(zadania gwiazdkowe do oddania 15 października)

- 1. Udowodnij, że dla dowolnych punktów x_n, x w przestrzeni metrycznej E, $\delta_{x_n} \Rightarrow \delta_x$ wtedy i tylko wtedy, gdy $x_n \to x$.
- 2. Wykaż, że $\frac{1}{n}\sum_{k=1}^{n}\delta_{k/n} \Rightarrow \lambda$, gdzie λ oznacza miarę Lebesgue'a na [0,1].
- 3. Wykaż, że:
 - a) jeśli $X_n \to X$ p.n., to $X_n \Rightarrow X$;
 - b) jeśli $X_n \to X$ według prawdopodobieństwa, to $X_n \Rightarrow X$;
 - c) jeśli $X_n \Rightarrow c$, gdzie c jest stałą, to $X_n \to c$ według prawdopodobieństwa.
- 4* Wykaż, że dla rzeczywistych zmiennych losowych $X_n \Rightarrow X$ wtedy i tylko wtedy, gdy istnieją zmienne losowe \tilde{X}_n o tym samym rozkładzie co X_n i \tilde{X} o tym samym rozkładzie co X takie, że \tilde{X}_n jest zbieżny do \tilde{X} według prawdopodobieństwa.
- 5. Zmienne losowe X_n, X przyjmują tylko wartości całkowite.
 - a) Wykaż, że $X_n \Rightarrow X$ wtedy i tylko wtedy, gdy $\mathbf{P}(X_n = k) \to \mathbf{P}(X = k)$ dla wszystkich liczb całkowitych k.
 - b) Czy z istnienia granic $\lim_{n\to\infty} \mathbf{P}(X_n=k)$ dla k całkowitych wynika zbieżność X_n wg rozkładu?
- 6. Wykaż, że jeśli $np_n \to \lambda$, to $Bin(n, p_n) \Rightarrow Poiss(\lambda)$.
- 7. Niech X będzie rzeczywistą zmienną losową. Wykaż, że istnieje ciąg zmiennych X_n zbieżny według rozkładu do X taki, że
 - a) każde X_n przyjmuje tylko skończenie wiele wartości,
 - b) zmienne X_n mają gęstość.
- 8. Udowodnij, że $\mathcal{N}(a_n, \sigma_n^2) \Rightarrow \mathcal{N}(a, \sigma^2)$ wtedy i tylko wtedy, gdy $a_n \to a$ oraz $\sigma_n^2 \to \sigma^2$.
- 9. Niech g_{X_n}, g_X będą gęstościami odpowiednich rzeczywistych zmiennych losowych. Wykaż, że jeśli $g_{X_n}(t) \to g_X(t)$ dla p.w. t, to $X_n \Rightarrow X$.
- 10. Co trzeba założyć o funkcji f, by z tego, że X_n jest zbieżne według rozkładu do X wynikała zbieżność według rozkładu $f(X_n)$ do f(X)?
- 11. Wykaż, że jeśli $X_n \Rightarrow X$ oraz dystrybuanta F_X jest ciągła, to F_{X_n} zbiega jednostajnie do F_X .
- 12* Załóżmy, że X jest niezdegenerowaną zmienną losową. Wykaż, że zmienne $a_nX+b_n,\ a_n\geqslant 0$ zbiegają według rozkładu do zmiennej $aX+b,\ a\geqslant 0$ wtedy i tylko wtedy, gdy $a_n\to a$ i $b_n\to b$.
- 13* Udowodnij, że jeśli $X_n \Rightarrow X$, p > 0 oraz $\sup_n \mathbf{E}|X_n|^p < \infty$, to $\mathbf{E}|X|^p < \infty$, ale niekoniecznie $\mathbf{E}|X_n|^p \to \mathbf{E}|X|^p$. Pokaż, że jest to jednak prawdą, gdy dla pewnego $\varepsilon > 0$, $\sup_n \mathbf{E}|X_n|^{p+\varepsilon} < \infty$.
- 14* Niech $x \in (0,1)$ będzie liczbą niewymierną. Wykaż,że

$$\frac{1}{n} \sum_{k=1}^{n} \delta_{\{kx \bmod 1\}} \Rightarrow \lambda,$$

gdzie λ oznacza miarę Lebesgue'a na [0,1]. Co się dzieje, gdy x jest wymierne?

- 15*. Niech X_n będzie pierwszą współrzędną rozkładu jednostajnego na kuli jednostkowej w \mathbb{R}^n . Udowodnij, że $\sqrt{n}X_n \Rightarrow \mathcal{N}(0,1)$.
- 16. Załóżmy, że $X_n \Rightarrow X$ oraz $Y_n \Rightarrow Y$. Wykaż, że jeśli Y jest stałe p.n., to $X_n + Y_n \Rightarrow X + Y$. Czy implikacja jest prawdziwa, jeśli Y nie jest zdegenerowaną zmienną losową?
- 17. Udowodnij, że jeśli dla wszystkich $n,~X_n$ jest niezależne od $Y_n,~X$ niezależne od Y oraz $X_n\Rightarrow X$ i $Y_n\Rightarrow Y,$ to $(X_n,Y_n)\Rightarrow (X,Y).$
- 18. Wykaż, że rodzina rozkładów normalnych $\mathcal{N}(a_{\alpha}, \sigma_{\alpha}^2)$ jest ciasna wtedy i tylko wtedy gdy $\sup_{\alpha} |a_{\alpha}|$, $\sup_{\alpha} \sigma_{\alpha}^2 < \infty$.
- 19. Dana jest rodzina rozkładów
 - a) wykładniczych $\{\text{Exp}(\lambda) : \lambda \in A\}, A \subseteq \mathbb{R}_+,$
 - b) jednostajnych $\{U(a,b): a,b \in A, a < b\}, A \subseteq \mathbb{R}.$

Jaki warunek musi spełniać zbiór A, aby ta rodzina była ciasna?

