

Show that as r_1 approaches r_2 , the location of the centroid approaches that of a circular arc of radius $(r_1 + r_2)/2$.

SOLUTION

First, determine the location of the centroid.

From Fig. 5.8A:

$$\overline{y}_2 = \frac{2}{3} r_2 \frac{\sin\left(\frac{\pi}{2} - \alpha\right)}{\left(\frac{\pi}{2} - \alpha\right)} \qquad A_2 = \left(\frac{\pi}{2} - \alpha\right) r_2^2$$
$$= \frac{2}{3} r_2 \frac{\cos \alpha}{\left(\frac{\pi}{2} - \alpha\right)}$$

Similarly

$$\overline{y}_1 = \frac{2}{3} r_1 \frac{\cos \alpha}{\left(\frac{\pi}{2} - \alpha\right)}$$
 $A_1 = \left(\frac{\pi}{2} - \alpha\right) r_1^2$

Then

$$\Sigma \overline{y} A = \frac{2}{3} r_2 \frac{\cos \alpha}{\left(\frac{\pi}{2} - \alpha\right)} \left[\left(\frac{\pi}{2} - \alpha\right) r_2^2 \right] - \frac{2}{3} r_1 \frac{\cos \alpha}{\left(\frac{\pi}{2} - \alpha\right)} \left[\left(\frac{\pi}{2} - \alpha\right) r_1^2 \right]$$
$$= \frac{2}{3} \left(r_2^3 - r_1^3\right) \cos \alpha$$

and

$$\Sigma A = \left(\frac{\pi}{2} - \alpha\right) r_2^2 - \left(\frac{\pi}{2} - \alpha\right) r_1^2$$
$$= \left(\frac{\pi}{2} - \alpha\right) \left(r_2^2 - r_1^2\right)$$

Now

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y} \left[\left(\frac{\pi}{2} - \alpha \right) \left(r_2^2 - r_1^2 \right) \right] = \frac{2}{3} \left(r_2^3 - r_1^3 \right) \cos \alpha$$

$$\overline{Y} = \frac{2}{3} \frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} \frac{\cos \alpha}{\frac{\pi}{2} - \alpha}$$

PROBLEM 5.10 CONTINUED

Using Figure 5.8B, \overline{Y} of an arc of radius $\frac{1}{2}(r_1 + r_2)$ is

$$\overline{Y} = \frac{1}{2} \left(r_1 + r_2 \right) \frac{\sin\left(\frac{\pi}{2} - \alpha\right)}{\left(\frac{\pi}{2} - \alpha\right)}$$

$$= \frac{1}{2} \left(r_1 + r_2 \right) \frac{\cos \alpha}{\left(\frac{\pi}{2} - \alpha\right)} \tag{1}$$

Now

$$\frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} = \frac{(r_2 - r_1)(r_2^2 + r_1 r_2 + r_1^2)}{(r_2 - r_1)(r_2 + r_1)}$$
$$= \frac{r_2^2 + r_1 r_2 + r_1^2}{r_2 + r_1}$$

Let

$$r_2 = r + \Delta$$

$$r_1 = r - \Delta$$

Then

$$r = \frac{1}{2} \big(r_1 + r_2 \big)$$

and

$$\frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} = \frac{(r + \Delta)^2 + (r + \Delta)(r - \Delta) + (r - \Delta)^2}{(r + \Delta) + (r - \Delta)}$$
$$= \frac{3r^2 + \Delta^2}{2r}$$

In the limit as $\Delta \to 0$ (i.e., $r_1 = r_2$), then

$$\frac{r_2^3 - r_1^3}{r_2^2 - r_1^2} = \frac{3}{2}r$$
$$= \frac{3}{2} \times \frac{1}{2}(r_1 + r_2)$$

so that

$$\overline{Y} = \frac{2}{3} \times \frac{3}{4} (r_1 + r_2) \frac{\cos \alpha}{\frac{\pi}{2} - \alpha}$$

or
$$\overline{Y} = \frac{1}{2} (r_1 + r_2) \frac{\cos \alpha}{\frac{\pi}{2} - \alpha} \blacktriangleleft$$

Which agrees with Eq. (1).

