SNV examination

Nadzeya Boyeva

2024-11-01

Imports

Import VCF files: gen_vcf1 - VCF retrieved from genomic data, sample 1; gen_vcf2 - VCF retrieved from genomic data, sample 2; gen_merged_vcf - genomic data, sample 1 and 2 merged on alignment step; nas_vcf1 - nascent RNA data, sample 1; nas_vcf2 - nascent RNA data, sample 2; nas_vcf3 - nascent RNA data, sample 3; nas_vcf_merged - nascent RNA data, sample 1, 2 and 3 merged after mapping step.

```
fd <- '/home/nadzeya/praktika/'</pre>
gen_vcf1_path = file.path(fd, "gen1_snps_f.vcf.gz")
gen_vcf2_path = file.path(fd, "gen2_snps_f.vcf.gz")
gen_merged_vcf_path <- file.path(fd, "gen_merged_snps_f.vcf.gz")</pre>
nas_vcf1_path <- file.path(fd, "nas1_snps_f.vcf.gz")</pre>
nas_vcf2_path <- file.path(fd, "nas2_snps_f.vcf.gz")</pre>
nas_vcf3_path <- file.path(fd, "nas3_2_snps_f.vcf.gz")</pre>
nas_merged_vcf_path <- file.path(fd, "nas_merged_snps_f.vcf.gz")</pre>
filepaths <- c(gen_vcf1_path,
                gen_vcf2_path,
                gen_merged_vcf_path,
                nas vcf1 path,
                nas_vcf2_path,
                nas_vcf3_path,
                nas_merged_vcf_path)
labels <- c('Gen 1',
             'Gen 2',
             'Gen Merged',
             'Nas 1',
             'Nas 2',
             'Nas 3',
             'Nas Merged')
```

Comparison of SNV quality metrics across files

Get the dataframe of QC metrics available and their descriptions.

```
gen1 <- readVcf(gen_vcf1_path, "hg38")

## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames</pre>
```

```
## AC
                                                                                              Allele coun
## AF
                                                                                                        Al
## AN
                                                                                                         Z
## BaseQRankSum
## DP
## ExcessHet
## FS
                                                                                                      Phre
                                       Inbreeding coefficient as estimated from the genotype likelihoods
## InbreedingCoeff
## MLEAC
                      Maximum likelihood expectation (MLE) for the allele counts (not necessarily the s
                   Maximum likelihood expectation (MLE) for the allele frequency (not necessarily the s
## MLEAF
## MQ
## MQRankSum
                                                                                                Z-score F
```

Z-sco

Sym

Create information dataframes with QC metrics for all VCF files and plot these metrics densities.

QD

SOR

ReadPosRankSum

```
full_info_table <- create_full_info_table(filepaths)</pre>
```

```
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
```

Allele count in genotypes, for each ALT allele, in the same order as listed

plot_density(full_info_table, "AF", labels, descriptions)

Allele Frequency, for each ALT allele, in the same order as listed

plot_density(full_info_table, "MLEAC", labels, descriptions)

Maximum likelihood expectation (MLE) for the allele counts (not necessarily the sa

plot_density(full_info_table, "MLEAF", labels, descriptions)

Maximum likelihood expectation (MLE) for the allele frequency (not necessarily the

plot_density(full_info_table, 'DP', labels, descriptions, x_log10=TRUE)

plot_density(full_info_table, 'MQ', labels, descriptions, y_log10=TRUE)

plot_density(full_info_table, 'QD', labels, descriptions)

Variant Confidence/Quality by Depth

plot_density(full_info_table, 'SOR', labels, descriptions)

Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

Analysis of intersections

```
gen1_uf <- load_vcf(gen_vcf1_path, hardfilter=FALSE)
gen2_uf <- load_vcf(gen_vcf2_path, hardfilter=FALSE)
gen_merged_uf <- load_vcf(gen_merged_vcf_path, hardfilter=FALSE)
nas1_uf <- load_vcf(nas_vcf1_path, hardfilter=FALSE)
nas2_uf <- load_vcf(nas_vcf2_path, hardfilter=FALSE)
nas3_uf <- load_vcf(nas_vcf3_path, hardfilter=FALSE)
nas_merged_uf <- load_vcf(nas_merged_vcf_path, hardfilter=FALSE)

gen1 <- load_vcf(gen_vcf1_path)
gen2 <- load_vcf(gen_vcf2_path)
gen_merged <- load_vcf(gen_merged_vcf_path, stats=TRUE)</pre>
```

```
## [1] "Filtered by FS: 0"
## [1] "Filtered by SOR: 55"
## [1] "Filtered by QUAL: 0"
## [1] "Filtered by MQ: 16514"
## [1] "Filtered by ReadPosRankSum: 0"
## [1] "Filtered by MQRankSum: 0"
nas1 <- load_vcf(nas_vcf1_path, stats=TRUE)</pre>
## [1] "Filtered by FS: 0"
## [1] "Filtered by SOR: 3808"
## [1] "Filtered by QUAL: 0"
## [1] "Filtered by MQ: 114154"
## [1] "Filtered by ReadPosRankSum: 4"
## [1] "Filtered by MQRankSum: 0"
nas2 <- load_vcf(nas_vcf2_path, stats=TRUE)</pre>
## [1] "Filtered by FS: 0"
## [1] "Filtered by SOR: 3246"
## [1] "Filtered by QUAL: 0"
## [1] "Filtered by MQ: 163330"
## [1] "Filtered by ReadPosRankSum: 3"
## [1] "Filtered by MQRankSum: 2"
nas3 <- load_vcf(nas_vcf3_path, stats=TRUE)</pre>
## [1] "Filtered by FS: 0"
## [1] "Filtered by SOR: 3260"
## [1] "Filtered by QUAL: 0"
## [1] "Filtered by MQ: 105722"
## [1] "Filtered by ReadPosRankSum: 3"
## [1] "Filtered by MQRankSum: 0"
nas_merged <- load_vcf(nas_merged_vcf_path, stats=TRUE)</pre>
## [1] "Filtered by FS: 0"
## [1] "Filtered by SOR: 6291"
## [1] "Filtered by QUAL: 0"
## [1] "Filtered by MQ: 207597"
## [1] "Filtered by ReadPosRankSum: 34"
## [1] "Filtered by MQRankSum: 21"
SNVs from Genomic Data
```

SNV from genomic data (filtered)

- Sample 1, unfiltered Sample 2, unfiltered
- Sample 1, filtered Sample 2, filtered

SNVs from genomic data (unfiltered)

Merged samples

SNVs from genomic data (filtered)

SNVs from RNA-Seq Data

SNV from RNA-Seq data (filtered)

- Sample 1 Sample 3

SNV from RNA-Seq data (unfiltered)

SNVs from Genomic and RNA-Seq data

Out of 73 thousand SNVs detected in merged genomic data and 627 thousands of SNVs detected in merged nascent RNA data only 12 thousands SNVs are common:

SNV from genomic and RNA-Seq data

- Genomic (merged samples)RNA–Seq (merged samples)
- Genomic (common across samples) RNA–Seq (common across samples)

In case of unfiltered data, this intersection was only 95 SNVs:

SNV from genomic and RNA-Seq data (unfiltered)

- Genomic (merged samples)
- RNA-Seq (merged samples)
- Genomic (common across samples)
- RNA-Seq (common across samples)

Therefore, SNVs which are common in all nascent RNA VCF files will be used further.

Comparison of unique and intersecting SNVs

Define subsets of SNVs which are unique for all the files (e.g. SNVs which are present in gen_vcf1, but absent in gen_vcf2, gen_merged, nas_vcf1, nas_vcf2, nas_vcf3, nas_merged) and visualise stats.

```
# Extract INFO tables and SNV positions (i.e. SNV identifiers)
info_tables <- lapply(filepaths, extract_info_and_positions)</pre>
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
## Warning in .bcfHeaderAsSimpleList(header): duplicate keys in header will be
## forced to unique rownames
# Identify unique and common SNV sets based on positions
snv_set_positions <- identify_snv_sets_positions(lapply(info_tables, function(x) x$positions),</pre>
                                                  labels)
param_name <- "AC"</pre>
snv set with metric <- extract metric from info tables(info tables, param name, snv set positions)
plot_ac <- plot_snv_density(snv_set_with_metric, param_name, descriptions_df)</pre>
print(plot ac)
## Warning: Using 'size' aesthetic for lines was deprecated in ggplot2 3.4.0.
## i Please use 'linewidth' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```

Allele count in genotypes, for each ALT allele, in the same order as listed


```
param_name <- "QD"
snv_set_with_metric <- extract_metric_from_info_tables(info_tables, param_name, snv_set_positions)
plot_qd <- plot_snv_density(snv_set_with_metric, param_name, descriptions_df)
print(plot_qd)</pre>
```

Variant Confidence/Quality by Depth

param_name <- "MQ"
snv_set_with_metric <- extract_metric_from_info_tables(info_tables, param_name, snv_set_positions)
plot_mq <- plot_snv_density(snv_set_with_metric, param_name, descriptions_df, x_log10 = FALSE, y_log10 = print(plot_mq)</pre>


```
param_name <- "SOR"
snv_set_with_metric <- extract_metric_from_info_tables(info_tables, param_name, snv_set_positions)
plot_sor <- plot_snv_density(snv_set_with_metric, param_name, descriptions_df, x_log10 = FALSE, y_log10
print(plot_sor)</pre>
```


