UNSW MATHEMATICS SOCIETY

MATH1131/1141 final exam workshop

Handout

Abdellah Islam Gerald Huang

Contents

1	Algebra		
	1.1	Complex Numbers	2
	1.2	Vector Geometry	5
	1.3	Matrices	8
2	Calculus		
	2.1	Limits	10
	2.2	Differentiation	13
	2.3	Integration	15

Chapter 1

Algebra

1.1 Complex Numbers

Question 1 (1131)

For z = -1 + i and 3 + 4i, find the following in a + ib form:

- a) $z + \overline{w}$.
- b) $\frac{z}{w}$.

Question 2 (1131)

Let the set S in the complex plane be defined by

$$S = \left\{ z \in \mathbb{C} : -\frac{\pi}{4} \le \operatorname{Arg}(z) \le \frac{\pi}{4} \text{ and } \operatorname{Re}(z) \le 3 \right\}.$$

- a) Sketch the set S on a labelled Argand diagram.
- b) Let w be the complex number in S with the greatest imaginary part. By considering your sketch or otherwise, find w in a + ib form.

Question 3 (1131)

Suppose that z = 1 + i and $w = \sqrt{3} + i$.

- a) Find zw in Cartesian form.
- b) Show that $Arg(zw) = \frac{5\pi}{12}$.
- c) Hence show that

$$\cos\left(\frac{5\pi}{12}\right) = \frac{-1+\sqrt{3}}{2\sqrt{2}}.$$

Question 4 (1131)

Let $z = \sqrt{2} - \sqrt{2}i$.

- a) Find |z|.
- b) Find Arg(z).
- c) Use the polar form of z to evaluate z^6 in Cartesian form.

Question 5 (1131)

Let $p(z) = z^7 + 4z^5 - z^2 - 4$.

- a) Show that 2i is a root of p(z).
- b) Explain why it follows from (a) that $z^2 + 4$ is a factor of p(z).
- c) Divide p(z) by $z^2 + 4$ and hence find all the roots of p(z) in polar form.

Question 6 (1131)

Suppose that w and z are non-zero complex numbers such that

$$|w - z| = |w + z|.$$

Prove that $\frac{w}{z}$ is purely imaginary.

Question 7 (1141)

Use De Moivre's theorem to express $\sin(5\theta)$ as a polynomial in terms of $\sin \theta$.

1.2 Vector Geometry

Question 1 (1131)

Find a vector parametric form for the plane passing through the three points with position vectors

$$\begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \begin{pmatrix} 0\\3\\1 \end{pmatrix} \text{ and } \begin{pmatrix} -2\\1\\-5 \end{pmatrix}$$

Question 2 (1131)

Consider the line in \mathbb{R}^3 ,

$$x - 4 = -y = z - 5$$
.

- a) Write this line in parametric vector form.
- b) Find the point on the line closest to the origin.

Question 3 (1141)

- a) Define what it means for a set of vectors $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_k\}$ to be an orthonormal set in \mathbb{R}^n .
- b) Let M be the matrix whose columns consist of the n orthonormal vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ in \mathbb{R}^n . By considering M^TM or otherwise, find, with reasons, all possible values for $\det(M)$.

Question 4 (1131)

A plane Π has parametric vector equation

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}; \quad \lambda, \mu \in \mathbb{R}.$$

Find the Cartesian equation of this plane.

Question 5 (1131)

Let ℓ_1 and ℓ_2 be the lines

$$\ell_1: \qquad \mathbf{x} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}; \qquad \lambda \in \mathbb{R},$$

$$\ell_2: \quad \mathbf{x} = \begin{pmatrix} -2\\6\\4 \end{pmatrix} + \mu \begin{pmatrix} 3\\0\\1 \end{pmatrix}; \quad \mu \in \mathbb{R}.$$

- a) Show that the point B with coordinates (-1, 4, 3) lies on the line ℓ_1 .
- b) Find the point A at which the lines ℓ_1 and ℓ_2 intersect.
- c) Find the projection of the vector \overrightarrow{AB} onto the line ℓ_2 .

