Financial Crashes

Topological Data Analysis and Wavelet Analysis

Candidate Helena Beltrani Supervisors

Dott. Alessandro Oneto

Prof. Alfred Peris

Framework

daily adjusted closing prices of four	
US stock market indices	

from January	1,	1992	to	December
31, 2021				

Stock Market Index	Stock symbol
S&P 500	GSPC
Dow Jones	DJI
NASDAQ Composite	IXIC
Russell 2000	RUT

- aim: detecting market crashes and finding early warning signals
 - March 10, 2000: Dotcom Bubble burst
 - September 15, 2008: bankruptcy of Lehman Brothers
 - March 13, 2020: US national emergency due to COVID-19
- Topological Data Analysis
 - persistence homology
 - *L*¹-norm process

- Wavelet Analysis
 - Haar wavelet
 - Walsh-type wavelet packet

Topological Data Analysis of

Financial Time Series

Homology

- powerful tool from algebraic topology
- algebraic invariants that classify topological spaces
- For any dimension k, the k-dimensional "holes" are represented by the homology vector space H_k with coefficients in \mathbb{Z}_2 whose dimension is the number of such independent features
 - \blacksquare $H_0 \rightarrow$ connected components
 - lacksquare $H_1 o \mathsf{loops}$
 - \blacksquare $H_2 \rightarrow$ cavities

- *d* time series $\{x^k = (x_t^k)_{t \in T} : k = 1, ..., d\}$
- $\forall t_i \in \mathcal{T}, \\ \mathbf{x}(t_i) = (x_t^1, x_t^2, \dots, x_t^d) \in \mathbb{R}^d$
- sequence of point cloud data sets of w points in \mathbb{R}^d :

$$\mathbb{X}_{t_i} = (\mathsf{x}(t_i), \mathsf{x}(t_{i+1}), \ldots, \mathsf{x}(t_{i+w-1}))$$

- 4 time series of the **logarithmic** returns $log(P_{i,j}/P_{i-1,j})$ where $P_{i,j}$ is the adjusted closing value of stock index j of day i
- every day is represented by a point in R⁴ whose coordinates are the logarithmic returns the indices
- point clouds of w = 50 points embedded in \mathbb{R}^4

¹Marian Gidea and Yuri Katz. "Topological data analysis of financial time series: Landscapes of crashes". In: *Physica A: Statistical Mechanics and its Applications* 491 (Oct. 2017).

Computation of the persistence homology of point clouds

As our input data we have a point cloud data set consisting of a family of points $X = \{x_1, \dots, x_n\}$ in an Euclidean space \mathbb{R}^d .

Vietoris-Rips simplicial complex

The Vietoris-Rips complex $VR_r(\mathbb{X})$ of \mathbb{X} with radius r is the set of simplexes of the form $[x_0, \ldots, x_k]$ such that the mutual distance between any pair of these simplexes is less than r, i.e.,

$$d(x_i, x_j) \leq r \quad \forall \ 0 \leq i, j \leq k.$$

changes tracked by persistent homology persistence barcode

persistence diagram

7

Example of filtration associated to a point cloud and the resulting persistent barcode and persistent diagram²

²Frédéric Chazal and Bertrand Michel. "An Introduction to Topological Data Analysis: Fundamental and Practical Aspects for Data Scientists". In: *Frontiers in Artificial Intelligence* 4 (Oct. 2017).

L¹-norm process

Given a persistent diagram $\mathcal{D} = \{(b_i, d_i)\}_{i \in I}$, where (b_i, d_i) are the birth-death couples, we define a piecewise linear continuous function $\lambda_{(b_i, d_i)} : \mathbb{R} \to \mathbb{R}$

$$\lambda_{(b_i,d_i)}(t) = egin{cases} t-b_i & ext{if} \ t \in [b_i,rac{b_i+d_i}{2}] \ d_i-t & ext{if} \ t \in (rac{b_i+d_i}{2},d_i] \ 0 & ext{if} \ t
ot (b_i,d_i) \end{cases}$$

The persistence landscape

 $\lambda: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ is then defined as

$$\lambda(k,t) = \mathsf{kmax}_{i \in I} \{ \lambda_{(b_i,d_i)}(t) \}$$

A persistence landscape $\Lambda: \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ is endowed with the L^1 -norm

$$||\lambda||_1 = \sum_{k=1}^{\infty} ||\lambda_k||_1$$

- For every trading day j:
 - N_j : the L^1 -norm of the persistence landscape of the point cloud of the w trading days following day j
 - B_j : the average L^1 -norm of the point clouds referring to t consecutive trading days before j, with t >> w

Trading day *j* is an **early warning signal** if:

- 1. $\frac{N_j}{N_i} \geq \alpha$ for a fixed $\alpha > 1$;
- 2. $N_i/B_i \ge \beta$ for a fixed $\beta \ge 2$.
- We set $\alpha = 1.4$, $\beta = 3$ and $t = 250^3$.

³Hongfeng Guo et al. "Empirical study of financial crises based on topological data analysis". In: 558 (July 2020), p. 124956.

