Álgebra Linear I

Maria Lúcia Torres Villela Universidade Federal Fluminense Instituto de Matemática Março de 2010

Sumário

Introdução	3	
Parte 1 - Matrizes e sistemas lineares		
Seção 1 - Matrizes com coeficientes reais	7	
Seção 2 - Sistemas lineares	19	
Parte 2 - Espaços vetoriais reais	37	
Seção 1 - Espaços vetoriais e subespaços	39	
Seção 2 - Combinação linear, dependência e independência linear	47	
Seção 3 - Bases e dimensão	57	
Seção 4 - Soma e soma direta de subespaços	65	

Introdução

O objetivo deste texto é ser um apoio aos estudantes da disciplina Álgebra Linear I, do Curso de Graduação em Matemática da Universidade Federal Fluminense. O objetivo principal é estudar espaços vetoriais finitamente gerados e transformações lineares entre espaços vetoriais de dimensão finita.

Pressupomos que o estudante esteja familiarizado com o conceito de vetores no plano e espaço e tenha os conhecimentos básicos de Geometria Analítica Plana e Espacial. Vamos interpretar geometricamente diversos conceitos, ao longo do texto.

Na Parte 1 introduziremos a álgebra das matrizes com coeficientes reais, as suas operações de adição, multiplicação e multiplicação por escalar, e as propriedades dessas operações. Apresentaremos o conceito de matrizes invertíveis. Definiremos transposta de uma matriz e matrizes ortogonais e estudaremos as suas propriedades. Além disso, definiremos equações lineares com coeficientes reais e sistemas de equações lineares com coeficientes reais. Estudaremos as operações sobre as equações que não alteram as soluções do sistema, dando origem a sistemas equivalentes. A partir da forma matricial do sistema, essas operações motivam a definição de operações elementares sobre as linhas de uma matriz. Apresentaremos um método de resolução de sistemas de equações lineares com coeficientes reais baseado na redução por linhas à forma em escada da matriz ampliada associada ao sistema. Classificaremos as soluções dos sistemas lineares homogêneos e não homogêneos. Daremos um algoritmo para calcular a inversa de matrizes invertíveis com coeficientes reais, usando operações elementares sobre as linhas da matriz.

Na Parte 2 introduziremos os conceitos de: espaço vetorial real, subespaços vetoriais, interseção de subespaços, combinação linear, espaços vetorias reais finitamente gerados, conjuntos linearmente independentes ou linearmente dependentes, base e dimensão de espaços vetoriais reais finitamente gerados, coordenadas numa base e soma e soma direta de subespaços vetoriais reais. Estudaremos transformações lineares entre espaços vetoriais reais de dimensão finita, núcleo e imagem de transformações lineares, teorema do núcleo e da imagem, representação matricial de transformações lineares entre espaços vetoriais reais de dimensão finita e suas propriedades. Finalizaremos com a álgebra das transformações lineares em espaços vetoriais de dimensão finita, apresentando as operações de adição, multiplicação por escalar e composição de transformações lineares, transformações lineares invertíveis, isomorfismo e automorfismo de espaços vetoriais.

Recomendamos os seguintes textos:

- Álgebra Linear com aplicações, H. Anton e C. Rorres, Bookman Companhia Editora, $8^{\underline{\alpha}}$ edição, 2000.
- Álgebra Linear, Boldrini e outros, Harbra, 3ª edição, 1974.
- Álgebra Linear e Aplicações, Carlos A. Callioli, Hygino Domingues, Roberto C.F. Costa, Atual Editora, 1990.
- Álgebra Linear, Renato Valladares, LTC, 1990.
- Álgebra Linear, Serge Lang, Editora Edgar Blücher Ltda, 1971.
- Álgebra Linear, S. Lipschutz, Coleção Schaum, MacGraw-Hill, 1981
- Álgebra Linear-Introdução, João Pitombeira de Carvalho, LTC/EDU, 2ª edição, 1977.

Texto mais avançado:

- Álgebra Linear, K. Hoffmann, R. Kunze, Editora Polígono, 1971.

Parte 1

Matrizes e sistemas lineares

Introduziremos o conceito de matrizes com coeficientes reais e alguns tipos especiais de matrizes: matriz nula, quadrada, diagonal, triangular superior e triangular inferior. Apresentaremos a álgebra das matrizes com coeficientes reais definindo as operações de adição, multiplicação e multiplicação por escalar e estudando as propriedades dessas operações. Introduziremos o conceito de matrizes invertíveis e matrizes nilpotentes. Definiremos transposta de uma matriz e matrizes ortogonais e estudaremos as suas propriedades.

Além disso, definiremos equações lineares com coeficientes reais e sistemas de equações lineares com coeficientes reais. Estudaremos as operações sobre as equações de um sistema linear com coeficientes reais que não alteram as soluções do sistema, dando origem a sistemas equivalentes, isto é, sistemas com o mesmo conjunto solução. A partir da forma matricial do sistema, essas operações motivam a definição de operações elementares sobre as linhas de uma matriz e o conceito de matrizes equivalentes por linhas. Apresentaremos um método de resolução de sistemas de equações lineares com coeficientes reais baseado na redução por linhas à forma em escada da matriz ampliada associada ao sistema. Classificaremos as soluções dos sistemas lineares homogêneos e não homogêneos. Daremos um algoritmo para calcular a inversa de matrizes invertíveis com coeficientes reais, usando operações elementares sobre as linhas da matriz.

Matrizes com coeficientes reais

Começamos lembrando as operações de números reais e suas propriedades, que desempenharão um papel muito importante ao longo de todo o texto.

Proposição 1 (Propriedades das operações de adição e multiplicação de \mathbb{R})

As operações de adição e multiplicação no conjunto dos números reais $\mathbb R$

$$+: \mathbb{R} imes \mathbb{R} \longrightarrow \mathbb{R} \qquad e \qquad : \mathbb{R} imes \mathbb{R} \longrightarrow \mathbb{R}$$
 $(a,b) \longmapsto a+b \qquad e \qquad (a,b) \longmapsto a\cdot b$

têm as seguintes propriedades, para quaisquer $a, b, c \in \mathbb{R}$:

A1-(Associativa)
$$(a + b) + c = a + (b + c)$$
.

A2-(Comutativa)
$$a + b = b + a$$
.

A3-(Existência de elemento neutro aditivo)

Existe $0 \in \mathbb{R}$, tal que para todo $a \in \mathbb{R}$, a + 0 = a.

A4-(Existência de simétrico)

Para cada $a \in \mathbb{R}$, existe um único $c \in \mathbb{R}$ tal que a + c = 0.

M1-(Associativa)
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$
.

M2-(Comutativa)
$$a \cdot b = b \cdot a$$
.

M3-(Existência de elemento neutro multiplicativo)

Existe $1 \in \mathbb{R}$, tal que para todo $a \in \mathbb{R}$, $1 \cdot a = a$.

M4-(Existência de inverso)

Para cada $a \in \mathbb{R}$, $a \neq 0$, existe um único $c \in \mathbb{R}$, tal que $a \cdot c = 1$.

AM-(Distributiva)
$$a \cdot (b + c) = a \cdot b + a \cdot c$$
.

Dizemos que \mathbb{R} é a estrutura algébrica chamada *corpo*.

O corpo dos números reais será muito importante nos conceitos introduzidos a seguir.

Definição 1 (Matriz m por n)

Uma $\mathit{matriz}\,A$ m por n com coeficientes reais é uma tabela com m linhas e n colunas de números reais. Denotamos $A=(\mathfrak{a}_{ij})\in M_{m\times n}(\mathbb{R}),$ onde $\mathfrak{a}_{ij}\in \mathbb{R},$ para todo $i=1,\ldots,m$ e $j=1,\ldots,n$.

$$\text{Escrevemos } A = \left(\begin{array}{cccc} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{array} \right).$$

Escrevemos c = -a.

 ${\rm Escrevemos}\ c=\alpha^{-1}.$

Para cada i = 1, ..., m, $(a_{i1}, a_{i2}, ..., a_{in})$ é a i-ésima linha da matriz Α.

Para cada
$$j=1,\ldots,n,$$
 $\begin{pmatrix} \alpha_{1j} \\ \alpha_{2j} \\ \vdots \\ \alpha_{mj} \end{pmatrix}$ é a j -ésima coluna da matriz A .

 $M_{m\times n}(\mathbb{R})$ é o conjunto de todas as matrizes m por n com coeficientes reais.

Exemplo 1

Exemplo 1
São matrizes com coeficientes reais: $\begin{pmatrix} 1 & 2 & 3 & \sqrt{2} \\ 0 & 1 & -2 & \pi \\ 3 & 0 & 1 & -3, 5 \end{pmatrix} \in M_{3\times 4}(\mathbb{R}),$

$$\left(\begin{array}{ccc}1&2&3\\0&1&-2\end{array}\right)\in M_{2\times 3}(\mathbb{R})\ \mathrm{e}\left(\begin{array}{ccc}1&2\\0&1\end{array}\right)\in M_{2\times 2}(\mathbb{R}).$$

Definição 2 (Igualdade de matrizes)

Sejam $A=(\mathfrak{a}_{\mathfrak{i}\mathfrak{j}})\in M_{\mathfrak{m}\times\mathfrak{n}}(\mathbb{R})$ e $B=(\mathfrak{b}_{\mathfrak{i}\mathfrak{j}})\in M_{r\times s}(\mathbb{R}).$ Dizemos que as matrizes A e B são *iguais* se, e somente se, m = r, n = s e $a_{ij} = b_{ij}$, para todo i = 1, ..., m e j = 1, ..., n. Nesse caso, escrevemos A = B.

Exemplo 2

Vamos determinar os valores de $x \in \mathbb{R}$, tais que $A = \begin{pmatrix} 1 & 2 & x^2 \\ x^3 & 1 & 0 \end{pmatrix}$ e

$$B = \begin{pmatrix} 1 & 2 & 1 \\ x^2 & 1 & 0 \end{pmatrix} \text{ sejam iguais. Como } \alpha_{11} = b_{11} = 1, \ \alpha_{12} = b_{12} = 2,$$

$$x^2 = \alpha_{13} = b_{13} = 1, \ x^3 = \alpha_{21} = b_{21} = x^2, \ \alpha_{22} = b_{22} = 1 \text{ e } \alpha_{23} = b_{23} = 0,$$
 então $x^2 = 1$ e $x^3 = x^2$. Logo, $x = 1$.

Há alguns tipos especiais de matrizes, que têm nomes especiais, conforme veremos a seguir.

Exemplo 3

$$\mathrm{Seja}\; A=(\mathfrak{a}_{\mathfrak{ij}})\in M_{\mathfrak{m}\times\mathfrak{n}}(\mathbb{R}).$$

Matriz quadrada: A é matriz quadrada se, e somente se, m = n.

Nesse caso, dizemos que os elementos $a_{11}a_{22}\cdots a_{nn}$ formam a diagonal principal da matriz quadrada.

$$\left(\begin{array}{cc}1&2\\-1&3\end{array}\right)\in M_{2\times 2}(\mathbb{R})\text{ e}\left(\begin{array}{cc}1&4&e\\-1&0&\ln2\\0&1&3\end{array}\right)\in M_{3\times 3}(\mathbb{R})\text{ são matrizes qua-}$$

dradas com diagonais principais 13 e

Matriz nula: Para quaisquer $m \ge 1$ e $n \ge 1$, existe matriz nula m por n.

A=0 se, e somente se, $a_{ij}=0$, para todo $i=1,\ldots,m$ e $j=1,\ldots,n$.

$$\left(\begin{array}{cc}0&0&0\\0&0&0\end{array}\right)$$
 é a matriz nula em $M_{2\times 3}(\mathbb{R})$ e $\left(\begin{array}{cc}0&0\\0&0\end{array}\right)$ é a matriz nula em $M_{2\times 2}(\mathbb{R}).$

 $\mathit{Matriz\ linha}$: A é matriz linha se, e somente se, m=1 e $n\geq 1$.

