tkzCSym(0)(S/T)\tkzCircle[color = green](A,T)
 \tkzLine[color = green](R/S)
 \tkzInterLCR(S,R)(A,\tkzmathLen pt){C'}{C}
 \t \ tkzDrawPoint[color = red](C,I,H)\tkzProjection[color = red](0,X)(C/Z,R/W)
 \tkzCircle(C,Z)\tkzSegment[color = green](K/J,B/H,N/J,C/Z,R/W)
\end{tikzpicture}
```

# VI. Basic Objects

For this documentation, I used the geometric French conventions for naming points, segments, lines. tkz-2d needs tkz-base and all environments tikzpicture with tkz-base needs fp.sty. tkzInit is necessary and you can see, how to use it in the documentation of tkz-base. Often, I use the macro \tkzClip. When the first line is \tkzInit[xmax=5,ymax=7] then \tkzClip build a clip aera with the rectangle (0,0) and (5,7).

Now this macro is more accurate because it is possible to use an option space like this: \tkzClip[space=1] and the last clip aera is the retangle: (0-1,0-1) and (5+1,7+1).

#### macro n° 1 Define a point \tkzPoint

 $\time Tensor [(local options)]((x_A; y_A)){(A)}$ 

| options   | default     | definition                                             |
|-----------|-------------|--------------------------------------------------------|
| noname    | false       | si true pas de nom                                     |
| name      | empty       | si non vide alors c'est le nom attribué au point       |
| color     | black       | couleur du point                                       |
| nomark    | false       | si true pas de marque                                  |
| mark      | *           | représentation du point                                |
| namecolor | black       | couleur du label                                       |
| size      | \normalsize | taille du point                                        |
| pos       | above right | position du nom                                        |
| coord     | false       | booléen pour indiquer si on représente les coordonnées |
| xlabel    | empty       | nom de l'abscisse si coord = true                      |
| ylabel    | empty       | nom de l'ordonnée si coord = true                      |
| posxlabel | 0pt         | écart par rapport l'axe des abs. de xlabel             |
| posylabel | 0pt         | écart par rapport l'axe des ord. de ylabel             |

This commands defines one geometrical point in the Euclidean plane, associated with a node (tikz object). Each point has a node name and two coordinates ( $\langle x; y \rangle$ ) (unit=cm) and by default the node name defines the label (in text mode) put on the figure (examples: A, A1 but not A<sub>1</sub>). It is possible to assign a different label in mathematical mode like A<sub>1</sub> with an option name= \$A\_1\$

In the next example, the point  $A_1$  has "A" for noe name but it has  $A_1$  for label, C is defined but with no label and you can see its mark.

**Example n° 27** Some points with different options



\begin{tikzpicture}
 \tkzInit[xmax=5,ymax=5]
 \tkzX
 \tkzY
 \tkzGrid[sub]
 \tkzPoint[name=\$A\_1\$](2,3){A}
 \tkzPoint(4,3){B}
 \tkzPoint[noname](1,4){C}
 \end{tikzpicture}

macro n° 2 Define a point without drawing it \tkzPoint\*

 $\text{tkzPoint*}[\langle local\ options \rangle](\langle x_A ; y_A \rangle) \{\langle A \rangle\}$ 

The \*-form defines a point in the figure which is to be hidden.

#### Example n° 28 The \*-form of \tkzPoint

A, B and C are defined but with no name and no mark.



```
\begin{tikzpicture}
\tkzInit[xmax=5,ymax=5]
\tkzX
\tkzY
\tkzGrid[sub]
\tkzPoint*(2,1){A}
\tkzPoint*(4,2){B}
\tkzPoint*(1,4){C}
\tkzSegment(A/B,A/C,B/C)
%better is \tkzPolygob(A,B,C)
\end{tikzpicture}
```

#### macro n° 3 Drawing defined point(s) \tkzDrawPoint

 $\text{tkzDrawPoint}[\langle local options \rangle](\langle A, B, ... \rangle)$ 

It is possible to define a point with drawing it immediatly. You can draw it later with this macro. You can use the same local options that for the point. You can draw the points of a list delimited by (...)

#### **Example n° 29** Drawing a defined point



```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5]
  \tkzX
  \tkzY
  \tkzGrid[sub]
  \tkzPoint*(2,1){A}
  \tkzPoint*(4,3){B}
  \tkzDrawPoint[size=5pt,mark=x,color=red](A)
  \tkzDrawPoint[size=3pt,mark=*,color=blue](B)
  \end{tikzpicture}
```

**Example n° 30** Drawing defined points



#### macro n° 4 Set up local options for points \SetUpPoint

 $\SetUpPoint[\langle local options \rangle]$ 

It is possible to modify the default options for the points

# **Example n° 31** color, size and mark



#### macro n° 5 Set of points with names \tkzPoints

 $\time The thick the two the$ 

You can obtain some points with the same local options. The elements of this list is composed with two cartesian coordinates for each point and the name of the point.

#### **Example n° 32** Some points



# macro n° 6 Draw a segment or some segments\tkzSegment

 $\time Segment[\langle local options \rangle](\langle A/B,... \rangle)$ 

| options     | défaut | définition                                     |
|-------------|--------|------------------------------------------------|
| color       | black  | couleur du trait                               |
| lw          | 0.4pt  | épaisseur du trait                             |
| style       | solid  | style du trait dashed,dotted etc               |
| symbol      | {}     | marque sur le segment                          |
| colorsymbol | black  | couleur du symbol                              |
| namecolor   | black  | couleur du label                               |
| label       | {}     | étiquette du segment                           |
| colorlabel  | black  | nom de l'ordonnée si coord = true              |
| poslabel    | 1pt    | écart par rapport aux axes des coordonnées     |
| time        | .5     | positionne le symbole et le label entre 0 et 1 |

You can draw one segment or some segments with the same local options. The elements of this list is composed with the name of two points. The names are separated by the symbol /.

# Example n° 33 Simple segment



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzPoint[coord](1,2){A}
  \tkzPoint[coord](5,5){B}
  \tkzSegment[color=red](A/B)
\end{tikzpicture}
```

# macro n° 7 Define the MidPoint of a segment \tkzMidPoint

 $\verb|\tkzMidPoint[|\langle local options|\rangle]| (|\langle Point A, Point B|\rangle) \{\langle I\rangle\}|$ 

I is the midpoint of the segment [AB]

#### **Example n° 34** MidPoint of a segment



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzPoint(2,2){A}
  \tkzPoint(5,4){B}
  \tkzSegment[color=red](A/B)
  \tkzMidPoint[coord](A,B){I}
  \end{tikzpicture}
```

macro n° 8 Define the MidPoint of a segment \tkzMidPoint\*

 $\time The Lagrangian Theorem $$ \time The Lagrangian $$ \time Theorem $$$ 

I is the midpoint of the segment [AB] but it is only defined and not drawn

#### **Example n° 35** How to use the midpoint of a segment



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzPoint(2,2){A}
  \tkzPoint(5,4){B}
  \tkzPoint(3,1){C}
  \tkzSegment[color=red](A/B)
  \tkzMidPoint*(A,B){I}
  \tkzSegment[color=blue](C/I)
\end{tikzpicture}
```

macro n° 9 Lines \tkzPolySeg

 $\time Text{tkzPolySeg[(local options)]((Point A, Point B,...))}$ 

*Draw or define (star-form) the intersection point* I *of two lines* (AB) *and* (CD) *with point options.* 

#### **Example n° 36** Lines with segments



# Example n° 37 angle



```
\begin{tikzpicture}
  \tkzInit[xmax=7,ymax=7]
  \tkzPoint[pos=below](1,2){S}
  \tkzPoint(5,3){T}
  \tkzPoint(2,5){U}
  \tkzPolySeg(T,S,U)
  \tkzClip
  \path (S) circle (5cm);
\end{tikzpicture}
```

# macro n° 10 Draw a Line \tkzLine

 $\time [\langle local options \rangle] (\langle P_A/P_B,... \rangle)$ 

| options | défaut | définition                               | -                                       |
|---------|--------|------------------------------------------|-----------------------------------------|
| color   | black  | color of the line                        | _                                       |
| lw      | 0.4pt  | width of the line                        |                                         |
| style   | solid  | style of the line dashed,dotted etc      | You can draw one line or some line with |
| prefix  | d      | prefix of the endpoints                  |                                         |
| kr      | 1      | part of the line after AB, length=kr*AB  |                                         |
| kl      | 1      | part of the line before AB, length=kl*AB | _                                       |

the same local options. The elements of this list is composed with the name of two points. The names are separated by the symbol /.

**Example n° 38** A line



```
\begin{tikzpicture}
  \tkzInit[ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzPoint(3,3){A}
  \tkzPoint(4,4){B}
  \tkzLine[color=red](A/B)
\end{tikzpicture}
```

# Example n° 39 A line, options kr, kl



```
\begin{tikzpicture}
  \tkzInit[ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzY
  \tkzPoint(4,2){A}
  \tkzPoint(6,4){B}
  \tkzLine[color=red,kr=1,kl=1](A/B)
  \end{tikzpicture}
```

# **Example n° 40** Half-line kr = 0



```
\begin{tikzpicture}
   \tkzInit[ymax=6]
   \tkzGrid[sub,color=orange]
   \tkzX
   \tkzY
   \tkzPoint(2,2){A}
   \tkzPoint(4,3){B}
   \tkzLine[color=red,kr=0,kl=1](A/B)
\end{tikzpicture}
```

# **Example n° 41** Half-line kl = 0



```
\begin{tikzpicture}
  \tkzInit[ymax=6]
  \tkzGrid[sub,color=orange]
  \tkzX
  \tkzY
  \tkzY
  \tkzPoint(4,2){A}
  \tkzPoint(6,4){B}
  \tkzLine[color=red,kl=0,kr=1](A/B)
\end{tikzpicture}
```

# Example n° 42 A line, option prefix



#### macro n° 11 Parallel Lines \tkzParaLL

 $\time Tarall[(local options)]((A,B))((C))$ 

Draw a parallal line to (AB) crossing C.

