Camera Calibration and Photogrammetry

Introduction to Computational Photography: EECS 395/495

Northwestern University

Camera Calibration and Photogrammetry

Method to find a camera's parameters and a method to estimate 3D structure using two cameras.

Topics:

- (1) Linear Camera Model
- (2) Camera Calibration
- (3) Photogrammetry and Stereo

Forward Imaging Model: 3D to 2D

Image Plane Coordinates

 $\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$

Perspective Projection

Camera Coordinates

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

World Coordinates

$$\mathbf{x}_{w} = \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix}$$

Coordinate
Transformation

Forward Imaging Model: 3D to 2D

Image Plane Coordinates

$$\mathbf{x}_i = \begin{bmatrix} x_i \\ y_i \end{bmatrix}$$

Perspective Projection

Camera Coordinates

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

World Coordinates

 $\mathbf{x}_{w} = \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix}$

Coordinate
Transformation

Perspective Projection

We know that:
$$\frac{x_i}{f} = \frac{x_c}{z_c}$$
 and $\frac{y_i}{f} = \frac{y_c}{z_c}$

Therefore:
$$x_i = f \frac{x_c}{z_c}$$
 and $y_i = f \frac{y_c}{z_c}$

Image Plane to Image Sensor Mapping

Pixels may be rectangular.

If m_x and m_y are the pixel densities (ex: pixels/mm) in x and y directions respectively, then pixel coordinates are:

$$u = m_x x_i = m_x f \frac{x_c}{z_c} \qquad \qquad v = m_y y_i = m_y f \frac{y_c}{z_c}$$

Image Plane to Image Sensor Mapping

Image Plane

Image Sensor

We usually treat the top-left corner of the image sensor as its origin (easier for indexing). If the optical axis passes through (o_x, o_y) (Principle Point) on the sensor, then:

$$u = m_{x} f \frac{x_{c}}{z_{c}} + o_{x}$$

$$v = m_y f \frac{y_c}{z_c} + o_y$$

Perspective Projection

$$u = m_{x} f \frac{x_{c}}{z_{c}} + o_{x} \qquad v = m_{y} f \frac{y_{c}}{z_{c}} + o_{y}$$

$$u = f_x \frac{x_c}{z_c} + o_x \qquad \qquad v = f_y \frac{y_c}{z_c} + o_y$$

where: $(f_x, f_y) = (m_x f, m_y f)$ are the focal lengths in pixels in x and y directions, respectively.

 (f_x, f_y, o_x, o_y) : Intrinsic parameters of the camera. They represent the camera's internal geometry.

Perspective Projection

$$u = m_{x} f \frac{x_{c}}{z_{c}} + o_{x} \qquad v = m_{y} f \frac{y_{c}}{z_{c}} + o_{y}$$

$$u = f_x \frac{x_c}{z_c} + o_x \qquad \qquad v = f_y \frac{y_c}{z_c} + o_y$$

Equations for Perspective projection are Non-Linear.

It is often convenient to express them as linear equations.

Homogenous Coordinates

The homogenous representation of a 2D point $\mathbf{u} = (u, v)$ is a 3D point $\widetilde{\mathbf{u}} = (\widetilde{u}, \widetilde{v}, \widetilde{w})$. The third coordinate $\widetilde{w} \neq 0$ is fictitious such that:

$$u = \frac{\widetilde{u}}{\widetilde{w}} \qquad v = \frac{\widetilde{v}}{\widetilde{w}}$$

$$\mathbf{u} \equiv \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{w}u \\ \widetilde{w}v \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \widetilde{\mathbf{u}}$$

Every point on line L (except origin) represents the homogenous coordinate of $\mathbf{u}(u, v)$

Homogenous Coordinates

The homogenous representation of a 3D point $\mathbf{x} = (x, y, z)$ is a 4D point $\tilde{\mathbf{x}} = (\tilde{x}, \tilde{y}, \tilde{z}, \tilde{w})$. The fourth coordinate $\tilde{w} \neq 0$ is fictitious such that:

$$x = \frac{\widetilde{x}}{\widetilde{w}}$$
 $y = \frac{\widetilde{y}}{\widetilde{w}}$ $z = \frac{\widetilde{z}}{\widetilde{w}}$

$$\mathbf{x} \equiv \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{w}x \\ \widetilde{w}y \\ \widetilde{w}z \\ \widetilde{w} \end{bmatrix} \equiv \begin{bmatrix} \widetilde{x} \\ \widetilde{y} \\ \widetilde{z} \\ \widetilde{w} \end{bmatrix} = \widetilde{\mathbf{x}}$$

