au_d -tilting theory for Nakayama algebras

Endre S. Rundsveen and Laertis Vaso arXiv:2410.19505 | arXiv:2410.19505 | endre.s.rundsveen@ntnu.no

Main results

Let $\Lambda(n,l)$ be the bounded path algebra $k\mathbb{A}_n/R^l$, where R is the ideal generated by arrows and

Assume $\Lambda = \Lambda(n, l)$ admits a d-cluster tilting subcategory \mathcal{C} .

Theorem A If $M \in \mathcal{C}$ and $P \in \operatorname{proj} \Lambda$, then the following are equivalent

- (a) $|M| + |P| \ge |N| + |P|$ for any τ_d -rigid pair (N, P),
- (b) (M,P) is au_d -rigid and $|M|+|P|=|\Lambda|$, and
- (c) (M, P) is well-configured.

Theorem B

- (a) If l>2, then there exists a bijection between the set of paths χ in G_1 of length p-1 starting at an odd vertex and the set of d-torsion classes $\mathcal U$ in $\mathcal C$.
- (b) If l=2, then there exists a bijection between the set of paths χ in G_2 of length p-1 and the set of d-torsion classes $\mathcal U$ in $\mathcal C$.

Theorem C Let $M \in \mathcal{C}$ and $P \in \operatorname{proj} \Lambda$. Then (M, P) is a τ_d -rigid $\textit{pair with } |M|+|P|=|\Lambda| \textit{ if and only if } \mathbf{P}^{\bullet}_{(M,P)} \coloneqq P[d] \oplus \sigma_{\geq -d} \mathbf{P}^{\bullet}(M)$ is a silting complex in $\mathsf{K}^b(\mathsf{proj}\,\Lambda)$.

Constructing well-configured pairs

- 1. Construct local τ_d -rigid components (admissible configurations) with maximal amount of summands, see Table 1.
- 2. Connect the components together, using Table 2. With special considerations needed for d=2.

Table 1: Types of admissible configurations

Table 2: Which components can be connected and how.

Constructing d-torsion classes

The graph G_1 is given in Figure 2 when d > 2, and when d = 2 it is given by Figure 2 with Figure 3 added.

Figure 2: Construction graph for d-torsion classes.

Figure 4: A 4-torsion class of $\Lambda(37,4)$.