Exact formulas for partial sums of the Möbius function expressed by partial sums weighted by the Liouville lambda function

Maxie Dion Schmidt

maxieds@gmail.com mschmidt34@gatech.edu

Georgia Institute of Technology School of Mathematics

Tuesday 3rd May, 2022

Abstract

The Mertens function, $M(x) := \sum_{n \le x} \mu(n)$, is defined as the summatory function of the classical Möbius function for $x \ge 1$. The Dirichlet inverse function $g(n) := (\omega + 1)^{-1}(n)$ is defined in terms of the shifted strongly additive function $\omega(n)$ that counts the number of distinct prime factors of n without multiplicity. Discrete convolutions of the partial sums of g(n) with the prime counting function provide new exact formulas for M(x) that are weighted sums of the Liouville function multiplied by the unsigned summands |g(n)| for $n \le x$. We study the distribution of the unsigned function |g(n)| whose Dirichlet generating function (DGF) is $\zeta(2s)^{-1}(1-P(s))^{-1}$ through the auxiliary unsigned sequence $C_{\Omega}(n)$ whose DGF is given by $(1-P(s))^{-1}$ for Re(s) > 1 where $P(s) = \sum_{p} p^{-s}$ is the prime zeta function. We prove formulas for the average order and variance of both $\log C_{\Omega}(n)$ and $\log |g(n)|$ and conjecture a central limit theorem for the distribution of their values over $n \le x$ as $x \to \infty$.

Keywords and Phrases: Möbius function; Mertens function; Dirichlet inverse; Liouville lambda function; prime omega function; prime counting function; Dirichlet generating function; prime zeta function.

Math Subject Classifications (2010): 11N37; 11A25; 11N60; 11N64; and 11-04.

Table of Contents

1	Intr	roduction	3
	1.1	Definitions	3
	1.2	Main results	3
	1.3	Discussion of the new results	4
	1.4	Organization of the manuscript	5
2	Pro	perties of the function $C_{\Omega}(n)$	5
	2.1	Definitions	5
	2.2	Average order and variance	5
3	Pro	perties of the function $g(n)$	8
	3.1	Signedness	9
	3.2	Precise relations to $C_{\Omega}(n)$	10
	3.3	Average order and variance	11
4	Con	njectures on limiting distributions	12
5	Pro	of of the new exact formulas for $M(x)$	13
	5.1	Formulas relating $M(x)$ to the partial sums of $g(n)$	13
	5.2	Plots and numerical experiments	15
	5.3	Local cancellation in the new formulas for the Mertens function	16
6	Con	nclusions	17
	6.1	Summary	17
	6.2	Discussion of the new results	17
A	cknov	wledgments	18
\mathbf{R}_{0}	efere	nces	18
${f A}_{f J}$	ppen	dices on supplementary material	
A	Glo	ssary of notation and conventions	20
В	The	e distributions of $\omega(n)$ and $\Omega(n)$	21
\mathbf{C}	Asy	emptotics of the incomplete gamma function	22
D	Inve	ersion theorems for partial sums of Dirichlet convolutions	24
${f E}$	Tab	oles of computations involving $g(n)$ and its partial sums	26

1 Introduction

1.1 Definitions

For integers $n \ge 2$, we define the strongly and completely additive functions, respectively, that count the number of prime divisors of n by

$$\omega(n) = \sum_{p|n} 1$$
, and $\Omega(n) = \sum_{p^{\alpha}||n} \alpha$.

We use the convention that when n = 1, the functions $\omega(1) = \Omega(1) = 0$. The Möbius function is defined as the signed indicator function of the squarefree integers by

$$\mu(n) = \begin{cases} 1, & \text{if } n = 1; \\ (-1)^{\omega(n)}, & \text{if } n \ge 2 \text{ and } \omega(n) = \Omega(n); \\ 0, & \text{otherwise.} \end{cases}$$

The Mertens function is the summatory function defined by the partial sums [21, A008683; A002321]

$$M(x) = \sum_{n \le x} \mu(n), \text{ for } x \ge 1.$$
 (1.1)

The Liouville lamda function is defined for all $n \ge 1$ by $\lambda(n) := (-1)^{\Omega(n)}$. The partial sums of this function are defined by [21, A008836; A002819]

$$L(x) := \sum_{n \le x} \lambda(n), \text{ for } x \ge 1.$$
 (1.2)

For any arithmetic functions f and h, we define their Dirichlet convolution at $n \ge 1$ by

$$(f * h)(n) \coloneqq \sum_{d|n} f(d)h\left(\frac{n}{d}\right).$$

The arithmetic function f has a unique inverse with respect to Dirichlet convolution, denoted by f^{-1} , that satisfies $(f * f^{-1})(n) = (f^{-1} * f)(n) = \delta_{n,1}$ if and only if $f(1) \neq 0$. We fix the notation for the Dirichlet inverse function [21, A341444]

$$g(n) := (\omega + 1)^{-1}(n), \text{ for } n \ge 1.$$
 (1.3)

We use the notation |g(n)| to denote the absolute value of g(n). The sign of g(n) is given by $\lambda(n)$ for all $n \ge 1$ (see Proposition 3.3). We define the partial sums G(x) for integers $x \ge 1$ as follows [21, A341472]:

$$G(x) \coloneqq \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|. \tag{1.4}$$

1.2 Main results

For any $x \ge 1$, the function $\pi(x) := \sum_{p \le x} 1$ in the next theorem denotes the classical prime counting function.

Theorem 1.1. For all $x \ge 1$

$$M(x) = G(x) + \sum_{1 \le k \le x} |g(k)| \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) \lambda(k), \tag{1.5a}$$

$$M(x) = G(x) + \sum_{1 \le k \le \frac{x}{2}} \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right) G(k), \tag{1.5b}$$

$$M(x) = G(x) + \sum_{p \le x} G\left(\left\lfloor \frac{x}{p} \right\rfloor\right). \tag{1.5c}$$

An exact expression for g(n) is given by (see Lemma 3.4 and Corollary 3.5)

$$\lambda(n)g(n) = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d), n \ge 1.$$
 (1.6)

The sequence $\lambda(n)C_{\Omega}(n)$ has the Dirichlet generating function (DGF) of $(1+P(s))^{-1}$ and $C_{\Omega}(n)$ has the DGF $(1-P(s))^{-1}$ for Re(s) > 1 where $P(s) := \sum_{p} p^{-s}$ is the prime zeta function. The function $C_{\Omega}(n)$ was considered in [8] with an exact formula given by (cf. equation (3.4) in the proof of Proposition 3.3)

$$C_{\Omega}(n) = \begin{cases} 1, & \text{if } n = 1; \\ (\Omega(n))! \times \prod_{p^{\alpha} \mid |n} \frac{1}{\alpha!}, & \text{if } n \ge 2. \end{cases}$$
 (1.7)

Theorem 1.2. As $n \to \infty$

$$\frac{1}{n} \times \sum_{k \le n} \log C_{\Omega}(k) = B_0(\log \log n)(\log \log \log n)(1 + o(1)).$$

Conjecture. For any fixed z > 0, there is an absolute constant $B_0 > 0$ so that as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : -z \le |g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \le z \right\} = \Phi \left(\frac{\log \left(\frac{\pi^2 |z|}{6} \right) - B_0(\log \log x)(\log \log \log x)}{B_0(\log \log x)(\log \log \log x)} \right) + o(1).$$

We can show that the limiting absolute constant B_0 in the conjecture is actually identically one assuming that as $x \to \infty$ the following result is true for any fixed, finite y > 0:

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{C_{\Omega}(n)}{(\log \log x)(\log \log \log x)} \le y \right\} = \Phi(y-1) + o(1).$$

The motivation for why the last equation is expected to hold is discussed in Section 4.

1.3 Discussion of the new results

For $n \geq 2$, let the function $\mathcal{E}[n] := (\alpha_1, \alpha_2, \dots, \alpha_r)$ denote the unordered partition of exponents for which $n = p_1^{\alpha_1} \times \dots \times p_r^{\alpha_r}$ is the factorization of n into powers of distinct primes. For any $n_1, n_2 \geq 2$

$$\mathcal{E}[n_1] = \mathcal{E}[n_2] \implies g(n_1) = g(n_2). \tag{1.8}$$

The Mertens function is related to the partial sums in (1.2) via the relation [11, 13]

$$M(x) = \sum_{d \le \sqrt{x}} \mu(d) L\left(\left\lfloor \frac{x}{d^2} \right\rfloor\right), \text{ for } x \ge 1.$$
 (1.9)

The relation in (1.9) gives an exact expression for M(x) with summands involving L(x) that are oscillatory. In contrast, the exact expansions for the Mertens function given in Theorem 1.1 express M(x) as finite sums over $\lambda(n)$ with weight coefficients that are unsigned. The property of the symmetry of the distinct values of |g(n)| with respect to the prime factorizations of $n \ge 2$ in (1.8) suggests that the unsigned weights on $\lambda(n)$ in the new formulas from the theorem should be comparatively easier to work with than the known exact expressions for M(x) in terms of L(x) that have the less predictably signed summands from equation (1.9) above.

1.4 Organization of the manuscript

The focus of the article is on studying the unsigned functions $C_{\Omega}(n)$ and |g(n)|. The new formulas for M(x) given in Theorem 1.1 provide a window from which we can view classically difficult problems about asymptotics for this function partially in terms of the properties of the auxiliary unsigned functions and their distributions. We first prove the new results for statistics and properties of the functions $C_{\Omega}(n)$ and g(n). We then establish the proofs of the exact formulas for M(x) stated in Theorem 1.1. The appendix sections provide a glossary of notation and supplementary material on topics that can be separated from the organization of the main sections of the article. The tables in Appendix E are provide numerical intuition by examining the first values of the auxiliary unsigned sequences.

2 Properties of the function $C_{\Omega}(n)$

The function $C_{\Omega}(n)$ is key to understanding the unsigned inverse sequence |g(n)| through equation (1.6). In this section, we define the unsigned function $C_{\Omega}(n)$ precisely and explore its properties.

2.1 Definitions

Definition 2.1. We define the following bivariate sequence for integers $n \ge 1$ and $k \ge 0$:

$$C_k(n) := \begin{cases} \varepsilon(n), & \text{if } k = 0; \\ \sum_{d|n} \omega(d) C_{k-1} \left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$$
 (2.1)

Using the notation for iterated convolution in Bateman and Diamond [2, Def. 2.3; §2], we have $C_0(n) \equiv \omega^{*0}(n)$ and $C_k(n) \equiv \omega^{*k}(n)$ for integers $k \geq 1$ and $n \geq 1$. The special case of (2.1) where $k \coloneqq \Omega(n)$ occurs frequently in the next sections of the article. To avoid cumbersome notation when referring to this common function variant, we suppress the duplicate index n by writing $C_{\Omega}(n) \coloneqq C_{\Omega(n)}(n)$ [21, A008480].

Remark 2.2. By recursively expanding the definition of $C_k(n)$ at any fixed $n \ge 2$, we see that we can form a chain of at most $\Omega(n)$ iterated (or nested) divisor sums by unfolding the definition of (2.1) inductively. We also see that at fixed n, the function $C_k(n)$ is non-zero only possibly for $1 \le k \le \Omega(n)$ when $n \ge 2$. By (1.7) we have that $C_{\Omega}(n) \le (\Omega(n))!$ for all $n \ge 1$ with equality precisely at the squarefree integers so that $(\Omega(n))! = (\omega(n))!$ if and only if $\mu^2(n) = 1$.

2.2 Average order and variance

Proof of Theorem 1.2. We first use (1.7) to see that there is an absolute constant $P_0 \ge \frac{6}{\pi^2}$ such that

$$\sum_{k\geq 1} \sum_{\substack{n\leq x\\\Omega(n)=k}} \log C_{\Omega}(n) = \sum_{k\geq 1} P_0 \times \#\{n\leq x : \Omega(n)=k\} \times \log(k!)(1+o(1)). \tag{2.2}$$

A complete justification of why equation (2.2) is correct is given after completing this proof below. We will split the full sum on the left-hand-side of (2.2) into two sums over disjoint indices and show that one of the sums contributes the main term to the average order formula, and that the other may be regarded as an error term. For $x \ge 3$, consider the following partial sums:

$$L_{\Omega}(x) \coloneqq \sum_{1 \le k \le \frac{3}{2} \log \log x} \sum_{\substack{n \le x \\ \Omega(n) = k}} \log C_{\Omega}(n).$$

For any $x \ge 0$, we cite the following known form of Binet's formula for the log-gamma function [19, §5.9(i)]:

$$\log x! = \left(x + \frac{1}{2}\right) \log(1+x) - x + O(1).$$

Provided that (2.2) holds, we apply Theorem B.2 (see appendix) to show that there is an absolute constant $B_0 > 0$ such that

$$L_{\Omega}(x) = \sum_{1 \le k \le \frac{3}{2} \log \log x} \frac{B_0 x (\log \log x)^{k-1}}{(\log x)(k-1)!} \times \left(\left(k + \frac{1}{2}\right) \log(1+k) - k\right) (1+o(1)). \tag{2.3}$$

The right-hand-side of (2.3) can be approximated by Abel summation using the functions

$$A_x(u) := \frac{B_0 x \Gamma(u, \log \log x)}{\Gamma(u)}; f(u) := \frac{(2u+1)}{2} \log(1+u) - \frac{(2u+1)}{2}, f'(u) = \log(1+u) - \frac{1}{2(1+u)}.$$

Then we have by Proposition C.3 that

$$L_{\Omega}(x) = A_x \left(\frac{3}{2}\log\log x\right) f\left(\frac{3}{2}\log\log x\right) - \int_0^{\frac{3}{2}} A_x(\alpha\log\log x) f'(\alpha\log\log x) d\alpha$$
$$= B_0 x(\log\log x)(\log\log\log x) (1 + o(1)).$$

It suffices to show

$$\sum_{\substack{n \le x \\ \Omega(n) \ge \frac{3}{2} \log \log x}} \log C_{\Omega}(n) = o\left(x(\log \log x)(\log \log \log x)\right), \text{ as } x \to \infty.$$
(2.4)

Because $r - 1 - r \log r \approx -0.108198$ when $r := \frac{3}{2}$ and

$$\log C_{\Omega}(n) \ll \Omega(n) \log \Omega(n), \text{ for } n \le x, \tag{2.5}$$

we can argue using Rankin's method as in [15, Thm. 7.20; §7.4] that (2.4) holds. In particular, the bounds provided in Theorem B.1 together with applications of the Cauchy-Schwarz and the (logarithmic) AGM inequalities fill in the complete details to a proof verifying that the bound in (2.4) is attained at all sufficiently large x. The assertion on the upper bound for $\log C_{\Omega}(n)$ in (2.5) holds for all n even though the right-hand-side terms involving $\Omega(n)$ oscillate in magnitude for $1 \le n \le x$. This is justified by maximizing (minimizing) the ratio of the right-hand-side above to Binet's log-gamma formula cited above numerically to find explicit bounded real $x \equiv \Omega(n) \in [1,11)$ that yield the extrema of the function.

Proof of equation (2.2). The key to this argument is in understanding that the main term of the sum on the left-hand-side of the equation is obtained by summing over only those $n \le x$ which are squarefree. That is, we will show that

$$\sum_{k\geq 1} \sum_{\substack{n\leq x\\\Omega(n)=k}} \log C_{\Omega}(n) \sim \sum_{k\geq 1} \sum_{\substack{n\leq x\\\mu^2(n)=1\\\Omega(n)=k}} \log C_{\Omega}(n).$$

For integers $x, k \ge 1$ with $k \le \log_2(x)$, we define the sets

$$\mathcal{S}_k\left(\left\{\varpi_j\right\}_{j=1}^k;x\right) \coloneqq \left\{2 \le n \le x : \mu(n) = 0, \omega(n) = k, \frac{n}{\operatorname{rad}(n)} = p_1^{\varpi_1} \times \cdots \times p_k^{\varpi_k}, \ p_i \ne p_j \text{ prime if } 1 \le i < j \le k \right\}.$$

The notation rad(n) is the radix of n which evaluates to the largest squarefree factor of any $n \ge 2$. Let

$$\mathcal{N}_k(\varpi_1,\ldots,\varpi_k;x) \coloneqq \frac{\left|\mathcal{S}_k\left(\{\varpi_j\}_{j=1}^k;x\right)\right|}{x},$$

and let notation for the special case where $\{\varpi_i\}_{1\leq i\leq k} \equiv \{1\}$ (with multiplicity of exactly one) be given by

$$\widehat{T}_k(x) \coloneqq \mathcal{N}_k(1,0,\ldots,0;x).$$

If $2 \le n \le x$ is not squarefree and $n \in \mathcal{S}_k(\{\varpi_j\}_{j=1}^k; x)$, then we must have that $\varpi_j \ge 1$ for at least one $1 \le j \le k$. We then clearly conclude that for any $k \ge 1$ and non-trivial $\{\varpi_j\}_{1 \le j \le k} \ne \{0\}$, we have

$$\lim_{x\to\infty} \mathcal{N}_k(\varpi_1,\varpi_2,\ldots,\varpi_k;x) \leq \lim_{x\to\infty} \binom{k}{1} \times \widehat{T}_k(x).$$

It suffices to establish bounds on the $\widehat{T}_k(x)$ that show

$$\widehat{T}_k(x) \ll \#\{n \le x : \Omega(n) = k\}, \text{ for all } k \ge 1, \text{ as } x \to \infty.$$

We can obtain intuition on the quality of the upper bounds we will require for this task by explicitly evaluating asymptotic formulae for the first cases of $k \in \{1,2\}$ explicitly as follows:

$$\widehat{T}_1(x) = \sum_{p \le \sqrt{x}} 1 = \frac{2\sqrt{x}}{\log x} (1 + o(1)),$$

$$\widehat{T}_2(x) = \sum_{p \le \sqrt{x}} \widehat{T}_1\left(\frac{x}{p}\right) \ll \frac{\sqrt{x}}{\log x} \times \sum_{p \le \sqrt{x}} \frac{1}{\sqrt{p}} \times \left(1 + \frac{\log p}{\log x}\right) \ll \frac{\sqrt{x}(\log\log x)}{\log x}.$$

We have applied a famous theorem of Mertens to reach the last equation. This result proves that the partial sums of the reciprocals of the primes are given by $\sum_{p\leq x} p^{-1} = (\log \log x)(1+o(1))$. We can argue by induction that for any $k \geq 1$

$$\widehat{T}_k(x) \ll x^{0.905466} (\log x)^{k-2}$$
, as $x \to \infty$.

