Orange Oscelots Geospatial API Project

Chris Mulvey, Jake Randolph, Vahideh Rasekhi

Getting and Cleaning Data

- About 50% of our time was spent obtaining the data we needed.
- After getting the data, another 30% of the time was cleaning the data and putting it in the format we needed.

Maps

- Started with Choropleth Map
- Police Station proximity
- Comparison of burglary rates and median income

Choropleth Map

Police Precinct Proximity

Tracts shown are all tracts with over 5 burglaries per 1000 residents

Burglaries Per 1000 Residents

Median Income By Tract

Poisson regression base model

Target variable: rate of burglaries per census tract

Generalized Linear Model Regression Results						
Dep. Variable:	able: burglaries_per_1000 No. Observations:		146			
Model:			GLM	Df R	esiduals:	145
Model Family:		Poi	sson		of Model:	0
Link Function:			log		Scale:	1.0000
Method:			IRLS	Log-Lil	-307.95	
Date:	Sa	t, 09 Oct 2	2021	D	eviance:	317.23
Time:	10:33:47 Pearson chi2:		907.			
No. Iterations:			5			
Covariance Type: nonrobust						
coef s	td err	z	P> z	[0.025	0.975]	
const -1.0922	0.068	-16.124	0.000	-1.225	-0.959	

The estimated **mean** of the distribution of burglary per 1000 population is **-1.0922**.

The estimated **variance** of the distribution is **1**.

Poisson regression model

<u>Target variable</u>: rate of burglaries / <u>predictor variable</u>: median income

Generalized Linear M	Model Regression Resu	lts	
Dep. Variable:	burglaries_per_1000 No. Observations:		146
Model:	GLM	Df Residuals:	144
Model Family:	Poisson	Df Model:	1
Link Function:	log	Scale:	1.0000
Method:	IRLS	Log-Likelihood:	-279.19
Date:	Sat, 09 Oct 2021	Deviance:	259.72
Time:	10:34:05	Pearson chi2:	682.
No. Iterations:	5		
Covariance Type:	nonrobust		
	coef std err	z P> z	[0.025
r.			•

	coef	std err	z	P> z	[0.025	0.975]
const	0.3222	0.198	1.630	0.103	-0.065	0.710
median_income	-2.449e-05	3.55e-06	-6.907	0.000	-3.14e-05	-1.75e-05

For median income of t, the estimated value of the mean is exp(0.3222 + (-2.449e-05t))

Rate of burglary decreases by -2.449e-05 times the median income

Negative binomial model

Generalized Linear Model Regression Results					
Dep. Variable:	burglaries_per_1000 No. Observations:		146		
Model:	GLM	Df Residuals:	144		
Model Family:	NegativeBinomial	Df Model:	1		
Link Function:	log	Scale:	1.0000		
Method:	IRLS	Log-Likelihood:	-258.77		
Date:	Mon, 11 Oct 2021	Deviance:	94.035		
Time:	18:25:42	Pearson chi2:	278.		
No. Iterations:	7				
Covariance Type:	nonrobust				

	coef	std err	z	P> z	[0.025	0.975]
Intercept	-6.5958	0.303	-21.788	0.000	-7.189	-6.002
median_income	-2.1e-05	4.9e-06	-4.283	0.000	-3.06e-05	-1.14e-05

For a one unit change in the predictor variable (median income), the difference in the logs of expected counts of the response variable (rate of burglary) is expected to change by -.000021.

Graphical Comparisons

Akaike Information Criterion (AIC)

AIC attributes:

Base Poisson Regression: 617.89

Poisson Regression: 562:37

Negative Binomial Regression: **521.53**

Scatterplot of Incidents and Income

