Compiler Construction

Lecture # 09

Mr. Usman Wajid

usman.wajid@nu.edu.pk

February 21, 2023

Usman Wajid Compiler Construction Lecture # 09 1 / 31

DFA Minimization

	0	1
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

• $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
<u>q0</u>	q1	q2
<u>q1</u>	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

• $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
<u>q1</u>	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

• $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$

DFA Minimization

	0	1
q0	q1	q2
<u>q1</u>	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

•
$$\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$$

•
$$\prod_1 = \{ \{ q0, q1, \{q4\} \} \}$$

DFA Minimization

	0	1
q0	q1	q2
q1	q1	q3
<u>q2</u>	q1	q2
q3	q1	q4
q4	q1	q2

•
$$\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$$

•
$$\prod_1 = \{ \{ q0, q1, \{q4\} \} \}$$

DFA Minimization

	0	1
q 0	q1	q2
q1	q1	q3
<u>q2</u>	q1	q2
q3	q1	q4
q4	q1	q2

•
$$\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$$

•
$$\prod_1 = \{ \{ q0, q1, q2, \{q4\} \} \}$$

DFA Minimization

	0	1
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

•
$$\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$$

•
$$\prod_1 = \{ \{ q0, q1, q2, \{q4\} \} \}$$

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
q1	q1	q3
q2	q1	q2
<u>q3</u>	q1	q4
q4	q1	q2

- $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q1, q2 \}, \{q3 \}, \{q4 \} \}$

Usman Wajid Compiler Construction Lecture # 09 9 / 31

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
<u>q0</u>	q1	q2
<u>q1</u>	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

- $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q1, q2 \}, \{q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, , \{q3\}, \{q4\} \} \}$

(ロ) (団) (豆) (豆) (豆) り

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
<u>q0</u>	q1	q2
<u>q1</u>	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

- $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q1, q2 \}, \{q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, , \{q1\}, \{q3\}, \{q4\} \} \}$

Usman Wajid Compiler Construction Lecture # 09 11 / 31

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
q1	q1	q3
<u>q2</u>	q1	q2
q3	q1	q4
q4	q1	q2

- $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q1, q2 \}, \{q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, , \{q1\}, \{q3\}, \{q4\} \} \}$

Usman Wajid Compiler Construction Lecture # 09 12 / 31

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
q1	q1	q3
<u>q2</u>	q1	q2
q3	q1	q4
q4	q1	q2

- $\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q1, q2 \}, \{q3 \}, \{q4 \} \}$
- $\prod_1 = \{ \{ q0, q2 \}, \{q1\}, \{q3\}, \{q4\} \}$

Usman Wajid Compiler Construction Lecture # 09 13 / 31

DFA Minimization

For any given Deterministic Automaton with large number of states, we can construct its equivalent DFA with minimum number of states

	0	1
q0	q1	q2
q1	q1	q3
q2	q1	q2
q3	q1	q4
q4	q1	q2

•
$$\prod_0 = \{ \{ q0, q1, q2, q3 \}, \{q4 \} \}$$

•
$$\prod_1 = \{ \{q0, q1, q2\}, \{q3\}, \{q4\} \}$$

•
$$\prod_2 = \{ \{q0, q2\}, \{q1\}, \{q3\}, \{q4\} \}$$

•
$$\prod_{3} = \{ \{q0, q2\}, \{q1\}, \{q3\}, \{q4\} \} \}$$

4 D > 4 B > 4 E > 4 E > E 9 Q @

Usman Wajid Compiler Construction Lecture # 09 14 / 31

DFA Minimization: Partitioning Method Example 1 continued ...

• The reduced but resultant equivalent DFA is,

	0	1
q0	q1	q1
q1	q1	q3
q3	q1	q4
q4	q1	q0

• Consider the following initial DFA,

	0	1
q0	q1	q5
q1	q6	q2
q2	q0	q1
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

• $\prod_0 = \{ \{ q0, q1, q3, q4, q5, q6, q7 \}, \{q2 \} \}$

• Consider the following initial DFA,

	0	1
q0	q1	q5
q1	q6	q2
q2	q0	q1
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

- $\prod_0 = \{ \{ q0, q1, q3, q4, q5, q6, q7 \}, \{q2 \} \}$
- $\prod_1 = \{ \{q0, q4, q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$

· Consider the following initial DFA,

	0	1
q0	q1	q5
q1	q6	q2
q2	q0	q1
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

- $\prod_0 = \{ \{ q0, q1, q3, q4, q5, q6, q7 \}, \{q2 \} \}$
- $\prod_1 = \{ \{q0, q4, q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$
- $\prod_2 = \{ \{q0, q4\}, \{q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$

