

Department of Computer Science & Engineering

A Project Report on

Windows Based Malware Prediction Using Deep Learning Techniques

Submitted in partial fulfilment of the requirements for the award of the degree of

Bachelor of Engineering in Computer Science & Engineering

By

Devika Anil	1MS15CS040
Aravind P Anil	1MS15CS024
Aatish Kayyath	1MS15CS002
Abishek Padaki	1MS15CS005

Under the guidance of

Dr. S. Rajarajeswari Associate Professor

M S RAMAIAH INSTITUTE OF TECHNOLOGY

(Autonomous Institute, Affiliated to VTU)
BANGALORE-560054
www.msrit.edu
May 2019

Project Guide

2.

Department of Computer Science & Engineering

Head of the Department

CERTIFICATE

Certified that the project work entitled "Windows Based Malware Prediction Using Deep Learning Techniques" carried out by Devika Anil – 1MS15CS040, Aravind P Anil – 1MS15CS024, Aatish Kayyath – 1MS15CS002 and Abishek Padaki – 1MS15CS005, a bonafide student of M.S.Ramaiah Institute of Technology Bengaluru in partial fulfilment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belgavi during the year 2018-19. It is certified that all corrections/suggestions indicated for Internal Assessment have been incorporated in the report deposited in the department library.

The project report has been approved as it satisfies the academic requirements in respect of Project work prescribed for the said Degree.

	220m 02 m 2 op m vinon
Dr. S. RAJARAJESWARI	Dr. ANITA KANAVALLI
External Examiners	
Name of the Examiners:	Signature with Date
1,	

Department of Computer Science & Engineering

DECLARATION

We, hereby, declare that the entire work embodied in this project report has been carried out by us at M.S.Ramaiah Institute of Technology, Bengaluru, under the supervision of **Dr. S. RAJARAJESWARI, Associate Professor,** Dept of CSE. This report has not been submitted in part or full for the award of any diploma or degree of this or to any other university.

Signature Signature
Aravind P Anil Aatish Kayyath
1MS15CS024 1MS15CS002

Signature Signature

Devika Anil Abishek Padaki

1MS15CS040 1MS15CS002

ACKNOWLEDGEMENT

We take this opportunity to express our gratitude to the people who have been instrumental in the successful completion of this project. We would like to express our profound gratitude to the Management and **Dr. N.V.R Naidu** Principal, M.S.R.I.T, Bengaluru for providing us with the opportunity to explore our potential.

We extend our heartful gratitude to our beloved **Dr. Anita Kanavalli**, HOD, Computer Science and Engineering, for constant support and guidance.

We whole heartedly thank our project guide **Dr. S. Rajarajeswari**, for providing us with the confidence and strength to overcome every obstacle at each step of the project and inspiring us to the best of our potential. We also thank her for her constant guidance, direction and insight during the project.

This work would not have been possible without the guidance and help of several individuals who in one way or another contributed their valuable assistance in preparation and completion of this study.

Finally, we would like to express sincere gratitude to all the teaching and non-teaching faculty of CSE Department, our beloved parents, seniors and my dear friends for their constant support during the course of work.

Arayind P Anil Devika Anil

Aatish Kayyath Abishek Padaki

ABSTRACT

Malware attack is a very large domain of cybersecurity attacks. Cryptanalysts across the world has been in a long drawn out battle which has intensified in the past decade with malware. With increase in the technological capabilities of computers, there is also a distinct sharp increase in the capabilities of what malware can do and more importantly, how a malware can prevent from being detected. This project aims at developing a model which accurately predicts the probability that Windows operating system will be hit by a malware. It works on an operating systems dataset that has over 7 million recorded operating systems and their various features, generated by combining heartbeat and threat reports.

In order to understand the working of a wide variety of models on such a problem, three different models will be developed and assessed for its accuracy at predicting malware. Three different models under consideration are recurrent neural network, LightGBM technique and lastly a factorization method called XDeepFM.

