

B157

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C07K 14/00		A2	(11) International Publication Number: WO 99/61471 (43) International Publication Date: 2 December 1999 (02.12.99)																												
<p>(21) International Application Number: PCT/US99/11904</p> <p>(22) International Filing Date: 28 May 1999 (28.05.99)</p> <p>(30) Priority Data:</p> <table> <tr><td>60/087,260</td><td>29 May 1998 (29.05.98)</td><td>US</td></tr> <tr><td>60/091,674</td><td>2 July 1998 (02.07.98)</td><td>US</td></tr> <tr><td>60/102,954</td><td>2 October 1998 (02.10.98)</td><td>US</td></tr> <tr><td>60/109,869</td><td>24 November 1998 (24.11.98)</td><td>US</td></tr> </table> <p>(63) Related by Continuation (CON) or Continuation-in-Part (CIP) to Earlier Applications</p> <table> <tr><td>US</td><td>60/087,260 (CIP)</td></tr> <tr><td>Filed on</td><td>29 May 1998 (29.05.98)</td></tr> <tr><td>US</td><td>60/091,674 (CIP)</td></tr> <tr><td>Filed on</td><td>2 July 1998 (02.07.98)</td></tr> <tr><td>US</td><td>60/102,954 (CIP)</td></tr> <tr><td>Filed on</td><td>2 October 1998 (02.10.98)</td></tr> <tr><td>US</td><td>60/109,869 (CIP)</td></tr> <tr><td>Filed on</td><td>24 November 1998 (24.11.98)</td></tr> </table> <p>(71) Applicant (<i>for all designated States except US</i>): INCYTE PHARMACEUTICALS, INC. [US/US]; 3174 Porter Drive, Palo Alto, CA 94304 (US).</p>		60/087,260	29 May 1998 (29.05.98)	US	60/091,674	2 July 1998 (02.07.98)	US	60/102,954	2 October 1998 (02.10.98)	US	60/109,869	24 November 1998 (24.11.98)	US	US	60/087,260 (CIP)	Filed on	29 May 1998 (29.05.98)	US	60/091,674 (CIP)	Filed on	2 July 1998 (02.07.98)	US	60/102,954 (CIP)	Filed on	2 October 1998 (02.10.98)	US	60/109,869 (CIP)	Filed on	24 November 1998 (24.11.98)	<p>(72) Inventors; and</p> <p>(75) Inventors/Applicants (<i>for US only</i>): TANG, Y., Tom [CN/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). LAL, Preeti [IN/US]; 2382 Lass Drive, Santa Clara, CA 95054 (US). HILLMAN, Jennifer, L. [US/US]; 230 Monroe Drive #12, Mountain View, CA 94040 (US). YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). GUEGLER, Karl, J. [CH/US]; 1048 Oakland Avenue, Menlo Park, CA 94025 (US). CORLEY, Neil, C. [US/US]; 1240 Dale Avenue #30, Mountain View, CA 94040 (US). BANDMAN, Olga [US/US]; 366 Anna Avenue, Mountain View, CA 94043 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). GORGONE, Gina, A. [US/US]; 1253 Pinecrest Drive, Boulder Creek, CA 95006 (US). KASER, Matthew, R. [GB/US]; 4793 Ewing Road, Castro Valley, CA 94546-1017 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). AU-YOUNG, Janice [US/US]; 1419 Kains Avenue, Berkeley, CA 94702 (US).</p> <p>(74) Agents: BILLINGS, Lucy, J. et al.; Incyte Pharmaceuticals, Inc., 3174 Porter Drive, Palo Alto, CA 94304 (US).</p> <p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>	
60/087,260	29 May 1998 (29.05.98)	US																													
60/091,674	2 July 1998 (02.07.98)	US																													
60/102,954	2 October 1998 (02.10.98)	US																													
60/109,869	24 November 1998 (24.11.98)	US																													
US	60/087,260 (CIP)																														
Filed on	29 May 1998 (29.05.98)																														
US	60/091,674 (CIP)																														
Filed on	2 July 1998 (02.07.98)																														
US	60/102,954 (CIP)																														
Filed on	2 October 1998 (02.10.98)																														
US	60/109,869 (CIP)																														
Filed on	24 November 1998 (24.11.98)																														
<p>(54) Title: HUMAN TRANSMEMBRANE PROTEINS</p> <p>(57) Abstract</p> <p>The invention provides human transmembrane proteins (HTMPN) and polynucleotides which identify and encode HTMPN. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with expression of HTMPN.</p>																															

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	NX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

HUMAN TRANSMEMBRANE PROTEINS

TECHNICAL FIELD

5 This invention relates to nucleic acid and amino acid sequences of human transmembrane proteins and to the use of these sequences in the diagnosis, treatment, and prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

10 **BACKGROUND OF THE INVENTION**

Eukaryotic organisms are distinct from prokaryotes in possessing many intracellular organelle and vesicle structures. Many of the metabolic reactions which distinguish eukaryotic biochemistry from prokaryotic biochemistry take place within these structures. In particular, many cellular functions require very stringent reaction conditions, and the organelles and vesicles enable compartmentalization and isolation of reactions which might otherwise disrupt cytosolic metabolic processes. The organelles include mitochondria, smooth and rough endoplasmic reticula, sarcoplasmic reticulum, and the Golgi body. The vesicles include phagosomes, lysosomes, endosomes, peroxisomes, and secretory vesicles. Organelles and vesicles are bounded by single or double membranes.

Biological membranes are highly selective permeable barriers made up of lipid bilayer sheets composed of phosphoglycerides, fatty acids, cholesterol, phospholipids, glycolipids, proteoglycans, and proteins. Membranes contain ion pumps, ion channels, and specific receptors for external stimuli which transmit biochemical signals across the membranes. These membranes also contain second messenger proteins which interact with these pumps, channels, and receptors to amplify and regulate transmission of these signals.

Plasma Membrane Proteins

Plasma membrane proteins (MPs) are divided into two groups based upon methods 30 of protein extraction from the membrane. Extrinsic or peripheral membrane proteins can be released using extremes of ionic strength or pH, urea, or other disruptors of protein interactions. Intrinsic or integral membrane proteins are released only when the lipid

bilayer of the membrane is dissolved by detergent.

Transmembrane proteins (TM) are characterized by an extracellular, a transmembrane, and an intracellular domain. TM domains are typically comprised of 15 to 25 hydrophobic amino acids which are predicted to adopt an α -helical conformation.

5 TM proteins are classified as bitopic (Types I and II) proteins, which span the membrane once, and polytopic (Types III and IV) (Singer, S.J. (1990) Annu. Rev. Cell Biol. 6:247-96) proteins which contain multiple membrane-spanning segments. TM proteins that act as cell-surface receptor proteins involved in signal transduction include growth and differentiation factor receptors, and receptor-interacting proteins such as *Drosophila* 10 pecanex and frizzled proteins, LIV-1 protein, NF2 protein, and GNS1/SUR4 eukaryotic integral membrane proteins. TM proteins also act as transporters of ions or metabolites, such as gap junction channels (connexins), and ion channels, and as cell anchoring proteins, such as lectins, integrins, and fibronectins. TM proteins are found in vesicle 15 organelle-forming molecules, such as calveolins; or cell recognition molecules, such as cluster of differentiation (CD) antigens, glycoproteins, and mucins.

Many membrane proteins (MPs) contain amino acid sequence motifs that serve to localize proteins to specific subcellular sites. Examples of these motifs include PDZ domains, KDEL, RGD, NGR, and GSL sequence motifs, von Willebrand factor A (vWFA) domains, and EGF-like domains. RGD, NGR, and GSL motif-containing 20 peptides have been used as drug delivery agents in targeted cancer treatment of tumor vasculature (Arap, W. et al. (1998) Science, 279:377-380). Membrane proteins may also contain amino acid sequence motifs that serve to interact with extracellular or intracellular molecules, such as carbohydrate recognition domains.

Chemical modification of amino acid residue side chains alters the manner in 25 which MPs interact with other molecules, for example, phospholipid membranes. Examples of such chemical modifications to amino acid residue side chains are covalent bond formation with glycosaminoglycans, oligosaccharides, phospholipids, acetyl and palmitoyl moieties, ADP-ribose, phosphate, and sulphate groups.

RNA-encoding membrane proteins may have alternative splice sites which give 30 rise to proteins encoded by the same gene but with different messenger RNA and amino acid sequences. Splice variant membrane proteins may interact with other ligand and protein isoforms.

G-Protein Coupled Receptors

G-protein coupled receptors (GPCR) are a superfamily of integral membrane proteins which transduce extracellular signals. GPCRs include receptors for biogenic amines, lipid mediators of inflammation, peptide hormones, and sensory signal mediators.

5 The structure of these highly-conserved receptors consists of seven hydrophobic transmembrane (serpentine) regions, cysteine disulfide bridges between the second and third extracellular loops, an extracellular N-terminus, and a cytoplasmic C-terminus. Three extracellular loops alternate with three intracellular loops to link the seven transmembrane regions. The most conserved parts of these proteins are the
10 transmembrane regions and the first two cytoplasmic loops. A conserved, acidic-Arg-aromatic residue triplet present in the second cytoplasmic loop may interact with G proteins. A GPCR consensus pattern is characteristic of most proteins belonging to this superfamily (ExPASy PROSITE document PS00237; and Watson, S. and S. Arkinstall (1994) The G-protein Linked Receptor Facts Book, Academic Press, San Diego,
15 CA, pp 2-6). Mutations and changes in transcriptional activation of GPCR-encoding genes have been associated with neurological disorders such as schizophrenia, Parkinson's disease, Alzheimer's disease, drug addiction, and feeding disorders.

Scavenger Receptors

Macrophage scavenger receptors with broad ligand specificity may participate in
20 the binding of low density lipoproteins (LDL) and foreign antigens. Scavenger receptors types I and II are trimeric membrane proteins with each subunit containing a small N-terminal intracellular domain, a transmembrane domain, a large extracellular domain, and a C-terminal cysteine-rich domain. The extracellular domain contains a short spacer domain, an α -helical coiled-coil domain, and a triple helical collagenous domain. These
25 receptors have been shown to bind a spectrum of ligands, including chemically modified lipoproteins and albumin, polyribonucleotides, polysaccharides, phospholipids, and asbestos (Matsumoto, A. et al. (1990) Proc. Natl. Acad. Sci. 87:9133-9137; and Elomaa, O. et al. (1995) Cell 80:603-609). The scavenger receptors are thought to play a key role in atherogenesis by mediating uptake of modified LDL in arterial walls, and in host
30 defense by binding bacterial endotoxins, bacteria, and protozoa.

Tetraspan family proteins

The transmembrane 4 superfamily (TM4SF) or tetraspan family is a multigene

family encoding type III integral membrane proteins (Wright, M.D. and Tomlinson, M.G. (1994) *Immunol. Today* 15:588). TM4SF is comprised of membrane proteins which traverse the cell membrane four times. Members of the TM4SF include platelet and endothelial cell membrane proteins, melanoma-associated antigens, leukocyte surface glycoproteins, colonal carcinoma antigens, tumor-associated antigens, and surface proteins of the schistosome parasites (Jankowski, S.A. (1994) *Oncogene* 9:1205-1211). Members of the TM4SF share about 25-30% amino acid sequence identity with one another.

A number of TM4SF members have been implicated in signal transduction, control of cell adhesion, regulation of cell growth and proliferation, including development and oncogenesis, and cell motility, including tumor cell metastasis. Expression of TM4SF proteins is associated with a variety of tumors and the level of expression may be altered when cells are growing or activated.

Tumor Antigens

Tumor antigens are surface molecules that are differentially expressed in tumor cells relative to normal cells. Tumor antigens distinguish tumor cells immunologically from normal cells and provide diagnostic and therapeutic targets for human cancers (Takagi, S. et al. (1995) *Int. J. Cancer* 61: 706-715; Liu, E. et al. (1992) *Oncogene* 7: 1027-1032).

Ion channels

Ion channels are found in the plasma membranes of virtually every cell in the body. For example, chloride channels mediate a variety of cellular functions including regulation of membrane potentials and absorption and secretion of ions across epithelial membranes. When present in intracellular membranes of the Golgi apparatus and endocytic vesicles, chloride channels also regulate organelle pH (see, e.g., Greger, R. (1988) *Annu. Rev. Physiol.* 50:111-122). Electrophysiological and pharmacological properties of chloride channels, including ion conductance, current-voltage relationships, and sensitivity to modulators, suggest that different chloride channels exist in muscles, neurons, fibroblasts, epithelial cells, and lymphocytes.

Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Inappropriate phosphorylation of proteins in cells has been linked to changes in cell cycle progression and cell differentiation. Changes

in the cell cycle have been linked to induction of apoptosis or cancer. Changes in cell differentiation have been linked to diseases and disorders of the reproductive system, immune system, and skeletal muscle.

Proton pumps

5 Proton ATPases are a large class of membrane proteins that use the energy of ATP hydrolysis to generate an electrochemical proton gradient across a membrane. The resultant gradient may be used to transport other ions across the membrane (Na^+ , K^+ , or Cl^-) or to maintain organelle pH. Proton ATPases are further subdivided into the mitochondrial F-ATPases, the plasma membrane ATPases, and the vacuolar ATPases.

10 The vacuolar ATPases establish and maintain an acidic pH within various vesicles involved in the processes of endocytosis and exocytosis (Mellman, I. et al. (1986) Ann. Rev. Biochem. 55:663-700).

Proton-coupled, 12 membrane-spanning domain transporters such as PEPT 1 and PEPT 2 are responsible for gastrointestinal absorption and for renal reabsorption of peptides using an electrochemical H^+ gradient as the driving force. Another type of peptide transporter, the TAP transporter, is a heterodimer consisting of TAP 1 and TAP 2 and is associated with antigen processing. Peptide antigens are transported across the membrane of the endoplasmic reticulum by TAP so they can be expressed on the cell surface in association with MHC molecules. Each TAP protein consists of multiple hydrophobic membrane spanning segments and a highly conserved ATP-binding cassette (Boll, M. et al. (1996) Proc. Natl. Acad. Sci. 93:284-289). Pathogenic microorganisms, such as herpes simplex virus, may encode inhibitors of TAP-mediated peptide transport in order to evade immune surveillance (Marusina, K. and Manaco, J.J. (1996) Curr. Opin. Hematol. 3:19-26).

25 ABC Transporters

The ATP-binding cassette (ABC) transporters, also called the "traffic ATPases", comprise a superfamily of membrane proteins that mediate transport and channel functions in prokaryotes and eukaryotes (Higgins, C.F. (1992) Annu. Rev. Cell Biol. 8:67-113).

ABC proteins share a similar overall structure and significant sequence homology. All 30 ABC proteins contain a conserved domain of approximately two hundred amino acid residues which includes one or more nucleotide binding domains. Mutations in ABC transporter genes are associated with various disorders, such as hyperbilirubinemia

II/Dubin-Johnson syndrome, recessive Stargardt's disease, X-linked adrenoleukodystrophy, multidrug resistance, celiac disease, and cystic fibrosis.

Membrane Proteins Associated with Intercellular Communication

Intercellular communication is essential for the development and survival of multicellular organisms. Cells communicate with one another through the secretion and uptake of protein signaling molecules. The uptake of proteins into the cell is achieved by endocytosis, in which the interaction of signaling molecules with the plasma membrane surface, often via binding to specific receptors, results in the formation of plasma membrane-derived vesicles that enclose and transport the molecules into the cytosol. The secretion of proteins from the cell is achieved by exocytosis, in which molecules inside of the cell are packaged into membrane-bound transport vesicles derived from the *trans*-Golgi network. These vesicles fuse with the plasma membrane and release their contents into the surrounding extracellular space. Endocytosis and exocytosis result in the removal and addition of plasma membrane components and the recycling of these components is essential to maintain the integrity, identity, and functionality of both the plasma membrane and internal membrane-bound compartments.

Lysosomes are the site of degradation of intracellular material during autophagy and of extracellular molecules following endocytosis. Lysosomal enzymes are packaged into vesicles which bud from the *trans*-Golgi network. These vesicles fuse with endosomes to form the mature lysosome in which hydrolytic digestion of endocytosed material occurs. Lysosomes can fuse with autophagosomes to form a unique compartment in which the degradation of organelles and other intracellular components occurs.

Protein sorting by transport vesicles, such as the endosome, has important consequences for a variety of physiological processes including cell surface growth, the biogenesis of distinct intracellular organelles, endocytosis, and the controlled secretion of hormones and neurotransmitters (Rothman, J.E. and Wieland, F.T. (1996) Science 272:227-234). In particular, neurodegenerative disorders and other neuronal pathologies are associated with biochemical flaws during endosomal protein sorting or endosomal biogenesis (Mayer R.J. et al. (1996) Adv. Exp. Med. Biol. 389:261-269).

Peroxisomes are organelles independent from the secretory pathway. They are the site of many peroxide-generating oxidative reactions in the cell. Peroxisomes are unique among eukaryotic organelles in that their size, number, and enzyme content vary

depending upon organism, cell type, and metabolic needs. The majority of peroxisome-associated proteins are membrane-bound or are found proximal to the cytosolic or the luminal side of the peroxisome membrane (Waterham, H.R. and Cregg, J.M. (1997) BioEssays 19:57-66).

5 Genetic defects in peroxisome proteins which result in peroxisomal deficiencies have been linked to a number of human pathologies, including Zellweger syndrome, rhizomelic chondroplasia punctata, X-linked adrenoleukodystrophy, acyl-CoA oxidase deficiency, bifunctional enzyme deficiency, classical Refsum's disease, DHAP alkyl transferase deficiency, and acatalasemia (Moser, H.W. and Moser, A.B. (1996) Ann. NY Acad. Sci. 804:427-441). In addition, Gartner, J. et al. (1991; Pediatr. Res. 29:141-146) found a 22 kDa integral membrane protein associated with lower density peroxisome-like subcellular fractions in patients with Zellweger syndrome.

Normal embryonic development and control of germ cell maturation is modulated by a number of secretory proteins which interact with their respective membrane-bound receptors. Cell fate during embryonic development is determined by members of the activin/TGF- β superfamily, cadherins, IGF-2, and other morphogens. In addition, proliferation, maturation, and redifferentiation of germ cell and reproductive tissues are regulated, for example, by IGF-2, inhibins, activins, and follistatins (Petraglia, F. (1997) Placenta 18:3-8; Mather, J.P. et al. (1997) Proc. Soc. Exp. Biol. Med. 215:209-222).

20 Endoplasmic Reticulum Membrane Proteins

The normal functioning of the eukaryotic cell requires that all newly synthesized proteins be correctly folded, modified, and delivered to specific intra- and extracellular sites. Newly synthesized membrane and secretory proteins enter a cellular sorting and distribution network during or immediately after synthesis and are routed to specific locations inside and outside of the cell. The initial compartment in this process is the endoplasmic reticulum (ER) where proteins undergo modifications such as glycosylation, disulfide bond formation, and assembly into oligomers. The modified proteins are then transported through a series of membrane-bound compartments which include the various cisternae of the Golgi complex, where further carbohydrate modifications occur.

30 Transport between compartments occurs by means of vesicles that bud and fuse in a manner specific to the type of protein being transported. Once within the secretory pathway, proteins do not have to cross a membrane to reach the cell surface.

Although the majority of proteins processed through the ER are transported out of the organelle, some are retained. The signal for retention in the ER in mammalian cells consists of the tetrapeptide sequence, KDEL, located at the carboxyl terminus of proteins (Munro, S. (1986) Cell 46:291-300). Proteins containing this sequence leave the ER but 5 are quickly retrieved from the early Golgi cisternae and returned to the ER, while proteins lacking this signal continue through the secretory pathway.

Disruptions in the cellular secretory pathway have been implicated in several human diseases. In familial hypercholesterolemia the low density lipoprotein receptors remain in the ER, rather than moving to the cell surface (Pathak, R.K. (1988) J. Cell Biol. 10 106:1831-1841). Altered transport and processing of the β -amyloid precursor protein (β APP) involves the putative vesicle transport protein presenilin, and may play a role in early-onset Alzheimer's disease (Levy-Lahad, E. et al. (1995) Science 269:973-977). Changes in ER-derived calcium homeostasis have been associated with diseases such as cardiomyopathy, cardiac hypertrophy, myotonic dystrophy, Brody disease, Smith-McCort 15 dysplasia, and diabetes mellitus.

Mitochondrial Membrane Proteins

The mitochondrial electron transport (or respiratory) chain is a series of three enzyme complexes in the mitochondrial membrane that is responsible for the transport of electrons from NADH to oxygen and the coupling of this oxidation to the synthesis of 20 ATP (oxidative phosphorylation). ATP then provides the primary source of energy for driving the many energy-requiring reactions of a cell.

Most of the protein components of the mitochondrial respiratory chain are the products of nuclear encoded genes that are imported into the mitochondria and the remainder are products of mitochondrial genes. Defects and altered expression of 25 enzymes in the respiratory chain are associated with a variety of disease conditions in man, including, for example, neurodegenerative diseases, myopathies, and cancer.

Lymphocyte and Leukocyte Membrane Proteins

The B-cell response to antigens, which is modulated through receptors, is an essential component of the normal immune system. Mature B cells recognize foreign 30 antigens through B cell receptors (BCR) which are membrane-bound, specific antibodies that bind foreign antigens. The antigen/receptor complex is internalized and the antigen is proteolytically processed. To generate an efficient response to complex antigens, the

BCR, BCR-associated proteins, and T cell response are all required. Proteolytic fragments of the antigen are complexed with major histocompatibility complex-II (MHCI) molecules on the surface of the B cells where the complex can be recognized by T cells. In contrast, macrophages and other lymphoid cells present antigens in association with 5 MHCI molecules to T cells. T cells recognize and are activated by the MHCI-antigen complex through interactions with the T cell receptor/CD3 complex, a T cell-surface multimeric protein located in the plasma membrane. T cells activated by antigen presentation secrete a variety of lymphokines that induce B cell maturation and T cell proliferation and activate macrophages, which kill target cells.

10 Leukocytes have a fundamental role in the inflammatory and immune response and include monocytes/macrophages, mast cells, polymorphonucleoleukocytes, natural killer cells, neutrophils, eosinophils, basophils, and myeloid precursors. Leukocyte membrane proteins include members of the CD antigens, N-CAM, I-CAM, human leukocyte antigen (HLA) class I and HLA class II gene products, immunoglobulins, immunoglobulin 15 receptors, complement, complement receptors, interferons, interferon receptors, interleukin receptors, and chemokine receptors.

Abnormal lymphocyte and leukocyte activity has been associated with acute disorders, such as AIDS, immune hypersensitivity, leukemias, leukopenia, systemic lupus, granulomatous disease, and eosinophilia.

20 Apoptosis-Associated Membrane Proteins

A variety of ligands, receptors, enzymes, tumor suppressors, viral gene products, pharmacological agents, and inorganic ions have important positive or negative roles in regulating and implementing the apoptotic destruction of a cell. Although some specific components of the apoptotic pathway have been identified and characterized, many 25 interactions between the proteins involved are undefined, leaving major aspects of the pathway unknown.

A requirement for calcium in apoptosis was previously suggested by studies showing the involvement of calcium levels in DNA cleavage and Fas-mediated cell death (Hewish, D.R. and L.A. Burgoyne (1973) Biochem. Biophys. Res. Comm. 52:504-510; 30 Vignaux, F. et al. (1995) J. Exp. Med. 181:781-786; Oshimi, Y. and S. Miyazaki (1995) J. Immunol. 154:599-609). Other studies show that intracellular calcium concentrations increase when apoptosis is triggered in thymocytes by either T cell receptor cross-linking

or by glucocorticoids and cell death can be prevented by blocking this increase (McConkey, D.J. et al. (1989) J. Immunol. 143:1801-1806; McConkey, D.J. et al. (1989) Arch. Biochem. Biophys. 269:365-370). Therefore, membrane proteins such as calcium channels are important for the apoptotic response.

5 Tumorigenesis

Tumorigenesis is associated with the activation of oncogenes which are derived from normal cellular genes. These oncogenes encode oncoproteins which are capable of converting normal cells into malignant cells. Some oncoproteins are mutant isoforms of the normal protein and other oncoproteins are abnormally expressed with respect to 10 location or level of expression. The latter category of oncoprotein causes cancer by altering transcriptional control of cell proliferation. Five classes of oncoproteins are known to affect the cell cycle controls. These classes include growth factors, growth factor receptors, intracellular signal transducers, nuclear transcription factors, and cell-cycle control proteins. These proteins include those which are modified by glycosylation, 15 phosphorylation, glycosaminoglycan attachment, sulphation, and lipidation.

Modulation of factors which act in the coordination of the human cell division cycle may provide an important means to reduce tumorigenesis. An example of the metastasis-associated proteins is the lysosomal membrane glycoprotein P2B/LAMP-1 which is also expressed in normal tissues. (Heffernan, M. et al. (1989) Cancer Res. 20 49:6077-6084.) In addition, mammalian proteins homologous to the plant pathogenesis-related proteins have been identified in hyperplastic glioma. (Murphy, E.V. et al. (1995) Gene 159:131-135.)

The discovery of new human transmembrane proteins and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful 25 in the diagnosis, prevention, and treatment of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

SUMMARY OF THE INVENTION

30 The invention features substantially purified polypeptides, human transmembrane proteins, referred to collectively as "HTMPN" and individually as "HTMPN-1", "HTMPN-2", "HTMPN-3", "HTMPN-4", "HTMPN-5", "HTMPN-6", "HTMPN-7", "HTMPN-8", "HTMPN-9", "HTMPN-10", "HTMPN-11", "HTMPN-12", "HTMPN-13",

"HTMPN-14", "HTMPN-15", "HTMPN-16", "HTMPN-17", "HTMPN-18", "HTMPN-19", "HTMPN-20", "HTMPN-21", "HTMPN-22", "HTMPN-23", "HTMPN-24", "HTMPN-25", "HTMPN-26", "HTMPN-27", "HTMPN-28", "HTMPN-29", "HTMPN-30", "HTMPN-31", "HTMPN-32", "HTMPN-33", "HTMPN-34", "HTMPN-35",
5 "HTMPN-36", "HTMPN-37", "HTMPN-38", "HTMPN-39", "HTMPN-40", "HTMPN-41", "HTMPN-42", "HTMPN-43", "HTMPN-44", "HTMPN-45", "HTMPN-46", "HTMPN-47", "HTMPN-48", "HTMPN-49", "HTMPN-50", "HTMPN-51", "HTMPN-52", "HTMPN-53", "HTMPN-54", "HTMPN-55", "HTMPN-56", "HTMPN-57", "HTMPN-58", "HTMPN-59", "HTMPN-60", "HTMPN-61", "HTMPN-62", "HTMPN-63", "HTMPN-64", "HTMPN-65", "HTMPN-66", "HTMPN-67", "HTMPN-68", "HTMPN-69", "HTMPN-70", "HTMPN-71", "HTMPN-72", "HTMPN-73", "HTMPN-74", "HTMPN-75", "HTMPN-76", "HTMPN-77", "HTMPN-78", and "HTMPN-79". In one aspect, the invention provides a substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2,
15 SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29,
20 SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61,
25 SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, and SEQ ID NO:79 (SEQ ID NO:1-79), and fragments thereof.
30 The invention further provides a substantially purified variant having at least 90% amino acid identity to at least one of the amino acid sequences selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides an

isolated and purified polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also includes an isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide encoding the polypeptide 5 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

Additionally, the invention provides an isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide encoding the polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-10 79, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide encoding the polypeptide comprising the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

The invention also provides an isolated and purified polynucleotide comprising a 15 polynucleotide sequence selected from the group consisting of SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID 20 NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID 25 NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID 30 NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, and SEQ ID NO:158 (SEQ ID NO:80-158), and fragments thereof. The invention further provides an isolated and purified polynucleotide variant having at least

90% polynucleotide sequence identity to the polynucleotide sequence selected from the group consisting of SEQ ID NO:80-158, and fragments thereof. The invention also provides an isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide comprising a polynucleotide sequence selected from

5 the group consisting of SEQ ID NO:80-158, and fragments thereof.

The invention also provides a method for detecting a polynucleotide in a sample containing nucleic acids, the method comprising the steps of (a) hybridizing the complement of the polynucleotide sequence to at least one of the polynucleotides of the sample, thereby forming a hybridization complex; and (b) detecting the hybridization

10 complex, wherein the presence of the hybridization complex correlates with the presence of a polynucleotide in the sample. In one aspect, the method further comprises amplifying the polynucleotide prior to hybridization.

The invention further provides an expression vector containing at least a fragment of the polynucleotide encoding the polypeptide comprising an amino acid sequence

15 selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. In another aspect, the expression vector is contained within a host cell.

The invention also provides a method for producing a polypeptide, the method comprising the steps of: (a) culturing the host cell containing an expression vector containing at least a fragment of a polynucleotide under conditions suitable for the

20 expression of the polypeptide; and (b) recovering the polypeptide from the host cell culture.

The invention also provides a pharmaceutical composition comprising a substantially purified polypeptide having the amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable

25 pharmaceutical carrier.

The invention further includes a purified antibody which binds to a polypeptide selected from the group consisting of SEQ ID NO:1-79, and fragments thereof. The invention also provides a purified agonist and a purified antagonist to the polypeptide.

The invention also provides a method for treating or preventing a disorder

30 associated with decreased expression or activity of HTMPN, the method comprising administering to a subject in need of such treatment an effective amount of a pharmaceutical composition comprising a substantially purified polypeptide having the

amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof, in conjunction with a suitable pharmaceutical carrier.

The invention also provides a method for treating or preventing a disorder associated with increased expression or activity of HTMPN, the method comprising
5 administering to a subject in need of such treatment an effective amount of an antagonist of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-79, and fragments thereof.

BRIEF DESCRIPTION OF THE TABLES

10 Table 1 shows nucleotide and polypeptide sequence identification numbers (SEQ ID NOs), clone identification numbers (clone ID), cDNA libraries, and cDNA fragments used to assemble full-length sequences encoding HTMPN.

Table 2 shows features of each polypeptide sequence including predicted transmembrane sequences, potential motifs, homologous sequences, and methods and
15 algorithms used for identification of HTMPN.

Table 3 shows the tissue-specific expression patterns of each nucleic acid sequence as determined by northern analysis, diseases, disorders, or conditions associated with these tissues, and the vector into which each cDNA was cloned.

Table 4 describes the tissues used to construct the cDNA libraries from which
20 Incyte cDNA clones encoding HTMPN were isolated.

Table 5 shows the programs, their descriptions, references, and threshold parameters used to analyze HTMPN.

DESCRIPTION OF THE INVENTION

25 Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the
30 appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise.

Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

"HTMPN" refers to the amino acid sequences of substantially purified HTMPN obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and preferably the human species, from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which, when bound to HTMPN, increases or prolongs the duration of the effect of HTMPN. Agonists may include proteins, nucleic acids, carbohydrates, or any other molecules which bind to and modulate the effect of HTMPN.

An "allelic variant" is an alternative form of the gene encoding HTMPN. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. Any given natural or recombinant gene may have none, one, or many allelic forms. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

"Altered" nucleic acid sequences encoding HTMPN include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polynucleotide the same as HTMPN or a polypeptide with at least one functional characteristic of

HTMPN. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding HTMPN, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding HTMPN.

- 5 The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent HTMPN. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of
- 10 HTMPN is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, positively charged amino acids may include lysine and arginine, and amino acids with uncharged polar head groups having similar hydrophilicity values may include leucine, isoleucine, and valine; glycine and alanine; asparagine and glutamine; serine and threonine; and phenylalanine and tyrosine.

15 The terms "amino acid" or "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. In this context, "fragments," "immunogenic fragments," or "antigenic fragments" refer to fragments of HTMPN which are preferably at least 5 to about 15 amino acids in length, most preferably at least 14 amino acids, and which retain 20 some biological activity or immunological activity of HTMPN. Where "amino acid sequence" is recited to refer to an amino acid sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

25 "Amplification" relates to the production of additional copies of a nucleic acid sequence. Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which, when bound to HTMPN, decreases the amount or the duration of the effect of the biological or immunological 30 activity of HTMPN. Antagonists may include proteins, nucleic acids, carbohydrates, antibodies, or any other molecules which decrease the effect of HTMPN.

The term "antibody" refers to intact molecules as well as to fragments thereof, such

as Fab, F(ab')₂, and Fv fragments, which are capable of binding the epitopic determinant. Antibodies that bind HTMPN polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) 5 can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

The term "antigenic determinant" refers to that fragment of a molecule (i.e., an 10 epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (given regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for 15 binding to an antibody.

The term "antisense" refers to any composition containing a nucleic acid sequence which is complementary to the "sense" strand of a specific nucleic acid sequence. Antisense molecules may be produced by any method including synthesis or transcription. Once introduced into a cell, the complementary nucleotides combine with natural 20 sequences produced by the cell to form duplexes and to block either transcription or translation. The designation "negative" can refer to the antisense strand, and the designation "positive" can refer to the sense strand.

The term "biologically active," refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically 25 active" refers to the capability of the natural, recombinant, or synthetic HTMPN, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

The terms "complementary" or "complementarity" refer to the natural binding of 30 polynucleotides by base pairing. For example, the sequence "5' A-G-T 3'" bonds to the complementary sequence "3' T-C-A 5'." Complementarity between two single-stranded molecules may be "partial," such that only some of the nucleic acids bind, or it may be "complete," such that total complementarity exists between the single stranded molecules.

The degree of complementarity between nucleic acid strands has significant effects on the efficiency and strength of the hybridization between the nucleic acid strands. This is of particular importance in amplification reactions, which depend upon binding between nucleic acids strands, and in the design and use of peptide nucleic acid (PNA) molecules.

5 A "composition comprising a given polynucleotide sequence" or a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding HTMPN or fragments of HTMPN may be employed as hybridization probes.

10 The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

15 "Consensus sequence" refers to a nucleic acid sequence which has been resequenced to resolve uncalled bases, extended using XL-PCR kit (Perkin-Elmer, Norwalk CT) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from the overlapping sequences of more than one Incyte Clone using a computer program for fragment assembly, such as the GELVIEW Fragment Assembly system (GCG, Madison WI). Some sequences have been both extended and assembled to 20 produce the consensus sequence.

25 The term "correlates with expression of a polynucleotide" indicates that the detection of the presence of nucleic acids, the same or related to a nucleic acid sequence encoding HTMPN, by northern analysis is indicative of the presence of nucleic acids encoding HTMPN in a sample, and thereby correlates with expression of the transcript from the polynucleotide encoding HTMPN.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

30 The term "derivative" refers to the chemical modification of a polypeptide sequence, or a polynucleotide sequence. Chemical modifications of a polynucleotide sequence can include, for example, replacement of hydrogen by an alkyl, acyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is

one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

The term "similarity" refers to a degree of complementarity. There may be partial similarity or complete similarity. The word "identity" may substitute for the word 5 "similarity." A partially complementary sequence that at least partially inhibits an identical sequence from hybridizing to a target nucleic acid is referred to as "substantially similar." The inhibition of hybridization of the completely complementary sequence to the target sequence may be examined using a hybridization assay (Southern or northern blot, solution hybridization, and the like) under conditions of reduced stringency. A 10 substantially similar sequence or hybridization probe will compete for and inhibit the binding of a completely similar (identical) sequence to the target sequence under conditions of reduced stringency. This is not to say that conditions of reduced stringency are such that non-specific binding is permitted, as reduced stringency conditions require that the binding of two sequences to one another be a specific (i.e., a selective) interaction. 15 The absence of non-specific binding may be tested by the use of a second target sequence which lacks even a partial degree of complementarity (e.g., less than about 30% similarity or identity). In the absence of non-specific binding, the substantially similar sequence or probe will not hybridize to the second non-complementary target sequence.

The phrases "percent identity" or "% identity" refer to the percentage of sequence 20 similarity found in a comparison of two or more amino acid or nucleic acid sequences. Percent identity can be determined electronically, e.g., by using the MEGALIGN program (DNASTAR, Madison WI) which creates alignments between two or more sequences according to methods selected by the user, e.g., the clustal method. (See, e.g., Higgins, D.G. and P.M. Sharp (1988) Gene 73:237-244.) The clustal algorithm groups sequences 25 into clusters by examining the distances between all pairs. The clusters are aligned pairwise and then in groups. The percentage similarity between two amino acid sequences, e.g., sequence A and sequence B, is calculated by dividing the length of sequence A, minus the number of gap residues in sequence A, minus the number of gap residues in sequence B, into the sum of the residue matches between sequence A and 30 sequence B, times one hundred. Gaps of low or of no similarity between the two amino acid sequences are not included in determining percentage similarity. Percent identity between nucleic acid sequences can also be counted or calculated by other methods known

in the art, e.g., the Jotun Hein method. (See, e.g., Hein, J. (1990) *Methods Enzymol.* 183:626-645.) Identity between sequences can also be determined by other methods known in the art, e.g., by varying hybridization conditions.

“Human artificial chromosomes” (HACs) are linear microchromosomes which 5 may contain DNA sequences of about 6 kb to 10 Mb in size, and which contain all of the elements required for stable mitotic chromosome segregation and maintenance.

The term “humanized antibody” refers to antibody molecules in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.

10 “Hybridization” refers to any process by which a strand of nucleic acid binds with a complementary strand through base pairing.

The term “hybridization complex” refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex may be formed in solution (e.g., C_{ot} or R₀t analysis) or 15 formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

20 The words “insertion” or “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively, to the sequence found in the naturally occurring molecule.

“Immune response” can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other 25 signaling molecules, which may affect cellular and systemic defense systems.

The term “microarray” refers to an arrangement of distinct polynucleotides on a substrate.

The terms “element” or “array element” in a microarray context, refer to hybridizable polynucleotides arranged on the surface of a substrate.

30 The term “modulate” refers to a change in the activity of HTMPN. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of HTMPN.

The phrases "nucleic acid" or "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to 5 any DNA-like or RNA-like material. In this context, "fragments" refers to those nucleic acid sequences which, when translated, would produce polypeptides retaining some functional characteristic, e.g., antigenicity, or structural domain characteristic, e.g., ATP-binding site, of the full-length polypeptide.

The terms "operably associated" or "operably linked" refer to functionally related 10 nucleic acid sequences. A promoter is operably associated or operably linked with a coding sequence if the promoter controls the translation of the encoded polypeptide. While operably associated or operably linked nucleic acid sequences can be contiguous and in the same reading frame, certain genetic elements, e.g., repressor genes, are not contiguously linked to the sequence encoding the polypeptide but still bind to operator 15 sequences that control expression of the polypeptide.

The term "oligonucleotide" refers to a nucleic acid sequence of at least about 6 nucleotides to 60 nucleotides, preferably about 15 to 30 nucleotides, and most preferably about 20 to 25 nucleotides, which can be used in PCR amplification or in a hybridization assay or microarray. "Oligonucleotide" is substantially equivalent to the terms 20 "amplimer," "primer," "oligomer," and "probe," as these terms are commonly defined in the art.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers 25 solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

The term "sample" is used in its broadest sense. A sample suspected of containing 30 nucleic acids encoding HTMPN, or fragments thereof, or HTMPN itself, may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" or "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, or an antagonist. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody 5 is specific for epitope "A," the presence of a polypeptide containing the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "stringent conditions" refers to conditions which permit hybridization between polynucleotides and the claimed polynucleotides. Stringent conditions can be 10 defined by salt concentration, the concentration of organic solvent, e.g., formamide, temperature, and other conditions well known in the art. In particular, stringency can be increased by reducing the concentration of salt, increasing the concentration of formamide, or raising the hybridization temperature.

The term "substantially purified" refers to nucleic acid or amino acid sequences 15 that are removed from their natural environment and are isolated or separated, and are at least about 60% free, preferably about 75% free, and most preferably about 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acids or nucleotides by different amino acids or nucleotides, respectively.

20 "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

25 "Transformation" describes a process by which exogenous DNA enters and changes a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being 30 transformed and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed" cells includes stably transformed cells in which the inserted DNA is capable of replication either as an

autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

A "variant" of HTMPN polypeptides refers to an amino acid sequence that is altered by one or more amino acid residues. The variant may have "conservative" changes, wherein a substituted amino acid has similar structural or chemical properties (e.g., replacement of leucine with isoleucine). More rarely, a variant may have "nonconservative" changes (e.g., replacement of glycine with tryptophan). Analogous minor variations may also include amino acid deletions or insertions, or both. Guidance in determining which amino acid residues may be substituted, inserted, or deleted without abolishing biological or immunological activity may be found using computer programs well known in the art, for example, LASERGENE software (DNASTAR).

The term "variant," when used in the context of a polynucleotide sequence, may encompass a polynucleotide sequence related to HTMPN. This definition may also include, for example, "allelic" (as defined above), "splice," "species," or "polymorphic" variants. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or an absence of domains. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides generally will have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

THE INVENTION

The invention is based on the discovery of new human transmembrane proteins (HTMPN), the polynucleotides encoding HTMPN, and the use of these compositions for the diagnosis, treatment, or prevention of immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders.

Table 1 lists the Incyte Clones used to derive full length nucleotide sequences encoding HTMPN. Columns 1 and 2 show the sequence identification numbers (SEQ ID

NOs) of the amino acid and nucleic acid sequences, respectively. Column 3 shows the Clone ID of the Incyte Clone in which nucleic acids encoding each HTMPN were identified, and column 4, the cDNA libraries from which these clones were isolated. Column 5 shows Incyte clones, their corresponding cDNA libraries, and shotgun sequences. The clones and shotgun sequences are part of the consensus nucleotide sequence of each HTMPN and are useful as fragments in hybridization technologies.

The columns of Table 2 show various properties of the polypeptides of the invention: column 1 references the SEQ ID NO; column 2 shows the number of amino acid residues in each polypeptide; column 3, potential phosphorylation sites; column 4, potential glycosylation sites; column 5, the amino acid residues comprising signature sequences and motifs; column 6, the identity of each protein; and column 7, analytical methods used to identify each protein through sequence homology and protein motifs. Hidden Markov Model analysis indicates the presence of one or more potential transmembrane motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO: 66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO: 75, SEQ ID NO:76, SEQ ID NO:77, and SEQ ID NO: 79; as well as the presence of one or more potential signal peptide motifs in each of SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:75, SEQ ID NO:77, and SEQ ID NO:79.

Motifs analysis indicates the presence of a potential ATP/GTP binding site in SEQ ID NO:68, a potential calcium-binding site also in SEQ ID NO:68, a potential leucine zipper gene regulatory motif in each of SEQ ID NO:68 and SEQ ID NO:73; and a potential microbody (single-membraned organelle) targeting signal site in SEQ ID NO:78. BLOCKS analysis indicates the presence of two potential PMP-22 integral membrane glycoprotein motifs and a trehalase motif, all in SEQ ID NO:77, as well as a potential protein-splicing motif in SEQ ID NO:66. PRINTS analysis indicates the presence of a potential G-protein coupled receptor motif in SEQ ID NO:79.

The columns of Table 3 show the tissue-specificity and diseases, disorders, or conditions associated with nucleotide sequences encoding HTMPN. The first column of Table 3 lists the nucleotide sequence identifiers. The second column lists tissue categories which express HTMPN as a fraction of total tissue categories expressing HTMPN. The

third column lists the diseases, disorders, or conditions associated with those tissues expressing HTMPN. The fourth column lists the vectors used to subclone the cDNA library. Of particular note is the expression of HTMPN in tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in
5 reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, urologic, endocrine, developmental, and nervous tissue.

The following fragments of the nucleotide sequences encoding HTMPN are useful in hybridization or amplification technologies to identify SEQ ID NO:121-158 and to distinguish between SEQ ID NO:121-158 and related polynucleotide sequences. The
10 useful fragments are the fragment of SEQ ID NO:121 from about nucleotide 151 to about nucleotide 189; the fragment of SEQ ID NO:122 from about nucleotide 280 to about nucleotide 318; the fragment of SEQ ID NO:123 from about nucleotide 505 to about nucleotide 558; the fragments of SEQ ID NO:124 from about nucleotide 1 to about nucleotide 21 and from about nucleotide 694 to about nucleotide 720; the fragment of SEQ
15 ID NO:125 from about nucleotide 331 to about nucleotide 378; the fragment of SEQ ID NO:126 from about nucleotide 1012 to about nucleotide 1047; the fragment of SEQ ID NO:127 from about nucleotide 1070 to about nucleotide 1106; the fragment of SEQ ID NO:128 from about nucleotide 133 to about nucleotide 186; the fragment of SEQ ID NO:129 from about nucleotide 432 to about nucleotide 482; the fragments of SEQ ID
20 NO:130 from about nucleotide 1745 to about nucleotide 1795 and from about nucleotide 1910 to about nucleotide 1979; the fragment of SEQ ID NO:131 from about nucleotide 322 to about nucleotide 375; the fragment of SEQ ID NO:132 from about nucleotide 147 to about nucleotide 203; the fragment of SEQ ID NO:133 from about nucleotide 557 to about nucleotide 613; the fragment of SEQ ID NO:134 from about nucleotide 509 to about
25 nucleotide 595; the fragment of SEQ ID NO:135 from about nucleotide 808 to about nucleotide 848; the fragment of SEQ ID NO:136 from about nucleotide 216 to about nucleotide 260; the fragment of SEQ ID NO:137 from about nucleotide 132 to about nucleotide 188; the fragment of SEQ ID NO:138 from about nucleotide 231 to about nucleotide 278; the fragment of SEQ ID NO:139 from about nucleotide 303 to about
30 nucleotide 350; the fragment of SEQ ID NO:140 from about nucleotide 507 to about nucleotide 550; the fragment of SEQ ID NO:141 from about nucleotide 433 to about nucleotide 477; the fragment of SEQ ID NO:142 from about nucleotide 266 to about

nucleotide 314; the fragment of SEQ ID:143 from about nucleotide 3 to about nucleotide 48; the fragment of SEQ ID NO:144 from about nucleotide 76 to about nucleotide 122; the fragment of SEQ ID NO:145 from about nucleotide 93 to about nucleotide 139; the fragment of SEQ ID NO:146 from about nucleotide 241 to about nucleotide 286; the 5 fragment of SEQ ID NO:147 from about nucleotide 43 to about nucleotide 89; the fragment of SEQ ID NO:148 from about nucleotide 219 to about nucleotide 265; the fragment of SEQ ID NO:149 from about nucleotide 619 to about nucleotide 663; the fragment of SEQ ID NO:150 from about nucleotide 25 to about nucleotide 69; the fragment of SEQ ID NO:151 from about nucleotide 175 to about nucleotide 221; the 10 fragment of SEQ ID NO:152 from about nucleotide 94 to about nucleotide 138; the fragment of SEQ ID NO:153 from about nucleotide 46 to about nucleotide 90; the fragment of SEQ ID NO:154 from about nucleotide 1081 to about nucleotide 1127; the fragment of SEQ ID NO:155 from about nucleotide 31 to about nucleotide 77; the fragment of SEQ ID NO:156 from about nucleotide 157 to about nucleotide 201; the 15 fragment of SEQ ID NO:157 from about nucleotide 216 to about nucleotide 259; and the fragment of SEQ ID NO:158 from about nucleotide 517 to about nucleotide 561. The polypeptides encoded by these fragments may be useful, for example, as antigenic polypeptides.

The invention also encompasses HTMPN variants. A preferred HTMPN variant is 20 one which has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% amino acid sequence identity to the HTMPN amino acid sequence, and which contains at least one functional or structural characteristic of HTMPN.

The invention also encompasses polynucleotides which encode HTMPN. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising 25 a sequence selected from the group consisting of SEQ ID NO:80-158, which encodes HTMPN.

The invention also encompasses a variant of a polynucleotide sequence encoding HTMPN. In particular, such a variant polynucleotide sequence will have at least about 80%, more preferably at least about 90%, and most preferably at least about 95% 30 polynucleotide sequence identity to the polynucleotide sequence encoding HTMPN. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:80-158 which

has at least about 80%, more preferably at least about 90%, and most preferably at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:80-158. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or
5 structural characteristic of HTMPN.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding HTMPN, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every
10 possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring HTMPN, and all such variations are to be considered as being specifically disclosed.

15 Although nucleotide sequences which encode HTMPN and its variants are preferably capable of hybridizing to the nucleotide sequence of the naturally occurring HTMPN under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding HTMPN or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons.

20 Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding HTMPN and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable
25 properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode HTMPN and HTMPN derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available
30 expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding HTMPN or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:80-158 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. 5 (1987) Methods Enzymol. 152:507-511.) For example, stringent salt concentration will ordinarily be less than about 750 mM NaCl and 75 mM trisodium citrate, preferably less than about 500 mM NaCl and 50 mM trisodium citrate, and most preferably less than about 250 mM NaCl and 25 mM trisodium citrate. Low stringency hybridization can be obtained in the absence of organic solvent, e.g., formamide, while high stringency 10 hybridization can be obtained in the presence of at least about 35% formamide, and most preferably at least about 50% formamide. Stringent temperature conditions will ordinarily include temperatures of at least about 30°C, more preferably of at least about 37°C, and most preferably of at least about 42°C. Varying additional parameters, such as hybridization time, the concentration of detergent, e.g., sodium dodecyl sulfate (SDS), and 15 the inclusion or exclusion of carrier DNA, are well known to those skilled in the art.

Various levels of stringency are accomplished by combining these various conditions as needed. In a preferred embodiment, hybridization will occur at 30°C in 750 mM NaCl, 75 mM trisodium citrate, and 1% SDS. In a more preferred embodiment, hybridization will occur at 37°C in 500 mM NaCl, 50 mM trisodium citrate, 1% SDS, 35% formamide, and 20 100 µg/ml denatured salmon sperm DNA (ssDNA). In a most preferred embodiment, hybridization will occur at 42°C in 250 mM NaCl, 25 mM trisodium citrate, 1% SDS, 50 % formamide, and 200 µg/ml ssDNA. Useful variations on these conditions will be readily apparent to those skilled in the art.

The washing steps which follow hybridization can also vary in stringency. Wash 25 stringency conditions can be defined by salt concentration and by temperature. As above, wash stringency can be increased by decreasing salt concentration or by increasing temperature. For example, stringent salt concentration for the wash steps will preferably be less than about 30 mM NaCl and 3 mM trisodium citrate, and most preferably less than about 15 mM NaCl and 1.5 mM trisodium citrate. Stringent temperature conditions for the 30 wash steps will ordinarily include temperature of at least about 25°C, more preferably of at least about 42°C, and most preferably of at least about 68°C. In a preferred embodiment, wash steps will occur at 25°C in 30 mM NaCl, 3 mM trisodium citrate, and 0.1% SDS. In

a more preferred embodiment, wash steps will occur at 42°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. In a most preferred embodiment, wash steps will occur at 68°C in 15 mM NaCl, 1.5 mM trisodium citrate, and 0.1% SDS. Additional variations on these conditions will be readily apparent to those skilled in the art.

5 Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Perkin-Elmer), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading 10 exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the Hamilton MICROLAB 2200 (Hamilton, Reno NV), Peltier Thermal Cycler 200 (PTC200; MJ Research, Watertown MA) and the ABI CATALYST 800 (Perkin-Elmer). Sequencing is then carried out using either ABI 373 or 377 DNA 15 sequencing systems (Perkin-Elmer) or the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA). The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, 20 pp. 856-853.)

The nucleic acid sequences encoding HTMPN may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to 25 amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification 30 of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this

method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-306).

5 Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 Primer Analysis software (National Biosciences, Plymouth MN) or another appropriate 10 program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full-length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in 15 which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic 20 separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Perkin-Elmer), and the entire process from loading of samples to computer analysis and electronic data display may be computer 25 controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode HTMPN may be cloned in recombinant DNA molecules that direct expression of HTMPN, or fragments or functional equivalents thereof, in appropriate host 30 cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express HTMPN.

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter HTMPN-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide-mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

In another embodiment, sequences encoding HTMPN may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucl. Acids Res. Symp. Ser. 215-223, and Horn, T. et al. (1980) Nucl. Acids Res. Symp. Ser. 225-232.) Alternatively, HTMPN itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solid-phase techniques. (See, e.g., Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Additionally, the amino acid sequence of HTMPN, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY.)

In order to express a biologically active HTMPN, the nucleotide sequences encoding HTMPN or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding HTMPN. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding HTMPN. Such signals include the ATG initiation codon and adjacent sequences, e.g. the

Kozak sequence. In cases where sequences encoding HTMPN and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous 5 translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) *Results Probl. Cell Differ.* 20:125-162.)

10 Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding HTMPN and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

15 A variety of expression vector/host systems may be utilized to contain and express sequences encoding HTMPN. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA 20 expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. The invention is not limited by the host cell employed.

25 In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding HTMPN. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding HTMPN can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or pSPORT1 plasmid (Life Technologies).

30 Ligation of sequences encoding HTMPN into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be

useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of HTMPN are needed, e.g. for the production of antibodies, vectors which direct high level expression of HTMPN may be used. For example, vectors containing the strong, inducible T5 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of HTMPN. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH, may be used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
10 In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Grant et al. (1987) Methods Enzymol. 153:516-54; and Scorer, C. A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of HTMPN. Transcription of sequences encoding HTMPN may be driven viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized.
25 In cases where an adenovirus is used as an expression vector, sequences encoding HTMPN may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses HTMPN in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. 81:3655-3659.) In
30 addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g.,
5 Harrington, J.J. et al. (1997) *Nat Genet.* 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of HTMPN in cell lines is preferred. For example, sequences encoding HTMPN can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker
10 gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated
15 using tissue culture techniques appropriate to the cell type.

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* or *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) *Cell* 11:223-232; Lowy, I. et al. (1980) *Cell* 22:817-823.)
20 Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides, neomycin and G-418; and *als* or *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) *Proc. Natl. Acad. Sci.* 77:3567-3570; Colbere-Garapin, F. et al. (1981) *J. Mol. Biol.* 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) *Proc. Natl. Acad. Sci.* 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β -glucuronide, or luciferase and its substrate luciferin may be used. These
25 markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) *Methods Mol. Biol.* 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding HTMPN is inserted within a marker gene sequence, transformed cells containing sequences encoding HTMPN can be identified by the absence 5 of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding HTMPN under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

In general, host cells that contain the nucleic acid sequence encoding HTMPN and 10 that express HTMPN may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations. PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

15 Immunological methods for detecting and measuring the expression of HTMPN using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two 20 non-interfering epitopes on HTMPN is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St Paul MN, Sect. IV; Coligan, J. E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, 25 Humana Press, Totowa NJ).

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding HTMPN include oligolabeling, nick translation, end-labeling, or 30 PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding HTMPN, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be

used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or 5 labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding HTMPN may be cultured under conditions suitable for the expression and recovery of the protein from cell 10 culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode HTMPN may be designed to contain signal sequences which direct secretion of HTMPN through a prokaryotic or eukaryotic cell membrane.

15 In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" form of the protein may also be used to specify protein targeting, 20 folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38), are available from the American Type Culture Collection (ATCC, Bethesda MD) and may be chosen to ensure the correct modification and processing of the foreign protein.

25 In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding HTMPN may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric HTMPN protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for 30 inhibitors of HTMPN activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose

binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, *c-myc*, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, *c-myc*, and 5 hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the HTMPN encoding sequence and the heterologous protein sequence, so that HTMPN may be cleaved away from the heterologous moiety 10 following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, *supra*, ch 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled HTMPN may be achieved *in vitro* using the TNT rabbit reticulocyte lysate or wheat germ extract 15 systems (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, preferably ^{35}S -methionine.

Fragments of HTMPN may be produced not only by recombinant production, but also by direct peptide synthesis using solid-phase techniques. (See, e.g., Creighton, *supra*, 20 pp. 55-60.) Protein synthesis may be performed by manual techniques or by automation. Automated synthesis may be achieved, for example, using the ABI 431A Peptide Synthesizer (Perkin-Elmer). Various fragments of HTMPN may be synthesized separately and then combined to produce the full length molecule.

THERAPEUTICS

25 Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of HTMPN and human transmembrane proteins. In addition, the expression of HTMPN is closely associated with tissue involved in inflammation and the immune response and with cell proliferative conditions including cancer, and in reproductive, gastrointestinal, fetal, smooth muscle, cardiovascular, developmental, and 30 nervous tissue. Therefore, HTMPN appears to play a role in immune, reproductive, smooth muscle, neurological, gastrointestinal, developmental, and cell proliferative disorders. In the treatment of immune, reproductive, smooth muscle, neurological,

gastrointestinal, developmental, and cell proliferative disorders associated with increased HTMPN expression or activity, it is desirable to decrease the expression or activity of HTMPN. In the treatment of the above conditions associated with decreased HTMPN expression or activity, it is desirable to increase the expression or activity of HTMPN.

5 Therefore, in one embodiment, HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, 10 anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, 15 glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, 20 thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, 25 polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the 30 male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies

including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other

5 extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru,

10 Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders,

15 cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid

20 psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis,

25 cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis,

30 hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, α_1 -antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and

thrombosis, passive congestion, centrilobular necrosis, peliosis hepatitis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above.

In another embodiment, a vector capable of expressing HTMPN or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those described above.

In a further embodiment, a pharmaceutical composition comprising a substantially purified HTMPN in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of HTMPN may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of HTMPN including, but not limited to, those listed above.

In a further embodiment, an antagonist of HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN. Examples of such disorders include, but are not limited to, those described above. In one aspect, an antibody which specifically binds HTMPN may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissue which express HTMPN.

30 In an additional embodiment, a vector expressing the complement of the polynucleotide encoding HTMPN may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of HTMPN including, but not

limited to, those described above.

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in 5 combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

10 An antagonist of HTMPN may be produced using methods which are generally known in the art. In particular, purified HTMPN may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind HTMPN. Antibodies to HTMPN may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, 15 monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are especially preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with HTMPN or with any fragment or 20 oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli 25 Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to HTMPN have an amino acid sequence consisting of at least about 5 amino acids, and, more preferably, of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid 30 sequence of the natural protein and contain the entire amino acid sequence of a small, naturally occurring molecule. Short stretches of HTMPN amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule may be

produced.

Monoclonal antibodies to HTMPN may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. 5 (1975) *Nature* 256:495-497; Kozbor, D. et al. (1985) *J. Immunol. Methods* 81:31-42; Cote, R.J. et al. (1983) *Proc. Natl. Acad. Sci.* 80:2026-2030; and Cole, S.P. et al. (1984) *Mol. Cell Biol.* 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such 10 as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) *Proc. Natl. Acad. Sci.* 81:6851-6855; Neuberger, M.S. et al. 15 (1984) *Nature* 312:604-608; and Takeda, S. et al. (1985) *Nature* 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be 20 adapted, using methods known in the art, to produce HTMPN-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton D.R. (1991) *Proc. Natl. Acad. Sci.* 88:10134-10137.)

Antibodies may also be produced by inducing in vivo production in the 25 lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) *Proc. Natl. Acad. Sci.* 86: 3833-3837; Winter, G. et al. (1991) *Nature* 349:293-299.)

Antibody fragments which contain specific binding sites for HTMPN may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments 25 produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) *Science* 246:1275-1281.)

30 Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are

well known in the art. Such immunoassays typically involve the measurement of complex formation between HTMPN and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering HTMPN epitopes is preferred, but a competitive binding assay may also be employed (Pound,
5 supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for HTMPN. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of HTMPN-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple HTMPN epitopes, represents the average affinity, or avidity, of the antibodies for HTMPN. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular HTMPN epitope, represents a true measure of affinity. High-affinity antibody
10 preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the HTMPN-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of HTMPN, preferably in active form, from the antibody
15 (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington, DC; Liddell, J. E. and Cryer, A. (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons. New York NY).

The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is preferred for use in procedures requiring precipitation of HTMPN-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generally available. (See, e.g., Catty, supra, and Coligan
20 et al. supra.)

In another embodiment of the invention, the polynucleotides encoding HTMPN, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect,

the complement of the polynucleotide encoding HTMPN may be used in situations in which it would be desirable to block the transcription of the mRNA. In particular, cells may be transformed with sequences complementary to polynucleotides encoding HTMPN. Thus, complementary molecules or fragments may be used to modulate HTMPN activity, 5 or to achieve regulation of gene function. Such technology is now well known in the art, and sense or antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding HTMPN.

Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide 10 sequences to the targeted organ, tissue, or cell population. Methods which are well known to those skilled in the art can be used to construct vectors to express nucleic acid sequences complementary to the polynucleotides encoding HTMPN. (See, e.g., Sambrook, supra; Ausubel, 1995, supra.)

Genes encoding HTMPN can be turned off by transforming a cell or tissue with 15 expression vectors which express high levels of a polynucleotide, or fragment thereof, encoding HTMPN. Such constructs may be used to introduce untranslatable sense or antisense sequences into a cell. Even in the absence of integration into the DNA, such vectors may continue to transcribe RNA molecules until they are disabled by endogenous nucleases. Transient expression may last for a month or more with a non-replicating 20 vector, and may last even longer if appropriate replication elements are part of the vector system.

As mentioned above, modifications of gene expression can be obtained by 25 designing complementary sequences or antisense molecules (DNA, RNA, or PNA) to the control, 5', or regulatory regions of the gene encoding HTMPN. Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, are preferred. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have 30 been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block

translation of mRNA by preventing the transcript from binding to ribosomes.

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by 5 endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding HTMPN.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the 10 following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides 15 using ribonuclease protection assays.

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by 20 in vitro and in vivo transcription of DNA sequences encoding HTMPN. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

25 RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the 30 inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

Many methods for introducing vectors into cells or tissues are available and equally suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or 5 by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) *Nature Biotechnology* 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as dogs, cats, cows, horses, rabbits, monkeys, and most preferably, humans.

10 An additional embodiment of the invention relates to the administration of a pharmaceutical or sterile composition, in conjunction with a pharmaceutically acceptable carrier, for any of the therapeutic effects discussed above. Such pharmaceutical compositions may consist of HTMPN, antibodies to HTMPN, and mimetics, agonists, antagonists, or inhibitors of HTMPN. The compositions may be administered alone or in 15 combination with at least one other agent, such as a stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier including, but not limited to, saline, buffered saline, dextrose, and water. The compositions may be administered to a patient alone, or in combination with other agents, drugs, or hormones.

The pharmaceutical compositions utilized in this invention may be administered by 20 any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

In addition to the active ingredients, these pharmaceutical compositions may contain suitable pharmaceutically-acceptable carriers comprising excipients and auxiliaries 25 which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing, Easton PA).

Pharmaceutical compositions for oral administration can be formulated using 30 pharmaceutically acceptable carriers well known in the art in dosages suitable for oral administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for

ingestion by the patient.

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be 5 added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be 10 added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer 15 solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations which can be used orally include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as 20 glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

25 Pharmaceutical formulations suitable for parenteral administration may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, Ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances which increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the 30 active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino

polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the compounds and allow for the preparation of highly concentrated solutions.

For topical or nasal administration, penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.

The pharmaceutical compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping, or lyophilizing processes.

The pharmaceutical composition may be provided as a salt and can be formed with many acids, including but not limited to, hydrochloric, sulfuric, acetic, lactic, tartaric, malic, and succinic acid. Salts tend to be more soluble in aqueous or other protonic solvents than are the corresponding free base forms. In other cases, the preferred preparation may be a lyophilized powder which may contain any or all of the following: 1 mM to 50 mM histidine, 0.1% to 2% sucrose, and 2% to 7% mannitol, at a pH range of 4.5 to 5.5, that is combined with buffer prior to use.

After pharmaceutical compositions have been prepared, they can be placed in an appropriate container and labeled for treatment of an indicated condition. For administration of HTMPN, such labeling would include amount, frequency, and method of administration.

Pharmaceutical compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells or in animal models such as mice, rats, rabbits, dogs, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example HTMPN or fragments thereof, antibodies of HTMPN, and agonists, antagonists

or inhibitors of HTMPN, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the ED₅₀ (the dose therapeutically effective in 50% of the population) or LD₅₀ (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, and it can be expressed as the LD₅₀/ED₅₀ ratio. Pharmaceutical compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED₅₀ with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about 0.1 µg to 100,000 µg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

In another embodiment, antibodies which specifically bind HTMPN may be used for the diagnosis of disorders characterized by expression of HTMPN, or in assays to monitor patients being treated with HTMPN or agonists, antagonists, or inhibitors of HTMPN. Antibodies useful for diagnostic purposes may be prepared in the same manner

as described above for therapeutics. Diagnostic assays for HTMPN include methods which utilize the antibody and a label to detect HTMPN in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring HTMPN, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of HTMPN expression. Normal or standard values for HTMPN expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, preferably human, with antibody to HTMPN under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, preferably by photometric means. Quantities of HTMPN expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding HTMPN may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantitate gene expression in biopsied tissues in which expression of HTMPN may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of HTMPN, and to monitor regulation of HTMPN levels during therapeutic intervention.

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding HTMPN or closely related molecules may be used to identify nucleic acid sequences which encode HTMPN. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification (maximal, high, intermediate, or low), will determine whether the probe identifies only naturally occurring sequences encoding HTMPN, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and should

preferably have at least 50% sequence identity to any of the HTMPN encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:80-158 or from genomic sequences including promoters, enhancers, and introns of the HTMPN gene.

5 Means for producing specific hybridization probes for DNAs encoding HTMPN include the cloning of polynucleotide sequences encoding HTMPN or HTMPN derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes *in vitro* by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.

