

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 01

Abgabedatum: 25.04.24, 12 Uhr

1. (NA) Minifragen

- 1. Für das Gauß-Verfahren haben wir Umformungsschritte (U1), (U2) und (U3) definiert:
 - Für (U1) haben wir $i \neq k$ gefordert. Führt die Linksmultiplikation von $U_{i,i}$ mit der Koeffizientenmatrix A und dem Lösungsvektor b zu keinem äquivalenten Gleichungssystem?
 - Für (U2) haben wir $i \neq k$ gefordert. Führt die Linksmultiplikation von $V_{ii}(\lambda)$ mit der Koeffizientenmatrix A und dem Lösungsvektor b zu keinem äquivalenten Gleichungssystem?
 - Für (U3) haben wir $\lambda \neq 0$ gefordert. Führt die Linksmultiplikation von $W_i(0)$ mit der Koeffizientenmatrix A und dem Lösungsvektor b zu keinem äquivalenten Gleichungssystem?

2. (A) Lösen linearer Gleichungssysteme

Wir betrachten die Gleichungssysteme

$$\begin{cases}
2x_1 +6x_2 +5x_4 = 5 \\
4x_1 +6x_2 +x_3 +6x_4 = 6 \\
2x_1 +6x_3 -x_4 = -1
\end{cases}$$
(1)

$$\left\{
\begin{array}{cccc}
x_1 & +2x_2 & +4x_3 & = & 5 \\
2x_1 & +5x_2 & +10x_3 & = & 12 \\
-x_1 & + & x_2 & +2x_3 & = & 1
\end{array}
\right\}$$
(2)

$$\begin{cases}
 x_1 + x_2 - 2x_3 = 3 \\
 2x_1 + x_2 + x_3 = 10 \\
 x_1 - x_2 + 8x_3 = 15
\end{cases}$$
(3)

- (a) Geben Sie für die Systeme (1),(2) und (3) jeweils eine Matrix A und einen Vektor b an, sodass das Gleichungsystem dem Ausdruck Ax = b entspricht. (1)
- (b) Bestimmen Sie jeweils rg(A) sowie die Lösungsmenge des Gleichungssystems. (5)

3. (A) Rang einer Matrix

Berechnen Sie den Rang von

$$A = \begin{pmatrix} 1 & 1 & t \\ 1 & t & 1 \\ t & 1 & 1 \end{pmatrix} \in M(3 \times 3, \mathbb{R})$$

in Abhängigkeit von $t \in \mathbb{R}$.

4. (A) Invertieren von Matrizen

(a) Bestimmen Sie, falls möglich, jeweils die Inverse folgender Matrizen

$$A = \begin{pmatrix} 3 & 2 & 1 \\ -1 & -2 & 1 \\ -1 & 2 & 1 \end{pmatrix} \in M(3 \times 3, \mathbb{R}), \ B = \begin{pmatrix} 1 & 2 + 2\iota & 4 + \iota \\ 1 + \iota & 2 + \iota & 3 + \iota \\ -1 - 4\iota & -2 + 2\iota & -\iota \end{pmatrix} \in M(3 \times 3, \mathbb{C}),$$

$$C = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{pmatrix} \in M(4 \times 4, \mathbb{F}_2).$$

$$(4)$$

(b) Bestimmen Sie die Umkehrabbildung, falls existent, der linearen Abbildung $F: \mathbb{R}^4 \to \mathbb{R}^4$,

$$F(a,b,c,d) = \begin{pmatrix} a+b-c \\ b+c+d \\ a+b+c+d \\ a-c+d \end{pmatrix}.$$
 (2)

(6)

(6)

5. (A) Elementarmatrizen

Sei

$$A := \begin{pmatrix} 1 & 0 & -1 \\ 3 & 1 & -3 \\ 1 & 2 & -2 \end{pmatrix}$$

Geben Sie Matrizen Z_1, \ldots, Z_j der Form $U_{ik}, V_{ik}(\lambda), W_i(\lambda)$ wie in der Vorlesung an, sodass

$$Z_i \circ Z_{i-1} \circ \ldots \circ Z_1 \circ A = I$$
,

wobei I die Einheitsmatrix in $M(3 \times 3, \mathbb{R})$ bezeichnet.

6. (T),(NA) Lösen linearer Gleichungssysteme

Wir betrachten folgende Gleichungssysteme:

$$\begin{cases}
-x_1 & -2x_2 & +2x_3 & = 1 \\
2x_1 & +3x_2 & -2x_3 & = 1 \\
-x_1 & -x_2 & +2x_3 & = -2
\end{cases}$$
(4)

$$\begin{cases}
x_1 - x_2 - x_3 + 3x_4 = 4 \\
-x_1 + x_2 + 2x_3 - 3x_4 = -3 \\
x_2 + 3x_3 + 2x_4 = 9 \\
x_1 - 2x_2 - 3x_3 + 2x_4 = -2
\end{cases}$$
(5)

In Abhängigkeit von $\lambda \in \mathbb{R}$:

$$\begin{cases}
\lambda x_1 + 4x_2 + \lambda x_3 = 1 \\
-2x_2 + 4x_3 = 3 \\
2x_1 + \lambda x_2 + 6x_3 = 4
\end{cases}$$
(6)

- (a) Bestimmen Sie für die Systeme (4), (5), (6) jeweils eine Matrix A und einen Vektor b, sodass das Gleichungssystem dem Ausdruck Ax = b entspricht.
- (b) Bestimmen Sie jeweils rg A sowie die Lösungsmenge des Gleichungssystems.

7. (T),(NA) Rang und Invertierbarkeit von Matrizen

Zeigen Sie:

- 1. Es sei $A \in M(m \times n, \mathbb{R})$ und weiter sei $B \in M(n \times n, \mathbb{R})$ eine invertierbare Matrix, dann gilt $\operatorname{rg}(A) = \operatorname{rg}(AB)$.
- 2. Elementare Zeilenumformungen verändern den Rang einer Matrix nicht.
- 3. Eine quadratische Matrix $B \in M(n \times n, \mathbb{K})$ ist genau dann invertierbar, wenn sie vollen Rang besitzt, d.h., wenn rg(B) = n.
- 4. $B \in M(n \times n, \mathbb{K})$ ist genau dann invertierbar, wenn B sich als Produkt von Elementarmatrizen schreiben lässt.
- 5. $B \in M(n \times n, \mathbb{K})$ ist genau dann invertierbar, wenn B^{\top} invertierbar ist.

- (NA) Die Lösung dieser Aufgabe müsen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Üungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere düfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 02

Abgabedatum: 02.05.24, 12 Uhr

1. (NA) Minifragen

- 1. Wenn der Vektor $b \in \mathbb{R}^m$ als Linearkombination aus den Spaltenvektoren von $A \in M(m \times n, \mathbb{R})$ dargestellt werden kann, ist dann Ax = b für $x \in \mathbb{R}^n$ lösbar?
- 2. Sei $x, y \in \mathbb{R}^n$, n > 1, gilt dann $(\langle x, y \rangle = 0 \Rightarrow x = 0 \text{ oder } y = 0)$?
- 3. Sei $v \in \mathbb{R}^2$ und sei $w \in \mathbb{R}^2$ ein zu v orthogonaler Vektor mit ||w|| = 1. Ist w eindeutig?
- 4. Kann aus $x, y \in \mathbb{R}^2$ (linear unabhängig) immer mehr als eine Orthonormalbasis mithilfe des Gram-Schmidtschen Orthogonalisierungsverfahrens berechnet werden?

