

Project Documentation mc_foc_sl_fip_dspic33ck_mclv2

Contents

	X2C Model	3
1	Version Information 1.1 X2C	
2	Model Structure 2.1 Xcos Model	3 3 4
3	Model Parameter 3.1 Sample Time	
4	Mask Parameter	10
II	Frame Program Documentation	19
5	Data Structure Index 5.1 Data Structures	19 19
6	Data Structure Documentation 6.1 _TMR_OBJ_STRUCT Struct Reference	
7	Example Documentation 7.1 C:/LCM/X2C/_WorkApplications/mc_foc_sl_fip_dspic33ck_mclv2/mcc_generate 7.2 C:/LCM/X2C/_WorkApplications/mc_foc_sl_fip_dspic33ck_mclv2/mcc_generate 7.3 C:/LCM/X2C/_WorkApplications/mc_foc_sl_fip_dspic33ck_mclv2/mcc_generate	ed_files/system.h 20
Ш	Used X2C-Blocks	22
8	Project Specific Blocks	22
9	Internal Library Blocks Add AutoSwitch BEMF_calc Clark_Park Constant Delay Gain I ManualSwitch Mult Not	25 27 32 35 38 40 42 45 48 50

Park_Clark_inv																							5/
Park																							60
RateLimiter																							62
Saturation																							65
Sequencer																							
Sign																							70
Sin3Gen																							72
SinGen																							
Sub																							
TypeConv																							
ul																							
uSub				_	_			_	_		_		_		_			_	_		_	_	86

Part I

X2C Model

1 Version Information

1.1 X2C

• X2C: Version 6.2.1993

1.2 Operating System

• OS: Windows 8 6.2

1.3 Scilab

• Scilab: Version 5.5.2.1427793548

• Java: Version 1.6.0_41

2 Model Structure

2.1 Xcos Model

Figure 1: mc_foc_sl_fip_dspic33ck_mclv2

2.2 Subsystems

Figure 2: mc_foc_sl_fip_dspic33ck_mclv2_startup

Figure 3: mc_foc_sl_fip_dspic33ck_mclv2_speedPI

Figure 4: mc_foc_sl_fip_dspic33ck_mclv2_MotorModel

Figure 5: mc_foc_sl_fip_dspic33ck_mclv2_FOC_main

Figure 6: mc_foc_sl_fip_dspic33ck_mclv2_4

Figure 7: mc_foc_sl_fip_dspic33ck_mclv2_3

Figure 8: mc_foc_sl_fip_dspic33ck_mclv2_2

Figure 9: mc_foc_sl_fip_dspic33ck_mclv2_1

Figure 10: mc_foc_sl_fip_dspic33ck_mclv2_0

3 Model Parameter

3.1 Sample Time

Sample Time	
T_S	$100\mu s$

3.2 Scilab Parameter

```
// Scilab script file to store Model parameters
   // This file is automatically executed by initProject.sce
3 // initScript.sce and this script is executed automatically, if model is opened from MPLAB X MCC
5 // Simulation settings
6 endTime = 5;
7 stepSize = 1.0E-2;
8 X2C_sampleTime =50E-6;
9
10 // CODE GENERATION PARAMETERS
11
12 // Speed PI
13 SpeedKi = 1;
14 SpeedKi = 0.5;
15
16 // Current PI
17 PIFluxKp = 0.8;
18 PIFluxKi = 0.5;
19
PITorqueKp = 0.8;
PITorqueKi = 0.5;
22
23 // PLL parameters
24 MotorLs = 0.41;
25 MotorRs = 0.35;
26 U_DCLINK = 24;
27 I_MAX = 3.95;
28 BEMF_D_UDC = 0.65;
29 PLL_INT = 800;
30
31
33
34
35
36
37
38
39 // POWERSTAGE DATA
   Vbus = 24;
40
41 Rshunt = 0.025;
42 Igain = -15;
43
44 // MOTORDATEN
Nm_{ozin} = 7.061552e-3;
46 KRPM_rads = 0.060/2/%pi;
47
48 Rs = 4.03;
49 Ld = 4.60e-3;
Lq = 4.60e - 3;
51 Kell = 7.24;
52 	 n_p = 5;
                     // number of polepairs
53
54
J = 0.000628 * Nm_ozin; // inertia
cf = 0;
57 \quad chy = 0;
d = 0;
59 ced = 0;
```

```
ded = 0;
61
62 alphaCU = 0;
63 alphaPM = 0;
64 Temp_nom = 25;
65 omega_m0 = 0;
66 theta_m0 = -0.5;
67 psi_pm = Kell/sqrt(3)*60/(2*%pi*1000)/n_p;
68 theta_r0 = theta_m0*2*%pi*n_p;
omega_r0 = omega_m0/60*2*%pi*n_p;
70
71
72
73
74
75
76
77
78
79
    // Umrechnen auf Rechnenwerte fuer Modell
80
81 Ld = Ld/2;
82   Lq = Lq/2;
83   Rs = Rs/2;
84
85
86
87
88 // initalize input for simulation
89 exec("./gen_inputs.sci");
90 exec("./qei_sim.sce");
91 exec("./qei_sim2.sce");
```

Listing 1: ModelParameter.sce

4 Mask Parameter

Constant: Constant3								
Value	0.0							
Used Implementation	Bool							

Delay: Delay1	
ts_fact	1.0
Used Implementation	FiP16

Delay: Delay2									
ts_fact	1.0								
Used Implementation	FiP16								

Clarke_Park_MCHP: Clarke_Park_MCHP						
Used Implementation	FiP16					

Constant: Constant								
Value	0.2							
Used Implementation	FiP16							

Constant: Constant1								
Value	1.0							
Used Implementation	FiP16							

Gain: Gain									
Gain	0.5								
Used Implementation	FiP16								

Gain: Gain1	
Gain	0.98
Used Implementation	FiP16

Gain: Gain2									
Gain	0.98								
Used Implementation	FiP16								

ManualSwitch: ManualSwitch	
Toggle	1.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch1	
Toggle	1.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch2	
Toggle	1.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch3	
Toggle	1.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch4	
Toggle	1.0
Used Implementation	FiP16

