Non-convergence Analysis of Probabilistic Direct Search

Cunxin Huang Co-supervised by Dr. Zaikun Zhang and Prof. Xiaojun Chen

Graduate Student Forum of ORSC Mathematical Programming Branch
Chongqing, China, 2023

Department of Applied Mathematics The Hong Kong Polytechnic University

Table of contents

1. Preliminaries

What is derivative-free optimization and why Probabilistic direct search

Non-convergence analysis
 Motivation and basic idea
 Main results

Tightness of analysis
 Almost zero gap
 Tightness of assumptions

4. Conclusions

Preliminaries

Derivative-free optimization (DFO)

- A branch of optimization
- Do not use derivatives (only use function evaluations)

Derivative-free optimization (DFO)

- A branch of optimization
- Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Derivative-free optimization (DFO)

- · A branch of optimization
- · Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Typical situation: black box

Derivative-free optimization (DFO)

- · A branch of optimization
- · Do not use derivatives (only use function evaluations)

Why DFO?

- Derivatives are not available
- Problems are often noisy (finite difference?)
- Function evaluations are expensive (e.g.: PDE simulation)

Nuclear Physics

Machine Learning

Cosmology

Basic assumptions

In this talk, we consider the unconstrained problem

$$\min_{x \in \mathbb{R}^n} f(x),$$

where

- $\cdot \ \nabla f$ is Lipschitz continuous, although it cannot be evaluated,
- \cdot f is bounded below.

Algorithm 1: Probabilistic direct search based on sufficient decrease

Input: $x_0 \in \mathbb{R}^n$, $\alpha_0 \in (0, \infty)$, $0 < \theta < 1 < \gamma$.

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma. for k = 0, 1, \ldots do
```

Input:
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, \infty)$, $0 < \theta < 1 < \gamma$. for $k = 0, 1, \ldots$ do \mid Select a finite set $D_k \subset \mathbb{R}^n$ randomly.

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.

for k = 0, 1, \ldots do

Select a finite set D_k \subset \mathbb{R}^n randomly.

(In this talk, assume D_k is a set of unit vectors for simplicity.)
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma. for k = 0, 1, \ldots do Select a finite set D_k \subset \mathbb{R}^n randomly. (In this talk, assume D_k is a set of unit vectors for simplicity.) if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then
```

```
\begin{array}{l} \text{Input: } x_0 \in \mathbb{R}^n, \, \alpha_0 \in (0, \infty), \, 0 < \theta < 1 < \gamma. \\ \text{for } k = 0, 1, \dots \text{ do} \\ \\ \text{Select a finite set } D_k \subset \mathbb{R}^n \text{ randomly.} \\ \\ \text{(In this talk, assume } D_k \text{ is a set of unit vectors for simplicity.)} \\ \text{if } f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 \text{ for some } d \in D_k \text{ then} \\ \\ \text{Expand step size, and move to that point} \end{array}
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma. for k = 0, 1, \ldots do Select a finite set D_k \subset \mathbb{R}^n randomly. (In this talk, assume D_k is a set of unit vectors for simplicity.) if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then Expand step size, and move to that point Set \alpha_{k+1} = \gamma \alpha_k and x_{k+1} = x_k + \alpha_k d.
```

```
\begin{array}{l} \text{Input: } x_0 \in \mathbb{R}^n \text{, } \alpha_0 \in (0, \infty) \text{, } 0 < \theta < 1 < \gamma. \\ \text{for } k = 0, 1, \dots \text{ do} \\ & \quad \text{Select a finite set } D_k \subset \mathbb{R}^n \text{ randomly.} \\ & \quad \text{(In this talk, assume } D_k \text{ is a set of unit vectors for simplicity.)} \\ & \quad \text{if } f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 \text{ for some } d \in D_k \text{ then} \\ & \quad \text{Expand step size, and move to that point} \\ & \quad \text{Set } \alpha_{k+1} = \gamma \alpha_k \text{ and } x_{k+1} = x_k + \alpha_k d. \\ & \quad \text{else} \\ & \quad \text{Shrink step size, and stand still} \\ & \quad \text{Set } \alpha_{k+1} = \theta \alpha_k \text{ and } x_{k+1} = x_k. \end{array}
```

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma. for k = 0, 1, \ldots do Select a finite set D_k \subset \mathbb{R}^n randomly. How to select? (In this talk, assume D_k is a set of unit vectors for simplicity.) if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then Expand step size, and move to that point Set \alpha_{k+1} = \gamma \alpha_k and x_{k+1} = x_k + \alpha_k d. else Shrink step size, and stand still Set \alpha_{k+1} = \theta \alpha_k and x_{k+1} = x_k.
```

Algorithm 1: Probabilistic direct search based on sufficient decrease

```
Input: x_0 \in \mathbb{R}^n, \alpha_0 \in (0, \infty), 0 < \theta < 1 < \gamma.

for k = 0, 1, \ldots do

Select a finite set D_k \subset \mathbb{R}^n randomly. How to select?

