Notas de Probabilidad

Claudia Cristina Reyes y César Gal 8 de junio de 2024

Índice

1.1. Función de densidad de una variable aleatoria	. 1	1. Variables aleatorias
	. 2	1.1. Función de densidad de una variable aleatoria
1.2. Función de distribución de una variable aleatoria	. 3	1.2. Función de distribución de una variable aleatoria

1. Variables aleatorias

Una variable aleatoria la podemos pensar como sigue:

- Una asignación numérica de una valor (número) a un posible resultado.
- Una función del espacio muestral a los números reales, la cual puede tener valores discretos o valores continuos.
- Podemos tener varias variables aleatorias definidas sobre un mismo espacio de probabilidad.

Notación:

- X: variable aleatoria, con $X: \Omega \to \mathbb{R}$ una función.
- x: valor numérico, con $x \in \mathbb{R}$.
- $R_X = \{x_1, x_2, \dots\}$: conjunto de posibles resultados de X.

Sea $(\Omega, \mathcal{F}, \mathbb{P})$ cualquier espacio de probabilidad. Denotamos por $\mathcal{B}(\mathbb{R})$ y la σ -álgebra de Borel de \mathbb{R} , donde es la mas chica de las σ -álgebras generadas por las topologias de \mathbb{R} .

Definición 1 (Variable Aleatoria). Una variable aleatoria real es una función (medible) $X : \Omega \to \mathbb{R}$ tal que para cualquier conjunto boreliano $B \in \mathcal{B}(\mathbb{R})$ se cumple que $X^{-1}(B) \in \mathscr{F}$.

Ejemplo 2. Consideremos el experimento de lanzar una moneda equilibrada. Sean $\Omega = \{\text{Cara}, \text{Cruz}\},\$ $\mathscr{F} = 2^{\Omega} \text{ y } \mathbb{P}(\text{Cara}) = \mathbb{P}(\text{Cruz}) = 1/2.$ Entonces X(Cara) = 1 y X(Cruz) = 0:

 $\label{eq:Variables} \text{Variables aleatorias} \left\{ \begin{array}{c} \text{Discretas: si la v.a. puede tomar a lo más un número finito de valores} \\ \text{o un número infinito pero numerable de valores} \end{array} \right.$ $\text{Continuas: si la v.a. puede tomar todos sus valores es un intervalo de } \mathbb{R}$

Ejemplo 3 (Variable aleatoria). Sea $\mathcal{E}=$ Lanzamiento de un dado, $\Omega=\{1,2,3,4,5,6\},$ $\mathscr{F}=2^{\Omega}$ y $\mathbb{P}(\{i\}) = 1/6$ para $i = 1, \dots, 6$. Definamos las variables aleatorias:

- $X(\omega) = \omega \in \{1, \dots, 6\}$
- $Y(\omega) = \begin{cases} 1, & \text{si } \omega \text{ es par} \\ 0 & \text{si } \omega \text{ es impar} \end{cases}$
- $Z(\omega) = 5$ (una variable aleatoria constante)

Entonces,

$$\mathbb{P}(X \in \{4, 5\}) = 2/6$$

 $\mathbb{P}(Y = 1) = 3/5 = 1/2$
 $\mathbb{P}(Z = 2) = 0 \text{ y } \mathbb{P}(Z = 5) = 1$

1.1. Función de densidad de una variable aleatoria

La función de densidad, o también llamada función de masa de probabilidad nos ayuda a representar los valores que toma la variable aleatoria y sus probabilidades.

