```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay, classification_report
from sklearn.svm import SVC
from sklearn.model_selection import GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
import plotly.express as px
```

Vº1

```
def load_dataset(hrf):
   data = []
        with open(filename, 'r', encoding='utf-8') as file:
            reader = csv.reader(file, delimiter=';')
            rows = list(reader)
            print(f"Размер: {len(rows)} строк")
            for row in rows:
                numeric_row = []
                for value in row:
                        numeric_row.append(float(value))
                    except ValueError:
                        numeric_row.append(0)
                data.append(numeric_row)
    except FileNotFoundError:
       print("Файл dataset.csv не найден")
        return []
df = pd.read_csv('Датасет CSV.csv', sep = ";")
```

```
df.isna().sum()
                                                                                                                           0
                                      Какой у вас телефон? (Айфон - 1, Андроид - 2)
                                                                                                                           0
                                                     Пол (М - 1, Ж - 2)
                                                                                                                           0
                                       Количество братьев/сестёр (укажите цифру)
                                                                                                                           0
                                        ОС на ПК (MacOS - 1, Windows - 2, Linux - 3)
                                                                                                                           \cap
                                Среднее кол-во поездок на такси в месяц (укажите цифру)
                                                                                                                           0
                                        Играете в мобильные игры? (Да -1, Нет - 2)
Область проживания (в пределах садового - 1, ттк - 2, мцк - 3, мкад - 4, цкад - 5, московское большое кольцо - 6, дальше - 7 0
                                        Важно ли качество камеры? (Да - 1, Нет - 2)
                     Из какого ФО вы приехали ( цифры в порядке расположения списка на картинке)
                                                                                                                           0
                  Чаще вы оплачиваете покупки... (картой - 1, стикером - 2, NFC - 3, наличными - 4, QR - 5)
                                                                                                                           0
                              Как часто меняете телефон? (укажите среднее количество лет)
                         Ваше положение (безработный - 1, частная компания - 2, госкомпания - 3)
                                                                                                                           0
                                Пользуешься ли технологией умного дома? (Да - 1, Нет - 2)
                                             Сфера работы ІТ? (Да - 1, Нет - 2)
                                                                                                                           0
                              Какие часы? (Нет часов - 1, Механические - 2, Электронные - 3)
                        Какой максимальный бюджет готов потратить? (Введи число без пробелов)
                                 Сколько раз в день заряжаешь телефон? (Введи цифру)
            Каким браузером чаще пользуешься? (Google - 1, Яндекс - 2, Safari - 3, Opera - 4, Edge - 5, Firefox - 6)
   Любите ли вы новые технологии? ( по шкале от 1 до 5, где 1 - вообще не люблю, 3 - спокойно отношусь, а 5 - обожаю)
                                                                                                                           \cap
                      Важна ли для вас возможность настройки интерфейса под себя? (Да - 1, Нет - 2)
                                                                                                                           0
                         Важно ли для вас качество материалов/материал корпуса? (Да -1, Нет - 2)
                                                                                                                           0
dtype: int64
```

```
len(df.index)

33
```

	Какой у вас телефон? (Айфон - 1, Андроид - 2)	Пол (М - 1, Ж - 2)	Количество братьев/ сестёр (укажите цифру)	OC HA NK (MacOS - 1, Windows - 2, Linux - 3)	Среднее кол-во поездок на такси в месяц (укажите цифру)	Играете в мобильные игры? (Да -1, Нет - 2)	Область проживания (в пределах садового - 1, ттк - 2, мцк - 3, мкад - 4, цкад - 5, московское большое кольцо - 6, дальше	камеры? (Да - 1,	Из какого ФО вы приехали (цифры в порядке расположения списка на картинке)	Чаще вы оплачиваете покупки (картой - 1, стикером - 2, NFC - 3, наличными - 4, QR - 5)	 Ва положен (безработн - 1, частн компания госкомпан
0	1	1	1	1	20	1	5	1	1	1	
1	1	2	0	2	15	2	4	1	6	1	
2	1	1	2	1	1	2	4	1	1	1	
3	2	1	0	1	0	2	7	1	1	1	
	1	4	0	1	0	2	4	1	1	1	

