541.36 B58t

Keep Your Card in This Pocket

Books will be issued only on presentation of proper library cards.

Unless labeled otherwise, books may be retained for two weeks. Borrowers finding books marked, defaced or mutilated are expected to report same at library desk; otherwise the last borrower will be held responsible for all imperfections discovered.

The card holder is responsible for all books drawn on this card.

Penalty for over-due books 2c a day plus cost of notices.

Lost cards and change of residence must be reported promptly.

Public Library Kansas City, Mo.

PUBLIC LIBRARY KANSAS CITY MO

- STA Januari - marking proposition (1997/19	DAT	DATE DUE						
- AUG 17	1977							
PRO NOV	5 1977	-						
	and the second sec	at a second to second						
	And when there to be to holder to the second second to	A TILL SURFILIER						
	back plo other wind intermediate the first	. au						
	Brown de Company of the State o							
With the Control of t								
Maria A. Die		and the second second						
- And Administration of the American Am								
			_					
-								

CHEMICAL SUBSTANCES

THE ASSEMBLY OF A SELF CONSISTENT TABLE OF "BEST" VALUES FOR THE HEATS OF FORMATION OF THE CHEMICAL SUBSTANCES (EXCEPT CARBON COMPOUNDS CONTAINING MORE THAN TWO CARBON ATOMS), INCLUDING HEATS OF TRANSITION, FUSION, AND VAPORIZATION

Ву

F. RUSSELL BICHOWSKY

EDITOR FOR THERMOCHEMISTRY FOR THE INTERNATIONAL CRITICAL TABLES

and

FREDERICK D. ROSSINI

SCIENTIST IN PHYSICAL CHEMISTRY AT THE NATIONAL BUREAU OF STANDARDS

BOOK DEPARTMENT REINHOLD PUBLISHING CORPORATION 330 WEST FORTY-SECOND STREET, NEW YORK, U. S. A.

Copyright, 1936, By REINHOLD PUBLISHING CORPORATION

All rights reserved.

Second Printing 1948

Printed in U.S.A. by THE GUINN CO., INC. New York 1, N. Y.

This Book is Dedicated to the Late EDWARD W. WASHBURN

WITHOUT WHOSE ENCOURAGEMENT ITS COMPILATION WOULD NOT HAVE BEEN POSSIBLE.

PUBLIC LIBRARY VTIO EASMAX OW

PREFACE

The assembly of the table of values for the heats of formation in the section on Thermochemistry in the International Critical Tables was the first attempt ever made to collate all the published data involving heats of reaction and to prepare therefrom a self-consistent table of "best" values for the heats of formation of the chemical substances. The present book is a complete revision and extension of that original work, which was sponsored by the late Edward W. Washburn as Editor-in-Chief of the International Critical Tables and carried out by one of the present authors (F. R. B.)

The assembly of a self-consistent table of values for the heats of formation of all the chemical substances requires (1) that all the original experimental data be recalculated with the use of appropriate auxiliary data, (2) that the value selected for the heat of formation of a given substance be as accurate as it is possible to obtain from the known data, and (3) that the selected "best" value be as consistent as possible with all the other values in the table and with all the known thermochemical data on reactions involving that substance.

There are four main sections to the present book: (1), the introduction or explanatory part; (2), the table of heats of formation, which is the fruit of the work; (3), the text, in which the original published data are cited and discussed; and (4), the list of references to the literature, which includes references to all the published data bearing on thermochemistry.

The introduction gives all the necessary information concerning the units, symbols, abbreviations, method of utilizing the table, etc.

The table of values contains a list of all the chemical substances (except carbon compounds containing more than 2 carbon atoms), for which there are thermochemical data, together with values for the heats of formation (or heat of transition, fusion, or vaporization) of each substance. It was deemed expedient not to include in the present table values for the heats of formation of carbon compounds containing more than two carbon atoms. It should be possible to obtain from this table, by simple addition and subtraction, the heat of any process involving any of the substances given, with an accuracy as great as is actually known. There are listed in the table 5840 values of heats of formation, and, in addition, 350 values of heats of transition, fusion, vaporization, 'or reaction, for substances for which no values are given for the heat of formation.

In the text, each paragraph or group of paragraphs is labeled with the formula of a chemical substance (or substances), and under that heading are cited all the published thermochemical data on reactions which can be utilized to compute the heat of formation of the given substance (or substances).

In the list of references are given the citations to the literature for all the published works bearing on thermochemistry which are discussed or mentioned in the text. This list of 3730 references includes all the publications covered by Chemical Abstracts up to January 1, 1931, and nearly all of the important and significant contributions which have been published in the period from January 1, 1931, to January 1, 1934.

The symbols given in this book for the various heats of reaction, fusion, vaporization, sublimation, transition, dissociation, and formation are merely abbreviations used for convenience in the present work, and are not proposed to be used in lieu of, or in connection with, the regularly accepted symbols of chemical thermodynamics.

The standard temperature selected for the values given in this book is 18° Centigrade, following the procedure of the thermochemistry section (Bichowsky¹) of the International Critical Tables. The authors have been reluctant not to use the almost universally accepted standard temperature of 25° Centigrade for thermodynamic calculations; but the selection of 18° as the standard temperature is practically necessary in this case because all of the monumental work of Julius Thomsen and of Marcellin Berthelot was done at or near 18° and there are not now available sufficient heat capacity data with which to make accurate conversion to 25° (this is especially important for reactions involving substances in aqueous solution where the temperature coefficient is usually very large). In later years, as the data on heat capacities become available, or as the heats of many of the reactions, which have until the present time been measured only by Thomsen or Berthelot or both, are redetermined, it will be quite feasible to use 25° as the standard temperature.

Where it is expedient and necessary, each unusual method of calculation used in the text is explained. The ordinary and simple methods of calculating thermochemical values are assumed to be known to the reader, and the advanced methods which are used but not described may be found explained in one of the many current books on advanced physical chemistry or thermodynamics.

The authors will greatly appreciate the cooperation of readers in making known the errors which they find in this book. Grateful acknowledgment is made to Anne Landgraff Rossini for aid in compilation and checking the copy and proofs.

In compiling the present book, the authors hope that their work will materially aid all those who have need of the data of thermochemistry, and will feel amply rewarded if their efforts help to stimulate renewed activity in the much-neglected but vastly important field of thermochemical research.

F. Russell Bichowsky Frederick D. Rossini

CONTENTS

Preface	PAGE 5
Introduction	9
Tables	17
Text	171
References	407
Index	459

INTRODUCTION

Scale of temperature. With a few exceptions all temperatures recorded in this book are on the Centigrade scale, and, for convenience, temperatures on the Centigrade scale are indicated by a numeral and degree mark without the letter "C," as 18°.

Unit of energy. The fundamental unit of energy in modern thermochemical measurements is the electrical joule, which is derived from standards of resistance and electromotive force maintained at the various national standardizing laboratories.

In the section on Thermochemistry in the International Critical Tables (see Bichowsky¹), the values were recorded in joules, in the hope that thermochemists might come to use this fundamental unit in their calculations and writings. But the attempt to break away from the calorie as a unit in thermochemical and thermodynamical calculations proved to be unpopular and apparently hopeless of accomplishment. In order to satisfy the popular demand for the calorie as a unit in calculations and tabulations, and at the same time depart as little as possible from the fundamental unit of energy, the joule, in terms of which all accurate thermochemical measurements are actually made, we have used in this book a defined calorie, that is, one which has no actual relation whatever, except incidentally and historically, to the heat capacity of water.

In our calculations, the modern experimental data, which have been fundamentally obtained in terms of the international joule, have been converted to a **defined calorie** by means of the following relations (see Rossini^{3, 13}): 1 calorie=4.1850 absolute joules; 1 international joule =1.0004 absolute joules; 1 calorie=4.1833 international joules. The values from the older experimental data have been converted to this unit by means of the appropriate factors.

For conversion of values expressed in terms of the defined calorie to other desired units, the following factors can be used:

To convert the value in kilocalories to its equivalent in	Multiply the value in kilocalories by
International kilojoules	4.1833
Absolute kilojoules	4.1850
Absolute volt-electrons	0.04337

For converting data on the electromotive force of cells, the value of the Faraday constant has been taken as equal to 23.066 kilocalories per international volt-equivalent.

All the energy values, unlabeled with regard to units, that are given in the text and table are in terms of the kilocalorie defined in the foregoing manner.

Unit amount of substance. The unit amount of each chemical substance is taken to be that mass represented by its gram formula weight. In recomputing the data of those investigators who reported their results in terms of "weights in air," the authors have reduced to vacuo all pertinent weights, when such reduction was significant. All values of energy given in this book are understood to be for one mole of the given substance (or reaction). The atomic weights given in the table are those from the 1934 Report of the Committee on Atomic Weights of the International Union of Chemistry (see Baxter, Curie, Hönigschmid, Le Beau, and Meyer¹). Where the necessary changes were at all significant, the thermochemical values given in the text and table have been changed to conform to the foregoing table of atomic weights.

However, it should be pointed out that great caution must be exercised in attempting any such conversion because of the many different methods which have been used to determine the amount of a given calorimetric reaction. For example, to determine the amount of the reaction, $\operatorname{Na}(c) + \operatorname{H}_2\operatorname{O}(\operatorname{liq}.) = \operatorname{NaOH}(\operatorname{aq}.) + \frac{1}{2}\operatorname{H}_2(g)$, one can (1) determine the mass of Na used, (2) determine the mass of H_2 produced, or (3) determine the amount of NaOH by titration with (for example) an aqueous solution of HCl which has been standardized with AgNO_3 which in turn has been prepared from a weighed amount of pure Ag. The calculation of the number of moles of reaction taking place will depend in case (1) on the atomic weight of Na, in case (2) on that of H, and in case (3) on that of Ag. Another example is that the value obtained by Rossini^{4,8} for the heat of combustion of 1 mole of CH_4 is independent of the atomic weight of carbon, because the amount of calorimetric reaction was determined from the mass of $\operatorname{H}_2\operatorname{O}$ formed in the combustion.

Standard states. The standard or reference state of each of the elemental substances is taken to be that physical state (or one of them, if there are two or more) in which the element naturally exists at a pressure, or a fugacity, of one atmosphere and at a temperature of 18°. The isotopic composition of each element in its standard state is understood to be the naturally existing one. For the element carbon, we have selected its form as diamond, C (c, diamond), as the standard state because no other form of solid carbon is at present a reproducible and invariable one.

Aqueous Ions. In order to facilitate the computation of the heats of formation of aqueous strong electrolytes, we have taken as an arbitrary reference point for aqueous ions the heat of formation of aqueous hydrogen ion, H⁺(aq.), to be zero. Therefore, the values given in the table for the heats of formation of individual aqueous ions are not the actual

heats evolved in the reaction of forming those individual ions from their elements in the standard states, but the sum of the values for a number of ions whose charges sum to zero does represent the actual heat of formation of the sum of those aqueous ions.

Conventions as to temperature, pressure, and concentration. Every heat of formation or heat of reaction value given in the table or in the text is understood to be, unless otherwise specified, the value for the heat evolved when the reaction takes place at a constant pressure, or a fugacity, of one atmosphere and at a temperature of 18°. This means that those data obtained at some other temperature have been converted, when the conversion is at all significant, to a temperature of 18°; and that those data obtained at other than constant pressure have been converted to constant pressure. For substances in aqueous (or other) solution, the concentration, when known, is indicated. When the concentration is not indicated, it is understood to be for a "dilute" solution.

Physical state and its description. The physical state of each substance is indicated, in the text and in column 2 of the table, as gaseous, liquid, crystal, glass, colloidal, or in aqueous or other solution. (See the list of abbreviations on page 14.) All states are for a pressure, or a fugacity, of one atmosphere and a temperature of 18°, unless otherwise indicated.

Numerals, in column 2 of the table or in the text in parentheses following the formula of the substance, indicate that one mole of the substance is dissolved in that number of moles of H_2O . When the concentration is not known, there is written, instead of the numeral, the abbreviation "aq." which indicates a large number of moles of H_2O , i. e., the solution is "dilute."

When the substance is dissolved in a solvent other than water, the formula (or name) of the solvent is given, and, if known, the number of moles of it per mole of solute. When the concentration is not given, the solution is understood to be "dilute."

In column 3 of the table are recorded items which serve to identify the substance for which the value of the heat of formation is given. For crystalline substances having stable transition points, the various solid crystalline forms are indicated as I, II, III, IV, etc., beginning with the form stable at the normal melting point. For atoms, ions, and certain molecules, in the gaseous state, the electron configuration and term symbols are given (see Mulliken, Jevons, and Bacher and Goudsmit).

Heat of formation. The heat of formation of a substance, as MX (crystal), is taken to mean the heat evolved in the reaction of forming one mole (gram formula weight) of that substance from its elements in their standard states (as, for example: M (liq.) $+\frac{1}{2}X_2$ (g) = MX(c)) at a constant pressure (or a fugacity) of one atmosphere and, unless otherwise

specified, at a temperature of 18°. The values for the heats of formation of the substances are given in the table in the column headed Qf. In the text these values are also labeled Qf. Translated into the nomenclature of Lewis and Randall, $Qf = -\Delta H^{\circ}$ (formation), the decrement in heat content accompanying the reaction of forming the given substance from its elements in their standard states.

In this book, the values for the heats of formation of substances in aqueous or other solution represent values of the apparent molal heat content, not the partial molal heat content (see Lewis and Randall⁵ and Rossini⁵). That is to say, for example, the value of Qf for NaCl (200) means actually the heat of the reaction, Na (c) $+\frac{1}{2}$ Cl₂ (g) +200 H₂O (liq.) = (NaCl \cdot 200 H₂O) (liq.), though it is written here for convenience as Na (c) $+\frac{1}{2}$ Cl₂ (g) = NaCl (200). And, similarly, the difference between the values of Qf for NaCl (200) and NaCl (400) gives the heat of the reaction, (NaCl \cdot 200 H₂O) (liq.) +200 H₂O (liq.) = (NaCl \cdot 400 H₂O) (liq.), which equation is written, by the convention of this book, as NaCl (200) = NaCl (400).

Computation of the heat of any process. To compute the heat of any process involving the disappearance of a substance or substances in the states given in the table and the appearance of other or the same substances in states given in the table: Add together the heat of formation (values for Qf) of the products of the process in the final states and subtract therefrom the sum of the heats of formation (values for Qf) of the reactants in their initial states. The value so obtained represents the heat evolved when the given process takes place at a constant pressure (or a fugacity) of one atmosphere and at a temperature of 18°. The following are examples:

Heat of reaction

$$BaCl_{2} (400) + H_{2}SO_{4} (400) = BaSO_{4} (c) + 2 HCl (400).$$

$$Q = -\Delta H = \{Qf [BaSO_{4} (c)] + 2 Qf [HCl (400)] \} - \{Qf [BaCl_{2} (400)] + Qf [H_{2}SO_{4} (400)] \}.$$

$$= \{349.4 + 2 (39.525) \} - \{207.350 + 211.84 \} = 9.260.$$

Heat of solution

KCl (c) = KCl (400).
$$Q = -\Delta H = Qf \text{ [KCl (400)]} - Qf \text{ [KCl (c)]} = 99.899 - 104.361 = -4.462.$$

Heat of dilution

Heat of ionization in aqueous solution

$$\begin{aligned} & \text{HC}_2\text{H}_3\text{O}_2\ (\infty) = \text{H}^+(\infty) + \text{C}_2\text{H}_3\text{O}_2^-(\infty). \\ & Q = -\Delta H = \left\{Qf\left[\text{H}^+(\infty)\right] + Qf\left[\text{C}_2\text{H}_3\text{O}_2^-(\infty)\right]\right\} - Qf\left[\text{HC}_2\text{H}_3\text{O}_2\ (\infty)\right] \\ & = \left\{0.000 + 117.946\right\} - 118.070 = -0.124. \end{aligned}$$

Heat of ionization in the gaseous phase

$$\begin{array}{c} {\bf H} \ ({\bf g}) = {\bf H}^+({\bf g}) \ [+ \theta \ ({\bf g}) \,], \\ Q = - \Delta H = Q f \ [{\bf H}^+({\bf g}) \,] - Q f \ [{\bf H} \ ({\bf g}) \,] = -365.58 - (-51.90) = -313.68. \end{array}$$

Heat of dissociation

$$I_{2} (g) = 2 I (g).$$

$$Q = -\Delta H = 2Qf[I (g)] - Qf[I_{2} (g)] = 2 (-25.59) - (-14.91) = -36.27.$$

Heat of sublimation

$$KCl(c) = KCl(g)$$
.

$$Q = -\Delta H = Qf$$
 [KCl (g)] $-Qf$ [KCl (c)] $= 52.4 - 104.361 = -52.0$.

Accuracy of the values. All the values recorded in the table have been recomputed from the original experimental data, using consistent values for all subsidiary quantities. Heats of reaction, of dilution, of solution, of neutralization, of transition, etc., may be computed by difference with an accuracy as high as is known. The number of significant figures in any one value in the table does not indicate the absolute accuracy of that value, which will be less than that of the least accurate determination in the total chain of reactions used to calculate the value. In most cases, sufficient information to deduce the accuracy of any value is given in the text.

References to the literature. References to the original data are given in the text, as Washburn.² The exact citation can then be found in the list of references, which are given in alphabetical (and numerical) order, as Washburn,² Bur. Standards J. Research 10, 525 (1933), where the numerals indicate, respectively, the volume, page, and year. The abbreviations used for the titles of the periodicals are those adopted as standard by the International Union of Chemistry (See, for example, Chemical Abstracts' "List of Periodicals Abstracted"). When the citation is that of a book, it is written as Washburn, "Introduction to the Principles of Physical Chemistry," McGraw-Hill Book Co., New York (1921), where the title is in quotation marks, and then in order follow the name of the publisher, the place of publication, and, in parentheses, the year of publication. If the book citation includes volume and page numbers, these follow immediately after the title.

Superscripts and subscripts. A numeral superscript, as E^{25} , indicates the temperature in degrees Centigrade. For convenience, the super-

script "z" (as, for example, D^z) is used in place of the superscript "-278" to indicate the absolute zero of temperature.

The asterisk superscript "*" applied to the formula of a given chemical substance indicates that the given ion, atom, or molecule is in an excited state, that is, in an electronic state having an energy content greater than that of the ground or normal state.

A numeral subscript, as A_{100} , indicates the number of moles of H_2O per mole of solute in the solution. A word subscript, as A_{OH_3OH} , with or without a numeral subscript giving the number of moles of solvent, indicates the solvent, if other than H_2O . These subscripts and superscripts may be attached either to the symbol representing the kind of reaction or to the number representing the value of the heat of the reaction.

Abbreviations. The following abbreviations are used:

amorp. Amorphous, or ill defined solid state.

aq. In a dilute aqueous solution.

c Macrocrystalline.

C Heat of combustion. The heat evolved in the combustion of the given substance at constant pressure in oxygen.

Heat of dissociation. When applied to gaseous diatomic molecules, D represents the heat evolved in the reaction, Z_2 (g) = 2 Z (g), at constant pressure (or fugacity). When applied to hydrates, ammines, etc., D represents the heat evolved, per mole of gaseous H_2O (or of NH_3 , etc.) in the reaction, $Z \cdot n H_2O$ (c) = $Z \cdot (n-a) H_2O$ (c) + $a H_2O$ (g), at constant pressure.

Excitation energy. The energy evolved in the process of elevating a gaseous substance from a given electronic energy state to a higher electronic energy state.

F Heat of fusion. The heat evolved in the reaction, \mathbf{Z} (c) = \mathbf{Z} (liq.), at constant pressure.

g Gas.

gls. A glass or solid supercooled liquid.

I Energy of ionization of a gaseous substance. The energy evolved in the process of removing an electron from a gaseous substance.

(ideal) In the condition indicated by the formula, e.g., for N_2O_4 (g), the word "(ideal)" indicates that the heat of formation is for a gas composed only of N_2O_4 molecules.

liq. Liquid.

N Heat of neutralization. The heat evolved in the reaction, HX (aq.) + MOH (aq.) = MX (aq.) + H_2O (liq.), at constant pressure.

ppt. Precipitated.

Q Heat of reaction. The heat evolved when the given reaction takes place at constant pressure. In the nomenclature of Lewis and Randall, $Q = -\Delta H$.

Qf Heat of formation. The heat evolved in the reaction of forming the given substance from its elements in their standard states, at constant pressure. In the nomenclature of Lewis and Randall, $Qf = -\Delta H^{\circ}$ (formation).

S Heat of solution (in water unless specified otherwise by a word subscript). The heat evolved in the reaction, Z (c, liq., or g) = Z (aq.) (or other solvent), at constant pressure.

satd. In a saturated solution in water.

 $T^{110}\rightarrow \Pi$ Heat of transition. For example, when given in connection with the substance Z (c, I), $T^{110}\rightarrow \Pi$ is the heat evolved in the reaction, Z (c, I) = Z (c, II), at constant pressure and at 110° .

X F, Cl, Br, or I.

V Heat of vaporization. The heat evolved in the reaction, Z (liq.) = Z (g), at constant pressure.

Vs Heat of sublimation. The heat evolved in the reaction, Z (c) = Z (g), at constant pressure.

 θ Electron gas.

Order of arrangement of the chemical substances in the table. The substances listed in the thermochemical table are arranged in a manner analogous to that used in the International Critical Tables. The principle of this method is as follows: The chemical elements are arranged in a certain prescribed order, as a, b, c, d, e, f, g, h, etc. Then all the chemical substances will be arranged in the table in the following order: a; b, ba; c, ca, cb, cba; d, da, db, dba, dc, dca, dcb, dcba; etc. In this book, the prescribed order of the elements is that given in the diagram on page 16. With several exceptions, the arrangement follows the periodic table quite closely, starting with the rare elements, going through the negative elements, and ending with the most positive substance, element 87.

Order of arrangement of the chemical elements.

Helium

				ium	
Atomi	number 2	Stan	dard sta	te He (g)	Atomic weight 4.002
Formula	State	Descript	ion	Qf, kcal. mole-	Q, kcal. mole-1
He	g liq.	1s²	(¹S₀)	0.000	$V - 0.022^{-270} F - 0.03^{-258}$
He *	g	2s	$({}^{8}S_{1})$ $({}^{1}S_{0})$	- 456.46 - 474.74	$I^s - 109.47$ $I^s - 91.19$
He+ He++	g	1s	$({}^{2}S_{1/2})$	- 565.93 -1826.59	$I^{s} - 564.475$ $I^{s} - 1249.21$
He ₂ *	g	³ Σ+ _u ¹ Σ+ _u		- 404.16 - 411.1	$D^z - 51.4$
He ₂ +	g	² Σ ⁺ u		- 503.4	
			N	eon	
Atomi	c number l	10 Stan	dard sta	te Ne (g)	Atomic weight 20.183
Ne	g liq.	2p ⁶	(1S ₀)	0.000	$V - 0.44^{-246}$
Ne *	g g	$2p^{5}(^{2}P_{1/2})3s$	(3^{1}_{0}) (4^{1}_{0})	- 383.77 - 380.41	$F - 0.078^{-240}$ $E^{z} - 383.77$ $E^{z} - 380.41$
	g	$2p^{5}(^{2}P_{3/2})3i$	(2^{1}_{1}) (2^{1}_{1})	- 381.56 - 382.75	$E^* - 381.56$ $E^* - 382.75$
Ne+ Ne+ *	g g	2p ⁵	² P ¹ _{8/2} ² P ¹ _{1/2}	- 496.56 - 498.79	$I^s - 495.11$ $E^s - 2.23$
Ne++ Ne+++	g g g	2p ⁶ 2p ⁴ 2p ³	$^2\mathrm{S}_{1/2}$ $^3\mathrm{P}_2$ $^4\mathrm{S}^1_{3/2}$	-1014.47 -1438.67 -2896.8	$E^{z} - 617.91$ $I^{z} - 940.66$ $I^{z} - 1456.7$
Atomi	c number 1	l8 Star	Ar dard st	gon ate A (g)	Atomic weight 39.944
A	g liq.	3p6	¹S ₀	0.000	V - 1.50-186
A·5H₂O	0			356.7	$\begin{array}{cccc} F & - & 0.265^{-189} \\ D & - & 14.8^4_{-\text{H}_2\text{O}(\text{liq},)} \end{array}$
A*	g	$3p^{5}(^{2}P_{3/2})4$	(1 ¹ 2)	- 265.14	$E^* - 265.141$

Atom	c number l	18 5	tandard state	A (g)	Atomic Weight 39.944
A	g	3p6	1S0	0.000	
	liq.		1		V - 1.50-186
	C		1		F - 0.265-189
A·5H ₂ O	C	1		356.7	D - 14.84 H ₂ O(liq.)
A*	g	3p5(2P3	(2)4s (1 ¹ 2)	- 265.14	$E^* - 265.141$
	g		(2^{1}_{1})	- 266.87	$E^s - 266.867$
	g	3p ⁵ (2P ₁	/2)4s (31 ₀)	-269.15	$E^* - 269.153$
	g		(4 ¹ ₁)	-271.56	$E^{z} - 271.562$
A+	g	3p ⁸	$(^{2}P_{3/2})$	- 362.29	<i>I</i> ∗ − 361.839
A+ *	g		² P ¹ _{1/2}	- 366.36	$E^* - 4.07$
	g	3p6	² S _{1/2}	-671.82	$E^{z} - 309.532$
A++	g	3p4	³ P ₂	- 999.61	<i>I</i> ² − 635.87
A++ *	g	-	3P1	-1002.76	$E^s - 3.16$
****	g		³P₀	-1004.09	E* - 4.48
A+++	g	3p³	4S13/2	-1939.0	I* - 937.95
A++++	g	3p²		-5860.	<i>I</i> ⁵ −3920.

Krypton

Atomi	number 3	36	Standard sta	ate Kr (g)	Atomic weight 83.7
Formula	State	Des	cription	Qf, kcal. mole-1	Q, kcal. mole-1
Kr	g liq.	4p ⁶	¹ S ₀	0.000	V - 2.31 ⁻¹⁶¹ F - 0.36 ⁻¹⁶⁷
Kr∙5H₂O Kr*	0 0 00 00 00		$(2^{1})_{2}$ $(2^{1})_{2}$ $(2^{1})_{2}$ $(2^{1})_{3}$ $(2^{1})_{4}$	356.6 227.66 230.36 242.52	$D - 14.7^{\circ}_{-\text{H}_{2}\text{O}(\text{Hig.})}$ $E^{\circ} - 227.662$ $E^{\circ} - 230.360$ $E^{\circ} - 242.521$
Kr+ Kr+ • Kr++ Kr+++	***************************************	4p ⁵ 4p ⁴ 4p ³	(4^{1}_{1}) $^{2}P_{3/2}$ $(^{2}P_{1/2})$ $^{3}P_{2}$ $(^{4}S^{1}_{3/2})$	- 244.39 - 322.90 - 338.18 - 943. - 1664.6	E^{s} — 244.386 I^{s} — 321.445 E^{s} — 15.29 I^{s} — 619. I^{s} — 720.15

Atomi	c number 5	4	Standard state	Xe (g)	Atomic weight 131.3
Xe	g	5p ⁶	1S0	0.000	
	liq.	-			$V3.27^{-109}$
	c		į.		F - 0.49-140
$Xe.6H_2O$	c			428.	$D - 18.^{12} + H_{2}O(Hq.)$
Xe*	g	$5p^{5}(^{2}P_{3})$	_{3/2})6s (1 ¹ ₂)	— 139.69	E* - 139.688
	g		(2^{1}_{1})	— 142.35	$E^* - 142.353$
	g	$5p^{5}(^{2}P_{1})$	$_{1/2})6s (3^{1}_{0})$	- 165.6 8	$E^s - 165.677$
	g		(4^{1}_{1})	- 168.49	$E^s - 168.490$
Xe ⁺	g	$5p^{s}$	${}^{2}\mathrm{P}_{8/2}$	-228.73	$I^* - 227.27$
	g		$^{2}P_{1/2}$	— 231.73	E= - 3.00
	g	$5\mathbf{p}^{6}$	² S _{1/2}	-487.42	E* - 258.69
Xe++	g	5p4	$^{5}P_{2}$	— 717.17	I* - 486.99
Xe+++	g	$5p^3$	4S1 _{8/2}	-1376.0	I* - 657.5

Radon

Aton	nic number 86	Standard stat	te Rn (g)	Atomic weight 222.
Rn	g liq.	¹ S ₀	0.000	V - 43-62
Rn*	g	$6p^{5}(^{2}P_{5/2})7s (1^{1}_{2}) $ (2^{1}_{1}) $6p^{5}(^{2}P_{1/2})7s (3^{1}_{0})$ (41)	- 155.49 - 159.39 - 193.32	$F - 0.8^{-71}$ $E^{s} - 155.49$ $E^{s} - 159.39$ $E^{s} - 193.32$
Rn+	g	$\begin{array}{c} (4^{1}_{1}) \\ 6p^{5} \qquad (^{2}P_{3/2}) \end{array}$	- 196.12 - 248.24	$E^* - 196.12$ $I^* - 246.79$

OXYGEN 19

Oxygen

Atomic	number 8	Standard state	$O_2(g)^{\dagger}$ A	tomic weight 16.0000
Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
O O* O+ O+ O+*	8 8 8 8	$\begin{array}{c} 2s^{2}2p^{4} \left({}^{3}P_{2} \right) \\ \left({}^{3}P_{1} \right) \\ \left({}^{5}P_{0} \right) \\ \left(D_{2} \right) \\ \left({}^{1}S_{0} \right) \\ 2s^{2}2p^{3} \left({}^{4}S^{1}_{3/2} \right) \\ \left({}^{2}D^{1}_{5/2} \right) \end{array}$	- 59.10 - 59.55 - 59.74 - 104.28 - 155.30 - 373.22 - 449.56	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
O++ *	g g g	$egin{array}{c} (^2\mathrm{D}^1{}_{3/2}) \\ (^2\mathrm{P}^1{}_{3/2}) \\ (^2\mathrm{P}^1{}_{1/2}) \\ 2\mathrm{s}^22\mathrm{p}^2 \left(^3\mathrm{P}_0 ight) \\ (^3\mathrm{P}_1) \end{array}$	- 449.62 - 488.42 - 488.44 - 1180.39 - 1180.72	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
O++++ O+++ * O+++	g g g	$egin{array}{cccc} ^* & (^3\mathbf{P_2}) & & & & & & & & & & & & \\ & 2\mathbf{s}^2 2\mathbf{p} & (^2\mathbf{P^1}_{1/2}) & & & & & & & & & & & & & \\ & & & & & $	- 1181.27 - 2447.3 - 2448.4 - 4224.	
O- O++++++ O++++++ O+++++	8 8 8 8	2s (2S _{1/3}) 1s ² (4S ₀) 1s (2S _{1/2})	- 6742. - 9914. - 26817. - 46810. - 30.	I*
O— O ₂	g g liq. c	(³∑− <u>s</u>)	- 225. 0.000	V — 1.629 ^{-183.0} F — 0.106 ^{-218.7}
O ₃ * O ₂ +	c c aq. g	II III (¹Σ+ _α)	3.85 - 37.36 - 280.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
03	g liq. aq.		- 34.5 - 32.7 0.13	$V - 2.96^{-112.8}$ $S 1.8$

[†]Natural mixture of isotopes.

Hydrogen

Atomi	c number 1	Standard state	$H_2(g)^{\ddagger}$	Atomic weight 1.0078
Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole-1
H H+ H- H ₃	g g aq. g g liq.	1s (2S _{1/2}) (by convention) equilibrium;	- 51.90 - 365.58 0.000 - 34.85 0.000	$D^{r}_{H_{2}} - 102.9$ $I^{s} - 312.23$ $V - 0.216^{-245}$
	c aq. solid	adsorbed on Pt	1.42 13.8	F - 0.0282 ⁻²⁴² S 1.42
H ₂ *	g	B (¹Σ+ _u)	- 256.8	E* - 256.8
 .	g	$C(^{1}\Pi_{u})$	- 282.2	$E^{s} - 282.2$
H ₂ +	g	$(^2\Sigma^+_{\mathbf{g}})$	- 357.52	* I* — 356.07
OH	g	2П	5.93	
OH*	g	2Σ+	- 86.33	
OH-	g		– 58.	
TT 0	∞		54.660	N 13.710.
H_2O	g lia		57.801	V - 10.571
i	liq.		68.370	77
H ₂ O ₂	c ~		20.50	F - 1.437°
11203	g liq.		33.59	V - 11.61
	riq.		45.20	S 0.46 ₂₀₀ F - 2.52-2
	200		45.66	F - 2.52 ⁻²
	6.3		45.64	
	2.6		45.63	
	1.0		45.4	
			TO. T	

[‡]Natural mixture of isotopes; molecules in equilibrium with respect to symmetric and antisymmetric rotational states.

Fluorine

AMMIC	number 9	Standard state	F ₂ (g)	Atomic weight 19.00
Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
F	g	2p ⁵ (² P ¹ _{3/2})	- 31.75	$D_{F_2}^s$ — 62.6
F*	g	$(^{2}P_{1/2})$	- 32.91	E^s — 1.16
F+	g	$2p^{3}3s (^{5}S^{1}_{2})$	- 462.95	I^* - 429.75
F+ *	g	2p³3p (5P ₁)	- 503.64	$E^* - 73.89$
	g	(5P ₂)	- 503.67	$E^{s} - 73.92$
	g	(⁵ P ₃)	- 503.73	$E^{2} - 73.98$
F++	g	$2p^3$ ($^4S^1_{3/2}$)	-1262.05	$I^{*} - 797.65$
F+++	g	$2p^2$ (3P_0)	-2601.30	$I^{2} -1133.8$
F+++ *	g	(⁸ P ₁)	-2601.99	E^* - 0.66
	g	(8P ₂)	-2602.48	E^z - 1.18
F++++	g	$2p (^2P^1_{1/2})$	- 4562.3	I^* -1959.6
F++++	g	$2s^2$ (1S_0)	- 7169.8	I^{s} -2606.
F+++++	g	$2s$ (${}^{2}S_{1/2}$)	-10697.	I^* -3526.
F++++++	g	$1s^2$ (1S_0)	-14941.	<i>I</i> ∗ −4243.
F+++++++	g	1s $({}^{2}S_{1/2})$	-17124.	<i>I</i> • −2181.
F-	g		66.3	
	∞		78.20	
$\mathbf{F}_{\mathbf{z}}$	g		0.000	T7 1 00-188
	liq.			V - 1.60 ⁻¹⁸⁸
	С		04.0	$F - 0.34^{-220}$
\mathbf{HF}	g	ideal	64.0	S 11.56 ₂₀₀ S 4.60 ₂₀₀
	liq.		71.0	F - 1.09-83
	C		75.7	F - 1.09
	600		1	
	200		75.56 75.56	
	12		75.46	
	6		75.11	
	2.2		74.74	
	1.7		73.5	
7777	0.5		153.4	
HF.	aq.	at 745 mm. pressure	229.	
(HF):.: H ₆ F ₆	g	at 140 mm. pressure	424.	
	g		- 5.5	
F ₂ O	g		0.0	

Chlorine

Atomi	c number 1	17 Standard state	Cl ₂ (g)	Atomic	weight 35.457
Formula	State	Description	Qf, kcal. mole-	Q,	, kcal. mole-1
Cl Cl* Cl+* Cl++* Cl+++* Cl+++* Cl++++* Cl++++* Cl++++* Cl-++++ Cl-++++ Cl-++++ Cl-++++ Cl-++++ Cl-++++	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	3s ² 3p ⁵ (² P ¹ _{3/2}) (² P ¹ _{1/2}) 3s ² 3p ⁴ (³ P ₂) (³ P ₁) (³ P ₀) 3s ² 3p ³ (⁴ S ¹ _{3/2}) 3s ² 3p ² (³ P ₀) (³ P ₁) (³ P ₀) 3s ² 3p (² P ¹ _{1/2}) (² P ¹ _{3/2}) 3s (² S _{1/2}) 2p ⁶ (¹ S _c)	- 28.90 - 31.41 - 329.46 - 331.44 - 332.29 - 863.97 - 1782.91 - 1784.31 - 1786.73 - 2888. - 2892. - 4451. - 6500. - 9126. 61.	E=	- 56.9 - 2.506 - 299.11 - 1.98 - 2.83 - 533.06 - 916.49 - 1.398 - 3.818 - 1094 - 4.24 - 1563 - 2047 - 2625
Cl2	g liq.		39.687 0.000	V F	4.4-** 1.62-102.8
CI err o	aq. aq. CCl.	saturated ideal	5.3 7.0 4.5	S S	5.3 4.5°ccų
Cl ₂ ·6H ₂ O Cl ₃ ClO ClO-	c g g aq.		428.2 - 25. - 31. 25.9		
ClO ₂	g liq. aq. ∞		- 23.5 - 17.0 - 16.9 20.75	S V	6.6 6.52
ClO ₄ - Cl ₂ O	∞ g aq.	ideal	39.5 — 18.25 — 8.81		
HCl	aq. g liq. c	I	— 8. 22.06	V .	- 3.86 ⁻²⁵ - 0.476 ⁻¹¹⁴
	6400 3200 1600 800 400	11	39.687 39.647 39.629 39.606 39.572 39.525	T ·	- 0.284 ^{-174.8} -1

Chlorine

Formula	State	Description	Qf, kcal. mole-1	(Q, kcal. mole ⁻¹
HCl	200		39.465		
	100		39.382		
	50		39.257		
	25		39.032		
	20		38.92		
	18		38.86		
	15		38.73		
	12		38.55		
	10		38.35		
	8		38.06		
	6		37.52		
	5		37.10		
	4		36.44		
	3		35.43		
	2		33.56		
	1 1		28.3		
	CCl		25.7	s	3.68°CC14
	C ₂ H ₅ OH		32.6	s	10.6 _{C2} H30H
HCl+	g		- 296.	Į:	– 318.
HCl·2H₂O	c			F	-2.5^{-18}
HClO	400		29.78		
HClO ₂	aq.		13.8		
HClO,	aq.		20.8		
HClO.	660		39.6		
-	200		39.6	•	
	96		39.63		
	42		39.59		
	10		39.54		
	6		39.24		
	4.15		39.00		
	3.08		38.37		
	2.33		35.24		
	1.43		32.23		
	1.0		27.9		
ClF	g		25.7		
-	liq.			\boldsymbol{v}	-2.27^{-101}

Bromine

Atomi	number 35	Standard state	Br ₂ (liq.)	Atomic weight 79.916
Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole-1
Br Br* Br+ Br+ *	***************************************	4s ² 4p ⁵ (² P ¹ _{3/2}) (² P ¹ _{1/2}) 4p ³ 5s (⁵ S ¹ ₂) 4p ³ 4d (⁵ D ¹ ₀) (⁵ D ¹ ₁) (⁵ D ¹ ₂) (⁵ D ¹ ₄) 4p ² 5s (⁴ P _{1/2}) (⁴ P _{5/2}) (⁴ P _{5/2}) (⁴ P _{5/2}) (⁴ P _{5/2}) (⁴ P _{3/2}) (⁴ P _{1/2}) 4p5s (¹ P ¹ ₁)	- 26.88 - 37.37 - 298.92 - 299.37 - 299.45 - 299.53 - 299.64 - 299.75 - 741 742.53 - 744.90 - 753.90 - 755.22 - 755.81 - 1333.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Br- Br ₂	g g liq.		61.6 28.67 - 7.65 0.000	I = - 87.9 V - 7.65 F - 2.53 ⁻⁷
Br ₂ ·10H ₂ O Br ₃ - Br ₅ - BrO- BrO ₅ -	aq. CCl ₄ CH Cl ₃ CS ₂ c aq. aq. aq.	ideal	1.2 - 0.5 - 0.6 - 1.4 700. 31.1 35.7 21.3 11.2	S - 0.5cc1 ₄ S - 0.6cmc1 ₅ S - 1.4cs ₁ D - 7.9-10
HBr HBr	g liq. c c c 3200 1600 800 400 200 100 50 25	I II III	28.67 28.62 28.60 28.58 28.55 28.52 28.47 28.39 28.23	S 19.89400 V - 4.21-66.7 F - 0.575-86.9 T - 0.26-180_1 T - 0.14-180_11

Bromine

Formula	State	Description	$Qf, kcal. mole^{-1}$	Q, kçal. mole ⁻¹
HBr	10 6 5 3		27.68 26.83 26.20 24.49 22.4	•
HBr·H ₂ O HBr·2H ₂ O HBrO HBrO ₃ BrCl	1 c c aq. aq.		25.2 11.30 - 3.07	F - 3.0 ⁻¹¹ D - 16.9 ⁰ → H ₂ O(liq.)

Iodine

Standard state I2 (c) Atomic weight 126.92

Atomic number 53

			(-)	THOMAS WORLD 120.02
I	g	5s ² 5p ⁵ (² P ¹ _{8/2})	- 25.59	$D_{1_2} - 35.40$
I*	g	(2P1 _{1/2})	- 46.73	E^{*} - 21.14
I+	g	5p ³ 6s (⁵ S ¹ ₂)	-267.54	$I^* - 240.5$
Ī-	g		53.0	
_	8		13.37	
I,	g		- 14.91	V - 14.91
-,	liq.		2.410.2	$F - 4.0^{113.5}$
	c c		0.000	1 2.0
	aq.		- 5.0	
	C ₆ H ₆		- 6.0	S - 6.0 _{CeHe}
	C ₂ H ₅ OH		- 1.7	S - 1.7 _{C2} H ₂ OH
	$(C_2H_5)_2O$	in diethyl ether	- 1.6	S - 1.6 _{(C₂H₁)₂O}
	CCl.	an diconfi conci	- 5.8	$S - 5.8_{\text{CO}_4}$
	CHCl,		- 6.0	S - 6.0 _{CHCl₃}
	CS ₂		- 5.0	S - 5.0 _{CB} ,
I	aq.		12.14	0.0083
IO-	1 - 1		20.	
IO,-	aq. ∞	'	54.5	
IO.	1 1		37.6	}
IO ₆	aq.		146.4	1
I ₂ O ₅	aq.		42.5	S - 1.96 ₂₀₀
HI	C		- 5.91	$S = 1.50_{200}$ $S = 19.19_{200}$
ш	g			$V - 4.72^{-35.4}$
	liq.	I	- 8.89	$F - 0.686^{-50.8}$
	C			T = 0.080
	C	II		$T = 0.192 \times 0.19$
	C	III	19.97	7 - 0.019
	∞		13.37	

Iodine

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, I	kcal, mole-1
HI	1600		13.31			
111	800		13.30			
	400		13.29			
	200		13.28			
	100		13.26			
	50		13.22			
	25		13.11			
	20 20		13.07			
	10		12.65			
	5		11.46			
	3		8.89			
	$\frac{3}{2}$		6.6			
HIO	_		38.			
HIO ₃	aq.		56.77	S		2.17
11108	C		54.6	D		2.11
HIO ₆	aq.		158.5			
H_2IO_6	aq.		171.4			
H ₃ IO ₆	aq.		182.1			
H ₄ IO ₆ -	aq.		174.4			
H ₅ IO ₆	aq.		184.4	S		1 00
115106	c		183.0	D	-	1.38_{2000}
I ₂ O ₅ ·HIO ₃	aq. c		99.7	S		4.2912
ICl			- 3.46	D		4.28
101	g lia		1			
	liq.	م	6.06			
	c	β	8.15	101		0.00
ICl ₃	c	α	8.38	F		2.33
IBr	c		20.0			
ונונ	g lia		- 9.6			
	liq.		2.5			

Element 85

Atomic number 85

Standard state X (c) Atomic weight (212?)

Sulfur

Atomic	number 16	Standard state S	6 (c, rhombic)	Atomic weight 32.06
Formula	State	Description	Qf, kcal. mole-1	$Q,\ kcal.\ mole^{-1}$
S	g liq. liq. c c S ₂ Cl ₂	3s ² 3p ⁴ (³ P ₂) λ μ rhombic monoclinic	- 66.3 - 0.33 - 0.75 0.000 0.075 - 1.5	$D^{z}_{s_{z}} - 102.6$ $F - 0.35^{119}_{\text{monoclinic}}$ $T - 0.093^{95}_{\text{-rhombic}}$
S* S+ S+*	8 8 8 8	$3s^{2}3p^{4}$ ($^{3}P_{1}$) ($^{3}P_{0}$) $^{2}D_{1}$ $3s^{2}3p^{3}$ ($^{4}S_{s/2}$) ($^{2}D_{s/2}$) ($^{2}D_{s/2}$) ($^{2}P_{1/2}$)	- 67.42 - 67.93 - 103.20 - 334.53 - 376.81 - 376.90 - 404.35	E* - 36.90 I* - 237.06 E* - 42.28 E* - 42.37 E* - 69.82
S++ S++* S+++ S+++*	88 88 88 88 88 88 88 88 88 88 88 88 88	$egin{array}{c} (^2\mathbf{P^1}_{3/2}) \\ 3s^23\mathbf{p^2} \ (^3\mathbf{P_0}) \\ (^3\mathbf{P_1}) \\ (^3\mathbf{P_2}) \\ 3s^23\mathbf{p} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	- 404.48 - 873.5 - 874.35 - 875.88 - 1679.9 - 1682.6	E^{s} — 69.95 I^{s} — 537.54 E^{s} — 0.85 E^{s} — 2.38 I^{s} — 804.9 E^{s} — 2.71
S++++ S++++ * S+++++ S+++++ S	8 8 8 8 8 8	$\begin{array}{ccc} 3s^2 & (^1\!S_0) \\ 3s3p & (^3\!P^1_0) \\ 3s & ^2\!S_{1/2} \\ 2p & (^1\!S_0) \end{array}$	-2767.5 -2885. -4303. -6325. - 146. - 10.0	I* -1086.2 I* -1428. I* -1535. I* -2022.
S ₂ S ₂ * S ₂ S ₃ S ₄ S ₆	g g aq. aq. aq.	³ Σ ¹ g Σ ¹ u	- 29.2 - 120.95 - 9.3 - 7.8 - 5.3 - 22.6	E* — 91.75
So SO SO ₂	$egin{array}{c} \mathbf{g} \\ \mathbf{CS_2} \\ \mathbf{g} \\ \mathbf{g} \\ \mathbf{liq.} \\ \mathbf{c} \end{array}$		- 20.0 - 3.3 - 6.3 70.92 77.0	$D^{s} - 118.20$ $V - 6.07^{-10}$ $F - 1.9^{-73}$
SO ₂ ·7H ₂ O	2000 1000 500 200 100 75		79.48 79.15 78.81 78.37 78.04 77.92 568.54	S 8.56 S 8.23 S 7.89 S 7.45 S 7.12 S 6.99

Sulfur

Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole-1
SO:	g		93.9	V - 10.3.
	liq.		104.2	S 41.18 ₅₀₀₀
	c	β, "wool-like"	105.2	S 40.25 soo
	c	α, "ice-like"	106.0	Vs - 12.1
SO ₃	aq.		148.5	
SO,	∞		215.8	
S ₂ O ₂	aq.		145.5	
S ₂ O ₄	aq.		162.	
S ₂ O ₅	aq.		229.6	
S ₂ O ₆	aq.		280.2	
S_2O_7	c		193.4	S 56.7
S ₂ O ₈	aq.		323.3	
S ₃ O ₆	aq.		279.	
S ₄ O ₆	aq.		272.3	
S ₅ O ₆	aq.		269.5	
HS-	aq.		3.9	
H ₂ S	g		5.3	
	liq.			$V - 4.5^{-61}$
	C		1	$F - 0.4^{-110}$
TT C CTT O	aq.		9.9	S 4.6
H ₂ S·6H ₂ O	c		431.4	
H,S,	g		- 8.94	V - 8.54
	liq.		- 0.4	
H ₂ S ₅	C 1:			F 1.80-∞
HSO ₂ -	liq.		2.6	
H ₂ SO ₂	aq. 200		149.0	
HSO.			146.74	
H ₂ SO ₄	aq. liq.		213.3	
	c c		193.75	$S - 17.75_{200}$
	∞		196.34	$F - 2.55^{10}$
	20000		215.8	
	15000		214.74	
	10000		214.54	
	8000		214.38	
	6000		214.16	
	4000		213.92	
	2000		213.56	
	1000		212.96	
	800		212.41	
	600		212.25	
	400		212.08	
1	200		211.84	
	100		211.5 211.29	
1	80	ś	211.29	
[-		211.20	3

SULFUR 29

Sulfur

Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
H ₂ SO ₄	60		211.17	
11,000	50		211.12	
	40		211.05	
	30		210.93	
	20		210.79	
	15		210.39	
	10		209.63	
	9		209.35	
	8		209.00	
	7		208.63	
	6		208.12	
	5		207.50	
	4		206.57	
	3		205.37	
	2			
	1 1		203.51	
	1.5		202.54	
	1.0		200.46	
	0.5		197.50	
	5(C ₂ H ₅) ₂ O		205.13	
	10(C ₂ H ₅) ₂ O		206.35	
	20(C ₂ H ₅) ₂ O		208.11	
$H_2SO_4\cdot H_2O$			268.74	
	0		273.28	$F - 4.45^{\circ.6}$
H,S,O.	aq.		161.1	
$H_2S_2O_6$	600		280.7	
H ₂ S ₂ O ₇	liq.		299.6	F - 2.64
	C		302.25	S 53.92 ₁₆₅₀
H,S,O,	aq.		318.5	
$H_2S_4O_4$	aq.		269.2	
SF ₆	g		262.	
	liq.			F - 1.39-56.6
	c			$V_s - 5.64^{-63.8}$
SCl4	liq.		13.7	•
S_2Cl_2	g		5.65	V 8.65
	liq.		14.3	
S_2Cl_4	liq.		24.1	
SOCl,	g		42.7	$V - 7.48^{76}$
	liq.		50.2	S 39.2
SO ₂ Cl ₂	g		86.2	V 6.7 ⁶⁹
	liq.		92.9	
$S_2O_5Cl_2$	g		153.3	V - 13.2
	liq.		166.5	S 222.4 _{5KOH} (aq.)
SO,HCl	liq.		142.3	S 40.3 ₂₀₀
S ₂ Br ₂	liq.		4.0	
SOBr ₂	liq.			V - 10.4140
CODI		1		1

Selenium

Atomic nu	mber 34	Standard state Se	(c, hexagonal)	Atomic weight 78.96
Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
Se	g liq.	4p³5p (³P₂)	- 61.	$D^{s}_{Be_{1}} - 92.$ $F - 1.6^{200}$
	c	I, hexagonal	0.000	
	С	II, red, monoclinic	- 0.2	T 0.18180_1
	gls.	vitreous	- 1.1	$T = 1.08^{128} + 1$
Se*	g	4p³5p (³P₁)	- 66.44	E' - 5.44
	g	(*P ₀)	- 68.22	E^* - 7.22
	g	(D ₂)	- 88.24	E^* - 27.24
~ .	g	¹ S ₀	-127.48	$E^{z} - 66.48$
Se ⁺	g	4s ² 4p ³ (4S ¹ _{3/2})	-286.4	$I^* - 223.92$
Se	aq.		- 37.3	
Se ₂	g	ļ	- 29.5	
Se ₅	g		- 32.5	
Se _s	g		- 34.8	~
SeO ₂	C		56.36	$S - 0.93_{2000}$
~ ~	2000		55.43	
SeO ₃	aq.		123.3	
SeO ₄	aq.		146.4	
HSe-	aq.		- 26.4	
$\mathbf{H}_{2}\mathbf{Se}$	g		- 18.5	0 0.40
TTC -0	aq.		- 16.1	S 2.43
HSeO ₃ -	aq.		124.8	
HSeO ₄ -	aq.		144.2	~
H_2SeO_3	C		119.69	S - 4.11
TT 0-0	aq.		123.8	
H ₂ SeO ₄	liq.		126.8	S 16.80 ¹⁵ 800
	C		130.25	S 13.3518 800
	4000		146.4	
	4000 1200		144.6	
	800		143.8	
	400		143.6	
	200		143.2 142.9	
	200		131.6	
H ₂ SeO ₄ ·H ₂ O	liq.		200.0	S 12.0215 and
2000 2220	c c		204.5	$\begin{array}{ccc} S & 12.02^{15}_{500} \\ S & 7.45^{18}_{500} \end{array}$
SeF.	g		246.	D 7.4:0**800
•	liq.		230.	F - 2.0-34.6
	c c			Vs - 6.60-46.6
SeCl ₂	g		10.0	r o 0.00
Se ₂ Cl ₂	liq.		22.13	
SeCl.	c c		46.12	
SeO, SO,	c		168.5	S 321.184000
-				~ Vari. 1000

Tellurium

Atomic n	umber 52	Standard state	Te (c, II)	Atomic weight 127.61
Formula	State	Description	Qf , $kcal.\ mole^{-1}$	$Q,\ kcal.\ mole^{-1}$
Те	g liq. c	5s ² 5p ⁴ (³ P ₂) I II	- 55. 0.000	D ^z Te ₂ - 85. F - 4.27 ⁴⁴⁶ T 0.80 ³⁴³ .∗II
Te*	amorp. g g g g	precipitated $5s^25p^4$ (3P_0) (3P_1) 1D_2 1S_2	- 2.7 - 73.20 - 73.60 - 85.06 - 106.0	E^{z} - 18.20 E^{z} - 18.60 E^{z} - 30.06 E^{z} - 51.0
Te ⁺	g	·•	-256 .	$l^{2} - 200.$
Te ₂	g		- 24.0	$V - 22.0^{1300}$
TeO_2	c		77.58	
	HCl(aq.)		76.6	
${ m TeO_3}^{}$	aq.		141.0	
TeO ₄	aq.		168.9	~
H₂Te	g		- 34.2	$S = 58.2^{16} \operatorname{FeCl}_{3}(\operatorname{Aq.})$
H_2TeO_3	С		145.0	S 0.0
	aq.		145.0	
H ₂ TeO ₄	400		165.3	G 0.0514
H ₂ TeO ₄ ·2H ₂ O			305.4	$S - 3.35^{14}_{600}$
$\mathbf{TeF_{6}}$	"g		315.	F - 1.9-87.8
	liq.			$F - 1.9^{-87.8}$ $V_8 - 6.74^{-88.9}$
	С		77.4	V8 - 0.74
TeCl ₄	С		77.4	8 705
TeBr.	С		49.3	$S = 7.05_{\text{NaC}_2\text{H}_2\text{O}_2(\text{aq.})}$ $S = 61.4^{16}_{\text{KOH}(\text{aq.})}$
$2\mathrm{TeO_2 \cdot SO_3}$	С		291.7	S 61.415 KOH (aq.)

Polonium

Atomic number 84 Standard state Po (c) Atomic weight (210)

Nitrogen

		21141061		A + i i - l + 14 000
Atomic num	ber 7	Standard state		Atomic weight 14.008
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
N	. g	$2s^22p^3 (^3S^1_{3/2})$	- 85.1	D* _N , - 169.3
N*	g	$(^2D^1_{8/2})$	- 139.76	E - 54.66
41	g	$(^{2}P_{1/2})$	- 167.11	E^s - 82.01
N+	g	2s ² 2p ² (³ P ₀)	- 420.75	I* - 334.20
N+ *	g	(3P ₁)	- 420.89	E^{*} — 0.14
IN.	g	(3P ₂)	- 421.13	E - 0.38
		1D2	- 469.36	E^{z} - 43.61
N++	g	2s ² 2p (² P ¹ _{1/2})	- 1102.20	I* - 680.0
N++ *	1	² (P ¹ _{3/2})	- 1102.70	$E^{s} - 0.496$
N+++	g	2s ² (¹ S ₀)	- 2197.1	$I^* - 1093.4$
N++++	1	$1s^2 2s \ (^2S_{1/2})$	- 3975.7	I* - 1777.3
N++++	g	1s ² S (S _{1/2})	- 6225.0	$I^* - 2247.8$
N+++++	g	$1s$ (${}^{1}S_{0}$) $1s$ (${}^{2}S_{1/2}$)	- 18831.	$I^* - 12605.$
N++++++	g	18 (1)1/2/	-34020.	I^* -15187.
	g	12	0.000	1 10101.
N_2 N_2	g lie	2	0.000	V - 1.336-196
11/2	liq.	I	-	$F - 0.169^{-210}$
NT #	C	A, ³ Σ	- 188.5	E* - 188.5
N ₂ *	g	1	- 196.4	$E^{z} - 188.3$ $E^{z} - 196.4$
	g	а В, ^з п	- 190.4 - 215.4	$E^{*} - 215.4$
	g	1 - '	- 215.4 - 295.0	$E^{z} - 215.4$ $E^{z} - 295.0$
	g	p ₁	- 295.0 - 297.2	
	g	1		1
NT 4	g	С, ³п	- 299.5	E* - 299.5
N_2^+	g	² Σ	- 362.5	I - 361.
N 7	g	Α, 2Σ	- 436.2	E^s - 73.7
N ₃ -	aq.		- 58.4	
NO	, g		- 21.6	77 0.000 470
	liq.			$V - 3.293^{-182}$
3704	C			$F - 0.550^{-164}$
NO*	g	A, 22	- 147.3	$E^* - 125.7$
	g	B, 2Π	- 150.7	E^* - 129.1
***	g	C, 2Σ	- 170.3	E* - 148.7
NO ₂	g		- 8.03	
NO ₂ -	aq.	İ	25.3	
NO ₃	g		– 13.	
NO ₃ -	∞		49.19	
N_2O	g		- 19.65	
	liq.		1	V 4.0-89
	c			$V_8 - 5.69^{-118}$
N 0 0TT 0	aq.	1	- 13.4	S 6.2°
N ₂ O·6H ₂ O	c	1	405.4	D - 14.80 H2O (11q.)
N ₂ O ₂	aq.		- 3.5	
N_2O_3	g		- 20.0	
	liq.			$V - 9.40^{20}$
	t	1	i	1

Nitrogen

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, kcal. mole ⁻¹		
N ₂ O ₄	g		-	3.06 12.2	V		9.220
	liq.		-	12.2	v F	_	3.0-10
N_2O_5	g		_	0.6	•		
11208	c			13.1	s		16.7
NH	g	3Σ	-	33.9	D^*		102.2
NH*	g		_	118.6	E^{s}		84.69
NH_3	g			11.00			
	liq.			16.07	V		5.56-33
	c				F		1.42^{-78}
	∞			19.35	~		0.05
	200		}	19.35	S		8.35_{200}
	100			19.36			
	50			19.35			
	20			19.31 19.27			
	10			19.07			
	4 2.33			18.97			
	1.5			18.49			
	1.0		ļ	17.6			
NH.+	g		Ì	20.			
14114.	× ×			31.455			
N ₂ H ₄	aq.		_	4.5			
N ₂ H ₄ H ⁺	aq.			5.1			
N ₂ H ₄ H ₂ ++	aq.			5.1	i		
HN,	aq.		_	54.6			
NH,HN,	c		-	20.2	C		157.0
	aq.		-	26.9	S	_	6.74^{17}_{600}
HNO2	aq.			28.5			= 0
HNO,	g			34.4	V	_	7.2
	liq.		1	41.66	S		7.44 ₂₀₀ 0.60 ⁻⁴⁷
	C			49.19	F		0,00
	0400			49.19	1		
	6400			49.142			
	3200 1600			49.129	1		
	800			49.116	1		
	400			49.105	1		
	200			49.1			
	100			49.104	:		
	50			49.124			
	25			49.162	:		
	20			49.12			
	10		-	48.98			
	5	1	ļ	48.33	1		

Nitrogen

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, k	cal. mole-1
HNO,	3		47.37			
	2		46.44			
	1		44.95			
	30(C ₂ H ₅) ₂ O	in diethyl ether	51.16			
	20(C ₂ H ₅) ₂ O	•	51.00			
	10(C ₂ H ₅) ₂ O		50.74			
	5(C ₂ H ₅) ₂ O		50.26			
$\mathrm{HO}_{\mathtt{2}}\mathrm{H}N$	liq.		25.5	S		3.8
	aq.		21.7			
NH₂OH H+	aq.		31.0			
NH ₄ OH	aq.		87.67			
HOHOH,	aq.		90.1			
$\mathrm{H_2N_2O_2}$	aq.		8.4			
NH₄NO₂	c		61.5	S		4.75^{13}_{400}
	aq.		56.8	N		9.1
NH4NO3	c	I		T		1.02125_11
	c	II		T		0.3283 ₋₁₁₁
	c	III		T		0.399 ²² -1V
	c	IV	87.13	S	-	6.32^{16}_{200}
	c	v		T	_	0.13 ⁻¹⁸ -1V
	× ×		80.66			
	1000		80.684			
	500		80.710			
	200		80.81			
	100		80.914			
	50		81.143			
	25		81.556			
	20 10		81.63			
	5		82.06			
	3		82.68 82.99			
,	2.5	,	83.32			
NH ₂ OH·HNO ₂	c		86.9	S		5.9311300
	aq.		81.	N		9.42400
N ₂ H ₄ ·H ₂ O	c		62.0	S		1.92_{400}
	aq.		63.9	~		1.02400
N ₂ H ₄ ·HNO ₃	aq.		54.4	N		9.75
N ₂ H ₄ ·2HNO ₃	aq.		103.4	N		9.70
NH4NO3.5NH3	liq.		171.5	D	-	5.9-20
	c			F		2.0-19
NOF	liq.			v		4.60-60
NO_2F	liq.			V		4.32-72
NH₄F	c		111.6	S		1.5
	aq.		110.1	N		19.2100
NCl _s	CCl4		- 55.0			

Nitrogen

Formula	State	Description	kcal	Qf , . $mole^{-1}$		Q, k	cal. mole ⁻¹
NOCl	g		_	12.8	S		37.1 _{2KOH(aq.)}
	liq.		-	18.9	V		6.1^{-15}
NH₄Cl	g			44.			
	c	I			T		1.03 ¹⁸⁴ →11
	c	II	-	74.95	S		3.92_{200}
	c	III			T		0.356-81,11
	∞			71.132			
	1000			71.089			
	500			71.069			
	400		1	71.06	N		12.30_{200}
	200			71.032			
	100			71.020			
	50			71.031			
	25			71.079			
	10			71.58			
N₂H₄·HCl	c			50.0	s	-	5.44^{17}_{500}
	aq.			44 .6	N		9.6517
N₂H₄·2HCl	c			90.3	S	_	6.20^{19}_{500}
	aq.			84.1	N		9.7
NH4Cl·3NH2	c			130.1	D		22.8
NH ₄ Cl·6NH ₃	liq.			180.6	D	-	17.0
NH2OH-HCl	c		-	74.0	S		3.65_{450}
	aq.			70.4	N		9.26_{400}
NH4ClO4	С			78.1	S		6.36^{20}_{200}
	aq.			71.7	N		$12.90_{\scriptscriptstyle 500}$
NOBr	g		-	17.7			
	liq.		-	11.6	s		23.82KOH (aq.)
NOBr ₃	g		-	4.9	V	-	6.6
	liq.		1	1.7	S		52.54KOH(aq.)
NH_4Br	c	I			T		0.76188 ₋₁₁
	c	II		64.58	S		4.45_{200}
	aq.			60.13	_		10.0
NH_4Br_2	c			69.73	D		12.8
$NH_4Br\cdot NH_8$	c			83.5	D		7.95
$NH_4Br\cdot 3NH_8$	c			121.2	D	_	7.9
$NH_4Br\cdot6NH_3$	c	_		170.9	D		5.6
NH_4I	c	I		48.39	S	_	3.56200
	c	II			T	_	0.70-18-1
	aq.			44.83	_		
NH.I.NH.	c	1		67.6	D	_	8.2
NH.I.3NH.	c			103.5	D	_	7.0
NHJ.6NH,	c			153.5			
NS	С	1	-	31.9	_		1.0799
$N_2O_3(SO_3)_2$	c			253.	S		10722 KOH (aq.)
NHAHS	c			38.9	S	_	3.3

Nitrogen

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, k	cal. mole-1
NH ₄ HS	200		35.55	N		6.35100
(NH ₄) ₂ S	400		55.00	N		6.50_{200}
NH ₄ S ₄	c		31.9	S		4.312
	aq.		28.1			
(NH ₄) ₂ S ₅	ć		64.7	S		8318
, , , ,	aq.		56.2			
NH ₄ S ₂	c		32.2	S		4.312
	aq.		27.9			
NH4HSO3	aq.		180.35	N		14.89
NH.HSO.	c		244.64	S		0.02_{200}
	800		245.20			
	400		244.88			
	200		244.62			
	100		244.43			
	50		244.32			
	20		244.20			
	10		243.83			
NH ₂ OH·H ₂ SO ₄	aq.		244.4	N		11.07400
(NH ₄) ₂ SO ₂	c		212.3	S		1.548 250
]	aq.		211.1	N		25.408440
(NH ₄) ₂ SO ₃ ·H ₂ O	c		283.6	S	-	4.313
(NH ₄),SO ₄	c		281.46	S		2.38400
	∞		278.71			
-	800		279.06			
	400		279.08	N		28.96400
	200		279.15			
	100		279.27			
	50		279.46			
	30		279.65			
	10		279.90			
N ₂ H ₄ ·H ₂ SO ₄	c		227.8			
İ	aq.		219.3	N		11.2917
(NH ₂ OH) ₂ ·H ₂ SO ₄	c		287.7	S		0.96
	aq.		276.6	N		21.6_{600}
(NH ₄) ₂ S ₂ O ₅	c		299.5	S		6.3400
	aq.		292.3	_		7 100
NH ₄) ₂ S ₂ O ₃	ć		395.4	S	-	9.216,000
	aq.		386.2			1000
N ₂ H ₄) ₂ H ₂ SO ₄	aq.		225.8	N		22.33
NSe	c		- 42.3	D		42.3
NH ₄ HSe	aq.		5.1			
(NH ₄),Se	aq.		25.6			

Phosphorus

Atomic number 15 Standard state P (c, I, yellow) Atomic weight 31.02

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
P	С	I, yellow	0.000	
	c	II, yellow		$T - 1.27^{-80}$
	c	red	4.22	$T - 4.22_{-1}$
	liq.	yellow		$F - 0.1554_{1}$
	g	$3s^23p^3$ ($4S^1_{3/2}$)	- 31.6	$D_{P_3} - 45.5^{1000}$
P+	g	$3s^23p^2$ (3P_0)	- 279.36	I - 246.31
P+ *	g	$(^3P_1)$	- 279.83	$E^{z} - 0.471$
	g	$(^{8}P_{2})$	- 280.70	$E^{s} - 1.338$
	g	$3s^23p3d$ (3D_1)	- 465.12	$E^s - 185.76$
	g	$(^{3}D^{1}_{2})$	– 465.18	$E^s - 185.82$
	g	$(^{3}D_{1}^{3})$	- 465.28	$E^* - 185.915$
	g	$(^3P^1_0)$	- 498.06	$E^{s} - 218.70$
	g	(8P1 ₁)	- 498.03	$E^{s} - 218.67$
	g	(3P1 ₂)	- 497.89	$E^{s} - 218.53$
	g	$3s^23p4s (^3P_0)$	- 526.17	$E^s - 246.81$
	g	(*P1 ₁)	- 526.30	$E^{s} - 246.94$
	g	(3P1 ₂)	- 527.39	$E^z - 248.03$
P++	g	$3s^23p$ $(^2P_{1/2})$	- 737.72	<i>I</i> ∗ - 456.91
P++ *	g	$(^{2}\mathrm{P}^{1}_{8/2})$	- 737.87	E^s - 0.159
P+++	g	3s*p (*P10)	-1431.87	I* - 692.72
P+++ *	g	(8P1 ₁)	-1432.52	E'' - 0.651
	g	(8P1 ₂)	-1433.87	$E^{s} - 1.983$
P++++	g	$3s$ (${}^{2}S_{1/2}$)	-2420.20	$I^s - 986.88$
P+++++	g	$2p^6$ (1S_0)	-3911.92	<i>I</i> [∗] −1490.28
P ₂	g		- 20.7	$D_{P_4} - 31.5^{800}$
	CS ₂		- 0.92	
P_4	g		- 13.2	
PO ₃ -	aq.		235.2	
PO	aq.		216.4	1
PO	aq.	//	297.6	
P_2O_5	C	"volatile"	360.0	
	amorp.		367.0	
	gls.		371.7	
P ₂ O ₇	aq.		537.2	
P_4O_{10}	g		700.	
PH	g	3∑-	- 30.	$D^* - 53.$
PH*	g	ıπ	– 113.	E^s - 83.
PH.	g liq.		2.3	V - 3.9-80
PH ₂ ·6H ₂ O	c c		426.0	D - 13.50 H ₂ O (liq.)
P ₂ H	c		11.9	
HPO ₂ -	aq.		128.9	
HPO:	c aq.		224.8	S 9.76
O3	aq.		234.6	
	4.	1		

Phosphorus

Formula	State	Description	Qf , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
HPO,	aq.		227.	
HPO	aq.		305.6	
H₂PO,-	aq.		142.6	
H ₂ PO ₃ -	aq.		228.	
H₂PO₁−	aq.		307.1	
H,PO,	c		141.4	$S - 0.17^{19}_{150}$
,	liq.		139.0	S 2.1819,50
	450		141.41	
	250		141.2	
	220		141.17	
	110		140.70	
	55		140.45	
H₃PO₃	c		228.93	S 0.1319,180
	liq.		225.86	S 2.9419 ₁₅₀
	aq.		228.8	
H ₃ PO ₄	c c		303.37	S 2.6919150
22,2 04	liq.		300.85	S 5.2210,150
	400		306.16	
	200		306.1	
	100		306.02	
	50		305.92	
	20		305.69	
	9		305.26	
	3		304.05	
	1		302.49	
H ₂ PO ₄ ·½H ₂ O	c		340.4	S 0.1418200
1131 0, 71120	liq.		344.1	S 3.7813200
HP ₂ O ₇	aq.		540.0	0,10 200
H ₂ P ₂ O ₅	aq.		385.1	
H ₂ P ₂ O ₇	aq.		540.2	1
H ₃ P ₂ O ₇ -	aq.		540.6	
H ₄ P ₂ O ₅	aq.		384.3	
H ₄ P ₂ O ₆	c c		002.0	S 2.2
1141 30 B	lig.			S 6.6
H ₄ P ₂ O ₇	c c		513.7	S 7.93
1141 207	liq.		529.4	S 10.22
	aq.		539.6	5 10.22
H ₄ P ₂ O ₇ ·1½H ₂ O			637.5	S 4.49
1141 207 121120	1 ' 1		1	1 '
PF _a	liq.		634.4	S 7.63
PCl ₂	g		70.0	$\begin{array}{c c} S & 107.7_{\texttt{KOH(ad.)}} \\ V & - 6.9 \end{array}$
1 013	g lia		70.0	V - 6.9
PCl ₅	liq.		76.9	T70 15 5
1 018	g		91.0	$V_8 - 15.5$
POCl ₃	C		106.5	77 0 0107
7 0018	g		138,4	$V - 8.2^{107}$

Phosphorus

Formula	State	Description	Qf , $kcal.\ mole^{-1}$		Q, kcal. mole ⁻¹
POCl ₃	liq.		147.1	S	72.2^{19}_{1000}
2 0 0 0 0	c		150.3	F	-3.2^{2}
PH ₄ Cl	g		40.8		
2 2210-	c		67.8		
PBr ₂	liq.		45.		
PBr ₅	c		60.6		
POBr ₃	c		106.9		
PH ₄ Br	c		34.2		
PI.	c	,	9.9	1	
PI.	c		10.9	S	$3.3_{\mathrm{CS_2}}$
•	CS_2		14.2		
LHA	c		20.6	Ì	
PaNs	c		75.0	C	1099.4
NH4H2PO4	400		338.9		
(NH ₄) ₂ HPO ₄	500	2NH ₄ +(aq.)+			
•		HPO(aq.)	368.5		*
	500	$2NH_{\bullet}^{+}(aq.)+H^{+}(aq.)$			
		+PO ₄ (aq.)	360.5	į	
(NH ₄) ₂ PO ₄	600		397.5		
				<u> </u>	

Arsenic

Atomic number 33		Standard state	As (c, α, metallic)	Atomic weight 74.91
As* As* As* As+ As+ As++ As+++ As+++ As++++	g liq. c amorp. c g g g g g g g g g g g g g g g g g g	4p³ (4S¹ _{2/2}) α, metallic β γ, yellow 4p³ (2D¹ _{3/2}) (2D¹ _{5/2}) 4p² (3P₀) (3P₁) (3P₂) (1D₂) 4p (2P¹ _{1/2}) (2P¹ _{3/2}) 4s⁴p (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀) (3P¹₀)	- 30.3 - 0.000 - 1.0 - 3.5 - 60.45 - 61.37 - 262 265.0 - 269.2 - 298.0 - 726.9 - 734.4 - 1355.2 - 1365.7 - 2334.3 - 3773.7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
As ₂	g		- 25.7	$D_{u_4}^{V} - 25.0^{1000}$

Arsenic

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$		Q, ka	cal. mole ⁻¹
As ₄	g		- 30.4	Vs.	emosji	31.8400
AsO ₃	aq.		141.9			
AsO ₄	aq.		209.2			
As ₂ O ₃	g		125.	DANG	o,	17.01200
	С	octahedral	154.1	S		7.50 _{4NaOH(200)}
	С	monoclinic	148.			
	aq.		146.6			
As_2O_5	c		217.9	S		80.812NaOH (200)
	aq.		223.9			
As ₄ O ₆	g		268.0			
AsH ₃	g		- 43.6			
$AsH_3 \cdot 6H_2O$	c		384.4	D		17.80+H,O(liq.)
HAsO ₃	aq.		155.4			
HAsO ₄	aq.		214.6			
H ₂ AsO ₃ -	aq.		168.4			
H ₂ AsO ₄ -	aq.		215.7			
H ₃ AsO ₃	aq.		175.3			
H ₂ AsO ₄	c		214.9	S		0.40200
	aq.		214.5			
AsF_{δ}	liq.			V		5.00-53
	c			F		2.74-80
AsCl ₃	g		64.0	V		7.5
	liq.		71.5			
$AsBr_3$	g		33.	V		10.220
	liq.		43.1	F		2.8**
	c		45.9	S		59.89 KOH(aq.)
AsI,	g		- 7.8	1		
	liq.		11.4	\boldsymbol{v}		19.2
	c		13.6	F		2.2
As_2S_2	c		20.	1		

Antimony

Formula	State	Description		
		Description	Qf, kcal. mole ⁻¹	Q , $kcal\ mole^{-1}$
Sb	g liq.	5s²5p² (4S¹₃/₂)	- 40.	F 4.8 ⁶³⁰
1	c	trigonal	0.000	
1	· c	"explosive"	- 2.32	
Sb*	g	$5s^25p^3$ ($^2D_{3/2}$)	- 64.23	$E^{z} - 24.23$
	g	$(^2\mathrm{D}^1_{5/2})$	- 68.05	E^{*} - 28.05
1	g	$(^{2}\mathbf{P}_{1/2})$	- 86.67	$E^{s} - 46.67$
	g	$(^{2}P^{1}_{3/2})$	- 92.56	E^{s} - 52.56
Sb+	g	$5s^25p^2 (^3P_0)$	- 234.0	$I^{2} - 192.5$
Sb++	g	$5s^25p (^2P_{1/2})$	- 669.2	<i>I</i> : - 443.7
Sb++ *	g	$(^{2}\mathbf{P}_{^{1}3/2})$	- 687.9	$E^* - 18.74$
Sb+++	g	5s ² (¹S₀)	-1240.7	$I^* - 570.1$
Sb++++	g	$5s$ (${}^{2}S_{1/2}$)	-2256.1	I^* -1013.9
Sb+++++	g	4p ⁶ (¹S₀)	3536.6	I^* -1279.
Sb ₂	g		- 52.	
SbO	g		- 17.	
SbO ₄	aq.		187.6	00.00
Sb _z O _z	С	I, orthorhombic	165.4	S 20.297HF(100)
	C	II, octahedral	166.6	S 19.0% THF(100)
	aq.		166.0	
Sb ₂ O ₄	С		213.0	
Sb ₂ O ₅	C		230.0	
	aq.		228.0 186.6	Vs11 - 47.3500
Sb ₄ O ₆	g		180.0	$Vs_{11} - 47.3^{500}$ $F_{11} - 29.5$
~: a	liq.		660.	F II - 25.5
Sb ₆ O ₁₃	C		216.6	S - 1.6° 200
SbF.	c		214.9	D 1.0 309
TT CILT	aq.		443.5	
H ₂ SbF ₄ SbCl ₂	aq.		77.4	V - 10.95125
SDC13	g lia		88.4	$F - 3.01^{73}$
	liq. c		91.4	
SbCl _s	g		93.7	V - 11.0567
SDC18	liq.		104.9	
Ì	e e		107.3	F - 2.45-
SbOCl	c		89.2	
Sb ₄ O ₅ Cl ₂	c	1	346.1	
SbBr.	liq.		56.5	F - 3.52100
~~~	c c		60.0	S 3.625 CB2
1	CS ₂	1	56.4	
SbI.	c c	1	22.8	
~~*	aq.		22.0	
Sb ₂ S ₃	c c	orange ppt.	35.7	
	-	1		

# Antimony

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Sb ₂ S ₃ Sb ₂ (SO ₄ ) ₃ SbF ₃ ·NH ₃ SbF ₃ ·2NH ₃ SbF ₃ ·3NH ₄ SbF ₃ ·4NH ₄ SbF ₃ ·6NH ₃	C C C C C C	black lilac (?) brown (?)	35.8 31.5 37.1 572.2 241.7 264.7 284.9 303.5 340.4	S 118.7 _{NaOH(aq.)} D - 14.1 D - 12.1 D - 9.2 D - 7.6 D - 7.5

# Bismuth

Atomic	number 83	Standard state	e Bi (c)	Atomic weight 209.00
Bi	g liq.	$6s^26p^3$ ( $^4S^1_{3/2}$ )	- 47.8 0.000	F - 2.64*71
Bi*	c g g	$6\mathrm{s}^26\mathrm{p}^3~(^2\mathrm{D}^1_{3/2})\ (^2\mathrm{D}^1_{5/2})$	- 80.30 - 91.74	$E^{s} - 32.50$ $E^{s} - 43.94$
Bi+ Bi+ *	g g	6s ² 6p ² ( ³ P ₀ ) ( ³ P ₁ )	- 216.0 - 253.9	$I^{*} - 166.71$ $E^{*} - 37.93$ $E^{*} - 48.47$
Bi++ Bi++ *	g g g	$6s^{2}6p \ \ ^{(2}P^{1}_{1/2}) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	- 264.5 - 607. - 651.	$E^{z} = 48.47$ $I^{z} = -390.$ $E^{z} = -44.$
Bi+++ Bi ₂	g g	$6s^2$ ( 1S_0 )	-1178. - 76.2	<i>I</i> ^s −569. <i>D</i> ^s − 18.5
BiO Bi ₂ O ₃	c c amorp.	hydrated	49.5 137.1 136.8	
Bi(OH) ₃ BiCl ₃	c c HCl (25)	•	171.1 90.6 84.5	
BiOCl BiI ₃	C C		89.8 24.	S 2.88
Bi ₂ S ₃	aq.		27. 26.0	S 54.6 NaOH (ag.)
Bi ₂ (SO ₄ ) ₃	. C		408.0	S 54.6 NaOH(aq.)

Carbon

Atomic num	ber 6 S	tandard state C (c,	diamond)	Atomic weight 12.00
Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
С	g liq,	2s ² 2p ( ³ P ₀ )	- 170.0+a†	F - 11.3600 graphite
	e	diamond	0.000	and graphite
	c	β graphite	0.22	
	c	α graphite	0.49	
	c	"carbonado"	- 0.10	
	"amorp."	"acetylene" carbon	- 0.3	
	"amorp."	"gas" carbon	- 1.5	
	"amorp."	charcoal	- 2.0	
	"amorp."	"Glanzkohlenstoff,"	2.0	
	want.p.	density = 2.07	- 2.1	4
	"amorp."	"Glanzkohlenstoff,"	_ 2.1	
	amorp,	density = 2.0	9.9	
	"amorp."	"Glanzkohlenstoff,"	- 2.3	
	amorp.	density = 1.86	20	
C*	_		- 3.2	77.
O	g	2s ² 2p ( ³ P ₁ )	-170.04+a	1
	g	(3P ₂ )	-170.12+a	
	g	(1D ₂ )	- 197.63+ $a$	
C+	g	(¹S₀)	-230.23+a	1
C+ *	g	$2s^22p \ (^2P_{1/2})$	-430.55+a	$I^{*}$ - 259.10
UT *	g	(2P1 _{3/2} )	-430.82+a	1
	g	$2s2p^{2}$ (4P _{1/2} )	-550.58+a	$E^{s} - 120.03$
	g	(4P _{8/2} )	-550.64+a	$E^z - 120.09$
	g	$(^4P_{5/2})$	-550.69+a	$E^{z} - 120.17$
	g	$^{2}D_{5/2}$	-643.86+a	$E^*$ - 213.313
	g	$^{2}\mathrm{D}_{3/2}$	-643.86+a	$E^*$ - 213.317
C++	g	$2s^2$ ( 1S_0 )	-991.84+a	$I^s$ - 559.84
C++ *	g	2s2p ( ⁸ P ¹ ₀ )	-1140.77+a	E - 148.93
	g	(³P¹₁)	-1140.84+a	E - 149.00
	g	( ³ P ¹ ₂ )	-1141.00+a	E - 149.16
C+++	g	$2s$ ( ${}^{2}S_{1/2}$ )	-2092.6+a	$I^s - 1099.3$
C+++ *	g	$2p (^2P_{1/2})$	-2276.2+a	E* - 183.57
	g	$(^{2}\mathbf{P}_{3/2}^{1})$	-2276.5+a	E* - 183.88
C++++	g	1s ² (¹S₀)	-3574.9+a	I* - 1480.8
C+++++	g	1s (2S _{1/2} )	-7127.+a	I* - 3552.
C+++++	g	1	-18375.+a	<i>I</i> [∗] −11246.
C ₂	g	³IIu	-177.3+2a	$D^s - 161.8$
C,*	g	3H a	-232.4+2a	$E^{s} - 55.1$
co	g	1 <u>Σ</u> +	26.84	C 67.61
	liq.	-	~0.0 <del>1</del>	V - 1.444-191.5
	c c	I		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	c	Î		1
		**		$T - 0.1513^{-211.6}_{-1}$
	1	1		Ţ

[†]See text, page 232.

Formula	State	Description	Qf, kcal. mole-1	Q, i	kcal. mole-1
CO	aq.		29.6	S	2.8
CO*	g	a, 311	- 111.3	E -	138.1
00	g	A, ¹ II	- 157.4	E -	184.2
	g	c, *II	- 235.4	E -	262.2
	g	Β, 1Σ	- 220.6	E -	247.4
	g	b, 3Σ	- 211.9	E	238.7
CO+		2Σ	- 301.5	I: -	327.
CO+ *	g	A ¹ , ² Π	- 359.4	E -	57.9
COTT	g	B ¹ , ² Σ	- 431.5	E = -	130.
<b>G</b> O	g	D-, 2	94.45	-	
CO ₂	g		01.10	v -	6.0-56
	liq.			F  -	2.24-4
	C		99,21	S	4.76
	aq.		519.6	$ \tilde{D} $ -	14.9. H ₂ O (liq.)
CO, 6H,O	c		- 237.	I: _	330.
CO ₂ +	g		60.	1 -	000.
CO,	g		1	}	
	∞	carbonate ion	160.5		
C ₂ O ₄	aq.	oxalate ion	195.6	77	0.16
$C_8O_2$	liq.	carbon suboxide	40.	<u>v</u> –	6.16
CH	g	2Π	-127.9+a	E -	
CH*	g	Α, 2Δ	-194.8+a	E -	• • • •
	g	Β, ² Σ-	-201.0+a	D -	
	g	C, ² Σ ⁺	-218.5+a	E -	90.6
CH ₃ +	g		- 286.8	1	
CH₄	g	methane	18.24	C	212.95
	liq.			V -	2.18-159
	c	I		F  -	$0.22^{-183}$
	c	II		T -	0.018-268-1
CH ₄ +	g		- 319.2	I* -	
CH4·6H2O	c		442.7	D -	· 14.2+H2O(liq.)
$C_2H_2$	g	acetylene	- 53.9	C	311.1
•	liq.		İ	V -	5.74-81.8
	c			F -	0.60-81.5
	aq.		- 49.9	S	4.0
C ₂ H ₂ ·6H ₂ O	c	•	371.4	D -	15.1.B,0(Hq.)
$(C_2H_2)_3$	g	polymer	- 158.7	D -	- 3.03
C ₂ H ₄	, g	ethylene	- 11.0	C	336.6
	liq.			V -	- 3.5 ⁻¹⁰⁴
	c	,		F -	- 0.70 ⁻¹⁷⁰
C ₂ H ₄ -6H ₂ O	c		414.6	D -	- 15.4-H.O (Hq. 1
C ₂ H ₄	g	ethane	20.96	C	373.05
-3	liq.			v -	- 3.33-86.6
	c c			F _	- 0.668-193.7
CHO ₂ -	aq.	formate ion	99.8	-	4
HCO.	aq.	bicarbonate ion	164.8		
11001	aq.	DIOM DOMAGE TOIL	101.0		

Carbon

		- Curbon			
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, 1	ccal. mole-1
нсно	g	formaldehyde	28.7	C	134.1
HCOOH	g	formic acid	88.65		
	liq.		100.0	C	62.8
	C		103.0	F -	3.058.0
	200		100.16	1	
	100		100.15	1	
	50		100.13		
	2.0		100.17	1	
	1.0		100.17		
	0.5		100.12		
(HCOOH),	g	polymer	191.4	V -	8.57
H ₂ CO ₃	aq.	carbonic acid	167.58		
CH3O-	CH ₂ OH	$(CH_1OH = H^+$		ŀ	
	}	+CH ₂ O-)		I -	1.3
CH ₂ OH	g	methyl alcohol	48.44	C	182.75
	liq.		57.45	V -	9.01
	C	I		F -	0.76-98
	c	II		T -	0.14 ⁻¹¹² -1
	∞		59.7		
	33.8		59.19		
	16.0		59.12		
	7.11		58.84		
	4.15		58.57		
	2.67		58.31	1	
	1.19		57.97		
	0.44		57.74		
HC ₂ O ₄ -	aq.	bioxalate ion	196.		
(CHO) ₃	g	glyoxal	75.		
	C		84.5	C	172.0
	aq.		83.3	S -	1.22
(COOH) ₂	g	oxalic acid, H ₂ C ₂ O ₄	175.9	Vs -	21.65
	С		197.6	C	59.7
	300		195.3	s -	$2.26_{200}$
	CH ₃ OH		196.7	s -	0.87 _{СН₂ОН}
1000000	C ₂ H ₅ OH		196.3	s -	1.27 _{C2H1} OH
(COOH) ₃ ·2H ₂ O	С		340.2	S -	$8.44^{20}_{200}$
C ₂ H ₃ O ₂ -	∞ ∞	acetate ion	117.946		
C ₂ H ₃ O ₃ -	aq.	glycollate ion	156.0		
CH ₂ CHO	g	acetaldehyde	44.0	C	280.5
	liq.		50.6	<u>v</u> –	6.623
	С			F -	0.77-118
(OTT OTTO)	aq.		54.2		
(CH ₃ CHO) ₃	liq.	paraldehyde	(54.8)x	177	
	C			F -	1.1112
CH,CHO	C	metaldehyde	57.0		

Formula	State	Description	Qf, kcal. mole⁻¹	Q, kcal. mole ⁻¹
C ₂ H ₄ O	g	ethylene oxide	17.	
	liq.		23.3	V - 6.313
	aq.		24.8	S 1.5
CH₃COOH	liq.	acetic acid	117.7	C 208.3
•	c		120.4	F - 2.7017
	∞	H+(∞) +		
		$C_2H_3O_2^{-}(\infty)$	117.946	
,	∞	undissociated	118.070	
	6400	actual	118.067	
	3200		118.065	
	1600		118.062	
	800		118.059	
	400		118.055	
	200		118.045	
	100		118.024	
	50		117.983	
	25		117.91	
	8		117.70	
	4		117.59	'
	2		117.54	
	1.5		117.53	
	1.0		117.55	
	0.5		117.57	
HCOOCH ₂	g	methyl formate	84.9	C 240.7
	liq.		91.6	$V - 6.75^{31}$
	c			F - 2.9-100
CH ₂ OHCOOH	c	glycollic acid	159.0	C 166.6
	aq.		156.2	S - 2.7610 400
(OH) ₂ CHCOOH	c	glyoxylic acid	200.4	C 125.2
	aq.		197.9	S - 2.51
C ₂ H ₅ O-	C ₂ H ₅ OH	$(C_2H_5OH=H^+ +$		
		C ₂ H ₅ O ⁻ )		I - 2.8
C ₂ H ₄ OH	g	ethyl alcohol	56.95	C 337.06
	liq.		67.14	V - 10.19
	c			F - 1.15-114
	200		69.815	
	100		69.70	
	50		69.662	•
	25		69.54	
	10.2		69.10	
	5.94		68.57	
	3.84		68.11	
	1.70		67.55	
	0.64		67.28	
	0.28		67.21	

Carbon

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, $R$	ccal. mole-1
(CH ₃ ) ₂ O	g liq.	dimethyl ether	46.4	C V		347.6 4.45 ⁻²⁵
	aq.		54.7	'		2.10
$(CH_2OH)_2$	g	ethylene glycol	98.	v		$13.2^{197}$
	liq.		112.1	C		281.9
	aq.		113.8			
CF.	g		163.			
CH₂FCH₂OH	g	monofluoroethanol	97.			
ATT ATT ATT	liq.		111.			
CHF ₂ CH ₂ OH	liq.	difluoroethanol	162.9			
CH₂FCOOH	C	monofluoroacetic				
CITE COOT	12	acid	162.2	ļ		
CHF₂COOH	liq.	difluoroacetic acid	205.6			
CCl.	g	carbon tetra-	25.0			
	1:	chloride	25.9			
	liq.	ı	33.8	V		7.2777
	C C	l m		F		0.67-24
C ₂ Cl ₄		tetrachloroethylene	a	T	-	1.10-49-1
02014	g liq.	temacmoroethylene	- 6. 3.	v		0.07190
C ₂ Cl ₆	1	hexachloroethane	37.		_	8.27120
02016	g	nexacinoroemane	54.	VS		17.
CBr ₄	g	carbon tetra-	04.			
	•	bromide	<b>– 12.</b>			
COCl2	g	phosgene	53.5			
•	liq.	F800	59.3	$\boldsymbol{v}$		5.90
CCl _s COO-	aq.	trichloroacetate ion	133.2	•		0.00
CCl ₃ COCl	liq.	trichloroacetyl-				
	_	chloride	79.0			
CH ₃ Cl	g	methyl chloride	20.1			
	liq.			$\boldsymbol{v}$	_	$5.17^{-24}$
CH ₂ Cl ₂	g	methylene chloride	21.7			
	liq.		28.6	$\boldsymbol{V}$	·	$6.69^{40}$
CHCl.	g	chloroform	23.6			
	liq.		31.2	V	_	$7.04^{61}$
	C			F	_	2.1
Aller Allers are	aq.		33.4	s		2.2
CH ₂ CHCl	g	vinyl chloride	- 9.			
G TT G1	liq.		- 4.1	V		4.9
C₂H₅Cl	"g	ethyl chloride	25.7			
OTT CICTT CI	liq.	., , , ,	31.6	$\boldsymbol{V}$	_	$5.95^{12}$
CH ₂ ClCH ₂ Cl	"g	ethylene chloride	29.3			
CIT CITCI	liq.	,, ,, , , , , , , , , , , , , , , , ,	37.6	$\boldsymbol{V}$	-	7.7584
CH ₃ CHCl ₂	g	ethylidene chloride	29.3	**		
	liq.	1	36.4	$\boldsymbol{V}$	_	$6.65^{87}$

		- Our DOD	<del>                                      </del>			
Formula	State	Description	Qf, kcal. mole ⁻¹		Q, k	cal. mole-1
CHCl ₂ CHCl ₂	g liq.	symmetrical tetra- chloroethane	33.	V	*****	9,9145
CCl ₂ CHCl ₂	g g	pentachloroethane	35.	•		0.0
0013011012	liq.	pentacinoroemane	45.	v		9.9
CH ₃ COCl	g g	acetylchloride	60.9	<b>'</b>		0.0
CII3CCCI	liq.	acceptomorace	66.8			
CH ₂ ClCHO	liq.	chloroacetaldehyde	62.3			
(CH ₂ ClCHO) _x	c c	polymer	(66.5)x			
CH ₂ ClCOO-	aq.	monochloroacetate	(00.0)			
011,01000	-4.	ion	122.1			
CH ₂ ClCOOH	g	monochloroacetic				
		acid	107.4	V		13.061
	liq.		120.4	F		4.6361
	c	α (m.p. 61°)	125.			
	c	β (m.p. 56°)	124.9	F	-	4.4556
	c	γ (m.p. 51°)	124.2	F		3.79*1
	200		121.6	s		3.35
CH,ClCH,OH	liq.	monochloroethanol	75.0			
	aq.		76.3			
CH ₂ ClCOCl	liq.	chloroacetyl				
		chloride	68.4			
CHCl ₂ COOH	g	dichloroacetic acid	114.			
	liq.		125.	S		2.5815400
	c		126.8	F		1.83 ¹¹
	aq.		127.6			
CCl ₂ CHO	g	chloral	45.5	V		8.0
	liq.		53.5	S		11.9
( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	aq.		65.4			
(CCl,CHO),	C	polymer of chloral	(61.0)x			
CCl ₂ COOH	liq.	trichloroacetic acid	130.	F	-	1.4159
	C		131.4	S		$2.70^{18}_{400}$
CCI CTT(CTT)	aq.		134.1			
CCl ₂ CH(OH) ₂	g	chloral hydrate	104.			
	liq.	I	128.7	m		0.4
	C	II	131.6	T		2.4-11
COBr ₂	C	carbonyl bromide	134.2 22.3	S D	-	0.4 3.14
CH ₂ Br	g	methyl bromide	8.5	D	_	3.14
CH ₂ Br ₂	g	methylene bromide				
CHBr.	g	bromoform	- 6.			
C,H,Br	g	ethyl bromide	- 0. 15.5			
- <del></del>	liq.	- Janja Da Jana	22.3	v	_	6.628
CH ₂ BrCH ₂ Br	g g	ethylene bromide	10.6	<b>'</b>	_	0.0
	lig.		19.7	v	_	9.1
	1			•		
	<del></del>					

Carbon

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, i	kcal. mole ⁻¹
CBr ₂ CH(OH) ₂	c	bromal hydrate, I	105.	s	*******	12.1 _{KOH(aq.)}
	c	II	101.0	$\tilde{s}$		16.1 _{KOH(aq.)}
	aq.		106.9	~		LO. LEOR (Eq. )
C ₂ H ₆ Br ₂	liq.	ethyl perbromide	24.8	1		
CH,OH-HBr	c			F		0.6-83
	С	+CH ₄ OH(c) + HBr(g)		D		13.5-81
CH ₂ BrCOOH	С	monobromoacetic acid		S		3.06400
CHBr ₂ COOH	c	dibromoacetic acid		S		0.85400
CBr ₂ COOH	l c	tribromoacetic acid		S	_	0.48400
CH ₃ COBr	liq.	acetyl bromide	54.9			0.20400
C ₂ I ₄	c	tetraiodoethylene	<b>–</b> 73.			,
CH,I	g	methyl iodide	- 4.5	ľ		
	liq.		2.1	V		6.542
CH ₂ I ₂	g	methylene iodide	- 25.	V	_	10.4
	liq.		<b>– 15.</b>			
CHI.	g	iodoform	- 44.			
	c	j	<b>–</b> 33.			
C ₂ H ₅ I	g	ethyl iodide	1.0			
	liq.		8.4	V	-	$7.1^{72}$
CH ₂ ICH ₂ I	g	ethylene iodide	<b>– 16.</b>			
	C		0.			
CH,COI	liq.	acetyl iodide	41.5			
CH,BrCH,I	C	bromoiodoethane	11.4			
CS	g	carbon monosulfide	20.			
(CS) _s	C	polymer of CS	(-13.)x			
CS ₂	, g	carbon bisulfide ·	- 22.			
	liq.		- 15.4	V		6.354
000	C			F	_	0.66-116
COS	g	carbonyl sulfide	35.	77		4.0 ***
CH,SH	liq.	411		V	_	4.6-70
CHICH	g Ha	methyl mercaptan	3.6	v		0.014
(CITI ) Q	liq.	dimashul auleda	9.6	V		6.014
(CH ₃ ) ₃ S	g liq.	dimethyl sulfide	8.0 16.3	$\boldsymbol{v}$		8.236
C,H,SH		ethyl mercaptan	10.5	,	_	0.2
Ciriori	liq.	emyi mercaptan	16.9	$\boldsymbol{v}$		6.7540
C ₂ H ₄ SO ₄ ~	aq.	ethylsulfate ion	207.7	•		0.10
C.H.HSO.	aq.	ethysulfuric acid	208.2			
CN	g g	July Sundano assu		$D^{s}$	_	160.
CN*	g	²II		Ĕ.	_	31.14
	g	² Σ+		E.		73.44
CN-	g	-	52.	_		
	aq.	cyanide ion	- 34.9			
	1	-5				

Formula	State	Description	Qf,	kcal. mole-1		Q,	kcal. mole-1
CN.	c	carbon perazuride	_	92.6	C	***********	186.1
$C_2N_2$	g	cyanogen	-	71.	C		260.
	liq.				V	_	5.9-20
	aq.		-	<b>64.</b>	S		7.
$(CN_4)_x$	С	polymer of CN ₄	(-	80.2)x			
CNO-	aq.	cyanate ion	}	34.5			
HCN	g	hydrocyanic acid	-	30.7			
	liq.		-	24.0	V		6.6725
	С				F		1.72-14
	1		-	25.4			
	4		-	24.3			
~~~	100		-	23.9			
CH ₃ NH ₂	g	methylamine		7.3	C		259.7
	liq.				V		6.40-7
	300		,	18.00	$S_{\mathbf{z}}$		10.7025
	500			18.05			
A	1000			18.17	İ		
CH ₈ NH ₃ +	aq.	methyl ammonium			l		
3777 O37		ion		31.2			
NH₂CN	liq.	cyanamide			F		2.144
	С		-	8.8	C		171.6
ATTT CAT	aq.		_	12.4	S.		3.6^{18}_{1000}
NH ₄ CN	C	ammonium cyanide		1.1	s		4.4400
(ATTT \ CINTTT	aq.	l . . .	-	3.3	_		
$(NH_2)_2CNH$	C	quanidine		31.1	S		1.2
/NTTT \ CINTTT TT#	aq.	.,		32.3	N		14.1
(NH ₂) ₂ CNH·H ⁺ CH ₂ CN	aq.	quanidine ion		32.1			
CH3CN	g	acetonitrile		19.4	C		310.9
CHNC	liq.		-	11.8	\boldsymbol{v}	_	7.080
CH ₃ NC	g	methyl isocyanide	_	34.3			
(CH ₃) ₂ NH	liq.	3:		27.3	_		
(CI13/21111	liq.	dimethylamine		8.2	C		420.
	1			14.7	V		6.58
C ₂ H ₅ NH ₂	aq.	ethylamine		20.9	~		
O211611112	g liq.	euryramine		13.0	C		415.2
				19.6	V	-	6.618
(CH ₃) ₂ NH·H+	aq.	dimethyl aminium		25.94	S_{110}	١.	6.34
/ OTT 9/ IT 1 TT . IT .	ay.	ion		32.8			
C ₂ H ₅ NH ₂ ·H+	aq.	ethyl aminium ion					
NH ₂ CH ₂ CH ₂ NH ₂	aq.	ethylene diamine		39.15			
(CH ₂ NH ₂ ·H) ₂ ++	aq.	ethylene diamine ethylene diamin-		14.5			
	a.1.	ium ion		97 7			
NH ₂ C(:NH)NHCN	c	dicyandiamide		37.7	~		000 #
	aq.	aroj anurannue	_	3.1 8.9	C		328.7
			_	019	S	_	5.77