We must have that $k \ll \log x$ and that $(\log x)^{\log x} = o(x)$ by L'Hopital's rule as $x \to \infty$. It follows that for large x

$$\sum_{k>1} \#\{n \le x : \Omega(n) = k, \mu(n) = 0\} \times \log(k!) \ll \sum_{k>1} \#\{n \le x : \Omega(n) = k, \mu^2(n) = 1\} \times \log(k!).$$

By an extension of the previous argument applied to the formula for $C_{\Omega}(n)$ from equation (1.7), we similarly conclude that as $x \to \infty$

$$\sum_{\substack{n \le x \\ \mu(n)=0}} \log C_{\Omega}(n) \ll \sum_{\substack{n \le x \\ \mu^2(n)=1}} \log C_{\Omega}(n).$$

That is, we have that the main term of the sums defined on the left of equation (2.2) is

$$\sum_{n \le x} \log C_{\Omega}(n) \sim \sum_{k \ge 1} \sum_{\substack{n \le x \\ \Omega(n) = k}} \log(k!).$$

The corresponding denominator differences from (1.7) that we subtract of from the main term identified in the last equation is asymptotically insubstantial compared to the right-hand-side of the previous equation in light of the argument given above to establish the upper bounds on the functions $\widehat{T}_k(x)$ for any $1 \le k \le \log_2(x)$. Finally, since $C_{\Omega}(n) = (\Omega(n))!$ for all squarefree $n \ge 1$ and the limiting proportion of positive integers that are squarefree is $\frac{6}{\pi^2}$, the limiting constant P_0 has the (sharp) bound stated before equation (2.2) in the main proof of the theorem outlined above.

Definition 2.3. For any integers $x \ge 1$, we define the alternate notation for the *average order*, or expected (averaged) value, of the function $\log C_{\Omega}(n)$ on the integers $1 \le n \le x$ by

$$\mathbb{E}\left[\log C_{\Omega}(x)\right] \coloneqq \frac{1}{x} \times \sum_{n \le x} \log C_{\Omega}(n).$$

The variance of the logarithm of this function corresponds to the centralized second moments

$$\operatorname{Var}\left(\log C_{\Omega}(x)\right) \coloneqq \sum_{n \le x} \left(\log C_{\Omega}(n) - \mathbb{E}\left[\log C_{\Omega}(x)\right]\right)^{2}.$$

Proposition 2.4. For $n > e^e$, the variance of the function $\log C_{\Omega}(n)$ is given by

$$\sqrt{\operatorname{Var}(\log C_{\Omega}(x))} = B_0(\log\log n)(\log\log\log n)(1 + o(1)).$$

Proof. Suppose that $n \ge 16$. We have a standard rearrangement of the terms in the sample variance of the values $\{\log C_{\Omega}(n)\}_{1\le n\le x}$ in the form of

$$S_{2,\Omega}(n) := \sum_{k \le n} \log^2 C_{\Omega}(k) - \left(\sum_{k \le n} \log C_{\Omega}(k)\right)^2 = 2 \times \sum_{1 \le j < k \le n} \log C_{\Omega}(j) \log C_{\Omega}(k). \tag{2.6}$$

Let the first and second moment sums for the function be denoted in respective order by

$$E_{\Omega}(n) := \frac{1}{n} \times \sum_{k \le n} \log C_{\Omega}(k)$$
, and $V_{\Omega}(n) := \sqrt{\frac{1}{n} \times \sum_{k \le n} \log^2 C_{\Omega}(k)}$, for $n \ge 1$.

The expansion on the right-hand-side of (2.6) is rewritten as

$$S_{2,\Omega}(n) = V_{\Omega}^{2}(n) - E_{\Omega}(n)^{2} = 2 \times \sum_{1 \le j < n} \log C_{\Omega}(j) \left(E_{\Omega}(n) - E_{\Omega}(j) \right). \tag{2.7}$$

Equation (2.7) implies that as $n \to \infty$

$$V_{\Omega}^{2}(n) \sim B_{0}^{2} \left(3E_{\Omega}(n)^{2} - 2(\log\log n)^{2} (\log\log\log n)^{2} + I_{A}(n) \right)$$

$$= B_{0}^{2} \left((\log\log n)^{2} (\log\log\log n)^{2} + I_{A}(n) \right) (1 + o(1)). \tag{2.8}$$

We define the integral term in the last equations by

$$I_A(x) \coloneqq 2 \times \int_{e^e}^x t(\log \log t)^2 (\log \log \log t)^2 dt.$$

For $x > e^e$, we can exactly integrate

$$\int_{e^e}^x \frac{(\log\log t)^2(\log\log\log t)^2}{\log t} \cdot \frac{dt}{t} = \frac{1}{3}(\log\log x)^3(\log\log\log x)^3(1+o(1)), \text{ as } x \to \infty.$$

The mean value theorem shows that for all sufficiently large x there is a $c \equiv c(x) \in [e^e, x]$ (i.e., a bounded constant depending on x) such that we have exactly that

$$I_A(x) = \frac{2}{3}c(x)\log c(x)(\log\log x)^3(\log\log\log x)^3(1+o(1)).$$

We can differentiate the previous equation, discarding lower order terms, to solve for the main term of c(x) as $x \to \infty$:

$$c(x) \ll \frac{\log \log \log \log \log x}{W(\log \log \log \log \log x)} \ll \frac{\log \log \log \log \log \log x}{\log \log \log \log \log \log x}$$
.

This implies that $I_A(x) = o(E_{\Omega}(x))$ for all large x. The conclusion follows from this observation input into the formula we derived in equation (2.8).

3 Properties of the function g(n)

In this section, we explore and enumerate several key properties of the inverse function g(n). The partial sums of this sequence yield the new formulas for M(x) stated in Theorem 1.1 proved in Section 5 below.

Definition 3.1. For integers $n \ge 1$, we define the Dirichlet inverse function taken with respect to the operation of Dirichlet convolution to be

$$g(n) = (\omega + 1)^{-1}(n)$$
, for $n \ge 1$.

The function |g(n)| denotes the unsigned inverse function.

Table E of the appendix section contains numerical values of g(n) and its partial sums for $n \le 500$. We briefly motivate the definition of g(n) given in Definition 3.1 using the next argument.

Remark 3.2. Let $\chi_{\mathbb{P}}(n)$ denote the characteristic function of the primes, let $\varepsilon(n) = \delta_{n,1}$ be the multiplicative identity with respect to Dirichlet convolution, and denote by $\omega(n)$ the strongly additive function that counts the number of distinct prime factors of n (without multiplicity). We can see using elementary methods that

$$\chi_{\mathbb{P}} + \varepsilon = (\omega + 1) * \mu. \tag{3.1}$$

Namely, the result in (3.1) follows by Möbius inversion since $\mu * 1 = \varepsilon$ and

$$\omega(n) = \sum_{p|n} 1 = \sum_{d|n} \chi_{\mathbb{P}}(d), \text{ for } n \ge 1.$$

We recall the classic inversion theorem of summatory functions (of generalized convolutions) proved in [1, $\S 2.14$] for any Dirichlet invertible arithmetic function $\alpha(n)$ as follows:

$$G(x) = \sum_{n \le x} \alpha(n) F\left(\frac{x}{n}\right) \Longrightarrow F(x) = \sum_{n \le x} \alpha^{-1}(n) G\left(\frac{x}{n}\right), \text{ for } x \ge 1.$$
 (3.2)

Hence, to express the new formulas for M(x) we may consider the inversion of the right-hand-side of the partial sums

$$\pi(x) + 1 = \sum_{n \le x} (\chi_{\mathbb{P}} + \varepsilon) (n) = \sum_{n \le x} (\omega + 1) * \mu(n), \text{ for } x \ge 1.$$

3.1 Signedness

Proposition 3.3. The sign of the function g(n) is $\lambda(n)$ for all $n \ge 1$.

Proof. The series $D_f(s) := \sum_{n\geq 1} f(n) n^{-s}$ defines the Dirichlet generating function (DGF) of any arithmetic function f which is convergent for all $s \in \mathbb{C}$ satisfying $\text{Re}(s) > \sigma_f$ where σ_f is the abscissa of convergence of the series. Recall that $D_1(s) = \zeta(s)$, $D_{\mu}(s) = \zeta(s)^{-1}$ and $D_{\omega}(s) = P(s)\zeta(s)$ for Re(s) > 1. By (3.1) and the fact that whenever $f(1) \neq 0$, the DGF of $f^{-1}(n)$ is $D_f(s)^{-1}$, we have

$$D_{(\omega+1)^{-1}}(s) = \frac{1}{\zeta(s)(1+P(s))}, \text{ for } Re(s) > 1.$$
(3.3)

It follows that $(\omega+1)^{-1}(n)=(h^{-1}*\mu)(n)$ for $h:=\chi_{\mathbb{P}}+\varepsilon$. We first show that $\operatorname{sgn}(h^{-1})=\lambda$. This observation then implies that $\operatorname{sgn}(h^{-1}*\mu)=\lambda$.

We recover exactly that $[8, cf. \S 2]$

$$h^{-1}(n) = \begin{cases} 1, & n = 1; \\ \lambda(n)(\Omega(n))! \times \prod_{p^{\alpha}||n} \frac{1}{\alpha!}, & n \ge 2. \end{cases}$$

In particular, by expanding the DGF of h^{-1} formally in powers of P(s) (where |P(s)| < 1 whenever $\text{Re}(s) \ge 2$), we count that

$$\frac{1}{1+P(s)} = \sum_{n\geq 1} \frac{h^{-1}(n)}{n^s} = \sum_{k\geq 0} (-1)^k P(s)^k,$$

$$= 1 + \sum_{\substack{n \ge 2 \\ n = p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{(-1)^{\alpha_1 + \alpha_2 + \dots + \alpha_k}}{n^s} \times {\alpha_1 + \alpha_2 + \dots + \alpha_k \choose \alpha_1, \alpha_2, \dots, \alpha_k},$$

$$= 1 + \sum_{\substack{n \ge 2 \\ n = p_1^{\alpha_1} p_2^{\alpha_2} \times \dots \times p_k^{\alpha_k}}} \frac{\lambda(n)}{n^s} \times {\alpha(n) \choose \alpha_1, \alpha_2, \dots, \alpha_k}.$$

$$(3.4)$$

Since λ is completely multiplicative we have that $\lambda\left(\frac{n}{d}\right)\lambda(d) = \lambda(n)$ for all divisors d|n when $n \ge 1$. We also know that $\mu(n) = \lambda(n)$ whenever n is squarefree so that

$$g(n) = (h^{-1} * \mu)(n) = \lambda(n) \times \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) |h^{-1}(n)|, \text{ for } n \ge 1.$$

The notation $|h^{-1}(n)|$ from the last proof is the same as the function $C_{\Omega}(n)$ for all $n \ge 1$.

3.2 Precise relations to $C_{\Omega}(n)$

Lemma 3.4. For all $n \ge 1$

$$g(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d).$$

Proof. We first expand the recurrence relation for the Dirichlet inverse when $g(1) = g(1)^{-1} = 1$ as

$$g(n) = -\sum_{\substack{d \mid n \\ d>1}} (\omega(d) + 1)g\left(\frac{n}{d}\right) \quad \Longrightarrow \quad (g*1)(n) = -(\omega*g)(n). \tag{3.5}$$

We argue that for $1 \le m \le \Omega(n)$, we can inductively expand the implication on the right-hand-side of (3.5) in the form of $(g * 1)(n) = F_m(n)$ where $F_m(n) := (-1)^m (C_m(-) * g)(n)$ as

$$F_{m}(n) = -\begin{cases} (\omega * g)(n), & m = 1; \\ \sum_{\substack{d \mid n \\ d > 1}} F_{m-1}(d) \times \sum_{\substack{r \mid \frac{n}{d} \\ r > 1}} \omega(r) g\left(\frac{n}{dr}\right), & 2 \le m \le \Omega(n); \\ 0, & \text{otherwise.} \end{cases}$$

When $n \ge 2$ and $m := \Omega(n)$, i.e., with the expansions in the previous equation taken to a maximal depth, we obtain the relation

$$(g * 1)(n) = (-1)^{\Omega(n)} C_{\Omega}(n) = \lambda(n) C_{\Omega}(n).$$
(3.6)

The formula for q(n) follows from (3.6) by Möbius inversion.

Corollary 3.5. For all $n \ge 1$

$$|g(n)| = \sum_{d|n} \mu^2 \left(\frac{n}{d}\right) C_{\Omega}(d). \tag{3.7}$$

Proof. The result follows by applying Lemma 3.4, Proposition 3.3 and the complete multiplicativity of $\lambda(n)$. Since $\mu(n)$ is non-zero only at squarefree integers and since at any squarefree $d \ge 1$ we have $\mu(d) = (-1)^{\omega(d)} = \lambda(d)$, we have

$$|g(n)| = \lambda(n) \times \sum_{d|n} \mu\left(\frac{n}{d}\right) \lambda(d) C_{\Omega}(d)$$
$$= \lambda(n^{2}) \times \sum_{d|n} \mu^{2}\left(\frac{n}{d}\right) C_{\Omega}(d).$$

The leading term $\lambda(n^2) = 1$ for all $n \ge 1$ since the number of distinct prime factors (counting multiplicity) of any square integer is even.

Remark 3.6. We have the following remarks on consequences of Corollary 3.5:

• Whenever $n \ge 1$ is squarefree

$$|g(n)| = \sum_{d|n} C_{\Omega}(d). \tag{3.8a}$$

Since all divisors of a squarefree integer are squarefree, for all squarefree integers $n \ge 1$, we have that

$$|g(n)| = \sum_{m=0}^{\omega(n)} {\omega(n) \choose m} \times m!. \tag{3.8b}$$

• The formula in (3.7) shows that the DGF of the unsigned inverse function |g(n)| is given by the meromorphic function $\zeta(2s)^{-1}(1-P(s))^{-1}$ for all $s \in \mathbb{C}$ with Re(s) > 1. This DGF has a pole to the right of the line at Re(s) = 1 which occurs for the unique real $\sigma \approx 1.39943$ such that $P(\sigma) = 1$ on $(1, \infty)$.

