

Systèmes de Gestion des Bases de Données Relationnelles

Lamine DIOP

Associate Professor at EPITA Engineering School EPITA Research Laboratory, France lamine.diop@epita.fr

Web page: https://sites.google.com/ugb.edu.sn/laminediop

Acquis d'apprentissage visé

- Comprendre les différentes étapes de la modélisation d'une base de données relationnelles
- Produire un modèle conceptuel et un modèle logique à partir d'un cahier de charge
- Apprécier l'exactitude d'un modèle relationnel
- Mettre en place une base de données cohérente normalisée

Plan & Organisation Partie 1

- Algébre relationnelle
- Contraintes d'intégrité
- Dépendances fonctionnelles (DF)
- Couvertures minimales

- CM
- TD: Analyse critique de modèles relationnels
- TP: Elaboration du dictionnaire des données et calcul de DFs

Partie 2

- Les formes normales
- Dépendances multivariées
- Modélisation conceptuelle

- CM
- TD: Modélisation et normalisation
- TP: Conception d'une base de données relationnelles normalisée *from scratch*.

Mode d'évaluation

- TP & TD : 2 parties à rendre et notées chacune par groupe de 2 à 3
- Projet
- Examen (28/03/2025)
- Formule de calcul de la note finale : (TD&TP + 2*Projet + 2*Examen)/5

Plan & Organisation Partie 1

- Algébre relationnelle
- Contraintes d'intégrité
- Dépendances fonctionnelles (DF)
- Couvertures minimales

- CM
- TD: Analyse critique de modèles relationnels
- TP: Elaboration du dictionnaire des données et calcul de DFs

Partie 2

- Les formes normales
- Dépendances multivariées
- Modélisation conceptuelle

- CM
- TD: Modélisation et normalisation
- TP: Conception d'une base de données relationnelles normalisée *from scratch*.

Bases de données (BD)

Définition: Ensemble structuré et organisé permettant le stockage de grandes quantités d'informations afin d'en faciliter l'exploitation (ajout, mise à jour, recherche de données)

Le terme database serait apparu au milieu des années 1960 dans le domaine des systèmes d'information militaires.

Bases de données (BD)

- Exemples de structuration
 - Bases de données hiérarchiques
 - Bases de données réseaux
 - Bases de données relationnelles
 - Bases de données orientées objet
 - Bases de données multidimensionnelles

Système de Gestion de Base de Données (SGBD)

Ensemble de programmes assurant la gestion et l'accès à une base de données

- Système de gestion de fichiers
- Système d'exécution de requêtes
- Interface utilisateurs (ou applications)

Gestion de plusieurs bases de données destinées à des logiciels ou des thématiques différentes

SGBD: architecture

SGBD: fonctionnalités (1)

• Indépendance logique

Modification du schéma conceptuel sans remettre en cause les schémas externes ou les programmes d'application

Indépendance physique

Modification du schéma physique sans remettre en cause le schéma conceptuel

Cohérence des données

Modification de la base de données sans remettre en cause les règles de cohérence

SGBD: fonctionnalités (2)

Partage des données

Rendre transparent le partage des données entre différents utilisateurs

Souplesse d'accès aux données

Fournir un langage adressant les concepts du modèle

Performances

Accès efficace (rapidité) à des volumes de données important (capacité de stockage)

Contrôle

Offrir des outils d'administration pour garantir la confidentialité de certaines données (utilisateur, groupe d'utilisateurs)

SGBD: architecture

- Traitement des commandes
 - Systèmes de caches
 - Ré-écriture de requêtes
 - Application d'index
- Gestionnaire de stockage
 - Limiter les accès disques (buffers)
 - Optimiser les accès disques

SGBD : langages

- Langage de définition de données (LDD)
 Permet la définition du schéma interne et externe (vues)
- Langage de contrôle de données (LCD)
 Permet l'administration des utilisateurs et des groupes
- Langage d'interrogation de données (LID)
 Permet d'interroger la base de données
- Langage de manipulation de données (LMD)
 Permet la mise à jour et l'ajout de données

SGBD-R

SGBD-R ou SGBD relationnelles

- Bases de données organisées sous forme de tableaux
- Langage SQL (Structured Query Language)
- Exemples: PostgreSQL, MySQL, Oracle Database, Microsoft Access, IBM DB2, Sybase, dBase, SQLite...

SGBD-R: Modèle relationnel

- Modèle abstrait créé par Codd en 1970 (IBM)
- Ensembles de tables (relations) avec des lignes (enregistrements/nuplets/tuples) et des colonnes (attributs)
- Exemple de table: Client (NumClient, Nom, ville)

Carnet de clients

NumClient	Nom	Ville
001	Albert	Dakar
002	Moussa	New York
003	Olivier	Paris

Modélisation d'un Système d'Information

- Modèle logique associé aux SGBD relationnelles (ex : Oracle, SQL Server, Acces, DBASE, etc.)
- Fondé sur la théorie mathématique des ensembles et la notion de base qui lui est rattachée : la relation
- représentation de l'information selon trois composantes :
 - des structures de données
 - des contraintes qui permettent de spécifier les règles qui doivent respecter les données de la base de données
 - des opérations qui pour manipuler les données en interrogation et en mise en jour
- Modéle relationnel assure l'indépendance logique et physique

Rappels mathématiques

- Un ensemble est une collection d'éléments
- ❖On note par
 - $x \in S$: x appartient à l'ensemble S
 - Ø : l'ensemble vide
 - |S| cardinalité de l'ensemble S
 - $\mathcal{P}(S)$ ou 2^S : l'ensemble des parties de l'ensemble S
- ❖Opérations sur les ensembles: ∩,∪, −,×
- **♦** Comparateurs ensemblistes: =, \neq , \subset , \nsubseteq

Rappels mathématiques

Partition

Soit S un ensemble non vide et I un intervalle, une partition de S est une famille d'ensembles $\{Si \mid i \in I\}$ telle que

- 1. $\bigcup_{i \in I} S_i = S$
- 2. $S_{i \cap S_j} = \emptyset$ pour tout $i \neq j$
- 3. $S_i \neq \emptyset$ pour tout $i \in I$

Exemple

$$S = \{a, b, c, d\}$$

$$S_1 = \{a, c\} \text{ et } S_2 = \{b, d\} \text{ forment une partition de } S$$

$$S_1 = \{a, b\}$$
 et $S_2 = \{b, c, d\}$ ne forment pas une partition de S

Relation binaire

• Définition : Une relation binaire R sur un ensemble S est un sousensemble de $S \times S$.