Carbon

Formula	State	Description	Qf, kcal. mole ^{−1}		Q, k	cal. mole ⁻¹
HCNO	aq.	cyanic acid	36.5			
CH ₂ NO ₂ -	aq.	nitromethane ion	20.2			
HCONH ₂	liq.	formamide	62.0	C		134.9
	aq.		57.8	ľ		101.0
CH ₂ NO ₂	g	nitromethane	18.6	V		8.2599
	liq.		27.6	C		169.4
	aq.		27.0	S		0.6
HCOONH4	c c	ammonium formate		S		2.94^{10}_{140}
	aq.		131.3	\tilde{N}		11.910200
NH4HCO	c c	ammonium bicar-	101.0	**		11.0 200
	·	bonate	203.0	S		6.81200
	400	0011410	196.19	~		0.01200
	200		196.29			
	100		196.4			
	40		196.58			
NH ₄ CNO	c	ammonium cyanate		s		6.23
11110110	aq.	ammonium cyanace	67.3	"	_	0.20
(NH ₂) ₂ CO	eq.	urea	78.5	S		3.35
11112/200	aq.	urca	75.15	15	_	0,00
NH₂COONH₄	aq.	ammonium car-	70.10	İ		
1411200014114	·	bamate	159.0	s		3.8018
	aq.	ращате	155.2	D		3.80**
(NH ₄) ₂ CO ₃	•	ammonium car-	155.2			
(14114)3008	aq.	bonate	223.6			
(NH ₂) ₂ CO·HNO ₃		urea nitrate		s		10.77
(MH2/2CO-HNO3	c	urea mirate	135.1	D	_	10.7
(NEL) C(NEL) EINO	aq.	gramidina nitrata	124.4	~		007 -
$(\mathrm{NH_2})_2\mathrm{C}(:\mathrm{NH})\cdot\mathrm{HNO_3}$	C	quanidine nitrate	92.1	C		207.5
CONTIT COO-	aq.		82.0	\mathcal{S}		10.15
CONH ₂ COO-	aq.	oxamate ion	153.6	~		000.4
CH ₂ NCO	liq.	methyl isocyanate	22.	C		269.4
HOCH ₂ CN	liq.	glycollic nitrile	34.8	C		256.7
CONH₂COOH	c	oxamic acid	161.4	C		130.1
~~~~~	aq.	l	154.0	s	_	$7.4^{11}$
CH ₂ CHNO ₂ -	aq.	nitroethane ion	27.			
NH ₂ CH ₂ COO-	aq.	aminoacetate, or				
		glycinate, ion	112.0			
CH ₃ CONH ₂	c	acetamide	77.98	_		
	liq.			F	_	0.4381
	200		75.93	S	_	$2.05^{17}_{200}$
CH ₃ CHNOH	c	acetaldoxime	19.2	C		340.6
C ₂ H ₅ ONO	g	ethyl nitrite	25.9	C		333.9
C ₂ H ₅ NO ₂	g	nitroethane	23.			
	liq.		33.	V	_	$9.9^{21}$
1	aq.	1	32.	ĺ		

Carbon

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, R	cal. mole-1
NH ₂ CH ₂ COOH	С	aminoacetic acid,				
1111101110001		glycine	126.4	C		233.4
	aq.	8-7	122.8	S	_	3.58
C ₂ H ₅ ONO ₂	g	ethyl nitrate	33.4			
0211501102	lig.	00	41.5			
COOHCOONH	aq.	ammonium bioxa-				
0001100011114	aq.	late	226.7	N		12.5
NH2CH2COOH·H+	aq.	glycinium ion	123.6			
CH ₃ COONH ₄	c	ammonium acetate	149.0	S		$0.25^{24}_{200}$
011300011114	· ∞	NH ₄ +(∞) +				200
		$C_2H_3O_2^{-}(\infty)$	149.40			
	400	0222302 (11)	149.31			
	200		149.27			
	100		149.18			
	50		149.05			
•	25		148.85			
	10		148.45			
	5		148.10			
	2		147.55			
CH2OHCOONH4	c	ammonium glycol-	147.00			
CH2OHCOONII4		late	190.9	s	_	3.2
	200	12.06	187.7	N		12.2
CH ₃ NH ₃ HCO ₃	aq.	methylamine bi-	101.1	4		12.2
CH3N H3HCO3	aq.	carbonate	196.0	N		9.0
(OH)2CHCOONH4	aq.	ammonium gly-	190.0	14		8.0
(OH)2CHCOONII4	aq.	oxylate	229.1	N		12.2
$(CONH_2)_2$	c	oxamide	122.4	C		203.2
NH ₂ CONHCHO	lig.	formyl urea	118.6	$\ddot{c}$		207.0
111120011110110	aq.	Tormyr urea	111.3	s		7.3
(CH ₃ ) ₂ NNO	liq.	dimethyl nitroso-	111.0	۵	_	7.0
(CI13)21V1VO	nq.	amine	0.	C		394.
C ₂ H ₅ NHNO ₂	lia.	ethyl nitroamine	22.	C		372.
(CH ₂ NH ₂ ) ₂ ·H ₂ O	c riq.	ethylene diamine	24.	C		3/2.
$(C\Pi_2\Pi\Pi_2)_2\cdot\Pi_2U$	C	monohydrate	77.8	C		453.
(COONTT)		ammonium oxalate		S		455. 8.0
$(COONH_4)_2$	С	ammonium oxarate	259.2	S		8.0
(COONH ₄ ) ₂ ·H ₂ O	aq.	ammonium oxalate	259.2			
$(COONH_4)_2 \cdot H_2O$	c	monohydrate	339.1	S		11 -
(CH NH HNO)		•	339.1	Ŋ		11.5
$(CH_2NH_2\cdot HNO_3)_2$	aq.	ethylene diamin- ium nitrate	100 5			
Спь сп ип	14		- 138.7			
CHF2CH2NH2	liq.	difluoroethylamine	116.7			
CH ₂ FCONH ₂	С	monofluoroacet-	11/74			
OTTE OTT NITING		amide	117.1			
CHF ₂ CH ₂ NHNO ₂	С	difluoroethylnitro-	110			
	1	amine	118.			

CARBON

53

Carbon

Formula	State	Description	Qf,	kcal. mole ⁻¹		Q, k	cal. mole-1
CNCl	g	chlorocyanogen	_	36.5	v		8.3
	liq.		-	28.2			
CH:NH:·HCl	aq.	methylamine					
		hydrochloride		70.8	N		13.0
(CH ₂ ) ₂ NH·HCl	aq.	dimethylamine					
		hydrochloride		72.0	N		$11.81_{400}$
C ₂ H ₅ NH ₂ ·HCl	c	ethylamine hydro-					
		chloride		81.1	S	_	2.23
	aq.			78.8	N		$13.44_{400}$
(CH2NH2·HCl)2	c	ethylene diamin-					
		ium chloride		123.4	S		6.65
·	aq.			116.7			
CH ₂ ClCONH ₂	С	monochloroacet-					
		amide		88.5			
	aq.			77.8			
NH2CH2COOH·HCl	aq.	glycine hydrochlo-					
		ride		163.2	N		0.97
CH ₂ ClCOONH ₄	aq.	ammonium mono-					
		chloroacetate		153.8	N		12.9
CHCl ₂ CONH ₂	aq.	dichloroacetamide		82.7			
CCl ₂ CONH ₂	С	trichloroacetamide		107.4	C		165.2
	aq.			87.2			
CCl ₂ COONH ₄	aq.	ammonium tri-					
		chloroacetate		165.1	N		13.1
CNI	c	iodocyanogen	_	39.1	s	_	2.8
	aq.		-	41.9			
CNS-	aq.	thiocyanate ion	-	18.9			
HCNS	aq.	thiocyanic acid	-	19.1			
(NH ₂ ) ₂ CS	С	thiourea		31.5	C		270.6
	aq.			26.2	s	_	$5.33^{10}_{100}$
NH₄CNS	С	ammonium thio-					
		cyanate		18.2	s		<b>5.7</b>
	aq.			12.5			
CH,CNS	g	methyl thiocyanate		35.			
	liq.			23.			
CH ₂ NCS	g	methyl isothio-					
		cyanate	-	28.			•
	С		-	10.	_		
(NH ₂ ) ₂ CS·HNO ₃	С	thiourea nitrate		83.8	S	-	8.5
	aq.			75.3			

Silicon

Atomi	c numbe	er 14	Standard st	tate	Si (c)		Atomic weight 28.06
ormula	State		Description	Qj	, kcal,	$mole^{-1}$	Q, kcal. mole ⁻¹

Formula	State	Description	Qf, kcal, mole-1	Q, kcal. mole ⁻¹
Si	g c amorp.	3s²3p² (³P₀)	- 85. 0.000 - 1.0	
Si*	g g	$3s^23p^2 (^3P_1)$	- 85.22	$E^{s} - 0.22$
~-	g	(3P ₂ )	- 85.64	$E^{z} - 0.64$
	g	$(^{1}D_{2})$	- 102.93	$E^z - 17.93$
	g	(1S ₀ )	- 128.82	E= 43.82
Si+	g	3s ² 3p ( ² P ¹ _{1/2} )	- 273.7	$I^* - 187.22$
Si+ *	g	$(^{2}P_{3/2})$	- 274.5	$E^z - 0.82$
	g	$(^{2}D_{3/2})$	- 431.1	$E^z - 157.44$
	g	$(^{2}D_{5/2})$	- 432.1	$E^z - 157.48$
Si++	g	$3s^2$ ( 1S_0 )	- 650.4	<i>I</i> * − 375.26
	g	(3P1 ₃ )	- 742.0	$E^* - 111.59$
	g	$(^{3}P_{2})$	- 742.4	E* - 111.96
	g	(3P ₁ )	- 743.1	$E^s - 112.71$
Si+++	g	$3s$ ( ${}^{2}S_{1/2}$ )	-1421.0	$I^* - 769.12$
Si++++	g	$2s^{2}2p^{6}$ ( ${}^{1}S_{0}$ )	-2459.1	I* -1036.6
Si+++++	g	$2s^22p^5 (^2P_{3/2})$	<b>-6355.</b>	I = -3895.
$SiO_2$	g		120.	V - 791900
	liq.			$F - 1.84^{1530}$
	gls.		201.0	
	c	$\beta$ cristobalite 1600° form		T 0.15270 - a orist. 1600°
	c	$\beta$ cristobalite 1100° form		T 0.06230 - a crist. 1100°
	С	α cristobalite 1600° form	202.61	
	c	α cristobalite 1100° form	202.45	
	c	$\beta$ tridymite		$T = 0.02 \alpha \text{ tridymite}$
	c	$\beta$ quartz		T 0.18573a quarta
	c	α quartz	203.34	
C'TT	colloid	in water	199.1	
$SiH_4$	g		8.7	D - 8.7
$Si_2H_6$	liq.			$V - 3.03^{-112}$
	g			$V - 5.11^{-15}$
Si _{\$} H ₈	liq.			$V - 7.1^{53}$
Si ₄ H ₁₀	liq.		007.0	V - 8.9109
H ₂ SiO ₃	C	ppt.	267.8	D - 10.9
H ₄ SiO ₄	C	ppt.	330.1	D — 8.7
H ₂ Si ₂ O ₅	colloid		335.9	D 107
H ₂ Si ₂ O ₅ H ₆ Si ₂ O ₇	c	ppt.	458.7	D - 12.7
SiF ₄	C	ppt.	603.5	D - 10.1
OIL 4	lia		360.1	S 33.9 _{2HF(aq.)}
	liq.			$V - 4.46^{-90}$ $F - 1.7^{-95}$
SiF ₆	C		544.0	$F - 1.7^{-95}$
CIT. 6	aq.		044.0	

Silicon

Formula	State	Description	$Qf, kcal. mole^{-1}$	$Q,\ kcal.\ mole^{-1}$
HSiF ₆ -	aq.		544.5	
H ₂ SiF ₆	aq.		545.0	
SiCl ₄	g		142.5	$V - 7.19^{57}$
1	liq.		150.1	
1	c			$F - 1.85^{-70}$
Si ₂ Cl ₆	liq.			$V - 11.0^{139}$
Si ₃ Cl ₈	liq.			$V - 12.1^{213}$
(SiCl ₃ ) ₂ O	liq.			$V - 9.4^{137}$
SiClH ₃	g			$V - 5.1^{-10}$
SiCl ₂ H ₂	g			$V - 6.1^{12}$
SiBr ₄	liq.		93.6	S 83.0 ₇₀₀₀
SiBrH ₃	g			$V - 5.85^2$
SiBr ₂ H ₂	g			$V - 7.4^{66}$
SiI.	c		29.8	S 85.7
SiS ₂	c	yellow	30.9	
1	c	white	34.1	
Si₃N₄	c		157.0	
(NH ₄ ) ₂ SiF ₆	c		621.6	$S - 8.4^{7}_{1200}$
	aq.		613.2	
SiC	c		28.	
(C ₂ H ₅ O) ₄ Si	liq.	ethylorthosilicate	320.	S 21.6
(CH ₂ O) ₄ Si	liq.	methyl silicate		$V - 7.08^{121}$
	-			

Germanium						
Atomic number 32	Standard state Ge (c)	Atomic weight 72.60				
1						

Ge	g	$4s^24p^2$ ( 3P_0 )	<b>–</b> 85.	
	c		0.000	
Ge*	g	$4s^24p^2 (^3P_1)$	- 86.58	$E^z - 1.58$
	g	$(^{3}P_{2})$	- 89.01	$E^{2} - 4.01$
	g	$(^{1}D_{2})$	- 105.29	$E^z - 20.29$
	g	$({}^{1}S_{0})$	- 131.59	$E^z - 46.59$
$Ge^+$	g	$4s^24p$ ( $^2P_{1/2}$ )	- 275.9	$I^* - 189.47$
Ge+ *	g		- 280.9	$E^z - 5.03$
Ge++	g	$4s^2$ ( ${}^{1}S_0$ )	- 543.6	$I^* - 366.20$
Ge+++	g	$4s$ ( ${}^{2}S_{1/2}$ )	-1330.8	$I^z - 785.81$
Ge++++	g	$3d^{10}$ ( ${}^{1}S_{0}$ )	-2377.0	l = -1044.75
GeO₂	colloid	in water	230.	
Ge₂H6	liq.			$V - 6.3^{29}$
$Ge_3H_8$	liq.			$V - 7.6^{111}$
GeCl4	g		216.	$V - 9.2^{86}$
	liq.		226.	

Tin

Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
Sn	g liq.	5p ² ( ³ P ₀ )	<b>–</b> 78.	$F - 1.69^{232}$
	c	I, rhombic		$T = .002^{161} + 11$
	c	II, tetragonal	0.000	
	c	III, "gray" cubic	- 0.6	$T = 0.6_{\pm 11}$
Sn*	g	$5p^2 (^3P_1)$	- 82.82	$E^* - 4.82$
	g	$(^3P_2)$	- 87.76	$E^* - 9.76$
	g	$(^{1}D_{2})$	- 102.52	$E^{r}$ — 24.52
	g	$({}^{1}S_{0})$	- 126.86	$E^* - 48.86$
Sn+	g	$5p (^2P_{1/2})$	- 258.0	$I^z - 168.51$
Sn+ *	g	$({}^{2}\mathrm{P}^{1}_{3/2})$	- 270.1	$E^{*} - 12.11$
Sn++	g	$5s^2$ ( 1S_0 )	- 594.5	<i>I</i> * - 335.1
Sn+++	g	$5s (^2S_{1/2})$	-1299.5	I = -704.0
Sn++++	g	$4d^{10}$ ( ${}^{1}S_{0}$ )	-2237.0	I = -936.
Sn+++++	g	$4d^{9}$ (2D)	-3580.	$I^{*} - 1340.$
SnO	c		67.7	C 70.4
$SnO_2$	c	I		$T = 0.30^{640}$
_	c	II		$T = 0.45^{430}$
	c	III	138.1	
SnH ₄	liq.			$V - 4.55^{-160}$
$Sn(OH)_2$	c	ppt.	136.1	
Sn(OH) ₄	c	ppt.	268.9	
SnF ₆	aq.		469.8	
$H_2SnF_6$	aq.		470.4	
$SnCl_2$	g			$V - 21.1^{623}$
	c		81.1	
	HCl (200)		81.5	
$SnCl_2 \cdot 2H_2O$	c		223.5	S 5.29
SnCl4	g		118.4	$V - 8.0^{116}$
	liq.		127.4	$S = 29.92^{20}_{250}$
	c			$F - 2.20^{-33}$
	HCl(200)		157.3	
SnOCl ₂	aq.		146.8	
SnBr ₂	c		61.4	
	aq.		59.8	
$\operatorname{SnBr}_4$	liq.		91.8	$F - 3.00^{27}$
	c		94.8	$S = 15.5^{18}_{1000}$
	aq.		110.3	
SnBr ₄ -8H ₂ O	liq.		653.7	$F - 10.20^{18}$
	c		663.9	$S - 6.64^{15}_{1200}$
SnI ₂	c		38.9	S - 5.8
	aq.		33.1	
SnS	c		22.7	

TIN 57

Tin

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Sn(SO ₄ ) ₂ SnCl ₄ ·2H ₂ S SnCl ₄ ·4H ₂ S SnCl ₂ ·2½NH ₃ SnCl ₂ ·9NH ₃ SnBr ₂ ·2NH ₃ SnBr ₂ ·3NH ₃ SnBr ₂ ·5NH ₃ SnBr ₂ ·9NH ₃ SnI ₂ ·NH ₃ SnI ₂ ·2NH ₃ SnI ₂ ·3NH ₃ SnI ₂ ·3NH ₃ SnI ₂ ·3NH ₃ SnI ₂ ·3NH ₃ SnI ₂ ·3NH ₃ SnI ₂ ·5NH ₃ SnI ₂ ·5NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₂ ·9NH ₃ SnI ₃ ·5NH ₃ SnI ₂ ·9NH ₃ SnBi ₂ SnBi ₃	c c c c c c c c c c c c c c c c c c c	Description	391.1 146.7 162.1 254.9 116.2 139.7 181.2 255.3 65.8 90.1 112.9 155.2 230.6 148.5 0.37 - 0.17 - 0.19	Q, kcal. mole ⁻¹ S 91.1 KOH (aq.) D - 6.2 ⁻⁵⁸ D - 6.2 ⁻⁸¹ S 14.0 HCl (aq.) D - 9.3 D - 7.6 S 7.3 HCl (aq.) S 14.8 HCl (aq.) D - 9.8 D - 7.55 D - 16.0 D - 13.3 D - 11.9 D - 10.2 D - 7.9
Sn₂Bi Sn₄Bi	c c		- 0.12 - 0.78	

Lead

Atomic number 82		Standard state Pb	(c)† At	tomic weight 207.22
Formula	State	Description	$Qf,$ $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
Pb	g	$6p^2 (^3P_0)$	47.5	V - 45.1620
	liq.	• • •		$F - 1.30^{327}$
	c	fine crystals, non-		
		radioactive	0.000	
	c	"stick"	- 0.07	
Pb*	g	$6p^{2}(^{3}P_{1})$	- 69.76	$E^{s} - 22.26$
	g	$^{8}P_{2}$	- 78.82	$E^z - 30.32$
	g	$^{1}\mathrm{D_{2}}$	- 108.59	$E^z - 61.09$
	g	¹S₀	- 147.96	$E^s - 100.46$
Pb+	g	$6p (^{2}P_{1/2})$	- 219.25	$I^* - 170.30$
Pb+ *	g	$(^{2}\mathrm{P}^{1}_{3/2})$	- 259.30	$E^* - 40.05$
Pb++	g	$6s^2$ ( ${}^{1}S_0$ )	- 565.89	$I^z - 345.19$
	aq.		0.2	
Pb+++	g	$6s (^2S_{1/2})$	-1304.0	$I^z - 736.68$
Pb++++	g	$4d^{10}({}^{1}S_{0})$	-2318.7	$I^*$ -1013.3
$\mathbf{P}\mathbf{b}\mathbf{O}$	c	red	52.46	
	c	yellow	52.06	
$PbO_2$	c		65.0	
$Pb_2O$	c		51.3	
$Pb_3O_4$	c		172.4	
$Pb(OH)_2$	c	ppt.	123.0	
$PbF_2$	g		100.	$V - 39.4^{1200}$
	c		159.5	~~ ~~ ~~
$PbCl_2$	g		49.4	V - 28.5818
	liq.		0.5.53	F - 5.6500
	c		85.71	S - 3.44
DI CI DI O	aq.		82.3	α ,,,
PbCl₂·PbO	c		142.7	S 18.1 HCl(aq.)
PbCl₂·2PbO	c		195.9	S 40.0 _{HCl(aq.)}
PbCl₂·3PbO PbBr₂	c		247.9 5.	S 63.2 _{HCI(aq.)} V - 28.1 ⁹¹⁶
FDDr ₂	g		66.27	V - 20.1
	C		56.2	S 10.04
PbBr ₂ ·PbO	aq.		119.8	
PbBr ₂ ·2PbO	C C		171.4	- XI XX (AQ.)
PbBr ₂ ·3PbO	c		223.4	
PbI ₂ -31 bO	}		- 10.	S 75.6 _{HBr(aq.)} V - 27.7800
1 1/12	g liq.		_ 10.	F - 5.3876
	riq.		41.77	L == 0.0***
$PbI_2 \cdot HI \cdot 5H_2O$	c		400.9	$S - 3.8^{11}_{200}$
PbS	c		22.3	~ 0.0  200
PbSO ₄	c	II	218.5	
	1	1	1	1

[†]Non-radioactive.

Lead

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q	, kcal. mole ⁻¹
PbSO ₄	c	I		T	4.06866
$PbS_2O_3$	c		151.1	_	
$PbS_2O_6$	aq.		280.4		
$PbS_2O_6\cdot 4H_2O$	c c		562.4	S -	8.54400
PbS ₃ O ₆	c		284.0	s -	5.0
2 00,00	aq.		279.	~	0.0
PbSO₄·PbO	c		280.	ŀ	
PbSO ₄ ·2PbO	c		339.		
PbSO ₄ ·3PbO	c		398.		
PbSO ₄ ·2HCl	c		276.	D -	6.8
PbSe	c		20.	-	0.0
PbSeO₄	c		148.6		
1 00004	aq.		146.6		
PbTe	c c		6.0		
$PbN_6$	c		103.0		
$Pb(NO_3)_2$	c		106.89	s -	7.6400
1 0(1403/2	400		99.28	5	1.0400
	200		99.80		
	100		100.56		
	40		101.78		
Pb(NO ₃ ) ₂ ·PbO	c		167.6		
PbCl ₂ ·NH ₃	c		109.0	D -	13.3
$PbCl_2 \cdot 1\frac{1}{2}NH_s$	c		121.0	D -	
PbCl ₂ ·2NH ₈	c		132.0	D -	
PbCl ₂ ·3½NH ₃	c		157.4	D -	
PbCl ₂ ·8NH ₃	c		248.4	D -	8.2
2PbCl₂·NH₄Cl	c		246.66	<i>D</i> –	0.2
PbBr ₂ ·NH ₃	c		92.8	D -	15.6
PbBr ₂ ·NH ₃	c		115.2	D -	
			135.6	D -	
PbBr ₂ ·3NH ₈	c		185.6	D -	
PbBr ₂ ·5½NH ₃	c		207.0	D - D -	
PbBr ₂ ·8NH ₈	c				
PbI₂·½NH,	c		54.5		
PbI ₂ ·NH ₈	c		66.6	D -	
PbI₂·2NH₃	С		88.8	D -	
PbI₂·5NH₃	C		150.8	D -	
PbI ₂ ·8NH ₃	С		207.0	D -	
3PbI₂·4NH₄I	С		315.1	S -	10.25
3PbI ₂ ·4NH ₄ I·6H ₂ O			598.1	S -	
PbSO ₄ ·(NH ₄ ) ₂ SO ₄	С		502.3	S -	3.74
PbHPO ₃	c		231.7	<u>_</u> _	07.0
3PbI₂·PI₃	c		131.8	S	27.6
3PbI₂·PI₃·12H₂O	С		977.3	S	2.5
3PbI₂·AsI₃	С		111.0	S	12.5
3PbI₂·AsI₃·12H₂O	c		952.2	S -	8.2

Lead

Formula	State	Description	Qf, kcal. mole ⁻¹		Q,	kcal. mole ⁻¹
3PbI ₂ ·SbI ₂	c		127.0	S		20.6
3PbI ₂ ·SbI ₃ ·12H ₂ O	c		976.5	S		8.5
3PbI ₂ ·BiI ₃	c		136.0	S		16.6
3PbI ₂ ·BiI ₃ ·12H ₂ O	c		990.2	S		17.2
PbCO.	c		168.0			
PbC₂O₄	c	lead oxalate	206.2			
PbCO ₃ ·PbO	c		222.6			
PbCO _x ·2PbO	c		274.8			
$Pb(CHO_2)_2$	c	lead formate	206.9	S	_	$6.9^{10}$
	aq.		200.0			
Pb(C ₂ H ₂ O ₂ ) ₂	c	lead acetate	234.3	S		1.411220
	400		235.7			
Pb(C ₂ H ₂ O ₂ ) ₂ ·3H ₂ O	c		446.7	S		6.14
$Pb(C_2H_1O_2)_2$	c	lead glycollate	317.3	S		5.74
(	aq.		311.5			
$PbO \cdot Pb(C_2H_2O_2)_2$	c	basic lead acetate	292.9			
Pb(CN) ₂ ·2PbO·H ₂ O	c		125.	S		36.8 HNO (sq.)
Pb(SCN) ₂	c	ppt.	- 30.7			
PbI.·SnI.	c	**	68.6	S		12.7
PbI ₂ ·SnI ₂ ·8H ₂ O	c		635.8	S		7.5

a.	11	:	 

Atomic number 31		Standard state C	<del>l</del> a (c) .	Atomic weight 69.72
Ga	g	4p (2P1 _{1/2} )	- 52. 0.000	
Ga*	g	$4p (^{2}P_{3/2}) {}^{2}S_{1/2}$	- 54.35 - 122.57	$E^s - 2.35$ $E^s - 70.57$
Ga+ Ga++ Ga+++	g	$4s^{2}$ ( $^{1}S_{0}$ ) $4s$ ( $^{2}S_{1/2}$ ) $3d^{10}$ ( $^{1}S_{0}$ )	- 194.0 - 666.5 -1363.4	I* - 140.57 I* - 471.0 I* - 705.4
Ga++++ Ga ₂ O ₃ GaCl ₃	aq. g c aq. HCl(9)	3d9 (2D)	34. -2837. 256. 143. 146.	<i>I</i> ∗ −1472.

INDIUM

61

Indium

Formula   State   Description   Qf, kcal. mole   Q, kcal. mole   Q, kcal. mole   Q, kcal. mole   In   Q, kcal. mole   Q, kcal. mole   In   Q, kcal. mole   Q, kcal. mole   In   Q, kcal. mole   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, kcal. mole   In   Q, k	Atomic nu	mber 49	Standard state	In (c) At	omic weight 114.76
In*	Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
In+	In	1 ;	5p (²P¹ _{1/2} )	1	
In+	In*			1	
In++	<u>.</u> .	1 1		1 (	
In+++		g			- 202.00
In		g			
In++++	In+++	g	$4d^{10}$ ( ${}^{1}S_{0}$ )		$I^* - 643.8$
Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Inclorate   Incl		aq.		1	
InCl		g	$4d^9 (^2D_{5/2})$	<b>-1360</b> .	$I^{*}$ -1000.
InCl2	$In_2O_3$	c		240.	•
InCl ₃ c       128.5       S       16.9         InBr ₃ c       97.2       S       16.9 _{HCl(22)} InI ₃ c       97.2       S       16.9 _{HCl(22)} InI ₄ c       56.5       S       10.5 _{HCl(22)} InCl ₃ ·NH ₃ c       112.0       D       22.2         InCl ₃ ·2NH ₄ c       192.7       D       20.3         InCl ₃ ·3NH ₄ c       268.9       D       11.8         InCl ₃ ·5NH ₄ c       308.0       D       8.6         InCl ₃ ·15NH ₃ c       308.0       D       8.6         InCl ₃ ·15NH ₃ c       190.4       S       15.5 _{HCl(32)} InBr ₃ ·3NH ₄ c       190.4       S       15.5 _{HCl(32)} InBr ₃ ·5NH ₃ c       240.0       D       14.3         InBr ₃ ·5NH ₃ c       279.6       D       8.8         InBr ₃ ·15NH ₃ c       432.5       D       8.17         InI ₃ ·NH ₄ c       87.6       D       20.1         InI ₃ ·5NH ₄ c       116.2       S       14.0 _{HCl(22)} InI ₃ ·7NH ₄ </td <td>InCl</td> <td>c</td> <td></td> <td>44.6</td> <td></td>	InCl	c		44.6	
InBr ₂	$InCl_2$	c		86.8	
InBr ₃	$InCl_3$	c		128.5	S 16.9
InI ₃ c 56.5 S 10.5 _{HC1(32)} InCl ₃ ·NH ₃ c 112.0 D - 22.2  InCl ₃ ·2NH ₄ c 192.7 D - 20.3  InCl ₃ ·3NH ₄ c 223.4 D - 19.7  InCl ₃ ·5NH ₄ c 268.9 D - 11.8  InCl ₃ ·7NH ₄ c 308.0 D - 8.6  InCl ₃ ·15NH ₄ c 190.4 S 15.5 _{HC1(32)} InBr ₃ ·5NH ₄ c 190.4 S 15.5 _{HC1(32)} InBr ₃ ·5NH ₄ c 240.0 D - 14.3  InBr ₃ ·6NH ₄ c 279.6 D - 8.8  InBr ₃ ·15NH ₃ c 387.6 D - 20.1  InI ₃ ·NH ₄ c 376.6 D - 20.1  InI ₃ ·NH ₄ c 197.0 S 22.7 _{HC1(32)} InI ₃ ·5NH ₄ c 197.0 S 22.7 _{HC1(32)} InI ₃ ·7NH ₃ c 241.7 S 46.4 _{HC1(32)} InI ₃ ·9NH ₃ c 281.1 D - 7.7		aq.		145.4	
InI ₃   aq.   112.7   56.5   S   10.5 _{HCl(22)}   InCl ₃ ·NH ₃   c   112.0   D - 22.2   InCl ₃ ·2NH ₃   c   192.7   D - 20.3   InCl ₃ ·3NH ₃   c   223.4   D - 19.7   InCl ₃ ·5NH ₄   c   268.9   D - 11.8   InCl ₃ ·7NH ₅   c   308.0   D - 8.6   InCl ₃ ·15NH ₃   c   536.8   D - 7.65   InBr ₃ ·3NH ₄   c   190.4   S   15.5 _{HCl(22)}   InBr ₃ ·5NH ₄   c   240.0   D - 14.3   InBr ₃ ·6NH ₄   c   279.6   D - 8.8   InBr ₃ ·15NH ₃   c   432.5   D - 8.17   InI ₃ ·NH ₄   c   87.6   D - 20.1   InI ₃ ·5NH ₄   c   197.0   S   22.7 _{HCl(22)}   InI ₃ ·7NH ₃   c   241.7   S   46.4 _{HCl(22)}   InI ₃ ·9NH ₃   c   281.1   D - 7.7	$InBr_s$	c		97.2	S 16.9 HC1(21)
InI ₃ c aq. 67.0  InCl ₃ ·NH ₃ c 112.0 D - 22.2  InCl ₃ ·2NH ₄ c 192.7 D - 20.3  InCl ₃ ·3NH ₄ c 223.4 D - 19.7  InCl ₃ ·5NH ₄ c 268.9 D - 11.8  InCl ₃ ·7NH ₄ c 308.0 D - 8.6  InCl ₃ ·15NH ₃ c 190.4 S 15.5 _{HCl (22)} InBr ₃ ·5NH ₄ c 190.4 S 15.5 _{HCl (22)} InBr ₃ ·5NH ₄ c 240.0 D - 14.3  InBr ₃ ·6NH ₄ c 279.6 D - 8.8  InBr ₃ ·15NH ₃ c 387.6 D - 20.1  InI ₃ ·NH ₄ c 376.6 D - 20.1  InI ₃ ·5NH ₄ c 197.0 S 22.7 _{HCl (22)} InI ₃ ·7NH ₃ c 241.7 S 46.4 _{HCl (22)} InI ₃ ·9NH ₄ c 281.1 D - 7.7		aq.		112.7	20.(20)
InCl ₃ ·NH ₃ c 112.0 D - 22.2 InCl ₃ ·2NH ₄ c 192.7 D - 20.3 InCl ₃ ·3NH ₄ c 223.4 D - 19.7 InCl ₃ ·5NH ₄ c 268.9 D - 11.8 InCl ₃ ·7NH ₄ c 308.0 D - 8.6 InCl ₃ ·15NH ₄ c 190.4 S 15.5 _{HCl (22)} InBr ₃ ·5NH ₄ c 240.0 D - 14.3 InBr ₃ ·6NH ₄ c 279.6 D - 8.8 InBr ₃ ·15NH ₃ c 279.6 D - 8.8 InBr ₃ ·15NH ₃ c 279.6 D - 8.8 InBr ₃ ·15NH ₃ c 279.6 D - 8.8 InBr ₃ ·15NH ₄ c 279.6 D - 8.8 InBr ₃ ·15NH ₄ c 279.6 D - 8.17 InI ₃ ·NH ₄ c 379.6 D - 20.1 InI ₃ ·NH ₄ c 116.2 S 14.0 _{HCl (22)} InI ₃ ·5NH ₄ c 197.0 S 22.7 _{HCl (22)} InI ₃ ·5NH ₄ c 241.7 S 46.4 _{HCl (22)} InI ₃ ·9NH ₄ c 281.1 D - 7.7	$InI_3$	1 - 1		56.5	S 10.5 HCI(12)
InCl ₃ ·NH ₃ c       112.0       D - 22.2         InCl ₃ ·2NH ₄ c       192.7       D - 20.3         InCl ₃ ·3NH ₄ c       223.4       D - 19.7         InCl ₃ ·5NH ₄ c       268.9       D - 11.8         InCl ₃ ·15NH ₃ c       308.0       D - 8.6         InCl ₃ ·15NH ₃ c       190.4       S 15.5 _{HC1 (22)} InBr ₃ ·3NH ₄ c       240.0       D - 14.3         InBr ₃ ·6NH ₄ c       279.6       D - 8.8         InBr ₃ ·15NH ₃ c       432.5       D - 8.17         InI ₃ ·NH ₄ c       87.6       D - 20.1         InI ₃ ·2NH ₃ c       116.2       S 14.0 _{HC1 (22)} InI ₃ ·5NH ₃ c       197.0       S 22.7 _{HC1 (22)} InI ₃ ·7NH ₃ c       241.7       S 46.4 _{HC1 (22)} InI ₃ ·9NH ₃ c       281.1       D - 7.7	-	aq.		67.0	201127
InCl ₃ ·2NH ₂ c       192.7       D - 20.3         InCl ₃ ·3NH ₃ c       223.4       D - 19.7         InCl ₃ ·5NH ₄ c       268.9       D - 11.8         InCl ₃ ·7NH ₄ c       308.0       D - 8.6         InCl ₃ ·15NH ₃ c       190.4       S 15.5 _{HCl (32)} InBr ₃ ·3NH ₄ c       240.0       D - 14.3         InBr ₃ ·6NH ₄ c       279.6       D - 8.8         InBr ₃ ·15NH ₃ c       432.5       D - 8.17         InI ₃ ·NH ₄ c       87.6       D - 20.1         InI ₃ ·2NH ₃ c       116.2       S 14.0 _{HCl (22)} InI ₃ ·5NH ₃ c       197.0       S 22.7 _{HCl (22)} InI ₃ ·7NH ₃ c       241.7       S 46.4 _{HCl (22)} InI ₃ ·9NH ₃ c       281.1       D - 7.7	InCl. NH.	1 - 1			D - 22.2
InCl ₃ ·3NH ₃ c       223.4       D - 19.7         InCl ₃ ·5NH ₄ c       268.9       D - 11.8         InCl ₃ ·7NH ₄ c       308.0       D - 8.6         InCl ₃ ·15NH ₃ c       536.8       D - 7.65         InBr ₃ ·3NH ₄ c       190.4       S 15.5 _{HC1(22)} InBr ₃ ·5NH ₄ c       240.0       D - 14.3         InBr ₃ ·6NH ₄ c       279.6       D - 8.8         InBr ₃ ·15NH ₃ c       432.5       D - 8.17         InI ₃ ·NH ₄ c       87.6       D - 20.1         InI ₃ ·2NH ₄ c       116.2       S 14.0 _{HC1(22)} InI ₃ ·5NH ₄ c       197.0       S 22.7 _{HC1(22)} InI ₃ ·7NH ₃ c       241.7       S 46.4 _{HC1(22)} InI ₃ ·9NH ₃ c       281.1       D - 7.7		1 1		1	
InCl ₃ ·5NH ₄ c         268.9         D — 11.8           InCl ₃ ·7NH ₂ c         308.0         D — 8.6           InCl ₃ ·15NH ₃ c         536.8         D — 7.65           InBr ₃ ·3NH ₄ c         190.4         S — 15.5 _{HC1(22)} InBr ₃ ·5NH ₄ c         240.0         D — 14.3           InBr ₃ ·6NH ₄ c         279.6         D — 8.8           InBr ₃ ·15NH ₃ c         432.5         D — 8.17           InI ₃ ·NH ₄ c         87.6         D — 20.1           InI ₃ ·2NH ₄ c         116.2         S — 14.0 _{HC1(22)} InI ₃ ·5NH ₄ c         197.0         S — 22.7 _{HC1(22)} InI ₃ ·7NH ₃ c         241.7         S — 46.4 _{HC1(22)} InI ₃ ·9NH ₃ c         281.1         D — 7.7		1			
InCl ₃ ·7NH ₂ c       308.0       D - 8.6         InCl ₃ ·15NH ₃ c       536.8       D - 7.65         InBr ₃ ·3NH ₄ c       190.4       S 15.5 _{HC1(22)} InBr ₃ ·5NH ₄ c       240.0       D - 14.3         InBr ₃ ·6NH ₄ c       279.6       D - 8.8         InBr ₃ ·15NH ₃ c       432.5       D - 8.17         InI ₃ ·NH ₄ c       87.6       D - 20.1         InI ₃ ·2NH ₄ c       116.2       S 14.0 _{HC1(22)} InI ₄ ·5NH ₄ c       197.0       S 22.7 _{HC1(22)} InI ₃ ·7NH ₃ c       241.7       S 46.4 _{HC1(22)} InI ₃ ·9NH ₃ c       281.1       D - 7.7		1 1		1 1	
InCl ₃ ·15NH ₃ c       536.8       D - 7.65         InBr ₃ ·3NH ₄ c       190.4       S 15.5 _{HC1(22)} InBr ₃ ·5NH ₄ c       240.0       D - 14.3         InBr ₃ ·6NH ₄ c       279.6       D - 8.8         InBr ₃ ·15NH ₃ c       432.5       D - 8.17         InI ₃ ·NH ₄ c       87.6       D - 20.1         InI ₃ ·2NH ₄ c       116.2       S 14.0 _{HC1(22)} InI ₄ ·5NH ₄ c       197.0       S 22.7 _{HC1(22)} InI ₃ ·7NH ₃ c       241.7       S 46.4 _{HC1(22)} InI ₃ ·9NH ₃ c       281.1       D - 7.7					
InBr ₃ ·3NH ₄ c     190.4     S     15.5 _{HC1(22)} InBr ₃ ·5NH ₄ c     240.0     D     - 14.3       InBr ₃ ·6NH ₄ c     279.6     D     - 8.8       InBr ₃ ·15NH ₃ c     432.5     D     - 8.17       InI ₃ ·NH ₄ c     87.6     D     - 20.1       InI ₃ ·2NH ₃ c     116.2     S     14.0 _{HC1(22)} InI ₃ ·5NH ₃ c     197.0     S     22.7 _{HC1(22)} InI ₃ ·7NH ₃ c     241.7     S     46.4 _{HC1(22)} InI ₃ ·9NH ₃ c     281.1     D     7.7				1 1	
InBr ₃ ·5NH ₃ c     240.0     D - 14.3       InBr ₃ ·6NH ₄ c     279.6     D - 8.8       InBr ₃ ·15NH ₃ c     432.5     D - 8.17       InI ₃ ·NH ₄ c     87.6     D - 20.1       InI ₃ ·2NH ₄ c     116.2     S 14.0 _{HCl (22)} InI ₄ ·5NH ₄ c     197.0     S 22.7 _{HCl (22)} InI ₃ ·7NH ₃ c     241.7     S 46.4 _{HCl (22)} InI ₃ ·9NH ₃ c     281.1     D - 7.7				1	
InBr ₃ ·6NH ₃ c     279.6     D - 8.8       InBr ₃ ·15NH ₃ c     432.5     D - 8.17       InI ₃ ·NH ₄ c     87.6     D - 20.1       InI ₂ ·2NH ₃ c     116.2     S 14.0 _{HCl (22)} InI ₂ ·5NH ₄ c     197.0     S 22.7 _{HCl (22)} InI ₂ ·7NH ₃ c     241.7     S 46.4 _{HCl (22)} InI ₂ ·9NH ₃ c     281.1     D - 7.7		1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1		, ,	
InI ₃ ·2NH ₃ c     116.2     S     14.0 _{HC1(22)} InI ₄ ·5NH ₄ c     197.0     S     22.7 _{HC1(22)} InI ₃ ·7NH ₃ c     241.7     S     46.4 _{HC1(22)} InI ₄ ·9NH ₃ c     281.1     D     7.7				1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	
InI ₃ ·7NH ₃ c 241.7 S 46.4 _{HC1(22)} InI ₃ ·9NH ₃ c 281.1 D - 7.7		1 1			S 22 7 TO (22)
InI ₃ ·9NH ₃ c 281.1 D - 7.7		1 1			
		i i		ı	
AMAG ADATAAG		1		- 1	
	AMAS AUDITAS			000.2	

Thallium

Atomic number 81 Standard state T1 (c) Atomic weight 204.39 Q, kcal. mole-1 Formula State Description Qf, kcal. mole-1 T1 $6p (^{2}P_{1/2})$ 40. g liq. 1.47 Ι T0.05226_11 c II 0.000 c TI*  $6p (^{2}P_{3/2})$ 62.18  $E^* - 22.18$ g - 115.38  $E^* - 75.38$ 7s $(^2S_{1/2})$ g Tl+ - 181.70 g  $6s^2 (^1S_0)$ I = -140.240.8 aq. Tl++  $6s (^2S_{1/2})$ -651.7I = -186.7g T]+++ 5d10 (1S₀) -1338.I = -684.9g 28. aq.  $Tl_2O$ 42.3 3.08 c  $Tl_2O_3$ 120. c TIOH 56.95 c 3.15 53.8 aq. TIF  $V - 25.1^{298}$ g TIF800 77.5 16.44800 TIHF2 800 152.6 TICI 16.4  $-25.2^{806}$ g liq. 3.95450 c 48.62 38.3 aq. s-10.3TICI* 71.8  $E^* - 88.22$ g TlCl₃ 82.4 c s8.4,00 90.8 aq. TlCl₃·4H₂O 366.4 c s2.12 TlBr 9.5 V -25.2817 g liq. 3,6486 c 41.5 TlBr* 73.4 g  $E^* - 82.9$ TlBr₃ aq. 58.1 TlBr₈·4H₂O c 333.9 2.25,00 TlBr₂Cl aq. 69.0 TlBr₂Cl·4H₂O c 345.5 2.90 TIIg 0.7 -25.3824c 31.1  $Tl_2S$ c 22.0 Tl₂SO₄ c 221.8 S -7.95203200 3200 213.8 800 213.9 200 214.25

Thallium

Formula	State	Description	Qf, kcal. mole-1	Q, kcal. mole ⁻¹
Tl ₂ Se	c	·	18.	
Tl₂Te	c		7.	
$TlN_s$	c		- 54.7	
TlNO,	c	I		$T = 0.76^{145}_{-11}$
	c	II	1	$T = 0.24^{76}$
	c	III	58.2	$S - 10.0_{200}$
	aq.		48.2	
TlCl·3NH ₃	c		102.9	D - 7.1
TlBr·3NH ₃	c		95.2	D - 7.1
TlI-3NH ₃	c		84.3	D - 7.1
Tl2SO410NH3	c			D - 13.3
$\mathrm{TlC_2H_3O_2}$	aq.	thallous acetate	117.0	
$TlC_2H_5O$	c	thallous alcoholate	56.8	
	C₂H₅OH		56.3	S - 0.53
TICNO	c		- 25.7	D - 52.5
-				

Zinc

Atomic number 30

Standard state Zn (c)

Atomic weight 65.38

Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
Zn	g liq.	4s ² (¹S ₀ )	- 27.4	$V - 24.8^{911}$ $F - 1.70^{419}$
Zn*	c g g	$\begin{array}{c c} 4s4p & (^3P^1_0) \\ & & (^3P^1_1) \\ & & (^3P^1_2) \end{array}$	0.000 - 119.38 - 119.92 - 120.03	$E^* - 91.98$ $E^* - 92.52$ $E^* - 93.63$
Zn+ Zn+ *	8 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- 160.83 - 244.54 - 382.55	E ² -133.43 I ² -215.69 E ² -138.01
$\mathbf{Z}\mathbf{n}^{++}$	g g aq.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 385.04 - 658.46 36.3	$E^{s} - 140.50$ $I^{s} - 412.47$
Zn+++ Zn₂ ZnO	g c	3d° (2D) unfused	-1570. - 48.2 83.5	$D^* - 910.$ $D^* - 5.67$
ZnH ZnH*	c g g	fused $^2\Sigma$ $^2\Pi_{1/2}$	85.2 - 55.4 - 121.7	$D^s - 23.05$
ZnH+ Zn(OH);	80 80 C	$^{2}\Pi_{3/3}$ $^{2}\Sigma_{1}$ $^{2}\Sigma$ "crystalline"	- 122.6 - 142.9 - 223.1 155.8	$D^{s} - 28.9$ $D^{s} - 67.5$
ZnO ₂ ·2H ₂ O Zn(OH) ₂ ·H ₂ O	c c	ppt.	153.5 253.7 221.9	S 14.85 H ₂ 80 ₄ (220)
ZnO·⅓H ₂ O₂ Zn ₃ O ₅ ·2H ₂ O Zn ₄ O ₅ ·3H ₂ O	c c		108.6 369.7 439.7	S 15.5 H ₂ 8O ₄ (200) S 48.1 H ₂ 8O ₄ (200) S 46.5 H ₂ 8O ₄ (200)
ZnF ₂ ZnCl ₂	aq. c 400		192.3 99.55 115.27	S 15.72,00
	200 100 50		114.88 114.05 112.55	
	20 10 5 C ₅ H ₅ OH		10.37 109.06 107.20	9 00
ZnCl ₁ ·3ZnO·5H ₂ O ZnCl ₂ ·4ZnO·11H ₂ O ZnCl ₂ ·5ZnO·8H ₂ O	C C C		109.4 705.4 1204.3	S 9.8330C ₂ H ₅ OH S 61.5 HCl(aq.) S 76.6 HCl(aq.) S 95.6 HCl(aq.)
ZnCl ₂ ·8ZnO·10H ₂ O ZnBr ₂	c c 400		1083.8 1478.7 78.4 93.4	S 95.6 HCl(aq.) S 148.5 HCl(aq.) S 15.0400

Zinc

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
ZnBr ₂ ·4ZnO·13H ₂ O	С		1320.	S 78.0 _{HBr(aq.)}
ZnI	g		- 6.	
ZnI*	g		- 91.7	$E^z - 85.74$
$ZnI_2$	c		49.8	S 11.625 650
	aq.		61.4	
ZnI ₂ ·5ZnO·11H ₂ O	c		940.2	S 115.6 _{HI(aq.)}
ZnS	c	zinc blend	44.	112 (aq.,
	C	ppt.	44.3	
ZnSO ₄	c		233.4	S 18.54 ₄₀₀
	400		251.95	
	200		251.94	
	100		251.92	
	50		251.87	
	20		251.63	
ZnSO ₄ ·H ₂ O	c		310.3	S 10.0400
$ZnSO_4\cdot 6H_2O$	c		663.0	$S - 0.84_{400}$
$ZnSO_4\cdot7H_2O$	c		734.8	$S - 4.28_{400}$
$ZnS_2O_4$			198.	D - 1.20400
$\mathrm{ZnS}_2\mathrm{O}_4$ $\mathrm{ZnS}_2\mathrm{O}_6$	aq. 400		317.0	
			729.5	$S - 2.24_{400}$
$ m ZnS_2O_6\cdot 6H_2O$	C		34.	5 - 2.24400
ZnSe	С		33.	
ZnTe	C		1 1	
ZnN ₆	C 400		- 50.8	
$\mathrm{Zn}(\mathrm{NO_3})_2$	400		134.7	
	200		134.87	
	50		134.86	
	20		134.81	
	15		134.57	
	10		133.66	
	3		132.	T 0.044
$Zn(NO_3)_2 \cdot 3H_2O$	С		345.	F - 8.344
$Zn(NO_3)_2 \cdot 6H_2O$	С		550.9	$S - 5.85_{400}$
$ZnF_2 \cdot 2H_2O \cdot \frac{1}{2}NH_3$	С			D
$ZnF_2 \cdot 2H_2O \cdot 3NH_3$	С			D - 11.2
$ZnCl_2\cdot NH_3$	С		135.3	D-25.
$\mathbf{ZnCl_2 \cdot NH_3 \cdot \frac{1}{2}H_2O}$	c		180.8	S 13.75 HC1(100)
$\mathbf{ZnCl_2 \cdot 2NH_3}$	С		165.6	D - 19.2
$\mathrm{ZnCl_2\cdot 4NH_3}$	С		211.3	D - 118.
$ZnCl_2\cdot 5NH_3\cdot H_2O$	c		294.1	S 46.9 HCl(aq.)
$ m ZnCl_2\cdot 6NH_3$	c		255.3	D - 10.7
$\mathbf{ZnCl_2\cdot 8NH_4Cl\cdot ZnO}$	c		777.5	S 9.5 HC1(100)
$ m ZnCl_2\cdot 10NH_3$	c		327.3	D - 7.1
3ZnCl ₂ · $6$ NH ₄ Cl·H ₂ O	С		831.1	S 6.5 HC1 (100)
3ZnCl ₂ ·ZnO·10NH ₄ Cl	c		913.2	$S = 16.2_{HCl(aq.)}$
$6\mathrm{ZnCl_2}\cdot\mathrm{ZnO}\cdot12\mathrm{NH_3}$	c	1	1347.4	S 95.6 HC1(100)

Zinc

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
${ m ZnBr_2\cdot NH_3}$	С		122.9	D - 24.1
ZnBr ₂ ·2NH ₃	c		153.8	D - 19.2
ZnBr ₂ ·4NH ₃	c		202.8	D - 11.82
ZnBr ₂ ·6NH ₃	c		246.7	D - 11.02
ZnI ₂ ·NH ₂	c		82.4	D - 22.
ZnI2·2NH3	c		112.5	D - 19.4
ZnI ₂ ·4NH ₃	c		166.0	D - 15.4
ZnI:6NH:	c		209.8	D - 10.9
ZnSO.·INH	c		251.4	D - 25.
ZnSO, NH	c		268.	D - 22.4
ZnSO.2NH	c		298.	D - 18.9
$Z_{\rm n}({\rm NH_4})_2({\rm SO_4})_2 \cdot 2{\rm H_2O}$	e		661.7	
Zn(NH ₄ ) ₂ (SO ₄ ) ₂ ·6H ₂ O	e		954.5	S - 13.2
ZnSO.3NH;	c		324.	D - 15.5
ZnSO ₄ ·4NH ₃	c		349.	D - 13.8
ZnSO ₄ ·5NH ₂	c		371.	D - 10.8
ZnCO ₃	c	zinc carbonate	193.3	
ZnC ₂ O ₄ ·2H ₂ O	c	zinc oxalate	373.2	
$Z_{n}(C_{2}H_{5})_{2}$	liq.	zinc ethyl	10.0	S 78.0
$Z_{n}(CHO_{2})_{2}$	ć	zinc formate	231.3	$S = 4.0^{15}_{800}$
-7-	250		235.3	
$Zn(CHO_2)_2 \cdot 2H_2O$	c		374.4	$S - 2.4^{18}_{500}$
$\operatorname{Zn}(\operatorname{C_2H_3O_2})_2$	c	zinc acetate	261.1	S 9.8720
	400		270.9	
	200		270.02	
	100		268.95	
	50		267.75	
$\operatorname{Zn}(\mathrm{C_2H_3O_2})_2\cdot\mathrm{H_2O}$	С		332.3	$S = 7.0^{23}_{800}$
$Zn(C_2H_3O_2)_2 \cdot H_2O$	С		403.7	S 4.210500
$\operatorname{Zn}(\dot{\mathrm{C}}_{2}\mathrm{H}_{3}\mathrm{O}_{3})_{2}$	c	zinc glycollate	350.0	S - 0.6
	aq.		349.4	
$Zn(C_2H_3O_3)_2\cdot 2H_2O$	c		490.2	S - 4.1
$Zn(CN)_2$	С	zinc cyanide	- 16.2	S 3.412 HC1(Aq.)
$Zn(CN)_4^{}$	aq.		- 79.4	
$2Z_n(CN)_2 \cdot Z_nO$	c	basic zinc cyanide	39.9	S 25.619 HC1(aq.)
Zn(CHO ₂ ) ₂ ·2NH ₃	С	zinc formate ammine	279.	D - 13.
Zn(CHO ₂ ) ₂ ·2½NH ₃	c		290.	D - 10.6
Zn(CHO ₂ ) ₂ ·4NH ₃	c		322.	D - 10.5
Zn(CHO ₂ ) ₂ ·6NH ₃	c		360.	D - 8.3
ZnSiO ₃	c		282.6	S 85.5 _{HF(4.44)}
Zn ₂ SiO ₄	gls.		340.4	S 99.5 HF (4.44)
	c c		349.4	S 90.5 HF(4.44)
$2Z_{n}I_{2}\cdot PbI_{2}$	c	İ	141.2	S 23.50 ¹⁸ 1000

Cadmium

Atomic number 48 Standard state Cd (	(c, II, hexagonal)	Atomic weight 112.41
--------------------------------------	--------------------	----------------------

Formula	State	Description	Qf, kcal, mole ⁻¹	Q, kcal. mole ⁻¹
Cd	g	5s ² (¹S₀)	- 26.8	
	liq.			$F - 1.50^{321}$
	c	I		$T = 0.055^{37.5}_{-11}$
	c	II, hexagonal	0.000	
Cd*	g	$5s5p (^3P_0)$	-112.53	$E^z - 85.73$
	g	( ³ P ¹ ₁ )	-114.07	$E^z - 87.26$
	g	$(^{3}P_{2})$	-117.41	$E^z - 90.61$
	g	$({}^{1}P^{1}{}_{1})$	-151.18	$E^z - 124.38$
Cd+	g	$5s (^2S_{1/2})$	-234.75	$I^* - 206.50$
Cd+ *	g	$5p (^2P_{1/2})$	-360.47	$E^{s} - 125.72$
	g	$(^{2}P_{^{1}8/2})$	-367.47	$E^z - 132.72$
Cd++	g	4d ¹⁰ ( ¹ S ₀ )	-624.44	I = -388.24
	aq.		17.6	
$Cd_2$	g		- 6.7	$D^s - 46.0$
CdO	c	1	65.2	
CdH	g	$^2\Sigma$	- 62.3	$D^{z} - 15.47$
CdH*	g	$^2\Sigma_1$	-143.0	
CdH+	g	$^2\Sigma$	-232.1	
$Cd(OH)_2$	c	ppt.	133.6	
CdF ₂	1200		172.5	
CdCl ₂	Iiq.			F 10.5566
	c		93.0	S 3.09 ₄₀₀
	400		96.06	
	200		95.89	
	100		95.73	
	50		95.60	
	20		95.01	
	10		93.37	
$CdCl_2 \cdot H_2O$	c		163.81	S 0.63400
CdCl ₂ ·2½H ₂ O	c		269.98	$S - 2.94_{400}$
CdCl ₂ ·4H ₂ O	c		463.2	
CdCl ₂ ·2HCl·7H ₂ O	c		655.8	$S - 2.3^{11}$
CdCl ₂ ·CdO·H ₂ O	c		236.2	S 13.415 HC1(aq.)
CdBr	g		<b>-</b> 7.	$D^* - 60.$
CdBr*	g		- 96.6	$E^{2} - 89.55$
CdBr ₂	liq.			$F - 5.0^{580}$
=	c		75.8	S 0.44400
	400		76.2	
CdBr ₂ ·4H ₂ O	c		357.0	$S - 7.29_{400}$
CdBr ₂ ·CdO·H ₂ O	c		217.7	S 14.316 H Br(sq.)
CdI	g		- 20.	$D^s-32.$
CdI*	g		-104.1	$E^{z} - 84.07$
$CdI_2$	g		4.0	$V - 28.7^{700}$
=			1	

### Cadmium

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
$CdI_2$	liq.			F - 4.0400
-	c		48.40	$S - 0.96_{400}$
	140CH₃OH			S 4.3113140CH3OH
	144C ₂ H ₅ OH			S 6.6513144C2H5OH
	400		47.44	}
$CdI_2 \cdot CdO \cdot H_2O$	c		180.7	S 25.813 HI (aq.)
CdS	c		34.6	
CdSO ₄	c		222.22	$S = 10.68_{400}$
	400		232.906	
	200		232.70	
	100		232.553	
	50		232.352	
	30.6		231.828	
	20.6		231.494	
	15.6		231.128	
	13.6		230.194	
$CdSO_{4}\cdot H_{2}O$	c		295.23	$S = 6.05_{400}$
$CdSO_4 \cdot 2\frac{2}{3}H_2O$	С		412.72	S 2.54 ₄₀₀
$\mathrm{CdS_2O_6}$	aq.		298.0	
$CdSO_4 \cdot 2\frac{1}{2}H_2SO_4$	c		766.2	S - 4.7
CdSO ₄ ·2HCl	c		287.	D - 10.
CdSe	c		25.	
CdTe	c		16.	
$CdN_6$	c		-106.2	D - 35.1
$Cd(NO_3)_2$	c		77 (?)	
	400		115.67	
$\mathrm{Cd}(\mathrm{NO_3})_2{\cdot}\mathrm{H_2O}$	c		179.87	S 4.18 ₄₀₀
$Cd(NO_3)_2 \cdot 4H_2O$	c		394.23	$S - 5.04_{400}$
$CdCl_2 \cdot NH_3$	c		122.0	D - 18.1
$\mathrm{CdCl_2\cdot 2NH_3}$	c		149.5	D - 16.5
$\mathrm{CdCl_2\cdot 4NH_3}$	c		192.8	D - 10.7
CdCl ₂ ·4NH ₄ Cl	С		394.4	S - 13.75 ¹⁶
CdCl ₂ ·6NH ₃	С		235.1	D - 10.2
CdCl ₂ ·10NH ₃	С		308.5	D - 7.4
CdCl ₂ ·NH ₄ Cl·½H ₂ O	c		206.6	S - 5.36
$CdBr_2 \cdot NH_3$	С		104.8	D - 18.1
CdBr ₂ ·2NH ₃	С		131.9	D - 16.9
CdBr ₂ ·6NH ₃	c		219.3	D - 10.7
CdBr ₂ ·12NH ₃	c		330.6	D - 7.6
CdBr ₂ ·NH ₄ Br·½H ₂ O	c		177.4	$S - 7.2^{16}$
CdI ₂ ·2NH ₃	c		98.0	D - 16.6
CdI ₂ ·6NH ₃	c		191.0	D - 11.7
$CdI_2 \cdot NH_4I \cdot \frac{1}{2}H_2O$	c		134.5	$S - 7.88^{15}$
CdSO ₄ ·NH ₃	С		250.8	D - 17.6
CdSO₄·2NH₃	c		277.7	D - 16.0

# Cadmium

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
CdSO ₄ ·5NH ₃ CdSO ₄ ·6NH ₃ CdSb Cd ₃ Sb ₂ CdCO ₃ Cd(CN) ₂ Cd(ONC) ₂ Cd(CN) ₂ ·CdO·5H ₂ O	c c c c c	cadmium fulmi- nate	346.9 369. 2.7 4.0 178.6 - 35.3 - 36.3 467.2	$D - 12.1$ $D - 11.2$ $S = 8.3^{20} H_2 SO_4(aq.)$ $D - 44.5$ $S = 12.6 H_2 SO_4(aq.)$

# Mercury

g liq. c g g g g g	6s ² 6s6p 5d ¹⁰ 6s 5d ⁹ 6s ²	( ¹ S ₀ ) ( ³ P ¹ ₀ ) ( ³ P ¹ ₁ ) ( ³ P ¹ ₂ ) ( ¹ P ¹ ₀ ) ( ² S _{1/2} ) ( ² D _{1/2} )		14.60 0.000 121.77 126.80 139.99 168.52 255.69	$V - 14.60$ $F - 0.55^{-40}$ $I^{*} - 239.64$
liq. c g g g g g	5d¹º6s 5dº6s²	$\begin{array}{c} (^{3}P^{1}_{0}) \\ (^{3}P^{1}_{1}) \\ (^{3}P^{1}_{2}) \\ (^{1}P^{1}_{0}) \\ (^{2}S_{1/2}) \end{array}$		0.000 121.77 126.80 139.99 168.52	F - 0.55 ⁻⁴⁰
6 8 8 8 8 8 9	5d¹º6s 5dº6s²	(3P ₁ ) (3P ₁ ) (3P ₁ ) (1P ₁ ) (2S _{1/2} )	  -  -  -  -	121.77 126.80 139.99 168.52	
888888	5d¹º6s 5dº6s²	(3P ₁ ) (3P ₁ ) (3P ₁ ) (1P ₁ ) (2S _{1/2} )	-  -  -  -	126.80 139.99 168.52	
888888	5d¹º6s 5dº6s²	$(^{3}P^{1}_{2})$ $(^{1}P^{1}_{0})$ $(^{2}S_{1/2})$	-  -  -	126.80 139.99 168.52	7= -230 64
88 88 88 88 88 88	$5d^96s^2$	$({}^{1}P^{1}_{0})$ $({}^{2}S_{1/2})$	-	168.52	Ts 220 64
g g g	$5d^96s^2$	$({}^{2}S_{1/2})$	-  -		T= -230 64
g g	$5d^96s^2$	$({}^{2}S_{1/2})$ $({}^{2}D_{5/2})$	j-	255.69	Ts -230 64
g g	$5d^96s^2$	(2D-12)	1		1 200,0 <del>4</del>
g		0/2/	-	356.79	$E^{2}-101.10$
		$(^2\mathrm{D}_{3/2})$	-	399.60	$E^z - 143.91$
g	$5d^{10}6p$	$(^2\mathrm{P}_{^1/2})$	_	402.26	$E^z - 146.57$
g		$(^2\mathrm{P}^1_{3/2})$	-	428.20	$E^z - 172.51$
g	$5d^{10}$	$({}^{1}S_{0})$	-	687.81	$I^{2} - 430.66$
aq.			-	41.6	
g			-	27.8	
aq.			-	40.	
c	$\operatorname{red}$			21.6	
c	yellow	ppt.		20.8	
c				21.6	
g			-	57.1	$D^{z} - 8.5$
	$^{2}\Pi_{1/2}$		_	128.1	$E^s - 70.97$
	$^{3}\Pi_{3/2}$		_	138.6	$E^z - 81.46$
	$^{1}\Sigma$		-	272.3	$D^{z} - 34.4$
g			_	10.	
			_	123.0	$E^z - 113.0$
g				33.3	$V - 14.6^{382}$
liq.					$F - 4.1^{277}$
	8 8 9. c c c 8 8 8 8 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

## Mercury

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole-1
HgCl ₂	С		53.4	S - 3.32 ₃₀₀
_	aq.		50.1	
HgCl ₄	aq.		130.9	į į
$Hg_2Cl_2$	c		63.15	
HgCl ₂ ·HgO	c		75.6	
HgCl ₂ ·2HgO	c		97.4	
HgCl ₂ ·3HgO	c		119.1	
HgCl ₂ ·4HgO	c		140.9	
HgBr	g		- 16.	
HgBr ₂	g		21.6	V - 14.6318
8	liq.			$F - 4.5^{236}$
	c		40.70	S - 2.4
	aq.		38.3	
HgBr ₄	aq.		99.4	
Hg ₂ Br ₂	c		49.2	
HgBr ₂ ·HgO	c		63.0	
HgBr ₂ ·2HgO	c		84.8	
HgBr ₂ ·3HgO	c		106.7	
HgI	g		- 21.	
HgI ₂	g		5.0	$V - 15.0^{260}$
6-2	liq.		0.0	$F - 4.6^{258}$
	c c	I, yellow	24.65	T 0.65127 - 11
	c	II, red	25.3	2 0.00 411
HgI,	aq.	1 22,100	55.4	
Hg ₂ I ₂	c c	yellow	28.87	
HgS	c	red	11.0	
	c	black	10.7	
HgSO ₄	c	DIAGE	166.6	
HgSO ₄ ·4H ₂ SO ₄	400		1016.2	
Hg ₂ SO ₄	c		176.5	
(HgO) ₃ SO ₃	c		218.9	S 43.4 (HCL(40)
HgSe	c		8.0	S 43.46HCI(aq.)
$Hg_2N_6$	c		- 100.	
$Hg(NO_3)_2$	aq.		56.6	
$Hg(NO_3)_2 \cdot \frac{1}{2}H_2O$	aq.			S - 1.4 mm O - ( )
$Hg_2(NO_3)_2$			91.5 58.3	$S - 1.4_{\text{HNO}_2(\text{ag.})}$
$Hg_2(NO_3)_2 \cdot HNO_3$	aq. 100		106.4	
$Hg_2(NO_3)_2 \cdot 2H_2O$	c			0 00 5
$Hg(NO_3)_2 \cdot 2HgO \cdot H_2O$	c		206.5	S 33.5 _{KI(aq.)}
$(\mathrm{Hg}_2\mathrm{N})_2\mathrm{O}$	c	Millon's oxide	244.6	S 3.8 _{HNO₁(aq.)}
(118211/2U		willion a oxide	77.0	S 151.0 _{KCN(aq.)}
Hg₂NOH	aq.	Millon's hydroxide	- 73.4	S 3.6
Hg ₂ NOH·1½H ₂ O	c	withou suydroxide	- 2.8	S 74. KCN(aq.)
Hg ₂ NOH·2H ₂ O	c	Millon's base	104.0	S 70.1 _{KCN(aq.)}
-AE311 OTT-NTT3O	c	TATITIOH & DESC	189.0	S 68.9 KCN (aq.)
Hg ₂ NOH-4H ₂ O	c		326.4	S 68.3 KCN (aq.)

Mercury

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
HgF ₂ ·4NH ₃	c			D - 11.5
HgF ₂ ·5NH ₃	С			D - 8.6
$HgCl_2 \cdot 2NH_3$	c		108.5	S 34.5 HCl(aq.)
HgCl ₂ ·8NH ₃	c		222.9	D - 8.1
HgCl ₂ ·9½NH ₃	c	ļ	250.1	D - 7.2
Hg ₂ NCl	c	Millon's chloride	- 6.	
Hg ₂ NCl·½H ₂ O	c		31.2	
$Hg_2NCl\cdot H_2O$	c		68.4	
Hg ₂ NCl·½NH ₈	c		5.6	S 60.7 KCN (aq.)
$Hg_2Cl_2 \cdot 2NH_3$	c		113.5	D - 14.3
Hg2NCl·NH3	c		15.8	S 54.6 KCN (aq.)
Hg ₂ NCl·NH ₄ Cl	c	]	141.5	S 54.5 KCN (aq.)
Hg2NCl·3NH4Cl	c		289.6	S 48.8 KCN (aq.)
Hg ₂ NCl·½HgCl ₂	c		24.0	S 81.1 KCN(sq.)
HgBr ₂ ·2NH ₈	c		95.0	S 20.4 KCN (140)
HgBr ₂ ·2NH ₄ Br	aq.		161.	- STARON (MO)
HgBr ₂ ·8NH ₃	c		207.5	D - 7.8
$Hg_2NBr$	c	Millon's bromide	- 14.9	S 60.5 KCN (aq.)
Hg ₂ NBr·NH ₄ Br	c		57.0	S 50.2 KCN (aq.)
Hg ₂ NBr·3NH ₄ Br	c		188.6	S 44.3 KCN (aq.)
Hg ₂ NBr· <del>1</del> HgBr ₂	c		- 1.8	S 65.6 _{KCN(aq.)}
$Hg_2NBr \cdot \frac{1}{2}HgBr_2$	c		10.9	
HgI2-3NH3	c		43.3	
HgI2·2NH3	c		71.8	S 13.8 KCN (aq.)
HgI ₂ ·8NH ₃	c		145.8	D - 7.8
Hg ₁₀₀ Bi	liq.		- 3.7	
HgC₂O₄	С	mercuric oxalate	160.2	S 7.094HC1(100)
$Hg(CH_3)_2$	liq.		- 37.8	
$Hg(C_2H_5)_2$	liq.		- 15.4	
$Hg(C_2H_3O_2)_2$	c	mercuric acetate	198.0	$S - 4.0_{440}$
	aq.		194.0	
$HgH_2(C_2H_3O_2)_4$	aq.	mercuric biacetate	431.7	
$Hg_2(C_2H_3O_2)_2$	c	mercurous acetate	203.3	S 36.6 _{KI(aq.)}
$Hg(C_2H_3O_2)_2\cdot HgO$	c		219.0	
HgCl ₂ ·CH ₃ OH	С		113.7	$D - 11.7^{20}$
$Hg(CN)_2$	С		- 61.8	S - 3.0
	aq.		- 64.8	
Hg(CN),	aq.		124.7	
$HgC_2N_2O_2$	c		- 64.1	D - 117.7
$Hg(CN)_2 \cdot \frac{1}{2}HgO$	c		- 52.0	S 0.1 _{HCl(aq.)}
$Hg(CN)_2 \cdot HgO$	С		- 39.2	S 13.6 HCl (aq.)
$Hg(CN)_2 \cdot NH_4CN$	400		- 61.0	. •••
Hg(CN) ₂ ·2NH ₄ CN	600		- 59.	
$Hg(CN)_2 \cdot HgCl$	c		- 8.9	$S - 5.4^{14}$
$H_{\mathbf{g}}(\mathrm{CN})_{2}\cdot\mathrm{NH}_{4}\mathrm{Cl}$	500		6.6	
$Hg(CN)_2 \cdot NH_4Cl \cdot \frac{3}{2}H_2O$	c		65.4	$S - 7.55^{15}$

## Mercury

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
Hg(CN) ₂ ·NH ₄ Br	500		- 4.0	
$Hg(CN)_2 \cdot NH_4Br \cdot H_2O$	C		74.8	S - 10.4816
$Hg(CN)_2 \cdot NH_4I$	500		- 17.6	20.20
$H_{\mathbf{g}}(\mathrm{CN})_2 \cdot \mathrm{NH}_4 \mathrm{I} \cdot \frac{1}{4} \mathrm{H}_2 \mathrm{O}$	c		11.8	S - 12.25
Hg(SCN) ₂	c		- 52.0	22.20
$Hg_{50}Sn$	liq.		- 2.54	
Hg ₁₀₀ Sn	liq.		- 2.54	
HgPb ₂	c c		- 0.05	
$Hg_{100}Pb$	liq.		- 2.51	
Hg ₂₆₀ Pb	liq.		- 2.63	
Hg ₁₀₀₀ Pb	liq.		- 2.66	
Hg. Pb	liq.		- 2.70	
$\mathrm{Hg}_{5}\mathrm{Tl}_{2}$	c c		2.50	
Hg _{7.2} Tl	liq.		- 2.94	
$Hg_{8,1}Tl$	liq.		- 3.44	
Hg _{9.8} Tl	liq.		- 4.56	
$Hg_{16,2}Tl$	liq.		- 5.06	
$Hg_{21.6}Tl$	liq.		- 5.48	
Hg _{31.6} Tl	liq.		- 5.85	
$Hg_{54,5}Tl$	liq.		- 6.47	
$Hg_{32}Zn$	liq.		- 0.47 - 2.25	
$Hg_{65}Zn$	liq.			
$HgBr_2 \cdot ZnBr_2$	4400		- 2.31	
HgBr ₂ ·2ZnBr ₂	4800		132.6 $228.6$	
2HgBr ₂ ·ZnBr ₂	8400			
$\mathrm{Hg}(\mathrm{CN})_2 \cdot \mathrm{ZnCl}_2$	1000		170.5	
$Hg(CN)_2 \cdot ZnCl_2 \cdot 7H_2O$	c		- 14.7	0 10 41
$ZnBr_2 \cdot Hg(CN)_2$	1000		477.2	$S - 13.4^{15}$
$ZnBr_2 \cdot Hg(CN)_2 \cdot 8H_2O$	c .		- 35.6	g 00.0
Hg ₅₅ Cd	lig.		532.4	S - 20.8
HgCd ₃	-		0.50	
HgCd	c c		0.74	
Hg ₃ Cd			1.96	
Hg _{3.5} Cd	c		3.99	
Hg ₄ Cd	c		4.27	
Hg ₁₀ Cd	c		3.92	
HgBr ₂ ·CdBr ₂	c 4400		0.5002	
HgBr ₂ ·2CdBr ₂	4800		115.9	
- 1	1		193.3	
2HgBr ₂ ·CdBr ₂ Hg(CN) ₂ ·CdCl ₂	8400		153.0	
. •	660		31.5	α ο ο ο σ σ σ
Hg(CN) ₂ ·CdCl ₂ ·2H ₂ O Hg(CN) ₂ ·CdR ₂	c eeo		177.5	S - 9.318
Hg(CN) ₂ ·CdBr ₂	660	İ	12.0	
2Hg(CN) ₂ ·CdBr ₂	1100		- 52.8	~
Hg(CN) ₂ ·CdBr ₂ ·3H ₂ O	0		229.6	$S - 12.5^{14}$
2Hg(CN) ₂ ·CdI ₂	1100		- 80.1	~ ~~~
2Hg(CN) ₂ ·CdI ₂ ·8H ₂ O	c		489.2	$S - 22.3^{15}$

Copper

Atomic number 2	9 Sta	indard state Cu	(c) At	omic weight 63.57
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Cu	g liq.	3d ¹⁰ 4s ( ² S _{1/2} )	- 81.2	F - 3.21083
Cu*	c g g	$ \begin{array}{c c} 3d^94s^2 & (^2D_{3/2}) \\ & (^2D_{5/2}) \\ 3d^{10}4p & (^2P^1_{1/2}) \end{array} $	0.000 $-113.09$ $-119.91$ $-168.13$	$E^z - 31.89$ $E^z - 38.71$ $E^z - 86.93$
Cu+ Cu+ *	g	$ \begin{vmatrix} (^3P^1_{5/2}) \\ 3d^{10} & (^1S_0) \\ 3d^34s & (^3D_3) \\ (^3D_2) \end{vmatrix} $	-168.83 $-162.23$ $-224.65$ $-227.26$	$E^z - 87.63$ $I^z - 177.38$ $E^z - 62.42$ $E^z - 65.03$
Cu++	g g g aq.	$ \begin{vmatrix} (^3D_1) \\ (^1D_1) \\ 3d^9 & (^2D_{5/2}) \end{vmatrix} $	$ \begin{array}{r} -230.54 \\ -236.96 \\ -629.51 \\ -15.1 \end{array} $	$E^{z} - 68.31$ $E^{z} - 74.73$ $I^{z} - 465.83$
CuO	liq.		38.5	F - 13.3 ¹³³⁶
Cu ₂ O CuH	liq.		42.5	$F - 18.4^{1236}$
CuH*	g c	1Σ	- 62.3 - 5.12	$\begin{array}{ccc} D^z - 69.9 \\ S & 8.93_{\text{CuCI}_2(\text{aq.})} \end{array}$
$Cu(OH)_2$	g c c	blue ppt.	-128.65 106.70	$E^z - 66.35$
$3CuO \cdot H_2O$ $CuF_2$	c aq.	green ppt. brown	106.96 180.4 141.7	S 14.46 _{HNO₃(aq.)} S 15.76 _{HNO₃(aq.)}
CuCl	c HCl(aq.)		34.3 27.9	$S - 6.44^{25}_{500}$
CuCl ₂ - CuCl ₂	aq. c 800 400 200		67.7 53.4 64.6 64.5 64.0	S 11.12 ₆₀₀ ,
	100 50 30 20		63.55 62.84 61.96 61.13	
	10 200C ₂ H ₅ OH 100C ₂ H ₅ OH 50C ₂ H ₅ OH 40C ₂ H ₅ OH 30C ₂ H ₅ OH		59.49 58.43 58.31 58.12 58.05	
CuCl ₂ ·2H ₂ O Cu ₂ Cl ₂	c g		1	$S = 3.71_{200} \ V - 19.2^{1300}$

## Copper

Formula	State	Description	$Qf, kcal.$ $mole^{-1}$	Q, kcal. mole ⁻¹
$\mathrm{Cu_2Cl_2}$	liq.			F - 7.74430
	c	= 2  CuCl (c)	68.6	
CuClO ₄	aq.		28.2	
$Cu(ClO_3)_2$	400		24.3	
$Cu(ClO_4)_2$	aq.		64.9	
$CuO \cdot CuCl_2$	c		90.	
$\mathrm{Cu_2OCl_2}$	c		121.3	
CuCl ₂ ·3CuO	c		168.6	S 54.9 HCl(aq.)
$CuCl_2 \cdot 3CuO \cdot 4H_2O$	c	atacamite	464.1	S 33.0 HC1(aq.)
HCuCl ₂	aq.		67.7	
CuBr	c		26.7	
$CuBr_2$	c		34.0	S 8.25 ²⁰ 400
	aq.		42.2	
$CuBr_2 \cdot 4H_2O$	c		317.2	S-1.
Cu ₂ Br ₂	g			$V - 18.8^{1000}$
Oughig	c	= 2 CuBr (c)	53.4	
CuBr ₂ ·3Cu(OH) ₂	c	-2 Gubi (6)	374.2	S 32.4 HBr(aq.)
CuI	1		- 8.	OD.THBr(aq.)
Cui	g		17.8	
$CuI_2$	c		4.8	
Cu1 ₂	С			
O. T	aq.		11.7	T7 10 01300
$Cu_2I_2$	g	00.7()	250	$V - 18.9^{1300}$
<b>a</b> a	c	=2  CuI (c)	35.6	
CuS	c	-	11.6	7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0
$\mathrm{Cu_2S}$	c	I		T 1.05250 +11
	c	II		T 1.31°1_+111
<b>a a a</b>	c	III	18.97	
CuSO ₄	С		184.7	S 15.90 ₈₀₀
	800		200.64	
	200		200.6	
	100		200.52	
	60		200.48	l
CuSO ₄ ·H ₂ O	c		259.7	S 9.33 ₈₀₀
$CuSO_4 \cdot 3H_2O$	c		402.1	S 3.61 ₈₀₀
$CuSO_4.5H_2O$	c		545.34	$S - 2.80_{800}$
$\mathrm{CuS_2O_6}$	aq.		265.1	
$CuS_2O_6.5H_2O$	c		611.9	$S - 4.89_{400}$
$Cu_2SO_4$	c		179.6	
	aq.		191.2	
3CuO·CuSO ₄	0		302.	
$CuSO_4 \cdot 3CuO \cdot 4H_2O$	c		389.8	S 48.0 _{H₂80₄(aq.)}
CuSO ₄ ·2HCl	c		245.	D - 8.2
CuSe	c		19.	
Cu ₂ Se	c	I		T 1.12110,111
a : =	c	ĪI	14.5	S 112. bromine water
			1	Promise waste

Copper

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole-1
CuSeO ₄	400		130.2	
CuSeO ₄ ·5H ₂ O	c		474.8	S - 2.66
Cu ₂ Te	c		6.0	
CuN ₃	c		- 56.8	
$Cu(NO_3)_2$	c		73.1	S 10.478 ₂₈₀
	200		83.4	
	100		83.45	
	50		83.58	
	20		83.61	
	15		83.42	
	12		83.14	
	10		82.67	
$Cu(NO_3)_2 \cdot 3H_2O$	c		291.1	$S - 2.5^{15}$
$\mathrm{Cu}(\mathrm{NO_3})_2.6\mathrm{H_2O}$	c		504.3	$S - 10.71_{400}$
$Cu(NO_3)_2 \cdot 3CuO \cdot 3H_2O$	c		415.5	S 34.0 _{HNO₂(sq.)}
Cu4NH ₃ ++	aq.		80.1	XIII O 3 (AQ.)
$Cu6NH_3++$	aq.		120.6	
Cu8NH ₃ ++	aq.		163.3	
Cu12NH ₃ ++	aq.		237.2	
Cu(NO ₃ ) ₂ ·2NH ₃	c		139.5	
Cu(NO ₃ ) ₂ ·4NH ₃	c		196.2	D - 17.4
	aq.		178.8	S - 17.4
Cu(NO ₃ ) ₂ .6NH ₃	c		255.2	D - 9.8
CuCl·NH ₃	c		62.2	D - 16.7
CuCl·1½NH.	c		74.0	D - 12.6
CuCl₂·2NH₃	c		120.0	S 7.7 HC1(aq.)
CuCl ₂ ·2NH ₃ ·½H ₂ O	c		136.1	S 2.6 _{12NH3(aq.)}
CuCl₂·2NH₄Cl	c		201.6	S 4.515,550
CuCl ₂ ·2NH ₄ Cl·2H ₂ O	c		349.1	S - 6.2
CuCl·3NH ₃	c		104.5	D - 9.5
CuCl ₂ ·3 <del>1</del> NH ₃	c		153.1	D - 14.1
CuCl ₂ ·4NH ₃	aq.		159.7	
CuCl ₂ ·4NH ₃ ·2H ₂ O	c		311.0	$S - 12.4_{2NH_2(aq.)}$
CuCl₂·5NH₃	c		191.7	D - 12.2
CuCl ₂ ·5NH ₃ ·½H ₂ O	c		224.1	S - 9.3
CuCl ₂ ·5NH ₃ ·1½H ₂ O	c		292.7	S - 9.5
CuCl ₂ ·6NH ₃	c		217.	D - 15.
	aq.		200.7	
CuCl ₂ ·10NH ₃	c		284.7	D - 7.6
Cu(ClO ₃ ) ₂ ·4NH ₃	c			D - 15.6
Cu(ClO ₃ ) ₂ ·6NH ₃	c		1	D - 9.8
Cu(ClO ₄ ) ₂ ·4NH ₈	c		İ	D - 20.0
Cu(ClO ₄ ) ₂ ·6NH ₈	c			D - 11.6
CuBr·NH ₃	c		52.3	D - 14.6

## Copper

Formula	State	Description	$Qf, kcal.$ $mole^{-1}$	Q, kcal. mole-1
CuBr·3NH ₃	c		95.0	D - 9.4
CuBr₂·2NH₃	c		98.0	S 4.8 HCl (20)
CuBr ₂ ·3⅓NH₃	c		133.4	D - 15.6
CuBr₂·5NH₃	c		173.1	D - 12.9
CuBr₂·6NH₃	c		193.2	D - 9.1
CuBr ₂ ·10NH ₃	c		268.2	D - 7.8
CuI-1NH3	c		30.6	D - 15.5
CuI·NH ₃	c		44.0	D - 14.7
CuI·2NH _s	c		66.0	D - 11.30
CuI·3NH ₃	c		87.6	D - 10.4
CuI ₂ ·2NH ₃	c		67.7	
CuI2·33NH3	c		102.6	D - 15.2
CuI ₂ ·5NH ₃	c		142.8	D - 13.2
CuI2·10NH3	c		242.8	D - 7.0
$Cu(IO_3)_2 \cdot 5NH_3$	c			D - 12.7
CuSO ₄ ·NH ₃	c		215.0	S 22.0 _{27 N II₃(uq.)}
CuSO ₄ ·2NH ₃	c		245.3	S 11.026 NH ₃ (aq.)
CuSO ₄ ·4NH ₃	c		297.1	S - 1.87 _{24NH₃(aq.)}
	aq.		292.4	~ 2.00 24 M M 3 (AQ.)
CuSO ₄ ·4NH ₃ ·1½H ₂ O	C C		403.9	$S - 7.1_{2NH_2(aq.)}$
CuSO ₄ ·5NH ₈	c		322.9	**************************************
CuSO ₄ ·6NH ₃	c		323.6	
04004011113	aq.		333.1	
CuSO ₄ -8NH ₃	aq.		372.7	
CuSO ₄ ·12NH ₃	aq.		451.1	
CuS ₂ O ₆ ·4NH ₃	c C		101.1	D - 19.3
CuS ₂ O ₆ ·5NH ₈	c			D - 10.4
CuS ₄ O ₆ ·4NH ₃	c			D - 13.0
CuSO ₄ ·(NH ₄ ) ₂ SO ₄	c		462.1	$S = 9.85^{14}$
CuSO ₄ (NH ₄ ) ₂ SO ₄ ·2H ₂ O	c		597.1	D 9.00
CuSO ₄ ·(NH ₄ ) ₂ SO ₄ ·6H ₂ O	c		892.8	S - 10.6
CuP ₂	c		1.0	5 - 10.0
Cu ₃ Sb	c		2.5	
Cu(CHO ₂ ) ₂	c	cupric formate	182.2	S 0.5218 603
04(01102)2	aq.	capite formate	182.7	D 0.52 605
Cu(CHO ₂ ) ₂ ·4H ₂ O	e c		464.0	S - 7.810,500
$Cu(C_2H_3O_2)_2$	c	cupric acetate	216.4	$S = 7.5^{\circ}_{500}$ $S = 2.4^{\circ}_{320}$
Ou(O2113O2)2	aq.	cupric accuate	218.8	D 2.4.0 a20
$Cu(C_2H_3O_2)_2 \cdot H_2O$	aq.		463.2	S 0.17400
$Cu(C_2H_3O_3)_2$	c	cupric glycollate	299.3	
( - 2113 - 3/2		capite giveouste	299.3 297.7	S - 1.62
CuCO ₃ ·Cu(OH) ₂	aq. c			
CuCl ₂ ·2CH ₃ OH			192.1	7) 10.45
Cu ₂ Cl ₂ ·CO·2H ₂ O	c		164.1	D - 13.45
Ou ₂ O ₁₂ ·OO·211 ₂ O	c		227.3	
	aq.		223.9	

Copper

Formula State		Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
$\mathrm{Cu}(\mathrm{C_2H_5SO_4})_2$	aq.	cupric ethyl-		
		sulfate	428.4	
CuCN	aq.		- 20.9	
CuONC	c	cuprous		
		fulminate	23.2	
CuC₂O₄·5NH₃	c	cupric oxalate		
		ammine		D - 10.8
$Cu(CHO_2)_2 \cdot 4NH_3$	c	cupric formate		
		ammine		D - 11.7
$Cu(C_2H_3O_2)_2\cdot 4NH_3$	c	cupric acetate		
		ammine		D - 12.2
Cu(SCN) ₂ ·4NH ₈	c			D - 13.7
Cu(SCN) ₂ ·6NH ₃	c			D - 8.9
Cu₃Sn	c		8.0	
$Cu_2Zn_3$	c		16.	
Cu ₂ Cd ₃	c		3.0	
CuSO ₄ ·Tl ₂ SO ₄ ·6H ₂ O	c		3.0	D - 14.8

Atomic number 47	S	tandard	state Ag (c)	Atomic	weight 107.880
Ag	g liq.	4d¹05s	$(^2S_{1/2})$	- 68.0	F - 2.7961
	c			0.000	
Ag*	g	4d¹05p	$(^2P^1_{1/2})$	-152.13	$E^z - 84.13$
	g		$({}^{2}\mathrm{P}^{1}_{3/2})$	-154.74	$E^z - 86.74$
Ag ⁺	g	$4d^{10}$	$({}^{1}S_{u})$	-243.40	$I^*$ -173.96
	aq.			- 25.2	
Ag+ *	g	$4d^9$	$(^2\mathbf{D}_{5/2})5\mathrm{s}(^3\mathbf{D}_3)$	-354.89	$E^z - 111.49$
	g		$(^3D_2)$	-355.04	$E^{z} - 111.64$
	g	$4d^9$	$(^2\mathrm{D}_{3/2})5\mathrm{s}\ ^3\mathrm{D}_1$	-367.86	$E^z - 124.46$
	g		$^{f 1}{ m D_2}$	-366.78	$E^{s} - 123.38$
Ag++	g	$4d^9$	$(^2D_{5/2})$	-748.	$I^{s} - 504$ ,
Ag+++	g	$4d^8$		-1533.	$I^* - 785.$
Ag ₂ O	c			6.95	
$Ag_2O_2$	c			5.95	
AgH	g			<b>-</b> 64.	
AgF	c			48.7	S 4.310
	amorp.	red		48.7	S 4.316
	400			53.0	
AgF·H ₂ O	c			120.5	$S = 0.85^{10}$
AgF·2H ₂ O	c			191.25	$S - 1.5^{10}$

Silver

Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
AgF·4H ₂ O	c		331.45	$S - 4.9^{18}$
$Ag_2F$	c		50.3	S 2.75
AgHF ₂	aq.		130.6	
AgCl	g	•	- 26.5	$V - 44.3^{1300}$
	liq.			F - 3.1450
	c		30.30	
AgCl*	g		- 116.4	$E^{s} - 89.89$
$ m Ag_2Cl$	c	(3)	30.7	
$AgClO_3$	c		1.8	$S - 7.52_{600}$
	aq.		- 5.7	
$AgClO_4$	c		12.2	$S = 2.17^{12}_{1000}$
	aq.		14.4	
AgBr	g		- 27.2	$V - 40.8^{1100}$
	liq.			$F - 2.4^{484}$
	c	ppt.	23.81	ww
$\mathbf{AgI}$	g		- 33.5	$V - 38.6^{1000}$
	c	I, cubic		T 1.27 ²⁴⁷ -11
	С	II, hexagonal	14.94	
AgI _s	aq.		43.9	~ ~-
3AgI·HI·7H₂O	С	_	539.0	S - 2.1
$Ag_2S$	С	I		T 0.95178_11
A = 90	c	II	5.5	
$Ag_2SO_4$	c		170.1	
$Ag(S_2O_3)_2$	aq.		165.6 284.	
$Ag_2S_2O_6$	aq.		230.0	
$Ag_2S_2O_6 \cdot 2H_2O$	aq.		377.1	$S - 10.36_{400}$
Ag ₂ SO ₄ ·2HCl	c		244.	D - 15.300
Ag ₂ Se	c	I	233.	T 1.66123 -11
	c	îr	1.	1 1.00 411
Ag ₂ SeO ₄	c		95.9	S 89.4 bromine water
AgN _s	c		- 67.3	O O O D D TO IN THE WALKE
AgNO ₂	c		11.6	S - 8.8
	aq.		2.8	
AgNO ₃	liq.			$F - 2.76^{212}$
_	c	1		T 0.57159+11
	c	II	29.4	S - 5.46
	200		23.96	•
$Ag_2N_2O_2$	c		- 29.1	
$Ag(NH_3)_2^+$	aq.		24.6	
Ag ₂ O·HNO ₂ ·2H ₂ O	liq.		19.9	
AgNO ₂ ·3NH ₃	c			D - 18.7
AgNO, NH,	c		59.9	
AgNO ₃ ·2NH ₃	c		84.8	$S - 9.05^{16}_{1000}$
	aq.		75.7	_
AgNO ₃ ·3NH ₃	c		105.5	$S - 10.44^{12}_{1000}$

Silver

	<del>,</del>	7			
Formula	State	Description	kc	Qf, cal. mole-	Q, kcal. mole ⁻¹
AgNO ₃ :3NH ₃	aq.			95.1	
Ag(NH ₃ ) ₈ OH	aq.			198.2	
$AgCl\cdot NH_3$	c			53.6	D - 11.2
AgCl·1½NH2	c			64.8	D - 10.6
AgCl ₃ ·NH ₃	c			96.9	D - 10.0 $D - 9.3$
AgClO ₄ ·2NH ₈	c			76.8	S = 10.71
	aq.			66.1	0 10.71
AgClO₄·3NH₃	c			96.9	S - 11.18
	aq.			85.7	2 11.10
AgBr·NH ₃	c			45.5	D - 10.6
AgBr·1½NH ₃	c			55.9	D - 9.95
AgBr-3NH,	c	1		85.3	D - 8.6
AgBrO ₃ ·3NH ₃	c			00.0	D - 8.45
AgI.INH.	C			26.2	D - 3.45 D - 11.6
AgI·NH.	c			36.0	D - 8.6
AgI·1½NH;	c		-	45.1	D - 6.9
AgI·2NH:	c		ļ	54.1	D - 6.8
AgI·3NH ₃	c		1	71.9	D = 0.3 D = 6.7
AgP ₂	c		_	2.6	D - 0.7
$Ag_2C_2$	c		_	83.6	
Ag ₂ CO ₃	c		1	119.9	
$Ag_2C_2O_4$	c	silver oxalate	1	159.6	
AgC ₂ H ₃ O ₂	c	silver acetate		96.8	S - 4.40
	aq.		1	92.4	~ <del>1.10</del>
$Ag_2C_2\cdot AgCl$	c		_	50.0	S 11.8 _{HCl(aq.)}
2Ag ₂ C ₂ ·AgCl	c		_	130.2	S 23.3 _{HCl(aq.)}
Ag ₂ C ₂ ·AgI	c		_	67.3	S 12.65 _{HCl(aq.)}
Ag ₂ C ₂ ·2AgI	c		_	51.1	S 13.85 HCl(aq.)
2Ag ₂ C ₂ ·Ag ₂ SO ₄	c		1	14.0	S 39.3 _{HCl(aq.)}
AgCN	c	silver cyanide	_	33.4	~ 00.0HCI(A1.)
Ag(CN)2-	aq.	,	_	61.75	
Ag(CN) ₃	aq.		_	98.0	
Ag ₂ C ₂ ·AgNO ₃	c		_	49.5	S 24.4 _{HCl(aq.)}
AgCN·NH ₃	С	silver cyanide ammine	ĺ	8.0	D - 14.0
$Ag_2CN_2$	c	silver cyanamide	1_	50.0	S 19.25 _{HCl(aq.)}
AgCNO	c	silver cyanate		23.6	~ IO.EO HCI(MQ.)
AgONC	c	silver fulminate	_	42.8	
AgCl·CH ₂ NH ₂	c		1	50.	D - 12.2
AgBr·CH ₂ NH ₂	c		1	43.5	D - 13.6
AgI·CH ₂ NH ₂	c			36.2	D - 14.0
AgSCN	c		_	21.8	S - 21.3
-	aq.		_	43.1	-2.0
AgI·PbI ₂	c				T - 2.6
Ag ₂ Hg ₄	c			0.7	
AgI·CuI			1		
	c	(?)	1	- 1	T - 2.9

Gold

Atomic n	ımber 79	Standard state	Au (c) A	tomic weight 197.2
Formula	State	Description	Qf, kcal, mole ⁻¹	Q, kcal. mole ⁻¹
Au	g liq.	5d¹º6s (²S _{1/2} )	- 92. 0.000	F - 3.121063
Au*	0 8 8 8 8	5d ⁹ 6s ² ( ² D _{5/2} ) ( ² D _{3/2} ) 5d ¹⁰ 6p ( ² P ¹ _{1/2} )	-118.08 -153.01 -198.35 -209.22	$E^{s} - 26.08$ $E^{s} - 61.02$ $E^{s} - 106.36$ $E^{s} - 117.22$
Au+ Au ₂ O ₃ AuH	8 9 C 8	$\begin{array}{ccc} & & & & & & \\ & & & & & & \\ & 5d^{10} & & & & & \\ & & & & & & \\ & & & & & & $	$ \begin{array}{c c} -205.22 \\ -305.42 \\ -11. \\ -44.3 \end{array} $	I* -211.97
Au(OH) ₃ AuCl AuCl ₂	c	ppt.	100.6 8.3 18.1	S 36.94HBr(aq.) S 4.5HCl(aq.) S 6.7HCl(aq.)
AuCl ₃ AuCl ₄ -  AuCl ₃ ·2H ₂ O	aq.		28.3 32.75 76.7 171.2	S 4.45 ₀₀₀
HAuCl ₄ ·3H ₂ O HAuCl ₄ ·4H ₂ O	aq.		76.7 285.4 356.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
AuBr AuBr ₂ AuBr ₃	c c c	(?)	3.4 5.6 14.5	S 6.7 H Br (aq.) S - 3.76200
AuBr ₄ - HAuBr ₄ HAuBr ₄ ·5H ₂ O	aq. aq. aq.		10.8 47.1 47.1 400.3	$S - 11.40_{1000}$
AuI AuCl·NH ₃ AuCl·2NH ₃	c c		- 0.2 43.8 68.9	S 29.2 KCN(aq.) S 23.3 KCN(aq.)
AuCl·6NH ₃ AuBr·NH ₃ AuBr·2NH ₈	c c c		141.5 36.1 60.1	$D - 7.2 S 25.9_{KCN/aq.} D - 12.2$
AuBr·3NH ₃ AuBr·4NH ₃ AuBr·6NH ₃	c c c		79.3 98.4 136.2 26.4	D - 8.3  D - 8.1  D - 7.95  S 20.1 KGN (ag.)
AuI·2NH ₃ AuI·3NH ₃ AuI·6NH ₃	c c		46.4 66.3 123.1	S 20.1 _{KCN(aq.)} D - 9.1 D - 8.9 D - 8.0
AuI-8NH ₃ Au(CN) ₂ - AuHg ₁₀₀	c aq. liq.		157.6 - 57.5 - 2.0	D - 6.3
AuAgCl ₂ AuAgCl ₄	c c		38.5 57.1	D - 18.2

Platinum

Atomic num	aber 78	Standard state I	Pt (c) At	omic weight 195.23
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole-1
Pt	g liq.	$5d^9$ ( $^2D_{5/2}$ )6s( 3D_3 )	-127.	77 0 1777
	c		0.000	$F - 5.3^{1755}$
Pt*	g	$5d^9$ ( $^2D_{5/2}$ ) $6s(^3D_2)$	-129.21	Tr. 0.01
	g	$5d^86s^2 (J=4)$	-129.35	$E^z - 2.21$ $E^z - 2.35$
	g	5d ¹⁰ ( ¹ S ₀ )	-144.48	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Pt+	g	( 20)	-334.2	L - 17.48
Pt(OH) ₂	c		87.5	$I^z - 205.8$
PtCl	c		17.	D 04
$PtCl_2$	c		34.	D - 34.
$PtCl_3$	c		1	D - 34.
PtCl4	c		50.	D - 32.
	aq.		62.6	D - 25.2
$PtCl_{4}.5H_{2}O$	c c		82.0	α
PtCl	aq.		425.7	$S - 1.84_{400}$
PtCl ₆	aq.		122.0	
H ₂ PtCl ₄	aq.		165.6	
H ₂ PtCl ₆	aq.		122.0	
HPtCl ₅ ·2H ₂ O	c c		165.6	_
H ₂ PtCl ₆ ·6H ₂ O	c		248.5	S 14.34 HCl(aq.)
PtBr ₄	c		571.5	$S = 4.34_{500}$
2 01011	aq.		40.6	$S 9.8_{1000}$
PtBr	!		50.4	
PtBr ₆	aq.		90.2	
H ₂ PtBr ₆	aq.		115.9	•
H ₂ PtBr ₆ ·9H ₂ O	aq.		115.9	
PtI4	C		733.8	S - 2.86
PtI ₆	c		18.	$S = 7.3_{2NaI(aq.)}$
PtS	aq.		52.4	
PtS ₂	C		16.	
$Pt(NH_3)_4(OH)_2$	С		21.	
$PtCl_2 \cdot 2NH_3$	aq.		209.1	
	С		119.6	D - 31.3
(NH₄)₂PtCl₄	С		193.3	S - 8.42
Pt(NH ₃ ) ₄ Cl ₂	aq.		184.9	
T 0(TATT2)40T5	c		183.	
Pt(NH ₃ ) ₄ Cl ₂ ·H ₂ O	aq.		178.9	
PtCl ₂ ·5NH ₃	c		256.0	S - 8.76
$PtI_2\cdot 2NH_3$	c		204.3	
PtI ₂ ·2NH ₃ PtI ₂ ·4NH ₃	c		$\boldsymbol{x}$	
	С		x+54.1	D - 16.1
PtI ₂ ·6NH ₃	С		x+94.6	D - 9.3
PtCl ₂ (NH ₃ ) ₄ SO ₄ AgPtCl ₆	aq.		311.4	
AgPtBr ₆	c		129.9	
WRT (DL®	c		97.3	1
			1	•

Iridium

Atomic number 77		. Standard state I	r (c) Ato	mic weight 193.1
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Ir Ir Ir* IrO ₂ H ₂ IrI ₆ IrF ₆ IrCl IrCl ₂	g c g liq. c	5d ⁹ ( ² D _{5/2} ) 5d ⁹ ( ² D _{3/2} )	-120. 0.000 -128.07 50. 121.5 130. 20.5 40.6	$E^{2} - 8.07$ $D - 67.4$
IrCl _s IrCl ₆ IrCl ₆	e aq. aq.		60.5 152.5 186.8	

	111111	

Atomic nu	mber 76	Standard state	Os (c)	Atomic weight 191.5
Os OsO ₄	g c g liq.		-125. 0. 80. 93.	000 1 F - 3.41**

### Rhenium

Atomic	number 75	Standard state	Re (c)	Atomic weight 186.31	
Re ReO ₃ Re ₂ O ₇ ReO ₄ — HReO ₄	c c c ∞ ∞ 25600 12800 6400			0.000 83. 297.5 224.2 224.2 223.6 223.3 223.0	
	4700			222.7	

Palladium

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Pd	g	4d10 (1S ₀ )	-110.	
	liq.	(130)	110.	F - 3.651549
	c		0.000	r 0.00
Pd*	g	$4d^{9} (^{2}D_{5/2})5s(^{3}D_{3})$	-128.69	$E^z - 18.69$
	g	$(^3\mathrm{D}_2)$	-132.08	$E^z - 22.08$
	g	$4d^9 (^2D_{3/2})5s(^3D_1)$	-138.73	$E^z - 28.73$
	g	$(^{1}D_{2})$	-143.37	$E^* - 33.37$
Pd+	g	4d9 (2D _{5/2} )	-302.3	$I^*$ -191.83
Pd+ *	g	$(^2D_{3/2})$	-312.3	$E^s - 10.00$
Pd++	g	4d8 (3F4)	-761.	$I^{*}$ -457.
PdO	С		21.4	
Pd₂H	c		8.86	
$Pd(OH)_2$	c		90.7	
$Pd(OH)_4$	c		155.0	
$PdCl_2$	c		44.2	
PdCl₄	aq.		127.5	
$PdCl_6$	aq.		156.5	
H₂PdCl₄	aq.		127.5	
H₂PdCl₀	aq.		156.5	
PdBr ₂	c		24.9	
$PdBr_{4}$	aq.		85.5	
PdI ₂	c		15.1	
$PdI_2 \cdot H_2O$	c		86.5	
PdCl₂·2NH₃	С		106.1	
PdCl₂·4NH,	c		159.1	
PdI₂·2NH₃	С		71.0	
PdI₂·4NH₃	c		118.7	
Pd(CN) ₂	c		- 51.7	

R	h	^	A	:	 •

Atomic number 45		Standard state	Rh (c) A	tomic weight 102.91
Rh	g	4d8 (3F)5s(4F _{9/2} )	-115.	
	c		0.000	
Rh*	g	4d8 (3F)5s(4F _{7/2} )	-119.36	$E^z - 4.36$
	g	$({}^3{ m F}_{5/2})$	-122.40	$E^z - 7.40$
	g	$({}^4{ m F}_{3/2})$	-124.89	$E^z - 9.89$
$ m Rh^+$	g	4d8 (8F)	-194.	$I^{2}-178.$
$\mathbf{R}\mathbf{h}\mathbf{O}$	c		25.	D - 58.
$ m Rh_2O$	c		21.	D - 41.
$Rh_2O_8$	c		78.	D - 56.
RhCl	c		16.	D - 32.
$RhCl_2$	c		40.	D - 36.
$RhCl_3$	c		60.	D - 40.
RhCl ₆	aq.		205.5	

#### THERMOCHEMISTRY

#### Ruthenium

Q, kcal. mole ⁻¹
e, wear. more -
$E^{z}$ — 3.39 $E^{z}$ — 5.95 $E^{z}$ — 7.72
$E^z - 8.84$ $I^z - 173$ .

## Masurium

Atomic number 43

 $Ni(OH)_2$ 

Standard state Ma (c)

Nickel

Atomic weight (98?)

Atomic n	umber 28	Standard state	Ni (c, III) A	tomic weight 58.69
Ni	g liq.	3d8s2 (3F4)	- 85.0	F - 4.31452
	c c	I (?)		$\begin{array}{cccc} T & 4.3^{130} \\ T & 0.0^{1180} 11 \\ T & 0.12^{380} 111 \end{array}$
Ni*	c g g	$ \begin{array}{c c} III \\ 3d^94s & (^3D_3) \\ & (^3D_2) \\ 3d^84s^2 & (^3F_3) \end{array} $	0.000 - 85.58 - 87.51 - 88.79	$E^* - 0.583$ $E^* - 2.505$ $E^* - 3.792$
	g	3d ⁹ 4s ( ³ D ₁ ) 3d ⁸ 4s ² ( ³ F ₂ ) 3d ⁹ 4s ( ¹ D ₂ )	- 89.88 - 91.31 - 94.71	$E^{*} - 4.878$ $E^{*} - 6.310$ $E^{*} - 9.707$
Ni+ Ni+ *	g g	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$     \begin{array}{r}       -126.93 \\       -261.7 \\       -266.0     \end{array} $	$E^z - 41.93$ $I^s - 175.30$ $E^z - 4.290$
	g g g	3d84s (4F _{9/2} ) (4F _{7/2} ) (4F _{5/2} )	$     \begin{array}{r}       -285.6 \\       -288.3 \\       -290.5     \end{array} $	$E^{s} - 23.89$ $E^{s} - 26.56$ $E^{s} - 28.80$
Ni++	g g aq.	3d8 (3F)	$     \begin{array}{r}       -292.1 \\       -681.6 \\       \hline       15.2     \end{array} $	$E^{z} - 30.56$ $I^{z} - 418$ .
NiO	c		58.4	

129.8

ppt.

Nickel

Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole-1
Ni(OH) ₃	c	ppt.	163.2	
NiF ₂	c	PP	157.5	
	aq.		171.4	
$NiCl_2$	c		75.0	S 19.17 ₄₀₀
	800		94.23	D 13.17400
	400		94.17	
•	200		94.06	
	100		93.86	
	50		93.55	
	20		92.48	
NiCl ₂ ·2H ₂ O	c		220.6	S 10.3400
NiCl ₂ ·4H ₂ O	c		363.5	D - 13.5
NiCl ₂ ·6H ₂ O	c		505.6	$S - 1.16_{400}$
NiBr ₂	c		53.4	S 18.9
	aq.		72.4	~ 10.0
NiBr ₂ ·3H ₂ O	c	t.	277.3	S 0.2
$NiI_2$	c		22.4	S 19.4
	aq.		41.8	~ 10.1
NiS	.c		20.4	
NiSO ₄	c		216.	
	200		231.1	
NiSO ₄ ·7H ₂ O	c		713.9	$S - 4.25_{400}$
$NiS_2O_6$	aq.		295.5	
$NiS_2O_6\cdot 6H_2O$	c		708.1	S - 2.42
NiSe	c		14.	S 101.2bromine water
NiTe	c		11.	Diomino wawi
NiN ₆ ·H ₂ O	c		- 31.7	•
$Ni(NO_3)_2$	c		101.5	$S = 11.8_{280}$
	200		113.3	
	6		110.2	
$Ni(NO_8)_2 \cdot 6H_2O$	c		531.0	$S - 7.47_{400}$
$Ni(NO_2)_2 \cdot 5NH_3$	c			D - 13.8
$Ni(NO_3)_2 \cdot 6NH_3$	c			D - 17.0
$NiF_2 \cdot H_2O \cdot \frac{1}{2}NH_3$	c			
NiF ₂ ·H ₂ O·NH ₃	c			D - 12.8
NiF ₂ ·H ₂ O·5NH ₃	c			D - 11.5
NiCl₂·NH₃	c		107.8	S 17.8 _{HCl(aq.)}
NiCl ₂ ·2NH ₃	c		137.7	S 19.5 _{HCl(aq.)}
NiCl ₂ ·6NH ₃	c		239.1	S 44.3 _{HCl(aq.)}
Ni(ClO ₃ ) ₂ ·6NH ₃	c			D - 17.5
Ni(ClO ₄ ) ₂ ·6NH ₃	c			D - 19.1
NiBr ₂ ·NH ₃	c		85.2 -	D - 20.8
NiBr ₂ ·2NH ₈	c		116.6	D - 20.4
NiBr ₂ ·6NH;	c .		221.7	D - 15.4
NiI ₂ ·2NH ₃	c		83.7	D - 19.7

Nickel

Formula	State	Description	$Qf,$ $kcal. \ mole^{-1}$	Q, kcal. mole ⁻¹
NiI2·6NH2	c		191.2	D - 15.9
$Ni(IO_3)_2 \cdot 5NH_3$	c			D - 12.7
NiSO4-1NH3	c		234.	D - 25.
NiSO4·2NH ₃	c		278.6	D - 18.8
NiSO4·4NH3	c		333.4	D - 16.4
NiS ₂ O ₆ ·5NH ₃	c			D - 15.0
NiSO4·6NH3	c		384.7	D - 14.7
NiSO ₂ O ₆ ·6NH ₃	c			D - 16.8
NiSO4·(NH4)2SO4·6H2O	c	-dihydrate		D - 15.4
NiS ₄ O ₆ ·6NH ₈	c	_		D - 14.7
$Ni(H_2PO_2)_2 \cdot 6NH_3$	c			D - 13.3
NiC ₃	c		- 9.2	
Ni(CO)4	liq.			$V - 6.92^{40}$
$Ni(C_2H_3O_2)_2$	aq.	nickel acetate	251.1	
NiBr₂·3CH₃OH	c		237.3	D - 12.7
Ni(CN) ₂	c	ppt.	-232.	
Ni(CN),	aq.		- 80.4	
Ni(CHO ₂ ) ₂ ·4NH ₃	c	nickel formate ammine		D 151
$\mathrm{Ni}(\mathrm{C_2H_3O_2})_2.4\mathrm{NH_3}$	c	nickel acetate		D - 15.1
Ni(CNS)2·6NH3	c	ammine		D - 12.7 D - 10.8
$2NiI_2 \cdot PbI_2$	С		85.2	S 40.2
$2NiI_2 \cdot PbI_2 \cdot 3H_2O$	c		341.7	S - 11.1
NiBr ₂ ·HgBr ₂	aq.		112.4	
NiBr ₂ ·2HgBr ₂	aq.		150.0	

Cobalt

Atomic number	27 St	andard state Co (	(c, III) A	tomic weight 58.94
Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
Co	g	3d ⁷ 4s ² (4F _{9/2} )	- 85.	V - 74.2375
	liq.			$F - 3.95^{1480}$
	c	I		T 0.121150 - II
	c	II		T 0.06460_III
	c	III	0.000	
Co*	g	$3d^{7}4s^{2}$ (4F _{7/2} )	- 87.32	$E^z - 2.32$
	g	$({}^4\mathrm{F}_{5/2})$	- 89.00	$E^z - 4.00$
	g	$({}^4\mathbf{F_{3/2}})$	- 90.15	$E^z - 5.15$
	g	3d84s (4F _{9/2} )	- 94.91	$E^z - 9.91$
	g	(4F _{7/2} )	- 97.36	$E^z - 12.36$
	g	$({}^{4}\mathbf{F}_{5/2})$	- 98.35	$E^z - 13.35$
	g	$({}^4\mathbf{F}_{3/2})$	- 99.45	$E^* - 14.45$
Co+	g	3d8 (3F4)	-266.0	$I^*$ -179.6
	g	$({}^3\mathbf{F}_3)$	-268.7	$E^z - 2.71$
	g	$({}^3\mathbf{F_2})$	-270.5	$E^z - 4.55$
Co++	g	3d ⁷ (4F)	-866.0	<i>I</i> [∗] −399.
	aq.	(2)	16.5	1 000.
CoO	c		57.5	
Co _s O ₄	c		196.5	
$Co(OH)_2$	c		131.5	
Co(OH) ₃	c		177.0	
CoF ₂	liq.		211.0	Qf 161. ⁷⁰⁰
<del>-</del>	aq.		172.8	<i>Q)</i> 101.
CoCl ₂	c		76.9	S 18.44 ₄₀₀
_	400		95.40	O 10.11400
CoCl ₂ ·2H ₂ O	c		222.3	S 9.85 ²³ 400
CoCl ₂ ·6H ₂ O	c		508.5	$S - 2.85_{400}$
CoBr ₂	c		55.0	S 18.4
	aq.		73.43	20.1
CoBr ₂ ·6H ₂ O	c		484.9	S - 1.28
CoI ₂	c		24.2	S 18.8
-	aq.		42.97	~ 10.0
CoS .	c	ppt.	22.3	
Co ₂ S ₃	c	* *	40.0	
CoSO ₄	c		216.7	
-	400		231.7	
	200		231.6	
CoSO ₄ ·6H ₂ O	c		643.3	
CoSO ₄ ·7H ₂ O	c		713.9	$S - 3.57_{800}$
CoSe	c		12.	S 74.0 _{bromine water}
CoTe	c		11.	S 115.9 _{bromine water}
Co(NO ₃ ) ₂	c		102.8	S 11.88 ₂₀₀
,-:	aq.		114.7	~ 11.00300
	A-			
		1		

### Cobalt

		OUDAIL		
Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
$\mathrm{Co(NO_3)_2\cdot6H_2O}$	С		529.8	S - 4.96 ₄₀₀
	liq.			F - 8.758
$[{ m Co(NH_3)_5H_2O}]^{+++}$	aq.		178.5	
$[\mathrm{Co(NH_3)_5NO_3}]^{++}$	aq.		158.7	
$[\mathrm{Co}(\mathrm{NH_3})_5\mathrm{NO_3}](\mathrm{NO_3})_2$	aq.		256.9	
	c		271.8	$S - 14.90^{25}$
[Co(NH3)5H2O](NO3)3	c		341.1	$S - 15.38^{25}$
	aq.		325.7	
$\text{CoF}_2 \cdot \text{H}_2 \text{O} \cdot \frac{1}{2} \text{NH}_3$	c			
$\text{CoF}_2 \cdot \text{H}_2 \text{O} \cdot \text{NH}_3$	c			D - 12.5
$CoF_2 \cdot H_2O \cdot 5NH_8$	c			D - 10.5
$CoCl_2 \cdot NH_3$	c		109.2	S 17.5HCI(aq.)
CoCl ₂ ·2NH ₈	c	rose	138.8	S 19.6
$[\mathrm{Co(NH_3)_5Cl}]^{++}$	aq.		146.5	20.0
[Co(NH ₃ ) ₅ Cl]Cl ₂	c		237.9	$S - 12.42^{25}$
	aq.		225.4	2 .2.12
CoCl ₂ ·6NH ₃	c		239.0	S 46.3
$Co(NH_3)_6Cl_3$	c	product unknown	200.0	D - 18.9
$[Co(NH_3)_5H_2O]Cl_3$	c	product distribution	302.4	S - 6.46
[ ( - ( - 1 - 1 - 1 ) / 0 - 1 - 2 - 3 ] 3	aq		295.9	5 - 0.40
$CoBr_2 \cdot NH_3$	c		87.6	D - 21.185
CoBr ₂ ·2NH ₃	c		120.2	D = 21.33 $D = 21.7165$
CoBr ₂ ·2NH ₄ Br	aq.		193.9	D = 21.7.00
[Co(NH ₃ ) ₅ Br]++	aq.		137.2	
$[Co(NH_3)_5Br]Br_2$	c c			00.00
[00(1/113/201]D13			207.1	S - 12.66
CoBr ₂ ·6NH ₃	aq.		194.4	Y) 1 4 0194
[Co(NH ₃ ) ₅ H ₂ O]Br ₃	c		230.	$D - 14.0^{136}$
(OO(11118)5112O JD18			273.7	$S - 9.25^{25}$
CoI ₂ ·2NH ₃	aq.		264.5	70 40 000
CoI ₂ -2NH ₃	C	,	85.9	D - 19.9147
CoSO ₄ ·½NH ₃	C		188.6	D - 14.7
CoSO ₄ ·2NH ₃	C		234.1	D-24.
CoSO ₄ ·(NH ₄ ) ₂ SO ₄ ·6H ₂ O	C	321 3	279.7	D - 19.4
	C	-dihydrate		D - 14.8
CoSO ₄ ·3NH ₃	С		307.5	D - 16.8
CoSO ₄ ·4NH ₃ CoSO ₄ ·6NH ₃	С		333.2	D - 14.78
· •	c		383.1	D - 13.98
Co ₂ C	c		11.3	
CoCO ₃	c	ppt.	172.8	
$C_0(C_2H_5SO_4)_2$	aq.		432.3	
2CoI ₂ ·PbI ₂	c		84.3	S 41.5
2CoI ₂ ·PbI ₂ ·3H ₂ O	C		341.6	S - 10.6
CoBr ₂ ·HgBr ₂	4400		113.5	
CoBr ₂ ·2HgBr ₂	8400		151.	
2CoBr ₂ ·HgBr ₂	4800		189.1	

Iron
Atomic number 26 Standard State Fe (c, IV, α) Atomic weight, 55.84

Formula State Description $Qf$ , $kcal. mole^{-1}$ $Q, kcal. mole$ Fe   g $3d^4ds^2$ ( 4D_4 ) $-94$ . $V - 76.1600$ F $-3.861535$ T $0.111405$ , C $II, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, \gamma$ C $III, $	84
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	₃ —1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	III 795
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	"→IV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Fe ⁺⁺⁺ aq. aq. c I 64.3	
Fe ⁺⁺⁺ aq. 9.3 FeO c I 64.3	
FeO c I 64.3	
04.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
171. (	
100.0	
Fe ₃ O ₄ $\begin{bmatrix} c & I \\ T & 0.10^{740} \\ T & T \end{bmatrix}$	
c II	I
c III 266.9	
Fe(OH) ₂ $\begin{vmatrix} c & IV \\ c & ppt. \end{vmatrix}$ 135.9 $\begin{vmatrix} T - 0.18^{-160} - II \end{vmatrix}$	II
TO CORES	
FeF ₂   1200   177.0	

Iron

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole⁻¹
FeF ₂	liq.			Qf 158.800
FeF:	liq.			Qf 233.700
	1200		243.3	
	150		242.5	
FeCl ₂	g		40.	$V - 32.1^{800}$
	c		81.9	S 17.90400
	400	(solution acid)	99.76	
FeCl₂·2H₂O	c		227.8	S 8.720300
FeCl ₂ ·4H ₂ O	c		370.5	S 2.75400
FeCl ₂	c		96.4	S 31.7
	1000		128.1	
	200		127.1	
	100		126.1	
	50		123.1	
	20		102.8	
Fe ₂ Cl ₆	g		159.7	
	liq.			F - 21.8
FeCl ₃ ·2½H ₂ O	c		278.0	S 21.01200
FeCl ₃ ·6H ₂ O	c		532.7	S 5.64 ²¹ 1200
FeOCl	С		97.1	
$Fe(ClO_3)_2$	aq.		67.4	
FeBr ₂	c		60.0	e e
	aq.		78.0	
FeBr ₃	aq.		95.2	
FeI ₂	c		24.2	S 23.3
	aq.		47.5	
FeI ₃	aq.		49.5	
FeS	liq.			F 2.81195
	c		23.1	
$\mathrm{FeS}_2$	С	pyrite	35.5	
	c	marcasite	35.5	
FeSO ₄	c		221.3	S 14.9014110
	400		235.98	
	200		235.94	
${ m FeSO_4 \cdot H_2O}$	С		297.0	S 7.5414110
$FeSO_4-4H_2O$	c		508.1	S 1.6014110
$FeSO_4.7H_2O$	c		719.0	$S - 4.51_{400}$
$Fe_2(SO_4)_8$	1200		653.2	
	400		653.0	
	300		652.8	
	150		652.2	
	50		648.2	
$Fe(HSO_4)_3$	600		695.1	
FeSe	c		13.2	
FeTe	c	Í	8.	S 268.2 _{bromine w}

Iron

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
Fe ₄ N	С		- 1.1	
FeNO	aq.		1	
Fe(NO ₈ ) ₂	aq.		9.6	
Fe(NO ₃ ) ₃	800		118.8	
. 0 (2. 0 5) 8	200		156.3	
Fe(NO ₃ ) ₃ ·9H ₂ O	c		157.4 780.7	9
$FeF_2 \cdot H_2O \cdot \frac{1}{2}NH_3$	c		100.1	S - 9.1
FeF ₂ ·H ₂ O·NH ₃	c			70.4
FeF ₂ ·H ₂ O·5NH ₃	c			D - 12.4
FeNOCl ₂	aq.		000	D - 9.8
FeCl ₂ ·NH ₃	c c		88.9	n
FeCl ₂ ·2NH ₃	c		113.6	D - 20.76
FeCl ₂ ·6NH ₃	ĺ		144.1	D - 19.48
FeCl ₂ ·10NH ₃	C		246.6	D - 14.66
FeBr ₂ ·NH ₃	C		319.5	D - 7.25
$\operatorname{FeBr}_{2}\cdot \operatorname{2NH}_{3}$	c		91.8	D - 20.78
	c		122.6	D - 19.87
FeBr ₂ ·6NH ₃ FeBr ₃ ·6NH ₃	С		219.8	D - 13.34
. · · · · · · · · · · · · · · · · · · ·	C			D - 11.2
FeI₂·2NH₃	С		87.1	D - 20.46
FeI ₂ ·6NH ₃	С		188.9	D - 14.50
TeNOSO4	aq.		224.8	
NH ₄ Fe(SO ₄ ) ₂	aq.		466.2	
NH ₄ Fe(SO ₄ ) ₂ ·12H ₂ O	С		1303.3	S - 16.6
eSO.·NH,	C		252.8	$D - 20.5^{300}$
'eSO.·2NH.	c		281.6	D - 17.9
$NH_4$ ) ₂ Fe(SO ₄ ) ₂ ·6H ₂ O	c		935.0	S - 9.8
'eSO₄·3NH₃	c		306.7	$D - 14.1^{121}$
'eSO ₄ ·4NH,	c		331.3	$D - 13.6^{110}$
eSO₄·6NH₃	c		378.6	D - 12.783
'e₃C	c		- 5.2	
'eCO ₃	c		172.8	
'e(CO) ₅	g		180.0	
	liq.		189.8	
	С			$F - 3.25^{-20}$
$e_2(C_2O_4)_3$	300	ferric oxalate	610.1	
	100		610.4	
$e(HC_2O_4)_3$	aq.	ferric bioxalate	597.3	
$e(C_2H_3O_2)_3$	1800	ferric acetate	357.1	
	600		358.3	
	300		358.6	
e(CN) ₆	aq.		-146.7	
e(CN),	aq.		-121.6	
$e_{\iota}(Fe(CN)_{\mathfrak{s}})_{\mathfrak{s}}$	c		-319.	
eCO(CN)5	aq.		- 42.9	

Iron

Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
HFe(CN)6	aq.		-121.7	
$H_2Fe(CN)_6$	aq.		-147.4	
$H_2Fe(CN)_6$	aq.		-121.9	
H ₃ Fe(CN) ₆ -	aq.		-122.2	
$H_{8}Fe(CN)_{6}$	aq.		-148.2	
$H_{\bullet}Fe(CN)_{\bullet}$	c		-122.9	S 0.410200
	aq.		-122.3	
$(NH_4)_4Fe(CN)_6$	aq.		4.2	
$(NH_4)_4Fe(CN)_6\cdot 3H_2O$	c		216.1	S - 6.814
$H_3FeCO(CN)_5$	aq.		- 43.3	
$\mathrm{H_{5}FeCO(CN)_{5}\cdot H_{2}O}$	c		19.9	C 808.3
Fe₃Si	c		- 20.	
FeSiO ₃	c		273.5	
$2 \mathrm{FeI_2 \cdot PbI_2}$	c		90.0	S 46.9
$2\mathrm{FeI_2} \cdot \mathrm{PbI_2} \cdot 3\mathrm{H_2O}$	c		352.2	S - 10.2
$\mathbf{Zn_2Fe}(\mathbf{CN})_{6}$	c		- 40.0	

## Manganese

Atomic number 25	Sta	ndard state Mn (c	, III) Ato	omic weight 54.93
Mn	g	$3d^{5}4s^{2}$ ( $^{6}S_{b/2}$ )	- 74.	
	liq.			F - 3.61260
	c	I		T 0.251044_11
	С	II		T 0.16-111
	С	III	0.000	
Mn*	g	$3d^{6}(^{5}D)4s(^{6}D_{9/2})$	-121.98	$E^{z} - 47.98$
	g	$(^{6}D_{7/2})$	-122.60	$E^{z} - 48.60$
	g	$(^{6}D_{5/2})$	-123.01	$E^z - 49.01$
	g	$(^{6}D_{3/2})$	-123.45	$E^* - 49.45$
	g	$(^{6}D_{1/2})$	-123.64	$E^{2}-49.64$
	g	$3d^{5}4s(^{7}S)4p(^{8}P_{9/2})$	-143.97	$E^{z} - 69.97$
	g	(8P1 _{7/2} )	-144.00	$E^{z} - 69.00$
	g	(8P1 _{5/2} )	-144.04	$E^* - 69.04$
Mn+	g	$3d(^{6}S)4s$ ( $^{7}S_{3}$ )	-246.08	<i>I</i> ∗ −170.63
Mn ⁺⁺	g	$3d^{5}$ ( ${}^{6}S_{5/2}$ )	-607.5	<i>I</i> ∗ −361.0
	aq.		49.2	
Mn ⁺⁺⁺	aq.		25.	
MnO	c	I	96.5	
	c	II		$T - 0.15^{-66}$
$MnO_2$	c	I	123.	2
	c	ppt.	115.5	
	c	II		$T - 0.08^{-180}$

Manganese

MnO₁- Mn₂O₂ Mn₂O₂ Mn₂O₂ Mn₂O₂ MnyOO₁ Mn(OH)₂ Mn(OH)₂ MnF₂ Mn(OH)₂ MnF₂ MnF₂ MnF₂ MnF₂ MnF₂ MnF₂ MnF₂ MnF	Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
Mn ₂ O ₃ Mn ₃ O ₄ Mn ₄ O ₆ Mn ₅ O ₆ Mn ₅ O ₇ Mn ₆ O ₇ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₇ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈ O ₈ Mn ₈	MnO ₄ -	9.0		100.0	
Mn ₃ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀ O ₄   C   HMn ₀	-	1 -			
HMnO ₄ Mn(OH) ₂ Mn(OH) ₃ C Mn(OH) ₃ C MnF ₂ MnF ₂ MnF ₃ MnF ₄ MnF ₃ MnF ₄ MnCl ₂ C MnF ₂ MnF ₁ MnCl ₂ C C 100 122.3 400 MnCl ₂ ·2H ₂ O C MnCl ₂ ·2H ₂ O C MnCl ₂ ·4H ₄ O C MnBr ₂ MnBr ₃ Aq. MnBr ₂ MnBr ₄ Aq. MnBr ₂ MnBr ₃ Aq. MnBr ₄ MnBr ₄ C C MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnBr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. MnSr ₄ Aq. Aq. MnSr ₄ Aq. Aq. Aq. Aq. Aq. Aq. Aq. Aq. Aq. Aq.		1			
Mn(OH)₂ Mn(OH)₂ MnF₂ MnF₂ MnF₂ MnF₂ MnF₃ MnF₃ MnF₃ MnF₃ MnF₃ MnF₃ MnF₃ MnF₃					
Mn(OH) ₃		1 -	nnt	1	
MnF ₂ MnF ₃ MnF ₄ MnF ₃ MnCl ₂ MnF ₃ MnCl ₂ C  100  MnF ₃ MnCl ₂ C  100  MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₃ MnCl ₄ MnCl ₅ MnCl ₅ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₂ MnCl ₃ MnCl ₄ MnBr ₂ C  MnBr ₂ MnBr ₂ C  MnBr ₂ MnBr ₂ MnBr ₃ MnL ₄ C  MnBr ₂ MnL ₄ C  MnBr ₂ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ MnL ₄ MnL ₄ C  MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL ₄ MnL	, , , , ,		1	1	]
MnF ₃ MnF ₃ MnF ₄ MnCl ₂ aq. MnF ₁ ·3HF Aq. MnCl ₂ c 100  128.7  128.3  400  MnCl ₂ ·2H ₄ O  c MnCl ₂ ·2H ₄ O  c MnCl ₂ ·4H ₄ O  c MnBr ₂ ·4H ₄ O  c MnBr ₂ ·4H ₄ O  c MnBr ₃ MnI ₄ c MnI ₂ ·2H ₄ O  c MnI ₂ ·2H ₄ O  c MnI ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnSr ₂ ·4H ₄ O  c MnI ₂ ·4H ₄ O  c MnI ₂ ·4H ₄ O  c MnI ₂ ·4H ₄ O  c MnI ₂ ·4H ₄ O  c MnI ₂ ·4H ₄ O  c MnSo ₄ c MnSO ₄ c MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO ₄ d MnSO	, , ,	1	ppu.		
MnF₁·3HF MnCl₂  MnCl₂·2H₄O  MnCl₂·2H₄O  MnCl₂·4H₄O  MnBr₂·4H₄O  MnBr₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnI₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnI₂·4H₄O  MnBr₃  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnI₂·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O  MnSO₄·4H₄O	-	1		1	
MnCl ₂		1 -		1	
MnCl ₂ ·2H ₂ O		1			9 10 00
MnCl ₂ ·2H ₂ O				1	D 10.00 ₃₅₀
MnCl₂·2H₂O         c         257.2         S         8.20₀₀₀           MnCl₂·4H₂O         c         400.7         S         1.54₀₀₀           H₂MnCl₀         aq.         215.         S         1.54₀₀₀           MnBr₂         aq.         106.         106.         D         - 11.2           MnBr₂·4H₂O         c         363.4         D         - 10.0         109.0           MnI₂·4A₂O         c         aq.         76.0         109.0         D         - 12.0           MnI₂·4H₂O         c         190.0         D         - 12.0         D         - 12.0           MnI₂·4H₂O         c         190.0         D         - 12.0         D         - 12.0           MnS·6·6H₂O         c         47.0         A7.0         D         - 12.0           MnSO·6·H₂O         c         265.0         D         - 10.0           MnSO·6·H₂O         c         321.5         S         7.80₄₀₀           MnSO·6·H₂O         c         602.9         S         0.04₄₀₀           MnS₂O·6·GH₂O         c         745.3         329.4           MnS₂O·6·GH₂O         c         635.         S         32.1           Mn		1		1	
MnCl₂ 4H₂O         c         400.7         215.         S         1.54₄₀₀           MnBr₂         c         aq.         106.         D         - 11.2           MnBr₂ +H₂O         c         160.0         D         - 11.2           MnBr₂ +H₂O         c         363.4         D         - 10.0           MnI₂         c         49.8         S         26.2           MnI₂         c         49.8         S         26.2           MnI₂         c         190.0         D         - 12.0           MnI₂         c         190.0         D         - 12.0           MnI₂         c         190.0         D         - 12.0           MnI₂         c         329.6         D         - 12.0           MnI₂         d         47.0         D         D         - 10.0           MnS         c         ppt.         47.0         D         - 12.0         D         - 10.0           MnS         c         ppt.         47.0         D         - 10.0	MnCl ₂ ·2H ₂ O			1	g 0.00
H ₂ MnCl ₆ MnBr ₂ MnBr ₂ MnBr ₂ ·H ₂ O C MnBr ₂ ·H ₂ O C MnBr ₃ ·H ₂ O C MnBr ₃ MnI ₄ MnI ₂ C C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnI ₄ ·H ₂ O C MnSO ₄ C C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO ₄ ·H ₂ O C MnSO				1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			S 1.54 ₄₀₀
MnBr ₂ ·H ₂ O MnBr ₂ ·4H ₂ O MnBr ₃ MnI ₂ MnI ₂ MnI ₂ ·H ₂ O MnI ₂ ·H ₂ O MnI ₂ ·H ₂ O MnS MnSO ₄ ·H ₂ O C MnSO ₄ ·GH ₂ O C MnSe MnSO ₄ ·GH ₂ O C MnSe MnSO ₄ ·GH ₂ O C MnSe MnSO ₄ ·GH ₂ O C MnSe MnSO ₄ MnSe MnSe MnSe MnSe MnSe MnSo ₄ MnSe MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSe MnSo ₄ MnSo ₄ MnSo ₄ MnSe MnSo ₄ MnSo ₄ MnSe MnSo ₄ MnSo ₄ MnSo ₄ MnSe MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSe MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ MnSo ₄ M		1 "			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnBr ₂ ·H ₂ O	1 -			7 110
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		]		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1			D = 10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		, -		1	00.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1	S 26.2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnI.H.O			1	D 10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 ' 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	nnt	1 1	D - 10.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	քիս.	_	g 10.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1		1	D 13.8U ₄₀₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	MnSO ₄ ·H ₂ O	-		1	9 700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1		-	D.U4400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 " [			Q 1.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 1			D 32.1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MnSe	- 1			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1		1	
$Mn(NO_3)_2$ c $134.9$ S $12.93^{14}_{-280}$		1 1			S 272.4
100		1 1		1	ン 4/ 引. 年月,804 (50)
147.8		1 - 1		1	D 14.95 286
		200		141.0	

## Manganese

6 3 c c liq. c		145.7 145.1 356.8 564.2	F S	— 5.6 ³⁵
c c liq. c		356.8 564.2		— 5.6 ³⁵
c liq. c c		564.2		- 5.6 ³⁵
liq. c c			s	
c c		ree o		- 6.15 ₄₀₀
c c		555.9	F	- 8.2626
c				
			D	- 12.2
			D	- 9.6
c		145.3	D .	- 21.7
		175.1	D	- 18.8
		413.5	S .	- 5.70
				- 12.6
				- 21.95
				- 20.4
			~	-0.2
			ח.	- 14.3
		1		- 21.7
				- 16.15
				- 19.7
				- 17.3
		i		
		1	υ.	- 17.2
-			c	0.7
-				- 9.7
	,		D.	- 11.7
	ppt.			
		1		
			_	
	manganese oxalate			2.73 HNO. (9)
				- 3.50 HNO.(9
				- 5.06 HNO3 (9
c	manganeseformate		$\mathcal{S}$	$4.3^{24}$ 500
aq.		248.4		
c		388.0	s	$2.9^{24}_{500}$
С	manganese acetate	272.0	s	$12.2^{17}_{500}$
aq.		284.2		
c		556.1	$\mathcal{S}$	1.616 ₆₀₀
gls.		292.8	S	61.6 _{HF(4.44)}
С		301.3	$\mathcal{S}$	53.1 HF (4.44)
aq.		183.9		
aq.		146.2		
aq.		255.1		
c	,	150.0	$\mathcal{S}$	43.915
c		407.5	s -	- 8.515
	c c c c c c c c c c c c c c c c c c c	c c c c c c c c c c c c c c c c c c c	c   175.1   413.5   268.9   123.7   155.1   4400   226.34   256.1   226.34   256.1   201.8   262.5   276.6   201.8   262.5   276.6   201.8   262.5   276.6   201.8   262.5   276.6   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   201.8   2	C

Chromium

Atomic number 24 Standard state Cr (c) Atomic weight 52.01 Qf, Formula State Description Q, kcal. mole-1 kcal, mole-1 Cr $3d^{5}(^{6}S)4s (^{7}S_{3})$ g 88. liq.  $3.65^{1600}$ c 0.000 Cr* 3d5(6S)4s (5S2) g -109.62 $E^z$  — 21.62 3d44s2 g  $(^5D_0)$ -110.06 $E^z$  — 22.06  $(^5D_1)$ g -110.24E: -22.24g  $(^5D_2)$ -110.57 $E^z$  — 22.57g (5D3) -111.05 $E^z$  — 23.05 g  $(^5D_4)$ -111.64 $E^z$  — 23.64  $3d^5$ g  $(^{6}D_{7/2})$ -244.7 $I^z - 155.27$ g 3d4s  $(^{6}D_{1/2})$ -278.8 $E^s$  — 34.06 g  $(^{6}D_{3/2})$ -279.0 $E^z$  — 34.26 g  $(^{6}D_{5/2})$ -279.3 $E^z$  — 34.59 g  $(^{6}D_{7/2})$ -279.7 $E^z$  — 35.03 g  $(^{6}D_{9/2})$ -280.3 $E^*$  — 35.58 3d4 g (PD) - 629. I: ---382. g  $({}^{3}F_{2})$ — 683.  $E^z$  — 54.1 g  $(^3\mathbf{F_3})$ - 683.1  $E^s$  — 54.2 g (3F₄) - 683.4  $E^s$  — 54.5 aq. 42.8  $3d^3$ -1255.g (4F)  $I^{*}$  - 635. aq. 64.6  $3d^3$ (2G) g -1298. $E^{*} - 42.7$ 

Cr+ Cr+ * Cr++ Cr++ *  $[Cr]^{++}$ Cr+++ [Cr]+++ Cr+++ * Cr++++  $3d^2$ g (3F) -2461. $I^* - 1162.$ Cr+++++ g 3d  $(^2D)$ -4132. $I^* - 1670.$ CrOg 59.  $D^* - 87.2$  $CrO_3$ c 139.3 80 141.8 50 141.75 25 141.65 10 141.10 4 140.66 3.3 140.32CrO,-aq. 207.9 Cr₂O₃ c 273. Cr2O7-aq. 350.4 Cr₃O₁₀--aq. 494. Cr7H2 c 3.7 CrO-OH 180. c [CrOH]++ aq. 102.7 H₂CrO₄ aq. 210.2 $[Cr](OH)_{a}$ c ppt. 249.3 [CrOH](OH)2 c ppt. 245.1 [Cr(OH)2]OH c ppt. 241.0

### Chromium

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, k	cal. mole-1
Cr ₂ O ₃ ·2H ₂ O	c		439.		
CrF ₂	c		152.		
CrF,	c		231.		
[Cr]F ₃	aq.		296.6		
$H_3[Cr]F_6$	aq.		531.2		
CrCl ₂	c c		103.1	S	18.6
0.0.7	aq.	İ	121.7	100	10.0
CrCl ₂ ·3H ₂ O	c c	light green	321.5	S	F 9
CrCl ₂ ·4H ₂ O	c	dark green	392.2	S	5.3
[CrCl ₂ ]+		dark green	134.1	۵	2.0
[CrCl ₂ ]Cl	aq.			~	
	С	rose	143.0	S	30.6
[0-]0]	aq.	green	173.6		
[Cr]Cl ₃	aq.	purple	183.0		
[Cr(H2O)4Cl2]Cl	С	green	438.7	$\mathcal{S}$	8.4
$[\operatorname{Cr}(\operatorname{H}_2\operatorname{O})_4\operatorname{Cl}_2]\operatorname{Cl} \cdot 2\operatorname{H}_2\operatorname{O}$	c	green	583.9	s -	$0.04_{150}$
$[Cr(H_2O)_6]Cl_8$	С	purple	581.2	$\mathcal{S}$	12.0
$[Cr(H_2O)_4Cl_2]Cl\cdot 6H_2O$	c	green	857.2	$\mathcal{S}$	0.0
$CrO_2Cl_2$	g		126.1	V -	8.5
	liq.		134.6	S	16.6
[CrOH]Cl ₂	aq.		181.6		
$[Cr(OH)_2]Cl$	aq.		194.4		
[CrBr ₂ ]Br	aq.		138.4		
$[Cr]Br_3$	aq.		149.9		
$[\operatorname{CrBr_2(H_2O)_4}]\operatorname{Br\cdot 2H_2O}$	c	green	548.0	$\mathcal{S}$	0.68
$[\mathrm{Cr}(\mathrm{H_2O})_6]\mathrm{Br_3}$	c	purple	545.8	S	14.35
$CrI_2$	С		63.7	S	5.72
	aq.		69.4		•
[CrSO ₄ ]+	aq.		266.4		
$Cr_2(SO_4)_3$	aq.	"modified," hydro-			
	_	lyzed to form			
		$[\operatorname{Cr}_2(\operatorname{SO}_4)_2](\operatorname{OH})_2$	753.4		
$[\operatorname{Cr}_2(\operatorname{SO}_4)_3]$	aq.		757.4		
$[\operatorname{Cr}_2(\operatorname{SO}_4)_2]\operatorname{SO}_4$	aq.	green	760.9		
[Cr2SO4](SO4)2	aq.	green	767.8		
$[\mathrm{Cr}]_2(\mathrm{SO_4})_3$	aq.	purple	772.3		
Cr ₂ (SO ₄ ) ₃ ·6H ₂ O	c	green	1282.2	S	13.4
$[Cr(H_2O)_6]_2(SO_4)_8 \cdot 2H_2O$	c	purple	1707.9	S	10.18
$[Cr(H_2O)_6]_2(SO_4)_3 \cdot 3H_2O$	c	purple	1777.7	S	8.3
$[Cr(H_2O)_6]_2(SO_4)_3.5H_2O$	c	purple	1917.0	S	
CrN	c	L - Lvo	29.5	b	6.3
(NH ₄ ) ₂ CrO ₄	c			o	<b>~</b> 0
	aq.		276.9	S -	$5.8_{500}$
(NH ₄ ) ₂ Cr ₂ O ₇	c c		271.1	a	10.000
()10x201	600		423.6	S -	$12.90^{16}$ 540
CrCl ₂ ·3NH ₃	c		410.7	~	40.4
O. O.2 OITHE	Ċ		175.2	D -	13.1

#### Chromium

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
CrCl ₂ ·6NH ₃	С		241.4	D - 11.1
$\mathrm{Cr_3C_2}$	c		140.	
PbCrO ₄	c		221.4	
$2\mathrm{CrI_2 \cdot PbI_2}$	c		160.2	S 20.4
$2CrI_2 \cdot PbI_2 \cdot 3H_2O$	С		388.0	S - 2.3

# Molybdenum

Atomic numb	er 42	Standard state	Mo	(c) Atom	ic weight 96.0
Мо	~	4 J 5 (80) E = (70 )		100	
MIO	g	4d ⁵ ( ⁶ S)5s ( ⁷ S ₃ )		-160.	
Max	c	4.34(40) = (40)		0.000	-
Mo*	g	4d ⁵ ( ⁶ S)5s ( ⁵ S ₂ )		-190.65	$E^{2} - 30.65$
	g	$4d^{4}5s^{2}$ ( $^{5}D_{0}$ )		-191.22	$E^z - 31.22$
	g	$(^5D_1)$		-191.72	$E^z - 31.72$
	g	$(^5D_2)$		-192.61	$E^z - 32.61$
	g	$(^5D_3)$		-193.74	$E^s - 33.74$
	g	(5D ₄ )		- 195.15	$E^{s} - 35.15$
Mo+	g	$4d^4(^5D)5s(^6D)$		-331.	<i>I</i> ⋅ −169.56
MoO ₂	c			130.	
MoO ₃	c			176.5	
	aq.			178.0	
MoO ₄	aq.	1		163.4	
MoO ₄	aq.			243.5	
MoO ₅	aq.			145.0	
H ₂ MoO ₄	c	MoO ₃ ·H ₂ O		247.0	D - 18.76
	aq.			246.4	
H ₂ MoO ₄ ·H ₂ O	c	MoO ₃ ·2H ₂ O		319.4	D - 14.70
MoF ₆	c				$V - 8.30^{17.5}$
	liq.				F - 2.1
PbMoO ₄	c			262.1	D - 33.1
CuMoO4	c			241.5	D - 26.5
FeMoO ₄	c			254.3	D - 13.5
$Fe_2(MoO_4)_3 \cdot xH_2O$	c			698.7 + 68.37x	2 10.0
2(				000.1 1 00.012	

Tungsten

Atomic num	ber 74	Standard state W	(c) Atomic	weight 184.0
Formula	State	Description	Qf, kcal. mole-1	Q, kcal, mole ⁻¹
w	g	5d46s2 (5D ₀ )	- 210.	
	c		0.000	
W*	g	$5d^46s^2$ ( 5D_1 )	- 214.75	$E^* - 4.75$
	g	$(^5D_2)$	- 219.47	$E^* - 9.47$
	g	$(^5D_3)$	- 223.75	$E^* - 13.75$
	g	(5D4)	- 227.71	$E^* - 17.71$
	g	5d ⁵ 6s ( ⁷ S ₃ )	- 218.40	$E^{*} - 8.40$
$WO_2$	c		130.5	
$WO_3$	c		195.7	
WO₄	aq.		266.3	
$W_2O_5$	c		324.	
H ₂ WO ₄	c		284.5	
	aq.		284.4	
$WO_3 \cdot H_2O_2$	aq.		331.0	
$WO_3 \cdot 2H_2O_2$	aq.		377.2	
$WO_3 \cdot 3H_2O_2$	aq.		424.6	
$WF_6$	liq.			V - 6.25
	c			$V_8 - 8.72^3$
WS ₂	c		84.	
CuWO₄	c		246.3	
CuWO₄·2H₂O	c		389.9	
FeWO ₄	c		269.7	
FeWO ₄ ·3H ₂ O	c		482.3	
$Fe_2(WO_4)_3.8H_2O$	c		1339.8	

Uranium

Formula				
	State	Description	$Qf, kcal. mole^{-1}$	$Q, kcal. mole^{-1}$
U	g	,	- 220.	
	c		0.000	
$UO_2$	c		256.6	
$UO_2^{++}$	aq.		243.	
$UO_3$	c		291.6	
$U_3O_8$	С		845.2	
$UO_3 \cdot \frac{1}{2}H_2O$	c		325.9	
$UO_3 \cdot H_2O$	c		364.9	S 14.85 HNO: (110)
$UO_3 \cdot 1\frac{1}{2}H_2O$	c		401.1	,
UO ₃ -2H ₂ O	c		435.8	S 12.38 HNO: (110)
UO ₄ ·2H ₂ O	c		426.0	S 0.1 H-80. (100)
$ m JF_6$	liq.			$V-10.4^{42}$
UCl₃	c		213.	- '
UCl4	c		251.	
$UO_2Cl_2$	aq.		321.8	
UO ₂ Cl ₂ ·H ₂ O	c		384.0	S 6.01000
$UO_2Br_2$	aq.		300.	
UO ₂ SO ₄	c		427.	
	aq.		455.0	
UO ₂ SO ₄ ·3H ₂ O	c		655.6	S 5.1 ₁₀₀₀
$U(SO_4)_2$	c		428.	*
$U_3N_4$	c		274.	
$UO_2(NO_3)_2$	c		322.2	$S = 19.0^{12}_{220}$
	aq.		341.2	220
$UO_2(NO_3)_2 \cdot H_2O$	c		397.7	S 11.87 ₂₂₀
UO2(NO3)2·2H2O	c		473.0	$S = 5.05^{12}_{220}$
UO2(NO3)2·3H2O	c		544.4	$S = 1.85^{12}_{220}$
UO ₂ (NO ₃ ) ₂ -6H ₂ O	e		756.8	$S - 5.45^{12}_{220}$
UC ₂	c		29.	
$UO_2(C_2H_3O_2)_2$	aq.		479.1	
UO ₂ (C ₂ H ₃ O ₂ ) ₂ ·2H ₂ O	Ĉ		620.2	$S - 4.3_{1000}$
UO ₂ (C ₂ H ₃ O ₂ ) ₂ ·NH ₄ C ₂ H ₃ O ₂ ·6H ₂ O	c		1042.3	$S - 3.8_{1000}$
UO₂CrO₄	aq.		450.5	
UO ₂ CrO ₄ ·5½H ₂ O	c		832.8	$S - 6.3_{1000}$

Vanadium

Atomic number	er 23	Standa	rd state	V (	e)	Atomi	e weight 50.95
Formula	State	Descr	iption	kca	$Qf$ , $l. mole^{-1}$	4	), kcal. mole ⁻¹
v	g	$3d^34s^2$	$({}^4{ m F}_{3/2})$	_	85.		
V*	С	0.194 0	(477)		0.000	,	0.004
γ.,	g	3d34s2	$({}^4F_{5/2})$	-	85.39	E -	0.391
	g		$({}^4F_{7/2})$	-	85.92	E: -	****
	g	24/57)/4	(4F _{9/2} )	-	86.57	$\begin{vmatrix} E^* - E^* - E^* \end{vmatrix}$	1.574
	g	3d4(5D)4s	$(^6D_{3/2})$	_	91.01 91.13	E -	
	g		$(^{5}D_{5/2})$		91.13	E -	0.200
	g		$({}^{6}D_{7/2})$	_	91.58	E -	6.320 6.580
	g		$({}^{6}D_{9/2})$		91.90	E -	
V+	g	3d4	$({}^{5}D_{9/2})$	_	242.1		6.903 155.7
V+ *	1	Ju.	$(^5D_1)$		242.1	E -	
•	g		$(^5D_1)$	1	242.4	E	0.103
	g		$(^5\mathbf{D_3})$		242.7	E -	0.304 $0.594$
	g	^	(5D ₄ )		243.1	$E^{*}$ –	0.966
	g	3d³(4F)4s		1	249.5	E -	7.415
	g	00 (1)10	( ⁵ F ₂ )	1	249.8	$E^{*}$ –	7.649
	g		( ⁵ F ₃ )	1	250.1	$E^{*}$ —	7.995
	g		(5F ₄ )		250.6	$E^*$ —	8.501
	g		(5F ₆ )		251.1	$E^*$ —	9.003
V++	g	3d3	$({}^4F_{3/2})$		579.8	Ĭ -	
V++ *	g		(4F _{5/2} )		580.2	E -	0.413
•	g		$({}^4\mathbf{F}_{7/2})$	1	580.7	$\tilde{E}^{*}$ –	0.965
	g		$({}^4\mathbf{F}_{9/2})$		581.5	$\tilde{E}^{s}$ —	1.66
V+++	g	3d²	$({}^{3}F_{2})$	ı	190.	<i>I</i> • -	
V+++ *	g	,	$({}^{3}\mathbf{F}_{3})$		190.9	E= -	0.91
	g	•	$({}^{3}F_{4})$		192.1	E = -	2.07
<b>V</b> ++++	g	3d	$(^2D_{3/2})$		303.	$I^*-1$	
V++++ *	g		$({}^2\mathrm{D}_{5/2})$	-2	304.8	$E^*$ —	1.76
V+++++	g	$3s^2$	$({}^{1}S_{0})$		785.	$I^*-1$	480.
VO ₃ -	aq.				257.6		
VO	aq.				243.9		
VO ₅ -	aq.			2	229.9		
V ₂ O ₂	c				195.		
V ₂ O ₃	c				330.		
V ₂ O ₄	C				383.		
V ₂ O ₅	c	1			137.		•
VCl ₂ VCl ₃	C	·			47.		
VCl ₄	liq.		1		.87.		
VOCI3	liq.				.65.		
NH ₄ VO ₃	. с				200.	~	
11114 V O 8	c		1	2	83.5	S	6.1518 NaOH (aq.)
	- 1		1				

### Columbium

		Columbi	·uiii	
Atomic n	umber 41	Standard state	Cb (c)	Atomic weight 93.3
Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Cb Cb ₂ O ₅	c c		0.000 442.	
		Tantalu	m I	
Atomic n	umber 73	Standard state	Ta (c)	Atomic weight 181.4
Ta Ta ₂ O ₃	c c		0.000 499.	
		Protoactin	ium	
Atomic n	umber 91	Standard state		Atomic weight (232?)
		773°.		1
Atomic n	umber 22	Titaniu Standard state		Atomic weight 47.90
Ti	g	$3d^24s^2$ ( 3F_2 )	- 100. 0.000	
Ti* Ti+ Ti+ *		$ \begin{array}{c} (^3F_3) \\ (^3F_4) \\ 3d^3(^4F)4s \ (^5F_1) \\ (^5F_2) \\ (^5F_3) \\ (^5F_4) \\ (^5F_5) \\ 3d^24s^2 \ (^1D_2) \\ (^3P_0) \\ (^3P_1) \\ (^3P_2) \\ 3d^24s \ (^4F_{3/2}) \\ (^4F_{5/2}) \\ (^4F_{9/2}) \\ 3d^3 \ (^4F_{3/2}) \\ (^4F_{5/2}) \\ (^4F_{7/2}) \end{array} $	- 100.48 - 101.10 - 118.66 - 118.79 - 118.96 - 119.20 - 119.48 - 120.65 - 124.02 - 124.18 - 124.49 - 258.5 - 258.8 - 259.1 - 259.6 - 261.1 - 261.3 - 261.6	$E^z - 0.484$ $E^z - 1.101$ $E^z - 18.660$ $E^z - 18.785$ $E^z - 19.195$ $E^z - 19.480$ $E^z - 20.65$ $E^z - 24.02$ $E^z - 24.18$ $E^z - 24.49$ $I^z - 156.97$ $E^z - 0.267$ $E^z - 0.692$ $E^z - 1.119$ $E^z - 2.585$ $E^z - 2.801$ $E^z - 3.095$
Ti++ Ti++ * Ti+++ Ti+++ *	8 8 8 8 8 8 8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	- 262.0 - 573.1 - 573.6 - 574.3 1221. 1222.1	$E^z - 3.461$ $I^z - 313.1$ $E^z - 0.523$ $E^z - 1.201$ $I^z - 645$ . $E^z - 1.091$

#### Titanium

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Ti++++	g	$3s^23p^6$ ( 1S_0 )	2215.5	I* - 993.0
TiO ₂	c	rutile I		$T = 0.75^{778}_{-11}$
- <del>-</del>	c	rutile II		T 0.30540_III
	c	rutile III	218.0	
	c	anatase I		T 0.38 ⁷⁸⁵ →11
	c	anatase II		T 0.26600_1111
	c	anatase III		
	amorp.		214.1	
	amorp.	hydrated ppt.	210.0	
TiF ₆	aq.		557.5	
$H_2TiF_6$	aq.		558.4	
$TiCl_3$	c	brown		S 48.6
	c	violet		S 45.8
TiCl4	g		172.4	$V - 8.62^{136}$
	liq.		181.4	S 57.86 ₂₀₀₀
	c			$F - 2.23^{-80}$
	aq.	hydrolyzed	239.3	
TiCl ₄ ·H ₂ S	c		195.6	D - 8.86
$TiCl_4 \cdot 2H_2S$	c		208.3	D - 7.49
TiBr ₄ ·H ₂ S	c			D - 8.57
TiBr ₄ ·2H ₂ S	c			D - 7.20
TiCl.·PH ₃	c		202.4	
TiCl ₄ ·2PH ₃	c		215.5	D - 10.8
TiBr ₄ ·PH ₃	c			D - 16.0
TiBr. 2PH3	c			D - 11.8
TiC	c		110.	

Zirconium					
Atomic numbe	r 40	Standard state	Zr (c)	Atomic weight 91.22	
$\mathbf{Zr}$	g	4d ² 5s ² ( ³ F ₂ )	<b>– 110.</b>		
Zr*	c g	(8F ₃ )	0.000 - 111.62	$E^{s} - 1.62$	
	g	(3F ₄ )	- 113.53	$E^{s} - 3.53$	
	g	(³P ₀ ) (³P ₁ )	-121.94 $-122.46$	$E^s - 11.94$ $E^s - 12.46$	
	g	(3P ₂ )	- 121.91	E = 12.40 $E = -11.91$	
	g	4d³(4F)5s (5F ₁ ) (5F ₂ )	-123.86 $-124.30$	$E^s - 13.86$ $E^s - 14.30$	
	g	( ⁵ F ₃ )	-124.30 $-124.92$	$E^s - 14.30$ $E^s - 14.92$	
	g	(5F ₄ )	- 125.77	$E^s - 15.77$	
$Zr^+$	g	$({}^5F_5) \ 4d^2({}^3F)5s\ ({}^4F_{3/2})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$E^s - 16.76$ $I^s - 159.6$	
	g	$({}^4F_{5/2})$	- 270.9	$E_{\bullet} - 0.896$	

#### Zirconium

		****		_	
Formula	State	Des	cription	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Zr+	g		$({}^4\mathrm{F}_{7/2})$	- 272.2	$E^z - 2.17$
	g		$({}^4\mathrm{F}_{\nu/2})$	- 273.8	$E^{z} - 3.77$
	g	4d3	$({}^4{ m F}_{3/2})$	- 277.3	$E^{z} - 7.32$
	g		$({}^4{ m F}_{5/2})$	- 278.2	$E^s - 8.24$
	g		$({}^4\mathrm{F}_{7/2})$	- 279.4	$E^z - 9.39$
	g		$({}^4{\rm F}_{9/2})$	- 280.7	$E^z - 10.70$
Zr++	g	$4d^2$	$(^{3}F_{2})$	- 594.	$I^{z} - 322.$
$\mathbf{Zr^{+++}}$	g	4d	$(^2D_{3/2})$	-1148.	$I^*$ -553.
Zr++++	g	4p6	$({}^{1}S_{0})$	<b>-1930</b> .	$I^s - 780.2$
ZrO++	aq.			198.3	
$ZrO_2$	C	monocl	linic	258.1	
	c	ppt.		253.	
$ m ZrO(OH)_2$	c			337.	
$Zr(OH)_4$	c			411.0	
$Zr(OH)_4 \cdot H_2O$	С			482.7	
$Zr(OH)_4\cdot 2H_2O$	c			544.0	
ZrCl4	g			242.	$V - 26.0^{339}$
	c			268.9	
$\mathbf{ZrOCl_2}$	aq.			272.5	
$ m ZrOCl_2\cdot 2H_2O$	c			393.2	S 16.0
$ZrOCl_2\cdot3\frac{1}{2}H_2O$	c			502.8	S 9.0
$ m ZrOCl_2\cdot 6H_2O$	c			683.0	S 0.7
$ZrOCl_2.8H_2O$	c			822.5	S - 3.0
$ZrBr_4$	c				$Vs - 26.5^{356}$
$ZrOBr_2$	aq.			250.6	
ZrOBr ₂ ·3½H ₂ O	c			480.9	S 9.01
$ZrOBr_2 \cdot 8H_2O$	c			799.6	S 2.01
ZrI.	c				$V_8 - 29.5^{431}$
ZrOSO4	aq.			409.1	
ZrOSO₄·4H₂O	c			672.2	S 10.4
ZrOSO ₄ ·SO ₃	c			519.4	S 32.8
$ZrOSO_4 \cdot H_2SO_4$	c			600.0	S 20.6
$ZrO(NO_3)_2$	aq.			291.7	
$ZrO(NO_3)_2 \cdot 2H_2O$	c			426.2	S 2.17
$ZrO(NO_3)_2 \cdot 3H_2O$	c			497.3	S - 0.5
$ZrO(NO_3)_2 \cdot 3\frac{1}{2}H_2O$	c			532.9	S - 1.92
$ZrO(NO_3)_2 \cdot 6H_2O$	c			707.8	S - 5.90
$\mathbf{ZrC}$	c		Į	44.	

### Hafnium

Atomic number	72	Standard state	Hf (c)	Atomic weight 178.6
Hf HfO ₂	c c	monoclinic	0.000 271.5	

Thorium

Atomic number 90

Standard state Th (c) Atomic weight 232.12

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole-1
Th	g		- 177.	
	c		0.000	
Th++++	aq.		238.5	
$ThO_2$	c		293.	
$ThH_4$	С		- 42.8	D - 21.4
Th(OH)	c	''soluble''	336.1	S 39.1 _{HC1(15)}
	С	"insoluble"	325.1	S 50.2 HCI (15)
ThCl.	С		335.	S 56.715
	aq.		392.	
$\mathrm{ThCl_4\cdot 2H_2O}$	С		487.2	S 41.1
$ThCl_4·4H_2O$	С		639.2	S = 26.23
$ThCl_4\cdot 7H_2O$	c		856.0	S 14.7
ThCl₄-8H₂O	c		927.6	S 11.45
ThOCl ₂	С		336.	S 28.15
$ThCl_3OH \cdot H_2O$	c		398.8	S = 47.6
ThBr4	С		281.5	S 70.2
	aq.		351.7	
$ThBr_4.7H_2O$	С		807.8	S 22.55
$ThBr_4\cdot 10H_2O$	С		1025.7	S 9.84
$ThBr_4 \cdot 12H_2O$	c		1170.0	S 2.3
$ThOBr_2$	С		319.0	S 28.0
ThI4	aq.		291.7	
$ThOI_2$	С		289.5	S 21.5
$ThOI_2 \cdot 3\frac{1}{2}H_2O$	c		425.6	S 10.03
$ThI_3OH \cdot 10H_2O$	С		1008.4	S 8.44
ThOSO ₄	c		517.	
$Th(SO_4)_2$	c		632.	
`	aq.		667.9	
$Th(SO_4)_2 \cdot 4H_2O$	c		936.4	S 5.0
$Th(SO_4)_2 \cdot 8H_2O$	c		1222.4	S - 7.5
$\mathrm{Th_3N_4}$	c		301.4	
ThCl ₄ ·2NH ₄ Cl	c		494.5	S 39.8
$ThCl_{4}\cdot 2NH_{4}Cl\cdot 10H_{2}O$	c		1221.1	S - 3.9
ThCl ₄ ·4NH ₃	c	α	458.8	S 61.7 HCl(aq.)
$ThCl_{\bullet}6NH_{3}$	c	α	511.8	S 73.1 HCl(aq.)
$[\mathrm{Th}(\mathrm{NH_3})_6]\mathrm{Cl_4}$	c	β	548.9	S 35.3 HCl(aq.)
$ThCl_{4}.7NH_{3}$	c	α	524.3	S 82.75 HCI(aq.)
$[\mathrm{Th}(\mathrm{NH_3})_6]\mathrm{Cl}_4{\cdot}\mathrm{NH_3}$	c	β	581.9	S 34.15 HCl (aq.)
$[\mathrm{Th}(\mathrm{NH_3})_6]\mathrm{Cl}_4.6\mathrm{NH_3}$	c	β	684.4	S 93.7 HCl(aq.)
$ThCl_{4}\cdot 12NH_{8}$	c	α	638.4	S 139.7 HC1(aq.)
ThCl₄·18NH₃	c	α	747.1	S 214.2 _{HCl(aq.)}
$[\mathrm{Th}(\mathrm{NH_3})_6]\mathrm{Cl}_4\cdot 12\mathrm{NH_3}$	c	β	789.4	S 171.9 HCl(nq.)
$\operatorname{ThC}_2$	c		45.	

BORON

Boron

Atomic number 5		Standard state	B (c) At	tomic weight 10.82		
Formula	State	Description	$Qf, kcal. mole^{-1}$	$Q, kcal. mole^{-1}$		
В	g	$2p (^2P_{1/2})$	- 115.			
	c		0.000			
B*	g	$2p (^2P_{3/2})$	- 115.04	$E^{s} - 0.04$		
	g	$3s   (^2S_{1/2})$	- 228.99	$E^z - 113.99$		
B+	g	$2s^2$ ( 1S_0 )	- 307.4	$I^* - 190.97$		
B+ *	g	$2s2p\ (^3P_{0})$	- 413.0	$E^z - 105.57$		
	g	$(^{3}P_{1})$	- 413.0	$E^z - 105.59$		
	g	$(^{3}P_{2}^{1})$	- 413.0	$E^z - 105.64$		
B++	g	$2s (^2S_{1/2})$	- 885.8	$I^* - 576.89$		
B+++	g	$1s^2$ ( 1S_0 )	- 1557.1	$I^* - 870.92$		
B++++	g	1s $({}^{2}S_{1/2})$	<b>–</b> 7512.	$I^z - 5954.$		
B++++	g	$(^{1}S_{0})$	- 15313.0	<i>I</i> ⁵ −7809.6		
во	g	$^2\Sigma^+$	<b>–</b> 35.	$D^{s} - 138.$		
BO₂−	aq.		174.2			
BO3	aq.		215.3			
B₂O₃	gls.		279.9	S 7.3		
	aq.		287.2			
B ₄ O ₇	aq.		637.6			
BH	g	¹∑+	<b>–</b> 87.	$D^* - 79.6$		
$B_2H_6$	g			V - 3.1		
HBO ₂	c		178.2	D - 13.3		
H,BO,	c		251.6	$S - 5.39_{400}$		
	aq.		246.2			
H ₂ B ₄ O ₇	c		641.7	D - 12.3		
$\mathrm{H_2B_6O_{10}}$	c		927.0	D - 13.3		
BF;	g		256.9	S - 24.5		
	liq.			V - 4.68 ⁻¹⁰¹		
	aq.		281.4			
BF₄−	aq.		358.0			
HBF.	aq.		358.0			
BCl ₃	g		88.3			
	liq.		94.6			
BBr ₃	g		35.0	V - 7.75		
	liq.		42.8	S 83.8 ¹¹ 400		
B₁H₅Br	liq.		10	V - 6.25		
B ₂ S ₃	C		40.	S 58.0		
NH₄BO₂	1320		206.1			
	200		205.88			
NH ₄ BO ₃	aq.		230.4	0 00		
NH ₄ BO ₃ ·H ₂ O	c		307.8	S - 9.03		
(NH ₄ ) ₂ HBO ₃	300		296.4			
(NH ₄ ) ₃ BO ₃	aq.		316.7	T7 4.05		
B(CH ₃ ) ₃	liq.			V - 4.85		

#### Aluminum

Atomic number 13 Standard state Al (c) Atomic weight 26.97

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Al	g	3s ² 3p ( ² P ¹ _{1/2} )	- 55.	
	liq.			F - 2.3659
	c		0.000	
Al*	g	$3s^23p\ (^2P^1_{3/2})$	- 55.32	$E^{z} - 0.32$
	g	$3s^24s (^2S_{1/2})$	- 127.17	$E^s - 72.17$
Al+	g	$3s^2$ ( 1S_0 )	- 193.9	$I^* - 137.45$
Al+ *	g	$3s3p (^3P_0)$	- 300.4	$E^s - 106.45$
	g	$(^{3}P_{1})$	- 300.5	$E^* - 106.63$
	g	( ⁸ P ¹ ₂ )	- 300.9	$E^z - 106.98$
Al++	g	$({}^{2}S_{1/2})$	- 627.7	$I^s - 432.32$
Al++ *	g	$3p (^{2}P_{1/2})$	- 780.5	$E^* - 152.82$
	g	$(^{2}\mathrm{P}^{1}_{3/2})$	- 781.2	$E^* - 153.70$
Al+++	g	$2p^6$ ( 1S_0 )	-1282.3	$I^* - 653.2$
	aq.		126.3	
Al++++	g	2p ⁵	-4120.	$I^*$ -2835.
$\mathrm{Al_2O_3}$	g		260.	V - 116.2700
	c		380.0	
AlH	g		- 35.0	$D^* - 71.0$
$Al(OH)_3$	c		304.9	
AlF ₃	c		329.	S 31.
	aq.		360.2	
AlF ₆	aq.		591.	
H ₃ AlF ₆	aq.		589.6	
$AlF_3 \cdot \frac{1}{2}H_2O$	C		375.4	S 25.6 _{HF(4.75)}
$AlF_3 \cdot 3\frac{1}{2}H_2O$	c	"soluble"	601.2	S - 1.7
	C	"insoluble"	601.7	S 4.44 _{HF(4.75)}
AlCl ₃	g		133.	D - 40.
	liq.			$F - 8.49^{192}$
	c		166.8	S 77.9
	600		244.7	
AlCl ₃ ·6H ₂ O	c		641.7	S 13.218450
$Al_2Cl_6$	g	1	306.1	
$AlBr_3$	liq.			F - 2.798
	C		126.7	S 85.3° ₂₀₀₀
	aq.		212.0	
AlI ₃	liq.			$F - 3.8^{191}$
	C		77.2	S 89.0°2200
	aq.		166.2	
$Al_2S_8$	С		140.5	S 75.0
$Al_2(SO_4)_3$	С	1	770.	D - 17.
	aq.		896.	
$Al_2(SO_4)_3 \cdot 6H_2O$	c		1250.	S 56.
$Al_2(SO_4)_3 \cdot 18H_2O$	c		2120.	S 8.2
AlCl ₈ ·½SO ₂	c		208.8	S 75.3
AlCl ₈ ·SO ₂	c		248.8	S 74.7
$AlCl_3 \cdot \frac{1}{2}H_2S$	c		174.4	S 75.315,000
AlCl ₈ ·H ₂ S	c		181.4	D - 9.2
$AlBr_3 \cdot H_2S$	l c	l	141.7	$D - 9.72^{30}$

#### Aluminum

Formula	State	Description	Qf, kcal. mole ⁻¹	G	), kcal. mole ⁻¹
AlI _s ·H ₂ S	c		106.1	D	- 9.111
AlI ₃ ·4H ₂ S	c		129.3	l _	- 6.3 ⁻⁷⁴
AlN	c		80.		0.0
AlF ₈ ·2NH ₄ F·1½H ₂ O	c		691.5	s -	- 8.5416
AlCl ₃ ·NH ₃	c		216.0	s	54.515
AlCl₃·NH₄Cl	c		255.3	S	$60.47^{15}_{800}$
AlCl ₃ ·3NH ₃	c		282.7	S	30.315
AlCl _s ·5NH _s	c		342.8	S	$9.05^{15}_{2300}$
AlCl ₃ ·6NH ₃	c		364.9	S	
AlCl ₈ ·7NH ₃	c		386.1	D -	$6.35^{15}_{2500}$ $- 10.2$
AlCl ₃ ·NH ₄ Cl·6NH ₈	c		454.5	S	- 10.2 - 2.7
AlCl ₃ ·14NH ₃	c			D -	
AlBr ₃ ·NH ₃	c		517.5		- 7.8 heptammine
AlBr ₃ ·3NH ₃			177.0	S	66.90 _{HBr (20)}
	c		249.6	S	57.70 _{H Br (20)}
AlBr. 5NH	C		310.6	S	60.20 _{HBr(20)}
AlBrs·6NHs	C		335.9	D -	- 16.2
AlBr _s .7NH _s	c		357.5	-	- 10.7
AlBr ₃ ·9NH ₃	c ·		396.4		- 8.4
AlBr ₃ ·14NH ₃	c		516.3	_	- 7.72
AlI ₃ ·NH ₃	c		119.9	S	$78.9^{0}_{\mathtt{HI}}{}_{(20)}$
AlI ₃ ·3NH ₃	С		204.0	S	58.00 _{HI(20)}
AlI ₃ ·5NH ₃	c		282.0	s	42.00 HI (20)
AlI ₃ ·6NH ₃	c		306.8	S	50.3° _{HI (20)}
AlI ₃ ·7NH ₃	c		329.7	D -	- 11.7
AlI ₃ ·9NH ₃	С		368.5	D -	- 8.6
AlI ₃ ·13NH ₃	c		443.4	D -	- 7.74
AlI ₃ ·20NH ₃	c ·		574.6	D -	- 7.67
NH ₄ AlSO ₄	С		531.		
NH ₄ AlSO ₄ ·5H ₂ O	c		912.		
NH ₄ AlSO ₄ ·9H ₂ O	c		1208.2	D -	- 12.0
NH ₄ AlSO ₄ ·12H ₂ O	c		1417.6	S-	- 9.2
AlCl ₃ ·PH ₃	c		179.0	D -	- 9.9
AlBr ₃ ·PH ₃	c		143.3	D -	- 14.3
AlI ₈ ·PH ₃	c		94.2	D -	- 14.7
Al ₄ C ₈	c		60.		
$Al_2SiO_5$	С	andalusite	617.0	${\mathcal S}$	90.1 _{HF(4.44)}
- '	c	disthene	617.4	$\mathcal{S}$	89.7 _{HF(4.44)}
	c	sillimanite	623.7	$\mathcal{S}$	80.4 _{HF(4,44)}
3Al ₂ O ₃ ·2SiO ₂	c	mullite	1804.	S	83.7 _{HF(4,44)}
2AlCl ₃ ·3PbI ₂	c		236.0	S	$222.0^{15}$
2AlCl ₃ ·3PbI ₂ ·10H ₂ O	c		1126.7	$\tilde{\mathcal{S}}$	15.015
AlCl ₃ · ³ ZnCl ₂	c		237.2	$\tilde{s}$	94.0
AlCu	c		68.	$\tilde{s}$	
AlCu _s	c		23.	S	181.bromine water 303.bromine water
Al ₂ Cu	c		84.	S	366 .
AlCl ₃ ·AgCl			199.2	S	366.bromine water 75.7 ²²
Al ₅ Fe	c		25.0	S	371. _{HCl(8)}
AlCo	c		32.	S S	106. _{HCl(8)}
	C		1 1	S	565 O
Al _s Co	С		86.	N	565.9 _{EC1(8)}

Scandium

Atomic number 21		Standard state Sc (c) Atom		omic weight 45.10
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Sc	g	3d4s ² ( ² D _{3/2} )	<b>–</b> 70.	
	c		0.000	
Sc*	g	$3d4s^2 (^2D_{5/2})$	- 70.48	$E^{z} - 0.479$
	g	3d ² 4s (4F _{8/2} )	- 102.79	$E^* - 32.79$
	g	$({}^4\mathbf{F}_{5/2})$	- 102.90	$E^{s} - 32.90$
	g	(4F _{7/2} )	- 103.05	$E^{z} - 33.05$
	g	(4F _{9/2} )	- 103.24	$E^2 - 33.24$
Sc ⁺	g	$3d4s$ ( 3D_i )	- 225.	$I^* - 154.$
Sc+ *	g	$(^{8}D_{2})$	- 225.2	$E^z - 0.19$
	g	$(^3D_2)$	- 225.5	$E^{z} - 0.51$
	g	$(^{1}D)$	- 232.2	$E^s$ - 7.23
	g	$3d^2$ ( 3F_2 )	- 238.7	
	g	(3F ₃ )	- 238.9	$E^* - 13.90$
	g	(3F ₄ )	- 239.1	$E^{s} - 14.20$
Sc++	g	$3d (^2D_{3/2})$	- 522.	$I^{*}$ -296.
	g	$(^2\mathrm{D}_{5/2})$	- 522.6	$E^z - 0.56$
Sc+++	g	$({}^{1}S_{0})$	-1022.	$I^* - 568.5$
$Sc_2O_3$	С		410.	
ScCl ₃	c		200.	

			Yttrium					
Atomic numb	oer 39	Stand	ard state	<b>Y</b> (c	)	Ato	mic	weight 88.92
Y	g	4d5s2	$(^{2}D_{3/2})$		_	90.	i	
	c	İ				0.000		
Y*	g	$4d5s^2$	$(^2D_{5/2})$	1		91.51	E*	<b>— 1.510</b>
	g	$5s^25p$	$(^{2}\mathbf{P}_{1/2})$		_	119.97	E:	-29.97
	g		$(^2\mathrm{P}^1_{3/2})$		_	122.34	E:	- 32.34
	g	4d2(3F)	$5s ({}^4F_{3/2})$	1	-	121.14	$E^z$	- 31.14
	g		$({}^4{ m F}_{5/2})$	- 1		121.51	$E^*$	- 31.51
	g		$({}^4{ m F}_{7/2})$	ı	_	122.11	E*	- 32.11
	g		$({}^4{ m F}_{9/2})$			122.83	E*	- 32.83
<b>Y</b> +	g	5s ²	$(^{1}S_{0})$			241.	Į:	<b>-150</b> .
Y+ *	g	4d5s	$(^3D_1)$	- 1	_	243.4	$E^{z}$	- 2.392
	g		$(^3D_2)$			244.0	$E^{s}$	-2.975
	g		$(^{1}D_{2})$	l		250.4	$E^{s}$	- 9.38
Y++	g	4d	$(^2\mathbf{D_2})$			526.	Ţ:	-284.
Y++ *	g		$(^2D_3)$		_	528.1	$E^{s}$	- 2.06
Y+++	g	4p6			-1	.008.	Į:	-470.5
	aq.	(estima	ted)			130.		
$Y_2O_3$	c					440.		
$Y(OH)_{s}$	c	ppt.				336.7		
YCl ₃	c					240.	S	45.3618200
	aq.					285.4	•	200
$Y_2(SO_4)_3$	aq.	1				974.1		
$Y_2(SO_4)_3.8H_2O$	c					510.4	S	10.68201200

		•				
Atomic number	• 71	Luteciu Standard state		(a) A+a	omic weight 175.0	
Atomic number		`,		(C) A.U.	Atomic weight 175.0	
		Ytterbit				
Atomic number	70	Standard state	Yb (	c) Ator	nic weight 173.04	
		Thuliu	m			
Atomic number	69	Standard state	Tm	(c) Ato	omic weight 169.4	
		Erbiur	<b>n</b>			
Atomic number	- 68	Standard state		c) Ator	nic weight 165.20	
	1	· · · · · · · · · · · · · · · · · · ·		Qf,		
Formula	State	Description		$kcal. mole^{-1}$	Q, kcal. mole ⁻¹	
Er	c			0.000		
Er+++	aq.	(estimated)		150.		
$Er(OH)_3$	c	ppt.		326.8		
$\mathrm{Er}(\mathrm{C_2H_3O_2})_{\mathtt{3}}$	aq.	erbium acetate		503.9		
$\underline{\operatorname{Er}(\mathrm{C_2H_3O_2)_3\cdot 4H_2O}}$	С			776.0	$S = 1.36^{20}_{1500}$	
		~~				
		Holmiu				
Atomic number	67	Standard state	Ho	(c) Ato	omic weight 163.5	
		Dysprosi	um			
Atomic number	66	Standard state	Dy (	c) Ator	nic weight 162.46	
		Terbiu	m.			
Atomic number	65	Standard state	Tb (	(c) Ato	mic weight 159.2	
		Gadolini	um			
Atomic number	64	Standard state		(c) Ato	mic weight 157.3	
		Europiun	1			
Atomic number	63	Standard state		c) Ato	mic weight 152.0	
				,		
		Samariı				
Atomic number	62	Standard state	Sm (	c) Ator	nic weight 150.43	
Sm	С			0.000		
Sm+++	aq.	(estimated)		160.		
$\mathrm{Sm}_{2}\mathrm{O}_{3}$	С			430.	S 94.6 _{HCl(aq.)}	
$\mathrm{SmCl}_3$	С			241.0	S 37.4	
~ ~	aq.			278.4	T) 00 Feet	
SmCl ₃ ·NH ₃	С			272.6	$D - 20.7^{375}$	
SmCl ₃ ·2NH ₃	C			300.0	$\begin{array}{ccc} D & - & 16.4^{240} \\ D & - & 15.1^{200} \end{array}$	
SmCl ₃ ·3NH ₃	C			326.0	$D - 13.1^{200}$ $D - 13.7^{155}$	
SmCl ₃ ·4NH ₃	C			350.7	$D - 13.7^{105}$ $D - 12.1^{105}$	
SmCl ₃ ·5NH ₃	C			373.7 440.2	$D = 12.1^{30}$ $D = 11.2^{76}$	
SmCl ₃ ·8NH ₃	c			471.6	$D = 11.2^{10}$ $D = 10.0^{40}$	
$SmCl_3 \cdot 9\frac{1}{2}NH_3$ $SmCl_3 \cdot 11\frac{1}{2}NH_3$	c			491.9	$D = 10.0^{15}$ $D = 9.2^{15}$	
DIU(13.11.2]NU3	C			TJ1.7	ע — פ.4	

## Illinium

Atomic number 61

Standard state II (c)

Atomic weight (146?)

# Neodymium

Formula	State	Description	Qf, kcal. mole ⁻¹	Q	, kcal. mole ⁻¹
Nd	c		0.000		
Nd+++	aq.		164.		
$Nd_2O_3$	c	"high temperature"	435.		
$Nd_2O_3$	c	"low temperature"	427.	S	105.5 HC1(aq.)
$NdCl_3$	c	-	246.7	s	35.52000
$NdCl_3$	aq.		282.2		
NdCl₃·6H₂O	c		684.8	s	$7.6^{15}_{2000}$
$NdI_{s}$	c		155.4	$\mathcal{S}$	48.9192000
	aq.		204.3		
$Nd_2S_3$	c		262.7	s	75.818 HCI (110)
$Nd_2(SO_4)_3$	c		931.5	s	36.5600
	aq.		968.		
$Nd_2(SO_4)_3.5H_2O$	c		1301.6	s	8.3
$\mathrm{Nd_2(SO_4)_3\cdot 8H_2O}$	c		1508.2	$\mathcal{S}$	6.7
$NdCl_{s}\cdot NH_{s}$	c		277.8	D ·	- 20.2360
$NdCl_{s}\cdot 2NH_{s}$	c		305.7	D ·	- 16.9 ²⁵⁵
NdCl ₃ ·4NH ₃	c	,	355.0	D .	$-13.7^{157}$
NdCl ₃ ·5NH ₃	C		378.4	D .	- 12.5 ¹¹⁷
NdCl₃·8NH₃	c		444.9	D ·	- 11.279
NdCl ₈ ·11NH ₃	С		506.2	$\mathcal{D}$ .	- 9.5 ²⁶
$NdCl_{3}\cdot 12NH_{3}$	c		525.6	D -	- 8.4-10

# Praseodymium

Atomic number 59		Standard state Pr (c		Atomic weight 140.92		
Pr Pr++++ PrO ₂ Pr ₂ O ₃ Pr ₆ O ₁₁ PrCl ₃	c aq. c c			0.000 170. 231.5 439.4 1376. 254.9	2222	42.9 HNO3 (6) 106.2 HCl(aq.) 270.6 HNO ₁ (6) 33.5 ₂₅₀₀
PrCl ₃ ·H ₂ O PrCl ₃ ·7H ₂ O Pr(NO ₃ ) ₃	aq. c c aq.			288.4 327.9 761.7 317.9	S S	28.9 ¹⁷ 2000 5.3

Cerium

Atomic number 58	Standard state	Ce (c)	Atomic weight 140.13
------------------	----------------	--------	----------------------

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Ce	С		0.000	,
Ce+++	aq.		165.	
$CeO_2$	c		233.4	
$\mathrm{Ce_3H_8}$	c		169.	
Ce ₂ (OH) ₃ OOH	c		398.6	
CeCl ₃	c		261.5	S 31.5
	aq.		283.	
$Ce(SO_4)_2$	c		424.	D - 103.5
$Ce_2(SO_4)_3$	aq.		977.	
$Ce_2(SO_4)_3 \cdot 4\frac{1}{6}\frac{9}{6}H_2O$	c		1260.4	S 16.1
CeN	c		78.2	S 119.2 _{HC1(20)}
CeCl ₃ ·2NH ₃	С		306.2	$D - 11.4^{100}$
CeCl ₃ ·4NH ₃	c		349.0	$D - 10.4^{67}$
CeCl ₃ ·8NH ₃	c		428.5	$D - 8.9^{20}$
CeCl ₃ ·12NH ₃	c		503.9	$D - 7.9^{-12}$
CeCl ₃ ·20NH ₃	c		650.9	$D - 7.4^{-30}$
CeHg ₄	c		23.2	
CeZn ₄	c		49.	
CeAl ₄	c		22.	S 620. _{HC1(20)}
Ce ₃ Al	c		39.	S 596.5 HC1(20)

# Lanthanum

Atomic numb	er 57	Standard state	La (c)	Ator	nic weight 138.92
La	g	$\int 5d6s^2$ ( $^2D_{3/2}$ )	T -	90.	
	c		İ	0.000	
La*	g	$5d6s^2$ ( $^2D_{5/2}$ )	-	93.00	$E^{z} - 3.00$
	g	$5d^{2}(^{3}F)6s (^{4}F_{3/2})$	-	97.59	$E^{z} - 7.59$
	g	$({}^4{ m F}_{5/2})$	Ì -	98.57	$E^{s} - 8.57$
	g	$({}^4F_{7/2})$	-	99.95	$E^s - 9.95$
	g	$({}^{4}\mathbf{F}_{9/2})$	-	101.73	$E^{s} - 11.73$
La+++	aq.			165.9	
La ₂ O ₃	c			457.0	
La ₈ H ₈	c		Ì	160.	S 333. HCl(aq.)
LaCl ₃	c			253.1	S 31.3161200
	aq.			284.4	
$LaS_2$	c		1	148.3	S 31.8 HC1(aq.)
$La_2S_3$	c			351.4	S 71.8 _{HC1(9.4)}
$La_2(SO_4)_3$	aq.		İ	972.	
$La_2(SO_4)_3.8H_2O$	c			1514.9	S 4.0 ₂₄₀₀
LaN	С			72.8	S 127.1 HC1(20)
LaAl4	c		l	20.	

## Actinium

Atomic number 89

Standard state Ac (c)

Atomic weight (227.?)

# Beryllium

Atomic numbe	r 4	Standard state Be	(c) A	tomic weight 9.02
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Ве	g liq.	$2s^2$ ( 1S_0 )	<b>–</b> 75.	F - 2.5 ¹²⁸⁰
Be*	c g g	2s2p ( ³ P ¹ ₀ ) ( ³ P ¹ ₁ )	0.000 - 137.58 - 137.58	$E^z - 62.577$ $E^z - 62.578$
Be+	g	$egin{array}{ccc} (^3{ m P^1}_2) & & & & & & & & & & & & & & & & & & &$	- 137.59 - 290.51	$E^z - 62.585$ $I^z - 214.06$
Be+ *	g	$2p (^{2}P_{1/2})$	- 380.40	$E^* - 90.90$
Be++	g	$({}^{2}P^{1}_{3/2})$ $1s^{2}$ $({}^{1}S_{0})$	- 380.41 - 800.0 85.	$\begin{bmatrix} E^z - 90.91 \\ I^z - 380.41 \end{bmatrix}$
Be+++	aq.	$1s ({}^{2}S_{1/2})$	-4333.6	I∗ -3532.2
Be++++	g		-9333.1	<i>I</i> ∗ −4998.1
BeO	g		- 12.6 135.0	
$\mathbf{BeH}$	g		- 52.6	
BeH+	g		- 661.	
BeH+ *	g		- 861.	$E^* - 200.$
$Be(OH)_2$	c	ppt.	206.8	
BeF ₂	aq.		240.8	
H ₂ BeF ₄	aq.		392.6	
$\operatorname{BeCl}_2$	g		83.0	
	liq.			F - 3.0408
	c		112.6	S 51.1
	aq.		163.7	
	C ₂ H ₅ OH		150.	S 37.4 _{C, H,OH}
$BeBr_2$	g		48.	
	c		79.4	S 55.7 HCl(9)
TO T	aq.		142.	
$BeI_2$	g		11.	
	C		39.4	S 62.5 _{HCl(aq.)}
BeSO ₄	aq.		112.	
DeSO4	C		281.	
BeSO ₄ ·H ₂ O	aq.		299.1 354.	70 00 4
BeSO ₄ ·2H ₂ O	c		427.9	$\begin{array}{ccc} D & - & 23.4 \\ S & & 8.0^{15}_{1000} \end{array}$
BeSO ₄ ·4H ₂ O	c		571.5	S 1.10 ₄₀₀
BeBr ₂ ·2H ₂ S	c		107.7	D 1.1U400
$BeI_2 \cdot 2H_2S$	e l		64.0	
$Be(NO_3)_2$	aq.		183.4	
BeCl ₂ ·2NH ₃	c c		234.5	D - 18.2
BeCl ₂ ·4NH ₃	c		292.8	S 28.3 _{HC1(9)}
BeCl ₂ -6NH ₂	c		330.7	D - 8.04
BeCl ₂ ·12NH ₃	c		442.0	D - 7.8

# Beryllium

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole-1
BeBr ₂ ·4NH ₃ BeBr ₂ ·6NH ₃ BeBr ₂ ·10NH ₂ BeI ₂ ·4NH ₃ BeI ₂ ·6NH ₃ BeI ₂ ·13NH ₃	c c c c		165.6 304.7 379.9 231.2 272.5 404.0	S 33.7 _{HCl(9)} D - 8.8 D - 7.85 S 34.8 _{HCl(aq.)} D - 8.9 D - 7.9

# Magnesium

Atomic number	12	Standard state Mg	(c) Ato	omic weight 24.32
Mg	g liq.	3s ² (¹S₀)	- 36.3	F - 1.70 ⁶⁰⁰
	c		0.000	
Mg*	g	3s3p ( ³ P ¹ ₀ )	- 98.51	$E^z - 62.21$
· ·	g	(3P1 ₁ )	- 98.56	$E^{z} - 62.26$
	g	$(^{3}P_{2}^{1})$	- 98.68	$E^z - 62.38$
Mg+	g	$3s (^2S_{1/2})$	- 213.31	I* − 175.56
Mg+ *	g	$3p (^2P_{1/2})$	- 314.86	$E^z - 101.55$
	g	$(^{2}\mathbf{P}_{^{3}/2})$	- 315.10	$E^z - 101.79$
Mg ⁺⁺	g	$2p^6$ ( 1S_0 )	- 559.98	I - 345.22
	∞		110.23	
Mg+++	g	$2p^{5}$ $(^{2}P^{1}_{3/2})$	-2414.	$I^{*}$ -1853.
	g	$(^{2}\mathrm{P}^{1}_{1/2})$	-2420.	$E^z - 6.05$
Mg++++	g	$2p^4$ ( 3P_2 )	-4931.	$I^{z}$ -2515.6
MgO	c		146.1	
MgH	g	$^2\Sigma$	- 55.7	
MgH*	g	²∏	- 109.4	
MgH+	g	¹∑+	- 222.5	
$Mg(OH)_2$	c	ppt.	218.7	
	c	brucite	223.9	D - 19.4
MgF	g		- 95.	
MgF ₂	c	ppt.	263.8	
MgCl ₂	c		153.3	$S = 35.9_{800}$
	∞		189.60	
	6400		189.43	
	3200	1	189.37	
	1600		189.30	
	800		189.22	
	400		189.13	
	200		189.02	
	100		188.81	
		1	1	

# Magnesium

Formula	State	Description	Qf, kcal. mole ⁻¹	Q,	kcal. mole-1
MgCl ₂	50		188.53		
1126012	20		187.61		
	10		185.29		
MgCl ₂ ·2H ₂ O	c		305.5	S	20.4
MgCl ₂ ·4H ₂ O	c		452.6	S	$20.4_{400} \ 10.0_{400}$
MgCl ₂ ·6H ₂ O	c		596.4	S	
1,1801201120	liq.		390.4	F -	$2.94_{400} \ 9.6^{120}$
MgCl ₂ ·MgO	c c		421.1	S	
MgCl ₂ ·MgO·6H ₂ O	c		810.2	S	14.5 _{HCl(aq.)}
MgCl ₂ ·MgO·16H ₂ O	c		1507.9	S	36.HCl(aq.)
MgO·HCl			194.1	13	$22.0_{\mathtt{HCl}(\mathtt{aq.})}$
MgBr ₂	C		123.9	S	40.0
MgD12	c ∞		167.57	10	43.3
	6400		_		
	3200		167.41	ļ	
	1 1		167.35		
	1600		167.29		
	800		167.22		
Mapa H O	400		167.16	~	10.0
MgBr ₂ ·H ₂ O MgBr ₂ ·6H ₂ O	С		200.0	D -	18.3
	С		558.	D -	11.7
$MgI_2$	c		86.8	S	49.8
	∞ C400		136.97		
	6400		136.82		
	3200		136.77		
	1600		136.71		
	800		136.65		
Mr. O	400		136.61		
MgS	c		82.2	$\mathcal{S}$	38.018 HCI (aq.)
M. GO	aq.		108.		
MgSO ₃	c		240.0	S	16.88 ¹² HC1(220)
MgSO ₃ ·3H ₂ O	c		460.8	S	1.17 _{EC1(220)}
MgSO ₃ ·6H ₂ O	c		672.7	s -	5.63 HC1 (220)
MgSO ₄	c		304.95	${\mathcal S}$	$20.30_{400}$
	∞		326.03		
	6400		325.52		
	3200		325.42		
	1600		325.30		
	800		325.25		
	400		325.25		
	200		325.18		
	100		325.11		
	50		325.07		
N.C. CO. TT.O.	20		324.79		
MgSO ₄ ·H ₂ O	c		380.4	$\mathcal{S}$	13.3400
MgSO ₄ ·2H ₂ O			1	S	11.05400

Magnesium

Formula	State	Description	$Qf,$ $kcal. mole^{-1}$		Q, $i$	kcal. mole ⁻¹
MgSO ₄ ·4H ₂ O	С		594.6	S		4.24400
MgSO ₄ ·6H ₂ O	c		735.7	S	_	0.10400
MgSO ₄ ·7H ₂ O	С		807.8	S		3.85400
$MgS_2O_6$	aq.		390.1			2.22400
$MgS_2O_6\cdot 6H_2O$	c		803.3	S	_	2.97400
$Mg(HS)_2$	aq.		117.4			
$Mg_3N_2$	c		116.			
$Mg(NO_3)_2$	∞		208.610			
	550000		208.587			
	62000		208.558			
	11300		208.485			
	5500		208.442			
	2460		208.385			
	1375		208.343			
	555		208.278			
	400		208.27			
	200		208.22			
	100		208.21			
	50		208.25			
	20		208.26			
	15		208.11			
	12		207.85			
Mg(NO ₃ ) ₂ ·6H ₂ O	c		622.5	s		$4.22_{400}$
	liq.		022.0	$\tilde{F}$		9.790
Mg(NH ₈ ) ₂ ++	aq.		148.5	-		
MgCl₂·NH₃	Ĉ		185.0	D		20.8
MgCl₂·2NH₃	c		215.6	$\bar{D}$		19.7
	aq.		227.5	_		2011
MgCl ₂ ·6NH ₃	c		312.7	D	_	13.3
MgBr ₂ ·NH ₃	c		156.7	$\bar{D}$		21.7
MgBr ₂ ·2NH ₃	c		187.7	$\bar{D}$		20.1
MgBr ₂ ·6NH ₃	c		292.4	$\bar{D}$		15.2
MgI₂·2NH₃	c		154.3	$\bar{D}$		22.7
MgI ₂ ·6NH ₃	c		267.0	$\tilde{D}$	_	17.2
3MgSO ₃ ·(NH ₄ ) ₂ SO ₃ ·6H ₂ O	c		1381.9	s		8.9 _{HCl(aq.)}
3MgSO ₃ ·(NH ₄ ) ₂ SO ₃ ·18H ₂ O	С		2233.5	Š		22.3 _{HCl(aq.)}
MgSO ₄ ·(NH ₄ ) ₂ SO ₄ ·4H ₂ O	c		936.2	~		LL.OHCI(aq.)
MgSO ₄ ·(NH ₄ ) ₂ SO ₄ ·6H ₂ O	c		1024.4	S		9.7
$Mg_3(PO_4)_2$	c	ppt.	915.8	~		···
<b>3</b> -1, -7-	aq.	**	926.			
MgHPO.	aq.		415.			
MgNH ₄ PO ₄ ·6H ₂ O	c		901.4			
Mg ₃ (AsO ₄ ) ₂	c	ppt.	731.3			
U-1	aq.	# # ^{7 77}	749.			
MgHAsO4	aq.		323.			

# Magnesium

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$	Q, kcal. mole-
$Mg(H_2AsO_4)_2$	aq.		541.	
MgNH ₄ AsO ₄ ·6H ₂ O	c		763.9	
$MgCO_3$	c		268.	
MgCO ₃ ·H ₂ O	c		339.8	
MgCO ₃ ·3H ₂ O	c		480.8	
$Mg(C_2H_3O_2)_2$	· ∞	magnesium	200.0	
		acetate	346.12	
$Mg(C_2H_3O_3)_2$	c	magnesium	010.12	
2.26(0222303/2	"	glycollate	415.0	S 4.4
	aq.	gryconaec	419.4	~ 1.1
$Mg(C_2H_3O_3)_2\cdot 2H_2O$	c c		557.7	S - 1.5
MgCl ₂ ·6CH ₃ OH	c		517.	D - 12.
MgCN ₂	c	magnesium	517.	D — 12.
1/1g O112	"	cyanamide	61.	C 179.2
$Mg(CN)_2$	0.0	Cyanamice	40.4	0 175.2
$Mg(NO_3)_2 \cdot 6CH_3OH$	aq.		40.4	D - 13.77
MgSiO ₃			347.5	D - 15.77
Mg ₂ Sn	C		59.	
$2 \mathrm{MgI}_2$ PbI $_2$	C		206.9	S 110.518
MgZn ₂	C		1	S 110.515
MgCd	C	I	13.1	<i>m</i> 0.00243
MgCa	C	II II	00	$T = 0.28^{243} + 1$
MgHg ₄	C	111	9.2	S 123.7 _{HC1(8}
0 0	e		17.3	
MgBr ₂ ·HgBr ₂	4400		207.4	
MgBr ₂ ·2HgBr ₂	4200		245.0	
2MgBr ₂ ·HgBr ₂	4800		376.5	
$Mg(CN)_2 \cdot Hg(CN)_2$	600		- 11.9	
Mg(CN) ₂ ·2Hg(CN) ₂	900		- 75.6	
MgCl ₂ ·2Hg(CN) ₂	1000		59.3	
MgCl ₂ ·2Hg(CN) ₂ ·6H ₂ O	C		479.9	$S - 10.3^{16}$
MgBr ₂ ·2Hg(CN) ₂	1000		38.5	
MgBr ₂ ·2Hg(CN) ₂ ·8H ₂ O	C		601.5	$S - 16.0^{14}$
MgI ₂ ·2Hg(CN) ₂	1000		12.7	-
$MgI_2 \cdot 2Hg(CN)_2 \cdot 8H_2O$	c		579.6	$S - 20.0^{15}$
MgMoO ₄	c		329.9	
MgWO.	c		345.2	
Mg ₄ Al ₈	c		49.0	S 779. HC1(8)
MgCe	C		13.0	S 260.525 HC10
Mg₃Ce	c		17.0	S 477.325 HC10
$\mathrm{Mg_7B_{16}O_3Cl_2}$	c	borocite		$T - 1.3^{265}$

Calcium

Atomic number 20	Standard	state	Ca (c,	II)	Ato	mic	we	ight 40.08
Formula	State	Desc	ription	kca	$Qf$ , $l.\ mole^{-1}$		Q, 1	ccal. mole-1
Ca	g liq. c	4s ² I II	(¹S₀)	_	47.8 0.000	F T		9.6800 0.10 ⁴⁰⁰ -11
Ca*	g	1	${(^{3}P^{1}_{0})} \ {(^{3}P^{1}_{1})} \ {(^{3}P^{1}_{1})}$	-  -	90.95 90.10 91.40	Ez Ez	_	43.15 43.30 43.60
Ca+ Ca+ *	8 8 8 8 8	4s 3d 4p	$(^{2}S_{1/2})$ $(^{2}D_{3/2})$ $(^{2}D_{5/2})$ $(^{2}P_{1/2})$	_	189.61 228.47 228.63 261.33	Iz Ez Ez		140.36 38.86 39.02 71.72
Ca++	8 8	3p6	${}^{(2}P_{3/2})$ ${}^{(1}S_{0})$	-  -	261.96 463.63 129.74	Ez	_	72.35 272.57
Ca+++ CaO	g g liq. c		$(^2\mathrm{P}^1_{3/2})$	-1	642.2 29. 151.7	Iz F	-1 -	28. ²⁸⁷⁰
	c		ared at 00°		151.8			
CaO ₂ CaO ₂ ·8H ₂ O CaH CaH ₂ Ca(OH) ₂	c c g c			_	156.4 719.0 55.3 46. 236.0 239.06	S D s	-	18.9 _{HCl(100)} 43.5 82.7 _{HCl(aq.)}
Ca(OH) ₂ ·H ₂ O ₂ CaF CaF ₂	800 c g c			-	238.7 291.2 3. 290.2 286.14			
CaCl CaCl ₂	c c c 50 6400 3200 1600 800 400 200 100 50 20 10	(?) fused			96.9 190.6 209.117 208.954 208.898 208.835 208.771 208.688 208.6 208.501 208.363 208.78 206.15	SS		72.2 _{HC1(aq.)} 18.0 ₂₀₀

## Calcium

Formula	State	Description	Qf, kcal. mole-		Q,	kcal. mole-1
CaCl ₂	6		204.2			
CaCl ₂ ·H ₂ O	c		265.2	S		11.7400
CaCl ₂ ·2H ₂ O	c		333.4	S		10.0400
CaCl ₂ ·4H ₂ O	c		480.2	S		1.85400
CaCl ₂ ·6H ₂ O	c		623.45	S		$4.56_{400}$
	liq.		614.4	~		±.00400
CaCl ₂ ·2CaO	c		505.4	S		99.518HC1(aq.)
CaCl ₂ ·3CaO	c		656.	$ \tilde{s} $		147.313 HCl(aq.)
CaCl ₂ ·3CaO·3H ₂ O	c		910.5	S		97.7 ¹³ HCl(aq.)
CaCl ₂ ·3CaO·16H ₂ O	c		1833.8	S		62 /13
CaOCl ₂	c		177.9	S		63.4 ¹³ HCl(aq.) 9.83
	aq.		187.8	15		8.00
CaOCl ₂ ·H ₂ O	c c		248.6	S		7.53
Ca(ClO),	aq.		180.2	10		7.00
CaBr.	c c		162.22	S		04.5
			187.08	13		$24.5_{400}$
	6400		186.95			
	3200					
	1600		186.88 186.83			
	800					
	400		186.77 186.72			
CaBr ₂ ·6H ₂ O	c c		598.2	~		1.00
CaBr ₂ ·3CaO·3H ₂ O	c		888.5	S		1.09400
CaBr ₂ ·3CaO·16H ₂ O	c			S		97.716 H Br (aq.)
CaI ₂			1811.6	S		93.520 HBr (MQ.)
CU12	C ∞		128.48	$\mathcal{S}$		27.70400
	6400		156.48			
	3200		156.34			
	1600	}	156.30			
	800		156.26			
	400		156.21			
CaI ₂ ·8H ₂ O		1	156.18	~		
CaI ₂ ·3CaO·16H ₂ O	C		701.6	S		1.7420
CaS	C		1781.2	S		63.4 _{HI(aq.)}
Cas	C		113.4	s		26.311 HC1(aq.)
CaSO ₃ ·2H ₂ O	aq.		119.8			
CaSO ₄	C	"·············	418.7			
Caso	C	"insoluble"	340.7			
	C	"soluble"	340.4			
	∞ 6400		345.54			
	6400		344.97			
	3200		344.86			
	1600		344.75			
CaSO ₄ -}H ₂ O	800		(344.71)			
CaSO ₄ ·2H ₂ O	C	ļ	376.11	_		
Cabo ₄ ·ZII ₂ O	c		482.46	${\mathcal S}$		$0.84_{800}$

Calcium

Formula	State	Description	$Qf,$ $kcal. mole^{-1}$	Q, kcal. mole	g <b></b> 1
CaS ₂ O ₃	800		275.2		
-	350		275.05		
	230		275.01		
	116		274.87		
	34		274.60		
CaSe	С		81.8	S 34.8 _{HC}	1 (200)
CaN ₆	С		- 75.8		
$Ca_3N_2$	С		109.5	$S = 342.7_{\mathrm{HC}}$	1(aq.)
$CaN_2O_2\cdot 4H_2O$	c		405.4		
$Ca(NO_3)_2$	c		224.04	$S = 3.94_{40}$	0
	∞		228.12		
	6400		227.98		
	3200		227.96		
	1600		227.94		
	800		227.94		
	400		227.98		
	200		1 228.24		
	100		228.29		
	4		228.3		
	200 C₂H₅OH		231.5	$S = 7.41^{25}$	С₂н₅он
$Ca(NO_3)_2 \cdot H_2O$	c ·	i	295.8		
$Ca(NO_3)_2 \cdot 2H_2O$	С		368.07	$S - 3.35_{40}$	•
$Ca(NO_3)_2 \cdot 3H_2O$	С		437.41	$S - 4.32_{400}$	•
