

Fig. 1

$$\begin{aligned}
 629 &= 2^9 + 2^8 + 2^7 + 2^6 + 2^5 + 2^4 + 2^2 + 2^0 \\
 &= 1 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \\
 &= +1 \quad +1 \quad +1 \quad -1 \quad +1 \quad +1 \quad +1 \quad -1 \quad +1 \quad -1 \\
 &= 2^9 + (2^8 - 2^7 - 2^6) + 2^5 + 2^4 + (2^3 - 2^2) + (2^1 - 2^0)
 \end{aligned}$$

628 =	2^9	$+2^6)$	$+2^5$	$+2^4$	$+2^2$					
=	1	0	0	1	1	1	0	1	0	0
=	+1	+1	+1	-1	+1	+1	+1	-1	+1	-1
=										-1
=	2^9	$+(2^8$	-2^7	$-2^6)$	$+2^5$	$+2^4$	$+(2^3$	$-2^2)$	$+(2^1$	$-2^0)$

Fig. 2

Fig. 3


```

BEGIN:
  i := N           ; START FROM MSB           L1
  Q := 0           ; INITIALIZE ACCUMULATOR    L2
  H := 0           ; INITIALIZE STATE          L3

LOOP:
  Q := Q + Q       ; FOR ALL BITS           L4
  IF H = 0         ; DOUBLE ACCUMULATOR      L4
  Q := Q + P       ; IF H STATE IS SET      L5
  GOTO ENDLOOP    ; ADD BASE POINT TO ACCUMULATOR L6
  ELSE
  Q := Q - P       ; ; ELSE                   L7
  GOTO ENDLOOP    ; SUBTRACT BASE POINT      L8
  ;                   ; GOTO ENDLOOP          L9

ENDLOOP:
  H := b[i]         ; SET H STATE TO COMPLEMENT OF b[i] L10
  i := i - 1        ; PROCESS NEXT BIT          L11
  IF i ≥ 0          ; IF BIT EXISTS          L12
  GOTO LOOP         ; CONTINUE AT TOP OF LOOP    L13
  IF H = 0          ; IF EXITING FROM H = 0 STATE L14
  Q := Q + (-P)     ; CORRECT RESULT BY FINAL SUBTRACT L15
  END               ;                         L16

```

Fig. 4

BEGIN:

$i := N$; START FROM MSB	LL1
$Q := 0$; INITIALIZE ACCUMULATOR	LL2

H0:	; STATE ENTRY POINT	
$Q := Q + Q$; DOUBLE ACCUMULATOR	LL3
$Q := Q + P$; ADD BASE POINT TO ACCUMULATOR	LL4
GOTO ENDLOOP	; BRANCH TO END OF LOOP TESTS	LL5

H1:	; STATE ENTRY POINT	
$Q := Q + Q$; DOUBLE ACCUMULATOR	LL6
$Q := Q + (-P)$; SUBTRACT BASE POINT FROM ACCUMULATOR	LL7
GOTO ENDLOOP	; BRANCH TO END OF LOOP TESTS	LL8

ENDLOOP:	; END OF LOOP TESTS	
IF $b[i] = 1$; IF CURRENT BIT IS SET	LL9
GOTO NEXT H0	; FOLLOW H0 PATH	LL10
	; ELSE FALL INTO H1 PATH	

NEXT H1:	; H1 PATH	
$i := i - 1$; PROCESS NEXT BIT	LL11
IF $i > 0$; IF BIT EXISTS	LL12
GOTO H1	; EXECUTE H1 STATE	LL13
$Q := Q + (-P)$; ELSE CORRECT RESULT AND END	LL14
END		LL15

NEXT H0:	; H0 PATH	
$i := i - 1$; PROCESS NEXT BIT	LL16
IF $i > 0$; IF BIT EXISTS	LL17
GOTO H0	; EXECUTE H0 STATE	LL18
END	; ELSE END	LL15

Fig. 5


```

BEGIN:
   $i := N$ 
   $Q := 1$ 

H0:
   $Q := Q \cdot Q (Q^2)$ 
   $Q := Q \cdot M$ 
  GOTO ENDLOOP

H1:
   $Q := Q \cdot Q$ 
   $Q := Q/M (Q \cdot M^{-1})$ 
  ↗
  60  ENDLOOP:
    IF  $b[i] = 1$  GOTO ENDLOOP

NEXT H1:
   $i := i - 1$ 
  IF  $i > 0$ 
    GOTO H1
   $Q := Q/M$ 
  END

NEXT H0:
   $i := i - 1$ 
  IF  $i > 0$ 
    GOTO H0
  END

```

Fig. 6

Fig. 7

Fig. 8