Inhaltsverzeichnis

1	Beg	riff der Regelung 2
	1.1	Dynamisches System
	1.2	Vorgeschaltete Steuereinrichtung
	1.3	Regelung
	1.4	$ \ \ \ \ \ Zwei-Freiheitsgrade-Regelung \ (Steuerung + Regelung) \ \ \ldots \ \ \ldots \ \ 3 $
		1.4.1 Störgrößenaufschaltung
2	Mod	delle 6
	2.1	Zustandsdarstellung
		2.1.1 Zustandsdarstellung bei Linearkombinationen
	2.2	Blockschaltbild
	2.3	Elementare Übertragungsglieder
		2.3.1 Sprungfunktion, Impulsfunktion
	2.4	Lineare zeitinvariante Modelle (LZI-Modelle)
		2.4.1 Regelungsnormalform
		2.4.2 Regelungsnormalform mit Ableitungen von u
		2.4.3 Beobachtungsnormalform
	2.5	Linearisierung im Arbeitspunkt
		2.5.1 Ein Eingabeparameter
		2.5.2 Mehere Eingabeparameter
		2.5.3 Regelungsnormalform
3	Lapl	lace-Transformation 12
	_	
4	Mat	thematische Grundlagen 12
5	Elek	strotechnische Grundlagen 12
	5.1	Widerstand
	5.2	Kondensator
	5.3	Spule
	5.4	Kirchoff'sches Spannungsgesetz
	5.5	Kirchoff'sches Stromgesetz
6	Phy	sikalische Grundlagen 13
_	6.1	Kräfte
	6.2	Drehmomente
	6.3	Drehimpuls:
7	Tipp	os 14
•		7eichnen eines Blockschalthildes 14

1 Begriff der Regelung

1.1 Dynamisches System

Signale und Blöcke:

Bezeichnung Var.		Beschreibung
Ausgangsgröße	y(t)	Ausgangsgröße, der ein gewünschtes Verhalten aufgeprägt werden soll
Stellgröße	u(t)	Eingangsgröße, durch die das System gezielt beeinflusst werden kann
Störgröße	z(t)	Eingangsgröße, die störend und mit zumeist nur ungenau oder gar nicht bekannten Zeitverlauf auf das System wirkt

Blockschaltbild

1.2 Vorgeschaltete Steuereinrichtung

Ziel

ullet Übertragungsglied, das den Stellgrößenverlauf u(t) derart generiert, dass y(t) einem vorgegebenen Sollverlauf w(t) folgt.

Signale und Blöcke:

Bezeichnung	Var.	Beschreibung
Führungsgröße	w(t)	Von außen vorgegebener Soll-Verlauf für die Regelgröße y(t)
Ausgangsgröße	y(t)	Ausgangsgröße, der ein gewünschtes Verhalten aufgeprägt werden soll
Stellgröße	u(t)	Eingangsgröße, durch die das System gezielt beeinflusst werden kann
Störgröße	z(t)	Eingangsgröße, die störend und mit zumeist nur ungenau oder gar nicht bekannten Zeitverlauf auf das System wirkt

Blockschaltbild

1.3 Regelung

Ziel:

- Minderung des Einflusses von (nicht-messbaren) Störungen
- Minderung des Einflusses von Ungenauigkeiten des Streckenmodells
- Verbesserung des Folgeverhaltens

Signale und Blöcke:

Bezeichnung Var.		Beschreibung	
Führungsgröße	w(t)	Von außen vorgegebener Soll-Verlauf für die Regelgröße y(t)	
Regelgröße	y(t)	Ausgangsgröße, der ein gewünschtes Verhalten aufgeprägt werden soll	
Regelabweichung	e(t)	Entsteht durch Vergleich der Führungsgröße mit der gemessenen Regelgröß und soll klein gehalten werden $\big(e(t)=w(t)-y'(t)\big)$	
Stellgröße u		Eingangsgröße, durch die das System gezielt beeinflusst werden kann	
Störgröße	z(t)	Eingangsgröße, die störend und mit zumeist nur ungenau oder gar nicht bekannten Zeitverlauf auf das System wirkt	
Messrauschen	n(t)		
Regler		Übertragungsglied, das aus der Regelabweichung das Stellsignal u generiert, sodass y möglichst w folgt	
Messglied/Messeinrichtung		Erfasst die Regelgröße y mittels eines Sensors und erzeugt ein zu $y(t)$ möglichst äquivalentes Signal $y'(t)$	