 $(1\ 2\ 3\ 4)\in M_{1\times 4}(\mathbb{R}),\ (0\ 1\ -2)\in M_{1\times 3}(\mathbb{R})\ {\rm e}\ (-1\ 5)\in M_{1\times 2}(\mathbb{R})\ {\rm s\~{ao}}\ {\rm matrizes}$ linhas.

Matriz coluna: A é matriz coluna se, e somente se, n = 1 e $m \ge 1$.

$$\begin{pmatrix} 0 \\ -1 \\ 2 \end{pmatrix} \in M_{3\times 1}(\mathbb{R}), \begin{pmatrix} 2 \\ -3 \\ 4 \\ 5 \end{pmatrix} \in M_{4\times 1}(\mathbb{R}) \text{ e } \begin{pmatrix} 0 \\ -1 \end{pmatrix} \in M_{2\times 1}(\mathbb{R}) \text{ são ma-}$$

trizes colunas.

 ${\it Matriz\ diagonal}$: A é matriz diagonal se, e somente se, $\mathfrak{m}=\mathfrak{n}$ e $\mathfrak{a}_{ij}=\mathfrak{0}$ para $i\neq j$.

Nesse caso, os elementos da matriz quadrada fora da diagonal principal são nulos.

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 3 \end{array}\right) \in M_{2\times 2}(\mathbb{R}) \text{ e} \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & \pi & 0 \\ 0 & 0 & -3 \end{array}\right) \in M_{3\times 3}(\mathbb{R}) \text{ são matrizes diagonais.}$$

 $\label{eq:matrix} \textit{Matriz identidade} \text{ Para cada } n \geq 1, \text{ a matriz identidade de ordem } n, \text{ denotada por } I_n, \text{ \'e a matriz quadrada de ordem } n \text{ tal que } a_{ij} = \left\{ \begin{array}{ll} 1, & \text{se $i=j$} \\ 0, & \text{se $i\neq j$.} \end{array} \right.$

$$\mathrm{I}_2=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\in M_{2\times 2}(\mathbb{R})\ \mathrm{e}\ \mathrm{I}_3=\left(\begin{array}{cc}1&0&0\\0&1&0\\0&0&1\end{array}\right)\in M_{3\times 3}(\mathbb{R})\ \mathrm{s\tilde{a}o}\ \mathrm{as}\ \mathrm{matrizes}$$

identidades de ordens 2 e 3, respectivamente.

Matriz triangular superior. A é triangular superior se, e somente se, m=n e $\mathfrak{a}_{ij}=0$, para todo i>j.

Nesse caso, os elementos da matriz quadrada abaixo da diagonal principal são nulos.

$$\left(\begin{array}{cc} 1 & 2 \\ 0 & 3 \end{array}\right) \in M_{2\times 2}(\mathbb{R}) \text{ e} \left(\begin{array}{ccc} 1 & -1 & 3 \\ 0 & \pi & 5 \\ 0 & 0 & -3 \end{array}\right) \in M_{3\times 3}(\mathbb{R}) \text{ são matrizes triangu-}$$

lares superiores.

Matriz triangular inferior. A é triangular inferior se, e somente se, $\mathfrak{m}=\mathfrak{n}$ e $\mathfrak{a}_{ij}=0$, para todo i< j.

Nesse caso, os elementos da matriz quadrada acima da diagonal principal são nulos.

$$\left(\begin{array}{cc}1&0\\2&3\end{array}\right)\in M_{2\times 2}(\mathbb{R})\text{ e}\left(\begin{array}{cc}1&0&0\\3&-2&0\\2&7&-3\end{array}\right)\in M_{3\times 3}(\mathbb{R})\text{ são matrizes triangu-}$$

lares inferiores.

Veremos agora três operações: adição de matrizes; multiplicação de uma matriz por um número real, chamada multiplicação por escalar, e multiplicação de matrizes.

Definição 3 (Adição de matrizes)

Sejam $A = (a_{ij}), B = (b_{ij}) \in M_{m \times n}(\mathbb{R}).$ A matriz $C = A + B \in M_{m \times n}(\mathbb{R})$ é definida por $C = (c_{ij})$, onde

$$c_{ij} = a_{ij} + b_{ij},$$

para todo $i = 1, \dots, m \text{ e } j = 1, \dots, n.$

$$\begin{split} &\text{Exemplo 4}\\ &\text{Sejam } A = \left(\begin{array}{ccc} 1 & 4 & 0 \\ -1 & 0 & 2 \end{array} \right) \text{ e } B = \left(\begin{array}{ccc} 2 & 1 & 3 \\ -1 & 2 & -2 \end{array} \right) \text{ em } M_{2\times 3}(\mathbb{R}). \text{ Então,} \\ &C = A + B = \left(\begin{array}{ccc} 1 + 2 & 4 + 1 & 0 + 3 \\ -1 + (-1) & 0 + 2 & 2 + (-2) \end{array} \right) = \left(\begin{array}{ccc} 3 & 5 & 3 \\ -2 & 2 & 0 \end{array} \right) \in M_{2\times 3}(\mathbb{R}). \end{split}$$

Exemplo 5 Sejam
$$A = \begin{pmatrix} 1 & 4 \\ -1 & 2 \\ 0 & 3 \end{pmatrix}$$
 e $B = \begin{pmatrix} 2 & 1 \\ 5 & -1 \\ -1 & 2 \end{pmatrix}$ em $M_{3\times 2}(\mathbb{R})$. Então, temos $C = A + B = \begin{pmatrix} 1+2 & 4+1 \\ -1+5 & 2+(-1) \\ 0+(-1) & 3+2 \end{pmatrix} = \begin{pmatrix} 3 & 5 \\ 4 & 1 \\ -1 & 5 \end{pmatrix} \in M_{3\times 2}(\mathbb{R})$.

Proposição 2 (Propriedades da adição)

Sejam A, B e C matrizes $M_{m\times n}(\mathbb{R})$. Valem as seguintes propriedades:

- (a) Associativa: (A + B) + C = A + (B + C).
- (b) Comutativa: A + B = B + A.
- (c) Existência de elemento neutro aditivo: A + 0 = A, onde 0 é a matriz nula m por n.

Demonstração:

(a) Associativa: Sejam $A = (a_{ij}), B = (b_{ij}) \in C = (c_{ij})$. Então,

$$\begin{array}{cccc} \big((A+B)+C \big)_{ij} & \stackrel{(1)}{=} & (A+B)_{ij}+c_{ij} \\ & \stackrel{(2)}{=} & (\alpha_{ij}+b_{ij})+c_{ij} \\ & \stackrel{(3)}{=} & \alpha_{ij}+(b_{ij}+c_{ij}) \\ & \stackrel{(4)}{=} & \alpha_{ij}+(B+C)_{ij} \\ & \stackrel{(5)}{=} & \big(A+(B+C)\big)_{ij}, \end{array}$$

para todo $i=1,\ldots,m$ e $j=1,\ldots,n$. Logo, (A+B)+C=A+(B+C).

(b) Comutativa: Sejam $A = (a_{ij})$ e $B = (b_{ij})$. Então, $(A+B)_{ij} \stackrel{(6)}{=} a_{ij} + b_{ij} \stackrel{(7)}{=} b_{ij} + a_{ij} \stackrel{(8)}{=} (B+A)_{ij},$

para todo i = 1, ..., m e j = 1, ..., n. Logo, A + B = B + A.

(c) Existência de elemento neutro aditivo: Seja $0 = (d_{ij})$, onde $d_{ij} = 0$, para todo i, j. Então, $(A + 0)_{ij} = a_{ij} + d_{ij} = a_{ij} + 0 = a_{ij}$, para todo i = 1, ..., m e j = 1, ..., n. Logo, A + 0 = A.

Definição 4 (Multiplicação por escalar)

Sejam $A=(\mathfrak{a}_{ij})\in M_{\mathfrak{m}\times\mathfrak{n}}(\mathbb{R})$ e $k\in\mathbb{R}$. A matriz $C=k\cdot A\in M_{\mathfrak{m}\times\mathfrak{n}}(\mathbb{R})$ é definida por $C=(c_{ij})$, onde $c_{ij}=k\cdot \mathfrak{a}_{ij}$, para todo $i=1,\ldots,\mathfrak{m}$ e $j=1,\ldots,\mathfrak{n}$.

Exemplo 6 Sejam
$$A = \begin{pmatrix} 1 & 4 \\ -1 & 2 \\ 0 & 3 \end{pmatrix} \in M_{3\times 2}(\mathbb{R}) \ \mathrm{e} \ B = \begin{pmatrix} 2 & 1 & 3 \\ 5 & -1 & 0 \end{pmatrix} \in M_{2\times 3}(\mathbb{R}).$$

Então,

$$2 \cdot A = \left(\begin{array}{cc} 2 & 8 \\ -2 & 4 \\ 0 & 6 \end{array} \right) \in M_{3 \times 2}(\mathbb{R}) \,\, \mathrm{e} \,\, (-1) \cdot B = \left(\begin{array}{cc} -2 & -1 & -3 \\ -5 & 1 & 0 \end{array} \right) \in M_{2 \times 3}(\mathbb{R}).$$

Proposição 3 (Propriedades da multiplicação por escalar)

Sejam $A=(a_{ij}), B=(b_{ij})\in M_{m\times n}(\mathbb{R})$ e $k,k_1,k_2\in\mathbb{R}$. Valem as seguintes propriedades:

- (a) Distributiva: $k \cdot (A + B) = k \cdot A + k \cdot B$.
- (b) Distributiva: $(k_1+k_2)\cdot A=k_1\cdot A+k_2\cdot A.$
- (c) Associativa: $k_1 \cdot (k_2 \cdot A) = (k_1 \cdot k_2) \cdot A$.
- (d) $1 \cdot A = A$, onde $1 \in \mathbb{R}$.
- (e) $0 \cdot A = 0_{m \times n}$, onde $0 \in \mathbb{R}$.

Demonstração:

(a) Distributiva:

$$\begin{array}{ccc} \left(k\cdot(A+B)\right)_{\mathfrak{i}\mathfrak{j}} & \stackrel{(1)}{=} & k\cdot(A+B)_{\mathfrak{i}\mathfrak{j}} \stackrel{(2)}{=} k\cdot(\alpha_{\mathfrak{i}\mathfrak{j}}+b_{\mathfrak{i}\mathfrak{j}}) \stackrel{(3)}{=} k\cdot\alpha_{\mathfrak{i}\mathfrak{j}}+k\cdot b_{\mathfrak{i}\mathfrak{j}} \\ & \stackrel{(4)}{=} & (k\cdot A)_{\mathfrak{i}\mathfrak{j}}+(k\cdot B)_{\mathfrak{i}\mathfrak{j}} \stackrel{(5)}{=} (k\cdot A+k\cdot B)_{\mathfrak{i}\mathfrak{j}}, \end{array}$$

Em (1) usamos a definição de (A+B)+C; em (2), a definição de A+B; em (3), a associatividade da adição em \mathbb{R} ; em (4), a definição de B+C e em (5), a definição de A+(B+C).

Em (6) usamos a definição de A + B; em (7), a comutatividade da adição em \mathbb{R} e em (8), a definição de B + A.

Em (1) usamos a definição da multiplicação por escalar; em (2), a definição de A+B; em (3), a distributividade em \mathbb{R} ; em (4), a definição da multiplicação por escalar; em (5), a definição de adição de matrizes.

Em (6) usamos a definição da multiplicação por escalar; em (7), a distributividade em R; em (8), a definição da multiplicação por escalar; em (9), a definição de adição de matrizes.

Em (10) usamos a definição de multiplicação por escalar; em (11), a associatividade da multiplicação em \mathbb{R} ; em (12) e (13), novamente, a definição de multiplicação por escalar.

Para determinar o elemento de ordem ij do produto usamos a i-ésima linha da matriz A, matriz à esquerda, e a j-ésima coluna de B, matriz à direita, respectivamente,

$$(a_{i1},\ldots,a_{ip}) \in \begin{pmatrix} b_{1j} \\ \vdots \\ b_{pj} \end{pmatrix}$$

Faça os cálculos por linha.

