Context Free Languages

Context Free Grammars

Context-Free Grammars

Noam Chomsky (linguist, philosopher, logician, and activist)

In the formal languages of computer science and linguistics, the **Chomsky hierarchy** is a **hierarchy** of classes of formal grammars. This **hierarchy** of grammars was described by Noam **Chomsky** in 1956.

Chomsky Hierarchy

The Hierarchy

Class	Grammars	Languages	Automaton
Type-0	Unrestricted	Recursive Enumerable	Turing Machine
Type-1	Context Sensitive	Context Sensitive	Linear- Bound
Type-2	Context Free	Context Free	Pushdown
Type-3	Regular	Regular	Finite

How production rules look like

Type	Grammar	Production rules
Type 0	unrestricted	$\alpha \rightarrow \beta$
Type 1	context-sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type 2	context-free	$A \rightarrow \gamma$
Type 3	regular	$A \rightarrow aB$ or $A \rightarrow Ba$

A grammar generates sentences (strings) in a language

Examples

Consider the grammar

$$S \rightarrow AB$$
 (1)

$$A \rightarrow C$$
 (2)

$$CB \rightarrow Cb$$
 (3)

$$C \rightarrow a$$
 (4)

where $\{a, b\}$ are terminals, and $\{S, A, B, C\}$ are non-terminals.

Examples

Consider the grammar

$$S \rightarrow AB$$
 (1)

$$A \rightarrow C$$
 (2)

$$CB \rightarrow Cb$$
 (3)

$$C \rightarrow a$$
 (4)

where $\{a,b\}$ are terminals, and $\{S,A,B,C\}$ are non-terminals. We can derive the phrase "ab" from this grammar in the following way:

$$S \rightarrow AB$$
, from (1)

$$\rightarrow$$
 CB, from (2)

$$\rightarrow$$
 Cb, from (3)

$$\rightarrow$$
 ab, from (4)

Examples

Consider the grammar

$$S \rightarrow NounPhrase VerbPhrase$$
 (5)
 $NounPhrase \rightarrow SingularNoun$ (6)
 $SingularNoun VerbPhrase \rightarrow SingularNoun comes$ (7)
 $SingularNoun \rightarrow John$ (8)

We can derive the phrase "John comes" from this grammar in the following way:

S → NounPhrase VerbPhrase, from (1)
 → SingularNoun VerbPhrase, from (2)
 → SingularNoun comes, from (3)
 → John comes, from (4)

Type	Grammar	Production rules
Type 0	unrestricted	$\alpha \rightarrow \beta$
Type 1	context-sensitive	$\alpha A\beta \rightarrow \alpha \gamma \beta$
Type 2	context-free	$A \rightarrow \gamma$
Type 3	regular	$A \rightarrow aB$ or $A \rightarrow Ba$

Definition (Context-Free Grammar)

A context-free grammar is a tuple G = (V, T, P, S) where

- -V is a finite set of variables (nonterminals, nonterminals vocabulary);
- T is a finite set of terminals (letters);
- $-P \subseteq V \times (V \cup T)^*$ is a finite set of rewriting rules called productions,
 - − We write $A \rightarrow \beta$ if $(A, \beta) \in P$;
- S ∈ V is a distinguished start or "sentence" symbol.

Definition (Context-Free Grammar)

A context-free grammar is a tuple G = (V, T, P, S) where

- V is a finite set of variables (nonterminals, nonterminals vocabulary);
- T is a finite set of terminals (letters);
- *P* ⊆ *V* × (*V* ∪ *T*)* is a finite set of rewriting rules called productions,
 - − We write $A \rightarrow \beta$ if $(A, \beta) \in P$;
- S ∈ V is a distinguished start or "sentence" symbol.

Example: $G_{0^n1^n} = (V, T, P, S)$ where

- $V = \{S\};$
- $T = \{0, 1\};$
- − P is defined as

$$S \rightarrow \varepsilon$$

$$S \rightarrow 0S1$$

$$- S = S$$
.