3.3 Average order and variance

Theorem 3.7. As $n \to \infty$

$$\frac{1}{n} \times \sum_{k \le n} \log|g(k)| = \frac{B_0}{2} \left((\log\log n)(\log\log\log n) - \log\left(\frac{\pi^2}{6}\right) \right) (1 + o(1)).$$

Proof. A classical formula for the number of squarefree integers $n \le x$ shows that [10, §18.6] [21, A013928]

$$Q(x) = \sum_{n \le x} \mu^2(n) = \frac{6x}{\pi^2} + O\left(\sqrt{x}\right), \text{ as } x \to \infty.$$

Therefore, summing over the formula from (3.7), we find that for large n

$$\frac{1}{n} \times \sum_{k \le n} |g(k)| = \frac{1}{n} \times \sum_{d \le n} C_{\Omega}(d) Q\left(\left\lfloor \frac{n}{d} \right\rfloor\right)$$

$$\sim \sum_{d \le n} C_{\Omega}(d) \left(\frac{6}{\pi^2 d} + O\left(\frac{1}{\sqrt{dn}}\right)\right)$$

$$= \frac{6}{\pi^2} \left(\frac{1}{n} \times \sum_{k \le n} C_{\Omega}(k) + \sum_{d \le n} \sum_{k \le d} \frac{C_{\Omega}(k)}{d^2}\right) + O(1).$$
(3.9)

We claim that

$$|g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \sim \frac{6}{\pi^2} C_{\Omega}(n), \text{ as } n \to \infty.$$

$$(3.10)$$

Let the backwards difference operator with respect to x be defined for $x \ge 2$ and any arithmetic function f by $\Delta_x[f] := f(x) - f(x-1)$. Using this notation, we see from (3.9) that

$$|g(n)| = \Delta_n \left[\sum_{k \le n} g(k) \right] \sim \frac{6}{\pi^2} \times \Delta_n \left[\sum_{d \le n} C_{\Omega}(d) \frac{n}{d} \right]$$

$$= \frac{6}{\pi^2} \left(C_{\Omega}(n) + \sum_{d < n} C_{\Omega}(d) \frac{n}{d} - \sum_{d < n} C_{\Omega}(d) \frac{(n-1)}{d} \right)$$

$$\sim \frac{6}{\pi^2} C_{\Omega}(n) + \frac{1}{n-1} \times \sum_{k \le n} |g(k)|, \text{ as } n \to \infty.$$

By taking the logarithm of (3.10), we find that

$$\frac{1}{n} \times \sum_{k \le n} \log|g(k)| = \frac{B_0}{2} (\log\log n) (\log\log\log n) - \frac{B_0}{2} \log\left(\frac{\pi^2}{6}\right) + O\left(\frac{1}{n^2} \times \sum_{k \le n} \log|g(k)|\right). \quad \Box$$

A similar argument to that given in the proof of Proposition 2.4 shows that the variance of $\log |g(n)|$ is given by

$$\sqrt{\operatorname{Var}(\log|g(x)|)} = \frac{\sqrt{2}B_0}{2}(\log\log\log n)(\log\log\log n)(1+o(1)), \text{ as } n \to \infty.$$

4 Conjectures on limiting distributions

In this section, we motivate a conjecture that provides a limiting central limit type distribution for the function $\log C_{\Omega}(n)$. The relations between $C_{\Omega}(n)$ and g(n) we proved in Section 3.2 then allow us to formulate a limiting central limit theorem for the distribution of the unsigned inverse sequence |g(n)| under the assumption that the conjecture holds. For any $z \in (-\infty, \infty)$, the cumulative density function of any standard normal distributed random variable is denoted by

$$\Phi(z) = \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{\frac{-t^2}{2}} dt.$$

Conjecture 4.1. For any real z, as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : \frac{\log C_{\Omega}(n) - B_0(\log \log x)(\log \log \log x)}{B_0(\log \log x)(\log \log \log x)} \le z \right\} = \Phi(z) + o(1).$$

A rigorous proof of the conjecture is outside of the scope of this manuscript. There are distributions of the probability weights on the log-multinomial distributions associated with the distinct values of $C_{\Omega}(n)$ on $n \leq x$ in [20, cf. §1.2]. These limiting distributions may yield a useful probability model under which we can prove the conjectured convergence in distribution.

Proposition 4.2. Suppose that Conjecture 4.1 is true. For any z > 0 as $x \to \infty$

$$\frac{1}{x} \times \# \left\{ 2 \le n \le x : -z \le |g(n)| - \frac{1}{n} \times \sum_{k \le n} |g(k)| \le z \right\} = \Phi \left(\frac{\log \left(\frac{\pi^2 |z|}{6} \right) - B_0(\log \log x)(\log \log \log x)}{B_0(\log \log x)(\log \log \log x)} \right) + o(1).$$

Proof. The result follows from (3.10) as a re-normalization of Conjecture 4.1.

Remark 4.3 (Applications). We observe that to cover the spread at the center of the right-hand-side distribution as $\Phi(w) \leq M \in (0,1]$, the relevant values of z > 0 in Proposition 4.2 are bounded by

$$z \ll \left(\frac{\Gamma(\log\log x + 1)(\log x)}{\sqrt{2\pi\log\log x}}\right)^{1+\sqrt{2}\operatorname{erf}^{-1}(|2M-1|)}$$
(TODO).

We consider $1 \le M_x \ll \sqrt{\log \log x}$ so that for large x we have $\Phi(M_x) = 1 + O\left(\frac{1}{\log x}\right)$. We may then apply the bound on z in the previous equation to evaluate the cases of z that contribute only non-negligible weight to sums over the function of n in Proposition 4.2. That is, those differences where |g(n)| diverges from its average order with substantial weight. Evaluating the distribution of |g(n)| predicted by the proposition to evaluate the new formulas for M(x) in Theorem 1.1 still requires more information about the sign weights by $\lambda(n)$ on the summands of the summatory function G(x) (cf. [12]). The large order growth of the average order of |g(n)| is problematic in predicting the likelihood (on average) that $|\sum_{n \le x} g(n)| \le T$ for fixed T > 0.

5 Proofs of the new exact formulas for M(x)

In this section, we prove the formulas for M(x) involving the partial sums of the function g(n) stated in Theorem 1.1. These new formulas exactly identify the Mertens function with partial sums of positive unsigned arithmetic functions whose summands are weighted by the sign of $\lambda(n)$. The formulas in equations (1.5b) and (1.5c) suggest that a more complete understanding of the asymptotics of the summatory function of g(n) may yield new insights into the behavior of M(x). We take the time to explore the properties of these partial sums in this section as well.

5.1 Formulas relating M(x) to the partial sums of g(n)

Definition 5.1. For any $x \ge 1$, let the partial sums of the Dirichlet convolution r * h be defined by

$$S_{r\star h}(x) \coloneqq \sum_{n \le x} \sum_{d|n} r(d) h\left(\frac{n}{d}\right).$$

Theorem 5.2. Let $r, h : \mathbb{Z}^+ \to \mathbb{C}$ be any arithmetic functions such that $r(1) \neq 0$. Suppose that $R(x) := \sum_{n \leq x} r(n)$, $H(x) := \sum_{n \leq x} h(n)$, and that $R^{-1}(x) := \sum_{n \leq x} r^{-1}(n)$ for $x \geq 1$. The following formulas hold for all integers $x \geq 1$:

$$S_{r*h}(x) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$

$$S_{r*h}(x) = \sum_{k=1}^{x} H(k)\left(R\left(\left\lfloor \frac{x}{k} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{k+1} \right\rfloor\right)\right).$$

Moreover, for any $x \ge 1$

$$H(x) = \sum_{j=1}^{x} S_{r*h}(j) \left(R^{-1} \left(\left\lfloor \frac{x}{j} \right\rfloor \right) - R^{-1} \left(\left\lfloor \frac{x}{j+1} \right\rfloor \right) \right)$$
$$= \sum_{k=1}^{x} r^{-1}(k) S_{r*h}(x).$$

Theorem 5.2 is proved in Appendix D.

Corollary 5.3. Suppose that r is an arithmetic function such that $r(1) \neq 0$. Let the summatory function $\widetilde{R}(x) := \sum_{n \leq x} (r * \mu)(n)$. The Mertens function is expressed by the following partial sums for any $x \geq 1$:

$$M(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} r^{-1}(j) \right) \widetilde{R}(k).$$

Definition 5.4. The summatory functions of g(n) and |g(n)|, respectively, are defined for all $x \ge 1$ by the partial sums

$$G(x) := \sum_{n \le x} g(n) = \sum_{n \le x} \lambda(n) |g(n)|, \text{ and } |G|(x) := \sum_{n \le x} |g(n)|.$$

Based on the convolution identity in (3.1), we prove the formulas in Theorem 1.1 as special cases of Corollary 5.3 below.

Figure 5.1

Proof of (1.5a) and (1.5b) of Theorem 1.1. By applying Theorem 5.2 to equation (3.1) we have that

$$M(x) = \sum_{k=1}^{x} \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) + 1 \right) g(k)$$

$$= G(x) + \sum_{k=1}^{\frac{x}{2}} \pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) g(k)$$

$$= G(x) + G\left(\left\lfloor \frac{x}{2} \right\rfloor \right) + \sum_{k=1}^{\frac{x}{2}-1} \left(\pi \left(\left\lfloor \frac{x}{k} \right\rfloor \right) - \pi \left(\left\lfloor \frac{x}{k+1} \right\rfloor \right) \right) G(k).$$

The upper bound on the sum is truncated to $k \in [1, \frac{x}{2}]$ in the second equation above because $\pi(1) = 0$. The third formula above follows directly by summation by parts.

Figure 5.2

Proof of (1.5c) of Theorem 1.1. Lemma 3.4 shows that

$$G(x) = \sum_{d \le x} \lambda(d) C_{\Omega}(d) M\left(\left\lfloor \frac{x}{d} \right\rfloor\right).$$

The identity in (3.1) implies

$$\lambda(d)C_{\Omega}(d) = (q * 1)(d) = (\chi_{\mathbb{P}} + \varepsilon)^{-1}(d).$$

We recover the stated result from the classical inversion of summatory functions in equation (3.2).

5.2 Plots and numerical experiments

The plots shown in the figures in this section compare the values of M(x) and G(x) with scaled forms of related auxiliary partial sums:

• In Figure 5.1, we plot comparisons of M(x) to scaled forms of G(x) for $x \le 5000$. The absolute constant $C_2 := \zeta(2)$ and where the function $Q(x) := \sum_{n \le x} \mu^2(n)$ counts the number of squarefree integers $n \le x$

for any $x \ge 1$. In (a) the shift to the left on the x-axis of the former function is compared and seen to be similar in shape to the magnitude of M(x) on this initial subinterval. It is unknown whether the similar shape and magnitude of these two functions persists for much larger x. In (b) we have observed unusual reflections and symmetry between the two ratios plotted in the figure. We have numerically modified the plot values to shift the denominators of M(x) by one at each $x \le 5000$ for which M(x) = 0.

• In Figure 5.2, we compare envelopes on the logarithmically scaled values of $G(x)x^{-1}$ to other variants of the partial sums of g(n) for $x \le 4500$. In (a) we define $G(x) := G_+(x) - G_-(x)$ where the functions $G_+(x) > 0$ and $G_-(x) > 0$ for all $x \ge 1$. That is, the signed component functions $G_\pm(x)$ denote the unsigned contributions of only those summands |g(n)| over $n \le x$ where $\lambda(n) = \pm 1$, respectively. The summatory function $Q(x) = \frac{6x}{\pi^2} \left(1 + O\left(\frac{1}{\sqrt{x}}\right)\right)$ in (b) has the same definition as in Figure 5.1 above. The second plot suggests that for large x there is enough cancellation in the signed summatory function so that

$$|G(x)| \ll \frac{|G|(x)}{(\log x)\sqrt{\log\log x}} = \frac{1}{(\log x)\sqrt{\log\log x}} \times \sum_{n \le x} |g(n)|.$$

5.3 Local cancellation in the new formulas for the Mertens function

Definition 5.5. Let p_n denote the n^{th} prime for $n \ge 1$ [21, $\underline{A000040}$]. The set of primorial integers is defined by [21, $\underline{A002110}$]

$$\{n\#\}_{n\geq 1} = \left\{\prod_{k=1}^{n} p_k\right\}_{n\geq 1}.$$

Proposition 5.6. As $m \to \infty$, each of the following holds:

$$-G((4m+1)\#) \approx (4m+1)!,$$
 (A)

$$G\left(\frac{(4m+1)\#}{p_k}\right) \approx (4m)!, \text{ for any } 1 \le k \le 4m+1.$$
(B)

Proof. We have by (3.8b) that for all squarefree integers $n \ge 1$

$$|g(n)| = \sum_{j=0}^{\omega(n)} {\omega(n) \choose j} \times j! = (\omega(n))! \times \sum_{j=0}^{\omega(n)} \frac{1}{j!}$$
$$= (\omega(n))! \times \left(e + O\left(\frac{1}{(\omega(n) + 1)!}\right) \right).$$

Let m be a large positive integer. We obtain main terms of the form

$$\sum_{\substack{n \le (4m+1)\#\\ \omega(n) = \Omega(n)}} \lambda(n)|g(n)| = \sum_{0 \le k \le 4m+1} {4m+1 \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right) \right)$$

$$= -(4m+1)! + O\left(\frac{1}{4m+1}\right).$$
(5.2)

The formula for $C_{\Omega}(n)$ stated in (1.7) then implies the result in (A). This follows since the contributions from the summands of the inner summation on the right-hand-side of (5.2) off of the squarefree integers are at most a bounded multiple of $(-1)^k k!$ when $\Omega(n) = k$. We can similarly derive that for any $1 \le k \le 4m + 1$

$$G\left(\frac{(4m+1)\#}{p_k}\right) \approx \sum_{0 \le k \le 4m} {4m \choose k} (-1)^k k! \left(e + O\left(\frac{1}{(k+1)!}\right)\right) = (4m)! + O\left(\frac{1}{4m+1}\right).$$

Remark 5.7. The Riemann hypothesis (RH) is equivalent to showing that

$$M(x) = O\left(x^{\frac{1}{2} + \epsilon}\right), \text{ for all } 0 < \epsilon < \frac{1}{2}.$$
(5.3)

We expect that there is usually (almost always) a large amount cancellation between the successive values of the summatory function in (1.5c). Proposition 5.6 demonstrates the phenomenon well along the infinite subsequence of the primorials $\{(4m+1)\#\}_{m\geq 1}$. If the RH is true, the sums of the leading constants with opposing signs on the asymptotic bounds for the functions from the last proposition are necessarily required to match. Namely, we have that [4, 5]

$$n# \sim e^{\vartheta(p_n)} \approx n^n (\log n)^n e^{-n(1+o(1))}$$
, as $n \to \infty$.

The observation on the necessary cancellation in (1.5c) then follows from the fact that if we obtain a contrary result

$$\frac{M((4m+1)\#)}{\sqrt{(4m+1)\#}} \gg [(4m+1)\#]^{\delta_0}, \text{ as } m \to \infty,$$

for some fixed $\delta_0 > 0$. If the last equation were to hold, we would find a contradiction to the condition required by equation (5.3). Assuming the RH, we can state a stronger bound for the Mertens function along this subsequence by considering the error terms given in the proof of Proposition 5.6.

6 Conclusions

6.1 Summary

We have identified a sequence, $\{g(n)\}_{n\geq 1}$, that is the Dirichlet inverse of the shifted strongly additive function $\omega(n)$. There is a natural combinatorial interpretation to the repetition of distinct values of |g(n)| in terms of the configuration of the exponents in the prime factorization of any $n\geq 2$. The sign of g(n) is given by $\lambda(n)$ for all $n\geq 1$. This leads to a new exact relations of the summatory function G(x) to M(x) and the classical partial sums L(x). We have formalized a new perspective from which we might express our intuition about features of the distribution of G(x) via the properties of its $\lambda(n)$ -sign-weighted summands. The new results proved within this article are significant in providing a new window through which we can view bounding M(x) through asymptotics of the unsigned sequences and their partial sums. The computational data generated in Table E of the appendix section suggests numerically that the distribution of G(x) has nicer properties to work with than a direct treatment of the classical partial sums M(x) or L(x).

6.2 Discussion of the new results

Probabilistic models of the Möbius function lead us to consider the behavior of M(x) as a sum of independent and identically distributed (i.i.d.) random variables. Suppose that $\{X_n\}_{n\geq 1}$ is a sequence of i.i.d. random variables such that for all $n\geq 1$, $\mathbb{P}[X_n=1]=\frac{3}{\pi^2}$, $\mathbb{P}[X_n=0]=1-\frac{6}{\pi^2}$ and $\mathbb{P}[X_n=-1]=\frac{3}{\pi^2}$, e.g., as providing a randomized model of the values of $\mu(n)$ on the average, so that we can model its partial sums by $M(x)\cong \sum_{n\leq x}X_n$. This viewpoint is used to model and predict certain limiting asymptotic behavior of the Mertens function. We can show that

$$\mathbb{E}\left[\sum_{1\leq n\leq x}X_n\right] = 0, \text{Var}\left(\sum_{1\leq n\leq x}X_n\right) = \sqrt{\frac{6x}{\pi^2}}, \text{ and } \limsup_{x\to\infty}\frac{\left|\sum_{1\leq n\leq x}X_n\right|}{\sqrt{n\log\log n}} = \frac{2\sqrt{3}}{\pi} \text{ (almost surely)}.$$

The property of the symmetry of the distinct values of |g(n)| with respect to the prime factorizations of $n \ge 2$ in (1.8) shows that the unsigned weights on $\lambda(n)$ in the new formulas Theorem 1.1 are comparatively easier to work with than the known exact expressions for M(x) like equation (1.9).

Stating tight bounds on the distribution of L(x) is a problem that is equally as difficult as understanding the properties of M(x) well at large x or along infinite subsequences (cf. [9, 7, 23]). Indeed, $\lambda(n) = \mu(n)$ for all squarefree $n \geq 1$ so that $\lambda(n)$ agrees with $\mu(n)$ at most large n as the asymptotic density of the squarefree integers is $\frac{6}{\pi^2}$. We infer that $\lambda(n)$ must then inherit the pseudo-randomized quirks of $\mu(n)$ predicted by models of this function in Sarnak's conjecture. On the other hand, arguments for why the formulas in Theorem 1.1 are more desirable to explore than classical formulae for M(x) yield three counter points:

- (1) Breakthrough work in recent years due to Matomäki, Radziwiłł and Soundararajan to bound multiplicative functions in short intervals has proven fruitful when applied to $\lambda(n)$ [22, 14]. The analogs of results of this type corresponding to the Möbius function are not clearly attained;
- (2) The squarefree $n \ge 1$ on which $\lambda(n)$ and $\mu(n)$ must identically agree are in some senses easier integer cases to handle insomuch as we can prove very regular properties that govern the distributions of the distinct values of $\omega(n)$, $\Omega(n)$ and their difference over $n \le x$ as $x \to \infty$ [15, cf. §2.4; §7.4];
- (3) The function $\lambda(n)$ is completely multiplicative. Hence, sign weighting by the function $\lambda(n)$ may eventually reflect a nicer cousin to the multiplicative $\mu(n)$ along the integers $n \geq 4$ for which $\mu(n) = 0$. This notion, and applications to bounding M(x) via G(x) in equation (1.5c), are intentionally stated imprecisely at the time of writing this manuscript.