#### Example n° 43 Parallel lines



```
\text{begin{tikzpicture}}
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint(2,1){A}
  \tkzPoint(5,3){B}
  \tkzPoint(3,5){C}
  \tkzLine(A/B,B/C,A/C)
  \tkzParaLL(A,B)(C)
  \tkzParaLL[kr=1](B,C)(A)
\end{tikzpicture}
```

#### macro n° 12 Parallel Lines star-form \tkzParaLL\*

 $\time Parall[(local options)]((A,B))((C))$ 

Define a parallal line to (AB) crossing C.

#### **Example n° 44** Parallel lines star-form



# macro n° 13 Orthogonal Lines \tkzLineOrth

 $\time Orth[\langle local options \rangle](\langle A, B \rangle)(\langle C \rangle)$ 

Draw an orthogonal line to (AB) crossing C.

# **Example n° 45** Orthogonal lines



```
\begin{tikzpicture}
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint(2,1){A}
  \tkzPoint(5,3){B}
  \tkzPoint(3,5){C}
  \tkzLine(A/B,B/C,A/C)
  \tkzLineOrth(A,B)(C)
\end{tikzpicture}
```

macro n° 14 Orthogonal Lines star-form \tkzLineOrth\*

 $\label{local options} $$ \timeOrth[\langle local options \rangle] (\langle A,B \rangle) (\langle C \rangle) $$$ 

Define (star-form) an orthogonal line to (AB) crossing C.

An other possibility is the projection of the point A.

**Example n° 46** An orthogonal line (star-form)



```
\begin{tikzpicture}
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint[pos=left](2,1){A}
  \tkzPoint(5,3){B}
  \tkzPoint(3,5){C}
  \tkzLine(A/B)
  \tkzParaLL[prefix=p1](A,B)(C)
  \tkzLineOrth*[prefix=or](A,B)(A)
  \tkzInterLL[%
      color = red,%
      pos = above](p11,p1r)(or1,orr){I}
  \end{tikzpicture}
```

# macro n° 15 Define a circle of center O crossing A \tkzCircle

 $\time [(local options)] {(O,A)}$ 

| options | défaut | définition        |
|---------|--------|-------------------|
| color   | black  | color of the line |
| lw      | 0.4pt  | line width        |
| style   | solid  | dashed,dotted etc |

A circle is defined with its center O and a point of its circumference.

**Example n° 47** Circle with a center and a point of the circumference.

radius r = OA



```
\begin{tikzpicture}
  \tkzInit[xmin=-2,xmax=8,ymin=-2,ymax=9]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzPoint(3,4){0}
  \tkzPoint(5,8){A}
  \tkzCircle(0,A)
  \end{tikzpicture}
```

#### macro n° 16 Define a circle of diameter AB \tkzCircle\*

 $\verb|\tkzCircle*| [\langle \textit{local options} \rangle] \{\langle A, B \rangle\}|$ 

A circle is defined with two diameterly opposed points.

**Example n° 48** Circle with two diameterly opposed points.

#### diameter d = AB



```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=8,ymax=6]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint(5,4){B}
  \tkzMidPoint[color=red](A,B){0}
  \tkzCircle*(A,B)
  \end{tikzpicture}
```

#### **Example n° 49** Circles : the two forms



```
\begin{tikzpicture}[scale=.6]
  \tkzInit
  \tkzGrid[sub]
  \tkzX\tkzY
  \tkzPoint*(2,6){S}
  \tkzPoint*(8,2){T}
  \tkzMidPoint[coord](S,T){I}
  \tkzPoint(4,8){R}
  \tkzMidPoint(I,R){J}
  \tkzCircle(I,R)
  \tkzCircle*(I,R)
  \end{tikzpicture}
```

#### macro n° 17 Define a circle of center A and a Radius \tkzCircleR

 $\time \circleR[(local\ options)]{(O,r)}$ 

A circle is defined with its center O and radius r (unit=cm).

**Example n° 50** Circle with a radius and \tkzrayon

\tkzrayon is a pre-defined dimension register.



```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=6,ymin=-1,ymax=5]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzrayon=2cm
  \tkzPoint(3,2){0}
  \tkzCircleR(0,\tkzrayon)
\end{tikzpicture}
```

**Example n° 51** Circle with a radius with cm or pt



```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=6,ymin=-1,ymax=5]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzPoint(3,2){0}
  \tkzCircleR(0,2 cm)\tkzCircleR(0,40 pt)
  \end{tikzpicture}
```

# Example n° 52 Circle with \tkzMathLength

\tkzMathLength is a macro to obtain the length of a segment. The result is in \tkzmathLen. See below, how to use this macro.



```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmax=6,ymin=-1,ymax=5]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzPoint(3,2){0}\tkzPoint(5,2){A}
  \tkzMathLength(0,A)
  \tkzCircleR(0,\tkzmathLen pt)
  \end{tikzpicture}
```

#### **Example n° 53** Circle with pgfmath



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzGrid\tkzX\tkzY
  \tkzPoint*(0,0){o}
  \tkzPoint[s,3){c}
  \tkzPoint[pos=above](1,3){a}
  \pgfmathparse{2*sqrt(2)}
  \tkzrayon=\pgfmathresult cm
  \tkzCircleR(c,\tkzrayon)
\end{tikzpicture}
```

macro n° 18 Define a circle of center A and a Radius given by two points. \tkzCircleR\*

 $\verb|\tkzCircleR*| [\langle \textit{local options} \rangle] \{\langle O, A, B \rangle\}|$ 

A circle is defined with its center O and radius given by two points.

**Example n° 54** Circle with a radius given by two points



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzPoint(3,2){0}
  \tkzPoint(5,3){A}
  \tkzPoint(6,4){B}
  \tkzCircleR*(0,A,B)
\end{tikzpicture}
```

# VII. Special Objects

# macro n° 19 polygon \tkzPolygon \tkzPolygon[\langle local options \rangle] (\langle A, B, ... \rangle) options default definition color black color of the line lw 0.4pt width of the line style solid style of the line Draw a polygon with a list of points.

# Example n° 55 polygon



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,ymin=-1,xmax=7,ymax=7]
  \tkzPoint(2,1){A}
  \tkzPoint(6,3){B}
  \tkzPoint[pos=above](5,4){C}
  \tkzPoint[pos=above](4,3){D}
  \tkzPoint[pos=above](1,5){E}
  \tkzPolygon(A,B,C,D,E)
\end{tikzpicture}
```

# macro n° 20 Set up pline \SetUpMLine

 $\Delta [\langle local \ options \rangle]$ 

This macro can be used to change default values (see above)

# **Example n° 56** Set Up Line for Polygons



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,ymin=-1,xmax=7,ymax=7]
  \tkzPoint(2,1){A}
  \tkzPoint(6,3){B}
  \tkzPoint[pos=above](5,4){C}
  \tkzPoint[pos=above](1,3){D}
  \tkzSetUpPLine[color=red,lw=1pt]
  \tkzPolygon(A,B,C,D)
  \end{tikzpicture}
```

#### macro n° 21 Square \tkzSquare

 $\label{local options} $$ \txSquare[(local options)]((A,B))_{(C)}_{(D)}$$ 

ABCD is a square with  $\overrightarrow{BA}$  orthogonal to  $\overrightarrow{BC}$  (+90°). Local options are the same ones as for \text{tkzPolygon}.

# **Example n° 57** Squares



\begin{tikzpicture}[scale=.7]
 \tkzInit
 \tkzPoint(0,0){C}
 \tkzPoint(4,0){A}
 \tkzPoint(0,3){B}
 \tkzSquare[color=red](B,A){E}{F}
 \tkzSquare[color=blue](A,C){G}{H}
 \tkzSquare[color=cyan](C,B){I}{J}
\end{tikzpicture}

macro n° 22 Square star-form \tkzSquare\*

 $\t XSquare*(\langle A,B\rangle)\{\langle C\rangle\}\{\langle D\rangle\}$ 

The points C and D are defined and that's all!

#### **Example n° 58** Square star-form isosceles right triangle



\begin{tikzpicture}[scale=.8]
 \tkzInit[xmax=6,ymax=6]
 \tkzPoint\*(0,0){C}
 \tkzPoint(4,0){A}
 \tkzPoint[pos=above right](0,3){B}
 \tkzSquare\*(B,A){E}{F}
 \tkzDrawPoint(E)
 \tkzPolygon[color=red](A,B,E)
 \end{tikzpicture}

# macro n° 23 Equilateral triangle \tkzTrEqui

#### $\text{tkzTrEqui}[\langle local options \rangle](\langle A, B \rangle) \{\langle C \rangle\}$

ABC is an equilateral triangle with an angle of  $60^{\circ}$  between  $\overrightarrow{BA}$  and  $\overrightarrow{BC}$ .

Local options are the same ones as for  $\t kzPolygon$ .

# **Example n° 59** Equilateral triangle



```
\begin{tikzpicture}[scale=0.8]
  \tkzInit[xmax=6,ymax=6]
  \tkzPoint(0,0){B}
  \tkzPoint(5,0){C}
  \tkzSquare(B,C){D}{A}
  \tkzTrEqui(B,C){M}
  \end{tikzpicture}
```

#### macro n° 24 Equilateral triangle star-form \tkzTrEqui\*

 $\text{tkzTrEqui}*(\langle A, B \rangle) \{\langle C \rangle\}$ 

The point C is defined and that's all.

# **Example n° 60** Equilateral triangle star-form



```
\begin{tikzpicture}[scale=0.8]
  \tkzInit[xmax=6,ymax=6]
  \tkzPoint(0,0){B}
  \tkzPoint(5,0){C}
  \tkzTrEqui*(B,C){A}
  \tkzMidPoint[color=red](B,C){M}
  \tkzDrawPoint[color=red](A)
  \tkzSegment[color=red](A/M)
  \end{tikzpicture}
```

# macro n° 25 Parallelogram \tkzLLgram

 $\time LLgram[\langle local options \rangle](\langle A,B,C \rangle) \{\langle D \rangle\}$ 

 $\overrightarrow{AB}$  is collinear to  $\overrightarrow{CD}$ .

Local options are the same ones as for  $\t kzPolygon$ .