Fixe uma linha de A e,
sucessivamente, varie as
colunas de B, determinando
a linha de mesma ordem de
AB.

para todo i = 1, ..., m e j = 1, ..., n. Logo, $k \cdot (A + B) = k \cdot A + k \cdot B$.

(b) Distributiva:

para todo i = 1, ..., m e j = 1, ..., n. Logo, $(k_1 + k_2) \cdot A = k_1 \cdot A + k_2 \cdot A$.

(c) Associativa:

$$\begin{array}{cccc} \left((k_1 \cdot k_2) \cdot A \right)_{ij} & \stackrel{(10)}{=} & (k_1 \cdot k_2) \cdot \alpha_{ij} \stackrel{(11)}{=} k_1 \cdot (k_2 \cdot \alpha_{ij}) \\ & \stackrel{(12)}{=} & k_1 \cdot (k_2 \cdot A)_{ij} \stackrel{(13)}{=} \left(k_1 \cdot (k_2 \cdot A) \right)_{ij}, \end{array}$$

para todo $i=1,\ldots,m$ e $j=1,\ldots,n$. Logo, $(k_1\cdot k_2)\cdot A=k_1\cdot (k_2\cdot A)$.

Deixamos os itens (d) e (e) como Exercícios.

Definição 5 (Multiplicação de matrizes)

Sejam $A=(\mathfrak{a}_{ik})\in M_{m\times p}(\mathbb{R})$ e $B=(\mathfrak{b}_{kj})\in M_{p\times n}(\mathbb{R})$, para $\mathfrak{i}=1,\ldots,\mathfrak{m},$ $k=1,\ldots,\mathfrak{p}$ e $\mathfrak{j}=1,\ldots,\mathfrak{n}.$ O produto $C=A\cdot B\in M_{m\times n}(\mathbb{R})$ é a matriz definida por

$$c_{ij} = \sum_{k=1}^p \alpha_{ik} \cdot b_{kj},$$

para todo i = 1, ..., m e j = 1, ..., n.

Exemplo 7
$$\operatorname{Sejam} A = \left(\begin{array}{cc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array}\right) \in M_{2\times 3}(\mathbb{R}) \text{ e } B = \left(\begin{array}{cc} 1 & 0 \\ 0 & 2 \\ -1 & 1 \end{array}\right) \in M_{3\times 2}(\mathbb{R}). \text{ Então,}$$

$$A \cdot B = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 2 \cdot 0 + 3 \cdot (-1) & 1 \cdot 0 + 2 \cdot 2 + 3 \cdot 1 \\ 4 \cdot 1 + 5 \cdot 0 + 6 \cdot (-1) & 4 \cdot 0 + 5 \cdot 2 + 6 \cdot 1 \end{pmatrix}$$

$$= \begin{pmatrix} -2 & 7 \\ -2 & 16 \end{pmatrix} \in M_{2 \times 2}(\mathbb{R}).$$

$$B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \cdot 1 + 0 \cdot 4 & 1 \cdot 2 + 0 \cdot 5 & 1 \cdot 3 + 0 \cdot 6 \\ 0 \cdot 1 + 2 \cdot 4 & 0 \cdot 2 + 2 \cdot 5 & 0 \cdot 3 + 2 \cdot 6 \\ (-1) \cdot 1 + 1 \cdot 4 & (-1) \cdot 2 + 1 \cdot 5 & (-1) \cdot 3 + 1 \cdot 6 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 2 & 3 \\ 8 & 10 & 12 \\ 3 & 3 & 3 \end{pmatrix} \in M_{3 \times 3}(\mathbb{R}).$$

Proposição 4 (Propriedades da multiplicação de matrizes)

Valem as seguintes propriedades:

- (a) Distributiva: $A \cdot (B + C) = A \cdot B + A \cdot C$, para quaisquer $A \in M_{m \times p}(\mathbb{R})$ e $B, C \in M_{p \times n}(\mathbb{R})$.
- (b) Distributiva: $(A+B) \cdot C = A \cdot C + B \cdot C$, para quaisquer $A, B \in M_{m \times p}(\mathbb{R})$ e $C \in M_{p \times n}(\mathbb{R})$.
- (c) Associativa: $A \cdot (B \cdot C) = (A \cdot B) \cdot C$, para quaisquer $A \in M_{m \times p}(\mathbb{R})$, $B \in M_{p \times q}(\mathbb{R})$ e $C \in M_{q \times p}(\mathbb{R})$.
- (d) Associativa: $k \cdot (A \cdot B) = (k \cdot A) \cdot B = A \cdot (k \cdot B)$, para quaisquer $k \in \mathbb{R}$, $A \in M_{m \times p}(\mathbb{R})$ e $B \in M_{p \times p}(\mathbb{R})$.
- (e) Existência de elementos neutros multiplicativos, à esquerda e à direita, respectivamente: $I_m \cdot A = A$ e $A \cdot I_n = A$.

Demonstração:

(a) Distributiva: Sejam $A=(\mathfrak{a}_{ik})\in M_{\mathfrak{m}\times\mathfrak{p}}(\mathbb{R})$ e $B=(\mathfrak{b}_{kj})$ e $C=(\mathfrak{c}_{kj})$ em $M_{\mathfrak{p}\times\mathfrak{n}}(\mathbb{R})$. Então,

$$(A \cdot (B + C))_{ij} \stackrel{(1)}{=} \sum_{k=1}^{p} a_{ik} \cdot (B + C)_{kj} \stackrel{(2)}{=} \sum_{k=1}^{p} a_{ik} \cdot (b_{kj} + c_{kj})$$

$$\stackrel{(3)}{=} \sum_{k=1}^{p} (a_{ik} \cdot b_{kj} + a_{ik} \cdot c_{kj})$$

$$\stackrel{(4)}{=} \sum_{k=1}^{p} a_{ik} \cdot b_{kj} + \sum_{k=1}^{p} a_{ik} \cdot c_{kj}$$

$$\stackrel{(5)}{=} (A \cdot B)_{ij} + (A \cdot C)_{ij}$$

$$\stackrel{(6)}{=} (A \cdot B + A \cdot C)_{ij},$$

para todo $i=1,\ldots,m$ e $j=1,\ldots,n$. Logo, $A\cdot(B+C)=A\cdot B+A\cdot C$.

- (b) É análogo ao item anterior e será deixado como Exercício.
- (c) Associativa: Sejam $A=(\mathfrak{a}_{ik})\in M_{\mathfrak{m}\times\mathfrak{p}}(\mathbb{R}),\ B=(\mathfrak{b}_{k\ell})\in M_{\mathfrak{p}\times\mathfrak{q}}(\mathbb{R})$ e $C=(\mathfrak{c}_{\ell j})\in M_{\mathfrak{q}\times\mathfrak{n}}(\mathbb{R}).$

$$\begin{array}{ccc} \left(A \cdot (B \cdot C)\right)_{ij} & \stackrel{(7)}{=} & \sum_{k=1}^{p} a_{ik} \cdot (B \cdot C)_{kj} \\ & \stackrel{(8)}{=} & \sum_{k=1}^{p} a_{ik} \cdot \left(\sum_{\ell=1}^{q} b_{k\ell} \cdot c_{\ell j}\right) \\ & \stackrel{(9)}{=} & \sum_{k=1}^{p} \left(\sum_{\ell=1}^{q} a_{ik} \cdot (b_{k\ell} \cdot c_{\ell j})\right) \\ & \stackrel{(10)}{=} & \sum_{k=1}^{p} \left(\sum_{\ell=1}^{q} (a_{ik} \cdot b_{k\ell}) \cdot c_{\ell j}\right) \end{array}$$

Em (1) usamos a definição da multiplicação de A por B + C; em (2), a definição de B + C; em (3), a distributividade em R; em (4), a comutatividade e associatividade da adição em R; em (5), as definições de A · B e A · C; em (6), a definição da adição de matrizes.

Em (7) usamos a definição da multiplicação de A por $B \cdot C$; em (8), a definição de $B \cdot C$; em (9), a distributividade em \mathbb{R} ; em (10), a associatividade da multiplicação em \mathbb{R} .

Em (11) usamos a comutatividade e associatividade da adição em \mathbb{R} ; em (12), a distributividade em R; em (13), a definição de $A \cdot B$; em (14), a definição da multiplicação de A · B por C.

Em (15) usamos a definição da multiplicação por escalar; em (16), definição de $A \cdot B$; em (17), a distributividade em \mathbb{R} ; em (18), a associatividade em \mathbb{R} ; em (19), a definição da multiplicação por escalar; em (20), a definição da multiplicação de matrizes.

As linhas de A são as colunas de A^t. equivalentemente, as colunas de A são as linhas de A^t .

$$\begin{array}{ll} \stackrel{(11)}{=} & \sum_{\ell=1}^q \left(\sum_{k=1}^p (\alpha_{ik} \cdot b_{k\ell}) \cdot c_{\ell j} \right) \\ \stackrel{(12)}{=} & \sum_{\ell=1}^q \left(\sum_{k=1}^p (\alpha_{ik} \cdot b_{k\ell}) \right) \cdot c_{\ell j} \\ \stackrel{(13)}{=} & \sum_{\ell=1}^q (A \cdot B)_{i\ell} \cdot c_{\ell j} \\ \stackrel{(14)}{=} & \left((A \cdot B) \cdot C \right)_{ij}, \end{array}$$

para todo i = 1, ..., m e j = 1, ..., n. Logo, $A \cdot (B \cdot C) = (A \cdot B) \cdot C$.

(d) Sejam $k \in \mathbb{R}$, $A \in M_{m \times p}(\mathbb{R})$ e $B \in M_{p \times n}(\mathbb{R})$. Então,

$$\begin{split} \left(k\cdot(A\cdot B)\right)_{ij} &\overset{(15)}{=} k\cdot(A\cdot B)_{ij} \\ &\overset{(16)}{=} k\cdot\left(\sum_{k=1}^{p}\alpha_{ik}\cdot b_{kj}\right) \\ &\overset{(17)}{=} \sum_{k=1}^{p}k\cdot(\alpha_{ik}\cdot b_{kj}) \\ &\overset{(18)}{=} \sum_{k=1}^{p}(k\cdot \alpha_{ik})\cdot b_{kj} \\ &\overset{(19)}{=} \sum_{k=1}^{p}(k\cdot A)_{ik}\cdot b_{kj} \\ &\overset{(20)}{=} \left((k\cdot A)\cdot B\right)_{ij}, \end{split}$$

para todo $\mathfrak{i}=1,\ldots,\mathfrak{m}$ e $\mathfrak{j}=1,\ldots,\mathfrak{n}$. Logo, $k\cdot(A\cdot B)=(k\cdot A)\cdot B$.

A outra igualdade é análoga e será deixada como Exercício, assim como o item (e), que é uma simples verificação.

Definição 6 (Transposta)

Seja $A = (a_{ij}) \in M_{m \times n}(\mathbb{R})$. A matriz transposta de A, denotada por A^t , é a matriz $A^{t} = (b_{ji}) \in M_{n \times m}(\mathbb{R})$ definida por $b_{ji} = a_{ij}$, para todo $i = 1, \dots, m$ e j = 1, ..., n.

Proposição 5 (Propriedades da transposta)

Valem as seguintes propriedades:

(a)
$$(A + B)^t = A^t + B^t$$
, para quaisquer $A, B \in M_{m \times n}(\mathbb{R})$.

- (b) $(k \cdot A)^t = k \cdot A^t$, para quaisquer $k \in \mathbb{R}$ e $A \in M_{m \times n}(\mathbb{R})$.
- (c) $(A \cdot B)^t = B^t \cdot A^t$, para quaisquer $A \in M_{m \times p}(\mathbb{R})$ e $B \in M_{p \times p}(\mathbb{R})$.
- (d) $(A^t)^t = A$, para qualquer $A \in M_{m \times n}(\mathbb{R})$.

