شبكة الابحاث والدراسات الاقتصادية

udallem II

أعداد الدكتورشرف الدين خليل

موقع الشبكة عبر شبكة الانترنيت www.rr4ee.net

الفصـــل الأول التعريف بعلم الإحصاء

1/1 مقدم___ة

من المفاهيم الشائعة بين الناس عن الإحصاء، ما هي إلا أرقام وبيانات رقمية فقط، كأعداد السكان، وأعداد المواليد، وأعداد الوفيات، وأعداد المزارعين، وأعداد المزارع، وخلافه، ومن ثم ارتبط مفهوم الناس عن الإحصاء بأنه عد أو حصر الأشياء والتعبير عنها بأرقام، وهذا هو المفهوم المحدود لعلم الإحصاء، ولكن الإحصاء كعلم، هو الذي يهتم بطرق جمع البيانات، وتبويبها، وتلخيصها بشكل يمكن الاستفادة منها في وصف البيانات وتحليلها للوصول إلى قرارات سليمة في ظل ظروف عدم التأكد.

2/1 وظائف علم الإحصاء

من التعريف السابق يمكن تحديد أهم وظائف علم الإحصاء في الآتي:

- 1- وصف البيانات Data Description
- 2- الاستدلال الإحصائي Statistical Inference
 - Forecasting التنبؤ

أولا: وصف البيانات

تعتبر طريقة جمع البيانات وتبويبها وتلخيصها من أهم وظائف علم الإحسصاء، إذ لا يمكن الاستفادة من البيانات الخام، ووصف الظواهر المختلفة محل الاهتمام، إلا إذا تم جمع البيانات وعرضها في شكل جدلي، أو بياني من ناحية، وحساب بعض المؤشرات الإحصائية البسيطة التي تدلنا على طبيعة البيانات من ناحية أخرى.

ثانيا: الاستدلال الإحصائي

وهو أيضا من أهم الوظائف المستخدمة في مجال البحث العلمي، ويستند الاستدلال الإحصائي على فكرة اختيار جزء من المجتمع يسمى عينة بطريقة علمية مناسبة، بغرض استخدام بيانات هذه العينة في التوصل إلى نتائج، يمكن تعميمها على مجتمع الدراسة، ومن ثم يهتم الاستدلال الإحصائي بموضوعين هما:

1- التقدير Estimate: وفيه يتم حساب مؤشرات من بيانات العينة تــسمى إحــصاء Estimate: تستخدم كتقدير لمؤشرات المجتمع وتسمى معالم Parameters، ويطلق على المقاييس الإحــصائية المحسوبة من بيانات العينة في هذه الحالة بالتقدير بنقطة Point Estimate، كما يمكن أيــضا استخدام المقاييس الإحصائية المحسوبة من بيانات العينة في تقدير المدى الذي يمكن أن يقع داخلــه معلمة المجتمع باحتمال معين، ويسمى ذلك التقدير بفترة Interval Estimate.

2- اختبارات الفروض Tests of Hypotheses: وفيه يتم استخدام بيانات العينة للوصول إلى قرار علمي سليم بخصوص الفروض المحددة حول معالم المجتمع.

ثالثا: التنبؤ

وفيه يتم استخدام نتائج الاستدلال الإحصائي، والتي تدلنا على سلوك الظاهرة في الماضي في معرفة ما يمكن أن يحدث لها في الحاضر والمستقبل. وهناك العديد من الأساليب الإحصائية المعروفة التي تستخدم في التنبؤ، ومن أبسطها أسلوب الاتجاه العام، وهي معادلة رياضية يتم تقدير معاملاها باستخدام بيانات العينة، ثم بعد ذلك استخدام المعادلة المقدرة في التنبؤ بما يمكن أن يحدث للظاهرة في المستقبل.

3/1 أنواع البيانات وطرق قياسها

من التعريف السابق لعلم الإحصاء، يلاحظ أنه العلم الذي يهتم بجمع البيانات Data، ونوع البيانات، وطريقة قياسها من أهم الأشياء التي تحدد التحليل الإحصائي المستخدم، وللبيانات أنواع تختلف في طريقة قياسها، ومن الأمثلة على ذلك: بيانات النوع (ذكور Male – إناث Female – إناث الدوم وبيانات تقدير الطالب (+D-D+-C-C+-B-B+-A-A)، وبيانات عن درجة الحرارة اللازمة لحفظ الدجاج فترة زمنية معينة، وبيانات عن حجم الإنفاق العائلي بالألف ريال خلال الشهر. ومن هذه الأمثلة نجد أن بيانات النوع غير رقمية، بينما بيانات تقدير الطالب بيانات رقمية موضوعة في شكل مستويات أو فئات، أما بيانات كل من درجة الحرارة، وحجم الإنفاق العائلي فهي بيانات رقمية، ومن همة عكن تقسيم البيانات إلى مجموعتين هما:

- 1- البيانات الوصفية Qualitative Data
- 2- البيانات الكمية Quantitative Data

أولا: البيانات الوصفية

هي بيانات غير رقمية، أو بيانات رقمية مرتبة في شكل مستويات أو في شكل فئات رقمية، ومن ثم تقاس البيانات الوصفية بمعيارين هما:

- أ- بيانات وصفية مقاسة بمعيار اسمي Nominal Scale: وهي بيانات غير رقمية تتكون من مجموعات متنافية، كل مجموعة له خصائص تميزها عن المجموعة الأخرى، كما أن هذه المجموعة لا يمكن المفاضلة بينها، ومن الأمثلة على ذلك:
 - النوع: متغير وصفي تقاس بياناته بمعيار اسمي " ذكر أنشي " .
- الحالة الاجتماعية: متغير وصفي تقاس بياناته بمعيار اسمي " متزوج ــ أعزب ــ أرمل ــ مطلق ".
- أصناف التمور: متغير وصفي يقاس بياناته بمعيار اسمي " برحي ــ خلاص ــ سكري ــ".
 - الجنسية: متغير وصفي يقاس بياناته بمعيار اسمي " سعودي ــ غير سعودي"
- وهذا النوع من البيانات يمكن تكويد مجموعاته بأرقام، فمثلا الجنسسية يمكن إعطاء الجنسسية "سعودي" الكود (1)، والجنسية "غير سعودي" الكود (2)

- ب- بيانات وصفية مقاسة بمعيار ترتيبي Ordinal Scales: وتتكون من مستويات، أو فئات يمكن ترتيبها تصاعديا أو تنازليا، ومن الأمثلة على ذلك:
- تقدير الطالب: متغير وصفى تقاس بياناته بمعيار ترتيبي "D-D+-C-C+-B-B+-A-A""
- المستوى التعليمي: متغير وصفي تقاس بياناته بمعيار ترتيبي "أمي يقرأ ويكتب ــ ابتدائية ــ متوسطة ــ ثانوية ــ جامعية ــ أعلى من جامعية "
- تركيز خلات الصوديوم المستخدم في حفظ لحوم الدجاج من البكتريا: متغير وصفي ترتيبي يقاس بياناته بمعيار ترتيبي " %0 _ 5% _ 10% _ 15%
- فنات الدخل العائلي في الشهر بالريال " 5000-10000 ، 5000-15000 ، 15000-20000 ، فنات الدخل العائلي في الشهر بالريال " >20000 ، 5000-20000 ،

ثانيا: البيانات الكمية

هي بيانات يعبر عنها بأرقام عددية تمثل القيمة الفعلية للظاهرة، وتنقسم إلى قسمين هما:

- أ- بيانات فترة Interval Data: وهي بيانات رقمية، تقاس بمقدار بعدها عن الصفر، أي أن للصفر دلالة على وجود الظاهرة، ومن أمثلة ذلك:
- درجة الحرارة: متغير كمي تقاس بياناته بمعيار بعدي، حيث أن درجة الحرارة $0^{\circ \circ}$ ليس معناه انعدام الظاهرة، ولكنه يدل على وجود الظاهرة.
- درجة الطالب في الاختبار: متغير كمي يقاس بياناته بمعيار بعدي، حيث حصول الطالب على الدرجة "0" لا يعنى انعدم مستوى الطالب.
- بيانات نسبية Ratio Data: هي متغيرات كمية، تدل القيمة 0" على عدم وجود الظاهرة ومن الأمثلة على ذلك:
 - إنتاجية الفدان بالطن/هكتار.
 - المساحة المتررعة بالأعلاف بالدونم.
 - كمية الألبان التي تنتجها البقرة في اليوم.
 - عدد مرات استخدام المزرعة لنوع معين من الأسمدة.
 - عدد الوحدات المعيبة من إنتاج المزرعة.

ويلاحظ أن بيانات الفترة لا يمكن إخضاعها للعمليات الحسابية مثل عمليات الصرب والقسمة، بينما يمكن فعل ذلك مع البيانات النسبية.

4/1 طرق جمع البيانات

تعتبر طريقة جمع البيانات من أهم المراحل التي يعتمد عليها البحث الإحصائي، كما أن جمع البيانات بأسلوب علمي صحيح، يترتب عليه الوصول إلى نتائج دقيقة في التحليل،

ولدراسة طرق جمع البيانات، يجب الإلمام بالنقاط التالية:

1- مصادر البيانات. 2- أسلوب جمع البيانات.

3- أنواع العينات 4- وسائل جمع البيانات.

1/4/1 مصادر جمع البيانات

هناك مصدرين للحصول منها على البيانات هما:

1- المصادر الأولية. 2- المصادر الثانوية.

أولا: المصادر الأولية: وهي المصادر التي نحصل منها على البيانات بشكل مباشر، حيث يقوم الباحث نفسه بجمع البيانات من المفردة محل البحث مباشرة، فعندما يهتم الباحث بجمع بيانات عن الأسرة، يقوم بإجراء مقابلة مع رب الأسرة، ويتم الحصول منه مباشرة على بيانات خاصة بأسرته، مثل بيانات المنطقة التابع لها، والحي الذي يسكن فيه، والحنسية، والمهنة، والدخل الشهري، وعدد أفراد الأسرة، والمستوى التعليمي، ... وهكذا.

ويتميز هذا النوع من المصادر بالدقة والثقة في البيانات، لأن الباحث هو الذي يقوم بنفسه بجمع البيانات من المفردة محل البحث مباشرة، ولكن أهم ما يعاب عليها ألها تحتاج إلى وقت ومجهود كبير، ومن ناحية أخرى ألها مكلفة من الناحية المادية.

ثانيا: المصادر الثانوية: وهي المصادر التي نحصل منها على البيانات بشكل غير مباشر، بمعنى آخر يتم الحصول عليها بواسطة أشخاص آخرين، أو أجهزة، وهيئات رسمية متخصصة، مثل نشرات وزارة الزراعة، ونشرات مصلحة الإحصاء، ونشرات منظمة الأغذية "الفاو"....وهكذا.

ومن مزايا هذا النوع من المصادر، توفير الوقت والجهد والمال، إلا أن درجة ثقة الباحث فيها ليست بنفس الدرجة في حالة المصادر الأولية.

2/4/1 أسلوب جمع البيانات

يتحدد الأسلوب المستخدم في جمع البيانات، حسب الهدف من البحث، وحجم المجتمع محل البحث، وهناك أسلوبين لجمع البيانات هما:

1- أسلوب الحصر الشامل.
 2- أسلوب المعاينة.

أولا: أسلوب الحصر الشامل: يستخدم هذا الأسلوب إذا كان الغرض من البحث هو حصر جميع مفردات المجتمع، وفي هذه الحالة يتم جمع بيانات عن كل مفردة من مفردات المجتمع بلا استثناء، كحصر جميع المزارع التي تنتج التمور، أو حصر البنوك الزراعية في المملكة، ويتميز أسلوب الحصر الشامل بالشمول وعدم التحيز، ودقة النتائج، ولكن يعاب عليه أنه يحتاج إلى الوقت والمجهود، والتكلفة العالية.

ثانيا: أسلوب المعاينة: يعتم هذا الأسلوب على معاينة جزء من المجتمع محل الدراسة، يتم الحتياره بطريقة علمية سليمة، ودراسته ثم تعميم نتائج العينة على المجتمع، ومن ثم يتميز هذا الأسلوب بالآتي:

- 1- تقليل الوقت والجهد.
 - 2- تقليل التكلفة.

جيدا.

- 3- الحصول على بيانات أكثر تفصيلا، وخاصة إذا جمعت البيانات من خلل استمارة استيان.
- 4- كما أن أسلوب المعاينة يفضل في بعض الحالات التي يصعب فيها إجراء حصر شامل، مثل معاينة دم المريض، أو إجراء تعداد لعدد الأسماك في البحر، أو معاينة اللمبات الكهربائية. ولكن يعاب على أساوب المعاينة:أن النتائج التي تعتمد على هذا الأسلوب أقل دقة من نتائج أسلوب الحصر الشامل، وخاصة إذا كانت العينة المختارة لا تمثل المجتمع تمشيلا

3/4/1 أنواع العينات

لكي نستعرض أنواع العينات، يتم أولا تحديد الفرق بين مجتمع الدراسة، والعينة المسحوبة من هذا المجتمع.

أ- المجتمع: هو مجموعة من المفردات التي تشترك في صفات، وخصائص محددة، ومجتمع الدراسة هو الذي يشمل جميع مفردات الدراسة، أي هو الكل الذي نرغب دراسته، مثل مجتمع مزارع إنتاج الدواجن، أو مجتمع طلاب الصف الثالث الثانوي.

ب- العينة: هو جزء من المجتمع يتم اختياره بطرق مختلفة بغرض دراسة هذا المجتمع.

شكل رقم (1) الفرق بين المجتمع والعينة

عينة الدراسة

مجتمع الدراسة

ويتوقف نجاح استخدام أسلوب المعاينة على عدة عوامل هي:

1- كيفية تحديد حجم العينة. 2- طريقة اختيار مفردات العينة 3- نوع العينة المختارة.

ويمكن تقسيم العينات وفقا لأسلوب اختيارها إلى نوعين هما:

ب- العينات غير الاحتمالية

أ- العينات الاحتمالية

أولا: العينات الاحتمالية

هي العينات التي يتم اختيار مفرداتها وفقا لقواعد الاحتمالات، بمعنى آخر هي التي يتم اختيار مفرداتها من مجتمع الدراسة بطريقة عشوائية، بهدف تجنب التحيز الناتج عن اختيار المفردات، ومن أهم أنواع العينات الاحتمالية، ما يلي:

- أ- العينة العشوائية البسيطة Simple Random Sample.
- ب- العينة العشوائية الطبقية Stratified Random Sample.
- ت- العينة العشوائية المنتظمة Systematic Random Sample.
 - ث- العينة العنقودية أو المتعددة المراحل Cluster Sample.

ثانيا: العينات غير الاحتمالية

هي التي يتم اختيار مفرداتها بطريقة غير عشوائية، حيث يقوم الباحث باختيار مفردات العينة بالصورة التي تحقق الهدف من المعاينة، مثل اختيار عينة من المزارع التي تنتج التمور من النوع السكري، وأهم أنواع العينات غير الاحتمالية:

أ- العينة العمدية Judgmental Sample

ب- العينة الحصصية Quota Sample

الفصلل الثابي

طرق عرض البيانات

1/2 مقدم____ة

الخطوة التالية بعد جمع البيانات في مجال الإحصاء الوصفي، هو تبويب البيانات وعرضها بصورة يمكن الاستفادة منها في وصف الظاهرة محل الدراسة، من حيث تمركز البيانات، ودرجة تجانسها. وهناك طريقتين لعرض البيانات هما:

- 1- عرض البيانات جدوليا.
 - 2- عرض البيانات بيانيا.

2/2 عرض البيانات جدوليا

يمكن عرض البيانات في صورة جدول تكراري، ويختلف شكل الجدول طبقا لنوع البيانات، وحسب عدد المتغيرات، وفيما يلي عرض بيانات متغير (وصفي أو كمي) في شكل جدول تكراري بسيط.

1/2/2 عرض بيانات المتغير الوصفى في شكل جدول تكراري بسيط

إذا كنا بصدد دراسة ظاهرة ما تحتوي على متغير وصفي واحد، فإنه يمكن عرض بياناتــه في شكل جدول تكراري بسيط، وهو جدول يتكون من عمودين، أحدهما به مستويات (مجموعات) المتغير، والثاني به عدد المفردات (التكرارات) لكل مستوى (مجموعة).

والمثال التالي يبين لنا كيف يمكن تبويب البيانات الوصفية الخام في شكل جدول تكراري.

مثال (2-1)

فيما يلى بيانات عينة من 40 مزرعة عن نوع التمر الذي تنتجه المزرعة.

خلاص	صقعي	خلاص	برحي	خلاص	بوحي	خلاص	سكري
برحي	نبوت سيف	بوحي	خلاص	صقعي	بوحي	سكري	بوحي
خلاص	صقعي	بوحي	بوحي	خلاص	سكري	بوحي	صقعي
صقعي	نبوت سيف	صقعي	نبوت سيف	سكري	بوحي	خلاص	برحي
خلاص	صقعي	بوحي	سكري	نبوت سيف	صقعي	بوحي	خلاص

والمطلوب:

- 1- ما هو نوع المتغير؟، وما هو المعيار المستخدم في قياس البيانات؟.
 - 2- اعرض البيانات في شكل جدول تكراري.
 - 3- كون التوزيع التكراري النسبي.
 - 4- علق على النتائج.

الحـــل

1- نوع التمر (سكري – خلاص – برحي – صقعي – نبوت سيف) متغير وصفي، تقاس بياناته بمعيار اسمى.

2- لعرض البيانات في شكل جدول تكراري ، يتم إتباع الآتي:

• تكوين جدول تفريغ البيانات:

وهو جدول يحتوي على علامات إحصائية، كل علامة تعبر عن تكرار للمجموعة التي ينتمي إليها نوع التمر الذي تنتجه المزرعة، وكل خمس علامات تكون حزمة إحصائية، كما هو مبين بالجدول التالى:

جدول تفريغ البيانات

نوع التمر	العلامات الإحصائية	عدد المزارع (التكرارات)
سكري	M	5
خلاص	M M	10
برحي	M M III	13
صقعي	M ///	8
نبوت سيف	////	4
Sum		40

• تكوين الجدول التكراري.

وهو نفس الجدول السابق، باستثناء العود الثاني، ويأخذ الصورة التالية:

جدول رقم (2-1) التوزيع التكراري لعينة حجمها 40 مزرعة حسب نوع التمر الذي تنتجه

	~	
نوع التمر	عدد المزارع (التكوارات) (f)	التوزيع التكراري النسبي
سكري	5	$\left(\frac{5}{40}\right) = 0.125$
خلاص	10	$\left(\frac{10}{40}\right) = 0.25$
بوحي	13	$\left(\frac{13}{40}\right) = 0.325$
صقعي	8	$\left(\frac{8}{40}\right) = 0.20$
نبوت سيف	4	$\left(\frac{4}{40}\right) = 0.10$
Sum	40	1.00

المصدر: بيانات افتراضية.

3- التوزيع التكراري النسبي:

يحسب التكرار النسبي بقسمة تكرار الجموعة على مجموع التكرارات، أي أن:

تكرار الجموعة = التكرار النسبي =
$$\frac{f}{\sum_{f}}$$
 = التكرار النسبي (۱-۲)

والعمود الثالث في الجدول رقم (2-1) يعرض التكرار النسبي للمزارعين حسب نوع التمر. 4- التعليق: من الجدول رقم (2-1) يلاحظ أن نسبة المزارع التي تنتج النوع "برحي" في العينة هي 32.5% وهي أكبر نسبة ثما يدل على أن النمط الشائع في إنتاج التمور هو ذلك النوع، بينما نجد أن نسبة المزارع التي تنتج النوع "نبوت سيف" حوالي 10.0% وهي أقل نسبة.

مثال (2-2)

فيما يلى بيانات عن المستوى التعليمي لعينة من 50 فرد.

ابتدائي	متوسط	أعلى من جامعي	ثانوي	متوسط	ثانوي	يقرأ ويكتب	متوسط
متوسط	ابتدائي	ثانوي	متوسط	ثانوي	ثانوي	متوسط	يقرا ويكتب
ثانوي	يقرا ويكتب	ابتدائى	ثان <i>وي</i>	جامعي	يقرا ويكتب	ثان <i>وي</i>	ابتدائي
متوسط	جامعي	متوسطً	ابتدائى	ثانوي	متوسط	ابتدائي	متوسط
ابتدائي	ثانوي	ابتدائي	يقرا ويكتب	ثانوي	ابتدائي	متوسط	ثان <i>و ي</i>
ثانوي	ثانوي	أعلى من جامعي	جامعي	ابتدائي	جامعي	ثان <i>وي</i>	جامعي
		-	-	_		يقرا ويكتب	متو سط

والمطلوب: 1- اعرض البيانات في شكل جدول تكراري.

2- كون التوزيع التكراري النسبي، ثم علق على النتائج.

الحسل

1- عرض البيانات في شكل جدول تكراري:

المستوى التعليمي (يقرأ ويكتب- ابتدائي_ متوسط- ثانوي- جامعي- أعلى من جامعي) متغير وصفي ترتيبي، ويمكن عرض البيانات أعلاه في شكل جدول تكراري بإتباع الآتي:

تكوين جدول تفريغ البيانات:

جدول تفريغ البيانات

المستوى التعليمي	العلامات الإحصائية	عدد الأفراد (التكرارات)
يقرأ ويكتب	N//	6
ابتدائي	M M	10
متو سط	N/N///	12
ثانوي	MMM	15
جامعي	NV	5
أعلى من جامعي	//	2
Sum		50

• تكوين الجدول التكراري:

جدول رقم (2-2) التوزيع التكراري لعينة حجمها 50 فرد حسب المستوى التعليمي

المستوى التعليمي	عدد الأفراد (التكرارات) (f)	التوزيع التكراري النسبي
يقرأ ويكتب	6	0.12
ابتدائي	10	0.20
متوسط	12	0.24
ثانوي	15	0.30
جامعي	5	0.10
أعلى من جامعي	2	0.04
Sum	50	1.00

المصدر: بيانات عينة

2- تكوين التوزيع التكراري النسبي.

بتطبيق المعادلة رقم (2-1) يمكن حساب التكرارات النسبية، والعمود الثالث في الجدول رقم (2-2) يبن هذا التوزيع،

ومن التوزيع النسبي يلاحظ أن حوالي %30 من أفراد العينة ممن لديهم مؤهل ثانوي، بينما يكون نسبة الأفراد ممن لديهم مؤهل اقل من الثانوي (متوسط، ابتدائي، يقرأ ويكتب) أكثر من %5، أما نسبة الأفراد الحاصلين على مؤهل أعلى من جامعي حوالي %4 وهي أقل نسبة.

ملاحظات على الجدول

عند تكوين جدول ما لعرض البيانات، يجب مراعاة الآتي:

- 1- كتابة رقم للجدول.
- 2- كتابة عنوان للجدول.
- 3- لكل عمود من أعمدة الجدول عنوان يدل على محتواه.
 - 4- يجب كتابة مصدر البيانات في الجدول.

2/2/2 عرض بيانات المتغير الكمى في شكل جدول تكراري بسيط

بنفس الأسلوب السابق المتبع في تكوين جدول تكراري، يمكن أيضا عرض بيانات المتغير الكمي في شكل جدول تكراري بسيط، ويتكون هذا الجدول من عمودين، الأول يحتوي على فئات تصاعدية للقراءات التي يأخذها المتغير، والثاني يشمل التكرارات أو عدد المفردات التي تنتمي قراءالها للفئة المناسبة لها، والمثال التالي يبين كيف يمكن عرض البيانات الكمية بيانيا.

مثال (2-3)

فيما يلي بيانات درجات 70 طالب في الاختبار النهائي لمقرر مادة الإحصاء التطبيقي.

56	65	70	65	55	60	66	70	75	56
60	70	61	67	61	71	67	62	71	66
68	72	57	68	72	69	57	71	69	75
72	62	67	73	58	63	66	73	63	65
58	73	74	76	74	80	81	60	74	58
76	82	77	83	77	85	91	78	<mark>94</mark>	72
79	64	57	79	55	87	64	88	78	62

و المطلوب:

- 1- كون التوزيع التكراري لدرجات الطلاب.
 - 2- كون التوزيع التكراري النسبي.
- 3- ما هو نسبة الطلاب الحاصلين على درجة ما بين 70إلى أقل من 80؟
 - 4- ما هو نسبة الطلاب الحاصلين على درجة أقل من 70 درجة؟
 - 5- ما هو نسبة الطلاب الحاصلين على درجة 80 أو أكثر ؟

الحسل

1- تكوين التوزيع التكراري:

درجة الطالب في الاختبار متغير كمي مستمر، ولكي يتم تبويب البيانات في شكل جدول تكراري، يتم اتباع الآتي:

• حساب المدى (Range(R

Range = Maximum - Minimum

$$R = 94 - 55 = 39$$

• تحدید عدد الفئات (Classes(C) .

تتحدد عدد الفئات وفقا لاعتبارات منها: رأي الباحث، والهدف من البحث، وحجم البيانات، ويرى كثيرا من الباحثين أن أفضل عدد للفئات يجب أن يتراوح بين 5 إلى 15 ، بفرض أن عدد الفئات هو 8 فئات، أى أن: (C=8).

• حساب طول الفئة (Length(L)

$$L = \frac{Range}{Classes} = \frac{R}{C} = \frac{39}{8} = 4.875 \approx 5$$

• تحديد الفئات:

الفئة تبدأ بقيمة تسمى الحد الأدنى، وتنتهى بقيمة تسمى الحد الأعلى، ومن ثم نجد أن :

- - $_{-}$ الحد الأدنى للفئة الثانية = الحد الأعلى للفئة الأولى = 60 $_{-}$

الحد الأعلى للفئة الثانية = الحد الأدنى للفئة + طول الفئة = 5 + 60 = 65

إذا الفئة الثانية هي: "65 to les than أقل من 66" وتقرأ "من 60 إلى أقل من 65"

- وبنفس الطريقة يتم تكوين حدود الفئات الأخرى، وهي:

 70 to les than 75 : الفئة الرابعة : 65 to les than 70 الفئة الرابعة : 80 to les than 85 الفئة الحامسة: 75 to les than 80 الفئة الحامسة: 75 to les than 80 الفئة الحامسة : 80 to les than 80 الفئة الحامسة : 75 to les than 80 الفئة الماسة : 75 to les than 80 الفئة

الفئة السابعة: 85 to les than 90 الفئة الثامنة: 90 to les than 95

ويمكن كتابة الفئات بأشكال مختلفة كما هو مبين بجدول تفريغ البيانات:

• تكوين جدول تفريغ البيانات:

جدول تفريغ البيانات

ِ جة	الدر	العلامات	عدد الطلاب	
فئات	فئات	فئات	الإحصائية	(التكرارات)
55 to les than 60	55 – 60	55-	M M	10
60 to les than 65	60 – 65	60-	M M //	12
65 to les than 70	65 – 70	65-	MWIII	13
70 to les than 75	70 – 75	70-	WWWI	16
75 to les than 80	75 – 80	75-	M M	10
80 to les than 85	80 - 85	80-	////	4
85 to les than 90	85 – 90	85-	///	3
90 to les than 95	90 - 95	90-95	//	2
Sum				70

• تكوين الجدول التكراري:

جدول رقم (2-3) التوزيع التكراري لعدد 70 طالب حسب درجاقم في اختبار مقرر الإحصاء

فئات الدرجة	عدد الطلاب (التكرارات) (f)	التكوار النسبي
55 - 60	10	0.143
60 - 65	12	0.171
65 - 70	13	0.186
70 - 75	16	0.229
75 - 80	10	0.143
80 - 85	4	0.057
85 – 90	3	0.043
90 – 95	2	0.028
Sum	70	1.00

المصدر: بيانات نتيجة العام 1426هـ

2- التوزيع التكراري النسبي:

التكرار النسبي
$$\frac{f}{n}$$
 والعمود الثالث في الجدول رقم $(2-3)$ يبين التكرار النسبي.

3- نسبة الطلاب الحاصلين على درجات ما بين 70 إلى أقل من 80 هو مجموع التكرارين النسبيين
 للفئتين الرابعة والخامسة:

 $(80\ ,\,70\)$ نسبة الطلاب الحاصلين على درجات ما بين ($(80\ ,\,70\)$ نسبة الطلاب حصلوا على درجات ما بين ($(80\ ,\,70\)$.

4- نسبة الطلاب الحاصلين على درجات أقل من 70، هو مجموع التكرارات النسسبية للفئات الأولى والثانية، والثالثة:

70 من 170 من 190 من 170 من الطلاب حصلو على درجة أقل من 70 درجة أقل من 70 من الطلاب حصلو على درجة أقل من 70 درجة أقل من 170 من الطلاب حصلو على درجة أقل من 170 من الطلاب الطلاب الطلاب الطلاب على درجة أقل من 170 من الطلاب حصلو على درجة أقل من 170 من الطلاب حصلو على 170 من 170 من الطلاب حصلو على 170 من 170 من

5- نسبة الطلاب الحاصلين على درجة 80 أو أكثر، هو مجموع التكرارات النسسبية للفئات الثلاث الأخيرة:

0.028 = 0.028 + 0.043 + 0.028 = 0.057 انسبة الطلاب الحاصلين على درجات 0.050 + 0.043 + 0.028 = 0.128 أي أن حوالي 0.028 + 0.043 + 0.028 = 0.057 + 0.043 من الطلاب حصلوا على درجة 0.050 + 0.043 + 0.028 = 0.057

3/2 العرض البياني للبيانات الكمية

العرض البياني للبيانات، هو أحد طرق التي يمكن استخدامها في وصف البيانات، من حيث شكل التوزيع ومدى تمركز البيانات، وفي كثير من النواحي التطبيقية يكون العرض البياني أسهل وأسرع في وصف الظاهرة محل الدراسة، وتختلف طرق عرض البيانات بيانيا حسب نوع البيانات المبوبة في شكل جدول تكراري، وفيما يلى عرض للأشكال البيانية المختلفة.