Definición 4. Sea X una variable aleatoria discreta con valores x_1, x_2, \ldots y probabilidades $p_1 =$ $\mathbb{P}(X=x_1), p_2=\mathbb{P}(X=x_2), \ldots$ La función de densidad de X es una función $f_X:\mathbb{R}\to\mathbb{R}$ esta definida por

$$f_X(x) = \begin{cases} \mathbb{P}(X = x), & \text{si } x = x_1, x_2, \dots \\ 0, & \text{e.o.c.} \end{cases}$$

y gráficamente se representa como

Propiedades:

- 1. $0 \le f_X(x) \le 1$ para toda x.
- 2. $\sum_{x} f_X(x) = 1$
- 3. Para todo conjunto $A\subset R_X$, entonces podemos encontrar la probabilidad de que $X\in A$ usando la función de densidad:

$$\mathbb{P}(X \in A) = \sum_{x \in A} f_X(x)$$

1.2. Función de distribución de una variable aleatoria

Como sabemos la defunción de la función de densidad depende de que el objeto aleatorio sea discreto o continuo, teniendo:

• caso discreto: $f_X(k) = \mathbb{P}(X = k)$ con $k \in R_X$.

• caso continuo: $f_X(x)$ tal que $\mathbb{P}(X \in A) = \int_A f_X(x) dx$.

No obstante, ninguna de las anteriores es una condición en la definición de variable aleatoria:

$$X: (\Omega, \mathscr{F}) \to (\mathbb{R}, \mathcal{B}(\mathbb{R})) : \forall A \in \mathcal{B}(\mathbb{R}) \{X \in A\} \in \mathscr{F}$$

Por lo cual es conveniente trabajar con alguna otra función F

$$\Omega \xrightarrow{X} \mathbb{R} \xrightarrow{F} [0,1]$$

que nos ayude a explicarnos el comportamiento de X en un caso general. Está función será llamada función de distribución y más adelante se dirá que es lo que explica de X.

Definición 5. Dada una variable aleatoria X (cualquiera) definimos su función de distribución $F_X : \mathbb{R} \to [0,1]$ mediante

$$F_X(x) = \mathbb{P}(X \le x), \ x \in \mathbb{R}.$$

Observemos que para cualquier variable aleatoria X y $x \in \mathbb{R}$, la función F_X está bien definida ya que

- 1. $(-\infty, x] \in \mathcal{B}(\mathbb{R})$, para toda $x \in \mathbb{R}$,
- 2. entonces $\{X \in (-\infty, x]\} \in \mathscr{F}$,
- 3. entonces se puede calcular $\mathbb{P}(X \in (-\infty, x]) = F_X(x)$.

Antes de utilizar F_X para conocer a la variable aleatoria, estudiaremos sus propiedades más generales.

Continuidad de la función de probabilidad

Proposición 6. Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión creciente de eventos, es decir, $A_1\subseteq A_2\subseteq\cdots$. Entonces

$$\mathbb{P}(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n),$$

donde

$$\bigcup_{n=1}^{\infty} A_n := \lim_{n \to \infty} A_n.$$

Es decir, la función de probabilidad es continua con respecto a sucesiones crecientes de evetos.

Proposición 7. Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión decreciente de eventos, es decir, $A_1\supseteq A_2\supseteq\cdots$. Entonces

$$\mathbb{P}(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mathbb{P}(A_n),$$

donde

$$\bigcap_{n=1}^{\infty} A_n := \lim_{n \to \infty} A_n.$$

Es decir, la función de probabilidad es continua con respecto a sucesiones decrecientes de evetos.

Teorema 8 (Continuidad de probabilidad). Sea $\{A_n\}_{n\in\mathbb{N}}$ una sucesión de eventos que convergen a un evento A. Entonces

$$\lim_{n\to\infty} \mathbb{P}(A_n) = \mathbb{P}(A).$$

Es decir, la función de probabilidad es una función continua.

Propiedades de la función de distribución

Propiedad 9. F_X es monótona creciente.

Demostración. Si $x \leq y$, entonces $\{X \leq x\} \subseteq \{Y \leq y\}$ y por monotonía de la función de probabilidad tenemos que $\mathbb{P}(X \leq x) \leq \mathbb{P}(Y \leq y)$. Por lo tanto si $x \leq y$ entonces $F_X(x) \leq F_Y(y)$.

Propiedad 10.
$$\lim_{x\to\infty} F_X(x) = 1$$
 y $\lim_{x\to-\infty} F_X(x) = 0$.