Early warning signals for the TDA approach

Crisis	Critical Dates		
2000	Mar. 1997 (4)		
	Aug. 1998 (2)		
	Oct. 1998 (2)		
	Dic. 1999 (2)		
	Jan, 2000 (1)		
2008	Dic. 2007 (1)		
	Jul. 2008 (2)		
2020	-		

L¹-norm and average moving correlation coefficient time series

- strong synchronization of the stock indices
- nullified the persistence of the 1-dimensional components

	Dow Jones	NASDAQ C.	Russell 2000	S&P 500
Dow Jones	1	0.986	0.973	0.996
NASDAQ C.	0.986	1	0.964	0.995
Russell 2000	0.973	0.964	1	0.974
S&P~500	0.996	0.995	0.974	1

Testing with independent random variables⁴

Normally distributed variables with a growing variance

Scaled Student's *t*-distributed variables with growing scaling parameter

■ There is quadratic dependency of the L^1 -norm with respect to the standard deviation or to the scaling factor.

⁴L. Aromi Leaverton. *Analysis of Financial Time Series using TDA: Theoretical and Empirical Results.* Universitat de Barcelona. 2020.

Testing with correlated random variables⁵

Normally distributed variables with constant variance

It is clear that as $|\rho| \to 1$, the L^1 -norm approaches zero, meaning that high correlation between variables can completely nullify the L^1 -norm of the persistence landscape.

⁵Lloyd Aromi, Yuri Katz, and Josep Vives. "Topological features of multivariate distributions: Dependency on the covariance matrix". In: *Communications in Nonlinear Science and Numerical Simulation* 103 (Aug. 2021), p. 105996.

Analysis of financial time series

through Haar wavelets

Haar Wavelets⁶

• signal $f = (f_1, f_2, \dots, f_N) \in \mathbb{R}^N$

• set $\left\{v_1^1,\ldots,v_{N/2}^1,w_1^1,\ldots,w_{N/2}^1\right\}$ is an orthonormal basis of \mathbb{R}^N and we call $V^1:=\operatorname{span}\{v_1^1,\ldots,v_{N/2}^1\}$ and $W^1=\operatorname{span}\{w_1^1,\ldots,w_{N/2}^1\}$.

⁶James Walker. A Primer on Wavelets and Their Scientific Applications. Nov. 2020.

first trend first fluctuation
$$a^{1} = (f \cdot v_{1}^{1}, \dots, f \cdot v_{N/2}^{1}) \quad d^{1} = (f \cdot w_{1}^{1}, \dots, f \cdot w_{N/2}^{1})$$

first averaged signal first detail signal
$$A^{1} = \sum_{j=1}^{N/2} (f \cdot v_{j}^{1}) v_{j}^{1} D^{1} = \sum_{j=1}^{N/2} (f \cdot w_{j}^{1}) w_{j}^{1}$$

- $lacksquare{A}^1$ and D^1 are respectively the orthogonal projections of f on the spaces V^1 and W^1
- a signal is expressed as $f = A^1 + D^1$
- The first level Haar transform is $H^1: \mathbb{R}^N \to \mathbb{R}^N$ and it is defined as

$$H^1(\mathsf{f}) = \left(\mathsf{a}^1|\mathsf{d}^1\right)$$

■ Analogously, the m-level MRA, where m is such that N is divisible m times by 2, is

$$f = A^{m} + D^{m} + \dots + D^{2} + D^{1}$$

$$A^{m} = \sum_{j=1}^{N/2^{m}} (f \cdot v_{j}^{m}) v_{j}^{m}$$

$$D^{m} = \sum_{j=1}^{N/2^{m}} (f \cdot w_{j}^{m}) w_{j}^{m}$$

• the *m*-level Haar transform is $H^m : \mathbb{R}^N \to \mathbb{R}^N$ defined as

$$\mathsf{H}^m(\mathsf{f}) = \left(\mathsf{a}^m | \mathsf{d}^m | \mathsf{d}^{m-1} | \dots | \mathsf{d}^1\right).$$

Averaged signals and details for S&P 500

- multiresolution analysis using the Haar transform up to level 4.
- define four time series H_i for $i=1,\ldots,4$ using details and averaged signals of each index up to i-th level

$$H_i(t) = \sum_{z \in \text{indices}} rac{\sum_{j=1}^i |\mathsf{D}_z^j(t)|}{\mathsf{A}_z^i(t)} \;\; i = 1, \dots, 4$$

Moving energy of the time series H_i with i = 1, ..., 4

Noise reduction 23

• energy of a signal
$$E(f) = f_1^2 + f_2^2 + \dots + f_N^2$$

 arrange the absolute values of the Haar transform in decreasing order

$$L_1 \geq L_2 \geq L_3 \geq \cdots \geq L_N$$

Letting p be the percentage of energy we want to retain, we identify j as the first index such that

$$\frac{L_1^2 + L_2^2 + \dots + L_j^2}{E(\mathsf{f})} \ge p$$

• set the threshold $T := L_j$ and transmit only the significant, non-zero values of the transform through the hard thresholding function and a significance map

inverse wavelet transform

Noise reduction of the time series H_i

- Energy retention 40%
- A trading day *i* is called a **critical date** if the corresponding denoised signal is different from zero