(zadania gwiazdkowe do oddania 22 października)

- 1. Załóżmy, że dla dowolnej liczby naturalnej $k, \lim_{n \to \infty} \mathbf{E} X_n^k = \frac{1}{k+1}.$ Wykaż, że
 - i) jeśli $\mathbf{P}(X_n \in [0,1] = 1)$, to X_n zbiegają według rozkładu,
 - ii) założenie z i) nie jest konieczne.
- 2* Wykaż, że wzór

$$d(\mu, \nu) = \inf \left\{ \varepsilon > 0 : \ \forall_t \ F_{\mu}(t - \varepsilon) - \varepsilon < F_{\nu}(t) < F_{\mu}(t + \varepsilon) + \varepsilon \right\}$$

definiuje metrykę na wszystkich rozkładach probabilistycznych na \mathbb{R} zgodną ze słabą zbieżnością (tzn. $\mu_n \Rightarrow \mu$ wtedy i tylko wtedy, gdy $d(\mu_n, \mu) \rightarrow 0$).

- 3* Zmienne losowe X_n są niezależne. Wykaż, że $\sum_{n=1}^{\infty} X_n$ jest zbieżny według rozkładu wtedy i tylko wtedy, gdy jest zbieżny według prawdopodobieństwa.
- 4. Załóżmy, że E jest przestrzenią polską (tzn. metryczną, ośrodkową i zupełną), zaś $(\mu_i)_{I\in I}$ prezwartą względem słabej zbieżnośći rodziną miar probabilistycznych na E (tzn. taką, że z każdego ciągu miar z tej rodziny można wybrać podciąg słabo zbieżny). Udowodnij, że

$$\forall_{\varepsilon,\delta>0} \ \exists_{x_1,x_2,\dots,x_n\in E} \ \forall_{i\in I} \ \mu\Big(\bigcup_{k=1}^n B(x_k,\delta)\Big) \geqslant 1-\varepsilon$$

i wywnioskuj stąd, że rodzina $(\mu_i)_{I \in I}$ jest ciasna. (**Uwaga.** Prawdziwa jest też implikacja odwrotna - każda ciasna rodzina miar probabilistycznych na przestrzeni polskiej jest prezwarta względem słabej zbieżności).

- 5. Oblicz funkcje charakterystyczne podstawowych rozkładów tzn.
 - a) geometrycznego z parametrem p,
 - b) Poissona z parametrem λ ,
 - c) dwumianowego z parametrami n, p,
 - d) jednostajnego na przedziale [a, b],
 - e) normalnego $\mathcal{N}(a, \sigma^2)$,
 - f) wykładniczego z parametrem λ ,
 - g) Cauchy'ego z parametrem h.
- 6. Które z następujących funkcji są funkcjami charakterystycznymi: $\cos t$, $\cos^2 t$, $\frac{1}{4}(1+e^{it})^2$, $\frac{1+\cos t}{2}$, $\frac{1}{2-e^{it}}$?
- 7. Funkcja φ jest funkcją charakterystyczną pewnej zmiennej losowej. Czy funkcje
 - a) φ^2 , b) Re(φ), c) $|\varphi|^2$, d) $|\varphi|$ muszą być funkcjami charakterystycznymi?
- 8. Wykaż, że dla zmiennych X przyjmujących tylko wartości całkowite zachodzi

$$\mathbf{P}(X=k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ikt} \varphi_X(t) dt.$$

- 9* Udowodnij, że jeśli X ma rozkład ciągły z gęstością g, to $\varphi_X(t) \to 0$ dla $|t| \to \infty$.
- $10^*\,$ Znajdź niecałkowalną zmienną losową X,której funkcja charakterystyczna jest różniczkowalna w 0.

(zadania gwiazdkowe do oddania 29 października)

