6'un 13'-1

SEQUENCE LISTING

(1)	GENERAL	INFORMATION:

5

(i) APPLICANT:

- (A) NAME: Akzo nobel n.v.
- (B) STREET: Velperweg 76
- (C) CITY: Arnhem

10

- (E) COUNTRY: The Netherlands
- (F) POSTAL CODE (ZIP): 6824 BM
- (G) TELEPHONE: 0412-666379
- (H) TELEFAX: 0412-650592
- (I) TELEX: 37503 akpha nl

15

- (ii) TITLE OF INVENTION: Novel estrogen receptor
- (iii) NUMBER OF SEQUENCES: 28

20

- (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)

25

30

- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1434 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ATGAATTACA GCATTCCCAG CAATGTCACT AACTTGGAAG GTGGGCCTGG TCGGCAGACC 60 ACAAGCCCAA ATGTGTTGTG GCCAACACCT GGGCACCTTT CTCCTTTAGT GGTCCATCGC 120 CAGTTATCAC ATCTGTATGC GGAACCTCAA AAGAGTCCCT GGTGTGAAGC AAGATCGCTA 180 GAACACCCT TACCTGTAAA CAGAGAGACA CTGAAAAGGA AGGTTAGTGG GAACCGTTGC GCCAGCCCTG TTACTGGTCC AGGTTCAAAG AGGGATGCTC ACTTCTGCGC TGTCTGCAGC 300 GATTACGCAT CGGGATATCA CTATGGAGTC TGGTCGTGTG AAGGATGTAA GGCCTTTTTT 360 AAAAGAAGCA TTCAAGGACA TAATGATTAT ATTTGTCCAG CTACAAATCA GTGTACAATC 420 GATAAAAACC GGCGCAAGAG CTGCCAGGCC TGCCGACTTC GGAAGTGTTA CGAAGTGGGA 480 ATGGTGAAGT GTGGCTCCCG GAGAGAGAGA TGTGGGTACC GCCTTGTGCG GAGACAGAGA 540 AGTGCCGACG AGCAGCTGCA CTGTGCCGGC AAGGCCAAGA GAAGTGGCGG CCACGCGCCC 600 CGAGTGCGGG AGCTGCTGCT GGACGCCCTG AGCCCCGAGC AGCTAGTGCT CACCCTCCTG 660 GAGGCTGAGC CGCCCCATGT GCTGATCAGC CGCCCCAGTG CGCCCTTCAC CGAGGCCTCC 720 ATGATGATGT CCCTGACCAA GTTGGCCGAC AAGGAGTTGG TACACATGAT CAGCTGGGCC 780 AAGAAGATTC CCGGCTTTGT GGAGCTCAGC CTGTTCGACC AAGTGCGGCT CTTGGAGAGC 840 TGTTGGATGG AGGTGTTAAT GATGGGGGCTG ATGTGGCGCT CAATTGACCA CCCCGGCAAG 900 CTCATCTTTG CTCCAGATCT TGTTCTGGAC AGGGATGAGG GGAAATGCGT AGAAGGAATT 960 CTGGAAATCT TTGACATGCT CCTGGCAACT ACTTCAAGGT TTCGAGAGTT AAAACTCCAA 1020 CACAAAGAAT ATCTCTGTGT CAAGGCCATG ATCCTGCTCA ATTCCAGTAT GTACCCTCTG 1080 GTCACAGCGA CCCAGGATGC TGACAGCAGC CGGAAGCTGG CTCACTTGCT GAACGCCGTG 1140

10

15

20

25

30

ACCGATGCTT TGGTTTGGGT GATTGCCAAG AGCGGCATCT CCTCCCAGCA GCAATCCATG 1200

CGCCTGGCTA ACCTCCTGAT GCTCCTGTCC CACGTCAGGC ATGCGAGTAA CAAGGGCATG 1260

GAACATCTGC TCAACATGAA GTGCAAAAAT GTGGTCCCAG TGTATGACCT GCTGCTGGAG 1320

ATGCTGAATG CCCACGTGCT TCGCGGGTGC AAGTCCTCCA TCACGGGGTC CGAGTGCAGC 1380

CCGGCAGAGG ACAGTAAAAG CAAAGAGGGC TCCCAGAACC CACAGTCTCA GTGA 1434

(2) INFORMATION FOR SEQ ID NO: 2:

5

10

25

30

35

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 1251 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: double
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