$Ca(NO_3)_2 \cdot 4H_2O$	c		509.59	$S - 8.13_{400}$	0
~ (2777)	liq.		501.8	~ ********	
$Ca(NH_2)_2$	c		91.5	S 101.714 _H	Cl (aq.)
Ca(NO ₃ ) ₂ ·Ca(OH) ₂	C		461.2	S 33.2 _{HN}	Og (aq.
Ca(NO ₃ ) ₂ ·Ca(OH) ₂ ·2½H ₂ O	1		552.2	S 24.8 _{HN}	(.pa) (Ol
CaCl ₂ ·NH ₃	c		218.5	D - 17.	
CaCl ₂ ·2NH ₃	c		244.5	$D - 15.0 \\ D - 10.1$	
CaCl ₂ ·4NH ₃	С		287.0	D - 10.1 D - 9.8	
CaCl ₂ ·8NH ₃	С		370.4 191.9	D - 9.8 D - 18.6	
CaBr ₂ ·NH ₃	C.	i	219.9	D - 13.0 $D - 17.0$	
CaBr ₂ ·2NH ₃	C	i i	310.5	D - 11.7	
CaBr ₂ ·6NH ₃ CaBr ₂ ·8NH ₃	c c		351.9	D - 9.8	
CaI ₂ ·NH ₃	c		159.2	D - 9.3 D - 19.7	
CaI ₂ ·NII ₃ CaI ₂ ·2NH ₃	c		189.2	D - 19.0	
CaI ₂ ·2NH ₃ CaI ₂ ·6NH ₃	c		289.0	D - 14.0	
CaI ₂ ·8NH ₃	c		327.7	D - 8.4	
$CaSO_4 \cdot (NH_4)_2 SO_4 \cdot H_2 O$	c		694.5	S - 2.16	
2CaSO ₄ ·(NH ₄ ) ₂ SO ₄ ·	c		964.7	S 4.38	
5CaSO ₄ ·(NH ₄ ) ₂ SO ₄ ·H ₂ O	c		2070.1	S 2.32	
$Ca_3(PO_4)_2$	c		983.		
Ca3(1 C4/2	aq.		984.		
	q.				

# Calcium

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q,	kcal. mole⁻¹
$Ca_3(PO_4)_2$	colloid	in water	977.		
CaHPO	aq.	111 112001	434.		
CaHPO.2H2O	c c		571.7		
$Ca(H_2PO_4)_2$	aq.		744.		
$Ca(H_2PO_4)_2 \cdot H_2O$	c c		813.		
$Ca(H_2PO_4)_2 \cdot H_2O \cdot NH_3$	c		835.6	D -	11.6
$Ca(H_2PO_4)_2 \cdot H_2O \cdot 2NH_3$	c		855.6	$\tilde{D}$ –	9.1
$Ca(H_2PO_4)_2 \cdot H_2O \cdot 4NH_3$	c		892.8	$\tilde{D}$ –	
$Ca_3(AsO_4)_2$	c	ppt.	794.		•••
003(12004)/2	aq.	PP.	808.		
CaHAsO ₄	aq.	ppt.	343.		
$Ca(H_2AsO_4)_2$	aq.	ppt.	560.		
CaC ₂	c c	pp	14.5	S	60.8 _{HCl(100)}
CaCO ₃	C	calcite, I	289.5	ŝ	3.24 ²⁵ HC1(50)
Cacc3	c	aragonite, II	289.54	$ \tilde{T} $	0.04 ²⁵ +1
CaC ₂ O ₄	c	ppt., calcium	200.01	1	0.01 +1
CaC ₂ O ₄	"	oxalate	333.1		
Ca(CHO ₂ ) ₂	c	calcium for-	000.1		
Ca(C11O2)2	"	mate	328.3	S	0.6616360
	400	mate	329.0	~	0.00 360
Ca(HCO ₃ ) ₂	aq.	calcium bi-	020.0		
Ca(11CO3)2	aq.	carbonate	460.2		
$Ca(C_2H_3O_2)_2$	c	calcium	400.2		
Ca(C2113C2/2		acetate	358.0	S	$7.0^{16}$
	∞	acetate	365.64		7.0 440
$Ca(C_2H_3O_2)_2 \cdot H_2O$	c		427.5	S	5.8617440
$Ca(C_2H_3O_3)_2$	c	calcium	121.0	Š	0.00 440
Ca (C2113O3) 2		glycollate	443.2	2 _	1.62
1	aq.	gryconaic	441.6		1.02
Ca(C ₂ H ₃ O ₃ ) ₂ ·3H ₂ O	c c		653.8	s -	7.06
$Ca(C_2H_3O_3)_2.5H_2O$	c		791.0	s -	7.6
$Ca(C_2H_5O)_2$	c	calcium	101.0	~	1.0
00(02=200)2	"	alcoholate	229.0	S	40.2718 HC1(110)
$\mathrm{Ca}(\mathrm{C_2H_5O})_2\mathrm{\cdot}2\mathrm{C_2H_5OH}$	c	aiconorauc	372.1	Š	36.8 _{ECI(110)}
3CaO·4C ₂ H ₅ OH	c		780.5	Š	92.9 _{HCl(aq.)}
CaCl ₂ ·3C ₂ H ₅ OH	c		405.8	D -	14.6
CaCl ₂ ·4C ₂ H ₅ OH	c		474.9	D -	12.
CaCl ₂ ·(CH ₃ ) ₂ CO	c		21 2.0	D -	11.4
CaBr ₂ ·3C ₂ H ₅ OH	c		380.2	D -	15.5
CaBr ₂ ·4C ₂ H ₅ OH	c		451.9	D -	14.6
CaCN ₂	c		85.	S	161.2
Ca(CN) ₂	aq.		60.2	~	~ V A. M
Ca(NO ₃ ) ₂ ·2CH ₃ OH	c aq.		344.1	D -	11.4
3CaO·Ca(CN) ₂ ·15H ₂ O	c		1608.0	s -	94.015 HCl(aq.)
CaSi	c		87.		JEO HCI(aq.)
	"		٥١.		

Calcium

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$		$Q, kcal. mole^{-1}$
CaSi ₂	С		220.		
CaSiO ₃	c	II, wollas-		1	
		stonite	377.9	$\mid T$	- 1.26 ₊₁
	c	I, pseudo-		-	212041
		wollaston-	.]		
		ite	376.6		•
CaSiO ₄	gls.		537.		
CaSn ₃	c		52.		
CaI ₂ ·2PbI ₂	c		223.4	S	16.6115500
CaI ₂ ·2PbI ₂ ·7H ₂ O	c		713.3	S	5.3
CaZn ₄	c		29.5	S	219.5 _{HC1(20)}
CaZn ₁₀	c		48.	S	381. _{HC1(20)}
$Ca_2Zn_3$	c		40.	S	307.8 _{HC1(20)}
Ca ₄ Zn	c		32.	$\tilde{s}$	512. _{HC1(20)}
CaCd ₃	c		30.	$\tilde{s}$	159.6 _{HCl(8)}
CaBr ₂ ·HgBr ₂	4400		226.9	~	100.0HCI(8)
CaBr ₂ ·2HgBr ₂	8400		264.5		
$Ca(CN)_2 \cdot Hg(CN)_2$	900		8.4		
$Ca(CN)_2 \cdot 2Hg(CN)_2$	900		- 54.85	l	
CaCl ₂ ·2Hg(CN) ₂	1000		79.5		
$CaCl_2 \cdot 2Hg(CN)_2 \cdot 6H_2O$	c		504.3	s	14.615
CaBr ₂ ·2Hg(CN) ₂ ·Cll ₂ C	1000		58.4	B	14.0
$CaBr_2 \cdot 2Hg(CN)_2 \cdot 7H_2O$	С С		556.8	s	19.815
$CaI_2 \cdot 2Hg(CN)_2$	1000		32.2	2	13.0
CaI ₂ ·2Hg(CN) ₂ ·6H ₂ O	c		464.8	S	22.4
$Ca_{12}$ ·Ziig(Civ) ₂ ·Oii ₂ O $Ca(CN)_{2}$ ·AgCN	1000		68.8	B	22.4
Ca(CN) ₂ ·AgCN	500	1	7.5		
CaO·Fe ₂ O ₃	c		399.		
	i .		138.1	N	56.4
Ca ₂ Fe(CN) ₆	aq.		963.2	S	- 4.6 ¹⁰
Ca ₂ Fe(CN) ₆ ·12H ₂ O	C		i	N	28.4
CaH ₂ Fe(CN) ₆	aq.		8.1 387.	14	20.4
CaWO.	c		462.7	s	99 5
$CaO \cdot B_2O_3$	c		751.5	S	22.5 _{HCl(aq.)}
CaO·2B ₂ O ₃	C		632.2	S	20.9 _{HCl(aq.)}
2CaO·B ₂ O ₃	C		797.8	S	51.0 _{HCl(aq.)}
3CaO·B ₂ O ₃	c		51.	S	83.35 _{HCl(aq.)}
CaAl ₃	C mla		620.	ß	454. _{HC1(8)}
CaO·Al ₂ O ₃	gls.		-		
2CaO·Al ₂ O ₃	gls.		857.		
3CaO·Al ₂ O ₃	gls.		1098. 1457.8	a	146 0
3CaCl ₂ ·4AlCl ₃	c			s	146.8
$3CaO \cdot Al_2O_3 \cdot 2SiO_2$	С		1292.	a	906
CaO·Al ₂ O ₃ ·6SiO ₂	c		3287.	$S_{\alpha}$	286. _{HF(4,44)}
Ca ₈ Mg ₄	c		43.	$S_{\alpha}$	800. HC1(8)
CaCl ₂ ·2MgCl ₂ ·2H ₂ O	c		701.0	$\mathcal{S}$	22.3
$CaCO_{s} \cdot MgCO_{s}$	l c	dolomite	559.7		

#### Strontium

Atomic number 38

Standard state Sr (c)

Atomic weight 87.63

Formula	State	Description	$Qf$ , $kcal$ , $mole^{-1}$	Q, kcal. mole ⁻¹
Sr	g liq.	5s ² ( ¹ S ₀ )	- 47.	F - 1.4750
Sr*	0 8 8 8 8 8	5s5p ( ³ P ¹ ₀ ) ( ³ P ¹ ₁ ) ( ³ P ¹ ₂ ) 5s5d ( ³ D ₁ ) ( ³ D ₂ ) ( ³ D ₈ )	0.000 - 87.76 - 88.29 - 89.41 - 98.70 - 98.87 - 99.15	$E^{z} - 40.759$ $E^{z} - 41.291$ $E^{z} - 42.414$ $E^{z} - 51.697$ $E^{z} - 52.152$
Sr+ Sr+ *	80 80 80	$\begin{array}{ccc} 5s & (^2S_{1/2}) \\ 4d & (^2D_2) \\ & (^2D_3) \end{array}$	- 179.19 - 212.63 - 213.43	$     \begin{array}{r}       I^z & -130.74 \\       E^z & -41.44 \\       E^z & -42.238     \end{array} $
Sr++ SrO	g 8 g	$4p^6$ ( $^2S_{1/2}$ )	- 425.59 130.04 - 3.0	$I^s - 252.95$ $Vs - 140.0^{120}$
SrO ₂ SrO ₂ ·9H ₂ O Sr ₂ O SrH ₂ Sr(OH) ₂	c c c c &		140.8 153.3 789.2 153.6 42.1 228.7 239.36	S 30.0 ¹⁵ ,100 S 22.23 ¹⁵ HC1(900) S 1.74 ¹⁵ HC1(200) S 174.9 ¹⁵ HC1(aq.) S 88.0 ⁷ HC1(200) S 10.5 ₁₁₀₀
Sr(OH) ₂ ·H ₂ O Sr(OH) ₂ ·8H ₂ O SrF SrF ₂ SrCl	800 c c g c	(?)	239.2 302.1 800.5 - 27. 289.0 106.5	$S = 5.26^{15}_{1100}$ $S = 14.27^{15}_{1100}$ D = 77. $S = 63.0^{15}_{HC1(100)}$
SrCl ₂	6400 3200 1600 800 400 200 100		197.87 209.41 209.25 209.20 209.13 209.07 209.02 209.0 208.987	S 11.15 ₄₀₀
$\begin{array}{l} SrCl_2 \cdot H_2O \\ SrCl_2 \cdot 2H_2O \\ SrCl_2 \cdot 6H_2O \\ Sr(ClO)_2 \\ SrCl_2 \cdot SrO \cdot H_2O \\ SrCl_2 \cdot SrO \cdot 9H_2O \end{array}$	50 c c c aq. c		208.978 271.4 343.2 626.7 179.9 436.7 1006.2	$\begin{array}{cccc} S & 6.0^{17}_{400} \\ S & 2.51_{400} \\ S & -7.51_{400} \\ N & 17.8 \\ S & 39.3^{22}{}_{\rm HCl(100)} \\ S & 16.72^{22}{}_{\rm HCl(100)} \end{array}$

## Strontium

Formula	State	Description	Qf, kcal, mole ⁻¹	Q, kcal. mole ⁻¹
SrBr ₂	С		171.0	S 16.1 ₄₀₀
	∞		187.38	
	6400		187.23	
	3200		187.19	
	1600		187.14	
	800		187.09	
	400		187.06	
$SrBr_2 \cdot H_2O$	c		246.5	S 8.9400
$SrBr_2 \cdot 2H_2O$	c		317.6	S 6.2400
$SrBr_2 \cdot 4H_2O$	c		460.5	S 0.0400
SrBr ₂ ·6H ₂ O	c		603.7	$S - 6.45_{400}$
SrBr ₂ ·SrO·3H ₂ O	c		552.7	S 38.5 _{HBr(aq.)}
SrBr ₂ ·SrO·9H ₂ O	c		984.8	S 16.45 ²⁰ HBr (aq.)
$SrI_2$	c		136.1	S 20.6
~2.22	· ∞		156.78	~ 20.0
	6400		156.64	
	3200		156.60	
	1600		156.57	
	800		156.54	
	400		156.52	
$SrI_2 \cdot H_2O$	c		212.5	S 12.4
SrI ₂ ·11 ₂ O SrI ₂ ·2H ₂ O	c		283.1	S 10.17 ¹⁹
SrI ₂ ·2H ₂ O SrI ₂ ·6H ₂ O	c		571.5	S - 4.73
SrS	c		113.1	S 27.0 HCl(aq.)
51.5	aq.		120.3	D 21.0HCl(aq.)
SrSO ₄	c c		345.3	
51504	°		345.8	
	6400		345.2	
	3200		345.1	
	1600	•	345.0	
	800		344.9	
	400		344.8	
a-a U	1 1		410.2	
SrS ₂ O ₆	aq.		693.0	$S - 9.25_{400}$
$SrS_2O_6\cdot 4H_2O$	c		137.9	S - 9.20400
Sr(HS) ₂	aq.			D - 11.1
SrI ₂ ·2SO ₂	C		300.2 463.5	
$SrI_2 \cdot 4SO_2$	C		403.5 83.4	20
SrSe	C			S 33.6
~ ~~	aq.		104.6	
SrN ₆	c		- 49.0	0 261.6
Sr ₃ N ₂	С		92.2	S 361.6 _{HC1(200)}
SrN ₂ O ₂	aq.		126.4	
SrN ₂ O ₂ ·5H ₂ O	c .		474.0	g 45
$Sr(NO_3)_2$	c		233.2	$S - 4.7_{400}$
	∞		228.420	

#### Strontium

		~ · · · · · · · · · · · · · · · · · · ·		
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Sr(NO ₃ ) ₂	550000		228.403	
SI(NO3)2	21000		228.348	
	5550		228.313	
	2000		228.304	
	1000		228.340	
	400		228.52	
	200		228.78	
	100		228.91	
	50		229.90	
	20		231.16	
C (NO.) ATTO	1		514.3	$S - 12.3_{400}$
$Sr(NO_3)_2.4H_2O$	C		82.8	S 110.87 HC1(200)
$Sr(NH_2)_2$	C		123.3	D - 9.6
Sr·6NH ₃	С		220.3	D - 11.5
SrCl ₂ ·NH ₃	C		241.7	D - 10.5
$SrCl_2 \cdot 2NH_3$	C		370.0	D - 10.4
$SrCl_2 \cdot 8NH_3$	c		198.3	D - 16.8
$SrBr_2 \cdot NH_3$	С		222.0	D - 10.8 $D - 12.8$
$SrBr_2 \cdot 2NH_3$	С		1	D = 12.8 D = 10.9
$SrBr_2 \cdot 8NH_3$	c		375.5	D = 10.9 D = 18.3
$SrI_2 \cdot NH_3$	C		165.4	
$SrI_2 \cdot 2NH_3$	c		191.9	D - 15.5
$SrI_2.6NH_3$	c		286.1	D - 12.8
$SrI_2.8NH_8$	c		330.0	D - 11.0
$SrSO_4 \cdot (NH_4)_2SO_4$	c		627.6	S - 3.20
$Sr_3(PO_4)_2$	c	ppt.	980.	Į.
	aq.		985.	
SrHPO4	aq.		434.	
$Sr(H_2PO_4)_2$	aq.		745.	
$Sr_3(AsO_4)_2$	c	ppt.	797.	
•	aq.		809.	
SrHAsO ₄	aq.		343.	
$Sr(H_2AsO_4)_2$	aq.		560.	
SrCO ₃	C		290.4	
SrC ₂ O ₄ ·2½H ₂ O	c	strontium oxa-		
		late hydrate	503.4	
$Sr(CHO_2)_2$	c	strontium for-		
		mate	328.0	S 0.6218 500
	aq.		329.6	
$Sr(CHO_2)_2 \cdot 2H_2O$	C		470.7	S - 5.4611 ₈₀₀
$Sr(HCO_3)_2$	aq.	strontium bicar-		
· (11008/2		bonate	459.7	
$Sr(C_2H_3O_2)_2$	c	strontium acetat	1	S 5.5612400
DI ( 2118 02/2		25.0120.011	365.93	
•	400		365.3	
$Sr(C_2H_3O_2)_2\cdot\frac{1}{2}H_2O$	c 200		394.2	S 5.2612200
DL(O3118O3)3.4113O				
	١	1		

Strontium

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$		$Q$ , $kcal$ . $mole^{-1}$
$Sr(C_2H_3O_3)_2$	С	glycollate	444.3	s	- 1.2
	aq.		443.1		
$SrBr_2 \cdot 1\frac{1}{2}CH_3OH$	c		257.8	D	- 9.14
$Sr(CN)_2$	aq.		60.2	-	
$Sr(CN)_2\cdot 4H_2O$	c		338.6	S	- 4.158 ₂₀₀
SrSiO₃	gls.		364.		200
$SrI_2 \cdot 2PbI_2$	С		222.9	S	17.55
$SrI_2 \cdot 2PbI_2 \cdot 7H_2O$	c		714.3	S	4.7015
$SrHg_{\infty}$	liq.		59.5		
$SrBr_2 \cdot HgBr_2$	4400		227.3	ŀ	
$SrBr_2 \cdot 2HgBr_2$	8400		265.0		
$2\mathrm{SrBr_2 \cdot HgBr_2}$	4800		416.8	İ	
$Sr(CN)_2 \cdot Hg(CN)_2$	600		8.0		
$Sr(CN)_2 \cdot 2Hg(CN)_2$	900		- 55.2		
$SrCl_2 \cdot 2Hg(CN)_2$	1000		79.8		
$SrCl_2 \cdot 2Hg(CN)_2 \cdot 6H_2O$	С		505.8	S	<b>- 15.8</b> ¹⁵
$SrBr_2 \cdot 2Hg(CN)_2$	1000		58.9		
$SrBr_2 \cdot 2Hg(CN)_2 \cdot 6H_2O$	С		487.7	S	- 18.6 ¹⁵
$SrI_2 \cdot 2Hg(CN)_2$	1000		32.6		
$SrI_2 \cdot 2Hg(CN)_2 \cdot 7H_2O$	С		533.0	$\mathcal{S}$	<b>- 21.8</b>
$\operatorname{Sr}(\operatorname{CN})_2{\operatorname{\cdot}}\operatorname{AgCN}$	600		34.1		
$Sr(CN)_2 \cdot 2AgCN$	500		6.6		
$\mathrm{Sr_3(FeCO(CN)_5)_2}$	c		266.5	s	$39.9^{13}_{5300}$
	aq.		306.4		
$\mathrm{Sr_3(FeCO(CN)_5)_2\cdot 4H_2O}$	c		547.5	s	$32.4^{13}_{5700}$
$Sr(CN)_2 \cdot Ni(CN)_2$	aq.		95.7		
$SrWO_4$	c		393.		
3SrCl ₂ ·4AlCl ₃	c		1277.0	$\mathcal{S}$	$328.8^{21}_{1600}$

Barium

Atomic number 56

Standard state Ba (c) Atomic weight 137.36

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kcal. mole ⁻¹
Ва	g liq.	6s ² (¹S₀)	- 49. 0.000	F — 1.40660
Ba*	C & & & & & & & & & & & & & & & & & & &	$\begin{array}{c} 6s5d \ (^{3}D_{1}) \\ (^{3}D_{2}) \\ (^{3}D_{3}) \\ (^{1}D_{2}) \\ 6s6p \ (^{3}P_{1}_{0}) \\ (^{3}P_{1}_{2}) \end{array}$	- 74.72 - 75.23 - 76.32 - 81.44 - 83.92 - 84.74 - 87.47	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Ba+ Ba+ *	8 8 8 8 8	$\begin{array}{ccc} 6s & (^{2}S_{1/2}) \\ & (^{2}D_{3/2}) \\ & (^{2}D_{5/2}) \\ 6p & (^{2}P_{1/2}) \\ & (^{2}P_{3/2}) \end{array}$	- 160.10 - 173.97 - 176.25 - 217.78 - 223.58	$I^{s} - 119.645$ $E^{s} - 13.874$ $E^{s} - 16.155$ $E^{s} - 57.68$ $E^{s} - 62.49$
Ba++	8	5p ⁶ (¹S₀)	- 391.16 128.36	I* -229.61
BaO	g c		40. 133.	V - 90.01200
BaO ₂ ·H ₂ O BaO ₂ ·H ₂ O BaO ₂ ·10H ₂ O Ba ₂ O BaH ₂ Ba(OH) ₂	c c c c		152.4 223.4 855.1 149. 40.8 225.9 237.68	S 22.0 ¹³ HCl(sa0) S 19.1 _{HCl(aq.)} S 2.72 S 176.4 ¹⁵ HCl(aq.) S 87.6 ⁷ HCl(aq.) S 11.60 ₆₆₀
Ba(OH) ₂ ·H ₂ O Ba(OH) ₂ ·8H ₂ O BaO ₂ ·H ₂ O ₂ BaF ₂	400 c c c		237.43 298.6 798.9 208.1 287.9 284.76	S 7.06 ¹⁵ ₅₅₀ S - 14.50 ¹⁵ ₆₅₀ S 11.8 ¹² HCl(aq.)
BaCl ₂	1600 c 6400 3200 1600 800 400 200 100		284.4 205.28 207.73 207.57 207.52 207.46 207.40 207.350 207.3 207.272	S 2.07 ₄₀₀
BaCl ₂ ·H ₄ O	50 c		207.308 278.27	S - 1.55 ₄₀₀

Barium

Formula	State	Description	$Qf$ , $kcal$ , $mole^{-1}$	Q, kcal. mole ⁻¹
BaCl ₂ ·2H ₂ O	c		349.0	$S - 4.92_{400}$
Ba(ClO) ₂	aq.		180.	1.07400
$Ba(ClO_2)_2$	c		157.8	
$Ba(ClO_3)_2$	c c		176.6	$S - 6.7^{10}_{600}$
24(0103/1	, m		169.86	D 0.1 600
	1600		169.9	
$Ba(ClO_3)_2 \cdot H_2O$	c		248.8	$S - 11.24_{600}$
$Ba(ClO_4)_2$	c		210.2	S = 11.24600 $S = 1.8^{10}800$
Da(0104)2	w		207.36	5 - 1.0-800
	800		208.2	
Ba(ClO ₄ ) ₂ ·3H ₂ O	c		423.0	S - 9.4
$BaCl_2 \cdot BaO \cdot 3H_2O$	1 1			5 - 9.4
BaCl ₂ ·BaO·5H ₂ O	c		578.5	
BaCl ₂ ·BaO·8H ₂ O	1 1		727.6	
BaBr ₂	C		931.6	α 4.00
DaDr ₂	c ∞		180.41	$S = 4.98_{400}$
	1 1		185.70	
	6400		185.56	
	3200		185.51	
	1600		185.46	
•	800		185.42	
n n *** ^	400		185.39	
BaBr ₂ ·H ₂ O	c		254.9	D - 16.70
BaBr ₁ ·2H ₂ O	C		326.31	$S - 4.18_{400}$
Ba(BrO) ₂	aq.		176.	
$Ba(BrO_3)_2$	∞		150.76	
	800		151.6	
$Ba(BrO_8)_2 \cdot H_2O$	C		235.0	S - 15.06
BaBr ₂ ·BaO·2H ₂ O	c		485.2	S 33.8 H Br (aq.)
$BaBr_2 \cdot BaO \cdot 5H_2O$	c		704.7	S 18.520 HBr(aq.)
BaI ₂	c		144.6	$S = 10.29^{16}$
	∞		155.10	
	6400		154.96	
	3200		154.93	
	1600		154.90	
	800		154.87	
	400		154.86	
BaI ₂ ·H ₂ O	c		220.8	D - 18.8
BaI ₂ ·2H ₂ O	c		291.7	D - 13.5
BaI₂·2½H₂O	c		326.6	D - 12.9
BaI ₂ ·7H ₂ O	c		640.30	$S - 6.85_{400}$
Ba(IO ₃ ) ₂	c		246.5	S - 4.6 K2804 (aq.
	∞		237.36	
$Ba(IO_3)_2 \cdot H_2O$	c		317.0	
BaI ₂ ·BaO·2H ₂ O	c		455.0	S 33.320 HI (aq.)
BaI ₂ ·BaO·9H ₂ O	c		955.1	S 11.8 ²⁰ HI(aq.)
		•	555.2	HI(#Q.)

#### Barium

Formula	State	Description	$Qf$ , $kcal$ , $mole^{-1}$	Q, kcal. mole ⁻¹
BaS	С		111.2	S 27.210 HC1(aq.)
	∞		118.36	
	800		118.6	
BaSO ₃	c	ppt.	282.5	
BaSO ₄	c		349.4	
	∞		344.16	
BaS ₂ O ₆	aq.		408.7	
$BaS_2O_6 \cdot 2H_2O$	c	,	552.4	$S - 6.93_{400}$
$BaS_2O_8$	aq.		451.7	
BaS ₂ O ₈ ·4H ₂ O	c		746.9	S - 11.8
Ba(HS) ₂	aq.		136.2	N 15.75
Ba(HSO ₃ ) ₂	aq.		426.0	
BaSO. H2SO.	c		548.0	S 14.252260
BaSO ₄ ·2H ₂ SO ₄ ·H ₂ O	c		800.2	S 24.252260
BaS ₄ O ₆	aq.		400.7	
BaS ₄ O ₆ ·2H ₂ O	c		544.4	$S - 7.0^{17}_{800}$
BaI ₂ ·2SO ₂	c		309.3	D - 11.34
BaI ₂ ·4SO ₂	c		471.0	D - 9.91
BaSe	c		81.3	S 33.9 HC1(aq.)
BaSeO ₄	c		277.8	201(201)
$Ba(N_3)_2$	c		19.5	S - 7.8
	aq.		11.7	
$Ba_3N_2$	C		90.7	S 358.08 HCI(aq.)
$Ba(NO_2)_2$	C		184.6	$S - 5.68^{12}_{800}$
	aq.		178.9	
$Ba(NO_2)_2 \cdot 2H_2O$	c		255.9	$S - 8.6^{12}_{800}$
$Ba(NO_8)_2$	c		236.9	$S - 9.47_{400}$
	∞		226.740	
	550000		226.728	
	21200		226.705	
	5500		226.733	
	1900		226.839	
	1380		226.875	
	800		227.049	
	400		227.27	
	200		227.90	
BaNH	c		53.6	S 106.58 HC1(200)
$Ba(NH_2)_2$	c		78.8	S 113.18 HC1 (200)
$Ba(NH_3)_6$	c		74.7	D - 8.8
BaCl ₂ ·8NH ₃	c		364.5	D - 8.92
BaBr ₂ ·NH ₃	c		203.4	D - 12.0
BaBr ₂ ·2NH ₃	С		226.1	D - 11.8
BaBr ₂ ·4NH ₃	c		269.7	D - 10.8
BaBr ₂ ·8NH ₃	c		355.2	D - 10.4
BaI ₂ ·2NH ₃	c		193.3	D - 13.4

Barium

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Formula	State	Description	Qf, kcal. mole ⁻¹	$Q$ , $kcal$ . $mole^{-1}$
BaI₁+SNH₁	Bal ₂ ·4NH ₃	c		237.9	D - 11.3
BaI₁-9NH₁ BaI₁-10NH₂ Ba(PO₁)₂ Ba(PO₁)₂  Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(HPO₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₂ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬O₃)₃ Ba(H¬	BaIs 6NHs	c		282.0	D - 11.1
Bal₁·10NH₁   c   c   c   c   c   c   c   c   c	BaI.8NH.	c		325.4	D - 10.7
Bai(PO₁)₂	BaI ₂ ·9NH ₄	С		346.3	D - 10.0
Ba(HPO₁)₁ barium oxalate hydrate barium formate barium bicarbonate barium acetate barium acetate barium acetate barium alcoholate aq. Ba(C₁H₁O₁)₂ 3H₂O c barium glycollate aq. Ba(C₁H₂O₁)₂ c barium glycollate aq. Ba(C₁H₂O₁)₂ c barium alcoholate aq. Ba(C₁H₂SO₁)₂ c ba(CN)₂ c ba(CN)₂ c ba(CN)₂ c barium ethyl sulfate ba(C₁H₂SO₁)₂ ba(CN)₂ c ba(CN)₂ c ba(CN)₂ c barium ethyl sulfate ba(C₁H₂O₁)₂ c ba(CN)₂ c ba(CN)₂ c ba(CN)₂ c ba(CN)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(CN)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(CN)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(CN)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c ba(C, H₂O₁)₂ c barium ethyl sulfate ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c barium ethyl sulfate ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba(C, H₂O₁)₂ c c ba	BaI 10NH	c		365.0	D - 7.7
Ba(HPO₁)₂	Bas(POs)	c	ppt.	992.	
Ba(HPO ₃ ) ₁ Ba(HPO ₃ ) ₂ H ₃ O c Ba(HPO ₄ ) ₂ H ₃ O c aq. Ba(HPO ₄ ) ₃ Ba(HPO ₄ ) aq. Ba(HPO ₄ ) aq. Ba(H ₂ O ₃ ) aq. Ba(H ₂ O ₄ ) aq. Ba(H ₂ O ₄ ) aq. Ba(H ₂ O ₄ ) aq. Ba(H ₂ O ₄ ) aq. Ba(H ₃ O ₄ O ₃ ) aq. Ba(H ₃ O ₄ O ₃ ) aq. Ba(H ₃ AsO ₄ ) ₂ aq. Ba(H ₃ AsO ₄ ) ₃ aq. Ba(H ₃ AsO ₄ ) ₃ aq. Ba(H ₃ AsO ₄ ) ₃ aq. Ba(H ₃ AsO ₄ ) ₃ aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ ) aq. Ba(H ₃ O ₄ O ₄ O ₄ O ₄ O c barium bicarbonate barium bicarbonate barium acetate 358.5 ag. 5.24 ¹¹ soo 364.25 aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ O ₃ O ₃ aq. Ba(C ₃ H ₃ SO ₄ O ₃ aq. Ba(C ₃ H ₃ SO ₄ O ₃ aq. barium ethyl sulfate 543.8 Ba(C ₃ H ₃ SO ₄ O ₃ 2H ₃ O c Ba(C ₃ H ₃ SO ₄ O ₃ aq. Ba(C ₃ H ₃ SO ₄ O ₃ 2H ₃ O c Ba(C ₃ H ₃ SO ₄ O ₃ aq. Ba(C ₃ H ₃ SO ₄ O ₃ 2H ₃ O c Ba(C ₃ H ₃ SO ₄ O ₃ aq. barium ethyl sulfate 543.8 Ba(C ₃ H ₃ SO ₄ O ₃ 2H ₃ O c Ba(C ₃ O ₃ 2H ₃ O c Ba(C ₃ O ₃ 2H ₃ O c Ba(C ₃ O ₃ 2H ₃ O c Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2H ₃ O c C Ba(C ₃ O ₃ 2	7.7	colloid	in water	975.	
Ba(HPO ₁ ) ₂ ·H ₂ O BaH ₃ P ₂ O ₆ BaH ₄ P ₂ O ₆ BaH ₄ PO ₄ ) Ba(H ₂ PO ₄ ) ₂ Ba ₄ (AsO ₄ ) ₃ Ba ₄ (AsO ₄ ) ₃ BaHAsO ₄ BaHAsO ₅ Ba(P ₄ AsO ₄ ) ₃ BaCO ₅ BaCO ₆ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₃ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ B		∞		980.	
Ba(HPO ₁ ) ₂ ·H ₂ O BaH ₃ P ₂ O ₆ BaH ₄ P ₂ O ₆ BaH ₄ PO ₄ ) Ba(H ₂ PO ₄ ) ₂ Ba ₄ (AsO ₄ ) ₃ Ba ₄ (AsO ₄ ) ₃ BaHAsO ₄ BaHAsO ₅ Ba(P ₄ AsO ₄ ) ₃ BaCO ₅ BaCO ₆ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₃ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₃ Ba(C ₄ H ₄ O ₄ ) ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ Ba(A ₄ B	Ba(HPO ₂ ) ₂	aq.		414.0	
BaH₁P₁O₀         aq.         432.         N         35.4           BaHPO₀         aq.         aq.         817.7         743.         743.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         804.         806.         806.         806.         806.         806.         806.         807.         806.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.         807.				482.1	S 0.29400
BaHPO ₁ Ba(H ₂ PO ₁ ) ₂ Ba ₁ (AsO ₁ ) ₁ Ba ₂ (AsO ₁ ) ₂ BaHAsO ₂ BaHAsO ₃ BaHAsO ₄ Ba(H ₂ AsO ₃ ) ₂ Ba(H ₂ AsO ₃ ) ₂ Ba(H ₂ AsO ₃ ) ₂ BaCO ₃ BaCO ₃ Ba(H ₂ AsO ₄ ) ₂ Ba(HCO ₃ ) ₁ Ba(HCO ₃ ) ₁ Ba(HCO ₃ ) ₁ Ba(C ₃ H ₃ O ₃ ) ₂ Ba(C ₄ H ₃ O ₃ ) ₂ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₅ H ₃ O ₄ ) ₃ Ba(C ₅ H ₃ O ₄ ) ₃ Ba(C ₆ H ₃ SO ₄ ) ₃ Ba(C ₆ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₃ SO ₄ ) ₃ Ba(C ₇ H ₇ SO		1			
Ba(H ₂ PO ₄ ) ₂ Ba ₃ (AsO ₄ ) ₂ Ba(H ₂ PO ₄ ) ₂ Ba(H ₃ SO ₄ ) ₂ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(H ₂ AsO ₄ ) ₃ Ba(O ₃ Ba(O ₃ Ba(O ₃ Ba(O ₄ Ba(O ₄ ) ₁ ) Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₃ H ₃ O ₃ ) Ba(C ₃ H ₃ O ₃ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₃ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₄ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₃ Ba(C ₅ H ₅ SO ₅ ) ₅	-	1 -		432.	
Ba₁(AsO₁)₂	- · · · · · · · · · · · · · · · · · · ·			743.	
BaHAsO ₃ BaHAsO ₄ BaHAsO ₄ Ba(H ₂ AsO ₄ ) ₂ Ba(H ₂ AsO ₄ ) ₂ BaCO ₅ BaC ₂ O ₄ ·H ₄ O  Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₃ Ba(C ₂ H ₁ O ₁ ) ₂ Ba(C ₂ H ₁ O ₁ ) ₃ Ba(C ₂ H ₁ O ₁ ) ₄ Ba(C ₂ H ₁ O ₁ ) ₅ Ba(C ₂ H ₂ O ₁ ) ₄ Ba(C ₃ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₁ ) ₂ Ba(C ₄ H ₃ O ₄ ) ₂ Ba(C ₄ H ₃ O ₄ ) ₂ Ba(C ₄ H ₃ O ₄ ) ₃ Ba(C ₄ H ₃ O ₄ ) ₄ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅		1 -	ppt.	817.7	
BaHAsO ₃ BaHAsO ₄ Ba(H ₂ AsO ₄ ) ₂ Ba(H ₂ AsO ₄ ) ₂ Ba(CO ₃ BaCO ₄ BaO-BaCO ₅ BaCO ₅ BaCO ₆ Ba(HCO ₂ ) ₃ Ba(HCO ₂ ) ₃ Ba(HCO ₂ ) ₄ Ba(HCO ₂ ) ₄ Ba(C ₂ H ₃ O ₄ ) ₅ Ba(C ₃ H ₃ O ₄ ) Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₄ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₄ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ B ₅ Ba(C ₅ H ₃ O ₅ ) ₅ Ba(C ₅ H ₃ O ₅ B ₅ Ba(C ₅ H ₃ O ₅ B ₅			• •	804.	
BaHAsO4 Ba(H ₂ AsO ₂ ) ₂ Ba(H ₂ AsO ₄ ) ₂ Ba(H ₂ AsO ₄ ) ₂ BaCO ₃ BaCO ₄ BaCO ₅ BaCO ₅ BaCO ₆ BaC ₂ O ₄ ·H ₂ O  BaO·BaCO ₆ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₃ Ba(C ₂ H ₃ O ₂ ) ₂ Ba(C ₂ H ₃ O ₂ ) ₃ ·3H ₂ O Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₂ H ₃ O ₄ ) ₃ Ba(C ₃ H ₃ O ₄ ) ₃ Ba(C ₃ H ₃ O ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃ SO ₄ ) ₃ Ba(C ₃ H ₃	BaHAsO.				
Ba(H ₂ AsO ₂ ) ₂ aq.       466.       558.       290.9       BaCO ₂ 558.       290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 290.9       BaCO ₂ 2444.0       290.0       2444.0       290.0       2444.0       290.0       244.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0       290.0 <t< td=""><td></td><td></td><td></td><td>343.0</td><td></td></t<>				343.0	
Ba(H ₂ ASO ₄ ) ₂ BaCO ₅ BaC ₂ O ₄ ·H ₂ O C BaC ₃ O ₄ ·H ₂ O C Ba(CO ₂ ) ₂ C Ba(HCO ₂ ) ₂ C Ba(HCO ₂ ) ₃ C Ba(HCO ₃ ) ₄ C Ba(C ₂ H ₄ O ₂ ) ₅ C Ba(C ₂ H ₄ O ₃ ) ₂ C Ba(C ₂ H ₄ O ₃ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₂ C Ba(C ₂ H ₄ O ₄ ) ₃ C Ba(C ₂ H ₄ O ₄ ) ₃ C Ba(C ₂ H ₄ O ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₂ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(C ₃ H ₄ SO ₄ ) ₃ C Ba(CN) ₃ C C Ba(CN) ₃ C C C C C C C C C C C C C C C C C C C	· · · · · · · · · · · · · · · · · · ·			466.	
BaCO ₃ BaC ₃ O ₄ ·H ₂ O  BaO·BaCO ₄ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₃ Ba(HCO ₃ ) ₄ Ba(C ₂ H ₄ O ₃ ) ₅ Ba(C ₂ H ₄ O ₄ ) ₂ Ba(C ₂ H ₄ O ₄ ) ₂ Ba(C ₂ H ₄ O ₄ ) ₂ Ba(C ₂ H ₄ O ₄ ) ₂ Ba(C ₂ H ₄ O ₄ ) ₂ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ O ₄ ) ₃ Ba(C ₂ H ₄ SO ₄ ) ₃ Ba(C ₂ H ₄ SO ₄ ) ₃ Ba(C ₂ H ₄ SO ₄ ) ₃ Ba(C ₂ H ₄ SO ₄ ) ₃ Ba(C ₂ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃ Ba(C ₃ H ₄ SO ₄ ) ₃				558.	
BaC₂O₄·H₂O  BaO·BaCO₃  Ba(HCO₂)₂  Ba(HCO₂)₂  Ba(HCO₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₂H₃O₂)₂  Ba(C₃H₃O₂)₂  Ba(C₃H₃O₂)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂  Ba(C₃H₃O₁)₂	•			290.9	
BaO·BaCO₂       c       barium formate       397.4       424.       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 63.2       D − 6		1	ppt., barium		
BaO·BaCO ₁ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₂ Ba(HCO ₂ ) ₂ Ba(C ₂ H ₁ O ₂ ) ₂ Ba(C ₂ H ₂ O ₂ ) ₂ Ba(C ₂ H ₃ O ₃ ) ₂ ·3H ₃ O Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ O ₄ ) ₂ Ba(C ₂ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₂ Ba(C ₃ H ₃ SO ₄ ) ₃ ·2H ₂ O Ba(C ₃ H ₃ SO ₄ ) ₃ ·2H ₂ O C C C C C C C C C C C C C C C C C C C				397.4	
Ba(HCO₂)₂ c barium formate 330.4 328.0  Ba(HCO₂)₂ aq. barium bicarbonate 460.  Ba(C₂H₂O₂)₂ c barium acetate 358.5 S 5.24¹¹₅₀₀  Ba(C₂H₂O₂)₂·3H₂O c barium glycollate 446.1 S − 5.08 A41.0 N 27.8  Ba(C₂H₂O₂)₂·3H₂O c barium alcoholate 220.6 S 19.76¹⁰  3BaO·4CH₂OH c 714.5 S 112.04 πc1  3BaO·4C₂H₃OA)₂ aq. barium ethyl sulfate 543.8  Ba(C₂H₃SO₄)₂·2H₂O c Ba(CN)₂ c 58.9 N 6.3²  Ba(CN)₂·H₃O c 129.7 S − 2.1⁵	BaO-BaCO.	c		l i	D - 63.2
Ba(HCO₂)₂ aq. barium bicarbonate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate sace barium acetate sace barium acetate sace barium acetate sace barium acetate sace barium acetate sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace acetata sace ac		c	barium formate	330.4	$S - 2.448_{100}$
Ba(HCO₂)₂ aq. barium bicarbonate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate barium acetate sace barium acetate sace barium acetate sace barium acetate sace barium acetate sace barium acetate sace sace sace sace sace sace sace sac		a.a.		328.0	•
Ba(C₂H₂O₂)₂	Ba(HCO ₂ ),		barium bicar-		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			bonate	460.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ba(C_{\bullet}H_{\bullet}O_{\bullet})_{\bullet}$	c	barium acetate	358.5	S 5.2411 ₆₀₀
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		∞		364.25	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		800		363.7	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ba(C ₂ H ₂ O ₂ ) ₂ ·3H ₂ O	C		569.4	S - 0.82
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		c	barium glycollate	446.1	S - 5.08
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		aq.		441.0	N 27.8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Ba(C_{3}H_{5}O)_{4}$		barium alcohol-		
3BaO·4C ₂ H ₃ OH			ate	220.6	S 19.7619
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3BaO-4CH-OH	c		714.5	S 112.04 HCl(aq.)
Ba(C ₂ H ₄ SO ₄ ) ₂ aq. barium ethyl sulfate     543.8       Ba(C ₂ H ₄ SO ₄ ) ₂ ·2H ₂ O     c     685.5     S - 4.97 ₈₀₀ Ba(CN) ₂ c     57.4     S 1.8°       aq. aq.     58.9     N 6.3°       Ba(CN) ₂ ·H ₂ O     c     129.7     S - 2.1°				737.5	
Ba(C ₂ H ₄ SO ₄ ) ₂ ·2H ₂ O c sulfate 543.8 685.5 S - 4.97 ₈₀₀ Ba(CN) ₂ c 57.4 S 1.8° aq. 58.9 N 6.3° Ba(CN) ₂ ·H ₂ O c 129.7 S - 2.1°		ag.	barium ethyl		
Ba(CN), c aq. 57.4 S 1.8° aq. 58.9 N 6.3° Ba(CN), H ₂ O c 129.7 S - 2.1°			sulfate	543.8	
Ba(CN), c aq. 57.4 S 1.8° aq. 58.9 N 6.3° Ba(CN), H ₂ O c 129.7 S - 2.1°	Ba(C ₂ H ₄ SO ₄ ) ₄ ·2H ₄ O	c		685.5	$S - 4.97_{800}$
Ba(CN) ₃ ·H ₂ O c 58.9 N 6.3 ⁷ 129.7 S - 2.1 ⁶				57.4	
Ba(CN) ₁ ·H ₂ O c 129.7 $S - 2.1^{5}$				58.9	$N$ 6.3 7
20(021)	Ba(CN).H.O	1 -		129.7	$S - 2.1^{5}$
$Ba(CN)_{2}2H_{2}O$ c 200.5 $S - 4.7^{7}$				200.5	$S - 4.7^{7}$
Ba(CNO), c barium cyanate 213. S - 14.9			barium cyanate	213.	S - 14.9

Barium

Formula	State	Description	$Qf,$ $kcal.\ mole^{-1}$	(	Q, kcal. mole ⁻¹
Ba(CNO)2	aq.		198.		
Ba(CH ₂ NO ₂ ) ₂	aq.	pseudo salt of			
, , , ,	•	nitromethane	172.6		
BaSiO ₃	gls.		363.		
BaSiF ₆	C		678.2		
•	aq.		672.4		
BaI ₂ ·2PbI ₂	c		230.4	S	8.3015
BaI ₂ ·2PbI ₂ ·7H ₂ O	c		725.6	$\ddot{s}$	- 8.2918
BaBr _z ·HgBr ₂	4400		225.7		0.120
BaBr ₂ ·2HgBr ₂	8400		263.2		
2BaBr ₂ ·HgBr ₂	4800		413.4		
Ba(CN) ₂ ·Hg(CN) ₂	600		6.7		
$Ba(CN)_2 \cdot 2Hg(CN)_2$	900		- 56.5		
BaCl ₂ ·2Hg(CN) ₂	1000		78.2		
BaCl ₂ ·2Hg(CN) ₂ ·5H ₂ O	c		437.2	S	- 17.115
$BaBr_2 \cdot 2Hg(CN)_2$	1000		57.2	~	****
BaBr ₂ ·2Hg(CN) ₂ ·6H ₂ O	c		488.4	S	- 21.015
$BaI_2 \cdot 2Hg(CN)_2$	900		30.7	~	21.0
$BaI_2 \cdot 2Hg(CN)_2 \cdot 4H_2O$	c		326.2	s	- 22.015
Ba(CN) ₂ ·AgCN	1200		32.9	-"	
$Ba(CN)_2 \cdot 2AgCN$	500		5.2		
BaPtCls	c		284.9	S	9.0619,000
	aq.		294.0	_	0.00 8000
BaPtCl ₆ ·6H ₂ O	c c		705.3	S	- 1.06164000
Ba ₂ Fe(CN) ₆	aq.		134.9	N	55.712
$Ba_2Fe(CN)_6\cdot 6H_2O$	c		556.6	S	- 11.414
BaH ₂ Fe(CN),	aq.		7.6	N	29.2
$Ba_3(FeCO(CN)_5)_2$	c		283.3	S	16.915,0000
	aq.		300.2	$\tilde{N}$	84.6
$\mathrm{Ba_3(FeCO(CN)_5)_2\cdot 11H_2O}$	c		1059.2	S	- 6.9 ₁₂₀₀₀
BaHFeCO(CN)	aq.		85.7	N	28.2
$Ba(H_2FeCO(CN)_5)_2$	aq.		42.3	N	28.2
$Ba(CN)_2 \cdot Ni(CN)_2$	aq.		48.0	• •	-0.2
BaCrO ₄	c		342.2		
BaMoO ₄	Č.		370.		
BaWO4	c		402.		
BaCl ₂ ·2AlCl ₃	c		543.2	$\mathcal{S}$	153.5
3BaCl ₂ ·4AlCl ₃	c		1291.3	S	309.4

## Radium

LITHIUM

		Lithium		
Atomic number :	Stano	dard state Li	(c)	Atomic weight 6.940
Formula	State	Description	Qf, kcal. mole ⁻¹	$Q, kcal. mole^{-1}$
Li	g liq.	2s (2S _{1/2} )	- 39.0	$F - 0.76^{186}$
Li*	c g	2s (2P1 _{1/2} )	0.000 - 81.40	$E^z - 42.399$
Li+	g	$\begin{array}{ c c c c c }\hline 2s & (^{2}P^{1}_{3/2}) \\ 1s^{2} & (^{1}S_{0}) \\ \hline \end{array}$	- 81.40 - 163.25	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Li++ Li+++ Li ₂	% g g	1s (2S _{1/2} )	66.628 -1901.6 -4714.1	<i>I</i> [*] −1736.86 <i>I</i> [*] −2811.1
Li ₂ O Li ₂ O · ½H ₂ O	g c c		- 50.8 142.3 220.9	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$\mathrm{Li_2O_2}$	c aq.		151.9 159.	S 7.1 ₁₁₀
LiH	g c		- 33.0 21.59	$D^x - 57.0$ S $31.14_{200}$
LiH* LiOH	g c ∞		- 107.5 116.55 121.288	$E^{z} - 74.8$ S $4.55_{200}$
LiOH·½H ₂ O LiOH·H ₂ O Li ₂ O ₂ ·H ₂ O ₂ ·3H ₂ O LiF	6400 3200 1600 800 400 200 100 50 25 c c g liq. c % 6400 3200 1600 800 400 200 100		121.248 121.233 121.211 121.182 121.147 121.1 121.045 120.965 120.845 125.44 188.70 414. 82. 145.57 144.828 144.788 144.772 144.750 144.719 144.678 144.624 144.552	$egin{array}{cccccccccccccccccccccccccccccccccccc$
LiHF ₂ LiCl	400 g		219.93	V - 37.21200

## Lithium

Formula	State	Description	Qf, kcal. mole-1	(	), kcal. mole ⁻¹
LiCl	liq.			F -	5.0614
	c		97.65	S	8.49200
	∞		106.315		
	6400		106.277		
	3200		106.262		
	1600		106.242		
	800		106.215		
	400		106.183		
	200		106.140		
	100		106.084		
	50		106.003		
	25		105.865		
	20		105.795		
	15		105.67		
	12		105.54		
	10		105.39		
	8		105.16		
	6		104.68		
	5		104.30		
	4		103.63		
	3		102.54		•
	48 CH ₂ OH	in methanol	108.55	S	10.9 _{48CH₂OH}
	24 CH ₂ OH		108.15		
	7.9 CH ₃ OH		107.05		
	4.7 CH ₃ OH		105.55		
	70 C₂H₅OH	in ethanol	108.89	S	11.29 _{70 C2} H5OH
	35 C₂H₅OH			S	11.512 35 С2 H, ОН
	16.9 C₂H₅OH			S	11.21216,9 С. Н. ОН
	5.4 C ₂ H ₅ OH			S	9.1126.4 CaHOH
LiCl·H ₂ O	c		170.23	S	4.28200
LiCl·2H ₂ O	c		241.98	S -	0.90200
LiCl·3H ₂ O	c		313.4	D -	13.6
LiClO	aq.		92.5		
LiClO ₂	∞		87.38		
LiClO ₄	∞		106.13		
LiBr	g		39.0	V -	36.51200
	liq.			F	4.0549
	c		83.76	S	$11.39_{200}$
	∞		95.298		
	6400		95.264		
	3200		95.254		
	1600		95.240		
	800		95.221		
	400		95.195		
	200		95.154		

Lithium

Formula	State	Description	Qf, kcal. mole⁻¹	Q,	kcal. mole-1
LiBr	100		95.103		
	50		95.033		
	25	]	94.903		
	20		94.84		
	15		94.73		
	12		94.62		
	10		94.50	ł	
	8	]	94.31	İ	
	6		93.92		
	5		93.54		
	4		92.83		
	3		91.47		
LiBr·H ₂ O	c		158.37	S	5.27200
LiBr·2H₂O	c		229.99	S	$2.02_{200}$
LiBr·3H₂O	c		302.0	D -	14.2
LiBrO	1		87.9	D -	14.2
LiBrO ₃	aq. ∞		77.83		
LiI	i		23.	v -	34.31000
PIT	g		65.08	S	14.83200
	С		1	۵	14.00200
	ο 6400		79.998		
	6400		79.968		
	3200		79.959		
	1600		79.948		
	800		79.936		
	400		79.923		
	200		79.907		
	100		79.878	_	40.4
LiI.½H₂O	c		104.1	D -	10.1
LiI∙H ₂ O	C		141.44	S	6.83200
LiI·2H₂O	C		213.31	S	3.33200
LiI∙3H₂O	С		285.28	s -	$0.27_{200}$
${ m LiIO_3}$	∞		121.13		
Li₂SO₄	c	I		T	6.8 ⁵⁶⁶ -11
	c	II	342.35	s	$6.10_{200}$
	∞ ∞		349.056		
	6400		348.872		
	3200		348.807		
	1600		348.736		
	800		348.656		
	400		348.586		
	200		348.446		
Li ₂ SO ₄ ·H ₂ O	c		413.66	S	$3.30_{400}$
	1	1	279.6		
	ag.		219.0		
LiHSO4 LiI·SO2	aq.		145.8	D -	9.7

## Lithium

Formula	State	Description	Qf, kcal. mole-		(	Q, kcal. mole ⁻¹
Li₂Se	c		84.9	S		10.4500
	aq.		95.3			
$\text{Li}_{2}\text{Se} \cdot 9\text{H}_{2}\text{O}$	c		722.3	S		$12.2_{3000}$
LiHSe	aq.		40.2			
$Li_3N$	c		46.4	$\mathcal{S}$		131.1
LiNO ₃	liq.			F	_	$6.1^{250}$
	c		115.352	S		$0.333_{200}$
	∞		115.818			
	6400		115.782			
	3200		115.769			
	1600		115.753			
	800		115.733			
	400		115.710			
	200		115.685			
	100		115.661			
	50		115.638			
	25		115.613			
	10		115.58			
	3		115.3			
	385 C₂H₅OH	in ethanol	119.8	S		4.45386 C2H4OH
LiNO ₃ ·3H ₂ O	c		328.8			
LiNH ₂	c		42.6			
Li(NH ₃ ) ₄	liq.		78.6			
Li ₂ NH	c		52.7			
LiCl·NH,	c		120.1	S		5.46***
LiCl·2NH ₃	c		142.4	$\tilde{s}$		2.67440
LiCl·3NH ₃	c		164.0	S		0.45550
LiCl-4NH ₈	c		183.5	ŝ		0.40550
LiCl·5NH ₃	c		202.4	$\tilde{D}$		8.0
LiBr·NH ₃	c		107.6	S		7.00280
LiBr·2NH ₃	c		130.8	S		$3.26_{440}$
LiBr-3NH ₃	c		153.2	S		$0.29_{550}$
LiBr-4NH	c		174.4	S		
LiBr·5NH	c		193.4	D		$1.50_{660}$ $8.1$
LiBr·61NH,	c		220.2	Ď		6.9
LiI.NH,	· c		92.0	D		
LiI·2NH ₈	c		116.7	D		16.0 13.8
LiI·3NH ₃	c		139.8	D		
LiI·4NH ₈	1					12.2
LiI·5NH ₃	c		162.3	D	-	11.6
LiI·5½NH ₃	c		181.3	D	-	8.1
LiI·32NH: LiI·7NH:	c		190.4	D		7.2
Li ₂ C ₂	C		217.5	D		7.1
L12C02 L12CO2	c		13.9	S		37.2
T13008	C		290.1	$\mathcal{S}$		3.15220
	∞	j	293.76			

Lithium

Formula	State	Description	Qf, kcal. mole-	Q	, $kcal.\ mole^{-1}$
Li ₂ CO ₃	2000		293.50		
LiCHO ₂	aq.	formate	166.4		
$LiHCO_3$	2000	bicarbonate	231.43		
LiCH ₃ O	60 CH ₃ OH	in methanol	112.6		
$LiC_2H_5O$	60 C₂H₅OH	in ethanol	118.7		
$\mathrm{LiC_2H_3O_2}$	∞	lithium			
<b>*</b> · <b>*</b> ·		acetate	184.574		1
$\mathrm{Li_2C_2O_4}$	aq.		328.9		
LiCN	aq.	,	31.73	N	$2.8_{221}$
LiCNO	aq.		101.5		
$LiCl\cdot CH_3NH_2$	c		117.6	S	$6.56_{330}$
$LiCl\cdot 2CH_3NH_2$	c		136.6	D -	11.7
LiCl·3CH₃NH₂	c		154.5	D -	10.6
$LiCl\cdot 4CH_3NH_2$	c		171.3	D -	9.5
${ m LiBr\cdot CH_8NH_2}$	c		105.6	D -	14.5
$LiBr \cdot 2CH_3NH_2$	c		126.1	D -	13.2
$LiBr \cdot 3CH_3NH_2$	c		146.3	D -	12.9
LiBr-4CH ₃ NH ₂	c		163.7	D -	10.1
$LiBr \cdot 5CH_3NH_2$	c		179.9	D -	8.9
$LiI \cdot CH_3NH_2$	c		88.7	D -	16.3
$LiI \cdot 2CH_3NH_2$	c		109.1	D -	13.1
$LiI \cdot 3CH_3NH_2$	c		127.9	D –	11.5
$LiI \cdot 3\frac{1}{2}CH_3NH_2$	c		136.1	D –	9.1
$LiCl\cdot (CH_3)_2NH$	c		114.6	D -	8.7
LiCl·2(CH ₃ ) ₂ NH	c		130.6	D -	7.8
$LiCl \cdot 3(CH_3)_2NH$	c		146.4	D -	7.6
$\mathrm{LiBr} \cdot \frac{1}{2} (\mathrm{CH_3})_2 \mathrm{NH}$	c		92.9	D -	10.2
$LiBr \cdot (CH_3)_2NH$	c		101.9	D -	9.9
$LiBr \cdot 2(CH_3)_2NH$	c		117.9	D -	7.8
LiBr·3(CH ₃ ) ₂ NH	c		133.7	D -	7.6
$LiBr \cdot 4(CH_3)_2NH$	c		148.7	D -	6.8
LiBr·5(CH ₃ ) ₂ NH	c		163.1	D -	6.2
$\text{LiI} \cdot \frac{1}{2} (\text{CH}_3)_2 \text{NH}$	c		76.0	D -	13.5
$LiI \cdot (CH_3)_2NH$	c		85.9	D -	11.5
$\text{LiI} \cdot 1\frac{1}{2}(\text{CH}_3)_2\text{NH}$	c		95.0	D -	10.0
LiI·2(CH ₃ ) ₂ NH	c		103.5	D -	8.9
LiI·3(CH ₃ ) ₂ NH	c		118.3	D -	6.6
LiI·5(CH ₃ ) ₂ NH	c		147.1	D -	6.2
LiCl·C ₂ H ₅ NH ₂	c		124.5	S	7.5330
LiCl·2C ₂ H ₅ NH ₂	c		148.6	S	9.5330
LiCl·3C ₂ H ₅ NH ₂	c		172.2	S	11.8550
Li ₂ SiO ₃	gls.		374.	-	
Li ₂ SiF ₆	c		677.3	S	$2.0_{800}$
······································	aq.	1	679.3	-	
2LiI·PbI ₂	c c		140.83	S	60.901600
· •··•		].		-	

Lithium

Formula	State	Description	Qf, kcal. mole-	1	$Q_{i}$	, kcal. mole ⁻¹
2LiI·PbI₂·4H₂O	c		489.13	S		13.92,780
LiHg	c		20.8	"		20.021/00
LiHg:	c		25.0			
LiHg ₃	c		26.8			
LiHg ₉₉	liq.		19.6			
LiBr·HgBr ₂	4500		134.8			
$2 \text{LiBr} \cdot \text{HgBr}_2$	4600		231.2			
4LiBr∙HgBr₂	4900		423.3			
8LiBr·HgBr ₂	5900		805.4			
LiCN·Hg(CN) ₂	550		- 26.1			
2LiCN·Hg(CN) ₂	660		11.0			
$LiCl\cdot Hg(CN)$ ,	550		41.5			
2LiCl·Hg(CN) ₂	660		147.7			
LiBr·Hg(CN),	550		30.9			
LiBr·Hg(CN)2·31H2O	c		279.3	S		9.1
2LiBr·Hg(CN) ₂	660		126.4	-		~~~
LiI·Hg(CN) ₂	550		17.9			
$LiI \cdot Hg(CN)_2 \cdot 3\frac{1}{2}H_2O$	c		267.5	S		10.3
2LiI·Hg(CN) ₂	660		98.8	-		- 3.0
LiCl·ThCl₄·8H₂O	c		1019.6	s		25.5
2LiCl·ThCl.	c		535.0	$\tilde{s}$		69.3

		Sodium		
Atomic Number 1	ll Stan	dard state Na (	c) Ato	omic weight 22.997
Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcal. mole ⁻¹
Na	g liq.	2p ⁴ 3s ( ² S _{1/2} )	- 25.9	F - 0.630°
Na*	g G	2p ⁶ 3p ( ² P ¹ 1/2)	0.000 - 74.17	E - 48.271
Na+	. g . g	$2p^{s}$ ${}^{(^{2}P^{1}_{s/s})}$ ${}^{(^{1}S_{0})}$	- 74.22 145.35	E' - 48.320 $I' - 118.00$
Na ⁺⁺ Na ⁺⁺ *	g	2p ⁵ ( ² P ¹ _{3/2} ) ( ² P ¹ _{1/2} )	57.479 -1231.3	I* -1084.5
Na+++ Na	g	2P4 1Σ+ _g	-1235.2 -2865.8 - 33.4	$E^{*} - 3.90$ $I^{*} - 1633.02$
Na,*	8	12+u 1IIu	- 76.1 - 91.2	E* - 42.72 E* - 57.79
Na ₂ O Na ₂ O ₂	C		99.45 119.2	S 56.3 ₄₀₀
Na.O Na.H	c c		101.6 14.	
NaH* NaOH	g	Σ	- 25.3 - 91.6	D' - 51.6 $E' - 66.3$
Naom	0 0 0	,I II Na+(∞)+	101.96	$T = 0.99^{800} - 11$ $S = 10.10_{800}$
	6400	OH~(∞)	112.139 112.101	
	3200 1600		112.089 112.076	
	800 400		112.063 112.053	
	200 100		112.061 112.1	
	50 25		112.184 112.312	
	20 18 15		112.351	
	12 10		112.371 112.348 112.282	
	8		112.14 112.55	•
	5 4		113.02 113.86	
NgOH-}H;O NgOH-}H;O	3 c o		115.34 138.15 150.64	S 8.1 ₂₀₀ S 7.0 ₂₀₀

## Sodium

Formula	State	Description	Qf, kcal. mole ⁻¹		Q,	kcal. molc ⁻¹
NaOH-¾H2O	С		156.94	S		$6.4_{200}$
NaOH-H₂O	c		175.34	S		$5.09_{200}$
NaHO ₂	aq.		94.5			200
NaF	g		64.	V	_	72.1300
	liq.			F		7.8990
	c		135.95	S	_	$0.40_{200}$
	∞	Na+(∞)+				p = - 200
,		F-(∞)	135.679			
	6400	_ ( - ( - )	135.643			
	3200		135.629			
	1600		135.614			
	ł	'	135.592			
	800		1			
	400		135.571			
	200		135.551			
	100		135.536			
$NaHF_2$	c		216.75	S	-	$6.0_{400}$
	400		210.75			
NaCl	g		41.2	V	_	43.51200
	liq.			F		7.22800
•	С		98.330	S		$1.211_{200}$
		Na+(∞)+				
		Cl ⁻ (∞)	97.166			
	6400	( )	97.131			
	3200	*	97.121			
	1600	i	97.111			
	800		97.105			
	400					
	1.		97.105	3.7		10.000
	200		97.119	N		$13.996_{201}$
	100		97.171			
	50		97.286			
	25		97.496			
	20		97.581			
	15		97.701			
	. 12		97.792			
	10		97.850			
NaClO	800		83.4			
NaClO ₃	c		83.60			
	∞	Na+(∞)+				
		ClO ₃ -(∞)	78.23			
	6400	0.00	78.210			
	3200		78.207			
	1600		78.207			
	1					
	800		78.220			
	400		78.248			and the second
	200		78.335			100

# Sodium

NaClO,	C ∞					
	∞		101.13	S	_	3.33400
		Na+(∞)+				0.00400
		ClO₄ ⁻ (∞)	96.98			
	1600		97.28			
	800		97.58			
	400		98.05			
NaBr	g		32.9	V	_	38.81250
	c		86.73	S		$0.60_{200}$
i	∞	Na+(∞)+				
		Br ⁻ (∞)	86.149			
	6400		86.117			
	3200		86.109			
	1600		86.103	j		
	800		86.099	İ		
	400		86.104			
	200		86.129	N		$13.923_{201}$
	100		86.204			
	50		86.346			
	25		86.585			
	20		86.687			
	15		86.836			
	12		86.952			
	10		87.045			
	8		87.139			
	6		87.162			
NaBr·2H₂O	c		227.46	$\mathcal{S}$	_	4.59200
NaBrO	aq.		78.8			
NaBrO ₃	∞	Na+(∞)+				
		BrO ₃ -(∞)	68.68			
	6400		68.661			
	3200		68.662			
	1600		68.667			
	800		68.683			
	400		68.720			
	200		68.82			
NaI	g		18.9	V	_	38.61100
	c		69.28	$\mathcal{S}$		$1.55_{200}$
	∞	Na+(∞)+				
		I-(∞)	70.849			
	6400		70.819			
	3200		70.811			
	1600		70.805			
	800		70.803			
	400		70.811			
	200		70.842	N		13.855201

#### Sodium

Formula	State	Description	Qf, kcal. mole ⁻¹		Q,	kcal. mole ⁻¹
NaI	100		70.920			
	50		71.080			
	25		71.361			
	20		71.484			
	15		71.662			
	10		71.924			
	8		72.047			
	6		72.127			
	5		72.083			
	520 C₂H₅OH		73.67	s		4.39 520 Ca Ha O F
NaI·2H ₂ O	С		211.48	s	_	3.90200
NaIO,	∞	Na+(∞)+				
•		IO₃-(∞)	111.98			
	6400		111.972			
	3200		111.980			
	1600		112.000			
	800		112.045			
	400		112.125			
	200		112.265			
	100		112.54			
Na ₂ S	liq.			F		$1.65^{920}$
-	c		89.8	$\mathcal{S}$		$15.2_{400}$
	∞	2Na+(∞)+				
		S(∞)	104.96			
	1600		104.86			
	800		104.89			
	400		104.96			
	200		105.08			
	100		105.29			
	50		105.64			
	25		106.14	ĺ		
	20		106.34			
$Na_2S\cdot 4\frac{1}{2}H_2O$	c		417.54	S		$4.91_{400}$
$Na_2S \cdot 5H_2O$	С		453.35	S	-	$6.54_{400}$
$Na_2S.9H_2O$	c		736.94	S		$16.65_{400}$
$Na_2S_2$	aq.		105.7			
$Na_2S_3$	aq.		107.2			
Na ₂ S ₄	С		99.8	S		$9.9_{600}$
	aq.		109.7			
$Na_2SO_3$	С		261.2	S		$2.7_{800}$
	∞	2Na+(∞)+				
		SO₃(∞)	264.0			
	800		263.9	_		
$Na_2SO_3\cdot7H_2O$	c		753.7	S	-	$11.2_{800}$
Na ₂ SO ₄	liq.			F		8.7885

Sodium

Formula Na ₂ SO ₄	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole-1		
	c		330.48	S	······	0.26400
	∞ ∞	2Na+(∞)+		~		0.20400
		SO ₄ (∞)	330.76			
	6400		330.638	İ		
	3200		330.615			
	1600		330.610			
	800		330.633			
	400		1	ŀ		
	200		330.735			
	100		330.985			
			331.450	ļ		
NT. CO. TOTT O	50		332.115	<u>.</u>		
Na ₂ SO ₄ ·10H ₂ O	c		1033.20	S	_	$18.76_{400}$
$Na_2S_2O_3$	С		258.5	S		$2.0_{440}$
	aq.		260.5			
	5		262.5			
$Na_2S_2O_3.5H_2O$	c	α	613.65	S		11.33400
	c	β	612.35	T		1.317.5
$Na_2S_2O_8$	c		349.0			
	aq.		344.6			
$Na_2S_2O_6$	c		401.0	S	_	$5.82_{400}$
	aq.		395.2	~		0.02400
Na ₂ S ₂ O ₆ ·2H ₂ O	c		543.8	s		11.68400
Na ₂ S ₈ O ₆	aq.		392.	"		11.00400
Na ₂ S ₃ O ₆ ·3H ₂ O	c a.q.		1	S		0.6
Na ₂ S ₄ O ₆	1		606.7	B		$9.6_{\tiny 680}$
Na ₂ S ₄ O ₆ ·2H ₂ O	aq.		387.3	~		0.0
NaHS	c		533.0	S	_	9.0600
CILBY	С	NT .t.( ) 1	56.76	s		$4.59_{400}$
	∞	Na+(∞)+				
		HS-(∞)	61.38			
	800		61.33			
	400		61.35			
	200		61.37			
	100		61.43			
	50		61.56			
	25		61.82			
	20		61.94			
	15		62.12			
	12		62.27			
	10		62.37			
	8		62.44			
	6		62.41			
	5		62.28			
	4		i			
NaHS-2H ₂ O	i -		61.95	ď		1 50
	C		199.61	S		$1.52_{\scriptscriptstyle 400}$
NaHSO,	aq.		206.5	~		
NaHSO.	C		269.04	s		$1.25_{200}$

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q,	kcal. mole-1
NaHSO ₄	800		270.78		
- ·	400		270.56		
	200		270.29		
	100		270.15		
	50		270.12		
	25		270.08		
	20		270.04		
	10		269.62		
NaHSO ₄ ·H ₂ O	c		339.0	S -	0.3
NaI-2SO ₂	c		231.2	$\tilde{D}$ –	10.0
$NaI \cdot 4SO_2$	c		392.4	$\stackrel{D}{D}$ –	9.6
$Na_2Se$	c		59.1	S	18.81000
114200	440		77.9	3	10.01000
$Na_2Se \cdot 4\frac{1}{2}H_2O$	c		393.4	s -	$7.8_{2000}$
$Na_2Se \cdot 9H_2O$	c		703.9	S -	$10.7_{2000}$
Na ₂ Se-911 ₂ O	1		1194.1	s -	$22.3_{2000}$
$Na_2SeO_3$	800		238.2		22.32000
$Na_2SeO_4$			254.		
Na25eU4	C ∞	2Na+(∞)+	204.		
	∞	$SeO_4^{}(\infty)$	261.3		
	900	5004 (∞)	1		
NT.TTC.	800		261.3		
NaHSe NaHSe	4000		31.0		
NaHSeO ₃	800		182.24		
NaHSeO ₄	400		201.72		
$Na_2TeO_4$	c		308.		
NT NTO	aq.		283.9	.~	
$NaNO_2$	c		86.6	S -	3.55350
NT. NYO	aq.		83.0	~	
NaNO ₃	c		111.72	s -	$4.97_{\tiny 200}$
	∞ ∞	Na+(∞)+			
		NO³-(∞)	106.669		
	6400		106.639		
	3200		106.635		
	1600		106.638		
	800		106.651		
	400		106.684		
	200		106.755		
	100		106.915		
	50		107.189		
	25		107.629		
	20		107.804		
	18		107.889		
	15		108.049		
· ·	12		108.239		, 1
	10	,	108.389		1 0
	8		108.564		

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q,	$kcal.\ mole^{-1}$
NaNO ₃	6		108.794		
	5		109.029		
$Na_2N_2O_2$	aq.		111.5		4
NaNH ₂	c c		32.0	]	
NaNH ₃	c		16.2		
NaCl·5NH ₃	c		192.2	D -	7.8
NaBr·5¼NH ₃	c		188.7	D -	8.5
NaBr·5¾NH ₃	c		197.7	D -	7.0
NaI·4½NH ₃	c		161.0	D -	9.4
NaI·6NH ₃	· c		188.7	$\tilde{D}$ –	7.5
$Na_2SO_4\cdot(NH_4)_2SO_4\cdot H_2O$	c		690.9	s -	12.7
NaPO ₃	c.		288.7	$\tilde{s}$	4.0
	600		292.67	~	1.0
Na ₃ PO ₃	1000		388.81		
Na ₃ PO ₄	C		457.		
	1600		470.0		
	800		471.0		
	400		471.6		
	200		471.9		
Na ₃ PO ₄ ·12H ₂ O	·c		1305.7	s -	$14.26_{660}$
$Na_4P_2O_6$	aq.			N	$54.2^{11}_{1200}$
$Na_4P_2O_7$	c		755.2	S	$11.92_{800}$
	1600		767.1		
Na ₄ P ₂ O ₇ ·10H ₂ O	c ·		1462.5	s -	11.65800
NaH ₂ PO ₂	500		200.05	_	
NaH₂PO₃	c		286.42	$\mathcal{S}$	0.90550
	600		287.32		
NaH ₂ PO ₃ ·2½H ₂ O	c		463.53	S -	$5.26_{550}$
NaH ₂ PO ₄	300		364.64		
NaH ₃ P ₂ O ₆	aq.			N	15.111550
NaH ₃ P ₂ O ₇	c		596.9	$\mathcal{S}$	0.80
	1200	* *	597.66		
NaH ₂ PO ₄ ·H ₃ PO ₄	Ċ		669.7	S	1.1
Na ₂ HPO ₂	800		243.84		
Na ₂ HPO ₃	c	'	335.33	S	$9.30_{550}$
	800		344.63		
Na ₂ HPO ₃ ·5H ₂ O	C		691.02	s -	$4.54_{550}$
Na ₂ HPO ₄	C		414.85	s	$5.65_{400}$
	1600		420.06		
	× 800		420.26		
	400		420.5		
	200		420.82		
Na₂HPO₄·2H₂O	c		557.62	S -	$0.38_{400}$
Na ₂ HPO ₄ ·7H ₂ O	c		910.69	S	$11.60_{400}$
Na ₂ HPO ₄ ·12H ₂ O	· c		1263.68	s -	$22.74_{400}$
Na ₂ H ₂ P ₂ O ₅	c	I	499.67		•

Formula	State	Description	Qf, kcal. mole ⁻¹	Q	kcal. mole-1
Na ₂ H ₂ P ₂ O ₅	550		500.07		
Na ₂ H ₂ P ₂ O ₆	aq.			N	$30.1^{11}_{770}$
Na ₂ H ₂ P ₂ O ₇	c		657.8	S -	2.2
	1200		655.6	~	2.2
$Na_2H_2P_2O_7\cdot 6H_2O$	c		1079.8	S -	14.0
Na ₂ HP ₂ O ₆	aq.		1010.0	N	42.711990
Na ₃ HP ₂ O ₇	c c		706.1	S	6.9
1108222 207	1		713.	15	0.8
Na ₃ HP ₂ O ₇ ·H ₂ O	aq.		780.2	G	1.0
Na ₃ HP ₂ O ₇ ·6H ₂ O	1		j i	S S –	1.2
NaNH4HPO4	C		1130.2	S -	7.0
· · · · · ·	550		372.3	۸.	
NaNH,HPO,4H,O	C		656.6	S -	$10.8_{800}$
Na ₂ NH ₄ PO ₄	550		440.7		
Na(NH ₄ ) ₂ PO ₄	660		399.3		
Na ₃ AsO ₃	500		314.30		
Na ₃ A ₅ O ₄	C		366.		
	500		381.65		
Na ₃ AsO ₄ ·12H ₂ O	c		1214.7	S -	$12.6_{660}$
NaH ₂ AsO ₃	400		225.89		
NaH ₂ AsO ₄	300		273.23		
Na ₂ HAsO ₃	400		270.31		
Na ₂ HAsO ₄	400		329.56		
Na ₃ SbO ₄	c		349.		
	aq.		360.		
3Na ₂ S·Sb ₂ S ₂	aq.		394.		
Na ₂ BiO ₄	c		284.		
Na ₂ C ₂	c		- 4.1		
Na ₂ CO ₃	liq.		1	F -	9.1850
	c	I		T	0.4450-11
	c	î	269.89	ŝ	
	, o	2Na+(∞)+	208.08	B	$5.88_{200}$
	-	CO₃(∞)	077 40		
	6400	CO3 (w)	275.46		
	3200		275.37		
			275.36		
	1600		275.36		
	800		275.40		
	400		275.52		
	200		275.77		
	100		276.19		
	50		276.83		
	25		277.59		
	20		277.83		
	18		277.94		
	15		278.13		
Na ₂ CO ₃ ·H ₂ O	С		341.64	S	2.50200
Na ₂ CO ₂ ·7H ₂ O	c		764.86	S -	10.50,00

Formula	State	Description	Qf, kcal. mole-		Q,	kcal. mole-1
Na ₂ CO ₂ ·10H ₂ O	c		975.38	S	_	15.91200
Na ₂ C ₂ O ₄	c	sodium oxalate	314.7	S		$4.1_{400}$
	600		310.58			±.1400
NaHC,	c		- 25.1			
NaCHO ₂	c	sodium formate	157.7	S		0.41150
	400		157.29	"		0.11150
NaHCO ₂	c	sodium bicar-	201.20			
		bonate	226.4	S		4.1200
	1800		222.3	~		Z.1200
NaCH ₂ O	60 CH ₂ OH		105.5			
NaHC ₂ O ₄	c	sodium biox-	100.0			
		alate	257.7	S		$5.3_{400}$
*	400		252.43	~		0.0400
NaHC ₂ O ₄ ·H ₂ O	c		330.1	S		9.3400
NaC,H,O,	c	sodium acetate	171.34	S		9.5400 3.90 ₂₀₀
1,40,412,01	, o	Na+(∞)+	,111.54	15		3.80300
	-	$C_2H_2O_2^-(\infty)$	175 405	l		
	6400	O2112O2 (w)	175.425	l		
	3200		175.382			
	1600		175.363	ĺ		
	800		175.340			
	400		175.310			
	200		175.275			
	100		175,237			
	50		175.192			
	25		175.143			
	20		175.065			
			175.025			
	15		174.954			
	12		174.845			
	10		174.735			
	8		174.575			
	6		174.335			
	5		174.175			
	4		173.985			
	3		173.725			
37 C 77 C 277 C	1100 C₂H₅OH		172.64			
NaC ₂ H ₃ O ₂ ·3H ₂ O	c	_	385.20	$\boldsymbol{s}$	_	$4.85_{200}$
NaC ₂ H ₃ O ₃	c	glycollate	216.0	s	_	2.46
NT CITTO 1220	aq.		213.5	N		13.6
NaC ₂ H ₃ O ₃ . H ₂ O	C C		251.2	s	_	3.5
NaC ₂ H ₅ O	60 C ₂ H ₅ OH	in ethyl alcohol	111.9			
NaC ₂ H ₅ O ₂	c	sodium glycol	150.1			
	aq.		156.1			
NaC3H9O3	c	sodium meth-				
		anol glycol	215.4	s		1.97
	aq.		213.4			

					-	
Formula	State	Description	Qf, kcal. mole-1		Q, k	ccal. mole-1
Na ₂ C ₂ H ₂ O ₃	С	bisodium gly-				
+		collate	248.9	S		9.18
	aq.		258.1			
$Na_2C_2H_2O_3\cdot 2H_2O$	c		395.2	S		0.36
$NaC_2H_5SO_4$	aq.	sodium ethyl				
		sulfate	265.3			
$Na_2S_2O_3\cdot C_2H_2O_2$	aq.	sodium glyoxal				
		metabisulfite	594.8			
$Na_2S_2O_3\cdot C_2H_2O_2\cdot 2H_2O$	c		741.2	S		9.66
NaCN	c		22.95	S		0.37100
	200		22.58			
NaCN-½H2O	c		57.68	S		$0.91_{100}$
NaCN-2H ₂ O	c		163.73	S		4.41100
NaCNO	c		96.7	$\mathcal{S}$		$4.70_{1600}$
	aq.		92.0			
NaCN ₂ H	aq.		35.0			
NaC ₂ H ₄ NO ₂	c	sodium glycine	169.5	N		3.0
NaCNS	c		40.36	$\mathcal{S}$	_	1.80200
	∞	Na+(∞)+				
	,	CNS⁻(∞)	38.53			
	6400		38.500			
	3200		38.490			
	1600		38.490			
	800		38.495			
	400	1	38.520			
	200		38.565			
	100		38.665			
	50		38.83			
	25		39.17			
	20		39.29			
	15		39.50			
	12		39.65			
	10		39.77			
	8		39.90			
	6		40.02			
	5		40.06			
	4		40.05			
	3		39.90			
	∞C ₂ H ₅ OH	in ethyl alcohol	39.16			
	200 C ₂ H ₅ OH		39.24			
	100 C ₂ H ₅ OH		39.33			
	50 C₂H₅OH		39.49			
	10 C₂H₅OH	ľ	41.12			
l		I				
	8.38 C₂H₅OH		41.43			

Formula	State	Description	$Qf, \\ kcal. \ mole-$	Q,	kcal. mole-1
Na ₂ SiO ₃	gls.		374.		
-, -•	c		371.2		
Na ₂ SiF ₆	c		669.		
	660		659.0		
NaHSiF ₆	400		601.9		
NaSn	c		16.		
NaSn ₂	c		20.		
Na ₂ Sn	c		21.		
Na ₄ Sn	c		34.		
$Na_4Sn_8$	c		56.		
Na ₂ SnO ₃	c		(?) 273.	ļ	
Na ₄ SnO ₄	aq.		453.6		
Na ₂ PbO ₃	C		202.4		
2NaI·PbI ₂	c		104.49	S	79.041700
NaI·PbI ₂ ·4II ₂ O	c		481.94	1~	# 5.U±1700
PNaI·PbI ₂ ·6H ₂ O	c		621.46		
PNa ₂ S ₂ O ₃ ·PbS ₂ O ₃	c		676.7	s -	$3.8_{2700}$
	aq.		672.9	5 -	J.O2700
Na ₂ ZnO ₂	c c		187.		
$Na_2Zn(SO_4)_2$	c		567.0	S	15.9360
$Na_2Zn(SO_4)_2\cdot 4H_2O$	c		866.6	$\stackrel{\circ}{s}$ –	$0.2_{360}$
VaCd ₂	c		8.5	٥	0.2360
NaCd ₅	c		12.5		
Va ₂ CdO ₂	c		164.		
NaHg _{27.5}	liq.		19.75		
NaHg ₅₀	liq.		19.91		
NaHg ₁₀₀	liq.		20.0		
NaHg ₂₀₀	liq.		20.05		
NaHg ₄₀₀	liq.		20.07		
NaHg ₁	c c		3.7		
laHg _₹	c		7.4		
VaHg	c		11.0		
√aHg ₂	c		18.5		
laHg.	c		22.2		
laBr·HgBr ₂	4600		125.73		
NaBr HgBr ₂	4700		212.90		
NaBr·HgBr ₂	5000		386.79		
NaBr·HgBr ₂	5900		727.34	1 17	
Na ₂ S·HgS	aq.		538.9		
aCN·Hg(CN)2	550		- 35.12		
NaCN·Hg(CN) ₂	660		- 7.19		
[aCl·Hg(CN) ₂	550		32.49		
NaCl·Hg(CN) ₂	660		129.69		
$aCl \cdot Hg(CN)_2 \cdot 1\frac{1}{2}H_2O$	c			s -	7.95
$[aBr \cdot Hg(CN)_2]$	550	·	21.89	~	

Formula	State	Description	Qf, kcal. mole ⁻¹		Q,	kcal. mole ⁻¹
2NaBr·Hg(CN) ₂	660		108.37			
NaBr·Hg(CN)2·2H2O	c		170.53	S		11.90
NaI-Hg(CN)	550		8.76			
2NaI·Hg(CN)2	660		80.84			
NaI·Hg(CN)2·2H2O	c		156.80	S		11.30
Na ₂ O·CuO ₂	c		168.			
Na ₂ CO ₂ ·CuCO ₃	c		418.5			
Na ₂ CO ₃ ·CuCO ₃ ·3H ₂ O	c		632.91			
Na ₂ O·Ag ₂ O ₂	c		146.			
Na ₂ Ag(S ₂ O ₃ ) ₂	aq.		459.			
NaCN-AgCN	550		- 4.2			
2NaCN-AgCN	220		20.2			
21/401/ 11801/	330		19.8			
	1320		18.9	İ		
Na ₂ PtCl ₄	aq.		237.0	1		
Na ₂ PtCl ₆	eq.		272.1	S		8.49800
Itagi tois	aq.		280.6	2		O. # \$ 800
Na ₂ PtCl ₆ ·2H ₂ O	aq. C		417.4	S		0.10667
Na ₂ PtCl ₆ ·6H ₂ O			701.4	S		10.57
Na ₂ PtBr ₄	C		205.2	S		9.9418.7800
Na ₂ PtBr ₆	aq. c		203.2	3		8.84600
Nagr udre			231.2			
Na ₂ PtBr ₆ ·6H ₂ O	aq.		649.9	s		8.5119,000
	C		167.4	٦		9.91600
Na ₂ PtI ₆	aq.		267.5			
Na ₂ IrCl ₆ Na ₃ IrCl ₆	aq.					
Na ₂ PdCl ₄	aq.		359.2 242.5			
Na ₂ PdCl ₄	aq.					
Na ₂ PdBr ₄	aq.		271.5			
-	aq.		200.5	~		77 0010
Na ₂ RhCl ₆	C		370.1	S		$7.83^{19}_{6000}$
NT. DLCI 10TT O	aq.		377.9	~		00 5015
Na ₃ RhCl ₆ ·12H ₂ O	C		1218.9	s	_	$20.56^{17}$ 5500
2NaCN·Ni(CN) ₂	aq.		34.4			
Na ₂ CoO ₃	e 440		200.			
2NaBr-CoBr ₂	<b>44</b> 0		245.83	~		
Na ₃ FeCO(CN) ₅	c		124.3	s		$5.2_{8900}$
אד- דו-מסעמאין אידי מ	aq.		129.5	,~		
Na ₃ FeCO(CN) ₅ ·7H ₂ O	С		615.5	$\mathcal{S}$	*****	$7.4_{5700}$
Na ₂ MnO ₄	C		270.			
2NaBr·MnBr,	440		278.34			
Na ₂ SO ₄ ·MnSO ₄	c		583.6	S		$12.8_{180}$
Na ₂ SO ₄ ·MnSO ₄ ·2H ₂ O	c		730.1	S		$3.1_{180}$
Na ₂ CrO ₄	C		319.8	$\mathcal{S}$		$2.50_{600}$
	800		322.3			
	10		323.3			
Na ₂ CrO ₄ ·4H ₂ O	c		603.3	${\mathcal S}$		$7.50_{450}$

Formula	State	Description	Qf, kcal. mole ⁻¹		Q, kcal. mole ⁻¹
Na ₂ CrO ₄ ·10H ₂ O	c		1022.0	S.	- 16.0770
Na ₂ Cr ₂ O ₇	1200		465.6		
Na ₂ MoO ₄	c	I		T	14.6440_11
	c	II	364.	_	
	aq.		358.5		
Na ₂ WO ₄	C	I		T	9.5579+11
	G	II	391.	_	0.0 411
	aq.		381.3		
Na ₂ UO ₄	c		500.		
Na ₂ U ₂ O ₇ ·1½H ₂ O	c		856.		
(Na ₂ O ₂ ) ₂ UO ₄	aq.		584.		
(Na ₂ O ₂ ) ₂ ·UO ₄ ·9H ₂ O	c		1213.		
NaVO ₃	aq.		315.1		
NaVO ₄	aq.		301.4		
NaVOs	aq.		287.4		
Na ₃ VO ₄	c aq.		450.	İ	
2NaCl·ThCl4	c		535.7	S	50.6
NaCl·ThCl ₄ ·10H ₂ O	c		1178.4	$\ddot{s}$ .	- 5.5
NaBO ₂	300		231.7		- 5.5
NaBO ₂ NaBO ₃	1		257.1		
NaBO: 4H2O	aq.		542.1	s -	- 11.56
	C		742.6	S	- 11.50 10.
Na ₂ B ₄ O ₇	900		752.6	B	10.
NT DO 10HO	1	,	1453.1	s -	- 25.81000
Na ₂ B ₄ O ₂ ·10H ₂ O	C		1		20.01000
Na ₃ BO ₃	c coo		(?) 341.		
NT 410	600		387.7		
NaAlO,	,.c		272.	777	10.04
3NaF·AlF;	liq.	_		F-	- 16.64
	c	I	750 47	T	1.24-11
	c	п	758.47		
	3300		767.80		
BNaF·AlF₃·3½H₂O	c		1020.04	~	<b>7</b> 4 04
NaCl·AlCl ₃	С		270.5	S	$71.31_{880}$
NaCl-AlCl ₃ -6NH ₃	c		461.4	S	6.2
3NaCl·AlCl ₃	c		470.4	S	65.651330
BNaCl·2AlCl	c	1	642.4	s	$138.28_{2000}$
Na ₂ O·Al ₂ O ₃ ·3SiO ₂	c	natrolite	1179.9		
$Na_2O\cdot Al_2O_8\cdot 4SiO_2$	c	dehydrated	1000		
		analcite	1365.9		
Na ₂ SO ₄ ·CaSO ₄	c		674.2		
$2\mathrm{Na}_2\mathrm{SO}_4\cdot\mathrm{CaSO}_4\cdot2\mathrm{H}_2\mathrm{O}_4$	c		1144.7		
NaSrPO₄·9H₂O	c		1117.7		
NaSrAsO₄·9H ₂ O	c ·		1026.0		
NaBaPO4·9H2O	c		1116.3		
NaBaAsO.9H2O	c		1024.7		
NaLiICl	c	fresh melt	166.4		

Atomic number 19

Standard state K (c) Atomic weight 39.096

Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
K	g liq.	$4s$ ( ${}^2S_{1/2}$ )	- 19.80	$F$ — $0.574^{26}$
K*	c ~	4p (2P11/2)	0.000 - 56.40	$E_z - 36.596$
	g	$\begin{array}{c c} 4p & (^2P^1_{1/2}) \\ & (^2P^1_{3/2}) \end{array}$	- 56.90	$E^{z} - 37.102$
K+	g	$3p^{6}$ ( ${}^{1}S_{0}$ )	- 120.90	$I^z - 99.654$
	80	op (20)	60.270	
K++	g	$3p^5  (^2P^1_{3/2})$	- 852.94	$I^{*} - 730.59$
K++ *	g	$(^{2}P_{1/2})$	- 859.10	$E^z - 6.16$
	g	$3s3p^6 (^2S_{1/2})$	-1230.9	$E^{z} - 371.8$
K+++	g	$3p^4$ ( 3P_2 )	-1927.4	$I^* - 1073.$
$K_2$	g	A ¹ Σ ⁺ g	- 27.0	
$K_2^*$	g	B ¹ Σ+ _g	- 60.2	$E^{z} - 33.2$
~~ ^	g	C IIIu	- 70.8	$E^z - 43.8$
K₂O	c		86.2	
K₂O₃	С		126.	
K₂O₄	С		135.	
KH KOH	С	I	10.	m + 500m
KUI		II	100.00	
	c ∞	K+(∞)+	102.02	S 12.78 ₂₀₀
		OH-(∞)	114.930	
	6400	(w)	114.930	
	3200		114.878	
	1600		114.860	
	800		114.840	
	400		114.817	
	200		114.8	
	100		114.793	
	50		114.793	
	25		114.768	
	20		114.76	
	15		114.70	
	12		114.57	
	10	,	114.52	
	8		114.32	
	6 5		113.90	
	4		113.56	
	3		112.99	
KOH-¾H₂O	c		112.10 161.94	S 4.14 ₂₀₀
KOH·H₄O	c c		179.82	S 4.14 ₂₀₀ S 3.35 ₂₀₀
KOH-2H ₂ O	c		250.81	S 0.13 ₂₀₀
KF	g		84.3	$V - 38.4^{1100}$
			- 2.00	

Potassium

Formula	State	Description	Qf, kcal. mole-	1	Q,	kcal. mole-1
KF	liq.			F		6.3860
	c		134.51	S		$3.85_{200}$
•	∞	K+(∞)+	202.01	~		0.00200
		F-(∞)	138.470			
	6400	- ' '	138.436			
	3200		138.423			
	1600		138.408	1		
	800		138.389	į		
	400		138.370			
	200		138.355			
	100		138.349			
	50		138.347			
	25		138.339			
	20	1	138.338			
	15		138.325			
	12		138.295			
	10		138.248			
	8		138.155			
	6		137.920			
	5		137.690			
	4		137.090			
	3		1			
KF·2H₂O			136.73	~		1.00
XF·2H₂O XF·4H₂O	C	1"	277.06	S - S		1.96200
CHF2	c		418.00	S	_	6.16200
CIII 3	с	17/±/ \ 1	219.43	s		$5.98_{400}$
	· , ∞	K+(∞)+	010.07			
	2000	HF ₂ ⁻ (∞)	213.67			
	3200		213.62			
•	1600	,	213.60			
	800	1 1	213.57			
	400		213.535			
	200		213.505			
	100	,	213.515			
	50		213.615			
	25		213.870			
CF-2HF	. с		297.0	s -	-	8.0
F.3HF	· , · · · c		373.2	S -	-	8.6
Cl	g		52.4			
	liq.			F -	-	$6.4^{790}$
	c		104.361	S -	-	$4.449_{200}$
	∞	K+(∞)+				
		Cl ⁻ (∞)	99.957			
	6400		99.924			
	3200		99.915			
	1600		99.906			

Formula	State	Description	Qf, kcal. mole ⁻¹	Q, kcWl. mole-1
KCl	800		99.899	
	400		99.899	
	200		99.912	
	100	1	99.970	
	50	1	100.085	
	25		100.275	
	20		100.359	
	15		100.483	
	12		100.575	
KClO	800		86.2	
KCIO.	c		91.33	$S - 10.17_{400}$
	∞	K+(∞)+		
		ClO₃-(∞)	81.020	
	6400		81.003	
	3200		81.003	
	1600		81.013	
	800		81.06	
	400		81.16	
	200		81.36	
mm 494 44	100		81.78	
KClO ₄	C		112,71	$S - 12.28_{800}$
	••	K+(∞)+		
		ClO₄ ⁻ (∞)	99.77	
	1600		100.14	
	800		100.43	
	400		100.97	
TZD.,	200		101.83	
KBr	g		44.0	~
	¢	774/	94.07	$S - 5.10_{800}$
	<b>∞</b>	K+(∞)+	00.040	
	8400	Br-(∞)	88.940	
	6400 3200		88.912	
	1600		88.907	
	800		88.904	
	400		88.906 88.923	
	200		1	
	100		88.971 89.060	
	50		89.215	
	25		89.472	
	20		89.580	
	15		89.742	
	12		89.883	
	10		90.014	
KBr.	aq.		91.4	

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
KBrO	aq.		81.6	
KBrO₃	c		81.60	$S - 10.0_{400}$
	∞	K+(∞)+		
		$\mathrm{BrO_{3}^{-}}(\infty)$	71.47	
	6400		71.456	
	3200		71.460	
	1600		71.475	
	800		71.52	
	400		71.63	
	200		71.84	
KI	g		30.0	$V - 37.6^{1000}$
	c		78.87	$S - 5.19_{200}$
	∞	K+(∞)+		
		<b>I</b> -(∞)	73.640	
	6400		73.612	
	3200		73.607	
	1600		73.605	
	800		73.609	
	400		73.630	
	200		73.677	
	100		73.772	
	50		73.955	
	25		74.281	
	20		74.425	
	15		74.647	
	10		75.004	
	8		75.210	
	6		75.485	
	200 CH₃OH	in methanol	78.12	S - 0.7518.5200CH3OE
	200 C ₂ H ₅ OH	in ethanol	76.67	S - 2.2017.6200 C2 H5 O
	400 C ₂ H ₅ OH		76.88	S - 1.9917.1400 Ca Ha O
	590 C₂H₅OH		77.33	S - 1.54 _{590 C₂H₅OH}
	200 CH ₃ CN	in acetonitrile	76.2	S - 2.7200 CH ₃ CN
	475 CH ₃ CN		76.0	S - 2.9475 CH3CN
	200 C ₃ H ₆ O	in acetone	83.06	
KI.	c		78.9	
	aq.		72.4	
KIO,	c		121.70	$S - 6.70_{400}$
	∞	K+(∞)+		
		IO₃-(∞)	114.770	
	6400	• ` '	114.765	
	3200		114.780	
	1600		114.810	
	800		114.880	
	400		114.995	
	200			

· Formula	State	Description	Qf, kcal. mole-	Q, kcal. mole ⁻¹
KIO ₃	200		115.19	
	100		115.59	
KIO ₄	aq.		97.9	
K₃IO₅	aq.		283.7	
$KH_4IO_6$	aq.		234.6	
KIO3·HIO3	c		181.0	$S - 11.3_{870}$
	1600		169.67	
$\mathrm{K}_{2}\mathrm{H}_{3}\mathrm{IO}_{6}$	aq.		302.5	
$K_3H_2IO_6$	aq.		352.1	
KI-KCl	c	fresh melt	182.69	
$K_2S$	· c		121.5	S 11.
	∞	2K+(∞)+		
		S(∞)	110.54	
	400		110.54	
	200		110.58	
	100		110.67	
	50		110.84	
	25		110.97	
	20		110.91	
	15		110.64	
	12		110.27	
	10		109.78	
	8		108.97	•
TZ C OTT O	7		108.24	0.00
K ₂ S·2H ₂ O K ₂ S·5H ₂ O	C		243.46	S 3.8 ₁₆₀₀
K ₂ S ₃ <del>1</del>	C		457.53	$S - 5.16_{900}$
112034	c		112.0	$S = 3.2_{1200}$
K ₂ S ₄	aq.		115.2	C 104
17304	C		114.1	$S = 1.34_{1140}$
K ₂ S ₄ · ½H ₂ O	aq.		115.4	S - 1.9
K ₂ S ₄ ·2H ₂ O	c		151.5 259.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
K ₂ SO ₃	c		267.7	$S = 1.8_{350}$
	aq.		269.5	D 1.0350
$\mathrm{K_{2}SO_{3}\cdot H_{2}O}$	c c		1	S 1.4 ₂₅₀
K₂SO₄	c	I	000.0	T 2.57 ⁵⁶⁹ -11
-	c	II	342.66	$S - 6.42_{400}$
i,	. œ	2K+(∞)+	012.00	O. 12400
		SO ₄ (∞)	336.340	
	6400	7, 1	336.210	
	3200		336.183	
	1600		336.169	
	800		336.175	
	400		336.237	
	200		336.450	
		.		

Potassium

Formula 	State	Description	Qf, kcal. mole	.1 6	Q, kcal. mole-1
K₂SO₄	100		-	-	
$K_2S_2O_3$	1		336.970	1	
	C		270.5	S -	4.51000
$\mathrm{K_2S_2O_5}$	aq.		266.0		
	c		361.1	S -	11.0500
$K_2S_2O_5\cdot \frac{1}{2}H_2O$	aq.		350.1		
$K_2S_2O_6$	c		394.5	S -	10.2500
1120208	c		413.7	8 -	$13.0_{500}$
$K_2S_2O_7$	aq.		400.7	1	
.120207	c		475.4	8 -	$3.8_{500}$
$X_2S_2O_8$	aq.		471.6		
120208	c		457.5	S -	$13.7_{3300}$
$K_2S_3O_6$	aq.		443.8	1	
120306	c		411.2	S -	$12.40_{\scriptscriptstyle 600}$
<b>7</b> 2S₄O ₆	aq.		398.8		
1204O6	c		406.0	S -	$13.18_{500}$
790	aq.		392.8	l	
$C_2S_5O_6$	c		398.	ĺ	
7.0.0.1177.0	aq.		390.		
$I_2S_5O_6\cdot 1\frac{1}{2}H_2O$	C		505.2	S -	$12.6_{2000}$
CHS	c		63.31	S	0.80400
	∞	K+(∞)+			0.00400
,		HS-(∞)	64.17		
	400		64.11		
	200		64.12		
	100		64.14		
	50		64.21		
	25		64.35		
	20		64.41		
	15		64.50		
•	12		64.57		
	10		64.62		
	8		64.67		
	6		64.69		
	5		64.64		
	4		64.52		+
	3		64.24		
HS- <del>1</del> H ₂ O	c			0	0.00
HSO ₃	aq.		209.3	S	0.62400
HSO ₄	c	I	l l	T	0.40100
	c	II			0.49180
	c	III		$T_{c}$	0.096164_111
	800	***		S –	$3.75_{200}$
	400		273.75		
	200		273.37		
•	100		273.1		•
	100		272.97		

50 25 20 c c aq. c c c aq. 220 aq. 220 aq. 210 c c c	ZK+(∞)+ SeO₄ I II III K+(∞)+ NO₃-(∘	.(∞)	272.94 272.99 272.02 401.4 74.4 83.2 717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8		-	9.7 8.8 ₁₈₀₀ 19.2 ₃₀₀₀ 20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ -11 0.62 ¹²⁶ -111
25 20 c c c aq. c c c c 2 20 aq. 220 aq. liq. c c c c c c c c c c c c c c c c c c c	SeO₄  I II III K+(∞)+	.(∞)	272.99 272.02 401.4 74.4 83.2 717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S S F T T	-	8.8 ₁₈₀₀ 19.2 ₅₀₀₀ 20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
20 c c aq. c c c c 2 220 aq. 220 aq. liq. c c c c c c	SeO₄  I II III K+(∞)+	.(∞)	272.02 401.4 74.4 83.2 717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S S F T T	-	8.8 ₁₈₀₀ 19.2 ₅₀₀₀ 20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
c c c aq. c c c c c ∞ 440 aq. 220 aq. liq. c c c c ∞	SeO₄  I II III K+(∞)+	.(∞)	401.4 74.4 83.2 717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S S F T T	-	8.8 ₁₈₀₀ 19.2 ₅₀₀₀ 20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
c aq. c c c c ∞ 440 aq. 220 aq. liq. c c c c ∞	SeO₄  I II III K+(∞)+	.(∞)	83.2 717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S S	-	19.2 ₃₀₀₀ 20.6 ₄₀₀₀ 29.7 ₃₄₀₀
c c c c c 2 20 aq. 220 aq. liq. c c c c c	SeO₄  I II III K+(∞)+	.(∞)	717.7 1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S F T T	-	20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
c c c c c 2 20 aq. 220 aq. liq. c c c c c	SeO₄  I II III K+(∞)+	.(∞)	1061.0 1411.9 266.9 266.85 34.0 204.4 261.6 289.4 85.8	S S F T T	-	20.6 ₄₀₀₀ 29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
c ∞ 440 aq. 220 aq. 220 aq. liq. c c c	SeO₄  I II III K+(∞)+	.(∞)	266.9 266.85 34.0 204.4 261.6 289.4 85.8	S F T T		29.7 ₃₄₀₀ 2.57 ³³³ 1.17 ¹²⁸ +11
∞  440 aq. 220 aq. 220 aq. liq. c c c	SeO₄  I II III K+(∞)+	.(∞)	266.9 266.85 34.0 204.4 261.6 289.4 85.8	F T		2.57 ³³³ 1.17 ¹²⁸ ÷11
440 aq. 220 aq. 220 aq. liq. c	SeO₄  I II III K+(∞)+	.(∞)	266.85 34.0 204.4 261.6 289.4 85.8	T T		$1.17^{128}$ $_{-11}$
aq. 220 aq. 220 aq. liq. c c c c	I II III K+(∞)+		266.85 34.0 204.4 261.6 289.4 85.8	T T		$1.17^{128}$ $_{-11}$
aq. 220 aq. 220 aq. liq. c c c c	II III K+(∞)+	∞)	34.0 204.4 261.6 289.4 85.8	T T		$1.17^{128}$ $_{-11}$
220 aq. 220 aq. liq. c c	II III K+(∞)+	<b>∞</b> )	204.4 261.6 289.4 85.8	T T		$1.17^{128}$ $_{-11}$
aq. 220 aq. liq. c c c	II III K+(∞)+	<b>∞</b> )	261.6 289.4 85.8	T T	_	$1.17^{128}$ $_{-11}$
220 aq. liq. c c c	II III K+(∞)+	<b>∞</b> )	289.4 85.8	T T	_	$1.17^{128}$ $_{-11}$
aq. liq. c c c c	II III K+(∞)+	∞)	85.8	T T	_	$1.17^{128}$ $_{-11}$
liq. c c c c	II III K+(∞)+	∞)		T T	_	$1.17^{128}$ $_{-11}$
c c c ∞	II III K+(∞)+	∞)	118.093	T T		$1.17^{128}$ $_{-11}$
c c ∞	II III K+(∞)+	<b>∞</b> )	118.093	T		
C ∞	III K+(∞)+	∞)	118.093			0 62126
∞	K+(∞)+	∞)	118.093			
		∞)		S	_	$8.400_{200}$
2400	NO ₈ -(°	∞)				
2400		•	109.460			
6400			109.429			
3200			109.431			
1600			109.442			
800			109.477			
400			109.550	3.7		14 105
200			109.693	N		$14.165_{201}$
100			109.925			
$\frac{50}{25}$			110.345			
25 20			110.99 111.26			
			117.0			
aq. c			17.4	D		6.4
C			166.6	D	_	7.15
C			153.4	D	_	7.15
						7.05 7.35
				D	_	1.00
-			400.0			
a.a.						
			397.2			
aq.			397.2 478.4			
aq. aq.			397.2 478.4 202.8			
aq.			397.2 478.4	S		4.7180
	c aq. an.			aq. 295.5	aq. 295.5	aq. 295.5

Formula	State	Description	Qf, kcal. mole ⁻¹	Q,	kcal. mole ⁻¹
KH ₃ PO ₇	aq.		600.5		
K ₂ HPO ₂	aq.		249.4		
K,HPO,	aq.		350.2		
K₄HPO₄	aq.		425.6		
K ₂ H ₂ P ₂ O ₅	aq.		505.7		
K ₂ H ₂ P ₂ O ₇	aq.	1	661.1		
K ₂ HP ₂ O ₇	aq.		721.4		
$K_4P_2O_7$	aq.		778.3		
KH ₂ AsO ₃	aq.		228.7		
KH ₂ AsO ₄	c		271.2	S	4.8800
-	aq.		276.0		
K ₂ HA ₅ O ₃	aq.		275.9		
K₂HAsO₄	aq.		335.1		
K ₂ AsO ₃	aq.		322.7		
K ₂ AsO ₄	aq.		390.0		
K₃SbO₄	aq.		368.4		
K ₂ CO ₃	liq.			F	$6.4^{880}$
	c		274.46	S	6.63400
	<b>∞</b>	2K+(∞)+			2.0-100
		CO₃(∞)	281.04		
	6400	,	280.980		
	3200		280.980		
	1600		280.985		
	800		281.010		
	400		281.090		
	200		281.240		
	100		281.440		
	50		281.660		
	25		281.815		
	20 20		281.860		
	20 15		281.875		
	10		281.840		
K ₂ CO ₃ -½H ₂ O	c	1	310.97	S	4.31400
K ₂ CO ₃ ·1½H ₂ O	c		384.03	s –	0.38400
K ₂ C ₂ O ₄	c	potassium	007.00		0.00400
1120204	C	oxalate	320.8	s -	4.56400
	400	VALLAGE	316.2		±.00400
K ₂ C ₂ O ₄ ·H ₂ O	40Q C		392.1	s -	$7.52_{800}$
5(K ₂ CO ₃ ·1½H ₂ O)·4KHCO ₃	-		2836.	~ _	1.02800
	C	potassium	4000.		
KCHO ₂	c	4 -	1607	g	0.66
		formate	160.7	S -	$0.66_{320}$
TZTTCO	aq.		160.0		
KHCO ₃	C	potassium	020.0	a	<b>5</b> 0
	0000	bicarbonate	230.2	S -	5.2
	2000	1	225.07	l	

		Potassium			
Formula	State	Description	$Qf, \ kcal. \ mole^{-1}$	Q,	kcal. mole ⁻¹
	CO CH OH		108.5		
KCH₃O	60 CH ₃ OH	potassium	100.0		
KHC₂O₄	aq.	bioxalate	255.3		
$\mathrm{KC_2H_3O_2}$	- c	potassium	174.67	S	3.35200
		acetate	174.07	2	0.00200
	∞	K+(∞)+	178.216		
		$C_2H_3O_2^-(\infty)$	178.210		
	6400		178.178		
	3200		178.103		
	1600		178.143		
	800		178.114		
	400		1		
	200		178.023		
	100		177.951		
	50		177.844		
	25		177.686		
	20		177.616		
	15		177.494		
	12		177.369		
	10		177.241	Ì	
	8		177.054		
	6		176.721		
	5		176.451		
$KC_2H_3O_3$	c	potassium		\ a	1.64
		glycollate	218.0	S -	1.64
	aq.		216.3	N ~	13.7
$\mathrm{KC_2H_3O_3\cdot\frac{1}{2}H_2O}$	С		255.2	s -	4.7
$\mathrm{KC_2H_5O}$	200 C₂H₅OH		117.0		
$K_2S_2O_5\cdot C_2H_2O_2$	aq.	potassium			
		glyoxal			
		metabisulfite	1	_	40.40
$K_2S_2O_5 \cdot C_2H_2O_2 \cdot H_2O$	c		445.2	S -	13.40
KCN	c		28.5	S -	3.0
	200		25.50		
	63		25.58		
KCNO	c		100.0	S -	$5.24_{440}$
	aq.		94.8		
KCN₂H	aq.		37.8		
KCNH ₂ O ₂	aq.	pseudo salt of nitrometh-			
		ane	80.3	N	7.0
$KC_2NH_2O_3$	c	potassium			
		oxamate	221.0	S -	$7.0^{12}$
	aq.		214.0	$\begin{vmatrix} N \\ S - \end{vmatrix}$	13.65 6.00 ₂₀₀

	T	Totassium			
Formula	State	Description	$Qf,$ $kcal. mole^{-1}$	Q,	, kcal. mole ⁻¹
KCNS	∞	K+(∞)+			
		CNS ⁻ (∞)	41.320		,
	6400		41.290		
	3200		41.280		
	1600		41.285		
	800		41.300	1	
	400		41.330		
	200		41.400		
	100		41.520		
	50		41.73		
	25		42.09		
	20		42.26	l	
	15		42.49		
	10		42.86		,
	- 8		43.10	1	
	6		43.42		
	5		43.63		
	4	,	43.89		
	3		44.17		4
	2	,	44.50		
$KCNS \cdot \frac{1}{2}SO_2$	c		83.4	D -	11.3
KCNS-SO ₂	c		118.8	D -	9.9
$K_2SiF_6$	c		681.		•
	aq.		664.5		
$K_2SnCl_6$	c		360.21	S -	3.30400
	600		356.91		
$K_2SnCl_4\cdot H_2O$	c		363.2	S -	$13.46_{600}$
$KCl \cdot PbCl_2 \cdot \frac{1}{3}H_2O$	c		214.17		
KCl·2PbCl₂	c		277.92		•
2KI·PbI₂	c	,	200.05	S -	$10.98_{1760}$
$2 \mathrm{KI \cdot PbI_2 \cdot 2H_2O}$	c		341.41	S -	$15.61_{1800}$
4KI·3PbI ₂	c	fresh melt	439.18	S -	$19.23_{4500}$
4KI-3PbI₂-6H₂O	C		861.76	S -	$31.61_{4600}$
$K_2SO_4\cdot PbSO_4$	c		566.46		
KCl·ThCl₄·9H₂O	c		1103.9	$\mathcal{S}$	3.30
2KCl·ThCl₄	c		552.13	S	39.67
$K_2Zn(SO_4)_2$	C		580.31	S	$7.98_{600}$
$K_2Zn(SO_4)_2 \cdot 2H_2O$	c		724.47	S	$0.56_{600}$
$K_2Zn(SO_4)_2 \cdot 6H_2O$	c		1010.48	S -	$11.97_{600}$
$2KCN \cdot Zn(CN)_2$	c		49.8	S -	$15.0_{400}$
KHg	c		11.0		1 - 4
KHg ₃	. <b>c</b>		26.0		
KHg ₁₀	C		33.0		
$\mathrm{KHg}_{100}$	liq.		26.0		1 - 4
KCl·HgCl ₂	c	1	160.02	S -	$9.5_{770}$

KCl-HgCl ₁ -H ₂ O KCl-2HgCl ₃ CC KCl-2HgCl ₃ CC KCl-HgCl ₃ CC CC CC CC CC CC CC CC CC CC CC CC CC	Formula	State	Description	Qf, kcal. mole-	$Q, kcal. mole^{-1}$
KCl-HgCl ₁ -H ₂ O KCl-2HgCl ₃ CC KCl-2HgCl ₃ CC KCl-HgCl ₃ CC CC CC CC CC CC CC CC CC CC CC CC CC	KCl·HgCl ₂	550		150.50	
KCl-2HgCl ₁ 990 200.58 c 265.70 S - 14.88 ₁₀₀ 2KCl-HgCl ₂ c 250.82 250.82 250.82 2KCl-HgCl ₃ 880 451.20 4KCl-3HgCl ₃ c 585.30 S - 33.52 1760 551.78 4KCl-3HgCl ₃ c 585.30 S - 33.52 1760 128.58 KBr-HgBr ₂ c 134.52 4600 128.58 KBr-HgBr ₃ c 260.23 2KBr-HgBr ₃ c 260.23 2KBr-HgBr ₄ defo 128.58 KBr-HgBr ₃ defo 128.64 300 220.34 4KBr-HgBr ₄ defo 128.64 300 220.34 4KBr-HgBr ₅ defo 128.64 300 220.34 4KBr-HgBr ₅ defo 174.55 2KI-HgI ₃ c 166.36 KI-HgI ₃ c 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 3KI-HgI ₄ defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo 176.11 defo				230.22	$S - 11.35_{800}$
300   251.92   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82		1		200.53	
300   660   251.92   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82   250.82		c		265.70	S - 14.88 ₉₃₀
2KCl·HgCl ₁ ·H ₂ O	<b>.</b>	1		251.92	
### ### ### ### ### ### ### ### ### ##		660		250.82	
4KCl·HgCl, 880 451.20 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 33.52 1760 588.30 5 - 39.2 1760.9 5 - 39.2 178.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58 179.58	2KCl·HgCl ₂ ·H ₂ O	1		335.67	$S - 16.48_{800}$
1760		880		451.20	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4KCl·3HgCl ₁ ·3H ₃ O       c       796.09       S - 39.2         KBr·HgBr ₂ ·H ₃ O       c       134.52         4600       128.58         KBr·HgBr ₂ ·H ₃ O       c       206.23         2KBr·HgBr ₂ 4800       128.64         300       220.34         4KBr·HgBr ₂ 4800       398.55         6HBr·HgBr ₂ 5000       576.94         8KBr·HgBr ₂ 5900       755.66         KI·HgI ₃ c       106.36         KI·HgI ₃ c       174.55         2KI·HgI ₃ c       174.55         3KI·HgI ₃ c       176.11         3KI·HgI ₃ 440       325.02         6KI·HgI ₃ 440       325.02         6KI·HgI ₃ 660       473.58         KCN·Hg(CN) ₃ 550       32.2         KCN·Hg(CN) ₃ c       12.4         2KCN·Hg(CN) ₃ 20       12.4         4KC·Hg(CN) ₃ 2200       356.4         KC·Hg(CN) ₃ 2200       356.4         KC·Hg(CN) ₃ 660       114.0       S - 10.3 ₇₆₀ KC·Hg(CN) ₃ 660       129.4         4KC·Hg(	4KCl-3HgCl	c		585.30	S - 33.52
KBr·HgBr;	• · ·	1760	:	551.78	
KBr·HgBr;	4KCl-3HgCl _s -3H _s O	c		796.09	S - 39.2
KBr·HgBr,·H ₄ O  C  2KBr·HgBr ₁ 4800  2KBr·HgBr ₂ 4800  2ZBRr·HgBr ₃ 4800  4KBr·HgBr ₄ 4800  300  4KBr·HgBr ₂ 4800  308.55  6HBr·HgBr ₂ 5000  576.94  8KBr·HgBr ₃ 6KI·HgI ₃ C  174.55  2KI·HgI ₃ C  176.11  3KI·HgI ₄ 330  250.84  4KI·HgI ₃ 440  325.02  6KI·HgI ₄ 6KI·HgI ₄ 6KO  4T3.58  KCN·Hg(CN) ₃ 2KCN·Hg(CN) ₃ 2KCN·Hg(CN) ₃ 2KCN·Hg(CN) ₄ 3BS0  4CI·Hg(CN) ₂ 3CC  4A1  4SCI·Hg(CN) ₃ 3CC  4A1  4SCI·Hg(CN) ₃ 3CC  4A1  4SCI·Hg(CN) ₃ 4D  4D  4D  4D  4D  4D  4D  4D  4D  4		1		134.52	
2KBr·HgBr ₂ c       230.12         4800       128.64         300       220.34         4KBr·HgBr ₂ 4800       398.55         6HBr·HgBr ₂ 5000       576.94         8KBr·HgBr ₃ 5900       755.66         Ki·HgI ₃ c       106.36         Ki·HgI ₃ c       174.55         2Ki·HgI ₃ c       176.11         3Ki·HgI ₄ 330       250.84         4Ki·HgI ₃ 660       473.58         KCN·Hg(CN) ₄ 550       - 32.2         KCN·2Hg(CN) ₂ 990       - 96.8         2KCN·Hg(CN) ₂ c       12.4       S - 13.866         4KCN·Hg(CN) ₂ 880       49.9         8KCN·Hg(CN) ₂ 1320       152.1         16KCN·Hg(CN) ₃ 2200       356.4         KCl·Hg(CN) ₃ 1000       - 29.4         2KCl·Hg(CN) ₃ 660       135.4         4KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 1320       735.6         KBr·Hg(CN) ₂ <		4600			
2KBr·HgBr ₂ c       230.12         4800       128.64         300       220.34         4KBr·HgBr ₂ 4800       398.55         6HBr·HgBr ₂ 5000       576.94         8KBr·HgBr ₃ 5900       755.66         Ki·HgI ₃ c       106.36         Ki·HgI ₃ c       174.55         2Ki·HgI ₃ c       176.11         3Ki·HgI ₄ 330       250.84         4Ki·HgI ₃ 660       473.58         KCN·Hg(CN) ₄ 550       - 32.2         KCN·2Hg(CN) ₂ 990       - 96.8         2KCN·Hg(CN) ₂ c       12.4       S - 13.866         4KCN·Hg(CN) ₂ 880       49.9         8KCN·Hg(CN) ₂ 1320       152.1         16KCN·Hg(CN) ₃ 2200       356.4         KCl·Hg(CN) ₃ 1000       - 29.4         2KCl·Hg(CN) ₃ 660       135.4         4KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 1320       735.6         KBr·Hg(CN) ₂ <	KBr·HgBr _s ·H _s O	1			
4800 300 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.34 4220.		1		1	
4KBr·HgBr ₂ 300       220.34         4HBr·HgBr ₂ 5000       576.94         8KBr·HgBr ₂ 5900       755.66         KI·HgI ₂ c       106.36         KI·HgI ₃ c       174.55         2KI·HgI ₃ c       176.11         3KI·HgI ₃ 330       250.84         4KI·HgI ₃ 440       325.02         6KI·HgI ₃ 660       473.58         KCN·Hg(CN) ₄ 550       - 32.2         KCN·2Hg(CN) ₃ 990       - 96.8         2KCN·Hg(CN) ₂ c       12.4       S - 13.860         4KCN·Hg(CN) ₂ 880       49.9         8KCN·Hg(CN) ₂ 1320       152.1         16KCN·Hg(CN) ₃ 1320       152.1         16KCN·Hg(CN) ₃ 2200       356.4         KCl·Hg(CN) ₃ 1000       - 29.4         2KCl·Hg(CN) ₃ 660       135.4         4KCl·Hg(CN) ₃ 880       335.6         KCl·Hg(CN) ₃ 1320       735.6         KBr·Hg(CN) ₂ 1320       735.6         KBr·Hg(CN) ₂ 1320       735.6         KBr·Hg(CN) ₂ 24.76      <				1	
4KBr·HgBr ₂ 6HBr·HgBr ₂ 8KBr·HgBr ₃ 6HBr·HgBr ₃ 8KBr·HgBr ₃ 8KBr·HgBr ₃ 8KI·HgI ₄ C C C C C C C C C C C C C C C C C C C				1	
6HBr·HgBr ₂ 8KBr·HgBr ₃ 5900  KI·HgI ₂ C KI·HgI ₂ C C SKI·HgI ₃ C C SKI·HgI ₄ C C SKI·HgI ₂ C C SKI·HgI ₂ C C SKI·HgI ₃ SKI·HgI ₄ SS- SKI·HgI ₄ SS- SS- SS- SSSSSSSSSSSSSSSSSSSSSSSSS	4KBr·HøBr.				
8KBr·HgBr;       5900       755.66         KI·HgI;       c       106.36         KI·HgI;       c       174.55         2KI·HgI;       c       185.99         3KI·HgI;       330       250.84         4KI·HgI;       440       325.02         6KI·HgI;       660       473.58         KCN·Hg(CN);       550       - 32.2         KCN·2Hg(CN);       990       - 96.8         2KCN·Hg(CN);       c       12.4       S - 13.850         4KCN·Hg(CN);       880       49.9         4KCN·Hg(CN);       1320       152.1         16KCN·Hg(CN);       2200       356.4         KCl·Hg(CN);       c       44.1       S - 8.8720         KCl·Hg(CN);       1000       - 29.4         2KCl·Hg(CN);       660       135.4         4KCl·Hg(CN);       880       335.6         8KCl·Hg(CN);       880       335.6         8KCl·Hg(CN);       1320       735.8         KBr·Hg(CN);       1320       735.8         KBr·Hg(CN);       139.82	•				
KI·HgI ₂ C	**			1	
KI·HgI ₂ ·H ₂ O  2KI·HgI ₂ c  900  3KI·HgI ₂ 330  4KI·HgI ₂ 660  473.58  KCN·Hg(CN) ₂ 550  660  4KCN·Hg(CN) ₂ 880  4KCN·Hg(CN) ₂ 8KCN·Hg(CN) ₃ 8KCN·Hg(CN) ₂ 6KCN·Hg(CN) ₂ 6KCN·Hg(CN) ₃ 8KCN·Hg(CN) ₄ 4KCN·Hg(CN) ₅ 660  - 1.4  4KCN·Hg(CN) ₂ 880  44.1  6KCN·Hg(CN) ₃ 550  35.3  KCl·Hg(CN) ₂ 550  35.3  KCl·Hg(CN) ₃ 44.1  5 - 8.8 ₇₂₀ KCl·Hg(CN) ₃ 660  44.1  5 - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 880  480  49.9  8KCl·Hg(CN) ₃ 114.0  5 - 10.3 ₇₆₀ KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 660  44.1  5 - 10.3 ₇₆₀ KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN) ₄ 8KCl·Hg(CN)		1			
2KI HgI ₂ 900  3KI HgI ₂ 330  4KI HgI ₂ 440  6KI HgI ₂ 6KO Hg(CN) ₂ 6KO Hg(CN) ₂ 6KO Hg(CN) ₂ 880  4KCN Hg(CN) ₂ 6KCN Hg(CN) ₂ 8KCN Hg(CN) ₃ 8KCN Hg(CN) ₂ 6KO Hg(CN) ₂ 6KO Hg(CN) ₃ 8KCN Hg(CN) ₂ 660  44.1  5 - 13.8 ₆₅₀ 660  - 1.4  4KCN Hg(CN) ₂ 880  44.1  5 - 8.8 ₇₂₀ 8KCl Hg(CN) ₃ 6C  44.1  5 - 8.8 ₇₂₀ 8KCl Hg(CN) ₃ 6C  4Cl Hg(CN) ₃ 4Cl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 660  43.3  660  550  660  735.6  8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₃ 8KCl Hg(CN) ₄ 8KCl Hg(CN) ₄ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₄ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl Hg(CN) ₅ 8KCl		1		1	
3KI·HgI ₂ 330	•			1	S - 9.88m
3KI·HgI ₂ 330 250.84 325.02 6KI·HgI ₂ 660 473.58 KCN·Hg(CN) ₂ 550 - 32.2 FCN·Hg(CN) ₂ 990 - 96.8 2KCN·Hg(CN) ₂ 880 49.9 8KCN·Hg(CN) ₂ 1320 152.1 16KCN·Hg(CN) ₂ 2200 356.4 KCl·Hg(CN) ₂ 0 114.0 S - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 160 135.4 4KCl·Hg(CN) ₂ 160 135.4 4KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 135.6 KCl·Hg(CN) ₂ 160 139.82		ı		1	
4KI·HgI ₂ 440 325.02 473.58 KCN·Hg(CN) ₂ 550 - 32.2 FCN·Hg(CN) ₂ 990 - 96.8 2KCN·Hg(CN) ₂ 880 49.9 8KCN·Hg(CN) ₂ 1320 152.1 16KCN·Hg(CN) ₂ 2200 356.4 KCl·Hg(CN) ₂ 0 114.0 S - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 1600 - 29.4 2KCl·Hg(CN) ₂ 1600 - 29.4 4KCl·Hg(CN) ₂ 880 335.6 KCl·Hg(CN) ₂ 1600 - 29.4 KCl·Hg(CN) ₂ 660 135.4 KCl·Hg(CN) ₂ 660 480 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 660 335.6 KCl·Hg(CN) ₂ 880 335.6 KCl·Hg(CN) ₂ 880 335.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(CN) ₂ 1320 735.6 KCl·Hg(	3KI.HgI.	1			
6KI·HgI: 660 473.58 KCN·Hg(CN): 990 2KCN·Hg(CN): 660 4990 2KCN·Hg(CN): 660 49.9 8KCN·Hg(CN): 880 49.9 8KCN·Hg(CN): 152.1 16KCN·Hg(CN): 2200 44.1 5 - 8.8 ₇₂₀ KCl·Hg(CN): 550 35.3 KCl·Hg(CN): 1000 44.1 5 - 10.3 ₇₆₀ KCl·Hg(CN): 660 433.58  49.9 152.1 16KCN·Hg(CN): 16KCN·Hg(CN): 16KCN·Hg(CN): 16KCl·Hg(CN): 16KCl·Hg(CN): 16KCl·Hg(CN): 1750 35.3 KCl·Hg(CN): 1750 44.1 5 - 8.8 ₇₂₀ 35.3 KCl·Hg(CN): 1750 473.58  8 - 32.2  96.8  49.9 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16KCl·Hg(CN): 152.1 16		3			
KCN·Hg(CN): 550		1		1	
KCN·2Hg(CN) ₂ 990       - 96.8       12.4       S - 13.8 ₅₅₀ 2KCN·Hg(CN) ₂ 660       - 1.4       49.9       49.9         4KCN·Hg(CN) ₂ 1320       152.1       152.1       16KCN·Hg(CN) ₂ 356.4       550       35.3       550       35.3       550       114.0       S - 10.3 ₇₆₀ 550       114.0       S - 10.3 ₇₆₀ 550       114.0       S - 10.3 ₇₆₀ 550       135.4       44Cl·Hg(CN) ₂ 880       335.6       8KCl·Hg(CN) ₂ 36.36       S - 11.6       550       24.76       8KBr·Hg(CN) ₂ ·1½H ₂ O       C       139.82       139.82					
2KCN·Hg(CN) ₂ 660  4KCN·Hg(CN) ₂ 880  4KCN·Hg(CN) ₂ 1320  152.1  16KCN·Hg(CN) ₃ 2200  356.4  KCl·Hg(CN) ₁ c  550  35.3  KCl·Hg(CN) ₂ 1000  44.1  5 - 8.8 ₇₄₀ 35.3  KCl·Hg(CN) ₃ 114.0  5 - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 880  335.6  4KCl·Hg(CN) ₂ 8KCl·Hg(CN) ₃ 135.4  4KCl·Hg(CN) ₂ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₂ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 1320  735.6  KBr·Hg(CN) ₃ 13.8 ₆₅₀ 152.1  356.4  44.1  5 - 8.8 ₇₄₀ 31.3  5 - 10.3 ₇₆₀ 735.6  8KCl·Hg(CN) ₃ 8KCl·Hg(CN) ₃ 1320  735.6  KBr·Hg(CN) ₃ 1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1320  1	W			1	
4KCN·Hg(CN) ₂ 880 8KCN·Hg(CN) ₂ 1320 152.1 16KCN·Hg(CN) ₃ 2200 44.1 S - 8.8 ₇₄₀ 550 35.3  KCl·Hg(CN) ₃ 114.0 S - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 880 4Cl·Hg(CN) ₃ 114.0 S - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 880 335.6 8KCl·Hg(CN) ₂ 880 335.6 8KCl·Hg(CN) ₂ 880 8KCl·Hg(CN) ₂ 880 8KCl·Hg(CN) ₃ 1320 735.6 KBr·Hg(CN) ₂ C 36.36 S - 11.6 KBr·Hg(CN) ₃ ·1½H ₄ O C 139.82		1		1	S - 13.8 ₄₄₀
4KCN·Hg(CN):       880       49.9         8KCN·Hg(CN):       1320       152.1         16KCN·Hg(CN):       2200       356.4         KCl·Hg(CN):       c       44.1       S - 8.8720         550       35.3         KCl·Hg(CN): H ₁ O       c       114.0       S - 10.3720         KCl·Hg(CN):       1000       - 29.4         2KCl·Hg(CN):       660       135.4         4KCl·Hg(CN):       880       335.6         8KCl·Hg(CN):       1320       735.6         KBr·Hg(CN):       c       36.36       S - 11.6         KBr·Hg(CN):       139.82		l .			
8KCN·Hg(CN) ₂ 1320 152.1 356.4 KCl·Hg(CN) ₃ 2200 356.4 KCl·Hg(CN) ₁ c 44.1 S - 8.8 ₇₄₀ 550 35.3 KCl·Hg(CN) ₂ 1000 - 29.4 2KCl·Hg(CN) ₃ 660 135.4 4KCl·Hg(CN) ₂ 880 335.6 8KCl·Hg(CN) ₂ 1320 735.6 KBr·Hg(CN) ₂ c 36.36 S - 11.6 KBr·Hg(CN) ₃ ·1½H ₄ O c 139.82	4KCN·Hg(CN),				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	•				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
KCl·Hg(CN) ₂ ·H ₂ O     550       KCl·2Hg(CN) ₃ 1000       2KCl·Hg(CN) ₂ 660       4KCl·Hg(CN) ₂ 880       8KCl·Hg(CN) ₂ 1320       735.6     735.6       KBr·Hg(CN) ₂ 0       6KBr·Hg(CN) ₂ 0       6KBr·Hg(CN) ₂ ·1½H ₄ O     0       139.82					S - 8.8700
KCl·Hg(CN) ₂ ·H ₂ O       c       114.0       S - 10.3 ₇₆₀ KCl·Hg(CN) ₂ 1000       - 29.4         2KCl·Hg(CN) ₂ 660       135.4         4KCl·Hg(CN) ₂ 880       335.6         8KCl·Hg(CN) ₂ 1320       735.6         KBr·Hg(CN) ₂ c       36.36       S - 11.6         KBr·Hg(CN) ₂ ·1½H ₂ O       c       139.82	My 1				4.4140
KCl·2Hg(CN);     1000       2KCl·Hg(CN);     660       4KCl·Hg(CN);     880       8KCl·Hg(CN);     1320       735.6     735.6       KBr·Hg(CN);     c       550     24.76       KBr·Hg(CN);-1;H;O     c       139.82	KCl·Hg(CN) ₂ ·H ₂ O				S - 10.3
2KCl·Hg(CN); 660 135.4 4KCl·Hg(CN); 880 335.6 8KCl·Hg(CN); 1320 735.6 KBr·Hg(CN); c 36.36 S — 11.6 KBr·Hg(CN); 1½H ₂ O c 139.82				1	2010/00
4KCl·Hg(CN); 880 335.6 8KCl·Hg(CN); 1320 735.6 KBr·Hg(CN); c 36.36 S — 11.6 KBr·Hg(CN); 1½H;O c 139.82				1	
8KCl·Hg(CN) ₂ 1320 735.6 KBr·Hg(CN) ₂ c 36.36 S — 11.6 550 24.76 KBr·Hg(CN) ₂ ·1½H ₄ O c 139.82				1	
KBr·Hg(CN) ₂ c 36.36 S - 11.6 550 24.76 KBr·Hg(CN) ₂ ·1½H ₄ O c 139.82		1		1	
550 24.76 KBr·Hg(CN) ₂ ·1½H ₂ O c 139.82					S - 11 8
KBr·Hg(CN) ₂ ·1½H ₂ O c 139.82		ľ		1	~ *1.0
	KBr·Hg(CN) _s ·1½H _s O	ľ	1		
	KBr·2Hg(CN),	1000		- 39.95	

# POTASSIUM

Formula	State	Description	$Qf,$ $kcal. \ mole^{-1}$	Q,	kcal. mole ⁻¹
2KBr·Hg(CN) ₂	660		114.14		
4KBr·Hg(CN) ₂	880		292.78		
8KBr·Hg(CN) ₂	1320		649.62		
KI-Hg(CN) ₂	c		23.6	S -	11.9
	550		11.7		
$\mathrm{KI} ext{-}\mathrm{Hg}(\mathrm{CN})_2 ext{-}\frac{1}{4}\mathrm{H}_2\mathrm{O}$	c		41.1		
KI-2Hg(CN) ₂	1000		- 52.8		
2KI·Hg(CN) ₂	660		86.56		
4KI·Hg(CN) ₂	880		234.92	}	
8KI·Hg(CN) ₂	1320		530.44		
KCl-CuCl ₂	С		162.4		
2KCl·CuCl	c		244.78		
2KCl·CuCl ₂	c		266.2		
2KCl·CuCl ₂ ·2H ₂ O	c		407.5	1	
K ₂ Cu(SO ₄ ) ₂	c	α, prepared			
M ₂ Ou(SO4) ₂		below 130°	527.0	S	$9.67_{800}$
	c	$\beta$ , prepared a			
		180-200°	530.4	S	$6.23_{800}$
	c	fused	528.3	S	8.37800
TT (0-/00 ) OTT ()	c	Tusca	675.5	$ \tilde{s} $ -	$1.17_{800}$
$K_2Cu(SO_4)_2 \cdot 2H_2O$	c		960.4	~	2.2.000
$K_2Cu(SO_4)_2 \cdot 6H_2O$	c	II	424.		
$\mathrm{K_{2}Cu(CO_{3})_{2}}$	c	IV	426.1		
	1	v	426.6		
77 CI 4 CI	c	<b>*</b>	134.5		
KCl-AgCl	C		117.5		
KBr-AgBr	С		338.6		
3KBr·AgBr·½H₂O	c		92.0		
KI-AgI	С		110.7		
KI-AgI-1H2O	С		206.8		
2KI·AgI·½H₂O	С		250.7		
3KI·AgI	c		283.8		
$3\text{KI} \cdot \text{AgI} \cdot \frac{1}{2}\text{H}_2\text{O}$	С		334.2		
$3KI \cdot 2AgI \cdot H_2O$	С		6.9	s -	8.3
$\mathrm{KCN} ext{-}\mathrm{AgCN}$	c		- 1.4	5 -	0.0
	500		1		
$2 \mathrm{KCN} \cdot \mathrm{AgCN}$	1320		24.80		
	330		25.65		
	220		26.05	1	
KCN-AuCN	aq.		4.8		
$\mathrm{K}_{2}\mathrm{PtCl}_{4}$	С		254.7	0	10.15
	aq.		242.4	S -	$12.15_{600}$
$K_2PtCl_8$	c		299.6		
	aq.		286.2	1 ~	10 5010 4
$K_2PtBr_4$	c		221.3	S -	$10.58^{19.4}_{800}$
	aq.	1	210.7	1	

Formula	State	Description	$Qf$ , $kcal. \ mole^{-1}$	Q	, kcal. mole ⁻¹
$ m K_2PtBr_6$	c		248.2		
	aq.		236.0	8 -	$12.21^{20}_{2000}$
$\mathrm{K}_2\mathrm{PtI}_6$	aq.		172.9		
K ₂ IrCl ₆	c		286.1		
	aq.		273.	S -	$13.1^{15.5}_{5400}$
$K_3IrCl_6$	c		375.5	S -	$7.9^{10}$ 5800
	aq.		367.6		
KReO ₄	c		298.37	S -	13.883600
222004	-	K+(∞)+			
		ReO₄-(∞)	284.5		
	14200		284.48		
	7200		284.46		
	3600		284.49		
K₂PdCl₄	c		261.6	s -	13.64 ^{19.5} 800
121 0014	aq.		248.0		•
K₂PdCl₅	c c		292.		
121 CO18	aq.		277.		
TZ DAD.	c aq.		218.3	s -	12.3
K₂PdBr₄			206.	~	~2.0
TZ DLCI	aq.		386.3		
K3RhCl6	aq.		40.3		
2KCN·Ni(CN) ₂	aq.		451.9		
K ₂ CO ₃ ·CoCO ₃	c		736.8		
K ₂ CO ₃ ·CoCO ₃ ·4H ₂ O	c		495.14		
KFe(SO ₄ ) ₂	600		527.29		
K ₂ Fe(SO ₄ ) ₂	440		i		
$K_2Fe(SO_4)_2\cdot 4H_2O$	С		837.	S	10.3200
$K_2Fe(SO_4)_2 \cdot 6H_2O$	C		937.	۵	10.5200
$K_3Fe(SO_4)_3$	660		830.03		
$K_3Fe(CN)_6$	c		48.5		
	aq.		34.1		
$K_4Fe(CN)_6$	c		131.9		
	aq.		119.5		
$K_4Fe(CN)_6\cdot 3H_2O$	c		340.3	_	
$K_3FeCO(CN)_5$ .	c		143.1	S -	$5.1_{2000}$
	aq.		138.0	_	
$K_3FeCO(CN)_5 \cdot 3\frac{1}{2}H_2O$	c		388.2	s -	$10.9_{2500}$
KH ₂ Fe(CN) ₆	aq.		- 87.2		
KH₃Fe(CN) ₆	aq.		- 61.7		
K ₂ HFe(CN) ₆	aq.		- 26.1		
$\mathrm{K_2H_2Fe}(\mathrm{CN})_{6}$	aq.		- 1.4		
K ₃ HFe(CN) ₆	aq.		59.1		
KMnO ₄	c		192.9	S -	$10.4_{500}$
	400		182.5		
$K_2Mn(SO_4)_2$	c		594.9	S	$6.34_{600}$
	1	1	1	s -	$2.87_{600}$

Potassium

Formula	State	Description	Qf, kcal. mole	$Q, kcal. mole^{-1}$
$\mathrm{K_2Mn}(\mathrm{SO_4})_2.4\mathrm{H_2O}$	c		881.1	S - 6.38 ₆₀₀
$K_2CrO_4$	c	I	001.1	$T = 0.35_{600}$ $2.45^{664}$
	c	II	333.4	$S - 5.25_{540}$
	2185		328.53	0.20540
	1945		328.49	
	1722		328.44	
	440		328.0	
	21.47		326.80	
$K_2Cr_2O_7$	c		488.5	$S - 16.69_{400}$
	1600		470.69	
	800		471.25	
	400		471.8	
	200		427.34	
57.01.01.0	100		472.87	
KCl·CrO₃	c		246.4	$S - 4.65_{490}$
$K_2Cr_2O_7 \cdot CrO_3$	c		599.	S 13.3 ₁₈₀
$\mathrm{KCr}(\mathrm{SO_4})_2$	c		500.	
TTG (GO ) TT O	600		554.93	
KCr(SO ₄ ) ₂ ·H ₂ O	С		581.	1
KCr(SO ₄ ) ₂ ·2H ₂ O	c		659.	
KCr(SO ₄ ) ₂ ·6H ₂ O	c		958.	
KCr(SO ₄ ) ₂ ·12H ₂ O	c		1384.9	S - 9.56 ₈₀₀
KNH₄CrO₄	c		305.3	S - 5.25 ₃₈₅
77 M. O	330		300.0	
K₂MoO₄	880		364.0	•
2KCl·UO2Cl2·2H2O	c		656.3	$S$ . $2.0^{19}_{2000}$
XVO3	c		321.8	S - 3.9
7710	aq.		317.9	
KVO₄	c		308.2	S - 4.0
$\zeta VO_5$	aq.		304.2	
•	aq.		290.2	
KF-AlF ₃	C		777.57	
KF-AlF ₃ -3½H ₂ O	3800	ļ	773.77	
KCl·AlCl₃	c	į	1033.39	
KCl·AlCl ₃	c		283.8	S 60.82 ₉₀₀
KCl·2AlCl ₃	C	1	496.9	S 47.49 ₁₃₃₀
$Al(SO_4)_2$	С	İ	675.7	$S = 113.42_{2000}$
ALAL (NO 4/2	c eoo		569.	
$\mathrm{CAl}(\mathrm{SO_4})_2\cdot\mathrm{H_2O}$	600		617.53	
$Al(SO_4)_2 \cdot H_2O$ $Al(SO_4)_2 \cdot 2H_2O$	c		723.	
$Al(SO_4)_2 \cdot 2H_2O$ $Al(SO_4)_2 \cdot 3H_2O$	С		473.4	S - 2.4
$Al(SO_4)_2 \cdot 3H_2O$ $Al(SO_4)_2 \cdot 12H_2O$	c		796.	•
CCl·AlCl ₃ ·6NH ₃	c		1448.1	$S - 10.10_{800}$
$C_2O \cdot Al_2O_3 \cdot 4SiO_2$	c	1	648.	
70 TI 308. #DIO3	c	leucite	1379.6	

Potassium

Formula	State	Description	$Qf$ , $kcal. mole^{-1}$		Q	), kcWl. mole-1
K ₂ O·Al ₂ O ₃ ·4SiO ₂	gls.		1368.2			
K ₂ O·Al ₂ O ₃ ·6SiO ₂	c	adularia	1810.6			
K ₂ O·Al ₂ O ₃ ·6SiO ₂	c	microcline	1784.4			
$K_2O \cdot Al_2O_3 \cdot 6SiO_2$	gls.	111010011110	1747.			
KCl-MgCl ₂	c	fresh melt	260.7			
KCl·MgCl ₂ ·6H ₂ O	c		702.0			
2KCl·MgCl ₂	c	fresh melt	364.5			
4KCl·MgCl ₂	c	fresh melt	575.3			
$K_2Mg(SO_4)_2$	c	prepared below	1	S		$11.53_{800}$
$K_2Mg(SO_4)_2$	c	fresh melt	654.71	S		$6.92_{800}$
$K_2Mg(SO_4)_2 \cdot 2H_2O$	c		797.70	S		0.68600
$\mathrm{K_2Mg}(\mathrm{SO_4})_2{\cdot}4\mathrm{H_2O}$	c		945.4			0.00000
$K_2Mg(SO_4)_2 \cdot 5H_2O$	c		991.58	s	_	8.09600
$ m K_2Mg(SO_4)_2\cdot 6H_2O$	c		1081.83	S		10.02500
2KCl·CaCl ₂	c	fresh melt	401.8			20.0200
K ₂ SO ₄ ·CaSO ₄ ·H ₂ O	c		757.5			
K ₂ SO ₄ ·5CaSO ₄ ·H ₂ O	e		2131.1			
$KCaFeCO(CN)_{5}.5H_{2}O$	c		- 933.			
K ₂ SO ₄ ·SrSO ₄	c		688.1			
KLiICl	c	fresh melt	176.6			
NaK	liq.		2.1			
NaK ₂	liq.		5.3			
NaK ₃	liq.		5.6			
Na₂K	liq.		0.4			
KCl·NaCl	c	fresh melt	202.01			
KNaICl	c	fresh melt	176.59			
Na ₂ KPO ₄	330		474.6			
BKCNS-NaCNS	c		180.6			

Rubidium

Atomic number 37	Stand	ard state	Rb (c)	Atom	ic weight 85.44
Formula	State	Descr	iption	Qf, kcal. mole	$Q, kcal. mole^{-1}$
Rb	g liq.	4p ⁶ 5s ( ² S	$\S_{1/2})$	- 18.9	$V - 18.2^{400} F - 0.53^{39}$
Rb*	g g	4p65n (2F		- 44.68	$E^z - 35.781$
Rb+	g	4p ⁶ ( ¹ S	$\binom{2}{3/2}$	- 45.39 - 116.25	$ \begin{vmatrix} E^z & -36.486 \\ I^z & -95.90 \end{vmatrix} $
$Rb^{++}$ $Rb_2O$ $Rb_2O_2$ $Rb_2O_4$ RbH	8 6 6 6 6		⁹¹ 8/2)	61.04 - 749.3 82.9 107. 137. 12.	I* -631.56 S 80.0 ₈₀₀₀
RbOH	c c ∞	II   I   Rb+(∞)-	L.	101.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
RbOH·1688H2O RbOH·H2O RbOH·2H2O RbF	200 3.18 c c c g c 3200 1600 800 400 200	Nb*(∞)-	0)	115.7 115.7 112.9 149.8 180.2 253.0 79.8 133.24 139.240 139.218 139.211 139.202 139.189 139.173 139.157	$egin{array}{cccccccccccccccccccccccccccccccccccc$
RbF·½H ₂ O RbF·½H ₂ O RbHF ₂ RbCl	100 c c c aq. g c ∞ 6400 3200 1600 800 400 200	Rb ⁺ (∞)+	Cl⁻(∞)	139.150 158.08 242.27 219.7 214.4 53.6 105.08 100.727 100.704 100.696 100.691 100.688 100.733	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

### Rubidium

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q, kc	al. mole ⁻¹
RbCl RbBr	100 g c		100.847 45.0 95.83	s -	5.86110
	6400 3200 1600 800	$Rb^{+}(\infty) + Br^{-}(\infty)$	89.710 89.690 89.686 89.684 89.690		
RbI	400 200 100 g		89.720 89.800 89.970 31.2	   V _	36.71100
	c ∞ 6400 3200 1600	Rb+(∞)+I-(∞)	81.03 74.410 74.391 74.388 74.388	S -	$6.5_{200}$
Dh C	800 400 200 100		74.395 74.432 74.530 74.730	S	94.6
Rb ₂ S	∞ • c	2Rb+(∞)+ S(∞)	88. 112.08		24.6
Rb₂SO₄	6400 3200 1600 800 400 200	2Rb ⁺ (∞)+ SO ₄ (∞)	344.48 337.880 337.760 337.743 337.744 337.770 337.850 338.050	S -	$6.43_{200}$
RbHSO ₄	c aq.		$277.6 \\ 274.1$	s -	3.58200
RbI·4SO₂ RbNO₃	c c c	II I Rb+(∞)+	405.0 119.24	D - S - T	10.1 8.91 ₄₀₀ 1.05 ¹⁶⁴ +11
	6400 3200 1600 800 400	NO₃ [−] (∞)	110.230 110.201 110.206 110.220 110.257 110.339		

Rubidium

Formula	State	Description	Qf, kcal. mole-	۱ (	), kcal. mole ⁻¹
RbNO ₃	200		110.405		~
-	100		110.495	1	
RbBr·3NH ₃	c		110.750		
RbI·6NH ₃	c		150.0	D	- 7.1
Rb₂CO₃	c		191.7	$D_{\tilde{\alpha}}$	- 7.5
	×	2Rb+(∞)+	273.66	S	$9.13_{220}$
	~	$CO_3^{}(\infty)$	909 50		
	2000	CO ₃ (w)	282.58		
	220		282.54		
	5.76		282.79		
Rb ₂ CO ₃ ·H ₂ O	c 3.70		281.58	_	
Rb ₂ CO ₃ ·1½H ₂ O	c		348.11	S	$3.05_{220}$
Rb ₂ CO ₃ ·3½H ₂ O	1		385.38	S	- .03 ₂₂₀
RbHCO ₃	c		525.56	S	$-3.48_{220}$
20022003	2000		230.44	S	$-4.60_{220}$
3Rb ₂ CO ₃ ·2RbHCO ₃ ·4½H ₂ O			225.84		
RbCNS	С		1615.4	s	- 7.7
	С		56.	$\mathcal{S}$	<b>– 14</b> .
RbCNS-½SO2	aq.		42.1		
$2\text{RbI}\cdot\text{PbI}_2$	С		96.8	D	<b>— 10.6</b>
2RbI·PbI ₂ ·4H ₂ O	c		109.55	$\mathcal{S}$	$81.08_{1900}$
2RbCl·CuCl ₂	c		490.80	s	$-26.69_{2000}$
2RbCl·CuCl ₂ ·2H ₂ O	С	-	269.0	s	$-3.06_{800}$
RbCl·ThCl	c		413.3	s	$-10.65_{800}$
	С		565.2	$\mathcal{S}$	28.1
2RbCl·ThCl ₄ ·9H ₂ O	c		1207.7	${\mathcal S}$	1.0
RbCl·ThCl₄	c		782.9	s	11.82
RbAl(SO ₄ ) ₂	c		567.		
RbAl(SO ₄ ) ₂ ·H ₂ O	c		646.		
RbAl(SO ₄ ) ₂ ·2H ₂ O	c		722.		
RbAl(SO ₄ ) ₂ ·3H ₂ O	c		796.		•
$RbAl(SO_4)_2 \cdot 12H_2O$	c		1450.		

# Cesium

Atomic number 55	Standa	rd state Cs (c)	Atomic	weight 132.91
Formula	State	Description	$Qf$ , $kcal. mole^{-1}$	Q, kcal. mole ⁻¹
Cs	g liq.	5p ⁶ 6s ( ² S _{1/2} )	- 18.8 - 0.5	$F$ — $0.50^{26}$
Cs*	g	$\begin{array}{c c} 5p^{6}6p & (^{2}P^{1}_{1/2}) \\ & & (^{2}P^{1}_{3/2}) \end{array}$	$ \begin{array}{r} 0.000 \\ - 50.62 \\ - 52.20 \end{array} $	$E^z - 31.82$ $E^z - 33.397$
Cs ⁺	8 8 as	$5p^6$ ( ${}^{1}S_0$ )	- 109.65 62.04	$I^z - 89.40$
Cs++ Cs ₂ O	g c	$5p^{5}$ $(^{2}P_{3/2})$	- 649.8 82.1	$\begin{array}{ccc} I^z & -538.7 \\ S & 83.2_{3400} \end{array}$
$C_{S_2}O_4$ $C_SH$ $C_SOH$	c c	II	163.5 12. 100.2	S 16.56 ₁₁₀
<del></del>	c ∞	$\begin{vmatrix} I \\ Cs^{+}(\infty) + OH^{-}(\infty) \end{vmatrix}$	116.7	T 1.76 ²²³ -11
CsOH·H₂O	200 2.16 c		116.7 113.36 180.69	S 4.48 ₁₁₀
CsF	g		· 81.	$V - 36.1200$ $S - 8.51_{110}$
	∞ 800 200	$C_{s^{+}(\infty)}+F^{-}(\infty)$	140.24 140.20 140.19	
CsF- ² ₃ H ₂ O	100 c		140.19 181.41	S 4.34 ₁₁₀
$CsF \cdot 1\frac{1}{2}H_2O$ $CsHF_2$	c c aq.		$\begin{array}{c c} 241.65 \\ 219.1 \\ 215.4 \end{array}$	$\begin{array}{ccc} S & 1.10_{110} \\ S & - & 3.62_{110} \end{array}$
CsCl	g	I	55.4	T 1.3452 + II
	6400	$\begin{bmatrix} II \\ Cs^{+}(\infty) + Cl^{-}(\infty) \end{bmatrix}$	106.32 101.727 101.706	$S - 4.54_{200}$
	.3200 1600 800		101.702 101.703 101.712	
	400 200 100	·	101.732 101.801 101.912	
C.D.	50 25		102.097 102.427	
CsBr	g c ∞ 6400	$Cs^{+}(\infty) + Br^{-}(\infty)$	47.8 97.65 90.710	$V - 36.4^{1000}$ $S - 6.60_{110}$
	6400		90.692	

Cesium

Formula	State	Description	Qf, kcal, mole-1	Q, kcal. mole ⁻¹
CsBr	3200		90.690	
	1600		90.691	
	800	}	90.700	}
	400		90.740	
	200		90.85	)
	100	}	91.05	}
$C_{s}I$	g		37.5	
	c		83.90	$S - 8.12_{110}$
	80	$C_{s+(\infty)+I-(\infty)}$	75.410	)
	6400		75.393	
	3200	)	75.392	
	1600		75.393	
	800		75.403	
	400 200		75.455	
	100		75.57	
$CsI_3$	ì		75.78 91.9	D - 17.5
CsI ₄	C		92.3	D = 17.5 $D = 15.8$
Cs ₂ S	c		92.5 87.	S = 27.3
0620	8	2Cs+(∞)+	01.	21.0
		S(∞)	114.08	
Cs ₂ SO ₄	c	D (2)	344.85	S - 4.70 ₂₀₀
	8	2Cs+(∞)+	012.00	2.10200
	}	SO ₄ (∞)	339.880	
	6400		339,787	
	3200		339.780	
	1600		339.795	
	800		339.843	
	400		339.940	
	200		340.15	
CsHSO ₄	c		279.7	$S - 3.55_{200}$
	aq.	1	275.0	
$CsI-4SO_2$	c		410.	D - 10.6
CsNO ₃	c	II	121.10	$S - 9.74_{400}$
	c	I	1	T 0.83¹⁵⁴→11
	∞	Cs ⁺ (∞)+		
	0.100	NO ₃ -(∞)	111.230	
	6400		111.202	
	3200		111.210	
	1600		111.227	
	800		111.266	
	400		111.358	
	200		111.521	
	100		111.795 112.238	
	50		114.400	

## Cesium

Formula	State	Description	$Qf$ , $kcal.\ mole^{-1}$	Q	, kcal. mole ⁻¹
CsNO ₃	25		112.980		
$Cs_2CO_3$	c		272.76	S	$12.06_{220}$
	∞	2Cs ⁺ (∞)+			
		CO₃(∞)	284.58		
	2000		284.54		
	220		284.82		
	7.59		284.58		
$Cs_2CO_3 \cdot 3\frac{1}{2}H_2O$	c		527.57	$\mathcal{S}$	$-3.45_{220}$
CsHCO ₃	c		231.0	$\mathcal{S}$	$-4.17_{220}$
	2000		226.8		
$5Cs_2CO_3 \cdot 2CsHCO_3 \cdot 11H_2O$	С		256.8	$\mathcal{S}$	- 8.
$5\mathrm{Cs}_2\mathrm{CO}_3\cdot2\mathrm{CsHCO}_3\cdot17\tfrac{1}{2}\mathrm{H}_2\mathrm{O}$	c		3100.	S	<b>–</b> 26.
$C_8CNS \cdot \frac{1}{2}SO_2$	С			D	- 10.1
2CsCl·CuCl ₂	c		272.7	s	$-4.8_{1000}$
2CsCl·CuCl₂·2H₂O	c		413.6	s	$-9.0_{1000}$
2CsCl·ThCl₄	c		562.5	s	32.9
2CsCl·ThCl ₄ ·8H ₂ O	c		1139.4	s	3.0
4CsCl·ThCl ₄	c		777.2	s	21.6
CsLiICl	c	melt	181.36		
CsNaICl	c	melt	181.91		
CsKICl	c	melt	187.49		
$CsAl(SO_4)_2$	c		569.		
CsAl(SO ₄ ) ₂ ·H ₂ O	c		647.		
CsAl(SO ₄ ) ₂ ·2H ₂ O	c		723.		
$CsAl(SO_4)_2 \cdot 3H_2O$	c		797.		
$\mathrm{CsAl}(\mathrm{SO_4})_2 \cdot 12\mathrm{H_2O}$	c		1451.		

# Element 87

Atomic number 87 Standard state M (c) Atomic weight (223?)

#### HELIUM

- He (g). The values for the energy states of gaseous monatomic helium are from Hansen and Thorsen, Hylleraas, and Bacher and Goudsmit.
- He (liq.). Vapor pressure data were reported by Dana and Onnes,^{1, 2} Keesom, Weber, and Ngaard,¹ Keesom, Weber, and Schmidt,¹ Onnes,^{1, 2} Onnes and Weber,^{1, 3} and Spangenberg.¹ We have utilized the data of Dana and Onnes.^{1, 2}.
- He (c.) Simon and Steckel¹ reported values for the heat of fusion of helium at pressures from 1120 to 1860 kg per cm.² He (c) is not stable at 1 atmosphere. See also van Laar.¹¹
- He₂ (g). The values for the energy states and the energy of dissociation of gaseous diatomic helium are from Weizel, ^{1, 2, 3, 4, 5}. Weizel and Pestel, ¹ Weizel and Füchtbauer, ¹ Imanishi, ^{1, 2} Curtis, ¹ Curtis and Harvey, ¹ and Mulliken. ⁶ See also Jevons. ¹

#### NEON

- Ne (g). The values for the energy states of gaseous monatomic neon are from Paschen,⁵ Hansen and Thorsen,¹ de Bruin,³ Russell, Compton, and Boyce,¹ Compton, Boyce, and Nickerson,¹ Bleakney,¹ and Bacher and Goudsmit.¹
- Ne (liq.). Vapor pressure data for liquid neon were reported by Cath and Onnes,¹ Crommelin,⁵ Onnes and Crommelin,² Crommelin and Gibson,¹ Clusius,¹ Verschaffelt,² and Mathias, Crommelin, and Onnes.³
  - Ne (c). Verschaffelt² measured the vapor pressure of solid neon.

#### ARGON

- A (g). The values for the energy states of gaseous monatomic argon are from Meissner, Saunders, Compton, Boyce, and Russell, Compton, Boyce, and Nickerson, Bleakney, and Bacher and Goudsmit.
- A (liq.). Eucken^{2,3} measured directly the heat of vaporization, obtaining V = -1.501 at  $-185.6^{\circ}$ . This value is in agreement with the value -1.54 calculated from the vapor pressure data of Born,¹ Crommelin,^{1,2,3} and Mathias, Crommelin, and Onnes.^{3,4}
- A (c). Eucken and Hauch¹ measured the heat of fusion. See also Eucken.^{2, 3}
- $A \cdot 5 \text{ H}_2O$  (c). According to Villard⁸ and de Forcrand,⁶⁸ argon forms a well-defined pentahydrate. The latter's data on the dissociation pressure from 0 to 8° yield a value for the heat of the reaction of dissociating the solid hydrate into gaseous argon and liquid water.

#### KRYPTON

Kr (g). The values for the energy states of gaseous monatomic krypton are from Meggers, de Bruin, and Humphreys, Bleakney, Deb and Dutt. Dejardin, and Bacher and Goudsmit.

- **Kr** (liq.). The vapor pressure data of Peters and Weil¹ yield V = -2.31 at the boiling point,  $-151.0^{\circ}$ . Other vapor pressure data were reported by Ramsey, ^{1, 3} Ramsey and Travers, ¹ and Patterson, Cripps, and Whytlaw-Grav. ¹
  - Kr (c). We have estimated the heat of fusion of krypton.
- $\mathbf{Kr} \cdot \mathbf{5} \, \mathbf{H}_2 \mathbf{O}$  (c). According to Villard⁸ and de Forcrand⁶⁸ there is a well-defined pentahydrate of krypton. The latter computed the heat of dissociation into gaseous krypton and liquid water from his data on the dissociation pressure at temperatures from 0 to 12°.

#### XENON

- Xe (g). The values for the energy states of gaseous monatomic xenon are from Meggers, de Bruin, and Humphreys, Deb and Dutt, and Bacher and Goudsmit.
- **Xe** (liq.). The vapor pressure data of Peters and Weil¹ yield V = -3.27 at the boiling point,  $-108.6^{\circ}$ . Other vapor pressure data were reported by Ramsey and Travers ¹ and Patterson, Cripps, and Whytlaw-Grav.¹
  - Xe (c). We have estimated the heat of fusion.
- Xe·6 H₂O (c). According to de Forcrand,⁷⁰ there is a well defined hexahydrate. His data on the dissociation pressure at temperatures from 1.5 to 23.5° yield a value for the heat of dissociation of the solid hydrate into gaseous xenon and liquid water.

#### RADON

- Rn (g). The values for the energy states of gaseous monatomic radon are from Rasmussen¹ and Bacher and Goudsmit.¹
  - Rn (liq.). We have estimated the heat of vaporization.
  - Rn (c). We have estimated the heat of fusion.

#### OXYGEN

- O₂ (g). The standard state is taken to be the naturally existing mixture of oxygen molecules containing the atoms, O¹⁶, O¹⁷, and O¹⁸. The values for the energy states of gaseous diatomic oxygen are from Mulliken⁶ and Jevons.¹
- O₂ (liq.), O₂ (c). We have selected Giauque and Johnston's¹ accurate calorimetric values for the heats of transition, fusion, and vaporization of oxygen. These and the earlier calorimetric data of Eucken,² ³ Alt,¹ Barschall,¹ and Keesom,¹ as well as the vapor pressure data of Cath,¹ Holst,⁴ Onnes and Braak,¹ Onnes and Crommelin,¹ and von Siemens,¹ are in substantial agreement.
- $O_2$  (aq.). From the data of Winkler^{1, 2, 6, 9,10} and Cassuto¹ on the solubility of oxygen in water at various temperatures we have calculated S=3.85. Washburn and Strachan¹ computed S=3.0.
- O (g). The value for the energy of dissociation of the normal oxygen molecule into normal oxygen atoms is  $5.09\pm0.03$  volt-electrons. This

OXYGEN 173

value is from Herzberg,2 Wigner and Witmer,1 Birge,2,3,5 and Birge and See also Henri, Mecke, Kondratjew, Baxter, Jenckel, Eucken, and Warburg. Copeland and Rodebush and Troxel made direct calorimetric measurements of the energy of recombination of oxygen atoms on a palladium surface, but their values, though identical, are about 12 per cent higher than the accepted value and may indicate a systematic error. See also Reisenfeld and Schumacher, 1 Reisenfeld and Wassmuth,1 and Kassel.1,2

The values for the energy states of gaseous monatomic oxygen are from Frerichs,^{1, 2} Paschen,⁸ Bowen,^{1, 2, 8} Kaplan,¹ Sommer,¹ McLennan and Crawford, Hopfield, Russell, Fowler, Fowler and Hartree, Laporte and Young,2 Edlen and Ericson,1 and Bacher and Goudsmit.1

O-(g). The electron affinity of the oxygen atom may be evaluated by extrapolation of the square root of the ionization potentials of F-, Ne, and Na+, but adequate data for F- are not available. The only other method which presents itself is by way of the reaction MO (c) = M++ (g) +O- (g). Using the values for the lattice energies as given by Sherman,² and taking the values for the heats of formation for MO (c) and M++ (g) from our tables, we have calculated the following values for the heat of formation of  $O^{-}$  (g) from the data on the various metallic oxides: -224.9, MgO; -226.8, CaO; -224.6, SrO; -222.6, BaO; -226.2, Li₂O; -204, NiO; -231.0, ZnO; -187.4, CdO; -260,  $SnO_2$ . We have selected as : a mean, the value -225, which gives for the electron affinity of the oxygen atom. O (g)  $+2\theta = 0^-$  (g), Q=166. Senftleben gave -40 for the electron affinity, but his calculation via OH- is very uncertain; Lande's data lead to 265, which is apparently in error.

O₃ (g). Berthelot^{38, 134} and Mulder and Van der Muelen^{1, 2} measured the heat of the reaction between  $O_3$  (g) and  $As_2O_3$  (aq.). Combining their data with those of Thomsen for the reaction between O2 (g) and  $As_2O_3$  (aq.), we have computed the following values for Qf of  $O_3$  (g): Berthelot, 32.5±1.5; Mulder and Van der Meulen, 33.7±2.0. Recent determinations of this quantity have been made by direct catalytic decomposition. Van der Meulen, using a platinum catalyst, obtained 35.9; the data of Kailan and Jahn, and Jahn (cf. Woods1), who passed ozone over soda lime, lead to  $34.50 \pm 0.2$ . This latter value may be accepted with considerable confidence inasmuch as Kailan and Jahn³ have shown that the use of platinum as a catalyzer results in high values, probably due to oxidation of the catalyst. See also Rideal and Kunz,1 and Born and

Gerlach.1

O3 (liq.). Spangenberg1 determined the heat of vaporization of

liquid ozone.

O3 (aq.). The heat of solution of ozone was computed from the data of Fischer and Tropsch1 and Rothmund1 on the solubility of ozone in water at various temperatures.

O4 (g). The existence of O4 was first postulated by Lewis3 in order to explain the anomalous magnetic properties of oxygen. and his expression for the equilibrium constant gives for  $O_4$  (g), Qf = 0.13. Wulf¹ found bands in the absorption spectra of oxygen which he assigned to the  $O_4$  molecule. If, following Kondratjew,¹ it is assumed that the band at  $47,500 \text{ cm}^{-1}$  is associated with the reaction,  $O_4$  (g) (normal)  $= O_3$  (g) (normal) +O (g) (¹D), then for  $O_4$  (g), Qf = 1.2.

#### HYDROGEN

H₂ (g). The standard state of hydrogen is taken to be the naturally existing mixture of diatomic hydrogen molecules containing atoms of protium (H¹) and deuterium (H²), the molecules being in equilibrium at 18° with respect to the ortho and para rotational states. See Dennison, Bonhoeffer and Harteck, Giauque, Elbe and Simon, Davis and Johnston, and Johnston and Long. For H¹H¹ at 18°, 0.2508 of the molecules are in the para rotational states and 0.7492 in the ortho, which is very nearly the high temperature distribution of 1 to 3. The number of atoms of H² in natural hydrogen is about 1 in 5000.

The values for the energy states of gaseous diatomic hydrogen are from Richardson^{3, 4, 5} and Richardson and Das.^{1, 2} See also Sandeman,¹ Dieke and Hopfield,¹ Hori,³ Schaafsma and Dieke,¹ Richardson and Davidson,^{1, 2, 3, 4, 5} Finkelnburg and Mecke,^{1, 2} Mulliken,⁶ Jevons,¹ and Burrau.¹

- H₂ (liq.). The calorimetric determinations of the heat of vaporization by Simon and Lange, Keesom, Onnes and Keesom, Mathias, Crommelin, and Onnes, Dewar, and Eucken, are in substantial agreement, as are values calculated from vapor pressure data by Dewar, de Forcrand, Cederberg, Onnes and Keesom, Van Laar, Eucken, Karwat, and Fried, Simon, Eucken and Fried, Crommelin and Onnes, Keesom, and Onnes and Martinez.
- **H**₂ (c). For the heat of fusion we have taken Simon and Lange's¹ value, which is in agreement with the earlier values of Keesom and Onnes,¹ but not with that of Dewar.³ These data are presumably for the 1 to 3 mixture of para and ortho hydrogen.
- H₂ (aq.). The heat of solution is computed from the solubility-temperature data of Turnofejen¹ and Winkler.⁹
- **H** (g). The International Critical Tables (see Bichowsky¹) value for the heat of formation of monatomic hydrogen was taken from Witmer¹ and Dieke and Hopfield,¹ who gave  $D^z=4.35$  volt-electrons. It has since been shown that the last line of Witmer's Lyman band is spurious, and the slightly higher value of 4.47 volt-electrons is obtained. The calorimetric data of Bichowsky and Copeland¹ yield  $D^z=4.47\pm0.15$  volt-electrons. Richardson and Davidson⁵ carefully reviewed all the data on the energy of dissociation of hydrogen and concluded that  $D^z=4.46\pm0.04$  volt-electrons.

See Bacher and Goudsmit¹ for a discussion of the energy states of gaseous monatomic hydrogen.

- H⁻(g). The electron affinity of the hydrogen atom can be determined in several ways. Extrapolation of the ionization potentials of Be⁺⁺, Li⁺, and He to H⁻ yields a value of 1.40 volt-electrons. The electron affinity can also be calculated from the lattice energy of the ionic LiH crystal. Assuming that the repulsive force varies as 1/r⁵ for both Li⁺ and H⁻, we have calculated for the lattice energy of LiH, the value 218.2. Hylleraas,⁴ using a similar method, obtained 217. Hylleraas⁴ also calculated this quantity by means of the new quantum mechanics, obtaining 218.6. This last calculation gives atomic distances in LiH in exact accord with the known density.
- $H^+$  (aq.). It is conventional to take the heat of formation of aqueous hydrogen ion as zero at infinite dilution. This value, of course, has no relation to the actual heat of formation of  $H^+$  (aq.), which quantity could be determined if the heat of solution of  $H^+$  (g) were known. Though we have no accurate knowledge of the heat of solution of  $H^+$  (g), its value can be estimated in several ways. The method of Latimer¹ requires a knowledge of the absolute potential of the hydrogen electrode and the entropy of  $H^+$  (aq.); while that of Born requires a knowledge of the effective diameter, r, of the hydrogen ion and the dielectric constant, d, of water, which values are used in the formula  $S = e^2/2r(1-1/d)$ . The values obtained by these methods are, respectively, S = 257 and 225; and the absolute value of Qf for  $H^+$ (aq.) becomes -108 and -140, respectively. See also Fajans^{3, 4}. However, for practical reasons, we arbitrarily take, for  $H^+$  ( $\infty$ ), Qf = 0.
- $H_2O$  (lig.). At the time of the compilation of the thermochemical values for the International Critical Tables by Bichowsky, the heat of formation of water had been measured by a large number of investigators: Despretz,² Dulong,² Grassi,¹ Abria,² Favre and Silbermann,¹ Andrews,^{4, 14} Thomsen,^{3, 15} von Than,^{1, 2, 3} Schuller and Wartha,¹ Berthelot,69 Berthelot and Matignon,8 Mixter,2,3 and Rümelin.1 The first six of these investigations must be designated as pioneering studies, while those of von Than, 1,2,3 Berthelot, 69 Berthelot and Matignon,8 and Rümelin¹ must be withdrawn from consideration for the following reasons: Five experiments were reported by von Than, 1, 2, 3 who used an ice calorimeter and obtained an average deviation of about  $\pm 0.05$  per cent in the combustion experiments; but, unfortunately, his calibration data (energy equivalent of the calorimeter) are so few and so lacking in accuracy as to make the high precision of the combustion experiments practically valueless. Berthelot ereported the result of but one experiment. Berthelot and Matignon⁸ performed four experiments with an average deviation of about  $\pm 0.9$  per cent. The six results given by Rümelin¹ have an average deviation of about  $\pm 0.5$  per cent.

There remain to be considered the data of Thomsen^{3, 15} who burned oxygen in hydrogen in a flame at constant pressure in a calorimeter at room temperature; of Schuller and Wartha,¹ who burned oxygen in hydrogen in a flame at constant pressure in an ice calorimeter; and of

Mixter,^{2, 3} who exploded oxygen and hydrogen at constant volume in a bomb calorimeter. The best of these three sets of data are those of Schuller and Wartha,¹ to which an accuracy of about ±0.09 per cent may be attached. The data of these three investigations were reviewed by Lewis,² Roth,¹⁰ and Bichowsky,¹ who recommended the following values for the heat of formation of liquid water from gaseous hydrogen and oxygen (corrected to 18°): Lewis, 68.33; Roth, 68.39; Bichowsky, 68.38. Complete details of a recalculation of the calorimetric data of Thomsen,¹⁵ Schuller and Wartha,¹ and Mixter^{2, 3} are given in a report by Rossini.¹

Recently, Rossini¹ determined with considerable accuracy ( $\pm 0.015$  per cent) the heat of formation of water, using a flame calorimeter at constant pressure and burning both oxygen in hydrogen and hydrogen in oxygen. His method was a substitution one, in which the energy from a measured amount of electrical energy was substituted for the energy from a measured amount of chemical reaction, the calorimeter serving as the comparator of the two kinds of energy. Rossini¹ reported 285,775 $\pm 40$  international joules per mole for the reaction at 25° and a constant pressure of 1 atmosphere. Corrected to 18°, and kilocalories, the value becomes  $68.367\pm 0.010$ . For the present tables, we have rounded off this value to 68.370.

- $H_2O$  (g). Values for the heat of vaporization of water were reported by Brix, Regnault, 5, 7, 9 Andrews, Favre and Silbermann, Berthelot, 44 Schall, Dieterici, Griffiths, Louguinine, Smith, 4, 5 Joly, Henning, Richards and Mathews, Carlton-Sutton, Mathews, Wrewsky, Jakob, Osborne, Stimson, and Fiock, and Ginnings. The most accurate data are apparently those of the last two named investigations, whose data yield for 18°, V = -10.571. This value is in agreement with that obtained by Fiock from a recalculation of the earlier data. See also Holborn, Scheel, and Henning.
- **H₂O** (c). Values for the heat of fusion of ice were reported by Black,¹ Laplace and Lavoisier,¹ la Provostaye and Desain,¹ Desain,¹ Regnault,^{1,5} Hess,¹¹ Person,^{1,3,5} Leduc,¹ Bunsen,^{3,4} Smith,^{4,5} Behn,² Dieterici,² Zakrzewsky,² Bogojawlensky,¹ Noyes and Sammet,¹ Bridgman,⁵ Dickinson and Osborne,² and Dickinson, Harper, and Osborne.¹ The data of the last two named investigations are the most accurate and yield the value -1.437 at 0°
- OH (g). The normal state of the OH molecule is  ${}^2\pi$ . The next higher electronic energy state is  ${}^2\Sigma$ , and its energy has been shown by Birge¹ and Jack¹ to be 92.26 above that of the normal level. Bonhoeffer and Reichardt, in an ingenious study of the intensity of lines in the absorption spectra of partially dissociated  ${\rm H_2O}$ , determined the concentration of gaseous OH in equilibrium in the mixture at various temperatures and pressures. Their data yield for the reaction,  ${\rm O_2}$  (g)  $+2{\rm H_2O}$  (g)  $=4{\rm OH}$  (g), Q=-134; whence, for OH (g), Qf=-4.6. By extrapolating the vibration levels of the  ${}^2\Sigma$  state of OH, Bonhoeffer and Haber deduced  $D^z=-70.6$  for the reaction, OH (g) ( ${}^2\Sigma$ ) = H (g) (nor-

mal) +O (g) ( 2D_1 ); whence, for OH (g), Qf=7.5. Villars¹ gave, for OH (g) (normal) =O (g) ( 2D_1 ) +H (g) (normal),  $D^z=-138$ , yielding for OH (g), Qf=-17.3; but his method is faulty. From spectroscopic data, Bates¹ found for the dissociation of normal OH into normal atoms of O and H,  $D^z=-116.05$ , whence, for OH (g), Qf=5.93.

OH-(g). The heat of formation of OH-(g) can be estimated by the method of lattice energies. Using the approximate formula for the lattice energy, with rough estimates of the crystal constants of NaOH, KOH, and RbOH from their densities and molecular weights, we have calculated from the data on these substances, for OH-(g), Qf = -64, -58, and -56, respectively. Lederle¹ calculated a value of -81.

OH-( $\infty$ ). The heat of formation of OH-( $\infty$ ) is calculable from a knowledge of the heat of neutralization of a strong acid and a strong base at infinite dilution in water. That is to say, the reaction, NaOH ( $\infty$ ) +HCl( $\infty$ ) = NaCl( $\infty$ ) +H₂O (liq.), is equivalent to the reaction OH-( $\infty$ )+H+( $\infty$ ) = H₂O (liq.). Rossini⁴ critically reviewed the data on heats of neutralization and heats of dilution, and, utilizing the Debye-Hückel theory for extrapolating to infinite dilution, calculated the following heats of neutralization at 18° and infinite dilution in water: KCl, 13.689; KNO₃, 13.713; NaCl, 13.699; NaNO₃, 13.720; LiCl, 13.703; LiNO₃, 13.734. The average value is 13.710, whence for OH-( $\infty$ ), Qf=54.66.

H₂O₂ (aq.). Thomsen¹⁵ measured the heat of reaction of (SnCl₂ +4HCl) (500) with H₂O₂ (600) and with other oxidizing agents. recomputed data yield, for  $H_2O_2$  (600), Qf = 44.96. Thomsen¹⁵ also measured the heat of reaction of KMnO₄ (aq.) with H₂O₂ (aq.) and with other reducing agents, but these data are less accurate than the former, and the reactions are not as clear cut. Berthelot30 measured the heats of reaction of  $BaO_2$  (c) + HCl (aq.) and of  $SnCl_4$  (aq.) +  $BaCl_2$  (aq.)  $+2H_2O$  (liq.); these data yield, for  $H_2O_2$  (aq.), Qf=44.8. Berthelot⁶² also measured the heat of decomposition of H2O2 with Ag2O as a catalyst, —these data yielding Qf = 46.7. Berthelot's data on the reaction of H₂O₂ (aq.) + KI (aq.) must be disregarded because of the slowness of the reaction and because of side reactions. Favre and Silbermann² measured the decomposition of H₂O₂ with Pt as a catalyst, but their data are lacking in accuracy. Recently Matheson and Maass,1 and Roth, Grau and Meichsner¹ independently measured the heat of decomposition of H₂O₂ (aq.) with MnO₂ as a catalyst. Their data yield the following values for the heat of formation of H₂O₂ in 0, 0.3, 1.8, 2.6, 6.3, 170, and 360 H₂O, respectively: 44.84, 44.91, 45.60, 45.63, 45.67, 45.68, and 45.75.

 $H_2O_2$  (liq.). The foregoing data of Matheson and Maass¹ and of Roth, Grau, and Meichsner¹ yield, for the heat of solution of  $H_2O_2$  (liq.) in water,  $S_{200} = 0.88$ ; while the direct measurements of de Forcrand³² yield  $S_{200} = 0.46$ .

 $H_2O_2$  (g). Maass and Hiebert¹ measured the heat of vaporization of  $H_2O_2$  (liq.) to be 11.61. This direct determination supersedes the value

of 12.3 which was calculated by Lewis and Randall⁵ from the uncertain vapor pressure data of Wolffenstein¹ and Bruhl.¹

 $H_2O_2$  (c). The data of Maass and Hatcher¹ and Maass and Waldbauer¹ yield F=-2.51 at  $-1.7^{\circ}$ .

#### FLUORINE

 $\mathbf{F}_2$  (g). The energy states of the  $\mathbf{F}_2$  molecule are evaluated from the data of Gale and Monk¹ and Gale.¹ See Jevons.¹

 $\mathbf{F}_2$  (liq.). Cady and Hildebrand, from their own vapor pressure data, computed  $V=-1.60^{-188}$ . Henglein estimated V=-1.44.

 $\mathbf{F}_2$  (c). Henglein¹ estimated F = -0.34.

**F**(g). The data of von Wartenberg, Sprenger, and Taylor, who measured, spectroscopically, the convergence limit of the vibrational levels of  $F_2$ (g), yield -62.6 for the energy of dissociation of normal  $F_2$ (g) into normal fluorine atoms. Earlier estimates of this value were: Birge, 1-70.0; Henglein, 1-63.0; Villars, 1-57. See also Franck.

The values for the energy states of gaseous monatomic fluorine are from Dingle, 1, 2 de Bruin, 2 Bowen, 2 Turner, 3 and Laporte and Young. 1

See also Bacher and Goudsmit.1

- $F^-(g)$ . Extrapolation of the ionization potentials of Ne and Na⁺ gives 135 for the ionization energy of  $F^-(g)$ , the negative of the electron affinity of F(g); but this method is known to give values that are too high. A more reliable value can be obtained by the method of lattice energies, utilizing the data on the alkali fluorides. We have computed values of the lattice energies of LiF, NaF, KF, RbF, and CsF which are identical with those given by Sherman¹ namely: 240.1, 215.0, 190.4, 181.8, and 172.8, respectively. Utilizing the remaining necessary data from our tables, we have computed, for  $F^-(g)$ , the average value, Qf = 66.3. This is equivalent to an electron affinity of 98, which is identical with the value given by Lederle.¹ Older values were given by Henglein, Lande, and Turner.
