

# **Ferry Bridge**

**Release Notes** 

October 2018

**Intel Confidential** 

Document Number: 571743, Rev. 1.8

# intel

# Legal Disclaimer

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting: http://www.intel.com/design/literature.htm

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.

Intel, Xeon, and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

\*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.



# **Contents**

| 1 | Introdu | uction        |             |                                                      | 6  |
|---|---------|---------------|-------------|------------------------------------------------------|----|
|   | 1.1     | Intended      | l Audience  |                                                      | 6  |
|   | 1.2     |               |             |                                                      |    |
|   | 1.3     | Terminol      | ogy         |                                                      | 6  |
| 2 | Change  | es for R1.    | 4.1         |                                                      | 8  |
|   | 2.1     | New Fea       | ture        |                                                      | 8  |
|   |         | 2.1.1         |             | .08 Compatibility                                    |    |
|   |         | 2.1.2         |             | nernet Controller Support                            |    |
|   | 2.2     |               |             | r R1.4.1                                             |    |
|   |         | 2.2.1         | Bug Fixes   | S                                                    | 8  |
| 3 | Change  | es Added 1    | for Previou | us Releases                                          | 9  |
|   | 3.1     | Features      | Added for   | FBR 1.4.0                                            | 9  |
|   |         | 3.1.1         |             | or the Terasic* FPGA card                            |    |
|   |         | 3.1.2         |             | ture (AMC card only)                                 |    |
|   | 3.2     | 3.1.3         |             | the REV_ID register<br>FBR 1.3.3                     |    |
|   | 3.2     | 3.2.1         |             | imum Number of Instances                             |    |
|   | 3.3     |               |             | FBR 1.3.2                                            |    |
|   | 0.0     | 3.3.1         |             | Ports Per FBR                                        |    |
|   |         | 3.3.2         |             | ization Feature                                      |    |
|   |         |               | 3.3.2.1     | How the Feature Works                                |    |
|   |         |               | 3.3.2.2     | SW API to Enable Two Instance Handles and Synchroniz |    |
|   | 3.4     | Features      | Added for   | FBR 1.3.1                                            |    |
|   | 3.1     | 3.4.1         |             | hannels                                              |    |
|   |         |               | 3.4.1.1     | Configuring and Enabling Control Channels            | 15 |
|   |         | 3.4.2         |             |                                                      |    |
|   |         |               | 3.4.2.1     | Configuring and Controlling the PRACH Function       | 18 |
| 4 |         |               |             | es in Previous Releases                              |    |
|   | 4.1     |               |             |                                                      |    |
|   | 4.2     | 4.1.1         |             | sues for Release 1.3.1, 1.4.0, and 1.4.1             |    |
|   | 4.2     | 4.2.1         |             | s for R1.3.3                                         |    |
|   |         |               |             |                                                      |    |
| 5 |         |               | •           | ndencies                                             |    |
|   | 5.1     |               |             |                                                      |    |
|   | 5.2     | Depende 5.2.1 |             | ncies for R1.4.1                                     |    |
|   |         | 5.2.1         |             | ncies for R1.4.1                                     |    |
|   |         | 5.2.3         |             | ncies for R1.3.3                                     |    |
| 6 | Hardwa  | are and So    | oftware Co  | ompatibility                                         | 23 |
|   | 6.1     |               |             | Configuration                                        |    |
|   | 6.2     |               |             | ility                                                |    |
|   |         | 6.2.1         |             | Compatibility for R1.4.1                             |    |
|   |         | 6.2.2         | Software    | Compatibility for R1.4.0                             | 24 |

