Memphis 1

Ilay Wischnevsky Shlush

$March\ 7,\ 2024$

Contents

Ι	Differential Calculus of Single Variable Real Functions	3
1	Function 1.1 Definition 1.2 Real 1.3 Single Valued Function 1.4 Domain 1.5 Even/Odd 1.6 Limits 1.6.1 Definition 1.6.2 Existance 1.6.3 Properties 1.6.4 Infinities 1.7 Continuity	3 3 3 3 3 4 4 4 4 5 6
2	Derivative 2.1 Definition 2.2 Properties 2.3 Properties Proofs 2.4 Logarithmic Derivative 2.5 l'Hopital's Rule 2.6 Examples	7 7 7 8 9 9
3	Hyperbolic Function 3.1 Definition	11 11 11 11 11 11 12
5	4.3 Derivative	12 12 12
6	Taylor Series 6.1 Definition	13 13 13

7	Complex Numbers	14
	7.1 Definition	14
	7.2 Polar and Cartesian	14
	7.3 Polar Product	14
	7.4 Hyperbolic and Trig. Functions	15 15
	7.5 Additional Operations	10
8	Differentials	15
II	Integral Calculus of Single Variable Real Functions	16
9	Integrals	16
J	9.1 Definition	16
	9.2 Indefinite Integral	16
	9.3 The Fundemental Theorem of Calculus	16
	9.3.1 The Mean Value Theorem Proof	16
	9.3.2 Integral is Anti Derivative Proof	17
	9.3.3 F(b)-F(a) Proof	17
	9.4 Properties	17
	9.5 Examples	18
	9.6 Improper Integrals	20
	9.7 Area Between Curves	20
	9.8 Curve Length	20
	9.9 Solid of Revolution	21
10	Distributions	21
	10.1 Mean and Expected Value	21
	10.2 Gaussian Function	22
Π	I Differential Calculus of Multivariable Real Functions	23
		0.0
11	Introduction 11.1 Multivariable Functions	23 23
	11.1 Multivariable Functions	23
	11.3 Continuity	$\frac{23}{23}$
		_0
12	Derivatives and Differentials	23
	12.1 Derivative Definition	23
	12.2 Differentials and Chain Rule	
	12.3 Implicit Functions	24
	12.4 Extrema	25
	12.5 Lagrange Multipliers	25
13	Transformations and Jacobians	25
	13.1 Differentiation under the Integral Sign	26
IJ	Multivariable Integral Calculus	27
1 4	Multivariable Integrals	27
14	Multivariable Integrals 14.1 Definition	
	14.1 Definition	27

Part I

Differential Calculus of Single Variable Real **Functions**

Function

1.1 Definition

Function (~): A map between two sets. Mapping from domain to co-domain/image. Set: A collection of elements (e.g numbers)

$$y = f(x)$$

y is the dependent variable, x is the independent variable.

1.2Real

A real function is a function for which both the dependent (y) and independent (x) variable are real ($a \in \mathbb{R}$,

The real numbers include:

- Natural (1,2,3,4...)
- Integer (-2,-1,0,1,2...)
- Rational $(\frac{1}{2}, 36.21...)$
- Irrational $(\pi, \sqrt{2}, e)$

The real numbers don't include the imaginary and complex numbers.

Single Valued Function

Definition: For each set of value of the independent variables, there is a single corresponding value of the function.

A counter example $f(x) = \pm \sqrt{x}$ is multi-valued.

Domain

The domain of the function is the set of inputs for which the function is defined, meaning there exists $y_0 = f(x_0).$

Any real x:
$$x \in \mathbb{R}$$

$$f(x) = \frac{g(x)}{h(x)} \quad \{x \mid h(x) \neq 0\}$$

$$\begin{array}{l} f(x) = \sqrt{g(x)} \ \left\{ x \mid g(x) \geq 0 \right\} \\ f(x) = \log(g(x)) \ \left\{ x \mid g(x) > 0 \right\} \end{array}$$

$$f(x) = log(g(x)) \{x \mid g(x) > 0\}$$

For example, $f(x) = \pm \sqrt{x}$ is defined (real) over $x \ge 0$.

For example, $f(x) = \frac{1}{x}$ is defined over $x \neq 0$.

For example, $f(x) = \pm \sqrt{4 - x^2}$ is defined (real) over $-2 \le x \le 2$.

Even/Odd 1.5

An even function satisfies f(x) = f(-x)

An odd function satisfies -f(x) = f(-x)

1.6 Limits

1.6.1 Definition

"The limit of f(x) as x goes to x_0 is equal to A":

$$\lim_{x \to x_0} f(x) = A$$

Meaning ($\tilde{}$): f(x) can be arbitrarily close to A given a choice of x close enough to x_0 .

<u>Definition</u>: For any arbitrarily small $\varepsilon > 0$, there is $\delta > 0$ so that if $|x - x_0| < \delta$ then $|f(x) - A| < \varepsilon$.

<u>Notice</u>: The limit doesn't depend on $f(x_0)$ and it isn't a requirement that $f(x_0)$ is defined.

The limit from the left $\lim_{x\to x_0^-} f(x) = A$: x goes to x_0 from numbers smaller than x_0 .

The limit from the left $\lim_{x\to x_0^+} f(x) = B$: x goes to x_0 from numbers larger than x_0 .

1.6.2 Existance

A limit "exists" if: there exists a limit both from the left and from the right and they are equal A = B (or if one side is undefined).

For example:

$$\lim_{x\to 0^-} \sqrt{x} = undefined$$

$$\lim_{x\to 0^+} \sqrt{x} = 0$$

Therefore, the limit exists.

$$\lim_{x\to 0} \sqrt{x} = 0$$

4

1.6.3 Properties

Basically, any arithmetic operation can be inserted into/extracted from the limit:

1. if
$$f(x) = c \implies \lim_{x \to a} f(x) = c$$

2.
$$\lim_{x\to\infty} x^{\alpha} = \begin{cases} \infty & \alpha > 0 \\ 1 & \alpha = 0 \\ 0 & \alpha < 0 \end{cases}$$

3.
$$\lim_{x\to a} cf(x) = c \lim_{x\to a} f(x)$$

4.
$$\lim_{x\to a} [f(x) + g(x)] = \lim_{x\to a} f(x) + \lim_{x\to a} g(x)$$

5.
$$\lim_{x\to a} [f(x) \cdot g(x)] = [\lim_{x\to a} f(x)] \cdot [\lim_{x\to a} g(x)]$$

6.
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}, \lim_{x \to a}, \ g(x) \neq 0$$

7.
$$\lim_{x\to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to a} f(x)}$$

8.
$$\lim_{x\to a} \log \left[f(x)\right] = \log \left[\lim_{x\to a} f(x)\right], \lim_{x\to a} f(x) > 0$$

Undefined quantities:

$$\frac{\infty}{\infty}, \frac{0}{0}, 0 \cdot \infty, \infty - \infty, 1^{\infty}, \infty^{0}, 0$$

1.6.4 Infinities

$$\lim_{x \to a} f(x) = +\infty$$

Meaning ($\tilde{\ }$): as x goes to x_0 , f(x) can be larger than any number we pick. <u>Definition</u>: For any arbitrarily large M>0, there is $\delta>0$ so that if $|x-x_0|<\delta$ then f(x)>M.

