How predictable is extinction?

Forecasting species survival at million-year timescales

Peter D Smits, Seth Finnegan

Department of Integrative Biology, University of California - Berkeley

Foundational assertion of conservation paleobiology

By studying the past, we can better predict the future.

What are we predicting?

Extinction is hard to predict, but is important to conservation decisions.

Predicting extinction

▶ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.

Predicting extinction

- ▶ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- ► A taxon's global geographic range can change over time.

Predicting extinction

- ▶ A taxon with a greater than average global geographic range is likely to survive for longer than a taxon with less than average global geographic range.
- A taxon's global geographic range can change over time.
- What happens to extinction risk as a taxon changes geographic range? How is extinction risk impacted if that taxon's global geographic range has recently increased or decreased?

Encoding the past

- Change in geographic range between current observation and previous observation.
- Average global temperature at time of previous observation (Mg/Ca isotope).
- Age in millions of years at time of observation.

Data being analyzed

▶ Predictors: geographic range, change in geographic range, global temperature, lag of global temperature.

- Predictors: geographic range, change in geographic range, global temperature, lag of global temperature.
- Bayesian discrete-time survival model.
 - Bernoulli response distribution.
 - ► Time varying intercepts and slopes; varies by phylum.
 - ► Taxon age as non-nested varying intercept; varies by phylum.

- Predictors: geographic range, change in geographic range, global temperature, lag of global temperature.
- Bayesian discrete-time survival model.
 - Bernoulli response distribution.
 - Time varying intercepts and slopes; varies by phylum.
 - ► Taxon age as non-nested varying intercept; varies by phylum.
- Compare models using WAIC/LOOIC.

- ► Predictors: geographic range, change in geographic range, global temperature, lag of global temperature.
- Bayesian discrete-time survival model.
 - Bernoulli response distribution.
 - ► Time varying intercepts and slopes; varies by phylum.
 - Taxon age as non-nested varying intercept; varies by phylum.
- Compare models using WAIC/LOOIC.
- Explore model adequacy using posterior predictive distribution.

- ► Predictors: geographic range, change in geographic range, global temperature, lag of global temperature.
- Bayesian discrete-time survival model.
 - Bernoulli response distribution.
 - ► Time varying intercepts and slopes; varies by phylum.
 - Taxon age as non-nested varying intercept; varies by phylum.
- Compare models using WAIC/LOOIC.
- Explore model adequacy using posterior predictive distribution.
- ► Estimate out-of-sample predictive performance using *k*-fold cross-validation.

A conceptual model for predicting extinction

A statistical model for predicting extinction

In-sample predictive performance, full dataset

In-sample predictive performance, by time

Comparing our models

Model	LOOIC	SE LOOIC	WAIC	SE WAIC
Past and vary	12790.39	178.83	12786.06	178.77
No past but vary	12818.43	178.76	12815.40	178.71
Past but no vary	12850.45	179.42	12848.12	179.38
No past or vary	12850.87	179.46	12848.50	179.42

Comparing our models

LOOIC	SE LOOIC	WAIC	SE WAIC
12790.39	178.83	12786.06	178.77
12818.43	178.76	12815.40	178.71
12850.45	179.42	12848.12	179.38
12850.87	179.46	12848.50	179.42
	12790.39 12818.43 12850.45	12790.39 178.83 12818.43 178.76 12850.45 179.42	12790.39 178.83 12786.06 12818.43 178.76 12815.40 12850.45 179.42 12848.12

Cross-validation results, full dataset

Cross-validation results, by time

Overall covariate effects

Covariate effects over time

Effects of age on extinction risk, by phylum

Summary

- extinction is very random and our estimates aren't near perfect
- historical covariates and varying effects seem important
- increasing model complexity has only

Conclusions

- consider non-linear effects of historical covariates thresholds
- at MILLION YEAR timescales past kind of matters, but very marginally
- extinction is hard to predict at million year timescales rarity

Acknowledgements