10 Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ^{32}P or ^{35}S , or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding HTMPN may be used for the diagnosis of disorders associated with expression of HTMPN. Examples of such disorders include, but 15 are not limited to, an immune disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atop 20 dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, 25 polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a reproductive disorder such as a a 30 disorder of prolactin production; infertility, including tubal disease, ovulatory defects, and endometriosis; a disruption of the estrous cycle, a disruption of the menstrual cycle, polycystic ovary syndrome, ovarian hyperstimulation syndrome, endometrial and ovarian

tumors, uterine fibroids, autoimmune disorders, ectopic pregnancies, and teratogenesis; cancer of the breast, fibrocystic breast disease, and galactorrhea; disruptions of spermatogenesis, abnormal sperm physiology, cancer of the testis, cancer of the prostate, benign prostatic hyperplasia, prostatitis, Peyronie's disease, impotence, carcinoma of the 5 male breast, and gynecomastia; a smooth muscle disorder such as angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, and pheochromocytoma, and myopathies including cardiomyopathy, encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, and ophthalmoplegia; a neurological disorder such as 10 epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, 15 subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease; prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome; fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal 20 syndrome, mental retardation and other developmental disorders of the central nervous system, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis; inherited, metabolic, endocrine, and toxic myopathies; myasthenia gravis, periodic 25 paralysis; mental disorders including mood, anxiety, and schizophrenic disorders; akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, and Tourette's disorder; a gastrointestinal disorder such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, 30 gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatoma, infectious

colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, and acquired immunodeficiency syndrome (AIDS) enteropathy, cirrhosis, jaundice, cholestasis,

5 hereditary hyperbilirubinemia, hepatic encephalopathy, hepatorenal syndrome, hepatitis, hepatic steatosis, hemochromatosis, Wilson's disease, α_1 -antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, passive congestion, centrilobular necrosis, peliosis hepatitis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of

10 pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas; a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including

15 adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a developmental disorder including, but not limited to, those listed above.

20 The polynucleotide sequences encoding HTMPN may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered HTMPN expression. Such qualitative or quantitative methods are well known in the art.

25 In a particular aspect, the nucleotide sequences encoding HTMPN may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding HTMPN may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and

30 the signal is quantitated and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding HTMPN in the sample indicates the

presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

In order to provide a basis for the diagnosis of a disorder associated with expression of HTMPN, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding HTMPN, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding HTMPN may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced *in vitro*. Oligomers will preferably contain a fragment of a polynucleotide encoding HTMPN, or a fragment of a polynucleotide complementary to the polynucleotide encoding HTMPN, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or

quantitation of closely related DNA or RNA sequences.

Methods which may also be used to quantitate the expression of HTMPN include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J.

5 Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.)
The speed of quantitation of multiple samples may be accelerated by running the assay in an ELISA format where the oligomer of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of
10 the polynucleotide sequences described herein may be used as targets in a microarray. The microarray can be used to monitor the expression level of large numbers of genes simultaneously and to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, and to develop and monitor the activities of therapeutic
15 agents.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al.
20 (1997) Proc. Natl. Acad. Sci. 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.)

In another embodiment of the invention, nucleic acid sequences encoding HTMPN may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. The sequences may be mapped to a particular chromosome, to a
25 specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.)

30 Fluorescent *in situ* hybridization (FISH) may be correlated with other physical chromosome mapping techniques and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, *supra*, pp. 965-968.) Examples of genetic map data can be found in

various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) site. Correlation between the location of the gene encoding HTMPN on a physical chromosomal map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder. The nucleotide sequences of 5 the invention may be used to detect differences in gene sequences among normal, carrier, and affected individuals.

In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another 10 mammalian species, such as mouse, may reveal associated markers even if the number or arm of a particular human chromosome is not known. New sequences can be assigned to chromosomal arms by physical mapping. This provides valuable information to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the disease or syndrome has been crudely localized by genetic linkage to 15 a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the subject invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

20 In another embodiment of the invention, HTMPN, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between HTMPN and the agent being 25 tested may be measured.

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted 30 with HTMPN, or fragments thereof, and washed. Bound HTMPN is then detected by methods well known in the art. Purified HTMPN can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing

antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding HTMPN specifically compete with a test compound for binding HTMPN. In this manner, antibodies can be used to detect the 5 presence of any peptide which shares one or more antigenic determinants with HTMPN.

In additional embodiments, the nucleotide sequences which encode HTMPN may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base 10 pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following preferred specific embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

15 The entire disclosure of all applications, patents, and publications, cited above and below, and of US provisional applications 60/087,260 (filed May 29, 1998), 60/091,674 (filed July 2, 1998), 60/102,954 (filed October 2, 1998), and 60/109,869 (filed November 24, 1998) is hereby incorporated by reference.

EXAMPLES

20 I. Construction of cDNA Libraries

RNA was purchased from Clontech or isolated from tissues described in Table 4. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine 25 isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A+) 30 RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Valencia CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates

using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries 5 were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, *supra*, units 5.1-6.6). Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate 10 restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), pSPORT1 15 plasmid (Life Technologies), or pINCY (Incyte Pharmaceuticals, Palo Alto CA). Recombinant plasmids were transformed into competent *E. coli* cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5 α , DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

20 Plasmids were recovered from host cells by *in vivo* excision, using the UNIZAP vector system (Stratagene) or cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or 25 the REAL Prep 96 plasmid kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples 30 were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a Fluoroskan II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

The cDNAs were prepared for sequencing using the ABI CATALYST 800 (Perkin-Elmer) or the HYDRA microdispenser (Robbins Scientific) or MICROLAB 2200 (Hamilton) systems in combination with the PTC-200 thermal cyclers (MJ Research). The 5 cDNAs were sequenced using the ABI PRISM 373 or 377 sequencing systems (Perkin-Elmer) and standard ABI protocols, base calling software, and kits. In one alternative, cDNAs were sequenced using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics). In another alternative, the cDNAs were amplified and sequenced using the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer). In 10 yet another alternative, cDNAs were sequenced using solutions and dyes from Amersham Pharmacia Biotech. Reading frames for the ESTs were determined using standard methods (reviewed in Ausubel, 1997, *supra*, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V.

The polynucleotide sequences derived from cDNA, extension, and shotgun 15 sequencing were assembled and analyzed using a combination of software programs which utilize algorithms well known to those skilled in the art. Table 5 summarizes the software programs, descriptions, references, and threshold parameters used. The first column of Table 5 shows the tools, programs, and algorithms used, the second column provides a brief description thereof, the third column presents the references which are incorporated 20 by reference herein, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the probability the greater the homology). Sequences were analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).

25 The polynucleotide sequences were validated by removing vector, linker, and polyA sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programing, and dinucleotide nearest neighbor analysis. The sequences were then queried against a selection of public databases such as GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS to acquire 30 annotation, using programs based on BLAST, FASTA, and BLIMPS. The sequences were assembled into full length polynucleotide sequences using programs based on Phred, Phrap, and Consed, and were screened for open reading frames using programs based on

GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length amino acid sequences, and these full length sequences were subsequently analyzed by querying against databases such as the GenBank databases (described above), SwissProt, BLOCKS, PRINTS, Prosite, and 5 Hidden Markov Model (HMM)-based protein family databases such as PFAM. HMM is a probabilistic approach which analyzes consensus primary structures of gene families. (See, e.g., Eddy, S.R. (1996) Cur. Opin. Str. Biol. 6:361-365.)

The programs described above for the assembly and analysis of full length polynucleotide and amino acid sequences were also used to identify polynucleotide 10 sequence fragments from SEQ ID NO:80-158. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies were described in The Invention section above.

IV. Northern Analysis

Northern analysis is a laboratory technique used to detect the presence of a 15 transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, *supra*, ch. 7; Ausubel, 1995, *supra*, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in nucleotide databases such as GenBank or LIFESEQ database 20 (Incyte Pharmaceuticals). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

$$\frac{\% \text{ sequence identity} \times \% \text{ maximum BLAST score}}{100}$$

25 The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. For example, with a product score of 40, the match will be exact within a 1% to 2% error, and, with a product score of 70, the match will be exact. Similar molecules are usually identified by selecting those which show product 30 scores between 15 and 40, although lower scores may identify related molecules.

The results of northern analyses are reported as a percentage distribution of libraries in which the transcript encoding HTMPN occurred. Analysis involved the

categorization of cDNA libraries by organ/tissue and disease. The organ/tissue categories included cardiovascular, dermatologic, developmental, endocrine, gastrointestinal, hematopoietic/immune, musculoskeletal, nervous, reproductive, and urologic. The disease/condition categories included cancer, inflammation/trauma, cell proliferation, 5 neurological, and pooled. For each category, the number of libraries expressing the sequence of interest was counted and divided by the total number of libraries across all categories. Percentage values of tissue-specific and disease- or condition-specific expression are reported in Table 3.

V. Extension of HTMPN Encoding Polynucleotides

10 Full length nucleic acid sequences of SEQ ID NOS:80-120 were produced by extension of the component fragments described in Table 1, column 5, using oligonucleotide primers based on these fragments. For each nucleic acid sequence, one primer was synthesized to initiate extension of an antisense polynucleotide, and the other was synthesized to initiate extension of a sense polynucleotide. Primers were used to 15 facilitate the extension of the known sequence "outward" generating amplicons containing new unknown nucleotide sequence for the region of interest. The initial primers were designed from the cDNA using OLIGO™ 4.06 (National Biosciences, Plymouth, MN), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of 20 about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries (GIBCO BRL) were used to extend the sequence. If more than one extension is necessary or desired, additional sets of primers are designed to further extend the known region.

25 High fidelity amplification was obtained by following the instructions for the XL-PCR™ kit (The Perkin-Elmer Corp., Norwalk, CT) and thoroughly mixing the enzyme and reaction mix. PCR was performed using the PTC-200 thermal cycler (MJ Research, Inc., Watertown, MA), beginning with 40 pmol of each primer and the recommended concentrations of all other components of the kit, with the following parameters:

30	Step 1	94° C for 1 min (initial denaturation)
	Step 2	65° C for 1 min
	Step 3	68° C for 6 min
	Step 4	94° C for 15 sec

	Step 5	65° C for 1 min
	Step 6	68° C for 7 min
	Step 7	Repeat steps 4 through 6 for an additional 15 cycles
	Step 8	94° C for 15 sec
5	Step 9	65° C for 1 min
	Step 10	68° C for 7:15 min
	Step 11	Repeat steps 8 through 10 for an additional 12 cycles
	Step 12	72° C for 8 min
	Step 13	4° C (and holding)

10 A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a low concentration (about 0.6% to 0.8%) agarose mini-gel to determine which reactions were successful in extending the sequence. Bands thought to contain the largest products were excised from the gel, purified using QIAQUICK™ (QIAGEN Inc.), and trimmed of overhangs using Klenow enzyme to facilitate religation and cloning.

15 After ethanol precipitation, the products were redissolved in 13 μ l of ligation buffer, 1 μ l T4-DNA ligase (15 units) and 1 μ l T4 polynucleotide kinase were added, and the mixture was incubated at room temperature for 2 to 3 hours, or overnight at 16° C. Competent E. coli cells (in 40 μ l of appropriate media) were transformed with 3 μ l of 20 ligation mixture and cultured in 80 μ l of SOC medium. (See, e.g., Sambrook, supra, Appendix A, p. 2.) After incubation for one hour at 37°C, the E. coli mixture was plated on Luria Bertani (LB) agar (See, e.g., Sambrook, supra, Appendix A, p. 1) containing carbenicillin (2x carb). The following day, several colonies were randomly picked from each plate and cultured in 150 μ l of liquid LB/2x carb medium placed in an individual well 25 of an appropriate commercially-available sterile 96-well microtiter plate. The following day, 5 μ l of each overnight culture was transferred into a non-sterile 96-well plate and, after dilution 1:10 with water, 5 μ l from each sample was transferred into a PCR array.

30 For PCR amplification, 18 μ l of concentrated PCR reaction mix (3.3x) containing 4 units of rTth DNA polymerase, a vector primer, and one or both of the gene specific primers used for the extension reaction were added to each well. Amplification was performed using the following conditions:

	Step 1	94° C for 60 sec
	Step 2	94° C for 20 sec
	Step 3	55° C for 30 sec
35	Step 4	72° C for 90 sec
	Step 5	Repeat steps 2 through 4 for an additional 29 cycles
	Step 6	72° C for 180 sec

Step 7 4° C (and holding)

Aliquots of the PCR reactions were run on agarose gels together with molecular weight markers. The sizes of the PCR products were compared to the original partial 5 cDNAs, and appropriate clones were selected, ligated into plasmid, and sequenced.

The full length nucleic acid sequences of SEQ ID NO:121-158 were produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer, to initiate 3' extension of the known 10 fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

15 Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, 20 reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and β-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the 25 alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C.

The concentration of DNA in each well was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene 30 OR) dissolved in 1X TE and 0.5 μl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure

the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose mini-gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent *E. coli* cells. Transformed cells were selected on antibiotic-containing media, individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethylsulphoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Perkin-Elmer).

In like manner, the nucleotide sequences of SEQ ID NO:80-158 are used to obtain 5' regulatory sequences using the procedure above, oligonucleotides designed for such extension, and an appropriate genomic library.

VI. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:80-158 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-

art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 5 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, XbaI, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to 10 nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under increasingly stringent conditions up to 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. After XOMAT-AR film (Eastman Kodak, Rochester NY) is exposed to the blots to film for several hours, hybridization 15 patterns are compared visually.

VII. Microarrays

A chemical coupling procedure and an ink jet device can be used to synthesize array elements on the surface of a substrate. (See, e.g., Baldeschweiler, *supra*.) An array analogous to a dot or slot blot may also be used to arrange and link elements to the surface 20 of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced by hand or using available methods and machines and contain any appropriate number of elements. After hybridization, nonhybridized probes are removed and a scanner used to determine the levels and patterns of fluorescence. The degree of complementarity and the relative abundance of each probe which hybridizes to an element 25 on the microarray may be assessed through analysis of the scanned images.

Full-length cDNAs, Expressed Sequence Tags (ESTs), or fragments thereof may comprise the elements of the microarray. Fragments suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). Full-length cDNAs, ESTs, or fragments thereof corresponding to one of the 30 nucleotide sequences of the present invention, or selected at random from a cDNA library relevant to the present invention, are arranged on an appropriate substrate, e.g., a glass slide. The cDNA is fixed to the slide using, e.g., UV cross-linking followed by thermal

and chemical treatments and subsequent drying. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645.) Fluorescent probes are prepared and used for hybridization to the elements on the substrate. The substrate is analyzed by procedures described above.

5 **VIII. Complementary Polynucleotides**

Sequences complementary to the HTMPN-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring HTMPN. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments.

10 Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of HTMPN. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the HTMPN-encoding

15 transcript.

IX. **Expression of HTMPN**

Expression and purification of HTMPN is achieved using bacterial or virus-based expression systems. For expression of HTMPN in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express HTMPN upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG).

25 Expression of HTMPN in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding HTMPN by either homologous recombination or bacterial-mediated transposition involving transfer plasmid

30 intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection

of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E. K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, HTMPN is synthesized as a fusion protein with, e.g., 5 glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following 10 purification, the GST moiety can be proteolytically cleaved from HTMPN at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are 15 discussed in Ausubel (1995, supra, ch 10 and 16). Purified HTMPN obtained by these methods can be used directly in the following activity assay.

X. Demonstration of HTMPN Activity

Given the chemical and structural similarity between the HTMPN and other members of the transmembrane protein families, HTMPN is identified as a new member of 20 the membrane spanning proteins and is presumed to be involved in the regulation of cell growth. To demonstrate that increased levels of HTMPN expression correlates with decreased cell motility and increased cell proliferation, expression vectors encoding HTMPN are electroporated into highly motile cell lines, such as U-937 (ATCC CRL 1593), HEL 92.1.7 (ATCC TIB 180) and MAC10, and the motility of the electroporated 25 and control cells are compared. Methods for the design and construction of an expression vector capable of expressing HTMPN in the desired mammalian cell line(s) chosen are well known to the art. Assays for examining the motility of cells in culture are known to the art (cf Miyake, M. et al. (1991) J. Exp. Med. 174:1347-1354 and Ikeyama, S. et al. (1993) J. Exp. Med. 177:1231-1237). Increasing the level of HTMPN in highly motile cell 30 lines by transfection with an HTMPN expression vector inhibits or reduces the motility of these cell lines, and the amount of this inhibition is proportional to the activity of HTMPN in the assay.

Alternatively, the activity of HTMPN may be measured using an assay based upon the property of MPs to support *in vitro* proliferation of fibroblasts and tumor cells under serum-free conditions. (Chiquet-Ehrismann, R. et al. (1986) Cell 47:131-139.) Wells in 96 well cluster plates (Falcon, Fisher Scientific, Santa Clara, CA) are coated with HTMPN by 5 incubation with solutions at 50-100 µg HTMPN/ml for 15 min at ambient temperature. The coating solution is aspirated, and the wells washed with Dulbecco's medium before cells are plated. Rat fibroblast cultures or rat mammary tumor cells are prepared as described. (Chiquet-Ehrismann, R. et al. *supra*) and plated at a density of 10⁴-10⁵ cells/ml in Dulbecco's medium supplemented with 10% fetal calf serum.

10 After three days the medium is removed, and the cells washed three times with phosphate-buffered saline (PBS), pH 7.0, before addition of serum-free Dulbecco's medium containing 0.25 mg/ml bovine serum albumin (BSA, Fraction V, Sigma Chemical Company, St. Louis, MO). After 2 days the medium is aspirated, and 100 µl of [³H]thymidine (NEN) at 2 µCi/ml in fresh Dulbecco's medium containing 0.25 mg/ml 15 BSA is added. Parallel plates are fixed and stained to determine cell numbers. After 16 hr, the medium is aspirated, the cell layer washed with PBS, and the 10% trichloroacetic acid-precipitable radioactivity in the cell layer determined by liquid scintillation counting (normalized to relative cell numbers; Chiquet-Ehrismann, R. et al. *supra*). The amount of 20 radioisotope-labeled DNA incorporated into chromatin under serum-free conditions is proportional to the activity of HTMPN.

Alternatively, HTMPN, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data 25 obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.

XI. Functional Assays

HTMPN function is assessed by expressing the sequences encoding HTMPN at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned 30 into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include pCMV SPORT (Life Technologies) and pCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter.

5-10 μ g of recombinant vector are transiently transfected into a human cell line, preferably of endothelial or hematopoietic origin, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish 5 transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP, and to evaluate properties, for example, their apoptotic state. FCM 10 detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in 15 expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M. G. (1994) Flow Cytometry, Oxford, New York NY.

20 The influence of HTMPN on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding HTMPN and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either 25 human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding HTMPN and other genes of interest can be analyzed by northern analysis or microarray techniques.

XII. Production of HTMPN Specific Antibodies

30 HTMPN substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) *Methods Enzymol.* 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard

protocols.

Alternatively, the HTMPN amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, *supra*, ch. 11.)

Typically, oligopeptides 15 residues in length are synthesized using an ABI 431A Peptide Synthesizer (Perkin-Elmer) using fmoc-chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, *supra*.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide activity by, for example, binding the peptide to plastic, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XIII. Purification of Naturally Occurring HTMPN Using Specific Antibodies

Naturally occurring or recombinant HTMPN is substantially purified by immunoaffinity chromatography using antibodies specific for HTMPN. An immunoaffinity column is constructed by covalently coupling anti-HTMPN antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.

Media containing HTMPN are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of HTMPN (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/HTMPN binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and HTMPN is collected.

XIV. Identification of Molecules Which Interact with HTMPN

HTMPN, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent (See, e.g., Bolton et al. (1973) Biochem. J. 133:529). Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled HTMPN, washed, and any wells with labeled HTMPN complex are assayed. Data

obtained using different concentrations of HTMPN are used to calculate values for the number, affinity, and association of HTMPN with the candidate molecules.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and 5 spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following 10 claims.

Table 1

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
1	80	151831	T1R1P1.B02	153831 (T1R1P1.B02), 27007411II (OVARTUT01), 881348R1 (T1YRN01T02), 18565988F6 (PROSNOT18)
2	81	350629	LVENNOT01	350629 and 35062916 (LVENNOT01), 3499109H1 (PROSTUT13)
3	82	729171	LJUNGNO103	729171 and 729171R6 (LJUNGNO103), 16453431II (HEARFET01), 680519X1 (UTRSNOT02), 6255051R6 (PGANNO101), 1459466F1 (COL.NNFET02), 1225759T1 (COL.NNOT01), 2590326H1 (LJUNGNOT22), 2807811II (BLADTUT08)
4	83	1273641	TESTTUT02	1273641 and 1273641F6 (TESTTUT02), 1308181I6 and 1308181F1 (COLNFE102), 1427606F1 (SINTBST01), 756171H1 (BRAITUT02), 2416518F6 (HNT3AZT01), 4242346H1 (SYNNWDIT01)
5	84	1427389	SINTBST01	1427389 (SINTBST01), 3097151H1 (CERVNOT03), 723779R1 (SYNOOAT01)
6	85	14563357	COLNFFET02	1458357 (COLNFFET02), SAOA01955F1, SAOA01346F1, SAOA03356F1, SAOA00213F1
7	86	1482837	CORPNOT02	1482837 and 1482837T6 (CORPNOT02), 8694531II (LUNGAST01), 3564972F6 (SKUNNOT05), 6633983H1 (SCORNNOT01), 1315073F6 (BLADTUT02), 3809242H1 (CONTTUT01), 311459T6 (LJUNGNOT02), 1798893F6 (COLNNNOT27)
8	87	1517434	PUNCTUT01	1517434 (PUNCTUT01), 2848842H1 (BRSTTUT13), 586843X1 (UTRSNOT01), 1261245R1 (SYNORAT05), 1554505F1 (BLADTUT04)
9	88	1536052	SPLNNNOT04	1536052 and 1531447T6 (SPLNNNOT04), 1729124T6 (BRSTTUT08)
10	89	1666118	BRSTNOT09	1666118 (BRSTNOT09), 907075R2 (COL.NNOT08), 1524914T1 (UCMC15T01), 1283459F6 (COL.NNOT16)
11	90	1675560	BLADNO105	1675560 and 167556U76 (BLADNOT05)
12	91	1687323	PROSTUT10	1687323 and 1687323F6 (PROSTUT10), 2292356R3 (BRAINON01)
13	92	1692236	PROSTUT10	1692236 (PROSTUT10), 2786557F6 (BRSTNOT13), 602869R6 and 602869T6 (BRSTTUT01), 2258230II (OVARTUT01), 780083T1 (MYOMNOT01), 2057230T6 (BEPINOT01), 288105R1 (EOSHIET02)
14	93	1720847	BLADNOT06	1720847, 1722250F6, and 1722250T6 (BLADNOT06)

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
15	94	1752821	1.IVRUTU101	1752821 (1.IVRUTU01), 31803281II (1.IYINOT01), 196945716 (BRSTNOT04), 26085041II (BONTNOT01), 24556881'6 and 24556881'6 (ENDANOT01), 1816354F6 (PROSNOT02)
16	95	1810923	PROSTUT12	1810923 and 1810923T6 (PROSTUT12), 3221260H1 (COLNNON03)
17	96	1822315	GBLATUT01	1822315 (GBLATUT01), 1841726H1 (COLNNOT07), 159858216 (BLADNO1'03), 1264125R1 (SYNORAT05), 645048H1 (BRSTTU1'02), 1474782H1 (LUNGUTU03), 352739F1 (LVENNNOT01), 876001RI (LUNGAST01)
18	97	1877777	LEUKNOT03	1877777 (LEUKNOT03), 1219656H1 (NEUTGIMT01), 1471553T1 (LUNGUTU03)
19	98	1879819	I.EUKNOT03	1879819 (I.EUKNOT03), 1734538H1 (COLNNOT22), 1428615F6 (SINTBTS01), 3558710H1 (LUNGNOT31), 1996096R6 (BRSTTU1'03)
20	99	1912945	COLNNOT16	1932945 (COLNNOT16), 2383333II (ISL1NOT01), 2706050F6 (PONSAZT01),
21	100	2061026	OVARNOT03	2061026 (OVARNOT03)
22	101	2096687	BRAITUT02	2096687 (BRAITUT02), 2204640II (SPLNFET02)
23	102	2100530	BRAITUT02	2100530 (BRAITUT02), 2740969F6 (BRSTTUT14)
24	103	2357636	LUNGNOT20	2357636 (LUNGNOT20), 2693537H1 (LUNGNOT23), 1794235T6 (PROSTUT05), 235425R6 (SINTNOT02), 760091RI (BRAITUT02), 887877RI (PANCNOT05)
25	104	2365230	ADRENOT07	2365230 (ADRENOT07), 2921195H1 (SININOT04)
26	105	2455121	ENDANOT01	2455121 and 2455121F6 (ENDANOT01)
27	106	2472514	THPINOT03	2472514 (THPINOT03), 3212904H1 (BLADNOT08)
28	107	2543486	UTRSNOT11	2543486 (UTRSNOT11), 2374764II (ISL1TNOT01), 1359576II (LUNGNOT12), 1357170II (LUNGNOT09)
29	108	2778171	OVARTU103	2778171 (OVARTUT03), 1822045H1 (GBLATUT01), 1692535F6 (COLNNOT23), 1905275F6 (OVARNOT07)

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
30	109	2799575	PtINC.NCNOT01	2799575 (PtINC.NCNOT01), 874115H1 (LUNI;AS'01), 967837R1 (BRSTNOT05), 323524816 and 3235248F6 (COLNUC'103)
31	110	2804955	BLADTUT08	2804955 (BLADTUT08), 732534H1 (LUNGNOT03), 402168R1 (TMLR3DT01), 3481814H1 (KIDNNOT131), 1485989F1 (CORPNOT02)
32	111	2806395	BLADTUT08	2806395 (BLADTUT08), 1579109H1 (DUODNOT01), 1533572F1 (SPLNNNOT04), 1889837F6 and 1889837T6 (BLADTUT07), 2414178F6 (HNT3AZT01)
33	112	2836858	TLYMNOT03	2836858 and 2836858CT1 (TL.YMNNOT03), 2127516H1 (KIDNNNOT05)
34	113	2844513	DRGLNOT01	2844513 and 2844513T6 (DRGLNOT01), 388885T6 (THYMNOT02), 287344F1 (EOSHET02), 3867626H1 (BMARNOT03)
35	114	3000380	TLYMNOT06	3000380 (TLYMNOT06), 1930658H1 (COL.NTUT03), 2395295F6 (T1PI1AZT01), 1242456R6 (LUNGNOT03)
36	115	182532	PLACNOB01	062374H1, 062962R6, 064457R6, and 182532H1 (P1.ACNOB01), 3144248X12F1 (HNT2AZS07)
37	116	239589	HIPONOT01	239589H1 and 239589X13 (HIPONOT01), 264805R6 (HNT2AGT01), 552683X17 (SCORNOT01), 1595053F1 (BRAINOT14)
38	117	1671302	BMARNO'03	399804H1 (PITUNOT02), 1458549H1 (COL.NFET02), 1671302F6 and 1671302H1 (BMARNOT03), 2093453R6 (PANCNOT04), 2498385F6 and 2498385T6 (ADRETUT05)
39	118	2041858	HIPONON02	063184R1 (PLACNOB01), 1294823F1 (PGANNY)'03, 1303974F1 (P1.ACNOT02), 1648770F6 (PROSTUT09), 2041858H1 (HIPONON02)
40	119	2198863	SPLNFET02	1880470F6 (LEUKNOT03), 1888946F6 (BLADTUT07), 2198863F6 and 2198863H1 (SPLNFET02)
41	120	3250703	SEMVNNOT03	1317728H1, 1318433H1, 1319354H1, 1319380F1, 1320494H1, and 1320812F1 (BLADNOT04), 3247874H1, 3249188H1, 3249385H1, and 3250703H1 (SEMVNNOT03)
42	121	350287	I.VENNNOT01	062018F1 (PLACNOB01), 350287H1 (LVENNOT01), 869320R1 (LUNGAS'10), 1416927H6 (BRAINOT12), 3083789H1 (OVARTUN01)
43	122	1618171	BRAITUT12	1618171F6 and 1618171H1 (BRAITUT12), 3316315F6 (PROSBPT03)

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
44	123	1625863	COLNP011	1625863H1 and 1625863T6 (COLNP011), 2100364R6 (BRAITUT02)
45	124	1638353	UTRSNO106	1638353H1 (UTRSNO106), 3733085H1 (SMCCNOS01), 3882774T6 (SPLNNNOT11), 1626195T6 (COLNPOT01), 1495745H1 (PROSNON01)
46	125	1726843	PROSNOT14	826000T1 (PROSNOT06), 1726843F6 and 1726843H1 (PROSNOT14), 2225762F6 (SEMVNNOT01), 2480248H1 (SMCANOT01), 2600692F6 (UTRSNOT10), 2728257F6 (OVARTUT05)
47	126	1754506	1.IVR'UT101	907854R2 (COLINNOT09), 1354345F1 (IUNGNOT09), 1359472F1 (LUNGNOT12), 1397284F1 (BRAITUT08), 1557921F1 (BLADUT104), 1754506i6 and 1754506H1 (LIVRTUT01)
48	127	1831378	THPIAZT01	441541R1 (MPHGNNOT03), 712292R6 (SYNORAT04), 1311835F1 (COLNFET02), 1555765F6 (BLADUT104), 1831378H1 (THPIAZT101), 1865502F6 (PROSNOT19), 3077521H1 (BONEUNT01), 3555043H1 (SYNONOT01), 3774618H1 (BRSTNOT25)
49	128	1864943	PROSNOT19	714070F1 (PROSTUT01), 736327R1 (TONSNOT01), 1864943H1 (PROSNOT19), 2672921F6 (KIDNNNOT19)
50	129	1911316	CONNUTU01	777070F1 (COLNNNOT05), 1911316H1 and 1911316T6 (CONNUTU01)
51	130	1943120	HIPONOT01	1516263F1 (PANCTUT01), 1943120J1 (HIPONOT01), 2469009F6 (THYRNNOT08), 2522459F6 (BRAITUT121), 3202972T5 (PENCNOT102), 4383679H1 (BRAVUTT02)
52	131	2314236	NGANNNOT01	2314236H1 (NGANNNOT01), 2812085i6 (OVARNOT10), 3949704T6 (DRGCNOT01)
53	132	2479409	SMCANOT01	2479409F6 and 2479409H1 (SMCANOT01)
54	133	2683149	SINIUCT01	760389H1 (BRAITUT02), 1634372F6 (COLNNNOT19), 1695052F6 (COLNNNOT123), 1736429F6 (COLNNNOT22), 2048429F6 (LIVRFET02), 2683149H1 (SINIUCT01), 3282234F6 (STOMFET02)
55	134	2774051	PANCNOT15	1852505F6 (LUNGIFET03), 2774051F6 and 2774051H1 (PANCNOT15)
56	135	2869038	THYRNOT10	536017R6 (ADRENOT03), 2770632F6 (COLANOT02), 2795420F6 (NPOLNOT01), 2869038F6 and 2869038H1 (THYRNOT10), 3323992H1 (PTHYNNOT03)
57	136	2918334	THYMIFET03	2918334H1 (THYMFET03), SBNA01788F1

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
58	137	2949916	KIDNFFET01	2949916H1 (KIDNFFET01), SBMA00738F1
59	138	2989375	KIDNFFET02	437481R6 and 437481T6 (THYRNTO01), 2989375H1 (KIDNFFET02)
60	139	3316764	PROSBP'T03	1328462F1 (PANCNOT07), 1691807F6 (PROSTUT10), 1851237F6 (LUNGFTT03), 3316764H1 (PROSIBP'T03), 5092348H1 (UTRSTM01)
61	140	3359559	PROSTUT'16	943684 and 943564 (ADRENTO03), 1697079F6 (COLNNOT23), 2717735H1 (TIYRNTO09), 2792705H1 (COLNTUT16), 3359559H1 (PROSTUT16)
62	141	4289208	BRABDIRO1	3990421R6 (LUNGNON03), 4289208H1 (BRABDIR01)
63	142	2454013	ENDANOT01	014571R1 (THPIPLB01), 1303790T1 (PLACNOT02), 1342791T1 (COLNTUT03), 1351680F1 (LATRTUT02), 1359607T1 (LUNGNOT12), 2454013F6 and 2454013H1 (ENDANOT01)
64	143	2454048	ENDANOT01	551329R1 and 2056675R6 (BEPINOT01), 819281R1 (KERANO102), 2454048H1 (ENDANOT01), 3143588H1 (HNT2AZS07)
65	144	2479282	SMCANO'01	873307R1 (LUNGAST01), 2479282H1 and 2479282T6 (SMCANOT01), 2610082F6 (COLNTUT15), SANAO3636F1
66	145	2483432	SMCANO'01	940455T1 (ADRENTO03), 1863558T6 (PROSNOT19), 2483432H1 (SMCANOT01), 2641345H1 (LUNGUTU08), 32450891H6 (BRAINNO119), SBCA0276SF1
67	146	2493824	ADRETUT05	489685F1 (HNT2AGT01), 530794H1 (BRAINNO103), 735826R1 (TONSNOT01), 2056809R6 (BEPINO101), 2493824H1 (ADRETUT05), 2763162F6 (BRSTNOT12), 2812426H1 (OVARNO110)
68	147	2555823	THYMNNOT03	1266972F6 (BRAINNO109), 1335461T1 (COLNNOT13), 1900947F6 (BLADTUT06), 1942256T6 (HIPONOT01), 2555823H1 (TIYMNNOT03), SARBO1019F1, SARBO1303F1
69	148	2598242	OVAIUT02	320268F1 (EOSHET02), 738915R1 (PANCNOT04), 1250161F1 (LUNGFTT03), 2598242F6 and 2598242H1 (OVARUT02), 5020793H1 (OVARNON03), SASAO0178F1
70	149	2634120	COLNTUT15	1398694F1 (BRAITUT08), 1506594F1 (BRAITUT07), 2120954F6 (BRSTNOT07), 2634120F6 and 2634120H1 (COLNTUT15), 2761586H1 (BRAINOS12), 2806841F6 (BLADTUT08)

Table 1 (cont.)

Protein SEQ ID NO:	Nucleotide SEQ ID NO:	Clone ID	Library	Fragments
71	150	2765411	BRSTN0112	27652361F6 and 276541H11 (BRSTN0112), 405821H11 (SP1 NNC)1'13)
72	151	2769412	COLANOT02	1715480F6 (UCMCNO102), 2769412H1 (COLANOT02), SBDΛ04076F1
73	152	2842779	DRG1.NC0101	126271H1 (SYNORAT05), 1710449F6 (PROSN0116), 2842779F6 (DRG1.NC0101), 2842779H1 (DRGLNC0101), 2850941F6 (BRSTTUT13), 3123378H1 (1.NODDN0105), 3457873H1 (293)H1'1701, SBOA04623F1, SAOA02667F1
74	153	2966260	SCORN0704	530242H1 (BRAINNOT03), 2113607H1 (BRAITUT03), 2125619F6 (BRSTNOT07), 2155349H1 and 2156022H1 (BRAINNOT09), 2966260F6, 2966260H1, and 2966260T6 (SCORN0104), 3270731H1 (BRAINOT20), 3272328F6 (PROSBPT06)
75	154	2993326	KIDNFET02	190217F1 (SYNORAB01), 815990R1 and 815990T1 (OVARTU01), 2993326H1 (KIDNFET02), 3629860H1 (COLNNNOT138)
76	155	3001124	TLYMN0706	212334716 (BRSTNOT07), 3001124H1 (TLYMN0706), SBEA07088F3
77	156	3120070	LUNGUT13	021565F1 (ADEININB01), 144798R1 (TLYMN0R01), 1216676H1 (BRSTTUT01), 2024357H1 (KERANOT02), 2616322H1 (GBLANOT01), 2742604H1 (BRSTTUT14), 2746025H1 (LUNGUT11), 29246884H1 (SININOT04), 3120070H1 (1.JNGTUT13)
78	157	3133035	SMCCNOT01	1478001F1 and 1482667H1 (CORPNOT02), 2812193F6 and 2812193T6 (OVARNOT01), 3133035H1 and 3133035T6 (SMCCNOT01), 5025075F6 (OVARNON03)
79	158	3436879	PENCNOT05	3323031F6 (PTHYNOT03), 3436879H1 (PENCNOT05), 4247733H1 (BRABDIT01)

Table 2

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
1 2410	S233 S159 T1194 I143 T177 I129 T134 S171	N73 N101 N1167	S133-G136 L198-I219	Somatostatin receptor tyrosine kinase	BLAST, BLOCKS, HMM	
2 100	S6 S64			Meningiomata-expressed antigen 11	BLAST, PRINTS, HMM	
3 416	S14 S62 T109 T177 T340 S365 S380 S6 I7 T205 S327 T331 Y56	N144 N277		PMP-22/EMP/MP20 family	BLOCKS, PRINTS, HMM	
4 224	T31 T57 S86 S173 S214			B cell growth factor	BLAST	
5 247	S103 T60 S1113 S235			5-hydroxytryptamine receptor	PRINTS	
6 72				Frizzled protein	PRINTS, HMM	
7 106	S97 S9 S24 I131			Dopamine 2 receptor	BLAST, PRINTS, HMM	
8 239	S233	N230		PB39 protein	BLAST, HMM	
9 150	S53 S111 T127			CD44 antigen precursor	PRINTS, HMM	
10 110	S12	N92		Anion exchanger	BLOCKS, PRINTS, HMM	
11 58		N5 N9		Neurofibromatosis type 2	BLAST, PRINTS, HMM	
12 221	S35 S178 S60 S183			mitsugumin 23	BLAST, HMM	

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
13	262	T33 S94 S150 T1225 T1245 Y114 S22 T30 T57 S137 T201 S207 T230	N104		C5-a-anaphylatoxin receptor	PRINTS, HMM
14	90	S67 T52	N121		Frizzled protein	PRINT'S, HMM
15	208	T119 T123 T132 S56 S142			Rieske iron-sulphur protein	BLOCKS, PRINTS, HMM
16	97	S61 T2			Endothelin B receptor	PRINTS, HMM
17	243	S82 T104 S168 T181 S6 S99 T195 Y24			Thromboxane receptor	PRINTS, HMM
18	162	S26	N6		G protein-couple receptor	BLOCKS, PRINTS, HMM
19	470	S285 S29 T136 S145 T167 T168 S199 S236 S249 T401 S172 S209 S254 T264 S335 T385	N118 N298 N466	R306-D308	Molluscan rhodopsin C-terminus	PRINTS, HMM
20	144	S42 S21 T72	N30 N36		Lysosome-associated membrane protein	PRINT'S, HMM
21	221	S75 T82		S151-G154	Glycoprotein hormone receptor	BLAST, PRINTS, HMM
22	688	T60 T186 T103 T298 S405 S484 S488 S492 S494 S498 S499 S503 S584 S601 S611 S647 T663 T109 T188 T284 T315 S324 S347 T402 T573 S643 T658 T681 Y118	N198 N576 N577 N582	S5-G8 A80-N140	Ring3	BLAST, PRINTS

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Glycosylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
23	439	T75 S125 T397 S394 S424 S210 S435	N227		S365-G368	Prestanoid I; P3 receptor	BLOCKS, PRINTS
24	192	S20 S44	N68			PMP-22/EMP/MP20 family	BLOCKS, PRINTS, HMM
25	175	T171 T43 S136 T7				Progesterone receptor	PRINTS
26	91	S34 S19 S29				Similar to mouse dishevelled-3(Dvl-3).	BLAST, BLOCKS, PRINTS, HMM
27	214	T34 S83 T118 T152 S17				Somatostatin receptor tyrosine kinase	BLOCKS, PRINTS, HMM
28	250	S64 S132 T154				Sec22 homolog	BLAST, HMM
29	84	T80 T3 S76				DPM2 protein	BLAST, HMM
30	277	T140 S217 S19 S85 T129				Somatomedin B domain protein	BLOCKS, PRINTS, HMM
31	273	S64 S4 S114 S179 S256 S14 T167 T218	N187			Anion exchanger family	BLOCKS, PRINTS, HMM
32	524	T190 S5 T131 S148 S171 S262 S275 T302 S356 S404 S473 S177 S207 T492	N152 N471 N501 N513	1,46-1,67		G protein-coupled receptor	BLOCKS, PRINTS, HMM
33	257	S48 S52 S55 T64 S82 T90 S96 T97 S123 T129 T144 S192 S224 T227 S250	N98 N187			Nucleoporin p62 homolog	BLAST
34	274	S16 T84 S249 S56 S113	N234			Molluscan rhodopsin C-terminus	PRINTS

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
35	281	S52 T150 S165 S263 Y48 S116 T167 T226 I241		G125-S132 S185-G188	ABC-2 type transport protein	BLOCKS, PRINTS, HMM
36	335	S96 T113 T131 T308 T14 T146 I292 S302 S312 T317 Y258	N104 N111 R127 to G129	E296 to A307	Pregnancy-specific beta 1-glycoprotein 4 precursor	Blast, BLOCKS, PRINTS, Motifs
37	280	T41 S102 T135 S148	N35 N53 N127	T56 to Y70	Lysosomal membrane glycoprotein-type A precursor	Blast, BLOCKS, PRINTS, Motifs
38	210	S50 S143 S151 S63 S107 S153			Butyrophilin	Blast
39	279	T90	N66 N171		Plasma membranc glycoprotein C1G30	Blast
40	154	T75 S121 S48 S58 T112 Y84 Y90		G101 to G122 V115 to F130	Pathogenesis-related protein PR-1	Blast, BLOCKS, PRINTS
41	582	S160 S255 T256 S291 S292 S316 S351 S352 S411 S412 S471 S472 T485 S533 T559 S79 T93 S96 S151 S231		G520 to S527	scmenogelin II	Blast, Motifs
42	71	S17 T45 T50		M1 to T50 P5 to C29	Integral membrane protein	BLOCKS, PRINTS
43	102	T44 S33 T75		TM4SF		BLOCKS, PRINTS, HMM
44	226	S60 T3 T4 S85 T169	N46 N82 N83	I184 to R205 G128 to Q152 Y179 to Y201	Cation-dependant mannose transporter protein	PRINTS, HMM

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
45	154	T145 T148 S33 T134 T141 S152		M1 to A22 P56 to M78 P58 to M82 1.91 to S110 1.109 to 1.125	Frizzled protein	PRINTS, HMM
46	167	S154 S3 T25 T29 T126 S140		E72 to F103	GPCR	BLOCKS, PRINTS, HMM
47	545	T257 S513 S10 T11 S47 S166 S408 S495	N8 N406	E376 to K410	Human secreted protein K660 variant	Blast, BLOCKS, PRINTS, HMM
48	570	T529 S128 S130 T184 T235 T161 S293 Y199	N27 N61 N75 N87 N264	V296 to C309 F321 to F332	GPCR	Blast, BLOCKS, PRINTS, HMM
49	127	S24 T118		N10 to G30	Anion exchanger	PRINTS, HMM
50	152	T49 S16		L78 to L99 1.85 to L106 V47 to Y63 Y45 to V94	TM4SF GNS1/SUR4 family	BLOCKS, HMM, Motifs
51	777	T48 S66 S162 T268 S272 T322 T355 S393 S471 S559 S574 S624 S660 S700 T742 S750 S11 T12 S196 S346 T400 S423 T493 T579 T582 S599 S723	N64 N205 N470 N706	T20 to D34 R122 to L132 L598 to 1.619 D331 to L349 R565 to T582	pecanex protein	Blast, PRINTS, Motifs
52	108	S52 T31 T105		L76 to Y92	GNS1/SUR4 family	BLOCKS, PRINTS, PROFILESCAN
53	66	S4 S35	N2	F22 to G58	NP2 protein	Blast, BLOCKS, PRINTS, HMM

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
54	S40	S135 S149 T527 I82 T94 T177 S441	N50 N92 N160 N334 N395	S115 to C118 L295 to L308 L490 to L518	I.IV-I protein	Blast, PRINTS, HMM, Motifs
55	87	T4 S13 S37 S68 S69		146 to 1.82	calveolin	BLOCKS, HMM
56	100	S94		17 to N34 G8 to I'21 K65 to N91 T78 to C97	ammonium ion transporters	BLOCKS, PRINTS, HMM
57	58	T43			shox protein	BLAST, HMM
58	61	S51 S58 S42		R2 to L23	carboxyl ester lipase	Blast, PRINTS, HMM
59	50	S9		C33 to W45 C11 to L40	Lipoxygenase; growth factor and cytokines receptor family	BLOCKS, PRINTS, HMM, Motifs
60	310	T46 T156 S301 T81 S108 S166 S305		A153 to S166	C4 methyl-sterol oxidase	Blast, PRINTS, HMM
61	160	S114		L71 to W84 Y 43 to T154	C5Δ-anaphylatoxin receptor	Blast, BLOCKS, PRINTS, HMM
62	35			K11 to M34	steroid hormone receptor	PRINTS
63	323	T92 S105 S182 T263 S301 S271	N90	M1-G31 Signal Peptide M1-A27 Signal Peptide I.234-I.254 TM Protein	Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
64	129	T112 T117 S5 S54		M1-G27 Signal Peptide M1-G27 Signal Peptide I81-V100 TM Prot.	Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM
65	461	I56 T41 S47 T56 T127 S146 S147 S197 S198 T407 S8 S47 T51 T284 T341 T407	N193 N236		Signal Peptide Containing Transmembrane Protein	Motifs
66	264	S243 T264 S33 I'211 S260 S22 S243 S260	N172 N250	M1-A17 Signal Peptide M1-S22 Signal Peptide L173-Y195 TM Prot. M1-L21 TM Prot. L25-R30 Prot. Splicing	Protein Splicing Protein	Motifs SPScan HMM BLOCKS
67	339	T99 S119 S157 S166 S321 T54 S55 T77 S149 S211 S279 T336 Y105	N172	M1-G30 Signal Peptide M1-C26 Signal Peptide L176-L194 TM. Prot.	Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM
68	397	S104 T148 T166 T259 S303 S317 T127 T191 S302		G202-S209 ATP/GTP binding I.10-L.31 I. leucine zipper D106-I.108 Ca binding S367-L384 Signal Peptide M1-G29 Transmemb. Prot.	Gene Regulatory Protein	Motifs SPScan BLAST HMM
69	301	T7 S52 S100 S133 S239 T155 T206	N162 N211	V12-A32 TM. Prot. V282-G300 TM. Prot. L59-V64 aa tRNA ligase	Aminoacyl tRNA ligase	Motifs HMM BLOCKS
70	217	S8 S142 T112 T197		W73-I99 TM. Prot.	Cell Proliferation Protein	Motifs HMM

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Glycosylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
71	143	S81 T120 S139 S116			M1-C26 Signal Peptide M1-R25 Signal Peptide M1-V22 TM Prot.	Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM
72	186	T50 S132 T151 S116 Y43	N29 N104		M1-S25 Signal Peptide M1-S31 Signal Peptide F9-T28 TM Prot. A27-G89 T-cell receptor interacting molecule	T-cell Receptor Interacting Molecule	Motifs SPScan HMM BLAST
73	364	S172 S213 S243 S302	N229		L234-L255 L-cysteine zipper M1-Q28 Signal Peptide I151-I170 TM Prot. L72-E92 TM Prot.	Gene Regulatory Protein	Motifs SPScan HMM
74	605	S46 T54 S108 S129 S195 S220 S231 T254 T261 S316 S440 S472 S536 S560 T124	N106 N193 N395 N480		M1-A32 Signal Peptide V494-I515 TM. Prot. I17-E36 TM Prot.	2-Membrane Spanning Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM
75	97	T2 S87			M1-G26 Signal Peptide M1-Q23 Signal Peptide V35-M54 TM. Prot. I11-I34 TM Prot.	2-Membrane Spanning Signal Peptide Containing Transmembrane Protein	Motifs SPScan HMM
76	247	S160 T204 S165			F72-I90 Transmemb. Prot. L45-T64 T-transmemb. Prot.	2-Membrane Spanning Signal Peptide Containing Transmembrane Protein	Motifs HMM

Table 2 (cont.)

SEQ ID NO:	Amino Acid Residues	Potential Phosphorylation Sites	Potential Glycosylation Sites	Signature Sequence	Identification	Analytical Methods
77	193	S60 S67		M1-D26 Signal Peptide M1-A31 Signal Peptide M80-M104 TM Prot. R109-Y129 TM Prot. S67-L108 PMP-22 Y149-Y176 PMP-22 N150-A159 Trehalase	Peripheral Myelin Protein 22	Motifs SPScan HMM BLOCKS
78	128	S30 S30 S50	N71 N84 N91	N126-L128 microbodies targeting motif	Microbody Protein	Motifs
79	115	S109		M1-S16 Signal Peptide M1-T24 Signal Peptide M1-W19 TM Prot. V27-Y46 TM Prot. V5-V15 G Prot. Receptor	G Protein Receptor	Motifs SPScan HMM PRINTS

Table 3

Nucleotide SI:Q ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
80	Reproductive (0.321) Cardiovascular (0.143) Gastrointestinal (0.134)	Cancer (0.527) Inflammation (0.232) Fetal (0.170)	pBLUESCRIPT
81	Cardiovascular (0.500) Gastrointestinal (0.250) Other (0.250)	Cancer (0.500) Fetal (0.250) Other (0.250)	pBLUESCRIPT
82	Reproductive (0.260) Cardiovascular (0.220) Gastrointestinal (0.120)	Cancer (0.500) Inflammation (0.180) Fetal (0.160)	pSPORT 1
83	Nervous (0.400) Gastrointestinal (0.300) Developmental (0.100)	Cancer (0.500) Inflammation (0.300) Fetal (0.200)	pINCY 1
84	Reproductive (0.266) Gastrointestinal (0.141) Cardiovascular (0.125)	Cancer (0.469) Inflammation (0.250) Fetal (0.195)	pINCY 1
85	Reproductive (0.750) Developmental (0.250)	Cancer (0.750) Fetal (0.250)	pINCY 1
86	Reproductive (0.250) Cardiovascular (0.143) Nervous (0.143)	Inflammation (0.321) Trauma (0.286) Cancer (0.250)	pINCY 1
87	Reproductive (0.368) Developmental (0.158) Cardiovascular (0.105)	Cancer (0.421) Fetal (0.368) Inflammation (0.211)	pINCY 1
88	Hematopoietic/Immune (0.417) Cardiovascular (0.250) Reproductive (0.167)	Inflammation (0.417) Cancer (0.333) Fetal (0.167)	pINCY 1
89	Cardiovascular (0.220) Nervous (0.171) Reproductive (0.122)	Cancer (0.463) Inflammation (0.195) Trauma (0.171)	pINCY 1
90	Gastrointestinal (0.200) Reproductive (0.200) Urologic (0.200)	Cancer (0.500) Inflammation (0.300) Other (0.100)	pINCY 1

Table 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
91	Reproductive (0.306) Cardiovascular (0.204) Nervous (0.122)	Cancer (0.510) Inflammation (0.204) Fetal (0.143)	pINC'Y 1
92	Reproductive (0.227) Hematopoietic/Immune (0.182) Cardiovascular (0.136)	Cancer (0.432) Fetal (0.273) Inflammation (0.273)	pINCY 1
93	Gastrointestinal (0.375) Reproductive (0.188) Cardiovascular (0.125)	Cancer (0.500) Inflammation (0.250) Trauma (0.125)	pINCY 1
94	Reproductive (0.333) Cardiovascular (0.214) Gastrointestinal (0.143)	Cancer (0.548) Inflammation (0.167) Fetal (0.143)	pINCY 1
95	Cardiovascular (0.231) Gastrointestinal (0.231) Reproductive (0.192)	Cancer (0.500) Inflammation (0.231) Fetal (0.154)	pINCY 1
96	Gastrointestinal (0.208) Cardiovascular (0.167) Reproductive (0.167)	Cancer (0.542) Inflammation (0.292) Other (0.083)	pINCY 1
97	Hematopoietic/Immune (0.341) Reproductive (0.268) Cardiovascular (0.122)	Cancer (0.415) Inflammation (0.415) Fetal (0.195)	pINCY 1
98	Gastrointestinal (0.346) Reproductive (0.231) Hematopoietic/Immune (0.154)	Inflammation (0.462) Cancer (0.385) Fetal (0.115)	pSPORT 1
99	Gastrointestinal (0.400) Developmental (0.200) Nervous (0.200)	Cancer (0.400) Fetal (0.200) Neurological (0.200)	pSPORT 1
100	Reproductive (0.231) Nervous (0.168) Cardiovascular (0.140)	Cancer (0.441) Inflammation (0.231) Fetal (0.133)	pSPORT 1
101	Hematopoietic/Immune (0.225) Reproductive (0.225) Gastrointestinal (0.125)	Cancer (0.475) Inflammation (0.325) Fetal (0.175)	pINCY 1
102	Reproductive (0.333) Gastrointestinal (0.185) Nervous (0.148)	Cancer (0.630) Fetal (0.185) Inflammation (0.111)	pINCY 1

Table 3 (cont.)

Nucleotide SEQ ID No:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
103	Gastrointestinal (0.242) Reproductive (0.182) Developmental (0.121)	Cancer (0.455) Inflammation (0.364) Fetal (0.182)	pINCY 1
104	Gastrointestinal (0.188) Hematopoietic/Immune (0.188) Urologic (0.188)	Inflammation (0.438) Cancer (0.281) Fetal (0.256)	pINCY 1
105	Urologic (0.250) Cardiovascular (0.167) Gastrointestinal (0.167)	Fetal (0.500) Cancer (0.417) Inflammation (0.333)	pINCY 1
106	Hematopoietic/Immune (0.333) Urologic (0.333)	Cancer (0.333) Fetal (0.333) Inflammation (0.333)	pINCY 1
107	Reproductive (0.286) Cardiovascular (0.204) Nervous (0.184)	Cancer (0.592) Fetal (0.143) Inflammation (0.143)	pINCY 1
108	Reproductive (0.231) Gastrointestinal (0.215) Hematopoietic/Immune (0.154)	Cancer (0.462) Inflammation (0.292) Fetal (0.185)	pINCY 1
109	Reproductive (0.304) Cardiovascular (0.261) Gastrointestinal (0.130)	Cancer (0.609) Inflammation (0.174) Trauma (0.087)	pINCY 1
110	Reproductive (0.256) Gastrointestinal (0.186) Hematopoietic/Immune (0.186)	Cancer (0.558) Inflammation (0.349) Trauma (0.070)	pINCY 1
111	Nervous (0.200) Reproductive (0.200) Gastrointestinal (0.175)	Cancer (0.550) Fetal (0.175) Inflammation (0.150)	pINCY 1
112	Developmental (0.222) Endocrine (0.222) Hematopoietic/Immune (0.222)	Cancer (0.222) Inflammation (0.222) Fetal (0.222)	pINCY 1
113	Hematopoietic/Immune (0.267) Nervous (0.200) Gastrointestinal (0.133)	Cancer (0.467) Trauma (0.267) Inflammation (0.200)	pINCY 1
114	Hematopoietic/Immune (0.304) Gastrointestinal (0.130) Nervous (0.130)	Inflammation (0.391) Cancer (0.304) Fetal (0.130)	pINCY 1

Table 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
115	Developmental (0.333) Cardiovascular (0.167) Dermatologic (0.167)	Fetal (0.667) Inflammation (1.500)	pBI.UESCRIFT
116	Nervous (0.478) Gastrointestinal (0.130) Hematopoietic/Immune (0.130)	Cancer (0.565) Fetal (0.217) Inflammation (0.217)	pBI.UESCRIFT
117	Reproductive (0.222) Hematopoietic/Immune (0.200) Nervous (0.156)	Cancer (0.422) Inflammation (0.311) Fetal (0.178)	pINCY
118	Reproductive (0.256) Gastrointestinal (0.148) Nervous (0.125)	Cancer (0.430) Inflammation (0.259) Fetal (0.196)	pSPORT1
119	Reproductive (0.190) Nervous (0.167) Developmental (0.143)	Cancer (0.381) Inflammation (0.333) Fetal (0.262)	pINCY
120	Reproductive (0.800) Urologic (0.100)	Cancer (0.900) Trauma (0.100)	pBI.UESCRIFT
121	Reproductive (0.295) Nervous (0.182) Cardiovascular (0.159)	Cancer (0.455) Inflammation (0.182) Cell Proliferation (0.159)	pINCY
122	Developmental (0.250) Musculoskeletal (0.250) Nervous (0.250)	Cancer (0.500) Cell Proliferation (0.250) Inflammation (0.250)	pINCY
123	Gastrointestinal (0.786) Developmental (0.071) Nervous (0.071)	Cancer (0.500) Inflammation (0.429) Cell Proliferation (0.071)	pINCY
124	Reproductive (0.348) Cardiovascular (0.159) Hematopoietic/Immune (0.130)	Cancer (0.493) Inflammation (0.246) Cell Proliferation (0.145)	pINCY
125	Nervous (0.405) Reproductive (0.324) Cardiovascular (0.108)	Cancer (0.459) Proliferation (0.189) Inflammation (0.108)	pINCY
126	Reproductive (0.275) Nervous (0.231) Gastrointestinal (0.154)	Cancer (0.539) Inflammation (0.220) Cell Proliferation (0.154)	pINCY

Table 3 (cont.)

Nucleotide SEQ ID No:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
127 (0.133)	Reproductive (0.250) Nervous (0.150) Cardiowascular	Cancer (0.517) Cell Proliferation (0.350) Inflammation (0.233)	pINC'Y
128	Nervous (0.333) Reproductive (0.333) Hematopoietic/Immune (0.111)	Cancer (0.593) Inflammation (0.259) Neurological (0.111)	pINCY
129	Hematopoietic/Immune (0.304) Gastrointestinal (0.214) Reproductive (0.196)	Cancer (0.446) Inflammation (0.446) Cell Proliferation (0.161)	pINCY
130	Nervous (0.400) Reproductive (0.300) Endocrine (0.100)	Cancer (0.300) Inflammation (0.300) Cell Proliferation (0.200)	pBLUESCRIPT
131 (0.227)	Reproductive (0.364) Cardiovascular (0.227) Nervous	Cancer (0.545) Inflammation (0.318) Cell Proliferation (0.091)	pSPORT1
132	Cardiovascular (0.667) Nervous (0.333)	Cell Proliferation (1.000) Cancer (0.333)	pINCY
133	Gastrointestinal (0.750) Developmental (0.125) Reproductive (0.083)	Cancer (0.375) Cell Proliferation (0.292) Inflammation (0.250)	pINCY
134	Cardiovascular (0.250) Developmental (0.250) Gastrointestinal (0.250)	Cancer (0.500) Cell Proliferation (0.500) Inflammation (0.250)	pINCY
135	Reproductive (0.250) Nervous (0.208) Endocrine (0.167)	Inflammation (0.417) Cancer (0.208) Trauma (0.167)	pINCY
136	Developmental (0.500) Reproductive (0.500)	Cancer (0.500) Cell Proliferation (0.500)	pINCY
137	Developmental (1.000)	Cell Proliferation (1.000)	pINCY
138 (0.333)	Developmental (0.333) Endocrine (0.333) Gastrointestinal	Cancer (0.666) Fetal (0.333)	pINCY
139	Reproductive (0.538) Developmental (0.154) Gastrointestinal (0.154)	Cancer (0.462) Inflammation (0.231) Cell Proliferation (0.154)	pINCY

Table 3 (cont.)

Nucleotide SEQ ID NO:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
140	Gastrointestinal (0.385) Endocrine (0.231) Reproductive (0.231)	Cancer (0.308) Inflammation (0.308) Cell Proliferation (0.077)	pINCY
141	Nervous (0.500) Cardiovascular (0.167) Gastrointestinal (0.167)	Cancer (0.333) Trauma (0.333) Neurological (0.167)	pINCY
142	Reproductive (0.220) Gastrointestinal (0.155) Nervous (0.152)	Cell Proliferation (0.637) Inflammation (0.312)	pBLUESCRIPT
143	Cardiovascular (0.202) Reproductive (0.190) Gastrointestinal (0.179)	Cell Proliferation (0.583) Inflammation (0.322)	pBLUESCRIPT
144	Reproductive (0.242) Nervous (0.158) Gastrointestinal (0.116)	Cell Proliferation (0.632) Inflammation (0.379)	pINCY
145	Cardiovascular (0.238) Reproductive (0.238) Nervous (0.143)	Cell Proliferation (0.619) Inflammation (0.476)	pINCY
146	Reproductive (0.235) Nervous (0.189) Hematopoietic/Immune (0.131)	Cell Proliferation (0.625) Inflammation (0.348)	pINCY
147	Reproductive (0.191) Hematopoietic/Immune (0.173) Nervous (0.145)	Cell Proliferation (0.582) Inflammation (0.455)	pINCY
148	Reproductive (0.279) Hematopoietic/Immune (0.140) Nervous (0.128)	Cell Proliferation (0.674) Inflammation (0.232)	pINCY
149	Reproductive (0.286) Nervous (0.214) Cardiovascular (0.095)	Cell Proliferation (0.834) Inflammation (0.215)	pINCY
150	Hematopoietic/Immune (0.400) Endocrine (0.200) Gastrointestinal (0.200)	Cell Proliferation (0.200) Inflammation (0.800)	pINCY
151	Hematopoietic/Immune (0.667) Gastrointestinal (0.167) Musculoskeletal (0.167)	Cell Proliferation (0.167) Inflammation (0.667)	pINCY

Table 3 (cont.)

Nucleotide SEQ ID No:	Tissue Expression (Fraction of Total)	Disease Class (Fraction of Total)	Vector
152	Reproductive (0.240) Nervous (0.173) Hematopoietic/Immune (0.133)	Cell Proliferation (0.546) Inflammation (0.360)	pINCY
153	Reproductive (0.308) Nervous (0.231) Gastrointestinal (0.115)	Cell Proliferation (0.883) Inflammation (0.154)	pINCY
154	Nervous (0.455) Reproductive (0.182) Developmental (0.136)	Cell Proliferation (0.682) Inflammation (0.181)	pINCY
155	Reproductive (0.286) Urologic (0.286) Cardiovascular (0.143)	Cell Proliferation (0.857) Inflammation (0.429)	pINCY
156	Reproductive (0.299) Gastrointestinal (0.216) Cardiovascular (0.120)	Cell Proliferation (0.767) Inflammation (0.246)	pINCY
157	Nervous (0.222) Reproductive (0.222)	Cell Proliferation (0.333) Inflammation (0.222)	pINCY
158	Reproductive (0.429) Nervous (0.357)	Cell Proliferation (0.286) Inflammation (0.357)	pINCY

Table 4

Nucleotide SEQ ID No:	Clone ID	Library	Library Comment
80	153831	TIPPI.B02	The TIPPI.B02 library was constructed by reamplification of TIPPI.B01, which was made using RNA isolated from THP-1 cells cultured for 48 hours with 100 ng/ml phorbol ester (PMA), followed by a 4-hour culture in media containing 1 g/ml LPS. TIP-1 (ATCC 'TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
81	350629	LIVENNOT01	The LIVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female, who died from an intracranial bleed.
82	729171	LUNGNOT03	The LUNGNOT03 library was constructed using polyA RNA isolated from nonmalignant lung tissue of a 79-year-old Caucasian male. Tissue had been removed from the upper and lower left lobes of the lung, superior (left paratracheal) and inferior (subclavian) mediastinal lymph nodes, and the right paratracheal region. Pathology for the associated tumor tissue indicated grade 4 carcinoma. Patient history included a benign prostate neoplasm, atherosclerosis, benign hypertension, and tobacco use.
83	1273641	TESTTUT02	The TESTTUT02 library was constructed using polyA RNA isolated from a testicular tumor removed from a 31-year-old Caucasian male during unilateral orchiectomy. Pathology indicated embryonal carcinoma forming a largely necrotic mass involving the entire testicle. Rare foci of residual testicle showed intralobular germ cell neoplasia and tumor was identified at the spermatic cord margin.
84	1427389	SINTBST01	The SINTBST01 library was constructed using polyA RNA isolated from the ileum tissue of an 18-year-old Caucasian female with irritable bowel syndrome (IBS). Pathology indicated Crohn's disease of the ileum, involving 15 cm of the small bowel. Patient history included osteoporosis of the vertebra and abnormal blood chemistry. Family history included cerebrovascular disease and atherosclerotic coronary artery disease.
85	1453357	COLNFEI02	The COLNFEI02 library was constructed using RNA isolated from the colon tissue of a Caucasian female fetus, who died at 20 weeks' gestation from fetal demise. Serology was negative.
86	1482837	CORPNOT02	The CORPNOT02 library was constructed using polyA RNA isolated from diseased corpus callosum tissue removed from the brain of a 74-year-old Caucasian male, who died from Alzheimer's disease. Serologies were negative.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
87	1517434	PANC1U101	The PANC1U101 library was constructed using polyA RNA isolated from pancreatic tumor tissue removed from a 65-year-old Caucasian female during radical subtotal pancreatectomy. Pathology indicated an invasive grade 2 adenocarcinoma. Patient history included osteoarthritis, benign hypertension, atherosclerotic coronary artery disease, an acute myocardial infarction, benign neoplasm in the large bowel, and a cataract disorder. Family history included benign hypertension and atherosclerotic coronary artery disease. Type II diabetes, impaired renal function, and stomach cancer.
88	1536052	SPLNNOT04	The SPLNNOT04 library was constructed using polyA RNA isolated from the spleen tissue of a 2-year-old Hispanic male, who died from cerebral anoxia. Past medical history and serologics were negative.
89	1666118	BRSTNOT09	The BRSTNOT09 library was constructed using polyA RNA isolated from non-tumor breast tissue removed from a 45-year-old Caucasian female during unilateral extended simple mastectomy. Pathology for the associated tumor tissue indicated invasive nuclear grade 2-3 adenocarcinoma in the same breast, with 3 of 23 lymph nodes positive for metastatic disease. There were also positive estrogen/progesterone receptors and uninvolved tissue showing proliferative changes. Patient history included valvuloplasty of mitral valve without replacement, rheumatic mitral insufficiency, rheumatic heart disease, and tobacco use. Family history included acute myocardial infarction, atherosclerotic coronary artery disease, and Type II diabetes.
90	1675560	BLADNOT05	The BLADNOT05 library was constructed using polyA RNA isolated from non-tumorous bladder tissue removed from a 60-year-old Caucasian male during a radical cystectomy, prostatectomy, and vasectomy. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with dysuria. Family history included Type I diabetes, a malignant neoplasm of the stomach, atherosclerotic coronary artery disease, and an acute myocardial infarction.
91	1687323	PROSTUT10	The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2+3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
92	169236	PROSTUT10	The PROSTUT10 library was constructed using polyA RNA isolated from prostatic tumor tissue removed from a 66-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated an adenocarcinoma (Gleason grade 2+3). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Family history included prostate cancer, secondary bone cancer, and benign hypertension.
93	1720847	BLADNOT06	The BLADNOT06 library was constructed using polyA RNA isolated from the posterior wall bladder tissue removed from a 66-year-old Caucasian male during a radical prostatectomy, radical cystectomy, and urinary diversion. Pathology for the associated tumor tissue indicated grade 3 transitional cell carcinoma. The patient presented with prostatic inflammatory disease. Family history included a malignant breast neoplasm, benign hypertension, cerebrovascular disease, atherosclerotic coronary artery disease, and lung cancer.
94	1752821	LIVRTUT01	The LIVRTUT01 library was constructed using polyA RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Patient history included thrombophlebitis and pure hypercholesterolemia. Patient medications included Premarin and Provera. The patient had also received 8 cycles of fluorouracil and leucovorin in the two years prior to surgery. Family history included a malignant neoplasm of the liver.
95	1810923	PROSTUT12	The PROSTUT12 library was constructed using polyA RNA isolated from prostate tumor tissue removed from a 63-year-old Caucasian male during a radical prostatectomy. Pathology indicated an adenocarcinoma (Gleason grade 2+2). Adenofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA).
96	1822315	GBl.ATUT01	The GBl.ATUT01 library was constructed using polyA RNA isolated from gallbladder tumor tissue removed from a 78-year-old Caucasian female during a cholecystectomy. Pathology indicated invasive grade 3 transitional cell carcinoma. The patient was taking Indural (propranolol hydrochloride) for hypertension. Family history included a cholecystectomy, atherosclerosis, hyperlipidemia, and benign hypertension.
97	1877777	LEUKNOT03	The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).
98	1879819	LEUKNOT03	The LEUKNOT03 library was constructed using polyA RNA isolated from white blood cells of a 27-year-old female with blood type A+. The donor tested negative for cytomegalovirus (CMV).