Demonstração:

(a) Sejam $A = (a_{ii}) \in B = (b_{ii}) \text{ em } M_{m \times n}(\mathbb{R})$. Então, $((A + B)^{t})_{ii} \stackrel{(1)}{=} (A + B)_{ij} \stackrel{(2)}{=} a_{ij} + b_{ij} \stackrel{(3)}{=} (A^{t})_{ji} + (B^{t})_{ji} \stackrel{(4)}{=} (A^{t} + B^{t})_{ji},$ para todo i = 1, ..., m e j = 1, ..., n. Logo, $(A + B)^t = A^t + B^t$.

Deixamos como Exercício a demonstração dos outros itens.

Em (1) usamos a definição de transposta; em (2), a definição de A + B; em (3), a definição de transposta de A e de B; em (4), a definição de adição de matrizes.

Definição 7 (Matriz invertível)

Seja $A \in M_{n \times n}(\mathbb{R})$. Dizemos que A é invertível se, e somente se, existe $B \in M_{n \times n}(\mathbb{R})$ tal que $A \cdot B = B \cdot A = I_n$. Nesse caso, dizemos que B é a inversa de A e denotamos $B = A^{-1}$.

Exemplo 9 Seja
$$A = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}$$
. Então, A é invertível e $A^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$.

Para verificar a afirmação, faça o produto das duas matrizes.

Consideremos $A=\left(\begin{array}{cc}a&b\\c&d\end{array}\right)\in M_{2\times 2}(\mathbb{R}),\ \mathrm{com}\ \mathfrak{ad}-bc\neq 0.$ Então, A é invertível e $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$.

Observação: No exemplo anterior, o determinante da matriz A de ordem 2 é $\det(A) = ad - bc \neq 0$. Em geral, $A \in M_{n \times n}(\mathbb{R})$ é invertível se, e somente se, $det(A) \neq 0$.

O conceito de determinante será estudado em Álgebra Linear II.

Exemplo 11
Consideremos
$$A = \begin{pmatrix} 2 & 1 & 0 & 0 \\ 1 & 0 & -1 & 1 \\ 0 & 1 & 1 & 1 \\ -1 & 0 & 0 & 3 \end{pmatrix} \in M_{4\times 4}(\mathbb{R}).$$
 Verifique que

$$A^{-1} = \begin{pmatrix} 3 & -3 & -3 & 2 \\ -5 & 6 & 6 & -4 \\ 4 & -5 & -4 & 3 \\ 1 & -1 & -1 & 1 \end{pmatrix}.$$

Exemplo 12

Exemplo 12 Vamos determinar, caso exista, a inversa de $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$ em $M_{3\times3}(\mathbb{R})$.

Suponhamos que exista $B = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix}$ tal que $A \cdot B = I_3$. Então,

$$\begin{cases} x_1 + 0x_2 + x_3 = 1 \\ x_1 + x_2 + x_3 = 0 \\ 2x_1 + 2x_2 + x_3 = 0 \end{cases}, \begin{cases} y_1 + 0y_2 + y_3 = 0 \\ y_1 + y_2 + y_3 = 1 \\ 2y_1 + 2y_2 + y_3 = 0 \end{cases} e \begin{cases} z_1 + 0z_2 + z_3 = 0 \\ z_1 + z_2 + z_3 = 0 \\ 2z_1 + 2z_2 + z_3 = 1 \end{cases}$$

Assim, A tem inversa B se, e somente se, os sistemas acima têm solução. Resolvendo os sistemas, obtemos: $x_1 = 1$, $x_2 = -1$ e $x_3 = 0$; $y_1 = -2$,

$$y_2 = 1 \text{ e } y_3 = 2; z_1 = 1, z_2 = 0 \text{ e } z_3 = -1. \text{ Logo, B} = \begin{pmatrix} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 2 & 2 & -1 \end{pmatrix}.$$

Na próxima Seção vamos aprender a resolver sistemas de equações lineares com coeficientes reais e apresentaremos um algoritmo para calcular, caso exista, a inversa de uma matriz.

Encerramos com a definição de um tipo especial de matriz.

Definição 8 (Matriz ortogonal)

Dizemos que uma matriz $A \in M_{n \times n}(\mathbb{R})$ é ortogonal se, e somente se, A é invertível e $A^{-1} = A^{t}$.

Exemplo 13

Verifique que as seguintes matrizes são ortogonais: $A = \begin{pmatrix} \frac{3}{5} & -\frac{4}{5} \\ \frac{4}{2} & \frac{3}{2} \end{pmatrix}$,

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} e C = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix}.$$

Exercícios

1. Sejam
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{pmatrix}$, $C = \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}$,

 $D = \begin{pmatrix} 2 & -1 \end{pmatrix}$. Determine:

- (a) A + B, (b) 2A 3B, (c) AC, (d) CD,
- (f) $A^{t}B$, (g) 2AC 3BC. (e) DA.
- 2. Determine os valores de $x, y \in \mathbb{R}$ para que as matrizes sejam iguais:

(a)
$$A = \begin{pmatrix} x^2 - 40 & y^2 + 4 \\ 6 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 41 & 13 \\ 6 & 3 \end{pmatrix}$.

(b)
$$A = \begin{pmatrix} 7 & y \\ 4 & x^2 \end{pmatrix}$$
, $B = \begin{pmatrix} 7 & 8 \\ 4 & 10x - 25 \end{pmatrix}$.

- 3. Determine, caso exista, uma matriz $B\in M_{2\times 2}(\mathbb{R})$ tal que $B^2=A,$ onde $A=\left(\begin{array}{cc} 3 & -2\\ -4 & 3 \end{array}\right).$
- $\text{4. Seja } e_i = (c_{11}, \ldots, c_{1m}), \, \text{onde } c_{1k} = \left\{ \begin{array}{ll} 0, & \text{se } k \neq i \\ 1, & \text{se } k = i \end{array}, \, \text{para } k = 1, \ldots, \right.$ m.
 - (a) Mostre que se $B=(b_{ij})\in M_{m\times n}(\mathbb{R})$, então vale a igualdade $e_iB=(b_{i1},b_{i2},\ldots,b_{in})$.
 - $(\mathrm{b})\ \mathrm{Mostre}\ \mathrm{que}\ \mathrm{se}\ A=(\alpha_{ij})\in M_{n\times m}(\mathbb{R}),\ \mathrm{ent\tilde{ao}}\ A{e_j}^t=\left(\begin{array}{c}\alpha_{1j}\\\alpha_{2j}\\\vdots\\\alpha_{nj}\end{array}\right).$
- 5. Mostre que:
 - (a) $(A+B)^t = A^t + B^t$, para todo $A, B \in M_{m \times n}(\mathbb{R})$.
 - (b) $(cA)^t = cA^t$, para todo $c \in \mathbb{R}$ e $A \in M_{m \times n}(\mathbb{R})$.
 - (c) $(AB)^t = B^tA^t$, para todo $A \in M_{m \times n}(\mathbb{R})$ e $B \in M_{n \times p}(\mathbb{R})$.
 - $(\mathrm{d}) \ (A^t)^t = A, \, \mathrm{para} \, \operatorname{todo} \, A \in M_{m \times n}(\mathbb{R}).$
- 6. Seja $A \in M_{n \times n}(\mathbb{R})$. A é dita sim'etrica se, e somente se, $A^t = A$ e A é dita antisim'etrica se, e somente se, $A^t = -A$. Mostre que:
 - (a) Se $A \in M_{n \times n}(\mathbb{R})$ é simétrica e antisimétrica, então A = 0.
 - (b) Se $A \in M_{n \times n}(\mathbb{R})$, então $A + A^t$ é simétrica e $A A^t$ é antisimétrica.
 - (c) Para cada $A \in M_{n \times n}(\mathbb{R})$, existem $B, C \in M_{n \times n}(\mathbb{R})$, univocamente determinadas, tais que B é simétrica, C é antisimétrica e $A = \frac{1}{2}(B+C)$.
- 7. Sejam $A = \begin{pmatrix} 1 & -3 & 2 \\ 2 & 1 & -3 \\ 4 & -3 & -1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 4 & 1 & 0 \\ 2 & 1 & 1 & 1 \\ 1 & -2 & 1 & 2 \end{pmatrix}$ e $C = \begin{pmatrix} 2 & 1 & -1 & -2 \\ 3 & -2 & -1 & -1 \\ 2 & -5 & -1 & 0 \end{pmatrix}$. Mostre que AB = AC.

- 8. Sejam A, B, C matrizes com coeficientes reais tais que $A \neq 0$ e AB =AC. Responda, justificando a sua resposta:
 - (a) B = C?
 - (b) Se existe uma matriz D, tal que DA = I, onde I é a matriz identidade, então B = C?
 - (c) No exercício anterior, existe uma matriz D tal que DA = I?
- 9. Sejam $A, B \in M_{n \times n}(\mathbb{R})$ invertíveis. Mostre que:
 - (a) AB é invertível e $(AB)^{-1} = B^{-1}A^{-1}$.
 - (b) Para todo $\alpha \in \mathbb{R}, \, \alpha \neq 0, \, \alpha A$ é invertível e $(\alpha A)^{-1} = \alpha^{-1} A^{-1}.$
- 10. Mostre que se $A, B \in M_{n \times n}(\mathbb{R})$ são ortogonais, então AB é ortogonal.
- 11. Sejam $A, C \in M_{m \times m}(\mathbb{R})$ com C invertível.
 - (a) Mostre que $(C^{-1}AC)^n = C^{-1}A^nC$, para todo $n \ge 1$.
 - (b) Mostre que se A é invertível, então $(C^{-1}AC)^n = C^{-1}A^nC$, para todo $n \in \mathbb{Z}$.
- 12. Diga quais das afirmações são falsas ou verdadeiras, justificando a sua resposta:
 - (a) Sejam $A \in M_{m \times n}(\mathbb{R})$ e $B \in M_{n \times p}(\mathbb{R})$. Se AB = 0, então A = 0ou B = 0.
 - (b) Sejam $A \in M_{m \times n}(\mathbb{R}), B \in M_{n \times p}(\mathbb{R}) e k_1, k_2 \in \mathbb{R}$. Então, $(k_1A)(k_2B) = (k_1k_2)AB.$
 - (c) Se A e B são matrizes simétricas, então AB = BA.
 - (d) Se $A, B \in M_{n \times n}(\mathbb{R})$, então $(A+B)^2 = A^2 + 2AB + B^2$.
 - (e) Se $A, B \in M_{n \times n}(\mathbb{R})$, então $(A + B)(A B) = A^2 B^2$.

Sistemas de equações lineares

Definição 9 (Sistema de equações lineares e forma matricial)

Um sistema de m equações lineares a n incógnitas com coeficientes reais é um conjunto de equações do tipo

$$(\star) \begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 & (E_1) \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 & (E_2) \\ \vdots & \vdots & \vdots \\ a_{i1}x_1 + a_{i2}x_2 + \dots + a_{in}x_n = b_i & (E_i) \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m & (E_m), \end{cases}$$

onde $a_{ij} \in \mathbb{R}$ e $b_j \in \mathbb{R}$, para todo i = 1, ..., m e j = 1, ..., n.

Uma solução de (\star) é uma \mathfrak{n} -upla $(x_1,x_2,\ldots,x_n),$ com $x_1,\ldots,x_n\in\mathbb{R}$ que satisfaça às equações E_1, \ldots, E_m simultaneamente.

$$\text{Chamamos A} = \left(\begin{array}{cccc} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn}, \end{array} \right) \in M_{m \times n}(\mathbb{R}) \text{ de } \textit{matriz}$$

 $\mathit{dos\ coeficientes}\ \mathsf{ou}\ \mathit{matriz\ associada\ ao\ sistema}, \ \mathsf{a\ matriz\ coluna}\ \mathsf{X} = \left(\begin{array}{c} \mathsf{x}_1 \\ \mathsf{x}_2 \\ \vdots \end{array}\right),$

de matriz das incógnitas, e B =
$$\begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix} \in M_{m \times 1}(\mathbb{R}), \text{ de matriz dos termos}$$

independentes.

