# Provo Snowfall Distribution Analysis

Jeremy Meyer

BYU Department of Statistics

December 12, 2018

#### Outline

- Problem Definition
  - The Data
  - The Problem / Research Question
  - Distributions
- 2 Simulation Study
  - Methodology
  - Simulation Results
- 3 Results
  - Application to Data
  - Conclusion

#### The Data

- Data includes 228 daily snowfall measurements in Provo, UT from Jan 2008 Apr 2018.
- Measurable snowfall only, rounded to tenth/half an inch.
- NOAA has a station here on BYU campus! Downloaded from www.ncdc.noaa.gov





# Fun facts (From 2008-2018)

- It snowed 11 inches here on Dec 21, 2010!
- Measureable snowfall was reported on average 22 days/year
- Earliest Snow: Oct 25, 2012 (1.0in)
- Latest Snow: May 24th, 2010 (2.0in)
- It has snowed on average 38 in/year from 2008-2017.

| Month-Day | Year | Snowfall (in) |
|-----------|------|---------------|
| 12-21     | 2010 | 11.0          |
| 12-3      | 2013 | 8.5           |
| 1-6       | 2009 | 8.0           |
| 2-25      | 2011 | 7.5           |
| 12-25     | 2016 | 7.3           |

Top 5 snowfall days chart

## Research Question / Distributions

- What statistical Distribution fits the data the best?
- This can help meterologists:
  - be reasonable in their predictions
  - 2 have something to compare future observations to
- Data is non-negative and very right skewed.
- Consider the Gamma, Lognormal, and Burr distributions

#### Snowfall (Jan 2008 - Apr 2018)



#### Burr Distribution

## Burr Distribution pdf

$$f(x|c,k) = ck \frac{x^{c-1}}{(1+x^c)^{k-1}}$$
  $x > 0;$   $c,k > 0$ 

- Used in econometrics for variables with heavy right tails.
- Has nice closed form CDF that made it easy to implement.
- Used because of its positive suppoprt, flexible shape, and right skew.
- Also used because snow is cold...



## Methodology

- Fit distributions using Maximum Likelihood
  - Plug -log(Likelihood) into R's optim()
- ② Use Kolmogorov-Smirnov (KS) and Anderson-Darling (AD) tests to determine goodness of fit.
  - Both operate by comparing the sample CDF to the model distribution CDF.
  - The AD test gives more attention to the tails.
- 3 Determine best-fitting distribtion (lowest test stat) from results

How KS/AD tests work  $\rightarrow$ 



## Simulation Study

Idea is to see if the tests will actually detect the true distribution.

- First calculate MLEs from the data to be used as parameters.
- ② Generate 10,000 samples from all 3 distributions and perform the KS/AD tests using the Gamma, Lognormal, and Burr CDFs.
- 3 Count proportion of times each distribution is identified as the "best".

MLE parameters used in simulation

| Distribution              | Param 1 | Param 2 |
|---------------------------|---------|---------|
| $Gamma(\alpha, \lambda)$  | 1.325   | 0.685   |
| Lognormal $(\mu, \sigma)$ | 0.238   | 0.967   |
| Burr(c,k)                 | 1.913   | 0.783   |

## Simulation Results

#### Gamma samples

| Distribution-Test | Avg Test Stat | Avg P-value | % Best |
|-------------------|---------------|-------------|--------|
| Gamma-KS          | 0.0565        | 0.5184      | 84.78  |
| Lognorm-KS        | 0.0881        | 0.1588      | 12.21  |
| Burr-KS           | 0.1097        | 0.0579      | 3.01   |
| Gamma-AD          | 0.9936        | 0.5033      | 94.76  |
| Lognorm-AD        | 3.2640        | 0.0611      | 2.94   |
| Burr-AD           | 4.4643        | 0.0265      | 2.30   |

#### Lognormal samples

| Distribution-Test | Avg Test Stat | Avg P-value | % Best |
|-------------------|---------------|-------------|--------|
| Gamma-KS          | 0.0876        | 0.1627      | 16.21  |
| Lognorm-KS        | 0.0568        | 0.5128      | 48.23  |
| Burr-KS           | 0.0634        | 0.4200      | 35.56  |
| Gamma-AD          | Inf           | 0.0668      | 5.61   |
| Lognorm-AD        | 1.0008        | 0.4986      | 63.70  |
| Burr-AD           | 1.3124        | 0.3779      | 30.69  |

## Simulation Results cont'd

Burr Samples

| Distribution-Test | Avg Test Stat        | Avg P-value | % Best |
|-------------------|----------------------|-------------|--------|
| Gamma-KS          | 0.1099               | 0.0533      | 3.32   |
| Lognorm-KS        | 0.0632               | 0.4187      | 30.89  |
| Burr-KS           | 0.0568               | 0.5139      | 65.79  |
| Gamma-AD          | Inf                  | 0.0058      | 0.10   |
| Lognorm-AD        | $\operatorname{Inf}$ | 0.2969      | 18.37  |
| Burr-AD           | 0.9999               | 0.5013      | 81.53  |

#### Results:

- All the tests did what they were supposed to!
- AD test generally did better with these parameters.

## Graphs from MLEs



# KS/AD test results

KS Test results

| Distribution                          | D Stat | p-value |
|---------------------------------------|--------|---------|
| $Gamma(\alpha, \lambda)$              | 0.152  | 0.000*  |
| $\operatorname{Lognorm}(\mu, \sigma)$ | 0.106  | 0.011*  |
| Burr(c,k)                             | 0.131  | 0.001*  |

AD Test results

| TID TOST TOSTIOS                                    |        |         |  |
|-----------------------------------------------------|--------|---------|--|
| Distribution                                        | A Stat | p-value |  |
| $Gamma(\alpha, \lambda)$                            | 3.020  | 0.027*  |  |
| $oxed{ Lognorm}(oldsymbol{\mu}, oldsymbol{\sigma})$ | 2.368  | 0.058   |  |
| Burr(c,k)                                           | 3.125  | 0.024*  |  |

- From both tests, the **Lognormal** fits best
- P-value is still quite lower than simulation.
- Maybe rounded data messes up test? Or just limited fit?

#### Conclusion

- Lognormal(.238,0.967) models snowfall the best! Gamma distribution had too much density in middle, the Burr tail was too heavy.
- More continuous measurements may help build a more accurate model.
- Potential Applications
  - Reasonable forecast checking
  - Something to compare observations against  $(4.5 \text{in for } 12/2/18 \rightarrow 90^{th} \text{ percentile})$
  - Reference point when climate shifts