2 in. 3 in. x

Locate the centroid of the plane area shown.

SOLUTION

First note that symmetry implies

 $\overline{X} = 0$

$$r_2 = 2\sqrt{2}$$
 in., $\alpha = 45^\circ$

$$\overline{y}_2' = \frac{2r\sin\alpha}{3\alpha} = \frac{2(2\sqrt{2})\sin(\frac{\pi}{4})}{3(\frac{\pi}{4})} = 1.6977 \text{ in.}$$

	A, in ²	\overline{y} , in.	$\overline{y}A$, in ³
1	$\frac{1}{2}(4)(3)=6$	1	6
2	$\frac{\pi}{4} \left(2\sqrt{2}\right)^2 = 6.283$	$2 - \overline{y}' = 0.3024$	1.8997
3	$-\frac{1}{2}(4)(2) = -4$	0.6667	-2.667
Σ	8.283		5.2330

Then

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}$$
 (8.283 in²) = 5.2330 in³

or $\overline{Y} = 0.632$ in.

Quarter ellipse

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\overline{x} , mm	y, mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	(40)(90) = 3600	-15	20	-54 000	72 000
2	$\frac{\pi(40)(60)}{4} = 2121$	10	-15	6750	-10 125
3	$\frac{1}{2}(30)(45) = 675$	-25.47	-19.099	-54 000	-40 500
Σ	6396			-101 250	21 375

Then

$$\overline{X}A = \Sigma \overline{x}A$$

$$\overline{X}$$
 (6396 mm²) = -101 250 mm³

or
$$\bar{X} = -15.83 \text{ mm}$$

and

$$\overline{Y}A = \sum \overline{y}A$$

$$\overline{Y}$$
 (6396 mm²) = 21 375 mm³

or $\overline{Y} = 3.34 \text{ mm}$

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$\frac{2}{3}(40)(80) = 2133$	48	15	102 400	32 000
2	$-\frac{1}{2}(40)(80) = -1600$	53.33	13.333	-85 330	-21 330
Σ	533.3			17 067	10 667

Then

$$\overline{X}\Sigma A = \Sigma \overline{X}A$$

$$\overline{X}$$
 (533.3 mm²) = 17 067 mm³

or
$$\overline{X} = 32.0 \,\mathrm{mm}$$

and

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}$$
 (533.3 mm²) = 10 667 mm³

or $\overline{Y} = 20.0 \,\mathrm{mm}$

Locate the centroid of the plane area shown.

SOLUTION

	A, mm ²	\overline{x} , mm	\overline{y} , mm	$\overline{x}A$, mm ³	$\overline{y}A$, mm ³
1	$\frac{2}{3}(150)(240) = 24\ 000$	56.25	96	1 350 000	2 304 000
2	$-\frac{1}{2}(150)(120) = -9000$	50	40	-450 000	-360 000
Σ	15 000			900 000	1 944 000

Then

$$\overline{X}\Sigma A = \Sigma \overline{x}A$$

$$\overline{X}$$
 (15 000 mm²) = 900 000 mm³

or
$$\overline{X} = 60.0 \,\mathrm{mm}$$

and

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}$$
 (15 000 mm²) = 1 944 000

or $\bar{Y} = 129.6 \, \text{mm}$

Locate the centroid of the plane area shown.

SOLUTION

	A, in ²	\overline{x} , in.	\overline{y} , in.	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	$\frac{1}{3}(10)(15) = 50$	4.5	7.5	225	375
2	$\frac{\pi}{4}(15)^2 = 176.71$	6.366	16.366	1125	2892
Σ	226.71			1350	3267

Then

$$\overline{X}\Sigma A = \Sigma \overline{X}A$$

$$\overline{X}$$
 (226.71 in²) = 1350 in³

or
$$\overline{X} = 5.95$$
 in.

and

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}(226.71 \text{ in}^2) = 3267 \text{ in}^3$$

or $\overline{Y} = 14.41$ in.