- 1. Korzystając z funkcji charakterystycznej oblicz $\mathbf{E}X^k$ dla $X \sim \mathcal{N}(0,1)$.
- 2* Wykaż, że jeśli $\mathbf{E}X^k = \mathbf{E}Y^k$ dla $k=1,2,\ldots$ i Y ma rozkład normalny, to X i Y mają ten sam rozkład.
- 3* Znajdź przykład zmiennych X i Y o różnych rozkładach, skończonych wszystkich momentach, takich, że $\mathbf{E}X^k = \mathbf{E}Y^k$ dla $k = 1, 2, \ldots$
- 4. Pokaż, że kombinacje wypukłe funkcji charakterystycznych są funkcjami charakterystycznymi.
- 5. Udowodnij, że zmienna losowa X jest symetryczna wtedy i tylko wtedy, gdy $\varphi_X(t) \in \mathbb{R}$ dla wszystkich t.
- 6. Zmienne X, Y są niezależne, przy czym X i X+Y mają rozkłady normalne. Udowodnij, że zmienna Y ma także rozkład normalny lub jest stała p.n..
- 7. Zmienne X, Y, ε są niezależne, przy czym X, Y mają rozkład wykładniczy z parametrem λ oraz $\mathbf{P}(\varepsilon = \pm 1) = \frac{1}{2}$. Wykaż, że zmienna X Y ma ten sam rozkład, co zmienna εX .
- 8. Udowodnij, że splot rozkładów Cauchy'ego ma rozkład Cauchy'ego.
- 9. Znajdź zmienne losowe X,Y takie, że $\varphi_{X+Y}=\varphi_X\varphi_Y$ oraz zmienne X,Y są zależne.
- 10. Podaj przykład zmiennych losowych X_n takich, że $\varphi_{X_n} \to \varphi$ punktowo, ale φ nie jest funkcją charakterystyczna żadnego rozkładu na prostej.
- 11. Udowodnij, że jeśli $\varepsilon_1, \varepsilon_2, \ldots$ są niezależnymi zmiennymi losowymi takimi, że $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$ to zmienna $\sum_{n=1}^{\infty} 2^{-n} \varepsilon_n$ ma rozkład jednostajny na [-1, 1].
- 12* a) Udowodnij, że $\varphi(x) = (1-|x|)I_{(-1,1)}(x)$ jest funkcją charakterystyczną b) Udowodnij, że jeśli $\varphi \colon \mathbb{R} \to \mathbb{R}_+$ jest parzysta, wypukła i malejąca na $[0,\infty)$, kawałkami liniowa oraz $\varphi(0)=1$ to φ jest funkcją charakterystyczna.
 - c) Udowodnij, że jeśli $\varphi \colon \mathbb{R} \to \mathbb{R}_+$ jest parzysta, wypukła i malejąca na $[0,\infty)$ oraz $\varphi(0)=1$, to φ jest funkcją charakterystyczną.
- 13* Wykaż, że funkcja $e^{-|t|^{\alpha}}$
 - a*) jest funkcją charakterystyczną dla $0 < \alpha \le 1$,
 - b*) nie jest funkcją charakterystyczną dla $\alpha > 2$,
 - c*) jest funkcją charakterystyczną dla $1 < \alpha \le 2$.
- 14. Zmienna X ma funkcję charakterystyczną $\varphi_X(t)=e^{-|t|^{\alpha}}$ dla pewnego $\alpha\in(0,2]$. Co można powiedzieć o rozkładzie zmiennej aX+bY, gdzie $a,b\in R$, a Y jest niezależną kopią X?

(zadania gwiazdkowe do oddania 5 listopada)

- 0. Wykaż, że jeśli funkcja $f: \mathbb{R} \mapsto \mathbb{C}$ jest nieujemnie określona, to $f(t) = \overline{f(-t)}$ oraz $|f(t)| \leq f(0)$ dla $t \in \mathbb{R}$.
- 1* Załóżmy, że zmienne X i Y są niezależne, mają jednakowy rozkład oraz dla dowolnych liczb rzeczywistych a,b zmienna aX+bY ma ten sam rozkład, co zmienna $(|a|^{\alpha}+|b|^{\alpha})^{1/\alpha}X$. Znajdź funkcję charakterystyczną zmiennej X.
- 2* Czy z równości dwu funkcji charakterystycznych na pewnym otoczeniu zera wynika równość rozkładów?
- 3. Dla $n \geqslant 1$ zmienna X_n ma rozkład geometryczny z parametrem $p_n \in (0,1)$. Wykaż, że jeśli $(a_n)_n$ jest takim ciągiem liczb dodatnich, że $a_n \to 0$, $p_n/a_n \to \lambda > 0$, to rozkład zmiennych $a_n X_n$ zbiega słabo do rozkładu wykładniczego z parametrem λ .
- 4. Dana jest zmienna losowa X taka, że $\mathbf{E}X^2 < \infty$ oraz $X \sim \frac{1}{\sqrt{2}}(Y+Z)$, gdzie Y, Z są niezależnymi kopiami X. Wykaż, że $X \sim \mathcal{N}(0, \sigma^2)$ dla pewnego $\sigma \geqslant 0$.
- 5* Wykaż, że teza poprzedniego zadania jest prawdziwa bez założenia $\mathbf{E} X^2 < \infty$
- 6. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = a) = \mathbf{P}(X_i = 1/a) = 1/2$ dla pewnego a > 1. Wykaż, że zmienne $Z_n = (X_1 X_2 \cdots X_n)^{1/\sqrt{n}}$ są zbieżne według rozkładu i znajdź rozkład graniczny.
- 7. Zmienne X_{λ} mają rozkład Poissona z parametrem λ . Wykaż, że

$$\frac{X_{\lambda} - \lambda}{\sqrt{\lambda}} \Rightarrow \mathcal{N}(0, 1), \text{gdy } \lambda \to \infty.$$