O sistema (\star) se reescreve na forma matricial como AX = B.

Exemplo 14

Exemplo 14
O sistema de equações lineares $\begin{cases} 2x - y = 3 \\ x + 3y = 1 \end{cases}$ tem a seguinte forma matricial

$$\left(\begin{array}{cc} 2 & -1 \\ 1 & 3 \end{array}\right) \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 3 \\ 1 \end{array}\right).$$

Exemplo 15

Exemplo 15 O sistema de equações lineares $\begin{cases} x + 3y + z = 1 \\ 2x + 5y - z = 3 \end{cases}$ tem a forma matricial

$$\left(\begin{array}{cc} 1 & 3 & 1 \\ 2 & 5 & -1 \end{array}\right) \left(\begin{array}{c} x \\ y \\ z \end{array}\right) = \left(\begin{array}{c} 1 \\ 3 \end{array}\right).$$

Definição 10 (Sistemas equivalentes)

Dois sistemas são ditos equivalentes se, e somente se, têm as mesmas soluções.

Para resolver um sistema vamos substituir o sistema dado por outro, com equações mais simples, mas com as mesmas soluções. Quais as operações sobre as equações de um sistema que determinam um sistema equivalente? A resposta está a seguir.

Proposição 6

As seguintes operações sobre as equações E_1, \ldots, E_m do sistema de equações lineares com coeficientes reais (\star) determinam um sistema equivalente:

- (I) Trocar de posição as equações E_i e E_j , $i \neq j$, e manter as outras equações. Denotamos por $E_i \leftrightarrow E_j$.
- (II) Substituir E_i por $cE_i,\ c \neq 0,\ c \in \mathbb{R},$ e manter as outras equações. Denotamos por $E_i \rightarrow cE_i$.
- (III) Substituir E_i por $E_i + cE_j$, $i \neq j$, $c \in \mathbb{R}$, e manter as outras equações. Denotamos por $E_i \rightarrow E_i + cE_j$.

Demonstração: Seja $(\star\star)$ o sistema com equações E_1', \ldots, E_m' obtido de (\star) após uma das operações do tipo (I), ou (II), ou (III). Devemos mostrar que (x_1, \ldots, x_n) é solução de (\star) se, e somente se, (x_1, \ldots, x_n) é solução de $(\star\star)$. Caso 1 - Operação do tipo (I): $E_i \leftrightarrow E_j$.

É claro que a ordem em que as equações são escritas não altera o conjunto S das soluções do sistema, pois $S = \bigcap_{k=1}^m S_k,$ onde S_k é o conjunto solução $\mathrm{de}\;\mathsf{E}_{\mathsf{k}}.$

Caso 2 - Operação do tipo (II): $E_i \to cE_i$, com $c \neq 0$.

Seja (x_1,\ldots,x_n) uma solução de (\star) . Então, (x_1,\ldots,x_n) é solução de $E_i' = E_j$, para todo $j \neq i$, e de E_i . Portanto, $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$ e, multiplicando essa igualdade por c, obtemos $c \cdot (a_{i1}x_1 + \cdots + a_{in}x_n) = c \cdot b_i$. Logo, $(c \cdot a_{i1})x_1 + \cdots + (c \cdot a_{in})x_n = c \cdot b_i$. Portanto, (x_1, \dots, x_n) também é solução de $E_i' = cE_i$. Logo, é solução de $(\star\star)$. Reciprocamente, suponhamos que (x_1, \ldots, x_n) seja solução de $(\star\star)$. Então, (x_1, \ldots, x_n) é solução de $E_j = E_j'$ para todo $j \neq i$, e de $E'_i = cE_i$. Assim, $(c \cdot a_{i1})x_1 + \cdots + (c \cdot a_{in})x_n = c \cdot b_i$, que é equivalente a $c \cdot (a_{i1}x_1 + \cdots + a_{in}x_n) = c \cdot b_i$. Como $c \neq 0$, multiplicando

essa igualdade por c^{-1} , obtemos $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$, logo (x_1, \dots, x_n) é solução de E_i . Portanto, (x_1, \dots, x_n) é solução de (\star) .

Caso 3 - Operação do tipo (III): $E_i \rightarrow E_i + cE_i$.

Seja (x_1,\ldots,x_n) uma solução de (\star) . Então, (x_1,\ldots,x_n) é solução de $E_k' = E_k$, para todo $k \neq i$, e de E_i . Portanto, $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$ e, como $j \neq i$, $c \cdot (a_{j1}x_1 + \cdots + a_{jn}x_n) = c \cdot b_j$. Logo, somando essas igualdades, $(a_{i1} + ca_{j1})x_1 + \cdots + (a_{in} + ca_{jn})x_n = b_i + c \cdot b_j$. Portanto, (x_1,\ldots,x_n) é solução de $E_j' = E_i + cE_j$. Logo, (x_1,\ldots,x_n) é solução de $(\star\star)$. Reciprocamente, suponhamos que (x_1,\ldots,x_n) é solução de $(\star\star)$. Então, (x_1,\ldots,x_n) é solução de $E_k = E_k'$, para todo $k \neq i$, e de $E_i' = E_i + cE_j$. Logo, $(a_{i1} + ca_{j1})x_1 + \cdots + (a_{in} + ca_{jn})x_n = b_i + c \cdot b_j$ e, como $j \neq i$, $a_{j1}x_1 + \cdots + a_{jn}x_n = b_j$. Multiplicando a última igualdade por c, obtemos $(c \cdot a_{j1})x_1 + \cdots + (c \cdot a_{jn})x_n = c \cdot b_j$. Subtraindo esse valor de $(a_{i1} + ca_{j1})x_1 + \cdots + (a_{in} + ca_{jn})x_n = b_i + c \cdot b_j$, obtemos $a_{i1}x_1 + \cdots + a_{in}x_n = b_i$. Portanto, (x_1,\ldots,x_n) é solução de E_i . Logo, (x_1,\ldots,x_n) é solução de (\star) .

 $\label{eq:multiplicando} \begin{array}{ll} \text{Multiplicando} \ E_j \ \text{por} \ c, \\ \text{obtemos} \ cE_j \, . \end{array}$

Resolvemos o sistema substituindo-o por um sistema equivalente, por meio das operações descritas acima. Como simplificamos as equações do sistema? A ideia é eliminar incógnitas, escrevendo equações equivalentes com menos incógnitas.

Exemplo 16

Vamos resolver o sistema do Exemplo 14.

$$\begin{cases} 2x - y = 3 \\ x + 3y = 1 \end{cases} \sim_{1} \begin{cases} x + 3y = 1 \\ 2x - y = 3 \end{cases} \sim_{2} \begin{cases} x + 3y = 1 \\ -7y = 1 \end{cases} \sim_{3} \begin{cases} x + 3y = 1 \\ y = -\frac{1}{7} \end{cases}$$

$$\sim_{4} \begin{cases} x = \frac{10}{7} \\ y = -\frac{1}{7} \end{cases}$$

Fizemos a seguinte sequência de operações sobre as equações:

em \sim_1 : $E_1 \leftrightarrow E_2$ (destacando a incógnita x em E_1),

em \sim_2 : $E_2 \to E_2 - 2E_1$ (eliminando a incógnita x de E_2),

em \sim_3 : $E_2 \rightarrow -\frac{1}{7}E_2$ (destacando a incógnita y em E_2),

em \sim_4 : $E_1 \to E_1 - 3E_2$, (eliminando a incógnita y de E_1).

Exemplo 17

Vamos resolver o sistema do Exemplo 15.

$$\begin{cases} x + 3y + z = 1 \\ 2x + 5y - z = 3 \end{cases} \sim_{1} \begin{cases} x + 3y + z = 1 \\ -y - 3z = 1 \end{cases} \sim_{2} \begin{cases} x + 3y + z = 1 \\ y + 3z = -1 \end{cases}$$

$$\sim_3 \begin{cases} x - 8z = 4 \\ y + 3z = -1 \end{cases}$$

Fizemos a seguinte sequência de operações sobre as equações do sistema:

em $\sim_1:~E_2 \rightarrow E_2 - 2E_1$ (eliminando a indeterminada x em $E_2),$

em $\sim_2:~E_2 \leftrightarrow -E_2$ (destacando a indeterminada y em $E_2),$

em \sim_3 : $E_1 \to E_1 - 3E_2$ (eliminando a indeterminada y em E_1).

Não há mais incógnitas que possam ser eliminadas. O conjunto solução do sistema é:

$$\{(x,y,z) \; ; \; x-8z=4 \; \mathrm{e} \; y+3z=-1\} = \{(8z+4,-3z-1,z) \; ; \; z \in \mathbb{R}\}.$$

Observamos que cada operação sobre as equações do sistema, que não altera o conjunto solução, corresponde, de maneira natural, a uma operação sobre as linhas da matriz dos coeficientes A e, simultaneamente, nas mesmas linhas da matriz dos termos independentes B, motivando a seguinte definição.

Definição 11 (Matriz ampliada associada ao sistema)

Consideremos o sistema AX = B, onde $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{m \times 1}(\mathbb{R})$ e

$$X=\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}$$
. A matriz ampliada associada ao sistema é $\left(\begin{array}{cc}A\mid B\end{array}\right)$ em $M_{m\times(n+1)}(\mathbb{R}).$

Assim, cada operação sobre as equações do sistema que não altera o conjunto solução corresponde, de maneira natural, a uma operação sobre as linhas da matriz ampliada, chamada de operação elementar.

Exemplo 18

No exemplo anterior, a sequência de matrizes ampliadas obtidas é:

No exemplo anterior, a sequência de matrizes ampliadas obtidas é:
$$\begin{pmatrix} 1 & 3 & 1 & 1 \\ 2 & 5 & -1 & 3 \end{pmatrix} \sim_1 \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & -1 & -3 & 1 \end{pmatrix} \sim_2 \begin{pmatrix} 1 & 3 & 1 & 1 \\ 0 & 1 & 3 & -1 \end{pmatrix} \sim_3$$
$$\begin{pmatrix} 1 & 0 & -8 & 4 \\ 0 & 1 & 3 & -1 \end{pmatrix}.$$

É claro que não há mais incógnitas a eliminar, pois as simplificações das correspondentes equações terminaram.

Definição 12 (Operações elementares)

Seja $A \in M_{m \times n}(\mathbb{R})$. São operações elementares sobre as linhas de A:

(I) Trocar as linhas L_i e L_j de posição, $i \neq j$, e manter as outras linhas de A. Denotamos por $L_i \leftrightarrow L_j$.

- (II) Substituir a i-ésima linha L_i por cL_i , $c\neq 0$, $c\in \mathbb{R}$, e manter as outras linhas de A. Denotamos por $L_i\to cL_i$.
- (III) Substituir a i-ésima linha L_i por L_i+cL_j , onde $i\neq j,\ c\in\mathbb{R}$, e manter as outras linhas de A. Denotamos por $L_i\to L_i+cL_j$.

Definição 13 (Matrizes equivalentes por linhas)

Duas matrizes são *equivalentes por linhas* se uma pode ser obtida da outra por uma sequência finita de operações elementares.

Proposição 7

Dois sistemas que têm matrizes ampliadas equivalentes por linhas são sistemas equivalentes, isto é, têm as mesmas soluções.

Demonstração: Consideremos o sistema AX = B. Digamos que a matriz ampliada $\begin{pmatrix} A & B \end{pmatrix}$ é equivalente por linhas à matriz $\begin{pmatrix} A' & B' \end{pmatrix}$. Portanto, os sistemas AX = B e A'X = B' podem ser obtidos um do outro por uma sequência finita de operações sobre as equações que não alteram as soluções. Logo, são sistemas equivalentes.