2. (A) Lösbarkeit und Lösungen

Wir betrachten das Gleichungssystem

$$\begin{cases}
x_1 +2x_2 + x_3 -2x_4 = 3 \\
2x_1 +4x_2 + x_3 + x_4 = 10 \\
3x_1 +6x_2 + x_3 +2x_4 = 15 \\
-x_1 -2x_2 +2x_3 - x_4 = -3
\end{cases}$$

- 1. Bestimmen Sie mit Satz 7.4.2 und Satz 7.4.4, ob das System lösbar bzw. universell lösbar ist. Ist das System eindeutig lösbar? (2)
- 2. Bestimmen Sie die Dimension des Lösungsraumes \mathcal{L}_0 des zugehörigen homogenen Gleichungssystems. (2)
- 3. Bestimmen Sie die Lösungsmenge des Gleichungssystems. (2)

3. (A) Darstellungen von Bilinearformen

1. Es sei $A \in M(n \times n, \mathbb{R})$. Zeigen Sie, dass

$$B: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, \ (x,y) \mapsto x^{\top} Ay = \sum_{i=1}^n \sum_{j=1}^n a_{ij} x_i y_j$$

eine Bilinearform ist. (2)

2. Es sei umgekehrt $s: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ eine Bilinearform und e_1, \ldots, e_n die kanonischen Basisvektoren im \mathbb{R}^n . Zeigen Sie, dass $s(x,y) = \sum_{i=1}^n \sum_{j=1}^n s(e_i, e_j) x_i y_j$. (2)

3. Schließen Sie daraus nun die Existenz einer Matrix $M \in M(n \times n, \mathbb{R})$ mit (2) $s(x,y) = x^{\top} M y$ für alle $x,y \in \mathbb{R}^n$.

4. (A) Das Gram-Schmidtsche Orthogonalisierungsverfahren

Zeigen Sie die Behauptungen zum Gram-Schmidtschen Orthogonalisierungsverfahren: Für linear unabhängige Vektoren $v_1, \ldots, v_m \in \mathbb{R}^n$ liefert das in Beispiel 8.2.9 (i) dargestellte Verfahren Vektoren w_1, \ldots, w_m mit

1.
$$||w_i|| = 1, i = 1, \dots, m$$
, bzgl. der induzierten Norm $||v|| = \sqrt{\langle v, v \rangle}$, (1)

2.
$$\langle w_i, w_j \rangle = \delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}$$
 (3)

Wenden Sie das Verfahren an, um die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, v_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$

zu orthonormieren . (2)

5. (A) Spur einer Matrix

Die Summe $\sum_{i=1}^{n} a_{ii}$ der Diagonalelemente der Matrix $(a_{ij}) = A$ heißt die Spur von (a_{ij}) , in Zeichen Spur $A = \sum_{i=1}^{n} a_{ii}$.

- (a) Zeigen Sie, dass die Spur eine Linearform auf $M(n \times n, \mathbb{R})$ ist. (3)
- (b) Zeigen Sie, dass durch

$$\langle A, B \rangle \colon = \operatorname{Spur}(A^{\top}B)$$

ein Skalarprodukt auf $M(n \times n, \mathbb{R})$ definiert ist.

(3)

6. (T),(NA) Bilinearformen und Skalarprodukte Gegeben seien die Abbildungen

$$B_{1}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} j x_{j} y_{j},$$

$$B_{2}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} (-1)^{j} x_{j} y_{j},$$

$$B_{3}: \mathbb{R}^{n} \times \mathbb{R}^{n} \to \mathbb{R}, \qquad (x,y) \mapsto \sum_{j=1}^{n} x_{j} y_{j}^{2}.$$

Prüfen Sie jeweils, ob B_1 , B_2 , B_3 eine Bilinearform oder sogar ein Skalarprodukt ist.

7. (T), (NA) Es sei $F: \mathbb{R}^n \to \mathbb{R}^n$ eine lineare Abbildung und $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt auf dem \mathbb{R}^n . Zeigen Sie:

$$\forall x \in \mathbb{R}^n \left(x - F(x) \in (\text{Bild}(F))^{\perp} \right) \Rightarrow \forall x, y \in \mathbb{R}^n \left(\langle x, F(y) \rangle = \langle F(x), y \rangle \right).$$

Gilt das auch, wenn man \mathbb{R}^n durch \mathbb{C}^n ersetzt?

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Üungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 03

Abgabedatum: 07.05.24, 14 Uhr

1. (A) Bilinearformen und Skalarprodukte

Prüfen Sie jeweils für B_1 , B_2 und B_3 , ob die entsprechende Abbildung eine Bilinearform oder sogar ein Skalarprodukt ist.

a) $B_1: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{i=1}^n j x_i y_i$ (2)

b)
$$B_2 \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x,y) \mapsto \sum_{j=1}^n J_j y_j$$
 (2)

c)
$$B_3 \colon \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}, (x, y) \mapsto \sum_{j=1}^n x_j y_j^2$$
 (2)

2. (A) Matrixnormen

Seien $x \in \mathbb{R}^n$, $A \in M(m \times n, \mathbb{R})$ und seien $||\cdot|| : \mathbb{R}^n \to \mathbb{R}$, $||\cdot||' : \mathbb{R}^m \to \mathbb{R}$ jeweils Normen auf \mathbb{R}^n und \mathbb{R}^m . Wir definieren die induzierte **Matrixnorm** auf $M(m \times n, \mathbb{R})$ durch

$$||A|| := \sup_{x \neq 0} \frac{||Ax||'}{||x||}.$$

a) Wir wählen für $||\cdot||$ und für $||\cdot||'$ jeweils die ∞ -Norm $||x||_{\infty} := \max_{j} |x_{j}|$.

i) Zeigen Sie
$$||Ax||' \le \max_{j} \left(\sum_{k=1}^{n} |a_{jk}| \right) \cdot ||x||$$
 (1)

für alle $x \in \mathbb{R}^n$.

ii) Zeigen Sie
$$||A|| = \max_{j} \left(\sum_{k=1}^{n} |a_{jk}| \right). \tag{1}$$

Hinweis: Setzen Sie einen geeigneten Vektor für x ein, um in (a) Gleichhei zu erhalten.

b) Nun wählen wir für $||\cdot||$ und für $||\cdot||'$ jeweils die 1-Norm $||x||_1 := \sum_j |x_j|$.

i) Zeigen Sie
$$||Ax||' \le \max_{k} \left(\sum_{j=1}^{m} |a_{jk}| \right) \cdot ||x||$$
 (1)

für alle $x \in \mathbb{R}^n$.

ii) Zeigen Sie
$$||A|| = \max_k \left(\sum_{i=1}^m |a_{jk}| \right). \tag{1}$$

c) Schließlich wählen wir für $||\cdot||$ und für $||\cdot||'$ jeweils die Euklidische bzw. 2-Norm $||x||_2:=\sqrt{\sum_j |x_j|^2}$.

i) Zeigen Sie
$$||Ax||' < ||A||_{E} \cdot ||x||$$

für alle $x \in \mathbb{R}^n$, wobei $||\cdot||_F$ die Frobenius-Norm

$$||A||_F := \sqrt{\sum_j \sum_k |a_{jk}|^2}$$

bezeichnet. Hinweis: Benutzen Sie die Cauchy-Schwarzsche Ungleichung.

ii) Zeigen Sie, dass $||\cdot||_F$ nicht die von $||\cdot||$ und $||\cdot||'$ induzierte Matrixnorm (1) ist, indem Sie den Fall $m = n, A = E_n$ betrachten.