Acknowledgments

We thank the following mathematicians for offering significant discussion, feedback and correspondence over the many working drafts of this manuscript: Gergő Nemes, Jeffrey Lagarias, Robert Vaughan, Steven J. Miller, Jayadev Athreya, Paul Pollack and Bruce Reznick. The work on the article was supported in part by funding made available within the School of Mathematics at the Georgia Institute of Technology in 2020 and 2021.

References

- [1] T. M. Apostol. Introduction to Analytic Number Theory. Springer-Verlag, 1976.
- [2] P. T. Bateman and H. G. Diamond. Analytic Number Theory. World Scientific Publishing, 2004.
- [3] P. Billingsley. On the central limit theorem for the prime divisor function. *Amer. Math. Monthly*, 76(2):132–139, 1969.
- [4] P. Dusart. The k^{th} prime is greater than $k(\log k + \log \log k 1)$ for $k \ge 2$. Math. Comp., 68(225):411-415, 1999
- [5] P. Dusart. Estimates of some functions over primes without R.H., 2010.
- [6] P. Erdős and M. Kac. The Gaussian errors in the theory of additive arithmetic functions. *American Journal of Mathematics*, 62(1):738–742, 1940.
- [7] N. Frantzikinakis and B. Host. The logarithmic Sarnak conjecture for ergodic weights. *Ann. of Math.* (2), 187(3):869–931, 2018.
- [8] C. E. Fröberg. On the prime zeta function. BIT Numerical Mathematics, 8:87–202, 1968.

- [9] B. Green and T. Tao. The Möbius function is strongly orthogonal to nilsequences. *Ann. of Math.* (2), 175(2):541–566, 2012.
- [10] G. H. Hardy and E. M. Wright, editors. An Introduction to the Theory of Numbers. Oxford University Press, 2008 (Sixth Edition).
- [11] P. Humphries. The distribution of weighted sums of the Liouville function and Pólya's conjecture. J. Number Theory, 133:545–582, 2013.
- [12] J. Kaczorowski and J. Pintz. Oscillatory properties of arithmetical functions, i. *Acta Math. Hungar.*, 48(1–2):173–185, 1986.
- [13] R. S. Lehman. On Liouville's function. Math. Comput., 14:311–320, 1960.
- [14] K. Matomäki and M. Radziwiłł. Multiplicative functions in short intervals. *Ann. of Math.*, 183:1015–1056, 2016.
- [15] H. L. Montgomery and R. C. Vaughan. *Multiplicative Number Theory: I. Classical Theory*. Cambridge, 2006.
- [16] G. Nemes. The resurgence properties of the incomplete gamma function II. Stud. Appl. Math., 135(1):86–116, 2015.
- [17] G. Nemes. The resurgence properties of the incomplete gamma function I. Anal. Appl. (Singap.), 14(5):631–677, 2016.
- [18] G. Nemes and A. B. Olde Daalhuis. Asymptotic expansions for the incomplete gamma function in the transition regions. *Math. Comp.*, 88(318):1805–1827, 2019.
- [19] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, editors. *NIST Handbook of Mathematical Functions*. Cambridge University Press, 2010.
- [20] A. D. Barbour R. Arratia and Simon Tavaré. Logarithmic Combinatorial Structures: A Probabilistic Approach. Preprint draft, 2002.
- [21] N. J. A. Sloane. The Online Encyclopedia of Integer Sequences, 2021. http://oeis.org.
- [22] K. Soundararajan. The Liouville function in short intervals (after Matomaki and Radziwill). arXiv:1606.08021, 2016.
- [23] T. Tao. The logarithmically averaged Chowla and Elliott conjectures for two-point correlations. *Forum of Mathematics*, 4:e8, 2016.

A Glossary of notation and conventions

Symbols	Definition
≫,≪,≍,∼	For functions A, B , the notation $A \ll B$ implies that $A = O(B)$. Similarly, for $B \ge 0$ the notation $A \gg B$ implies that $B = O(A)$. When we have that $A, B \ge 0$, $A \ll B$ and $B \ll A$, we write $A \times B$. Two arithmetic functions $A(x), B(x)$ satisfy the relation $A \sim B$ if $\lim_{x \to \infty} \frac{A(x)}{B(x)} = 1$.
$\chi_{\mathbb{P}}(n), P(s)$	The indicator function of the primes equals one if and only if $n \in \mathbb{Z}^+$ is prime and is defined to be zero-valued otherwise. For any $s \in \mathbb{C}$ such that $\text{Re}(s) > 1$, we define the prime zeta function to be the Dirichlet generating function (DGF) defined by $P(s) = \sum_{n \geq 1} \chi_{\mathbb{P}}(n) n^{-s}$. The function $P(s)$ has
	an analytic continuation to the half-plane $\operatorname{Re}(s) > 0$ with the exception of $s = 1$ through the formula $P(s) = \sum_{k \ge 1} \frac{\mu(k)}{k} \log \zeta(ks)$. The DGF $P(s)$ poles
	at the reciprocal of each positive integer and a natural boundary at the line $Re(s) = 0$.
$C_k(n), C_{\Omega}(n)$	The first sequence is defined recursively for integers $n \ge 1$ and $k \ge 0$ as follows:
	$C_k(n) \coloneqq \begin{cases} \delta_{n,1}, & \text{if } k = 0; \\ \sum_{d n} \omega(d) C_{k-1}\left(\frac{n}{d}\right), & \text{if } k \ge 1. \end{cases}$
	It represents the multiple $(k\text{-fold})$ convolution of the function $\omega(n)$ with itself. The function $C_{\Omega}(n) := C_{\Omega(n)}(n)$ has the DGF $(1 - P(s))^{-1}$ for $\text{Re}(s) > 1$.
$\varepsilon(n)$	The multiplicative identity with respect to Dirichlet convolution, $\varepsilon(n) := \delta_{n,1}$, defined such that for any arithmetic function f we have that $f * \varepsilon = \varepsilon * f = f$ where the operation $*$ denotes Dirichlet convolution.
f * g	The Dirichlet convolution of any two arithmetic functions f and g at n is defined to be the divisor sum $(f * g)(n) := \sum_{d n} f(d)g(\frac{n}{d})$ for $n \ge 1$.
$f^{-1}(n)$	The Dirichlet inverse f^{-1} of an arithmetic function f exists if and only if $f(1) \neq 0$. The Dirichlet inverse of any f such that $f(1) \neq 0$ is defined recursively by $f^{-1}(n) = -\frac{1}{f(1)} \times \sum_{\substack{d \mid n \\ d > 1}} f(d) f^{-1}\left(\frac{n}{d}\right)$ for $n \geq 2$ with $f^{-1}(1) = \frac{1}{f(1)} \times \frac{1}{f(1)} = $
	$f(1)^{-1}$. When it exists, this inverse function is unique and satisfies $f^{-1} * f = f * f^{-1} = \varepsilon$.
$\Gamma(a,z)$	The incomplete gamma function is defined as $\Gamma(a,z) := \int_z^\infty t^{a-1} e^{-t} dt$ by continuation for $a \in \mathbb{R}$ and $ \arg(z) < \pi$.
g(n), G(x), G (x)	The Dirichlet inverse function, $g(n) = (\omega + 1)^{-1}(n)$, has the summatory function $G(x) := \sum_{n \le x} g(n)$ for $x \ge 1$. We define the partial sums of the
	unsigned inverse function to be $ G (x) := \sum_{n \le x} g(n) $ for $x \ge 1$.
$[n=k]_{\delta},[{\tt cond}]_{\delta}$	The symbol $[n = k]_{\delta}$ is a synonym for $\delta_{n,k}$ which is one if and only if $n = k$, and is zero otherwise. For Boolean-valued conditions, cond, the symbol $[\text{cond}]_{\delta}$ evaluates to one precisely when cond is true or to zero otherwise.

Symbols	Definition
$\lambda(n), L(x)$	The Liouville lambda function is the completely multiplicative function defined by $\lambda(n) := (-1)^{\Omega(n)}$. Its summatory function is defined by the partial sums $L(x) := \sum_{n \le x} \lambda(n)$ for $x \ge 1$.
$\mu(n), M(x)$	The Möbius function defined such that $\mu^2(n)$ is the indicator function of the squarefree integers $n \ge 1$ where $\mu(n) = (-1)^{\omega(n)}$ whenever n is squarefree. The Mertens function is the summatory function defined for all integers $x \ge 1$ by the partial sums $M(x) := \sum_{n \le x} \mu(n)$.
$\Phi(z)$	For $z \in \mathbb{R}$, we take the cumulative density function of the standard normal distribution to be denoted by $\Phi(z) := \frac{1}{\sqrt{2\pi}} \times \int_{-\infty}^{z} e^{-\frac{t^2}{2}} dt$.
$\omega(n),\Omega(n)$	We define the strongly additive function $\omega(n) := \sum_{p n} 1$ and the completely additive function $\Omega(n) := \sum_{p^{\alpha} n} \alpha$. This means that if the prime factorization of any $n \geq 2$ is given by $n := p_1^{\alpha_1} \times \cdots \times p_r^{\alpha_r}$ with $p_i \neq p_j$ for all $i \neq j$, then
	$\omega(n) = r$ and $\Omega(n) = \alpha_1 + \dots + \alpha_r$. We set $\omega(1) = \Omega(1) = 0$ by convention.
$\pi_k(x), \widehat{\pi}_k(x)$	For integers $k \geq 1$, the function $\pi_k(x)$ denotes the number of $2 \leq n \leq x$ with exactly k distinct prime factors: $\pi_k(x) \coloneqq \#\{2 \leq n \leq x : \omega(n) = k\}$. Similarly, the function $\widehat{\pi}_k(x) \coloneqq \#\{2 \leq n \leq x : \Omega(n) = k\}$ for $x \geq 2$ and fixed $k \geq 1$.
Q(x)	For $x \ge 1$, we define $Q(x)$ to be the summatory function indicating the number of squarefree integers $n \le x$. That is, $Q(x) = \sum_{n \le x} \mu^2(n)$ for $x \ge 1$.
W(x)	For $x, y \in [0, \infty)$, we write that $x = W(y)$ if and only if $xe^x = y$. This function denotes the principal branch of the multi-valued Lambert W function taken over the non-negative reals.
$\zeta(s)$	The Riemann zeta function is defined by $\zeta(s) := \sum_{n>1} n^{-s}$ when $\text{Re}(s) > 1$,
	and by analytic continuation to any $s \in \mathbb{C}$ with the exception of a simple pole at $s = 1$ of residue one.

B The distributions of $\omega(n)$ and $\Omega(n)$

As $n \to \infty$, we have that

$$\frac{1}{n} \times \sum_{k \le n} \omega(k) = \log \log n + B_1 + o(1),$$

and

$$\frac{1}{n} \times \sum_{k \le n} \Omega(k) = \log \log n + B_2 + o(1),$$

for $B_1 \approx 0.261497$ and $B_2 \approx 1.03465$ absolute constants [10, §22.10]. The next theorems reproduced from [15, §7.4] bound the frequency of the number of $\omega(n)$ and $\Omega(n)$ over $n \leq x$ such that these functions diverge substantially from their average order (cf. [6, 3] [15, §7.4]).

Theorem B.1. For $x \ge 2$ and r > 0, let

$$\begin{split} A(x,r) \coloneqq \# \left\{ n \leq x : \Omega(n) \leq r \log \log x \right\}, \\ B(x,r) \coloneqq \# \left\{ n \leq x : \Omega(n) \geq r \log \log x \right\}. \end{split}$$

If $0 < r \le 1$, then

$$A(x,r) \ll x(\log x)^{r-1-r\log r}, \text{ as } x \to \infty.$$

If $1 \le r \le R < 2$, then

$$B(x,r) \ll_R x(\log x)^{r-1-r\log r}$$
, as $x \to \infty$.

Theorem B.2. For integers $k \ge 1$ and $x \ge 2$

$$\widehat{\pi}_k(x) := \#\{2 \le n \le x : \Omega(n) = k\}.$$

For 0 < R < 2, uniformly for $1 \le k \le R \log \log x$

$$\widehat{\pi}_k(x) = \frac{x}{\log x} \times \mathcal{G}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right), \text{ as } x \to \infty,$$

where

$$\mathcal{G}(z) \coloneqq \frac{1}{\Gamma(1+z)} \times \prod_{p} \left(1 - \frac{z}{p}\right)^{-1} \left(1 - \frac{1}{p}\right)^{z}, \text{ for } 0 \le |z| < R.$$

We can extend the work in [15] on the distribution of $\Omega(n)$ to obtain corresponding analogous results for the distribution of $\omega(n)$.

Remark B.3. For integers $k \ge 1$ and $x \ge 2$, we define

$$\pi_k(x) := \#\{2 \le n \le x : \omega(n) = k\}.$$

For 0 < R < 2 and as $x \to \infty$

$$\pi_k(x) = \frac{x}{\log x} \times \widetilde{\mathcal{G}}\left(\frac{k-1}{\log\log x}\right) \frac{(\log\log x)^{k-1}}{(k-1)!} \left(1 + O_R\left(\frac{k}{(\log\log x)^2}\right)\right),\tag{B.1}$$

uniformly for $1 \le k \le R \log \log x$. The factor involving the function $\widetilde{\mathcal{G}}(z)$ is defined by $\widetilde{\mathcal{G}}(z) := \widetilde{F}(1,z) \times \Gamma(1+z)^{-1}$ where

$$\widetilde{F}(s,z) \coloneqq \prod_{p} \left(1 + \frac{z}{p^s - 1}\right) \left(1 - \frac{1}{p^s}\right)^z, \text{ for } \operatorname{Re}(s) > \frac{1}{2} \text{ and } |z| \le R < 2.$$

Let the functions

$$C(x,r) := \#\{n \le x : \omega(n) \le r \log \log x\},\$$

 $D(x,r) := \#\{n \le x : \omega(n) \ge r \log \log x\}.$

The following upper bounds hold as $x \to \infty$:

$$C(x,r) \ll x(\log x)^{r-1-r\log r}$$
, uniformly for $0 < r \le 1$,
 $D(x,r) \ll_R x(\log x)^{r-1-r\log r}$, uniformly for $1 \le r \le R < 2$.

C Asymptotics of the incomplete gamma function

We cite the correspondence with Gergő Nemes from the Alfréd Rényi Institute of Mathematics and his careful notes on the limiting asymptotics for the sums identified in this section. The communication of his proofs are adapted to establish the next lemmas based on [16, 17, 18].

Definition C.1. The (upper) incomplete gamma function is defined by [19, §8.4]

$$\Gamma(a,z) = \int_z^\infty t^{a-1} e^{-t} dt$$
, for $a \in \mathbb{R}$ and $|\arg z| < \pi$.

The function $\Gamma(a, z)$ can be continued to an analytic function of z on the universal covering of $\mathbb{C}\setminus\{0\}$. For $a\in\mathbb{Z}^+$, the function $\Gamma(a, z)$ is an entire function of z.

Facts C.2. The following properties hold [19, §8.4; §8.11(i)]:

$$\Gamma(a,z) = (a-1)!e^{-z} \times \sum_{k=0}^{a-1} \frac{z^k}{k!}, \text{ for } a \in \mathbb{Z}^+ \text{ and } z \in \mathbb{C},$$
(C.1a)

$$\Gamma(a,z) \sim z^{a-1}e^{-z}$$
, for fixed $a \in \mathbb{R}$ and $z > 0$ as $z \to \infty$. (C.1b)

For z > 0, as $z \to \infty$ we have that [16]

$$\Gamma(z,z) = \sqrt{\frac{\pi}{2}} z^{z-\frac{1}{2}} e^{-z} + O(z^{z-1} e^{-z}),$$
 (C.1c)

For fixed, finite real $|\rho| > 0$, we define the sequence $\{b_n(\rho)\}_{n \ge 0}$ by the following recurrence relation for $n \ge 0$:

$$b_n(\rho) = \rho(1-\rho)b'_{n-1}(\rho) + \rho(2n-1)b_{n-1}(\rho) + \delta_{n,0}.$$

If $z, a \to \infty$ with $z = \rho a$ for some $\rho > 1$ such that $(\rho - 1)^{-1} = o(\sqrt{|a|})$, then [16]

$$\Gamma(a,z) \sim z^a e^{-z} \times \sum_{n>0} \frac{(-a)^n b_n(\rho)}{(z-a)^{2n+1}}.$$
 (C.1d)

Proposition C.3. Let a, z, ρ be positive real parameters such that $z = \rho a$. If $\rho \in (0,1)$, then as $z \to \infty$

$$\Gamma(a,z) = \Gamma(a) + O_{\rho}\left(z^{a-1}e^{-z}\right). \tag{C.2a}$$

If $\rho > 1$, then as $z \to \infty$

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\rho^{-1}} + O_{\rho}\left(z^{a-2}e^{-z}\right). \tag{C.2b}$$

If $\rho > W(1)$, then as $z \to \infty$

$$\Gamma(a, ze^{\pm \pi i}) = -e^{\pm \pi i a} \frac{z^{a-1} e^z}{1 + \rho^{-1}} + O_\rho \left(z^{a-2} e^z \right). \tag{C.2c}$$

Remark C.4. The first two estimates in the proposition are only useful when ρ is bounded away from the transition point at one. We cannot write the last expansion above as $\Gamma(a, -z)$ directly unless $a \in \mathbb{Z}^+$ as the incomplete gamma function has a branch point at the origin with respect to its second variable. This function becomes a single-valued analytic function of its second input by continuation on the universal covering of $\mathbb{C} \setminus \{0\}$.