1/3/2 المدرج التكراري Histogram

المدرج التكراري هو التمثيل البياني للجدول التكراري البسيط الخاص بالبيانات الكمية المتصلة، وهو عبارة عن أعمدة بيانية متلاصقة، حيث تمثل التكرارات على المحور الرأسي، بينما تمثل قيم المتغير (حدود الفئات) على المحور الأفقي، ويتم تمثيل كل فئة بعمود، ارتفاعه هو تكرار الفئة، وطول قاعدته هو طول الفئة.

مثال (2-4)

فيما يلي التوزيع التكراري لأوزان عينة من الدواجن بالجرام، حجمها 100 اختيرت من أحد المزارع بعد 45 يوم.

الوزن	600-	620-	640-	660-	680-	700-720	Sum
عدد الدجاج	10	15	20	25	20	10	100

والمطلوب:

1- ما هو طول الفئة؟

2- ارسم المدرج التكراري.

3- ارسم المدرج التكراري النسبي، ثم علق على الرسم.

الحسل

1- طول الفئة (L)

طول الفئة = الحد الأعلى للفئة
$$-$$
 الحد الأدن للفئة $L = upper - Lower$

$$L = 620 - 600 = 640 - 620 = \dots = 720 - 700 = 20$$
 إذا طول الفئة = 20

2- رسم المدرج التكراري.

لرسم المدرج التكواري يتم إتباع الخطوات التالية:

- رسم محوران متعامدان، الرأسي ويمثل التكرارات، الأفقى ويمثل الأوزان.
- كل فئة تمثل بعمود ارتفاعه هو تكرار الفئة، وطول قاعدته هو طول الفئة.
 - كل عمود يبدأ من حيث انتهى به عمود الفئة السابقة.

والشكل (2-1) يبين المدرج التكراري لأوزان الدجاج.

شكل (2-1) المدرج التكراري لأوزان عينة من الدجاج حجمها 100 دجاجة

3- رسم المدرج التكراري النسبي: لرسم المدرج التكراري النسبي يتم إجراء الآتي:

• حساب التكرارات النسبية.

الوزن	600-	620-	640-	660-	680-	700-720	Sum
عدد الدجاج	10	15	20	25	20	10	100
التكرار النسبي	0.10	0.15	0.20	0.25	0.20	0.10	1.00

• بإتباع نفس الخطوات السابقة عند رسم المدرج التكراري، يستم رسم المسدرج التكراري النسبي، بإحلال التكرارات النسبية محل التكرارات المطلقة على المحسور الرأسي، كما هو مبين في الشكل التالي:

شكل (2-2) المدرج التكراري النسبي لأوزان عينة من الدجاج حجمها 100 دجاجة

ومن الشكل أعلاه يلاحظ الآتي:

- أن \$25 من الدجاج يتراوح وزنه بين 660 ، 680 جرام وهي أكبر نسبة.
- أن الشكل ملتوي جهة اليسار، ثما يدل على أن توزيع أوزان الدجاج سالب الالتواء.

ملاحظات على شكل المدرج التكراري

- i- أن المساحة أسفل المدرج التكراري تساوي مجموع التكرارات (n).
- ب- أما المساحة أسفل المدرج التكراري النسبي، فهي تعبر عن مجموع التكرارات النـــسبية، وهي تساوي الواحد الصحيح.
- ت يمكن تقدير القيم الشائعة، وهي القيم التي يناظرها أكبر ارتفاع، ففي الشكلين السابقين، نجد أن الوزن الشائع يقع في الفئة (680-660) ويطلق عليه المنوال.
 - ث يمكن معرفة شكل توزيع البيانات، كما هو مبين بالأشكال الفلاث التالية: شكل (2-3)

2/3/2 المضلع التكراري

هو تمثيل بياني أيضا للجدول التكراري البسيط، حيث تمثل التكرارات على المحور الرأسي، ومراكز الفئات على المحور الأفقي، ثم التوصيل بين الإحداثيات بخطوط منكسرة، وبعد ذلك يتم توصيل طرفي المضلع بالمحور الأفقى.

ومركز الفئة هي القيمة التي تقع في منتصف الفئة، وتحسب بتطبيق المعادلة التالية:

ونظرا لعدم معرفة القيم الفعلية لتكرار كل فئة، يعتبر مركز الفئة هو التقدير المناسب لقيمــة كل مفردة من مفردات الفئة.

مثال (2-5)

استخدم بيانات الجدول التكراري في المثال (2-4) لرسم المضلع التكراري.

لرسم المضلع التكراري يتبع الآتي:

• حساب مراكز الفئات بتطبيق المعادلة رقم (2-3)

الوزن	عدد الدجاج (التكرار)	مركز الفئة (x)
600-	10	(600+620)/2= 610
620-	15	(620+640)/2=630
640-	20	650
660-	25	670
680-	20	690
700-720	10	(700+720)/710
Sum	100	

• نقط الإحداثيات هي:

مركز الفئة (x)	590	610	630	650	670	690	710	730
التكوار (y)	0	10	15	20	25	20	10	0

● التمثيل البياني لنقط الإحداثيات وتوصيلها بخطوط مستقيمة، كما هو مبين بالشكل (2-4)

3/3/2 المنحني التكراري

بإتباع نفس الخطوات السابقة في رسم المضلع يمكن رسم المنحنى التكراري، ولكن يتم تمهيد الخطوط المنكسرة في شكل منحنى بحيث يمر بأكثر عدد من النقاط، وفي المثال السابق يمكن رسم المنحنى التكراري، والشكل (2-5) يبين هذا الشكل.

شكل (2-5) المنحنى التكراري لأوزان عينة من الدجاج حجمها 100 دجاجة

كما يمكن رسم المنحنى التكراري النسبي بتمثيل التكرارات النسبية على المحور الرأسي بدلا من التكرارات المطلقة، ومن ثم يأخذ هذا المنحنى الشكل رقم (2-6) التالي:

شكل (2-6) المنحنى التكراري النسبي لأوزان عينة من الدجاج حجمها 100 دجاجة

والمنحنى التكراري أعلاه موجب الالتواء، كما أن المساحة أسفل هذا المنحنى تعبر عن مجموع التكرارات النسبية، أي ألها تساوي الواحد الصحيح، وهناك أشكل مختلفة للمنحنى التكراري النسبي، تدل على أشكال توزيع البيانات، ومن أهمها ما يلى:

3/3 التوزيعات التكرارية المتجمعة

في كثير من الأحيان قد يحتاج الباحث إلى معرفة عدد المشاهدات التي تقل عن قيمة معينة أو تزيد عن قيمة معينة، ومن ثم يلجأ الباحث إلى تكوين جداول تجميعية صاعدة أو هابطة، وفيما يلي بيان كيفية تكوين كل نوع من هذين النوعين على حدة:

1/3/3 التوزيع التكراري المتجمع الصاعد

لتكوين الجدول التكراري المتجمع الصاعد، يتم حساب مجموع التكرارات (عدد القيم) التي تقل عن كل حد من حدود الفئات.

مثال (6-2)

الجدول التكراري التالي يبين توزيع 40 بقرة في مزرعة حسب كمية الألبان التي تنتجها البقرة في اليوم باللتر.

كمية الألبان	18-	22-	26-	30-	34-38	Sum
عدد الأبقار	4	9	15	8	4	40

و المطلوب:

- 1- كون جدول التوزيع التكراري المتجمع الصاعد.
- 2- كون جدول التوزيع التكراري المتجمع الصاعد النسبي.
 - 3- ارسم المنحني التكراري المتجمع الصاعد النسبي.
 - 4- من المنحنى المتجمع أوجد الآتي:
 - نسبة الأبقار التي يقل إنتاجها عن 28 لتر.
- كمية الإنتاج التي يقل عنها %25 من الأبقار.
- كمية الإنتاج التي يقل عنها %50 من الإنتاج.

الحل

1- التوزيع التكراري المتجمع الصاعد.

توزيع تكراري متجمع صاعد

التوزيع التكراري

	ردین ر دی
كمية الإنتاج باللتر	عدد الأبقار
18-	4
22-	9
26-	15
30-	8
34-38	4
Sum	40

أقل من	تكرار متجمع	تكرار متجمع
اقل س	صاعد	صاعد نسبي
أقل من 18	0	0.00
أقل من 22	4	0.10
أقل من 26	13	0.325
أقل من 30	28	0.70
أقل من 34	36	0.90
أقل من 38	40	1.00

- 2- التوزيع التكراري المتجمع الصاعد النسبي: يحسب التكرار المتجمع الصاعد النسبي بقسمة التكرار المتجمع الصاعد على مجموع التكرارات، كما هو مبين بالعمود الأخير في جدول التوزيع التكراري المتجمع الصاعد.
- 3- رسم المنحنى التكراري المتجمع الصاعد: المنحنى التكراري المتجمع الصاعد النسبي هو التمثيل البياني للتوزيع التكراري المتجمع الصاعد النسبي، حيث تمثل حدود الفئات على المحور الأفقي، والتكرار المتجمع الصاعد النسبي على المحور الرأسي، ويتم تمهيد المنحنى ليمر بالإحداثيات، كما هو مبين في الشكل التالي:

• نسبة الأبقار التي يقل إنتاجها عن 28 لتر هي 0.47 تقريبا.

• كمية الإنتاج التي يقل عنها %25 من قيم الإنتاج هي: 25 لتر تقريبا.

 كمية الإنتاج التي يقل عنها %50 من قيم الإنتاج هي: 28.5 لتر، ويطلق عليها الوسيط:

2/3/3 التوزيع التكراري المتجمع الهابط (النازل)

لتكوين الجدول التكراري المتجمع النازل، يتم حساب مجموع التكرارات (عدد القيم) التي تساوي أو تزيد عن كل حد من حدود الفئات.

مثال (2-7)

استخدم بيانات الجدول التكراري في مثال (2-6)، وأوجد الآتى:

- 1- كون التوزيع التكواري المتجمع النازل.
- 2- ارسم المنحني التكراري المتجمع النازل النسبي.

الحل:

1- تكوين التوزيع التكراري المتجمع النازل.

توزيع تكراري متجمع نازل

التوزيع التكراري

كمية الإنتاج باللتو	عدد الأبقار
18-	4
22-	9
26-	15
30-	8
34-38	4
Sum	40

أكثر مدائد مدادي	تكرار	تكرار متجمع
أكثر من أو يساوي	متجمع نازل	نازل نسبي
أكثر من أو يساوي 18	40	1.00
أكثر من أو يساوي 22	36	0.90
أكثر من أو يساوي 26	27	0.675
أكثر من أو يساوي 30	12	0.30
أكثر من أو يساوي 34	4	0.10
أكثر من أو يساوي 38	0	0.00

رسم المنحني التكراري المتجمع النازل.

ملاحظات:

- 1- يمكن رسم المنحنيان في شكل بياني واحد، ويلاحظ أنهما يتقاطعان عند نقطة تسمى الوسيط.
 - 2- يكون استخدامنا للمنحني المتجمع الصاعد أكثر وأوقع من الناحية التطبيقية.

4/3 العرض البياني للبيانات الوصفية

يمكن عرض البيانات الخاصة بمتغير وصفي في شكل دائرة بيانية أو أعمدة بيانية، يمكن من خلاله وصف ومقارنة مجموعات أو مستويات هذا المتغير.

1/4/3 الدائرة البيانية

لعرض بيانات المتغير الوصفي في شكل دائرة، يتم توزيع الــ 360° درجة حسب التكرار النسبي لمجموعات المتغير، حيث تحدد مقدار الزاوية الخاصة بالمجموعة رقم r بتطبيق المعادلة التالية:

التكرار النسبي للمجموعة
$$imes 360^\circ$$
 عقدار الزاوية

مثال (8-2)

الجدول التكراري التالي يبين توزيع عينة حجمها 500 أسرة حسب المنطقة التي تنتمي إليها.

المنطقة	الرياض	الشرقية	القصيم	الغربية	sum
عدد الأسر	150	130	50	170	500

مثل البيانات أعلاه في شكل دائرة بيانية.

الحل:

1- تحديد مقدار الزاوية المخصصة لكل منطقة، بتطبيق المعادلة:

التكرار النسبي للمنطقة $imes 360^{\circ} imes 360^{\circ}$ التكرار النسبي للمنطقة

المنطقة	عدد الأسر	التكرار النسبي	مقدار الزاوية
الوياض	150	0.30	$360 \times 0.30 = 108^{\circ}$
الشرقية	130	0.26	$360 \times 0.26 = 93.6^{\circ}$
القصيم	50	0.10	$360 \times 0.10 = 36^{\circ}$
الغربية	170	0.34	$360 \times 0.30 = 122.4^{\circ}$
Sum	500	1.00	360°

2- رسم الدائرة

يتم رسم دائرة وتقسيمها إلى أربع أجزاء لكل منطقة جزء يتناسب مع مقدار الزاوية المخصصة له، كما هو مبين في الشكل التالي:

شكل رقم (2-7) الدائرة البيانية لعينة حجمها 500 أسرة موزعة حسب المنطقة

ومن الشكل أعلاه يلاحظ أن نسبة الأسر التي تنتمي للمنطقة الغربية حوالي %34 وهي أكبر نسبة في العينة، بينما يكون نسبة الأسر في منطقة القصيم حوالي %10 وهي أقـل نـسبة في العينة.

الفص___ل الثالث

مقاييس الترعة المركزية

Central Tendency

1/3 مقدمة

في كثير من النواحي التطبيقية يكون الباحث في حاجة إلى حساب بعض المؤشرات التي يمكن الاعتماد عليها في وصف الظاهرة من حيث القيمة التي تتوسط القيم أو تترع إليها القيم ، ومن حيث التعرف على مدى تجانس القيم التي يأخذها المتغير، وأيضا ما إذا كان هناك قيم شاذة أم لا . والاعتماد على العرض البياني وحدة لا يكفى ، ولذا يتناول هذا الفصل، والذي يليه عرض بعض المقاييس الإحصائية التي يمكن من خلالها التعرف على خصائص الظاهرة محل البحث، وكذلك إمكانية مقارنة ظاهرتين أو أكثر ، ومن أهم هذه المقاييس ، مقاييس النوعة المركزية والتشتت .

2/3 مقاييس الترعة المركزية

تسمى مقاييس الترعة المركزية بمقاييس الموضع أو المتوسطات ، وهى القيم التى تتركز القيم حولها ، ومن هذه المقاييس ، الوسط الحسابي ، والمنوال ، والوسيط ، والوسط الهندسي ، والوسط التوافقي ، والرباعيات ، والمئينات ، وفيما يلي عرض الأهم هذه المقاييس

Arithmetic Mean الحسابي 1/2/3

من أهم مقاييس الترعة المركزية ، وأكثرها استخداما في النواحي التطبيقية ، ويمكن حسابه للبيانات المبوبة وغير المبوبة ، كما يلي :

أولا: الوسط الحسابي للبيانات غير المبوبة

يعرف الوسط الحسابي بشكل عام على أنه مجموع القيم مقسوما على عددها . فإذا كان لدينا $x_1,x_2,...,x_n$. من القيم ، ويرمز لها بالرمز $x_1,x_2,...,x_n$.

الوسط الحسابي لهذه القيم ، ونرمز له بالرمز \overline{x} يحسب بالمعادلة التالية :

$$\frac{\frac{-\sqrt{n}}{n}}{2} = \frac{-\sqrt{n}}{2}$$
 الوسط الحسابي = $\frac{-\sqrt{n}}{2}$ عدد القيم $= \frac{\sqrt{n}}{2}$ (1-17) $= \frac{\sqrt{n}}{2}$

حيث يدل الرمز Σ على المجموع .

مثال (1-3)

فيما يلى درجات 8 طلاب في مقرر 122 إحصاء تطبيقي .

34 32 42 37 35 40 36 40

والمطلوب إيجاد الوسط الحسابي لدرجة الطالب في الامتحان .

الحـــل

لإيجاد الوسط الحسابي للدرجات تطبق المعادلة رقم (1-3) كما يلى:

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

$$= \frac{34 + 32 + 42 + 37 + 35 + 40 + 36 + 40}{8} = \frac{296}{8} = 37$$

أي أن الوسط الحسابي لدرجة الطالب في اختبار مقرر 122 إحص يساوي 37 درجة

ثانيا: الوسط الحسابي للبيانات المبوبة

من المعلوم أن القيم الأصلية ، لا يمكن معرفتها من جدول التوزيع التكراري ، حيث أن هذه القيم موضوعة في شكل فئات ، ولذا يتم التعبير عن كل قيمة من القيم التي تقع داخل حدود الفئة بمركز هذه الفئة ، ومن ثم يؤخذ في الاعتبار أن مركز الفئة هو القيمة التقديرية لكل مفردة تقع في هذه الفئة.

فإذا كانت k هي عدد الفئات ، وكانت X_1, X_2, \dots, X_k هي مراكز هذه الفئات ، فإذ كانت ، فإن الوسط الحسابي يحسب بالمعادلة التالية:

$$\overline{\overline{x}} = \frac{x_1 f_1 + x_2 f_2 + \dots + x_k f_k}{f_1 + f_2 + \dots + f_k} = \frac{\sum\limits_{i=1}^k x_i f_i}{\sum\limits_{i=1}^k f_i}$$

$$(x-x)$$

مشال (2-3)

الجدول التالي يعرض توزيع 40 تلميذ حسب أوزالهم .

فئات الوزن	32-34	34-36	36-38	38-40	40-42	42-44
عدد التلاميذ	4	7	13	10	5	1

والمطلوب إيجاد الوسط الحسابي.

1 1

- الله الحسابي باستخدام المعادلة رقم (2−3) يتم إتباع الخطوات التالية :

.
$$x$$
 ایجاد مجموع التکوارات x . $\sum f$ الفئات x -1

$$\sum xf$$
 وحساب الجموع التكرار المناظر له (xf) ، وحساب المجموع -3

$$4$$
 - حساب الوسط الحسابي بتطبيق المعادلة رقم (2-3) .

فئات الوزن	التكوارات	مراكز الفئات	x f
(C)	f	X	v
32-34	4	$2=33 \div (32+34)$	33=132×4
34-36	7	35	$35=245\times7$
36-38	13	37	37=481×13
38-40	10	39	39=390×10
40-42	5	41	$41=205\times 5$
42-44	1	43	43=43×1
المجموع	40		1496

إذا الوسط الحسابي لوزن التلميذ هو:

$$\overline{x} = \frac{\sum_{i=1}^{6} x_i f_i}{\sum_{i=1}^{6} f_i} = \frac{1496}{40} = 37.4 \text{ k.g}$$

أى أن متوسط وزن التلميذ يساوى 37.4 k.g

خصائص الوسط الحسابي

يتصف الوسط الحسابي بعدد من الخصائص ، ومن هذه الخصائص ما يلي :

: هي x هي أي أنه إذا كانت قيم x هي -1 الوسط الحسابي هو: x هي أي أنه إذا كانت قيم x هي x هي أي الوسط الحسابي هو:

$$\overline{\overline{x}} = \frac{a+a+\ldots+a}{n} = \frac{na}{n} = a$$

ومثال على ذلك ، لو اخترنا مجموعة من 5 طلاب ، ووجدنا أن كل طالب وزنه 63 كيلوجرام ، فإن متوسط وزن الطالب في هذه المجموعة هو :

$$\overline{x} = \frac{63+63+63+63+63}{5} = \frac{315}{5} = 63 \text{ k.g}$$

2- مجموع انحرافات القيم عن وسطها الحسابي يساوى صفرا ، ويعبر عن هذه الخاصية بالمعادلة .

$$\sum (x - \overline{x}) = 0$$

ويمكن التحقق من هذه الخاصية باستخدام بيانات مثال (2-1) ، نجد أن درجات الطلاب هي

: اذا ، $\overline{x} = 37$ ، والوسط الحسابي للدرجة هو ، 34, 32, 42, 37, 35, 40, 36, 40:

х	34	32	42	37	35	40	36	40	296
$(x-\overline{x})$	34-37	32-37	42-37	37-37	35-37	40-37	36-37	40-37	
(x-37)	-3	-5	5	0	-2	3	-1	3	0

$$\sum (x-37) = 0$$
 : 0

-3 إذا أضيف مقدار ثابت إلى كل قيمة من القيم ، فإن الوسط الحسابي للقيم المعدلة (بعد الإضافة) يساوى الوسط الحسابي للقيم الأصلية (قبل الإضافة) مضافا إليها هذا المقدار الثابت . فإذا كانت القيم هي : $x_1, x_2, ..., x_n$ ، وتم إضافة مقدار ثابت (a) إلى كل قيمة من القيم ، ونرمز للقيم الحديدة بالرمز y ، أي أن y = x + a ، فإن : الوسط الحسابي لقيم y (القيم بعد الإضافة) هو:

$$(\overline{y} = \overline{x} + a)$$

حيث أن \overline{y} هو الوسط الحسابي للقيم الجديدة ، ويمكن التحقق من هذه الخاصية باستخدام بيانات مثال رقم (1-3) .

إذا قرر المصحح إضافة 5 درجات لكل طالب ، فإن الوسط الحسابي للدرجات المعدلة يصبح قيمته {37+5)=42} ، والجدول التالي يبين ذلك .

Х	34	32	42	37	35	40	36	40	296
y = (x + 5)	34+5	32+5	42+5	37+5	35+5	40+5	36+5	40+5	225
	39	37	47	42	40	45	41	45	336

نجد أن مجموع القيم الجديدة هو : y = 336 ، ومن ثم يكون الوسط الحسابي للقيم الجديدة هو :

$$\overline{y} = \frac{\sum y}{n} = \frac{336}{8} = 42 \longrightarrow (\overline{x} + 5 = 37 + 5 = 42)$$

4- إذا ضرب مقدار ثابت (a) في كل قيمة من القيم ، فإن الوسط الحسابي للقيم المعدلة (القيم الناتجة بعد الضرب) يساوى الوسط الحسابي للقيم الأصلية (القيم بعد التعديل) مضروبا في هذا المقدار بعد الثابت . أى أنه إذا كان y=a ، ويكون الوسط الحسابي للقيم الجديدة y هو :

$$\overline{y} = a \overline{x}$$

ويمكن للطالب أن يتحقق من هذه الخاصية باستخدام نفس بيانات المثال السابق . فإذا كان تصحيح الدرجة من 50 ، وقرر المصحح أن يجعل التصحيح من 50 درجة ، بمعنى أنه سوف يضرب كل درجة في قيمة ثابتة (a=2) ، ويصبح الوسط الحسابي الجديد هو $\overline{y}=a$ $\overline{x}=2(37)=74$

5- مجموع مربعات انحرافات القيم عن وسطها الحسابي أقل ما يمكن ، أي أن:

$$\left[\sum (x - \overline{x})^2 \langle \sum (x - a)^2 \text{ if } a \neq \overline{x} \right]$$
(V-Y)

$$a \neq 37$$
 أبي قيم $\sum (x-37)^2 < \sum (x-a)^2$ أبي فإن المثال السابق فإن

ثالثا: الوسط الحسابي المرجح

في بعض الأحيان يكون لكل قيمة من قيم المتغير أهمية نسبية تسمى أوزن ، أو ترجيحات ، وعدم أخذ هذه الأوزان في الاعتبار عند حساب الوسط الحسابي ، تكون القيمة المعبرة عن الوسط الحسابي غير دقيقة ، فمثلا لو أخذنا خمسة طلاب ، وسجلنا درجات هؤلاء الطلاب في مقرر الإحصاء التطبيقي ، وعدد ساعات الاستذكار في الأسبوع .

مسلسل	1	2	3	4	5	sum
x (الدرجة)	23	40	36	28	46	173
W (عدد ساعات الاستذكار)	1	3	3	2	4	

نجد أن الوسط الحسابي غير المرجح للدرجة الحاصل عليها الطالب هي :

$$\bar{x} = \frac{\sum x}{n} = \frac{23 + 40 + 36 + 28 + 46}{5} = \frac{173}{5} = 346$$

وإذا أردنا أن نحسب الوسط الحسابي للدرجات ${\cal X}$ المرجحة بعدد ساعات الاستذكار ${\cal W}$ ، يتم تطبيق المعادلة التالية :

$$(\overline{w}) = \frac{\sum xw}{\sum w} = \frac{23 \times 1 + 40 \times 3 + 36 \times 3 + 28 \times 2 + 46 \times 4}{1 + 3 + 3 + 2 + 4}$$
$$= \frac{23 + 120 + 108 + 56 + 184}{13} = \frac{491}{13} = 37.769$$

وهذا الوسط المرجح أكثر دقة من الوسط الحسابي غير المرجح . \overline{W} يحسب بتطبيق المعادلة التالية :

$$\overline{\left(\overline{w}\right) = \frac{\sum xw}{\sum w}}$$
(A-T)

مزايا وعيوب الوسط الحسابي

يتميز الوسط الحسابي بالمزايا التالية:

- أنه سهل الحساب .
- يأخذ في الاعتبار كل القيم .
- أنه أكثر المقاييس استخداما وفهما .

و من عيوبه .

- أنه يتأثر بالقيم الشاذة والمتطرفة .
- يصعب حسابه في حالة البيانات الوصفية .
- يصعب حسابه في حالة الجداول التكرارية المفتوحة .

Median الوسيط 2/2/3

هو أحد مقاييس الترعة المركزية، والذي يأخذ في الاعتبار رتب القيم ، ويعرف الوسيط بأنه القيمة التي يقل عنها نصف عدد القيم (n/2) ، ويزيد عنها النصف الآخر (n/2) ، أي أن 50% من القيم أقل منه، 50% من القيم أعلى منه. وفيما يلي كيفية حساب الوسيط في حالة البيانات غير مبوبة ، والبيانات المبوبة.

أولا: الوسيط للبيانات غير المبوبة

لبيان كيف يمكن حساب الوسيط للبيانات غير المبوبة ، نتبع الخطوات التالية:

- ترتب القيم تصاعديا .
- $\left(\frac{n+1}{2}\right) =$ تحدید رتبة الوسیط، وهي : رتبة الوسیط \bullet
 - إذا كان عدد القيم (n) فردي فإن الوسيط هو:

$$\left(\frac{n+1}{2}\right) R^{3} R$$

• إذا كان عدد القيم (n) زوجي، فإن الوسيط يقع بين القيمة رقم (n/2)، والقيمــة رقــم اذا كان عدد القيم (n/2))، ومن ثم يحسب الوسيط بتطبيق المعادلة التالى:

$$\frac{\left(\frac{n}{2}+1\right) + \left(\frac{n}{2}\right) + \left(\frac{n}{2}\right)}{2} + \left(\frac{n}{2}\right) + \left(\frac{$$

مشال (3-3)

تم تقسيم قطعة أرض زراعية إلى 17 وحدة تجريبية متشابهة ، وتم زراعتها بمحصول القمح ، وتم استخدام نوعين من التسميد هما : النوع (a) وجرب على 7 وحدات تجريبية ، والنوع (b) وجرب على 7 وحدات تجريبية ، وبعد انتهاء الموسم الزراعي ، تم تسجيل إنتاجية الوحدة بالطن / هكتار ، وكانت على النحو التالى :

والمطلوب حساب وسيط الإنتاج لكل نوع من السماد المستخدم، ثم قارن بينها.

الحسل

أولا: حساب وسيط الإنتاج للنوع الأول (a)

• ترتيب القيم تصاعديا:

				قيمة الوسيط			
الإنتاج	1.2	1.5	2	2.3	2.75	3	3.25
المرتبة	1	2	2	4	5	6	7
	•			رتية الوسيط			

- (n=7) عدد القيم فردى
- . ((n+1)/2 = (7+1)/2 = 4):
- ويكون الوسيط هو القيمة رقم 4 ، أي أن وسيط الإنتاج للنوع a هو:

$$Med_a = 2.3$$
 طن / هکتار

ثانيا : حساب وسيط الإنتاج للنوع الثاني (b) :

• ترتيب القيم تصاعديا .

• عدد القيم زوجي
$$(n=10)$$
 إذا

• (
$$(n+1)/2 = (10+1)/2 = 5.5$$
) : $(n+1)/2 = (10+1)/2 = 5.5$

$$Med_b = \frac{2.5 + 3}{2} = 2.75$$
 طن / هکتار

و بمقارنة النوعين من السماد ، نجد أن وسيط إنتاجية النوع (a) أقل من وسيط إنتاجية النوع . $Med_b > Med_a$: أي أن ، (b)

ثانيا: الوسيط للبيانات المبوبة

لحساب الوسيط من بيانات مبوبة في جدول توزيع تكراري ، يتم إتباع الخطوات التالية .