8. Udowodnij, że

$$\lim_{n \to \infty} e^{-n} \sum_{k \le n} \frac{n^k}{k!} = \frac{1}{2}.$$

9. Niech X_1,X_2,\dots będą niezależnym zmiennymi losowymi takimi, że

$$\mathbf{P}(X_n = \pm 1) = \frac{1}{2}(1 - \frac{1}{n^2}), \ \mathbf{P}(X_n = \pm n) = \frac{1}{2n^2}.$$

Udowodnij, że $Var(X_n) \to 2$ oraz

$$\frac{X_1 + X_2 + \ldots + X_n}{\sqrt{n}} \Rightarrow \mathcal{N}(0, 1) \text{ przy } n \to \infty.$$

10. Zmienne losowe X_1,X_2,\ldots są niezależne, mają ten sam rozkład taki, że $\mathbf{E}X_1=0,\, \mathrm{Var}(X)=1.$ Zbadaj zbieżność względem rozkładu ciągów

$$U_n = \frac{\sqrt{n}(X_1 + \dots, X_n)}{X_1^2 + \dots + X_n^2}, \quad V_n = \frac{X_1 + \dots + X_n}{\sqrt{X_1^2 + \dots + X_n^2}}.$$

(zadania gwiazdkowe do oddania 19 listopada)

- 1* Załóżmy, że X_1, X_2, \ldots są niezależnymi zmiennymi losowymi o jednakowym rozkładzie oraz ciąg $\frac{1}{\sqrt{n}}(X_1+X_2+\ldots+X_n)$ jest ciasny. Wykaż, że zmienne X_i mają średnią zero i skończoną wariancję.
- 2. Wykaż warunek Lindeberga w przypadku gdy $X_{n,k} = \frac{1}{\sqrt{n}}Y_k$, $1 \le k \le n$, gdzie Y_1, Y_2, \ldots jest ciągiem niezależnych scentrowanych zmiennych losowych o jednakowym rozkładzie i skończonej wariancji.
- 3. Zmienne X_i są niezależne i mają rozkład jednostajny na [-1,1]. Zbadaj zbieżność według rozkładu ciągu $n^{-1/2}(X_1+X_2^3+\ldots+X_n^{2n-1})$.
- 4. Zmienne X_1, X_2, \ldots są niezależne i mają jednakowy rozkład o średniej zero i wariancji 1. Ciąg (a_n) jest ograniczony oraz $s_n = (a_1^2 + a_2^2 \ldots + a_n^2)^{1/2} \to \infty$. Wykaż, że $s_n^{-1}(a_1X_1 + a_2X_2 + \ldots + a_nX_n)$ zbiega według rozkładu do $\mathcal{N}(0,1)$.
- 5. Załóżmy, że $(X_{n,k})_{k\leqslant k_n}$ jest układem trójkątnym $\sigma_n^2=\sum_{k=1}^{k_n}\mathrm{Var}(X_n)<\infty$ oraz zachodzi warunek Prochorowa

$$\frac{1}{\sigma_n^p} \sum_{k=1}^{k_n} \mathbf{E} |X_{n,k} - \mathbf{E} X_{n,k}|^p \to 0 \text{ przy } n \to \infty \text{ dla pewnego } p > 2.$$

Wykaż, że układ $(X_{n,k})$ spełnia warunek Lindeberga.

- 6. Podaj przykład zależnych zmiennych losowych X,Y o rozkładzie $\mathcal{N}(0,1)$ takich, że $\mathrm{Cov}(X,Y)=0.$
- 7. Udowodnij, że zmienna $X \sim \mathcal{N}(a, B)$ ma gęstość wtedy i tylko wtedy, gdy B jest odwracalne oraz, że w tym ostatnim przypadku wynosi ona

$$g_X(x) = \frac{\sqrt{\det C}}{(2\pi)^{d/2}} \exp(\frac{\langle C(x-a), x-a \rangle}{2}), \text{ gdzie } C = B^{-1}.$$

8* Niech X_1,X_2,\ldots będzie ciągiem niezależnych zmiennych losowych o jednakowym rozkładzie takim, że $\mathbf{E}X_i=0,\,\mathbf{E}X_i^2=1$ oraz

$$S_n(t) = \frac{1}{\sqrt{n}} \sum_{i \le [nt]} X_i \text{ dla } t \ge 0, n = 1, 2, \dots$$

Udowodnij, że dla dowolnych $0 \le t_1 < t_2 < \ldots < t_k$ ciąg wektorów losowych $(S_n(t_1), S_n(t_2), \ldots, S_n(t_k))$ jest zbieżny według rozkładu. Jak wygląda rozkład graniczny?

9* Dla $n=1,2,\ldots$ i $t\in[0,1]$ określ
my zmienną $T_n(t)$ wzorem

$$T_n(t) := (nt - \lfloor nt \rfloor) S_n(\frac{\lfloor nt \rfloor + 1}{n}) + (\lfloor nt \rfloor + 1 - nt) S_n(\frac{\lfloor nt \rfloor}{n}),$$

gdzie S_n są takie jak w poprzednim zadaniu. Wówczas T_n można traktować jako zmienną o wartościach w C[0,1]. Wykaż, że T_n są zbieżne według rozkładu. Co można powiedzieć o rozkładzie granicznym?