Not: Not	
Used Implementation	Bool

Constant: OpenLoop_Vd	
Value	0.0
Used Implementation	FiP16

Constant: OpenLoop_Vq	
Value	0.3
Used Implementation	FiP16

PI: PI_flux	
Кр	0.8
Ki	0.5
ts_fact	1.0
Used Implementation	FiP16

PI: PI_torque	
Кр	0.8
Ki	5.0
ts_fact	1.0
Used Implementation	FiP16

BEMF_MCHP: BEMF_MCHP	
Ls	0.1
Rs	0.1
U0	24.0
10	1.0
ts_fact	1.0
CurrentSampleFactor	1.0
Used Implementation	FiP16

Constant: Constant1	
Value	0.0
Used Implementation	FiP16

Delay: Delay1	
ts_fact	1.0
Used Implementation	FiP16

PT1: Edfilter	
V	1.0
fc	400.0
ts_fact	1.0
method	zoh
Used Implementation	FiP16

PT1: Eqfilter	
V	1.0
fc	400.0
ts_fact	1.0
method	zoh
Used Implementation	FiP16

Park_MCHP: Park_MCHP	
Used Implementation	FiP16

Add: Add	
Used Implementation	FiP16

AutoSwitch: AutoSwitch	
Thresh_up	0.0
Thresh_down	0.0
Used Implementation	FiP16

Gain: Gain	
Gain	0.65
Used Implementation	FiP16

Sub: Sub	
Used Implementation	FiP16

ul: ul	
Ki	800.0
ts_fact	1.0
Used Implementation	FiP16

Park_Clarke_inv_SVM_MCHP: Park_Clarke_inv_SVM_MCHP	
Used Implementation	FiP16

Saturation: Saturation	
max	0.98
min	-0.98
Used Implementation	FiP16

Saturation: Saturation1	
max	0.98
min	-0.98
Used Implementation	FiP16

Sin3Gen: Sin3Gen	
fmax	100.0
Offset	0.0
ts_fact	1.0
Used Implementation	FiP16

Sub: Sub_flux	
Used Implementation	FiP16

Sub: Sub_torque	
Used Implementation	FiP16

	Gain: Gain	
	Gain	0.8
Ī	Used Implementation	FiP16

ManualSwitch: ManualSwitch	
Toggle	1.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch1	
Toggle	1.0
Used Implementation	FiP16

Not: Not	
Used Implementation	Bool

Constant: Constant	
Value	0.05
Used Implementation	FiP16

Constant: Constant1	
Value	0.0
Used Implementation	FiP16

ManualSwitch: ManualSwitch	
Toggle	0.0
Used Implementation	FiP16

PI: PI_speed	
Кр	1.0
Ki	0.5
ts_fact	10.0
Used Implementation	FiP16

RateLimiter: RateLimiter	
Tr	0.0010
Tf	0.0010
ts_fact	10.0
Used Implementation	FiP16

Constant: Speed_Init	
Value	1.0
Used Implementation	Bool

Constant: Speed_Init1	
Value	0.0
Used Implementation	FiP16

Sub: Speed_error	
Used Implementation	FiP16

Add: Add	
Used Implementation	FiP16

AutoSwitch: AutoSwitch	
Thresh_up	0.0
Thresh_down	0.0
Used Implementation	FiP16

Constant: Constant	
Value	1.0
Used Implementation	FiP16

Constant: Constant1	
Value	0.01
Used Implementation	FiP16

Constant: Constant2	
Value	1.0
Used Implementation	Bool

Constant: Constant3	
Value	0.0
Used Implementation	FiP16

Gain: Gain	
Gain	-1.0
Used Implementation	FiP16

RateLimiter: RateLimiter	
Tr	0.0
Tf	0.0
ts_fact	10.0
Used Implementation	FiP16

SinGen: SinGen	
fmax	100.0
Offset	0.0
Phase	0.0
ts_fact	10.0
Used Implementation	FiP16

Constant: Constant1	
Value	0.0
Used Implementation	FiP16

Constant: Constant2	
Value	0.0
Used Implementation	FiP16

Constant: Constant5	
Value	1.0
Used Implementation	Bool

AutoSwitch: Flux_select	
Thresh_up	0.5
Thresh_down	0.5
Used Implementation	FiP16

AutoSwitch: Flux_select1	
Thresh_up	0.5
Thresh_down	0.5
Used Implementation	FiP16

RateLimiter: IdRateLimiter	
Tr	0.5
Tf	3.0
ts_fact	1.0
Used Implementation	FiP16

AutoSwitch: Iq_select	
Thresh_up	0.5
Thresh_down	0.5
Used Implementation	FiP16

PI: PI	
Кр	0.05
Ki	0.0050
ts_fact	1.0
Used Implementation	FiP16

uSub: PosError	
Used Implementation	FiP16

AutoSwitch: PosSwitch	
Thresh_up	0.5
Thresh_down	0.5
Used Implementation	FiP16

Constant: Ramp_Up_Current	
Value	0.3
Used Implementation	FiP16

Constant: Constant4	
Value	1.0
Used Implementation	FiP16

Constant: I_Init_Zero	
Value	0.0
Used Implementation	FiP16

Constant: I_Init_Zero1	
Value	0.0
Used Implementation	FiP16

Mult: Mult	
Used Implementation	FiP16

ul: Ramp_Up_PositionGenerator	
Ki	100.0
ts_fact	1.0
Used Implementation	FiP16

Saturation: Saturation	
max	2.0
min	-2.0
Used Implementation	FiP16

Sign: Sign	
Used Implementation	FiP16

I: Speed_Ramp_UP_I	
Ki	1.0
ts_fact	1.0
Used Implementation	FiP16

TypeConv: TypeConv	
Used Implementation	FiP16_Bool

Sequencer: Sequencer	
Delay1	0.2
Delay2	1.0
Delay3	2.2
Delay4	3.0
ts_fact	1.0
Used Implementation	FiP16

TypeConv: TypeConv	
Used Implementation	FiP16_Bool

TypeConv: TypeConv1	
Used Implementation	FiP16_Bool

TypeConv: TypeConv2	
Used Implementation	FiP16_Bool

Part II

Frame Program Documentation

5 Data Structure Index

5.1 Data Structures

Here are the data structures with brief descriptions:

_TMR_OBJ_STRUCT

19

6 Data Structure Documentation

6.1 TMR OBJ STRUCT Struct Reference

6.1.1 Detailed Description

TMR1 Generated Driver API Source File

@Company Microchip Technology Inc.