- تكوين الجدول التكراري المتجمع الصاعد .
 - $\left(\frac{n}{2}\right) = \left(\frac{\sum f}{2}\right) :$ عدید رتبة الوسیط •
 - تحديد فئة الوسيط كما في الشكل التالى:

$$(A)$$
 الحد الأدنى لفئة الوسيط f_1 متجمع صاعد سابق f_1 الوسيط $(n/2)$ الوسيط f_2 تكرار متجمع صاعد لاحق f_2 صاعد لاحق f_3

• ويحسب الوسيط ، بتطبيق المعادلة .

$$Med = A + \frac{\frac{n}{2} - f_1}{f_2 - f_1} \times L$$
 (11-7)

حيث أن:

هي طول فئة الوسيط، وتحسب بالمعادلة التالية: L

L = Upper - Lower

مثال (3-4)

فيما يلي توزيع 50 عجل متوسط الحجم ، حسب احتياجاته اليومية من الغذاء الجاف بالكيلو جرام

فئات الاحتياجات اليومية	1.5 -	4.5 -	7.5 -	10.5 -	13.5 – 16.5
f عدد العجول	4	12	19	10	5

أو لا : حساب الوسيط حسابيا
$$\frac{n}{2} = \frac{\sum f}{2} = \frac{50}{2} = 25$$
 : ورتبة الوسيط :

الجدول التكراري المتجمع الصاعد :

أقل من	تكرار فتجمع صاعد	
1.5	0	
4.5	4	
A 7.5	f_{1-16}	
Med (الوسيط)	25	رتبة الوسيط
10.5	f_2 35	
13.5	45	
16.5	50	

- تحديد فئة الوسيط : وهي الفئة التي تشمل قيمة الوسيط ، وهي قيمة أقل منها (n/2) من القيم ، ويمكن معرفتها بتحديد التكرارين المتجمعين الصاعدين الذين يقع بينهما رتبة الوسيط $(35\ ,\$ نوفى الجدول أعلاه نجد أن رتبة الوسيط (25) تقع بين التكرارين المتجمعين (n/2)(16) ، ويكون الحد الأدبي لفئة الوسيط هو المناظر للتكرار المتجمع الصاعد السابق 7.5 ، والحد الأعلى لفئة الوسيط هو المناظر للتكرار المتجمع الصاعد اللاحق 10.5 . أي أن فئة الوسيط هي: (7.5-10.5).
 - وبتطبيق معادلة الوسيط رقم (3-11) على هذا المثال نجد أن :

$$A = 7.5$$
, $f_1 = 16$, $f_2 = 35$, $L = 10.5 - 7.5 = 3$

إذا الوسيط قيمته هي:

$$Med = A + \frac{\frac{n}{2} - f_1}{f_2 - f_1} \times L = 7.5 + \frac{25 - 16}{35 - 16} \times 3$$
$$= 7.5 + \frac{9}{19} \times 3 = 7.5 + \frac{27}{19} = 7.5 + 1.421 = 8.921 \ k.g$$

ثانيا : حساب الوسيط بيانيا . • تمثيل جدول التوزيع التكراري المتجمع الصاعد بيانيا .

- تحديد رتبة الوسيط (25) على المنحني التكراري المتجمع الصاعد . ثم رسم خط مستقيم أفقى حتى يلقى المنحنى في النقطة (a).
 - إسقاط عمود رأسى من النقطة (a) على المحور الأفقى .
 - نقطة تقاطع الخط الرأسي مع المحور الأفقى تعطى قيمة الوسيط.
 - Med = 8.6 الوسيط كما هو مبين في الشكل

مزايا وعيوب الوسيط

من مزايا الوسيط

- 1- لا يتأثر بالقيم الشاذة أو المتطرفة .
 - 2- كما أنه سهل في الحساب.
- 3- مجموع قيم الانحرافات المطلقة عن الوسيط أقل من مجموع الانحرافات المطلقة عن أي قيم $\sum |x - Med| \le \sum |x - a|, \ a \ne Med$ **أخرى** . أي أن :

ومن عيوب الوسيط

1- أنه لا يأخذ عند حسابه كل القيم في الاعتبار، فهو يعتمد على قيمة أو قيمتين فقط.

2- يصعب حسابه في حالة البيانات الوصفية المقاسة بمعيار اسمى nominal

Mode المنوال 3/2/3

يعرف المنوال بأنه القيمة الأكثر شيوعا أو تكرارا ، ويكثر استخدامه في حالة البيانات الوصفية ، لمعرفة النمط (المستوى) الشائع، ويمكن حسابة للبيانات المبوبة وغير المبوبة كما يلي:

أولا: حساب المنوال في حالة البيانات غير المبوبة

ثانيا: حساب المنوال في حالة البيانات المبوبة (طريقة الفروق)

$$Mod = A + \frac{d_1}{d_1 + d_2} \times L$$

حيث أن :

A : الحد الأدبى لفئة المنوال (الفئة المناظرة لأكبر تكرار) .

الفرق الأول = (تكرار فئة المنوال – تكرار سابق) : d_1

الفرق الثانى = (تكوار فئة المنوال – تكرار لاحق) : d_2

. طول فئة المنوال L

فئــــة المنوال = الفئة المناظرة لأكبر تكرار

تکرار سابق
$$d_1$$
 (تکرار فئة المنوال – تکرار سابق d_1 تکرار فئة المنوال d_2 تکرار فئة المنوال – تکرار سابق d_2

مثال (3-5)

اختيرت عينات عشوائية من طلاب بعض أقسام كلية علوم الأغذية والزراعة ، وتم رصد درجات هؤلاء الطلاب في مقرر 122 إحصاء التطبيقي ، وكانت النتائج كالتالي:

قسم وقاية النباتات	80	77	75	77	77	77	65	70	58	67
قسم علوم الأغذية	88	68	60	75	93	65	77	85	95	90
قسم الاقتصاد	80	65	69	80	65	88	76	65	86	80
قسم الإنتاج الحيواني	85	73	69	85	73	69	69	73	72	85

والمطلوب حساب منوال الدرجات لكل قسم من الأقسام:

الحــل

هذه البيانات غير مبوبة ، لذا فإن :

المنوال = القيمة الأكثر تكرارا والجدول التالي يبين منوال الدرجة لكل قسم من الأقسام .

القسم	القيمة الأكثر تكرار	القيمة المنوالية
قسم وقاية النباتات	الدرجة 77 تكورت 4 مرات	المنوال = 77 درجة
قسم علوم الأغذية	جميع القيم ليس لها تكرار	لا يوجد منوال
قسم الاقتصاد	الدرجة 65 تكررت 3 مرات الدرجة 80 تكررت 3 مرات	يوجمد منوالان هما : المنوال الأول = 65 المنوال الثاني = 80
قسم الإنتاج الحيواني	الدرجة 69 تكررت 3 مرات الدرجة 73 تكررت 3 مرات الدرجة 85 تكررت 3 مرات	يوجمد ثلاث منوال هي : المنوال الأول = 69 المنوال الثاني = 73 المنوال الثالث = 85

مثال (6-3)

فيما يلي توزيع 30 أسرة حسب الإنفاق الاستهلاكي الشهري لها بالألف ريال .

فئات الإنفاق	2 -	5 -	8 -	11 -	14 - 17
f عدد الأسر	4	7	10	5	4

والمطلوب حساب منوال الإنفاق الشهري للأسرة، باستخدام طريقة الفروق .

الحل

لحساب المنوال لهذه البيانات يتم استخدام المعادلة رقم (3-12) ، ويتم إتباع الآتي :

• تحديد الفئة المنوالية

الفئة المنوالية هي الفئة المناظرة لأكبر تكرار : (11-8)

	الفئات	التكرارات	
	2 -	4	
	5 -	7 —	$d_1 = 10 - 7 = 3$
فئة المنوال	-8 -	10 🔷	أكير تكرار
A=8	11 -	5	$d_2 = 10 - 5 = 5$
	14 - 17	4	

: أن d أن أن d

$$d_1 = (10-7) = 3$$
 $d_2 = (10-5) = 5$

- (L=3) ، وكذلك طول الفئة المنوالية (A=8) ، وكذلك طول الفئة •
- وبتطبيق المعادلة الخاصة بحساب المنوال في حالة البيانات المبوبة . نجد أن :

$$Mod = A + \frac{d_1}{d_1 + d_2} \times L$$

= $8 + \frac{3}{3+5} \times 3 = 8 + 1.125 = 9.125$

3/3 استخدام مقاييس الترعة المركزية في تحديد شكل توزيع البيانات

يمكن استخدام الوسط الحسابي والوسيط والمنوال في وصف المنحنى التكراري، والذي يعبر عن شكل توزيع البيانات ، كما يلي :

شكل (1-3)

- يكون المنحني متماثل إذا كان:
- الوسط = الوسيط = المنوال.
- یکون المنحنی موجب الالتواء (ملتوي جهة الیمین) إذا کان:

الوسط > الوسيط > المنوال

• يكون المنحنى سالب الالتواء (ملتوي جهة اليسار) إذا كان : الوسط < الوسيط < المنوال

مثال عام (3-7)

قام مدير مراقبة الإنتاج بسحب عينة من 10 عبوات من المياه المعبأة للشرب ، ذات الحجم 5 لتر ، والمنتجة بواسطة إحدى شركات تعبئة المياه لفحص كمية الأملاح الذائبة، وكانت كالتالي : 110 123 121 123 124 119 123 121 والمطلوب : حساب الوسط الحسابي، والوسيط، والمنوال، ثم حدد شكل الالتواء لهذه البيانات .

الحا

حساب الوسط الحسابي:

$$\overline{x} = \frac{\sum x}{n} = \frac{1211}{10} = 121.1$$

• حساب الوسيط:

$$(n+1)/2 = (10+1)/2 = 5.5$$
: the sum of the

ترتيب القيم تصاعديا

الطاقة	115	119	119	121	قيمة الوسيط <mark>122</mark> 123	123	123	123	124
الرتبة	1	2	3	4	6 <u>5.5</u> 5 رتبة الوسيط	7	8	9	10

عدد القيم = 10 ، وهو عدد زوجي. الوسيط = الوسط الحسابي للقيمتين رقم (5, 6)

$$Med = \frac{121 + 123}{2} = \frac{244}{2} = 122$$

• حساب المنوال:

المنوال يساوى القيمة الأكثر تكرارا: القيمة 123 تكررت أكثر من غيرها ، إذا

$$Mod = 123$$

وبمقارنة الوسط والوسيط و المنوال نجد أن :

نجد أن : الوسط < الوسيط < المنوال ، إذا توزيع بيانات كمية الأملاح سالبة الالتواء.

مثال (3-8)

الجدول التكراري التالي يعرض توزيع 100 عامل في مزرعة حسب الأجر اليومي بالريال .

الأجر	50 -	70 -	90 -	110 -	130 -	150 -	170 - 190
عدد العمال	8	15	28	20	15	8	6

والمطلوب :

- حساب الوسط والوسيط والمنوال .
- بيان شكل توزيع الأجور في هذه المزرعة .

الحل

• حساب الوسط والوسيط والمنوال .

 \overline{x} الوسط الحسابي

فئات الأجر	التكوارات (f)	مراكز الفئات (x)	f x
50 - 70	8	60	480
70 - 90	15	80	1200
90 - 110	28	100	2800
110 - 130	20	120	2400
130 - 150	15	140	2100
150 - 170	8	160	1280
170 - 190	6	180	1080
المجموع	100		11340

$$\overline{X} = \frac{\sum fx}{\sum f} = \frac{11340}{100} = 113.4 \text{ R.S}$$

ثانيا: الوسيط Med

(n/2 = 100/2 = 50) : رتبة الوسيط

تكوين التوزيع التكراري المتجمع الصاعد .

أقل من	تكرار متجمع صاعد
أقل من 50	0
أقل من 70	8
أقل من 90	$23 \leftarrow f_1$
أقل من 110	$51 \leftarrow f_1$
أقل من 130	71
أقل من 150	86
أقل من 170	94
أقل من 190	100

رتبة الوسيط (50)

من الجدول أعلاه نجد أن :

$$\frac{n}{2} = 50$$
 , $f_1 = 23$, $f_2 = 51$, $A = 90$, $L = 110 - 90 = 20$; إذا الوسيط قيمته هي

$$Med = A + \frac{\frac{n}{2} - f_1}{f_2 - f_1} \times L = 90 + \frac{50 - 23}{51 - 23} \times 20$$
$$= 90 + \frac{27}{28} \times 20 = 90 + \frac{540}{28} = 90 + 19.286 = 109.3 R.S$$

ثالثا : المنوال Mod

الفئة المنوالية ، هي الفئة المناظرة لأكبر تكرار

أكبر تكرار = 28 ، وهو يناظر الفئة التقريبية (110 - 90) .

$$d_2 = 28 - 20 = 8$$
 , $d_1 = 28 - 15 = 13$: $d_2 = 28 - 20 = 8$

$$L=110-90=20$$
 : طول الفئة $A=90$: الحد الأدنى للفئة

إذا المنوال يحسب بتطبيق المعادلة التالية:

$$Mod = A + \frac{d_1}{d_1 + d_2} \times L = 90 + \frac{13}{13 + 8} \times 20 = 90 + \frac{260}{21} = 1024 \text{ R.S}$$

• بيان شكل التوزيع .

من النتائج السابقة ، نجد أن :

Mod=1024: الوسط الحسابي : $\overline{x}=113.4$ الوسيط : Med=109.3 المنوال $\overline{x}=113.4$ الوسط > الوسيط > المنوال إذا توزيع بيانات الأجور موجب الالتواء. كما هو مبين

في الشكل التالي:

4/3 الرباعيات Quartiles

عند تقسيم القيم إلى أربع أجزاء متساوية، يوجد ثلاث إحصاءات ترتيبي تسمى بالرباعيات، هي:

• الربيع الأول: وهو القيمة التي يقل عنها ربع عدد القيم، أي يقل عنها %25 من القيم، ويرمز له

 Q_1 بالرمز

- الربيع الثاني: وهو القيمة التي يقل عنها نصف عدد القيم، أي يقل عنها 50% من القيم، ويرمز له بالرمز Q_2 ، ومن ثم يعبر هذا الربيع عن الوسيط.
- الربيع الثالث: وهو القيمة التي يقل عنها ثلاث أرباع عدد القيم، أي يقل عنها 75% من القيم، ويرمز له بالرمز Q_3 .

والشكل (3-3) يبين أماكن الرباعيات الثلاث.

	759 من القيم أقل من الربيع الثالث	Vo	
ل من البيع الثاني 25% من القيم أقل من الربع الأول	50% من الفيم أف		
3.	Q1 Q ئان دىج أو	22 Q نائ رسح	-

ولحساب أي من الرباعيات الثلاث، يتم إتباع الآتى:

• بفرض أن عدد القيم عددها n، وألها مرتبة كالتالي:

القيم مرتبة:
$$X_{(1)} < X_{(2)} < X_{(3)} < X_{(n)}$$
 : الرتبة : 1 2 3 n

- $R = (n+1) imes \left(rac{i}{4}
 ight) \ : (Q_i)$ ، i رتبة الرباعي رقم lacktriangle
- $Q_i = X_{(R)}$: إذا كانت R عددا صحيحا فإن قيمة الربيع هوR عددا صحيحا
- ومن، $X_{(l)} < Q_i < X_{(u)}$ يقع في المدى Q_i يقع في المدى . Q_i ومن أذا كانت Q_i عدد كسري، فإن الرباعي Q_i بالمعادلة التالية:

$$Q_i = X_{(l)} + (R - l)(X_{(u)} - X_{(l)})$$
(14-4)

مثال (9-3)

فيما يلي كمية الإنتاج اليومي من الحليب باللتر للبقرة الواحدة لعينة حجمها 10 أبقار اختيرت من مزرعة معينة:

25 23 29 32 34 29 20 18 27 30 احسب الرباعيات الثلاث لكمية الإنتاج، وما هو تعليقك؟

الحل:

لحساب الرباعيات الثلاث، يتم إتباع الآتى:

• ترتيب القيم تصاعديا:

			'	
قمة الربيع	22.25	28	30.5	

القيم	18	20	23	25	27	29	29	30	32	34
الرتبة	1	2	3	4	5	6	7	8	9	10
رتبة الربيع		2.75				.5		8.	25	

ullet حساب الربيع الأول ($Q_{
m l}$):

$$R=(n+1) imes \left(rac{i}{4}
ight) = (10+1) imes \left(rac{1}{4}
ight) = 2.75$$
 رتبة الربيع الأول هي: $(14-3)$ غيد أن: يقع الربيع الأول بين القيمتين: $(20 < Q_1 < 23)$ ، وبتطبيق المعادلة $(14-3)$ نجد أن: $l=2, \ R=2.75$, $x_{(l)}=20$. $x_{(u)}=23$

إذا :

$$Q_1 = x_{(l)} + (R - l) \times (x_{(u)} - x_{(l)}) = 20 + 0.75(23 - 20) = 22.25$$

 Q_2 (الوسيط) الربيع الثاني Q_2

$$R = (n+1) \times \left(\frac{i}{4}\right) = (10+1) \times \left(\frac{2}{4}\right) = 5.5$$
 رتبة الربيع الثاني هي:

يقع الربيع الثاني بين القيمتين: $(27 < Q_2 < 29)$ ، وبتطبيق المعادلة (14-3) نجد أن: $l=5, \ R=5.5 \ , x_{(l)}=27 \ . x_{(u)}=29$

إذا :

$$Q_2 = x_{(l)} + (R - l) \times (x_{(u)} - x_{(l)}) = 27 + 0.5(29 - 27) = 28$$

 Q_3 صاب الربيع الثالث •

$$R = (n+1) \times \left(\frac{i}{4}\right) = (10+1) \times \left(\frac{3}{4}\right) = 8.25$$
 رتبة الربيع الثالث هي: $R = (n+1) \times \left(\frac{3}{4}\right) = 8.25$ رتبة الربيع الثالث و

يقع الربيع الثالث بين القيمتين: $(30 < Q_3 < 32)$ ، وبتطبيق المعادلة (14-3) نجد أن:

$$l = 8$$
, $R = 8.25$, $x_{(l)} = 30$. $x_{(u)} = 32$

إذا :

$$Q_3 = x_{(l)} + (R - l) \times (x_{(u)} - x_{(l)}) = 30 + 0.25(32 - 30) = 30.5$$

من النتائج السابقة نجد أن:

- 25.25 من الأبقار يقل إنتاجه عن 22.25 لتر يوميا.
 - 50% من الأبقار يقل إنتاجه عن 28 لتر يوميا.
 - 75% من الأبقار يقل إنتاجه عن 30.5 لتر يوميا.

تمارين

أولا: استخدم البيانات التالية ، ثم أجب عما هو مطلوب باختيار الإجابة الصحيحة من بين الإجابات الأربعة : فيما يلى الطاقة التصديرية من المياه بالألف كيلومتر مكعب يوميا (x) ، لعدد 10 محطات تحلية .

x: 342 216 105 291 107 216 210 165 90 216

- 1- هذه البيانات من النوع:
- (a) الكمى المنفصل (b) الكمى المتصل (c) الوصفى الترتيبي
 - :قیمتها $\sum x$ -2
 - 216 (d) 195.8 (c) 1958 (b)

(d) المدى

- (b) 1000 (a)
- 5- قيمة الطاقة التصديرية التي أقل منها %50 من القيم تسمى :
 (a) الوسيط (b) الوسيط (c) التباين
 - 4- القيمة الأكثر تكرارا تسمى:
- (a) الوسيط (b) الوسط (c) المنوال (d) الانحراف
 - 5- الوسط الحسابي للطاقة التصديرية قيمته:
 - 213 (d) 195.8 (c) 1958 (b) 216 (a)
 - 6- المنوال قيمته
 - 347 (d) 195.8 (c) 1958 (b) 216 (a)
 - 7- الوسيط قيمته
 - 216 (d) 195.8 (c) 1958 (b) 213 (a)
 - 8- تعتبر بيانات الطاقة التصديرية أعلاه لها توزيع
- (c) موجب (b) سالب الالتواء (b) غير معروف . الالتواء
- 9- إذا تم إدخال تعديل على هذه المحطات لزيادة الطاقة التصديرية لكل محطة 50 ألف كيلو متر
 مكعب ، يكون الوسط الحسابي للطاقة التصديرية بعد التطوير هو .
 - 245.8 (d) 195.8 (c)
- 1958 (b)
- 216 (a)
- ياخذها المتغير الجديد y=0.5x فإن الوسط الحسابي للقيم التي يأخذها المتغير الجديد y=0.5x
 - 245.8 (d) 195.8 (c)
- 97.9 (b)
- 216 (a)

ثانيا: فيما يلى التوزيع التكراري لـعدد 50 مزرعة حسب المساحة المتررعة بمحصول الطماطم بالألف دونم .

المساحة بالألف دونم	4.5 –	7.5 –	10.5 -	13.5 -	16.5-	19.5 – 22.5
عدد المزارع	3	8	12	15	10	2

(20 - 11)	الأسئلة من (ره للإجابة على	الجدول أعلا	استخدم بيانات
-----------	--------------	----------------	-------------	---------------

5 - 22.5	16.5-	13.5 -	1	10.5 -	5 –	7.	4.5 –	المساحة بالألف دونم
2	10	15		12	8		3	عدد المزارع
حدم بيانا	الجدول أعلاه	للإجابة ع	على الا	أسئلة من	-11)	(20 -	(
-11	رل الفئة قيمته							
	1 (a	(b)	2		(c)	3	(d)	5
-12	يد الأدبى للفئة ا	رابعة هو						
	14.5 (8	(b)	16		(c)	15	(d)	13.5
-13	كز الفئة الثانية	قيمته						
	9 (a	(b)	8		(c)	10	(d)	3
-14	مموع التكرار ال	سبى للفئاد	ت يسا	زى :				
	0.30 (a	(b)	0.20		(c)	1	(d)	1.50
-15	ا كانت x	هی مرکز	الفئة ،	f هو تک	ئرار الف	ئة فإن	ق $\sum fx$	يمته تساوى
	225 (a	(b)	225		(c)	50	(d)	681
-16	رسط الحسابى قيـ	ىتە تساوى						
	8.33 (a	(b)	13.5		(c)	13.62	(d) 1	681
-17	مئة التي يقع فيه							
	13.5 – (a 16.	(b)	19.5	16.5-	(c) 17	14 –	5 (d) 1	10.5 – 13.5
-18	بة الوسيط هي :							
	50 (a	(b)	10		(c)	25	(d)	1
-19	رسيط قيمته تسا	ری .						
	13.9 (a	(b)	13.5		(c)	15	5 (d)	12.5
-20	وال قيمته تساو	ى :						

14.625 (d) 13.5 (c) 15 (b) 14 (a)

21- من الإجابة 16 ، 19 ، 20 يكون شكل التوزيع . (a) ملتوى جهة (b) متماثل (c) سالب غير محدد

اليمين الإلتواء

ثالثا: قم بتسجيل البيانات التالية:

الإسم : الرقم الجامعي:

قم بتظليل الاختيار الصحيح من (1-1) ، ولا ينظر للإجابة التي بما مربعين مظللين :

(d)	(c)	(b)	(a)	رقم
				السؤال
				1
				2
				3
				4
				5
				6
				7
				8
				9
				10
				11
				12
				13
				14
				15
				16
				17
				18
				19
				20
				21
			l	

الفصـــل الرابـــع مقاييس التشتت

1/4 مقدمة

عند مقارنة مجموعتين من البيانات ، يمكن استخدام شكل التوزيع التكراري، أوالمنحنى التكراري ، وكذلك بعض مقاييس الترعة المركزية ، مثل الوسط الحسابي والوسيط ، والمنوال ، والإحصاءات الترتيبية ، ولكن استخدام هذه الطرق وحدها لا يكفي عند المقارنة ، فقد يكون مقياس الترعة المركزية للمجموعتين متساوي ، وربما يوجد اختلاف كبير بين المجموعتين من حيث مدى تقارب وتباعد البيانات من بعضها البعض ، أو مدى تباعد أو تقارب القيم عن مقياس الترعة المركزية .

ومثال على ذلك ، إذا كان لدينا مجموعتين من الطلاب ، وكان درجات المجموعتين كالتالى :

المجموعة الأولى	63	70	78	81	85	67	88
المجموعة الثانية	73	78	77	78	75	74	77

لو قمنا بحساب الوسط الحسابي لكل مجموعة ، نجد أن الوسط الحسابي لكل منهما يساوي 76 درجة ، ومع ذلك درجات المجموعة الثانية أكثر تجانسا من درجات المجموعة الأولى . من أجل ذلك لجأ الإحصائيون إلى استخدام مقاييس أخرى لقياس مدى تجانس البيانات، أو مدى انتشار البيانات حول مقياس الترعة المركزية، ويمكن استخدامها في المقارنة بين مجموعتين أو أكثر من البيانات، ومن هذه المقاييس ، مقاييس التشتت ، والالتواء ، والتفرطح ، وسوف نركز في هذا الفصل على هذه المقاييس .

Dispersion Measurements مقاييس التشتت 2/4

من هذه المقاييس: المدى، والانحراف الربيعي، والانحراف المتوسط، والتباين، والانحراف المعياري .

Rang المدى 1/2/4

هو أبسط مقاييس التشتت ، ويحسب المدى في حالة البيانات غير المبوبة بتطبيق المعادلة التالية .

المدى في حالة البيانات غير المبوبة = أكبر قراءة
$$-$$
 أقل قراءة $Rang = Max - Min$

وأما المدى في حالة البيانات المبوبة له أكثر من صيغة، ومنها المعادلة التالية:

مثال (1-4)

تم زراعة 9 وحدات تجريبية بمحصول القمح ، وتم تسميدها بنوع معين من الأسمدة الفسفورية ، وفيما يلى بيانات كمية الإنتاج من القمح بالطن/ هكتار .

4.8 6.21 5.4 5.18 5.29 5.18 5.08 4.63 5.03

والمطلوب حساب المدى.

الحسل

المدى = أكبر قراءة - أقل قراءة

4.63 = 6.21 أكبر قراءة = 6.21

إذا المدى هو:

Rang=Max-Min=6.21-4.63 =1.58

المدى يساوي 1.58 طن / هكتار.

مثال (2-4)

الجدول التكراري التالي يبين توزيع 60 مزرعة حسب المساحة المتررعة بالذرة بالألف دونم .

المساحة	15-20	20-25	25-30	30-35	35-40	40-45
عدد المزارع	3	9	15	18	12	3

والمطلوب حساب المدى للمساحة المتررعة بالذرة.

الحسل

المدى = مركز الفئة الأخيرة - مركز الفئة الأولى

مركز الفئة الأخيرة: 42.5=25/2=42.5 مركز الفئة الأولى: 7.5=25/2=35/2=17.5 مركز الفئة الأخيرة:

$$Rang = 42.5 - 17.5 = 25$$

أي أن المدى قيمته تساوي 25 دونم

مزايا وعيوب المدى

من مزايا المدى

- 1- أنه بسيط وسهل الحساب
- 2- يكثر استخدامه عند الإعلان عن حالات الطقس، و المناخ الجوي، مثل درجات الحرارة، والرطوبة، والضغط الجوي.
 - 3- يستخدم في مراقبة الجودة .

2- و من عيو به

- أنه يعتمد على قيمتين فقط ، ولا يأخذ جميع القيم في الحسبان .
 - يتأثر بالقيم الشاذة .

Quartile Deviation (Q) الانحراف الربيعي 2/2/4

يعتمد المدى على قيمتين متطرفتين ، هما أصغر قراءة ، وأكبر قراءة ، فإذا كان هناك قيم شاذة، ترتب على استخدامه كمقياس للتشتت نتائج غير دقيقة، من أجل ذلك لجأ الإحصائيون، إلى استخدام مقياس للتشتت يعتمد على نصف عدد القيم الوسطى، ويهمل نصف عدد القيم المتطرفة، ولذا لا يتأثر هذا المقياس بوجود قيم شاذة، ويسمى هذا المقياس بالانحراف الربيعي (Q)، ويحسب الانحراف الربيعى بتطبيق المعادلة التالية .

$$Q = \frac{Q_3 - Q_1}{2}$$

حيث أن Q_1 هو الربيع الأول ، Q_3 هو الربيع الثالث ، وقد بينا في الفصل الثالث كيف يمكن حساب هذان الرباعيان ، ومن المعادلة أعلاه ، يعرف الانحراف الربيعي بنصف المدى الربيعي ، أي أن :

استخدم بيانات مثال (1-4) ، ثم احسب الانحراف الربيعي لكمية الإنتاج من القمح .

الحــل

• ترتيب القيم تصاعديا

• حساب الربيع الأول Q₁

.
$$(n+1)\left(\frac{1}{4}\right) = (9+1)(0.25) = 2.5$$
 : الأول:

$$x_{(l)} = x_{(2)} = 4.8$$
, $x_{(u)} = x_{(3)} = 5.03$, $R = 2.5$, $l = 2$, $R - l = 0.5$

إذا

$$Q_1 = x_{(l)} + (r - l)(x_{(u)} - x_{(l)})$$

= 4.8 + 0.5(5.03 - 4.8) = 4.915

 (Q_3) الثالث الرباعي الثالث \bullet

$$(n+1)\left(\frac{3}{4}\right)=(9+1)\left(0.75\right)=7.5$$
 موقع الرباعي الثالث: $x_{(l)}=x_{(7)}=5.29$, $x_{(u)}=x_{(8)}=5.4$, $R=7.5$, $l=7$, $R-l=0.5$

إذا

$$Q_3 = x_{(l)} + (R - l)(x_{(u)} - x_{(l)})$$

= 5.29 + 0.5(5.4 - 5.29) = 5.345

• حساب الانحراف الربيعي

$$Q = \frac{Q_3 - Q_1}{2} = \frac{5.345 - 4.915}{2} = 0.215$$

إذا الانحراف الربيعي قيمته تساوي 0.215 طن/ هكتار .

