Notes on Laplacian on domains with fractal boundary

Qile Yan

October 30, 2023

1 Problem setting

1.1 fractal boundary with a few steps of Koch snowflake

Figure 1: Unit square with the top edge replaced by a Koch snowflake with n iterations.

2D: Let n be the number of iterations in the snowflake (See Fig. 1, meshsize=0.02 for all vertices in .geo). The total number of small sides is 4^n and the small length scale $l = \left(\frac{1}{3}\right)^n$. Thus, the perimeter of the snowflake $L_p = \left(\frac{4}{3}\right)^n$.

Python script for creating the 2D mesh: snow_square.py.

3D: Let n be the number of iterations in the snowflake (See Fig. 2, meshsize=0.1 for all vertices in .geo). The total number of small squares is 13^n and the small area is $l = (\frac{1}{9})^n$. Thus, the perimeter of the snowflake $L_p = (\frac{13}{9})^n$.

Python script for creating the 3D mesh: snow_cube.py.

Figure 2: Unit cube with the top surface replaced by a Koch snowflake with n iterations.

1.2 PDEs

Solve

$$-\operatorname{div}(D\operatorname{grad}u) = 0 \quad \text{on } \Omega \tag{1.1}$$

 Ω :

- (a) the unit square in which the top edge has been replaced by a prefractal.
- (b) the unit cube in which the top face is replaced by a prefractal.

Boundary conditions:

- (a) on bottom edge, Dirichlet: u = 1.
- (b) on sides, homogeneous Neumann: $\frac{\partial u}{\partial n} = 0$.
- (c) on prefractal top edge, Robin boundary conditions: $\Lambda \frac{\partial u}{\partial n} + u = 0$. The total flux through the top edge:

$$\Phi := \int_{top} -D \frac{\partial u}{\partial n} d\sigma = \frac{D}{\Lambda} \int_{top} u d\sigma.$$

We need to see how Φ depends on Λ for $0 \le \Lambda \le 2L_p$.

2 Test firedrake solver on 2D and 3D

Consider the Laplace equation -div(Dgradu) = f with non homogeneous condition:

- (a) on bottom edge/surface, Dirichlet: u = g.
- (b) on sides, homogeneous Neumann: $\frac{\partial u}{\partial n} = k$.
- (c) on prefractal top edge/surface, Robin boundary conditions: $\Lambda \frac{\partial u}{\partial n} + u = l$.

The weak formulation: Find $u \in H^1$ with u = g on bottom such that

$$\int_{\Omega} D\operatorname{grad}(u) \cdot \operatorname{grad}(v) dx + \int_{top} \frac{D}{\Lambda} uv ds = \int_{\Omega} fv dx + \int_{top} \frac{1}{\Lambda} lv ds + \int_{sides} kv ds, \quad \forall v \in H_0^1$$

2.1 2D case

In Fig. 3, we plot the error in L^2 and H^1 norm with respect to mesh size h. The manufactured solution is $u(x,y) = 2 + x^2 + y$ on the unit square with snowflake (n = 4 iterations). The Lagrange linear element is used. The uniform refinement is done by built-in function MeshHierarchy.

The test python script on 2D is: test-robin-solver.py.

Figure 3: Unit square: Solution $u = x^2 + y + 2$.

2.2 3D case

In Fig. 4 and Fig. 5, we plot the error in L^2 and H^1 norm with respect to mesh size h and degree of freedom where domain is unit cube with snowflake n=3 iterations. Here, we use the standard Lagrange linear element is used. To check the convergence rate, the uniform refinement is done by built-in function MeshHierarchy on the mesh in Fig. 2 (b). We consider two manufactured solutions (a). u(x, y, z) = 2 + x + 3y + z. (b). $u(x, y, z) = 2 + x^2 + 3xy + yz$. The first one is a linear function in the element space while the second one is not.

In Fig. 4, the discrete linear system is solved by computing LU factorisation. In the code, we set "solver parameters='ksp type': 'preonly', 'pc type': 'lu') "

In Fig. 5, the linear system is solved using Krylov subspace methods (conjugate gradient method since the operator is SPD). Besides, the preconditioner is chosen to be BoomerAMG. In the code, we set "solver_parameters='ksp_type': 'cg', 'pc_type': 'hypre','pc_hypre_type': 'boomeramg' ".