# **Example n° 61** Parallelogram



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzPoint(2,1){A}
  \tkzPoint(5,3){B}
  \tkzPoint(1,4){C}
  \tkzLLgram(A,B,C){D}
\end{tikzpicture}
```

# macro n° 26 Parallelogram star-form\tkzLLgram\*

 $\text{tkzLLgram}*(\langle A,B,C\rangle)\{\langle D\rangle\}$ 

 $\overrightarrow{AB}$  is collinear to  $\overrightarrow{CD}$ .

Local options are the same ones as for  $\t tkzPolygon$ .

# **Example n° 62** Parallelogram star-form

```
°C °B
```

```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzPoint(2,1){A}
  \tkzPoint(5,3){B}
  \tkzPoint(1,4){C}
  \tkzLLgram*(A,B,C){D}
  \tkzDrawPoint[color=red](D)
\end{tikzpicture}
```

# macro n° 27 Mark Right Angle \tkzRightAngle

 $\time The large [(local options)] ((A,B,C))$ 

| options | default | definition        |
|---------|---------|-------------------|
| color   | black   | color of the line |
| size    | 0.25    | radius of the arc |

Draw a little square to mark the right angle

#### **Example n° 63** Mark Right Angle



\begin{tikzpicture} [scale=.8]
 \tkzInit[xmax=7,ymax=5]
 \tkzPoint[pos=below] (1,2){S}
 \tkzPoint(5,1){T}
 \tkzRotate(S,90)(T/P)
 \tkzRightAngle(T/S/P)
 \tkzSegment(S/T,S/P)
 \end{tikzpicture}

#### macro n° 28 Mark Angle \tkzMarkAngle

#### $\time TankAngle[(local options)]((A/B/C))$

| -          |              |                                |
|------------|--------------|--------------------------------|
| options    | default      | definition                     |
| color      | black        | color of the line              |
| fillcolor  | white        | color of the sector            |
| size       | 1cm          | radius of the arc              |
| style      | ai           | ai, aii or aiii (see below)    |
| label      | {}           | symbol for the angle           |
| labelcolor | 1            | part after D                   |
| labelsize  | \scriptstyle | size of the label              |
| pos        | {}           | above, left etc                |
| dist       | 0.5          | coefficient to place the label |

```
\tikzstyle{ai}=[draw,line width=.5pt]
\tikzstyle{aii}=[draw,line width=.5pt,double,double distance=1pt]
\tikzstyle{aiii}=[draw,line width=.5pt,double=red,double distance=2pt]
```

You can modify the styles "ai", "aii" and "aiii". You must use  $\label{label}$  without \$ \$. The mathematic mode is always set. The option "dist" is special, it's a number. You adjust it but if dist = 1 then the label is placed at a distance equal at "len" (see option "len") of bisector, bu default len = 5cm.

# Example n° 64 Mark Angle



```
\begin{tikzpicture}[scale=.8]
\tkzInit[xmax=7,ymax=5]
 \tkzPoint[pos=below](1,2){S}
\tkzPoint(5,1){T}
 \tkzRotate(S,60)(T/P)
 \tkzMarkAngle[size
                        = 2,%
                        = ai,%
              style
              dist
                        = .2,%
                        = 60^{\circ},%
              label
              color
                       = black,%
              fillcolor = red](T/S/P)
 \tkzSegment(S/T,S/P)
\end{tikzpicture}
```

# macro n° 29 Bisector \tkzBisector

# $\verb|\tkzBisector|| (\textit{local options})| (\langle A,B,C \rangle) \{\langle D \rangle\}|$

| options | default | definition                       |
|---------|---------|----------------------------------|
| color   | black   | color of the line                |
| lw      | 0.6pt   | width of the line                |
| style   | solid   | style of the line                |
| kl      | 1       | part before O                    |
| kr      | 1       | part after D                     |
| len     | 5       | length of BD                     |
| prefix  | d       | dl and dr are points of the line |

Draw or define (star-form) the (interior) bisector (also called the internal angle bisector) of an angle  $\widehat{ABC}$ .

The point D is a point of the bisector and BD=len.

#### Example n° 65 Bisector



```
\begin{tikzpicture}[scale=.75]
  \tkzInit[xmin=-1,xmax=5,ymin=-1,ymax=5]
  \tkzClip
  \tkzPoint(0,0){0}
  \tkzPoint(3,1){I}
  \tkzPoint(1,4){J}
  \tkzBisector[color=red,kl=0](I,0,J){K}
  \tkzDrawPoint(K)
  \tkzSegment(0/I,0/J)
  \end{tikzpicture}
```

#### macro n° 30 Bisector \tkzBisectorOut

# $\time Time The large of the l$

Draw or define (star-form) the (exterior) bisector (also called the exterior angle bisector) of an angle  $\widehat{ABC}$ . The point D is a point of the bisector. The len option gives the length of BD.

#### **Example n° 66** Bisector Out



#### macro n° 31 InCenter \tkzInCenter

 $\time The local options \ \ (\langle A,B,C \rangle) \{\langle I \rangle\}$ 

The angle bisectors of the triangle ABC meet at the incenter I

#### **Example n° 67** InCenter with the bisectors



```
\begin{tikzpicture} [scale=.8]
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint(2,2){A}
  \tkzPoint(6,3){B}
  \tkzPoint[pos=above](3,6){C}
  \tkzBisector[color=red,kl=0](A,B,C){I}
  \tkzBisector[color=red,kl=0](B,A,C){J}
  \tkzBisector[color=red,kl=0](B,C,A){K}
  \tkzInCenter[color=red,size=1pt](A,B,C){I}
  \tkzPolygon(A,B,C)
  \end{tikzpicture}
```

#### **Example n° 68** InCenters



```
\begin{tikzpicture}[scale=1.25]
  \tkzInit[xmax=6,ymax=7]
  \tkzClip
  \tkzPoint(1,2){A}
  \text{tkzPoint}(5,3)\{B\}
  \tkzPoint[pos=above](2,6){C}
  \tkzInCenter[color=red,%
               size=1pt](A,B,C){I}
  \tkzPolygon(A,B,C)
  \tkzSegment(A/I,B/I,C/I)
  \tkzInCenter[color = red,%
               size = 1pt](A,B,I){I1}
  \tkzInCenter[color = red,%
               size = 1pt](C,B,I){I2}
  \tkzInCenter[color = red,%
               size = 1pt](A,C,I){I3}
\end{tikzpicture}
```

#### macro n° 32 InCenter star-form \tkzInCenter\*

 $\time The large of the large$ 

Local option equal point options.

#### **Example n° 69** InCenter star-form



#### macro n° 33 InCircle \tkzInCircle

 $\time The [(local options)] ((A,B,C))$ 

#### **Example n° 70** InCircle



# **Example n° 71** InCircles



```
\begin{tikzpicture}[scale=1.25]
  \tkzInit[xmax=6,ymax=7]
  \tkzClip
  \tkzPoint(1,2){A}
  \text{tkzPoint}(5,3)\{B\}
  \tkzPoint[pos=above](2,6){C}
  \tkzInCenter[color=red,%
               size = 1pt](A,B,C){I}
  \tkzPolygon(A,B,C)
  \tkzSegment(A/I,B/I,C/I)
  \tkzInCenter[color= red,%
              size = 1pt,%
                      noname](A,B,I){I1}
  \tkzInCenter[color = red,%
               size = 1pt, %
                       noname](C,B,I){I2}
  \tkzInCenter[color = red,%
               size = 1pt, %
               noname](A,C,I){I3}
  \tkzInCircle[color=blue](A,B,I)
  \tkzInCircle[color=blue](A,C,I)
  \tkzInCircle[color=blue](B,C,I)
\end{tikzpicture}
```

#### macro n° 34 Median \tkzMedian

*Median from* C *to the middle of* [AB]. *Local options equal line options.* 

# **Example n° 72** Medians



```
\begin{tikzpicture}[scale=.8]
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint[pos=right](6,3){B}
  \tkzPoint(3,6){C}
  \t (A/B,B/C,A/C)
  \tkzMedian(A,B)(C)
  \tkzMedian(B,C)(A)
  \tkzMedian(A,C)(B)
  \tkzMidPoint[color=red](A,B){K}
  \tkzMidPoint[color=red](A,C){J}
  \tkzMidPoint[color=red](B,C){I}
  \tkzSegmentMark[symbol=/](A/K,B/K)
  \tkzSegmentMark[symbol=//](A/J,C/J)
  \tkzSegmentMark[symbol=///](B/I,C/I)
\end{tikzpicture}
```

# macro n° 35 Gravity Center \tkzGravityCenter

 $\label{local options} $$ \txGravityCenter[\langle local options \rangle] (\langle A,B,C \rangle) {\langle G \rangle} $$$ 

Draw or define (star-form) the gravity center of a triangle. Local options equal point options.

#### **Example n° 73** The Gravity Center



```
\begin{tikzpicture} [scale=.8]
   \tkzInit[xmax=7,ymax=7]
   \tkzClip
   \tkzPoint[pos=below left](1,3){A}
   \tkzPoint[pos=right](4,1){B}
   \tkzPoint(6,6){C}
   \tkzGravityCenter(A,B,C){G}
   \tkzPolygon(A,B,C)
\end{tikzpicture}
```

#### macro n° 36 MediatorLine \tkzMediatorLine

 $\time [\langle local options \rangle] (\langle A, B \rangle)$ 

*Draw or define (star-form) the mediator line of* [AB]. *Local options equal line options.* 

#### **Example n° 74** Mediator Line



```
\begin{tikzpicture}[scale=.8]
  \tkzInit[xmax=7,ymax=7]\tkzClip
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint[pos=right](6,3){B}
  \tkzPoint[pos=above](3,6){C}
  \tkzPolygon(A,B,C)
  \tkzMediatorLine[prefix=m1](A,B)
  \tkzRightAngle(A/tkzmidpoint/m1r)
  \tkzDrawPoint[color=red,noname](tkzmidpoint)
  \tkzSegmentMark[symbol=/](A/tkzmidpoint,%
                            B/tkzmidpoint)
  \tkzMediatorLine[prefix=m2](A,C)
  \tkzRightAngle(A/tkzmidpoint/m21)
  \tkzDrawPoint[color=red,noname](tkzmidpoint)
  \tkzSegmentMark[symbol=//](A/tkzmidpoint,%
                            C/tkzmidpoint)
  \tkzMediatorLine[prefix=m3](C,B)
  \tkzRightAngle(B/tkzmidpoint/m31)
  \tkzDrawPoint[color=red,noname](tkzmidpoint)
  \tkzSegmentMark[symbol=///](B/tkzmidpoint,%
                              C/tkzmidpoint)
\end{tikzpicture}
```

#### macro n° 37 CircumCenter \tkzCircumCenter

 $\time CircumCenter[\langle local options \rangle] (\langle A, B, C \rangle)$ 

Draw or define (star-form) the circumcenter of a triangle. Local options equal point options.

#### **Example n° 75** CircumCenter



