Versuch 353

Das Relaxationsverhalten eines RC-Kreises

Nico Schaffrath nico.schaffrath@tu-dortmund.de mira.arndt@tu-dortmund.de

Durchführung: 3.12.2019 Abgabe: 10.12.2019

Mira Arndt

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Ziel		3		
2	Theorie				
	2.1	Allgemeine Realaxionsgleichung	3		
	2.2	Entladevorgang eines RC-Kreises	3		
	2.3	Frequenzabhängigkeiten der Phasenverschiebung und der Amplitude beim			
		Kondensator			
	2.4	Ein RC-Kreis als Integrierglied	4		
3	Durchführung				
	3.1	Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten	4		
	3.2	Frequenzabhängigkeit der Phasenverschiebung und der Amplitude beim			
		Kondensator			
	3.3	Integrierfunktion des RC-Kreises	5		
4	Aus	wertung	5		
5 Diskussion		cussion	6		
6 Anhang					
Lit	teratı	ır	6		

1 Ziel

Bei diesem Versuch werden die Relaxationserscheinungen einses RC-Kreises untersucht. Es soll die Zeitkonstante des RC-Gliedes bestimmt, die Abhängigkeit der Amplitude der Kondensatorspannung von der Generatorfrequenz untersucht und die Phasenverschiebung zwischen Generator- und Kondensatorspannung in Abhängigkeit der Frequenz gemessen werden. Anschließend soll nachgewiesen werden, dass ein RC-Kreis unter bestimmten Voraussetzungen, die in der Theorie (REFERENZ) hergeleitet werden, als Integrator dienen kann.

2 Theorie

2.1 Allgemeine Realaxionsgleichung

Bei einem System, dass nicht-oszillatorisch in seinen Ausgangszustand zurückkehrt treten Relaxationserscheinungen auf. Dabei gilt meist der Zusammenhang

$$\frac{dA}{dt} = c[A(t) - A(\infty)],\tag{1}$$

wobei A die sich ändernde physikalische Größe ist. Die Integration dieser Gleichung führt auf die Allgemeine Relaxationsgleichung

$$A(t) = A(\infty) + [A(0) - A(\infty)]e^{ct}.$$
 (2)

Ist c negativ, und A somit beschränkt, können mit dieser Formel alle Relaxationsvorgänge beschrieben werden.

2.2 Entladevorgang eines RC-Kreises

Ein mit Ladung Q geladener Kondensator erzeugt eine Kindensatorspannung U_C , die einen Strom I bedingt. Mit Hilfe des Ohmschen Gesetzes lässt sich die zeitliche Änderung von Q also als

$$\frac{\mathrm{d}\,Q}{\mathrm{dt}} = -\frac{1}{RC}\,Q(t)\tag{3}$$

schreiben. Mit dem Zusammenhang $Q(\infty) = 0$ wird Gleichung 2 zu

$$Q(t) = Q(0)e^{-\frac{t}{RC}} \tag{4}$$

Die Zeitkonstante RC gibt dabei an, wie schnell Q seinen Endzustand $Q(\infty)$ erreicht. Nach $\Delta t = RC$ ändert sich die Ladung Q um

$$\frac{Q(RC)}{Q(0)} = \frac{1}{e},\tag{5}$$

und dem entsprechend auch

$$\frac{U_C(RC)}{U_C(0)} = \frac{1}{e}. (6)$$

2.3 Frequenzabhängigkeiten der Phasenverschiebung und der Amplitude beim Kondensator

Ein RC-Kreis, der mit Wechselspannung betrieben wird, kann mit einem mechanischem System verglichen werden, bei welchem Relaxationsphänomene duch periodische Auslenkung aus der Gleichgewichtslage auftreten. Die anliegende äußere Spannung U hat also die Form

$$U(t) = U_0 \cos(\omega t). \tag{7}$$

Die Kondensatorspannung ${\cal U}_C$ ist phasenverschoben zu ${\cal U}$ und hat die Form

$$U_C(t) = A(\omega)\cos(\omega t + \phi(\omega)), \tag{8}$$

wobei sowohl die Amplitude A als auch die Phasenverschiebung ϕ von ω abhängt, also Frequenzabhängig ist. Nach dem zweiten Kirchhoffschen Gesetz lassen sich die Spannungen im Stromkreis durch

$$U_0 \cos(\omega t) = -A\omega RC \sin(\omega t + \phi) + A\cos(\omega t + \phi) \tag{9}$$

in Zusammenhang setzen. Mit Hilfe dieser Gleichung und der Überlegung, dass sie zu allen Zeiten erfüllt sein muss kann die Phasenverschiebung duch

$$\phi(\omega) = \arctan(-\omega RC) \tag{10}$$

beschrieben werden. Duch den Zusammenhang $\omega = 1/RC$ ergibt sich außerdem die Amplitude als

$$A(\omega) = \frac{U_0}{\sqrt{1 + \omega^2 R^2 C^2}}. (11)$$

Es ist zu erkennen, dass für $\omega \to 0$ die Phasenverschiebung ϕ verschwindet und A sich U_0 annähert. Für $\omega \to \infty$ nähert sich ϕ $\pi/2$ an und A geht gegen 0.

