class13

```
Section 1. Differential Expression Analysis

library(DESeq2)

Loading required package: S4Vectors

Loading required package: stats4

Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min
```

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

expand.grid, I, unname

Loading required package: IRanges

Attaching package: 'IRanges'

The following object is masked from 'package:grDevices':

windows

Loading required package: GenomicRanges

Loading required package: GenomeInfoDb

Loading required package: SummarizedExperiment

Loading required package: MatrixGenerics

Loading required package: matrixStats

Warning: package 'matrixStats' was built under R version 4.2.2

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse, colCounts, colCummaxs, colCummins, colCumprods, colCumsums, colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs, colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats, colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds, colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads, colWeightedMeans, colWeightedMedians, colWeightedSds, colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet, rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,

rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps, rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins, rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks, rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars, rowWeightedMads, rowWeightedMeans, rowWeightedMedians, rowWeightedSds, rowWeightedVars

Loading required package: Biobase

Welcome to Bioconductor

```
Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'.
```

Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

rowMedians

The following objects are masked from 'package:matrixStats':

anyMissing, rowMedians

```
metaFile <- "GSE37704_metadata.csv"
countFile <- "GSE37704_featurecounts.csv"

# Import metadata and take a peak
colData = read.csv(metaFile, row.names=1)
head(colData)</pre>
```

condition
SRR493366 control_sirna
SRR493367 control_sirna
SRR493368 control_sirna
SRR493369 hoxa1_kd
SRR493370 hoxa1_kd
SRR493371 hoxa1_kd

```
# Import countdata
countData = read.csv(countFile, row.names=1)
head(countData)
```

	length	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370
ENSG00000186092	918	0	0	0	0	0
ENSG00000279928	718	0	0	0	0	0
ENSG00000279457	1982	23	28	29	29	28
ENSG00000278566	939	0	0	0	0	0
ENSG00000273547	939	0	0	0	0	0
ENSG00000187634	3214	124	123	205	207	212

SRR493371

ENSG00000186092 0 ENSG00000279928 0 ENSG00000279457 46 ENSG00000278566 0 ENSG00000273547 0 ENSG00000187634 258

Q1

```
# Note we need to remove the odd first $length col
countData <- as.matrix(countData[,-1])
head(countData)</pre>
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000186092	0	0	0	0	0	0
ENSG00000279928	0	0	0	0	0	0
ENSG00000279457	23	28	29	29	28	46
ENSG00000278566	0	0	0	0	0	0
ENSG00000273547	0	0	0	0	0	0
ENSG00000187634	124	123	205	207	212	258

Q2

```
countData = countData[rowSums(countData)!=0, ]
head(countData)
```

	SRR493366	SRR493367	SRR493368	SRR493369	SRR493370	SRR493371
ENSG00000279457	23	28	29	29	28	46

ENSG00000187634	124	123	205	207	212	258
ENSG00000188976	1637	1831	2383	1226	1326	1504
ENSG00000187961	120	153	180	236	255	357
ENSG00000187583	24	48	65	44	48	64
ENSG00000187642	4	9	16	14	16	16

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

```
dds = DESeq(dds)
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

res = results(dds, contrast=c("condition", "hoxa1_kd", "control_sirna"))
Q3
summary(res)
```

out of 15975 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 4349, 27%
LFC < 0 (down) : 4396, 28%
outliers [1] : 0, 0%
low counts [2] : 1237, 7.7%
(mean count < 0)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results</pre>

Volcano Plot

```
plot( res$log2FoldChange, -log(res$padj) )
```


Q4

```
# Make a color vector for all genes
mycols <- rep("gray", nrow(res) )
# Color red the genes with absolute fold change above 2</pre>
```

```
mycols[ abs(res$log2FoldChange) > 2 ] <- "red"

# Color blue those with adjusted p-value less than 0.01
# and absolute fold change more than 2
inds <- (res$padj<0.01) & (abs(res$log2FoldChange) > 2 )
mycols[ inds ] <- "blue"

plot( res$log2FoldChange, -log(res$padj), col=mycols, xlab="Log2(FoldChange)", ylab="-Log(</pre>
```