Proof of Proposition C.3. The first asymptotic estimate follows directly from the following asymptotic series expansion that holds as $z \to \infty$ [18, Eq. (2.1)]:

$$\Gamma(a,z) \sim \Gamma(a) + z^a e^{-z} \times \sum_{k \ge 0} \frac{(-a)^k b_k(\rho)}{(z-a)^{2k+1}}.$$

Using the notation from (C.1d) and [17]

$$\Gamma(a,z) = \frac{z^{a-1}e^{-z}}{1-\rho^{-1}} + z^a e^{-z} R_1(a,\rho).$$

From the bounds in $[17, \S 3.1]$, we have

$$|z^a e^{-z} R_1(a,\rho)| \le z^a e^{-z} \times \frac{a \cdot b_1(\rho)}{(z-a)^3} = \frac{z^{a-2} e^{-z}}{(1-\rho^{-1})^3}$$

The main and error terms in the previous equation can also be seen by applying the asymptotic series in (C.1d) directly.

The proof of the third equation above follows from the asymptotics [16, Eq. (1.1)]

$$\Gamma(-a,z) \sim z^{-a} e^{-z} \times \sum_{n\geq 0} \frac{a^n b_n(-\rho)}{(z+a)^{2n+1}},$$

by setting $(a, z) \mapsto (ae^{\pm \pi i}, ze^{\pm \pi i})$ so that $\rho = \frac{z}{a} > W(1) \approx 0.56714$. The restriction on the range of ρ over which the third formula holds is made to ensure that the formula from the reference is valid at negative real a.

D Inversion theorems for partial sums of Dirichlet convolutions

Proof of Theorem 5.2. Suppose that h, r are arithmetic functions such that $r(1) \neq 0$. The following formulas hold for all $x \geq 1$:

$$S_{r*h}(x) := \sum_{n=1}^{x} \sum_{d|n} r(n)h\left(\frac{n}{d}\right) = \sum_{d=1}^{x} r(d)H\left(\left\lfloor \frac{x}{d}\right\rfloor\right)$$
$$= \sum_{i=1}^{x} \left(R\left(\left\lfloor \frac{x}{i}\right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1}\right\rfloor\right)\right)H(i). \tag{D.1}$$

The first formula on the right-hand-side above is well known from the references. The second formula is justified directly using summation by parts as [19, §2.10(ii)]

$$S_{r*h}(x) = \sum_{d=1}^{x} h(d) R\left(\left\lfloor \frac{x}{d} \right\rfloor\right)$$
$$= \sum_{i \le x} \left(\sum_{j \le i} h(j)\right) \times \left(R\left(\left\lfloor \frac{x}{i} \right\rfloor\right) - R\left(\left\lfloor \frac{x}{i+1} \right\rfloor\right)\right).$$

We form the invertible matrix of coefficients, denoted by \hat{R} below, associated with the linear system defining H(j) for $1 \le j \le x$ in (D.1) by defining

$$R_{x,j} \coloneqq R\left(\left\lfloor \frac{x}{j} \right\rfloor\right) [j \le x]_{\delta},$$

and

$$r_{x,j} := R_{x,j} - R_{x,j+1}, \text{ for } j \ge 1.$$

Since $r_{x,x} = R(1) = r(1) \neq 0$ for all $x \geq 1$ and $r_{x,j} = 0$ for all j > x, the matrix we have defined in this problem is lower triangular with a non-zero constant on its diagonals, and so is invertible. If we let $\hat{R} := (R_{x,j})$, then the next matrix is expressed by applying an invertible shift operation as

$$(r_{x,j}) = \hat{R}(I - U^T).$$

The $N \times N$ square matrix U has $(i,j)^{th}$ entries for all $1 \le i,j \le N$ when $N \ge x$ that are defined by $(U)_{i,j} = \delta_{i+1,j}$ so that

$$\left[\left(I-U^T\right)^{-1}\right]_{i,j}=\left[j\leq i\right]_{\delta}.$$

We observe the identity

$$\left\lfloor \frac{x}{j} \right\rfloor - \left\lfloor \frac{x-1}{j} \right\rfloor = \begin{cases} 1, & \text{if } j | x; \\ 0, & \text{otherwise.} \end{cases}$$

The previous equation implies that

$$R\left(\left\lfloor \frac{x}{j}\right\rfloor\right) - R\left(\left\lfloor \frac{x-1}{j}\right\rfloor\right) = \begin{cases} r\left(\frac{x}{j}\right), & \text{if } j|x; \\ 0, & \text{otherwise.} \end{cases}$$
(D.2)

We use the property in (D.2) to shift the matrix \hat{R} , and then invert the result to obtain a matrix involving the Dirichlet inverse of r as

$$\left(\left(I - U^T\right)\hat{R}\right)^{-1} = \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right)^{-1} = \left(r^{-1}\left(\frac{x}{j}\right)[j|x]_{\delta}\right).$$

Our target matrix in the inversion problem is

$$(r_{x,j}) = (I - U^T) \left(r\left(\frac{x}{j}\right)[j|x]_{\delta}\right) (I - U^T)^{-1}.$$

We can express its inverse by a similarity transformation conjugated by shift operators by expanding

$$(r_{x,j})^{-1} = (I - U^T)^{-1} \left(r^{-1} \left(\frac{x}{j} \right) [j|x]_{\delta} \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k) \right) (I - U^T)$$

$$= \left(\sum_{k=1}^{\left\lfloor \frac{x}{j} \right\rfloor} r^{-1}(k) - \sum_{k=1}^{\left\lfloor \frac{x}{j+1} \right\rfloor} r^{-1}(k) \right).$$

The summatory function H(x) is given exactly for any integers $x \ge 1$ by a vector product with the inverse matrix from the previous equation as

$$H(x) = \sum_{k=1}^{x} \left(\sum_{j=\left\lfloor \frac{x}{k+1} \right\rfloor + 1}^{\left\lfloor \frac{x}{k} \right\rfloor} r^{-1}(j) \right) \times S_{r*h}(k).$$

We can prove a second inversion formula providing the coefficients of the summatory function $R^{-1}(j)$ for $1 \le j \le x$ from the last equation by adapting our argument to prove (D.1) above. This leads to the following alternate identity expressing H(x):

$$H(x) = \sum_{k=1}^{x} r^{-1}(k) \times S_{r*h}\left(\left\lfloor \frac{x}{k} \right\rfloor\right).$$

E Tables of computations involving g(n) and its partial sums

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n)-\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_+(n)$	$G_{-}(n)$	G (n)
1	11	Y	N	1	0	1.0000000	1.00000	0	1	1	0	1
2	2^{1}	Y	Y	-2	0	1.0000000	0.500000	0.500000	-1	1	-2	3
3	3 ¹	Y	Y	-2	0	1.0000000	0.333333	0.666667	-3	1	-4	5
4	2^{2}	N	Y	2	0	1.5000000	0.500000	0.500000	-1	3	-4	7
5	5 ¹	Y	Y	-2	0	1.0000000	0.400000	0.600000	-3	3	-6	9
6	$2^{1}3^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	2	8	-6	14
7	7^{1}	Y	Y	-2	0	1.0000000	0.428571	0.571429	0	8	-8	16
8	23	N	Y	-2	0	2.0000000	0.375000	0.625000	-2	8	-10	18
9	3 ²	N	Y	2	0	1.5000000	0.444444	0.555556	0	10	-10	20
10	$2^{1}5^{1}$	Y	N	5	0	1.0000000	0.500000	0.500000	5	15	-10	25
11	11 ¹	Y	Y	-2	0	1.0000000	0.454545	0.545455	3	15	-12	27
12	$2^{2}3^{1}$	N	N	-7	2	1.2857143	0.416667	0.583333	-4	15	-19	34
13	131	Y	Y	-2	0	1.0000000	0.384615	0.615385	-6	15	-21	36
14	$2^{1}7^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-1	20	-21	41
15	$3^{1}5^{1}$	Y	N	5	0	1.0000000	0.466667	0.533333	4	25	-21	46
16	24	N	Y	2	0	2.5000000	0.500000	0.500000	6	27	-21	48
17	17^{1}	Y	Y	-2	0	1.0000000	0.470588	0.529412	4	27	-23	50
18	$2^{1}3^{2}$	N	N	-7	2	1.2857143	0.444444	0.555556	-3	27	-30	57
19	19^{1} $2^{2}5^{1}$	Y	Y	-2	0	1.0000000	0.421053	0.578947	-5	27	-32	59
20	$3^{1}7^{1}$	N	N	-7	2	1.2857143	0.400000	0.600000	-12	27	-39	66
21	$2^{1}11^{1}$	Y	N	5	0	1.0000000	0.428571	0.571429	-7	32	-39	71
22	2^{111} 23^{1}	Y	N	5	0	1.0000000	0.454545	0.545455	-2	37	-39	76
23	$2^{3^{2}}$ $2^{3}3^{1}$	Y	Y	-2	0	1.0000000	0.434783	0.565217	-4	37	-41	78
24	5^{2}	N	N	9	4	1.5555556	0.458333	0.541667	5	46	-41	87
25	$2^{1}13^{1}$	N	Y	2	0	1.5000000	0.480000	0.520000	7	48	-41	89
26 27	2 13 3 ³	Y N	N Y	5 -2	0	1.0000000	0.500000	0.500000	12 10	53	-41	94 96
28	$2^{2}7^{1}$	N N	Y N	-2 -7	2	2.0000000 1.2857143	0.481481 0.464286	0.518519	3	53 53	-43 -50	103
29	$\frac{2}{29^1}$	Y	Y	-1 -2	0	1.0000000	0.404286	0.535714 0.551724	1	53	-50 -52	105
30	2^{9} $2^{1}3^{1}5^{1}$	Y	Y N	-2 -16	0	1.0000000	0.448276	0.566667	-15	53	-52 -68	105
31	$\frac{2}{31}$	Y	Y	-16 -2	0	1.0000000	0.433333	0.580645	-15 -17	53	-08 -70	121
32	2^{5}	N	Y	-2 -2	0	3.0000000	0.419355	0.580045	-17 -19	53	-70 -72	125
33	$3^{1}11^{1}$	Y	N	5	0	1.0000000	0.424242	0.575758	-14	58	-72 -72	130
34	$2^{1}17^{1}$	Y	N N	5	0	1.0000000	0.424242	0.558824	-14 -9	63	-72 -72	135
35	$5^{1}7^{1}$	Y	N	5	0	1.0000000	0.441170	0.533824	-3 -4	68	-72 -72	140
36	$2^{2}3^{2}$	N	N	14	9	1.3571429	0.437143	0.542837	10	82	-72 -72	154
37	$\frac{2}{37^1}$	Y	Y	-2	0	1.0000000	0.472222	0.540541	8	82	-72 -74	154
38	$2^{1}19^{1}$	Y	N	5	0	1.0000000	0.459459	0.540341 0.526316	13	87	-74 -74	161
39	$3^{1}13^{1}$	Y	N	5	0	1.0000000	0.487179	0.512821	18	92	-74 -74	166
40	$2^{3}5^{1}$	N	N	9	4	1.5555556	0.487179	0.500000	27	101	-74 -74	175
41	41^{1}	Y	Y	-2	0	1.0000000	0.487805	0.512195	25	101	-76	177
42	$2^{1}3^{1}7^{1}$	Y	N	-16	0	1.0000000	0.487803	0.523810	9	101	-76 -92	193
43	431	Y	Y	-2	0	1.0000000	0.465116	0.534884	7	101	-94	195
44	$2^{2}11^{1}$	N	N	-7	2	1.2857143	0.454545	0.545455	0	101	-101	202
45	$3^{2}5^{1}$	N	N	-7	2	1.2857143	0.444444	0.555556	-7	101	-101	209
46	$2^{1}23^{1}$	Y	N	5	0	1.0000000	0.456522	0.543478	-2	106	-108	214
47	47^{1}	Y	Y	-2	0	1.0000000	0.446809	0.553191	-4	106	-110	216
48	$2^{4}3^{1}$	N	N	-11	6	1.8181818	0.437500	0.562500	-15	106	-121	227
				1			1		1			

Table E: Computations involving g(n) and G(x) for $1 \le n \le 500$.

- ▶ The second column labeled n provides the prime factorization of each n so that the values of $\omega(n)$ and $\Omega(n)$ are easily extracted.
- ▶ The next columns labeled Sqfree and PPower, respectively, list inclusion of n in the sets of squarefree integers and the prime powers.
- ▶ The next columns indicate properties of the summatory function of g(n). The notation for the (approximate) densities of the sign weight of g(n) are defined as $\mathcal{L}_{\pm}(x) := \frac{1}{n} \times \#\{n \leq x : \lambda(n) = \pm 1\}$.
- ► The next three columns then show the sign weighted components to the signed summatory function, $G(x) := \sum_{n \le x} g(n)$, decomposed into its respective positive and negative magnitude sum contributions: $G(x) = G_+(x) + G_-(x)$ where $G_+(x) > 0$ and $G_-(x) < 0$ for all $x \ge 1$. The rightmost column of the table provides the partial sums of the absolute value of the unsigned inverse sequence, $|G|(n) := \sum_{k \le n} |g(k)|$.