Donc une relation est un ensemble.

On note R(x, y) pour indiquer que $(x, y) \in R$.

On appelle (x, y) couple ou doublet ou 2-uplet.

Relation n-aire

Définition (relation n-aire)

Une relation n-aire R sur S_n est définie de manière analogue comme un sous-ensemble de S_n on note $R(x_1,...,x_n)$ pour indiquer que $(x_1,...,x_n) \in R$ on appelle $(x_1,...,x_n)$ n-uplet ou tuple.

Relation n-aire

Soit R la relation définie sur les ensembles A_1,A_2,\ldots,An , on a R \subset $A_1\times A_2\times \ldots \times An$

Représentation de R en extension (TABLE)

Table/relation

NumProd	Désignation	PrixUnitaire	
0001	Table	120	
0002	Chaise	50	
0003	Armoire	90	

Tuple

Définition (tuple)

Soit R un ensemble d'attributs, un tuple t sur R est une application

 $t: R \to \bigcup Dom(Ai) \text{ où } t(Ai) \in Dom(Ai)$

Une relation r sur R est un ensemble de tuple. R est dit schéma de la relation r.

Schéma de la relation

Définition (Schéma de la relation)

• Description de la relation en intention

$$R(A_1, A_2, \ldots, A_n)$$

R: Nom de la relation

 A_1, A_2, \ldots, A_n : Nom des **attributs** de la relation

 $(a_{1i}, a_{2i}, \dots, a_{nk})$: n-uplet

n : Degré ou arité de la relation (Relation n-aires)

Exemple de schéma relationnel

CLIENT (codClient, nomClient, prenomClient, ville)

PRODUIT (codPproduit, designation, prixUnitaire, tauxTVA, stock)

COMMANDE (<u>numCommande</u>, dateCommande, commandeReglee)

LIGNES_COMMANDE (numCommande, codeProduit, quantite)

FOURNISSEUR (codFournisseur, nomFourn, prenomFourn, ville, telephone)

FOURNISSEUR_PRODUIT (codFournisseur, codProduit, quantite)

Représentation de R en extension (TABLE)

Algébre relationnelle

- Langage procedural : indique comment construire une nouvelle relation a partir d'une ou plusieurs relations existantes
- Langage abstrait, avec des operations qui travaillent sur une (ou plusieurs) relation(s) pour definir une nouvelle relation sans changer la (ou les) relation(s) originale(s)
- Le resultat de toute opération est une relation (proprieté de fermeture)

- Operateurs relationnels spécifiques
 - selection
 - projection
 - jointure
 - division

Soient R(a_1 , a_2 , ..., a_N) et S(a'_1 , a'_2 , ..., a'_N) deux relations

• selection : $\sigma_{predicate}(R)$

La selection travaille sur R et definit une relation qui ne contient que les tuples de R qui satisfont a la condition (ou prédicat) specifiée.

Exemple:

 $\sigma_{Ville \ _Dakar}(CLIENT)$

CLIENT

NumClient	Nom	Ville
001	Albert	Dakar
002	Moussa	New York
003	Olivier	Paris

• projection: $\pi_{a_1,...,a_N}(R)$

projection travaille sur R et definit une relation restreinte à un sousensemble des attributs de R, en extrayant les valeurs des attributs specifiés et en supprimant les doublons.

Exemple:

 $\pi_{Nom,Ville}(CLIENT)$

NumClient	Nom	Ville	
001	Albert	Dakar	
002	Moussa	New York	
003	Olivier	Paris	

• jointure thêta $(\theta - join)$: $R \bowtie_P S$

La thêta-jointure définit une relation qui contient les tuples qui satisfont le predicat P du produit cartesien de R et S. Le predicat P est de la forme $R. a_i \theta S. a'_i$ ou θ est l'un des operateurs de comparaison $(<, \le, >, \ge, =, \ne)$. Si le predicat P est l'égalité (=), on parle d'equijointure

Exemple:

CLIENT ⋈_P COMMANDE

CLIENT \bowtie_{P} COMMANDE

NumClient	Nom	Ville	NumProd	Quantite
001	Albert	Dakar	0001	3
002	Moussa	New York	0002	4
003	Olivier	Paris	0003	5

P=(CLIENT. NumClient = COMMANDE. NumClient)

• jointure naturelle : R * S

La jointure naturelle est une equijointure des relations R et S sur tous les attributs communs en retirant les occurrences multiples d'attributs.

Contraintes d'intégrité : Unicité de la Clé

- Une relation est un ensemble de tuples, il ne peut y avoir 2 tuples identiques dans une relation
- La clé est le plus petit sous ensemble d'attributs dont les valeurs permettent de distinguer les n-uplets les uns des autres ;

Définition:

Soit $X \subseteq R$ un ensemble d'attributs, notons t[X] la restriction du tuple t à X.

X est clé si et seulement si :

$$\forall (ti, t_j) \in r^2, \forall A \in R \ ti[X] = t_j[X] \Rightarrow t_i[A] = t_j[A]$$

Contraintes d'intégrité: Unicité de la Clé

❖ Toute relation possède au moins une clé. S'il existe plusieurs clés possibles, on en choisit une qui est alors *clé primaire*, les autres sont appelées *clés candidates*

Exemple : Dans la relation **Personne**(<u>num_cni</u>, nom, lieu_nais, d_naiss) num_cni constitue la clé primaire

Contraintes d'intégrité: Unicité de la Clé

Contraintes d'entité

- Lorsque la valeur d'un attribut est inconnue, on utilise une valeur conventionnelle appelée valeur nulle
- impose que toute relation possède une clé primaire et que tout attribut participant à cette clé primaire soit non nul.

Contraintes de domaine

 Obligation pour tout attribut de prendre des valeurs dans le domaine qu'on lui a définit. Elle set traduit sous forme d'assertion logique.

