1 CEL ĆWICZENIA

Celem ćwiczenia jest zastosowanie podstawowych twierdzeń teorii obwodów i sprawdzenie ich poprawności w praktyce.

2 DANE PODANE PRZEZ PROWADZĄCEGO

$$\begin{array}{l} f=800~{\rm Hz}\\ \underline{Z}=R-j\frac{1}{\omega C}, & {\rm gdzie}~\omega=2\pi f\\ U_0=600~{\rm mV}\\ R=800~\Omega\\ C=0,2487~\mu{\rm F} \end{array}$$

3 ZASADA SUPERPOZYCJI

- 3.1 Wyniki pomiarów
 - Dla włączonego tylko źródła E_1

$$U_1 = 524, 0 \ e^{-j44^{\circ}} \ \mathrm{mV}$$

• Dla włączonego tylko źródła E_2

$$U_2 = 375, 5 \ e^{j172^{\circ}} \ \mathrm{mV}$$

- Dla włączonych jednocześnie źródeł E_1 i E_2

$$U_3 = 312,7 \ e^{-j90^{\circ}} \ \text{mV}$$

- 3.2 Sprawdzenie czy uzyskane wyniki są zgodne z zasadą superpozycji
 - Suma reakcji od włączonych osobno źródeł E_1 i E_2

$$U_1 + U_2 = 311,8 \ e^{-j89,1^{\circ}} \ \text{mV}$$

- Porównanie napiecia $\underline{U_3}$, uzyskanego przez jednoczesne włączenie źródeł E_1 i E_2 , oraz sumy napięć $\underline{U_1}$ i $\underline{U_2}$
 - Błąd względny modułu $\delta_n = 0,4\%$
 - Błąd bezwzględny argumentu $\Delta\varphi=0,9^\circ$

4 POMIAR IMPEDANCJI ZASTĘPCZEJ

Impedancję zastępczą wyliczono ze wzoru

$$Z_z = \left(\frac{\underline{U_0}}{\underline{U_R}} - 1\right) R_p$$
, gdzie $R_p = 500 \ \Omega$.

- 4.1 Wyniki pomiarów
 - Dla włączonego tylko źródła ${\cal E}_1$

$$\begin{split} & \frac{U_0}{U_R} = 600, 0 ~~e^{-j19^{\circ}} ~~\text{mV} \\ & \frac{U_R}{Z_{z_1}} = 301, 4 ~~e^{-j40^{\circ}} ~~\text{mV} \\ & \frac{Z_{z_1}}{Z_{z_2}} = 429, 2 + j356, 7 ~~\Omega = 558, 1 ~~e^{j39,7^{\circ}} ~~\Omega \end{split}$$

- Dla włączonego tylko źródła E_2

$$\begin{split} & \underline{U_0} = 428, 2 \ e^{-j162^{\circ}} \ \text{mV} \\ & \underline{U_R} = 215, 7 \ e^{j176^{\circ}} \ \text{mV} \\ & Z_{z_2} = 420, 5 + j371, 9 \ \Omega = 561, 3 \ e^{j41, 5^{\circ}} \ \Omega \end{split}$$

- Dla włączonych jednocześnie źródła E_1 i E_2

$$\begin{split} & \underline{U_0} = 355, 0 ~~e^{-j154^{\circ}} ~~\text{mV} \\ & \underline{U_R} = 178, 5 ~~e^{-j176^{\circ}} ~~\text{mV} \\ & \underline{Z_{z_3}} = 422, 1 + j372, 5 ~~\Omega = 562, 9 ~~e^{j41,5^{\circ}} ~~\Omega \end{split}$$

- Porównanie impedancji \mathbb{Z}_{z_2} z impedancją \mathbb{Z}_{z_1}
 - Błąd względny modułu $\delta_n=0,6\%$
 - Błąd bezwzględny argumentu $\Delta \varphi = 1,8^{\circ}$
- Porównanie impedancji \mathbb{Z}_{z_3} z impedancją \mathbb{Z}_{z_1}
 - Błąd względny modułu $\delta_n=0,9\%$
 - Błąd bezwzględny argumentu $\Delta \varphi = 1,8^\circ$

5 TWIERDZENIE THEVENINA

5.1 Schemat zastępczy wynikający z twierdzenia Thevenina

5.2 Dane

$$\begin{split} \underline{Z} &= 800 + j800 \;\; \Omega \\ \underline{Z_z} &= 429, 3 + j356, 7 \;\; \Omega \\ \underline{E_z} &= 600 \;\; e^{-j19^\circ} \;\; \text{mV} \\ R &= 800 \;\; \Omega \\ R_z &= 429 \;\; \Omega \\ C &= 0, 2487 \;\; \mu\text{F} \\ L_z &= 71 \;\; \text{mH} \end{split}$$