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n)$ – $\widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
49	7^{2}	N	Y	2	0	1.5000000	0.448980	0.551020	-13	108	-121	229
50	$2^{1}5^{2}$	N	N	-7	2	1.2857143	0.440000	0.560000	-20	108	-128	236
51	$3^{1}17^{1}$	Y	N	5_	0	1.0000000	0.450980	0.549020	-15	113	-128	241
52	$2^{2}13^{1}$ 53^{1}	N Y	N Y	-7 -2	2	1.2857143	0.442308	0.557692	-22	113	-135	248
53 54	$2^{1}3^{3}$	N N	Y N	9	0 4	1.0000000 1.555556	0.433962 0.444444	0.566038 0.555556	-24 -15	$\frac{113}{122}$	-137 -137	$\frac{250}{259}$
55	$5^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-10	127	-137	264
56	$2^{3}7^{1}$	N	N	9	4	1.5555556	0.464286	0.535714	-1	136	-137	273
57	$3^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	4	141	-137	278
58	$2^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	9	146	-137	283
59	59^{1}	Y	Y	-2	0	1.0000000	0.474576	0.525424	7	146	-139	285
60	$2^{2}3^{1}5^{1}$	N	N	30	14	1.1666667	0.483333	0.516667	37	176	-139	315
61	61^{1} $2^{1}31^{1}$	Y	Y	-2	0	1.0000000	0.475410	0.524590	35	176	-141	317
62 63	$3^{2}7^{1}$	Y N	N N	5 -7	0 2	1.0000000 1.2857143	0.483871 0.476190	0.516129 0.523810	40 33	181 181	-141 -148	$\frac{322}{329}$
64	2^{6}	N	Y	2	0	3.5000000	0.484375	0.525616	35	183	-148	331
65	$5^{1}13^{1}$	Y	N	5	0	1.0000000	0.492308	0.507692	40	188	-148	336
66	$2^{1}3^{1}11^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	24	188	-164	352
67	67^{1}	Y	Y	-2	0	1.0000000	0.477612	0.522388	22	188	-166	354
68	2^217^1	N	N	-7	2	1.2857143	0.470588	0.529412	15	188	-173	361
69	$3^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	20	193	-173	366
70	$2^{1}5^{1}7^{1}$ 71^{1}	Y	N	-16	0	1.0000000	0.471429	0.528571	4	193	-189	382
71 72	$2^{3}3^{2}$	Y N	Y N	-2 -23	0 18	1.0000000 1.4782609	0.464789 0.458333	0.535211 0.541667	2 -21	193 193	-191 -214	$\frac{384}{407}$
72	73 ¹	Y	N Y	-23 -2	0	1.4782609	0.458333	0.541667 0.547945	-21 -23	193	-214 -216	407
74	$2^{1}37^{1}$	Y	N	5	0	1.0000000	0.459459	0.540541	-18	198	-216	414
75	$3^{1}5^{2}$	N	N	-7	2	1.2857143	0.453333	0.546667	-25	198	-223	421
76	2^219^1	N	N	-7	2	1.2857143	0.447368	0.552632	-32	198	-230	428
77	$7^{1}11^{1}$	Y	N	5	0	1.0000000	0.454545	0.545455	-27	203	-230	433
78	$2^{1}3^{1}13^{1}$	Y	N	-16	0	1.0000000	0.448718	0.551282	-43	203	-246	449
79	79^{1} $2^{4}5^{1}$	Y	Y	-2	0	1.0000000	0.443038	0.556962	-45	203	-248	451
80	3^4	N N	N Y	-11 2	6 0	1.8181818 2.5000000	0.437500	0.562500	-56	203	-259	462
81 82	$2^{1}41^{1}$	Y	N	5	0	1.0000000	0.444444 0.451220	0.555556 0.548780	-54 -49	$\frac{205}{210}$	-259 -259	464 469
83	83 ¹	Y	Y	-2	0	1.0000000	0.445783	0.554217	-51	210	-261	471
84	$2^23^17^1$	N	N	30	14	1.1666667	0.452381	0.547619	-21	240	-261	501
85	$5^{1}17^{1}$	Y	N	5	0	1.0000000	0.458824	0.541176	-16	245	-261	506
86	$2^{1}43^{1}$	Y	N	5	0	1.0000000	0.465116	0.534884	-11	250	-261	511
87	$3^{1}29^{1}$	Y	N	5	0	1.0000000	0.471264	0.528736	-6	255	-261	516
88	$2^{3}11^{1}$	N	N	9	4	1.5555556	0.477273	0.522727	3	264	-261	525
89 90	89^{1} $2^{1}3^{2}5^{1}$	Y N	Y N	-2 30	$0 \\ 14$	1.0000000 1.1666667	0.471910 0.477778	0.528090 0.522222	1 31	264 294	-263 -263	527 557
91	$7^{1}13^{1}$	Y	N	5	0	1.0000007	0.483516	0.522222	36	299	-263	562
92	$2^{2}23^{1}$	N	N	-7	2	1.2857143	0.478261	0.521739	29	299	-270	569
93	$3^{1}31^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	34	304	-270	574
94	2^147^1	Y	N	5	0	1.0000000	0.489362	0.510638	39	309	-270	579
95	$5^{1}19^{1}$	Y	N	5	0	1.0000000	0.494737	0.505263	44	314	-270	584
96	$2^{5}3^{1}$	N	N	13	8	2.0769231	0.500000	0.500000	57	327	-270	597
97	97^{1} $2^{1}7^{2}$	Y	Y	-2	0	1.0000000	0.494845	0.505155	55	327	-272	599
98 99	$3^{2}11^{1}$	N N	N N	-7 -7	$\frac{2}{2}$	1.2857143 1.2857143	0.489796 0.484848	0.510204 0.515152	48 41	$\frac{327}{327}$	-279 -286	606 613
100	$2^{2}5^{2}$	N	N	14	9	1.357143	0.494040	0.510102	55	341	-286	627
101	101 ¹	Y	Y	-2	0	1.0000000	0.485149	0.514851	53	341	-288	629
102	$2^{1}3^{1}17^{1}$	Y	N	-16	0	1.0000000	0.480392	0.519608	37	341	-304	645
103	103 ¹	Y	Y	-2	0	1.0000000	0.475728	0.524272	35	341	-306	647
104	$2^{3}13^{1}$	N	N	9	4	1.555556	0.480769	0.519231	44	350	-306	656
105	$3^{1}5^{1}7^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	28	350	-322	672
106	$2^{1}53^{1}$ 107^{1}	Y Y	N Y	5 -2	0	1.0000000	0.481132	0.518868	33	355	-322	677
107 108	$2^{2}3^{3}$	N Y	Y N	-2 -23	0 18	1.0000000 1.4782609	0.476636 0.472222	0.523364 0.527778	31 8	$355 \\ 355$	-324 -347	$679 \\ 702$
109	109 ¹	Y	Y	-23	0	1.0000000	0.467890	0.5321110	6	355	-349	704
110	$2^{1}5^{1}11^{1}$	Y	N	-16	0	1.0000000	0.463636	0.536364	-10	355	-365	720
111	$3^{1}37^{1}$	Y	N	5	0	1.0000000	0.468468	0.531532	-5	360	-365	725
112	2^47^1	N	N	-11	6	1.8181818	0.464286	0.535714	-16	360	-376	736
113	113 ¹	Y	Y	-2	0	1.0000000	0.460177	0.539823	-18	360	-378	738
114	$2^{1}3^{1}19^{1}$	Y	N	-16	0	1.0000000	0.456140	0.543860	-34	360	-394	754
115	$5^{1}23^{1}$ $2^{2}29^{1}$	Y	N N	5 7	0	1.0000000	0.460870	0.539130	-29	365	-394 401	759 766
116 117	$3^{2}13^{1}$	N N	N N	-7 -7	$\frac{2}{2}$	1.2857143 1.2857143	0.456897 0.452991	0.543103 0.547009	-36 -43	$\frac{365}{365}$	-401 -408	766 773
118	$2^{1}59^{1}$	Y	N	5	0	1.0000000	0.452991	0.542373	-38	370	-408 -408	778
119	$7^{1}17^{1}$	Y	N	5	0	1.0000000	0.462185	0.537815	-33	375	-408	783
120	$2^33^15^1$	N	N	-48	32	1.3333333	0.458333	0.541667	-81	375	-456	831
121	11^{2}	N	Y	2	0	1.5000000	0.462810	0.537190	-79	377	-456	833
122	$2^{1}61^{1}$	Y	N	5	0	1.0000000	0.467213	0.532787	-74	382	-456	838
123	$3^{1}41^{1}$	Y	N	5_	0	1.0000000	0.471545	0.528455	-69	387	-456	843
124	2^231^1	N	N	-7	2	1.2857143	0.467742	0.532258	-76	387	-463	850

1252 27	n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
127	125		N	Y	-2	0		0.464000	0.536000	-78	387	-465	852
128 2 ⁷			1		l								
$ \begin{vmatrix} 129 & 3^4 43^1 & y & N & -16 & 0 & 1.0000000 & 0.465110 & 0.33848 & -7 & 422 & -469 & 891 \\ 130 & 2^2 5^2 1, 1 & N & N & -90 & 1 & 1.0000000 & 0.455105 & 0.35862 & -65 & 422 & -467 & 999 \\ 131 & 12^2 2^2 1, 1 & N & N & 0.00 & 1 & 1.0000000 & 0.455105 & 0.35862 & -65 & 402 & -467 & 999 \\ 131 & 12^2 2^2 1, 1 & N & N & 0.00 & 1 & 1.0000000 & 0.46510 & 0.37870 & -62 & 402 & -467 & 999 \\ 131 & 12^2 2^2 1, 1 & N & N & 0.00 & 1 & 1.0000000 & 0.46610 & 0.37870 & -62 & 402 & -467 & 999 \\ 131 & 12^2 2^2 1, 1 & N & N & 9 & 4 & 1.505556 & 0.47941 & 0.32950 & -62 & 471 & -467 & 999 \\ 131 & 12^2 2^2 1 & N & N & 9 & 4 & 1.505556 & 0.47941 & 0.32950 & -7 & 480 & -487 & 967 \\ 131 & 12^2 2^2 1 & N & N & 9 & 4 & 1.505556 & 0.47941 & 0.32950 & -7 & 480 & -487 & 967 \\ 131 & 12^2 2^2 3 & Y & N & -16 & 0 & 1.0000000 & 0.47914 & 0.32950 & -7 & 480 & -899 & 969 \\ 131 & 12^2 2^2 3 & Y & N & -2 & 0 & 1.0000000 & 0.47914 & 0.32950 & -7 & 480 & -899 & 969 \\ 131 & 13^2 1^2 2^2 3 & Y & N & -5 & 0 & 1.0000000 & 0.47917 & 0.32958 & -25 & 480 & -50.5 & 985 \\ 132 & 12^2 1^2 3 & Y & N & 5 & 0 & 1.0000000 & 0.47917 & 0.32950 & -7 & 480 & -89 & 969 \\ 133 & 13^4 1^2 1 & Y & N & 5 & 0 & 1.0000000 & 0.47917 & 0.32950 & -7 & 480 & -80 $			1		l								
130 25 13			1		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	131		Y	Y	-2	0	1.0000000	0.458015	0.541985	-65	422	-487	909
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{vmatrix} 139 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\ 1 \\ 2^2 + 1^2 \\$			1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	138		Y	N	-16	0	1.0000000	0.471014	0.528986	-25	480	-505	985
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{vmatrix} 142 & 2^3 r_1^1 & Y & N & 5 & 0 & 1.0000000 \\ 143 & 11^1 *13^1 & Y & N & 5 & 0 & 1.0000000 \\ 144 & 2^4 3^2 & N & N & 34 & 29 & 1.617471 \\ 145 & 5^1 29^1 & Y & N & 5 & 0 & 1.0000000 \\ 146 & 2^3 r_3^3 & Y & N & 5 & 0 & 1.0000000 \\ 147 & 3^1 r_2^2 & N & N & -7 & 2 & 1.2857143 \\ 148 & 2^2 3 r_1^3 & N & N & -7 & 2 & 1.2857143 \\ 149 & 149^1 & Y & Y & -2 & 0 & 1.0000000 \\ 150 & 2^3 1^5 & N & N & 30 & 14 & 1.166667 \\ 151 & 151^1 & Y & Y & -2 & 0 & 1.0000000 \\ 150 & 2^3 1^5 2^3 & N & N & 9 & 4 & 1.555556 \\ 151 & 151^1 & Y & N & -16 & 0 & 1.0000000 \\ 152 & 2^3 1 1^3 & N & N & 30 & 14 & 1.166667 \\ 153 & 3^2 1 1^3 & N & N & -7 & 2 & 1.2857143 \\ 154 & 2^2 7^1 & N & N & -7 & 2 & 0.2857143 \\ 152 & 2^3 19^1 & N & N & 9 & 4 & 1.555556 \\ 153 & 3^2 1 1^3 & Y & N & -7 & 2 & 1.2857143 \\ 154 & 2^2 7^1 & N & N & -7 & 2 & 1.2857143 \\ 155 & 5^2 11^1 & Y & N & -16 & 0 & 1.0000000 \\ 155 & 5^2 11^1 & Y & N & 5 & 0 & 1.0000000 \\ 156 & 2^3 1 3^3 & N & N & 30 & 14 & 1.166667 \\ 155 & 5^2 11^1 & Y & N & 5 & 0 & 1.0000000 \\ 156 & 2^3 1 3^3 & N & N & 30 & 14 & 1.166667 \\ 156 & 2^3 1 3^4 & N & N & 30 & 14 & 1.166667 \\ 157 & 157^2 & Y & Y & -2 & 0 & 1.0000000 \\ 158 & 2^3 1^3 1^2 & N & N & 30 & 14 & 1.166667 \\ 158 & 2^3 1^3 1 & N & N & 30 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 159 & 150^3 & N & N & N & 0 & 14 & 1.166667 \\ 150 & N & N & N & N & 0 & 14 & 1.166667 \\ 150 & N & N & N & N & 0 & 0 & 0.000000 \\ 150 & 150^3 & N & N & N & 0 & 0 & 0.000000 \\ 150 & 150^3 & N & N & N & 0 & 0.000000 \\ 150 & 150^3 & N & N & N & 0 & 0.000000 \\ 150 & 150^3 & N & N & 0 & 0.000000 \\ 150 & 150^3 & N & N & 0 & 0.000000 \\ 150 & 150^3 & N & N & 0 & 0.000000 \\ 150 & 150^3 & N & N & N & 0.0000000 \\ 150 & 150^3 & N & N & 0.0000000 \\ 150 & 150^3 & N & N & 0.0000000 \\ 150 & 1$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1								
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	145		Y	N	5	0	1.0000000	0.489655	0.510345	57	564	-507	1071
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	152		N	N	9	4	1.5555556	0.486842	0.513158	83	608	-525	1133
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	158		Y	N	5	0	1.0000000	0.487342	0.512658	98	648	-550	1198
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			1		l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	164		N	N	-7	2	1.2857143	0.487805	0.512195	101	671	-570	1241
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	170		Y	N	-16			0.482353		26			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	176		N	N	-11		1.8181818	0.465909	0.534091	-24	678	-702	1380
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2^{1}7^{1}13^{1}$			l								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					l								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		2^247^1			1								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$													
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					l								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$2^{1}97^{1}$			1								
					l								
					1								
199 199 ¹ Y Y -2 0 1.0000000 0.462312 0.537688 -104 770 -874 1644			1		l								
	1				1								
	1				1								