مث___ال (4-4)

استخدم بيانات مثال رقم (2-4) في حساب نصف المدى الربيعي .

الح___ل:

عند حساب الربيع الأول أو الثالث يتبع نفس الأسلوب المستخدم في حساب الوسيط.

- تكوين الجدول التكراري المتجمع الصاعد
 - (Q_1) الأول (Q_1)

$$n(1/4)=60(0.25)=15$$
 : الأول المربيعي المربيعي الأول المربيعي المرب

$$f = 15 , f_1 = 12 , f_2 = 27 , A = 25 , L = 5$$

$$Q_1 = A + \frac{f - f_1}{f_2 - f_1} L$$

$$= 25 + \frac{15 - 12}{27 - 12} (5) = 25 + \frac{3}{15} (5) = 26$$

حدود المساحة	عدد المؤارع
15-	3
20-	9
25-	15
30-	18
35-	12
40-45	3
sum	60

أقل من	تكرار فتجمع
15	0
20	3
A 25	$f_{1} $
30	$\int_2 27^{\bigcirc}$
A 35	45(45)
40	57
45	60

 (Q_3) الثالث Q_3

$$n(3/4)\!=\!60(0.75)\!=\!45$$
 : موقع الرباعي الثالث : $f=45$, $f_1=45$, $f_2=57$, $A=35$, $L=5$

$$Q_3 = A + \frac{f - f_1}{f_2 - f_1} L$$

$$= 35 + \frac{45 - 45}{57 - 45} (5) = 35 + \frac{(0)}{15} (5) = 35$$

• نصف المدى الربيعي .

$$Q = \frac{Q_3 - Q_1}{2} = \frac{35 - 26}{2} = 4.5$$

إذا الانحراف الربيعي للمساحة 4.5 ألف دونم.

مزايا وعيوب الانحراف الربيعي

من مزايا الانحراف الربيعي، يفضل استخدامه كمقياس للتشتت في حالة وجود قيم شاذة ، كما أنه بسيط وسهل في الحساب . ومن عيوبه ، أنه لا يأخذ كل القيم في الاعتبار .

Mean Deviation (MD) الانحراف المتوسط 3/2/4

هو أحد مقاييس التشتت، ويعبر عنه بمتوسط الانحرافات المطلقة للقيم عن وسطها الحسابي ، فإذا كانت $\overline{x}=\sum x/n$ هي القراءات التي تم أخذها عن ظاهرة معينة ، وكان $x_1,x_2,...,x_n$ عبارة عن الوسط الحسابي لهذه القراءات، فإن الانحراف المتوسط (MD) يحسب بتطبيق المعادلة التالية:

$$MD = \frac{\sum |x - \overline{x}|}{n}$$

وهذه الصيغة تستخدم في حالة البيانات غير المبوبة .

مثال (4-5)

إذا كانت الطاقة التصديرية لخمس محطات لتحلية المياه بالمليون متر مكعب كما يلي:

4 5 2 10 7

أوجد قيمة الانحراف المتوسط للطاقة التصديرية

4

لحساب قيمة الانحراف المتوسط يتم استخدام المعادلة (4-4)

• الوسط الحسابي:

$$\bar{x} = \frac{\sum x}{n} = \frac{28}{5} = 5.6$$

ويتم تكوين الجدول التالي :

الطاقة	الانحرافات	الانحرافات المطلقة
التصديرية	(-) (x-5.6
X	$(x-\overline{x}) = (x-5.6)$	$ \lambda - J.0 $
4	4 - 5.6 = -1.6	1.6
5	5 - 5.6 = -0.6	0.6
2	2 - 5.6 = -3.6	3.6
10	10 - 5.6 = 4.4	4.4
7	7 - 5.6 = 1.4	1.4
Sum	0	11.6

• إذا الانحراف المتوسط قيمته هي :

$$MD = \frac{\sum |x - \overline{x}|}{n} = \frac{11.6}{5} = 2.32$$
 (مليون متر مكعب)

وفي حالة البيانات المبوبة، يحسب الانحراف المتوسط باستخدام المعادلة التالية .

$$MD = \frac{\sum |x - \overline{x}| f}{n}$$

- حيث أن f هو تكرار الفئة ، x هو مركز الفئة ، \overline{x} هو الوسط الحسابي

مثال (4-6)

يبين الجدول التكراري التالي توزيع 40 أسرة حسب الإنفاق الشهري بالألف ريال.

الإنفاق	2 - 5	5 - 8	8 - 11	11 – 14	14 – 17
عدد الأسرة	1	8	13	10	8

أوجد الانحراف المتوسط .

الح____ا

لحساب الانحراف المتوسط ، يتم تطبيق المعادلة (4-5)، ويتبع الآتي

• تكوين جدول لحساب مكونات المعادلة:

حدو د الإنفاق	عدد الأسر f	مركز الفئة X	x f	الوسط الحسابي X	$ x-\overline{x} $	$ x-\overline{x} f$
2-5	1	3.5	3.5	∇r	7.2	7.2
5-8	8	6.5	52	$\bar{x} = \frac{\sum x}{n}$	4.2	33.6
8-11	13	9.5	123.5	n 120	1.2	15.6
11-14	10	12.5	125	$=\frac{428}{}=10.7$	1.8	18
14-17	8	15.5	124	40	4.8	38.4
sum	40		428			112.8

إذا الانحراف المتوسط هو:

$$MD = \frac{\sum |x - \overline{x}| f}{n} = \frac{112.8}{40} = 2.82$$

الانحراف المتوسط للإنفاق الشهري هو 2.82 ألف ريال .

مزايا وعيوب الانحراف المتوسط

من مزايا الانحراف المتوسط أنه يأخذ كل القيم في الاعتبار، ولكن يعاب عليه ما يلي:

- يتأثر بالقيم الشاذة .
- يصعب التعامل معه رياضيا.

4/2/4 التباين Variance

هو أحد مقاييس التشتت ، وأكثرها استخداما في النواحي التطبيقية ، ويعبر عن متوسط مربعات انحرافات القيم عن وسطها الحسابي.

$$(s^2)$$
 أولا: التباين في المجتمع

إذا توافر لدينا قراءات عن كل مفردات المجتمع ، ولتكن: x_1, x_2, \dots, x_N ، فإن التباين في المجتمع ، ويرمز له بالرمز x_1, x_2, \dots, x_N عسب باستخدام المعادلة التالية :

$$\sigma^2 = \frac{\sum (x - u)^2}{N}$$

. $\pmb{m} = \sum x/N$: أن \pmb{m} هو الوسط الحسابي في المجتمع ، أى أن \pmb{m}

مثال (4-7)

مصنع لتعبئة المواد الغذائية ، يعمل به 15 عامل ، وكانت عدد سنوات الخبرة لهؤلاء العمال كما يلي :

5 13 7 14 12 9 6 8 10 13 14 6 11 12 10 . بفرض أن هذه البيانات تم جمعها عن كل مفردات الجتمع ، فأوجد التباين لعدد سنوات الخبرة .

الحسل

-4خساب تباين سنوات الخبرة في المجتمع ، يتم استخدام المعادلة -6).

• الوسط الحسابي في المجتمع M

$$m = \frac{1}{N} \sum x$$

$$= \frac{1}{15} (5 + 13 + +7 + ... + 12 + 10) = \frac{1}{15} (150) = 10$$

$$\sum (x-m)^2$$
 حساب مربعات الانحرافات •

$$\sum (x - m)^2 = 130$$
 : عا أن:

إذا تباين سنوات الخبرة للعمال في المصنع هو:

$$s^2 = \frac{\sum (x-u)^2}{N} = \frac{130}{15} = 8.67$$

سنوات الخبرة X	(x-m)	$(x-m)^2$
5	5-10 = -5	25
13	3	9
7	-3	9
14	4	16
12	2	4
9	-1	1
6	-4	16
8	-2	4
10	0	0
13	3	9
14	4	16
6	-4	16
11	1	1
12	2	4
10	0	0
150	0	130

ويمكن تبسيط المعادلة (4-6) في صورة أخرى كما يلي :

يمكن فك المجموع
$$\sum (x-m)^2$$
 كالتالي :

$$\sum (x - \mathbf{m})^2 = \sum \left(x^2 - 2x\mathbf{m} + \mathbf{m}^2\right)$$
$$= \sum x^2 - 2\mathbf{m}\sum x + \sum \mathbf{m}^2$$
$$= \sum x^2 - 2N\mathbf{m}^2 + N\mathbf{m}^2$$
$$= \sum x^2 - N\mathbf{m}^2$$

ومن ثم يكتب تباين المجتمع على الصورة التالية :

$$s^2 = \frac{\sum x^2 - Nm^2}{N} = \frac{1}{N} \sum x^2 - m^2$$

إذا التباين في المجتمع يمكن صياغته كالتالي .

$$\sigma^2 = \frac{1}{N} \sum x^2 - \mu^2$$

وبالتطبيق على المثال (7-4) ، نجد أن أننا نحتاج إلى المجموعين : Σx , Σx^2 ، ويتم عمل الآتي

سنوات	
الخبرة	x^2
$\boldsymbol{\mathcal{X}}$	
5	25
13	169
7	49
14	196
12	144
9	81
6	36
8	64
10	100
13	169
14	196
6	36
11	121
12	144
10	100

150

1630

$$\sum x = 150$$
, $\sum x^2 = 1630$

$$m = \frac{1}{N} \sum x = \frac{1}{15} (150) = 10$$

إذا التباين هو

$$s^2 = \frac{1}{N} \sum x^2 - m^2$$

$$= \frac{1}{15} 1630 - 10^2 = 108.67 - 100 = 8.67$$
. (6-4) المستخدام الصيغة التي تم الحصول عليها باستخدام الصيغة

(s^2) ثانيا: التباين في العينة

في كثير من الحالات يكون تباين المجتمع S^2 غير معلوم، وعندئذ يتم سحب عينة من هــذا المجتمع ، ويحسب التباين من بيانات العينة كتقدير لتباين المجتمع ، فإذا كانت قراءات عينة عــشوائية حجمها S^2 هو:

$$s^2 = \frac{\sum (x - \overline{x})^2}{n - 1}$$

حيث أن $\overline{x} = \sum x/n$: أي أن أي أن $\overline{x} = \sum x/n$ ، وتباين العينة المبين بالمعادلة (8-4) هو التقدير غير المتحيز لتباين المجتمع .

مثال (4-8)

في المثال (4-7) السابق ، إذا تم سحب عينة من عمال المصنع حجمها 5 عمال ، وسجل عدد سنوات الخبرة ، وكانت كالتالى .

احسب تباين سنوات الخبرة في العينة.

الحــــل

لحساب التباين في العينة يتم تطبيق المعادلة (4-8)، ويتبع الآتى :

• الوسط الحسابي في العينة:

$$\overline{x} = \frac{1}{n} \sum x = \frac{1}{5} (8 + 13 + 10 + 5 + 9) = \frac{1}{5} (45) = 9$$

 $\sum (x-\overline{x})^2$ حساب مربعات الانحرافات •

سنوات الخبرة X	8	13	10	5	9	45
$(x - \overline{x})$	-1	4	1	-4	0	0
$(x - \overline{x})^2$	1	16	1	16	0	34

،
$$\sum (x - \overline{x})^2 = 34$$
 : أي أن

• إذا تباين سنوات الخبرة في العينة قيمته هي :

$$s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1} = \frac{34}{(5 - 1)} = \frac{34}{4} = 8.5$$

● في هذه الحالة يمكن القول بأن تباين العينة 8.5، وهو في نفس الوقت تقدير غير متحيز لتباين المجتمع

تبسيط العمليات الحسابية

يمكن تبسيط الصيغة الرياضية لتباين العينة الموضحة بالمعادلة (4-8) إلى صيغة سهلة يمكن التعامل معها، وخاصة إذا كانت البيانات تحتوي على قيم كسرية، والاستنتاج هذه الصيغة يتم إتباع الآتي.

يمكن فك المجموع $\sum (x - \overline{x})^2$ كالتالي:

$$\sum (x - \overline{x})^2 = \sum \left(x^2 - 2x\overline{x} + \overline{x}^2\right)$$
$$= \sum x^2 - 2\overline{x}\sum x + \sum \overline{x}^2$$
$$= \sum x^2 - 2n\overline{x}^2 + n\overline{x}^2$$
$$= \sum x^2 - n\overline{x}^2$$

ويكتب تباين العينة على الصورة التالية :

$$s^2 = \frac{1}{n-1} \left(\sum x^2 - n\overline{x}^2 \right)$$

إذا التباين في العينة يمكن صياغته كالتالى .

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - n\overline{x}^{2} \right)$$

كما يمكن إثبات أن المعادلة (4-9) تأخذ الشكل التالي:

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{\left(\sum x\right)^{2}}{n} \right)$$

و بالتطبيق على بيانات المثال السابق ، نجد أن :

سنوات الخبرة X	8	13	10	5	9	45
χ^2	64	169	100	25	81	439

• تباین العینة باستخدام المعادلة (9-4) هو :

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - n \overline{x}^{2} \right)$$
$$= \frac{1}{5-1} \left(439 - 5(9)^{2} \right) = \frac{1}{4} (34) = 8.5$$

وباستخدام المعادلة (4-10) نجد أن:

$$s^{2} = \frac{1}{n-1} \left(\sum x^{2} - \frac{(\sum x)^{2}}{n} \right)$$
$$= \frac{1}{5-1} \left(439 - \frac{(45)^{2}}{5} \right) = \frac{1}{4} (439 - 405) = \frac{1}{4} (34) = 8.5$$

Standard Deviation الانحراف المعياري

عند استخدام التباين كمقياس من مقاييس التشتت، نجد أنه يعتمد علي مجموع مربعات الانحرافات، ومن ثم لا يتمشى هذا المقياس مع وحدات قياس المتغير محل الدراسة، ففي المثال السابق، نجد أن تباين سنوات الخبرة في العينة 8.5، فليس من المنطق عند تفسير هذه النتيجة أن نقول، " تباين سنوات الخبرة هو 8.5 سنة تربيع "، لأن وحدات قياس المتغير هو عدد السنوات، من أجل ذلك لجأ الإحصائيين إلى مقياس منطقي يأخذ في الاعتبار الجذر التربيعي للتباين، لكي يناسب وحدات قياس المتغير، وهذا المقياس هو الانحراف المعياري.

إذا الانحراف المعياري ، هو الجذر التربيعي الموجب للتباين ، أي أن:

$$\frac{||\mathbf{liplice}|| \mathbf{liplice}||}{||\mathbf{liplice}||} = ||\mathbf{liplice}|| \mathbf{liplice}|| \mathbfliplice}|| \mathbfliplice|| \mathbfliplic$$

ومثال على ذلك:

في مثال (4-7) نجد أن الانحراف المعياري لسنوات الخبرة لعمال المصنع (المجتمع) ، ويرمز له بالرمز
 (S) هو :

$$s = \sqrt{\frac{1}{N} \sum x^2 - m^2}$$
$$= \sqrt{\frac{1}{15} 1630 - 10^2} = \sqrt{8.67} = 2.94$$

في هذه الحالة ، يكون الانحراف المعياري لسنوات الخبرة في المجتمع هو 2.94 سنة .

في مثال (8-4) نجد أن الانحراف المعياري لسنوات الخبرة لعمال العينة ، ويرمز له بالرمز S ، هو

$$s = \sqrt{\frac{1}{n-1} \left(\sum x^2 - \frac{(\sum x)^2}{n} \right)}$$

$$= \sqrt{\frac{1}{5-1} \left(439 - \frac{(45)^2}{5} \right)} = \sqrt{\frac{1}{4} (439 - 405)} = \sqrt{\frac{1}{4} (34)} = 2.92$$

أي أن الانحراف المعياري لسنوات الخبرة في العينة هو 2.92 سنة .

الانحراف المعياري في حالة البيانات المبوبة

إذا كانت بيانات الظاهرة ، مبوبة في جدول توزيع تكراري ، فإن الانحراف المعياري يحسب بتطبيق المعادلة التالية .

$$s = \sqrt{\frac{\sum (x - \overline{x})^2 f}{n - 1}}$$
or
$$s = \sqrt{\frac{\sum x^2 f - \frac{(\sum xf)^2}{n}}{n - 1}}$$

n ، $(\sum xf/n)$ هو تكرار الفئة ، X هو مركز الفئة ، X هو الوسط الحسابي f ان f هي مجموع التكرارات $(n=\sum f)$ ، والمقدار الذي تحت الجذر يعبر عن التباين (s^2) . مثـــال (s^2)

في بيانات مثال (4-6) ، احسب الانحراف المعياري للإنفاق الشهري للأسرة ، ثم قارن بين الانحراف المعياري للإنفاق الشهري للأسرة .

الحـــــل خساب الانحراف المعياري للإنفاق الشهري ، تستخدم المعادلة رقــم (12)، وسوف نطبق الصيغة الثانية ، ولذا نكون جدول لحساب المجموعين 2f .

الإنفاق	عدد الأسر f	مركز ${\cal X}$ الفئة	xf	x^2f
2-5	1	3.5	3.5	12.25
5-8	8	6.5	52	338
8-11	13	9.5	123.5	1173.25
11-14	10	12.5	125	1562.5
14-17	8	15.5	124	1922
sum	40		428	5008

$$n = \sum f = 40$$
$$\sum xf = 428$$
$$\sum x^2 f = 5008$$

وبتطبيق المعادلة ، نجد أن الانحراف المعياري قيمته هي :

$$s = \sqrt{\frac{\sum x^2 f - \frac{\left(\sum xf\right)^2}{n}}{n-1}}$$

$$= \sqrt{\frac{5008 - \frac{(428)^2}{40}}{40 - 1}} = \sqrt{\frac{5008 - 4579 \cdot 6}{39}}$$

$$= \sqrt{10.984615} = 3.314$$

أي أن الانحراف المعياري للإنفاق الشهري 3.314 ألف ريال ، ووفقا لهذا المقياس ، فان تشتت بيانات الإنفاق أكبر من تشتت بيانات الإنفاق وفقا لمقياس الانحراف المتوسط (2.88) .

خصائص الانحراف المعياري

من خصائص الانحراف المعياري ، ما يلى :

- أو لا : الانحراف المعياري للمقدار الثابت يساوي صفرا ، أي أنه إذا كان لدينا القراءات التالية: a تعبر عن الانحــراف x: a, a, a, a, ...,a المعياري لقيم x: a
- ثانيا : إذا أضيف مقدار ثابت إلى كل قيمة من قيم المفردات ، فإن الانحراف المعياري للقيم الجديدة ثانيا : إذا أضيف مقدار ثابت إلى كل قيمة من قيم الأصلية (القيم بعد الإضافة) ، فإذا كانت ، X ، فإن القيم الأصلية هي X ، X ، وتم إضافة مقدار ثابت X ، فإن ، X ، فإن القيم الأحراف المعياري للقيم الجديدة : X ، X ، X ، X ، فإن ، X ،

مثال (10-4)

إذا كان من المعلوم أن تطبيق برنامج غذائي معين للتسمين لفترة زمنية محددة سوف يزيد من وزن الدجاجة 0.5 كيلوجرام، سحبت عينة عشوائيا من مزرعة دجاج حجمها 5 دجاجات، وكانت أوزالها كالتالى: 1.75, 2, 1.25, 2.5

- 1- احسب الانحراف المعياري لوزن الدجاجة.
- 2- إذا طبق البرنامج الغذائي المشار إليه، ما هو الانحراف المعياري لوزن الدجاجة في هــذه العينة؟

الح____ل

1- حساب الانحراف المعياري للوزن قبل تطبيق البرنامج .

х	χ^2
1	1

n=5

1.75	3.0625
2	4
1.25	1.5625
2.5	6.25
8.5	15.875

إذا الانحراف المعياري للوزن قبل البرنامج في العينة هو:

$$s_{x} = \sqrt{\frac{\sum x^{2} - \frac{(\sum x)^{2}}{n}}{n-1}}$$

$$= \sqrt{\frac{15.875 - \frac{(8.5)^{2}}{5}}{5}} = \sqrt{\frac{15.875 - 14.45}{5}} = 0.534$$

$$= \sqrt{10.984615} = 3.314$$

2- حساب الانحراف المعياري لوزن الدجاجة بعد تطبيق البرنامج .

كل دجاجة بعد تطبيق البرنامج، من المتوقع أن تزيد 0.5 كيلوجرام ، وهذا معناه أن الوزن بعد البرنامج هو y=x+0.5 ، ويكون الانحراف المعياري للوزن الجديد مــساويا أيضا للانحراف المعياري للقيم الأصلية ، أى أن :

$$s_{y} = s_{x} = 0.534$$

الانحراف المعياري للوزن بعد تطبيق البرنامج يساوي 0.534 كيلوجرام .

ثالثا : إذا ضرب كل قيمة من قيم المفردات في مقدار ثابت ، فإن الانحراف المعياري للقيم الجديدة . يساوي الانحراف المعياري للقيم الأصلية مضروبا في الثابت ، أى أن إذا كان قيم x هي القيم الأصلية ، وكانت القيم الجديدة هي y=ax . y=ax . $y=as_x$

ومثال على ذلك ، إذا كان الانحراف المعياري لدرجات عينة من الطلاب هي 4 درجات ، وإذا كان التصحيح من 50 درجة ، ويراد تعديل الدرجة ليكون التصحيح من 100 درجة ، ومعنى يتم ضرب كل درجة من الدرجات الأصلية في 2 ، ومن ثم يحسب الانحراف المعياري للدرجات المعدلة كالتالي

$$y = 2x$$
$$s_y = 2s_x = 2(4) = 8$$

إذا الانحراف المعياري للدرجات المعدلة 8 درجات .

y هـو المتغير y=ax+b . هيا التوليفة الخطية y=ax+b هـو دابعا: إذا كان لدينا التوليفة الخطية هـ

أيضا : $s_y=as_x$ ، وفي المثال السابق ، لو أضاف المصحح لكل طالب 5 درجات بعد تعــديل : y=2x+5 ، فإن الانحراف المعياري هو : y=2x+5 ، فإن الانحراف المعياري هو : y=2x+5 $s_y=2s_x=2(4)=8$

مزايا وعيوب الانحراف المعياري

من مزايا الانحراف المعياري

1-أنه أكثر مقاييس التشتت استخداما .

2- يسهل التعامل معه رياضيا .

3- يأخذ كل القيم في الاعتبار .

ومن عيوبه ، أنه يتأثر بالقيم الشاذة .

الفصـــل الخامس الأخرى لوصف البيانات

1/5 مقدم___ة

عند تمثيل بيانات الظاهرة في شكل منحني تكراري ، فإن هذا المنحني يأخذ أشكالا مختلفة ، فقد يكون هذا المنحنى متماثل بمعنى أن له قمة في المنتصف ، ولو أسقطنا عمودا من قمته على المحور الأفقي لشطره نصفين متماثلين ، مثل منحنى التوزيع الطبيعي ، كما هو مبين بالشكل التالي .

وعندما يكون الشكل متماثل ، فإن الوسط والوسيط والمنوال كلهم يقعون على نقطة واحدة ، ولكن في كثير من الحالات يكون هناك قيم كبيرة في البيانات تجذب إليها الوسط الحسابي ، وهذا معناه أن المنحنى التكراري سوف يكون له ذيل جهة اليمين ، مشيرا بوجود التواء جهة السيمين ، وكذلك العكس لو أن البيانات بها قيم صغيرة ، فإنها تجذب الوسط إليها، ويدل المنحني التكراري على وجود التواء جهة اليسار، كما يمكن من خلال الشكل البياني معرفة ما إذا كان توزيع البيانات منبسط، أو مدبب، وهذا من الناحية البيانية، إلا أن هناك مقاييس كثيرة لوصف البيانات تعتمد في حسابها على مقاييس الرعة المركزية والتشت معا، ومنها مقاييس الالتواء، والتفرطح، وبعض المقاييس الأخرى سوف يتم عرضها فيما بعد.

Skewness الالتواء 2/5

هناك طرق كثيرة لقياس الالتواء ومنها ما يلي:

1/2/5 طريقة "بيرسون Person" في قياس الالتواء

تأخذ هذه الطريقة في الاعتبار العلاقة بين الوسط والوسيط والمنوال، في حالة ما إذا كان التوزيع قريب من التماثل وليس شديد الالتواء ، وهذه العلاقة هي: (5-1)

ومن ثم فإن طريقة "بيرسون" في قياس الالتواء ، تتحدد بالمعادلة التالية.

$$\alpha = \frac{3(Mean - Median)}{S \tan dard \ Deviation} = \frac{3(\overline{x} - Med)}{S}$$

S الوسط الحسابي، Med هو الوسيط، \overline{x} الوسط الحسابي، Med هو الوسيط، \overline{x} هو الالتواء، كما هو الانحراف المعياري، ويمكن من خلال الإشارة التي يأخذها هذا المعامل الحكم على شكل الالتواء، كما يلى :

- إذا كان (الوسط الحسابي = الوسيط) كان قيمة المعامل (a=0)، ويدل ذلك على أن منحنى التوزيع التكراري متماثل.
- إذا كان (الوسط الحسابي > الوسيط) كان قيمة المعامل (a>0) ، ويدل ذلك على أن منحنى التوزيع التكراري ملتوي جهة اليمين .
- إذا كان (الوسط الحسابي < الوسيط) كان قيمة المعامل (a < 0) ، ويدل ذلك على أن مستحنى التوزيع التكراري ملتوي جهة اليسار.

2/2/5 طريقة "المئين" في قياس الالتواء

المئين ينتج من ترتيب البيانات تصاعديا، ثم تقسيمها البيانات إلى 100 جزء، يفصل بينها قيم تسمى المئين، وعلى سبيل المثال يعرف المئين 15 ويرمز له بالرمز v_{15} على أنه القيمة التي يقل عنها v_{15} من القيم، ولحساب قيمة المئين v_{15} ونرمز له بالرمز v_{15} ، يتبع نفس الفكرة المستخدمة في حساب الربيع كما يلى:

- $x_{(1)} < x_{(2)} < ... < x_{(n)}$: i.i., i.e., i.e., $x_{(n)} = x_{(n)} = x_{(n)}$
 - $R = (n+1)\left(\frac{p}{100}\right)$ رتبة المئين: •
 - $(v_{15} = x_{(R)})$ اذا کانت الرتبة R عدد صحیح فإن •
- أما إذا كانت الرتبة R عدد كسري فإن قيمة المئين (v_p) تحسب بالمعادلة التالية: lacktriangle

$$v_p = x_{(l)} + (R - l)(x_{(u)} - x_{(l)})$$
(4-0)

وتعتمد فكرة المئين في قياس الالتواء على مدى قرب المئين v_p ، والمئين v_{100-p} ، من المئين v_{50} ، والمئين على ذلك ، عند قياس الالتواء باستخدام المئين v_{50} والمئين v_{50} ، يلاحظ على الرسم التالي وكمثال على ذلك ، عند قياس الالتواء باستخدام المئين v_{50}

حالات الالتواء:

شكل (2-5)

ومن الشكل أعلاه يلاحظ الآتي:

- إذا كان بعد المئين (v_{50}) عن المئين (v_{50}) يساوي بعد المئين (v_{50}) عن المئين (v_{80}) كـان التوزيع متماثلا .
- إذا كان بعد المئين (v_{50}) عن المئين (v_{50}) عن المئين (v_{80}) عن المئين (v_{80}) كـان التوزيع موجب الالتواء .
- إذا كان بعد المئين (v_{50}) عن المئين (v_{50}) أقل من بعد المئين (v_{50}) عن المئين (v_{80}) كـان التوزيع سالب الالتواء .

وبشكل عام يمكن الحكم على شكل التوزيع باستخدام معامل الالتواء المئيني، ويأخذ المعادلة التالية.

$$\alpha_{p,100-p} = \frac{(v_{100-p} - v_{50}) - (v_{50} - v_{p})}{v_{100-p} - v_{p}}$$
(1-0)

حيث أن : $v_p < v_{50} < v_{100-p}$ ويفضل استخدام هذا المعامل في حالة البيانات التي تحتوي على ، ($v_{25} = Q_1$) 25 قيم شاذة ، وأيضا البيانات التي لا نعرف لها توزيع محدد، وعندما نستخدم المئين 25 $v_{75} = Q_3$) خصل على معامل الالتواء الربيعي ، وهو :

$$\sqrt{v_q = \frac{(Q_3 - Q_2) - (Q_2 - Q_1)}{(Q_3 - Q_1)}}$$

مشال (5-1)

كانت درجات 8 طلاب في الاختبار النهائي في مقرر 122 إحص ، كالتالي.

66 85 52 78 80 91 74 58

والمطلوب: 1- حساب معامل الالتواء بطريقة " بيرسون " .

2- حساب معامل الالتواء الربيعي .

الح___ل

1- حساب معامل الالتواء بطريقة "بيرسون" .