# intel

|          |        | 6.2.3      | Software Compatib | oility for R1.3.3 | <br>24 |
|----------|--------|------------|-------------------|-------------------|--------|
|          |        | 6.2.4      | Software Compatib | oility for R1.3.2 | <br>24 |
|          | 6.3    | How to     |                   |                   |        |
|          | 6.4    |            |                   |                   |        |
| Figures  |        |            |                   |                   |        |
| Figure 1 | FBR R  | 1.3.0 and  | Previous Release  |                   | <br>10 |
| Figure 2 |        |            |                   |                   |        |
| Figure 3 |        |            |                   |                   |        |
| Figure 4 | FBR U  | plink Path | 1                 |                   | <br>17 |
| Tables   |        |            |                   |                   |        |
| Table 1. | Termi  | nology     |                   |                   | <br>6  |
| Table 2. | Relate | ed Docum   | entation          |                   | <br>7  |
| Table 3. |        |            |                   |                   |        |
| Table 4. |        |            |                   |                   |        |
| Table 5. |        |            |                   |                   |        |
| Table 6. | Deper  | ndencies f | or R1.3.3         |                   | <br>22 |
| Table 6  | Canno  | Dace Sye   | tem               |                   | 23     |



# **Revision History**

| Date             | Revision | Description                                                                                                                               |
|------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 31 May<br>2014   | 0.1.0    | Ferry Bridge R0.1.0 Release (BBU Pool Reference SW).                                                                                      |
| 25 Aug.<br>2014  | 0.1.1    | Ferry Bridge R0.1.1 Release, release patch for R1.0.0                                                                                     |
| 13 Jan.<br>2015  | 1.0.0    | Ferry Bridge R1.0.0 Release                                                                                                               |
| 9 April<br>2015  | 1.1.0    | Ferry Bridge R1.1.0 Release                                                                                                               |
| Aug. 2015        | 1.2.0    | Ferry Bridge R1.2.0 Release (BBU Pool Reference SW with Waddell Creek integrated).                                                        |
| May. 2016        | 1.3.0    | Ferry Bridge R1.3.0 PRACH & Control Channel Release                                                                                       |
| December<br>2016 | 1.3.1    | 4x4 antenna support with PRACH & Control Channels. Added functionality to bypass AGC. NCO calculation update based on integration to RRH. |
| March 2017       | 1.4      | Posted document rev. 1.4 to CDI.                                                                                                          |
| April 2017       | 1.5      | Document rev 1.5 supports Ferry Bridge R1.3.2. Multiple REC images per FPGA and synchronization.                                          |
| June 2017        | 1.6      | Document rev 1.6 supports Ferry Bridge R1.3.3.                                                                                            |
| August<br>2017   | 1.7      | Document rev 1.7 supports Ferry Bridge R1.4.0.                                                                                            |
| October<br>2018  | 1.8      | Document rev 1.8 supports Ferry Bridge R1.4.1.                                                                                            |



# 1 Introduction

This document provides system improvement compared to previous releases, system requirements, installation instructions, issues and limitations, and legal information for BBU.

This document contains a very high level overview of the Control Channel and PRACH functionality that has been added into the FBR design. The document highlights the key registers that are used in setting up and controlling the features.

The software package that is provided with this release is limited to the Sample Application. This updated Sample Application exercises the PRACH functionality that is implemented.

The document is not intended to provide a detailed overview of the IP design / hierarchy of the FBR IP.

#### 1.1 Intended Audience

The target audience is Telecom Equipment Manufacturers (TEMs) and operators, software developers, test and validation engineers, and system integrators.

# 1.2 Customer Support

For technical support, including answers to questions not addressed in this product, visit the technical support forum, FAQs, and other support information at <a href="http://www.intel.com/software/products/support/">http://www.intel.com/software/products/support/</a>. For NDA customers, contact your Intel Field Application Engineer (FAE) or the equivalent.

**Note:** If your distributor provides technical support for this product, contact your distributor, rather than Intel, for support.