```
\begin{tikzpicture}[scale=.8]
  \tkzInit[xmax=7,ymax=7]\tkzClip
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint[pos=right](6,3){B}
  \tkzPoint[pos=above](3,6){C}
  \tkzPolygon(A,B,C)
  \tkzCircumCenter[color=red,size=1pt](A,B,C){M}
  \end{tikzpicture}
```

#### macro n° 38 CircumCircle \tkzCircumCircle

 $\time Time The Circle [(local options)] ((A,B,C)) {(M)}$ 

M is the CircumCenter of the triangle ABC. Local options equal polygon options.

#### **Example n° 76** CircumCircle



```
\begin{tikzpicture} [scale=.8]
  \tkzInit[xmax=7,ymax=7]\tkzClip
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint[pos=right](6,3){B}
  \tkzPoint[pos=above](3,6){C}
  \tkzPolygon(A,B,C)
  \tkzCircumCenter(A,B,C){M}
  \tkzCircumCircle[color=red](A,B,C)
  \end{tikzpicture}
```

#### macro n° 39 Altitude \tkzAltitude

 $\time [(local\ options)]((A,B))((C/P))$ 

P is the projection of C on [AB]. Local options equal line options.

#### **Example n° 77** Altitudes



```
\begin{tikzpicture}[scale=.8]
 \tkzInit[xmax=7,ymax=7]
 \tkzClip
 \SetUpPoint[pos=right]
 \tkzPoint[pos=below left](2,1){A}
 \tkzPoint[pos=right](6,3){B}
 \tkzPoint[pos=above](3,6){C}
 \tkzLine[color=blue](A/B,B/C,A/C)
 \SetUpPoint[pos=left]
 \tkzAltitude[color=red](A,B)(C/K)
 \tkzAltitude[color=red](A,C)(B/J)
 \tkzAltitude[color=red](C,B)(A/I)
 \tkzRightAngle(A/K/C,B/I/A,C/J/B)
 \tkzDrawPoint[pos=right](I)
 \tkzDrawPoint[pos=left](J)
 \tkzDrawPoint[pos=below](K)
\end{tikzpicture}
```

#### macro n° 40 OrthoCenter \tkzOrthoCenter

 $\t CorthoCenter[\langle local options \rangle](\langle A, B, C \rangle) \{\langle H \rangle\}$ 

Draw or define (star-form) the orto center of a triangle. Local options equal point options.

#### **Example n° 78** OrthoCenter



```
\begin{tikzpicture} [scale=.8]
  \tkzInit[xmax=7,ymax=7]\tkzClip
  \SetUpPoint[pos=right]
  \tkzPoint[pos=below left](2,1){A}
  \tkzPoint[pos=right](6,3){B}
  \tkzPoint[pos=above](3,6){C}
  \tkzLine[color=blue](A/B,B/C,A/C)
  \SetUpPoint[pos=left]
  \tkzOrthoCenter[color=red](A,B,C){H}
  \tkzClipPolygon(A,B,C)
  \tkzLine[kl=0,kr=2,color=red](A/H,B/H,C/H)
  \end{tikzpicture}
```

Example n° 79 OrthoCenter

We can use the Projection command to get the altitudes.



\begin{tikzpicture}[scale=.8]
 \tkzInit[xmax=7,ymax=7]\tkzClip
 \SetUpPoint[pos=right]
 \tkzPoint[pos=below left](2,1){A}
 \tkzPoint[pos=right](6,3){B}
 \tkzPoint[pos=above](3,6){C}
 \tkzLine[color=blue](A/B,B/C,A/C)
 \SetUpPoint[pos=left]
 \tkzProjection[pos=below](A,B)(C/K)
 \tkzProjection[pos=left](A,C)(B/J)
 \tkzProjection[pos=right](C,B)(A/I)
 \tkzSegment[color=cyan](C/K,A/I,B/J)
 \tkzRightAngle(A/K/C,B/I/A,C/J/B)
 \end{tikzpicture}

# macro n° 41 Arc of unknown radius \tkzArc

 $\txxArc[\langle local options \rangle](\langle O, r \rangle)(\langle V_1, V_2 \rangle)$ 

| options | default | definition        |
|---------|---------|-------------------|
| color   | black   | color of the line |
| lw      | 0.4pt   | width of the line |
| style   | solid   | style of the line |
| out     | false   | complementary arc |

Draw an arc with center O and a radius r.  $V_1$  et  $V_2$  are the values of the angles to define the beginning and the end of the arc.

# **Example n° 80** Arc of unknown radius with values



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(1,3){0}
  \tkzPoint(4,3){A}
  \tkzPoint(1,6){B}
  \tkzArc[color=red](0,A,B)(-20,90)
  \end{tikzpicture}
```

#### macro n° 42 Arc of unknown radius star-form \tkzArc\*

```
\text{tkzArc*}[\langle local\ options \rangle](\langle O, r \rangle)(\langle A, B \rangle)
```

Draw an arc with center O and a radius r. A et B are points to define the beginning and the end of the arc. OA = OB is necessary.

#### **Example n° 81** a) Arc of unknown radius with points



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(1,2){0}
  \tkzPoint(4,3){A}
  \tkzRotate[pos=above](0,30)(A/B)
  \tkzArc*[out,color=red](0,0,A)(A,B)
  \end{tikzpicture}
```

#### **Example n° 82** b) Arc of unknown radius with points



**Example n° 83** c) Arc of unknown radius with points



macro n° 43 Arc of known radius with values\tkzArcR

 $\texttt{\label{local options}} \ \ (\langle O,r\rangle) \ \ (\langle V_1,V_2\rangle)$ 

Draw an arc with center O and radius r, the arc begins at  $V_1$  and stops at  $V_2$ 

# **Example n° 84** Arc of known radius with values



\begin{tikzpicture}
 \tkzInit
 \tkzPoint[pos=left](1,2){0}
 \tkzArcR[color=red](0,3 cm)(0,90)
 \tkzArcR[color=blue](0,2 cm)(-60,60)
 \tkzArcR[color=orange](0,1 cm)(120,270)
\end{tikzpicture}

# **Example n° 85** Arc of known radius with values; out option



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint[pos=left](1,2){0}
  \tkzArcR[out,color=red](0,3 cm)(0,90)
  \tkzArcR[out,color=blue](0,2 cm)(-60,60)
  \tkzArcR[out,color=orange](0,1 cm)(120,270)
\end{tikzpicture}
```

macro n° 44 Arc of known radius with points \tkzArcR\*

 $\text{tkzArcR*}[\langle local \ options \rangle](\langle O, r \rangle)(\langle A, B \rangle)$ 

# **Example n° 86** Arc of known radius with points



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(1,3){0}
  \tkzPoint(4,3){A}
  \tkzPoint(1,6){B}
  \tkzArcR*[color=red](0,3)(A,B)
  \tkzArcR*[out,color=blue](0,3)(A,B)
\end{tikzpicture}
```

The next commands are useful to indicate marks of a compass.

| macro n° 45 Compass \tkzCompass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------------------------|
| $\time \time \tim$ |         |                                          |
| options                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | default | definition                               |
| color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | black   | color of the line                        |
| lw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.4pt   | width of the line                        |
| style                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | solid   | style of the line                        |
| delta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10      | length of the arc equal $2 \times delta$ |
| clock                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | false   | change                                   |

Draw an arc with center A and radius r = OA. The legnth of the arc is given by the option delta. It's a number of degrees.

**Example n° 87** Compass equilateral triangle



\begin{tikzpicture}
 \tkzInit
 \tkzPoint[pos=left](1,5){A}
 \tkzPoint(5,2){B}
 \tkzSegment(A/B)
 \tkzRotate\*(A,60)(B/C)
 \tkzCompass[color=red](A,C)
 \tkzCompass[color=red](B,C)
 \end{tikzpicture}

**Example n° 88** Circle-Circle An isosceles triangle.



# **Example n° 89** Circle-Circle An equilateral triangle.



**Example n° 90** Circle-Circle Mediator Line.



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,xmax=7,ymin=-1,ymax=7]\tkzClip
  \tkzPoint[pos=left](1,4){A} \tkzPoint(5,1){B}
  \tkzSegment(A/B)\tkzMidPoint[color=red,pos=below](A,B){I}
  \tkzInterCCR(A,4 cm)(B,4 cm){C}{D}
  \tkzDrawPoint[pos={right=10pt},color=red,size=1.5pt](C)
  \tkzDrawPoint[pos={left=10pt},color=red,size=1.5pt](D)
  \tkzCompass[color=red](A,C)
  \tkzCompass[clock,color=red](B,C)
  \tkzCompass[clock,color=red](B,D)
  \tkzCompass[clock,color=red](B,D)
  \tkzLine[color=red](C/D)
  \tkzRightAngle(A/I/C)
  \tkzSegmentMark[symbol=/](A/I,B/I)
  \end{tikzpicture}
```

# Example nº 91 Bisector.



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,xmax=6,ymin=-1,ymax=7]
  \tkzClip
  \tkzPoint(0,0){0}
  \tkzPoint(5,1){I}
  \tkzPoint(1,6){J}
  \tkzBisector[color=red,kl=0](I,0,J){K}
  \t CR(0,I)(0,2cm)\{C\}\{D\}
  \t XInterLCR(0,J)(0,2cm){E}{F}
  \tkzSegment(0/I,0/J)
  \tkzCompass[color=red](0,C)
  \tkzCompass[color=red](0,E)
  \tkzCompass[color=red](C,K)
  \tkzCompass[color=red](E,K)
  \tkzDrawPoint(K)
\end{tikzpicture}
```

# macro n° 46 Tangent to an circle with a known radius \tkzTgtFromPR

```
\t X = TgtFromPR[(local options)]((O,r))((A))\{(E)\}((F))
```

A is a point outside a circle of center O and radius r. We get the two points E and F where lines from A are tangent at the circle.

# **Example n° 92** a) Tangent to a circle from a point