Exemple:

PrixUni > 0 ET PrixUni < 1000

Contraintes d'intégrité : Contraintes référentielle • Caractérisée par la présence de la clé d'une relation dans une autre

- relation
- Définit la notion de clé étrangère (attribut qui est clé primaire dans une autre relation)

CLIENTS (codeClient, nomClient, prenomClient, ville) **PRODUITS** (codeProduit, designation, prixUnitaire, tauxTVA, stock) **COMMANDES** (numCommande, dateCommande, codeClient) LIGNES COMMANDES (numCommande,codeProduit, quantite) FOURNISSEURS (codeFournisseur, nomFourn, prenomFourn, ville, telephone) **FOURNISSEURS PRODUIT** (codFournisseur, codeProduit, quantite)

La relation Lignes_commande fait référence aux relations Commandes et **Produits** respectivement par les clés **num_commande** et cod_produit. Elle est référençante tandis que les deux autres sont dites référencées

ACHAT				
CLIENT	PRODUIT	PRIX		
André	Sucre	2.2		
Marc	Sucre	2.2		
Marc	Sel	1.4		
Anne	Savon	1.4		
Anne	Sel	1.4		

ACHAT				
CLIENT	PRODUIT	PRIX		
André	Sucre	2.2		
Marc	Sucre	2.2		
Marc	Sel	1.4		
Anne	Savon	1.4		
Anne	Sel	1.4		

∀ ACHAT, la valeur de PRIX dépend de PRODUIT

- But : simplifier et éviter les redondances inutiles
- Définition:

Soit $X \subseteq R$ un ensemble d'attributs, $A \in R$. Soit r l'extension de R. A est en dépendance fonctionnelle avec X ou X détermine A si :

$$\forall (ti, tj) \in r^2, ti[X] = tj[X] \Rightarrow ti[A] = tj[A]$$

On note $r \models X \rightarrow A$

- La connaissance de la valeur de X dans R entraîne la connaissance d'au plus une valeur de A.
- X est appelé source et A cible

ACHAT				
CLIENT	PRODUIT	PRIX		
André	Sucre	2.2		
Marc	Sucre	2.2		
Marc	Sel	1.4		
Anne	Savon	1.4		
Anne	Sel	1.4		

PRDUIT *détermine* (fonctionnellement) PRIX ;

PRIX *dépend* (fonctionnellement) de PRDUIT ;

PRODUIT est le *déterminant* et PRIX est le *déterminé* de la dépendance fontionnelle

EXO: Dites si ces dépendances sont vraies ou fausses?

Α	В	С	D	E
a1	b1	c1	d3	e2
a1	b1	c3	d4	e3
a2	b2	c4	d2	e1
a3	b1	c1	d3	e2
a2	b2	c4	d2	e1

$$\begin{array}{cccc} A & \longrightarrow & B \\ A & \longrightarrow & C \\ BC & \longrightarrow & D \\ AC & \longrightarrow & D \\ B & \longrightarrow & D \\ D & \longrightarrow & E \\ AC & \longrightarrow & E \end{array}$$

Déterminant et déterminé peuvent être multicomposants

EXO: Dites si ces dépendances sont vraies ou fausses?

Α	В	С	D	Ε
a1	b1	c1	d3	e2
a1	b1	c3	d4	e3
a2	b2	c4	d2	e1
a3	b1	c1	d3	e2
a2	b2	c4	d2	e1

Déterminant et déterminé peuvent être multicomposants

On note dep(r) l'ensemble des dépendances fonctionnelles de r. $dep(r) = \{X \to A \mid X \cup \{A\} \subseteq R, r \models X \to A\}$

Attention : une dépendance fonctionnelle est valable sur toutes les valeurs possibles de n-uplets et pas seulement sur celles présentes à un moment donné.

Exemple

COM(NCLI, NOM, ADRESSE, NCOM, DATE, NPRO, QTE, PRIX-U)

NCOM ---- NCLI toute commande est émise par un client

 $NCLI \longrightarrow NOM$ tout client a un nom

NCLI → ADRESSE tout client a une adresse

NCOM ---- DATE toute commande est passée à une date

NCOM, NPRO \rightarrow QTE \quad dans toute commande, il y a une quantit\(e \) par produit

Définition (Dépendance minimale)

Une DF $X \to A$ est minimale si A ne dépend d'aucun sous ensemble propre de X, i.e si $Y \to A$ n'est pas valide dans R pour tout $Y \subset X$.

 $X \to A$ est minimale $\Leftrightarrow \forall Y \subset X, Y \to A \notin dep(r)$.

Si X est un agrégat d'attributs, par exemple X=(X1,X2,X3) et si $X\to Z$ et $X1\to Z$, la dépendance fonctionnelle $X\to Z$ n'est pas minimale.

Définition (Dépendance triviale)

La DF $X \to A$ est triviale si $A \in X$.

Définition (Dépendance transitive)

Soit X un ensemble d'attributs,

Y un ensemble d'attributs avec $Y \nsubseteq X$, et $Y \nrightarrow X$

A un attribut, $A \notin Y$

La dépendance fonctionnelle

 $X \rightarrow A$ est directe

S'il n'existe pas Y tel que

$$X \rightarrow Y$$

$$Y \rightarrow A$$

Si Y existe alors la dépendance est transitive

Le graphe de dépendances fonctionnelles (GDF)

- Moyen de visualiser les DFs
- Les sommets correspondent aux attributs
- Les arcs correspondent aux DFEs (DFs élémentaires ou minimales)

Graphe de dépendances fonctionnelles (GDF) ou Graphe attributs et des DF (ADF)

Le graphe de dépendances fonctionnelles (GDF)

COM(NCLI, NOM, ADRESSE, NCOM, DATE, NPRO, QTE, PRIX-U)