## 1.3 Terminology

#### Table 1. Terminology

| Term | Description                   |
|------|-------------------------------|
| ARQ  | Automatic Repeat Request      |
| BBU  | Base Band Unit                |
| BW   | Bandwidth                     |
| CE   | Channel Estimation            |
| CPRI | Common Public Radio Interface |

Document Number: 571743-1.8



| Term  | Description                    |
|-------|--------------------------------|
| CQI   | Channel Quality Indication     |
| СТС   | Convolutional Turbo Code       |
| DCI   | Display Control Interface      |
| DMRS  | Demodulation Reference Signal  |
| ECC   | Error Checking and Correction  |
| FBR   | Ferry Bridge                   |
| FE    | Front End                      |
| HARQ  | Hybrid ARQ                     |
| LTE   | Long Term Evolution            |
| MAC   | Media Access Control           |
| MIMO  | Multiple In Multiple Out       |
| MMSE  | Minimum Mean Squared Error     |
| OVP   | Open Virtualization Platform   |
| PMI   | Precoding Matrix Indicator     |
| PRACH | Physical Random Access Channel |
| RLC   | Radio Link Control             |
| RS    | Reference Signals              |
| TEM   | Telecom Equipment Manufacturer |
| UE    | User Equipment                 |
| UL    | Up Link                        |

#### **Table 2. Related Documentation**

| Title                                     | Intel Document<br>Number | Description                                   |
|-------------------------------------------|--------------------------|-----------------------------------------------|
| Intel® FlexRAN Ferry Bridge<br>User Guide | 548166                   | Describes operation of the Ferry Bridge unit. |



# 2 Changes for R1.4.1

#### 2.1 New Feature

## 2.1.1 DPDK 18.08 Compatibility

Ferry Bridge drivers have been updated to be compatible with DPDK 18.08.

# 2.1.2 Intel® Ethernet Controller Support

Support for Intel® Ethernet Controller XL710 10/40 GbE has been added.

## 2.2 Resolved Issues for R1.4.1

#### 2.2.1 Bug Fixes

None

§



# 3 Changes Added for Previous Releases

#### 3.1 Features Added for FBR 1.4.0

## 3.1.1 Images for the Terasic\* FPGA card

R1.4.0 and later releases include support for the Terasic\* FPGA card.

The Terasic images files are located in directories as below and each of those directories contains files necessary for installation:

- ferrybridge/fpga\_terasic\_images/DEV\_CARD\_4x4\_REC\_RE\_6.1G
- ferrybridge/fpga\_terasic\_images/DEV\_CARD\_4x4\_REC\_REC\_4.9G
- ferrybridge/fpga\_terasic\_images/DEV\_CARD\_2x2\_REC\_REC\_2.4G
- ferrybridge/fpga\_terasic\_images/DEV\_CARD\_4x4\_REC\_REC\_6.1G
- ferrybridge/fpga\_terasic\_images/DEV\_CARD\_2x2\_REC\_RE\_2.4G

These images match the original AMC images listed below:

- ferrybridge/fpga images/fbr fpga wrap 4x4 rec re.jic
- ferrybridge/fpga\_images/fbr\_fpga\_wrap\_2x2\_rec\_rec.jic
- ferrybridge/fpga\_images/fbr\_fpga\_wrap\_2x2\_rec\_re.jic
- ferrybridge/fpga\_images/fbr\_fpga\_wrap\_4x4\_4G9\_rec\_rec.jic
- ferrybridge/fpga\_images/fbr\_fpga\_wrap\_4x4\_rec\_rec.jic

## 3.1.2 MXG Feature (AMC card only)

The MXG feature contains the new 10MHz clock, implemented via a new PLL in the design.

## 3.1.3 Update to the REV\_ID register

Each image can now be identified uniquely via reading of the REV\_ID register.

#### 3.2 Features Added for FBR 1.3.3

#### 3.2.1 New Maximum Number of Instances

The maximum number of Ferry Bridge instances in the library has been increased from 2 to 8.



#### 3.3 Features Added for FBR 1.3.2

#### 3.3.1 Multiple Ports Per FBR

Release 1.3.2 and later releases support FBR images that support two REC instances per FBR device.

- fbr\_fpga\_wrap\_2x2\_rec\_re.jic
- fbr\_fpga\_wrap\_2x2\_rec\_rec.jic New feature supported with 2 REC
- fbr\_fpga\_wrap\_4x4\_rec\_re.jic
- fbr\_fpga\_wrap\_4x4\_rec\_rec.jic New feature supported with 2 REC

Figure 1 FBR R1.3.0 and Previous Release



Figure 2 Features Added in FBR R1.3.2 Release



For the feature added in FBR R1.3.2, the SW uses two Ethernet ports to connect and configure both instances.