- HF (g). von Wartenberg and Fitzner¹ measured the heat of the reaction between gaseous fluorine and hydrogen to give the gaseous associated molecule (HF)_n. According to present information, (see Simons and Hildebrand¹) the association of gaseous hydrogen fluoride is such that, at 18° and a pressure of 745 mm. Hg, the mean molecule is (HF)_{3.3}. Utilizing the data of Simons and Hildebrand¹ on the reaction, 6 HF (g) = (HF)₆(g), von Wartenberg and Fitzner corrected their observed calorimetric data to give, for HF (g) (ideal), Qf = 63.0. Later, von Wartenberg and Schutza¹ and Ruff and Laass¹ reported, for HF (g) (ideal), Qf = 64.5 and 62.3, respectively.
- HF (aq.). The earliest determination of the heat of formation of fluorine compounds was made by Berthelot and Moissan, who measured the heat of reaction between fluorine and an aqueous alkaline solution of potassium sulfite; but their data are of historical interest only. Guntz found the heat of solution of hydrogen fluoride to be 11.8; von Wartenberg and Fitzner gave, for HF (g) (ideal) = HF (aq.), Q=11.56. von

Wartenberg and Fitzner¹ also measured the heat of the reaction,  $\frac{1}{2}$  F₂ (g) +NaCl (c) = NaF (c) + $\frac{1}{2}$  Cl₂ (g). Combining with this reaction the heat of formation of NaCl (c) and the heat of neutralization of HF (aq.), we have obtained, for HF (aq.), Qf = 77.0. The heat of dilution of aqueous HF was measured by Guntz¹ and Peterson.⁶

**HF** (liq.). Guntz^{1, 5} measured the heat of solution of liquid HF in water. He gave S=4.6, whence, for HF (liq.), Qf=71.0. Kolosovskii, from vapor pressure data, computed V=-6.3, correcting an earlier calculation by Simons. In a recent investigation, Fredenhagen found V=-6.05 at 15°.

**HF** (c). Dahmlos and Jung¹ reported F = -1.09.

 $(\mathbf{HF})_6(\mathbf{g})$ . Simons and Hildebrand¹ studied the equilibrium,  $6\mathbf{HF}(\mathbf{g}) = (\mathbf{HF})_6(\mathbf{g})$ , and concluded that Q = 40.0. They assumed that no other molecular species exist in gaseous hydrogen fluoride.

**F**-(aq.). From the values of the heats of formation of LiF( $\infty$ ), NaF( $\infty$ ), KF( $\infty$ ), and of Li+( $\infty$ ), Na+( $\infty$ ), and K+( $\infty$ ), we have computed, for F-( $\infty$ ), Qf = 78.21, 78.13, and 78.23, respectively.

 $\mathrm{HF_{2^-}}$  (aq.). From the values of the heats of formation of aqueous LiHF₂, NaHF₂, and KHF₂ at infinite dilution (assuming no dissociation of HF₂-) we have obtained, for HF₂- ( $\infty$ ), Qf=153.67, 153.37, and 153.40, respectively.

 $F_2O$  (g). von Wartenberg and Klinkott¹ found for the reaction,  $F_2O$  (g) + 2KOH (4.67) = 2KF (4.67) + 2H₂O (liq.) + O₂ (g),  $Q = 251.8 \pm 1.0$ ; whence, for  $F_2O$  (g), Qf = -6.7. von Wartenberg and Klinkott¹ also measured the heats of the reactions,  $F_2O$  (g) +6KI (aq.) +2HF (aq.) = (4KF+3KI₃) (aq.) +H₂O (liq.) and, at about the same concentration,  $2\text{Cl}_2$  (g) +6KI (aq.) = (2KI₃+4KCl) (aq.), finding, respectively,  $Q = 176.4 \pm 100$  and 103. Combination of these reactions leads to a value of -4.8 for the heat of formation of  $F_2O$  (g). von Wartenberg and Klinkott¹ also measured the heats of the reactions,  $F_2O$  (g) +4 HBr (aq.) = 2 HF (aq.) +2 Br₂ (liq.) + H₂O (liq.) and 2 Cl₂ (g) +4 HBr (aq.) =4 HCl (aq.) +2 Br₂ (liq.), finding, respectively,  $Q = 134.8 \pm 100$  and 49.1. These data give, for  $F_2O$  (g), Qf = -5.7. von Wartenberg and Klinkott¹ reported that Ruff measured the heat of the reaction,  $2H_2$  (g) +2NaOH (aq.) + $F_2O$  (g) =2 NaF (aq.) +3 H₂O (liq.), and gave, from this source, Qf = -4.6.

## CHLORINE

- Cl₂ (g). The standard state is taken as the equilibrium gas at 18°, containing the natural mixture of isotopes. The energy states of the diatomic chlorine molecule are evaluated from the data of Elliott,^{1, 2} and the discussion of Mulliken.⁶ See also Jevons.¹
- Cl₂ (liq.). The heat of vaporization of liquid chlorine was measured by Estreicher and Schneer,³ Knietsch,¹ Pellaton,¹ Trautz and Gerwig,¹ Johnson and McIntosh,¹ Wohl,² and Eucken, Karwat, and Fried.¹ See also Harteck.¹
  - Cl₂ (c). The heat of fusion of chlorine was investigated by Estreicher

and Staniewski,¹ Estriecher and Schneer,¹ Eucken and Karwat,¹ and Harteck.² See also Rideal.¹ We have taken Eucken and Karwat's¹ value, F = -1.62 at -102°.

Cl (g). The heat of dissociation of Cl₂ (g) into atoms can be determined in several ways. Pier1 and Wohl,2,3 utilizing data on the instantaneous pressure developed in a closed bomb by explosion of H₂+Cl₂, or H₂O+Cl₂, computed thermodynamically the heat of dissociation. Pier's¹ values were preliminary; Wohl^{2, 3} reported D = -57.0. The values from the explosion method are in accord with those deduced from the data of Henglein, Trautz and Geissler, von Wartenberg and Wiegel, and von Wartenberg and Henglein, all of whom measured the vapor density of gaseous chlorine at various high temperatures. These data on the equilibrium,  $Cl_2(g) = 2 Cl(g)$ , yield D = -54.0 and -59.5. Trautz and Stackels¹ earlier value, -71.0, from vapor density data, is evidently in error. The most accurate value for the energy of dissociation of the normal diatomic chlorine molecule into two normal chlorine atoms is obtained from the spectroscopic data of Kuhn. who interpreted a band limit at 4758 Angstrom units as the dissociation of Cl₂ (g) (normal) into  $Cl(g)(^{2}P_{1}) + Cl(g)(^{2}P_{2})$ . Correcting to the normal state gives  $D^z = -56.9$ . Kuhn's interpretation of the band limit was corroborated by Senftleben and Germer.

The values for the energy states of gaseous monatomic chlorine are from Kiess and de Bruin, Muraka, Bowen, Bowen, Abowen and Millikan. See also Bacher and Goudsmit.

- Cl⁻(g). Plotting the square root of the ionization potentials of A, K⁺, and Ca⁺⁺ against the atomic number, and extrapolating to Cl⁻, yields -65 for the energy of ionization of Cl⁻(g). This is equivalent to the negative of the electron affinity of Cl (g). The heat of the reaction, Cl (g)  $+\theta$ =Cl⁻(g), can also be calculated by way of the lattice energies of LiCl, NaCl, KCl, RbCl, and CsCl. Using our own values for the auxiliary data, we have computed from these substances the following values for Cl⁻(g): Qf=62.1, 63.2, 61.2, and 63.7, respectively. Similar calculations, varying but slightly from the foregoing in the values obtained, were made by Lennard-Jones¹ and Sherman.² Lederle, from data on the absorption spectra of gaseous KCl, PbCl, and CsCl, calculated the electron affinity of Cl (g), and his values yield, respectively, for Cl⁻(g), Qf=60.4, 61.6, and 60.2.
- $Cl^{-}(\infty)$ . Since we have adopted the convention of making Qf=0 for  $H^{+}(\infty)$ , the value for the heat of formation of  $Cl^{-}(\infty)$  is identical with that for  $HCl(\infty)$ .
- $\mathrm{Cl}_3$  (g). The existence of this substance is still hypothetical and depends mostly on an interpretation of some rate of reaction experiments by Bodenstein and Plaut, who assumed the reaction, 3  $\mathrm{Cl}_2$  (g) = 2  $\mathrm{Cl}_3$  (g), and gave Q=-51.
- Cl₂ (aq.) (ideal). Chlorine gas dissolved in water is in part hydrolyzed to form HCl and HClO. In addition, aqueous chlorine solutions decom-

CHLORINE 181

pose slowly, evolving gaseous HCl and O2. One can, however, consider that this last reaction is negligible in the observed calorimetric experiment of dissolving chlorine gas in water, and make proper correction for the amount of the reaction,  $Cl_2$  (aq.) +  $H_2O$  (liq.) = (HCl+HClO) (aq.), which has occurred at the given temperature and concentration. Jakowkin¹ gave the equilibrium constant for this latter reaction, whence one can compute the amount of Cl₂ hydrolyzed and thence the correction which must be applied to the observed heat of solution in order to obtain the heat of the pure reaction without hydrolysis: Cl₂ (g) = Cl₂ (aq.) (ideal). Thomsen¹⁵ found  $S_{1000} = 4.87$ ; Baker,  $S_{2}^{?} = 4.97$ ; Berthelot,  $S_{2}^{?} = 4.97$ ; Berthelot,  $S_{2}^{?} = 4.97$ ; =7.4. According to Jakowkin's data on the hydrolysis constant for 18°, the chlorine in Thomsen's solution was 40 per cent hydrolyzed. Making correction for this amount of hydrolysis, we have calculated, for  $Cl_2$  (aq.) (ideal), Qf = 7.0. Utilizing, instead of the calorimetrically observed heat of solution, a value obtained from the temperature coefficient of solubility for Cl₂ in water, Jakowkin¹ calculated, for Cl₂ (aq.) (ideal), Qf = 7.1. On recalculating his data, we have obtained 7.0. Roth¹² reviewed all the foregoing data and recommended the value 6.9.

Cl₂ (CCl₄). Noyes and Tulley¹ measured the heat of solution of chlorine in carbon tetrachloride at 0°.

 $ClO_2$  (g). From explosion experiments, Booth and Bowen¹ found for  $ClO_2$  (g), Qf = -23.5. Mayer⁴ interpreted a predissociation band in the spectra of chlorine dioxide as due to the reaction  $ClO_2$  (g) = Cl (g) +  $O_2$  (g), and gave Q = 3.6; whence, for  $ClO_2$  (g), Qf = -25.15. This is a verification of the values of the heats of formation of both Cl (g) and  $ClO_2$  (g).

 $C1O_2$  (aq.). Booth and Bowen¹ reported S=6.60.

ClO₂ (liq.). King and Partington¹ reported the heat of vaporization.  $HClO_2$  (aq.). The heat of solution of  $ClO_2$  (g) in water is supposed to correspond to the reaction,  $2 ClO_2$  (g)  $+H_2O$  (liq.) =  $(HClO_3 + HClO_2)$  (aq.). Anticipating the value of Qf for  $HClO_3$  (aq.), we have obtained, for  $HClO_2$  (aq.), Qf = 13.8.

 $ClO_2^-$  (aq.). Assuming that aqueous  $HClO_2$  is completely ionized, one finds, for  $ClO_2^-$  (aq.), Qf = 13.8.

ClO (g). Finkelnburg and Schumacker, from spectral data, gave for the reaction,  $ClO_2$  (g) = ClO (g) +O (g) ( 1D ), Q=-111.

 $Cl_2 \cdot 7H_2O$  (c). Even though a hydrate of chlorine has been known for over a century, there is still some uncertainty as to its composition. Roozeboom³ believed the compound to be the octahydrate; de Forcrand,³8 the heptahydrate. de Forcrand³8 measured the heat of solution of a weighed amount of the hydrate in water, and, correcting for the variation of the composition of the compound from the supposed heptahydrate, obtained  $S^3 = -15.87$ , -15.27, and -15.76. At the same temperature and concentration, de Forcrand found, for  $Cl_2$  (g),  $S^3 = 2.94$ ; whence, for  $Cl_2$  (g)  $+7H_2O$  (liq.)  $=Cl_2 \cdot 7H_2O$  (c),  $Q^3 = 18.6$ . In somewhat rougher experiments, LeChatelier³, ⁵ found for this latter reaction Q = 17.0. From

the equilibrium data of Isambert,⁴ LeChatelier,⁵ and Roozeboom,^{2, 4} de Forcrand³⁸ computed, for this reaction, Q=18.8, 17.8, and 17.8, respectively. See also Tammann and Krige.¹ We have selected the value 18.0, giving more weight to the values from the equilibrium data.

**HCl** (g). Calorimetric determinations of the heat of formation of gaseous hydrogen chloride were made by Abria, Favre and Silbermann, Berthelot, 181, Thomsen, 15 Roth and Richter, 1 von Wartenberg and Hanisch, 1 and Rossini. 10 The values of Abria 1 and Favre and Silbermann, 24.0 and 23.8 respectively, are now only of historical interest. The only information that we have been able to obtain concerning Berthelot's 181 work on this problem is that he quoted Thomsen's 15 value and wrote "J'ai obtenu le meme chiffre." Thomsen 15 burned chlorine in hydrogen at constant pressure in a flame calorimeter. The detailed data of his four calorimetric experiments have been recomputed and yield, for HCl (g),  $Qf = 21.99 \pm 0.05$ . Thomsen determined the amount of reaction in each experiment by absorbing the HCl and titrating with aqueous barium hydroxide.

von Wartenberg and Hanisch^{1, 2} performed similar experiments and reported, for HCl (g),  $Q=21.90\pm0.01$  at 24°. The amount of reaction in each experiment was computed from the loss in weight of the chlorine bottle. Roth and Richter¹ reported the results of three series of calorimetric experiments on the combination of hydrogen and chlorine by explosion at constant volume at 21°: Series I,  $21.82\pm0.06$ , amount of reaction determined by titrating the hydrogen chloride formed; Series II,  $22.02\pm0.02$ , chlorine in excess, amount of reaction determined from volume, pressure, and temperature of the hydrogen used in the reaction; Series III,  $21.87\pm0.03$ , hydrogen chloride titrated. Roth and Richter¹ concluded that the third series was the most accurate and best represented the results of their work.

Rossini¹⁰ burned chlorine in hydrogen at constant pressure in a flame calorimeter, using the apparatus with which he made the accurate measurements on the heat of formation of water. He reported. for HCl (g),  $Qf^{25} = 22.063 \pm 0.012$ ; whence, at 18°,  $Qf = 22.060 \pm 0.012$ . The amount of reaction in each experiment was determined by absorbing the HCl formed in a soda-asbestos mixture. In the same paper, Rossini¹⁰ made a detailed calculation of the heat of formation of gaseous HCl utilizing the thermodynamic relation  $\Delta H = \Delta F + T\Delta S$ . He obtained the value of  $\Delta S$ , the entropy of formation, from the recently obtained accurate values of the entropies of H2, Cl2, and HCl from spectroscopic data by Giauque and coworkers; and the value of AF, the free energy of formation, from the electromotive force of cells giving the reactions,  $\frac{1}{2}H_2$  (g) +AgCl (c) =Ag (c) +HCl (aq.) and  $\widetilde{Ag}$  (c) + $\frac{1}{2}Cl_2$  (g) =AgCl (c), and the vapor pressure of HCl over aqueous HCl. In this manner Rossini¹⁰ computed, for HCl(g),  $Qf^{25} = 22.026 \pm 0.033$ , which value is in accord, within its limits of uncertainty, with his directly measured calorimetric value. See also the discussion under HCl (aq.).

CHLORINE

183

**HCl** (liq.). The heat of vaporization of HCl was measured by Elliott and McIntosh, Steele, McIntosh, and Archibald, Estreicher and Schneer, and Giauque and Wiebe. The value from Giauque and Wiebe is accepted as being the most accurate. Tsurita calculated V = -2.38. The vapor pressure of liquid HCl was measured by Faraday, Ansdell, McIntosh and Steele, Briner, Drozdowski and Pietrzak, Cardoso and Germann, and Henning and Stock.

**HCl** (c, I). Giauque and Wiebe¹ and Eucken and Karwat¹ found, by direct measurement, F = -0.504 and -0.476, respectively. The data of Eucken and Donath,¹ Eucken and Karwat,¹ and Giauque and Wiebe,¹ on the vapor pressure of solid and liquid HCl in the neighborhood of the triple point, yield F = -0.498.

HCl (c, II). Giauque and Wiebe¹ and Eucken and Karwat¹ found, respectively,  $T_{\rightarrow 1} = -0.284$  and -0.293.

HCl⁺ (g). Foote and Mohler¹ gave for the energy of ionization of HCl (g) to form HCl⁺ (g) the value 14.0 volt-electrons; Barton¹ reported 13.8 volt-electrons. Other values were reported by Kemble, Knipping, Franck, Mackay, And Barker and Duffendack.

HCl (aq.). The data on the heat of dilution of aqueous HCl in the dilute region (Richards and Rowe,¹ Richards, Mair, and Hall,¹ Muller,¹ von Steinwehr,¹ and Wrewskii and Savaritzkii¹) were reviewed by Rossini,⁵ who gave values from ∞ to 25 H₂O. The data of Wrewskii and Savaritzkii,¹ Thomsen,¹⁵ and Berthelot,¹¹,¹ 8 have been utilized to obtain values from 25 to 1 H₂O. Other data were given by Ellis,¹ Harned and Brumbaugh,¹ Tucker,¹ Richards, Rowe, and Burgess,¹ and Payn and Perman.¹

The heat of solution of gaseous HCl in water was measured by Thomsen, ¹⁵ Berthelot and Louguinine, ¹ and Wrewskii and Savaritzkii. ¹ Their data yield for  $S_{200}$ : 17.20, 17.5, and 17.38, respectively. Combination of the last value with the heat of dilution from 200 to  $\infty$  H₂O, and with the heat of formation of the gas, yields, for HCl ( $\infty$ ), Qf = 39.66 (See Rossini¹⁰). Older data on the heat of solution of HCl were obtained by Favre and Silbermann, ^{1, 3} Favre, ⁶ and Abria. ² See also Wilke and Kieninger and Wrewskii and Faerman. ¹

The heat of formation of aqueous HCl can also be computed (see Rossini¹⁰) from the temperature coefficient of the electromotive force of certain cells and the heats of formation of silver chloride and mercurous chloride. Lewis and Randall,² Ellis,¹ and Harned and Brumbaugh¹ measured at a series of temperatures the electromotive force of cells in which the reaction was  $\frac{1}{2}$  H₂ (g) +HgCl (c) =Hg (liq.) +HCl (aq., m), and computed the heat of the reaction. Addition to this quantity of the heat of formation of HgCl (c), and the partial molal heat of dilution of HCl from the molality m to infinite dilution, yields values for the reaction,  $\frac{1}{2}$  H₂ (g) + $\frac{1}{2}$  Cl₂ (g) =HCl ( $\infty$ ). From the foregoing data, we have obtained the average value, for HCl ( $\infty$ ), Qf=39.71. In a similar manner Noyes and Ellis, Harned and Brumbaugh, and Butler and Rob-

ertson¹ obtained values for the heat of the reaction  $\frac{1}{2}$  H₂ (g) +AgCl (c) =Ag (c) +HCl aq., m). And from their data we have computed, for HCl ( $\infty$ ), the average value Qf=39.63. See Rossini.¹⁰

HCl (C₂H₅OH). Berthelot¹⁵² measured the heat of solution of gaseous HCl in ethyl alcohol.

HCl (CCl₄). Noyes and Tulley¹ measured the heat of solution of gaseous HCl in carbon tetrachloride.

 $\mathrm{HCl} \cdot 2~\mathrm{H}_2\mathrm{O}$  (c). Berthelot⁴⁷ measured the heats of solution of the solid and of the liquid in water. The difference in the observed heats of solution, for the same temperatures and concentration, gives the heat of the reaction,  $\mathrm{HCl} \cdot 2~\mathrm{H}_2\mathrm{O}$  (c) =  $\mathrm{HCl}$  (2) +2  $\mathrm{H}_2\mathrm{O}$  (liq.), Q=-2.5. Vapor pressure data on the system  $\mathrm{HCl} -\mathrm{H}_2\mathrm{O}$  were reported by Roozeboom.^{3, 5}

HClO (aq.). Thomsen¹⁵ measured the heats of the reactions:

- (1),  $\overrightarrow{Cl_2}(g) + 2 \text{ NaOH } (400) = (\text{NaCl} + \text{NaClO}) (800) + H_2O (\text{liq.});$
- (2), NaOH (400) + HClO (400) = NaClO (800) + H₂O (liq.);
- (3), NaOH (400) + HCl (400) = NaCl (800) + H₂O (liq.);
- (4), NaCl(400) + NaClO(400) = (NaCl + NaClO)(800);
- (5), NaCl (400) = NaCl (800); and
- (6), NaClO (400) = NaClO (800).

Subtraction of (2) + (3) + (4) from (1) + (5) + (6) yields  $Cl_2$  (g)  $+\mathrm{H}_2\mathrm{O}$  (liq.) = HCl (400) + HClO (400). Our recalculation of Thomsen's data on the above reactions yields, for HClO (400), Qf = 29.76. Thomsen also measured the heat of the reaction, HClO (400) + (2 HCl+2 KI)  $(400) = (2 \; \mathrm{KCl} + \mathrm{HCl}) \; (800) + H_2 O \; (\mathrm{liq.}) + I_2 \; (c) \, . \;$  From his data on this reaction, we have computed, for HClO (400), Qf = 29.79. Recently, Neumann and Muller² measured the heats of the reactions, Cl₂ (g) +2 MOH  $(aq.) = (MCl+MClO)(aq.) + H_2O (liq.)$  and MOH (aq.) + HClO (aq.)=MClO (aq.) +  $H_2O$  (liq.), where M was Li, Na, K,  $\frac{1}{2}$ Ca,  $\frac{1}{2}$ Sr, and Ba, respectively. With these data one can compute the heat of the reaction Cl₂ (g) + MOH (aq.) = HClO (aq.) + MCl (aq.). Utilized in this manner, the foregoing data of Neumann and Muller yield six values for the heat of formation of HClO (aq.), the average being 30.4. In view of the fact that Neumann and Muller did not give their experimental measurements of the heat of neutralization of MOH (aq.) + HCl (aq.), and reported no values for the pertinent heats of mixing and dilution, we have selected the value from Thomsen's data. The heat of dilution of aqueous HClO was measured by Neumann and Muller.2

 $Cl_2O$  (g). Thomsen¹⁵ and Neumann and Muller² found for the heat of solution in water the values 9.44₈₀₀ and 8.74₂₀₇₀, respectively. Because we have selected the value of HClO (aq.) from Thomsen's data, we have also, to be consistent, taken his value for the heat of solution of  $Cl_2O$  (g) in water to form HClO (aq.). Recently, Gunther and Wekua¹ measured the heat of explosion of  $Cl_2O$ , their data yielding, for  $Cl_2O$  (g), Qf = -25.1. Our selected value is -18.2. The discrepancy may lie in a systematic error of the nature of the formation of ozone in the experiments of Gunther and Wekua.¹

 $Cl_2O$  (aq.). As Goldschmidt¹ pointed out, solutions of aqueous HClO more concentrated than about HClO (50) contain appreciable amounts of free unhydrated  $Cl_2O$ , in the equilibrium, 2 HClO (aq.) =  $H_2O$  (aq.) +  $Cl_2O$  (aq.). The data of Roth¹² and Goldschmidt¹ on the equilibrium constant at various temperatures yield -8.0 for the heat of the foregoing reaction.

HClO₃ (aq.). Thomsen¹⁵ measured the heat of the reaction, HClO₃ (1200) +3 H₂SO₃ (400) = (3 H₂SO₄+HCl) (2400), obtaining as the average from three experiments, Q=206.3. From these data, we have calculated, for HClO₃ (aq.), Qf=24.6. Berthelot⁷⁹ measured the heats of the reactions, Ba (ClO₃)₂ (200) +6 H₂SO₃ (aq., satd.) = BaSO₄(c) + (5 H₂SO₄ +2 HCl) (aq.), and Ba (ClO₃)₂ (200) +H₂SO₄ (400) +2 HClO₃ (300) +BaSO₄ (c). Thomsen¹⁵ also measured the heat of this last reaction. From these data, we have computed, for HClO₃ (aq.), Qf=20.8. This latter value we have taken as the best for aqueous HClO₃ because the reactions involved are clear cut and rapid, as contrasted with the reaction between chloric and sulfurous acids.

**HClO₄** (aq.). Berthelot⁷⁹ measured the heat of neutralization of aqueous HClO₄ with KOH (660), his data yielding  $N=14.25_{1320}$ . Taking the heat of formation of KClO₄ (aq.) as known, we have computed, for HClO₄ (660), Qf=39.6. Berthelot^{79, 80} measured the heat of dilution of aqueous HClO₄.

HClO₄ (liq.). Berthelot^{79, 80} measured the heat of solution.

HClO₄·H₂O (c). Berthelot^{79, 80} measured the heat of solution.

C10⁻ (aq.). The data on the heats of formation of aqueous LiClO, NaClO, and KClO, and of aqueous Li⁺, Na⁺, and K⁺ yield, for ClO⁻ (aq.), Qf = 25.77, 25.92, and 25.93, respectively.

 $ClO_3^-(\infty)$ . From the data on the heats of formation of NaClO₃ ( $\infty$ )

and Na⁺ ( $\infty$ ), we have obtained, for ClO₃⁻ ( $\infty$ ), Qf = 20.75.

 $ClO_4^-(\infty)$ . From the data on the heats of formation of  $NaClO_4(\infty)$ ,  $Na^+(\infty)$ ,  $KClO_4(\infty)$ , and  $K^+(\infty)$ , we have obtained, for  $ClO_4^-(\infty)$ , Qf=39.35 and 39.60, respectively.

CIF (g). Fredenhagen and Krefft¹ observed that heat is evolved when  $\text{Cl}_2$  and  $\text{F}_2$  are mixed. Ruff and Laass¹ measured the heats of the reactions,  $\text{ClF}(g) + \text{H}_2(g) = \text{HCl}(g) + \text{HF}(g)$  and  $1/2 \text{ F}_2(g) + 1/2 \text{H}_2(g) = \text{HF}(g)$ ; and their data yield, for ClF(g), Qf = 25.7.

ClF (liq.). Ruff and Laass¹ computed, from vapor pressure data, V = -2.27 at  $-101^{\circ}$ .

#### Bromine

Br₂ (liq.). Standard state.

Br₂ (g). The heat of vaporization of liquid bromine was measured directly by Andrews,^{5, 10} Berthelot and Ogier,⁶ Le Chatelier,⁴ Regnault,⁷ and Thomsen.¹⁵ Vapor pressure data were reported by Scheffer and Voogd,¹ Bouzat and Letuan,¹ Cuthbertson and Cuthbertson,¹ Isnardi,¹ Ramsey and Young,¹ and Roozeboom.^{3, 5} All the foregoing data agree

with the equation given by Lewis and Randall⁵: V = -10.45 + 0.0096 (t+273.1).

- $\mathrm{Br_2}$  (c). Regnault² measured directly  $F=-2.53^{-7}$ . This value is in accord with the heat of sublimation computed from the vapor pressure data on solid bromine of Braune,¹ Isnardi,¹ Ramsay and Young,¹ Cuthbertson and Cuthbertson,¹ Henglein,² and Henglein, Rosenberg, and Muchlinski.¹ See also Rideal.¹
- Br (g). Perman and Atkinson^{1, 2} and Bodenstein and Cramer¹ measured the vapor density of bromine gas at various elevated temperatures, and computed values of the equilibrium constant for the reaction, Br₂ (g) = 2 Br (g). Lewis and Randall⁵ reviewed the work of Perman and Atkinson^{1, 2} and deduced for this reaction: Q = -41.60 0.0026 (t + 273.1). The data of Bodenstein and Cramer¹ yield Q = -46.10 0.0026 (t + 273.1). DeVries and Rodebush¹ gave Q = -41.2. None of these values compare in accuracy with that obtained from spectroscopic analysis. Kuhn¹ reported for the above reaction  $D^z = -45.2$ . Kuhn's interpretation of the spectroscopic data has been corroborated by Senftleben and Germer.¹ In a similar manner, Brown³ recently deduced the accurate value  $D^z = -45.24 \pm 0.07$ .

The values for the energy states of gaseous monatomic bromine are from Kiess and de Bruin,² Turner,¹ and Deb.¹ See also Bacher and Goudsmit.¹

Br⁻(g). The electron affinity of Br (g) is calculable by the method of lattice energies. Selecting the crystal RbBr, because Rb⁺ and Br-have exactly the same nuclear structure, and taking the exponent of the repulsive term to be 10, we have computed, for the reaction, RbBr (c) = Rb⁺ (g) + Br⁻ g),  $D^z = -151.2$ ; whence the electron affinity of Br (g) becomes 87.9. Using the lattice energies of the alkali bromides as calculated by Sherman, we have computed the values 89.6, 85.6, 84.6, 83.6, and 89.6, respectively. Butkow, from the spectra of gaseous TlBr, deduced the value 86.5. From data on the absorption spectra of the alkali halides, Lederle¹ obtained the value 82. See also Lennard-Jones.

Br₂ (aq.). Bromine, like chlorine, is hydrolyzed in water. From the heat of the hydrolysis reaction, and the value given by Bray and Connolly¹ for the hydrolysis constant at  $25^{\circ}$ , we have computed  $K^{18}$  (hydrol-

ysis) =  $\frac{(\text{H}^+) (\text{Br}^-) (\text{HBrO})}{(\text{Br}_2)} = 2.2 \times 10^{-9}$ . The heat of solution of liquid

bromine in water was measured by Le Chatelier, Berthelot, 8 Pickering, and Thomsen. The last three investigators used 1 mole of  $Br_2$  per 300, 5400, and 700 moles of water, and, correcting their data for the amount of bromine hydrolyzed, we have computed S=1.2, -0.9, and 1.24. Berthelot also measured the heat of solution of liquid bromine in dilute aqueous HCl, where the hydrolysis would be suppressed, finding S=1.1.

Br₂ (CCl₄), Br₂ (CHCl₃), Br₂ (CS₂). Pickering⁸ measured the heat of solution of liquid bromine in carbon tetrachloride, chloroform, and carbon disulfide, respectively.

BROMINE 187

 $Br_2 \cdot 10~H_2O$  (c). The vapor pressure data of Tammann and Krige¹ for the system,  $Br_2 \cdot 10~H_2O$  (c)  $-H_2O$  (c), yield  $Q=-7.9^{-10}$  for the reaction  $Br_2 \cdot 10~H_2O$  (c)  $=Br_2$  (g)  $+10~H_2O$  (c). This is in agreement with the data of Roozeboom.³, ⁴

HBr (aq.). Thomsen¹⁵ measured the heat of the following reactions:  $\frac{1}{2} \text{Cl}_2 \text{ (g)} + \text{KBr } (200) = (\text{KCl} + \frac{1}{2} \text{Br}_2) (200) : \frac{1}{2} \text{Br}_2 (\text{lig.}) = \frac{1}{2} \text{Br}_2 (\text{ag.}).$ We have recomputed Thomsen's data on these reactions, obtaining for,  $\frac{1}{2}$  Cl₂ (g) + KBr (200) = KCl (200) +  $\frac{1}{2}$  Br₂ (liq.), Q = 10.94, which equivalent to the heat of formation of KCl (200) minus the heat of formation of KBr (200). By combining with this last equation the difference in the heats of neutralization of aqueous HCl and HBr with aqueous KOH, which is HCl(100) + KBr(200) = HBr(100) + KCl(200), Q = 0.024, we have obtained, for  $\frac{1}{2} \text{Cl}_2(g) + \text{HBr}(100) = \frac{1}{2} \text{Br}_2(\text{liq})$ HCl (100), Q=10.916. From which we have computed, for HBr (100), Qf = 28.47. Berthelot¹⁵¹ measured the heat of the reaction between ½ Br₂ (liq.) and KI (aq.), which for several reasons is preferable to the reaction studied by Thomsen¹⁵; but there is apparently some considerable error in Berthelot's data on this reaction. Berthelot⁴⁵ also measured the heats of the reactions,  $Br_2(liq.) + SO_2(aq.)$  and  $I_2(c) + SO_2(aq.)$ , the difference between which gives the heat of the reaction \frac{1}{2} Br₂ (liq). +HI (aq.) =  $\frac{1}{2}$  I₂ (c) +HBr (aq.); but his data on these reactions are lacking in accuracy.

Thomsen measured the heats of the reactions, KCl  $(200) + Ag NO_3$   $(400) = AgCl (c) + KNO_3 (600)$  and KBr  $(200) + AgNO_3 (400) = AgBr (c) + KNO_3 (600)$ , the difference of which gives KCl (200) + AgBr (c) = KBr (200) + AgCl (c). Combining with this equation, the difference in the heats of formation of AgCl (c) and AgBr (c), the difference in the heats of neutralization of HCl (100) and HBr (100) with KOH (100), and the heat of formation of HCl (100), we have obtained, for HBr (100), Qf = 28.63. Utilizing, in a similar manner, the difference in the heats of reaction of KI (200) and of KBr (200) with AgNO₃ (200) as measured by Thomsen, ¹⁵ the difference in the heats of formation of AgI (c) and AgBr (c), the difference in the heats of neutralization of HI (100) and HBr (100) with KOH (100), and the heat of formation of HI (100), we have computed, for HBr (100), Qf = 28.44.

The heat of diluting aqueous HBr from 100 to  $\infty$  H₂O has been computed from the following reactions whose heats are known: NaOH( $\infty$ )+HBr( $\infty$ )=NaBr( $\infty$ )+H₂O(liq.); NaOH(100)+HBr(100)=NaBr (201)+H₂O (liq.); NaOH (100)=NaOH ( $\infty$ ); and NaBr (201)=NaBr ( $\infty$ ). The values for the heat of dilution in the more concentrated solutions to 1 H₂O are taken from the data of Berthelot, ¹⁸ Roozeboom, ⁸ and Thomsen. ¹⁵

HBr (g). For the heat of solution of gaseous HBr in water, the data of Thomsen yield  $S=19.89_{400}$ ; Berthelot found  $S=20.0_{760}^{15}$ .

HBr (liq.). The heat of vaporization of liquid HBr was measured by Elliott and McIntosh, Estreicher and Schneer, Eucken and Karwat, 1

and Giauque and Wiebe.² Vapor pressure data were reported by Maass and McIntosh,¹ Steele and Bagster,¹ Steel, McIntosh, and Archibald,¹ Eucken and Karwat,¹ and Giauque and Wiebe.² All these data are in accord, and we have selected the directly measured value of Giauque and Wiebe.²

HBr (c, I), HBr (c, II), HBr (c, III). The heat of fusion of HBr (c, I) and the heats of the two transitions of crystalline HBr were measured by Eucken and Karwat,¹ and by Giauque and Wiebe,² whose values we have selected. The vapor pressure of solid hydrogen bromide was measured by Henglein,³ Maass and McIntosh,¹ Steele, McIntosh, and Archibald,¹ and Drozdowski and Pietrzak.¹

 $HBr \cdot H_2O$  (c). Roozeboom⁶ reported -3.0 for the heat of fusion.

 $HBr \cdot 2 H_2O$  (c). Berthelot¹⁸ reported 16.9 for the heat of the reaction  $HBr(g) + 2 H_2O$  (liq.) =  $HBr \cdot 2 H_2O$  (c), but no details of the experiments were reported. The vapor pressure data of Roozeboom⁶ are in accord with Berthelot's value.

Br₃⁻ (aq.). Berthelot^{105B, 151} measured the heat of solution of liquid bromine in aqueous KBr and in aqueous HBr at 12°, finding, respectively, 2.7 and 2.0. Correcting these data to 18°, we have obtained for the reaction, Br₂ (liq.) +Br⁻ (aq.) =Br₃⁻ (aq.),  $Q=2.7\pm0.4$ ; whence, for Br₃⁻ (aq.), Q=31.3. Linhart¹ determined at various temperatures the equilibrium constant for the reaction, Br₂ (aq.) +Br⁻ (aq.) =Br₃⁻ (aq.), and calculated Q=1.30; whence, for Br₃⁻ (aq.), Qf=31.1.

 ${
m Br_5^-}$  (aq.). Linhart¹ explained the activity of bromine dissolved in concentrated aqueous KBr as due to the existence of  ${
m Br_5^-}$  (aq.). This explanation also accounts for the thermal behavior of these solutions. Linhart's data on the temperature coefficient of the equilibrium constant yield, for  ${
m Br_5^-}$  (aq.),  ${
m Q}f{=}35.7$ . Berthelot's¹¹5¹, ¹05B calorimetric data lead to practically the same value.

**BrO**⁻ (aq.). From the values for the heats of formation of NaBrO (aq.), KBrO (aq.), Na⁺ ( $\infty$ ), and K⁺ ( $\infty$ ), we have calculated, for BrO⁻ (aq.), Qf = 21.2 and 21.4, respectively.

**HBrO** (aq.). There are no data on the heat of neutralization of HBrO (aq.). Assuming that the heat of the reaction HBrO (aq.) =  $H^+$  (aq.) +BrO⁻ (aq.) is the same as that for HClO (aq.) =  $H^+$  (aq.) +ClO-(aq.), we have computed, for HBrO (aq.), Qf = 25.2.

 $\rm HBrO_3$  (aq.). Thomsen^{12, 15} measured the heat of the reaction,  $\rm HBrO_3$  (1250) + 3 (SnCl₂ + 2 HCl) (500) = (HBr + 3 SnCl₄) (2750) + 3 H₂O (liq.), and found Q=213.2; whence we have computed, for HBrO₃ (1250), Qf=11.30.

 ${\rm BrO_{3}^{-}}$  (aq.). From the values of Qf for  ${\rm KBrO_{3}}$  ( $\infty$ ) and  ${\rm K^{+}}$  ( $\infty$ ), we have obtained, for  ${\rm BrO_{3}^{-}}$  ( $\infty$ ), Qf=11.21.

BrCl (g). From spectroscopic data, Jost³ deduced values of the equilibrium constant at various temperatures, and computed for  $\frac{1}{2}$  Br₂ (g)  $+\frac{1}{2}$ Cl₂ (g) =BrCl (g), Q=0.75.

IODINE 189

# IODINE

- I₂ (c). Standard state.
- $I_2$  (g). Vapor pressure data on solid iodine were reported by Baxter and Grose, Baxter, Hickey, and Holmes, and Ramsay and Young. Haber and Kerschbaum measured the vapor pressure at low temperatures. Giauque critically reviewed the data, and deduced for the heat of sublimation, Vs = -16.069 + 0.0040 (t + 273.1), which gives at 18°, -14.91. Earlier calculations were made by Wohl, Dewar, and Nernst.
- $I_2$  (liq.). Vapor pressure data for liquid iodine were reported by Ramsay and Young, Stelzner and Niederschulte, and Rassow. These data yield for the heat of vaporization,  $V=-12.75+0.0056\ (t+273.1)$ . Combination of this equation with that for the heat of sublimation gives for the heat of fusion of solid iodine,  $F=-3.3+0.0016\ (t+273.1)$ , or -4.0 at the melting point. See also Rideal.
- $I_2$  (aq.). From measurements of the temperature coefficient of solubility, Hartley and Campbell¹ computed S=-5.0. Sammet's¹ data yield S=-4.9, his own calculated value of -6.37 evidently being in error.
- $I_2$  ( $C_2H_5OH$ ). Pickering⁸ and Waentig¹ reported for the heat of solution of solid iodine in ethyl alcohol -1.7 and -1.9, respectively. The solution is brown.
- $I_2$  ( $C_2H_5OC_2H_5$ ). Pickering⁸ and Waentig¹ reported for the heat of solution of solid iodine in ether -1.6 and -2.0, respectively. The solution is brown.
- $I_2$  (CS₂). Pickering⁸ and Waentig¹ measured the heat of solution of solid iodine in carbon disulfide to be -5.0 and -5.2, respectively. The solution is purple.
- $I_2$  (CHCl₃). Pickering⁸ and Waentig¹ found S=-6.0 and -5.5, respectively, for the heat of solution of solid iodine in chloroform. The solution is purple.
- $I_2$  ( $C_6H_6$ ). Pickering⁸ and Waentig¹ reported, for  $I_2$  (c) in benzene, S=-6.0 and -4.7, respectively. The solution is purple.
- $I_2$  (CCl₄). Pickering,⁸ for  $I_2$  (c) in carbon tetrachloride, found S=-5.3. The solution is purple.
- $I_2$  (pyridine). Waentig¹ found S=17 for the heat of solution of solid iodine in pyridine.
- I (g). Density measurements on iodine vapor at high temperatures, which yield values of the equilibrium constant for the reaction,  $I_2$  (g) =2 I (g), were made by DeVries and Rodebush, Weide and Bichowsky, Braune and Ramstetter, Starck and Bodenstein, Bjerrum, and Deville and Troost. The computed heats of dissociation at 18° from the first five named investigations are, respectively, -31.6, -32, -33.6, -35.4, and -35.7. Lewis and Randall calculated, from Starck and Bodenstein's data,  $D^z = -31.7$ . Spectroscopic determinations of the energy of dissociation of the normal gaseous  $I_2$  molecule to form 2 normal I atoms lead to much more accurate values than the foregoing ones. Kuhn, Koenigsberger, Gibson and Heitler, and Brown reported values from

spectroscopic data, the last named investigation giving  $D^z = -35.40 \pm 0.03$ . See also Senftleben and Germer¹ and Kondratjeiv and Leipunsky.¹

The values for the energy states of gaseous monatomic iodine are from Evans¹ and Bacher and Goudsmit.¹

I⁻(g). Utilizing the data on the lattice energies of CsI and KI, we have computed for the reaction,  $\frac{1}{2}I_2$  (c)  $+\theta=I^-$  (g), Q=58.4 and 52.4, respectively. Sherman¹ calculated for the same reaction, from the data on the alkali iodides, the values 56.4, 52.7, 51.1, 52.3, and 56.3. See also Lennard-Jones.² Recently Mayer³ measured the electrical conductivity of gaseous cesium iodide and of potassium iodide, and deduced values of the equilibrium constant at various temperatures for the reaction MI (g) = M⁺ (g) + I⁻ (g). For CsI (g) and KI (g), he calculated, respectively,  $D^z=94.8\pm0.5$  and  $-104.6\pm0.5$ . Utilizing our values for CsI (g), Cs⁺ (g), KI (g), and I⁻ (g), one obtains Qf=55.1 and 52.3 respectively. From a study of the absorption spectra of some alkali iodides, Lederle¹ deduced the unaccountably low values of 48.2, 47.4, and 46.5.

HI (aq.). Thomsen¹⁵ measured the heat of the reaction  $\frac{1}{2}$  Cl₂ (g) +KI (200) = KCl (200) +  $\frac{1}{2}$  I₂ (c). We have recomputed the data of his three experiments, and have obtained, for the above reaction, Q = 26.26. Subtracting from the above equation, the difference in the heats of neutralization of HCl (100) and HI (100) with KOH (100), HCl (100) + KI (200) =KCl (200) +HI (100), Q=0.110, we have obtained for the reaction,  $\frac{1}{2}$  Cl₂ (g) +HI (100) = HCl (100) + $\frac{1}{2}$  I₂ (c), Q=26.15; whence, for HI (100), Qf = 13.23. Thomsen¹⁵ also measured the heats of the reactions,  $KCl(200) + AgNO_3(400) = AgCl(c) + KNO_3(600)$  and KI(200)  $+AgNO_3$  (400) = AgI (c) +  $KNO_3$  (600). From his data on these reactions, we have calculated, for KCl (200) + AgI(c) = KI(200) + AgCl(c), Q = -10.57. Combining this equation with that for the difference in the heats of neutralization of HCl (100) and HI (100) with KOH (100), we have obtained, for the reaction, HCl (100) + AgI (c) = HI (100) + AgCl (c), Q = -10.46. And using our values for HCl (100), AgI (c), and AgCl (c), one finds, for HI (100), Qf = 13.56.

A value for the heat of formation of aqueous HI can also be deduced from the following reactions, whose heats were measured by Thomsen¹⁵: KCl (200) +HgNO₃ (200) =  $\frac{1}{2}$  Hg₂Cl₂ (c) +KNO₃ (400) and KI (200) +HgNO₃ (200) =  $\frac{1}{2}$  Hg₂I₂ (c) +KNO₃ (400). The difference gives, for KCl (200) +  $\frac{1}{2}$  Hg₂I₂ (c) = KI (200) +  $\frac{1}{2}$  Hg₂Cl₂ (c), Q = -9.10. Combining this with the difference in the heats of neutralization of HCl (100) and HI (100) with KOH (100) gives, for HCl (100) +  $\frac{1}{2}$  Hg₂I₂ (c) =  $\frac{1}{2}$  Hg₂Cl₂ (c) +HI (100), Q = -8.99. Using our values for the other three substances in this equation, we have obtained, for HI (100), Qf = 13.25. Utilizing in a similar manner, Thomsen's¹⁵ data on the reaction of Pb(NO₃)₂ (aq.) with KCl (aq.) and KI (aq.), respectively, we have computed, for HI (100), Qf = 13.21.

HI (g). The heat of solution of gaseous hydrogen iodide in water was measured by Favre and Silbermann, Berthelot and Louguinine, and

IODINE 191

Thomsen.¹⁵ Only the data of Thomsen¹⁵ are accurately specified as to temperature and concentration, and we have recomputed them to obtain  $S_{200} = 19.19$ . This gives, for HI (g), Qf = -5.91. The data of Stegmuller, who measured the temperature coefficient of the cell in which the reaction was  $\frac{1}{2}$  H₂ (g) + $\frac{1}{2}$  I₂ (g) =HI (g), yield Q = 1.70; whence, for HI (g), Qf = -5.76. Haber¹ reported for the foregoing reaction Q = 0.096, calculated from the equilibrium measurements of Bodenstein¹ at high temperatures; but Lewis and Randall⁵ pointed out that neglect of the dissociation of I₂ introduced a false trend in the values of the equilibrium constant. Recently, Gunther and Wekua¹ measured the heat of the reaction,  $\frac{1}{2}$  Cl₂ (g) +HI (g) =HCl (g) + $\frac{1}{2}$  I₂ (c), to be Q = 27.97, whence, for HI (g), Qf = -5.91.

HI (liq.). Cottrell¹ found for the heat of solution of liquid HI in water  $14.78_{700}^{12}$ ; whence, for HI (liq.), Qf = -1.39 and V = -4.42. The data on the heat of vaporization of liquid HI at the boiling point are: Giauque and Wiebe,³ -4.72; Estreicher and Schneer,¹ -4.33; Elliott and McIntosh,¹ -4.50; and Eucken and Karwat,¹ -4.94.

HI (c, I), HI (c, II), HI (c, III). The heat of fusion of HI (c, I) and the heat of the two transitions were measured by Giauque and Wiebe³ and Eucken and Karwat.¹ We have selected the values of the former.

 $I_3^-$  (aq.). Jones and Kaplan¹ determined the equilibrium constant for the reaction,  $I_3^-$  (aq.) =  $I_2$  (aq.) +  $I^-$  (aq.), at 0° and 25°, finding K=0.00072 and 0.00140, respectively. From the temperature coefficient of the equilibrium constant, we have computed, for the above reaction, Q=-4.22, whence, for  $I_3^-$  (aq.), Qf=12.6. Pickering³ measured the heat of solution of  $I_2$  (c) in 7.6 KI (408), finding Q=-1.1. For this concentration, we have calculated from the value of the equilibrium constant that 0.1 of the iodine remains as  $I_2$  (aq.). That is, for the reaction,  $I_2$  (c) +0.9  $I^-$  (aq.) =0.1  $I_2$  (aq.) +0.9  $I_3^-$  (aq.), Q=-1.1. From this we have computed, for  $I_3^-$  (aq.), Qf=12.5.

HIO (aq.). Skrabal¹ estimated the following:  $I_2$  (aq.) +OH⁻ (aq.) =HIO (aq.) +I⁻ (aq.), Q=1.0, and OH⁻ (aq.) + $I_3$ ⁻ (aq.) =HIO (aq.) +2 I⁻ (aq.), Q=-5.9. From these data we have computed, for HIO (aq.), Qf=37.3 and 34.6, respectively. From the temperature coefficient of the equilibrium constant, Angeleser and Popeser¹ calculated for the reaction,  $I_2$  (aq.) + $I_2$ O (liq.) = HIO (aq.) +HI (aq.), Q=-11.7; whence, for HIO (aq.), Qf=38.3. See also Berthelot.⁴6

IO (aq.). This value is computed from that for HIO (aq.), assuming the heat of ionization to be the same as that for HClO (aq.).

HIO₃ (aq.). We have recomputed the data of Thomsen on the reactions, KI(600) +3 HClO(200) = (HIO₃+2 HCl+KCl) (1200) and (5 HCl +5 KI) (1000) +HIO₃ (aq.) =3 I₂ (aq.) +3 H₂O (liq.) +5 KCl (1000), and have obtained, for HIO₃ (aq.), Qf = 54.61 and 54.71, respectively. Berthelot^{42,45} and Skrabal and Buchta¹ also measured the heat of the latter reaction, and their data yield Qf = 54.8 and 55.8, respectively. The data of Luther and Sammet, who determined the temperature coefficient

of the equilibrium constant for the reaction,  $6\,\mathrm{H^+}$  (aq.)  $+\mathrm{IO_3^-}$  (aq.)  $+5\,\mathrm{I^-}$  (aq.)  $=3\,\mathrm{I_2}$  (aq.)  $+3\,\mathrm{H_2O}$  (liq.), yield, for  $\mathrm{HIO_3}$  (aq.), Qf=55.4. The data of Thomsen¹⁵ on the reaction,  $(6\,\mathrm{HCl} + 3\,\mathrm{SnCl_2})$  (aq.)  $+\mathrm{HIO_3}$  (aq.)  $=3\,\mathrm{(SnCl_4+HI)}$  (aq.)  $+3\,\mathrm{H_2O}$  (liq.), yield, for  $\mathrm{HIO_3}$  (aq.), Qf=53.8. Berthelot⁴⁵ and Skrabal and Buchta¹ measured the heat corresponding to the reaction,  $3\,\mathrm{I_2}$  (c)  $+6\,\mathrm{OH^-}$  (aq.)  $=\mathrm{IO_3^-}$  (aq.)  $+5\,\mathrm{I^-}$  (aq.)  $+3\,\mathrm{H_2O}$  (liq.), and their data yield, for  $\mathrm{HIO_3}$  (aq.), Qf=54.2.

 $IO_3^-$  (aq.). We have computed the value of Qf for  $IO_3^-$  ( $\infty$ ) from the values for  $KIO_3$  ( $\infty$ ) and  $K^+$  ( $\infty$ ).

 $I_2O_5$  (c). The data on the heat of solution of solid iodine pentoxide yield the following values: Ditte,⁴ -1.90; Berthelot,⁴⁶ -1.62¹²; Thomsen,¹⁵ -1.90. From Thomsen's data, and the reaction,  $I_2O_5$  (c) + $H_2O$  (liq.) = 2 HIO₃ (aq.), we have computed, for  $I_2O_5$  (c), Qf = 42.73.

 ${
m HIO_3}$  (c). The data on the heat of solution of  ${
m HIO_3}$  (c) in water yield the following values: Ditte,  4  -2.24; Berthelot,  46  -2.67¹²; Thomsen,  15  -2.17. Using Thomsen's value we have obtained, for  ${
m HIO_3}$  (c) Qf = 56.77.

 $I_2O_5 \cdot HIO_3$  (c). Berthelot⁴⁶ reported for  $I_2O_5 \cdot HIO_3$  (c),  $S=-4.29^{12}$ , and for  $I_2O_5 \cdot 2$  HIO₃ (c),  $S=-5.72^{12}$ . Our best present information is that only the former hydrate of  $I_2O_5$  exists. Berthelot's  $I_2O_5 \cdot 2$  HIO₃ (c) was probably a mixture.

 $H_5IO_6$  (aq.). Thomsen¹⁵ measured the heat of reduction of  $H_5IO_6$  (aq.) with aqueous stannous chloride acidified with HCl, and his data yield, for  $H_5IO_6$  (aq.), Qf=183.0.

 $H_5IO_6$  (c). Thomsen¹⁵ found  $S = -1.38_{2000}$ .

 $H_4IO_6^-$  (aq.),  $H_3IO_6^-$  (aq.),  $H_2IO_6^-$  (aq.),  $HIO_6^{--}$  (aq.),  $IO_6^{--}$  (aq.). Thomsen measured the heat of neutralizing  $H_5IO_6$  (aq.) with 1, 2, 3, and 5 moles of KOH (aq.). The data are extraordinary in that Thomsen found a much smaller heat for the first mole of KOH than for the second, which is quite contrary to the usual behavior. It is difficult to tell which ions really exist in the solution and the values for the foregoing ions are computed in a purely formal manner.

IC1 (g). McMorris and Yost¹ studied the equilibrium,  $\frac{1}{2}$  Cl₂ (g)  $+\frac{1}{2}$  I₂ (g) = ICl (g), at various temperatures, and deduced, for ICl (g), Qf = -3.13. The energy of dissociation of ICl (g) into normal iodine and chlorine atoms has been determined from spectroscopic data by Wilson,³ Gibson and Ramsperger,¹ Patkowski and Curtis,¹ and Brown and Gibson.¹ The data of Brown and Gibson¹ are the most accurate and give, for ICl (g), Qf = -3.46.

ICl (liq.). McMorris and Yost,¹ from vapor pressure data on liquid ICl, computed V = -9.49; whence, for ICl (liq.), Qf = 6.03. Thomsen¹⁵ measured the heat of formation of ICl (liq.) and found Qf = 5.85.

ICl  $(c, \alpha)$ . Berthelot^{64, 140} measured directly the heat of formation of ICl  $(c, \alpha)$ , finding Qf = 6.9; and also measured its heat of solution in aqueous sulfurous acid, which latter data lead to the value 6.6. The

data on the heat of fusion of ICl (c,  $\alpha$ ) are: Tanatar, 5 -2.32; Storten-beker, 1 -2.66; Berthelot, 64,140 -2.43. These values, coupled with that for ICl (liq.), Qf = 6.03, yield, for ICl (c,  $\alpha$ ), Qf = 8.35, 8.69, and 8.46, respectively.

ICl₃ (c). For ICl₃ (c), Thomsen¹⁵ reported Qf = 21.5; Berthelot⁶⁴ found, by direct combination, Qf = 15.5, and by the reaction with aqueous sulfurous acid, Qf = 17.1.

IBr (g). From the data of Bodenstein and Schmidt¹ and Muller¹³ on the equilibrium,  $\frac{1}{2}$  Br₂ (g) +  $\frac{1}{2}$  I₂ (g) = IBr (g), we have computed, for IBr (g), Qf = -9.6. The spectroscopic data of Cordes and Sponer¹ on the energy of dissociation of IBr (g) into normal iodine and bromine atoms yield, for IBr (g), Qf = -10.3.

IBr (liq.). By direct measurement, Berthelot^{64, 140} found Qf = 2.47.

BrCl (g). We have estimated this value.

BrCl (liq.). We have estimated this value.

### ELEMENT 85

X (c). Standard state.

# Sulfur

S (c, rhombic). Standard State.

S (c, monoclinic). The heat of transformation of monoclinic to rhombic sulfur was measured by Bronsted,³ Mitscherlich,² Tammann,^{2,3} Lewis and Randall,¹ Wigand,¹ and Mondain-Monval.^{1,4} Using Lewis and Randall's⁵ values for the heat capacities, we have found that Bronsted's³ data yield, for the transformation, T=0.120-0.0005 (t+273.1)-0.00000125  $(t+273.1)^2$ ; whence, at 18°, T=-0.080, and at 95°, the normal transition temperature, T=-0.088. Mondain-Monval^{1,4} found T=-0.087.

S (liq.,  $\mu$ ), S (liq.,  $\lambda$ ). Liquid sulfur is a mixture of at least two forms, soluble S ( $\lambda$ ) and insoluble S ( $\mu$ ). At the melting point there is 95 per cent of the former. Lewis and Randall¹ found, for the heat of fusion of rhombic sulfur,  $F = -0.478^{112}$ . For the heat of fusion of monoclinic sulfur, the following data were reported: Mondain-Monval,⁴  $-0.297^{119}$ ; Person,¹  $-0.30^{115}$ ; Trautz,⁶  $-0.284^{119}$ ; Iitaka,¹  $-0.429^{119}$ ; Wigand,¹  $-0.334^{119}$ . At 119° liquid sulfur contains 4 per cent of S ( $\mu$ ). Taking Wigand's value, we have computed, for S (c, monoclinic) = S (liq.,  $\lambda$ ),  $F = -0.35^{119}$ ; and utilizing the heat capacity data of Lewis and Randall,¹ we have calculated, for S (liq.,  $\lambda$ ), Qf = -0.33.

For the heat of transformation, S (liq.,  $\lambda$ ) = S (liq.,  $\mu$ ). Lewis and Randall¹ reported  $-0.416^{25}$ ; Mondain-Monval,⁴  $-0.9^{160}$ ; Berthelot,¹  $-0.86^{185}$ . Taking Lewis and Randall's value, we have computed, for S (liq.,  $\mu$ ), Qf = -0.75.

 $S_8$  ( $CS_2$ ). Berthelot^{1, 130} measured the heat of solution of sulfur in carbon disulfide.

S (S₂C1₂). The heat of solution of sulfur in liquid S₂C1₂ was found

by Trautz⁶ to be -1.3 to -3.0, and by Thomsen, ¹⁵ -0.83; the data on the variation of solubility with temperature yield -1.5.

 $S_8$  (g),  $S_6$  (g),  $S_2$  (g). Sulfur gas is a mixture of  $S_8$  and its dissociation products. The gas in equilibrium with the liquid at 150° is practically all  $S_8$ . Vapor pressure data on liquid sulfur were reported by Ruff and Graf, Bodenstein, Gruener, and Mathies; and these data were used by Preuner and Schupp to compute  $V = -20.0^{150}$ . The vapor pressure data of West and Menzies yield  $V = -20.5^{150}$ . Awbery measured directly the heat of vaporization at the boiling point to be -20.2.

The isotherms of sulfur vapor indicate the existence of at least two molecular species in addition to  $S_8$ . Arbitrarily selecting the species as  $S_8$ ,  $S_6$ , and  $S_2$ , we have interpreted the data of Mitscherlich¹ and Preuner and Schupp¹ to give the following values:  $3 S_8$  (g) =  $4 S_6$  (g), Q = -29;  $S_6$  (g) =  $3 S_2$  (g), Q = -64.

Data on the vapor pressure of sulfur above the boiling point were reported by Barus, 1, 2 Greuner, 1 Rassow, 1 Regnault, 6, 7 Ruff and Graf, 1

and Menzies.1

There is an indirect but more certain method of calculating the heat of formation of  $S_2$  (g) than the foregoing. Lewis and Randall^{3, 5} reviewed the equilibrium data of Preuner,¹ Preuner and Schupp,¹ and Randall and Bichowsky¹ on the reaction,  $H_2$  (g)  $+\frac{1}{2}$   $S_2$  (g)  $=H_2S$  (g), and concluded that Q=-19.6. Using our value of Qf for  $H_2S$  (g), we have obtained, for  $S_2$  (g), Qf=-28.6. Lewis and Randall⁵ also reviewed the equilibrium data leading to the reaction, S (c, rhombic)  $+H_2$  (g)  $=H_2S$  (g), and calculated, for  $S_2$  (g), Qf=-29.7.

The energy states of the gaseous S₂ molecule are evaluated from the band spectral data of Christy and Naude.¹ The spectrum of S₂ has also been studied by Henri,³ Henri and Teves,¹ Rosen,¹ and Kondratjew.¹ See also Jevons.¹

S (g). From data on a bomb reaction involving the combustion of hydrogen sulfide, Budde¹ deduced for the reaction,  $S_2$  (g) = 2 S (g),  $Q = -120.^{2450}$ . However, Bjerrum³ pointed out that Budde's results may be interpreted just as well by assuming that the heat absorbing side reaction is not the dissociation of  $S_2$  but the reaction of sulfur with water. The foregoing value, therefore, is not a reliable one. Bjerrum³ estimated, from Budde's¹ data, D = -80. From vapor density data, von Wartenberg³ estimated D = -90. Nernst⁴ found that  $S_2$  is 80 per cent dissociated at 2200°. Computing the free energy change from this value and utilizing the entropy and heat capacity values given by Lewis and Randall,¹ we have obtained D = -48. The heat of formation of gaseous monatomic sulfur can be evaluated accurately from spectroscopic data. For the energy of dissociation of normal  $S_2$  (g) into normal  $S_2$  atoms, Christy and Naudè,¹ reported the value 4.45 volt-electrons. See also Henri³ and Kondratjew.¹

The electronic energy states of the sulfur atom are evaluated from the data of Fowler,³ Birge,² Hopfield,^{2, 3} and Runge and Paschen.¹ See also

SULFUR 195

Frerichs³ and Bacher and Goudsmit.¹ The energies of the sulfur atom in various stages of ionization are taken from Ingram,^{1, 2} Millikan and Bowen,^{1, 2} Bowen,⁴ and Bowen and Millikan.^{1, 2}

 $S^{-}$  (g). The electron affinity of the sulfur atom is calculated in the same manner as for the oxygen atom. Sherman¹ reported for the lattice energies of MgS, CaS, SrS, and BaS, the values 778.3, 721.8, 687.4, and 655.9, respectively. Lennard-Jones¹ and Taylor¹ gave for MgS and CaS, 784 and 728, respectively. Our individual values for the electron affinity of S (g), calculated from the foregoing values, are different from those computed by Sherman,¹ but our average value is the same as his, namely, -79.5 for the reaction, S (g)  $+2\theta=S^{-}$  (g).

SO₂ (g). Calorimetric determinations of the heat of formation of sulfur dioxide from solid sulfur and oxygen were made by Dulong,² Andrews,¹⁴ Favre and Silbermann,¹ Hess,⁷ Thomsen,¹⁵ Berthelot,^{45, 65} Giran,⁶ Frost,¹ and Eckman and Rossini.¹ The first four investigations are of historical interest only.

Thomsen¹⁵ burned solid sulfur in a stream of oxygen gas at constant pressure in his calorimeter. The appreciable amounts of sulfur trioxide which were formed along with the sulfur dioxide in Thomsen's experiments were determined by weighing, and a heat correction was applied. The amount of sulfur dioxide was determined by absorbing it in strong chromic acid solution and weighing. Thomsen's data yield Q = 71.08 and 71.72 for the heats of combustion of solid rhombic and solid monoclinic sulfur, respectively, in oxygen to form gaseous sulfur dioxide. These values, incidentally, give much too large (about 7 times) a value for the heat of transition of monoclinic to rhombic sulfur.

Berthelot^{45, 65} burned rhombic sulfur in oxygen in a bomb at constant volume. The amounts of sulfur dioxide along with the lesser amounts of sulfur trioxide were absorbed and determined by titration with iodine exactly equivalent to the amount of sulfur burned. In another series, Berthelot used aqueous potassium hydroxide to absorb the products of combustion, titrating afterwards with iodine. His data from the two series of experiments yield, respectively, Q = 69.4 and 69.1, for the reaction, S (c, rhombic)  $+O_2$  (g)  $=SO_2$  (g). Ferguson¹ reviewed Berthelot's data and discarded the results of his second series on the grounds of unreliability of the analytical method.

Giran⁶ determined the heat of combustion of sulfur in a bomb at constant volume with various pressures of oxygen. The observed heats of combustion varied linearly from 70.4 at 2.5 atmospheres to 81.1 at 45 atmospheres. Extrapolation to zero pressure yields Q = 69.5.

Frost¹ carried out experiments on two reactions: S (c, rhombic)  $+\frac{2}{5}$  KIO₃ (aq.)  $+O_2$  (g)  $+\frac{4}{5}$  H₂O (liq.) = I₂ (c)  $+\frac{4}{5}$  H₂SO₄ (aq.)  $+\frac{1}{5}$  K₂SO₄ (aq.), and SO₂ (liq.)  $+\frac{2}{5}$  KIO₃ (aq.)  $+\frac{4}{5}$  H₂O (liq.) = I₂ (c)  $+\frac{4}{5}$  H₂SO₄ (aq.)  $+\frac{1}{5}$  K₂SO₄ (aq.). The difference gives the reaction, S (c, rhombic)  $+O_2$  (g) = SO₂ (liq.). For the first reaction Frost¹ found at constant volume  $Q = 133.2^{23.9}$ ,  $132.7^{26.2}$ , and  $132.4^{24.3}$ , using about 0.03 mole of sulfur in

each experiment. Frost¹ found that these results showed a trend much greater than the calorimetric error, and selected Q=134. For the second reaction Frost¹ found, at constant volume, Q=60.06, 60.01, and 60.03. Thus for the third reaction above these data yield Q=74.6 at constant pressure. Taking the heat of vaporization of liquid sulfur dioxide as -6.0, we have obtained from these data, for SO₂ (g), Qf=68.6.

Eckman and Rossini¹ made a careful determination of the heat of formation of gaseous sulfur dioxide under conditions which completely favored a pure reaction,—no sulfur trioxide being formed. This was accomplished by burning oxygen gas in an excess of sulfur vapor at constant pressure in a calorimeter. The reaction took place in a flame where the stream of oxygen gas entered the chamber containing the sulfur vapor. The amount of reaction was determined from the mass of sulfur which disappeared, and, as a check, from the amount of sulfur dioxide formed by absorbing it in a sodium hydroxide-asbestos mixture and weighing. Their data yield, for  $SO_2$  (g),  $Qf = 70.92 \pm 0.05$ .

 $SO_2$  (liq.). Vapor pressure data were reported by Faraday,³ Young,² Cardoso and Fiorentino,¹ Henning and Stock,¹ Mund,¹, Mills,¹ Bergstrom,², ³ Burrell and Robertson,¹ Regnault,⁷ Pictet,¹ and Blumcke.¹ See also Antione.³ The heat of vaporization of liquid sulfur dioxide was measured directly by Eucken,², ³ Estreicher and Schneer,¹ Chappuis,² Estreicher,² Mathias,¹ Schneer,¹ Cailletet and Mathias,¹, ² and Smith.¹ The last named found  $V = -6.07^{-10}$ .

 $SO_2$  (c). Vapor pressure data on solid and liquid sulfur dioxide were reported by Bergstrom,^{2, 3} Burrell and Robertson,¹ and Steele and Bagster.¹ These data yield for the heats of sublimation and vaporization of the solid and liquid near the melting point, -8.56 and -6.64, respectively; whence F = -1.9 at the melting point.

 $SO_2$  (aq.). From the vapor pressure data of Lindner^{1, 2} on aqueous solutions of sulfur dioxide, Bichowsky³ deduced the following values for the heat of solution of  $SO_2$  (g) in water:  $6.68_{90}$ ;  $6.90_{200}$ ;  $6.97_{290}$ ;  $7.70_{1500}$ ;  $9.13_{6600}$ . These values are in fair agreement with the recent data of Stiles and Felsing,¹ who measured directly the heat of solution, and gave Q=0.911+1.1053 log n, where n is the number of moles of water per mole of  $SO_2$ . Ramstetter and Hantke¹ reported  $S=8.02_{40}$ . Values computed from the vapor pressure data of Maass and Maass¹ are in accord with those of Stiles and Felsing.¹ Data on the solubility of  $SO_2$  in water were reported by Hudson,¹ Roozeboom,¹ Burrell and Robertson,¹ McCrae and Wilson,¹ Freeze,¹ and Oman.¹ The old direct calorimetric data of Berthelot,  92  de Forcrand,  4  and Favre and Silbermann³ are now of historical interest only. Thomsen¹5 measured the heat of solution of  $SO_2$  (liq.) in water to be  $1.444_{210}$  and  $1.564_{310}$ .

 $SO_3$ —(aq.). From the various values for  $Na_2SO_3$  (aq.) and  $K_2SO_3$  (aq.), we have computed, for  $SO_3$ —(aq.), Qf=148.2, 149.2, and 150.7, respectively.

 $S_2O_8$  (aq.). Berthelot^{63, 107} measured the heat of the reaction,

SULFUR 197

 ${\rm BaS_2O_8~(aq.)} + {\rm H_2SO_4~(220)} = {\rm BaSO_4~(c)} + {\rm H_2S_2O_8~(aq.)}.$  From our values for the last three substances, we have computed, for  ${\rm BaS_2O_8~(aq.)}$ , Qf = 451.7; whence, taking for  ${\rm Ba^{++}~(aq.)}$ , Qf = 128.4, one finds for  ${\rm S_2O_8^{--}~(aq.)}$ , Qf = 323.3.

 ${
m HSO_{3}^-}$  (aq.). From the values of the heats of formation of NaHSO₃ (aq.) and KHSO₃ (aq.), we have calculated, for HSO₃⁻ (aq.), Qf=148.8 and 149.4, respectively.

 $S_2O_5^{--}$  (aq.). We have taken equal to zero the heat of the reaction,  $2 \text{ HSO}_3^{--}$  (aq.) =  $H_2O$  (liq.) +  $S_2O_5^{--}$  (aq.).

 $SO_2$ :7  $H_2O$  (c). The solid hydrate of  $SO_2$  is now usually accepted as having 7 moles of water. The dissociation pressure of this compound was measured at various temperatures by Villard^{2, 10} and Roozeboom.⁴ The data of the latter yield, for  $SO_2$ :7  $H_2O$  (c) =  $SO_2$  (g) +7  $H_2O$  (c), Q=-7.78 at 0°.

SO (g). The band spectra of sulfur dioxide indicate the existence of a diatomic molecule. From a study of the predissociation limits in sulfur dioxide, Henri² and Henri and Wolff¹ deduced the following:  $SO_2(g) = SO(g) + O(g)$ , Q = -112.5; SO(g) = S(g) + O(g), Q = -148. These values yield for SO(g), Qf = 17.5 and 23, respectively. Martin¹ carefully reinvestigated these spectra, and concluded that the normal state of SO is  ${}^3\Sigma$  and that it dissociates into a normal S atom and a normal O atom with  $D^z = -118.2$ . Hence, for SO(g), Qf = -6.3.

H₂S (g). Thomsen¹⁵ determined the heat of formation of H₂S (g) by burning it in oxygen in his flame calorimeter. The reaction is not a clear cut one, there being a considerable quantity of sulfuric acid spray formed along with the SO₂ and H₂O. For H₂S (g), Thomsen¹⁵ reported Qf = 2.73. We have carefully recomputed his calorimetric and analytical data and have deduced for the reaction,  $H_2S(g) + \frac{3}{2}O_2(g) = H_2O(liq.)$  $+SO_2$  (g), Q=134.10 whence, for  $H_2S$  (g)  $Q_f=5.2$ . Thomsen¹⁵ also measured the heat of the reaction  $I_2$  (c) +HI (ag.) +H₂S (g) =3 HI (ag.) +S (solid). The sulfur precipitated was the usual plastic form, the heat of inversion of which into rhombic sulfur we have taken as 0.3 (following the discussion of Pollitzer¹). For the above reaction, Thomsen¹⁵ found Q=21.6, whence we have computed, for  $H_2S(g)$ ,  $Q_f=5.5$ . Pollitzer¹ measured the equilibria in the reaction,  $I_2(c) + H_2S(g) = 2 HI(g)$ +S (c, rhombic), at various temperatures, and gave Q=17.20; whence, for  $H_2S(g)$ , Qf = 5.4. Another value for the heat of formation of hydrogen sulfide is obtained from the equilibrium data on the reaction,  $S(c, \text{ rhombic}) + H_2(g) = H_2S(g)$ , which are discussed by Lewis and Randall.⁵ These last data yield, for  $H_2S$  (g), Qf = 5.0.

 $H_2S$  (liq.). By direct measurement, Estreicher and Schneer¹ found  $V=-4.49^{-61.4}$ ; Elliott and McIntosh¹ gave V=-4.68. The vapor pressure data of Cailletet and Bordet,¹ Regnault,⁶ Maass and McIntosh,² Steele and Bagster,¹ and Steele, McIntosh, and Archibald¹ yield V=-4.5.

H₂S (c). The vapor pressure data of Maass and McIntosh² yield

-4.95 for the heat of sublimation of  $\rm H_2S$  (c). See also Steele, McIntosh, and Archibald.¹

 $H_2S \cdot 6 H_2O$  (c). The vapor pressures of this solid hydrate in the presence of a solution of  $H_2S$  in  $H_2O$  and of  $H_2O$  in  $H_2S$ , which two liquid solutions are immiscible, were measured by Cailletet and Bordet, McLauchlan, Scheffer, Scheffer and Meyer, 2 and Schrienemaker. de Forcrand and Fonzes-Diacon computed, from the foregoing data, Q = -16.5 for the reaction  $H_2S \cdot 6 H_2O$  (c)  $= 6 H_2O$  (liq.)  $+H_2S$  (g).

H₂S (aq.). Thomsen¹⁵ found, by direct measurement, the heat of solution of H₂S (g) in water to be 4.75. The solubility data of Scheffer^{1,6}

and Winkler yield 4.56 and 4.86, respectively.

S- (aq.). From the values of the heats of formation of Na₂S ( $\infty$ ), Na⁺( $\infty$ ), K₂S ( $\infty$ ), and K⁺( $\infty$ ), we have computed, for S-( $\infty$ ), Qf = -9.86 and -10.14, respectively.

 $S_2^-$  (aq.),  $S_3^-$  (aq.),  $S_4^-$  (aq.). From the values of Qf for the aqueous polysulfides of sodium, we have obtained the values for these ions.

**HS**⁻ (aq.). From the values of Qf for NaHS ( $\infty$ ), Na⁺ ( $\infty$ ), KHS ( $\infty$ ), and K⁺ ( $\infty$ ) we have found, for HS⁻ ( $\infty$ ), assuming no dissociation, Qf = 3.95 and 3.85, respectively.

 ${
m H_2S_5}$  (liq.). Sabatier found for the reaction,  ${
m H_2S_5}$  (liq.) =  ${
m H_2S}$  (g) +4 S (solid), Q=2.7. Assuming that the sulfur formed was rhombic, one finds, for  ${
m H_2S_5}$  (liq.), Qf=2.6.

 $H_2S_2$  (liq.). We have estimated for the reaction,  $H_2S_2$  (liq.) +3 S (c) =  $H_2S_5$  (liq.), Q=3; whence, for  $H_2S_2$  (liq.), Qf=-0.4. This value lies between those for  $H_2S$  (liq.) and  $H_2S_5$  (liq.).

 $H_2S_2$  (g). Butler and Maass¹ measured the heat of vaporization of liquid  $H_2S_2$ .

H₂S₂ (c). Butler and Maass¹ measured the heat of fusion.

H₂SO₄ (aq.). Thomsen¹⁵ measured the heat of reaction of gaseous chlorine with aqueous sulfur dioxide to form a mixture of aqueous hydrochloric and sulfuric acids. We have recomputed in detail the data of Thomsen's three experiments on this reaction, and have obtained, for  $SO_2 (2400) + Cl_2 (g) + 2H_2O (liq.) = 2HCl (800) + H_2SO_4 (800), Q = 73.84$ ±0.10; whence, anticipating the value for the heat of dilution, one finds, for  $H_2SO_4$  (200), Qf = 210.3. Berthelot, 45, 135, 136 measured the heat of reaction of liquid bromine with aqueous sulfur dioxide, and also that of solid bromine with aqueous sulfur dioxide. His data yield, respectively, for  $\rm H_2SO_4$  (200?),  $\it Qf = 212.6$  and 210.3. Mixter¹⁵ measured in a bomb calorimeter the heat of reaction of rhombic sulfur with sodium peroxide, S (c, rhombic)  $+3\text{Na}_2\text{O}_2$  (c)  $=\text{Na}_2\text{SO}_4$  (c)  $+2\text{Na}_2\text{O}$  (c), and found Q=168.6. Utilizing our values for the heats of formation of Na₂O₂ (c), Na₂O (c), the heat of solution of Na₂SO₄ (c) in 400 H₂O, the heat of neutralization of H₂SO₄ (200) with 2NaOH (100), and the heat of formation of NaOH (100), we have computed, for  $H_2SO_4$  (200), Qf = 210.4. Utilizing the data obtained by Frost1 on the reaction between liquid SO2 and aqueous KIO3, which has been discussed under the section on SO2 (g), we have computed,

SULFUR 199

for  $H_2SO_4$  (200), Qf=213.7. This value is given little weight because of the large heats of mixing involved. Roth, Grau, and Meichsner¹ recently measured the heat of reaction of aqueous hydrogen peroxide with gaseous sulfur dioxide, and the heat of decomposition of aqueous hydrogen peroxide into water and oxygen. Combining their data on these two reactions, we have computed, for  $SO_2$  (g)  $+H_2O$  (liq.)  $+\frac{1}{2}O_2$  (g)  $=H_2SO_4$  (800), Q=73.09; whence for  $H_2SO_4$  (200), Qf=211.6. The data of  $Hess^{7,9}$  are of historical interest only.

The heat of dilution of aqueous sulfuric acid was measured by many investigators. The data of Favre and Silbermann,³ Favre and Quaillard,¹ Thomsen,¹⁵ Pfaundler,⁵ Pickering,⁹ and Rümelin,¹ were summarized by Brönsted.⁷ The values deduced by Brönsted⁷ have been experimentally verified and extended by Grau and Roth,¹ who reported values from 1 to 20,000  $\rm H_2O$ . Other data are given by Naudè,² Berthelot,^{48, 111} Muller,⁷ and Mathias.¹ See also Bose,² Wilson,¹ and Porter.² The value of  $\it Qf$  for  $\rm H_2SO_4$  ( $\infty$ ) is taken as equal to that for  $\rm SO_4^{--}$  ( $\infty$ ).

- $H_2SO_4$  (liq.). Brönsted⁷ and Grau and Roth¹ measured the heat of solution of liquid sulfuric acid in water and of water in liquid sulfuric acid. Their data yield, respectively, for  $H_2SO_4$  (liq.), Qf=193.73 and 193.75. For the heat of solution of liquid sulfuric acid, Berthelot⁴⁸ found  $16.92_{150}$  and Thomsen¹⁵  $17.85_{1600}$ .
- $H_2SO_4$  ( $C_2H_5OC_2H_5$ ). Hantzsch¹ measured the heat of solution of liquid sulfuric acid in diethyl ether.
- $H_2SO_4$  (c). The data on the heat of fusion of solid sulfuric acid are: Berthelot,^{3, 6, 132} -0.86; Pickering,¹³ -2.35; Hantzsch,² -2.258; Knietsch (see Hantzsch²), -2.24; Brönsted,⁷  $-2.55^{10.5}$ .
- $\mathbf{H}_2\mathbf{SO}_4\cdot\mathbf{H}_2\mathbf{O}$  (c). The data on the heat of fusion of the hydrate are: Berthelot,^{3, 6, 132} -3.680; Hammerl,³ -3.420, -3.536; Pickering,¹³ -3.92; Brönsted,⁷ -4.290-0.0188 t. Brönsted's⁷ data yield F=-4.45 at the melting point, 8.60°.
- $SO_4$ —(aq.) From the values of the heats of formation of Li₂SO₄ ( $\infty$ ), Li⁺( $\infty$ ), Na₂SO₄ ( $\infty$ ), Na⁺( $\infty$ ), K₂SO₄ ( $\infty$ ), and K⁺( $\infty$ ), we have computed, for SO₄—( $\infty$ ), Qf=215.71, 215.76, and 215.94, respectively.
- SO₃ (liq.). The data on the heat of solution of liquid sulfur trioxide in water are: Thomsen, ¹⁵ 39.17₁₆₀₀; Giran, ³ 39.4₄₀₀; Grau and Roth, ² 41.18₅₀₀₀.
- $SO_3$  (g). Berthelot⁶⁶ found for the heat of solution of gaseous sulfur trioxide in water,  $S=49.2_{200}$ ?, whence, for  $SO_3$  (g), Qf=93.9. Giran³ reported, for the heat of vaporization of liquid sulfur trioxide, V=-9.4; Grau and Roth² found  $V=-10.0\pm0.4$ . From the latter value we have computed, for  $SO_3$  (g), Qf=94.2. The vapor pressure data of Berthout,¹ Smits and Schoenmaker,¹,² and Grau and Roth² yield, respectively, V=-10.37, -10.40, and -10.22. The average of these values yields, for  $SO_3$  (g), Qf=93.9. From a study of predissociation in the absorption spectra of gaseous sulfur trioxide, Dutt¹ deduced  $SO_3$  (g)  $=SO_2$  (g)

+O (g) ( 3 P),  $D^{z}=-86.7$  and SO₃(g) = SO₂ (g) +O (g) ( 1 D₂),  $D^{z}=-125$ . From these data we have computed, for SO₃ (g), Qf=99 and 92, respectively. The data of Hess⁷ on sulfur trioxide are of historical interest only.

 $SO_3$   $(c, \alpha)$ ,  $SO_3$   $(c, \beta)$ . There are two crystalline forms of solid sulfur trioxide, the "ice-like" or  $\alpha$  form which melts sharply at 16.8°, and the "wool-like" or  $\beta$  form which is stable above 16.8° but does not appear to be well defined. The vapor pressure data of Smits and Schoenmaker, vield -12.1 for the heat of sublimation of  $SO_3$   $(c, \alpha)$ , whence Qf = 106.0. Berthelot,  $^{6.9}$  and Grau and Roth measured the heat of solution of  $SO_3$   $(c, \beta)$  in water. Their data yield Qf = 105.8 and 105.2, respectively. Grau and Roth showed that the heat of solution varied considerably with the sample, indicating that the "wool-like" or  $\beta$  form of sulfur trioxide may be a mixture of varying composition.

H₂S₂O₇ (c). Thomsen¹⁵ measured the heat of solution.

 ${
m H_2S_2O_7}$  (liq.). Auerbach¹ measured the heat of fusion of the solid.  ${
m H_2S_2O_8}$  (aq.). Berthelot^{63, 107} measured the heats of reaction of  ${
m H_2S_2O_8}$  (220) with (FeSO₄+H₂SO₄) (440) and of  ${
m H_2O_2}$  (aq.) with (FeSO₄+H₂SO₄) (440). The difference in these heats of reaction gives that for  ${
m H_2S_2O_8}$  (220) +2H₂O (liq.) = 2H₂SO₄ (220) + H₂O₂ (aq.). Berthelot's data on two preparations of aqueous persulfuric acid yield for this reaction Q=13.5 and 13.4, respectively. Berthelot^{63, 107} also obtained data on two other series of reactions, using instead of  ${
m H_2S_2O_8}$  (220), the mixtures ((NH₄)₂S₂O₈+H₂SO₄) (aq.) and (K₂S₂O₈+H₂SO₄) (aq.), respectively. These data give for the foregoing reaction, Q=13.2 and 13.0, respectively. Taking the value 13.4, we have computed, for  ${
m H_2S_2O_8}$  (aq.),  ${
m Q}f=318.5$ . Berthelot's^{63, 107} data on the reaction of aqueous sulfurous acid with aqueous persulfuric acid yield a value for the heat of formation of the latter that is in accord with the foregoing.

S₂O₇ (c). Giran,⁶ by an indirect method of which he does not give the details, computed the heat of solution of solid persulfuric acid anhydride to be 56.7.

 $S_2O_3^{--}$  (aq.). This value is obtained from those for  $Na_2S_2O_3$  (aq.) and  $Na^+$  (aq.).

 $S_2O_6$ —(aq.). This value is obtained from those for  $K_2S_2O_6$  (aq.) and  $K^+$  (aq.).

 $H_2S_2O_6$  (aq.). Thomsen¹⁵ found  $N_{1200} = 27.07$ .

 $S_3O_6^{--}$  (aq.). From the values for  $Na_2S_3O_6$  (aq.) and  $K_2S_3O_6$  (aq.), we have found, for  $S_3O_6^{--}$  (aq.), Qf = 279.6 and 278.3, respectively.

 $S_4O_6^{--}$  (aq.). The value is obtained from those for  $Na_2S_4O_6$  (aq.) and  $Na^+$  (aq.).

 $H_2S_4O_6$  (aq.). Assuming tetrathionic acid to be completely ionized, one finds Qf for  $H_2S_4O_6$  (aq.) equal to that for  $S_4O_6$ — (aq.).

 $S_5O_6^{--}$  (aq.). This value is obtained from those for  $K_2S_5O_6$  (aq.) and  $K^+$  (aq.).

 $S_2O_4^{--}$  (aq.). Berthelot⁴⁰ measured the heat of reaction between oxy-

SULFUR 201

gen gas and a sodium sulfite solution freshly reduced by zinc. Presumably the active ion is  $S_2O_4^{--}$ ; and, if so, the reaction is  $S_2O_4^{--}$  (aq.)  $+H_2O$  (liq.)  $+\frac{1}{2}O_2$  (g)  $=2HSO_3^{-}$  (aq.). Berthelot found Q=67.8, whence we have computed, for  $S_2O_4^{--}$  (aq.),  $Q_f=161.8$ .

S₂Cl₂ (liq.). For the heat of formation of liquid S₂Cl₂, Thomsen¹⁵ found 14.26; Trautz,⁶ 14.5; and Ogier,⁶ 17.6.

S₂Cl₂ (g). For the heat of vaporization of liquid S₂Cl₂, Ogier⁶ found -6.7 by direct measurement; Orndorff and Terrasse¹ reported -8.7 from data on boiling point elevation; Harvey and Schuette¹ -8.65 from vapor pressure data; and Trautz, Rick, and Acker¹ -8.5 from vapor pressure data. Gaseous S₂Cl₂ is partly dissociated.

 $S_2Cl_4$  (liq.),  $SCl_4$  (liq.). Trautz⁹ and Ogier⁶ measured the heat of solution of chlorine in liquid  $S_2Cl_2$ , and, for the more or less imaginary reaction,  $S_2Cl_2$  (liq.)  $+Cl_2$  (g)  $=S_2Cl_4$  (liq.), reported Q=9.8 and 5.8, respectively. Absorption of 3 moles of  $Cl_2$  per mole of  $S_2Cl_2$  leads to values of Q=12 to 14 for the assumed reaction  $S_2Cl_2$  (liq.) +3  $Cl_2$  (g) =2  $SCl_4$  (liq.). Thomsen¹⁵ and Beckmann⁵ noted that heat was evolved in the first reaction. Aten¹ quoted their results to prove the existence of  $S_2Cl_4$ , but the evidence in favor of the existence of  $S_2Cl_4$  is not convincing, especially since the accepted freezing point diagram for the  $Cl_2-S$  system shows only two well defined solid compounds,  $S_2Cl_2$  and  $SCl_4$ . But we find it convenient, nevertheless, to give a value for the heat of formation of the hypothetical  $S_2Cl_4$  (liq.).

 $SO_2Cl_2$  (liq.). Thomsen¹⁵ discovered that solid iodine acted as a catalyst for the reaction,  $SO_2Cl_2$  (liq.)  $+2H_2O$  (liq.)  $= (H_2SO_4 + 2HCl)$  (1000), and his calorimetric data yield for this reaction Q = 62.8. Ogier measured the heat of solution of liquid sulfuryl chloride in aqueous KOH to be 119.8. These data yield for  $SO_2Cl_2$  (liq.) Qf = 92.9 and 93.1, respectively.

 $SO_2Cl_2$  (g). The data on the heat of vaporization of liquid sulfuryl chloride are: Trautz,  6  -6.68, from direct calorimetric measurement; Trautz, Baisch, and von Dechend,  1  -6.68, from vapor pressure data; Ogier,  7  -7.1, from the difference in the heats of solution of the gas and the liquid. These data yield, for  $SO_2Cl_2$  (g), Qf=86.2, 86.2, and 85.8, respectively. Trautz and von Dechend computed, from equilibrium data for the reaction,  $SO_2$  (g)  $+Cl_2$  (g)  $=SO_2Cl_2$  (g), Q=11.2; whence, for  $SO_2Cl_2$  (g), Qf=82.1. See also Heumann and Käcklin.

SOC1₂ (liq.). Ogier^{6, 7} measured the heat of solution of liquid thionyl chloride in water.

 $SOCl_2$  (g). Ogier^{6, 7} reported -6.5 for the heat of vaporization of the liquid; Arii,³ from vapor pressure data, deduced the value -7.56.

 $S_2O_5Cl_2$  (liq.). Ogier⁷ found, for the heat of solution of liquid pyrosulfuryl chloride in 6 KOH (18), Q=39.2; whence, for  $S_2O_5Cl_2$  (liq.), Qf=166.5.

 $S_2O_5Cl_2$  (g.). Ogier reported -13.2 for the heat of vaporization. See also Grignard and Muret.

 $SO_3HCl$  (liq.). Ogier⁶ measured the heat of formation of liquid sulfonic chloride from solid  $SO_3$  (which we have assumed to be the woollike form) and gaseous HCl, and the heat of solution of liquid  $SO_3HCl$  in water. For these reactions, he found Q=14.3 and 40.3, respectively; whence we have computed, for  $SO_3HCl$  (liq.), Qf=141.6 and 143.0, respectively.

 $S_2Br_2$  (liq.). Ogier⁷ and Peterson⁵ reported for the reaction, 2S (c, rhombic) + Br₂ (liq.) =  $S_2Br_2$  (liq.), Q=4.0 and 3.6, respectively. It

seems probable that both values are low.

 $\mathbf{S}_x \tilde{\mathbf{I}}_y$  (solid). According to Ogier⁷ there is no heat effect on mixing sulfur and iodine.

SOBr₂ (liq.). Mayes and Partington¹ reported -10.40 for the heat of vaporization at 140°. There is some decomposition at the boiling point.

 $SF_6$  (g). Yost and Claussen¹ reported Qf = 262.0.

 $SF_6$  (c). The data on the heat of sublimation are: Klemm and Henkel, -5.57; Yost and Claussen,  $-5.64^{-63.8}$ .

 $SF_6$  (liq.). The data on the heat of fusion are: Klemm and Henkel,¹ -1.1; Yost and Claussen,¹  $-1.39^{-50.8}$ .

#### SELENIUM

Se (solid). The stable form of selenium is the gray metallic hexagonal Se (c, I). There are also the red monoclinic form, Se (c, III), the intermediate black monoclinic form, Se (c, II), and the vitreous form, which latter is apparently identical with precipitated selenium. Briegleb¹ gave a summary of the thermal properties of the various forms of solid selenium. Mondain-Monval¹, 5 measured the heats of transition directly, finding: Se (vitreous) = Se (c, I),  $Q^{125}$  = 1.08; Se (c, III) = Se (c, I),  $Q^{150}$  = 0.18. Fabre,² from data on the difference in the heats of solution of the various forms of selenium in bromine, reported: Se (vitreous) = Se (c, I), Q = 2.79; Se (vitreous) = Se (amorphous), Q = 0. Peterson,⁵ from data on the differences in the heats of their reaction with chlorine, gave: Se (c, III) = Se (c, I), Q = 0.70; Se (vitreous) = Se (c, I), Q = 1.05. There are no thermal data on Se (c, III)

Se (liq.). From data on the vapor pressures of Se (c, II) and Se (liq.) reported by Dodd, Le Chatelier, and Preuner and Brockmoller, we have computed the heat of fusion to be -3.91, if the vapor is assumed to be Se₆, and -2.9, if the vapor is Se₈. From Mondain-Monval's values at 125°, we have computed F = -1.6 at the melting point, 220°. This value agrees best with the assumption that the vapor has the composition Se₈ at the melting point.

Se₂ (g), Se₆ (g), Se₈ (g). From the vapor pressure data of Dodd,¹ we have computed for Se₈ (g), Qf = -34.8, assuming that at the melting point of selenium its vapor is mostly Se₈. By analogy with sulfur we have computed, for Se₆ (g), Qf = -36. Preuner and Brockmoller¹ gave -56 for the heat of the reaction Se₆ (g) = 3 Se₂ (g), whence, for Se₂ (g).

Qf = -30.7. This was computed from equilibrium values calculated from their vapor density data. Similar data were given by Biltz⁷ and Deville and Troost.⁴ Preuner and Brockmuller¹ and Bodenstein³ estimated, from equilibrium data on the reaction,  $H_2Se(g) = H_2(g) + \frac{1}{2}Se_2(g)$ , Q = -22.5, whence, anticipating the value for  $H_2Se(g)$ , we have computed, for  $Se_2(g)$ , Qf = -29.5.

Se (g). By analogy with  $O_2$  and  $S_2$ , we have estimated the energy of dissociation of  $Se_2$  to be -92, which value is in agreement with that estimated by von Wartenberg³ from vapor density data.

The values of the energy states of gaseous monatomic selenium are taken from McLennan and Crawford.¹ Gibbs and Ruddy¹ reported a value for the ionization potential. The spectra of Se⁺ (g) have not been analyzed, but the higher spectra are discussed by Rao⁶ and Sawyer and Humphreys.¹ See also Bacher and Goudsmit.¹

Se⁻⁻ (aq.). The values for aqueous selenide ion are obtained from those for Li₂Se (aq.), Na₂Se (aq.), K₂Se (aq.). Li⁺ (aq.), Na⁺ (aq.), and K⁺ (aq.)

SeO₂ (aq.). Thomsen¹⁵ measured the heats of the following reactions: Se (vitreous)  $+\frac{1}{2}$  Cl₂ (g)  $=\frac{1}{2}$  Se₂Cl₂ (liq.),  $\frac{1}{2}$  Se₂Cl₂ (liq.)  $+\frac{3}{2}$  Cl₂ (g) = SeCl₄ (liq.), and SeCl₄ (liq.)  $+2H_2$ O (liq.) = (SeO₂ +4HCl) (aq.). For these reactions, the data of Thomsen¹⁵ yield Q=11.26, 35.08, and 30.37, respectively. Addition of the three reactions yields for Se (vitreous) +2Cl₂ (g)  $+2H_2$ O (liq.) = (SeO₂ +4HCl) (aq.), Q=76.71; whence, for SeO₂ (aq.), Qf=55.43. Thomsen¹⁵ also measured the heat of the reaction SeO₂ (aq.) +2HCl (aq.) +NaHS (aq.) = NaCl (aq.)  $+2H_2$ O (liq.) +S (solid, ppt.) +Se (solid, ppt.). His data yield, for this reaction, Q=73.40; whence, for SeO₂ (aq.), Qf=55.64.

SeO₂ (c). For the heat of solution of SeO₂ (c) in water, Thomsen¹⁵ found  $S=-0.92_{200}$  and Jannek and Meyer,  $S=-0.94_{100}$ . These data yield, for SeO₂ (c), Qf=54.50. Mixter¹⁰ measured in a bomb calorimeter the heats of the reactions,  $3 \text{ Na}_2\text{O}_2$  (c) +Se (c, III) = Na₂ SeO₄ (c) +2 Na₂O (c) and SeO₂ (c) +Na₂O₂ (c) = Na₂SeO₄ (c). He found, for these reactions, Q=95.90 and 71.20, respectively, and the difference gives for, Se (c, III) +2 Na₂O₂ (c) =SeO₂ (c) +2 Na₂O (c), Q=24.70; whence, for SeO₂ (c), Q=65.1. This high value is due, as Mixter reported, to the fact that the second reaction did not go to completion.

H₂SeO₃ (c). Jannek and Meyer¹ measured the heat of solution in water. See also the vapor pressure data of Manchot.¹

SeO₃⁻⁻ (aq.). This value is computed from those for Na₂SeO₃ (aq.) and Na⁺ ( $\infty$ ).

 $HSeO_3^-$  (aq.). This value is computed from those for NaHSeO₃ (aq.) and Na⁺ ( $\infty$ ).

 $m H_2Se~(g)$ . Fabre¹ measured the heats of the reactions,  $m H_2Se~(g)$  +2 FeCl₃ (aq.) = Se (solid, ppt.) + (2 FeCl₂+2 HCl) (aq.) and 2 H₂Se (g) +SeO₂ (aq.) = 3 Se (solid, ppt.) +2 H₂O (liq.). His data yield Q=42.2 and 120.1, respectively; whence we have computed, for  $m H_2Se~(g)$ , Qf

= -18.5 and -19.8, respectively. Rolla's¹ data on the temperature coefficient of the equilibrium constant for the reaction,  $H_2$ Se (g) +  $I_2$  (c) = 2 HI (g) + Se (solid), yield, for  $H_2$ Se (g), Qf = -16.9. Pelabon's¹ data on the equilibrium  $H_2$ Se (g) =  $H_2$  (g) + Se (liq.) yield, for  $H_2$ Se (g), Qf = -19.0.

H₂Se (aq.). From data on the temperature coefficient of the solubility of H₂Se in water, McAmis and Felsing¹ computed the heat of solution of gaseous hydrogen selenide to be 2.43. From the similar but less accurate data of de Forcrand and Fonzes-Diacon,1,2 we have computed S=3.2. Fabre measured the heats of reaction of aqueous H₂Se and gaseous H₂Se with aqueous NaOH and aqueous KOH, respectively. Proper differences of these reactions would give values for the heat of solution of H₂Se in water; but, unfortunately, the data when so treated vield S=9.36 and 9.77, respectively.—values in sharp disagreement with the preceding ones. The discrepancy may be explained by assuming that Fabre erred in recording his data on the neutralizations with gaseous H₂Se. Fabre's value for the neutralization of aqueous H₂Se is in accord with similar data on the homologous H2S (aq.). If we assume that to Fabre's data on the reaction between gaseous H2Se and aqueous NaOH and KOH respectively the factor \frac{1}{2} should be applied, then one obtains. for  $H_2Se$  (g), S=1.00 and 1.31, respectively.

HSe (aq.). This value is obtained from those for aqueous NaHSe and KHSe.

 $H_2SeO_4$  (aq.). Thomsen¹⁵ measured the heat of the reaction, SeO₂ (500) +HClO (700) +H₂O (liq.) = (H₂SeO₄+HCl) (1200), and his data yield Q=29.78; whence, neglecting the heat of mixing, we have computed, for  $H_2SeO_4$  (1200), Qf=143.8. Fabre's¹ data on the heat of the reaction, Se (c) + 3 Br₂ (liq.) + 4 H₂O (liq.) = (H₂SeO₄ + 6 HBr) (aq.), yield Q=42.2; whence, for  $H_2SeO_4$  (aq.), Qf=144.5. We have estimated the heat of dilution of aqueous selenic acid to be the same as that for sulfuric acid.

H₂SeO₄ (liq.). Metzner^{1, 2} measured the heat of solution in water. H₂SeO₄ (c). Metzner^{1, 2} measured the heat of solution in water.

 $\mathbf{H}_2\mathbf{SeO_4}\cdot\mathbf{H}_2\mathbf{O}$  (liq.). Metzner^{1, 2} measured the heat of solution in water.

 $\mathbf{H_2SeO_4\cdot H_2O}$  (c). Metzner 1, 2 measured the heat of solution in water.

SeO₄⁻⁻ (aq.). From the values for Na₂SeO₄ ( $\infty$ ), Na⁺ ( $\infty$ ), K₂SeO₄ ( $\infty$ ), and K⁺ ( $\infty$ ), we have computed that for SeO₄⁻⁻ ( $\infty$ ).

 $HSeO_4^-$  (aq.). We have computed this value from those for NaHSeO₄ (aq.), Na⁺ ( $\infty$ ), KHSeO₄ (aq.), and K⁺ ( $\infty$ ).

 $SeF_6$  (g). Yost and Claussen¹ reported Qf = 246.0.

SeF₆ (c). Klemm and Henkel¹ reported  $-6.72^{-45}$  for the heat of sublimation; Yost and Claussen¹ reported  $-6.60^{-46.6}$ .

 $SeF_6$  (liq.). Klemm and Henkel¹ gave -1.1 for the heat of fusion of the solid; Yost and Claussen¹ reported  $-2.0^{-34.6}$ .

 $Se_2Cl_2$  (liq.). Thomsen¹⁵ and Peterson⁵ measured the heat of formation of liquid  $Se_2Cl_2$  from vitreous selenium and gaseous chlorine. Their data yield Q=22.13 and 21, respectively.

SeCl₄ (c). The data of Thomsen¹⁵ on the reaction, Se₂Cl₂ (liq.) +3 Cl₂ (g) = 2 SeCl₄ (c), yield Q = 70.10; whence, for SeCl₄ (c),

Qf = 46.12.

SeCl₂ (g). From data on the dissociation pressure of solid SeCl₄, and on the vapor density of the dissociation products, Yost and Kircher¹ calculated, for SeCl₄ (c) = SeCl₂ (g) + Cl₂ (g),  $Q^{160} = -35.38$ ; whence, for SeCl₂ (g), Qf = 10.0.

SeO₂·SO₃ (c). Metzner^{1, 2} measured the heat of solution in water.

### TELLURIUM

Te (c, II). Standard state.

Te (c, I). Umino² measured the heat of transition.

Te (solid, amorphous). Damiens¹ found the heat of solution, in strong bromine water, of the quenched melt of tellurium and the amorphous or chemically precipitated tellurium to be zero and 2.7, respectively, greater than that of Te (c, II).

Te (liq.). Umino² measured the heat of fusion of Te (c, I).

Te₂ (g). At temperatures above the boiling point, tellurium vapor is diatomic. The vapor pressure data of Doolan and Partington,¹ which were obtained at lower temperatures, do not extrapolate to the known boiling point, and indicate higher association of the vapor. See also Deville and Troost.⁴ These data lead to the values  $V = -28.0^{600}$  and  $-20.0^{1500}$ , whence, for Te₂ (g), Qf = -24. This value is not very certain.

Te (g). von Wartenberg³ estimated, from vapor density measurements at  $2200^{\circ}$  and the Nernst equation, that the heat of dissociation of Te₂ (g) into 2 Te (g) is  $-87.0^{2200}$ . See also Biltz⁷ and Deville and

Troost.1, 4

McLennan and Crawford¹ gave data on the energy levels of monatomic gaseous tellurium. See also Bacher and Goudsmit.¹

TeCl₄ (c). Thomsen's¹⁵ data on the reaction, Te (c, II) +2 Cl₂ (g) = TeCl₄ (c), yield, for the latter, Qf = 77.4.

TeO₂ (aq. HCl). Thomsen¹⁵ found the heat of solution of TeCl₄ (c) in water to be 20.37.

H₂TeO₃ (c).) Thomsen¹⁵ found the heat of solution of this compound in water to be zero.

 $TeO_2$  (c). Thomsen¹⁵ measured the heat of the reaction, (TeO₂ +4 HCl) (aq.) +2 SnCl₂ (aq.) = Te (amorp., ppt.) +2 SnCl₄ (aq.) +2 H₂O (liq.), and his data yield, for TeO₂ (c), Qf=77.6. Schuhmann² measured the electromotive force at various temperatures of the cell in which the reaction was Te (c, II) +2 H₂O (liq.) = TeO₂ (c) +2 H₂ (g), and his data yield, for TeO₂ (c, II), Qf=77.58. Mixter's¹⁰ data on the reactions of sodium peroxide with Te and TeO₂, respectively, lead to a value of 88.7 for the heat of formation of TeO₂ (c):

H₂TeO₄ (aq.). Thomsen¹⁵ measured the heat of oxidation of aqueous TeO₂ with potassium permanganate, and his data yield, for H₂TeO₄ (400), Qf=165.3. Berthelot and Fabre oxidized solid tellurium with liquid bromine in the presence of water, Te (c)  $+3 Br_2 (liq.) +4 H_2O (liq.)$  $= (H_2 \text{TeO}_4 + 6 \text{ HBr}) (\text{ag.})$ , and their data yield, for  $H_2 \text{TeO}_4$  (aq.), Qf=169.3.

 $H_2TeO_4 \cdot 2 H_2O$  (c). Metzner¹ measured the heat of solution in water.

SO₂·2 TeO₂ (c). Metzner¹ measured the heat of solution of this compound in aqueous KOH.

H₂Te (g). The data of Berthelot and Fabre¹ on the reaction, H₂Te  $(g) + 2 \operatorname{FeCl}_3(aq.) = \operatorname{Te}(ppt.) + (2 \operatorname{FeCl}_2 + 2 \operatorname{HCl})(aq.)$  yield, for  $H_2\operatorname{Te}$ (g), Qf = -34.2.

TeBr₄ (c). Beck¹ found for the reaction of the solid tetrabromide with aqueous sodium acetate, Q = 7.05; whence, for TeBr₄ (c), Qf = 49.3.

 $TeF_6$  (g). Yost and Claussen¹ reported Qf=315.0.  $TeF_6$  (c). Klemm and Henkel¹ gave for the heat of sublimation,  $-5.13^{-28}$ ; Yost and Claussen¹ reported  $-6.74^{-38.9}$ .

 $TeF_6$  (liq.). Klemm and Henkel¹ gave for the heat of fusion, -1.6; Yost and Claussen¹ estimated -1.9.

# POLONIUM

# Po (c). Standard state.

## NITROGEN

- $N_2$  (g). The standard state is taken as the equilibrium gas at 18°. The values for the energy states of gaseous diatomic nitrogen are from Sponer,^{1, 3} Birge and Hopfield,^{1, 4} and Mulliken.^{3,6} See also Jevons.¹ Data on the energy of ionization of N₂ (g) were reported by Sponer,³ Smyth,3 Turner and Samson,1 and Tate, Smith, and Vaughan,1 the value of the last named being 15.65 ± 0.02 volt-electrons.
- N(g). The value for the energy of dissociation of normal gaseous N₂ into normal gaseous N atoms is taken from Herzberg and Sponer,¹ Kaplan,⁵ and Lozier.³ Herzberg and Sponer¹ reported the value 7.34 ±0.02 volt-electrons. See also van der Ziel,¹ Birge,^{1, 3, 8, 10} Birge and Hopfield,1,4 Turner and Samson,1 Lozier,1 Hogness and Lunn,1 Brandt,1 Duncan, 1 Kneser, 1 Mohler and Foote, 1 and Grimm and Eucken. 1

The energies of ionization of monatomic nitrogen to various stages are taken from the following works: Hopfield⁴ and Compton and Bovce.¹ first step; Bowen² and Fowler and Freeman, second step; Bowen, Millikan and Bowen,^{3, 4} and Freeman,¹ third step; Edlen,¹ fourth step; Edlen and Ericson,⁵ fifth step. The values for the sixth and seventh steps are taken from the calculations of Laporte and Young.1

N₂ (lig.). From a review of the data of Alt, Dana, Eucken, Keesom and Houlhoff, Millar and Sullivan, Burnett, Shearer, Rodebush, Andrews, and Taylor, and Mathias, Crommelin, and Onnes, Wiebe and Brevoort deduced V = -1.335 at the boiling point,  $-195.7^{\circ}$ . Vapor pressure data were reported by Crommelin,⁴ Cath,¹ Mathias, Onnes, and Crommelin,¹ Onnes, Dorsman, and Holst,¹ Wroblewsky,⁴ Baly,¹ Fischer and Alt,¹ Holst and Hamburger,^{1, 2} Henning and Heuse,¹ Olschewsky,^{1, 3, 5, 10, 11} Porter and Perry,¹ and von Siemans.¹

- $N_2$  (c). Eucken^{2, 3} measured the heat of fusion of  $N_2$  (c, I) and the heat of transition of  $N_2$  (c, II) to  $N_2$  (c, I). See also Estreicher.¹
- NH (g). Bates¹ determined, from spectroscopic data, the energy of dissociation of NH into normal atoms, and the energy of the first electronic state.
- NH₃ (g). Thomsen¹⁵ and Berthelot²¹ measured the heat of combustion of gaseous ammonia, and their data yield, for NH₃ (g), Qf=11.7 and 11.2, respectively. Haber,⁴ Haber, Tamaru, and Oeholm,¹ Haber and Tamaru,¹ and Tamaru¹ measured the heat of the dissociation, NH₃ (g) =  $\frac{1}{2}$  N₂ (g) +  $\frac{3}{2}$  H₂ (g), at various temperatures. Lewis and Randall⁵ reviewed these data, and their equation yields, for NH₃ (g), Qf=10.97. Equilibrium data on the synthesis of gaseous ammonia from nitrogen and hydrogen were obtained by Haber,^{3, 4, 5} Haber, Tamaru, and Ponnay,¹ Haber and Maschke,¹ Haber and Greenwood,¹ Haber, Tamaru, and Oeholm,¹ Haber and Moser,¹ Haber and Le Rossignol,^{1, 2, 3, 4} Claude,¹ Lebeau and Jost,^{1, 2} Nernst,⁴ Larson,¹ and Larson and Dodge.¹ See also Haber and van Oordt.^{1, 2, 3} Gillespie^{1, 4} and Gillespie and Beattie^{1, 2, 3} critically reviewed the recent accurate data of Larson¹ and Larson and Dodge,¹ and, after making corrections for the deviations from the ideal gas laws, deduced, for NH₃ (g), Qf=10.74.
- ${
  m NH_3}$  (liq.). The most accurate value for the heat of vaporization of liquid ammonia is that of Osborne and Van Dusen, who found V=-5.56 at the normal boiling point. From this value, we have computed V=-5.07 at 18°. Other data on the heat of vaporization of ammonia are given by Estreicher and Schneer, Holst, de Forcrand and Massol, Henning, Regnault, Strombeck, Franklin and Kraus, Brill, Eucken and Karwat, and Donath.
- ${
  m NH_3}$  (c). By direct calorimetric measurement, Eucken and Karwat¹ and Eucken and Donath¹ found F=-1.43 and -1.420, respectively, at the freezing point,  $-77.6^{\circ}$ . From the difference in the heats of solution of the solid and the liquid, Massol² (see de Forcrand and Massol¹) found the heat of fusion of solid ammonia to be -1.84 at  $-75^{\circ}$ . The values of Eucken and co-workers are in accord with those calculated from the differences in the variation, with temperature, of the logarithm of the vapor pressures of the solid and liquid, respectively, data on which are given for the solid, by Cragoe, Meyers, and Taylor,¹ Karwat,¹ McKelvy and Taylor,¹ Smits and Postma,¹ Briner,¹ Burrell and Robertson,¹,³ and Mundel,¹ and, for the liquid, by Cragoe, Meyers, and Taylor,¹ Henning and Stock,¹ and others. See also the calculations by Karwat¹ and Rideal.¹
- NH₃ (aq.). The data on the heat of solution of gaseous ammonia in water yield the following values: Thomsen,^{3, 15} 8.47₂₀₀; Berthelot,²¹ 8.82¹⁰, 8.2¹⁰⁰; Favre and Silbermann,³ 8.75¹⁵; Baud and Gay,¹ 8.55₂₀₀¹³;

Wrevski and Savaritski, ¹ 8.35₂₀₀. The data of Ramstetter and Hantke ¹ show an incorrect trend. The data on the heat of dilution of aqueous ammonia given by Thomsen, ¹⁵ Baud and Gay, ¹ and Wrevski and Savaritski ¹ were reviewed by Bichowsky. ²

 $NH_4F$  (aq.). Guntz¹ found N=15.2.

NH₄F (c). Guntz¹ quoted a value for the heat of solution obtained by Favre, whose report we have been unable to find. Simon, Simson, and Ruhemann¹ found no transitions in solid ammonium fluoride.

NH₄Cl (aq.). The data on the heat of neutralization of aqueous ammonia with aqueous hydrochloric acid yield the following values for N₂₀₀: Hess,⁶ —; Berthelot,⁴ —; Favre and Silbermann,³ 13.5; Andrews,^{1, 2, 11} 12.96; Thomsen,¹⁵ 12.30; Biltz and Messerknecht,² 12.30. Data on the heat of dilution of aqueous ammonium chloride were reported by Pratt,¹ Thomsen,¹⁵ Magie,¹ Stackelberg,¹ Winkelmann,¹ and Lehtonen.¹ We have extrapolated these data to infinite dilution.

 $NH_4^+$  (aq.). From the values for  $NH_4Cl(\infty)$  and  $Cl^-(\infty)$ , and  $NH_4NO_3(\infty)$  and  $NO_3^-(\infty)$ , we have computed, for  $NH_4^+(\infty)$ , Qf=31.455 and 31.47, respectively.

NH₄Cl (c, II). The existing data yield the following values for the heat of solution of ammonium chloride: Anderson and Noyes,  1  – 3.86₂₀₀; Berthelot,  7  – 4.0; Favre and Silbermann,  3  – 3.4; Mondain-Monval,  3  – 3.84¹⁹; Winkelmann,  1  – 3.92₂₀₀; Colson,  5  – 3.95₂₀₀; Stackelberg,  1  – 3.93₁₅₀; Van Deventer and van der Stadt,  1  – 3.88₂₀₀; Thomsen,  15  – 3.92₂₀₀. Lehtonen measured the heat of solution at 0°. Raabe measured the heat of the reaction, NH₃ (g) + HCl (g) = NH₄Cl (c), finding Q = 44.46; whence, for NH₄Cl (c), Qf = 77.4. Some error must exist in his data. Bronsted measured the heat of the reaction  $\frac{1}{2}$  H₂ (g) + NH₃ (in sat'd. aq. NH₄Cl) + HgCl (c) = Hg (liq.) + NH₄ Cl (c, II), finding Q = 70.60; but we can not use these data to obtain a value for the heat of formation of solid ammonium chloride without a value for the heat of solution of gaseous ammonia in saturated aqueous ammonium chloride.

 $NH_4Cl(c, I)$ . For the transition at 184°, Scheffer^{3, 4} found -1.03; Bridgman,⁷ -0.88; Klinkhardt,¹ -0.97.

NH₄Cl (c, III). Simon³ found T=−0.356_{→II}⁻³¹. See also Ewald.¹ NH₄Cl (g). Gutmann,¹ Johnston,⁴ Neuberg,¹ Pullinger and Gardner,¹ Ramsay and Young,^{1, 4} Deville and Troost,¹ Smith and Lombard,^{1, 2} and Rodebush and Michalek¹ obtained data on the dissociation of gaseous ammonium chloride. These data yield for the reaction NH₃ (g) +HCl (g) = NH₄Cl (g), Q=9.4; whence, for NH₄Cl (g), Qf=42.4. See also Wegsheider¹ and Smith and Lombard.¹ Because they took special care to reach equilibrium, we have selected the values of Smith and Calvert^{1, 2} and Smith and Lombard^{1, 2} for the heat of sublimation of solid ammonium chloride, in preference to the values of Braune and Knoke,¹ Rassow,¹ Scheffer, Johnson,⁵ Horstman, Ramsay and Young,^{1, 4} Smith and Menzies,¹ and Wegscheider.^{1, 2} See also Smits¹ and Smits and DeLange.¹

- NH₄Br₃ (c). The data of Hüttig and Schliessmann¹ on the dissociation pressure of solid NH₄Br₃ at various temperatures, yield D = -12.8, which value seems high. See also Ephraim.³
- $NH_4I$  (aq.). The value of Qf for this substance is obtained from those for aqueous ammonium and iodide ions.
- NH₄I (c, I). The existing data yield the following values for the heat of solution: Thomsen,  15   $-3.56_{200}$ ; Varet,  2  -3.5.
- NH₄⁺ (g). Grimm² showed that the heat of formation of this substance can be calculated by the method of lattice energies. Using the values given by Sherman¹ for the lattice energies of NH₄F, NH₄Cl, NH₄Br, and NH₄I, and our values for the other thermal quantities needed, we have computed, for NH₄⁺ (g),  $Q_f = 0.0, -17.3, -21.2$  and -42.2,respectively. We have selected -20 as the mean of these very discordant results.
- NH₄Br (aq.). The heat of formation of aqueous ammonium bromide is computed from the values for NH₄+ (ag.) and Br- (ag.).
- NH₄Br (c, II). The data on the heat of solution yield the following values: Thomsen, ¹⁵ -4.45₂₀₀; Andre, ¹ -4.87⁵.

  NH₄Br (c, I). Bridgman⁷ determined the heat of transition.
- $NH_4I$  (c, II). Bridgman reported  $T = -0.701 \rightarrow I^{-18}$ . See also Simon, Simson, and Ruhemann.¹
- NH₄I₃ (c). Foote and Bradley¹ studied the equilibrium, NH₄I₃ (c)  $= NH_4I (c) + I_2 (g).$ 
  - NH₄ClO₄ (aq.). Berthelot⁷⁹ measured the heat of neutralization.
  - NH₄ClO₄ (c). Berthelot⁷⁹ measured the heat of solution.
- (NH₄)₂S (aq.). Thomsen¹⁵ measured the heat of solution of gaseous H₂S in aqueous ammonia to form aqueous (NH₄)₂S to be 11.10; and Berthelot14 measured the heat of neutralization of aqueous H2S with aqueous ammonia to form aqueous (NH₄)₂S to be 6.2¹⁵. These data yield for  $(NH_4)_2S$  (aq.), Qf = 55.0 and 54.7, respectively.
- $NH_4HS$  (aq.). Thomsen¹⁵ found Q=0.15 for the heat of mixing aqueous NH3 with aqueous NH4HS.
- NH4HS (c). Berthelot14 measured the heat of solution. Vapor pressure data for solid ammonium bisulfide were given by Salet,1 Isambert, 1, 7, 9 Briner, 1 Magnusson, 1 and Walker and Lumsden. 1 Randall and White² reviewed these data and gave for the reaction, NH₄HS (c)  $= NH_3$  (g)  $+H_2S$  (g), Q = -22.24, whence, for  $NH_4HS$  (c), Qf = 38.5.
- NS (c). Berthelot and Vielle³ determined the heat of decomposition to be -31.9.
- NSe (c). Berthelot and Vielle³ determined the heat of decomposition to be -42.3.
- $(NH_4)_2S_n$  (aq.). Sabatier¹ measured the heats of reaction with aqueous iodine of (NH₄)₂S₄ (aq.), (NH₄)₂S₅ (aq.), and (NH₄)₂S₈ (aq.), respectively.
- $(NH_4)_2S_n$  (c). Sabatier¹ measured the heats of solution of  $(NH_4)_2S_4$  (c),  $(NH_4)_2S_5$  (c), and  $(NH_4)_2S_8$  (c).

 $(NH_4)_2SO_3$  (aq.). de Forcrand^{5, 15} measured the heat of neutralization of  $SO_2$  (aq.) with  $2 NH_3$  (aq.), and the heat of mixing  $NH_3$  (aq.) with  $NH_4HSO_3$  (aq.). His data yield, for  $(NH_4)_2SO_3$  (aq.), Qf=210.8 and 210.4, respectively.

(NH₄)₂SO₃ (c). de Forcrand^{5, 15} measured the heat of solution.

 $(NH_4)_2SO_3 \cdot H_2O$  (c). For the heat of solution, de Forcrand^{5, 15} found  $-5.4^8$  and Hartog¹ -4.3. de Forcrand's sample was not pure.

 $NH_4HSO_3$  (aq.). de Forcrand^{5, 15} measured the heat of mixing  $SO_2$  (aq.) with  $NH_3$  (aq.), finding  $N=14.78^9$ , whence, for  $NH_4HSO_3$  (aq.), Qf=180.85.

NH₄HSO₃ (c). de Forcrand^{5, 15} measured the heat of solution.

 $(NH_4)_2S_2O_5$  (aq.). The value for this substance is taken equal to that for  $2NH_4HSO_3$  (aq.) minus that for  $H_2O$  (liq.).

(NH₄)₂SO₄ (aq.). The existing data yield the following values for the heat of neutralization of aqueous ammonia with aqueous sulfuric acid: Thomsen,¹⁵ 28.96₄₀₀; Berthelot,⁴ 29.0₄₀₀²⁰; Favre,⁸ 29.8; Bouzat,¹ 29.05₄₀₀⁴²; Hess,^{1, 2, 3, 4}—; Andrews,^{1, 2, 10} 29.4; Favre and Silbermann,³ 29.4. See also Roth.⁵ The heat of dilution of aqueous ammonium sulfate was measured by Thomsen.¹⁵ See also Roth.⁵

 $(NH_4)_2SO_4$  (c). The existing data on the heat of solution yield the following values: Thomsen, ¹⁵  $-2.38_{400}$ ; Favre, ⁸ -2.0; Berthelot, ⁴ -2.6; Van Deventer and van der Stadt, ¹  $-2.32_{200}$ ; Roth, ⁵  $-2.03_{200}$ . See also Favre and Silbermann. ³

 $NH_4HSO_4$  (aq.). Thomsen¹⁵ and Berthelot⁴ obtained the same value, -1.41, for the heat of the reaction,  $H_2SO_4$  (200) +  $(NH_4)_2SO_4$  (200) =  $2NH_4HSO_4$  (200).

NH₄HSO₄ (c). Thomsen¹⁵ measured the heat of solution.

 $(NH_4)_2S_2O_8$  (aq.). The value for this substance is obtained from those for the ions.

(NH₄)₂S₂O₈ (c). Berthelot¹⁰⁷ measured the heat of solution.

 $NH_4HSe$  (aq.). Fabre found, for  $NH_3$  (aq.)  $+H_2Se$  (aq.), N=6.2. ( $NH_4$ )₂Se (aq.). The value for this substance is obtained from those for the ions.

**NO** (g). Berthelot^{29, 58} measured the heats of the reactions,  $\frac{1}{2}$  C₂N₂ (g) +O₂ (g) =CO₂ (g) + $\frac{1}{2}$  N₂ (g) and  $\frac{1}{2}$  C₂N₂ (g) +2 NO (g) =CO₂ (g) + $\frac{3}{2}$  N₂ (g). The difference gives the heat of the reaction, O₂ (g) +N₂ (g) =2 NO (g), and Berthelot's data yield, for NO (g), Qf=-21.85. Berthelot's data on similar experiments with ethylene instead of cyanogen yield, for NO (g), Qf=-21.6. See also Favre and Silbermann² and Dulong.² The high temperature equilibrium data on the reaction between N₂ and O₂ to form NO, obtained by Nernst,^{2, 3} Finckh,¹ Jellinek,¹ Grau and Russ,¹ Haber and Koenig,^{1, 2} and Nuranen,¹ were reviewed by Lewis and Randall⁵ and Randall and White,¹ and shown to be consistent with the heat of formation value deduced from Berthelot's data.

**NO** (liq.). By direct calorimetric measurement, Johnston and Giauque¹ found  $V = -3.293^{-151.7}$ . Similar data were obtained earlier by

Eucken and Karwat.¹ The vapor pressure data of Goldschmidt,² Henglein and Kruger,¹ and Johnston and Giauque¹ are in accord with the latter's direct calorimetric value.

**NO** (c). Johnston and Giauque¹ found  $F = -0.550^{-163.6}$ , which value is in accord with the values of the heat of sublimation obtained from the vapor pressure data of Johnston and Giauque,¹ Mundel,¹ Henglein and Kruger,¹ and Goldschmidt.²

The values of the energy states of the NO molecule are from Mulliken.⁶ See also Jevons.¹

- $N_2O$  (g). The heat of combustion of  $N_2O$  with  $H_2$ , or with CO, was measured by Favre, Berthelot, R Thomsen, Sutton, Awbery and Griffiths, and Fenning and Cotton. Sutton measured in a bomb calorimeter the heat of reaction of  $N_2O$  with  $H_2$ , and his data yield, for  $N_2O$  (g),  $Qf=20.4\pm0.3$ . Awbery and Griffiths, with a constant pressure flame calorimeter, and Fenning and Cotton, with a bomb calorimeter, measured the heats of the reactions,  $CO(g)+\frac{1}{2}O_2(g)=CO_2(g)$  and  $N_2O(g)+CO(g)=CO_2(g)+N_2(g)$ , the difference of which gives the heat of formation of nitrous oxide. Their data yield, for  $N_2O(g)$ ,  $Qf=-19.52\pm0.22$  and  $-19.74\pm0.07$ , respectively.
- N₂O (liq.), N₂O(c). The heats of vaporization and fusion are evaluated from the data of Eucken and Donath,¹ Cailletet and Mathias,¹ Young,² Burrell and Robertson,³ Bergstrom,², ³ Regnault,⁷ Cardoso and Arni,¹ Grunmach,¹ Villard,¹, ³, ⁹ Kuenen,¹ Ramsay and Shield,¹ Pictet,¹ Hunter,¹ Dewar,² Faraday,¹, ³ Britton,¹ Cailletet and Colardeau,¹ Marshall and Ramsay,¹ Mathias,¹, ² and Mills.¹
- $N_2O$  (aq.). Villard^{1, 2, 3, 4, 9, 10} measured the heat of solution of the gas in water at  $0^{\circ}$ .
- $N_2O\cdot6$   $H_2O$  (c). The equilibrium data of Tamman and Krige¹ and Villard^{1, 2, 3, 4, 9, 10} yield for the heat of decomposition of this hydrate (concerning whose composition there is some question) -15.0 per mole of gas. Villard's data yield 8.4 for the heat of formation of  $N_2O\cdot6$   $H_2O$  (c) from aqueous  $N_2O$  and liquid  $H_2O$ .
- $NO_2$  (g). Randall and White¹ reviewed the equilibrium data of Bodenstein,⁵ Colson,³ Schreber,¹ Russ,¹ Scheffer and Treub,¹ and Bodenstein and Katayama¹ on the reaction, NO (g)  $+\frac{1}{2}O_2$  (g)  $=NO_2$  (g), and concluded that Q=13.57; whence, for  $NO_2$  (g), Qf=-8.03.
- $N_2O_4$  (g). Randall and White¹ reviewed the equilibrium data (obtained from vapor densities) of Mittasch, Kuss, and Schlueter,¹ Scheffer and Treub,² Wourtzel,¹ Schreber,¹ Bodenstein,⁵ Richardson,² and Deville and Troost³ on the reaction,  $2\ NO_2\ (g) = N_2O_4\ (g)$ , and concluded that Q=13.00. Bodenstein⁵ gave 13.88; Wourtzell,¹ 13.43. Using the value 13.00 we have computed, for  $N_2O_4\ (g)$ , Qf=-3.06. The data of Thomsen¹⁵ and Berthelot,²² who each measured the heat of the reaction,  $2\ NO\ (g) + O_2\ (g) = N_2O_4\ (g)$ , yield, for  $N_2O_4\ (g)$ , Qf=-4.06 and -4.40, respectively.
  - N₂O₄ (liq.). Berthelot and Ogier⁵ measured the heat of condensation

of gaseous  $N_2O_4$  to be 8.6 at 25°. The vapor pressure data of Mittasch, Kuss, and Schlueter, Scheffer and Treub, Guye and Drouginine, and Russ yield -9.2 for the heat of vaporization of liquid  $N_2O_4$  at 18°.

 $N_2O_4$  (c). By direct measurement, Ramsay² found  $F = -2.96^{-10}$ , while data on the freezing point lowering yield -3.10. These values are in accord with the heat of sublimation calculated by Russ.¹ See also Egerton.¹

 $N_2O_3$  (g). This unstable gas exists in equilibrium mixtures with NO and  $N_2O_4$ . The equilibrium data of Abel and Proisl¹ on the reactions,  $2 \text{ NO } (g) + N_2O_4 (g) = 2 N_2O_3 (g)$  and  $NO (g) + NO_2 (g) = N_2O_3 (g)$ , yield Q=5.6 and 9.6, respectively; whence, for  $N_2O_3$  (g), Qf=-20.3 and -20.0.

 $N_2O_3$  (liq.). The vapor pressure data of Guye and Drouginine¹ yield  $V=-9.40^{20}$ , which indicates partial dissociation of the vapor.

**HNO**₂ (aq.). Thomsen^{13,  $\hat{1}_5$} measured the heat of solution in water of gaseous N₂O₄ and the heat of reaction of aqueous N₂O₄ with gaseous Cl₂. If aqueous N₂O₄ is equivalent to an aqueous mixture of nitrous and nitric acids, then one may write N₂O₄ (g) +H₂O (liq.) = (HNO₂+HNO₃) (aq.), and (HNO₂ + HNO₃) (aq.) + H₂O (liq.) + Cl₂ (g) = (2 HNO₃ +2 HCl) (aq.). Neglecting the heats of mixing, and subtracting the second equation from the first, one obtains N₂O₄ (g) +2 HCl (aq.) = 2 HNO₂ (aq.) +Cl₂ (g). Thomsen's data on these two reactions yield, for HNO₂(aq.), Qf=31.4. Klemenc and Hayek^{1, 2} obtained data on the equilibrium 3 HNO₂ (aq.) = HNO₃ (aq.) +2 NO (g) +H₂O (liq.), and computed Q=-10.72. Combination of this value with Thomsen's data on the reaction of gaseous Cl₂ with aqueous N₂O₄ (see above) yields, for HNO₂ (aq.) Qf=28.45.

Berthelot²⁸ measured the heat of the reaction between gaseous nitric oxide, oxygen, and aqueous barium hydroxide, and assumed that only nitrite was formed:  $2 \text{ NO } (g) + \frac{1}{2} O_2(g) + \text{Ba } (OH)_2(aq.) = \text{Ba}(NO_2)_2$ (aq.) +H₂O (liq.). Berthelot²⁸ also measured the heat of the reaction  $Ba(NO_2)_2$  (aq.) +  $H_2SO_4$  (aq.) = 2  $HNO_2$  (aq.) +  $BaSO_4$  (c). tion of these equations with our value for the heat of neutralization of aqueous Ba  $(OH)_2$  with aqueous sulfuric acid gives  $2 \text{ NO } (g) + \frac{1}{2} O_2 (g)$  $+H_2O$  (liq.) = 2 HNO₂ (aq.). And from these data, we have computed, for HNO₂ (aq.), Qf=30.0. Berthelot's²⁸ data on the reaction between gaseous chlorine and aqueous barium nitrite yield, for HNO2 (aq.), Qf=28.3. Berthelot²⁸ measured the heat of mixing solid BaO₂ with aqueous hydrochloric acid, and the heat of mixing the resultant solution with aqueous barium nitrite. These data yield, for HNO₂ (aq.) Qf = 27.8. Berthelot's data on the reaction between aqueous potassium permanganate and an aqueous nitrite solution yield, for HNO₂ (aq.),  $\hat{Q}f = 28.4$ . These three foregoing values for aqueous nitrous acid depend upon the accuracy of Thomsen's value for the reaction between gaseous chlorine and aqueous N₂O₄ (see above).

Both Berthelot²³ and Thomsen^{13, 15} measured the heat of the reaction

of decomposing ammonium nitrite, but because the former employed only a small amount of ammonium nitrite and used less refined apparatus, we have used only Thomsen's data. Thomsen apparently measured the heat of the reaction (NH₄NO₂+2.8 H₂O) (liq.) = N₂ (g) +2.8 H₂O (liq.). We have carefully reviewed his data on this reaction, and utilizing Thomsen's value for the heat of solution of solid ammonium nitrite in 2.8 H₂O, we have computed Q = 72.04 for the reaction NH₄NO₂ (c) = N₂ (g) +2 H₂O (liq.). With this we have combined the heat of solution of ammonium nitrite in 200 H₂O and the heat of ionization of HNO₂, and have obtained, for HNO₂ (aq.), Qf = 31.6, which is in marked disagreement with the values obtained above.

Swietoslawski⁶ measured the heats of the reactions,  $((NH_2)_2CO + 2 HCl)$  (aq.) +  $2 NaNO_2$  (aq.) =  $CO_2$  (g) +  $N_2$  (g) +  $3 H_2O$  (liq.) + 2 NaCl (aq.) and  $(NH_2)_2CO$  (aq.) + 2 HCl (aq.) =  $((NH_2)_2CO + 2 HCl)$  (aq.), finding, respectively, Q = 172.6 and 0.37. Combining with these data, the heat of combustion and of solution of urea and the heat of mixing aqueous sodium nitrite with aqueous hydrochloric acid, we have computed, for  $HNO_2$  (aq.), Qf = 28.9. Swietoslawski⁶ also measured the heat of the reaction  $(CH_3)_2NC_6H_5$  (liq.) +  $HNO_2$  (aq.) =  $H_2O$  (liq.) +  $NOC_6H_4N$  ( $CH_3$ )₂ (liq.). Utilizing Swietoslawski's own values for the heats of combustion of these two organic liquids, we have computed, for  $HNO_2$  (aq.), Qf = 28.4. This value can not be given great weight as it is a small difference between large numbers, but nevertheless it is negatifying agreement with the previous values.

As the best value for the heat of formation of aqueous nitrous acid we have selected the value 28.5, which is consistent with the above available data and with the value for aqueous nitric acid.

 $NO_2^-$  (aq.). The data of Klemenc and Hayek¹ on the conductivity of aqueous  $HNO_2$  yield, for  $H^+$  (aq.)  $+NO_2^-$  (aq.)  $=HNO_2$  (aq.),  $Q^6=4.48$ , or Q=4.0 at  $18^\circ$ ; whence for  $NO_2^-$  (aq.), Qf=24.5. Swietoslawski⁶ found, for  $NaNO_2$  (aq.) +HCl (aq.)  $=(HNO_2+NaCl)$  (aq.), Q=3.45; whence for  $NO_2^-$  (aq.), Qf=25.0. From the value for  $NH_4NO_2$  (aq.), we have deduced, for  $NO_2^-$  (aq.), Qf=25.4.

HNO₃ (aq.). Thomsen¹⁵ measured the heats of the reactions  $N_2O_4$  (g) =  $N_2O_4$  (aq.) and 5  $N_2O_4$  (aq.) +2 KMnO₄ (aq.) +2 H₂O (liq.) =  $(2 \text{ Mn} (\text{NO}_3)_2 + 2 \text{ KNO}_3 + 4 \text{ HNO}_3)$  (aq.). Neglecting the heats of mixing, his data yield, for HNO₃ (aq.), Qf = 48.9. Thomsen¹⁵ also measured the heat of reaction between aqueous  $N_2O_4$  and gaseous chlorine, and his data yield, for HNO₃ (200), Qf = 49.41. Berthelot²⁸ measured the heat of reaction between liquid  $N_2O_4$ , gaseous chlorine, and water, and his data yield, for HNO₃ (aq.), Qf = 47.9. Latimer and Ahlberg¹ calculated the entropy of aqueous (M⁺+NO₃⁻), in a hypothetical 1 molal solution, from data on the entropy of the solid MNO₃ (calculated from data on the heat capacity down to about  $-261^\circ$ ) and its heat and free energy of solution. Combination of the value of the entropy of aqueous (M⁺+NO₃⁻) with similar values for aqueous (M⁺+Cl⁻) and aqueous (H⁺+Cl⁻) gave the

entropy of aqueous ( $\rm H^+ + NO_3^-$ ). They combined this value with the entropies of hydrogen, nitrogen, and oxygen in their standard states, and computed the entropy of formation of aqueous ( $\rm H^+ + NO_3^-$ ). Combination of this last value with the value for the free energy of formation given by Lewis and Randall⁵ yields, for  $\rm HNO_3$  (aq.),  $\rm Qf = 48.7$ . As the best value for the heat of formation of  $\rm HNO_3$  (200), we have selected the value 49.1, which seems to be most consistent with the above data and with the reactions involving nitrous acid.

Data on the heat of dilution of aqueous nitric acid were obtained by Thomsen, ¹⁵ Berthelot, ¹⁷ Richards and Rowe, ² Naudè, ² Wrewskii and Faerman, ¹ Berthelot, ⁹ and Petersen. ⁶ Bose ² reviewed these data. Recently Rossini ³ utilized the accurate measurements of Richards and Rowe ² to obtain values from 25 to  $\infty$  H₂O. We have utilized Thomsen's ¹⁵ values in the range 0 to 25 H₂O.

