Cours: MAPSI

Charles Vin

2022

Nouveau cours du 13/09

1 Introduction

Exam final: 50%Partiel: 35%

— Participation : 15%

- travail dans la séance
- TME soumis en fin de séance omg

Deux grand type de modèle :

- Modèle paramétrique : connaissance sur la distribution stat des données. Puis on estime les paramètres de la loi.
- Modèle non paramétrique : l'inverse, on ne connait pas la loi. exemple : regression logistique Echantillons :
- population
- ect

Définition 1.1. Vocabulaire :

Voir diapo 9/51

Définition 1.2 (Mesure de proba). Une fonction qui associe chaque événement à une valeur entre 0 et 1. Voir diapo 15, definition importante.

Définition 1.3.

$$P(A \cup B) = P(A) + P(B) - P(A \cap B).$$

Densité de proba

Retrouver la définition.

Fonction de répartition

$$F(x) = P(X < x) = \int_{-\infty}^{x} f(x)dx.$$

Espérance:

$$E(X) = \sum x_k * p_k$$

$$E(X) = \int Xp(x)dx$$

$$E(aX + b) = aE(X) + b$$

$$E(X + Y) = E(X) + E(Y)$$

Le Mode

$$p(Mo) = \max_{k} p(x_k)p(Mo) = \max_{x} p(x)$$

Variance:

$$\sigma^2 = \sum (x_k - E(X))^2$$
$$\sigma^2 = \int (x - E(X))^2 p(x) dx$$
$$V(aX + b) = a^2 V(X)$$
$$V(X) = E(X^2) - E(X)$$

Médiane et quantile

idk diapo

Définition 1.4 (Loi marginale). La marginalisation consiste à projeter une loi jointe sur l'une des variables aléatoires. Par exemple extraire P(A) à partir de P(A,B).

$$P(A) = \sum_{i} P(A, B = pb_i).$$

C'est la somme de la ligne ou de la colonne du tableau.

Définition 1.5. Probabilités conditionnelles

$$P(A|B) = \frac{P(A \cup B)}{P(B)}$$

$$\Leftrightarrow P(A \cup B) = P(A|B)P(B)$$

Proposition 1.1. — *Réversibilité* : P(A, B) = P(A|B)

— Théorème de Bayes :

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}.$$

- Intégration des probabilités totale
- DIAPO 39

Définition 1.6 (Indépendance probabiliste). Deux événements A et B sont indépendants si

$$P(A, B) = P(A) * P(B).$$

Corollaire : P(A|B) = P(A)

Définition 1.7. La covariance

$$cov(X,Y) = E[(X - E(X))(Y - E(Y))].$$

Définition 1.8 (Coefficient de corrélation linéaire). Soit X,Y deux variables. Le coefficient de corrélation linéaire entre X et Y est :

$$r = \frac{cov(X, Y)}{\sigma_X \sigma_Y}.$$

CCL:

VOIR DIAPOProbabilité Marginalisation Conditionnement Indépendance : Si X_1 et X_2 sont indépendantes : $P(X_1,X_2)=P(X_1)P(X_1)$

Nouveau cours du 20/09

Définition 1.9 (Indépendance de deux variables discrète). Discrète : Continue :

Définition 1.10 (Indépendance mutuelle de n variable). Soient n variables aléatoires $(X_1,...,X_n)$. Elle sont **mutuellement indépendantes** si tout événement lié à une partie d'entre elles est indépendant de tout événement lié à toute autre partie disjointe de la précédente. Propriété :

- Indépendance mutuelle ightarrow Indépendance deux à deux. **Attention :** réciproque fausse
- → Permet de réduire la taille du tableau des probabilité de chaque événement!

Définition 1.11 (Indépendance conditionnelles). On reprend les formules de l'indépendances mais en sachant une variable, au final c'est dans un cas particulier.

$$X \perp Y \mid Z$$

$$\forall x, \forall y, \forall z P(X = x \cap Y = y | Z = z) = P(X = x | Z = z) * P(Y = y | Z = z)$$

 \rightarrow

$$\Rightarrow P(X, Y|Z) = P(X|Z) * P(Y|Z).$$

Définition 1.12. Loi normale

Proposition 1.2. - Moyenne linéaire et variance comme bilinéaire

$$X \sim \mathcal{N}(\mu, \sigma^2)$$
 alors $Y = aX + b \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$.

- Centrer et réduire

$$Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1).$$

Définition 1.13 (Convergence en loi).

$$\forall x, \lim_{n \to \infty} F_n(x) = F(x).$$

On ne sais pas comment ça converge

Définition 1.14 (Convergence en probabilité). (X_n) converge en probabilité vers X si, pour tout $\epsilon > 0$ la probabilité que l'écart absolu entre X_n et X dépasse ϵ tend vers 0 quand $n \to \infty$

$$\lim_{n \to \infty} P(|X_n - X| \ge \epsilon) = 0.$$

Définition 1.15 (convergence presque sur). (X_n) converge presque surement vers X s'il y a yne proba 1 que la suite des réalisation des X_n tende vers X

Définition 1.16 (Loi faible des grands nombre). Soit $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires :

- De même loi
- D'éspérance m
- Possédant une variance σ^2
- Deux à deux indépendante

Alors

$$\bar{X_n} = \frac{\sum_{k=1}^n X_k}{n} \to_{\mathbb{P}} m.$$

Rappel:

$$E(\bar{X_n}) = m$$

$$V(\bar{X_n}) = \frac{\sigma^2}{n}$$

Définition 1.17 (Loi forte des grands nombres). Soit $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires :

- De même loi
- D'éspérance m
- Possédant une variance σ^2
- mutuellement indépendante

Alors

$$\bar{X}_n = \frac{\sum_{k=1}^n X_k}{n} \to_{p.s} m.$$

Définition 1.18 (Théorème centrale limite). Soit $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires :

- De même loi
- D'éspérance μ
- Possédant une variance σ^2
- mutuellement indépendantes

Alors

$$\frac{\bar{X}_n - \mu}{\sigma \sqrt{n}} \to_{loi} \mathcal{N}(0, 1).$$