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
99	1932945	C11.NNC0116	The C11.NNC0116 library was constructed using polyA RNA isolated from nonmucinous sigmoid colon tissue removed from a 62-year-old Caucasian male during a sigmoidectomy and permanent colostomy. Pathology for the associated tumor tissue indicated invasive grade 2 adenocarcinoma. Family history included benign hypertension, atherosclerotic coronary artery disease, hyperlipidemia, breast cancer, and prostate cancer.
100	2061026	OVARNOT03	The OVARNOT03 library was constructed using polyA RNA isolated from nonmucinous ovarian tissue removed from a 43-year-old Caucasian female during a bilateral salpingo-oophorectomy. Pathology for the associated tumor tissue indicated grade 2 mucinous cystadenocarcinoma. Family history included atherosclerotic coronary artery disease, pancreatic cancer, stress reaction, cerebrovascular disease, breast cancer, and uterine cancer.
101	2096687	BRAITUT02	The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hemangioma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney.
102	2100530	BRAITUT02	The BRAITUT02 library was constructed using polyA RNA isolated from brain tumor tissue removed from the frontal lobe of a 58-year-old Caucasian male during excision of a cerebral meningeal lesion. Pathology indicated a grade 2 metastatic hemangioma. Patient history included a grade 2 renal cell carcinoma, insomnia, and chronic airway obstruction. Previous surgeries included a nephroureterectomy. Patient medications included Decadron (dexamethasone) and Dilantin (phenytoin). Family history included a malignant neoplasm of the kidney.
103	2357636	LUNGNOT20	The LUNGNOT20 library was constructed using polyA RNA isolated from lung tissue removed from the right upper lobe a 61-year-old Caucasian male during a segmental lung resection. Pathology indicated panacinar emphysema. Family history included a subdural hemorrhage, cancer at an unidentified site, benign hypertension, atherosclerotic coronary artery disease, pneumonia, and an unspecified muscle disorder.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
104	2365230	AIDR1:NC0107	The AIDR1:NC0107 library was constructed using polyA RNA isolated from adrenal tissue removed from a 61-year-old female during a bilateral adrenalectomy. Patient history included an unspecified disorder of the adrenal glands, depressive disorder, benign hypertension, vocal cord paralysis, hemiplegia, subarachnoid hemorrhage, communicating hydrocephalus, neoplasm of uncertain behavior of pituitary gland, hyperlipidemia, Type II diabetes, a benign neoplasm of the colon, osteoarthritis, Meckel's diverticulum, and tobacco use. Previous surgeries included total excision of the pituitary gland and a unilateral thyroid lobectomy. Patient medications included Calderol and Premarin (conjugated estrogen). Family history included prostate cancer, benign hypertension, myocardial infarction, atherosclerotic coronary artery disease, congestive heart failure, hyperlipidemia, depression, anxiety disorder, colon cancer, and gas gangrene.
105	2455121	ENDANOT01	The ENDANOT01 library was constructed using polyA RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.
106	2472514	THP1NOT03	The THP1NOT03 library was constructed using polyA RNA isolated from untreated THP-1 cells. THP-1 (ATCC TIB 202) is a human promonocyte line derived from the peripheral blood of a 1-year-old Caucasian male with acute monocytic leukemia (ref: Int. J. Cancer (1980) 26:171).
107	2543486	UTRSNOT11	The UTRSNOT11 library was constructed using polyA RNA isolated from uterine myometrial tissue removed from a 43-year-old female during a vaginal hysterectomy and salpingo-oophorectomy. The endometrium was in proliferative phase. Family history included benign hypertension, hyperlipidemia, colon cancer, Type II diabetes, and atherosclerotic coronary artery disease.
108	2778171	OVARTUT03	The OVARTUT03 library was constructed using polyA RNA isolated from ovarian tumor tissue removed from the left ovary of a 52-year-old mixed ethnicity female during a total abdominal hysterectomy, bilateral salpingo-oophorectomy, peritoneal and lymphatic structure biopsy, regional lymph node excision, and peritoneal tissue destruction. Pathology indicated an invasive grade 3 (of 4) seroanaplastic carcinoma. Pathology also indicated a metastatic grade 3 scroanaplastic carcinoma. Patient history included breast cancer, chronic peptic ulcer, joint pain, and a normal delivery. Family history included colon cancer, cerebrovascular disease, breast cancer, Type II diabetes, esophagus cancer, and depressive disorder.
109	2799575	PENCNOT01	The PENCNOT01 library was constructed using polyA RNA isolated from penis corpus cavernosum tissue removed from a 53-year-old male. Patient history included an untreated penile carcinoma.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
110	2804955	BLADTU108	The BLADTU108 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction,cerebrovascular disease, and brain cancer.
111	2806395	BLADTU08	The BLADTU08 library was constructed using polyA RNA isolated from bladder tumor tissue removed from a 72-year-old Caucasian male during a radical cystectomy and prostatectomy. Pathology indicated an invasive grade 3 (of 3) transitional cell carcinoma. Family history included myocardial infarction,cerebrovascular disease, and brain cancer.
112	2836858	TLYMNOT03	The TLYMNOT03 library was constructed using polyA RNA isolated from nonactivated TH1 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-12 and B7-transfected COS cells.
113	2844513	DRGLNOT01	The DRGLNOT01 library was constructed using polyA RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male, who died from acute pulmonary edema, acute bronchopneumonia, bilateral pleural effusions, pericardial effusion, and malignant lymphoma (natural killer cell type). Patient medications included Diflucan (fluconazole), Deltasone (prednisone), hydrocodone, Lortab, Alprazolam, Reazodone, Cytabone, Etoposide, Cisplatin, Cytarabine, and dexamethasone. The patient received radiation therapy and multiple blood transfusions.
114	3000380	TLYMNOT06	The TLYMNOT06 library was constructed using polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies.
115	182532	PLACNOB01	The PLACNOB01 library was constructed using RNA isolated from placenta.
116	239589	HIPONOT01	The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis.
117	1671302	BMARNOT03	The BMARNOT03 library was constructed using RNA isolated from the left tibial bone marrow tissue of a 16-year-old Caucasian male during a partial left tibial osteotomy with free skin graft. Patient history included an abnormality of the red blood cells. Family history included osteoarthritis.

Table 4 (cont.)

Protein SEQ ID No:	Clone ID	Library	Library Comment
118	2041858	HIPONON02	This normalized hippocampus library was constructed from 1.13M independent clones from HIPONOT01 library. RNA was isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from an intracranial bleed. Patient history included nose cancer, hypertension, and arthritis. The normalization and hybridization conditions were adapted from Soares et al. (PNAS (1994) 91:9928).
119	2198863	SPLNFET02	The SPLNFET02 library was constructed using RNA isolated from spleen tissue removed from a Caucasian male fetus, who died at 23 weeks gestation.
120	3250703	SEMVNNOT03	The SEMVNNOT03 library was constructed using RNA isolated from seminal vesicle tissue removed from a 56-year-old male during a radical prostatectomy. Pathology for the associated tumor tissue indicated adenocarcinoma (Gleason grade 3+3).
121	350287	LVENNOT01	The LVENNOT01 library was constructed using RNA isolated from the left ventricle of a 51-year-old Caucasian female who died from intracranial bleeding.
122	1618171	BRAITUT12	The BRAITUT12 library was constructed using RNA isolated from brain tumor tissue removed from the left frontal lobe of a 40-year-old Caucasian female during excision of a cerebral meningcal lesion. Pathology indicated grade 4 gemistocytic astrocytoma. Medications included dexamethasone and phenytoin sodium.
123	1625863	COLNPOT01	The COLNPOT01 library was constructed using RNA isolated from colon polyp tissue removed from a 40-year-old Caucasian female during a total colectomy. Pathology indicated an inflammatory pseudopolyp; this tissue was associated with a focally invasive grade 2 adenocarcinoma and multiple tubulovillous adenomas. Patient history included a benign neoplasm of the bowel. Medications included Zantac, betamethasone, furosemide, and amiodarone.
124	1638353	UTRSNOT06	The UTRSNOT06 library was constructed using RNA isolated from myometrial tissue removed from a 50-year-old Caucasian female during a vaginal hysterectomy. Pathology indicated residual atypical complex endometrial hyperplasia. Pathology for the associated tissue removed during dilation and curettage indicated fragments of atypical complex hyperplasia and a single microscopic focus suspicious for grade 1 adenocarcinoma. Patient history included benign breast neoplasm, hypothyroid disease, polypectomy, and arthralgia.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
125	1726843	PROSNOT14	The PROSNOT14 library was constructed using RNA isolated from diseased prostate tissue removed from a 60-year-old Caucasian male during radical prostatectomy and regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+4). The patient presented with elevated prostate specific antigen (PSA). Patient history included a kidney cyst and hematuria. Family history included benign hypertension, cerebrovascular disease, and arteriosclerotic coronary artery disease.
126	1754506	LIVRTUT01	The LIVRTUT01 library was constructed using RNA isolated from liver tumor tissue removed from a 51-year-old Caucasian female during a hepatic lobectomy. Pathology indicated metastatic grade 3 adenocarcinoma consistent with colon cancer. Medications included Premarin, Provera, and earlier, fluorouracil, and leucovorin. Family history included a malignant neoplasm of the liver.
127	1831378	THPIAZT01	The THPIAZT01 library was constructed using RNA isolated from THP-1 promonocyte cells treated for 3 days with 0.8 micromolar 5-azza-2'-deoxycytidine. THP-1 (ATCC TIB 202) is a human promonocyte line derived from peripheral blood of a one-year-old Caucasian male with acute monocytic leukemia (Int. J. Cancer (1980) 26:171).
128	1864943	PROSNOT19	The PROSNOT19 library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy with regional lymph node excision. Pathology indicated adenofibromatous hyperplasia. Pathology for the associated tumor tissue indicated an adenocarcinoma (Gleason grade 3+3). The patient presented with elevated prostate-specific antigen (PSA). Family history included benign hypertension, multiple myeloma, hyperlipidemia, and rheumatoid arthritis.
129	1911316	CONNNTU01	The CONNNTU01 library was constructed using RNA isolated from a soft tissue tumor removed from the clival area of the skull of a 30-year-old Caucasian female. Pathology indicated chondroid chordoma with neoplastic cells reactive for keratin. Medications included medroxyprogesterone acetate.
130	1943120	HIPONOT01	The HIPONOT01 library was constructed using RNA isolated from the hippocampus tissue of a 72-year-old Caucasian female who died from intracranial bleeding. Patient history included nose cancer, hypertension, and arthritis.
131	2314236	NGANNNOT01	The NGANNNOT01 library was constructed using RNA isolated from tumorous neuroganglion tissue removed from a 9-year-old Caucasian male during a soft tissue excision of the chest wall. Pathology indicated a ganglioneuroma forming an encapsulated lobulated mass. The tissue from the medial aspect pleura surrounding the tumor showed fibrotic tissue with chronic inflammation. Family history included asthma.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
132	2479409	SMCANNOT01	The SMCANNOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant.
133	2683149	SINIUCT01	The SINIUCT01 library was constructed using RNA isolated from ileum tissue obtained from a 42-year-old Caucasian male during a total intra-abdominal colectomy and endoscopic jejunostomy. Previous surgeries included polypectomy, colonoscopy, and spinal canal exploration. Medications included Prednisone, mesalamine, and Deltasone. Family history included cerebrovascular disease, benign hypertension, atherosclerotic coronary artery disease, and type II diabetes.
134	2774051	PANCNOT15	The PANCNOT15 library was constructed using RNA isolated from diseased pancreatic tissue removed from a 15-year-old Caucasian male during an exploratory laparotomy with distal pancreatectomy and total splenectomy. Pathology indicated islet cell hyperplasia. A single pancreatic lymph node was negative. Family history included prostate cancer and cardiovascular disease.
135	2869038	THYRNOT01	The THYRNOT01 library was constructed using RNA isolated from the diseased left thyroid tissue removed from a 30-year-old Caucasian female during a unilateral thyroid lobectomy and parathyroid reimplantation. Pathology indicated lymphocytic thyroiditis. Pathology for the associated tumor indicated grade 1 (of 4) papillary carcinoma of the right thyroid gland, follicular variant. Multiple perithyroidal and other lymph nodes were negative. Patient history included hyperlipidemia and benign ovary neoplasm. Medications included Premarin, Provera, and Anprox.
136	2918334	THYMFET03	The THYMFET03 library was constructed using RNA isolated from thymus tissue removed from a Caucasian male fetus who died at premature birth. Serology was negative.
137	2949916	KIDNFET01	The KIDNFET01 library was constructed using RNA isolated from kidney tissue removed from a Caucasian female fetus, who died at 17 weeks gestation from anencephalus. Serology was negative.
138	2993975	KIDNFET02	The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus who was stillborn with a hypoplastic left heart at 23 weeks gestation. Serology was negative.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
139	3316764	PROSHUT03	The PROSHUT03 library was constructed using RNA isolated from diseased prostate tissue removed from a 59-year-old Caucasian male during a radical prostatectomy and regional lymph node excision. Pathology indicated benign prostatic hyperplasia. Pathology for the associated tumor indicated adenocarcinoma, Gleason grade 3+3. The patient presented with elevated prostate specific antigen (PSA), benign hypertension, and hyperlipidemia. Medications included Lotensin and Pravachol. Family history included cerebrovascular disease, benign hypertension, and prostate cancer.
140	3359559	PROSTUT16	The PROSTUT16 library was constructed using RNA isolated from prostate tumor tissue removed from a 55-year-old Caucasian male. Pathology indicated adenocarcinoma, Gleason grade 5+4. A denofibromatous hyperplasia was also present. The patient presented with elevated prostate specific antigen (PSA). Patient history included calculus of the kidney. Family history included lung cancer and breast cancer.
141	4289208	BRABDIRO1	The BRABDIRO1 library was constructed using RNA isolated from diseased cerebellum tissue removed from the brain of a 57-year-old Caucasian male who died from a cerebrovascular accident. Patient history included Huntington's disease, emphysema, and long-term tobacco use.
142	2454013	ENDANOT01	The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.
143	2454048	ENDANOT01	The ENDANOT01 library was constructed using RNA isolated from aortic endothelial cell tissue from an explanted heart removed from a male during a heart transplant.
144	2479282	SMCANOT01	The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant.
145	2483432	SMCANOT01	The SMCANOT01 library was constructed using RNA isolated from an aortic smooth muscle cell line derived from the explanted heart of a male during a heart transplant.
146	2493824	ADRETUT05	The ADRETUT05 library was constructed using RNA isolated from adrenal tumor tissue removed from a 52-year-old Caucasian female during a unilateral adrenalectomy. Pathology indicated a phochromocytoma.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
147	2555823	THYMNOT03	The THYMNOT03 library was constructed using 0.5 micrograms of polyA RNA isolated from thymus tissue removed from a 21-year-old Caucasian male during a thymectomy. Pathology indicated an unremarkable thymus and a benign parathyroid adenoma in the right inferior parathyroid. Patient history included atopic dermatitis, a benign neoplasm of the parathyroid, and tobacco use. Patient medications included multivitamins. Family history included atherosclerotic coronary artery disease and benign hypertension.
148	2598242	OVARTUT02	The OVARTUT02 library was constructed using RNA isolated from ovarian tumor tissue removed from a 51-year-old Caucasian female during an exploratory laparotomy, total abdominal hysterectomy, salpingo-oophorectomy, and an incidental appendectomy. Pathology indicated mucinous cystadenoma presenting as a multiloculated neoplasm involving the entire left ovary. The right ovary contained a follicular cyst and a hemorrhagic corpus luteum. The uterus showed proliferative endometrium and a single intramural leiomyoma. The peritoneal biopsy indicated benign glandular inclusions consistent with endosalpingiosis. Family history included atherosclerotic coronary artery disease, benign hypertension, breast cancer, and uterine cancer.
149	2634120	COLNTUT15	The COLNTUT15 library was constructed using RNA isolated from colon tumor tissue obtained from a 64-year-old Caucasian female during a right hemicolectomy with ileostomy and bilateral salpingo-oophorectomy (removal of the fallopian tubes and ovaries). Pathology indicated an invasive grade 3 adenocarcinoma. Patient history included hypothyroidism, depression, and anemia. Family history included colon cancer and uterine cancer.
150	2765411	BRSTNOT12	The BRSTNOT12 library was constructed using RNA isolated from diseased breast tissue removed from a 32-year-old Caucasian female during a bilateral reduction mammoplasty. Pathology indicated nonproliferative fibrocytic disease. Family history included benign hypertension and atherosclerotic coronary artery disease.
151	2769412	COLANOT02	The COLANOT02 library was constructed using RNA isolated from diseased ascending colon tissue removed from a 25-year-old Caucasian female during a multiple segmental resection of the large bowel. Pathology indicated moderately to severely active chronic ulcerative colitis, involving the entire colectomy specimen and sparing 2 cm of the attached ileum. Grossly, the specimen showed continuous involvement from the rectum proximally; marked mucosal atrophy and no skip areas were identified. Microscopically, the specimen showed dense, predominantly mucosal inflammation and crypt abscesses. Patient history included benign large bowel neoplasm.

Table 4 (cont.)

Protein SEQ ID NO:	Clone ID	Library	Library Comment
152	2842779	DRG1.NOT01	The DRG1.NOT01 library was constructed using RNA isolated from dorsal root ganglion tissue removed from the low thoracic/high lumbar region of a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy.
153	2966260	SCORN0T04	The SCORN0T04 library was constructed using RNA isolated from cervical spinal cord tissue removed from a 32-year-old Caucasian male who died from acute pulmonary edema and bronchopneumonia, bilateral pleural and pericardial effusions, and malignant lymphoma (natural killer cell type). Patient history included probable cytomegalovirus, infection, hepatic congestion and steatosis, splenomegaly, hemorrhagic cystitis, thyroid hemorrhage, and Bell's palsy.
154	2993326	KIDNFET02	The KIDNFET02 library was constructed using RNA isolated from kidney tissue removed from a Caucasian male fetus, who was stillborn with a hypoplastic left heart and died at 23 weeks' gestation.
155	3001124	TLYMNNOT06	The TLYMNNOT06 library was constructed using 0.5 micrograms of polyA RNA isolated from activated Th2 cells. These cells were differentiated from umbilical cord CD4 T cells with IL-4 in the presence of anti-IL-12 antibodies and B7-transfected COS cells, and then activated for six hours with anti-CD3 and anti-CD28 antibodies.
156	3120070	LUNGUTU13	The LUNGUTU13 library was constructed using RNA isolated from tumorous lung tissue removed from the right upper lobe of a 47-year-old Caucasian male during a segmental lung resection. Pathology indicated invasive grade 3 (of 4) adenocarcinoma. Family history included atherosclerotic coronary artery disease, and type II diabetes.
157	3133035	SMCCNOT01	The SMCCNOT01 library was constructed using RNA isolated from smooth muscle cells removed from the coronary artery of a 3-year-old Caucasian male.
158	3436879	PENCNOT05	The PENCNOT05 library was constructed using RNA isolated from penis left corpus cavernosum tissue.

Table 5

Program	Description	Reference	Parameter Threshold
AM FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
AM/PARACEL RDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Perkin-Elmer Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, blastx, tblastn, and tblastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25: 3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises at least five functions: fasta, tfasta, fastx, tfastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad. Sci. 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183: 63-98; and Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value= 1.0E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fasta E value= 1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS and PRINTS databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S and J.G. Henikoff, Nucl. Acid Res., 19:6565-72, 1991. J.G. Henikoff and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37: 417-424.	Score=1000 or greater; Ratio of Score/Strength = 0.75 or larger; and Probability value= 1.0E-3 or less
PROTM	A Hidden Markov Models-based application useful for protein family search.	Krogh, A. et al. (1994) J. Mol. Biol., 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322.	Score=10-50 bits, depending on individual protein families

Table 5 cont.

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25: 217-221.	Score= 4.0 or greater
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Phrap	A Phred Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M. S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M. S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverie, J.M. and S. Audit (1997) CABIOS 12: 431-439.	Score=5 or greater
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch et al. <i>supra</i> ; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	

What is claimed is:

1. A substantially purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, SEQ ID NO:6, SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO:13, SEQ ID NO:14, SEQ ID NO:15, SEQ ID NO:16, SEQ ID NO:17, SEQ ID NO:18, SEQ ID NO:19, SEQ ID NO:20, SEQ ID NO:21, SEQ ID NO:22, SEQ ID NO:23, SEQ ID NO:24, SEQ ID NO:25, SEQ ID NO:26, SEQ ID NO:27, SEQ ID NO:28, SEQ ID NO:29, SEQ ID NO:30, SEQ ID NO:31, SEQ ID NO:32, SEQ ID NO:33, SEQ ID NO:34, SEQ ID NO:35, SEQ ID NO:36, SEQ ID NO:37, SEQ ID NO:38, SEQ ID NO:39, SEQ ID NO:40, SEQ ID NO:41, SEQ ID NO:42, SEQ ID NO:43, SEQ ID NO:44, SEQ ID NO:45, SEQ ID NO:46, SEQ ID NO:47, SEQ ID NO:48, SEQ ID NO:49, SEQ ID NO:50, SEQ ID NO:51, SEQ ID NO:52, SEQ ID NO:53, SEQ ID NO:54, SEQ ID NO:55, SEQ ID NO:56, SEQ ID NO:57, SEQ ID NO:58, SEQ ID NO:59, SEQ ID NO:60, SEQ ID NO:61, SEQ ID NO:62, SEQ ID NO:63, SEQ ID NO:64, SEQ ID NO:65, SEQ ID NO:66, SEQ ID NO:67, SEQ ID NO:68, SEQ ID NO:69, SEQ ID NO:70, SEQ ID NO:71, SEQ ID NO:72, SEQ ID NO:73, SEQ ID NO:74, SEQ ID NO:75, SEQ ID NO:76, SEQ ID NO:77, SEQ ID NO:78, and SEQ ID NO:79 and fragments thereof.
- 20 2. A substantially purified variant having at least 90% amino acid sequence identity to the amino acid sequence of claim 1.
3. An isolated and purified polynucleotide encoding the polypeptide of claim 1.
4. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 3.
- 25 5. An isolated and purified polynucleotide which hybridizes under stringent conditions to the polynucleotide of claim 3.
6. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 3.
- 30 7. A method for detecting a polynucleotide, the method comprising the steps of:
 - (a) hybridizing the polynucleotide of claim 6 to at least one nucleic acid

in a sample, thereby forming a hybridization complex; and

(b) detecting the hybridization complex, wherein the presence of the hybridization complex correlates with the presence of the polynucleotide in the sample.

5 8. The method of claim 7 further comprising amplifying the polynucleotide prior to hybridization.

9. An isolated and purified polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:80, SEQ ID NO:81, SEQ ID NO:82, SEQ ID NO:83, SEQ ID NO:84, SEQ ID NO:85, SEQ ID NO:86, SEQ ID NO:87, 10 SEQ ID NO:88, SEQ ID NO:89, SEQ ID NO:90, SEQ ID NO:91, SEQ ID NO:92, SEQ ID NO:93, SEQ ID NO:94, SEQ ID NO:95, SEQ ID NO:96, SEQ ID NO:97, SEQ ID NO:98, SEQ ID NO:99, SEQ ID NO:100, SEQ ID NO:101, SEQ ID NO:102, SEQ ID NO:103, SEQ ID NO:104, SEQ ID NO:105, SEQ ID NO:106, SEQ ID NO:107, SEQ ID NO:108, SEQ ID NO:109, SEQ ID NO:110, SEQ ID NO:111, SEQ ID NO:112, SEQ ID 15 NO:113, SEQ ID NO:114, SEQ ID NO:115, SEQ ID NO:116, SEQ ID NO:117, SEQ ID NO:118, SEQ ID NO:119, SEQ ID NO:120, SEQ ID NO:121, SEQ ID NO:122, SEQ ID NO:123, SEQ ID NO:124, SEQ ID NO:125, SEQ ID NO:126, SEQ ID NO:127, SEQ ID NO:128, SEQ ID NO:129, SEQ ID NO:130, SEQ ID NO:131, SEQ ID NO:132, SEQ ID NO:133, SEQ ID NO:134, SEQ ID NO:135, SEQ ID NO:136, SEQ ID NO:137, SEQ ID 20 NO:138, SEQ ID NO:139, SEQ ID NO:140, SEQ ID NO:141, SEQ ID NO:142, SEQ ID NO:143, SEQ ID NO:144, SEQ ID NO:145, SEQ ID NO:146, SEQ ID NO:147, SEQ ID NO:148, SEQ ID NO:149, SEQ ID NO:150, SEQ ID NO:151, SEQ ID NO:152, SEQ ID NO:153, SEQ ID NO:154, SEQ ID NO:155, SEQ ID NO:156, SEQ ID NO:157, and SEQ ID NO:158 and fragments thereof.

25 10. An isolated and purified polynucleotide variant having at least 90% polynucleotide sequence identity to the polynucleotide of claim 9.

11. An isolated and purified polynucleotide having a sequence which is complementary to the polynucleotide of claim 9.

12. An expression vector comprising at least a fragment of the polynucleotide 30 of claim 3.

13. A host cell comprising the expression vector of claim 12.

14. A method for producing a polypeptide, the method comprising the steps of:

a) culturing the host cell of claim 13 under conditions suitable for the expression of the polypeptide; and

b) recovering the polypeptide from the host cell culture.

15. A pharmaceutical composition comprising the polypeptide of claim 1 in
5 conjunction with a suitable pharmaceutical carrier.

16. A purified antibody which specifically binds to the polypeptide of claim 1.

17. A purified agonist of the polypeptide of claim 1.

18. A purified antagonist of the polypeptide of claim 1.

19. A method for treating or preventing a disorder associated with decreased
10 expression or activity of HTMPN, the method comprising administering to a subject in
need of such treatment an effective amount of the pharmaceutical composition of claim 15.

20. A method for treating or preventing a disorder associated with increased
expression or activity of HTMPN, the method comprising administering to a subject in
need of such treatment an effective amount of the antagonist of claim 18.

SEQUENCE LISTING

<110> INCYTE PHARMACEUTICALS, INC.

TANG, Y. Tom
LAL, Preeti
HILLMAN, Jennifer L.
YUE, Henry
GUEGLER, Karl J.
CORLEY, Neil C.
BANDMAN, Olga
PATTERSON, Chandra
GORCOME, Gina A.
KASER, Matthew R.
BAUGHN, Mariah R.
AU-YOUNG, Janice

<120> HUMAN TRANSMEMBRANE PROTEINS

<130> PF-0526 PCT

<140> To Be Assigned
<141> Herewith

<150> 60/087,260; 60/091,674; 60/102,954; 60/109,869
<151> 1998-05-29; 1998-07-02; 1998-10-02; 1998-11-24

<160> 158

<170> PERL Program

<210> 1
<211> 240
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 153831

<400> 1
Met Gly Asn Cys Gln Ala Gly His Asn Leu His Leu Cys Leu Ala
1 5 10 15
His His Pro Pro Leu Val Cys Ala Thr Leu Ile Leu Leu Leu
20 25 30
Gly Leu Ser Gly Leu Gly Ser Phe Leu Leu Thr His Arg
35 40 45
Thr Gly Leu Arg Ser Pro Asp Ile Pro Gln Asp Trp Val Ser Phe
50 55 60
Leu Arg Ser Phe Gly Gln Leu Thr Leu Cys Pro Arg Asn Gly Thr
65 70 75
Val Thr Gly Lys Trp Arg Gly Ser His Val Val Gly Leu Leu Thr
80 85 90
Thr Leu Asn Phe Gly Asp Gly Pro Asp Arg Asn Lys Thr Arg Thr
95 100 105
Phe Gln Ala Thr Val Leu Gly Ser Gln Met Gly Leu Lys Gly Ser
110 115 120

Ser Ala Gly Gln Leu Val Leu Ile Thr Ala Arg Val Thr Thr Glu		
125	130	135
Arg Thr Ala Gly Thr Cys Leu Tyr Phe Ser Ala Val Pro Gly Ile		
140	145	150
Leu Pro Ser Ser Gln Pro Pro Ile Ser Cys Ser Glu Glu Gly Ala		
155	160	165
Gly Asn Ala Thr Leu Ser Pro Arg Met Gly Glu Glu Cys Val Ser		
170	175	180
Val Trp Ser His Glu Gly Leu Val Leu Thr Lys Leu Leu Thr Ser		
185	190	195
Glu Glu Leu Ala Leu Cys Gly Ser Arg Leu Leu Val Leu Gly Ser		
200	205	210
Phe Leu Leu Leu Phe Cys Gly Leu Leu Cys Cys Val Thr Ala Met		
215	220	225
Cys Phe His Pro Arg Arg Glu Ser His Trp Ser Arg Thr Arg Leu		
230	235	240

<210> 2
<211> 100
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 350629

<400> 2		
Met Glu Gly Leu Arg Ser Ser Val Glu Leu Asp Pro Glu Leu Thr		
1	5	10
Pro Gly Lys Leu Asp Glu Glu Met Val Gly Leu Pro Pro His Asp		
20	25	30
Ala Ser Pro Gln Val Thr Phe His Ser Leu Asp Gly Lys Thr Val		
35	40	45
Val Cys Pro His Phe Met Gly Leu Leu Leu Gly Leu Leu Leu Leu		
50	55	60
Leu Thr Leu Ser Val Arg Asn Gln Leu Cys Val Arg Gly Glu Arg		
65	70	75
Gln Leu Ala Glu Thr Leu His Ser Gln Val Lys Glu Lys Ser Gln		
80	85	90
Leu Ile Gly Lys Lys Thr Asp Cys Arg Asp		
95	100	

<210> 3
<211> 416
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 729171

<400> 3
 Met Ser Gly His Arg Ser Thr Arg Lys Arg Cys Gly Asp Ser His
 1 5 10 15
 Pro Glu Ser Pro Val Gly Phe Gly His Met Ser Thr Thr Gly Cys
 20 25 30
 Val Leu Asn Lys Leu Phe Gln Leu Pro Thr Pro Pro Leu Ser Arg
 35 40 45
 His Gln Leu Lys Arg Leu Glu Glu His Arg Tyr Gln Ser Ala Gly
 50 55 60
 Arg Ser Leu Leu Glu Pro Leu Val Gln Gly Tyr Trp Glu Trp Leu
 65 70 75
 Val Arg Arg Val Pro Ser Trp Ile Ala Pro Asn Leu Ile Thr Ile
 80 85 90
 Ile Gly Leu Ser Ile Asn Ile Cys Thr Thr Ile Leu Leu Val Phe
 95 100 105
 Tyr Cys Pro Thr Ala Thr Glu Gln Ala Pro Leu Trp Ala Tyr Ile
 110 115 120
 Ala Cys Ala Cys Gly Leu Phe Ile Tyr Gln Ser Leu Asp Ala Ile
 125 130 135
 Gly Gly Lys Gln Ala Arg Arg Thr Asn Ser Ser Ser Pro Leu Gly
 140 145 150
 Glu Leu Phe Asp His Gly Cys Asp Ser Leu Ser Thr Val Phe Val
 155 160 165
 Val Leu Gly Thr Cys Ile Ala Val Gln Leu Gly Thr Asn Pro Asp
 170 175 180
 Trp Met Phe Phe Cys Cys Phe Ala Gly Thr Phe Met Phe Tyr Cys
 185 190 195
 Ala His Trp Gln Thr Tyr Val Ser Gly Thr Leu Arg Phe Gly Ile
 200 205 210
 Ile Asp Val Thr Glu Val Gln Ile Phe Ile Ile Ile Met His Leu
 215 220 225
 Leu Ala Val Met Gly Gly Pro Pro Phe Trp Gln Ser Met Ile Pro
 230 235 240
 Val Leu Asn Ile Gln Met Lys Ile Phe Pro Ala Leu Cys Thr Val
 245 250 255
 Ala Gly Thr Ile Phe Pro Val Thr Asn Tyr Phe Arg Val Ile Phe
 260 265 270
 Thr Gly Gly Val Gly Lys Asn Gly Ser Thr Ile Ala Gly Thr Ser
 275 280 285
 Val Leu Ser Pro Phe Leu His Ile Gly Ser Val Ile Thr Leu Ala
 290 295 300
 Ala Met Ile Tyr Lys Lys Ser Ala Val Gln Leu Phe Glu Lys His
 305 310 315
 Pro Cys Leu Tyr Ile Leu Thr Phe Gly Phe Val Ser Ala Lys Ile
 320 325 330
 Thr Asn Lys Leu Val Val Ala His Met Thr Lys Ser Glu Met His
 335 340 345
 Leu His Asp Thr Ala Phe Ile Gly Pro Ala Leu Leu Phe Leu Asp
 350 355 360
 Gln Tyr Phe Asn Ser Phe Ile Asp Glu Tyr Ile Val Leu Trp Ile
 365 370 375
 Ala Leu Val Phe Ser Phe Phe Asp Leu Ile Arg Tyr Cys Val Ser
 380 385 390
 Val Cys Asn Gln Ile Ala Ser His Leu His Ile His Val Phe Arg
 395 400 405
 Ile Lys Val Ser Thr Ala His Ser Asn His His

410

415

<210> 4
<211> 224
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1273641

<400> 4
Met Thr Ile Thr Ser Phe Tyr Ala Val Cys Phe Tyr Leu Leu Met
1 5 10 15
Leu Val Met Val Glu Gly Phe Gly Gly Lys Glu Ala Val Leu Arg
20 25 30
Thr Leu Arg Asp Thr Pro Met Met Val His Thr Gly Pro Cys Cys
35 40 45
Cys Cys Cys Pro Cys Cys Gln Arg Leu Leu Thr Arg Lys Lys
50 55 60
Leu Gln Leu Leu Met Leu Gly Pro Phe Gln Tyr Ala Phe Leu Lys
65 70 75
Ile Thr Leu Thr Trp Trp Ala Leu Phe Ser Ser Pro Thr Glu Ser
80 85 90
Tyr Asp Pro Ala Asp Ile Ser Glu Gly Ser Thr Ala Leu Trp Ile
95 100 105
Asn Thr Phe Leu Gly Val Ser Thr Leu Leu Ala Leu Trp Thr Leu
110 115 120
Gly Ile Ile Ser Arg Gln Ala Arg Leu His Leu Gly Glu Gln Asn
125 130 135
Met Gly Ala Lys Phe Ala Leu Phe Gln Val Leu Leu Ile Leu Thr
140 145 150
Ala Leu Gln Pro Ser Ile Phe Ser Val Leu Ala Asn Gly Gly Gln
155 160 165
Ile Ala Cys Ser Pro Pro Tyr Ser Ser Lys Thr Arg Ser Gln Val
170 175 180
Met Asn Cys His Leu Leu Ile Leu Glu Thr Phe Leu Met Thr Val
185 190 195
Leu Thr Arg Met Tyr Tyr Arg Arg Lys Asp His Lys Val Gly Tyr
200 205 210
Glu Thr Phe Ser Ser Pro Asp Leu Asp Leu Asn Leu Lys Ala
215 220

<210> 5
<211> 247
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1427389

<400> 5

Met	Gly	Ala	Ala	Val	Phe	Phe	Gly	Thr	Phe	Val	Ala	Phe	Gly	
1				5				10					15	
Pro	Ala	Phe	Ala	Leu	Phe	Leu	Ile	Thr	Val	Ala	Gly	Asp	Pro	Leu
				20				25					30	
Arg	Val	Ile	Ile	Leu	Val	Ala	Gly	Ala	Phe	Phe	Trp	Leu	Val	Ser
				35				40					45	
Leu	Leu	Leu	Ala	Ser	Val	Val	Trp	Phe	Ile	Leu	Val	His	Val	Thr
				50				55					60	
Asp	Arg	Ser	Asp	Ala	Arg	Leu	Gln	Tyr	Gly	Leu	Leu	Ile	Phe	Gly
				65				70					75	
Ala	Ala	Val	Ser	Val	Leu	Leu	Gln	Glu	Val	Phe	Arg	Phe	Ala	Tyr
				80				85					90	
Tyr	Lys	Leu	Leu	Lys	Lys	Ala	Asp	Glu	Gly	Leu	Ala	Ser	Leu	Ser
				95				100					105	
Glu	Asp	Gly	Arg	Ser	Pro	Ile	Ser	Ile	Arg	Gln	Met	Ala	Tyr	Val
				110				115					120	
Ser	Gly	Leu	Ser	Phe	Gly	Ile	Ile	Ser	Gly	Val	Phe	Ser	Val	Ile
				125				130					135	
Asn	Ile	Leu	Ala	Asp	Ala	Leu	Gly	Pro	Gly	Val	Val	Gly	Ile	His
				140				145					150	
Gly	Asp	Ser	Pro	Tyr	Tyr	Phe	Leu	Thr	Ser	Ala	Phe	Leu	Thr	Ala
				155				160					165	
Ala	Ile	Ile	Leu	Leu	His	Thr	Phe	Trp	Gly	Val	Val	Phe	Phe	Asp
				170				175					180	
Ala	Cys	Glu	Arg	Arg	Arg	Tyr	Trp	Ala	Leu	Gly	Leu	Val	Val	Gly
				185				190					195	
Ser	His	Leu	Leu	Thr	Ser	Gly	Leu	Thr	Phe	Leu	Asn	Pro	Trp	Tyr
				200				205					210	
Glu	Ala	Ser	Leu	Leu	Pro	Ile	Tyr	Ala	Val	Thi	Val	Ser	Met	Gly
				215				220					225	
Leu	Trp	Ala	Phe	Ile	Thr	Ala	Gly	Gly	Ser	Leu	Arg	Ser	Ile	Gln
				230				235					240	
Arg	Ser	Leu	Leu	Cys	Lys	Asp								
				245										

<210> 6
<211> 72
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1458357

<400> 6
Met Tyr Trp Leu His Gln Asp Met Phe Trp Leu Leu Val Leu Ile
1 5 10 15
Leu Ile Cys Leu Val Thr His Leu Ile Thr Arg Glu Thr Ile Tyr
20 25 30
Val Lys Ser Leu Phe Tyr Phe Lys Ile Leu Phe Val Tyr Leu Glu
35 40 45
Ser Lys Pro Ala His Cys Asn Leu Cys Leu Tyr Ala Lys Glu Leu
50 55 60

Asp Phe Phe Val Phe Val Leu Phe Phe Lys Leu Leu
 65 70

<210> 7
 <211> 106
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1482837

<400> 7
 Met His Tyr Gly Phe Leu Leu Trp Ser Gly Lys Lys Arg Gly Leu
 1 5 10 15
 Ala Gly Pro Gln Gly Ile Cys Lys Ser Gln Lys Thr Val Phe Leu
 20 25 30
 Thr Ala Arg Cys His Ser Thr Leu Val Gly Lys Glu Glu Lys Lys
 35 40 45
 Ile Lys Leu Phe His Arg Thr Ser Trp Pro Pro His Ser His Ala
 50 55 60
 Leu Pro Thr Gln Pro Gly Pro Leu Pro Ala Pro Phe Ile Lys Ala
 65 70 75
 Glu Arg Val Glu Leu Ile Phe Thr Asn Cys Asn Ile Phe Val Val
 80 85 90
 Ser Val Ser Ser Phe Val Ser Ser Ala Glu Pro Cys Pro Phe Leu
 95 100 105
 Leu

<210> 8
 <211> 239
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1517434

<400> 8
 Met Cys Val Thr Gln Leu Arg Leu Ile Phe Tyr Met Gly Ala Met
 1 5 10 15
 Asn Asn Ile Leu Lys Phe Leu Val Ser Gly Asp Gln Lys Thr Val
 20 25 30
 Gly Leu Tyr Thr Ser Ile Phe Gly Val Leu Gln Leu Leu Cys Leu
 35 40 45
 Leu Thr Ala Pro Val Ile Gly Tyr Ile Met Asp Trp Arg Leu Lys
 50 55 60
 Glu Cys Glu Asp Ala Ser Glu Glu Pro Glu Glu Lys Asp Ala Asn
 65 70 75
 Gln Gly Glu Lys Lys Lys Lys Arg Asp Arg Gln Ile Gln Lys
 80 85 90
 Ile Thr Asn Ala Met Arg Ala Phe Ala Phe Thr Asn Leu Leu Leu
 95 100 105

Val Gly Phe Gly Val Thr Cys Leu Ile Pro Asn Leu Pro Leu Gln
 110 115 120
 Ile Leu Ser Phe Ile Leu His Thr Ile Val Arg Gly Phe Ile His
 125 130 135
 Ser Ala Val Gly Gly Leu Tyr Ala Ala Val Tyr Pro Ser Thr Gln
 140 145 150
 Phe Gly Ser Leu Thr Gly Leu Gln Ser Leu Ile Ser Ala Leu Phe
 155 160 165
 Ala Leu Leu Gln Gln Pro Leu Phe Leu Ala Met Met Gly Pro Leu
 170 175 180
 Gln Gly Asp Pro Leu Trp Val Asn Val Gly Leu Leu Leu Leu Ser
 185 190 195
 Leu Leu Gly Phe Cys Leu Pro Leu Tyr Leu Ile Cys Tyr Arg Arg
 200 205 210
 Gln Leu Glu Arg Gln Leu Gln Gln Arg Gln Glu Asp Asp Lys Leu
 215 220 225
 Phe Leu Lys Ile Asn Gly Ser Ser Asn Gln Glu Ala Phe Val
 230 235

<210> 9
<211> 150
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1536052

<400> 9
Met Trp Leu Pro Trp Ala Leu Leu Leu Trp Val Pro Ala Ser
 1 5 10 15
Thr Ser Met Thr Pro Ala Ser Ile Thr Ala Ala Lys Thr Ser Thr
 20 25 30
Ile Thr Thr Ala Phe Pro Pro Val Ser Ser Thr Thr Leu Phe Ala
 35 40 45
Val Gly Ala Thr His Ser Ala Ser Ile Gln Glu Glu Thr Glu Glu
 50 55 60
Val Val Asn Ser Gln Leu Pro Leu Leu Leu Ser Leu Leu Ala Leu
 65 70 75
Leu Leu Leu Leu Val Gly Ala Ser Leu Leu Ala Trp Arg Met
 80 85 90
Phe Gln Lys Trp Ile Lys Ala Gly Asp His Ser Glu Leu Ser Gln
 95 100 105
Asn Pro Lys Gln Ala Ser Pro Arg Glu Glu Leu His Tyr Ala Ser
 110 115 120
Val Val Phe Asp Ser Asn Thr Asn Arg Ile Ala Ala Gln Arg Pro
 125 130 135
Arg Glu Glu Glu Pro Asp Ser Asp Tyr Ser Val Ile Arg Lys Thr
 140 145 150

<210> 10
<211> 110
<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1666118

<400> 10

Met	Pro	Ala	Cys	Ile	Leu	Glu	Asp	Val	Glu	Ile	Ser	Phe	Arg	Gln
1				5					10					15
Lys	Trp	Ser	Ile	Asn	Ser	Asp	Thr	Leu	Leu	Gly	Cys	Leu	Thr	Leu
							20		25					30
Phe	Ile	Ser	Ala	Phe	Phe	Ala	Ser	Glu	Thr	Trp	Gln	Lys	Leu	Val
							35		40					45
Ser	Gln	Ser	Thr	Ala	Phe	Leu	Thr	Met	Cys	Gly	Val	Thr	Tyr	Ala
							50		55					60
Trp	Tyr	Met	Pro	Leu	Leu	Leu	Lys	Phe	Tyr	Ser	Leu	Leu	Leu	
							65		70					75
Ala	Gln	Val	Leu	Leu	Asn	Pro	Phe	Leu	Met	Cys	Thr	Gly	Trp	Arg
							80		85					90
Lys	Asn	Tyr	Ser	Gln	His	Phe	Glu	Arg	Lys	Val	Phe	Arg	Asn	Asn
							95		100					105
Ile	Asn	Trp	His	Tyr										
														110

<210> 11

<211> 58

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1675560

<400> 11

Met	Leu	Val	Thr	Asn	Ile	Thr	Val	Asn	Arg	Ser	Leu	Leu	His	Ala
1					5				10					15
Lys	Asp	Gln	Cys	Asp	Leu	Trp	Met	Glu	Met	Ile	Val	Met	Lys	Phe
							20		25					30
Leu	Phe	His	Gly	Ala	Val	Phe	Leu	Phe	Ile	Ser	Leu	Gly	Ser	Arg
							35		40					45
Phe	Ser	Glu	Ala	Val	Arg	Cys	Cys	Cys	Cys	Gly	Phe	Leu		
							50		55					

<210> 12

<211> 221

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1687323

<400> 12

Met Ala Ala Ser Ser Ile Ser Ser Pro Trp Gly Lys His Val Phe			
1	5	10	15
Lys Ala Ile Leu Met Val Leu Val Ala Leu Ile Leu Leu His Ser			
20	25	30	
Ala Leu Ala Gln Ser Arg Arg Asp Phe Ala Pro Pro Gly Gln Gln			
35	40	45	
Lys Arg Glu Ala Pro Val Asp Val Leu Thr Gln Ile Gly Arg Ser			
50	55	60	
Val Arg Gly Thr Leu Asp Ala Trp Ile Gly Pro Glu Thr Met His			
65	70	75	
Leu Val Ser Glu Ser Ser Gln Val Leu Trp Ala Ile Ser Ser			
80	85	90	
Ala Ile Ser Val Ala Phe Phe Ala Leu Ser Gly Ile Ala Ala Gln			
95	100	105	
Leu Leu Asn Ala Leu Gly Leu Ala Gly Asp Tyr Leu Ala Gln Gly			
110	115	120	
Leu Lys Leu Ser Pro Gly Gln Val Gln Thr Phe Leu Leu Trp Gly			
125	130	135	
Ala Gly Ala Leu Val Val Tyr Trp Leu Ser Leu Leu Leu Gly			
140	145	150	
Leu Val Leu Ala Leu Leu Gly Arg Ile Leu Trp Gly Leu Lys Leu			
155	160	165	
Val Ile Phe Leu Ala Gly Phe Val Ala Leu Met Arg Ser Val Pro			
170	175	180	
Asp Pro Ser Thr Arg Ala Leu Leu Leu Leu Ala Leu Leu Ile Leu			
185	190	195	
Tyr Ala Leu Leu Ser Arg Leu Thr Gly Ser Arg Ala Ser Gly Ala			
200	205	210	
Gln Leu Glu Ala Lys Val Arg Gly Leu Glu Arg			
215	220		

<210> 13
<211> 262
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1692236

<400> 13

Met Ala Leu Gly Leu Lys Cys Phe Arg Met Val His Pro Thr Phe			
1	5	10	15
Arg Asn Tyr Leu Ala Ala Ser Ile Arg Pro Val Ser Glu Val Thr			
20	25	30	
Leu Lys Thr Val His Glu Arg Gln His Gly His Arg Gln Tyr Met			
35	40	45	
Ala Tyr Ser Ala Val Pro Val Arg His Phe Ala Thr Lys Lys Ala			
50	55	60	
Lys Ala Lys Gly Lys Gly Gln Ser Gln Thr Arg Val Asn Ile Asn			
65	70	75	
Ala Ala Leu Val Glu Asp Ile Ile Asn Leu Glu Glu Val Asn Glu			
80	85	90	

Glu Met Lys Ser Val Ile Glu Ala Leu Lys Asp Asn Phe Asn Leu
 95 100 105
 Thr Leu Asn Ile Arg Ala Ser Pro Gly Ser Leu Asp Lys Ile Ala
 110 115 120
 Val Val Thr Ala Asp Gly Lys Leu Ala Leu Asn Gln Ile Ser Gln
 125 130 135
 Ile Ser Met Lys Ser Pro Gln Leu Ile Leu Val Asn Met Ala Ser
 140 145 150
 Phe Pro Glu Cys Thr Ala Ala Ala Ile Lys Ala Ile Arg Glu Ser
 155 160 165
 Gly Met Asn Leu Asn Pro Glu Val Glu Gly Thr Leu Ile Arg Val
 170 175 180
 Pro Ile Pro Gln Val Thr Arg Glu His Arg Glu Met Leu Val Lys
 185 190 195
 Leu Ala Lys Gln Asn Thr Asn Lys Ala Lys Asp Ser Leu Arg Lys
 200 205 210
 Val Arg Thr Asn Ser Met Asn Lys Leu Lys Ser Lys Asp Thr
 215 220 225
 Val Ser Glu Asp Thr Ile Arg Leu Ile Glu Lys Gln Ile Ser Gln
 230 235 240
 Met Ala Asp Asp Thr Val Ala Glu Leu Asp Arg His Leu Ala Val
 245 250 255
 Lys Thr Lys Glu Leu Leu Gly
 260

<210> 14
 <211> 90
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1720847

<400> 14
 Met Glu Ala Ala Met Glu Trp Glu Gly Gly Ala Ile Arg His Pro
 1 5 10 15
 Ser Thr Glu Leu Gly Ile Met Gly Ser Trp Phe Tyr Leu Phe Leu
 20 25 30
 Ala Pro Leu Phe Lys Gly Leu Ala Gly Ser Leu Pro Phe Gly Cys
 35 40 45
 Leu Ser Leu Leu Gln Pro Thr Glu Lys Thr Ala Leu Gln Arg Trp
 50 55 60
 Arg Val Phe Met Lys His Ser Cys Gln Glu Pro Arg His Arg Ala
 65 70 75
 Gly Gly Leu Glu Lys Gly Gly His Thr Gly Gly Arg Ser Trp
 80 85 90

<210> 15
 <211> 208
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1752821

<400> 15
 Met Ala Ser Ser Leu Leu Ala Gly Glu Arg Leu Val Arg Ala Leu
 1 5 10 15
 Gly Pro Gly Gly Glu Leu Glu Pro Glu Arg Leu Pro Arg Lys Leu
 20 25 30
 Arg Ala Glu Leu Glu Ala Ala Leu Gly Lys Lys His Lys Gly Gly
 35 40 45
 Asp Ser Ser Ser Gly Pro Gln Arg Leu Val Ser Phe Arg Leu Ile
 50 55 60
 Arg Asp Leu His Gln His Leu Arg Glu Arg Asp Ser Lys Leu Tyr
 65 70 75
 Leu His Glu Leu Leu Glu Gly Ser Glu Ile Tyr Leu Pro 'Glu Val
 80 85 90
 Val Lys Pro Pro Arg Asn Pro Glu Leu Val Ala Arg Leu Glu Lys
 95 100 105
 Ile Lys Ile Gln Leu Ala Asn Glu Glu Tyr Lys Arg Ile Thr Arg
 110 115 120
 Asn Val Thr Cys Gln Asp Thr Arg His Gly Gly Thr Leu Ser Asp
 125 130 135
 Leu Gly Lys Gln Val Arg Ser Leu Lys Ala Leu Val Ile Thr Ile
 140 145 150
 Phe Asn Phe Ile Val Thr Val Val Ala Ala Phe Val Cys Thr Tyr
 155 160 165
 Leu Gly Ser Gln Tyr Ile Phe Thr Glu Met Ala Ser Arg Val Leu
 170 175 180
 Ala Ala Leu Ile Val Ala Ser Val Val Gly Leu Ala Glu Leu Tyr
 185 190 195
 Val Met Val Arg Ala Met Glu Gly Glu Leu Gly Glu Leu
 200 205

<210> 16
 <211> 97
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1810923

<400> 16
 Met Thr Lys Lys Lys Arg Glu Asn Leu Gly Val Ala Leu Glu Ile
 1 5 10 15
 Asp Gly Leu Glu Glu Lys Leu Ser Gln Cys Arg Arg Asp Leu Glu
 20 25 30
 Ala Val Asn Ser Arg Leu His Ser Arg Glu Leu Ser Pro Glu Ala
 35 40 45
 Arg Arg Ser Leu Glu Lys Glu Lys Asn Ser Leu Met Asn Lys Ala
 50 55 60

Ser Asn Tyr Glu Lys Glu Leu Lys Phe Leu Arg Gln Glu Asn Arg		
65	70	75
Lys Asn Met Leu Leu Ser Val Ala Ile Phe Ile Leu Leu Thr Leu		
80	85	90
Val Tyr Ala Tyr Trp Thr Met		
95		

<210> 17
<211> 243
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1822315

<400> 17

Met Phe Phe Leu Ser Ser Ser Lys Leu Thr Lys Trp Lys Gly Glu		
1	5	10
Val Lys Lys Arg Leu Asp Ser Glu Tyr Lys Glu Gly Gly Gln Arg		
20	25	30
Asn Trp Val Gln Val Phe Cys Asn Gly Ala Val Pro Thr Glu Leu		
35	40	45
Ala Leu Leu Tyr Met Ile Glu Asn Gly Pro Gly Glu Ile Pro Val		
50	55	60
Asp Phe Ser Lys Gln Tyr Ser Ala Ser Trp Met Cys Leu Ser Leu		
65	70	75
Leu Ala Ala Leu Ala Cys Ser Ala Gly Asp Thr Trp Ala Ser Glu		
80	85	90
Val Gly Pro Val Leu Ser Lys Ser Ser Pro Arg Leu Ile Thr Thr		
95	100	105
Trp Glu Lys Val Pro Val Gly Thr Asn Gly Gly Val Thr Val Val		
110	115	120
Gly Leu Val Ser Ser Leu Leu Gly Gly Thr Phe Val Gly Ile Ala		
125	130	135
Tyr Phe Leu Thr Gln Leu Ile Phe Val Asn Asp Leu Asp Ile Ser		
140	145	150
Ala Pro Gln Trp Pro Ile Ile Ala Phe Gly Gly Leu Ala Gly Leu		
155	160	165
Leu Gly Ser Ile Val Asp Ser Tyr Leu Gly Ala Thr Met Gln Tyr		
170	175	180
Thr Gly Leu Asp Glu Ser Thr Gly Met Val Val Asn Ser Pro Thr		
185	190	195
Asn Lys Ala Arg His Ile Ala Gly Lys Pro Ile Leu Asp Asn Asn		
200	205	210
Ala Trp Ile Cys Phe Leu Leu Phe Leu Leu Pro Ser Cys Ser Gln		
215	220	225
Leu Leu Leu Gly Val Phe Gly Pro Gly Gly Glu Leu Tyr Phe Ile		
230	235	240
Ser Thr Gly		

<210> 18
<211> 162

<212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1877777

<400> 18
 Met Leu Gln Thr Ser Asn Tyr Ser Leu Val Leu Ser Leu Gln Phe
 1 5 10 15
 Leu Leu Leu Ser Tyr Asp Leu Phe Val Asn Ser Phe Ser Glu Leu
 20 25 30
 Leu Gln Lys Thr Pro Val Ile Gln Leu Val Leu Phe Ile Ile Gln
 35 40 45
 Asp Ile Ala Val Leu Phe Asn Ile Ile Ile Phe Leu Met Phe
 50 55 60
 Phe Asn Thr Phe Val Phe Gln Ala Gly Leu Val Asn Leu Leu Phe
 65 70 75
 His Lys Phe Lys Gly Thr Ile Ile Leu Thr Ala Val Tyr Phe Ala
 80 85 90
 Leu Ser Ile Ser Leu His Val Trp Val Met Asn Leu Arg Trp Lys
 95 100 105
 Asn Ser Asn Ser Phe Ile Trp Thr Asp Gly Leu Gln Met Leu Phe
 110 115 120
 Val Phe Gln Arg Leu Ala Ala Val Leu Tyr Cys Tyr Phe Tyr Lys
 125 130 135
 Arg Thr Ala Val Arg Leu Gly Asp Pro His Phe Tyr Gln Asp Ser
 140 145 150
 Leu Trp Leu Arg Lys Glu Phe Met Gln Val Arg Arg
 155 160 165

<210> 19
 <211> 470
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1879819

<400> 19
 Met Leu Ser Pro Ser Pro Gly Lys Gly Pro Pro Pro Ala Val Ala
 1 5 10 15
 Pro Arg Pro Lys Ala Pro Leu Gln Leu Gly Pro Ser Ser Ser Ile
 20 25 30
 Lys Glu Lys Gln Gly Pro Leu Leu Asp Leu Phe Gly Gln Lys Leu
 35 40 45
 Pro Ile Ala His Thr Pro Pro Pro Pro Pro Ala Pro Pro Leu Pro
 50 55 60
 Leu Pro Glu Asp Pro Gly Thr Leu Ser Ala Glu Arg Arg Cys Leu
 65 70 75
 Thr Gln Pro Val Glu Asp Gln Gly Val Ser Thr Gln Leu Leu Ala

80	85	90
Pro Ser Gly Ser Val Cys Phe Ser Tyr	Thr Gly Thr Pro Trp Lys	
95	100	105
Leu Phe Leu Arg Lys Glu Val Phe Tyr	Pro Arg Glu Asn Phe Ser	
110	115	120
His Pro Tyr Tyr Leu Arg Leu Leu Cys	Glu Gln Ile Leu Arg Asp	
125	130	135
Thr Phe Ser Glu Ser Cys Ile Arg Ile	Ser Gln Asn Glu Arg Arg	
140	145	150
Lys Met Lys Asp Leu Leu Gly Gly Leu	Glu Val Asp Leu Asp Ser	
155	160	165
Leu Thr Thr Thr Glu Asp Ser Val Lys	Lys Arg Ile Val Val Ala	
170	175	180
Ala Arg Asp Asn Trp Ala Asn Tyr Phe	Ser Arg Phe Phe Pro Val	
185	190	195
Ser Gly Glu Ser Gly Ser Asp Val Gln	Leu Leu Ala Val Ser His	
200	205	210
Arg Gly Leu Arg Leu Leu Lys Val Thr	Gln Gly Pro Gly Leu Arg	
215	220	225
Pro Asp Gln Leu Lys Ile Leu Cys Ser	Tyr Ser Phe Ala Glu Val	
230	235	240
Leu Gly Val Glu Cys Arg Gly Ser	Thr Leu Glu Leu Ser Leu	
245	250	255
Lys Ser Glu Gln Leu Val Leu His Thr	Ala Arg Ala Arg Ala Ile	
260	265	270
Glu Ala Leu Val Glu Leu Phe Leu Asn	Glu Leu Lys Lys Asp Ser	
275	280	285
Gly Tyr Val Ile Ala Leu Arg Ser Tyr	Ile Thr Asp Asn Cys Ser	
290	295	300
Leu Leu Ser Phe His Arg Gly Asp Leu	Ile Lys Leu Leu Pro Val	
305	310	315
Cys His Pro Gly Ala Arg Leu Ala Val	Trp Leu Cys Arg Gly Pro	
320	325	330
Phe Arg Thr Leu Ser Cys Arg His Ser	Ala Ala Gly Cys Arg Ser	
335	340	345
Arg Leu Phe Leu Leu Gln Gly Ala Glu	Glu Trp Leu Ala Gln Gly	
350	355	360
Ser Ala Val Gln Arg Gly Thr Arg Ala	Gly Ser Val Gly Gln Gly	
365	370	375
Leu Arg Gly Glu Asp Gly Arg Gly	Thr Ser Arg Gly Lys Ala	
380	385	390
Cys Leu Arg Leu Arg Lys Glu Arg Gly	Leu Thr Thr Pro Glu Ala	
395	400	405
Ala Met Arg Trp Asp His Pro Ala Val	Arg Leu Leu Trp Leu Pro	
410	415	420
Leu Cys Pro Leu Leu Met Ala Arg Leu	Val Ser Pro Ala Arg Leu	
425	430	435
Cys Thr Pro Cys Arg Gln Gly Leu Gly	Trp Met Leu Leu Leu Cys	
440	445	450
Pro Thr Trp Tyr Leu Val Gln Gly Cys	Pro Ser Arg Cys Leu Ile	
455	460	465
Asn Ser Ser Ser Leu		
470		

<210> 20

<211> 144

<212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1932945

<400> 20
 Met Glu Arg Glu Gly Ser Gly Gly Ser Ala Gly Leu
 1 5 10 15
 Leu Gln Gln Ile Leu Ser Leu Lys Val Val Pro Arg Val Gly Asn
 20 25 30
 Gly Thr Leu Cys Pro Asn Ser Thr Ser Leu Cys Ser Phe Pro Glu
 35 40 45
 Met Trp Tyr Gly Val Phe Leu Trp Ala Leu Val Ser Ser Leu Phe
 50 55 60
 Phe His Val Pro Ala Gly Leu Leu Ala Leu Phe Thr Leu Arg His
 65 70 75
 His Lys Tyr Gly Arg Phe Met Ser Val Ser Ile Leu Leu Met Gly
 80 85 90
 Ile Val Gly Pro Ile Thr Ala Gly Ile Leu Thr Ser Ala Ala Ile
 95 100 105
 Ala Gly Val Tyr Arg Ala Ala Gly Lys Glu Met Ile Pro Phe Glu
 110 115 120
 Ala Leu Thr Leu Gly Thr Gly Gln Thr Phe Cys Val Leu Val Val
 125 130 135
 Ser Phe Leu Arg Ile Leu Ala Thr Leu
 140

<210> 21
 <211> 221
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2061026

<400> 21
 Met Ala Leu Ala Leu Ala Ala Leu Ala Ala Val Glu Pro Ala Cys
 1 5 10 15
 Gly Ser Arg Tyr Gln Gln Leu Gln Asn Glu Glu Glu Ser Gly Glu
 20 25 30
 Pro Glu Gln Ala Ala Gly Asp Ala Pro Pro Pro Tyr Ser Ser Ile
 35 40 45
 Ser Ala Glu Ser Ala Ala Tyr Phe Asp Tyr Lys Asp Glu Ser Gly
 50 55 60
 Phe Pro Lys Pro Pro Ser Tyr Asn Val Ala Thr Thr Leu Pro Ser
 65 70 75
 Tyr Asp Glu Ala Glu Arg Thr Lys Ala Glu Ala Thr Ile Pro Leu
 80 85 90
 Val Pro Gly Arg Asp Glu Asp Phe Val Gly Arg Asp Asp Phe Asp
 95 100 105
 Asp Ala Asp Gln Leu Arg Ile Gly Asn Asp Gly Ile Phe Met Leu

110	115	120
Thr Phe Phe Met Ala Phe Leu Phe Asn Trp Ile Gly Phe Phe Leu		
125	130	135
Ser Phe Cys Leu Thr Thr Ser Ala Ala Gly Arg Tyr Gly Ala Ile		
140	145	150
Ser Gly Phe Gly Leu Ser Leu Ile Lys Trp Ile Leu Ile Val Arg		
155	160	165
Phe Ser Thr Tyr Phe Pro Gly Tyr Phe Asp Gly Gln Tyr Trp Leu		
170	175	180
Trp Trp Val Phe Leu Val Leu Gly Phe Leu Leu Phe Leu Arg Gly		
185	190	195
Phe Ile Asn Tyr Ala Lys Val Arg Lys Met Pro Glu Thr Phe Ser		
200	205	210
Asn Leu Pro Arg Thr Arg Val Leu Phe Ile Tyr		
215	220	.