```
\begin{tikzpicture}
  \tkzInit[xmin=-6, xmax=6, ymin=-1, ymax=7]
  \tkzClip
  \tkzPoint(3,3){C}
  \tkzPoint[pos=above](-4,2){A}
  \pgfmathparse{2*sqrt(2)}
  \let\tempresult\pgfmathresult
  \tkzCircleR(C,\tempresult cm)
  \tkzTgtFromPR(C,\tempresult cm)
  \tkzDrawPoint[pos=below left,color=red](E)
  \tkzDrawPoint[pos=above left,color=red](F)
  \tkzLine[color=red](A/E,A/F)
  \tkzRightAngle(A/E/C,A/F/C)
  \tkzSegment(C/E,C/F)
  \end{tikzpicture}
```

# macro n° 47 Tangent to an circle with a unknown radius \tkzTgtFromP

 $\label{local options} $$ \operatorname{TgtFromPR}[\langle local \ options \rangle](\langle O,I,J \rangle)(\langle A \rangle) \{\langle E \rangle\}(\langle F \rangle) $$$ 

A is a point outside a circle of center O and radius r = IJ. We get the two points E and F where lines from A are tangent at the circle.

### **Example n° 93** Tangent to a circle from a point n°2



```
\begin{tikzpicture} [scale=1]
  \tkzInit[xmin=-6,xmax=6,ymin=-1,ymax=7]
  \tkzPoint(3,3){C}
  \tkzPoint(5,5){B}
  \tkzPoint[pos=above](-4,2){A}
  \tkzCircleR*(C,C,B)
  \tkzTgtFromP(C,C,B)(A){E}{F}
  \tkzDrawPoint[pos=below left,color=red](E)
  \tkzDrawPoint[pos=above left,color=red](F)
  \tkzLine[color=red](A/E,A/F)
  \tkzRightAngle(A/E/C,A/F/C)
  \tkzSegment(C/E,C/F)
  \end{tikzpicture}
```

# macro n° 48 Fill Polygon \tkzFillPolygon

 $\time Till Polygon [(local options)] ((A,B,...))$ 

The local options is the same for all the commands about fill

#### **Example n° 94** Fill Polygon



```
\begin{tikzpicture}[scale=.8]
  \tkzInit
  \tkzPoint[pos=below](1,3){A}
  \tkzPoint(4,1){B}
  \tkzPoint(6,6){C}
  \tkzGravityCenter*(A,B,C){G}
  \tkzFillPolygon[color=yellow](A,B,C)
  \tkzFillPolygon[pattern={north west lines}](A,B,C)
  \tkzPolygon(A,B,C)
  \tkzDrawPoint[color=red,size=2pt](G)
  \end{tikzpicture}
```

#### macro n° 49 Fill Circle \tkzFillCircle

 $\text{tkzFillCircle}[\langle local options \rangle](\langle A, r \rangle)$ 

#### **Example n° 95** Fill Circle



```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5]
  \tkzPoint*(3,3){B}
  \tkzFillCircle[color=blue!50!black](B,2 cm)
  \tkzFillCircle[color=red](B,1 cm)
\end{tikzpicture}
```

#### macro n° 50 Fill Circle with unknown radius \tkzFillCircle\*

 $\text{tkzFillCircle*}[\langle local options \rangle](\langle A, E, F \rangle)$ 

#### **Example n° 96** Fill Circle with unknown radius



```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5]
  \tkzPoint*(2.5,2.5){A}
  \tkzPoint*(2,2){E}
  \tkzPoint*(3,3){F}
  \tkzFillCircle*[color=blue!50!black](A,E,F)
  \tkzFillCircle*[color=orange](F,F,A)
\end{tikzpicture}
```

#### macro n° 51 Fill Sector \tkzFillSector

```
\text{\tkzFillSector}[\langle local options \rangle](\langle A, r \rangle)(\langle V_1, V_2 \rangle)
```

It is possible to fill a sector with a circle (center; radius) and two values in degrees

## **Example n° 97** a- Fill Sector



```
\begin{tikzpicture}[scale=.8]
  \tkzInit[xmax=8,ymax=8]
  \tkzPoint(4,4){A}
  \tkzCircleR(A,2 cm)
  \tkzFillSector[color=blue,out](A,3 cm)(220,270)
  \tkzFillSector[color=red](A,3 cm)(220,270)
  \end{tikzpicture}
```

**Example n° 98** b- Fill Sector



```
\begin{tikzpicture}[scale=.7]
  \tkzInit[xmax=8,ymax=8]
  \tkzPoint*(4,4){B}
  \tkzFillCircle[color=blue!50!black](B,3 cm)
  \foreach \ang in {0,20,...,340}{%
  \edef\angmore{\ang+10}
  \tkzFillSector[color=orange](B,3 cm)(\ang,\angmore)}
  \end{tikzpicture}
```

#### macro n° 52 Fill Sector star-form \tkzFillSector\*

 $\text{tkzFillSector*}[\langle local options \rangle](\langle A, r \rangle)(\langle V_1, V_2 \rangle)$ 

It is possible to fill a sector with a circle (center; radius) and two values in degrees

#### **Example n° 99** Fill Sector star-form

The result is not perfect because the arc macro is buggy when we use decimal degrees.



```
\begin{tikzpicture}[scale=.8]
  \tkzInit[xmax=8,ymax=8]
  \tkzPoint*(4,4){A}
  \tkzCircleR(A,2 cm)
  \tkzPoint*(2,3){B}
  \tkzPoint*(4,3){C}
  \tkzInterLCR(B,C)(A,3 cm){I}{J}
  \tkzFillSector*[color=orange,out](A,2 cm)(I,J)
  \tkzFillSector*[color=yellow](A,2 cm)(I,J)
  \end{tikzpicture}
```

### macro n° 53 Clip Polygon \tkzClipPolygon

```
\time ClipPolygon[\langle local options \rangle](\langle A, B, ... \rangle)
```

This command define a polygon as a clipping aera.

## Example nº 100 | Clip Polygon



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=5]\tkzClip
  \tkzPoint[pos=above](4,4){A}
  \tkzPoint(1,1){B}
  \tkzPoint(5,2){C}
  \tkzPolygon(A,B,C)
  \tkzClipPolygon(A,B,C)
  \tkzCircleR[style={fill=orange}](A,2 cm)
\end{tikzpicture}
```

#### macro n° 54 Clip Circle \tkzClipCircle

 $\time ClipCircle[\langle local options \rangle](\langle O, r \rangle)$ 

This command define a circle as a clipping aera. You need to give the center O and the radius r.

## **Example n° 101** Clip Circle



```
\begin{tikzpicture}[scale=.7]
  \tkzInit[xmax=7,ymax=6]\tkzClip
  \tkzPoint[pos=above](3,4){A}
  \tkzPoint[pos=above](1,1){C}
  \tkzClipCircle(A,3 cm)
  \tkzCircleR[style={fill=orange}](C,4 cm)
  \end{tikzpicture}
```

#### macro n° 55 Clip Circle star-form \tkzClipCircle\*

 $\time ClipCircle*[\langle local options \rangle](\langle O, A, B \rangle)$ 

This command define a circle as a clipping aera. With the star-form, you need to define the radius with the length of the segment AB, O is the center.

#### **Example nº 102** Clip Circle star-form



```
\begin{tikzpicture}[scale=1]
  \tkzInit[xmin=2,xmax=6,ymin=2,ymax=6]\tkzClip
  \tkzPoint[pos=above](4,5){A}
  \tkzPoint[pos=below](3,4){B}
  \tkzPoint(3,3){C}
  \tkzClipCircle*(A,A,B)
  \tkzCircleR*[style={fill=orange}](C,C,A)
  \end{tikzpicture}
```

#### macro n° 56 Clip Sector \tkzClipSector

 $\time \time \tim$ 

This command define a sector as a clipping aera. Thus, if you want only a local effect of the \clip command, you need to use it somewhere inside a scope.

## Example n° 103 Clip Sector



\begin{tikzpicture}
 \tkzInit[xmax=6,ymax=4] \tkzClip
 \tkzPoint[mark=x](3,1){B}
 \tkzClipSector(B,3 cm)(30,150)
 \tkzFillCircle[color=blue!50!black](B,3 cm)
\end{tikzpicture}

macro n° 57 Clip Sector star-form \tkzClipSector\*

 $\text{\tkzClipSector}*[\langle local options \rangle](\langle O, r \rangle)(\langle A, B \rangle)$ 

The star-form of the last command is usefull if you want to use point instead of values of angles.

## **Example n° 104** ClipSector star-form

The rsult is not perfect (see the point J)



\begin{tikzpicture}[scale=.8]
 \tkzInit[xmax=8,ymax=8]
 \tkzPoint[pos=above](4,4){A}
 \tkzCircleR(A,3 cm)
 \tkzPoint\*(2,3){B}
 \tkzPoint\*(6,3){C}
 \tkzInterLCR(B,C)(A,3 cm){I}{J}
 \tkzDrawPoint[pos=left](I)
 \tkzDrawPoint[pos=right](J)
 \tkzClipSector\*(A,3 cm)(I,J)
 \tkzFillCircle[color=blue!50!black](A,3 cm)
 \end{tikzpicture}

# VIII. Intersections

The user can define points by intersection, three types of intersections are managed:

- Intersection point defined by two different lines,
- Intersection point defined by one line and one circle,
- Intersection point defined by two different circles.