NCOM ---- NCLI toute commande est émise par un client

 $NCLI \longrightarrow NOM$ tout client a un nom

NCLI → ADRESSE tout client a une adresse

NCOM ---- DATE toute commande est passée à une date

NCOM, NPRO \(\to\) QTE \(dans\) toute commande, il y a une quantité par produit

Le graphe de dépendances fonctionnelles (GDF)

attribut externe : non déterminant

attribut interne: déterminant

DF externe : dont le déterminé est un attribut externe

DF interne : dont le déterminé est un attribut interne

DF minimale dont le déterminant est minimal

DF élémentaire dont le déterminé ne comporte qu'un seul attribut

DF de base pas dérivable, doit être donnée

DF dérivée est calculable à partir des DF de base à l'aide des règles

d'inférence

COLIS(NCOL, NCLI, DATE, NOM, ADRESSE)	
$NCOL \longrightarrow NCLI$	df1
$NCOL \longrightarrow DATE$	df2
$NCLI \longrightarrow NOM$	df3
NCLI, DATE \longrightarrow ADRESSE	df4
	DE do baco

On a aussi, par transitivité:

Propriétés des DF (Axiomes d'Armstrong)

- Réflexivité : Si $Y \subseteq X$ alors $X \to Y$
- Augmentation : Si $X \rightarrow Y$ alors $X, Z \rightarrow Y$
- Transitivité : Si $X \to Y$ et $Y \to Z$ alors $X \to Z$
- Union : Si $X \to Y$ et $X \to Z$ alors $X \to Y$, Z
- Pseudo transitivité : Si $X \to Y$ et A, $Y \to Z$ alors $X, A \to Z$
- **Décomposition** : Si $X \to Y$ et $Z \subseteq Y$ alors $X \to Z$

Fermeture transitive d'un ensemble de DF : $(dep(r))^+$

 $(dep(r))^+ = dep(r) \cup \{df \text{ \'el\'ementaires obtenues en appliquant les axiomes}\}$

 $\forall f \in (dep(r))^+, dep(r) \models f \text{ (les dépendance de } r \text{ satisfont } f)$

Exemple:

$$dep(r) = \{A \rightarrow B, B \rightarrow C, B \rightarrow D, A \rightarrow E\}$$

$$(dep(r))^{+} = dep(r) \cup \{A \rightarrow C, A \rightarrow D\}$$

Deux ensembles de DF, F1 et F2, sont équivalents si leurs fermetures sont égales : $F1 \equiv F2 \Leftrightarrow F1^+ = F2^+$

Exemple:

$$\{A \rightarrow B, B \rightarrow C, B \rightarrow D\} \equiv \{A \rightarrow B, A \rightarrow D, B \rightarrow CD\}$$
$$\{A \rightarrow B, B \rightarrow C\} \equiv \{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$$

Retour sur la notion de clé

Une clé (ou superclé) de $R(\Delta)$ d'ensemble d'attributs Δ et de dépendances dep(r) est un groupe d'attributs (non nécessairement minimum) X tel que : $X \to \Delta \in dep(r)^+$.

Une clé **minimale** (ou clé **candidate**) X est une clé sur $< R(\Delta), dep(r) >$ telle que:

$$X \to \Delta \in dep(r)^+ \text{ et } \nexists Y \subset X \text{ tel que } Y \to \Delta \in dep(r)^+$$

- > Une relation peut porter plusieurs clés
- ightharpoonup Une clé primaire X de $< R(\Delta), dep(r) >$ est une clé candidate privilégiée pour la relation R.

Couverture minimale

• Objectif: simplifier, supprimer les redondances dans les DF

On appelle couverture minimale de F, notée **min(F)**, un ensemble G obtenu en supprimant les dépendances fonctionnelles redondantes, c'est à dire celles qui peuvent être déduites à partir de min(F) tel que $F^+ = G^+$ et qui vérifie les propriétés suivantes :

> Aucune partie gauche ne contient d'élément redondant :

$$\forall X \rightarrow A \in G \ et \ Z \subset X, (G - \{X \rightarrow A\} \cup \{Z \rightarrow A\})^+ \neq G^+$$

> Il n'y a pas d'élément superflue :

$$\forall X \to A \in G, (G - \{X \to A\})^+ \neq G^+$$
$$(min(F))^+ = F^+$$

Algorithme de détermination d'une couverture minimale

Etape 1 (Décomposition):

$$F' = \{X \to A_i \mid (A_i \in Y)(X \to Y \in F)\}$$

Etape 2 (Irréductibilité):

Pour tout $f_j \in F'$ de la forme $A_1, A_2, \dots, A_m \to B_j$, si $F' \models \{A_1, \dots, A_{i-1}, A_{i+1}, \dots, A_m\} \to B_j$ est vrai alors supprimer A_i dans f_j , i allant de 1 à m.

Etape 3 (Non redondance):

Pour tout $f_j \in F'$ tester si $F' - \{f_j\} \models f_j$ est vrai, alors $F' := F' - \{f_j\}$

Etape 4 (Regroupement):

regrouper les DFs ayant la même partie gauche

Propriétés des couvertures

- Un ensemble F de DFs est dit non redondant s'il n'existe pas de couverture G de F telle que G ⊂ F
- Un ensemble F de DFs est dit minimal s'il n'existe pas de couverture G de F tel que |G| ≤ |F|
- F est dit optimal s'il n'existe pas de couverture G de F avec moins d'attributs que dans F
- Une couverture minimale est non redondante
- Ur La couverture minimale n'est pas forcément unique. Parmi celles-ci, certaines sont optimum; malheureusement, leur calcul est un problème difficile dans le cas général (NP-Complet)

Circuit de DF

Le graphe ADF d'une relation peut présenter un ou plusieurs circuits

INSCRIPTION(ETUDIANT, MATIERE, PROF)
PROF → MATIERE
ETUDIANT, MATIERE → PROF

pas d'attributs externes!

fréquent mais problèmes garantis!

