Automated Gear Design

Getting Started:

- 1. Please use Remote Desktop Connection and connect to elabs.wpi.edu
- 2. This program works with SolidWorks 2020

Step 0: Survey

- 1. Before starting the tutorial, please go http://bit.ly/GearGenTest-1 and complete the pre-survey. This will ask some basic questions about you like your major and your experience with gears. Please fill out your WPI email address so that we can link your results.
 - a. The survey will ask you to enter a code. The code is generated as follows:

123456

- 1: Middle initial
- 2: First letter of your mother's first name
- 3: First letter of your father's first name
- 4 and 5: Your two-digit birth month
- 6: The number of older siblings you have

(use 0 for any unknown values)

Step 1: Download and Install

- 1. Go to http://tiny.cc/GearGenProg and download the zip file.
- 2. Once downloaded, extract the contents of the zip file into a folder.
- 3. Then, click on the SW Gear Generation GUI.exe file.

4. You will see a notice shown below:

Click on "More Info" and then Select "Run Anyway." You will see the following screen.

Step 2: Design Gearbox

1. You will be designing the following gearbox.

a. Gear Information

Gear	Туре	Pitch	# of Teeth	Orient ation	(X, Y, Z)	Shaft	Bore Diame ter	Face Width
A	Spur	48	12	Z	0, 0, 1.45	Shaft 1	0.125	0.125
В			56	Z	0.72, 0, 2.93	Shaft 2	0.125	0.125
С	Spur	48	24	Z	0.72, 0, 2.93	Shaft 2	0.125	0.25
D			48	Z	0.72, -0.75, 2.93	Shaft 3	0.125	0.25

b. With the program open, click where it says "Click Anywhere to Start New Gearbox" and the gear information will appear:

- c. Using the information in the tables above, fill in the information for each gear set. Gears A+B are GearSet 1 and C+D are GearSet 2.
- d. GearSet 1 should look like this:

e. To add another gear-set, click on the "Click to Add Gear Set" button. GearSet 2 should look like this:

- f. Press "Auto Mesh Gears" at the top right so that the distances between the gears are automatically calculated to adjust the positioning, if needed.
- g. Once all this information is put in, press "Generate in Solidworks".
- h. Select your output folder.
- A menu will pop up asking to specify additional options. For this tutorial, you will press "Input Shaft Crank", which will tell SolidWorks to add a crank to the input shaft.
- j. Click "Generate" and SolidWorks will open. Once it is fully open, go back to the gearbox design software and indicate that SolidWorks is open (there will be a popup saying "Press OK once SolidWorks has loaded". Once you press OK, SolidWorks will start generating the gearbox.
- k. Once SolidWorks is done, please take a screenshot of your resulting gearbox (to be uploaded in the survey in the next step).

Step 3: Survey

1. Once you have completed the task, please go http://bit.ly/GearGenTest-2 and fill out the post survey. This survey will ask questions about your experience using the software and whether you have any feedback about the program.