```
Adding Gene Annotation Q5
```

```
library("AnnotationDbi")
library("org.Hs.eg.db")
```

```
columns(org.Hs.eg.db)
```

[1] "ACCNUM" "ALIAS" "ENSEMBL" "ENSEMBLPROT" "ENSEMBLTRANS"

```
[6] "ENTREZID"
                    "ENZYME"
                                    "EVIDENCE"
                                                   "EVIDENCEALL"
                                                                  "GENENAME"
[11] "GENETYPE"
                    "GO"
                                    "GOALL"
                                                   "IPI"
                                                                  "MAP"
                    "ONTOLOGY"
                                    "ONTOLOGYALL" "PATH"
                                                                  "PFAM"
[16] "OMIM"
[21] "PMID"
                    "PROSITE"
                                    "REFSEQ"
                                                   "SYMBOL"
                                                                  "UCSCKG"
[26] "UNIPROT"
  res$symbol = mapIds(org.Hs.eg.db,
                       keys=row.names(res),
                       keytype="ENSEMBL",
                       column="SYMBOL",
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$entrez = mapIds(org.Hs.eg.db,
                       keys=row.names(res),
                       keytype="ENSEMBL",
                       column="ENTREZID",
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  res$name =
               mapIds(org.Hs.eg.db,
                       keys=row.names(res),
                       keytype="ENSEMBL",
                       column="GENENAME",
                       multiVals="first")
'select()' returned 1:many mapping between keys and columns
  head(res, 10)
log2 fold change (MLE): condition hoxa1_kd vs control_sirna
Wald test p-value: condition hoxa1 kd vs control sirna
DataFrame with 10 rows and 9 columns
                   baseMean log2FoldChange
                                                lfcSE
                                                            stat
                                                                      pvalue
                  <numeric>
                                 <numeric> <numeric> <numeric>
                                                                   <numeric>
```

```
ENSG00000279457
                  29.913579
                                 0.1792571 0.3248216
                                                       0.551863 5.81042e-01
ENSG00000187634 183.229650
                                 0.4264571 0.1402658
                                                       3.040350 2.36304e-03
ENSG00000188976 1651.188076
                                -0.6927205 0.0548465 -12.630158 1.43990e-36
ENSG00000187961 209.637938
                                 0.7297556 0.1318599
                                                       5.534326 3.12428e-08
                                 0.0405765 0.2718928
ENSG00000187583
                  47.255123
                                                       0.149237 8.81366e-01
ENSG00000187642
                  11.979750
                                 0.5428105 0.5215598
                                                       1.040744 2.97994e-01
ENSG00000188290 108.922128
                                 2.0570638 0.1969053 10.446970 1.51282e-25
ENSG00000187608 350.716868
                                 0.2573837 0.1027266
                                                       2.505522 1.22271e-02
ENSG00000188157 9128.439422
                                 0.3899088 0.0467163
                                                       8.346304 7.04321e-17
ENSG00000237330
                   0.158192
                                 0.7859552 4.0804729
                                                       0.192614 8.47261e-01
                                 symbol
                       padj
                                             entrez
                                                                      name
                  <numeric> <character> <character>
                                                               <character>
ENSG00000279457 6.86555e-01
                                     NA
                                                                        NA
ENSG00000187634 5.15718e-03
                                             148398 sterile alpha motif ...
                                 SAMD11
ENSG00000188976 1.76549e-35
                                  NOC2L
                                              26155 NOC2 like nucleolar ...
ENSG00000187961 1.13413e-07
                                             339451 kelch like family me..
                                 KLHL17
ENSG00000187583 9.19031e-01
                                PLEKHN1
                                              84069 pleckstrin homology ...
ENSG00000187642 4.03379e-01
                                              84808 PPARGC1 and ESRR ind..
                                  PERM1
ENSG00000188290 1.30538e-24
                                              57801 hes family bHLH tran..
                                   HES4
ENSG00000187608 2.37452e-02
                                  ISG15
                                               9636 ISG15 ubiquitin like...
ENSG00000188157 4.21963e-16
                                   AGRN
                                             375790
ENSG00000237330
                         NA
                                 RNF223
                                             401934 ring finger protein ...
```

Q6

