Inorganic Chemistry (CY11001)

Chelate Effect

Books to Refer:

Inorganic Chemistry by Shriver & Atkins Inorganic Chemistry by James E. Huheey

Prof. Madhab Chandra Das
Department of Chemistry
High Pressure Lab (Ground Floor)
Ph: 03222-282894

Email: mcdas@chem.iitkgp.ernet.in

TM complex: Variable valence

Sc			+3				
Ti	+1	+2	+3	+4			
V	+1	+2	+3	+4	+5		
Cr	+1	+2	+3	+4	+5	+6	
Mn	+1	+2	+3	+4	+5	+6	+7
Fe	+1	+2	+3	+4	+5	+6	
Co	+1	+2	+3	+4	+5		
Ni	+1	+2	+3	+4			
Cu	+1	+2	+3				
Zn		+2					

Ligand: Lewis base – contain at least one nonbonding pair of electrons

$$Ni^{2+}(aq) + 6NH_3(aq) \rightarrow Ni(NH_3)_6^{2+}(aq)$$

Lewis acid

Lewis base

Complex ion

- Coordination compound
 - ▲ Addition Compounds that loose identity in aq solutions
 - **▲**Example

$$*[Co(NH_3)_6]Cl_3$$

Teeth of a ligand (teeth \rightarrow dent)

• Ligands

classified according to the number of donor atoms

chelating agents

- Examples
 - monodentate = 1
 - **bidentate** = **2**
 - tetradentate = 4
 - hexadentate = 6
 - polydentate = 2 or more donor atoms

monodentate, bidentate, tridentate etc. where the concept of teeth (dent) is introduced, hence the idea of bite angle etc.

MONODENTATE								
Formula ^a	Name as Ligand ^b	Formula ^a	Name as Ligar	id ^b Formula ^a	Name as Ligand ^l			
Neutral M	olecules							
NH_3	Ammine	NO	Nitrosyl	H_2 O	Aqua			
CH_3NH_2	Methylamine	CO	Carbonyl	C_5H_5N	Pyridine			
Anions								
F^-	Fluoro	OH^-	Hydroxo	NCS ⁻	Thiocyanato-N			
Cl	Chloro	NO_2^-	Nitrito-N	SCN ⁻	Thiocyanato-S			
Br ⁻	Bromo	ONO ⁻	Nitrito-O	OSO_3^{2-}	Sulfato			
I ⁻	Iodo	CN^-	Cyano	SSO_3^{2-}	Thiosulfato			
POLYDENTATE								
Name of Ligand ^b		Abbrevia	ntion Form	Formula ^a				
Ethylenediamine		en	H_2N	H ₂ NCH ₂ CH ₂ NH ₂				
Oxalato		OX	OO	$[OOCCOO]^{2-}$				
Ethylenediaminetetraacetato		EDTA	00)]	$[(\mathbf{OOCCH}_2)_2\mathbf{NCH}_2\mathbf{CH}_2\mathbf{N}(\mathbf{CH}_2\mathbf{COO})_2]^{4-}$				

oxalate ion

ethylenediamine

[Ca(edta)]²⁻

Coordination Equilibria & Chelate effect

"The adjective chelate, derived from the great claw or chela (chely - Greek) of the lobster, is suggested for the groups which function as two units and fasten to the central atom so as to produce heterocyclic rings."

J. Chem. Soc., 1920, 117, 1456

The chelate effect or chelation is one of the most important ligand effects in transition metal coordination chemistry.

Coordination Equilibria & Chelate effect

$$[Fe(H_2O)_6]^{3+} + NCS^- \rightarrow [Fe(H_2O)_5(NCS)]^{2+} + H_2O$$

 $K_f = [Fe(H_2O)_5(NCS)]^{2+} / [Fe(H_2O)_6]^{3+} [NCS^-]$

Equilibrium constant $K_f \Rightarrow$ formation constant \Rightarrow Stability constant

$$\begin{split} M + L \to ML & K_{f1} = [ML]/[M][L] \\ ML + L \to ML_2 & K_{f2} = [ML_2]/[ML][L] \\ ML_2 + L \to ML_3 & K_{f3} = [ML_3]/[ML_2][L] \\ ML_{n-1} + L \to ML_n & K_{fn} = [ML_n]/[ML_{n-1}][L] \end{split}$$

solvent conc H₂O is of unit activity

K_f: strength of binding of ligand relative to water: strongly or weakly

stepwise formation conts to understand between structure & reactivity

$$M + nL \rightarrow ML_n$$

- $K_{f1}, K_{f2}.... \Rightarrow$ Stepwise formation constant.
- To calculate concentration of the final product, use overall formation constant β_n :
- Relation among stepwise and overall formation const

$$\beta_n = [ML_n]/[M][L]^n$$

$$= K_{f1} K_{f2} K_{f3} K_{fn}$$

$$\Delta G^{\ominus} = -RTln(\beta)$$

 $\Delta G^{\ominus} = -2.303 RTlog_{10}(\beta)$
 $\Delta G^{\ominus} = \Delta H^{\ominus} - T\Delta S^{\ominus}$

