Profesor: Eduardo Engel Ayudantes: Miguel Del Valle y Gabriela Jaque 3 de mayo, 2024

1. Modelo q con depreciación (20 puntos)

Los supuestos son los que hicimos cuando analizamos la dinámica del modelo q: $p_{K,t} = 1, x_t = x,$ $\Pi_{KK} < 0$. La diferencia es que los costos de ajuste son

$$C(I,K) = \frac{b}{2} \frac{(I - \delta K)^2}{K}.$$

- (a) Explique por qué es razonable reemplazar el término I^2 en la expresión para C(I,K) que vimos en clases por $(I - \delta K)^2$.
- (b) Use el Método Hamiltoniano para derivar una expresión para I/K en función de q. Compare con la expresión que obtuvimos cuando $\delta=0.$ Explique la diferencia.
- (c) Use el Método Hamiltoniano para expresar \dot{q} en función de K y q. Use esta expresión y la expresión que obtuvo en la parte anterior para obtener los valores de estado estacionario de q y K.
- (d) En t=0, con la economía en estado estacionario, se anuncia de manera inesperada una regulación que regirá entre $t=t_1$ y $t=t_2$, con $0 < t_1 < t_2$. Esta regulación significa que δ será más grande mientras esté vigente, volviendo a su valor original en t_2 . Use un diagrama de fase para describir la dinámica de q y K de t=0 en adelante. De las intuiciones del caso. ¿Qué puede decir sobre cuándo q tomará su menor valor? ¿Su mayor valor? Las mismas preguntas para K. Justifique sus respuestas.

2. Costos no convexos de ajuste y determinantes de la IRF (15 puntos)

La economía tiene dos firmas. k_i denota el logaritmo del capital de la firma i-ésima, k_i^* el logaritmo del capital que tendría si no hubiera costos de ajuste, i=1,2. El capital no se deprecia.

Las firmas siguen la siguiente regla Ss para ajustar su capital:

- Si $|z_i| < 0, 2$, la firma no ajusta su capital.
- Si $|z_i| \geq 0, 2$, la firma invierte (o desinvierte) una fracción z_i , de modo que $\Delta k_i = z_i$.

La tasa de inversión agregada se define como

$$\frac{I}{K} \equiv \frac{1}{2} [\Delta k_1 + \Delta k_2]. \qquad \qquad = -k - k$$

La autoridad desea estimar el impacto de un estímulo a la inversión. Este estímulo lleva a un incremento de todos los k_i^* de 0,10 y por lo tanto también de todos los z_i .

Considere las siguientes distribuciones para los z_i :

- 1. $z_1 = -0.15, z_2 = -0.05$
- 2. $z_1 = -0.05, z_2 = -0.05$
- 3. $z_1 = 0,05, z_2 = 0,15.$
- (a) Determine I/K para cada una de las distribuciones anteriores.
- (b) Determine el menor estímulo que logra impactar I/K para cada una de las distribuciones anteriores.
- (c) Use las partes (a) y (b) para concluir que

Cuando más se necesita un estímulo a la inversión es cuando estos estímulos son menos efectivos.