Each command has a associated set-form. The local options (optionnal arguments) for these macros are the point options. The user has to manage the existence of the intersection point.

```
macro n° 58 Intersection Line-Line \tkzInterLL
```

```
\t xInterLL[\langle Point options \rangle](\langle A, B \rangle)(\langle C, D \rangle)\{\langle I \rangle\}
```

*Draw or define (star-form) the intersection point* I *of two lines* (AB) *and* (CD) *with point options.* 

# **Example n° 105** Line-Line



#### **Example n° 106** Line-Line OrthoCenter

The intersection of the three altitudes of a triangle is called the orthocenter.



```
\tkzInit\tkzClip
\tkzPoint[pos=below right](2,1){A}%
\tkzPoint[pos=below](9,4){B}%
\tkzPoint[pos=below left](3,7){C}%
\tkzLine[color=blue](A/B,B/C,A/C)
\SetUpPoint[pos=left]
\tkzProjection[color=red,pos=below](A,B)(C/K)
\tkzProjection[color=red](A,C)(B/J)
\tkzProjection[color=red,pos=above right](B,C)(A/I)
\tkzSegment[color=green](A/I,B/J,C/K)
\tkzInterLL[color=red,size=2pt](A,I)(B,J){H}
\tkzRightAngle(A/I/B,B/J/C,C/K/B)
\end{tikzpicture}
```

## **Example n° 107** Line-Line CircumCenter

The circumcenter can be found as the intersection of the perpendicular bisectors (mediator-line), is the center of a triangle's circumcircle.



```
\begin{tikzpicture}
    \tkzInit[ymin=-1,ymax=9]\tkzClip
    \tkzPoint[pos=below right](2,1){A}%
    \tkzPoint[pos=below](9,4){B}%
    \tkzPoint[pos=below left](3,7){C}%
    \tkzLine[color=blue](A/B,B/C,A/C)
    \SetUpPoint[pos=left]
    \tkzMediatorLine[prefix=m1,color=red](A,B)
    \tkzMediatorLine[prefix=m2,color=red](B,C)
    \tkzMediatorLine[color=red](A,C){B}
    \tkzInterLL*(m11,m1r)(m2r,m21){I}
    \tkzDrawPoint[color=red,size=2pt,pos=above](I)
    \tkzProjection*(A,B)(I/c)
    \tkzProjection*(A,C)(I/b)
    \tkzProjection*(B,C)(I/a)
    \tkzRightAngle(A/c/I,B/a/I,C/b/I)
    \tkzSegmentMark[symbol=/](A/c,B/c)
    \tkzSegmentMark[symbol=//](B/a,C/a)
    \tkzSegmentMark[symbol=///](C/b,A/b)
    \tkzCircle(I,A)
\end{tikzpicture}
```

## Example n° 108 Line-Line InCenter

The incenter I is the center of the incircle for a given triangle. It can be found as the intersection of angle bisectors, and it is the interior point for which distances to the sides of the triangle are equal.



```
\begin{tikzpicture}
     \tkzInit\tkzClip
    \tkzPoint[pos=below right](2,1){A}%
    \tkzPoint[pos=below](9,4){B}%
    \tkzPoint[pos=below left](3,7){C}%
     \t A/B,B/C,A/C)
     \t \t Bisector[kl=0,kr=3,color=blue,style=dashed](B,A,C)\{x\}
     \tkzBisector[kl=0,kr=3,color=blue,style=dashed](A,B,C){y}
     \text{tkzInterLL}(A,x)(B,y)\{I\}
     \tkzProjection*(A,B)(I/c)
     \tkzProjection*(A,C)(I/b)
     \tkzProjection*(B,C)(I/a)
     \tkzSegment[color=red,style=dotted,lw=1pt](I/a,I/b,I/c)
     \tkzRightAngle(A/c/I,B/a/I,C/b/I)
     \tkzMarkAngle[size = 1,%
                   style = ai, %
                  fillcolor = red!50](I/A/C)
     \tkzMarkAngle[size = 0.75,%
                  style = ai, %
                  fillcolor = red!50](I/A/B)
     \tkzMarkAngle[size = 1,%
                   style = aii,%
                  fillcolor = blue!50](I/B/C)
    \tkzMarkAngle[size = 0.75,%
style = aii,%
                   fillcolor = blue!50](I/B/A)
     \tkzCircle(I,a)
\end{tikzpicture}
```

# **Example n° 109** Line-Line GravityCenter

A median of a triangle is a straight line through a vertex and the midpoint of the opposite side, and divides the triangle into two equal areas. The three medians intersect in a single point, the triangle's center of gravity.



```
\tkzInit\tkzClip
  \tkzPoint[pos=below right](2,1){A}%
  \tkzPoint[pos=below](9,4){B}%
  \tkzPoint[pos=below left](3,7){C}%
  \tkzLine(A/B,B/C,A/C)
  \tkzMidPoint[color=red](A,B){K}
  \tkzMidPoint[color=red,pos=above right](B,C){I}
  \tkzMidPoint[color=red,pos=left](A,C){J}
  \tkzSegment[color=red,pos=left](A,C){J}
  \tkzSegment[color=green](A/I,B/J,C/K)
  \tkzInterLL[color=red,namecolor=red](A,I)(B,J){G}
  \tkzSegmentMark[symbol=/](A/K,B/K)
  \tkzSegmentMark[symbol=/](B/I,C/I)
  \tkzSegmentMark[symbol=//](C/J,A/J)
  \end{tikzpicture}
```

#### macro n° 59 Intersection Line-Circle with a known radius \tkzInterLCR

 $\label{localization} $$ \begin{array}{ll} \text{$\langle Point options \rangle $] (\langle A,B \rangle) (\langle I,r \rangle) $$ (\langle M \rangle) $$ (\langle N \rangle) $$ (\langle N \rangle) $$ (\langle A,B \rangle) (\langle I,r \rangle) $$ (\langle M \rangle) $$ (\langle I,r \rangle) $$ (\langle$ 

Determine the intersection (M and N) of a line (AB) and a circle with a center I and a radius r.

## **Example nº 110** Line-Circle general case



```
\begin{tikzpicture} [scale=.5]
  \tkzInit[xmin=-1,xmax=10,ymin=-1,ymax=10]
  \tkzClip
  \tkzPoint[pos=below left](2,7){A}
  \tkzPoint(6,4){B}\tkzPoint(4,4){I}
  \tkzCircleR(I,4 cm)
  \tkzInterLCR(A,B)(I,4 cm){M}{N}
  \tkzDrawPoint[size=2pt,color=red,pos=right](M)
  \tkzDrawPoint[size=2pt,color=red,pos=left](N)
  \tkzLine(B/A)
  \end{tikzpicture}
```

## **Example n° 111** Line-Circle center on the line



```
\begin{tikzpicture}[scale=.6]
  \tkzInit[xmin=-1,xmax=9,%
          ymin=-1,ymax=9]
  \tkzClip
  \tkzPoint[pos=below left](0,8){A}
  \tkzPoint(8,0){B}
  \tkzPoint(8,8){C}
  \tkzPoint(4,4){I}
  \tkzCircleR(I,4 cm)
  \t CR(A,C)(I,4 cm){I1}{I2}
  \tkzInterLCR(B,C)(I,4 cm){J1}{J2}
  \tkzInterLCR(A,B)(I,4 cm){K1}{K2}
  \tkzDrawPoint[mark=*,size=2pt,%
                color=red,pos=above](I1)
  \tkzDrawPoint[mark=*,size=2pt,%
                color=red,pos=right](J1,K1)
  \tkzDrawPoint[mark=*,size=2pt,%
                color=red,pos=left](K2)
  \tkzLine(A/B,B/C,A/C)
\end{tikzpicture}
```

## **Example nº 112** Line-Circle vertical line



**Example n° 113** Line-Circle horizontal line



# macro n° 60 Intersection Line-Circle with points \tkzInterLC

 $\label{lem:local_continuous} $$ \text{tkzInterLC}[\langle \textit{Point options} \rangle] (\langle A, B \rangle) (\langle O, C, D \rangle) \{\langle M \rangle\} \{\langle N \rangle\} $$$ 

Draw or define (star-form) the intersection (M and N) of a line (AB) and a circle with a center I and a radius given by CD.

Example n° 114 Line-Circle with points



```
\begin{tikzpicture}
\tkzInit
\tkzPoint(0,0){0} \tkzPoint(0,4){A} \tkzPoint(5,0){I}
\tkzPoint*(4,4){K}
\tkzCircleR*[color=blue,lw=1pt](0,0,K)
\tkzInterLC(A,I)(0,0,K){E}{F}
\tkzDrawPoint(E,F)
\end{tikzpicture}
```

# macro n° 61 Intersection Circle-Circle \tkzInterCCR

\tkzInterCCR[ $\langle Point \ options \rangle$ ] ( $\langle A, r1 \rangle$ ) ( $\langle B, r2 \rangle$ ) { $\langle M \rangle$ } { $\langle M \rangle$ } Determine the intersection (M and N) of two circles with respectively, centers A and B, radii r1 and r2.

# **Example n° 115** Circle-Circle General case



#### **Example n° 116** Circle-Circle Compass



**Example n° 117** Circle-Circle Compass



**Example nº 118** Circle-Circle An isosceles triangle.



#### **Example n° 119** Circle-Circle An equilateral triangle.

Remark: the option "clock" is not necessary because th line (BC) has a positive slope.



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=7]\tkzClip
  \tkzPoint[pos=left](1,4){A}
  \tkzPoint(5,1){B}
  \tkzSegment(A/B)
  \tkzInterCC(A,A,B)(B,B,A){C}{D}
  \tkzDrawPoint[pos={above},color=black](C)
  \tkzCompass[color=red](A,C)
  \tkzCompass[color=red](B,C)
  \tkzSegment(A/C,B/C)
  \end{tikzpicture}
```

**Example n° 120** Circle-Circle Mediator Line.



