Quality/Latency-Aware Real-Time Scheduling of Distributed Streaming IoT Applications

Kamyar Mirzazad Barijough, Zhuoran Zhao, Andreas Gerstlauer

System-Level Architecture and Modeling (SLAM) Lab Department of Electrical and Computer Engineering The University of Texas at Austin

https://slam.ece.utexas.edu

Background

Networked and distributed embedded systems

- Internet of Things (IoT) and edge computing
- Networked cyber-physical systems (CPS)
- Distributed embedded computing

Real-time guarantees

- Interact with physical world
- Hard latency requirements

Open networks

- Dynamically changing traffic sources & patterns
- Non-deterministic and potentially unbounded latency

Key challenge

➤ How to provide real-time guarantees over unpredictable networks?

Motivation

- Embedded applications are often of streaming nature
 - Best expressed as a data flow graph
- Latency guarantees provided via timeouts
 - Tradeoff between latency and losses (quality)
 - Per-actor timeouts
- > Timeout assignment for distributed real-time data flow
 - Partition latency budget across nodes
 - Application/network-dependent tradeoff

Latency Budget Assignment

Schedule with timeouts & uniform latency distribution

Latency Budget Assignment

Schedule with optimized latency budget distribution

Related Work

Real-time transfer protocol (RTP) [Schulzrinne'03]

- Designed for end-to-end data transfer
- Only pair-wise/end-to-end timeout assignment

Distributed real-time computing frameworks

- Real-time extension(s) of RPC frameworks [RT-Corba]
- Stream processing frameworks [Typhoon, Ares, Storm]
- Requires QoS guarantees or reliable delivery from network

PTIDES [Zhao'07]

- Discrete-event execution for distributed systems
- > Requires accurate time synchronization and bounded network delay

Reactive and Adaptive Data Flow Model (RADF) [Francis'17]

- Dataflow with extensions for modeling network effects
- No timeout assignment/implementation

Overview

- Derive a schedule for the given data flow graph using
 - Worst-case execution times (WCET)
 - Mapping information
 - Latency constraints
 - Network specification

Outline

- ✓ Introduction
 - ✓ Motivation, background
 - ✓ Related work
- Formalizing distributed data flow
 - Timed extension of RADF
- Scheduling distributed data flow
 - Quality model and optimization
- Experimental Results
- Summary & Future Work

Reactive and Adaptive Data Flow (RADF)

- Model data losses in network channels as "empty" tokens
 - Maintain deterministic execution in presence of losses
- Channels could be lossless or lossy
 - Traditional channels are "lossless"
 - "Lossy" channels can make a token "empty"
- Actors need to handle network losses
 - Can consume empty token(s), but produce only non-empty tokens
 - Multiple firing rules based on input token patterns

Timed Extension of RADF (T-RADF)

- Empty tokens need to be injected by the runtime
 - Decide based only on local time
 - Relative timeouts between firings
- > T-RADF extends RADF with rates on input and outputs
 - Set (average) timeouts based on firing rates
 - Firing rates derived from external rates + repetition vector

Schedule Computation

Assumptions

- Homogeneous T-RADF
 - Any graph can be made homogeneous albeit exponentially larger
- One actor per host
 - Statically schedule actors mapped to the same host into a super-actor
 - Might lead to deadlock, CSDF can relax this (future work)

Conservative analysis

- Fixed static schedule with specified periods
- Can adjust schedule dynamically to optimize latency/quality
- Derive relative start time offsets/phase shifts

Schedule Computation

- Latency l between input-output pair
 - Depends on actor execution times e_i and channel delays d_i

$$l = \sum_{i=0}^{m-1} e_i + \sum_{j=1}^{m-1} d_j \le l'$$

- Latency constraint l' requires bounding e_i and d_j
 - Worst-case execution time bounds: $e_i \le e'_i$
 - Goal: find bounds d'_j for d_j
- \triangleright Find d'_i to satisfy l' and maximize output quality Q
 - d'_i affects token delivery probability p_i and therefore quality
 - \triangleright Quality model to describe Q in terms of d'_i

Quality Model (1)

SNR as quality metrics

- Signal processing applications
- Quantify noise power of the output

Single lossy channel

• Express token delivery probability p_g as function of delay budget d_g'

$$p_g(d_g') = (1 - \mu_g) \cdot F_{D_g}(d_g')$$

with network parameters:

 μ_g : average loss rate of channel c_g

 $F_{D_g}(d_g)$: cumulative distribution function (CDF) of random network delay D_g

Quality Model (2)

Single lossy channel (cont'd)