The negative case can be defined in a similar manner $\lim_{x\to a} f(x) = -\infty$.

For example:

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty, \quad \lim_{x \to 0^{+}} \frac{1}{x} = +\infty$$

(the limit does not exist)

Similarly we can have limits of a variable going to infinity.

$$\lim_{x \to \infty} f(x) = A$$

Definition: For any arbitrarily large N > 0, there is $\varepsilon > 0$ so that if x > N then $|f(x) - A| < \varepsilon$.

1.7 Continuity

A function is said to be continuous at point x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0)$$

This is actually 3 conditions in 1:

- 1. $f(x_0)$ is defined
- 2. The limit is defined
- 3. The limit is equal to the function (as stated in the equation above)

For example, $f(x) = \frac{1}{x-2}$, $x_0 = 2$ f(2) is undefined \Rightarrow the function is not continuous at x = 2 (as well as the other reasons).

For example, $f(x) = 3x^3 - 7x^2 - 4x - 2$,

The functions is continuous for every x. (polynomials are always continuous everywhere)

For example, $f(x) = \frac{x+2}{x-1}$ f(1) is undefined \Rightarrow non-continuous at x=1

For example, f(x) = |x|

is defined everywhere, but at every integer x the limit does not exist \Rightarrow non-continuous at $x \in \mathbb{Z}$

A function that is continuous at every point in the region $a \le x \le b$ is said to be continuous over that region. End of class 1.

$\mathbf{2}$ **Derivative**

Definition

The derivative of a function y = f(x) at point x_0 is

$$\frac{dy}{dx}|_{x=x_0} \equiv \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}, \quad \Delta x \equiv x - x_0$$

Derivative from the right/left: $f'_{\pm}(x_0) = \lim_{\Delta x \to 0^{\pm}} \frac{f(x_0 + \Delta x) - f(x_0)}{\Delta x}$. The derivative exists if and only if: $f'_{+}(x_0) = f'_{-}(x_0)$ (if the function is differentiable at x_0 it must also be continuous at x_0).

A function that is differentiable at every point in the region $a \leq x \leq b$ is said to be differentiable over that region.

Tangent line:

$$y = y_0 + \frac{dy}{dx}|_{x=x_0}(x-x_0)$$

2.2**Properties**

Given a constant c and the functions of x - f, g, h:

$$\frac{d}{dx}(f \pm g) = \frac{df}{dx} \pm \frac{dg}{dx}$$

$$\frac{d}{dx}(cf) = c\frac{df}{dx}$$

Product rule
$$\frac{d}{dx}(f \cdot g) = \frac{df}{dx}g + f\frac{dg}{dx}$$

$$\frac{d}{dx}\left(\frac{f}{g}\right) = \frac{\frac{df}{dx}g - f\frac{dg}{dx}}{g^2}$$

Chain rule
$$\frac{df(u)}{dx} = \frac{df}{du}\frac{du}{dx}$$

Polynomial, trigonometric, exponential and logarithmic derivatives
$$\frac{dx^n}{dx} = nx^{n-1}$$

$$\frac{d}{dx}sin(x) = cos(x)$$

$$\frac{d}{dx}cos(x) = -sin(x)$$

$$\frac{d}{dx}tan(x) = \frac{1}{cos^2(x)} = 1 + tan^2(x)$$

$$\frac{d}{dx}sin^{-1}(x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}a^x = log_e a \cdot a^x$$

$$\frac{d}{dx}log_a x = log_a e \cdot \frac{1}{x}$$

The reciprocal/inverse function of y = f(x) is $x = f^{-1}(y)$. $\frac{dy}{dx} = 1/\frac{dx}{dy}$.

2.3 Properties Proofs

Product rule:

$$\frac{d}{dx} \left[f(x)g(x) \right] = \lim_{\Delta x \to 0} \frac{f(x + \Delta x)g(x + \Delta x) - f(x)g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) \left[g(x + \Delta x) - g(x) \right] + g(x) \left[f(x + \Delta x) - f(x) \right]}{\Delta x}$$

$$= f(x) \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x} + g(x) \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

$$= f'g + g'f$$

End of class 2

Log derivative:

$$\frac{d}{dx}\left(log_{a}x\right) = \lim_{\Delta x \to 0} \frac{log_{a}(x + \Delta x) - log_{a}(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{x}{x} \frac{log_{a}(\frac{x + \Delta x}{x})}{\Delta x} = \frac{1}{x} \lim_{\Delta x \to 0} log_{a} \left(1 + \frac{\Delta x}{x}\right)^{x/\Delta x}$$

$$\frac{1}{x} log_{a} \left(\lim_{\Delta x \to 0} \left(1 + \frac{\Delta x}{x}\right)^{x/\Delta x}\right) = \frac{1}{x} log_{a} \left(e\right)$$

Logarithmic Derivative

Sometimes we know how to differentiate the ln of a function but not the function itself. In that case we can use:

$$\frac{d}{dx}\left[lnf(x)\right] = \frac{1}{f(x)}\frac{df}{dx}$$

$$\boxed{\frac{df}{dx} = f(x) \cdot \frac{d}{dx} \left[lnf(x) \right]}$$

l'Hopital's Rule

If $\lim_{x\to 0} \frac{f(x)}{g(x)} = 0$ or $\frac{\infty}{0}$ or $\frac{\infty}{\infty}$ (or similar) the limit isn't defined. We can replace the functions with their derivatives