<210> 22
<211> 688
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2096687

<400> 22
Met Ser Ala Glu Ser Gly Pro Gly Thr Arg Leu Arg Asn Leu Pro
1 5 10 15
Val Met Gly Asp Gly Leu Glu Thr Ser Gln Met Ser Thr Thr Gln
20 25 30
Ala Gln Ala Gln Pro Gln Pro Ala Asn Ala Ala Ser Thr Asn Pro
35 40 45
Pro Pro Pro Glu Thr Ser Asn Pro Asn Lys Pro Lys Arg Gln Thr
50 55 60
Asn Gln Leu Gln Tyr Leu Leu Arg Val Val Leu Lys Thr Leu Trp
65 70 75
Lys His Gln Phe Ala Trp Pro Phe Gln Gln Pro Val Asp Ala Val
80 85 90
Lys Leu Asn Leu Pro Asp Tyr Tyr Lys Ile Ile Lys Thr Pro Met
95 100 105
Asp Met Gly Thr Ile Lys Lys Arg Leu Glu Asn Asn Tyr Tyr Trp
110 115 120
Asn Ala Gln Glu Cys Ile Gln Asp Phe Asn Thr Met Phe Thr Asn
125 130 135
Cys Tyr Ile Tyr Asn Lys Pro Gly Asp Asp Ile Val Leu Met Ala
140 145 150
Glu Ala Leu Glu Lys Leu Phe Leu Gln Lys Ile Asn Glu Leu Pro
155 160 165
Thr Glu Glu Thr Glu Ile Met Ile Val Gln Ala Lys Gly Arg Gly
170 175 180
Arg Gly Arg Lys Glu Thr Gly Thr Ala Lys Pro Gly Val Ser Thr
185 190 195
Val Pro Asn Thr Thr Gln Ala Ser Thr Pro Pro Gln Thr Gln Thr

200	205	210
Pro Gln Pro Asn Pro Pro Pro Val Gln Ala Thr Pro His Pro Phe		
215	220	225
Pro Ala Val Thr Pro Asp Leu Ile Val Gln Thr Pro Val Met Thr		
230	235	240
Val Val Pro Pro Gln Pro Leu Gln Thr Pro Pro Pro Val Pro Pro		
245	250	255
Gln Pro Gln Pro Pro Pro Ala Pro Gln Pro Val Gln Ser		
260	265	270
His Pro Pro Ile Ile Ala Ala Thr Pro Gln Pro Val Lys Thr Lys		
275	280	285
Lys Gly Val Lys Arg Lys Ala Asp Thr Thr Pro Thr Thr Ile		
290	295	300
Asp Pro Ile His Glu Pro Pro Ser Leu Pro Pro Glu Pro Lys Thr		
305	310	315
Thr Lys Leu Gly Gln Arg Arg Glu Ser Ser Arg Pro Val Lys Pro		
320	325	330
Pro Lys Lys Asp Val Pro Asp Ser Gln Gln His Pro Ala Pro Glu		
335	340	345
Lys Ser Ser Lys Val Ser Glu Gln Leu Lys Cys Cys Ser Gly Ile		
350	355	360
Leu Lys Glu Met Phe Ala Lys Lys His Ala Ala Tyr Ala Trp Pro		
365	370	375
Phe Tyr Lys Pro Val Asp Val Glu Ala Leu Gly Leu His Asp Tyr		
380	385	390
Cys Asp Ile Ile Lys His Pro Met Asp Met Ser Thr Ile Lys Ser		
395	400	405
Lys Ieu Glu Ala Arg Glu Tyr Arg Asp Ala Gln Glu Phe Gly Ala		
410	415	420
Asp Val Arg Leu Met Phe Ser Asn Cys Tyr Lys Tyr Asn Pro Pro		
425	430	435
Asp His Glu Val Val Ala Met Ala Arg Lys Leu Gln Asp Val Phe		
440	445	450
Glu Met Arg Phe Ala Lys Met Pro Asp Glu Pro Glu Glu Pro Val		
455	460	465
Val Ala Val Ser Ser Pro Ala Val Pro Pro Pro Thr Lys Val Val		
470	475	480
Ala Pro Pro Ser Ser Ser Asp Ser Ser Ser Ser Asp		
485	490	495
Ser Asp Ser Ser Thr Asp Asp Ser Glu Glu Glu Arg Ala Gln Arg		
500	505	510
Leu Ala Glu Leu Gln Glu Gln Leu Lys Ala Val His Glu Gln Leu		
515	520	525
Ala Ala Leu Ser Gln Pro Gln Gln Asn Lys Pro Lys Lys Lys Glu		
530	535	540
Lys Asp Lys Lys Glu Lys Lys Glu Lys His Lys Arg Lys Glu		
545	550	555
Glu Val Glu Glu Asn Lys Lys Ser Lys Ala Lys Glu Pro Pro Pro		
560	565	570
Lys Lys Thr Lys Lys Asn Asn Ser Ser Asn Ser Asn Val Ser Lys		
575	580	585
Lys Glu Pro Ala Pro Met Lys Ser Lys Pro Pro Pro Thr Tyr Glu		
590	595	600
Ser Glu Glu Asp Lys Cys Lys Pro Met Ser Tyr Glu Glu Lys		
605	610	615
Arg Gln Leu Ser Leu Asp Ile Asn Lys Leu Pro Gly Glu Lys Leu		
620	625	630

Gly Arg Val Val His Ile Ile Gln Ser Arg Glu Pro Ser Leu Lys	
635	640
Asn Ser Asn Pro Asp Glu Ile Glu Ile Asp Phe Glu Thr Leu Lys	
650	655
Pro Ser Thr Leu Arg Glu Leu Gly Ala Leu Cys His Leu Leu Phe	
665	670
Ala Glu Glu Lys Glu Thr Phe Lys Leu Arg Lys Leu Met	
680	685

<210> 23
<211> 439
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2100530

<400> 23
Met Gly Ser Gln Glu Val Leu Gly His Ala Ala Arg Leu Ala Ser
1 5 10 15
Ser Gly Leu Leu Leu Gln Val Leu Phe Arg Leu Ile Thr Phe Val
20 25 30
Leu Asn Ala Phe Ile Leu Arg Phe Leu Ser Lys Glu Ile Val Gly
35 40 45
Val Val Asn Val Arg Leu Thr Leu Leu Tyr Ser Thr Thr Leu Phe
50 55 60
Leu Ala Arg Glu Ala Phe Arg Arg Ala Cys Leu Ser Gly Gly Thr
65 70 75
Gln Arg Asp Trp Ser Gln Thr Leu Asn Leu Leu Trp Leu Thr Val
80 85 90
Pro Leu Gly Val Phe Trp Ser Leu Phe Leu Gly Trp Ile Trp Leu
95 100 105
Gln Leu Leu Glu Val Pro Asp Pro Asn Val Val Pro His Tyr Ala
110 115 120
Thr Gly Val Val Leu Phe Gly Leu Ser Ala Val Val Glu Leu Leu
125 130 135
Gly Glu Pro Phe Trp Val Leu Ala Gln Ala His Met Phe Val Lys
140 145 150
Leu Lys Val Ile Ala Glu Ser Leu Ser Val Ile Leu Lys Ser Val
155 160 165
Leu Thr Ala Phe Leu Val Leu Trp Leu Pro His Trp Gly Leu Tyr
170 175 180
Ile Phe Ser Leu Ala Gln Leu Phe Tyr Thr Thr Val Leu Val Leu
185 190 195
Cys Tyr Val Ile Tyr Phe Thr Lys Leu Leu Gly Ser Pro Glu Ser
200 205 210
Thr Lys Leu Gln Thr Leu Pro Val Ser Arg Ile Thr Asp Leu Leu
215 220 225
Pro Asn Ile Thr Arg Asn Gly Ala Phe Ile Asn Trp Lys Glu Ala

230	235	240
Lys Leu Thr Trp Ser Phe Phe Lys Gln Ser Phe	Leu Lys Gln Ile	
245	250	255
Leu Thr Glu Gly Glu Arg Tyr Val Met Thr Phe	Leu Asn Val Leu	
260	265	270
Asn Phe Gly Asp Gln Gly Val Tyr Asp Ile Val	Asn Asn Leu Gly	
275	280	285
Ser Leu Val Ala Arg Leu Ile Phe Gln Pro Ile	Glu Ser Phe	
290	295	300
Tyr Ile Phe Phe Ala Lys Val Leu Glu Arg Gly	Lys Asp Ala Thr	
305	310	315
Leu Gln Lys Gln Glu Asp Val Ala Val Ala Ala	Val Leu Glu	
320	325	330
Ser Leu Leu Lys Leu Ala Leu Ala Gly Leu Thr	Ile Thr Val	
335	340	345
Phe Gly Phe Ala Tyr Ser Gln Leu Ala Leu Asp	Ile Tyr Gly	
350	355	360
Thr Met Leu Ser Ser Gly Pro Val Leu Leu Arg	Ser Tyr	
365	370	375
Cys Leu Tyr Val Leu Leu Leu Ala Ile Asn Gly	Val Thr Glu Cys	
380	385	390
Phe Thr Phe Ala Ala Met Ser Lys Glu Glu Val	Asp Arg Tyr Ser	
395	400	405
Ser Ala Val Ser Arg Ala Gly Gln Pro Asp Trp	His Thr Leu Leu	
410	415	420
Trp Gly Pro Ser Val Trp Glu Gln Leu Ser Gly	Gln His Xaa Ser	
425	430	435
Gln Arg Pro Ser		

<210> 24
<211> 192
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2357636

<400> 24
Met Thr Ala Val Gly Val Gln Ala Gln Arg Pro Leu Gly Gln Arg
1 5 10 15
Gln Pro Arg Arg Ser Phe Phe Glu Ser Phe Ile Arg Thr Leu Ile
20 25 30
Ile Thr Cys Val Ala Leu Ala Val Val Leu Ser Ser Val Ser Ile
35 40 45
Cys Asp Gly His Trp Leu Leu Ala Glu Asp Arg Leu Phe Gly Leu
50 55 60
Trp His Phe Cys Thr Thr Thr Asn Gln Ser Val Pro Ile Cys Phe
65 70 75
Arg Asp Leu Gly Gln Ala His Val Pro Gly Leu Ala Val Gly Met
80 85 90
Gly Leu Val Arg Ser Val Gly Ala Leu Ala Val Val Ala Ala Ile
95 100 105
Phe Gly Leu Glu Phe Leu Met Val Ser Gln Leu Cys Glu Asp Lys

110	115	120
His Ser Gln Cys Lys Trp Val Met Gly Ser Ile Leu Leu Leu Val		
125	130	135
Ser Phe Val Leu Ser Ser Gly Gly Leu Leu Gly Phe Val Ile Leu		
140	145	150
Leu Arg Asn Gln Val Thr Leu Ile Gly Phe Thr Leu Met Phe Trp		
155	160	165
Cys Glu Phe Thr Ala Ser Phe Leu Leu Phe Leu Asn Ala Ile Ser		
170	175	180
Gly Leu His Ile Asn Ser Ile Thr His Pro Trp Glu		
185	190	

<210> 25
<211> 175
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2365230

<400> 25		
Met Lys Glu Val Thr Arg Thr Trp Lys Ile Val Gly Gly Val Thr		
1	5	10
His Ala Asn Ser Tyr Tyr Lys Asn Gly Trp Ile Val Met Ile Ala		
20	25	30
Ile Gly Trp Ala Arg Gly Ala Gly Gly Thr Ile Ile Thr Asn Phe		
35	40	45
Glu Arg Leu Val Lys Gly Asp Trp Lys Pro Glu Gly Asp Glu Trp		
50	55	60
Leu Lys Met Ser Tyr Pro Ala Lys Val Thr Leu Leu Gly Ser Val		
65	70	75
Ile Phe Thr Phe Gln His Thr Gln His Leu Ala Ile Ser Lys His		
80	85	90
Asn Leu Met Phe Leu Tyr Thr Ile Phe Ile Val Ala Thr Lys Ile		
95	100	105
Thr Met Met Thr Thr Gln Thr Ser Thr Met Thr Phe Ala Pro Phe		
110	115	120
Glu Asp Thr Leu Ser Trp Met Leu Phe Gly Trp Gln Gln Pro Phe		
125	130	135
Ser Ser Cys Glu Lys Lys Ser Glu Ala Lys Ser Pro Ser Asn Gly		
140	145	150
Val Gly Ser Leu Ala Ser Lys Pro Val Asp Val Ala Ser Asp Asn		
155	160	165
Val Lys Lys Lys His Thr Lys Lys Asn Glu		
170	175	

<210> 26
<211> 91
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2455121

<400> 26
 Met Tyr Pro Pro Pro Pro Pro Pro His Arg Asp Phe Ile Ser
 1 5 10 15
 Val Thr Leu Ser Phe Gly Glu Ser Tyr Asp Asn Ser Lys Ser Trp
 20 25 30
 Arg Arg Arg Ser Cys Trp Arg Lys Trp Lys Gln Leu Ser Arg Leu
 35 40 45
 Gln Arg Asn Met Ile Leu Phe Leu Leu Ala Phe Leu Leu Phe Cys
 50 55 60
 Gly Leu Leu Phe Tyr Ile Asn Leu Ala Asp His Trp Lys Ala Leu
 65 70 75
 Ala Phe Arg Leu Gly Glu Glu Gln Lys Met Arg Pro Glu Ile Ala
 80 85 90
 Gly

<210> 27
<211> 214
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2472514

<400> 27
 Met Gln Pro Thr Ser Trp Ala Val Ser Cys Gly Leu Arg Pro Leu
 1 5 10 15
 Pro Ser Trp Lys Pro Gln Gly Gly Glu Gly Arg Gly Gly Glu Glu
 20 25 30
 Arg Arg Gly Thr Val Met Gly Pro Trp Ser Arg Val Arg Val Ala
 35 40 45
 Lys Cys Gln Met Leu Val Thr Cys Phe Phe Ile Leu Leu Leu Gly
 50 55 60
 Leu Ser Val Ala Thr Met Val Thr Leu Thr Tyr Phe Gly Ala His
 65 70 75
 Phe Ala Val Ile Arg Arg Ala Ser Leu Glu Lys Asn Pro Tyr Gln
 80 85 90
 Ala Val His Gln Trp Ala Phe Ser Ala Gly Leu Ser Leu Val Gly
 95 100 105
 Leu Leu Thr Leu Gly Ala Val Leu Ser Ala Ala Ala Thr Val Arg
 110 115 120
 Glu Ala Gln Gly Leu Met Ala Gly Gly Phe Leu Cys Phe Ser Leu
 125 130 135
 Ala Phe Cys Ala Gln Val Gln Val Val Phe Trp Arg Leu His Ser
 140 145 150
 Pro Thr Gln Val Glu Asp Ala Met Leu Asp Thr Tyr Asp Leu Val
 155 160 165
 Tyr Glu Gln Ala Met Lys Gly Thr Ser His Val Arg Arg Gln Glu
 170 175 180
 Leu Ala Ala Ile Gln Asp Val Val Ser Val Gly Thr Ala Gly Trp
 185 190 195
 Gln Gly Gly Gln Leu Leu Leu Gly Leu Gln Phe Arg Glu Gln Ala

200	205	210
Gln Gly Gly Gln		

<210> 28
<211> 250
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2543486

<400> 28	
Met Ser Val Ile Phe Phe Ala Cys Val Val Arg Val Arg Asp Gly	
1 5 10 15	
Leu Pro Leu Ser Ala Ser Thr Asp Phe Tyr His Thr Gln Asp Phe	
20 25 30	
Leu Glu Trp Arg Arg Arg Leu Lys Ser Leu Ala Leu Arg Leu Ala	
35 40 45	
Gln Tyr Pro Gly Arg Gly Ser Ala Glu Gly Cys Asp Phe Ser Ile	
50 55 60	
His Phe Ser Ser Phe Gly Asp Val Ala Cys Met Ala Ile Cys Ser	
65 70 75	
Cys Gln Cys Pro Ala Ala Met Ala Phe Cys Phe Leu Glu Thr Leu	
80 85 90	
Trp Trp Glu Phe Thr Ala Ser Tyr Asp Thr Thr Cys Ile Gly Leu	
95 100 105	
Ala Ser Arg Pro Tyr Ala Phe Leu Glu Phe Asp Ser Ile Ile Gln	
110 115 120	
Lys Val Lys Trp His Phe Asn Tyr Val Ser Ser Ser Gln Met Glu	
125 130 135	
Cys Ser Leu Glu Lys Ile Gln Glu Glu Leu Lys Leu Gln Pro Pro	
140 145 150	
Ala Val Leu Thr Leu Glu Asp Thr Asp Val Ala Asn Gly Val Met	
155 160 165	
Asn Gly His Thr Pro Met His Leu Glu Pro Ala Pro Asn Phe Arg	
170 175 180	
Met Glu Pro Val Thr Ala Leu Gly Ile Leu Ser Leu Ile Leu Asn	
185 190 195	
Ile Met Cys Ala Ala Leu Asn Leu Ile Arg Gly Val His Leu Ala	
200 205 210	
Glu His Ser Leu Gln Val Ala His Glu Glu Ile Gly Asn Ile Leu	
215 220 225	
Ala Phe Leu Val Pro Phe Val Ala Cys Ile Phe Gln Asp Pro Arg	
230 235 240	
Ser Trp Phe Cys Trp Leu Asp Gln Thr Ser	
245 250	

<210> 29
<211> 84
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte Clone No: 2778171

<400> 29
 Met Ala Thr Gly Thr Asp Gln Val Val Gly Leu Gly Leu Val Ala
 1 5 15
 Val Ser Leu Ile Ile Phe Thr Tyr Tyr Thr Ala Trp Val Ile Leu
 20 30
 Leu Pro Phe Ile Asp Ser Gln His Val Ile His Lys Tyr Phe Leu
 35 45
 Pro Arg Ala Tyr Ala Val Ala Ile Pro Leu Ala Ala Gly Leu Leu
 50 60
 Leu Leu Leu Phe Val Gly Leu Phe Ile Ser Tyr Val Met Leu Lys
 65 75
 Ser Lys Arg Val Thr Lys Lys Ala Gln
 80

<210> 30
 <211> 277
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2799575

<400> 30
 Met Ala Ser Ala Glu Leu Asp Tyr Thr Ile Glu Ile Pro Asp Gln
 1 5 15
 Pro Cys Trp Ser Gln Lys Asn Ser Pro Ser Pro Gly Gly Lys Glu
 20 30
 Ala Glu Thr Arg Gln Pro Val Val Ile Leu Leu Gly Trp Gly Gly
 35 45
 Cys Lys Asp Lys Asn Leu Ala Lys Tyr Ser Ala Ile Tyr His Lys
 50 60
 Arg Gly Cys Ile Val Ile Arg Tyr Thr Ala Pro Trp His Met Val
 65 75
 Phe Phe Ser Glu Ser Leu Gly Ile Pro Ser Leu Arg Val Leu Ala
 80 90
 Gln Lys Leu Leu Glu Leu Leu Phe Asp Tyr Glu Ile Glu Lys Glu
 95 105
 Pro Leu Leu Phe His Val Phe Ser Asn Gly Gly Val Met Leu Tyr
 110 120
 Arg Tyr Val Leu Glu Leu Leu Gln Thr Arg Arg Phe Cys Arg Leu
 125 135
 Arg Val Val Gly Thr Ile Phe Asp Ser Ala Pro Gly Asp Ser Asn
 140 150
 Leu Val Gly Ala Leu Arg Ala Leu Ala Ala Ile Leu Glu Arg Arg
 155 165
 Ala Ala Met Leu Arg Leu Leu Leu Val Ala Phe Ala Leu Val
 170 180
 Val Val Leu Phe His Val Leu Leu Ala Pro Ile Thr Ala Leu Phe
 185 195
 His Thr His Phe Tyr Asp Arg Leu Gln Asp Ala Gly Ser Arg Trp

200	205	210
Pro Glu Leu Tyr	Leu Tyr Ser Arg Ala	Asp Glu Val Val Leu Ala
215	220	225
Arg Asp Ile Glu	Arg Met Val Glu Ala	Arg Leu Ala Arg Arg Val
230	235	240
Leu Ala Arg Ser Val Asp Phe Val Ser	Ser Ala His Val Ser	His
245	250	255
Leu Arg Asp Tyr	Pro Thr Tyr Tyr Thr	Ser Leu Cys Val Asp Phe
260	265	270
Met Arg Asn Cys Val Arg Cys		
275		

<210> 31
<211> 273
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2804955

<400> 31		
Met Ser Gly Ser Gln Ser Glu Val Ala Pro Ser Pro Gln Ser Pro		
1	5	10
Arg Ser Pro Glu Met Gly Arg Asp Leu Arg Pro Gly Ser Arg Val		15
20	25	30
Leu Leu Leu Leu Leu Leu Leu Val Tyr Leu Thr Gln Pro		
35	40	45
Gly Asn Gly Asn Glu Gly Ser Val Thr Gly Ser Cys Tyr Cys Gly		
50	55	60
Lys Arg Ile Ser Ser Asp Ser Pro Pro Ser Val Gln Phe Met Asn		
65	70	75
Arg Leu Arg Lys His Leu Arg Ala Tyr His Arg Cys Leu Tyr Tyr		
80	85	90
Thr Arg Phe Gln Leu Leu Ser Trp Ser Val Cys Gly Asn Lys		
95	100	105
Asp Pro Trp Val Gln Glu Leu Met Ser Cys Leu Asp Leu Lys Glu		
110	115	120
Cys Gly His Ala Tyr Ser Gly Ile Val Ala His Gln Lys His Leu		
125	130	135
Leu Pro Thr Ser Pro Pro Ile Ser Gln Ala Ser Glu Gly Ala Ser		
140	145	150
Ser Asp Ile His Thr Pro Ala Gln Met Leu Leu Ser Thr Leu Gln		
155	160	165
Ser Thr Gln Arg Pro Thr Leu Pro Val Gly Ser Leu Ser Ser Asp		
170	175	180
Lys Glu Leu Thr Arg Pro Asn Glu Thr Thr Ile His Thr Ala Gly		
185	190	195
His Ser Leu Ala Ala Gly Pro Glu Ala Gly Glu Asn Gln Lys Gln		
200	205	210
Pro Glu Lys Asn Ala Gly Pro Thr Ala Arg Thr Ser Ala Thr Val		
215	220	225
Pro Val Leu Cys Leu Leu Ala Ile Ile Phe Ile Leu Thr Ala Ala		

230	235	240
Leu Ser Tyr Val	Leu Cys Lys Arg Arg	Arg Gly Gln Ser Pro Gln
245	250	255
Ser Ser Pro Asp	Leu Pro Val His Tyr	Ile Pro Val Ala Pro Asp
260	265	270

Ser Asn Thr

<210> 32
<211> 524
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2806395

<400> 32

Met Ser Gln Gly Ser Pro Gly Asp Trp Ala Pro Leu Asp Pro Thr			
1	5	10	15
Pro Gly Pro Pro Ala Ser Pro Asn Pro Phe Val His Glu Leu His			
20	25	30	
Leu Ser Arg Leu Gln Arg Val Lys Phe Cys Leu Leu Gly Ala Leu			
35	40	45	
Leu Ala Pro Ile Arg Val Leu Leu Ala Phe Ile Val Leu Phe Leu			
50	55	60	
Leu Trp Pro Phe Ala Trp Leu Gln Val Ala Gly Leu Ser Glu Glu			
65	70	75	
Gln Leu Gln Glu Pro Ile Thr Gly Trp Arg Lys Thr Val Cys His			
80	85	90	
Asn Gly Val Leu Gly Leu Ser Arg Leu Leu Phe Phe Leu Leu Gly			
95	100	105	
Phe Leu Arg Ile Arg Val Arg Gly Gln Arg Ala Ser Arg Leu Gln			
110	115	120	
Ala Pro Val Leu Val Ala Ala Pro His Ser Thr Phe Phe Asp Pro			
125	130	135	
Ile Val Leu Leu Pro Cys Asp Leu Pro Lys Val Val Ser Arg Ala			
140	145	150	
Glu Asn Leu Ser Val Pro Val Ile Gly Ala Leu Leu Arg Phe Asn			
155	160	165	
Gln Ala Ile Leu Val Ser Arg His Asp Pro Ala Ser Arg Arg Arg			
170	175	180	
Val Val Glu Glu Val Arg Arg Ala Thr Ser Gly Gly Lys Trp			
185	190	195	
Pro Gln Val Leu Phe Phe Pro Glu Gly Thr Cys Ser Asn Lys Lys			
200	205	210	
Ala Leu Leu Lys Phe Lys Pro Gly Ala Phe Ile Ala Gly Val Pro			
215	220	225	
Val Gln Pro Val Leu Ile Arg Tyr Pro Asn Ser Leu Asp Thr Thr			
230	235	240	
Ser Trp Ala Trp Arg Gly Pro Gly Val Leu Lys Val Leu Trp Leu			
245	250	255	
Thr Ala Ser Gln Pro Cys Ser Ile Val Asp Val Glu Phe Leu Pro			
260	265	270	
Val Tyr His Pro Ser Pro Glu Glu Ser Arg Asp Pro Thr Leu Tyr			
275	280	285	

Ala Asn Asn Val Gln Arg Val Met Ala Gln Ala Leu Gly Ile Pro
 290 295 300
 Ala Thr Glu Cys Glu Phe Val Gly Ser Leu Pro Val Ile Val Val
 305 310 315
 Gly Arg Leu Lys Val Ala Leu Glu Pro Gln Leu Trp Glu Leu Gly
 320 325 330
 Lys Val Leu Arg Lys Ala Gly Leu Ser Ala Gly Tyr Val Asp Ala
 335 340 345
 Gly Ala Glu Pro Gly Arg Ser Arg Met Ile Ser Gln Glu Glu Phe
 350 355 360
 Ala Arg Gln Leu Gln Leu Ser Asp Pro Gln Thr Val Ala Gly Ala
 365 370 375
 Phe Gly Tyr Phe Gln Gln Asp Thr Lys Gly Leu Val Asp Phe Arg
 380 385 390
 Asp Val Ala Leu Ala Leu Ala Leu Asp Gly Gly Arg Ser Leu
 395 400 405
 Glu Glu Leu Thr Arg Leu Ala Phe Glu Leu Phe Ala Glu Glu Gln
 410 415 420
 Ala Glu Gly Pro Asn Arg Leu Leu Tyr Lys Asp Gly Phe Ser Thr
 425 430 435
 Ile Leu His Leu Leu Leu Gly Ser Pro His Pro Ala Ala Thr Ala
 440 445 450
 Leu His Ala Glu Leu Cys Gln Ala Gly Ser Ser Gln Gly Leu Ser
 455 460 465
 Leu Cys Gln Phe Gln Asn Phe Ser Leu His Asp Pro Leu Tyr Gly
 470 475 480
 Lys Leu Phe Ser Thr Tyr Leu Arg Pro Pro His Thr Ser Arg Gly
 485 490 495
 Thr Ser Gln Thr Pro Asn Ala Ser Ser Pro Gly Asn Pro Thr Ala
 500 505 510
 Leu Ala Asn Gly Thr Val Gln Ala Pro Lys Gln Lys Gly Asp
 515 520

<210> 33
 <211> 257
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2836858

<400> 33
 Met Asp Phe Ser Arg Leu His Met Tyr Ser Pro Pro Gln Cys Val
 1 5 10 15
 Pro Glu Asn Thr Gly Tyr Thr Tyr Ala Leu Ser Ser Ser Tyr Ser
 20 25 30
 Ser Asp Ala Leu Asp Phe Glu Thr Glu His Lys Leu Asp Pro Val
 35 40 45
 Phe Asp Ser Pro Arg Met Ser Arg Arg Ser Leu Arg Leu Ala Thr
 50 55 60
 Thr Ala Cys Thr Leu Gly Asp Gly Glu Ala Val Gly Ala Asp Ser
 65 70 75
 Gly Thr Ser Ser Ala Val Ser Leu Lys Asn Arg Ala Ala Arg Thr
 80 85 90

Thr Lys Gln Arg Arg Ser Thr Asn Lys Ser Ala Phe Ser Ile Asn
 95 100 105
 His Val Ser Arg Gln Val Thr Ser Ser Gly Val Ser His Gly Gly
 110 115 120
 Thr Val Ser Leu Gln Asp Ala Val Thr Arg Arg Pro Pro Val Leu
 125 130 135
 Asp Glu Ser Trp Ile Arg Glu Gln Thr Thr Val Asp His Phe Trp
 140 145 150
 Gly Leu Asp Asp Gly Asp Leu Lys Gly Gly Asn Lys Ala Ala
 155 160 165
 Ile Gln Gly Asn Gly Asp Val Gly Ala Ala Ala Ala Thr Ala His
 170 175 180
 Asn Gly Phe Ser Cys Ser Asn Cys Ser Met Leu Ser Glu Arg Lys
 185 190 195
 Asp Val Leu Thr Ala His Pro Ala Ala Pro Gly Pro Val Ser Arg
 200 205 210
 Val Tyr Ser Arg Asp Arg Asn Gln Lys Cys Lys Ser Gln Ser Phe
 215 220 225
 Lys Thr Gln Lys Lys Val Cys Phe Pro Asn Leu Ile Phe Pro Phe
 230 235 240
 Cys Lys Ser Gln Cys Leu His Tyr Leu Ser Trp Arg Leu Lys Ile
 245 250 255
 Ile Pro

<210> 34
 <211> 274
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2844513

<400> 34
 Met Arg Ala Ala Gly Val Gly Leu Val Asp Cys His Cys His Leu
 1 5 10 15
 Ser Ala Pro Asp Phe Asp Arg Asp Leu Asp Asp Val Leu Glu Lys
 20 25 30
 Ala Lys Lys Ala Asn Val Val Ala Leu Val Ala Val Ala Glu His
 35 40 45
 Ser Gly Glu Phe Glu Lys Ile Met Gln Leu Ser Glu Arg Tyr Asn
 50 55 60
 Gly Phe Val Leu Pro Cys Leu Gly Val His Pro Val Gln Gly Leu
 65 70 75
 Pro Pro Glu Asp Gln Arg Ser Val Thr Leu Lys Asp Leu Asp Val
 80 85 90
 Ala Leu Pro Ile Ile Glu Asn Tyr Lys Asp Arg Leu Leu Ala Ile
 95 100 105
 Gly Glu Val Gly Leu Asp Phe Ser Pro Arg Phe Ala Gly Thr Gly
 110 115 120
 Glu Gln Lys Glu Glu Gln Arg Gln Val Leu Ile Arg Gln Ile Gln
 125 130 135
 Leu Ala Lys Arg Leu Asn Leu Pro Val Asn Val His Ser Arg Ser
 140 145 150
 Ala Gly Arg Pro Thr Ile Asn Leu Leu Gln Glu Gln Gly Ala Glu

155	160	165
Lys Val Leu Leu His Ala Phe Asp Gly Arg Pro Ser Val Ala Met		
170	175	180
Glu Gly Val Arg Ala Gly Tyr Phe Phe Ser Ile Pro Pro Ser Ile		
185	190	195
Ile Arg Ser Gly Gln Lys Gln Lys Leu Val Lys Gln Leu Pro Leu		
200	205	210
Thr Ser Ile Cys Leu Glu Thr Asp Ser Pro Ala Leu Gly Pro Glu		
215	220	225
Lys Gln Val Arg Asn Glu Pro Trp Asn Ile Ser Ile Ser Ala Glu		
230	235	240
Tyr Ile Ala Gln Val Lys Gly Ile Ser Val Glu Glu Val Ile Glu		
245	250	255
Val Thr Thr Gln Asn Ala Leu Lys Leu Phe Pro Lys Leu Arg His		
260	265	270
Leu Leu Gln Lys		

<210> 35
<211> 281
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3000380

<400> 35		
Met Ser Glu Pro Gln Pro Asp Leu Glu Pro Pro Gln His Gly Leu		
1	5	10
Tyr Met Leu Phe Leu Leu Val Leu Val Phe Phe Leu Met Gly Leu		
20	25	30
Val Gly Phe Met Ile Cys His Val Leu Lys Lys Lys Gly Tyr Arg		
35	40	45
Cys Arg Thr Ser Arg Gly Ser Glu Pro Asp Asp Ala Gln Leu Gln		
50	55	60
Pro Pro Glu Asp Asp Asp Met Asn Glu Asp Thr Val Glu Arg Ile		
65	70	75
Val Arg Cys Ile Ile Gln Asn Glu Val Trp Met Pro Pro Pro Ala		
80	85	90
Cys Arg Thr Glu Pro Pro Pro Ile Ile Thr Gln Cys Thr Trp Ala		
95	100	105
Leu Gln Pro Leu Ala Val His Cys Ser Arg Ser Lys Arg Pro Pro		
110	115	120
Leu Val Arg Gln Gly Arg Ser Lys Glu Gly Lys Ser Arg Pro Arg		
125	130	135
Thr Gly Glu Thr Thr Val Phe Ser Val Gly Arg Phe Arg Val Thr		
140	145	150
His Ile Glu Lys Arg Tyr Gly Leu His Glu His Arg Asp Gly Ser		
155	160	165
Pro Thr Asp Arg Ser Trp Gly Ser Arg Gly Gly Gln Asp Pro Gly		
170	175	180
Gly Gly Gln Gly Ser Gly Gly His Pro Lys Ala Gly Met Leu		
185	190	195

Pro Trp Arg Gly Cys Pro Pro Glu Arg Pro Gln Pro Gln Val Leu
 200 205 210
 Ala Ser Pro Pro Val Gln Asn Gly Gly Leu Arg Asp Ser Ser Leu
 215 220 225
 Thr Pro Arg Ala Leu Glu Gly Asn Pro Arg Ala Ser Ala Glu Pro
 230 235 240
 Thr Leu Arg Ala Gly Gly Arg Gly Pro Ser Pro Gly Leu Pro Thr
 245 250 255
 Gln Glu Ala Asn Gly Gln Pro Ser Lys Pro Asp Thr Ser Asp His
 260 265 270
 Gln Val Ser Leu Pro Gln Gly Ala Gly Ser Met
 275 280

<210> 36
<211> 335
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 182532

<400> 36
 Met Gly Pro Leu Ser Ala Pro Pro Cys Thr His Leu Ile Thr Trp
 1 5 10 15
 Lys Gly Val Leu Leu Thr Ala Ser Leu Leu Asn Phe Trp Asn Pro
 20 25 30
 Pro Thr Thr Ala Gln Val Thr Ile Glu Ala Gln Pro Pro Lys Val
 35 40 45
 Ser Glu Gly Lys Asp Val Leu Leu Leu Val His Asn Leu Pro Gln
 50 55 60
 Asn Leu Ala Gly Tyr Ile Trp Tyr Lys Gly Gln Met Thr Tyr Val
 65 70 75
 Tyr His Tyr Ile Ile Ser Tyr Ile Val Asp Gly Lys Ile Ile Ile
 80 85 90
 Tyr Gly Pro Ala Tyr Ser Gly Arg Glu Arg Val Tyr Ser Asn Ala
 95 100 105
 Ser Leu Leu Ile Gln Asn Val Thr Gln Glu Asp Ala Gly Ser Tyr
 110 115 120
 Thr Leu His Ile Ile Lys Arg Gly Asp Gly Thr Arg Gly Glu Thr
 125 130 135
 Gly His Phe Thr Phe Thr Leu Tyr Leu Glu Thr Pro Lys Pro Ser
 140 145 150
 Ile Ser Ser Ser Asn Leu Tyr Pro Arg Glu Asp Met Glu Ala Val
 155 160 165
 Ser Leu Thr Cys Asp Pro Glu Thr Pro Asp Ala Ser Tyr Leu Trp
 170 175 180
 Trp Met Asn Gly Gln Ser Leu Pro Met Thr His Ser Leu Gln Leu
 185 190 195
 Ser Lys Asn Lys Arg Thr Leu Phe Leu Phe Gly Val Thr Lys Tyr
 200 205 210
 Thr Ala Gly Pro Tyr Glu Cys Glu Ile Arg Asn Pro Val Ser Gly
 215 220 225
 Ile Arg Ser Asp Pro Val Thr Leu Asn Val Leu Tyr Gly Pro Asp
 230 235 240

Leu Pro Ser Ile Tyr Pro Ser Phe Thr Tyr Tyr Arg Ser Gly Glu
 245 250 255
 Asn Leu Tyr Leu Ser Cys Phe Ala Glu Ser Asn Pro Arg Ala Gln
 260 265 270
 Tyr Ser Trp Thr Ile Asn Gly Lys Phe Gln Leu Ser Gly Gln Lys
 275 280 285
 Leu Phe Ile Pro Gln Ile Thr Thr Lys His Ser Gly Leu Tyr Ala
 290 295 300
 Cys Ser Val Arg Asn Ser Ala Thr Gly Met Glu Ser Ser Lys Ser
 305 310 315
 Met Thr Val Lys Val Ser Ala Pro Ser Gly Thr Gly His Leu Pro
 320 325 330
 Gly Leu Asn Pro Leu
 335

<210> 37
 <211> 280
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 239589

<400> 37

Met	Asp	Leu	Gln	Gly	Arg	Gly	Val	Pro	Ser	Ile	Asp	Arg	Leu	Arg
1														
Val	Leu	Leu	Met	Leu	Phe	His	Thr	Met	Ala	Gln	Ile	Met	Ala	Glu
Gln	Glu	Val	Glu	Asn	Leu	Ser	Gly	Leu	Ser	Thr	Asn	Pro	Glu	Lys
Asp	Ile	Phe	Val	Val	Arg	Glu	Asn	Gly	Thr	Thr	Cys	Leu	Met	Ala
50														
Glu	Phe	Ala	Ala	Lys	Phe	Ile	Val	Pro	Tyr	Asp	Val	Trp	Ala	Ser
65														
Asn	Tyr	Val	Asp	Leu	Ile	Thr	Glu	Gln	Ala	Asp	Ile	Ala	Leu	Thr
80														
Arg	Gly	Ala	Glu	Val	Lys	Gly	Arg	Cys	Gly	His	Ser	Gln	Ser	Glu
95														
Leu	Gln	Val	Phe	Trp	Val	Asp	Arg	Ala	Tyr	Ala	Leu	Lys	Met	Leu
110														
Phe	Val	Lys	Glu	Ser	His	Asn	Met	Ser	Lys	Gly	Pro	Glu	Ala	Thr
125														
Trp	Arg	Leu	Ser	Lys	Val	Gln	Phe	Val	Tyr	Asp	Ser	Ser	Glu	Lys
140														
Thr	His	Phe	Lys	Asp	Ala	Val	Ser	Ala	Gly	Lys	His	Thr	Ala	Asn
155														
Ser	His	His	Leu	Ser	Ala	Leu	Val	Thr	Pro	Ala	Gly	Lys	Ser	Tyr
170														
Glu	Cys	Gln	Ala	Gln	Gln	Thr	Ile	Ser	Leu	Ala	Ser	Ser	Asp	Pro
185														
Gln	Lys	Thr	Val	Thr	Met	Ile	Leu	Ser	Ala	Val	His	Ile	Gln	Pro
200														
Phe	Asp	Ile	Ile	Ser	Asp	Phe	Val	Phe	Ser	Glu	Glu	His	Lys	Cys
215														
220														

Pro	Val	Asp	Glu	Arg	Glu	Gln	Leu	Glu	Glu	Thr	Leu	Pro	Leu	Ile
							230		235					240
Leu	Gly	Leu	Ile	Leu	Gly	Leu	Val	Ile	Met	Val	Thr	Leu	Ala	Ile
							245		250					255
Tyr	His	Val	His	His	Lys	Met	Thr	Ala	Asn	Gln	Val	Gln	Ile	Pro
							260		265					270
Arg	Asp	Arg	Ser	Gln	Tyr	Lys	His	Met	Gly					
							275							280

<210> 38
<211> 210
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1671302

<400>	38													
Met	Ser	Arg	Met	Phe	Cys	Gln	Ala	Ala	Arg	Val	Asp	Leu	Thr	Leu
1							5		10					15
Asp	Pro	Asp	Thr	Ala	His	Pro	Ala	Leu	Met	Leu	Ser	Pro	Asp	Arg
							20		25					30
Arg	Gly	Val	Arg	Leu	Ala	Glu	Arg	Arg	Gln	Glu	Val	Ala	Asp	His
							35		40					45
Pro	Lys	Arg	Phe	Ser	Ala	Asp	Cys	Cys	Val	Leu	Gly	Ala	Gln	Gly
							50		55					60
Phe	Arg	Ser	Gly	Arg	His	Tyr	Trp	Glu	Val	Glu	Val	Gly	Gly	Arg
							65		70					75
Arg	Gly	Trp	Ala	Val	Gly	Ala	Ala	Arg	Glu	Ser	Thr	His	His	Lys
							80		85					90
Glu	Lys	Val	Gly	Pro	Gly	Gly	Ser	Ser	Val	Gly	Ser	Gly	Asp	Ala
							95		100					105
Ser	Ser	Ser	Arg	His	His	His	Arg	Arg	Arg	Arg	Leu	His	Leu	Pro
							110		115					120
Gln	Gln	Pro	Leu	Leu	Gln	Arg	Glu	Val	Trp	Cys	Val	Gly	Thr	Asn
							125		130					135
Gly	Lys	Arg	Tyr	Gln	Ala	Gln	Ser	Ser	Thr	Glu	Gln	Thr	Leu	Leu
							140		145					150
Ser	Pro	Ser	Glu	Lys	Pro	Arg	Arg	Phe	Gly	Val	Tyr	Leu	Asp	Tyr
							155		160					165
Glu	Ala	Gly	Arg	Leu	Gly	Phe	Tyr	Asn	Ala	Glu	Thr	Leu	Ala	His
							170		175					180
Val	His	Thr	Phe	Ser	Ala	Ala	Phe	Leu	Gly	Glu	Arg	Val	Phe	Pro
							185		190					195
Phe	Phe	Arg	Val	Leu	Ser	Lys	Gly	Thr	Arg	Ile	Lys	Leu	Cys	Pro
							200		205					210

<210> 39
<211> 279
<212> PRT
<213> Homo sapiens

<220>

<221> misc_feature
 <223> Incyte Clone No: 2041858

<400> 39
 Met Glu Ala Val Val Asn Leu Tyr Gln Glu Val Met Lys His Ala
 1 5 15
 Asp Pro Arg Ile Gln Gly Tyr Pro Leu Met Gly Ser Pro Leu Leu
 20 25 30
 Met Thr Ser Ile Leu Leu Thr Tyr Val Tyr Phe Val Leu Ser Leu
 35 40 45
 Gly Pro Arg Ile Met Ala Asn Arg Lys Pro Phe Gln Leu Arg Gly
 50 55 60
 Phe Met Ile Val Tyr Asn Phe Ser Leu Val Ala Leu Ser Leu Tyr
 65 70 75
 Ile Val Tyr Glu Phe Leu Met Ser Gly Trp Leu Ser Thr Tyr Thr
 80 85 90
 Trp Arg Cys Asp Pro Val Asp Tyr Ser Asn Ser Pro Glu Ala Leu
 95 100 105
 Arg Met Val Arg Val Ala Trp Leu Phe Leu Phe Ser Lys Phe Ile
 110 115 120
 Glu Leu Met Asp Thr Val Ile Phe Ile Leu Arg Lys Lys Asp Gly
 125 130 135
 Gln Val Thr Phe Leu His Val Phe His His Ser Val Leu Pro Trp
 140 145 150
 Ser Trp Trp Trp Gly Val Lys Ile Ala Pro Gly Gly Met Gly Ser
 155 160 165
 Phe His Ala Met Ile Asn Ser Ser Val His Val Ile Met Tyr Leu
 170 175 180
 Tyr Tyr Gly Leu Ser Ala Phe Gly Pro Val Ala Gln Pro Tyr Leu
 185 190 195
 Trp Trp Lys Lys His Met Thr Ala Ile Gln Leu Ile Gln Phe Val
 200 205 210
 Leu Val Ser Leu His Ile Ser Gln Tyr Tyr Phe Met Ser Ser Cys
 215 220 225
 Asn Tyr Gln Tyr Pro Val Ile Ile His Leu Ile Trp Met Tyr Gly
 230 235 240
 Thr Ile Phe Phe Met Leu Phe Ser Asn Phe Trp Tyr His Ser Tyr
 245 250 255
 Thr Lys Gly Lys Arg Leu Pro Arg Ala Leu Gln Gln Asn Gly Ala
 260 265 270
 Pro Gly Ile Ala Lys Val Lys Ala Asn
 275

<210> 40
 <211> 154
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2198863

<400> 40
 Met Gly Lys Ser Ala Ser Lys Gln Phe His Asn Glu Val Leu Lys

1	5	10	15
Ala His Asn Glu Tyr Arg Gln Lys His Gly Val Pro Pro Leu Lys			
20	25	30	
Leu Cys Lys Asn Leu Asn Arg Glu Ala Gln Gln Tyr Ser Glu Ala			
35	40	45	
Leu Ala Ser Thr Arg Ile Leu Lys His Ser Pro Glu Ser Ser Arg			
50	55	60	
Gly Gln Cys Gly Glu Asn Leu Ala Trp Ala Ser Tyr Asp Gln Thr			
65	70	75	
Gly Lys Glu Val Ala Asp Arg Trp Tyr Ser Glu Ile Lys Asn Tyr			
80	85	90	
Asn Phe Gln Gln Pro Gly Phe Thr Ser Gly Thr Gly His Phe Thr			
95	100	105	
Ala Met Val Trp Lys Asn Thr Lys Lys Met Gly Val Gly Lys Ala			
110	115	120	
Ser Ala Ser Asp Gly Ser Ser Phe Val Val Ala Arg Tyr Phe Pro			
125	130	135	
Ala Gly Asn Val Val Asn Glu Gly Phe Phe Glu Glu Asn Val Leu			
140	145	150	
Pro Pro Lys Lys			

<210> 41
<211> 582
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3250703

<400> 41			
Met Lys Pro Asn Ile Ile Phe Val Leu Ser Leu Leu Leu Ile Leu			
1	5	10	15
Glu Lys Gln Ala Ala Val Met Gly Gln Lys Gly Gly Ser Lys Gly			
20	25	30	
Arg Leu Pro Ser Glu Phe Ser Gln Phe Pro His Gly Gln Lys Gly			
35	40	45	
Gln His Tyr Ser Gly Gln Lys Gly Lys Gln Gln Thr Glu Ser Lys			
50	55	60	
Gly Ser Phe Ser Ile Gln Tyr Thr Tyr His Val Asp Ala Asn Asp			
65	70	75	
His Asp Gln Ser Arg Lys Ser Gln Gln Tyr Asp Leu Asn Ala Leu			
80	85	90	
His Lys Thr Thr Lys Ser Gln Arg His Leu Gly Gly Ser Gln Gln			
95	100	105	
Leu Leu His Asn Lys Gln Glu Gly Arg Asp His Asp Lys Ser Lys			
110	115	120	
Gly His Phe His Arg Val Val Ile His His Lys Gly Gly Lys Ala			
125	130	135	
His Arg Gly Thr Gln Asn Pro Ser Gln Asp Gln Gly Asn Ser Pro			
140	145	150	
Ser Gly Lys Gly Ile Ser Ser Gln Tyr Ser Asn Thr Glu Glu Arg			
155	160	165	

Leu Trp Val His Gly Leu Ser Lys Glu Gln Thr Ser Val Ser Gly
 170 175 180
 Ala Gln Lys Gly Arg Lys Gln Gly Gly Ser Gln Ser Ser Tyr Val
 185 190 195
 Leu Gln Thr Glu Glu Leu Val Ala Asn Lys Gln Gln Arg Glu Thr
 200 205 210
 Lys Asn Ser His Gln Asn Lys Gly His Tyr Gln Asn Val Val Glu
 215 220 225
 Val Arg Glu Glu His Ser Ser Lys Val Gln Thr Ser Leu Cys Pro
 230 235 240
 Ala His Gln Asp Lys Leu Gln His Gly Ser Lys Asp Ile Phe Ser
 245 250 255
 Thr Gln Asp Glu Leu Leu Val Tyr Asn Lys Asn Gln His Gln Thr
 260 265 270
 Lys Asn Leu Asn Gln Asp Gln Gln His Gly Arg Lys Ala Asn Lys
 275 280 285
 Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu His Tyr
 290 295 300
 Gly Glu Asn Gly Val Gln Lys Asp Val Ser Gln Ser Ser Ile Tyr
 305 310 315
 Ser Gln Thr Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val
 320 325 330
 Thr Ile His Ser Gln Asp Gln Glu His Gly His Lys Glu Asn Lys
 335 340 345
 Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg His Leu Asn Cys
 350 355 360
 Gly Glu Lys Gly Ile Gln Lys Gly Val Ser Lys Gly Ser Ile Ser
 365 370 375
 Ile Gln Thr Glu Glu Gln Ile His Gly Lys Ser Gln Asn Gln Val
 380 385 390
 Arg Ile Pro Ser Gln Ala Gln Glu Tyr Gly His Lys Glu Asn Lys
 395 400 405
 Ile Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu Asn Ser
 410 415 420
 Gly Glu Lys Asp Val Gln Lys Gly Val Ser Lys Gly Ser Ile Ser
 425 430 435
 Ile Gln Thr Glu Glu Lys Ile His Gly Lys Ser Gln Asn Gln Val
 440 445 450
 Thr Ile Pro Ser Gln Asp Gln Glu His Gly His Lys Glu Asn Lys
 455 460 465
 Met Ser Tyr Gln Ser Ser Ser Thr Glu Glu Arg Arg Leu Asn Tyr
 470 475 480
 Gly Gly Lys Ser Thr Gln Lys Asp Val Ser Gln Ser Ser Ile Ser
 485 490 495
 Phe Gln Ile Glu Lys Leu Val Glu Gly Lys Ser Gln Ile Gln Thr
 500 505 510
 Pro Asn Pro Asn Gln Asp Gln Trp Ser Gly Gln Asn Ala Lys Gly
 515 520 525
 Lys Ser Gly Gln Ser Ala Asp Ser Lys Gln Asp Leu Leu Ser His
 530 535 540
 Glu Gln Lys Gly Arg Tyr Lys Gln Glu Ser Ser Glu Ser His Asn
 545 550 555
 Ile Val Ile Thr Glu His Glu Val Ala Gln Asp Asp His Leu Thr
 560 565 570
 Gln Gln Tyr Asn Glu Asp Arg Asn Pro Ile Ser Thr
 575 580

<210> 42
<211> 71
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 350287

<400> 42
Met Phe Thr Ala Pro Leu Phe Phe Phe Phe Phe Glu Ile Ile
1 5 10 15
Asn Ser Met Arg Asn Leu Gly Leu Asn Ile Cys Leu Leu Cys Leu
20 25 30
Leu Ile Glu His His Ser Arg Pro Ser Val Cys Leu Pro Phe Thr
35 40 45
Pro Lys Ile Phe Thr Lys Lys Ile Leu Arg Gln Gln Val Thr Ile
50 55 60
Tyr Arg Cys Leu Asn Asp Phe Leu Ile Phe Ile
65 70

<210> 43
<211> 102
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1618171

<400> 43
Met Ala Val Leu Pro Ser Val Leu Leu Val Tyr Ser Leu Phe Phe
1 5 10 15
Cys Leu Arg Phe Cys Met Leu Leu Leu Pro Ser Tyr Ser His
20 25 30
Ser Arg Ser Gly Arg Gly Pro Gly Arg Tyr Gly His Ile Thr Leu
35 40 45
Ile Asp Val Ile His Val Ser Val Tyr Trp Phe Phe Glu Ala Leu
50 55 60
Ser Thr Phe Gln Ile Phe Tyr Tyr Cys Ile Thr Arg Thr Ile Thr
65 70 75
Val Arg Lys Gly Ile Val Val Ser Arg His Val Asn Glu Ala Gly
80 85 90
Val Ser Phe Val Ser Tyr Leu Cys Ile Asn Phe Lys
95 100

<210> 44
<211> 226
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1625863

<400> 44

Met Pro Thr Thr Lys Lys Thr Leu Met Phe Leu Ser Ser Phe Phe		
1	5	10
Thr Ser Leu Gly Ser Phe Ile Val Ile Cys Ser Ile Leu Gly Thr		
20	25	30
Gln Ala Trp Ile Thr Ser Thr Ile Ala Val Arg Asp Ser Ala Ser		
35	40	45
Asn Gly Ser Ile Phe Ile Thr Tyr Gly Leu Phe Arg Gly Glu Ser		
50	55	60
Ser Glu Glu Leu Ser His Gly Leu Ala Glu Pro Lys Lys Phe		
65	70	75
Ala Val Leu Glu Ile Leu Asn Asn Ser Ser Gln Lys Thr Leu His		
80	85	90
Ser Val Thr Ile Leu Phe Leu Val Leu Ser Leu Ile Thr Ser Leu		
95	100	105
Leu Ser Ser Gly Phe Thr Phe Tyr Asn Ser Ile Ser Asn Pro Tyr		
110	115	120
Gln Thr Phe Leu Gly Pro Thr Gly Val Tyr Thr Trp Asn Gly Leu		
125	130	135
Gly Ala Ser Phe Val Phe Val Thr Met Ile Leu Phe Val Ala Asn		
140	145	150
Thr Gln Ser Asn Gln Leu Ser Glu Glu Leu Phe Gln Met Leu Tyr		
155	160	165
Pro Ala Thr Thr Ser Lys Gly Thr Thr His Ser Tyr Gly Tyr Ser		
170	175	180
Phe Trp Leu Ile Leu Leu Val Ile Leu Leu Asn Ile Val Thr Val		
185	190	195
Thr Ile Ile Ile Phe Tyr Gln Lys Ala Arg Tyr Gln Arg Lys Gln		
200	205	210
Glu Gln Arg Lys Pro Met Glu Tyr Ala Pro Arg Asp Gly Ile Leu		
215	220	225

Phe

<210> 45

<211> 154

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1638353

<400> 45

Met Ala Leu Leu Leu Ser Val Leu Arg Val Leu Leu Gly Gly Phe		
1	5	10
Phe Ala Leu Val Gly Leu Ala Lys Leu Ser Glu Glu Ile Ser Ala		
20	25	30
Pro Val Ser Glu Arg Met Asn Ala Leu Phe Val Gln Phe Ala Glu		
35	40	45
Val Phe Pro Leu Lys Val Phe Gly Tyr Gln Pro Asp Pro Leu Asn		
50	55	60
Tyr Gln Ile Ala Val Gly Phe Leu Glu Leu Leu Ala Gly Leu Leu		
65	70	75

Leu Val Met Gly Pro Pro Met Leu Gln Glu Ile Ser Asn Leu Phe
 80 85 90
 Leu Ile Leu Leu Met Met Gly Ala Ile Phe Thr Leu Ala Ala Leu
 95 100 105
 Lys Glu Ser Leu Ser Thr Cys Ile Pro Ala Ile Val Cys Leu Gly
 110 115 120
 Phe Leu Leu Leu Leu Asn Val Gly Gln Leu Leu Ala Gln Thr Lys
 125 130 135
 Lys Val Val Arg Pro Thr Arg Lys Lys Thr Leu Ser Thr Phe Lys
 140 145 150
 Glu Ser Trp Lys

<210> 46
 <211> 167
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1726843

<400> 46
 Met Ala Ser Pro Arg Thr Val Thr Ile Val Ala Leu Ser Val Ala
 1 5 10 15
 Leu Gly Leu Phe Phe Val Phe Met Gly Thr Ile Lys Leu Thr Pro
 20 25 30
 Arg Leu Ser Lys Asp Ala Tyr Ser Glu Met Lys Arg Ala Tyr Lys
 35 40 45
 Ser Tyr Val Arg Ala Leu Pro Leu Leu Lys Lys Met Gly Ile Asn
 50 55 60
 Ser Ile Leu Leu Arg Lys Ser Ile Gly Ala Leu Glu Val Ala Cys
 65 70 75
 Gly Ile Val Met Thr Leu Val Pro Gly Arg Pro Lys Asp Val Ala
 80 85 90
 Asn Phe Phe Leu Leu Leu Val Leu Ala Val Leu Phe Phe His
 95 100 105
 Gln Leu Val Gly Asp Pro Leu Lys Arg Tyr Ala His Ala Leu Val
 110 115 120
 Phe Gly Ile Leu Leu Thr Cys Arg Leu Leu Ile Ala Arg Lys Pro
 125 130 135
 Glu Asp Arg Ser Ser Glu Lys Lys Pro Leu Pro Gly Asn Ala Glu
 140 145 150
 Glu Gln Pro Ser Leu Tyr Glu Lys Ala Pro Gln Gly Lys Val Lys
 155 160 165
 Val Ser

<210> 47
 <211> 545
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1754506

<400> 47

Met Ala Gly Ala Ile Ile Glu Asn Met Ser Thr Lys Lys Leu Cys			
1	5	10	15
Ile Val Gly Gly Ile Leu Leu Val Phe Gln Ile Ile Ala Phe Leu			
20	25	30	
Val Gly Gly Leu Ile Ala Pro Gly Pro Thr Thr Ala Val Ser Tyr			
35	40	45	
Met Ser Val Lys Cys Val Asp Ala Arg Lys Asn His His Lys Thr			
50	55	60	
Lys Trp Phe Val Pro Trp Gly Pro Asn His Cys Asp Lys Ile Arg			
65	70	75	
Asp Ile Glu Glu Ala Ile Pro Arg Glu Ile Glu Ala Asn Asp Ile			
80	85	90	
Val Phe Ser Val His Ile Pro Leu Pro His Met Glu Met Ser Pro			
95	100	105	
Trp Phe Gln Phe Met Leu Phe Ile Leu Gln Leu Asp Ile Ala Phe			
110	115	120	
Lys Leu Asn Asn Gln Ile Arg Glu Asn Ala Glu Val Ser Met Asp			
125	130	135	
Val Ser Leu Ala Tyr Arg Asp Asp Ala Phe Ala Glu Trp Thr Glu			
140	145	150	
Met Ala His Glu Arg Val Pro Arg Lys Leu Lys Cys Thr Phe Thr			
155	160	165	
Ser Pro Lys Thr Pro Glu His Glu Gly Arg Tyr Tyr Glu Cys Asp			
170	175	180	
Val Leu Pro Phe Met Glu Ile Gly Ser Val Ala His Lys Phe Tyr			
185	190	195	
Leu Leu Asn Ile Arg Leu Pro Val Asn Glu Lys Lys Lys Ile Asn			
200	205	210	
Val Gly Ile Gly Glu Ile Lys Asp Ile Arg Leu Val Gly Ile His			
215	220	225	
Gln Asn Gly Gly Phe Thr Lys Val Trp Phe Ala Met Lys Thr Phe			
230	235	240	
Leu Thr Pro Ser Ile Phe Ile Ile Met Val Trp Tyr Trp Arg Arg			
245	250	255	
Ile Thr Met Met Ser Arg Pro Pro Val Leu Leu Glu Lys Val Ile			
260	265	270	
Phe Ala Leu Gly Ile Ser Met Thr Phe Ile Asn Ile Pro Val Glu			
275	280	285	
Trp Phe Ser Ile Gly Phe Asp Trp Thr Trp Met Leu Leu Phe Gly			
290	295	300	
Asp Ile Arg Gln Gly Ile Phe Tyr Ala Met Leu Leu Ser Phe Trp			
305	310	315	
Ile Ile Phe Cys Gly Glu His Met Met Asp Gln His Glu Arg Asn			
320	325	330	
His Ile Ala Gly Tyr Trp Lys Gln Val Gly Pro Ile Ala Val Gly			
335	340	345	
Ser Phe Cys Leu Phe Ile Phe Asp Met Cys Glu Arg Gly Val Gln			
350	355	360	
Leu Thr Asn Pro Phe Tyr Ser Ile Trp Thr Thr Asp Ile Gly Thr			
365	370	375	
Glu Leu Ala Met Ala Phe Ile Ile Val Ala Gly Ile Cys Leu Cys			
380	385	390	
Leu Tyr Phe Leu Phe Leu Cys Phe Met Val Phe Gln Val Phe Arg			
395	400	405	
Asn Ile Ser Gly Lys Gln Ser Ser Leu Pro Ala Met Ser Lys Val			

410	415	420
Arg Arg Leu His Tyr Glu Gly Leu Ile Phe Arg Phe Lys Phe Leu		
425	430	435
Met Leu Ile Thr Leu Ala Cys Ala Ala Met Thr Val Ile Phe Phe		
440	445	450
Ile Val Ser Gln Val Thr Glu Gly His Trp Lys Trp Gly Gly Val		
455	460	465
Thr Val Gln Val Asn Ser Ala Phe Phe Thr Gly Ile Tyr Gly Met		
470	475	480
Trp Asn Leu Tyr Val Phe Ala Leu Met Phe Leu Tyr Ala Pro Ser		
485	490	495
His Lys Asn Tyr Gly Glu Asp Gln Ser Asn Gly Met Gln Leu Pro		
500	505	510
Cys Lys Ser Arg Glu Asp Cys Ala Leu Phe Val Ser Glu Leu Tyr		
515	520	525
Gln Glu Leu Phe Ser Ala Ser Lys Tyr Ser Phe Ile Asn Asp Asn		
530	535	540
Ala Ala Ser Gly Ile		
545		

<210> 48

<211> 570

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1831378

<400> 48

Met Gly Phe Leu Gln Leu Leu Val Val Ala Val Leu Ala Ser Glu		
1	5	10
His Arg Val Ala Gly Ala Ala Glu Val Phe Gly Asn Ser Ser Glu		
20	25	30
Gly Leu Ile Glu Phe Ser Val Gly Lys Phe Arg Tyr Phe Glu Leu		
35	40	45
Asn Arg Pro Phe Pro Glu Glu Ala Ile Leu His Asp Ile Ser Ser		
50	55	60
Asn Val Thr Phe Leu Ile Phe Gln Ile His Ser Gln Tyr Gln Asn		
65	70	75
Thr Thr Val Ser Phe Ser Pro Thr Leu Leu Ser Asn Ser Ser Glu		
80	85	90
Thr Gly Thr Ala Ser Gly Leu Val Phe Ile Leu Arg Pro Glu Gln		
95	100	105
Ser Thr Cys Thr Trp Tyr Leu Gly Thr Ser Gly Ile Gln Pro Val		
110	115	120
Gln Asn Met Ala Ile Leu Leu Ser Tyr Ser Glu Arg Asp Pro Val		
125	130	135
Pro Gly Gly Cys Asn Leu Glu Phe Asp Leu Asp Ile Asp Pro Asn		
140	145	150
Ile Tyr Leu Glu Tyr Asn Phe Phe Glu Thr Thr Ile Lys Phe Ala		
155	160	165
Pro Ala Asn Leu Gly Tyr Ala Arg Gly Val Asp Pro Pro Pro Cys		
170	175	180
Asp Ala Gly Thr Asp Gln Asp Ser Arg Trp Arg Leu Gln Tyr Asp		

185	190	195
Val Tyr Gln Tyr	Phe Leu Pro Glu Asn Asp	Leu Thr Glu Glu Met
200	205	210
Leu Leu Lys His	Leu Gln Arg Met Val	Ser Val Pro Gln Val Lys
215	220	225
Ala Ser Ala Leu	Lys Val Val Thr Leu	Thr Ala Asn Asp Lys Thr
230	235	240
Ser Val Ser Phe	Ser Ser Leu Pro Gly	Gln Gly Val Ile Tyr Asn
245	250	255
Val Ile Val Trp	Asp Pro Phe Leu Asn	Thr Ser Ala Ala Tyr Ile
260	265	270
Pro Ala His Thr	Tyr Ala Cys Ser Phe	Glu Ala Gly Glu Gly Ser
275	280	285
Cys Ala Ser Leu	Gly Arg Val Ser Ser	Lys Val Phe Phe Thr Leu
290	295	300
Phe Ala Leu Leu	Gly Phe Phe Ile Cys	Phe Phe Gly His Arg Phe
305	310	315
Trp Lys Thr Glu	Leu Phe Phe Ile Gly	Phe Ile Ile Met Gly Phe
320	325	330
Phe Phe Tyr Ile	Leu Ile Thr Arg Leu	Thr Pro Ile Lys Tyr Asp
335	340	345
Val Asn Leu Ile	Leu Thr Ala Val Thr	Gly Ser Val Gly Gly Met
350	355	360
Phe Leu Val Ala	Val Trp Trp Arg Phe	Gly Ile Leu Ser Ile Cys
365	370	375
Met Leu Cys Val	Gly Leu Val Leu Gly	Phe Leu Ile Ser Ser Val
380	385	390
Thr Phe Phe Thr	Pro Leu Gly Asn Leu	Lys Ile Phe His Asp Asp
395	400	405
Gly Val Phe Trp	Val Thr Phe Ser Cys	Ile Ala Ile Leu Ile Pro
410	415	420
Val Val Phe Met	Gly Cys Leu Arg Ile	Leu Asn Ile Leu Thr Cys
425	430	435
Gly Val Ile Gly	Ser Tyr Ser Val Val	Leu Ala Ile Asp Ser Tyr
440	445	450
Trp Ser Thr Ser	Leu Ser Tyr Ile Thr	Leu Asn Val Leu Lys Arg
455	460	465
Ala Leu Asn Lys	Asp Phe His Arg Ala	Phe Thr Asn Val Pro Phe
470	475	480
Gln Thr Asn Asp	Phe Ile Ile Leu Ala Val	Trp Gly Met Leu Ala
485	490	495
Val Ser Gly Ile	Thr Leu Gln Ile Arg	Arg Glu Arg Gly Arg Pro
500	505	510
Phe Phe Pro Pro	His Pro Tyr Lys Leu	Trp Lys Gln Glu Arg Glu
515	520	525
Arg Arg Val Thr	Asn Ile Leu Asp Pro	Ser Tyr His Ile Pro Pro
530	535	540
Leu Arg Glu Arg	Leu Tyr Gly Arg Leu	Thr Gln Ile Lys Gly Leu
545	550	555
Phe Gln Lys Glu	Gln Pro Ala Gly Glu	Arg Thr Pro Leu Leu Leu
560	565	570

