```
In [1]:
import pandas as pd
In [2]:
file_to_import = "../purchase_data.csv"
purchase_data = pd.read_csv('purchase_data.csv')
purchase data.head(1)
Out[2]:
   Purchase ID
                SN Age Gender Item ID
                                                           Item Name
                                          Extraction, Quickblade Of Trembling
          0 Lisim78 20
                                 108
                                                                     3.53
                          Male
In [3]:
# Total Players
total players = len(purchase data["SN"].unique())
total_players
Out[3]:
576
In [4]:
# Number of Unique Item
number unique = len(purchase data["Item ID"].unique())
number_unique
Out[4]:
183
In [5]:
# Average Price
average item price = purchase data["Price"].mean()
pd.options.display.float_format = '${:,.2f}'.format
average item price.round(2)
Out[5]:
3.05
In [6]:
# Number of Purchases
number_purchases = len(purchase_data["Purchase ID"].value_counts())
number purchases
Out[6]:
780
In [7]:
# Total Revenue
total_revenue = purchase_data["Price"].sum()
pd.options.display.float format = '${:,.2f}'.format
total_revenue
```

Out[7]:

```
2379.77
```

```
In [8]:
```

Out[8]:

	Total Number of Players	Unique Items	Average Price per Item	Number of Purchases	Total Revenue
0	576	183	\$3.05	780	\$2,379.77

In [9]:

```
#Gender demo Male
group_male = purchase_data.groupby(["Gender"]).get_group(('Male'))
count_male = len(group_male['SN'].unique())
print(count_male)

percent_male = (count_male/total_players)
print(percent_male)
```

484 0.840277777777778

In [10]:

```
#Gender demo Female
group_female = purchase_data.groupby(["Gender"]).get_group(('Female'))
count_female = len(group_female['SN'].unique())
print(count_female)

percent_female = (count_female/total_players)
print(percent_female)
```

0.140625

In [11]:

```
#Gender demo Other
group_other = purchase_data.groupby(["Gender"]).get_group(('Other / Non-Disclosed'))
count_other = len(group_other['SN'].unique())
print(count_other)

percent_other = (count_other/total_players)
print(percent_other)
```

11 0.01909722222222224

In [12]:

```
gender_rinal

format_dict = {'Percentage of Players by Gender': '{:.2%}'}
gender_final.style.format(format_dict)

[]
```

Percentage of Players by

Out[12]:

•	•	Gender
Gender		
Male	484	84.03%
Female	81	14.06%
Other/Non-Disclosed	11	1.91%

Player Count by Gender

In [13]:

```
# Purchasing Analysis (Gender) - Male
group_male = purchase_data.groupby(["Gender"]).get_group(('Male'))
purchase_count_male = len(group_male['Price'])
print(purchase_count_male)

purchase_total_male = group_male['Price'].sum()
print(purchase_total_male)

avg_purchase_price_male = purchase_total_male / purchase_count_male
print(avg_purchase_price_male)

count_male = len(group_male['SN'].unique())
print(count_male)

avg_per_person_male = purchase_total_male / count_male
print(avg_per_person_male)
```

652 1967.64 3.0178527607361967 484 4.065371900826446

In [14]:

```
# Purchasing Analysis (Gender) - Female
group_female = purchase_data.groupby(["Gender"]).get_group(('Female'))
purchase_count_female = len(group_female['Price'])
print(purchase_count_female)

purchase_total_female = group_female['Price'].sum()
print(purchase_total_female)

avg_purchase_price_female = purchase_total_female / purchase_count_female
print(avg_purchase_price_female)

count_female = len(group_female['SN'].unique())
print(count_female)

avg_per_person_female = purchase_total_female / count_female
print(avg_per_person_female)
```

113 361.94 3.203008849557522 81 4.468395061728395

In [15]:

```
# Purchasing Analysis (Gender) - Other
group_other = purchase_data.groupby(["Gender"]).get_group(('Other / Non-Disclosed'))
purchase_count_other = len(group_other['Price'])
print(purchase_count_other)
```

```
purchase_total_other = group_other['Price'].sum()
print(purchase_total_other)

avg_purchase_price_other = purchase_total_other / purchase_count_other
print(avg_purchase_price_other)

count_other = len(group_other['SN'].unique())
print(count_other)

avg_per_person_other = purchase_total_other / count_other
print(avg_per_person_other)
```

50.19 3.3459999999999996 11 4.562727272727272725

In [16]:

```
#Data Frame for Purchasing Analysis (Gender)
gender purchase analysis dataframe = {'Purchase Count': [purchase count male,
purchase_count_female
                                                          ,purchase_count_other],
                    'Gender': ['Male', 'Female', 'Other/Non-Disclosed'],
                    'Avg Purchase Price':[avg_purchase_price_male, avg_purchase_price_female, avg_r
urchase price_other],
                    'Total Purchase Value': [purchase total male, purchase total female,
purchase total other],
                    'Avg Total Purchase Per Person': [avg per person male, avg per person female, a
vg per person other]}
qender purchase analysis final = pd.DataFrame(gender purchase analysis dataframe)
gender purchase analysis final = gender purchase analysis final.set index('Gender')
gender_purchase_analysis_final[['Purchase Count','Avg Purchase Price','Total Purchase Value',
                                 'Avg Total Purchase Per Person']]
gender purchase analysis final
```