Perspective Projection in Homogenous Coordinates

Perspective projection equations:

$$u = f_x \frac{x_c}{z_c} + o_x \qquad \qquad v = f_y \frac{y_c}{z_c} + o_y$$

Homogenous coordinates of (u, v):

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} \equiv \begin{bmatrix} z_c u \\ z_c v \\ z_c \end{bmatrix} = \begin{bmatrix} f_x x_c + z_c o_x \\ f_y y_c + z_c o_y \\ z_c \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

where: $(u, v) = (\tilde{u}/_{\widetilde{w}}, \tilde{v}/_{\widetilde{w}})$

Intrinsic Matrix

$$\begin{bmatrix} u \\ v \\ 1 \end{bmatrix} \equiv \begin{bmatrix} \widetilde{u} \\ \widetilde{v} \\ \widetilde{w} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

Calibration Matrix:

$$K = \begin{bmatrix} f_x & 0 & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix}$$

Intrinsic Matrix:

$$M_{int} = [K|0] = \begin{bmatrix} f_x & 0 & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Upper Right Triangle Matrix

$$\widetilde{\mathbf{u}} = [K|0] \, \widetilde{\mathbf{x}}_{\boldsymbol{c}} = M_{int} \, \widetilde{\mathbf{x}}_{\boldsymbol{c}}$$

Forward Imaging Model: 3D to 2D

Image Coordinates

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}$$

Perspective Projection

Camera Coordinates

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

World Coordinates

Coordinate Transformation

Extrinsic Parameters

Position c_w and Orientation R of the camera in the world coordinate frame $\mathcal W$ are the camera's Extrinsic Parameters.

Rotation Matrix R

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \xrightarrow{\hspace{0.5cm}} \text{Row 1: Direction of } \hat{x}_c \text{ in world coordinate frame}$$

$$\xrightarrow{\hspace{0.5cm}} \text{Row 2: Direction of } \hat{y}_c \text{ in world coordinate frame}$$

$$\xrightarrow{\hspace{0.5cm}} \text{Row 3: Direction of } \hat{z}_c \text{ in world coordinate frame}$$

Orientation/Rotation Matrix R is Orthonormal: The rows and columns of R are unit vectors and are orthogonal (perpendicular) to each other.

 $R^{-1} = R^{T}$

Inverse of R = Transpose of R

Rotation Matrix R

Let point P be at \mathbf{x}_w in the world coordinate frame \mathcal{W} .

If the origin of the camera coordinate frame \mathcal{C} were to coincide with \mathcal{W} , then the position of point P in the camera coordinate frame is given by:

$$\mathbf{x}_c = R\mathbf{x}_w$$

World-to-Camera Transformation

Given the extrinsic parameters (R, \mathbf{c}_w) of the camera, the camera-centric location of any point \mathbf{x}_w in the world coordinate frame is:

$$\mathbf{x}_{c} = R(\mathbf{x}_{w} - \mathbf{c}_{w}) = R\mathbf{x}_{w} - R\mathbf{c}_{w} = R\mathbf{x}_{w} + \mathbf{t} \qquad (\mathbf{t} = -R\mathbf{c}_{w})$$

$$\mathbf{x}_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \\ t_{z} \end{bmatrix}$$
Rotation Translation

World-to-Camera Transformation

Rewriting using homogenous coordinates:

$$\tilde{\mathbf{x}}_{c} = \begin{bmatrix} x_{c} \\ y_{c} \\ z_{c} \\ 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_{x} \\ r_{21} & r_{22} & r_{23} & t_{y} \\ r_{31} & r_{32} & r_{33} & t_{z} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \\ 1 \end{bmatrix}$$

Extrinsic Matrix:
$$M_{ext} = \begin{bmatrix} R_{3\times3} & \mathbf{t}_{3\times1} \\ \mathbf{0}_{1\times3} & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\tilde{\mathbf{x}}_{c} = M_{ext}\tilde{\mathbf{x}}_{w}$$

