Linear boundary can fail

Sometime a linear boundary simply won't work, no matter what value of C.

The example on the left is such a case.

What to do?

Feature Expansion

- Enlarge the space of features by including transformations; e.g. X_1^2 , X_1^3 , X_1X_2 , $X_1X_2^2$,.... Hence go from a p-dimensional space to a M > p dimensional space.
- Fit a support-vector classifier in the enlarged space.
- This results in non-linear decision boundaries in the original space.

Feature Expansion

- Enlarge the space of features by including transformations; e.g. X_1^2 , X_1^3 , X_1X_2 , $X_1X_2^2$,.... Hence go from a p-dimensional space to a M > p dimensional space.
- Fit a support-vector classifier in the enlarged space.
- This results in non-linear decision boundaries in the original space.

Example: Suppose we use $(X_1, X_2, X_1^2, X_2^2, X_1X_2)$ instead of just (X_1, X_2) . Then the decision boundary would be of the form

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

This leads to nonlinear decision boundaries in the original space (quadratic conic sections).

Cubic Polynomials

Here we use a basis expansion of cubic polynomials

From 2 variables to 9

The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

Cubic Polynomials

Here we use a basis expansion of cubic polynomials

From 2 variables to 9

The support-vector classifier in the enlarged space solves the problem in the lower-dimensional space

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \beta_6 X_1^3 + \beta_7 X_2^3 + \beta_8 X_1 X_2^2 + \beta_9 X_1^2 X_2 = 0$$