- 5.3 Wynik pomiarów
 - $\underline{U} = 517,8 \ e^{-j24^{\circ}} \ \mathrm{mV}$
 - Porównanie zmierzonego napięcia \underline{U} z napięciem $\underline{U_1}=524,0~e^{-j44^\circ}$ mV zmierzonym w punkcie 3.1 uwzględniając początkową napięcią $\underline{U_0}$, tj. $\varphi_0=-19^\circ$.
 - Błąd względny modułu $\delta_n=1,2\%$
 - Błąd bezwzględny argumentu $\Delta \varphi = 1^\circ$

6 DOPASOWANIE NA MAKSIMUM MOCY CZYNNEJ

- 6.1 Wyznaczenie elementów dwójnika R_0 i C_0 , wykorzystując dane pomiaru impedancji zastępczej przy włączonym E_1
 - Dane

$$\underline{Z_0} = \underline{Z_Z^*} = R_0 - j\frac{1}{\omega C_0} = 429, 2 - j356, 7 \Omega$$

więc

$$R_0 = 429~\Omega$$

$$C_0 = \frac{1}{2\pi \cdot 800 \cdot 356,7} = 557,7~\mathrm{nF}$$

$$C_p = 600~\mathrm{nF}$$

6.2 Wzory użyte do obliczenia wartości w tabeli

$$C = \frac{^{10}C_p}{k} \quad , \quad k = 1,2,3,4,6,8,10,11,12,15,20,25,30,35,40$$

$$|X_c| = \frac{1}{\omega C}$$

$$P = \frac{U^2}{R}$$

6.3 Wyniki pomiarów dla włączonego E_1 , gdy R_{g2} jest dołączony jednym zaciskiem do masy oraz $R=R_0=429~\Omega$ przy zmiennej pojemności

C [μF]	U _R [mV]	Ρ [μW]	$ X_C [\Omega]$	
10	279,7	182,4	19,9	
6	281,1	184,2	33,2	
3	285,0	189,3	66,3	
1,5	291,2	197,7	132,6	
1	296,1	204,4	198,9	
0,75	299,8	209,5	265,3	
0,6	301,6	212,0	331,6	
0,5	301,4	211,8	397,9	
0,4	297,9	206,9	497,4	
0,3	284,1	188,1	663,1	
0,24	264,8	163,4	828,9	
0,2	241,7	136,2	994,7	
0,1714	221,7	114,6	1160,5	
0,15	201,3	94,5	1326,3	

Rysunek 1: Tabela wyników dla pomiarów napięć oraz mocy przy stałym $R=R_0=429~\Omega$

- 6.4 Wykres zależności $P=f(|X_c|)|_{R=R_0=429~\Omega}$ gdy właczone jest tylko źródło E_1
 - Na podstawie załączonej charakterystyki $P=f(|X_c|)$ określono pojemność C_{max} , dla której moc czynna na niej wydzielona osiąga maksimum:

$$C_{max}=0,6~\mu\mathrm{F}=600~\mathrm{nF}$$

$$P_{max}=212,0~\mu\mathrm{F}$$

Wartość C_{max} jest zbliżona do wartości $C_0=557,7\,$ nF.

- 6.5 Wyniki pomiarów napięcia przy $C=C_0=557,7\,$ nF, przy zmiennej rezystancji dla:
 - włączonego źródła E_1 , gdy rezystor R_{g2} jest dołączony do masy jednym zaciskiem
 - włączonego źródła E_2 , gdy rezystor R_{g1} jest dołączony do masy jednym zaciskiem
 - włączonych źródeł E_1 i E_2

	E_1		E ₂		E ₁ i E ₂	
R [Ω]	U _R [mV]	P [μW]	U _R [mV]	P [μW]	U _R [mV]	P [μW]
0	0,0	0,0	0,0	0,0	0,0	0,0
50	66,3	87,9	47,7	45,5	39,4	31,0
100	116,2	135,0	83,6	69,9	69,1	47,7
150	157,7	165,8	113,3	85,6	93,7	58,5
200	192,6	185,5	138,3	95,6	114,4	65,4
300	248,3	205,5	178,1	105,7	147,3	72,3
400	290,6	211,1	208,2	108,4	172,3	74,2
500	323,9	209,8	232,0	107,6	192,0	73,7
600	350,7	205,0	251,1	105,1	207,8	72,0
700	372,8	198,5	266,8	101,7	220,8	69,6
800	391,3	191,4	280,0	98,0	231,7	67,1
900	407,0	184,1	291,1	94,2	241,0	64,5
1000	420,5	176,8	300,7	90,4	249,0	62,0
1200	442,5	163,2	316,4	83,4	262,0	57,2
1400	459,9	151,1	328,7	77,2	272,2	52,9
1600	479,8	143,9	338,5	71,6	280,3	49,1
1800	485,1	130,7	346,6	66,7	287,0	45,8
2000	494,6	122,3	353,3	62,4	292,6	42,8
2200	502,7	114,9	359,0	58,6	297,4	40,2
2400	509,6	108,2	364,0	55,2	301,5	37,9

