

ECON408: Computational Methods in Macroeconomics

Deterministic Dynamics and Introduction to Growth Models

Jesse Perla

jesse.perla@ubc.ca

University of British Columbia

Table of contents

- Overview
- Difference Equations
- Solow Growth Model
- Solow Model Dynamics

Overview

Motivation and Materials

- In this lecture, we will introduce (non-linear) dynamics
 - → This lets us explore stationarity and convergence
 - → We will see an additional example of a fixed point and convergence
- The primary applications will be to simple models of growth, such as the Solow growth model.

Materials

- Adapted from QuantEcon lectures coauthored with John Stachurski and Thomas J. Sargent
 - → Julia by Example
 - → Dynamics in One Dimension

```
1 using LaTeXStrings, LinearAlgebra, Plots
2 default(;legendfontsize=16)
```


Difference Equations

(Nonlinear) Difference Equations

$$x_{t+1} = h(x_t)$$

• A time homogeneous first order difference equation

- $\to h:S o S$ for some $S\subseteq\mathbb{R}$ in the univariate case
- \rightarrow S is called the **state space** and x is called the **state variable**.
- \rightarrow Time homogeneity: q is the same at each time t
- ightarrow First order: depends on one lag (i.e., x_{t+1} and x_t but not x_{t-1})

Trajectories

- ullet An initial condition x_0 is required to solve for the sequence $\{x_t\}_{t=0}^\infty$
- Given this, we can generate a trajectory recursively

$$egin{aligned} x_1 &= h(x_0) \ x_2 &= h(x_1) = h(h(x_0)) \ x_{t+1} &= h(x_t) = h(h(\dots h(x_0))) \equiv h^t(x_0) \end{aligned}$$

- If not time homogeneous, we can write $x_{t+1} = h_t(x_t)$
- ullet Stochastic if $x_{t+1} = h(x_t, \epsilon_{t+1})$ where ϵ_{t+1} is a random variable

Linear Difference Equations

$$x_{t+1} = ax_t + b$$

For constants a and b. Iterating,

$$x_1 = h(x_0) = ax_0 + b$$
 $x_2 = h(h(x_0)) = a(ax_0 + b) + b = a^2x_0 + ab + b$
 $x_3 = a(a^2x_0 + ab + b) + b = a^3x_0 + a^2b + ab + b$
...

$$x_t = b \sum_{j=0}^{t-1} a^j + a^t x_0 = b rac{1-a^t}{1-a} + a^t x_0$$

Convergence and Stability for Linear Difference Equations

ullet If |a|<1, take limit to check for **global stability**, for all x_0

$$\lim_{t o\infty}x_t=\lim_{t o\infty}g^{t-1}(x_0)=\lim_{t o\infty}\left(brac{1-a^t}{1-a}+a^tx_0
ight)=rac{b}{1-a}$$

- ullet If a=1 then diverges unless b=0 and |a|>1 diverges for all b
- Linear difference equations are either globally stable or globally unstable
- Nonlinear difference equations may be locally stable
 - \to For some $|x_0-x^*|<\epsilon$ for some x^* and $\epsilon>0$. Global if $\epsilon=\infty$

Nonlinear Difference Equations

- ullet We can ask the same questions for nonlinear $h(\cdot)$
- Keep in mind the connection to the fixed points from the previous lecture
 - ightarrow If $h(\cdot)$ has a unique fixed point from any initial condition, it tells us about the dynamics
- Connecting to **contraction mappings** etc. would help us be more formal, but we will stay intuitive here
- Let us investigate nonlinear dynamics with a classic example

Solow Growth Model

Models of Economic Growth

- There are different perspectives on what makes countries grow
 - → Malthusian models: population growth uses all available resources
 - Capital accumulation: more capital leads to more output, tradeoff of consumption today to build more capital for tomorrow
 - → Technological progress/innovation: new ideas lead to more output, so the tradeoffs are between consumption today vs. researching technologies for the future
- The appropriate model depends on country and time-period
 - → Malthusian models are probably most relevant right up until about the time he came up with the idea

