5. 1)
a) $\theta(n)$ because the for loop in line 5.
b) $\theta(n)$ because it returns $n+1$
digit number.
c) Yes. Because the running time
= output size - optimal.
d) $\theta(n^2)$ because nested for loop
on line 2 and 4
e) $\theta(n)$ because it returns 2N digit number
1) no because we do not know a
multiplication algorithm= that runs in () (n)
time g) because it has to look at every
digit in both numbers (in the worst case)
h) O(n) because the logic is similar to
the adding algorithm

i) $\theta(n^2)$ because the repeat... loop takes $\theta(n)$ and the for loop on line 9 takes O(n) J) Allogn) be cause it converges quadratical A) $\theta(n^2)$ becomes it takes $\theta(n^2)$ running time to perform the Mod algorithm (multiplication and subtraction) and takes $\theta(n^2)$ running time to perform the DIV algorithm. (e) $\theta(n^3)$ because the for loop on line 3 takes (3(n) time. Mod and mutiply call take offine time m) $\Theta(N^{\log_2 3})$; (the running time of Karatsubage algorithm) n) 0 (N/0928) o) θ (N logs &) powmod calls multiple and mod & (n) times - running times = Oln

Total running time =
$$\theta(N \times N \log_2 \theta)$$
 $\theta(N \log_2 \theta)$
 $\theta(N$

5.2) a) $\theta(N^{\log_2 6})$ because D(n) can be computed using a simple call to pownroad $b) \theta \left(\frac{RC}{N} \right)$ c) $\theta(RCN^{\log_2 3})$ d)0, 1, m-1 are fixed points e) $E(-u) \equiv -E(u) \mod u$ $E(n,), E(n_2) \equiv E(n, \times n_2), mod m$ $E(\nu')_{u^5} \equiv E(\nu'_{u^5}) \mod w$ t) Appending a random number and using per-message enorgption keys both work be cause they make the encryption output non-deterministic. The other proposals will no change the fact that a message always los the same after encryption