Homework 3

Math 141

Due October 2, 2020 by 5pm

Topics covered: Topological spaces, continuity, compactness Instructions:

- This assignment must be submitted on Gradescope by the due date.
- If you collaborate with other students (which is encouraged!), please mention this near the corresponding problems.
- Some problems from this assignment come from Armstrong's book, as indicated next to the problem. Note that the statements on this assignment might differ slightly from the book.
- If you are stuck please ask for help (from me or your classmates). Occasionally problems may require ingredients not discussed in the course.

Problem 1. Classify the Hausdorff topologies on the set $X = \{a, b, c, d\}$.

Solution. \Box

Problem 2. Recall that in class we showed that if $X \subset \mathbb{R}^n$ is compact, then X is closed.

- (a) Modify the proof from class to show that if Y is Hausdorff and X is compact subset of Y, then X is closed.
- (b) Show that the assumption that Y is Hausdorff is necessary.

 \square

Problem 3. Let X, Y be topological spaces. Prove that if $f: X \to Y$ is continuous, then its graph $G_f = \{(x, y) : y = f(x)\}$

is a closed subset of $X \times Y$. ¹

 \Box

Problem 4. Prove that S^2 is not topologically equivalent to \mathbb{R}^2 .

Solution. \Box

Problem 5. Let X be a metric space. For subsets $A, B \subset X$ define d(A, B) as the infimum of d(a, b) where $a \in A$ and $b \in B$.

- (a) Find two disjoint closed subsets of \mathbb{R}^2 so that d(A, B) = 0.
- (b) Show that if A, B are disjoint, closed, and B is compact, then d(A, B) > 0.

Solution. \Box

Problem 6. Let $GL_2(\mathbb{R})$ denote the group of invertible linear maps $\mathbb{R}^2 \to \mathbb{R}^2$, topologized as a subset of 2×2 matrices $M_2(\mathbb{R}) \cong \mathbb{R}^4$.

- (a) Show that matrix multiplication $M_2(\mathbb{R}) \times M_2(\mathbb{R}) \to M_2(\mathbb{R})$ and matrix inversion $GL_2(\mathbb{R}) \to GL_2(\mathbb{R})$ are continuous.³
- (b) Show that $GL_2(\mathbb{R}) \subset \mathbb{R}^4$ is an open subset. ⁴
- (c) Let O(n) denote the group of linear isometries of \mathbb{R}^n , topologized as a subset of $M_n(\mathbb{R}) \cong \mathbb{R}^{n^2}$. Prove that O(n) is compact.

Solution.

¹The converse of this is also true if Y is compact, Hausdorff. This is known as the Closed Graph Theorem.

²Hint: construct an open cover of B that is disjoint from A. It may help to "shrink" the open sets in the cover before passing to a finite subcover.

³Remark: This exercise shows $GL_2(\mathbb{R})$ is a "topological group", which is defined as a group with a topology for which multiplication and inversion are continuous.

⁴Hint: the easiest route involves continuity of a certain polynomial.