Demostración. Sea $\{x_n\}_{n=1}^{\infty}$ una sucesión de números reales tal que $x_n \leq x_{n+1}$ para toda $n \in \mathbb{N}$ y tal que $x_n \to \infty$ cuando $n \to \infty$. Entonces,

$${X < \infty} = {\text{existe } n \in \mathbb{N} \text{ talque } X \le x_n} \quad (\text{porque } x_n \uparrow \infty)$$

$$= \bigcup_{n=1}^{\infty} {X \le x_n} \quad (\text{porque existe} = \cup)$$

Por lo que

$$\mathbb{P}(X < \infty) = \mathbb{P}\left(\bigcup_{n=1}^{\infty} \{X \le x_n\}\right)$$

Como $x_n \leq x_{n+1}$, entonces $\{X \leq x_n\} \subseteq \{X \leq x_{n+1}\}$, es decir, si definimos $A_n = \{X \leq x_{n+1}\}$ tenemos que la sucesión $\{A_n\}_{n=1}^{\infty}$ es una sucesión creciente de conjuntos de \mathscr{F} y su límite es $A = \bigcup_{n=1}^{\infty} A_n$ que como ya vimos antes satisface que $A = \{X < \infty\}$. Aplicando el teorema de continuidad de la probabilidad, podemos concluir que

$$\mathbb{P}(X < \infty) = \lim_{n \to \infty} \mathbb{P}(X \le x_n) = \lim_{n \to \infty} F_X(x_n) = \lim_{x \to \infty} F_X(x),$$

donde $\mathbb{P}(A) = \lim_{n \to \infty} \mathbb{P}(A_n) = \lim_{n \to \infty} \mathbb{P}(X \le x_n)$, y la última igualdad $\lim_{n \to \infty} F_X(x_n) = \lim_{x \to \infty} F_X(x)$ se debe a que la sucesión $\{x_n\}_{n=1}^{\infty}$ es arbitraria.

Hemos probado que

$$\mathbb{P}(X \in \mathbb{R}) = \lim_{x \to \infty} F_X(x)$$

y claro está que $\{X \in \mathbb{R}\} = \Omega$, por lo que podemos concluir que $\lim_{x \to \infty} F_X(x) = 1$.

Ahora, para el otro límite, sea $\{y_n\}_{n=1}^{\infty}$ una sucesión de números reales tal que $y_n \geq y_{n+1}$ para toda $n \in \mathbb{N}$ y tal que $y_n \to -\infty$ cuando $n \to \infty$. Como $y_n \geq y_{n+1}$, entonces $\{X \leq y_n\} \supseteq \{X \leq y_{n+1}\}$, es decir, si definimos $B_n = \{X \leq y_n\}$ tenemos que la sucesión $\{B_n\}_{n=1}^{\infty}$ es una sucesión decreciente de conjuntos de \mathscr{F} (es decir, $B_n \supseteq B_{n+1}$), y su límite es $B = \bigcap_{n=1}^{\infty} B_n = \emptyset$ (que $B = \emptyset$ se sigue de que en realidad $B = \{X = -\infty\} = \emptyset$). Aplicando el teorema de continuidad de la probabilidad, tenemos que

$$\mathbb{P}(B) = \mathbb{P}(X = -\infty) = \lim_{n \to \infty} \mathbb{P}(X \le y_n) = \lim_{n \to \infty} F_X(y_n) = \lim_{x \to -\infty} F_X(x),$$

Hemos probado que $\mathbb{P}(X=-\infty)=\lim_{x\to-\infty}F_X(x)$ y claro está que $\{X=-\infty\}=\emptyset$, por lo que podemos concluir que $\lim_{x\to\infty}F_X(x)=0$.

Propiedad 11. F_X es continua por la derecha, con límites por la izquierda.