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{f'(x)}{g'(x)}$$

2.6 Examples

$$y = \sin^{-1}(x), \ x = \sin(y)$$

$$\frac{dy}{dx} = \frac{d}{dx} \left(sin^{-1}(x) \right) = \frac{1}{dx/dy} = \frac{1}{cos(y)} = \frac{1}{\pm \sqrt{1 - sin^2 y}} = \frac{\pm 1}{\sqrt{1 - x^2}}$$

$$y = tan^{-1}x, \ x = tan y$$

$$\frac{dy}{dx} = \frac{d}{dx} (tan^{-1}x) = \frac{1}{dx/dy} = \frac{1}{1 + tan^2y} = \frac{1}{1 + x^2}$$

$$y = a^x$$

$$\frac{dy}{dx} = \frac{d}{dx}(a^x) = \frac{1}{dx/dy} = \frac{y}{log_a(e)} = \frac{a^x}{log_a(e)} = ln(a)a^x$$

$$u = x^{x-1}$$

$$\frac{d}{dx}\left(x^{x-1}\right) = x^{x-1} \cdot \frac{d}{dx}\left((x-1) \cdot lnx\right) = x^{x-1} \cdot \left(1 - \frac{1}{x} + lnx\right)$$

$$\lim_{x \to 0} \frac{e^{2x} - 1}{x} = \lim_{x \to 0} \frac{2e^{2x}}{1} = 2$$

$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} 2x e^{-x} = \lim_{x \to \infty} 2e^{-x} = 0$$

$$\lim_{x \to 0^+} x^2 \left(lnx \right) = \lim_{x \to 0^+} \frac{lnx}{1/x^2} = \lim_{x \to 0^+} \frac{1/x}{-2/x^3} = \lim_{x \to 0^+} \frac{x^2}{-2} = 0$$

3 Hyperbolic Function

3.1 Definition

- 1. Hyperbolic Sine $sinh(x) = sh(x) \equiv \frac{e^x e^{-x}}{2}$
- 2. Hyperbolic cosine $\cosh(x)=ch(x)\equiv\frac{e^x+e^{-x}}{2}$
- 3. Hyperbolic tangent $tanh(x)=th(x)\equiv\frac{sinh(x)}{cosh(x)}=\frac{e^x-e^{-x}}{e^x+e^{-x}}$
- 4. Hyperbolic cotangent coth(x) = 1/tanh(x)

3.2 Identities and Derivatives

•
$$\cosh^2(x) - \sinh^2(x) \left(= \frac{e^{2x} - e^{-2x} + 2}{4} - \frac{e^{2x} + e^{-2x} - 2}{4} \right) = 1$$

- $\frac{d}{dx}sinh(x) = cosh(x)$
- $\frac{d}{dx}cosh(x) = sinh(x)$
- $\bullet \ \frac{d}{dx}tanh(x)\left(=\frac{d}{dx}\frac{sinh(x)}{cosh(x)}=\frac{cosh^2(x)-sinh^2(x)}{cosh^2(x)}\right)=\frac{1}{cosh^2(x)}=1-tanh^2(x)$
- $\frac{d}{dx}coth(x) = \frac{-1}{sinh^2(x)} = 1 coth^2(x)$

3.3 Inverse Functions

•
$$\frac{d}{dx}sinh^{-1}(x) = \frac{1}{cosh(y)} = \frac{+1}{\sqrt{1+sinh^2(y)}} = \frac{1}{\sqrt{1+x^2}}$$

•
$$\frac{d}{dx}cosh^{-1}(x) = \frac{1}{sinh(y)} = \frac{\pm 1}{\sqrt{cosh^2(y) - 1}} = \frac{\pm 1}{\sqrt{x^2 - 1}}$$

•
$$\frac{d}{dx}tanh^{-1}(x) = \frac{1}{1-x^2}$$

4 Parametric Function Representation

4.1 Definition

Instead of the relation y = f(x), we have a third variable acting as a parameter:

$$\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$

4.2 Examples

For example,

1. an ellipse is mathematically described as

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

or parametrically,

$$\begin{cases} x = acos(t) \\ y = bsin(t) \end{cases}$$

Checking for equivalence

$$\frac{a^2 \cos^2(t)}{a^2} + \frac{b^2 \sin^2(t)}{b^2} = \cos^2(t) + \sin^2(t) \stackrel{\checkmark}{=} 1$$

2. A hyperbola is parametrically

$$\begin{cases} x = acosh(t) \\ y = bsinh(t) \end{cases}$$

or explicitly,

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

4.3 Derivative

To differentiate a function with parametric representation:

$$\frac{dy}{dx} = \frac{dy}{dt}\frac{dt}{dx} = \frac{dy/dt}{dx/dt}$$

4.4 Examples

Differentiating the hyperbola parametrically

$$\begin{split} \frac{dy}{dt} &= b cosh(t) \\ \frac{dx}{dt} &= a sinh(t) \\ \\ \frac{dy}{dx} &= \frac{b cosh(t)}{a sinh(t)} = \frac{b}{a} \frac{\pm x}{a \sqrt{cosh^2(t) - 1}} = \frac{\pm bx}{a \sqrt{x^2 - a^2}} \end{split}$$

or explicitly

$$y = \pm \frac{b}{a} \sqrt{x^2 - a^2}$$

$$\frac{dy}{dx} = \frac{\pm 2bx}{2a\sqrt{x^2 - a^2}} = \frac{\pm bx}{a\sqrt{x^2 - a^2}}$$

5 Asymptotes

An asymptote of f(x) is a linear function (y = kx + c) which f(x) tends to (only!) at $x \to \pm \infty$.

$$\lim_{x \to \infty} [f(x) - (kx + c)] = 0$$

To find the coefficients k, c - we know $\lim_{x\to\infty}\frac{1}{x}=0$. Multiplying both equations,

$$\lim_{x \to \infty} \left[\frac{f(x)}{x} - k \right] = 0$$

Therefore

$$k = \lim_{x \to \infty} \frac{f(x)}{x}, \quad c = \lim_{x \to \infty} [f(x) - kx]$$

Bimkom asymptot anachit : mitbader / nekudat singulariut.

6 Taylor Series

6.1 Definition

The first approximation of f(x) at the point x = a is the tangent to the function, and has the same first derivative at the point a.

$$y_1(x) = f(a) + (x - a) f'(a)$$

The second approximation is a parabola, and has the same first and second derivatives at the point a.

$$y_2(x) = f(a) + (x - a)f'(a) + \frac{1}{2}(x - a)^2 f''(a)$$

Therefore the n-th approximation is

$$y_n = \sum_{i=0}^{n} \frac{(x-a)^i}{i!} \frac{d^i f}{dx^i}$$

And the taylor expansion is

$$f(x) = \lim_{n \to \infty} \sum_{i=0}^{n} \frac{(x-a)^{i}}{i!} \frac{d^{i} f}{dx^{i}}$$

6.2 Examples

$$\begin{aligned} \cos(x) &= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!} \\ \sin(x) &= x - \frac{x^3}{3!} + \frac{x^5}{5!} \dots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!} \\ e^x &= 1 + \frac{x}{1!} + \frac{x^2}{2!} \dots = \sum_{k=0}^{\infty} \frac{x^k}{k!} \\ \hline e^{ix} &= \cos(x) + i\sin(x) \end{aligned}$$

7 Complex Numbers

7.1 Definition

A complex number is a sum of a real number a and an imaginary number bi.

$$z = a + bi \in \mathbb{C}$$

Where $i \equiv \sqrt{-1}$. (for example, $\sqrt{-9} = \sqrt{9}\sqrt{-1} = 3i$).