Out[16]:

	Purchase Count	Avg Purchase Price	Total Purchase Value	Avg Total Purchase Per Person
Gender				
Male	652	\$3.02	\$1,967.64	\$4.07
Female	113	\$3.20	\$361.94	\$4.47
Other/Non-Disclosed	15	\$3.35	\$50.19	\$4.56

In [17]:

```
# Create bins & labels
bins = [0, 9, 14, 19, 24, 29, 34, 39, 45]
bin_labels = ["<10", "10 - 14", "15 - 19", "20 - 24", "25 - 29", "30 - 34", "35 - 39", "40+"]

total_players = len(purchase_data["SN"].unique())

# Cut to bin data, adds age group column to dataframe
purchase_data["Age Group"] = pd.cut(purchase_data["Age"], bins=bins, labels=bin_labels)
purchase_data

purchase_data_group = purchase_data.groupby("Age Group")

total_count_age = purchase_data_group["SN"].nunique()

percent_age = (total_count_age/total_players)*100

percent_age

age_demographics = pd.DataFrame({"Total Count": total_count_age, "Percentage of Players":
percent_age})

age_demographics.index.name = None
age_demographics.style.format({"Percentage_of_Players":"{:..2f}%"})</pre>
```

age_acmographico.ocyte.totmac((referreage of frayers . (./.==),)

Out[17]:

	Total Count	Percentage of Players
<10	17	2.95%
10 - 14	22	3.82%
15 - 19	107	18.58%
20 - 24	258	44.79%
25 - 29	77	13.37%
30 - 34	52	9.03%
35 - 39	31	5.38%
40+	12	2.08%

In [18]:

```
#Purchase Analysis by Age
bins = [0, 9, 14, 19, 24, 29, 34, 39, 45]
bin labels = ["<10", "10 - 14", "15 - 19", "20 - 24", "25 - 29", "30 - 34", "35 - 39", "40+"]
purchase data["Age Group"] = pd.cut(purchase data["Age"], bins=bins, labels=bin labels)
purchase data
purchase_data_group = purchase_data.groupby("Age Group")
purchase_data_group
purchase_count_age = purchase_data_group["Purchase ID"].count()
avg_purchase_price = purchase_data_group["Price"].mean()
total_purchase_value = purchase_data_group["Price"].sum()
avg_purchase_person = total_purchase_value/purchase_count_age
age_purchase_analysis = pd.DataFrame({"Purchase Count": purchase_count_age,
                                      "Avg Purchase Price": avg purchase price,
                                      "Total Purchase Value": total_purchase_value,
                                      "Avg Total Purchase per Person": avg_purchase_person})
age purchase analysis.index.name = None
# Format with currency style
age purchase analysis.style.format({"Avg Purchase Price":"${:,.2f}",
                               "Total Purchase Value":"${:,.2f}",
                               "Avg Total Purchase per Person":"${:,.2f}"})
```

Out[18]:

	Purchase Count	Avg Purchase Price	Total Purchase Value	Avg Total Purchase per Person
<10	23	\$3.35	\$77.13	\$3.35
10 - 14	28	\$2.96	\$82.78	\$2.96
15 - 19	136	\$3.04	\$412.89	\$3.04
20 - 24	365	\$3.05	\$1,114.06	\$3.05
25 - 29	101	\$2.90	\$293.00	\$2.90
30 - 34	73	\$2.93	\$214.00	\$2.93
35 - 39	41	\$3.60	\$147.67	\$3.60
40+	13	\$2.94	\$38.24	\$2.94

In [19]:

Out[19]:

	Purchase Count	Average Purchase Price	Total Purchase Value per Person
SN			
Lisosia93	5	\$3.79	\$18.96
Idastidru52	4	\$3.86	\$15.45
Chamjask73	3	\$4.61	\$13.83
Iral74	4	\$3.40	\$13.62
Iskadarya95	3	\$4.37	\$13.10

In [20]:

14 - ---

Out[20]:

		Purchase Count	Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
145	Fiery Glass Crusader	9	\$4.58	\$41.22
108	Extraction, Quickblade Of Trembling Hands	9	\$3.53	\$31.77
82	Nirvana	9	\$4.90	\$44.10
19	Pursuit, Cudgel of Necromancy	8	\$1.02	\$8.16

In [21]:

Out[21]:

		Purchase Count	Item Price	Total Purchase Value
Item ID	Item Name			
178	Oathbreaker, Last Hope of the Breaking Storm	12	\$4.23	\$50.76
82	Nirvana	9	\$4.90	\$44.10
145	Fiery Glass Crusader	9	\$4.58	\$41.22
92	Final Critic	8	\$4.88	\$39.04
103	Singed Scalpel	8	\$4.35	\$34.80