Advanced Topics in Cryptography – Exercise Set 1

Handed out on April 24, 2013

To be handed in on May 1, 2013

Exercise 1

Three coins are tossed uniformly and independently. Let \mathcal{A} be the event that at least two coins are *heads*. Let \mathcal{B} be the event that the number of *heads* is odd. Let \mathcal{C} be the event that the third coin is *heads*.

- a) Are \mathcal{A} and \mathcal{B} independent?
- b) Are \mathcal{A} and \mathcal{C} independent?
- c) Are \mathcal{B} and \mathcal{C} independent?

Remark: Do not only answer "yes" or "no", but also argue your answer formally.

Exercise 2

Show how to compute the probability Pr[a|3] in Example 1.1 (Lecture #2).

Exercise 3

Write a proof of the converse part of Theorem 1.2 (Lecture #2), i.e. prove that if for some cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ it holds that $|\mathcal{K}| = |\mathcal{C}| = |\mathcal{P}|$, every key is used with probability $\frac{1}{|\mathcal{K}|}$, and $\forall x \in \mathcal{P}, y \in \mathcal{C}$ there exists a unique key K such that $e_K(x) = y$, then such the cryptosystem is perfectly secure.

Exercise 4

Suppose that the key $(K_1, \ldots, K_n) \in \mathbb{Z}_2^n$ in a one-time pad was re-used. More precisely, suppose that an adversary received

$$y = (y_1, \dots, y_n) = (x_1 + K_1, \dots, x_n + K_n)$$
 and

 $y' = (y'_1, \dots, y'_n) = (x'_1 + K_1, \dots, x'_n + K_n)$, where summation is "mod 2",

for some plaintexts $x = (x_1, \dots, x_n) \in \mathbb{Z}_2^n$ and $x' = (x_1, \dots, x_n') \in \mathbb{Z}_2^n$.

Show that perfect security will not hold in this case.

Hint: The adversary is allowed to make computations on the given ciphertexts.

Remark: This shows that in perfectly secure encryption the key *cannot be re-used*.