AI Planning Exercise Sheet 8

AI Planning Exercise Sheet 8

December 18, 2014 Date:

Students: Axel Perschmann, Tarek Saier

Exercise 8.1

Exercise 8.2

Definitions/Notes:

- (1) $\Pi = \langle V, I, O, \gamma \rangle$ (in FDR) is SAS⁺ iff
 - $\forall o \in O$ have no conditional effects
 - $\forall \chi$ of $o \in O$ and γ are conjunctions of atoms
- (2) $\mathcal{T}(\Pi) = \langle S, L, T, s_0, S_{\star} \rangle$ is the induced transition system of $\Pi = \langle V, I, O, \gamma \rangle$ where
 - S is the set of states over V

 - $-T = \{ \langle s, o, t \rangle \in S \times L \times S | app_o(s) = t \}$

 - $-S_{\star} = \{ s \in S | s \models \gamma \}$
- (3) For $\mathscr{T} = \langle S, L, T, s_0, S_{\star} \rangle$ and $\alpha : S \to S'$ (a surjective function), $\mathscr{T}^{\alpha} = \langle S', L, T', s'_0, S'_{\star} \rangle$ is the abstraction of \mathscr{T} induced by α where $-S' = \{\alpha(s) | s \in S\}$ $-T = \{ \langle \alpha(s), \ell, \alpha(t) \rangle | \langle s, \ell, t \rangle \in T \}$

 - $s'_0 = \alpha(s_0)$ $S'_{\star} = \{\alpha(s) | s \in S_{\star}\}$
- (4) $P \subseteq V$ is a pattern, $\Pi|_P$ denotes Π restricted to the variables in P
- (5) π_P is the projection $S \to S'$ for $P, \pi_P(s) := s|_P, \mathcal{T}^{\pi_P}$ denotes the transition system induced by π_P
- (6) two transition systems $\mathcal T$ and $\mathcal T'$ are graph-equivalent ($\mathcal T\overset{G}\sim \mathcal T'$) if there exists a bijective function $\phi: S \to S'$ such that
 - $-\phi(s_0) = s_0'$
 - $s \in S_{\star}$ iff $\phi(s) \in S'_{\star}$
 - $\langle s, \ell, t \rangle \in T$ for some $\ell \in L$ iff $\langle \phi(s), \ell', \phi(t) \rangle \in T'$ for some $\ell' \in L'$
- (a) to show: $\mathscr{T}(\Pi|_P) \stackrel{G}{\sim} \mathscr{T}(\Pi)^{\pi_P}$ if Π
 - is an SAS⁺ planning task
 - is not trivially unsolvable

AI Planning Exercise Sheet 8

- has no trivially inapplicable operators

In terms of the definitions/notes above: (6) holds between:

- (4), then (2) and
- (2), then (5) the latter being a special case of (3)

$\mathscr{T}(\Pi|_P)$:

The difference to $\mathscr{T}(\Pi)$ in this case is V of $\Pi|_P$, which affects S directly and T and S_{\star} indirectly. S will not include states over $V \setminus P$. T and S_{\star} will be restricted accordingly.

$\mathscr{T}(\Pi)^{\pi_P}$:

The difference to $\mathscr{T}(\Pi)$ in this case is that after getting \mathscr{T} the latter is abstracted by means of π_P . This means for all states $s' \in S'$ of \mathscr{T}^{π_P} , $s \in S$ of \mathscr{T} : $s' = s|_P$. In other words, information about variables $v \notin P$ will be discarded in all s'. Again, T and S_{\star} will be restricted accordingly.

In both cases all information about variables not in P is discarded. Performing this step by means of (4) before (2) or by means of (5) after (2) does not violate (6).

(b) Wild guess: replacing effect conditions in $o \in O$ with \top causes problems with the third (see (6) above) condition of graph-equivalence dealing with transitions.