

Κλειδιά (keys)

Ο Τιμόθεος ο αρχιτέκτων έχει σχεδιάσει ένα νέο παιχνίδι διαφυγής. Σε αυτό το παιχνίδι υπάρχουν n δωμάτια αριθμημένα από το 0 μέχρι το n-1. Αρχικά, κάθε δωμάτιο περιέχει μόνο ένα κλειδί. Κάθε κλειδί έχει έναν τύπο, ο οποίος είναι ένας ακέραιος μεταξύ 0 και n-1, συμπεριλαμβανομένων. Ο τύπος του κλειδιού στο δωμάτιο i ($0 \le i \le n-1$) είναι r[i]. Να σημειωθεί ότι πολλά δωμάτια μπορούν να περιέχουν κλειδιά του ιδίου τύπου, δηλαδή οι τιμές των r[i] δεν είναι υποχρεωτικά μοναδικές.

Υπάρχουν επίσης m αμφίδρομοι σύνδεσμοι μέσα στο παιχνίδι, αριθμημένοι από το 0 μέχρι το m-1. Ο σύνδεσμος j ($0\leq j\leq m-1$) συνδέει δύο διαφορετικά δωμάτια u[j] και v[j]. Ένα ζευγάρι δωματίων μπορεί να συνδέεται με πολλούς συνδέσμους.

Το παιχνίδι παίζεται από έναν παίκτη που μαζεύει τα κλειδιά και μετακινείται μεταξύ των δωματίων διασχίζοντας τους συνδέσμους. Λέμε ότι ο παίκτης **διασχίζει** τον σύνδεσμο j όταν χρησιμοποιεί αυτόν τον σύνδεσμο για να μετακινηθεί από το δωμάτιο u[j] στο δωμάτιο v[j], ή αντίστροφα. Ο παίκτης μπορεί να διασχίσει τον σύνδεσμο j μόνο αν έχει προηγουμένως μαζέψει ένα κλειδί με τύπο c[j].

Σε οποιοδήποτε σημείο του παιχνιδιού ο παίκτης βρίσκεται σε κάποιο δωμάτιο x και μπορεί να κάνει δύο ενέργειες:

- να μαζέψει το κλειδί από το δωμάτιο x, του οποίου ο τύπος είναι r[x] (εκτός αν το έχει ήδη μαζέψει),
- να διασχίσει έναν σύνδεσμο j, όπου είτε u[j]=x ή v[j]=x, αν ο παίκτης έχει ήδη μαζέψει το κλειδί με τύπο c[j]. Προσέξτε ότι ο παίκτης **ποτέ** δεν χάνει τα κλειδιά που έχει μαζέψει.

Ο παίκτης **ξεκινά** το παιχνίδι από κάποιο δωμάτιο s χωρίς να έχει κανένα κλειδί στην κατοχή του. Το δωμάτιο t είναι **προσβάσιμο** από το δωμάτιο s, αν ο παίκτης που ξεκινά το παιχνίδι από το δωμάτιο t μπορεί να κάνει μια σειρά από ενέργειες όπως αυτές που περιγράφονται πιο πάνω και να φτάσει στο δωμάτιο t.

Για κάθε δωμάτιο i ($0 \le i \le n-1$), έστω p[i] το πλήθος των δωματίων που είναι προσβάσιμα από το δωμάτιο i. Ο Τιμόθεος θέλει να γνωρίζει το σύνολο δεικτών i που επιτυγχάνουν την ελάχιστη δυνατή τιμή p[i] για $0 \le i \le n-1$.

Λεπτομέρειες υλοποίησης

Πρέπει να υλοποιήσετε την παρακάτω συνάρτηση:

```
int[] find_reachable(int[] r, int[] u, int[] v, int[] c)
```

- r: ένας πίνακας μήκους n. Για κάθε i ($0 \le i \le n-1$), το κλειδί στο δωμάτιο i είναι τύπου r[i].
- u,v: δύο πίνακες μήκους m. Για κάθε j ($0 \le j \le m-1$), ο σύνδεσμος j συνδέει τα δωμάτια u[j] και v[j].
- c: ένας πίνακας μήκους m. Για κάθε j ($0 \le j \le m-1$), ο τύπος κλειδιού που χρειάζεται για να διασχίσουμε το σύνδεσμο j είναι c[j].
- Αυτή η συνάρτηση πρέπει να επιστρέφει έναν πίνακα s μήκους n. Για κάθε $0 \le i \le n-1$, η τιμή του s[i] θα είναι 1 αν για κάθε j τέτοιο ώστε $0 \le j \le n-1$ ισχύει $p[i] \le p[j]$. Αλλιώς, η τιμή του s[i] θα είναι 0.

