COL 351: Analysis and Design of Algorithms

Lecture 32

Max-Flow: Edmonds-Karp-Algorithm-1

Edmonds-Karp-Algorithm-1(G, s, t):

- 1. Initialise f = 0
- 2. **While**($\exists s \rightarrow t \text{ path in } G_f$):
 - 2.1 Let P be an $s \to t$ shortest-path in G_f
 - 2.2 Let $c_{min} = \min\{c(e) \mid e \in P\}$
 - 2.3 **For each** $(x, y) \in P$:

If (x, y) is forward edge : $f(x, y) = f(x, y) + c_{min}$

If (x, y) is backward edge : $f(x, y) = f(x, y) - c_{min}$

3. Return f.

Claim:

Number of iterations is

Time Complexity:

O(mn(m+n))

Note: Gr is unweighted.

Claim 1: The distances of vertices from s in G_f can only increase with time.

When we more

from Grod to Grew

distance of vertices

from 's' CANNOT

decrease.

How many iterations?

Claim 2: Total number of iterations is

 $O(\text{Total number of times edges disappear from } G_f).$

Proof

In each ituation at least ONE edge disappears from Gif

What causes disappearance of an edge from G_f

If edge (x,y) disappears from G_F then irrespective of whether it is FixD/BACK edge, the edge (x,y) lies on augmenting path.

What causes reappearance of an edge in G_f

If edge (x,y) reappears in Gr then the last augmenting path must have contained edge (y, x).

How many times can an edge disappear/re-appear?

Claim 3: An edge (x, y) can disappear/re-appear in G_f at most O(n) time.

Suppose edge (xy) disappears in $G_{1f}(i-1)$ and reappears in $G_{f}(i+\alpha)$.

Then, $d(s,y,i-1)=d(s,x,i-1)+1 \text{ and } d(s,y,i+\alpha-1)=d(s,x,i+\alpha-1)-1.$ Further, $d(s,y,i+\alpha-1) \geq d(s,y,i-1)$ due to Claim 1.

Thus, $d(s,x,i+\alpha-1) \geq d(s,x,i-1)+2$

Max-Flow: Edmonds-Karp-Algorithm-2

Edmonds-Karp-Algorithm-2(*G*, *s*, *t*):

- 1. Initialise f = 0
- 2. **While**($\exists s \rightarrow t \text{ path in } G_f$):
 - 2.1 Let P be an $s \to t$ path of maximum capacity in G_f
 - 2.2 Let $c_{min} = \min\{c(e) \mid e \in P\}$
 - 2.3 **For each** $(x, y) \in P$:

If (x, y) is forward edge : $f(x, y) = f(x, y) + c_{min}$

If (x, y) is backward edge : $f(x, y) = f(x, y) - c_{min}$

3. Return f.

Claim:

Number of iterations is $O(m \log_e F)$

O verall time complexity:

Time to find man capacity bath

Claim 1: If in graph G, the value of (s, t)-max-flow is F then there must exists an (s, t)-path in G of capacity at least (F/m).

Proof:

Discard all edges of cabacity $\lesssim F/m$, & let H be the new graph.

Assure on conteasy there is no (8, t)- pater in H.

Jet X = vertices reachable from s in H.

X = vertices reachable capacity from s in H.

(x,y) is an (s,t) cut in G of capacity $\nleq \frac{F}{m} \cdot m \nleq F$

This leads to contendiction => There exists an (s,t) path in H.

Fact: For
$$k \ge 1$$
, $0 \le \left(1 - \frac{1}{k}\right)^k \le \frac{1}{e}$

Claim 2: The smallest x for which $F\left(1 - \frac{1}{m}\right)^x$ is smaller than 1 is at-most $(m \log_e F)$.

After x ituations, man-flow
$$\leq F(1-1/m)^{2}$$

We need to find smallest x = 1.t. $F(1-\frac{1}{m})^{x} < 1$

$$F(1-\frac{1}{m})^{m \cdot \log_e F} \leq F(\frac{1}{e})^{\log_e F} = \frac{F}{F} = 1$$

Claim 3: We can find an augmenting path of maximum capacity in residual graph G_f in $O(m \log n)$ time.

If
$$x_1, ..., x_t$$
 are in-neighbors of y , then
$$\operatorname{MaxCap}(s, y) = \max_{1 \le i \le t} \left(\min \left(\operatorname{MaxCap}(s, x_i), c(x_i, y) \right) \right)$$