@File Name tmr1.c

@Summary This is the generated source file for the TMR1 driver using PIC24 / dsPIC33 / PIC32MM MCUs

@Description This source file provides APIs for driver for TMR1. Generation Information: Product Revision: PIC24 / dsPIC33 / PIC32MM MCUs - 1.167.0 Device: dsPIC33CK256MP508 The generated drivers are tested against the following: Compiler: XC16 v1.50 MPLAB: MPLAB X v5.35Section: Included FilesSection: File specific functionsSection: Data Type DefinitionsTMR Driver Hardware Instance Object

@Summary Defines the object required for the maintenance of the hardware instance.

@Description This defines the object required for the maintenance of the hardware instance.

This object exists once per hardware instance of the peripheral.

Remarks: None.

The documentation for this struct was generated from the following file:

• tmr1.c

7 Example Documentation

7.1 C:/LCM/X2C/_WorkApplications/mc_foc_sl_fip_dspic33ck_mclv2/mcc_generated_files/re

It handles the reset cause by clearing the cause register values. Its a weak function user can override this function.

Returns

None

```
RESET_CauseHandler();

/*

(c) 2020 Microchip Technology Inc. and its subsidiaries. You may use this software and any derivatives exclusively with Microchip products.

THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR ITS INTERACTION WITH MICROCHIP PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
```

```
IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
   INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
    WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
   BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
   FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN
   ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
   THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
   MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE
   TERMS.
#ifndef RESET H
#define RESET_H
#include <stdint.h>
#include "reset_types.h"
uint16_t RESET_GetCause(void);
void __attribute__ ((weak)) RESET_CauseHandler(void);
void RESET_CauseClearAll();
#endif /* RESET_H */
      C:/LCM/X2C/_WorkApplications/mc_foc_sl_fip_dspic33ck_mclv2/mcc_generated_files/sy
Initializes the CPU core control register.
SYSTEM_CORCONInitialize();
    (c) 2020 Microchip Technology Inc. and its subsidiaries. You may use this
   software and any derivatives exclusively with Microchip products.
   THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
   EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
   WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
   PARTICULAR PURPOSE, OR ITS INTERACTION WITH MICROCHIP PRODUCTS, COMBINATION
   WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
   IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
    INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
   WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
   BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
   FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN
   ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
   THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
   MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE
#ifndef _XTAL_FREQ
#define _XTAL_FREQ 20000000UL
#endif
#define WDT_CLR_KEY 0x5743
#include "xc.h"
#include "stdint.h"
#include "system_types.h"
#ifndef SYSTEM H
#define SYSTEM_H
inline static void SYSTEM_CORCONInitialize()
   CORCON = (CORCON & OxOOF2) | CORCON_MODE_PORVALUES;
\verb|inline| static void SYSTEM_CORCONModeOperatingSet(SYSTEM_CORCON_MODES modeValue)| \\
{
   CORCON = (CORCON & 0x00F2) | modeValue;
}
inline static void SYSTEM_CORCONRegisterValueSet(uint16_t value)
{
   CORCON = value;
inline static uint16_t SYSTEM_CORCONRegisterValueGet(void)
{
   return CORCON:
}
inline static uint32_t SYSTEM_DeviceIdRegisterAddressGet(void)
```

20

return __DEVID_BASE;

```
void SYSTEM_Initialize(void);
#endif /* SYSTEM_H */
```

C:/LCM/X2C/ WorkApplications/mc foc sl fip dspic33ck mclv2/mcc generated files/wa

```
Enables Watch Dog Timer (WDT) using the software bit.
WATCHDOG_TimerSoftwareEnable();
    (c) 2020 Microchip Technology Inc. and its subsidiaries. You may use this
    software and any derivatives exclusively with Microchip products.
    THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER
    EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED
    WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
    PARTICULAR PURPOSE, OR ITS INTERACTION WITH MICROCHIP PRODUCTS, COMBINATION
    WITH ANY OTHER PRODUCTS, OR USE IN ANY APPLICATION.
   IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE,
    INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE OF ANY KIND
    WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS
    BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
    FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN
    ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY,
    THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THIS SOFTWARE.
   MICROCHIP PROVIDES THIS SOFTWARE CONDITIONALLY UPON YOUR ACCEPTANCE OF THESE
#ifndef WATCHDOG_H
#define WATCHDOG_H
#define WATCHDOG_CLR_KEY 0x5743
inline static void WATCHDOG_TimerSoftwareEnable(void)
ſ
    WDTCONLbits.ON = 1;
inline static void WATCHDOG_TimerSoftwareDisable(void)
    WDTCONLbits.ON = 0;
}
inline static void WATCHDOG_TimerClear(void)
{
    WDTCONH = WATCHDOG_CLR_KEY;
#endif /* WATCHDOG_H */
```

21

Part III

Used X2C-Blocks

- 8 Project Specific Blocks
- 9 Internal Library Blocks

Block: Add

Inports	
ln1	Addend 1
ln2	Addend 2

Outports	
Out	Sum

Description:

Addition of input 1 and input 2.

Calculation:

$$\mathrm{Out} = \mathrm{In}_1 + \mathrm{In}_2$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
In1	int8
ln2	int8

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
ln1	int16
ln2	int16

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
ln1	int32
ln2	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
ln1	float32
ln2	float32

Outports Data Type	
Out	float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type	
ln1	float64
ln2	float64

Outports Data Type	
Out	float64

Block: AutoSwitch

Inports	
ln1	Input #1
Switch	Input #2: Threshold signal
In3	Input #3

Outports	
Out	Either value of input #1 or input #3 dependent on value of input #2

Mask Parameters		
Name	ID	Description
Thresh_up	1	Threshold level for rising switch signal
Thresh_down	2	Threshold level for falling switch signal

Description:

Switch between In1 and In3 dependent on Switch signal: Switch signal rising: Switch >= Threshold up -> Out = In1 Switch signal falling: Switch < Threshold down -> Out = In3

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
ln1	int16
Switch	int16
ln3	int16

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
ln1	int32
Switch	int32
In3	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
ln1	float32
Switch	float32
ln3	float32