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n) - \widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_+(n)$	$G_{-}(n)$	G (n)
201	3 ¹ 67 ¹	Y	N	5	0	1.0000000	0.462687	0.537313	-122	775	-897	1672
202	$2^{1}101^{1}$	Y	N	5	0	1.0000000	0.465347	0.534653	-117	780	-897	1677
203	$7^{1}29^{1}$ $2^{2}3^{1}17^{1}$	Y	N	5	0	1.0000000	0.467980	0.532020	-112	785	-897	1682
204	$5^{1}41^{1}$	N	N	30	14	1.1666667 1.0000000	0.470588	0.529412	-82	815	-897	1712
205 206	$2^{1}103^{1}$	Y Y	N N	5 5	0	1.0000000	0.473171 0.475728	0.526829 0.524272	-77 -72	820 825	-897 -897	1717 1722
207	$3^{2}23^{1}$	N	N	-7	2	1.2857143	0.473728	0.524272	-72 -79	825	-904	1722
208	2^413^1	N	N	-11	6	1.8181818	0.471154	0.528846	-90	825	-915	1740
209	$11^{1}19^{1}$	Y	N	5	0	1.0000000	0.473684	0.526316	-85	830	-915	1745
210	$2^{1}3^{1}5^{1}7^{1}$	Y	N	65	0	1.0000000	0.476190	0.523810	-20	895	-915	1810
211	211^{1}	Y	Y	-2	0	1.0000000	0.473934	0.526066	-22	895	-917	1812
212	2^253^1	N	N	-7	2	1.2857143	0.471698	0.528302	-29	895	-924	1819
213	$3^{1}71^{1}$	Y	N	5	0	1.0000000	0.474178	0.525822	-24	900	-924	1824
214	$2^{1}107^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-19	905	-924	1829
215	$5^{1}43^{1}$	Y	N	5	0	1.0000000	0.479070	0.520930	-14	910	-924	1834
216	$2^{3}3^{3}$	N	N	46	41	1.5000000	0.481481	0.518519	32	956	-924	1880
217	$7^{1}31^{1}$ $2^{1}109^{1}$	Y	N	5	0	1.0000000	0.483871	0.516129	37	961	-924	1885
218	$3^{1}73^{1}$	Y Y	N N	5	0	1.0000000	0.486239	0.513761	42	966	-924	1890
219 220	$2^{2}5^{1}11^{1}$	N N	N N	5 30	$0 \\ 14$	1.0000000 1.1666667	0.488584 0.490909	0.511416 0.509091	47 77	971 1001	-924 -924	1895 1925
221	$13^{1}17^{1}$	Y	N	5	0	1.0000007	0.490909	0.506787	82	1001	-924 -924	1925
222	$2^{1}3^{1}37^{1}$	Y	N	-16	0	1.0000000	0.493213	0.509009	66	1006	-924 -940	1946
223	23^{1}	Y	Y	-10 -2	0	1.0000000	0.488789	0.509009	64	1006	-940 -942	1948
224	$2^{5}7^{1}$	N	N	13	8	2.0769231	0.488789	0.508929	77	1019	-942 -942	1948
225	$3^{2}5^{2}$	N	N	14	9	1.3571429	0.493333	0.506667	91	1033	-942	1975
226	$2^{1}113^{1}$	Y	N	5	0	1.0000000	0.495575	0.504425	96	1038	-942	1980
227	227^{1}	Y	Y	-2	0	1.0000000	0.493392	0.506608	94	1038	-944	1982
228	$2^23^119^1$	N	N	30	14	1.1666667	0.495614	0.504386	124	1068	-944	2012
229	229^{1}	Y	Y	-2	0	1.0000000	0.493450	0.506550	122	1068	-946	2014
230	$2^{1}5^{1}23^{1}$	Y	N	-16	0	1.0000000	0.491304	0.508696	106	1068	-962	2030
231	$3^17^111^1$	Y	N	-16	0	1.0000000	0.489177	0.510823	90	1068	-978	2046
232	$2^{3}29^{1}$	N	N	9	4	1.5555556	0.491379	0.508621	99	1077	-978	2055
233	233 ¹	Y	Y	-2	0	1.0000000	0.489270	0.510730	97	1077	-980	2057
234	$2^{1}3^{2}13^{1}$	N	N	30	14	1.1666667	0.491453	0.508547	127	1107	-980	2087
235	$5^{1}47^{1}$	Y	N	5	0	1.0000000	0.493617	0.506383	132	1112	-980	2092
236	$2^{2}59^{1}$	N	N	-7	2	1.2857143	0.491525	0.508475	125	1112	-987	2099
237	$3^{1}79^{1}$	Y	N	5	0	1.0000000	0.493671	0.506329	130	1117	-987	2104
238	$2^{1}7^{1}17^{1}$ 239^{1}	Y	N	-16	0	1.0000000	0.491597	0.508403	114	1117	-1003	2120
239	2^{39} $2^{4}3^{1}5^{1}$	Y N	Y N	-2 70	0	1.0000000	0.489540	0.510460	112	1117	-1005	2122
$\frac{240}{241}$	$2 \ 3 \ 5$ 241^{1}	Y	Y	70 -2	54 0	1.5000000	0.491667 0.489627	0.508333	182 180	1187	-1005	2192 2194
241	2^{41} $2^{1}11^{2}$	N	N	-2 -7	2	1.0000000 1.2857143	0.489627	0.510373 0.512397	173	$\frac{1187}{1187}$	-1007 -1014	2201
243	3^{5}	N	Y	-2	0	3.0000000	0.487503	0.512397	173	1187	-1014	2201
244	$2^{2}61^{1}$	N	N	-7	2	1.2857143	0.483607	0.514403	164	1187	-1023	2210
245	$5^{1}7^{2}$	N	N	-7	2	1.2857143	0.481633	0.518367	157	1187	-1030	2217
246	$2^{1}3^{1}41^{1}$	Y	N	-16	0	1.0000000	0.479675	0.520325	141	1187	-1046	2233
247	$13^{1}19^{1}$	Y	N	5	0	1.0000000	0.481781	0.518219	146	1192	-1046	2238
248	$2^{3}31^{1}$	N	N	9	4	1.5555556	0.483871	0.516129	155	1201	-1046	2247
249	$3^{1}83^{1}$	Y	N	5	0	1.0000000	0.485944	0.514056	160	1206	-1046	2252
250	$2^{1}5^{3}$	N	N	9	4	1.5555556	0.488000	0.512000	169	1215	-1046	2261
251	251^{1}	Y	Y	-2	0	1.0000000	0.486056	0.513944	167	1215	-1048	2263
252	$2^23^27^1$	N	N	-74	58	1.2162162	0.484127	0.515873	93	1215	-1122	2337
253	$11^{1}23^{1}$	Y	N	5	0	1.0000000	0.486166	0.513834	98	1220	-1122	2342
254	$2^{1}127^{1}$	Y	N	5	0	1.0000000	0.488189	0.511811	103	1225	-1122	2347
255	$3^{1}5^{1}17^{1}$	Y	N	-16	0	1.0000000	0.486275	0.513725	87	1225	-1138	2363
256	2 ⁸	N	Y	2	0	4.5000000	0.488281	0.511719	89	1227	-1138	2365
257	257^1 $2^13^143^1$	Y	Y	-2 16	0	1.0000000	0.486381	0.513619	87	1227	-1140	2367
258	$2^{1}3^{1}43^{1}$ $7^{1}37^{1}$	Y Y	N	-16	0	1.0000000	0.484496	0.515504	71 76	1227	-1156	2383
259 260	$2^{2}5^{1}13^{1}$	N Y	N N	5 30	$0\\14$	1.0000000 1.1666667	0.486486 0.488462	0.513514 0.511538	76 106	1232 1262	-1156 -1156	$\frac{2388}{2418}$
261	$3^{2}29^{1}$	N N	N N	-7	2	1.2857143	0.488462	0.511538	99	1262	-1156 -1163	$\frac{2418}{2425}$
262	$2^{1}131^{1}$	Y	N N	5	0	1.0000000	0.486590	0.513410 0.511450	104	1262	-1163 -1163	2425
263	263^{1}	Y	Y	-2	0	1.0000000	0.486692	0.511430	102	1267	-1165 -1165	2430
264	$2^{3}3^{1}11^{1}$	N	N	-48	32	1.3333333	0.484848	0.515152	54	1267	-1213	2480
265	$5^{1}53^{1}$	Y	N	5	0	1.0000000	0.486792	0.513208	59	1272	-1213	2485
266	$2^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.484962	0.515038	43	1272	-1229	2501
267	$3^{1}89^{1}$	Y	N	5	0	1.0000000	0.486891	0.513109	48	1277	-1229	2506
268	2^267^1	N	N	-7	2	1.2857143	0.485075	0.514925	41	1277	-1236	2513
269	269^{1}	Y	Y	-2	0	1.0000000	0.483271	0.516729	39	1277	-1238	2515
270	$2^{1}3^{3}5^{1}$	N	N	-48	32	1.3333333	0.481481	0.518519	-9	1277	-1286	2563
271	271^{1}	Y	Y	-2	0	1.0000000	0.479705	0.520295	-11	1277	-1288	2565
272	2^417^1	N	N	-11	6	1.8181818	0.477941	0.522059	-22	1277	-1299	2576
273	$3^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-38	1277	-1315	2592
274	$2^{1}137^{1}$	Y	N	5	0	1.0000000	0.478102	0.521898	-33	1282	-1315	2597
275	5^211^1	N	N	-7	2	1.2857143	0.476364	0.523636	-40	1282	-1322	2604

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n)$ – $\widehat{f}_1(n)$	$\frac{\sum_{d\mid n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_+(n)$	$G_{-}(n)$	G (n)
276	$2^{2}3^{1}23^{1}$	N	N	30	14	1.1666667	0.478261	0.521739	-10	1312	-1322	2634
277	277^{1}	Y	Y	-2	0	1.0000000	0.476534	0.523466	-12	1312	-1324	2636
278	$2^{1}139^{1}$ $3^{2}31^{1}$	Y	N	5	0	1.0000000	0.478417	0.521583	-7	1317	-1324	2641
279	$2^{3}5^{1}7^{1}$	N	N	-7 49	2	1.2857143	0.476703	0.523297	-14	1317	-1331	2648
280 281	281 ¹	N Y	N Y	-48 -2	32 0	1.3333333 1.0000000	0.475000 0.473310	0.525000 0.526690	-62 -64	1317 1317	-1379 -1381	$\frac{2696}{2698}$
282	$2^{1}3^{1}47^{1}$	Y	N	-16	0	1.0000000	0.473310	0.528369	-80	1317	-1397	2714
283	283 ¹	Y	Y	-2	0	1.0000000	0.469965	0.530035	-82	1317	-1399	2716
284	2^271^1	N	N	-7	2	1.2857143	0.468310	0.531690	-89	1317	-1406	2723
285	$3^15^119^1$	Y	N	-16	0	1.0000000	0.466667	0.533333	-105	1317	-1422	2739
286	$2^{1}11^{1}13^{1}$	Y	N	-16	0	1.0000000	0.465035	0.534965	-121	1317	-1438	2755
287	7^141^1	Y	N	5	0	1.0000000	0.466899	0.533101	-116	1322	-1438	2760
288	$2^{5}3^{2}$	N	N	-47	42	1.7659574	0.465278	0.534722	-163	1322	-1485	2807
289	17^{2}	N	Y	2	0	1.5000000	0.467128	0.532872	-161	1324	-1485	2809
290	$2^{1}5^{1}29^{1}$ $3^{1}97^{1}$	Y	N	-16	0	1.0000000	0.465517	0.534483	-177	1324	-1501	2825
291	$2^{2}73^{1}$	Y	N N	5	0 2	1.0000000	0.467354	0.532646	-172	1329	-1501	2830
292 293	$\frac{2}{293}^{1}$	N Y	Y	-7 -2	0	1.2857143 1.0000000	0.465753 0.464164	0.534247 0.535836	-179 -181	1329 1329	-1508 -1510	2837 2839
293	$2^{1}3^{1}7^{2}$	N	N	30	14	1.1666667	0.465986	0.534014	-151	1359	-1510 -1510	2869
295	$5^{1}59^{1}$	Y	N	5	0	1.0000000	0.467797	0.532203	-146	1364	-1510	2874
296	$2^{3}37^{1}$	N	N	9	4	1.5555556	0.469595	0.530405	-137	1373	-1510	2883
297	3^311^1	N	N	9	4	1.5555556	0.471380	0.528620	-128	1382	-1510	2892
298	2^1149^1	Y	N	5	0	1.0000000	0.473154	0.526846	-123	1387	-1510	2897
299	$13^{1}23^{1}$	Y	N	5	0	1.0000000	0.474916	0.525084	-118	1392	-1510	2902
300	$2^23^15^2$	N	N	-74	58	1.2162162	0.473333	0.526667	-192	1392	-1584	2976
301	$7^{1}43^{1}$	Y	N	5	0	1.0000000	0.475083	0.524917	-187	1397	-1584	2981
302	$2^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-182	1402	-1584	2986
303	$3^{1}101^{1}$ $2^{4}19^{1}$	Y	N	5	0	1.0000000	0.478548	0.521452	-177	1407	-1584	2991
304 305	$5^{1}61^{1}$	N Y	N N	-11 5	6 0	1.8181818	0.476974 0.478689	0.523026 0.521311	-188 -183	1407 1412	-1595	3002 3007
306	$2^{1}3^{2}17^{1}$	N	N	30	14	1.0000000 1.1666667	0.480392	0.519608	-153 -153	1412	-1595 -1595	3037
307	307^{1}	Y	Y	-2	0	1.0000007	0.480392	0.521173	-155	1442	-1597	3039
308	$2^{2}7^{1}11^{1}$	N	N	30	14	1.1666667	0.480519	0.519481	-125	1472	-1597	3069
309	3^1103^1	Y	N	5	0	1.0000000	0.482201	0.517799	-120	1477	-1597	3074
310	$2^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.480645	0.519355	-136	1477	-1613	3090
311	311^{1}	Y	Y	-2	0	1.0000000	0.479100	0.520900	-138	1477	-1615	3092
312	$2^33^113^1$	N	N	-48	32	1.3333333	0.477564	0.522436	-186	1477	-1663	3140
313	313 ¹	Y	Y	-2	0	1.0000000	0.476038	0.523962	-188	1477	-1665	3142
314	$2^{1}157^{1}$	Y	N	5	0	1.0000000	0.477707	0.522293	-183	1482	-1665	3147
315	$3^{2}5^{1}7^{1}$	N	N	30	14	1.1666667	0.479365	0.520635	-153	1512	-1665	3177
316	$2^{2}79^{1}$ 317^{1}	N	N	-7	2	1.2857143	0.477848	0.522152	-160	1512	-1672	3184
317 318	$2^{1}3^{1}53^{1}$	Y Y	Y N	-2 -16	0	1.0000000 1.0000000	0.476341 0.474843	0.523659 0.525157	-162 -178	1512 1512	-1674 -1690	3186 3202
319	$11^{1}29^{1}$	Y	N	5	0	1.0000000	0.474843	0.523137 0.523511	-173	1517	-1690 -1690	3202
320	$2^{6}5^{1}$	N	N	-15	10	2.3333333	0.475000	0.525011	-188	1517	-1705	3222
321	$3^{1}107^{1}$	Y	N	5	0	1.0000000	0.476636	0.523364	-183	1522	-1705	3227
322	$2^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.475155	0.524845	-199	1522	-1721	3243
323	$17^{1}19^{1}$	Y	N	5	0	1.0000000	0.476780	0.523220	-194	1527	-1721	3248
324	$2^{2}3^{4}$	N	N	34	29	1.6176471	0.478395	0.521605	-160	1561	-1721	3282
325	5^213^1	N	N	-7	2	1.2857143	0.476923	0.523077	-167	1561	-1728	3289
326	$2^{1}163^{1}$	Y	N	5	0	1.0000000	0.478528	0.521472	-162	1566	-1728	3294
327	$3^{1}109^{1}$	Y	N	5	0	1.0000000	0.480122	0.519878	-157	1571	-1728	3299
328	$2^{3}41^{1}$	N	N	9	4	1.5555556	0.481707	0.518293	-148	1580	-1728	3308
329	$7^{1}47^{1}$ $2^{1}3^{1}5^{1}11^{1}$	Y	N	5	0	1.0000000	0.483283	0.516717	-143	1585	-1728	3313
330 331	331 ¹	Y Y	N Y	65 -2	0	1.0000000	0.484848	0.515152 0.516616	-78 -80	$1650 \\ 1650$	-1728	3378
331	$2^{2}83^{1}$	N Y	Y N	-2 -7	2	1.0000000 1.2857143	0.483384 0.481928	0.518072	-80 -87	1650	-1730 -1737	3380 3387
333	$3^{2}37^{1}$	N N	N	-7 -7	2	1.2857143	0.481928	0.518072	-94	1650	-1737 -1744	3394
334	$2^{1}167^{1}$	Y	N	5	0	1.0000000	0.480480	0.519320 0.517964	-89	1655	-1744	3399
335	$5^{1}67^{1}$	Y	N	5	0	1.0000000	0.483582	0.516418	-84	1660	-1744	3404
336	$2^4 3^1 7^1$	N	N	70	54	1.5000000	0.485119	0.514881	-14	1730	-1744	3474
337	337^{1}	Y	Y	-2	0	1.0000000	0.483680	0.516320	-16	1730	-1746	3476
338	$2^{1}13^{2}$	N	N	-7	2	1.2857143	0.482249	0.517751	-23	1730	-1753	3483
339	$3^{1}113^{1}$	Y	N	5	0	1.0000000	0.483776	0.516224	-18	1735	-1753	3488
340	$2^{2}5^{1}17^{1}$	N	N	30	14	1.1666667	0.485294	0.514706	12	1765	-1753	3518
341	$11^{1}31^{1}$	Y	N	5	0	1.0000000	0.486804	0.513196	17	1770	-1753	3523
342	$2^{1}3^{2}19^{1}$ 7^{3}	N	N	30	14	1.1666667	0.488304	0.511696	47	1800	-1753	3553
343	$2^{3}43^{1}$	N	Y	-2 0	0	2.0000000	0.486880	0.513120	45	1800	-1755	3555
344 345	$3^{1}5^{1}23^{1}$	N Y	N N	9 -16	4	1.5555556	0.488372	0.511628	54	1809	-1755	3564 3580
345	$2^{1}173^{1}$	Y	N N	-16 5	0	1.0000000 1.0000000	0.486957 0.488439	0.513043 0.511561	38 43	1809 1814	-1771 -1771	$3580 \\ 3585$
347	347^{1}	Y	Y	-2	0	1.0000000	0.488439	0.511361	43	1814	-1771 -1773	3587
	$2^{2}3^{1}29^{1}$	N	N	30	14	1.1666667	0.488506	0.511494	71	1844	-1773	3617
348								-				
348 349	349^{1}	Y	Y	-2	0	1.0000000	0.487106	0.512894	69	1844	-1775	3619