Fermeture et couvertures: résumé

Fermeture d'un ensemble F de DF

toute l'information possible

minimale

ensemble de toutes les DF qu'il est possible de dériver à partir de F à l'aide des règles d'Armstrong; inclut F; il n'existe qu'une seule fermeture;

Couverture d'un ensemble F de DF

tout ensemble à partir duquel il est possible de dériver F à l'aide des règles d'Armstrong;

Couverture minimale d'un ensemble F de DF

couverture de F telle qu'aucun de ses sous-ensembles strict n'est une couverture de F; il peut exister plusieurs couvertures minimales;

Contraintes d'inclusion et clés étrangères

OFFRE			
CHAINE	PRODUIT	PRIX	
SUPER-U	Chocolat	6	
MAMMOUTH	Sucre	2,2	
MAMMOUTH	Chocolat	5	
MATCH	Sel	1,4	
MAMMOUTH	Sel	1,4	

IMPLANTATION			
CHAINE	VILLE		
SUPER-U	LILLE		
SUPER-U	ANNECY		
MAMMOUTH	LYON		
MAMMOUTH	LILLE		
MATCH	PARIS		
MATCH	LILLE		
MATCH	TOURNAL		
CORA	CHARLEROI		

 $OFFRE[CHAINE] \subseteq IMPLANTATION[CHAINE]$

Contraintes d'inclusion et clés étrangères

Si les attributs cibles constituent un identifiant de leur relation : = contrainte référentielle

	CLIENT				
NCLI	NOM	ADRESSE	LOCALITE	(CAT)	COMPTE
B062	GOFFIN	72, r. de la Gare	Namur	B2	-3200
B112	HANSENNE	23, r. Dumont	Poitiers	C1	1250
B332	MONTI	112, r. Neuve	Genève	B2	0
B512	GILLET	14, r. de l'Eté	Toulouse	B1	-8700
C003	AVRON	8, r. de la Cure	Toulouse	B1	-1700
C123	MERCIER	25, r. Lemaître	Namur	C1	-2300
C400	FERARD	65, r. du Tertre	Poitiers	B2	350
D063	MERCIER	201, bvd du Nord	Toulouse		-2250
F010	TOUSSAINT	5, r. Godefroid	Poitiers	C1	0
F011	PONCELET	17, Clos des Erables	Toulouse	B2	0
F400	JACOB	78, ch. du Moulin	Bruxelles	C2	0
K111	VANBIST	180, r. Florimont	Lille	B1	720
K729	NEUMAN	40, r. Bransart	Toulouse		0
L422	FRANCK	60, r. de Wépion	Namur	C1	0
S127	VANDERKA	3, av. des Roses	Namur	C1	-4580
S712	GUILLAUME	14a, ch. des Roses	Paris	B1	0

COMMANDE				
NCOM	NCOM NCLI DATECO			
30178	K111	22/12/2008		
30179	C400	22/12/2008		
30182	S127	23/12/2008		
30184	C400	23/12/2008		
30185	F011	2/01/2009		
30186	C400	2/01/2009		
30188	B512	2/01/2009		

 $\mathsf{COMMANDE[NCLI]} \subseteq \mathsf{CLIENT[NCLI]}$

Contraintes d'inclusion et clés étrangères

Si les attributs cibles constituent un identifiant de leur relation : = contrainte référentielle

	CLIENT					
NCLI	NOM	ADRESSE	LOCALITE	(CAT)	COMPTE	
B062	GOFFIN	72, r. de la Gare	Namur	B2	-3200	
B112	HANSENNE	23, r. Dumont	Poitiers	C1	1250	
B332	MONTI	112, r. Neuve	Genève	B2	0	
B512	GILLET	14, r. de l'Eté	Toulouse	B1	-8700	
C003	AVRON	8, r. de la Cure	Toulouse	B1	-1700	
C123	MERCIER	25, r. Lemaître	Namur	C1	-2300	
C400	FERARD	65, r. du Tertre	Poitiers	B2	350	
D063	MERCIER	201, bvd du Nord	Toulouse		-2250	
F010	TOUSSAINT	5, r. Godefroid	Poitiers	C1	0	
F011	PONCELET	17, Clos des Erables	Toulouse	B2	0	
F400	JACOB	78, ch. du Moulin	Bruxelles	C2	0	
K111	VANBIST	180, r. Florimont	Lille	B1	720	
K729	NEUMAN	40, r. Bransart	Toulouse		0	
L422	FRANCK	60, r. de Wépion	Namur	C1	0	
S127	VANDERKA	3, av. des Roses	Namur	C1	-4580	
S712	GUILLAUME	14a, ch. des Roses	Paris	B1	0	

COMMANDE			
NCOM NCLI DATECOM			
30178	K111	22/12/2008	
30179	C400	22/12/2008	
30182	S127	23/12/2008	
30184	C400	23/12/2008	
30185	F011	2/01/2009	
30186	C400	2/01/2009	
30188	B512	2/01/2009	

DETAIL		
NCOM	NPRO	QCOM
30178	CS464	25
30179	CS262	60
30179	PA60	20
30182	PA60	30
30184	CS464	120
30184	PA45	20
30185	CS464	260
30185	PA60	15
30185	PS222	600
30186	PA45	3
30188	CS464	180
30188	PA45	22
30188	PA60	70
30188	PH222	92

 $\begin{array}{c} \mathsf{COMMANDE[NCLI]} \subseteq \mathsf{CLIENT[NCLI]} \\ \mathsf{DETAIL[NCOM]} \subseteq \mathsf{COMMANDE[NCOM]} \\ \mathsf{COMMANDE[NCOM]} \subseteq \mathsf{DETAIL[NCOM]} \end{array}$

COMMANDE[NCOM] = DETAIL[NCOM]

Contraintes d'inclusion et clés étrangères: Propriétés

1. Réflexivité: R[A] \subseteq R[A]

· (/ ') '= ' (/ ')

2. Décomposabilité :

Si on a S[A,B] \subseteq R[A,B], on a aussi S[A] \subseteq R[A] et S[B] \subseteq R[B]

3. Transitivité:

Si on a $T[A] \subseteq S[A]$ et $S[A] \subseteq R[A]$, on a aussi $T[A] \subseteq R[A]$

4. Propagation des DF:

Si on a S[A,B] \subseteq R[A,B] et R: A \longrightarrow B, on a aussi S: A \longrightarrow B.

5. Propagation dans la projection:

Si on a S[A,B] \subseteq R[A,B] et S'=S[A,B,C], on a aussi S'[A,B] \subseteq R[A,B]

Contraintes d'inclusion et clés étrangères: Propriétés

 $\begin{aligned} &\mathsf{COMPTE}[\mathsf{NCLI}] \subseteq \mathsf{CLIENT}[\mathsf{NCLI}] \\ &\mathsf{COMPTE}[\mathsf{NFOURN}] \subseteq \mathsf{FOURNISSEUR}[\mathsf{NFOURN}] \\ &\mathsf{ACHAT}[\mathsf{NCLI},\mathsf{NFOURN}] \subseteq \mathsf{COMPTE}[\mathsf{NCLI},\mathsf{NFOURN}] \end{aligned}$

₩?