HNO₃ (liq.). For the heat of solution of liquid HNO₃ in water Thomsen¹⁵ found 7.44₈₀₀ and Berthelot¹⁷ 7.14.

**HNO**₃ (c). Berthelot¹⁷ found the heat of fusion to be -0.60 at  $-47^{\circ}$ .

 $\mathbf{HNO_3}$  (g). Berthelot¹⁷ gave -7.2 for the heat of vaporization of the liquid, obtained from data on the heats of solution of the gas and the liquid in water.

HNO₃ (C₂H₅OC₂H₅). Hantzsch¹ measured the heat of solution in ether.

 $NH_4NO_2$  (aq.). For the heat of neutralization of aqueous ammonia with aqueous nitrous acid, Berthelot²⁸ gave the value 9.1 at 12.5°, which he deduced from the heat of the reaction between aqueous ammonium sulfate and aqueous barium nitrite, for which no value was given. The foregoing value yields, for  $NH_4NO_2$  (aq.), Qf=56.9.

 $NH_4NO_2$  (c). Berthelot²⁸ measured the heat of solution to be  $-4.75_{430}^{12.5}$ , from which we have estimated  $-4.66_{200}$  at 18°.

 $H_2N_2O_2$  (aq.). Berthelot¹⁰⁵ measured the heat of solution of  $CaN_2O_2\cdot 4H_2O$  (c) in bromine water and hydrochloric acid, respectively, and the difference of these two reactions leads to the reaction  $H_2N_2O_2$  (aq.)  $+4H_2O$  (liq.)  $+4Br_2$ (liq.) =  $(2HNO_3+8HBr)$  (aq.), with Q=45.6. Similar experiments with the strontium salt gave Q=46.4. From the average of these values, we have computed, for  $H_2N_2O_2$  (aq.), Qf=8.4.

 $N_2O_2^{--}$  (aq.). Berthelot¹⁰⁵ reported the heat of neutralization of the weak hyponitrous acid to be 15.6; whence we have computed, for  $N_2O_2^{--}$  (aq.), Qf = -3.5.

 $N_2O_5$  (c). Berthelot⁹ found S=16.7.

N₂O₅ (liq.). Berthelot⁹ reported S=25.0, but his sample must have contained water as liquid nitrogen pentoxide is not stable under his conditions. Berl and Saenger¹ measured the heat of solution of fuming nitric acid.

 $N_2O_5$  (g). Berthelot⁹ reported the heat of sublimation of solid nitrogen pentoxide to be -13.2. The vapor pressure data of Daniels and Bright¹ yield -13.8.

 $NO_3$  (g). Schumacker and Sprenger¹ deduced, for  $NO_3$  (g), Qf = -13, from activation energies of the monomolecular dissociation of gaseous  $N_2O_5$ , which is supposed to give gaseous  $NO_3$ .

 $NH_4NO_3$  (aq.). The heat of neutralization of aqueous ammonia with aqueous nitric acid was measured by Hess, Andrews, 1, 2, 11 Favre and Silbermann, Favre, Bouzat, Berthelot, and Thomsen. Thomsen's data are the most reliable, and yield  $N=12.40_{200}$ . Data on the heat of dilution of aqueous ammonium nitrate were obtained by Pratt, Jirsa and Diamant, Thomsen, Tollinger, Dunnington and Hoggard, Mondain-Monval, Lerner-Steinberg, Rümelin, Winkelmann, and Fricke and Havestadt. We have extrapolated the data to infinite dilution.

 $\mathrm{NH_4NO_3}$  (c, IV). The existing data on the heat of solution of ammonium nitrate in water are: Thomsen,  $^{15}-6.32_{200}$ ; van Deventer and van der Stadt,  $^1-6.3$ ; Favre and Silbermann,  $^3-5.3$ ; Berthelot,  $^{131}-4.75_{400}$  See also Graham and Mondain-Monval. Cohen and Heldermann reported values for concentrated solutions at  $32.5^{\circ}$ .

 $NH_4NO_3$  (c, V). Bridgman^{6a} reported  $T = -0.13_{\rightarrow IV}^{-18}$ .

NH₄NO₃ (c, III). For the heat of transition of this crystalline form to NH₄NO₃ (c, IV), at 32.2°, Bridgman^{6a} gave 0.372; Cohen and Heldermann, 0.399; Bellati and Romanese, 4 0.403; Mondain-Monval, 2 0.40.

NH₄NO₃ (c, II). For the heat of transition of NH₄NO₃ (c, II) to NH₄NO₃ (c, III), Bridgman^{6a} gave 0.32⁸³; Steiner and Johnston, 0.31⁸⁴.

NH₄NO₃ (c, I). For the transition of this form to NH₄NO₃ (c, II), Bridgman^{6a} gave 1.02¹²⁵; Steiner and Johnston, 0.98¹²⁹. See also Atlas Powder Co.¹

**NOCl** (g). Briner and Pylkoff¹ (see also Briner²) measured the heat of the reaction, NOCl (g) +2 KOH (aq.) = (KCl+KNO₂) (aq.) + $H_2O$  (liq.), finding Q=32.0. The later and apparently more accurate measurements of Trautz and Wackenheim¹ on the similar reaction with aqueous sodium hydroxide yield Q=37.1. These data yield respectively, for NOCl (g), Qf=-7.7 and -13.0. Lewis and Randall⁵ reviewed the data of Sudborough and Miller,¹ Trautz,³ Vago,¹ Trautz and Hinck,¹,² and Trautz and Wackenheim¹ on the equilibrium, NO (g)  $+\frac{1}{2}$  Cl₂ (g) = NOCl (g), and deduced for this reaction Q=9.1; whence, for NOCl (g), Qf=-12.5. The recent equilibrium data of Dixon¹ on the same reaction yield Q=9.3, whence, for NOCl (g), Qf=-12.3. Trautz and Wackenheim¹ estimated for this reaction Q=8.7, whence, for NOCl (g), Qf=-12.9. See also Trautz and Schleiter.¹

**NOC1** (liq.). The vapor pressure data of Trautz and Gerwig¹ and Briner and Pylkoff¹ yield for the heat of vaporization -6.1 at about  $-15^{\circ}$ .

**NOBr** (liq.). The data of Trautz and Dalal¹ on the heat of solution of liquid NOBr in aqueous KOH yield, for NOBr (liq.), Qf = -11.6.

**NOBr** (g). We have estimated the heat of vaporization of the liquid to be -6.1, whence, for NOBr (g), Qf = -17.7. The data of Trautz and Dalal¹ on the equilibrium, NOBr (g) = NO (g)  $+\frac{1}{2}$  Br₂ (g), are not very

consistent, but from them we have estimated for this reaction Q=8 to 9; whence, for NOBr (g), Qf=-16.4 to -17.4.

 $NOBr_3$  (liq.). The data of Trautz and Dalal¹ on the heat of solution of liquid  $NOBr_3$  in aqueous KOH yield, for  $NOBr_3$  (liq.), Qf = 1.7.

NOBr₃ (g). We have estimated the heat of vaporization of the liquid. NH₂OH·HNO₃ (c). Berthelot and Andre² measured the heat of combustion of this substance in a bomb calorimeter, using naphthalene as an auxiliary combustible material. Correcting the heat of combustion of naphthalene to the modern value, we have computed for NH₂OH·HNO₃ (c), Qf=85.8. Berthelot and Andre² measured the heat of solution of solid NH₂OH·HNO₃ in water to be -5.93₅₀₀. Using the value 81 (see following) for NH₂OH·HNO₃ (aq.), this gives for the solid, Qf=86.9.

NH₂OH · HNO₃ (aq.). Thomsen¹⁵ measured the heat of the reaction, (NH₂OH · HNO₃ + 6 AgNO₃) (aq.) + 10 NH₃ (aq.) = N₂ (g) + N₂O (g) +3 H₂O (liq.) +6 Ag (c) +10 NH₄NO₃ (aq.). Correcting Thomsen's data for the dissolved N₂ and N₂O, one finds Q = 330.43, whence, for NH₂OH · HNO₃ (aq.), Qf = 82.2.

 $NH_2OH \cdot HCl$  (c). Swietoslawski⁴ measured the heat of reaction,  $NH_2OH \cdot HCl$  (c)  $+ NaNO_2$  (aq.)  $= 2H_2O$  (liq.)  $+ N_2O$  (g) + NaCl (aq.), to be 65.8, whence, for  $NH_2OH \cdot HCl$  (c), Qf = 74.2.

 $NH_2OH \cdot HCl$  (aq.). Berthelot and Matignon⁴ measured the heat of solution of the solid to be  $-3.31_{450}^{24}$ . Thomsen¹⁵ found  $-3.65_{200}$ . Combination with the preceding value gives, for  $NH_2OH \cdot HCl$  (aq.), Qf = 70.9 and 70.5, respectively.

 $NH_2OH \cdot H^+$  (aq.). From the values for aqueous  $NH_2OH \cdot HNO_3$  and  $NH_2OH \cdot HCl$ , one finds, for  $NH_2OH \cdot H^+$  (aq.), Qf = 32.3 and 31.2.

NH₂OH (aq.). Berthelot's⁴¹ data on the reaction between NH₂OH and KOH for which he gives few details, yield, for NH₂OH (aq.), Qf = 17.7. For the heat of neutralization of NH₂OH (aq.) with HCl (aq.), Thomsen¹⁵ gave 9.26₂₀₀; Ellingson, 9.48₁₀₀, 9.29₄₀₀; Berthelot, 9.2²⁴. Using Thomsen's values, we have computed, for NH₂OH (aq.), Qf = 21.7.

 $NH_2OH$  (c). Berthelot and Matignon⁴ found S=-3.8.

 $({
m NH_2OH})_2 \cdot {
m H_2SO_4}$  (aq.). Berthelot⁴¹ measured the heat of mixing  $2{
m NH_2OH}$  (aq.) with  ${
m H_2SO_4}$  (aq.) to be 21.6 at 13°. Thomsen¹⁵ found for the reaction,  ${
m Ba}({
m OH})_2(400) + ({
m NH_2OH})_2 \cdot {
m H_2SO_4}(600) = {
m BaSO_4}$  (c)  $+2{
m H_2O}$  (liq.)  $+2{
m NH_2OH}$  (500), Q=15.32. From these data we have computed, for  $({
m NH_2OH})_2 \cdot {
m H_2SO_4}$  (aq.), Qf=276.5 and 276.7, respectively.

 $NH_2OH \cdot H_2SO_4$  (aq.). Ellingson¹ found for the reaction,  $NH_2OH$  (aq.)  $+H_2SO_4$  (aq.)  $=NH_2OH \cdot H_2SO_4$  (aq.),  $Q=11.45_{100}$  and  $11.07_{400}$ . From these data we have computed, for  $NH_2OH \cdot H_2SO_4$  (aq.), Qf=244.3.

 $(NH_2OH)_2 \cdot H_2SO_4$  (c). Berthelot⁴¹ found  $S = -5.80_{900}^{-13}$ .

 $NH_2OH \cdot H_2SO_4$  (c). Thomsen¹⁵ found S = -0.96.

 $N_2H_4 \cdot H_2SO_4$  (c). Berthelot and Matignon³ measured the heat of combustion of hydrazine sulfate with camphor as the auxiliary combustible

substance. Correcting, as does Berthelot, for the new values for the heat of combustion of camphor, we have computed, for  $N_2H_4 \cdot H_2SO_4$  (c), Qf = 228.4.

 $N_2H_4 \cdot H_2SO_4$  (aq.). Berthelot¹⁰⁸ found for the heat of solution of the solid in water,  $-8.7_{2000}^{11}$ ; Bach¹ found  $-8.52_{1200}^{19}$ .

 $N_2H_4$  (aq.). For the heat of mixing  $N_2H_4$  (aq.) with  $H_2SO_4$  (aq.),  $Bach^1$  found 11.29. For the reaction between  $Ba(OH)_2$  (aq.) and  $N_2H_4\cdot H_2SO_4$  (aq.),  $Berthelot^{108}$  found Q=25.7. For the similar reaction with  $BaCl_2$  (aq.), Bach found Q=7.48. These data yield, for  $N_2H_4$  (aq.), Qf=-3.25. Jirsa¹ measured the heat of oxidation of hydrazine with silver oxide,  $N_2H_4$  (aq.)  $+2Ag_2O$  (c) =4Ag (c)  $+N_2$  (g)  $+2H_2O$  (liq.), finding Q=118.5. Hence, for  $N_2H_4$  (aq.), Qf=-4.5. Bach¹ measured the heat of the reaction,  $3N_2H_4\cdot HCl$  (aq.)  $+2K_2Cr_2O_7$  (aq.) +13HCl (aq.)  $=3N_2$  (g)  $+14H_2O$  (liq.)  $+(4KCl+4CrCl_3)$  (aq.), to be 465.2. Combining with this reaction Bach's¹ value for the reaction,  $N_2H_4$  (aq.) +HCl (aq.)  $=N_2H_4\cdot HCl$  (aq.), Q=9.60, yields, for  $N_2H_4$  (aq.), Qf=-5.8. Bach¹ also claimed to have measured the heat of the extraordinary reaction,  $6N_2H_4\cdot HNO_3$  (aq.)  $+6HNO_3$  (aq.)  $+21AgNO_3$  (aq.)  $+32NH_3$  (aq.) =21Ag (c)  $+\frac{5}{2}$   $N_2$ (g)  $+33NH_4NO_3$ (aq.), to be 922.2. See also Thomsen.¹7

 $N_2H_4 \cdot HCl$  (aq.). Bach¹ measured the heat of mixing aqueous hydrazine with aqueous hydrochloric acid.

 $N_2H_4 \cdot HCl(c)$ . Bach¹ measured the heat of solution.

 $N_2H_4 \cdot 2HCl$  (aq.). Bach¹ measured the heat of mixing  $N_2H_4$  (aq.) with 2HCl (aq.).

 $N_2H_4 \cdot 2HCl$  (c). Bach¹ measured the heat of solution.

 $N_2H_4 \cdot H_2O$  (c). Bach¹ measured the heat of solution.

 $N_2H_4 \cdot HNO_3$  (aq.). Bach¹ measured the heat of mixing  $N_2H_4$  (aq.) with  $HNO_3$  (aq.).

 $N_2H_4 \cdot 2HNO_3$  (aq.). Bach¹ measured the heat of mixing  $N_2H_4$  (aq.) with  $2HNO_3$  (aq.)

 $NH_3HN_3$  (c). Berthelot and Matignon³ measured the heat of combustion of ammonium azide,  $NH_3HN_3$  (c)  $+O_2$  (g)  $=N_2$  (g)  $+2H_2O$  (liq.). Berthelot¹⁰⁷ corrected the original data on this reaction, obtaining Q=157.0; whence, for  $NH_3HN_3$  (c), Qf=-20.2.

 $NH_3HN_3$  (aq.). For the heat of solution of solid ammonium azide, Berthelot and Matignon³ found  $-7.08_{700}^{12}$  and Bach¹  $-6.73_{600}^{17}$ .

 $HN_3$  (aq.). Bach¹ found for the reaction,  $NH_3HN_3$  (aq.) +HCl (aq.) =  $(NH_4Cl+HN_3)$  (aq.), Q=3.97; whence, for  $HN_3$  (aq.), Qf=-54.6.

 $\mathbf{NH_4X} \cdot n\mathbf{NH_3}$  (c). The values for the heats of dissociation of the ammonium halides are computed from the dissociation pressure data of  $\mathbf{Troost^1}$  and  $\mathbf{Roozeboom.^7}$ 

NH₄NO₃·5NH₃ (liq.). The heat of dissociation of this substance is computed from the dissociation pressure data of Troost.²

NCl₃ (CCl₄). Deville and Hautefeuille¹ measured the heats of two

reactions involving nitrogen trichloride:  $NH_4Cl$  (c)  $+3Cl_2$  (aq.) = 4HCl (aq.) +  $NCl_3$  (liq.) and  $NH_4Cl$  (c) + 3HClO (aq.) = HCl (aq.) +  $3H_2O$  (liq.) +  $NCl_3$  (liq.). The observed heat values were 10.85 and 40.9, respectively, but there is considerable doubt about the second reaction. As written above, these data yield for  $NCl_3$  (liq.), Qf = -56.1 and -43.3. Thomsen⁵ corrected an error in the original calculations of Deville and Hautefeuille, but made another error at the same time. The recent accurate data of Noyes and Tuley¹ on the reaction,  $NCl_3(CCl_4) + 4HCl$  (g) =  $NH_4Cl$  (c) +  $3Cl_2$  (g), give Q = 41.8; whence, for  $NCl_3(CCl_4)$ , Qf = -55.0.

N₂O₃ (SO₃)₂ (c). Vaughan¹ measured the heat of solution of this substance in aqueous KOH.

 $HNO_3 \cdot nH_2SO_4 \cdot n'H_2O$  (liq.). McDavid¹ measured the heat of mixing aqueous nitric and sulfuric acids in various proportions.

## PHOSPHORUS

P (c, I, yellow). Standard state.

P(c, II, yellow). Bridgman² reported the heat of transition.

**P**(c, red). The exact thermodynamic status of the solid forms of phosphorus other than yellow has not yet been determined. The vapor pressure of red phosphorus was measured by Chapman¹ and Troost and Hautefeuille¹; and the latter calculated, from the difference in the temperature coefficients of the vapor pressures of the yellow and red forms, the heat of transition from yellow to red to be 4.2 at 700°. From the difference in the heats of combustion of the yellow and red forms of phosphorus, Giran¹ found T=3.7. A more direct measurement of the heat of transition is that from the data of Giran¹ on the heats of reaction of the two forms with bromine in carbon disulfide, Q=38.79 and 43.01 for the red and yellow forms, respectively. These data yield T=4.22. Giran¹ found that the so-called violet or black phosphorus had a heat of reaction of 38.56 with bromine in carbon disulfide. Apparently this form is thermochemically identical with the red form.

**P** (liq., yellow). The existing data on the heat of fusion of P (c, I, yellow) are: Person,  $^1-0.156^{44.2}$ ; Desaine,  $^2-0.16^{44}$ ; Peterson,  $^4-0.147^{44}$ ; Tammann,  $^3-0.152^{44.1}$ .

P₄ (g). Phosphorus molecules at saturation pressure below the boiling point are practically all tetratomic, according to the vapor density measurements of Deville and Troost,^{1, 2} Meyer and Biltz,¹ Chapman,¹ Preuner and Brockmoller,¹ Stock, Gibson, and Stamm,¹ Hittorf,¹ Truthe,¹ and Mitscherlich.¹ The vapor pressure data of Centnerszwer,¹ MacRae and Voorhis,¹ and Smits and Bokhorst² on solid phosphorus yield -15.1 for the heat of sublimation. Vapor pressure data on liquid phosphorus were reported by Jolibois,¹ Schrötter,¹ MacRae and Van Voorhis,¹ Marckwald and Helmholtz,¹ Preuner and Brockmoller,¹ and Smits and Bokhorst.¹ For the heat of vaporization of liquid phosphorus to give gaseous P₄ at 300°, Preuner and Brockmoller¹ gave - 12.5, Smits and Bok-

horst² gave -12.5, de Forerand³⁷ calculated -12.2, and we have computed -12.6.

- $P_2$  (g). From vapor density measurements, Preuner and Brock-moller¹ deduced, for the reaction,  $P_4$  (g) =  $2P_2$  (g),  $Q^{800} = -31.5$ . Assuming  $\Delta C_p = 3$ , we have computed Q = -30.0 at 18°.
- **P**(g). From vapor density data, Preuner and Brockmoller¹ deduced for the reaction,  $P_2$  (g) = 2P (g),  $Q^{1400} = -45.5$ . Taking  $\Delta C_p = 3$ , we have computed Q = -42.2 at  $18^{\circ}$ .

The ionization potentials of P (gas) are evaluated from the following: first step, Saltmarsh, McLennan and McLay, Kiess; second step, Bowen³; third step, Bowen and Millikan, Millikan and Bowen; fourth step, Bowen and Millikan; fifth step, Bowen and Millikan.

 $P_2$  (CS₂). Giran¹ measured the heat of solution of yellow phosphorus in carbon disulfide.

 $P_2O_5$  (c). Data on the heat of combustion of phosphorus were reported by Favre and Silbermann, Abria, Andrews, Abria, Grost and Hautefeuille, Berthelot, And Giran. The best of these data are undoubtedly those of Giran, who measured the heats of combustion in a bomb calorimeter, the energy equivalent of which was determined by burning naphthalene. The result given by Giran is not labeled either for constant volume or for constant pressure, but he uses the value in the latter sense, so we have assumed that he made the correction to constant pressure. Correction of his data to new atomic weights and for the new value for the heat of combustion of naphthalene yields, for the  $P_2O_5$  formed in his bomb, Q=366.4. Giran found the difference in the heats of solution of the above form and the crystalline form of  $P_2O_5$  to be -6.42, so that, for  $P_2O_5$  (c), we have computed Qf=360.0.

 $P_2O_5$  (amorp.). Giran¹ found the heat of solution of the amorphous form of  $P_2O_5$  to be 33.81, as compared with 40.79 for the crystalline form under the same conditions. This gives for the reaction,  $P_2O_5$  (c) =  $P_2O_5$  (amorphous), Q=6.98.

 $P_2O_5$  (gls.). Giran¹ found the heat of solution of the vitreous form of  $P_2O_5$  to be 29.09, as compared with 40.79 for the crystalline form under the same conditions. This gives, for  $P_2O_5$  (c) =  $P_2O_5$  (gls.), Q=11.70.

 $P_2O_5$  (g). The vapor pressure data of Hoeflake and Scheffer¹ (see also Hautefeuille and Perry¹ and Smits and Rutgers¹) yield, for the heat of sublimation, the following values for the various forms of solid  $P_2O_5$ : metastable crystals, -22.8; vitreous form, -20.4; stable crystalline form, -36.9. These data are in disagreement with our values for the various solid forms, and may be explained by assuming that equilibrium was not attained. The vapor density of phosphorus pentoxide is not known with any accuracy. The old data of Tilden and Barnett¹ and West¹ indicate association in the vapor.

HPO₃ (aq.). Giran¹ found that the solution of crystalline  $P_2O_5$  in water, with Q=40.79, resulted in the formation of aqueous metaphosphoric acid; whence, for HPO₃ (aq.), Qf=234.6.

HPO₃ (c). Giran¹ found the heat of solution in water to form aquemetaphosphoric acid to be 9.76.

 $m H_3PO_4$  (aq.). In the presence of strong acids, sulfuric acid in particular, aqueous metaphosphoric acid is transformed into aqueous orthophosphoric acid. Giran¹ measured the heat of solution of solid HPO3 in aqueous sulfuric acid to be 12.91. Hence, for the reaction, HPO3 (aq.)  $+H_2O$  (liq.)  $=H_3PO_4$  (aq.), Q=3.15, and for  $H_3PO_4$  (aq.), Qf=306.1. Thomsen¹⁵ measured the heat of the reaction of phosphorus with aqueous HIO3 to form a mixture of aqueous  $H_3PO_3$  and  $H_3PO_4$ , and the heat of the reaction of bromine water with aqueous  $H_3PO_3$ : HIO3 (aq.) +1.6 P (c, yellow) +2.4  $H_2O$  (liq.)  $=H_3PO_3$  (aq.) +0.6  $H_3PO_4$  (aq.) +HI (aq.),  $H_3PO_3$  (aq.)  $+Br_2$  (aq.)  $+H_2O$  (liq.)  $=H_3PO_4$  (aq.) +2HBr (aq.). We have computed Thomsen's data on these reactions, obtaining Q=205.2 and 64.9, respectively. The sum gives for the reaction, HIO3 (aq.) +1.6 P (c, yellow) +3.4  $H_2O$  (liq.)  $+Br_2$  (aq.) =1.6  $H_3PO_4$  (aq.) +2HBr (aq.) +HI (aq.), Q=270.1, whence, for  $H_3PO_4$  (aq.), Q=306.2. Data on the heat of dilution of aqueous  $H_3PO_4$  were reported by Thomsen.

 $H_3PO_4$  (liq.),  $H_3PO_4$  (c). Thomsen¹⁵ measured the heats of solution. Rideal¹ calculated the heat of fusion to be -2.87.

 $H_3PO_4 \cdot \frac{1}{2} H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

 $H_3PO_4 \cdot \frac{1}{2} H_2O$  (liq.). Thomsen¹⁵ measured the heat of solution.

 $H_3PO_3$  (aq.). Thomsen's¹⁵ data on the reaction between aqueous bromine and aqueous phosphorous acid, Q=64.9, yield, for  $H_3PO_3$  (aq.), Qf=229.0. Thomsen¹⁵ measured the heats of the following reactions:  $PCl_3$  (liq.)  $+Cl_2$  (g)  $=PCl_5$  (c),  $PCl_5$  (c)  $+4H_2O$  (liq.)  $=(H_3PO_4+5HCl)$  (aq.), and  $PCl_3$  (liq.)  $+3H_2O$  (liq.)  $=(H_3PO_3+3HCl)$  (aq.). Combining these equations and neglecting the heats of mixing gives  $H_3PO_3$  (aq.)  $+Cl_2$  (g)  $+H_2O$  (liq.)  $=H_3PO_4$  (aq.) +2HCl (aq.). These data yield, for  $H_3PO_3$  (aq.), Qf=228.8.

H₃PO₃ (liq.), H₃PO₃ (c). Thomsen¹⁵ measured the heat of solution of the solid and liquid in water.

**P₂O₃** (g). The vapor pressure data of Schenck, Mihr, and Balthien, when plotted as the logarithm of the pressure against the reciprocal of the absolute temperature, yield two straight lines of widely different slopes.

 $\rm H_3PO_2$  (aq.). Thomsen¹³ measured the heat of the reaction,  $\rm BaH_4P_2O_4 \cdot H_2O$  (c)  $+ 4\rm Br_2$  (aq.)  $+ 3\rm H_2O$  (liq.)  $= (2\rm H_3PO_4 + 6\rm HBr + BaBr_2)$  (aq.), to be 277.4. Taking the heat of solution of the salt, and assuming the heats of neutralization of  $\rm Ba(OH)_2(aq.)$  with HBr (aq.) and  $\rm H_3PO_2$  (aq.) to be 27.78 and 30.93, respectively, we have computed, for  $\rm H_3PO_2$  (aq.),  $\rm Qf = 141.2$ .

H₃PO₂ (c), H₃PO₂ (liq.). Thomsen¹⁵ measured the heats of solution of the solid and the liquid.

 $H_4P_2O_5$  (aq.). Amat¹ found the heat of hydration of pyrophosphorous acid,  $H_4P_2O_5$  (aq.) +  $H_2O$  (liq.) =  $2H_3PO_2$  (aq.), to be 4.9; whence, for  $H_4P_2O_5$  (aq.), Qf=384.3.

- $H_4P_2O_6$  (aq.). There are no data with which to compute the heat of formation of aqueous hypophosphoric acid.
  - H₄P₂O₆ (c). Joly² measured the heat of solution of the solid.
  - $H_4P_2O_6\cdot 2H_2O$  (c). Joly² measured the heat of solution of the solid.
- $H_4P_2O_6\cdot 2H_2O$  (liq.). Joly² measured the heat of solution of the liquid.
  - $H_4P_2O_7$  (liq.). Giran¹ measured the heat of solution of the liquid.  $H_4P_2O_7$  (c). Giran¹ measured the heat of solution of the solid.
- $\rm H_4P_2O_7$  (aq.). In a manner similar to that used for converting metaphosphoric into orthophosphoric acid, Giran¹ found for the reactions,  $\rm H_4P_2O_7$  (liq.) + $\rm H_2O$  (liq.) = 2 $\rm H_3PO_4$  (aq.) and  $\rm H_4P_2O_7$  (c) + $\rm H_2O$  (liq.) = 2 $\rm H_3PO_4$  (aq.), Q=14.47 and 12.35, respectively.
  - $H_4P_2O_7 \cdot 1_{\frac{1}{2}} H_2O$  (c). Giran¹ measured the heat of solution.
- $H_4P_2O_7\cdot 1\frac{1}{2}\;H_2O$  (liq.). Giran¹ measured the heat of solution of the liquid.
- PCl₃ (liq.). Thomsen¹⁵ and Berthelot and Louguinine² measured the heat of solution of liquid PCl₃ in water to be 65.1.
- $PCl_3$  (g). Antoine^{2, 3} and Andrews¹⁴ found the heat of vaporization of liquid  $PCl_3$  to be -6.9 and -7.1, respectively. Vapor pressure data were reported by Regnault.^{4, 7}.
- $PCl_5$  (c). Thomsen¹⁵ and Berthelot and Louguinine² measured the heat of solution of this substance in water. Their data give Q=123.4 for the reaction,  $PCl_5$  (c)  $+4H_2O$  (liq.) =  $(H_3PO_4+5HCl)$  (aq.), from which we have computed, for  $PCl_5$  (c), Qf=106.5. Thomsen's¹⁵ data for the reaction,  $PCl_3$  (liq.)  $+Cl_2$  (g) = $PCl_5$  (c), Q=29.69, yield, for  $PCl_5$  (c), Qf=106.6. See also Andrews.¹⁶
- $PCl_5$  (g). Smith and Lombard² reported the value -15.5 for the heat of sublimation of solid  $PCl_5$ , corrected for dissociation. The data of Smith and Calvert¹ show that gaseous  $PCl_5$  is partly dissociated. The equilibrium data of Mitscherlich,¹ Cahours,¹ Deville,^{1, 2, 3}, Naumann,^{1, 3} Horstmann,² Gibbs,² Wichelhaus,¹ Troost and Hautefeuille,^{9, 10, 11} Debray,¹ Wurtz,¹ Brill,³ Smith and Lombard,² and Holland¹ yield for the reaction,  $PCl_3$  (g)  $+Cl_2$  (g)  $+Cl_3$  (g),  $+Cl_3$  (g)  $+Cl_3$  (g),  $+Cl_3$  (g)  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_3$  (g),  $+Cl_$
- PBr₃ (CS₂). Giran¹ measured the heat of the reaction of liquid bromine with yellow phosphorus, each dissolved in carbon disulfide, to be 43.5.
- **PBr**₃ (liq.). Berthelot and Louguinine² measured the heats of solution of liquid PBr₃ in water and in aqueous KOH to be 64.0 and 130.5, respectively, from which we have computed, for PBr₃ (liq.), Qf = 45.7 and 48.8, respectively.
- POCl₃ (liq.). For the heat of solution in water, Thomsen¹⁵ found 72.19₁₀₀₀²⁰; Berthelot and Louguinine,² 74.6.
- $POCl_3$  (c). Oddo¹ computed the heat of fusion to be  $-3.2^{1.7}$ , from data on the freezing point lowering.
  - POCl₃ (g). Arii1 calculated the heat of vaporization of the liquid to

be  $-8.70^{25}$ , from vapor pressure data. Calculation by way of Trouton's rule yields  $-8.1^{100.7}$ .

PBr₅ (c). Ogier⁴ reported the heat of solution to be 14.7.

POBr₃ (c). Ogier⁴ reported the heat of solution to be 79.7.

PI2 (c). The data of Ogier4 and Berthelot and Louguinine2 yield, for this substance, Qf = 10.9.

PI₃ (CS₂). Ogier⁴ measured the heat of solution in carbon disulfide. PH₃ (g). The data of Ogier, who measured the heat of reaction between gaseous phosphine and saturated bromine water, yield, for  $PH_3$  (g), Qf = -3.6. Lemoult¹⁰ measured the heat of combustion of phosphine in oxygen to form  $H_3PO_4$ , and his data yield, Q=309.8, whence, for PH₃ (g), Qf = -6.3. The equilibrium data of Ipate'v and Frost¹ on the reaction,  $4PH_3$  (g) =  $P_4$  (g)  $+6H_2$  (g), yield Q = -22.66, whence, for  $PH_3$  (g), Qf = 2.34. We have been unable to interpret similar data obtained by Drummond.1

 $PH_3$  (liq.). The data of McIntosh and Steel¹ and Henning and  $Stock^1$  yield  $V=-3.9^{-80}$ .

P2H (c). Ogier found for the heat of reaction of solid P2H with saturated bromine water Q = 367.2; whence, for  $P_2H$  (c), Qf = 11.9.

 $PH_4I$  (c). Ogier¹ measured the heat of solution to be -4.77, whence, for PH₄I (c), Qf=20.4. The dissociation pressure data of Smith and Calvert  1  yield Q=12.2, and, assuming that the vapor is completely dissociated into PH3 (g) and HI (g), we have computed, for PH4I (c), Qf = 20.9.

 $PH_4Br(c)$ . Ogier¹ measured the heat of solution to be -3.03, whence, for PH₄Br (c), Qf=33.8. The dissociation pressure data of Johnson² yield Q=24.0, whence, assuming complete dissociation into PH₃ (g) and HBr (g), Qf=34.9. Vapor density measurements indicate that the vapor is not completely dissociated.

PH₄Cl (g). From vapor density data, Briner^{1, 3, 4} computed, for  $HCl(g) + PH_3(g) = PH_4Cl(g)$ , Q = 16.4. See also Tammann^{1,3} and

Scheffer.5

PH₄Cl (c). Briner^{1, 3, 4} computed the heat of sublimation to be

PH₃·6 H₂O (c). The dissociation pressure data of Cailletet and Bordet¹ and de Forcrand and Taboury¹ yield Q = -13.5 for the reaction,  $PH_3 \cdot 6 H_2O$  (c) =  $PH_3$  (g) +6  $H_2O$  (liq.), at 0°.

P₃N₅ (c). Stock and Wrede¹ measured the heat of combustion to be

1099.4.

(NH₄)_nH_{3-n}PO₄ (aq.). Berthelot and Louguinine³ measured the heats of mixing aqueous H₃PO₄ with 1, 2, and 3 moles of aqueous NH₃,

respectively.

 $(NH_4)_nH_{3-n}PO_4$  (c). There are no data on the heats of solution of any of the ammonium phosphates. Warren, from dissociation pressure data, computed for  $(NH_4)_3PO_4$  (c) =  $NH_3$  (g) +  $(NH_4)_2HPO_4$ , Q = -9.40, and for  $(NH_4)_2HPO_4$  (c) =  $NH_3$  (g) +  $NH_4H_2PO_4$  (c), Q = -19.05.

ARSENIC 223

# ARSENIC

- As (solid). There are at least three forms of solid arsenic: As  $(c, \alpha)$ , metallic, trigonal, of high density, stable; As  $(c, \gamma)$ , yellow, cubic, of low density, analogous to yellow phosphorous; As (amorphous  $\beta$ ), grey or mirrorlike. Another form, the brown, may be identical with the  $\beta$  form. As  $(c, \alpha)$  is taken as the standard state. Peterson⁵ measured the heats of reaction of the various forms of arsenic with chlorine and with bromine, and concluded that for the  $\gamma$  to  $\alpha$  transition, T=3.53, and for the  $\gamma$  to  $\beta$  transition, T=4.12. Berthelot and Engel¹ gave T=1.0 for the  $\alpha$  to  $\beta$  transition. Laschtschenko⁷ reported, for the transition from  $\alpha$  to  $\gamma$ ,  $T=-0.55^{740}$ , or about -1.5 at  $18^{\circ}$ .
- As₄ (g). The vapor pressure data of Preuner and Brockmoller,¹ Gibson,¹ Ruff and Mugdan,¹ Ruff and Bergdahl,¹ Horiba,² Goubau,¹ Heike,¹ Jonker¹ Jolibois,³ Krafft and Knocke,¹ and Rassow¹ yield -11.3⁴⁰⁰ for the heat of vaporization of liquid arsenic and -31.8⁴⁰⁰ for the heat of sublimation of the solid, both values computed for As₄ (g). According to the vapor density data (see following) arsenic vapor at or below the boiling point is practically all As₄.
- As (liq.). From the above data on the heat of vaporization and sublimation is obtained the heat of fusion.
- As₂ (g). The vapor density data of Mitscherlich, Bineau, Deville and Troost, Mensching and Meyer, Biltz and Meyer, and Preuner and Brockmoller yield for the reaction, As₄ (g) = 2 As₂ (g),  $Q^{1000} = -25.0$ , or about -21 at  $18^{\circ}$ .
- As (g). The foregoing data yield for the reaction, As₂ (g) = 2 As (g),  $Q^{1000} = -38.0$ , or about -35 at 18°. The values for the energy states of gaseous monatomic arsenic are from Meggers and de Bruin, Rao, Gartlein, Pathabhiramiah, and Rao, Rao, Rao and Badami, and Sawyer and Humphreys.
- AsF₅ (c), AsF₅ (liq.). Ruff, Menzel, and Plant¹ reported values for the heats of fusion and vaporization.
- AsCl₃ (liq.). Andrews¹⁶ and Thomsen¹⁵ measured the heat of reaction between gaseous chlorine and metallic arsenic. The latter's data yield Qf = 71.54. Peterson⁵ reported 72.5.
- $AsCl_3$  (g). The vapor pressure data of Baxter, Bezzenberger, and Wilson¹ and Maier¹ yield -7.50 for the heat of vaporization. The data of Beckmann¹ and Kolossowsky² on the elevation of the boiling point yield -8.08. See also Regnault.^{6, 10}
- $H_3AsO_4$  (aq.). Thomsen¹⁵ measured the heat of the reaction,  $As(c, \alpha) + \frac{5}{2} Br_2$  (liq.) +  $4 H_2O$  (liq.) =  $(5 HBr + H_3AsO_4)$  (aq.), to be 83.7; whence, for  $H_3AsO_4$  (aq.), Qf = 214.5. The data of Berthelot and Engel¹ on the same reaction yield about the same value.
- $As_2O_5$  (aq.). This is taken as equivalent to  $2 H_3AsO_4$  (aq.)  $-3 H_2O$  (liq.).

- $As_2O_5$  (c). Thomsen¹⁵ measured the heat of solution in 12 NaOH (200).
- $As_2O_3$  (aq.). The data of Thomsen¹⁵ yield, for the heat of oxidation of aqueous arsenious acid with aqueous iodic acid, Q=148.5, which gives, for  $As_2O_3$  (aq.), Qf=146.9. Berthelot¹⁵¹ reported Q=52.6 for the heat of the reaction between aqueous arsenious acid and liquid bromine; whence, for  $As_2O_3$  (aq.), Qf=148.4. Thomsen¹⁵ measured the heat of solution of  $AsCl_3$  (liq.) in water to be 17.58, whence, for  $As_2O_3$  (aq.), Qf=147.0.
- $As_2O_3$  (c, octahedral). Schuhmann¹ measured the electromotive force at various temperatures for the cell in which the reaction was  $2 As (c, \alpha) + 3 H_2O (liq.) = As_2O_3 (c, octahedral) + 3H_2(g)$ , and computed Q = 51.0, from which, for  $As_2O_3$  (c, octahedral), Qf = 154.1. Thomsen¹⁵ measured the heat of solution of octahedral arsenic trioxide in four normal sodium hydroxide to be 7.52, from which, for  $As_2O_3$  (c, octahedral), Qf = 154.1.
- $As_2O_3$  (g),  $As_4O_6$  (g). According to Mitscherlich¹ and Biltz⁷ the vapor of arsenic trioxide is mostly  $As_4O_6$  at low temperatures and mostly  $As_2O_3$  at high temperatures. Vapor pressure data were reported for both the solid and liquid forms by Rushton and Daniels,¹ Smellie,¹ Stelzner,¹ Niederschulte,¹ Welch and Duschak,¹ and Biltz,⁷ From the data of Biltz, we have computed for the reaction,  $As_4O_6$  (g) =  $2As_2O_3$  (g), Q = -17.
- $As_2O_3$  (c, monoclinic). We have estimated the heat of transformation into the octahedral form from the above vapor pressure data.
- As₂O₃ (liq.). The above vapor pressure data yield a surprisingly large value for the heat of fusion of solid arsenic trioxide.
- AsBr₃ (c). Berthelot⁵⁰ measured the heat of solution in aqueous KOH to be 59.8 at 9°.
- AsBr₃ (liq.). Tolloczko and Meyer¹ reported a value for the heat of fusion of the solid.
- $AsBr_3$  (g). The meager vapor pressure data of Walden² and Jager¹ yield -11.0 for the heat of vaporization. Trouton's rule gives -10.0.
- AsI₃ (c). Berthelot⁵⁰ measured the heat of solution in aqueous KOH to be 46.2 at 9°.
  - AsI₃ (liq.). We have estimated the heat of fusion.
- $AsI_3$  (g). The vapor pressure data of Horiba and Inouye¹ yield -19.2 for the heat of vaporization of the liquid.
- AsH₃ (g). Ogier² measured the heat of reaction of arsine with liquid bromine and water to be 212.9.
- $AsH_3 \cdot 6 H_2O$  (c). de Forcrand⁴⁹ determined the heat of dissociation of the hexahydrate.

### ANTIMONY

Sb (c). The metallic trigonal form is taken as the standard state. There is apparently a transition between 100° and 150°, but no thermal data on it are recorded. Another form of antimony is the so-called

- "explosive" form prepared by electrolysis, and its heat of transformation into the metallic trigonal form is given by several investigators: Pebal, 2.52; Cohen and Strengers, 2.32 by direct measurement, and 2.56 from the difference in the heats of reaction with bromine.
- Sb (liq.). The data on the heat of fusion of solid antimony at its melting point, 630°, are: Wust, Meuthen, and Durrer, 1 -4.67; Umino, 4 -4.9; Laschtschenko, 5 -4.85; Awbery and Griffiths, 1 -2.9. See also Herz. 2
- $\mathrm{Sb_2}$  (g). The vapor pressure data of Greenwood,^{2, 5} van Liempt,² Ruff and Bergdahl,¹ and Ruff and Mugdan¹ were reviewed by Johnston, Fenwick, and Leopold,¹ and yield  $-45.2^{1200}$  for the heat of vaporization of the liquid. According to Meyer and Biltz,¹ the vapor near the boiling point,  $1440^\circ$ , contains some  $\mathrm{Sb_4}$  molecules but is mostly  $\mathrm{Sb_2}$ . We have estimated, for  $\mathrm{Sb_2}$  (g), Qf = -52.
- Sb (g). For the reaction Sb₂ (g) = 2 Sb (g), we have estimated Q = -27. The values for the ionization potentials are from the following: first step, Green and Loring,² see also Ruark, Mohler, Foote, and Chenault¹; second and third steps, Dhavale,² Lang,^{2, 4, 5} Rao,¹ Nayaran and Rao,¹ and Gibbs and Vieweg¹; fourth step, Gibbs and Vieweg,¹ Badami,¹ and Lang,⁶ See also Bacher and Goudsmit.¹
- SbCl₃ (c). Andrews¹⁶ and Thomsen¹⁵ measured the heat of reaction of solid antimony with gaseous chlorine. The data of the latter yield, for SbCl₃ (c), Qf = 91.39.
- SbCl₃ (liq.). Tolloczko,^{1, 2} from cryoscopic and calorimetric measurements, deduced the heat of fusion of the solid to be  $-3.01^{73}$ . Rideal¹ calculated -3.40.
- SbCl₃ (g). The vapor pressure data of Braune and Tiedje, Maier, and Rotinyanz and Suchodskii yield  $V = -10.95^{125}$ .
- SbCl₅ (liq.). Thomsen¹⁵ found Q=13.48 for the reaction SbCl₃ (c) +Cl₂ (g) =SbCl₅ (liq.).
- SbCl₅ (c). The cryoscopic data of Moles¹ and Beckmann² yield  $F = -2.45^{-6.0}$ .
- SbCl₅ (g). The vapor pressure data of Braune and Tiedje¹ yield  $V = -11.05^{67}$ , giving, for SbCl₅ (g), Qf = 93.82. The equilibrium data of Braune and Tiedje¹ yield Q = -16.30 for the reaction, SbCl₅ (g) = SbCl₃ (g) + Cl₂ (g); whence, for SbCl₅ (g), Qf = 93.7.
- Sb₂O₃ (aq.). Thomsen¹⁵ measured the heats of the reactions,  $4 \, \mathrm{SbCl_3}$  (c)  $+ 5 \, \mathrm{H_2O}$  (liq.)  $= \mathrm{Sb_4O_5Cl_2}$  (c)  $+ 10 \, \mathrm{HCl}$  (aq.) and Sb₄O₅Cl₂ (c)  $+ 2 \, \mathrm{NaOH}$  (aq.)  $= \mathrm{H_2O}$  (liq.)  $+ (2 \, \mathrm{NaCl} + 2 \, \mathrm{Sb_2O_3})$  (aq.), to be 8.91 and 22.75, respectively; whence, for  $4 \, \mathrm{SbCl_3}$  (c)  $+ 4 \, \mathrm{H_2O}$  (liq.)  $+ 2 \, \mathrm{NaOH}$  (aq.)  $= 10 \, \mathrm{HCl}$  (aq.)  $+ (2 \, \mathrm{NaCl} + 2 \, \mathrm{Sb_2O_3})$  (aq.), Q = 31.66, and for Sb₂O₃ (aq.), Q = 166.3.
- $\mathrm{Sb_2O_3}$  (c, orthorhombic). Guntz^{1,7} measured the heats of solution of  $\mathrm{SbCl_3}$  (c) and of  $\mathrm{Sb_2O_3}$  (c, orthorhombic) in concentrated aqueous HCl, and his data yield, for  $\mathrm{Sb_2O_3}$  (c, orthorhombic), Qf = 165.3. Guntz^{1,6,7}

also measured the heats of solution of the same substances in aqueous HF and aqueous HCl+HF, respectively, and his data yield, for  $\mathrm{Sb_2O_3}$  (c, orthorhombic), Qf=164.5. Mixter⁹ measured, in a bomb calorimeter, the heat of the reactions of antimony and antimony trioxide with sodium peroxide, and his data yield, for  $\mathrm{Sb_2O_3}$  (c, orthorhombic), Qf=167.0. The dissociation pressure data of Baubigny¹ and Biltz¹ yield, for  $\mathrm{Sb_2O_3}$  (c, rhombic) =  $2 \mathrm{Sb}$  (liq.)  $+\frac{3}{2} \mathrm{O_2}$  (g), Q=-167.4, whence, for  $\mathrm{Sb_2O_3}$  (c, orthorhombic), Qf=153, a value which is much too low.

Sb₂O₃ (c, octahedral). From the difference in the heats of solution of Sb₂O₃ (c, orthorhombic) and Sb₂O₃ (c, octahedral) in aqueous HF, Guntz⁷ found the heat of transformation of the former into the latter to be 1.2.

 $Sb_2O_5$  (aq.). Thomsen¹⁵ found the heat of solution of  $SbCl_5$  (liq.) in water to be 35.27, whence, for  $Sb_2O_5$  (aq.), Qf=228.0.

 $Sb_2O_5$  (c). Mixter⁹ measured the heat of the reactions of antimony and antimony pentoxide with sodium peroxide, and his data yield, for  $Sb_2O_5$  (c), Qf = 235.7.

 $\mathrm{Sb_4O_6}$  (g). Hincke, from data on the vapor pressure of solid  $\mathrm{Sb_2O_3}$ , computed the following:  $2\,\mathrm{Sb_2O_3}$  (c, orthorhombic) =  $\mathrm{Sb_4O_6}$  (g), Q = -44.08;  $2\,\mathrm{Sb_2O_3}$  (c, cubic) =  $\mathrm{Sb_4O_6}$  (g), Q = -47.32; and  $2\,\mathrm{Sb_2O_3}$  (liq.) =  $\mathrm{Sb_4O_6}$  (g), Q = -17.83.

 $Sb_4O_6$  (liq.). The vapor pressure data of Hincke¹ yield -13.6 for the heat of fusion of  $Sb_2O_3$  (c, orthorhombic).

SbO (g). Mukherji¹ reported  $D^z = -81$ .

 ${
m Sb_2O_4}$  (c). The data of Simon and Thaler¹ give  $2~{
m Sb_2O_4}$  (c)  $=2~{
m Sb_2O_3}$  (c)  $+{
m O_2}$  (g),  $Q^{1080}=-55.8$ ; whence, for  ${
m Sb_2O_4}$  (c), Qf=193.3. Mixter³ measured the heat of the reaction of antimony and antimony tetroxide with sodium peroxide, and his data yield, for  ${
m Sb_2O_4}$  (c), Qf=213.0.

 ${
m Sb_6O_{13}}$  (c). The data of Simon and Thaler¹ give  $3~{
m Sb_2O_5}$  (c)  $={
m Sb_6O_{13}}$  (c)  $+{
m O_2}$  (g),  $Q^{400}=-25.5$ , and  $2~{
m Sb_6O_{13}}$  (c)  $=6~{
m Sb_2O_4}$  (c)  $+{
m O_2}$  (g),  $Q^{730}=-39.3$ . These values yield, for  ${
m Sb_6O_{13}}$  (c), Qf=664.5 and 658.7, respectively.

 $H_3SbF_6$  (aq.). Guntz'^{1, 6, 7} data on the heat of solution of  $Sb_2O_3$  (c, orthorhombic) in aqueous HF yield, for  $H_3SbF_6$  (aq.), Qf = 443.5.

 $SbF_3$  (c). Guntz^{1, 6, 7} measured the heat of solution of  $SbF_3$  (c) in 3 HF (aq.) to be 0.3.

SbF₃ (aq.). Guntz^{1, 6, 7} measured the heat of solution of SbF₃ (c) in water to be  $-1.6_{200}^9$ .

 $\mathrm{Sb_4O_5Cl_2}$  (c). Thomsen's¹⁵ data on the heat of solution of  $\mathrm{SbCl_3}$  (c) in water to form  $\mathrm{Sb_4O_5Cl_2}$  (c) and 10 HCl (aq.) yield, for  $\mathrm{Sb_4O_5Cl_2}$  (c), Qf = 348.40. Guntz^{1, 7} measured the heat of solution of  $\mathrm{Sb_4O_5Cl_2}$  (c) in aqueous HF but reported no experimental data. He computed for the reaction,  $2 \mathrm{Sb_2O_3}$  (c, orthorhombic)  $+2 \mathrm{HCl}$  (g)  $= \mathrm{Sb_4O_5Cl_2}$  (c), Q = 41.2; whence, for  $\mathrm{Sb_4O_5Cl_2}$  (c), Qf = 346.1.

SbOCl (c). Guntz^{1, 7} measured the heat of solution of SbOCl (c) in aqueous HF, but reported no experimental data. He computed for the

reaction,  $Sb_2O_3$  (c, orthorhombic) +2 HCl (g) =2 SbOCl (c) + H₂O (c), Q =38.8; whence, for SbOCl (c), Qf=89.2.

 $\mathbf{SbF_3} \cdot n \ \mathbf{NH_3}$  (c). Biltz and Rahlfs² measured the dissociation pressures at various temperatures of the ammines with 1, 2, 3, 4, and 6 moles of  $\mathbf{NH_3}$ .

SbBr₃ (c). Guntz^{1,7} measured the heat of solution of SbBr₃ in HF, but did not report the result of this experiment. Instead he gave Q=76.9 for the reaction, Sb (c)  $+\frac{3}{2}$  Br₂ (g) = SbBr₃ (c). Making some assumptions as to the auxiliary data Guntz used in arriving at this value, we have computed, for SbBr₃ (c), Qf=64.1. Berthelot and Petit¹ dissolved SbBr₃ (c) in concentrated aqueous HCl+Br₂, finding Q=27.5. Assuming that H₃SbO₄ (aq.) was formed, we have deduced, for SbBr₃ (c), Qf=55.5, which value is evidently too small. Combining the data of Cohen and Strengers¹ on the reactions, SbBr₃ (c) = SbBr₃ (CS₂), Q=-3.6, and Sb (c, trigonal)  $+\frac{3}{2}$  Br₂ (CS₂) = SbBr₃ (CS₂), Q=58.5, we have obtained, for SbBr₃ (c), Qf=60.0.

SbBr₃ (liq.). Tolloczko and Meyer¹ and Tolloczko¹ gave -3.52¹⁰⁰

for the heat of fusion of the solid. Rideal calculated -3.60.

SbBr₃ (CS₂). Cohen and Strengers¹ measured the heat of formation of SbBr₃ in carbon disulfide from antimony and bromine, Sb (c, trigonal)  $+\frac{3}{2}$  Br₂ (CS₂) = SbBr₃ (CS₂), to be 58.5; whence, for SbBr₃ (CS₂), Qf = 56.4.

 $SbI_3$  (c). Guntz⁸ gave 45.4 for the heat of the reaction, Sb (c, trigonal)  $+\frac{3}{2}I_2$  (g)  $=SbI_3$  (c), which he deduced from measurement of the heat of solution of  $SbI_3$  (c) in aqueous HF. Making assumptions as to the subsidiary values used by Guntz,⁸ we have obtained, for  $SbI_3$  (c), Qf=22.8.

SbI₃ (aq.). Mosnier¹ measured the heat of solution of SbI₃ (c) in

water to be -0.88.

 $SbH_3$  (g). The data of Berthelot and Petit, who measured the heat of solution of  $SbH_3$  (g) in bromine water, yield for  $SbH_3$  (g), Qf = -79.5. Stock and Wrede measured directly the heat of the explosive decomposition of gaseous  $SbH_3$  into solid Sb and gaseous  $H_2$ , and their data yield Qf = -34.0.

 $\mathrm{Sb_2S_3}$  (c, yellow). Berthelot⁹⁹ found the heat of reaction of dilute aqueous  $\mathrm{SbCl_3}$  with  $\mathrm{H_2S}$  to be variable, and he ascribed this behavior to the formation of compounds similar to  $\mathrm{SbSCl}$ . Berthelot⁹⁹ measured the heat of the reaction of  $\mathrm{SbCl_3}$  (c) with  $6~\mathrm{C_4H_6O_6}$  (aq.) and of the resulting solution with aqueous  $\mathrm{H_2S}$ , finding Q=13.74 and 32.26, respectively; whence, for  $\mathrm{Sb_2S_3}$  (c, yellow), Qf=35.8. Berthelot⁹⁹ also found the heat of reaction of  $\mathrm{SbCl_3}$  (c) with  $12~\mathrm{HCl}$  (20) to be 4.17, and that of the resulting mixture with aqueous  $\mathrm{H_2S}$  to be 9.39; whence, for  $\mathrm{Sb_2S_3}$  (c, yellow), Qf=35.2.

Sb₂ (SO₄)₃ (c). Beck¹ measured the heat of solution of this sub-

stance in aqueous NaOH to be 118.7.

#### BISMUTH

- Bi (c). Standard state.
- Bi (liq.). The data on the heat of fusion of solid bismuth at the melting point, 271°, are: Person, 2-2.59; Person, 2-8-2.64; Wust, Meuthen, and Durrer, 2-2.14; Iitaka, 2-2.55; Awbery and Griffiths, 2-2.72. From the cooling curve, Mazzotto deduced -2.59; and, from data on the change in melting point with pressure, Bridgman calculated -2.68. See also Tammann and Johnston and Adams.
- $Bi_2$  (g). The vapor density data of Biltz and Meyer^{1,3} indicated that bismuth vapor at the boiling point is about  $\frac{1}{2}Bi_2 + \frac{1}{2}Bi$ . The vapor pressure data, for liquid bismuth, of Greenwood,³ Ruff and Bergdahl,¹ Ruff and Mugdan,¹ and Barus^{1,2} yield -4.48 for the heat of vaporization at the boiling point. We have corrected this value for the amount of dissociation.
- Bi (g). From spectroscopic data, Barratt and Bonar¹ obtained, for Bi₂ (g) = 2 Bi (g),  $D^z = -18.5$ . The values for the energy states of gaseous monatomic bismuth are taken from the following: first spectra, Thomsen³ and Toshniwal¹; second and third spectra, McLennan, McLay, and Crawford.² See also Bacher and Goudsmit.¹
- BiCl₃ (c). Thomsen¹⁵ measured the heat of reaction of solid bismuth and gaseous chlorine, and his data give, for BiCl₃ (c), Qf = 90.61.
- BiCl₃ (aq. HCl). Tanatar⁸ measured the heat of solution of Bi₂O₃ (c) in excess HCl (25) to be 35.6. Assuming the reaction to be Bi₂O₃ (c) +6 HCl (25) = 2 BiCl₃ (aq. HCl) +3 H₂O (liq.), we have computed, for BiCl₃ (aq. HCl), Qf = 84.5.
- BiOCl (c). Thomsen's¹⁵ value for the heat of the reaction, BiCl₃ (c) +H₂O (liq.) = BiOCl (c) +2 HCl (aq.), Q=7.83, yields, for BiOCl (c), Qf=87.8. Noyes and Chow¹ measured the electromotive force at various temperatures of the cell in which the reaction was Bi (c) +HCl (aq.) +H₂O (liq.) = BiOCl (c) +3/2 H₂ (g), and calculated Q=18.50; whence, for BiOCl (c), Qf=89.4.
- $Bi_2O_3$  (c, hydrated). Thomsen¹⁵ measured the heat of reaction of  $Bi_2O_3 \cdot n$  H₂O (c) with just enough aqueous HCl to form solid BiOCl to be 14.2, whence we have computed, for the hydrated oxide, Qf = 136.8.
- $H_3$  BiO₃ (c). Assuming the above hydrated oxide to be Bi₂O₃ · 3 H₂O (c), we have computed, for  $H_3$ BiO₃ (c), Qf = 171.1.
- $\rm Bi_2O_3$  (c). Mixter measured, in a bomb calorimeter, the following: 2 Bi (c) +5 Na₂O₂ (c) =2 Na₃BiO₄ (c) +2 Na₂O (c), Q=170.6; Bi₂O₃ (c) +2 Na₂O₂ (c) +Na₂O (c) =2 Na₃BiO₄ (c), Q=92.8. The difference gives 2 Bi (c) +3 Na₂O₂ (c) =Bi₂O₃ (c) +3 Na₂O (c), Q=77.8; from which, for Bi₂O₃ (c), Qf=137.1.
- BiO (c). Tanatar⁸ measured the heat of solution of BiO (c) in excess aqueous HCl to be 24.6.
- $\mathrm{Bi_2S_3}$  (c). From equilibrium data on the reaction,  $\mathrm{Bi_2S_3}$  (c)  $+3~\mathrm{H_2}$  (g)  $=2~\mathrm{Bi}$  (liq.)  $+3~\mathrm{H_2S}$  (g), Jellinek and Zakowski¹ computed Q=-18.1; whence, for  $\mathrm{Bi_2S_3}$  (c), Qf=29.

 $Bi_2$  (SO₄)₃ (c). Beck¹ measured the heat of solution of this substance in aqueous NaOH to be 54.6.

Bil₃ (c). Mosnier¹ measured the heat of solution.

BiI₃ (aq.). We have estimated this value.

## Carbon

C (c, diamond). We have selected diamond as the standard state for carbon because, with respect to heat content, it is the only truly reproducible form of solid carbon.

C (c, graphite). Roth¹⁰ found that the heat of combustion of graphite varies considerably with its source or manner of preparation. The results obtained by Roth, 9, 10 Roth and Wallasch, 1 and Roth and Naeser 1 for the heats of combustion of graphite grouped themselves about two values; and Roth labeled those samples having the lower heat of combustion  $\alpha$  graphite, and those having the higher heat of combustion  $\beta$  graphite. The differences in the values found by Roth and his coworkers for the heats of combustion of diamond,  $\alpha$  graphite, and  $\beta$  graphite, when properly converted to true moles (see Rossini¹⁵) and to a pressure of 1 atmosphere (see Washburn²) yield 0.22 and 0.49 for the heats of transition at 18° of diamond to  $\beta$  graphite and to  $\alpha$  graphite, respectively. The data of Roth, 9, 10 Roth and Wallasch, 1 and Roth and Naeser 1 yield 94.45, 94.23, and 93.96 for the heats of the reaction,  $C(c) + O_2(g) = CO_2(g)$ , for diamond,  $\beta$  graphite, and  $\alpha$  graphite, respectively, at 18° and a constant pressure of 1 atmosphere. The uncertainty in these values is apparently about ±0.10. Though some investigators used graphite degassed in air, Plummer¹ reported that such samples of graphite were partially oxidized. The older data on the heat of combustion of graphite are those of Favre and Silbermann, Andrews, 6 Grassi, Berthelot and Petit, and Mixter.

C (c, carbonado). Roth and Naeser1 measured the heat of combustion of carbonado (bort or black diamond), and their data yield for the

reaction, C (c, carbonado)  $+O_2$  (g)  $=CO_2$  (g), Q=94.55.

C ("amorphous," charcoal). Thiele1 studied the heat of combustion of charcoal prepared from sugar as a function of the temperature of preparation, and found that the heat of combustion was constant only for samples prepared above 1400°. The data of Thiele, Mixter, and Favre and Silbermann, 1, 5, 11 yield, respectively, 96.4, 96.6, and 96.4 for the heat of the reaction, C ("amorphous," charcoal)  $+O_2$  (g)  $=CO_2$  (g). Data on the heat of combustion of this form of carbon were also reported by Peterson, 1a Despretz, 1 Berthelot and Petit, 2 Dulong, 2 Andrews, 14, 16 Berthelot and Vielle,7, 12 Ruff and Gersten,2 Thomsen,7, 16 Pfaundler,3 Nikiten, and Lavoisier and Laplace (see Mellor).

C ("amorphous," "acetylene" carbon). Mixter's data yield 94.7 for the heat of the reaction, C ("amorphous," "acetylene" carbon) +O2 (g)

C ("amorphous," "Glanzkohlenstoff"). Roth and Doepke¹ measured the heats of combustion of samples of "Glanzkohlenstoff" of different densities, and their data yield the following values for the heats of formation, from diamond as the standard state, of samples having the densities 2.07, 2.0, and 1.86 grams per cm³, respectively: -2.1, -2.3, and -3.2. See also Roth, Naeser, and Doepke.¹

**C** ("amorphous," "gas" carbon). Roth⁹ and Favre and Silbermann¹ measured the heat of combustion of this form of carbon, and their data yield for the reaction, C ("amorphous," "gas" carbon)  $+O_2$  (g)  $=CO_2$  (g), Q=95.93 and 96.5, respectively.

- $C_2$  (g). The values for the energy of dissociation of  $C_2$  (g) into 2C (g), with each substance in the normal or ground state, are, in volt-electrons, the following: Mulliken, 5.5; Birge, 7.0; Johnson and Asundi, 7.02; Vaughan and Kistiakowsky, 7.43, 8.28, 6.78, and 6.97. The value for the energy of excitation of  $C_2$  (g) is from Mulliken. See also Hori and Lennard-Jones.
- **C** (liq.). Ryschkewitsch^{1,2} and Ryschkewitsch and Merck¹ obtained values for the vapor pressures of solid and liquid carbon at various temperatures by assuming that the partial pressure of gaseous carbon in the crater is equal to the external pressure. Their data on the difference in the slopes of the curves giving the logarithm of the pressure against the reciprocal of the absolute temperature for both solid and liquid carbon yield -11 for the heat of fusion of carbon at the melting point. Fajans⁶ estimated the value to be -10. There is now general agreement (see Ryschkewitsch,^{1,2} Hagenback and Luthy,¹ Sauerwold,¹ Despretz,^{3,4} Braun,¹ La Rosa,¹ Lummer,¹ Ruff,¹ and Munch¹) that the melting point of carbon is about 3580°.
- ${\bf C}$  (g). The heat of formation of gaseous monatomic carbon can be computed from values of the heat of sublimation of carbon or of the energy of dissociation of gaseous CO into gaseous carbon and oxygen atoms.

Values for the heat of sublimation of carbon have been determined in three ways: (1), by estimation of the heat of vaporization from the boiling point and Trouton's constant, and combination with the heat of fusion; (2), by experimental determination of the vapor pressure at various temperatures, assuming that the partial pressure of gaseous carbon in the carbon arc is equal to the external pressure of the inert gas; (3), by experimental determination of the vapor pressure at various temperatures by measuring the rate of loss of carbon from a carbon filament heated to known temperatures, assuming an accommodation coefficient of 1. In each of these three methods there is required a knowledge of the relative concentrations of C₂ (g) and C (g) in the gaseous carbon, and of the energy of dissociation of C2 (g) into 2C (g), in order that the heat of the reaction C (c) = C (g) may be calculated. Vaughan and Kistiakowsky¹ calculated that, if the energy of dissociation of C2 (g) into 2C (g) is -160, the concentration of C (g) in gaseous carbon is 9.7 mole per cent at 3880° and 12.7 mole per cent at 4430°.

Calculation of the heat of sublimation of carbon at 18° from values

for the boiling point and Trouton's constant yields values ranging from -150 to -200. The various published values for the boiling point of carbon range from 3900 to  $5680^{\circ}$ . Johnston, Fenwick, and Leopold¹ estimated the value  $3930\pm100^{\circ}$ , from a review of the then-published vapor pressure data. Other estimates are the following: Ryschkewitsch,²  $3900^{\circ}$ ; Kohn and Guckel,¹,²  $3930^{\circ}$ ; Fajans,¹,²,²  $4050^{\circ}$ ; Herbst,¹ not less than  $5700^{\circ}$ ; van Laar,8  $5030^{\circ}$ . See also Crookes,¹ Violle,⁵ Moissan,³ Mott,¹ and van Laar.¹,³, 6, 7

Data on the change in vapor pressure of carbon with temperature, obtained by assuming the partial pressure of gaseous carbon in the carbon arc equal to the external pressure of the inert gas, were reported by Fajans, ^{1, 7} Kohn, ¹ Kohn and Guckel, ^{1, 2} Thiele and Ritter, ¹ Ryschkewisch, ² and Podszus. ¹ These data yield values ranging from -140 to -190 for the heat of sublimation of carbon at 18°.

Data on the change in vapor pressure of carbon with temperature, obtained by measuring the rate of loss of carbon from a carbon filament heated to known temperatures, were reported by Wertenstein and Jedrzejewski, 1 Brody and Millner, 2 and Marshall and Norton. These data yield values ranging from -160 to -210 for the heat of sublimation of carbon at 18°. Marshall and Norton computed from their data the value  $-178\pm1$  for the heat of the reaction, C (c, graphite) = C (g), at  $-273^{\circ}$ .

Estimates of the heat of sublimation of carbon were made by Violle, ^{2, 3, 4} Wilson, ⁴ Wilson and Fitzgerald, ¹ Wanner, ¹ Watts and Mendenhall, ¹ Lummer, ¹ Fajans, ⁷ Smithells, ¹ Weimberg, ¹ Gruneisen, ¹ Padoa, ¹ and Lande. ² Most of the foregoing data were reviewed by Johnston, Fenwick, and Leopold, ¹ who gave —129 for the heat of vaporization of liquid carbon in the range 3900 to 4400°.

Vaughan and Kistiakowsky¹ calculated by the statistical method, on the assumption that the published experimentally determined vapor pressures (but not the corresponding temperatures) of carbon were correct, that the heat of sublimation of carbon into gaseous atoms at  $-273^{\circ}$  is -161 or -195, depending upon whether the value 5.5 or 7.0 volt-electrons is taken as the energy of dissociation of  $C_2$  (g) into 2C (g).

Birge and Sponer¹ extrapolated the vibrational levels of CO (from band spectra) and their data yield 10.2 volt-electrons for the energy of dissociation of CO. For this same quantity, Mulliken⁶ estimated 10.0 and Wiezel¹ 10.3 volt-electrons. Coster and Brons¹ obtained predissociation data in the 0-1 Angstrom band of CO, and, assuming the products of dissociation of CO in the B state to be carbon and oxygen atoms each in the ¹D state, deduced the energy of dissociation of CO to be 9.82 volt-electrons. The assumption that the products of dissociation are C(¹D) and O(³P) yields the value of 11.06 volt-electrons. These predissociation data were confirmed by Read,¹ who set an upper limit of 11.05 volts for the energy of dissociation of CO. From electron bombardment experiments, Tate and Lozier¹ deduced 9.3±0.5 volt-electrons for the

energy of dissociation of CO. The similar, but later and more accurate, data of Lozier² were subjected to two interpretations, one yielding the value  $9.6 \pm 0.1$  and the other  $11.6 \pm 0.1$  volt-electrons.

Because of the existing uncertainties in the data leading to the heat of formation of gaseous monatomic carbon, we have arbitrarily selected for the energy of dissociation of normal CO (g) into normal C (g) and O (g), the value  $D^z = 11.06 - a'$  volt-electrons, or -255.0 + a kilocalories per mole, where a is an unknown whose value at this writing may be as much as +60 kilocalories, so that, for C (g), -110 > Qf > -170.

The energy states of gaseous monatomic carbon are evaluated from the data of Fowler and Selwyn,^{1, 2} Bowen,² Edlen,² Edlen and Stemnan,¹ Edlen and Ericson,⁵ Eckart,¹ and Paschen and Kruger.¹

CO (g). The heat of combustion of carbon monoxide was measured by Andrews, ¹⁴ Grassi, ² Lagerlof, ¹ Dulong, ² Favre and Silbermann, ¹ Berthelot, ^{45, 58} Berthelot and Matignon, ¹¹ Thomsen, ^{7, 10, 15, 16} Rossini, ^{2,5} Roth and Banse, ² Fenning and Cotton, ¹ and Awbery and Griffiths. ² The last four named investigations were completed in the years 1930 to 1933, and all the others prior to 1904. The data of the modern determinations yield the following values for the heat of the reaction, CO (g)  $+\frac{1}{2}$  O₂ (g) = CO₂ (g), at 18° and a constant pressure of 1 atmosphere: Rossini, ^{2, 5} 67.61 = 0.03; Roth and Banse, ² 67.86 = 0.20; Fenning and Cotton, ¹ 67.65 = 0.05; Awbery and Griffiths, ¹ 67.58 = 0.10.

The energy states of CO (g) are evaluated from the data of Hund,¹ Mulliken,³ Johnson,⁴ Dunkel,¹ Birge,^{6,7} Hopfield and Birge,¹ Duffendack and Fox,² Knauss,¹ Herzberg,² Johnson and Asundi,¹ Asundi,^{1,2} Eastey,¹ Hepburn,¹ Kallman and Rosen,¹ Hogness and Harkness,¹ Dunkel,¹ and Birge and Sponer.¹

- CO (liq.). Vapor pressure data on liquid carbon monoxide were reported by Olszewsky,^{7, 8} Wroblewsky,^{1, 5, 2} Baly and Donnan,¹ Clusius and Teske,¹ Hoppel,¹ Verschoyle,¹ Crommelin, Bijleveld, and Brown,¹ and Clayton and Giauque.¹ The calorimetric data on the heat of vaporization of liquid carbon monoxide are: Eucken,^{2,3} –1.414 at –190°; Clayton and Giauque,¹–1.444 at –191.5°.
- CO (c). Vapor pressure data on solid carbon dioxide were reported by Olszewsky,^{7,8} Wroblewsky,^{1,5,2} Baly and Donnan,¹ Clusius and Teske,¹ Hoppel,¹ Verschoyle,¹ Crommelin, Bijleveld, and Brown,¹ and Clayton and Giauque.¹ The calorimetric data on the heat of fusion of CO (c, I) are: Eucken,^{2,3} -0.224 at -205.8°; Clusius,² -0.2015 at -204.9°; Clayton and Giauque,¹ -0.1997 at -205.0°. The calorimetric data on the heat of transition of CO (c, II) to CO (c, I) are Eucken,^{2,3} -0.144 at -212.9°; Clusius,² -0.1512 at -211.6°; Clayton and Giauque,¹ -0.1515 at -211.6°.
- CO (aq.). Adolph and Henderson¹ calculated the heat of solution of gaseous carbon monoxide in water from the solubility-temperature data of Winkler⁸ and Bunsen.¹
  - CO2 (g). The heat of combustion of diamond was measured by Ber-

thelot and Petit,^{2, 6} Favre and Silbermann,^{1, 4, 5, 11} Andrews,^{2, 7, 16} Roth and Wallasch,¹ and Roth and Naeser.¹ The modern data, those of Roth and his coworkers, yield 94.45 for the heat of the reaction, C (c, diamond)  $+O_2(g) = CO_2(g)$ .

- $CO_2^+$  (g). Smyth and Steuckelberg¹ reported a value for the energy of the reaction,  $CO_2$  (g) =  $CO_2^+$  (g) +  $\theta$ .
- CO₂ (liq.). Liquid carbon dioxide does not exist at a pressure of 1 atmosphere. The heat of vaporization of liquid carbon dioxide was measured by Chappuis^{1, 2} and Mathias.¹ Vapor pressure data on liquid carbon dioxide were reported by Faraday,³ Regnault,⁶ Mollier,¹ Amagat,^{1, 2, 3} Tate,² Balserna,¹ Cailletet,³ DuBois and Wills,¹ Verschaffelt,¹ Villard and Jarry,¹ Zeleny and Smith,¹ Antoine,² Jarolimek,^{1, 2, 3, 4} Andrews,¹⁷ Keyes and Kenney,¹ Kuenen and Robson,¹ Meyers and Van Dusen,¹ Scheffer,² von Siemens,¹ Stock, Henning, and Kuss,¹ Villard,¹ and Jenkins and Pye.^{1, 2}
- CO₂ (c). Calorimetric data on the heat of sublimation of solid carbon dioxide were reported by Andrews,⁸ Favre and Silbermann,³ Behn,¹ and Eucken and Donath.¹ Vapor pressure data on solid carbon dioxide were reported by Faraday,³ Dubois and Wills,¹ Henning,³ Henning and Stock,¹ Kuenen and Robson,¹ Onnes and Weber,² von Siemens,¹ Stock, Henning, and Kuss,¹ Homfray,¹ Villard and Jarry,¹ and Zeleny and Smith.^{1, 2}.
- CO₂ (aq.). The calorimetric data on the heat of solution of CO₂ (g) in water are: Thomsen, ¹⁵ 5.88₁₅₀₀; Berthelot, ⁷ 5.6; Adolph and Henderson, ¹ 4.69. The data on the solubility of carbon dioxide in water at various temperatures yield 4.76.
- $CO_2 \cdot 6H_2O$  (c). The data of Villard^{2, 10} and Wroblewsky³ yield -8.3 for the heat of the reaction,  $CO_2 \cdot 6H_2O$  (c)  $=CO_2$  (aq.)  $+6H_2O$  (liq.), at 0°.
- $CO_3^{--}$  ( $\infty$ ). The value for aqueous carbonate ion at infinite dilution is obtained from those for aqueous lithium, sodium, and potassium carbonates at infinite dilution.
- ${\rm CO_3^-}$  (g). The lattice energy calculations of Lennard-Jones and Dent^{1, 2} on the carbonates of zinc, cadmium, calcium, and magnesium yield, for  ${\rm CO_3^-}$  (g),  $Qf = -75 \pm 10$ .
- $C_2O_4$ —(aq.). The value for aqueous oxalate ion is obtained from those for aqueous sodium and potassium oxalates.
- C₃O₂ (liq.). Vapor pressure data were reported by Stock and Stolzenberg.¹
- CH (g). The value for the energy of dissociation of CH (g) into gaseous carbon and hydrogen atoms is obtained from the data of Mulliken,⁵ Kratzer,² Hori,⁴ and Villars.¹ The values for the energy states of CH (g) are from Mulliken.⁵
- $C\bar{H}_{3}^{+}$  (g). The data of Hogness and Kvalnes¹ (see also Pietsch and Wilcke¹) yield a value for the energy of the reaction,  $CH_{4}$  (g) =  $CH_{3}^{+}$  (g) + H (g) +  $\theta$ .

- ${
  m CH_4}$  (g). The heat of combustion of methane was measured by Andrews, ¹⁴ Favre and Silbermann, ¹ Thomsen, ¹⁵ Berthelot and Matignon, ⁷ Roth and Banse, ² and Rossini. ^{2, 5} Mixter ¹ made two experiments on the heat of decomposition of methane into carbon and hydrogen by exploding a mixture of acetylene, methane, and hydrogen in a bomb. The modern data yield the following values for the heat of the reaction,  ${
  m CH_4}$  (g)  $+2{
  m O}_2$  (g)  $={
  m CO}_2$  (g)  $+2{
  m H}_2{
  m O}$  (liq.), at 18° and a constant pressure of 1 atmosphere: Roth and Banse, ² 213.27  $\pm$  0.64; Rossini, ^{2, 5} 212.95  $\pm$  0.07.
- CH₄⁺ (g). The value for the energy of ionization of CH₄ (g) is obtained from the data of Pietsch and Wilcke, Glockler, Morris, Mayer, Hughes and Klein, and Pietsch.
- CH₄ (liq.). Vapor pressure data on liquid methane were reported by Keyes, Taylor, and Smith, 1 Crommelin, 6 Homfray, 1 and Stock, Henning, and Kuss. 1 See also Satterly and Patterson. 1
- $\mathrm{CH_4}$  (c). Vapor pressure data on solid methane were reported by Karwat¹ and Freeth and Verschoyle.¹ The calorimetric data on the heat of fusion are: Eucken and Karwat,¹ -0.23 at  $-182^\circ$ ; Clusius,² -0.224 at  $-182.5^\circ$ . Clusius² measured the heat of transition at  $-252.7^\circ$ .
- $CH_4 \cdot 6H_2O$  (c). The dissociation pressure data of Villard^{2, 10} yield -14.2 for the heat of the reaction,  $CH_4 \cdot 6H_2O$  (c)  $=CH_4$  (g)  $+6H_2O$  (liq.).
- $C_2H_2$  (g). The heat of combustion of acetylene was measured by Berthelot,⁷¹ Berthelot and Matignon,⁸ Thomsen,¹⁵ and Mixter.⁴ The data of the latter two investigations yield the following values for the heat of combustion of acetylene: Thomsen,¹⁵ 309.8±1.5; Mixter,⁴ 312.5 ±2.5. Hence, for  $C_2H_2$  (g),  $Qf = -52.5 \pm 1.5$  and  $-55.2 \pm 2.5$ , respectively. Mixter⁴ also measured the heat of decomposition of acetylene into "acetylene" carbon and hydrogen. His data yield for the reaction,  $C_2H_2$  (g) = 2C ("amorphous," "acetylene" carbon) +  $H_2$ (g),  $Q = 53.3 \pm 0.1$ ; whence, for  $C_2H_2$  (g),  $Qf = -53.9 \pm 0.2$ . See also Berthelot³² and Berner.³
- C₂H₂ (liq.). Acetylene does not exist as a liquid at a pressure of 1 atmosphere. Vapor pressure data on liquid acetylene were obtained by McIntosh,¹ Cardoso and Baum,¹ Kuenen,² Villard,¹ Ansdell,² Ladenburg and Krugel,² Hunter,¹ and Cailletet.¹ McIntosh¹ reported a value for the heat of vaporization at the triple point, -81.5°.
- C₂H₂ (c). Solid acetylene has a vapor pressure of 1 atmosphere at -84.0°. Vapor pressure data on solid acetylene were reported by McIntosh, Cardoso and Baum, Kuenen, Villard, Ansdell, Ladenburg and Krugel, Hunter, and Cailletet. McIntosh reported a value for the heat of sublimation and the heat of fusion.
- $C_2H_2$  (aq.). Villard reported the heat of solution of acetylene in water to be 5.3. The solubility-temperature data of Winkler yield 4.0.
- $C_2H_2 \cdot 6H_2O$  (c). Villard⁶ determined the heats of the reactions  $C_2H_2 \cdot 6H_2O$  (c) =  $C_2H_2$  (aq.) +6 $H_2O$  (liq.), and  $C_2H_2 \cdot 6H_2O$  (c) =  $C_2H_2$  (g) +6 $H_2O$  (liq.), to be -10.1 and -15.4, respectively, at 0°; whence, for  $C_2H_2 \cdot 6H_2O$  (c), Qf = 370.6 and 371.9.

 $(C_2H_2)_3$  (g). Sameshima and Fukaya¹ reported Q = -3.03 for the heat of dissociation of the polymer of acetylene,  $(C_2H_2)_3$  (g) =  $3C_2H_2$  (g).

- $C_2H_4$  (g). The heat of combustion of ethylene was measured by Dulong,² Grassi,¹ Favre and Silbermann,¹ Andrews,¹⁴ Berthelot,⁷¹ Berthelot and Matignon,⁸ Thomsen,¹⁵ and Mixter.¹ The data of the last four named investigations yield the following values for the heat of the reaction,  $C_2H_4$  (g) +3  $O_2$  (g) =2 $O_2$  (g) +2 $O_2$  (liq.): Berthelot,⁷¹ 341.3  $\pm$ 2.2; Berthelot and Matignon,⁸ 341.2  $\pm$ 1.3; Thomsen,¹⁵ 333.1  $\pm$ 0.8; Mixter, 344.5  $\pm$ 2.3. These values yield, for  $C_2H_4$  (g),  $O_2$  = -15.7  $\pm$ 2.2, -15.6  $\pm$ 1.3, -7.5  $\pm$ 0.8, and -18.9  $\pm$ 2.3, respectively. Mixter also performed three experiments involving the explosion of a mixture acetylene and ethylene. His data yield for the reaction,  $O_2H_4$  (g) =2 $O_2$  ("amorphous," "acetylene" carbon) +2 $O_2$  (g),  $O_2$  = -15.1  $\pm$ 4.0; whence, for  $O_2$   $O_3$  (g),  $O_3$  = -15.7  $\pm$ 4.0. von Wartenberg and Krause measured the heat of hydrogenation of ethylene to form ethane. Their data yield  $O_3$  =30.6  $\pm$ 0.4 for the reaction,  $O_2$   $O_3$  +4 (g) + $O_3$  +4 (g) + $O_3$  +6 (g); whence, for  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +6  $O_3$  +7  $O_3$  +6  $O_3$  +7  $O_3$  +7  $O_3$  +7  $O_3$  +7  $O_3$  +8  $O_3$  +8  $O_3$  +9  $O_3$  +9  $O_3$  +9  $O_3$  +9  $O_3$  +9  $O_3$  +9  $O_3$  +9  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10  $O_3$  +10 O
- C₂H₄ (liq.), C₂H₄ (c). Vapor pressure data were reported by Faraday,³ Dewar,² Cailletet,² Olszewski,^{6,11} Witkowski,¹ Ladenburg and Krugel,¹ Hunter,¹ Villard,¹ Cardoso and Arni,¹ Burrell and Robertson,² Maass and Wright,¹ Henning and Stock,¹ and Britton.¹
- $C_2H_4 \cdot 6H_2O$  (c). Villard⁶ reported Q = -15.4 for the reaction,  $C_2H_4 \cdot 6H_2O$  (c)  $= C_2H_4$  (g)  $+6H_2O$  (liq.)
- $C_2H_6$  (g). The heat of combustion of ethane was measured by Berthelot,⁷¹ Berthelot and Matignon,⁸ Thomsen,¹⁵ and Rossini.¹³ The last named investigator found for the reaction,  $C_2H_6$  (g)  $+3\frac{1}{2}$   $O_2$  (g) =2  $CO_2$  (g)  $+3H_2O$  (liq.),  $Q=372.81\pm0.11$ , at 25° and a constant pressure of 1 atmosphere. This value is equivalent to  $373.05\pm0.11$  at 18°, whence, for  $C_2H_6$  (g),  $Qf=20.96\pm0.15$ .
- C₂H₆ (liq.). Wiebe, Hubbard, and Brevoort¹ measured the heat of vaporization of ethane. Vapor pressure data were reported by Porter,¹ Dana, Jenkins, Burdick, and Timms,¹ Loomis and Waters,¹ Prins,¹ Burrell and Robertson,² Maass and McIntosh,¹ Cardoso and Bell,¹¹ Cardoso,¹ Kuenen and Robson,¹ Kuenen,¹ Olszewski,^{2, 11} Hara and Shinozaki,¹ Ladenburg and Krugel,² and Dewar.²
- $C_2H_6$  (c). Wiebe, Hubbard, and Brevoort¹ measured the heat of fusion of ethane.
- CHO₂-(aq.). The value for aqueous formate ion is obtained from those for aqueous sodium and potassium formates.
- $\mathrm{HCO_3^-}$  (aq.). The values for aqueous bicarbonate ion, obtained from aqueous LiHCO₃, NaHCO₃, KHCO₃, and RbHCO₃, are 164.8, 164.9, 164.7, and 164.9, respectively. The equilibrium data of Kendall¹ and of Klemenc and Herzog¹ yield Q=2.89 and 2.78, respectively, for the reaction,  $\mathrm{H_2CO_3}$  (aq.) =  $\mathrm{H^+}$  (aq.) + HCO₃⁻ (aq.); whence, for HCO₃⁻ (aq.), Qf=164.7 and 164.8, respectively.

- **HCHO** (g). The data of von Wartenberg, Muchlinski, and Riedler¹ (see Kharasch¹) yield 134.1 for the heat of combustion of gaseous formaldehyde.
- ${
  m CH_3OH~(g)}$ . The heat of combustion of gaseous methyl alcohol was measured by Thomsen¹⁵ and Rossini,^{9, 10} and of liquid methyl alcohol by Favre and Silbermann,¹ Stohmann, Kleber, and Langbein,⁴ Richards and Davis,¹ Roth and Müller,³ Roth and Banse,¹ and I. G. Farbenfabrik.¹ These data were reviewed by Rossini.¹⁰ For the heat for the reaction,  ${
  m CH_3OH~(g)+\frac{3}{2}O_2~(g)=CO_2~(g)+2H_2O~(liq.)}$ , at 25° and a constant total pressure of 1 atmosphere (the methyl alcohol being at a pressure slightly below saturation), Rossini¹⁶ gave the value  $182.58\pm0.05$ . At  $18^\circ$ , this value becomes  $182.75\pm0.05$ .
- CH₃OH (liq.). Rossini¹⁶ reviewed the published data on the heat of vaporization of methyl alcohol and concluded that the best data are those of Fiock, Ginnings, and Holton.¹ Earlier calorimetric determinations on the heat of vaporization of methyl alcohol were reported by Brown,^{1, 2} Marshall, Mathews, Mills, Tyrer, Wirtz, Young, Jahn, and Schall. Vapor pressure data on methyl alcohol were reported by Timmermans, Young, Richards and Shipley, Mundel, Richardson, Tyrer, Drucker, Jimmens, and Kangro, Atkins and Wallace, Young and Fortey, and Regnault.
- **CH**₃**OH** (c). Data on the heat of fusion of methyl alcohol were reported by the following: Kelley,  1  -0.76 at  $-98^\circ$ ; Maass and Waldbauer,  1  -0.53 at  $-97^\circ$ ; Parks,  1  -0.71 at  $-98^\circ$ . See also Mitzukuri. Parks measured the heat of transition at  $-112^\circ$ .
- CH₃OH (aq.). Data on the heat of solution of methyl alcohol in water were reported by Berthelot,³⁶ deForcrand,^{6,7} and Bose.^{1a} The latter's data also yield values for the heat of dilution of aqueous methyl alcohol.
- ${
  m CH_3O^-}$  (CH₃OH). Wolfenden, Jackson, and Hartley¹ reported the heat of ionization of liquid methyl alcohol, in liquid methyl alcohol, to be -11.2.
- **HCOOH** (liq.). The heat of combustion of gaseous formic acid was measured by Favre and Silbermann¹ and Thomsen,¹⁵ and of liquid formic acid by Berthelot and Matignon,^{5,10} and Jahn.² The data yield the following values for the heat of combustion of liquid formic acid: Thomsen,¹⁵ 63.0; Berthelot and Matignon,^{5,10} 62.5; Jahn,² 63.0. Berthelot,^{25,150} measured the heat of decomposition of formic acid with aqueous sulfuric acid.
- **HCOOH** (g), (**HCOOH**)₂ (g). Ramsperger and Porter² and Coolidge¹ studied the equilibrium, (**HCOOH**)₂ (g) = 2**HCOOH** (g), and their data yield -14.13 for the heat of this reaction. The equilibrium concentrations in mole fraction are, for (**HCOOH**)₂ (g) and **HCOOH** (g), respectively, about 0.80 and 0.20 at 18°, and about 0.52 and 0.48 at the boiling point,  $100.8^{\circ}$ . Data on the heat of vaporization of liquid formic acid to form the equilibrium mixture of (**HCOOH**)₂ (g) and **HCOOH** (g)

were reported by Ramsperger and Porter,^{1, 2} Marshall,¹ Ogier,⁵ and Favre and Silbermann.¹⁰ We have calculated Q=-8.57 for the reaction 2HCOOH (liq.) = (HCOOH)₂ (g), at 18°.

**HCOOH** (c). The data on the heat of fusion of formic acid at its melting point are: Coolidge, 1 - 3.05; Zanninovich-Tessarin, 1 - 2.63; Tammann, 2.82; Petersen, 4 - 2.68; Berthelot, 25 - 2.40; Rideal, 1 - 2.62.

**HCOOH** (aq.). Data on the heat of solution and of dilution of formic acid in water were reported by Berthelot,²⁵ Faucon,¹ and Thomsen.¹⁵ Thomsen.¹⁵ measured the heat of oxidation of aqueous formic acid with aqueous potassium permanganate, and his data yield, for HCOOH (aq.), Qf = 101.4. See also Wrewskii and Stagoleva,¹ who reported values for the heat of polymerization of formic acid in water (and also in benzene).

 $H_2CO_3$  (aq.). This is taken as equivalent to  $CO_2$  (aq.)  $+H_2O$  (liq.).  $HC_2O_4^-$  (aq.). The value for aqueous bioxalate ion is obtained from  $NaHC_2O_4$  (aq.).

(COOH)₂ (c). The heat of combustion of crystalline oxalic acid was measured by Stohmann, Kleber, and Langbein,¹ Jahn,² and Verkade, Hartman, and Coops.² The data of the last named investigation were reviewed by Washburn,² who showed that the correction to a pressure of 1 atmosphere (from the conditions of the bomb process) is -0.66 percent. With the Washburn correction to 1 atmosphere, the data of Verkade, Hartman, and Coops² yield 59.7 for the heat of the reaction, (COOH)₂ (c) + $\frac{1}{2}$  O₂ (g) = 2CO₂ (g) +H₂O (liq.) at 18° and a constant pressure of 1 atmosphere.

(COOH)₂ (g). Vapor pressure data on crystalline oxalic acid were reported by Noyes and Webbe.¹

(COOH)₂ (aq.). Thomsen¹⁵ and Berthelot^{10, 25} measured the heat of solution of oxalic acid. With Thomsen's value  $S=-2.26_{200}$ , we have computed, for (COOH)₂ (aq.), Qf=195.3. Thomsen's¹⁵ data on the reaction of aqueous hypochlorous acid with aqueous oxalic acid yield, for (COOH)₂ (aq.), Qf=194.5. Berthelot's²⁵ data on the reaction of gaseous chlorine with aqueous oxalic acid yield, for (COOH)₂ (aq.), Qf=194.8. Berthelot's²⁵ data on the reaction of aqueous potassium permanganate with aqueous oxalic acid yield, for (COOH)₂ (aq.), Qf=195.5.

(COOH)₂·2H₂O (c). The heat of solution of oxalic acid dihydrate was measured by Thomsen,¹⁵ Favre and Silbermann,³ Berthelot,¹⁰ Graham,³ Jorissen,² Jorissen and van der Stadt,¹ and Roth and Eymann.¹ Jorissen and van der Stadt¹ measured the heat of combustion. Timofejew¹ measured the heat of solution in methyl and ethyl alcohols.

 $C_2H_3O_2^-$  ( $\infty$ ). The value for aqueous acetate ion at infinite dilution is obtained from that for aqueous sodium acetate at infinite dilution.

 $\textbf{C}_2\textbf{H}_3\textbf{O}_3^-$  (aq.). The value for aqueous glycollate ion is obtained from those for the aqueous salts.

(CHO)₂ (c). Estimating the Washburn² correction to be -0.15 per cent, we have computed from the data of deForcrand³ (see Kharasch¹) the heat of combustion of glyoxal to be 172.0.

(CHO)₂ (aq.). deForcrand³ measured the heat of solution of glyoxal. (CHO)₂ (g). We have estimated the heat of sublimation of glyoxal.

- $(HO)_2$  CHCOOH (c). Berthelot and Matignon⁶ (see Kharasch¹) measured the heat of combustion of glyoxylic acid. Estimating the Washburn² correction to be -0.25 per cent, we have calculated the heat of combustion to be 125.2.
- $(HO)_2$  CHCOOH (aq.). deForcrand¹⁷ measured the heat of solution of glyoxylic acid.
- CH₃CHO (g). The heat of combustion of gaseous acetaldehyde was measured by Thomsen¹⁵ and Berthelot and Ogier,² and of liquid acetaldehyde by Berthelot and Delepine⁴ and Louguinine.²⁵ Thomsen's¹⁵ data yield 281.6 for the heat of combustion of the gas.

CH₃CHO (liq.). Berthelot³³ measured the heat of vaporization of acetaldehyde to be -6.02 at  $22^{\circ}$ . The vapor pressure data of Gilmour¹ yield -6.6 at  $22^{\circ}$ .

CH₃CHO (c). Cooper¹ measured the heat of fusion of acetaldehyde. C₂H₄O (g). Thomsen's¹⁵ data yield 312.3 for the heat of combustion of ethylene oxide in the gaseous state; those of Berthelot⁸¹ yield the value 308.4.

 $C_2H_4O$  (liq.). Berthelot⁸¹ reported a value for the heat of vaporization of ethylene oxide. Vapor pressure data were reported by Eversheim.¹

CH₃COOH (liq.). The heat of combustion of liquid acetic acid was measured by Berthelot and Matignon³ and Roth,² and of gaseous acetic acid by Thomsen.¹⁵ Applying a Washburn correction of -0.10 per cent, we have computed Roth's² value to be 206.7 for the heat of combustion of the liquid, and that of Berthelot and Matignon³ to be 209.2. Thomsen's¹⁵ data yield 227.4 for the heat of reaction of gaseous acetic acid at 111° with oxygen at 18° to form gaseous carbon dioxide and liquid water at 18°.

CH₃COOH (c). Louguinine and Dupont, Parks and Kelley, Berthelot, Petterson, Agnition Raoult, Garner, Madden, and Rushbroke, and Pickering determined the heat of fusion of acetic acid.

CH₃COOH (aq.). The heat of solution of solid acetic acid in water was measured by Berthelot,^{3, 9} and Petterson,¹ and of liquid acetic acid in water by Berthelot,^{3, 9} and Berthelot and Louguinine.¹ Data on the heat of dilution of aqueous acetic acid were reported by Thomsen,¹⁵ Berthelot and Louguinine,¹ Berthelot,^{3, 9} Faucon,¹ Payn and Perman,¹ Bose,¹ and Richards and Gucker.¹ We have extrapolated the data of Richards and Gucker¹ to infinite dilution to obtain a value for aqueous undissociated CH₃COOH at infinite dilution in water.

HCOOCH₃ (g). Thomsen¹⁵ and Berthelot and Ogier³ measured the heat of combustion of gaseous methyl formate, and Berthelot and Dele-

pine⁴ that of liquid methyl formate. Their data yield for the heat of combustion of the gas, 241.0, 240.2, and 240.9, respectively.

**HCOOCH₃** (liq.). The heat of vaporization of methyl formate was measured by Mathews² and Berthelot and Ogier,³ who reported the values 6.75 and 6.9, respectively, at 31°. Vapor pressure data were reported by Olszewski² and Pierre.¹

HCOOCH₃ (c). Rideal¹ computed the heat of fusion of methyl formate.

- C₂H₅OH (liq.). The heat of vaporization of ethyl alcohol was measured by Brown,^{1, 2} Marshall and Ramsay,¹ Louguinine,¹¹ Mathews,² Mills,¹ Tyrer,¹ Wirtz,¹ Young,² Jahn,⁴ Regnault,^{6, 9} Schall,¹ Andrews,⁶ Parks and Nelson,¹ Svensson,¹ and Fiock, Ginnings and Holton.¹ See Rossini.¹⁶
- C₂H₅OH (c). The heat of fusion of ethyl alcohol was measured by Gibson, Parks, and Latimer¹ and Parks.¹ See also Mitsukuri¹ and Mitsukuri and Hara.²
- C₂H₅OH (aq.). The heat of mixing alcohol with water was measured by Berthelot,³⁶ Bose,¹ Dupre and Page,¹ MacInnis and Braham,¹ Pratt,¹ de Forerand,²² Winkelmann,⁴ and Kolosovskii.¹
- C₂H₅O⁻ (aq.). van Deventer and Cohen¹ measured the heat of neutralization of NaOC₂H₅ in ethyl alcohol with HCl in ethyl alcohol.
- CH₂OHCOOH (c). Stohmann, Kleber, Langbein, and Offenhauer, ^{1, 2} (see Kharasch¹) measured the heat of combustion of solid glycollic acid.
- CH₂OHCOOH (aq.). de Forcrand³ measured the heat of solution of solid glycollic acid in water.
- (CH₃)₂O (g). The heat of combustion of gaseous dimethyl ether was measured by Thomsen¹⁵ and Berthelot.⁷¹ See also Berner.⁴ Thomsen's¹⁵ data yield 349.0 for the heat of combustion of the gas.

(CH₃)₂O (liq.). Vapor pressure data were reported by Cardoso and

Bruni¹ and Regnault.⁷

(CH₂OH)₂ (liq.). Stohman and Langbein³ and Louguinine² measured the heat of combustion of ethylene glycol (see Kharasch¹).

 $(CH_2OH)_2(g)$ . Vapor pressure data on ethylene glycol were reported by de Forcrand.³³ Louguinine² measured the heat of condensation. These data yield V = -14.3 and -11.8, respectively.

 $\mathbf{CF_4}$  (g). von Wartenberg and Schütte¹ measured the heat of the reaction, C (charcoal)  $+2 \, \mathrm{F_2}$  (g)  $= \mathrm{CF_4}$  (g), to be  $165.0 \pm 2.0$ .

- CH₂FCH₂OH (liq.). Swarts^{4, 5} (see Kharasch¹) measured the heat of combustion of monofluoroethanol.
- CHF₂CH₂OH (liq.). Swarts^{4, 5} (see Kharasch¹) measured the heat of combustion of diffuoroethanol.
- CH₂FCOOH (c). Swarts⁴ (see Kharasch¹) measured the heat of combustion of monofluoroacetic acid.
- CHF₂COOH (liq.). Swarts⁴ (see Kharasch¹) measured the heat of combustion of diffuoroacetic acid.
- $CCl_4$  (g). Bodenstein, Gunther, and Hoffmeister¹ measured the heat of the reaction,  $CCl_4$  (g) +2 H₂ (g) = C ("acetylene" carbon) +4 HCl (g), to be 62.0; whence, for  $CCl_4$  (g), Qf=25.9. Berthelot¹⁰⁸ and Thomsen¹⁵ measured the heat of combustion of carbon tetrachloride.
- CCl₄ (liq.). Data on the heat of vaporization of carbon tetrachloride were reported by Marshall, Mathews, Mills, Tyrer, and Regnault. Vapor pressure data were reported by Young, Burrell and Robertson, Cardoso and Braume, Guye and Drouguinine, Keyes, Taylor, and Smith, Olszewski, and Pierre.
- $CCl_4$  (c). The data on the heat of fusion of  $CCl_4$  (c, I) are: Latimer, 1-0.69 at  $-24^\circ$ ; Bridgman, 2-0.55 at  $-23^\circ$ . Latimer measured the heat of transition.
- $C_2Cl_6$  (c). Berthelot¹⁰⁸ measured the heat of combustion of solid hexachloroethane, but his value of 110.0 (see Kharasch¹) is much too low. The vapor pressure data of Nelson¹ yield -17.0 for the heat of sublimation.
  - C₂Cl₆ (g). We have estimated this value.
- $C_2Cl_4$  (g). Thomsen¹⁵ measured the heat of combustion of gaseous tetrachloroethylene, and his data yield Qf = -6.0.
- $C_2Cl_4$  (liq.). Berthelot¹⁰⁸ reported a value for the heat of combustion of liquid tetrachloroethylene, but his value must be too low. Mathews² reported the heat of vaporization to be -8.27 at  $120^\circ$ ; the vapor pressure data of Herz and Rathmann¹ yield -8.4.
- COCl₂ (g). Thomsen's¹⁵ data on the heat of combustion of gaseous phosgene yield Qf = 52.7. Thomsen¹⁵ and Berthelot⁵¹ measured the heat of reaction of gaseous phosgene with aqueous potassium hydroxide, and their data yield, for  $COCl_2$  (g), Qf = 54.4 and 60.6, respectively. The equilibrium data of Bodenstein and Plant,¹ Bodenstein and Danant,¹ Atkinson, Heycock, and Pope,¹ Christiansen,¹ and Weigert¹ on the reaction, CO (g)  $+Cl_2$  (g)  $=COCl_2$  (g), yield, for  $COCl_2$  (g), Qf = 53.5.
- COCl₂ (liq.). Vapor pressure data were reported by Atkinson, Heycock, and Pope, Nikiten, Paterno and Mazzuchelli, Perry and Porter, and Germann and Taylor.
- $CH_3Cl$  (g). Thomsen¹⁵ and Berthelot⁷⁰ measured the heat of combustion of methyl chloride. Thomsen's¹⁵ data yield Qf = 20.1.
- CH₃Cl (liq.). The heat of vaporization was measured by Chappuis,³ Shorthose,¹ Yates,¹ and Regnault.⁹ Vapor pressure data were reported by Holts,² Shorthose,¹ and Regnault.⁶, ⁷

- $C_2H_2Cl_2$  (liq.). Berthelot and Ogier¹ measured the heat of combustion.
- $C_2H_2Cl_2$  (g). Mathews² found the heat of vaporization to be -6.69 at 40°. Vapor pressure data were reported by Korber,¹ Nilson and Petterson,¹ and Perry.¹
- CHCl₃ (g). The heat of combustion of chloroform was measured by Thomsen, ¹⁵ Berthelot, ¹⁰⁸ and Berthelot and Matignon. ^{5a} Thomsen's ¹⁵ data yield, for CHCl₃ (g), Qf = 21.7. We have estimated 23.6.
- CHCl₃ (liq.). Data on the heat of vaporization of chloroform were reported by Regnault,^{8, 9} Marshall,¹ Mathews,² Mills,¹ Tyrer,³ and Wirtz.¹
- CHCl₃ (c). Mitsukuri and Aoki¹ reported a value for the heat of fusion.
- CHCl₃ (aq.). Berthelot⁴³ measured the heat of solution of chloroform in water.
- $C_2H_3Cl$  (g). Thomsen's¹⁵ data on the heat of combustion yield, for monochlorethylene, or vinyl chloride, Qf = -6.5. We have estimated Qf = -9.
- C₂H₃Cl (liq.). Vapor pressure data were reported by Dana, Burdick, and Jenkins.¹
- $C_2H_5Cl$  (g). Thomsen¹⁵ and Berthelot¹⁰⁸ measured the heat of combustion of ethyl chloride. The data of the former yield Qf = 25.7.
- C₂H₅Cl (liq.). Yates¹ and Regnault⁶ measured the heat of vaporization. Vapor pressure data were reported by Berthoud,¹ Jenkins and Shorthose,¹ Regnault,⁶ and Antoine.³
- CH₂ClCH₂Cl (g). Thomsen¹⁵ measured the heat of combustion of ethylene chloride.
- CH₂ClCH₂Cl (liq.). The heat of vaporization of ethylene chloride was measured by Jahn⁴ and Mathews.² Vapor pressure data were reported by Pearce and Peters,¹ Rex,¹ Stadel,¹ and Timmermans.¹
- CH₃CHCl₂ (g). Data on the heat of combustion of ethylidene chloride were reported by Thomsen¹⁵ and Berthelot and Ogier.³
- CH₃CHCl₂ (liq.). Vapor pressure data were reported by Reilly and Hickinbottom¹ and Stadel.¹
- CHCl₂CHCl₂ (g). We have estimated the heat of formation of symmetrical tetrachloroethane.
  - CHCl₂CHCl₂ (liq.). Vapor pressure data were obtained by Nelson.¹
  - CHCl₂CCl₃ (g). We have estimated the value for pentachloroethane.
  - CHCl₂CCl₃ (liq.). Vapor pressure data were obtained by Nelson.¹
- ${
  m CH_2ClCHO}$  (liq.). Rivals^{1, 2} measured the heat of combustion of monochloroacetaldehyde.
- CH₃COCl (liq.). Berthelot and Louguinine¹ measured the heat of reaction of liquid acetyl chloride with water to be 23.3. See also Rivals.^{1, 5}
- CH₃COCl (g). Berthelot and Ogier⁸ measured the heat of vaporization of acetyl chloride.

CH₂ClCOCl (liq.). Rivals^{1, 2} measured the heat of reaction of liquid monochloroacetyl chloride with aqueous potassium hydroxide.

Cl₃CCHO (aq.). Berthelot^{43, 60} measured the heat of the reaction, Cl₃CCHO (aq.) + KOH (aq.) = (KCHO₂+CHCl₃) (aq.), to be 13.15; whence, for aqueous chloral, Qf = 65.4.

Cl₃CCHO (liq.). Berthelot^{43, 60} measured the heat of solution of liquid chloral in water.

Cl₃CCHO (g). Berthelot^{43, 60} determined the heat of vaporization of liquid chloral.

 $Cl_3CCH(OH)_2$  (g). Berthelot^{43, 60} measured the heat of solution of gaseous chloral hydrate.

Cl₃CCH(OH)₂ (c, II). Berthelot^{43, 60} measured the heat of solution of this solid form of chloral hydrate.

Cl₃CCH(OH)₂ (liq.). Berthelot reported the heat of fusion of chloral hydrate (c, II).

Cl₃CCH(OH)₂ (c, I). Berthelot^{43, 60} measured the heat of fusion.

 $CH_2ClCOOH$  (c,  $\alpha$ ). Berthelot and Matignon⁷ measured the heat of combustion of monochloroacetic acid (c,  $\alpha$ ).

CH₂ClCOOH (liq.). The data on the heat of fusion of monochloro-acetic acid (c,  $\alpha$ ) at 61° are: Pickering, 10 -3.90; Steiner and Johnston, 1 -4.63. See also Tanatar and Louguinine. 1

CH₂ClCOOH (c,  $\beta$ ). The data on the heat of fusion of monochloroacetic acid (c,  $\beta$ ) at 56° are: Pickering, 10 -3.33; Steiner and Johnston, 1 -4.45. See also Tanatar and Louguinine. 1

 $CH_2ClCOOH$  (c,  $\gamma$ ). Steiner and Johnston¹ measured the heat of fusion of monochloroacetic acid (c,  $\gamma$ ). See also Tanatar⁴ and Louguinine.¹

CH₂ClCOOH (aq.). For the heat of solution of monochloroacetic acid (c,  $\alpha$ ) in water, Pickering¹⁰ found -3.35 and Louguinine -2.33.

CH₂CICOOH (g). Vapor pressure data were reported by Patterson.¹

CH₂ClCOO- (aq.). The value for aqueous monochloroacetate ion is obtained from that for the aqueous sodium salt.

CCl₃COOH (c). Berthelot and Matignon⁷ measured the heat of combustion of trichloroacetic acid.

CCl₃COOH (liq.). Pickering¹⁰ measured the heat of fusion.

CCl₃COOH (aq.). Pickering¹⁰ and Louguinine¹ found the heat of solution of solid trichloroacetic acid in water to be 2.70₄₀₀¹⁵ and 2.89₁₀₀, respectively.

CHCl₂COOH (aq.). We have estimated the value for the heat of formation of aqueous dichloroacetic acid.

CHCl₂COOH (liq.). Louguinine¹ and Pickering¹⁰ measured the heat of solution of liquid dichloroacetic acid.

CHCl₂COOH (c). Pickering¹⁰ measured the heat of fusion of dichloroacetic acid.

CHCl₂COOH (g). Louguinine¹ measured the heat of vaporization. CH₂ClCH₂OH (liq.). Berthelot⁸² reported Q=36.0 for the reaction

of gaseous ethylene oxide with gaseous hydrogen chloride to form liquid monochloroethanol.

- COBr₂ (g). Trautz⁸ studied the equilibrium, CO (g) + Br₂ (g) = COBr₂ (g), and computed Q = 3.14; whence, for COBr₂ (g), Qf = 22.3.
- $\mathrm{CH_{3}Br}$  (g). Thomsen¹⁵ and Berthelot^{70, 116} measured the heat of combustion. Thomsen's¹⁵ data yield Qf = 8.5.
- $C_2H_5Br$  (g). Thomsen¹⁵ measured the heat of combustion of gaseous ethyl bromide.
- C₂H₅Br (liq.). The heat of vaporization was measured by Tyrer,² Marshall,¹ and Berthelot.^{53, 87} Vapor pressure data were reported by Regnault,^{6, 7} Rex,¹ Richards and Mathews,¹ Timmermans,¹ and Tyrer.¹
- $CH_2BrCH_2Br$  (liq.). Berthelot⁸⁴ found Q=29.3 for the reaction,  $C_2H_4$  (g)  $+Br_2$  (liq.)  $=CH_2BrCH_2Br$  (liq.); whence, for liquid symmetrical dibromoethane, Qf=19.7.
- ${
  m CH_2BrCH_2Br}$  (g). Vapor pressure data were reported by Regnault⁶ and Timmermans.² Berthelot⁵³ reported V=-8.2. Antoine³ calculated V=-9.1.
- $CH_3OH \cdot HBr$  (c). McIntosh² reported values for the heat of fusion and the heat of dissociation, at  $-83^{\circ}$ .
- $CHBr_3$  (g). We have estimated the value for gaseous bromoform.  $CH_2Br_2$  (g). We have estimated the value for gaseous dibromomethane.
- CBr₄ (g). We have estimated the value for gaseous carbon tetrabromide.
- CH₃COBr (liq.). Berthelot and Louguinine¹ measured the heat of reaction of liquid acetyl bromide with water.
- Br₃CCH(OH)₂ (c, I). Bruner² measured the heat of solution of bromal hydrate (c, I) (old crystallized material) in aqueous KOH.
- Br₃CCH(OH)₂ (c, II). Bruner² measured the heat of solution of bromal hydrate (c, II) (freshly crystallized material) in aqueous KOH.
- Br₃CCH(OH)₂ (aq.). Bruner² measured the heat of solution of bromal hydrate in water.
- CH₂BrCOOH (c). Pickering¹⁰ measured the heat of solution of monobromoacetic acid.
- CHBr₂COOH (c). Pickering¹⁰ measured the heat of solution of dibromoacetic acid.
- CBr₃COOH (c). Pickering¹⁰ measured the heat of solution of tribromoacetic acid.
- $C_2I_4$  (c). Berthelot¹²¹ measured the heat of combustion of tetra-iodoethylene.
- CH₃I (g). Thomsen¹⁵ and Berthelot¹²¹ measured the heat of combustion of gaseous methyl iodide.
- CH₃I (liq.). Marshall¹ measured the heat of vaporization. Vapor pressure data were reported by Brown and Acree,¹ Rex,¹ and Robertson and Acree.¹
  - $CH_2I_2$  (liq.). Berthelot¹²¹ measured the heat of combustion.

 $CH_2I_2$  (g). We have estimated the value for diiodomethane.

CHI₃ (c). Berthelot¹²¹ measured the heat of combustion.

CHI₃ (g). We have estimated the value for gaseous iodoform.

C₂H₅I (g). Thomsen¹⁵ measured the heat of combustion of ethyl iodide.

C₂H₅I (liq.). Data on the heat of vaporization were reported by Mathews,2 Marshall,1 Regnault6 and Andrews.10 Vapor pressure data were reported by Regnault, Rex, Robertson and Acree, Thorpe and Rodger, and Tyrer.4

CH2ICH2I (c). Berthelot121 measured the heat of combustion of

ethylene iodide.

CH₂ICH₂I (g). We have estimated this value. CH₃COI (liq.). Berthelot and Louguinine¹ measured the heat of reaction of acetyl iodide with water.

CH₂ICH₂Br (c). Berthelot⁷⁴ measured the heat of the reaction,  $CH_2ICH_2I$  (c) + $Br_2$  (liq.) =  $CH_2ICH_2Br$  (c) +IBr (liq.), to be 13.9.

(CS)_x (c). Dewar² measured the heat of combustion of solid polymerized carbon monosulfide.

CS (g). We have estimated this value

CS₂ (g). Thomsen¹⁵ measured the heat of combustion of gaseous carbon disulfide, and Berthelot^{73, 108} that of the liquid. For CS₂ (g), Thomsen's data vield Qf = -28.6, and those of Berthelot -17.0 and -24.4, respectively. The equilibrium data of Koref² yield -16.7.

CS₂ (liq.). Data on the heat of vaporization were reported by Mathews,² Mills,¹ Wirtz,¹ Winkelmann,^{2, 3} Koref,¹ Andrews,⁵ and Person.⁷ Vapor pressure data were reported by Battelli. Henning and Stock, Mund, Regnault, 6, 7 von Siemens, Rex, Stock and Seelig, Galitzine, 1 Hannay,1 and Muller and Grotrian.1

CS₂ (c). Mitsukuri and Aoki¹ reported a value for the heat of fusion.

COS (g). Thomsen's 15 data on the heat of combustion of gaseous carbonylsulfide yield, for COS (g), Qf = 34.5. This value is in accord with the estimate of Lewis and Lacey1 and with the equilibrium data of Stock, Sieke, and Pohland.¹ Berthelot's⁵¹ data on the heat of combustion are in disagreement with the foregoing data. From spectroscopic data, Lockte, Holtgreven, and Bawn¹ computed the energy of dissociation of COS (g) into CO (g) and S (g), and their data yield, for COS (g), Qf = 35.

COS (liq.). Vapor pressure data were reported by Stock and Kuss.¹ CH₃SH (g). Thomsen¹⁵ reported the heat of combustion of gaseous methyl mercaptan.

CH₃SH (liq.). Vapor pressure data were reported by Berthoud and Brun.1

(CH₃)₂S (g). Thomsen¹⁵ measured the heat of combustion of gaseous dimethyl sulfide.

(CH₃)₂S (liq.). Vapor pressure data were reported by Berthoud and Brun.1

 $C_2H_5SH$  (g). The heat of combustion data of Thomsen¹⁵ and Berthelot^{124, 125} yield, for gaseous ethyl mercaptan, Qf = 9.7 and 19, respectively.

 $C_2H_5SH$  (liq.). Vapor pressure data were reported by Berthoud and Brun.¹

- $C_2H_5HSO_4$  (aq.). Berthelot³⁶ reported the heat of reaction of aqueous ethanol with aqueous sulfuric acid. His data yield, for aqueous ethylsulfuric acid, Qf = 208.2, which value seems too low.
- $\textbf{C}_2\textbf{N}_2$  (g). For the heat of the reaction,  $C_2N_2(g)+2\,O_2(g)=2\,CO_2(g)+N_2$  (g), the various data are: Thomsen,  15  259.4; Berner,  4  262.1; Berthelot,  54  264; Dulong,  2  275; von Wartenberg and Schutza,  1  261.3; McMorris and Badger,  1  251.4.
- C₂N₂ (liq.). Vapor pressure data were reported by Faraday,³ Terwen,¹ Perry and Bardwell,¹ Chappuis and Riviere,¹ Cardoso and Braume,¹ Dewar,² and Bunsen.²
- $C_2N_2$  (aq.). Cyanogen is slowly hydrolyzed in contact with water. The data of Berthelot¹²⁹ and Hammerl² on the heat of solution of gaseous cyanogen in water yield, when extrapolated to zero time, S=8.8 and 6.8, respectively.
- NCN₃ (c). Darzen¹ measured the heat of decomposition of carbon perazuride.
- HCN (g). The data on the heat of combustion are: Thomsen, ¹⁵ 158.5; Berthelot, ⁷⁶ 159.3.
- **HCN** (liq.). Berthelot's²⁷ data on the reaction, HCN (liq.) +2 H₂O (liq.) +HCl (aq.) = (NH₄Cl+HCHO₂) (aq.), yield, for HCN (liq.), Qf = -16.2. Berthelot²⁷ measured the heat of vaporization of liquid HCN to be -5.7 at the boiling point. The following values, computed from vapor pressure data, were reported for the heat of vaporization at 25°: Bredig and Teichmann,¹ -6.74; Hara and Sinozaki,¹ -6.6; Sinozaki, Hara, and Mitsukuri,¹ -6.67; Perry and Porter,¹ -6.65; Bussy and Brugnet,¹ -6.7.
- HCN (c). The data on the heat of fusion at  $-14^{\circ}$  are: Sinozaki, Hara, and Mitsukuri, -1.72; Perry and Porter, -1.73; Piloty and Steinbock, -1.68.
- HCN (aq.). Data on the heat of solution of HCN (liq.) were reported by Berthelot²⁷ and Bussy and Brugnet.¹
- CN⁻ (aq.). The values for aqueous lithium, sodium, and potassium cyanides yield, for CN⁻ (aq.), Qf = -35.0, -34.9, and -34.8, respectively. von Steinwehr's¹ conductivity data yield Q = -11.0 for the reaction, HCN (aq.) = H⁺ (aq.) + CN⁻ (aq.); whence, for CN⁻ (aq.), Qf = -34.9.
- **CN** (g). The energy of dissociation into gaseous atoms was reported by Birge and Sponer.¹ The values for the energy states of gaseous CN are from Mulliken,⁶ Jenkins,¹ Kratjer,¹ Ryde and Asundi,¹ Herzberg,² Heitler and Herzberg,¹ Turner and Samson,¹ and Weizel.¹
- CN-(g). Lederle² calculated the energy of the reaction, CN (g)  $+\theta$  = CN-(g), to be 92, from spectroscopic data on cyanonitrite. From the

lattice energies of KCN and NaCN, Sherman¹ computed the values 110.5 and 112.5 for the electron affinity of CN (g).

CNO- (aq.). This value is obtained from those for the aqueous salts. CH₃NH₂ (g). For the heat of combustion of gaseous methylamine,

Thomsen¹⁵ found 258.1 and Muller⁴ 261.4. See also Lemoult.²

 $CH_3NH_2$  (liq.). Gautier (see Berthelot¹⁵¹) measured the heat of vaporization to be -6.57. The vapor pressure data of Berthoud, Felsing and Thomas, and Plank and Vahl yield -6.40 at  $-7^{\circ}$ .

CH₃NH₂ (aq.). Data on the heat of solution of gaseous methylamine in water were obtained by Bonnifoi³ and Felsing and Wohlford.¹

CH₃NH₂·HCl (aq.). Muller^{1,6} measured the heat of reaction of aqueous methylamine with aqueous HCl to be 13.0.

CH₃NH₃+ (aq.). The value for aqueous methylaminium ion is obtained from aqueous methylamine hydrochloride.

 ${\rm CH_3CN}$  (g). Thomsen¹⁵ and Lemoult,¹ respectively, measured the heats of combustion of gaseous and of liquid acetonitrile, methylcyanide. Their data yield, for CH₃CN (g), Qf = -20.3 and -17.9, respectively.

 ${
m CH_3CN}$  (liq.). Kahlenberg¹ reported a value for the heat of vaporization.

NH₂CN (c). Lemoult^{1, 6} measured the heat of combustion of solid cyanamide.

NH₂CN (aq.). Lemoult^{1, 6} measured the heat of solution of solid cyanamide in water.

NH2CN (liq.). Pratolongo1 measured the heat of fusion.

NH₄CN (aq.). Berthelot²⁷ measured the heat of reaction of NH₄OH (aq.) with HCN (aq.) to be 1.3.

NH₄CN (c). Berthelot²⁷ measured the heat of solution of ammonium cyanide.

CH₃NC (liq.). The data on the heat of combustion (see Kharasch¹) of liquid methylisocyanide are: Lemoult, 9 317.4; Guillemard, 1 320.1.

 $C_2H_5NH_2$  (g). Thomsen's¹⁵ data on the heat of combustion of the gas yield, for gaseous ethylamine, Qf=13.0; those of Lemoult² on the heat of combustion of the liquid yield Qf=13.3. See also Berthelot.⁷⁵

 $C_2H_5NH_2$  (liq.). Gautier (see Berthelot¹⁰²) measured the heat of vaporization to be -6.5 at  $15^{\circ}$ . The vapor pressure data of Berthoud¹ and Pohland and Mehl¹ yield -6.75 and -6.53 at  $15^{\circ}$ 

C₂H₅NH₂ (aq.). Data on the heat of solution of liquid ethylamine were reported by Baud, Ducelliez, and Gay, Berthelot, ⁷⁵ and Colson. ¹

C₂H₅NH₂·HCl (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous ethylamine with aqueous HCl to be 13.44₄₀₀.

C₂H₅NH₂·HCl (c). Gautier² (see Berthelot¹⁵¹) measured the heat of solution of crystalline ethylamine hydrochloride.

 $C_2H_5NH_2\cdot H^+$  (aq.). The value for aqueous ethylaminium ion is obtained from aqueous ethylamine hydrochloride.

(CH₃)₂NH (g). Thomsen¹⁵ and Muller⁴ measured the heat of com-

bustion of gaseous dimethylamine: Lemoult² that of the liquid. Their data yield, for  $(CH_3)_2NH$  (g), Qf = 8.2, 2.0, and 5.0, respectively.

(CH₃)₂NH (liq.). Vapor pressure data were reported by Berthoud.¹

- (CH₃)₂NH (aq.). We have estimated the heat of solution of dimethylamine.
- $(CH_3)_2NH\cdot HCl$  (aq.). Thomsen measured the heat of reaction of  $(CH_3)_2NH$  (aq.) with HCl (aq.) to be  $11.81_{400}$ .
- (CH₃)₂NH·H⁺ (aq.). The value for aqueous dimethylaminium ion is obtained from that for aqueous dimethylamine hydrochloride.
- $H_2NC$  (:NH)NHCN (c). Lemoult measured the heat of combustion of dicyandiamide.
- $H_2NC$  (:NH)NHCN (aq.). Lemoult measured the heat of solution of dicyandiamide.
- $NH_4CNO$  (c). The equilibrium data of Walker and Wood¹ yield 4.9 for the heat of the reaction,  $NH_4CNO$  (c) =  $(NH_2)_2CO$  (c); whence, for  $NH_4CNO$  (c), Qf = 73.6.
- $NH_4CNO$  (aq.). Walker and Wood¹ measured the heat of solution of solid ammonium cyanate in water to be -6.23.
- HCNO (aq.). Berthelot²⁷ measured the heat of reaction of aqueous potassium cyanate with aqueous hydrochloric acid, and Lemoult¹ that of aqueous barium cyanate with aqueous nitric acid and with aqueous sulfuric acid.
- (NH₂)₂CO (c). The heat of combustion of urea was measured by Berthelot and Petit,¹ Emery and Benedict,¹ Krummacher,¹ and Stohmann and Langbein.²
- (NH₂)₂CO (aq.). The heat of solution of urea was measured by Thomsen,¹⁵ Berthelot and Petit,⁵ Matignon,¹ and Walker and Wood.¹ Data on the heat of dilution of aqueous urea were reported by Naudè,² Perman and Lovett,¹ and Fricke and Havestadt.¹
- $(NH_2)_2CO\cdot HNO_3$  (aq.). Thomsen¹⁵ measured the heat of mixing aqueous urea with aqueous nitric acid.
- (NH₂)₂CO·HNO₃ (c). Matignon measured the heat of solution of urea nitrate.
- $\mathbf{HCONH_2}$  (liq.). The data of Stohmann and Schmidt⁴ (see Karasch¹) on the heat of combustion of liquid formamide yield Qf = 62.1.
- **HCONH₂** (aq.). Calvet^{1, 2} found Q=6.73 for the reaction, HCONH₂ (200) + NaOH (200) = HCOONa (200) + NH₃ (200); whence, for aqueous formamide, Qf=57.8. Berthelot found Q=1.0 for the reaction of HCONH₂ (aq.) with H₂O (liq.); whence, for aqueous formamide, Qf=61.9.
- ${
  m CH_3CONH_2\ (aq.)}$ . Calvet^{1, 2} reported Q=6.55 for the reaction,  ${
  m CH_3CONH_2(200)} + {
  m NaOH\ (200)} = {
  m CH_3COONa\ (200)} + {
  m NH_3\ (200)}$ ; whence, for  ${
  m CH_3CONH_2\ (200)}$ , Qf=75.93.
- $\mathrm{CH_{3}CONH_{2}}$  (c). The data of Stohmann and Schmidt⁴ and Berthelot and Fogh¹ on the heat of combustion of crystalline acetamide yield Qf = 77.2 and 71.7, respectively. Speyers¹ measured the heat of solution

of crystalline acetamide in water to be -1.98 at  $23^{\circ}$ , while Berthelot and Fogh¹ and Calvet¹, ² found -1.85 and  $-2.05_{200}$ ¹, respectively. The last value yields, for CH₃CONH₂ (c), Qf = 77.98.

 ${
m CH_3CONH_2}$  (liq.). Bridgman⁷ reported a value for the heat of fusion.  ${
m CH_3NO_2}$  (liq.). Thomsen¹⁵ measured the heat of combustion of gaseous nitromethane and Berthelot and Matignon⁷ and Swietoslawski⁶ that of liquid nitromethane. Their data yield, respectively, for  ${
m CH_3NO_2}$  (liq.),  ${\it Qf} = 25.3$ , 27.6, and 27.2.

CH₃NO₂ (g). For the heat of vaporization of nitromethane, the data are: Berthelot and Matignon, -6.98 at 22°; Mathews, -8.25 at 99°. The vapor pressure data of Williams are in accord with the latter value.

CH₃NO₂ (aq.). Berthelot and Matignon⁷ measured the heat of solution of liquid nitromethane in water.

CH₂NO₂ (aq.). Berthelot and Matignon measured the heat of solution of liquid nitromethane in aqueous KOH to be 7.0.

HCOONH₄ (aq.). Berthelot¹¹ measured the heat of neutralization of aqueous formic acid with aqueous ammonia to be 11.9₂₀₀¹⁰.

**HCOONH**₄ (c). Berthelot¹¹ measured the heat of solution of ammonium formate.

 $\mathrm{NH_4HCO_3}$  (aq.). Berthelot⁴ and Berthelot and Andre¹ reported values for the heat of neutralization of  $\mathrm{NH_4OH}$  (aq.) with  $\mathrm{H_2CO_3}$  (aq.). Data on the heat of dilution of ammonium bicarbonate were reported by Thomsen¹⁵.

NH₄HCO₃ (c). Berthelot and Andre¹ measured the heat of solution. Bonnier¹ measured the dissociation pressure.

(NH₂)₂C (:NH)·HNO₃ (c). Matignon¹ measured the heat of combustion of guanidine nitrate.

 $(NH_2)_2C(:NH)\cdot HNO_3$  (aq.). Matignon¹ measured the heat of solution of guanidine nitrate.

 $(NH_2)_2CNH$  (aq.). Matignon¹ measured the heat of neutralization of aqueous guanidine nitrate to be 14.1, whence, for aqueous guanidine, Qf = 32.3.

 $(NH_2)_2CNH$  (c). Matignon¹ measured the heat of solution of a sample of crystalline guanidine that contained nearly one-half mole of water to be 1.23.

 $(NH_4)_2CO_3$  (aq.). Thomsen¹⁵ and Berthelot⁴ measured the heat of neutralization of aqueous ammonia with aqueous carbon dioxide.

 $NH_2COONH_4$  (aq.). Aqueous ammonium carbamate is taken equivalent to  $(NH_4)_2CO_3$  (aq.)  $-H_2O$  (liq.).

 $\mathrm{NH_2COONH_4}$  (c). The data on the heat of solution are: Matignon,⁹ -3.80 at 15°; Raabe,¹ -3.45. Raabe¹ and Clark and Hetherington¹ reported for the heat of the reaction,  $2\mathrm{~NH_3}$  (g)  $+\mathrm{CO_2}$  (g)  $=\mathrm{NH_2COONH_4}$  (c), Q=39.3 and 38.06, respectively, whence, for solid ammonium carbamate, Qf=160.7 and 159.45. Equilibrium data on this last reaction were reported by Briggs and Migrdichian,¹ Briner,¹ Matignon and Frejacques,¹ and Isambert.⁸ See also Lecker¹ and Hori.¹

HOCH₂CN (liq.). Berthelot and Andre⁴ measured the heat of combustion of liquid glycollic nitrile.

CH₃NCO (liq.). Lemoult⁹ measured the heat of combustion of liquid methyl isocyanate.

NH₂OCCOOH (c). Matignon¹ and Stohmann and Haussmann^{1, 2} found 128.6 and 132.6, respectively, for the heat of combustion of solid oxamic acid.

NH₂OCCOOH (aq.). Matignon¹ measured the heat of solution of solid oxamic acid.

NH₂OCCOO- (aq.). Matignon¹ measured the heat of reaction of aqueous oxamic acid with aqueous potassium hydroxide.

 $(CONH_2)_2$  (c). Stohmann and Haussmann^{1, 2} measured the heat of combustion of solid oxamide.

NH₂OCNHCHO (liq.). Matignon¹ measured the heat of combustion of liquid formylurea.

CH₃CHNOH (c). Landrieu¹ (see Kharasch¹) measured the heat of combustion of solid acetaldoxime.

CH₂OHCOONH₄ (aq.). de Forcrand³ measured the heat of neutralization of aqueous glycollic acid with aqueous ammonia.

CH₂OHCOONH₄ (c). de Forcrand³ measured the heat of solution of ammonium glycollate.

NH₂CH₂COOH (c). The heat of combustion of aminoacetic acid, glycine, was measured by Stohmann and Langbein² and Wrede² to be 234.5 and 233.4, respectively.

NH₂CH₂COOH (aq.). Louguinine¹ measured the heat of solution of solid aminoacetic acid, glycine.

 ${
m NH_2CH_2COO^-}$  (aq.). Louguinine¹ found Q=2.97 for the reaction of aqueous aminoacetic acid with aqueous OH⁻ to form aqueous glycinate, or aminoacetate, ion. Branch and Miyamoto,¹ from conductivity measurements, calculated the heat of ionization of aqueous aminoacetic acid into aqueous H⁺ and aqueous glycinate ion to be -10.70.

 $\rm NH_2CH_2COOH\cdot H^+$  (aq.). Branch and Miyamoto¹ calculated, from conductivity, data  $\it Q=-14.60$  for the reaction,  $\rm H_2O$  (liq.)  $+\rm NH_2CH_2$  COOH (aq.)  $=\rm OH^-$  (aq.)  $+\rm NH_2CH_2COOH\cdot H^+$  (aq.).

 $C_2H_5NO_2$  (g). Thomsen¹⁵ measured the heat of combustion of gaseous nitroethane, and Berthelot and Matignon⁶ that of the liquid. Their data yield, for gaseous nitroethane, Qf = 22.2 and 27.7, respectively.

 $C_2H_5NO_2$  (liq.). Berthelot and Matignon⁶ measured the heat of vaporization of nitroethane.

 $C_2H_5NO_2$  (aq.). We have estimated the heat of solution of liquid nitroethane.

C₂H₄NO₂- (aq.). Berthelot and Matignon⁶ measured the heat of reaction of aqueous nitroethane with aqueous OH- to be 10.1.

 $C_2H_5ONO$  (g). Thomsen¹⁵ measured the heat of combustion of gaseous ethyl nitrite to be 333.9; whence Qf = 25.9.

 $C_2H_5ONO_2$  (g). Thomsen¹⁵ measured the heat of combustion of gaseous ethyl nitrate to be 326.4; whence Qf = 33.4.

 $C_2H_5ONO_2$  (liq.). We have estimated the heat of vaporization of ethyl nitrate.

 $NH_4HC_2O_4$  (aq.). Berthelot¹³¹ measured the heat of reaction of  $NH_3$  (aq.) with  $H_2C_2O_4$  (aq.) to form aqueous ammonium acid oxalate. See also Andrews.¹¹

 $(\mathbf{NH_4})_2\mathbf{C}_2\mathbf{O}_4$  (aq.). Berthelot¹³¹ measured the heat of neutralization of aqueous ammonia with aqueous oxalic acid.

 $(NH_4)_2C_2O_4$  (c). Berthelot¹³¹ measured the heat of solution of ammonium oxalate.

 $(NH_4)_2C_2O_4 \cdot H_2O$  (c). Berthelot¹³¹ measured the heat of solution of ammonium oxalate monohydrate.

C₂H₅NHNO₂ (liq.). Swarts^{4, 5} (see Kharasch¹) measured the heat of combustion of ethylnitroamine.

(CH₃)₂NNO₂ (liq.). Swietoslawski⁶ measured the heat of combustion of liquid dimethylnitrosoamine.

CH₃NH₂·H₂CO₃ (aq.). Muller⁶ measured the heat of reaction of 1 mole of aqueous methylamine with 1 mole of aqueous carbon dioxide.

CH₃COONH₄ (aq.). The heat of neutralization of aqueous acetic acid with aqueous ammonia was measured by Thomsen,¹⁵ Berthelot,^{9,31} and Andrews.¹¹ Data on the heat of dilution of aqueous ammonium acetate were reported by Thomsen¹⁵ and Dunnington and Hoggard.¹

CH₃COONH₄ (c). Berthelot¹³¹ measured the heat of solution of ammonium acetate.

 $(CH_2NH_2)_2 \cdot H_2O$  (c). Berthelot¹¹⁸ measured the heat of combustion of solid ethylene diamine monohydrate.

 $(CH_2NH_2)_2$  (aq.). Berthelot¹¹⁸ measured the heat of solution of ethylene diamine monohydrate in water to be  $5.08_{1000}^{25}$ .

(CH₂NH₂)₂·2 HCl (aq.). Berthelot¹¹⁸ measured the heat of reaction of aqueous ethylene diamine with 2 HCl (aq.) to be 23.2; Colson and Darzen¹ found 23.5.

 $(CH_2NH_2)_2 \cdot 2$  HCl (c). Berthelot¹¹⁸ and Colson and Darzen¹ measured the heat of solution of ethylene diamine dihydrochloride to be  $-6.65^{25}$  and -7.6, respectively.

 $(CH_2NH_2)_2 \cdot 2 \text{ HNO}_3$  (aq.). Berthelot¹¹⁸ measured the heat of reaction of aqueous ethylene diamine with  $2 \text{ HNO}_3$  (aq.) to be 23.2.

 $(CH_2NH_2 \cdot H)_2^{++}$  (aq.). The value for aqueous ethylene diaminium ion is obtained from aqueous ethylene diamine dihydrochloride.

CH₂FONH₂ (c). Swarts⁵ (see Kharasch¹) measured the heat of combustion of monofluoroacetamide.

CNCl (liq.). Berthelot²⁷ found Q = 61.7 for the reaction, CNCl (liq.)  $+2 \text{ H}_2\text{O}$  (liq.)  $= (\text{NH}_4\text{Cl} + \text{CO}_2)$  (aq.).

CNCl (g). Berthelot²⁷ measured the heat of vaporization. Vapor pressure data were reported by Regnault.⁶

CARBON 251

CH₂ClCOONH₄ (aq.). Rivals¹ measured the heat of neutralization of aqueous monochloroacetic acid with aqueous ammonia.

CCl₃COONH₄ (aq.). Rivals¹ measured the heat of neutralization of aqueous trichloroacetic acid with aqueous ammonia.

CH₂ClCONH₂ (c). Rivals¹ measured the heat of combustion of monochloroacetamide.

CH₂ClCONH₂ (aq.). Calvet² measured the heat of reaction of aqueous monochloroacetamide with aqueous KOH to be 9.01.

CHCl₂CONH₂ (aq.). Calvet² measured the heat of reaction of aqueous dichloroacetamide with aqueous NaOH to be 10.12.

CCl₃ CONH₂ (c). Rivals^{3, 4} measured the heat of combustion of trichloroacetamide.

CCl₃ CONH₂ (aq.). Calvet² measured the heat of reaction of aqueous trichloroacetamide with aqueous NaOH to be 19.71.

CHF₂CH₂NH₂ (liq.). Swarts^{4, 5} measured the heat of combustion of liquid difluoroethylamine.

CHF₂CH₂NHNO₂ (c). Swarts^{4, 5} measured the heat of combustion of solid diffuoroethylnitroamine.

CNI (aq.). Berthelot²⁷ found Q=6.4 for the reaction, KCN (aq.)  $+I_2$  (c) = (CNI+KI) (aq.).

CNI (c). Berthelot²⁷ measured the heat of solution.

CNS⁻( $\infty$ ). This value is obtained from those for NaCNS ( $\infty$ ) and KCNS ( $\infty$ ).

NH₄CNS (aq.). This value is obtained from those for the aqueous ions.

NH₄CNS (c). Berthelot⁹ measured the heat of solution of ammonium thiocyanate. Matignon¹ measured the heat of combustion.

 $(NH_2)_2CS$  (c). Matignon¹ measured the heat of combustion of thiourea.

 $(NH_2)_2CS$  (aq.). Matignon¹ measured the heat of solution of solid thiourea.

(NH₂)₂CS·HNO₃ (aq.). Matignon¹ measured the heat of mixing aqueous thiourea with aqueous nitric acid to be 0.07.

(NH₂)₂CS·HNO₃ (c). Matignon¹ measured the heat of solution of thiourea nitrate.

 $(C_2H_5)_3PO_4$  (liq.). Cavalier¹ measured the heat of reaction of POCl₃ (liq.) with  $3 \text{ NaC}_2H_5O$  (benzene) to be 109.8.

CH₃CNS (g). The data of Thomsen¹⁵ on the heat of combustion of gaseous methyl thiocyanate yield, for CH₃CNS (g), Qf = -36.2.

CH₃CNS (liq.). The data of Berthelot¹²⁰ on the heat of combustion of liquid methyl thiocyanate yield, for CH₃CNS (liq.), Qf = -18.5.

 $CH_3NCS$  (g). The data of Thomsen¹⁵ on the heat of combustion of gaseous methyl isothiocyanate yield, for  $CH_3NCS$  (g), Qf = -29.3.

 $\mathrm{CH_3NCS}$  (c). The data of Berthelot¹²⁰ on the heat of combustion of solid methyl isothiocyanate yield, for  $\mathrm{CH_3NCS}$  (c), Qf = -8.3.

# SILICON

Si (c). Standard state.

Si (amorphous). The data of von Wartenberg,² who measured the heats of combustion of both the crystalline and amorphous forms of silicon, yield for the latter Qf = -1.0.

Si (g). von Wartenberg² considered the vapor to be polyatomic and gave -44 as the heat of sublimation. Recently Ruff and Konschak¹ measured what they believed to be the vapor pressure of silicon, and deduced the heat of sublimation to be -85 at 18°. The heat of sublimation of silicon can also be computed by utilizing the lattice energy of SiO₂, which is 3247 according to Hylleraas,² but the value obtained is a small difference of very large numbers and the uncertainty may be as much as 200.

The energy states of gaseous monatomic silicon are taken from the following works: first spectra, Fowler^{2, 4}; second, Fowler⁵ and Bowen⁴; third, Fowler⁵ and Sawyer and Paschen¹; fourth, Fowler⁵; fifth, Edlen and Ericson.¹

SiO₂ (solid). The heat of combustion of silicon to form silicon dioxide was measured by Potter,¹ von Wartenberg,² and Roth,⁴ who found, respectively, Q=215, 195, and 204.0. Mixter⁵ measured the heats of the reactions, Si (c) +2 Na₂O₂ (c) =Na₂SiO₃ (c) +Na₂O (c) and SiO₂ (gls.) +Na₂O (c) =Na₂SiO₃ (solid, fused), to be 234.6 and 73.27, respectively; whence, for Si (c) +2 Na₂O₂ (c) =SiO₂ (gls.) +2 Na₂O (c), Q=161.0, and for SiO₂ (gls.), Qf=200.8. The various solid forms of SiO₂ are silica glass,  $\alpha$  and  $\beta$  quartz,  $\alpha$  and  $\beta$  cristobalite, and tridymite. The thermal properties of the various forms are determined from data on their heats of solution in concentrated aqueous HF which have been obtained by Mulert,¹ Ray,¹ Wietzel,¹ and from data on heat capacities which have been obtained by Wietzel,¹ Cohn,¹ Neumann,¹ Perrier and Roux,¹ and White.¹ The values we have selected for the heats of solution in 35% aqueous HF are: SiO₂ (gls.), 36.98; SiO₂ (quartz), 33.65; SiO₂ (colloid), 38.9.

SiO₂ (liq.). From melting point curves, Kracek¹ calculated the heat of fusion of cristobalite to be -1.84 at 1530°.

 $SiO_2$  (g). Ruff and Schmidt¹ measured the vapor pressure of silica. Their data, which are not very concordant, yield a value of about -79 for the heat of vaporization at  $1900^{\circ}$ .