في هذه الحالة يتم تطبيق المعادلة رقم (5-2) كما يلى:

• حساب الوسط الحسابي ، والانحراف المعياري :

الدرجة	2
$\boldsymbol{\mathcal{X}}$	x^2
66	4356
85	7225
52	2704
78	6084
80	6400
91	8281
74	5476
58	3364
584	43890

$$\sum x = 584$$
 , $\sum x^2 = 43890$
 $\overline{x} = \frac{\sum x}{n} = \frac{584}{8} = 73$

$$s = \sqrt{\frac{\sum x^2 - (\sum x)^2 / n}{n - 1}} = \sqrt{\frac{43890 - (584)^2 / 8}{8 - 1}}$$
$$= \sqrt{\frac{1258}{7}} = \sqrt{179.71428} = 13.406$$

• حساب الوسيط:

(n+1)/2 = (8+1)/2 = 4.5 : موقع الوسيط موقع

$$Med = 74 + 0.5(78 - 74) = 76$$

• معامل الالتواء "بيرسون"

$$s.c = \frac{3(\bar{x} - Med)}{S} = \frac{3(73 - 76)}{13.406} = -0.67$$

إذا منحني توزيع درجات الطلاب ملتوي جهة اليسار .

2- معامل الالتواء الربيعي .

لحساب معامل الالتواء الربيعي ، يتم تطبيق المعادلة رقم (5-5).

• حساب الربيع الأدنى .

$$(n+1)/4 = (8+1)(1/4) = 2.25$$
 : موقع الرباعي

$$Q_1 = 58 + (2.25 - 2)(66 - 58) = 60$$

• حساب الرباعي الأعلى.

$$(n+1)/(3/4)=(8+1)$$
 (3/4)=6.75 : موقع الرباعي

إذا

$$Q_3 = 80 + (6.75 - 6)(85 - 80) = 83.75$$

• الوسيط (الربيع الثاني)

$$Med(Q_2) = 76$$

إذا معامل الالتواء الربيعي هو :

$$a_{q} = \frac{(Q_{3} - Q_{2}) - (Q_{2} - Q_{1})}{(Q_{3} - Q_{1})} = \frac{(83.75 - 76) - (76 - 60)}{(83.75 - 60)}$$
$$= \frac{-8.25}{23.75} = -0.35$$

إذا توزيع درجات الطلاب ملتوي جهة اليسار.

Kurtosis التفرطح 3/5

عند تمثيل التوزيع التكراري في شكل منحنى تكراري ، قد يكون هذا المسنحنى منبسط ، أو مدبب ، فعندما يتركز عدد أكبر من القيم بالقرب من منتصف المنحنى، ويقل في طرفيه، يكون المنحنى مدببا ، وعندما يتركز عدد أكبر على طرفي المنحنى ، ويقل بالقرب من المنتصف يكون المنحنى مفرطحا ، أو منبسطا، ويظهر ذلك من الشكل التالى :

ويمكن قياس التفرطح باستخدام عدد من الطرق، ومنها طريقة العزوم ، حيث يحسب معامل التفرطح (K) بتطبيق المعادلة التالية :

$$\left[k = \frac{\frac{1}{n}\sum(x - \overline{x})^4}{s^4}\right]$$

حيث أن المقدار $\frac{1}{2} \sqrt{n}$ هو العزم الرابع حول الوسط ، $\frac{1}{2} \sqrt{n}$ هو الانحراف المعياري . ومعامل التفرطح في التوزيع الطبيعي يساوي $\frac{1}{2} \sqrt{n}$ ، ومن ثم يمكن وصف منحنى التوزيع من حيث التفرطح ، والتدبب كما يلى :

- إذا كان k=3 كان منحنى التوزيع معتدلا.
- إذا كان k>3 كان منحنى التوزيع مدببا .
- إذا كان k < 3 كان منحنى التوزيع منبسطا (مفرطحا) .

 $\overline{x} = 73$ خد أن: المثال رقم (1-5) نجد أن:

х	66	85	52	78	80	91	74	58	584
$(x-\overline{x})$	-7	12	-21	5	7	18	1	-15	0
$(x-\overline{x})^2$	49	144	441	25	49	324	1	225	1258
$(x-\overline{x})^4$	2401	20736	194481	625	2401	104976	1	50625	376246

ومن البيانات أعلاه نجد أن:

$$s = \sqrt{\frac{\sum (x - \overline{x})^2}{n - 1}} = \sqrt{\frac{1258}{7}} = 13.406$$
$$\frac{1}{n} \sum (x - \overline{x})^2 = \frac{1}{8} (376246) = 47030.75$$

إذا معامل التفرطح هو:

$$K = \frac{47030.75}{(13.406)^4} = \frac{47030.75}{(32299.58)} = 1.456$$

إذا شكل توزيع بيانات الدرجات مفرطح.

4/5 مقاييس أخرى لوصف البيانات

هناك مقاييس أخرى يمكن استخدامها في وصف البيانات ، من حيث درجة تشتت البيانات، ومدى انتشارها، ومن هذه المقاييس ، ما يلى :

Variation Coefficient معامل الاختلاف 1/4/5

أحد مقاييس المستخدمة لقياس درجة التشتت، وفيه يحسب قيمة التشتت كنسبة مئوية من قيمة مقياس البرعة المركزية ، ومن ثم يفضل استخدام معامل الاختلاف عند مقارنة درجة تشتت بيانات مجموعتين أو أكثر مختلفة لها وحدات قياس مختلفة، بدلا من الانحراف المعياري ، أو الانحراف الربيعي ،

لأن معامل الاختلاف يعتمد على التغيرات النسبية في القيم عن مقياس الترعة المركزية، بينما يعتمد الانحراف المعياري أو الانحراف الربيعي على التغيرات المطلقة للقيم، فعند مقارنة درجة تشتت بيانات الأطوال بالسنتمتر، وببيانات الأوزان بالكيلوجرام، لا يمكن الاعتماد على الانحراف المعياري في هذه المقارنة، وإنما يستخدم معامل الاختلاف، ومن ثم يطلق عليه بمعامل الاختلاف النسبي، وفيما يلي بعض هذه المعاملات.

• معامل الاختلاف النسبي

ويحسب معامل الاختلاف النسبي بتطبيق المعادلة التالية:

$$v.c = \frac{s}{\overline{x}} \times 100$$

• معامل الاختلاف الربيعي

ويحسب هذا المعامل بتطبيق المعادلة التالية:

$$v.c_q = \frac{(Q_3 - Q_1)/2}{Med} \times 100$$

مثال (2-5)

تم اختيار مجموعتين من الأغنام النامية في أحد المزارع، وتم استخدام عليقة معينة لتسمين المجموعة الأولى، بينما تم استخدام عليقة أخرى لتسمين المجموعة الثانية ، وبعد فترة زمنية تم جمع بيانات عن أوزان المجموعتين بالكيلوجرام ، وتم الحصول على المقاييس التالية .

المقاييس	المجموعة الأولى	المجموعة الثانية
$\overline{x} =$	173	198
s =	23	25

والمطلوب مقارنة درجة تشتت المجموعتين:

الحـــل:

• معامل الاختلاف النسبي للمجموعة الأولى:

$$v.c_1 = \frac{s}{\overline{x}} \times 100 = \frac{23}{173} \times 100 = 13.3\%$$

• معامل الاختلاف النسبي للمجموعة الثانية:

$$v.c_2 = \frac{s}{\overline{x}} \times 100 = \frac{25}{195} \times 100 = 12.8\%$$

يلاحظ أن درجة تشتت أوزان المجموعة الثانية أقل من درجة تشتت أوزان المجموعة الأولى.

2/4/5 تقدير مدى الانحراف المعياري

يمكن قياس درجة تشتت البيانات من خلال تقدير المدى الذي يقع داخله الانحراف المعياري وهو:

وإذا كان المدى الذي يقع فيه الانحراف المعياري صغير دل ذلك على أن تشتت البيانات صغير، أما إذا كان المدى كبير دل ذلك على وجود تشتت كبير في البيانات، وإذا وقع الانحراف المعياري خارج المدى دل ذلك على وجود قيم شاذة.

Standardized degree الدرجة المعيارية 3/4/5

تقيس الدرجة المعيارية لقيمة معينة عدد وحدات الانحراف المعياري التي تزيد بها تقل بها هذه القيمة عن الوسط الحسابي، فإذا كان \overline{X} , X_1, X_2, \ldots, X_n هي قيم المشاهدات، وعددها X_1 , وكان X_1 هو الوسط الحسابي لهذه القيم، X_1 هو الانحراف المعياري، فإن الدرجة المعيارية للقيمـــة X_1 , ويرمـــز لهـــا بالرمز X_1 , تحسب باستخدام المعادلة التالية:

$$z = \frac{x - \overline{x}}{s}$$

ويمكن استخدام هذه الدرجة في مقارنة قيمتين أو أكثر مختلفة من حيث وحدات القياس.

في المثال (5-2) السابق إذا تم اختيار أحد الأغنام من المجموعة الأولى بعد تطبيق البرنـــامج، ووجد أن وزنه 178 كيلوجرام، وبالمثل أحد الأغنام من المجموعـــة الثانيـــة، ووجـــد أن وزنـــه 180 كيلوجرام، قارن بين هذين القيمتين من حيث أهمية كل منها في المجموعة التي تنتمي إليها.

الحـــل البيانات المتاحة عن كل من المجموعتين هي:

	المجموعة الأولى	المجموعة الثانية
$\overline{x} =$	173	198
s =	23	25

القيمة.	178	180

للمقارنة بين الوحدتين من حيث أهمية وزن كل منها في المجموعة التي تنتمي إليها، يستم حسساب الدرجة المعيارية لوزن كل منها، بتطبيق المعادلة (5-10).

• الدرجة المعيارية لوزن الوحدة المسحوبة من المجموعة الأولى (178 Kg.) هي:

$$z = \frac{x - \overline{x}}{s} = \frac{178 - 173}{23} = 0.22$$

الدرجة المعيارية لوزن الوحدة المسحوبة من المجموعة الثانية (.180 Kg) هي:

$$z = \frac{x - \overline{x}}{s} = \frac{180 - 198}{25} = -0.75$$

• نجد أن الوزن 178 كيلوجرام يزيد عن الوسط الحسابي بـ 0.22 انحراف معياري ، بينما نجد أن الوزن 180 كيلوجرام يقل عن الوسط الحسابي بـ 0.75 انحراف معياري . ومن ثم الوزن الأول أهميته النسبية أعلى من الوزن الثاني.

4/4/5 القاعدة العملية

إذا كان لدينا المشاهدات التالية: X_1, X_2, \dots, X_n ، وكان \overline{X} هـو الوسـط الحـسابي هـذه المشاهدات، S هو الانحراف المعياري لها ، يكون منحنى توزيع هذه المشاهدات متماثل، إذا تحقق الآتي:

- $\overline{x}\pm s$ تقریبا من قیم هذه المشاهدات تتراوح بین $\overline{x}\pm s$.
- . $\overline{x}\pm 2s$ تقریبا من قیم هذه المشاهدات تتراوح بین 95% •
- $\overline{x}\pm 3s$ تقریبا من قیم هذه المشاهدات تتراوح بین $\overline{x}\pm 3s$.

ويمكن بيان ذلك من الشكل التالي:

شكل (5-3) شكل توزيع القيم طبقا للقاعدة العملية

5/4/4 القاعدة النظرية

تسمى هذه القاعدة بقاعدة "تشيبشيف" ، و فكرة هذه القاعدة: في أى توزيع من التوزيعات . k>1 ، $\overline{x}\pm ks$. النظرية ، فإنه على الأقل $(1-1/k^2)$ من قيم المشاهدات تقع في المدى $\overline{x}\pm 2s$ ، على وطبقا لهذه القاعدة، فإنه على الأقل %75 من قيم المشاهدات تقع في المدى $\overline{x}\pm 3s$. $\overline{x}\pm 3s$.

6/4/5 شكل "بوكس" هكل 6/4/5

 Q_1 شكل "بوكس" البياني هو صندوق يشبه المستطيل، بداية حافته اليسرى هو الربيع الأول Q_1 وهاية حافته اليمنى هو الربيع الثالث Q_3 ، ويقسم الربيع الثاني (الوسيط) Med المستطيل إلى جزأين، ويخرج من كل حافة من حافتيه شعيرة، والشكل التالي يبين رسمة "بوكس" البياني:

شكل (5-4) رسمة بوكس البياني

ويمكن استخدام شكل "بوكس" البياني، أعلاه في وصف البيانات من حيث الآتي:

 Q_3 , يقع في المنتصف على بعد متساوي من الرباعيين . Med يقع في المنتصف على بعد متساوي من الرباعي . Q_1 كان التوزيع متماثلا ، وإذا كان الوسيط Q_1 أقرب إلى الرباعي الأول Q_1 من الرباعي الثالث Q_3 كان التوزيع موجب الالتواء ، وأما إذا كان الوسيط Q_3 أقرب إلى الرباعي الثالث Q_3 من الرباعي الأول Q_1 كان التوزيع سالب الالتواء . ويظهر ذالك كما في الشكل التالي : Q_3

شكل (5-5) وصف شكل الالتواء باستخدام رسمة بوكس البياني

2- من حيث تركز البيانات: إذا كان الصندوق Box ضيق دل ذلك على تركز نسبة كبيرة من البيانات حول البيانات حول البيانات حول الوسيط، وإذا كان الصندوق واسع دل ذلك على انخفاض نسبة تركز البيانات حول الوسيط، والشكل التالي يبين ذلك.

شكل (5-6) وصف درجة تركز البيانات باستخدام رسمة بوكس البياني

3- من حيث وجود قيم شاذة: إذا وقعت قيم بعض المشاهدات خارج الحدين الأدبي والأعلى الشاذ ،

كانت هذه القيم شاذة ، وتظهر هذه القيم على الرسم في شكل نجوم (*) ، والشكل التالي يبين طريقة عرض القيم الشاذة الدنيا والعليا على الرسم .

شكل (7-5)

تحديد القيم الشاذة باستخدام رسمة بوكس البياني

طريقة حساب حدي القيم الشاذة

لحساب الحدين الأعلى والأدبي للقيم الشاذة، يتبع الخطوات التالية:

- $Q = (Q_3 Q_1)/2$
- حساب الانحراف الرباعي:
- $Low = Q_I$ -3Q : حساب الحد الأدنى للقيم الشاذة (Low)، وهو
- $UPP = Q_3 + 3Q$ وهو: Upp ، وهو الشاذة وساب الحد الأعلى للقيم الشاذة وإذا وقعت قيم خارج الحدين تعتبر هذه القيم من القيم الشاذة.

مثــال (4-5)

فيما يلى الإنفاق الاستهلاكي بالألف ريال خلال الشهر لعينة حجمها 12 أسرة:

6 10 18 3 9 10 5 6 11 8 2 7 والمطلوب:

- 1- رسم شكل "بوكس" البياني
- 2- اكتب تحليل وصفي لهذه البيانات.

الحــــل

- 1- رسم شكل " بوكس البياني "
- ترتيب القيم تصاعديا .

تحدید أقل وأعلى إنفاق استهلاكي، وحساب الرباعیات:

$$Min = 2$$
 $Max = 18$

 Q_1 الرباعي الأدنى

$$(n+1)(1/4) = (13/4) = 3.25$$
 موقع الرباعي $Q_1 = 5 + 0.25(6-5) = 5.25$ إذا قيمة Q_1

الوسيط Med:

$$(n+1)(1/2)=(13/2)=6.5$$
 موقع الوسيط $Med=7+0.5(8-7)=7.5$ هي: Q_3 Med الرباعي الأعلى Q_3 ($n+1$) $(3/4)=(13)(3/4)=9.75$ موقع الرباعي $Q_3=10+0.75(10-10)=10$ إذا قيمة $Q_3=10+0.75(10-10)=10$

• حساب الحدين الأعلى والأدبى الشاذ.

$$Q = (10 - 5.25)/2 = 2.375$$
 الانحراف الربيعي:

الحد الأدبى للقيم الشاذة:

$$Low = Q_1 - 3Q = 5.25 - 3(2.375) = -1.875$$

الحد الأعلى للقيم الشاذة:

$$Upp = Q_3 + 3Q = 10 + 3(2.375) = 17.125$$

رسم شکل "بو کس"

2- تحليل وصفي من خلال الشكل أعلاه:

- درجة التماثل: التوزيع قريب جدا من التماثل لوقوع الوسيط في المنتصف.
 - تركز البيانات: حوالي %60 من القيم تتركز حول الوسيط.
 - القيم الشاذة: توجد قيمة شاذة عليا هي القيمة 18.

ويمكن استخدام شكل "بوكس" البياني لمقارنة مجموعتين أو أكثر .

الفصـــل السادس الارتباط والانحدار الخطى البسيط

1/6 مقـــدمة

في الفصول الثلاث السابقة تم عرض بعض المقاييس الوصفية، مثل مقاييس الترعة المركزية، والتشتت، ومقاييس الالتواء والتفرطح، وغيرها من المقاييس الأخرى والتي يمكن من خلالها وصف شكل توزيع البيانات التي تم جمعها عن متغير واحد، وننتقل من التعامل مع متغير واحد إلى التعامل مع متغيرين أو أكثر، ويتناول هذا الفصل دراسة وتحليل العلاقة بين متغيرين، وذلك باستخدام بعض طرق التحليل الإحصائي مثل تحليل الارتباط، والانحدار الخطي البسيط، فإذا كان اهتمام الباحث هو دراسة العلاقة بين متغيرين استخدم لذلك أسلوب تحليل الارتباط، وإذا كان اهتمامه بدراسة أثر أحد المتغيرين على الآخر استخدم لذلك أسلوب تحليل الارتباط، وإذا كان اهتمامه بدراسة أثر أحد المتغيرين على الآخر استخدم لذلك أسلوب تحليل الانخدار، ومن الأمثلة على ذلك:

- 1- الإنفاق، والدخل العائلي.
- 2- سعر السلعة، والكمية المطلوبة منها.
- 3- الفترة الزمنية لتخزين الخبز، وعمق طراوة الخبز.
- 4- تقديرات الطلاب في مقرر الإحصاء، وتقديراهم في مقرر الرياضيات.
- 5- كميات السماد المستخدمة، وكمية الإنتاج من محصول معين تم تسميده بهذا النوع من السماد.
 - 6- عدد مرات ممارسة نوع معين من الرياضة البدنية، ومستوى الكلسترول في الدم.
 - 7- وزن الجسم، وضغط الدم.

والأمثلة على ذلك في المجال التطبيقي كثيرة، فإذا كان لدينا المتغيرين (y, x)، وتم جمع بيانات عن أزواج قيم هذين المتغيرين، وتم تمثيلها بيانيا فيما يسمى بشكل الانتشار، فإن العلاقة بينها تأخذ أشكالا مختلفة على النحو التالى:

شكل (1-6) y, x شكل الانتشار لبيان نوع العلاقة بين

Simple Correlation الخطى البسيط 12/6

إذا كان الغرض من التحليل هو تحديد نوع وقوة العلاقة بين متغيرين ، يستخدم تحليل الارتباط ، وأما إذا كان الغرض هو دراسة وتحليل أثر أحد المتغيرين على الآخر ، يستخدم تحليل الانحدار، وفي

هذا الفصل يتم عرض أسلوب تحليل الارتباط الخطي البسيط، أي في حالة افتراض أن العلاقة بين المتغيرين تأخذ الشكل الخطي ، وسوف يجرى حسابه في حالة البيانات الكمية ، والبيانات الوصفية المقاسة بمعيار ترتيبي.

1/2/6 الغرض من تحليل الارتباط الخطى البسيط

الغرض من تحليل الارتباط الخطي البسيط هو تحديد نوع وقوة العلاقة بين متغيرين، ويرمز له في حالة المجتمع بالرمز r (رو)، وفي حالة العينة بالرمز r وحيث أننا في كثير من النواحي التطبيقية نتعامل مع بيانات عينة مسحوبة من المجتمع، سوف نمتم بحساب معامل الارتباط في العينة r كتقدير لمعامل الارتباط في المجتمع، ومن التحديد السابق للغرض من معامل الارتباط، نجد أنه يركز على نقطتين هما:

- نوع العلاقة: __ وتأخذ ثلاث أنواع حسب إشارة معامل الارتباط كما يلي:
- 1- إذا كانت إشارة معامل الارتباط سالبة (r < 0) توجد علاقة عكسية بين المتغيرين، بمعنى أن زيادة أحد المتغيرين يصاحبه انخفاض في المتغير الثاني، والعكس.
- 2- إذا كانت إشارة معامل الارتباط موجبة (r>0)توجد علاقة طردية بين المتغيرين، بمعنى أن زيادة أحد المتغيرين يصاحبه زيادة في المتغير الثاني، والعكس .
- 3- إذا كان معامل الارتباط قيمته صفرا (r=0) دل ذلك على انعدام العلاقة بين المتغيرين.
- قوة العلاقة: ___ و يمكن الحكم على قوة العلاقة من حيث درجة قربها أو بعدها عن (± 1) ، حيث أن قيمة معامل الارتباط تقع في المدى (-1 < r < 1)، وقد صنف بعض الإحصائيين درجات لقوة العلاقة يمكن تمثيلها على الشكل التالي:

شكل (2-6) درجات قوة معامل الارتباط

	ار ذباط عكسي							ط طروي	ارنبا	
_	فوي جدا_ 1 -0	<u>فوي</u> 0- 9.	منوسط 0- 7.	ضعیف 0 - 5	صعیف جد/		شدون <u>د.</u> . <i>0</i>	منوسط <i>0</i> 5	ووي 7 0	<u>فوي جدا</u> 1 9 .
ı	<u> </u>	., -0	., -0	.5 -0) Lein	.5 0.		., 0	نام نام

2/2/6 معامل الارتباط الخطى البسيط " لبيرسون"

في حالة جمع بيانات عن متغيرين كميين (y, x)، يمكن قياس الارتباط بينهما، باستخدام طريقة "بيرسون" Pearson، ومن الأمثلة على ذلك: قياس العلاقة بين الوزن والطول، والعلاقة بين الإنتاج والتكلفة، والعلاقة بين الإنفاق الاستهلاكي والدخل، والعلاقة بن الدرجة التي حصل عليها الطالب وعدد ساعات الاستذكار، وهكذا الأمثلة على ذلك كثيرة.

ولحساب معامل الارتباط في العينة ، تستخدم صيغة " بيرسون " التالية :

$$r = \frac{S_{xy}}{S_x S_y} = \frac{\frac{\sum (x - \overline{x})(y - \overline{y})}{(n-1)}}{\sqrt{\frac{\sum (x - \overline{x})^2}{(n-1)}} \sqrt{\frac{\sum (y - \overline{y})^2}{(n-1)}}}$$
(1-1)

حيث أن:

،
$$(y\ ,\ x)$$
 بين التغاير بين : $S_{xy}=\sum (x-\overline{x})(y-\overline{y})/(n-1)$ ، (x) هو الانحراف المعياري لقيم : $S_x=\sqrt{\sum (x-\overline{x})^2/(n-1)}$. (y) هو الانحراف المعياري لقيم : $S_y=\sqrt{\sum (y-\overline{y})^2/(n-1)}$

ويمكن اختصار الصيغة السابقة على النحو التالى:

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}}$$

مثال (1-6)

فيما يلي المساحة المتررعة بالأعلاف الخضراء بالألف هكتار، وإجمالي إنتاج اللحوم بالألف طن، خلال الفترة من 1995حتى عام 2002.

السنة	1995	1996	1997	1998	1999	2000	2001	2002
المساحة	305	313	297	289	233	214	240	217
الكمية	592	603	662	607	635	699	719	747

والمطلوب: حساب معامل الارتباط بين المساحة والكمية، وما هو مدلوله ؟

بفرض أن (x) هي المساحة المترعة، (y) هي الكمية، ولحساب معامل الارتباط بين (y) يتم تطبيق المعادلة (x)، وذلك على النحو التالي:

 \overline{y} , \overline{x} والكمية (\overline{y} , \overline{x}) حساب الوسط الحسابي لكل من المساحة، والكمية

$$\overline{x} = \frac{\sum x}{n} = \frac{2108}{8} = 263.5$$
, $\overline{y} = \frac{\sum y}{n} = \frac{5264}{8} = 658$

• حساب المجاميع

х	у	$x - \overline{x}$	$(x-\overline{x})^2$	$y - \overline{y}$	$(y-\overline{y})^2$	$(x-\overline{x})(y-\overline{y})$
305	592	41.5	1722.25	-66	4356	-2739
313	603	49.5	2450.25	-55	3025	-2722.5
297	662	33.5	1122.25	4	16	134
289	607	25.5	650.25	-51	2601	-1300.5
233	635	-30.5	930.25	-23	529	701.5
214	699	-49.5	2450.25	41	1681	-2029.5
240	719	-23.5	552.25	61	3721	-1433.5
217	747	-46.5	2162.25	89	7921	-4138.5
2108	5264	0	12040	0	23850	-13528

$$\sum (x-\overline{x})^2 = 12040$$
, $\sum (y-\overline{y})^2 = 23850$,
 $\sum (x-\overline{x})(y-\overline{y}) = -13528$

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}} = \frac{-13528}{\sqrt{12040} \sqrt{23850}}$$
$$= \frac{-13528}{(109.727)(154.434)} = \frac{-13528}{16945.619} = -0.798$$

• يوجد ارتباط عكسي قوي بين المساحة المتررعة، وكمية إنتاج اللحوم.

تبسيط العمليات الحسابية:

في بعض الأحيان، يكون استخدام صيغة المعادلة (2-6) في غاية الصعوبة، خاصة إذا لازم العمليات الحسابية قيما كسرية، من أجل ذلك يمكن تبسيط الصيغة (2-6) إلى صيغة أسهل تعتمد على مجموع القيم وليس على انحرافات القيم عن وسطها الحسابي، وهذه الصيغة هي:

$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right)\left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}$$

وبالتطبيق على بيانات المثال السابق ، يتبع الآتى :

х	У	xy	\mathcal{X}^2	y^2
305	592	180560	93025	350464
313	603	188739	97969	363609
297	662	196614	88209	438244

المجاميع المطلوبة
$\sum x = 2108$, $\sum y = 5264$
$\sum xy = 1373536$

289	607	175423	83521	368449
233	635	147955	54289	403225
214	699	149586	45796	488601
240	719	172560	57600	516961
217	747	162099	47089	558009
2108	5264	1373536	567498	3487562

$$\sum x^2 = 567498$$
$$\sum y^2 = 3487562$$

• حساب معامل الارتباط:

باستخدام المجاميع السابقة، وبالتطبيق على المعادلة (3-6) أعلاه، نجد أن معامل الارتباط قيمته هي:

$$r = \frac{\sum xy - \frac{\sum x \sum y}{n}}{\sqrt{\left(\sum x^2 - \frac{(\sum x)^2}{n}\right)\left(\sum y^2 - \frac{(\sum y)^2}{n}\right)}}$$

$$= \frac{1373536 - \frac{(2108)(5264)}{8}}{\sqrt{\left(567498 - \frac{(2108)^2}{8}\right)\left(3487562 - \frac{(5264)^2}{8}\right)}}$$

$$= \frac{-13528}{\sqrt{(12040)(23850)}} = \frac{-13528}{16945.619} = -0.798$$

وهي نفس النتيجة السابقة:

Spearman (اسبيرمان) معامل ارتباط الرتب (اسبيرمان) معامل ارتباط الرتب

إذا كانت الظاهرة محل الدراسة تحتوي على متغيرين وصفيين ترتيبين، ومثال على ذلك قياس العلاقة بين تقديرات الطلبة في مادتين ، أو العلاقة بين درجة تفضيل المستهلك لسلعة معينة ، ومستوى الدخل، فإنه يمكن استخدام طريقة "بيرسون" السابقة في حساب معامل ارتباط يعتمد على رتب مستويات المتغيرين كبديل للقيم الأصلية ، ويطلق على هذا المعامل " معامل ارتباط اسبيرمان " Spearman ، ويعبر عنه بالمعادلة التالية :

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

، y ورتب مستويات المتغير الأول x ورتب مستويات المتغير الثاني d المتغير الثاني $d=R_{_{
m V}}-R_{_{
m V}}$: أي أن

فيما يلى تقديرات 10 طلاب في مادتي الإحصاء، والاقتصاد:

تقديرات إحصاء	Í	+>	د	د+	ب	+ ج	+1).	ب	ب
تقديرات اقتصاد	+1	د	جــ	_÷	Í	ب	ب +	ب	_÷	ب

و المطلوب:

- 1- احسب معامل الارتباط بين تقديرات الطلبة في المقررين.
 - 2- وما هو مدلوله ؟

الح____ا

الارتباط x هي تقديرات الإحصاء، y هي تقديرات الاقتصاد، يمكن حساب معامل الارتباط x بينهما باستخدام المعادلة x وذلك بإتباع الآتى:

الرتب	1	2	3	4	5	6	7	8	9	10
تقديرات إحصاء	+/	1	ţ	ب+	ţ	ب	+->	++	٠,	د
رتب 🗴	1	2	(3+	4+5)/3	3=4	6	(7+8)/	2=7.5	9	10
تقديرات اقتصاد	+/	1	ب+	ب	ب	ب	>			و
رتب پ	1	2	3	(4+	5+6)/3	=5	(7+	8+9)/3=	8	10

اللهيذ ڪياب المجموع: $\sum d^2$ کما يلي: •

х	у	Xرتب	رتب y	d	d^2
Í	+1	2	1	1	1
+_>	۵	7.5	10	2.5	6.25
د	'n	10	8	2	4
د +	4	9	8	1	1
۰	Í	4	2	2	1
÷	ب	7.5	5	2.5	6.25
+1	ب ب	1	3	-2	4
·	·Ĺ	6	5	1	1
ب ب	'n	4	8	-4	16
ب +	ب	4	5	-1	1
					44.5

$$\sum d^2 = 44.5$$

$$r = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

$$= 1 - \frac{6(44.5)}{10(10^2 - 1)} = 1 - \frac{267}{990}$$

$$= 1 - 0.2697 = 0.7303$$

2- مدلول معامل الارتباط:

بما أن r = 0.703 ، ويدل ذلك على وجود ارتباط طردي قوي بين تقديرات الطالب في مادة الإحصاء ، ومادة الاقتصاد .