ATGAATTACA GCATTCCCAG CAATGTCACT AACTTGGAAG GTGGGCCTGG TCGGCAGACC 60 ACAAGCCCAA ATGTGTTGTG GCCAACACCT GGGCACCTTT CTCCTTTAGT GGTCCATCGC 120 CAGTTATCAC ATCTGTATGC GGAACCTCAA AAGAGTCCCT GGTGTGAAGC AAGATCGCTA 180 GAACACACCT TACCTGTAAA CAGAGAGACA CTGAAAAGGA AGGTTAGTGG GAACCGTTGC 240 GCCAGCCCTG TTACTGGTCC AGGTTCAAAG AGGGATGCTC ACTTCTGCGC TGTCTGCAGC 300 GATTACGCAT CGGGATATCA CTATGGAGTC TGGTCGTGTG AAGGATGTAA GGCCTTTTTT 360 AAAAGAAGCA TTCAAGGACA TAATGATTAT ATTTGTCCAG CTACAAATCA GTGTACAATC 420 GATAAAAACC GGCGCAAGAG CTGCCAGGCC TGCCGACTTC GGAAGTGTTA CGAAGTGGGA 480 ATGGTGAAGT GTGGCTCCCG GAGAGAGAGA TGTGGGTACC GCCTTGTGCG GAGACAGAGA 540 AGTGCCGACG AGCAGCTGCA CTGTGCCGGC AAGGCCAAGA GAAGTGGCGG CCACGCGCCC 600 CGAGTGCGGG AGCTGCTGCT GGACGCCCTG AGCCCCGAGC AGCTAGTGCT CACCCTCCTG 660 GAGGCTGAGC CGCCCCATGT GCTGATCAGC CGCCCCAGTG CGCCCTTCAC CGAGGCCTCC 720 ATGATGATGT CCCTGACCAA GTTGGCCGAC AAGGAGTTGG TACACATGAT CAGCTGGGCC 780 AAGAAGATTC CCGGCTTTGT GGAGCTCAGC CTGTTCGACC AAGTGCGGCT CTTGGAGAGC TGTTGGATGG AGGTGTTAAT GATGGGGCTG ATGTGGCGCT CAATTGACCA CCCCGGCAAG 900 CTCATCTTTG CTCCAGATCT TGTTCTGGAC AGGGATGAGG GGAAATGCGT AGAAGGAATT 960 CTGGAAATCT TTGACATGCT CCTGGCAACT ACTTCAAGGT TTCGAGAGTT AAAACTCCAA 1020 CACAAAGAAT ATCTCTGTGT CAAGGCCATG ATCCTGCTCA ATTCCAGTAT GTACCCTCTG 1080 GTCACAGCGA CCCAGGATGC TGACAGCAGC CGGAAGCTGG CTCACTTGCT GAACGCCGTG 1140 ACCGATGCTT TGGTTTGGGT GATTGCCAAG AGCGGCATCT CCTCCCAGCA GCAATCCATG 1200 CGCCTGGCTA ACCTCCTGAT GCTCCTGTCC CACGTCAGGC ATGCGAGGTG A 1251

(2) INFORMATION FOR SEQ ID NO: 3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 66 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

35

25

30

5

	(xi)	SEQU	JENCE	E DES	SCRIE	OITS	1: SE	EQ II	NO:	: 3:						
5	Cys 1	Ala	Val	Cys	Ser 5	Asp	Туr	Ala	Ser	Gly 10	Туr	His	Tyr	Gly	Val 15	Trp
J	Ser	Cys	Glu	Gly 20	Cys	Lys	Ala	Phe	Phe 25	Lys	Arg	Ser	Ile	Gln 30	Gly	His
10	Asn	Asp	Tyr 35	Ile	Cys	Pro	Ala	Thr 40	Asn	Gln	Cys	Thr	Ile 45	Asp	Lys	Asn
	Arg	Arg 50	Lys	Ser	Cys	Gln	Ala 55	Cys	Arg	Leu	Arg	Lys 60	Cys	Tyr	Glu	Val
1. 15	Gly 65	Met														
	(2) INFO	RMATI	ON F	OR S	EQ I	D NC	: 4:									
20	(i)	(B)	LEN TYF STF	IGTH: PE: a	233 mino EDNES	ami aci	.no a .d singl	cids	;							
25	(ii)	MOLE	CULE	E TYE	PE: p	pepti	lde									
30	(xi)	SEQU	JENCE	E DES	SCRI	PTIO	N: SI	EQ II	O NO:	: 4:						
	Leu 1	Val	Leu	Thr	Leu 5	Leu	Glu	Ala	Glu	Pro 10	Pro	His	Val	Leu	Ile 15	Ser
35	Arg	Pro	Ser	Ala 20	Pro	Phe	Thr	Glu	Ala 25	Ser	Met	Met	Met	Ser 30	Leu	Thr
	Lys	Leu	Ala 35	Asp	Lys	Glu	Leu	Val 40	His	Met	Ile	Ser	Trp 45	Ala	Lys	Lys