Blockschaltbild

1.4 Zwei-Freiheitsgrade-Regelung (Steuerung + Regelung)

Ziel:

• Kombination der Vorteile der Regelschleife (see section 1.3) und der Vorteile der Steuerung (see section 1.2)

Signale und Blöcke:

Bezeichnung Var.		Beschreibung
Führungsgröße	w(t)	Von außen vorgegebener Soll-Verlauf für die Regelgröße $y(t)$
Regelgröße	y(t)	Ausgangsgröße, der ein gewünschtes Verhalten aufgeprägt werden soll
${\sf Regelabweichung} e(t)$		Entsteht durch Vergleich der Führungsgröße mit der gemessenen Regelgröße und soll klein gehalten werden $\big(e(t)=w(t)-y'(t)\big)$
Stellgröße	u(t)	Eingangsgröße, durch die das System gezielt beeinflusst werden kann
Störgröße	z(t)	Eingangsgröße, die störend und mit zumeist nur ungenau oder gar nicht bekannten Zeitverlauf auf das System wirkt
Regler		Übertragungsglied, das aus der Regelabweichung das Stellsignal u generiert, sodass y möglichst w folgt
Steuereinrichtung		Übertragungsglied, das den Stellgrößenverlauf $u(t)$ derart generiert, dass $y(t)$ einem vorgegebenen Sollverlauf $w(t)$ folgt.

Blockschaltbild

1.4.1 Störgrößenaufschaltung

Ziel:

• Mindern des Einflusses einer messbaren Störgröße auf den Ausgang

Signale und Blöcke:

Bezeichnung Var.		Beschreibung
Führungsgröße	w(t)	Von außen vorgegebener Soll-Verlauf für die Regelgröße y(t)
Regelgröße	y(t)	Ausgangsgröße, der ein gewünschtes Verhalten aufgeprägt werden soll
Regelabweichung	e(t)	Entsteht durch Vergleich der Führungsgröße mit der gemessenen Regelgröße und soll klein gehalten werden ($e(t)=w(t)-y'(t)$)
Stellgröße	u(t)	Eingangsgröße, durch die das System gezielt beeinflusst werden kann
Störgröße	$z_1(t)$	Messbare Eingangsgröße, die störend auf das System wirkt
Störgröße	$z_2(t)$	Nicht-Messbare Eingangsgröße, die störend auf das System wirkt
Regler		Übertragungsglied, das aus der Regelabweichung das Stellsignal u generiert, sodass y möglichst w folgt
Steuereinrichtung		Übertragungsglied, das den Stellgrößenverlauf $u(t)$ derart generiert, dass $y(t)$ einem vorgegebenen Sollverlauf $w(t)$ folgt. Besteht aus Störgrößenaufschaltung und Führungsgrößenaufschaltung
Störgrößenaufschaltung		Übertragungspfad zur Aufschaltung einer messbaren Störgröße auf die Stellgröße
Führungsgrößenaufschaltung		Übertragungspfad zur Aufschaltung der Führungsgröße auf die Stellgröße

Blockschaltbild

2 Modelle

2.1 Zustandsdarstellung

Zustandsdarstellung/Zustandsraummodell Ein Modell bestehend aus

$$\begin{vmatrix} \dot{x}_1 = f_1(x_1 \dots x_n, z, u) \\ \vdots \\ \dot{x}_n = f_n(x_1 \dots x_n, z, u) \end{vmatrix}$$
 Zustandsdifferentialgleichungen
$$y = g(x_1 \dots x_n)$$
 Ausgangsgleichung

bzw.

$$\dot{x} = f(x, z, u)$$
$$y = g(x)$$

wenn bei bekannten Eingangssignalen u(t) und z(t) und gegebenen Anfangswerten $x_1(0),\ldots,x_n(0)$ die Zeitverläufe $x_1(t),\ldots,x_n(t)$ für t>0 eindeutig bestimmt sind.