ملحوظة: - يمكن استخدام صيغة معامل ارتباط "اسبيرمان" في حساب الارتباط بين متغيرين كميين، حيث يتم استخدام رتب القيم التي يأخذها المتغير، ونترك للطالب القيام بحساب معامل ارتباط الرتبب $\sum d^2 = 148$ (معاونة: (148 = 148)) السابق، وعليه أن يقوم بتفسير النتيجة: (معاونة: (148 = 148))

Simple Regression الانحدار الخطى البسيط 3/6

إن الغرض من استخدام أسلوب تحليل الانحدار الخطي البسيط، هو دراسة وتحليل أثر مستغير كمي على متغير كمي آخر، ومن الأمثلة على ذلك ما يلي:

- دراسة أثر كمية السماد على إنتاجية الدونم.
 - دراسة أثر الإنتاج على التكلفة.
- دراسة أثر كمية البروتين التي يتناولها الأبقار على الزيادة في الوزن.
 - أثر الدخل على الإنفاق الاستهلاكي.

وهكذا هناك أمثلة في كثير من النواحي الاقتصادية، والزراعية، والتجارية، والعلوم الـــسلوكية، وغيرها من المجالات الأخرى.

1/3/6 نموذج الانحدار الخطي

في تحليل الانحدار البسيط، نجد أن الباحث يهتم بدراسة أثر أحد المتغيرين ويسمى بالمتغير المستقل أو المتنبأ منه، على المتغير الثاني ويسمى بالمتغير التابع أو المتنبأ به، ومن ثم يمكن عرض نموذج الانحدار الخطي في شكل معادلة خطية من الدرجة الأولى، تعكس المتغير التابع كدالة في المتغير المستقل كما يلي:

$$y = \beta_0 + \beta_1 x + e$$

حيث أن:

(

y : هو المتغير التابع (الذي يتأثر)

(الذي يؤثر X هو المتغير المستقل X

هو الجزء المقطوع من المحور الرأسي y ، وهو يعكس قيمة المتغير التابع في حالة انعدام قيمة : b_0 المتغير المستقل x=0 ، أي في حالة x=0

ميل الخط المستقيم (b_0+b_1x) ، ويعكس مقدار التغير في y إذا تغيرت x بوحدة واحدة. b_1

هو الخطأ العشوائي، والذي يعبر عن الفرق بين القيمــة الفعليــة y ، والقيمــة المقــدرة : $e=y-(b_0+b_1x)$: أي أن : $\hat{y}=b_0+b_1x$ الشكل التالي لنقط الانتشار .

2/3/6 تقدير نموذج الانحدار الخطي البسيط

يمكن تقدير معاملات الانحدار $(b_1\ ,\ b_0)$ في النموذج (5-6) باستخدام طريقة المربعات الصغرى، وهـــذا التقـــدير هـــو الـــذي يجعــل مجمــوع مربعــات الأخطــاء العــشوائية $\sum e^2 = \sum (y-(b_0+b_1x))^2$

$$\hat{\beta}_{1} = \frac{n \sum xy - \sum x \sum y}{n \sum x^{2} - (\sum x)^{2}},$$

$$\hat{\beta}_{0} = \bar{y} - \hat{\beta}_{1}\bar{x}$$
(1-1)

حيث أن \overline{X} هو الوسط الحسابي لقيم \overline{y} ، X هو الوسط الحسابي لقيم \overline{y} ، وتكون القيمـة y المقدرة للمتغير التابع هو: $\hat{y}=\hat{b}_0+\hat{b}_1$ ، ويطلق على هذا التقدير " تقــدير معادلــة انحــدار y على .

مثال (6-3)

فيما يلي بيانات عن كمية البروتين اليومي بالجرام التي يحتاجها العجل الرضيع، ومقدار الزيادة في وزن العجل بالكجم، وذلك لعينة من العجول الرضيعة حجمها 10.

كمية البروتين	10	11	14	15	20	25	46	50	59	70
الزيادة في الوزن	10	10	12	12	13	13	19	15	16	20

و المطلوب:

- 1- ارسم نقط الانتشار، وما هو توقعاتك لشكل العلاقة ؟
 - 2- قدر معادلة انحدار الوزن على كمية البروتين.
 - 3- فسر معادلة الانحدار.
- 4- ما هو مقدار الزيادة في الوزن عند إعطاء العجل 50 جرام من البروتين ؟ وما هو مقدار الخطأ
 العشوائي؟
 - 5- ارسم معادلة الانحدار على نقط الانتشار في المطلوب (1) .

الحــــل

1- رسم نقط الانتشار:

من المتوقع أن يكون لكمية البروتين أثر طردي (إيجابي) على مقدار الزيادة في الوزن.

2- تقدير معادلة الانحدار.

-6) بفرض أن x هي كمية البروتين، y هي مقدار الزيادة في الوزن، يمكن تطبيق المعادلتين في 6)، ومن ثم يتم حساب المجاميع التالية:

کمیة البروتین ${\mathcal X}$	الزيادة في الوزن Y	x y	x^2
10	10	100	100
11	10	110	121
14	12	168	196
15	12	180	225
20	13	260	400
25	13	325	625
46	19	874	2116
50	15	750	2500
59	16	944	3481
70	20	1400	4900
320	140	5111	14664

المجاميع المطلوبة
$\sum x = 320$ $\sum y = 140$ $\sum xy = 5111$ $\sum x^2 = 14664$
إذا الوسط الحسابي: $ \overline{x} = \frac{\sum x}{n} = \frac{320}{10} = 32 $ $ \overline{y} = \frac{\sum x}{n} = \frac{140}{10} = 14 $

• بتطبيق المعادلة الأولى في (6-6) يمكن حساب \hat{b}_1 كما يلى:

$$\hat{b}_1 = \frac{n\sum xy - \sum x \sum y}{n\sum x^2 - (\sum x)^2} = \frac{(10)(5111) - (320)(140)}{(10)(14664) - (320)^2}$$
$$= \frac{6310}{44240} = 0.1426$$

• بتطبيق المعادلة الثانية في $(\mathbf{6} - \mathbf{6})$ يمكن حساب \hat{b}_0 كما يلي:

$$\hat{b}_0 = \overline{y} - \hat{b}_1 \overline{x} = 14 - (0.1426)(32) = 9.4368$$

• إذا معادلة الانحدار المقدرة، هي:

$$\hat{y} = 9.44 + 0.143x$$

3- تفسير المعادلة:

- الثابت $\hat{b}_0 = 9.44$ يدل على أنه في حالة عدم استخدام البروتين في التغذيــة، فــإن الوزن يزيد 9.44 كجم.
- معامل الانحدار $\hat{b}_1 = 0.143$: يدل على أنه كلما زادت كمية البروتين جرام واحد، حدث زيادة في وزن العجل بمقدار 0.143 كجم، أى زيادة مقدارها 143 جرام.

: هو
$$x = 50$$
 مقدار الزيادة في الوزن عند

$$\hat{y} = 9.44 + 0.143(50) = 16.59$$

وأما ومقدار الخطأ العشوائي هو:

$$\hat{e}_{x=50} = y_{x=50} - \hat{y}_{x=50} = 15 - 16.59 = -1.59$$

5- رسم معادلة الانحدار على نقط الانتشار.

يمكن رسم معادلة خط مستقيم إذا علم نقطتين على الخط المستقيم.

х	50	10
ŷ	16.59	10.87

إذا معادلة الانحدار هي:

الفصــل السابع الاحتمـالات و تطبيقاها

Probabilities and its Applications

1/7 مقـــدمة

كلمة "احتمال" هي كلمة ينطق بها الكثير من الناس، فبعض خبراء الأرصاد الجوية يقولون من المحتمل سقوط أمطار اليوم، احتمال ارتفاع في درجات الحرارة، وبعض خبراء البورصة يقولون احتمال ارتفاع قيمة الأسهم المتداولة في سوق المال لشركة معينة، خلال هذا اليوم، واحتمال نجاح طالب، واحتمال إصابة نوع معين من الفاكهة بنوع من البكتريا، وهكذا، يكثر نطق الأفراد بها وربما يجهلون معناها. فماذا تعنى كلمة احتمال؟

يقصد بهذه الكلمة فرصة حدوث أو وقوع حادثة معينة، وتستخدم الاحتمالات في كثير من النواحي التطبيقية، مثل المجالات الاقتصادية، والتجارية، والزراعية، والطبية، والسلوكية، وغيرها، خاصة عند اتخاذ القرار في دراسات الجدوى، والتنبؤ بسلوك الظواهر المختلفة، ولكي يمكن فهم موضوع الاحتمال، وأهميته في النواحي التطبيقية، نقوم بعرض بعض المفاهيم الخاصة بالاحتمالات.

2/7 بعض المفاهيم الخاصة بالاحتمال

• التجربة العشوائية Randomized Experiment

هي أي عملية تتم يمكن تحديد كل النتائج المكنة لها، ولكن لا يمكن مسبقا تحديد النتيجة التي ستظهر أو تحدث، ومثال على ذلك عند إلقاء قطعة عملة معدنية مرة واحدة، فإن النتائج الممكنة لها نتيجتان هما: "ظهور الصورة" ويرمز لها بالرمز H، أو "ظهور الكتابة" ويرمز لها بالرمز H، أي أن النتائج الممكنة هي: H , H ، وقبل إلقاء القطعة ، لا يمكن تحديد أي من النتيجتين سوف تظهر.

• فراغ العينة Sample Space

هي مجموعة النتائج المكنة للتجربة، ويرمز لها بالرمز S، ويرمز لعدد النتائج المكونة لفراغ العينة بالرمز n(S)، ومن الأمثلة على ذلك:

، $S:\{H,T\}$ عند إلقاء قطعة عملة غير متحيزة مرة واحدة، نجد أن فراغ العينة هو: n(S)=2 .

2- عند إلقاء قطعة عملة غير متحيزة مرتين (إلقاء قطعتين مرة واحدة)، فإن فراغ العينة يمكن الحصول عليه من خلال شجرة الاحتمالات كما يلى:

n(S) = 4 is if

- 3 عند رمي زهرة نرد غير متحيزة مرة واحدة، فإن فراغ العينة هو مجموعة عدد النقاط التي n(S)=6 : أي أن $S:\{1,\,2,\,3,\,4,\,5,\,6\}$.
- 4- عند إلقاء قطعة عملة غير متحيزة عدد من المرات حتى نحصل على الصورة مرة واحدة، نجد
 أن التجربة هي عدد من المحاولات يتم إيقافها عندما نحصل على الصورة مرة واحدة ، إذا
 فراغ العينة هو :
 - . $n(S) = \infty$: ويكون ∞ : {H, TH, TTH, TTTH,}
- 5- عند سحب كرتين بدون إرجاع من كيس به خمس كرات همراء (red)، ثلاث كرات زرقاء (blue)، وكرتان خضراء (green)، نجد أن فراغ العينة هو:

أي أن: $n(S) = (10 \times 9) = 90$ ، (الألها حالات غير متزنة).

6- عند فرز صندوق به خمس وحدات من سلعة معينة، يكون فراغ العينة لعدد الوحدات المعيبة هو واجب مترلي

• الحادث Event

هو فئة جزئية من النتائج المكونة لفراغ العينة، ويرمز للحادث بحرف من الحروف الهجائيــة [..., C, B, A]

1- حادث بسيط Simple Event: وهو الذي يحتوي على نتيجة واحدة من النتائج المكونة لفراغ العينة.

2- حادث مركب Component Event: ويشمل نتيجتين أو أكثر من النتائج المكونة لفراغ العينة، أي أن الحادث المركب يمكن تقسيمه إلى حوادث بسيطة. ويرمز لعدد النتائج المكونة للحادث بالرمز n(A), n(A)... وهكذا.

فعند إلقاء قطعة عملة غير متحيزة مرتين ، وعرف الحادث A بأنه ظهور الصورة مرتين ، والحادث B ظهور الصورة مرة واحدة على الأقل ، نجد أن فراغ العينة في هذه الحالة هي $S:\{HH, HT, TH, TT\}$ ، وبالنسبة للحادث A فهو حادث بسيط ، يشمل نتيجة واحدة هي $A:\{HH\}$ ، أي أن $A:\{HH\}$ ، أما الحادث A فهو حادث مركب يشمل ثلاث نتائج هي $A:\{HH\}$ ، أي أن $A:\{HH\}$ ،

Union (∪) الاتحاد •

يعبر اتحاد الحادثان B , A عن وقوع أحدها على الأقل، وبمعنى آخر وقوع الأول أو الثاني أو كلاهما، ويعبر عن ذلك رياضيا $(A \cup B)$ أو $(A \cup B)$ ، ويمكن الاستعانة بــشكل "فــن" كلاهما. Ven. Diagram كما يلى:

ومثال على ذلك ، عند إلقاء زهرة نرد متزنة مرة واحدة ، وعرف الحادث A بأنه ظهور وجه يقبل القسمة على B ، والحادث B بأنه ظهور عدد فردي، يلاحظ أن: B . A .

B , A ، ويكون اتحاد الحادثان $B:\{1,3,5\}$, $A:\{3,6\}$, $S:\{1,2,3,4,5,6\}$ هو: $(A \cup B):\{1,3,5,6\}$

• التقاطع (∩) Intersection •

يعبر تقاطع الحادثان A عن وقوع الاثنان في آن واحد ، ويشمل كل النتائج المشتركة بين الحادثين، ويعبر عن ذلك رياضيا $A \cap B$ أو $A \cap B$ ، ويظهر ذلك في شكل "فن" كما يلي :

. $(A\cap B)$: $\{3\}$ ففى المثال السابق ، نجد أن

• الأحداث المتنافية Mutually Exclusive evens

يقال أن الحادثان B, A متنافيان، إذا كان وقوع أحدها ينفي وقوع الحدث الآخر، بمعنى استحالة وقوعهما في آن واحد، ومن ثم يكون نتيجة تقاطع الحادثان المتنافيان هي الفئة الخالية ويرمز لها بالرمز f أي أن B = f ، ويمكن تمثيلها بشكل " فن " كما يلي:

 $(A \cap B) = f$ لا توجد نتائج مشتركة

• الحادث المكمل Compliment Event

مشال (1-7)

ألقيت قطعة عملة غير متحيزة ثلاث مرات، وعرفت الأحداث التالية:

الحادث A ظهور الصورة مرتين.

الحادث B ظهور الصورة مرة واحدة.

الحادث C ظهور الصورة في الرمية الأولى.

و المطلوب:

1- إيجاد الأحداث الخاصة بالاتحاد:

 $A \cup B$, $A \cup C$, $B \cup C$, $A \cup B \cup C$

2- إيجاد الأحداث الخاصة بالتقاطعات:

 $A \cap B$, $A \cap C$, $B \cap C$, $A \cap B \cap C$

 \overline{B} أوجد الحادث -3

الح____ا

• فراغ العينة لهذه التجربة هو:

• وأما الأحداث هي:

 $A: \{HHT, HTH, THH\}, B: \{HTT, THT, TTH\}, C: \{HHH, HHT, HTH, HTT\}$ n(A) = 3 n(B) = 3 n(C) = 4

1- الأحداث الخاصة بالاتحاد:

 $(A \cup B)$: $\{HHT, HTH, THH, HTT, THT, TTH\}$, $n(A \cup B) = 6$

 $(A \cup C)$: $\{HHT, HTH, THH, HHH, HTT\}$, $n(A \cup C) = 5$

 $(B \cup C)$: $\{HHH, HHT, HTH, HTT, THT, TTH\}$, $n(B \cup C) = 6$

 $(A \cup B \cup C)$: $\{HHH, HHT, HTH, HTT, THT, TTH, THH\}, n(A \cup B \cup C) = 7$

2- الأحداث الخاصة بالتقاطع:

 $(A \cap B)$: f, $n(A \cap B) = 0$

 $\big(A\cap C\big)\!:\!\big\{HHT,HTH\big\}\;,\;\;n(A\cap C)=2$

 $(B \cap C)$: $\{HTT\}$, $n(B \cap C) = 1$

 $(A \cap B \cap C)$: f, $n(A \cap B \cap C) = 0$

 $:\overline{B}$ ایجاد -3

 (\overline{B}) : $\{HHH, HHT, HTH, THH, TTT\}$, $n(\overline{B}) = 5$

3/7 طرق حساب الاحتمالات

يعتمد حساب الاحتمال من الناحية النظرية على أسس وقواعد الرياضيات، ويعتبر هــذا النوع من الاحتمال هو العنصر الأساسي في الاستدلال الإحصائي، ولكن في المجال التجريبي تعتمد الاحتمالات على النتائج الفعلية لمشاهدات التجربة، وعلى تكرار الحادث محل الاهتمام، فإذا رمزنا لاحتمال وقوع الحادث A بالرمز P(A)، فإن طريقة حساب هذا الاحتمال تتحدد وفقــا لنــوع الاحتمال، وهما نوعان:

• الاحتمال التجريبي Empirical probability: ويعبر عنه بالتكرار النسبي، ويحسب بتطبيق المعادلة التالية:

$$P(A) = \frac{f(A)}{n}$$

حيث أن: n هو مجموع التكرارات (العدد الكلي للمشاهدات)، f(A): هو تكرار الحادث A

فإذا تم إلقاء قطعة عملة غير متحيزة 500 مرة، وتم ملاحظة عدد مرات ظهــور كــل وجــه، ولخصت كالتالى:

الوجه (Face)	Н	T	SUM
عدد مرات ظهور الوجه	260	240	500

وإذا كان المطلوب حساب احتمال ظهور الصورة H، يمكن تطبيق المعادلة رقــم (7-1)، والـــتي تعتمد على التكرار النسبي، أي أن :

$$P(H) = \frac{f(H)}{n} = \frac{260}{500} = 0.52$$

• الاحتمال النظري Theoretical Probability: وهو الذي يعتمد في حسابه على أسس وقواعد الرياضيات، والتي تستخدم في تحديد عدد النتائج الممكنة للتجربة، وعدد النتائج الممكنة لوقوع الحادث، ومن ثم يحسب هذا النوع من الاحتمال، بتطبيق المعادلة التالية:

$$P(A) = \frac{n(A)}{n(S)}$$

حيث أن: n(S) هو عدد النتائج الممكنة للتجربة، n(A) هو عدد النتائج الممكنـة لوقـوع $S:\{H,\ T\}$ هو غند إلقاء قطعة عملة غير متحيزة مرة واحدة ، نجد أن فراغ العينة هو: $S:\{H,\ T\}$ هو ظهور صورة ، أي أن عدد النتائج الممكنة هي: $S:\{h,\ T\}$ هو ظهور صورة ، $S:\{h,\ T\}$ أي أن عدد النتائج المكنة المكنة

الحادث A هو:

$$P(A) = \frac{n(A)}{n(S)} = \frac{1}{2} = 0.5$$

• العلاقة بين الاحتمال التجريبي و الاحتمال النظري: عسد زيادة عدد المحاولات n يقترب الاحتمال التجريبي من الاحتمال النظري، أي أن:

$$\underbrace{\lim_{n \to \infty} \frac{f(A)}{n} = \frac{n(A)}{n(S)}}$$

فعند زيادة عدد مرات رمي قطعة العملة، فإن التكرار النسبي للصورة سوف يقترب من القيمة (0.5)، وهي قيمة الاحتمال النظري لظهور الصورة عند رمي قطعة العملة مرة واحدة.

• النتائج المتشاجحة: إذا أجريت تجربة، وكانت كل نتيجة من النتائج المكنة للتجربة لها نفس الفرصة في الظهور، بمعنى أن كل نتيجة لها احتمال هو (1/n(S))، تسمى هذه النتائج بالنتائج المتماثلة أو المتشاجحة، فعند إلقاء زهرة نرد متزنة مرة واحدة، نجـد أن فـراغ العينـة هـو المتماثلة أو المتشاجحة، فعند إلقاء زهرة نرد متزنة هو (1/6)، وعند إلقاء الزهرة مرتين نجد أن عدد نتائج فراغ العينة هو: $n(S)=6^2=36$ نتيجة، وهي:

	1	2	3	4	5	6
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

وهذه النتائج متماثلة، واحتمال كل نتيجة هو (1/36).

النتائج غير المتماثلة: هي النتائج التي تحدث عند تكرار محاولة، بحيث أن احتمالات نتائج كل محاولة غير متساوي، ومن ثم لا تتساوى احتمالات نتائج التجربة، فعند سحب كرتين مع الإرجاع بطريقة عشوائية من كيس به ثلاث كرات هراء (R)، وكرتان تحمالان اللون الأبيض (W)، نجد أنه في كل سحب يكون احتمال ظهور كرة هراء هو (R)، واحتمال ظهور كرة بيضاء هو (R)، ومن ثم يكون نتائج فراغ العينة، واحتمال كل نتيجة في حالة سحب كرتين هو:

يلاحظ أن احتمال كل نتيجة يختلف عن (1/4)، فهذه الحالات غير متزنة.

Probability Laws الاحتمالات عض قوانين الاحتمالات 4/7

هناك بعض القوانين التي يمكن تطبيقها لحساب الاحتمالات المختلفة، وهي:

• قانون جمع الاحتمالات Addition Law

إذا كان لدينا الحادثان (B,A) ، فإن الاحتمال $P(A \cup B)$ ، يمكن استنتاج معادلته كما يلي:

$$P(A \cup B) = \frac{n(A \cup B)}{n(S)}$$

$$= \frac{n(A) + n(B) - n(A \cap B)}{n(S)}$$

$$= \frac{n(A)}{n(S)} + \frac{n(B)}{n(S)} - \frac{n(A \cap B)}{n(S)}$$

$$= P(A) + P(B) - P(A \cap B)$$

إذا:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

وفي حالة ثلاث أحداث $P(A \cup B \cup C)$ ، يمكن استنتاج معادلة الاتحاد $P(A \cup B \cup C)$ ، وهي:

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$-P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$
(£-v)

وعندما تكون الأحداث متنافية، فإن احتمالات التقاطعات تساوي أصفار، ويكون:

$$P(A \cup B) = P(A) + P(B) ,$$

$$P(A \cup B \cup C) = P(A) + P(B) + P(C)$$

$$(\circ - \lor)$$

مشال (2-7)

عند إلقاء زهرة نرد غير متحيزة مرتين، فأوجد ما يلي:

- 1- احتمال ظهور وجهين متشاهين.
- 2- احتمال ظهور وجهين مجموع نقاطهما 10.
- 3- احتمال ظهور وجهين متشابمين أو مجموع نقاطهما 10.
 - 4- احتمال ظهور وجهين مجموع نقاطهما 7 أو 10.

الح____ل:

نتائج فراغ العينة هي:

			S				
	1	2	3	4	5	6	
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	
						(2,6)	
						(3,6)	
						(4,6)	
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	
	2.6						

$$n(S)=36$$

1- بفرض أن الحادث A هو حادث ظهور وجهين متشاهمين، فإن:

$$A:\{(1,1)\ (2,2)\ (3,3)\ (4,4)\ (5,5)\ (6.6)\},\ n(A)=6$$

ویکون احتمال ظهور وجهین متشابمین هو:

$$P(A) = \frac{n(A)}{n(S)} = \frac{6}{36} = \frac{1}{6}$$

2- بفرض أن الحادث B هو حادث ظهور وجهين مجموع نقاطهما 10، فإن:

$$B:\{(4,6)\ (5,5)\ (6,4)\},\ n(B)=3$$

ویکون احتمال ظهور وجهین متشابمین هو :

$$P(B) = \frac{n(B)}{n(S)} = \frac{3}{36} = \frac{1}{12}$$

-7 المعادلة (or) مجموع نقاطهما 10 ، تستخدم المعادلة (or) مجموع نقاطهما 10 ، تستخدم المعادلة (3) ، حيث أن:

$$P(A) = \frac{1}{6}$$
, $P(B) = \frac{1}{12}$

وأما التقاطع $(A \cap B)$ فيعبر عن ظهور وجهين متشابمين و مجموعهما 10 يمكن حسابه كما يلي:

$$(A \cap B): \{(5,5)\}, n(A \cap B) = 1$$

 $P(A \cap B) = \frac{n(A \cap B)}{n(S)} = \frac{1}{36}$

ومن ثم:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= \frac{1}{6} + \frac{1}{12} - \frac{1}{36} = \frac{8}{36} = \frac{2}{9}$$

4- بفرض أن الحادث B هو حادث ظهور وجهين مجموع نقاطهما 7، والحادث B هــو حــادث ظهور وجهين مجموع نقاطهما 10، نجد أن:

$$B:\{(4,6)\ (5,5)\ (6,4)\}$$
 , $C:\{(1,6)\ (2,5)\ (3,4)\ (4,3)\ (5,2)\ (6,1)\}$ $n(B)=3$ $n(C)=6$ $P(B)=3/36$, $P(C)=6/36$

يلاحظ أن الحادثين C, B حادثين متنافيين، لذا تستخدم المعادلة (5-7) في حساب الاحتمال المطلوب كما يلى:

$$P(B \cup C) = P(B) + P(C) = \frac{3}{36} + \frac{6}{36}$$
$$= \frac{9}{36} = \frac{1}{4}$$

• قانون الاحتمال الشرطي Conditional probability

يستند هذا الاحتمال على فرصة وقوع حادث، إذا توافرت معلومات عن وقوع حادث آخر له علاقة بالحادث الأول، كاحتمال نجاح الطالب في مادة الإحصاء إذا علم أنه من الناجحين في مادة الاقتصاد، وكاحتمال استخدام المزرعة لنوع معين من السماد، إذا علم أنه يقوم بزراعة محصول معين، وكاحتمال أن الخريجي يعمل بالقطاع الخاص، إذا علم أنه ممن تخرجوا من قسم معين من أقسام كلية الزراعة، والأمثلة على ذلك كثيرة.

فإذا كان الحادث B حادث A حادث A حادث B حادث B وقوعه، بمعلومية الحادث B، فإن هذا الاحتمال يحسب بتطبيق المعادلة التالية:

$$p(A \mid B) = \frac{p(A \cap B)}{p(B)}$$

A بقانون الاحتمال الشرطي، ويقرأ "احتمال وقوع الحادث $p(A \mid B)$ بقانون الاحتمال الشرطي، ويقرأ "احتمال وقوع الحادث B بشرط وقوع الحادث B"، كما يمكن عملومية الحادث B بعملومية الحادث A بعملومية الحادث B بعملومية الحادث A بعملومية الحادث B بعملومية الحادث B بعملومية الحادث A بعملومية الحادث B بعملومية الحادث A بعملومية الحددث A بعملومية الحدد

$$p(B \mid A) = \frac{p(A \cap B)}{p(A)}$$
 (V-V)

ومن المعادلة (7-6)، (7-7) يلاحظ أن الاحتمال الشرطي هو نسبة حادث التقاطع بين إلى الحادث المعلوم، حيث أن :

مشال (3-7)

فيما يلي توزيع تكراري لعينة عشوائية حجمها 100 من خريجي الكلية في العامين الماضيين، حسب التخصص، ونوع المهنة:

المهنة التخصص	عمل حكومي	قطاع خاص	عمل حو	Sum
اقتصاد زراعى	15	5	10	30
علوم أغذية	8	17	10	35
علوم تربة	12	10	13	35
Sum	35	32	33	100

فإذا اختير أحد الخريجين بطريقة عشوائية، احسب الاحتمالات التالية:

- 1- ما احتمال أن يكون من خريجي قسم الاقتصاد و يعمل بالقطاع الخاص.
- 2- ما احتمال أن يكون ممن يعملون بالحكومة أو من خريجي قسم علوم الأغذية.
- 3- ما احتمال أن يكون من خريجي قسم علوم الأغذية أو من قسم علوم التربة.
- 4- إذا علم أن الفرد من خريجي قسم عوم الأغذية، ما احتمال أن يكون ممن يعملون عملا حرا. الحل:

أولا: نرمز لنوع المهنة بالرمو A، ولنوع التخصص بالرمز B ، كما هو مبين بالجدول التالي:

المهنة التخصص	/	عمل حكومي A ₁	قطاع خاص A_2	عمل حر A_3	Sum
اقتصاد زراعي	B_1	15	5	10	30
علوم أغذية	$\boldsymbol{\mathit{B}}_{2}$	8	17	10	35
علوم تربة	B_3	12	10	13	35
Sum		35	32	33	100

ثانيا: التكرار في كل خلية يعبر عن عدد الخريجين الذين ينتمون لقسم معين و يعملون في مهنة معينة، أي يعبر عن عدد تكرارات حوادث التقاطع الممكنة $A \cap B$.