Παραδείγματα

Παράδειγμα 1

Έστω η παρακάτω κλήση:

```
find_reachable([0, 1, 1, 2],
        [0, 0, 1, 1, 3], [1, 2, 2, 3, 1], [0, 0, 1, 0, 2])
```

Αν ο παίκτης ξεκινήσει το παιχνίδι στο δωμάτιο 0, μπορεί να κάνει την ακόλουθη σειρά ενεργειών:

Δωμάτιο όπου βρίσκεται	Ενέργεια
0	Μάζεψε το κλειδί τύπου 0
0	Διάσχισε τον σύνδεσμο 0 για το δωμάτιο 1
1	Μάζεψε το κλειδί τύπου 1
1	Διάσχισε τον σύνδεσμο 2 για το δωμάτιο 2
2	Διάσχισε τον σύνδεσμο 2 για το δωμάτιο 1
1	Διάσχισε τον σύνδεσμο 3 για το δωμάτιο 3

Επομένως, το δωμάτιο 3 είναι προσβάσιμο από το δωμάτιο 0. Ομοίως, μπορούμε να δημιουργήσουμε ακολουθίες που δείχνουν ότι όλα τα δωμάτια είναι προσβάσιμα από το δωμάτιο 0, το οποίο σημαίνει ότι p[0]=4. Ο παρακάτω πίνακας δείχνει τα προσβάσιμα δωμάτια για όλα τα δωμάτια εκκίνησης:

Δωμάτιο εκκίνησης i	Προσβάσιμα δωμάτια	p[i]
0	[0,1,2,3]	4
1	[1,2]	2
2	[1,2]	2
3	[1, 2, 3]	3

Η ελάχιστη τιμή του p[i] για όλα τα δωμάτια είναι $\,2$, και αυτό επιτυγχάνεται για $\,i=1$ ή $\,i=2$. Επομένως, η συνάρτηση πρέπει να επιστρέψει $\,[0,1,1,0].$

Παράδειγμα 2

Ο παρακάτω πίνακας δείχνει τα προσβάσιμα δωμάτια:

Δωμάτιο εκκίνησης i	Προσβάσιμα δωμάτια	p[i]
0	[0,1,2,3,4,5,6]	7
1	[1,2]	2
2	[1,2]	2
3	[3,4,5,6]	4
4	[4,6]	2
5	[3, 4, 5, 6]	4
6	[4, 6]	2

Η ελάχιστη τιμή του p[i] για όλα τα δωμάτια είναι $\,2\,$ και αυτό επιτυγχάνεται για $\,i\in\{1,2,4,6\}.$ Επομένως, η συνάρτηση πρέπει να επιστρέψει $\,[0,1,1,0,1].$

Παράδειγμα 3

```
find_reachable([0, 0, 0], [0], [1], [0])
```

Ο παρακάτω πίνακας δείχνει τα προσβάσιμα δωμάτια:

Δωμάτιο εκκίνησης i	Προσβάσιμα δωμάτια	p[i]
0	[0,1]	2
1	[0,1]	2
2	[2]	1

Η ελάχιστη τιμή του p[i] για όλα τα δωμάτια είναι 1 και αυτό επιτυγχάνεται για i=2. Επομένως, η συνάρτηση πρέπει να επιστρέψει [0,0,1].

Περιορισμοί

- $2 \le n \le 300000$
- 1 < m < 300000
- $0 \leq r[i] \leq n-1$ για κάθε $0 \leq i \leq n-1$
- ullet $0 \leq u[j], v[j] \leq n-1$ και u[j]
 eq v[j] για κάθε $0 \leq j \leq m-1$
- $0 \leq c[j] \leq n-1$ για κάθε $0 \leq j \leq m-1$

Υποπροβλήματα

```
1. (9 βαθμοί) c[j]=0 για κάθε 0\leq j\leq m-1 και n,m\leq 200
```

- 2. (11 βαθμοί) $n, m \le 200$
- 3. (17 βαθμοί) $n, m \leq 2000$
- 4. (30 βαθμοί) $c[j] \leq 29$ (for all $0 \leq j \leq m-1$) και $r[i] \leq 29$ (για κάθε $0 \leq i \leq n-1$)
- 5. (33 βαθμοί) Κανένας επιπλέον περιορισμός.

Υποδειγματικός βαθμολογητής

Ο υποδειγματικός βαθμολογητής διαβάζει την εισοδο ως εξής:

- γραμμή 1: n m
- γραμμή 2: r[0] r[1] ... r[n-1]
- γραμμή 3+j ($0 \leq j \leq m-1$): u[j] v[j] c[j]

Ο υποδειγματικός βαθμολογητής τυπώνει την τιμή που επιστρέφει η συνάρτηση find_reachable στην ακόλουθη μορφή:

• γραμμή 1: a[0] a[1] \dots a[n-1]