3. (A) Determinanten

Berechnen Sie die Determinanten folgender Matrizen über ihren jeweiligen Körpern:

$$A = \begin{pmatrix} \cos \varphi \cos \vartheta & -r \sin \varphi \cos \vartheta & -r \cos \varphi \sin \vartheta \\ \sin \varphi \cos \vartheta & r \cos \varphi \cos \vartheta & -r \sin \varphi \sin \vartheta \\ \sin \vartheta & 0 & r \cos \vartheta \end{pmatrix} \in M(3 \times 3, \mathbb{R}) \text{ mit } \vartheta, \varphi, r \in \mathbb{R},$$

$$B = \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 2 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 2 & -2 \end{pmatrix} \in M(4 \times 4, \mathbb{R})$$

$$C = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in M(3 \times 3, \mathbb{F}_2)$$

$$(2)$$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 04

Abgabedatum: 16.05.24, 12 Uhr

1. (NA) Minifragen

- 1. Für welche $x,y\in\mathbb{R}^n$ gilt die Dreiecksungleichung (N3) in Bemerkung 8.2.4 mit "<" anstatt " \leq "?
- 2. Zeigen oder widerlegen Sie für eine Matrix $A \in M(n \times n, \mathbb{R})$ mit $n \in \mathbb{N}$:
 - Wenn A eine Nullzeile hat, ist det A immer gleich 0.
 - Wenn A eine Nullspalte hat, ist det A immer gleich 0.
- 3. Zeigen oder widerlegen Sie: det(A + B) = det(A) + det(B).
- 2. (A) Berechne mit möglichst wenig Aufwand die Determinanten folgender Matrizen:

$$A = \begin{pmatrix} 1 & -2 & 3 & 1 & -1 \\ 2 & 1 & 3 & -1 & 0 \\ 0 & -1 & 0 & 2 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 0 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$B = \begin{pmatrix} 2 & 0 & 1 & 0 & -1 \\ 3 & 0 & 2 & 0 & 0 \\ 3 & 0 & -2 & 0 & 0 \\ 0 & 3 & 0 & 5 & 0 \\ 0 & 2 & 0 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$(1)$$

$$C = \begin{pmatrix} 2 & 0 & 1 & 0 \\ 3 & 1 & 2 & 0 \\ 3 & 1 & -2 & 1 \\ 1 & 3 & 0 & 0 \end{pmatrix} \in M(4 \times 4, \mathbb{R}).$$

$$D = \begin{pmatrix} 2 & 2 & 1 & 1 & -2 \\ 3 & 1 & 1 & 1 & 0 \\ 3 & 0 & -2 & 2 & 3 \\ 1 & 3 & 0 & 0 & -2 \\ 1 & -1 & 1 & 1 & 0 \end{pmatrix} \in M(5 \times 5, \mathbb{R}).$$

$$(2)$$

(1)

3. (A)

(a) Für jedes $n \in \mathbb{N}$ betrachten wir die Matrizen

$$A_{n} = \begin{pmatrix} 2 & -1 & 0 & \dots & 0 \\ -1 & 2 & -1 & \ddots & 0 \\ 0 & -1 & 2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & -1 \\ 0 & \dots & 0 & -1 & 2 \end{pmatrix}, B_{n} = \begin{pmatrix} 1 & 2 & 3 & \dots & n \\ 2 & 2 & 3 & \dots & n \\ 3 & 3 & 3 & \dots & n \\ \vdots & & & \vdots \\ n & n & n & \dots & n \end{pmatrix} \in M(n \times n, \mathbb{R}).$$

Wir definieren $d_n := \det(A_n)$ für alle $n \in \mathbb{N}$ und $d_0 := 1$.

i) Zeigen Sie die Rekursionsgleichung
$$d_{n+1} = 2d_n - d_{n-1}$$
 (2)

ii) Folgern Sie per Induktion
$$d_n = n + 1$$
 für alle $n \in \mathbb{N}$. (2)

iii) Zeigen Sie außerdem
$$\det(B_n) = (-1)^{n+1}n$$
 für alle $n \in \mathbb{N}$. (2)

4. (A)

(a) Es seien $x_1, \ldots, x_n \in \mathbb{R}$. Zeigen Sie (z.B. durch vollständige Induktion), dass

$$\begin{vmatrix} x_1^0 & x_1^1 & \dots & x_1^{n-1} \\ \vdots & \vdots & & \vdots \\ x_n^0 & x_n^1 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

gilt. (2)

- (b) Sei $A \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltenvektoren eine Orthonormalbasis bilden. Zeigen Sie: det $A \in \{-1, 1\}$. (1)
- (c) Sei $A \in M(n \times n, \mathbb{R})$ eine Matrix mit $A = -A^{\top}$ und n ungerade. Zeigen Sie: det A = 0. (1)
- (d) Sei $A \in M(n \times n, \mathbb{R})$ invertierbar. Zeigen Sie: $\det(A^{-1}) = (\det A)^{-1}$. (1)
- (e) Seien $A, S \in M(n \times n, \mathbb{K})$ und S invertierbar. Zeigen Sie: $B := S^{-1}AS$ und A haben die gleiche Determinante. (1)

5. (A) Das charakteristische Polynom

Seien

$$A_1, A_2 \in M(3 \times 3, \mathbb{R}), \ A_1 = \begin{pmatrix} 2 & 1 & -2 \\ -6 & -5 & 8 \\ -2 & -2 & 3 \end{pmatrix}, \ A_2 = \begin{pmatrix} 10 & -3 & -9 \\ -18 & 7 & 18 \\ 18 & -6 & -17 \end{pmatrix}.$$

(a) Stellen Sie jeweils das sogenannte charakteristische Polynom

$$P_A(x) = \det(A - x \cdot I_3)$$

 $mit \ x \in \mathbb{R} \text{ für } A \in \{A_1, A_2\} \text{ auf }. \tag{2}$

(b) Bestimmen Sie die Nullstellen von $P_{A_1}(x)$ und $P_{A_2}(x)$. (2)

- (c) Sei nun X_A jeweils die Menge der bestimmten Nullstellen von $P_A(x)$ in Aufgabenteil b) für $A \in \{A_1, A_2\}$. Bestimmen Sie die Lösungsmenge des Gleichungssystems (A xI)v = 0 für jeweils alle Nullstellen $x \in X_A$ für beide $A \in \{A_1, A_2\}$.
- (2)
- 6. (T),(NA) Berechnen Sie die Determinanten folgender Matrizen über \mathbb{R} :

$$A = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 3 & 4 & 5 & 6 \\ 1 & 4 & 6 & 8 & 10 \end{pmatrix},$$

$$B = \begin{pmatrix} 1 & 2 & 8 & 9 & 14 & -8 \\ 3 & 1 & 3 & 4 & -4 & -1 \\ 4 & 0 & 0 & 3 & 9 & -1 \\ 0 & 0 & 0 & 0 & 7 & 6 \\ 0 & 0 & 0 & 0 & 8 & 7 \\ -2 & 0 & 0 & 0 & 0 & 11 \end{pmatrix}.$$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 05

Abgabedatum: 23.05.24, 12 Uhr

1. (NA) Minifragen

Zeigen oder widerlegen sie:

- 1. Wenn eine Matrix nur positive Einträge hat, sind alle ihre Eigenwerte positiv.
- 2. Falls A und -A dieselben Eigenwerte besitzen, dann ist A nicht invertierbar.
- 3. Bei einer Dreiecksmatrix stehen die Eigenwerte auf der Diagonalen.