Definição 14 (Matriz reduzida à forma em escada ou escalonada)

Dizemos que a matriz m por n com coeficientes reais está reduzida por linhas à forma em escada ou escalonada se, e somente se,

- (a) o primeiro elemento não nulo de uma linha não nula é 1;
- (b) cada coluna que contém o primeiro elemento não nulo de alguma linha tem todos os seus outros elementos iguais a zero;
- (c) toda linha nula ocorre abaixo das linhas não nulas;
- (d) se as linhas $1, \ldots, r$, com $r \leq m$, são as linhas não nulas e o primeiro elemento não nulo da linha i ocorre na coluna k_i , então $k_1 < k_2 < \cdots < k_r$.

Se a matriz tem apenas as propriedades (a) e (b) dizemos que está reduzida por linhas.

Exemplo 19

São exemplos de matrizes reduzidas à forma em escada: $\begin{pmatrix} 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & 3 \end{pmatrix}$

$$\mathbf{e} \left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right). \text{ A matriz} \left(\begin{array}{ccccc} 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 \\ 1 & 0 & 7 & 0 & 4 \end{array} \right) \text{ está reduzida por linhas.}$$

Fazendo a sequência de operações elementares: $L_1 \leftrightarrow L_4, \; L_2 \leftrightarrow L_4, \; \text{obtemos}$

$$\left(\begin{array}{ccccc} 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 \\ 1 & 0 & 7 & 0 & 4 \end{array} \right) \sim \left(\begin{array}{cccccc} 1 & 0 & 7 & 0 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 1 & 2 & 0 & 5 \end{array} \right) \sim \left(\begin{array}{cccccc} 1 & 0 & 7 & 0 & 4 \\ 0 & 1 & 2 & 0 & 5 \\ 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 \end{array} \right), \ \mathrm{matriz \ re-}$$

Observação: Cada matriz é equivalente por linhas a uma única matriz à forma em escada.

Para resolver o sistema AX = B, construímos a matriz ampliada associada ao sistema $(A \mid B)$ e reduzimos por linhas à forma em escada, digamos $R = (A' \mid B')$. Então, o conjunto solução do sistema proposto é o mesmo de $A'\dot{X}=B'$, cujas equações são mais simples, pois eliminamos incógnitas. Vejamos alguns exemplos.

Exemplo 20
Consideremos o sistema
$$\begin{cases}
x + y + z = 6 \\
2x - y + 3z = 11 \\
4x - 3y + 2z = 0 \\
3x + y + z = 4.
\end{cases}$$

Construindo a matriz ampliada associada ao sistema e reduzindo por linhas à forma em escada, temos

$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 2 & -1 & 3 & | & 11 \\ 4 & -3 & 2 & | & 0 \\ 3 & 1 & 1 & | & 4 \end{pmatrix} \sim_{1} \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & -1 \\ 0 & -7 & -2 & | & -24 \\ 0 & -2 & -2 & | & -14 \end{pmatrix} \sim_{2} \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & -1 \\ 0 & -7 & -2 & | & & -24 \\ 0 & 1 & 1 & | & 7 \end{pmatrix} \sim_{3}$$

$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 1 & | & 6 \\ 0 & 1 & 1 & | & 7 \\ 0 & -7 & -2 & | & -24 \\ 0 & -3 & 1 & | & -1 \end{pmatrix} \sim_{4} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 1 & | & 7 \\ 0 & 0 & 5 & | & 25 \\ 0 & 0 & 4 & | & 20 \end{pmatrix} \sim_{5} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 1 & | & 7 \\ 0 & 0 & 1 & | & 5 \\ 0 & 0 & 4 & | & 20 \end{pmatrix} \sim_{6}$$

$$\sim_{7} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 2 \\ 0 & 0 & 1 & | & 5 \\ 0 & 0 & 0 & | & 0 \end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares:

em \sim_1 : $L_2 \rightarrow L_2 - 2L_1$, $L_3 \rightarrow L_3 - 4L_1$ e $L_4 \rightarrow L_4 - 3L_1$ (eliminando a incógnita $x de E_2, E_3 e E_4);$

em \sim_2 : L₄ $\rightarrow -\frac{1}{2}$ L₄ (destacando a incógnita y em E₄);

em \sim_3 : L₂ \leftrightarrow L₄ (trocando E₂ e E₄ de posição);

em \sim_4 : $L_1 \rightarrow L_1 - L_2$, $L_3 \rightarrow L_3 + 7L_2$ e $L_4 \rightarrow L_4 + 3L_1$ (eliminando a incógnita y de E_1 , E_3 e E_4);

em \sim_5 : $L_3 \rightarrow \frac{1}{5}L_3$ (destacando a incógnita z em E_3);

em \sim_6 : $L_2 \to L_2 - 5L_3$ e $L_4 \to L_4 - 4L_3$ (eliminando a incógnita z de E_2 e E_4).

A matriz ampliada associada ao sistema está reduzida por linhas à forma em

escada. O sistema dado é equivalente ao sistema
$$\begin{cases} x = -1 \\ y = 2 \\ z = 5 \\ 0x + 0y + 0z = 0, \end{cases}$$

cujo conjunto solução é $S = \{(-1,2,5)\}$. O sistema tem uma única solução.

Exemplo 21
Consideremos o sistema
$$\begin{cases}
x + y + z = 6 \\
2x - y + 3z = 11 \\
4x - 3y + 2z = 0 \\
3x + y + z = 10.
\end{cases}$$

Construindo a matriz ampliada associada ao sistema e reduzindo por linhas à forma em escada, temos

$$\begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 2 & -1 & 3 & | & 11 \\ 4 & -3 & 2 & | & 0 \\ 3 & 1 & 1 & | & 10 \end{pmatrix} \sim_{1} \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & -1 \\ 0 & -7 & -2 & | & -24 \\ 0 & -2 & -2 & | & -8 \end{pmatrix} \sim_{2} \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & -3 & 1 & | & -1 \\ 0 & -7 & -2 & | & -24 \\ 0 & 1 & 1 & | & 4 \end{pmatrix}$$

$$\sim_{3} \begin{pmatrix} 1 & 1 & 1 & | & 6 \\ 0 & 1 & 1 & | & 6 \\ 0 & 1 & 1 & | & 4 \\ 0 & -7 & -2 & | & -24 \\ 0 & -3 & 1 & | & -1 \end{pmatrix} \sim_{4} \begin{pmatrix} 1 & 0 & 0 & | & 2 \\ 0 & 1 & 1 & | & 4 \\ 0 & 0 & 5 & | & 4 \\ 0 & 0 & 4 & | & 11 \end{pmatrix} \sim_{5} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 1 & | & 7 \\ 0 & 0 & 1 & | & -7 \\ 0 & 0 & 4 & | & 11 \end{pmatrix}$$

$$\sim_{6} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 14 \\ 0 & 0 & 1 & | & -7 \\ 0 & 0 & 0 & | & 39 \end{pmatrix} \sim_{7} \begin{pmatrix} 1 & 0 & 0 & | & -1 \\ 0 & 1 & 0 & | & 14 \\ 0 & 0 & 1 & | & -7 \\ 0 & 0 & 0 & | & 1 \end{pmatrix} \sim_{8} \begin{pmatrix} 1 & 0 & 0 & | & 0 \\ 0 & 1 & 0 & | & 0 \\ 0 & 0 & 1 & | & 0 \\ 0 & 0 & 0 & | & 1 \end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares:

em \sim_1 : $L_2 \to L_2 - 2L_1$, $L_3 \to L_3 - 4L_1$ e $L_4 \to L_4 - 3L_1$ (eliminando a incógnita x de E_2 , E_3 e E_4);

em \sim_2 : $L_4 \rightarrow -\frac{1}{2}L_4$ (destacando a incógnita y em E_4);

em \sim_3 : $L_2 \leftrightarrow L_4$ (trocando E_2 e E_4 de posição);

em \sim_4 : $L_1 \rightarrow L_1 - L_2$, $L_3 \rightarrow L_3 + 7L_2$ e $L_4 \rightarrow L_4 + 3L_1$ (eliminando a incógnita y de E_1 , E_3 e E_4);

em \sim_5 : $L_3 \rightarrow L_3 - L_4$ (destacando a incógnita z em E_3);

em \sim_6 : $L_2 \rightarrow L_2 - L_3$ e $L_4 \rightarrow L_4 - 4L_3$ (eliminando a incógnita z de E_2 e E_4); em \sim_7 : L₄ $\rightarrow -\frac{1}{39}$ L₄ (fazendo o primeiro elemento não nulo de L₄ igual a 1); em \sim_8 : $L_1 \rightarrow L_1 + L_4$, $L_2 \rightarrow L_2 - 14L_4$ e $L_3 \rightarrow L_3 + 7L_4$ (fazendo nulos os elementos acima do primeiro elemento não nulo em L₄).

A matriz ampliada associada ao sistema está reduzida por linhas à forma em

escada. O sistema dado é equivalente ao sistema
$$\begin{cases} x = 0 \\ y = 0 \\ z = 0 \\ 0x + 0y + 0z = 1, \end{cases}$$

que não tem solução. Logo, o sistema proposto não tem solução

Poderíamos ter parado em \sim_6 . A equação 0x + 0y + 0z = 39 não tem solução com $x, y, z \in \mathbb{R}$, logo o sistema proposto não tem solução.

Exemplo 22
Consideremos o sistema
$$\begin{cases}
y + 3z - 2w = 2 \\
2x + y - 4z + 3w = 1 \\
2x + 3y + 2z - w = 5 \\
2y + 6z - 4w = 4.
\end{cases}$$

Construindo a matriz ampliada associada ao sistema e reduzindo por linhas

Fizemos a seguinte sequência de operações elementares:

em \sim_1 : $L_2 \to L_2 - L_1$, $L_3 \to L_3 - 3L_1$ e $L_4 \to L_4 - 2L_1$ (eliminando a incógnita $y de E_2, E_3 e E_4);$

em \sim_2 : $L_3 \rightarrow L_3 - L_2$ (eliminando equação desnecessária);

em \sim_3 : $L_2 \to \frac{1}{2}L_2$ (destacando a incógnita x em E_2);

em \sim_4 : $L_2 \leftrightarrow L_1$ (obtendo a forma em escada).

A matriz ampliada associada ao sistema está reduzida por linhas à forma em escada. O sistema dado é equivalente ao sistema $\begin{cases} x - \frac{7}{2}z + \frac{5}{2}w = -\frac{1}{2} \\ y + 3z - 2w = 2. \end{cases}$

As incógnitas ${\tt x}$ e ${\tt y}$ dependem dos valores de ${\tt z}$ e ${\tt w}$. O conjunto solução do sistema proposto é

$$S = \left\{ \left(\frac{7}{2}z - \frac{5}{2}w - \frac{1}{2}, -3z + 2w + 2, z, w \right) ; z, w \in \mathbb{R} \right\}.$$

O sistema tem uma infinidade de soluções.

Exemplo 23
Consideremos o sistema
$$\begin{cases}
x_1 - x_2 + x_3 + x_4 - x_5 = 0 \\
x_1 + x_2 + x_3 + x_4 + x_5 = 0 \\
x_1 + x_2 - x_3 - x_4 + x_5 = 0 \\
x_1 - x_2 + 3x_3 + 3x_4 - x_5 = 0.
\end{cases}$$

Como B = 0, não é necessário construir a matriz ampliada. Resolvemos o sistema reduzindo por linhas a matriz A associada ao sistema.

Fizemos a seguinte sequência de operações elementares para obtermos a matriz R, reduzida à forma em escada:

em \sim_1 : $L_2 \to L_2 - L_1$, $L_3 \to L_3 - L_1$ e $L_4 \to L_4 - L_1$ (eliminando a incógnita κ_1 de E_2 , E_3 e E_4);

em \sim_2 : $L_2 \leftrightarrow \frac{1}{2}L_1$ (destacando a incógnita x_2 em E_2);

em \sim_3 : $L_1 \to L_1 + L_2 \ \mathrm{e} \ L_3 \to L_3 - 2L_2$ (eliminando a incógnita $x_2 \ \mathrm{de} \ E_1 \ \mathrm{e} \ E_3$);

em \sim_4 : $L_3 \leftrightarrow -\frac{1}{2}L_3$ (destacando a incógnita x_3 em E_2);

em \sim_5 : $L_1 \to L_1 - L_3$ e $L_4 \to L_4 - 2L_3$ (eliminando a incógnita x_3 de E_1 e E_4).