 $H_2SiF_6$  (aq.). The heat of solution of silica glass in aqueous HF varies considerably with the concentration of the acid, as shown by the following data: Ray, 137.24 in 35% HF; Mulert, 132.14 in 20% HF; Wietzel, 135.97 in 35% HF, and 38.8 in fuming HF. Mulert 1 measured the heat of solution of silica containing various amounts of water in the same acid used for the solution of silica glass, and found that beyond  $SiO_2 \cdot 50 H_2O$ , the heat of solution was constant and equal to 33.6 in 20% HF. Mulert 1 also measured the heat of solution of the same hydrated material in exactly 6 moles of dilute acid, obtaining 32.3.

SILICON 253

From these data we have computed Q = 30.7 for the reaction,  $SiO_2$  (gls.) +6HF (6)  $= H_2SiF_6$  (aq.), whence, for  $H_2SiF_6$  (aq.), Qf = 547.8.

 $SiF_4$  (g). The data of von Wartenberg and Schutte, who measured directly the heat of formation of this substance, give for  $SiF_4$  (g), Qf = 359.7 Truchot^{1, 2, 3} measured the heat of solution of  $SiF_4$  (g) in 2 moles of aqueous HF to be 34.0; Guntz¹ found 33.50. Selecting the value 33.8, we have computed, for  $SiF_4$  (g), Qf = 363.0.

Johnson and Jenkins¹ reported a critical potential of 5.03 volt-electrons for the SiF₄ molecule, but the excited state is not known.

 $SiF_4$  (liq.),  $SiF_4$  (c). The vapor pressure data of Patnode and Papish, Ruff and Ascher, and LeBoucher, Fischer, and Biltz yield  $-4.46^{-90}$  for the heat of vaporization and  $-6.16^{-95}$  for the heat of sublimation.

 $SiO_2 \cdot nH_2O$  (c). Silicic acids of almost every possible composition have been described, but there seems to be no evidence that these substances are definite compounds. Mulert¹ measured the heats of solution of the hydrates ranging in composition from  $SiO_2 \cdot H_2O$  to  $SiO_2 \cdot 86.6 \ H_2O$ , and found no break in the curve representing the relation between the heat of solution and the number of moles of water in the so-called hydrates. On the other hand, Thiessen and Koerner¹ obtained some vapor pressure evidence indicating the existence of the hydrates containing  $\frac{1}{2}$ , 1,  $1\frac{1}{2}$ , and 2 moles of water. Their data yield 12.7, 10.9, 10.1, and 8.7 for the respective heats of dissociation per mole of water vapor.

 $SiH_4$  (g). Ogier¹ measured the heat of combustion to be 324.3, whence, for  $SiH_4$  (g), Qf=13.7. The equilibrium data of von Wartenberg² yield Qf=8.7.

 $SiH_4$  (liq.). Wintgen¹ reported -3.03 for the heat of vaporization of the liquid at the boiling point,  $-112^{\circ}$ .

 $Si_nH_{2n+2}$  (g). Wintgen¹ reported the heats of vaporization for  $Si_2H_6$ ,  $Si_3H_8$ , and  $Si_4H_{10}$ .

SiCl₄ (liq.). Troost and Hautefeuille^{4, 5} measured the heat of the direct combination of amorphous silicon and gaseous chlorine to form liquid silicon tetrachloride, reporting Q=157.6. Berthelot⁵⁰ reviewed their data and deduced Q=150.1, by making some calorimetric corrections to their data. For the heat of the reaction, SiCl₄ (liq.) +2H₂O (liq.) =SiO₂ (aq., colloid) +4HCl (aq.), the following values were reported: Troost and Hautefeuille,^{3, 5} 70.0; Roth and Schwartz,¹ 70.1; Berthelot,⁵⁰ 69.7; Thomsen,¹⁵ 69.3. From these data, we have computed, for SiCl₄ (liq.), Qf=150.1.

SiCl₄ (g). The calorimetric data on the heat of vaporization of the liquid at  $57^{\circ}$  are: Ogier,  1  -6.3; Stock, Somiesky, and Wintgen,  1  -7.19; Wintgen,  1  -7.19. These values are in accord with the vapor pressure data of Regnault and Becker and Meyer. Kahlenberg and Koenig deduced -6.2 by an uncertain method.

 $SiCl_4$  (c). Latimer¹ found F = -1.85 at  $-70^\circ$ .

SiBr₄ (liq.). Berthelot⁵⁰ found the heat of reaction of this substance with water to be 83.0, whence, for SiBr₄ (liq.), Qf = 93.6.

 $SiI_4$  (c). Berthelot⁵⁰ found the heat of reaction of this substance with water to be 85.7, which gives, for  $SiI_4$  (c), Qf = 29.8.

 $SiH_2Cl_2$  (g). Stock and Somieski³ reported  $V = -6.1^{12}$ .

 $SiH_3Cl(g)$ . Stock and Somieski³ reported  $V = -5.1^{10}$ .

 $SiH_2Br_2$  (g). Stock and Somieski² reported  $V = -7.4^{66}$ .

 $SiH_3Br(g)$ . Stock and Somieski¹ reported  $V = -5.85^2$ .

 $(SiCl_3)_2O$  (g). Stock, Somieski, and Wintgen¹ reported  $V = -9.4^{137}$ .

 $Si_2Cl_6$  (g). Guinchant^{4, 5} reported  $V = -11.0^{139}$ .

 $Si_3Cl_8$  (g). Guinchant^{4, 5} reported  $V = -12.1^{213}$ .

 $SiS_2$  (c). Sabatier¹ measured the heat of the reaction  $SiS_2$  (c)  $+2H_2O$  (liq.)  $=SiO_2$  (colloid, aq.)  $+2H_2S$  (g), finding  $Q^{9.5}=38.8$  and 54.0, respectively, for white and yellow  $SiS_2$ .

 $Si_3N_4$  (c). Hincke and Brantley,¹ from their equilibrium data on the reaction,  $Si_3N_4$  (c) = 3Si (c) +2N₂ (g), computed  $Q^{1600} = -176.3$ , which gives Qf = 157. Matignon^{10, 13} measured the equilibrium 3SiO₂ (c) +6C (amorphous) +2N₂ (g) = Si₃N₄ (c) +6CO (g), and computed, with the aid of the Nernst equation, Q = -203, whence, for  $Si_3N_4$  (c), Qf = 230.

 $(NH_4)_2SiF_6$  (aq.). Truchot³ found  $Q=31.2^{20}$  for the reaction  $SiF_4$  (g)  $+2NH_4F$  (aq.) =  $(NH_4)_2SiF_6$  (aq.).

(NH₄)₂SiF₆ (c). Truchot³ measured the heat of solution.

 $(C_2H_5O)_4Si$  (liq.) Ogier¹ measured the heat of hydrolysis of this substance to be 21.6.

 $(CH_3O)_4Si(g)$ . Kahlenberg and Koenig¹ reported  $V = -7.08^{121}$ .

SiC (c). von Wartenberg and Schutte¹ measured the heat of the reaction of gaseous fluorine with silicon carbide to be 491.3, from which we find Qf=30. The data of Mixter⁵ yield for the reactions, SiC (c)  $+4\mathrm{Na}_2\mathrm{O}_2$  (c)  $=\mathrm{Na}_2\mathrm{SiO}_3$  (gls.)  $+\mathrm{Na}_2\mathrm{CO}_3$  (c)  $+2\mathrm{Na}_2\mathrm{O}$  (c) and Si (c)  $+2\mathrm{Na}_2\mathrm{O}_2$  (c)  $=\mathrm{Na}_2\mathrm{SiO}_3$  (gls.)  $+\mathrm{Na}_2\mathrm{CO}_3$  (c)  $+2\mathrm{Na}_2\mathrm{O}_2$  (c)  $=\mathrm{Si}(c)+\mathrm{Na}_2\mathrm{CO}_3$  (c)  $+\mathrm{Na}_2\mathrm{CO}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_2\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_3$  (c)  $+\mathrm{Na}_3\mathrm{O}_$ 

# GERMANIUM

Ge (c). Standard state.

Ge (g). We have estimated the heat of sublimation to be -85. The energy states of monatomic gaseous germanium are evaluated from the data of Rao,⁴ Gartlein,¹ Lang,¹ and Rao and Narayan.²

 $GeO_2$  (colloid, aq.). We have estimated Qf = 230.

- GeCl₄ (liq.). Roth and Schwartz¹ measured the heat of solution of this substance in water to be 25, whence, for GeCl₄ (liq.), Qf = 226.1.
- GeCl₄ (g). The vapor pressure data of Nilson and Petterson¹ yield  $-9.2^{86}$  for the heat of vaporization of the liquid.
  - $Ge_2H_6$  (g). Dennis, Corey, and Moore¹ reported  $V=-6.3^{29}$ .
  - $Ge_3H_8$  (g). Dennis, Corey, and Moore¹ reported  $V=-7.6^{111}$ .

# TIN

- Sn (c). The three solid forms of tin are: I, rhombic, white; II, tetragonal, white; III, cubic, gray. The transition temperatures are respectively  $161^{\circ}$  and  $18^{\circ}$ . We have selected Sn (c, II, tetragonal) as the standard state. For the heat of transition of III to II, the data are: Brönsted, 6-0.53; Cohen, 3-0.73; Meyer, 1-1.13. For the heat of transition from II to I, Werner² reported -0.002.
- Sn (liq.). The data on the heat of fusion of tin at the melting point, 232°, are: Awbery and Griffiths, 1-1.73; Iitaka, 1-1.59; Umino, 3-1.69; Person, 2-1.69; Rudberg, 1-1.58; Mazzotto, 3-1.61; Spring, 1-1.74; Guinchant, 5-1.70; Pionchon, 1-1.73; Robertson, 1-1.66.
- Sn (g). Vapor pressure data on liquid tin were obtained by Ruff and Bergdahl, Greenwood, 2, 3, 5, 6 van Liempt, von Wartenberg, and Harteck. The data are discordant. We have taken -75 as the best value for the heat of vaporization of the liquid and have assumed the vapor to be monatomic.

Values for the energy states of monatomic gaseous Sn are taken from the following: Bach,³ Green and Loring,¹ Narayan and Rao,¹ Randall and Wright,¹ Carroll,¹ Rao,¹ Gibbs and White,² Gibbs and Vieweg,¹ Lang,² and Rao, Narayan, and Rao.¹

- $SnH_4$  (liq.). From vapor pressure data, Paneth, Haken, and Rabinowitsch¹ computed  $V = -4.55^{-150}$ .
- SnO₂ (c, III). For the heat of combustion of tin to form SnO₂, the data are: Dulong,² 145; Andrews,¹⁴ 136; Mixter,⁷ 137.8; Moose and Parr,¹ 138.8. From data on the entropies of SnO₂, Sn, and O₂, and the free energy of formation of SnO₂, Millar⁵ computed, for SnO₂ (c, III), Qf = 137.8.
- $SnO_2$  (c, I),  $SnO_2$  (c, II). Laschtschenke¹ found the heats of transition of III to II and II to I to be  $-0.45^{430}$  and  $-0.30^{540}$ , respectively.
- SnO (c). For the heat of oxidation of SnO to form  $SnO_2$ , the data are: Mixter, 70.4; Andrews, 14 69.6; Dulong, 271. Using Mixter's value of 70.4, we have computed, for SnO, Qf=67.7. Equilibrium measurements involving SnO were made by Maeda, Fraenkel and Snipischski, Rosenhain, and Eastman and Robinson.
- SnCl₂ (aq. HCl). Thomsen¹⁵ measured the heat of the reaction, SnCl₂ (aq. HCl) +Zn (c) = ZnCl₂ (aq. HCl) +Sn (c), finding Q=33.0, 33.5, 33.0, 33.2, 30.2, 30.5, 28.9, and 30.9. Disregarding the four low values, we have computed, for SnCl₂ (aq. HCl), Qf=81.5.

SnCl₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 0.35; Biltz and Fischer, ² 0.8; Berthelot, ⁵⁰ 0.40.

SnCl₂·2H₂O (c). The data on the heat of solution are: Thomsen,  15  -5.29₂₀₀; Berthelot,  131  -5.26.

 $SnCl_2$  (g). For the heat of vaporization of stannous chloride, Maier⁶ reported -21.1 at  $623^{\circ}$ .

SnCl₄ (aq. HCl). Thomsen's¹⁵ data on the reaction, SnCl₂ (aq. HCl) +HCl (aq.) +HClO (aq.) = SnCl₄ (aq. HCl) +H₂O (liq.), yield Q=74.97; whence, for SnCl₄ (aq. HCl), Qf=157.34. Thomsen¹⁵ also measured the heat of oxidation of SnCl₂ (aq. HCl) with aqueous HIO₃ and with aqueous H₂O₂. His data yield, Q=155.50 and 88.74, respectively; whence, for SnCl₄ (aq. HCl), Qf=157.66 and 158.1. The last value is not given great weight because the reaction involving H₂O₂ may not be clear cut. Berthelot²⁶ measured the heat of the reaction SnCl₂ (aq. HCl) +Cl₂ (g) =SnCl₄ (aq. HCl). His data yield Q=76.0; whence, for SnCl₄ (aq. HCl), Qf=157.5.

SnCl₄ (liq.). Thomsen¹⁵ found the heat of solution of liquid stannic chloride to be 29.92²⁰; Berthelot⁵⁰ found 28.5.

SnCl₄ (c). Latimer¹ measured the heat of fusion to be  $-2.20^{-33}$ .

SnCl₄ (g). The heat of vaporization of liquid stannic chloride was measured by Kahlenberg and Koenig, Hammick, and Andrews. Vapor pressure data were obtained by Regnault, Mundel, and Young. For the heat of vaporization, Andrews found -8.0 and Hammick -8.5; Young calculated -9.0.

 $Sn(OH)_2$  (c). Thomsen¹⁵ reported Q=24.72 for the reaction,  $SnCl_2$  (aq.) +2NaOH (aq.) =2NaCl (aq.) +Sn(OH)₂ (c). This gives, for the freshly precipitated stannous hydroxide, Qf=136.1.

 $Sn(OH)_4$  (c). Thomsen¹⁵ reported Q=51.87 for the reaction,  $SnCl_4$  (aq.) +4NaOH (aq.) =4NaCl (aq.) +Sn(OH)₄ (c). This gives, for the freshly precipitated stannic hydroxide, Qf=268.9.

SnBr₂ (c). By means of "double decomposition" or "reciprocal pair" experiments Berthelot⁵⁰ found, for SnCl₂ (c) +2KBr (aq.) = SnBr₂ (c) +2KCl (aq.), Q=2.20; whence, for SnBr₂ (c), Qf=61.4.

SnBr₂ (aq.). The data on the heat of solution of SnBr₂ (c) are: Berthelot, ⁵⁰ 1.6; Biltz and Fischer, ² 1.6.

 $SnI_2$  (c). In a manner similar to that for stannous bromide, Berthelot⁵⁰ found, for  $SnCl_2$  (c) +2KI (aq.)  $=SnI_2$  (c) +2KCl (aq.), Q=4.0; whence, for  $SnI_2$  (c), Qf=38.9.

 $SnI_2$  (aq.). Mosnier¹ found the heat of solution of  $SnI_2$  (c) to be 0.61.  $H_2SnF_6$  (aq.). For the reaction,  $SnCl_4$  (aq. HCl) +6HF (aq.) =  $(H_2SnF_6+4HCl)$  (aq.), Thomsen¹⁵ found Q=17.6. This gives, for  $H_2SnF_6$  (aq.) Qf=470.4.

 $SnF_6$ —(aq.). Assuming the heat of neutralization of aqueous  $H_2SnF_6$  to be the same as that for  $H_2SiF_6$ , 26.6, we have computed, for  $SnF_6$ —(aq.), Qf = 469.8.

SnBr₄ (c). Berthelot⁵⁰ measured the heat of mixing SnCl₄ (liq.) with

4KBr (aq.), and of SnBr₄ (c) with 4KCl (aq.), to be 28.1 and 16.8, respectively. The difference gives, for SnCl₄ (liq.) +4KBr (aq.) = SnBr₄ (c) +4KCl (aq.), Q=11.3, from which we have computed, for SnBr₄ (c), Qf=94.8.

SnBr₄ (aq.). For the heat of solution of solid stannic bromide the data are: Berthelot,⁵⁰ 17.6₈₀₀¹⁰; Pickering,¹² 15.54₁₀₀₀¹⁵. Using the value 15.5, one finds, for SnBr₄ (aq.), Qf=110.3. Herschkowitsch² measured the heat of solution of tin in a saturated aqueous solution of KBr+Br₂, to form SnBr₄ (aq.), to be 110.2.

SnBr₄ (liq.). The data on the heat of fusion of solid stannic bromide are: Tolloczko,¹ -2.74; Garelli,¹ -2.84; Raoult,¹ -3.14; Berthelot,⁵⁰ -3.10; Pickering,¹² -2.97.

SnBr₄·8H₂O (c). Pickering¹² measured the heat of solution.

SnBr₄·8H₂O (liq.). Pickering¹² measured the heat of fusion of the solid octahydrate.

SnS (c). There are no calorimetric data on this substance. The equilibrium data of Jellinek and Zakowsky¹ yield, for SnS (c) + H₂ (g) = Sn (liq.) + H₂S (g), Q = -20.0; whence, for SnS (c), Qf = 22.7.

 $Sn(SO_4)_2$  (c). Beck¹ found Q=91.1 for the heat of reaction between this substance and 8KOH (aq.). Assuming the reaction,  $Sn(SO_4)_2$  (c) +4KOH (aq.)  $=2K_2SO_4$  (aq.)  $+Sn(OH)_4$  (c), we have computed, for  $Sn(SO_4)_2$  (c), Qf=391.1.

 $\operatorname{SnCl_4} \cdot 1_{\frac{1}{2}} \operatorname{PH_3}$  (c). Holtje¹ reported Q = 17.6 for the heat of the reaction,  $\operatorname{SnCl_4}$  (liq.)  $+1_{\frac{1}{2}} \operatorname{PH_3}$  (g)  $= \operatorname{SnCl_4} \cdot 1_{\frac{1}{2}} \operatorname{PH_3}$  (c).

Sn_nBi_m (c). From data on the heats of solution in mercury, Magnus and Mannheimer¹ determined the heats of formation of the solid alloys, SnBi, SnBi₂, Sn₂Bi, Sn₅Bi, and SnBi₅.

SnX₂·nNH₃ (c). Biltz and Fischer² measured the dissociation pressures at various temperatures for some stannous halide ammines, and also determined the heats of solution of some of them in aqueous HCl. Their data are as follows: SnCl₂·2½ NH₃ (c), S=14.0; SnCl₂·4NH₃ (c), D=-9.3; SnCl₂·9NH₃ (c), D=-7.6; SnBr₂·NH₃ (c), S=7.3; SnBr₂·3NH₃ (c), D=-12.5, S=14.8; SnBr₂·5NH₃ (c), D=-9.8; SnBr₂·9NH₃ (c), D=-7.55; SnI₂·NH₃ (c), D=-16.0; SnI₂·2NH₃ (c), D=-13.3, S=6.5; SnI₂·3NH₃ (c), D=-11.9, S=14.8; SnI₂·5NH₃ (c), D=-10.2; SnI₂·9NH₃ (c), D=-7.9.

### LEAD

Pb (c, non-radioactive). Standard state.

Pb (solid, "stick" form). From data on the electromotive force of cells involving lead in both the crystalline and the "stick" form, Gerke¹ found for the transition from the former to the latter Q = -0.07.

Pb (liq.). The data on the heat of fusion of lead are: Umino,³ -1.14; Iitaka,¹ -1.14; Robertson,² -1.34; Magnus and Oppenheimer,¹ -1.224; Awbery and Griffiths,¹ -1.295; Person,¹⁰ -1.13; Mazzotto,³ -...; Glaser,² -1.01; Spring,¹ -1.10; Klinkhardt,¹ -1.21.

**Pb** (g). von Wartenberg⁹ showed that lead vapor is monatomic above 1870°. The vapor pressure data of Harteck,¹ von Wartenberg,^{7,9} Greenwood,^{2,3,5,6} Ruff and Bergdahl,¹ Rodebush and Dixon,^{1,2} Egerton,^{3,4} and Rodebush¹ yield -45 for the heat of vaporization. See also Hildebrand,² Johnson,⁵ and van Leimpt.² From direct but rough measurements, Tate¹ found V=-37.

The energy states of gaseous monatomic lead are evaluated from the following: Bacher and Goudsmit, Back, Gieseler and Grotrian, McLennan, Young, and McLay, Sponer, Sur, 3 Thorsen, Geiseler, Rao and Narayan, Smith, Rao, Narayan, and Rao, and Carroll.

**PbCl₂ (c).** The electromotive force data of Gerke¹ on the cells in which the reactions are: Pb (c) +2AgCl (c) =PbCl₂ (c) +2Ag (c) and Pb (c) +2HgCl (c) =PbCl₂ (c) +2Hg (liq.), when combined with his own data on the formation of AgCl (c) and HgCl (c), yield, for PbCl₂ (c), Qf = 85.71 and 85.95, respectively. The data of Krahmer,¹ Brönsted,¹ Gunther,¹ Wolff,² and Getman² are in accord with the lower of these values.

**PbCl₂ (aq.).** The data on the heat of solution of lead chloride in water are: Thomsen,  15  -3.44; Berthelot,  9  -4.0; Bronsted,  4  -3.28.

**PbCl₂** (liq.). The data on the heat of fusion of lead chloride are: Ehrhardt, -5.8; Weber, -5.61; Rudberg, -5.81; Goodwin and Kalmus, -5.15.

**PbCl₂** (g). The vapor pressure data of von Wartenberg and Bosse, Jellinek and Rudat, Jellinek and Golubowski, Eastman and Duschak, and Maier yield -28.5 for the heat of vaporization of the liquid at 860°.

**PbO** (c, red). For the heat of the reaction, PbO (c, red) + $H_2$  (g) = Pb (c) + $H_2$ O (liq.), the data of Smith and Wood¹ give 15.91, and those of Fried¹ give 16.6. These values yield, for PbO (c), Qf = 52.46 and 51.8 respectively. From electromotive force measurements Treadwell¹ computed the heat of formation to be 50.4 at high temperatures. Combination of Thomsen's¹⁵ data on the two reactions, PbO (c) +2HNO₃(200) = Pb(NO₃)₂(400) + H₂O (liq.) and Pb(NO₃)₂(400) + 2KCl(200) = 2KNO₃(400) +PbCl₂ (c), yield for the reaction, PbO (c) +2HNO₃(200) +2KCl(200) = 2KNO₃(400) +H₂O (liq.) +PbCl₂ (c), Q = 22.22. From this we have computed, for PbO (c), Qf = 52.91. Marshall and Bruzs¹ measured the heat of solution of PbO in 10 per cent aqueous nitric acid to be 19.8.

Pb(NO₃)₂ (aq.). Thomsen¹⁵ measured the heat of the reaction, PbO(c) +2 HNO₃(200) = Pb(NO₃)₂(400) + H₂O(liq.), and his data yield Q=17.76, whence, for Pb(NO₃)₂(400), Qf=100.05. It is probable that Thomsen used the yellow form of PbO, in which case the value for aqueous lead nitrate would be a little less than that given above. For the reaction, Pb(NO₃)₂(400) +2 KCl(200) = PbCl₂(c) +2 KNO₃(400), Thomsen¹⁵ reported Q=4.46, from which we have computed, for Pb(NO₃)₂(400), Qf=100.50. For the similar reaction with aqueous KI, Thomsen¹⁵

LEAD 259

reported Q=13.79. This yields, for  $Pb(NO_3)_2(400)$ , Qf=99.80. Thomsen¹⁵ measured the heat of dilution of aqueous lead nitrate.

Pb(NO₃)₂ (c). The data on the heat of solution of lead nitrate are: Thomsen, ¹⁵ -7.61₄₀₀; Favre and Silbermann, ³ -7.93; Tammann and Krings, ¹ -8.49. See also Berthelot. ¹⁰

PbSO₄ (c, II). Thomsen¹⁵ measured the heats of the reactions, Pb(NO₃)₂(400) + H₂SO₄(400) = PbSO₄ (c) +2 HNO₃(400), Pb(C₂H₃O₂)₂ (400) + H₂SO₄(400) = PbSO₄ (c) +2 HC₂H₃O₂(400), and Pb(NO₃)₂(400) + Na₂SO₄(400) = PbSO₄ (c) +2 NaNO₃(400). His data yield Q = 5.40, 7.58, and 1.70, respectively; whence, for PbSO₄ (c), we have computed Qf = 218.30, 218.80, and 218.36. From electromotive force measurements, Klein¹ computed Q = -2.48 for the reaction, PbCl₂ (c) +K₂SO₄(100) = PbSO₄ (c) +2 KCl(50), whence, for PbSO₄ (c), Qf = 219.99. Combination of the electromotive force data of Henderson and Stegeman¹ with those of Gerke¹ yield, for Pb (c) +Hg₂SO₄ (c) = PbSO₄ (c) +Hg (liq.), Q = 42.17; whence, for PbSO₄ (c), Qf = 217.8. See also Ishikawa.⁴

PbSO₄ (c, I). Hare measured the heat of transition.

PbO₂ (c). Tscheltzow¹ measured the heats of the reactions, PbO₂  $(c) + SO_2(g) = PbSO_4(c)$  and  $PbO_2(c) + (2 HgNO_3 + 4 HNO_3)$  (aq.) =Pb $(NO_3)_2+$ Hg $(NO_3)_2(aq.)+$ 2 $H_2O$ (liq.), and his data yield Q=82.62and 31.85, respectively; whence, for PbO₂ (c), Qf = 64.9 and 63.2. Vosburgh and Craig¹ measured the electromotive force at various temperatures of the cell in which the reaction is PbO₂ (c) +2 Hg (liq.)  $+2 H_2SO_4(50) = Hg_2SO_4(c) + PbSO_4(c) + 2 H_2O(liq.)$ , and computed Q=44.73 at 25°. This gives, for PbO₂ (c), Qf=64.18. Millar⁵ computed the entropy of PbO2 (c) from his data on heat capacities at low temperatures, and utilizing the equilibrium data of Glasstone and Westcott1 on the reactions,  $P\bar{b}O_2$  (c)  $+H_2$  (g) =PbO (c)  $+H_2O$  (liq.) and  $PbCl_2$  (c)  $+\text{Cl}_2$  (g)  $+2\text{ H}_2\text{O}$  (liq.)  $=\text{PbO}_2$  (c) +4 HCl (g), computed, for  $\text{PbO}_2$  (c), Qf = 65.96. Mixter⁸ measured the heats of the reactions, Pb (c) +2 Na₂O₂  $\label{eq:pbO3} (c) = Na_2 PbO_3 \; (c) + Na_2 O \; (c) \quad \text{and} \quad PbO_2 \; (c) + Na_2 O \; (c) = Na_2 PbO_3 \; (c) \, ,$ finding Q = 63.6 and 38.44, respectively. The difference gives, for Pb (c)  $+2 \text{ Na}_2\text{O}_2$  (c) = PbO₂ (c) +2 Na₂O (c), Q=25.16; whence, for PbO₂ (c), Qf = 64.7. There is an old value for the heat of formation of lead peroxide obtained by Hess.⁷

 ${
m Pb_3O_4}$  (c). The equilibrium,  $2\ {
m Pb_3O_4}$  (c) = 6 PbO (c)  $+{
m O_2}$  (g), was studied by LeChatelier² and by Reinders and Hamburger.¹ From the data of the former, Biltz⁸ deduced Q=-32.2, while the latter gave Q=-33.5. These values yield, for  ${
m Pb_3O_4}$  (c), Qf=173.5 and 174.1, respectively. For the heat of the reaction,  $3\ {
m PbO_2}$  (c) =  ${
m Pb_3O_4}$  (c)  $+{
m O_2}$  (g), Debray² gave -23.8, which yields, for  ${
m Pb_3O_4}$  (c), Qf=171.2. See also Henglein.¹ From his own data on the heat capacity down to low temperatures, and from the electromotive force data of Glasstone,¹ Millar⁵ computed, for  ${
m Pb_3O_4}$  (c), Qf=172.4.

Pb₂O (c). For the heats of solution of Pb₂O (c) and PbO (c) in aqueous acetic acid, Herschkowitsch¹ found 16.71 and 15.50, while

Aufenast and Terry¹ found 15.26 and 15.6, respectively. These data yield, for Pb₂O (c), Qf = 51.3 and 52.8, respectively.

- **Pb(OH)**₂ (c). The heat of neutralization of Pb(OH)₂ (c) with aqueous nitric acid was measured by Berthelot,⁵ Sveda,¹ Herschkowitsch,¹ Tanatar,⁶ and Aufenast and Terry.¹ Their data yield, for Pb(OH)₂ (c), Qf = 122.7.
- **PbF**₂ (c). Guntz¹ found 2.2 for the heat of reaction of aqueous lead nitrate with aqueous hydrofluoric acid. This gives for PbF₂ (c), Qf = 159.5. From equilibrium data, Jellinek and Rudat¹ calculated Qf = 156.
- **PbF**₂ (g). The vapor pressure data of von Wartenberg and Bosse¹ yield -39.4 for the heat of sublimation at 1200°.

**PbCl₂** · n**PbO** (c). Andre¹ measured the heats of solution in aqueous HCl of PbCl₂ · PbO (c), PbCl₂ · 2 PbO (c), and PbCl₂ · 3 PbO (c). The last named substance may probably be just a mixture, not a true compound.

**PbBr**₂ (c). Thomsen¹⁵ found Q = 8.02 for the reaction, Pb (NO₃)₂(200) +2 KBr (100) =2 KNO₃(200) +PbBr₂ (c), whence, for PbBr₂ (c), Qf = 66.58. Krahmer¹ gave Q = -17.96 for the reaction, Pb (c) +2 AgBr (c) = 2 Ag (c) + PbBr₂ (c); whence, for PbBr₂ (c), Qf = 64.58. Klein¹ reported Q = 3.56 for the reaction, PbCl₂ (c) +2 KBr (aq.) = PbBr₂ (c) +2 KCl (aq.); whence, for PbBr₂ (c), Qf = 67.6. Equilibrium data involving lead bromide were reported by Jellinek and Rudat¹ and Lorenz and Schultz.¹

PbBr₂ (aq.). Thomsen¹⁵ measured the heat of solution of lead bromide.

**PbBr₂** (liq.). The data on the heat of fusion are: Weber, 1 -5.01; Goodwin and Kalmus, 1 -4.52. See also Erhardt 1 and Czepinsky. 1

PbBr₂ (g). The vapor pressure data of von Wartenberg and Bosse¹ yield -28 for the heat of vaporization at 916°.

 $PbBr_2 \cdot nPbO$  (c). Andre¹ measured the heats of solution in aqueous HBr of  $PbBr_2 \cdot PbO$  (c),  $PbBr_2 \cdot 2 PbO$  (c), and  $PbBr_2 \cdot 3 PbO$  (c).

**PbI**₂ (c). The data of Gerke¹ on the cell reaction, Pb (c) +I₂ (c) = PbI₂ (c), yield, for PbI₂ (c), Qf=41.77. See also Braune and Koref,¹ who reported Qf=41.6.

PbI₂ (liq.). For the heat of fusion of lead iodide, Ehrhardt¹ found -5.28 at 375° and Czepinski²-5.28.

**PbI₂** (g). The vapor pressure data of Jellinek and Rudat¹ yield -27.7 for the heat of vaporization at 800°.

 $PbI_2 \cdot HI \cdot 5 H_2O$  (c). Berthelot⁶⁹ measured the heat of solution of this substance.

**PbS** (c). Berthelot¹⁴ found the heats of reaction of aqueous hydrogen sulfide to be 13.34 and 11.34 with aqueous lead nitrate and aqueous lead acetate, respectively; whence, for PbS (c), Qf = 24.8 and 20.6, respectively. Thomsen¹⁵ found Q = 30.98 for the reaction between aqueous lead nitrate and aqueous sodium sulfide; whence, for PbS (c), Qf = 22.5. From equilibrium data, Jellinek and Zakowski¹ deduced Qf = 20.0; Watanabe² obtained 22.85; Jellinek and Deubel, 26.2.

LEAD 261

PbSO₄ · nPbO (c). There has been a long polemic concerning the nature of the successive reactions occurring in the roasting of lead sulfate with lead sulfide, between Reinders1, 2, 3, 4 on the one hand and Schenck and coworkers (Schenck and Rassback, 1, 2 Schenck and Borkenstein, 1 Schenck and Albers1) on the other. See also Hofmann and Wanjukow.1 According to Schenck and coworkers, the reactants for the various equilibrium curves are: PbSO₄+PbS; PbSO₄·PbO+PbS; PbSO₄·2 PbO +PbS; PbSO₄·3 PbO+PbS; PbO+PbS. This interpretation leads to the following values for the heats of formation: PbSO₄ · PbO (c), 280; PbSO₄ · 2 PbO (c), 340; PbSO₄ · 3 PbO (c), 398; PbO (c), 57. According to Reinders the reactants are: PbSO₄+PbS; PbSO₄ · PbO+Pb; PbSO₄ · 2 PbO+Pb; PbSO₄ · 3 PbO+Pb; PbO+PbS. This interpretation yields the following values for Qf: PbSO₄·PbO (c), 280; PbSO₄·2 PbO (c), 338; PbSO₄·3 PbO (c), 369; PbO (c), 51. In spite of the high value for PbO, we have accepted Schenck's as the more logical explanation of the equilibrium data obtained.

PbSO₄·2 HCl (c). Ephraim⁷ studied the dissociation pressure of this substance.

 ${
m PbS_2O_3}$  (c). Fogh¹ found Q=5.80 for the reaction between aqueous lead acetate and aqueous sodium thiosulfate to form an insoluble white product which was presumably lead thiosulfate. Hence, for  ${
m PbS_2O_3}$  (c), Qf=151.1.

 $PbS_3O_6$  (c). Fogh¹ measured the heat of solution.

 $PbS_2O_6 \cdot 4 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

**PbSe** (c). Fabre¹ found Q=40.1 for the reaction of aqueous lead acetate with gaseous hydrogen selenide; whence, for PbSe (c), Qf=21.2, For the heat of solution of crystalline lead selenide in saturated bromine water to form lead selenate Fabre¹ found 92.1; whence, for PbSe (c), Qf=10.

**PbSeO₄** (c). Metzner² found Q=0.62 for the reaction of aqueous lead nitrate with aqueous sodium selenate; whence, for PbSeO₄ (c), Qf=148.6.

**PbTe** (c). Fabre³ found 104.5 for the heat of solution of solid lead telluride in saturated bromine water. These data yield, for PbTe (c), Qf = 19.1 or 6.0, depending upon whether tellurate or tellurite was formed. Fabre³ said that the product was tellurite, but in another experiment he found that tellurium dissolved under the same conditions to form tellurate.

PbN₆ (c). Wohler and Martin¹ measured the heat of decomposition by explosion into solid lead and gaseous nitrogen to be 103.0.

 $Pb(NO_3)_2 \cdot PbO$  (c). Thomsen's¹⁵ data on the reaction between aqueous lead nitrate and aqueous sodium hydroxide yield, for  $Pb(NO_3)_2 \cdot PbO$  (c), Qf = 167.6.

 $PbX_2 \cdot nNH_3$  (c). Biltz and Fischer¹ measured at various temperatures the dissociation pressures of the ammines of PbCl₂ with 1,  $1\frac{1}{2}$ , 2,  $3\frac{1}{4}$ , and 8 moles of NH₃, of PbBr₂ with 1, 2, 3,  $5\frac{1}{2}$ , and 8 moles of NH₃, and of PbI₂ with  $\frac{1}{2}$ , 1, 2, 5, and 8 moles of NH₃. See also Ephraim.¹⁰

- 2 PbCl₂·NH₄Cl (c). Brönsted⁸ determined, from electromotive force measurements, the heat of formation of this substance from solid lead chloride and solid ammonium chloride to be 0.35.
- $3 \text{ PbI}_2 \cdot 4 \text{ NH}_4 \text{I} \cdot n \text{H}_2 \text{O}$  (c). Mosnier¹ measured the heat of solution of the anhydrous salt and the hexadecahydrate.
- **PbSO**₄· (NH₄)₂ SO₄ (c). Barre¹ found Q=1.93 for the heat of formation of this substance from solid lead sulfate and solid ammonium sulfate.
- **PbHPO**₃ (c). Amat¹ found Q=0.65 for the heat of mixing Na₂HPO₃ (aq.) with Pb(NO₃)₂ (aq.).
- $SnI_2 \cdot PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the octahydrate.
- $3 \text{ PbI}_2 \cdot \text{SbI}_3 \cdot n\text{H}_2\text{O}$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the dodecahydrate.
- $3 \text{ PbI}_2 \cdot \text{PI}_3 \cdot n \text{H}_2\text{O}$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the dodecahydrate.
- $3 \text{ PbI}_2 \cdot \text{AsI}_3 \cdot n\text{H}_2\text{O}$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the dodecahydrate.
- $3 \text{ PbI}_2 \cdot \text{BiI}_3 \cdot n\text{H}_2\text{O}$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the dodecahydrate.
- $PbCO_3$  (c). Thomsen¹⁵ found 6.11 for the heat of the reaction,  $Pb(NO_3)_2$  (200) +  $Na_2CO_3$  (200) =  $PbCO_3$  (c) +  $2 NaNO_3$  (200); whence, for  $PbCO_3$  (c), Qf=169.8. Berthelot¹² found 5.04 and 5.72 for the above reaction with sodium and potassium carbonates respectively. Berthelot¹² believed the reaction took place in two steps: the formation of amorphous lead carbonate and then its crystallization. He deduced 4.2 for the heat of crystallization. Marshall and Bruzs¹ measured the heat of solution of  $PbCO_3$  (c) in 10 per cent aqueous nitric acid to be 1.69, whence for  $PbCO_3$  (c), Qf=168.0.
- **PbCO**₃ · **nPbO** (c). Marshall and Bruzs¹ measured the heat of solution in 10 per cent aqueous nitric acid of PbCO₃ · PbO (c) to be 8.69. From equilibrium data, Centnerswer, Falk, and Awerbuch¹ calculated: for 3 PbO (c) +CO₂ (g) = PbCO₃ · 2 PbO (c), Q=25; for PbCO₃ · PbO (c) +CO₂ (g) = 2 PbCO₃ (c), Q=-19.8; and for 2 (PbCO₃ · 2 PbO) (c) +CO₂ (g) = 3 (PbCO₃ · PbO) (c), Q=23.
- PbC₂O₄ (c). Berthelot¹² measured the heat of reaction between aqueous lead nitrate and aqueous potassium oxalate to be 9.3.
- Pb(C₂H₃O₂)₂ (aq.). The data of Thomsen¹⁵ yield for the reactions, Zn (c) +Pb(C₂H₃O₂)₂(400) = Zn(C₂H₃O₂)₂(400) +Pb (c), and PbO (c) +2 HC₂H₃O₂(200) = Pb(C₂H₃O₂)₂(400) +H₂O (liq.), Q=34.90 and 15.46, respectively. From the known values for the other substances we have obtained, for Pb(C₂H₃O₂)₂(400), Qf=236.0 and 235.6, respectively. The data of Herschkowtisch¹ and Aufenast and Terry¹ yield for the second reaction above Q=15.50 and 15.6, respectively; whence, for Pb(C₂H₃O₂)₂ (aq.), Qf=235.7 and 235.8.
  - $Pb(C_2H_3O_2)_2$  (c). Berthelot⁹ measured the heat of solution.

 $Pb(C_2H_3O_2)_2 \cdot 3 H_2O$  (c). The data on the heat of solution are: Berthelot,  $9 - 5.5_{220}^{11}$ ; Favre and Silbermann, 3 - 4.9; Thomsen,  $15 - 6.14_{200}$ .

 $Pb(C_2H_3O_2)_2 \cdot PbO$  (c). Thomsen's¹⁵ data yield, for this substance, Qf = 292.9.

Pb(CHO₂)₂ (aq.). Berthelot⁹ found 13.2 for the heat of neutralization of solid lead hydroxide with aqueous formic acid.

Pb(CHO₂)₂ (c). Berthelot⁹ measured the heat of solution of lead formate.

 $Pb(C_2H_3O_3)_2$  (aq.). de Forcrand³ measured the heat of reaction of aqueous lead glycollate with aqueous hydrogen sulfide to be 11.5.

 $Pb(C_2H_3O_3)_2$  (c). deForcrand³ measured the heat of solution of lead glycollate.

 $Pb(CN)_2 \cdot 2 \ PbO \cdot H_2O$  (c). Joannis¹ measured the heat of solution of this substance in aqueous nitric acid to be 36.8.¹9.

Pb(CNS)₂ (c). Joannis¹ measured the heat of mixing aqueous lead acetate with aqueous potassium sulfocyanide to be 7.4.

PbSn (c). Magnus and Mannheimer¹ found the heat of formation of PbSn (c) to be 0.03 by measuring the heats of solution in mercury.

 $\mathbf{PbSn}_n$  (liq.). Magnus and Mannheimer¹ measured the heat of mixing the two liquid metals.

PbSb_n (liq.). Guthrie and Libmans¹ discussed the data of Wust and Durrer¹ on the heat of mixing the liquid metals. See also Dobereiner¹ and Taylor.³

### GALLIUM

Ga (c). Standard state.

Ga (g). We have estimated the heat of sublimation to be -52. The somewhat uncertain vapor pressure data of Harteck² yield -50. The values for the various energy states of gaseous monatomic gallium are from the following: first spectra, Uhler and Tanch,¹ Paschen and Meissner¹; second spectra, Sawyer and Lang,¹ Lang,¹ and Rao, Narayan, and Rao¹; third spectra, Lang¹; fourth spectra, Mack, LaPorte and Lang.¹

GaCl₃ (aq.). Schwarz von Bergkampf¹ measured the heat of solution of Ga (c) in HCl (9) to be 32. We have estimated the value for the dilute solution.

Ga₂O₃ (c). Roth and Becker³ determined the heat of formation of this oxide by combustion of gallium in oxygen to be 255.8.

Ga*** (aq.). This value is obtained from that for aqueous gallium chloride.

#### INDIUM

In (c). Standard state.

In (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic indium are from the following: first spectra, Paschen and Meissner, Uhler and Tanch; second spectra, Lang and Sawyer; third spectra, Rao, Narayan, and Nao. See also Bacher and Goudsmit.

In₂O₃ (c). Ditte⁶ measured the heat of combustion of indium.

InCl₃ (aq.). Klemm and Brautigam¹ measured the heat of reaction of In (c) with Cl₂ (aq.).

In⁺⁺⁺ (aq.). The value for this substance is obtained from those for InCl₃ (aq.) and Cl⁻ (aq.).

InBr₃ (aq.), InI₃ (aq.). The values for these substances are obtained from those for the ions.

InCl (c), InCl₂ (c). Klemm and Brautigam¹ measured the heats of reaction of these substances, respectively, with aqueous chlorine to form aqueous InCl₃.

InCl₃ (c), InBr₃ (c), InI₃ (c). Klemm¹ measured the heats of solution of these substances in HCl (21).

InX₃ · nNH₃ (c). Klemm¹ measured the heats of solution in HCl (22) of the following: NH₃ (g), 12.3; InCl₃ · NH₃ (c), 15.4; InCl₃ · 2 NH₃ (e), 15.8; InCl₃ · 3 NH₃ (c), 16.8; InCl₃ · 5 NH₃ (c), 34.4; InBr₃ · 3 NH₃ (c), 17.3; InBr₃ · 5 NH₃ (c), 30.8; InBr₃ · 7 NH₃ (c), 54.6; InI₃ · 2 NH₃ (c), 14.0; InI₃ · 5 NH₃ (c), 27.7; InI₃ · 7 NH₃ (c), 46.4. Klemm¹ also determined from dissociation pressure data the heats of dissociation of the following: InCl₃ with 1, 2, 3, 5, 7, and 15 moles of NH₃; InBr₃ with 5, 6, and 15 moles of NH₃; InI₃ with 1, 9, and 15 moles of NH₃.

# THALLIUM

Tl (c, II). Standard state.

T1 (c, I). The heat of transition at 226° was determined by Bridgman,^{7,8} Werner,² and Umino.¹

Tl (liq.). The data on the heat of fusion of thallium yield the following values: Heycock and Nevilles,  $^1-1.05$ ; Robertson,  $^1-1.47$ ; Richards and Smyth,  $^1-1.52$ ; Lewis and Randall,  $^4-1.45$ ; Roos,  $^1-1.52$ . See also Umino.  1 

T1 (g). We have assumed that gaseous thallium is monatomic. Vapor pressure data were reported by Gibson, Krafte and Knocke, von Wartenberg, and Fischer and Geiger (see Sherman). These data yield values for the heat of sublimation ranging from -28 to -45. Butkow and Butkow and Terenin reported -81 for the heat of reaction TII (g) = TI (g) + I* (g); whence, for TI (g), Qf = -35.9. Similar data on TlCl (g) and TlBr (g) yield, for Tl (g), Qf = -41.9 and -37.5, respectively. The values of Mayer for the lattice energies of TlCl, TlBr, and TlI yield, for Tl (g), Qf = -38.6, -43.4, and -40.2.

The values for the energy states of gaseous monatomic thallium are from Fowler,³ McLennan, McLay, and Crawford,¹ Carroll,¹ and Smith.⁹

 $Tl_2SO_4$  (aq.). Thomsen¹⁵ measured the heats of solution of Tl (c, II) and of  $Tl_2SO_4$  (c) in  $H_2SO_4$  (50), and of  $Tl_2SO_4$  (c) in water. His data yield for  $Tl_2SO_4$  (1600), Qf=213.7. Data on the heat of dilution of aqueous thallous sulfate were reported by Thomsen¹⁵ and deForcrand.⁷¹

 $Tl_2SO_4$  (c). The data on the heat of solution in water are: Cohen and Kooy,  1 ,  2 ,  2 ,  2 ; Thomsen,  15 ,  2 ,  2 , See also Ishikawa.  1 ,  2 

T10H (aq.). Thomsen¹⁵ measured the heat of neutralization of 2 T10H(200) with  $H_2SO_4(400)$  to be  $31.12_{800}$ . See also deForcrand.⁷¹

 $Tl_2O_3$  (c). From equilibrium studies, Duncan² computed  $Q^{1000} = -77$  for the reaction  $Tl_2O_3$  (liq.) =  $Tl_2O$  (liq.) +  $O_2$  (g). From these data we have estimated, for  $Tl_2O_3$  (c), Qf = 120. See also Roth and Becker.³

TIOH (c). Thomsen¹⁵ found S=-3.15. See also Aufenast and Terrev.¹

Tl₂O (c). Thomsen¹⁵ found S=-3.08, whence, for Tl₂O (c), Qf=42.3. From equilibrium data, Bahr¹ computed Q=-14.1 for the reaction, 2 TlOH (c) = Tl₂O (c) + H₂O (g); whence, for Tl₂O (c), Qf=42.0.

TICl (c). The accurate electromotive force data of Gerke¹ yield for, TlCl (c), Qf = 48.62. Combination of the data of Thomsen¹⁵ on the heat of neutralization of TlOH (aq.) with HCl (aq.) and the heat of solution of TlCl (c), yields, for the latter, Qf = 48.95. See also Blaszkewska.¹

TlCl (aq.). The data on the heat of solution of TlCl (c) are: Thomsen,  15  -10.0; Butler and Hiscock,  1  -10.56.

T1C1 (liq.). Roos¹ reported  $-3.95^{430}$  for the heat of fusion.

TIC1 (g). The vapor pressure data of von Wartenberg and Bosse¹ yield  $-25.2^{806}$  for the heat of vaporization; whence, for TlCl(g), Qf = 16.4.

TIF (aq.). de Forcrand⁶⁹ measured the heats of solution of  $Tl_2O$  (c) and TlOH (c) in HF(600) to be  $28.33^{13}$  and  $25.21^{13}$ , respectively. Petersen¹ measured the heat of neutralization of TlOH(400) with HF(400) to be 16.44. These data yield, for TlF(800), Qf = 76.8 and 77.5, respectively. If excess HF (aq.) was present in de Forcrand's experiments, the value from his data should be increased by 0.58.

TIF (c). There are no data on the heat of solution of thallous fluoride.

TIF (g). The vapor pressure data of von Wartenberg and Bosse¹
vield -25.1²⁹⁸ for the heat of vaporization.

TlBr (c). Thomsen¹⁵ measured the heat of reaction of  $Tl_2SO_4$  (aq.) with KBr (aq.), his data yielding, for TlBr (c), Qf = 41.48.

T1Br (liq.). Roos¹ reported  $F = -3.6^{456}$ . See also Mellor.¹

TlBr(g). The vapor pressure data of von Wartenberg¹ yield  $-25.2^{817}$  for the heat of vaporization, whence, for TlBr (g), Qf = 9.5.

TII (c). Thomsen's¹⁵ data on the reaction of  $Tl_2SO_4$  (aq.) with HI (aq.) yield, for TII (c), Qf=31.16. The electromotive force data of Jones and Schumb¹ yield Qf=29.2, but there may be some doubt concerning the reaction.

TII (g). The vapor pressure data of von Wartenberg and Bosse¹ yield  $V = -25.3^{818}$ , whence, for TII (g), Qf = -0.6. See also Terenin.¹

TINO₃ (aq.). For the heat of neutralization of TlOH (aq.) with HNO₃ (aq.), Thomsen¹⁵ found Q=13.70, whence, for TlNO₃ (aq.), Qf=48.2.

TINO₃ (c, III). Thomsen¹⁵ found S = -10.0.

TINO₃ (c, II). Bridgman^{6a} reported, for the transition III to II,  $T = -0.24^{75}$ .

 $T1NO_3$  (c, I). Bridgman^{6a} reported, for the transition II to I,  $T = -0.76^{145}$ .

TlN₃ (c). Wohler and Martin¹ found the heat of decomposition of thallium azide to be 54.7.

 $Tl_2S$  (c). Thomsen¹⁵ and Sabatier¹ reported the same value, 33.7, for the heat of the reaction,  $2\,TlNO_3(200) + Na_2S(200) = Tl_2S$  (c)  $+2\,NaNO_3(300)$ .

 $T1C_2H_3O_2$  (aq.). de Forcrand⁶⁹ found 13.99 for the heat of neutralization of TlOH (aq.) with aqueous acetic acid; whence, for aqueous thallous acetate, Q=117.4. From the ions, we have obtained Qf=117.0.

 $Tl_2Se$  (c). Fabre⁶ measured the heat of reaction between aqueous thallous acetate and gaseous  $H_2Se$  to be 41.2, and the heat of solution of  $Tl_2Se$  (c) in bromine water to be 143.5. These data yield, for  $Tl_2Se$  (c), Qf = 20.6 and 11.0, respectively.

 $Tl_2Te$  (c). Fabre⁶ measured the heat of solution of  $Tl_2Te$  (c) in bromine water to be 159.5; whence, for  $Tl_2Te$  (c), Qf = 7.2.

TIONC (c). Wohler and Martin¹ found the heat of decomposition of thallium fulminate to be 52.5, the products being CO (g),  $\frac{1}{2}$  N₂ (g), and Tl (c).

 $TlX \cdot nNH_3$  (c). Biltz and Stollenwerk¹ determined the heats of dissociation of the triammines of TlCl, TlBr, and TlI.

 $Tl_2SO_4 \cdot 10NH_3$  (c). Ephraim and Millman¹ reported D = -13.3, but the products are not known.

TlC₂H₅O (C₂H₅OH). de Forcrand^{71, 71a} computed Q=-10.4 for the reaction, Tl (e) +C₂H₅OH (liq.) = TlC₂H₅O (C₂H₅OH) +  $\frac{1}{2}$  H₂ (g), but the experimental data were not reported.

TlBr₃ (aq.). Thomsen¹⁵ reported Q=36.50 for the reaction, TlBr₃ (aq.) + SO₂(200) = TlBr (c) + 2 HBr(200) + H₂SO₄(300); whence, for TlBr₃ (aq.), Qf=58.1.

Tl*** (aq.). The value for this substance is obtained from those for TlBr₃ (aq.) and Br⁻ (aq.).

 $TlX_3 \cdot nH_2O$  (c). Thomas¹ measured the following heats of solution: TlCl₃, 8.43 $_{300}$ ; TlCl₃ · 4 H₂O (c),  $-2.12_{300}$ ; TlBr₃ · 4 H₂O (c),  $-2.25_{500}$ ; TlBr₂Cl · 4 H₂O (c),  $-2.90_{300}$ .

# ZINC

Zn (c). Standard state. Laschtschenko⁹ reported a transition in solid zinc at  $320^{\circ}$  with T=-0.19, but modern evidence points to but one form of crystalline zinc.

Zn (liq.). The data on the heat of fusion of zinc at its melting point, 419°, are: Mazzotto, 1-1.83; Glaser, 1-1.73; Iitaka, 1-1.50; Wust, 1-1.85; Person, 2-1.79; Awbery and Griffiths, 1-1.74; Umino, 3-1.54; Heycock and Neville, 2-1.85. See also Richards and Laschtschenko.

Zn (g). According to the vapor density data of Biltz⁷ and von Wartenberg,³ gaseous zinc is practically monatomic. The vapor pressure

ZINC 267

data of Barnes,^{1, 2} Richards,² Ruff and Bergdahl,¹ Braunes,¹ Deckert,¹ Greenwood,^{3, 6} Rodebush and Dixon,¹ Egerton,¹ and Jenkins³ yield -27.4 for the heat of sublimation, and -25.9 for the heat of vaporization, at 18°. Millar¹ computed -27.2 for the heat of sublimation. The direct calorimetric measurements of Whnelt and Muscelleanii,¹ Muscelleanii,¹ and Tate¹ yield -26.3 for the heat of vaporization.

The energy states of gaseous monatomic zinc are from Saunders,¹ Sawyer and Beese,¹ Wolff,¹ Fowler,³ Salis,¹ Fues,¹ Kayser and Runge,² and Paschen,^{1, 2, 3, 5}

 $Zn_2$  (g). The spectroscopic data of Winans² yield  $D^z = -5.67$ . See also Mrozowski.¹

 $ZnCl_2$  (aq.). The following are the data on the heat of the reaction,  $Zn(c) + 2 HCl(n) = ZnCl_2(2n) + H_2(g)$ : Richards and Thorvaldson, HCl(200), Q = 36.5; Richards, Rowe, and Burgess, HCl(200), Q = 36.6; Thomsen, HCl(200), Q = 34.20; Hess, Q = 34.9; Favre and Silbermann, Q = 33; Richards and Thorvaldson, Q = 34.20; Hess,  $Q = 32.79^{20}$ ; Maier, Q = 32.19; Sieverts and Gotta,  $Q = 31.1^{19}$ ; Hablutzel, Q = 31.5; Biltz and Wagner, Q = 31.5; Biltz and Wagner, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Biltz and Hohorst, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommermeier, Q = 31.5; Sommerm

ZnSO₄ (aq.). Thomsen¹⁵ measured the heats of the reactions, ZnSO₄ (400) +BaCl₂(400) =BaSO₄ (c) +ZnCl₂(800) and H₂SO₄(400) +BaCl₂ (400) =BaSO₄ (c) +2 HCl(400), to be 5.50 and 9.15, respectively. The difference gives Q=-3.65 for the reaction, ZnSO₄(400) +2 HCl(400) = H₂SO₄(400) + ZnCl₂(800); whence, for ZnSO₄(400), Qf=251.95. de Forcrand⁸ measured the heat of solution of zinc in aqueous sulfuric acid and his data yield, for ZnSO₄(200), Qf=247. See also Ditte⁵ and Hess.¹⁰ The heat of dilution of aqueous zinc sulfate was measured by Thomsen,¹⁵ Berthelot,⁵ and de Forcrand.⁸

ZnSO₄ (c). The data on the heat of solution of zinc sulfate in water are: Thomsen, ¹⁵ 18.54₄₀₀; Mees, ¹ 18.27₄₀₀.

 $ZnSO_4 \cdot nH_2O$  (c). Thomsen¹⁵ found the heat of solution of the monohydrate to be -10.0. (He also gave values for the tri- and tetrahydrates but the heat of solution-composition curve shows no breaks at these points to indicate definite hydrates.) For the hexahydrate, Thomsen¹⁵ found S=-0.84. For the hepthydrate, the heat of solution data are: Thomsen,¹⁵  $-4.28_{400}$ ; Mees,¹  $-4.26_{400}$ ; Favre and Silbermann,³ -3.76. The dissociation pressure data of Frowein,¹ Muller and Erzback,⁴ and Rolla and Accame¹ yield the following results:  $ZnSO_4 \cdot 7H_2O$  (c)  $=ZnSO_4 \cdot 6H_2O$  (c)  $+H_2O$  (g), Q=-13.26;  $ZnSO_4 \cdot 6H_2O$  (c)  $=ZnSO_4 \cdot H_2O$  (g), Q=5 (-13.36);  $ZnSO_4 \cdot H_2O$  (c)  $=ZnSO_4$  (c)  $+H_2O$  (g), Q=-15.2. See also Foote and Scholes,¹ Lescoeur,¹ Wiedemann,¹ and Ishikawa and Murooka.¹ From electromotive force measure-

ments, Cohen and Inouye¹ found  $Q = 3.605^{39}$  for the reaction  $ZnSO_4 \cdot 7 H_2O$  (c)  $= ZnSO_4 \cdot 6 H_2O$  (c)  $+ H_2O$  (aq. satd. soln.).

Zn⁺⁺ (aq.). We have obtained the value for this substance from those for ZnCl₂ (aq.) and ZnSO₄ (aq.). See also Getman and Gibbons¹ and Latimer.²

- ZnO (c). The heat of solution of unfused zinc oxide in aqueous hydrochloric acid was measured by Favre and Silbermann,³ Hess,¹⁰ Maier,⁵ Parks, Hablutzel, and Webster,¹ and Maier, Parks, and Anderson.¹ Apparently, the heat of solution of unfused zinc oxide is independent of the manner of its preparation. These data yield, for ZnO (c, unfused), Qf = 83.5. Ditte,⁵ de Forcrand^{8,9,40,41,42} and Marignac¹ measured the heat of solution of zinc oxide in aqueous sulfuric acid. Their data yield, for ZnO (c, unfused), Qf = 83.7, and for ZnO (c, fused), Qf = 85.5. See also Woods,¹ Berthelot,^{141,142} and Theis.¹ Parr and Moose¹ measured the heat of combustion of zinc to form fused zinc oxide to be 85.2. See also the old values of Dulong,¹ Andrews,^{14,15} and Despretz.²
- ZnH (g). The energy of dissociation of gaseous zinc hydride, in the normal state, into gaseous zinc and hydrogen atoms, each in the normal state, was reported by Fukuda¹ and Bengtsson and Hulthen¹ from their spectroscopic data. The values for the higher energy states of gaseous ZnH are taken from the foregoing authors and from Grundstrom.¹
- $Zn(OH)_2$  (c, ppt.). Thomsen¹⁵ measured the heat of reaction of aqueous zinc sulfate with aqueous barium hydroxide and aqueous potassium hydroxide, and his data yield for  $Zn(OH)_2$  (c, ppt.), Qf=155.3. de Forcrand⁸ measured the heat of solution of  $Zn(OH)_2$  (c, ppt.) in  $H_2SO_4(200)$  to be 18.9, which gives Qf=155.3. See also Mixter.¹¹

 $Zn(OH)_2$  (c, not ppt.). The electromotive force data of Maier, Parks, and Anderson¹ yield for this substance Qf = 155.84, but the cell reaction may be somewhat uncertain.

 $Zn(OH)_2 \cdot H_2O$  (c, ppt.). de Forerand⁸ measured the heat of solution of this substance in  $H_2SO_4(200)$ .

 $ZnO_2 \cdot 2 H_2O$  (c). de Forcrand⁸ measured the heat of solution in  $H_2SO_4(200)$ .

 $Zn_3O_5\cdot nH_2O$  (c). de Forcrand^8 measured the heats of solution of the di- and trihydrates in  $H_2SO_4(200).$ 

- ZnF₂ (aq.). Petersen¹ measured the heat of the reaction of aqueous zinc chloride with solid silver fluoride to be 31.84. Mulert¹ measured the heat of solution of ZnO in aqueous (20%) HF to be 21.82. See also Jellinek and Rudat.¹
- $ZnCl_2$  (c). The data on the heat of solution of solid zinc chloride in water are: Thomsen, ¹⁵ 15.72₄₀₀; Pickering, ⁸ 15.22₄₀₀; Baud, ¹ 15.89₄₀₀ ¹⁵; Ishikawa and Murooka, ¹ 16.71₄₀₀. See also Andrews ¹⁶ and Favre and Silbermann. ³ The use of Thomsen's value yields, for  $ZnCl_2$  (c), Qf = 99.6. The data of Klemm and Brautigam, ¹ who measured in an ice calorimeter the heats of solution of Zn (c),  $Cl_2$  (g), and  $ZnCl_2$  (c), in aqueous (33%) KBr containing excess liquid Br₂, yield, for  $ZnCl_2$  (c), Qf = 99.8. The

ZINC 269

electromotive force data of Foxton and Shutt,¹ on the cell in which the reaction was Zn (c) +Cl₂ (g) = ZnCl₂(11.11), give  $Q^{70}$  = 105.4.

ZnCl₂(C₂H₅OH). Pickering⁸ measured the heat of solution of zinc chloride in ethyl alcohol.

 $ZnCl_2 \cdot nZnO \cdot n'H_2O$  (c). Andre¹ measured the heats of solution of  $ZnCl_2 \cdot 3 ZnO \cdot 5 H_2O$  (c),  $ZnCl_2 \cdot 4 ZnO \cdot 11 H_2O$  (c),  $ZnCl_2 \cdot 5 ZnO \cdot 8 H_2O$  (c), and  $ZnCl_2 \cdot 8 ZnO \cdot 10 H_2O$  (c).

ZnBr₂ (aq.). The value for this substance is obtained from those for the ions, and by analogy with ZnCl₂ (aq.).

 $ZnBr_2$  (c). The data on the heat of solution of zinc bromide are: Thomsen, ¹⁵ 15.02₄₀₀; Andre, ¹ 13.8⁵. The use of Thomsen's value gives, for  $ZnBr_2$  (c), Qf = 78.3. From electromotive force data, Ishikawa and Yoshida¹ computed, for  $ZnBr_2$  (c), Qf = 78.47. See also Czepinski² and Andrews.³

 $ZnBr_2 \cdot 4 ZnO \cdot 13 H_2O$  (c). Andre¹ measured the heat of solution.  $ZnI_2$  (aq.). The value for this substance is obtained from those for the ions, and by analogy with  $ZnCl_2$  (aq.), to be 62.3 for  $ZnI_2$  (600). Webb^{1,2} measured the heat of solution of zinc in iodine water to form  $ZnI_2$  (650), and computed, for the latter, Qf = 61.4.

 $ZnI_2$  (c). Webb^{1, 2} measured the heat of solution of zinc iodide in water to be 11.6₆₅₀, whence, for ZnI (c), Qf=49.8. See also Andrews.² Mosnier¹ found S=11.4. Webb's^{1, 2} data on the cell in which ZnI₂ (c) was formed from its elements gave Qf=49.90. Similar data by Ishikawa and Shibata¹ yield Qf=51.2.

 $ZnI_2 \cdot 5 ZnO \cdot 11H_2O$  (c). Tassilly measured the heat of solution in aqueous HI to be 115.6.

ZnI (g). Sponer⁴ estimated  $D^z = -46$ , from spectroscopic data, for the dissociation into gaseous normal zinc and iodine atoms. Wieland¹ reported a value for the energy of the excited state of gaseous ZnI.

 $Zn(C_2H_3O_2)_2$  (aq.). Thomsen¹⁵ measured the heat of the reaction of aqueous barium acetate and zinc sulfate,  $Ba(C_2H_3O_2)_2(200) + ZnSO_4$  (200) =  $BaSO_4$  (c) +  $Zn(C_2H_3O_2)_2(400)$ , to be 4.61; whence, for  $Zn(C_2H_3O_2)_2(400)$ , Qf = 270.9. Berthelot⁵ measured the heat of reaction of aqueous zinc acetate with aqueous sodium hydroxide to be 10.8. See also Favre and Silbermann.³ The heat of dilution of aqueous zinc acetate was measured by Thomsen.¹⁵ See also Berthelot.⁵

ZnS (c). Thomsen¹⁵ measured the heat of reaction of aqueous zinc sulfate with aqueous sodium sulfide, his data yielding, for ZnS (c, ppt.), Qf=44.3. The data of Mixter,¹⁵ who measured in a bomb calorimeter the reaction of ZnS with Na₂O₂, yield, for ZnS (c, zinc blende), Qf=41.3. See also Berthelot¹⁴ and Jellinek and Zakowsky.¹

ZnS₂O₄ (aq.). Berthelot measured the heat of oxidation with oxygen of an aqueous solution containing zinc, sodium, and, presumably, hydrosulfite ions, to be 67.8.

ZnS₂O₆·6 H₂O (c). Thomsen¹⁵ measured the heat of solution.

ZnSe (c). Fabre⁸ measured the heat of reaction of aqueous zinc ace-

tate with gaseous H₂Se and aqueous Na₂Se to be 23.3 and 32.7, respectively, whence, for ZnSe (c), Qf=39.6 and 34.6. Fabre³ also measured the heat of the reaction of zinc selenide with water and bromine to be 100.0; whence, for ZnSe (c), Qf=33.4.

**ZnTe** (c). Fabre³ measured the heat of the reaction of zinc telluride with water and bromine, and his data yield, for ZnTe (c), Qf = 33.

ZnN₆ (c). Wohler and Martin¹ measured the heat of decomposition of zinc azide into Zn (c) and 3 N₂ (g) to be 50.8.

 $Zn(NO_3)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Zn(OH)_2$  (c, ppt.) with aqueous nitric acid to form  $Zn(NO_3)_2(400)$ , to be 19.83. The heat of dilution of aqueous zinc nitrate was measured by Thomsen.¹⁵ We have extrapolated the values to  $3H_2O$ .

 $Zn(NO_3)_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heat of solution of hexahydrate. Morgan and Owens¹ determined the heat of fusion of the trihydrate.

 $ZnF_2 \cdot 2 H_2O \cdot nNH_3$  (c). Biltz and Ralphs² reported  $Q = 2\frac{1}{2}$  (11.2) for the dissociation,  $ZnF_2 \cdot 2 H_2O \cdot 3 NH_3$  (c)  $= ZnF_2 \cdot 2 H_2O \cdot \frac{1}{2} NH_3$  (c)  $+2\frac{1}{2} NH_3$  (g).

ZnX₂·nNH₃ (c). Biltz and Messerknecht¹ obtained dissociation pressure-temperature data on the ammines of ZnCl₂ with 1, 2, 4, 6, and 10 NH₃, on those of ZnBr₂ with 1, 2, 4, and 6 NH₃, and on those of ZnI₂ with 1, 2, 4, and 6 NH₃. Ephraim⁹ obtained similar data on the hexammines of ZnCl₂ and ZnBr₂. Isambert⁵ measured the heat of solution of the decammine of ZnCl₂ in aqueous HCl; Biltz and Messerknecht¹ those of the di-, tetra- and hexammines of ZnCl₂; Tassilly¹ those of the tetrammines of ZnBr₂ and ZnI₂ and the diammine of ZnI₂.

 $Zn(XO_3)_2 \cdot nNH_3$  (c.). Ephraim and Jahnsen¹ obtained dissociation pressure data on  $Zn(ClO_3)_2 \cdot 4 NH_3$  (c),  $Zn(ClO_3)_2 \cdot 6 NH_3$  (c), and  $Zn(IO_3)_2 \cdot 4 NH_3$  (c). Ephraim and Bolle¹ obtained similar data on the tetra- and hexammines of zinc chlorate.

 $Zn(ClO_4)_2 \cdot 6 NH_3$  (c.). Ephraim and Bolle¹ measured the dissociation pressures.

 $Zn(NO_3)_2 \cdot nNH_3$  (c.). Ephraim and Bolle¹ measured the dissociation pressure at various temperatures of the tetra- and hexammines of zinc nitrate.

 $Zn(C_2H_3O_2)_2 \cdot 2NH_3$  (c.). Ephraim and Bolle¹ measured the dissociation pressures.

 $Zn(NO_2)_2 \cdot NH_3$  (c.). Ephraim and Bolle¹ measured the dissociation pressures.

ZnSO₃·3 NH₃ (c.). Ephraim and Bolle¹ measured the dissociation pressures.

 $ZnS_2O_6 \cdot 4NH_3 \cdot H_2O$  (c.). Ephraim and Bolle¹ obtained dissociation pressure data.

 $Zn(CNS)_2 \cdot nNH_3$  (c.). Ephraim and Bolle¹ obtained dissociation pressure data on the tetra- and hexammines of  $Zn(CNS)_2$ .

- $ZnS_2O_6 \cdot 5 NH_3$  (c.). Ephraim and Bolle¹ obtained dissociation pressure data.
- $ZnS_4O_6 \cdot 5 NH_3$  (c.). Ephraim and Bolle¹ measured the dissociation pressures.
- $ZnS_2O_3 \cdot 5$  NH₃ (c.). Ephraim and Bolle¹ measured the dissociation pressures.
- Zn(CHO₂)₂·5 NH₃ (c.). Ephraim and Bolle¹ measured the dissociation pressures.
- $ZnC_2O_4 \cdot 5$  NH₃ (c.). Ephraim and Bolle¹ measured the dissociation pressures.
- $ZnCl_2 \cdot 5 NH_3 \cdot H_2O$  (c:). Andre¹ measured the heat of solution in HCl(100).
- $ZnCl_2 \cdot 2NH_3 \cdot \frac{1}{4}H_2O$  (c.). Andre¹ measured the heat of solution in HCl(100).
- $ZnCl_2 \cdot 8 NH_4Cl \cdot ZnO$  (c.). Andre¹ measured the heat of solution in HCl(100).
- 3 ZnCl₂·6 NH₄Cl·H₂O (c.). Andre¹ measured the heat of solution in HCl(100).
  - 3 ZnCl₂·ZnO·10 NH₄Cl (c.). Andre¹ measured the heat of solution.
  - 6 ZnCl₂·ZnO·12 NH₃ (c.). Andre¹ measured the heat of solution.
- $ZnSO_4 \cdot nNH_3$  (c.). The values for the ammines of zinc sulfate with  $\frac{1}{2}$ , 1, 2, 3, 4, and 5 NH $_3$  are taken from the work of Ephraim^{8, 10} and Ephraim and Bolle.¹
- $Zn(NH_4)_2(SO_4)_2 \cdot nH_2O$  (c.). Graham² measured the heat of solution of the hexahydrate. Caven and Ferguson² measured the dissociation pressures of the system containing the hexahydrate, dihydrate, and water vapor.

 $Zn(NH_4)_2(SeO_4)_2 \cdot 6 H_2O$  (c.). Caven and Ferguson² measured the dissociation pressure to the dihydrate.

- $Zn(C_2H_5)_2$  (liq.). Guntz⁹ measured the heat of solution of liquid zinc ethyl in aqueous sulfuric and hydrochloric acids to be 79.8 and 78.0, respectively. Correcting for the heat of mixing gives, for  $Zn(C_2H_5)_2$  (liq.), Qf=10.0.
- $Z_{n}C_{2}O_{4} \cdot 2 H_{2}O$  (c). Berthelot¹⁰ reported the heat of the reaction,  $Z_{n}(OH)_{2}(c) + H_{2}C_{2}O_{4}$  (aq.) =  $Z_{n}C_{2}O_{4} \cdot 2 H_{2}O$  (c), to be Q=25.0. This was derived from his unpublished figures on the reaction between zinc sulfate and potassium oxalate.
- $ZnCO_3$  (c). Berthelot's¹² data on the heats of reaction of aqueous zinc sulfate with aqueous sodium carbonate and aqueous potassium carbonate yield, for  $ZnCO_3$  (c), Qf=192.4 and 194.2.
- Zn(CHO₂)₂ (aq.). Berthelot^{9, 131} reported a value for the heat of neutralization of formic acid with zinc hydroxide.
- Zn(CHO₂)₂ (c). Berthelot^{9, 181} measured the heat of solution of zinc formate.
- $Zn(CHO_2)_2 \cdot 2 H_2O$  (c). Berthelot^{9, 131} measured the heat of solution of the dihydrate.

 $Zn(C_2H_3O_2)_2$  (c). Berthelot^{9, 131} measured the heat of solution of zinc acetate.

 $Zn(C_2H_3O_2)_2 \cdot nH_2O$  (c). Berthelot^{9, 131} measured the heats of solution of the mono- and dihydrates.

Zn(C₂H₃O₃)₂ (aq.). de Forcrand³ measured the heat of reaction of zinc sulfate with barium glycollate.

 $Zn(C_2H_3O_3)_2 \cdot nH_2O$  (c). de Forcrand³ measured the heats of solution of the anhydrous zinc glycollate and of the dihydrate.

Zn(CN)₂ (c). Joannis¹ and Berthelot¹¹⁴ measured the heat of precipitation of zinc cyanide. We have used the data of Joannis.

 $Zn(CN)_4$ —(aq.). Berthelot measured the heat of solution of  $Zn(CN)_2$  (c) in aqueous KCN to be 8.6.

ZnSiO₃ (c). Mulert¹ measured the heat of solution in aqueous 20% HF.

Zn₂SiO₄ (gls.). Mulert¹ measured the heat of solution in aqueous 20% HF.

Zn₂SiO₄ (c). Mulert¹ measured the heat of solution in aqueous 20% HF.

ZnSn_n (c). Herschowitsch² computed the heats of formation of the solid alloys, ZnSn₂, ZnSn_{0.6}, ZnSn_{0.21}, and ZnSn_{0.1}, from his data on heats of solution in bromine water. See also Magnus and Mannheimer.¹

2ZnI₂·PbI₂ (c). Mosnier¹ measured the heat of solution.

#### CADMIUM

- Cd (c). The hexagonal form is taken as the standard state. Getman¹ found T = -0.055 for the transition from II to I at 37.5°. Cohen and Heldermann,^{1, 3} reported a transition from III to II at 18° with T = -0.74, but the X-ray and other data of Getman¹ can not be reconciled to the existence of a third form of cadmium.
- Cd (liq.). The data on the heat of fusion of cadmium at its melting point, 321°, are: Umino,³ -1.45; Wust, Meuthen and Durrer,¹ -1.23; Person,¹ -1.54; Richards,¹ -1.48; Johnston and Adams,² -1.54; Roos,² -1.49.
- Cd (g). Vapor pressure data for cadmium were reported by Maier,³ Egerton,¹ Jenkins,³ Barus,^{1,2} Ruff and Bergdahl,¹ Braune,¹ Fogler and Rodebush,¹ Bennewitz,¹ and Weber.¹ By direct measurement, Wehnelt and Muscelleanii¹ obtained the value -20.4 for the heat of vaporization of liquid cadmium. Calculations of the heat of vaporization were made by Johnston,⁶ van Liempt,² Hildebrand,² Millar,¹ and Maier.³ Maier's³ equation yields, for Cd (g), Qf = -26.8. The vapor density data of Biltz⁷ and Deville and Troost¹ indicate that gaseous cadmium is practically monatomic, as do the entropy calculations of Tolman,¹ Fogler and Rodebush,¹ and Lange and Simon.¹

The energy states of gaseous monatomic cadmium are evaluated from the work of Fowler,³ Fues,¹ and Salis.¹

 $Cd_2$  (g). The spectroscopic data of Winans^{1, 2} gave  $D^z = -5$ , while

the later work of Kuhn and Arrhenius¹ gave  $D^* = -46$ . See also Mrozowski.²

CdCl₂ (aq.). The data on the heat of solution of Cd (c) in 2HCl(200) are: Thomsen, ¹⁵ 17.61; Richards, Rowe, and Burgess, ¹ 17.12; Richards and Tamaru, ¹ 17.15. Data on the heat of dilution of aqueous cadmium chloride were obtained by Thomsen. ¹⁵ The value, Q = -0.062, reported by Cohen and Bruins ³ for the dilution from 9.192 to 400 H₂O seems unreasonable.

CdCl₂ (c). The data on the heat of solution of cadmium chloride are: Cohen and Bruins,³ 3.09₄₀₀; Thomsen,¹⁵ 3.01₄₀₀; Pickering,⁶ 3.39₄₀₀; Berthelot,⁶⁹ 3.0; Agostini,² 2.07₅₀₀. See also Lorenz and Hering,² Lorenz and Fox,¹ and Weber.¹

**CdCl₂** (liq.). Weber¹ found  $F = -10.5^{566}$ .

 $CdCl_2 \cdot H_2O$  (c). Pickering⁶ found S=0.62. Thomsen¹⁵ reported S=0.76 for a dihydrate, but undoubtedly his sample was the monohydrate.

CdCl₂·  $2\frac{1}{2}$  H₂O (c). Cohen and Bruins³ found  $S=-2.94_{400}$ ; Pickering⁵ reported S=-2.29 for a dihydrate, but his sample must have been largely the hydrate with  $2\frac{1}{2}$  H₂O. The former value yields, for CdCl₂·  $2\frac{1}{2}$  H₂O (c), Qf=269.93. Electromotive force data on the cell reaction, Cd (c) +PbCl₂ (c) + $2\frac{1}{2}$  H₂O (satd. soln.) = CdCl₂·  $2\frac{1}{2}$  H₂O (c) +Pb (c), were obtained by Vosburg¹ and Taylor and Perrott.¹ The latter investigators also obtained data on the analagous cells with AgCl (c) and HgCl (c). These data yield, respectively, for CdCl₂·  $2\frac{1}{2}$  H₂O (c), Qf=270.02, 269.90, 269.42, and 269.58. The values from the cell with lead chloride are probably the best. See also Getman.³

 $CdCl_2 \cdot 4H_2O$  (c). Worobiew¹ reported Q = -0.76 for the heat of congruent melting of the tetrahydrate.

 $CdCl_2 \cdot 2HCl \cdot 7H_2O$  (c). Berthelot⁶⁹ measured the heat of solution.  $CdCl_2 \cdot CdO \cdot H_2O$  (c). Tassilly measured the heat of solution.

 ${\rm CdSO_4}$  (aq.). Thomsen¹⁵ found Q=5.74 for the heat of the reaction of  ${\rm CdSO_4}(200)$  with  ${\rm BaCl_2}(200)$ ; whence, for  ${\rm CdSO_4}(200)$ , Qf=232.70. Holsboer¹ measured the heat of dilution of aqueous cadmium sulfate. See also von Steinwehr, ¹ Ishikawa, ² and Ishikawa and Murooka. ¹

CdSO₄ (c). For the heat of solution, Thomsen¹⁵ found 10.74₄₀₀; Cohen, Helderman, and Moesveld, 10.69₄₀₀.

 $CdSO_4\cdot H_2O$  (c). Thomsen  15  measured the heat of solution.

CdSO₄ · 2²/₃ H₂O (c). The data on the heat of solution are: Thomsen, ¹⁵/_{2.66400}; Cohen, Helderman, and Moesveld, ¹/_{2.54400}; Holsboer, ¹/_{2.67}. See also Kohnstamm and Cohen and Carpenter and Jette. ¹

 $CdSO_4 \cdot 2\frac{1}{2} H_2O$  (c). Matignon¹⁸ measured the heat of solution.

 $CdS_2O_6$  (aq.). Thomsen¹⁵ measured the heat of the reaction of  $BaS_2O_6$  (400) with  $CdSO_4$  (400) to be 5.60.

Cd⁺⁺ (aq.). Extrapolation to infinite dilution of the values for CdCl₂ (aq.) and for CdSO₄ (aq.) yield for, Cd⁺⁺( $\infty$ ), Qf = 17.1 and 17.6,

respectively. The latter value is probably the more accurate on account of the less uncertain extrapolation. See also Latimer.²

- **CdO** (c). For the heat of combustion of cadmium to form CdO (c), Moose and Parr¹ found the value 65.2, Mixter¹⁵ found 64.2. Mixter's¹⁵ data on the reaction of Cd (c) with Na₂O₂ (c) yield, for CdO (c), Qf = 60, but this value is not as accurate as the directly measured ones.
- $Cd_4O$  (c). Tanatar⁷ claimed to have formed this substance, and measured its heat of solution to be 16.9 and 13.9 in aqueous  $H_2SO_4$  and aqueous HCl, respectively.
- **CdH** (g). The values for the energies of dissociation and excitation of gaseous CdH are from the works of Bengtsson and Hulthen, ¹ Svensson, ² and Bengtsson and Rydberg. ¹
- $Cd(OH)_2$  (c). Thomsen¹⁵ measured the heats of the reactions,  $CdSO_4(400) + Ba(OH)_2(400) = Cd(OH)_2(c) + BaSO_4(c)$  and  $CdSO_4(400) + 2KOH(200) = Cd(OH)_2(c) + K_2SO_4(800)$ , to be 13.07 and 7.07, respectively. From these data we have obtained, for  $Cd(OH)_2(c)$ , Qf = 133.6. For the reaction of  $CdCl_2$  (aq.) with 2KOH (aq.), Agostini² found Q = 5.66. From electromotive force data on the cell in which the reaction was presumably  $Cd(c) + HgO(c) + H_2O(liq.) = Hg(liq.) + Cd(OH)_2(c)$ , Maier⁴ found Q = 36.4.
- CdF₂ (aq.). Petersen³ measured the heat of the reaction of CdCl₂ (aq.) with 2AgF (c) to be 31.9. Mulert¹ measured the heat of solution of CdO (c) in aqueous (20%) HF to be 23.45.
- CdBr₂ (aq.). Thomsen¹⁵ measured the heats of reaction of BaBr₂ (200) with CdSO₄ (200) and with H₂SO₄ (200) to be 6.88 and 9.54, respectively; whence, for CdBr₂ (400), Qf = 76.17. From direct measurement, Nernst⁶ obtained, for CdBr₂ (aq.), Qf = 76.3. Getman³ obtained electromotive force data on the cell in which the reaction was CdBr₂ (aq., satd.) + Hg (liq.) = Cd (c) + Hg₂Br₂ (c). He found Q = 25.66; whence, for CdBr₂ (aq., satd.), Qf = 74.9. See also Herschkowitsch.²
- CdBr₂ (c). The data on the heat of solution are: Thomsen, ¹⁵, 0.44₄₀₀; Varet, ² 0.4¹⁵.
  - CdBr₂ (liq.). Weber¹ found  $F = -5.0^{580}$ . See also Lorenz and Fox.¹ CdBr₂·4H₂O (c). Thomsen¹⁵ measured the heat of solution.
- $CdBr_2 \cdot CdO \cdot \mathring{H}_2O$  (c). Tassilly measured the heat of solution in aqueous HBr.
- CdBr (g). Sponer⁴ estimated  $D^z = -60$ . Wieland¹ reported the energy of excitation.
- $ext{CdI}_2$  (aq.). Thomsen¹⁵ measured the heats of reaction of  $ext{BaI}_2(200)$  with  $ext{CdSO}_4(200)$  and with  $ext{H}_2 ext{SO}_4(200)$  to be 9.61 and 9.55, respectively; whence, for  $ext{CdI}_2(400)$ , Qf=47.6.
- $\mathrm{CdI_2}$  (c). Thomsen¹⁵ found  $S=-0.96_{400}$ . Taylor and Perrott¹ measured the heats of the reaction of 2KI (aq.) with Cd (c) +I₂ (c) and with CdI₂ (c), to be 52.37 and 3.93, respectively; whence, for CdI₂ (c), Qf=48.44. The electromotive force data of Taylor and Perrott¹ yield, for CdI₂ (c), Qf=48.18 and 48.97. Similar data by Vosburg¹ yield 48.37.

See also Yoshida,¹ Cohen, Hetterschij, and Moesveld,¹ Cohen and Bruins,^{1, 2, 4} and Wasastjerna.¹

- CdI₂ (liq.). We have estimated the heat of fusion.
- $CdI_2$  (g). Schmidt and Walter¹ calculated  $V = -28.7^{700}$ .
- CdI₂ (CH₃OH). Timofejew² measured the heat of solution of cadmium iodide in methyl alcohol.
- $CdI_2$  ( $C_2H_5OH$ ). Timofejew² measured the heat of solution in ethyl alcohol.
- **CdI** (g). Sponer⁴ estimated  $D^z = -32$ . Wieland¹ gave a value for the energy of excitation.
- $CdI_2 \cdot CdO \cdot H_2O$  (c). Tassilly measured the heat of solution in aqueous HI.
- CdS (c). Thomsen¹⁵ measured the heat of reaction of aqueous CdSO₄ with aqueous Na₂S, obtaining Q=27.12; whence, for CdS (c), Qf=34.6. Mixter's¹⁵ data on the reaction of CdS (c) with Na₂O₂ (c) yield Qf=35. See also the equilibrium data of Jellinek and Podjaski¹ and Jellinek and Zucker.¹
- **CdSe (c).** Fabre^{1, 2} measured the heats of the reactions, CdSe (c)  $+4\,\mathrm{Br_2}$  (liq.)  $+4\,\mathrm{H_2O}$  (liq.) = (CdBr₂ + 6 HBr + H₂SeO₄) (aq.), CdSO₄ (500) + Na₂Se(500) = Na₂SO₄ (1000) + CdSe (c), and CdI₂(500) + H₂Se (500) = CdSe (c) + 2 HI(500), to be 100.0, 41.2, and 27.1, respectively; whence, for CdSe (c), Qf=17.0, 27.1, and 34, respectively. We have taken 25 as a very rough average.
- **CdTe** (c). Fabre's data on the reaction of CdTe (c) with bromine water yield Qf=16, but this value is probably not very accurate (see CdSe (c)).
- $CdN_6$  (c). Wohler and Martin¹ measured the heat of decomposition into Cd (c) and 3  $N_2$  (g) to be 106.2.
- $Cd(NO_3)_2$  (aq.). Thomsen¹⁵ measured the heat of the reaction of  $Ba(NO_3)_2(200)$  with  $CdSO_4(200)$  to be 5.13; whence, for  $Cd(NO_3)_2(400)$ , Qf = 115.67.
- $Cd(NO_3)_2$  (c). Malquori,¹ from equilibrium data, computed  $Q=55.9^{260}$  for the reaction,  $2 Cd(NO_3)_2$  (c) = CdO (c) +4  $NO_2$  (g) +2  $O_2$  (g); whence, for  $Cd(NO_3)_2$  (c), Qf=77.1. But the result seems very much too low, as it would require the heat of solution to be 40.
- Cd(NO₃)₂ (liq.). Reisenfeld and Milchsack¹ reported the heat of fusion.
- $Cd(NO_3)_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the mono- and tetrahydrates.
- CdCl₂·nNH₃ (c). Biltz, Klatte, and Rahlfs¹ and Biltz and Mau¹ obtained dissociation pressure data on the ammines with 1, 2, 4, 6, and 10 NH₃; Ephraim^{1, 9} on the hexammine. Tassilly¹ found the heat of solution of the diammine in aqueous HCl to be 8.56.¹⁶
- CdBr₂·nNH₃ (c). Biltz and Mau¹ obtained dissociation pressure data on the ammines with 1, 2, 6, and 12 NH₃; Ephraim^{1, 9} on the hexam-

mine. Tassilly¹ measured the heat of solution of the diammine in aqueous HBr to be 7.77.¹⁵

 $CdI_2 \cdot nNH_3$  (c). Biltz and Mau¹ obtained dissociation pressure data on the ammines with 2 and 6 NH₃; Ephraim^{1, 9} on the hexammine. Tassilly¹ found the heat of solution of the diammine in aqueous HI to be 11.9. ¹⁵

CdCl₂·4 NH₄Cl (c). Tassilly measured the heat of solution.

 $CdCl_2 \cdot NH_4Cl \cdot \frac{1}{2} H_2O$  (c). Tassilly measured the heat of solution.  $CdBr_2 \cdot NH_4Br \cdot \frac{1}{2} H_2O$  (c). Tassilly measured the heat of solution.  $CdI_2 \cdot NH_4I \cdot \frac{1}{2} H_2O$  (c). Tassilly measured the heat of solution.

CdSO₄ · nNH₃ (c). Ephraim⁸ obtained dissociation pressure data on the ammines with 1, 2, 5, and 6 NH₃. See also Isambert³ and Ephraim.¹⁰

 $Cd(ClO_3)_2 \cdot nNH_3$  (c) · Ephraim and Jahnsen¹ obtained dissociation pressure data on the ammines with 4 and 6  $NH_3$ .

 $Cd_mSb_n$  (c). Biltz and Haase¹ computed the heats of formation of CdSb and Cd₃Sb₂ from the heats of solution in (KBr+Br₂) (aq.) of Cd, Sb, and the solid alloys.

CdCO₃ (c). Thomsen¹⁵ measured the heat of reaction of CdSO₄ (400) with Na₂CO₃ (400) to be 0.36; whence, for CdCO₃ (c), Qf = 178.56. The equilibrium data of Andrussow¹ and Jander¹ give -21.8 and -22.0 for the reaction, CdCO₃ (c) = CdO (c) + CO₂ (g), whence Qf = 181.4.

Cd(CN)₂ (c). Joannis¹ measured the heat of solution of Cd(CN)₂ (c)

in aqueous HCl to be 5.8,21 and in aqueous H2SO4 to be 8.3.20

 $Cd(ONC)_2$  (c). Wohler and Martin¹ measured the heat of decomposition of cadmium fulminate into Cd (c) +2 CO (g) +N₂ (g) to be 89.0.

 $Cd(CN)_2 \cdot CdO \cdot 5 H_2O$  (c). Joannis¹ measured the heat of solution in aqueous sulfuric acid.

2 CdI₂ · PbI₂ (c). Mosnier¹ measured the heat of solution.

 $CdZn_n$  (c). Herschkowitsch² computed the heats of formation of the solid alloys,  $CdZn_{0.36}$ ,  $CdZn_{1.28}$ , and  $CdZn_{4.61}$ , from data on the heats of solution in  $(KBr+Br_2)$  (aq.).

 $CdPb_n$  (c). See Magnus and Mannheimer.¹  $CdSn_n$  (c). See Magnus and Mannheimer.¹

# MERCURY

Hg (liq.). Standard state.

Hg (g). The vapor pressure of mercury, whose vapor is practically monatomic, was studied by Stock and Zimmerman, Hertz, Thorpe, Hagen, Ruff and Bergdahl, Regnault, Laby, Morley, Jewett, Gebhardt, Villiers, van der Platts, Menzies, Bernhart, Haber and Kerschbaum, Cailletet, Colardeau, and Riviere, Poindexter, Egerton, Smith and Menzies, Kahlbaum, Heycock and Lamplough, Hill, Jenkins, Rodebush and Dixon, Ramsay and Young, Callendar and Griffiths, Pfaundler, Scott, Volmer and Eastman, Volmer and Kirchoff, and Young. The vapor pressure data have been reviewed by Randall, whose equation gives V = -14.60. The following are the directly measured values of the heat of vaporization of mercury at 623°:

MERCURY

277

Person,^{3, 4} -12.4; Kurbatoff,^{1, 1a} -13.6; Muscelleanii,¹ -12.77; Konowalow,² -15.5; Marignac,² -15.5. See also Beckmann and Liesche.¹

The energy states of gaseous monatomic mercury are evaluated from the data of Fowler³ and Paschen.⁹ See also Carroll¹ and Valasek.¹

- **Hg (c).** The data on the heat of fusion of mercury are: Person,^{3, 4} −0.60; Koref,¹ −0.57; Bridgman,⁵ −0.54. See also Pollitzer,¹ Langlois,¹ Henning,³ and Wilhelm,^{1, 1a}
  - $\mathbf{Hg}_{2}(\mathbf{g})$ . Winans² reported  $D^{z} = -1.4$ .
- $HgI_2$  (c, red). Varet¹ measured, at 12°, the heats of the reactions of Hg (liq.),  $HgI_2$  (c),  $Hg_2I_2$  (c),  $Hg_2Cl_2$  (c), HgBr (c),  $Hg_2SO_4$  (c)  $Hg_2$  (C₂H₃O₂)₂ (c), and  $Hg_2$ (NO₃)₂ (aq.), respectively, with KI (aq.) or KI₃ (aq.). His various data yield the following values for  $HgI_2$  (c, red): Qf = 25.2, 25.3, 25.3, 25.3, 25.1, 25.4,and 25.2.
- ${
  m HgI_2}$  (c, yellow). For the heat of transition of mercuric iodide from the red to the yellow form, Bridgman⁶ reported  $-0.547^{126}$ ; Schwartz,  $-0.522^{127}$ ; Steiner and Johnston, -0.64; Guinchaut,  $-0.68^{130}$ ; Brockhorst, -0.42 to -0.56. From the difference in the heats of solution, Berthelot⁸⁴ found T=-3.0.
- $HgI_2$  (liq.). The data on the heat of fusion of  $HgI_2$  (c, red) are: Guinchaut,  4   $-4.45^{250}$ ; Beckmann,  2  -5.5; Rinse,  1  -4.9.
- HgI₂ (g). Vapor pressure data on mercuric iodide were reported by Rinse,¹ Stelzner and Niederschulte,¹ Arctowski,¹ Johnson,¹ Ditte,¹¹ Prideaux,¹ and Schmidt and Walter.¹ These data were reviewed by Egerton and Edmondson,¹ and their values give -19.6 for the heat of sublimation at 256° and -15.0 for the heat of vaporization.
- $Hg_2I_2$  (c, yellow). Varet's data (see paragraph under  $HgI_2$  (c, red)) yield, for this substance, Qf=28.87. The electromotive force data of Vosburgh² yield Qf=28.42 and 28.93.
- HgI (g). Vapor pressure data on  $Hg_2I_2$  were reported by Stelzner and Niederschulte,¹ whose data yield -6.4 to -5.8 for the heat of sublimation of 328 grams of mercurous iodide. According to the vapor density data, gaseous mercurous iodide is either HgI or  $Hg+HgI_2$ . The heat of sublimation data indicate that the vapor is HgI. Sponer⁴ estimated the energy of dissociation of HgI (g) to be about -19.
- HgI₄ (aq.). Thomsen¹⁵ measured the heat of solution of HgI₂ (c) in 2 KI(200) to be 3.48.
- $HgBr_2$  (c). By direct measurement, Nernst⁶ and Varet¹ obtained Qf = 40.5 and 40.70, respectively. Varet's¹ data on the reaction with aqueous KI yield Qf = 40.70.
  - $HgBr_2$  (liq.). Beckmann¹ reported  $F = -4.5.^{236}$
- $HgBr_2$  (g). Vapor pressure data were reported by Stelzner and Niederschulte, Johnson, Prideaux, Arctowski, and Jung and Ziegler. Their data (see Egerton and Edmondson) yield -19.1 for the heat of sublimation and -14.6 for the heat of vaporization.
- HgBr (g). From spectroscopic data Jung and Ziegler¹ obtained values for the reaction,  $HgBr_2$  (g) = Br (g) + HgBr (g), and for the energy

of excitation of HgBr (g). The vapor pressure data of Jung and Ziegler¹ yield -19.6 for the heat of sublimation of 281 grams of mercurous bromide. These authors believed the vapor to be Hg+HgBr₂, but it is more likely HgBr. Sponer⁴ found from spectroscopic data a value for the energy of dissociation of HgBr (g) which yields, for this substance, Qf = -16. Wieland¹ gave a value for the energy of excitation of HgBr (g).

HgBr₄⁻ (aq.). Thomsen¹⁵ measured the heat of solution of HgBr₂ (c) in 2 KBr (200) to be 1.64; Berthelot⁸⁴ found 3.0¹¹ in 2 HBr (aq.).

 $HgBr_2$  (aq.). By working with dilute solutions, Berthelot⁸⁴ determined the true heat of solution of  $HgBr_2$  (c) to be -2.4.

 $\mathrm{Hg_2Cl_2}$  (c). Gerke's¹ data on the cell in which the reaction was 2 Hg (liq.) + Cl₂ (g) = Hg₂Cl₂ (c) yield Qf = 63.33. See also the data of Lewis and Randall¹ on the cell in which the reaction was H₂ (g) +½ Hg₂Cl₂ (c) = HCl(555) + Hg (liq.), Ellis¹ and Harned and Brumbaugh's¹ data on the same reaction, and Rossini.¹0 Varet's¹ data on the reactions of mercurous chloride with KI. (aq.), with KI₃ (aq.), and with KNO₃ (aq.), yield, for Hg₂Cl₂ (c), Qf = 62.65, 62.65, and 62.60. Brodsky's¹ electromotive force data on the cell reaction, Hg₂Cl₂ (c) +2 Br (aq.) = Hg₂Br₂ (c) +2 Cl⁻ (aq.), yield Qf = 62.78.

HgCl (g). The vapor pressure data of Maier, Smith and Calvert, von Richter, and Stelzner and Niederschulte yield -19.2 for the heat of sublimation, but the value is not accurate. In order to be in accord with the spectroscopic data, the vapor of mercurous chloride must be HgCl and not  $2 \text{ Hg} + \text{Cl}_2$ . Sponer found  $D^z = -32$  for HgCl (g) from spectroscopic data; whence, for the latter, Qf = -12. Wieland gave a value for the energy of excitation of HgCl (g).

 $HgCl_2$  (c). Thomsen¹⁵ measured the heats of the reactions of 4 KCl (aq.) with  $Hg_2Cl_2(c) + Cl_2(g)$ , and with  $HgCl_2(c)$ . His data yield, for the latter, Qf = 53.4. See also Andrews.¹⁶

HgCl₂ (g). The vapor pressure data of Richter, Prideaux, Johnson, Stelzner and Niederschulte, and Schmidt and Walker, which show an abnormal trend, yield -14.6 for the heat of vaporization, and -18.7 for the heat of sublimation at the melting point. According to Wyneken and Mitscherlich, the vapor is little dissociated.

HgCl₂ (liq.). From the foregoing, we have calculated  $F = -4.1.^{277}$ 

 $HgCl_2$  (aq.). Thomsen's¹⁵ data on the reaction between  $HgCl_2$  (aq.) and 2 KI (aq.) yield, for the former, Qf = 50.8. Varet's¹ data leads to the same value.

The data on the heat of solution of HgCl₂ (c) in water are: Thomsen,¹⁵  $-3.32_{300}$ ; Berthelot,⁷ -3.1; Berthelot,¹⁹ -2.04; Pickering,⁸  $-2.12_{300}$ . The value of Thomsen¹⁵ yields, for HgCl₂ (aq.), Qf = 50.1.

**HgO** (c, yellow ppt.). Thomsen¹⁵ measured the heats of reaction of 2 KOH(200) with  $\text{HgCl}_2(400)$ ,  $\text{K}_2\text{HgCl}_4(400)$ , and  $\text{K}_2\text{HgBr}_4(400)$ , respectively, to be 8.10, 6.81, and -5.26; whence, for HgO (c, yellow ppt.), Qf = 20.00, 20.70, and 20.84. Berthelot⁵⁵ measured the heat of solution of

the yellow oxide in aqueous HCN to be 31.6, and in aqueous HCl to be 18.6; whence, for HgO (c, yellow), Qf = 21.0.

HgO (c, red). Berthelot's 55 data yield Q=30.8 for the heat of solution of HgO (c, red) in aqueous HBr to form the solid HgBr2; whence, for HgO (c, red), Qf = 21.3. Varet found the same value for the heat of solution of red HgO as did Berthelot for the yellow form, and concluded that the heat of transformation was small; but such a method of comparison is inaccurate because it involves the assumption that the systematic errors in the work of the two experimenters were the same in value. The dissociation pressure data of Taylor and Hulett1 vield, for HgO (c, red), Qf = 21.6. The electromotive force data of Ishikawa and Kimura, Fried, and Brönsted on the cell reaction, HgO (c, red) +H₂ (g)  $= H_2O$  (liq.) + Hg (liq.), yield Q = 46.77, 46.88, and 46.65; whence, for HgO (c, red), Qt = 21.60, 21.49 and 21.72, respectively. In differentiating between the red and yellow forms of mercuric oxide we imply not a difference in the crystalline species, but merely a difference in the heat contents, which may be due to the difference in the size of the crystals of the two forms.

 $Hg_2(NO_3)_2$  (aq.). Thomsen¹⁵ measured the heats of the reactions of aqueous mercurous nitrate with KCl (aq.), KBr (aq.), and KI (aq.); and his data yield, for  $Hg_2(NO_3)_2$  (aq.), Qf = 57.8, 58.3, and 57.9. See also Berthelot⁸⁵ and Nernst.⁶

 ${
m Hg_2(NO_3)_2 \cdot 2\ H_2O}$  (c). Varet¹ measured the heat of solution of this substance in 2 HI (aq.) and in  $(3\ {
m HI} + {
m I}_2)$  (aq.) to be 32.8 and 63.9, respectively; whence, for the solid dihydrate, Qf = 206.6 and 206.4. Varet's¹ similar data on the solution of the dihydrate in aqueous KI, KBr, and KCl yield, for  ${
m Hg_2(NO_3)_2 \cdot 2\ H_2O}$  (c), the mean value of Qf = 207.9

HgF₂·nNH₃ (c). Biltz and Rahlfs² measured the dissociation pres-

sures of the ammines with 2, 4, and 5 NH₃.

 $HgX_2 \cdot nHgO$  (c). And  $re^{1,4}$  measured the heats of solution of  $HgCl_2 \cdot HgO$  (c),  $HgCl_2 \cdot 2HgO$  (c),  $HgCl_2 \cdot 3HgO$  (c),  $HgCl_2 \cdot 4HgO$  (c),  $HgBr_2 \cdot HgO$  (c),  $HgBr_2 \cdot 3HgO$  (c), and  $HgBr_2$ 

 $\cdot$  4HgO(c).

HgS (c). Thomsen¹⁵ found Q=46.10 for the reaction between Na₂S (200) and HgCl₂(200); whence, for HgS (c, black), Qf=7.20. Berthelot¹⁴ found Q=29.6 for the reaction of HgCl₂ (aq.) with H₂S (aq.); whence, for HgS (c, black), Qf=10.7. Varet's¹ data on the reaction between HgO (c) and H₂S (aq.) yield, for HgS (c, black), Qf=10.9. Varet¹ measured the heat of transformation, HgS (c, black) = HgS (c, red), to be 0.30. See also the equilibrium data of Pelabon,¹ Rinse,¹ and Jellinek and Zakowski.¹

Hg₂(NO₃)₂·HNO₃ (aq.). Varet¹ measured the heat of solution of

 $\mathrm{Hg_2(\check{N}O_3)_2 \cdot 2}\,\mathrm{H_2O}$  (c) in  $\mathrm{HNO_3}$  (aq.) to be -12.4.

 $Hg_2O$  (c). Thomsen¹⁵ measured the heat of the reaction of  $(Hg_2(NO_3)_2+1.079\ HNO_3)$  (aq.) with 3.079 NaOH (aq.), and his data yield, for  $Hg_2O$  (c), Qf=21.67. Varet's data on the reaction of mercurous

chloride with aqueous KOH yield, for  $Hg_2O$  (c), Qf=21.7. Varet's¹ data on the heat of reaction of solid mercurous acetate with aqueous KOH yield, for  $Hg_2O$  (c), Qf=21.4.

 $Hg_2(C_2H_3O_2)_2$  (c). Varet¹ measured the heats of reaction of this substance with aqueous KI and aqueous KI₃, his data yielding, for solid mercurous acetate,  $Q_f = 203.2$  and 203.3.

**HgH** (g). The values for the energy of dissociation and of excitation of gaseous HgH are taken from Bengtsson and Hulthen¹ and Hori.³

 $Hg_2SO_4$  (c). Varet's¹ data on the reaction with KI (aq.), KI₃ (aq.), and KOH (aq.) yield, for  $Hg_2SO_4$  (c), Qf=176.37, 176.47, and 176.85. The data of Henderson and Stegeman¹ on the cell reaction, Pb (c)  $+Hg_2SO_4$  (c)  $+PbSO_4$  (c) +2Hg (liq.), yield Q=42.14; whence, for  $Hg_2SO_4$  (c), Qf=176.36. See also Ishikawa.⁴

 ${
m HgSO_4}$  (c). Varet¹ measured the heat of solution of this substance in 2 HCl (aq.), and his data yield, for HgSO₄ (c), Qf=165.7. Varet's¹ data on the reaction of mercuric sulfate with aqueous HCN yield, for HgSO₄(c), Qf=166.7. Berthelot's³³ data on the heats of mixing HgSO₄ with HCl (aq.), with NaCl (aq.), and with H₂SO₄ (aq.) yield, for HgSO₄ (c), Qf=166.6.

 $HgSO_4 \cdot 4 H_2SO_4$  (aq.). Varet measured the heat of solution of  $HgSO_4$  (c) in  $4 H_2SO_4$  (100) to be 4.4.

(HgO)₃SO₃ (c). Varet¹ measured the heat of solution of this substance in 6 HCl (aq.) and 25 H₂SO₄ (aq.) to be 43.4 and 9.1, respectively.

HgSe (c). Fabre² found the heat of solution of mercuric selenide in bromine water to be 76.1, and the heat of mixing  $HgCl_2(500)$  with  $Na_2Se$  (500) to be 70.4; whence, for HgSe (c), Qf=3.5 and 8.0, respectively.

Hg₂N₆ (c). Berthelot and Vieille¹⁰ found the heat of decomposition of mercury azide to be 143.5; Wohler and Martin¹ found 100.0.

 $Hg(NO_3)_2$  (aq.). Thomsen's¹⁵ data on the reaction of HgO (c) with  $HNO_3$  (aq.) yield, for  $Hg(NO_3)_2$  (aq.), Qf = 57.0. Varet's¹ data on the heat of solution of the hemihydrate in aqueous HCl and in aqueous  $HNO_3$  yield, for  $Hg(NO_3)_2$  (aq.), Qf = 56.2.

 $Hg(NO_3)_2 \cdot \frac{1}{2} H_2O$  (c). Varet¹ measured the heat of solution of the hemihydrate in HCl (aq.), in KCN (aq.), and in HNO₃ (aq.) to be 4.62, 24.0, and -1.4, respectively.

 $Hg(NO_3)_2 \cdot 2 HgO \cdot H_2O$  (c). Varet¹ measured the heat of solution of this substance in  $HNO_3$  (aq.) and in KCN (aq.) to be 3.8 and 77.6, respectively.

 $(Hg_2N)_2O$  (c). We have here formally considered all the mercury nitrogen compounds derived from Millon's base,  $Hg_2NH_5O_3$ , to be derivatives of the oxide  $(Hg_2N)_2O$ , where the group  $Hg_2N$  has an ordinary valence of plus one. The thermochemistry of these compounds has been studied by Gaudechon, who measured the heats of solution of the derivatives and of HgO in aqueous KCN. For the oxide  $(Hg_2N)_2O$  (c), Gaudechon measured the heat of solution in KCN (aq.) to be 151.0, and

281

for HgO (c) in KCN (aq.) to be 154.6; whence, for  $(\mathrm{Hg_2N})_2\mathrm{O}$  (c), Qf = -77.0.

 $(Hg_2N)_2O$  (aq.). Gaudechon¹ measured the heat of solution of the solid.

 $Hg_2NOH \cdot nH_2O$  (c). Gaudechon^{1, 2} measured the heats of solution, in aqueous KCN, of  $Hg_2NOH$  (c) and of the hydrates with  $1\frac{1}{2}$ , 2, and  $4H_2O$ .

 $Hg_2NCl \cdot nH_2O$  (c). Gaudechon^{1, 2} measured the heats of solution, in aqueous KCN, of the hemi- and monohydrates.

 $\hat{\mathbf{H}}\mathbf{g}_{2}\mathbf{NCl}\cdot n\mathbf{NH}_{4}\mathbf{Cl}$  (c). Gaudechon^{1, 2} measured the heat of solution, in aqueous KCN, of  $\mathbf{H}\mathbf{g}_{2}\mathbf{NCl}\cdot\mathbf{NH}_{4}\mathbf{Cl}$  (c) and of  $\mathbf{H}\mathbf{g}_{2}\mathbf{NCl}\cdot\mathbf{3NH}_{4}\mathbf{Cl}$  (c).

 $Hg_2NCl \cdot nNH_3$  (c). Gaudechon^{1, 2} measured the heats of solution of the ammines with  $\frac{1}{2}$  and  $1 NH_3$ .

 $Hg_2NCl \cdot \frac{1}{2}HgCl_2$  (c). Gaudechon¹ measured the heat of solution in aqueous KCN.

Hg₂NBr (c). Gaudechon¹ measured the heat of solution in aqueous KCN.

 $Hg_2NBr \cdot nHgBr_2$  (c). Gaudechon¹ measured the heats of solution, in aqueous KCN, of these compounds with  $n=\frac{1}{4},\frac{1}{2},1$ , and 3.

HgCl₂·nNH₃ (c). Biltz, Klatte, and Rahlfs¹ measured the heat of solution of mercuric chloride and of the diammine in aqueous HCl to be −1.5 and 34.5, respectively. Biltz and Mau¹ measured the heat of solution of the diammine in water to be 10.2. Biltz and Mau¹ obtained dissociation pressure data on the ammines with 8 and 8⅓ NH₃.

HgBr₂·nNH₃ (c). Biltz, Klatte, and Rahlfs¹ obtained dissociation pressure data on the octammine, and measured the heat of solution of the diammine in aqueous (20 per cent) KCN.

 $\mathrm{HgI_2} \cdot \mathrm{nNH_3}$  (c). Biltz, Klatte, and Rahlfs¹ measured the dissociation pressures of the di- and octammines, and measured the heat of solution of the diammine in aqueous (20 per cent) KCN. For the dissociation,  $\mathrm{HgI_2} \cdot 2 \mathrm{NH_3}$  (c) =  $\mathrm{HgI} \cdot \frac{3}{4} \mathrm{NH_3}$  (c) +  $1\frac{1}{4} \mathrm{NH_3}$  (g), the data of these authors give  $Q = 1\frac{1}{4}(-13.1)$ .

 $\mathbf{HgF_2} \cdot n\mathbf{NH_3}$  (c). Biltz and Rahlfs² measured the dissociation pressures of the di-, tetra-, and pentammines.

 $HgBr_2 \cdot 2 NH_4Br$  (aq.). Varet's data on the heat of mixing yield Qf = 160.8. We have computed, from the ions, Qf = 162.3.

 $Hg_2Cl_2 \cdot 2 NH_3$  (c). Bonnefoi¹ calculated the heat of dissociation from the data of Isambert.¹

 $Hg_2SO_4 \cdot nNH_3$  (c). Ephraim⁸ measured the dissociation pressures of these ammines, but the data can not be used because of uncertainty as to the products of dissociation.

 $\mathrm{HgC_2O_4}$  (c). Berthelot⁹⁰ measured the heat of solution of mercuric oxalate in  $4\,\mathrm{HCl}(100)$ .

 $Hg_2(C_2H_3O_2)_2$  (c). Varet found the heat of solution of mercurous acetate in KI (aq.) and in KI₃ (aq.) to be 36.6 and 67.5; whence, for  $Hg_2(C_2H_3O_2)_2$  (c), Qf=203.16 and 203.36, respectively.

 $Hg(C_2H_3O_2)_2$  (aq.). Berthelot⁹⁰ measured the heat of reaction of aqueous mercuric acetate with HCl (aq.), with aqueous acetic acid, and with KOH (aq.), respectively.

 $Hg(C_2H_3O_2)_2$  (c). Berthelot⁹⁰ measured the heat of solution.

**HgCl₂·CH₃OH** (c). Lloyd, Brown, Bunnell, and Jones¹ measured the dissociation pressures.

 ${\rm Hg(CN)_2}$  (aq.). Thomsen¹⁵ found the heats of the reaction of  ${\rm HgCl_2}$  (400) with 4 KCN(100), and of  ${\rm K_2Hg(CN)_4}$  (aq.) with  ${\rm HgCl_2(400)}$ , to be 45.6 and 22.0, respectively; whence, for  ${\rm Hg(CN)_2}$  (aq.), Qf=-64.8. Varet¹ measured the heat of solution of  ${\rm HgSO_4}$  (c) in 2 HCN(250) to be 28.33, and of HgO (c, red) in 2 HCN (aq.) to be 31.6. Berthelot⁸⁷ measured the heat of the latter reaction to be 31.0¹⁵.

 $Hg(CN)_2$  (c). Thomsen's¹⁵ data yield -2.97 for the heat of solution; Berthelot⁷ found -3.0.

 $Hg(CN)_4$ — (aq.). Berthelot⁸⁷ measured the heats of mixing  $Hg(CN)_2$  (aq.) with 2 KCN (aq.), and of  $K_2Hg(CN)_4$  (aq.) with 2 HCl (aq.).

 $Hg(CN)_2 \cdot nHgO$  (c). Joannis¹ measured the heats of solution, in aqueous HCl, of these compounds with  $n=\frac{1}{3}$  and 1.

 $Hg(CN)_2 \cdot nNH_4CN$  (aq.). Varet measured the heat of mixing  $Hg(CN)_2$  (aq.) with 1 and 2 moles of  $NH_4CN$  (aq.), respectively.

Hg(CN)₂·NH₄X (aq.). Varet² measured the heat of mixing Hg(CN)₂ (aq.) with NH₂Cl (aq.), NH₄Br (aq.), and NH₄I (aq), respectively.

 $Hg(CN)_2 \cdot NH_4X \cdot nH_2O$  (c). Varet² measured the heats of solution of  $Hg(CN)_2 \cdot NH_4Cl \cdot \frac{3}{4} H_2O$  (c), of  $Hg(CN)_2 \cdot NH_4Br \cdot H_2O$  (c), and of  $Hg(CN)_2 \cdot NH_4I \cdot \frac{1}{4} H_2O$  (c).

Hg(ONC)₂ (c). Kast and Selle¹ measured the heat of decomposition of mercuric fulminate to be 117.7. See also Berthelot and Vieille.¹

Hg(CNS)₂ (c). Joannis¹ measured the heat of reaction of HgCl₂ (aq.) with 2 KCNS (aq.) to be 14.6.

Hg₁₀₀Bi (liq.). Tammann and Ohler¹ determined the heat of formation of this amalgam.

Hg_nSn (liq.). The values for Hg₅₀Sn (liq.) and Hg₁₀₀Sn (liq.) are from van Heteren,¹ Richards and Wilson,¹ and Tammann and Ohler.¹

 $Hg_nPb$  (liq.). The values for these amalgams, with n=100, 260, and 1000, are from Richards and Garrod-Thomas¹ and Tammann and Ohler.¹

HgPb₂ (c). The value for this amalgam is obtained from the data of Gerke, 1 Brönsted, 1, 4 and Henderson and Stegeman. 1

 $Hg_5Tl_2$  (c). The data of Biltz and Meyer² yield Qf=2.5 for this amalgam.

 $\mathbf{Hg}_{n}\mathbf{Tl}$  (liq.). The values for the liquid thallium amalgams are from Richards and Daniels¹ and Richards and Smith.²

Hg_mIn_n. See Richards and Wilson.¹

Hg_mZn_n (liq.). The values for the liquid zinc amalgams are from Richards and Lewis,¹ Richards and Wilson,¹ Favre,^{1,2} Taylor,³ and Pearce and Eversole.¹

Hg_mCd_n (c), Hg_mCd (liq.). The values for the liquid and solid cadmium amalgams are from Richards and Garrod-Thomas,¹ Biji,¹ Richards and Forbes,¹ Cohen,⁵ Carhart,¹ Richards and Lewis,^{1, 2} Richards, Frevert, and Teeter,¹ Hulett,¹ Tammann and Ohler,¹ Richards and Wilson,¹ Getman,¹ and Hildebrand, Foster, and Beebe.¹

HgBr₂·nZnBr₂ (aq.). Varet^{2, 6} measured the heat of mixing HgBr₂ (aq.) with  $\frac{1}{2}$ , 1, and 2 moles of ZnBr₂ (aq.).

Hg(CN)₂·ZnCl₂ (aq.). Varet^{2, 6} measured the heat of mixing.

 $Hg(CN)_2 \cdot ZnCl_2 \cdot 7 H_2O$  (c). Varet^{2, 6} measured the heat of solution.

 $Hg(CN)_2 \cdot ZnBr_2$  (aq.). Varet^{2, 6} measured the heat of mixing.

 $Hg(CN)_2 \cdot ZnBr_2 \cdot 8 H_2O(c)$ . Varet^{2, 6} measured the heat of solution.

 $HgBr_2 \cdot nCdBr_2$  (aq.). Varet^{2, 6} measured the heat of mixing  $HgBr_2$  (aq.) with  $\frac{1}{2}$ , 1, and 2 moles of  $CdBr_2$  (aq.).

 $Hg(CN)_2 \cdot nCdX_2$  (aq.). Varet measured the heat of mixing  $Hg(CN)_2$  (aq.) with 1 mole of  $CdCl_2$  (aq.), with  $\frac{1}{2}$  and 1 mole of  $CdBr_2$  (aq.), and with  $\frac{1}{2}$  mole of  $CdI_2$  (aq.).

 $n\mathrm{Hg}(\mathrm{CN})_2 \cdot \mathrm{CdX}_2 \cdot m\mathrm{H}_2\mathrm{O}$  (c). Varet^{2, 6} measured the heats of solution of  $\mathrm{Hg}(\mathrm{CN})_2 \cdot \mathrm{CdCl}_2 \cdot 2\,\mathrm{H}_2\mathrm{O}$  (c),  $\mathrm{Hg}(\mathrm{CN})_2 \cdot \mathrm{CdBr}_2 \cdot 3\,\mathrm{H}_2\mathrm{O}$  (c), and  $2\,\mathrm{Hg}(\mathrm{CN})_2 \cdot \mathrm{CdI}_2 \cdot 8\,\mathrm{H}_2\mathrm{O}$  (c).

### COPPER

Cu (c). Standard state.

Cu (liq.). Data on the heat of fusion of copper at its melting point, 1083°, were reported by the following: Umino, 3 -3.21; Glaser, 1 -2.65; Richards, 1a -2.70; Wust, Meuthen, and Durrer (recalculated by Randall, Nielsen, and West), -3.24. See also Honda and Ishigaki. These data were reviewed by Randall, Nielsen, and West.

Cu (g). Vapor pressure data were reported by Fery,¹ Greenwood,³,⁴,⁵,⁻,⁻ Harteck,¹ Jones, Langmuir, and Mackay,¹ Ruff and Bergdahl,¹ Ruff and Konschak,¹ and Ruff and Mugdan.¹ From these data Randall, Nielsen, and West¹ computed the heat a sublimation at 25° to be −90.4. This value is much higher than those calculated from the same data by van Laar,¹ van Liempt,¹ Sherman,¹ and us; and is not in agreement with the calculations of Langmuir and Mackay,¹ and the measurements of Rosenhain and Ewen.¹ The measurements of Jones, Langmuir, and Mackay¹ lead to the value −82.0. We have selected Sherman's¹ value of −81.2.

The energy states of gaseous monatomic copper have been evaluated from the following: Fowler,³ Shenstone,^{1a} Kichlu,¹ Bacher and Goudsmit,¹ Krueger,² Lang,^{1a} and Wahlin.²

 ${
m Cu_2O}$  (c). Maier's¹a equilibrium data on the reaction,  ${
m Cu_2O}$  (c)  $+{
m H_2}$  (g) = 2 Cu (c)  $+{
m H_2O}$  (g), yield Q=16.45; whence, for Cu₂O (c), Qf=41.35. Maier's⁴ electromotive force data on the cell reaction, Cu₂O (c)  $+{
m H_2}$  (g) = 2 Cu (c)  $+{
m H_2O}$  (liq.), yield Q=27.45; whence, for Cu₂O (c), Qf=40.92. From the data on entropies and free energies of the substances in the foregoing reaction, Millar⁵ computed, for Cu₂O (c), Qf=40.64.

Thomsen¹⁵ found Q = 15.16 for the reaction,  $Cu_2O$  (c)  $+H_2SO_4(100) = Cu$  (c)  $+CuSO_4(100) + H_2O$  (liq.); whence, for  $Cu_2O$  (c), Qf = 42.5. See also Wohler and Balz,² Allmand,^{1, 1a} Ishikawa and Kimura,¹ Nielsen and Brown,¹ Andrews,¹⁴ and Dulong.²

Cu₂O (liq.). Randall, Nielsen, and West¹ calculated the heat of fusion of cuprous oxide.

CuO (c). The data of von Wartenberg and Werth¹ yield for the reaction, CuO (c)  $+H_2$  (g) = Cu (c)  $+H_2$ O (liq.), Q=38.3; whence, for CuO (c), Qf=38.5. The values reported by Andrews¹⁴ and Dulong² nearly 100 years ago were 38.4 and 39.4, respectively. Randall, Nielsen, and West¹ reviewed the equilibrium data of Smyth and Roberts,¹ Roberts and Smyth,¹ Foote and Smith,¹ Wohler and Foss,¹ Wohler and Balz,² Moles and Paya,¹ and Ruer and Nakamota,¹ and concluded that, for CuO (c), Qf=34.4. Maier's⁴ electromotive force data on the cell reaction, Cu₂O (c) + H₂O (liq.) = 2 CuO (c) + H₂ (g), yield Q=-30.0; whence, for CuO (c), Qf=38.4. See also Biltz,³ Smyth and Roberts,¹ Brody and Mullner,¹ Halla,¹ Treadwell,¹ and Bernoulli.¹

.CuO (liq.). From the foregoing data on equilibria involving both solid and liquid CuO, we have computed the heat of fusion to be  $-13.3^{1336}$ .

CuSO₄ (aq.). Thomsen's¹⁵ data on the heat of solution of CuO in aqueous  $H_2SO_4$  yield, for  $CuSO_4(400)$ , Qf=200.8. For the heat of the reaction,  $CuSO_4(400) + Fe$  (c) =  $FeSO_4(400) + Cu$  (c), Thomsen¹⁵ found Q=37.24; whence, for  $CuSO_4(400)$ , Qf=198.7. Data on the heat of dilution were reported by Thomsen,¹⁵ Perreu,² and Arrhenius.²

CuSO₄ (c). The data on the heat of solution are: Thomsen, ¹⁵, 15.80₈₀₀; Donnan and Hope, ¹ 15.7; Pickering, ⁷ 15.92₄₀₀; Schottky, ¹ 15.93₄₀₀.

 $\text{CuSO}_4 \cdot \text{H}_2\text{O}$  (c). The data on the heat of solution are: Thomsen, ¹⁵ 9.32₄₀₀; Donnan and Hope, ¹ 10.1; Jorissen² (see Thomsen ¹⁵), 9.33; Pickering, ⁷ 8.90₄₀₀; Schottky, ¹ 9.33₄₀₀. See also Siggel. ¹ Vapor pressure data on the system  $\text{CuSO}_4 \cdot \text{H}_2\text{O}$  (c)  $-\text{CuSO}_4$  (c)  $-\text{H}_2\text{O}$  (g) were reported by Lescoeur, ⁴ Siggel, ¹ Schottky, ¹ and Foote and Scholes. ¹

CuSO₄·3 H₂O (c). The data on the heat of solution are: Thomsen, ¹⁵ 2.84₄₀₀; Jorissen² (see Thomsen¹⁵), 3.08; Partington and Huntingford, ¹ 3.46; Donnan and Hope, ¹ 3.20. Vapor pressure data on the system CuSO₄·3 H₂O (c) – CuSO₄·H₂O (c) – H₂O (g) were reported by Lescoeur, ⁴ Frowein, ¹ and Carpenter and Jette. ¹ These data were reviewed by Randall, Nielsen, and West. ¹

CuSO₄ · 5 H₂O (c). The data on the heat of solution are: Donnan and Hope,  1  – 3.3; Favre,  8  – 3.17¹⁹; Pickering,  2  – 2.80₆₀₀; Scholz,  2  – 3.4₄₀₀. See also Favre and Valson and Perreu. Vapor pressure data on the system CuSO₄ · 5 H₂O (c) – CuSO₄ · 3 H₂O (c) – H₂O (g) were reported by Lescoeur, Carpenter and Jette, Frowein, Hollman, Wilson, Noyes and Westbrook, Foote and Scholes, Linebarger, Partington, Partington and Huntingford, and Schumb. These data were reviewed by Randall, Nielsen, and West. The electromotive force data of Oholm and Obata

COPPER 285

on the cell reaction, Cu (c) +Hg₂SO₄ (c) +5 H₂O (satd. soln. of CuSO₄) =CuSO₄ · 5 H₂O (c) +Hg (liq.), yield Q=24.86 and 24.71, respectively. The average yields, for CuSO₄ · 5 H₂O (c), Qf=545.34. See also Cohen, Chattaway, and Tombrock, Nielsen and Brown, Bedeau, and Burian.

CuCl (c). Thomsen¹⁵ measured the heat of reaction of cuprous-oxide with  $2 \,\mathrm{H\acute{C}l}$  (aq.) to be 14.66; whence, for CuCl (c),  $Qf = 3\bar{3}.8$ . Noyes and Chow¹ found Q = 9.81 for the reaction,  $3 \text{ CuCl } (c) + 1\frac{1}{2} \text{ Sn } (c)$ = $1\frac{1}{2}$ SnCl₂ (aq.) +3 Cu (c); whence, for CuCl (c), Qf=37.15. The electromotive force data of Noyes and Chow¹ on the cell reaction, 1½ H2 (g) +3 CuCl (c) =3 Cu (c) +3 HCl (aq.), yield Q=21.57; whence, for CuCl (c), Qf=32.3. From equilibrium data on the reaction between cuprous chloride and hydrogen, Watanabe^{1a, 2} calculated, for CuCl (c), Qf = 32.6. Bodlander and Storbeck¹ estimated Qf = 32.9. See also Parravano and Malquorri.3 Thomsen's 15 data on the reaction of cuprous chloride with KMnO₄ (aq.) yield, for CuCl (c), Qf=34.2. Berthelot's⁵⁹ data on the reaction of cuprous chloride with hydrogen peroxide yield, for CuCl (c), Qf=37.1. The data of Edgar and Cannon on the equilibrium, CuCl (c) +AgCl (c) = CuCl₂ (aq.) +Ag (c), yield, for CuCl (c), Qf = 32.0. Sievert and Gotta's data on the reaction,  $Cu(c) + CuCl_2(aq.) = 2 CuCl(c)$ , yield Q = 3.80; whence, for CuCl (c), Qf = 33.9.

CuCl (aq. HCl). Noyes and Chow¹ found the heat of solution of CuCl in HCl(500) to be -6.44; Berthelot⁵⁹ found values ranging from  $-0.8^{14}$  for HCl(5) to  $9.5^{14}$  for HCl(60).

 $Cu_2Cl_2$  (liq.). Watanabe^{1a, 2} reported  $F = -7.74^{430}$ .

Cu₂Cl₂ (g). The vapor pressure data of von Wartenberg and Bosse¹ yield -19.2 for the heat of vaporization. The vapor of cuprous chloride is Cu₂Cl₂.

 $\rm CuCl_2$  (aq.). Thomsen's¹⁵ data on the reactions,  $\rm CuCl_2(200) + \rm H_2SO_4(200) = \rm CuSO_4(200) + 2~HCl(200)$  and  $\rm CuSO_4(400) + \rm BaCl_2(400) = \rm CuCl_2(800) + \rm BaSo_4$  (c), yield, for  $\rm CuCl_2(200)$ ,  $\it Qf = 64.0$ . Data on the heat of dilution of aqueous cupric chloride were reported by Thomsen,¹⁵ Reicher and van Deventer,² Berthelot,⁵ and Partington and Soper.¹

 $CuCl_2$  (c). The data on the heat of solution are: Favre and Silbermann, 9.9; Sabatier, 11.2₄₀₀²⁰; Partington and Soper, 16.30₂₀₀²⁵; Agostini, 11.08₆₀₀; Thomsen, 15 11.12₆₀₀.

CuCl₂·2 H₂O (c). The data on the heat of solution are: van Deventer and van der Stadt, 3.71₂₀₀; Thomsen, 4.21₄₀₀; Biltz, Broham, and Wein, 6.3, in HCl(20).

 $CuCl_2 \cdot 3 \ CuO \cdot nH_2O$  (c). Berthelot⁷⁷ measured the heats of solution in aqueous HCl of the anhydrous salt and the tetrahydrate.

CuO·CuCl₂ (c). Korvezee, from equilibrium data, reported Q = 29.05 for the reaction,  $2 \text{ CuCl}_2(c) + \frac{1}{2} \text{ O}_2(g) = \text{Cl}_2(g) + \text{CuO·CuCl}_2(c)$ .

 $CuCl_2(C_2H_5OH)$ . Partington and Soper¹ measured the heat of solution of cupric chloride in various amounts of ethyl alcohol.

CuH (g). The energy of dissociation and of excitation of gaseous CuH are taken from the work of Bengtsson and Hulthen.¹

- Cu(OH)₂ (c). Sabatier⁹ and de Forcrand⁶³ measured the heats of solution of both the blue and the green forms of solid cupric hydroxide in aqueous nitric acid. Thomsen¹⁵ measured the heat of reaction of KOH (aq.) with CuSO₄ (aq.), and of Ba(OH)₂ (aq.) with CuSO₄ (aq.). See also Bouzat.¹
- $3 \text{ CuO} \cdot \text{H}_2\text{O}$  (c). Sabatier⁹ and de Forcrand⁶³ measured the heat of solution in aqueous nitric acid.

CuF₂ (aq.). Petersen³ measured the heat of reaction of CuCl₂(300) with 2 AgF to be 31.88.

Cu(ClO₃)₂ (aq.). Thomsen¹⁵ measured the heat of reaction of CuSO₄ (200) with Ba(ClO₃)₂(200) to be 4.37.

Cu(ClO₄)₂ (aq.). The value for this substance has been computed from those for the ions.

CuClO₄ (aq.). Heinerth¹ reported Q = -18.80 for the reaction, Cu (c)  $+ \text{Cu} (\text{ClO}_4)_2$  (aq.) = 2 CuClO₄ (aq.).

CuBr (c). Thomsen¹⁵ measured the heat of reaction of Cu₂O (c) with 2 HBr (aq.) to be 20.76; whence, for CuBr (c), Qf = 26.0. Bodlander and Storbeck¹ estimated Qf = 25.0. Klein's¹ electromotive force data on the cell reaction, CuBr (c) + KI (aq.) = CuI (c) + KBr (aq.), yield, for CuBr (c), Qf = 26.6.

 $Cu_2Br_2$  (g). The vapor pressure data of von Wartenberg and Bosse¹ and of Jellinek and Rudat² yield -18.8 for the heat of vaporization at 1000°.

CuBr₂ (aq.). Rolla¹ measured the heat of solution of copper in bromine water to be 38.3.

CuBr₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 8.25₄₀₀²⁰; Sabatier, ⁷ 7.9¹².

CuBr₂·4 H₂O (c). Sabatier⁷ measured the heat of solution.

CuBr₂·3 Cu(OH)₂ (c). Sabatier⁹ measured the heat of solution in aqueous HBr.

- CuI (c). Thomsen¹⁵ measured the heat of reaction of Cu₂O (c) with 2 HI (aq.) to be 33.73; whence, for CuI (c), Qf=17.2. Bodlander and Storbeck¹ estimated Qf=16.3. Thomsen's¹⁵ data on the reaction, 2 CuSO₄ (aq.) + H₂O (liq.) + 2 KI (aq.) + H₂SO₃ (aq.) = 2 CuI (c) + (2 KHSO₄ + H₂SO₄) (aq.), yield, for CuI (c), Qf=17.7. Berthelot's⁵⁹ data on the reaction of aqueous cupric sulfate with aqueous KI yield, for CuI (c), Qf=18.1. Joannis' data on the reaction of cupric oxide with aqueous HI yield, for CuI (c), Qf=16.2.
- CuI (g). From spectroscopic data, Butkow and Terenin¹ reported Q = -131 for the reaction CuI (g) = Cu* (g) + I (g).
- $Cu_2I_2$  (g). The vapor pressure data of von Wartenberg and Bosse¹ yield -18.9 for the heat of vaporization at  $1300^\circ$ . Gaseous cuprous iodide is practically all  $Cu_2I_2$ .
- CuI₂ (aq.). The value for aqueous cupric iodide is obtained from the ions.
  - CuI₂ (c). We have estimated the heat of formation of this substance.

COPPER 287

- CuS (c). By direct measurement, von Wartenberg¹⁰ found, for CuS (c), Qf=11.61. Berthelot¹⁴ found the heat of reaction of CuSO₄ (aq.) with H₂S (aq.) and with Na₂S (aq.) to be 13.2 and 37.4, respectively; whence, for CuS (c), Qf=11.86 and 12.3. For the reaction, CuSO₄ (200) +Na₂S(200) = CuS (c) + Na₂SO₄ (400), Thomsen¹⁵ found Q=37.23; whence, for CuS (c), Qf=12.17. Equilibrium data were reported by Biltz and Juza,¹ Preuner and Brockmoller,¹ Allen and Lombard,¹ and Halferdahl.¹
- Cu₂S (c). By direct measurement, von Wartenberg¹⁰ found, for Cu₂S (c, III), Qf = 18.97. Thomsen's data on the reaction of cuprous chloride with aqueous sodium sulfide yield, for Cu₂S (c, III), Qf = 20.1. Equilibrium data involving cuprous sulfide were reported by Jellinek and Zakowski, Allen and Lombard, Biltz and Juza, Preuner and Brockmoller, Tubandt and Reinhold, Halferdahl, Stubbs, Wajuchnowa, Reinders and Goudriaan, and Schenck and Hempelmann. Data on the heats of transition of cuprous sulfide were obtained by Bellati and Lussana and Bornemann and Hengstenberg. These data were reviewed by Randall, Nielsen, and West, whose values we have selected.
- $3 \text{ CuO} \cdot \text{CuSO}_4$  (c). From their equilibrium data, Reinders and Goudriaan¹ assumed the existence of this substance, and reported Q=39.1 for the reaction,  $2 \text{ CuSO}_4$  (c)  $+ \text{Cu}_2\text{O}$  (c)  $= 3 \text{ CuO} \cdot \text{CuSO}_4$  (c)  $+ \text{SO}_2$  (g); but these data are uncertain.
- $3 \text{ CuO} \cdot \text{CuSO}_4 \cdot 4 \text{ H}_2\text{O}$  (c). Sabatier measured the heat of solution of this substance in aqueous sulfuric acid.
- $Cu_2SO_4$  (c). Recoura⁴ found Q=21.0 for the reaction,  $Cu_2SO$  (c) = Cu (c) +  $CuSO_4$  (aq.).
- $Cu_2SO_4$  (aq.). From equilibrium data, Heinerth¹ computed Q = -9.4 for the reaction,  $CuSO_4$  (aq.) + Cu (c) =  $Cu_2SO_4$  (aq.).
- $CuS_2O_6$  (aq.). The value for this substance is obtained from those for the ions.
  - $CuS_2O_6\cdot 5\; H_2O$  (c). Thomsen  15  measured the heat of solution.
- CuSO₄·2 HCl (c). Ephraim⁷ obtained dissociation pressure data on this substance.
- CuSe (c). Favre's data on the reaction of aqueous cupric acetate with gaseous hydrogen selenide yield, for CuSe (c), Qf = 19.
- ${
  m Cu_2Se}$  (c). Favre's² data on the reaction of cuprous selenide with bromine water yield, for  ${
  m Cu_2Se}$  (c, II), Qf=14.5. The equilibrium data of Tubandt and Reinhold¹ on the reaction,  ${
  m Ag_2S}$  (c) +  ${
  m Cu_2Se}$  (c) +  ${
  m Cu_2Se}$  (c) +  ${
  m Cu_2Se}$  (c), yield, for  ${
  m Cu_2Se}$  (c, I), Qf=10.6. Bellati and Lussana¹ gave  $T=-1.12^{110}$  for the transition from II to I.
- CuSeO₄ (aq.). Metzner¹ found Q=13.07 for the reaction, CuSeO₄ (aq.) +2 KOH (aq.) =  $K_2$ SeO₄ (aq.) +Cu(OH)₂ (c).
- $CuSeO_4 \cdot 5 H_2O$  (c). Metzner¹ measured the heat of solution of the pentahydrate.
- CuN₃ (c). Wohler and Martin¹ measured the heat of decomposition of copper azide to be 56.8.

 ${\rm Cu(NO_3)_2}$  (aq.). Thomsen¹⁵ measured the heat of the reaction,  $2~{\rm AgNO_3}(400) + {\rm Cu~(c)} = 2~{\rm Ag~(c)} + {\rm Cu(NO_3)_2}(800)$ , to be 35.63; whence, for  ${\rm Cu(NO_3)_2}(800)$ , Qf = 83.55. Thomsen's¹⁵ data on the reaction between aqueous barium nitrate and aqueous cupric sulfate yield, for  ${\rm Cu(NO_3)_2}(200)$ , Qf = 81.4. Data on the heat of dilution of aqueous copper nitrate were reported by Thomsen¹⁵ and Berthelot.⁵

 $Cu(NO_3)_2$  (c). Guntz and Martin¹ measured the heat of solution.  $Cu(NO_3)_2 \cdot 3 H_2O$  (c). Sabatier⁹ measured the heat of solution.

 $\text{Cu(NO}_3)_2 \cdot 6 \text{ H}_2\text{O}$  (c). The data on the heat of solution are: Sabatier,  $^9 - 10.5^{15}$ ; Thomsen,  $^{15} - 10.71_{400}$ . Reisenfeld and Milchsack found the heat of fusion to be  $-8.68^{26}$ .

 $Cu(NO_3)_2 \cdot nNH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the tetra- and hexammines.

 $Cu(NO_3)_2 \cdot 3 CuO \cdot 3 H_2O$  (c). Sabatier⁹ measured the heat of solution in aqueous nitric acid.

 $CuCl_2 \cdot nNH_3$  (aq.). Bouzat¹ measured the heat of adding 4, 6, 8, and 12 NH₃ (aq.) to  $CuCl_2$  (aq.).

 $\text{CuSO}_4 \cdot n\text{NH}_3$  (aq.). Bouzat¹ measured the heats of adding 4, 6, 8, and 12 NH₃ (aq.) to CuSO₄ (aq.).

 $Cu(C_2H_3O_2)_2 \cdot nNH_3$  (aq.). Bouzat¹ measured the heats of adding 4, 6, 8, and 12 NH₃ (aq.) to 1 mole of aqueous cupric acetate.

 $\operatorname{Cu}(\mathrm{NH_3})_{n^{++}}$  (aq.). The values given for the heats of formation of these ions, with n=4, 6, 8, and 12, are purely formal, since the actual ion is probably  $\operatorname{Cu}(\mathrm{NH_3})_4^{++}$ . The values are obtained from the values for the aqueous ammonia solutions of cupric acetate, cupric chloride, and cupric sulfate.

 $\text{CuCl}_2 \cdot 2 \text{ NH}_3$  (c). Bouzat¹ measured the heat of solution of the diammine to be  $3.3^7$  in  $6 \text{ NH}_3$  (aq.) and 7.95 in HCl (aq.); Biltz, Brohan, and Wein¹ found the heat of solution in HCl(20) to be 6.1. Biltz, Klatte, and Rahlfs¹ reported D=-21.

 $\text{CuCl}_2 \cdot 2 \text{ NH}_3 \cdot \frac{1}{4} \text{ H}_2\text{O (c)}$ . Bouzat¹ measured the heat of solution in aqueous ammonia.

 $\hat{\text{CuCl}}_2 \cdot 3\frac{1}{3}\text{NH}_3$  (c). Biltz, Klatte, and Rahlfs¹ reported D = -14.1.  $\text{CuCl}_2 \cdot 4 \text{NH}_3 \cdot 2 \text{H}_2\text{O}$  (c). Bouzat¹ measured the heat of solution in aqueous ammonia.

CuCl₂·nNH₃ (c). Biltz, Klatte, and Rahlfs¹ reported dissociation pressure data on the ammines with 5, 6, and 10 NH₃. See also Biltz, Brohan, and Wein¹ and Ephraim.^{1, 3, 5}

 $\text{CuCl}_2 \cdot 5 \text{ NH}_3 \cdot n\text{H}_2\text{O}$  (c). Bouzat¹ measured the heats of solution of these hydrated pentammines with  $\frac{1}{2}$  and  $1\frac{1}{2}$  H₂O.

 $\operatorname{CuCl}_2 \cdot 2 \operatorname{NH}_4\operatorname{Cl} \cdot n\operatorname{H}_2\operatorname{O}$  (c). Bouzat¹ and Bouzat and Chauvenet¹ measured the heats of solution of the anhydrous compound and of the dihydrate.

 $CuCl \cdot nNH_3$  (c). Biltz and Stollenwerk² obtained dissociation pressure data on the ammines with 1,  $1\frac{1}{2}$ , and 3  $NH_3$ . See also Lloyd.¹

CuBr₂·nNH₃ (c). Biltz, Brohan, and Wein¹ measured the heat of

COPPER 289

solution of the diammine in aqueous HCl, and obtained dissociation pressure data on the ammines with 2, 3½, 5, 6, and 10 NH₃. See also Biltz, Klatte, and Rahlfs¹ and Ephraim.^{1, 9}

 $CuBr \cdot nNH_3$  (c). Biltz and Stollenwerk¹ obtained dissociation pressure data on the ammines with 1,  $1\frac{1}{2}$ , and 3  $NH_3$ . See also Lloyd.¹

 $\text{CuI}_2 \cdot n\text{NH}_3$  (c). Biltz, Brohan, and Wein¹ reported dissociation pressure data on the ammines with 2,  $3\frac{1}{3}$ , 5, and 10 NH₃. See also Ephraim.⁹

 $\text{CuI} \cdot n\text{NH}_3$  (c). Biltz and Stollenwerk¹ measured the dissociation pressures of the ammines with  $\frac{1}{2}$ , 1, 2, and 3 NH₃. See also Lloyd.¹

 $Cu(ClO_3)_2 \cdot nNH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the tetra- and hexammines.

 $Cu(IO_3)_2 \cdot 5 \text{ NH}_3$  (c). Ephraim and Bolle² measured the dissociation pressure of the pentammine.

 $Cu(ClO_4)_2 \cdot nNH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the tetra- and hexammines.

 $CusO_4 \cdot nNH_3$  (c). Bouzat¹ measured the heats of solution in aqueous ammonia of the mono-, di-, and tetrammines. Ephraim^{8, 10} measured the dissociation pressures of the tetra- and pentammines. Bouzat¹ obtained data on the hexammine.

 $CuSO_4 \cdot 4 NH_3 \cdot 1_{\frac{1}{2}} H_2O$  (c). Bouzat¹ measured the heat of solution in aqueous ammonia.

 $\overline{\text{CuSO}_4} \cdot (\text{NH}_4)_2 \text{SO}_4 \cdot n\text{H}_2\text{O}$  (c). Bouzat¹ measured the heat of solution of the hexahydrate; Favre³ (See Bouzat¹) measured that of the anhydrous salt. Caven and Ferguson¹ measured the dissociation pressures for the system, hexahydrate -dihydrate -water vapor, and found D=-18.5.

 $CuS_2O_6 \cdot nNH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the tetra- and pentammines.

 $CuS_4O_6 \cdot 4 NH_3$  (c). Ephraim and Bolle² measured the dissociation pressures.

 $CuP_2$  (c). Granger¹ obtained equilibrium data on the reaction,  $2 CuP_2$  (c) = 2 Cu (c) +  $P_4$  (g).

 $Cu_3Sb$  (c). Biltz and Haase¹ measured the heats of solution in aqueous (30 per cent)  $KBr_3$  of 3 Cu (c) +Sb (c) and of  $Cu_3Sb$  (c).

 $\operatorname{CuCO_3} \cdot \operatorname{Cu}(\operatorname{OH})_2$  (c). Berthelot¹² found the reaction of aqueous copper sulfate with aqueous sodium carbonate to go in two stages, with Q = -2.1 and 1.7, respectively. The product is indefinite, but probably approximates  $\operatorname{CuCO_3} \cdot \operatorname{Cu}(\operatorname{OH})_2$  (c).

Cu(CHO₂)₂ (aq.). Berthelot^{9, 10} measured the heat of neutralization of aqueous formic acid with cupric hydroxide.

 $Cu(CHO_2)_2$  (c). Berthelot^{9, 10} measured the heat of solution of cupric formate.

Cu(CHO₂)₂·4 H₂O (c). Berthelot^{9, 10} measured the heat of solution of cupric formate tetrahydrate.

 $Cu(C_2H_3O_2)_2$  (aq.). Berthelot^{5, 9} measured the heat of neutralization

of aqueous acetic acid with cupric hydroxide. Thomsen¹⁵ measured the heat of reaction of aqueous cupric acetate with aqueous barium hydroxide.

Cu(C₂H₃O₂)₂ (c). Berthelot^{5, 9} measured the heat of solution of cupric acetate.

 $Cu(C_2H_3O_2)_2 \cdot H_2O$  (c). For the heat of solution, Berthelot^{5, 9} found  $-0.80_{220}^{10}$ ; Thomsen¹⁵ found  $0.17_{400}^{18}$ .

Cu(C₂H₃O₃)₂ (c). de Forcrand³ measured the heat of reaction of solid copper glycollate with aqueous hydrogen sulfide.

 $Cu(C_2H_3O_3)_2$  (aq.). de Forcrand³ measured the heat of reaction of aqueous cupric sulfate with aqueous lead glycollate.

Cu₂Cl₂·CO·2 H₂O (aq.). Hammerl¹ reported the heat of formation of this substance.

 $Cu_2Cl_2 \cdot CO \cdot 2 H_2O$  (c). Hammerl¹ reported the heat of formation of this substance.

CuCl₂·2 CH₃OH (c). Dissociation pressure data were reported by Lloyd, Brown, Bonnell, and Jones.¹

 $Cu(C_2H_5SO_4)_2$  (aq.). Thomsen¹⁵ measured the heat of mixing aqueous barium ethyl sulfate with aqueous cupric sulfate.

**CUONC** (c). Wohler and Martin¹ measured the heat of decomposition to be 50.0.

CuCN (aq.). Varet³ measured the heat of reaction of cuprous iodide with aqueous mercuric cyanide.

 $Cu_3Sn$  (c). Biltz⁶ and Herschkowitsch² measured the heats of solution of various bronzes. Biltz⁶ found, for  $Cu_3Sn$  (c), Qf = 8.0

 $Cu_2Zn_3$  (c). Biltz,⁶ Baker,² Galt,¹ and Herschkowitsch² investigated the heats of formation of the brasses. Biltz⁶ found, for  $Cu_2Zn_3$  (c), Qf=16.0.

 $Cu_2Cd_3$  (c). This alloy was studied by Biltz and Haase, Roos, and Schreiner and Seljesaeter. Biltz and Haase found, for  $Cu_2Cd_3$  (c), Qf=3.0.

 $CuC_2O_4 \cdot 5$   $NH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the pentammine of cupric oxalate.

Cu(CHO₂)₂·4 NH₃ (c). Ephraim and Bolle² measured the dissociation pressures of the tetrammine of cupric formate.

Cu(C₂H₃O₂)₂·4 NH₃ (c). Ephraim and Bolle² measured the dissociation pressures of the tetrammine of cupric acetate.

 $Cu(CNS)_2 \cdot nNH_3$  (c). Ephraim and Bolle² measured the dissociation pressures of the tetra- and hexammines.

 $\text{CuSO}_4 \cdot \text{Tl}_2\text{SO}_4 \cdot 6 \text{ H}_2\text{O}$  (c). Caven and Ferguson¹ measured the dissociation pressures for the system, hexahydrate -dihydrate -water vapor.

## SILVER

Ag (c). Standard state. Though both Berthelot¹²² and Petersen⁵ reported significant differences (1.2 and 3.2, respectively) between the heat contents of electrolytic and precipitated silver, modern evidence indicates that there is but one form of solid silver. Some of the observed

SILVER 291

differences in heat content may be due to differences in the size of the crystals.