Outports Data Type		
	Out	float32

Implementation: Float64

64 Bit Floating Point Implementation

Inports Data Type	
ln1	float64
Switch	float64
ln3	float64

Outports Data Type	
Out	float64

Block: BEMF_calc

Inports	
lalpha	Clarke transformed A phase current
Ibeta	Clarke transformed B phase current
Valpha	Clarke transformed Output A phase voltage
Vbeta	Clarke transformed Output B phase voltage

Outports	
BEMFalpha	back electromotive force alpha voltage
BEMFbeta	back electromotive force beta voltage

Mask Parameters	
Ls	Motor phase inductance for Y connection (MilliHenry)
Rs	Motor phase resistance for Y connection (Ohm)
U0	U0: DC link voltage (Only in Fip implementation)
10	The maximum peak current per phase (Only in Fip implementation)
ts_fact	Multiplication factor of base sampling time (in integer format)
CurrentSampleFactor	Division factor for current sample. (in integer format) Current sample = ModelSampleTime/CurrentSampleFactor

Description:

BEMFalpha=Va-Rs0*la-Ls0*deltala BEMFbeta=Vb-Rs0*lb-Ls0*deltalb

FIP:

Rs0 = Rs*(I0/U0)

 $Ls0 = Ls^*(I0/U0)$

Float:

```
Rs0 = Rs

Ls0 = Ls
```

Implementations:

FiP16 16 Bit Fixed Point ImplementationFiP32 32 Bit Fixed Point ImplementationFloat32 32 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 20992

 Revision
 0.2

C filename BEMF_calc_FiP16.c
H filename BEMF_calc_FiP16.h

16 Bit Fixed Point Implementation

Controller Parameters	
Ls	Motor phase inductance. Scales by I0/U0
Rs	Motor phase resistance. Scales by I0/U0
sfrLs	Shift factor for Ls
sfrRs	Shift factor for Rs
lb_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
la_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
CurrentSampleFactor	Division factor for current sample. Current sample: ModelSampleTime/CurrentSampleFactor
V_Ls_alpha	Voltage of inductance. (Save data for next calculation)
V_Ls_beta	Voltage of inductance (Save data for next calculation)
FactCounter	Current Sample Factor loop counter

```
typedef struct {
                     ID;
     uint16
     int16
                     *lalpha;
     int16
                     *Ibeta;
     int16
                     * Valpha;
     int16
                     * Vbeta;
     int16
                     BEMFalpha;
                     BEMFbeta;
     int16
     int16
                     Ls;
```

```
int16
                    Rs;
     int8
                    sfrLs;
     int8
                    sfrRs;
     int16
                    lb_old;
     int16
                    la_old;
     uint8
                    CurrentSampleFactor;
     int16
                    V_Ls_alpha;
     int16
                    V_Ls_beta;
                    FactCounter;
     uint8
} BEMF_CALC_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 20993

 Revision
 0.2

C filename BEMF_calc_FiP32.c H filename BEMF_calc_FiP32.h

32 Bit Fixed Point Implementation

Controller Parameters	
Ls	Motor phase inductance. Scales by I0/U0
Rs	Motor phase resistance Scales by I0/U0
sfrLs	Shift factor for Ls
sfrRs	Shift factor for Rs
la_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
lb_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
CurrentSampleFactor	Division factor for current sample. Current sample: ModelSampleTime/CurrentSampleFactor
V_Ls_alpha	Voltage of inductance. (Save data for next calculation)
V_Ls_beta	Voltage of inductance. (Save data for next calculation)
FactCounter	Current Sample Factor loop counter

```
int32
                    BEMFbeta;
     int32
                   Ls;
     int32
                    Rs;
     int8
                    sfrLs;
     int8
                    sfrRs;
                    la_old;
     int32
     int32
                    lb_old;
                    CurrentSampleFactor;
     uint8
     int32
                    V_Ls_alpha;
                    V_Ls_beta;
     int32
                    FactCounter;
     uint8
} BEMF_CALC_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 20994

 Revision
 0.2

C filename BEMF_calc_Float32.c H filename BEMF_calc_Float32.h

32 Bit Floating Point Implementation

Controller Parameters	
Ls	Motor phase inductance
Rs	Motor phase resistance
la_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
lb_old	Input value from previous cycle. Sample time divided by CurrentSampleFactor
CurrentSampleFactor	Division factor for current sample. Current sample: ModelSampleTime/CurrentSampleFactor
V_Ls_alpha	Voltage of inductance. (Save data for next calculation)
V_Ls_beta	Voltage of inductance. (Save data for next calculation)
FactCounter	Current Sample Factor loop counter

```
typedef struct {
     uint16
                    ID;
                    *lalpha;
     float32
     float32
                    *Ibeta;
     float32
                    * Valpha;
     float32
                    * Vbeta;
     float32
                    BEMFalpha;
     float32
                    BEMFbeta;
     float32
                    Ls;
                    Rs;
     float32
     float32
                    la_old;
```

```
float32 lb_old;
uint8 CurrentSampleFactor;
float32 V_Ls_alpha;
float32 V_Ls_beta;
uint8 FactCounter;
} BEMF_CALC_FLOAT32;
```

Block: Clark_Park

Inports	
а	A phase current
b	B phase current
theta	Rotating position

Outports	
d	d steady axis (typically flux)
q	q steady axis (typically torque)
alpha	Shifted A phase current
beta	Shifted B phase current

Description:

Merged Clark and park transform.

d=a*cos(theta)+((a*2b)*1.732)*sin(theta)
q=-a*sin(theta)+((a*2b)*1.732)*cos(theta)

Moves a three-axis, two-dimensional
coordinate system, referenced to the stator, onto a
two-axis system, keeping the same reference.

The two-axis orthogonal system with the axis called
alpha-beta transform into another two-axis
system that is rotating with the rotor flux.

Two-axis rotating coordinate system is
called the d-q axis.

Theta represents the rotor angle.