#### 3.3.2 Synchronization Feature

R1.3.2 and later releases support two CPRI interfaces that can be used by a single application. It may be useful for the application to synchronize these CPRI interfaces so they use the same Radio Frame Pulse.

The CPRI IP can have its Hyper Frame number reset by toggling the <code>aux\_tx\_data\_mask[64]</code> register of the CPRI IP. This feature is described in greater detail in the CPRI IP user guide.

Without describing the internal functionality of the CPRI IP here in this document, this section describes how the FBR facilitates toggling the  $aux_tx_data_mask[64]$  register on the CPRI IP. The register FRAME\_SYNC\_EN is used for this purpose.

#### 3.3.2.1 How the Feature Works

There are 2 FBR cores in the design, FBR\_CORE\_0 and FBR\_CORE\_1. Each core has its own CPRI IP that it interacts with. When software writes to enable the frame sync feature in either of the cores, it is recognized as a request to synchronize both cores at the same time.

Thus to trigger this feature, all SW needs to do is enable it. However, SW needs to do this at a point in time where both CPRI IP's are alive and running. If either of the CPRI IP's are not actively running, then enabling this feature will not obtain the desired effect. An API is provided to perform this synchronization in the correct sequence as described in section 3.3.2.2.

This synchronization feature is supported in FBR R1.3.2 and later releases.

#### Code Extract 1: Register Definition to Enable the Synchronization Feature

```
#define RPE_FRAME_SYNC_EN (0x5024)
/**< @ingroup rpe_ferrybridge
  * Register value to enable the RFP Frame re-synchronisation. */</pre>
```

#### 3.3.2.2 SW API to Enable Two Instance Handles and Synchronize

#### Code Extract 2: API Defined to Synchronize Multiple Instance Handles

Ferry Bridge
October 2018

Document Number: 571743-1.8

Intel Confidential

11



```
Instance Configuration complete.
  @sideEffects
         None
  @reentrant
         Yes
  @threadsafe
         No
* @param[in] handle
                                Array of Instance Handles associated with
the
                                 linked remote devices.
* @param[in] num_handles
                             The number of handles in the array
* @retval RPE STATUS SUCCESS
                                 Function executed successfully.
* @retval RPE_STATUS_FAIL
                                 Function failed to read the register
                                 successfully.
* @retval RPE INVALID PARAMETER
                                 Invalid parameter used as input.
* @pre
          None
* @post
          None
  @note
         This function is blocking.
  @see
******************************
RpeStatus rpeStartAndSyncInstances(RpeInstanceHandle *handle, uint8 t
num handles);
```

## 3.4 Features Added for FBR 1.3.1

The R1.3.1 release builds on the previous one by adding support for 4 antenna configurations. The control channel functionality is the same for both 2 antenna and 4 antenna. The latest release contains two FPGA RTL images one for 2 antenna and a separate one for 4 antenna.

#### 3.4.1 Control Channels

Figure 3 illustrates the Ferry Bridge downlink IP path.



Figure 3 FBR Downlink Path



In the diagram, there are 3 IP blocks named:

- RS Replacing
- PSS Replacing
- PBCH Replacing

These 3 IP blocks contain the RTL code which has been upgraded to implement the feature as required by the LTE standard.





The following registers are used to enable the features.

1. PBCH Antenna Control

**Register Name: PBCH\_ANTx\_CTRL** (where x ranges 0 to 7.

Thus 1 per Antenna)

Address: 0x2300 - 0x231C Register Name: PBCH\_QPSK Vector

Address: 0x2340

2. PSS Antenna Control

**Register Name: PSS\_ANTx\_CTRL** (where x ranges 0 to 7.

Thus 1 per Antenna)

Address: 0x2000 - 0x201C

3. RS Antenna Control

**Register Name: RS\_ANTx\_CTRL** (where x ranges 0 to 7.

Thus 1 per Antenna)

Address: 0x2100 - 0x211C Register Name: RS\_QPSK Vector

Address: 0x2140

These registers are described in more detail in the MAS documentation. In terms of exact values to put in the registers in order to implement various functionality, please refer to section 2.3.5 in the MAS document.