Zustandsgleichungen und die Ausgangsgleichung zusammen

Trajektorie Die n Zeitverläufe $x_1(t), \ldots, x_n(t)$

Zustandsvariablen x_1, \ldots, x_n

Zustand des Systems Die Gesamtheit der Werte x_1, \dots, x_n zu einem festen Zeitpunkt t

Zustandsvektor

$$x(t) = \begin{bmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

2.1.1 Zustandsdarstellung bei Linearkombinationen

Bestehen die rechten Seiten der Zustandsgleichungen ausschließlich aus Linearkombinationen, d.h.:

$$\dot{x}_1 = a_{11}x_1 + \dots + a_{1n}x_n + e_1z + b_1u$$

 \vdots
 $\dot{x}_n = a_{n1}x_1 + \dots + a_{nn}x_n + e_nz + b_nu$
 $y = c_1x_1 + \dots + c_nx_n$

so gilt:

$$\dot{x} = Ax + ez + bu \quad \equiv \quad \begin{bmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{bmatrix} = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} + \begin{bmatrix} e_1 \\ \vdots \\ \dot{e}_n \end{bmatrix} z(t) + \begin{bmatrix} b_1 \\ \vdots \\ \dot{b}_n \end{bmatrix} u(t)$$

$$y = c^T x \qquad \equiv \quad y = \begin{bmatrix} c_1 & \dots & c_n \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$

Blockschaltbild:

2.2 Blockschaltbild

Funktion:

 Das Blockschaltbild ist eine graphische Darstellung der Funktionsbeziehungen zwischen den zeitveränderlichen Größen durch Blöcke und Wirkungslinien. Ein Block ordnet dabei jedem Zeitverlauf der Eingangsgröße eindeutig einen Zeitverlauf der Ausgangsgröße zu und wirkt so als Übertragungsglied. Die Zuordnungsvorschrift wird dabei in den Block hineingeschrieben.

Blockschaltbild:

2.3 Elementare Übertragungsglieder

Summationsglied:

Weitere Übertragungsglieder:

Name	Funktional- beziehung	Übertragungs- funktion G(s)	Sprungantwort h(t) (0 für t < 0)	Block-Symbol	Ortskurve	Bodediagramm
P- Glied	<i>y</i> = <i>Ku</i>	К	$h(t) = K\sigma(t)$ $K \longrightarrow t$	u y	^Im ————————————————————————————————————	$K = \bigcup_{\omega} G(j\omega) $ $K = \bigcup_{\omega} G(j\omega) $
				K heißt auch Verstärkungsfaktor		0°
I- Glied	$y(t) = K \int_{0}^{t} u(\tau)d\tau + y_{0}$ oder $\dot{y}(t) = u(t)$	Pollage: $ \frac{K}{s} $ Pollage: $ \stackrel{\text{Im}}{\longrightarrow} Re $	$h(t) = Kt$ $K \longrightarrow 1 \longrightarrow t$	u v y	^Im →>Re	$ \begin{array}{c c} & G(j\omega) \\ & & & \\ & & & \\ & & & & $