(zadanie gwiazdkowe do oddania 3 grudnia)

- 1. Zmienne τ i σ są momentami zatrzymania. Wykaż, że $\tau \vee \sigma$, $\tau \wedge \sigma$, $\tau + \sigma$ są momentami zatrzymania. Czy $\tau 1$, $\tau + 1$ też są momentami zatrzymania (przyjąć $T = \mathbb{N}$)?
- 2. Zmienne losowe (X_n) są adaptowalne względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że następujące zmienne losowe są momentami zatrzymania dla dowolnego zbioru borelowskiego B:
 - a) $\tau_1 = \inf\{n : X_n \in B\}$ pierwsza wizyta w zbiorze B,
 - b) $\tau_k = \inf\{n > \tau_{k-1} : X_n \in B\}, k = 2, 3, \dots k$ -ta wizyta w zbiorze B.
- 3. Wykaż, że jeśli τ,σ są momentami zatrzymania $(T=\mathbb{N}),$ to
 - a) jeśli $\tau \equiv t$, to $\mathcal{F}_{\tau} = \mathcal{F}_{t}$,
 - b) jeśli $\tau < \sigma$, to $\mathcal{F}_{\tau} \subset \mathcal{F}_{\sigma}$,
 - c) $A \in \mathcal{F}_{\tau}$ wtedy i tylko wtedy gdy $A \in \mathcal{F}$ oraz $A \cap \{\tau = t\} \in \mathcal{F}_{t}$ dla wszystkich t.
- 4. Zmienne τ i σ są momentami zatrzymania względem filtracji $(\mathcal{F}_n)_{n=0}^{\infty}$. Udowodnij, że zdarzenia $\{\tau < \sigma\}, \{\tau \leq \sigma\}, \{\tau = \sigma\} \in \mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma}$ oraz $\mathcal{F}_{\tau} \cap \mathcal{F}_{\sigma} = \mathcal{F}_{\tau \wedge \sigma}$.
- 5. Podaj przykład momentu zatrzymania τ , takiego, że $\sigma(\tau) \neq \mathcal{F}_{\tau}$.
- 6. Niech X_1, X_2, \ldots będzie ciągiem niezależnych zmiennych losowych o skończonej wariancji i średniej zero oraz $S_n = X_1 + X_2 + \ldots + X_n$. Wykaż, że S_n i $S_n^2 \text{Var}(S_n)$ są martyngałami względem filtracji generowanej przez X_n .
- 7. Załóżmy, że $\varepsilon_1, \varepsilon_2, \ldots$ są niezależnymi zmiennymi losowymi takimi, że $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$ oraz $\mathcal{F}_n = \sigma(\varepsilon_1, \ldots, \varepsilon_n)$. Niech $S_n = \varepsilon_1 + \ldots + \varepsilon_n$.

 a) Znajdź wszystkie liczby a takie, że $(a^n \cos(S_n), \mathcal{F}_n)$ jest martyngałem.
 b) Wykaż, że dla dowolnego $\lambda > 0$, ciąg $(\exp(\lambda S_n n\lambda^2/2), \mathcal{F}_n)$ jest nadmartyngałem.
- 8. Zmienne X_1,X_2,\ldots są niezależne oraz $\mathbf{E}|X_i|<\infty$ dla wszystkich i. Udowodnij, że $M_n=X_1X_2\cdots X_n$ jest martyngałem względem filtracji generowanej przez X_n wtedy i tylko wtedy gdy $\mathbf{E}X_i=1$ dla wszystkich $i\geqslant 2$ lub $X_1=0$ p.n..
- 9. Niech X_n będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i średniej 0. Wykaż, że ciąg Z_n dany wzorem $Z_0 = 0$ $Z_n = X_0X_1 + X_1X_2 + \ldots + X_{n-1}X_n$, $n \geqslant 1$ jest martyngałem względem $\mathcal{F}_n = \sigma(X_0, X_1, \ldots, X_n)$.
- 10. Niech $t \in \mathbb{R}$ oraz X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi o rozkładzie normalnym $\mathcal{N}(0,1)$. Przyjmijmy $S_n = X_1 + X_2 + \ldots + X_n$ oraz $\mathcal{F}_n = \sigma(X_1, \ldots, X_n)$. Znajdź wszystkie ciągi (a_n) takie, że $(e^{itS_n + a_n}, \mathcal{F}_n)$ jest martyngałem.
- 11. Niech X_1, X_2, \ldots będą niezależnymi zmienymi losowymi takimi, że $P(X_i = \pm 1) = 1/2, \, S_n = X_1 + X_2 + \ldots + X_n \,$ oraz $\tau = \inf\{n : S_n = 1\}$. Wykaż, że $\mathbf{E}\tau = \infty$.
- 12* Niech $(M_k)_{k=1}^n$ będzie martyngałem względem pewnej filtracji,a p>1 spełnia $\mathbf{E}|M_1|^p<\infty$. Wykaż, że $\mathbf{E}|M_1|^p\leqslant\mathbf{E}|M_n|^p$ oraz równość zachodzi wtedy i tylko wtedy gdy $M_1=M_2=\ldots=M_n$ p.n..

