Math 104 Worksheet 13 UC Berkeley, Summer 2021 Tuesday, July 27

Theorem. Let $x_0 \in \mathbb{R}$. For the power series $\sum a_n(x-x_0)^n$, let $\beta := \limsup |a_n|^{1/n}$ and

$$R := \begin{cases} \frac{1}{\beta} & \text{if } 0 < \beta < \infty, \\ \infty & \text{if } \beta = 0, \\ 0 & \text{if } \beta = \infty. \end{cases}$$

(i) The power series converges for |x − x₀| < R.</p>

(ii) The power series diverges for $|x - x_0| > R$.

R as defined above is called the radius of convergence of the power series.

Proof. Exercise 1. Restate the **root test** for a series of real numbers $\sum b_n$.

Exercise 2. Treat x as a fixed value, so $\sum a_n(x-x_0)^n = \sum b_n$ where $b_n = a_n(x-x_0)^n$. Compute the quantity of interest in the root test for this series; express your answer in terms of x and β .

Timsup | bn |
$$\frac{1}{n}$$
 = 1 imsup | $\frac{1}{n}$ = 1 imsup | $\frac{1}{n}$ = 1 imsup | $\frac{1}{n}$ - $\frac{1}{n}$ = $\frac{1}{n}$ | $\frac{1}{n}$

Exercise 3. Consider the three cases $0 < \beta < \infty$, $\beta = 0$, and $\beta = \infty$ separately to justify the conclusion of the theorem.

Case 1:
$$0 < \beta < \infty$$
.
 $\sum a_n(x-x_0)^{\frac{1}{n}}$ converges if $\beta|x-x_0| < |\Leftrightarrow |x-x_0| < \frac{1}{\beta} = R$.
 diverges if $\beta|x-x_0| > |\Leftrightarrow |x-x_0| > \frac{1}{\beta} = R$.
Case 2: $\beta = 0$. Then $\beta|x-x_0| = 0 < 1$.
 $\sum a_n(x-x_0)^{\frac{1}{n}}$ converge for all $x \in \mathbb{R}$, i.e. $|x-x_0| < \infty = R$.
Case 3: $\beta = \infty$. $\lim \sup |a_n(x-x_0)^n|^{\frac{1}{n}} = \infty > 1$ for all $x \neq x_0$.
 $\sum a_n(x-x_0)^{\frac{1}{n}}$ diverges for $|x-x_0| > 0 = R$.

Corollary. If $\lim \left| \frac{a_n}{a_{n+1}} \right|$ exists, then it is equal to the radius of convergence of the power series.

Exercise 4. Prove the preceding corollary.

liminf
$$\left|\frac{a_{n+1}}{a_n}\right| \le \lim\sup_{n \to \infty} \left|\frac{a_n}{a_n}\right|$$

If $\lim_{n \to \infty} \left|\frac{a_n}{a_n}\right| = xists$, so does $\lim_{n \to \infty} \left|\frac{a_n}{a_n}\right|$, and $\lim\sup_{n \to \infty} \left|\frac{a_n}{a_n}\right| = xists$.

Then $\lim_{n \to \infty} \left|\frac{a_n}{a_n}\right| = xists$
 $\lim_{n \to \infty} \left|\frac{a_n}{a_n}\right| = xists$

Definition. The interval of convergence of the power series $\sum a_n(x-x_0)^n$ is the set $\{x \in \mathbb{R} : \text{ the series of real numbers } \sum a_n(x-x_0)^n \text{ converges} \}$. Note that the theorem guarantees that this set is an interval (which can be open, closed, or half-open-half-closed.)

Exercise 5. For each of the following power series, find the interval of convergence.

$$(a) \sum_{n=1}^{\infty} x^{n} \qquad \lim_{n \to \infty} \left| \frac{\partial u}{\partial u_{n+1}} \right| = \lim_{n \to \infty} \frac{\partial v}{\partial u_{n+1}} = \lim_{n \to \infty} \left(v_{n+1} \right) = \infty .$$

$$(-\infty, \infty)$$

$$(b) \sum_{n=1}^{\infty} x^{n} \qquad \lim_{n \to \infty} \left| \frac{\partial u}{\partial u_{n}} \right| = \lim_{n \to \infty} \frac{1}{n} = \lim_{n \to \infty} \frac{\partial v}{\partial u_{n}} = \lim_{n \to \infty} \frac{\partial$$

Natural question:

Is $f(x) = \sum_{k=0}^{\infty} a_k (x-x_0)^k$ a continuous function on (x_0-R, x_0+R) ? We know that $f_n(x) = \sum_{k=0}^{n} a_k (x-x_0)^k$ is continuous (polynomial).

Think out f as the "limit" of (f_n) (needs to be formalized).

Let (X,d) be a metric space. Let (f_n) be a sequence of real-valued functions defined on $E\subseteq X$.

Def: (fn) converges pointwise on E to a function f if for each $x \in E$, $\lim_{n \to \infty} f_n(x) = f(x)$. Write "fn $\to f$ pointwise"

Ex. $f_n(x) = x^n$ on [0,1] converges pointwise to $f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$.

fn all continuous, -> f not continuous.

Observe: pointwise convergence in this example is not occurring at the same rate across the domain.

Uniform convergence: (X,d). (f_n) converges uniformly on E to a function f if

for any $\varepsilon > 0$, there exists NEN such that $n \ge N$ implies $|f_n(x) - f(x)| < \varepsilon$ for every $x \in E$.

compoure to pointwise convergence:

For any $\epsilon>0$ and $x\in E$, there exists NEN such that $n\geq N$ implies $|f_n(x)-f(x)|<\epsilon$. depends on x.

Claim: $f_n(x) = x^n$ does not converge uniformly to $f(x) = \begin{cases} 0 & x \in [0,1) \\ 1 & x = 1 \end{cases}$.

Proof: Let $\epsilon = \frac{1}{2}$. Let $N \in \mathbb{N}$. Since $f_N(x) = x^N$ is continuous at x = 1, there exists $\delta > 0$ such that $|x-1| < \delta \Rightarrow |x^N-1| < \frac{1}{2}$.

Then $f_N(1-\frac{5}{2}) = (1-\frac{5}{2})^N > \frac{1}{2}$

So there does not exists $N \in \mathbb{N}$ such that $n \ge N$ implies $\left| f_n(x) - f(x) \right| < \frac{1}{2}$.

Theorem: Uniform limit theorem.

"The inform limit of continuous functions is continuous."

Nore precisely, let (X,d) be a metric space.

Let (f_n) be a sequence of real-valued functions defined on $E \subseteq X$.

If $f_n \to f$ uniformly and f_n is continuous at $x_0 \in E$ for all n, then f is continuous at x_0 . (if f_n is continuous on E, then f is continuous on E).

Proof: Key inequality: $|f(x) - f(x_0)| \le |f(x) - f_n(x_1)| + |f_n(x_1) - f_n(x_0)| + |f_n(x_0) - f_n(x_0)|$.

make small by uniform convergence of for to f.

make small by cont. of fr.