PT2- Glied	$T^{2}\ddot{y} + 2dT\dot{y} + y = Ku$ mit $T > 0$, $d \ge 0$	Übertragungsfur $G(s) = \frac{K}{1 + 2dTs +}$ $d \text{ heißt (Lehrs)}$		$\stackrel{\text{Nm}}{\longrightarrow}$ Re	
	Fall 1: d >1	Pollagen: Im	Sprungantworten: $h(t) = K \left(1 - \frac{T_1}{T_1 - T_2} e^{-\frac{t}{T_1}} + \frac{T_2}{T_1 - T_2} e^{-\frac{t}{T_2}} \right)$ mit $T_{1/2} = T \left(d \pm \sqrt{d^2 - 1} \right)$		$ \begin{array}{c c} & & & \\ & & & \\ \hline & & \\ \hline $
	Fall 2: d = 1	$ \begin{array}{c c} \operatorname{Im} & \\ & \\ \hline -\frac{1}{T} \end{array} $ Re	$h(t) = K \left(1 - \left[1 + \frac{t}{T} \right] e^{-\frac{t}{T}} \right)$		
	Fall 3: 0 < d < 1	Pollagen: Im Re Re	$h(t) = K \cdot \left[1 - \frac{e^{-\frac{d}{T}t}}{\sqrt{1 - d^2}} \sin(\frac{\sqrt{1 - d^2}}{T}t + \varphi) \right]$ $\text{mit } \varphi = \arctan\frac{\sqrt{1 - d^2}}{d}$ $K \longrightarrow t$	$\omega_{\rm o}=rac{1}{T}$ heißt Eckfrequenz; $\omega_{\rm e}=rac{\sqrt{1-d^{2}}}{T} { m heißt}$ Eigenfrequenz.	$K = \begin{bmatrix} \frac{1}{T} & \omega \\ \frac{1}{T} & \omega \end{bmatrix}$ $-90^{\circ} \frac{1}{2} = 0$

Die Übertragungsglieder Summationsglied, Proportionalglied, Integrierglied, Differenzierglied und Totzeitglied sind linear.

2.3.1 Sprungfunktion, Impulsfunktion

$$\begin{aligned} & \text{Sprungfunktion} & \quad \sigma(t) = \begin{cases} 0 & \text{für } t < 0 \\ 1 & \text{für } t \geq 0 \end{cases} \\ & \text{Impulsfunktion} & \quad \delta(t) = \frac{d\sigma(t)}{dt} \\ & \text{Es gilt:} & \quad \int_{-\infty}^{\infty} \delta(t) dt = 1 \\ & \quad \int_{-\infty}^{t} \delta(t) dt = \sigma(t) \end{aligned}$$

2.4 Lineare zeitinvariante Modelle (LZI-Modelle)

Eigenschaften

- Linearität: Für $y(t)=\varphi(u(t))$ gilt: $-\ \varphi(c_1u_1(t)+c_2u_2(t))=c_1\varphi(u_1(t))+c_2\varphi(u_2(t))$
- Zeitinvarianz:

-
$$y(t) = \varphi(u(t))$$
 folgt $\varphi(u(t-T)) = y(t-T)$

2.4.1 Regelungsnormalform

Das System $y^{(n)} + a_{n-1}y^{(n-1)} + \cdots + a_1\dot{y} + a_0y = b_0u$ besitzt die Zustandsdarstellung

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -a_0 & -a_1 & \dots & -a_{n-2} & -a_{n-1} \end{bmatrix} x + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ b_0 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix} x$$

Sie heißt Regelungsnormalform

2.4.2 Regelungsnormalform mit Ableitungen von u

Das System $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1\dot{y}+a_0y=b_{n-1}u^{n-1}+\cdots+b_1\dot{u}+b_0u$ besitzt die Zustandsdarstellung

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \dots & 0 & 1 \\ -a_0 & -a_1 & \dots & -a_{n-2} & -a_{n-1} \end{bmatrix} x + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} b_0 & b_1 & \dots & b_{n-1} \end{bmatrix} x$$

Sie heißt Regelungsnormalform

2.4.3 Beobachtungsnormalform

Das System $y^{(n)}+a_{n-1}y^{(n-1)}+\cdots+a_1\dot{y}+a_0y=b_{n-1}u^{n-1}+\cdots+b_1\dot{u}+b_0u$ besitzt die Zustandsdarstellung

$$\dot{x} = \begin{bmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & \ddots & 0 & -a_1 \\ 0 & 1 & \ddots & 0 & -a_2 \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \dots & 0 & 1 & -a_{n-1} \end{bmatrix} x + \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ \vdots \\ b_{n-1} \end{bmatrix} u$$

$$y = \begin{bmatrix} 0 & \dots & 0 & 1 \end{bmatrix} x$$

Sie heißt Beobachtungsnormalform

2.5 Linearisierung im Arbeitspunkt

2.5.1 Ein Eingabeparameter

Sei y = F(u) eine Übertragungsfunktion.