Palindromes

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \quad \rightarrow \quad 1$
- $4. \quad P \quad \rightarrow \quad 0P0$
- 5. $P \rightarrow 1P1$

A context-free grammar for palindromes

Derivation:

- Let G = (V, T, P, S) be a context-free grammar.
- − Let $\alpha A\beta$ be a string in $(V \cup T)^*V(V \cup T)^*$
- We say that $\alpha A\beta$ yields the string $\alpha\gamma\beta$, and we write $\alpha A\beta \Rightarrow \alpha\gamma\beta$ if

 $A \rightarrow \gamma$ is a production rule in G.

- For strings α , β ∈ $(V \cup T)^*$, we say that α derives β and we write $\alpha \stackrel{*}{\Rightarrow} \beta$ if there is a sequence $\alpha_1, \alpha_2, \ldots, \alpha_n \in (V \cup T)^*$ s.t.

$$\alpha \Rightarrow \alpha_1 \Rightarrow \alpha_2 \cdots \alpha_n \Rightarrow \beta.$$

- ⇒ is also called direct derivation.
- $\stackrel{i}{\Rightarrow}$ is to mean that the i th production is used in the direct derivation.
- $\stackrel{*}{\Rightarrow}$ is reflexive and transitive closure of \Rightarrow

- 1. $E \rightarrow I$
- $2. \hspace{0.5cm} E \hspace{0.5cm} \rightarrow \hspace{0.5cm} E + E$
- 3. $E \rightarrow E*E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

- 1. $E \rightarrow I$
- $2. \qquad E \quad \rightarrow \quad E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

T is the set of symbols $\{+, *, (,), a, b, 0, 1\}$ and P is the set of productions

- 1. $E \rightarrow I$
- $2. \quad E \rightarrow E + E$
- 3. $E \rightarrow E * E$
- 4. $E \rightarrow (E)$
- 5. $I \rightarrow a$
- 6. $I \rightarrow b$
- 7. $I \rightarrow Ia$
- 8. $I \rightarrow Ib$
- 9. $I \rightarrow I0$
- 10. $I \rightarrow I1$

T is the set of symbols $\{+, *, (,), a, b, 0, 1\}$ and P is the set of productions

Can you find how the following is true.

$$E \stackrel{*}{\Rightarrow} (a1 + b0 * a1)$$

Compact Notation for Productions

It is convenient to think of a production as "belonging" to the variable of its head. We shall often use remarks like "the productions for A" or "A-productions" to refer to the productions whose head is variable A. We may write the productions for a grammar by listing each variable once, and then listing all the bodies of the productions for that variable, separated by vertical bars. That is, the productions $A \to \alpha_1$, $A \to \alpha_2$, ..., $A \to \alpha_n$ can be replaced by the notation $A \to \alpha_1 |\alpha_2| \cdots |\alpha_n$. For instance, the grammar for palindromes from Fig. 5.1 can be written as $P \to \epsilon |0| 1 |0P0| 1P1$.

CFL Definition

The language L(G) accepted by a context-free grammar G = (V, T, P, S) is the set

$$L(G) = \{ w \in T^* : S \stackrel{*}{\Rightarrow} w \}.$$

Leftmost and Rightmost Derivations

Derivations are not unique.

1.
$$E \rightarrow I$$

$$2. \qquad E \quad \rightarrow \quad E+E$$

$$3. \qquad E \quad \to \quad E * E$$

$$4. \quad E \rightarrow (E)$$

$$5. I \rightarrow a$$

6.
$$I \rightarrow b$$

$$8 I \rightarrow Ih$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

$$E \underset{lm}{\Rightarrow} E * E \underset{lm}{\Rightarrow} I * E \underset{lm}{\Rightarrow} a * E \underset{lm}{\Rightarrow}$$

$$a * (E) \underset{lm}{\Rightarrow} a * (E + E) \underset{lm}{\Rightarrow} a * (I + E) \underset{lm}{\Rightarrow} a * (a + E) \underset{lm}{\Rightarrow}$$

$$a * (a + I) \underset{lm}{\Rightarrow} a * (a + I0) \underset{lm}{\Rightarrow} a * (a + I00) \underset{lm}{\Rightarrow} a * (a + b00)$$

We can also summarize the leftmost derivation by saying $E \stackrel{*}{\Rightarrow} a * (a + b00)$, or express several steps of the derivation by expressions such as $E * E \stackrel{*}{\Rightarrow} a * (E)$.

