

Relations Ex 1.2 Q9

(i) We have, L is the set of lines.

 $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$ be a relation on L

Now,

Reflexivity: Let L₁ ∈ L

Since a line is always parallel to itself.

 $\therefore \qquad \left(L_1, L_2\right) \in R$

⇒ R is reflexive

Symmetric: Let $L_1, L_2 \in L$ and $(L_1, L_2) \in R$

 \Rightarrow L_1 is parallel to L_2

 \Rightarrow L_2 is parallel to L_1

 \Rightarrow $(L_1, L_2) \in R$

⇒ R is symmetric

Transitive: Let L_1, L_2 and $L_3 \in L$ such that $(L_1, L_2) \in R$ and $(L_2, L_3) \in R$

 \Rightarrow L_1 is parallel to L_2 and L_2 is parallel to L_3

 \Rightarrow L_1 is parallel to L_3

 \Rightarrow $(L_1, L_3) \in R$

⇒ R is transitive

Since, R is reflexive, symmetric and transitive, so R is an equivalence relation.

(ii) The set of lines parallel to the line y = 2x + 4 is y = 2x + c For all $c \in R$

Where R is the set of real numbers.

Relations Ex 1.2 Q10

 $\mathsf{R} = \{(\mathsf{P}_1,\,\mathsf{P}_2)\!\colon \mathsf{P}_1 \text{ and } \mathsf{P}2 \text{ have same the number of sides}\}$

R is reflexive since (P $_{1\!\!D}$ P $_{1\!\!D}$) \in R as the same polygon has the same number of sides with

itself.

Let $(P_1, P_2) \in R$.

⇒ P₁ and P₂have the same number of sides.

 \Rightarrow P $_{2}$ and P $_{1}$ have the same number of sides.

 $\Rightarrow (\mathsf{P_3}\;\mathsf{P_1}) \in \mathsf{R}$

∴R is symmetric.

Now

Let (P_1, P_2) , $(P_2, P3) \in R$.

 \Rightarrow P_1 and P_2 have the same number of sides. Also, P_2 and P3 have the same number of sides.

 \Rightarrow P₁ and P3 have the same number of sides.

 $\Rightarrow (\text{P}_{\text{1}\text{b}} \; \text{P3}) \in \text{R}$

∴R is transitive.

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are

those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in Δ related to triangle T is the set of all triangles.

Let A be set of points on plane.

Let $R = \{(P,Q): OP = OQ\}$ be a relation on A where O is the origin.

To prove ${\cal R}$ is an equivalence relation, we need to show that ${\cal R}$ is reflexive, symmetric and transitive on ${\cal A}.$

Now,

Reflexivity: Let $p \in A$

Since
$$OP = OP \Rightarrow (P, P) \in R$$

⇒ R is reflexive

Symmetric: Let $(P,Q) \in R$ for $P,Q \in A$

Then
$$OP = OQ$$

$$\Rightarrow$$
 OQ = OP

$$\Rightarrow$$
 $(Q,P) \in R$

⇒ R is symmetric

Transitive: Let $(P,Q) \in R$ and $(Q,S) \in R$

$$\Rightarrow$$
 OP = OQ and OQ = OS

$$\Rightarrow$$
 OP = OS

$$\Rightarrow$$
 $(P,S) \in R$

⇒ R is transitive

Thus, R is an equivalence relation on A

Relations Ex 1.2 Q12

Given A=(1,2,3,4,5,6,7) and R= $\{(a,b)$:both a and b are either odd or even number} Therefore,

 $\begin{aligned} \mathsf{R} &= &\{(1,1), (1,3), (1,5), (1,6), (3,3), (3,5), (3,7), (5,5), (5,7), (7,7), (7,5), (7,3), (5,3), (6,1), (5,1), (3,1), \\ &(2,2), (2,4), (2,6), (4,4), (4,6), (6,6), (6,4), (6,2), (4,2)\} \end{aligned}$

Form the relation Rit is seen that Ris symmetric, reflective and transitive also. Therefore Ris an equivalent

From the relation R it is seen that $\{1,3,5,7\}$ are related with each other only and $\{2,4,6\}$ are related with each other

******** END *******