∨ Nº2


```
predictors = df.drop(columns=['Какой у вас телефон? (Айфон - 1, Андроид - 2)','Пол (М - 1, Ж - 2)'])
target = df['Какой у вас телефон? (Айфон - 1, Андроид - 2)']
names = df['Какой у вас телефон? (Айфон - 1, Андроид - 2)'].unique()
```

```
predictors.head()
```

	Количество братьев/ сестёр (укажите цифру)	ОС на ПК (MacOS - 1, Windows - 2, Linux - 3)	Среднее кол-во поездок на такси в месяц (укажите цифру)	мобильные игры? (Да	Область проживания (в пределах садового - 1, ттк - 2, мцк - 3, мкад - 4, цкад - 5, московское большое кольцо - 6, дальше - 7	Важно ли качество камеры?	(цифры в порядке расположения списка на	покупки (картой - 1, стикером	меняете телефон? (укажите среднее	Ваше положение (безработный - 1, частная компания - 2, госкомпания - 3)	технологи умно дома? (Да
0	1	1	20	1	5	1	1	1	3	2	
1	0	2	15	2	4	1	6	1	3	2	
2	2	1	1	2	4	1	1	1	7	3	
3	0	1	0	2	7	1	1	1	3	2	
4	0	1	0	2	4	1	1	1	4	3	

```
      print("\n\nЦелевая переменная")

      target.head()

      Целевая переменная

      Какой у вас телефон? (Айфон - 1, Андроид - 2)

      0
      1

      1
      1

      2
      1

      3
      2

      4
      1

      dtype: int64
```

∨ Nº3

Классификация методом k-ближних

```
from warnings import simplefilter

number_of_neighbors = np.arange(2,10)

model_KNN = KNeighborsClassifier()

params = {"n_neighbors": number_of_neighbors}

grid_search_knn = GridSearchCV(estimator = model_KNN, param_grid=params, cv=6)

simplefilter(action='ignore', category=FutureWarning)

grid_search_knn.fit(x_train, y_train)

import matplotlib.pyplot as plt

import numpy as np

# Извлекаем результаты поиска

cvres = grid_search_knn.cv_results_

k = cvres["param_n_neighbors"].data.astype(int)

mean_test = cvres["mean_test_score"]

std_test = cvres["std_test_score"]
```

```
best_k = grid_search_knn.best_params_["n_neighbors"]
best_score = grid_search_knn.best_score_

# Строим график зависимости точности от k
plt.figure(figsize=(8,5))
plt.plot(k, mean_test, marker="o", label="Точность CV")
plt.fill_between(k, mean_test - std_test, mean_test + std_test, alpha=0.2)
plt.axvline(best_k, linestyle="--", color="red", label=f"Лучший k = {best_k}")
plt.scatter([best_k], [best_score], s=80, color="red")

plt.title("Зависимость точности модели от числа соседей (k)")
plt.xlabel("k - число ближайших соседей")
plt.ylabel("Средняя точность (CV)")
plt.xticks(k)
plt.legend()
plt.grid(True)
plt.show()
```



```
grid_search_knn.best_score_
np.float64(0.73333333333333)
```

```
best_model = grid_search_knn.best_estimator_
best_model
```

v KNeighborsClassifier ① (1) (?)
KNeighborsClassifier(n_neighbors=np.int64(4))

```
knn_preds = grid_search_knn.predict(x_test)
```

p (acton_repo	n c(kiiii_pi	reds, y_tes	())
F	recision	recall	f1-score	support
1	1.00	0.60	0.75	5
2	0.50	1.00	0.67	2
accuracy			0.71	7
macro avg	0.75	0.80	0.71	7
weighted avg	0.86	0.71	0.73	7

Выводы:

print("Методом k-ближних мы можем увидеть, какой телефон выберет человек в зависимости от пола с точность 0.73, а именно 0.67 д Методом k-ближних мы можем увидеть, какой телефон выберет человек в зависимости от пола с точность 0.73, а именно 0.67 для Ж и 0