Forward Imaging Model: 3D to 2D

Image Coordinates

$$\mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix}$$

Perspective Projection

Camera Coordinates

$$\mathbf{x}_c = \begin{bmatrix} x_c \\ y_c \\ z_c \end{bmatrix}$$

$$M_{ext}$$

Coordinate Transformation

World Coordinates

$$\mathbf{x}_{w} = \begin{bmatrix} x_{w} \\ y_{w} \\ z_{w} \end{bmatrix}$$

Linear Camera Model

Camera to Pixel

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_c \\ y_c \\ z_c \\ 1 \end{bmatrix} = \begin{bmatrix} x_c \\ y_c \\ y_c \\ z_1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

$$\widetilde{\mathbf{u}} = M_{int} \, \widetilde{\mathbf{x}}_{\mathbf{c}}$$

$$\tilde{\mathbf{x}}_{c} = M_{ext}\tilde{\mathbf{x}}_{w}$$

Combining the above two equations, we get the Projection Matrix P:

$$\widetilde{\mathbf{u}} = M_{int} M_{ext} \, \widetilde{\mathbf{x}}_{w} = P \, \widetilde{\mathbf{x}}_{w}$$

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \tilde{w} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Scale of Projection Matrix

Projection matrix acts on homogenous coordinates.

We know that:

$$\begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \widetilde{w} \end{bmatrix} \equiv k \begin{bmatrix} \tilde{u} \\ \tilde{v} \\ \widetilde{w} \end{bmatrix} \qquad (k \neq 0 \text{ is any constant)}$$

That is:

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix} \equiv k \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w \\ y_w \\ z_w \\ 1 \end{bmatrix}$$

Therefore, Projection Matrix P and kP produce the same homogenous pixel coordinates.

Projection Matrix P needs to be determined only up to a scale factor.

Camera Calibration

Most vision applications require the knowledge of intrinsic (f_x, f_y, o_x, o_y) and extrinsic (R, t) parameters of the cameras being used.

We "Calibrate" the cameras to determine these.

Step 1: Capture an image of an object with known geometry.

Object whose precise geometry is known

Captured Image

Step 2: Identify correspondence between 3D scene points and captured image.

Object whose precise geometry is known

Captured Image

$$\bullet \ \mathbf{x}_w = \begin{bmatrix} x_w \\ y_w \\ z_w \end{bmatrix} = \begin{bmatrix} 0 \\ 3 \\ 4 \end{bmatrix}$$

$$\bullet \mathbf{u} = \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 56 \\ 115 \end{bmatrix}$$

Step 3: For each corresponding point i in scene and image:

$$\begin{bmatrix} u^{(i)} \\ v^{(i)} \\ 1 \end{bmatrix} \equiv \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix} \begin{bmatrix} x_w^{(i)} \\ y_w^{(i)} \\ z_w^{(i)} \\ 1 \end{bmatrix}$$
 Known Unknown Known

Expanding the matrix as linear equations:

$$u^{(i)} = \frac{p_{11}x_w^{(i)} + p_{12}y_w^{(i)} + p_{13}z_w^{(i)} + p_{14}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$$

$$v^{(i)} = \frac{p_{21}x_w^{(i)} + p_{22}y_w^{(i)} + p_{23}z_w^{(i)} + p_{24}}{p_{31}x_w^{(i)} + p_{32}y_w^{(i)} + p_{33}z_w^{(i)} + p_{34}}$$

Step 4: Rearranging the terms:

Step 5: Solve for p:

 $A \mathbf{p} = \mathbf{0}$

Least Squares Solution for P

$$A \mathbf{p} = \mathbf{0}$$

If $\overline{\mathbf{p}}$ is a solution, so is $k\overline{\mathbf{p}}$ for any constant k.

But, Projection Matrix P needs to be determined only up to a scale factor. We can assume any scale for p.

Set scale so that: $\|\mathbf{p}\|^2 = 1$

We want $A\mathbf{p}$ as close to 0 as possible and $\|\mathbf{p}\|^2 = 1$:

$$\min_{\mathbf{p}} \|A\mathbf{p}\|^2 \text{ such that } \|\mathbf{p}\|^2 = 1$$

(See Appendix A for method to solve this constrained linear least squares problem)

Rearrange solution \mathbf{p} to form the projection matrix P.

Extracting Intrinsic and Rotation Parameters

We know that:

(Intrinsic) (Extrinsic)

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} p_{14} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

That is:

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} f_x & 0 & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} = KR$$

Given that K is an Upper Right Triangle matrix and R is an Orthonormal matrix, it is possible to "decouple" K and R from their product using RQ factorization.