<210> 49
 <211> 127
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1864943

<400> 49
 Met Arg Arg Arg Phe Trp Gly Val Phe Asn Cys Leu Cys Ala Gly
 1 5 10 15
 Ala Phe Gly Ala Leu Ala Ala Ala Ser Ala Lys Leu Ala Phe Gly
 20 25 30
 Ser Glu Val Ser Met Gly Leu Cys Val Leu Gly Ile Ile Val Met
 35 40 45
 Ala Ser Thr Asn Ser Leu Met Trp Thr Phe Phe Ser Arg Gly Leu
 50 55 60
 Ser Phe Ser Met Ser Ser Ala Ile Ala Ser Val Thr Val Thr Phe
 65 70 75
 Ser Asn Ile Leu Ser Ser Ala Phe Leu Gly Tyr Val Leu Tyr Gly
 80 85 90
 Glu Cys Gln Glu Val Leu Trp Trp Gly Gly Val Phe Leu Ile Leu
 95 100 105
 Cys Gly Leu Thr Leu Ile His Arg Lys Leu Pro Pro Thr Trp Lys
 110 115 120
 Pro Leu Pro His Lys Gln Gln
 125

<210> 50
 <211> 152
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1911316

<400> 50
 Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe
 1 5 10 15
 Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val
 20 25 30
 Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr
 35 40 45
 Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile
 50 55 60
 Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe
 65 70 75
 Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
 80 85 90
 Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr
 95 100 105
 Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys
 110 115 120
 Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn
 125 130 135
 Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu
 140 145 150
 Val Leu

<210> 51
<211> 777
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1943120

<400> 51
Met Thr Phe Tyr Pro Phe Val Ala Ser Ser Ser Thr Arg Arg Val
1 5 10 15
Asp Asn Ser Asn Thr Arg Leu Ala Val Gln Ile Glu Arg Asp Pro
20 25 30
Gly Asn Asp Asp Asn Asn Leu Asn Ser Ile Phe Tyr Glu His Leu
35 40 45
Thr Arg Thr Leu Leu Glu Ser Leu Cys Gly Asp Leu Val Leu Gly
50 55 60
Arg Trp Gly Asn Tyr Ser Ser Gly Asp Cys Phe Ile Leu Ala Ser
65 70 75
Asp Asp Leu Asn Ala Phe Val His Leu Ile Glu Ile Gly Asn Gly
80 85 90
Leu Val Thr Phe Gln Leu Arg Gly Leu Glu Phe Arg Gly Thr Tyr
95 100 105
Cys Gln Gln Arg Glu Val Glu Ala Ile Met Glu Gly Asp Glu Glu
110 115 120
Asp Arg Gly Cys Cys Cys Lys Pro Gly His Leu Pro His Leu
125 130 135
Leu Ser Arg Asn Ala Ala Phe His Leu Arg Trp Leu Thr Trp Glu
140 145 150
Ile Thr Gln Thr Gln Tyr Ile Leu Glu Gly Tyr Ser Ile Leu Asp
155 160 165
Asn Asn Ala Ala Thr Met Leu Gln Val Phe Asp Leu Arg Arg Ile
170 175 180
Leu Ile Arg Tyr Tyr Ile Lys Ser Ile Ile Tyr Tyr Met Val Thr
185 190 195
Ser Pro Lys Leu Leu Ser Trp Ile Lys Asn Glu Ser Leu Leu Lys
200 205 210
Ser Leu Gln Pro Phe Ala Lys Trp His Tyr Ile Glu Arg Asp Leu
215 220 225
Ala Met Phe Asn Ile Asn Ile Asp Asp Asp Tyr Val Pro Cys Leu
230 235 240
Gln Gly Ile Thr Arg Ala Ser Phe Cys Asn Val Tyr Leu Glu Trp
245 250 255
Ile Gln His Cys Ala Arg Lys Arg Gln Glu Pro Ser Thr Thr Leu
260 265 270
Asp Ser Asp Glu Asp Ser Pro Leu Val Thr Leu Ser Phe Ala Leu
275 280 285
Cys Thr Leu Gly Arg Arg Ala Leu Gly Thr Ala Ala His Asn Met
290 295 300
Ala Ile Ser Leu Asp Ser Phe Leu Tyr Gly Leu His Val Leu Phe
305 310 315
Lys Gly Asp Phe Arg Ile Thr Ala Arg Asp Glu Trp Val Phe Ala
320 325 330
Asp Met Asp Leu Leu His Lys Val Val Ala Pro Ala Ile Arg Met

335	340	345
Ser Leu Lys Leu His Gln Asp Gln Phe	Thr Cys Pro Asp Glu Tyr	
350	355	360
Glu Asp Pro Ala Val Leu Tyr Glu Ala	Ile Gln Ser Phe Glu Lys	
365	370	375
Lys Val Val Ile Cys His Glu Gly Asp	Pro Ala Trp Arg Gly Ala	
380	385	390
Val Leu Ser Asn Lys Glu Glu Leu Leu	Thr Leu Arg His Val Val	
395	400	405
Asp Glu Gly Ala Asp Glu Tyr Lys Val	Ile Met Leu His Arg Ser	
410	415	420
Phe Leu Ser Phe Lys Val Ile Lys Val	Asn Lys Glu Cys Val Arg	
425	430	435
Gly Leu Trp Ala Gly Gln Gln Glu	Leu Ile Phe Leu Arg Asn	
440	445	450
Arg Asn Pro Glu Arg Gly Ser Ile Gln	Asn Asn Lys Gln Val Leu	
455	460	465
Arg Asn Leu Ile Asn Ser Ser Cys Asp	Gln Pro Leu Gly Tyr Pro	
470	475	480
Met Tyr Val Ser Pro Leu Thr Thr Ser	Tyr Leu Gly Thr His Arg	
485	490	495
Gln Leu Lys Asn Ile Trp Gly Gly Pro	Ile Thr Leu Asp Arg Ile	
500	505	510
Arg Thr Trp Phe Trp Thr Lys Trp Val	Arg Met Arg Lys Asp Cys	
515	520	525
Asn Ala Arg Gln His Ser Gly Gly Asn	Ile Glu Asp Val Asp Gly	
530	535	540
Gly Gly Ala Pro Thr Thr Gly Gly Asn	Asn Ala Pro Asn Gly Gly	
545	550	555
Ser Gln Glu Ser Ser Ala Glu Gln Pro	Arg Lys Gly Gly Ala Gln	
560	565	570
His Gly Val Ser Ser Cys Glu Gly Thr	Gln Arg Thr Gly Arg Arg	
575	580	585
Lys Gly Arg Ser Gln Ser Val Gln Ala	His Ser Ala Leu Ser Gln	
590	595	600
Arg Pro Pro Met Leu Ser Ser Ser Gly	Pro Ile Leu Glu Ser Arg	
605	610	615
Gln Thr Phe Leu Gln Thr Ser Thr Ser	Val His Glu Leu Ala Gln	
620	625	630
Arg Leu Ser Gly Ser Arg Leu Ser Leu	His Ala Ser Ala Thr Ser	
635	640	645
Leu His Ser Gln Pro Pro Pro Val Thr	Thr Thr Gly His Leu Ser	
650	655	660
Val Arg Glu Arg Ala Glu Ala Leu Ile	Arg Ser Ser Leu Gly Ser	
665	670	675
Ser Thr Ser Ser Thr Leu Ser Phe Leu	Phe Gly Lys Arg Ser Phe	
680	685	690
Ser Ser Ala Leu Val Ile Ser Gly Leu	Ser Ala Ala Glu Gly	
695	700	705
Asn Thr Ser Asp Thr Gln Ser Ser Ser	Ser Val Asn Ile Val Met	
710	715	720
Gly Pro Ser Ala Arg Ala Ala Ser Gln	Ala Thr Arg Val Arg Gly	
725	730	735
Trp Ala Gly Leu Thr Arg Thr Gly Trp	Asp Gly Gly Thr Gly Ser	
740	745	750
Trp Pro Glu Arg Gly Thr Cys Leu Ala	Phe Pro Pro Phe Cys Leu	
755	760	765

Gln Asn Pro Ile Pro Phe Ser Met Gly Leu Pro Glu
 770 775

<210> 52
<211> 108
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2314236

<400> 52
Met Phe Lys His Glu Leu Glu Leu Arg Thr Thr Ile Met Tyr
 1 5 10 15
Arg Asp Ser His Ser Val Leu Ala Leu Asn Trp Lys Val Val Ala
 20 25 30
Thr Leu Lys Tyr Phe Leu Leu Tyr Val Ile Ile Leu Tyr Asn Leu
 35 40 45
Glu Arg Asp Asn Gly His Ser Asn Tyr Glu Asn Tyr Glu Leu Gly
 50 55 60
Asp Lys Ser Leu Asn Leu Leu Leu Phe Tyr Asn Ser Met Tyr Lys
 65 70 75
Leu Val Phe Pro Tyr Ile Phe Thr Phe Ser Ser Phe Leu Ile Ser
 80 85 90
Ser Tyr Thr Ser Ile Leu Tyr Lys Met Phe Tyr Ile Gln Arg Thr
 95 100 105
Val Lys Ser

<210> 53
<211> 66
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2479409

<400> 53
Met Asn Leu Ser Lys Lys Ser Ile Leu Leu Thr Gln Val Ile Lys
 1 5 10 15
Phe Val Asp Ile Arg Leu Phe Ile Met Val Pro Ser Tyr Pro Phe
 20 25 30
Asn Val Phe Arg Ser Cys Val Asp Asn Phe Leu Phe Ile Met Ile
 35 40 45
Leu Val Ile Ser Val Leu Thr Phe Leu Ile Arg Leu Gly Arg Gly
 50 55 60
Leu Ser Val Leu Leu Ile
 65

<210> 54

<211> 540
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2683149

<400> 54
Met Met Gly Ser Pro Val Ser His Leu Leu Ala Gly Phe Cys Val
1 5 10 15
Trp Val Val Leu Gly Trp Val Gly Gly Ser Val Pro Asn Leu Gly
20 25 30
Pro Ala Glu Gln Glu Gln Asn His Tyr Leu Ala Gln Leu Phe Gly
35 40 45
Leu Tyr Gly Glu Asn Gly Thr Leu Thr Ala Gly Gly Leu Ala Arg
50 55 60
Leu Leu His Ser Leu Gly Leu Gly Arg Val Gln Gly Leu Arg Leu
65 70 75
Gly Gln His Gly Pro Leu Thr Gly Arg Ala Ala Ser Pro Ala Ala
80 85 90
Asp Asn Ser Thr His Arg Pro Gln Asn Pro Glu Leu Ser Val Asp
95 100 105
Val Trp Ala Gly Met Pro Leu Gly Pro Ser Gly Trp Gly Asp Leu
110 115 120
Glu Glu Ser Lys Ala Pro His Leu Pro Arg Gly Pro Ala Pro Ser
125 130 135
Gly Leu Asp Leu Leu His Arg Leu Leu Leu Leu Asp His Ser Leu
140 145 150
Ala Asp His Leu Asn Glu Asp Cys Leu Asn Gly Ser Gln Leu Leu
155 160 165
Val Asn Phe Gly Leu Ser Pro Ala Ala Pro Leu Thr Pro Arg Gln
170 175 180
Phe Ala Leu Leu Cys Pro Ala Leu Leu Tyr Gln Ile Asp Ser Arg
185 190 195
Val Cys Ile Gly Ala Pro Ala Pro Pro Gly Asp Leu Leu
200 205 210
Ser Ala Leu Leu Gln Ser Ala Leu Ala Val Leu Leu Leu Ser Leu
215 220 225
Pro Ser Pro Leu Ser Leu Leu Leu Arg Leu Leu Gly Pro Arg
230 235 240
Leu Leu Arg Pro Leu Leu Gly Phe Leu Gly Ala Leu Ala Val Gly
245 250 255
Thr Leu Cys Gly Asp Ala Leu Leu His Leu Leu Pro His Ala Gln
260 265 270
Glu Gly Arg His Ala Gly Pro Gly Gly Leu Pro Glu Lys Asp Leu
275 280 285
Gly Pro Gly Leu Ser Val Leu Gly Gly Leu Phe Leu Leu Phe Val
290 295 300
Leu Glu Asn Met Leu Gly Leu Leu Arg His Arg Gly Leu Arg Pro
305 310 315
Arg Cys Cys Arg Arg Lys Arg Arg Asn Leu Glu Thr Arg Asn Leu
320 325 330
Asp Pro Glu Asn Gly Ser Gly Met Ala Leu Gln Pro Leu Gln Ala
335 340 345
Ala Pro Glu Pro Gly Ala Gln Gly Gln Arg Glu Lys Asn Ser Gln

350	355	360
His Pro Pro Ala Leu Ala Pro Pro Gly His Gln Gly His Ser His		
365	370	375
Gly His Gln Gly Gly Thr Asp Ile Thr Trp Met Val Leu Leu Gly		
380	385	390
Asp Gly Leu His Asn Leu Thr Asp Gly Leu Ala Ile Gly Ala Ala		
395	400	405
Phe Ser Asp Gly Phe Ser Ser Gly Leu Ser Thr Thr Leu Ala Val		
410	415	420
Phe Cys His Glu Leu Pro His Glu Leu Gly Asp Phe Ala Met Leu		
425	430	435
Leu Gln Ser Gly Leu Ser Phe Arg Arg Leu Leu Leu Leu Ser Leu		
440	445	450
Val Ser Gly Ala Leu Gly Leu Gly Gly Ala Val Leu Gly Val Gly		
455	460	465
Leu Ser Leu Gly Pro Val Pro Leu Thr Pro Trp Val Phe Gly Val		
470	475	480
Thr Ala Gly Val Phe Leu Tyr Val Ala Leu Val Asp Met Leu Pro		
485	490	495
Ala Leu Leu Arg Pro Pro Glu Pro Leu Pro Thr Pro His Val Leu		
500	505	510
Leu Gln Gly Leu Gly Leu Leu Gly Gly Gly Leu Met Leu Ala		
515	520	525
Ile Thr Leu Leu Glu Glu Arg Leu Leu Pro Val Thr Thr Glu Gly		
530	535	540

<210> 55
<211> 87
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2774051

<400> 55		
Met Pro Phe Thr Leu Asp Asp Tyr Gly Ala Tyr Ser Ser Gln Lys		
1	5	10
Gln Tyr Thr Cys Gln Phe Pro Ser Thr Ile Ala Ile His Ala Glu		
20	25	30
Asp Lys Arg Pro Pro Gln Ser Arg Arg Gly Ile Val Leu Gly Pro		
35	40	45
Ile Phe Leu Ile Val Leu Lys Ile Ile Ile Arg Trp Thr Val Phe		
50	55	60
Cys Glu Asp Phe Leu Phe Pro Ser Ser Lys Lys Pro Cys Gly Lys		
65	70	75
Asn Ser Leu Ile Thr Val Leu Ile Phe Phe Phe Phe		
80	85	

<210> 56
<211> 100
<212> PRT
<213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2869038

<400> 56
 Met Ile Met Ala Gln Lys Ile Gly Gly Leu Thr Trp Trp Ala Ile
 1 5 10 15
 Met Phe Ile Ile Leu Phe Glu Ile Thr Gly Thr Ser Ser Ser Phe
 20 25 30
 Leu Arg Ile Asn Ala Leu Pro His Phe Ser Met Asn Arg Cys Gly
 35 40 45
 Glu Ala Tyr Phe Pro Phe Ser Tyr Leu Tyr Thr Ser Leu Gln Lys
 50 55 60
 Gln Phe Leu Met Lys Val Ser Gly Ile Val Lys Asn Leu Arg Gly
 65 70 75
 Met Met Thr Gly Gly Val Trp Gly Phe Phe Leu Tyr Ser Phe Phe
 80 85 90
 Asn Glu Lys Ser Phe Lys Cys Ser Thr Gly
 95 100

<210> 57
 <211> 58
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2918334

<400> 57
 Met Asp Leu Leu Tyr Glu Ile Leu Leu Ala Leu Tyr Tyr Asn Ile
 1 5 10 15
 Cys Tyr Asp Ile Pro Phe Ile Phe Phe Asn Leu Asn Met Met Phe
 20 25 30
 Tyr Ile Val Leu Asp Leu Arg Ile Val Phe Phe Arg Thr Ile Arg
 35 40 45
 Glu Tyr Leu Ser Pro Pro Ser Leu Ser Phe Tyr Ile Tyr
 50 55

<210> 58
 <211> 61
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2949916

<400> 58
 Met Arg Arg Ile Ile Arg Leu Arg Leu Arg Phe Ser Asp Thr Phe

1	5	10	15
Met Ala Ala Phe Leu Leu Cys Leu Gly	Phe Val Leu Met Leu Phe		
20	25	30	
Pro Ser Leu Leu Arg Asp Gly Gly Ser	Ile Ser Ser Cys Arg Asn		
35	40	45	
Ser Cys Ser Ser Pro Ser Ser Glu Glu	Arg His Phe Ser Asn Leu		
50	55	60	
Glu			

<210> 59
<211> 50
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2989375

<400> 59			
Met Cys Leu Thr Pro His Arg Asp Ser Met Cys Glu Asp Ser Pro			
1	5	10	15
Phe Thr His Gln Ile Ile Ser Met Ala Thr Ala Cys Ser Leu Leu			
20	25	30	
Leu Glu Cys Phe Val Leu Ala Ala Ser Leu Leu Val Cys Val Trp			
35	40	45	
Ser Glu Trp Arg Arg			
50			

<210> 60
<211> 310
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3316764

<400> 60			
Met Arg Arg Thr Ala Phe Ile Leu Gly Ser Gly Leu Leu Ser Phe			
1	5	10	15
Val Ala Phe Trp Asn Ser Val Thr Trp His Leu Gln Arg Phe Trp			
20	25	30	
Gly Ala Ser Gly Tyr Phe Trp Gln Ala Gln Trp Glu Arg Leu Leu			
35	40	45	
Thr Thr Phe Glu Gly Lys Glu Trp Ile Leu Phe Phe Ile Gly Ala			
50	55	60	
Ile Gln Val Pro Cys Leu Phe Phe Trp Ser Phe Asn Gly Leu Leu			
65	70	75	
Leu Val Val Asp Thr Thr Gly Lys Pro Asn Phe Ile Ser Arg Tyr			
80	85	90	
Arg Ile Gln Val Gly Lys Asn Glu Pro Val Asp Pro Val Lys Leu			
95	100	105	

Arg Gln Ser Ile Arg Thr Val Leu Phe Asn Gln Cys Met Ile Ser
 110 115 120
 Phe Pro Met Val Val Phe Leu Tyr Pro Phe Leu Lys Trp Trp Arg
 125 130 135
 Asp Pro Cys Arg Arg Glu Leu Pro Thr Phe His Trp Phe Leu Leu
 140 145 150
 Glu Leu Ala Ile Phe Thr Leu Ile Glu Glu Val Leu Phe Tyr Tyr
 155 160 165
 Ser His Arg Leu Leu His His Pro Thr Phe Tyr Lys Lys Ile His
 170 175 180
 Lys Lys His His Glu Trp Thr Ala Pro Ile Gly Val Ile Ser Leu
 185 190 195
 Tyr Ala His Pro Ile Glu His Ala Val Ser Asn Met Leu Pro Val
 200 205 210
 Ile Val Gly Pro Leu Val Met Gly Ser His Leu Ser Ser Ile Thr
 215 220 225
 Met Trp Phe Ser Leu Ala Leu Ile Ile Thr Thr Ile Ser His Cys
 230 235 240
 Gly Tyr His Leu Pro Phe Leu Pro Ser Pro Glu Phe His Asp Tyr
 245 250 255
 His His Leu Lys Phe Asn Gln Cys Tyr Gly Val Leu Gly Val Leu
 260 265 270
 Asp His Leu His Gly Thr Asp Thr Met Phe Lys Gln Thr Lys Ala
 275 280 285
 Tyr Glu Arg His Val Leu Leu Leu Gly Phe Thr Pro Leu Ser Glu
 290 295 300
 Ser Ile Pro Asp Ser Pro Lys Arg Met Glu
 305 310

<210> 61
 <211> 160
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 3359559

<400> 61
 Met Ala Pro Ala Leu Trp Arg Ala Cys Asn Gly Leu Met Ala Ala
 1 5 10 15
 Phe Phe Ala Leu Ala Ala Leu Val Gln Val Asn Asp Pro Asp Ala
 20 25 30
 Glu Val Trp Val Val Val Tyr Thr Ile Pro Ala Val Leu Thr Leu
 35 40 45
 Leu Val Gly Leu Asn Pro Glu Val Thr Gly Asn Val Ile Trp Lys
 50 55 60
 Ser Ile Ser Ala Ile His Ile Leu Phe Cys Thr Val Trp Ala Val
 65 70 75
 Gly Leu Ala Ser Tyr Leu Leu His Arg Thr Gln Gln Asn Ile Leu
 80 85 90
 His Glu Glu Glu Gly Arg Glu Leu Ser Gly Leu Val Ile Ile Thr
 95 100 105
 Ala Trp Ile Ile Leu Cys His Ser Ser Ser Lys Asn Pro Val Gly
 110 115 120

Gly Arg Ile Gln Leu Ala Ile Ala Ile Val Ile Thr Leu Phe Pro
 125 130 135
 Phe Ile Ser Trp Val Tyr Ile Tyr Ile Asn Lys Glu Met Arg Ser
 140 145 150
 Ser Trp Pro Thr His Cys Lys Thr Val Ile
 155 160

<210> 62
<211> 35
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 4289208

<400> 62
Met Ala Val Val Asp Ala Gly Asn Asn Gly Lys Val Leu Asp Arg
 1 5 10 15
Val Cys Val Arg Ser Val Pro Ala Leu Phe Leu Ser Lys Cys Ile
 20 25 30
Ser Leu Asp Met Glu
 35

<210> 63
<211> 323
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2454013

<400> 63
Met Ala Ala Pro Lys Gly Ser Leu Trp Val Arg Thr Gln Leu Gly
 1 5 10 15
Leu Pro Pro Leu Leu Leu Leu Thr Met Ala Leu Ala Gly Gly Ser
 20 25 30
Gly Thr Ala Ser Ala Glu Ala Phe Asp Ser Val Leu Gly Asp Thr
 35 40 45
Ala Ser Cys His Arg Ala Cys Gln Leu Thr Tyr Pro Leu His Thr
 50 55 60
Tyr Pro Lys Glu Glu Leu Tyr Ala Cys Gln Arg Gly Cys Arg
 65 70 75
Leu Phe Ser Ile Cys Gln Phe Val Asp Asp Gly Ile Asp Leu Asn
 80 85 90
Arg Thr Lys Leu Glu Cys Glu Ser Ala Cys Thr Glu Ala Tyr Ser
 95 100 105
Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln
 110 115 120
Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met
 125 130 135
Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe

140	145	150
Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser		
155	160	165
Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe		
170	175	180
Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu		
185	190	195
Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu		
200	205	210
Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly		
215	220	225
Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp		
230	235	240
Ile Leu Thr Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp		
245	250	255
Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro		
260	265	270
Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu		
275	280	285
Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg		
290	295	300
Ser Lys Thr Glu Asp His Glu Ala Gly Pro Leu Pro Thr Lys		
305	310	315
Val Asn Leu Ala His Ser Glu Ile		
320		

<210> 64
<211> 129
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2454048

<400> 64		
Met Ala Arg Gly Ser Leu Arg Arg Leu Leu Arg Leu Leu Val Leu		
1	5	10
Gly Leu Trp Leu Ala Leu Leu Arg Ser Val Ala Gly Glu Gln Ala		
20	25	30
Pro Gly Thr Ala Pro Cys Ser Arg Gly Ser Ser Trp Ser Ala Asp		
35	40	45
Leu Asp Lys Cys Met Asp Cys Ala Ser Cys Arg Ala Arg Pro His		
50	55	60
Ser Asp Phe Cys Leu Gly Cys Ala Ala Ala Pro Pro Ala Pro Phe		
65	70	75
Arg Leu Leu Trp Pro Ile Leu Gly Gly Ala Leu Ser Leu Thr Phe		
80	85	90
Val Leu Gly Leu Leu Ser Gly Phe Leu Val Trp Arg Arg Cys Arg		
95	100	105
Arg Arg Glu Lys Phe Thr Thr Pro Ile Glu Glu Thr Gly Gly Glu		
110	115	120
Gly Cys Pro Ala Val Ala Leu Ile Gln		
125		

<210> 65

<211> 461

<212> PRT

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2479282

<400> 65

Met Ala Pro Gln Ser Leu Pro Ser Ser Arg Met Ala Pro Leu Gly		
1	5	10
Met Leu Leu Gly Leu Leu Met Ala Ala Cys Phe Thr Phe Cys Leu		
20	25	30
Ser His Gln Asn Leu Lys Glu Phe Ala Leu Thr Asn Pro Glu Lys		
35	40	45
Ser Ser Thr Lys Glu Thr Glu Arg Lys Glu Thr Lys Ala Glu Glu		
50	55	60
Glu Leu Asp Ala Glu Val Leu Glu Val Phe His Pro Thr His Glu		
65	70	75
Trp Gln Ala Leu Gln Pro Gly Gln Ala Val Pro Ala Gly Ser His		
80	85	90
Val Arg Leu Asn Leu Gln Thr Gly Glu Arg Glu Ala Lys Leu Gln		
95	100	105
Tyr Glu Asp Lys Phe Arg Asn Asn Leu Lys Gly Lys Arg Leu Asp		
110	115	120
Ile Asn Thr Asn Thr Tyr Thr Ser Gln Asp Leu Lys Ser Ala Leu		
125	130	135
Ala Lys Phe Lys Glu Gly Ala Glu Met Glu Ser Ser Lys Glu Asp		
140	145	150
Lys Ala Arg Gln Ala Glu Val Lys Arg Leu Phe Arg Pro Ile Glu		
155	160	165
Glu Leu Lys Lys Asp Phe Asp Glu Leu Asn Val Val Ile Glu Thr		
170	175	180
Asp Met Gln Ile Met Val Arg Leu Ile Asn Lys Phe Asn Ser Ser		
185	190	195
Ser Ser Ser Leu Glu Glu Lys Ile Ala Ala Leu Phe Asp Leu Glu		
200	205	210
Tyr Tyr Val His Gln Met Asp Asn Ala Gln Asp Leu Leu Ser Phe		
215	220	225
Gly Gly Leu Gln Val Val Ile Asn Gly Leu Asn Ser Thr Glu Pro		
230	235	240
Leu Val Lys Glu Tyr Ala Ala Phe Val Leu Gly Ala Ala Phe Ser		
245	250	255
Ser Asn Pro Lys Val Gln Val Glu Ala Ile Glu Gly Gly Ala Leu		
260	265	270
Gln Lys Leu Leu Val Ile Leu Ala Thr Glu Gln Pro Leu Thr Ala		
275	280	285
Lys Lys Lys Val Leu Phe Ala Leu Cys Ser Leu Leu Arg His Phe		
290	295	300
Pro Tyr Ala Gln Arg Gln Phe Leu Lys Leu Gly Gly Leu Gln Val		
305	310	315
Leu Arg Thr Leu Val Gln Glu Lys Gly Thr Glu Val Leu Ala Val		
320	325	330
Arg Val Val Thr Leu Leu Tyr Asp Leu Val Thr Glu Lys Met Phe		
335	340	345

Ala Glu Glu Glu Ala Glu Leu Thr Gln Glu Met Ser Pro Glu Lys
 350 355 360
 Leu Gln Gln Tyr Arg Gln Val His Leu Leu Pro Gly Leu Trp Glu
 365 370 375
 Gln Gly Trp Cys Glu Ile Thr Ala His Leu Leu Ala Leu Pro Glu
 380 385 390
 His Asp Ala Arg Glu Lys Val Leu Gln Thr Leu Gly Val Leu Leu
 395 400 405
 Thr Thr Cys Arg Asp Arg Tyr Arg Gln Asp Pro Gln Leu Gly Arg
 410 415 420
 Thr Leu Ala Ser Leu Gln Ala Glu Tyr Gln Val Leu Ala Ser Leu
 425 430 435
 Glu Leu Gln Asp Gly Glu Asp Glu Gly Tyr Phe Gln Glu Leu Leu
 440 445 450
 Gly Ser Val Asn Ser Leu Leu Lys Glu Leu Arg
 455 460

<210> 66
 <211> 264
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2483432

<400> 66
 Met Arg Pro Leu Leu Gly Leu Leu Val Phe Ala Gly Cys Thr
 1 5 10 15
 Phe Ala Leu Tyr Leu Leu Ser Thr Arg Leu Pro Arg Gly Arg Arg
 20 25 30
 Leu Gly Ser Thr Glu Glu Ala Gly Gly Arg Ser Leu Trp Phe Pro
 35 40 45
 Ser Asp Leu Ala Glu Leu Arg Glu Leu Ser Glu Val Leu Arg Glu
 50 55 60
 Tyr Arg Lys Glu His Gln Ala Tyr Val Phe Leu Leu Phe Cys Gly
 65 70 75
 Ala Tyr Leu Tyr Lys Gln Gly Phe Ala Ile Pro Gly Ser Ser Phe
 80 85 90
 Leu Asn Val Leu Ala Gly Ala Leu Phe Gly Pro Trp Leu Gly Leu
 95 100 105
 Leu Leu Cys Cys Val Leu Thr Ser Val Gly Ala Thr Cys Cys Tyr
 110 115 120
 Leu Leu Ser Ser Ile Phe Gly Lys Gln Leu Val Val Ser Tyr Phe
 125 130 135
 Pro Asp Lys Val Ala Leu Leu Gln Arg Lys Val Glu Glu Asn Arg
 140 145 150
 Asn Ser Leu Phe Phe Phe Leu Leu Phe Leu Arg Leu Phe Pro Met
 155 160 165
 Thr Pro Asn Trp Phe Leu Asn Leu Ser Ala Pro Ile Leu Asn Ile
 170 175 180
 Pro Ile Val Gln Phe Phe Phe Ser Val Leu Ile Gly Leu Ile Pro
 185 190 195
 Tyr Asn Phe Ile Cys Val Gln Thr Gly Ser Ile Leu Ser Thr Leu
 200 205 210

Thr Ser Leu Asp Ala Leu Phe Ser Trp Asp Thr Val Phe Lys Leu		
215	220	225
Leu Ala Ile Ala Met Val Ala Leu Ile Pro Gly Thr Leu Ile Lys		
230	235	240
Lys Phe Ser Gln Lys His Leu Gln Leu Asn Glu Thr Ser Thr Ala		
245	250	255
Asn His Ile His Ser Arg Lys Asp Thr		
260		

<210> 67
<211> 339
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2493824

<400> 67			
Met Ala Ala Ala Cys Gly Pro Gly Ala Ala Gly Tyr Cys Leu Leu			
1	5	10	15
Leu Gly Leu His Leu Phe Leu Leu Thr Ala Gly Pro Ala Leu Gly			
20	25	30	
Trp Asn Asp Pro Asp Arg Met Leu Leu Arg Asp Val Lys Ala Leu			
35	40	45	
Thr Leu His Tyr Asp Arg Tyr Thr Thr Ser Arg Arg Leu Asp Pro			
50	55	60	
Ile Pro Gln Leu Lys Cys Val Gly Gly Thr Ala Gly Cys Asp Ser			
65	70	75	
Tyr Thr Pro Lys Val Ile Gln Cys Gln Asn Lys Gly Trp Asp Gly			
80	85	90	
Tyr Asp Val Gln Trp Glu Cys Lys Thr Asp Leu Asp Ile Ala Tyr			
95	100	105	
Lys Phe Gly Lys Thr Val Val Ser Cys Glu Gly Tyr Glu Ser Ser			
110	115	120	
Glu Asp Gln Tyr Val Leu Arg Gly Ser Cys Gly Leu Glu Tyr Asn			
125	130	135	
Leu Asp Tyr Thr Glu Leu Gly Leu Gln Lys Leu Lys Glu Ser Gly			
140	145	150	
Lys Gln His Gly Phe Ala Ser Phe Ser Asp Tyr Tyr Tyr Lys Trp			
155	160	165	
Ser Ser Ala Asp Ser Cys Asn Met Ser Gly Leu Ile Thr Ile Val			
170	175	180	
Val Leu Leu Gly Ile Ala Phe Val Val Tyr Lys Leu Phe Leu Ser			
185	190	195	
Asp Gly Gln Tyr Ser Pro Pro Pro Tyr Ser Glu Tyr Pro Pro Phe			
200	205	210	
Ser His Arg Tyr Gln Arg Phe Thr Asn Ser Ala Gly Pro Pro Pro			
215	220	225	
Pro Gly Phe Lys Ser Glu Phe Thr Gly Pro Gln Asn Thr Gly His			
230	235	240	
Gly Ala Thr Ser Gly Phe Gly Ser Ala Phe Thr Gly Gln Gln Gly			
245	250	255	

Tyr Glu Asn Ser Gly Pro Gly Phe Trp Thr Gly Leu Gly Thr Gly
 260 265 270
 Gly Ile Leu Gly Tyr Leu Phe Gly Ser Asn Arg Ala Ala Thr Pro
 275 280 285
 Phe Ser Asp Ser Trp Tyr Tyr Pro Ser Tyr Pro Pro Ser Tyr Pro
 290 295 300
 Gly Thr Trp Asn Arg Ala Tyr Ser Pro Leu His Gly Gly Ser Gly
 305 310 315
 Ser Tyr Ser Val Cys Ser Asn Ser Asp Thr Lys Thr Arg Thr Ala
 320 325 330
 Ser Gly Tyr Gly Gly Thr Arg Arg Arg
 335

<210> 68
<211> 397
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2555823

<400> 68
 Met Val Arg Pro Gly Ala Arg Leu Cys Leu Gly Ser Val Gly Arg
 1 5 10 15
 Gly Leu Cys Leu Val Leu Pro Leu Leu Cys Leu Gly Ala Gly Phe
 20 25 30
 Leu Phe Leu Asn Thr Leu Phe Ile Cln Arg Gly Arg His Glu Thr
 35 40 45
 Thr Trp Thr Ile Leu Arg Arg Phe Gly Tyr Ser Asp Ala Leu Glu
 50 55 60
 Leu Thr Ala Asp Tyr Leu Ser Pro Leu Ile His Val Pro Pro Gly
 65 70 75
 Cys Ser Thr Glu Leu Asn His Leu Gly Tyr Gln Phe Val Gln Arg
 80 85 90
 Val Phe Glu Lys His Asp Gln Asp Arg Asp Gly Ala Leu Ser Pro
 95 100 105
 Val Glu Leu Gln Ser Leu Phe Ser Val Phe Pro Ala Ala Pro Trp
 110 115 120
 Gly Pro Glu Leu Pro Arg Thr Val Arg Thr Glu Ala Gly Arg Leu
 125 130 135
 Pro Leu His Gly Tyr Leu Cys Gln Trp Thr Leu Val Thr Tyr Leu
 140 145 150
 Asp Val Arg Ser Cys Leu Gly His Leu Gly Tyr Leu Gly Tyr Pro
 155 160 165
 Thr Leu Cys Glu Gln Asp Gln Ala His Ile Thr Val Thr Arg
 170 175 180
 Glu Lys Arg Leu Asp Gln Glu Lys Gly Gln Thr Gln Arg Ser Val
 185 190 195
 Leu Leu Cys Lys Val Val Gly Ala Arg Gly Val Gly Lys Ser Ala
 200 205 210
 Phe Leu Gln Ala Phe Leu Gly Arg Gly Leu Gly His Gln Asp Thr
 215 220 225
 Arg Glu Gln Pro Pro Gly Tyr Ala Ile Asp Thr Val Gln Val Asn
 230 235 240

Gly	Gln	Glu	Lys	Tyr	Leu	Ile	Leu	Cys	Glu	Val	Gly	Thr	Asp	Gly
				245					250					255
Leu	Leu	Ala	Thr	Ser	Leu	Asp	Ala	Thr	Cys	Asp	Val	Ala	Cys	Leu
				260					265					270
Met	Phe	Asp	Gly	Ser	Asp	Pro	Lys	Ser	Phe	Ala	His	Cys	Ala	Ser
				275					280					285
Val	Tyr	Lys	His	His	Tyr	Met	Asp	Gly	Gln	Thr	Pro	Cys	Leu	Phe
				290					295					300
Val	Ser	Ser	Lys	Ala	Asp	Leu	Pro	Glu	Gly	Val	Ala	Val	Ser	Gly
				305					310					315
Pro	Ser	Pro	Ala	Glu	Phe	Cys	Arg	Lys	His	Arg	Leu	Pro	Ala	Pro
				320					325					330
Val	Pro	Phe	Ser	Cys	Ala	Gly	Pro	Ala	Glu	Pro	Ser	Thr	Thr	Ile
				335					340					345
Phe	Thr	Gln	Leu	Ala	Thr	Met	Ala	Ala	Phe	Pro	His	Leu	Val	His
				350					355					360
Ala	Glu	Leu	His	Pro	Ser	Ser	Phe	Trp	Leu	Arg	Gly	Leu	Leu	Gly
				365					370					375
Val	Val	Gly	Ala	Ala	Val	Ala	Ala	Val	Leu	Ser	Phe	Ser	Leu	Tyr
				380					385					390
Arg	Val	Leu	Val	Lys	Ser	Gln								
				395										

<210> 69
<211> 301
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2598242

<400> 69														
Met	Glu	Leu	Ser	Asp	Val	Thr	Leu	Ile	Glu	Gly	Val	Gly	Asn	Glu
1					5				10					15
Val	Met	Val	Val	Ala	Gly	Val	Val	Val	Leu	Ile	Leu	Ala	Leu	Val
									20					30
Leu	Ala	Trp	Leu	Ser	Thr	Tyr	Val	Ala	Asp	Ser	Gly	Ser	Asn	Gln
									35					45
Leu	Leu	Gly	Ala	Ile	Val	Ser	Ala	Gly	Asp	Thr	Ser	Val	Leu	His
									50					60
Leu	Gly	His	Val	Asp	His	Leu	Val	Ala	Gly	Gln	Gly	Asn	Pro	Glu
									65					75
Pro	Thr	Glu	Leu	Pro	His	Pro	Ser	Glu	Gly	Asn	Asp	Glu	Lys	Ala
									80					90
Glu	Glu	Ala	Gly	Glu	Gly	Arg	Gly	Asp	Ser	Thr	Gly	Glu	Ala	Gly
									95					105
Ala	Gly	Gly	Gly	Val	Glu	Pro	Ser	Leu	Glu	His	Leu	Leu	Asp	Ile
									110					120
Gln	Gly	Leu	Pro	Lys	Arg	Gln	Ala	Gly	Ala	Gly	Ser	Ser	Ser	Pro
									125					135
Glu	Ala	Pro	Leu	Arg	Ser	Glu	Asp	Ser	Thr	Cys	Leu	Pro	Pro	Ser
									140					150
Pro	Gly	Leu	Ile	Thr	Val	Arg	Leu	Lys	Phe	Leu	Asn	Asp	Thr	Glu
									155					165

Glu Leu Ala Val Ala Arg Pro Glu Asp Thr Val Gly Ala Leu Lys
 170 175 180
 Ser Lys Tyr Phe Pro Gly Gln Glu Ser Gln Met Lys Leu Ile Tyr
 185 190 195
 Gln Gly Arg Leu Leu Gln Asp Pro Ala Arg Thr Leu Arg Ser Leu
 200 205 210
 Asn Ile Thr Asp Asn Cys Val Ile His Cys His Arg Ser Pro Pro
 215 220 225
 Gly Ser Ala Val Pro Gly Pro Ser Ala Ser Leu Ala Pro Ser Ala
 230 235 240
 Thr Glu Pro Pro Ser Leu Gly Val Asn Val Gly Ser Leu Met Val
 245 250 255
 Pro Val Phe Val Val Leu Leu Gly Val Val Trp Tyr Phe Arg Ile
 260 265 270
 Asn Tyr Arg Gln Phe Phe Thr Ala Pro Ala Thr Val Ser Leu Val
 275 280 285
 Gly Val Thr Val Phe Phe Ser Phe Leu Val Phe Gly Met Tyr Gly
 290 295 300

Arg

<210> 70
 <211> 217
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2634120

<400> 70
 Met Val Glu Val Gln Leu Glu Ser Asp His Glu Tyr Pro Pro Gly
 1 5 10 15
 Leu Leu Val Ala Phe Ser Ala Cys Thr Thr Val Leu Val Ala Val
 20 25 30
 His Leu Phe Ala Leu Met Val Ser Thr Cys Leu Leu Pro His Ile
 35 40 45
 Glu Ala Val Ser Asn Ile His Asn Leu Asn Ser Val His Gln Ser
 50 55 60
 Pro His Gln Arg Leu His Arg Tyr Val Glu Leu Ala Trp Gly Phe
 65 70 75
 Ser Thr Ala Leu Gly Thr Phe Leu Phe Leu Ala Glu Val Val Leu
 80 85 90
 Val Gly Trp Val Lys Phe Val Pro Ile Gly Ala Pro Leu Asp Thr
 95 100 105
 Pro Thr Pro Met Val Pro Thr Ser Arg Val Pro Gly Thr Leu Ala
 110 115 120
 Pro Val Ala Thr Ser Leu Ser Pro Ala Ser Asn Leu Pro Arg Ser
 125 130 135
 Ser Ala Ser Ala Ala Pro Ser Gln Ala Glu Pro Ala Cys Pro Pro
 140 145 150
 Arg Gln Ala Cys Gly Gly Gly Ala His Gly Pro Gly Trp Gln
 155 160 165
 Ala Ala Met Ala Ser Thr Ala Ile Met Val Pro Val Gly Leu Val
 170 175 180
 Phe Val Ala Phe Ala Leu His Phe Tyr Arg Ser Leu Val Ala His

185

190

195

Lys Thr Asp Arg Tyr Lys Gln Glu Leu Glu Glu Leu Asn Arg Leu
 200 205 210
 Gln Gly Glu Leu Gln Ala Val
 215

<210> 71
 <211> 143
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2765411

<400> 71
 Met Phe Pro Val Leu Gly Trp Ile Leu Ile Ala Val Val Ile Ile
 1 5 10 15
 Ile Leu Leu Ile Phe Thr Ser Val Thr Arg Cys Leu Ser Pro Val
 20 25 30
 Ser Phe Leu Gln Leu Lys Phe Trp Lys Ile Tyr Leu Glu Gln Glu
 35 40 45
 Gln Gln Ile Leu Lys Ser Lys Ala Thr Glu His Ala Thr Glu Leu
 50 55 60
 Ala Lys Glu Asn Ile Lys Cys Phe Phe Glu Gly Ser His Pro Lys
 65 70 75
 Glu Tyr Asn Thr Pro Ser Met Lys Glu Trp Gln Gln Ile Ser Ser
 80 85 90
 Leu Tyr Thr Phe Asn Pro Lys Gly Gln Tyr Tyr Ser Met Leu His
 95 100 105
 Lys Tyr Val Asn Arg Lys Glu Lys Thr His Ser Ile Arg Ser Thr
 110 115 120
 Glu Gly Asp Thr Val Ile Pro Val Leu Gly Phe Val Asp Ser Ser
 125 130 135
 Gly Ile Asn Ser Thr Pro Glu Leu
 140

<210> 72
 <211> 186
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2769412

<400> 72
 Met Ser Gly Ile Ser Gly Cys Pro Phe Phe Leu Trp Gly Leu Leu
 1 5 10 15
 Ala Leu Leu Gly Leu Ala Leu Val Ile Ser Leu Ile Phe Asn Ile
 20 25 30

Ser His Tyr Val Glu Lys Gln Arg Gln Asp Lys Met Tyr Ser Tyr
 35 40 45
 Ser Ser Asp His Thr Arg Val Asp Glu Tyr Tyr Ile Glu Asp Thr
 50 55 60
 Pro Ile Tyr Gly Asn Leu Asp Asp Met Ile Ser Glu Pro Met Asp
 65 70 75
 Glu Asn Cys Tyr Glu Gln Met Lys Ala Arg Pro Glu Lys Ser Val
 80 85 90
 Asn Lys Met Gln Glu Ala Thr Pro Ser Ala Gln Ala Thr Asn Glu
 95 100 105
 Thr Gln Met Cys Tyr Ala Ser Leu Asp His Ser Val Lys Gly Lys
 110 115 120
 Arg Arg Lys Pro Arg Lys Gln Asn Thr His Phe Ser Asp Lys Asp
 125 130 135
 Gly Asp Glu Gln Leu His Ala Ile Asp Ala Ser Val Ser Lys Thr
 140 145 150
 Thr Leu Val Asp Ser Phe Ser Pro Glu Ser Gln Ala Val Glu Glu
 155 160 165
 Asn Ile His Asp Asp Pro Ile Arg Leu Phe Gly Leu Ile Arg Ala
 170 175 180
 Lys Arg Glu Pro Ile Asn
 185

<210> 73
 <211> 364
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2842779

<400> 73
 Met Pro Gly Cys Pro Cys Pro Gly Cys Gly Met Ala Gly Pro Arg
 1 5 10 15
 Leu Leu Phe Leu Thr Ala Leu Ala Leu Glu Leu Leu Gly Arg Ala
 20 25 30
 Gly Gly Ser Gln Pro Ala Leu Arg Ser Arg Gly Thr Ala Thr Ala
 35 40 45
 Cys Arg Leu Asp Asn Lys Glu Ser Glu Ser Trp Gly Ala Leu Leu
 50 55 60
 Ser Gly Glu Arg Leu Asp Thr Trp Ile Cys Ser Leu Leu Gly Ser
 65 70 75
 Leu Met Val Gly Leu Ser Gly Val Phe Pro Leu Leu Val Ile Pro
 80 85 90
 Leu Glu Met Gly Thr Met Leu Arg Ser Glu Ala Gly Ala Trp Arg
 95 100 105
 Leu Lys Gln Leu Leu Ser Phe Ala Leu Gly Gly Leu Leu Gly Asn
 110 115 120
 Val Phe Leu His Leu Leu Pro Glu Ala Trp Ala Tyr Thr Cys Ser
 125 130 135
 Ala Ser Pro Gly Gly Glu Gly Gln Ser Leu Gln Gln Gln Gln
 140 145 150
 Leu Gly Leu Trp Val Ile Ala Gly Ile Leu Thr Phe Leu Ala Leu
 155 160 165

Glu Lys Met Phe Leu Asp Ser Lys Glu Glu Gly Thr Ser Gln Ala
 170 175 180
 Pro Asn Lys Asp Pro Thr Ala Ala Ala Ala Leu Asn Gly Gly
 185 190 195
 His Cys Leu Ala Gln Pro Ala Ala Glu Pro Gly Leu Gly Ala Val
 200 205 210
 Val Arg Ser Ile Lys Val Ser Gly Tyr Leu Asn Leu Leu Ala Asn
 215 220 225
 Thr Ile Asp Asn Phe Thr His Gly Leu Ala Val Ala Ala Ser Phe
 230 235 240
 Leu Val Ser Lys Lys Ile Gly Leu Leu Thr Thr Met Ala Ile Leu
 245 250 255
 Leu His Glu Ile Pro His Glu Val Gly Asp Phe Ala Ile Leu Leu
 260 265 270
 Arg Ala Gly Phe Asp Arg Trp Ser Ala Ala Lys Leu Gln Leu Ser
 275 280 285
 Thr Ala Leu Gly Gly Leu Leu Gly Ala Gly Phe Ala Ile Cys Thr
 290 295 300
 Gln Ser Pro Lys Gly Val Glu Glu Thr Ala Ala Trp Val Leu Pro
 305 310 315
 Phe Thr Ser Gly Gly Phe Leu Tyr Ile Ala Leu Val Asn Val Leu
 320 325 330
 Pro Asp Leu Leu Glu Glu Asp Pro Trp Arg Ser Leu Gln Gln
 335 340 345
 Leu Leu Leu Leu Cys Ala Gly Ile Val Val Met Val Leu Phe Ser
 350 355 360
 Leu Phe Val Asp

<210> 74
 <211> 605
 <212> PRT
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2966260

<400> 74
 Met Gly Arg Leu Leu Arg Ala Ala Arg Leu Pro Pro Leu Leu Ser
 1 5 10 15
 Pro Leu Leu Leu Leu Val Gly Gly Ala Phe Leu Gly Ala Cys
 20 25 30
 Val Ala Gly Ser Asp Glu Pro Gly Pro Glu Gly Leu Thr Ser Thr
 35 40 45
 Ser Leu Leu Asp Leu Leu Leu Pro Thr Gly Leu Glu Pro Leu Asp
 50 55 60
 Ser Glu Glu Pro Ser Glu Thr Met Gly Leu Gly Ala Gly Leu Gly
 65 70 75
 Ala Pro Gly Ser Gly Phe Pro Ser Glu Glu Asn Glu Glu Ser Arg
 80 85 90

 Ile Leu Gln Pro Pro Gln Tyr Phe Trp Glu Glu Glu Glu Leu
 95 100 105
 Asn Asp Ser Ser Leu Asp Leu Gly Pro Thr Ala Asp Tyr Val Phe
 110 115 120

Pro Asp Leu Thr Glu Lys Ala Gly Ser Ile Glu Asp Thr Ser Gln
 125 130 135
 Ala Gln Glu Leu Pro Asn Leu Pro Ser Pro Leu Pro Lys Met Asn
 140 145 150
 Leu Val Glu Pro Pro Trp His Met Pro Pro Arg Glu Glu Glu
 155 160 165
 Glu Glu Glu Glu Glu Glu Met Glu Lys Glu Glu Val Glu Lys
 170 175 180
 Gln Asp Val Glu Glu Glu Glu Leu Leu Pro Val Asn Gly Ser
 185 190 195
 Gln Glu Glu Ala Lys Pro Gln Val Arg Asp Phe Ser Leu Thr Ser
 200 205 210
 Ser Ser Gln Thr Pro Gly Ala Thr Lys Ser Arg His Glu Asp Ser
 215 220 225
 Gly Asp Gln Ala Ser Ser Gly Val Glu Val Glu Ser Ser Met Gly
 230 235 240
 Pro Ser Leu Leu Leu Pro Ser Val Thr Pro Thr Ile Val Thr Pro
 245 250 255
 Gly Asp Gln Asp Ser Thr Ser Gln Glu Ala Glu Ala Thr Val Leu
 260 265 270
 Pro Ala Ala Gly Leu Gly Val Glu Phe Glu Ala Pro Gln Glu Ala
 275 280 285
 Ser Glu Glu Ala Thr Ala Gly Ala Ala Gly Leu Ser Gly Gln His
 290 295 300
 Glu Glu Val Pro Ala Leu Pro Ser Phe Pro Gln Thr Thr Ala Pro
 305 310 315
 Ser Gly Ala Glu His Pro Asp Glu Asp Pro Leu Gly Ser Arg Thr
 320 325 330
 Ser Ala Ser Ser Pro Leu Ala Pro Gly Asp Met Glu Leu Thr Pro
 335 340 345
 Ser Ser Ala Thr Leu Gly Gln Glu Asp Leu Asn Gln Gln Leu Leu
 350 355 360
 Glu Gly Gln Ala Ala Glu Ala Gln Ser Arg Ile Pro Trp Asp Ser
 365 370 375
 Thr Gln Val Ile Cys Lys Asp Trp Ser Asn Leu Ala Gly Lys Asn
 380 385 390
 Tyr Ile Ile Leu Asn Met Thr Glu Asn Ile Asp Cys Glu Val Phe
 395 400 405
 Arg Gln His Arg Gly Pro Gln Leu Leu Ala Leu Val Glu Glu Val
 410 415 420
 Leu Pro Arg His Gly Ser Gly His His Gly Ala Trp His Ile Ser
 425 430 435
 Leu Ser Lys Pro Ser Glu Lys Glu Gln His Leu Leu Met Thr Leu
 440 445 450
 Val Gly Glu Gln Gly Val Val Pro Thr Gln Asp Val Leu Ser Met
 455 460 465
 Leu Gly Asp Ile Arg Arg Ser Leu Glu Glu Ile Gly Ile Gln Asn
 470 475 480
 Tyr Ser Thr Thr Ser Ser Cys Gln Ala Arg Ala Ser Gln Val Arg
 485 490 495
 Ser Asp Tyr Gly Thr Leu Phe Val Val Leu Val Val Ile Gly Ala
 500 505 510
 Ile Cys Ile Ile Ile Ala Leu Gly Leu Leu Tyr Asn Cys Trp
 515 520 525
 Gln Arg Arg Leu Pro Lys Leu Lys His Val Ser His Gly Glu Glu
 530 535 540
 Leu Arg Phe Val Glu Asn Gly Cys His Asp Asn Pro Thr Leu Asp

545	550	555
Val Ala Ser Asp Ser Gln Ser Glu Met Gln Glu Lys His Pro Ser		
560	565	570
Leu Asn Gly Gly Gly Ala Leu Asn Gly Pro Gly Ser Trp Gly Ala		
575	580	585
Leu Met Gly Gly Lys Arg Asp Pro Glu Asp Ser Asp Val Phe Glu		
590	595	590
Glu Asp Thr His Leu		
	605	

<210> 75
<211> 97
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2993326

<400> 75
Met Thr Gly Arg Phe Lys Ala Cys Gln Val Ile Ley Gly Leu Leu
1 5 10 15
Val Ala Ile Ser Leu Ala Ala Gly Thr Gly Gly Ala Ala Gly Ala
20 25 30
Ala Leu Val Ile Val Phe Ile Gly Ala Phe Leu Val Leu Leu Phe
35 40 45
Leu Gly Arg Leu Thr Thr Gly Gly Se: Met Ala Arg Glu Ser Leu
50 55 60
Val Ala Ala Asn Arg Val Cys Ile Ser Arg Thr Leu Ser Ser Ser
65 70 75
Val Val Ser Val Cys Ile Ser Gly Gly Lys Gly Ser Pro Arg Leu
80 85 90
Pro Gly Gly Arg Gly Pro
95

<210> 76
<211> 247
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3001124

<400> 76
Met Val Thr Leu Val Ser Asp Thr Ala Met Thr Pro Ile Ala Ser
1 5 10 15
Val Asp Thr Ile Ala Val Cys Leu Phe Ala Gly Ala Trp Gly Gly
20 25 30
Ala Met Val Pro Met His Leu Leu Gly Arg Leu Glu Lys Pro Leu
35 40 45
Leu Leu Leu Cys Cys Ala Ser Phe Leu Leu Gly Leu Ala Leu Leu

50	55	60
Gly Ile Lys Thr Asp Ile Thr Pro Val Ala Tyr Phe Phe Leu Thr		
65	70	75
Leu Gly Gly Phe Phe Leu Phe Ala Tyr Leu Leu Val Arg Phe Leu		
80	85	90
Glu Trp Gly Leu Arg Ser Gln Leu Gln Ser Met Gln Thr Glu Ser		
95	100	105
Pro Gly Pro Ser Gly Asn Ala Arg Asp Asn Glu Ala Phe Glu Val		
110	115	120
Pro Val Tyr Glu Ala Val Val Gly Leu Glu Ser Gln Cys Arg		
125	130	135
Pro Gln Glu Leu Asp Gln Pro Pro Tyr Ser Thr Val Val Ile		
140	145	150
Pro Pro Ala Pro Glu Glu Gln Pro Ser His Pro Glu Gly Ser		
155	160	165
Arg Arg Ala Lys Leu Glu Gln Arg Arg Met Ala Ser Glu Gly Ser		
170	175	180
Met Ala Gln Glu Gly Ser Pro Gly Arg Ala Pro Ile Asn Leu Arg		
185	190	195
Leu Arg Gly Pro Arg Ala Val Ser Thr Ala Pro Asp Leu Gln Ser		
200	205	210
Leu Ala Ala Val Pro Thr Leu Glu Pro Leu Thr Pro Pro Pro Ala		
215	220	225
Tyr Asp Val Cys Phe Gly His Pro Asp Asp Asp Ser Val Phe Tyr		
230	235	240
Glu Asp Asn Trp Ala Pro Pro		
245		

<210> 77
<211> 193
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3120070

<400> 77		
Met Ile Arg Cys Gly Leu Ala Cys Glu Arg Cys Arg Trp Ile Leu		
1	5	10
Pro Leu Leu Leu Ser Ala Ile Ala Phe Asp Ile Ile Ala Leu		
20	25	30
Ala Gly Arg Gly Trp Leu Gln Ser Ser Asp His Gly Gln Thr Ser		
35	40	45
Ser Leu Trp Trp Lys Cys Ser Gln Glu Gly Gly Ser Gly Ser		
50	55	60
Tyr Glu Glu Gly Cys Gln Ser Leu Met Glu Tyr Ala Trp Gly Arg		
65	70	75
Ala Ala Ala Ala Met Leu Phe Cys Gly Phe Ile Ile Leu Val Ile		
80	85	90
Cys Phe Ile Leu Ser Phe Phe Ala Leu Cys Gly Pro Gln Met Leu		
95	100	105
Val Phe Leu Arg Val Ile Gly Gly Leu Leu Ala Leu Ala Val		
110	115	120
Phe Gln Ile Ile Ser Leu Val Ile Tyr Pro Val Lys Tyr Thr Gln		

125	130	135
Thr Phe Thr Leu His Ala Asn Pro Ala Val Thr Tyr Ile Tyr Asn		
140	145	150
Trp Ala Tyr Gly Phe Gly Trp Ala Ala Thr Ile Ile Leu Ile Gly		
155	160	165
Cys Ala Phe Phe Phe Cys Cys Leu Pro Asn Tyr Glu Asp Asp Leu		
170	175	180
Leu Gly Asn Ala Lys Pro Arg Tyr Phe Tyr Thr Ser Ala		
185	190	

<210> 78
<211> 128
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3133035

<400> 78		
Met Asn Met Lys Gln Lys Ser Val Tyr Gln Gln Thr Lys Ala Leu		
1	5	10
Leu Cys Lys Asn Phe Leu Lys Lys Trp Arg Met Lys Arg Glu Ser		
20	25	30
Leu Leu Glu Trp Gly Leu Ser Ile Leu Leu Gly Leu Cys Ile Ala		
35	40	45
Leu Phe Ser Ser Ser Met Arg Asn Val Gln Phe Pro Gly Met Ala		
50	55	60
Pro Gln Asn Leu Gly Arg Val Asp Lys Phe Asn Ser Ser Ser Leu		
65	70	75
Met Val Val Tyr Thr Pro Ile Ser Asn Leu Thr Gln Gln Ile Met		
80	85	90
Asn Lys Thr Ala Leu Ala Pro Leu Leu Lys Gly Thr Ser Val Ile		
95	100	105
Gly Ala Gln Ile Ile His Thr Trp Thr Lys Tyr Phe Trp Lys Ile		
110	115	120
Tyr Ile Cys Tyr Gly Asn His Leu		
125		

<210> 79
<211> 115
<212> PRT
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 3436879

<400> 79		
Met Ala Val Ala Val Leu Leu Cys Gly Cys Ile Val Ala Thr Val		
1	5	10
Ser Phe Phe Trp Glu Glu Ser Leu Thr Gln His Val Ala Gly Leu		
20	25	30
Leu Phe Leu Met Thr Gly Ile Phe Cys Thr Ile Ser Leu Cys Thr		

35	40	45
Tyr Ala Ala Ser Ile Ser Tyr Asp Leu Asn Arg Leu Pro Lys Leu		
50	55	60
Ile Tyr Ser Leu Pro Ala Asp Val Glu His Gly Tyr Ser Trp Ser		
65	70	75
Ile Phe Cys Ala Trp Cys Ser Leu Gly Phe Ile Val Ala Ala Gly		
80	85	90
Gly Leu Cys Ile Ala Tyr Pro Phe Ile Ser Arg Thr Lys Ile Ala		
95	100	105
Gln Leu Lys Ser Gly Arg Asp Ser Thr Val		
110	115	

<210> 80
<211> 1869
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 153831

<400> 80
gcgagcggct ggcggatccg acgcgcgaga ccgggagggg acgagggcgt tgcaatcggt 60
cggggcgggg gccttcggg gaggggggtgc tcaggtgcac cagcggcggc ggaccctcag 120
actctgcctt cccctccctt taacccctt ccagccggac gggaggcggg gcagggctga 180
gcatttgtga cacctacatt tccgtggctc ccttctttc cccgacccc tggttatctc 240
ttcgccctcc agaagttctt ttccatcagg ccgtegcacc ttgcgtgjga aggagcaccc 300
caacttggaaag caggaggcgg ggttcagatc ttggccctac ccctcctgtg taaaagtccg 360
cgagcctcag ttccctcac agtattttt gcctegcett acccggtttt gaggatctgt 420
acgagaaaaga gaaaggaagt ggacatttg tgaattctg catggccaaa taccacgcag 480
actgcttcat ccgccacgtt taatcttat tacttggtgt tctcagaact cccatttcat 540
ggattcttaa gctcacagag tcagtgataa acagaaaggg attcagatct agccgttttag 600
ctgcacagtg gagttcttct ccagagtctt cccttgcgt ggctctggct ggaactattc 660
ctcagccaaa tcctcgcccc agaacatgtc ttccctgttc tccagctgag aagtctccct 720
ttcagtttcc ttcttccagc acggagttaca ctgctctgccc tccactttaga ttacttcaga 780
aatgaaaatgc agcaaataatt tatccagcag tgcaggaaatg tgaacttttg gagtccggaa 840
ccttggattc ttgttctggc tctgccatt actgtgtggc ctggaaatg ctttgcctt 900
ctctgagctt tctttctct ttgcgtaaaa ggggtgtct tggccatcc tccctccctg 960
tcttccagca ggctctcccc ggaggctcag cccctctgc tcccatggg caactgccag 1020
gcagggcaca acctgcaccc gtgtctggcc caccacccac ctctggctg tgccactttt 1080
atccctgctgc tccttggcct ctctggctg ggcttggca gettcctctt caccacagg 1140
actggcctgc gcagccctga catccccag gactgggtct ctttttgag atctttggc 1200
cagctgaccc tgggtcccag gaatgggaca gtcacaggaa agtggcgagg gtctcacgtc 1260
gtgggcttgc tgaccacattt gaacttcggaa gacggtccag acaggaacaa gaccggaca 1320
ttccaggcca cagtcctggg aagtcaatg ggattgaaatg gatcttctgc aggacaactg 1380
gtccttataca cagccagggt gaccacagaa aggactgcag gacccctgc atattttagt 1440
gctgttccag gaatccatcc ctccagccag ccacccatat cctgctcaga ggagggggct 1500
ggaaatgcca ccctgagccc tagaatgggt gaggaaatgtg ttagtgtctg gagccatgaa 1560
ggccttgc tgaccaagct gtcacccctg gaggagctgg ctctgtgtgg ctccaggctg 1620
ctggcttgg gtccttcct gcttctcttc tggcccttc tctgtgtgt cactgctatg 1680
tgcttccacc cgcgcggga gtcactgg tctagaaccc ggctctgagg gcaactggcct 1740
agttcccgac ttgttctca ggtgtgaatc aacttctgg gccttggctc tgagttggaa 1800
aaggtttttag aaaaagtgaa gagctggat gtggggaaa ataaaaagct ttttgccta 1860
aaaaaaaaa

<210> 81
<211> 1044
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 350629

<400> 81
tgcagttAAC atctgcacAC ttcaCTATA tttAAgTTT tGTTAATATA aaAGAAATAAG 60
aaaACAGAAA agtattACTG ttaAAACAATA atAGAGAAAT gtataCTTA tttacaAAATT 120
tctccCTCTA gctgatCATA cAGTTGACCA gttcAGGGTG CCCGCTGCTG gttggatGCC 180
aggCGGAATG tcAGGGTGTt ctctGGTGTc tGTTGtgCT GTGGGATCCA CGGTTACTGG 240
gcggAGCCTG tggtGGCTGT ggtGCCATGG AGGGGCTGCG atcttCTGTG gagCTGGACC 300
ctgagCTGAC tcCAGGGAAAG CTGGATGAGG AGATGGTGGG GCTGCCACCC CATGACCGGA 360
gtcCTCAAGT cacttCCAC AGCCTCGATG ggaAGACAGT ggtGTgtCCA cacttCATGG 420
gtCTTACTGTG gggTCtCTTA cTTTtATTA cTTTGTCTGT tagGAACCAA CTCTGTgtAA 480
gaggTgAAAG gcAGCTTgCA gaaACACTGC attCACAGGT gaAGGGAGAAA tcccAGCTCA 540
ttggCAAGAA AACAGATTGT agAGACTGAG gcatCTTAA aAGATGTCAg ggtACAGAAA 600
aagtCTTCA acACCCCCGG CTTTGTAGAT gcCTACAAAGA AGGTGAATAG caccaACGAG 660
atGCTGATGG agAAATTAC caccCTCGTT caAGAACTGA aAGAAGAGAC atcCTCCAGA 720
ctCTCCTCAA tgggCGGTGc ctccAAATCT AAAGAATATG gaggtCCTGG agcACACCAA 780
gaaATgAGGG acTTTTCTT tgcaGAAAGT ttGAATTCTG tCTTAATGAG acAGAAATGCC 840
ataCTTGAGC acCTCATCTT ttGCTCAAAT tgAAATGTCA tcGAACTGTa tttCTCAAGT 900
caATGGTCTG tAAATATGAT ttATGTATTA atCTCTAAg tgAAACAATTt ATATTTATC 960
ctCTACATAA ttATGTATT atGCTTAAAT tATATATTa gtttatCAAT aaAGACATTc 1020
agTACTCAAT agCAAAAAAA: aaaa 1044