(In this talk, assume D_k is a set of unit vectors for simplicity.)

if f(x_k + \alpha_k d) < f(x_k) - \alpha_k^2 for some d \in D_k then

Expand step size, and move to that point

Set \alpha_{k+1} = \gamma \alpha_k and x_{k+1} = x_k + \alpha_k d.

else

Shrink step size, and stand still

Set \alpha_{k+1} = \theta \alpha_k and x_{k+1} = x_k.
```

Typical choice: $D_k = \{d_1, \dots, d_m\}$, where $d_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{Unif}(\mathcal{S}^{n-1})$

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D\subseteq\mathbb{R}^n$ w.r.t. a given vector $v\in\mathbb{R}^n$:

$$cm(D, v) = \max_{d \in D} \frac{d^{\top} v}{\|d\| \|v\|}.$$

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D \subseteq \mathbb{R}^n$ w.r.t. a given vector $v \in \mathbb{R}^n$:

$$cm(D, v) = \max_{d \in D} \frac{d^{\top}v}{\|d\| \|v\|}.$$

Example

$$cm(D, v) = \cos \theta \qquad d_3 \qquad d_4 \qquad d_4$$

Convergence theory

Definition (Cosine measure)

Cosine measure for a finite set of nonzero vectors $D \subseteq \mathbb{R}^n$ w.r.t. a given vector $v \in \mathbb{R}^n$:

$$cm(D, v) = \max_{d \in D} \frac{d^{\top}v}{\|d\| \|v\|}.$$

Example

$$cm(D, v) = \cos \theta \qquad d_3 \xrightarrow{d_2} v$$

$$d_4 \xrightarrow{d_1} d_1$$

Measure the ability that "D approximates v"

Convergence theory

Definition (p-probabilistically κ -descent)

 $(D_k)_{k\geq 0}$ is said to be $p ext{-probabilistically }\kappa ext{-descent, if}$

$$\mathbb{P}\left(\operatorname{cm}(D_k, -g_k) \ge \kappa \mid D_0, \dots, D_{k-1}\right) \ge p \quad \text{for each } k \ge 0,$$

where $g_k = \nabla f(x_k)$.

Convergence theory

Definition (p-probabilistically κ -descent)

 $(D_k)_{k\geq 0}$ is said to be $p ext{-probabilistically }\kappa ext{-descent, if}$

$$\mathbb{P}\left(\operatorname{cm}(D_k, -g_k) \ge \kappa \mid D_0, \dots, D_{k-1}\right) \ge p$$
 for each $k \ge 0$,

where $g_k = \nabla f(x_k)$.

Intuition:

each D_k is "good enough with lower-bounded probability", no matter what happened before

Convergence theory

Definition (p-probabilistically κ -descent)

 $(D_k)_{k\geq 0}$ is said to be p-probabilistically κ -descent, if

$$\mathbb{P}\left(\operatorname{cm}(D_k, -g_k) \geq \kappa \mid D_0, \dots, D_{k-1}\right) \geq p$$
 for each $k \geq 0$,

where $g_k = \nabla f(x_k)$.

Intuition:

each D_k is "good enough with lower-bounded probability", no matter what happened before

Theorem (Gratton et al. 2015)

If $(D_k)_{k\geq 0}$ is p-probabilistically κ -descent with $\kappa>0$ and

$$p = \log \theta / \log(\gamma^{-1}\theta),$$

then PDS converges with probability 1.

Practical choice and natural question

Corollary (Gratton et al. 2015)

If
$$D_k=\{d_1,\dots,d_m\}$$
, where $d_i\stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$, then PDS is convergent if
$$m\ >\ \log_2\left(1-\frac{\log\theta}{\log\gamma}\right).$$

Practical choice and natural question

Corollary (Gratton et al. 2015)

If $D_k = \{d_1, \dots, d_m\}$, where $d_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$, then PDS is convergent if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

A nature question: what if

$$m \le \log_2 \left(1 - \frac{\log \theta}{\log \gamma}\right)$$
?

Practical choice and natural question

A nature question: what if

$$m \le \log_2 \left(1 - \frac{\log \theta}{\log \gamma}\right)$$
?

Non-convergence analysis

Motivation: non-convergence analysis matters

Many well-known algorithms have non-convergence analysis.