The SAS document describes detailed information in sections 4.2.3.6, 4.2.3.7, and 4.2.3.8 with regard to the packets that are used to load up the RAM memories that are used in part to make the features work. We will not describe them any further in this document, just highlight them as something which is needed in order to make the feature work.

In terms of a general overview of the functionality, the control channel features are implemented inside the LTE grid in different subframes / time slots. For a very brief overview of where they are implemented in our RTL design, please refer to the following website and choose 20MHZ Bandwidth Channel. http://niviuk.free.fr/lte\_resource\_grid.html

The grid has a color coordinated picture, which highlights which subframes / time slots that each part of the feature is implemented in. It should be relatively straight forward to see from that diagram where the control channels will have data inserted into the LTE grid based on the function being enabled.



#### **3.4.1.1** Configuring and Enabling Control Channels

In terms of enabling and using the control channels, the user must do the following when attempting to enable and use all 3 features together.

Step 1. Preload the PBCH memory by utilizing the PBCH\_PACKET
 Step 2. Preload the PSS memory by utilizing the PSS\_PACKET
 Step 3. Preload the RS memory by utilizing the RS\_PACKET
 Step 4. Enable the PBCH feature per Antenna by using registers PBCH\_ANTx\_CTRL. There is 1 register per Antenna
 Step 5. Enable the PSS feature per Antenna by using registers PSS\_ANTx\_CTRL. There is 1 register per Antenna
 Step 6. Enable the RS feature per Antenna by using registers RS ANTx CTRL. There is 1 register per Antenna

These 6 steps should be included in the general setup routine that SW implements to prepare the FBR design before any PDCCH / PDSCH samples are transmitted into the design.

At this point in the configuration setup, the 3 Control channels will have their RAM memories preloaded and the register space setup.

Once the CPRI IP has reported it is synchronized (as was already the case in past releases of the FBR design), the user can now attempt to send down PDCCH and PDSCH packets to trigger the functionality to be implemented in the downlink path.

Note that in the case of the PSS and PBCH, there is an extra control bit in the PDCCH packet that is used as an additional enable for those features. This is described in section 4.2.3.5 of the SAS document.

Thus, the PBCH and PSS features can be enabled in the design but they only come into effect when the SW controlled PDCCH packet tells the system that there is actual PBCH and or PSS information contained within the subframe. This allows the SW routines maintain control over the primary and secondary synchronization control feature without having to reconfigure the design each time.

It is important to note that each feature can be enabled independently of each other. The configuration scenario described here is just to show how all 3 would be enabled together.



Control Channels registers are setup as:

| Register name    | Address | Value      |
|------------------|---------|------------|
| PBCH_ANT0_CTRL   | 0x2300  | 0x1        |
| PBCH_ANT1_CTRL   | 0x2304  | 0x1        |
| PBCH_QPSK_VECTOR | 0x2340  | 0xEE02EE01 |
| PSS_ANTO_CTRL    | 0x2000  | 0x1        |
| PSS_ANT1_CTRL    | 0x2004  | 0x1        |
| RS_ANT0_CTRL     | 0x2100  | 0x1        |
| RS_ANT1_CTRL     | 0x2104  | 0x1        |
| RS_QPSK_VECTOR   | 0x2140  | 0x1234ABCD |

This configuration implements a 2 Antenna scenario using PBCH, PSS/SSS and RS Control Channels.

For 4 antenna scenario please update the appropriate configuration to enable all 4 antennas.

#### 3.4.2 PRACH

Support for PRACH was also added in the 4x4 RTL image provided in the package. PRACH can be configured in the same way as previous releases.