Early warning system

- We associate a counter to each critical date
- For each day $x \in (critical\ date 15, critical\ date + 15]$, we consider the price time series from January 1, 1992 up to day x
- We concatenate the truncated series with its flipped version and repeat this pattern until we obtain a time series of the same length as the original data set

$$p(1), p(2), \ldots, p(x-2), p(x-1), p(x), p(x-1), p(x-2), \ldots, p(2), p(1), p(2), \ldots$$

- We apply the wavelet method to the newly created price series
- If the obtained denoised signal is different from zero in correspondence of the critical date, we increase the counter by one If a critical date has associated counter ≥ 10 , then it is an early warning signal

Early warning signals

Crisis	Critical Dates
2000	July 1996 (2)
	October 1997 (2)
	August 1998 (2)
	September 1998 (3)
	October 1998 (2)
	December 1999 (1)
	January 2000 (2)
	March 2000 (1)
2008	July 2007 (1)
	January 2008 (2)
	March 2008 (1)
	June 2008 (1)
2020	March 2020 (4)

Testing for the Haar wavelet analysis

- assumption of normally distributed log-returns
- the price series can be generated using $s_i = \exp(r_i + \log(s_{i-1}))$

Thanks to the MRA we are able to capture the **short-term price changes** of an index in the details, while the **price trend** is captured by the averaged signals.

The time series H_i for $i=1,\ldots,4$ are able to capture the **relative price change** rather than their absolute price changes.

Achievements:

- development of two methods through TDA and wavelet analysis
- detection of crashes
- implementation of an early warning system triggered by high market volatility

Limitations:

- cannot give early warning signals for financial meltdowns caused by sudden exogenous shocks
- both methods cannot forecast crashes
- strongly depend on hyperparameters

⁷Yuri Katz and Alain Biem. "Time-resolved topological data analysis of market instabilities". In: *Physica A: Statistical Mechanics and its Applications* 571 (Feb. 2021), p. 125816.

Thanks for your attention

Analysis of financial time series

through Walsh-type wavelet packet

Walsh-type wavelet packet

- generalization of the Haar transforms
- when we perform the wavelet packet transform of a signal, we compute the wavelet transform not only of the trend subsignals but also of the fluctuation subsignals
- 1-level Walsh transform

$$Wh_1(f) = (a^1|d^1) = H_1(f).$$

2-level Walsh transform

$$Wh_2(f) = (H_1(a^1)|H_1(d^1)) = (a^2|d^2|H_1(d^1)) = (a^2|d^2|d^{1,a}|d^{1,d})$$

$$\begin{split} W_{1}(t) &= \sum_{z \in \text{indices}} \frac{|\mathsf{D}_{z}^{1}(t)|}{\mathsf{A}_{z}^{1}(t)} \\ W_{2}(t) &= \sum_{z \in \text{indices}} \frac{|\mathsf{D}_{z}^{2}(t)| + |\mathsf{D}_{z}^{1,d}(t)|}{\mathsf{A}_{z}^{2}(t)} \\ W_{3}(t) &= \sum_{z \in \text{indices}} \frac{|\mathsf{D}_{z}^{2}(t)| + |\mathsf{D}_{z}^{2,d}(t)| + \sum_{j=\{a,d\}} |\mathsf{D}_{z}^{1,j,d}(t)|}{\mathsf{A}_{z}^{3}(t)} \\ W_{4}(t) &= \sum_{z \in \text{indices}} \frac{|\mathsf{D}_{z}^{4}(t)| + |\mathsf{D}_{z}^{3,d}(t)| + \sum_{j=\{a,d\}} |\mathsf{D}_{z}^{2,j,d}(t)| + \sum_{j,k=\{a,d\}} |\mathsf{D}_{z}^{1,j,k,d}(t)|}{\mathsf{A}_{z}^{4}(t)} \end{split}$$

$$W_1(t) = \sum_{z \in \text{indices}} \frac{|\mathsf{D}_z^1(t)|}{\mathsf{A}_z^1(t)}$$

Time series W_2 :

$$\mathsf{A}^1 \qquad \mathsf{D}^1$$

$$\mathsf{A}^2 \qquad \mathsf{D}^2 \qquad \mathsf{D}^{1,a} \qquad \mathsf{D}^{1,d}$$

$$W_3(t) = \sum_{z \in ext{indices}} rac{|\mathsf{D}_z^3(t)| + |\mathsf{D}_z^{2,d}(t)| + \sum_{j = \{a,d\}} |\mathsf{D}_z^{1,j,d}(t)|}{\mathsf{A}_z^3(t)}$$

Moving energy of the time series W_i

Noise reduction of the time series W_i

■ Energy retention 40%

Early warning signals

Crisis	Critical Dates
2000	July 1996 (1)
	October 1997 (2)
	August 1998 (2)
	September 1998 (3)
	October 1998 (1)
	December 1999 (1)
	January 2000 (2)
	March 2000 (1)
2008	January 2008 (2)
	March 2008 (2)
2020	March 2020 (4)