PARABOLA

Definition and terminology

A parabola is the locus of a point, whose distance from a fixed point (focus) is equal to perpendicular distance from a fixed straight line (directrix).

Four standard forms of the parabola are

$$y^2 = 4ax$$
; $y^2 = -4ax$; $x^2 = 4ay$; $x^2 = -4ay$

For parabola $y^2 = 4ax$:

- (i) Vertex is (0, 0)
- (ii) focus is (a, 0)
- (iii) Axis is y = 0

(iv) Directrix is x + a = 0

 $y^2 = 4ax$

Focal Distance: The distance of a point on the parabola from the focus.

Focal Chord: A chord of the parabola, which passes through the focus.

Double Ordinate: A chord of the parabola perpendicular to the axis of the symmetry.

Latus Rectum: A double ordinate passing through the focus or a focal chord perpendicular to the axis of parabola is called the Latus Rectum (L.R.).

For $y^2 = 4ax$. \Rightarrow Length of the latus rectum = 4a.

 \Rightarrow ends of the latus rectum are L(a, 2a) & L' (a, -2a).

NOTE:

- (i) Perpendicular distance from focus on directrix = half the latus rectum.
- (ii) Vertex is middle point of the focus & the point of intersection of directrix & axis.
- (iii) Two parabolas are said to be equal if they have the same latus rectum.

Parametric representation:

The simplest & the best form of representing the co-ordinates of a point on the parabola is (at², 2at)

i.e. the equations $x = at^2 & y = 2at$ together represents the parabola $y^2 = 4ax$, t being the parameter.

Parametric form for: $y^2 = -4ax$ (-at², 2at)

 $x^2 = 4ay$ (2at, at²) $x^2 = -4ay$ (2at, -at²)

Position of a point relative to a parabola:

The point (x_1, y_1) lies outside, on or inside the parabola $y^2 = 4ax$ according as the expression $y_1^2 - 4ax_1$ is positive, zero or negative.

 $S_1: y_1^2 - 4ax_1$ $S_1 < 0 \rightarrow Inside$

 $S_1 > 0 \rightarrow Outside$

Line & a parabola:

The line y = mx + c meets the parabola $y^2 = 4ax$ in two points real, coincident or imaginary according as $a \ge cm \implies condition$ of tangency is, c = a/m.

Length of the chord intercepted by the parabola

on the line y = mx + c is:

$$\left(\frac{4}{m^2}\right)\,\sqrt{a(1\!+\!m^2)(a\!-\!mc)}\;.$$

NOTE:

- 1. The equation of a chord joining $t_1 & t_2$ is $2x (t_1 + t_2)y + 2$ at $t_2 = 0$.
- 2. If t_1 & t_2 are the ends of a focal chord of the parabola $y^2 = 4ax$ then $t_1t_2 = -1$. Hence the co-ordinates at the extremities of a focal chord can be taken as (at², 2at) & $\left(\frac{a}{t^2}, -\frac{2a}{t}\right)$

3. Length of the focal chord making an angle α with the x- axis is 4acosec² α .

Tangents to the parabola $y^2 = 4ax$:

Equation of tangent at a point on the parabola can be obtained by replacement method or using derivatives. In replacement method, following changes are made to the second degree equation to obtain T. $x^2 \rightarrow x \ x_1, \ y^2 \rightarrow y \ y_1, \ 2xy \rightarrow xy_1 + x_1y, \ 2x \rightarrow x + x_1, \ 2y \rightarrow y + y_1$ So, it follows that the targents are :

(i) $y y_1 = 2 a (x + x_1) at the point (x_1, y_1);$

(ii)
$$y = mx + \frac{a}{m} (m \neq 0) \text{ at } \left(\frac{a}{m^2}, \frac{2a}{m}\right)$$

- (iii) $t y = x + a t^2 at (at^2, 2at).$
- (iv) Point of intersection of the tangents at the point $t_1 \& t_2$ is { at t_2 , a($t_1 + t_2$) }.

Normals to the parabola $y^2 = 4ax$:

Normal is obtained using the slope of tangent.

Slope of tangent at
$$(x_1, y_1) = \frac{2a}{y_1}$$

(ii)
$$y = mx - 2am - am^3 at (am^2, -2am)$$

(iii)
$$y + tx = 2at + at^3 at (at^2, 2at).$$

NOTE:

(ii) If the normals to the parabola $y^2 = 4ax$ at the point t_1 meets the parabola again at the point

$$t_{2}$$
, then $t_{2} = -\left(t_{1} + \frac{2}{t_{1}}\right)$.

(iii) If the normals to the parabola $y^2 = 4ax$ at the points $t_1 \& t_2$ intersect again on the parabola at the point ' t_3 ' then $t_1 t_2 = 2$; $t_3 = -(t_1 + t_2)$ and the line joining $t_1 \& t_2$ passes through a fixed point (-2a, 0).

