

Licence d'Education Enseignement Secondaire : Mathématiques et Informatiques.

Module: Mécanique du point matériel

Série I: Rappels mathématiques

Exercice 1:

Soit $(\vec{i}, \vec{j}, \vec{k})$ une base orthorhombique directe

$$\vec{A} = \vec{i} + \vec{j}$$
, $\vec{B} = \vec{j} - \vec{k}$, $\vec{C} = 2\vec{j} + \vec{k}$

- 1. Calculez $\|\vec{A}\|$, $\|\vec{B}\|$ puis \vec{A} . \vec{B}
- 2. Déterminez $cos\theta$ puis θ l'angle que fait les vecteurs \vec{A} et \vec{B}
- 3. Déterminez les composantes du vecteur $\vec{X} = \vec{A} \wedge \vec{B}$
- **4.** Retrouvez θ à partir de la norme $||\vec{A} \wedge \vec{B}||$
- 5. Calculez $(\vec{A} \wedge \vec{B}) \wedge \vec{C}$ puis $\vec{A} \wedge (\vec{B} \wedge \vec{C})$ puis déduire

Exercice 2:

Un point M de l'espace peut être représenté soit par:

- Les coordonnées cartésiennes (x, y, z) de base $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$
- Les coordonnées cylindriques (ρ, θ, z) de base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$
- Les coordonnées sphériques (r, θ, φ) de base $(\vec{e}_r, \vec{e}_\theta, \vec{e}_\varphi)$
- 1. Donner l'expression des bases $(\vec{e}_{\rho},\vec{e}_{\theta},\vec{e}_{z})$ et $(\vec{e}_{r},\vec{e}_{\theta},\vec{e}_{\varphi})$ en fonction de $(\vec{e}_{x},\vec{e}_{y},\vec{e}_{z})$
- 2. Soit le référentiel R(O, x, y, z) de base cartésienne $(\vec{e}_x, \vec{e}_y, \vec{e}_z)$. Calculer
 - $\mathbf{a} \frac{d\vec{e}_{\rho}}{d\theta} \Big|_{R}; \frac{d\vec{e}_{\theta}}{d\theta} \Big|_{R} \text{ dans } (\vec{e}_{x}, \vec{e}_{y}, \vec{e}_{z}). \text{ En déduire leurs expressions dans } (\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$ $\mathbf{b} \frac{\partial \vec{e}_{r}}{\partial \theta}; \frac{\partial \vec{e}_{r}}{\partial \varphi}; \frac{\partial \vec{e}_{\theta}}{\partial \theta}; \frac{\partial \vec{e}_{\theta}}{\partial \varphi}; \frac{\partial \vec{e}_{\varphi}}{\partial \varphi} \text{ les exprimer dans la base } (\vec{e}_{r}, \vec{e}_{\theta}, \vec{e}_{\varphi})$ $\mathbf{c} \frac{d\vec{e}_{r}}{dt} \Big|_{R}; \frac{d\vec{e}_{\theta}}{dt} \Big|_{R}; \frac{d\vec{e}_{\varphi}}{dt} \Big|_{R}$
- 3. Déterminer, l'expression du vecteur déplacement élémentaire $d\overrightarrow{OM}$ dans les trois systèmes de coordonnées. En déduire:
 - a) L'élément de surface ds normal à \vec{e}_z et l'élément de volume dV d'un cylindre.
 - b) L'élément de surface ds normal à e, et celui de volume dV d'une sphère.
- 4. a) Exprimer la vitesse d'un point M dans les systèmes de coordonnées cartésiennes, cylindriques et sphériques
 - b) Exprimer l'accélération d'un point M dans les systèmes de coordonnées cartésiennes, cylindriques et sphériques

Exercice 3:

$$f(x, y, z) = x^2yz \text{ et } \vec{A} = 3x^2y\vec{i} + yz^2\vec{j} - xz\vec{k}$$

- 1. Calculez $\frac{\partial^2 (f\vec{A})}{\partial y \partial z}$ au point (1,-2,1)
- 2. Calculez df
- 3. Calculez $\overrightarrow{grad}f$
- 4. Calculez $div \vec{A}$
- 5. Calculez \overrightarrow{rot} \overrightarrow{A}

Exercice 4:

On considère un point matériel M se déplaçant dans un référentiel R(O,x,y,z) muni de la base $(\vec{i},\vec{j},\vec{k})$. Les coordonnées du point M sont données par :

$$X(t) = 1 + t$$
; $Y(t) = 1 + t^2$; $Z(t) = 0$, t étant le temps.

- 1) Donner l'équation de la trajectoire de M dans R. En déduire sa nature.
- 2) Calculer la vitesse $\vec{V}(M/R)$ et l'accélération $\vec{\gamma}(M/R)$ du point M. En déduire leurs normes.
- 3) Exprimer, dans la base $(\vec{i}, \vec{j}, \vec{k})$, les vecteurs de la base de Frenet $\vec{\tau}$ et \vec{n} .
- 4) Calculer le rayon de courbure R_c .

Exercice 5:

Une particule se déplace avec une accélération donnée par :

$$\vec{\gamma} = 2e^{-t}\vec{i} + 5\cos t \vec{j} - 3\sin t \vec{k}$$

Si au temps t=0 la particule est située à (1,-3,2) et si sa vitesse est alors

$$4\vec{\imath} - 3\vec{\jmath} + 2\vec{k}$$
 trouver

- a- La vitesse
- b- Le déplacement de la particule pour un temps t>0

Exercice 6: Facultatif

M. Bellioua.

Un point matériel M se déplace dans le plan (xoy) d'un repère fixe R(O, x, y, z).

La position de M est repérée par les paramètres ρ et θ tels que: $\rho(t) = \rho_0 e^{\theta(t)}$ où t est le temps, ρ_0 est une constante et $\theta(t) = \omega t$ avec $\omega = cte$.

Tous les résultats doivent être exprimés dans la base $(\vec{e}_{\rho}, \vec{e}_{\theta}, \vec{e}_{z})$.

- 1. a. Donner l'expression du vecteur position \overrightarrow{OM} en fonction de ρ_0 , ω et t.
 - b. Déterminer le vecteur vitesse $\vec{v}(M/R)$ de M et calculer son module.
 - c. Déterminer le vecteur unitaire tangent \vec{e}_t à la trajectoire de M .
 - d. Calculer l'expression de la composante tangentielle $\vec{\gamma}_t$ de l'accélération $\vec{\gamma}(M/R)$ de M par rapport à R.

2/2

- 2. a. Sachant que la base $(\vec{e}_t, \vec{e}_n, \vec{e}_z)$ est une base orthonormée et directe, déterminer le vecteur unitaire \vec{e}_n normale à la trajectoire.
 - b. Déterminer l'expression du vecteur accélération de M par rapport à R et calculer son module.
- 3. a. Sachant que $\vec{\gamma}(M/R) = \gamma_t \vec{e}_t + \gamma_n \vec{e}_n$, calculer l'expression de l'accélération normale γ_n .
- b. En déduire le rayon de courbure R_c de la trajectoire de M à l'instant t. 4. Calculer la distance parcourue par M sur sa trajectoire entre les instants t=0s et $t=\frac{1}{\omega}$.