Coordination Equilibria & Chelate effect

Example: $[Cd(NH_3)_4]^{2+}$

$$Cd^{2+} + NH_3 \leftrightarrow [CdNH_3]^{2+}$$

$$K_1 = 10^{2.65}$$

$$[CdNH3]2+ + NH3 \leftrightarrow [Cd(NH3)2]2+$$

$$K_2 = 10^{2.10}$$

$$[Cd(NH_3)_2]^{2+} + NH_3 \leftrightarrow [Cd(NH_3)_3]^{2+}$$

$$K_3 = 10^{1.44}$$

$$[Cd(NH_3)_3]^{2+} + NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$$

$$K_4 = 10^{0.93}$$

Overall: $Cd^{2+} + 4 NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$

$$\beta_4 = K_1 K_2 K_3 K_4 = 10^{(2.65 + 2.10 + 1.44 + 0.93)} = 10^{7.12}$$

What are the implications of the following results?

$$[Ni(H_2O)_6]^{+2} + 6NH_3 \rightarrow [Ni(NH_3)_6]^{2+} + 6H_2O$$

$$\log \beta = 8.6$$

$$[Ni(H_2O)_6]^{+2} + 3 NH_2CH_2CH_2NH_2$$
 (en)
 $[Ni(en)_3]^{2+} + 6H_2O$

$$\log \beta = 18.3$$

$$[Ni(NH_3)_6]^{2+} + 3 NH_2CH_2CH_2NH_2$$
 (en)
 $[Ni(en)_3]^{2+} + 6NH_3$

$$\log \beta = 9.7$$

now logK value: why? K =0.64 (\log K = -0.2) to 1.25 x 10⁵ (\log K = 5.1)

Complex Formation: Major Factors

$$[Ni(H2O)6]2+ + 6NH3$$

$$\rightarrow [Ni(NH3)6]2+ + 6H2O$$

- ➤ NH₃ is a stronger (better) ligand than H₂O
- $\triangleright \Delta_0 \text{ NH}_3 > \Delta_0 \text{ H}_2 \text{O} \text{ (higher Lewis B strength)}$
- > [Ni(NH₃)₆]²⁺ is more stable
- $ightharpoonup \Delta G = \Delta H T\Delta S$ $(\Delta H ve, \Delta S \approx 0)$
- \triangleright ΔG for the reaction is negative

When β increases ΔG becomes more –ve as ΔG^{\ominus} = -RTln(β) A more -ve ΔG can result from making ΔS +ve.....

Chelate Formation: Major Factors

$$[Ni(H_2O)_6]^{2+} + 3 NH_2CH_2CH_2NH_2$$
 (en)
 $[Ni(en)_3]^{2+} + 6NH_3$

- >en is bidentate and *chelating* ligand
- \triangleright rxn proceeds towards right, \triangle G negative
- $ightharpoonup \Delta G = \Delta H T\Delta S$ ($\Delta H \text{ small -ve, } \Delta S + + \text{ve}$)
- > rxn proceeds due to entropy gain
- >log β = 18.3 (becomes higher)
- $\geq \Delta S$ ++ve is the major factor behind chelate effect

Chelate Formation: Entropy Gain

$$Cd^{2+} + 4 NH_3 \leftrightarrow [Cd(NH_3)_4]^{2+}$$

$$Cd^{2+} + 4 MeNH_2 \leftrightarrow [Cd(MeNH_2)_4]^{2+}$$

 $Cd^{2+} + 2 en \leftrightarrow [Cd(en)_2]^{2+}$

Ligands	log β	ΔG kJmol ⁻¹	ΔH kJmol ⁻¹	ΔS JK ⁻¹ mol ⁻¹
4 NH ₃	7.44	-42.5	- 53.2	- 35.5
4 MeNH ₂	6.52	-37.2	-57.3	- 67.3
2 en	10.62	-60.7	-56.5	+13.8

MeNH₂ is satirically crowded

4 similar bonds are formed for all cases, yet formation of chelate containing complex is more favourable: greater stability: chelate effect

The term inert and labile are relative

"A good rule of thumb is that those complexes that react completely within 1 min at 25° should be considered labile and those that take longer should be considered inert."

Thermodynamically stable complexes can be labile or inert

$$[Hg(CN)_4]^{2-}$$
 $K_f = 10^{42}$ thermodynamically stable

$$[Hg(CN)_4]^{2-} + 4^{14}CN^{-} = [Hg(^{14}CN)_4]^{2-} + CN^{-}$$

Very fast reaction Labile

Chelating agents:

Used to remove unwanted metal ions in water.

Selective removal of Hg²⁺ and Pb²⁺ from body when poisoned.

Important Chelating Ligands

2,3-dimercapto-1-propanesulfonic acid sodium (DMPS)

DMPS is a effective chelator with two groups thiols - for mercury, lead, tin, arsenic, silver and cadmium.

(R,S)-2,3-dimercaptosuccinic acid

As, Cu, Pb, Hg

D-Penicillamine

As Hg Au

Pb

Important Chelating Ligands EDTA

Anticoagulant

chelation therapy

chelation therapy

D-Penicillamine

- chelating agents can be used therapeutically to treat problems caused by toxic elements
- •essential elements can be toxic if present in too great quantity
- •this the case of WILSON's disease, a genetic disease involving build up of excessive quantity of Cu in body
- •D-penicillamine is used as a cheating agent for this chelation therapy (purple complex)

cis-platin

- •A slightly different mode of therapy involves use of cis-diaminedichloroplatinum (II) or cis-platin in cancer treatment.
- •Exact action of drug is unknown
- •Binding of cis-platin with DNA seriously interfere with the ability of GUANINE bases to undergo Watson-Crick base pairing

Important Chelating Ligands

Macrocylic Ligands

Large ring compounds most commonly containing or O, N and/or S atoms

crown ether:

18-crown-6

21-crown-7

thia-crown ether:

aza-thia-crown:

cryptand:

crypt-[222]