		Ile	Pro 50	Gly	Phe	Val	Glu	Leu 55	Ser	Leu	Phe	Asp	Gln 60	Val	Arg	Leu	Leu
	5	Glu 65	Ser	Cys	Trp	Met	Glu 70	Val	Leu	Met	Met	Gly 75	Leu	Met	Trp	Arg	Ser 80
	10	Ile	Asp	His	Pro	Gly 85	Lys	Leu	Ile	Phe	Ala 90	Pro	Asp	Leu	Val	Leu 95	Asp
		Arg	Asp	Glu	Gly 100	Lys	Cys	Val	Glu	Gly 105	Ile	Leu	Glu	Ile	Phe 110	Asp	Met
	15	Leu	Leu	Ala 115	Thr	Thr	Ser	Arg	Phe 120	Arg	Glu	Leu	Lys	Leu 125	Gln	His	Lys
		Glu	Tyr 130	Leu	Cys	Val	Lys	Ala 135	Met	Ile	Leu	Leu	Asn 140	Ser	Ser	Met	Tyr
	20	Pro 145	Leu	Val	Thr	Ala	Thr 150	Gln	Asp	Ala	Asp	Ser 155	Ser	Arg	Lys	Leu	Ala 160
÷ 2	25	His	Leu	Leu	Asn	Ala 165	Val	Thr	Asp	Ala	Leu 170	Val	Trp	Val	Ile	Ala 175	Lys
		Ser	Gly	Ile	Ser 180	Ser	Gln	Gln	Gln	Ser 185	Met	Arg	Leu	Ala	As n 190	Leu	Leu
3	30	Met	Leu	Leu 195	Ser	His	Val	Arg	His 200	Ala	Ser	Asn	Lys	Gly 205	Met	Glu	His
		Leu	Leu 210	Asn	Met	Lys	Cys	Lys 215	Asn	Val	Val	Pro	Val 220	Tyr	Asp	Leu	Leu
,	35	Leu 225	Glu	Met	Leu	Asn	Ala 230	His	Val	Leu							

(i) SEQUENCE CHARACTERISTICS:

	5		(B) LE) TY) ST) TO	PE: RAND	amin EDNE	o ac	id sing		S							
		(ii)	MOL	ECUL:	Е ТҮ	PE:	prot	ein									
	10	(xi)	SEQ	UENCI	E DE:	SCRI	PTIO	N: S	EQ I	р и о	: 5:						
7 22 2 25 2 25 2 7 77 42	15	Met 1	Asn	Tyr	Ser	Ile 5	Pro	Ser	Asn	Val	Thr 10	Asn	Leu	Glu	Gly	Gly 15	Pro
20 (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c			Arg		20					25					30		
	20		Ser	35					40					45			
E- E	25		50 Val					55					60				
		65	Ser				70					75					80
	30		Val			85					90					95	-
			Glu		100					105					110		
	35			115					120					125			
		vsh	Tyr 130	116	СУБ	FIO	Λια	135	Mali	GIII	Cys	THE	11e 140	Asp	ьys	Asn	Arg

	Arg 145	Lys	Ser	Cys	Gln	Ala 150	Cys	Arg	Leu	Arg	Lys 155	Cys	Tyr	Glu	Val	Gly 160
5	Met	Val	Lys	Cys	Gly 165	Ser	Arg	Arg	Glu	Arg 170	Cys	Gly	Tyr	Arg	Leu 175	Val
	Arg	Arg	Gln	A rg 180	Ser	Ala	Asp	Glu	Gln 185	Leu	His	Cys	Ala	Gly 190	Lys	Ala
10	Lys	Arg	Ser 195	Gly	Gly	His	Ala	Pro 200	Arg	Val	Arg	Glu	Leu 205	Leu	Leu	Asp
	Ala	Leu 210	Ser	Pro	Glu	Gln	Leu 215	Val	Leu	Thr	Leu	Leu 220	Glu	Ala	Glu	Pro
15	Pro 225	His	Val	Leu	Ile	Ser 230	Arg	Pro	Ser	Ala	Pro 235	Phe	Thr	Glu	Ala	Ser 240
20	Met	Met	Met	Ser	Leu 245	Thr	Lys	Leu	Ala	Asp 250	Lys	Glu	Leu	Val	His 255	Met
	Ile	Ser	Trp	Ala 260	Lys	Lys	Ile	Pro	Gly 265	Phe	Val	Glu	Leu	Ser 270	Leu	Phe
25	Asp	Gln	Val 275	Arg	Leu	Leu	Glu	Ser 280	Суѕ	Trp	Met	Glu	Val 285	Leu	Met	Met
30	Gly	Leu 290	Met	Trp	Arg	Ser	Ile 295	Asp	His	Pro	Gly	Lys 300	Leu	Ile	Phe	Ala
	Pro 305	Asp	Leu	Val	Leu	Asp 310	Arg	Asp	Glu	Gly	Lys 315	Cys	Val	Glu	Gly	Ile 320
35	Leu	Glu	Ile	Phe	Asp 325	Met	Leu	Leu	Ala	Thr 330	Thr	Ser	Arg	Phe	Arg 335	Glu .
	Leu	Lys	Leu	Gln 340	His	Lys	Glu	Tyr	Leu 345	Cys	Val	Lys	Ala	Met 350	Ile	Leu

Leu Asn Ser Ser Met Tyr Pro Leu Val Thr Ala Thr Gln Asp Ala Asp Ser Ser Arg Lys Leu Ala His Leu Leu Asn Ala Val Thr Asp Ala Leu Val Trp Val Ile Ala Lys Ser Gly Ile Ser Ser Gln Gln Gln Ser Met Arg Leu Ala Asn Leu Leu Met Leu Leu Ser His Val Arg His Ala Ser Asn Lys Gly Met Glu His Leu Leu Asn Met Lys Cys Lys Asn Val Val Pro Val Tyr Asp Leu Leu Leu Glu Met Leu Asn Ala His Val Leu Arg Gly Cys Lys Ser Ser Ile Thr Gly Ser Glu Cys Ser Pro Ala Glu Asp . 20 Ser Lys Ser Lys Glu Gly Ser Gln Asn Pro Gln Ser Gln (2) INFORMATION FOR SEQ ID NO: 6: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 416 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Met Asn Tyr Ser Ile Pro Ser Asn Val Thr Asn Leu Glu Gly Pro

٧.

