单圈绝对值旋转编码器RS485 产品 说明书

一一一个一个一个一个

- RS485 数字通讯信号输出,数字输出信号既有多圈值、单圈绝对值;
- 采用标准的 ModBus-RTU 通讯规约,支持组态王、Intouch、FIX、synall等流行软件,能与 AB、西门子、施耐德、GE 等国际著名品牌的设备及系统 之间实现数据通信:
- 单圈编码器在不掉电情况下可作电子多圈编码器使用(此功能非断电记忆),最高可达百万圈;增加返回速度功能,便于使用者计算;
- 单圈量程范围内任何位置都是唯一的,即使有干扰或断电运动,都不会丢失 位置信息;
- 单圈分辨率有 1024(10 bit)、4096(12 bit)、16384(14 bit)、32768(15 bit),量程范围内最高可实现 0.01 度的分辨率;
- 所有参数均可通过电脑的 RS485 通讯进行设定,可在任意位置设定零点,因此安装编码器时可将设备停留任意位置,无需考虑本编码器的旋转位置、即可固定好连接轴,通电后只要在外部引线处或通过 RS485 通讯进行一次置零操作即可自动修正;
- 特别适用于塔式起重机、矿山起重机、施工升降机、机床、3D 打印机、自动 化流水线、工业机器人、印刷机械、包装机械、物流机械、移动广告屏幕滑轨 等设备的高度、行程、角度及速度的可靠/精确测量。

广而至亏况明

电气特性

电气参数

工作电压:	5V、24V(9~30V)	波特率:	9600~115200 (默认 9600)						
工作电流:	50mA	站号、地址:	1~127 (默认 1)						
线性度:	0.1%	通信协议:	见附录一						
内核刷新周期:	50uS	电气寿命:	> 100000 h						
台 関公辦家	1024(10 bit) 4096(12 bit) 16384(14 bit) 32768(15 bit)								

机械参数

外壳/法兰材质	锌镍镀层钢/航空铝、IP67 外壳为不锈铁
轴材质	不锈钢(6mm 轴、8mm 轴、8mm 盲孔)
轴承材质	轴承钢
轴的最大负载	轴向 20 N, 径向 80 N
最大机械转速	1000 转
最大启动扭矩	0.006Nm (IP54) 、0.06Nm (IP67)
重量	150 g (含 1.2 米屏蔽线)

环境参数

工作温度	-40 ~ + 85°C
储存温度	-40 ∼ + 85 °C
湿度	98 % (无凝露)
防护等级	外壳: IP54、IP67 可选
的扩 立 级	轴、轴承: IP54、IP67 可选

接线方式

红	电源正极 5V、24V(9~30V)	上电前务必注意:
		1、编码器标签上的电压值
		2、应避免接触黄线,可能导致短路,无法通讯
黑	地线 (GND)	
黄	置零 (ZR)	1、置零功能: 黄线接地(黑线),编码器置零; 2、恢复出厂设置功能: 断电后黄线接地(黑线),上 电,保持2分钟后即可复位,复位后分离两条线
绿	RS485B	TR-
白	RS485A	TR+

机械尺寸

型号: RS485 接口-- 3D 模型以及相关资料请到科技官网下载。

尺寸型号图 1: 输出 6mm IP54

尺寸型号图 2: 输出轴 8mm IP54

尺寸型号图 3: 盲孔 8mm IP54

尺寸型号图 4: 输出 6mm IP67

尺寸型号图 5: 输出 8mm IP67

注意事项

- 编码器属于精密仪器,请轻拿轻放、小心使用,尤其对编码器轴请勿 敲、撞击及硬拽等。
- 编码器与机械连接应选用柔性连接器或弹性支架,应避免刚性联接不同 小造成的硬件损坏。
- 编码器防水等级有 IP54、IP67 两种可选,如选用 IP54 编码器,转轴处 防护等级为 IP65,应避免轴朝上安装或者浸泡在水中,否则请采用防水 护罩等措施; IP67 防水经 48 小时水深一米运作测试,户外情况请放心 使用。
- 虽然在干扰环境下编码器本身不会丢失圈数,但会对传输过程中的数据 造成干扰,所以当系统中有电机或强电磁干扰环境下,对编码器供电要 采用隔离电源、外部延长的通讯线最好使用双屏蔽电缆等措施。
- 编码器外壳和屏蔽线外层网线要做到良好接地,防止雷击或高压静电对 编码器电路造成损坏!