Note the NCO calculation in the library has been updated based on feedback from RRH integration testing.

Figure 4 illustrates the FerryBridge uplink IP path. It is described in detail in the MAS document.



Figure 4 FBR Uplink Path



The PRACH path on the right hand side of the diagram is newly added to the FBR design. It maintains an uplink path feature which runs in parallel to the PUSCH feature. Note that the PUSCH feature has always been in the FBR design and no changes were implemented to that part of the design.

In the diagram, there are a number of sub IP blocks inside the PRACH path, namely:

- NCO
- Polyphase Filter
- CP Removal
- FFT



These IP blocks and their functionality are described in greater detail in section 2.3.6.3 on the MAS document.

The following registers are used to enable the feature:

1. Highest level PRACH Control Registers

Register Name: FE\_PRACH\_CONFIG

Address: 0x7000

Register Name: FE\_PRACH\_CONFIG\_INDEX

Address: 0x7008

2. Second level PRACH Control Registers

Register Name: FE\_PRACH\_NCO\_PHASE

Address: 0x700C

Register Name: FE\_PRACH\_NCO\_PHI\_INC

Address: 0x7010

Register Name: FE\_PRACH\_STATUS

Address: 0x7014

#### 3.4.2.1 Configuring and Controlling the PRACH Function

In terms of enabling and using the PRACH function, the user must setup the highest level PRACH control registers as depicted above. The register setup steps should be included in the general setup routine that SW implements to prepare the FBR design before any PDCCH / PDSCH samples are transmitted into the design.

The PRACH is enabled via the FE\_PRACH\_CONFIG register and its PRACH implementation behavior is controlled via the FE\_PRACH\_CONFIG\_INDEX register. This information is described in much greater detail in the MAS document. The FE\_PRACH\_CONFIG\_REGISTER controls the reporting of PRACH packets based on the subframe setup that's done in that register.

The second level registers are used more to control internal operating behavior in the design, which whilst important to the feature itself, it's at a lower level and thus outside the scope of this document in terms of setting up the design to trigger some functional behavior.

Once the CPRI IP has reported it is synchronized (as was already the case in past releases of the FBR design), the user can now attempt to send down PDCCH and PDSCH packets to trigger the functionality to be implemented.



The PRACH related registers are setup as:

| Register name         | Address | Value |
|-----------------------|---------|-------|
| FE_PRACH_CONFIG       | 0x7000  | 0x3   |
| FE_PRACH_CONFIG_INDEX | 0x7008  | 0x0   |
| FE_PRACH_NCO_PHASE    | 0x700C  | 0x0   |

This configuration turns on PRACH packets capturing during test scenario number 7.



# 4 Known and Resolved Issues in Previous Releases

#### 4.1 Known Issues

#### 4.1.1 Known Issues for Release 1.3.1, 1.4.0, and 1.4.1

SCSY:763 - PRACH issues with latest Ferry Bridge Release
 Problem happens with TM500 and CUE. On some runs PRACH is not detected at all. On the next restart/power cycle of Ferry Bridge, PRACH detection could be ok.
 Workaround is to enable PRACH on all 4 antennas.

#### 4.2 Resolved Issues

## **4.2.1** Bug Fixes for R1.3.3

SCSY:765 - 4.9G image shows error on AxC
 This was fixed by updating the CPRI\_MAP\_CONFIG value.

§



# 5 Release Content and Dependencies

#### **5.1** Release Content

The following table identifies the release content and revision numbers for the components in this release.

#### **Table 3. Release Content**

| Component                            | Revision |
|--------------------------------------|----------|
| BBU Pool Reference Software provided | R1.4.1   |

# **5.2** Dependencies

The following components are required for the Ferry Bridge reference software.