The complex conjugate of z, notated z^* or \bar{z} is

$$z^* = a - bi = r \left[\cos \left(-\varphi \right) + i \sin \left(-\varphi \right) \right] = r e^{-i\varphi}$$

It has the properties

$$z + z^* = 2Re(z)$$

$$z - z^* = 2Im(z)$$

7.2 Polar and Cartesian

We can define some basic function of the complex numbers

$$Re(z) \equiv a, \quad Im(z) \equiv b$$

$$r = |z| \equiv zz^* = \sqrt{a^2 + b^2}, \quad \varphi = arg(z) \equiv arctan\left(\frac{b}{a}\right)$$

That way complex numbers can be written both in polar and cartesian representation

$$z = a + bi = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}$$

7.3 Polar Product

We can write multiplication of complex numbers in polar form:

$$z_1 z_2 = r_1 \left(\cos \varphi_1 + i \sin \varphi_2 \right) r_2 \left(\cos \varphi_2 + i \sin \varphi_2 \right)$$

$$= r_1 r_2 \left[\left(\cos \varphi_1 \cos \varphi_2 - \sin \varphi_1 \sin \varphi_2 \right) + i \left(\cos \varphi_1 \sin \varphi_2 + \sin \varphi_1 \cos \varphi_2 \right) \right]$$

$$= r_1 r_2 \left[\cos \left(\varphi_1 + \varphi_2 \right) + i \sin \left(\varphi_1 + \varphi_2 \right) \right]$$

We get that complex number multiplication is equivalent to radius r multiplication with argument addition φ (de Moivre).

$$z^{n} = r^{n} \left[\cos \left(n\varphi \right) + i \sin \left(n\varphi \right) \right] = r^{n} e^{in\varphi}$$

If instead of n we have some fraction 1/n we need to have n solutions.

$$z^{\frac{1}{n}} = r^{\frac{1}{n}} \left[\cos \left(\frac{\varphi}{n} + \frac{2\pi k}{n} \right) + i \sin \left(\frac{\varphi}{n} + \frac{2\pi k}{n} \right) \right] = r^{\frac{1}{n}} e^{i\left(\frac{\varphi}{n} + \frac{2\pi k}{n}\right)}$$

For example, $\sqrt[3]{1} = e^{i\frac{2\pi k}{3}}, k \in \mathbb{Z}$.

7.4 Hyperbolic and Trig. Functions

Using Euler's equation, we can write cos and sin as

$$\cos\varphi = \frac{e^{i\varphi} + e^{-i\varphi}}{2}$$

$$sin\varphi = \frac{e^{i\varphi} - e^{i\varphi}}{2i}$$

We now see we have

$$cosh(i\varphi) = cos(\varphi)$$

$$sinh(i\varphi) = isin(\varphi)$$

and

$$cos(i\varphi) = cosh(\varphi)$$

$$sin(i\varphi) = isinh(\varphi)$$

Additional Operations

Raising e to a complex number

$$e^z = e^{x+yi} = e^x e^{iy}$$

natural log of a complex number is

$$\ln z = \ln \left(r e^{i(\varphi + 2\pi n)} \right) = \ln \left(r \right) + i \left(\varphi + 2\pi n \right)$$

Complex number raised to a complex number

$$z_1^{z_2} = e^{\ln(z_1)z_2} = \dots$$

Differentials 8

Given y = f(x), the differentials of x and y are

$$dx = \lim_{\Delta x \to 0} \Delta x$$

$$dy = f'(x)dx$$

dy is the first order expansion for the change in y as a function of x.

Differentials satisfy the properties:

$$d\left(f+g\right) = df + dg$$

$$d\left(c\cdot f\right) = c\cdot df$$

$$d(uv) = u \cdot dv + du \cdot v$$

$$d\left(\frac{u}{v}\right) = \frac{v \cdot du - u \cdot dv}{v^2}$$

$$d(\sin x) = (\cos x) dx$$

$$d\left(\frac{u}{a}\right) = \frac{v \cdot du - u \cdot du}{a^2}$$

$$d(\sin x) = (\cos x) dx$$

etc.

Part II

Integral Calculus of Single Variable Real Functions

9 Integrals

9.1 Definition

We'll take the interval [a, b] and divide it to n parts. Summing the rectangles under the graph to get the area we have

$$A = \sum_{k=1}^{n} f(\xi_n) (x_k - x_{k-1}) = \sum_{k=1}^{n} f(\xi_n) \cdot \Delta x_k$$

As $\Delta x_k \to 0$:

$$\int_{a}^{b} f(x) dx = \lim_{\Delta x_{k} \to 0} \sum_{k=1}^{n} f(\xi_{n}) \cdot \Delta x_{k}$$

If $f(x) \ge 0$ within the integration interval [a,b], $\int_a^b f(x) \, dx$ is the area between the graph and the x axis. If f(x) < 0 somewhere in the interval, $\int_a^b f(x) \, dx$ is just the sum of "positive and negative areas". $\int_a^b f(x) \, dx$ gives a scalar. x is a dummy variable. $f(x) \, dx$ is the integrand.

9.2 Indefinite Integral

A function F(x) that satisfies F'(x) = f(x) is the anti-derivative/indefinite integral of f(x). If F(x) is an anti-derivative of f(x) then F(x) + c is also an anti-derivative. We'll notate the anti-derivative as

$$F(x) = \int f(x)dx$$

9.3 The Fundemental Theorem of Calculus

If
$$F'(x) = f(x)$$
 then
$$\int_a^b f(x)dx = F(b) - F(a)$$
.

9.3.1 The Mean Value Theorem Proof

If f(x) is continuous over [a, b], then there exists some $a \le \xi \le b$ so that $\frac{\int_a^b f(x)dx}{b-a} = f(\xi)$. Proof:

Let m and M be the minimum and maximum values of f(x) in the interval. Then $\forall x \in [a, b] : m \le f(x) \le M$.