1- حساب احتمال أن يكون من خريجي قسم الاقتصاد و يعمل بالقطاع الخاص.

$$P(B_1 \cap A_2) = \frac{f(B_1 \cap A_2)}{n} = \frac{5}{100} = 0.05$$

2- حساب احتمال أن يكون ممن يعملون بالحكومة أو من خريجي قسم علوم الأغذية.

$$P(A_1 \cup B_2) = p(A_1) + P(B_2) - P(A_1 \cap B_2)$$
$$= \frac{35}{100} + \frac{35}{100} - \frac{8}{100} = \frac{62}{100} = 0.62$$

3- حساب احتمال أن يكون من خريجي قسم علوم الأغذية أو من قسم علوم التربة.

هذان حادثان متنافيان، لأن تخرج الفرد من أحد الأقسام ينفي تخرجه من الأقسام الآخرى، وبمعنى آخر استحالة أن الفرد تخرج من قسمين في آن واحد، لذا يكون احتمال اتحادهما هو:

$$P(B_2 \cup B_3) = p(B_2) + P(B_3)$$
$$= \frac{35}{100} + \frac{35}{100} = \frac{70}{100} = 0.70$$

4- إذا علم أن الفرد من خريجي قسم عوم الأغذية، ما احتمال أن يكون ثمن يعملون عملا حرا، هذا احتمال شرطي، المطلوب هنا "حساب احتمال أن الفرد ثمن يعملون عملا حرا A_3 بشرط أنه من خريجي قسم علوم أغذية B_2 ، أي أن الاحتمال المطلوب هو:

$$p(A_3 \mid B_2) = \frac{p(A_3 \cap B_2)}{p(B_2)} = \frac{\left(\frac{10}{100}\right)}{\left(\frac{35}{100}\right)} = \frac{10}{35}$$

واجب مترلي:

الجدول التالي يبين عدد الوحدات السليمة، والتالفة من الخبر العربي بعد ثلاث أيام من تاريخ الإنتاج في أحد مراكز التموين التي تتعامل مع ثلاث مخابر هي $(C\,,\,B\,,\,A)$.

الإجمالي	عدد الوحدات التالفة	عدد الوحدات السليمة	
60	24	36	مخبز A
123	63	60	B مخبز
87	33	54	C مخبز
270	120	150	الإجمالي

إذا اختيرت وحدة من الخبز بطريقة عشوائية، فأوجد الآتي:

- $^{\circ}B$ ما احتمال أن تكون من إنتاج المخبز $^{\circ}B$
 - 2- ما احتمال أن تكون تالفة ؟
- $^{\circ}C$ إذا كانت الوحدة سليمة ، ما احتمال أن تكون من إنتاج المخبز $^{\circ}C$
 - 4- ما احتمال أن تكون الوحدة من إنتاج المخبز A أو تكون تالفة 4
 - 2 إذا كانت الوحدة من إنتاج المخبز 2 ، ما احتمال أن تكون تالفة 2

• قانون ضرب الاحتمالات Probability Multiplying Law ويعكس هذا القانون احتمال وقوع الأحداث معا، أي احتمال التقاطعات، فإذا كان B, A مادثان يمكن وقوعهما معا، فإن الاحتمال $P(A \cap B)$ يمكن حسابه كحاصل ضرب احتمالين، هما:

$$P(A \cap B) = P(B) \ P(A|B)$$
or
$$P(A \cap B) = P(A) \ P(B|A)$$
(A-V)

مثــال (4-7)

إذا كانت نسبة مزارع الخضروات التي تستخدم أسلوب معين للتسميد 60%، وإذا كان نسبة المبيعات من الخضروات غير المسمدة (80%، إذا اختيرت أحد المزارع التي تنتج الحضروات عشوائيا ، فأوجد الآتي:

- 1- ما احتمال أن هذه المزرعة تستخدم أسلوب التسميد؟
- 2- إذا علم أن هذه المزرعة تستخدم أسلوب التسميد، ما احتمال أن تبيع إنتاجها؟
 - 3- ما احتمال أن هذه المزرعة تستخدم أسلوب التسميد وتبيع إنتاجها؟
- 4- ما احتمال أن هذه المزرعة ممن لا يستخدمون أسلوب التسميد و تبيع إنتاجها؟

الحـــل

إذا فحصنا حال المزرعة المسحوبة، نجد أننا نتعامل مع نتيجتين متعاقبتين هما: النتيجة الأولي ولها حالتان: $\{ (A_2)$ تستخدم طريقة التسميد (A_1) أو المزرعة لا تستخدم (B_2) النتيجة الثانية ولها حالتان: $\{ (B_2)$ المزرعة تبيع الإنتاج (B_1) ، أو المزرعة لا تبيع الإنتاج (B_2) لذا يمكن استنتاج شجرة الاحتمالات للحصول على النتائج الكلية كالتالي:

وفيما يلى حساب الاحتمالات:

1- احتمال أن المزرعة تستخدم أسلوب التسميد هو:

$$P(A_1) = 0.6$$

: المناجهاهو المزرعة تستخدم أسلوب التسميد، فإن احتمال أن تبيع إنتاجهاهو $P(B_1|A_1)=0.7$

-3 احتمال أن هذه المزرعة تستخدم أسلوب التسميد وتبيع إنتاجها عبارة عن احتمال وقوع حادثتان معا $(B_1 \ and \ A_1)$ ، لذا يحسب هذا الاحتمال بتطبيق المعادلة $(B_1 \ and \ A_1)$

$$P(A_1 \cap B_1) = P(A_1) P(B_1|A_1)$$

= $(0.6)(0.7) = 0.42$

4- احتمال أن المزرعة لا تستخدم أسلوب التسميد وتبيع إنتاجها هو:

$$P(A_2 \cap B_1) = P(A_2) P(B_1|A_2)$$

= (0.4)(0.8) = 0.32

• الأحداث المستقلة Independent Events

إذا كانت الحادثتان B , A يمكن وقوعهما معا، ولكن وقوع أحدهما ليس له علاقة بوقوع أو عدم وقوع الحادث الآخر، فإن الاحتمال $P(A \cap B)$ يمكن التعبير عنه كالتالى:

$$P(A \cap B) = P(A) P(B)$$

وفي هذه الحالة يقال أن الحاثتان B , A مستقلتان.

إذا كان نسبة المزارع التي تنتج خضروات %60 ، ونسبة المزارع التي تنتج فاكهـــه %75، ونسبة المزارع التي تنتج الخضروات و الفاكهة %50، أوجد الآتي:

- 1- ما احتمال أن مزرعة ما تنتج فاكهة أو خضروات؟
 - 2- ما احتمال ألا تنتج المزرعة الفاكهة ؟
- 3- هل انتاج المزرعة للفاكهة مستقل عن إنتاجها للخضروات؟

الحسل:

بفرض أن A حادث يعبر عن "المزرعة تنتج خضروات "، B هو حادث يعبر عن " المزرعة تنتج فاكهة"، فإن:

$$P(A) = 0.6$$
 , $P(B) = 0.75$, $P(A \cap B) = 0.5$

و یکو ن:

1- احتمال أن مزرعة ما تنتج فاكهة أو خضروات هو:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$
$$= (0.6) + (0.75) - 0.5 = 0.85$$

2- احتمال ألا تنتج المزرعة الفاكهة هو:

$$P(\overline{B}) = 1 - P(B) = 1 - 0.75 = 0.25$$

3- لمعرفة ما إذا كان إنتاج المزرعة للفاكهة مستقل عن إنتاجها للخضروات يمكن تطبيق المعادلة (7- 9)

$$P(A \cap B) = 0.5$$
, $P(A)$ $P(B) = (0.6)(0.75) = 0.45$

وحيث أن : $P(A \cap B) \neq P(A)$ ، فإن إنتاج المزرعة للفاكهة $P(A \cap B) \neq P(A)$ ، غير مستقل عن إنتاجها للخضروات P(B).

إذا كان الحادثان P(B)=0.5 , P(A)=0.6 وكـــان B , A فأو جـــد الاحتمال $P(A\cup B)$. $P(A\cup B)$

جا أن الحادثان B, A مستقلان، إذا:

$$P(A \cap B) = P(A) P(B)$$

= (0.6)(0.5) = 0.3

ويكون احتمال $P(A \cup B)$ هو:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

= 0.6 + 0.5 - 0.3 = 0.8

الفصـــل الثامن

المتغيرات العشوائية والتوزيعات الاحتمالية

Random Variables and Probability Distributions

1/8مقـــدمة

يهتم هذا الفصل بدراسة المتغيرات العشوائية، من حيث تعريفها، وأنواعها، والتوزيعات الاحتمالية لها، وخصائص هذه التوزيعات، والتوزيعات الاحتمالية للمتغيرات العشوائية الخاصة.

:Random Variable المتغير العشوائي 2/8

المتغير العشوائي هو الذي يأخذ قيما حقيقية مختلفة تعبر عن نتائج فراغ العينة، ومن ثم مجال هذا المتغير، يشمل كل القيم الممكنة له، ويكون لكل قيمة من القيم التي يأخذها المتغير احتمال معين، وينقسم المتغير العشوائي إلى قسمين هما:

- 1- المتغيرات العشوائية المنفصلة Discrete Random Variables
- 2- المتغيرات العشوائية المتصلة(المستمرة) Continuous Random Variables

3/8 المتغيرات العشوائية المنفصلة

- . $X:\{x=0,1,2,3,4\}$ ، $X:\{x=0,1,2,3,4\}$ ، عدد الأولاد الذكور في الأسرة المكونة من أربع أولاد $X:\{x=0,1,2,3,4\}$
- $Y: \{y=0,1,2,3,...\}$ ، د قائق Y د العملاء الذين يتم إنهاء خدمتهم البنكية كل I0 د العملاء الذين يتم الهاء خدمتهم البنكية كل
 - 3- عدد مرات استخدام نوع معين من الأسمدة خلال الدورة الزراعية.
 - 4- عدد الوحدات التالفة من إنتاج مزرعة معينة تنتج 200 وحدة كل موسم.
 - 5- عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر.
 - وهكذا.... الأمثلة كثيرة

1/3/8 التوزيع الاحتمالي للمتغير العشوائي المنفصل

التوزيع الاحتمالي، هو الذي يبين احتمالات حدوث القيم التي يمكن يأخذها المتغير، والتي تــرتبط باحتمالات النتائج الممكنة في فراغ العينة، وبمعنى آخر هو التكراري النسبي للقيم التي يمكن أن يأخذها المتغير.

فإذا كان المتغير العشوائي المنفصل X يأخل القيم، $X:\{x=x_1,x_2,...,x_n\}$ ، وكان

وين تكوين $P(X=x_i)=f(x_i)$ هو احتمال أن المتغير العشوائي يأخذ القيمة x_i فإنه، يمكن تكوين جدول التوزيع الاحتمالي للمتغير العشوائي X ، وهو جدول مكون من عمودين، الأول به القيم المكنة للمنتغير $X:\{x=x_1,x_2,...,x_n\}$ ، والثناني بنه القنيم الاحتمالينة لهندا المنتغير $P(X=x_i)=f(x_i)$ ، أي أن:

جدول (8-1) جدول التوزيع الاحتمالي للمتغير العشوائي المنفصل

x_i	$f(x_i)$
x_1	$f(x_1)$
<i>x</i> ₂	$f(x_2)$
:	-
X _n	$f(x_n)$
Σ	1

وتسمى الدالة $f(x_i)$ بدالة الاحتمال، ومن خصائص هذه الدالة ما يلى:

$$\begin{bmatrix}
1 - 0 < f(x_i) < 1 \\
2 - \sum f(x_i) = 1
\end{bmatrix}$$
(1-A)

مشال (1-8)

إذا كان من المعلوم أن نسبة مبيعات أحد المراكز التجارية من التفاح الأمريكي 0.60 ، بينما يكون نسبة مبيعاته من الأنواع الأخرى للتفاح 0.40، اشترى أحد العملاء عبوتين، والمطلوب:

1- كون فراغ العينة.

2- إذا عرف المتغير العشوائي X بأنه عدد العبوات المشتراة من التفاح الأمريكي، فأوجد الآتي:

- التوزيع الاحتمالي للمتغير العشوائي X.
 - ارسم دالة الاحتمال لهذا المتغير.
 - كون التوزيع الاحتمالي التجميعي.
- $P(X \le 1.5)$ ، P(X = 1.5) ، $P(X \le 1)$ ، P(X = 1) ما هو احتمال
 - حدد قيمة الوسيط، والمنوال لعدد العبوات المشتراة.

الحـــل:

تكوين فراغ العينة:

التجربة هنا هو شراء وحدتين من عبوات التفاح، ومن ثم فراغ العينة يتكون من أربع نتائج، هي:

أمريكي مر 0.60	، ع (أمريكي،أمريكي)	دد العبواث X 2	P(X=x)=f(x) 0.36
أمريكي أمريكي 0.60	(آخر,أمربكي)	1	0.24
أمريكي 0.60 أمريكي 0.40	(أمريكي,آخر)	1	0.24
احر آخر 0.40	(أخر,أخر)	0	0.16

X التوزيع الاحتمالي لعدد العبوات المشتراة من التفاح الأمريكي X

من المعلوم أن العميل اشترى عبوتين، وأن المتغير العشوائي هو عدد العبوات المشتراة من التفاح الأمريكي، لذا تكون القيم المكنة للمتغير العشوائي هي:

(آخر، آخر) التجربة التجربة (آخر، أي إذا كانت نتيجة التجربة x=0

(آخر، أمريكي، أي إذا كانت نتيجة التجربة (آخر، أمريكي، أي إذا كانت نتيجة التجربة (آخر، أمريكيي) أو (أمريكي، آخر)

x=2 إذا كان العبوتين من النوع الأمريكي، أي إذا كانت نتيجة التجربة (أمريكي ، أمريكي) ومن ثم يأخذ المتغير القيم: $X:\{x=0,1,2\}$ ، ويرتبط احتمالات هذه القيم باحتمالات نتائج التجربة المناظرة لها كما هو مبين أعلاه، ومن ثم يكون التوزيع الاحتمالي للمتغير العشوائي X هو:

جدول التوزيع الاحتمالي لعدد العبوات المشتراة من التفاح الأمريكي

X_i	$f(x_i)$
0	0.16
1	0.48
2	0.36
Σ	1

f(x) رسم دالة الاحتمال •

تكوين التوزيع الاحتمالي التجميعي:

التوزيع التجميعي، هو جدول يشمل الاحتمالات الناتجة من حساب الاحتمال $P(X \leq x)$ ، ويرمز

له بالرمز F(x)، أي أن دالة التوزيع الاحتمالي التجميعي تأخذ الصورة التالية:

$$F(x) = P(X \le x)$$

ومن ثم يمكن تكوين جدول التوزيع الاحتمالي التجميعي لعدد الوحدات المستتراة من التفاح الأمريكي كما يلي:

جدول التوزيع الاحتمالي، والتوزيع التجميعي لعدد العبوات المشتراه من التفاح الأمريكي

X_{i}	$f(x_i)$	$F(x_i)$
0	0.16	$F(0) = P(X \le 0) = 0.16$
1	0.48	$F(1) = P(X \le 1) = 0.16 + 0.48 = 0.64$
2	0.36	$F(2) = P(X \le 2) = 0.64 + 0.36 = 1.00$
Σ	1	

$$P(X \le 1.5)$$
 ، $P(X = 1.5)$ ، $P(X \le 1)$ ، $P(X = 1)$ -: حساب الاحتمالات - $P(X = 1) = f(1) = 0.48$
$$P(X \le 1) = F(1) = 0.64$$

$$P(X = 1.5) = f(1.5) = 0$$

$$P(X \le 1.5) = F(1.5) = F(1) = 0.64$$

• تحديد قيمة الوسيط، والمنوال.

الوسيط: - رتبة الوسيط هو 0.50 ، إذا الوسيط M هو القيمة التي تحقق الاحتمال: $P(X \leq M) = F(M) = 0.50$ التالى:

	X_i	$F(x_i)$	
М	0	0.16	E(M) 0.50
	1	0.64	F(M) = 0.50
	2	1.00	

إذا الوسيط قيمته هي:

$$M = 0 + \frac{0.5 - 0.16}{0.64 - 0.16} \times (1 - 0) = 0.71$$

حساب المنوال:

المنوال Mode = N المناظرة لأكبر قيمة احتمالية.

. f(1) = 0.48 هي: هي: Mode = 1 إذا المنوال هو: Mode = 1

2/3/8 الوسط الحسابي والتباين للمتغير العشوائي المنفصل

أ- يرمز للوسط الحسابي للمتغير العشوائي بالرمز m (ميو)، ويحسب بتطبيق المعادلة التالية:

$$\mu = \sum x_i \ f(x_i)$$
 (T-A)

- وأما التباين ويرمز له بالرمز s^2 (سيجما)، فيحسب بتطبيق المعادلة التالية:

$$\sigma^{2} = \sum (x_{i} - \mu)^{2} f(x_{i})$$

$$= \sum x_{i}^{2} f(x_{i}) - \mu^{2}$$
(£-A)

مثال (2-8)

في المثال السابق احسب ما يلى:

أ- الوسط الحسابي لعدد العبوات المشتراة من النوع الأمريكي:

ب- احسب الانحراف المعياري لعدد العبوات المشتراة من النوع الأمريكي.

ت- أوجد معامل الاختلاف النسبي:

الحـــل

أ- الوسط الحسابي لعدد العبوات من النوع الأمريكي:

لحساب الوسط الحسابي والانحراف المعياري يتم استخدام المعادلة (3-8)، (4-8) وهذا يتطلب كساب الوسط الحسابي والانحراف المعياري يتم استخدام المعادلة $\sum x_i \ f(x_i)$, $\sum x_i^2 \ f(x_i)$ علما يلي:

X_i	$f(x_i)$	$x_i f(x_i)$	$x_i^2 f(x_i)$
0	0.16	0	0
1	0.48	0.48	0.48
2	0.36	0.72	1.44
Σ	1	1.20	1.92

$$extbf{\emph{m}} = \sum x_i \; f(x_i) = 1.20$$
 إذا الوسط الحسابي هو: $-$ ولحساب الانحراف المعياري يجب أولا حساب التباين وهو:

$$s^2 = \sum x_i^2 f(x_i) - m^2 = 1.92 - (1.20)^2 = 0.48$$

إذا الانحراف المعياري قيمته هي:

$$s = \sqrt{s^2} = \sqrt{0.48} = 0.693$$

ت - معامل الاختلاف النسبي هو:

$$C.V = \frac{s}{m} \times 100 = \frac{0.693}{1.2} \times 100 = 57.7$$

واجب مترلي:-

فيما يلي التوزيع الاحتمالي لعدد الوحدات التي تستهلكها الأسرة من أحد مساحيق النظاف $X:\{x=0,1,2,3,4,5\}$ ، X

x (عدد الوحدات التي تستهلكها الأسرة)						
f(x)	0.15	0.30	0.25	0.23	0.05	0.02

و المطلوب:

- 1- حدد نوع هذا المتغير (عدد الوحدات التي تستهلكها الأسرة)
- 2- احسب الوسط والوسيط والمنوال والانحراف المعياري لعدد الوحدات المستهلكة.
 - F(x) عُم أو جد الآتي: -3
 - أ- نسبة الأسر التي يقل استهلاكها عن وحدتين
 - ب- نسبة الأسر التي يزيد استهلاكها عن 3 وحدات
- ت-إذا كان لدينا 500 أسرة، فما هو عدد الأسر المتوقع أن يكون استهلاكها على الأقل 3 وحدات؟
 - 4- احسب معامل الالتواء، وكذلك معامل الاختلاف النسبي، وعلق على النتائج.

4/8 التوزيعات الاحتمالية المنفصلة الخاصة

في كثير من النواحي التطبيقية، تتبع بعض الظواهر توزيعات احتمالية خاصة، وهي التوزيعات التي يمكن حساب احتمالات قيم المتغير عن طريق معادلة رياضية، تسمى بدالة الاحتمال f(x)، وهذه المعادلة لها معالم معينة، تسمى بمعالم المجتمع الذي ينسب له هذا التوزيع، وهذه المعالم ما هي إلا حقائق ثابتة مجهولة، وهي الأساس في حساب القيم الاحتمالية للتوزيع الاحتمالي للمجتمع محل الدراسة.

ومن أهم التوزيعات التي سيتم دراستها في هذا المقرر، توزيع ثنائي الحدين، والتوزيع البواسون.

The Binomial Distribution التوزيع ثنائي الحدين 1/4/8

يستخدم هذا التوزيع في الحالات التي يكون للظاهرة محل الدراسة نتيجتان فقط متنافيتان، النتيجة محل الاهتمام وتسمى بحالة النجاح، والأخرى تسمى بحالة الفشل، ومن أمثلة ذلك:

- عند إعطاء مريض نوع معين من الأدوية، لها نتيجتان: (استجابة للدواء، أو عدم استجابة)
- عند فحص عبوة بداخلها نوع معين من الفاكهة، لها نتيجتان (الوحدة إما أن تكون سليمة، أو
 تكون معيبة)
- عند إلقاء قطعة عملة، لها نتيجتان (ظهور الوجه الذي يحمل الصورة، أو الوجه الذي يحمل الكتابة)
 - نتيجة الطالب في الاختبار (نجاح، رسوب)

• استخدام المزارع لبرنامج معين في الزراعة (يستخدم، أو لا يستخدم).

شكل التوزيع الاحتمالي ثنائي الحدين

إذا كورت محاولة n من المرات، بحيث أن كل محاولة لها نتيجتان فقط متنافيتان هما:

- p النتيجة محل الاهتمام " حالة نجاح " وتتم باحتمال ثابت في كل محاولة هو p
 - q = 1 p وتتم باحتمال ثابت أيضا هو q = 1 p

وبافتراض أن هذه المحاولات مستقلة، بمعنى أن نتيجة كل محاولة ليس لها علاقة بنتيجة المحاولة الأخرى، n وإذا كان المتغير العشوائي X يعبر عن عدد حالات النجاح "عدد النتائج محل الاهتمام" في السعوائي المحاولة، فإن مدي المستغير العشوائي X والذي يعبر عن عدد حالات النجاح هو: $X: \{x=0,1,2,...,n\}$

$$f(x) = \binom{n}{x} p^{x} q^{n-x}, \quad x = 0,1,2,...,n$$

حيث أن $\binom{n}{x}$ هي عدد طرق اختيار x من n مع إهمال الترتيب، وتحسب كما يلي:

$$\binom{n}{x} = \frac{n(n-1)(n-2)...(n-x+1)}{x(x-1)(x-2)...3 \times 2 \times 1}$$

$$\begin{pmatrix} 7 \\ 3 \end{pmatrix} = \frac{7 \times 6 \times 5}{3 \times 2 \times 1} = 35 = \begin{pmatrix} 7 \\ 4 \end{pmatrix}$$
$$\begin{pmatrix} 7 \\ 0 \end{pmatrix} = \begin{pmatrix} 7 \\ 7 \end{pmatrix} = 1$$

مشال (3-8)

إذا كان من المعلوم أن نسبة الشفاء من مرض معين باستخدام نوع معين من العقاقير الطبية هو X بأنه عدد الــذين الخاول هذا العقار 5 مصابين بهذا المرض. إذا عرف المتغير العشوائي X بأنه عدد الــذين المستجيبين (حالات الشفاء) لهذا العقار.

المطلوب:

أ- ما هو نوع المتغير؟

ب- اكتب شكل دالة الاحتمال f(x) لهذا المتغير.

ت- احسب الاحتمالات التالية:

- ما احتمال استجابة 3 مرضى لهذا العقار؟
- ما هو احتمال استجابة مريض واحد على الأقل؟
 - ما هو احتمال استجابة 2 مرضى على الأكثر؟

ث- احسب الوسط الحسابي، والانحراف المعياري لعدد حالات الاستجابة.

ج- حدد شكل التوزيع.

أ- عدد حالات الاستجابة X متغير كمي منفصل ، ومدى هذا المتغير في هذه الحالة هـو: $X:\{x=0,1,2,3,4,5\}$

وب - شكل دالة الاحتمال:
$$q = 1 - p = 0.40$$
 , $p = 0.60$, $n = 5$ إذا:
$$f(x) = \binom{n}{x} (p)^x (q)^{n-x}$$

$$= \binom{5}{x} (0.6)^x (0.4)^{5-x} , \quad x = 0.1, 2, 3, 4, 5$$

ت-حساب الاحتمالات

P(x=3)=f(3) حساب احتمال استجابة 3 مرضى لهذا الدواء: $f(3)=\binom{5}{3}(0.6)^3(0.4)^{5-3}=\frac{5\times4\times3}{3\times2\times1}\times0.216\times0.16=10\times0.03456$ = 0.3456

 $P(x \ge 1)$: حساب احتمال استجابة مريض واحد على الأقل

$$P(x \ge 1) = f(1) + f(2) + f(3) + f(4) + f(5) = 1 - f(0)$$

= 1 - $\left[\binom{5}{0} (0.6)^0 (0.4)^5 \right] = 1 - 1 \times 1 \times 0.01024 = 0.98976$

 $P(x \le 2)$: حساب احتمال استجابة 2 مرضى على الأكثر

$$P(x \le 2) = f(2) + f(1) + f(0)$$

$$= {5 \choose 2}(0.6)^2(0.4)^3 + {5 \choose 1}(0.6)^1(0.4)^4 + {5 \choose 0}(0.6)^0(0.4)^5$$

$$= {5 \times 4 \over 2 \times 1}(0.36)(0.064) + {5 \over 1}(0.6)(0.0256) + 1(1)(0.01024)$$

$$= 0.2304 + 0.0768 + 0.01024 = 0.31744$$

ث- حساب الوسط الحسابي، والانحراف المعياري لعدد حالات الاستجابة:

• الوسط الحسابي (m) في حالة التوزيع ثنائي الحدين يحسب بتطبيق المعادلة (8-3)، وباستخدام العمليات الرياضية يمكن الوصول إلى النتيجة التالية:

$$\mu = \sum x \ f(x) = np$$

إذا الوسط الحسابي هو:

$$m = np = 5(0.60) = 3$$

الانحراف المعياري هو الجذر التربيعي الموجب للتباين، ولحساب التباين في التوزيع ثنائي الحدين يتم تطبيق المعادلة (8-4)، ومنها يمكن التوصل إلى

الصورة التالية:

$$\sigma^2 = npq \qquad (A-A)$$

إذا تباين عدد حالات الاستجابة هو:

$$s^2 = npq$$

= 5(0.60)(0.40) = 1.2

ومن ثم يأخذ الانحراف المعياري الصورة التالية:

$$S = \sqrt{npq}$$
$$= \sqrt{1.2} = 1.095$$

ويمكن حساب معامل الاختلاف النسبي، بتطبيق المعادلة التالية:

$$V.C = \frac{S}{m} \times 100 = \frac{1.095}{3} \times 100 = 36.5\%$$

ج- تحديد شكل التوزيع:

يتحدد شكل التوزيع ثنائي الحدين وفقا لقيمة احتمال النجاح $\,p\,$ كما يلي:

إذا كان p=0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون متماثل.

إذا كان p < 0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون موجب الالتواء.

إذا كان p>0.5 فإن التوزيع الاحتمالي ثنائي الحدين يكون سالب الالتواء.

وحيث أن p = 0.6 > 0.5 فإن توزيع عدد حالات الاستجابة سالب الالتواء.

Poisson Distribution التوزيع البواسويي 2/4/8

يكثر استخدام هذا التوزيع في الحالات التي تقع فيها الأحداث وفقا لمعدلات زمنية، وكذلك في حالة الأحداث نادرة الوقوع، ومن أمثلة ذلك:

- $X:\{x=0,1,2,\ldots\}$ عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر.
 - $X: \{x=0,1,2,...\}$ عدد مرات ري نوع معين من المحاصيل الزراعية خلال الموسم.
 - $X:\{x=0,1,2,...\}$ عدد العملاء الذين يتم خدمتهم البنكية كل 10 دقائق.
 - $X: \{x=0,1,2,...\}$ عدد مرات زيارة المريض للطبيب كل سنة.
 - $X: \{x=0,1,2,...\}$. $= 0.1,2,...\}$
 - $X:\{x=0,1,2,...\}$ عدد أخطاء الطباعة لكل صفحة من صفحات الكتاب. •

وهكذا الأمثلة كثيرة

شكل التوزيع الاحتمالي البواسويي

إذا كان متوسط عدد مرات وقوع حادث وفقا لمعدل زمني معين هـو m ، وكـان المـتغير العشوائي X يعبر عن عدد مرات وقوع الحادث وفقا لهذا المعدل، فإن مدي المتغير العشوائي X هو: $X:\{x=0,1,2,...\}$

والذي يعبر عن احتمال وقوع الحادث عدد x من المرات وفقا لهـــذا المعـــدل، P(X=x)=f(x) يحسب بتطبيق المعادلة التالية:

$$f(x) = \frac{e^{-\mu} \mu^{x}}{x!}, \quad x = 0,1,2,...$$

e=2.718 هي أساس اللوغاريتم الطبيعي، وتوجد في بعض الآلات الحاسبة، وقيمتها هي: e=2.718 تقريبا، ويمكن حساب قيمتها باستخدام الآالة الحاسبة باتباع الخطوات التالية من الشمال إلى اليمين:

$$e^{-1.5}$$
 مثلا إيجاد

 $x!=x(x-1)(x-2)...3\times 2\times 1$ وأما $x!=x(x-1)(x-2)...3\times 2\times 1$ وأما وأما أيد فتسمى "مضروب العدد العدد ويساوي

مشال (4-8)

إذا كان من المعلوم أن عدد الوحدات التي تستهلكها الأسرة من سلعة معينة خلال الشهر تتبع X بواسون بمتوسط x وحدات شهريا، إذا عرف المتغير العشوائي x بأنه عدد الوحدات الستي تستهلكها الأسرة خلال الشهر من هذه السلعة.