<210> 82
<211> 3079
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 729171

<400> 82
cgGCTCGAGG tcGGCTGGAG tcGGAGGCGA tatttCTAGG ggTGTACTTG ttGGGGTCAG 60
ggtaAGCACC AGCCACAAAA ACCTACAAAAA gaAGGGAAAT tactGTCTTt AAATATTAAA 120
aaaaAAACAAAG atCCATGAGT gggcatCGAT caACAAGGA AAGATGTGGA gattCCCACC 180
cgGAgtCCCC AGTGGGCTTC gggcatATGA gtACTACAGG ATGTGTtATTA aATAAATTGT 240
ttcAGTTACC AACACCAACCA ttGTCAAGAC accAACTAAAC gCGGCTAGAA gaACACAGAT 300
atCAAAGTGC tgGACGGTCC ctGCTTGAGC CCTTAGTGCAG AGGTATTGG GAATGGCTG 360
ttAGAAAGTGT tcCCTCTGG ATTGCCCCAA ATCTCATCAC catCATTGGA CTGTCAATAA 420
acATCTGTAC aACTATTTA ttAGTCTTCT ACTGCCCTAC AGCTACAGAG CAGGCACCTC 480
tgtGGGcATA tattGCTTGT gCcTGTGGCC ttttCATTa CCAGTCTTtG gATGTATTG 540
gtGGGAAACA gGCAAGAAGA ACCAATAGTA gttCTCTCTT gggAGAACTT tttGATCATG 600
gCTGTGATTC ACTATCAACA gTTTTGTGG ttCTTGGAAc TTGTATAGCA gtGcAGCTGG 660
ggACAAACCC tgATTGGATG ttttttGTtG gttttGCGGG gACATTATG ttCTTATTGT 720
cgCACTGGCA AACGTATGTT tCTGGAACAT tgCAGTTGG AATAATTGAT gtGACTGAAG 780
tgCAATCTT CATAATAATC ATGCAATTGc tggcAGTGTAT gggAGGACCA CCTTTTGGC 840

aatctatgat tccagtgcgtg aatattcaaa tgaaaatttt tcctgcactt tgtactgttag 900
 cagggaccat atttcctgt acaaattact tccgtataat cttcacagg ggtgtggca 960
 aaaatggatc aacaatagca ggaacaagg tcccttctcc ttttctccat attggatcag 1020
 tgattacatt agctgcaatg atctacaaga aatctgcagt tcagctttt gaaaagcattc 1080
 cctgtctta tatactgaca tttggttttg tgcgtctaa aatcactaat aagcttgg 1140
 ttgcacacat gacgaaaagt gaaatgcatt tgcacac acgattcata ggtccggcac 1200
 tttgtttct ggaccaggat ttaacagct ttattgtga atattgtta cttggattt 1260
 ccctggttt ctcttcctt gatgttgc gctactgtgt cagtgttgc aatcagattt 1320
 cgtctcaccc gcacatacat gtcttcagaa tcaaggcttc tacagctcat tctaattcatc 1380
 attaatgatg taattggat ataggaacat catgttttgc gaggaaaga aagtaacata 1440
 ttaaggagaa tgggggtgga taagaacaaa tataatttat aataatcaat gttgtataac 1500
 ttttattttt tattattggt aacacgcctt aactatctt tgcgttgc ggaatttcaa 1560
 gtcccatctt gtaaattgtt tatgttgc tgcagggtt gggccaagaa agcatgcaga 1620
 aaaaaatgcc atgtgattgt aattatctt gattcagaat aatactgtga tggggagcca 1680
 gatccgcagt ggtggagagt tcaatgttgc actgttttgc ggcacaaaaga tgattgtttt 1740
 ataattttaa caaatcattt tcttttagt acatcttgc ttagtgtt cttcaagcttt 1800
 cttaactgag gaattcagct tgcgttgc atacatccc tgcgttgc aggtggaaact 1860
 agtaataaaag accttgaatt tggattgaaa agtttctt ctttacattt tgcgttgc 1920
 cctttttttt tttttttttt ttttaatgt ctcacaaat gattctctca caggcttggg 1980
 aaatcctgtt agcatgcaga ataatgtgtt aacttgcatttttt ttagtgtt 2040
 aaataaaatat atgatctaaa agccaaactt ttctcagtt tactcagtgg aaagataaaac 2100
 taagttttaa tggattttt ttaaattttaa gcaaaaattt tttctgttct ttaataaaata 2160
 agaaaatgtt gtcacttgca ttgttgcgtt gtcacttgat ttttgcgtt 2220
 cttaaaaaag gagaactatg ttcatttttgc tgcgttgc tttttttgtt ttgtgtttt 2280
 cacctgtgtt attatcaatc atttagaaat ctcataaccct tccctttaat ttcagcaag 2340
 tgcctggcc tctcttaagag gtcactttgtt actctctttt tgcgttgc tccctttgg 2400
 tatctgtact atcggttgc atggaaacca gatatgttgc cattttatac agataattca 2460
 gttgttgcgaa gaagaggggac acaggagaaa agattaaac tattggctaa aatgagggtt 2520
 cttattattt attttcatct atatcttgc ccataatcag gaataaaacag tagctacact 2580
 gcctgtatg gcagccagag cgctgttgc ttgcactttt aatgatttca tcaataccat 2640
 gtagattgaa ttagcaagga gaagtaaaacc tttcatttttgc ttgcacttgc atattggaa 2700
 atgaaaatcc gtcattactt ttcatttttgc gcaatttttgc gaatatttttgc gataaagaaa 2760
 tacatacagg aaaaatgttag ggcagacaa gttttttttt gtcacttgc gtcacttgc 2820
 ggaggaagga taattttttt tttttttttt gttttttttt gttttttttt gttttttttt 2880
 ggtactatct atagtggaaa ttggggcccg gagaggtttaa atggcatgcg agtgcactt 2940
 gctatttttgc agaacaaaaa tttagaatcc gatctgaatc ctgggtgcgtt gttttttttt 3000
 atgccttact gggcttttagt gggctaaatg tctgaagca gatgtttaagg gctaaattgaa 3060
 atgcgtttat ttccttgc 3079

<210> 83
 <211> 1298
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1273641

<400> 83
 cccgggtgcct gccccggattgc tggagagaac gccccggatgg agccggggcag gacccagata 60
 aagcttgcacc ccaggatcac acgagatctt ctggagggtgc tgaagacca ttacggcatc 120
 ccctccgcct gcttctctca gcctccacaca gcagcccaact cctggagagcc ctggggccctg 180
 tggaaacttgc cctcaacttgc atctgcacct tgcgttgcgtt gggctccatt gccatcttcc 240
 tggaggatgc cgtctaccc tacaagaaca cccttgcacc catcaagagg cggactctgc 300
 tctgaaagag ctcggcaccc acgggtgggtt ctgtgttgc ctgtttttgtt ctctggatcc 360

tcgttccct	ggtgctgggt	gaaatgacca	tcacctcg	ttatgcgtg	tgctttacc	420
tgctgatgct	ggtcatgggt	gaaggcattt	gggggaagga	ggcagtctg	aggacgctga	480
ggcacacccc	gatgtatggtc	cacacaggcc	cctgtctgt	ctgctgcccc	tgctgtcaac	540
ggctgtgtct	caccaggaag	aagttcage	tgctgtatgtt	gggccttcc	caatacgcct	600
tcttgaagat	aacgctgacc	ttgtggggct	tgttctcg	cccgacggaa	tcttatgacc	660
cagcagacat	ttctgagggg	agcacagctc	tatggatcaa	caacttccctt	ggcgtgtcca	720
caactgtggc	tctctggacc	ctggggcatca	tttcccgta	agccaggtta	cacctgggtg	780
agcagaacat	gggagccaaa	tttgcctgt	tccaggttc	cctcatctg	actgcctac	840
agecctccat	tttctcagtc	ttggccaaacg	gtgggcagat	tgcttgcgt	cctccctatt	900
cctctaaaac	cagggtctcaa	gtgatgaatt	gccacctct	catactggag	acttttctaa	960
tgactgtgt	gacacaatg	tactaccgaa	ggaaagacca	caaggttggg	tatgaaactt	1020
tctttctcc	agacctggac	ttgaacctca	aaggcctaagg	tggatggctt	ggacaatgaa	1080
aggatgttgt	actcattaga	atacaagatt	cctttactgt	ccctcaacct	tgaccaaatg	1140
ggaagcatc	ccccctgtca	acacaagctg	gcagatacat	ttgactctac	agatgaaggt	1200
gaacaatgtt	aggataaaaat	tgctttggat	cttgcctgga	aggtgttttta	agttttgtaa	1260
taaaacaagat	gatgtctgaa	aatgtaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1298

<210> 84
<211> 2106
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte Clone No: 1427389

```

<400> 84
gtggggctgc ggccgggatt tgccccctc tcggcttccg tagaggaagt ggcgcggacc 60
ttatattggg gttcggttc ccccccttc ccttcccccgg ggtctgggg tgacattgca 120
ccgegeccct cgtggggtcg cgttgcacc ccacgcggac tccccagctg gcgcgcccc 180
ccccatttgcg tgcctggtc aggccccac ccccccttccc acctgaccag ccatggggc 240
tgcgggtgtt ttcggctgca ctccgtcgc gtccggcccg gccttcgcgc ttttcttgat 300
caactgtggct ggggaccccg ttcgcgttat catccgtgc gcaggggcat ttttctggct 360
ggtcctccctg ctccctggct ctgtggctg gttcatctg gtccatgtga cgcacccgtc 420
agatgccccgg ctccagtaq gcctcctgat ttttgggtct gctgtctctg tccttctaca 480
ggaggggtgtc cgctttgcct actacaagct gcttaagaag gcagatgagg ggttagcata 540
gctgaggtgag gacgaaagat cacccatctc catccgcac atggctatg ttttctggct 600
ctccctteggc atcatcagtg gtgtttctc ttttatcaat attttggctg atgcacttgg 660
gccagggtgtg gttgggatcc atggagactc accctattac ttctgtactt cagcctttct 720
gacagcagcc attatcttc tccatacctt ttggggagggt gtgttcttgc atgcctgtga 780
gaggagacgg tactgggctt tgggcttgggt ggttgggagt cacctactga catcgggact 840
gacattccctg aaccctgggt atgaggccag cctgtctccc atctatgcag tcactgttgc 900
catggggctc tgggccttca tcacagtgg agggctccctc cgaagtattc aggcgcagcc 960
cttgtgttaag gactgactac ctggactgtat cgccctgacag atcccacctg cctgtccact 1020
gccccatgact gagcccgacc ccagccccggg tccattgcctt acattctctg tctcccttctc 1080
gtcggtctac cccactaccc ctccagggtttt gctttgtctt tttgtgaccg ttagtctcta 1140
agctttacca ggagcagccct gggttccagcc agtcagtgtac tgggtgggtt gaatctgcac 1200
ttatccccac cacctggggc ccccccttggt gttccagga ctccccctgt gtcaagtgtc 1260
tgcctctcacc ctgccccaaa ctcacccccc tccccctctg caggccgcacg gcaggaggac 1320
agtcgggtga tgggtgtatcc tggccctgcgc atcccccccg aggactgagg gaaaccttaggg 1380
gggaccctcg ggcctggggt gccctccgtc tgccctcgcc ctgtatttctt ccatctccag 1440
ttctggacag tgcaggttgc caagaaaagg gacctagttt agccattgccc ctggagatga 1500
aattaatgga ggctcaagga tagatgagct ctgagttctt cagttactccc tcaagactgg 1560
acatcttggt cttttctca ggcctgaggg ggaaccattt ttgggtgtat aaataccctta 1620
aactgcctttt tttttttttt tgagggggggg ggagggagga ggtatattgg aactcttcta 1680

```

acctccttgg gctataatttt ctctcctcga gttgctcctc atggctgggc tcatttcgggt 1740
 ccctttctcc ttggcccag accttggggg aaaggaagga agtgcatgtt tgggaactgg 1800
 cattactgga actaatggtt ttaacctcct taaccaccaag catccctcct ctcggccaagg 1860
 tgaagtggag ggtgctgtgg tgagctggcc actccagagc tgcaactggca ctggaggagg 1920
 cagactacca tgacatcgta gggaaaggagg ggagatttt ttgtatgtttt taattgggggt 1980
 gtgggaggggg cggggagggtt ttctataaac tgcgtatgtt tctgctgagg gtggaggtgtc 2040
 ccatcccccc aatcaaggtg atttgtgattt tgactaataaa aaaagaatttt gtaaaaaaaaaa 2100
 aaaaaaaaaa 2106

<210> 85
<211> 899
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1458357

<400> 85
gctgtattca ggtccccat gggcatatac atcttagccg gtgatacact acctcttacg 60
tggcctctt ttgtgttgcg tgggtctt tcgaaaacaa ggtgctttagt gctttcatag 120
actatttcctt ttttcatctt tgcattttt taaaagtgtt tgacttgggtt acatcaagat 180
atgttttgggt ttgttagtact tattttaaattt tgtttggca cacacttaat aacacgtgaa 240
actatttatgt tgaagtcctt gttttatattt aaaattctctt ttgtgttattt ggaatcaaag 300
ccagcacattt gtaacctgtg cttgtacgca aaagaatttag atttctttgtt tttttttttt 360
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 420
acagattttttt ggttggccat tactgtttt aaajttcatg atcatctggatgataactt 480
gtgtatatat atttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 540
aattttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 600
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
ttaaagcaac atccagaaaa aaaaaaaatctt tttccattt tttttttttt tttttttttt 720
aatgtcgccct tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 780
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 840
acttaaccta tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 899

<210> 86
<211> 2000
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1482837

<400> 86
tttgccttgg tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 60
tttcccccaac cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 120
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 180
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 240
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 300
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 360
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 420
ttttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 480

gcaactatag taacgactta gtgtttgga aaggaaaaaga agttaaactt gaaatacgtg 540
 actagaacag ttgtcatgtt tataatgtgaa aaagggtgaa atcatttaga ggagggggccg 600
 tctgttaagaa atcattatgc actatggctt cctccctctgg tctggaaaga agcggggact 660
 ggctggccct caggggatct gtaaatccca gaaaacagta ttttaacag caagatgtca 720
 ttcaacattt gttgggaagg aagagaaaaa aatcaaacta ttccatagaa cttagtggcc 780
 ccctcaetcc catgcccttc ccactcagcc tggcccttc cccgctccat tcataaaagc 840
 tgagagggtt gagctaattt tcacaaatg taatattttt gtagtatctg ttagttccct 900
 cgtagttct gcagaacattt gccccttctt tttgtatgt gaataggaag aaaaaaagaca 960
 aaaaaaaaaat ccaccaccac caaaatatcc ctttgatcat gtatgtgcgt gtgcgcgtgt 1020
 gctttgtgt tttgggtgt tttttttttt tttttttttt tttttttttt tttttttttt 1080
 aatggatggt actaaatcag caccctggatg ccccaaaaaa ccccgctggc cctgcagacc 1140
 ccagtagggg ggtatgggg gagctcaggg gagttgtgggt tctggggctt actgtctggg 1200
 gacaccccttg aacttactgt accttccctt ccccatgaag acacctgaat agagtctaac 1260
 atgccttc tccaacttcc tacctacaac aacagaacag ttctaatgtt gcacggccctt 1320
 gtggccaggg ggcagctaa gaggctgtt ggggtttt tttttttttt tttttttttt 1380
 gagaggaggg ggttagacag ggggttttcc ccagggtggg tttttttttt tttttttttt 1440
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1500
 acaacccctgc ttgtactgtc ttatccacg acagtaaaaa acttctccag cttggcaagg 1560
 ccacgttggt taatgtttt tttttttttt tttttttttt tttttttttt tttttttttt 1620
 tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1680
 aagcattaaa atcctatgtt tttttttttt tttttttttt tttttttttt tttttttttt 1740
 atatatacgat agatgttggat tttttttttt tttttttttt tttttttttt tttttttttt 1800
 aggaggaggg catgaatatg gggaaaggcag atctgggtt cagggttagg tagggaggct 1860
 gggggaccca gtgattcagt acaatccaaag ggatgcaacg cgggcttgg tttttttttt 1920
 gcttgaacag tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 1980
 caacatggga aaaaaaaaaaa 2000

<210> 87
 <211> 1359
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1517434

<400> 87
 tgcccatctt gctgctcagc ctggtcacca tttttttttt tttttttttt tttttttttt 60
 acatggggcc tatgaacaac atcctcaatg tttttttttt tttttttttt tttttttttt 120
 gcctctacac ctccatcttc ggcgtgtcc agctgtgtt cttttttttt tttttttttt 180
 ttggctacat catggactgg aggctgaagg agtgtgaaga cgcctccagc gagcccgagg 240
 agaaagacgc caaccaaggg gagaagaaaa agaagaagcg ggacccggcag atccagaaga 300
 tcactaatgc catggggcc ttcgccttca ccaacctgtt tttttttttt tttttttttt 360
 cctgcctcat tcccaacccgtt cttttttttt tttttttttt tttttttttt tttttttttt 420
 gaggattcat ccactccgtt gtcggggcc tttttttttt tttttttttt tttttttttt 480
 ttcggcgtt ctcggactgtt cttttttttt tttttttttt tttttttttt tttttttttt 540
 cgctgtttttt ggcgtgtt tttttttttt tttttttttt tttttttttt tttttttttt 600
 tgcttcttctt cttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 660
 agctggagcg gcaatgtgtt tttttttttt tttttttttt tttttttttt tttttttttt 720
 gctgttccaa ccaggaggcc tttttttttt tttttttttt tttttttttt tttttttttt 780
 ctgtgtttca gtgactgtt tttttttttt tttttttttt tttttttttt tttttttttt 840
 ctttcgttccgtt tttttttttt tttttttttt tttttttttt tttttttttt tttttttttt 900
 tgggtggagg acggggaggg gccccggaca cggcgtttt tttttttttt tttttttttt 960
 tgcctctgact ttgttctgtcc gcccccccccc gccccggggc tttttttttt tttttttttt 1020
 gcaaggcaggag ccaggaaacgc cggcaggca ggcgttcc cggcgttcc tttttttttt 1080
 ctcttgccttca agcagagggg gctgcccattt cttttttttt tttttttttt tttttttttt 1140

```

ccccacagccg tacctgcctg aggacaaaagg cttgcactgt ctgcggcccgcg cctggcccccc 1200
acccccctccc cgaccagcct gatcaacatg gtgaagcccc gtctctacta aagataacaaa 1260
aatttaggggg gcatgggtgt ggatgcctgt aatcccggtt gctcggggagg ctgaggcgg 1320
tqaatcqctt gaaccaggag gtggaggttg cagtgagggg 1359

```

<210> 88
<211> 1397
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte Clone No: 1536052

```

<400> 88
gctggggaaag ggaccatgtg gctgccttgg gctctgtgc ttctctgggt cccagcatca 60
acgtcaatga cacctgcaag tattcaactgcg gccaagacct caacaatcac aactgcattt 120
ccacactgtat catccactac cctgtttgca gtgggtgcca cccacagtgc cagcatccag 180
gaggaaactg aggagggtgt gaactcag  ctcggcgctgc ttctctccct gctggcattt 240
tttgtgttc tggtggggg ggccctccctg cttagccttgg  ggatgtttca gaaatggatc 300
aaagctggtg accattcaga gctgtcccag aaccccaagc aggcctcccc cagggaaagaa 360
cttcactatg cctcggtgt gttgattct aacaccaaca ggatagtcg tcagaggcct 420
cgggaggagg aaccagattc agattacagt gtgataagga agacataggc ttttgtccctg 480
cttcgccttc ggagctctca tggggccccag gaagtccagg gacagctccc ttataccctgg 540
cccacgtctt tctcagcttg ccctcgacaa cagtgaccaa cagacaggca gctgggtttc 600
ccagggccatc cctctgttgc catcagctt attggcttcc cggggggcca gcagggctgg 660
gggctccgga gagcagcagg aagcactccc agccaccaatgt gctgtccacc tcttccct 720
tttgtttctgc ttcatccctg ctctgtgtgt ggaggacaaa gttttttctt gctggcgtcc 780
aggaaaaagat gtggctcaac taggtggcac ctgccaatag ctttgtcaat cacagcccc 840
taggaacgtc tggaaattgtc tgggagttgg ggagaactgt caagaagagt gaagagagtg 900
ccaaagcgga gatctgtca cctggggggcc atggaggggg gacccactaa agatcaagat 960
caaagattct ccccatctca cagacaagga aactgaggcc agagggagga gagaattgtc 1020
catggctcca gaactgggtgg caagtttctc tggactctta gttttatattt taatatgaaa 1080
tataaaaaca gttcaaata tcttatttag gggaaatgtt aaacttattt aaacaataaa 1140
aaaataaaaaa aaaggggcg  gggtccccag cccgaatccg aaatcaggta aaagctgttc 1200
cctgtgtaaa attgttaccc gccaaaattt ccacaaaata taggaccggg agccttaaag 1260
tttaaacccc tggggggcca aattgggtgg gccatcccc atttaattgg cttggggggcc 1320
aatggccggt ttccacattt gggggaaacct ttttggccca acggcttttta atgaaatcg 1380
cccaaaaccgc gggggaa 1397

```

<210> 89
<211> 1570
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte Clone No: 1666118

```
<400> 89  
atgtccatca tgcgtcagg tgcaaattcac ttttccccctt tgcatgatct gaggcacctc 60  
ctcgttgtt tcactgcca ctcttatttc agaacctgtt tacaaacaag cttccagtt 120  
ggtaaatgtt taqccattcg agctcctacc ctgtacatca qcacatttc tqgtttacaa 180
```

gttgggtaac aatgaaagct ggagatacta aatggaaatc cagcattgca tacccttaga 240
 cctgatcaca taccagtaaa agcctaatt tagatgttag ttgtatgtgt tggacagatc 300
 cttgc当地 aatgtcagtt actccgggtgg aagaatttat ctatgtttt ttctttctt 540
 tcacatcca caactccagg ttggatgaac aactgattta aaacaaacta agagaacatt aactagatgt 720
 gggctttta aatatatag gtattgcatt tcctacctt ttatatttc cacttgaat 780
 acatttagagg gcttaacttt caacttta aggttagtaat ggatagttt atacttggtc 840
 tcacaaaatt gtatggtca gtttatatac ttgcctccatg cattgattat aaaaatttcag 900
 tattatattt ttctgatctt ataagtttta taggagttt ttatcttctt ataaagtgtt 960
 tcacctttagt taaaacaaat gcctgttgc atattggaaat atgttgaat tagttttaga 1020
 caaaagtggt ccatcaattc agacacttgc cttggatgcc ttaccctttt cattagtgca 1080
 ttcttgctt ctgaaacttgc gcaacttcgtt ccactgcctt tctgacaatg 1140
 tgtggagtca cgtatgttgc gtatgtcctt ttactacttt taaaagttctt cagtttatttt 1200
 cttggccaaag tggactttttt atgtgtactg gatggagaaa aaattatagc 1260
 cagcaacttgc agaggaaatgtt tttcagaaac aatattaact ggactacta actgaaggcc 1320
 acaggagatg ctatcaatgtt tatttgcattt ctgaagattt aacaaggctg tgaggctcat 1380
 ttcaaaactat ttggagggtgt taaaatataat atatgtgtt tctcagctgt tccactcaaa 1440
 ccgtgtttagg actctcaaag gtaaaaatgtc acaggggtt ttcagttgtt acagagctca 1500
 gcagctgtgg ttggccctgt tctacaccaa tttcagttca ataaaaatgtt taactttgaa 1560
 aaaaaaaaaaaaaa 1570

<210> 90
 <211> 718
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1675560

<400> 90
 ggtgggtcggt gcctgttaatc ccaactactt gggaggctga ggcaggagaa tcgcttgaac 60
 ctggaggca gcggttgcag taagccaga ctatgccact gcactcccgc ctgggtgaca 120
 aagcaatatt ctgtgtcaaa taaataaatt cattttctgt ctctctgttgc ttagagaaat 180
 ggttgctta aatgtcttagt aacaaacatc acagtcacaa ggagcttgc tcatgcgaag 240
 gatcaatgtt atttgtggat ggagatgata gtgatgaaat ttctgtttca tggggctgtt 300
 ttctttca tctactggg cagcagggtt agtgaggcag ttagatgtcg ctgctgtgg 360
 ttctgttagc tatgtctggc ttcttgccat tatcaggttagt gaaacctgttca caagtgtaaat 420
 acttggaaacc ttctgtacca agagcctctg atggagttggg aggtgagctt attctctgac 480
 cagcttaggg cactgtttca gccactgttc acattccttgc ttctaaacttgc aaattcagg 540
 tggctttagt tataaggata catgggtggat tcatgtactt cagttttgtt tttgaccaaa 600
 gtttattttt ctatgtcatt ttctaaatgtca aagtgttggaa aatatgtat aattttagta 660
 tgcgtactc agtctgaaac aataaaaatc tctgaaaaat gaaaaaaaaaaaaaagg 718

<210> 91
 <211> 904
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1687323

<400> 91

gcttgggg ggaaaaagaa acgcaataga taaagcgggg cgcacatgcgt cccggcacag 60
 gcttcatt tgaggaaggc cggcttagtct ccgagctcat cccgcattgc gcatgcggag 120
 aaggtaaac accgcggccga gttgaggcgc gggtttggtg gcgcgtttca gcaagtcgc 180
 acgtgaagga tagcagtggc ctgagaaaaga cccagtcatg gcagcctcca gcatcagtcc 240
 accatgggg aagcatgtgt tcaaagccat tctgtggtc ctatgtggccc ttatcctcct 300
 ccactcagca ttggcccaagt cccgtcgaga ctttgcacca ccaggccaaac agaagagaga 360
 agccccagtt gatgtcttga cccagatagg tcgatctgtc cgagggacac tggatgcctg 420
 gattggcca gagaccatgc acctgggtgc agagtcctcg tcccaagtgt tggggccat 480
 ctcatcagcc atttctgtgg ctttcttgc tctgtctggg atcggccgac agctgctgaa 540
 tgccttggga ctatgtggtg attacctcgc ccaggccctg aagtcagecc ctggccaggt 600
 ccagacccctc ctgctgtggg gagcaggggc cctggctgtc tactggctgc tggatctgtc 660
 cctcggttgc gtcttggccct tgctggggcg gatcctgtgg ggctctgaage ttgtcatctt 720
 cctggccggc ttctgtggccc ttagtgggtc ggtggccgac cttccaccc gggccctgtc 780
 actctggcc ttgtctgatcc tctacgcct gctgagccgg ctcaactggct cccgagccctc 840
 tggggccaa ctcgaggcca aggtgcgagg gctgaaacgc tagtggagg agctgcgtc 900
 gcgc 904

<210> 92

<211> 1948

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1692236

<400> 92

gaagacctct tagcggggcc atcgctgagg tgcaggaca tgtcggcc gaaactcacct 60
 cgtggcctcg gctgtgtgtct ctcaagtcat gccccaaac caggtcccgaa cggccgggtc 120
 agacggacct cttagacgcgt ccgcctcaat gccggccagct gccaggccgc ccgtgacgcg 180
 ttacgcctgc gcccgcctct ggcttcgtga cgtcacgacg tccgcgcagt gcggtcgccg 240
 ccgtcgacag agtctttctt tagtaacctg ggcatactg tggatgtttc caaggattgt 300
 cttcaagtcat ggccttggga taaaagtgtc tccgcatgtt ccacccctacc ttgcataatt 360
 atcttcgcgt ctctatcaga cccgtttcag aagttacact gaagacagtg catgaaagac 420
 aacatggcca taggcaataac atggcctatt cagctgtacc agtccgcatt tttgtatccca 480
 agaaaagccaa agccaaaggaa aaggacagt cccaaaccag agtgaatatt aatgtgcct 540
 tgggtgagga tataatcaac ttggaaagagg tgaatgaaga aatgaagtct gtgatagaag 600
 ctctcaagggtaat tcaat tctacttcata atataaggcc ctcaccaggaa tcccttgaca 660
 agattgtgtt ggttaactgct gacgggaagc ttgtttaaa ccagattagc cagatctcca 720
 tgaagtcgcc acagctgtt ttggtaata tggccagctt cccagagtgt acagctgcag 780
 ctatcaagggataaagagaa agtggaaatgt aatgtacccca agaagtggaa gggacgctaa 840
 ttccgggtacc cattccccaa gtaaccagag agcacagaga aatgtgggt aaactggcca 900
 aacagaacac caacaaggcc aaagactctt tacggaaagggt tcgcaccaac tcaatgaaca 960
 agctgaagaa atccaaggat acagtcgttccag aggacaccat taggtcaata gagaacaga 1020
 tcagccaaat ggcggatgtac acagttggcag aactggcagag gcatctggca gtgaagacca 1080
 aagaactcct tggatgaaag tccactgggg ccagcaatac tccagagccc agtttctgtc 1140
 ggtatccatg ggtggcacat tggacttctt ctccctcccc catctacaca gaagactgtc 1200
 accatgctga cagaaggcctg tccttgtaag gcccaggccctt ccagggaaac actcagacat 1260

gttcattctc ttccgttcc tgctctggc cgggtgggta ctctcagaaa atacttgctg 1320
ctggaaaaag gcctgtactc aggcatgtc ttgacttga tggccaaagg ggactgaggc 1380
cattggcagg cttatgtacca cctgtcttcc atcttaggag tctccctttc aaataattag 1440
gctctgttcc cattttaaaa ctctgatatt ggccttcacc tggactgga cactttacta 1500
gaggcccatt ttcactaaac aataaaaatct aataaaaattg gaaggaataa caaccacaaa 1560
ggaaagaata gagttggctt ggattgtga tcaactgagga tctgtatgtt aggcacccat 1620
aacagtagtt ttgcctgtga gtcgtcttca cacatgctgt ttctctgccc tggctctctc 1680
ttccccctct tacctggcca gtcctgttta tcatacggcc ttgtcttggta tatcacgtcc 1740
tctggaaagt ttcttttcc cctctaacctt aggaccctca ttaccggctc tcatagcaca 1800
gtctactgct ttgtacgaaat tctaagtattt ctgttgcac ttaattagcc tggatatctc 1860
cagaactttg tggatgtcc ggagcatagt aggcagtcat atgttgtatc gtgaataaat 1920
tgcacatagt agctacccaa aaaaaaaaaa 1948

<210> 93
<211> 990
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte Clone No: 1720847

```

<400> 93
acagagactg gcacaggacc tcttcattgc aggaagatgg tagtgttaggc aggtAACATT 60
gagctcttt caaaaaAGGA gagctcttct tcaagataag gaagtgttag ttatgttgt 120
aACCCCCGGC tatcagtccg gatgggttgc ACCCCCTCTG ctgttagatg gaagcAGGCCA 180
tggagtgaaa gggaggcgca ataagacacc CCTCCACAGA gcttggcATC atggaaAGCT 240
ggttctactt ctTCCTGGCT cTTTGTtTA aaggcCTGGC tgggagcCTT cTTTGGGT 300
gtctttctt tCTCCAACCA acagAAAAGA ctgcttca aaggTggagg gtcttcatGA 360
aacacAGCTG ccaggAGCCC aggCACAGGG ctggggGCt ggAAAAGGA gggcacACAG 420
gaggaggggag gagctgttag ggagatgtg GCTTACCTA aggtCTCGA acaaggAGGG 480
cagaatAGGC agaggcCTCT ccgttccagg CCCATTTTG acagatGGCG ggacGGAAAT 540
gcaatAGACC agcctgtcaag aaagacatgt GTTTGTATGA caggcAGTGT gcccGGGTGG 600
aacaAGCACA ggccttggaa tccaatggac tgaatcAGAA ccctAGGCt gccatCTGTC 660
agccgggtGA cctgggtCAA ttttagcTC taaaAGCCTC agtctcTTA tctgcaAAAT 720
gagggttGtG atacctgttt tgaagggttg CTGAGAAAAT taaAGATAAG ggtatccAA 780
atagtctacG gccataccac cctgaacgtg CCTAATCTCG taagctaAGC agggtcAGGC 840
ctgggttagta cctggatggg gagagtatgg aaaACATACC tgccccGAGT tggagtTGG 900
ctctgtcttA acagtagcgt ggcacacaga aggcaCTAG taaataCTTG ttGAATAAAAT 960
gaagtagcga ttgggtgtGA aaaaaaaaaaa 990

```

```
<210> 94  
<211> 1638  
<212> DNA  
<213> Homo sapien
```

<220>
<221> misc_feature
<223> Incyte Clone No: 1752821

<400> 94
tagatatggc gtccttttgc cttggggcg agcgattggt gcgtgtttg ggccccggcg 60
qqqagactqqa qccaaqagcg ctaccccgaa agctgcgggc cgagcttgag gcccgcgtgg 120

ggaagaagca caagggcggt gatagctcca gtggccccc acgcttggtt tctttccgtc 180
 tcatccggga tctgcaccag catctgagag aaaggattc caaactatac ctccatgagc 240
 tcctagaagg cagtgaardt tatctccag aggttgaa gcctccacgg aacccagaac 300
 tagttccccg gctggagaag attaagatac agctggccaa tgaggaatat aaacggatca 360
 ccegcaacgt cacttgttag gatacaagac atggggac tctcagegac ctgggaaagc 420
 aagttagatc attgaaggct ctggtcataa ccattctaa ttcatgtc acgggtggtt 480
 ctgccttegt ctgcacttac ctggaaagcc aatatatctt cacagaaaatg gcctcgccgg 540
 tgctagctgc attgatcgac gcctctgtgg tgggtctggc cgagctgtat gtcatgggtc 600
 gggcaatggg aggcgagctg ggagaactgt aactgggtct tcatacatcaa gtctagagaa 660
 gactttgggg gcttcaggct ccaattggca gtcaccgact cagtcaaccc atcagacttt 720
 ttgttattcag ctccagtttgc tcaagagacc agcccaaggcc agctgtgtt tctgtgggg 780
 gccctaattct tctgtgaatt tccaaaggga gcattggagg agatttagat aacacatctt 840
 taaaacagaaa agaaactggc ttgggtctatc agtacctt cctgaatctg gtacccatct 900
 gccttcctca gtcattctt aacactgtcg ggacttaggt tttccatca ggagcaaatg 960
 gaattccaggc ctcccagaa gtagaccata ctgccttgc cttgtccata tgcataaaact 1020
 aatcaccaggc ttctccata catttttaat gcagaccgt aatttagttc agaaggctcc 1080
 aagaaaacag aaaggatccc ctttctccag tttgtgtgg aagaggagct gatcagagac 1140
 atcaaataag agaaagatgg gttgtctagag gatggtagaa ctgaaagcaa ggcagctacc 1200
 tttttgcaaa agaaaatggt gtttagggccc ttttccagaa gataagacag actcatagag 1260
 attaaatgat cactatggc cttttctgt taaatggagc caaagacgcc tatgttggtc 1320
 tgaagtcttga taatgtttaa cttctgagaa ctttagatttgc tgggtgtatg atagagtctg 1380
 tataaegcat tggaaaagggt atcaggctt gttattttatc caataaaat tatgtatg 1440
 cagggttatttccat ttttttaac tccctgtgaca acacaaagca tagcgatttc catagttctt 1500
 actgttccagg gtcgtcttctt cctggtagac tcttttgggt tcactgtatg tactcctgtt 1560
 gtctttttttt tttttccaa agcaattttc tgtttccata aattatatac tcattcactc 1620
 agtggacaaa aaaaaaaaaaaaa 1638

<210> 95
 <211> 595
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1810923

<400> 95
 gtggccgcgt ccagtgtatga ctgggggatc ccggcaagta acatgactaa aaagaagcgg 60
 gagaatctgg gcgtcgctt agagatcgat gggctagagg agaagctgtc ccagtgtcg 120
 agagacctgg aggccgtgaa ctccagactc cacagccggg agctgagccc agaggccagg 180
 aggtccctgg agaaggagaa aaacagctt atgaacaaag ccttccaaacta cgagaaggaa 240
 ctgaagtttcc ttcggcaaga gaacccggaa aacatgtgc tctctgtggc catctttatc 300
 ctcctgacgc tcgtctatgc ctactggacc atgtgagccct ggcaacttccc cacaaccagc 360
 acaggttcc acttggcccc ttgatcgag tcaagcaggc acttcaagcc tcaataggac 420
 caaggtgtcg ggggtttccc ctcccaacctt agtgtcaag catggcttcc tggccggccca 480
 ggccttgcct ccctggccgt ctgggggggtt ccgggtctcc agaaggacat ggtgtggtc 540
 ctcctttag cccaaaggag aggcaataaa gaacacaaag ctgtaaaaaaaaaaaa 595

<210> 96
 <211> 1858
 <212> DNA
 <213> Homo sapiens

<220>

<221> misc_feature
<223> Incyte Clone No: 1822315

```

<400> 96
aaaaagtctag atcacagtgg ggctctagga gggctagtcg ttggatttat cctaaccatt 60
gcaaatttca gctttttac ctctttgtcg atgtttttct tgccttcata gaaactcaact 120
aatatggaaagg gagaagtgaa gaagegtcta gattcagaat ataaggaagg tgccaaagg 180
aattgggttc aggtgttctg taatggagct gtacccacag aactggccct gctgtacatg 240
atagaaaatg gccccgggaa aatcccagtc gatTTTCTCA agcagtactc cgccctcgtgg 300
atgttttgtt ctctttggc tgcaactggcc tgctctgtg gagacacatg ggcttcagaa 360
gttggcccaag ttctgagtaa aagttctcca agactgataa caacctgggaa gaaagtccca 420
gttggtagcca atggaggagt tacagtgggt ggccttgctt ccagtcctt tgggttacc 480
tttggggca ttgcatactt cctcacacag ctgatTTTGT tgaatgattt agacattttct 540
gcccccgagt ggc当地attat tgcatTTGGT ggTTtagctg gattactagg atcaattgtg 600
gactcatact taggggtctac aatgcagttt actgggttgg atgaaagcac tggcatgggt 660
gtcaacagcc caacaaataa ggc当地ggcac atagcaggga aacccattct tgataacaac 720
gcgtggatct gttttttctt gttcttattt ccctcttgc cccaaactgtc gcttgggtt 780
tttggcccaag ggggtgaact ttatTCATT tccacaggtt gaaactgggt agtccagcta 840
aatttgcaat tccaaacttc atccataagaa taataactgt aatggcaaag cgaaaatgcc 900
agttcctctt gtatTTCCATT gagatgggtt ttcacattt cctctcatca actccccctgt 960
aatagcttagc gtctttcttag tggaaagagaa gaattccctag aactttagcata tttttttctt 1020
gctgaatgga agtcttgagc aatgaagctt tattgtccct acatattact atatattgaa 1080
ctgaaaagttc ttacataatc aatgtcaagt ttgttctt tttgtttgtt ttgtttaaac 1140
cagtgttagga aataaaagtg atgatattta aatTTTCTCTT cagttgaagc agagaaatgc 1200
caactgtctca gttgccccaa tttttgtatct attttaaaaata gtttaagctg atgtgtatgg 1260
gagcctaaac aagtgttagta tcctgaactt cccccattaa ttgttattca caattggaa 1320
aagtgtggag attgggttctt agtgagttt gttggctact ccacatttgc tcttccttcc 1380
tcagggttag tgatggaaaaaa aagtaaatat cttttccata tgcatttgcata aatgtatgaa 1440
aaaaatcatt ttaactaaaaa gcaaaaagaat tttatTTTCTT atctaaaaaaa tatataactt 1500
actatatgtt tcagttgtct tcgttgcata aattatctt aatTTTATGTT gtggaaatgtg 1560
ttttcttagct ttctttgtat tatgtatggc aacctgggtt agcactggca tcctgaacag 1620
ttaagagtcg ctggggaaattt attgttattt tttatTTAATT tactgtcata tcaattgtctg 1680
gaaaatgtctg tgatTTTCTT attattacct tctaagggtt attctcttcc acactgttagc 1740
ctcaactaag gcaattctgc tatgtttgtt cttaactatg atttactgtg tgccaaaggaa 1800
qttttgacag ggtacagagt atttactaa aagtattttt aaatgttaaa aaaaaaaaaa 1858

```

<210> 97
<211> 698
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1877777

```
<400> 97
ttgggtgtccg catgacaacc gacggttggag tttggaggtg cttgccttag agcaaggaa 60
acagctctca ttcaaaggaa ctagaagect ctcccagt ggttagggaga cagccaggag 120
cggtttctg ggaactgtgg gatgtgcct tgggggcccc agaaaacacaga aggaagatgc 180
tccagaccag taactacage ctgggtgtct ctctgcatt cctgctgtc tcctatgacc 240
tcttgtctaa ttccctctca gaactgctcc aaaagactcc tgtcatccag cttgtgtct 300
tcatcatcca ggatattgca gtcccttca acatcatcat cattttctc atgttcttca 360
acaccttctgt cttccaggct ggccgtgtca acctcctatt ccataagttc aaagggacca 420
tcatcttctgt aqctqtgtac tttcccttca qcatctccct tcatgtctgg gtcataact 480
```

tacgctggaa aaactccaac agcttcatat ggacagatgg acttcaaatg ctgtttgtat 540
 tccagagact agcagcagtg ttgtactgt acttctataa acggacagcc gtaagactag 600
 gcgatctca cttctaccag gactcttgt ggctgcgaa ggagttcatg caagttcgaa 660
 ggtgacctct tgcacactg atggatactt ttccctcc 698

<210> 98
 <211> 1476
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1879819

<400> 98
 caaggacgag gctctggcca agctggat caacgggcc cactcgccc cgccgatgct 60
 gtccccccagc ccaggaaagg gccccccgccc agctgtggct cctcgacccca aggccccgct 120
 acagcttggg ccctcttagct ccatcaagga aaagcagggg ccccttctgg acctgtttgg 180
 ccagaagctg cctattgccc acacaccccc acctccacca gcgcacccac tgcctctgcc 240
 cgaggaccca gggacccctt cagcagagcg tcgttgcttg acacagcccg tggaggacca 300
 gggggctcc acccagctac tcgcgccttc tggcagcgtg tgcttcteet acacccggcac 360
 gcccggaaag ttgttctac gcaaggaggt gttctaccca cgggagaact tcagccatcc 420
 ctactacctg aggtctctct gtgagcagat cctacgggac accttctccg agtccctgtat 480
 ccggatttcc cagaatgagc ggcggaaaat gaaagacctg ctggggaggct tggaggtgg 540
 cctgattct ctcaccacca ccgaagacag cgtcaagaag cgcacatgtgg tggcccgctcg 600
 ggacaactgg gccaattact tctcccgctt ctttctgtc tggggcgaga gtggcagcga 660
 cgtgcagtg ttagccgtgt cccaccgtgg gctgcgactg ctcaagggtga cccaaggccc 720
 cggcctccgc cccgaccacgc tgaagattct ctgctcatac agcttgcgg aggtgctggg 780
 tgtggagtgc cggggccggct ccaccctgg a gctgtcactg aagagcggc agctgggtgt 840
 gcacacagcc cgggcaaggg ccatecgaggc gctgggttag ctattctga atgagcttaa 900
 gaaggactcc ggctatgtca tcgcctctgcg cagctacatc actgacaact gcagccctcc 960
 cagcttccac cgtggggacc tcaccaagct gctgcgggt tgccacccctg gagccaggct 1020
 ggcagttgg ctctggccggg ggcgttccg gactcttcc tgccgacata gtgcagccgg 1080
 ctgcgcgtcc cgactttcc ttctccaagg agcagaggag tggctggcac aagggtcagc 1140
 tgtccaacgg ggaaccaggc ctggctcggt gggacaggc ctcagagggt aggaagatgg 1200
 gagagggaca agcagaggca aggcctgcct gagactgagg aaggaaaggg gtttgaccac 1260
 tccccaggct gccatgcggc gggaccaccc tgctgtccgt ctctgtggc tgccctctg 1320
 cccgctctcg atggctcgcc ttgtctctcc agcaagactg tgactccctt gcaggcagg 1380
 gctgggctgg atgtgtctct tgggtccac gtggactta gtcaaggct gccccagcag 1440
 atgcttaata aacagctttt cactttaaaa aaaaaa 1476

<210> 99
 <211> 646
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1932945

<400> 99
 ccggctggag gtgacgctga ggcggcgagg gtgagtcggc gccggccgct accgcacttc 60
 gggcgtcgt ccctcatttc tctgtggta atggcagcg gatggagcgc gaggggagcg 120

gcggcagcgg cgggtcgcc gggctcctgc agcagatccc gagcctgaag gttgtgccgc 180
 gggtggca cggaccctg tgccccact ctacttccc ctgccttc ccagagatgt 240
 ggtatgtt attcctgtgg gactgggtgt cttctctt cttcatgtc cctgctggat 300
 tactggccct cttcacccctc agacatcaca aatatggtag gttcatgtct gtaagcatcc 360
 tggatggg catcgtggaa ccaattactg ctggaatctt gacaagtgcg gctattgctg 420
 gagttaccg agcagcagg aaggaaatga taccatttg agccctcaca ctgggcactg 480
 gacagacatt ttgcgtcttg gtggctccct tttacggat tttacgtact ctatagcata 540
 catccttagt ctgagatgtt gaacttaaac ttatggaaat cctccaaaag aatacattat 600
 ggagtgttagt gtttcttag ttcttccaaa gggagccact tggatg 646

<210> 100
 <211> 1735
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2061026

<400> 100
 gccggctgctg ccatggcggtt ggcgttggcg ggcgtggcg cggtcgagcc ggcctgcggc 60
 agccgttacc agcagttgca gaatgaagaa gagtctggag aacctgaaca ggctgcagg 120
 gatgcctc cacccttacag cagcatttt gcagagagcg cagcatatgg tggatcacaag 180
 gatgagtctg gtttccaaa gccccatct tacaatgttag ctacaacact gcccagttat 240
 gatgaagcg agaggaccaa ggctgaagct actatccctt tgggtcctgg gagagatgag 300
 gatgttggg gtcggatgtt ttttgcgtat gctgaccaggc tgaggatagg aatgtatggg 360
 attttcatgt taactttttt catggcattt ctctttact ggattgggtt ttcctgtct 420
 ttttgcctga ccacttcagc tgccggagg tatggggcca tttcaggatt tggtctct 480
 ctaataaaat ggatccgtat tgcagggtt tccacccattt tccctggata ttttgcgtat 540
 cagactggc tctgggggtt gttccttgc ttggcttcc tcctgtttctt cagaggat 600
 atcaattatg caaaaatgtc gaagatgcga gaaactttctt caaatctccc caggaccaga 660
 gttctttta ttataaaat atgtttctg gcaaggccct tcctgcattt atgaattctc 720
 tctcaagaag caagagaaca cctgcaggaa gtgaatcaag atgcagaaca cagaggaata 780
 atcacctgtt taaaaaaaat aaagtactgt tgaaaagatc atttctctt atttgttccct 840
 aggtgtaaaa tttaatagt taatgcagaa ttctgtatc attgaatcat tagtggttaa 900
 tggtgtaaaa agctttgtca atcaagtctg tgatgtatataatgcctt atatattgtt 960
 tgtagtcatt ttaagtagca tgagccatgtt ccctgttagt ggtagggggc agtcttgcctt 1020
 tattcatctt ccatctcaaa atgaacttgg aattaaatat tgtaagatat gtataatgt 1080
 ggccattttt aagggggtttt ctcaaaaaggtaaactttgtt tatgtactgtg ttttgcaca 1140
 taatccatat ttgcgtttca agttaatcta gaaattttt caattctgtt tgaacaccc 1200
 gaagaaaaat catagtgc当地 aaatacattt aagggtggcgtt caaaaataag tctttatgg 1260
 gtaaataata agcattaatt ttttatagtcc tgcatttcaca attctgcgggtt acctttatgtt 1320
 acctaaggaa ttctaaagggtt gttgtcactg tataaaacag aaagcacttag gatacaaatg 1380
 aagcttaattt actaaaatgtt aattcttgac actctttctttaatttagcgt tcttcaccc 1440
 cacccttccccc cccacccccc ttatccc tttgtctt ggtgattagg ccaaaagtctg 1500
 ggagtaagga gaggattagg tacttaggag caaagaaaaga agtagcttgg aacttttgaa 1560
 atgatcccta acatactgtt ctacttgctt ttacaatgtt ttagcagaaa ccagtgggtt 1620
 ataatgttata atgatgtgtt ttctggccaa gttgttattt atcttgggtt gctatgtttaa 1680
 aactgttaat acaacagaac attaataat atcttgcgtt tagcaaaaaaaa aaaaaa 1735

<210> 101
 <211> 2329
 <212> DNA

<213> Homo sapiens

<220>
<221>
<222> 2084, 2101, 2110, 2128, 2137, 2156, 2177, 2226, 2265, 2296, 2303,
2310, 2325
<223> a or g or c or t, unknown, or other

<220>
<221> misc_feature
<223> Incyte Clone No: 2096687

<400> 101
gcagggatca ctacatgtc tgccggagac ggccctggga cgagatttagt aatctgcc 60
gtaatggggg atggactaga aacttccaa atgtctacaa cacaggccca ggcccaaccc 120
cagccagcca acgcagccag caccaacccc ccgcggccag agacctccaa ccctaacaag 180
cccaagggc agaccaacca actgcaatac ctgctcagag tggtgctcaa gacactatgg 240
aacaccagt ttgcatggcc tttccagcag cctgtggatg ccgtcaagct gaacctccct 300
gattactata agatcattaa aacgcttata gatatggaa caataaagaa gcgcttggaa 360
aacaactatt actggaatgc tcaggaatgt atccaggact tcaacactat gtttacaaat 420
tgttacatct acaacaagcc tggagatgac atagtcctaa tggcagaagc tctggaaaag 480
ctctcttgc aaaaaataaa tgagctaccc acagaagaaa ccgagatcat gatagtccag 540
gcaaaaggaa gaggacgtgg gaggaaagaa acaggagacag caaaacctgg cgtttccacg 600
gtaccaaaca caactcaagec atcgactctt ccgcagaccc agacccctca gccgaatcc 660
cctctgtgc aggccacgccc tcaccccttc cctgcgtca ccccgaccc catgtccag 720
accctgtca tgacagtggt gcctccccag ccactgcaga cggcccccgc agtgcgggg 780
cagccacaac cccacccgc tccagcttcc cagccgtac agagccaccc acccatcatc 840
gcccccaccc cacagcctgt gaagacaaag aaggaggtga agaggaaagc agacaccacc 900
acccccacca ccattgaccc cattcagag ccacccctcg cggccctggaa gcccaccc 960
accaagctgg gccagcggcg ggagagcagc cggccctgtga aacctccaaa gaaggacgtg 1020
cccgactctc agcagcaccc agcaccagag aagagcagca aggtctcgga gcagctcaag 1080
tgctgcagcg gcatctcaa ggagatgtt gccaagaagc acgcgcctt cgcctggccc 1140
ttctacaagec ctgtggacgt ggagggactg ggcctacacg actactgtga catcatcaag 1200
caccatgg acatgagcac aatcaagtct aaactggagg cccgtgatgtt ccgtgatgt 1260
caggagttt gtgtgacgt ccgattgtat ttctccaaact gctataagta caaccctcct 1320
gaccatgagg tggggccat ggcccgcaag ctccaggatg tggcggaaat ggcctttgcc 1380
aagatgcccgg acgagctga ggagccagtg gtggccgtgt cctcccccggc agtgcggcc 1440
ccccaacagg ttgtggcccc gcccctatcc agcgcacagca gcagegatag ctccctggac 1500
agtgcacatgg ctagtgcgtgc ctctgaggag gagcgagccc agcggctggc tgagctccag 1560
gagcagctca aagccgtca cgagcagctt gcgcctct ctcagcccca gcagaacaaa 1620
ccaaagaaaa aggagaaaaa caagaagaa aagaaaaag aaaagcacaa aagggaaagag 1680
gaagtggaaag agaataaaaaa aagcaaagcc aaggaacctc ctctaaaaaa gacgaagaaa 1740
aataatagca gcaacagcaa tgtgagcaag aaggagcccg cgcccatgaa gagcaagccc 1800
ctcccccacgt atgagtcggaa ggaagagagc aagtgcacgc ctatgtctt tgaggagaag 1860
cgccagctca gttggacat caacaagctc cccggcgaga agctggcccg cgtgggtgcac 1920
atcatccatgg cccctgtca aattccaaacc ccgcacgatgat taaaatcgac 1980
tttggaccc tgaagccgtc cacaactgcgt gagttggatg cgtatgtca ctccctgtt 2040
gcggaaagaaa agggaaaccc taaagctgaga aagttgtatgatntggccgg gttccctccaa 2100
natggaaaggm ttctcggtct tcaagagncg ggagagnctc ccagttgaat tccaanttt 2160
tttgacaagc ggaaganttc cggaaaacaa agggcccttg gccttaattt caatttggga 2220
aaaccnngggaa ttcccttaaa tttaaaaaaa gggggctttt caagnttcc caaggaattt 2280
cttttccccca caaggnaaag gcntaattt gccttaaaa gtttccccca 2329

<210> 102

<211> 1451

<212> DNA
 <213> Homo sapiens

<220>
 <221>
 <222> 1346, 1373, 1430
 <223> a or g or c or t, unknown, or other

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2100530

<400> 102
 ctcgagcggc ggcatttccct ggtgtctgag cctggcgccg aggctatggg cagccaggag 60
 gtgcgtggcc acgcggcccg gctggcctcc tccggcttcc tcctgcaggt gttgttcgg 120
 ttgatcacct ttgtcttgaa tgcatatttatt ctgcgttcc tgcataaaggaa aatcggtggc 180
 gtagtaaatg taagactaacac gctgcttac tcaaccaccc tcttcctggc cagagaggcc 240
 ttccgcagag catgtctcag tgggggcacc cagcgagact ggagccagac cctcaacctg 300
 ctgtggctaa cagtccccctt ggggtgtttt tgggtccttat tcctggctg gatctgggtt 360
 caigctgttga aagtgcctga tccataatgtt gtccttcaact atgcaactgg agtgggtgt 420
 tttggtctctt cggcagtggt ggagacttcta ggagagccct tttgggtctt ggcacaaggca 480
 catatgtttt tgaagctcaa ggtgatttca gagagccctgt cggttaattct taagagcggtt 540
 ctgacagctt ttctcggtt gttgggtcctt cactggggat tgcataattt ctctttggcc 600
 cagctttctt ataccacagt tctggtgcctt tgctatgttta ttatattcac aaagttactg 660
 ggttccccag aatcaaccaa gtttcaactt cttccgttcc ccagaataac agatctgttta 720
 cccaaatatta caagaaatgg agcgtttata aactggaaag aggctaaact gacttggagt 780
 tttttcaaac agtctttctt gaaacagatt ttgacagaag gcgagcgata tgcataattt 840
 tttttgaatg tattgaactt tggtgtatg atatagtggaa taatcttggc 900
 tcccttgcgtt ccagattaat tttccagccca atagaggaaa gttttatata ttttttgc 960
 aagggtgtgg agagggggaaa ggtgccaca cttcagaacaggaggacgt tgcgtgtggct 1020
 gctgcagctt tggagtcctt gctcaagctg gcccctgtgg ccggcctgac catcaactgtt 1080
 tttggcttttgccttctca gctggctctg gatatctacg gagggaccat gcttagctca 1140
 ggatccggtc ctgtttgtt gcttcctac tgcataatgtt ttcctctgt tgcctcaat 1200
 ggagtgacag agtgtttcac atttgctgcc atgagacaaag aggaggtcgaa caggtattcc 1260
 tctgtgtga gcagggtctgg ccagccagac tggcacacat tgcgtgtgggg gccttctgtc 1320
 tgggagcaac tctcgggaca gcattntca cagagaccaa gctgatccat ttnctcaggaa 1380
 ctcagttagg tgcgttccaga cggactgaca aatgacgtg acttcagggn aggctgggac 1440
 aaacgaggca a 1451

<210> 103
 <211> 1685
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2357636

<400> 103
 gcgatcgagg ctgcagcgcg gccggccggc gcacatgact gccgtcgccg tgcaggccca 60
 gaggcccttttggccaaaggc agccccggcg gtccttctttt gaatccttca tccggaccct 120
 catcatcactg tgcgtggccc tggctgtgtt cctgtctcg gtcctccattt gtgtatggca 180
 ctggctctcg gctgaggacc gcctttcggt gctctggcac ttctgcacca ccaccaacca 240

gatgtgtcccg atctgcttca gagacacctgg ccaggccccat gtccccgggc tggccgtggg 300
 catggggcctg gtacgcagcg tgggcgcctt ggccgtgtt gcccgcattt ttggcccttgg 360
 gttccatcatg gtgtcccagt tggtcgagga caaacactca cagtgcagaat gggtcatggg 420
 ttccatccctc ctccctgggtt cttegtctt ctccctccggc gggctctgg gttttgtat 480
 ctccctcaagg aaccgaatcga cactcatcg cttcacccca atgttttgtt gcgaattcac 540
 tgccttccttc ctcccttcc tgaacgccat cagggccctt cacatcaaca gcatcaccca 600
 tccctgggaa tgaccgttgg aatttttaggc cccctccagg gacatcagat tccacaagaa 660
 aatatggtca aaatgggact ttccagcat gttggctctg gtggggctgg gttggacaag 720
 ggccttggaaa cggctgcctg tttggcgata acttgtgggt ggtcagccag aaatggccgg 780
 gggggcctctg cacctggctt gcaggggccag aggccaggag ggtgcctcag tgccaccaac 840
 tgcacaggtt tagccagatg ttgattttag aggaagaaaa aaacattttt aaacttccttc 900
 ttgaattttcc ttccctggac tggaaatacag ttggaagcac agggtaact ggtacctgag 960
 ctatgtgcac agccaaggat agttcatgcc tggttcatgtt acacgtgtt ggataggggc 1020
 tgcagaatcc ctggggctcc cagggttggtt aagaatggat cattcttcca gctaagggtc 1080
 caatcagtgc ctattttcc accagctcaa agggccttcg tatgtatgtc cctggcttca 1140
 gctttggtca tgccaaagag gcagagtca ggattccctc agaatgcct gcacacagta 1200
 ggtttccaaa ccatttgact cggtttgcct ccctggccgt tgtttaaacc ttacaaaccc 1260
 tggataaccc catcttcttag cagctggctg tccccctctgg gagctctgcc tattcagaacc 1320
 ctacctaag gtgggttcc ttccgagaag agtttttgag caagcttc caggagggcc 1380
 cacctgactg ctaatacaca gccctccccca agggccgtgt gtgcatgtgt ctgtcttttg 1440
 tgagggttag acagcctcg ggcaccattt ttaatcccaag aacacatttc aaagagcacy 1500
 tatcttagacc tgctggactc tgccagggggtt gagggggaaac agcgagagct tggtaatga 1560
 ttaacaccca tgctggggat gcatggaggt gaagggggcc aggaaccagt ggagatttcc 1620
 atccctggca gcacgtctgtt acttctgttca attaaagtgc tccctttcta gtcaaaaaaa 1680
 aaaaaa

<210> 104
<211> 2674
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2365230

```

<400> 104
ctactcctca ccgcgcgagc gcggggaaacc agtagcccg gctgcttcgg ttgccgcgg 60
cggtgtgt tatggattct ccatgggacg agttggctt ggccttctcc cgacacgtcca 120
tgttccctt tttgacatc ggcactatc tagtgtcagt gatggcggtg aaacgtcagc 180
cgggagcagc tgcatggca tggagaatac ctatttcaag ctggttact gctatgctcc 240
actgttttg tggaggaatt ttatcctgtc tactgcttcg agagctcca ttgaagttc 300
ttgaaacca cactaacata ttactggcat cttcaatctg ggtatattac attttttgc 360
ccgcatgacc tagttccca gggctattca tatctacctg ttcaactact ggcttcggg 420
atgaaggaag tgaccagaac ttggaaaata gtaggtggag tcacacatgc taatagctat 480
tacaaaaatg gctggatagt catgatagct attggatggg cccgaggtgc aggtggtacc 540
attataacga attttgagag gtggtaaaa ggagatttga aaccagaagg tgatgaatgg 600
ctgaagatgt cataccctgc caaggttacc ctgctgggtt cagttatctt cacattccag 660
cacaccagc atctggcaat atcaaagcat aatctttagt tccttatac catctttatt 720
gtggccacaa agataaccat gatgactaca cagacttcta ctatgacatt tgctccttt 780
gaggatacat tgagttggat gctatttggc tggcagcagc cgtttcatc atgtgagaag 840
aaaagtgaag caaatgttacc ttccaaatggc gttgggtcat tggcctcaaa gccggtagat 900
gttgcctcag ataatgttaa aaagaaaacat actaagaaga atgaataaaat ttacgtgtat 960
agctctagca agccaaaaat tttttttttt atctacctgt tatattgtgc taatttctt 1020
tgtatgtat gtgaaatgaa gactatatac atggaaatgga ggtgacagaaa agaaagaaaat 1080
tctttgtttt agggagactt cccctttctg gattgtattt gtagagtgtt acgagtgtat 1140

```

catgtgatta tgcttaccc gataaagaga ttctgttg attatttggaa tagtttata 1200
ttaataaaaag aagacaaaaat ttttaaatg ttagaaaaag cagatctgtc attgcaaaagt 1260
aaaaaaaaaat ttaagcttt aaaaatgtag attttcata tttttaaaat ttgaatctat 1320
tttagctta gttcagcaga attaaaattt tacttgacat tatcattaaa attgcttaggt 1380
atggagaaca attccattt tattttgaac actgagaaga gtaaactttt cctaaaacac 1440
tttatattat aaatgaaaat aaattgtcg tttatattt agatataaac atcatatttt 1500
ttttaataac ctacatcaa tgaaaaatat ctgaaatttt tttccatag cagttttt 1560
ctactagaag tagtttact acttttcatt tagaacagag tatgagtctt aacttgaagt 1620
cttttcatg cccttgttt aaaaaaacta ctttttttg cctcaaaaaa atcaagggtg 1680
taattttaa taaattgtta atccatgtt ttgtatattt cattttagga gcttgactta 1740
ttttttttct ctctcataaa aacacatttg ttttaattgt aggagaaaatt ttctcagcat 1800
tttgcattt ctttctaattt ttgttggtc tgaatataattt ggttagtaatt actgttaatta 1860
ttcaacaaaa agcatatccg ttcaaaaaatt tttccactat gtctttttc tagtggtac 1920
tgtttttagtt ttcttagttga atatctctga caagcttccg tatgggtttg ttatattttc 1980
atctacatgt aatgtgttat taatttattt aaatgaaaac taatcacctt catgtggaaa 2040
tgctctgaga attgtccta ggcatgggt agtaaccagc taaccaagaa gaaacagaga 2100
aaccagaact tcataatggca gtccatttag atgaagaatg atgatataaa atctggttcc 2160
ttcttagcaa aataaaaaac aacaagaaa agataactaa tgatgttaat ttcttactt 2220
tatgatttag aagtccagtt ataataattaa aactctgtga catagttct ttaccaaaa 2280
ccatgaacct actccccgtt tcaggatatt tcgatggtt agaagtactc aagtccacatc 2340
acattcaagt tagaagttt tttttgttg ttgttatttt aaattttaa caaatataaa 2400
caccagcaga tactattact tgcttaaaaa attgggaggg ggcactttc atagcttgg 2460
aatgtctaaga agttttattt ttaatattgt gacagaaaagc tttaagtatt taagagctct 2520
gtattatatt tgataactctt acagttaaaa acatttcaaa attaatacat tggtaattat 2580
tgaccagtt tgaagtttgg gtttaactgt agttgaaatg gaaggactct tggtaacac 2640
ttgttattaa qataaattta taaaataag ttat 2674

<210> 105
<211> 488
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte Clone No: 2455121

```
<400> 105
gactacgggg ctgttgacgg cgctgcgatg gctgcctgcg agggcaggag aagcggactc 60
tcggttccctc tcagtcggac ttctctgacgc cgccagtgg cggggccct tggggcgctcg 120
ccaccactgt agtcatgtac ccaccgcccgc cgccgcggc tcatcgggac ttcatctcg 180
tgacgcgtgag ctttggcgag agctatgaca acagcaagag ttggcgccgg cgctcgctgct 240
ggagggaaatg gaagcaactg tcgagattgc agcggaaatat gattctcttc ctcttgcct 300
ttctgtttt ctgtggactc ctcttctaca tcaacttggc tgaccattgg aaagctctgg 360
ctttcaggct aggggaagag cagaagatga ggccagaaaat tgctggtaa aaccagcaaa 420
tccaccggc tc ttaccagctc ctcagaaggc ggacaccggc cctgagaact tacctgagat 480
ttcqtac 488
```

<210> 106
<211> 1028
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc feature