 $\begin{aligned} &\mathsf{COMPTE}[\mathsf{NCLI}] \subseteq \mathsf{CLIENT}[\mathsf{NCLI}] \\ &\mathsf{COMPTE}[\mathsf{NFOURN}] \subseteq \mathsf{FOURNISSEUR}[\mathsf{NFOURN}] \\ &\mathsf{ACHAT}[\mathsf{NCLI}] \subseteq \mathsf{CLIENT}[\mathsf{NCLI}] \\ &\mathsf{ACHAT}[\mathsf{NFOURN}] \subseteq \mathsf{FOURNISSEUR}[\mathsf{NFOURN}] \end{aligned}$

Correct !!
Mais la dépendance
ACHAT[NCLI,NFOURN] □COMPTE[NCLI,NFOURN] est perdue

Calcul des identifiants d'une relation

Comment déterminer les identifiants d'une relation ?

Intuitivement, par observation du domaine d'application :

- NCLI est l'identifiant de la relation CLIENT
- NCOM est l'identifiant de la relation COMMANDE
- NPRO est l'identifiant de la relation PRODUIT

Facile! Mais quel est l'identifiant de la relation suivante?

ORDRE (FOURN, NPRO, NCOM, ADR, REGION, QTE) FOURN \longrightarrow ADR, NPRO ADR \longrightarrow REGION NCOM, NPRO \longrightarrow QTE

Calcul des identifiants d'une relation

Comment déterminer les identifiants d'une relation ?

Les identifiants d'une relation R ne se choisissent pas, ils se calculent à partir des dépendances fonctionnelles de R

Calcul des identifiants d'une relation

Deux observations

- tout identifiant d'une relation détermine chaque attribut de cette relation
- tout groupe d'attributs qui détermine chacun des attributs de la relation, est un identifiant de la relation.

```
CLIENT (NCLI, NOM, ADRESSE) \Rightarrow NCLI \longrightarrow NCLI, NOM, ADRESSE
```

 $NCLI \longrightarrow NCLI$, NOM, ADRESSE \Rightarrow CLIENT (NCLI, NOM, ADRESSE)

Calcul des identifiants d'une relation Deux propriétés fondamentales

- 1. L'ensemble des attributs d'une relation est un identifiant de cette relation. {A,B,C} est un identifiant de R(A,B,C).
- Soit J un identifiant multi-attributs de R.
 Soit K un sous-ensemble de J
 Soit C un attribut de J extérieur à K.
 Si K → C, alors J {C} est aussi un identifiant de R.

Exemple

Si $R(\underline{A},\underline{B},\underline{C},D)$ et $B \longrightarrow C$, alors $R(\underline{A},\underline{B},C,D)$.

Calcul des identifiants d'une relation: Identifiant unique

Procédure élémentaire (Proc1)

- 1. Un premier identifiant I est constitué de l'ensemble des attributs de la relation.
- 2. On recherche dans I un attribut A externe; on retire A de I.
- 3. On répète l'étape 2 jusqu'à ce qu'il ne soit plus possible de retirer d'attribut à I.
- 4. Lest un identifiant de la relation.

Calcul des identifiants d'une relation: Identifiant unique

Application

```
\begin{split} & \mathsf{COM}(\mathsf{NCLI}, \mathsf{NOM}, \mathsf{ADRESSE}, \mathsf{NCOM}, \mathsf{DATE}, \mathsf{NPRO}, \mathsf{QTE}, \mathsf{PRIX-U}) \\ & \mathsf{NCOM} \longrightarrow \mathsf{NCLI} \\ & \mathsf{NCLI} \longrightarrow \mathsf{NOM} \\ & \mathsf{NCLI} \longrightarrow \mathsf{ADRESSE} \\ & \mathsf{NCOM} \longrightarrow \mathsf{DATE} \\ & \mathsf{NCOM}, \mathsf{NPRO} \longrightarrow \mathsf{QTE} \\ & \mathsf{NPRO} \longrightarrow \mathsf{PRIX-U} \end{split}
```


Calcul des identifiants d'une relation: Identifiant unique

Application

id(COM) = {NCLI, NCOM, NPRO}

NCOM

NPRO

 $id(COM) = \{NCOM, NPRO\}$

COM(NCLI, NOM, ADRESSE, NCOM, NPRO, DATE, QTE, PRIX-U)

Est-ce que ça marche si la relation possède plus d'un identifiant ?

```
COURS(MATIERE, ETUDIANT, PROF, CLASSE, TEL) ETUDIANT \longrightarrow CLASSE PROF \longrightarrow TEL PROF \longrightarrow MATIERE ETUDIANT, MATIERE \longrightarrow PROF
```


Est-ce que ça marche si la relation possède plus d'identifiant ?

id(COURS) = {ETUDIANT, PROF, MATIERE}

pas minimal!

... et ensuite?

La règle 2 n'est pas applicable aux attributs d'un circuit!

2. On recherche dans I un attribut A externe; on retire A de I.

La procédure Proc1 ne trouve qu'un unique identifiant non minimal

On reprend la propriété 2, toujours valable

2. Soit J un identifiant multi-attributs de R.

Soit K un sous-ensemble de J

Soit A un attribut de J extérieur à K.

Si $K \longrightarrow A$, alors J - $\{A\}$ est aussi un identifiant de R.

Procédure générale (Proc2)

- 1. Un identifiant est obtenu par application de la procédure Proc1
- 2. Si cet identifiant n'est le siège d'aucune DF, la procédure est terminée
- 3. Sinon, le graphe ADF résiduel comporte un ou plusieurs circuits. Pour chaque attribut A appartenant à un circuit, on applique l'étape 4
- 4. On retire A du graphe ADF ainsi que toutes les DF dans lesquelles il apparaît. On applique au graphe résultant la procédure Proc2

Le problème de la décomposition

ACHAT(CLIENT, PRODUIT, PRIX)
PRODUIT → PRIX

ACHAT									
CLIENT	PRODUIT	PRIX							
André	Sucre	2,2							
Marc	Sucre	2,2							
Marc	Sel	1,4							
Anne	Savon	1,4							
Anne	Sel	1,4							

Observation : combien de fois chaque fait élémentaire est-il répété ?