2. (A) Diagonalisieren von Matrizen

Es sei
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}.$$

- Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, so dass $S^{-1}AS$ eine Diagonalmatrix ist. (1)
- 3. Berechnen Sie A^n für $n \in \mathbb{N}$. (1)

Führen Sie die obigen Schritte 1 und 2 auch für die Matrix B statt A durch, falls möglich:

$$B = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}. \tag{2}$$

3. (A) Die Fibonacci-Folge

Wir betrachten die Fibonacci-Folge mit $x_0 = 0$, $x_1 = 1$ und $x_n = x_{n-1} + x_{n-2}$ für $n \ge 2$.

1. Bestimmen Sie eine Matrix
$$A \in M(2 \times 2, \mathbb{R})$$
 mit $A \begin{pmatrix} x_{n-1} \\ x_n \end{pmatrix} = \begin{pmatrix} x_n \\ x_{n+1} \end{pmatrix}$. (2)

- 2. Zeigen Sie, dass A diagonalisierbar ist und bestimmen Sie eine Basis des \mathbb{R}^2 aus Eigenvektoren von A. (2)
- 3. Bestimmen Sie A^n für beliebiges $n \in \mathbb{N}$. (1)

4. Folgern Sie aus dem letzten Schritt, dass das n-te Glied der Fibonacci-Folge die Darstellung

$$x_n = \frac{1}{\sqrt{5}} \left(\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right)$$

besitzt. (1)

4. (A) Eigenschaften von Eigenwerten

Zeigen Sie

- (a) Ist $A \in M(2 \times 2, \mathbb{R})$ symmetrisch, so sind alle Eigenwerte von A reell. (1)
- (b) Wenn λ ein Eigenwert von A ist, dann ist $-\lambda$ ein Eigenwert von -A. (1)
- (c) $A \in M(n \times n, \mathbb{K})$ ist genau dann nicht invertierbar, wenn 0 ein Eigenwert von A ist . (1)
- (d) Ist $A \in M(n \times n, \mathbb{K})$ invertierbar und $\lambda \in \mathbb{K}$ ein Eigenwert von A, dann ist $\lambda \neq 0$ und $\frac{1}{\lambda}$ ein Eigenwert von A^{-1} . (1)
- (e) Ist $A \in M(n \times n, \mathbb{K})$ und $\lambda \in \mathbb{K}$ ein Eigenwert von A, dann ist für $m \in \mathbb{N}$ auch λ^m ein Eigenwert von A^m . (1)
- (f) Ist $A \in M(n \times n, \mathbb{K})$, dann haben A und A^{\top} das gleiche charakteristische Polynom und die gleichen Eigenwerte . (1)

5. (A) Diagonalisierbarkeit von Matrizen

- a) Eine Matrix $A \in M(n \times n, \mathbb{R})$ heißt nilpotent, falls es ein $m \in \mathbb{N}$ gibt, für dass $A^m = 0$ gilt. Zeigen Sie:
 - i) Falls $A \in M(n \times n, \mathbb{R})$ nilpotent ist, dann hat A nur den Eigenwert 0. (2)
 - ii) Falls $0 \neq A \in M(n \times n, \mathbb{R})$ nilpotent ist, ist A nicht diagonalisierbar. (1)
- b) Zeigen Sie: Ist $A \in M(n \times n, \mathbb{R})$ symmetrisch, so sind die Eigenvektoren zu verschiedenen Eigenwerten orthogonal (bzgl. des Standardskalarprodukts). (3)

6. (T),(NA) Es sei
$$A \in M(3 \times 3, \mathbb{K}), A = \begin{pmatrix} -1 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}$$
.

- 1. Bestimmen Sie das charakteristische Polynom, die Eigenwerte inklusive ihrer algebraischen und geometrischen Vielfachheiten sowie Basen der Eigenräume von A.
- 2. Bestimmen Sie eine invertierbare Matrix S, so dass $S^{-1}AS$ eine Diagonalmatrix ist.
- 3. Berechnen Sie A^n für $n \in \mathbb{N}$.

Führen Sie die obigen Schritte auch für die folgende Matrix durch, falls möglich:

$$B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- 7. (T), (NA)
 - (a) Es sei $G = (g_{ij}) \in M(n \times n, \mathbb{R})$ eine Matrix, deren Spaltensummen alle 1 sind, d.h.

$$\forall j \in \{1, \dots, n\} : \left(\sum_{i=1}^{n} g_{ij} = 1\right).$$

Zeigen Sie, dass 1 ein Eigenwert von G ist.

- (b) Zeigen Sie die folgenden Aussagen über orthogonale Matrizen $A \in \mathbb{R}^{n \times n}$:
 - (a) $\langle Ax, Ay \rangle = \langle x, y \rangle$, wobei $\langle \cdot, \cdot \rangle$ das kanonische Skalarprodukt bezeichnet.
 - (b) $\det A \in \{1, -1\}.$
 - (c) Zeigen Sie, dass die orthogonalen Matrizen A mit det A = 1 eine Untergruppe von O(n) bilden. Diese wird mit SO(n) bezeichnet.

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 06

Abgabedatum: 28.05.24, 14 Uhr

1. (NA) Minifragen

- (a) Sei $f: \mathbb{R} \to \mathbb{R}$ stetig und $a: \mathbb{N} \to \mathbb{R}$ eine Folge.
 - Falls a konvergent ist, ist dann die Folge $(f(a_n))_{n\in\mathbb{N}}$ konvergent?
 - Falls a bestimmt divergent gegen $+\infty$ ist, ist dann die Folge $(f(a_n))_{n\in\mathbb{N}}$ konvergent?
- (b) Ist $f: \mathbb{R} \to \mathbb{R}$ stetig, falls der linksseitige und rechtsseitige Grenzwert in jedem Punkt aus \mathbb{R} übereinstimmen?
- (c) Falls eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ die Werte 0 und 1 annimmt, nimmt sie dann auch den Wert 0.5 an?

2. (A) Funktionsgrenzwerte mit dem ϵ - δ -Kriterium

Zeigen Sie unter Verwendung des ϵ - δ -Kriteriums (Definition 10.1.3), dass für jedes $x_0 \in [0, 5]$ der Grenzwert

$$\lim_{x \to x_0} \frac{2}{1 + \sqrt{x}}$$

existiert. (6)

3. (A) Grenzwerte spezieller Funktionen Es seien $\alpha, \beta \in (0, +\infty)$. Zeigen Sie, dass

(a)
$$\lim_{x \to +\infty} \frac{e^{\beta x}}{x^{\alpha}} = +\infty$$
, (2)

(b)
$$\lim_{x \to +\infty} \frac{\ln x}{x^{\alpha}} = 0,$$

(c)
$$\lim_{x\to 0^+} x^{\alpha} \ln x = 0.$$
 (2)

Hinweis: Nutzen Sie die Reihendarstellung der Exponentialfunktion und führen Sie Teil b) auf Teil a) zurück.

4. (A) Weitere Funktionsgrenzwerte

Berechnen Sie, sofern existent, die folgenden Grenzwerte:

(i)
$$\lim_{x\to 2} \frac{x^2 + 5x - 14}{x - 2}$$
, (2)

(ii)
$$\lim_{x\to 0} \frac{|x|}{x^2+24x}$$
, (2)

(iii)
$$\lim_{x\to 1} \left(\frac{1}{x-1} - \frac{1}{x(x-1)}\right)$$
. (2)

(A) Ein impliziter Grenzwert Für $x \in (0,1)$ definieren wir f(x) durch

$$\sin x = \frac{x(60 - 7x^2) + x^7 f(x)}{60 + 3x^2}.$$

Bestimmen Sie $\lim_{x\to 0} f(x)$.