1.
$$E \rightarrow I$$

$$2. \qquad E \quad \rightarrow \quad E+E$$

$$3. \quad E \rightarrow E*E$$

4.
$$E \rightarrow (E)$$

5.
$$I \rightarrow a$$

6.
$$I \rightarrow b$$

$$7. \hspace{0.5cm} I \hspace{0.5cm} \rightarrow \hspace{0.5cm} Ia$$

8.
$$I \rightarrow Ib$$

9.
$$I \rightarrow I0$$

10.
$$I \rightarrow I1$$

$$E \underset{rm}{\Rightarrow} E * E \underset{rm}{\Rightarrow} E * (E) \underset{rm}{\Rightarrow} E * (E + E) \underset{rm}{\Rightarrow}$$

$$E * (E + I) \underset{rm}{\Rightarrow} E * (E + I0) \underset{rm}{\Rightarrow} E * (E + I00) \underset{rm}{\Rightarrow} E * (E + b00) \underset{rm}{\Rightarrow}$$

$$E * (I + b00) \underset{rm}{\Rightarrow} E * (a + b00) \underset{rm}{\Rightarrow} I * (a + b00) \underset{rm}{\Rightarrow} a * (a + b00)$$

This derivation allows us to conclude $E \stackrel{*}{\Rightarrow} a * (a + b00)$. \square

Exercise

Consider the following grammar:

$$\begin{array}{ccc} S & \rightarrow & AS \mid \varepsilon. \\ S & \rightarrow & aa \mid ab \mid ba \mid bb \end{array}$$

Give leftmost and rightmost derivations of the string aabbba.

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

 $\begin{array}{ccccc} 2. & P & \rightarrow & 0 \\ 3. & P & \rightarrow & 1 \\ 4. & P & \rightarrow & 0P0 \end{array}$

 $5. \quad P \quad \rightarrow \quad 1P1$

A context-free grammar for palindromes

Prove that $L(G_{pal})$ is the set of palindromes over the given alphabet.

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \quad \rightarrow \quad 1$
- 4. $P \rightarrow 0P0$
- $5. \quad P \quad \rightarrow \quad 1P1$

A context-free grammar for palindromes

Prove that $L(G_{pal})$ is the set of palindromes over the given alphabet.

This proof has two parts (⇒ and ⇐)

$$G_{pal} = (\{P\}, \{0, 1\}, A, P)$$

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- $5. \quad P \quad \rightarrow \quad 1P1$

A context-free grammar for palindromes

Prove that $L(G_{pal})$ is the set of palindromes over the given alphabet.

- This proof has two parts (⇒ and ⇐)
 - 1) $(w = w^R) \Rightarrow w \in L(G_{pal})$
 - 2) $w \in L(G_{pal}) \Rightarrow (w = w^R)$

$$(w = w^R) \Rightarrow w \in L(G_{pal})$$

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \rightarrow 1$
- 4. $P \rightarrow 0P0$
- $5. \quad P \quad \rightarrow \quad 1P1$

A context-free grammar for palindromes

Proof [by induction on |w|:

BASIS: We use lengths 0 and 1 as the basis.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

INDUCTION: Suppose $|w| \geq 2$. Since $w = w^R$, w must begin and end with the same symbol

• Note, $w \in L(G_{pal})$ is same $P \stackrel{*}{\Rightarrow} w$

BASIS: We use lengths 0 and 1 as the basis.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

INDUCTION: Suppose $|w| \geq 2$. Since $w = w^R$, w must begin and end with the same symbol

BASIS: We use lengths 0 and 1 as the basis.

If |w| = 0 or |w| = 1, then w is ϵ , 0, or 1.

Since there are productions $P \to \epsilon$, $P \to 0$, and $P \to 1$, we conclude that $P \stackrel{*}{\Rightarrow} w$ in any of these basis cases.

INDUCTION: Suppose $|w| \geq 2$. Since $w = w^R$, w must begin and end with the same symbol

Inductive Hypothesis: Let for $|w| \le k$ where $(w = w^R)$, $P \stackrel{*}{\Rightarrow} w$ is true. **Inductive Step:** We need to show for |w| = k + 1, $P \stackrel{*}{\Rightarrow} w$ is true.

Note, w = 0x0 or w = 1x1, where |x| = k - 1.