- S. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. In Y. Bengio, Y. LeCun, T. Sainath, I. Murray, M. Ranzato, and O. Vinyals, editors, *International Conference on Learning* Representations (ICLR 2018). Curran Associates, Inc., 2018.
- C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent. *Math. Program.*, 155:57-79, 2016.
- W. Mascarenhas. The divergence of the BFGS and Gauss Newton methods. *Math. Program.*, 147:253-276, 2014.

• ...

Recall p-probabilistically κ -descent:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\geq\kappa\mid D_{0},\ldots,D_{k-1}\right)\geq p$$
 for each $k\geq0$.

Recall p-probabilistically κ -descent:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\geq\kappa\mid D_{0},\ldots,D_{k-1}\right)\geq p$$
 for each $k\geq0$.

q-probabilistically ascent

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)>0\mid D_{0},\ldots,D_{k-1}\right)\leq q\quad\text{for each }k\geq0.$$

q-probabilistically ascent

q-probabilistically ascent

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)>0\mid D_{0},\ldots,D_{k-1}\right)\leq q\quad\text{for each }k\geq0.$$

$$\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0 \qquad \qquad \text{No descent direction}$$

$$f \text{ convex}$$

$$\alpha_{k} \text{ shrinks} \qquad \qquad f(x_{k}+\alpha_{k}d_{k})\geq f(x_{k}) \ \forall d_{k}\in D_{k}$$

non-convergence for convex functions

↓

non-convergence in general

 $(D_k)_{k\in\mathbb{N}}$ is q-probabilistically ascent

 $(D_k)_{k\in\mathbb{N}}$ is q-probabilistically ascent

 $lpha_k$ shrinks with high probability

• Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

$$\boldsymbol{\cdot} \ \alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$$

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex
- $\cdot \ \alpha_k \le \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$
- $\sum_{k=1}^{\infty} \alpha_k \le \alpha_0 \sum_{k=1}^{\infty} U_k$

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -g_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} \leq \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex
- $\alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k$
- $\sum_{k=1}^{\infty} \alpha_k \le \alpha_0 \sum_{k=1}^{\infty} U_k < \infty$ a.s. ?

- Define indicator function $Y_k = \mathbb{1}_{\{\operatorname{cm}(D_k, -q_k) > 0\}}$ Indicator for "good" event
- $\alpha_{k+1} < \gamma^{Y_k} \theta^{1-Y_k} \alpha_k$, when f is convex

$$\begin{split} & \cdot \ \alpha_k \leq \alpha_0 \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} =: \alpha_0 U_k \\ & \cdot \ \sum_{k=1}^{\infty} \alpha_k \leq \alpha_0 \sum_{k=1}^{\infty} U_k < \infty \text{ a.s. ?} \end{split}$$

•
$$\sum_{k=1}^{\infty} lpha_k \leq lpha_0 \sum_{k=1}^{\infty} U_k < \infty$$
 a.s. ?

Under q-probabilistically ascent assumption, can we find a constant (such that

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0?$$

Assumption

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq\ q>\ q_{0}\quad\text{for each }k\geq0,$$
 where $q_{0}=1-p_{0}=\log\gamma/\log(\theta^{-1}\gamma).$

Assumption

$$\mathbb{P}\left(Y_k=0\mid Y_0,\dots,Y_{k-1}\right)\ \geq\ q\ >\ q_0\quad\text{for each }k\geq 0,$$
 where $q_0=1-p_0=\log\gamma/\log(\theta^{-1}\gamma).$

Assumption

$$\mathbb{P}\left(Y_k=0\mid Y_0,\dots,Y_{k-1}\right)\ \geq\ q\ >\ q_0\quad\text{for each }k\geq 0,$$
 where $q_0=1-p_0=\log\gamma/\log(\theta^{-1}\gamma).$

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \iff \zeta > \frac{\theta}{1-\theta}$$

Assumption

$$\mathbb{P}\left(Y_k=0\mid Y_0,\dots,Y_{k-1}\right)\ \geq\ q\ >\ q_0\quad\text{for each }k\geq 0,$$