- Ag (liq.). The data on the heat of fusion of silver are: Person, -2.28; Umino, 3-2.69; Wust, Meuthen, and Durrer, 1-2.8.
- Ag (g). Vapor pressure data were reported by Greenwood,^{2, 3, 5, 6} Ruff and Bergdahl,¹ von Wartenberg,^{3, 7} Harteck,² and Jones, Langmuir, and Mackay.¹ van Liempt² reviewed the data. See also Piersol¹ and Tiede and Birnbrauer.¹ We have assumed gaseous silver to be monatomic.

The energy states of gaseous monatomic silver have been evaluated from the data of Fowler,³ Blair,¹ Kayser and Runge,¹ Randall,¹ Ritz,¹ Shenstone,^{1, 3} Fujioka and Nakamura,¹ White,¹ Frings,¹ McLennan and McLay,² Majumdar,¹ and Gibbs and White.¹

- $Ag^+$  (aq.). The value for this substance is obtained from those for  $AgNO_3$  (aq.) and  $NO_3^-$  (aq.).
- $Ag_2O$  (c). Equilibrium data on the decomposition of silver oxide were reported by Lewis,⁴ Keyes and Hara,¹ and Benton and Drake.¹ Lewis and Randall⁵ calculated from the data of the first two investigations, Qf = 6.95; while Benton and Drake¹ calculated Qf = 7.02. Mixter's¹² data yield Qf = 6.2. See also Biltz,⁸ Favre and Silbermann,² and Newton.¹
- $Ag_2O_2$  (c). Jirsa^{2, 3, 4} measured the heats of solution of  $Ag_2O$  (c) and of  $Ag_2O_2$  (c) in aqueous  $HClO_4$  and aqueous  $HNO_3$ ; and measured the heats of reduction of  $Ag_2O$  (c) and of  $Ag_2O_2$  (c) with aqueous  $N_2H_2$ . His data yield, for  $Ag_2O_2$  (c), Qf=5.95 and 6.4, respectively.
- AgH (g). Farkas¹ studied the equilibrium, 2 Ag (c)  $+H_2$  (g) =2 AgH (g), spectroscopically, and calculated Q=7.5.
- AgNO₃ (aq.). For the heat of solution of Ag₂O (c) in aqueous nitric acid, Jirsa¹ found 12.2 and Berthelot¹²⁸ 10.32; whence, for AgNO₃ (aq.), Qf = 24.5 and 23.6, respectively. Thomsen's data on the reactions of Ba(OH)₂(400) with 2 AgNO₃(200) and with 2 HNO₃(200), Q = 17.38 and 28.28, respectively, yield, for AgNO₃(200), Qf = 23.83. Lange and Fuoss' data on the reaction of AgNO₃(600) with KCl(660),  $Q = 15.77^{25}$ , yield, for  $AgNO_3(600)$ , Qf = 23.92. Thomsen's¹⁵ on the reaction of AgNO₃(200) with KCl(200) and with HCl(200) yield Q = 15.87 and 15.75, respectively, whence, for AgNO₃(200), Qf = 23.99and 24.10. See also Berthelot¹² and Andre. Berthelot, ¹² Lange and Shibata, and Thomsen measured the heat of reaction of aqueous silver nitrate with aqueous potassium iodide. The data of the latter two investigations yield, respectively, AgNO₃(1000), Qf=24.22, and AgNO₃ (400), Qf = 24.36. Jahn obtained electromotive force data on the cell reaction of Pb (c) with 2 AgNO₃ (aq.). Data on the heat of dilution of aqueous silver nitrate were reported by Fricke and Havestadt.¹
- AgNO₃ (c, II). The data on the heat of solution are Thomsen, ¹⁵ -5.46₄₀₀; Berthelot, ¹⁰ -5.7; Favre and Silbermann, ¹⁰ -5.3; Bruni and Levi, ² -5.3. See also Petersen. ⁵
  - AgNO₃ (c, I). Bridgman^{6a} reported the heat of transition.

- AgNO₃ (liq.). Magnus and Oppenheimer¹ reported the heat of fusion of silver nitrate.
- AgCl (c). The electromotive force data of Gerke¹ and of Wolff² on the cell reaction, Ag (c)  $+\frac{1}{2}$  Cl₂ (g) = AgCl (c), yield Qf = 30.32 and 30.16, respectively. The electromotive force data on the cell reaction, Ag (c) +HgCl (c) = AgCl (c) +Hg (liq.), yield the following values for Q: Brönsted,¹ -1.40; Gerke,¹ -1.276; Brönsted,^{2a} -1.30; Halle,² -1.40. See also the electromotive force data of Gerke,¹ Brönsted,⁴ Halle,² and Krahmer¹ on the cell reaction, 2 Ag (c) +PbCl₂ (c) = 2 AgCl (c) +Pb (c). See also Noyes and Ellis,¹ Harned and Brumbaugh,¹ Butler and Robertson,¹ Melcher,¹ and Rossini.¹⁰ Berthelot⁸⁶ and Lange and Fuoss¹ found the difference in energy content of the variously prepared forms of silver chloride to be small.
- **AgCl** (liq.). The data on the heat of fusion are: Weber, -4.4; Goodwin and Kalmus, -3.06.
- AgCl (g). Vapor pressure data were reported by von Wartenberg and Bosse¹ and Maier.⁶ Brice¹ reported a value of -72.3 for the energy of dissociation of gaseous silver chloride at  $-273^{\circ}$ , from spectroscopic data. The assumption that the dissociated atoms are in the normal state yields, for AgCl (g), Qf = -24.7.
- AgI (c, II). Webb's^{1, 2} data on the direct combination of silver with iodine yield Qf = 14.94. Webb's^{1, 2} data on the heats of dissolving, in concentrated aqueous KI, AgI (c) and Ag (c) +I₂ (c) yield, for AgI (c), Qf = 15.01. In similar experiments with aqueous KCN as the solvent, Webb^{1, 2} found, for AgI (c), Qf = 15.2. From experiments similar to the latter Braune and Koref¹ found Qf = 15.1. The electromotive force data yield the following values: Taylor and Anderson,¹ 15.13; Jones and Kaplan,¹ 14.35; Gerke,¹ 14.81; Taylor,² 15.15. From the difference in the heats of solution of AgCl (c) and AgI (c) in aqueous KCN, the data of Fischer¹ and Wolff¹ yield, for AgI (c), Qf = 15.1 and 14.93. See Bodlander² and Bernoulli.¹
- AgI (c, I). The following are the data on the transition from II to I at  $146^{\circ}$ : Cohen and  $Joss,^{1} 1.26$ ; Mallard and LeChatelier, -1.5.
- AgI (g). Jellinek and Rudat² computed the heat of vaporization from vapor pressure data. From the spectroscopic absorption limit and the assumption that the products of dissociation are a normal silver atom and an excited iodine atom, Franck and Kuhn¹ computed a value for the energy of dissociation of gaseous silver iodide which leads to the value Qf = -38 for AgI (g).
- AgF (aq.). Petersen³ measured the heat of reaction of AgF (aq.) with HCl (aq.) to be 13.31; Guntz¹ that of AgF (aq.) with KOH (aq.) to be 17.6.¹⁰
  - AgF (c). Guntz¹ measured the heat of solution.
  - AgF (amorphous, red). Guntz¹ measured the heat of solution.
- $AgF \cdot nH_2O$  (c). Guntz¹ measured the heat of solution of the tetrahydrate; Guntz and Guntz^{1, 2} those of the mono- and dihydrates.

SILVER 293

 $AgHF_2$  (aq.). Guntz¹ measured the heat of mixing AgF (aq.) +HF (aq.) to be 2.0.

Ag₂F (c). Guntz¹⁰ measured the heat of solution.

 $Ag_2Cl(c)$ . Without giving details, Guntz¹¹ reported for the reaction,  $Ag(c) + AgCl(c) = Ag_2Cl(c)$ , Q = 0.5.

AgClO₃ (aq.). The value for this substance is obtained from those for the ions.

AgClO₃ (c). Foote and Saxon¹ measured the heat of solution. See also Bedeau.¹

AgClO₄ (aq.). Jirsa¹ found the heats of reaction of AgClO₄ (aq.) with HCl (aq.), HBr (aq.), and HI (aq.), respectively, to be 15.75, 20.52, and 26.87. Jirsa¹ also measured the heat of reaction of Ag₂O (c) with concentrated HClO₄ (aq.).

AgClO₄ (c). Bruni and Levi² measured the heat of solution.

AgBr (c). Webb's^{1, 2} electromotive force data on the reaction, Ag (c)  $+\frac{1}{2}$  Br₂ (liq.) = AgBr (c), yield Qf = 23.81. Krahmer's¹ electromotive force data on the reaction, AgI (c)  $+\frac{1}{2}$  PbBr₂ (c) = AgBr (c)  $+\frac{1}{2}$  PbI₂ (c), yield, for AgBr (c), Qf = 24.16. See also Klein¹ and Bernoulli.¹ Berthelot¹² and Thomsen¹⁵ measured the heat of reaction of aqueous silver nitrate with aqueous hydrobromic acid. The latter's data yield, for AgBr (c), Qf = 23.68.

AgBr (g). Jellinek and Rudat² computed the heat of vaporization from vapor pressure data.

AgBr (liq.). We have estimated the heat of fusion.

3 AgI·HI·7 H₂O (c). Berthelot⁶⁹ measured the heat of solution. AgI₃⁻⁻ (aq.). Webb¹ measured the heat of solution of silver iodide in concentrated aqueous potassium iodide to be 1.8. See also Berthelot.¹⁵¹

 $Ag_2S$  (c, II). Thomsen's¹⁵ data on the reaction of  $2 AgNO_3(100)$  with  $Na_2S(200)$  yield, for  $Ag_2S$  (c, II), Qf=6.86. Berthelot's^{14, 133} data on the similar reaction with  $H_2S$  (aq.) yield Qf=5.0. Equilibrium data on the reaction,  $Ag_2S$  (c)  $+H_2$  (g)  $=H_2S$  (g) +2 Ag (c), were reported by Jellinek and Zakowski,¹ Pelabon,³ Keyes and Felsing,¹ and Watanabe.¹ The latter calculated Qf=5.1. See also Jellinek and Podjaski¹ and Noyes and Freed.¹

Ag₂S (c, I). Bellati and Lussana¹ reported the heat of transition.

 $Ag_2SO_4$  (aq.). Thomsen's¹⁵ data on the reaction of  $Ag_2SO_4$  (aq.) with 2 KOH (aq.) yield, for  $Ag_2SO_4$  (aq.), Qf = 165.27. See also Berthelot.¹²⁸

 $Ag_2SO_4$  (c). From indirect measurements, Thomsen¹⁵ reported the heat of solution to be -4.48. Thomsen's¹⁵ data on the reaction of  $2 \text{ AgNO}_3$  (100) with  $(NH_4)_2SO_4$  (100) yield -4.58 for the heat of solution of silver sulfate. See also Marchal.³

 $Ag(S_2O_3)_2$ — (aq.). Fogh¹ measured the heat of reaction of aqueous silver nitrate with excess aqueous sodium thiosulfate to be 20.0.

 $Ag_2S_2O_6$  (aq.). The value for this substance is obtained from the ions.

 $Ag_2S_2O_6 \cdot 2 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

Ag₂Se (c, II). Fabre² measured the heats of reaction of silver selenide with bromine water and of aqueous silver acetate with gaseous hydrogen selenide. See also Pelabon¹ and Tubandt and Reingold.¹

Ag₂Se(c, I). Bellati and Lussana¹ reported the heat of transition. Ag₂SeO₄(c). Metzner^{1, 2} measured the heat of reaction of aqueous silver nitrate with aqueous potassium selenate to be 8.48.

AgN₃ (c). Wohler and Martin¹ measured the heat of decomposition of silver azide to be 67.3.

AgNO₂ (aq.). Berthelot^{9, 10, 28} reported a value for the heat of neutralization of nitrous acid with silver oxide.

AgNO₂ (c). Berthelot^{9, 10, 28} measured the heat of solution.

Ag₂N₂O₂ (c). Berthelot and Ogier⁷ reported a value for the heat of neutralization of hyponitrous acid with silver oxide.

 $Ag_2O_2 \cdot HNO_3 \cdot 2 H_2O$  (liq.). Jirsa² reported a value for the heat of formation of this substance.

 $AgNO_3 \cdot nNH_3$  (aq.). Bruni and Levi¹ measured the heat of mixing  $AgNO_3(100)$  with  $2 NH_3(1100)$  to be 12.79, and found no evolution of heat on the addition of more ammonia. For the same reaction, Berthelot and Delepine² found Q=13.39. These investigators also measured the heat of reaction of  $AgNO_3 \cdot 2 NH_3$  (aq.) with aqueous nitric acid to be 11.64 and 12.25, respectively. Bruni and Levi² measured the heat of reaction of the aqueous triammine with aqueous nitric acid to be 24.01.

AgNO₃·2 NH₃ (c). The data on the heat of solution are: Bruni and Levi,² -9.05; Berthelot and Delepine,² -8.97; Jirsa and Diamant,¹ -9.23.

AgNO₃·NH₃ (c). Data on the dissociation pressure of the system, diammine-monoammine-NH₃ (g), were reported by Ephraim.⁴ See also Joannis and Crozier¹ and Lemoult.¹

AgNO₃·3 NH₃ (c). For the heat of solution Bruni and Levi² found -10.44 in water, Jirsa and Diamant¹ -9.23 in aqueous nitric acid. Data on the dissociation pressure of the triammine were reported by Ephraim.⁴ See also Joannis and Crozier¹ and Lemoult.¹

 $AgClO_4 \cdot nNH_3$  (aq.). Bruni and Levi² measured the heat of mixing aqueous silver perchlorate with aqueous ammonia.

 $AgClO_4 \cdot nNH_3$  (c). Bruni and Levi² measured the heats of solution of the di- and triammines.

 $Ag(NH_3)_2$  (aq.). The value for this substance is obtained from those for  $AgNO_3 \cdot 2 NH_3$  (aq.) and  $NO_3$  (aq.).

 $\mathbf{AgX} \cdot \mathbf{nNH_3}$  (c). Isambert⁵ reported values for the heats for formation of  $\mathbf{AgCl} \cdot \mathbf{3}$  NH₃ (c) and of  $\mathbf{AgCl} \cdot \mathbf{1}\frac{1}{2}$  NH₃ (c), computed from unpublished values for the heats of solution. The dissociation pressure data of Biltz and Stollenwerk¹ yield values for the ammines of  $\mathbf{AgCl}$  with 1,  $\mathbf{1}\frac{1}{2}$ , and 3 NH₃, for those of  $\mathbf{AgBr}$  with 1,  $\mathbf{1}\frac{1}{2}$ , and 3 NH₃, and for those of  $\mathbf{AgI}$  with  $\mathbf{1}$ , 1,  $\mathbf{1}$ , 2, and 3 NH₃. See also Jarry, Bonnefoi, and Joannis and Crozier.

SILVER 295

AgBrO₃·3 NH₃ (c). Ephraim⁴ obtained dissociation pressure data on this ammine.

- $AgNO_2 \cdot 3 NH_3$  (c). Ephraim⁴ obtained dissociation pressure data on this ammine.
- $Ag_2C_2$  (c). Berthelot and Delepine¹ measured the heat of reaction of acetylene with  $2 \text{ AgNO}_3 \cdot 2 \text{ NH}_3(c)$ , and the heat of solution of  $Ag_2C_2(c)$  in aqueous silver nitrate.
- $Ag_2C_2 \cdot nAgCl$  (c). Berthelot and Delepine¹ measured the heats of solution of  $Ag_2C_2 \cdot AgCl$  (c) and of  $Ag_2C_2 \cdot \frac{1}{2}AgCl$  (c) in aqueous HCl.
- $Ag_2C_2 \cdot nAgI$  (c). Berthelot and Delepine¹ measured the heats of solution in aqueous HCl of  $Ag_2C_2 \cdot AgI$  (c) and of  $Ag_2C_2 \cdot 2AgI$  (c).
- $Ag_2C_2 \cdot \frac{1}{2} Ag_2SO_4$  (c). Berthelot and Delepine¹ measured the heat of solution in aqueous HCl.
- $Ag_2C_2 \cdot AgNO_3$  (c). Berthelot and Delepine¹ measured the heat of solution in aqueous HCl.
- $Ag_2CO_3$  (c). Berthelot's¹² data on the reaction of aqueous silver nitrate with aqueous potassium carbonate yield Qf = 117 for the freshly precipitated silver carbonate, and Qf = 121 for the crystallized material. The equilibrium data of Centnerszwer and Krustinson¹ on the reaction,  $Ag_2CO_3$  (c)  $=Ag_2O$  (c)  $+CO_2$  (g), yield, for  $Ag_2CO_3$  (c), Qf = 119.9.
- Ag₂C₂O₄ (c). Berthelot¹⁰ measured the heat of reaction of aqueous silver nitrate with aqueous potassium oxalate to be 14.6.
- AgC₂H₃O₂ (aq.). Berthelot⁹ reported a value for the heat of neutralization of silver oxide with aqueous acetic acid.
- AgC₂H₃O₂ (c). The data on the heat of solution are: Berthelot,⁹ -4.3; van Laar,¹⁰ -4.41; Goldschmidt and van Maarsevenn,¹ -4.37. See also Rudolphi.¹
- AgCN₂-(aq.). The value for this substance is obtained from those for the aqueous salts.
- AgCN (c). Thomsen¹⁵ measured the heats of the reactions, AgNO₃ (200) +2 KCN (200) = (KAg(CN)₂+KNO₃) (600) and KAg(CN)₂(600) +AgNO₃(200) = KNO₃(800) +2 AgCN (c), to be 33.21 and 20.22, respectively.
- Ag(CN)₃-- (aq.). Varet⁵ measured the heat of solution of silver cyanide in various aqueous cyanides.
  - $AgCN \cdot NH_3$  (c). Joannis and Crozier¹ reported D = -14.0.
- AgCNO (c). Lemoult measured the heat of the reaction, KCNO (aq.) + AgNO₃ (aq.) = KNO₃ (aq.) + AgCNO (c), to be 13.46.
  - Ag₂CN₂ (c). Lemoult¹ measured the heat of solution in aqueous HCl.
- AgONC (c). Wohler and Martin¹ measured the heat of decomposition of silver fulminate into Ag (c)  $+\frac{1}{2}$  N₂ (g) +CO (g) to be 69.6.
- AgCNS (c). Joannis¹ measured the heat of the reaction, HCNS (aq.) + AgNO₃ (aq.) = HNO₃ (aq.) + AgCNS (c), to be 22.44.
- AgCNS (aq.). Kirschner's data on the temperature coefficient of the solubility yield -21.3 for the heat of solution.
  - AgX · CH₃NH₂ (c). Jarry obtained dissociation pressure data on

the monomethylammines of silver chloride, silver bromide, and silver iodide.

AgI · PbI₂ (c). Bellati and Romanese² measured the heat of transition.

AgI · nCuI (c). Bellati and Romanese² measured the heat of transition of these compounds with n=1 and 2.

Ag₃Hg₄ (c). Data on the silver amalgams were reported by Berthelot¹²³ and Littleton.¹

## GOLD

Au (c). Standard state.

Au (liq.). For the heat of fusion at its melting point, 1063°, Wust, Meuthen, and Durrer¹ reported -3.13 and Umino³ -3.11.

Au (g). The vapor pressure data of Ruff and Bergdahl,¹ Tiede and Birnbauer,¹ and von Wartenberg³ yield -86 for the heat of vaporization at 2611°. The energy states of gaseous monatomic gold are evaluated from the data of McLennan and McLay.¹

**AuCl** (c). Fischer and Biltz¹ measured the heats of solution of Cl₂ (g), Au (c), and AuCl (c) in aqueous ICl₃ to be 7.1, 18.5, and 17.2, respectively; whence, for AuCl (c), Qf=8.4. The dissociation pressure data of Fischer and Biltz¹ and of Ephraim⁶ yield, for AuCl (c), Qf=8.8 and 8.25, respectively. See also Matignon⁹ and Meyer.^{1a}

AuCl₃ (c). Fischer and Biltz¹ measured the heats of solution in aqueous ICl₃ of Cl₂ (g), Au (c), and AuCl₃ (c), and their data yield, for the latter, Qf=28.3. The dissociation pressure data of Fischer and Biltz,⁷ Petit,² and Pellaton¹ yield, for AuCl₃ (c), Qf=28.1, 26.6, and 29.5.

AuBr (c). Fischer and Biltz¹ measured the heats of solution of Au (c), Br₂ (liq.), and AuBr (c) in aqueous ICl₃, their data yielding, for AuBr (c), Qf=3.4. Thomsen¹ measured the heat of solution of AuBr (c) in HBr (aq.) to be 1.20 and in H₂SO₃ (aq.) to be 21.38; whence, for AuBr (c), Qf=5.0 and 5.8. Fischer and Biltz¹ studied the equilibrium, AuBr (c) +Br₂ (g) =AuBr₃ (c), and found  $Q=17\pm2$ . See also Ephraim, Meyer,¹ and Petersen.¹,²

AuBr₃ (c). Fischer and Biltz¹ measured the heats of solution of Au (c), Br₂ (liq.), and AuBr₃ (c) in aqueous ICl₃, their data yielding, for AuBr₃ (c), Qf = 14.5.

 $AuBr_3$  (aq.). Thomsen¹⁵ measured the heat of solution of  $AuBr_3$  (c) to be  $-3.76_{200}$ .

AuCl₃ (aq.). Thomsen¹⁵ measured the heat of reaction of 2 AuCl₃ (1500) with 3 SO₂(500) to be 83.60; whence, for AuCl₃ (aq.), Qf=29.78. Thomsen¹⁵ measured the heat of solution of AuCl₃ in water to be 4.45₉₀₀. Combination with Fischer and Biltz's¹ value for AuCl₃ (c) yield, for AuCl₃ (aq.), Qf=32.75.

AuCl₃·2 H₂O (c). Fischer and Biltz¹ measured the heat of solution. HAuCl₄ (aq.). Thomsen¹⁵ and Fischer and Biltz¹ measured the heat of solution of AuCl₃ (c) in aqueous HCl to be 8.98 and 10.1, respectively. Using 28.3 as the value for AuCl₃ (c), one obtains, for HAuCl₄ (aq.),

GOLD 297

Qf=76.7 and 77.8. Thomsen¹⁵ and Fischer and Biltz¹ measured the heat of the reaction, 3 AuCl (c) +HCl (aq.) = HAuCl₄ (aq.) +2 Au (c), to be 5.0 and 13.5, respectively; whence, for HAuCl₄ (aq.), Qf=69.4 and 77.8. Thomsen¹⁵ explained the difference in his two values by assuming that the gold formed in the latter reaction has an energy content of about 5 greater than that of ordinary gold; but there is no other evidence to support this view.

 $\mathbf{HAuCl_4} \cdot n\mathbf{H_2O}$  (c). Thomsen¹⁵ measured the heats of solution of the tri- and tetrahydrates.

AuCl₂ (c). Fischer and Biltz¹ and Petersen^{1, 2} measured the heat of solution of this supposed compound to be, respectively, 6.75 in HCl(100) and 5.15 in HCl(900). These data yield, for AuCl₂ (c), Qf=18.1 and 19.7, respectively. One-half the sum of the values for AuCl (c) and AuCl₃ (c) is 18.3.

**HAuBr₄** (aq.). Thomsen¹⁵ measured the heat of mixing AuBr₃ (aq.) with HBr (aq.) to be 7.70; whence, for HAuBr₄ (aq.), Qf = 47.1.

HAuBr₄·5 H₂O (c). Thomsen¹⁵ measured the heat of solution.

AuI (c). Thomsen¹⁵ measured the heat of the reaction, AuCl₃ (aq.) +3 KI (aq.) = AuI (c) +3 KCl (aq.) +I₂ (c), to be 45.66; whence, for AuI (c), Qf = -0.3. Thomsen¹⁵ also measured the heat of the reaction of aurous iodide with aqueous sulfur dioxide. Fischer and Biltz¹ measured the heats of solution in aqueous ICl₃ of Au (c), I₂ (c), and AuI (c), and their data yield, for AuI (c), Qf = -0.2.

Au(OH)₃ (c). Thomsen¹⁵ measured the heat of solution in 4 HBr (aq.) and in 4 HCl (aq.).

 $Au_2O_3$  (c). Mixter's¹² data on the heats of the reactions of  $3 Na_2O_2$  (c) with 2 Au (c) and with  $Au_2O_3$  (c), yield, for the latter, Qf = -11.

AuH (g). From band spectra, Bengtsson and Hulthen¹ calculated  $D^z = -103.5$ . See also Farkas.¹

Au(CN)₂⁻ (aq.). Biltz^{6a, 6b} measured the heats of solution of AuI (c), AuBr (c), and AuCl (c) in aqueous cyanide solutions, and his data yield, for Au(CN)₂⁻ (aq.), Qf = -58.0, -56.8, and -57.5.

AuHg₁₀₀ (liq.). Data on the heat of formation of gold amalgam were reported by Biltz and Meyer² and Tammann and Ohler,¹ who found, for AuHg₁₀₀ (liq.), Qf = -1.3 and -2.0, respectively.

AuAgCl₂ (c). We have estimated the heat of formation of this substance from AgCl (c) and AuCl (c) to be zero.

 $AuAgCl_4$  (c). Parravano and Malquori³ studied the equilibrium,  $AuAgCl_4$  (c) =  $Cl_2$  (g) +  $AuAgCl_2$  (e), and calculated Q=18.6.

 $\operatorname{AuCl} \cdot n\operatorname{NH}_3$  (c). Biltz^{6d, 6b} measured the heats of solution of the mono- and diammines in aqueous KCN, and obtained dissociation pressure data on the di- and hexammines. Ephraim⁶ measured the dissociation pressures of the diammine.

 $AuBr \cdot nNH_3$  (c). Biltz^{6a, 6b} measured the heats of solution of the mono- and diammines in aqueous KCN, and obtained dissociation pressure data on the di-, tri-, tetra-, and hexammines.

AuI · nNH₃ (c). Biltz^{6a, 6b} measured the heat of solution of the monoammine, and obtained dissociation pressure data on the di-, tri-, hexa-, and octammines.

#### PLATINUM

Pt (c). Standard state.

Pt (g). Jones, Langmuir, and Mackay¹ calculated the heat of sublimation of platinum to be -127, from the rate of loss of the metal from a hot platinum wire. See also Langmuir and Mackay² and van Liempt.² The energy states of gaseous monatomic platinum have been evaluated from the data of Livingood.¹

Pt (liq.). Violle¹ measured the heat of fusion.

 $\mathbf{H_2PtCl_6}$  (aq.). Thomsen's¹⁵ data on the heat of neutralization of  $\mathbf{H_2PtCl_6}$  (600) with 2 NaOH (300) yield Q=27.02; whence, for  $\mathbf{H_2PtCl_6}$  (600), Qf=166.2. Pigeon's¹ data on the reaction of  $\mathbf{H_2PtCl_6}$  (aq.) with solid cobalt yield, for  $\mathbf{H_2PtCl_6}$  (aq.), Qf=152.7, which value is quite divergent. Pigeon¹ measured the heat of the following reactions: PtCl₄ (aq.) + 2 Co (c) = 2 CoCl₂ (aq.) + Pt (c), Q=110.1; PtCl₄ (c) = PtCl₄ (aq.), Q=19.56; PtCl₄ (c) +2 HCl (aq.) =  $\mathbf{H_2PtCl_6}$  (aq.), Q=24.8. Combination of these data yields, for  $\mathbf{H_2PtCl_6}$  (aq.), Qf=165.6. Combination of Thomsen's¹5 data on the heat of the reaction, Na₂PtCl₆ (aq.) +2 CuCl (c) = (Na₂PtCl₄+2 CuCl₂) (aq.), with his data on the heat of neutralization of  $\mathbf{H_2PtCl_6}$  (aq.) with 2 NaOH (aq.) yields, for  $\mathbf{H_2PtCl_6}$  (aq.), Qf=166.1.

PtCl₆— (aq.). The value for this substance is obtained from those for the aqueous sodium and potassium salts. Miller and Terrey¹ obtained electromotive force data on the cell reaction, 2 Hg (liq.) +PtCl₆— (aq.), =2 HgCl (c) +PtCl₄— (aq.), which give Q=21.71; whence, for the reaction, PtCl₄— (aq.) +Cl₂ (g) =PtCl₆— (aq.), Q=41.4.

HPtCl₅·2 H₂O (c). Pigeon¹ measured the heat of solution in aqueous HCl.

 $H_2PtCl_6 \cdot 6 H_2O$  (c). Pigeon¹ measured the heat of solution in aqueous HCl.

 $H_2PtCl_4$  (aq.). The heat of neutralization of  $H_2PtCl_4$  (aq.) with 2 NaOH (aq.) is assumed to be the same as that for  $H_2PtCl_6$  (aq.).

PtCl₄—(aq.). This value is obtained from those for the aqueous sodium and potassium salts.

 $PtCl_n$  (c). Pigeon¹ measured the heat of solution of  $PtCl_4$  (c) in water to be 19.56, and in 2 HCl (aq.) to be 24.8. Wohler and Streicher² obtained dissociation pressure data on PtCl (c),  $PtCl_2$  (c),  $PtCl_3$  (c), and  $PtCl_4$  (c).

PtCl₄ · 5 H₂O (c). Pigeon¹ measured the heat of solution.

 $Pt(OH)_2$  (c). Thomsen¹⁵ measured the heat of reduction of this substance with aqueous formic acid to be 48.3; whence, for  $Pt(OH)_2$  (c), Qf=87.5.

H₂PtBr₆ (aq.). Pigeon's¹ data on the reactions of PtBr₄ (aq.) with 2 Co (c), of PtBr₄ (c) with water, and of PtBr₄ (c) with 2 HBr (aq.),

yield, for  $H_2PtBr_6$  (aq.), Qf=119.8. Thomsen's¹⁵ data on the platinous salts together with the heat of oxidation with liquid bromine yield Qf=115.3. From the values for  $Na_2PtBr_6$  (aq.) and  $K_2PtBr_6$  (aq.) and the heat of neutralization of  $H_2PtBr_6$  (aq.) with 2 NaOH (aq.) or 2 KOH (aq.) (assumed to be the same as that for  $H_2PtCl_6$  (aq.)), one obtains, for  $H_2PtBr_6$  (aq.), Qf=116.2 and 115.5.

PtBr₆⁻⁻ (aq.). This value is obtained from those for the aqueous sodium and potassium salts.

H₂PtBr₆·9 H₂O (c). Pigeon¹ measured the heat of solution.

PtBr₄ (aq.). Pigeon¹ measured the heat of reduction of this substance with 2 Co (c) to be 93.5.

PtBr₄ (c). Pigeon¹ measured the heat of solution of this substance in water to be 9.86, and in 2 HBr (aq.) to be 18.27.

PtBr₄⁻⁻ (aq.). The value for this substance is obtained from that for K₂PtBr₄ (aq.).

PtI₄ (c). Pigeon¹ measured the heat of reaction of this substance with 2 NaI (aq.) to be 7.3.

PtI₆⁻ (aq.). This value is obtained from that for Na₂PtI₆ (aq.).

PtS (c), PtS₂ (c). Biltz and Jirsa¹ obtained dissociation pressure data on these sulfides.

 $Pt(NH_3)_4Cl_2 \cdot H_2O$  (c). We have estimated the heat of formation of this hydrate from that for  $PtCl_2 \cdot 4NH_3$  (c).

 $Pt(NH_3)_4Cl_2$  (aq.). Thomsen¹⁵ measured the heat of solution of  $Pt(NH_3)_4Cl_2 \cdot H_2O$  (c) in water.

Pt(NH₃)₄(OH)₂ (aq.). Thomsen¹⁵ measured the heat of reaction of this substance with 2 HCl (aq.) to be 27.3.

 $Pt(NH_3)_4SO_4$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Pt(NH_3)_4(OH)_2$  (aq.) with  $H_2SO_4$  (aq.) to be 30.85.

 $(NH_4)_2$ PtCl₄ (aq.). The value for this substance is obtained from those for  $NH_4^+$  (aq.) and PtCl₄⁻ (aq.).

(NH₄)₂PtCl₄ (c). Thomsen¹⁵ measured the heat of solution.

PtCl₂·nNH₃ (c). Isambert¹ reported a value for the heat of formation of the diammine. Ephraim and Millman¹ obtained dissociation pressure data on the tetra- and pentammines.

PtI₂ · nNH₃ (c). Ephraim and Millman¹ obtained dissociation pressure data on the tetra- and hexammines.

Ag₂PtCl₆ (c). Pigeon¹ measured the heat of reaction of H₂PtCl₆ (aq.) with 2 AgNO₃ (aq.) to be 14.55.

 $Ag_2PtBr_6$  (c). Pigeon¹ measured the heat of reaction of  $H_2PtBr_6$  (aq.)

with  $2 \text{ AgNO}_3$  (aq.) to be 32.0.

[Pt·6 NH₃]**** (aq.), [Pt·5 NH₃·NH₂]*** (aq.), [Pt·5 NH₃·Cl]*** (aq.), [Pt·4 NH₃·NH₂·Cl]** (aq.). See Grunberg and Faermann.¹

Ir (c). Standard state. IRIDIUM

Ir (g). We have estimated the heat of sublimation to be -120. See Meggers and Laporte¹ for the energy states of gaseous monatomic iridium.

IrO₂ (c). From their vapor pressure data, Wohler and Witzmann¹ calculated Qf = 50; Biltz¹ computed Qf = 52 from the same data.

 $IrCl_n$  (c). Wohler and Streicher¹ obtained dissociation pressure data on IrCl (c),  $IrCl_2$  (c), and  $IrCl_3$  (c).

 $IrCl_6^-$  (aq.). The value for this substance is obtained from those for  $K_2IrCl_6$  (aq.) and  $K^+$  (aq.).

IrCl₆— (aq.). The values for  $K_3IrCl_6$  (aq.) and  $K^+$  (aq.) yield, for  $IrCl_6$ — (aq.), Qf = 187.2. The electromotive force data of Terrey and Baker¹ on the cell reaction,  $Hg(liq.) + Cl^-$  (aq.)  $+ IrCl_6$ — (aq.) = HgCl (c)  $+ IrCl_6$ — (aq.), yield Q = 25.7; whence, for  $IrCl_6$ — (aq.), Qf = 186.3.

IrF₆ (liq.). For the heat of formation of this substance, Ruff and

Fischer¹ reported the approximate value 130.

 $IrF_6$  (g). Ruff and Fischer¹ reported V = -8.50.

Os (c). Standard state. Osmium

- Os (g). We have estimated the heat of sublimation to be -125. See Meggers and Laporte¹ concerning the energy states of gaseous monatomic osmium.
- OsO₄ (c). von Wartenberg¹ determined the heat of combustion of osmium to form the tetroxide.

 $OsO_4$  (liq.). von Wartenberg¹ found the heat of fusion to be -3.41 at  $40^{\circ}$ .

 $OsO_4$  (g). von Wartenberg's¹ data yield -13.5 for the heat of sublimation of solid osmium tetroxide.

Re (c). Standard state. RHENIUM

 ${
m ReO_3}$  (c),  ${
m Re_2O_7}$  (c). Roth and Becker^{4, 5} measured the heat of combustion of rhenium (97.9 to 98.9% pure) in oxygen to form a mixture of the two oxides. The amount of rhenium burned to the lower oxide ranged from 1.5 to 13.8%, and that to the higher oxide ranged from 86 to 98%. These investigators calculated, for  ${
m Re_2O_7}$  (c),  ${\it Qf}=297.5\pm2.0$ , and for  ${
m ReO_3}$  (c),  ${\it Qf}=82.5\pm8.0$ .

 $HReO_4$  (aq.). Roth and Becker⁴ measured the heat of solution of  $R_2O_7$  (c) in water at 20° at concentrations ranging from 9370 to 46,350  $H_2O$ . For 9370  $H_2O$ , Q=11.23, whence, for  $HReO_4(4700)$ , Qf=222.73.

We have estimated values for the heat of dilution of aqueous HReO₄ from the above data of Roth and Becker.

 $ReO_4^-$  (aq.). This value is obtained from that for  $HReO_4$  ( $\infty$ ).

Pd (c). Standard state. PALLADIUM

Pd (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic palladium are from McLennan and Smith¹ and Shenstone. ^{1c, 4}

Pd (liq.). Violle^{1a} measured the heat of fusion.

PdO (c). Biltz⁸ computed the heat of formation of this substance from the dissociation pressure data of Wohler.¹

Pd₂H (c). The data on the heat of formation of this compound are: Gillespie and Hall, 8.86; Gillespie and Ambrose, 9.28; Favre, 8.9. See also Moutier.

 $Pd(OH)_2$  (c). Thomsen¹⁵ measured the heat of reaction of Na₂PdCl₄ (aq.) with 2 NaOH (aq.) to be 12.55; Joannis⁴ measured the heat of reaction of K₂PdBr₄ (aq.) with 2 KOH (aq.) to be 9.02. These data yield, for Pd(OH)₂ (c), Qf = 90.7 and 89.1, respectively.

 $Pd(OH)_4$  (c). Thomsen¹⁵ measured the heat of reaction of  $K_2PdCl_6$  (aq.) with 4 NaOH (aq.) to be 18.01; whence, for  $Pd(OH)_4$  (c), Qf = 155.0.

 $PdCl_2$  (c). Joannis⁴ found Q=4.72 for the reaction,  $PdCl_2$  (c) +2 KCl (aq.) =  $K_2PdCl_4$  (aq.); while, for that with 2 HCl (aq.), Thomsen¹⁵ found Q=4.0. These data yield, for  $PdCl_2$  (c), Qf=43.5 and 44.2, respectively.

PdCl₄-(aq.). This value is obtained from that for K₂PdCl₄ (aq.).

PdCl₆-(aq.). This value is obtained from that for K₂PdCl₆ (aq.).

H₂PdCl₆ (aq.). We have assumed the heat of ionization to be zero. H₂PdCl₄ (aq.). Thomsen¹⁵ measured the heat of neutralization of this acid with 2 NaOH (aq.) to be 27.25.

PdBr₂ (c). Joannis⁴ reported Qf = 24.9.

PdBr₄- (aq.). This value is obtained from that for K₂PdBr₄ (aq.).

 $PdI_2 \cdot H_2O(c)$ . Joannis⁴ measured the heat of reaction of  $K_2PdBr_4$  (aq.) with 2 KI (aq.) to form  $PdI_2 \cdot H_2O(c) + 4$  KBr (aq.) to be 18.40. For the reaction of  $K_2PdCl_4$  (aq.) with 2 KI (aq.), Thomsen¹⁵ found Q = 22.56. These data yield, for  $PdI_2 \cdot H_2O(c)$ , Qf = 84.3 and 86.5.

PdI₂ (c). We have estimated the heat of dissociation of the mono-

hydrate.

 $Pd(CN)_2$  (c). Joannis⁴ measured the heat of reaction of  $K_2PdBr_4$  (aq.) with 2 KCN(aq.) to be 47.14; whence, for  $Pd(CN)_2$  (c), Qf = -51.7.

PdX₂·nNH₃ (c). Isambert⁶ reported values for the heats of formation of the di- and tetrammines of the chloride and bromide.

## RHODIUM

Rh (c). Standard state.

Rh (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic rhodium are from Bacher and Goudsmit.¹

 $\mathbf{Rh}_n\mathbf{O}_m$  (c). Wohler and Muller² obtained dissociation pressure data on RhO (c), Rh₂O (c), and Rh₂O₃ (c), from which we have estimated the heats of formation.

RhCl_n (c). Wohler and Muller² obtained dissociation pressure data on RhCl (c), RhCl₂ (c), and RhCl₃ (c), from which we have estimated the heats of formation.

RhCl₆— (aq.). The value for this substance is obtained from that for Na₃RhCl₆ (aq.).

## RUTHENIUM

Ru (c). Standard state.

Ru (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic ruthenium are from Bacher and Goudsmit.¹

RuO₂ (c). Remy and Kohn¹ obtained dissociation pressure data on this substance.

RuCl₃ (c). Remy and Kohn¹ obtained dissociation pressure data on RuCl₃ (c). See also Wohler and Balz.¹

## MASURIUM

Ma (c). Standard state.

## NICKEL

Ni (c, III). Standard state.

- Ni (c, II). For the heat of transition at the Curie point, 360°, the data are: Weiss, Piccard, and Carard, 1-0.17; Laschtschenko, 2-0.12; Wust, Meuthen, and Durrer, 1-0.08; Umino, 4-0.12; Laschtschenko, 5-0.18. See also Pionchon, 2 Werner, 1 and Klinkhardt.
- Ni (c, I). There is supposed to be a transition at about 1130°, but the heat effect must be small as it has not been observed.
- Ni (liq.). For the heat of fusion of nickel at 1452°, White reported -4.34 and Umino -4.07.
- Ni (g). Jones, Langmuir, and Mackay¹ calculated the heat of sub-limation of nickel to be -89.4; Millar¹ calculated the value -88.2; we have estimated the value -85.0. The energy states of gaseous monatomic nickel are evaluated from the data of Russell,⁶ Menzies,⁴ and Shenstone.²
- NiO (c). The data on the heat of combustion of nickel to form NiO (c) are: Roth, 558.9; Mixter, 157.9; Ruff and Gersten, 53; Dulong, 59.7. Equilibrium data involving NiO (c) were obtained by Treadwell, Watanabe, 16 Pease and Cook, 1 Skapski and Dabrowski. See also Wohler and Balz and Foote and Smith.
- $Ni(OH)_2$  (c, ppt.). Thomsen¹⁵ measured the heat of the reactions of  $NiSO_4(400)$  with  $Ba(OH)_2(400)$  and of  $NiSO_4(100)$  with 2 NaOH (100) to be 10.63 and 5.33, respectively; whence, for  $Ni(OH)_2$  (c, ppt.) Qf = 129.8 and 129.8. Giordani and Mattias^{1, 3} measured the heat of solution of  $Ni(OH)_2$  (c) in aqueous HCl and in aqueous  $H_2SO_4$  to be 20.65 and 22.16, respectively; whence, for  $Ni(OH)_2$  (c), Qf = 131 and 133.
- $Ni(OH)_3$  (c, ppt.). Thomsen¹⁵ measured the heat of the reaction, 2 NiCl₂ (aq.) + NaOCl (aq.) + H₂O (liq.) + 4 NaOH (aq.) = 2 Ni(OH)₃ (c, ppt.) + 5 NaCl (aq.), and his data yield, for Ni(OH)₃ (c, ppt.), Qf = 163.2. Giordani and Mattias^{1, 3} measured the heat of solution of Ni(OH)₃ (c) in aqueous H₂SO₄ to be 39.7.

 $NiF_2$  (aq.). Petersen¹ measured the heat of reaction of  $NiCl_2$  (aq.) with 2 AgF (aq.) to be 31.71; whence, for  $NiF_2$  (aq.), Qf = 171.4. Mulert¹

NICKEL 303

measured the heat of solution of Ni(OH)₂(c) in aqueous (20%) HF to be 28.0.

NiF₂ (c). The equilibrium data of Jellinek and Rudat¹ on the reaction,  $NiF_2$  (c) +  $H_2$  (g) = 2 HF (g) + Ni (c), yield, for  $NiF_2$  (c),  $Qf^{600}$ =157.5.

NiCl₂ (aq.). Thomsen¹⁵ found Q=15.17 for the heat of solution of Ni (c) in 2HCl(400); whence, for  $NiCl_2(800)$ , Qf = 94.23. Data on the heat of dilution of aqueous NiCl₂ were reported by Thomsen. 15

NiCl₂ (c). Thomsen¹⁵ measured the heat of solution.

NiCl₂·H₂O (c). Sabatier² measured the heat of solution.

NiCl₂·4H₂O (c). Dissociation pressure data on the system, hexahydrate-tetrahydrate-water vapor, were obtained by Derby and Yngve¹ and Lescoeur.²

NiCl₂·6H₂O (c). Thomsen¹⁵ measured the heat of solution. See also Berger and Crut, Jellinek and Podjaski, and Jellinek and Uloth for equilibrium data.

Ni⁺⁺ (aq.). This value is obtained from that for NiCl₂ (aq.).

NiBr₂ (aq.). From the values for the aqueous ions, we have computed, for NiBr₂ (aq.), Qf = 72.4. Fabre reported the value 72.4.

NiBr₂ (c). Crut¹ measured the heat of solution. See also his equilibrium data.

 $NiBr_2 \cdot 3H_2O$  (c). Crut¹ measured the heat of solution.

NiI₂ (aq.). This value is obtained from the ions.

NiI₂ (c). Mosnier¹ measured the heat of solution.

NiS (c). Thomsen¹⁵ measured the heat of reaction of NiSO₄ (400) with Na₂S(400) to be 15.08.

NiSO₄ (aq.). Thomsen¹⁵ measured the heat of the reaction of  $NiCl_2(200)$  with  $H_2SO_4(200)$ , and of  $NiSO_4(200)$  with 2HCl(100), to be 1.13 and 3.19, respectively; whence, for NiSO₄ (200), Qf = 231.1.

NiSO₄ (c). We have estimated the heat of solution of this substance. NiSO₄·7H₂O (c). Thomsen¹⁵ measured the heat of solution. See also Lescoeur.8

NiS₂O₆ (ag.). The value for this substance is obtained from those for the ions.

 $NiS_2O_6 \cdot 6H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

NiSe (c). Fabre measured the heat of reaction of NiSe (c) with bromine water, and of NiSO₄ (aq.) with Na₂Se (aq.), to be 101.2 and 35.7, respectively; whence, for NiSe (c), Qf = 12 and 14.

NiTe (c). Fabre³ measured the heat of reaction of NiTe (c) with

bromine water to be 115.5.

NiN₆· H₂O (c). Wohler and Martin¹ measured the heat of decomposition of this substance to be 89.5, the products being solid nickel, gaseous nitrogen, and gaseous water.

Ni (NO₃)₂ (aq.). This value is obtained from those for the ions.

Ni  $(NO_3)_2$  (c). Guntz and Martin¹ measured the heat of solution. Ni  $(NO_3)_2 \cdot 6$  H₂O (c). Thomsen¹⁵ measured the heat of solution.

Ni  $(NO_3)_2 \cdot 6 H_2O$  (liq.). Reisenfeld and Milchsach¹ determined the heat of fusion of the hexahydrate to be -10.6 at  $60^\circ$ .

NiX₂ · n NH₃ (c). Ephraim^{1, 2, 8, 9} and Ephraim and Jahnsen¹ obtained dissociation pressure data on the hexammines of NiCl₂, NiBr₂, and NiI₂. Biltz and Fetkenheuer,^{1, 2} Biltz,^{4, 9} and Biltz and Hüttig² obtained dissociation pressure data on the mono-, di-, and hexammines of NiCl₂ and NiBr₂ and on the di- and hexammines of NiI₂, and measured the following heats of solution: NiCl₂ · 6 NH₃ (c), 44.3 in HCl (aq.), 9.8 in NH₃ (aq.); NiCl₂ · 2 NH₃ (c), 19.5 in HCl (aq.), 13.9 in NH₃ (aq.); NiCl₂ · NH₃ (c), 17.8 in HCl (aq.), 24.3 in NH₃ (aq.); NiCl₂ (c), 18.7 in HCl (aq.).

 $Ni (NO_2)_2 \cdot 5 NH_3 (c)$ . Ephraim² measured the dissociation pressures.

 $Ni (NO_3)_2 \cdot 6 NH_3 (c)$ . Ephraim² measured the dissociation pressures.

 $NiF_2 \cdot H_2O \cdot nNH_3$  (c). Biltz and Rahlfs² obtained dissociation pressure data on the penta- and monoammines.

Ni (ClO₃)₂·6  $NH_3$  (c). Ephraim² and Ephraim and Jahnsen¹ measured the dissociation pressures.

Ni (ClO₄)₂·6  $NH_3$  (c). Ephraim² measured the dissociation pressures.

 $Ni (IO_3)_2 \cdot 5 NH_3 (c)$ . Ephraim and Jahnsen¹ measured the dissociation pressures.

 $NisO_4 \cdot nNH_3$  (c). Ephraim^{2, 8} obtained dissociation pressure data on the ammines with  $\frac{1}{2}$ , 2, 4, and 6  $NH_3$ .

 $NiS_2O_6 \cdot nNH_3$  (c). Ephraim² measured the dissociation pressures of the penta- and hexammines.

 $NiS_4O_6 \cdot 6 NH_3$  (c). Ephraim² measured the dissociation pressures. Ni  $(H_2PO_2)_2 \cdot 6 NH_3$  (c). Ephraim² measured the dissociation pressures.

 $Ni (COOH)_2 \cdot 4 NH_3 (c)$ . Ephraim² measured the dissociation pressures.

 $Ni(C_2H_3O_2)_2 \cdot 4NH_3(c)$ . Ephraim² measured the dissociation pressures.

Ni (CNS)₂·6 NH₃ (c). Ephraim² measured the dissociation pressures.

 $Ni (NH_4)_2 (SO_4)_2 \cdot 6 H_2O (c)$ . Caven and Ferguson² measured the dissociation pressures of the system, hexahydrate-dihydrate-water vapor.

 $NiC_3$  (c). Roth's⁵ data on the heat of combustion of nickel carbide yield Qf = -9.2. See also Ruff and Gersten.²

Ni (CO)₄ (liq.). From his vapor pressure data, Anderson² calculated the heat of vaporization.

Ni (CN)₂ (c, ppt.). Varet^{4, 5} measured the heats of the reactions of NiSO₄ (aq.) with 2 KCN (aq.), NiSO₄ (aq.) with 2 NaCN (aq.), Ni (NO₃)₂ (aq.) with 2 KCN (aq.), and Ni (NO₃)₂ (aq.) with 2 NaCN (aq.) to be 31.6, 31.4, 31.0, and 30.9, respectively.

Ni (CN)₄—(aq.). Varet^{4, 5} measured the heat of solution of Ni (CN)₂ (c) in 2 KCN (aq.), 2 NaCN (aq.), Ba (CN)₂ (aq.), and Sr (CN)₂ (aq.), respectively.

Ni (C₂H₃O₂)₂ (aq.). This value is obtained from those for the ions. NiBr₂·3 CH₃OH (c). Lloyd, Brown, Bonnell, and Jones¹ measured the dissociation pressures.

2 NiI₂ · PbI₂ (c). Mosnier¹ measured the heat of solution.

2 NiI₂ · PbI₂ · 3 H₂O (c). Mosnier¹ measured the heat of solution.

 $NiBr_2 \cdot n HgBr_2$  (aq.). Varet⁶ measured the heats of mixing NiBr₂ (aq.) with 1 and 2 moles of HgBr₂ (aq.).

(Ni+n Cu) (solid solution). White measured the heat of fusion of monel metal, a solid solution of nickel and copper.

## COBALT

Co (c, III). Standard state.

Co (c, II). For the heat of transition at the Curie point,  $460^{\circ}$ , Umino^{1a, 4} reported the values -0.13 and -0.06.

Co (c, I). For the heat of transition at  $1150^{\circ}$ , Umino^{1a, 4} reported the values -0.07 and -0.12. See also Wust, Meuthen, and Durrer, and Pionchon.²

Co (liq.). Umino⁴ reported a value for the heat of fusion of cobalt.

Co (g). Millar¹ calculated the heat of sublimation at 25° to be -85.0. We have estimated the value for 2375°. See also Ruff and Kerlig.¹ The energy states of gaseous monatomic cobalt have been evaluated from the data of Catalan³ and Findlav.¹

Co⁺⁺ (aq.). The value for this substance is obtained from that for CoCl₂ (aq.).

CoO (c). Mixter¹¹ determined the heat of combustion of cobalt to form CoO (c) to be 57.5. See also Dulong.² Mixter's¹¹ experiments with sodium peroxide probably lead to the formation of Na₂CoO₃, in which case his data yield, for CoO (amorp.), Qf = 51. The recent equilibrium data of Emmett and Schultz¹ on the reaction, CoO (c) +H₂ (g) = Co (c) +H₂O (g), yield, for CoO (c), Qf = 56.2. See also Glaser,³ Chaudron,¹ and Wohler and Balz.²

 $\text{Co}_3\text{O}_4$  (c). Mixter's¹¹ data on the reaction of  $\text{Co}_3\text{O}_4$  (c) with sodium peroxide yield, for  $\text{Co}_3\text{O}_4$  (c), Qf=196.6. Biltz⁸ computed Qf=196.2 from the dissociation pressure data of Foote and Smith.¹ The agreement is probably fortuitous.

 $Co(OH)_2$  (c). Thomsen¹⁵ measured the heats of reaction of  $CoSO_4$  (400) with  $Ba(OH)_2$ (400) and with 2 NaOH(200) to be 12.23 and 5.89,

respectively.

 $Co(OH)_3$  (c). Thomsen¹⁵ measured the heat of the reaction,  $2 CoCl_2$  (aq.) + NaClO (aq.) + H₂O (liq.) + 4 NaOH (aq.) =  $2 Co(OH)_3$  (c) + 5 NaCl (aq.).

CoF₂ (aq.). Petersen³ measured the heat of mixing CoCl₂ (aq.) with 2 AgF (aq.) to be 31.97.

 $\text{CoF}_2$  (liq.). The high temperature equilibrium data of Jellinek and Rudat¹ on the reaction,  $\text{CoF}_2$  (liq.) +H₂ (g) =Co (c) +2 HF (g), yield the value  $Qf^{700} = 161$ .

CoCl₂ (aq.). Thomsen¹⁵ measured the heat of solution of Co (c) in 2 HCl (aq.) to be 16.35.

CoCl₂ (c). Thomsen¹⁵ measured the heat of solution.

CoCl₂·2 H₂O (c). Sabatier² measured the heat of solution.

CoCl₂·6 H₂O (c). Thomsen¹⁵ measured the heat of solution. See also the equilibrium data of Biltz,⁶ Lescoeur,^{2, 4} Crut,¹ Jellinek and Podjaski,¹ and Jellinek and Uloth.¹

CoBr₂ (aq.). This value is obtained from those for the ions. Fabre¹ measured the heat of the reaction of Co (c) with bromine water to be 37.0.

CoBr₂ (c). Crut¹ measured the heat of solution to be 18.4; whence, for CoBr₂ (c), Qf = 54.6. Crut's¹ data on the equilibrium, CoBr₂ (c) +H₂ (g) = Co (c) +2 HBr (g), yield, for CoBr₂ (e), Qf = 56.9.

CoBr₂·6 H₂O (c). Crut¹ measured the heat of solution.

CoI₂ (aq.). This value is obtained from those for the ions. Pigeon¹ measured the heat of reaction of Co (c) with NaI₃ (aq.) to be 41.5.

CoI₂ (c). Mosnier¹ measured the heat of solution.

CoS (c, ppt.). Thomsen¹⁵ measured the heat of the reaction of CoSO₄ (400) with Na₂S(400) to be 16.30. See also Jellinek and Zakowsky.¹

 $Co_2S_3$  (c). We have estimated this value.

CoSO₄ (aq.). Thomsen¹⁵ measured the heat of reaction of  $CoSO_4(400)$  with  $BaCl_2(400)$  to be 5.69; and of  $CoCl_2(200)$  with  $H_2SO_4(200)$  and  $CoSO_4(200)$  with 2 HCl(100) to be 1.15 and 2.44. These data yield, for  $CoSO_4(400)$ , Qf = 231.7, and for  $CoSO_4(200)$ , Qf = 231.6.

CoSO₄ (c). We have estimated the heat of dehydration of the hexahydrate and the heat of dissociation of the diammine.

 $CoSO_4 \cdot 6 H_2O$  (c). Carpenter and Jette¹ measured the vapor pressures in the system, heptahydrate-hexahydrate-water vapor.

CoSO₄·7 H₂O (c). Thomsen¹⁵ measured the heat of solution.

CoSe (c). Fabre¹ measured the heat of reaction of CoSe (c) with bromine water to be 74.0 and of CoSO₄ (aq.) with Na₂Se (aq.) to be 33.1; whence, for CoSe (c), Qf = 13.3 and 12.0, respectively.

CoTe (c). Fabre measured the heat of reaction of CoTe (c) with bromine water to be 115.9.

 $Co(NO_3)_2$  (aq.). The value for this substance is obtained from those for the ions.

 $Co(NO_3)_2$  (c). Guntz and Martin¹ measured the heat of solution.  $Co(NO_3)_2 \cdot 6 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

 $\text{Co(NO}_3)_2 \cdot 6 \text{ H}_2\text{O}$  (liq.). Reisenfeld and Milchsack¹ reported the heat of fusion to be -8.7 at  $56^\circ$ .

CoX₂·nNH₃ (c). Biltz and Hüttig^{1, 2} and Biltz and Fetkenheuer² obtained dissociation pressure data on the ammines of CoCl₂ and CoBr₂ with 1, 2, and 6 NH₄ and those of CoI₂ with 2 and 6 NH₃, and measured

the following heats of solution in aqueous HCl:  $CoCl_2 \cdot 6$  NH₃ (c), 46.3;  $CoCl_2 \cdot 2$  NH₃ (c), 19.6;  $CoCl_2 \cdot NH_3$  (c), 17.5;  $CoCl_2$  (c), 18.0. Ephraim^{1, 9} measured the dissociation pressures of the hexammines of  $CoCl_2$ ,  $CoBr_2$ , and  $CoI_2$ .

 $CoF_2 \cdot H_2O \cdot nNH_3$  (c). Biltz and Rahlfs² obtained dissociation pressure data on the ammines with  $\frac{1}{2}$ , 1, and 5 NH₃.

 $CoSO_4 \cdot nNH_3$  (c). Ephraim⁸ obtained dissociation pressure data on the ammines with  $\frac{1}{2}$ , 2, 3, 4, and 6 NH₃.

[Co·(NH₃)₅·NO₃] (NO₃)₂ (c). Lamb and Simmons¹ measured the heat of reaction of this substance with aqueous sodium sulfide, the cobalt product being  $Co_2S_3$  (c).

[Co·(NH₃)₅·NO₃] (NO₃)₂ (aq.). Lamb and Simmons¹ measured

the heat of solution of the solid.

 $[\text{Co} \cdot (\text{NH}_3)_5 \cdot \text{NO}_3]^{++}$  (aq.). This value is obtained from the aqueous nitrate.

[Co·(NH₃)₅·H₂O](NO₃)₃ (c). Lamb and Simmons¹ measured the heat of reaction of this substance with aqueous sodium sulfide, the product containing cobalt being  $Co_2S_3$  (c).

[Co·(NH₃)₅·H₂O] (NO₃)₃ (aq.). Lamb and Simmons¹ measured the heat of solution of the solid.

 $[\text{Co} \cdot (\text{NH}_3)_5 \cdot \text{H}_2\text{O}]^{+++}$  (aq.). This value is obtained from those for the aqueous nitrate, chloride, and bromide.

[Co·(NH₃)₅·H₂O] X₃ (c). Lamb and Simmons¹ measured the heats of reaction of the chloride and the bromide with aqueous sodium sulfide, the cobalt product being  $Co_2S_3$  (c).

 $[Co \cdot (NH_3)_5 \cdot H_2O] X_3$  (aq.). Lamb and Simmons¹ measured the

heats of solution of the solid bromide and chloride.

[Co·(NH₃)₅·X]  $X_2$  (c). Lamb and Simmons¹ measured the heats of reaction of the chloride and the bromide with aqueous sodium sulfide, the cobalt product being  $Co_2S_3$  (c).

[Co·( $NH_3$ )₅·X]  $X_2$  (aq.). Lamb and Simmons¹ measured the heats of solution of the solid chloride and the bromide.

 $[\text{Co} \cdot (\text{NH}_3)_5 \cdot \text{Cl}]^{++}$  (aq.). This value is obtained from the aqueous chloride.

 $[\text{Co} \cdot (\text{NH}_3)_5 \cdot \text{Br}]^{++}$  (aq.). This value is obtained from the aqueous bromide.

CoBr₂·2 NH₄ Br (aq.). Varet⁶ measured the heat of mixing CoBr₂ (aq.) with 2 NH₄Br (aq.) to be 0.17.

Co  $(NH_4)_2$   $(SO_4)_2 \cdot 6$   $H_2O$  (c). From dissociation pressure data, Caven and Ferguson¹ determined the heat of dissociation of the hexahydrate to the dihydrate.

Co₃C (c). The equilibrium data of Schenck, Krageloh, and Eisen-

stecken¹ yield Qf = -11.3.

 $C_0CO_3$  (c). de Carli¹ measured the heat of the reaction of  $C_0SO_4(600)$  with  $Na_2CO_3(600)$  to be -4.04.

CoX₂ · n CH₃OH (c). Dissociation pressure data on CoCl₂ · 3 CH₃OH

(c),  $CoBr_2 \cdot 3 CH_3OH$  (c), and  $CoBr_2 \cdot 2 CH_3OH$  (c) were obtained by Lloyd, Brown, Bonnell, and Jones.¹

 $Co~(C_2H_5SO_4)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous cobalt sulfate with aqueous barium ethyl sulfate to be 5.76.

2 CoI₂ · PbI₂ (c). Mosnier 1 measured the heat of solution.

2 CoI₂·PbI₂·3 H₂O (c). Mosnier¹ measured the heat of solution. CoBr₂·n HgBr₂ (aq.). Varet⁶ measured the heat of mixing CoBr₂ (aq.) with ½, 1, and 2 moles of HgBr₂ (aq.).

CoCl₃·6NH₃ (c). Biltz³ measured the dissociation pressures.

## IRON

Fe (c). Normal iron at room temperature is taken as the standard state, and is labeled the a or IV form. The transition from IV to III, or  $\alpha$  to  $\beta$ , is associated with a change in magnetic properties and takes place in the range from 725 to 785°, mainly at the Curie point, 769°. The data on this heat of transition are: Wust, Meuthen, and Durrer^{1, 2} -0.348; Pionchon,  $^2 -0.298$ ; Osmond,  $^1 -0.07$ ; Laschtschenko,  $^2 -0.30$ ; Durrer, 1 - 0.28 and -0.31; Stansfield, 1 - 0.05; Meuthen, 1 - 0.31; Klinkhardt, 1 -0.375; Bredemeier, 1 -0.737; Oberhoffer and Grosse, 1 -0.14. See also Dinkler and Weiss, Piccard, and Carard. 1 The transition from III to II, or  $\beta$  to  $\gamma$ , occurs at 906°, and is associated with a change in crystal properties, the forms being martensite and ferrite. The data on the heat of this transition are: Klinkhardt, -0.214; Durrer, -0.37; Meuthen, 1 -0.30; Stansfield, 1 -0.159; Laschtschenko, 1 -0.34; Osmond, 1 -0.21; Wust, Meuthen, and Durrer, 1, 2 -0.35; Oberhoffer and Grosse, 1 -0.38. For the heat of the transition from II to I, or  $\gamma$  to  $\delta$ , which occurs at 1405°, the data are: Wust, Meuthen, and Durrer, 1, 2 -0.103; Bredemeier, 1 -0.108; Durrer, 1 -0.108. See also the review of Yap, 1

Fe (liq.). The data on the heat of fusion of iron at its melting point, 1535°, are Umino, 3 -3.86; Oberhoffer and Grosse, 1 -3.60.

Fe (g). The vapor pressure data of Greenwood^{3, 5} and Ruff and Bormann¹ were reviewed by Johnston, Fenwick, and Leopold¹ and yield -73.8 for the heat of vaporization at 2000°; whence at 18° the heat of sublimation becomes -89.0. For this latter Sherman¹ calculated -94, and Jones, Langmuir, and Mackay¹ reported -89. See also Millar.¹

The energy states of gaseous monatomic iron have been evaluated from the data of Laporte, ¹ Russell, ^{1, 2} White, ⁵ and Gilroy. ¹

Fe₃O₄ (c). The product of the combustion of iron in oxygen is principally Fe₃O₄. The data on the heat of combustion of iron are: Dulong,² 278; Andrews,¹⁴ 275; Mixter,¹⁵ 265.2; Ruff and Gersten,³ 268.3; Ruff and Gersten,² 266.4; Baykoff and Ermiloff,¹ 275; Roth,⁵ 266.9. See also Doepke.¹ Mixter's¹⁵ data on the reaction with sodium peroxide yield, for Fe₃O₄ (c, III), Qf = 265. Berthelot's⁷⁰ data on the heat of solution of iron in aqueous HCl yield Qf = 289. The heats of transition of Fe₃O₄ (c) were measured by Millar.⁶

FeO (c). The values for the heat of combustion of FeO (c) to form

. IRON 309

 $\frac{1}{3}$  Fe₃O₄ (c) are: LeChatelier,⁸ 25.2; Roth,⁵ 24.7. See also Ruff and Gersten.² Roth's⁵ value yields, for FeO (c, I), Qf=64.3. Mixter's¹⁵ data on the reaction with sodium peroxide yield Qf=65.0. The equilibrium data of Wohler and Gunther,¹ Chaudron,¹ and Groningen¹ on the reaction, Fe (c) +H₂O (g) =FeO (c) +H₂ (g), yield, for FeO (c, I) Qf=62.7. See also Tigerschoild,¹ Schreiner and Grimnes,¹ Wohler and Balz,² von Royen,¹ Treadwell,¹ and Eastman and Evans.¹ The equilibrium data of Wohler and Gunther,¹ Chaudron,¹ and Groningen¹ on the reaction, 3FeO (c) +H₂O (g) =Fe₃O₄ (c) +H₂ (g), yield, for FeO (c, I), Qf=64.3. From equilibrium data on the reaction, FeO (c) +CO (g) =Fe (c) +CO₂ (g), Garran¹ calculated, for FeO (c, I), Qf=64.6. See also Tigerschoild,¹ Matsubara,¹ and Chaudron.^{1, 2, 3} Millar⁶ measured the heat of transition.

 ${\bf Fe_2O_3}$  (c). For the heat of combustion of  ${\bf Fe_2O_3}$  (c) to form  ${}^2_3{\bf Fe_3O_4}$  (c), LeChatelier,  ${}^{8, \ 10}_{\phantom{0}}$  found -15 and Roth  ${}^{5}_{\phantom{0}}$  -20.6. The latter value yields, for  ${\bf Fe_2O_3}$  (c), Qf=198.5. Mixter's  ${}^{15}_{\phantom{0}}$  data on the reaction with sodium peroxide yield 194.6. Berthelot  ${}^{70}_{\phantom{0}}$  measured the heat of solution of iron in HCl(4) to be 17.1. See also Walden,  ${}^{1}_{\phantom{0}}$  Biltz,  ${}^{8}_{\phantom{0}}$  Sosman and Hostetter,  ${}^{1}_{\phantom{0}}$  and Treadwell.  ${}^{1}_{\phantom{0}}$ 

 $Fe(OH)_2$  (c, ppt.). Thomsen¹⁵ measured the heats of the reactions of  $FeSO_4$  (aq.) with 2KOH (aq.) and with  $Ba(OH)_2$  (aq.) to be 6.34 and 12.00, respectively; whence, for  $Fe(OH)_2$  (c, ppt.), Qf = 135.9.

Fe(OH)₃ (c, ppt.). Thomsen¹⁵ measured the heat of the reaction of FeCl₃ (aq.) with 3NaOH (aq.) to be 24.5. See also Petersen³ and Mixter.¹⁵

Fe⁺⁺ (aq.). The value for aqueous ferrous ion is obtained from that for aqueous ferrous chloride.

FeCl₂ (aq.). Thomsen¹⁵ and Richards, Rowe, and Burgess¹ measured the heat of solution of iron in 2HCl(200). Their data yield, for FeCl₂(400), Qf = 100.18 and 99.76, respectively. See also Favre and Silbermann³ and Andrews.³

 $FeCl_2$  (c). Thomsen¹⁵ found  $S=17.90_{400}$ . See also Favre and Silbermann.³

 $FeCl_2 \cdot nH_2O$  (c). Sabatier^{2, 4} measured the heats of solution of the di- and tetrahydrates. Dissociation pressure data on the dihydrate were reported by Lescoeur.⁷

FeCl₂ (g). Maier's vapor pressure data yield -32.1 for the heat of

vaporization.

FeCl₃ (aq.). Thomsen¹⁵ measured the heats of reaction of FeCl₂ (aq.) with HClO (aq.) and with Cl₂ (g) to form FeCl₃ (aq.) to be 54.44 and 55.00, respectively. See also Berthelot,²⁶ Doerinckel,¹ and Browne.¹ Data on the heat of dilution of aqueous ferric chloride were reported by Thomsen.¹⁵ (The heat of mixing aqueous ferric chloride with aqueous HCl is large.)

Fe⁺⁺⁺ (aq.). Pissarjewsky^{1a} obtained data on the equilibrium, Fe⁺⁺ (aq.) + Ag⁺ (aq.) = Fe⁺⁺⁺ (aq.) + Ag (c), and reported Q = 8.7, whence,

for Fe⁺⁺⁺ (aq.), Qf=4.1. Fleharty's¹ recent data on the equilibrium, Fe⁺⁺ (aq.) +  $\frac{1}{2}$  Hg₂⁺⁺ (aq.) = Fe⁺⁺⁺ (aq.) + Hg (liq.), yield Q=10.0; whence, for Fe⁺⁺⁺ (aq.), Qf=10.6. From the values for FeCl₃ (aq.) and Cl⁻ (aq.), one obtains, for Fe⁺⁺⁺ (aq.), Qf=9.3.

FeCl₃ (c). Lemoine¹ measured the heat of solution.

 $FeCl_3 \cdot nH_2O$  (c). Sabatier^{2, 4} measured the heat of solution of the hydrate with  $2\frac{1}{2}H_2O$ , and Lemoine¹ that of the hexahydrate.

Fe₂Cl₆ (g). Deville and Troost¹ have shown that the vapor of ferric chloride has the formula Fe₂Cl₆. The vapor pressure data of Stirnemann¹ yield -33.1 for the heat of sublimation of Fe₂Cl₆.

 $Fe_2Cl_6$  (liq.). The vapor pressure data of Stirnemann¹ yield -11.3 for the heat of vaporization of the liquid.

FeF₂ (aq.). Petersen³ measured the heat of mixing 2AgF(300) with FeCl₂(600) to be 31.76.

FeF₂ (liq.). The equilibrium data of Jellinek and Rudat¹ yield, for FeF₂ (liq.),  $Qf^{800} = 158$ .

FeF₃ (aq.). Petersen³ measured the heat of mixing FeCl₃(300) with 3HF(50) and FeF₃(300) with 3HCl(50), the heat of the reaction of 3AgF(200) with FeCl₃(600), and the heat of solution of Fe(OH)₃(c) in aqueous HF. His data yield, for FeF₃(1200), Qf = 243.3, and for FeF₃(300), Qf = 242.5.

FeF₃ (liq.). The dissociation pressure data of Jellinek and Rudat¹ yield, for FeF₃ (liq.),  $Qf^{700} = 233$ .

FeOCl (c). Stirnemann's data on the equilibrium in the system, FeOCl (c)  $-\text{Fe}_2\text{O}_3$  (c)  $-\text{Fe}_2\text{Cl}_6$  (g); yield for the reaction, 6FeOCl (c)  $=\text{Fe}_2\text{Cl}_6$  (g)  $+2\text{Fe}_2\text{O}_3$  (c), Q=-26.0; whence, for FeOCl (c), Qf=97.1.

Fe(ClO₃)₃ (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous barium chlorate with aqueous ferric sulfate.

FeBr₂ (aq.). This value is obtained from the ions.

FeBr₂ (c). We have estimated the heat of solution.

FeBr₃ (aq.). The values for the ions yield Qf = 95.2. Fabre¹ reported the low value 88.6, which may be attributed to incomplete reaction.

FeI₂ (aq.). This value is obtained from the ions.

FeI₂ (c). Mosnier¹ measured the heat of solution. See also Andrews.³ FeI₃ (aq.). This value is obtained from the ions.

FeS (c). The data on the directly measured heat of formation are: Mullenhoff, 25.0; Mannheimer, 22.8; Parravano and Cesaris, 23.07. Mixter's data on the reaction with sodium peroxide yield Qf = 19. Berthelot and Thomsen measured the heat of reaction of aqueous ferrous sulfate with aqueous sodium sulfide, the latter's data yielding, for FeS (c), Qf = 23.4. See also Jellinek and Zakowsky.

FeS (liq.). For the heat of fusion, at  $195^{\circ}$ , Bornemann¹ reported -0.28 and Bornemann and Hegstenberg¹ -0.5.

FeS₂ (c). Mixter's¹⁵ data on the heats of the reactions of pyrite and of marcasite with sodium peroxide yield identical values for the two crystal forms of FeS₂ (c), namely Qf=35.5. The data of Cavazzi² on the

IRON 311

heat of combustion of FeS₂ (c) yield the approximate value 44. See also the equilibrium data and calculations of Rudder and Ferrer, Halferdahl, Allen and Lombard, and Kamura. We have selected the value from Mixter's data because of the difficulty of interpreting the equilibrium data in terms of a pure reaction.

 ${
m FeSO_4}$  (aq.). Thomsen¹⁵ reported Q=3.60 for the reaction,  ${
m FeCl_2(200)}+{
m H_2SO_4(200)}={
m FeSO_4(200)}+{
m 2HCl(100)}$ ; whence, for  ${
m FeSO_4(200)}, Qf=235.94$ . Data on the heat of dilution of aqueous ferrous sulfate were reported by Thomsen.¹⁵

FeSO₄ (c). deForcrand⁶⁴ measured the heat of solution. See also the equilibrium data of Keppeler and d'Ans¹ and Greulich.¹

FeSO₄·H₂O (c). deForcrand⁶⁴ measured the heat of solution.

FeSO₄·4H₂O (c). deForcrand⁶⁴ measured the heat of solution.

 $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$  (c). The data on the heat of solution are: Thomsen, ¹⁵  $-4.52_{400}$ ; deForcrand, ⁶⁴  $-4.32_{110}$  Dissociation pressure data on the heptahydrate were obtained by Cohen and Visser, ² Schumb, ¹ Precht and Kraut, ¹ and Wiedemann. ¹

 ${\rm Fe_2(SO_4)_3}$  (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous barium chloride with aqueous ferric sulfate to be 27.43 per mole of ferric sulfate. His data yield, for  ${\rm Fe_2(SO_4)_3(400)}$ , Qf=653.0. See also Berthelot,⁵⁰ Tamanaeff,¹ and Pissarjewsky.² Data on the heat of dilution of aqueous ferric sulfate were reported by Thomsen,¹⁵ Lemoine,¹ and Berthelot.^{5, 26}

 $Fe(HSO_4)_3$  (600). Berthelot⁵ measured the heat of mixing  $3H_2SO_4$  (200) with  $Fe_2(SO_4)_3$  (600).

FeSe (c). Fabre¹ measured the heat of reaction of FeSe (c) with bromine water to be 117.4, and of FeSO₄ (aq.) with Na₂Se (aq.) to be 30.1. His data yield, for FeSe (c), Qf = 14.0 and 13.2.

FeTe (c). Fabre's data on the heat of solution of ferrous telluride in bromine water yield, for FeTe (c), Qf=8.

Fe₄N (c). The equilibrium data of Emmett, Hendricks, and Brunauer¹ on the reaction,  $2\text{Fe}_4\text{N}$  (c)  $+3\text{H}_2$  (g) =3Fe (c)  $+2\text{NH}_3$  (g), yield Q=24.1 at  $500^\circ$ , whence, for Fe₄N (c), Qf=-1.1. See also Fowler and Hartog.^{1, 1a}

 $Fe(NO_3)_2$  (aq.). This value is obtained from the ions.

 $Fe(NO_3)_3$  (aq.). Berthelot's⁵⁰ data on heats of mixing yield, for  $Fe(NO_3)_3$  (800), Qf = 156.3, and for  $Fe(NO_3)_3$  (200), Qf = 157.4. See also Noyes and Braun.¹

 $Fe(NO_3)_3 \cdot 9H_2O(c)$ . Berthelot⁹ measured the heat of solution.

FeNOSO₄ (aq.). Manchot² calculated the heat of solution of NO (g) in FeSO₄ (aq.) to be 11.9, from vapor pressure data. By direct measurement, Gay¹ (see Manchot²) found 10.14.

FeNO⁺⁺ (aq.). This value is obtained from that for FeNOSO₄ (aq.). Fe(NH₄)₂NO(SO₄)₂ (aq.). Manchot,² from vapor pressure data, computed the heat of solution of NO (g) in Fe(NH₄)₂(SO₄)₂ (aq.) to be 11.9. By direct measurement, Gay¹ (see Manchot²) found 10.4.

FeNOCl₂ (aq.). Gay¹ (see Manchot²) found the heat of solution of gaseous nitric oxide in aqueous ferrous chloride to be 10.7.

FeNH₄(SO₄)₂ (aq.). Berthelot⁵ measured the heat of mixing aqueous ferric sulfate with aqueous ammonium sulfate.

(NH₄)₂Fe(SO₄)₂·6H

₂O(c). Graham² measured the heat of solution. NH₄Fe(SO₄)₂·12H₂O(c). Berthelot¹⁵¹ measured the heat of solution. See also Ephraim and Wagner.¹

FeCl₂·nNH₃ (c). Dissociation pressure data were obtained on the deca-, hexa-, di-, and monoammines by Biltz and Rahlfs,¹ on the hexammine by Ephraim,^{1,9} and on the di- and monoammines by Biltz and Hüttig.¹ See also Girardet¹ and Ephraim and Millman.¹ The existing data were summarized by Biltz, Klatte, and Rahlfs.¹

FeBr₂·nNH₃ (c). Biltz⁵ and Biltz and Hüttig² reported dissociation pressure data on the hexa-, di-, and monoammines. See also Ephraim.⁹

FeI₂·nNH₃ (c). The dissociation pressure data of Biltz and Hüttig¹ on the di- and hexammines were recalculated by Biltz and Rahlfs.¹ See also Ephraim.⁹

 $FeSO_4 \cdot nNH_3$  (c). Ephraim⁸ measured the dissociation pressures of the mono-, di-, tri-, tetra-, and hexammines.

 $FeBr_3 \cdot 6NH_3$  (c). Ephraim and Millman¹ measured the dissociation pressures.

 $FeF_2 \cdot H_2O \cdot nNH_3$  (c). Biltz and Rahlfs¹ measured the dissociation pressures of the hemi-, mono-, and pentammines.

Fe₃C (c). Data on the heat of combustion of iron carbide were reported by Ruff and Gersten,² Watase,^{2, 4} Bergkoff and Ermiloff,¹ Brody, Jennings, and Hayes,¹ Roth,⁵ and Yap and Liu.¹ These data were reviewed by Roth,⁵ who concluded that for the reaction, 3Fe (c) +C (β graphite) = Fe₃C (c), Q = -5.4; whence, for Fe₃C (c), Q = -5.2 (since the standard state here is C (diamond)). See also Troost and Hautefeuille,³ Campbell,^{1, 2, 3} Maxwell and Hayes,¹ Schenck, Semiller, and Falcke,¹ and Kawakami.¹

(Fe+nC) (solid solution). Yarroda, from indirect measurements, calculated the heat of solution of carbon in iron to be -13.5.

Fe(CO)₅ (liq.). Roth⁵ found the heat of combustion of liquid iron carbonyl in oxygen to be 371.4, the products being CO₂ (g) and Fe₃O₄ (c). This gives, for Fe(CO)₅ (liq.), Qf=189.8. Mittasch¹ found Q=57.1 for the reaction, Fe(c,  $\alpha$ ) +5CO (g) =Fe(CO)₅ (liq.), whence, for Fe(CO)₅ (liq.), Qf=191.2.

Fe(CO)₅ (g). For the heat of vaporization of iron carbonyl, Trautz and Badsteubner¹ found -9.38, Dewar and Jones -7.7. See also Eyber.¹

 $Fe(CO)_5$  (c). Mittasch¹ found the heat of fusion to be -3.25 at about  $-20^{\circ}$ .

FeCO₃ (c). Berthelot¹² measured the heat of reaction of FeSO₄ (aq.) with Na₂CO₃ (aq.) to be -3.7, and, assuming that the precipitate was ferrous carbonate, his data yield, for FeCO₃ (c), Qf = 180. LeChatelier,^{8, 10} reported the heat of combustion of ferrous carbonate to be zero;

IRON 313

Roth⁵ reported the value 10.64. Using Roth's data one calculates, for  $FeCO_3$  (c), Qf = 172.8.

 ${\rm Fe_2(C_2O_4)_3}$  (aq.). The data of Lemoine¹ on the heat of mixing aqueous ferric chloride with aqueous oxalic acid, and of aqueous ferric oxalate with aqueous hydrochloric acid, yield, for  ${\rm Fe_2(C_2O_4)_3(100)}$ , Qf=610.4. Data on the heat of dilution of aqueous ferric oxalate were reported by Lemoine.¹

 $Fe(C_2H_3O_2)_3$  (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous ferric sulfate with aqueous barium acetate to be 20.21. Berthelot⁵ measured the heat of reaction of aqueous ferric acetate with aqueous potassium hydroxide, and the reciprocal heats of mixing involving  $Fe^{+++}$ ,  $C_2H_3O_2^-$ ,  $H^+$ , and  $Cl^-$ . Data on the heat of dilution of aqueous ferric acetate were reported by Berthelot.⁵

 $H_4$ Fe(CN)₆ (aq.). Berthelot²⁷ measured the heat of the reaction of 6HCN (aq.) with Fe(OH)₂ (c) in alkaline solution to form  $H_4$ Fe(CN)₆ (aq.), and his data yield, for the latter Qf = -122.3.

H₄Fe(CN)₆ (c). Chretien and Guinchant¹ measured the heat of solution.

 $H_3$ Fe(CN)₆⁻(aq.),  $H_2$ Fe(CN)₆⁻⁻(aq.), HFe(CN)₆⁻⁻⁻(aq.), Fe(CN)₆⁻⁻⁻(aq.). The values for these substances are obtained from the respective aqueous potassium salts.

 $m H_3Fe(CN)_6$  (aq.). Berthelot²⁷ measured the heat of oxidation of aqueous ferrocyanic acid with bromine and with chlorine, his data yielding, for the ferricyanic acid,  $\rm H_3Fe(CN)_6$  (aq.),  $\it Qf=-148.1$  and -148.4, respectively.

 $H_2Fe(CN)_6$  (aq.),  $HFe(CN)_6$  (aq.),  $Fe(CN)_6$  (aq.). The values for these ions are obtained from the respective aqueous potassium salts.

 $FeCO(CN)_5$ — (aq.). This value is obtained from that for the aqueous potassium salt.

 $Fe_4(Fe(CN)_6)_3$  (c). Berthelot²⁷ measured the heat of reaction of aqueous ferrocyanic acid with ferric hydroxide to be 75.6, and the heat of reaction of aqueous KCN with aqueous ferrous and ferric sulfates to be 225.0; whence, for ferric ferrocyanide, Qf = -322.5 and -312.

 $(NH_4)_4$ Fe $(CN)_6 \cdot 3 H_2O$  (c). Chretien and Guinchant¹ measured the heat of solution.

(NH₄)₄Fe(CN)₆ (aq.). Chretien and Guinchant¹ measured the heat of neutralization.

 $Zn_2Fe(CN)_6$  (c). Joannis¹ measured the heat of reaction of  $Na_4Fe$  (CN)₆ (aq.) with  $2 ZnSO_4$  (aq.) to be 6.6 and that of  $K_3Fe(CN)_6$  (aq.) with  $2 ZnSO_4$  (aq.) +HI (aq.) to be 21.2.

H₃FeCO(CN)₅· H₂O (c). Muller³ measured the heat of combustion. H₃FeCO(CN)₅ (aq.). Muller³ measured the heat of solution of the monohydrate.

Fe₃Si (c). Campbell³ measured the heat of solution of Fe₃Si (c) and of Si (c) in aqueous cupric chloride to be 87 and 107, respectively. See also Osmond² and Troost and Hautefeuille.²

**FeSiO₃ (c).** LeChatelier^{8, 10} and Wologdine¹ reported identical values, Q=5, for the reaction, FeO (c) + SiO₂ (c) = FeSiO₃ (c). Le Chatelier^{8, 10} also found Q=-7.6 for the reaction, FeCO₃ (c) +SiO₂ (c) = FeSiO₃ (c) +CO₂ (g). These data yield, for FeSiO₃ (c), Qf=272.6 and 274.1, respectively.

2 FeI₂ · PbI₂ (c). Mosnier¹ measured the heat of solution.

2 FeI₂ · PbI₂ · 3 H₂O (c). Mosnier¹ measured the heat of solution.

# MANGANESE

Mn (c). The standard state is Mn (c, III). Umino¹ measured the heats of transition.

Mn (liq.). The data on the heat of fusion of manganese at its melting point,  $1260^{\circ}$ , are: Umino,  $^{1}-3.56$ ; Wust, Meuthen, and Durrer,  $^{1}-2.0$ .

Mn (g). Vapor pressure data were reported by Greenwood^{2, 5} and Ruff and Bormann.¹ These data yield -65 for the heat of vaporization at 1900°, or -75 for the heat of sublimation at 18°. Millar¹ calculated for the latter -58.

The values of the energy states of gaseous monatomic manganese are from Catalan.² See also Bacher and Goudsmit.¹

Mn⁺⁺ (aq.). This value is obtained from that for MnCl₂ (aq.). Mn⁺⁺⁺ (aq.). This value is obtained from that for MnBr₃ (aq.).

MnO (c). For the heat of formation of MnO (c) from solid manganese prepared from amalgam Guntz¹² reported 98.6. LeChatelier¹⁰ and Roth⁵ measured the heat of combustion of MnO (c, I) in oxygen to form  $\frac{1}{3}$  Mn₃O₄ (c), and obtained identical values, Q=18.5, though the recent work of Roth is undoubtedly more accurate. This value yields, for MnO (c, I), Qf=96.5. Millar³ measured the heat of transition.

Mn₃O₄ (c). The heat of combustion of 3 Mn (c,III) in oxygen to form Mn₃O₄ (c) was measured by LeChatelier, ¹⁰ Ruff and Gersten, ² and

Roth⁵ to be 318, 329.7, and 345.0, respectively.

 $\rm Mn_2O_3$  (c). From the equilibrium data of Meyer and Rötger¹ on the reaction, 6  $\rm Mn_2O_3$  (c) = 4  $\rm Mn_3O_4$  (c) +O₂ (g), Biltz⁸ calculated Q=-50.4, whence, for  $\rm Mn_2O_3$  (c), Qf=238.3. Equilibrium data on the reaction, 4  $\rm MnO_2$  (c, I) =2  $\rm Mn_2O_3$  (c) +O₂ (g), were reported by Wohler and Balz,² Meyer and Rötger,¹ and Drucker and Huttner.¹ The latter investigators reported Q=-26.0, whence, taking the value 123 for  $\rm MnO_2$  (c, I), one obtains, for  $\rm Mn_2O_3$  (c), Qf=233.

 $MnO_2$  (c, ppt.). Thomsen¹⁵ measured the heat of reaction of aqueous manganous sulfate with aqueous potassium permanganate, and the heat of reaction of  $MnO_2$  (c, ppt.) with aqueous ferrous sulfate plus aqueous sulfuric acid. His data yield, for  $MnO_2$  (c, ppt.), Qf = 115.2 and 115.9,

respectively.

 $MnO_2$  (c, I). The data of Mixter¹¹ on the reactions of Mn (c) and MnO₂ (c, I) with sodium peroxide, yield for MnO₂ (c, I), Qf = 121.2. The equilibrium data of LeChatelier¹⁰ on the reaction,  $3 \text{ MnO}_2$  (c, I) = Mn₃O₄ (c) +O₂ (g), yield Q = -48.0; whence, for MnO₂ (c, I), Qf = 131.

MnO₂ (c, II). Millar³ measured the heat of transition.

 $Mn(OH)_2$  (c, ppt.). Thomsen¹⁵ measured the heat of the reactions of  $MnSO_4(400)$  with  $Ba(OH)_2(400)$  and with 2 KOH (200) to be 10.31 and 4.91, respectively; whence, for  $Mn(OH)_2$  (c, ppt.), Qf = 163.42 and 163.42. Berthelot¹⁴ measured the heat of reaction of  $MnCl_2(400)$  with 2 NaOH (200) to be 3.78, whence, for  $Mn(OH)_2$  (c, ppt.), Qf = 162.3.

 $Mn(OH)_3$  (c, ppt.). Petersen³ measured the heat of mixing  $2MnF_3$  (aq.) with 3HF (aq.) and the heat of neutralization of  $(2MnF_3+3HF)$  (aq.) with 9NaOH (aq.) to be -0.01 and 94.82, respectively; whence, for  $Mn(OH)_3$  (c, ppt.), Qf=221.

MnO₋₄ (aq.). This value is obtained from that for KMnO₄ (aq.). HMnO₄ (aq.). The heat of ionization of this acid is assumed to be zero.

MnF₂ (aq.). Petersen³ measured the heat of reaction of MnCl₂ (aq.) with 2 AgF (aq.) to be 31.7.

MnF₃ (aq.). This value is obtained from the ions.

 $MnF_3 \cdot 3$  HF (aq.). Petersen³ measured the heat of mixing  $MnF_3$  (aq.) with 3 HF (aq.) to be -0.01.

 $MnCl_2$  (aq.). Thomsen¹⁵ measured the heat of solution of solid manganese (0.994 Mn) in 2 HCl(50) to be 49.6; whence, for MnCl₂(100), Qf = 128.3. We have estimated the heat of dilution.

MnCl₂ (c). Thomsen¹⁵ measured the heat of solution. See also the equilibrium data of Jellinek and Rudat³ and Jellinek and Uloth.¹

MnCl₂·nH₂O (c). For the heat of solution of the dihydrate, Foote and Saxton¹ found 8.20₃₀₀ and Sabatier² found 8.1. Thomsen¹⁵ measured the heat of solution of the tetrahydrate.

 $H_2MnCl_6$  (aq.). Berthelot⁶⁸ measured the heat of solution of  $Cl_2$  (g) in concentrated aqueous  $2 HCl \cdot MnCl_2$  to be 9.2.

MnBr₂ (aq.). This value is obtained from the ions.

MnBr₂ (c). We have estimated the heat of solution to be 15.

 $\mathbf{MnBr_2} \cdot n\mathbf{H_2O}$  (c). Lescoeur⁷ obtained dissociation pressure data on the di- and tetrahydrates.

MnBr₃ (aq.). Fabre¹ measured the heat of solution of manganese in bromine water to be 109.

MnI₂ (aq.). This value is obtained from the ions.

MnI₂ (c). Mosnier¹ measured the heat of solution.

MnI₂·nH₂O (c). Lescoeur¹ obtained dissociation pressure data on the mono-, di-, tetra-, and hexahydrates.

MnS (c, ppt.). For the heat of the reaction of  $MnCl_2(400)$  with  $Na_2S(400)$ , Berthelot¹⁴ found Q=6.4 and Thomsen¹⁵ found Q=7.78. The latter figure yields, for MnS (c, ppt.), Qf=47.0. See also Wologdine and Penkiewitsch¹ and Jellinek and Podjaski.¹

 $MnSO_4$  (aq.). Thomsen¹⁵ measured the heats of reaction of  $MnCl_2$  (200) with  $H_2SO_4$  (200) and  $MnSO_4$  (200) with 2 HCl(100), and of  $MnSO_4$  (400) with  $BaCl_2$  (400). His data yield, for  $MnSO_4$  (400), Qf = 264.91 and 265.15. Thomsen¹⁵ measured the heat of dilution.

MnSO₄ (c). Thomsen¹⁵ measured the heat of solution.

 $MnSO_4 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the mono- and pentahydrates. Dissociation pressure data on the heptahydrate were obtained by Bolte, Schottky, Hollmann, Lescoeur, Linebarger, and Carpenter and Jette.1

 $Mn_2(SO_4)_3$  (aq.). This value is obtained from the ions.  $Mn_2(SO_4)_3$  (c). Beck¹ measured the heat of solution.

MnS₂O₆ (aq.). This value is obtained from the ions.

 $MnS_2O_6 \cdot 6 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

MnSe (c). Fabre measured the heat of solution of MnSe (c) in bromine water to be 125.6, and the heat of reaction of MnSO₄ (aq.) with  $Na_2Se$  (aq.) to be 14.2; whence, for MnSe (c), Qf=34 and 26.3, respectively.

MnN₆ (c). Wohler and Martin¹ measured the heat of decomposition of the azide to be 94.0.

 $Mn_5N_2$  (c). Neumann, Kroger, and Kunz¹ measured the heat of solution of the nitride in aqueous (18 per cent) sulfuric acid to be 278.35, and Neumann, Kroger, and Hoebler measured the direct heat of combination to be 57.2. The former data yield Qf = 56.0. See also Valensi.¹

Mn(NO₃)₂ (aq.). Thomsen¹⁵ measured the heat of reaction of  $Mn(OH)_2$  (c) with HNO₃ (ag.) to be 22.90, whence, for  $Mn(NO_3)_2(400)$ , Qf = 147.8.

Mn(NO₃)₂ (c). Guntz and Martin¹ measured the heat of solution.

 $Mn(NO_3)_2 \cdot 6 H_2O(c)$ . Thomsen¹⁵ measured the heat of solution.

 $\mathbf{Mn}(\mathbf{NO}_3)_2 \cdot \mathbf{6} \, \mathbf{H}_2\mathbf{O}$  (liq.). Reisenfeld and Milchsack¹ measured the heat of fusion of the hexahydrate.

 $Mn(NO_3)_2 \cdot 3 H_2O$  (liq.). We have estimated the heat of dilution from 3 to  $6 \, \mathrm{H}_2\mathrm{O}$ .

 $Mn(NO_3)_2 \cdot 3 H_2O$  (c). Morgan and Owens¹ measured the heat of fusion.

 $\mathbf{MnF_2 \cdot H_2O \cdot nNH_3}$  (c). Biltz and Rahlfs² measured the dissociation pressures of the ammines with 1 and 5 NH₃.

MnX₂·nNH₃ (c). Biltz and Hüttig¹ obtained dissociation pressure data on the mono-, di-, and hexammines of MnCl2 and MnBr2, and on the di- and hexammines of MnI2. Ephraim^{1, 9} obtained similar data on the hexammines of MnCl₂, MnBr₂, and MnI₂.

MnSO₄ · nNH₃ (c). Ephraim⁸ reported meager data on the ammines with  $\frac{1}{2}$ , 1, 2, 5, and 6 NH₃.

MnBr₂·2 NH₄Br (aq.). Varet⁶ measured the heat of mixing MnBr₂ (200) with  $2 \text{ NH}_4 \text{Br}(100)$  to be 0.08.

MnCl₂·2 NH₄Cl·2 H₂O (c). Foote and Saxton¹ measured the heat of solution.

 $MnSO_4 \cdot (NH_4)_2SO_4 \cdot nH_2O$  (c). Graham² measured the heat of solution of the hexahydrate. Ephraim and Wagner¹ reported the heat of dissociation of the hexahydrate to the dihydrate to be -11.2 per mole of water vapor.

Mn₂(PO₄)₃ (c, ppt.). Joly³ and Berthelot¹⁰¹ obtained data on the heats of reaction of MnCl₂(aq.) with various aqueous sodium phosphates. Because their published papers lack the details with which to make a proper interpretation of their data, we have given only the value for crystalline precipitated manganic phosphate.

 $Mn_3C$  (c). The data on the heat of combustion of  $Mn_3C$  (c) in oxygen to form  $Mn_3O_4$  (c) and  $CO_2$  (g) are: Ruff and Gersten,² 409.8; LeChatelier,¹⁰ 411.2; Roth,⁵ 419.8. These data yield, for  $Mn_3C$  (c), Qf = 29.7, 28.3, and 19.7. See also Troost and Hautefeuille.³

 $MnCO_3$  (c, ppt.). Thomsen¹⁵ found Q = -2.04 for the reaction of  $MnSO_4(400)$  with  $Na_2CO_3(400)$ ; Berthelot¹² found  $Q^{16} = -2.36$  for the reaction of  $MnCl_2(200)$  with  $Na_2CO_3(200)$ . These data yield, for  $MnCO_3$  (c, ppt.), Qf = 207.85 and 207.67, respectively.

MnCO₃ (c). For the heat of combustion of MnCO₃ (c) in oxygen to form  $\frac{1}{3}$  Mn₃O₄ (c) +CO₂ (g), the following values were reported: Wologdine,  1  -3.5; LeChatelier,  10  -5.1; Roth,  5  -9.8.

 $MnC_2O_4(c)$ . Smith and Topley¹ measured the heat of solution in  $HNO_3(9)$ .

 $MnC_2O_4 \cdot nH_2O$  (c). Smith and Topley¹ measured the heat of solution in  $HNO_3(9)$  of the di- and trihydrates. Berthelot⁹ measured the heat of reaction of  $MnCl_2(100)$  with  $K_2C_2O_4(100)$  to form the solid dihydrate to be 4.3.

 $Mn(CHO_2)_2$  (aq.). Berthelot⁹ measured the heat of neutralization of aqueous formic acid with  $Mn(OH)_2$  (c) to be 21.4.

Mn(CHO₂)₂ (c). Berthelot⁹ measured the heat of solution.

 $\mathbf{Mn}(\mathbf{CHO}_2)_2 \cdot 2 \, \mathbf{H}_2\mathbf{O}$  (c). Berthelot⁹ measured the heat of solution.

 $Mn(C_2H_3O_2)_2$  (aq.). Berthelot^{9, 131} measured the heat of neutralization of  $Mn(OH)_2$  (c) with aqueous acetic acid to be 22.1.

 $Mn(C_2H_3O_2)_2$  (c). Berthelot^{9, 131} measured the heat of solution.

 $Mn(C_2H_3O_2)_2 \cdot 4 H_2O$  (c). Berthelot^{9, 131} measured the heat of solution.

MnSiO₃ (gls.). Mulert¹ measured the heat of solution of this substance in aqueous (20%) HF.

MnSiO₃ (c). Mulert¹ measured the heat of solution of this substance in aqueous (20%) HF. For the reaction, MnO (c) +SiO₂ (c, quartz) = MnSiO₃ (c), LeChatelier¹⁰ reported Q=2.7. For the reaction, MnCO₃ (c) +SiO₂ (c, quartz) = MnSiO₃ (c) +CO₂ (g), Wologdine¹ and Wologdine and Penkiewitsch¹ reported Q=19.6. These data yield, for MnSiO₃ (c), Qf=301.3, 302.5, and 307.3, respectively.

2MnI₂·PbI₂ (c). Mosnier¹ measured the heat of solution.

2MnI₂·PbI₂·3 H₂O (c). Mosnier¹ measured the heat of solution. MnBr₂·nHgBr₂ (aq.). Varet⁶ measured the heats of mixing MnBr₂ (aq.) with ½, 1, and 2 moles of HgBr₂ (aq.).

#### CHROMIUM

Cr(c). Standard state. Laschtschenko¹ reported a transition at 480° with T=-0.13, but no other investigator has found such a transition.

Cr (liq.). The data on the heat of fusion at 1600° are: Umino,³ -3.65; Wust, Meuthen, and Durrer,¹ -1.66.

Cr (g). Greenwood^{2, 5} reported the boiling point of chromium to be 2200°. We have estimated the heat of vaporization to be -76 at 2200°. The energy states of gaseous monatomic chromium have been evaluated from the data of Kiess, ¹ Catalan and Sancho, ¹ Russell, ⁶ and White. ^{3, 4, 5}

 $Cr_7H_2$  (c). Sieverts and Gotta² reported the heat of dissociation of this hydride to be -3.7.

CrO₃ (c). Mixter ^{6, 16} measured the heat of reaction of CrO₃ (c) with Na₂O (c) to be 77.0, and of Cr (c) with Na₂O₂ (c) to be 158.8; whence, for CrO₃ (c), Qf=141.1. Combination of the heat of neutralization of CrO₃ (aq.) with 2 NaOH (aq.), and of the heats of solution of CrO₃ (c) and Na₂CrO₄ (c) with Mixter's ^{6, 16} data on the reaction, Cr (c) +3 Na₂O₂ (c) = Na₂CrO₄ (c) +2 Na₂O (c), Q=158.8, yields, for CrO₃ (c), Qf=137.5. Roth and Becker¹ measured the heats of the reactions, Cr (c) + $\frac{3}{4}$ O₂ (g) = $\frac{1}{2}$ Cr₂O₃ (c) and CrO₃ (c) = $\frac{1}{2}$ Cr₂O₃ (c) + $\frac{3}{4}$ O₂ (g), to be 144.4 and -3.5, respectively; whence, for CrO₃ (c), Qf=147.9.

 $\mathrm{Cr_2O_3}$  (c). Mixter^{6, 16} measured the heats of the reactions,  $\mathrm{Cr_2O_3}$  (c)  $+3~\mathrm{Na_2O_2}$  (c)  $=2~\mathrm{Na_2CrO_4}$  (c)  $+\mathrm{Na_2O}$  (c) and  $2~\mathrm{CrO_3}$  (c)  $+2~\mathrm{Na_2O}$  (c)  $=2~\mathrm{Na_2CrO_4}$  (c), to be 107.8 and 154.0, respectively; whence for the reaction,  $\mathrm{Cr_2O_3}$  (c)  $+1\frac{1}{2}~\mathrm{O_2}$  (g)  $=2~\mathrm{CrO_3}$  (c), Q=-13.0, and, for  $\mathrm{Cr_2O_3}$  (c), Qf=265.6. Roth and Becker¹ measured the heat of combustion of chromium in oxygen to form  $\mathrm{Cr_2O_3}$  (c) to be 288.9.

CrO₃ (aq.). The data on the heat of solution of CrO₃ (c) are: Briechner and Prins, 2.47₈₀; Morges, 2.2; Sabatier, 1.9. Data on the heat of dilution of aqueous CrO₃ were reported by Briechner and Prins and Morges.

 $CrO_4$ —(aq.). The value for this ion is obtained from  $Na_2CrO_4$  (aq.) and  $K_2CrO_4$  (aq.).

**CrO** (g). Ghosh¹ computed the energy of dissociation of CrO (g) from spectroscopic data.

 $Cr_2O_7$ —(aq.). This value is obtained from those for  $Na_2Cr_2O_7$  (aq.) and  $K_2Cr_2O_7$  (aq.).

 $[\operatorname{Cr} X_{3-n}] X_n$  (aq.). Trivalent chromium salts form several distinct kinds of solutions: the purple solution, which is supposed to contain  $[\operatorname{Cr} \cdot 6 \operatorname{H}_2 O] X_3$ ; the green solution, which is supposed to contain  $[\operatorname{Cr} \cdot 4 \operatorname{H}_2 O \cdot X_2] X$ ; and others of less importance for the present purpose. In writing the formulas of the aqueous ions and molecules, we have omitted the water molecules, so that for the above molecules are written  $[\operatorname{Cr}] X_3$  and  $[\operatorname{Cr} \cdot X_2] X$  and the positive ions  $[\operatorname{Cr}]^{+++}$  and  $[\operatorname{Cr} \cdot X_2]^+$ . The number of molecules of  $[\operatorname{H}_2 O]$  necessary to make the coordination number of chromium have the value 6 have been omitted in writing the formulas

of the aqueous ions and the aqueous molecules and in computing the respective heats of formation. When dichromates are reduced in acid solution, the product is the green solution containing  $[Cr \cdot X_2]X$ . Thomsen¹⁵ found Q=219.6 for the reaction,  $2 \text{ CrO}_3$  (aq.) +6 HCl (aq.)  $+3(SnCl_2+2HCl)$  (aq.) =  $3(SnCl_4+2[Cr \cdot Cl_2]Cl)$  (aq.) +6 H₂O (liq.); whence, for [Cr · Cl₂]Cl (aq.), Qf = 166.5. Berthelot⁹⁶ found Q = 153.8for the preferable reaction,  $K_2Cr_2O_7$  (aq.) + 8 HCl (aq.) + 6 HI (aq.) =  $(2[Cr \cdot Cl_2]Cl + 6HCl + 3KCl)$  (aq.) +  $7H_2O$  (liq.) +  $3I_2$  (c); whence, for [Cr·Cl₂]Cl (aq.), Qf=173.6. Neuman, Kroger, and Kunz¹ measured the heat of solution of chromium in HCl(8) to be 50.6; whence, assuming the product to be  $[Cr \cdot Cl_2]Cl$  (aq.), one finds, for the latter, Qf = 167.3. Recoura³ measured the heat of reaction of [Cr] (OH)₃ (c, ppt.) with 3 HCl (aq.) to form [Cr]Cl₃ (aq., purple) to be 20.7. Bjerrum¹ computed the heat of the same reaction to be 21.2, from data on the hydrolysis constant. Recoura³ measured the heat of reaction of 3 NaOH (aq.) with [Cr]Br₃ (aq.) and with [Cr·Br₂]Br (aq.).

[Cr · 6 H₂O]Br₃ (c, purple). Recoura³ measured the heat of solution.

[Cr  $\cdot$  4 H₂O  $\cdot$  Br₂]  $\cdot$  2 H₂O (c, green). Recoura³ measured the heat of solution.

[CrCl₂]Cl (c, rose). Recoura³ measured the heat of solution.

[Cr  $\cdot$  4 H₂O $\cdot$ Cl₂]Cl (c, green). Higley measured the heat of solution.

[Cr · 4 H₂O · Cl₂]Cl · 2 H₂O (c, green). Recoura³ measured the heat of solution.

[Cr  $\cdot$  4 H₂O  $\cdot$  Cl₂]Cl  $\cdot$  6 H₂O (c, green). Higley¹ measured the heat of solution.

[Cr · 6 H₂O]Cl₃ (c, purple). Recoura³ measured the heat of solution. [Cr]⁺⁺⁺ (aq., purple). This value is obtained from that for the aqueous chloride.

[Cr]++ (aq.). This value is obtained from that for CrCl₂ (aq.).

 $Cr_3O_{10}$ —(aq.). We have estimated the heat of the reaction,  $Cr_2O_7$ —(aq.) +  $CrO_3$  (aq.) =  $Cr_3O_{10}$ —(aq.).

 $H_2CrO_4$  (aq.). We have taken this as equivalent to  $CrO_3$  (aq.)  $+H_2O$  (liq).

 $[Cr \cdot Cl_2]^+$  (aq.). This value is obtained from that for the aqueous chloride.

[Cr](OH)₃ (c, ppt.). Recoura³ measured the heat of reaction of  $[Cr \cdot Cl_2]Cl$  (aq.) with 3NaOH (aq.)

 $[Cr \cdot (OH)_2]OH$  (c, ppt.). Recoura³ measured the heat of reaction of this substance with 3HCl (aq.).

[Cr·OH](OH)₂ (c, ppt.). Recoura³ measured the heat of reaction of this substance with 3HCl (aq.).

 $[Cr\cdot (OH)_2]Cl$  (aq.). From data on the hydrolysis constant, Bjerrum¹ computed the heat of the reaction of this substance with HCl (aq.) to be 8.1.

[Cr·OH]Cl₂ (aq.). From data on the hydrolysis constant, Bjerrum¹ computed the heat of reaction of this substance with HCl (aq.) to be 9.6.

[Cr(OH)]⁺⁺ (aq.). This value is obtained from that for the aqueous

chloride.

 $\operatorname{CrCl}_2$  (aq.). Recoura³ measured the heat of the reaction,  $\operatorname{2CrCl}_2$  (aq.)  $+\frac{1}{2}\operatorname{O}_2$  (g)  $+\operatorname{H}_2\operatorname{O}$  (liq.) = 2[Cr·OH]Cl₂ (aq.), to be 30.4.

CrCl₂ (c). Recoura³ measured the heat of solution. See also Jellinek and Koop.¹

CrCl₂·4H₂O (c, dark green). Recoura³ measured the heat of solution.

 $CrCl_2 \cdot 3H_2O$  (c, light green). Knight and Rich¹ studied the equilibrium between the tetra- and trihydrates.

CrI₂ (c). Recoura³ measured the heat of solution.

CrI₂ (aq.). This value is obtained from the ions.

[Cr]F₃ (aq.). Petersen³ measured the heat of reaction of [Cr]F₃ (aq.) with 3NaOH (aq.) to be 23.65.

 $H_3[Cr]F_6$  (aq.). Petersen³ measured the heat of reaction of  $[Cr]F_3$  (aq.) with 3HF (aq.).

 $CrF_3$  (c). Jellinek and Rudat¹ studied the equilibrium,  $2CrF_2$  (c)  $+F_2$  (g)  $=2CrF_3$  (c), finding Q=158.0.

 $CrF_2$  (c). Jellinek and Rudat, from equilibrium data on the direct formation,  $Cr(c) + F_2(g) = CrF_2(c)$ , computed Qf = 152.

CrO₂Cl₂ (liq.). Berthelot^{53, 54, 93} measured the heat of solution. See also Moles and Gomez.¹

CrO₂Cl₂ (g). From data on the boiling point elevation, Beckmann⁴ computed the heat of vaporization.

[Cr]₂(SO₄)₃ (aq., purple). Thomsen¹⁵ measured the heat of neutralization of [Cr] (OH)₃ (c, ppt.) with H₂SO₄ (aq.) to be 49.3; whence, for [Cr]₂(SO₄)₃ (aq., purple), Qf = 772.2. Colson² measured the heat of reaction of 3BaCl₂ (aq.) with [Cr]₂(SO₄)₃ (aq.) to be 19.95; whence, for [Cr]₂(SO₄)₃ (aq., purple), Qf = 772.3.

[Cr₂·(SO₄)₃] (aq., green). Colson² measured the heat of reaction of this solution with 6NaOH (aq.) to be 61.1; whence Qf = 757.4. See also Recoura.²

 $[Cr_2 \cdot (SO_4)_2]SO_4$  (aq., green). Colson² measured the heat of reaction of this substance with 6NaOH (aq.) to be 57.6; whence Qf = 760.9. See also Recoura.²

[Cr₂·SO₄](SO₄)₂ (aq., green). Colson² measured the heat of reaction of this substance with 6NaOH (aq.) to be 50.7; whence, Qf = 767.8. See also Recoura.²

 $\text{Cr}_2(SO_4)_3$  (aq., "modified"). When heated, the purple aqueous chromic sulfate is hydrolyzed, and we have assumed that this "modified" solution is  $([\text{Cr}_2 \cdot (SO_4)_2](OH)_2 + H_2SO_4)$  (aq.). Colson² measured the heats of reaction of both hydrolyzed and normal solutions with 6NaOH (aq.) to obtain the difference in their heats of formation.

Cr₂(SO₄)₃ · 6H₂O (c, green). Colson² measured the heat of solution.

 $[Cr \cdot 6H_2O]_2(SO_4)_3 \cdot nH_2O$  (c, purple). Senechal¹ and Recoura² measured the heats of solution of various hydrates. We have utilized Senechal's¹ data to distinguish the three hydrates with n=2, 3, and 5.

CrN (c). Neuman, Kroger, and Hawbler¹ reported Qf = 29.5. See

also Valenski.1

 $(NH_4)_2CrO_4$  (aq.). Morges¹ measured the heat of reaction of  $CrO_3(500)$  with  $NH_4OH(100)$  to be 23.48. See also Berthelot.⁹⁵

(NH₄)₂CrO₄ (c). Sabatier⁵ measured the heat of solution.

 $(NH_4)_2Cr_2O_7$  (aq.). Berthelot⁹⁵ measured the heat of reaction of  $(NH_4)_2Cr_2O_7$  (aq.) with  $NH_4OH$  (aq.) and with 2KOH (aq.). See also Morges¹ and Moles and Gonzales.¹

(NH₄)₂Cr₂O₇ (c). For the heat of solution, Moles and Gonzales¹

found  $-12.90_{540}^{16}$  and Berthelot⁹⁵  $-12.4^{13}$ .

 ${\tt CrCl_2 \cdot nNH_3}$  (c). Ephraim and Millman¹ obtained dissociation pressure data on the di- and triammines.

 $Cr_3C_2$  (c). Heusler¹ studied the equilibrium,  $3Cr_2O_3$  (c) +13C (c)

 $=2\mathrm{Cr}_3\mathrm{C}_2$  (c)  $+9\mathrm{CO}$  (g), and calculated Q=-297.

**PbCrO**₄ (c). Goldblum and Stoffella¹ measured the heat of reaction of aqueous potassium chromate with aqueous lead nitrate to be 10.6. For the heat of the reaction of aqueous lead chloride with aqueous potassium chromate, Roth, Schwartz, and Buchner¹ found Q=11.16.

2CrI₂ · PbI₂ (c). Mosnier¹ measured the heat of solution.

2CrI₂·PbI₂·3H₂O (c). Mosnier¹ measured the heat of solution.

# MOLYBDENUM

Mo (c). Standard state.

**Mo** (g). Jones, Langmuir, and Mackay¹ reported values for the vapor pressure of solid molybdenum. The energy states of gaseous monatomic molybdenum are evaluated from the data of Catalan¹ and Meggers and Kiess.¹ See also Bacher and Goudsmit.¹

 $MoO_3$  (c). For the heat of formation of this substance, Moose and Parr¹ found 176.5, which value was obtained by combustion of molybdenum in oxygen in a bomb. For the same quantity, Delepine² found 167. Mixter's¹⁰ data on the reaction of Mo (c) with  $3Na_2O_2$  (c) and of  $MoO_3$  (c) with  $Na_2O$  (c) yield Q=205.3 and 81.9, respectively; whence, for  $MoO_3$  (c), Qf=182.7.

MoO₂ (c). Mixter¹⁰ measured the heat of reaction of MoO₂ (c) with

 $Na_2O_2$  (c) to be 101.2.

 $H_2MoO_4$  (aq.). Pechard¹ measured the heat of reaction of  $Na_2MoO_4$  (aq.) with  $H_2SO_4(400)$  to be 6.9.

 $MoO_3$  (aq.). This is taken as equivalent to  $H_2MoO_4$  (aq.)  $-H_2O$ 

(liq.).  $MoO_4$  (aq.). Pissarjewsky^{2, 4} measured the heat of reaction of  $MoO_3$  (aq.) with  $H_2O_2$  (aq.) to be 8.1.

 $MoO_5$  (aq.). Pissarjewsky^{2, 4} measured the heat of reaction of  $MoO_3$  (aq.) with  $2H_2O_2$  (aq.) to be 12.35.

- $MoO_3 \cdot nH_2O$  (c) or  $H_2WO_4 \cdot (n-1)H_2O$  (c). Hüttig and Kurre¹ obtained dissociation pressure data on the mono- and dihydrates of  $MoO_3$ .
  - MoO₄—(aq.). This value is obtained from that for Na₂MoO₄ (aq.).
- MoF₆ (c),MoF₆ (liq.). Ruff and Ascher¹ measured the vapor pressures of the solid and liquid.
- **PbMoO₄ (c).** Tammann and Westerhold¹ calculated the heat of dissociation of PbO · MoO₃ (c).
- $CuMoO_4$  (c). Tammann and Westerhold¹ calculated the heat of dissociation of  $CuO \cdot MoO_3$  (c).
- **FeMoO₄ (c).** Tammann and Westerhold¹ calculated the heat of dissociation of FeO  $\cdot$  MoO₃ (c).
- $Fe_2(MoO_4)_3 \cdot xH_2O$  (c). Tammann and Westerhold¹ calculated the heat of dissociation of the hydrated  $Fe_2O_3 \cdot 3MoO_3 \cdot xH_2O$  (c) where x is unknown.

#### TUNGSTEN

- W (c). Standard state.
- **W** (g). Values for the vapor pressure of solid tungsten were computed by Jones, Langmuir, and Mackay¹ from data on the rate of loss of weight of heated tungsten wires. See also van Liempt.² The values for the energy states of gaseous monatomic tungsten are from Bacher and Goudsmit.¹
- $WO_3$  (c). For the heat of combustion of tungsten in oxygen to form  $WO_3$  (c), Moose and Parr¹ found 195.7. See also Delepine and Hallopeau,¹ Delepine,⁶ Wiess, Martin, and Stimmelmayr,¹ and van Liempt.⁴ Mixter's⁶ data on the heat of the reaction of W (c) with 3 Na₂O₂ (c) and of  $WO_3$  (c) with Na₂O (c) yield Q=231.2 and 94.70, respectively; whence, for  $WO_3$  (c), Qf=195.8.
- $WO_2$  (c). Delepine and Hallopeau¹ measured the heat of combustion of  $WO_2$  (c) to form  $WO_3$  (c) to be 65.2; whence, for  $WO_2$  (c), Qf=130.5. From equilibrium studies, Shibata² calculated  $Q=11.5^{1000}$  for the reaction,  $\frac{1}{2}WO_2$  (c) +CO (g)  $=\frac{1}{2}W$  (c)  $+CO_2$  (g), whence, for  $WO_2$  (c), Qf=115. Similar data on the reaction, W (c)  $+2H_2O$  (g)  $=WO_2$  (c)  $+H_2$  (g), which was studied by Chaudron, i yield Q=8.8, whence, for  $WO_2$  (c), Qf=124.
- $W_2O_5$  (c). Shibata² studied the equilibria,  $W_2O_5$  (c) + CO (g) =  $2 WO_2$  (c) + CO₂ (g) and  $2 WO_3$  (c) + CO (g) =  $W_2O_5$  (c) + CO₂ (g), and calculated Q=4.7 and 7.2, respectively; whence, for  $W_2O_5$  (c), Qf=324 and 331. Chaudron's¹ data on the equilibrium,  $2 WO_2$  (c) +  $H_2O$  (g) =  $W_2O_5$  (c) +  $H_2$  (g), yield  $Q=4.0^{850}$ ; whence, for  $W_2O_5$  (c), Qf=323. See also Alterthum and Koref¹ and van Liempt.³
- $\mathbf{H}_2\mathbf{WO}_4$  (c), or  $\mathbf{WO}_3\cdot\mathbf{H}_2\mathbf{O}$  (c). Hüttig and Kurre¹ obtained data on the dissociation pressure.
- $\rm H_2WO_4$  (aq.). Pissarjewsky² measured the heat of solution of the solid in aqueous NaOH to be 13.7.
  - WO3 · nH2O2 (aq.). Pissarjewsky2 measured the heat of mixing

 $\rm H_2WO_4$  (aq.) with 1, 2, and 3 moles of  $\rm H_2O_2$  (aq.) to be 0.9, 1.5 and 3.2, respectively.

 $\mathbf{WF}_{6}$  (c),  $\mathbf{WF}_{6}$  (liq.). Ruff and Ascher¹ measured the vapor pressures of the liquid and solid.

WS₂ (c). Parravano and Malquori² studied the equilibrium W (c)  $+2 H_2 S$  (g)  $= WS_2$  (c)  $+2 H_2$  (g), and computed  $Q = 73.4^{950}$ .

 $W(CN)_8$ —(aq.),  $W(CN)_8$ —(aq.). Collenberg¹ reported Q = 16.85 for the reaction, Hg (liq.) + Cl⁻ (aq.) + W(CN)₈—(aq.) = HgCl (c) + W(CN)₈—(aq.).

CuWO₄ (c). Tammann and Westerhold¹ reported the heat of the reaction of CuO (c) with WO₃ (c) to be 12.1.

 $\text{CuWO}_4 \cdot 2\text{H}_2\text{O}$  (c). Tammann and Westerhold¹ reported Q = 19.0 for the reaction of CuO (c) with WO₃ (c) and  $2\text{H}_2\text{O}$  (liq.).

 $FeWO_4$  (c). Tammann and Westerhold¹ reported Q=9.7 for the reaction of FeO (c) with  $WO_3$ (c).

 $FeWO_4 \cdot 3H_2O$  (c). Tammann and Westerhold¹ reported Q = 17.2 for the reaction of FeO (c) with WO₃ (c) and  $3H_2O$  (liq.).

 $\text{Fe}_2(\text{WO}_4)_3 \cdot 8\text{H}_2\text{O}$  (c). Tammann and Westerhold reported Q = 7.2 for the reaction of  $\text{Fe}_2\text{O}_3$  (c) with  $3\text{WO}_3$  (c) and  $8\text{H}_2\text{O}$  (liq.).

## Uranium

U(c). Standard state.

U (g). We have estimated the heat of sublimation.

 $UO_3$  (c). Mixter¹⁴ measured the heats of the reactions, U (c) +  $3 \, \text{Na}_2\text{O}_2$  (c) =  $\text{Na}_2\text{UO}_4$  (c) +  $2 \, \text{Na}_2\text{O}$  (c) and  $UO_3$  (c) +  $\text{Na}_2\text{O}$  (c) =  $\text{Na}_2\text{UO}_4$  (c), to be 341.8 and 96.1, respectively; whence, for  $UO_3$  (c), Qf = 305.0. Mixter¹⁴ measured the heats of the reactions,  $3 \, \text{U}$  (c) +  $4 \, \text{O}_2$  (g) =  $4 \, \text{U}_3\text{O}_3$  (c),  $4 \, \text{UO}_3$  (c) +  $4 \, \text{VO}_3$  (c) +  $4 \, \text{VO}_3$  (c) +  $4 \, \text{VO}_3$  (c) +  $4 \, \text{VO}_3$  (c) +  $4 \, \text{VO}_3$  (c) +  $4 \, \text{VO}_3$  (d) +  $4 \, \text{VO}_3$  (e) +  $4 \, \text{VO}_3$  (e) +  $4 \, \text{VO}_3$  (f) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) +  $4 \, \text{VO}_3$  (g) + 4

 $UO_2(c)$ . Mixter¹⁴ measured the heat of the reaction,  $UO_2(c) + Na_2O_2(c) = Na_2UO_4(c)$ , to be 110.9.

 $U_3O_8$  (c). Mixter¹⁴ measured the heat of combustion of U (c) in oxygen to form  $U_3O_8$  (c) to be 845.2, and measured the heat of the reaction,  $U_3O_8$  (c)  $+Na_2O_2$  (c)  $+2Na_2O$  (c)  $=3Na_2UO_4$  (c), to be 285.1. The latter reaction yields, for  $U_3O_8$  (c), Qf=857.8.

 ${
m UO_3 \cdot nH_2O}$  (c). Hüttig and Kurre, from dissociation pressure data, computed the heats of dissociation of the hydrates with 2,  $1\frac{1}{2}$ , 1, and  $\frac{1}{2}$  H₂O to be 15.0, 16.7, 20.2, and 26.6, respectively, per mole of H₂O (g). de Forcrand measured the heats of solution of the anhydrous oxide and the mono- and dihydrates in 2 HNO₃ (110) to be 19.8, 14.85, and 12.38, respectively. Aloy measured the heat of solution of the dihydrate to be 8.8 in 2 HBr (100), 8.4 in 2 HNO₃ (100), 8.4 in 2 HCl (100), 9.5 in H₂SO₄ (200), and 7.5 in 2 HC₂H₃O₂ (100).

 $UO_2Cl_2$  (aq.). Aloy¹ measured the heat of solution of  $UO_3 \cdot 2 H_2O$  (c) in 2 HCl(100) to be 8.4.

 $UO_2(NO_3)_2$  (aq.). de Forcrand⁵⁸ measured the heat of solution of  $UO_3$  (c) in  $2 \, HNO_3(110)$  to be 19.8.

 $UO_2SO_4$  (aq.). Aloy¹ measured the heat of solution of  $UO_3 \cdot 2 H_2O$  (c) in  $H_2SO_4$  (200) to be 9.5.

 $UO_2Br_2$  (aq.). Aloy¹ measured the heat of solution of  $UO_3 \cdot 2 H_2O$  (c) in 2 HBr(100) to be 8.8.

 $UO_2(C_2H_3O_2)_2$  (aq.). Aloy¹ measured the heat of solution of  $UO_3 \cdot 2 H_2O$  (c) in  $2 HC_2H_3O_2(100)$  to be 7.5.

UO₂⁺⁺ (aq.). This value is obtained from those for the aqueous chloride and nitrate.

 $UO_2Cl_2 \cdot H_2O$  (c). Aloy¹ measured the heat of solution.

 $UO_4 \cdot 2 H_2O$  (c). Pissarjewsky¹ measured the heats of solution of  $UO_3 \cdot H_2O$  (c) and of  $UO_4 \cdot 2 H_2O$  (c) in  $H_2SO_4(55)$  to be 15.35 and -0.11, respectively.

UF₆ (g). Ruff and Heinzelmann¹ measured the vapor pressure of the liquid.

 $\hat{\text{UCl}_3}$  (c),  $\hat{\text{UCl}_4}$  (c). Biltz and Fendius¹ reported the heats of solution of U (c),  $\hat{\text{UCl}_4}$  (c), and  $\hat{\text{UCl}_3}$  (c) in  $\hat{\text{HCl}}$  (8) to be 144.4, 39.4, and 40.6, respectively; the heats of solution of  $\hat{\text{UO}_3}$  (c),  $\hat{\text{UCl}_4}$  (c), and  $\hat{\text{UCl}_3}$  (c) in (FeCl₃+HCl) (aq.) to be 20.8, 30.3, and 30.3, respectively; the heat of solution of  $\hat{\text{Cl}_2}$  (g) in (FeCl₂+UCl₃) (aq.) to be 42.8; the heat of solution of  $\hat{\text{Cl}_2}$  (g) in (ICl₃+UCl₄) (aq.) to be 13.5; and the heats of solution of  $\hat{\text{UO}_3}$  (c) and  $\hat{\text{UCl}_4}$  (c) in (ICl₃+HCl) (aq.) to be 20.7 and 60.2, respectively.

 $U(SO_4)_2$  (c). Beck¹ measured the heat of reaction with NaOH (aq.) to be 56.5.

UO₂SO₄ (c). Beck¹ measured the heat of reaction of this substance with KOH (aq.) to be 42.3.

 $UO_2SO_4 \cdot 3 H_2O$  (c). Aloy¹ measured the heat of solution to be  $5.1_{1000}$ . See also Favre and Silbermann.³

 $U_3N_4$  (c). Neumann, Kroger, and Haebler¹ reported Qf = 274.

 ${
m UO_2(NO_3)_2}$  (c). The data on the heat of solution are: de Forcrand, ⁵⁸  $19.0_{220}^{12}$ ; Marketos, ¹ 16.0.

 $UO_2(NO_3)_2 \cdot H_2O$  (c). de Forcrand⁵⁸ measured the heat of solution.  $UO_2(NO_3)_2 \cdot 2 H_2O$  (c). de Forcrand⁵⁸ measured the heat of solution.

 $UO_2(NO_3)_2 \cdot 3 H_2O$  (c). The data on the heat of solution are: Aloy,  $-3.7_{1000}$ ; de Coninck, -3.8; de Forcrand,  $58 \cdot 1.85_{220}$ .

 $UO_2(NO_3)_2 \cdot 6 H_2O$  (c). The data on the heat of solution are: de Forcrand,⁵⁸  $-5.45_{220}^{12}$ ; Marketos,¹ -4.0.

 $UC_2$  (c). From equilibrium data on the reaction,  $UO_2$  (c) +4 C (c) =  $UC_2$  (c) +2 CO (g), Heusler¹ calculated Q = 174.6.

 $UO_2(C_2H_3O_2)_2 \cdot 2 H_2O$  (c). Aloy¹ measured the heat of solution.  $UO_2NH_4(C_2H_3O_2)_3 \cdot 6 H_2O$  (c). Aloy¹ measured the heat of solution.

 $UO_2CrO_4$  (aq.). This value is obtained from the ions.  $UO_2CrO_4 \cdot 5\frac{1}{2} H_2O$  (c). Aloy measured the heat of solution.

# VANADIUM

- V (c). Standard state.
- **V**(g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic vanadium are from Bacher and Goudsmit¹ and White.^{3, 4}

 $V_2O_2$  (c),  $V_2O_3$  (c),  $V_2O_4$  (c),  $V_2O_5$  (c). Mixter¹⁴ measured the heat of combustion of vanadium* in oxygen, the product being a mixture of oxides: V (c) +2.13 O₂ (g) =0.74 V₂O₄ (c) +0.26 V₂O₅ (c), Q=381; V₂O₂ (c) +1.2 O₂ (g) =0.60 V₂O₄ (c) +0.40 V₂O₅ (c), Q=208.0; V₂O₃ (c) +0.7 O₂ (g) =0.60 V₂O₄ (e) +0.40 V₂O₅ (c), Q=55.2. Mixter¹⁴ also measured the heat of reaction of vanadium and the various oxides of vanadium with the sodium oxides, and his data yield the following values: V₂O₅ (c) + Na₂O (c) = Na₂O · V₂O₅ (c), Q=165; V₂O₄ (c) + Na₂O₂ (c) = Na₂O · V₂O₅ (c) + Na₂O (c), Q=174.6; V₂O₃ (c) +2 Na₂O₂ (c) = Na₂O · V₂O₅ (c) +2 Na₂O (c), Q=340.3; 2 V (c) +5 Na₂O₂ (c) = Na₂O · V₂O₅ (c) +4 Na₂O (c), Q=441.

Ruff and Friedrich¹ measured the heat of combustion of pure vanadium in oxygen, to form a mixture whose composition was not determined, to be 304. Ruff and Friedrich¹ also measured the heats of reaction with the sodium oxides; and their data yield the following values:  $V_2O_3$  (c)  $+O_2$  (g)  $=V_2O_5$  (c), Q=135;  $V_2O_5$  (c)  $+Na_2O$  (c)  $=Na_2O\cdot V_2O_5$  (c), Q=20.0 (this value is to be compared with the value obtained by Mixter¹⁴ which is undoubtedly too large). Muller⁵ studied the equilibrium,  $V_2O_5$  (c)  $+H_2$  (g)  $=V_2O_4$  (c)  $+H_2O$  (g), and calculated Q=117. Ruff and Martin¹ and Muthmann, Wiess, and Riedebauch¹ measured the heat of combustion of vanadium (not very pure) in oxygen to form a mixture of oxides, whose composition was not determined, to be 250.5 and 313.0, respectively, per mole of vanadium.

The best correlation of all the foregoing data on the heats of the reactions involving the oxides of vanadium is obtained by selecting for  $V_2O_5$  (c), Qf = 437; whence we have obtained as best values for the other oxides,  $V_2O_4$  (c),  $V_2O_3$  (c), and  $V_2O_2$  (c), 383, 330, and 195, respectively.

 $VO_3^-$  (aq.),  $VO_4^-$  (aq.),  $VO_5^-$  (aq). These values are obtained from those for  $NaVO_3$  (aq.),  $KVO_3$  (aq.),  $KVO_4$  (aq.), and  $NaVO_5$  (aq.).

NH₄VO₃ (c). Matignon¹² measured the heat of reaction of NH₄VO₃ (c) with NaOH (aq.) to be 12.30 at 15°.

VCl₄ (liq.). Ruff and Friedrich¹ measured the heat of solution of this substance in NaHO₂(8) to be 161.8.

VCl₃ (liq.). Ruff and Friedrich¹ measured the heat of solution of the liquid trichloride in NaHO₂(8) to be 19.6.

*The older investigators did not have pure vanadium to work with; Mixter's¹⁴ sample was 90% V, and those of Ruff and Martin¹ ranged from 84 to 97%.

VOCl₃ (c). Ruff and Friedrich¹ measured the heat of solution of this solid oxychloride in NaHO₂(8) to be 98.1.

VCl₂ (c). Ruff and Friedrich¹ measured the heat of combustion of this substance.

 $V_2F_3$  (aq). Petersen³ measured the heat of reaction of  $V_2F_3$  (aq.) with 1, 2, and 3 NaOH (aq.) to be 8.31, 16.09, and 15.13, respectively.

(NH₄)₃VF₈ (aq). Petersen³ found Q=22.42 for the reaction of this

substance with 3 NaOH (aq.).

 $V_2O_4 \cdot H_2O$  (c). Gain¹ reported 12.62 and 10.89 for the heats of solution in  $2 H_2SO_4(55)$  of  $V_2O_4 \cdot H_2O$  (c, rose) and  $V_2O_4 \cdot H_2O$  (c, green), respectively. The heat of reaction of the resulting solutions with aqueous potassium hydroxide was found by Gain¹ to be 16.92 and 18.56, respectively.

## COLUMBIUM

Cb (c). Standard state.

Cb₂O₅ (c). Muthmann, Weiss, and Riedebauch¹ measured the heat of combustion of columbium.

# TANTALUM

Ta (c). Standard state.

 $Ta_2O_5$  (c). The data of Moose and Parr¹ yield 499.6 for the heat of combustion of tantalum to form  $Ta_2O_5$  (c); Muthmann, Weiss, and Riedebauch¹ reported 308.

#### PROTOACTINIUM

Pa (c). Standard state.

#### TITANIUM

Ti (c). Standard state.

Ti (g). We have estimated the heat of sub!imation. The values for the energy states of gaseous monatomic titanium are from Russell,⁴ Russell and Lang,¹ Harrison and Engwicht,¹ and Harrison.¹

 $TiO_2$  (c, rutile III). Mixter's data on the reactions of Ti (c) with  $3 \text{ Na}_2O_2$  (c) and of  $TiO_2$  (c, rutile) with  $Na_2O_2$  (c) yield Q=226 and 50.3, respectively; whence, for  $TiO_2$  (c, rutile III), Qf=216.1. Mixter's data on the heat of combustion of titanium in oxygen yield Qf=217.5; those of Roth and Becker^{2, 3} yield Qf=218.7; and those of Sieverts and Gotta yield Qf=220.7. See also Weiss and Kaiser.¹

TiO₂ (c, rutile II), TiO₂ (c, rutile I). Laschtschenko¹ reported values for the heats of transition of rutile.

TiO₂ (c, anatase). Laschtschenko¹ reported values for the heats of transition of anatase.

 $TiO_2$  (amorphous). Mixter's^{8, 18} data yield a value for the difference in heat content of rutile and the amorphous form of  $TiO_2$ .

TiO2 (hydrated ppt.). We have estimated this value.

TiCl₄ (aq.). Thomsen¹⁵ measured the heat of reaction of this substance with 4 NaOH (aq.) to be 47.66.

TiCl₄ (liq.). Thomsen¹⁵ measured the heat of solution of the liquid to be 57.86₂₀₀₀; Bock and Moser¹ found 59.0.

TiCl₄ (c). Latimer¹ reported a value for the heat of fusion.

TiCl₄ (g). The vapor pressure data of Arii³ yield, for the heat of vaporization of the liquid, -8.62 at 136° and -8.97 at 18°.

TiCl₃ (c). Bock and Moser¹ reported the heats of solution of the brown and violet forms of this substance.

 $H_2TiF_6$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $TiO_2$  (hydrated ppt.) with 6 HF (aq.) to be 30.9.

TiC (c). Brantley and Beckman¹ studied the equilibrium,  $TiO_2$  (c) +3 C (c) = TiC (c) +2 CO (g), and computed Q = -45.9 at 1573°.

 $TiX_4 \cdot nPH_3$  (c). Holtje¹ reported the heats of the reactions,  $TiCl_4$  (liq.) + PH₃ (g) =  $TiCl_4 \cdot PH_3$  (c) and  $TiCl_4 \cdot PH_3$  (c) + PH₃ (g) =  $TiCl_4 \cdot 2PH_3$  (c), to be 18.6 and 10.8, respectively; and the heats of the analogous reactions with  $TiBr_4$  to be 16.0 and 11.8, respectively.

TiX₄ · nH₂S (c). Biltz and Kennecke¹ obtained dissociation pressure data on the chloride and the bromide with 1 and 2 H₂S.

# ZIRCONIUM

Zr (c). Standard state.

Zr (g). We have estimated the heat of sublimation. The values of the energy states of gaseous monatomic zirconium are from Kiess and Kiess.^{1, 2}

 $ZrO_2$  (c, monoclinic). For the heat of combustion of zirconium, Roth and Becker¹ reported the value 263.4, but from later and presumably more accurate experiments Roth and Becker³ obtained the value 258.1. (The product formed in this last investigation was established to be the monoclinic form by X-ray studies.) For the same reaction, Sieverts, Gotta, and Halberstadt¹ reported Q=256.1. See also Weiss and Neumann.¹

 $ZrO_2$  (c, ppt.). We have estimated the heat of hydration of  $ZrO_2$  (c, monoclinic) to be -5.

 $ZrCl_4$  (c). Beck¹ measured the heat of solution of this substance in aqueous ammonia to be 54.3, that is, for  $ZrCl_4$  (c) +4 NH₄OH (aq.) =  $ZrO_2$  (c, ppt.) +4 NH₄Cl (aq.) +2 H₂O (liq.), Q=54.3; whence, for  $ZrCl_4$  (c), Qf=268.9. Roth and Schwartz¹ and Roth and Becker³ estimated a much lower value.

 $ZrOSO_4 \cdot SO_3$  (c). Beck¹ measured the heat of solution of this substance in aqueous sodium hydroxide to be 36.7; Chauvenet⁶ found 32.78 for the heat of solution in water. These data yield, for  $ZrOSO_4 \cdot SO_3$  (c), Qf = 566.3 and 506.5.

ZrOCl₂ (aq.). Aqueous zirconium tetrachloride may be considered to be (ZrOCl₂+2 HCl) (aq.). The data of Chauvenet⁵ suggested a value for the heat of neutralization of this solution: (ZrOCl₂+2 HCl) (aq.) +2 NaOH (aq.) = (ZrOCl₂+2 NaCl) (aq.) +2 H₂O (liq.), Q=27.0, and ZrOCl₂ (aq.) + 2 NaOH (aq.) = ZrO₂ (c, ppt.) + 2 NaCl (aq.) + H₂O (liq.), Q=19.0. These data yield, for ZrOCl₂ (aq.), Q=272.5.

ZrO⁺⁺ (aq.). This value is obtained from that for ZrOCl₂ (aq.).

ZrOBr₂ (aq.). This value is obtained from those for the ions, ZrO⁺⁺ (aq.) and Br⁻ (aq.).

ZrOSO₄ (aq.). This value is obtained from the aqueous ions.

 $ZrO(NO_3)_2$  (aq.). This value is obtained from the aqueous ions.

 $ZrOCl_2 \cdot nH_2O$  (c). Chauvenet³ measured the heats of solution of the hydrates with 2,  $3\frac{1}{2}$ , 6, and  $8H_2O$ .

 $ZrOBr_2 \cdot nH_2O$  (c). Chauvenet⁶ measured the heats of solution of the hydrates with  $3\frac{1}{2}$  and  $8H_2O$ .

 $ZrO(NO_3)_2 \cdot n\overline{H_2}O$  (c). Chauvenet and Nicolle¹ measured the heats of solution of the hydrates with 2, 3,  $3\frac{1}{2}$ , and  $6H_2O$ .

 $ZrOSO_4 \cdot 4 H_2O$  (c). Chauvenet measured the heat of solution.

ZrOSO₄ · H₂SO₄ (c). Chauvenet measured the heat of solution.

**ZrC** (c). Prescott¹ studied the equilibrium,  $ZrO_2$  (c) +3 C (c) = ZrC (c) +2 CO (g), and calculated  $Q^{25} = -160$ .

### HAFNIUM

Hf (c). Standard state.

HfO₂ (c, monoclinic). Roth and Becker³ measured the heat of combustion of hafnium, to form monoclinic hafnium dioxide, to be 271.5.

# THORIUM

Th (c). Standard state.

Th (g). We have estimated the heat of sublimation. See also Andrews. 18

ThO₂ (c). For the heat of combustion of thorium to form crystalline thorium dioxide, the data of von Wartenberg,⁶ Chauvenet,⁶ and Roth and Becker³ yield 327.2, 330.2, and 292.6, respectively.

ThH₄ (c). Dissociation pressure data on thorium hydride were reported by Chauvenet⁴ and Matignon and Delepine.¹

ThCl₄ (aq.). Chauvenet² measured the heat of solution of thorium in aqueous (13%) HCl to be 238.5, whence, for ThCl₄ (aq.), Qf = 392.

**ThCl₄ (c).** For the heat of solution of solid thorium tetrachloride in water, Chauvenet² found 56.7 at 15° and von Wartenberg 53. For the heat of formation of ThCl₄ (c) by direct synthesis from a very impure sample of thorium, von Wartenberg⁶ reported Qf = 300.

 $ThCl_4 \cdot nH_2O$  (c). Chauvenet² measured the heats of solution of the di-, tetra-, penta-, and octahydrates.

Th**** (aq.). This value is obtained from ThCl₄ (aq.).

 $ThCl_3OH \cdot H_2O$  (c). Chauvenet² measured the heat of solution.

ThOCl₂ (c). Chauvenet² measured the heat of solution.

Th(OH)₄ (c, "soluble"). Chauvenet² measured the heat of solution in HCl(15).

Th(OH)₄ (c, "insoluble"). Chauvenet² measured the heat of solution in HCl(15).

ThBr₄ (aq.). This value is obtained from the ions.

ThBr₄ (c). Chauvenet² measured the heat of solution.

 $ThBr_4 \cdot nH_2O$  (c). Chauvenet² measured the heats of solution of the hepta-, deca-, and dodecahydrates.

ThOBr₂ (c). Chauvenet² measured the heat of solution.

ThI₄ (aq.). This value is obtained from the ions.

ThOI₂ (c). Chauvenet² measured the heat of solution.

ThOI₂ ·  $3\frac{1}{2}$  H₂O (c). Chauvenet² measured the heat of solution.

ThI₃OH · 10 H₂O (c). Chauvenet² measured the heat of solution.

 $Th(SO_4)_2$  (aq.). This value is obtained from the ions.

 $Th(SO_4)_2$  (c). Beck¹ reported the improbably low value of 22.5 for the heat of reaction of solid thorium sulfate with aqueous sodium hydroxide. From his data, Beck derived in some unstated manner the value 115.5 for the heat of the reaction of  $ThO_2$  (c) with  $2 SO_3$  (g). These values yield, for  $Th(SO_4)_2$  (c), Qf = 526.9 and 596 respectively. We have estimated the value 632.

 $Th(SO_4)_2 \cdot nH_2O$  (c). Koppel¹ determined the heat of hydration of the tetra- to the octahydrate from measurement of their heats of solution in aqueous potassium carbonate, and also from solubility measurements. The latter data yield 5.0 and -7.5 for the heats of solution of the tetra- and octahydrates.

ThOSO₄ (c). Wohler, Pluddemann, and Wohler¹ obtained dissociation pressure data on the reaction,  $ThO_2 \cdot 2 SO_3$  (c)  $+SO_3$  (g).

 $Th_3N_4$  (c). Neumann, Kroger, and Haebler³ determined the heat of formation of this compound.

 $ThCl_4 \cdot 2 NH_4Cl \cdot nH_2O$  (c). Chauvenet^{1, 2} measured the heats of solution of the anhydrous double salt and of the decahydrate.

 $ThCl_4 \cdot nNH_3$  (c). Chauvenet^{1, 2} measured the heats of solution in aqueous HCl of these regular ammines with n=4, 6, 7, 12, and 18.

[Th·6 NH₃]Cl₄·nNH₃ (c). Chauvenet^{1, 2} measured the heats of solution in aqueous HCl of these "coordination valence" ammines with n=0, 1, 6, and 12.

ThC₂ (c). From equilibrium studies, Prescott and Hincke¹ computed  $Q^{25} = -194.8$  for the reaction, ThO₂ (c) +4 C (c) = ThC₂ (c) +2 CO (g).

### BORON

B(c). Standard state.

B(g). We have estimated the heat of vaporization. The energy states of gaseous monatomic boron have been evaluated from the data of Bowen,² Sawyer and Smith,¹ Millikan,¹ and Bowen and Millikan.⁵

BO (g). Mulliken⁶ reported a value for the energy of dissociation.

BO₂-(aq.), BO₃--- (aq.), B₄O₇-- (aq.). The values for these ions are obtained from those for the respective sodium salts in aqueous solution.

B₂O₃ (gls.). For the heat of solution of this substance, Berthelot⁵⁰ reported 7.3, Ditte¹ gave 3.16. Mulert¹ found 29.6 for its heat of solution in aqueous HF.

 $B_2O_3$  (aq.). This is taken as equivalent to  $2 H_3BO_3$  (aq.)  $-3 H_2O$  (liq.).

BH (g). Mulliken⁶ reported a value for the energy of dissociation.

B₂H₆ (g). Stelzner and Niederschulte¹ obtained vapor pressure data.

 $HBO_2$  (c). Gilbert and Levi¹ obtained dissociation pressure data on  $B_2O_3 \cdot H_2O$  (c) (=2  $HBO_2$  (c)).

 $H_3BO_3$  (aq.). The data of Troost and Hautefeuille^{4, 5} on the heat of solution of  $BCl_3$  (g) in water yield Q=70.3, when corrected according to Berthelot.^{50, 151} Berthelot^{50, 151} measured the heat of solution of  $BCl_3$  (liq.) in water to be 65.8 at 10°.

 $\mathbf{H_3BO_3}$  (c). The data on the heat of solution are: Thomsen, ¹⁵  $-5.39_{400}$ ; Berthelot, ⁵²  $-4.8_{200}$  ¹⁵; Ditte, ¹ -3.2; Linderstrom-Lang, ¹ -5.0. See also Favre and Valson. ²

 $H_2B_4O_7$  (c). Gilbert and Levi¹ measured the dissociation pressures of  $2B_2O_3 \cdot H_2O$  (c).

 $\mathbf{H}_2\mathbf{B}_6\mathbf{O}_{10}$  (c). Gilbert and Levi¹ measured the dissociation pressures of  $3\ \mathbf{B}_2\mathbf{O}_3\cdot\mathbf{H}_2\mathbf{O}$  (c).

 $nB_2O_3 \cdot H_2O$  (c). Gilbert and Levi¹ reported dissociation pressure data on these hydrates with n=4, 5, 6, 7, and 8, but the existence of these as definite compounds has not been fully established.

BF₃ (aq.). Thomsen¹⁵ measured the heat of mixing H₃BO₃ (aq.) with 3 HF (aq.).

HBF₄ (aq.). Thomsen¹⁵ measured the heat of mixing H₃BO₃ (aq.) with 4 HF (aq.).

 $BF_4^-$  (aq.). The heat of ionization of aqueous  $HBF_4$  is assumed to be zero.

BF₃ (g). Hammerl² measured the heat of solution of this gas.

BF₃ (liq.). Ruff and Bretschneider¹ measured the vapor pressure of the liquid. See also LeBoucher, Fischer, and Biltz.¹

BCl₃ (g). The data of Troost and Hautefeuille,^{4, 5} corrected according to Berthelot,^{50, 151} yield for the reaction, B (c)  $+1\frac{1}{2}$  Cl₂ (g) = BCl₃ (g), Q=89.1.

BCl₃ (liq.). For the heat of vaporization of the liquid, Berthelot⁵⁰ reported  $-4.5^{10}$ ; the vapor pressure data of Stock and Priess¹ yield -6.34 at  $18^{\circ}$ .

 $BBr_3$  (liq.). Berthelot  $^{50,\ 151}$  measured the heat of reaction of  $BBr_3$  (liq.) with 400  $\rm H_2O$  to be 83.8 at 11°.

 $BBr_{3}\left( g\right) .$  Stock and Russ¹ measured the vapor pressure of the liquid.