André a acheté du sucre :	1 fois	le sucre coûte 2,2 : 2 fois
Marc a acheté du sucre :	1 fois	le sel coûte 1,4 : 2 fois
Marc a acheté du sel :	1 fois	le savon coûte 1,4 : 1 fois
Anne a acheté du savon :	1 fois	le pain coûte 2,2 : 0 fois
Anne a acheté du sel :	1 fois	redondance et lacunes!

Le problème de la décomposition

Origine du problème

La relation est une structure trop complexe qui représente deux types de faits indépendants

On résout le problème en décomposant ACHAT de manière à isoler les deux types de faits

ACHAT'							
CLIENT	PRODUIT						
André	Sucre						
Marc	Sucre						
Marc	Sel						
Anne	Savon						
Anne	Sel						

TARIF							
PRIX							
2,2							
1,4							
1,4							
֡							

la décomposition est légale!

 $\begin{array}{c} \mathsf{ACHAT}\;(\mathsf{CLIENT},\,\mathsf{PRODUIT},\,\mathsf{PRIX})\\ \mathsf{PRODUIT}\,\longrightarrow\,\mathsf{PRIX} \end{array}$

 \Rightarrow

TARIF (PRODUIT, PRIX)
ACHAT' (CLIENT, PRODUIT)
ACHAT'[PRODUIT] \subseteq TARIF[PRODUIT]

Le problème de la décomposition

Définition:

Soit R(U) un shéma relationnel d'ensemble de dépendances fonctionnelles F. L'ensemble des schémas $R_1(U_1), \ldots, R_n(U_n)$, avec $U = U_1 \cup \ldots \cup U_n$ d'ensemble de dépendances fonctionnelles respectifs F_1, \ldots, F_n constitue une décomposition de F. le contenu de chaque relation $R_i(U_i)$ peut être caractérisé à partir de R en posant $R_i(U_i) = R[U_i]$.

L'ensemble de dépendances fonctionnelles $\mathbf{F_i}$ est obtenu en projetant l'ensemble \mathbf{F} sur l'ensemble d'attributs $\mathbf{U_i}$ comme suit:

$$\mathbf{F_i}[\mathbf{U_i}] = \{ \mathbf{X} \to \mathbf{Y} \in \mathbf{F}^+ : \ (\mathbf{X} \subseteq \mathbf{U_i})(\mathbf{Y} \subseteq \mathbf{U_i}) \}$$

But de la décomposition

X = Clé étrangère

dans T₁

Casser R en plus petites relations afin d'éviter :

Table T₁

- les redondances
- les anomalies de mise à jour

Dépendance élémentaire qui cause de la redondance

Décomposition d'une relation: Théorème de décomposition

[Delobel, 1973]

Une propriété très importante des DF

 $R(A,B,C,D): A \longrightarrow B \Rightarrow R = R[A,B] * R[A,C,D]$

= théorème de décomposition

Les projections d'une relation selon une DF préservent les données

(puisqu'on peut recalculer les données par une jointure)

Décomposition d'une relation: Théorème de décomposition

On peut donc, sous certaines conditions, remplacer une relation par ses projections

Décomposition d'une relation: Théorème de décomposition

En fait, quelle relation entre R1[A] et R2[A] ?

 $R1(\underline{A},B)$ R2(A,C,D) $R1[A] \subseteq R2[A]$ $R1(\underline{A},B)$ R2(A,C,D) R2(A,C,D) R1[A] = R2[A] $R1(\underline{A},B)$ $R1(\underline{A},B)$ $R1(\underline{A},B)$ $R1(\underline{A},B)$ $R1(\underline{A},B)$ R2(A,C,D) $R2[A] \subseteq R1[A]$

Décomposition d'une relation: exemple

 $\begin{array}{lll} & \text{ACHAT (CLIENT, PRODUIT, PRIX)} \\ & \text{PRODUIT} \longrightarrow \text{PRIX} \\ & \Rightarrow & \begin{array}{lll} & \text{TARIF (} \underline{\text{PRODUIT, PRIX)}} \\ & \text{ACHAT (} \underline{\text{CLIENT, PRODUIT)}} \\ & \text{ACHAT (} \underline{\text{CLI, PRO, MAG, PRIX)}} \\ & \text{PRO, MAG} \longrightarrow \text{PRIX} \\ & \Rightarrow & \begin{array}{lll} & \text{TARIF (} \underline{\text{PRO, MAG, PRIX)}} \\ & \text{ACHAT (} \underline{\text{CLI, PRO, MAG)}} \\ & \text{ACHAT (} \underline{\text{CLI, PRO, MAG)}} \\ & \text{ACHAT [} \underline{\text{PRO, MAG]}} \subseteq \text{TARIF [} \underline{\text{PRO, MAG]}} \\ & \text{ACHAT [} \underline{\text{PRO, MAG, PRIX)}} \\ & \text{ACHAT [} \underline{\text{PRO, MAG, PRIX)}} \\ & \Rightarrow & \begin{array}{lll} & \text{PASSE (} \underline{\text{NCOM, CLI)}} \\ & \text{COM (} \underline{\text{NCOM, PRO, QTE)}} \\ & \text{PASSE [} \underline{\text{NCOM]}} = \text{COM[NCOM]} \\ \end{array}$

Décomposition d'une relation: remarque

La décomposition ...

ACHAT (CLI, PRO, PRIX)
$$PRO \longrightarrow PRIX$$

$$R1 (CLI, PRIX)$$

$$R2 (CLI, PRO)$$

$$R1[CLI] = R2[CLI]$$

... ne suit pas la règle mais est parfaitement valide.

Cependant, elle n'est pas réversible. En toute généralité :

Décomposition d'une relation: Exemples

Propriété d'une bonne décomposition

Décomposition Sans perte d'informations

Soit $R_1(U_1), \ldots, R_n(U_n)$ une décomposition d'un schéma R.