 where $q_0=1-p_0=\log\gamma/\log(\theta^{-1}\gamma).$

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \iff \zeta > \frac{\theta}{1-\theta}$$

Note that
$$\sum_{k=1}^{\infty} U_k = \sum_{k=1}^{\infty} \prod_{i=0}^{k-1} \gamma^{Y_i} \theta^{1-Y_i} \ge \theta/(1-\theta)$$

Assumption

$$\mathbb{P}\left(Y_k=0\mid Y_0,\dots,Y_{k-1}\right)\ \geq\ q\ >\ q_0\quad\text{for each }k\geq 0,$$
 where $q_0=1-p_0=\log\gamma/\log(\theta^{-1}\gamma).$

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \iff \zeta > \frac{\theta}{1-\theta}$$

Assumption

$$\liminf_{k \to \infty} \mathbb{P}\left(Y_k = 0 \mid Y_0, \dots, Y_{k-1}\right) > q_0,$$

where $q_0 = 1 - p_0 = \log \gamma / \log(\theta^{-1} \gamma)$.

Result

1.

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \infty\right) = 1$$

$$\mathbb{P}\left(\sum_{k=1}^{\infty} U_k < \zeta\right) > 0 \iff \zeta > \frac{\theta}{1 - \theta}$$

Tightness of analysis

Almost zero gap

Let
$$D_k = \{d_1, \ldots, d_m\}$$
, where $d_i \stackrel{\text{i.i.d.}}{\sim} \mathsf{Unif}(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Almost zero gap

Let
$$D_k = \{d_1, \dots, d_m\}$$
, where $d_i \stackrel{\text{i.i.d.}}{\sim} \text{Unif}(\mathcal{S}^{n-1})$.

Recall that PDS is convergent if

$$m > \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

With our non-convergence analysis, PDS is non-convergent if

$$m < \log_2\left(1 - \frac{\log\theta}{\log\gamma}\right).$$

Tightness of assumption

Natural question:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq q\geq2,$$

Tightness of assumption

Natural question:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq q>\geq q_{0},$$

Answer: NO

Tightness of assumption

Natural question:

$$\mathbb{P}\left(\operatorname{cm}\left(D_{k},-g_{k}\right)\leq0\mid D_{0},\ldots,D_{k-1}\right)\geq q\geq2$$

Answer: NO

Example

We assume

- $f:\mathbb{R}^n \to \mathbb{R}$ be gradient Lipschitz and strongly convex,
- $\theta=1/2$ and $\gamma=2$, $\Rightarrow q_0=1/2$
- $D_k = \{g_k/\|g_k\|\}$ or $D_k = \{-g_k/\|g_k\|\}$ with probability 1/2, respectively,

then we have

$$\mathbb{P}\left(\lim_{k\to\infty}\|g_k\|=0\right) = 1.$$

Conclusions

Conclusions

In this talk

- · Non-convergence analysis for probabilistic direct search
- $\boldsymbol{\cdot}$ Tightness of non-convergence analysis

Conclusions

In this talk

- · Non-convergence analysis for probabilistic direct search
- Tightness of non-convergence analysis

Future work

- Estimate the non-convergence probability
- · Conduct non-convergence analysis for other frameworks

Thank you!

References I

- ▶ Biviano, A. et al. (2013). "CLASH-VLT: the mass, velocity-anisotropy, and pseudo-phase-space density profiles of the z=0.44 galaxy cluster MACS J1206.2-0847". A&A 558, A1:1–A1:22.
- Conn, A. R., Scheinberg, K., and Vicente, L. N. (2009). Introduction to Derivative-Free Optimization. Vol. 8. MOS-SIAM Ser. Optim. Philadelphia: SIAM.
- ▶ Durrett, R. (2010). *Probability: Theory and Examples*. Fourth. Camb. Ser. Stat. Probab. Math. Cambridge: Cambridge University Press.
- ► Fermi, E. and Metropolis, N. (1952). Numerical solution of a minimum problem. Tech. rep. Alamos National Laboratory, Los Alamos, USA.

References II

- ► Ghanbari, H. and Scheinberg, K. (2017). "Black-box optimization in machine learning with trust region based derivative free algorithm". arXiv:1703.06925.
- ► Gratton, S. et al. (2015). "Direct search based on probabilistic descent". SIAM J. Optim. 25, pp. 1515–1541.