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n)-\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_{+}(n)$	$G_{-}(n)$	G (n)
351	$3^{3}13^{1}$	N	N	9	4	1.555556	0.490028	0.509972	108	1883	-1775	3658
352	$2^{5}11^{1}$	N	N	13	8	2.0769231	0.491477	0.508523	121	1896	-1775	3671
353	353^{1}	Y	Y	-2	0	1.0000000	0.490085	0.509915	119	1896	-1777	3673
354	$2^{1}3^{1}59^{1}$	Y	N	-16	0	1.0000000	0.488701	0.511299	103	1896	-1793	3689
355	$5^{1}71^{1}$	Y	N	5	0	1.0000000	0.490141	0.509859	108	1901	-1793	3694
356	$2^{2}89^{1}$	N	N	-7	2	1.2857143	0.488764	0.511236	101	1901	-1800	3701
357	$3^{1}7^{1}17^{1}$	Y	N	-16	0	1.0000000	0.487395	0.512605	85	1901	-1816	3717
358	$2^{1}179^{1}$	Y	N	5	0	1.0000000	0.488827	0.511173	90	1906	-1816	3722
359	359^{1}	Y	Y	-2	0	1.0000000	0.487465	0.512535	88	1906	-1818	3724
360	$2^{3}3^{2}5^{1}$ 19^{2}	N	N	145	129	1.3034483	0.488889	0.511111	233	2051	-1818	3869
361	19^{2} $2^{1}181^{1}$	N Y	Y	2	0	1.5000000	0.490305	0.509695	235	2053	-1818	3871
362	$3^{1}11^{2}$	N N	N	5	0	1.0000000	0.491713	0.508287	240	2058	-1818	3876
363 364	$2^{2}7^{1}13^{1}$	N N	N N	-7 30	$\frac{2}{14}$	1.2857143 1.1666667	0.490358 0.491758	0.509642 0.508242	233 263	2058 2088	-1825 -1825	3883 3913
365	$5^{1}73^{1}$	Y	N	5	0	1.0000007	0.491758	0.506849	268	2093	-1825 -1825	3918
366	$2^{1}3^{1}61^{1}$	Y	N	-16	0	1.0000000	0.491803	0.508197	252	2093	-1841	3934
367	367^{1}	Y	Y	-2	0	1.0000000	0.490463	0.509537	250	2093	-1843	3936
368	$2^{4}23^{1}$	N	N	-11	6	1.8181818	0.489130	0.510870	239	2093	-1854	3947
369	$3^{2}41^{1}$	N	N	-7	2	1.2857143	0.487805	0.512195	232	2093	-1861	3954
370	$2^{1}5^{1}37^{1}$	Y	N	-16	0	1.0000000	0.486486	0.513514	216	2093	-1877	3970
371	$7^{1}53^{1}$	Y	N	5	0	1.0000000	0.487871	0.512129	221	2098	-1877	3975
372	$2^{2}3^{1}31^{1}$	N	N	30	14	1.1666667	0.489247	0.510753	251	2128	-1877	4005
373	373^{1}	Y	Y	-2	0	1.0000000	0.487936	0.512064	249	2128	-1879	4007
374	$2^111^117^1$	Y	N	-16	0	1.0000000	0.486631	0.513369	233	2128	-1895	4023
375	$3^{1}5^{3}$	N	N	9	4	1.5555556	0.488000	0.512000	242	2137	-1895	4032
376	2^347^1	N	N	9	4	1.5555556	0.489362	0.510638	251	2146	-1895	4041
377	$13^{1}29^{1}$	Y	N	5	0	1.0000000	0.490716	0.509284	256	2151	-1895	4046
378	$2^{1}3^{3}7^{1}$	N	N	-48	32	1.3333333	0.489418	0.510582	208	2151	-1943	4094
379	379 ¹	Y	Y	-2	0	1.0000000	0.488127	0.511873	206	2151	-1945	4096
380	$2^{2}5^{1}19^{1}$	N	N	30	14	1.1666667	0.489474	0.510526	236	2181	-1945	4126
381	$3^{1}127^{1}$	Y	N	5	0	1.0000000	0.490814	0.509186	241	2186	-1945	4131
382	$2^{1}191^{1}$	Y	N	5	0	1.0000000	0.492147	0.507853	246	2191	-1945	4136
383	383^{1} $2^{7}3^{1}$	Y	Y	-2	0	1.0000000	0.490862	0.509138	244	2191	-1947	4138
384	$5^{1}7^{1}11^{1}$	N	N	17	12	2.5882353	0.492188	0.507812	261	2208	-1947	4155
385 386	$2^{1}193^{1}$	Y Y	N N	-16 5	0 0	1.0000000 1.0000000	0.490909 0.492228	0.509091 0.507772	$\frac{245}{250}$	$\frac{2208}{2213}$	-1963 -1963	$4171 \\ 4176$
387	$3^{2}43^{1}$	N N	N N	-7	2	1.2857143	0.492228	0.509044	243	2213	-1963 -1970	4176
388	$2^{2}97^{1}$	N	N	-7 -7	2	1.2857143	0.489691	0.510309	236	2213	-1977	4190
389	389^{1}	Y	Y	-2	0	1.0000000	0.488432	0.511568	234	2213	-1979	4192
390	$2^{1}3^{1}5^{1}13^{1}$	Y	N	65	0	1.0000000	0.489744	0.510256	299	2278	-1979	4257
391	$17^{1}23^{1}$	Y	N	5	0	1.0000000	0.491049	0.508951	304	2283	-1979	4262
392	$2^{3}7^{2}$	N	N	-23	18	1.4782609	0.489796	0.510204	281	2283	-2002	4285
393	3^1131^1	Y	N	5	0	1.0000000	0.491094	0.508906	286	2288	-2002	4290
394	$2^{1}197^{1}$	Y	N	5	0	1.0000000	0.492386	0.507614	291	2293	-2002	4295
395	$5^{1}79^{1}$	Y	N	5	0	1.0000000	0.493671	0.506329	296	2298	-2002	4300
396	$2^23^211^1$	N	N	-74	58	1.2162162	0.492424	0.507576	222	2298	-2076	4374
397	397^{1}	Y	Y	-2	0	1.0000000	0.491184	0.508816	220	2298	-2078	4376
398	$2^{1}199^{1}$	Y	N	5	0	1.0000000	0.492462	0.507538	225	2303	-2078	4381
399	$3^{1}7^{1}19^{1}$	Y	N	-16	0	1.0000000	0.491228	0.508772	209	2303	-2094	4397
400	2^45^2	N	N	34	29	1.6176471	0.492500	0.507500	243	2337	-2094	4431
401	401 ¹	Y	Y	-2	0	1.0000000	0.491272	0.508728	241	2337	-2096	4433
402	$2^{1}3^{1}67^{1}$	Y	N	-16	0	1.0000000	0.490050	0.509950	225	2337	-2112	4449
403	$13^{1}31^{1}$ $2^{2}101^{1}$	Y	N	5	0	1.0000000	0.491315	0.508685	230	2342	-2112	4454
404 405	$3^{4}5^{1}$	N N	N N	-7	2 6	1.2857143 1.8181818	0.490099	0.509901	223 212	2342 2342	-2119	$4461 \\ 4472$
405 406	$2^{1}7^{1}29^{1}$	Y	N N	-11 -16	0	1.8181818	0.488889 0.487685	0.511111 0.512315	196	2342	-2130 -2146	4472
406	$11^{1}37^{1}$	Y	N N	-16 5	0	1.0000000	0.487685	0.512315 0.511057	201	2342	-2146 -2146	4488
407	$2^{3}3^{1}17^{1}$	N N	N N	-48	32	1.3333333	0.488943	0.511057 0.512255	153	2347	-2146 -2194	4493 4541
409	409^{1}	Y	Y	-2	0	1.0000000	0.487743	0.512255	151	2347	-2194 -2196	4543
410	$2^{1}5^{1}41^{1}$	Y	N	-16	0	1.0000000	0.485366	0.514634	135	2347	-2110	4559
411	$3^{1}137^{1}$	Y	N	5	0	1.0000000	0.486618	0.513382	140	2352	-2212	4564
412	$2^{2}103^{1}$	N	N	-7	2	1.2857143	0.485437	0.514563	133	2352	-2219	4571
413	7^159^1	Y	N	5	0	1.0000000	0.486683	0.513317	138	2357	-2219	4576
414	$2^{1}3^{2}23^{1}$	N	N	30	14	1.1666667	0.487923	0.512077	168	2387	-2219	4606
415	$5^{1}83^{1}$	Y	N	5	0	1.0000000	0.489157	0.510843	173	2392	-2219	4611
416	$2^{5}13^{1}$	N	N	13	8	2.0769231	0.490385	0.509615	186	2405	-2219	4624
417	$3^{1}139^{1}$	Y	N	5	0	1.0000000	0.491607	0.508393	191	2410	-2219	4629
418	$2^{1}11^{1}19^{1}$	Y	N	-16	0	1.0000000	0.490431	0.509569	175	2410	-2235	4645
419	419 ¹	Y	Y	-2	0	1.0000000	0.489260	0.510740	173	2410	-2237	4647
420	$2^{2}3^{1}5^{1}7^{1}$	N	N	-155	90	1.1032258	0.488095	0.511905	18	2410	-2392	4802
421	4211	Y	Y	-2	0	1.0000000	0.486936	0.513064	16	2410	-2394	4804
422	$2^{1}211^{1}$	Y	N	5_	0	1.0000000	0.488152	0.511848	21	2415	-2394	4809
423	$3^{2}47^{1}$	N	N	-7	2	1.2857143	0.486998	0.513002	14	2415	-2401	4816
	$2^{3}53^{1}$	N	N	9	4	1.5555556	0.488208	0.511792	23	2424	-2401	4825
424 425	5^217^1	N	N	-7	2	1.2857143	0.487059	0.512941	16	2424	-2408	4832

n	n	Sqfree	PPower	g(n)	$\lambda(n)g(n)$ – $\widehat{f}_1(n)$	$\frac{\sum_{d n} C_{\Omega}(d)}{ g(n) }$	$\mathcal{L}_{+}(n)$	$\mathcal{L}_{-}(n)$	G(n)	$G_+(n)$	$G_{-}(n)$	G (n)
426	$2^{1}3^{1}71^{1}$	Y	N	-16	0	1.0000000	0.485915	0.514085	0	2424	-2424	4848
427	$7^{1}61^{1}$	Y	N	5	0	1.0000000	0.487119	0.512881	5	2429	-2424	4853
428	2^2107^1	N	N	-7	2	1.2857143	0.485981	0.514019	-2	2429	-2431	4860
429	$3^{1}11^{1}13^{1}$	Y	N	-16	0	1.0000000	0.484848	0.515152	-18	2429	-2447	4876
430	$2^{1}5^{1}43^{1}$	Y	N	-16	0	1.0000000	0.483721	0.516279	-34	2429	-2463	4892
431	4311	Y	Y	-2	0	1.0000000	0.482599	0.517401	-36	2429	-2465	4894
432	$2^{4}3^{3}$	N	N	-80	75	1.5625000	0.481481	0.518519	-116	2429	-2545	4974
433	433 ¹	Y	Y	-2	0	1.0000000	0.480370	0.519630	-118	2429	-2547	4976
434	$2^{1}7^{1}31^{1}$	Y	N	-16	0	1.0000000	0.479263	0.520737	-134	2429	-2563	4992
435	$3^{1}5^{1}29^{1}$	Y	N	-16	0	1.0000000	0.478161	0.521839	-150	2429	-2579	5008
436	2^2109^1	N	N	-7	2	1.2857143	0.477064	0.522936	-157	2429	-2586	5015
437	$19^{1}23^{1}$	Y	N	5	0	1.0000000	0.478261	0.521739	-152	2434	-2586	5020
438	$2^{1}3^{1}73^{1}$	Y	N	-16	0	1.0000000	0.477169	0.522831	-168	2434	-2602	5036
439	439^{1}	Y	Y	-2	0	1.0000000	0.476082	0.523918	-170	2434	-2604	5038
440	$2^{3}5^{1}11^{1}$	N	N	-48	32	1.3333333	0.475000	0.525000	-218	2434	-2652	5086
441	3^27^2	N	N	14	9	1.3571429	0.476190	0.523810	-204	2448	-2652	5100
442	$2^{1}13^{1}17^{1}$	Y	N	-16	0	1.0000000	0.475113	0.524887	-220	2448	-2668	5116
443	4431	Y	Y	-2	0	1.0000000	0.474041	0.525959	-222	2448	-2670	5118
444	$2^23^137^1$	N	N	30	14	1.1666667	0.475225	0.524775	-192	2478	-2670	5148
445	$5^{1}89^{1}$	Y	N	5	0	1.0000000	0.476404	0.523596	-187	2483	-2670	5153
446	$2^{1}223^{1}$	Y	N	5	0	1.0000000	0.477578	0.522422	-182	2488	-2670	5158
447	$3^{1}149^{1}$	Y	N	5	0	1.0000000	0.478747	0.521253	-177	2493	-2670	5163
448	$2^{6}7^{1}$	N	N	-15	10	2.3333333	0.477679	0.522321	-192	2493	-2685	5178
449	449^{1}	Y	Y	-2	0	1.0000000	0.476615	0.523385	-194	2493	-2687	5180
450	$2^{1}3^{2}5^{2}$	N	N	-74	58	1.2162162	0.475556	0.524444	-268	2493	-2761	5254
451	$11^{1}41^{1}$	Y	N	5	0	1.0000000	0.476718	0.523282	-263	2498	-2761	5259
452	2^2113^1	N	N	-7	2	1.2857143	0.475664	0.524336	-270	2498	-2768	5266
453	$3^{1}151^{1}$	Y	N	5	0	1.0000000	0.476821	0.523179	-265	2503	-2768	5271
454	$2^{1}227^{1}$	Y	N	5	0	1.0000000	0.477974	0.522026	-260	2508	-2768	5276
455	$5^{1}7^{1}13^{1}$	Y	N	-16	0	1.0000000	0.476923	0.523077	-276	2508	-2784	5292
456	$2^33^119^1$	N	N	-48	32	1.3333333	0.475877	0.524123	-324	2508	-2832	5340
457	457^{1}	Y	Y	-2	0	1.0000000	0.474836	0.525164	-326	2508	-2834	5342
458	$2^{1}229^{1}$	Y	N	5	0	1.0000000	0.475983	0.524017	-321	2513	-2834	5347
459	3^317^1	N	N	9	4	1.5555556	0.477124	0.522876	-312	2522	-2834	5356
460	$2^25^123^1$	N	N	30	14	1.1666667	0.478261	0.521739	-282	2552	-2834	5386
461	461 ¹	Y	Y	-2	0	1.0000000	0.477223	0.522777	-284	2552	-2836	5388
462	$2^{1}3^{1}7^{1}11^{1}$	Y	N	65	0	1.0000000	0.478355	0.521645	-219	2617	-2836	5453
463	463 ¹	Y	Y	-2	0	1.0000000	0.477322	0.522678	-221	2617	-2838	5455
464	2^429^1	N	N	-11	6	1.8181818	0.476293	0.523707	-232	2617	-2849	5466
465	$3^{1}5^{1}31^{1}$	Y	N	-16	0	1.0000000	0.475269	0.524731	-248	2617	-2865	5482
466	$2^{1}233^{1}$	Y	N	5	0	1.0000000	0.476395	0.523605	-243	2622	-2865	5487
467	467^{1}	Y	Y	-2	0	1.0000000	0.475375	0.524625	-245	2622	-2867	5489
468	$2^23^213^1$	N	N	-74	58	1.2162162	0.474359	0.525641	-319	2622	-2941	5563
469	$7^{1}67^{1}$	Y	N	5	0	1.0000000	0.475480	0.524520	-314	2627	-2941	5568
470	$2^{1}5^{1}47^{1}$	Y	N	-16	0	1.0000000	0.474468	0.525532	-330	2627	-2957	5584
471	$3^{1}157^{1}$	Y	N	5	0	1.0000000	0.475584	0.524416	-325	2632	-2957	5589
472	$2^{3}59^{1}$	N	N	9	4	1.5555556	0.476695	0.523305	-316	2641	-2957	5598
473	$11^{1}43^{1}$	Y	N	5	0	1.0000000	0.477801	0.522199	-311	2646	-2957	5603
474	$2^{1}3^{1}79^{1}$	Y	N	-16	0	1.0000000	0.476793	0.523207	-327	2646	-2973	5619
475	$5^{2}19^{1}$	N	N	-7	2	1.2857143	0.475789	0.524211	-334	2646	-2980	5626
476	$2^{2}7^{1}17^{1}$	N	N	30	14	1.1666667	0.476891	0.523109	-304	2676	-2980	5656
477	3^253^1	N	N	-7	2	1.2857143	0.475891	0.524109	-311	2676	-2987	5663
478	$2^{1}239^{1}$	Y	N	5	0	1.0000000	0.476987	0.523013	-306	2681	-2987	5668
479	479^{1}	Y	Y	-2	0	1.0000000	0.475992	0.524008	-308	2681	-2989	5670
480	$2^{5}3^{1}5^{1}$	N	N	-96	80	1.6666667	0.475000	0.525000	-404	2681	-3085	5766
481	$13^{1}37^{1}$	Y	N	5	0	1.0000000	0.476091	0.523909	-399	2686	-3085	5771
482	$2^{1}241^{1}$	Y	N	5	0	1.0000000	0.477178	0.522822	-394	2691	-3085	5776
483	$3^{1}7^{1}23^{1}$	Y	N	-16	0	1.0000000	0.476190	0.523810	-410	2691	-3101	5792
484	$2^{2}11^{2}$	N	N	14	9	1.3571429	0.477273	0.522727	-396	2705	-3101	5806
485	$5^{1}97^{1}$	Y	N	5	0	1.0000000	0.478351	0.521649	-391	2710	-3101	5811
486	$2^{1}3^{5}$	N	N	13	8	2.0769231	0.479424	0.520576	-378	2723	-3101	5824
487	487^{1}	Y	Y	-2	0	1.0000000	0.478439	0.521561	-380	2723	-3103	5826
488	2^361^1	N	N	9	4	1.5555556	0.479508	0.520492	-371	2732	-3103	5835
489	3^1163^1	Y	N	5	0	1.0000000	0.480573	0.519427	-366	2737	-3103	5840
490	$2^15^17^2$	N	N	30	14	1.1666667	0.481633	0.518367	-336	2767	-3103	5870
491	491^{1}	Y	Y	-2	0	1.0000000	0.480652	0.519348	-338	2767	-3105	5872
492	$2^23^141^1$	N	N	30	14	1.1666667	0.481707	0.518293	-308	2797	-3105	5902
493	$17^{1}29^{1}$	Y	N	5	0	1.0000000	0.482759	0.517241	-303	2802	-3105	5907
494	$2^113^119^1$	Y	N	-16	0	1.0000000	0.481781	0.518219	-319	2802	-3121	5923
495	$3^25^111^1$	N	N	30	14	1.1666667	0.482828	0.517172	-289	2832	-3121	5953
496	2^431^1	N	N	-11	6	1.8181818	0.481855	0.518145	-300	2832	-3132	5964
497	7^171^1	Y	N	5	0	1.0000000	0.482897	0.517103	-295	2837	-3132	5969
	$2^{1}3^{1}83^{1}$	Y	N	-16	0	1.0000000	0.481928	0.518072	-311	2837	-3148	5985
498	2 3 83											
498 499	499^{1}	Y	Y	-2	0	1.0000000	0.480962	0.519038	-313	2837	-3150	5987