Die linearisierte Funktion um den Arbeitspunkt u_s ist berechnet als:

$$\Delta y = f(\Delta u, u_s) = \frac{\partial F(u)}{\partial u} \Big|_{u=u_s} \cdot \Delta u$$

mit

$$\Delta y = y - y_s$$
$$y_s = F(u_s)$$
$$\Delta u = u - u_s$$

Die um den Arbeitspunkt linearisierte Beziehung zwischen den absoluten Größen ist definiert als:

$$y_{lin} = f(u, u_s) = \Delta y + y_s$$
 (Ersetze Δu durch $u - u_s$)

2.5.2 Mehere Eingabeparameter

Sei $y=F(u_1,\ldots u_n)$ eine Übertragungsfunktion $(n\in\mathbb{N})$. Die linearisierte Funktion um den Arbeitspunkt $(u_{1,s},\ldots,u_{n,s})$ wird wie folgt berechnet:

$$\Delta y = f(\Delta u_1, \dots, \Delta u_n, u_{1,s}, \dots, u_{n,s}) = \frac{\partial F(u_1, \dots u_n)}{\partial u_1} \bigg|_{AP} \cdot \Delta u_1 + \dots + \frac{\partial F(u_1, \dots u_n)}{\partial u_n} \bigg|_{AP} \cdot \Delta u_n$$

$$AP \equiv u_1 = u_{1,s}, \dots, u_n = u_{n,s}$$

mit

$$\Delta y = y - y_s$$

$$y_s = F(u_s)$$

$$\Delta u_1 = u_1 - u_{1,s}, \dots, \Delta u_n = u_n - u_{n,s}$$

Die um den Arbeitspunkt linearisierte Beziehung zwischen den absoluten Größen ist definiert als:

$$y_{lin} = f(u_1, \dots, u_n, u_{1,s}, \dots, u_{n,s}) = \Delta y + y_s$$
 (Ersetze Δu_1 durch $u_1 - u_{1,s}, \dots$)

2.5.3 Regelungsnormalform

Gegeben sei ein System in der Form $\dot{x} = Ax + ez + bu$, $y = c^Tx$. Die n algebraischen Gleichungen seien definiert als:

$$f_1(x_1, \dots, x_n, z, u) = a_{11}x_1 + \dots + a_{1n}x_n + e_1z + b_1u$$

:

$$f_n(x_1, \dots, x_n, z, u) = a_{n1}x_1 + \dots + a_{nn}x_n + e_nz + b_nu$$

Die Ausgangsgröße sei definiert als: $g(x_1,\ldots,x_n)=y=c_1x_1+\cdots+c_nx_n$

Das linearisierte Modell wird wie folgt berechnet:

$$\Delta \dot{x}(t) = A_l \Delta x(t) + e_l \Delta z(t) + b_l \Delta u(t)$$

$$\Delta y(t) = c_l^T \Delta x(t)$$

$$A_l = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \dots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \dots & \frac{\partial f_n}{\partial x_n} \end{bmatrix} \Big|_{AP}$$

$$e_l = \begin{bmatrix} \frac{\partial f_1}{\partial z} \\ \vdots \\ \frac{\partial f_n}{\partial z} \end{bmatrix} \Big|_{AP}$$

$$b_l = \begin{bmatrix} \frac{\partial f_1}{\partial u} \\ \vdots \\ \frac{\partial f_n}{\partial u} \end{bmatrix} \Big|_{AP}$$

$$c_l^T = \begin{bmatrix} \frac{\partial g}{\partial x_1} & \dots & \frac{\partial g}{\partial x_n} \end{bmatrix} \Big|_{AP}$$