Consider the following initial DFA,

	0	1
q0	q1	q5
q1	q6	q2
q2	q0	q1
q3	q2	q6
q4	q7	q5
q5	q2	q6
q6	q6	q4
q7	q6	q2

- $\prod_0 = \{ \{ q0, q1, q3, q4, q5, q6, q7 \}, \{q2 \} \}$
- $\prod_1 = \{ \{q0, q4, q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$
- $\prod_2 = \{ \{q0, q4\}, \{q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$
- $\prod_3 = \{ \{q0, q4\}, \{q6\}, \{q1, q7\}, \{q3, q5\}, \{q2\} \}$

Usman Waiid Compiler Construction Lecture # 09 16 / 31

DFA Minimization: Partitioning Method Example 2 continued ...

• The reduced but resultant equivalent DFA is,

	0	1
q0	q1	q5
q1	q6	q2
q2	q0	q1
q5	q2	q6
q6	q6	q0

DFA Minimization: Partitioning Method with Multiple Final States Example

• consider the following DFA,

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

DFA Minimization: Partitioning Method with Multiple Final States Example

• consider the following DFA,

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

• $\prod_0 = \{ \{ q0, q1, q5 \}, \{ q2, q3, q4 \} \}$

DFA Minimization: Partitioning Method with Multiple **Final States Example**

consider the following DFA,

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

- $\prod_0 = \{ \{ q0, q1, q5 \}, \{ q2, q3, q4 \} \}$
- $\prod_1 = \{ \{q0, q1\}, \{q5\}, \{q2, q3, q4\} \}$

DFA Minimization: Partitioning Method with Multiple Final States Example

· consider the following DFA,

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

- $\prod_0 = \{ \{ q0, q1, q5 \}, \{ q2, q3, q4 \} \}$
- $\prod_1 = \{ \{q0, q1\}, \{q5\}, \{q2, q3, q4\} \}$
- $\prod_2 = \{ \{q0, q1\}, \{q5\}, \{q2, q3, q4\} \}$

DFA Minimization: Partitioning Method with Multiple Final States Example continued ...

• The minimized but equivalent DFA is,

	0	1
q0	q0	q2
q2	q2	q5
q5	q5	q5

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

1 Draw a table for all pair of states, say (P,Q)

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

② Mark all pairs where (P∈F and Q∈F)

> Ex: for (q1,q0) neither q1 nor q0 is final state. So we can not mark the cell (q1,q0)

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

② Mark all pairs where (P∈F and Q∈F)

> Ex: for (q2,q0) q2 is final and q0 is not. So mark the cell (q2,q0)

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

Mark all pairs where (P∈F and Q∈F)

Similarly, fill the whole table

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

3 for any unmarked pair (P,Q) such that $[\delta(P,x) \text{ or } \delta(Q,x)]$ is marked, then mark(P,Q)

	q0	q1	q2	q3	q4	q5
0p						
q1						
q2	√	√				
q3	√	√				
q4	√	√				
a5			√	\	√	

	0	1
q0	q1	q2
<u>q1</u>	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

3 if $[\delta(P,x) \text{ or } \delta(Q,x)]$ is marked, then mark(P,Q)

Ex: for (q1,q0), (q1,q0) is unmarked, (q2,q3) is unmarked

hence, leave (q1,q0)

	0	1
q0	q1	q2
q1	0p	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
<u>q5</u>	q5	q5

	q0	q1	q2	q3	q4	q5
q0						
q1						
q1 q2 q3 q4 q5	\checkmark	√				
q3	√	√				
q4	√	√				
q5			√	√	√	

3 if $[\delta(P,x)$ or $\delta(Q,x)]$ is marked, then mark(P,Q)

Ex: for (q5,q0), (q1,q5) is unmarked, (q2,q5) is unmarked

	0	1
q0	q1	q2
q1	0p	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
<u>q5</u>	q5	q5

3 if $[\delta(P,x)$ or $\delta(Q,x)]$ is marked, then mark(P,Q)

Ex: for (q5,q0),

(q1,q5) is unmarked,

(q2,q5) is unmarked hence, mark (q5,q0)

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

3 if $[\delta(P,x)$ or $\delta(Q,x)]$ is marked, then mark(P,Q)

Similarly, perform this process for the whole table, we get

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

3 if $[\delta(P,x)$ or $\delta(Q,x)]$ is marked, then mark(P,Q)

Similarly, perform this process for the whole table, we get

	0	1
q0	q1	q2
q1	q0	q3
q2	q4	q5
q3	q4	q5
q4	q4	q5
q5	q5	q5

Finally, combine all the unmarked pairs and make them a single state in the minimized DFA

	0	1
q0	q0	q2
q2	q2	q5
q5	q5	q5

The minimized DFA achieved is