• Noise in channel c_g at iteration i: $n_g[i] = |s_g[i] - R_g(s_g)|$

 $s_q[i]$: (original) signal value of c_q at iteration i

 R_g : replacement function of actor a_g

• Assuming n_g is upper bounded by s_g : $n_g[i] \le \alpha s_g[i]$

Actor chain

• Assuming system and, hence, actors are linear with weights w_i

$$n_m[i] \le \alpha \widetilde{w} s_0[i]$$
 where $\widetilde{w} = \prod_{j=1}^m w_j$

This equation holds regardless of number of losses

Calculate minimum SNR from maximum noise power

Quality Model Computation

In graph with more than one actor chain

- Iterate over paths and accumulate noise power
- Multiple iterations for cyclic graphs
- Exponential complexity

A better alternative

- Breadth-first traversal of channels
- Accumulate partial noise power at each channel
- $O(I * m^2/n)$ complexity
 - in number of inputs I, channels m and nodes n

Scheduling Formulation

Optimization problem: find the schedule that maximizes quality

$$\begin{aligned} & \underset{\mathbf{d}'}{\text{maximize}} & & Q(\mathbf{d'},\tau) \\ & \text{subject to} & & d'_j \geq 0, \ \forall j \in channels. \quad \text{precedence constraints} \\ & & \sum_{i=0}^{m_k-1} e'_{(k,i)} + \sum_{j=1}^{m_k-1} d'_{(k,i)} \leq l'_k, \ \forall k \in paths. \quad \text{latency constraints} \end{aligned}$$

- Solving the optimization problem
 - $oldsymbol{Q}$ is non-linear/non-convex but has closed form and is differentiable
 - d' are continuous
 - Use numerical gradient-based iterative methods
 - > E.g. Constrained Trust Region (CTR) solver

Outline

- ✓ Introduction
 - ✓ Motivation, background
 - ✓ Related work
- √ Formalizing distributed data flow
 - ✓ Timed extension of RADF
- ✓ Scheduling distributed data flow
 - ✓ Quality model and optimization
- Experimental Results
- Summary & Future Work

Experimental Setup (1)

T-RADF and scheduler implemented in Python

- NetworkX for graph representation
- Scipy for optimization with 10⁻⁵ as gradient norm threshold
- 5 iterations for cyclic graphs

Application models

- 100 random cyclic/acyclic graphs with 10/50/100 nodes [sdf3]
- Three replacement policies
 - R_{static}: replaces empty tokens with zeros
 - R_{last}: replaces empty tokens with the last received value
 - R_{avq}: replaces with the running average of received values

Experimental Setup (2)

- Simulated via OMNET++ and INET Framework
 - UDP sockets for lossy channels
 - INET's cloud model (5Mbps, μ = 1%, Gamma NDD)
- Relative latency constraints
 - l_{min}/l_{max} are latencies for delivery probabilities of 0.1% and 99.9%
 - Constraint factor $\rho = (l' l_{min})/(l_{max} l_{min})$

Quality Model Fidelity

- Correlation between estimated and measured SNR
 - Relatively/monotonicity: Spearman's correlation coefficient
 - Absolute values: Pearson's correlation coefficient

Setup

- Generated 100 random schedules for ten graphs
- Latency constraint factor ρ randomly chosen in the interval [0.1,0.9]

Optimization Results

- Measured and predicted SNR improvement
 - Vs. uniform budget distribution as baseline schedule
 - Averaged across sizes

- Higher gains with tight constraints
 - ➤ Up to 900%, on average 75%
- Conservative estimate from quality model

Optimization Outcomes

Optimization success rate

Optimization Runtime

- Average runtime of optimization solver
 - Measured on Intel Core i7-920

- Larger for tight constraints
- Larger for cyclic graphs due to multiple iterations

Distributed Neural Network Example

- Two-layer network for MNIST digit recognition
 - Non-linear due to activation functions
 - Each token is 16 doubles
 - WCET of 1sec for FC1/FC2
 - Account for network delay of 49 tokens in WCET of Input

- > Significant accuracy gains under tight latency constraints
 - ➤ Up to 60%, on average 20%

Distributed Neural Network Example

- Two-layer network for MNIST digit recognition
 - Non-linear due to activation functions
 - Each token is 16 doubles
 - WCET of 1sec for FC1/FC2
 - Account for network delay of 49 tokens in WCET of Input

- Significant accuracy gains under tight latency constraints
 - ➤ Up to 60%, on average 20%

Summary and Future Work

- Quality/latency-aware scheduling
 - Dataflow models for distributed embedded systems
 - Quality/latency tradeoff
 - Scheduling dist. dataflow by optimizing the tradeoff
 - Tools, graphs and simulation models available online https://github.com/SLAM-Lab/QLA-RTS
- Future work
 - Address the restrictions
 - Homogeneity, one-actor-per-host mapping
 - Runtime system for T-RADF
 - Dynamic scheduling