Exogenous vs. Endogenous

- In these, the tradeoffs are key
 - → Can be driven by some sort of decision driven by the agent's themselves (e.g., government plans, consumers saving, etc.) endogenously
 - → Or exogenously choose, not responsive to policy and incentives
 - → You always leave some things exogenous to isolate a key force
- What determines the longrun growth rate? Use fixed points!
 - → In models of capital accumulation, technology limits the longrun growth
 - → Models of innovation choice often called endogenous growth models

Solow Model Summary

- The **Solow** model describes aggregate growth from the perspective of accumulating physical capital
 - → The tension is between consumption and savings
 - → Production not directed towards consumption goods is used to build capital for future consumption
 - → e.g. factories, robots, facilities, etc.
- Endogeneity
 - → Technology and population growth are left fully exogenous
 - → Capital accumulation occurs through an exogenously given savings rate
 - → The neoclassical growth model endogenizing that rate

Technology

- In this economy, output is produced by combining labor and capital
- Labor N_t , which we assume is supplied **inelastically**
 - → Assume it is proportional to the population
- Capital, K_t , which is accumulated over time
- In addition, total factor productivity (TFP), z_t , is the technological level in the economy
- The physical output from operating the technology is:

$$Y_t = z_t F(K_t, N_t)$$

Properties of the Technology Function

- Note that land, etc. are NOT a factor of production
- ullet We will assume $F(\cdot,\cdot)$ is **constant returns to scale**

$$F(\alpha K, \alpha N) = \alpha F(K, N) \quad orall lpha > 0$$

ullet Assume F has **diminishing marginal products**

$$o$$
 i.e. $rac{\partial F(K,N)}{\partial K}>0$, $rac{\partial F(K,N)}{\partial N}>0$, $rac{\partial^2 F(K,N)}{\partial K^2}<0$, $rac{\partial^2 F(K,N)}{\partial N^2}<0$

Constant Returns to Scale

- Define output per worker as $y_t = Y_t/N_t$ and capital per worker as $k_t = K_t/N_t$
- Take F, divide by N_t , use CRS, and define $f(\cdot)$

$$egin{aligned} Y_t &= z_t F(K_t, N_t) \ rac{Y_t}{N_t} &= rac{z_t F(K_t, N_t)}{N_t} \ y_t &= z_t F\left(rac{K_t}{N_t}, rac{N_t}{N_t}
ight) = z_t F(k_t, 1) \equiv z_t f(k_t) \end{aligned}$$

ightarrow f also has diminishing marginal products, f'(k)>0, f''(k)<0

Population Growth

- ullet From some initial condition N_0 for population
- Assume that population grows at a constant rate g_N , i.e.

$$N_{t+1}=(1+g_N)N_t$$

- ullet Hence $N_{t+1}/N_t=1+g_N$ and $N_t=(1+g_N)^tN_0$
- If $g_N < 0$ then shrinking population

Capital Accumulation

- ullet Capital is accumulated by **investment**, X_t , with per capital $x_t \equiv X_t/N_t$
 - → Macroeconomists should think in "allocations", not "dollars"!
- Output, Y_t from production can be used for consumption or investment
- ullet Between periods, $\delta \in (0,1)$ proportion of capital depreciates
 - → e.g. machines break down, buildings decay, etc.

$$C_t + X_t = Y_t \equiv \underbrace{z_t F(K_t, N_t)}_{ ext{Total Output}} \ \underbrace{K_{t+1}}_{ ext{Next}} = \underbrace{(1-\delta)}_{ ext{depreciation}} \underbrace{K_t + X_t}_{ ext{investment}}, \delta \in (0,1) \ \underbrace{K_{t+1}}_{ ext{of capital}} = \underbrace{(1-\delta)}_{ ext{of capital}} \underbrace{K_t + X_t}_{ ext{in new capital}}$$