(zadania gwiazdkowe do oddania 10 grudnia)

- 1. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że jest on martyngałem wtedy i tylko wtedy, gdy dla dowolnego ograniczonego momentu zatrzymania τ , $\mathbf{E}X_{\tau} = \mathbf{E}X_0$.
- 2. Niech (X_n, \mathcal{F}_n) będzie adaptowalnym ciągiem całkowalnym. Udowodnij, że $X_n = Y_n + Z_n$, gdzie Y_n jest martyngałem, a Z_n ciągiem prognozowalnym. Wykaż, że X_n jest nadmartyngałem wtedy i tylko wtedy gdy Z_n jest nierosnący.
- 3. Egzaminator przygotował na egzamin 20 zestawów pytań. Każdy z 15 zdających studentów losuje 1 zestaw, który później nie jest już używany. Student Abacki zna odpowiedź na dokładnie 10 z 20 zestawów. Od wychodzących z egzaminu dowiaduje się jakie pytania są już wylosowane. Jaka jest optymalna strategia (wybór momentu wejścia na egzamin) maksymalizująca szanse zdania egzaminu przez Abackiego?
- 4. Niezależne zmienne losowe X_1, X_2, \ldots mają jednakowy rozkład o skończonej wariancji. Udowodnij, że $\mathbf{E}(S_{\tau} \tau \mathbf{E} X_1)^2 = \mathbf{E} \tau \mathrm{Var}(X_1)$, o ile $\mathbf{E} \tau < \infty$. Czy wzór musi być prawdziwy gdy $\mathbf{E} \tau = \infty$?
- 5. Zmienne X_1, X_2, \ldots są niezależne oraz $\mathbf{P}(X_i = 1) = p = 1 \mathbf{P}(X_i = -1)$. Przyjmując $S_0 = 0$, $S_n = \sum_{i=1}^n X_i$ znajdź wszystkie liczby rzeczywiste λ dla których λ^{S_n} jest martyngałem względem filtracji generowanej przez (X_n) .
- 6. Oblicz prawdopodobieństwo wygrania (przy skończonym kapitale obu graczy) w grze orła i reszkę monetą niesymetryczną.
- 7. Oblicz średni czas oczekiwania na ruinę któregoś z graczy w grze orła i reszkę
 - a) monetą symetryczną
 - b) monetę niesymetryczną.
- 8* Gracz A dysponuje nieskończonym kapitałem. Ile wynosi średni czas oczekiwania na wygranie 1 zł przez A w grze orła i reszkę
 - a) monetą symetryczną
 - b) monetę niesymetryczną?
- 9* Czy ze zbieżności martyngału według prawdopodobieństwa wynika zbieżność prawie na pewno?
- 10* Udowodnij, że istnieje stała $C<\infty$ taka, że dla dowolnego martyngału $(X_n,\mathcal{F}_n)_{n=0}^\infty$ zachodzi

$$\mathbf{E}\sup_{n}|X_{n}| \leqslant C(1 + \sup_{n} \mathbf{E}|X_{n}|\ln^{+}|X_{n}|).$$

(zadania gwiazdkowe do oddania 17 grudnia)

1. Niech $(\varepsilon_n)_n$ będzie ciągiem niezależnych symetrycznych zmiennych losowych o wartościach ± 1 . Wykaż, że nadmartyngał

$$Z_n := e^{a(\varepsilon_1 + \dots + \varepsilon_n) - (na^2/2)}$$

jest zbieżny prawie na pewno. Czy jest zbieżny w L_1 ?

2. Niech X_1, X_2, \dots będą niezależne o rozkładzie jednostajnym na [0,2]. Wykaż, że

$$M_n = \prod_{k=1}^n X_k$$

tworzą martyngał (względem filtracji generowanej przez X_n) zbieżny do 0 prawie na pewno, ale nie w L_1 .

- 3. Podaj przykład martyngału X_n takiego, że $X_n \to 0$ p.n. oraz $\mathbf{E}|X_n| \to \infty$.
- 4. Wykaż, że jeśli (X_i) i (Y_i) są jednostajnie całkowalne, to dla dowolnych $a,b\in\mathbb{R},\ (aX_i+bY_i)$ jest jednostajnie całkowalny.
- 5. Znajdź jednostajnie całkowalny ciąg X_n taki, że $\mathbf{E}\sup_n |X_n| = \infty$.
- 6. Niech $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ spełnia warunek $\lim_{x \to \infty} \frac{\varphi(x)}{x} = \infty$. Wykaż, że jeśli $\sup_i \mathbf{E} \varphi(|X_i|) < \infty$, to (X_i) jest jednostajnie całkowalny.
- 7. Niech X_1, X_2, \ldots będą niezależnymi zmiennymi losowymi takimi, że X_n ma rozkład Poissona z parametrem n^2 . Wykaż, że ciąg $M_n = (n!)^{-2}X_1 \cdots X_n$ jest martyngałem względem filtracji generowanej przez (X_n) . Czy M_n jest zbieżny prawie na pewno? Czy jest zbieżny w L^2 ? Czy jest zbieżny w L^1 ?
- 8* Niech Y_n będzie niezależnym ciągiem nieujemnych zmiennych losowych o jednakowym rozkładzie takich, że $\mathbf{E}Y_1=1$ i $\mathbf{P}(Y_1=1)<1$. Wykaż, że $(Y_1Y_2\cdots Y_n,\sigma(Y_1,\ldots,Y_n))_{n\geqslant 1}$ jest martyngałem zbieżnym p.n., ale nie w L^1 .
- 9* Niech $(X_n, \mathcal{F}_n)_{n=-\infty}^0$ będzie martyngałem (z tzw. czasem odwróconym). Udowodnij, że granica $X=\lim_{n\to-\infty}X_n$ istnieje. Co można powiedzieć o X?