Question 6 (1131)

Suppose that \mathbf{u} , \mathbf{v} and \mathbf{w} are distinct non-zero vectors with the property that

$$\operatorname{proj}_{\mathbf{w}}(\mathbf{u}) = \operatorname{proj}_{\mathbf{w}}(\mathbf{v}).$$

Prove that $\mathbf{u} - \mathbf{v}$ is perpendicular to \mathbf{w} .

Question 7 (1141)

Suppose that ${\bf u}$ and ${\bf v}$ are non-zero, non-parallel vectors of the same magnitude.

Prove that $\mathbf{u} - \mathbf{v}$ is perpendicular to $\mathbf{u} + \mathbf{v}$.

1.3 Matrices

Question 1 (1131)

Let
$$P = \begin{pmatrix} 1 & 4 \\ 3 & 5 \\ 0 & 7 \end{pmatrix}$$
 and $Q = \begin{pmatrix} 3 & 5 \\ 2 & 4 \end{pmatrix}$.

- a) Evaluate PQ^T .
- b) What is the size of PQP^{T} .

Question 2 (1131)

Let A and B be 2×2 matrices.

- a) Use a counterexample to show that det(A + B) does not equal det(A) + det(B) in general.
- b) Use the fact that $\det(AB) = \det(A)\det(B)$ to prove that if A is an invertible matrix then $\det(A^{-1}) = \det(A)^{-1}$.

Question 3 (1151)

Prove that if an $n \times n$ matrix A is invertible and both A and A^{-1} have only integer entries, then $\det(A) = \pm 1$.

Question 4 (1141)

A square matrix Q is said to be unitary if it has the property that $\overline{Q}^TQ = I$, where \overline{Q} is the matrix obtained from Q by taking complex conjugates of each entry of Q.

- a) Give an example of a 2×2 unitary matrix with non-real entries.
- b) Show that the determinant of a unitary matrix has the form $e^{i\theta}$ for some real number θ .

Question 5 (1141)

A matrix $Q \in M_{nn}(\mathbb{R})$ is said to be nilpotent (of degree 2) if $Q^2 = \mathbf{0}$, the zero matrix.

- a) Give an example of a non-zero 2×2 nilpotent matrix.
- b) Explain why a nilpotent matrix cannot be invertible.

Suppose now that $S, Q \in M_{nn}(\mathbb{R})$ commute, that S is invertible and that Q is nilpotent (of degree 2).

- c) Prove that $S^{-1}Q = QS^{-1}$.
- d) Show that S+Q is invertible by finding an integer k such that

$$(S+Q)(S^{-1}-S^{-k}Q) = I.$$

Question 6 (1131)

Matrices P and Q are said to be orthogonal if $Q^TQ = P^TP = I$. Given that P and Q are orthogonal, simplify

$$\left(P^{-1}Q\right)^T\left(Q^TP\right)^{-1}.$$

Question 7 (1131)

Given that the invertible matrix $n \times n$ matrix A satisfies

$$A^2 = 2A + I,$$

express the inverse of A in terms of A and I.

Chapter 2

Calculus

2.1 Limits

Question 1 (1131)

Evaluate the limits

a)

$$\lim_{x \to \infty} \frac{6x^2 + \sin(x)}{4x^2 + \cos(x)};$$

b)

$$\lim_{x \to 0} \frac{e^{2x} - 2x - 1}{4x^2}.$$

Question 2 (1131)

Find the limit, if it exists:

$$\lim_{x \to \infty} \left(\sqrt{x^2 + 4x} - x \right).$$

Question 3 (1141)

Let $a \in \mathbb{R}$. Find the limit, if it exists:

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x.$$

Question 4 (1131)

Use the ϵ -M definition of the limit to prove that

$$\lim_{x \to \infty} \frac{x^2 - 2}{x^2 + 3} = 1.$$

Question 5 (1141)

Use the ϵ -M definition of the limit to prove that

$$\lim_{x \to \infty} \frac{e^x}{\cosh x} = 2.$$

Question 6 (1131)

Use the Pinching theorem to evaluate

$$\lim_{x \to \infty} e^{-x} \sin(x).$$

Question 7 (1141)

Let f be a differentiable function on (a,b), and take $c\in(a,b)$. Define

$$q(x) = \frac{f(x) - f(c) - f'(c)(x - c)}{(x - c)^2},$$

where a < x < b and $x \neq c$.

