

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 – Prof. Lienkamp	28.04.2022 – Prof. Lienkamp	28.04.2022 – Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler
09 Controllability	09 Controllability	09 Übung Controllability
07.07.2022 – Prof. Bengler	07.07.2022 – Prof. Bengler	07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp	12 Aktuelle und künftige Systeme 28.07.2022 – Prof. Lienkamp

Übung Kalman Filter Andreas Schimpe, M.Sc.

Agenda

- Rekursiver Bayesschätzer
- Zustandsraummodell des Beispiels
- Normalverteilung
- Kalmanfilter
- Rechenbeispiel

Grundprinzip

Filterung einer zeitlichen Abfolge von Messwerten

Aktualisierung von gespeicherten Tracks mit neuen Messwerten

- Prädiktion des Objektzustands
- Assoziation von gemessenem und prädiziertem Zustand
- Innovation: Aktualisierung des Objektzustands

Kalmanfilter

- **Rekursiver Bayesfilter**
- Minimiert mittleren quadratischen Fehler
- Optimale Lösung für normalverteilte Zustandsgrößen unter den Annahmen:
 - **Lineare Modelle**
 - Prozess- und Mess-Störungen sind normalverteilt, mittelwertfrei und zeitlich unkorreliert

Schätztheorie als Grundlage des Trackings

Rekursiver Bayesfilter

- Bayes-Schätzung: stochastische Schätzung auf Basis des Satzes von Bayes: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Gesucht ist die beste Schätzung der Wahrscheinlichkeitsverteilung eines Zustands x auf Basis von Beobachtungen z

$$P(x_t|z_{1:t}) = \frac{P(z_{1:t}|x_t) P(x_t)}{P(z_{1:t})}$$

- Rekursiver Bayesschätzer:
 - Prädiktion: $P(x_t)$ als geschätzter Wert
 - Innovation: Update mit gemessenem Wert $P(z_t|x_t)$
- Nomenklatur
 - Zustand zum Zeitpunkt t x_t
 - Messwert vom Zeitpunkt t z_t
 - $^{\text{\tiny D}}$ Schätzwert \hat{x}_t

Grundlagen für objektbasiertes Tracking

Zustandsbeschreibung

- Für Tracking ist Modellierung der Objektbewegung notwendig (Prädiktion)
- Modellierung durch Zustandsraummodelle effizient möglich
- Markov-Eigenschaft 1. Ordnung: n\u00e4chster Zustand h\u00e4ngt nur vom aktuellen Zustand ab

Aufgabe 1: Ein Fahrzeug mit einem im Frontbereich integrierten Laserscanner folgt einem Vorderfahrzeug. Welche Merkmale können gemessen werden?

Vereinfachend wird im Folgenden nur noch die eindimensionale Bewegung entlang der x-Achse betrachtet.

Aufgabe 1: Ein Fahrzeug mit einem im Frontbereich integrierten Laserscanner folgt einem Vorderfahrzeug. Welche Merkmale können gemessen werden?

- Abstand
- Abmessungen (Breite)
- Evtl. Orientierung

Vereinfachend wird im Folgenden nur noch die eindimensionale Bewegung entlang der x-Achse betrachtet.

Aufgabe 2: Mit welchem diskreten Zustandsraummodell kann die relative Bewegung des Vorderfahrzeugs unter der Annahme konstanter Relativgeschwindigkeit modelliert werden?

Aufgabe 2: Mit welchem diskreten Zustandsraummodell kann die relative Bewegung des Vorderfahrzeugs unter der Annahme konstanter Relativgeschwindigkeit modelliert werden?

$$d_{1} = d_{0} + v_{\text{rel},0} \cdot \Delta T,$$

$$\Rightarrow \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k} = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k-1}$$

Mit d Abstand zum Vorderfahrzeug, v_{rel} Relativgeschwindigkeit

Normalverteilte Prozess und Messgrößen

Eindimensionale Normalverteilung

$$y = f(x|\mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$

Mehrdimensionale Normalverteilung

Schritte des Kalmanfilters

Ablauf des Kalman-Filters in einem Zeitschritt k→k+1

Winner 2015, S.454

Initialisierung

- Initialisierung des Zustands $x_0 = \begin{bmatrix} d \\ v_{\rm rel} \end{bmatrix}$ mit erstem Messwert $z_0 = d_0$
- v_0 : sinnvoller Initialwert
- Messunsicherheit v₀