Therefore $m(b-a) \leq \int_a^b f(x) dx \leq M(b-a)$. Dividing by (b-a) we get $m \leq \frac{\int_a^b f(x) dx}{b-a} \leq M$.

Since f(x) is continuous there must exist some ξ so that $f(\xi) = \frac{\int_a^b f(x)dx}{b-a}$.

9.3.2 Integral is Anti Derivative Proof

Let $F(x) = \int_a^x f(t)dt + C$. We'll prove F'(x) = f(x). Proof:

$$\frac{F(x+h) - F(x)}{h} = \frac{1}{h} \left[\int_a^{x+h} f(t)dt - \int_a^x f(t)dt \right] = \frac{1}{h} \left[\int_x^{x+h} f(t)dt \right]$$

Now using the mean value theorem for $x \leq \xi \leq x + h$:

$$= \frac{1}{h} \left[h \cdot f(\xi) \right] = f(\xi)$$

And since f(x) is continuous $\lim_{h\to 0} f(x+h) = f(x)$. Finally,

$$F'(x) = \lim_{h \to 0} \frac{F(x+h) - F(x)}{h} = \lim_{h \to 0} f(\xi) \stackrel{\checkmark}{=} f(x)$$

9.3.3 F(b)-F(a) Proof

Let $F(x) = \int_a^x f(t)dt + C$.

$$F(a) = 0 + C = C$$

$$F(b) = \int_a^b f(t)dt + C = \int_a^b f(t)dt + F(a)$$

Finally,

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

9.4 Properties

$$\begin{split} &\int_a^b \left(f \pm g\right) dx = \int_a^b f dx \pm \int_a^b g dx \\ &\int_a^b c f(x) dx = c \int_a^b f(x) dx \\ &\int_a^b f dx = \int_a^c f dx + \int_c^b f dx \\ &\int_a^b f dx = - \int_b^a f dx \\ &\frac{d}{dx} \int_a^x f(t) dt = f(x) \\ &\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) dt = f \left[v(x)\right] \frac{dv}{dx} - f \left[u(x)\right] \frac{du}{dx} \end{split}$$

$$\int \cos u \cdot du = -\sin u + C$$

$$\int a^u du = \frac{a^u}{\ln a} + c$$

$$\int \sinh u \cdot du = \cosh u + C$$

$$\int \frac{du}{\sqrt{a^2 - u^2}} = \arcsin \frac{u}{a} + C$$

$$\int u^n du = \frac{u^{n+1}}{n+1} + C$$

$$\int \frac{du}{u} = \ln |u| + C$$

Integration by parts:
$$\int fg'dx = fg - \int f'gdx$$

Partial Fractions: $\frac{P(x)}{Q(x)}$ where $\lim_{x\to\infty} \frac{P(x)}{Q(x)} = 0$. We'll define the fraction as a sum of $\frac{A}{(ax+b)^r}$, $\frac{Bx+C}{(ax^2+bx+c)^r}$

9.5 Examples

 $\frac{\text{For example}}{1}$

$$\int \cos^2 x dx = \int \cos x \cos x dx = \sin x \cos x + \int \sin^2(x) dx = \sin x \cos x + \int 1 - \cos^2(x) dx$$

$$I = \sin x \cos x + x - I$$

$$I = \frac{\sin x \cos x}{2} + \frac{x}{2} + C$$

2)

$$\int (x+2)\sin(x^2+4x-6)\,dx = \int (x+2)\sin u \frac{du}{2x+4} = \int \frac{\sin u}{2}du = -\frac{\cos(x^2+4x-6)}{2} + C$$

3)

$$\int \frac{x^2}{\sqrt{a^2 - x^2}} dx = \frac{1}{a} \int \frac{x^2}{\sqrt{1 - \left(\frac{x}{a}\right)^2}} dx \stackrel{u = \frac{x}{a}}{=} a^2 \int \frac{u^2}{\sqrt{1 - u^2}} du \stackrel{u = \sin v}{=} a^2 \int \frac{\sin^2 v \cdot \cos v}{\cos v} dv = a^2 \int \sin^2 v dv$$
$$= \frac{a^2}{2} \left(v - \sin v \cos v \right) + C = \frac{a^2}{2} \left(\sin^{-1} \frac{x}{a} - \frac{x}{a} \sqrt{1 - \left(\frac{x}{a}\right)^2} \right) + C$$

4)

$$\int \frac{dx}{\sqrt{x^2 - 2x + 5}} = \int \frac{dx}{\sqrt{(x - 1)^2 + 4}} = \int \frac{dx}{2\sqrt{\left(\frac{x - 1}{2}\right)^2 + 1}} \stackrel{u = \frac{x - 1}{2}}{=} \int \frac{du}{\sqrt{u^2 + 1}} = \sinh^{-1} u + C$$
$$= \sinh^{-1} \left(\frac{x - 1}{2}\right) + C$$

5)

$$\int \frac{6-x}{2x^2-x-15} dx$$

We'll write the fraction as following:

$$\frac{6-x}{(x-3)(2x+5)} = \frac{A}{x-3} + \frac{B}{2x+5}$$

$$2Ax + 5A + Bx - 3B = 6 - x$$

$$2A + B = -1$$

$$5A - 3B = 6$$

$$\downarrow A = \frac{3}{11}, B = \frac{17}{11}$$

Finally, substituting back we get

$$\int \frac{6-x}{2x^2-x-15} dx = \int \frac{3/11}{x-3} + \frac{17/11}{2x+5} dx = \frac{3}{11} \ln|x-3| + \frac{17}{11} \frac{1}{2} \ln|2x+5| + C$$

$$\int \frac{2x^2 + 3}{(x^2 + 1)^2} dx$$

$$\frac{2x^2 + 3}{(x^2 + 1)^2} = \frac{Ax + B}{x^2 + 1} + \frac{Cx + D}{(x^2 + 1)^2}$$

$$2x^2 + 3 = Ax^3 + Bx^2 + (A + C)x + (B + D)$$

$$A = 0$$

$$B = 2$$

$$C = 0$$

$$D = 1$$

$$\int \frac{2x^2 + 3}{(x^2 + 1)^2} dx = \int \frac{2}{x^2 + 1} + \frac{1}{(x^2 + 1)^2} dx = 2 \tan^{-1}(x) + \dots$$

$$\int \frac{1}{(x^2 + 1)^2} dx \xrightarrow{x = \tan u} \int \frac{\frac{1}{\cos^2 u}}{\frac{1}{\cos^4 u}} du = \int \cos^2 u du = \frac{1}{2} \left(u + \frac{\tan u}{\tan^2 u + 1} \right) = \frac{1}{2} \left(\tan^{-1} x + \frac{x}{x^2 + 1} \right)$$
mally,

