Assignment 2

Schoelen EET122, Spring 2020 Remote

RevB: 04/09/2020

Contents

Week2: Start 04/09/20 - End 04/16/20	
Objectives:	
Read / Watch:	
Do:	
Deliverables to be uploaded to D2L for grading	
Appendix	
Breadboard Sketch	
Kicad	
Place Component	
Annotate	

Week2: Start 04/09/20 - End 04/16/20

Objectives:

- 1. Gain familiarity with Ki Cad schematic capture by doing a few simple KiCad tasks
- 2. Continue to gain knowledge of circuits by building and debugging.
- 3. Exposure to synchronous circuits (flip-flops, yeah!)
- 4. Gain familiarity with Arduino IDE by performing a simple task.

Read / Watch:

Last week's links if you need a review.

Do:

Use the Lab2 Discussion board if you need help.

See Appendix for additional details

- 1. Load into KICad: EET122_Lab2 from D2L
- 2. Complete the schematic using week1 schematic as a reference
 - a. Add the 74ls74
 - b. Add the two leds and two resistors
 - c. Set the value of the resistors to 1k
 - d. Annotate the design so that all components have a reference designator.
- 3. Complete the truth table in section A3 of the schematic
- 4. Do a sketch of your breadboard layout before you build
- 5. Be sure your UNO has the sketch loaded form Lab1
- 6. Build the circuit on a breadboard and connect to the Arduino as shown in the schematic (Based on the truth table derived in item #3 you should be able know if your circuit is operating correctly).
- 7. Once you have the circuit working, open the Arduino IDE and load sketch from week. At the top of the program is a #define that sets the clock time high and time low (in mili-seconds). Change the #define to 50. Program it into the UNO.

Deliverables to be uploaded to D2L for grading

For the deliverable use this this naming convention please: LastNameFirstName_L2

- 1. Upload the KiCad files, both the .pro and the .sch
- 2. Shoot a video of your circuit with LEDs blinking at the rate dictated by the new #define we did in item #7 above. Upload to d2l deliverables for lab2.
- 3. Scan or shoot a picture of you pre-layout sketch (item #4 above)
- 4. Document a conclusion. The conclusion is free from, it's a reflection on the lab. There's no minimum length. What you write is completely up to you. Upload conclusion to D2L deliverables Lab2. Some topics you cover may be:
 - a) What did you learn?
 - b) What did you struggle with?
 - c) What was too easy?
 - d) Observations if any
 - e) Comments if any
 - f) How many hours did this lab take you complete (all the tasks)

Appendix

Breadboard Sketch

Kicad Place Component

To place a component:

1. Click the Place Symbol Icon

2. Click the workspace (a choose symbol box will open)

- 3. In filter type 74ls74
- 4. Expand the hierarchy to get to 74Ls74 Dual D Flip-Flip, Set & Reset
- 5. Double click on the first U.. and place the component in the schematic.

6. Place the remaining two components (Unit B and Unit C) of the 74LS74 one at a time.

Annotate

To annotate the design (that is, to automatically assign reference designators) click the Annotate schematic symbols icon.