```
\begin{tikzpicture}
  \tkzInit[xmax=7,ymax=7]
  \tkzClip
  \tkzPoint[pos=left](1,4){A}
  \tkzPoint(5,1){B}
  \tkzSegment(A/B)
  \tkzMidPoint[color=red,%
              pos=below](A,B){I}
  \tkzInterCCR(A,4 cm)(B,4 cm){C}{D}
  \tkzDrawPoint[pos = right,%
                color = red, %
                size = 1.5pt](C)
  \tkzDrawPoint[pos = left,%
                color = red, %
                size = 1.5pt](D)
  \tkzCompass[color=red](A,C)
  \tkzCompass[clock,color=red](B,C)
  \tkzCompass[color=red](A,D)
  \tkzCompass[clock,color=red](B,D)
  \tkzLine[color=red](C/D)
  \tkzRightAngle(A/I/C)
  \tkzSegmentMark[symbol=/](A/I,B/I)
\end{tikzpicture}
```

**Example n° 121** Circle-Circle Tangent to a circle from a given point not on the circle



```
\begin{tikzpicture}
   \tkzrayon=3 cm\relax%
   \tkzInit\tkzClip
   \tkzPoint[pos=left](1,3){A}
   \tkzPoint(0,0){0}
   \tkzPoint(6,5){C}
   \tkzCircleR(C,\tkzrayon)
   \tkzMidPoint*(A,C){H}%
   \tkzCircleR*(H,H,C)
   \tkzInterCCR(C,\tkzrayon)(H,\tkzmathLen pt){E}{F}%
   \tkzDrawPoint[pos=above left,color=red](F)
   \tkzDrawPoint[pos=below left,color=red](E)
   \tkzLine[color=red](A/E,A/F)
   \tkzRightAngle(A/E/C,A/F/C)
   \tkzSegment(C/E,C/F)
\end{tikzpicture}
```

# macro n° 62 Intersection Circle-Circle \tkzInterLC

## $\label{lem:local_point_options} $$ \text{tkzInterLC}[\langle Point\ options \rangle] (\langle A, E, F \rangle) (\langle B, G, H \rangle) \{\langle M \rangle\} \{\langle N \rangle\} $$$

Determine the intersection (M and N) of two circles with respectively, centers A and B, radii given by EF and GH.

Example n° 122 Circle-Circle Mediator line of a segment



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(0,0){A} \tkzPoint(3,3){B}
  \tkzCircleR*[color=blue,lw=1pt](B,B,A)
  \tkzCircleR*[color=blue,lw=1pt](A,A,B)
  \tkzInterCC(B,B,A)(A,A,B){M}{N}
  \tkzSegment(A/B)
  \tkzDrawPoint(M,N)
  \tkzLine[color=red,kr=.5,kl=.5](M/N)
  \end{tikzpicture}
```

# IX. Geometric Transformations

#### **Transformations**

All the classical transformations are available and share the same syntax. The last argument is a list. One element of this list is a antecedent point and its image, separed by "/". In the case no image name is given, a default name is used, appending a' to the antecedent point name.

```
\label{eq:local_options} $$ \operatorname{[\langle local\ options\rangle](\langle arg.\rangle)(\langle M_1/M_1',\ldots,M_n/M_n'\rangle) or $$ \operatorname{[\langle local\ options\rangle](\langle arg.\rangle)(\langle M_1/,\ldots,M_n/\rangle) }$
```

Each geometric transformation macro have a star form, when the star-form is used, the image point is not drawing. Local options are the same ones that for the point. If a star-form is used, you can not give local options.

#### macro n° 63 **Translation** \tkzTranslation

 $\texttt{\tkzTranslation[(local options)]((A,B))((M_1/M_1',...,M_n/M_n'))}$ 

Translation is moving every point a constant distance in a specified direction. The direction is the direction of the vector defined by A and B:  $\overrightarrow{AB}$  and the distance is equal at AB (the length of  $\overrightarrow{AB}$ ).  $\t x = 1$   $\t x = 1$ 

## **Example n° 123** Translation



# **Example n° 124** Translation star form



## macro n° 64 Central Symmetry \tkzCSym

 $\txzCSym[\langle local options \rangle] (\langle I \rangle) (\langle M_1/M_1', ..., M_n/M_n' \rangle)$ 

Draw or define (star-form) the symmetryc point M' of point M relatively a center I.

# Example n° 125 Central Symmetry



```
\begin{tikzpicture}
  \tkzInit \tkzGrid[sub] \tkzX \tkzY
  \tkzPoint(4,5){I}
  \tkzPoint(7,6){M}
  \tkzPoint(6,7){N}
  \tkzCSym(I)(M/,N/)
  \tkzSegment(M/M',N/N')
  \tkzLine(M/N,M'/N')
  \end{tikzpicture}
```

## macro n° 65 Orthogonal Symmetry \tkzSymOrtho

```
\t xSymOrtho[\langle local options \rangle] (\langle A, B \rangle) (\langle M_1/M_1, ..., M_n/M_n \rangle)
```

Draw or define (star-form) the symmetry c point c of point c in relation to line (AB).

# **Example n° 126** Orthogonal Symmetry



```
\begin{tikzpicture}
   \tkzInit
   \tkzGrid[sub]
   \tkzX
   \tkzY
   \path[coordinate]
         (3,2) coordinate (A)%
         (9,6) coordinate (C)%
               coordinate (B) at (A \mid- C)%
               coordinate (D) at (A - | C);
    \tkzDrawPoint[color=red](A)%
    \tkzDrawPoint[color=red](B)%
    \tkzDrawPoint[color=red](C)%
    \tkzDrawPoint[color=red](D)%
    \tkzSegment(B/D)
    \tkzSymOrth(B,D)(A/,C/E)
    \tkzSegment[style=dashed,color=red](A/A',C/E)
\end{tikzpicture}
```

## macro n° 66 Orthogonal projection \tkzProjection

```
\time Trojection[\langle local options \rangle] (\langle A, B \rangle) (\langle M_1/M_1, ..., M_n/M_n \rangle)
```

Draw or define (star-form) the projection point M' of point M corresponding to the orthogonal projection onto the (AB) axis. Can be use to find a altitude in a triangle.

# **Example n° 127** Orthogonal projection



```
\begin{tikzpicture}[scale=1.5]
  \tkzInit[xmax=6,ymax=5]
  \tkzGrid[sub]
  \tkzX
  \tkzY
  \tkzClip
  \path[coordinate]
       (1,2) coordinate (A)%
       (5,4) coordinate (C)%
             coordinate (B) at (A \mid- C)%
             coordinate (D) at (A - | C);
  \tkzDrawPoint[color=red](A)%
  \tkzDrawPoint[color=red](B)%
  \tkzDrawPoint[color=red](C)%
  \tkzDrawPoint[color=red](D)%
  \tkzProjection(B,D)(A/,C/H)
  \tkzSegment(A/A',C/H,B/D)
  \t NA = (B/A'/A,B/H/C)
\end{tikzpicture}
```

# Example nº 128 Orthogonal projection in a triangle



## macro n° 67 Rotation en degré \tkztRotate

```
\texttt{\tkzRotate[\langle local options \rangle](\langle I/angle \rangle)(\langle M_1/M_1', ..., M_n/M_n' \rangle)}
```

Draw or define (star-form) the image M' of point M by the rotation of center I and by a angle specified in degrees.

# **Example n° 129** Rotation 1



# **Example n° 130** Rotation 2

You can see some examples more complicated to obtain the measure in degrees of angles.



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint[pos=below left](2,2){S}
  \tkzPoint[pos=below right](6,1){T}
  \tkzRotate[pos={above left}](S,60)(T/C)
  \tkzRotate(C,120)(T/D)
  \tkzSegment(S/T,S/C,C/T,C/D,D/T)
  \tkzCircle(C,T)
  \tkzRightAngle[size=0.3](S,T,D)
  \tkzMarkAngle[size=.5](C/T/D)
  \tkzMarkAngle[size=.5](T/D/C)
  \tkzMarkAngle[size=.5](T/D/C)
  \tkzMarkAngle[style=aii,size=.8](C/S/T)
  \tkzMarkAngle[style=aii,size=.8](C/T/S)
  \tkzMarkAngle[style=aii,size=.8](S/C/T)
  \end{tikzpicture}
```

# **Example n° 131** Rotation 3



```
\begin{tikzpicture}[scale=1]
  \tkzInit[ymin=-5,ymax=5]
 \tkzPoint[pos=above left](0,0){0}
 \tkzCircleR(0,4cm)
 \tkzPoint*(0,-4){Temp}
 \tkzRotate[pos=below left](0,-40)(Temp/A)
 \t X
 \tkzSegment[](O/A,O/B)
 \tkzSegment(0/F)
 \tkzInterLL[pos=below right,color=red,namecolor=blue](A,B)(0,F){E}
 \tkzSegment[symbol=/,colorsymbol=red](E/B,A/E)
 \tkzSegment[symbol=$\bullet$,colorsymbol=red](E/F,0/E)
 \tkzRightAngle(A/E/0)
 \tkzSegmentMark[label=2,symbol=//,colorsymbol=blue](0/A)
 \tkzCircleR*(A,A,F)
\end{tikzpicture}
```

## macro n° 68 Rotation en radian \tkzRotateR

```
\texttt{\tkzRotateR[\langle local\ options\rangle](\langle I/angle\ in\ rad\rangle)(\langle M_1/M_1',...,M_n/M_n'\rangle)}
```

Draw or define (star-form) the image M' of point M by the rotation of center I and by a angle specified in radians.

# Example nº 132 Rotation



```
\begin{tikzpicture}
  \tkzInit[xmax=8,ymin=-2,ymax=6]
  \tkzClip
  \tkzPoint[pos=below left](4,2){S}
  \tkzPoint[pos=below right](7,1){T}
  \tkzRotateR(S,pi/3)(T/C)
  \tkzRotateR(S,pi/6)(C/R)
  \tkzCircle(S,R)
\end{tikzpicture}
```

## macro n° 69 Homothethie \tkzHomo

```
\verb|\tkzHomo[|\langle local options|\rangle]| (\langle I, Ratio \rangle) (\langle M_1/M_1', ..., M_n/M_n' \rangle)
```

Homothety, dilation, central similarity are all interchangeable terms. Draw or define (star-form) the image M' of point M by the homothety of center I and a decimal number "ratio".

## **Example n° 133** Homothetie $-1 \le \text{ratio } \le 0$



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(4,5){I}
  \tkzPoint(7,6){M}
  \tkzPoint(6,8){N}
  \tkzHomo(I,-0.5)(M/,N/)
  \tkzDrawPoint[color=red](M')
  \tkzDrawPoint[color=red](N')
  \tkzLine(M/N,M'/N')
  \tkzSegment(M/M',N/N')
  \end{tikzpicture}
```

# **Example n° 134** Homothetie $0 \le \text{ ratio } \le 1$



```
\begin{tikzpicture}
  \tkzInit
  \tkzClip
  \tkzPoint(6,8){A}
  \tkzPoint(2,1){B}
  \tkzPoint(9,3){C}
  \tkzHomo[color=red](A,0.5)(B/,C/)
  \tkzPolygon(A,B,C)
  \tkzDrawVector(B/C,B'/C')
  \end{tikzpicture}
```

# **Example n° 135** Homothetie ratio = $\sqrt{2}$

You can use all the functions defined in pgfmath.



```
\begin{tikzpicture}
  \tkzInit
  \tkzPoint(4,5){I}
  \tkzPoint(7,6){M}
  \tkzPoint(6,8){N}
  \tkzHomo(I,{sqrt(2)})(M/,N/)
  \tkzDrawPoint[color=red](M')
  \tkzDrawPoint[color=red](N')
  \tkzLine(M/N,M'/N')
  \tkzSegment(I/M',I/N')
  \end{tikzpicture}
```