Per Capita Capital Dynamics

ullet Recall that $N_{t+1}/N_t=1+g_N$ and $y_t=z_tf(k_t)$

$$egin{split} rac{K_{t+1}}{N_t} &= (1-\delta)rac{K_t}{N_t} + rac{X_t}{N_t} \ rac{N_{t+1}}{N_{t+1}}rac{K_{t+1}}{N_t} &= \left(rac{N_{t+1}}{N_t}
ight)\left(rac{K_{t+1}}{N_{t+1}}
ight) = (1-\delta)rac{K_t}{N_t} + rac{X_t}{N_t} \ k_{t+1}(1+g_N) &= (1-\delta)k_t + x_t \end{split}$$

So, the per-capita dynamics of capital are

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + x_t]$$

Savings

- ullet In the Solow model, the savings rate is exogenously given as $s\in(0,1)$
 - → In the neoclassical growth model, it is endogenously determined based on consumer or planner preferences
- ullet Hence, $x_t=sy_t=sz_tf(k_t)$. Combine with previous dynamics to get

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + sz_t f(k_t)]$$

- Given assumptions on $f(\cdot)$, this is a nonlinear difference equation given an exogenous z_t process
- ullet With this, we can analyze the dynamics of y_t , k_t , and c_t over time

Steady State

- Assume that $z_t = \bar{z}$ is constant over time
- ullet Look for **steady state**: $k_{t+1}=k_t=ar{k}$ and $y_{t+1}=y_t=ar{y}$, etc.
 - → Note that this is a **fixed point** of the dynamics. May or may not exist

$$ar{k} = rac{1-\delta}{1+g}ar{k} + rac{sar{z}}{1+g}f(ar{k}) \ igg(rac{1+g}{1+g} - rac{1-\delta}{1+g}igg)ar{k} = rac{sar{z}}{1+g}f(ar{k}) \ igg(g+\delta)ar{k} = rac{sar{z}f(ar{k})}{sar{z}f(ar{k})} \ egin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\$$

Example Production Function

- ullet Consider production function of $f(k)=k^lpha$ for $lpha\in(0,1)$
- In this case, α will be interpretable as the **capital share** of income

$$ar{k} = \left(rac{sar{z}}{g+\delta}
ight)^{rac{1}{1-lpha}}$$

Visualizing the Steady State

```
1 g A = 0.02
 2 \text{ delta} = 0.05
 3 s = 0.2
4 z = 1.0
 5 \text{ alpha} = 0.5
 6 k_{bar} = (s * z / (g_A + delta))^(1/(1-alpha))
8 k values = 0.1:0.01:10.0
9 lhs = (g_A + delta) * k_values
10 rhs = s * z .* k values.^alpha
11
   plot(k_values, lhs, label=L"Growth-adjusted depreciation: $(\delta + g_A)k$",
        xlabel=L"Capital per capita ($k$)")
13
   plot!(k_values, rhs, label=L"Investment per capita: $s \bar{z} f(k)$")
   vline!([k_bar], label=L"Steady State Capital: $\bar{k}$", linestyle=:dash)
```


Visualizing the Steady State

Wages and Rental Rate of Capital

- Production could be run by a planner, or by a set of firms
- Consider (real) profit maximizing firms. Price normalized to 1
 - ightarrow Hire labor and capital at real rates w_t and r_t respectively

$$\max_{K_t,N_t} \left[z_t F(K_t,N_t) - w_t N_t - r_t K_t
ight]$$

The first order conditions are

$$egin{aligned} z_t rac{\partial F(K_t, N_t)}{\partial K_t} &= r_t \ z_t rac{\partial F(K_t, N_t)}{\partial N_t} &= w_t \end{aligned}$$

Using Constant Returns to Scale

- ullet Can show that for any CRS $F(K_t,N_t)$ that $rac{\partial F(\gamma K_t,\gamma N_t)}{\partial K_t}=rac{\partial F(K_t,N_t)}{\partial K_t}$
 - ightarrow Same for N_t derivative. ,
- Set $\gamma = 1/N_t$ and write the marginal products as ratios,

$$egin{split} rac{\partial F(K_t,N_t)}{\partial K_t} &= f'(K_t/N_t) = f'(k_t) \ rac{\partial F(K_t,N_t)}{\partial N_t} &= f(k_t) - k_t f'(k_t) \end{split}$$

