

ANSWER K	EYS	7% Imountingo	/// unathongo	74. Intellige	77. Interhenge	7%. Transitions	go ///. madhango //
. (1)	2. (66)	3. (4)	4. (4)	5. (4)	6. (60)	7. (30)	8. (3)
(3)nathon	go 10. (1)athongo	/11. (3) thongo	//12. (2) thongo	///13. (1) hongo	// 14. (4) ongo	15. (90)	90 /// 16.(1)ongo //
'. (2)	18. (0.8)	19. (1)	20. (2)	21. (1)	22. (1)	23. (288)	24. (1)
. (11) mathon	26. (1) athongo	27. (1) mathongo	28. (1)	29. (29)	30. (36)		
A, B, C,	or points be $A:\ (3,-4)$ D are coplanar points,			$D:\;(5,-2lpha,\;4)$			
-2	$egin{array}{c cccc} 3 & -1+4 & 3-2 & -2 \ -2lpha+4 & 4-2 & -3 \ \hline & 6 & -3 \ \hline \end{array}$						
$\Rightarrow -3\alpha +$	146=0						
$ ec{a} = \sqrt{11}$	$ ec{c} =\sqrt{22}$						
$\sqrt{11} = \sqrt{11}$ $\Rightarrow \sin \theta = 0$	10						
$={ ec{b} }^2+$	$ \vec{b} ^2 + \vec{c} ^2 + 2\vec{b} \cdot \vec{c} $ $ \vec{c} ^2 + 2 \vec{b} \vec{c} \cos\theta $						
$= 72 + 6 \ 72 - ec{b} +$	$ \vec{c} ^2 = 66$						
$ (ec{a}+2ec{b})$	$\left. imes (2 ec{a} - 3 ec{b}) ight ^2 = (2 ec{a} + 4 ec{b} imes ec{a})^2$						
$ -3ec{a} imesec{b} \ -7ec{a} imesec{b} $	$ec{b}-4ec{a} imesec{b} ^2 = ec{b} ^2$						
49 imes 4 imes 9	$9 imesrac{1}{2}=882$						
Given, Points $A(2)$	(2,3,9), B(5,2,1), C(1)	$(1,\lambda,8)~\&~D(\lambda,2,3)$:	are coplanar,				
$\Rightarrow 3((-6))$ $\Rightarrow 3(-6\lambda)$	$(\lambda - 3) - 1) + 1(6 + \lambda - 4) + 17) + 4 + \lambda - 8 + 80$	$(-2)-8(1-(\lambda-3)(\lambda-3))$	$(\lambda - 2)) = 0$				
$\Rightarrow -18\lambda - 8$ $\Rightarrow 8\lambda^2 - 8$	$+51 + 4 + \lambda - 8 + 8\lambda$ $57\lambda + 95 = 0$	$^2 - 40\lambda + 48 = 0$					

Answer Keys and Solutions		JEE Main Crash Course
9. (3) at $\vec{a} = \lambda(\vec{b} \times \vec{c})$ mathongo /// mathongo		
$\overrightarrow{b} \times \overrightarrow{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & -2 \\ -1/4 & \text{mathong} \end{vmatrix} = 2\hat{i} - \hat{j} + 2\hat{k}$ $\overrightarrow{d} = \lambda(2\hat{i} - \hat{j} + 2\hat{k})$ mathongo		
$\overrightarrow{a} \cdot \overrightarrow{d} = 18$ mathongo mathongo So $\overrightarrow{d} = 2(2\hat{i} - \hat{j} + 2\hat{k})$		
$\overrightarrow{d} imes \overrightarrow{a} = \begin{vmatrix} \hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 4 & -2 & 4 \\ 2 & 3 & 4 \end{vmatrix} = -20\hat{\mathrm{i}} - 8\hat{\mathrm{j}} + 16\hat{\mathrm{k}}$		
$ \overrightarrow{d} \times \overrightarrow{a} ^2 = 720$ mathongo 10. (1) mathongo mathongo		
Given data as below: $\overrightarrow{a} = 2\hat{i} - 7\hat{j} + 5\hat{k}$ $\overrightarrow{b} = \hat{i} + \hat{k}$ $\overrightarrow{b} = \hat{i} + \hat{k}$		
$\overrightarrow{c} = \hat{i} + 2\hat{j} - 3\hat{k}$ Given, $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{c} \times \overrightarrow{a}$ and we mathongo $\Rightarrow (\overrightarrow{r} - \overrightarrow{c}) \times \overrightarrow{a} = 0$		
It means $(\overrightarrow{r} - \overrightarrow{c})$ is parallel to \overrightarrow{a} , $\therefore \overrightarrow{r} = \overrightarrow{c} + \lambda \overrightarrow{a} \dots \dots (1)$		
From equation (1),		
$\Rightarrow -2 + \lambda \left(7\right) = 0 \Rightarrow \lambda = \frac{2}{7}$ On putting values in equation (1) we get, authorize $\therefore \overrightarrow{r} = \overrightarrow{c} + \frac{2}{7} \overrightarrow{a} = \frac{1}{7} \left(11 \hat{i} - 11 \hat{k}\right)$		
\overrightarrow{r} $\equiv \frac{11\sqrt{2}}{\text{mothor7go}}$ ///////////////////////////////////		