Initialisierung

- Initialisierung des Zustands $x_0 = \begin{bmatrix} d \\ v_{\rm rel} \end{bmatrix}$ mit erstem Messwert $z_0 = d_0$
- v_0 : sinnvoller Initialwert.
- Messunsicherheit v₀

Prädiktion

• Prädiktion des Zustands \hat{x}_1 auf Basis des Bewegungsmodells

$$\hat{x}_1 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_k = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k-1}$$

Prädiktion

• Prädiktion des Zustands \hat{x}_1 auf Basis des Bewegungsmodells

$$\hat{x}_1 = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_k = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_{k-1}$$

Innovation

Korrektur mit aktuellem Messwert

Innovation

Korrektur mit aktuellem Messwert

Kalmanfilter – Rechenschritte (1)

Prozessrauschen

Diskretes dynamisches System

$$egin{aligned} oldsymbol{x}_k &= oldsymbol{\phi}_{k-1} oldsymbol{x}_{k-1} + oldsymbol{w}_{k-1} \ oldsymbol{z}_k &= oldsymbol{H}_k oldsymbol{x}_k + oldsymbol{v}_k \ oldsymbol{oldsymbol{M}} oldsymbol{oldsymbol{W}} oldsymbol{w}_{k-1} \end{aligned}$$
 Messrauschen

Prädiktion von Schätzwert und $\widehat{x}_k(-) = \phi_{k-1}\widehat{x}_{k-1}(+)$ Kovarianzmatrix $P_k(-) = \phi_{k-1}P_{k-1}(+)$

$$\widehat{\boldsymbol{x}}_{k}(-) = \boldsymbol{\phi}_{k-1}\widehat{\boldsymbol{x}}_{k-1}(+)$$

$$\boldsymbol{P}_{k}(-) = \boldsymbol{\phi}_{k-1}\boldsymbol{P}_{k-1}(+)\boldsymbol{\phi}_{k-1}^{T} + \boldsymbol{Q}_{k-1}$$
Kovarianz Prozessrauschen

1) Zustandsprädiktion

Anpassung Kalmanfaktor

 $\overline{\mathbf{K}}_{k} = \mathbf{P}_{k}(-)\mathbf{H}_{k}^{T} \left[\mathbf{H}_{k} \mathbf{P}_{k}(-) \mathbf{H}_{k}^{T} + \mathbf{R}_{k}^{T}\right]^{-1}$

(-) Prädizierte Werte(+) Aktualisierte Werte

Innovationskovarianzmatrix: Vergleich Modellunsicherheit im Messraum und Messunsicherheit

Kovarianz Messrauschen

Kalmanfilter – Rechenschritte (2)

Innovation

mit Kalmanfaktor (K) gewichtete
 Anpassung der Prädiktion:

2) Messungsprädiktion

Anpassung Kovarianzmatrix:

$$\boldsymbol{P}_k(+) = [\boldsymbol{I} - \overline{\boldsymbol{K}}_k \boldsymbol{H}_k] \boldsymbol{P}_k(-)$$

Kalmanfilter Rechenbeispiel

Aufgabe 3: Der Laserscanner (mit einer angegebenen Messunsicherheit $\sigma = 0.1$ m) hat ein neues Objekt im Abstand 39,97 m detektiert. Initialisieren Sie den Kalmanfilter mit einem sinnvollen Anfangszustand und Kovarianzmatrix. Prädizieren Sie anschließend den erwarteten Zustand, Messwert sowie die Kovarianzmatrix beim nächsten Zeitschritt (1 s).