Gly Arg Gln Thr Thr Ser Pro Asn Val Leu Trp Pro Thr Pro Gly His Leu Ser Pro Leu Val Val His Arg Gln Leu Ser His Leu Tyr Ala Glu Pro Gln Lys Ser Pro Trp Cys Glu Ala Arg Ser Leu Glu His Thr Leu Pro Val Asn Arg Glu Thr Leu Lys Arg Lys Val Ser Gly Asn Arg Cys Ala Ser Pro Val Thr Gly Pro Gly Ser Lys Arg Asp Ala His Phe Cys Ala Val Cys Ser Asp Tyr Ala Ser Gly Tyr His Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe Phe Lys Arg Ser Ile Gln Gly His Asn Asp Tyr Ile Cys Pro Ala Thr Asn Gln Cys Thr Ile Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys Arg Leu Arg Lys Cys Tyr Glu Val Gly Met Val Lys Cys Gly Ser Arg Arg Glu Arg Cys Gly Tyr Arg Leu Val Arg Arg Gln Arg Ser Ala Asp Glu Gln Leu His Cys Ala Gly Lys Ala Lys Arg Ser Gly Gly His Ala Pro Arg Val Arg Glu Leu Leu Leu Asp Ala Leu Ser Pro Glu Gln Leu Val Leu Thr Leu Leu Glu Ala Glu Pro •

			210					215					220				
	5	Pro 225	His	Val	Leu	Ile	Ser 230	Arg	Pro	Ser	Ala	Pro 235	Phe	Thr	Glu	Ala	Ser 240
	J	Met	Met	Met	Ser	Leu 2 4 5	Thr	Lys	Leu	Ala	Asp 250	Lys	Glu	Leu	Val	His 255	Met
	10	Ile	Ser	Trp	Ala 260	Lys	Lys	Ile	Pro	Gly 265	Phe	Val	Glu	Leu	Ser 270	Leu	Phe
143 1181 1181		Asp	Gln	Val 275	Arg	Leu	Leu	Glu	Ser 280	Cys	Trp	Met	Glu	Val 285	Leu	Met	Met
5, 12 	15	Gly	Leu 290	Met	Trp	Arg	Ser	Ile 295	Asp	His	Pro	Gly	Lys 300	Leu	Ile	Phe	Ala
5.055. 5.0 20.00 5.050. 5.050. 5.050.	20	Pro 305	Asp	Leu	Val	Leu	Asp 310	Arg	Asp	Glu	Gly	Lys 315	Cys	Val	Glu	Gly	Ile 320
		Leu	Glu	Ile	Phe	Asp 325	Met	Leu	Leu	Ala	Thr 330	Thr	Ser	Arg	Phe	Arg 335	Glu
5 77	25	Leu	Lys	Leu	Gln 340	His	Lys	Glu	Tyr	Leu 345	Cys	Val	Lys	Ala	Met 350	Ile	Leu
		Leu	Asn	Ser 355	Ser	Met	Tyr	Pro	Leu 360	Val	Thr	Ala	Thr	Gln 365	Asp	Ala	Asp
	30		370	-	Lys			375			\	\	380				
	35	385			Ile		390					2 98					400
		Arg	Leu	Ala	Asn	Leu 405	Leu	Met	Leu	Leu	Ser 410	His	Val	Arg	His	Ala 415	Arg

	(2) INFORMATION FOR SEQ ID NO: 7:	
5	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: both(D) TOPOLOGY: unknown	
10	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 7:	
15	GGIGAYGARG CWTCIGGITG YCAYTAYGG	29
	(2) INFORMATION FOR SEQ ID NO: 8:	
20	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 29 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
25	(ii) MOLECULE TYPE: cDNA	
30	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 8:	
	AAGCCTGGSA YICKYTTIGC CCAIYTIAT	29
	(2) INFORMATION FOR SEQ ID NO: 9:	••
35	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	·

		(ii) MOLECULE TYPE: cDNA	
	5		
	J	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 9:	
		TGTTACGAAG TGGGAATGGT GA	22
	10	(2) INFORMATION FOR SEQ ID NO: 10:	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 24 base pairs	
		(B) TYPE: nucleic acid	
	15	(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: cDNA	
: · ·			
: : ::	20		
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 10:	
		TTGACACCAG ACCAACTGGT AATG	24
	25		
		(2) INFORMATION FOR SEQ ID NO: 11:	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 24 base pairs	
	30	(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: cDNA	• .
	35	(11, 1,0113011 1111 1111	•
	33		

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

	GGTGGCGACG ACTCCTGGAG CCCG	24
	(2) INFORMATION FOR SEQ ID NO: 12:	
5	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 22 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
	(D) TOPOLOGY: linear	
LO	(ii) MOLECULE TYPE: cDNA	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
	GTACACTGAT TTGTAGCTGG AC	22
20	(2) INFORMATION FOR SEQ ID NO: 13:	
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESS: single	
25	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: cDNA	
30		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:	
	CCATGATGAT GTCCCTGACC	20
35	(2) INFORMATION FOR SEQ ID NO: 14:	•
	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 20 base pairs	
	(B) TYPE: nucleic acid	