From the first row of Fig. 4 and Fig. 5, we can see that for linear solution u the only round off error appears in the case when LU factorisation is used. But the error from using Krylov subspace is around $5 * 10^{-7}$ to $5 * 10^{-6}$. On the other hand, the Krylov subspace method solve the linear system faster and also could deal with a finer mesh when degree of freedom is 10^{7} .

The test python script on 3D is: test-robin-solver-cube.py. The script is run by the following parallelsim command

mpiexec -n 16 python test-robin-solver-cube.py

Figure 4: Unit cube: The linear system is solved by LU factorisation.

Figure 5: Unit cube. The linear system is solved by Krylov subspace methods

3 Ω is unit square and D is constant

Now, we solve the PDE (1.1) on 2D unit square using firedrake with the finest mesh in Fig. ??. In Fig. 6, we plot the flux $\Phi = \int_{top} -D \frac{\partial u}{\partial n} d\sigma$ with different choice of Λ .

(a) Solution when $D=1, \Lambda=1$

(b) Total flux vs Λ

Figure 6: Snowflake with n=4 iterations. (a). Solutions. (b) Total flux vs Λ when D=1. Python script: main_flux.py.

4 Ω is unit cube and D is constant

Now, we solve the PDE (1.1) on 3D unit cube using fired rake with the finest mesh in Fig. ??. In Fig. 7, we plot the flux $\Phi = \int_{top} -D \frac{\partial u}{\partial n} d\sigma$ with different choice of Λ .

(a) Total flux vs Λ

Figure 7: Snowflake with n=3 iterations on Cube. Total flux vs Λ when D=1. Python script: main_flux.py.

5 Fractal harmonic measure

In this section we solve the PDE

$$-\Delta u = f \quad \text{on } \Omega \tag{5.1}$$

with u = 0 on $\partial\Omega$. Here, Ω is a unit square where each edges are replaced by the Koch snowflake (See Fig. 8). In this note, we use the FEMfiredrake solving the PDE.

Figure 8: Unit square with each edges replaced by a Koch snowflake with n iterations. Meshsize is 0.1 for each vertices in .geo file.

In Fig. 9 and Fig. 10, we plot the error in L^2 and H^1 norm with respect to mesh size h and degree of freedom where domain is unit square with snowflake (n=4 iterations). In Fig. 9, the manufactured solution is u(x,y)=2+x+3y. In Fig. 10, the manufactured solution is $u(x,y,z)=2+x^2+y$. The Lagrange linear element is used. The uniform refinement is done by built-in function MeshHierarchy.

Figure 9: Unit square: manufactured solution u = x + 3y + 2. Note that only round off error appears here since the solution is in the linear finite element space.

(a) Error vs mesh size

(b) Error vs degree of freedom

Figure 10: Unit square: manufactured solution $u = x^2 + y + 2$.

In Fig. 11(b), we plot the solution of the PDE (5.1) where Ω is the square with 4 snowflake iterations as in Fig. 8b and f is defined as in Fig. 11(a). In Fig. 11(c), we evaluate the solution at points \mathbf{x}_i , $0 \le i \le n$ which is center of the square from i-th snowflake iteration. In particular, we choose

$$\mathbf{x}_i = (0.5, \sum_{k=0}^i 0.5 \cdot (1/3)^k) = (0.5, \frac{3}{4}(1 - (1/3)^n)), \quad 0 \le i \le n.$$

In Fig. ??, we show the results of the PDE (5.1) with a different f. That is, we define f as

$$f(x,y) = e^{-((x-0.5)^2 + (y-0.5)^2)}.$$

Figure 11: On unit square with 4 snowflake iterations. (a). force term f. (b) solution of the PDE (5.1). (c). Evaluation of solution at a sequence points $\{\mathbf{x}_i\}_{i=0}^4$ where \mathbf{x}_i is the center of the square from i-th snowflake iteration.

Figure 12: On unit square with 4 snowflake iterations. (a). force term f. (b) solution of the PDE (5.1). (c). Evaluation of solution at a sequence points $\{\mathbf{x}_i\}_{i=0}^4$ where \mathbf{x}_i is the center of the square from i-th snowflake iteration.