Analysis of size, curvature and shape effects on the growth of the fiber/matrix interface crack in UD and cross-ply laminates based on Representative Volume Element (RVE) modeling

Luca Di Stasio^{a,b}, Janis Varna^b, Zoubir Ayadi^a

^a Université de Lorraine, EEIGM, IJL, 6 Rue Bastien Lepage, F-54010 Nancy, France
^bLuleå University of Technology, University Campus, SE-97187 Luleå, Sweden

Abstract

Priority: 2

Target journal(s): Composites Part B: Engineering, Composites Part A: Applied Science and Manufacturing, Composite Science and Technology, Composite Structures, Journal of Composite Materials, Composite Communications

1. Introduction

- 1. By recalling Buckingham's dimensional theorem, we recall that modeling size, shape, cruvature effects means finding analytical expression by which we can calculate ERR or, at least, given a base value we can calculate its change for a change in some reference quantity. Ex: ERR for debonds scales linearly with fiber radius. We recall the usefulness of such expressions: simple to use, quick and cheap calculations, provide insights on mechanics (ex: what happens to ERR if I use a fiber with a radius 2 times larger? ERR will 2 times as the base case).
- 2. This approach has been applied in the Fracture Mechanics literature in the form of the shape function: SIF (and ERR) can be expressed as $f(\sigma_{\inf}, a)$.

 S, where $f(\sigma_{\inf}, a)$ is the solution for the straight crack in an infinite

10

- isotropic plate under transverse tension. S is the shape function and represents the effect of different BCs, loading modes, and crack or plate geometry.
 - 3. We then observe that for the fiber/interface crack a reference G_0 has been used, however we note that: there's no work that investigates the pros and cons of one formulation with respect to the other; there's no agreement on which formulation to use. We review briefly the different choices made since Toya.
 - 4. We thus address this gap in the literature in this paper. We focus on the following questions: does a reference ERR exist with which we can parameterize results? Is there an analytical formulation (based on regression) for ERR for the fiber/matrix interface crack?
 - 5. We conclude by summarizing the structure of the paper.

2. Homogenized models

- 2.1. Straight crack in an infinite homogenized ply under transverse loading Why do we recall this case?
- Because at first approximation, the debond under remote transverse tension can be modeled as a crack of size $R_f \sin(\Delta \theta)$ in a homogenized ply
 - 2.2. Semi-circular crack in an infinite homogenized ply under transverse loading Why do we recall this case?

Because as a second approximation, the debond under remote transverse tension
can be modeled as a semi-circular crack in a homogenized ply
Here we also plot the different components of the solution and reflect on their
meachnical meaning

3. The analytical solution of the fiber/matrix interface crack problem

We recall the solution and then we plot the different components and show that, at first approximation, the solution can be expressed as $A\sin{(B\Delta\theta+C)}+D$.

We observe that $G_{dim} \sim G_0 \sin{(\Delta \theta)}$ means that $G_{dim} \sim R_f \sin{(\Delta \theta)}$, which is a size effect and means that the debond in the infinite matrix behaves closely to the case in 2.1.

4. Modeling size effects

We compare mode I and mode II ERR from FEM simulations and compare to the value corresponding to a straight crack in an infinite homogenized ply.

5. Modeling curvature effects

We compare mode I and mode II ERR from FEM simulations and compare to the value corresponding to a semi-circular crack in an infinite homogenized ply, the part corresponding only to the curvature.

6. Modeling shape effects

We compare mode I and mode II ERR from FEM simulations and compare to the value corresponding to the full solution for a semi-circular crack in an infinite homogenized ply.

55 7. An analytical model of the fiber/matrix interface crack

Based on previous considerations, we suggest an analytical regression-based expression for the energy release rate of the fiber/matrix interface crack.

8. Conclusions & Outlook