Wages and Rental Rate of Capital

Finally, we can write

$$egin{aligned} r_t &= z_t f'(k_t) \ w_t &= z_t f(k_t) - z_t f'(k_t) k_t \end{aligned}$$

ullet For the Cobb-Douglas production function $F(K_t,N_t)=K_t^lpha N_t^{1-lpha}$, we have

$$egin{aligned} f(k_t) &= k_t^lpha \ f'(k_t) &= lpha k_t^{lpha - 1} \ r_t &= lpha z_t k_t^{lpha - 1} \ w_t &= z_t k_t^lpha - z_t lpha k_t^{lpha - 1} k_t = (1 - lpha) z_t k_t^lpha \end{aligned}$$

Shares of Income

- ullet Recall that per-capita output is $y_t=z_tf(k_t)$
- $ullet w_t = (1-lpha)z_t k_t^lpha$
 - \rightarrow Interpret $1-\alpha$ as the **labor share** of output, or income
- $ullet r_t k_t = lpha z_t k_t^lpha$
 - \rightarrow Interpret α as the **capital share**
- Key to these expressions were competitive markets in hiring labor/capital
 - → i.e., workers end up paid their marginal products

Solow Model Dynamics

Summary of Equations

- ullet Exogenous z_t sequence. e.g., $z_{t+1}/z_t=1+g_z$ given some initial z_0
- ullet Population growth $N_{t+1}/N_t=1+g_N$ given some initial N_0

$$k_{t+1} = rac{1}{1+g_N}[(1-\delta)k_t + sz_tf(k_t)], \quad ext{given } k_0$$

- ightarrow Output per capita $y_t=z_tf(k_t)$
- ightarrow Consumption per capita $c_t = (1-s)y_t = (1-s)z_t f(k_t)$
- ullet Wages $w_t = (1-lpha)z_t k_t^lpha$ and rental rate of capital $r_t = lpha z_t k_t^{lpha-1}$
- ullet Steady state capital $ar k=\left(rac{sar z}{g_N+\delta}
 ight)^{rac{1}{1-lpha}}$ if $g_z=1$ and $z_0=ar z$

45 Degree Diagram

- ullet With a fixed point $k_{t+1}=h(k_t)$ note that a fixed point is when ar k=h(ar k)
- We can plot the dynamics of the sequence comparing the functions to the 45 degree line where that occurs
- This diagram will help us interpret stability and convergence

Iteration

• First, lets write a general function to iterate a (univariate) map

iterate_map (generic function with 1 method)

Plotting the Dynamics

```
function plot45(f, xmin, xmax, x0, T; num points = 100, label = L"h(k)",
                   xlabel = "k", size = (600, 500))
       # Plot the function and the 45 degree line
       x grid = range(xmin, xmax, num points)
       plt = plot(x grid, f.(x grid); xlim = (xmin, xmax), ylim = (xmin, xmax),
 5
                  linecolor = :black, lw = 2, label, size)
 6
       plot!(x grid, x grid; linecolor = :blue, lw = 2, label = nothing)
 8
       # Iterate map and add ticks
 9
       x = iterate map(f, x0, T)
10
       xticks!(x, [L"%$(xlabel)_{%$i}" for i in 0:T])
11
       yticks!(x, [L"%$(xlabel)_{%$i}" for i in 0:T])
12
13
       # Plot arrows and dashes
14
       for i in 1:T
15
           plot!([x[i], x[i]], [x[i], x[i+1]], arrow = :closed, linecolor = :black,
16
                 alpha = 0.5, label = nothing)
17
```

plot45 (generic function with 1 method)

Solow Parameter Examples

```
1  p = (z_bar = 2, s = 0.3, alpha = 0.3,
2     delta = 0.4, g_N = 0.0)
3  k_p(k; p) = (1 / (1 + p.g_N)) * (
4     p.s * p.z_bar * k^p.alpha
5     + (1 - p.delta) * k)
6  k_min = 0.0
7  k_max = 4.0
8  plot45(k -> k_p(k; p), k_min, k_max, 0, 6)
```

