HW1 - Key

1. For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to registers \$s2, \$s3, \$s4, \$s5, and \$s6, respectively. Assume that the base address of the arrays A and B are in registers \$s0 and \$s1, respectively.

$$B[i+3] = A[i+4*i];$$

Answer:

```
sll $t0, $s6, 2
                              # $t0 = 4*i
add $t0, $s5, $t0
                              # $t0 = 4*i + i
sll $t0, $t0, 2
                              # $t0 = t0*4
add $t0, $t0, $s0
                              # $t0 = &A[i+4*j]
lw $t1, 0($t0)
                              # $t1 = A[i+4*i]
addi $t2,$s5,3
                              # $t2 = i+3
sll $t2,$t2,2
                             # $t2 = t2*4
add $t2,$t2,$s1
                             # $t2 = &B[i+3]
                              #B[i+3] = $t1
sw $t1, 0($t2)
```

2. Show how the value 0xcabd1f2e would be arranged in memory of a little-endian and a big-endian machine. Assume the data is stored starting at address 0.

Answer:

Little End	man
Address	Data
0	2e
1	1f
2	bd
3	ca

Big Endian

Address	Data
0	ca
1	bd
2	1f
3	2e

3. Translate the following C code to MIPS. Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively. Assume that the elements of the arrays A and B are 4-byte words:

$$B[i+j+1] = A[i+j-2] + A[i-j+1];$$

Answer:

sub \$t0, \$s3, \$s4 # \$t0 =
$$i - j$$
 add \$t1, \$s3, \$s4 # \$t1 = $i + j$

CSE 3038 – Computer Organization Prof. Haluk Topcuoglu

```
addi $t0,$t0,1
                              # $t0 = i - j + 1
                              # $t2 = i + j + 1
addi $t2,$t1,1
addi $t1,$t1,-2
                              # $t1 = i + j-2
sll $t0, $t0, 2
                              # $t0 = (i-j+1)*4
sll $t1, $t1, 2
                              # $t1 = (i+j-2)*4
                              # $t3 = &A[i-j+1]
add $t3, $s6, $t0
                              # $t4 = &A[i+j-2]
add $t4, $s6, $t1
lw $t5, 0($t3)
                              # $t5 = A[i-j+1]
lw $t6, 0($t4)
                              # $t6 = A[i+j-2]
add $t7, $t5, $t6
                              # $t7 = A[i+j-2] + A[i-j+1]
sll $t2,$t2,2
                              # $t2 = (i+j+1)*4
add $t2,$t2,$s7
                              # t2 = &B[i+j+1]
sw $t7, 0($t2)
                              #B[i+j+1] = $t7
```

4. Provide the type, assembly language instruction, and binary representation of instruction described by the following MIPS fields: op=0, rs=5, rt=8, rd=20, shamt=0, funct=36.

Answer:

```
Its R type instruction Op=0 funct=36 \Rightarrow and and $20, $5, $8 or and $s4, $a1, $t0
```

5. For the following C statement, write a minimal sequence of MIPS assembly instructions that does the identical operation. Assume t = A, t = B, and t = B

$$A = C[0] << 8;$$

Answer:

6. Translate the following C code to MIPS assembly code. Use a minimum number of instructions. Assume that the values of a, b, i, and j are in registers \$s0, \$s1, \$t0, and \$t1, respectively. Also, assume that register \$s2 holds the base address of the array D. for(i=0; i<a; i++)

for(j=0; j

$$D[2*i] = i + j-5;$$

Answer:

addi \$t0, \$0, 0 beq \$0, \$0, TEST1 LOOP1: addi \$t1, \$0, 0

CSE 3038 – Computer Organization Prof. Haluk Topcuoglu

Spring 2020

beq \$0, \$0, TEST2 LOOP2: add \$t3, \$t0, \$t1 sub \$t3,\$t3,5 sll \$t2, \$t0, 3 add \$t2, \$t2, \$s2 sw \$t3, (\$t2) addi \$t1, \$t1, 1 TEST2: slt \$t2, \$t1, \$s1 bne \$t2, \$0, LOOP2 addi \$t0, \$t0, 1 TEST1: slt \$t2, \$t0, \$s0 bne \$t2, \$0, LOOP1

7. How many MIPS instructions does it take to implement the C code from Exercise 2.27 ? If the variables a and b are initialized to 10 and 1 and all elements of D are initially 0, what is the total number of MIPS instructions that is executed to complete the loop?

Answer:

14 instructions to implement and 144 instructions executed

CSE 3038 – Computer Organization Prof. Haluk Topcuoglu

Spring 2020

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
1 addi \$t0, \$0, 0	*																															
2 beq \$0, \$0, TEST1		*																														
3 LOOP1: addi \$t1, \$0, 0					*														*													
4 beq \$0, \$0, TEST2						*														*												
5 LOOP2: add \$t3, \$t0, \$t1									*														*									
6 sll \$t2, \$t1, 4										*														*								
7 add \$t2, \$t2, \$s2											*														*							
8 sw \$t3, (\$t2)												*														*						
9 addi \$t1, \$t1, 1													*														*					
10 TEST2: slt \$t2, \$t1, \$s1							*							*							*							*				
11 bne \$t2, \$0, LOOP2								*							*							*							*			
12 addi \$t0, \$t0, 1																*														*		
13 TEST1: slt \$t2, \$t0, \$s0			*														*														*	
14 bne \$t2, \$0, LOOP1				*														*														*

Inner loop will execute ones since b is 1

Single outer loop takes 14 instructions, 10x14 = 140

Remaining instructions are instruction 1,2,13,14 outside of the loop pattern. Instruction 1 and 2 will be executed at the beginning of the program and instruction 13 and 14 after the last loop iteration.

Total instruction execution:140+4=144