Implementations:

FiP16 16 Bit Fixed Point ImplementationFiP32 32 Bit Fixed Point ImplementationFloat32 32 Bit Floating Point Implementation

Implementation: FiP16

```
Name FiP16
ID 20960
Revision 0.1
```

C filename Clark_Park_FiP16.c
H filename Clark_Park_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int16
                    *a;
     int16
                    *b;
                    *theta;
     int16
     int16
                    d;
     int16
                    q;
                    alpha;
     int16
     int16
                    beta;
} CLARK_PARK_FIP16;
```

Implementation: FiP32

```
        Name
        FiP32

        ID
        20961

        Revision
        0.1
```

C filename Clark_Park_FiP32.c
H filename Clark_Park_FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int32
                    *a;
     int32
                    *b;
     int32
                    *theta;
     int32
                   d;
     int32
                    q;
                    alpha;
     int32
     int32
                    beta;
} CLARK_PARK_FIP32;
```

Implementation: Float32

 Name
 Float32

 ID
 20962

 Revision
 0.1

C filename Clark_Park_Float32.c
H filename Clark_Park_Float32.h

32 Bit Floating Point Implementation

```
typedef struct {
     uint16
                   ID;
     float32
                   *a;
     float32
                   *b;
     float32
                   *theta;
     float32
                   d;
     float32
                   q;
     float32
                   alpha;
     float32
                   beta;
} CLARK_PARK_FLOAT32;
```

Block: Constant

Outports	
Out	Constant output

Mask Parameters		
Name	ID	Description
Value	1	Constant factor

Description:

Constant value.

Implementations:

Bool	Boolean Implementation
Int8	8 Bit Integer Implementation
Int16	16 Bit Integer Implementation
Int32	32 Bit Integer Implementation
FiP8	8 Bit Fixed Point Implementation
FiP16	16 Bit Fixed Point Implementation
FiP32	32 Bit Fixed Point Implementation
Float32	32 Bit Floating Point Implementation
Float64	64 Bit Floating Point Implementation

Implementation: Bool

Boolean Implementation

Outports Data Type	
Out	bool

Implementation: Int8

8 Bit Integer Implementation

Outports Data Type	
Out	int8

Implementation: Int16

16 Bit Integer Implementation

Outports Data Type	
Out	int16

Implementation: Int32

32 Bit Integer Implementation

Outports Data Type	
Out	int32

Implementation: FiP8

8 Bit Fixed Point Implementation

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Outports Data Type	
Out	int32

Implementation: Float32

Outports Data Type	
Out	float32

Outports Data Type	
Out	float64

Block: Delay

Inports	
In	Input In(k)

Outports	
Out	Output Out(k)=In(k-1)

Mask Parameters		
Name	ID	Description
ts_fact	1	Multiplication factor of base sampling time (in integer format)

Description:

Output delay by one sample time interval.

This block can be used to enable feedback loops in the model.

Implementations:

Bool

FiP16 16 Bit Fixed Point Implementation FiP32 32 Bit Fixed Point Implementation

Boolean Integration

Float32 32 Bit Floating Point ImplementationFloat64 64 Bit Floating Point Implementation

Implementation: Bool

Boolean Integration

Inports Data Type	
In	bool

Outports Data Type		
	Out	bool

Implementation: FiP16

Inports Data Type	
In	int16

Outports Data Type	
Out	int16

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32

	Outports Data Type	
Ī	Out	float32

Implementation: Float64

Inports Data Type	
In	float64

Outports Data Type	
Out	float64

Block: Gain

Inports	
In	Input

Outports	
Out	Amplified input

Mask Parameters		
Name	ID	Description
Gain	1	Gain factor in floating point format

Description:

Amplification of input by gain factor.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Da	ata Type		
In		int8	

Outports Data Type	
Out	int8

Implementation: FiP16

Inports Data Type	
In	int16

Outports Data Type	
Out	int16

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
In	float64

Outports Data Type	
Out	float64

Block: I

Inports		
In	Control error input	
Init	Value which is loaded at initialization function call	
Enable	Enable == 0: Deactivation of block; Out set to 0	
	Enable 0->1: Preload of integral part	
	Enable == 1: Activation of block	

Outports	
Out	Control value

Mask Parameters		
Name	ID	Description
Ki	1	Integral Factor
ts_fact	2	Multiplication factor of base sampling time (in integer format)

Description:

I controller:

$$G(s) = Ki/s = 1/(Ti*s)$$

Each fixed point implementation uses the next higher integer datatype for the integrational value storage variable.

A rising flank at the *Enable* inport will preload the integrational part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_{\rm i} T_{\rm s} \frac{1}{z-1}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

8 Bit Fixed Point Implementation

Inports Data Type	
In	int8
Init	int8
Enable	bool

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16
Init	int16
Enable	bool

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32
Init	int32
Enable	bool

Outports Data Type	
Out	int32

Implementation: Float32

Inports Data Type	
In	float32
Init	float32
Enable	bool

Outports Data Type	
Out	float32

Inports Data Type	
In	float64
Init	float64
Enable	bool

Outports Data Type		
	Out	float64

Block: ManualSwitch

Inports	
ln1	Input #1
ln2	Input #2

Outports	
Out	

Mask Parameters		
Name	ID	Description
Toggle	1	Toggle

Description:

Toggling between inputs by double-clicking on block.

Doubleclicking of the *ManualSwitch* block changes the routing of the input signals and doesn't open the *Function Block Parameters* dialog. So if changing the implementation is required, one has to open the dialog via *Mask Parameters* command of the context menu.

9.0.0.1 Developer note:

To get the double-click feature the callback function of *OpenFnc* in *Block Properties* is manually altered to

```
if get_param(gcb, 'Toggle') == '0'
    set_param(gcb, 'Toggle', '1');
else
    set_param(gcb, 'Toggle', '0');
end
setBlockData(gcs, gcb);
initSFunction(gcb);
```

Implementations:

Bool	Boolean Implementation
FiP8	8 Bit Fixed Point Implementation
FiP16	16 Bit Fixed Point Implementation
FiP32	32 Bit Fixed Point Implementation
Float32	32 Bit Floating Point Implementation
Float64	64 Bit Floating Point Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type	
ln1	bool
ln2	bool

Outports Data Type	
Out	bool

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
ln1	int8
ln2	int8

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
ln1	int16
ln2	int16

Outports Data Type	
Out	int16

Implementation: FiP32

Inports Data Type	
In1	int32
In2	int32

Outports Data Type	
Out	int32

32 Bit Floating Point Implementation

Inports Data Type	
ln1	float32
ln2	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
ln1	float64
ln2	float64

Outports Data Type	
Out	float64

Block: Mult

Inports	
ln1	Multiplicand 1
ln2	Multiplicand 2

Outports	
Out	Product

Description:

Multiplication of input 1 with input 2.