 $\frac{\text{Area} \ (\Delta PQR)}{\text{Area} \ (\Delta ABC)} = 1$ mathongo /// mathongo // mathongo /// mathongo // mathongo /// mathongo /// mathongo /// mathongo ///

 $\Rightarrow (\lambda - 1) = 1 \Rightarrow \lambda = 2$

Answer Keys and Solutions			JEE Main Crash Course
26. (1) thongo /// mathongo /// mathongo Given,			
$\overrightarrow{r} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}$ $\overrightarrow{r} \times \overrightarrow{b} + \overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{0}$ $\overrightarrow{r} \times \overrightarrow{b} - \overrightarrow{c} \times \overrightarrow{b} = \overrightarrow{0}$ mathongo			
$\Rightarrow \left(\overrightarrow{r} - \overrightarrow{c}\right) \times \overrightarrow{b} = 0$ $\Rightarrow \left(\overrightarrow{r} - \overrightarrow{c}\right) \parallel \overrightarrow{b} \text{mathongo} \text{mathongo}$			
Therefore, $\overrightarrow{r} - \overrightarrow{c} = \lambda \overrightarrow{b}$ $\overrightarrow{r} = \overrightarrow{c} + \lambda \overrightarrow{b} \text{mathongo} \text{mathongo}$			
Also, $\overrightarrow{r} \cdot \overrightarrow{a} = 0$ (given) $\Rightarrow \left(\overrightarrow{c} + \lambda \overrightarrow{b}\right) \cdot \overrightarrow{a} = 0$			
$\Rightarrow \overrightarrow{c} \cdot \overrightarrow{a} + \lambda \overrightarrow{b} \cdot \overrightarrow{a} = 0$ $\Rightarrow \lambda = \frac{-\overrightarrow{c} \cdot \overrightarrow{a}}{\overrightarrow{b} \cdot \overrightarrow{a}}$ $\Rightarrow \lambda = \frac{-\overrightarrow{c} \cdot \overrightarrow{a}}{\overrightarrow{b} \cdot \overrightarrow{a}}$ mathongo $= \lambda \overrightarrow{b} \cdot \overrightarrow{a}$ mathongo			
Now, $\overrightarrow{r} \cdot \overrightarrow{c} = \left(\overrightarrow{c} + \lambda \overrightarrow{b}\right) \cdot \overrightarrow{c} \text{ ongo} $ mathongo			
$= \left(\overrightarrow{c} - \frac{\overrightarrow{c} \cdot \overrightarrow{a}}{\overrightarrow{b} \cdot \overrightarrow{a}}\overrightarrow{b}\right) \cdot \overrightarrow{c}$ $= \left \overrightarrow{c}\right ^2 - \left(\frac{\overrightarrow{c} \cdot \overrightarrow{a}}{\overrightarrow{b} \cdot \overrightarrow{a}}\right) \left(\overrightarrow{b} \cdot \overrightarrow{c}\right)$ mathongo			
$= 74 - \left(\frac{15}{3}\right) \times 8$ $= 74 - 40 = 34$ mathongo mathongo			
27. (1) Given: $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{u} + \lambda \overrightarrow{v} \dots (1)$			
Taking dot product with \overrightarrow{w} , we get $\overrightarrow{w} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{w} \cdot \overrightarrow{u} + \lambda (\overrightarrow{w} \cdot \overrightarrow{v}) \text{mathongo}$			
$\Rightarrow \overrightarrow{u} \cdot \overrightarrow{w} + \lambda \left(\overrightarrow{w} \cdot \overrightarrow{v} \right) = 0$ $\Rightarrow \overrightarrow{u} \cdot \overrightarrow{w} = -2\lambda \dots (2)$ Taking dot product with \overrightarrow{v} in (1), we get			
$\overrightarrow{v} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{v} \cdot \overrightarrow{u} + \lambda (\overrightarrow{v} \cdot \overrightarrow{v})$ $\Rightarrow (2 - 1 + 2) + \lambda (6 + 1 + 1) = 0$ mathongo			
$\Rightarrow \lambda = -\frac{1}{2}$ So, by (2), we get $\overrightarrow{u} \cdot \overrightarrow{w} = -2\lambda = 1$ mathongo \overrightarrow{w} mathongo			

