Coplanar:
$$\vec{F} = F_x \hat{\imath} + F_y \hat{\jmath}$$
, $|\vec{F}| = \sqrt{F_x^2 + F_y^2}$, $\tan \theta = \frac{F_y}{F_x}$

Spatial: Force passes through A and B. $\overrightarrow{r_{AB}} = (x_B - x_A)\hat{\imath} + (y_B - y_A)\hat{\jmath} + (z_B - z_A)\hat{k}$ Unit vector: $\hat{u}_F = \frac{\overrightarrow{r_{AB}}}{|\overrightarrow{r_{AB}}|}, \quad \vec{F} = |\vec{F}|\hat{u}_F \quad \vec{F} = F_x\hat{\imath} + F_y\hat{\jmath} + F_z\hat{k}$ Unit vector: $\hat{u}_F = \frac{\overrightarrow{r_{AB}}}{|\overrightarrow{r_{AB}}|}$,

Moments Coplanar of a force: $M_O = Fd$ (*d* is perpendicular distance) or $M_O = F_y x - F_x y$ Moment of a force: $\overrightarrow{M_O} = \overrightarrow{r_{OA}} \times \overrightarrow{F_A}$ (vector), $|\overrightarrow{M_O}| = \sqrt{{M_O}_x^2 + {M_O}_y^2 + {M_O}_z^2}$

Moment about axis: $M_a = \hat{u}_a(\vec{r} \times \vec{F})$ (scalar). Moment of a couple : $\overrightarrow{M_c} = \vec{r} \times \vec{F}$ Moment of a system of forces/couples about a point: $\overrightarrow{M_O} = \sum \overrightarrow{M_c} + \sum \overrightarrow{r_{OA}} \times \overrightarrow{F_A}$ A wrench is the combination of a colinear force and a couple moment.

Equations of Equilibrium

Particle: $\Sigma F_x = 0$, $\Sigma F_y = 0$, $\Sigma F_z = 0$ Coplanar: $\Sigma F_{\chi} = 0$, $\Sigma F_{\nu} = 0$, $\Sigma M_o = 0$ Spatial: $\Sigma F_x = 0$, $\Sigma F_y = 0$, $\Sigma F_z = 0$ $\Sigma M_x = 0$, $\Sigma M_v = 0$, $\Sigma M_z = 0$

Friction Dry Friction: $F_s \le \mu_s N$ Limiting Static Friction $F_s = \mu_s N$ Kinetic Friction: $F_k = \mu_k N$

Centroids $\bar{x} = \frac{\int_A \tilde{x} dA}{\int_A dA}$ and $\bar{y} = \frac{\int_A \tilde{y} dA}{\int_A dA}$

Composite Bodies: $\bar{x} = \frac{\sum \bar{x}A}{\sum A}$ and $\bar{y} = \frac{\sum \bar{y}A}{\sum A}$

 $\overline{x} = \frac{b}{2}$ and $\overline{y} = \frac{h}{2}$

Semi-circle Centroid

 $\overline{x} = r$ and $\overline{y} = \frac{4r}{3\pi}$

Quarter-circle Centroid

$$\overline{\chi} = \frac{4r}{3\pi}$$
 and $\overline{y} = \frac{4r}{3\pi}$

Coplanar Supports

ball and socket

DO NOT REMOVE FORMULA SHEET FROM **EXAMINATION**