# X. Tools

#### macro n° 70 Get coordinates of a node (point) \tkzGetPointxy

#### $\text{tkzGetPointxy}(\langle A \rangle) \{\langle text \rangle\}$

Define if text=p, two macros  $\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protect\protec$ 

# Example nº 136 tkzGetPointxy



```
\begin{tikzpicture}
\tkzInit[xmax=6,ymax=6]
\tkzGrid[sub]
\tkzX\tkzY
\tkzPoint*(1,3){A}
\tkzPoint*(4,5){B}
\tkzGetPointxy(A){a}
\tkzGetPointxy(B){b}
\tkzPoint[color=red](\ax,\ay){C}
\tkzPoint[color=red](\bx,\by){D}
\end{tikzpicture}
```

#### macro n° 71 Get coordinates of a vector \tkzGetVectxy

# $\t X = \t X = (A, B) \{(text)\}$

#### **Example n° 137** tkzGetVectxy



```
\begin{tikzpicture}
\tkzInit[xmax=6,ymax=6]
\tkzGrid[sub]
\tkzX\tkzY
\tkzPoint(0,0){0}
\tkzPoint(1,3){A}
\tkzPoint(4,5){B}
\tkzGetVectxy(A,B){v}
\tkzPoint(\vx,\vy){V}
\draw[color=red](0)--(V);
\end{tikzpicture}
```

#### macro n° 72 Draw vector(s) \tkzDrawVector

draw the vector  $\overrightarrow{AB}$  or the vectors of a list.

## **Example n° 138** Drawing vectors



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,ymin=-1,xmax=5,ymax=5]
  \tkzClip
  \tkzGrid[sub]
  \tkzX\tkzY
  \tkzPoint(0,0){0}
  \tkzPoint(1,3){A}
  \tkzPoint(4,4){B}
  \tkzGetVectxy(A,B){v}
  \tkzPoint(\vx,\vy){V}
  \tkzDrawVector[color=red](0/V,A/B)
  \end{tikzpicture}
```

## **Example n° 139** Drawing vectors and rotate



```
\begin{tikzpicture}
  \tkzInit[xmax=6,ymax=6]
  \tkzGrid[sub]
  \tkzPoint[pos=below](1,2){S}
  \tkzPoint(5,3){T}
  \tkzRotate(S,60)(T/P)
  \tkzDrawVector(S/P,S/T)
\end{tikzpicture}
```

#### macro n° 73 Get a point with a vector Normalised \tkzVectorNormalised

 $\text{tkzVectorNormalised}(\langle A, B \rangle) \{\langle C \rangle\}$ 

We get a point C such as

#### Example n° 140 Vector Normalised



```
\begin{tikzpicture}[scale=1]
   \tkzInit[xmax=5,ymax=5]
   \tkzPoint(1,1){I}
   \tkzPoint(5,4){J}
   \tkzVectorNormalised(I,J){K}
   \tkzSegment(I/J)
   \tkzDrawPoint(K)
\end{tikzpicture}
```

#### macro n° 74 Collinear Vector \tkzVectorKLinear

 $\label{local_options} $$ \text{$\color{KLinear}[\langle local\ options\rangle](\langle A,B,C\rangle)} (\langle D\rangle) $$$ 

D is point such as the line (CD) is a parallel line to (AB) such as CD =  $k \times AB$ 

#### **Example n° 141** tkzVectorKLinear with k = 1

 $\overrightarrow{AB} = \overrightarrow{CD}$ 



```
\begin{tikzpicture} [>=latex]
  \tkzInit[xmin=-1,ymin=-1,xmax=5,ymax=5]
  \tkzClip
  \tkzGrid[sub]
  \tkzX \tkzY
  \tkzPoint(1,1){A}
  \tkzPoint(4,3){B}
  \tkzPoint(1,2){C}
  \draw[->] (A)--(B);
  \tkzVectorKLinear(A,B,C){D}
  \tkzDrawVector(C/D)
\end{tikzpicture}
```

## **Example n° 142** tkzVectorKLinear k = .75

$$\overrightarrow{UV} = \frac{3}{4}\overrightarrow{ST}$$



```
\begin{tikzpicture}
  \tkzInit[xmax=5,ymax=5]
  \tkzClip
  \tkzGrid[sub]
  \tkzPoint[pos=below](1,1){S}
  \tkzPoint(4,2){T}
  \tkzPoint(2,3){U}
  \tkzVectorKLinear[k=.75](S,T,U){V}
  \tkzDrawPoint(V)
  \end{tikzpicture}
```

# **Example n° 143** tkzVectorKLinear $k = \frac{\sqrt{3}}{2}$

$$\overrightarrow{UV} = \frac{\sqrt{3}}{2}\overrightarrow{ST}$$



```
\begin{tikzpicture}
  \tkzInit[xmin=-1,ymin=-1,xmax=5,ymax=5]
\tkzClip
  \tkzGrid[sub]
  \tkzPoint[pos=below](1,1){S}
  \tkzPoint[](4,2){T}
  \tkzPoint(2,2){U}
  \tkzVectorKLinear[k=sqrt(3)/2](S,T,U){V}
  \tkzSegment(S/T,U/V)
  \tkzDrawPoint(V)
  \end{tikzpicture}
```

# macro n° 75 Vector orthogonal \tkzVectorOrth

 $\time Th[(local options)]((A,B)){(C)}$ 

We get a point C such as  $\overrightarrow{AC}$  is orthogonal to  $\overrightarrow{AC}$ 

# **Example n° 144** tkzVectorOrth k = 0.5

 $\overrightarrow{AB}$  orthogonal to  $\overrightarrow{AD}$  with  $\overrightarrow{AD} = \overrightarrow{AB}$ 



```
\begin{tikzpicture}
  \tkzInit[xmax=7,ymax=7]
  \tkzGrid[sub]
  \tkzX\tkzY
  \tkzPoint[coord,pos={below right}](2,1){A}
  \tkzPoint[coord](6,2){B}
  \tkzPoint[](4,5){U}
  \tkzSegment(A/B)
  \tkzVectorOrth(A,B){D}
  \tkzSegment(A/D)
  \tkzRightAngle(B/A/D)
  \tkzVectorKLinear[k=0.5](A,B,U){V}
  \tkzDrawVector(U/V)
  \end{tikzpicture}
```

# Example nº 145 tkzVectorOrth

How to get the square root of a number with a ruler and a compass.



```
\begin{tikzpicture}
  \tkzInit
  \tkzGrid[sub]
  \tkzX\tkzY
  \tkzPoint[pos=below left](0,0){0}
  \tkzPoint[pos=above right](1,0){I}
  \tkzPoint[pos=above left,color=red](1,3){R}
  \tkzPoint[pos=above right](10,0){A}
  \tkzVectorOrth(I,A){H}
  \tkzSegment(I/H)
  \tkzClip
  \tkzCircle*(0,A)
  \end{tikzpicture}
```

## **Example n° 146** tkzVectorOrth k = -1



# $macro\ n^{\circ}\ 76\ Vector\ orthogonal\ and\ normalised\ \verb|\tkzVectorOrthNormalised||$

 $\t VectorOrthNormalised(\langle A, B \rangle) \{\langle C \rangle\}$ 

We get a point C such as  $\overrightarrow{AC}$  is orthogonal to  $\overrightarrow{AC}$ 

# **Example n° 147** Vector orthogonal and normalised k = 0.5



## macro n° 77 Get a length \tkzMathLength

 $\mathsf{Length}(\langle A, B \rangle)$ 

Find the measure of the length of segment AB with unit in pt. The result is given in  $\t$  AB =  $\t$  tkzmathLen pt.

# **Example n° 148** length of segment AB



```
\begin{tikzpicture} [scale=2]
   \tkzInit[xmax=6,ymax=6] \tkzClip
   \tkzPoint(1,1){A}
   \tkzPoint[pos=above right](4,4){B}
   \tkzPoint(4,1){C}
   \tkzSegment(A/B,A/C,B/C)
   \tkzMathLength(A,B)
   \draw (A) circle(\tkzmathLen pt);
\end{tikzpicture}
```

## macro n° 78 Duplicate a length \tkzDuplicateLength

 $\t \DuplicateLength(\langle A, B \rangle)(\langle C, D \rangle) \{\langle E \rangle\}$ 

Find a point E on the line (CD) such as CE = AB.

# **Example n° 149** Duplicate a segment



```
\begin{tikzpicture}
  \tkzInit\tkzGrid[sub]
  \tkzPoint[pos=left](1,1){A} \tkzPoint(5,2){B}
  \tkzPoint[pos=left](7,6){C}
  \tkzDuplicateLength[color=red](A,B)(A,C){D}
  \tkzSegment(A/B,A/C)
  \tkzCompass[color=red,lw=1pt](A,B)
  \tkzCompass[color=red,lw=1pt](A,D)
  \end{tikzpicture}
```

## macro n° 79 Find the slope of a line (AB) \tkzFindSlope

 $\text{tkzFindSlope}(\langle A, B \rangle)$ 

Find the slope of the line (AB). The result is a number given by tkzSlope

## **Example n° 150** Duplicate a segment



```
\begin{tikzpicture}
\tkzInit
 \path[coordinate] (2,1) coordinate(A)%
                   (6,4) coordinate(B)
                   (0,0) coordinate(0);
\tkzSegment(A/B)
 \tkzDrawPoint[color=red](A)
 \tkzDrawPoint[color=red](B)
 \tkzFindSlope(A,B)
 \pgfmathparse{atan(\tkzSlope)}%
 \edef\tkzAlphaInD{\pgfmathresult}%
 \tkzPoint[color=red](1,\tkzSlope){P}
\tkzCircleR(0,\tkzSlope cm)
\tkzSegment(A/B,O/P)
\pgfmathparse{cos(\tkzAlphaInD)}\global\let\px\pgfmathresult
\pgfmathparse{\sin(\tkzAlphaInD)}\global\let\py\pgfmathresult%
 \tkzPoint[size=1.5pt,color=blue](5*\px,5*\py){E}
\end{tikzpicture}
```