✓ Soit r une relation de schéma R. La décomposition est sans perte pour r ssi $r = r_1[U_1] \bowtie ... \bowtie rn[Un]$

✓ Soit F un ensemble de DF sur R. La décomposition est sans perte par rapport à F ssi pour toute relation r de schéma R qui satisfait F, la décomposition est sans perte pour r, c'est-à-dire

$$r = r_1[U_1] \bowtie ... \bowtie rn[Un]$$

• Décomposition Sans perte de dépendances

Une décomposition $(R_1, ..., Rm)$ de R préserve les DFs si la fermeture transitive des DFs de R est la même que la fermeture transitive de l'union des DFs de $R_1, ..., Rm$. $F^+ = (F[Ui])^+$

Propriété d'une bonne décomposition

• Exemple :

Soit la relation R = (A, B, C, D) et une décomposition $\{R_1, R_2\}$ de R où $R_1 = (A, B, C)$ et $R_2 = (A, D)$.

Dans cette décomposition, la dépendance fonctionnelle A, B \rightarrow D ne peut être testée pour les relations $r_1(R_1)$ et $r_2(R_2)$ sans faire la jointure naturelle $r_1 \bowtie r_2$.

Propriété d'une bonne décomposition

Théorme : Soit R un schéma de relation, F un ensemble de dépendances fonctionnelles, R1 et R2 une décomposition de R. La décomposition est dite lossless-join si au moins une des dépendances suivantes est dans la fermeture transitive F^+ de F.

$$R1 \cap R2 \rightarrow R1$$

 $R1 \cap R2 \rightarrow R2$

En effet, il faut s'assurer que les attributs impliqués dans la jointure naturelle $R_1 \bowtie R_2$ sont des clés candidates pour au moins une des relations.

Elaboration du dictionnaire des données

• Liste exhaustive des données nécessaires à la modélisation du SI.

Exemple: Gestion de commandes
• Un client peut passer une ou plusieurs commandes. Il peut ne pas

- Un client peut passer une ou plusieurs commandes. Il peut ne pas passer de commande
- Une commande peut concerner un ou plusieurs produits.
- Une commande est lancée par un client.

N°Client				
Nom				
Adresse				
Code	Désignation	PU	Quantité	Montant
			Montant Tota	1.

Traitement des données

• lister les données élémentaires (atomiques) exemple : adresse, code postal, . . .

N°	Données	Libellé complé
1.	Numéro	numéro de la commande
2.	Data	data de la commande
3.	Numéro	numéro du client
4.	Nom	nom du client
5.	Prénom	prénom du client
6.	Adresse	adresse du client
7.	Code	code produit
8.	Prix	prix du produit
9.	Designation	libellé du produit
10.	Quantité	quantité commandée du produit
11.	Montant	montant de la commande

Traitement des données

 Supprimer les synonymes (données de nom différent avec la même signification) et les polysèmes (données de même nom avec une signification différente).

N°	Données	Libellé complé
1.	NumCmd	numéro de la commande
2.	Data	data de la commande
3.	NumClient	numéro du client
4.	Nom	nom du client
5.	Prénom	prénom du client
6.	Adresse	adresse du client
7.	Code	code produit
8.	Prix	prix du produit
9.	Designation	libellé du produit
10.	Quantité	quantité commandée du produit
11.	Montant	montant de la commande

Elaboration du dictionnaire des donneés

- Elimination des données non pertinentes
- Mise à part des paramètres (ex : taux euro/franc)
- Elimination des données calculées déterminables à tout moment (ex : age, montant) (exception : calculs lourds)

N°	Données	Libellé complé
1.	NumCmd	numéro de la commande
2.	Data	data de la commande
3.	NumClient	numéro du client
4.	Nom	nom du client
5.	Prénom	prénom du client
6.	Adresse	adresse du client
7.	Code	code produit
8.	Prix	prix du produit
9.	Designation	libellé du produit
10.	Quantité	quantité commandée du produit
11.	Montant	montant de la commande

Dictionnaire des donneés

- Numéro
- Signification
- Domaine de définition
- Type : normales, calculées, paramètre
- Précisions sur la nature et la longueur des données

N°	Données	Libellé complé
1.	NumCmd	numéro de la commande
2.	Data	data de la commande
3.	NumClient	numéro du client
4.	Nom	nom du client
5.	Prénom	prénom du client
6.	Adresse	adresse du client
7.	Code	code produit
8.	Prix	prix du produit
9.	Designation	libellé du produit
10.	Quantité	quantité commandée du produit
11.	Montant	montant de la commande

Matrice de dépendances fonctionnelles

- admet une ligne et une colonne par propriétés du dictionnaire
- "1" placé à l'intersection de la ligne i et de la colonne j signifie (Pj → Pi).
- Remarque : une source identifie de manière certaine un objet.

	1	2	3	4	5	6	7	8	9	10
	•		•		•	•	•	•	•	•
1. NumCmd	1									
2. Data	1	1								
3. NumClient	1		1							
4. Nom	1		1	1						
5. Prénom	1		1		1					
6. Adresse	1		1			1				
7. Code							1			
8. Prix							1	1		
9. Designation							1		1	
10. Quantité										1

Matrice de dépendances fonctionnelles

- les propriétés identifiantes : des colonnes qui comportent au moins deux "1"
- les **propriétés** qui ne sont **destinations d'aucune DF** (ex. Quantité)
- Parmi ces propriétés il convient alors de distinguer :
 - les propriétés paramètres telles que le taux de TVA
 - les **autres propriétés** pour lesquelles on doit rechercher les dépendances fonctionnelles ayant des sources multi-attributs qui permettent de les atteindre.
 - source de ces dépendances : sous-ensemble des rubriques identifiantes repérées à l'étape précédente
 - codeProduit, NoCommande → Quantité
- pour indiquer une dépendance entre 2 sources sans nécessairement de donnée cible, on ajoute la dépendances $Source1 + Source2 \rightarrow \emptyset$;

Matrice de dépendances fonctionnelles

	<u>1.</u>	2.	<u>3.</u>	4.	5.	6.	<u>7</u> .	8.	9.	10.	1+7
1. NumCmd	1										
2. Data	1	1									
3. NumClient	1		1								
4. Nom	1		1	1							
5. Prénom	1		1		1						
6. Adresse	1		1			1					
7. Code							1				
8. Prix							1	1			
9. Designation							1		1		
10. Quantité										1	1