 $\int \frac{2x^2+3}{(x^2+1)^2} dx = \frac{5}{2} \tan^{-1} x + \frac{1}{2} \frac{x}{x^2+1} + C$

7)

finally.

$$\int \frac{dx}{5+4\sin x} \stackrel{u=\tan\frac{x}{2}}{=} \int \frac{2du}{(1+u^2)\left(5+4\frac{2u}{1+u^2}\right)} = \int \frac{2du}{5+5u^2+8u} = \frac{2}{5} \int \frac{du}{u^2+\frac{8}{5}u+1} = \frac{2}{5} \int \frac{du}{\left(u+\frac{4}{5}\right)^2+\frac{9}{25}}$$

$$\frac{2}{5} \frac{25}{9} \int \frac{du}{\left[\frac{5}{3}\left(u+\frac{4}{5}\right)\right]^2+1} \stackrel{z=\frac{5}{3}\left(u+\frac{4}{5}\right)}{=} \frac{2}{5} \frac{25}{9} \frac{3}{5} \int \frac{dz}{z^2+1} = \frac{2}{3} \tan^{-1} z = \frac{2}{3} \tan^{-1} \left(\frac{5}{3}\left(u+\frac{4}{5}\right)\right)$$

$$= \frac{2}{3} \tan^{-1} \left(\frac{5}{3}\left(\tan\frac{x}{2}+\frac{4}{5}\right)\right) + C$$

8)

$$\int_0^{\pi/2} \frac{dx}{5+4\sin x} \stackrel{u=\tan\frac{x}{2}}{=} \frac{2}{5} \int_0^1 \frac{du}{\left(u+\frac{4}{5}\right)^2+\frac{9}{25}} \stackrel{z=\frac{5}{3}\left(u+\frac{4}{5}\right)}{=} \frac{2}{3} \int_{\frac{4}{3}}^3 \frac{dz}{z^2+1} = \left(\frac{2}{3}\tan^{-1}z\right)|_{\frac{4}{3}}^3 \dots$$

$$\int_0^a f(x)dx \stackrel{y=a-x}{=} - \int_a^0 f(a-y)dy = \int_0^a f(a-y)dy = \int_0^a f(a-x)dx$$

wow so surprisingg

10)

$$I = \int_0^{\pi/2} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \int_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx$$
$$2I = \int_0^{\pi/2} \frac{\sqrt{\sin x} + \sqrt{\cos x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx = \pi/2$$
$$I = \frac{\pi}{4}$$

9.6 Improper Integrals

When the integrand f(x) is integrated over an infinite interval, or f(x) isn't defined somewhere/goes to ∞ in the interval.

For example,

$$\int_0^\infty \frac{dx}{1+x^2} = \lim_{M \to \infty} \int_0^M \frac{dx}{1+x^2} = \lim_{M \to \infty} \left[\tan^{-1}(x) \right]_0^M = \frac{\pi}{2} - 0 = \frac{\pi}{2}$$

$$\int_0^1 \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^1 \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0^+} \left(2\sqrt{x} \right) \Big|_{\varepsilon}^1 = \lim_{\varepsilon \to 0^+} \left(2 - 2\sqrt{\varepsilon} \right) = 2$$

$$\int_0^1 \frac{dx}{x} = \lim_{\varepsilon \to 0^+} \int_{\varepsilon}^1 \frac{dx}{x} = \lim_{\varepsilon \to 0^+} \ln|x|_{\varepsilon}^1 = \lim_{\varepsilon \to 0^+} \left(-\ln \varepsilon \right) = \infty$$

$$\int_{-1/2}^1 \frac{dx}{x} = \ln|x|_{-1/2}^1 = \left(-\ln \frac{1}{2} \right) \text{ nah bro. it aint defined. dont even try.}$$

There are integrals with no analytic solution. For example, $\int e^{x^2} dx$.

Then, either it can be approximated numerically (on a computer), or it can be solved using a taylor expansion.

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} \dots$$

$$e^{x^{2}} = 1 + x^{2} + \frac{x^{4}}{2!} + \frac{x^{6}}{3!} \dots$$

$$\int_{0}^{1} e^{x^{2}} dx = \int_{0}^{1} \sum_{k=0}^{\infty} \frac{x^{2k}}{k!} = \sum_{k=0}^{\infty} \frac{x^{2k+1}}{(2k+1)k!} \Big|_{0}^{1} = \sum_{k=0}^{\infty} \frac{1}{(2k+1)k!} \approx 0.463$$

$$\int_{0}^{1} \frac{\sin x}{x} dx \approx \int_{0}^{1} \left(1 - \frac{x^{2}}{3!} + \frac{x^{4}}{5!} - \frac{x^{6}}{7!}\right) dx = \dots$$

9.7 Area Between Curves

The area between two curves y_1 and y_2 in the interval [a,b] is $A = \int_a^b |y_1 - y_2| \, dx$.

9.8 Curve Length

The length of the curve f(x) over a small Δx , is $\Delta \ell = \sqrt{\Delta x^2 + \Delta y^2} = \Delta x \sqrt{1 + \left(\frac{\Delta y}{\Delta x}\right)^2} \rightarrow d\ell = dx \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$. Integrating over the interval [a, b], we get

$$\boxed{l = \int_a^b \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx = \int_{f(a)}^{f(b)} \sqrt{\left(\frac{dx}{dy}\right)^2 + 1} dy = \int_{u(a)}^{u(b)} \sqrt{\left(\frac{dx}{du}\right)^2 + \left(\frac{dy}{du}\right)^2} du}$$

We'll use the formula that is most convenient as they are all equal.

For example,

The length of $y = x^2$ from x = 0 to x = 1 is

$$\ell = \int_0^1 \sqrt{1 + 4x^2} dx = \frac{1}{2} \int_0^1 \sqrt{1 + u^2} du = \int_0^1 \sqrt{1 + \sinh^2 v} \dots$$

9.9 Solid of Revolution

We can create a rotationally symmetric 3D body by taking any function f(x) and revolving its curve around an axis (x or y).