<223> Incyte Clone No: 2472514

```

<400> 106
ccagcagctc ggtccttaggg cgtatgttgc agacagacag agggggcgat gcagcctacc 60
tcctggcag tgagctgcgg tctgaggccc ctggccact ggaaaccaca gggaggggaa 120
gggaggggag gagaggagag gagaggaacc gtcatgggc cttggagtgc agtcagggtt 180
gccaatgcc agatgttgtt cacctgttcc ttatcttgc tgctggcct ctctgtggcc 240
accatggta ctcttaccta ctteggggcc cactttgtg tcatccgcg agcgtccctg 300
gagaagaacc cgtaccaggc tgtgcaccaa tgggccttc ctgcggggtt gagcctgggt 360
ggcttcctga ctctggagc cgtgtgttgc gtcgcagcga ccgtgaggga ggcccaggc 420
ctcatggcag ggggttccct gtgttttccct ctggcggttgcgcacaggt gcaggtgggt 480
ttctggagac tccacagccc caccagggtg gaggacgcac tgctggacac ctacgacctg 540
gtatatggc aggcgtatgaa aggttaegtc cacgtccgcg ggcaggagct ggccggccatc 600
caggacgttg tgagcgttgg gacggcttgg tggcaggggcg gtcaaggcttgc tggactg 660
cagttcagag aacaggcgc a ggggtggccag tgagaggcttgcggcaggc acgagggggtt 720
ccaggacaca ggcaggatgtt gcccctcagg gctggggcaca aaaagctccc accctctgtc 780
tgccccaggac aaggccgcctt accagatttgc cgaggcccag tgcaaaaacgaa gagggcagg 840
ccctgtatcc agaaacactg aaggatttca agagcattaa agcaaatacg gggccgaaca 900
tagtggctca cacctgtaat cccagcactt tgggaggagg ttgaggcagg tgaattgtt 960
gagcccgagga gttcgagacc agcctgagca acataggag accttgc tctttaaaa 1020
aaaaaaaaaa 1028

```

<210> 107
<211> 1551
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte Clone No: 2543486

tattcgttt caatacttgc tgttcatgtt acacaagctt cttacggttt tcttgtaaca 1380
 ataataatatt tgagtaaata atgggtacat tttaacaaac tcagtagtac aacctaaact 1440
 tgtataaaaag tgtgtaaaaa tgtatagcca ttatatcct atgtataaat taaatgagg 1500
 ggcttcagaa atggcagaat aaatctaaag tgtttattaa caaaaaaaaaa a 1551

<210> 108
 <211> 922
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2778171

<400> 108
 gcttgcggct cgggtggctg agcgcgccgg gaaatggcca cggggacaga ccaggtggtg 60
 ggactcggcc tcgtcgccgt tagcctgate atcttacacct actacaccgc ctgggtgatt 120
 ctcttgcctt tcatcgacag tcagcatgtc atccacaagt atttcctgcc ccgagccat 180
 gctgtcgcca tcccaactggc tgccaggcctc ctgtgtctcc tgtttgggg actgttcatc 240
 tcctacgtga tgctgaagag caagagatg accaagaagg ctcagtgaag gtcccgccagg 300
 atgaggtgtc cagccccccc tctgtttccc tccagcaca gggaccaagt gggggagcc 360
 gcagaacctg tccaggcaca gtggctccctc aagectgcct gtcttcgaga gtccccatgg 420
 catggagctt acacctgact gactggagcc ccctcccgaa ctcccaacttc cagaagctag 480
 gagggaggga tacctggaaactccggta ctccttctt gtcaggggcc taaaagatgc 540
 tggctctccc aacctcaactc tcagactccc tgcacccctt tccctgggt tctggcgct 600
 tgcctcaactt cccctctgt cacatgtga cggtggactt agcagggttct aaggccacat 660
 gtgtgacccctc tctgacttctt ctteccctccac caaggcagct ttcttaccc tgacacagcc 720
 ccagacccca caaagccctt tggacctggaa aagctgggg aaggactgac agaccccgagg 780
 accagccctg gggctcaggg cagccacccc ggccggctga ccgactgacc ttcctcaacg 840
 gagggccacgc cccaaagccc cagggtggc cgggttggga cagctgacca ataaacactg 900
 atggtgtt aaaaaaaaaa aa 922

<210> 109
 <211> 985
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2799575

<400> 109
 gcccaggagg cggccgggtg aggcacgggt ggcgaagcga ggagttccgg ctggagaccc 60
 gtgtctggg cccgcgcctt caccatggcc tggcagagc tggactacac catcgagatc 120
 ccggatcagc cctgtggag ccagaagaac agccccagcc caggtggaa ggaggcagaa 180
 actccggcagc ctgtgggtat tctttgggc tgggtggct gcaaggacaa gaaccttgcc 240
 aagtacagtgc ccatctacca caaaaggggc tgcategtaa tccgatacac agccccgtgg 300
 cacatggctc tcttctccga gtcactgggt atcccttcac ttctgtttt ggcccaag 360
 ctgctcgagc tgcttttga ttatgagatt gagaaggagc ccctgtctt ccatgttcc 420
 agcaacggtg ggcgtcatgtc gtaccgtac gtgtggagc tctgcagac ccgtcgcttc 480
 tgccgcctgc gtgtgggtggg caccatctt gacagcgctc ctggtgacag caacctggta 540
 ggggcctgc gggccctggc agccatctg gagecgctc ctggtgacag ccgcctgtt 600
 ctgtgggtgg cctttgcctt ggtggctgctc ctgtttccacg tcctgttgc tcccatcaca 660

gcccccttcc acacccactt ctatgacagg ctacaggacg cgggcctctcg ctggcccgag 720
 ctctacacctt actcgagggc tgacgaagta gtcctggca gagacataga acgcatggtg 780
 gaggcacgccc tggcacgccc ggtcctggcg cgttctgtgg atttcgtgtc atctgcacac 840
 gtcagccacc tccgtacta ccctacttac tacacaagcc tctgtgtcga cttcatgcgc 900
 aactgegttcc gctgctgagg ccattgtcc atctcacctc tgctccagaa ataaatgcct 960
 gacacccccc cacaaaaaaa aaaaa 985

<210> 110
 <211> 1562
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2804955

<400> 110
 tgctccaga ggctggcatg ggccggggccg agtactgacg gcacggtcgg ggcacagcag 60
 ggccgggtggg tgcagctggc tgcgcctcc tcctccggcc cggctccctc cggccccccg 120
 cgaacgatt gagacaccag ctggacgtca cgegeccggag catgtctggg agtcagagcg 180
 aggtggctcc atcccccgag agtcccgccgaa gccccggagat gggacgggac ttgcggcccg 240
 ggtcccgctg gtcctctgc ctgccttcgtt gtacactgact cagccaggca 300
 atggcaacgaa gggcagcgtc actggaaatgttattgtgg taaaagaatt tcttccgact 360
 ccccgccatc gttcagttt atgaatcgcc tcggaaaaca cctgagagct taccatcggt 420
 gtctatacta cacgagggttc cagtcctt cctggagcggt gtgtggagggc aacaaggacc 480
 catgggttca ggaattgttca agtgttcttg atctcaaaga atgtggacat gcttaactcg 540
 ggattgtggc ccaccagaag cattacttc ctaccggccccc cccaaatttct caggcctca 600
 agggggcatac ttccagatatac cacaccccttgc cccagatgtc cctgtccacc ttgcagtcca 660
 ctcagccccc caccctccca gttaggatcac tgcctccggaa caaagagctc actgtcccc 720
 atgaaaccac cattcacact gccccccaca gtctggcagc tggccctgag gtcggggaga 780
 accagaagca gccggaaaaaa aatgttgcgtt ccacagccag gacatcagcc acagtgccag 840
 tcctgtgcctt cctggccatc atcttcatcc tcaccggcagc ccttccat tgcgtgtc 900
 agaggaggag ggggcagtca cccggatctt ctcggatctt gcccgttcat tatatactt 960
 tggcacttgc ctctaatacc tgaccaaaa atggaaatgtt gtgaggagac ggactctatg 1020
 ttgcggccatc ttttatggaa ctccgtggat cccacccat cctctgaagg 1080
 tgcgaggatt ataggcgtca cctaccacat ccagccatc cgtatgtt aatatcta 1140
 ataggactaa ccacccactg ccctcttataa ggcccttcat ttaaaaacgg ttatactata 1200
 aaatctgttt ttccacactgg gtgataataa cttggacaaa ttctatgtgtt attttgggtt 1260
 gttttgtttt gctttgtttt gagacggagt ctcgtctgtt catccaggctt ggagtgcagt 1320
 ggcgtatctt ccgttactg caaccccat ctcggatgtt caagcgttcc tcctgcctcc 1380
 tcctaaatgtt ctgggactac aggtgttccac caccacccca ggttataat 1440
 agtagagacg gggtttccacc atgttgcacca ggctggtctc gaactcctga cctgggtgatc 1500
 tgcccccacccat gctcccccataa gtgttggat taaagggtgtt agccacatgg ctggcctatg 1560
 tt 1562

<210> 111
 <211> 1851
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2806395

<400> 111
 gctctgcaga gtgggtggccg gggccagggc cgggggtgccc tccctccac ctctcccg 60
 catgagccag ggaagtcccg gggactgggc cccccctagat ccaccccccgc gaccccccgc 120
 atcccccaac cccttcgtgc atgagttaca tctctctcgc ctccagaggg ttaagttctg 180
 cctctgggg gcattgtgg ccccatccg agtgccttcg gccttatcg tcctttct 240
 cctctggcc tttgcctggc ttcaagtgcc cggtcttagt gaggagcgc ttcaaggagcc 300
 aattacagga tggaggaaga ctgtgtgcca caacggggc ctggcctgaa gcccctgtc 360
 gtttttcctg ctgggcttcc tceggattcg cgttcgtgca cagcggcct ctgccttca 420
 agccccctgtc cttgtgtctg cccacactc cactttctt gacccattt ttctgtctcc 480
 ctgtgacctg cccaaagtt tgccccggagc tgagaacctt tccgttctg tcattggagc 540
 ccttcttcga ttcaaccaag ccatacttggt atccccggat gacccggctt ctgcacgcag 600
 agtgggtggag gagggtccgaa ggccggccac cteaggagc aagtggccgc aggtgtatt 660
 ctttcctgag ggcacccgtt ccaacaagaaa ggctttgtt aagtccaaac caggagcctt 720
 catcgccaggg gtgcctgtgc agetctgtctt catccgttac cccaaacagtc tggacaccac 780
 cagctgggc a tggagggggtc ctggagtaact caaagtccctc tggctcacag ccttcagcc 840
 ctgcagcatt gtggatgtgg agttcccttc tttgtatcac cccagccctg aggagagcag 900
 ggaccccccacc ctctatgcca acaatgttca gagggtcatg gcacaggctc tggcatcc 960
 agccacccgaa tgtgagttt tagggagctt acctgttattt gttgtggcc ggttgaaggt 1020
 ggcttggaa ccacagctt gggactggggaaaatgtt cggaaaggctg ggttgtccgc 1080
 tggcttatgtg gacgctgggg cagagccagg ccggagtcgatgtatcacccagcc aggaagagtt 1140
 tggcaggcag ctacagctt ctgatctca gacgggtggct ggtgccttgc gctacttcca 1200
 gcaggatacc aagggtttgg tggacttccg agatgtggcc tttgcacttag cagctctgg 1260
 tggggggcagg agccttggaa agctaactcg tctggccctt gagcttttgc tgaagagca 1320
 agcagagggc cccaaaccggcc tgcgtatcaa agacggctt agcaccatec tgacacctgt 1380
 gctgggttca cccccccctg ctgccacaggc tttgcattgtt gagctgtgc aggcaggatc 1440
 cagccaaaggc ctctccctt ctgcatttcca gaacttctcc ctccatgacc cactctatgg 1500
 gaaaacttcc agcacttacc tggccccccca acacacccctt cgaggcacct cccagacacc 1560
 aaatgcctca tccccaggca accccactgc tctggccat gggactgtgc aagcaccctt 1620
 gcagaaggga gactgagtgc cttagcttcc cccccccctt ccctcaggc agtgcctgg 1680
 gcctccctt tgcctcagcc ccatctctgc tctgttttga atttgtttat tgggtttgg 1740
 ttgtgtttt ttttaagttga ttttaattttt ttgtttggg gatttttttg taaaaaaacta 1800
 ttttatatat aaatataat ctatatctat atctattaaa aaaaatgaat t 1851

<210> 112
<211> 992
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte Clone No: 2836858

```
<400> 112
ggcgcgaggc agtatggttt gaagtggta acatggatt ttctcggtt cacatgtaca 60
gtcccccgtgtgtccgg gagaacacgg gctacacgtt tgccgttcagt tccagctatt 120
cttcagatgc tctggatttt gagacggagc acaaatttggc ccctgtattt gatttctccac 180
ggatgtcccccg ccgttagtttgcgacagcatg caccctgggg gatggtgagg 240
ctgtgggtgc cgacagcggc accaggcagcg ctgtctccct gaagaaccga gggccagaa 300
caacaaaaca ggcgcagaagc acaaacaat cagcttttag tatcaaccac gtgtcaaggc 360
aggtcacgtc ctctggcgtc agccacggcg gcactgtcag cctgcaggat gctgtgactc 420
gacggccctcc tgtattggac gaggcttggta ttctgtaaaca gaccacagtg gaccacttct 480
gggttcttga tgatgtatgtt gatcttaaag gtggaaataa agctgcatt cagggaaacg 540
gggtatgtggg agccggccgc gccacccgc acaacggctt ctccctgcagc aacttgcagca 600
tgctgtccga ggcgcagaaggc gtgttcacgg cgccacccgc ggccccccggg cccgtgtcga 660
gagtttatttc tagggacagg aatcaaaaaat gtaagtctca gtccctttaaa actcagaaaa 720
```

aggtgtgttt tccaaattta atatccctt tctgtaagtc tcagtgtctg cactatttgc 780
 cttggagact taaaatttac cttgaaagc ataagaagta caccccaaac cagcttgtc 840
 ctccctgtcc tttcttagtt tacattttat gtggtagta atttgtacc taaaagtatt 900

tgaaattcta taaaatttgc cttgacgtga gaaaaagaaaa atttctacgt aagcgaaact 960
 aataaaaacta cagtcactt caaaaaaaaaa aa 992

<210> 113
 <211> 1251
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2844513

<400> 113
 ctctgtggc cggctctaaag cggcagccgc cggggcgca tgcgagcgcc tggcgtaggc 60
 ttggggact gtcactgcca cctctccgccc cggactttt acccgcatgg ggtatgttgc 120
 ttggagaaag ccaagaaggc caatgttgc gcccggcc cagttggcc acattcaggaa 180
 gaatttggaaa agatattgc aaccttgcggaa aggtataatgc ggtttgtccct gccatgcgg 240
 ggttttccatc cagttcaagg acttccacca gaagacccaa gaagtgtcac actaaaggat 300
 ttggatgttag ctttgcggcat tatttgcggaa tataaggatgc ggttggccgc aattggagag 360
 gttggacttag atttctcccc cagtttgc ggcactggc aacagaaggaa agagccaaaga 420
 caagtcctaa tcagacagat ccagtttagcc aaaagactaa atttgcctgt aatgtgcac 480
 tcacgtctg ctggaaagacc taccatcaac cttttacaag agcaagggtgc tgagaaggta 540
 ctgcgtcatg catttgcgttgc ctttttttttgc ctttttttttgc aatgggttgc 600
 ttcttcctaa ttcccccttc ttttttttttgc ttttttttttgc aatgggttgc 660
 ttgccttaa ctcttatatgc ctttgcgttgc ctttgcgttgc aatgggttgc 720
 gtacggaatgc agccctggaa ctttttttttgc ttttttttttgc aatgggttgc 780
 atctcgtgg aagaagtttgc ttttttttttgc aatgggttgc 840
 ctccgcact ttttttttttgc ttttttttttgc aatgggttgc 900
 agggggcggc atttggaaaaa tagaaatgtt ctgtatgttgc aatgggttgc 960
 tttatagggt tatagaagat ttttttttttgc aatgggttgc 1020
 gcttggatcc ttttttttttgc aatgggttgc 1080
 gttctggcggc gatattggaa aatgggttgc 1140
 accacctgaa ctggaaaccat ttttttttttgc aatgggttgc 1200
 actactgtga tgaggatggaa gtaagctaaa gtataactttt ttttttttttgc 1251

<210> 114
 <211> 1397
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 3000380

<400> 114
 ctaggacgccc cttggagccgc gaaccccgac agaagccggc accagaacca aatcaccggc 60
 accggctgca gccccctaaa cccaggaggc gcccggccccc gcgtcgcccc cccaggccct 120
 catgtcgaa ccacagccgc acctggaaacc gccccaaatgc gggctatata tgcttttttgc 180
 gtttgcgttgc ttttttttttgc aatgggttgc 240

gaagaagggc taccgctgcc gcacgctcgag gggctcttag cctgacgatg cccagcttca 300
 gcccccttag gacgatgaca tgaatgagga cacagtagag aggattgttc gtcgcattcat 360
 ccagaatgaa gtgtggatgc cacctccage ctgcaggacg gagccccctc ccatcatcac 420
 acagtgcacc tggtggctgc agccccttgc cgtccattgc agccgcagca agggcctcc 480
 acttgtccgt cagggacgct ccaaggaagg aaaaagccgc ccccgagacg gggagaccac 540
 tgtgttctct gtgggcaggta tccgggtgac acacatttag aagcgctatg gactgcacga 600
 acaccgtat ggtcccccca cagacaggag ctggggctct cgtggggac agggacccagg 660
 ggggtgttag ggggtctgggg gagggcaccc caaggcaggat atgtgcctat ggagggctg 720
 ccccccttag aggcacagc cccaggctc agccgcacccc ccagtaga atggaggact 780
 cagggacagc agcctaaccct ctcgtgact tgaagggAAC cccagagctt ctgcagagcc 840
 aacactgagg gcggaggaga gggggcccaag cccagggttg cccactcaag aggcaaatgg 900
 gcagccaagc aaaccagaca cttctgatca ccagggttctt ctaccacagg gagcaggag 960
 tatgtgagtc tccttcattt tgctgtatggc ctaccagct gcaggccag ggggtgggtg 1020
 ggcgtgaaag ccctccccctc cactggacag cactggccccc cagctgaggg accagctcta 1080
 ctccacactg gagttgcaca gtcgcaggct gggggctca ggagaggta cagccccctca 1140
 gtctcttc ctcctccctgc ctgcaacagg ctgccttcccc cgccttcccc aacacctcg 1200
 tccatatgat agagegtggc agctgggagc agggccctgc ccgtgggtggg cccctaaagc 1260
 aatagcaccg tagggccctt gccccttttag cacaagaggc ccaggccctg gcctggcctt 1320
 cgtgccctt attcattgtc aataaatccg ctcagaccat taaaaataac aactcaaggg 1380
 gtagccaaaa aaaaaaa 1397

<210> 115
 <211> 1581
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 182532

<400> 115
 acagcacagc tgacagccgt actcagggaa ctctggat cctaggttta tctccacaga 60
 ggagaacaca caagcagcag agaccatggg gcccctctca gcccctccct gcacacacct 120
 catcaacttgg aagggggtcc tgctcacagc atcacttta aacttctggta atccgccccac 180
 aactgccccaa gtcacgattt aagcccaagcc acccaaagtt tctgagggga aggatgttct 240
 tctacttggc cacaatttgc cccagaatct tgctggctac atttggtaca aaggcaaat 300
 gacatacgtc taccattaca ttatatgtat tatagttgtat gggaaaataa ttatatatgg 360
 gcctgcatac agtggaaagag aaagagtata ttccaaatgca tccctgtat tccagaatgt 420
 caacgcaggag gatgcaggat cctacacatc acacatcata aagcgagggtg atgggacttag 480
 aggagaaact ggacatttca ccttcacatc atacctggag actcccaagc cctccatctc 540
 cagcagcaac ttataccca gggaggacat ggaggctgtg agcttaaccc tggatcctga 600
 gactccggac gcaagctacc tgggtggat gaatgttcag agccctccct tgactcacag 660
 cttgcagttt tccaaaaaaa aaaggacccct ttttctatcc tgggtcacaat agtacactgc 720
 aggacccat gaatgtgaaa tacggaaaccc agtggatggc atccgcaggta acccagtac 780
 cctgaatgtc ctctatggc cagacccccc cagcatttac ctttcattca ctttattac 840
 ttccaggagaa aaccttctact tgctctgttt cgccgaggctt aacccacggg cacaatattc 900
 ttggacaattt aatgggaagt ttcaagtttccatc aggacaaaaag ctttttatcc cccaaattac 960
 tacaagacat agtgggtctt atgcttgc tggatgttac tcaagccactg gcatggaaag 1020
 ctccaaatcc atgacagtca aagtctctgc tcccttggatc acaggacatc ttccctggct 1080
 taatccatta tagcagccgt gatgttattt ctgttattca ggaagactgg cagacagtgt 1140
 ctttcatttc ttctcaaaatc atttaccatc agtctacatc caaaatttgc ttttggatca 1200
 ggagattttt gaaaagactc tgacaaggac tcttgaatatac aagttccctga taaatccat 1260
 atcataaccac tggactaaga actttcaaaa tttaatgaa caggctgata cttcatgaaa 1320
 ttcaagacaa agaaaaaaaac ccaattttat tggactaaat agtcaaaaaca atgttttcat 1380
 aattttctat ttgaaaatgt tgaatgtttt atttcccttca tttatgcact 1440

tttttcttc agcaattggc aaagtataact tttgtaaaca aaaattgaaa catttgcttt 1500
 tgctccctaa gtccccaga attggaaac tattcatgag tattcatatg tttatggtaa 1560
 taaagttatc tgacacaagtt c 1581

<210> 116
 <211> 1566
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 239589

<400> 116
 cggtcgagt atggatctcc aaggaagagg ggtccccagc atcgacagac ttgcagttct 60
 cctgatgttgc ttccatacaa tggctcaat catggcagaa caagaagtgg aaaatctctc 120
 aggcccttcc actaacccctg aaaaagatata ttttgtggc cgggaaaatg ggacgacgtg 180
 ttcatggca gagtttgcag ccaaatttat tgtacccat gatgtgtggg ccagcaacta 240
 cgttagatctg atcacagaac aggccgatata cgcatgtacc cggggagctg aggtgaaggg 300
 ccgcgtggc cacagccagt cggagctgca agtgttctgg gtggatcgcg catatgcact 360
 caaaatgttc tttgtaaagg aaagccacaa catgttccaag ggacctgagg cgacttggag 420
 gctgagcaaa gtgcagtttgc tctacgactc ctcggagaaa acccacttca aagacgcagt 480
 cagtgtggg aagcacacag ccaactcgca ccacccctct gccttggtca ccccccgtgg 540
 gaagtccat gagtgtcaag ctcaacaaac catttcaactg gcctctagtg atccgcagaa 600
 gacggtcacc atgatccatgt ctgcgggttca catccaacact tttgacatta tctcagattt 660
 tgttccatgtt gaagagcata aatggccagt ggatgagcgg gaccaactgg aagaaaccc 720
 gcccctgatt ttggggctca tcttgggctt cgtcatcatg gtaacactcg cgattttacca 780
 cgtccaccac aaaaatgactg ccaaccaggt gcagatccct cgggacagat cccagtataa 840
 gcacatgggc tagaggccgt taggcaggca ccccttattt ctgcgtcccc aactggatca 900
 ggttagaacaa caaaagcact ttccatctt gtacacgaga tacaccaaca tagctacaat 960
 caaacaggcc tgggtatctg aggcttgcctt ggcttgcgtc catgtttaaa cccacggaa 1020
 ggggagactc ttccggattt gttagggtgaa atggcaattt ttctctccat gctggggagg 1080
 aggggaggag ggtctcagac agcttgcgt ctcatggcgtt ctggctttt actctccaaa 1140
 gagaataaa tgccacttgg agctgtatct ggccaaaaag tttagggatt gaaaacatgc 1200
 ttcttgagg aggaaacccc tttaggttca gaagaatatg gggtgcgtt ctcccttgg 1260
 cacagctggc ttatccataa cagttgtca tgacacacaga atacaacccctc atgctccctg 1320
 cagaagacc cctgaaaatgtt attcatgtt ctggctggca ttctgcattt ttagtgcattt 1380
 tcttggaaat gtttcaactgc tacccgcattt cagcgactgc agcaccagaa aacgactaat 1440
 gtaactatgc agagttgttt ggacttcttc ctgtgcagg tccaagtcgg gggacctgaa 1500
 gaatcaatct gtgtgagtct gttttcaaa atgaaataaa acacactatt ctctggcaaa 1560
 aaaaaaa 1566

<210> 117
 <211> 1815
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1671302

<400> 117

tttgtttctc ttattccccag gacatcaagg agacttcaa taggtgtgaa gaggtacagc 60
 tgcagccccc agaggtctgg tcccctgacc cgtccaacc ccatagccat gacttctga 120
 cagatgccc cgtgaggaaa atgagccgaa tgatgtc ggcgtcgaga gtggacctga 180
 cgctggaccc tgacacggct caccggccc tgatgtc cccgtaccgc cggggggtcc 240
 gcctggcaga gccgcggcag gaggttgcg accatccaa gcgttctcg gccgactgct 300
 gctactggg gccccaggc ttccgctccg gccggacta ctgggaggtg gaggtggcg 360
 ggcggcgggg ctggggcggtg ggtgctccc gtgaatcaac ccatcataag gaaaagggtgg 420
 gcccggggg ttccctccgtg ggcagcgggg atgcagtc ctcgcgccat caccatcgcc 480
 gcccggcgtt ccacctgccc cagcagcccc tgctccageg ggaagtgtgg tgegtggca 540
 ccaacggcaa acgttatcag gcccagact ccacagaaca gacgctgctg agccccagtg 600
 agaaaccaag ggcgttttgtt gtgtacctgg actatgaagc tggcgcctg ggcttctaca 660
 acgcagagac tctagccccac gtgcacacct tctcgctgc cttctggc gagegtgtct 720
 ttcccttctt ccgggtgtc tccaaggggca cccgcataa gctctgcct tgattatcc 780
 gccacccgca gggccctctt gtcaagactt ggggggtggg tggggggtaa 840
 gtttggggc taaaagggtc ttccctactgc ttgttactgt ttgttctcc actccccctt 900
 gaccccaggc ccctgttttcc ccctcttagga gcctaaagaa ccctctggc ctccagctca 960
 gccttcttc acctactatg tctgtccaa acgtctgcat gggccctgtaa taatgagaac 1020
 agctgcctgg tcttctctcc cagtcgtcct agcccaagccc tgggactgga attttagtag 1080
 gggatgaggg gaaattgtaa tticattctt taacttcctt ttccccaccc ctgctttca 1140
 accttttat cagttctgag gctgggggtt tggggcaagg caacatcccc attccaaattc 1200
 cattttctga tgcagatttt agctgaggaa ttggaaagcc atttggggag gcaggctggg 1260
 ccaaagggtt gagctgggtt ataaatgtctt attctcttgg ggaggaggaa ttctaaactt 1320
 tccttcggc tctaatttttcc acctccatag accggccaga atttagctt acttgagaga 1380
 gatctggaat ggtgcggatg attgaaacca cgcacccatta catcatcatt acattaatta 1440
 catcaacata aatttttttcc tcccccttcc cttttccagc actcaaccaa ggagcaaaagc 1500
 tcatccccacc ccacacccctt cccagggtctg ctcactgcca ggctcctctc ccctttgttc 1560
 agtggagctg getttttctcc cagccctttt ccattccctt cactccattt ggcaagctct 1620
 gagggggggc ctggggacgg gtttgggtcc ccaggaggag agccttgggtt ataatctatt 1680
 tttcttaggag cctcttgcct tgcacttgc agcttcgccc ctctgctttt atggctgagg 1740
 tgaactcatg ttctttggaa aaagggaagg cgtgtgtgg aaataaaaatg ttatattgtt 1800
 tctctaaaaaa aaaaaa 1815

<210> 118
 <211> 1566
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2041858

<400> 118
 caaagagcca ggctccagga gaggaaggc tctgcgagag gagagaggag agcgctggag 60
 aggaggagct ggaggtgaga gtcccagaa aggcagagga gaatcgtagg gacataagt 120
 tcccagcaca ggcaaggagg aatccgagga taagggtctg gagggacaga agggccaga 180
 gagatccctt agccaggatg gaggctgtt tgaacttgc ccaagagggtg atgaaggac 240
 cagatccccgg gatccaggc taccctctga tggggcccccttgcataatg acctccatc 300
 tcctgaccta cgtgtacttc gttctctcac ttggggctcg catcatggct aatcggaagc 360
 ctttcagct ccgtggcttc atgattgtct acaacttctc actgggtggca ctctccctt 420
 acattgtcta tgagttctg atgtcggtctt ggctgagcac ctataccctgg cgctgtgacc 480
 ctgtggacta ttccaaacagc cctgaggcac tttaggtgtt tgggggtggcc tggcttcc 540
 tcttctccaa gttcattgag ctgatggaca cagtgtatctt tattctccga aagaaagacg 600
 ggcagggtac ttccctacat gtcttccatc actctgtgttccctggagc tgggtgggtgg 660
 gggtaaagat tgcggggc ggaatgggtt ctttccatgc catgataaac tcttccgtgc 720
 atgtcataat gtacctgtac tacggattat ctgccttgg ccctgtggca caaccctacc 780

WO 99/61471

PCT/US99/11904

```
<210> 119
<211> 1055
<212> DNA
<213> Homo sapiens

<220>
<221>
<222> 1032, 1037, 1042
<223> a or g or c or t, unknown, or other

<220>
<221> misc_feature
<223> Incyte Clone No: 2198863
```

```

<400> 119
tcagcagccca gcaaggctt tgagaaacat atggagctca ctgcccgtct ccccttcagt 60
ggcttccat tgccttgat aaagaccaa atgcctaaca gggccataa ggccccacat 120
gatccacggg ctttagatgt gcagagatgt ggagcgcgat gccaggtagg gtgagcagtg 180
gcgtggagca gggccacttg gctgggtgc caggtgttgg aggggagcag cagcctgtcc 240
acatggctta aggttgagc tgggtgttgc tgctgggccc ggcgagcgcga gtgcagcgc 300
ccgcggggag cgaggagcgc gcggaccggc catgggcaag tcagttcca aacagttca 360
taatgaggtc ctgaaggccc acaatgagta cggcagaag cacggcgtec cccactgaa 420
gctctgaag aacctaacc gggaggctca acagtattct gaggccctgg ccagcacgag 480
gatcctaag cacagcccg agtccagcgg tggccagtgt ggggagaacc ttgcattggc 540
atccatgtat cagacaggaa aggaggtggc tgatagatgg tacagtaaaa tcaagaacta 600
taacttccag cagcctggct tcacctcggt gactggacac ttacggccca tggatggaa 660
gaacaccaag aagatggcg tggggaaaggc gtccgcagaat gacgggtcct cctttgttgt 720
ggccagatac ttcccagcgg ggaatgttgt caatgagggc ttttcgaag aaaacgtcct 780
gcccggaaag aagtaacttg taaaatgtaa tggaaagggtg gcagacttaa gaacgtggat 840
atgaagtgtcc tagaaccacc acaacctggc tgcgtctg tccctgtggg tgaatgtgt 900
tgtgtgtgtg atgcattgtga gcgtctctgg cccatcttat tacaggagtg agccaaaggaa 960
attaatttggta tnccccngaa anggggatcg gttttt 1020
                                         1055

```

<210> 120
<211> 1956
<212> DNA
<213> *Homo sapiens*

<220>
 <221>
 <222> 1893, 1896, 1899, 1906, 1911, 1921, 1926, 1927, 1928, 1929, 1932,
 1935, 1940, 1948, 1950, 1951, 1953
 <223> a or g or c or t, unknown, or other

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 3250703

<400> 120
 cactcaagga agatataaaat gacaaggctcg gctcagctct cagacaagggt tttccaagca 60
 agatgaagcc caacatcatc tttgtacttt ccctgctctt catcttggag aagcaagcag 120
 ctgtgtatggg aaaaaaaagggt ggatcaaaaag gcccattacc aagtgaattt tcccaatttc 180
 cacacggaca aaagggccag cactattctg gacaaaaagg caagcaacaa actgaatcca 240
 aaggcagttt ttctattcaa tacacatatac atgttagatgc caatgatcat gaccagtccc 300
 gaaaaagtca gcaatatgtat ttgaatgcc tacataagac gacaaaatca caacgacatc 360
 tagtgttggaaag tcaacaactg ctccataata aacaagaagg cagagaccat gataaaatcaa 420
 aaggcatttt tcacagggtta gttatacacc ataaaggagg caaagctcat cgtggcacac 480
 aaaatcccttc tcaagatcg gggaaatgcc catctggaaa gggaaatatcc agtcaatatt 540
 caaacacaga agaaaaggctg tgggttcatg gactaagtaa agaacaaaact tccgtctctg 600
 gtgcacaaaaa aggttagaaaaa caaggcggat cccaaaggcag ttatgttctc caaactgaag 660
 agcttagtagc taacaaaacaa caacgtgaga cttaaaaatttc tcatcaaat aaagggcatt 720
 accaaaaatgt ggttgaagtg agagaggaac attcaagtaa agtacaaaacc tcactctgtc 780
 ctgcgcacca agacaaaactc caacatggat cccaaagacat tttttctacc caagatgagc 840
 tcctagtata taacaagaat caacaccaga caaaaaaaaatct caatcaagat caacagcatg 900
 gccataagga aaataaaaata tcataccaat cttcaagtac agaagaaaaga cgactccact 960
 atggagaaaaa tgggtgtcag aaagatgtat cccaaaggcag tattttatagc caaactgaag 1020
 agaaaaataca tggcaagtct caaaaccagg taacaattca tagtcaagat caagagcatg 1080
 gccataagga aaataaaaata tcataccaat cttcaagtac agaagaaaaga cgtctcaaca 1140
 gtggagaaaaa gggcatccag aaaggtgtat cccaaaggcag tattttcgatc caaactgaag 1200
 agcaaaataca tggcaagtct caaaaccagg taacaattcc tagtcaagat caagagcatg 1260
 gccataagga aaataaaaata tcataccaat cttcgagttac agaagaaaaga cgtctcaaca 1320
 gtggagaaaaa ggatgtacag aaaggtgtat cccaaaggcag tattttctatc caaactgaag 1380
 agaaaaataca tggcaagtct caaaaccagg taacaattcc tagtcaagat caagagcatg 1440
 gccataagga aaataaaaatgc tcataccaat cttcaagtac agaagaaaaga cgactcaact 1500
 atggaggaaaa gggcatccag aaagatgtat cccaaaggcag tattttcttc caaattgaaa 1560
 agcttagtaga aggcaagtct caaaatccaga caccaaatcc taatcaagat caatggcttg 1620
 gccaaaatgc aaaaggaaaag tctggtaat ctgcagatag caaacaagac ctactcagtc 1680
 atgaacaaaaa aggcagatac aaacaggaat ccagttagtc acataatatt gtaattactg 1740
 agcatgaggt tgcccaagat gatcatttgta cacaacaata taatgaagac agaaaatccaa 1800
 tatttacata gcccgttgc ttagcaaccc attggaaaaggc tggaccaata gcaagggtgtc 1860
 accccgacct cagttagtta gggttcggtt gancncngt aggaangggt nccggaaggc 1920
 naaaaannnnnt anttnagccn ctgttgtntn nanacc 1956

<210> 121
 <211> 1737
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 350287

<400> 121
gaaatacagt ggcttttat taaaataat agttggataa tataaactga actatTTATG 60
catTTTATA tacttataaa tccttccaaa tagTTTAAT tCTATCCTT tacatataaa 120
taactaata agtGTGCTGG aaaaacacag atgtcacag caccACTGTT ttttttttt 180
tttttgaga taataaattc catgagaaaat ctgggTTGA atatttGTTT acTTTGTCTC 240
ctaattGAAC accACTCCAG gcCTTCTGTC tgCTCCCT ttacCCCCAA aatattcaca 300
aaaaaaATTt taagacaaca agtaaccata tatAGGTGTT tgaatGATTt tCTCATTTT 360
atctaatttc attcataag tcccagtagaa ttacacctacc ataggctact atactgataa 420
tataaatgaa accgaacatt ttttgcTact aactCTCCCC aatttaatgt gtttCGAA 480
taaaaaATTt aattttttc ctTTTAATTA aaaaGTCATC ttGAGTGC ttattGGCTG 540
tacatTTAC atGTTGCTG gtactattat ttGTCAGTG agttAAAGCT ggcATGTACA 600
gCTCTGGCT ttaatgaaaaa gcacattGAC ataATGTTAG taaattCCAA aCCCCGGCAC 660
agaatGtgag ttaaaaATTAA gCTCTGGCTG gttAGTGTAC aataAAACTAT acCTACAGAC 720
tttttttAA tagAAAAGAAG acaaAGCTGC tggTATAGGA ttGTTCCCT tGAAGAAAAA 780
atgagggaaa caaacacaaa aacCTCAATG cAGTGTATAA atAACATTt tttcaactac 840
ctCTTAATGT ggaattatCT acTTTAATAG ttCCCTGACA gtaatGTTA atAGTAACTG 900
ccaaATTtG tattttCCCA tCTCTCTAA aaaaGCTTT atGATTATTt tATATAGTT 960
tgagaACTTT aaAGCCACTT ttttttaACC ttACATTGc atAAAAATGT ttagCTTTA 1020
atgtagagAGC aaATTATGAT catATATTt gATATTGAT acCTGTTGc CTATAGGATT 1080
ttttttAA aatGCACTT tggCTATAA accATGGATG atttGATCCA tAAGATTAA 1140
atGTCGCCACC attATAGTAT tCCTAGACAT gagCTGTGAT aATGGTATTc tGTAATTAA 1200
acGTGCCACa cATTATTGtG tCTTAATTGc CCTTAGCCTG aTTTTAATG ATCAATTGt 1260
tattttGCA gATGTGAATA ttGTCATAA acTTACTAAA ttTATGTAAA attGATAAA 1320
atagaATTAG aAGTCACTAA gTTCTTCTG tGTAAGAGTA atAAATTtT tGTAACACAA 1380
tGCACTGTG tATATGACAT tCTGTAATTc CTTGAACTGG ATCATATATT CATAAGTTCT 1440
gtAGATACTT atGCAATGAC atTTTCTCAT ttagTTCTG gGTcATTtT tGTTATTGt 1500
tttACTACTT GTGATCATGT agTTGTCCT TACTTTGTGA gAAAGGTAG CTCAGTAAT 1560
actGCAATTt CTAAAACTCAG tGATTGGAAg gTTATTAAATT atAAATGTAa CTGATAAAAGT 1620
acGTGACAGC ATTAAATCT GTATAAAGAA CAATGGAAGG ATCCTTATTG aATTG^TGCT 1680
ttttttAA atGTTAAATt ATTATATTAA AACATTCT ttCTAAAAAA aaaaaAA 1737

<210> 122
<211> 789
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1618171

<400> 122
caagatataa agtagcAGTT ggCTACCTAA aatgAAAAGA gCAATGTTCC atGGCACCTG 60
aaatGTTAA aatATTAGAA acTCTCCCCA cCCCATATTc CTCCCACCCC aattGAGTCT 120
ctcGCAATAA tCTTCTCGCT tCTCTAACTA gTTGACTTc ATTATGGATG gGGGATAGGCT 180
aaaaAAACGGG CCCCTGGGAT ggCTGTGCTG cCATCAGTGC tGTTGGTTA CTCACTCTT 240
ttCTGTCTC GtTTTGTGAT gCTACTGCTC CTGCCCCCTT acAGCCACAG tagAAGCGGT 300
agAGGCCCCGG gaAGGTATGG ccATATTACT CTGATAGATG tGATCATTGT gCTGTGtAC 360
tGTTTTCTG aAGCTTTATC AACATTTCAA ATTTTATT ATTGCACTAC cAGAACTATA 420
acAGTGAAGAA aAGGTATAGT tGTTTCTAGG CATGTTAACG aAGCAGGTG tTCCTTTGTG 480
tcCTATCTT GcATTAATTt TAAATAACCT TCACCAcAGC TACAGTTTT tttCTGGCT 540
ctATCAGCTT TAATGCAACG gCAGAAgCTT aAGCAACTGG TCAATGTTT 600
tACTTCTGTA tCCCTTCCAT GTACAAGAGA CATCCATTG ATTCTCAAGA gagCCAAATA 660
ggTCAGCCTC TTCAGCGATT CTAAAAGATT TCAAGAGCAG AGGCAAGGAAG tagGACTGG 720
aATTAGTTc AATTCAATTt CTGAGGTGC CCTAAGGTAG GGCAAGTTA aATTAACTT 780
tGTTTCTAT 789

<210> 123
<211> 1116
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1625863

<400> 123
tttatattt acaataaaagt gttagactcc atttctaaat accagacttc aaaagataag 60
gttcaaaagt gttataagaa gatattcctt ttttgcctt agagaactta tttcctgtg 120
aaaatgccta ccacaaagaa gacattgatg ttcttatcaa gcttttcac cagccttggg 180
tccttcattt taatttgctc tattttggg acacaagcat ggatcaccag tacaattgtc 240
gttagagact ctgctcaaa tgggagcatt ttcatcaactt acggacttt tcgtggggag 300
agtagtgaag aattgagtca cgacttgca gaaccaaaga aaaagttgc agtttttagag 360
atactgaata attctccca aaaaactctg catcggtga ctatctgtt cctggctctg 420
agtttgcata cgtcgctgct gagctctggg ttacacctt acaacagcat cagcaaccct 480
taccagacat tcctggggcc gacgggggtg tacacctgga acgggctcgg tgcatccctc 540
gttttgcata ccatgatact gttgtggcg aacacgcagt ccaaccaact ctccgaagag 600
ttgttccaaa tgcttaccc ggcacccacc agtaaaggaa cgacccacag ttacggatac 660
tcgttctggc tcatactgtc egtcattttt ctaaatatag tcactgtaac catcatcatt 720
ttctaccaga aggccagata ccagcggaaag caggagcaga gaaagccaat ggaatatgtc 780
ccaagggaacg gaattttattt ctgaatttctc ttcatctca ttttggcggtt gcatttattt 840
tacatcagcc ctgagtagta actggtagc ttctctggac aattcagcat ggtaacgtga 900
ctgtcatctg tgacagcatt tgggtttcat gacactgtgt tcttcattga tgctgtactc 960
ctgaaaattt ttcccacaag gttggggaa tgaatggggaa atgtcgctgg tctgtgtgg 1020
attcaaaagca gtagtacat gatgagcgta acgacccttc tgacctggc tcacgatctg 1080
aaataaaaaa aggctgtgtc atgtttttt tcaaaaaa 1116

<210> 124
<211> 914
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 1638353

<400> 124
ggccaaccca cggggggggg agcgccggcca tggcgctctt gctttcggtg ctgcgtgtac 60
tgctggccgg cttcttcgcg ctcgtgggggt tggccaagct ctcggaggag atctcggttc 120
cagtttcgga gcggtataat gcccgttccg tgcatgttgc tgaggtgttc ccgctgaagg 180
tatttggcta ccagccagat cccctgaact accaaatagc tggggcttt ctggaaactgc 240
tggctgggtt gctgtggc atggggccac cgatgtcga agagatcagt aacttgttct 300
tgattctgtc catgtgggg gctatctca cttggcagc tctgaaagag tcactaaagca 360
cctgtatccc agccattgtc tggctgggggt tcctgtgtc gctgaatgtc gggcagctt 420
tagccccagac taagaagggt gtcagaccca ctaggaagaa gactctaagt acattcaagg 480
aatcctgaa gttagagcatc tctgttctt tatgccatgc agctgtcaca gcaggaaacat 540
ggtagaaacac agatgtatc atttgttac cagtataata tccagggtca gccagtggtt 600
aaagagacat ttgtctacc tggcactgtc ttctttttt agctttacta ctcttttgc 660

aggagtacat gttatgcata ttaacattcc tcataactcata tgaaaataca aaataagcag 720
 aaaagaaaatt taaatcaacc aaaattctga tgccccaaat aaccactttt aatgccttg 780
 tgttaagtata cctctgaact tttttctgtg cctttaaaca gatatataatt ttttttaaat 840
 gaaaataaaaa ccatastatcc tattttattt ctcctttta aaaccttata aactataaca 900
 ctgtaaaaaaaaaaaa 914

<210> 125
 <211> 2016
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 1726843

<400> 125
 gctgcctgct gcctccgcag cgtccccca gctctccctg tgctaactgc ctgcacccctg 60
 gacagagcgg gtgcgcaaatt cagaaggatt agttggacc tgccctggcg accccatggc 120
 atccccaga accgttaacta ttgtggccct ctcagtgccct ctgggactct tctttgtttt 180
 catggggact atcaagctga ccccccaggt cagcaaggat gcctacagtg agatgaaacg 240
 tgcttacaag agctatgttc gagccctccc tctgtcaag aaaaatgggaa tcaattccat 300
 tctcctccga aaaagcatgg gtgccttga agtggccctgt ggcatcgta tgacccttgt 360
 gcctggcggt cccaaagatg tggccaactt cttcctactg ttgtgtgtgt tggctgtgt 420
 cttcttccac cagctggctg gtgatcctct caaacgtcac gcccatgtctc tgggttttgg 480
 aatcctgtctc acttgcgcgc tgctgattgc tcgcaagccc gaagaccgggt ctcttgagaa 540
 gaaggctttg ccagggaaatg ctgaggagca acccttctta tatgagaagg cccctcagg 600
 caaaagtgaag gtgtcataga aaagtggaaatg tgcaaaagatg ggaccttcca ggcagttgcg 660
 tccatgacac caggaagatg tcagtggtg ttttcattt gatttattt tcttggggaa 720
 agtaaaaaaaaat gtaatctgca agttaatgtac cctattggct tggtaatcatac tataatgtcaa 780
 aatgacttcc cacattgtac atttgtgcgc cacccttaat cactctgggg caactctcac 840
 atcttgcgtgc atgtacatgt atacggctac tattgaagtg taattgttag atggactcca 900
 acaagcatgt gactgtgaga ttgtgtgtgg gaaaatgttat ttaactactc tgggtgtgtg 960
 tgtgtgtgtg tggcgcgcg cgcacacact caccgcacaca caagcagaga 1020
 aggccgtat cttgaactaa tcctgcacag gcaccccttcc ctttatagat tgattccagc 1080
 aaaggccgaa taaaacaaat ttcctatgaa gagaatcctg atatgaaaca agtcatgttag 1140
 tctcatggcc gggaaatctt ccacagatac taacaactta aacttactac ttttaggagaa 1200
 aaaaaaaaaac attcaatttc ggacactgtag ttatatatga aattaatttag gctcttagtcc 1260
 aacagttgtt tacattttaa atagtccata ttgaatttaa taaaacaaag ggatgcacgc 1320
 agtcaaattt atagtttaat tcttcaagtg ataatatggaa agttcacct tgcctttgtc 1380
 caagccccac ctattaaac ctttactca cagttgaaa ctgaagcagt aaacttggttt 1440
 ccagacatct ttttcagatt gtcttaagcc caaaggccgc tcacttccac tattctcagc 1500
 agccaaaccag gatttggcag ctgctccact gttacgggtt agggacacagg gatcagtcc 1560
 gttagaagtc tggcgcgcctc aaactctacc tggctctgc aatcatccaa aatttggaaa 1620
 agaagctata tccagtggtt cactgccaaa cagattcaact actttactg attcttact 1680
 gagcttgct agtataagca gagttccaaat tctcccttag ggttgcctct acatttctttt 1740
 atcattccag tgggttagggt ttagctgggg gaaggacatt tcataagggt tagttggact 1800
 gagcagtatg gacatttgct ttttcattt cgtactgttgg ttttccttg ttaggtgtgc 1860
 tttgggtgtt ttaatattat tggccaggg atggggaaat ggggggggtt gtgtggaaag 1920
 agtacttattt attgtgtttt ctctgtatc attgttcttg gtaattgata cctctctgtt 1980
 ttatttctctt catttttca aaataaaaact ttttgtt 2016

<210> 126
 <211> 2067
 <212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1754506

<400> 126

tgctcctta agcgccaca ggcggccgac ggccacaatc acagctccgg gcattgggg 60
 aaccggagcc ggctgcgcgg gggaaatccg tgcggcgcc ttccgtccccg gtcccatcct 120
 cggccgcgtc cagcacctct gaagtttgc agcgcccaga aaggaggcga ggaaggaggg 180
 agtgtgtgag aggagggagc aaaaagctca ccctaaaaaca ttatcca ggagaaaaga 240
 aaaaggggggg ggcggaaaat ggctggggca attatagaaa acatgagcac caagaagctg 300
 tgcattgttg gtgggattct gtcgtgttc caaatcatcg ccttctggt gggaggctt 360
 attgtccag gggccacaac ggcagtgtcc tacatgtcg tgaaatgtgt ggatgccgt 420
 aagaaccatc acaagacaaa atggttcggt ccttggggac ccaatcattt tgacaagatc 480
 cgagacattt aagaggcaat tccaaggggaa attgaagcca atgacatcg ttttctgtt 540
 cacattcccc tccccccacat ggagatgagt ccttggttcc aattcatcg ttttatcctg 600
 cagctggaca ttgccttcaa gctaaacaaac caaatcagag aaaatgcaga agtctccatg 660
 gacgtttccc tggcttaccg tgatgacgcg tttgtgtgtt ggactgaaat ggcccatgaa 720
 agagtaccac gggaaactcaa atgcacccctt acatctccca agactccaga gcatgagggc 780
 cgttactatg aatgtgtatgt ctttttttcc atggaaattt ggtctgtggc ccataagttt 840
 tacctttaa acatccggct gctgtgaat gagaagaaga aaatcaatgt gggaaatttggg 900
 gagataaaagg atatccgggtt ggtggggatc cacaaaaatg gaggcttcac caagggtgtgg 960
 tttgccatga agacccctt tacggccacg atcttcatca ttatgggtgt gtattggagg 1020
 aggatcacca tgatgtcccc accccccatgt cttctggaaa aagtcatctt tgcccttggg 1080
 atttccatga cttttatcaa tttccatgtt gatatgtttt ccattgggtt tgactggacc 1140
 tggatgtgc tgggggttgc catccgacag ggcacatctt atgcgtatgt tctgtccctt 1200
 tggatcatct tctgtggcga gcacatgtt gatcagcagc agcggaaaccatcgcc 1260
 tattggaaagd aagtccggacc cattggcggtt ggctcccttgc ctatccatgtt 1320
 tgtgagagag gggtaactt cacaatccc ttctacatgtt tctggactac agacattggaa 1380
 acagagctgg ccatggccctt catcatcggtt gctggaaatctt gcctctgcctt ctacttccctt 1440
 tttctatgtt tcatgttattt tcagggtttt cggaaatcatca gtggaaagca gtccagccctt 1500
 ccagctatga gcaaaatcccg gggcttacac tatgggggc taattttttag gttcaagttt 1560
 ctcatgttta tcaatggccctt ctgcgtgtcc atgactgtca tcttccatcg tggatgtcag 1620
 gtaacggaaag gccattggaa atggggccgc gtcacagtcc aagtgaacag tgcctttttt 1680
 acaggcatct atgggatgtt gaatctgtat gtcttgcgtt tgatgttctt gtatgcacca 1740
 tccataaaaa actatggaga agaccatgtt aatggaaatgc aactccatg taaatcgagg 1800
 gaagattgtt ctttggactt ttcggaaatcatgtt tatcaagaat tggatgtcc ttcgaaatata 1860
 tccttcatca atgacaacgc agcttctgtt atttggatgtca acaaggcaac acatgtttat 1920
 cagcttgcgtt tttgcgttgc tcacagtccatgtt cttgtatcg cacacaatata 1980
 cactcatttgcgtt ctttgcgttgc tttttttatctt caaaaatgtt aatataagga aaaaagcggtt aacaataatata 2040
 attcttgcgtt tttttttatctt caaaaatgtt aatataagga aaaaagcggtt aacaataatata 2067

<210> 127

<211> 2180

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 1831378

<400> 127

gcggacgtct gcacccgtggc ggcgtatgcgtt cccgtatgcgtt ggcggccggg atagcgtggg 60

cgaggctgcg gggccccggc ggcacgcgc gcacctctcc ccagccctgg cgtggggcca 120
 gcccgccca ggcagcaatg gggttccctgc agctgtggt cgtacgggtg ctggcatccg 180
 aacacgggt ggctggtgca gcccgggtct tcggaaattc cagcgagggt cttattgaat 240
 tttctgtggg gaaattttaga tacttcgagc tcaataggcc cttccagag gaagctattt 300
 tgcataat ttcaggcaat gtgacttttc ttatttcca aatacactca cagtatcaga 360
 atacaactgt ttccctttct ccgactctcc ttcccaattc ctccggaaaca ggcactgcca 420
 gtggactggt ttcatcctt agaccagagc agactacatg cacttggta ttggggactt 480
 caggcataca gcctgtccag aatatggcta tcctactctc ctactcagaa agagatcctg 540
 tccctggagg ctgtaatttgc gagttcgatt tagatattga tcccaacatt tacttggagt 600
 ataatttctt taaaacgact atcaagtttgc ccccgaaaca cctaggctat gcgagaggcg 660
 tagatcccc accatgtgac gctgggacag accaggactc caggtggagg ttgcagttatg 720
 atgttatca gtatttctg cctgagaatg acctcaactga ggagatgttgc ttgaagcattc 780
 tgcagaggat ggtcagtgtg ccccgaggta aggccagtgc tctcaagggt gttaccctaa 840
 cagctaatga taagacaagt gtttcccttc cctcccccggcacaagggt gtcataataca 900
 atgttattgt ttgggaccccg ttctaaata catctgtgc ctacattctt getcacacat 960
 acgcttcgag ctgttggggca ggagagggtt gttgtcttc ccttaggaaga gtgtcttcca 1020
 aagtgttctt cactttttt gcccgtctt gtttcttcat ttgtttctt ggacacagat 1080
 tctggaaaac agaatttttc ttcataggtt ttatcatcat gggatttttc ttttatatac 1140
 tgattacaag actgacacat atcaagtttgc atgtgaatct gattctgaca gctgtcaactg 1200
 gaagcgtcg tgaatgttc ttggtagctg tttggggcg atttggaaatc ctctcgatct 1260
 gcatgtctg tttggacta gtgtgggggt tcctcatctc gtcaacttgc ttctttactc 1320
 cactggggaa cttaaagattt tttcatgtt atgggttatt ctgggtcaact ttctttgtca 1380
 tagctatctt cattccagta gttttcatgg gctgcctaaag aatactgaac atactgactt 1440
 gtggagtcat tggctccat tgggtgggtt tagccattga cattttactgg tccacaagcc 1500
 tttccatcat cactttgaac gtactcaaga gagcgcctaa caaggatttc cacagagctt 1560
 tcacaaaatgt gcctttcaa actaatgact tcattatctt ggcagttatgg ggcgtctgg 1620
 ctgttaagtgg aattacgtt cagattcgaa gagagagagg acgaccgttc tttccccc 1680
 acccatacaa gtatggaaag caagagagag agcgcggagt gacaaacatt ctggacccta 1740
 gctaccacat tcctccattt agagagagc tctatggcg attaaacccag attaaaggc 1800
 tcttccagaa ggagcagcca gctggagaga gaacgcctt gctctgttag atgcccagg 1860
 gcttggtagt tggctcttag ctttggagtt catgccttggta gtgttcaac agtctctgg 1920
 gcaagtctaa taagagatca ggcataatata tctgttctt gcataatatt atggtgcctt 1980
 tattgatata tggtaagggt gtacttaggg attaggatga ttgttaagaga atgagaaaga 2040
 tgacaaaag gtgggtggta gggaggctt ttcttatttc caaatcttg agaaattacc 2100
 ttttggtttcaaatctatg atcaacttat tccattaaat agatacatta aaaaaattaa 2160
 aaactgaaaa aaaaaaaaaaa 2180

<210> 128
 <211> 991
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 1864943

<400> 128
 cacgtgtca gcaggcaaca tggccgagag gcccggcctc cggggccgc cgtgtccgc 60
 accgcgttacc ctgacaccccc cgcggaaattc cctccgcacc tccaggccgg tgcatgcgg 120
 cggcgctttt gggcggttta caactgtctg tgcgcggcg cgttcggggc cctggccgc 180
 gcctccgcca agctggccctt cggcagcggag. gtgagcatgg gtttatgcgt cttaggcatt 240
 attgtgatgg cgagcaccaa ttctctgtt tggacccctt ttagccgggg cctcagttt 300
 tccatgtctt cagccatttc atctgtcaca gtgactttt caaatatctt cagctggcc 360
 ttccctggct atgtgtgtt tggagagtgc caggaggtct tgggtgggg aggagtgttc 420
 cttattctt cggactcac cctaatccac aggaagctcc caccacccctg gaagccccctt 480

```

ccacacaaggc agcagtagca ccacttggct agacgggcca gctggaaaga tcatgtatgtt 540
ggccccagctt tggggatgtca tggggactg tggctcttaggg cgatccagg ttgcacgcctt 600
ctgaccatca gccaaggggaa gcaggccctct gatggagca gctctggctc tgtaaggaga 660
ggtgtcagctg cagcagttt ctaccggaaag tggggatgtttt atctgtacag tgctttggat 720
tcttcctccc aggccctaccc cagtggccct tcgcagatgc tggagatctt ggggttggtc 780
tgctttgtgtt atggtaacttg aaaccacgtt gtaattattt tccctgttgcc aaacaaaagc 840
cagtcatgtt actctagaag cagtggactgg tggggctttc tgacaggatcc atgtgtatgt 900
atcaggccat ctgtgtatgtt ttatgtattt atggcaagaa gaggaaaact ggattaataa 960
atacggtttt ttgttaagttt aaaaaaaaaaa a 991

```

<210> 129
<211> 637
<212> DNA
<213> Homo sapien

<220>
<221> misc_feature
<223> Incyte Clone No: 1911316

```

<400> 129
ggaggggcggt gctccgcccgc ggtggcggtt gctatcgctt cgcaaaaaactt actcaggcgag 60
ccagctgaga agagttgagg gaaagtgcgt ctgcgtgggtc tgcagacgcg atggataacg 120
tgcaaaaaatcgaa aataaaaatcgcccccttc gcttcagtgt gaaaggccac gtgaagatgc 180
tgcggctggc actaactgtg acatctatga ccttttttat catgcacaa gcccctgaac 240
cataatgtt tatcactgga tttgaagtca ccgttatctt atttttcata cttttatatg 300
taactcgact tgatcgatataatgggt tattttggcc tttgcgttat attatcaact 360
caactggtaaac aacagttatc atgctcatcg tatctgtgtt ggcactgtata ccagaaccca 420
caacattgac agttgggtgga ggggtgtttg cacttgtgac agcagttatgc tgtcttgcgg 480
acggggccct tatttaccgg aagttctgt tcaatcccgag cggtccttac cagaaaaagc 540
ctgtgcataa aaaaaaaaaaa gtttgtat tttatattac ttttagttt gataactaaatg 600
ataaaaacata ttctgttattt cttccaaaaaaa aaaaaaaaaa 637

```

```
<210> 130  
<211> 2631  
<212> DNA  
<213> Homo sapien
```

<220>
<221> misc_feature
<223> Incyte Clone No: 1943120

cgtgcgttccat caccctcggtt ggctcacctg gaaaatcagc cagaccaggat acatccggaa 600
gggtacagc atcctggaca acaacgcggc caccatctg caggttttg acctccgaag 660
gatectcatc cgctactaca tcaagagtat aataactat atggtaacgt ctcccaaact 720
ccttccttgg atcaaaaaatg aatctacttct gaagtccctg cagccctttg ccaagtggca 780
ttacatttggc cgtgacccctt caatgttcaa cattaacatt gatgatgact acgtcccggt 840
tctccaggaa atcacacggc ctatgttctg caatgtttat ctagaatggc ttcaacactg 900
tgcacggaaa agacaagagc cttcaacgc cctggacagt gacgaggact ctccttgg 960
gactctgtcc ttgcctctgt gcacccctggg gaggagagct ctgggaacag ccgctcacaa 1020
tatggccatc agcctggatt ctttcctgtt tggccctccat gtcccttca aaggtgactt 1080
cagaataaca gcacgtgacg agtgggtatt tgctgacatg gacctactgc ataaagttgt 1140
agctccagct atcaggatgt ccctgaaact tcaccaggac catgttactt gcctgacga 1200
gtatgaagac ccagcagtcc tctacgaggc catccagttc ttcgagaaga aggtggcat 1260
ctgcccacgg ggcgaccccg cttggggggg cgcaagtctg tccaacaagg aagagctgt 1320
caccctgccc cacgtgggtt acgagggtgc cgacgagtac aagggtcatca tgctccacag 1380
aagtttctgtt agttcaagg tgcataaggta taacaaagaa tgcgtccgag gactttgggc 1440
cgggcagcag caggagcttatttctcg caacccgcaat cgggaggcgcg gcagtatcca 1500
gaacaataag cagggtctgc ggaacttgc taactccccc tgcgatcage ccctgggta 1560
ccccatgtat gtctccccac taaccacatc ctacccatggg acacacaggc agctgaagaa 1620
catctggggt ggaccatca ctttggcagc aatttaggacc tggttctggc ccaagtgggt 1680
aaggatgcgg aaggattgc atgcccggca gcacagtggc ggcaacatttgc aagacgtgg 1740
cgaggagggg gccccacga caggtggcaa caatggcccg aatgggtggca gccaggagag 1800
cagcgcagaa cagccccagaa aaggcgggtgc tcagcacggg gtgtcatct gtgaaggggac 1860
acagagaaca ggcaggagga aaggcaggag ccagtccgtg cagggcacact cagcgtctaag 1920
ccaaaggccg cccatgtga gtcatctgg cccatctta gagagccgc aaacatttct 1980
ccagacgtcc acctcaatgtc acgagctggc ccagaggctc tgggceagcc ggctcttctt 2040
gcacgcctcg gcaacgtccc tgactctca gccccggcc gtcaccacca ccggccacct 2100
gagtgttcgtt gageggccg aggctgtcat caggtccagc ctgggtctt ccaccagtc 2160
caccctgagc ttctcttcg gcaagaggag cttttccagc gcgtctgtca tttccggact 2220
ctctgtcg gaggggggca ataccagtga caccctgtca tccagcagcg tcaacatctgt 2280
gatggggcccc tcaagccaggc ctgccagcc ggcacttgg gtaaggggct gggcaggggct 2340
caccaggaca ggctgggatg ttggcacggg ctcctggct gagcgtggca cttcccttgc 2400
gttcccaaaaa ttctgtcg agaacccttgc ccccttctt atggggctcc cagagtgaca 2460
aaggacagtg attagacacg aagtggctt gctgtcttg aaagcagaca agatacagag 2520
cagatattct gtaaaacgata atgcccaggc aggcaetgaa aggagtccacc ggatacagag 2580
qtctqcaacttactgtggca ttcgtccctac accggggcat gacggagaat g 2631

<210> 131
<211> 646
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2314236

```
<400> 131
tacatttact aaaatgatgt aataaataac atgttaataag actcaagctt taccttatga 60
aattgatgta tttttaccag ttatttctaa tgtaacattg aatatataag atctgcacaaa 120
tgtatgttta aacatgaatt agaagagttg agaactacca ttatgtatag ggattctcat 180
agtgtcttgg cccttaattt gaaaggttgtg gcaactttaa agtactttt actgtatgtt 240
ataattcttt ataacttaga gagagacaat ggtcactcaa actatgagaa ctatgaatta 300
ggagataaaaa gtttaaattt gtttgtgtt tataacagta tgtacaagtt agtttccct 360
tatatattta cgtttcaag ttttttaatc tcatacatata catccatact ctataaaatg 420
ttttatattc aaagaactgt aaaatctaa acatttagtt tcactattga aattgttttt 480
taaaqataaqg cataaataqt tgtccttaga cttattcata caaatatagt catttacttc 540
```

tatgtagttt gagattctga gagttattcc aactttatga agattgattt caatgtgcct 600
 gctaagtccct aaaagattca gaaagaaaat ttatataatta ttgatt 646

<210> 132
 <211> 541
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2479409

<400> 132
 ttcacatTTT ttggTTTgat cttggTgtca tttaggtaat gaatcttatcc aagaaatcta 60
 tccttttgac ccaggTTtac aaattttag tag acataaggTT atttataatg gtcccttctt 120
 acccttttaa tgTcttttagg agctgtgtg ataatttcc ttTCattatg atactggtaa 180
 ttTctttctt cactttccta atcaggTTgg gttagggTTt atcagtTTta ctgatctgac 240
 tttttatTTTt atTTTatTTT tttttagaca gtcTTacact gtcTcccagg ctggagtgca 300
 gtggcgcat ctccggcttac tgcaagctt gcttccggg ttcatgccat ttcctgcct 360
 cagccTcccc agtagctggg actacaggtt cccacaacac gcccggctaa tttttaaat 420
 tcttagtggg gactggggTTt caccggggta accaagaatg gctcgatct tttaacccc 480
 ggggtccacc cgccTcagcc tcccaaagt gctgggatt acagggtga gcaccgggccc 540
 c 541

<210> 133
 <211> 1922
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2683149