Rysunek 2: Tabela wyników pomiarów napięć i mocy przy $C=C_0=557,7\,$ nF

- 6.6 Wykres zależności $P = f(R)|_{C=C_0=557,7}$ nF, gdy:
- 6.6.1 włączone jest tylko źródło E_1 :
 - Na podstawie załączonej charakterystyki P=f(R) określono rezystancję R_{max} , dla której moc czynna na niej wydzielona osiąga maksimum:

$$R_{max} = 400 \ \Omega$$

$$P_{max}=211,1~\mu\mathrm{W}$$

Wartość R_{max} jest zbliżona do wartości $R_0=429~\Omega.$

6.6.2 włączone jest tylko źródło E_2 :

• Na podstawie załączonej charakterystyki P=f(R) określono rezystancję R_{max} , dla której moc czynna na niej wydzielona osiąga maksimum:

$$R_{max} = 400 \ \Omega$$

$$P_{max} = 211, 1 \ \mu W$$

Wartość R_{max} jest zbliżona do wartości $R_0=429~\Omega.$

6.6.3 włączone są jednocześnie źródła E_1 i E_2 :

• Na podstawie załączonej charakterystyki P=f(R) określono rezystancję R_{max} , dla której moc czynna na niej wydzielona osiąga maksimum:

$$R_{max} = 400 \ \Omega$$

$$P_{max}=211,1~\mu\mathrm{W}$$

Wartość R_{max} jest zbliżona do wartości $R_0=429~\Omega.$

7 WNIOSKI

7.1 Zasada superpozycji

Napięcie U_3 , zmierzone dla włączonych jednocześnie źródeł E_1 i E_2 , nie różni się w dużym stopniu od sumy napieć U_1 oraz U_2 , gdzie kolejno włączone było tylko źródło E_1 i tylko E_2 . Rozbieżności otrzymanych wyników modułów i argumentów są tak małe, że można je pominąć. Mogły być one spowodowane niedokładnością urządzeń pomiarowych i niepewnością pomiaru eksperymentatora, jak np. błąd paralaksy. Wykonane pomiary potwierdzają założenia teoretyczne i pokazują, że zasada superpozycja ma swoje zastosowanie w rzeczywistym świecie.

7.2 Pomiar impedancji zastępczej

Pomiary impedancji dla wszystkich przypadków są bardzo zbliżone. Za impedancję odniesienia przyjęto Z_{z_1} otrzymaną przy włączonym tylko źródle E_1 . Pozostałe dwie impedancje nie różnią się w dużym stopniu z impedancją odniesienia, a rozbieżności są tak małe, że można je pominąć. Mogły być one spowodowane niedokładnością urządzeń pomiarowych i niepewnością pomiaru eksperymentatora, jak np. błąd paralaksy. Wykonane pomiary pokazują, że impedancja jest cechą własną układu.

7.3 Twierdzenie Thevenina

Napięcie \underline{U} , zmierzone dla układu zbudowanego na podstawie schematu zastępczego wynikajacego z twierdzenia Thevenina, nie odbiega w dużym stopniu od napięcia \underline{U}_1 , zmierzonego w punkcie 3.1. Rozbieżności są tak małe, że można je pominąć. Wykonane pomiary potwierdzają założenia teoretyczne i pokazują, że twierdzenie Thevenina ma swoje zastosowanie w rzeczywistym świecie.

7.4 Dopasowanie na maksimum mocy czynnej

7.4.1

Zauważyć można, że wraz ze wzrostem pojemności dwójnika, napięcie na rezystorze rośnie aż do osiągnięcia wartości maksymalnej, potem zaczyna maleć. Wartości odpowiadające maksymalnej mocy czynnej P_{max} to $|X_c|=331$ oraz $C_{max}=600\,$ nF. Porównując C_{max} z $C_0=557,7$ zauważalna jest niewielka różnica, błąd względny to 7,1%.

7.4.2

Analizując wykresy można zauważyć, że dla wszystkich 3 przypadków, maksymalnej mocy czynnej P_{max} odpowiada $R_{max}=400~\Omega$. Wartość R_{max} różni się nieznacznie od $R_0=429~\Omega$. Błąd względny wynosi 7,3%.