(C) STRANDEDNESS: single

	(D) TOPOLOGY: linear	
5	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 14:	
10	TCGCATGCCT GACGTGGGAC	20
	(2) INFORMATION FOR SEQ ID NO: 15:	
15	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 24 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
20	(ii) MOLECULE TYPE: cDNA	
25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15:	24
	(2) INFORMATION FOR SEQ ID NO: 16:	
30	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	•
35		

(ii) MOLECULE TYPE: cDNA

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:	
	GGAAGCTGGC TCACTTGCTG	20
5	(2) INFORMATION FOR SEQ ID NO: 17:	
10	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 	
	(ii) MOLECULE TYPE: cDNA	
15		
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:	
20	TCTTGTTCTG GACAGGGATG	20
20	(2) INFORMATION FOR SEQ ID NO: 18:	
25	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 20 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
30	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:	
35	GCATGGAACA TCTGCTCAAC	20
	(2) INFORMATION FOR SEQ ID NO: 19:	

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 21 base pairs

		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	5		
		(ii) MOLECULE TYPE: cDNA	
	10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:	
		AGCAAGTTCA GCCTGTTAAG T	21
			2.1
		(2) INFORMATION FOR SEQ ID NO: 20:	
	15	(=, =::=================================	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 1257 base pairs	
		(B) TYPE: nucleic acid	
÷		(C) STRANDEDNESS: double	
1 2 A 1 A	20	(D) TOPOLOGY: linear	
7 L27	20	(b) Totollogi. Illiedi	
		(ii) MOLECULE TYPE: cDNA	
		(II) REBECODE III . CDRA	
1 -			
	25		
	25	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:	
		(XI) SEQUENCE DESCRIPTION. SEQ ID NO. 20:	
		ATGAATTACA GCATTCCCAG CAATGTCACT AACTTGGAAG GTGGGCCTGG TCGGCAGACC	60
		MODILITION CONTINUES CHIEFOTONICS PROGRESSION CONTINUES SCHOOL CONTINUES CON	80
	30	ACAAGCCCAA ATGTGTTGTG GCCAACACCT GGGCACCTTT CTCCTTTAGT GGTCCATCGC	120
		THE PROPERTY OF THE PROPERTY O	120
		CAGTTATCAC ATCTGTATGC GGAACCTCAA AAGAGTCCCT GGTGTGAAGC AAGATCGCTA	180
		The state of the s	100
		GAACACACCT TACCTGTAAA CAGAGAGACA CTGAAAAGGA AGGTTAGTGG GAACCGTTGC	,240
	35		J240
		GCCAGCCCTG TTACTGGTCC AGGTTCAAAG AGGGATGCTC ACTTCTGCGC TGTCTGCAGC	300
		The first series is a first first from the first series and the first series and the first series are the first series and the first series and the first series are the first se	300
		GATTACGCAT CGGGATATCA CTATGGAGTC TGGTCGTGTG AAGGATGTAA GGCCTTTTTT	360
		STATES OF THE COUNTY OF THE CONTROL OF THE COUNTY OF THE C	360

AAAAGAAGCA TTCAAGGACA TAATGATTAT ATTTGTCCAG CTACAAATCA GTGTACAATC 420 GATAAAAACC GGCGCAAGAG CTGCCAGGCC TGCCGACTTC GGAAGTGTTA CGAAGTGGGA 480 ATGGTGAAGT GTGGCTCCCG GAGAGAGAGA TGTGGGTACC GCCTTGTGCG GAGACAGAGA 540 AGTGCCGACG AGCAGCTGCA CTGTGCCGGC AAGGCCAAGA GAAGTGGCGG CCACGCGCCC 600 CGAGTGCGGG AGCTGCTGCT GGACGCCCTG AGCCCCGAGC AGCTAGTGCT CACCCTCTG 660 GAGGCTGAGC CGCCCCATGT GCTGATCAGC CGCCCCAGTG CGCCCTTCAC CGAGGCCTCC 720 ATGATGATGT CCCTGACCAA GTTGGCCGAC AAGGAGTTGG TACACATGAT CAGCTGGGCC 780 AAGAAGATTC CCGGCTTTGT GGAGCTCAGC CTGTTCGACC AAGTGCGGCT CTTGGAGAGC 840 TGTTGGATGG AGGTGTTAAT GATGGGGCTG ATGTGGCGCT CAATTGACCA CCCCGGCAAG 900 CTCATCTTTG CTCCAGATCT TGTTCTGGAC AGGGATGAGG GGAAATGCGT AGAAGGAATT 960 CTGGAAATCT TTGACATGCT CCTGGCAACT ACTTCAAGGT TTCGAGAGTT AAAACTCCAA 1020 CACAAAGAAT ATCTCTGTGT CAAGGCCATG ATCCTGCTCA ATTCCAGTAT GTACCCTCTG 1080 GTCACAGCGA CCCAGGATGC TGACAGCAGC CGGAAGCTGG CTCACTTGCT GAACGCCGTG 1140 ACCGATGCTT TGGTTTGGGT GATTGCCAAG AGCGGCATCT CCTCCCAGCA GCAATCCATG 1200 CGCCTGGCTA ACCTCCTGAT GCTCCTGTCC CACGTCAGGC ATGCGAGGTC TGCCTGA 1257