除了上述置零(黄线)允许接地外,编码器其它任何信号线禁止相互短接,通电后还要避免不小心使信号线有碰触,否则可能会造成电路永久性损坏!

■服务承诺

- 正确使用情况下,产品免费保修两年。
- 超过保质期,或因使用不当造成产品损坏,产品可寄回本公司维修(维修时仅收取成本费用。

定制服务

项目	内容
通讯	□RS232 □单圈 □
出线	电缆线长:米
轴	□半空心轴 □D 型不锈钢轴 □是否打孔
编码器尺寸	

附录一

编码器 RS485 协议 (标准 MODBUS-RTU)

通信协议详述:

本编码器使用 MODBUS-RTU(国标 GB/T19582-2008)通讯协议进行通讯,支持一主站 控制多个从站,通过自带的上位机可以配置 127 个从站地址,主站可以是单片机、PLC 或 PC 机等。

1.1 通信参数

出厂时的串口默认配置,波特率默认为9600bps,数据位8,无校验,停止位1;波特率可配置范围9600~115200bps,编码器默认通信地址(站号)为1。

1.2 MODBUS-RTU 帧格式

本编码器支持 MODBUS 的 0x03(读保持寄存器)、0x06(写单个寄存器)。

1.2.1 0x03 读保持寄存器

主站发送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x03	起始寄存 器高字节	起始寄存 器低字节	寄存器 数高字 节	寄存器 数低字 节	CRC 高字 节	CRC 低字 节

 第 1 字节 ADR:
 从站地址码 (1~127)

 第 2 字节 0x03:
 读寄存器值功能码

 第 3、4 字节:
 要读的寄存器开始地址

 第 5、6 字节:
 要读的寄存器数量

第7、8字节: 从字节1到6的CRC16校验和

从站回送:

字节	1	2	3	4、5	6、7	M-1、M	M+1	M+2
内容	ADR	0x03	字节总数	寄存器 数据 1	寄存器 数据 2	 寄存器 数据 M	CRC 高字 节	CRC 低字 节

第 1 字节 ADR: 从站地址码 (2~127)

第 2 字节 0x03: 返回读功能码

第3字节: 从4到M(包括4及M)的字节总数

第4~M字节: 寄存器数据

第 M + 1、 M+2 字节: 从字节 1 到 M 的 CRC16 校验和

1.2.2 0x06 写单个寄存器

主站发送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x06	寄存器高字节	寄存器低字节	寄存器数高字节	寄存器 数低字 节	CRC 高字 节	CRC 低 字节

当从站接收正确,从站回送:

字节	1	2	3	4	5	6	7	8
内容	ADR	0x06	寄存器高字节	寄存 器低 字节	寄存器 数高字 节	寄存器数低字节	CRC 高字 节	CRC 低 字节

1.3 寄存器定义

1.3.1 编码器寄存器

寄存器地址	描述	取值范围	支持功 能码	备注
0x0000	编码器单圈值	0~0xFFFFFFF (0~42949672 95)	0x03	掉电记忆
0x0000 ~0x0001	编码器虚拟多圈值	0~0xFFFFFFF (0~42949672 95)	0x03	掉电归零
0x0002	编码器虚拟圈数值	0~0xFFFF (0~65535)	0x03	掉电归零
0x0003	编码器角速度值	0~0xFFFF (0~65535)	0x03	掉电归零

0x0004	编码器地址	1~127	0x06	默认 01
0x0005	波特率	0x0000~0x0004	0x06	默认: 9600 0x00: 9600 0x01: 19200 0x02: 38400 0x03: 57600 0x04: 115200
0x0006	编码器模式	0x0000~0x0001	0x06	0x00: 查询模式 0x01: 自动回传
0x0007	自动回传时间	0~65535(毫秒)	0x06	默认: 20mS
注意: 一旦	设置自动回传时间小于2	0 毫秒,编码器将无法	去再设置其他	参数,谨慎使用!!
0x0008	编码器重置零点标志 位	0x0001	0x06	写入 0x0001,编码 器以当前位置为零点
0x0009	编码器值递增方向	0x0000~0x0001	0x06	0x00: 顺时针 0x01: 逆时针
0x000A	编码器角速度 采样时间	0~65535(毫秒)	0x06	默认: 100mS
0x000B	设置编码器当前值	0~65535	0x06	掉电记忆
0x000E	编码器设置 中点标志位	0x0001	0x06	写入 0x0001,编码 器以当前位置为中点 值