Calculation:

$$\mathrm{Out} = \mathrm{In}_1 \cdot \mathrm{In}_2$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
ln1	int8
ln2	int8

Outports Data Type	
Out	int8

Implementation: FiP16

Inports Data Type	
ln1	int16
ln2	int16

Outports Data Type	
Out	int16

32 Bit Fixed Point Implementation

Inports Data Type	
ln1	int32
ln2	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
In1	float32
ln2	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
ln1	float64
ln2	float64

Outports Data Type	
Out	float64

Block: Not

Inports	
In	

Outports	
Out	

Description:

Logical inverter block.

Implementations:

Bool Boolean Implementation

Implementation: Bool

Boolean Implementation

Inports Data Type	
In	bool

Outports Data Type	
Out	bool

Block: PI

Inports	
In	Control error input
Init	Value which is loaded at initialization function call
Enable	Enable == 0: Deactivation of block; Out set to 0 Enable 0->1: Preload of integral part Enable == 1: Activation of block

Outports	
Out	

Mask Parameters		
Name	ID	Description
Кр	1	Proportional Factor
Ki	2	Integral Factor
ts_fact	3	Multiplication factor of base sampling time (in integer format)

Description:

PI controller:

G(s) = Kp + Ki/s

Each fixed point implementation uses the next higher integer data type for the integral value storage variable.

A rising flank at the *Enable* inport will preload the integral part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_{\rm p} + K_{\rm i} T_{\rm s} \frac{1}{z - 1}$$

9.0.0.2 Developer note:

For the fixed point implementations the source code of block ?? is used.

Implementations:

FiP8 8 Bit Fixed Point Implementation
 FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
In	int8
Init	int8
Enable	int8

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16
Init	int16
Enable	bool

Outports Data Type	
Out	int16

Implementation: FiP32

Inports Data Type	
In	int32
Init	int32
Enable	bool

Outports Data Type	
Out	int32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32
Init	float32
Enable	bool

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
In	float64
Init	float64
Enable	bool

Outports Data Type	
Out	float64

Block: PT1

Inports	
In	Input In(k)

Outports	
Out	Output Out(k)

Mask Parameters		
Name	ID	Description
V	1	Gain
fc	2	Cut off frequency of low pass filter
ts_fact	3	Multiplication factor of base sampling time (in integer format)
method	4	Discretization method

Description:

First order low pass:

G(s) = V/(s/w + 1)

Due to limited value range in the 8 bit fixed point implementation rather high deviations from expected output values may occur.

9.0.0.3 Developer note:

The source code of block *TF1* is used.

Implementations:

FiP8 8 Bit Fixed Point Implementation
 FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Inports Data Type	
In	int8

Outports Data Type	
Out	int8

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
In	float64

Outports Data Type	
Out	float64

Block: Park_Clark_inv

Inports	
d	d voltage axis in rotating system
q	q voltage axis in rotating system
theta	Rotating position
forcedMode	Force Motor to base position. 0 -> No force. Normal mode. 1 -> Force the motor to base position
forcedValue	The forced voltage value

Outports	
А	Phase A out
В	Phase B out
С	Phase C out
Valpha	Inverse Park Voltage output
Vbeta	Inverse Park Voltage output

Description:

Merged Inverse Park, Iverse Clark and Space Vector Modulation

Park inv:

alpha = d*cos(theta) - q*sin(theta)

beta = d*sin(theta) + q*cos(theta)

Clark_inv:

a = beta

b = (-beta + 1.732*alpha)/2

c = (-beta - 1.732*alpha)/2

SVM:

Optimize output for PWM

Description:

Transform from the two-axis rotating d-q frame

to the two-axis stationary frame ?-?.

Transform from the stationary two-axis ?-? frame

to the stationary three-axis, 3-phase reference frame.

Optimize output for PWM

Implementations:

FiP16 16 Bit Fixed Point ImplementationFiP32 32 Bit Fixed Point ImplementationFloat32 32 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 20976

 Revision
 0.1

C filename Park_Clark_inv_FiP16.c
H filename Park_Clark_inv_FiP16.h

16 Bit Fixed Point Implementation

Data Structure:

```
typedef struct {
     uint16
                    ID;
     int16
                    *d;
     int16
                    *q;
     int16
                    *theta;
     int8
                    *forcedMode;
     int16
                    *forcedValue;
                    Α;
     int16
     int16
                    В;
                    С;
     int16
     int16
                    Valpha;
                    Vbeta;
     int16
} PARK_CLARK_INV_FIP16;
```

Implementation: FiP32

 Name
 FiP32

 ID
 20977

 Revision
 0.1

C filename Park_Clark_inv_FiP32.c
H filename Park_Clark_inv_FiP32.h

32 Bit Fixed Point Implementation

```
int32 B;
int32 C;
int32 Valpha;
int32 Vbeta;
} PARK_CLARK_INV_FIP32;
```

 Name
 Float32

 ID
 20978

 Revision
 0.1

C filename Park_Clark_inv_Float32.c
H filename Park_Clark_inv_Float32.h

32 Bit Floating Point Implementation

```
typedef struct {
     uint16
                    ID;
     float32
                    *d;
     float32
                    *q;
     float32
                    *theta;
     int8
                    *forcedMode;
     float32
                    \star forced Value;
     float32
                    Α;
     float32
                    В;
     float32
                    C;
     float32
                    Valpha;
     float32
                    Vbeta;
} PARK_CLARK_INV_FLOAT32;
```

Block: Park

Inports	
alpha	
beta	
theta	

Outports	
d	
q	

Description:

The two-axis orthogonal system with the axis called alpha-beta transform into another two-axis system that is rotating with the rotor flux.

Two-axis rotating coordinate system is called the d-q axis.

Theta represents the rotor angle.