Reescrevendo as equações temos: $x_1=0,\ x_2+x_5=0$ e $x_3+x_4=0$. O conjunto solução é

$$S = \{(0, x_2, x_3, -x_3, -x_2) ; x_2, x_3 \in \mathbb{R}\}.$$

Observação: Sejam $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{m \times 1}(\mathbb{R})$ e X matriz das n incógnitas.

(a) O sistema AX = 0 sempre admite solução, pois pelo menos $x_1 = \cdots =$ $x_n=0$ é solução, isto é, $(0,0,\dots,0)$ é uma solução do sistema.

(b) Seja $R = (A' \mid B')$ a matriz reduzida à forma em escada equivalente por linhas a $(A \mid B)$. O sistema AX = B admite solução se, e somente se, cada linha nula de A' corresponde a uma linha nula de R.

Definição 15 (Classificação das soluções do sistema AX = B)

O sistema AX = B se classifica, de acordo com as soluções, como:

- (a) possível e determinado, se tem uma única solução;
- (b) possível e indeterminado, se tem uma infinidade de soluções;
- (c) impossível, se não tem solução.

Quando B = 0, o sistema AX = 0, chamado sistema homogêneo, é sempre possível. Nesse caso, só podem ocorrer (a) ou (b).

Definição 16 (Posto de uma matriz)

O posto de uma matriz $A \in M_{m \times n}(\mathbb{R})$ é o número de linhas não nulas de R, a matriz reduzida por linhas à forma em escada equivalente a A.

Exemplo 24

As matrizes A e B são matrizes reduzidas à forma em escada:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{pmatrix} e B = \begin{pmatrix} 1 & 0 & 0 & 0 & 4 \\ 0 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}. \text{ Temos posto}(A) = 2 e$$

posto(B) = 3.

A matriz $C = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix}$ tem posto 2, pois reduzindo por linhas temos:

$$C = \begin{pmatrix} 1 & 2 \\ 1 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = R.$$

Logo, posto(C) = 2, o número de linhas não nulas de R.

Teorema 1

Teorema 1
Seja o sistema
$$AX = B$$
, onde $A \in M_{m \times n}(\mathbb{R})$, $B \in M_{m \times 1}(\mathbb{R})$ e $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$.

Então:

(a) O sistema de m equações lineares a n incógnitas admite solução se, e

somente se, o posto da matriz ampliada ($A \mid B$) é igual ao posto da matriz dos coeficientes A.

- (b) Se as duas matrizes têm o mesmo posto ${\bf r}$ e ${\bf r}={\bf n},$ então a solução é única.
- (c) Se as duas matrizes têm o mesmo posto r e r < n, podemos escolher n-r incógnitas e haverá r incógnitas dadas em função das n-r escolhidas. Dizemos que o grau de liberdade é n-r.

Demonstração: (a) Seja R = $(A' \mid B')$ a matriz reduzida à forma em escada equivalente a $(A \mid B)$. O sistema AX = B tem solução se, e somente se, cada linha nula de A' corresponde a uma linha nula de R se, e somente se, $posto(A) = posto(A') = posto(R) = posto(A \mid B)$.

- (b) Nesse caso, a matriz $R = \left(\begin{array}{c|c} A' & B' \end{array} \right) = \left(\begin{array}{c|c} I_n & B'' \\ \hline 0_1 & 0_2 \end{array} \right)$, onde 0_1 e 0_2 são as matrizes nulas $(m-n) \times n$ e $(m-n) \times 1$, logo a solução é X = B'' e é unica.
- (c) Digamos que $1 \leq k_1 < \cdots < k_r \leq n$, com r < n, são as colunas onde ocorre o primeiro elemento não nulo de cada linha não nula de A'. Então, as r incógnitas x_{k_j} , $j=1,\ldots,r$, podem ser obtidas em função dos valores das outras n-r incógnitas.

se, e somente se, A'X = B' é impossível.

 $\mathrm{posto}(A') < \mathrm{posto}(R)$

Exemplo 25

Verifique que no Exemplo 23 r = posto(A) = posto(A|0) = 3 < 5 = n e o grau de liberdade é n - r = 5 - 3 = 2. O sistema é possível e indeterminado. As soluções dependem dos valores atribuídos a duas das incógnitas.

$$\begin{pmatrix} 1 & 0 & -1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 3 & -6 & 1 & 2 \\ 0 & 0 & 2 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{3} \begin{pmatrix} 1 & 0 & -1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 1 \\ 0 & 0 & 1 & -2 & -1 & 2 \\ 0 & 0 & 2 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{4} \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & -4 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{6} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 & 2 & -3 \\ 0 & 0 & 1 & -2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{6} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 & 2 & -3 \\ 0 & 0 & 1 & -2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{6} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 & 2 & -3 \\ 0 & 0 & 1 & -2 & -1 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \sim_{6} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 5 & 0 & -1 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} = R = \begin{pmatrix} A' & B' \end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares sobre as linhas da matriz ampliada:

em \sim_1 : L₅ \rightarrow L₅ - L₁ (eliminando a incógnita x de E₅);

em \sim_2 : $L_1 \rightarrow L_1 - L_2$, $L_3 \rightarrow L_3 + L_2$, $L_4 \rightarrow L_4 - 2L_2$ e $L_5 \rightarrow L_5 - L_2$ (eliminando a incógnita y de E₁, E₃, E₄ e E₅);

em \sim_3 : L₃ \rightarrow L₃ - L₄ (destacando a incógnita z);

em \sim_4 : $L_1 \rightarrow L_1 + L_3$, $L_2 \rightarrow L_2 - 2L_3$, $L_4 \rightarrow L_4 - 2L_3$ (eliminando a incógnita $z de E_1, E_2 e E_4);$

em \sim_5 : $L_4 \rightarrow \frac{1}{4}L_4$ (destacando a incógnita t em E_4);

em \sim_6 : $L_2 \to L_2 - 2L_4$ e $L_3 \to L_3 + L_4$ (eliminando a incógnita t de E_2 e E_3).

Como r = posto(R) = posto(A') = 4 < 5 = n, então o sistema é possível e indeterminado e o grau de liberdade é n-r=5-4=1. Reescrevendo as equações do sistema, temos: x = 2, y + 5w = -1, z - 2w = 1 e t = -1. O conjunto solução é

$$S = \{(2, -5w - 1, 2w + 1, w, -1) ; w \in \mathbb{R}\}.$$

Exemplo 27

Vamos determinar condições sobre $a, b, c \in \mathbb{R}$ para que o sistema

$$\begin{cases} 5x - 4y = a \\ -4x + 2y = b \\ -3x + 3y = c \end{cases}$$
tenha solução.

Vamos reduzir por linhas a matriz ampliada associada ao sistema.

$$\begin{pmatrix}
5 & -4 & a \\
-4 & 2 & b \\
-3 & 3 & c
\end{pmatrix}
\sim_{1}
\begin{pmatrix}
1 & -2 & a+b \\
-4 & 2 & b \\
-3 & 3 & c
\end{pmatrix}
\sim_{2}
\begin{pmatrix}
1 & -2 & a+b \\
0 & -6 & 4a+5b \\
0 & -3 & 3a+3b+c
\end{pmatrix}
\sim_{3}$$

$$\begin{pmatrix}
1 & -2 & a+b \\
0 & 0 & -3 & 3a+3b+c
\end{pmatrix}
\sim_{3}$$

$$\begin{pmatrix}
1 & -2 & a+b \\
0 & 0 & -2a-b-2c \\
0 & -3 & 3a+3b+c
\end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares:

em \sim_1 : $L_1 \to L_1 + L_2$ (destacando a incógnita x em E_1);

em \sim_2 : $L_2 \to L_2 + 4L_1$ e $L_3 \to L_3 + 3L_1$ (eliminando a incógnita x em E_2 e E_3);

em \sim_3 : $L_2 \to L_2 - 2L_3$ (eliminando a incógnita y em E_2).

Podemos parar o procedimento após \sim_3 . O sistema proposto tem solução se, e somente se, o posto da matriz ampliada é igual a 2 (o posto da matriz associada ao sistema) se, e somente se, -2a - b - 2c = 0.

Como 2 = r = n, vemos que nesse caso o sistema é determinado.

Exemplo 28

Vamos determinar condições sobre $\mathfrak{a} \in \mathbb{R}$ para que o sistema

$$\begin{cases} x+y+2z = a \\ 4x+3y+az = 2 \\ 2x+3y-z = 1 \end{cases}$$

- (i) não tenha solução;
- (ii) tenha uma única solução;
- (iii) tenha uma infinidade de soluções.

Vamos reduzir por linhas a matriz ampliada associada ao sistema.

$$\begin{pmatrix} 1 & 1 & 2 & a \\ 4 & 3 & a & 2 \\ 2 & 3 & -1 & 1 \end{pmatrix} \sim_{1} \begin{pmatrix} 1 & 1 & 2 & a \\ 0 & -1 & a - 8 & 2 - 4a \\ 0 & 1 & -5 & 1 - 2a \end{pmatrix} \sim_{2}$$

$$\begin{pmatrix} 1 & 1 & 2 & a \\ 0 & 1 & -5 & 1 - 2a \\ 0 & -1 & a - 8 & 2 - 4a \end{pmatrix} \sim_{3} \begin{pmatrix} 1 & 0 & 7 & -1 + 3a \\ 0 & 1 & -5 & 1 - 2a \\ 0 & 0 & a - 13 & 3 - 6a \end{pmatrix}.$$

Fizemos a seguinte sequência de operações elemntares:

em \sim_1 : $L_2 \to L_2 - 4L_1$ e $L_3 \to L_3 - 2L_1$ (eliminando a incógnita x em E_2 e E_3);

em \sim_2 : $L_2 \leftrightarrow L_3$ (destacando a incógnita y em E_2);

em \sim_3 : $L_1 \to L_1 - L_2$ e $L_3 \to L_3 + L_2$ (eliminando a incógnita y em E_1 e E_3).

Para prosseguirmos precisamos saber qual o valor de a-13.

Se $a - 13 \neq 0$, então $A \sim I_3$ e o sistema é possível e determinado.

Se $\alpha - 13 = 0$, então $3 - 6\alpha = 3 - 78 = -75 \neq 0$ e o sistema é impossível.

Portanto, não há valor de $\mathfrak{a} \in \mathbb{R}$ tal que o sistema seja possível e indeterminado.

Antes de apresentar o algoritmo para calcular a inversa, se existir, faremos algumas considerações para justificar o procedimento.

Definição 17

Seja $A \in M_{n \times n}(\mathbb{R})$. Dizemos que A tem *inversa* à esquerda D se, e somente se, existe $D \in M_{n \times n}(\mathbb{R})$, tal que $DA = I_n$. Dizemos que A tem *inversa* à direita C se, e somente se, existe $C \in M_{n \times n}(\mathbb{R})$, tal que $AC = I_n$.

A seguinte Proposição justificará o algoritmo para determinar se A tem ou não inversa e calculá-la, caso exista.

Proposição 8

Seja $A \in M_{n \times n}(\mathbb{R})$.

- (a) Se A tem inversa à esquerda D e inversa à direita C, então D = C.
- (b) A é equivalente por linhas à matriz I_n se, e somente se, o sistema AX = B tem uma única solução, para todo $B \in M_{n \times 1}(\mathbb{R})$.
- (c) A tem inversa à esquerda D se, e somente se, A tem inversa à direita C. Demonstração:
- (a) Suponhamos que $D \cdot A = I_n$ e $A \cdot C = I_n$. Então, $D = D \cdot I_n = D \cdot (A \cdot C) = (D \cdot A) \cdot C = I_n \cdot C = C.$

(b)

 $(\Longrightarrow:)$ Suponhamos que A seja equivalente por linhas a I_n . Resolva o sistema AX=B, onde $B\in M_{n\times 1}(\mathbb{R})$, fazendo a mesma sequência de operações elementares usada para reduzir por linhas A a I_n .

