

Solu Let 
$$G = (V_1 E)$$
,  $V = \{a, b, c, d, e, z\}$   
Step I taking  $P_1 = \{a\}_1$ ,  $T_1 = \{b\}_1$ ,  $C_1$ ,  $C_2$ ,  $C_3$ ,  $C_4$ ,  $C_4$ ,  $C_5$ ,  $C_6$ ,  $C_7$ ,  $C_7$ ,  $C_8$ 

Step I taking  $P_2 = \{a,b\}$ ,  $T_2 = \{c,d,e,z\}$   $J(c) = \min \left(\text{old } J(c), J(b) + \omega(b,c)\right)$   $= \min \left(\mu, 1+2\right) = 3$   $J(d) = \min \left[\text{old } J(d), J(b) + \omega(b,d)\right]$   $= \min \left[\alpha, 1+7\right] = 8$   $J(e) = \min \left[\text{old } J(e), J(b) + \omega(b,e)\right]$   $= \min \left[\alpha, 1+5\right] = 6$   $J(z) = \min \left[\text{old } J(z), J(b) + \omega(b,z)\right]$   $= \min \left[\alpha, 1+\alpha\right] = \infty$ 

Thus CET2 has the min Miden 3.

Step II taking P3 = { a, b, c}, T3 = { d, e, z} l(d) = min [old l(d), ·l(c)+w(c,d)] = min [8,3+00]=8 l(e)= min [old l(e), l(e)+w(ec)] = min [ 6, 3+1]=4  $l(z) = \min \left[ \text{old } l(z), l(c) + \omega(c, z) \right]$ = min[ 00, 3+00] = 00 1: e e T3 has the min incluse 4 Step IV - Taking P4 = { a,b,c,e}, T4 = { d,z} l(d) = min [old l(d), l(e) +w(d,e)] = mm [8,4+3] = 7 1(2) = min [old l(z), l(e)+w(e,z)] = min [ 00, 4+6] = 10 Thus dETy has min index 7 step I - Taking Ps = { a, b, c, e, d }, Ts = { z} l(z)=min [old1(z), l(d) +w(d,z)]  $=\min[0,7+43]=10$ 

2 ea α 00 00 co Co 00 Jab1 00 8 a +6+c>e-Z 1+2+1+6=10