3 Laplace-Transformation

4 Mathematische Grundlagen

5 Elektrotechnische Grundlagen

5.1 Widerstand

Schaltzeichen:

Formel:

$$U=R\cdot I$$

5.2 Kondensator

Schaltzeichen:

Formel:

$$U = \frac{1}{C} \int I \, dt \iff \dot{U} = \frac{I}{C}$$

5.3 Spule

Schaltzeichen:

Formel:

$$U = L \cdot \dot{I}$$

5.4 Kirchoff'sches Spannungsgesetz

In einem geschlossenen Stromkreis (Masche) ist die Summe aller Spannungen gleich null

Beispiel:

Für Masche M_1 gilt:

$$U_R + U_C - U_e = 0$$

5.5 Kirchoff'sches Stromgesetz

In jedem Knotenpunkt ist die Summe aller Ströme gleich null.

Beispiel:

$$I_C + I_L - I = 0$$

6 Physikalische Grundlagen

6.1 Kräfte

Kräftegleichgewicht:

Die Summe aller Kräfte, die an einem Körper angreifen, addieren sich zu null.

$$\sum F_i = 0$$

Newtonsche Gesetze

- 1. Wirkt auf einen Körper keine Kraft oder befindet er sich im Kräftegleichgewicht, so bleibt er in Ruhe oder er bewegt sich mit konstanter Geschwindigkeit geradlinig weiter.
- 2. $F = m \cdot a$ (m: Masse des Körpers, a: Beschleunigung, die der Körper erfährt)
- 3. $F_1 = -F_2$ (Kraft gleich Gegenkraft)

Masse-Feder-Dämpfer System

m: Masse des Körpers, d: Dämpferkonstante, k: Federkonstante, F: Stellkraft

$$F = m \cdot \ddot{x} + d\dot{x} + kx$$

6.2 Drehmomente

Momentengleichgewicht:

Die Summe aller Momente um jeden (einen) beliebigen Punkt eines Körpers addieren sich zu null.

$$\sum M_i = 0$$

Berechnung in Abhängigheit von F:

r: Abstand der Wirkungslinie der Kraft von der Drehachse, F: wirkende Kraft

$$M = r \times F$$

6.3 Drehimpuls:

J: Trägheitsmoment, ω : Winkelgeschwindigkeit

$$L = J \cdot \omega$$

7 Tipps

7.1 Zeichnen eines Blockschaltbildes

- Verzweigungen von Signalen werden durch einen schwarzen Punkt markiert, um die Verwechslungsgefahr mit Kreuzungen ohne Kontakt zu vermeiden.
- Signale werden immer explizit mit Summationsgliedern aufaddiert.
- Proportionalitätsfaktoren von 1 können weggelassen werden.
- Das Vorzeichen beim Summationsglied steht immer rechts vom Pfeil. Die Pluszeichen müssen nicht explizit angegeben werden.
- Das Vorzeichen einer Rückführung steht am Soll-/Istwert-Vergleich

Allgemeine Vorgehensweise:

- 1. Differentialgleichung nach höchster Ableitung auflösen
- 2. n I-Glieder mit zugehörigen Anfangswerten nebeneinander zeichnen, verbinden und beschriften
- 3. Summationsglieder für die höchste Ableitung bilden
- 4. Jeden Term der rechten Seite aus bestehenden Signalen bilden

Anmerkungen

Dies ist eine Zusammenfassung der Vorlesung Regelungstechnik an der Technischen Universität München. Gehalten wurde diese Vorlesung durch Lohmann B. im Sommersemester 2019. Ersteller dieser Zusammenfassung ist Gaida B. Alle Angaben sind ohne Gewähr.

Literaturverzeichnis

Werner Skolaut. *Maschinenbau. Ein Lehrbuch für das ganze Bachelor-Studium*. Springer Vieweg. Heidelberg, 2018, S. 1271 - 1387