Kalmanfilter Rechenbeispiel

Aufgabe 3: Der Laserscanner (mit einer angegebenen Messunsicherheit $\sigma = 0.1$ m) hat ein neues Objekt im Abstand 39,97 m detektiert. Initialisieren Sie den Kalmanfilter mit einem sinnvollen Anfangszustand und Kovarianzmatrix. Prädizieren Sie

$$x_0(+) = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_0 = \begin{bmatrix} 39.97 \\ 0 \end{bmatrix}$$

$$\hat{x}_1(-) = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 39.97 \\ 0 \end{bmatrix} = \begin{bmatrix} 39.97 \\ 0 \end{bmatrix}$$

$$\hat{z}_1 = 39.97$$

sinnvollen Antangszustand und Kovarianzmatrix. Pradizieren Sie anschließend den erwarteten Zustand, Messwert sowie die Kovarianzmatrix beim nächsten Zeitschritt (1 s).
$$x_0(+) = \begin{bmatrix} d \\ v_{\text{rel}} \end{bmatrix}_0 = \begin{bmatrix} 39.97 \\ 0 \end{bmatrix}$$

$$\hat{x}_1(-) = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 39.97 \\ 0 \end{bmatrix} = \begin{bmatrix} 39.97 \\ 0 \end{bmatrix}$$

$$\hat{z}_1 = 39.97$$

$$P_1(-) = \phi_{k-1}P_{k-1}(+)\phi_{k-1}^T + Q_{k-1}$$

$$= \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0.01 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \Delta T & 1 \end{bmatrix}$$

$$+ \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

Kalmanfilter Rechenbeispiel

Aufgabe 4: Die nächste Messung des Laserscanners ergibt einen Abstand von 34,98 m. Berechnen Sie den Kalmanfaktor. Berücksichtigen Sie dabei die Messunsicherheit R mit $\sigma = 0,1$ m. Wie lautet die dafür notwendige Messmatrix H_k in $z_k = H_k x_k + v_k$?

Die prädizierte Kovarianzmatrix ist
$$\mathbf{P}_1(-) = \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

Kalmanfilter Rechenbeispiel

Aufgabe 4: Die nächste Messung des Laserscanners ergibt einen Abstand von 34,98 m. Berechnen Sie den Kalmanfaktor. Berücksichtigen Sie dabei die Messunsicherheit R mit $\sigma = 0,1$ m. Wie lautet die dafür notwendige Messmatrix H_k in $z_k = H_k x_k + v_k$?

$$\boldsymbol{H}_1 = [1\ 0]$$

Die prädizierte Kovarianzmatrix ist
$$P_1(-) = \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix}$$

$$\overline{R}_1 = P_1(-)H_1^T[H_1P_1(-)H_1^T + R_1]^{-1}$$

$$= \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 1.01 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.01 \end{bmatrix}^{-1} = \begin{bmatrix} 0.99 \\ 0.98 \end{bmatrix}$$

Kalmanfilter Rechenbeispiel

Aufgabe 5: Berechnen Sie die Innovation des Kalmanfilters. (Korrektur des prädizierten Zustands mit der gewichteten Messwertabweichung)

Kalmanfilter Rechenbeispiel

Aufgabe 5: Berechnen Sie die Innovation des Kalmanfilters. (Korrektur des prädizierten Zustands mit der gewichteten Messwertabweichung)

$$\widehat{\mathbf{x}}_{1}(+) = \widehat{\mathbf{x}}_{1}(-) + \overline{\mathbf{K}}_{1}[\mathbf{z}_{1} - \mathbf{H}_{1}\widehat{\mathbf{x}}_{1}(-)]$$

$$= \begin{bmatrix} 39.97 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.99 \\ 0.98 \end{bmatrix} \begin{bmatrix} 34.98 - \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 39.97 \\ 0 \end{bmatrix} \end{bmatrix}$$

$$= \begin{bmatrix} 39.97 \\ 0 \end{bmatrix} + \begin{bmatrix} 0.99 \\ 0.98 \end{bmatrix} [-4.99] = \begin{bmatrix} 35.03 \\ -4.89 \end{bmatrix}$$

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_\mathrm{s} = 0.1s$

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_\mathrm{s} = 0.1s$

Zeitschritte Zeitschritte

$$x_0 = [40m, -5\frac{m}{s}]$$
; $\frac{\mathrm{d}v}{\mathrm{d}t} = 0.4\frac{m}{s^2}$; Sensorrauschen; $\sigma = 0.1$; $t_s = 0.1s$