Demostración. Los límites por la izquierda existen ya que

$$0 \le \lim_{x \to x_0^-} F_X(x) \le F_X(x_0) \le 1$$

y F_X es monótona. Ahora, para comprobar la continuidad por la derecha, sea $y \in \mathbb{R}$ y sea $\{y_n\}_{n=1}^{\infty}$ una sucesión que tiende a y por la derecha, es decir, es tal que $y \leq y_{n+1} \leq y_n$ y tal que $y_n \to y$ cuando $n \to \infty$. Probaremos que $F_X(y_n) \to F_X(y)$, donde $F_X(y_n) = \mathbb{P}(X \leq y_n)$ por definición.

Para tomar el límite, usaremos el teorema de continuidad de la probabilidad. Observemos que

$$C_{n+1} = \{X \le y_{n+1}\} \subseteq \{X \le y_n\} = C_n,$$

así que $\{C_n\}_{n=1}^{\infty}$ conforma una sucesión decreciente de eventos. Ahora,

$$C = \bigcap_{n=1}^{\infty} C_n = \{ \forall \ n \in \mathbb{N} : X \le y_n \}$$
$$= \{ X \le \lim_{n \to \infty} y_n \} \text{ (porque } y_n \downarrow y \text{ cuando } n \to \infty)$$
$$= \{ X \le y \}$$

Entonces,

$$\mathbb{P}(C) = \mathbb{P}\left(\bigcap_{n=1}^{\infty} C_n\right) = \lim_{n \to \infty} \mathbb{P}(C_n)$$

pero por otro lado, tenemos que $\mathbb{P}(C) = \mathbb{P}(X \leq y)$ y que $\mathbb{P}(C_n) = \mathbb{P}(X \leq y_n)$. Por lo tanto

$$\mathbb{P}(X \le y) = \lim_{n \to \infty} \mathbb{P}(X \le y_n),$$

con lo cual queda demostrada la continuidad por la derecha.

Llamamos a $F_X(x_-) = \lim_{y \to x} F_X(y)$ el límite por la izquierda de F en x. Tenemos que

$$P(X < x) = F_X(x_-).$$

Calculo de probabilidades utilizando F_X

Sean X una variable aleatoria real definida sobre $(\Omega, \mathscr{F}, \mathbb{P})$, F_X su función de distribución y $a,b \in \mathbb{R}$ con a < b, entonces:

- 1. $\mathbb{P}(X \leq a) = F_X(a)$.
- 2. $\mathbb{P}(X > a) = 1 F_X(a)$.
- 3. $\mathbb{P}(X < a) = F_X(a_-)$.
- 4. $\mathbb{P}(X > a) = 1 F_X(a_-)$.
- 5. $\mathbb{P}(a < X \le b) = F_X(b) F_X(a)$.
- 6. $\mathbb{P}(a \le X \le b) = F_X(b) F_X(a_-).$
- 7. $\mathbb{P}(a \le X < b) = F_X(b_-) F_X(a_-)$.
- 8. $\mathbb{P}(a < X < b) = F_X(b_-) F_X(a)$.
- 9. $\mathbb{P}(X = a) = F_X(a) F_X(a_-)$, de modo que la función de distribución es continua en x si y sólo si $\mathbb{P}(X = x) = 0$.

Observaciones:

1. Analíticamente, si X es discreta, entonces

$$F(x) = \mathbb{P}(X \le x) = \sum_{u \le x} f_X(u)$$

y si X es continua con función de densidad $f_X(x)$, entonces

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f_X(y) dy.$$

- 2. Kolmogorov demostró que cada función F es una función
 - monótona no decreciente
 - continua por la derecha, con limites por la izquierda
 - $\lim_{x \to \infty} F_X(x) = 1$ y $\lim_{x \to -\infty} F_X(x) = 0$.

Entonces, existe un espacio de probabilidad $(\Omega, \mathscr{F}, \mathbb{P})$ y $X : \Omega \to \mathbb{R}$ tales que $F(x) = \mathbb{P}(X \le x)$. Por eso es lo mismo hablar de variables aleatorias o de funciones de distribución.