Locate the centroid of the plane area shown.

SOLUTION

	A, in ²	\overline{x} , in.	\overline{y} , in.	$\overline{x}A$, in ³	$\overline{y}A$, in ³
1	$\frac{2}{3}(8)(8) = 42.67$	3	2.8	128	119.47
2	$-\frac{2}{3}(4)(2) = -5.333$	1.5	-0.8	-8	4.267
Σ	37.33			120	123.73

Then

$$\overline{X}\Sigma A = \Sigma \overline{X}A$$

$$\overline{X}\left(37.33 \text{ in}^2\right) = 120 \text{ in}^3$$

or
$$\overline{X} = 3.21$$
 in.

and

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}(37.33 \text{ in}^2) = 123.73 \text{ in}^3$$

or $\overline{Y} = 3.31$ in.

The horizontal x axis is drawn through the centroid C of the area shown and divides the area into two component areas A_1 and A_2 . Determine the first moment of each component area with respect to the x axis, and explain the results obtained.

SOLUTION

Note that

$$Q_x = \Sigma \overline{y} A$$

$$(Q_x)_1 = \left(\frac{5}{3} \text{ m}\right) \left(\frac{1}{2} \times 6 \times 5\right) \text{m}^2$$

or
$$(Q_x)_1 = 25.0 \times 10^3 \text{ mm}^3$$

and

$$(Q_x)_2 = \left(-\frac{2}{3} \times 2.5 \text{ m}\right) \left(\frac{1}{2} \times 9 \times 2.5\right) \text{m}^2 + \left(-\frac{1}{3} \times 2.5 \text{ m}\right) \left(\frac{1}{2} \times 6 \times 2.5\right) \text{m}^2$$

or $(Q_x)_2 = -25.0 \times 10^3 \text{ mm}^3$

Now

$$Q_x = \left(Q_x\right)_1 + \left(Q_x\right)_2 = 0$$

This result is expected since x is a centroidal axis (thus $\overline{y} = 0$)

$$Q_x = \Sigma \overline{y} A = \overline{Y} \Sigma A \quad (\overline{y} = 0 \Rightarrow Q_x = 0)$$

The horizontal x axis is drawn through the centroid C of the area shown and divides the area into two component areas A_1 and A_2 . Determine the first moment of each component area with respect to the x axis, and explain the results obtained.

SOLUTION

First, locate the position \overline{y} of the figure.

	A, mm ²	y, mm	$\overline{y}A$, mm ³
1	$160 \times 300 = 48\ 000$	150	7 200 000
2	$-150 \times 80 = -16\ 000$	160	-2 560 000
Σ	32 000		4 640 000

Then

$$\overline{Y}\Sigma A = \Sigma \overline{y}A$$

$$\overline{Y}$$
 (32 000 mm²) = 4 640 000 mm³

or $\overline{Y} = 145.0 \text{ mm}$

PROBLEM 5.18 CONTINUED

$$A_{\rm I}$$
: $Q_{\rm I} = \Sigma \overline{y}A$
= $\frac{155}{2}(160 \times 155) + \frac{115}{2} \left[-(80 \times 115) \right]$
= $1.393 \times 10^6 \text{ mm}^3$

$$A_{\text{II}}$$
: $Q_{\text{II}} = \Sigma \overline{y}A$
= $-\frac{145}{2} (160 \times 145) - \left[-\frac{85}{2} (80 \times 85) \right]$
= $-1.393 \times 10^6 \text{ mm}^3$

$$\therefore \left(\mathbf{Q}_{\text{area}} \right)_{x} = Q_{\mathbf{I}} + Q_{\mathbf{II}} = 0$$

Which is expected since $Q_x = \Sigma \overline{y}A = \overline{y}A$ and $\overline{y} = 0$, since x is a centroidal axis.