2.4 Ein RC-Kreis als Integrierglied

Ein RC-Kreis kann auch als Integrator für die Wechselspannung U(t) dienen. Gleichung 9 kann auch als

$$U(t) = RC \frac{\mathrm{d}U_C}{\mathrm{dt}} + U_C(t) \tag{12}$$

geschrieben werden. Unter der Vorraussetzung $\omega\gg 1/RC$ ergibt sich dann

$$U(t) = RC \frac{\mathrm{d} U_C}{\mathrm{dt}} \iff U_C = \frac{1}{RC} \int_0^t U(t') \,\mathrm{d}t' \tag{13}$$

3 Durchführung

3.1 Entladevorgang des RC-Kreises und Bestimmung der Zeitkonstanten

(SCHALTBILD EINFÜGEN) Um den Entladevorgang eines RC-Kreises zu untersuchen, wird die Spannung am Kondensator mit Hilfe eines Oszilloskopes beobachtet. An das

RC-Glied wird ein Generator angeschlossen, welcher eine Rechteckspannung mit einer Amplitude von $U_0=(WERT)$ erzeugt. Sobald der Kondensator voll aufgeladen ist und die Spannung auf null springt, beginnt die Entladung des Kondensators. Der Vorgang endet, wenn die Spannung wieder $U=U_0=Wert$ beträgt. Der Entladevorgang kann also nicht vollständig aufgezeichnet werden, das Oszilloskop zeigt jedoch einen entsprechenden Ausschnitt (REFERENZ BILD) mit dem sich die Zeitkonstante RC bestimmen lässt.

3.2 Frequenzabhängigkeit der Phasenverschiebung und der Amplitude beim Kondensator

(BILD VOM AUFBAU EINFÜGEN) Der Aufbau entspricht dem von (REFERENZ) wobei hier zusätzlich die Spannung U des Generators auf dem zweiten Kanal des Oszillographen angezeigt wird und somit mit der Spannung U_C des Kondensators verglichen werden kann. Außerdem liegt nun keine Rechteckspannung, sondern eine Sinusspannung mit $U_0 = WERT$ vor.

3.3 Integrierfunktion des RC-Kreises

4 Auswertung

Abbildung 1: TEXT

Siehe??!

Messung	U_G/V	U_C/V	Frequenz/Hz	a/ms	b/ms	Phase
1	5	4.9	10	0.6	98	0.03847
2	5	4.9	20	1.0	50	0.12566
3	5	4.8	30	0.8	33	0.15232
4	5	4.8	40	0.76	25	0.19101
5	5	4.8	50	0.8	20	0.25132
6	5	4.7	60	0.7	16.5	0.26656
7	5	4.6	70	0.8	14	0.35904
8	5	4.5	80	0.8	12.4	0.40537
9	5	4.4	90	0.8	11.2	0.44880
10	5	4.4	100	0.7	10	0.43982
11	5	4.2	125	0.7	8	0.54978
12	5	4.0	150	0.65	6.6	0.61880
13	5	3.6	175	0.6	5.7	0.66139
14	5	3.5	200	0.6	5	0.75398
15	5	2.6	300	0.5	3.3	0.95200
16	5	2.2	400	0.4	2.5	1.00531
17	5	1.8	500	0.4	2	1.25664
18	5	1.2	750	0.28	1.35	1.30318
19	5	0.95	1000	0.2	1	1.25664
20	5	0.20	5000	0.05	0.2	1.57080
21	5	0.10	10000	0.025	0.1	1.57080

Tabelle 1: Aufgenommene Werte zur Bestimmung von ${\cal R}_{11}$

5 Diskussion

6 Anhang

Literatur

- [1] TU Dortmund. Versuchsanleitung-Das Relaxationsverhalten eines RC-Kreises.
- [2] John D. Hunter. "Matplotlib: A 2D Graphics Environment". Version 1.4.3. In: Computing in Science & Engineering 9.3 (2007), S. 90–95. URL: http://matplotlib.org/.
- [3] Eric Jones, Travis E. Oliphant, Pearu Peterson u.a. SciPy: Open source scientific tools for Python. Version 0.16.0. URL: http://www.scipy.org/.
- [4] Eric O. Lebigot. Uncertainties: a Python package for calculations with uncertainties. Version 2.4.6.1. URL: http://pythonhosted.org/uncertainties/.

[5] Travis E. Oliphant. "NumPy: Python for Scientific Computing". Version 1.9.2. In: Computing in Science & Engineering 9.3 (2007), S. 10–20. URL: http://www.numpy.org/.