#### **5.2.1** Dependencies for R1.4.1

#### Table 4. Dependencies for R1.4.1

| Component              | Revision |
|------------------------|----------|
| Intel® DPDK            | 18.08    |
| Wind River* Linux* OVP | 6.0.0.13 |
| Intel® C++ Composer    | 18.0.1   |

#### **5.2.2** Dependencies for R1.4.0

#### Table 5. Dependencies for R1.4.0

| Component              | Revision |
|------------------------|----------|
| Intel® DPDK            | 16.11    |
| Wind River* Linux* OVP | 6.0.0.13 |
| Intel® C++ Composer    | 17.0.0   |



# **5.2.3** Dependencies for R1.3.3

#### Table 6. Dependencies for R1.3.3

| Component              | Revision |
|------------------------|----------|
| Intel® DPDK            | 16.11    |
| Wind River* Linux* OVP | 6.0.0.13 |
| Intel® C++ Composer    | 17.0.0   |



# 6 Hardware and Software Compatibility

# **6.1** Hardware Platform Configuration

The following hardware platform configuration has been verified for the Ferry Bridge R1.4.1 release.

Please refer to user guide for Ferry Bridge configuration.

#### **Table 7. Canoe Pass System**

| Item            | Description                                                                                                                                                                                                                                                                                                    | Quantity |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| Motherboard     | Intel® S2600CP2 Dual Socket Server Board Intel® C600-J Chipset Intel® Ethernet I350 10/100/1000 LAN Controller 2 ports (back panel) 1 DB-15 video connector (back panel) Integrated Matrox* G200 2D 1 DB9 serial port connector (back panel) 6 USB ports 4 (back panel), 2 (front panel) Codename = Canoe Pass | 1        |
| Chassis         | Intel® Server Chassis P4000M 4U Pedestal Chassis with dual 750W PSU 4 SATA Hot-Swap bays (empty) 8 bays total but 4 are non-functional 5 Redundant hot-swap fans Codename = Union Peak M                                                                                                                       | 1        |
| CPU             | Intel® Xeon® E5-2650 processor  8C, 95W, 2.0 GHz, 20M Cache. 8.0 GT/s Intel® QuickPath Interconnect (Intel® QPI) Technology  Intel® Hyper-Threading Technology (Intel® HT), Intel® Virtualization Technology (Intel® VT), DDR3, Intel® Turbo Boost Technology  Codename = Sandy Bridge-EP                      | 2        |
| System Memory   | 4GB DDR3 1333 RDIMMS with ECC 4GB DIMM per channel, 4 channels per CPU, 2 CPUs per board = total 8 RDIMMs per board Total System Memory = 32 GB                                                                                                                                                                | 8        |
| SATA Hard Drive | Western Digital* WD1002FAEX – 1.0 TB Capacity<br>64MB Cache<br>Connected to SATA port 0                                                                                                                                                                                                                        | 1        |



| Item         | Description                                       | Quantity |
|--------------|---------------------------------------------------|----------|
| Ethernet NIC | Intel® Ethernet Server Adapter X520-SR2 (2 ports) | 1        |
|              | PCIe* (Dual 10 GbE) add-in card                   |          |
|              | Codename = Niantic                                |          |
|              | 25W Max                                           |          |
|              | Populated in slot 1 (CPU1)                        |          |

# **6.2** Software Compatibility

## **6.2.1** Software Compatibility for R1.4.1

The LTE Reference stack software should be updated to R18.09 as this version supports DPDK 18.08.

#### **6.2.2** Software Compatibility for R1.4.0

The LTE Reference stack software remains unchanged from R1.2.0. The previous software is compatible with the R1.4.0 FPGA.

#### **6.2.3** Software Compatibility for R1.3.3

The LTE Reference stack software remains unchanged from R1.2.0. The previous software is compatible with the R1.3.3 FPGA.

## **6.2.4** Software Compatibility for R1.3.2

The LTE Reference stack software remains unchanged from R1.2.0. The previous software is not compatible with the R1.3.2 FPGA. It needs to be updated to use the version of DPDK labeled (16.11).

## 6.3 How to Update FPGA Image

Please refer to the section "Appendix A: Updating FPGA Image" in the *Intel® FlexRAN Ferry Bridge User Guide*.

# **6.4** Supported Operating Systems

The Wind River® Linux\* OVP environment is supported.

§