Implementations:

FiP16 16 Bit Fixed Point Implementation (uses MCHP dsp if possible)

FiP32 32 Bit Fixed Point ImplementationFloat32 32 Bit Floating Point Implementation

Implementation: FiP16

 Name
 FiP16

 ID
 20880

 Revision
 0.2

C filename Park_FiP16.c H filename Park_FiP16.h

16 Bit Fixed Point Implementation (uses MCHP dsp if possible)

 Name
 FiP32

 ID
 20881

 Revision
 0.1

C filename Park_FiP32.c
H filename Park FiP32.h

32 Bit Fixed Point Implementation

Data Structure:

Implementation: Float32

 Name
 Float32

 ID
 20882

 Revision
 0.1

C filename Park_Float32.c H filename Park_Float32.h

32 Bit Floating Point Implementation

Block: RateLimiter

Inports	
In	
Init	Value which is loaded at rising flanke of enable signal
Enable	Enable == 0: Deactivation of block; Out is set to In. Enable != 0: Activation of block; Out is rate limited. Enable 0->1: Preloading of output; Out is set to value of Init input

Outports	
Out	

Mask Parameters		
Name	ID	Description
Tr	1	Rising time in seconds. Slew rate will be 1/Tr
Tf	2	Falling time in seconds. Slew rate will be 1/Tf
ts_fact	3	Multiplication factor of base sampling time (in integer format)

Description:

Limitation of rising and falling rate.

Function of Enable:

0: rate limiting disabled, signal is passed through

1: rate limiting enabled, signal is rate limited

0->1: preload of output with value from init input

Rising and falling time refer to a step from 0 to 1. Entries for *Tr: Rising time* and *Tf: Falling time* smaller than the actual sample time will be limited to the sample time internally.

The 16- and 32-Bit fixed point implementations are based on an internal 32-Bit wide slew-rate variable while the 8-Bit fixed point implementation uses a 16-Bit wide slew-rate variable.

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16
Init	int16
Enable	bool

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32
Init	int32
Enable	bool

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32
Init	float32
Enable	bool

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
In	float64
Init	float64
Enable	bool

Outports Data Type	
Out	float64

Block: Saturation

Inports	
In	Input

Outports	
Out	Limited output

Mask Parameters		
Name	ID	Description
max	1	Upper Limit
min	2	Lower Limit

Description:

Saturation of output to adjustable upper and lower limit.

If the entry for *Upper Limit* is lower than the entry for *Lower Limit* then the limits will be swapped internally.

Implementations:

FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16

Outports Data Type	
Out	int16

Implementation: FiP32

Inports Data Type	
In	int32

Outports Data Type	
Out	int32

32 Bit Floating Point Implementation

Inports Data Type	
In	float32

Outports Data Type		
Ī	Out	float32

Implementation: Float64

Inports Data Type	
In	float64

Outports Data Type	
Out	float64

Block: Sequencer

Inports	
Start	Start signal. Rising flank triggers sequence

Outports	
Out1	Output #1
Out2	Output #2
Out3	Output #3
Out4	Output #4

Mask Parameters		
Name	ID	Description
Delay1	1	Time delay for output 1
Delay2	2	Time delay for output 2
Delay3	3	Time delay for output 3
Delay4	4	Time delay for output 4
ts_fact	5	Multiplication factor of base sampling time (in integer format)

Description:

Generation of time delayed (enable) sequence.

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

Inports Data Type	
Start	int8

Outports Data Type	
Out1	int8
Out2	int8
Out3	int8
Out4	int8

16 Bit Fixed Point Implementation

Inports Data Type	
Start	int16

Outports Data Type	
Out1	int16
Out2	int16
Out3	int16
Out4	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
Start	int32

Outports Data Type	
Out1	int32
Out2	int32
Out3	int32
Out4	int32

Implementation: Float32

Inports Data Type	
Start	float32

Outports Data Type	
Out1	float32
Out2	float32
Out3	float32
Out4	float32

Inports Data Type	
Start	float64

Outports Data Type	
Out1	float64
Out2	float64
Out3	float64
Out4	float64

Block: Sign

Inports	
In	Input u

Outports	
Out	Value corresponding to sign of u

Description:

Signum function.

Calculation:

$$\mathrm{Out} = \mathrm{sgn}\left(\mathrm{In}\right) = \begin{cases} 1 & \mathrm{In} \geq 0 \\ -1 & \mathrm{In} < 0 \end{cases}$$

Implementations:

FiP8 8 Bit Fixed Point ImplementationFiP16 16 Bit Fixed Point ImplementationFiP32 32 Bit Fixed Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
In	int8

Outports Data Type	
Out	int8

Implementation: FiP16

Inports Data Type	
In	int16

Outports Data Type	
Out	int16

Inports Data Type	
In	int32

Outports Data Type	
Out	int32

Block: Sin3Gen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output phase u
V	Sine wave output phase v
W	Sine wave output phase w

Mask Parameters		
Name	ID	Description
fmax	1	Maximum Frequency in Hz
Offset	2	Offset
ts_fact	3	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a 3 sine waves with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$u_k = A_k \sin \left(2f_k f_{\text{max}} k T_{\text{s}}\right) + A_{\text{offset}}$$

$$v_k = A_k \sin \left(2f_k f_{\text{max}} k T_{\text{s}} - \frac{2\pi}{3}\right) + A_{\text{offset}}$$

$$w_k = A_k \sin \left(2f_k f_{\text{max}} k T_{\text{s}} + \frac{2\pi}{3}\right) + A_{\text{offset}}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter f_max is ignored):

$$u_k = A_k \sin(2\pi f_k k T_s) + A_{\text{offset}}$$

$$v_k = A_k \sin\left(2\pi f_k k T_s - \frac{2\pi}{3}\right) + A_{\text{offset}}$$

$$w_k = A_k \sin\left(2\pi f_k k T_s + \frac{2\pi}{3}\right) + A_{\text{offset}}$$

Implementations:

FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
А	int16
f	int16

Outports Data Type	
u	int16
V	int16
W	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
Α	int32
f	int32

Outports Data Type	
u	int32
V	int32
W	int32

Implementation: Float32

Inports Data Type	
А	float32
f	float32

Outports Data Type	
u	float32
V	float32
W	float32

Implementation: Float64

Inports Data Type		
	Α	float64
ı	f	float64

Outports Data Type	
u	float64
V	float64
W	float64

Block: SinGen

Inports	
Α	Amplitude
f	Frequency

Outports	
u	Sine wave output

Mask Parameters		
Name	ID	Description
fmax	1	Maximum Frequency in Hz
Offset	2	Offset
Phase	3	Phase [-PiPi]
ts_fact	4	Multiplication factor of base sampling time (in integer format)

Description:

Generation of a sine wave with amplitude (A) and frequency (f).