This approach is assessing vulnerability of the system rather than the attacker. If the attacker is constantly evolving and learning new techniques against the system's defence, then efforts to defend against certain types of attacks are futile. Hence, predicting an attack in a more generic sense before it has even happened by assessing the system itself is the better alternative. Even though there are variants, a malware always targets a vulnerability or an exploit of the system to attack. If these weak points on the system are found and patched up before an attack happens, we can develop a very secure and malware proof security configuration.

Table of Contents

Declaration		i	
Ack	knowledgement	ii	
Abstract		iii	
List	t of Tables	viii	
List	t of Equations	ix	
List	t of Figures	x	
1	INTRODUCTION	1	
1	1.1 General Introduction	1	
	1.2 Problem Statement	2	
	1.3 Objective	2	
	1.4 Project Deliverables	3	
	1.5 Current Scope	3	
	1.6 Future Scope	3	
2	PROJECT ORGANIZATION	5	
	2.1 Software Process Models	5	
	2.2 Roles and Responsibilities	6	
3	LITERATURE SURVEY	8	
	3.1 Introduction	8	
	3.2 Related Work with Citation	8	
	3.2.1 Malware and Malware Obfuscation Techniques	7	
	3.2.2 - Malware Detection Techniques	10	
	3.3 Literature Survey Table of Comparison	16	
4	PROJECT MANAGEMENT PLAN	27	
	4.1 Schedule of the Project	27	
	4.2 Risk Identification	29	

5	SOFTWARE REQUIREMENT SPECIFICATIONS	34
	5.1 Introduction	34
	5.1.1 Purpose	34
	5.1.2 Intended Audience and Reading Suggestions	34
	5.1.3 Product Scope	34
	5.2 Overall Description	35
	5.2.1 Product Perspective	35
	5.2.1.1 The Operating System	36
	5.2.1.2 The Prediction Model	36
	5.2.2 Product Features	36
	5.2.3 Operating Environment	37
	5.2.4 Design and Implementation Constraints	37
	5.2.5 Assumptions and Dependencies	37
	5.3 External Interface Requirements	38
	5.3.1 User Interfaces	38
	5.3.2 Hardware Interfaces	38
	5.3.3 Software Interfaces	38
	5.3.3.1 Jupyter Notebook	38
	5.3.3.2 Python 3.6	39
	5.3.3.3 Google Colab	39
	5.3.3.4 Windows OS	39
	5.4 Functional Requirements	39
	5.4.1 Graphical User Interface Module	39
	5.4.1.1 Description	39
	5.4.1.2 Input / Output Sequences	39
	5.4.1.3 Functional Requirements	39
	5.4.2 Light GBM Model	40
	5.4.2.1 Description	40
	5.4.2.2 Input / Output Sequences	40
	5.4.2.3 Functional Requirements	40
	5.4.3 XDeepFM Model	40
	5.4.3.1 Description	40
	5.4.3.2 Input / Output Sequences	40
	5.4.3.3 Functional Requirements	41
	5.4.4 Recurrent Neural Network	41
	5.4.4.1 Description	41
	5.4.4.2 Input / Output Sequences	41
	5.4.4.3 Functional Requirements	41
	5.4.5 Data Conversion	41
	5.4.5.1 Description	41
	5.4.5.2 Input / Output Sequences	42
	5.4.5.3 Functional Requirements	42
	5.5 Non-Functional Requirements	42