(2) INFORMATION FOR SEQ ID NO: 21:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 418 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

35

30

5

10

15

20

		(xi)	SEQ	UENC:	E DE	SCRI	PTIO	N: S	EQ I	D NO	: 21	:					
	5	Mot	λan	m	°	Tla	D == 0	C	7	17-1	ա ե	7	T	G1	61	G1	5
		1	Asn	TYL	ser	5	PIO	ser	ASII	Val	10	ASII	Leu	GIU	GIY	15	Pro
	10	Gly	Arg	Gln	Thr 20	Thr	Ser	Pro	Asn	Val 25	Leu	Trp	Pro	Thr	Pro 30	Gly	His
		Leu	Ser	Pro 35	Leu	Val	Val	His	Arg 40	Gln	Leu	Ser	His	Leu 45	Tyr	Ala	Glu
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15	Pro	Gln 50	Lys	Ser	Pro	Trp	Суs 55	Glu	Ala	Arg	Ser	Leu 60	Glu	His	Thr	Leu
	20	Pro 65	Val	Asn	Arg	Glu	Thr 70	Leu	Lys	Arg	Lys	Val 75	Ser	Gly	Asn	Arg	Cys 80
anda annua a annua a a annua a a a	20	Ala	Ser	Pro	Val	Thr 85	Gly	Pro	Gly	Ser	Lys 90	Arg	Asp	Ala	His	Phe 95	Cys
Suk Till	25	Ala	Val	Cys	Ser 100	Asp	туг	Ala	Ser	Gly 105	Tyr	His	Tyr	Gly	Val 110	Trp	Ser
		Cys	Glu	Gly 115	Cys	Lys	Ala	Phe	Phe 120	Lys	Arg	Ser	Ile	Gln 125	Gly	His	Asn
	30	Asp	Tyr 130	Ile	Cys	Pro	Ala	Thr 135	Asn	Gln	C y s	Thr	Ile 140	Asp	Lys	Asn	Arg
	35	Arg 145	Lys	Ser	Cys	Gln	Ala 150	Cys	Arg	Leu	Arg	L ys 1 5 5	Cys	Tyr	Glu	Val	Gly 160
		Met	Val	Lys	Cys	Gly 165	Ser	Arg	Arg	Glu	Arg 170	Cys	Gly	Tyr	Arg	Leu 175	Val
		Ara	Ara	Gln	Ara	Ser	Ala	Asp	Glu	Gln	Leu	His	Cvs	Ala	Glv	Lvs	Ala

ζ́

Lys Arg Ser Gly Gly His Ala Pro Arg Val Arg Glu Leu Leu Leu Asp Ala Leu Ser Pro Glu Gln Leu Val Leu Thr Leu Leu Glu Ala Glu Pro Pro His Val Leu Ile Ser Arg Pro Ser Ala Pro Phe Thr Glu Ala Ser Met Met Ser Leu Thr Lys Leu Ala Asp Lys Glu Leu Val His Met Ile Ser Trp Ala Lys Lys Ile Pro Gly Phe Val Glu Leu Ser Leu Phe Asp Gln Val Arg Leu Leu Glu Ser Cys Trp Met Glu Val Leu Met Met Gly Leu Met Trp Arg Ser Ile Asp His Pro Gly Lys Leu Ile Phe Ala Pro Asp Leu Val Leu Asp Arg Asp Glu Gly Lys Cys Val Glu Gly Ile Leu Glu Ile Phe Asp Met Leu Leu Ala Thr Thr Ser Arg Phe Arg Glu Leu Lys Leu Gln His Lys Glu Tyr Leu Cys Val Lys Ala Met Ile Leu Leu Asn Ser Ser Met Tyr Pro Leu Val Thr Ala Thr Gln Asp Ala Asp Ser Ser Arg Lys Leu Ala His Leu Leu Asn Ala Val Thr Asp Ala Leu

Val Trp Val Ile Ala Lys Ser Gly Ile Ser Ser Gln Gln Gln Ser Met

- 49 -

385 390 395 400 Arg Leu Ala Asn Leu Leu Met Leu Leu Ser His Val Arg His Ala Arg 405 410 415 5 Ser Ala (2) INFORMATION FOR SEQ ID NO: 22: 10 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 34 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear 15 (ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22: CTTGGATCCA TAGCCCTGCT GTGATGAATT ACAG 34 (2) INFORMATION FOR SEQ ID NO: 23: 25 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 33 base pairs (B) TYPE: nucleic acid 30 (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: cDNA

35

Ņ

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:

GATGGATCCT CACCTCAGGG CCAGGCGTCA CTG

(2) INFORMATION FOR SEQ ID NO: 24:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1898 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

5

10

15

20

25

30

35

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 24:

CACGAATCTT TGAGAACATT ATAATGACCT TTGTGCCTCT TCTTGCAAGG TGTTTTCTCA 60 GCTGTTATCT CAAGACATGG ATATAAAAAA CTCACCATCT AGCCTTAATT CTCCTTCCTC 120 CTACAACTGC AGTCAATCCA TCTTACCCCT GGAGCACGGC TCCATATACA TACCTTCCTC 180 CTATGTAGAC AGCCACCATG AATATCCAGC CATGACATTC TATAGCCCTG CTGTGATGAA 240 TTACAGCATT CCCAGCAATG TCACTAACTT GGAAGGTGGG CCTGGTCGGC AGACCACAAG 300 CCCAAATGTG TTGTGGCCAA CACCTGGGCA CCTTTCTCCT TTAGTGGTCC ATCGCCAGTT 360 ATCACATCTG TATGCGGAAC CTCAAAAGAG TCCCTGGTGT GAAGCAAGAT CGCTAGAACA 420 CACCTTACCT GTAAACAGAG AGACACTGAA AAGGAAGGTT AGTGGGGAACC GTTGCGCCAG 480 CCCTGTTACT GGTCCAGGTT CAAAGAGGGA TGCTCACTTC TGCGCTGTCT GCAGCGATTA 540 CGCATCGGGA TATCACTATG GAGTCTGGTC GTGTGAAGGA TGTAAGGCCT TTTTTAAAAG 600 AAGCATTCAA GGACATAATG ATTATATTTG TCCAGCTACA AATCAGTGTA CAATCGATAA 660 AAACCGGCGC AAGAGCTGCC AGGCCTGCCG ACTTCGGAAG TGTTACGAAG TGGGAATGGT 720

GAAGTGTGGC TCCCGGAGAG	G AGAGATGTGG	GTACCGCCTT	GTGCGGAGAC	AGAGAAGTGC	780
CGACGAGCAG CTGCACTGTC	G CCGGCAAGGC	CAAGAGAAGT	GGCGGCCACG	CGCCCCGAGT	840
GCGGGAGCTG CTGCTGGACG	CCCTGAGCCC	CGAGCAGCTA	GTGCTCACCC	TCCTGGAGGC	900
TGAGCCGCCC CATGTGCTGA	TCAGCCGCCC	CAGTGCGCCC	TTCACCGAGG	CCTCCATGAT	960
GATGTCCCTG ACCAAGTTGG	CCGACAAGGA	GTTGGTACAC	ATGATCAGCT	GGGCCAAGAA	1020
GATTCCCGGC TTTGTGGAGC	TCAGCCTGTT	CGACCAAGTG	CGGCTCTTGG	AGAGCTGTTG	1080
GATGGAGGTG TTAATGATGG	GGCTGATGTG	GCGCTCAATT	GACCACCCCG	GCAAGCTCAT	1140
CTTTGCTCCA GATCTTGTTC	TGGACAGGGA	TGAGGGGAAA	TGCGTAGAAG	GAATTCTGGA	1200
AATCTTTGAC ATGCTCCTGG	CAACTACTTC	AAGGTTTCGA	GAGTTAAAAC	TCCAACACAA	1260
AGAATATCTC TGTGTCAAGG	CCATGATCCT	GCTCAATTCC	AGTATGTACC	CTCTGGTCAC	1320
AGCGACCCAG GATGCTGACA	GCAGCCGGAA	GCTGGCTCAC	TTGCTGAACG	CCGTGACCGA	1380
TGCTTTGGTT TGGGTGATTG	CCAAGAGCGG	CATCTCCTCC	CAGCAGCAAT	CCATGCGCCT	1440
GGCTAACCTC CTGATGCTCC	TGTCCCACGT	CAGGCATGCG	AGTAACAAGG	GCATGGAACA	1500
TCTGCTCAAC ATGAAGTGCA	AAAATGTGGT	CCCAGTGTAT	GACCTGCTGC	TGGAGATGCT	1560
GAATGCCCAC GTGCTTCGCG	GGTGCAAGTC	CTCCATC AC G	GGGTCCGAGT	GCAGCCCGGC	1620
AGAGGACAGT AAAAGCAAAG	AGGGCTCCCA	GAACCCACAG	TCTCAGTGAC	GCCTGGCCCT	1680
GAGGTGAACT GGCCCACAGA	GGTCACAAGC	TGAAGCGTGA	ACTCCAGTGT	GTCAGGAGCC	1 740
TGGGCTTCAT CTTTCTGCTG	TGTGGTCCCT	CATTTGGTGA	TGGCAGGCTT	GGTCATGTAC	1800
CATCCTTCCC TCCACCTTCC	CAACTCTCAG	GAGTCGGTGT	GAGGAAGCCA	TAGTTTCCCT	1860

TGTTAGCAGA GGGACATTTG AATCGAGCGT TTCCACAC

1898

(2)	INFORMATION	FOR	SEO	TD	NO:	25:

(

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 530 amino acids

(B) TYPE: amino acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:

Met Asp Ile Lys Asn Ser Pro Ser Ser Leu Asn Ser Pro Ser Ser Tyr

1 5 10 15

Asn Cys Ser Gln Ser Ile Leu Pro Leu Glu His Gly Ser Ile Tyr Ile
20 25 30

Pro Ser Ser Tyr Val Asp Ser His His Glu Tyr Pro Ala Met Thr Phe
35 40 45

Tyr Ser Pro Ala Val Met Asn Tyr Ser Ile Pro Ser Asn Val Thr Asn 50 55 60

Leu Glu Gly Gly Pro Gly Arg Gln Thr Thr Ser Pro Asn Val Leu Trp 65 70 75 80

Pro Thr Pro Gly His Leu Ser Pro Leu Val Val His Arg Gln Leu Ser 85 90 95

His Leu Tyr Ala Glu Pro Gln Lys Ser Pro Trp Cys Glu Ala Arg Ser 100 105 110

Leu Glu His Thr Leu Pro Val Asn Arg Glu Thr Leu Lys Arg Lys Val

15

10

5

20

25

30

\

Ser Gly Asn Arg Cys Ala Ser Pro Val Thr Gly Pro Gly Ser Lys Arg Asp Ala His Phe Cys Ala Val Cys Ser Asp Tyr Ala Ser Gly Tyr His Tyr Gly Val Trp Ser Cys Glu Gly Cys Lys Ala Phe Phe Lys Arg Ser Ile Gln Gly His Asn Asp Tyr Ile Cys Pro Ala Thr Asn Gln Cys Thr Ile Asp Lys Asn Arg Arg Lys Ser Cys Gln Ala Cys Arg Leu Arg Lys Cys Tyr Glu Val Gly Met Val Lys Cys Gly Ser Arg Arg Glu Arg Cys Gly Tyr Arg Leu Val Arg Arg Gln Arg Ser Ala Asp Glu Gln Leu His Cys Ala Gly Lys Ala Lys Arg Ser Gly Gly His Ala Pro Arg Val Arg Glu Leu Leu Asp Ala Leu Ser Pro Glu Gln Leu Val Leu Thr Leu Leu Glu Ala Glu Pro Pro His Val Leu Ile Ser Arg Pro Ser Ala Pro Phe Thr Glu Ala Ser Met Met Ser Leu Thr Lys Leu Ala Asp Lys Glu Leu Val His Met Ile Ser Trp Ala Lys Lys Ile Pro Gly Phe Val

Glu Leu Ser Leu Phe Asp Gln Val Arg Leu Leu Glu Ser Cys Trp Met

325 330 335

Glu	Val	Leu	Met	Met	Gly	Leu	Met	Trp	Arg	Ser	Ile	Asp	His	Pro	Gly
			340					345					350		
Lys	Leu	Ile	Phe	Ala	Pro	Asp	Leu	Val	Leu	Asp	Arg	Asp	Glu	Gly	Lys
		3 5 5					360					365			
Cys	Val	Glu	Gly	Ile	Leu	Glu	Ile	Phe	Asp	Met	Leu	Leu	Ala	Thr	Thr
	370					375					380				

Ser Arg Phe Arg Glu Leu Lys Leu Gln His Lys Glu Tyr Leu Cys Val 385 390 395 400

Lys Ala Met Ile Leu Leu Asn Ser Ser Met Tyr Pro Leu Val Thr Ala 405 410 415

Thr Gln Asp Ala Asp Ser Ser Arg Lys Leu Ala His Leu Leu Asn Ala 420 425 430

Val Thr Asp Ala Leu Val Trp Val Ile Ala Lys Ser Gly Ile Ser Ser 435 440 445

Gln Gln Ser Met Arg Leu Ala Asn Leu Leu Met Leu Leu Ser His 450 455 460

Val Arg His Ala Ser Asn Lys Gly Met Glu His Leu Leu Asn Met Lys 465 470 475 480

Cys Lys Asn Val Val Pro Val Tyr Asp Leu Leu Glu Met Leu Asn 485 490 495

Ala His Val Leu Arg Gly Cys Lys Ser Ser Ile Thr Gly Ser Glu Cys 500 505 510

Ser Pro Ala Glu Asp Ser Lys Ser Lys Glu Gly Ser Gln Asn Pro Gln 515 520 525

Ser Gln

4

5

10

15 20

25

30

530

		(2) INFORMATION FOR SEQ ID NO: 26:	
	5	(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 30 base pairs	
		(B) TYPE: nucleic acid	
		(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
	10		
		(ii) MOLECULE TYPE: other nucleic acid	
	15		
	13	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:	
2 5		GTGCGGATCC TCTCAAGACA TGGATATAAA	30
	20	(2) INFORMATION FOR SEQ ID NO: 27:	
		(i) SEQUENCE CHARACTERISTICS:	
		(A) LENGTH: 25 base pairs	
		(B) TYPE: nucleic acid	
	25	(C) STRANDEDNESS: single	
		(D) TOPOLOGY: linear	
		(ii) MOLECULE TYPE: other nucleic acid	
	30		
		(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:	
	35	AGTAACAGGG CTGGCGCAAC GGTTC	25
		(2) INFORMATION FOR SEQ ID NO: 28:	

(i) SEQUENCE CHARACTERISTICS:

- 56 -

(A) LENGTH: 22 base pairs(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: other nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:

ACTGGCGATG GACCACTAAA GG

Ç

5

10

15