```
res = res[order(res$pvalue),]
write.csv(res, file="deseq_results.csv")
```

Section 2 Pathway Analysis

```
# Run in your R console (i.e. not your Rmarkdown doc!)
#BiocManager::install( c("pathview", "gage", "gageData") )

# For old vesrsions of R only (R < 3.5.0)!
#source("http://bioconductor.org/biocLite.R")
#biocLite( c("pathview", "gage", "gageData") )
library(pathview)</pre>
```

Pathview is an open source software package distributed under GNU General Public License version 3 (GPLv3). Details of GPLv3 is available at http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to

formally cite the original Pathview paper (not just mention it) in publications or products. For details, do citation("pathview") within R.

The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG license agreement (details at http://www.kegg.jp/kegg/legal.html).

library(gage)

```
library(gageData)
  data(kegg.sets.hs)
  data(sigmet.idx.hs)
  # Focus on signaling and metabolic pathways only
  kegg.sets.hs = kegg.sets.hs[sigmet.idx.hs]
  # Examine the first 3 pathways
  head(kegg.sets.hs, 3)
$`hsa00232 Caffeine metabolism`
[1] "10"
           "1544" "1548" "1549" "1553" "7498" "9"
$`hsa00983 Drug metabolism - other enzymes`
 [1] "10"
              "1066"
                       "10720" "10941" "151531" "1548"
                                                            "1549"
                                                                     "1551"
 [9] "1553"
              "1576"
                       "1577"
                                "1806"
                                         "1807"
                                                   "1890"
                                                            "221223" "2990"
[17] "3251"
              "3614"
                       "3615"
                                "3704"
                                         "51733"
                                                  "54490"
                                                            "54575"
                                                                     "54576"
[25] "54577"
              "54578"
                       "54579"
                                "54600"
                                         "54657"
                                                   "54658"
                                                            "54659"
                                                                     "54963"
[33] "574537" "64816"
                       "7083"
                                "7084"
                                         "7172"
                                                   "7363"
                                                            "7364"
                                                                     "7365"
              "7367"
[41] "7366"
                       "7371"
                                "7372"
                                         "7378"
                                                   "7498"
                                                            "79799"
                                                                     "83549"
[49] "8824"
                       "9"
                                "978"
              "8833"
$`hsa00230 Purine metabolism`
  [1] "100"
               "10201" "10606"
                                          "10622"
                                                    "10623"
                                                             "107"
                                                                      "10714"
                                 "10621"
  [9] "108"
               "10846"
                        "109"
                                 "111"
                                          "11128"
                                                    "11164"
                                                             "112"
                                                                      "113"
 [17] "114"
               "115"
                        "122481" "122622" "124583" "132"
                                                             "158"
                                                                      "159"
 [25] "1633"
               "171568" "1716"
                                 "196883" "203"
                                                    "204"
                                                             "205"
                                                                      "221823"
 [33] "2272"
               "22978" "23649" "246721" "25885"
                                                                      "270"
                                                   "2618"
                                                             "26289"
```