(zadania gwiazdkowe do oddania 14 stycznia)

- 1* Czy istnieje jednostajnie całkowalny martyngał $(M_n)_{n\geqslant 0}$ taki, że $\mathbf{E}\sup |M_n|=\infty$?
- 2* Wykaż, że jeśli martyngał (M_n, \mathcal{F}_n) jest jednostajnie całkowalny, to dla dowolnych momentów zatrzymania $\sigma \leqslant \tau$ takich, że $\tau < \infty$ p.n, $\mathbf{E}(M_\tau | \mathcal{F}_\sigma) = M_\sigma$ p.n.
- 3. Zmienne $\varepsilon_1, \varepsilon_2, \ldots$ są niezależne oraz $\mathbf{P}(\varepsilon_i = \pm 1) = 1/2$. Rozstrzygnij, które z podanych poniżej procesów są łancuchami Markowa.
 - a) $X_0 = 0, X_n = \varepsilon_1 + \ldots + \varepsilon_n, n = 1, 2, \ldots$
 - b) $Y_0 = 1$, $Y_n = \varepsilon_1 \varepsilon_2 \cdots \varepsilon_n$, $n = 1, 2, \dots$
 - c) $Z_n = (-1)^{\varepsilon_n}, , n = 1, 2, \dots$
 - d) $W_n = \varepsilon_n \varepsilon_{n+1}, n = 1, 2, \dots$
 - e) $V_n = \varepsilon_n + \varepsilon_{n+1}, n = 1, 2 \dots$
- 4. Załóżmy, że E jest zbiorem przeliczalnym, $f\colon E\times\mathbb{R}\to E$ jest funkcją mierzalną (przyjmujemy, że wszystkie podzbiory E są mierzalne), Y_0 pewną zmienną o wartościach w E, zaś X_0,X_1,\ldots ciągiem niezależnych zmiennych losowych. Definiujemy

$$Y_{n+1} = f(X_n, Y_n)$$
dla $n = 0, 1,$

Wykaż, że (Y_n) jest łańcuchem Markowa.

- 5. Dwa jednorodne łańcuchy Markowa $(X_n), (Y_n)$ z macierzą przejścia P są niezależne. Udowodnij, że $Z_n = (X_n, Y_n)$ też jest łańcuchem Markowa i znajdź jego macierz przejścia.
- 6. (X_n) jest łańcuchem Markowa o wartościach w E. Wykaż, że dla dowolnej funkcji różnowartościowej $f: E \to E$, $(f(X_n))$ jest łańcuchem Markowa. Czy tak być musi, jeśli nie założymy różnowartościowości f?
- 7* Prawdopodobieństwo, że bakteria ma n potomków wynosi p_n dla $n=0,1,\ldots$ Zakładając, że bakterie w ntym pokoleniu rozmnażają się równocześnie i niezależnie udowodnij, że populacja bakterii (licząca w chwili 0, N>0 bakterii) nigdy nie wyginie z prawdopodobieństwem dodatnim wtedy i tylko wtedy gdy $\sum_{k=0}^{\infty} kp_k > 1$ lub $p_1 = 1$.

(zadania gwiazdkowe do oddania 21 stycznia)

1. Dla łańcuchów Markowa o przestrzeni stanów $\{1,2,3,4\}$ i poniższych macierzach przejścia znajdź wszystkie stany nieistotne i wszystkie zamknięte zbiory stanów.

$$a) \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & \frac{1}{4} & \frac{3}{4} & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{array} \right) \quad b) \left(\begin{array}{cccc} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & \frac{3}{4} & \frac{1}{4} \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right)$$

- 2. Udowodnij, że łańcuch Markowa jest nieprzywiedlny wtedy i tylko wtedy gdy nie ma właściwych podzbiorów zamkniętych.
- 3. Zmienne Y_0, Y_1, Y_2, \ldots są niezależne i mają ten sam rozkład geometryczny z parametrem $\frac{1}{2}$. Ciąg zmiennych X_1, X_2, \ldots jest określony następująco: $X_0 \equiv 1$ p.n., a dla $n \geqslant 0$,

$$X_{n+1} = \begin{cases} 1 & \text{jeśli } Y_n = 1, \\ X_n Y_n & \text{jeśli } Y_n \neq 1. \end{cases}$$