Show that if f''(c) exists then

$$\lim_{x \to c} q(x) = \frac{f''(c)}{2}.$$

2.2 Differentiation

Question 1 (1131)

Let

$$f(x) = \begin{cases} x^2 & x \ge 0\\ 0 & x < 0. \end{cases}$$

- a) Show that f(x) is differentiable at x = 0 and find f'(0).
- b) Determine f'(x) for all x.

Question 2 (1131)

Find a and b such that the function

$$f(x) = \begin{cases} x^2 + ax + b, & x < 0\\ \cos 2x, & x \ge 0 \end{cases}$$

is differentiable.

Question 3 (1131)

Use logarithmic differentiation to find the derivative of

$$y = (\cosh x)^{2x}.$$

Question 4 (1131)

Let $f(x) = x^3 + 5x - \cos x$.

- a) Use the Intermediate Value Theorem to show that f(x) has at least one positive root.
- b) Show that f(x) has exactly one root.

Question 5 (1141)

Use the Mean Value Theorem to prove that if a < b then

$$0 < \tan^{-1} b - \tan^{-1} a \le b - a.$$

Question 6 (1131)

Use the Mean Value Theorem to prove that, for x > 0,

$$\ln\left(1+x\right) > \frac{x}{1+x}.$$

Question 7 (1131)

Consider the function

$$f(x) = x - \frac{1}{x}$$

defined on the interval $(1, \infty)$.

- a) Show that f is an increasing function.
- b) Let g be the inverse function of f. What is the domain of g?
- c) Find $g(\frac{3}{2})$ and $g'(\frac{3}{2})$.

Question 8 (1141)

Consider the function $f:(0,2\sqrt{\pi}]\to\mathbb{R}$ defined by

$$f(x) = x^2 + \cos(x^2).$$

- a) Find all critical points of f and determine their nature.
- b) Explain why f is invertible, state the domain of f^{-1} and find $f^{-1}\left(\frac{5\pi}{2}\right)$.
- c) Where is f^{-1} differentiable?

2.3 Integration

Question 1 (1131)

a)

$$\int \frac{dx}{x\left(1+(\ln x)^2\right)}.$$

b)

$$\int x \sinh(2x) \, dx$$

c)

$$\int x \sinh(2x) \, dx.$$

$$\int x^2 \sqrt{3 + x^3} \, dx.$$

$$\int \sqrt{1 + x^2} \, dx.$$

d)

$$\int \sqrt{1+x^2} \, dx$$

Question 2 (1131)

Use the fundamental theorem of calculus to find

$$\frac{d}{dx} \int_{x}^{x^{2}} \cosh\left(\sqrt{t}\right) dt.$$

Question 3 (1141)

Suppose that f is a function whose derivative is continuous and hence bounded on [a, b], with $|f'(x)| \leq L$ for all $x \in [a, b]$.

a) Show that for any n > 0,

$$\int_a^b f(x)\sin nx \, dx = \frac{K(n)}{n} + \frac{1}{n} \int_a^b f'(x)\cos nx \, dx,$$

where $K(n) = f(a)\cos(na) - f(b)\cos(nb)$.

b) Explain why

$$\left| \int_{a}^{b} f'(x) \cos nx \, dx \right| \le (b - a) L.$$

c) Find, with reasons,

$$\lim_{n\to\infty} \int_a^b f(x) \sin nx \, dx.$$

Question 4 (1131)

Determine, with reasons, whether the following improper integrals converge or diverge:

a)
$$\int_0^\infty \frac{dx}{x^2 + e^x}$$
 b) $\int_e^\infty \frac{dx}{x + \ln x}$ c) $\int_0^\infty \frac{dx}{e^{2x} + \cos^2 x}$

d)
$$\int_0^\infty x e^{-x^2} dx$$
 e) $\int_1^\infty \frac{1}{\sqrt{1+x^6}} dx$

Question 5 (1141)

Consider the function $f(x) = \frac{1}{1+x}$ defined on [0,1] and let P be the partition $\{0,\frac{1}{n},\frac{2}{n},...,1\}$.

a) Show that the lower Riemann sum $L_p(f)$ is given by

$$L_p(f) = \sum_{k=1}^n \frac{1}{n+k}.$$

b) Assuming that the limits of the upper and lower Riemann sums are equal, evaluate

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{n+k}.$$