Universidade de São Paulo Instituto de Matemática e Estatística Departamento de Ciência da Computação MAC 5843 - Computação Móvel

EP 2 - Simulação usando o The ONEFase 1

7798535 - Cássio Alexandre Paixão Silva Alkmin

7807127 - Patrícia Araújo de Oliveira

6890360 - Roberto Freitas Parente

Introdução

A principal motivação que levou a escolha do cenário foi o projeto CoDPON [1], que é uma iniciativa com principal objetivo de suprir as necessidades de comunicação que são escassas na região amazônica devido a pouca infra-estrutura tecnológica disponível na região.

Segundo [1] a falta de investimentos se explica tanto pela baixa densidade demográfica, quanto pelos custos elevados para a interconectar estas áreas. Sendo assim, a perspectiva da concepção de um modelo que permita a integração dessas áreas aos grandes centros urbanos, a um custo acessível, serviu de motivação para o desenvolvimento do projeto, que foi inspirado em redes tolerantes a atraso (DTN).

Para nosso trabalho configuramos o cenário da região Ilha do Marajó e utilizamos o padrão de movimentação e de comunicação de acordo com as características reais do meio. Tais padrões serão descritos a seguir e, por fim, discutiremos os resultados obtidos nas simulações realizadas no The ONE [2] com o cenário proposto.

Padrão de Movimentação

O padrão de movimentação foi pensado considerando rotas reais de viagens de barcos entre as cidades. Foi utilizado o OpenJUMP¹ para desenhar as rotas nos rios, como mostra a Figura 1.

Figura 1

A partir da Figura 1, foram criados grupos de nós fixos e móveis no The ONE [2]. Os nós fixos representam as cidades e são denominados, no parâmetro de configuração *GroupID*, de "c" e os nós móveis representam os barcos e são denominados, no parâmetro de configuração *GroupID*, de "b".

Os nós que representam as cidades, possuem o atributo *speed* igual a *0.0*. Já os nós que representam os barcos possuem rotas definidas considerando viagens periódicas entre duas cidades.

Foram criados 17 trajetos entre as cidades, como mostra a Figura 2, e ao decorrer destes percursos há troca de mensagens entre os nós, como será descrito no próximo tópico.

-

¹ OpenJUMP - JUMP Unified Mapping Platform (http://www.openjump.org/)

Figura 2

Padrão de Comunicação

As trocas de mensagens acontecem entre os nós fixos (cidades) em um intervalo definido entre 30 minutos e 2 horas. Considerando que o conteúdo pode variar (podendo ser relatórios, notificações, pedidos e confirmações de reservas, entre outros) definimos o tamanho dos pacotes entre 500Kb e 1Mb.

Os nós que estão nas cidades, além de gerar as mensagens também possuem a função de "guardar" mensagens oriundas de outros nós. Por esse motivo, foi definido que o tamanho do buffer desses nós são maiores, em comparação aos nós móveis (barcos), pois estes últimos somente tem a função de encaminhar pacotes na rede. Foram definidos buffers de 100Mb e 25Mb, respectivamente.

Nesse contexto, serão geradas mensagens no intervalo estabelecido onde tanto o emissor quanto o receptor serão as cidades. A partir dai os barcos encaminharão os pacotes até o destino, enviando uma cópia da mensagem a cada nó que passar em seu trajeto (sendo estes fixos ou móveis) e os nós que receberam tal mensagem, por sua vez, encaminha aos outros nós que estiverem em sua rota, sucessivamente até a mensagem chegar ao nó de destino ou, por ventura, esgotar seu tempo de vida (TTL, definido em 24h), que nesse caso será descartada.

Resultados

Foram realizadas simulações no cenário proposto utilizando dois protocolos de roteamento: o Epidemic [3] e o Prophet [4], que permitiu, em conjunto com os relatórios gerados pelo The ONE [2], analisar a influência da adoção de cada protocolo.

Analisando as estatísticas de estados das mensagens (MessageStatsReport), observa-se que a probabilidade de entrega com o Prophet foi maior, garantindo maior confiabilidade. Por outro lado, a utilização do protocolo Epidemic resulta em menor latência média e quantidade média de saltos, o que resulta em mensagens entregues em menor tempo. Foram gerados também os caminhos percorridos pelas mensagens, dentre os quais são evidenciados os caminhos das mensagens com saltos mínimo e máximo para os protocolos Epidemic (Figuras 3) e Prophet (Figuras 4).

Figura 3 Figura 4

A não-disponibilidade da ferramenta DTNES² foi empecilho para descobrir os tempos mínimos de entrega de cada mensagem. O número mínimo de saltos (hops), pôde ser identificado nas Figuras 3 e 4.

Referências

- [1] COUTINHO, Mauro Margalho. "Uso de Redes CoDPON em Aplicações de Governo Eletrônico", WCGE, 2009. XXIX Congresso da Sociedade Brasileira de Computação. Bento Gonçalves, RS, 20-24 Julho 2009.
- [2] KERÄNEN, Ari; OTT, JÖRG; KÄRKKÄINEN, Teemu. "The ONE Simulator for DTN Protocol Evaluation", 2009.
- [3] VAHDAT, Amin; BECKER, David. "Epidemic routing for partially connected ad hoc networks", Technical Report CS-2000-06, Department of Computer Science, Duke University, April 2000.
- [4] LINDGREN, A.; DORIA, A.; SCHELÉN, O. "Probabilistic Routing in Intermittently Connected Networks", 2003.

_

² DTN Trace Evaluator System (http://grenoble.ime.usp.br:8080/dtntes/)