(6)

Hinweis: Nutzen Sie die Reihendarstellung des Sinus und stellen Sie die Gleichung $nach \ x \ um.$

6. (T),(NA) Zeigen Sie unter Verwendung des ϵ - δ -Kriteriums (Definition 10.1.3), dass für jedes $x_0 \in [2, 5]$ der Grenzwert

$$\lim_{x \to x_0} \frac{1}{1 - x^2}$$

existiert.

7. (T),(NA)

Untersuchen Sie, ob folgende Grenzwerte existieren und bestimmen Sie ggf. den jeweiligen Grenzwert:

- 1. $\lim_{x\to 0} \frac{\sin x}{x}$,
- $2. \lim_{x \to 0} \frac{\sin x x}{x}$
- 3. $\lim_{x\to 0} \frac{\cos^2 x 1}{x^2}$ 4. $\lim_{x\to 0} \frac{e^x 1}{x}$,

- 5. $\lim_{x\to 0} \frac{|x|}{x}$, 6. $\lim_{x\to \infty} \frac{6x^4 + 12x^2 13}{3x^4 7x^3 + 2x + 1}$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 07

Abgabedatum: 06.06.24, 12 Uhr

1. (NA) Minifragen

- (a) Ist die Verkettung von stetigen Funktionen stetig?
- (b) Ist die kleinste obere Schranke eines kompakten Intervalls immer in diesem enthalten?
- (c) Sei $f: [a, b] \to \mathbb{R}$ eine stetige Funktion. Gilt dann f([a, b]) = [f(a), f(b)]?
- (d) Sei I ein Intervall und sei f eine auf I definierte Funktion. Existiert dann ein $x_+ \in I$ mit $f(x_+) > f(x) \ \forall x \in I$?
- (e) Das ε - δ -Kriterium aus Def. 10.2.1 für Stetigkeit besagt, dass

$$\forall \varepsilon > 0 \exists \delta > 0 (x \in U_{\delta}(x_0) \cap D \Rightarrow |f(x) - f(x_0)| < \varepsilon).$$

Welche der folgenden Aussagen sind bzw. sind nicht äquivalent zum ε - δ -Kriterium?

- $\exists \varepsilon > 0 \forall \delta > 0 (x \in U_{\delta}(x_0) \cap D \Rightarrow |f(x) f(x_0)| < \varepsilon).$
- $\neg \exists \varepsilon > 0 \forall \delta > 0 (x \in U_{\delta}(x_0) \cap D \Rightarrow |f(x) f(x_0)| > \varepsilon).$

2. (A) Stetigkeit

(a) Zeigen Sie mit Hilfe der Definition der Stetigkeit, dass

i)
$$f_1: \mathbb{R} \to \mathbb{R}, f_1(x) = 5|x^2 - 2| + 3 \text{ in } x_0 = 1 \text{ stetig ist,}$$
 (2)

ii)
$$f_2:(0,+\infty)\to\mathbb{R}, f_2(x)=\frac{1}{x}$$
 stetig ist. (2)

- (b) In Beispiel 10.2.6 (iv) steht, dass die Abbildung $f: \mathbb{R} \setminus \{0\} \to [0,1]$ mit $x \mapsto \sin \frac{1}{x}$ bei x = 0 eine sogenannte Unstetigkeit zweiter Art besäße.
 - i) Geben Sie zunächst Folgen $(x_k)_{k\in\mathbb{N}}$ und $(y_k)_{k\in\mathbb{N}}$ an, so dass $\lim_{k\to\infty} x_k = \lim_{k\to\infty} y_k = 0$ und $\lim_{k\to\infty} \sin\frac{1}{x_k} \neq \lim_{k\to\infty} \sin\frac{1}{y_k}$. (1)
 - ii) Verwenden Sie die beiden Folgen aus (i) dazu, die genannte Unstetigkeit zweiter Art bei x = 0 zu beweisen. (1)

3. (A) Stetigkeit

a) Bestimmen Sie $a, b \in \mathbb{R}$, so dass

$$f(x) = \begin{cases} \frac{x}{a+2}, & x \le 1, \\ x^2 + b, & x > 1 \end{cases}$$

in x = 1 stetig ist und f(-1) = 1 gilt. (2)

b) Zeigen Sie mithilfe der Definition der Stetigkeit, dass die Funktion $f:(0,\infty)\to\mathbb{R}$ gegeben durch

$$f(x) = \frac{1}{x + \sqrt{x}}$$

im Punkt $x_0 = 1$ stetig ist.

c) Zeigen Sie: Ist $g:[0,1]\to\mathbb{R}$ beschränkt, so ist $x\mapsto x\cdot g(x)$ in $x_0=0$ stetig. (1)

(3)

4. (A) Stetigkeit

- a) Zeigen Sie, dass die Funktion $f: [-1,1] \to \mathbb{R}, x \mapsto \log_4(x+16) + x4^x 6$, mindestens eine Nullstelle besitzt. (2)
- b) Bestimmen Sie für die folgenden Beispiele von Funktionen $f: \mathbb{R} \to \mathbb{R}$, in welchen Punkten bzw. Bereichen diese stetig sind. Klassifizieren Sie die Unstetigkeitsstellen gemäß Beispiel 10.2.6.

i)
$$f(x) = \exp(24[x])$$
, wobei $[x] := \max\{k \in \mathbb{Z} | k \le x\}$ (2)

ii)
$$f(x) = \exp(24[x])$$
, worst $[x] := \max\{n \in \mathbb{Z} | n \le x\}$

$$4 : x = 3$$

$$3 : x = -3$$
(2)

5. (A) Grenzwertsätze für Funktionsgrenzwerte

Es seien $f, g: I \to \mathbb{R}$, $x_0 \in \overline{I}$ und $a, b \in \mathbb{R}$ mit $\lim_{x \to x_0} f(x) = a$, $\lim_{x \to x_0} g(x) = b$. Beweisen Sie die folgenden nach Lemma 10.1.8 geltenden Aussagen jeweils mithilfe von Satz 10.1.6 und den Grenzwertsätzen 3.1.17 für Folgen.

(a)
$$\forall \alpha \in \mathbb{R} \left(\lim_{x \to x_0} (\alpha f(x)) = \alpha a \right)$$
. (1.5)

(b)
$$\lim_{x \to x_0} (f(x) + g(x)) = a + b.$$
 (1.5)

(c)
$$\lim_{x \to x_0} (f(x) \cdot g(x)) = a \cdot b.$$
 (1.5)

(d) Wenn
$$b \neq 0$$
, dann gilt $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{a}{b}$. (1.5)

6. (T),(NA)

Zeigen Sie, dass jedes Polynom ungeraden Grades mindestens eine (reelle) Nullstelle besitzt und schließen Sie daraus, dass jedes $A \in M(3 \times 3, \mathbb{R})$ mindestens einen reellen Eigenwert besitzt.

- 7. (T), (NA) Bestimmen Sie für die folgenden Beispiele von Funktionen $f : \mathbb{R} \to \mathbb{R}$, in welchen Punkten bzw. Bereichen diese stetig sind. Klassifizieren Sie die Unstetigkeitsstellen gemäß Beispiel 10.2.6.
 - a) $f(x) = |\sin(x^3)|$

b)
$$f(x) = \begin{cases} \frac{|x|\cos(\frac{1}{x^2})}{1+x^4} : x \in \mathbb{R} \setminus \{3, -3\} \\ 1 : x = 0 \end{cases}$$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Abgabedatum: 13.06.24, 12 Uhr

Blatt 08

1. (NA) Minifragen

- (a) Gibt es eine differenzierbare Funktion, die nicht stetig ist?
- (b) Folgt aus gleichmäßiger Stetigkeit Lipschitz-Stetigkeit?
- (c) Folgt aus gleichmäßiger Stetigkeit Stetigkeit?
- (d) Ist jede invertierbare Funktion differenzierbar?