To calculate the volume of a solid around the x axis:

$$V_{ab} = \int_{a}^{b} \pi f^{2}(x) dx$$

To calculate the volume of a solid around the y axis:

$$V_{ab} = \int_{f(a)}^{f(b)} \pi x^2 df = \int_a^b \pi x^2 f'(x) dx$$

we can also divide it (solid around y axis) to hollow cylinders to get the volume on $x \in [-b, b]$:

$$V_{ab} = \int_0^b 2\pi x \left[f(b) - f(x) \right] dx = \pi f(b)b^2 - 2\pi \int_0^b x f(x) dx$$

Surface area of body around x:

$$S = \int_{a}^{b} 2\pi f(x)d\ell = 2\pi \int_{a}^{b} f(x)\sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}dx$$

Surface area of body around y:

$$S = \int_{a}^{b} 2\pi x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx$$

Generally it is recommended to just create these equations yourself, and not remember them.

10 Distributions

10.1 Mean and Expected Value

The mean value of a function over the interval [a, b]:

$$\bar{f} = \frac{\sum f_i}{\sum 1} = \frac{\sum f_i \Delta x}{\sum 1 \Delta x} \to \frac{\int_a^b f(x) dx}{\int_a^b dx} = \boxed{\frac{\int_a^b f(x) dx}{b - a}}$$

The expected value of g(x), " $\langle g(x) \rangle$ " under the distribution N(x) is as following:

$$\bar{g} = \sqrt{\langle g \rangle} = \frac{\int_a^b g(x) N(x) dx}{\int_a^b N(x) dx}$$

For example, for $N(x)=e^{-x^2}$, $\langle x\rangle=0$, $\langle x^2\rangle=\frac{1}{2}$ (just by calculating the integrals). $\langle x^n\rangle$ is the n-th moment of x.

10.2 Gaussian Function

A general gaussian function is written as

$$f(x) = e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

 σ is the width, x_0 the maximum. Its moments are $\langle x \rangle = 0$, $\langle x^2 \rangle = \sigma$, $\langle x^3 \rangle = 0$, $\langle x^4 \rangle = 3\sigma^4$...

Part III

Differential Calculus of Multivariable Real Functions

11 Introduction

11.1 Multivariable Functions

We can define functions dependent on many variables.

$$y = f(x, y, z, ...)$$

For example $z = \sqrt{1 - (x^2 + y^2)}$ is a sphere of radius 1.

11.2 Limits

Let $\varepsilon > 0$. There exists some δ that satisfies $(x - x_0)^2 + (y - y_0)^2 < \delta^2$ such that $|f(x, y) - A| < \varepsilon$:

$$\lim_{x \to x_0 \atop y \to y_0} f(x, y) = A$$

The limit exists if for any path $(x,y) \to (x_0,y_0), f(x,y) \to A$

For example we'll look at $x \to 0^-$ with $\tan^{-1}(\frac{y}{x})$. We get $-\frac{\pi}{2}$. The limit does not exist because $\lim_{x \to 0^+} \tan^{-1}(\frac{y}{x}) = \frac{\pi}{2}$. $y \to 1$

11.3 Continuity

A function $f(x_1, x_2, ...)$ is continuous at at $(x_{1,0}, x_{2,0}, ...)$ if $\lim_{x_i \to x_{i,0}} f(x_1, x_2, ...) = f(x_{1,0}, x_{2,0}, ...)$. This is actually 3 conditions:

- 1. The limit exists at that point (x_0, y_0)
- 2. The function is defined at that point (x_0, y_0)
- 3. The function and the limit are equal at that point (x_0, y_0)

12 Derivatives and Differentials

12.1 Derivative Definition

The partial derivative of a multivariable function is defined as:

$$\frac{\partial f}{\partial x} \equiv \lim_{\Delta x \to 0} \frac{f(x + \Delta x, y, z...) - f(x, y, z...)}{\Delta x}$$

Other notations for partial derivatives are $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}|_y = f_x = \partial_x f$.

For example,

1.
$$f(x,y) = 2x^3 + 3xy^2$$
. $\frac{\partial f}{\partial x} = 6x^2 + 3x$. $\frac{\partial f}{\partial y} = 6xy$.

2.
$$f(x, y, z) = xy + yz + xz$$
. $f_x = y + z$. $f_y = x + z$. $f_z = x + y$.

Just like with the regular derivative operator, the partial derivative operator can be applied multiple times $\frac{\partial^n f}{\partial x^n}$. It also has multiply notation, for example $\frac{\partial^2 f}{\partial x^2} = f_{xx}$. Or we can even differentiate $\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = f_{xx}$ $\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = f_{yx} = f_{xy} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$

12.2Differentials and Chain Rule

The perfect differential of some function $f(x_1,...,x_n)$ is

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i$$

we can prove this by
$$\Delta f = f\left(x + \Delta x, y + \Delta y\right) - f\left(x, y\right)$$

$$= \left[f\left(x + \Delta x, y + \Delta y\right) - f\left(x, y + \Delta y\right)\right] + \left[f\left(x, y + \Delta y\right) - f\left(x, y\right)\right]$$

$$= \frac{\left[f(x + \Delta x, y + \Delta y) - f(x, y + \Delta y)\right]}{\Delta x} \Delta x + \frac{\left[f(x, y + \Delta y) - f(x, y)\right]}{\Delta y} \Delta y$$

$$\to \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$$

We can say each of the independent variables are actually function $x_1(t)$, $x_2(t)$... Hence the new chain rule is:

$$\frac{df}{dt} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \frac{dx_i}{dt}$$

For example,

Given some function $y = [f_1(x)]^{f_2(x)}$, $\ln y = f_2 \ln f_1$. Differentiating we get, $y' = f_1^{f_2} \left(f_2' \ln f_1 + \frac{f_2 f_1'}{f_1} \right)$. Or using the chain rule, $\frac{dy}{dt} = \frac{\partial y}{\partial f_1} \frac{df_1}{dx} + \frac{\partial y}{\partial f_2} \frac{df_2}{dx} = \left(f_2 f_1^{f_2 - 1}\right) (f_1') + \left(\ln f_1 \cdot f_1^{f_2}\right) f_2' = f_1^{f_2} \left(\frac{f_2 f_1'}{f_1} + f_2' \ln f_1\right)$

Suppose we have a function z(x,y) and x(r,s), y(r,s). Then

$$dz = \frac{\partial z}{\partial x}dx + \frac{\partial z}{\partial y}dy$$

$$dz = \frac{\partial z}{\partial r}dr + \frac{\partial z}{\partial s}ds$$

$$dx = \frac{\partial z}{\partial r}dr + \frac{\partial z}{\partial s}ds$$

$$dy = \frac{\partial y}{\partial r}dr + \frac{\partial y}{\partial s}ds$$

We can substitute dx, dy from (3) and (4) into (1). We'll get $dz = \left(\frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r}\right)dr + \left(\frac{\partial z}{\partial x}\frac{\partial x}{\partial s} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial s}\right)ds$. Using (2), we got an even more general chain rule, $\left[\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial r}\right]$ (and similarly for $\frac{\partial z}{\partial s}$).