```
[41] "271"
               "27115"
                         "272"
                                   "2766"
                                            "2977"
                                                      "2982"
                                                               "2983"
                                                                         "2984"
 [49] "2986"
               "2987"
                         "29922"
                                  "3000"
                                            "30833"
                                                      "30834"
                                                               "318"
                                                                         "3251"
                                            "377841" "471"
                                                               "4830"
[57] "353"
               "3614"
                         "3615"
                                  "3704"
                                                                         "4831"
[65] "4832"
               "4833"
                         "4860"
                                   "4881"
                                            "4882"
                                                      "4907"
                                                               "50484"
                                                                         "50940"
 [73] "51082"
               "51251"
                         "51292"
                                  "5136"
                                            "5137"
                                                      "5138"
                                                               "5139"
                                                                         "5140"
 [81] "5141"
               "5142"
                         "5143"
                                   "5144"
                                            "5145"
                                                      "5146"
                                                               "5147"
                                                                         "5148"
 [89] "5149"
               "5150"
                         "5151"
                                  "5152"
                                            "5153"
                                                      "5158"
                                                               "5167"
                                                                         "5169"
 [97] "51728"
               "5198"
                         "5236"
                                   "5313"
                                            "5315"
                                                      "53343"
                                                               "54107"
                                                                         "5422"
[105] "5424"
               "5425"
                         "5426"
                                   "5427"
                                            "5430"
                                                      "5431"
                                                               "5432"
                                                                         "5433"
                                  "5437"
                                                      "5439"
                                                               "5440"
[113] "5434"
               "5435"
                         "5436"
                                            "5438"
                                                                         "5441"
[121] "5471"
               "548644" "55276"
                                  "5557"
                                                      "55703"
                                                               "55811"
                                                                         "55821"
                                            "5558"
[129] "5631"
               "5634"
                         "56655"
                                  "56953"
                                            "56985"
                                                      "57804"
                                                               "58497"
                                                                         "6240"
[137] "6241"
                                            "661"
                                                      "7498"
                                                               "8382"
                                                                         "84172"
               "64425"
                         "646625" "654364"
                         "84618"
[145] "84265"
                                  "8622"
                                            "8654"
                                                      "87178"
                                                               "8833"
                                                                         "9060"
               "84284"
                                                      "955"
                         "953"
                                   "9533"
                                            "954"
                                                               "956"
                                                                         "957"
[153] "9061"
               "93034"
[161] "9583"
               "9615"
```

foldchanges = res\$log2FoldChange
names(foldchanges) = res\$entrez
head(foldchanges)

```
1266 54855 1465 51232 2034 2317 -2.422719 3.201955 -2.313738 -2.059631 -1.888019 -1.649792
```

```
# Get the results
keggres = gage(foldchanges, gsets=kegg.sets.hs)
# Look at the first few down (less) pathways
head(keggres$less)
```

```
p.val
                                         p.geomean stat.mean
                                      8.995727e-06 -4.378644 8.995727e-06
hsa04110 Cell cycle
hsa03030 DNA replication
                                      9.424076e-05 -3.951803 9.424076e-05
                                      1.375901e-03 -3.028500 1.375901e-03
hsa03013 RNA transport
hsa03440 Homologous recombination
                                      3.066756e-03 -2.852899 3.066756e-03
                                      3.784520e-03 -2.698128 3.784520e-03
hsa04114 Oocyte meiosis
hsa00010 Glycolysis / Gluconeogenesis 8.961413e-03 -2.405398 8.961413e-03
                                            q.val set.size
                                                                    exp1
hsa04110 Cell cycle
                                      0.001448312
                                                        121 8.995727e-06
hsa03030 DNA replication
                                      0.007586381
                                                         36 9.424076e-05
hsa03013 RNA transport
                                      0.073840037
                                                        144 1.375901e-03
```

hsa03440 Homologous recombination 0.121861535 28 3.066756e-03 hsa04114 Oocyte meiosis 0.121861535 102 3.784520e-03 hsa00010 Glycolysis / Gluconeogenesis 0.212222694 53 8.961413e-03

pathview(gene.data=foldchanges, pathway.id="hsa04110")

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa04110.pathview.png

A different PDF based output of the same data pathview(gene.data=foldchanges, pathway.id="hsa04110", kegg.native=FALSE)

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa04110.pathview.pdf

```
## Focus on top 5 upregulated pathways here for demo purposes only
  keggrespathways <- rownames(keggres$greater)[1:5]</pre>
  # Extract the 8 character long IDs part of each string
  keggresids = substr(keggrespathways, start=1, stop=8)
  keggresids
[1] "hsa04640" "hsa04630" "hsa00140" "hsa04142" "hsa04330"
  pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/danie/Documents/BIMM143/class13
Info: Writing image file hsa04640.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/danie/Documents/BIMM143/class13
Info: Writing image file hsa04630.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/danie/Documents/BIMM143/class13
Info: Writing image file hsa00140.pathview.png
'select()' returned 1:1 mapping between keys and columns
Info: Working in directory C:/Users/danie/Documents/BIMM143/class13
Info: Writing image file hsa04142.pathview.png
Info: some node width is different from others, and hence adjusted!
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa04330.pathview.png