2. (A) Gleichmäßige Stetigkeit

Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heißt **Lipschitz-stetig**, falls es ein $L \in \mathbb{R}$ gibt, sodass

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2| \ \forall x_1, x_2 \in \mathbb{R}.$$

- (a) Sei $I \subseteq \mathbb{R}$ und $f: I \to \mathbb{R}$ Lipschitz-stetig. Zeigen Sie, dass f gleichmäßig stetig auf I ist. (2)
- (b) Zeigen Sie, dass die Funktion $f:\mathbb{R}\to\mathbb{R}$ gegeben durch $f(x)=\sqrt{4+x^2}$ gleichmäßig stetig auf \mathbb{R} ist. (4)

3. (A) Ableitungsregeln

Bestimmen Sie die Ableitungen der folgenden Funktionen und geben Sie jeweils den maximalen Definitionsbereich an.

a)
$$f_1(x) = \log(\log(2x)),$$
 (0.5)

b)
$$f_2(x) = 2x \sin^2\left(\frac{x}{2}\right)$$
, (0.5)

c)
$$f_3(x) = \log(x + \sqrt{x^2 - 1}),$$
 (0.5)

d)
$$f_5(x) = \frac{x^{\sqrt{x}}}{2^x}$$
, (0.5)

e)
$$f_6(x) = x^5 5^x$$
, (0.5)

f)
$$f_7(x) = \log\left(\sqrt{x\sqrt{x}}\right)$$
, (0.5)

g)
$$f_8(x) = (x \cos x)^x$$
, (1)

h)
$$f_4(x) = \arcsin\left(\frac{2x}{1+x^2}\right)$$
, (1)

i)
$$f_9(x) = \left(\frac{x^2+1}{x^2+3}\right)^{\sin 2x}$$
. (1)

4. (A) Aussagen zur Differenzierbarkeit

Sei I ein offenes Intervall mit $0 \in I$ und $x_0 \in I$. Beweisen oder widerlegen Sie:

- a) Gibt es Zahlen K > 0 und $\alpha > 1$ mit $|f(x)| \le K |x|^{\alpha}$ für $x \in I$, so ist f in 0 differenzierbar. (2)
- b) Gilt f(0) = 0 und gibt es K > 0 und $\alpha \in (0,1)$ mit $|f(x)| \ge K |x|^{\alpha}$ für $x \in I$, so ist f in 0 nicht differenzierbar. (2)
- c) Ist f in x_0 differenzierbar, so gilt

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0 - h)}{2h}.$$
(2)

5. (A) Monotonieverhalten

- a) Bestimmen Sie, auf welchen Teilmengen von \mathbb{R} die Funktion $f:(0,\infty)\to\mathbb{R}$, $f(x)=\frac{\ln x}{x}$ monoton wachsend bzw. monoton fallend ist. (2)
- b) Begründen Sie, welche der beiden Zahlen 2024^{2025} und 2025^{2024} größer ist. (1)
- c) Zeigen Sie, dass es genau ein paar natürlicher Zahlen n,m gibt mit n < m und $n^m = m^n$. (3)

Hinweis: Sie dürfen verwenden, dass In auf seinem gesamten Definitionsbereich streng monoton wachsend ist.

6. (T),(NA)

Bestimmen Sie die Ableitungen folgender Funktionen und geben Sie jeweils ihren maximalen Definitionsbereich an.

- 1. $f_1(x) = (x^x)^x$
- 2. $f_2(x) = x^{(x^x)}$
- 3. $f_3(x) = x^{\frac{1}{x}}$
- 4. $f_4(x) = \ln \ln(1+x)$
- 5. $f_5(x) = x^{\sin(x)}$
- 6. $f_6(x) = \sqrt[3]{x^{3/5} + \sin^3(1/x) \tan^2(x)}$
- 7. $f_7(x) = \frac{\cos(x)}{2 + \sin \log x}$

7. (T),(NA)

Zeigen Sie, dass für $x, y \in (-\infty, 0)$ und $a, b \in \mathbb{R}$ mit a < b folgende Ungleichungen gelten.

- $1. |\cos e^x \cos e^y| \le |x y|.$
- 2. $\frac{b-a}{1+b^2} < \arctan b \arctan a < \frac{b-a}{1+a^2}.$

Hinweis: Verwenden Sie den 1. Mittelwertsatz.

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 09

Abgabedatum: 20.06.24, 12 Uhr

1. (NA) Minifragen

- (a) Muss eine Funktion $f:[a,b] \to \mathbb{R}$ auf ganz [a,b] differenzierbar sein, damit der Mittelwertsatz anwendbar ist?
- (b) Ist die Ableitung einer differenzierbaren Funktion immer stetig?
- (c) Folgt aus gleichmäßiger Stetigkeit Differenzierbarkeit?

2. (A) Mittelwertsätze

a) Zeigen Sie, dass es genau ein
$$x \in [0, +\infty)$$
 gibt mit $e^x + \sqrt{x} = 3$. (2)

b) Berechnen Sie mithilfe der Mittelwertsätze:

a)
$$\lim_{n\to\infty} n(1-\cos(1/n)) \tag{2}$$

b)
$$\lim_{x\to a} \frac{x^{\alpha} - a^{\alpha}}{x^{\beta} - a^{\beta}}$$
 für $a > 0, \beta \neq 0$. (2)

3. (A) Grenzwerte

Berechnen Sie die folgenden Grenzwerte:

a)
$$\lim_{x \to 1} \frac{\sin(\pi x)}{x^2 - 2x + 1}$$
 (1.5)

b)
$$\lim_{x \to 0} \left(\frac{1}{\sin^2(x)} - \frac{1}{x^2} \right)$$
 (1.5)

c)
$$\lim_{x \to 0} \frac{\log(\cos(3x))}{\log(\cos(2x))} \tag{1.5}$$

d)
$$\lim_{x \to 0} \frac{2\cos(x) + e^x + e^{-x} - 4}{x^4}$$
 (1.5)

4. (A) Sinus und Kosinus Hyperbolicus

Wir haben im letzen Semester auf Blatt 9 gezeigt, dass die Funktionen sinh, cosh : $\mathbb{R} \to \mathbb{R}$ durch

$$\cosh(x) = \frac{1}{2}(e^x + e^{-x}) = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!}, \quad \sinh(x) = \frac{1}{2}(e^x - e^{-x}),$$

mit der Eigenschaft $\cosh^2(x) - \sinh^2(x) = 1 \ \forall x \in \mathbb{R}$ gegeben sind.

- a) Zeigen Sie, dass die Umkehrfunktion von cosh, nämlich arcosh (Areakosinus Hyperbolicus), existiert und geben Sie größtmögliche Mengen I, J an, so dass arcosh: $I \to J$ existiert, mit $1 \in I$. (2)
- b) Berechnen Sie $\operatorname{arcosh}'(x) \ \forall x \in I.$ (2)
- c) Zeigen Sie, dass $\operatorname{arcosh}(x) = \log(x + \sqrt{x^2 1})$ für $x \ge 1$. (2)

5. (A) Lipschitz-Stetigkeit und Differenzenquotienten

Sei $a < b, f: (a, b) \to \mathbb{R}$ differenzierbar und $L \ge 0$.