Calculation fixed point implementation:

$$u_k = A_k \sin(2f_k f_{\text{max}} kT_s + \phi_{\text{phase}}) + A_{\text{offset}}$$

For sine calculation a lookup table with 256 entries is used. This results in a short computation time but with the downside of reduced accuracy for the FiP32 implementation.

Calculation floating point implementation (parameter *f_max* is ignored):

$$u_k = A_k \sin (2\pi f_k k T_s + \phi_{\text{phase}}) + A_{\text{offset}}$$

Implementations:

FiP16 16 Bit Fixed Point Implementation
 FiP32 32 Bit Fixed Point Implementation
 Float32 32 Bit Floating Point Implementation
 Float64 64 Bit Floating Point Implementation

Implementation: FiP16

Inports Data Type	
A	int16
f	int16

	Outports Data Type	
Ī	u	int16

32 Bit Fixed Point Implementation

Inports Data Type	
Α	int32
f	int32

Outports Data Type	
u	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
Α	float32
f	float32

Outports Data Type		
	u	float32

Implementation: Float64

Inports Data Type	
Α	float64
f	float64

Outports Data Type	
u	float64

Block: Sub

Inports	
Plus	Minuend
Minus	Subtrahend

Outports	
Out	Difference

Description:

Subtraction of input Minus from input Plus.

Calculation:

Out = Plus - Minus

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
Plus	int8
Minus	int8

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
Plus	int16
Minus	int16

Outports Data Type	
Out	int16

32 Bit Fixed Point Implementation

Inports Data Type	
Plus	int32
Minus	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
Plus	float32
Minus	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
Plus	float64
Minus	float64

Outports Data Type	
Out	float64

Block: TypeConv

Inports	
In	

Outports	
Out	

Description:

Data Type Conversion

Implementations:

FiP8_16	8 to 16 Bit Fixed Point Implementation
FiP8_32	8 to 32 Bit Fixed Point Implementation
FiP16_8	16 to 8 Bit Fixed Point Implementation
FiP16_32	16 to 32 Bit Fixed Point Implementation
FiP32_8	32 to 8 Bit Fixed Point Implementation
FiP32_16	32 to 16 Bit Fixed Point Implementation
Bool_FiP16	Boolean to 16 Bit Fixed Point Implementation
Bool_FiP32	Boolean to 32 Bit Fixed Point Implementation
FiP16_Bool	16 Bit Fixed Point to Boolean Implementation
FiP32_Bool	32 Bit Fixed Point to Boolean Implementation

Implementation: FiP8_16

8 to 16 Bit Fixed Point Implementation

Inports Data Type	
In	int8

Outports Data Type	
Out	int16

Implementation: FiP8_32

8 to 32 Bit Fixed Point Implementation

Inports Data Type	
In	int8

Outports Data Type	
Out	int32

16 to 8 Bit Fixed Point Implementation

Inports Data Type	
In	int16

Outports Data Type	
Out	int8

Implementation: FiP16_32

16 to 32 Bit Fixed Point Implementation

Inports Data Type	
In	int16

Outports Data Type	
Out	int32

Implementation: FiP32_8

32 to 8 Bit Fixed Point Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	int8

Implementation: FiP32_16

32 to 16 Bit Fixed Point Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	int16

Implementation: Bool_FiP16

Boolean to 16 Bit Fixed Point Implementation

Inports Data Type	
In	bool

Outports Data Type	
Out	int16

Implementation: Bool_FiP32

Boolean to 32 Bit Fixed Point Implementation

Inports Data Type	
In	bool

Outports Data Type	
Out	int32

Implementation: FiP16_Bool

16 Bit Fixed Point to Boolean Implementation

Inports Data Type	
In	int16

Outports Data Type		
ı	Out	bool

Implementation: FiP32_Bool

32 Bit Fixed Point to Boolean Implementation

Inports Data Type	
In	int32

Outports Data Type	
Out	bool

Block: ul

Inports		
In	Control error input	
Init	Value which is loaded at initialization function call	
Enable	Enable == 0: Deactivation of block; Out is set to 0. Enable 0->1: Preload of integral part. Enable == 1: Activation of block	

Outports	
Out	Integrator output

Mask Parameters		
Name	ID	Description
Ki	1	Integral Factor
ts_fact	2	Multiplication factor of base sampling time (in integer format)

Description:

Integrator for angle signals:

$$G(s) = Ki/s = 1/(Ti*s)$$

Each fixed point implementation uses the next higher integer datatype for the integrational value storage variable.

A rising flank at the *Enable* inport will preload the integrational part with the value present on the *Init* inport.

Transfer function (zero-order hold discretization method):

$$G(z) = K_{\rm i} T_{\rm s} \frac{1}{z - 1}$$

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

8 Bit Fixed Point Implementation

Inports Data Type	
In	int8
Init	int8
Enable	bool

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
In	int16
Init	int16
Enable	bool

Outports Data Type	
Out	int16

Implementation: FiP32

32 Bit Fixed Point Implementation

Inports Data Type	
In	int32
Init	int32
Enable	bool

Outports Data Type	
Out	int32

Implementation: Float32

Inports Data Type	
In	float32
Init	float32
Enable	bool

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
In	float64
Init	float64
Enable	bool

Outports Data Type		
	Out	float64

Block: uSub

Inports	
Plus	Minuend
Minus	Subtrahend

Outports	
Out	Difference

Description:

Subtraction of input Minus from input Plus with output wrapping.

Calculation:

Out = Plus - Minus

Implementations:

FiP8 8 Bit Fixed Point Implementation
FiP16 16 Bit Fixed Point Implementation
FiP32 32 Bit Fixed Point Implementation
Float32 32 Bit Floating Point Implementation
Float64 64 Bit Floating Point Implementation

Implementation: FiP8

8 Bit Fixed Point Implementation

Inports Data Type	
Plus	int8
Minus	int8

Outports Data Type	
Out	int8

Implementation: FiP16

16 Bit Fixed Point Implementation

Inports Data Type	
Plus	int16
Minus	int16

Outports Data Type	
Out	int16

32 Bit Fixed Point Implementation

Inports Data Type	
Plus	int32
Minus	int32

Outports Data Type	
Out	int32

Implementation: Float32

32 Bit Floating Point Implementation

Inports Data Type	
Plus	float32
Minus	float32

Outports Data Type	
Out	float32

Implementation: Float64

Inports Data Type	
Plus	float64
Minus	float64

Outports Data Type	
Out	float64