1. The 1986 crash of the space shuttle Challenger was linked to failure of O-ring seals in the rocket engines. Data was collected on the 23 previous shuttle missions. The shuttle had six O-ring seals and the number that failed on each launch was recorded. Furthermore, the temperature at each launch was also recorded (in degrees F).

	temp (t_i)	damage (x_i)
1	53.00	5.00
2	57.00	1.00
3	58.00	1.00
4	63.00	1.00
5	66.00	0.00
6	67.00	0.00
7	67.00	0.00
8	67.00	0.00
9	68.00	0.00
10	69.00	0.00
11	70.00	1.00
12	70.00	0.00
13	70.00	1.00
14	70.00	0.00
15	72.00	0.00
16	73.00	0.00
17	75.00	0.00
18	75.00	1.00
19	76.00	0.00
20	76.00	0.00
21	78.00	0.00
22	79.00	0.00
23	81.00	0.00

A binomial model was fitted to the data where $X_i \sim \text{binomial}(6, p_i)$ and where

$$p_i = \frac{\exp(\alpha + \beta t_i)}{1 + \exp(\alpha + \beta t_i)}.$$

The fitted parameter values and inverse information matrix are

$$(\hat{\alpha}, \hat{\beta}) = (11.660, -0.216) \text{ and } I^{-1}(\hat{\alpha}, \hat{\beta}) = \begin{pmatrix} 10.786 & -0.173 \\ -0.173 & 0.003 \end{pmatrix}.$$

- (a) Provide approximate 95% confidence intervals for α and β and comment on whether there is evidence that $\beta = 0$ or $\beta \neq 0$. What is the relevance of testing $\beta = 0$?
- (b) The temperature on the launch day was 31 degrees F, estimate the probability of O-ring failure at this temperature.
- (c) The maximized likelihood has the value $\hat{\ell} = -14.837$ and the maximized likelihood for a binomial model where $X_i \sim \text{binomial}(6, p)$ is $\hat{\ell}_0 = -25.830$. Comment on which model is more appropriate.
- (d) The engineers at the launch of the shuttle ignored any data where there were zero failures and only analyzed data where $x_i = 1, 2, ..., 6$. The same model fitted to this reduced dataset gives

$$(\hat{\alpha}, \hat{\beta}) = (5.323, -0.102) \text{ and } I^{-1}(\hat{\alpha}, \hat{\beta}) = \begin{pmatrix} 10.814 & -0.175 \\ -0.175 & 0.003 \end{pmatrix}.$$

Comment on the different conclusions that the engineers would draw from this analysis.