- a) Zeigen Sie, dass folgende Aussagen äquivalent sind:
 - a) $|f'(x)| \le L \ \forall x \in (a, b)$
 - b) $|f(x) f(y)| \le L|x y| \ \forall x, y \in (a, b), \text{ d.h., } f \text{ ist Lipschitz-stetig mit Lipschitz-Konstante } L.$ (3)
- b) Zeigen Sie, dass für alle $x, y \in \mathbb{R}$ gilt:

$$|\sin(x) - \sin(y)| \le |x - y|.$$

(1)

c) Zeigen oder widerlegen Sie: Ist f zweimal stetig differenzierbar auf (a, b), so gilt für alle x_0 in (a, b):

$$f''(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - 2f(x_0) + f(x_0 - h)}{h^2}.$$
(2)

6. (T),(NA)

Berechnen Sie die folgenden Grenzwerte:

- a) $\lim_{x \to \pi} \frac{\sin(3x)}{\tan(5x)}$
- b) $\lim_{x \to 0} \frac{e^x + e^{-x} 2}{1 \cos(x)}$
- c) $\lim_{x \to 0} \left(\frac{1}{x} \frac{1}{e^x 1} \right)$
- $\mathrm{d}) \quad \lim_{x \to 0} \frac{\sin(x)}{x}$

7. (T),(NA)

Zeigen Sie für $x \in (-1,1)$

$$\arctan x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{2k+1}.$$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II Abgabedatum: 27.06.24, 12 Uhr

Blatt 10

1. (NA) Minifragen

- (a) Gilt die Umkehrung des Satzes von Rolle (11.2.5)? In anderen Worten, seien $a,b \in \mathbb{R}, a < b$ und die Funktion $f:[a,b] \to \mathbb{R}$ sei stetig und auf (a,b) differenzierbar. Weiter existiere ein $\xi \in (a,b)$ mit $f'(\xi) = 0$. Gilt dann f(a) = f(b)?
- (b) Gilt die Umkehrung des 1. Mittelwertsatzes (11.2.8)? In anderen Worten, seien $a, b \in \mathbb{R}, \ a < b \text{ und } f : [a, b] \to \mathbb{R}$ eine Funktion, für die gilt

$$\exists \xi \in (a,b) \left(f'(\xi) = \frac{f(b) - f(a)}{b - a} \right).$$

Ist f dann stetig und auf (a, b) differenzierbar?

- (c) Hilft der Satz von L'Hospital nur in den Fällen $\frac{0}{0}$ und $\frac{\infty}{\infty}$ weiter?
- (d) Für welche Funktionen $f: I \to \mathbb{R}$ gilt, dass das entsprechende Lagrangesche Restglied $R_n(x_0, x)$ gleich 0 ist?
- (e) Welche Bedingung muss eine Funktion $f: I \to \mathbb{R}$ erfüllen, sodass die Taylorreihe $Tf(x_0, x)$ von f mit Entwicklungspunkt x_0 existiert?

2. (A) Taylorpolynome

- a) Sei $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right)\to\mathbb{R}$ definiert durch $f(x)=\ln(\cos(x))$. Berechnen Sie das zweite Taylorpolynom $T^{(2)}f(0,x)$ von f mit Entwicklungspunkt $x_0=0$. (3)
- b) Zeigen Sie, dass für $0 \le x \le \frac{\pi}{4}$ die Abschätzung

$$\left| f(x) - T^{(2)} f(0, x) \right| \le \frac{2}{3} x^3$$
 (3)

gilt.

3. (A) Kurvendiskussionen

Führen Sie eine Kurvendiskussion der Funktion $f: \mathbb{R} \to \mathbb{R}, x \mapsto (1-x)e^{2x}$ durch (Nullstellen, Monotonieintervalle, Extremstellen (lok. Max./Min), Verhalten für $x \to \pm \infty$.) (6)

4. (A) Partielle Ableitungen

Berechnen Sie jeweils alle ersten partiellen Ableitungen von

a)
$$f: \mathbb{R}^3 \to \mathbb{R}, f(x_1, x_2, x_3) = x_1^3 x_2^2 x_3 + x_1^2 x_2 x_3^3 + x_1 x_2^3 x_3^2,$$
 (1)

b)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2) = \sin(x_1 \cos x_2),$$
 (1)

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = \begin{pmatrix} x_2^2 x_1 + 3x_1^2 x_3^3 \\ x_3 x_1^2 + 2x_2 x_1 \end{pmatrix}$, (2)

d)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x_1, x_2) = \begin{cases} \frac{x_1 x_2^3}{x_1^2 + x_2^4}, & (x_1, x_2)^\top \neq (0, 0)^\top, \\ 0, & (x_1, x_2)^\top = (0, 0)^\top. \end{cases}$$
 (2)

Beachten Sie bei d), dass die partielle Ableitung in $(0,0)^{\top}$ mit Hilfe der Definition bestimmt werden muss – warum ist das so?

5. (A) Stammfunktionen

Bestimmen Sie die folgenden Stammfunktionen:

a)
$$\int \sum_{k=0}^{\infty} (k+1)x^k dx$$
, $x \in (-1,1)$ (1.5)

b)
$$\int \frac{\ln(x)}{x\sqrt{1+\ln^2(x)}} dx \tag{1.5}$$

c)
$$\int \sin(2x)\cos(4x) dx \tag{1.5}$$

$$d) \int \frac{1}{\sqrt{1+x^2}} dx \tag{1.5}$$

Hinweis zu Teil d): Führen Sie die Substitution $x = \sinh(u)$ durch.

6. (T),(NA)

- a) Berechnen Sie mithilfe des Satzes von Taylor $\sin\left(\frac{1}{10}\right)$ bis auf einen Fehler von 10^{-4} genau.
- b) Berechnen Sie alle partiellen Ableitungen von

a)
$$f:(0,\infty)\times\mathbb{R}\to\mathbb{R}, f(x_1,x_2)=x_1^{x_2}$$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x_1, x_2) = \begin{cases} \frac{x_1 x_2}{x_1^2 + x_2^2}, & (x_1, x_2)^\top \neq (0, 0)^\top, \\ 0, & (x_1, x_2)^\top = (0, 0)^\top. \end{cases}$

c) Sei $f:(0,2\pi)\to\mathbb{R}, x\mapsto\cos(x)e^x$. Bestimmen Sie alle lokalen Extremstellen von f und überprüfen Sie, ob es sich dort um lokale Maxima oder Minima handelt.

7. (T),(NA)

Bestimmen Sie die folgenden Stammfunktionen:

- a) $\int \ln^2(x) dx$
- b) $\int \frac{3x^2}{x^3+1} dx$
- c) $\int \arctan(3x) dx$
- d) $\int \frac{\sin(x)}{1 + \cos^2(x)} \, dx$

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 11

(6)

Abgabedatum: 04.07.24, 12 Uhr

1. (NA) Minifragen

- (a) Nennen Sie eine nicht Riemann-integrierbare Funktion.
- (b) Ist jede stetige Funktion Riemann-integrierbar?
- (c) Ist jede monoton wachsende Funktion Riemann-integrierbar?
- (d) Ist jede Funktion mit endlich vielen Unstetigkeitsstellen Riemann-integrierbar?

2. (A) Partialbruchzerlegung

Bestimmen Sie die folgenden Stammfunktionen:

a)
$$\int \frac{1}{x^4 - 1} dx$$
 (1)

b)
$$\int \frac{x^3 + 2x^2 - 1}{x(x - 1)} dx$$
 (1)

c)
$$\int \frac{3x^2}{x^3+1} dx$$
 (1)

d)
$$\int \frac{\log(x)}{x(\log^2(x) + \log(x) - 2)} dx \tag{1.5}$$

e)
$$\int \frac{1}{\sqrt{5-4x-x^2}} dx$$
 (1,5)

3. (A) Höhere trigonometrische Integrale

Sei $f_n(x) := \sin^n(x)$ für $n \ge 2$. Bestimmen Sie eine rekursive Darstellung für

$$\int f_n(x) \, dx$$

der Form

$$\int f_n(x) dx = g_n(x) f_{n-1}(x) + \alpha_n \int f_{n-2} dx,$$

wobei $g_n : \mathbb{R} \to \mathbb{R}$ und $\alpha_n \in \mathbb{R}$.