(See Appendix B)

Extracting Translation Parameters

We know that:

(Intrinsic) (Extrinsic)

$$P = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{34} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x & 0 \\ 0 & f_y & o_y & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_x \\ r_{21} & r_{22} & r_{23} & t_y \\ r_{31} & r_{32} & r_{33} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

That is:

$$\begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix} = K\mathbf{t} = -KR\mathbf{c}_w \qquad (\mathbf{t} = -R\mathbf{c}_w)$$

Therefore:

$$\mathbf{t} = K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix}$$

$$\mathbf{t} = K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix} \qquad \mathbf{c}_w = -R^T K^{-1} \begin{bmatrix} p_{14} \\ p_{24} \\ p_{34} \end{bmatrix}$$

Other Intrinsic Parameters: Distortion

Pinholes do not exhibit image distortions. Lenses do.

Radial distortion

Tangential distortion

The mathematical model of the camera will need to incorporate the distortion coefficients.

Backward Projection: From 2D to 3D

Projection of an image point back into the scene results in an outgoing ray.

Given a calibrated camera (known intrinsics), what is the direction of the ray?

Pixel location:
$$u = m_x x_i + o_x$$

 $v = m_y y_i + o_y$

Image point: $\mathbf{x}_i = (x_i, y_i, f)$

Direction of ray:
$$\frac{-\mathbf{x}_i}{\|\mathbf{x}_i\|}$$

Aerial Photogrammetry

Simple Stereo

Simple Stereo: Depth and Disparity

For two pixels corresponding to the same scene point in the left and right images:

$$(u_l, v_l) = \left(f\frac{x}{z}, f\frac{y}{z}\right)$$
 $(u_r, v_r) = \left(f\frac{x-b}{z}, f\frac{y}{z}\right)$

Unknown:

Scene point position (x, y, z)

Known:

Pixel positions (u_l, v_l) and (u_r, v_r)

Baseline b from construction (or other calibration methods)

Focal length f from calibration

Simple Stereo: Depth and Disparity

For two pixels corresponding to the same scene point in the left and right images:

$$(u_l, v_l) = \left(f\frac{x}{z}, f\frac{y}{z}\right)$$
 $(u_r, v_r) = \left(f\frac{x-b}{z}, f\frac{y}{z}\right)$

Solving for (x, y, z):

$$x = \frac{b(u_l + u_r)}{2(u_l - u_r)}$$
 $y = \frac{b(v_l + v_r)}{2(u_l - u_r)}$ $z = \frac{bf}{(u_l - u_r)}$

$$z = \frac{bf}{(u_l - u_r)}$$

where $(u_l - u_r)$ is called the Disparity.

Given baseline b and focal length f, the scene depth for each pixel can be found by determining the disparity.

Depth is inversely proportional to Disparity.

Finding Correspondences

Goal: Find the disparity between left and right stereo pairs.

Left Image

Right Image

Disparity

From perspective projection: $v_l = v_r = f \frac{y}{z}$

Corresponding scene points lie on the same horizontal scan line.

Window based Methods

Determine Disparity using Template Matching

Template Window T

Left Camera Image E_l

Search Scan Line L

Right Camera Image E_r

Disparity, $d = u_l - u_r$

Similarity Metrics for Template Matching

Find pixel $(k, l) \in L$ with Minimum Sum of Absolute Differences:

$$SAD(k, l) = \sum_{(i,j) \in T} |E_l(i,j) - E_r(i+k,j+l)|$$

Find pixel $(k, l) \in L$ with Minimum Sum of Squared Differences:

$$SSD(k,l) = \sum_{(i,j)\in T} |E_l(i,j) - E_r(i+k,j+l)|^2$$

Find pixel $(k, l) \in L$ with Minimum Normalized Cross-Correlation:

$$NCC(k,l) = \frac{\sum_{(i,j)\in T} |E_l(i,j) - E_r(i+k,j+l)|^2}{\sqrt{\sum_{(i,j)\in T} |E_l(i,j)|^2 \sum_{(i,j)\in T} |E_r(i+k,j+l)|^2}}$$

(See Image Processing Lecture 1)

Issues with Window Based Methods

Sensitive to foreshortening effects

An inclined area will have different amounts of foreshortening in the two images. This affects correlation. (Try Warping)

Issues with Window Based Methods

How large should the window be?