12.3Implicit Functions

An implicit function is a function defined by an implicit equation:

$$f(x_1, ..., x_n) = \text{const.}$$

^{*} df the perfect differential is the first order (linear) approximation of Δf with respect to x_i .

To differentiate an implicit function we use the chain rule. For example for f(x,y)=c we have $\frac{df}{dx}=$ $\frac{\partial f}{\partial x}\frac{dx}{dx} + \frac{\partial f}{\partial y}\frac{dy}{dx} = 0$. Therefore $\left[\frac{dy}{dx} = -\frac{\partial f}{\partial x}/\frac{\partial f}{\partial y}\right]$. This is true for any number of variables as long as there is only one dependent variable (only with a partial derivative instead).

For example, for $f(x,y) = x^3 + y^3 - 3axy = 0$, we have $\frac{dy}{dx} = \frac{-3x^2 + 3ay}{3y^2 - 3ax}$.

12.4Extrema

A necessary condition for an extremum point is that $\frac{\partial f}{\partial x_j} = 0$ for all j (still it isn't necessarily an extremum point, could be a flat area). Equivalently, df = 0.

Additionaly: $\Delta \equiv f_{xx}f_{yy} - (f_{xy})^2 > 0$ and also $f_{xx} < 0$ (maximum) or $f_{xx} > 0$ (minimum). If $\Delta < 0$ the point is a saddle point.

Lagrange Multipliers

Startegy of finding local maxima and minima of a function $f(x_1,...,x_n)$ under m constraints $\phi_j(x_1,...,x_n) = 0$

Let $G \equiv f + \sum_{i=1}^m \lambda_i \phi_i$ be the Lagrangian function. We'll now find the stationary points of G: $\frac{\partial G}{\partial x_j} = 0$ for all j, and additionaly $\frac{\partial G}{\partial \lambda_j} = \phi_j = 0$ for all j. We get n + m variables - $x_1, ..., x_n$ and $\lambda_1, ..., \lambda_m$.

13 Transformations and Jacobians

We can have multiple dependent variables given a transformation (a bijection).

For example $x(r,\theta) = r\cos\theta$ and $y(r,\theta) = r\sin\theta$ define a transformation (specifically, from polar to cartesian coordinates).

For any transformation we can define a Jacobian.

$$\left| J\left(\frac{x,y}{r,\theta}\right) \right| \equiv \left| \frac{\partial \left(x,y\right)}{\partial \left(r,\theta\right)} \right| \equiv \left| \begin{array}{cc} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{array} \right| = \frac{\partial x}{\partial r} \frac{\partial y}{\partial \theta} - \frac{\partial x}{\partial \theta} \frac{\partial y}{\partial r}$$

For example, we get $\left|J\left(\frac{x,y}{r,\theta}\right)\right|=r$. and similarly we get $\left|J\left(\frac{r,\theta}{x,y}\right)\right|=\frac{1}{r}$

Under a transformation $(x,y) \to (r,\theta)$, the area dxdy becomes $rdrd\theta$, because:

$$dA = dxdy = \left| J\left(\frac{x,y}{r,\theta}\right) \right| drd\theta$$

We can write a chain rule for Jacobians. Given $\begin{cases} u\left(r,s\right) & x\left(u,v\right) \\ v\left(r,s\right) & y\left(u,v\right) \end{cases}$, (we can easily show this by simply carrying out the matrix product):

$$\boxed{J\left(\frac{x,y}{r,s}\right) = J\left(\frac{x,y}{u,v}\right)J\left(\frac{u,v}{r,s}\right)}$$

We immediately get from this that the Jacobian of the inverse transformation is the inverse of the Jacobian.

$$\left| \left| J\left(\frac{x,y}{r,\theta}\right) \right| = \frac{1}{\left| J\left(\frac{r,\theta}{x,y}\right) \right|}$$

The same could be done similarly with a volume element dV = dxdydz and higher dimensions.

Spherical coordinates are given by:

$$x = r \sin \theta \cos \varphi$$
$$y = r \sin \theta \sin \varphi$$
$$z = r \cos \theta$$

and their Jacobian is

$$\left|J\left(\frac{x,y,z}{r,\theta,\varphi}\right)\right|=r^2\sin\theta$$

steradians 4π $\frac{dA}{r^2}=d\Omega=\sin\theta d\theta d\varphi=d\varphi d\left(\cos\theta\right)$ and $dV=r^2\sin\theta dr d\varphi d\theta$

13.1 Differentiation under the Integral Sign

Leibniz rule:

$$\frac{d}{d\alpha} \int_{x_{1}}^{x_{2}} f\left(x,\alpha\right) dx = \int_{x_{1}}^{x_{2}} \frac{\partial f}{\partial \alpha} dx$$

Only allowed when $\frac{\partial f}{\partial a}$ and f are continuous.

Part IV

Multivariable Integral Calculus

14 Multivariable Integrals

14.1 Definition

We can divide the volume under F(x, y) similarly to how we divided the area under f(x). The integral is then

$$I = \lim_{n \to \infty} \sum_{k=1}^{n} F(\xi_k, \eta_k) \Delta A_k$$

where (ξ_k, η_k) is a point in the area and ΔA_k is the base area of the volume.

14.2 someth

We can divide the areas evenly so that $\Delta A_k = \Delta x_i \Delta y_j$. We'll write the sum from x = a to x = b. And in that section, we'll write the sum on y from $y = f_1(x)$ to $y = f_2(x)$ for each x. Then

$$I = \lim_{n \to \infty} \sum_{i=1, n \mid j=1, m} F(\xi_k, \eta_k) \Delta x_i \Delta y_j$$

We can split the sum into two so that each time we sum all y's in a row, and then add the entire row.

$$= \lim_{n \to \infty} \sum_{i} \sum_{j} F(\xi_k, \eta_k) \Delta x_i \Delta y_j = \lim_{n \to \infty} \sum_{i} \Delta x_i \sum_{j} F(\xi_k, \eta_k) \Delta y_j$$

Now this is a regular one variable integral. So we now have

$$= \int_{a}^{b} dx \int_{f_{1}(x)}^{f_{2}(x)} F(x,y) dy = \int_{a}^{b} \int_{f_{1}(x)}^{f_{2}(x)} F(x,y) dx dy$$

We see that we can change the order of summing. This is Fubini's Theorem.