4. (A) Zwischensummen

Es seien $a, b \in (0, +\infty)$, a < b, und $f: [a, b] \to \mathbb{R}$, $f(x) = \frac{1}{x}$.

a) Zeigen Sie, dass durch
$$x_j = a \left(\frac{b}{a}\right)^{\frac{j}{n}}$$
, $j = 0, \dots, n$, eine ausgezeichnete Partitionenfolge $(\pi_n)_{n \in \mathbb{N}}$ von $[a, b]$ gegeben ist. (2)

- b) Durch $\xi_j = x_j$ für j = 1, ..., n sind Zwischenstellen dieser Partition gegeben. Bestimmen Sie die zugehörige Riemannsche Zwischensumme. (2)
- c) Bestimmen Sie über die Zwischensumme aus b das Integral $\int_a^b \frac{1}{x} dx$. (2)

5. (A) Stetigkeit und Stammfunktionen

a) Sei $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0. \end{cases}$$

Zeigen Sie, dass f keine Stammfunktion besitzt.

b) Geben Sie (mit Beweis) eine in mindestens einem Punkt unstetige Funktion $f: \mathbb{R} \to \mathbb{R}$ an, welche dennoch eine Stammfunktion $F: \mathbb{R} \to \mathbb{R}$ besitzt. (3)

(3)

6. (T),(NA)

Bestimmen Sie die folgenden Stammfunktionen:

- a) $\int \frac{1}{x^3+x} dx$
- b) $\int \frac{x^5+1}{x^4+x^2} dx$
- c) $\int \frac{x+2}{x^3-3x^2-x+3} dx$

7. (T),(NA)

Berechnen Sie die Ober- und Untersumme von $f = \exp: [0,1] \to \mathbb{R}$ für die Zerlegung $Z_n = \{x_i | i = 0, \dots, n\}$ mit $x_i = \frac{i}{n}$ und $n \in \mathbb{N}$. Zeigen Sie

$$\lim_{n \to \infty} \max_{i \in \{1, \dots, n\}} |x_i - x_{i-1}| = 0$$

und bestimmen Sie mit diesen Ergebnissen den Wert des Integrals $\int_0^1 e^x dx$.

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.
 - (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt einzeln auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.

12 Übungspunkte

Übungen zu: Mathematik für Informatik II

Blatt 12

Abgabedatum: 11.07.24, 12 Uhr

1. (NA) Minifragen

(a) Ist jede Lipschitz-stetige Funktion integrierbar?

(b) Impliziert
$$\int_a^b f(x) dx$$
, $\int_a^b g(x) dx < \infty$, dass $\int_a^b f(x)g(x) dx < \infty$?

(c) Impliziert
$$\int_a^b f(x) dx$$
, $\int_a^b g(x) dx < \infty$, dass $\int_a^b f(x)g(x) dx < \infty$?

(d) Gibt es nicht ausgezeichnete Partitionenfolgen?

2. (A) Bestimmte Integrale

Berechnen Sie folgende bestimmte Integrale:

a)
$$\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{\arcsin(x)}{\sqrt{1-x^2}} dx \tag{1}$$

b)
$$\int_{\frac{1}{2}}^{1} \frac{1}{\sqrt{4x-1}} dx$$
 (1)

c)
$$\int_{0}^{1} \frac{3x^2+1}{x^6+2x^5+3x^4+4x^3+3x^2+2x+1} dx$$
 (2)

$$d) \int_{0}^{\frac{\pi}{4}} \frac{\sin^3(x)}{\sqrt{\cos(x)}} dx \tag{1}$$

e)
$$\int_{-1}^{1} \frac{x}{x^4 + 4} dx$$
 (1)

3. (A) Verallgemeinerter Mittelwertsatz der Integralrechnung

Es seien $f:[a,b]\to\mathbb{R}$ stetig sowie $g:[a,b]\to\mathbb{R}$ eine Riemann-integrierbare, nicht-negative Funktion. Zeigen Sie, dass dann ein $\xi\in(a,b)$ mit

$$\int_a^b f(x)g(x) dx = f(\xi) \int_a^b g(x) dx$$

existiert. (6)

4. (A) Aussagen über Riemann-integrierbarkeit

- a) Sei $f:[a,b]\to\mathbb{R}$ beschränkt und Riemann-integrierbar mit $f([a,b])\subseteq [-M,M]$ für ein M>0. Sei weiter $g:[-M,M]\to\mathbb{R}$ Lipschitzstetig. Zeigen Sie, dass dann $g\circ f:[a,b]\to\mathbb{R}$ ebenfalls Riemann-integrierbar ist. (4)
- b) Sei $f:[a,b] \to \mathbb{R}$ beschränkt und Riemann-integrierbar. Zeigen Sie, dass dann auch $\exp \circ f:[a,b] \to \mathbb{R}$ Riemann-integrierbar ist. (2)

5. (A) Uneigentliche Integrale und das Integralkriterium

- a) Bestimmen Sie alle Kombinationen von $a, b \in \mathbb{R}$, sodass $\int_{1}^{\infty} \frac{x^{a}}{1+x^{b}} dx$ konvergiert. (3)
- b) Bestimmen Sie alle $\mu > 0$, sodass

$$\sum_{k=4}^{\infty} \frac{\log(\log(k))^{-\mu}}{k \log(k)}$$

konvergiert. (3)

6. (T),(NA)

Berechnen Sie folgende bestimmte Integrale:

a)
$$\int_{0}^{\frac{\pi}{4}} \frac{\sin(x)\cos(x)}{1-\sin^{2}(x)} dx$$

b)
$$\int_{1}^{e} \frac{\log(x)}{x\sqrt{1+\log(x)^2}} dx$$

c)
$$\int_{0}^{1} x^{3} \sqrt{1 + x^{2}} dx$$

$$d) \int_{1}^{2} \frac{1}{x^3 + x} dx$$

e)
$$\int_{1}^{e} x^2 \log(x) dx$$

7. (T),(NA)

Sei $f:[0,1]\to\mathbb{R}$ gegeben durch

$$f(x) = \begin{cases} \frac{1}{x} - \left\lfloor \frac{1}{x} \right\rfloor, & x \neq 0, \\ 0, & x = 0. \end{cases}$$

Zeigen Sie, dass f Riemann-integrierbar ist.

- (NA) Die Lösung dieser Aufgabe müssen Sie nicht aufschreiben und abgeben.
 - (A) Die Lösung dieser Aufgabe schreiben Sie bitte auf und geben Sie ab.

- (T) Die Aufgabe dient der Vorbereitung auf das Tutorium. Sie sollten sie mindestens in groben Zügen verstanden und durchdacht haben.
 - Die Abgabe der Lösungen erfolgt **einzeln** auf Moodle als einzelne PDF Datei.
 - Wir korrigieren auf jedem Übungsblatt nur jeweils zwei Aufgaben. Eine Aufgabe wird von uns festgelegt, die andere dürfen Sie sich aussuchen. Schreiben Sie dazu bitte auf jede Abgabe eine Erst- und Zweitpräferenz von Aufgaben, die wir korrigieren sollen.