Q7

```
## Focus on top 5 downregulated pathways here for demo purposes only
keggrespathways <- rownames(keggres$less)[1:5]

# Extract the 8 character long IDs part of each string
keggresids = substr(keggrespathways, start=1, stop=8)
keggresids</pre>
```

[1] "hsa04110" "hsa03030" "hsa03013" "hsa03440" "hsa04114"

```
pathview(gene.data=foldchanges, pathway.id=keggresids, species="hsa")
```

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa04110.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa03030.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa03013.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa03440.pathview.png

'select()' returned 1:1 mapping between keys and columns

Info: Working in directory C:/Users/danie/Documents/BIMM143/class13

Info: Writing image file hsa04114.pathview.png

Section 3. Gene Ontology

```
data(go.sets.hs)
data(go.subs.hs)

# Focus on Biological Process subset of GO
gobpsets = go.sets.hs[go.subs.hs$BP]

gobpres = gage(foldchanges, gsets=gobpsets, same.dir=TRUE)

lapply(gobpres, head)
```

\$greater

	p.geomean	stat.mean	p.val
GO:0007156 homophilic cell adhesion	8.519724e-05	3.824205	8.519724e-05
GO:0002009 morphogenesis of an epithelium	1.396681e-04	3.653886	1.396681e-04
GO:0048729 tissue morphogenesis	1.432451e-04	3.643242	1.432451e-04
GO:0007610 behavior	2.195494e-04	3.530241	2.195494e-04
GO:0060562 epithelial tube morphogenesis	5.932837e-04	3.261376	5.932837e-04
GO:0035295 tube development	5.953254e-04	3.253665	5.953254e-04
	q.val set	t.size	exp1
GO:0007156 homophilic cell adhesion	0.1951953	113 8.5	19724e-05
GO:0002009 morphogenesis of an epithelium	0.1951953	339 1.39	96681e-04
GO:0048729 tissue morphogenesis	0.1951953	424 1.43	32451e-04
GO:0007610 behavior	0.2243795	427 2.19	95494e-04
GO:0060562 epithelial tube morphogenesis	0.3711390	257 5.93	32837e-04
GO:0035295 tube development	0.3711390	391 5.9	53254e-04

\$less

	p.geomean	stat.mean	p.val
GO:0048285 organelle fission	1.536227e-15	-8.063910	1.536227e-15
GO:0000280 nuclear division	4.286961e-15	-7.939217	4.286961e-15
GO:0007067 mitosis	4.286961e-15	-7.939217	4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.169934e-14	-7.797496	1.169934e-14
GO:0007059 chromosome segregation	2.028624e-11	-6.878340	2.028624e-11
GO:0000236 mitotic prometaphase	1.729553e-10	-6.695966	1.729553e-10
	q.val	set.size	exp1
GO:0048285 organelle fission	5.841698e-12	376	1.536227e-15
GO:0000280 nuclear division	5.841698e-12	352 4	4.286961e-15
GO:0007067 mitosis	5.841698e-12	352 4	4.286961e-15
GO:0000087 M phase of mitotic cell cycle	1.195672e-11	362	1.169934e-14
GO:0007059 chromosome segregation	1.658603e-08	142	2.028624e-11

GD:0000236 mitotic prometaphase 1.178402e-07 84 1.729553e-10

\$stats

Section 4. Reactome Analysis

```
sig_genes <- res[res$padj <= 0.05 & !is.na(res$padj), "symbol"]
print(paste("Total number of significant genes:", length(sig_genes)))</pre>
```

[1] "Total number of significant genes: 8147"

```
write.table(sig_genes, file="significant_genes.txt", row.names=FALSE, col.names=FALSE, quo
```

Q8 The most significant was the endosomal vacuolar pathway with a p value of 1.67E-4. Reactome is open source while Kegg is curated so the differences can be accounted for by the differences in databases