Window size = 5 pixels

Window size = 30 pixels

Adaptive Window Method Solution: For each point, match using windows of multiple sizes and use the disparity that is a result of the best similarity measure.

Stereo Matching Results

Left Image

Right Image

Ground Truth

SSD (Window size=21)

SSD – Adaptive Window

State of the Art

Appendix A: Least Squares Solution for P

$$\min_{\mathbf{p}} \|A\mathbf{p}\|^2 \text{ such that } \|\mathbf{p}\|^2 = 1$$

We know that:

$$||A\mathbf{p}||^2 = (A\mathbf{p})^T (A\mathbf{p}) = \mathbf{p}^T A^T A \mathbf{p}$$
 and $||\mathbf{p}||^2 = \mathbf{p}^T \mathbf{p} = 1$

Create a Loss function $L(\mathbf{p})$ and find \mathbf{p} that minimizes it.

$$\min_{\mathbf{p}} \{ L(\mathbf{p}) = \mathbf{p}^T A^T A \mathbf{p} + \lambda (\mathbf{p}^T \mathbf{p} - 1) \}$$

Taking derivatives w.r.t \mathbf{p} and λ : $A^T A \mathbf{p} + \lambda \mathbf{p} = 0$

$$A^T A \mathbf{p} + \lambda \mathbf{p} = 0$$

Eigenvalue Problem

Clearly, eigenvector **p** with smallest eigenvalue λ of matrix $A^T A$ minimizes the loss function $L(\mathbf{p})$.

Appendix B: RQ Matrix Factorization

Definition: Any Invertible Matrix A can be uniquely decomposed as a product of Upper Right Triangle matrix R and Orthonormal matrix Q.

$$A = RQ$$

Note that according to our camera model (projection matrix) notation:

$$\begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix} = \begin{bmatrix} f_x & s & o_x \\ 0 & f_y & o_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$- R$$

where K is the upper right triangle matrix and R is the orthonormal matrix.

Appendix B: RQ Matrix Factorization

Step 1:

Let
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} \\ p_{21} & p_{22} & p_{23} \\ p_{31} & p_{32} & p_{33} \end{bmatrix}$$

Step 2:

Let
$$R_x = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_x & s_x \\ 0 & -s_x & c_x \end{bmatrix}$$
 where $c_x = \frac{a_{33}}{\sqrt{a_{32}^2 + a_{33}^2}}$ $s_x = \frac{a_{32}}{\sqrt{a_{32}^2 + a_{33}^2}}$

Set
$$A = AR_x$$
 (This makes $a_{32} = 0$)

Appendix B: RQ Matrix Factorization

Step 3:

Let
$$R_y = \begin{bmatrix} c_y & 0 & -s_y \\ 0 & 1 & 0 \\ s_y & 0 & c_y \end{bmatrix}$$
 where $c_y = \frac{a_{33}}{\sqrt{a_{31}^2 + a_{33}^2}}$ $s_y = \frac{-a_{31}}{\sqrt{a_{31}^2 + a_{33}^2}}$

Set $A = AR_{\nu}$ (This makes $a_{31} = 0$)

Step 4:

Let
$$R_z = \begin{bmatrix} c_z & s_z & 0 \\ -s_z & c_z & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 where $c_z = \frac{a_{22}}{\sqrt{a_{21}^2 + a_{22}^2}}$ $s_z = \frac{a_{21}}{\sqrt{a_{21}^2 + a_{22}^2}}$

Set $K = AR_z$ (This makes $a_{21} = 0$)

Step 5:
$$R = R_z^T R_y^T R_x^T$$

References: Textbooks

Robot Vision (Chapter 13) Horn, B. K. P., MIT Press

Computer Vision: A Modern Approach (Chapter 10) Forsyth, D and Ponce, J., Prentice Hall

Multiple View Geometry (Chapters 8-10) Hartley, R. and Zisserman, A., Cambridge University Press

Computer Vision: Algorithms and Applications (Chapter 7) Szeliski, R., Springer

An introduction to 3D Computer Vision (Chapter 3) Cyganek, B., Siebert, J. P., Wiley Pub

Image Credits

- I.1 http://www.cs.rochester.edu/~sanders/cali_box/box_offlights.jpg
- I.2 http://www.orderlymayhem.com/images/terrain_scene2.jpg
- I.3 http://vision.middlebury.edu/stereo/data/scenes2001/data/imagehtml/tsukuba.html