Então, $(A \mid B) \sim (I_n \mid B')$ e o sistema tem as mesmas soluções de $I_n X = B'$, que é possível e determinado.

(\Leftarrow :) Suponhamos que AX = B tenha uma única solução, para algum B em $M_{n\times 1}(\mathbb{R})$. Seja $R = \begin{pmatrix} A' \mid B' \end{pmatrix}$ a matriz reduzida à forma em escada equivalente a $\begin{pmatrix} A \mid B \end{pmatrix}$. Então, r = posto(A') = posto(R) = n. Como $A' \in M_{n\times n}(\mathbb{R})$, então A' não tem linha nula e, sendo a reduzida à forma em escada equivalente a A, a única possibilidade é $A' = I_n$.

Para a recíproca é suficiente que AX = B seja possível e determinado para algum B.

(c)

(⇒:) Suponhamos que A tenha uma inversa à esquerda D. Então, o sistema AX = 0 tem uma única solução. De fato,

$$X = I_n X = (DA)X = D(AX) = D \cdot 0 = 0.$$

Pelo item (b), A é equivalente por linhas a $I_{\mathfrak{n}}$ e os sistemas $AX=E_{\mathfrak{j}}$ têm uma única solução $C_j \in M_{n \times 1}(\mathbb{R})$, para cada $j = 1, \ldots, n$, onde $E_j = (e_{i1})$ em $M_{n\times 1}(\mathbb{R})$, é definida por

$$e_{i1} = \left\{ \begin{array}{ll} 0, & \mathrm{se} \ i \neq j \\ 1, & \mathrm{se} \ i = j. \end{array} \right.$$

Definimos $C=(C_1\ C_2\cdots C_n)\in M_{n\times n}(\mathbb{R})$ como a matriz cujas colunas são C_j . Então, $AC=(AC_1\ AC_2\cdots AC_n)=(E_1\ E_2\cdots E_n)=I_n$. Logo, C é uma inversa à direita de A. Note que pelo item (a) C = D.

 $(\Leftarrow:)$ Suponhamos que C seja uma inversa à direita de A. Então, $AC = I_n$. Esta igualdade significa que A é uma inversa à esquerda de C. Pelo que foi feito acima, A também é uma inversa à direita de C, portanto $CA = I_n$.

Algoritmo para calcular a inversa de $A \in M_{n \times n}(\mathbb{R})$

Passo 1: Construir a matriz "ampliada" ($A \mid I_n$).

Passo 2: Determinar a matriz reduzida por linhas à forma em escada ($A' \mid B'$) equivalente a $(A \mid I_n)$.

Passo 3: Comparar $A' \in I_n$.

Se $A' \neq I_n$, então A não é invertível. Se $A' = I_n$, então A é invertível e B' = $C = A^{-1}$.

Justificativa: O algoritmo, quando A tem inversa, determina a inversa à direita. Os sistemas $AX = E_1$, $AX = E_2$, ..., $AX = E_n$, cuja matriz associada é A, podem ser resolvidos, simultaneamente, usando a mesma sequência de operações elementares, reduzindo por linhas à forma em escada a matriz

$$\left(\begin{array}{c|c}A \mid E_1 E_2 \cdots E_n\end{array}\right) = \left(\begin{array}{c|c}A \mid I_n\end{array}\right).$$

Quando $A' = I_n$, os sistemas têm uma única solução e a solução de $AX = E_i$ é a j-ésima coluna de B'. Assim, a inversa de A é B'. Quando $A' \neq I_n$, A não tem inversa.

Exemplo 29
Vamos determinar, caso exista, a inversa de $A = \begin{pmatrix} 1 & 0 & I \\ 1 & 1 & 1 \\ 2 & 1 & 2 \end{pmatrix}$.

Reduzindo por linhas a matriz $(A|I_3)$, obtemos:

Para a recíproca de (b) é suficiente a validade da hipótese para B = 0.

Fizemos a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_2 \to L_2 - L_1 \in L_3 \to L_3 - 2L_1$;

em
$$\sim_2$$
: $L_3 \rightarrow L_3 - L_2$.

Como $A \not\sim I_3$, então A não é invertível.

Exemplo 30 Vamos determinar, caso exista, a inversa de $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix}$.

Reduzindo por linhas a matriz $(A|I_3)$, obtemos:

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 \\
2 & 2 & 1 & 0 & 0 & 1
\end{pmatrix}
\sim_{1}
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 2 & -1 & -2 & 0 & 1
\end{pmatrix}
\sim_{2}$$

$$\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & -1 & 0 & -2 & 1
\end{pmatrix}
\sim_{3}
\begin{pmatrix}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 2 & -1
\end{pmatrix}
\sim_{4}$$

$$\begin{pmatrix}
1 & 0 & 0 & 1 & -2 & 1 \\
0 & 1 & 0 & -1 & 1 & 0 \\
0 & 0 & 1 & 0 & 2 & -1
\end{pmatrix}.$$

Fizemos a seguinte sequência de operações elementares:

em
$$\sim_1$$
: $L_2 \to L_2 - L_1 \in L_3 \to L_3 - 2L_1$;

em
$$\sim_2$$
: L₃ \to L₃ $-$ 2L₂;

em
$$\sim_2$$
: $L_3 \leftrightarrow -L_3$;

em
$$\sim_4$$
: $L_1 \rightarrow L_1 - L_3$.

$$\mathrm{Como}\ A \sim I_3,\ \mathrm{ent\ \tilde{a}o}\ A\ \ \acute{\mathrm{e}}\ \mathrm{invert\ \'{i}vel}\ \mathrm{e}\ A^{-1} = \left(\begin{array}{ccc} 1 & -2 & 1 \\ -1 & 1 & 0 \\ 0 & 2 & -1 \end{array}\right).$$

Exercícios

1. Determine, se possível, o conjunto solução de cada um dos sistemas lineares:

(a)
$$\begin{cases} 3x + y + 4z = -1 \\ 5x - 2y + 3z = 2 \\ 4x - 3y + z = 3 \end{cases}$$
 (b)
$$\begin{cases} -3x + 3y + 2z + w = -2 \\ 5x + 2y + z - 2w = 1 \\ 2x + 5y + 3z - w = -1 \end{cases}$$

(c)
$$\begin{cases} x - z = 0 \\ y - w = 0 \end{cases}$$
 (d)
$$\begin{cases} x - y - 2z - w = 0 \\ 3x + y + 3z + w = 0 \\ x - y - z - 5w = 0 \end{cases}$$

(c)
$$\begin{cases} x - z = 0 \\ y - w = 0 \end{cases}$$
 (d)
$$\begin{cases} x - y - 2z - w = 0 \\ 3x + y + 3z + w = 0 \\ x - y - z - 5w = 0 \end{cases}$$
 (e)
$$\begin{cases} 4x - 2y - 7z = 0 \\ 2x - 7y - 6z = 0 \\ 3x + 5y - 2z = 0 \end{cases}$$
 (f)
$$\begin{cases} x + y - 2z + w = 0 \\ 2x - 3z + 4w = 0 \\ 3x - y + w = 0 \end{cases}$$

$$(g) \left\{ \begin{array}{l} x - y - 2z + w = 0 \\ 2x + 2y - 3z + 6w - t = 0 \\ x - 2y - z + 2w - t = 0 \\ 3x + y - 4z + 7w - t = 0 \end{array} \right.$$
 (h)
$$\left\{ \begin{array}{l} x - 2y + 3w = 3 \\ 3x - 4y - 2z = 0 \\ 2x - 4y + 2w = 2 \\ x + y - 3z + w = 1 \end{array} \right.$$

(i)
$$\begin{cases} x + 2y + z = 2 \\ 2x - 2z + w = 6 \\ 4y + 3z + 2w = -1 \\ -x + 6y - z - w = 2 \end{cases}$$
 (j)
$$\begin{cases} x + 2y - w = 2 \\ x + 2z - w = 2 \\ x + 2y + 2z - w = 4 \\ 3x + 4y + 4z - 4w = 8 \end{cases}$$

(k)
$$\begin{cases} x+y+z+3w+t=1 \\ y+2z+w=1 \\ -y+z-7w+t=1 \\ 2y+6z-2w+2t=2 \end{cases}$$
 (l)
$$\begin{cases} 2x+y+z+w=2 \\ x+y+z=2 \\ 4x+y+z+3w=2 \\ x+z=1 \end{cases}$$

(m)
$$\begin{cases} x - y + z + w - t = 0 \\ x + y + z + w + t = 0 \\ x + y - z - w + t = 0 \\ x - y + 3z + 3w - t = 0 \end{cases}$$
 (n)
$$\begin{cases} 2x + 4y - 8z + 16w = 32 \\ 3x + 6y - 12z + 24w = 48 \\ 2y + 2z + 10w = 16 \\ 3x + 8y - 10z + 30w = 40 \end{cases}$$

$$\text{2. Sejam } A \in M_{m \times n}(\mathbb{R}), \, 0, B \in M_{m \times 1}(\mathbb{R}), \, X = \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right).$$

- (a) Mostre que se X_0 é uma solução do sistema AX=0 e X_1 é uma solução de AX = B, então $X_0 + X_1$ é uma solução de AX = B.
- (b) Mostre que se X_1 e X_2 são soluções de AX = B, então $X_1 X_2$ é solução de AX = 0.
- (c) Mostre que toda solução de AX = B é a soma de uma solução particular X_P de AX = B com uma solução do sistema homogêneo associado AX = 0.
- 3. Determine as condições sobre a, b, c para que o sistema admita solução:

(a)
$$\begin{cases} x + 8y - 8z = a \\ 5x + 4y - 2z = b \\ 7x - 16y + 20z = c \end{cases}$$
 (b)
$$\begin{cases} x + y + 2z = a \\ 2x + 3y - z = b \\ 4x + 5y + 3z = c \end{cases}$$
 (c)
$$\begin{cases} 2x + 3y + 5z = a \\ -x + 7z = b \\ x + y + z = c \end{cases}$$

- 4. Determine os valores do número real k, caso existam, para que os sistemas admitam:
 - (i) uma única solução
 - (ii) mais de uma solução
 - (iii) nenhuma solução

(a)
$$\begin{cases} x + y + z = 0 \\ x + y + kz = 2 \\ kx + 2y + z = 0 \end{cases}$$
 (b)
$$\begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y + z = 1 \end{cases}$$
 (c)
$$\begin{cases} x + y + z = 2 \\ x + 2y + 3z = 1 \\ y + 2z = k \end{cases}$$
 (d)
$$\begin{cases} kx + y + z = 1 \\ x + ky + z = 1 \\ x + y + kz = 1 \end{cases}$$
 (e)
$$\begin{cases} x - 3z = -3 \\ 2x + ky - z = -2 \\ x + 2y + kz = 1 \end{cases}$$
 (f)
$$\begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y + z = 1 \end{cases}$$
 (d)
$$\begin{cases} kx + y + kz = 1 \\ x + ky + z = 1 \\ x + ky + z = 1 \end{cases}$$
 (e)
$$\begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y + z = 1 \end{cases}$$
 (f)
$$\begin{cases} x + y + kz = 2 \\ 3x + 4y + 2z = k \\ 2x + 3y + z = 1 \end{cases}$$
 (f)
$$\begin{cases} x + y + kz = 2 \\ x + 2y + kz = 1 \end{cases}$$
 (f)
$$\begin{cases} x + y + kz = 0 \\ x + 2y + kz = 1 \end{cases}$$

5. Determine, caso exista, a inversa da matriz A:

(a)
$$\begin{pmatrix} 2 & 5 & -1 \\ 4 & -1 & 2 \\ 6 & 4 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 1 & 1 & -1 \\ 3 & 1 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 3 & 2 & 1 & 0 \\ 4 & 3 & 2 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} -3 & 4 & 5 \\ 0 & 1 & 2 \\ 3 & -5 & 4 \end{pmatrix}$

6. Determine A, sabendo que $A^{-1} = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$.