Then, $P \Rightarrow 0P0 \stackrel{*}{\Rightarrow} 0x0$ (Since $|x| \leq k$, so $P \stackrel{*}{\Rightarrow} x$ is true).

So, $P \stackrel{*}{\Rightarrow} w$ is true. With a similar argument, $P \Rightarrow 1P1 \stackrel{*}{\Rightarrow} 1x1$

$$w \in L(G_{pal}) \Rightarrow (w = w^R)$$

Proof [by induction on number of steps in the derivation]:

BASIS: If the derivation is one step, then it must use one of the three productions that do not have P in the body. That is, the derivation is $P \Rightarrow \epsilon, P \Rightarrow 0$, or $P \Rightarrow 1$. Since ϵ , 0, and 1 are all palindromes, the basis is proven.

INDUCTION:

- Assume for n steps it is true.
- Then, show for (n+1) steps it must be true.

Left as an exercise.

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

- $\begin{array}{ccccc} 2. & E & \rightarrow & E+E \\ 3. & E & \rightarrow & E*E \end{array}$

A context-free grammar for simple expressions

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

Sentential Forms

G = (V, T, P, S) is a CFG, then any string α in $(V \cup T)^*$ such that $S \stackrel{*}{\Rightarrow} \alpha$ is a sentential form.

If
$$S \stackrel{*}{\underset{lm}{\Rightarrow}} \alpha$$
, then α is a left-sentential form,

and if $S \stackrel{*}{\underset{rm}{\Rightarrow}} \alpha$, then α is a right-sentential form.

Note that the language L(G) is those sentential forms that are in T^* ; i.e., they consist solely of terminals.

- $2. \qquad E \quad \rightarrow \quad E+E$
- $3. \qquad E \quad \rightarrow \quad E * E$
- 4. $E \rightarrow (E)$

$$E \Rightarrow E * E \Rightarrow E * (E) \Rightarrow E * (E + E) \Rightarrow E * (I + E)$$

 Is this sentential form left-sentential? Or right-sentential?

Exercise 5.1.2: The following grammar generates the language of regular expression $0^*1(0+1)^*$:

$$\begin{array}{cccc} S & \rightarrow & A1B \\ A & \rightarrow & 0A \mid \epsilon \\ B & \rightarrow & 0B \mid 1B \mid \epsilon \end{array}$$

Give leftmost and rightmost derivations of the following strings:

- * a) 00101.
 - b) 1001.
 - c) 00011.

Note, the given grammar is not a regular grammar (even-though it generates a regular language).

• $S \rightarrow aS|bS|a|b|\epsilon$

• $S \rightarrow aS|bS|a|b|\epsilon$

• Answer: All strings. Σ^*

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb | \epsilon$ generates $\{a^nb^n | n \ge 0\}$.

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb | \epsilon$ generates $\{a^nb^n | n \ge 0\}$.

Starting from S_1 we get $\{a^nb^n|n\geq 1\}$

1.
$$S \to S_1 S | \epsilon$$
,

2.
$$S_1 \rightarrow aS_1b|ab$$

Recall that the $S \to aSb|\epsilon$ generates $\{a^nb^n|n \ge 0\}$.

Starting from S_1 we get $\{a^nb^n|n\geq 1\}$

The answer:

$$a^{n_1}b^{n_1}a^{n_2}b^{n_2} \dots a^{n_k}b^{n_k} \in L(G)$$

$$L(G) = (\{a^n b^n | n \ge 1\})^*$$

$$S \rightarrow SS \mid S \mid [S] \mid () \mid []$$

$$S \to SS \mid [S] \mid (S) \mid [] \mid ()$$

Set of all balanced parentheses with alphabet { (,), [,] }

- 1. $S \rightarrow aB|bA$
- 2. $B \rightarrow b|bS|aBB$
- 3. $A \rightarrow a|aS|bAA$

1.
$$S \rightarrow aB|bA$$

2.
$$B \rightarrow b|bS|aBB$$

3.
$$A \rightarrow a|aS|bAA$$

Produces strings with equal number of a's and b's.

1. $S \rightarrow SaSbS|SbSaS|\epsilon$

1. $S \rightarrow SaSbS|SbSaS|\epsilon$

Produces strings with equal number of a's and b's.

With one difference than the previous CFG. What is it?