<400> 133
 tggcTccga ccacacctgga cacctggagg ctaaggctgg attccccctt ccctgactca 60
 ggaactgctt aacgtctaca gcaaggccca ataggggacc tgagggcaca gtcctcagga 120
 tgTTcgggg agaataggag ccagaaCTG agccCTtaag ccattccccct caccaatgtat 180
 ggggtccccca gtgagtcATC tgctggccgg cttctgtgtg tgggtctgt tgggtctgggt 240
 agggggctca gtcTTccaacc tgggcccTgc tgagcaggag cagaaccatt acctggccc 300
 gctgtttggc ctgtacggcg agaatgggac gctgactgca gggggcttgg cgccggcttct 360
 ccacagcctg gggctaggcc gagttcaggg gcttcgcctg ggacagcAtg ggcctctgac 420
 tggacgggct gcatccccag ctgcagacaa ttccacacac agggcacaga accctgagct 480
 gagtgtggat gtctgggcag ggatgcctt gggTccctca gggTgggggtg accttggaaaga 540
 gtcaaggcc cctcacctac cccgtggcc agccccctcg ggctggacc tgcttcacag 600
 gcttctgtt ctggaccact cattggctga ccacctgaat gaggattgtc tgaacggctc 660
 ccagctgtg gtcaattttt gcttgagccc egctgtctt ctgaceccctc gtcagtttgc 720
 tctgtgtgc ccagccctgc ttatcagat cgacagccgc gtctgcAtcg ggcgtccggc 780
 ccctgcaccc ccaggggatc tactatctgc cctgcttcag agtgcctgg cagtcctgtt 840
 gcteagcctc ctttcccccc tatccctgtt gctgtgcgg ctccctggac ctcgtctact 900
 acggcccttgc ctgggcttcc tggggccct ggccgtggc acttttgtg gggatgcact 960
 gctacatctg ctacccgtg cacaagaagg gccgcacgc ggcacctggcg gactaccaga 1020
 gaaggacctg ggcacccggc tgcgtgtct cggaggtctt tcctgtctt ttgtgtgg 1080
 gaacatgtg gggctttgc ggcaccggagg gtcaggcca agatgtgc ggcgaaaacg 1140

aaggaatctc gaaacacgca acttggatcc ggagaatggc agtgggatgg cccttcagcc 1200
 cctacaggca gctccagagc caggggctca gggccagagg gagaagaaca gccagcaccc 1260
 accagctctg gcccctctg ggccaccaagg ccacagtcat gggcaccagg gtggcactga 1320
 tatcacgtgg atggctctcc tgggagatgg tctacacaac ctcactgtatg ggctggccat 1380
 aggtgctgcc ttctctgtatg gcttctccag cggcctcagt accaccttag cggtcttctg 1440
 ccatgagctg ccccacgaac tgggtgactt tgccatgctg ctccagtcag ggctgtccct 1500
 tcggcggtg ctgtgtctga gcctcggtc tggagccctg ggattggggg gtgcagtct 1560
 ggggggtgggg ctcaectgg gcctgtcccc cctcaetccc tgggtgtttg gggtaactgc 1620
 tggggcttcc ctctatgtgg cccttggttga catgttacca gcctgtctt gtcctccgga 1680
 gcccctgcct acgccccatg tgctctgtca ggggctgggg ctgctgtgg ggggcggct 1740
 catgttgcct ataacctgc tggaggagcg gctactgtccc gtgaccactg agggctgtatg 1800
 gggcagtgg aaaggggctcg ggttgcctt cttccccc aaccacagga atggaggcgg 1860
 gacacagggc cagtaggagc aataggattt taataaacag aaccatccc aaaaaaaaaa 1920
 aa 1922

<210> 134
<211> 840
<212> DNA
<213> Homo sapiens

<220>
<221>
<222> 814
<223> a or g or c or t, unknown, or other

<220>
<221> misc_feature
<223> Incyte Clone No: 2774051

<400> 134
 ggtaattcgt actggtcata ttctctgggt gtgagtcaaa tataagttt acaatttagt 60
 ctgaaaacat tccattgago tggggaatgc aacagtctta ttacctcatc atggaaattct 120
 ctatgttagt taatttaaat attgtttctt agtttctggg tcaattaaat ttaaatgtatg 180
 tagtttatgc ttctgtacca attaaattac tagtttatta caaaaaaaaaat tatcatctt 240
 tttgattaaa gagctgtggg tacagtatat ttataagca attttcattt gttcaaaaat 300
 gttccctttag gctagattaa gcagccattc attgttagag cctggagacc ttattcgaag 360
 gtgttcatcg tattcacagt gcactattac tttagaactaa agccaattga acctacttag 420
 caatagcggtt atgcctttca cccttgcgttga ttatggagct tatagctctc agaaacaata 480
 cacctgtcag ttccatcaa ctatagcaat ccatgcgaaaa gacaagaggc cccctcaaaag 540
 caggagggtt attgttttag gtccaaatttt tctttattgtt ctccaaaatca ttataaggtg 600
 gagctgtttt tgtgaagatt ttctttttcc cagctctaag aaaccatgtg gaaagaattc 660
 attgataact gttttgattt tttttttttt ttaagtacag gttttgcataa gtaatcaccc 720
 ttatgtgagcc tgtgttagttc agctgcctgt gagatgtttg gtgaccagct cagtggtatc 780
 ttgtattctt gatagagaat atttcagggg acanagtgtt ctccagaca gactcaaaata 840

<210> 135
<211> 1344
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2869038

<400> 135
gcaattgtat ctaaaagcca ctaataaattt ctagggttt agtctagaag ccaagcaaac 60
tgtcaccaat gtcagggttta aatttgcattt caacatgagg cttcagactc atgacaatgt 120
tatacatgaa aacaaaaata taattgtgtc taccccttta ctttccctt tgacatatgt 180
agtggaaatt ttacatagtc taaaatccca tattttagaat cttacctgtt tctataataa 240
tttagaaaaat gccaaggtag tgatagaata ttgtggcatt gaagtgcgg aaaaattgtt 300
agtttagca tcaaaaaagt aaatagatgt tgaaatgaat ttttgatgt gccagggttga 360
agagagtgtg ccagtgcacag gaagtagtct aaaaaattaa cagttatggc tttatagga 420
tctgaaagac aatctttaaa gaaatgggg aattggggg tattcagtgaa ctataccaa 480
ccctctttt tacataaata tgggtatgt gcttagatata aaaaatcgat tcttactggc 540
accatttaca gtttagaaaa caatctttt cttaaaaatg cccatctgtat ttctatttt 600
aggagctact tggatttgc tgatttttt ctacgtgaaa atatatgtac tcttcacttt 660
tgttccagta ctataattgc tcatgcactc ttctccctt ttgagaacat tcagtgaaat 720
acaacttcat caaagatttgc tctaaaggag aagaatcgca tgagtgtgaa aagtagatgc 780
tcgtagccag aacagaaaaag gtacacatg atcatggcac agaagatagg aggtttgact 840
tggtgggcca taatgtttt tattttttt gaaataacag ggaccacgag cagtttctc 900
aggataaatg ctctccccca ctctctatg aacaggtgtg gggaggctt cttccattt 960
tcatattttt acacctctt aaaaaagcaa tttaatgtt aggttagtgg aattgtttaaa 1020
aatctgagag gaatgtatgac tggaggtgtt tggggttttt ttctgtattt attttttaat 1080
gagaaaaatgtt taaaatgtatg tacaggttag acccaactac taccttacta ttataggacg 1140
attctatgtt tctgtttaaag tattcaagta gtttctctg gggggaaaaag taccacttgg 1200
acacttaaag gaattgggat tttgtctac tttggataag gcagttgact tcttaagtaa 1260
aagcaatgtt gtaaaaatgtc attttgtttt gaatgttaag tgagcaaata aaaaacatgt 1320
tqaaaattgtt gaaaaaaaaaaa 1344

<210> 136
<211> 443
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone No: 2918334

```
<400> 136
ctcgagattt tttatattta tgcatgccat ttagtttgct cctaaaaata gtgatactgg 60
tttagtttt ttacttacta aatcagtata gccaaatgtc cattttccta gtggtaatat 120
gcgatcagaa ttctgagat tatttatgtg actattttg gaaaagttc ttttgataaaa 180
acatggattt attatatgaa attttcttg cactgttata caatataatgc tatgatatacc 240
cttttatttt ttcaactta aatatgtatgt tttatattgt ttttagactta cgaatcgtgt 300
tttcagaac cataaggaa tatctatctc ctcccacttacttac atatattgaa 360
aagtctatga aattcaagtc tagcatttga attctctatg ctatcattgc attacctaa 420
ttatattactt taaaatttta ggg . 443
```

<210> 137
<211> 467
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone No: 2949916

```

<400> 137
gcccatttaag gagatctgtt ttgcttgaat attctgactg tcagtcggca gacataggga 60
gtgtgtgagt gtgagtggtt accaagatga ggaggataat caggctccgg ctccgttttt 120
ctgacacttt tatggctgcc tttttctgt gcctgggctt cgttctcatg ctctttccct 180
cgttgttgcg ggatgggtgc agcacatcagca gctgcagaaa ctcttgcgtca tctcttagct 240
ccgaggagcg tcattttctcc aaccttgaat aaaagcccat cctctacactg attggggcac 300
tcagatcaag ggcttaaacac tagcaacagt tgctaaggca ctgcttagata ccgattagct 360
gaaggctggg tgtctgaacc aatcattgcc aaggggggcgg gacttggcccc atccctggaa 420
ctatgaatgt ctcagccccct tgagatcacc tggggctggaa agaaaagt 467

```

<210> 138
<211> 902
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone No: 2989375

```

<400> 138
cactgcactc cagtcttaggt gacagagaag gactcgctc aaaaaataaa aataaataaa 60
aaggaaagcaa ggctaattcat cagtatgtgc ttgttacaag agctatgtg aaggcactcc 120
ttcgagttta accaaatggat atcatctctg tcatgtgc tca caccgcctcac agggactcca 180
tgtgtgaaga ttcccccttc actcaccaga tcatctccat ggcacacagct tgccagcctgc 240
tcttggagtgc ctttggggc gcagcttc tgcttagttt tgatggagg gaatggagga 300
ggtaaaatccca cagattaaga atatgtgtc aggagtccagg cagccaaagggt cagaagccag 360
ctctgtttt cagtgttttctt ctttacaac acaggactttt gcaaggaaca tataattctg 420
tgactagcgc cattttggaaa atgttggaaac tgaagtagag atgagagatc ttacgtctgc 480
ctacccagtg agatacgggg aaggtcaagg gaaaaaaaaat tccaagctct tctttatctg 540
ctataggaaa tgaacattca atttttgc tgcacacgc agaggtcaag gaccggcagaa 600
gccagccccgc tacttccaaat ttgagagccc ctggtcatac cctccagttt agctcagatt 660
tgtcacaaat ttaccccttc ctttccctc cattttccat gacctgcaga gagagatgtc 720
agatacccttc ctctttggccccc cccatggca tccataagaa acttacttga agcaagaaggc 780
ccagttatagg tgtctgggcattt gttggacatt tccctgttgc agatctgtcc gaatagagcc 840
atctgggtatc atgacgcaga gggcatttga taaaataactg gaaaagtccaa taaaatcttgc 900
tc
..
```

<210> 139
<211> 1332
<212> DNA
<213> *Homo sapien*

<220>
<221> misc_feature
<223> Incyte Clone No: 3316764

```
<400> 139
cgcagatgtg ctttcctgg tggttgagat gctgatccta cagcaccc gctgtgcctc 60
agcagtggc tgggtgtaaa ggcaggaggc ttgctgggt ctgacacttc cctgcccccc 120
tccaggaggc acacatctgg ggctctatga ggaggacacg tttcatcctg ggctctggac 180
ttctctcatt tgtggcccttc tggaactcag tgacatggca ttttcagaga ttttggggtg 240
cttctggcta ctttggcaa gcccagtggg agaggctgt gactacattt gaagggaaagg 300
agtggatctt cttcttata ggtggccatcc aagtgccttg tctttcttc tggagcttca 360
```

atgggcttctt attgggtggtt gacacaacag gaaaactaa cttcatctct cgctaccgaa 420
 ttcaggtcgg caagaatgaa cctgtggatc ctgtgaaact gcgcgcgtct atccgcacag 480
 ttctttcaaa ccagtgcattt atatcttcc ccatgggtgtt cttctcttat cccttctca 540
 aatggtggag agacccctgc cgccgtgagc tacccacctt ccactgggtt ctcctggagc 600
 tggccatctt cactgtgatc gaggaaatgtt ttttctacta ttcacaccgg cccttcacc 660
 accccaacattt ctacaagaaa atccacaaga aacaccatga gtggacagct cccattggcg 720
 tgatctctt ctatgcccac cctatacgatc atgcagtctc caacatgcta ccgggtatag 780
 tggggccattt agtaatgggc tcccacttgtt cctccatcac catgtgggtt tccttggccc 840
 tcatcatcac caccatctcc cactgtgggtt accaccccttcc cttctgcct tcgcctgaat 900
 tccacacta ccacccatctc aagttcaacc agtgctatgg ggtgctgggtt gtgctggacc 960
 acctccatgg gactgacacc atgttcaagc agaccaaggc ctacgagaga catgtccctcc 1020
 tgctggctt cacccegttc tctgagagca tcccagactc cccaaagagg atggagtgag 1080
 agacagccata agtgtcatcc tggctgtccc tcaagccatgg gatcagacca cggcttcctg 1140
 attgcaccta acaatttgc tcccttcggcc acacgcctta atgatggcac caccaggta 1200
 gagggaaaggc cggttccccg gaaaaggcagg gccaaggatg aggcttctt caaactactg 1260
 cccttgcgtt ccctcaatgg gatcaggagt tagctaaaaaaa aaaaaaaaaa acaactgcgg 1320
 ccgcaagttt at 1332

<210> 140
 <211> 1252
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 3359559

<400> 140
 gtgaggaagg tagcttttagt gaaaacaggg tttggagttt aacctatacg ggttcaaattt 60
 cgacttccgtt ccaccaccga gacctgcgtt ccctgagggc ctcgccttcc catccgcgaa 120
 accaggacgg cgccgcctac accccggggc gtteggggcg ggctgaatgg gtcgctgagt 180
 aggggctaca cccacgcctt tegetccccg ccccccggcac ggagcgcacgg ccacggcagt 240
 gtccccaaagg caccgaaacc gaggcgggggg ttcgttccc tccgcgaag gagggaggcg 300
 gacgtacgtt ggcaggactc accccccccgc acgtggcagg actcaccgc cccgcgcgtg 360
 ttctccgagc catggcgcca gegetgtggc gggctgcaa cggactcatg gccccttct 420
 tcgcgttggc ggccttgggtt caggtaaatg acceagatgc agaggtgtgg gtgggtgtgt 480
 acacaatccc tgcgtactg accctgttgc ttggacttaa ccctgaagtc acaggtaatg 540
 ttattttggaa aagtatctt gcaatacaca tactttttg tacgggtgtgg gctgttggct 600
 tggcgcttca cctcttgcat cgtacacaac agaacatctt acatgaggaa gaaggcagg 660
 agctgtctgg tctgggtattt attacagcat ggattatctt gtgccacagt tcctcaaaga 720
 atccagtgg tggaaaggattt caattggta ttgcattgtt aatcacactt ttccattttt 780
 tctcatgggtt ctacatatat attaacaagg aaatgcggtc ctcttggcca actcaactgca 840
 agacagtaat taaaataaaat tcaagaactt cgtttttaaa atgaatattt tcaatcaatt 900
 ttttataaaac attaggggaa caagccagga gtttatttca ggttaatttgg gctaataatgtt 960
 ttaaaactcc aaataactttt ttaagggtgc atataattcg atgttaagattt ggatgggaca 1020
 agtaagagat ggtctgatattt tttccagacg actttctgca gggcttggc tcataatgtt 1080
 gtggaaaagg ctagagaataa gaagttttaaa aatacagatgtt ctaacttaac ttgtacta 1140
 tgtaatttgg gcaaaatataat aaacctctgtt gtggatattt atctataaaa taggattaat 1200
 gcccagagtgtt acttacttac acagtaacaa ggatcaatctt agataatgtt tg 1252

<210> 141
 <211> 721
 <212> DNA

<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 4289208

```

<400> 141
ggagactgca ttccctgccc tgaaggaatg tatttctaag gcaaataaggc aacttggcac 60
tatcttattc tgagtagaga gtggagaaaag tattttcaga ctgaagaaaaa ctttggaaaag 120
tcaggagctt agctgtcggtt agtcagtgc cgcatgg ctgtgggttgc cgcggaaac 180
aacggggaaag ttcttgacag agtctgtgtc cgctcagtcc ctgcactttt ccttccaaa 240
tgcattcttgtt tggatatatggaa atagatcgta gatgtttagt actgagattt gggactatgt 300
tgggaccgtt cagggtgaatg tgcacccctcc acaaaatggct tctccgagttt agtacacgtca 360
cctgggtcggtt ggaggtggag ctgcggctgg agtaaggctt gctgtgggac gcccctcgatc 420
tttgctcccc ttgcgggtgg ttgcgcaccc gagagcattt ggatccccc ccgactgggt 480
gctaagtttgc ttctgtcccc gggtggctgg ggaaagggggg gttgtgggtt cggggaaaaaaa 540
aaatccggg gaaatccctc ctggcaaaat tccgggttggt tcacattggg aacctggttt 600
acctaaattt gggtaaaagg ggtccctaat aatttcgcctt gggaaaattcg tgggggggtt 660
ccccaaaggaa ccccccgtt gtcggcgggg ggagaaaattt gaagagcccc tttcgaaatg 720
9

```

```
<210> 142  
<211> 1704  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte Clone No: 2454013

<400> 142
cgcttcgcgc taacgcttgc gatggttgaa ttccccctcct cacgccagcc taggagaaga 60
agttcgtagt cccagagggt aggccaggagg cgccagttc tggcgggtga gggcggagct 120
qaagtgcacag cggaggcgga agcaacggc ggtggggcgg agaagggggc tggccccagg 180
aggaggagga aacccttccg agaaaaacagc aacaagctga gctgctgtga cagaggggaa 240
caagatggcg gcgcgcgaagg ggagccctctg ggtgaggacc caactggggc tccgcgcct 300
gctgctgtctg accatggct tggccggagg ttccgggacc gettcggctg aagcatttga 360
ctcggctttg ggtgatacgg cgtcttgccca ccgggcctgt cagttgaccc accccttgc 420
cacctaccc aaggaagagg agttgtacgc atgtcagaga ggttgcaggc tttttcaat 480
ttgtcagttt gtggatgtat gaattgactt aaatcgaact aaatttgaat gtgaatctgc 540
atgtacagaa gcatattccc aatctgtat gcaaatatgt tgccatctt gttgccagaa 600
tcagctgcca ttctgtacac tgagacaaga acaacttatg tccctgtatgc caaaaatgc 660
cctactctt ctctactactc tggtagggc attctggagt gacatgtgg actccgcaca 720
gagcttcata acctttcat ggactttta tttcaagcc gatgacggaa aaatagttat 780
attccagttt aagccagaaa tccagttacgc accacattt gggcaggagc ctacaaattt 840
gagagaatca tctctaaagca aatgtccta tctgcaaattt agaaatttac aagcgcacag 900
gaattttctt gaagatggag aaagtgtatgg ctttttaaga tgcctcttc ttaactctgg 960
gtggattttt actacaactc ttgtctctc ggtgatggta ttgttttggta ttgttgtgc 1020
aactgttgc acagctgtgg agcagttatgt tccctctgag aagctgatgt tctatgttgc 1080
cttggagttt atgaatgtacaaa aatgtctttt cagatatcca gtttttctc ttgtgttgt 1140
tagatctaaa actgaagatc atgaagaagc agggcctcta cttttttttt aatgttgc 1200
tcattctgaa atttaaatgttttttta aatgttttttta aatgttttttta aatgttgc 1260
caactcctcat agatgttttta aatgttttca attttttttta aatgttttttta aatgttgc 1320
aaatgttttttta aatgttttttta aatgttttttta aatgttttttta aatgttgc 1380

tgttttgtta gtaatttaag aggtggatgt ttgggattgtt attattattt tactaatatc 1440
 tgttagctatt ttgttttttg ctgggttat tggttttttc cctttctta gctatgagct 1500
 gatcatgtc ccttctcacc tccctgccatg atactgtcag ttaccttagt taacaagctg 1560
 aatatttagt agaaaatgtat cttctgctca ggaatggccc acaaatactgt aatttgaat 1620
 ttagcaggaa atgacactta atgacactac atttcagga actgaaatca taaaatttt 1680
 atttgataaa taaaaaaa aaaa 1704

<210> 143
 <211> 964
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2454048

<400> 143
 cagacagcg cgccgcgcagg acgtgcacta tggctcgcccc ctgcgtgcgc cggttgcgc 60
 ggctccctcggt gctggggctc tggctggcgt tgctgcgcgc cgtggccggg gagcaagcg 120
 caggcaccgc cccctgtcc cggcgcagct cctggagcgc ggacettggac aagtgcattgg 180
 actgcgcgtc ttgcaggcgc cgacccgcaca ggcacttgc cctgggtgc gctgcagcac 240
 ctccctgcccc ctcccggtcg ctggccca tccttggggg cgctctgagc ctgacccctcg 300
 tgctgggct gctttctggc tttttggctt ggagacgtat ccgcaggaga gagaagttca 360
 ccaccccat agaggagacc ggccggaggg gctgcccgc tggccgcgt atccagtgac 420
 aatgtgcccc ctgcgcaggcc actcatcatt cattcatcca ttctagagcc 480
 agtctctgccc tccccagacgc ggccggagcc aagctccctcc aaccacaagg ggggtggggg 540
 gccgtgaatc acctctgagg cctggggccca ggggtcaggg gaaccttcca aggtgtctgg 600
 ttgcctgccc tctggctcca gaacagaaag ggagcctcactc gctggctcactc aaaaaacagc 660
 tgacactgac taaggaaactg cagcattgc acagggggagg ggggtgcct cttccctaga 720
 ggcctctgggg gccaggctga cttggggggc agacttgaca cttagccccca ctcactcaga 780
 tgtccctgaaa ttccacccacg ggggtcaccct tgggggggttta ggacettatt tttacacta 840
 gggggctggc ccacttaggag ggctggccct aagatacaga cccccccaaac tccccaaagc 900
 ggggaggaga tattttttt ggggagagtt tggaggggag ggagaattta ttaataaaag 960
 aatc 964

<210> 144
 <211> 1564
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2479282

<400> 144
 ggaatttgtgg gagttgtgtc tgccactcgg ctgcggagg cgaagggtcc ctgactatgg 60
 ctccccagag cctgccttca tctaggatgg ctccctggg catgctgcctt gggctgctga 120
 tggccgcctg cttcaccttc tgccctcagtc atcagaacct gaaggagttt gccctgacca 180
 acccagagaa gagcagcacc aaagaaaacag agagaaaaa aacccaaagcc gaggaggagc 240
 tggatgccga agtcctggag gtgttccacc cgacgcattga gtggcaggccc cttcagccag 300
 ggcaggctgt ccctgcagga tcccacgtac ggctgaatct tcagactggg gaaagagagg 360
 caaaaactcca atatgaggac aagtccgaa ataatttggaa aggcaaaagg ctggatatca 420
 acaccaacac ctacacatct caggatctca agatgtcact ggcaaaattc aaggaggggg 480

cagagatgga gagttcaaag gaagacaagg caaggcaggc tgaggtaaag cggctttcc 540
 gccccattga ggaactgaag aaagactttg atgagctgaa tttgtcatt gagactgaca 600
 tgcagatcat ggtacggctg atcaacaagt tcaatagttc cagctccagt ttggaaagaga 660
 agattgctgc gtcctttgtat ttgttgcatt atgtccatca gatggacaat gcgaggacc 720
 tgcttcctt tgggtgttca aagtgggtga tcaatgggtca gacacgacaa gagccccc 780
 tgaaggagta tgctcggtt gtgtggggcg ctgcctttc cagcaacccc aagggtccagg 840
 tggaggccat cgaaaggggga gcccgtcaga agctgttgtt catcctggcc acggagcagc 900
 cgctcactgc aaagaagaag gtcctgtttt cactgtgtc ctcgtgcgc cacttccct 960
 atgcccagcg gcagttctcg aagctgggg ggctgcaggc ctcgtggacc ctgggtcagg 1020
 agaaggcaca ggaggtgtc gccgtgcgc tggcacact gctctacgc ctggcacgg 1080
 agaagatgtt cgccgaggag gaggctgagc tgaccaggaa gatgtccca gagaagctgc 1140
 agcgtatcg ccaggtacac ctccgtccag gcctgtggga acagggtctgg tgcgagatca 1200
 cggcccacct ctggcgctg cccgagcatg atgcccgtga gaaggtgtc cagacactgg 1260
 gcttccttcctt gaccacccgc cgggaccgtt accgtcaggaa ccccaagctc ggcaggacac 1320
 tggccagccctt gcaaggctgat taccagggtgc tggccaggctt ggagctgcag gatggtgagg 1380
 acgaggggcta ctccaggag ctgtctggct ctgtcaacag ctgtctgaag gagctgagat 1440
 gaggcccccac accaggactg gactggatg ccgttagtga ggctgagggg tgccagctg 1500
 ggtggccattt tcaggcaggaa ggacatcttgc agtgcgttgg cttggccattt aaatggaaac 1560
 ctgg 1564

<210> 145
<211> 1385
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2483432

<400> 145
 gtccggccgc cgctgcgtcc cggagtgcata gtgagttctt cggctgtcccc gcggggccggg 60
 gtggggagcc gacatgcgcc cgcttcgtcg ctccttcgtt gtcgtcgccg gctgcaccc 120
 cgccttgcac ttgtgtcgat cgctgtgc cggggggccg agactgggtt ccaccggaaa 180
 ggctggggcc aggtcgctgtt ggttcccttc cggactggca gagctgcggg agctctgt 240
 ggtcttcgtat gaggatggaa aggagccatc ggcctacgtt ttcctgtct tctgcggcgc 300
 ctacttcata aaacagggtt ttggccatccc cggctccagc ttcctgtat ttttagctgg 360
 tggccatggc tggggcttctt gctgtgtgtt gtgttgcacctt cgggtgggtgc 420
 cacatgtgc tacatgttccatcc ccaatgtttt tggcaaacag tttgtgtgtt cctactttcc 480
 tgataaagtgc cccctgtgc agagaaagggtt ggaggagaac agaaaacactt tgttttttt 540
 cttattgtttt ttgagatttt tcccatgac accaaactgg ttcttgcacc tctcgcccc 600
 aatttgcac attccatcg tgcagttttt cttctcgtt cttatcggtt tgatccccata 660
 taatttcata tttgtgtcgat cagggttcat ctcgtcaacc ctaaccccttc tggatgtctt 720
 tttcttcgtt gacactgtt ttaagctgtt ggcattgtcc atgggtggcat taatttcgtt 780
 aaccctcatt aaaaaatttgc gtcagaaaca tctgcatttgc aatgaaacaa gtactgtcaa 840
 tcatatacac agtagaaaaac acacatgtatc tggattttttgc ttttgcacca tccctggact 900
 cagttgttca tttgtgtat ggtgtgttgc ctctaaagcc ctcattgtt tttgttgc 960
 ttctataggat gatgtgtca ctgtgtatca atgtgtgttgc tttttcgtt aaggacactc 1020
 tgcttcgtaa ggtgttattt atcagggtttt cttatcgacc cttgtgttgc agacactgtca 1080
 acagatgcctt cctagaaaaat gttgtttgttgc gcccggccggc gttgttgcacg ctcgtatcc 1140
 cagcaacttgc ggaggccggc gcccgggtt cacaagggtca gggttcaag accagccctgg 1200
 ccaagatgtt gaaatctgtt ctctaaataaa aatacaataaa tttagccaggc gttgtggcag 1260
 gcacccgttac tccctgttgc gttgttgcacccatc tggggaggatc gaggcaggatc aatttgc 1320
 cagaggttgc agtaagccaa gatcacaatc tggggaggatc gttgttgcacccatc tagagtgttgc 1380
 ccaca 1385

<210> 146
<211> 2031
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2493824

<400> 146
tggcgggggg cccacggcgg ccactcactg agccccacgg gccgcagcgg cagtgacgta 60
gggttggcgc acggatccgt tgccggctgca gctctgcagt cggggcggttc cttcgccgcc 120
gccaggggta gcggtgttagc tgccgcagcgt cgccgcgcgt accgcaccca gggttcggccc 180
ataggcgctc ggcagcccg cgccatctc atcgagcgcc atggccgcag cctgcgggcc 240
gggagcggcc ggttactgtc tgctcctcgg ctgcatttg tttctgtga ccgeggggccc 300
tgcctctggc tgaaacgacc ctgacagaat gttgtcgcgg gatgtaaaag ctcttacccct 360
ccactatgac cgctataccca cctcccgcaag gctggatccc atccccacagt taaaatgtgt 420
tggaggcaca gctgggttgtg attcttatac cccaaaagtc atacagtgtc agaacaagg 480
ctgggatggg tatgtatgtac agtggaaatg taagacggac ttagatattt catacaaatt 540
tggaaaaact gtggtgagct gtgaaggcta tgagtcctt gaagaccagt atgtactaag 600
aggttcttgtt ggttggagt ataattttaga ttatacagaa cttggcctgc agaaactgaa 660
ggagtctggaa aagcagcacg gcttgcctc ttctctgtat tattattata agtggcctc 720
ggcggattcc tgaacatga gtggattgtat taccatcggt gtactccttggatcgcctt 780
tgttagtctat aagctgttcc tgagtgcgg gcagtattct cctccaccgt actctgagta 840
tcctccattt tcccaccgtt accagagatt caccaactca gcaggaccc ctcggggcagg 900
ctttaagtct gagttcacag gaccacagaa tactggccat ggtgcaactt ctgggtttgg 960
cagtgtttt acaggacaac aaggatatga aaattcagga ccagggttct ggacaggctt 1020
gggaactgg ggaataacttag gatattttttt tygcagcaat agagcggcaa cacccttc 1080
agactcgtgg tactaccgtt cctatccctt ctccttacccct ggacacgtggaa atagggctta 1140
ctcacccctt catggaggct cgggcagcta ttccgtatgt tcaaaactcag acacgaaaac 1200
cagaactgca tcaggatatg gtggtaccag gagacgataa agtagaaaatg tggagtcaaa 1260
caactggatgc agaaattttt gatattttcat cactttctt ttaaaaaaaaa agtactaccc 1320
gttaacaatt gggaaaaggaa gatattcaaa agttctgtgg ttttatgtcc agttagtgc 1380
tttgtattctt attatttgag gctaaaaggat gatgtgtgac aaaataactta tttgtgtat 1440
gtcagtgtaa catgcagatg tatattgcgt tttttgaaag tgatcattac tttgtgtatgc 1500
taaaaaataca ttaatttctt aaacctgtga tggccctaaga agcattaaga atgaagggtt 1560
tgtactaata gaaaactaagt acagaaaaattt tcagtttttag tgggtttag ctgtatgttt 1620
attacctcat agagactata atattctatt tggatttata ttatgtatgt tttgtgttc 1680
ttcaaacatt taaaatcaagc ttggactaa ttatgtcaat ttgtgagttc tgatcactt 1740
tgagctctga agctttgaat cattcagtttgg tggagatggc cttctgttaa ctgtatgttt 1800
ccttcgttag gaaaagggtgg aaaataagca tctagaaggt tttgtgtaa gactctgtgc 1860
tggcaaaaat gcttggaaacc tctatatttc ttccgttcat aagaggtaaa ggtcaaatttt 1920
ttcaacaaaaa gtcttttaat aacaaaagca tgcagtttcc tttgtgtaaatct caaatattgt 1980
tgtaatagtc tgttcaatc taaaaaagaa tcaataaaaaa caaaaaaaaaa a 2031

<210> 147
<211> 1790
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> Incyte Clone No: 2555823

<400> 147

gcgggaggac cggctgaccc tggatggtga ggccgggtgc ccgcctgtgc ctggggagtg 60
 tggggaggg gctgtgcctg gtgtcccccc tgcgtttgtct cggcgcaggat ttccctcttc 120
 tgaacacgt ctcatccag cgccggccggc acgagaccac ctggaccatc ctgcggcgct 180
 tcggctacag ctagccccctg gagctgactg cggactatct ctccctctg atccacgtgc 240
 ccccccggctg cagcacggag ctcaaccacc ttggctacca gtttgtcag agagtgtttg 300
 agaagcacga ccaggaccgc gacggcgecc tctegccctg ggagctgcaa agcctttca 360
 gtgtgttccc agcagcgcgc tggggccccc agctcccaag cacagtcgc acagaggccg 420
 gccgggtgcc cctgcacgga tacctctgcc agtggacccct ggtgacctac ctggacgtcc 480
 ggagctgcct tggacaccta ggctacccctg gctacccac cctctgtgag caggaccagg 540
 cccatgccat caacgtcaact cgtgagaaga ggctggacca ggagaaggaa cagacgcage 600
 ggagcgtctt cctgtgcag gtggtagggg cccgtggagt gggcaagtct gccttcctgc 660
 aggcccttctt cggccgcggc ctggggcacc aggacacgag ggagcagect cccggctacg 720
 ccatcgacac ggtgcaggatc aatggacagg agaagtactt gatcctctgt gagggtggca 780
 cagatggctc tgcgtggcaca tcgcgtggacg ccacccgtga cgttgcctgc ttgtatgtttg 840
 atggcagtga cccaaagtcc tttgcacatt gtgcgcagcgt ctacaagcac cattacatgg 900
 acgggcagac cccctgcctc tttgtctctt ccaaggccga cctgcccggaa ggtgtcgccg 960
 tgtctggccc atcacccggc gagttttggc gcaagcacccg gctacccgct cccgtgcctg 1020
 ttcctgtgc tggcccgacc gagcccgaca ccacccatett caccacatc gccacccatgg 1080
 ccgccttccc acatttggtc cacgcagagc tgcatccctc ttccctctgg ctccgggggc 1140
 tgcgtgggggt tgcgtggggc gccgtggccg cagtcctcag ctttcactc tacaggggtcc 1200
 tggtaagag ccagtggatc ccctgttacc caagcccccct cccctgaccc ggggtgtgcct 1260
 cgctgctggg gctctgcagg ggcagcacag ctgggggtgc ggcagggctg ccactccggg 1320
 aacgcctttg cggccggact ttttgtttct gaaggcagtc gatcgtcgc ggggccttat 1380
 gctgcctatgc actgccttgg ctccctggccg accccccaggg tggccgtgg caggtggctg 1440
 agcaggagct cccaaagtgc ggcacccgt gtcaggaggatt gcccacccct gggcatcatg 1500
 tgtgtggggc cggggaggac aggtgtggg gctggtgacc ccagacccag aatttcctagg 1560
 gcttacccccc ctttccttgg tccttaggtgg ccagtgggtt tgaggaggcc tggaaaggcag 1620
 agcttgggc caaaaggcagg cgttgggggg tccccctca agtttggagc cgtttccgtg 1680
 gttgttagcag aggacccggag gttgggttcc tgattaaact tcactgtgtg ttttctatct 1740
 cggatcccaag tctctgaaga caacttgct tgattcaacc taaaaaaaaaa 1790

<210> 148

<211> 1979

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature

<223> Incyte Clone No: 2598242

<400> 148

ctactcctca ctggccggga caactggctt tatcacggag gctggggcca ggcagccctt 60
 cggttcgggt gggcccatgg accccagttcc aacgcgcagg gaataggacc atccaaaagc 120
 ggaacccctcg cctcagaaaa aagggtgcggg acccccttc acctgtgcggt cacgcgtgg 180
 ccctgcacgc agccaggccca tggagcttc tgatgtcacc ctcattgagg gtgtgggtaa 240
 tgagggtatg gtgggtggcag gtgtgggtgt gctgattata gccttggtcc tagttggct 300
 ctctacccatc gtacgcagaca ggggttagcaa ccagtcctg ggcgcatttgc tgtcagcagg 360
 cgacacatcc gtccctccacc tggggcatgt ggacccatctg gtggcaggcc aaggcaaccc 420
 cgagccaaact gaactcccccc atccatcaga gggtaatgtat gagaaggctg aagaggccgg 480
 tgaaggctgg ggagactcca ctggggaggc tggagctggg ggtgggtttg agcccaagcc 540
 tgagcatctc ctgcacatcc aaggccctgcc caaaagacaa gcaggtgcag gcagcagcag 600
 tccagaggcc cccctgagat ctgaggatag cacctgcctc cctccctgac ccgtgcctcat 660
 cactgtgcgg ctcaaattcc tcaatgatac cgaggagctg gctgtggcta ggcagagga 720
 taccgtgggt gccctgaaga gcaaatactt ccctggacaa gaaagccaga taaaaactgtat 780

ctaccaggc cgcctgtac aagaccgac ccgcacactg cgttctctga acattaccga 840
 caactgtgtg attcaactgcc accgctcacc cccagggta gcttccag gcccctcagc 900
 ctccccggcc cccctcgccca ctgagccacc cagccctggta gtaatgtgg gcagccat 960
 ggtgcctgtc ttgtgtgtc tggtgggtg ggtctgtac ttccgaatca attaccgcca 1020
 attcttcaca gcacactgcca ctgtctccct ggtggagtc acgttcttc ttagcttc 1080
 agtattttggg atgtatggac gataaggaca taggaagaaa atgaaaggca tggtcttct 1140
 cctttatggc cttcccaactt ttccctggcca gagctggcc caagggccgg ggagggaggg 1200
 gtggaaaggta tggatggaa atctccctcca taggacacag gaggcaagta tgcggccccc 1260
 ccttcctcatc cacaggaga cagatgtccc tcccgtgcga gcacaactca ggttagaaatg 1320
 aggatgtcat cttcccttac ttttagggta ctctgaagga gttcaaagct gctggccaag 1380
 ctcagtgggg agccctgggtc ctgagattcc cttccacactg tggttctgac tcttccca 1440
 gtcctgcattc tctgcggccca gcacccaggc ctgcctgcga gggcagctca gcatggcccc 1500
 agcacaactc cgttagggagc ctggagttc cttccatttc tcagccaaat actcatctt 1560
 tgagactgaa atcacactgg cgggaatgaa gatttgccca gccttctt atgggcaccc 1620
 agccgccttc accttcttcc tctacccctt agcaggaaata gggtgtccct ctttcttca 1680
 aagcaacttgc ctgcattttt attttatttt ttaaagagtc cttcatagag ctcagtcagg 1740
 aaggggatgg ggcaccaagc caagggccca gcattggag cggccaggcc acagctgtg 1800
 ctccctgtt cttcaggctg taagcaagag acagcaactgg cccttggcca gcttcctacc 1860
 ctgccccact ccaaggactg ggtatggatt gctggccctt aggttcttgc ttctggggct 1920
 attggagggt cagtgtctgt gactgaataa agttccattt tgggtcaaa aaaaaaaaaa 1979

<210> 149
 <211> 1810
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2634120

<400> 149
 cccctgccc gcctctccgc acaatacttg aacatttcattc tttactgaag ttacttgc 60
 accggggaa ttccggaccc gggggagccg ggggtgtgagg ggactggacc agcttggact 120
 gagacctgag acceggccgg tggggccca ttggggactg cggcaccatccc aggcttggta 180
 ttgtttactt gtattgagcg gccggcaccgg cccggaccggc attatggctg gggggccca 240
 ccaagaatgg ggaccatggg acttcccttccag cttggcttcc cccacttttt catcgat 300
 gaaaccttgc tcccatattgc ccagggaaactt gccacttgc ttgtccatgg aaatagcagc 360
 caacggacac ctcccgatgc cagtgtcaag gctggaaatg gccccctttt agttggccatg 420
 ggaaccttagt aacagactct gctggccctt cttccctgc ctttcttcga ggcgggggtg 480
 gggcttcggg accccggggta tgagccggc caggccccc cccctccgcg aggccctccgg 540
 gggggccggg cttaccatgtt agggggagggg agatctatcc acataacctca ggtggccatg 600
 gtggaggtgc agctggagag tgaccacggg taccggccatgg gcttgcgtgg ggccttc 660
 gcttgcacca ccgtgtgtt ggctgtgcac ctctttgcac tcatggctc cacgtgtctg 720
 ctggccccaca ttgaagctgtt gageaaccatc cacaacactca actctgttca ccagtcgc 780
 caccagagac tgcacccgtt cgtggagctg gcttggggct tttccactgc cctggccacc 840
 ttcttccttcc ttgtgttactt gttccctgggtt ggttgggtca agtttggcc cattggggct 900
 cccttggaca caccgacccc catggtgccc acatccgggg tggccgggac tctggccacca 960
 gtggctaccc cccttagtcc agcttccaaat ctcccaacggt cctctgcgtc tgcagcaccg 1020
 tcccaaggctg agccagccgtt cccaccccgga aacggccgtt gttgggtgg gggccatggg 1080
 ccaggctggc aagcagccat ggcctccaca gccatcatgg taccgggtgg gctcggttt 1140
 gtggcccttttgc ccctgcattt ctaccgttcc ttgggtggcac acaagacaga ccgttacaag 1200
 caggaacttag aggaactgaa tggccatgtc ggggagctgc aggttgcgtg agactgggtt 1260
 tagccacccgc tcactgcaag cactgcctcc ctccgggggtc tggtaagggc cgcaggggcc 1320
 tacagacccctc atccccccat cccctggctg gaggccatcc cagtggccac ttcaggccag 1380
 agttcagatt ctcggccca ggttcccttgc gctggccctt gggccagctc ccacattccc 1440

```
<210> 150  
<211> 535  
<212> DNA  
<213> Homo sapiens
```

<220>
<221> misc_feature
<223> Incyte Clone No: 2765411

```

<400> 150
gaggAACCCAG aaatttGTCCTC ttGAATAATG ttTCCCgtGT tgggCTGGAT cttGATAGCA 60
gttGTTATCA tcatttCTCT gatTTTACA tctgtcACCC gatGCCTATC tccAGTTAGT 120
tttCTGcAGC tgAAATTCTG gaaaATCTAT ttGGAACAGG agcAGCAGAT ccttaAAAGT 180
aaAGCCACAG agcatGCAAC tgaattGGCA aaAGAGAATA ttaaATGTTT ctTTGAGGGC 240
tcgcatCAA AAGAAATAAA cactCCAAGC atGAAAGAGT ggcAGCAAAT ttCATCACTG 300
tataCTTCA atCCGAAGGG ccAGTACTAC agcatGTTGc acaaATATGT caACAGAAAA 360
gagaAGACTC acAGTATCG gtCTACTGAA ggAGATAcGG tgattCCTGT ctTTGGCTT 420
gttagattCAT ctGGTATAAA cAGCAGTCTCT gagttATGAC ctTTGAAATG agtagaaaaaa 480
aaaattGTTT tgaatttATTG ctttattAAA aaataAAACAT tggtaaaaaa aaaaaa 535

```

<210> 151
<211> 891
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone No: 2769412

```

<400> 151
gaaaagaatc cgaggccacag ataaagataa gtttactgt catgctgctt ttaacataac 60
agagcaacat cacctaggaa aaaagtttg aggaggatt ttaatccata tatttgtctt 120
atggcttagat aaagatttct ctgaaaaaaaaa gaagcatgtc aggaatctct gggtgccccct 180
tttcctctg gggacttcta gcattgttgg gcttggctt ggttatatca ctgatcttca 240
atatttccca ctatgtggaa aagcaacgc aagataaaaat gtacagctac tccagtgacc 300
acaccagggt tgatgagtat tatattgaag acacaccaat ttatggtaac ttagatgata 360
tgatttcaga accaatggat gaaaattgct atgaacaaaat gaaagcccga ccagagaaaat 420
ctgtaaaataa gatgcaggaa gccaccccat ctgcacaggc aaccaatgaa acacagatgt 480
gctacgcctc acttgcac agcggttaagg ggaagcgtag aaagcccgagg aaacagaataa 540
ctcatttctc agacaaggat ggagatgagc aactacatgc aatagatgcc agcggttctc 600
agaccacctt agtagacagt ttctccccag aaagccaggc agtagaggaa aacattcatg 660
atgatcccat cagactgttt ggattgtatcc gtgctaagag agaacctata aactagctgg 720
accatgatct agttcaatga ttggctctt attgaagatg gcttctaaaga aaacaagatg 780
cacagaggac acagaaggac ttggcagcag ggtgatgacc tgatcatttgc ttgtatggat 840
qgtqgcttac ctcttattca cagcttacac ttatgcatgc caaatgtaaag g 891

```

<210> 152
 <211> 2311
 <212> DNA
 <213> Homo sapiens

 <220>
 <221> misc_feature
 <223> Incyte Clone No: 2842779

 <400> 152
 gggcgccgca ccgcagctgg atggctgggg cggccggat cgccgccgccc gccgcccggc 60
 cacgtacgtg gcatgcctgg atgtccctgc cctggctgtg gcatggcgaa cccaaggctc 120
 ctcttcctca ctgccttgc cctggagctc ttgggaaggg ctgggggttc ccageccggcc 180
 ctccggagcc gggggactgc gacggctgtg cgcctggaca acaaggaaag cgagtccctgg 240
 ggggctctgc tgacggaga gccggctggac acctggatct gtccttcctt gggttccctc 300
 atggtggggc tcagtgggtt ctccccgtt cttgtcattc ccctagagat ggggaccatg 360
 ctgcgtctcg aagctgggc ctggcgctg aagcagctgc tcaggttcgc cttgggggg 420
 ctcttggca atgtgtttct gcatctgtc cccgaagcct gggctcacac gtgcagegccc 480
 agccctgggt gtagggggca gagcgtcgag cagcagcaac agctggggct gtgggtcatt 540
 gctggcatcc tgacccctt ggcgttggag aagatgttcc tggacagcaa ggaggagggg 600
 accagccagg ccccaacaa agaccccaact gctgtggccg ccgcactcaa tggaggccac 660
 tgtctggccc agccggctgc agagcccgcc ctgggtggcc tggtccggag catcaaagtc 720
 agcggttacc tcaacctgtc gccaacacc atcgataact tcacccacgg gctggctgtg 780
 gctggcagct tccttgcgtg caagaagata gggctctga caacatggc catccttcctg 840
 catagatcc cccatgggtt gggcgactt gccatctgc tccggggccg ctttgaccga 900
 tggagcgcag ccaagctgc actctcaaca ggcgtgggg gctactggg cgctggcttc 960
 gccatctgtc cccagttccca caaggagata gaggagacgg cagctgggtt cttggcccttc 1020
 acctctggcg gtttctcta catgccttgc gtaacgtgc tccctgaccc tttggaaagaa 1080
 gaggaccctgt ggcgtccct gcagcagctg cttctgtct gtggggcat cgtggtaatg 1140
 gtgttgttct cgctttctgtt ggattaactt tccctgtatgc cgacggccctt gccccctgca 1200
 gcaataagat gtcggattt actctgtgac cgcataatgtg agaggcagag agggcgagtg 1260
 gctgcgagag agaatgagcc tcccgccaga caggaggggat gtgcgtgtgg atgtatgtgg 1320
 tgtgcacatg tgccagagg tttgtgcgcg agacccacac tttgtatccct gtgtgggtc 1380
 cggggccctt tagccgttgc gttcccttccat atgtgtggt taccttcctt tgccggccctg 1440
 tcacccctcac ctccctggagt aagcagcgcg gaagagcgcg actggccca agcagaggcc 1500
 ttgcctgtt gggaccccg gatgtggag acggccaaagg tcccgagggtt caggaaactc 1560
 cagactgtcc caccctccac tggcccttca gcacacacac agtccccagg cggccctagg 1620
 gccaaggctt gggcgcttt ggtccctttt cctggccctt cttcccccac ttctaaagcca 1680
 aaaaaggag aggccaggatgc tccctgtaccc cagccctact cagactgtac agtccccaggc 1740
 tccttagttagt gagctggggat ggcgttccat agaccccttc ctcagggttg ccctggggac 1800
 tcatttcctgg ccaacacggcc ctggcagcac cagcagctt tgcacccctcc agctgccaaa 1860
 cagcagcttcc cccggccagg agcagccca ggcagagag gcctcccggtt ccagctcagg 1920
 gatgttcctg ccacgcacagg ggcaggatgc tccctggagca ggcacatagt gagcccccggc 1980
 agccctgecc agtcaggcc cttttcccttcc cccattggggat ttggggtagg tggggggcggt 2040
 gagggctcca cttgtgcgc gtcaggaaat gtgtccggc agagtgtga agccataatc 2100
 cccaaaccatt tccctgtct gacggccagg tactcagatg gcccacttca cagccaggcc 2160
 tggccctgccttccacccgtt gatgtttca gaagtggccca tcgagaggatc tggatggttt 2220
 tatagcaact ttgtgttatc tccgtttgtt tctgttaata tttgttctat agataagata 2280
 caaataaataatccacat aaaaaaaaaaaaaa a 2311

<210> 153
 <211> 2169
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2966260

<400> 153
 gctgcaggcg gcgacggcta caccatgggc cggctgtgc gggccgccc gctgccgccc 60
 ctgtttcgcg cgctgtgtc tctgtgggtt gggggagcgt tcctgggtgc ctgtgtggct 120
 gggctgtatg agcctggccc agagggcctc acctccacct ccctgtaga ctcctgtcg 180
 cccactggct tggagccact ggactcagag gagecttagtg agaccatggg cttggagct 240
 gggctggag cccctggctc aggcttcccc agcgaagaga atgaagagtc tcggatctg 300
 cagccaccac agtacttctg ggaagaggag gaagagctga atgactcaag tctggacctg 360
 ggaccactg cagattatgt tttcctgac ttaactgaga aggagggttc cattgaagac 420
 accagccagg ctcagaagct gccaaacctc ccctctccct tgcccaagat gaatctgggt 480
 gagcctccct ggcataatgcc tcccagagag gaggaagaag aggaagagga agaggaggag 540
 atggagaagg aagaggtaga gaaacaagat gtggaggaag aggaggagct gctccctgtg 600
 aatggatccc aagaagaagc caagcctcag gtccgtact ttctctcac cagcagcagc 660
 cagaccccg gggccaccaa aagcaggcat gaagactccg gggcaggagc ctcatcagg 720
 gtggaggtgg agagcagcat ggggcccagc ttgtgtgc cttagtac cccaaactata 780
 gtgactcccg gggaccagga ctccaccage caagaggcag aggccacagt gctgccagct 840
 gcagggcttg gggtagagtt cgaggctct caggaagcaa gegaggaagc cactgcagga 900
 gcagctgggtt tgcgtggcca gcacgaggag gtggccggct tgccttatt ccctcaaacc 960
 acagctccca gtggggccga gcaccaggat gaagatcccc ttggctctag aacctcagcc 1020
 tttccccac tggcccttgg agacatggaa ctgacacctt cctgtgtac cttgggacaa 1080
 gaagatctca accagcagct cctagaaggg caggcagctg aagctcaate caggataccc 1140
 tgggattcta cgcaaggat ctgcaaggac tggagcaatc tggctggaa aaactacatc 1200
 attctgaaca tgacagagaa catagactgt gaggtttcc ggcagcaccc ggggcccacag 1260
 ctctggccc tggtggaaaga ggtgtgcctc cgcacatggca gtggccacca tggggcctgg 1320
 cacatctctc ttagcaagcc cagcagaaag ggcagcacc ttctcatgac actgggtggc 1380
 gagcagggggg tggtggccac tcaagatgtc ctteccatgc tgggtgacat ccgcaggagc 1440
 ctggaggaga ttggcattcca gaactattcc acaaccagca gctgccaggc gggggccacg 1500
 caggtgcgcgca gcgactacagg cacgtcttc gtgggtgtgg tggctattgg gcccattgtc 1560
 atcatcatca ttgcgttgg cctgtctac aactgtgtgc aegcctggct gcccagctc 1620
 aagcacgtgt cgacggcgca ggagctgc ttcgtggaga acggtgcaca cgacaacccc 1680
 acgctggacg tggccagcga cagccagtcg gagatgcagg agaagcaccc cagcctgaac 1740
 ggcggccggg ccctcaacagg cccggggagc tggggggcgc tcattgggggg caagcgggac 1800
 cccgaggact cggacgtttt cgaggaggac aegcactgt gagcgcagcc gagggcgcagg 1860
 ccgagtgggc cggcaggacc aagcgagggtg gacccggaaa cggacggccc ggagccagca 1920
 caagccccga gcttaccegg gcccggcccg cggcgtggcc ctggcgcgg gtccttccc 1980
 gettcccccg acttcacacg gcgacttgc gaccaactcc ctcactcccc cccgaggggc 2040
 aggectcaaa gcccgcctt gccccgttt ccegccttg aacccggcc cccggagacc aegccgggc 2100
 cggggccgcg ttcctgcgccc cccggactca attaaacccg cccggagacc aegccgggc 2160
 cagcgaaaa 2169

<210> 154
 <211> 1480
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 2993326

<400> 154

ggtatggggat ctttgtctgg tccttaacca acaggtattt caccaactta ttagcccttt 60
 cttgtaaaat gcccacatct cgccgtggg cagggctccg gccccatggg atccgcctgt 120
 aattactgcc acttctctca tccccatcca gatgcttggc ctttcgggtt cttttgcccc 180
 gggctctggt tggggctcc aggctcaact gagccagata gtcatctgcc agggcctgg 240
 cagcagcage aacctgagtc tcaagggcac ttacgttggt ctgagcagag gctatctgg 300
 cctggggccc ttggtcagca ttggaggtc ggcttcagt tgcccagcc ttagtggcag 360
 cttccgagc ctttagaccct ctcttgaccc gcagggtggc tjcaggcgt tggtttgtga 420
 ctatctgagt gcaagtggg gcctcagaga ttcagagac agaatttggg cccctgctgg 480
 cagcccttcc gccccttggat ttttggggcc tgcataccac tactgaggcc tcaatctgcc 540
 tggtagctgc gtcagtgaca tttagagctt ctatatctc agtgcagta tttatgacct 600
 tagcaattgt cttectggct ttggaggcgt tcttgggtcg gatggaggct gctgtgggt 660
 ggatactggc tgcgttgc gtaatttggc cttgggtggt agctgtatgg gtggcagttg 720
 cagccagcga gacctcggtg gcactagcta tggccttatt tgcagccttc ttagccttgg 780
 aagcttctt aggttgcata gaggttataca aggttggga actggctgac tcattggcaa 840
 ttggagcgtg aatattctgt gagatgactg gtatgtttag gacccgtcaag ggtgacttca 900
 gctgtatagt gcccacccctca tggccagttt gggatttggg gccttgggt gccttggcag 960
 taactcttcc catcttggtgc gcttttttag gctgagcgt gactgaagaa gcctgagttat 1020
 tggttaccc agtggtaggt aaaggctggc tgcatactgggtt aatgactggc aggtttaaag 1080
 cctgccaagt tttttggc ttgttgggtt caatctcatt ggccagctggg actggagggg 1140
 cagcaggtgc agccttagta atagtcatttta tagggccctt ctgggtcttgc cttttcttag 1200
 gcccgggtgac aactgggtgg tccatggcga gggagtcctt ggttgcgc aacagggttat 1260
 gcatcagcag gacactgtcc tcttctgtgg tctcagtcgt tataatctggaa gggaaaggaa 1320
 gccccaggct ccccgggggaa ggcagagggc cctgaaatag aggaccccta tatccgttagt 1380
 catttcteett atccatctttt ctgggaggccc gagtaacagg tgagcctcgt cttcttgaat 1440
 ccagaaggcgt tctgtctctc ccaagtctgc tctctccaag 1480

<210> 155
 <211> 1222
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 3001124

<400> 155
 agaaatatac tatggttact ttggtatctg acacagccat gacaccaatt gctagtgttag 60
 acacaatagc tttgtgtctt ttgcaggag cctggggagg ggcacatggc ccaatgcact 120
 tactggggag actggagaag ccgttctcc tcctgtgtc cgccctccctc ctactggggc 180
 tggctttgtc gggcataaaag acggacatca ccccccgttgc ttatttctttt ctcacattgg 240
 gtggctttt cttgtttggcc tatctcctgg tccgggttctt ggaatggggg ctccggtccc 300
 agctccaatc aatgcagact gagagcccg ggcacccagg caatgcacgg gacaatgaag 360
 cctttaaagt gccagtttat gaagaggccg tgggtggact agaatcccg tgcggccccc 420
 aagagttggaa ccaaccaccc cccatcagca ctgttgcgtt acccccgacca cctgaggagg 480
 aacaacccatc ccatccagag gggtcagga gagccaaact ggaacagagg cgaatggcct 540
 cagaggggtc catggcccag gaaggaagcc ctggaaagac tccaaatcaac ctccggcttc 600
 ggggaccacg ggctgtgtcc actgtccctg atctgcagag ctggcggca gtcccccacat 660
 tagagcctct gactccaccc cctgcctatg atgtctgttgc tggtcaccct gatgtgata 720
 gtgtttttt tggggacaac tggggaccccc cttaaatgac tttcccaaga tttctttctt 780
 ctccacacca gacccgttc atttgcataa cattttccag cgcctactat gtgtcagaaa 840
 caagtgtttc tgcctggaca tcataaaatgg ggacttggac cctgaggaga gtcaggccac 900
 ggtaagccctt tcccagctga gatatgggtg gcataatttgc agtcttctgg caacatttgg 960
 tgactctaccc catatccaaat atttccagcg ttagattggat gatgaggtag ggaggtgatc 1020
 cagagaaggc ggagaaggaa gaagtaaccc ctgagtgccg gctattgctt ctgttccagg 1080
 tgcgttgcg gctgttagaa cccttaggtc tgacagctt gttggatattt attaaaaat 1140

gaggattcca agagtcagag gagtttgcata atgtgcacga gggcacactg ctagtaaata 1200
acataaaaat aactcgaatg ac 1222

<210> 156
<211> 1983
<212> DNA
<213> *Homo sapiens*

<220>
<221> misc_feature
<223> Incyte Clone No: 3120070

<400> 156
 ggaaccgcct ccccgccggc tcttegttt tggccggcg cccgcgctcg caggccactc 60
 tctgtgtcg ccgcgtccgc gegetctcc gacccgttcc gtccgcgtcc gctcgcccc 120
 ggcggcccg tcaacatgt ccgtcgccgc ctggcgtcg agcgctgcgg ctggatctcg 180
 cccctgcgtcc tactcagcgc categcgttc gacatcatcg cgctggccgg ccgcggctgg 240
 ttgcgtcta gcgaccacgg ccagacgtcc tcgctgttgt gggaaatgtc ccaagaggc 300
 ggccggcagcg ggtccatcg gggaggctgt cagagcctca tggagtaacgc gtggggtaga 360
 gcagcggctg ccatgtctt ctgtggcttc atcatcttg tgatctgttt catcctctcc 420
 ttcttcgccc tctgtggacc ccagatgttt gtcttcgtga gagtgattgg aggtctccctt 480
 gccttggctg ctgtgttcca gatcatctcc ctggtaattt accccgtgaa gtacacccag 540
 accttcaccc ttcatgcca cctgtgtc acttacatct ataactggc ctacggcttt 600
 ggggtggcag ccacgattat cctgattggc tggcccttc tcttcgtcg cctcccaac 660
 tacgaagatg accttctggg caatgcggaa cccaggtact tctacacatc tgcctaaattt 720
 gggaaatgaat gtggggagaaa atcgctgtc ctggatggg ctccagaaga agaaactgtt 780
 tctccagcg actttaaacc catttttgg cagi.gttcat attattaaac tagtcaaaaaa 840
 tgctaaaaata atttgggaga aaatatttt taagttagt tatagtttca tgtttatctt 900
 ttattatgtt ttgtgaagtt gtgtttttc actaattacc tatactatgc caatatttcc 960
 ttatatatctat ccataaacatt tataactacat ttgtaaagaga atatgcacgt gaaacttaac 1020
 actttataag gtaaaaatga ggttccaaag atttaataat ctgatcaagt tctgtttatt 1080
 tccaaataga atggactcg tctgttaagg gctaaggaga agaggaagat aagttaaaaa 1140
 gttgttaatg accaaacatt ctaaaagaaa tgcaaaaaaaaaa aagtttattt tcaagccctc 1200
 gaactattt aggaaagcaa aatcatttcc taaatgcata tcatttgcata gaatttctca 1260
 ttaatatctt gaatcattca ttccagctaa ggcttcatgt tgactcgata tgcatacttag 1320
 gaaagtacta ttccatggc caaacctgtt gccatagtt gtaaggctt ctttaagtg 1380
 tgaaatattt agatgaaatt ttctttttt aagttttta taggggttagg gtgtggggaaa 1440
 atgctatatt aataaatctg tagtgtttt tggatgtttatg ttccagaacca gagtagactg 1500
 gattgaaaga tggactgggt ctaatttattc atgactgtata gatctggta agttgtgttag 1560
 taaagcatta gggtcattcc tgcacaaaaa gtgccactaa aacagcctca ggagaataaa 1620
 tgacttgctt ttctaaatct cagggtttatc tgggtcttat catatagaca ggcttctgtat 1680
 agtttgcac tgcataacgaga aacctacata tagttttttt cctggctttt cttggtaaac 1740
 agatttttaaat tgcgtatataaaaatgc acaggagaat tggggattt gagtttctct 1800
 gaatagcata tatatgtgc atccggatagg tcattatgtat tttttaccat ttgcacttac 1860
 ataatgaaaaa ccaatttcatt ttaaatatca gattattatt ttgtaaatgg tggaaaaaagc 1920
 taattgtatgtt ttccattatc aagttttccc aataaaaccag gtattctaaa cttgaaaaaaa 1980
 aaa 1983

<210> 157
<211> 1835
<212> DNA
<213> *Homo sapiens*

<220>

<221> misc_feature
 <223> Incyte Clone No: 3133035

<400> 157
 accaggctgt gtaagagctg ctggagtagg cacccattt aagaaaaat gaagaagcag 60
 caataaagaa gtgttatcg ttacctagac aaacagagaa ctgtttga cagtgttct 120
 agagtcttt ttattatctt cctgacagg tgcgttccacc atgattactt ttccttcag 180
 cgaataggct aaatgaatat gaaacagaaa agcgtgtatc agcaaaccaa agcaacttctg 240
 tgcaagaatt ttcttaagaa atggaggatg aaaagagaga gcttattgga atggggcctc 300
 tcaatacttc taggactgtg tattgctctg tttccagtt ccatgagaaa tgtccagtt 360
 cctgaaatgg ctccctcagaa tctggaaagg gtagataat ttaatagctc ttctttaatg 420
 gttgtgtata caccaatatc taatccaacc cagcagataa tgaataaaac agcaacttgct 480
 cctctttga aaggaacaag tgcattggg gcacaataa tacacacatg gacgaaatac 540
 ttctgaaaaa ttacatatg ctatggaat catcttaat gaaacttctt cttataagtt 600
 aatattttc cagggatata acagtccact ttggaaagaa gatttctcg gtgactttcc 660
 atatcaaata tcattatggaa attttcatg tttcaacat aaagaacaga ggaggttggg 720
 caacagagat gettcaatg acacatgaga aaacaggaa agcccattc attgctgaac 780
 ttatttcaag gtcattcgta tttccctact acaggatgac tgcaaaaaatt gtagagtc 840
 ccaacatata tgggttgagc atgcagatgc atgtgtcaaa ggacacatga gtaacccaag 900
 actgacagggc cccagcctca ggtgagatc caggttagca gcaaaagacag acattgaaca 960
 attaatgaca agtacaagaa aaagtgttc atggcactt agaccagggg ttcttaatag 1020
 tgggacctag agaagtctt cctggggaaa tggatgtttaa agggagacca gaatgaatag 1080
 caggtgtgag gtgctagaag catttgttt cagatagaag aaaggttaatt gtgaagaccc 1140
 tgaggtgaga aaggacatctt gttccttagat ctggaaagaa agcagttatag ctgaacaagg 1200
 aacatggaaa ggaatgttaa gggagagatgaa agctgaatgc actcaagtgc tacctcctgt 1260
 ggcattttgtt aaaccttaggc aaggaaatgc cactgagtca ctttaatcac ggcggaaatgt 1320
 taattcggtt tccaaaatggggaaact ccagatatacg cccggggaaat agattgccaa 1380
 gaggtttgg agaatgtcaaa gaaacaaggaa gtccattatg gctggagcag agtgtttgt 1440
 ttcatctctt tttatatttc taagacttca taagcatgtc gtggctctgca agaataaaat 1500
 tgcttttatta aaaacttca ttatattgtc ttcttttctt atgtatgtttaa aagtctactg 1560
 gtggggccagc catgggtggct cacacctgtat atcccagcac ttgagagggc cgaggtgcac 1620
 ggatcacctg agtgcaggag ttgagacca gcctggccaa catggtaaa gcctgtctct 1680
 actaaaaata caaaaatttag cttagacaacg tggcctgtgc ctataatccc agctttggga 1740
 ggctgaggtt gggaaatcac ttgaacccag gaggtggagg ttgcagtgttgc ctgagatcgc 1800
 accactgcac tccagcatgg gcaacagagt gagat 1835

<210> 158
 <211> 819
 <212> DNA
 <213> Homo sapiens

<220>
 <221> misc_feature
 <223> Incyte Clone No: 3436879

<400> 158
 cacgactcac tatagggaaat ttggccctcg aggcaagaat tcggcacgag gtgcacaccc 60
 tcatccatcgaa agtattgtcg cagatgcac ggccatcaag taccactttt ctcagccccat 120
 cccgttgcga aacatttcctt ttaatttac caagaccata cagcaagatg agtggcacct 180
 gtttcattta aagaatgtca ctgtggctt cctcgccatg gccgttagccg ttcttcgttgc 240
 cggctgcattt gttggccacag tcagttttt ctggggaggag agcttgcaccc agcacgtggc 300
 tggactctcg ttccatcgaa cagggatatt ttgcaccattt ccctctgtt cttatgcgc 360
 cagtatctcg tatgatttgc accggctccc aaagctaatt tatacgctgc ctgctgtatgt 420
 ggaacatgtt tacagctgtt ccatttttgc cgcctggc agtttaggtt ttatgtggc 480

agctggaggt ctctgcatecg cttatccgtt tattagccgg accaagattg cacagctaaa 540
gtctggcaga gactccacgg tatgactgtc ctcaactggc ctgtccacag tgcgagcgac 600
tcctgaggggg aacagcgcgg agttcaggag tccaaagcaca aagcggtctt ttacattcca 660
acctgttgcc tgccagccct ttctggatta ctgatagaaa atcatgcaaa acctcccaac 720
ctttctaagg acaagactac tgtggattca agtgcttaa tgactattt a tgcgttgact 780
gtgagaatag ggagccatgc catggacat ttcttaggtg 819