1.4 编码器通信实例

1.4.1 读取编码器值

Tx:01 03 00 00 00 01 (84 0A) Rx:01 03 02 01 42 (39 E5)

注:括号内为 CRC 校验位,编码器返回数据是 01 42 (十进制: 322)

1.4.2 读取编码器虚拟多圈值

Tx:01 03 00 00 00 02 (C4 0B)

Rx:01 03 04 00 01 76 3B (CC 40)

注:括号内为 CRC 校验位,编码器值返回数据是 00 01 76 3B (十进制: 95803)

1.4.3 读取编码器虚拟圈数值

Tx:01 03 00 02 00 01 (25 CA)

Rx:01 03 02 00 08 (59 83)

注:括号内为 CRC 校验位,编码器圈数值返回数据是 00 08 (十进制: 8 圈)

1.4.4 读取编码器角速度值

Tx:01 03 00 03 00 01 (74 0A)

Rx:01 03 02 02 7A (D8 C6)

注:括号内为 CRC 校验位,编码器单圈数值返回数据是 02 7A (十进制: 634)

1.4.5 设置编码器地址

Tx:01 06 00 04 00 02 (49 CA)

Rx:01 06 00 04 00 02 (49 CA)

注:括号内为 CRC 校验位,设定地址是 02 (HEX:0x0002)

1.4.6 设置编码器波特率

Tx:01 06 00 05 00 02 (18 0A)

Rx:01 06 00 05 00 02 (18 0A)

注:括号内为 CRC 校验位,设置的波特率为 38400 (0x02)

1.4.7 设置编码器数据模式

Tx: 01 06 00 06 00 01 (A8 0B)

Rx: 01 06 00 06 00 01 (A8 0B)

注:括号内为 CRC 校验位,设置当前编码器数据模式为自动回传 (默认查询)

1.4.8 设置编码器自动回传时间(毫秒)

Tx: 01 06 00 07 00 64 (39 E0)

Rx: 01 06 00 07 00 64 (39 E0)

注:括号内为 CRC 校验位,设定自动回传时间为 100 毫秒 (HEX:0x0064)

千万注意:一旦设置自动回传时间小于 20 毫秒,编码器将无法再设置其他参数,谨慎使用!!

1.4.9 设置编码器零点

Tx:01 06 00 08 00 01 (C9 C8)

Rx:01 06 00 08 00 01 (C9 C8)

注:括号内为 CRC 校验位,设置当前编码器当前点为零点

1.4.10 设置编码器数值递增方向

```
TX:01 06 00 09 00 01 (98 08)

RX:01 06 00 09 00 01 (98 08)
```

注:括号内为 CRC 校验位,设置当前编码器逆时针数值增加 (默认顺时针)

1.4.11 设置编码器中点

```
Tx:01 06 00 0E 00 01 (29 C9)
Rx:01 06 00 0E 00 01 (29 C9)
```

注:括号内为 CRC 校验位,设置当前编码器当前点为中点

1.4.12 设置编码器角速度采样时间(毫秒)

```
Tx: 01 06 00 0A 03 E8 (A9 76)
Rx: 01 06 00 0A 03 E8 (A9 76)
```

RX: 01 06 00 0A 03 E8 (A9 76)

注:括号内为 CRC 校验位,设定自动回传时间为 1000 毫秒 (HEX:0x3E8)

1.4.13 设置编码器当前位置值

Tx 01 06 00 0B 03 E8 (F8 B6)

Rx: 01 06 00 0B 03 E8 (F8 B6)

注:括号内为 CRC 校验位,设置的位置为 1000 (HEX:0x3E8)

1.4.12 编码器转速计算:

編码器旋转速度 = 编码器角速度值 / 单圈精度 / 转速计算时间(单位:转/分钟)例如:编码器角速度值回传为 1000,单圈精度为 32768,转速采样时间为 100ms(0.1/60min)

编码器旋转速度 = 1000/32768/(0.1/60) = 1000*0.0183 = 18.31 转/分钟

1.5 CRC 校验函数代码参考

```
\label{eq:continuous} \begin{tabular}{ll} unsigned int Crc_Count(unsigned char pbuf[],unsigned char num) $$\{$ & int i,j; unsigned int wcrc=0xffff; $$ for(i=0;i<num;i++) $$ $$ wcrc^=(unsigned int)(pbuf[i]); $$ for (j=0;j<8;j++) $$ $$ if(wcrc&0x0001) $$ $$ $$ \end{tabular}
```

wcrc>>=1; wcrc^=0xa001;

1.6 编码器上位机及串口软件测试示例