المطلوب:

أ- ما هو نوع المتغير العشوائي؟

ب- اكتب شكل دالة الاحتمال f(x) لهذا المتغير.

ح- احسب الاحتمالات التالية:

- احتمال أن الأسرة تستهلك وحدتين خلال الشهر؟
- احتمال أن أسرة ما تستهلك وحدة واحد على الأقل خلال الشهر؟
- احتمال أن أسرة ما تستهلك 3 وحدات على الأكثر خلال الشهر؟
 - خ- احسب الوسط الحسابي، والانحراف المعياري لعدد الوحدات المستهلكة.
 - د- حدد شكل التوزيع.

الحـــل:

أ- عدد الوحدات التي تستهلكها الأسرة X متغير كمي منفصل ، ومدى هذا المتغير في هذه $X:\{x=0,1,2,3,...\}$

ب- شكل دالة الاحتمال:

بما أن متوسط عدد الوحدات التي تستهلكها الأسرة خلال الشهر هو: m=3 ، إذا دالة الاحتمال هي:

$$f(x) = \frac{e^{-m}m^{x}}{x!}$$
$$= \frac{e^{-3}3^{x}}{x!}, \quad x = 0,1,2,...$$

ح- حساب الاحتمالات:

f(2) ، حساب احتمال أن أسرة ما تستهلك وحدتين خلال الشهر •

$$f(2) = \frac{e^{-3}3^2}{2!} = \frac{0.0498(9)}{2 \times 1} = 0.22404$$

وحدة واحد على الأقل خلال الشهر هو: • احتمال أن أسرة ما تستهلك وحدة واحد على الأقل خلال الشهر هو: • $P(X \ge 1) = f(1) + f(2) + \dots$

$$=1-f(0)=1-\frac{e^{-3}3^0}{0!}=\frac{0.0498}{1}=1-0.0498=0.9502$$

احتمال أن أسرة ما تستهلك 3 وحدات على الأكثر خلال الشهر هو:

$$P(X \le 3) = f(3) + f(2) + f(1) + f(0)$$

$$= \frac{e^{-3}3^{3}}{3!} + \frac{e^{-3}3^{2}}{2!} + \frac{e^{-3}3^{1}}{1!} + \frac{e^{-3}3^{0}}{0!} \frac{0.0498}{1}$$

$$= 0.0498 \left(\frac{27}{2!} + \frac{9}{2!} + \frac{3}{2!} + \frac{1}{1!}\right) = 0.0498(13) = 0.6474$$

 $= 0.0498 \left(\frac{27}{6} + \frac{9}{2} + \frac{3}{1} + \frac{1}{1} \right) = 0.0498(13) = 0.6474$

خ- حساب الوسط الحسابي، والانحراف المعياري لعدد حالات الاستجابة:

• الوسط الحسابي (m) في حالة التوزيع البواسون هو معلمة معطاة هي:

$$m = 3$$

في هذا التوزيع، فإن التباين يساوي الوسط الحسابى:

$$s^2 = m = 3$$
 : أي أن

ومن ثم يكون الانحراف المعياري هو:

$$\mathbf{S} = \sqrt{\mathbf{m}} = \sqrt{3} = 1.732$$

ويمكن حساب معامل الاختلاف النسبي، بتطبيق المعادلة التي سبق استخدامها في الفصل السابق، وهو:

$$V.C = \frac{S}{m} \times 100 = \frac{1.732}{3} \times 100 = 57.7\%$$

د- تحديد شكل التوزيع:

دائما التوزيع البواسون موجب الالتواء.

Sontinuous Random Variables المتغيرات العشوائية المستمرة 5/8

المتغير العشوائي المستمر، هو الذي يأخذ قيما متصلة، ويأخذ عدد لاهائي من القيم المكنة له داخل مجاله، فإذا كان X متغير عشوائي مستمر، ويقع في المدى (a,b)، أي داخل مجاله، فإذا كان X عدد لاهائي من القيم تقع بين الحدين الأدنى والأعلى أن: $\{X=x:a< x< b\}$ ، ومن الأمثلة على المتغيرات الكمية المستمرة ما يلي:

- $\{X = x : 10 < x < 40\}$ كمية الألبان التي تنتجها البقرة في اليوم باللتر:
- $\{X = x: 1000 < x < 15000\}$ المساحة المتروعة بالأعلاف في المملكة بالألف هكتار
 - $\{X = x : 1 < x < 5\}$ فترة صلاحية حفظ الدجاج المبرد بالأيام،
 - $\{X=x:55< x<80\}$ وزن الجسم بالكيلوجرام للأعمار من (30-40)، وزن الجسم بالكيلوجرام للأعمار من المتمر كثيرة.

Continuous Probability التوزيع الاحتمالي للمتغير المستمر 1/5/8

عند تمثيل بيانات المتغير الكمي المستمر في شكل مدرج تكراري النسبي، نجد أن شكل هذا المدرج هو أقرب وصف لمنحنى التوزيع الاحتمالي للمتغير المستمر، وكلما ضاقت الفترات بين مراكز الفئات، يمكن الحصول على رسم دقيق للمنحنى الخاص بدالة احتمال المتغير المستمر، كما هو مبين بالسشكل التالي:

شكل (8-1) شكل منحني التوزيع الاحتمالي للمتغير العشوائي المستمر

والمساحة أسفل المنحنى تعبر عن مجموع الاحتمالات الكلية، ولذا تساوي هذه المساحة الواحد Probability Distribution الصحيح، وتسمى الدالة f(x) بدالة كثافة الاحتمال $X = \{x : a \; \pi \; x \; \pi \; b\}$ وأن $X = \{x : a \; \pi \; x \; \pi \; b\}$ وأن منحنى هذه الدالة يأخذ الصورة التالية:

فإن من خصائص دالة كثافة الاحتمال f(x) ما يلى:

 $x \in (a,b)$ ، $f(x) \neq 0$: أي أن $f(x) \neq 0$ موجبة داخل المدى f(x)

a على حدود المتغير من الحد الأدبى a حتى الحد الأعلى b يعبر عن مجموع الاحتمالات الكلية، لذا يساوي الواحد الصحيح ، أي أن:

$$\begin{bmatrix} x=b \\ \int f(x) \ dx = 1 \\ x=a \end{bmatrix}$$
 (1 *- A)

حيث أن الشكل الرياضي أعلاه يسمى بالتكامل المحدد من x=a حتى x=a وهذا يعني الجاد المساحة أسفل المنحنى بين (a,b) .

الاحتمال أن المتغير العشوائي المستمر يقع في المدى (d,c) أي حساب الاحتمال -3 هي x=d حتى x=c مينة في الشكل البياني التالى:

ويتم ذلك بإيجاد التكامل المحدد في هذا المدى، كما يلي:

$$p(c < x < d) = \int_{x=c}^{x=d} f(x) dx = [g(x)]_{c}^{d} = g(d) - g(c)$$
(11-A)

p(x=value) مساويا للصفر، أي أن p(x=value)

$$p(x = value) = 0$$

ولكي يمكننا حساب الاحتمالات، يجب عرض بعض قواعد التكامل التالية:

جدول (8-2) بعض قواعد التكامل

	$\int x^n dx = \frac{x^{n+1}}{n+1} \qquad \text{and} \qquad \int (a+bx)^n dx = \frac{(a+bx)^{n+1}}{b(n+1)}$ $\int e^x dx = e^x \qquad \text{and} \qquad \int e^{(a+bx)} dx = \frac{1}{b} e^{(a+bx)}$ $\int \frac{1}{x} dx = \log_e(x) \qquad \text{and} \qquad \int \frac{1}{(a+bx)} dx = \frac{1}{b} \log_{e^{(a+bx)}}$	integration	
(4)	$\Gamma(n+1) = \int_{0}^{\infty} x^{n} e^{-x} dx = n! = n(n-1)(n-2)3 \times 2 \times 1$	gamma	
(5)	$I\Gamma(n+1) = \int_{0}^{a} x^{n} e^{-x} dx = n! \left(1 - e^{-a} \sum_{i=0}^{n} \frac{a^{i}}{i!} \right)$	Incomplete gamma	
(6)	$B(m+1,n+1) = \int_{0}^{1} x^{n} (1-x)^{m} dx = \frac{m! n!}{(m+n+1)!}$	Beta	

مشال (8-5)

إذا كان الإنفاق الشهري للأسرة بالألف ريال على المواد الغذائية له دالة كثافة احتمال تأخذ الصورة التالية:

$$f(x) = \begin{cases} cx(10-x) & 0 < x < 10 \\ 0 & otherwise \end{cases}$$

والمطلوب:

c حساب قيمة الثابت -1

2- احسب احتمال أن إنفاق الأسرة يتراوح ما بين (8,5) ألف ريال خلال الشهر.

3 - إذا كان لدينا 600 أسرة، فما هو عدد الأسر المتوقع أن يقل إنفاقها عن 3 آلاف خلال الشهر؟

c حساب قیمة -1

من خصائص دالة كثافة الاحتمال:

$$\int_{x=a}^{x=b} f(x) dx = 1$$

إذا

$$\int_{x=0}^{x=10} cx(10-x) dx = c \int_{x=0}^{x=10} (10x - x^2) dx = c \left[10 \left(\frac{x^2}{2} \right) - \frac{x^3}{3} \right]_0^{10}$$
$$= c \left[5x^2 - \frac{x^3}{3} \right]_0^{10} = c \left[(5(100) - \frac{(1000)}{3}) \right] - 0$$
$$= \frac{500}{3}c = 1$$
$$c = 3/500 = 0.006$$

2- حساب أن إنفاق الأسرة يتراوح بين (8,5) ألف ريال خلا الشهر هو.

$$p(5 < x < 8) = \int_{x=5}^{x=8} 0.006x(10 - x) dx = 0.006 \left[5x^2 - \frac{x^3}{3} \right]_5^8$$
$$= 0.006 \left[\left(5(8)^2 - \frac{8^3}{3} \right) - \left(5(5)^2 - \frac{5^3}{3} \right) \right] = 0.006 \left[(149.3333) - (83.3333) \right]$$
$$= 0.006(66) = 0.396$$

3- إذا كان لدينا 600 أسرة، فإن عدد الأسر المتوقع أن يقل إنفاقها عن 3 آلاف خلال الــشهر هو:

number of family = 600
$$p(x < 3)$$

= $600 \int_{0}^{3} 0.006x(10 - x) dx$
= $3.6 \left[5x^{2} - \frac{x^{3}}{3} \right]_{0}^{3} = 3.6 [45 - 9] - 0 = 129.6 \approx 130$
- $200 = 129.6 \approx 130$

2/5/8 المتوسط والتباين في التوزيع الاحتمالي المستمر

إذا كانت a < x < b ، x المتغير العشوائي a < x < b ، a < x < b ، الرياضي للدالة a < x < b ، الصورة التالية:

$$E(h(x)) = \int_{a}^{b} h(x) dx$$
(17-A)

ومن ثم يمكن كتابة معادلة الوسط والتباين كما يلي.

$$\mu = E(x) = \int_{a}^{b} x f(x) dx$$

$$\sigma^{2} = E(x^{2}) - u^{2}, E(x^{2}) = \int_{a}^{b} x^{2} f(x) dx$$

$$(1 \text{ "}-\text{A})$$

تابع مثال (8-5)

في المثال السابق أوجد المتوسط والانحراف المعياري ومعامل الاختلاف النسبي للإنفاق الشهري.

الحـــــل

1- المتوسط الحسابي

$$\mathbf{m} = E(x) = xf(x)dx = \int_{0}^{10} x(0.006x(10 - x)) = 0.006 \int_{0}^{10} (10x^{2} - x^{3})dx$$
$$= 0.006 \left[10 \frac{x^{3}}{3} - \frac{x^{4}}{4} \right]_{0}^{10} = 0.006 \left[\left(\frac{10000}{3} - \frac{10000}{4} \right) - (0) \right]$$
$$= 60 \left[\frac{1}{12} \right] = 5$$

متوسط إنفاق الأسرة الشهري 5 آلاف ريال.

2- الانحراف المعياري

$$S^{2} = E(x^{2}) - u^{2} = E(x^{2}) - (5)^{2}$$

$$E(x^{2}) = \int_{a}^{b} x^{2} f(x) dx = 0.006 \int_{0}^{10} (10x^{3} - x^{4}) dx$$

$$= 0.006 \left[10 \left(\frac{x^{4}}{4} \right) - \left(\frac{x^{5}}{5} \right) \right]_{0}^{10} = 0.006 \left[\frac{100000}{4} - \frac{100000}{5} \right] - 0$$

$$= 600 \left(\frac{1}{20} \right) = 30$$

إذا التباين هو :
$$s^2=30-25=5$$
 ، ومن ثم يأخذ الانحراف المعياري القيمة التالية:
$$s=\sqrt{{\rm var}\,iance}=\sqrt{5}=2.236$$

3- معامل الاختلاف النسبي

$$C.V = \frac{s}{m} \times 100 = \frac{2.236}{5} \times 100 = 44.72\%$$

دالة التوزيع التجميعي (C.D.F) Cumulative Distribution Function

يرمز لهذه الدالة بالرمز (C.D.F) = F(x) وتحسب بإيجاد الاحتمال:

$$C.D.F = F(x) = P(x \le x) = \int_{a}^{x} f(x)dx$$
(1 \(\mathbf{t} - \mathbf{A}\))

ويمكن توضيحها بيانيا بالرسم التالى:

تابع مثال (8-5)

في المثال (8-8) أوجد دالة التوزيع التجميعي C.D.F، ثم استخدم هذه الدالـــة لحـــساب احتمال أن إنفاق الأسرة يقل عن 5 آلاف جنيه.

C.D.F إيجاد دالة التوزيع التجميعي •

$$F(x) = \int_{0}^{x} f(x) dx$$

$$= \int_{0}^{x} 0.006x(10 - x)dx = 0.006 \left[10 \left(\frac{x^{2}}{2} \right) - \left(\frac{x^{3}}{3} \right) \right]_{0}^{x}$$

$$= 0.006 \left[5x^{2} - \left(\frac{x^{3}}{3} \right) \right]$$

الله الله الله الله بالرسم التالي: $F(5) = p(x \le 5)$ الله الله التالي:

ويمكن حساب هذا الاحتمال بالتعويض عن x=5 في الدالة F(x) التي تم التوصل إليها، أي

أن:

$$F(5) = P(x \le 5) =$$

$$= 0.006 \left[5x^2 - \frac{x^3}{3} \right] = 0.006 \left[125 - \frac{125}{3} \right]$$

$$= 0.006 \left(\frac{250}{3} \right) = 0.5$$

أي أن %50 من الأسر يقل إنفاقها عن 5 آلاف ريال.

خصائص دالة التوزيع التجميعي

$$p(x \phi x) = 1 - F(x)$$
 -4 $F(b) = 1$ -3 $F(a) = 0$ -2 $F(x) \phi 0$ -1 $f(x) = dF(x)/dx$ -5

6/8 التوزيعات الاحتمالية المستمرة الخاصة

Continuous Probability Distributions

هناك بعض التوزيعات الاحتمالية المستمرة الخاصة، ولها دوال كثافة احتمال محددة، وفيما يلي بعض هذه التوزيعات:

Uniform distribution التوزيع المنتظم 1/6/8

p.d.f الاحتمال مثكل دالة كثافة الاحتمال

هو توزيع له دالة احتمال ثابتة، ويستخدم في حالة الظواهر التي يمكن أن تحدث بشكل منتظم، فإذا كان المتغير x متغير عشوائي له توزيع منتظم a < x < b مداه هو a < x < b فإن دالة كثافة احتماله هي:

$$f(x) = \frac{1}{b-a} , a < x < b$$

ويمكن تمثيل هذه الدالة بيانيا كما يلي:

$$\frac{1}{b-a} \left[\begin{array}{c} f(x) \\ \hline a \\ b \end{array} \right] x$$

معالم هذا التوزيع

 $x \sim U(a,b)$ معلمتان لهذا التوزيع هما (b,a) ، ولذا يكتب رمز لهذا التوزيع الصورة

خصائص التوزيع المستطيل

الوسط الحسابي m ، والتباين S^2 لهذا المتغير هما :

$$m = E(x) = \frac{a+b}{2}$$
, $S^2 = \frac{(b-a)^2}{12}$

على الطالب إثبات ذلك:

دالة التوزيع التجميعي C.D.F

تأخذ دالة التوزيع التجميعي F(x) الشكل الآتي

$$F(x) = p(X \le x) = \int_{a}^{x} f(x)dx = \frac{1}{b-a} \int_{a}^{x} dx$$

$$= \frac{x-a}{b-a}$$
(13-A)

مثال (8-6)

استورد أحد المراكز التجارية 1500 طن بطاطس، ووضعها في مخزن، وقام ببيعها بكميات متساوية على مدار شهور السنة. إذا كانت الفترة الزمنية للبيع تتبع توزيع منتظم، فأوجد الآتي:

- دالة كثافة الاحتمال المعبرة عن الفترة الزمنية للبيع.
- بعد مرور سبعة أشهر من بداية البيع، ما هي الكمية الموجودة بالمخزن؟

الحــــل

• دالة كثافة الاحتمال المعبرة عن الزمن:

بفرض أن المتغير x يعبر عن الفترة الزمنية للبيع مقاسة بالــشهر، أي أن 0 < x < 12 , ومن ثم تأخذ دالة كثافة الاحتمال المعبرة عن الزمن الصورة التالية:

$$f(x) = \frac{1}{12 - 0} = \frac{1}{12}$$
, $0 < x < 12$

حساب الكمية الموجودة بالمخزن بعد سبعة أشهر من بداية البيع.

بفرض أن Q هي كمية البطاطس المستوردة ، تكون الكية المتبقية بالمخزن بعد مــرور سبعة أشهر من بداية البيع هي :

$$Q \times p(x > 7) = Q \times (1 - F(7)) = 1500(1 - \frac{7 - 0}{12 - 0}) = 625 \text{ Ton}$$

Negative Exponential distribution التوزيع الأسي السالب 2/6/8

p.d.f كثافة الاحتمال شكل دالة كثافة

إذا كان المتغير x متغير عشوائي له توزيع أسي سالب ، مداه هو $\infty > x < 0$ فإن دالـــة كثافة احتماله هي:

$$f(x) = \theta e^{-\theta x}, \ 0 < x < \infty, \ \theta \succ 0$$

ويمكن تمثيل هذه الدالة بيانيا كما يلي:

معالم هذا التوزيع

(q) توجد معلمة واحدة هي

خصائص التوزيع الأسى السالب

الوسط الحسابي m ، والتباين S^2 لهذا المتغير هما:

$$m = E(x) = \frac{1}{q}$$
, $S^2 = \frac{1}{q^2}$

C.D.F دالة التوزيع التجميعي

تأخذ دالة التوزيع التجميعي F(x) الشكل الآتي

$$F(x) = p(X \le x) = \int_{0}^{x} f(x)dx = (1 - e^{-qx})$$

مشال (7-8)

إذا كانت الفترة الزمنية لإنهاء خدمة العميل في البنك تتبع توزيع أسي بمتوسط 2 دقيقة، فأوجد ما يلى.

- دالة كثافة الاحتمال المعبرة عن الفترة الزمنية لإنهاء خدمة العميل.
 - ما احتمال إلهاء خدمة العميل في أقل من دقيقة.

الحـــل

• دالة كثافة الاحتمال المعبرة عن الزمن:

بفرض أن المتغير x يعبر عن الفترة الزمنية لإنهاء خدمة العميل بالدقيقة، أي أن (q=0.5) ، فإن المتوسط (q=0.5) ، ومن ثم تصبح قيمة (q) هيي: (q=0.5) ، وتكتب دالة كثافة الاحتمال المعبرة عن الزمن على الصورة التالية:

$$f(x) = 0.5 e^{-0.5 x}, 0 < x < \infty$$

• حساب احتمال إلهاء خدمة العميل في أقل من دقيقة.

$$p(x \le 1) = (1 - e^{-0.5x}) = (1 - e^{-0.5(1)}) = 0.3935$$

The Normal Distribution التوزيع الطبيعي 3/6/8

يعتبر هذا التوزيع من أكثر التوزيعات الاحتمالية استخداما في النواحي التطبيقية، ومنها الاستدلال الإحصائي شاملا التقدير، واختبارات الفروض، كما أن معظم التوزيعات يمكن تقريبها إلى هذا التوزيع، وفيما يلي عرض لهذا التوزيع.

p.d.f كثافة الاحتمال شكل دالة كثافة

إذا كان المتغير x متغير عشوائي له توزيع طبيعي ، مداه هو $x < \infty < \infty$ فإن دالة كثافة احتماله هي:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, -\infty < x < \infty, \ \pi = 22/7$$

وهذا التوزيع له منحني متماثل يأخذ الصورة التالية:

m فهذا المنحنى متماثل على جانبي الوسط الحسابي

معالم هذا التوزيع

توجد معلمتين لهذا التوزيع هما:

 $\operatorname{var}(x) = \mathbf{S}^2$: والتباين $E(x) = \mathbf{m}$: الوسط الحسابي

x ويعني ذلك أن المتغير العــشوائي $x\sim N(extbf{m}, extbf{s}^2)$: بالرموز x بالرموز

. S^2 يتبع التوزيع الطبيعي بمتوسط m ، وتباين

خصائص التوزيع الطبيعي

هذا التوزيع من أكثر التوزيعات الاحتمالية استخداما، بل يشتق منه كل التوزيعات الاحتمالية الأخرى المستخدمة في الاستدلال الإحصائي، ومن خصائص هذا التوزيع ما يلي:

$$S^2$$
 والتباين -2

$$m$$
 التوزيع متماثل على جانبي الوسط -3

$p(x_1 < x < x_2)$ كيفية حساب الاحتمالات

بفرض أن الاحتمال المطلوب حسابه هو $p(x_1 < x < x_2)$ ، وهذا الاحتمال يحدد بالمساحة التالية:

وحيث أن هذا التوزيع من التوزيعات المستمرة، فإن هذه المساحة (الاحتمال) تحسب بإيجاد التكامـــل التالى:

$$p(x_1 < x < x_2) = \int_{x_1}^{x_2} f(x) dx = \int_{x_1}^{x_2} \frac{1}{s\sqrt{2p}} e^{-\frac{1}{2}\left(\frac{x - m}{s}\right)^2} dx$$

وهذا التكامل يصعب حسابه، ومن ثم لجأ الإحصائيين إلى عمل تحويلة رياضية Transform، يمكن استخدام توزيعها الاحتمالي في حساب مثل هذه الاحتمالات، وهذه التحويلة هي:

$$z = \left(\frac{x - \mathbf{m}}{\mathbf{S}}\right)$$

ويعرف المتغير الجديد z بالمتغير الطبيعي القياسي Standard Normal Variable ، وهذا المتغير له دالة كثافة احتمال تأخذ الصورة التالية:

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}Z^2}, -\infty < z < \infty, \ \pi = 22/7$$

ومن خصائص هذا التوزيع ما يلي:

$$\operatorname{var}(z) = 1$$
 : تباینه هو $E(z) = 0$ متوسطه هو - $\mathbf{1}$

ومن ثم يعبر عن توزيع المتغير z بالرموز : N(0,1) ويعني ذلك أن المتغير العشوائي x يتبع التوزيع الطبيعي القياسي بمتوسط z ، وتباين z ، وتباين z .

3- يأخذ المنحنى الشكل الناقوس المتماثل على جانبي الصفر:

وصمم الإحصائييون جداول إحصائية لحساب دالة التوزيع التجميعي: F(z) = P(Z < z) ، كما هو مبين بالرسم التالى:

z=(x-m)/s باستخدام التحويلة $p(x_1< x< x_2)$ باستخدام التحويلة ونعود الآن إلى خطوات حساب الاحتمال

:الى قيم طبيعية قياسية الطبيعية (x_1, x_2) الى قيم طبيعية قياسية -1

$$z_1 = (x_1 - \mathbf{m})/\mathbf{s}$$
 , $z_2 = (x_2 - \mathbf{m})/\mathbf{s}$

: $p(x_1 < X < x_2) = p(z_1 < Z < z_2)$: ومن ثم يكون الاحتمال -2

- 3 تستخدم جداول التوزيع الطبيعي القياسي، والـذي يعطـي المـساحة الخاصـة بالاحتمـال F(z) = P(Z < z)
 - 4- طريقة استخدام جدول التوزيع الطبيعي القياسي في حساب الاحتمالات

أوجد الاحتمالات التالية:

- ح
$$P(z > 1.96)$$
 - ح $P(z < -2.33)$ - ب $P(z < 1.57)$ - أ

أ- تحدد المساحة المعبرة عن الاحتمال $P(z\,{<}\,1.57)=F(1.57)$ أسفل المنحنى كما يلي

ويتم استخدام الجدول كما هو مبين:

z	.00	.01	. 02	. <i>03</i>	. 04	. 0 5	. θ6	. <i>07</i>	.08	.09
:										
1										
1.00										
1.10 1.20										
1.30										
1.40										
1.50								0.9418		
2.50								0.7410		
:										

P(z<1.57)=F(1.57)=0.9418 و يكون الاحتمال المطلوب هو : P(z<-2.33)=F(-2.33) موضحة بالمساحة أسفل المنحنى المعبرة عن الاحتمال P(z<-2.33)=F(-2.33) موضحة كالتالي:

P(z<-2.33)

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
•										
-										
2.70										
-										
2.60										

P(z < -2.33) = 0.0099 : ومن ثم یکون

ج- تحدد المساحة المعبرة عن الاحتمال P(z>1.96) كالتالي:

وهذا الاحتمال يحسب باستخدام خصائص دالة التوزيع التجميعي ، حيث أن :

$$P(z > 1.96) = 1 - p(z < 1.96) = 1 - F(1.96)$$

و بالكشف في الجدول بنفس الطريقة السابقة على القيمة 1.96 نجد أن : p(z<1.96)=0.9750 ، ومسن ثم يكون الاحتمال المطلوب هوو: P(z>1.96)=1-0.9750=0.0250

P(-2.01 < z < 1.28) هي: المساحة أسفل المنحنى المعبرة عن الاحتمال

وباستخدام أيضا خصائص دالة التوزيع التجميعي يمكن حساب هذا الاحتمال ، حيث أن :

$$P(-2.01 < z < 1.28) = F(1.28) - F(-2.01)$$

وبالكشف في الجدول عن هاتين القيمتين ، نجد أن:

$$P(-2.01 < z < 1.28) = 0.8997 - 0.0222 = 0.8775$$

مثـــال(8-8)

إذا كان الدخل السنوي للأسرة في أحد مناطق المملكة يتبع توزيع طبيعي متوسطه 80 ألــف ريال، وتباينه 900. والمطلوب:

1- كتابة قيمة معالم التوزيع الاحتمالي للدخل السنوي.

- 2- كتابة شكل دالة كثافة الاحتمال.
- 3- ما هي نسبة الأسر التي يقل دخلها عن60 ألف ريال ؟
 - 4- ما هو الدخل الذي أقل منه 0.975 من الدخول؟

الحسل

1- كتابة قيمة معالم التوزيع الاحتمالي للدخل السنوي.

بفرض أن x متغير عشوائي يعبر عن الدخل السنوي بالألف ريال، وهو يتبع التوزيــع الطبيعــي، ومعالمه هي:

$$Var(x) = s^2 = 900$$
 : ب- التباين هو $E(x) = m = 80$ أ- المتوسط $x \sim N(80,900)$: أي أن

2- شكل دالة كثافة الاحتمال

$$f(x) = \frac{1}{30\sqrt{2p}} e^{-\frac{1}{2}\left(\frac{x-80}{30}\right)^2}, -\infty < x < \infty, p = 22/7$$

 $P(x \pi 60)$: نسبة الأسر التي يقل دخلها عن 60 ألف ريال هي -3

ويتبع الخطوات المذكورة سابقا في حساب الاحتمال كما يلي:

$$P(x < 60) = p \left(z < \frac{x - m}{s} \right)$$
$$= P \left(z < \frac{60 - 80}{30} \right) = P(z < -0.67) = F(-0.67)$$

وبالكشف مباشرة عن هذه القيمة في جدول التوزيع الطبيعي القياسي ، نجد أن

$$P(x < 60) = P(z < -0.67) = 0.2514$$

4- الدخل الذي أقل منه 0.975 من الدخول: في هذه الحالة يبحث عن قيمة المتغير (x) الذي أقل منه (x_1) ، فإن (x_1) ، فإن (x

$$P(x < x_1) = p\left(z < \frac{x_1 - 80}{30}\right) = 0.975$$

بالكشف بطريقة عكسية ، حيث نبحث عن المساحة 0.9750 نجدها تقع عند تقاطع الصف 1.9 ، والعمود 1.9 أي أن قيمة 1.9 1.9 ، ويكون :

$$1.96 = \frac{x_1 - 80}{30}$$
, Then $x_1 = 30(1.96) + 80 = 138.8$

إذا الدخل هو 138.8 ألف ريال في السنة.

لمزيد من الكتب زوروا موقعنا على شبكة الانترنيت

WWW.RR4EE.NET