	5.5.1 Safety Requirements	42
	5.5.2 Security Requirements	42
	5.5.3 Software Quality Attributes	43
	5.5.4 Business Rules	43
	5.5.5 Performance Requirements	43
6	DESIGN	44
	6.1 Introduction	44
	6.1.1 Purpose	44
	6.2 Architecture Design	45
	6.3 Detailed Software Design	46
	6.3.1 Elastic Compute Cloud and Server Hosting	46
	6.3.2 Model Design	47
	6.3.3 Use Case Diagram	49
	6.3.4 Sequence Diagram	50
	6.4 Detailed Hardware Design	50
	6.4.1 Central Processing Unit	50
	6.4.2 Graphical Processing Unit	51
	6.4.2.1 Tesla K80	51
	6.4.2.2 Nvidia GTX 1080	51
	6.6 Data Flow Diagram	53
	6.7 Module Diagram	54
	6.8 System Security and Integrity Controls	54
7	IMPLEMENTATION	56
	7.1 Tools and Technology Introduction	56
	7.1.1 Jupyter Notebook	56
	7.1.2 Python 3.6	56
	7.1.3 Google Colab	56
	7.1.4 Flask Server	57
	7.1.5 AWS EC2 Instance	57
	7.2 Feature Engineering Performed	57
	7.2.1 Time Split Validation	57
	7.2.2 Feature Encoding	58
	7.3 Light Gradient Boosting Method	59
	7.3.1 Algorithm	61
	7.3.2 Console Output	62
	7.4 XDeepFM	63
	7.4.1 Factorization Machine	64
	7.4.2 Compressed Interaction Network	64
	7.4.3 Algorithm	67
	7.4.4 Console Output	68
	7.5 Recurrent Neural Networks	69
	7.5.1 Algorithm	70

7.5.2 Console Output	71
7.6 Pseudo Code (Main Module)	73
7.7 Output	75
TESTING	77
8.1 Introduction	77
8.2 Testing Tools and Environment	77
8.3 Test cases	78
RESULTS AND PERFORMANCE ANALYSIS	81
9.1 Result Snapshots	81
9.2 Comparison Tabular Results	83
9.3 Performance Analysis Graph	86
CONCLUSION AND FUTURE SCOPE	
FERENCES	89
	7.7 Output TESTING 8.1 Introduction 8.2 Testing Tools and Environment 8.3 Test cases RESULTS AND PERFORMANCE ANALYSIS 9.1 Result Snapshots 9.2 Comparison Tabular Results 9.3 Performance Analysis Graph NCLUSION AND FUTURE SCOPE

List of Tables

Table	Title	Page Number
Number		Number
2.1	Roles and Responsibilities of team members	6
3.1	Literature survey comparison	16
4.1	Schedule Plan and Timeline of the Project	27
4.2	Risk Identification and mitigation of steps	29
6.1	GPU Comparison between Tesla K80 and GTX 1080	52
8.1	Unit test cases for various modules of the project	78
8.2	Functional/Integration testing	79
9.1	LightGBM Results	85
9.2	XDeepFM Results	85
9.3	Recurrent Neural Network Results	86

List of Equations

Equation	Title	Page
Number		Number
7.1	Null hypothesis used for One Hot Encoding	59
7.2	Alternate Hypothesis used for One Hot Encoding	59
7.3	Z- value equation used in One Hot Encoding	59
9.1	True Positive Rate Equation	83
9.2	False Positive Rate Equation	83

List of Figures

Figure	Title	Page
Number		Number
4.1	Gantt Chart illustrating the entire project schedule	28
6.1	High Level Architecture Design of EC2 Module	45
6.2	EC2 Instance Architecture of the System	46
6.3	Model Development Environment Architecture of the system	47
6.4	Use Case Diagram -Windows malware prediction system	49
6.5	Sequence Diagram - Windows Malware Prediction System	50
6.6	Data Flow Diagram of Operations in the models	53
6.7	Module Diagram of models and Flask server	54
7.1	LGBM Process Flow illustrating the flow of data in the model	60
7.2	Pseudocode of the LightGBM Model	61
7.3	Console Output of LGBM Model showing AUC scores for each fold	62
7.4	XDeepFM Model	64
7.5	Compressed Interaction Network in XDeepFM	65

7.6	Pseudocode that illustrates the working of the xDeepFM model	67
7.7	Console Output of XDeepFM showing Validation Accuracy	68
7.8	Pseudocode that illustrates the working of the recurrent model	70
7.9	Pseudocode that illustrates the working of the final integrated project	71
7.10	Pseudocode that illustrates the working of the final integrated project	73
7.11	Console Output of Main Module on Flask Server	75
9.1	Landing Screen of the Malware Predictor	81
9.2	Scanning screen of the Malware Predictor	82
9.3	Result screen showing vulnerability of the Operating System	83
9.4	ROC-AUC curve	84
9.5	Model Behaviour Comparison Plot	87