Ejemplo 12. Sea X una variable aleatoria con función de densidad dada por

$$f_X(x) = \begin{cases} 1/3, & \text{si } x = 1, 2, 3\\ 0 & \text{e.o.c.} \end{cases}$$

Entonces su función de distribución es:

$$F_X(x) = \begin{cases} 0, & \text{si } x < 1 \\ 1/3, & \text{si } 1 \le x < 2 \\ 2/3, & \text{si } 2 \le x < 3 \\ 1, & \text{si } x \ge 3 \end{cases}$$

Ejemplo 13. Sea X una v.a con función de distribución dada por:

$$F_X(x) = \begin{cases} 0, & \text{si } x < 0\\ \frac{1}{8}, & \text{si } 0 \le x < 1\\ \frac{1}{2}, & \text{si } 1 \le x < 2\\ \frac{7}{8}, & \text{si } 2 \le x < 3\\ 1, & x \ge 3 \end{cases}$$

Ejemplo 14. Sea Y una v.a con función de distribución de dada por:

$$F_Y(y) = \begin{cases} 0, & \text{si } x < 0\\ \frac{6}{36}, & \text{si } 0 \le x < 1\\ \frac{16}{36}, & \text{si } 1 \le x < 2\\ \frac{24}{36}, & \text{si } 2 \le x < 3\\ \frac{30}{36}, & \text{si } 3 \le x < 4\\ \frac{34}{36}, & \text{si } 4 \le x < 5\\ 1, & x \ge 5 \end{cases}$$

Ejemplo 15. Sea X una variable aleatoria con función de distribución dada por

$$F_X(x) = \begin{cases} 0 & \text{si } x < -2\\ \frac{1}{16} & \text{si } x \in [-2, 0)\\ \frac{1}{8} & \text{si } x \in [0, 2)\\ \frac{3}{16} & \text{si } x \in [2, 3)\\ \frac{1}{32}(x^2 - 1) & \text{si } x \in [3, 5)\\ 1 - \frac{1}{2^k} & \text{si } x \in [k, k + 1) \text{para } k \in \{5, 6, 7\}\\ 1 & \text{si } x \ge 8 \end{cases}$$

Encontrar las siguientes probabilidades: (1) $\mathbb{P}(-2 \le X < 1)$, (2) $\mathbb{P}(3 < X < 5)$, (3) $\mathbb{P}(X \ge 5)$, y (4) $\mathbb{P}(X \in \{1, 2, ..., 10\})$.

Solución.

(1)

$$\mathbb{P}(-2 \le X < 1) = F_X(1_-) - F_X(-2_-)$$
$$= \frac{1}{8} - 0 = \frac{1}{8}$$

(2)

$$\mathbb{P}(3 < X < 5) = F_X(5-) - F_X(3)$$

$$= \frac{1}{32}(5^2 - 1) - \frac{1}{32}(3^2 - 1)$$

$$= \frac{24 - 8}{32} = \frac{1}{2}$$

(3)

$$\mathbb{P}(X \ge 5) = 1 - \mathbb{P}(X < 5)$$

$$= 1 - F_X(5-)$$

$$= 1 - \frac{1}{32}(5^2 - 1)$$

$$= 1 - \frac{3}{4} = \frac{1}{4}$$

$$(4) \ \mathbb{P}(X \in \{1, 2, ..., 10\}) = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) + \mathbb{P}(X = 3) + \mathbb{P}(X = 4) + \mathbb{P}(X \ge 5), \text{ donde}$$

$$\mathbb{P}(X = 1) = F_X(1) - F_X(1-) = \frac{1}{8} - \frac{1}{8} = 0$$

$$\mathbb{P}(X = 2) = F_X(2) - F_X(2-) = \frac{3}{16} - \frac{1}{8} = \frac{1}{16}$$

$$\mathbb{P}(X = 3) = F_X(3) - F_X(3-) = \frac{1}{32}(3^2 - 1) - \frac{3}{16} = \frac{1}{16}$$

$$\mathbb{P}(X = 4) = F_X(4) - F_X(4-) = \frac{1}{32}(4^2 - 1) - \frac{1}{32}(4^2 - 1) = 0$$