- a) Wykaż, że $(X_n)_n$ jest nieprzywiedlnym łańcuchem Markowa.
- b) Czy ten łańcuch jest okresowy?
- c) Udowodnij, że wszystkie stany są powracające.
- 4. Wykaż, że skończony łańcuch Markowa ma przynajmniej jeden stan powracający.
- 5. Wykaż, że jeśli yjest stanem chwilowym to $\sum_{n=0}^\infty p_{x,y}(n)<\infty$ dla wszystkich x, w szczególności $\lim_{n\to\infty}p_{x,y}(n)=0.$
- 6. Udowodnij, że nieprzywiedlny łańcuch Markowa jest powracający wtedy i tylko wtedy gdy $F_{x,y}=1$ dla wszystkich x,y.
- 7. Wykaż, że w powracalnym i nieprzywiedlnym łańcuchu Markowa z prawdopodobieństwem 1 każdy stan jest odwiedzany nieskończenie wiele razy (niezależnie od rozkładu początkowego).
- 8* Rozpatrzmy błądzenie w \mathbb{Z}^k z macierzą przejścia $p_{x,y} = \frac{1}{2k}$ gdy $\sum_{i=1}^k |x_i y_i| = 1$ oraz $p_{x,y} = 0$ dla pozostałych x,y. Dla jakich k jest to błądzenie powracalne?
- 9* Stan x łańcucha Markowa x nazywamy niezerowym, jeśli średni czas powrotu do x jest skończony, zaś zerowym w przeciwnym przypadu. Wykaż, że w nieprzywiedlnym powracalnym łańcuchu Markowa wszystkie stany są niezerowe lub wszystkie są zerowe.
- 10* Wykaż, że w nieprzywiedlnym powracającym łańcuchu Markowa stan y jest zerowy wtedy i tylko wtedy, gdy $\lim_{n\to\infty} p_{xy}(n)=0$ dla wszystkich stanów x.

1. Zbadaj okresowość łańcuchów o poniższych macierzach przejścia:

$$a) \left(\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right) \quad b) \left(\begin{array}{ccc} 0 & \frac{1}{4} & 0 & \frac{3}{4} \\ 0 & \frac{1}{3} & \frac{2}{3} & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right)$$

- 2. Niech (X_n) będzie nieprzywiedlnym okresowym łańcuchem Markowa na E z macierzą przejścia P i okresem d > 1. Udowodnij, że istnieje rozkład $E = S_1 \cup S_2 \cup \ldots \cup S_d$ taki, że zbiory S_i spełniają warunki:
 - a) $p_{xy} > 0 \Rightarrow x \in S_i, y \in S_{i+1}$ dla pewnego i = 1, 2, ..., d (przyjmujemy $S_{d+1} = S_1$).
 - b) na każdym S_i macierz $(p_{xy}(d))_{x,y\in S_i}$ definiuje nieprzywiedlny, nieokresowy łańcuch Markowa.
- 3. Jednorodny łańcuch Markowa o przestrzeni stanów $\{0,1,2\ldots\}$ ma macierz przejścia $(p_{n,m})_{n,m\geqslant 0}$ taką, że $p_{0,1}=1,\ p_{n,n+1}=1-p_{n,n-1}=p$ dla $n=1,2\ldots$, gdzie $p\in(0,1)$. W zależności do parametru p wyznacz wszystkie rozkłady stacjonarne.
- 4. W dwu urnach znajduje się łącznie n kul. W każdej chwili wybieramy losowo kulę i przenosimy ją do innej urny. Znajdź rozkład stacjonarny liczby kul w pierwszej urnie.
- 5. Ciąg niezależnych zmiennych losowych Y_1,Y_2,\ldots ma wspólny rozkład taki, że $\mathbf{P}(Y_i=1)=1-\mathbf{P}(Y_i=-1)=p$. Definiujemy rekurencyjnie ciąg X_n wzorami $X_0=1,~X_{n+1}=\max(X_n,1)+Y_n$. Wykaż, że ciąg ten jest łańcuchem Markowa. Znajdź rozkład stacjonarny, o ile istnieje.
- 6. W powiecie N. syn piekarza zostaje piekarzem z prawdopodobieństwem 3/4, a syn niepiekarza z prawdopodobieństwem 1/100. Jakie jest prawdopodobieństwo, że wnuk piekarza jest piekarzem? A potomek w n-tym pokoleniu? Jaki procent ludzi w N. stanowią piekarze?
- 7. Udowodnij twierdzenie o istnieniu rozkładu stacjonarnego dla łańcuchów z przeliczalną przestrzenią stanów bez używania twierdzenia Brouwera.
- 8. (X_n) jest łańcuchem Markowa, czy wynika stąd, że
 - a) $\mathbf{P}(X_n = a_{k+1} | X_{i_k} = a_k, X_{i_{k-1}} = a_{k-1}, \dots, X_{i_1} = a_1) = \mathbf{P}(X_n = a_{k+1} | X_{i_k} = a_k)$ dla dowolnych liczb całkowitych $0 \le i_1 < i_2 < \dots < i_k < n$ oraz stanów a_1, a_2, \dots, a_{k+1} ?
 - b) $\mathbf{P}(X_n \in A_{k+1} | X_{i_k} \in A_k, X_{i_{k-1}} \in A_{k-1}, \dots, X_{i_1} \in A_1) = \mathbf{P}(X_n \in A_{k+1} | X_{i_k} \in A_k)$ dla dowolnych liczb całkowitych $0 \le i_1 < i_2 < \dots < i_k < n$ oraz zbiorów stanów A_1, A_2, \dots, A_{k+1} ?