Centre for ARTIFICIAL INTELLLIGENCE TKM COLLEGE OF ENGINEERING, Kollam

Semester II

Advanced Computing Lab

TUTORIAL QUESTION: SET 1

Instructions:

a) Refer videos from

Session 1:

https://drive.google.com/file/d/15IYHZppzcBo9NR_pu2UhUUNHIDVrBG_H/view?usp=sharing

Session 2: https://drive.google.com/file/d/13oRLBOItJGpl-7Y8DmHjC7x7R-MtbnGC/view?usp=sharing

- b) You can use any Platforms for execution (Google colab/Anaconda..)
- c) Place both your screenshots (of code and results) and codes (in notepad/word) in respective folders mentioned in last class.
- d) Your submissions on right time will be taken for internal calculations.

1. Perform SVM on irisexcel.csv and predict species for:

Trial 1:

[3.7, 4.9, 5.2, 3.3] (Common to all)

Trial 2:

Roll no 1: [2.5, 3.8, 4.6, 5.2]

Roll no 2: [2.7, 3.8, 4.8, 5.2]

Roll no 3: [2.9, 3.8, 5.0, 5.2]

..

Download irisexcel.csv from https://drive.google.com/file/d/1M5QuGtEK5uKn5IkeR0ReN9o_vKrg6hL/view?usp=sharing
2. Justify your observations in Difference between your Trial 1 & Trial 2 Results. (You may attach a notepad file)
3. Download file from
https://www.kaggle.com/rashikrahmanpritom/heart-attack-analysis-prediction-dataset, perform the following in file heart.csv
Use columns trtbps, chol, thalachh, oldpeak as FEATURES and
output as CLASS LABELS to train both SVM and Naïve Bayes(NB).
Predict output for 130 , 240 , 120 , 3.7 using both.
<pre>Hint: from sklearn.naive_bayes import GaussianNB ML= GaussianNB()</pre>
[https://scikit-learn.org/stable/modules/naive_bayes.html]
4. Split heart.csv into Training & Testing set as:
Roll No 1: Training set : 70% Testing set: 30 %
Roll No 2: Training set : 72% Testing set: 28 %
Evaluate ACCURACY using SVM. (Use same features in Qn 3).