 $B_2H_5Br$  (liq.). Stock, Russ, and Priess¹ measured the vapor pressure.  $B(CH_3)_3$  (liq.). Stock and Zeidler¹ measured the vapor pressure.

B₂S₃ (c). Sabatier^{3, 6} measured the heat of solution of this substance. See also Stock and Pappenberg.¹

 $NH_4BO_2$  (aq.). Berthelot⁴ measured the heat of reaction of  $NH_3$  (aq.) with  $H_3BO_3$  (aq.) to be 8.93.

 $(NH_4)_2HBO_3$  (aq.). Berthelot⁴ measured the heat of reaction of  $2 NH_3$  (aq.) with  $H_3BO_3$  (aq.) to be 11.55.

(NH₄)₃BO₃ (aq.). Berthelot⁴ measured the heat of reaction of 3 NH₃ (aq.) with H₃BO₃ (aq.) to be 12.62.

 $CuB_2O_4$  (c). Parravano and Malquori⁴ studied the equilibrium,  $6 CuB_2O_4$  (c) =  $3 Cu_2O \cdot 2 B_2O_3$  (c) +4  $B_2O_3$  (c) +1 $\frac{1}{2} O_2$  (g).

NH₄BO₃ (c). Tanatar⁹ measured the heat of decomposition of ammonium perborate with sulfuric acid, and also its heat of solution.

#### ALUMINUM

- Al (c). Standard state. Laschtschenko⁵ reported a transition at 590°, but this has not been confirmed.
- Al (liq.). The data on the heat of fusion at 658° are: Pionchon, -2.13; Laschtschenko, -1.92; Wust, Meuthen, and Durrer, -2.54.
- Al (g). We have estimated the heat of sublimation. See also Sherman¹ and Millar.¹ The energy states of gaseous monatomic aluminum have been evaluated from the data of Fowler,³ Sawyer and Paschen,¹ Paschen,⁶ Lyman,¹ and Soderquist.^{1, 2}
- $Al_2O_3$  (c). Berthelot,¹²⁷ Moose and Parr,¹ and Roth and Muller⁴ measured the heat of combustion of aluminum in oxygen in a bomb. The data of the latter two modern investigations yield, for  $Al_2O_3$  (c), Qf = 376.9 and 380.1, respectively. See also Mixter¹⁶ and Baille and Fery.¹
- Al₂O₃ (g). Vapor pressure data were obtained by Ruff and Konschak.¹ See also Ruff and Schmidt¹ and Millar.¹
- AlH (g). Bengtsson and Rydberg² reported the energy of dissociation. See also Villars and Condon.¹
- AlCl₃ (aq.). The heat of solution of aluminum in aqueous hydrochloric acid was measured by Sommermeier, Richards and Burgess, Biltz and Hohorst, and Richards, Rowe, and Burgess. The data of the last named investigation yield, for AlCl₃ (600), Qf = 244.7.
- Al*** (aq.). This value is obtained from that for AlCl₃ (aq.). See also Latimer.¹
- AlCl₃ (c). The data on the heat of solution of this substance in water are: Thomsen, ¹⁵ 76.85₁₂₅₀; Berthelot, ⁵⁰ 76.3⁹; Baud, ^{1, 2} 77.6₃₀₀₀ ¹⁴; Sabatier, ² 78.
  - AlCl₃ (liq.). Maier¹ reported a value for the heat of fusion.
- $Al_2Cl_6$  (g). The vapor of aluminum chloride is completely associated at low temperatures. The vapor pressure data of Maier¹ yield -27.5 for the heat of sublimation at  $100^{\circ}$ .
- AlCl₃ (g). The meager vapor density data of Nilson and Patterson² yield about -40 for the heat of the reaction, Al₂Cl₆ (g) = 2 AlCl₃ (g). AlCl₃ · 6 H₂O (c). Sabatier² measured the heat of solution.
- Al(OH)₃ (c). Baud, Berthelot, o and Thomsen measured the heat of reaction of AlCl₃ (aq.) with 3 NH₄OH (aq.).
- AlF₃ (aq.). Petersen⁴ and Mulert¹ measured the heats of mixing AlCl₃ (aq.) with 3 HF (aq.) and AlF₃ (aq.) with 3 HCl (aq.).

H₃AlF₆ (aq.). Berthelot¹⁵¹ and Mulert¹ measured the heat of mixing AlF₃ (aq.) with 3 HF (aq.).

AlF₃ (c). Baud¹ estimated the heat of solution.

AlF₃·nH₂O (c). Baud¹ measured the heats of solution, in aqueous (19%) HF, of the hemihydrate and the "soluble" and "insoluble" forms of the hydrate with  $3\frac{1}{7}$  H₂O.

AlBr₃ (aq.). Berthelot⁵⁰ measured the heat of reaction of this solution with 3 NH₄OH (aq.). See also Roos.²

AlBr₃ (c). For the heat of solution, Berthelot⁵⁰ found 85.3₃₀₀₀⁹ and Gustavson¹ 90.0.

AlBr₃ (liq.). For the heat of fusion of aluminum bromide, Fischer² found -2.7 at  $98^{\circ}$  and Pickering¹² -2.17 at  $95^{\circ}$ .

AlI₃ (aq.). This value is obtained from those for the ions.

AlI₃ (c). Berthelot⁵⁰ measured the heat of solution.

AlI₃ (liq.). Fischer² reported a value for the heat of fusion.

 $Al_2S_3$  (c). Sabatier¹ measured the heat of the reaction,  $Al_2S_3$  (c)  $+6 H_2O$  (liq.) =  $2 Al(OH)_3 + 3 H_2S$  (g), to be 75.0.

 $Al_2(SO_4)_3$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Al_2$  (SO₄)₃ (aq.) with 3 BaCl₂ (aq.) and with 6 KOH (aq.).

 $Al_2(SO_4)_3$  (c). Wohler, Pluddemann, and Wohler¹ measured the dissociation pressure of  $Al_2O_3 \cdot 3 SO_3$  (c) at various temperatures, and their data yield, for  $Al_2(SO_4)_3$  (c), Qf = 713. We have estimated, from the heat of dehydration of the hexahydrate, for  $Al_2(SO_4)_3$  (c), Qf = 770.

 $Al_2(SO_4)_3 \cdot nH_2O$  (c). Favre and Silbermann³ measured the heat of solution of the hexahydrate, and Favre and Valson² that of the octadecahydrate.

 $AICl_3 \cdot nSO_2$  (c). Baud¹ measured the heats of solution of these compounds with  $\frac{1}{2}$  and 1 mole of  $SO_2$ , respectively.

AlX₃·nH₂S (c). Biltz and Keunecke¹ obtained dissociation pressure data on AlCl₃·H₂S (c), AlBr₃·H₂S (c), AlI₃·4 H₂S (c), and AlI₃·H₂S (c). Baud¹ measured the heat of solution of AlCl₃· $\frac{1}{2}$  H₂S (c).

AlN (c). The data of Fichter and Jenny, who measured the heats of combustion of Al (c) and AlN (c), yield, for the latter, Qf=23. Matignon estimated Qf=110. The data of Prescott and Hincke, who studied the equilibria,  $2 \text{ Al}_2\text{O}_3$  (c) +9 C (c)  $= \text{Al}_4\text{C}_3$  (c) +6 CO (g) and 4 AlN (c) +3 C (c)  $= \text{Al}_4\text{C}_3$  (c)  $+2 \text{ N}_2$  (g), yield, for  $2 \text{ Al}_2\text{O}_3$  (c) +6 C (c)  $+2 \text{ N}_2$  (g) =6 CO (g) +4 AlN (c), Q=-277, and for AlN (c), Qf=80.

AlF₃·2 NH₄F·1½ H₂O (c). Baud¹ measured the heat of solution. AlCl₃·nNH₃ (c). Klemm and Tanke¹ reported the following heats of dissociation, from dissociation pressure data, per mole of gaseous ammonia, to the next lower ammine: tetradecammine, -7.8; heptammine, -10.2; hexammine, -13.1; pentammine, -17.7. Klemm and Tanke¹ measured the following heats of solution in HCl(20) at 0°: Hexammine, 73.4; pentammine, 65.1; triammine, 58.0; monammine, 60.3. Baud¹ reported the following heats of solution in water at 15°: hexammine,

 $6.35_{2400}$ ; pentammine,  $9.05_{2200}$ ; triammine,  $30.3_{2000}$ ; monammine, 53.05. Baud¹ reported 7.94 for the heat of solution and -8.27 for the heat of dissociation of the nonammine, but the existence of this compound is doubtful. See also Ephraim and Millman.¹

AlCl₃·NH₄Cl·6 NH₃ (c). Baud¹ measured the heat of solution.

AlCl₃·NH₄Cl (c). Baud¹ measured the heat of solution.

AlBr₃·nNH₃ (c). Klemm and Tanke¹ reported the following heats of dissociation: tetradecammine, -7.72; nonammine, -8.4; heptammine, -10.7; hexammine, -16.2. Klemm and Tanke¹ measured the following heats of solution in HBr(20) at 0°: hexammine, 66.4; pentammine, 60.2; triammine, 57.7; monammine, 66.9. See also Ephraim and Millman.¹

AlI₃·nNH₃ (c). Klemm and Tanke¹ reported dissociation pressure data on the ammines with 20, 13, 9, and 7 NH₃. Klemm and Tanke¹ measured the heats of solution in HI(20) at 0° of the ammines with 6, 5, 3, and 1 NH₃. See also Ephraim and Millman.¹

 ${
m NH_4Al(SO_4)_2 \cdot nH_2O}$  (c). Favre and Silbermann³ measured the heat of solution of the dodecahydrate. Ephraim and Wagner¹ obtained dissociation pressure data on the system, dodecahydrate-pentahydrate-water vapor, finding D=-14.4.

 $AlX_3 \cdot PH_3$  (c). Holtje¹ obtained dissociation pressure data on the chloride, bromide, and iodide.

 $Al_4C_3$  (c). Prescott and Hincke^{1, 2} studied the equilibrium,  $2 Al_2O_3$  (c) +9 C (c) =  $Al_4C_3$  (c) +6 CO (g), and calculated Q=-539; whence, for  $Al_4C_3$  (c), Qf=60. See also Berthelot.¹²⁸

Al₂SiO₅ (c). Neumann² measured the heats of solution of andalusite, disthene, and sillimanite in aqueous (20%) HF.

 $3 \text{ Al}_2\text{O}_3 \cdot 2 \text{ SiO}_2$  (c). Neumann² measured the heat of solution of mullite in aqueous (20%) HF.

 $2 \text{ AlCl}_3 \cdot 3 \text{ PbI}_2 \cdot n \text{H}_2\text{O}$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the decahydrate.

 $AlCl_3 \cdot \frac{3}{4} ZnCl_2$  (c). Baud¹ measured the heat of solution.

AlCl₃·AgCl (c). Baud¹ measured the heat of solution.

AlCu_n (c). Rolla² measured the heats of solution in bromine water of AlCu (c), Al₂Cu (c), and AlCu₃ (c) to be 181.4, 365.9, and 303.7, respectively; for Al₂Cu (c), Roos² found 423.

Al₃Fe (c). Biltz and Haase¹ measured the heat of solution in HCl(8).

Al_nCo (c). Biltz and Haase¹ measured the heat of solution in HCl(8) of AlCo (c) and Al₅Co (c).

#### SCANDIUM

Sc (c). Standard state.

Sc (g). We have estimated the heat of sublimation. The values of the energy states of gaseous monatomic scandium are from Russell and Meggers.¹

 $\widetilde{\mathbf{Sc}}_2\mathbf{O}_3$  (c). Roth and Becker³ estimated Qf = 407.

 $ScCl_3$  (c). Roth and Becker³ estimated Qf = 202.

### YTTRIUM

Y (c). Standard state.

Y (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic yttrium are from Meggers and Russell.¹

YCl₃ (c). We have estimated the value for the heat of formation of this substance to be 240. Roth and Becker³ estimated 243.

YCl₃ (aq.). Matignon⁷ measured the heat of solution of solid yttrium chloride.

Y₂(SO₄)₃ (aq.). Thomsen¹⁵ measured the heat of reaction of this solution with 3 BaCl₂ (aq.).

 $Y_2(SO_4)_3 \cdot 8 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

Y(OH)₃ (c). Thomsen¹⁵ measured the heat of reaction of aqueous yttrium sulfate with aqueous barium hydroxide.

 $Y_2O_3$  (c). Roth and Becker³ estimated  $Q_f=441$ .

Y*** (aq.). This value is obtained from that for aqueous yttrium chloride.

### LUTECIUM

Lu (c). Standard state.

YTTERBIUM

Yb (c). Standard state.

Тницим

Tm (c). Standard state.

#### Errim

Er (c). Standard state.

Er*** (aq.). We have estimated the value for aqueous erbium ion.

 $Er(C_2H_3O_2)_3$  (aq.). The value for aqueous erbium acetate is obtained from the ions.

 $Er(OH)_3$  (c, ppt.). Thomsen¹⁵ measured the heat of reaction of  $Er(C_2H_3O_2)_3(1500)$  with  $1\frac{1}{2}$  Ba $(OH)_2(400)$  to be 12.8.

 $Er(C_2H_3O_2)_3 \cdot 4 H_2O(c)$ . Thomsen¹⁵ measured the heat of solution.

#### Ногмиим

Ho (c). Standard state.

## Dysprosium

Dy (c). Standard state.

TERRIUM

Tb (c). Standard state.

GADOLINIUM

Gd (c). Standard state.

# EUROPIUM

Eu (c). Standard state.

# Samarium

Sa (c). Standard state.

Sa⁺⁺⁺ (aq.). We have estimated the value for aqueous samarium ion.

SaCl₃ (aq.). This value is obtained from those for the ions.

SaCl₃ (c). Matignon⁵ measured the heat of solution.

Sa₂O₃ (c). Matignon⁵ measured the heat of solution of the regular oxide to be 94.6 in HCl (aq.), and that of the oxide prepared from the oxalate to be 90 in HCl (aq.).

SaCl₃· $nNH_3$  (c). Matignon and Trannoy¹ obtained dissociation pressure data on the ammines with 1, 2, 3, 4, 5, 8,  $9\frac{1}{2}$ , and  $11\frac{1}{2}$   $NH_3$ .

# ILLINIUM

Il (c). Standard state.

# NEODYMIUM

Nd (c). Standard state.

Nd₂O₃ (c). Muthmann and Beck¹ measured the heat of combustion of neodymium to be 434.8. We have labeled this the "high temperature" form, and have estimated the heat of formation of the "low temperature" form (as prepared from neodymium nitrate, for example) to be 427.

 $NdCl_3$  (aq.). Matignon^{8, 17} measured the heat of solution of  $Nd_2O_3$  (c, "low temperature"), prepared from the nitrate, to be 105.5 in HCl(110).

Nd*** (aq.). This value is obtained from that of aqueous neodymium chloride.

NdCl₃ (c). Matignon^{8, 17} measured the heat of solution.

NdCl₃·6 H₂O (c). Matignon^{8, 17} measured the heat of solution.

NdI₃ (aq.). Matignon^{8, 17} measured the heat of solution of Nd₂O₃ (c, "low temperature"), prepared from the nitrate, to be 10£.1 in HI(110).

NdI₃ (c). Matignon^{8, 17} measured the heat of solution.

 $Nd_2(SO_4)_3$  (aq.). Matignon^{8, 17} measured the heat of solution of  $Nd_2O_3$  (c, 'low temperature'), prepared from the nitrate, to be 106.4 in  $H_2SO_4(220)$ .

 $Nd_2(SO_4)_3 \cdot nH_2O$  (c). Matignon^{8, 17} measured the heats of solution of the anhydrous salt and the penta- and octahydrates.

Nd₂S₃ (c). Matignon^{8, 17} measured the heat of solution of this sulfide in HCl(110).

 $NdCl_3 \cdot nNH_3$  (c). Matignon and Trannoy¹ obtained dissociation pressure data on the ammines with 1, 2, 4, 5, 8, 11, and 12  $NH_3$ .

# PRASEODYMIUM

Pr (c). Standard state.

PrCl₃ (aq.). Sieverts and Gotta² measured the heat of solution of praseodymium in HCl(25) to be 168.9.

Pr*** (aq.). This value is obtained from PrCl₃ (aq.).

PrCl₃ (c). Matignon⁵ measured the heat of solution.

 $PrCl_3 \cdot nH_2O$  (c). Matignon⁵ measured the heats of solution of the mono- and heptahydrates.

Pr₂O₃ (c). Matignon⁵ measured the heat of solution of this oxide in aqueous hydrochloric acid to be 106.2. By direct combustion of praseodymium, Muthmann and Beck¹ found Qf = 417.

Pr(NO₃)₃ (aq.). Prandtl and Huttner¹ measured the heat of solution of  $Pr_2O_3$  (c) in  $HNO_3(6)$  to be 109.5.

PrO2 (c), Pr6O11 (c). Prandtl and Huttner measured the heats of solution of these oxides in HNO₃(6). The products of the reaction were aqueous praseodymium nitrate and gaseous oxygen.

### Cerium

Ce (c). Standard state.

CeO₂ (c). For the heat of combustion of cerium to form CeO₂ (c), the data of Moose and Parr, Muthmann and Weiss, and Hirsch yield 233.4, 226, and 245, respectively.

CeCl₃ (aq.). The data on the heat of solution of cerium in aqueous hydrochloric acid are: Biltz and Pieper, 1 164.9 in HCl(20), 166.4 in HCl(8); Neumann, Kroger, and Kunz, 165.2 in HCl(20); Sieverts and Gotta,² 168.7 in HCl(25).

CeCl₃ (c). The heat of solution has been estimated by us. Ce₃H₈ (c). Sieverts and Gotta² measured the heats of solution of Ce (c) in HCl(25) and of  $Ce_3H_8$  (c) in HCl(50).

Ce+++ (aq.). This value is obtained from that for aqueous CeCl₃.

Ce(OH)₃OOH (c). Pissarjewsky¹ measured the heat of reaction of this hydrated peroxide with aqueous sulfuric acid to be 30.0. The reaction is  $2 \text{ Ce}(OH)_3OOH (c) + 3 \text{ H}_2SO_4 (aq.) = (Ce_2(SO_4)_3 + \text{H}_2O_2) (aq.)$  $+6 \text{ H}_2\text{O (liq.)} + \text{O}_2 \text{ (g)}.$ 

Ce₂(SO₄)₃ (aq.). Thomsen¹⁵ measured the heat of reaction of this solution with 3 BaCl₂ (aq.).

Ce(SO₄)₂ (c). Beck¹ reported the value for the heat of the reaction,  $CeO_2$  (c)  $+2 SO_3$  (g)  $= Ce(SO_4)_2$  (c), to be 103.5, but there is probably a considerable uncertainty in it.

 $Ce_2(SO_4)_3 \cdot 4\frac{19}{50}H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

CeN (c). Neumann, Kroger, and Kunz¹ measured the heat of solution in aqueous hydrochloric acid. See also Lipski.1

CeCl₃·nNH₃ (c). Barre² obtained dissociation pressure data on the ammines with 2, 4, 8, 12, and 20 NH₃.

CeHg₄ (c). The dissociation pressure data of Biltz and Meyer² vield D = -19.9 per mole of Hg (g).

Ce₃Al (c). Biltz and Pieper¹ measured the heat of solution in HCl (20). See also Zhukov.²

CeAl₄ (c). Biltz and Pieper¹ measured the heat of solution in HCl (20). Muthmann and Beck¹ reported the heat of combustion to be 832.

CeZn₄ (c). Muthmann and Beck¹ reported the heat of combustion to be 525.

### LANTHANUM

La (c). Standard state.

La (g). We have estimated the heat of sublimation. The values for the energy states of gaseous monatomic lanthanum are from Bacher and Goudsmit.¹

LaCl₃ (aq.). Neumann, Kroger, and Kunz¹ and Sieverts and Gotta¹ measured the heat of solution of lanthanum to be, respectively, 167.7 in HCl(20) and 164.5 in HCl(110); whence, for LaCl₃ (aq.), Qf = 284.4 and 282.7, respectively.

LaCl₃ (c). Matignon⁷ measured the heat of solution. See also Beck.¹ La⁺⁺⁺ (aq.). This value is obtained from that for aqueous lanthanum

chloride.

 $La_2O_3$  (c). For the heat of combustion of lanthanum in oxygen to form  $La_2O_3$  (c), Moose and Parr, Muthmann and Weiss, and Kremers and Stevens reported 457.0, 445, and 457, respectively. Matignon and Beck measured the heat of solution of  $La_2O_3$  (c) to be, respectively, 114.6 in HCl(100) at 16° and 105 in HCl(8). These latter data yield, for  $La_2O_3$  (c), Qf = 423 and 441, respectively.

La₃H₈ (c). Sieverts and Gotta¹ measured the heats of solution of

La (c) and La₃ $H_8$  (c) in HCl(110).

La₂S₃ (c). Biltz² measured the heat of solution of this sulfide in HCl(9.4).

LaS₂ (c). Biltz² measured the heat of solution of this sulfide in HCl

(9.4) to be 31.8.

La₂(SO₄)₃ (aq.). Thomsen¹⁵ measured the heat of reaction of this solution with 3 BaCl₂ (aq.).

La₂(SO₄)₃·8 H₂O (c). Thomsen¹⁵ measured the heat of solution.

LaN (c). Neumann, Kroger, and Haebler¹ reported Qf=71.0, from direct measurement of the formation, and measured the heat of solution of LaN (c) in HCl(20) to be 127.1. This latter value yields, for LaN (c), Qf=72.8.

LaAl₄ (c). Muthmann and Beck¹ measured the heat of combustion

of this alloy.

#### ACTINIUM

Ac (c). Standard state.

# BERYLLIUM

Be (c). Standard state.

Be (g). We have estimated the heat of sublimation. The energy states of gaseous monatomic beryllium have been evaluated from the data of Bowen and Millikan,^{3, 4} Paschen and Kruger,² Millikan and Bowen,⁴ and Edlen and Ericson.²

Be (liq.). Oesterheld reported a value for the heat of fusion.

BeH (g). The data of Watson^{1, 2} yield values for the energies of excitation and of ionization of gaseous BeH, and for its energy of dissociation into gaseous atoms. See also Mulliken.⁶

- **BeO** (g). Bengtsson¹ deduced the energy of dissociation into gaseous atoms, from spectroscopic data.
- BeO (c). Mielenz and von Wartenberg¹ measured the heat of combustion of beryllium to be 136.0; Moose and Parr¹ found the value to be 134.5. See also Copeaux and Phillips.^{1, 2}
- Be(OH)₂ (c). Matignon and Marchal⁴ measured the heat of reaction of the hydroxide with aqueous hydrochloric acid, and of aqueous beryllium chloride with aqueous sodium hydroxide. Thomsen¹⁵ measured the heat of reaction of aqueous beryllium sulfate with aqueous potassium hydroxide.
- BeF₂ (aq.). For the heat of solution of BeO (c) in aqueous (30%) HF, Matignon and Marchal⁴ found 23.3 at 17°, and Copeaux and Phillips^{1, 2} found 20.1. For the heat of solution of Be(OH)₂ (c) in aqueous (30%) HF, Matignon and Marchal⁴ found 20.35; Mulert,¹ 20.47; and Petersen,⁴ 19.7.
- $H_2BeF_4$  (aq.). Matignon and Marchal⁴ measured the heat of reaction of Be(OH)₂ (c) with 4 HF (aq.).
- $BeCl_2$  (c). Mielenz and von Wartenberg¹ measured the heat of the reaction, Be (c) +  $Cl_2$  (g) =  $BeCl_2$  (c), to be 112.6.
- BeCl₂ (aq.). The data on the heat of solution of BeCl₂ (c) in water are: Matignon and Marchal,⁴ 51.1; Pollok,¹ 44.5. For the heat of solution of BeCl₂ (c) in HCl(9), Biltz and Messerknecht² found 44.1, and in HCl (aq.), Biltz, Klatte, and Rahlfs¹ found 48.6.
- Be⁺⁺ (aq.). This value is obtained from those for BeCl₂ (aq.) and BeF₂ (aq.).
- $BeCl_{2}(g)$ . Fischer and Rahlfs² measured the vapor pressure of the solid.
- $BeCl_2(C_2H_5OH)$ . Pollok¹ measured the heat of solution of solid beryllium chloride in ethyl alcohol.
  - BeBr₂ (aq.). This value is obtained from those for the ions.
- BeBr₂ (c). Biltz and Messerknecht² and Biltz, Klatte, and Rahlfs¹ measured the heat of solution of solid beryllium bromide in aqueous hydrochloric acid.
- BeBr₂ (g). Fischer and Rahlfs² measured the vapor pressure of the solid.
  - BeI₂ (aq.). This value is obtained from those for the ions.
- BeI₂ (c). Biltz, Klatte, and Rahlfs¹ and Biltz and Messerknecht² measured the heat of solution of solid beryllium iodide in aqueous hydrochloric acid.
- BeI₂ (g). Fischer and Rahlfs² measured the vapor pressure of the solid.
- BeSO₄ (aq.). Thomsen¹⁵ measured the heat of reaction of BeSO₄ (aq.) with BaCl₂ (aq.) to be 6.66; Matignon and Marchal² found 6.97.
- BeSO₄ (c). Matignon and Marchal² measured the heat of solution of this solid in aqueous sodium hydroxide. Marchal^{2, 5} measured the dissociation pressure of BeO · SO₃ (c).

- $BeSO_4 \cdot nH_2O$  (c). Matignon and Marchal² measured the heats of solution of the di- and tetrahydrates in water, and also of the tetrahydrate in aqueous sodium hydroxide. Thomsen¹⁵ measured the heat of solution of the tetrahydrate. Krauss and Gerlach¹ obtained dissociation pressure data on the mono-, di, and tetrahydrates.
- $BeX_2 \cdot 2 H_2S$  (c). Blitz and Keunecke¹ measured the dissociation pressures of the bromide and iodide.
- Be(NO₃)₂ (aq.). Thomsen¹⁵ measured the heat of reaction of BeSO₄ (aq.) with Ba(NO₃)₂ (aq.).
- BeX₂ · nNH₃ (c). Blitz, Klatte, and Rahlfs¹ measured the heats of solution of the tetrammines of the chloride, bromide, and iodide in aqueous hydrochloric acid, and Biltz and Messerknecht² obtained similar data with HCl(9). Biltz and Messerknecht² obtained dissociation pressure data on the tetra-, hexa-, and dodecammines of the chloride, on the hexa- and decammines of the bromide, and on the hexa- and tridecammines of the iodide.

## Magnesium

- Mg (c). Standard state.
- Mg (g). Wehnelt and Musceleanu¹ measured directly the heat of vaporization of magnesium. Vapor pressure data were obtained by Ditte,⁷ Greenwood,^{3, 5} von Wartenberg,⁴ Ruff and Hartmann,¹ and Hartmann and Schneider.¹ The values of the energy states of gaseous monatomic magnesium are from Fowler,³ Turner,¹ and Soderqvist.¹
- Mg (liq.). Data on the heat of fusion of magnesium were reported by van Aubel, Wehnelt and Musceleanu, Awbery and Griffiths, and Zalesenski and Zulenski.
- MgO (c). For the heat of combustion of magnesium, the data yield the following values: Moose and Parr, 146.1; Muthmann and Weiss, 143.5; Rogers, 147.0; von Wartenberg, 6144.3.
- MgH (g). Values for the energies of excitation and ionization, and for the energy of dissociation into gaseous atoms, were reported by Hulthen, Watson, and Mulliken.
- $Mg(OH)_2$  (c, ppt.). Thomsen¹⁵ measured the heat of reaction of  $MgSO_4$  (aq.) with  $Ba(OH)_2$  (aq.), and of  $MgSO_4$  (aq.) with 2 KOH (aq.). Berthelot¹⁰⁰ measured the heat of reaction of KOH (aq.) with  $MgSO_4$  (aq.) and with  $MgCl_2$  (aq.).
- $Mg(OH)_2$  (c, brucite). Mixter's¹⁷ data on the reactions with sodium peroxide yield -9.4 for the heat of the reaction,  $Mg(OH)_2$  (c) = MgO (c, brucite) +  $H_2O$  (liq.). See also Johnston.⁵
- MgF (g). Johnson³ reported a value for the energy of dissociation into gaseous atoms.
- $\overline{\text{Mg}}\text{F}_2$  (c). Petersen³ found Q=29.1 for the reaction,  $\text{MgCl}_2$  (aq.)  $+2 \, \text{AgF}$  (aq.)  $= \text{MgF}_2$  (c)  $+2 \, \text{AgCl}$  (c). Guntz¹ found -1.7 for the heat of reaction of  $\text{MgSO}_4$  (aq.) with  $2 \, \text{KF}$  (aq.).
- MgCl₂ (aq.). The following are the data on the heat of solution of magnesium: Richards, Rowe, and Burgess, 110.2 in 2 HCl(200); Richards

ards and Burgess,¹ 110.15 in 2 HCl(200); Biltz and Pieper,¹ 109.7 in 2 HCl(200) and 111.2 in 2 HCl(20); Tammann and Ohler,¹ 113.1 in 2 HCl (8.7); Blitz and Hohorst,¹ 113.1 in 2 HCl (8); Sieverts and Gotta,¹ 112.1 in 2 HCl(200). Data on the heat of dilution of aqueous magnesium chloride were reported by Thomsen,¹⁵ Fricke and Havestadt,¹ Dunnington and Hoggard,¹ Arrhenius,² and Lange and Streeck.¹

 $Mg^{++}(\infty)$ . This value is obtained from those for  $MgCl_2(\infty)$  and

Cl⁻ (∞). See also Latimer.²

MgCl₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 35.90₈₀₀; Berthelot and Ilosvay, ¹ 35.5.

 $\mathbf{MgCl_2} \cdot n\mathbf{H_2O}$  (c). Thomsen's¹⁵ data on the hydrates yield for  $S_{400}$ : dihydrate, 20.4; tetrahydrate, 10.0; hexahydrate, 2.94. Berthelot and Ilosvay¹ and van't Hoff, Kenrick, and Dawson¹ measured the heat of solution of the hexahydrate. Vapor pressure data on the hexahydrate were reported by Lescoeur,^{4, 7} Derby and Yngve,¹ and Biltz.⁸

 $MgCl_2 \cdot 6 H_2O$  (liq.). Reisenfeld and Milchsach¹ reported the heat of fusion of the hexahydrate.

 $\mathbf{MgCl_2 \cdot MgQ \cdot nH_2O}$  (c). Andre¹ measured the heats of solution of the anhydrous solid and the hexa- and hexadecahydrates, but the order of his values seems irregular.

**MgOHC1** (c). Moldenhauer's data on the equilibrium, MgCl₂ (c) +H₂O (g) =MgOHCl (c) +HCl (g), yield Q=5.1.

**MgBr₂ (aq.).** The value for MgBr₂ ( $\infty$ ) is obtained from Mg⁺⁺ ( $\infty$ ) and Br⁻ ( $\infty$ ). Data on the heat of dilution of aqueous magnesium bromide were reported by Lange and Streeck.¹

MgBr₂ (c). Beketoff⁵ measured the heat of solution.

 $\mathbf{MgBr_2} \cdot n\mathbf{H_2O}$  (c). Dissociation pressure data on the di- and hexahydrates were obtained by Lescoeur.⁵

 $MgI_2$  (aq.). The value for  $MgI_2$  ( $\infty$ ) is obtained from the ions. Thomsen¹⁵ measured the heat of reaction of  $BaI_2$  (aq.) with  $MgSO_4$  (aq.), and his data yield, for  $MgI_2(800)$ , Qf=136.6. We have estimated the heat of dilution of aqueous magnesium iodide.

MgI₂ (c). Beketoff⁵ measured the heat of solution. See also Cambi and Devoto.¹

 ${
m MgSO_4}$  (aq.). Thomsen¹⁵ measured the heats of mixing MgCl₂(200) with H₂SO₄(200), and MgSO₄(200) with 2 HCl(100), to be 0.93 and -2.59, respectively; whence, for MgSO₄(200), Qf=325.28. Thomsen¹⁵ also measured the heat of reaction of MgSO₄ (aq.) with BaCl₂ (aq.). Ditte⁵ measured the heat of solution of magnesium in aqueous sulfuric acid. Data on the heat of dilution of aqueous magnesium sulfate were reported by Thomsen,¹⁵ Rümelin,¹ Lange and Messner,² and Lange and Streeck.²

MgSO₄ (c). The data on the heat of solution are: Thomsen¹⁵, 20.28₄₀₀; Pickering,^{3, 5} 20.32₄₅₀. Values were also reported by Berthelot and Ilosvay.¹

 ${
m MgSO_4 \cdot nH_2O}$  (c). Thomsen's¹⁵ data yield the following values for  $S_{400}$ : monohydrate, 13.30; dihydrate, 11.05; tetrahydrate, 4.20; pentahydrate, 2.10; hexahydrate, 0.10; heptahydrate, -3.80. Pickering^{3, 5} reported the following values for the heats of solution: monohydrate, 12.13 $_{450}^{22}$ ; heptahydrate, -3.85 $_{450}$ . Berthelot and Ilosvay, Favre, and Graham¹ reported values for the heat of solution of the monohydrate, and van Deventer and van der Stadt¹ for the heptahydrate. Dissociation pressure data on these hydrates were reported by Frowein, Lescoeur, Linebarger, Cohen and Visser, Hollmann, Foote and Scholes, Bolte, Schumb, Carpenter and Jette, and Rolla and Accame. Marchal⁵ reported dissociation pressure data on MgO·SO₃ (c).

MgSO₃·nH₂O (c). Hartog¹ measured the heats of solution of the

anhydrous salt and the tri- and hexahydrates in HCl(220).

MgS (aq.). Thomsen¹⁵ measured the heat of reaction of H₂S (aq.) with Mg(OH)₂ (c).

MgS (c). Sabatier¹ measured the heat of solution of this solid sulfide in aqueous hydrochloric acid.

 $Mg(HS)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Mg(OH)_2$  (c) with  $2H_2S$  (aq.).

MgS₂O₆ (aq.). Thomsen¹⁵ measured the heat of reaction of MgSO₄ (aq.) with BaS₂O₆ (aq.).

 $MgS_2O_6 \cdot 6 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

 $Mg_3N_2$  (c). For the heat of solution of this nitride, Matignon¹⁹ found 279.7 in  $H_2SO_4$  (aq.); Moser and Herzner¹ 269.9 in  $H_2SO_4$  (aq.); Neumann, Kroger, and Kunz, 284.8 in HCl(20); Brunner¹ (see Neumann, Kroger, and Kunz¹), 177.0 in water. Neumann, Kroger, and Haebler, by direct measurement, found Qf = 116. These values yield, respectively, for  $Mg_3N_2$  (c), Qf = 137, 127, 112, 108, and 116.

 $Mg(NO_3)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $MgSO_4$  (200) with  $Ba(NO_3)_2$  (200) to be 4.94; whence, for  $Mg(NO_3)_2$  (400), Qf=208.8. Data on the heat of dilution of aqueous magnesium nitrate were reported by Thomsen,¹⁵ Dunnington and Hoggard,¹ Lange and

Streeck,² and Hammerschmid and Lange.¹

 $Mg(NO_3)_2 \cdot 6 H_2O$  (c). For the heat of solution of this hydrate, Thomsen¹⁵ found  $-4.22_{400}$  and Pickering⁸  $-4.54_{400}$ .

Mg(NO₃)₂·6 H₂O (liq.). Reisenfeld and Milchsack¹ reported the

heat of fusion of the hexahydrate.

MgCl₂·nNH₃ (c). Dissociation pressure data were reported on the mono- and diammines by Biltz and Hüttig⁴ and Biltz, Klatte, and Rahlfs,¹ and on the hexammines by Ephraim,⁹ Bonnefoi,¹ and Biltz and Stollenwerk.²

MgCl₂ · 2NH₃ (aq.). Berthelot¹⁰⁰ estimated the heat of mixing MgCl₂

(aq.) with  $2 NH_3$  (aq.).

Mg(NH₃)₂⁺⁺ (aq.). This value is obtained from that for MgCl₂ · 2 NH₃ (aq.).

MgBr₂·nNH₃ (c). Biltz and Hüttig⁴ and Biltz, Klatte, and Rahlfs¹

obtained dissociation pressure data on the mono- and diammines, and Ephraim⁹ on the hexammine.

MgI₂ ⋅ nNH₃ (c). Biltz and Hüttig⁴ and Biltz, Klatte, and Rahlfs¹ reported dissociation pressure data on the diammine, and Ephraim⁹ on the hexammine.

 $3 \text{ MgSO}_3 \cdot (NH_4)_2 SO_3 \cdot nH_2O$  (c). Hartog¹ measured the heats of solution in HCl (aq.) of the hexa- and octadecahydrates.

 $MgSO_4 \cdot (NH_4)_2SO_4 \cdot nH_2O$  (c). Berthelot¹⁵¹ measured the heat of solution of the hexahydrate. See also Graham.² Caven and Ferguson² studied the equilibrium, hexahydrate-dihydrate-water vapor.

 $Mg_3(PO_4)_2$  (c, ppt.). Berthelot^{102, 145} measured the heat of the reaction,  $2 Na_3PO_4$  (aq.) +  $3 MgSO_4$  (aq.) =  $Mg_3(PO_4)_2$  (c, ppt.) +  $3 Na_2SO_4$  (aq.).

MgHPO₄ (aq.). Berthelot^{102, 145} measured the heat of the reaction of MgSO₄ (aq.) with Na₂HPO₄ (aq.).

MgNH₄PO₄·6 H₂O (c). Berthelot^{102, 145} measured the heat of mixing MgCl₂·2 NH₃ (aq.) with Na₂HPO₄ (aq.).

 $Mg_3(AsO_4)_2$  (c, ppt.). Blarez³ measured the heat of reaction of  $2\,H_3AsO_4$  (aq.) with  $3\,Mg(OH)_2$  (c).

 $MgHAsO_4$  (aq.). Blarez³ measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $Mg(OH)_2$  (c).

 $Mg(H_2AsO_4)_2$  (aq.). Blarez³ measured the heat of reaction of  $2 H_3AsO_4$  (aq.) with  $Mg(OH)_2$  (c).

 $MgNH_4AsO_4 \cdot 6 H_2O$  (c). Berthelot^{102, 145} measured the heat of mixing  $MgCl_2 \cdot 2 NH_3$  (aq.) with  $H_3AsO_4$  (aq.).

MgCO₃ (c). Berthelot¹² measured the heat of reaction of MgSO₄ (aq.) with Na₂CO₃ (aq.). Dissociation pressure data were obtained by Johnston,⁵ Marcy and Kimek,¹ Brill,² Friedrich,¹ Hempel and Schubert,¹ Hedvall,¹ Grunberg,¹ Manchot and Lorenz,¹ and Centnerswer and Bruczs.² The calorimetric and the equilibrium data yield, for MgCO₃ (c), Qf = 268.1 and 265.1, respectively.

 $MgCO_3 \cdot nH_2O$  (c). We have estimated the value for the monohydrate. Takahashi and Nukada¹ reported  $Q^s=4.26$  for the reaction,  $MgCO_3 \cdot H_2O$  (c)  $+2 H_2O$  (liq.)  $=MgCO_3 \cdot 3 H_2O$  (c).

 $Mg(C_2H_3O_3)_2$  (aq.). deForcrand³ measured the heat of reaction of  $MgSO_4$  (aq.) with aqueous barium glycollate and aqueous lead glycollate to be 2.65 and 1.12, respectively.

 $Mg(C_2H_3O_3)_2 \cdot nH_2O$  (c). deForerand³ measured the heats of solution of anhydrous magnesium glycollate and of the dihydrate.

MgCl₂·6 CH₃OH (c). Lloyd, Brown, Bonnell, and Jones¹ reported dissociation pressure data on this alcoholate.

Mg(NO₃)₂⋅6 CH₃OH (c). Lloyd, Brown, Bonnell, and Jones¹ reported dissociation pressure data on this alcoholate.

MgCN₂ (c). Franc and Hockward¹ measured the heat of combustion of magnesium cyanamide.

- $Mg(CN)_2$  (aq.). Varet³ measured the heat of reaction of  $MgSO_4$  (aq.) with  $Ba(CN)_2$  (aq.).
- MgSiO₃ (c). Tschernobaeff¹ reported the heat of reaction of MgCO₃ (c) with SiO₂ (c). See also Marchal¹ and White.¹
- MgZn₂ (c). Roos² measured the heat of solution of this alloy in bromine water to be 322.1; Biltz and Hohorst¹ found the value 167.6 in HCl(8). See also von Wartenberg.⁸
- $Mg_2Sn$  (c). For the heat of solution of this alloy, Biltz and Holver-scheit¹ reported 261 in (FeCl₃+HCl) (aq.). This value was later corrected to 251 by Biltz and Meyer.²
- MgCd (c, II). For the heat of solution of this alloy, Roos² found 223.5 in bromine water; Biltz and Hohorst¹ found 123.7 in HCl (8).
- MgCd (c, I). Roos² reported a value for the heat of transition at 243°.
- MgHg₄ (c). Tammann and Ohler¹ measured the heat of solution of this alloy in HCl (9.3) to be 95.8.
- Mg₄Al₃ (c). For the heat of solution of this alloy, Roos² found 111.7 in bromine water; Biltz and Hohorst¹ 779 in HCl (8).
- $Mg_nCe$  (c). Biltz and Pieper¹ reported the following heats of solution in HCl (20): MgCe (c), 260.5; Mg₃Ce (c), 477.3. See also Muthmann and Beck.¹
- $MgBr_2 \cdot nHgBr_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $MgBr_2$  (aq.) with  $\frac{1}{2}$ , 1, and 2 moles of  $HgBr_2$  (aq.).
- $Mg(CN)_2 \cdot nHg(CN)_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $Mg(CN)_2$  (aq.) with 1 and 2 moles of  $Hg(CN)_2$  (aq.).
- $HgX_2 \cdot 2Hg(CN)_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $2Hg(CN)_2$  (aq.) with  $HgCl_2$  (aq.),  $HgBr_2$  (aq.), and  $HgI_2$  (aq.), respectively.
- $HgX_2 \cdot 2Hg(CN)_2 \cdot nH_2O$  (c). Varet^{2, 6} measured the heats of solution of the chloride hexahydrate and the bromide and iodide octahydrates.
- $MgWO_4$  (c). Tammann and Westerholt¹ reported Q=3.4 for the reaction of MgO (c) with WO₃ (c).
- $MgMoO_4$  (c). Tammann and Westerholt¹ reported Q=7.3 for the reaction of MgO (c) with  $MoO_3$  (c).
- $6MgO \cdot 8B_2O_3 \cdot MgCl_2$  (c). For the heat of transition of boracite at 265°, Kroker¹ found -0.84, Mallard and LeChatelier¹ found -1.8.

#### CALCIUM

- Ca (c, II). Standard state.
- Ca (c, I). Eastman, Williams, and Young¹ and Zalesenski and Zulenski¹ reported values for the transition at 400°.
- Ca (liq.). Data on the heat of fusion of calcium were reported by Randall and Tamale, Moldenhauer and Roll-Hansen, Bronsted, and Zalesenski and Zulenski.

- Ca (g). Vapor pressure data on solid and liquid calcium were reported by Pilling,¹ Ruff and Hartman,¹ and Hartman and Schneider.¹ See also Randall and Tamale.¹ The values for the energy states of gaseous monatomic calcium are from Fowler¹ and Bowen.⁵
- CaCl₂ (aq.). The data on the heat of solution of calcium in aqueous hydrochloric acid are: Guntz and Benoit,^{1, 2} 129.8 in HCl(120) at 16°; Guntz and Bassett,^{1, 2} 129.0 in HCl(120) at 9°; Biltz and Hohorst,¹ 130.1 in HCl(8). See also Thomsen,¹⁵ Moissan,^{1, 2} Bronsted,² and Copeaux and Phillips.¹ Data on the heat of dilution of aqueous CaCl₂ were reported by Thomsen,¹⁵ Tucker,¹ Dunnington and Hoggard,¹ Lehtonen,¹ Nernst and Orthmann,² Richards and Dole,¹ and Lange and Streeck.¹
- $Ca^{++}(\infty)$ . This value is obtained from those for  $CaCl_2(\infty)$  and  $Cl^{-}(\infty)$ .
- CaO (c). The data on the heat of solution of calcium oxide in aqueous hydrochloric acid are: Bäckstrom, 46.17 in HCl(55) at 25°; Berthelot, 22 46.1 in HCl(330) at 16°; Matignon, 47.0 in HCl(110); Thorvaldson, Brown, and Peaker, 46.46 in HCl(200) at 20°; Copeaux and Phillips, 46.1 in HCl(25); Thomsen, 15 46.03 in HCl(200). Gautier's values for the fused oxide and the oxide prepared at 1000°, 1200°, and 2000° are 46.54, 46.47, 46.40, and 46.51, respectively, in HCl(110).
- CaO (g). Vapor pressure data were reported by Ruff and Schmidt¹ and Claasen and Veenemans.¹
  - CaO (liq.). Washburn¹ reported the heat of fusion.
- Ca(OH)₂ (aq.). Moissan^{1, 2} and Guntz and Bassett² measured the heat of solution of calcium in water. The heat of neutralization of Ca(OH)₂ (aq.) with 2HCl (aq.) was measured by Thomsen, ¹⁵ Berthelot, ²² de Forcrand, ²⁹ and Hess.⁵
- ${
  m Ca(OH)_2}$  (c). For the heat of solution of  ${
  m Ca(OH)_2}$  (c), Thomsen¹⁵ found 30.49 in HCl(200), and Thorvaldson and Brown¹ found 30.82 in HCl(200) at 20°. See also Berthelot.²² Direct measurements of the heat of the reaction, CaO (c) +H₂O (liq.) = Ca(OH)₂ (c), were made by Mannheimer, Kohnert, and Kohlschutter and Feilknecht, who reported  $Q=15.30,\ 15.18,\$ and 15.30, respectively.
- $CaO_2$  (c). Bergius,¹ from equilibrium studies, reported Q=-5.4 for the reaction,  $CaO_2$  (c) = CaO (c) +  $\frac{1}{2}$   $O_2$  (g). de Forcrand^{29, 30} measured the heat of solution of  $CaO_2$  (c) in HCl(100) to be 18.93.
- $CaO_2 \cdot 8H_2O$  (c). de Forcrand^{29, 30} reported Q=15.6 for the reaction,  $CaO_2$  (c)  $+8H_2O$  (liq.)  $=CaO_2 \cdot 8H_2O$  (c).
- $CaH_2$  (c). Guntz and Bassett¹ and Bronsted² measured the heat of solution of solid calcium hydride in aqueous HCl. Equilibrium data on the reaction,  $CaH_2$  (c) = Ca (c) +  $H_2$  (g), were obtained by Brönsted² and Moldenhauser and Roll-Hansen,¹ and were reviewed by Lewis and Randall.⁵ See also Kassarnowsky.²
- CaH (g). Watson² reported, from spectroscopic data, the energy of dissociation into gaseous atoms. See also Hulthen.¹

CALCIUM345

Ca(OH)₂·H₂O₂ (c). de Forcrand^{29, 30} measured the heat of reaction of  $Ca(OH)_2$  (aq.) with  $H_2O_2$  (aq.) to be 6.85.

CaF₂ (c). Guntz¹ measured the heat of reaction of Ca(OH)₂ (aq.) with 2HF (aq.) to form CaF₂ (c) and 2H₂O (liq.).

 $CaF_2$  ( $\infty$ ). This value is obtained from those for the agueous ions. CaF (g). Johnson³ reported the energy of dissociation into gaseous atoms.

CaCl (c). Benoit² reported the value 72.2 for the heat of solution of CaCl (c) in aqueous HCl; which yields Qf = 96.9. Since the mixture  $\frac{1}{2}$  CaCl₂ (c)  $+\frac{1}{2}$  Ca (c) would have a heat of formation of 95.3, the existence of the subchloride, CaCl (c), appears doubtful.

CaCl₂ (c). The data on the heat of solution are: Thomsen. 15 17.41₂₀₀; Person,⁶ 19.4; Ditte,¹⁰ 15.0; Baud,¹ 18.17₄₀₀¹⁶; Pickering,⁸ 18.73₄₀₀; Berthelot and Ilosvay, 17.6₁₀₀¹²; Lehtonen, 16.05₂₀₀⁰; de Forcrand,⁵⁷ 17.47¹⁵. See also Cambi and Devoto,¹ Lorenz and Winzer,¹ Jones and Taylor, 1 Fajans, 3 and Favre and Silbermann. 3

CaCl₂· H₂O (c). The data on the heat of solution are: Thomsen, ¹⁵

12.1₁₀₀; Sabatier, 11.7₃₀₀²¹.

CaCl₂·2H₂O (c). Thomsen¹⁵ measured the heat of solution.

CaCl₂·4H₂O (c). Thomsen¹⁵ measured the heat of solution.

CaCl₂·6H₂O (c). The data on the heat of solution are: Thomsen, 15  $-4.36_{400}$ ; Pickering, 8  $-4.25_{400}$ ; Ditte, 10  $-4.5^{12}$ ; van Deventer and van der Stadt, 1 - 4.56. See also van't Hoff, Kenrick, and Dawson. 1

CaCl₂·6H₂O (liq.). Morgan and Benson¹ reported the heat of fusion of the hexahvdrate to be 8.93.

CaCl₂·2CaO (c). Andre^{1, 2} measured the heat of solution in HCl (aq.).

 $CaCl_2 \cdot 3CaO \cdot nH_2O$  (c). Andre^{1, 2} measured the heats of solution of the anhydrous basic chloride and of the tri- and hexadecahydrates in HCl (aq.). See also Tassilly.1

Ca(ClO)₂ (aq.). Neumann and Muller¹ measured the heat of reaction of Ca(OH)₂ (aq.) with HClO (aq.) and with Cl₂ (g).

CaOCl₂ (ag.). Ochi^{2, 3, 4} measured the heat of the reaction of  $CaOCl_2$  (aq.) with  $H_2O_2$  (aq.).

CaOCl₂ (c). Ochi^{2, 3, 4} measured the heat of solution. Neumann and Muller, Hurter, and Nydegger measured the heat of reaction of CaO (c) with  $Cl_2$  (g).

CaOCl₂·H₂O (c). Ochi^{2, 3, 4} measured the heat of solution.

CaBr₂ (aq.). The value for CaBr₂ (∞) is obtained from those for  $Ca^{++}(\infty)$  and  $Br^{-}(\infty)$ . Data on the heat of dilution were reported by Lange and Streeck.¹

CaBr₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 24.5₄₀₀; Varet,² 26.4₄₀₀¹⁵; Pickering,⁸ 23.3₈₀₀. See also Cambi and Devoto.¹

CaBr₂·6H₂O (c). Thomsen¹⁵ measured the heat of solution.

 $CaBr_2 \cdot 3CaO \cdot nH_2O$  (c). Tassilly^{1, 2} measured the heats of solution of the tri- and hexadecahydrates in aqueous HBr.

 $CaI_2$  (aq.). The value for  $CaI_2$  ( $\infty$ ) is obtained from those for  $Ca^{++}(\infty)$  and  $I^{-}(\infty)$ . We have estimated the heat of dilution.

CaI₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 27.70₄₀₀; de Forcrand,⁵⁷ 28.1₂₀₀¹⁵; Varet,² 27.6; Pickering,⁸ 26.9₈₀₀.

CaI₂·8H₂O (c). Tassilly^{1, 4} measured the heat of solution.

 $CaI_2 \cdot 3CaO \cdot 16H_2O$  (c). Tassilly measured the heat of solution. CaS (aq.). This value is obtained from those for the ions.

CaS (c). Sabatier measured the heat of solution in aqueous HCl. See also Taylor¹ and Sherman.¹

 $CaSO_3 \cdot 2H_2O$  (c). Bichowsky⁴ reported Q=6.3 for the reaction.

 $CaS_2O_3(aq.) + 2H_2O'(liq.) = CaSO_3 \cdot 2H_2O'(c) + S'(c)$ .

CaS₂O₃ (aq.). The value for CaS₂O₃ (800) is obtained from those for the ions. Data on the heat of dilution were reported by Bichowsky.4

CaSO₄ (aq.). The value for CaSO₄ (∞) is obtained from those for  $Ca^{++}(\infty)$  and  $SO_4^{--}(\infty)$ . Thomsen¹⁵ measured the heat of neutralization of H₂SO₄ (aq.) with Ca(OH)₂ (aq.). See also Hess.⁵ Data on the heat of dilution were reported by Lange and Messner² and Lange and Streeck.2

 $CaSO_4 \cdot nH_2O$  (c). For the heat of solution of the dihydrate Thomsen¹⁵ and Lange and Dürr¹ found -0.30 and  $-0.84_{4000}$ , respectively. Values for the heats of hydration of CaSO₄ (c, anhydrite), CaSO₄ (c, "soluble"), and the hemihydrate to the dihydrate were reported by Thomsen, 15 van't Hoff, Armstrong, Henrickson, Weigert, and Just, 1 Chassevent, Mixter, 17 and de Forcrand. 14

CaSe (c). Fabre measured the heat of solution in aqueous HCl.

CaN₆ (c). Wohler and Martin¹ measured the heat of decomposition of calcium azide.

Ca₃N₂ (c). For the heat of solution of calcium nitride, Moser and Herzner¹ reported 261.6 and Guntz and Bassett^{1, 2} reported 342.7. From measurement of the direct formation, Franck and Bodea¹ reported Qf =102.6.

CaN2O2 · 4H2O (c). Berthelot107 measured the heat of reaction of this tetrahydrate with aqueous (Br₂+KBr).

 $Ca(NO_3)_2$  (ag.). The value for  $Ca(NO_3)_2$  ( $\infty$ ) is obtained from those for  $Ca^{++}(\infty)$  and  $NO_3^{-}(\infty)$ . Data on the heat of dilution were reported by Partington and Soper, 1 Nernst and Orthmann, 2 Rümelin, 1 Lange and Messner,² and Lange and Streeck.²

Ca(NO₃)₂ (c). The data on the heat of solution yield the following values for  $S_{400}$ : Thomsen, ¹⁵ 3.94; Pickering, ⁸ 3.94; Berthelot, ¹³¹ 3.2; Ewing, Rogers, Miller, and McGovern, 3.96; Partington and Soper, 3.92.

Ca(NO₃)₂·nH₂O (c). The data on the heat of solution of the tetrahydrate yield the following values for S₄₀₀: Thomsen, ¹⁵ -7.25; Pickering, ⁸ -8.35; Ewing, Rogers, Miller, and McGovern, -8.13; Berthelot, 131 -7.6. The data of Ewing, Rogers, Miller, and McGovern¹ yield the following values for  $S_{400}$ : trihydrate, -4.32; dihydrate, -3.35. Dissociation pressure data were reported by Lescoeur, Ewing, and Biltz. Ca(NO₃)₂·4H₂O (liq.). Data on the heat of fusion of the tetrahydrate were reported by Pickering⁸ and Morgan and Owen.¹

Ca(NO₃)₂(C₂H₅OH). For the heat of solution of calcium nitrate in ethyl alcohol, Partington and Soper found 7.41_{200 C₂H₅OH²⁵. See also Pickering.⁸}

 $Ca(NH_2)_2$  (c). Guntz and Benoit¹ measured the heat of solution of calcium amide in aqueous HCl.

 $Ca(NO_3)_2 \cdot Ca(OH)_2 \cdot nH_2O$  (c). Werner¹ measured the heat of solution in aqueous HNO₃ of the anhydrous compound and of the hydrate with  $2\frac{1}{2}H_2O$ .

CaX₂·nNH₃ (c). Hüttig¹ and Biltz, Klatte, and Rahlfs¹ reported values for the heats of dissociation of the mono,- di-, tetra-, and octammines of CaCl₂ and the mono-, di-, hexa-, and octammines of CaBr₂ and CaI₂; Ephraim⁵ for the octammine of CaCl₂; Bonnefoi¹ for the di- and octammines of CaCl₂ and the hexammine of CaI₂; Isambert². ⁵ for the di-, tetra-, and octammines of CaCl₂. See also Isambert¹³ and Antoine.³

CaSO₄ · (NH₄)₂SO₄ · H₂O (c). Barre¹ measured the heat of solution. 2CaSO₄ · (NH₄)₂SO₄ (c). Barre¹ measured the heat of solution.

 $5CaSO_4 \cdot (NH_4)_2SO_4 \cdot H_2O$  (c). Barre¹ measured the heat of solution.

 $\text{Ca}_3(\text{PO}_4)_2$  (colloidal). Berthelot^{52, 54} measured the heat of reaction of  $\text{H}_3\text{PO}_4$  (aq.) with  $1\frac{1}{2}$  Ca(OH)₂ (aq.) to be 29.2.

 $Ca_3(PO_4)_2$  (c). Berthelot^{52, 54} measured the heat of reaction of  $1\frac{1}{2}$  CaCl₂ (aq.) with Na₃PO₄ (aq.).

CaHPO₄ (aq.). Berthelot^{52, 54} measured the heat of reaction of  $H_3PO_4$  (aq.) with  $Ca(OH)_2$  (aq.) to be 24.5.

 $Ca(H_2PO_4)_2$  (aq.). Berthelot^{52, 54} measured the heat of reaction of  $H_3PO_4$  (aq.) with  $\frac{1}{2}$  Ca(OH)₂ (aq.) to be 14.8.

CaHPO₄·2H₂O (c). Joly^{3, 4} reported Q = 2.9 for the reaction, Na₂HPO₄ (aq.) + 2H₂O (liq.) + CaCl₂ (aq.) = CaHPO₄·2H₂O (c) +2NaCl (aq.).

 $Ca(H_2PO_4)_2 \cdot H_2O(c)$ . We have estimated this value.

 $Ca(H_2PO_4)_2 \cdot H_2O \cdot nNH_3$  (c). Stollenwerk¹ reported dissociation pressure data on the tetra-, di-, and monammines.

 $Ca_3(AsO_4)_2$  (c, ppt.). Blarez¹ measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $1\frac{1}{2}$  Ca(OH)₂ (aq.) to be 29.5.

CaHAsO₄ (aq.). Blarez¹ measured the heat of reaction of H₃AsO₄ (aq.) with Ca(OH)₂ (aq.) to be 27.0.

 $Ca(H_2AsO_4)_2$  (aq.). Blarez¹ measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $\frac{1}{2}$  Ca(OH)₂ (aq.) to be 14.5.

 $CaC_2$  (c). The data on the heat of solution of calcium carbide in dilute aqueous HCl are: de Forcrand,²¹ 58.25¹³; Ruff and Josephy,¹ 60.8 in HCl(100). Guntz and Bassett¹ reported Qf = 13.1. Dissociation pressure data were reported by Ruff and Forster,¹ Krase and Yee,¹ and Franck and Hochwald.¹

CaCO₃ (c, calcite). Thomsen¹⁵ and Berthelot¹² measured the heat of

reaction of CaCl₂ (aq.) with Na₂CO₃ (aq.). Berthelot¹⁵ measured the heat of solution of calcite in aqueous nitric acid. Bäckstrom¹ measured the heat of solution of calcite in HCl(50), saturated with CO₂, to be 3.24 at 25°. The heat of the direct reaction of lime with carbon dioxide was measured by Favre and Silbermann² and Dragert.¹ See also Franck and Hochwald¹ and Le Chatelier.⁷ Dissociation pressure data were reported by Andrussow,² Smyth and Adams,¹ Lebeau,¹ Zavrieff,¹ Pott,¹ Reisenfeld,¹ Dutoit,¹ and Johnston.^{2, 5} See also Bäckstrom.¹

CaCO₃ (c, aragonite). For the heat of transition of aragonite to calcite the following values were reported: Favre and Silbermann,² 2.4; LeChatelier,⁷ -0.3; Laschtschenko,⁵ -2.7; Bäckstrom,⁴ -0.33; Bäckstrom,⁵ -0.04.

 $Ca(HCO_3)_2$  (aq.). Randall and White³ reviewed the data of Bäckstrom,³ Cameron and Brezeate,¹ Cameron and Robinson,^{1, 2} Cavazzi,¹ Ehlert and Hempel,¹ Engel,¹ Haehnel,^{1, 2} Johnston,³ Kendall,² McCoy and Smith,¹ Schloesing,¹ Wells,¹ and Frear, Johnston, and Kline,¹ on the solubility of calcium carbonate in aqueous carbonic acid, and concluded that  $Q^{25}=8.6$  for the reaction,  $CaCO_3$  (c, calcite)  $+CO_2$  (g)  $+H_2O$  (liq.)  $=Ca(HCO_3)_2$  (aq.).

CaC₂O₄ (c). Berthelot¹² found  $Q = 8.1^{15}$  for the reaction,  $K_2C_2O_4(200) + CaCl_2(200) = CaC_2O_4$  (c) +2KCl(200).

Ca(CHO₂)₂ (aq.). Berthelot^{9, 131} measured the heat of neutralization of aqueous formic acid with aqueous calcium hydroxide.

Ca(CHO₂)₂ (c). Berthelot ^{9, 131} measured the heat of solution of calcium formate.

 $\operatorname{Ca}(C_2H_3O_2)_2$  (aq.). The value for calcium acetate at infinite dilution has been obtained from those for the aqueous ions. Berthelot⁹ measured the heat of neutralization of aqueous acetic acid with aqueous calcium hydroxide.

 $Ca(C_2H_3O_2)_2$  (c). Berthelot⁹ and Favre and Silbermann³ measured the heat of solution.

Ca(C₂H₃O₂)₂·H₂O (c). Berthelot⁹ measured the heat of solution. Ca(C₂H₃O₃)₂ (aq.). This value is obtained from those for the aqueous calcium and glycollate ions.

 $Ca(C_2H_3O_3)_2 \cdot nH_2O$  (c). de Forcrand³ measured the heats of solution of the anhydrous salt and the tri- and pentahydrates.

 $Ca(C_2H_5O)_2$  (c). de Forcrand^{13, 22} measured the heat of solution in HCl(110).

 $Ca(C_2H_5O)_2 \cdot 2C_2H_5OH$  (c). de Forcrand^{13, 22} measured the heat of solution in HCl(110).

 $3CaO\cdot 4C_2H_5OH$  (c). de Forcrand  $^{13,\ 22}$  measured the heat of solution in aqueous HCl.

CaX₂·nC₂H₅OH (c). Bonnell and Jones¹ reported dissociation pressure data on the tri- and tetra-alcoholates of CaCl₂ and CaBr₂.

 $CaCl_2 \cdot (CH_3)_2CO$  (c). Bagster¹ obtained dissociation pressure data on this compound.

CALCIUM 349

Ca(NO₃)₂·2CH₃OH (c). Lloyd, Brown, Bonnell, and Jones¹ reported dissociation pressure data on this compound.

Ca(CN)₂ (aq.). Joannis¹ measured the heat of neutralization of aqueous calcium hydroxide with aqueous HCN.

 $3\text{CaO} \cdot \text{Ca}(\text{CN})_2 \cdot 15\text{H}_2\text{O}$  (c). Joannis¹ measured the heat of solution in aqueous HCl.

CaCN₂ (c). Franck and Hochwald¹ and Krase and Yee¹ measured the heat of the reaction,  $CaC_2$  (c)  $+N_2$  (g)  $=CaCN_2$  (c) +C (c), to be 72 and 98, respectively; whence, for  $CaCN_2$  (c), Qf=86.5 and 112.5. The equilibrium data of Franck and Heimann¹ on the same reaction yield, for  $CaCN_2$  (c), Qf=85.9. See also Thompson and Lombard² and Dotch.¹ The average of the data of Franck and Hochwald,¹ Kameyama and Oka,² and Kameyama¹ on the heat of combustion of  $CaCN_2$  (c) yield, for the latter, Qf=84.5. The data of Krase and Yee¹ on the reaction,  $Ca_3N_2$  (c) +3C (c)  $+2N_2$  (g)  $=3CaCN_2$  (c), yield, for  $CaCN_2$  (c), Qf=102. See also Cochet,¹ Badger,¹ LeBlanc and Eschmann,¹ Matignon,³ and Landis.¹

 $CaSi_n$  (c). Wohler and Martin¹ measured the heats of combustion of CaSi (c) and CaSi₂ (c) to form CaSiO₃ (c) and CaSiO₃ (c) +SiO₂ (c), respectively.

CaSiO₃ (c). Tschernobaeff¹ and Tschernobaeff and Wologdine¹ reported Q=-25.3 for the reaction, CaCO₃ (c) +SiO₂ (c) =CaSiO₃ (c) +CO₂ (g); whence, for CaSiO₃ (c), Qf=373.1. For the same reaction, LeChatelier^{8, 10} reported Q=-13.4; whence, for CaSiO₃ (c), Qf=385. For the heat of solution of CaSiO₃ (c) in HCl (24.65) at 50°, Roth and Chall¹ found Q=23.04, and for the reaction, CaO (c) +SiO₂ (c,  $\alpha$  quartz) = CaSiO₃ (c), reported  $Q^{50}=19.66$ ; whence, for CaSiO₃ (c), Qf=374.7. The equilibrium data of Marchal⁶ on the reaction, CaSO₄ (c) +SiO₂ (c) = CaSiO₃ (c) +SO₃ (g), yield Q=-81.2; whence, for CaSiO₃ (c), Qf=369. Wagner's¹ data on the heats of solution, in HCl (25), of the two forms of CaSiO₃ (c), wollastonite and pseudowollastonite, Q=20.01 and 21.27, respectively, yield for the latter, Qf=376.6, and for the transition of the former into the latter, T=-1.26. See Allen, White, and Wright.¹

 ${\bf Ca_2SiO_4~(c)}.$  Tschernobaeff¹ and Tschernobaeff and Wologdine¹ reported Q=-56.7 for the reaction,  $2{\bf CaCO_3~(c)}+{\bf SiO_2~(c)}={\bf Ca_2SiO_4~(glass)}+2{\bf CO_2~(g)},$  whence, for  ${\bf Ca_2SiO_4~(c)},$  Qf=536.7.

 $CaSn_3$  (c). Biltz and Meyer¹ measured the heat of solution of this alloy in aqueous (FeCl₃+HCl) to be 273. See also Biltz and Holverscheit.¹

 $CaI_2 \cdot 2 PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous double salt and of the heptahydrate.

 $CaZn_{\pi}\left(c\right)$ . Roos² measured the heats of solution of  $CaZn_{10}\left(c\right)$  and  $CaZn_{4}\left(c\right)$  in bromine water to be 890.3 and 487.8, respectively. Biltz and Wagner¹ measured the heats of solution of  $CaZn_{10}\left(c\right)$ ,  $CaZn_{4}\left(c\right)$ ,  $Ca_{2}Zn_{3}\left(c\right)$ , and  $Ca_{4}Zn\left(c\right)$  in HCl(20) to be 381.0, 219.5, 307.8, and 512.0, respectively.

- CaCd₃ (c). Roos² measured the heat of solution of this alloy in  $\dot{H}Cl(8)$ .
- CaBr₂·nHgBr₂ (aq.). Varet^{2, 6} measured the heats of mixing CaBr₂ (aq.) with 1 and 2 HgBr₂ (aq.), respectively.
- $Ca(CN)_2 \cdot nHg(CN)_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $Ca(CN)_2$  (aq.) with 1 and  $2Hg(CN)_2$  (aq.), respectively.
- $CaX_2 \cdot 2 Hg(CN)_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $2 Hg(CN)_2$  (aq.) with  $CaCl_2$  (aq.),  $CaBr_2$  (aq.), and  $CaI_2$  (aq.), respectively.
- $\operatorname{CaX}_2 \cdot 2 \operatorname{Hg}(\operatorname{CN})_2 \cdot n\operatorname{H}_2\operatorname{O}$  (c). Varet^{2, 6} measured the heats of solution of the chloride hexahydrate, the bromide heptahydrate, and the iodide hexahydrate.
- $Ca(CN)_2 \cdot nAgCN$  (aq.). Varet⁵ measured the heats of mixing  $Ca(CN)_2$  (aq.) with 1 and 2 AgCN (c), respectively.
- ${\bf CaO \cdot Fe_2O_3}$  (c). The equilibrium data of Marchal⁶ yield Q=-46 for the reaction,  ${\rm Fe_2O_3}$  (c) +  ${\rm CaSO_4}$  (c) =  ${\rm CaO \cdot Fe_2O_3}$  (c) +  ${\rm SO_3}$  (g); whence, for  ${\rm CaO \cdot Fe_2O_3}$  (c), Qf=399.
- $Ca_2Fe(CN)_6$  (aq.). Joannis¹ measured the heat of reaction of  $H_4Fe(CN)_6$  (aq.) with  $2Ca(OH)_2$  (aq.) to be 56.4.
- $CaH_2Fe(CN)_6$  (aq.). Joannis¹ measured the heat of reaction of  $H_4Fe(CN)_6$  (aq.) with  $Ca(OH)_2$  (aq.) to be 28.4.
  - $Ca_2Fe(CN)_6 \cdot 12 \ H_2O$  (c). Joannis¹ measured the heat of solution.
- ${\bf CaWO_4}$  (c). Tammann and Westerholt¹ calculated Q=39.8 for the reaction, CaO (c)  $+{\bf WO_3}$  (c)  $={\bf CaWO_4}$  (c).
- $CaO \cdot nB_2O_3$  (c). Griveau¹ measured the heats of solution in aqueous HCl of these borates with  $n=\frac{1}{3},\frac{1}{2},1$ , and 2.
- CaAl₃ (c). Biltz and Wagner¹ measured the heat of solution of this alloy in HCl(8) to be 454.
- $n\text{CaO} \cdot \text{Al}_2\text{O}_3$  (gls.). Tschernobaeff¹ reported Q=44.7, 87.0, and 132.5 for the heats of the reactions of  $\text{Al}_2\text{O}_3$  (c) with 1, 2, and 3  $\text{CaCO}_3$  (c), respectively.
  - 3 CaCl₂·4 AlCl₃ (c). Baud¹ measured the heat of solution.
- $3~{\rm CaO}\cdot{\rm Al_2O_3\cdot 2~SiO_2}$  (c). Tschernobaeff and Wologdine¹ reported Q=50.2~ for the reaction,  $2~{\rm SiO_2}$  (c)  $+{\rm Al_2O_3}$  (c)  $+3~{\rm CaO}$  (c)  $=3~{\rm CaO}\cdot{\rm Al_2O_3\cdot 2~SiO_2}$  (c).
- $CaO \cdot Al_2O_3 \cdot 6 SiO_2$  (c, heulandite). Tschernobaeff and Wologdine¹ measured the heat of solution in aqueous (20%) HF.
- Ca₃Mg₄ (c). Biltz and Hohorst¹ measured the heat of solution of this alloy in HCl(8). See also Roos.²
- $CaCl_2 \cdot 2 MgCl_2 \cdot 2 H_2O$  (c). van't Hoff, Kenrick, and Dawson¹ measured the heat of solution.
- $CaCO_3 \cdot MgCO_3$  (c). Mitchell¹ found the heat of solution of dolomite in aqueous HCl to be 31.6. Bäckstrom² calculated, from the equilibrium data of Marc and Limek, Q=1.8 for the reaction,  $CaCO_3$  (c)  $+MgCO_3$  (c)  $+CaCO_3 \cdot MgCO_3$  (e).

### STRONTIUM

- Sr (c). Standard state.
- Sr (g). Vapor pressure data were reported by Ruff and Hartmann¹ and Hartmann and Schneider.¹ We have estimated the value for the heat of sublimation from the latter data. The values for the energy states of gaseous monatomic strontium are from Hansen and Thorsen,¹ Saunders,² Russell and Saunders,¹ and Fowler.¹

Sr (liq.). We have estimated the heat of fusion of strontium.

- $SrCl_2$  (aq.). The data of Guntz and Benoit² yield for the heat of the reaction,  $Sr(c) + 2 HCl(140) = SrCl_2(280) + H_2(g)$ , Q = 130.1; whence, for  $SrCl_2(200)$ , Qf = 209.0. Similar data on less pure samples of strontium were obtained by Thomsen¹⁵ and Guntz and Roderer.¹ Data on the heat of dilution of aqueous strontium chloride were reported by Stearn and Smith,¹ Lehtonen,¹ Pratt,¹ Magie,¹ Dunnington and Hoggard,¹ and Lange and Streeck.¹
- $Sr^{++}(\infty)$ . This value is obtained from those for  $SrCl_2(\infty)$  and  $Cl^{-}(\infty)$ .
- SrCl₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 11.15₄₀₀; Berthelot, ⁷ 11.0; Berthelot and Ilosvay, ¹ 11.1¹⁵; Baud, ¹ 11.4₄₄₀²¹; Pickering, ⁷ 11.27₂₀₀; Benoit, ² 10.42_{HCl(aq.)}¹⁵; Maier² (see Hüttig and Slonim¹), 11.44₄₀₀¹⁷. See also Cambi and Devoto. ¹
- SrO (c). Thomsen¹⁵ measured the heat of solution of strontium oxide in 2 HCl(200) to be 56.97; whence, for SrO (c), Qf = 141.5. For the heat of solution of SrO (c) in water, Berthelot²² reported 27.2 and de Forcrand⁴⁸ reported 29.7, 28.3, and 30.8. These values yield for SrO (c), Qf = 143.6, 141.1, 142.5, and 140.0, respectively.
- SrO (g). We have estimated the heat of sublimation from the vapor pressure data of Tiede and Birnbauer.¹
- Sr(OH)₂ (aq.). Thomsen,¹⁵ de Forcrand,²⁸ and Berthelot²² measured the heat of neutralization of 2 HCl (aq.) with Sr(OH)₂ (aq.).
- Sr(OH)₂ (c). The data on the heat of solution of solid strontium hydroxide are: Thomsen,¹⁵ 11.64₄₀₀; Berthelot,⁹ 9.6; Berthelot,²² 37.68_{2HO1(330)}¹⁶; de Forcrand,⁵¹ 10.33₁₁₀₀¹⁵. See also Johnston^{1, 4} and Jorrissen.¹
  - Sr(OH)₂·H₂O (c). de Forcrand⁵¹ measured the heat of solution.
- $Sr(OH)_2 \cdot 8 H_2O$  (c). The data on the heat of solution are: de Forcrand,  51   $-14.27_{1100}^{15}$ ; Thomsen,  15   $12.99_{^{2}HCl(200)}$ ; Berthelot,  22   $12.96_{^{2}HCl(330)}^{16}$ . See also Muller and Erzbach and Lescoeur.
- SrO₂ (c). de Forcrand²⁸ measured the heat of solution in aqueous HCl.
- SrO₂·9 H₂O (c). de Forcrand²⁸ measured the heat of solution in aqueous HCl.
  - Sr₂O (c). Benoit² measured the heat of solution in aqueous HCl.
- SrH₂ (c). Guntz and Benoit¹ measured the heat of solution in aqueous HCl. See also Kassarnowsky.²

- SrF₂ (c). Petersen³ measured the heat of reaction of 2 AgF (aq.) with SrCl₂ (aq.) to be 34.5. Guntz¹ measured the heat of neutralization of 2 HF (aq.) with Sr(OH)₂ (aq.) to be 17.9.
- SrF (g). Johnson³ estimated the energy of dissociation into gaseous atoms, from spectroscopic data.
- SrCl (c). Benoit² reported the heat of solution in aqueous HCl for this supposed subchloride.
- $SrCl_2 \cdot H_2O$  (c). Maier² (see Hüttig and Slonim¹) measured the heat of solution to be  $6.02_{400}^{17}$ ; Thomsen¹⁵ found  $5.88_{400}$ .
- SrCl₂·2 H₂O (c). The data on the heat of solution in 400H₂O are: Maier² (see Hüttig and Slonim¹), 2.57; Sabatier,² 2.07; Pickering,⁷ 1.92; Thomsen,¹⁵ 2.08.
- $SrCl_2 \cdot 6 H_2O$  (c). The data on the heat of solution yield the following values for  $S_{400}$ : Thomsen,  15  -7.50; Berthelot,  7  -7.3; Maier (see Hüttig and Slonim), -7.44. See also Favre and Silbermann. Dissociation pressure data on the hexahydrate were reported by Schumb, Hüttig and Slonim, Andreae, Frowein, Cohen, Schottky, Linebarger, Lescoeur, Schumb, Baxter and Lansing, Menzies, and Biltz.
- Sr(ClO)₂ (aq.). Neumann and Muller² measured the heat of reaction of Sr(OH)₂ (aq.) with Cl₂ (g) and with 2 HClO (aq.).
- $SrCl_2 \cdot SrO \cdot nH_2O$  (c). Andre¹ measured the heats of solution of the mono- and nonahydrates.
- $SrBr_2$  (aq.). The value for  $SrBr_2$  ( $\infty$ ) is obtained from those for the aqueous ions. Data on the heat of dilution were reported by Lange and Streeck.¹
- SrBr₂ (c). The data on the heat of solution are: Thomsen,¹⁵ 16.1₄₀₀; Tassilly, 16.0²⁰; Maier² (see Hüttig and Slonim¹), 16.25.¹⁹ See also Favre and Valson² and Cambi and Devoto.¹
- $SrBr_2 \cdot H_2O$  (c). The data on the heat of solution yield the following values for  $S_{400}$ : Thomsen, ¹⁵ 9.90; Maier² (see Hüttig and Slonim¹), 8.86.
  - SrBr₂·2 H₂O (c). Thomsen¹⁵ measured the heat of solution.
  - SrBr₂·4 H₂O (c). Thomsen¹⁵ measured the heat of solution.
- $SrBr_2 \cdot 6 H_2O$  (c). The existing data yield the following values for  $S_{400}$ : Thomsen,  15  -6.45; Maier² (see Hüttig and Slonim¹), -7.11. Dissociation pressure data on the hexahydrate were reported by Trip, Hüttig and Slonim, and Lescoeur.²
- $SrBr_2 \cdot SrO \cdot nH_2O$  (c). Tassilly measured the heats of solution of the tri- and nonahydrates in aqueous HBr.
- $SrI_2$  (aq.). The value for  $SrI_2$  ( $\infty$ ) is obtained from those for the aqueous ions. We have estimated the heat of dilution of aqueous strontium iodide.
- SrI₂ (c). For the heat of solution, Tassilly¹ found 20.5 and Maier² (see Slonim and Hüttig¹) 20.6¹⁹.
- $SrI_2 \cdot nH_2O$  (c). Maier² (see Slonim and Hüttig¹) measured the heats of solution of the mono-, di-, and hexahydrates. See also Tassilly.^{1, 4}

Dissociation pressure data were reported by Trip¹ and Hüttig and Slonim.¹ SrS (aq.). This value is obtained from those for the ions.

SrS (c). Sabatier measured the heat of solution in aqueous HCl.

 $Sr(HS)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Sr(OH)_2$  (aq.) with  $2H_2S$  (aq.).

 $SrSO_4$  (aq.). The value for  $SrSO_4(\infty)$  is obtained from the ions. Thomsen¹⁵ measured the heat of reaction of  $Sr(OH)_2$  (aq.) with  $H_2SO_4$  (aq.). Chroustchoff and Martinoff¹ and Berthelot⁹ measured the heats of reaction of  $SrCl_2$  (aq.) with  $Na_2SO_4$  (aq.) and of  $SrSO_4$  (aq.) with 2NaCl (aq.). We have estimated the values for the heat of dilution.

SrSO₄ (c). Barre¹ and Thomsen¹⁵ reported the heat of solution of strontium sulfate to be 0.0.

 $SrS_2O_6$  (aq.). This value is obtained from those for the aqueous ions.  $Sr(S_2O_6)_2 \cdot 4 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.

 $SrI_2 \cdot nSO_2$  (c). Ephraim and Kornblum¹ measured the dissociation pressures of  $SrI_2 \cdot 2 SO_2$  (c) and  $SrI_2 \cdot 4 SO_2$  (c).

SrSe (aq.). Fabre¹ measured the heat of neutralization of  $Sr(OH)_2$  (aq.) with  $H_2Se$  (aq.).

SrSe (c). Fabre measured the heat of solution.

SrN₆ (c). Wohler and Martin¹ measured the heat of decomposition of strontium azide to be 49.0.

Sr₃N₂ (c). Guntz and Benoit¹ measured the heat of solution of strontium nitride in aqueous HCl.

 $SrN_2O_2$  (aq.). Berthelot¹⁰ reported a value for the heat of neutralization of  $Sr(OH)_2$  (aq.) with  $H_2N_2O_2$  (aq.).

 $SrN_2O_2 \cdot 5 H_2O$  (c). Berthelot¹⁰ measured the heat of solution of the pentahydrate in bromine water.

 $Sr(NO_3)_2$  (aq.). Thomsen¹⁵ and Berthelot⁹ reported values for the heat of neutralization of  $Sr(OH)_2$  (aq.) with  $2 \, HNO_3$  (aq.). The value for  $Sr(NO_3)_2(\infty)$  is obtained from those for the ions. Data on the heat of dilution of aqueous strontium nitrate were reported by Pratt,¹ Thomsen,¹⁵ Lange and Streeck,² and Hammerschmid and Lange.¹

 $Sr(NO_3)_2$  (c). The existing data yield the following values for  $S_{400}$ : Thomsen,  15  -4.62; Pickering,  7  -5.04; Berthelot,  9 ,  131  -5.1. See also Favre and Valson.

 $Sr(NO_3)_2 \cdot 4 H_2O$  (c). The existing data yield for  $S_{400}$  the following values: Thomsen, ¹⁵ -12.30; Pickering, ⁷ -6.8 (?); Favre and Silbermann, ³ -11.7; Berthelot, ⁹ -12.1.

 $Sr(NH_2)_2$  (c). Guntz and Benoit¹ measured the heat of solution in aqueous HCl.

 $Sr \cdot 6 NH_3$  (c). Biltz and Hüttig³ measured the dissociation pressures.  $SrX_2 \cdot nNH_3$  (c). Hüttig² reported dissociation pressure data on the

mono-, di-, and octammines of SrCl₂ and SrBr₂ and on the mono-, di-, hexa-, and octammines of SrI₂. Buffington¹ reported data on the di- and octammines of SrCl₂.

SrSO₄ · (NH₄)₂SO₄ (c). Barre¹ measured the heat of solution.

 $Sr_3(PO_4)_2$  (c, ppt.). Berthelot^{52, 101} measured the heat of reaction of  $H_3PO_4$  (aq.) with  $1\frac{1}{2}Sr(OH)_2$  (aq.). See also Joly.⁴

SrHPO₄ (aq.). Berthelot⁵², ¹⁰¹ measured the heat of reaction of H₃PO₄ (aq.) with Sr(OH)₂ (aq.). See also Joly.⁴

 $Sr(H_2PO_4)_2$  (aq.). Berthelot^{52, 101} measured the heat of reaction of  $H_3PO_4$  (aq.) with  $\frac{1}{2}Sr(OH)_2$  (aq.). See also Joly.⁴

 $Sr_3(AsO_4)_2$  (c, ppt.). Blarez¹ measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $\frac{1}{2}Sr(OH)_2$  (aq.).

SrHAsO₄ (aq.). Blarez¹ measured the heat of reaction of H₃AsO₄ (aq.) with Sr(OH)₂ (aq.).

 $Sr(H_2AsO_4)_2$  (aq). Blarez¹ measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $\frac{1}{2}Sr(OH)_2$  (aq.).

 $SrCO_3$  (c). Thomsen¹⁵ found Q=0.23 for the reaction of  $SrCl_2(400)$  with  $Na_2CO_3(400)$ . Dissociation pressure data were reported by Johnston^{1,4} and Dutoit.¹

 $Sr(HCO_3)_2$  (aq.). Randall and White³ calculated, from the data of Haehnel,^{1, 2} Q=6.74 for the reaction,  $SrCO_3$  (c)  $+CO_2$  (g)  $+H_2O$  (liq.)  $=Sr(HCO_3)_2$  (aq.), and from the data of McCoy and Smith,¹ Q=1.94 for the reaction,  $SrCO_3$  (c)  $+H_2CO_3$  (aq.)  $=Sr(HCO_3)_2$  (aq.).

Sr(CHO₂)₂ (aq.). Thomsen¹⁵ measured the heat of neutralization of aqueous formic acid with aqueous strontium hydroxide.

Sr(CHO₂)₂ (c). Berthelot^{10, 131} measured the heat of solution of strontium formate.

 $Sr(CHO_2)_2 \cdot 2 H_2O$  (c). Berthelot^{10, 131} measured the heat of solution.

 $SrC_2O_4 \cdot 2\frac{1}{2} H_2O$  (c). Berthelot¹⁰ found Q=35.2 for the reaction,  $H_2C_2O_4$  (aq.)  $+Sr(OH)_2$  (aq.)  $+\frac{1}{2} H_2O$  (liq.)  $=SrC_2O_4 \cdot 2\frac{1}{2} H_2O$  (c).

 $Sr(C_2H_3O_2)_2$  (aq.). Berthelot^{10, 131} measured the heat of neutralization of aqueous strontium hydroxide with aqueous acetic acid. The value for strontium acetate at infinite dilution is obtained from those for the aqueous ions.

Sr(C₂H₃O₂)₂ (c). Berthelot^{10, 131} measured the heat of solution.

 $Sr(C_2H_3O_2)_2 \cdot \frac{1}{2}H_2O$  (c). Berthelot^{10, 131} measured the heat of solution.

 $Sr(C_2H_3O_3)_2$  (aq.). de Forcrand³ measured the heat of neutralization of aqueous glycollic acid with aqueous strontium hydroxide.

Sr(C₂H₃O₃)₂ (c). de Forcrand³ measured the heat of solution.

 $SrBr_2 \cdot 1\frac{1}{2}CH_3OH$  (c). Lloyd, Brown, Bonnell, and Jones measured the dissociation pressures of this alcoholate.

Sr(CN)₂ (aq.). Joannis¹ measured the heat of neutralization of 2 HCN (aq.) with Sr(OH)₂ (aq.).

Sr(CN)₂·4 H₂O (c). Joannis¹ measured the heat of solution.

 $SrSiO_3$  (gls.). Tschernobaeff¹ reported Q=-35.1 for the reaction,  $SrCO_3$  (c)  $+SiO_2$  (c)  $=SrSiO_3$  (gls.)  $+CO_2$  (g).

 $SrI_2 \cdot 2 PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous double salt and of the heptahydrate.

SrHg ∞ (liq.). The equilibrium data of Smith and Braley¹ yield 59.5 for the heat of solution of strontium in a very large amount of mercury.

SrBr₂·nHgBr₂ (aq.). Varet⁶ measured the heats of mixing SrBr₂ (aq.) with ½, 1, and 2 HgBr₂ (aq.), respectively.

 $Sr(CN)_2 \cdot Hg(CN)_2$  (aq.). Varet⁶ measured the heats of mixing  $Sr(CN)_2$  (aq.) with 1 and 2  $Hg(CN)_2$  (aq.), respectively.

SrX₂·2 Hg(CN)₂ (aq.). Varet⁶ measured the heats of mixing 2 Hg(CN)₂ (aq.) with SrCl₂ (aq.), SrBr₂ (aq.), and SrI₂ (aq.), respectively.

 $SrX_2 \cdot 2 Hg(CN)_2 \cdot nH_2O$  (c). Varet⁶ measured the heats of solution of the chloride hexahydrate, the bromide hexahydrate, and the iodide heptahydrate.

 $Sr(CN)_2 \cdot nAgCN$  (aq.). Varet⁵ measured the heat of reaction of  $Sr(CN)_2$  (aq.) with 1 and 2 AgCN (c), respectively.

 $Sr(CN)_2 \cdot Ni(CN)_2$  (aq.). Varet⁴ measured the heat of mixing  $Sr(CN)_2$  (aq.) with  $Ni(CN)_2$  (aq.).

3 SrCl₂·4 AlCl₃ (c). Baud¹ measured the heat of solution.

 $SrWO_4$  (c). For the reaction, SrO (c)  $+WO_3$  (c)  $=SrWO_4$  (c), Tammann and Westerholt¹ reported Q=56.4 (?).

 $Sr_3(FeCO(CN)_5)_2$  (aq.). Muller^{9, 10} measured the heat of neutralization of  $H_3FeCO(CN)_5$  (aq.) with  $1\frac{1}{2}Sr(OH)_2$  (aq.).

 $Sr_3(FeCO(CN)_5)_2 \cdot nH_2O(c)$ . Muller^{9, 10} measured the heats of solution of the anhydrous salt and of the tetrahydrate.

# BARIUM

Ba (c). Standard state.

Ba (liq.). We have estimated the heat of fusion.

Ba (g). We have estimated the heat of sublimation from the data of Ruff and Hartmann¹ and Hartmann and Schneider.¹ See also Sherman.¹ The energy states of gaseous monatomic barium are evaluated from the data of Hansen and Thorsen,¹ Russell and Saunders,¹ and Fowler.³

**BaCl₂** (aq.). Guntz and Benoit^{1, 2} found Q=128.4 for the reaction, Ba (c) +2 HCl(140) = BaCl₂(280) + H₂ (g), at 7°; whence, for BaCl₂ (200), Qf=207.3. With less pure samples, Thomsen¹⁵ and Guntz³ measured the heat of solution of barium in aqueous HCl and Guntz³ that in water. Data on the heat of dilution of aqueous barium chloride were reported by Pratt,¹ Magie,¹ Richards and Dole,¹ Lehtonen,¹ Perreu,² Smith, Stearns, and Schneider,¹ and Lange and Streeck.¹

 $Ba^{++}(\infty)$ . This value is obtained from those for  $BaCl_2(\infty)$  and  $Cl^{-}(\infty)$ .

BaO (c). de Forcrand^{11, 48, 51} measured the heat of solution of barium oxide in 600 H₂O to be 35.64 at 15°. For the heat of solution of barium oxide in aqueous HCl, Berthelot²² found 55.58 in 2 HCl(300) at 11°, and Thomsen¹⁵ 62.30 in 2 HCl(200) at 18°.

BaO (g). Vapor pressure data were reported by Thompson and Armstrong¹ and Classen and Veeneman.¹

- BaO₂ (c). Berthelot^{30, 61} measured the heat of solution of barium peroxide in aqueous HCl and in aqueous (SnCl₂+5 HCl). Dissociation pressure data on BaO₂ (c) were reported by LeChatelier⁶ and Hildebrand, and reviewed by Biltz⁸ and Lewis and Randall.⁵
- $BaO_2 \cdot nH_2O$  (c). Berthelot⁶¹ measured the heat of solution of the mono- and decahydrates in aqueous HCl, and de Forcrand^{26, 27} that of the decahydrate.
- BaO₂· H₂O₂ (c). Berthelot⁶¹ and de Forcrand^{26, 27} measured the heat of solution in aqueous HCl.
- Ba(OH)₂ (aq.). Data on the heat of neutralization of Ba(OH)₂ (aq.) with 2 HCl (aq.) were reported by Anderson and Noyes,¹ von Steinwehr,¹ Berthelot,²² and Thomsen.¹⁵ The value for barium hydroxide at infinite dilution is obtained from those for aqueous barium and hydroxyl ions.
- Ba(OH)₂ (c). The data on the heat of solution of barium hydroxide are: Thomsen,¹⁵ 12.26₈₀₀; Berthelot,²² 40.0 and 38.0 in aqueous HCl; de Forerand,^{11, 48, 51} 11.60₆₆₀¹⁵. See also Johnston.⁵
- Ba(OH)₂·nH₂O (c). de Forcrand^{11, 48, 51} measured the heat of solution of the monohydrate. For the heat of solution of the octahydrate, the data are: Thomsen,¹⁵ -15.21₈₀₀; Berthelot,²² -13.0; de Forcrand,⁵¹ -14.50₆₆₀¹⁵; Sill,¹ -15.8.
- BaH₂ (c). For the heat of solution of barium hydride in aqueous HCl at 7°, Guntz and Benoit¹ found 87.6. See also Guntz¹⁶ and Kassarnowsky.^{1, 2}
  - Ba₂O (c). Benoit² measured the heat of solution in aqueous HCl.
- BaF₂ (aq.). The value for infinite dilution is obtained from those for the aqueous ions.
- $BaF_2$  (c). Petersen³ measured the heat of reaction of  $BaCl_2$  (aq.) with 2 AgF (aq.). Guntz¹ and Petersen³ measured the heat of reaction of  $Ba(OH)_2$  (aq.) with 2 HF (aq.). Petersen³ reported the heat of solution of  $BaF_2$  (c) to be -2.0.
- BaCl₂ (c). Data on the heat of solution of barium chloride were reported by Thomsen,¹⁵ Berthelot,^{7, 22} Berthelot and Ilosvay,¹ Benoit,² Baud,¹ Schottky,¹ Kolosovskii,⁵ and Lehtonen.¹ See also Cambi and Devoto.¹
- BaCl₂·H₂O (c). Schottky¹ measured the heat of solution. Dissociation pressure data were reported by Foote and Scholes,¹ Lescoeur,² Muller-Erzbach,¹ and Trip¹ (see Hüttig and Slonim¹).
- BaCl₂·2 H₂O (c). Data on the heat of solution of the dihydrate were reported by Thomsen, ¹⁵ Berthelot, ⁷ Favre and Silbermann, ³ Kolosoyskii, ⁵ Perreu, ¹ and Favre and Valson. ² Dissociation pressure data were reported by Trip¹ (see Hüttig and Slonim¹), Baxter and Cooper, ¹ Menzies, ¹ Foote and Scholes, ¹ Schumb, ¹ Frowein, ¹ Schottky, ¹ Cohen, ⁴ Muller-Erzbach, ³, ⁴ Partington, ¹ and Lescoeur. ²
- $Ba(ClO)_2$  (aq.). Berthelot²⁶ and Neumann and Muller² measured the heat of reaction of  $Ba(OH)_2$  (aq.) with  $Cl_2$  (g), and Neumann and Muller² that of  $Ba(OH)_2$  (aq.) with 2 HClO (aq.).

BARIUM 357

Ba(ClO₂)₂ (c). Bruni and Levi¹ reported the heat of dissociation of barium chlorite into barium chloride and oxygen.

 $Ba(ClO_3)_2$  (aq.). Berthelot²⁹ and Thomsen¹⁵ measured the heat of reduction of aqueous barium chlorate with aqueous sulfur dioxide. The value for  $Ba(ClO_3)_2$  ( $\infty$ ) is obtained from those for the aqueous ions at infinite dilution.

Ba(ClO₃)₂ (c). Berthelot⁹ measured the heat of solution.

Ba(ClO₃)₂·H₂O (c). For the heat of solution, Thomsen¹⁵ found  $-11.24_{600}$  and Berthelot⁹  $-11.48_{500}$ ¹⁰.

 $Ba(ClO_4)_2$  (aq.). Thomsen¹⁵ and Berthelot⁷⁹ measured the heat of neutralization of aqueous perchloric acid with aqueous barium hydroxide. The value for  $Ba(ClO_4)_2$  ( $\infty$ ) is obtained from those for  $Ba^{++}$  ( $\infty$ ) and  $ClO_4^-$  ( $\infty$ ).

 $Ba(ClO_4)_2 \cdot nH_2O$  (c). Berthelot⁹ measured the heats of solution of the anhydrous salt and the trihydrate.

 $BaCl_2 \cdot BaO \cdot nH_2O$  (c). Andre^{1, 3} measured the heats of solution of the tri-, penta-, and octahydrates, but reported his results in terms of the heat of the reaction,  $BaCl_2$  (c) +BaO (c)  $+nH_2O$  (liq.)  $=BaCl_2 \cdot BaO \cdot nH_2O$  (c), without stating the values used for the heat of formation of BaO (c). However, the value of Qf for the pentahydrate can be computed from the data of Tassilly⁴ who measured its heat of solution in aqueous HCl to be 18.5, and the differences between the various hydrates can then be obtained from the data of Andre.^{1, 3}

BaBr₂ (aq.). The value for barium bromide at infinite dilution is obtained from those for the aqueous ions. Data on the heat of dilution of aqueous barium bromide were reported by Lange and Streeck.¹

BaBr₂ (c). The data on the heat of solution are: Thomsen, ¹⁵ 4.98₄₀₀; Varet, ² 4.0. See also Cambi and Devoto. ¹

 $BaBr_2 \cdot H_2O$  (c). Dissociation pressure data were reported by Lescoeur⁷ and Trip¹ (see Hüttig and Slonim¹).

Ba(BrO)₂ (aq.). Berthelot⁴⁵ measured the heat of reaction of aqueous barium hydroxide with bromine.

Ba(BrO₃)₂ (aq.). These values are obtained from those for the ions. Ba(BrO₃)₂·H₂O (c). Greensfelder and Latimer¹ measured the heat of solution.

 $BaBr_2 \cdot BaO \cdot nH_2O$  (c). Tassilly⁵ measured the heats of solution of the di- and pentahydrates in aqueous HBr.

BaI₂ (aq.). The value for infinite dilution is obtained from those for the aqueous ions. We have estimated the heat of dilution.

BaI₂ (c). Tassilly^{1, 3} measured the heat of solution. See also Cambi and Devoto.¹

 $BaI_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heat of solution of the heptahydrate. Dissociation pressure data on the hydrates with 1, 2,  $2\frac{1}{7}$ , and  $7H_2O$  were reported by Trip¹ (see Hüttig and Slonim¹).

Ba(IO₃)₂ (aq.). This value is obtained from those for the aqueous ions.

 $Ba(IO_3)_2$  (c). Chroustchoff¹ measured the heat of reaction of this salt with  $K_2SO_4$  (aq.) to be -4.6.

 $Ba(IO_3)_2 \cdot H_2O$  (c). Chroustchoff¹ measured the heats of reaction of  $BaCl_2$  (aq.) with  $2 \, KIO_3$  (aq.), of  $Ba(NO_3)_2$  (aq.) with  $2 \, KIO_3$  (aq.), and of  $Ba(NO_3)_2$  (aq.) with  $2 \, HIO_3$  (aq.) to be 11.0, 10.6, and 13.5, respectively, at 13°. The iodate formed in these reactions is barium iodate monohydrate.

 $BaI_2 \cdot BaO \cdot nH_2O$  (c). Tassilly measured the heats of solution of the di- and nonahydrates in aqueous HI.

BaS (aq.). Thomsen¹⁵ and Sabatier¹ measured the heat of neutralization of H₂S (aq.) with Ba(OH)₂ (aq.). The value for infinite dilution is obtained from those for the aqueous ions.

BaS (c). Sabatier¹ measured the heat of solution in aqueous HCl. BaSO₃ (c). de Forcrand³ measured the heat of reaction of H₂SO₃ (aq.) with Ba(OH)₂ (aq.).

 $Ba(HSO_3)_2$  (aq.). de Forcrand³ measured the heat of reaction of  $Ba(OH)_2$  (aq.) with  $2 H_2SO_3$  (aq.).

**BaSO**₄ (c). Thomsen¹⁵ measured the heats of the reactions of Ba(OH)₂(400) with H₂SO₄(400) and of BaCl₂(400) with H₂SO₄(400) to be 36.90 and 4.15, respectively; whence, for BaSO₄ (c), Qf = 349.49 and 349.20. See also Berthelot⁹ and Muller.¹⁰ Melcher¹ calculated the heat of solution of barium sulfate to be -6.0, from conductivity measurements at various temperatures.

 $BaS_2O_6$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $BaS_2O_6$  (aq.) with  $H_2SO_4(400)$ .

BaS₂O₆·2 H₂O (c). Thomsen¹⁵ measured the heat of solution.

 $BaS_2O_8$  (aq.). Berthelot¹⁰⁷ measured the heat of reaction of  $BaS_2O_8$  (aq.) with  $H_2SO_4$  (aq.).

BaS₂O₈·4 H₂O (c). Berthelot¹⁰⁷ measured the heat of solution.

BaS₄O₆ (aq.). This value is obtained from the ions.

BaS₄O₆·2 H₂O (c). Portillo¹ measured the heat of solution.

 $Ba(HS)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Ba(OH)_2$  (aq.) with  $2H_2S$  (aq.).

BaSO₄ · H₂SO₄ (c). Volchowsky¹ measured the heat of solution.

 $BaSO_4 \cdot 2 H_2SO_4 \cdot H_2O$  (c). Volchowsky¹ measured the heat of solution.

 $BaI_2 \cdot nSO_2$  (c). Ephraim and Kornblum¹ reported dissociation pressure data on  $BaI_2 \cdot 2 SO_2$  (c) and  $BaI_2 \cdot 4 SO_2$  (c).

BaSe (c). Fabre measured the heat of solution in aqueous HCl.

BaSeO₄ (c). Metzner¹ measured the heat of reaction of BaCl₂ (aq.) with H₂SeO₄ (aq.).

 $Ba(N_3)_2$  (aq.). Berthelot and Matignon measured the heat of neutralization of  $2 HN_3$  (aq.) with  $Ba (OH)_2$  (aq.).

Ba(N₃)₂ (c). Berthelot and Matignon measured the heat of solution.

Ba₃N₂ (c). Guntz and Benoit¹ measured the heat of solution in aqueous HCl. See also Guntz.¹⁶

 $Ba(NO_2)_2$  (aq.). Berthelot²⁸ measured the heat of reaction of  $Ba(NO_2)_2$  (aq.) with  $H_2SO_4$  (aq.).

Ba(NO₂)₂ (c). Berthelot²⁸ measured the heat of solution

 $Ba(NO_2)_2 \cdot 2 H_2O$  (c). Berthelot²⁸ measured the heat of solution.  $Ba(NO_3)_2$  (aq.). Thomsen¹⁵ measured the heats of reaction of  $H_2SO_4(400)$  with  $Ba(OH)_2(400)$  and  $Ba(NO_3)_2(400)$  to be 28.28 and 8.56, respectively; whence, for  $Ba(NO_3)_2(800)$ , Qf = 227.19 and 227.92. Berthelot^{9, 12} reported Q = 28.0 and 5.2 for the reactions of  $H_2SO_4(400)$  with  $Ba(OH)_2(400)$  and of  $Ba(NO_3)_2(400)$  with  $K_2SO_4(400)$ . Data on the heat of dilution of aqueous barium nitrate were reported by Pratt,¹ Bishop,¹ Stackelberg,¹ Lange and Streeck,² and Hammerschmid and Lange.¹

 $Ba(NO_3)_2$  (c). The data on the heat of solution are: Thomsen, ¹⁵  $-9.47_{400}$ ; Stackelberg,  $-10.03_{1000}$  ¹⁶; Berthelot, ^{9, 131}  $-9.28_{1000}$  ¹².

BaNH (c). Guntz and Benoit¹ measured the heat of solution in aqueous HCl.

Ba(NH₂)₂ (c). Guntz and Benoit¹ measured the heat of solution in aqueous HCl.

Ba · 6 NH₃ (c). Biltz and Hüttig² measured the dissociation pressure.

BaX₂·nNH₃ (c). Dissociation pressure data on the octammine of barium chloride were reported by Hüttig and Martin¹ and Gillespie and Lurie.¹ Hüttig and Martin¹ reported dissociation pressure data on the ammines of BaBr₂ with 1, 2, 4, and 8 NH₃, and those of BaI₂ with 2, 4, 6, 8, 9, and 10 NH₃.

 $Ba_3(PO_4)_2$  (c, ppt.). Berthelot and Louguinine³ recomputed the data of Berthelot,⁵² who measured the heat of reaction of  $H_3PO_4$  (aq.) with  $1\frac{1}{2}$   $Ba(OH)_2$  (aq.) to form the crystalline precipitate and also to form the colloid, to be 60.8 and 78.2, respectively. See also Joly.^{3, 4}

BaHPO₄ (aq.). Berthelot and Louguinine³ recomputed Berthelot's⁵² data on the heat of reaction of H₃PO₄ (aq.) with Ba(OH)₂ (aq.). See also Berthelot¹⁰¹ and Joly.^{3, 4}

 $Ba(H_2PO_4)_2$  (aq.). Berthelot and Louguinine³ recalculated the data of Berthelot⁵² on the heat of reaction of  $H_3PO_4$  (aq.) with  $\frac{1}{2}Ba(OH)_2$  (aq.). See also Joly.^{3, 4}

 $BaH_2P_2O_6$  (aq.). Joly³ measured the heat of reaction of  $H_4P_2O_6$  (aq.) with  $Ba(OH)_2$  (aq.) to be 35.4.

 $Ba(H_2PO_2)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of this substance with  $H_2SO_4$  (aq.).

 $Ba(H_2PO_2)_2 \cdot H_2O$  (c). Thomsen¹⁵ measured the heat of solution.  $Ba_3(AsO_4)_2$  (c, ppt.). Blarez² measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $1\frac{1}{2}Ba(OH)_2$  (aq.).

BaHAsO₄ (aq.). Blarez² measured the heat of reaction of H₃AsO₄ (aq.) with Ba(OH)₂ (aq.). See also Joly.³

 $Ba(H_2AsO_4)_2$  (aq.). Blarez² measured the heat of reaction of  $H_3AsO_4$  (aq.) with  $\frac{1}{2}Ba(OH)_2$  (aq.).

BaHAsO₃ (aq.). Thomsen¹⁵ measured the heat of reaction of H₃AsO₃ (aq.) with Ba(OH)₂ (aq.).

 $Ba(H_2AsO_3)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $H_3AsO_3$  (aq.) with  $\frac{1}{2}Ba(OH)_2$  (aq.).

BaCO₃ (c). Thomsen¹⁵ measured the heats of reaction of BaCl₂ (aq.) with Na₂CO₃ (aq.) and with K₂CO₃ (aq.), and the heat of neutralization of H₂CO₃ (aq.) with Ba(OH)₂ (aq.). See also Berthelot.^{9, 12} Dissociation pressure data were reported by Johnston,⁵ Dutoit,¹ Abich,¹ Isambert,⁴ Brill,² and Finkelstein.¹

 $BaO \cdot BaCO_3$  (c). Finkelstein¹ reported dissociation pressure data for the reaction,  $2 BaCO_3$  (c)  $= BaO \cdot BaCO_3$  (c)  $+ CO_2$  (g).

 $BaC_2O_4 \cdot H_2O$  (c). Berthelot¹⁰ measured the heat of reaction of aqueous oxalic acid with aqueous barium hydroxide to form the monohydrate.

 $Ba(HCO_3)_2$  (aq.). Randall and Tamale² reviewed the data of Schloesing,^{1, 2} Haehnel,^{1, 2} and McCoy and Smith¹ on the solubility of barium carbonate in aqueous carbonic acid, and calculated Q=7.86 for the reaction,  $BaCO_3$  (c)  $+CO_2$  (g)  $+H_2O$  (liq.)  $=Ba(HCO_3)_2$  (aq.).

Ba(CHO₂)₂ (aq.). Berthelot³¹ measured the heats of reaction of Ba(CHO₂)₂ (aq.) with 2 HCl (aq.), of BaCl₂ (aq.) with 2 HCHO₂ (aq.), and of H₂SO₄ (aq.) with Ba(CHO₂)₂ (aq.).

Ba(CHO₂)₂ (c). Berthelot⁷ measured the heat of solution of barium formate.

 $Ba(C_2H_3O_2)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of aqueous barium acetate with aqueous sulfuric acid. Berthelot^{7, 9} and Thomsen¹⁵ measured the heat of neutralization of aqueous barium hydroxide with aqueous acetic acid. The value for barium acetate at infinite dilution is obtained from those for the aqueous ions.

 $Ba(C_2H_3O_2)_2$  (c). Berthelot^{7, 9} measured the heat of solution.

 $Ba(C_2H_3O_2)_2 \cdot 3 H_2O$  (c). Berthelot^{7,9} measured the heat of solution.

 $Ba(C_2H_3O_3)_2$  (aq.). The value for aqueous barium glycollate is obtained from those for the ions.

 $Ba(C_2H_3O_3)_2$  (c). de Forerand³ measured the heat of solution of barium glycollate.

3 BaO·4 CH₃OH (c). de Forcrand^{2, 16, 18} measured the heat of solution in aqueous HCl.

 $3 \text{ BaO} \cdot 4 \text{ C}_2\text{H}_5\text{OH}$  (c). de Forcrand^{2, 16, 18} measured the heat of solution.

 $Ba(C_2H_5O)_2$  (c). de Forcrand^{2, 16, 18} measured the heat of solution.  $Ba(C_2H_5SO_4)_2$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Ba(C_2H_5SO_4)_2$  (400) with  $H_2SO_4$  (400) to be 9.34.

 $Ba(C_2H_5SO_4)_2 \cdot 2 H_2O(c)$ . Thomsen¹⁵ measured the heat of solution.

 $Ba(CN)_2$  (aq.). Joannis¹ measured the heat of neutralization of 2 HCN (aq.) with  $Ba(OH)_2$  (aq.).

BARIUM 361

 $Ba(CN)_2 \cdot nH_2O$  (c). Joannis¹ measured the heats of solution of the anhydrous salt and the mono- and dihydrates.

 $BaSiO_3$  (gls.). Tschernobaeff¹ reported Q=-41.0 for the reaction,  $SiO_2$  (c)  $+BaCO_3$  (c)  $=BaSiO_3$  (gls.)  $+CO_2$  (g), from calorimetric experiments, and Jander¹ calculated Q=-34.0 for the same reaction from equilibrium data. These data yield, for  $BaSiO_3$  (gls.), Qf=359 and 366. See also Marchal.¹

Ba(CNO)₂ (aq.). Lemoult¹ measured the heats of decomposition of aqueous barium cyanate with aqueous sulfuric acid and with aqueous nitric acid.

Ba(CNO)₂ (c). Lemoult¹ measured the heat of solution.

 $BaSiF_6$  (c). Hantke¹ measured the heat of reaction of  $H_2SiF_6$  (aq.) with  $Ba(OH)_2$  (aq.), and also the dissociation pressures of  $BaSiF_6$  (c).

 $BaI_2 \cdot 2 PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous double salt and the heptahydrate.

 $BaBr_2 \cdot nHgBr_2$  (aq.). Varet⁶ measured the heats of mixing  $BaBr_2$  (aq.) with  $\frac{1}{2}$ , 1, and  $2HgBr_2$  (aq.), respectively.

 $Ba(CN)_2 \cdot nHg(CN)_2$  (aq.). Varet² measured the heats of mixing  $Ba(CN)_2$  (aq.) with  $\frac{1}{2}$ , 1, and  $2Hg(CN)_2$  (aq.), respectively.

 $BaX_2 \cdot 2 Hg(CN)_2$  (aq.). Varet^{2, 6} measured the heats of mixing  $2 Hg(CN)_2$  (aq.) with  $BaCl_2$  (aq.),  $BaBr_2$  (aq.), and  $BaI_2$  (aq.), respectively.

 $BaX_2 \cdot 2 Hg(CN)_2 \cdot nH_2O$  (c). Varet^{2, 6} measured the heats of solution of the chloride pentahydrate, the bromide hexahydrate, and the iodide tetrahydrate.

 $Ba(CN)_2 \cdot nAgCN$  (aq.). Varet measured the heats of reaction of  $Ba(CN)_2$  (aq.) with 1 and 2 AgCN (c), respectively.

BaPtCl₆ (aq.). This value is obtained from the ions. Gire^{1, 3} measured the heat of reaction of aqueous barium chloroplatinate with cobalt.

BaPtCl₆ ·  $nH_2O$  (c). Gire^{1, 3} measured the heats of solution of the anhydrous salt and the hexahydrate, and the dissociation pressures of BaPtCl₈ (c).

 $Ba_2Fe(CN)_6$  (aq.). Joannis¹ measured the heat of reaction of  $H_4Fe(CN)_6$  (aq.) with  $2Ba(OH)_2$  (aq.).

 $BaH_2Fe(CN)_6$  (aq.). Joannis¹ measured the heat of reaction of  $H_4Fe(CN)_6$  (aq.) with  $Ba(OH)_2$  (aq.).

 $Ba_2Fe(CN)_6 \cdot 6 H_2O(c)$ . Joannis¹ measured the heat of solution.

 $Ba_3(FeCO(CN)_5)_2$  (aq.). Muller^{9, 10} measured the heat of reaction of  $H_3FeCO(CN)_5$  (aq.) with  $1\frac{1}{2}$  Ba(OH)₂ (aq.).

 $Ba_3(FeCO(CN)_5)_2 \cdot nH_2O$  (c). Muller^{9, 10} measured the heats of solution of the anhydrous salt and of the undecahydrate.

BaHFeCO(CN)₅ (aq.). Muller^{9, 10} measured the heat of reaction of H₀FeCO(CN)₅ (aq.) with Ba(OH)₂ (aq.).

 $Ba(H_2FeCO(CN)_5)_2$  (aq.). Muller^{9, 10} measured the heat of reaction of  $H_3FeCO(CN)_5$  (aq.) with  $\frac{1}{2}$  Ba(OH)₂ (aq.).

 $Ba(CN)_2 \cdot Ni(CN)_2$  (aq.). Varet⁴ measured the heats of mixing  $Ba(CN)_2$  (aq.) with  $Ni(CN)_2$  (aq.).

 $BaCrO_4$  (c). Chroustschoff and Martinoff¹ found Q=6.8 for the reaction of  $BaCl_2$  (aq.) with  $K_2CrO_4$  (aq.).

BaCl₂·2 AlCl₃ (c). Baud¹ measured the heat of solution.

3 BaCl₂ · AlCl₃ (c). Baud¹ measured the heat of solution.

 $BaMoO_4$  (c). Tammann and Westerholt¹ reported Q=60.1 for the reaction of BaO (c) with  $MoO_3$  (c).

 $BaWO_4$  (c). Tammann and Westerholt¹ reported Q=73.5 for the reaction of BaO (c) with WO₃ (c).

## RADIUM

Ra (c). Standard state.

## LITHIUM

Li (c). Standard state.

Li (liq.). Thum¹ reported for the heat of fusion the value -0.23; Sherman¹ calculated -0.115. Both of these values seem too low, because the entropy of fusion of the other alkali metals has the nearly constant value of 1.68 calories per degree per mole, and yields, for the heat of fusion, -0.77.

Li (g). Vapor pressure data were reported by Bogros¹ and Hartmann and Schneider.¹ Utilizing the data of the latter investigation, and neglecting the small effect due to the probable existence of some diatomic molecules in the vapor, we have calculated, for Li (g), Qf = -39.0. See also Sherman,¹ Joos and Hüttig,¹ and van Laar.9

The values for the energy states of the gaseous lithium atom are from the data of Ericson and Edlen¹ and Edlen and Ericson.³ See also Bacher and Goudsmit.¹

 $\text{Li}_2$  (g). Loomis and Nusbaum¹ reported the energy of dissociation,  $\text{Li}_2$  (g) = 2 Li (g), with each substance in its normal state, to be  $1.14\pm0.03$  volt-electrons.

**LiOH** (aq.). The heat of solution of Li (c) in water was measured by Thomsen, ¹⁵ Guntz, ³ Zukowsky, ¹ and Moers. ¹ These data have been recomputed, and give, respectively, for Li (c) +H₂O (liq.) = LiOH (200) + ½ H₂ (g), the following values for Q: 49.11, 53.09, 52.6, and 52.73. The value of Moers is taken as the best one, whence for LiOH (200), Qf = 121.10. The existing data on the heat of dilution of aqueous LiOH (de Forcrand, ¹⁰, ⁴⁸ Richards and Rowe²) were reviewed by Rossini, ³ who gave values from  $\infty$  to 25 H₂O.

Li⁺( $\infty$ ). The foregoing data give, for Li⁺( $\infty$ ) + OH⁻( $\infty$ ), Qf = 121.288, whence, for Li⁺( $\infty$ ), Qf = 66.628.

**LiOH** (c). de Forcrand⁴⁴ measured the heat of solution of LiOH (c) in HCl(220), and later (de Forcrand⁴⁷) its heat of solution in H₂O. His data yield, respectively, for Qf, 116.58 and 116.52. The average value, 116.55, gives  $S=4.55_{200}$ . Truchot² found  $S=5.82_{400}$ . See also Johnston.⁴

LITHIUM 363

 $\text{LiOH} \cdot n\text{H}_2\text{O}$  (c). de Forcrand⁵⁰ measured the heat of solution of  $\text{LiOH} \cdot \frac{1}{8} \text{H}_2\text{O}$  (c) and also (de Forcrand⁴⁴) that of  $\text{LiOH} \cdot \text{H}_2\text{O}$  (c).

Li₂O (c). de Forcrand⁴⁵ measured the heat of solution in water. See also Beketoff.²

 $\text{Li}_2\text{O}\cdot \frac{3}{4}\,\text{H}_2\text{O}$  (c). de Forcrand⁵⁰ measured the heat of solution in water.

 $\text{Li}_2\text{O}_2$  (aq.). de Forcrand³¹ measured the heat of reaction of HCl (aq.) with  $\text{Li}_2\text{O}_2$  (aq.), and of LiOH (aq.) with  $\text{H}_2\text{O}_2$  (aq.). His data yield, respectively, Qf = 159.5 and 157.7.

Li₂O₂ (c). de Forcrand³¹ measured the heat of solution in water.

LiH (c). The heat of formation of LiH can be computed from the difference in the heats of solution of Li (c) and LiH (c). The recalculated data of Guntz¹³ and Moers¹ yield almost identical values: Qf = 21.60 and 21.59, respectively.

LiH (g). The dissociation pressure data of Hüttig and Krajewski, Guntz, and Ephraim and Michel yield no reliable thermal values. Mulliken reported 2.47 volt-electrons for the energy of dissociation of gaseous normal LiH into gaseous normal Li and H atoms.

The values for the energy states of gaseous LiH are from Mulliken.⁶ See also Watson,² Nakamura,¹ and Jevons.¹

 $\text{Li}_2\text{O}_2\cdot\text{H}_2\text{O}_2\cdot\text{3 H}_2\text{O}$  (c). de Forcrand³¹ measured the heat of solution of this compound in water to be -4.5.

LiF (aq.). Petersen³ measured the heat of neutralization of HF (200) and LiOH (200). His data yield, for LiF (400), Qf = 144.69.

Lange and Leighton² (see Robinson¹) gave values for the heat of dilution of LiF (aq.) at 25°, and their data have been used to obtain values at 18° from  $\infty$  to 100  $\rm H_2O$ .

LiHF₂ (aq.). Petersen³ found, for  $2 \text{ HF}(100) + \text{LiOH}(200) = \text{LiHF}_2(401) + \text{H}_2\text{O} (\text{liq.}), Q = 16.35$ ; whence, for LiHF₂(400), Qf = 220.20.

LiF (c). de Forcrand¹² measured the heat of solution.

**LiF** (liq.), **LiF** (g). Vapor pressure data were given by Ruff, Schmidt, and Mugdan, and von Wartenberg and Schulz. The latter investigators estimated F = -6.0. Taking  $V = -52^{1600}$ , we have computed, for LiF (c) = LiF (g), Q = -63.

LiCl (aq.). The heat of neutralization of HCl (aq.) with LiOH (aq.) was measured by Thomsen, ¹⁵ Muller, ¹ and Richards and Rowe. ³ The most accurate data are those of Richards and Rowe, and these have been recomputed by Rossini, ⁶ who gave  $N=14.077_{201}$ . The data on the heat of dilution of LiCl (aq.) (Dunnington and Hoggard, ¹ Lemoine, ² Tucker, ¹ Richards and Rowe²) were reviewed by Rossini, ⁵ who gave values from  $\infty$  to 25 H₂O. Lange and Dürr² gave values at 25° for the heat of dilution to 3 H₂O, and Lemoine, ² at 10°, to 4.63 H₂O. These data have been converted to 18° and used to obtain values from 25 to 3 H₂O.

LiCl (c). The existing data on the heat of solution of LiCl have been recomputed to give the following values for  $S_{200}$ : Thomsen, 15 8.432;

Pickering, 8 8.100; Bonnefoi, 1 8.50; Haigh, 1 8.349; Lange and Dürr, 2 8.480; Maier 2 (see Slonim and Hüttig 1), 8.33; Wasserman, 1 8.544. The average of the values of Thomsen, Bonnefoi, Lange and Dürr, and Wasserman give  $8.49\pm0.03$ .

**LiCl** (liq.). Zemczuzny¹ calculated  $F = -3.7^{613}$  from the freezing point depression. von Wartenberg and Schulz¹ estimated F = -5.0.

LiCl (g). The vapor pressure data of Ruff and Mugdan¹ and von Wartenberg and Schulz¹ yield  $V = -37.3^{1200}$ . Visser¹ interpreted the spectral fluorescent limit as dissociation, obtaining  $D^z = -97$ .

LiCl(CH₃OH), LiCl(C₂H₅OH). Lemoine² measured the heat of solution of LiCl (c) in various amounts of methyl alcohol at 18°, and of ethyl alcohol at 12°.

**LiClO** (aq.). Neumann and Müller² measured the heat of reaction of  $Cl_2$  (g) with LiOH (aq.), and of LiOH (aq.) with HClO (aq.). Their data yield, respectively, Qf = 91.98 and 92.63, for LiClO (aq.).

LiCl·nH₂O (c). Bogorodskii¹ measured the heats of solution of the mono- and dihydrates. Maier² (see Slonim and Hüttig¹) measured the heat of solution of the monohydrate. Hüttig and Reuscher¹ measured the temperature coefficient of the dissociation pressures of the mono-, di-, and trihydrates.

LiBr (aq.). The heat of neutralization of HBr (aq.) with LiOH (aq.) was measured by Richards and Rowe.³ Their data have been recomputed, giving  $N=14.040_{201}$ . The heat of dilution of LiBr (aq.) at 25° was measured by Lange and Messner² in the very dilute region, and by Lange and Schwartz¹ in the concentrated range. Their data have been converted to 18° to give values from  $\infty$  to  $3 \text{ H}_2\text{O}$ .

LiBr (c). The data on the heat of solution of LiBr (c) have been recomputed to give the following values for  $S_{200}$ : Bodisko,² 11.39; Lange and Schwartz,¹ 11.37; Maier² (see Slonim and Hüttig¹), 11.51.

LiBr (liq.). We have estimated the heat of fusion.

LiBr (g). The vapor pressure data of Ruff and Mugdan¹ and von Wartenberg¹ yield  $V = -36.5^{1200}$ . Visser,¹ from the spectral fluorescent limit, computed  $D^z = -78.4$ .

 ${\bf LiBr\cdot nH_2O}$  (c). Maier² (see Slonim and Hüttig¹) measured the heats of solution of the mono- and dihydrates. Hüttig and Reuscher¹ measured the temperature coefficient of the dissociation pressures of the mono-, di-, and trihydrates.

LiI (aq.). The accurate data of Richards and Rowe³ have been recomputed, giving  $N=13.972_{201}$ , whence, for LiI (200), Qf=79.907. From Li⁺( $\infty$ ) + I⁻( $\infty$ ), one obtains, for LiI ( $\infty$ ), Qf=79.998. Using these two values, and extrapolating the series of curves representing the heats of dilution of LiF, LiCl, and LiBr, we have computed values of the heat of dilution of LiI (aq.) from  $\infty$  to 100 H₂O.

LiI (c). The data on the heat of solution of the LiI (c) have been recomputed to give the following values for  $S_{200}$ : Bodisko, 14.83; Maier (see Slonim and Hüttig¹), 14.80; Mosnier, 14.93. We have selected

LITHIUM 365

14.83 as the best value, whence, for LiI (c), Qf=65.08. Beketoff⁸ measured the heats of solution of LiCl (c) + NaI (c), LiI (c) + NaCl (c), LiCl (c) + KI (c), and LiI (c) + KCl (c). From his data one finds, for LiI (c), Qf=65.15 and 65.10, respectively.

LiI (liq.). We have estimated the heat of fusion.

LiI (g). The vapor pressure data of Ruff and Mugdan¹ yield  $V = -34.3^{1000}$ .

 $LiI \cdot nH_2O$  (c). Maier² (see Slonim and Hüttig¹) measured the heats of solution of the mono-, di-, and trihydrates. Hüttig and Pohle¹ measured the temperature coefficient of the dissociation pressures of the hemi-, mono-, di-, and trihydrates.

Li₂SO₄ (aq.). Thomsen¹⁵ measured the heat of neutralization of LiOH (200) with H₂SO₄ (400). Zukowsky¹ measured the heat of solution of Li (c) in H₂SO₄ (626). Thomsen's¹⁵ data yield  $N=31.27_{802}$ , whence, for Li₂SO₄ (800), Qf=348.57 and for Li₂SO₄ ( $\infty$ ), Qf=348.97; whereas, from 2Li⁺( $\infty$ ) +SO₄⁻( $\infty$ ), one finds 349.056. The heat of dilution of Li₂SO₄ (aq.) was measured in the very dilute range by Lange and Streeck,¹ whose data have been used to obtain values at 18° from  $\infty$  to 200 H₂O.

 $\text{Li}_2\text{SO}_4$  (c, II). The existing data yield the following values for  $S_{200}$ : Thomsen, ¹⁵ 5.96; Pickering^{2, 3} 6.18.

Li₂SO₄ (c, I). Hare¹ measured the heat of transition.

 $\text{Li}_2\text{SO}_4 \cdot \text{H}_2\text{O}$  (c). The existing data have been recomputed to give the following for  $S_{400}$ : Thomsen, 15 3.41; Pickering, 3 3.26.

 $LiI \cdot nSO_2$  (c). Ephraim and Kornblum¹ measured the temperature coefficient of the dissociation pressures of  $LiI \cdot SO_2$  (c) and  $LiI \cdot 2SO_2$  (c).

Li₂Se (aq.). Fabre¹ measured the heat of neutralization of LiOH(220) with H₂Se (g). His data yield, for Li₂Se (440), Qf = 95.3.

 $\text{Li}_2\text{Se} \cdot n\text{H}_2\text{O}$  (c). Fabre¹ measured the heats of solution of  $\text{Li}_2\text{Se}$  (c) and  $\text{Li}_2\text{Se} \cdot 9\text{H}_2\text{O}$  (c).

Li₃N (c). Guntz¹⁴ measured the heat of solution.

LiNO₃ (aq.). The recomputed (see Rossini⁶) data of Richards and Rowe³ give  $N=13.931_{201}$ . The heat of dilution data of Richards and Rowe,² 25 to 400 H₂O, were extrapolated to  $\infty$  H₂O by Rossini,⁵ and we have extrapolated in the concentrated region to  $3 \text{ H}_2\text{O}$ .

LiNO₃ (c). The data on the heat of solution of LiNO₃ (c) have been recomputed to give the following values for  $S_{200}$ : Thomsen, ¹⁵ 0.273; Berthelot, 0.331; Pickering, ⁸ 0.329; Haigh, ¹ 0.340.

Lino₃ (liq.). Goodwin and Kalmus¹ measured the heat of fusion.

LiNO₃·3H₂O (c). Morgan and Benson¹ found, from measurement of the constant of the freezing point lowering,  $F^{29.9} = -8.7$ . This gives, at 18°, F = -8.4, which is equivalent to  $S_3$ .

LiNO₃(C₂H₅OH). Pickering⁸ measured the heat of solution of LiNO₃(c) in ethyl alcohol.

 $\mathbf{LiNH}_2$  (c). Guntz and Benoit¹ measured the heat of solution in HCl (aq.).

Li(NH₃)₄ (liq.). Kraus¹ and Benoit¹ measured the temperature coefficient of the dissociation pressure.

Li₂NH (c). Guntz and Benoit¹ measured the heat of solution in HCl (aq.).

Li₂C₂ (c). The heat of solution in water was measured by Guntz.¹⁵

 $\text{Li}_2\text{CO}_3$  (aq.). Muller¹ measured the heat of reaction between 2HCl(90) and  $\text{Li}_2\text{CO}_3(1800)$ ; de Forcrand⁴⁹ that between 2LiOH(100) and  $\text{CO}_2(1800)$ . Their data yield, respectively, for  $\text{Li}_2\text{CO}_3(2000)$ , Qf = 293.31 and 293.27.

**LiHCO₃ (aq.).** Muller¹ measured the heat of reaction between 2HCl(90) and 2LiHCO₃(980). Combination of these data with his values for the reaction between 2HCl(90) and Li₂CO₃(1800), gives, for the heat of reaction between Li₂CO₃(1800) and H₂CO₃(2000) to form 2LiHCO₃ (1000), Q=1.93. Using, for Li₂CO₃(1800), Qf from Muller's data, gives, for LiHCO₃(1900), Qf=231.38.

Li₂CO₃ (c). de Forcrand⁴⁹ measured the heat of solution in water. LiCH₃O(60 CH₃OH). de Forcrand¹⁶ measured the heat of solution of Li (c) in methyl alcohol.

 $\text{LiC}_2\text{H}_3\text{O}_2\cdot n\text{H}_2\text{O}$  (c). The vapor pressure of the hydrates was measured at various temperatures by Lescoeur.⁶

 $\text{LiC}_2\mathbf{H}_5\mathbf{O}(60\ \mathbf{C}_2\mathbf{H}_5\mathbf{OH})$ . de Forcrand¹⁶ measured the heat of solution of Li (c) in ethyl alcohol.

LiCN (aq.). Varet³ measured the heat of neutralization of LiOH (110) with HCN(110).

 $\text{Li}_2 \text{SiO}_3$  (gls.). Tschernobaeff¹ measured the heat of reaction between  $\text{SiO}_2$  and  $\text{Li}_2 \text{CO}_3$  in a bomb using carbon as the auxiliary combustible material.

 $\text{Li}_2\text{SiF}_6$  (aq.). Truchot² measured the heat of reaction between  $\text{SiF}_4$  (g) and 2LiF (c), and between  $\text{H}_2\text{SiF}_6$  (aq.) and 2LiOH (aq.). His data yield, respectively, for Qf,  $\text{Li}_2\text{SiF}_6(220)$ , 676.9, and  $\text{Li}_2\text{SiF}_6(1320)$ , 680.9.

Li₂SiF₆ (c). Truchot² measured the heat of solution.

 $2LiI \cdot PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the tetrahydrate.

 $n \text{LiCl} \cdot \text{ThCl}_4 \cdot m \text{H}_2 \text{O}$  (c). Chauvenet² measured the heats of solution of  $\text{LiCl} \cdot \text{ThCl}_4 \cdot 8 \text{H}_2 \text{O}$  (c) and of  $2 \text{LiCl} \cdot \text{ThCl}_4$  (c).

LiHg₉₉ (liq.). Lewis and Keyes² computed the partial molal heat of solution of Li (c) in LiHg₉₉ (liq.) from the temperature coefficient of the electromotive force of cells.

 $LiHg_n$  (c). Zukowsky¹ measured the heat of solution of Li and its solid amalgams in  $H_2SO_4$  (aq.).

nLiBr·HgBr₂ (aq.). Varet⁶ measured the heat of mixing, in various proportions, of LiBr (aq.) with HgBr₂ (aq.).

 $n \text{LiCN} \cdot \text{Hg(CN)}_2$  (aq.). Varet² measured the heat of mixing of LiCN (aq.) with  $\text{Hg(CN)}_2$  (aq.).

 $nLiX \cdot Hg(CN)_2$  (aq.). Varet² measured the heat of mixing of LiCl (aq.) with  $Hg(CN)_2$  (aq.), LiBr (aq.) with  $Hg(CN)_2$  (aq.), and LiI (aq.) with  $Hg(CN)_2$  (aq.).

 $\text{LiX} \cdot \text{Hg(CN)}_2 \cdot 3\frac{1}{2} \text{H}_2\text{O(c)}$ . Varet² measured the heats of solution of the bromide and the iodide.

 $\text{LiX} \cdot n\text{NH}_3$  (c). Bonnefoi¹ measured the heats of solution of the mono-, di-, tri-, and tetrammines of LiCl and LiBr, and also the temperature coefficient of their dissociation pressures. Biltz and Hansen¹ measured the temperature coefficient of the dissociation pressures of the ammines of LiCl containing 4 and 5 moles of NH₃; and of LiI with 1, 2, 3, 4, 5, and  $6\frac{1}{2}$  moles of NH₃; and of LiI with 1, 2, 3, 4, 5,  $5\frac{1}{2}$ , and 7 moles of NH₃. Ephraim⁵ obtained similar but discordant data on LiI · 4NH₃ (c).

LiX · nCH₃NH₂ (c), LiX · n(CH₃)₂NH (c), LiX · nC₂H₅NH₂ (c). Bonnefoi¹ measured the heats of solution of LiCl · nCH₃NH₂ (c) with 1, 2, and 3 moles of CH₃NH₂, of LiCl · (CH₃)₂NH (c), and of LiCl · nC₂H₅NH₂ (c) with 1, 2, and 3 moles of C₂H₅NH₂, and also obtained data on the temperature coefficient of the dissociation pressures of LiCl · nCH₃NH₂ (c) with 1, 2, and 3 moles of CH₃NH₂, and of LiCl · nC₂H₅NH₂ (c), with 1, 2, and 3 moles of C₂H₅NH₂. Simon and Glauner¹ measured, at various temperatures, the dissociation pressures of LiCl · nCH₃NH₂ (c) with 1, 2, 3, and 4 moles of CH₃NH₂, of LiBr · nCH₃NH₂ (c) with 1, 2, 3, 4, and 5 moles of CH₃NH₂, of LiI · nCH₃NH₂ (c) with 1, 2, 3, and 3½ moles of CH₃NH₂ of LiCl · nCH₃NH₂ (c) with 1, 2, and 3 moles of CH₃NH₂, of LiBr · nCH₃NH₂ (c) with 1, 2, and 3 moles of CH₃)₂NH, of LiBr · nCH₃)₂NH (c) with ½, 1, 2, 3, 4, and 5 moles of (CH₃)₂NH, and of LiI · nCH₃)₂NH (c) with ½, 1, 1½, 2, 3, and 5 moles of (CH₃)₂NH.

## SODIUM

Na (c). Standard state.

Na (liq.). The data on the heat of fusion are: Griffiths,  1  -0.634; Rengade,  5  -0.627; Iitaka,  1  -0.598; Joannis,  2  -0.73; Bernini,  1 ,  2 ,  3  -0.41; Bridgman,  2  -0.69.

Na (g). We have calculated the heat of sublimation of sodium to form the monatomic gas from the vapor pressure-temperature data, taking due account of the appreciable amount of Na₂ molecules contained in the actual vapor at equilibrium. The vapor pressure data used are those of Edmonson and Egerton,^{1, 2} Rodebush and Walters,¹ Rodebush,² Rodebush and de Vries,¹ Rodebush and Henry,¹ Haber and Zisch,¹ Ladenberg and Minkowski,¹ and Gibhart.¹ See also Kroner,¹ Hackspill,¹ van Laar,⁹ and Simon and Zeidler.¹ Our value for the heat of sublimation, Na (c) = Na (g), is -25.9 at 18°. Sherman¹ calculated -25.8.

The values for the energy states of the sodium atom are taken from Fowler,³ Bacher and Goudsmit,¹ and Sodergvist.¹

 $Na_2$  (g). Loomis and Nusbaum³ and Nusbaum and Loomis¹ reported the energy of dissociation,  $Na_2$  (g) = 2 Na (g), with each substance in its normal state, to be  $0.76\pm0.02$  volt-electrons. The values for the energy

states of gaseous diatomic sodium are from Mulliken,⁶ Loomis,¹ Loomis and Wood,¹ Fredrichson and Watson,¹ Fredrichson,¹ Wiezel and Kulp,¹ and Kimura and Uchida.¹

NaOH (aq.). The heat of solution of Na (c) in water was measured by Thomsen, ¹⁵ Joannis, ² Rengade, ¹ and Hagen and Sieverts. ¹ Their recomputed data give, respectively, for Na (c) +H₂O (liq.) = NaOH (200) +  $\frac{1}{2}$  H₂ (g), the following values, for Q:  $43.56 \pm 0.02$ ,  $43.08 \pm 0.20$ ,  $44.00 \pm 0.23$ , and  $44.42 \pm 0.21$ . Selecting 43.7 as the best value, we have obtained, for NaOH (100), Qf = 112.1. The existing data on the heat of dilution of NaOH (aq.) from 25 to 3200 H₂O (Richards and Rowe, ² Pratt, ¹ Richards and Gucker ¹) were reviewed by Rossini, ⁵ who gave values from 25 to  $\infty$  H₂O. For the concentrated region, the data of Thomsen, ¹⁵ Berthelot, ²⁰ Sabatier, ¹ de Forcrand, ⁵⁵ Richards and Rowe, ² and Richards and Hall ² have been utilized to obtain values from 25 to 3 H₂O.

Na⁺( $\infty$ ). The foregoing data give, for Na⁺( $\infty$ ) + OH⁻( $\infty$ ), Qf = 112.139; whence, for Na⁺( $\infty$ ), Qf = 57.479. Allmand and Pollock, from measurements of the electromotive force of cells at various temperatures, found, for Na (c) + HgCl (c) = NaCl (c) + Hg (liq.), Q = 66.74. Using our values for the heats of formation of HgCl (c) and Cl⁻( $\infty$ ), and the heat of solution and dilution of NaCl, these data give, for Na⁺( $\infty$ ), Qf = 57.48.

**NaOH** (c, II). The data on the heat of solution of NaOH (c, II) yield the following values for  $S_{200}$ : Thomsen, ¹⁵ 9.96; Berthelot, ²⁰ 10.01; de Forcrand, ³⁵ 10.18.

NaOH ·nH₂O (c). de Forcrand³⁵ measured the heats of solution of NaOH ·  $\frac{1}{2}$  H₂O (c), NaOH ·  $\frac{2}{3}$  H₂O (c), NaOH ·  $\frac{3}{4}$  H₂O (c), and NaOH · H₂O (c); Berthelot²⁰ that of NaOH · 0.76 H₂O (c); and Pickering¹² that of NaOH · H₂O (c). The values calculated from the data of de Forcrand are taken as the best. For NaOH · H₂O (c), the following values for  $S_{200}$  were computed: de Forcrand, 35 5.09; Pickering, 12 5.08. See also Shibata. 1

NaOH (c, I). Hevesy measured the heat of transition.

 $Na_2O$  (c). The data of Rengade³ and Matsiu and Nakata¹ yield, respectively, for  $S_{200}$ , 56.48 and 56.20. We have taken the average as the best value. Beketoff¹ found S=55 to 56.

 ${\bf Na_3O}$  (c). de Forcrand²⁵ measured the heat of solution.

Na₂O₂ (c). de Forcrand²⁵ measured the heat of solution in HCl (aq.). NaHO₂ (aq.). Joyner¹ measured the heat of mixing NaHO₂ (aq.) with HNO₃ (aq.)

NaH (c). de Forcrand⁴³ measured the heat of solution of NaH (c). Hagen and Sieverts¹ measured the heats of solution of Na (c) and of NaH (c). These data yield, respectively, for NaH (c), Qf = 17.9, and  $12.7 \pm 0.3$ . The dissociation pressure data of Keyes¹ yield Qf = 14.4. From the dissociation pressure data of Troost and Hautefeuille,⁸ Moutier¹ calculated Qf = 13. See also Zhukov.²

NaH (g). The value for the energy of dissociation of normal gaseous NaH into normal gaseous Na and H atoms is from Hori.⁶ See also Mulli-

ken.⁶ The values for the energy states of gaseous NaH are from Hori.⁶ See also Mulliken⁶ and Jevons.¹

NaF (aq.). Thomsen¹⁵ and Mulert¹ measured the heat of neutralization of HF (aq.) with NaOH (aq.). Their data yield respectively: NaF (400), Qf=135.50; NaF(70), Qf=138.1. We have selected Thomsen's value, since it gives a more concordant value for  $F^-(\infty)$ . We have estimated the heat of dilution of NaF (aq.) in the range 100 to  $\infty$  H₂O.

NaF (c). The heat of solution was measured by Guntz.1

NaF (liq.). Plato² measured the heat of fusion.

NaF (g). The vapor pressure data of von Wartenberg and Schulz¹ and Ruff, Schmidt, and Mugdan¹ yield  $V = -57^{1300}$ .

 $NaHF_2$  (aq.). Thomsen¹⁵ measured the heat of mixing NaF(200) with HF(200).

 $NaHF_2$  (c). The data of Guntz¹ and de Forcrand⁶⁰ yield identical values for  $S_{400}$ .

NaCl (aq.). The heat of neutralization of NaOH (aq.) with HCl (aq.) was measured by Hess,⁵ Andrews,^{2, 7, 11} Favre and Silbermann,³ Favre,³ Berthelot,⁴ Thomsen,¹⁵ Muller,¹ von Steinwehr,¹ Mathews,¹ Mathews and Germann,¹ Ellingson,¹ Keyes, Gillespie, and Mitsukuri,¹ Richards and Rowe,³ and Gillespie, Lambert, and Gibson.¹ The data of the last two named investigations were recomputed by Rossini,⁶ giving N=13.996₂₀₁. Biltz and Haasc¹ measured the heat of solution of Na (c) in excess HCl(8). The data on the heat of dilution of NaCl (aq.) from 25 to ∞ H₂O, (Pratt,¹ Richards and Rowe,² Lange and Messner,² Lange and Robinson,¹ Thomsen,¹⁵ van Deventer and van der Stadt,¹ Laksonen,² Backlung,¹ Magie,¹ Stearn and Smith¹) were reviewed by Rossini,⁵ who gave values from ∞ to 25 H₂O. For the concentrated region, the data of Wust and Lange,² Lipsett, Johnson, and Maass,¹ Randall and Bisson,¹ Stackelberg,¹ Sandonnini and Gerosa,¹ Scholz,¹ Laksonen,² and Allmand and Pollock¹ have been utilized to obtain values from 25 to 10 H₂O.

NaCl (c). The existing data on the heat of solution have been recomputed to give the following values for  $S_{200}$ : Winkelmann,  1  –1.14; Berthelot,  10  –1.18; Ostwald,  2  –1.235; Berthelot and Ilosvay,  1  –1.153; Thomsen,  15  –1.185; Pickering,  7  –1.210; Scholz,  1  –1.31; Varet,  2  –1.27; Stackelberg,  1  –1.106; Varali-Thevenet,  1  –1.225; Brönsted,  4  –1.164; Zemczuzny and Rambach,  1  –1.22; Randall and Bisson,  1  –1.219; Laksonen,  2  –1.255; Sandonnini and Gerosa,  1  –1.240; Wust and Lange,  2  –1:210; Lipsett, Johnson, and Maass,  1  –1.206; and Cohen and Kooy,  1  –1.203. We have taken the average of the values of Randall and Bisson, –1.219, Wust and Lange, –1.210, Lipsett, Johnson, and Maass, – 1.206, and Cohen and Kooy, –1.203, obtaining –1.210 ±0.005.

NaCl (liq.). The data on the heat of fusion of sodium chloride at its melting point are: Plato,  2  -7.23; Hare,  1  -7.23; Zemczuzny and Rambach,  1  -5.7; Roth and Bertram,  1  -7.41.

NaCl (g). Vapor pressure data were given by Fiock and Rodebush, Hackspill and Grandadam, Horiba and Baba, von Wartenberg and

Albrecht, and Ruff and Mugdan. We have selected V = -43.5, whence the heat of sublimation at 18° becomes -57.1. See also Beutler and Polanyi, Reis, and van Laar.

NaClO (aq.). Favre,¹ Berthelot,¹⁵¹ Thomsen,¹⁵ and Neumann and Müller² measured the heat of reaction between  $Cl_2$  (g) and NaOH (aq.). Their data yield, respectively, for NaClO(800), Qf=83, 84, 83.28, and 82.73. Thomsen¹⁵ and Neumann and Müller² also measured the heat of neutralization of NaOH (aq.) with HClO (aq.), their data yielding, respectively, NaClO(800), Qf=83.40, and NaClO(400), Qf=83.56.

NaClO₃ (aq.). Thomsen¹⁵ measured the heat of neutralization of NaOH (aq.) with HClO₃ (aq.). His data give, for NaClO₃(400), Qf = 78.25. The heat of dilution in the very dilute region was measured at 25° by Lange and Robinson.² We have converted their data to 18° and extrapolated to 200 H₂O.

NaClO₃ (c). The data of Berthelot² yield  $S=-5.1_{300}$ , and those of Bronsted,  $S=-5.32_{400}$ , giving Qf=83.4 and 83.57, respectively. From electromotive force measurements over a range of temperatures, Bronsted¹⁰ found, for KCl (c) +NaClO₃ (c) =KClO₃ (c) +NaCl (c), Q=1.52. Taking the other values as known, we have obtained, for NaClO₃ (c), Qf=83.64.

NaClO₄ (aq.). The data of Berthelot,⁷⁹ who measured the heat of neutralization of HClO₄ (aq.), yield, for NaClO₄ (660), Qf = 97.53. We have estimated the heat of dilution from  $400 \text{ to } \infty \text{ H}_2\text{O}$ .

NaClO₄ (c). Berthelot⁷⁹ measured the heat of solution.

NaBr (aq.). The heat of neutralization of HBr (aq.) with NaOH (aq.) was measured by Berthelot¹⁰ and Richards and Rowe.³ The latter data have been recomputed to give  $N=13.923_{201}$ . The heat of dilution of NaBr (aq.) was measured by Wust and Lange,² Lange and Robinson,¹ van Deventer and van der Stadt,² and Dunnington and Hoggard.¹ These data have been utilized to obtain values from  $\infty$  to  $6~\mathrm{H}_2\mathrm{O}$ .

**NaBr** (c). The data on the heat of solution have been recomputed to give the following values for  $S_{200}$ : Favre and Valson,  2  0.0; Berthelot,  10  -0.04; Thomsen,  15  -0.19; Varet,  2  -0.58; Wust and Lange,  2  -0.61.

NaBr (liq.). We have estimated the heat of fusion.

NaBr (g). Vapor pressure data were reported by von Wartenberg and Albrecht¹ and Ruff and Mugdan.¹ See also von Wartenberg and Schulz,¹ van Laar,³ and Beutler and Polanyi.¹ We have calculated V = -38.8,¹²⁵⁰ and -53.8 for the heat of sublimation at 18°. Franck, Kuhn, and Rollefson,¹ from the spectral absorption limit, computed  $D^z = -91$ , for NaBr (g). See also Visser.¹

NaBr·2 H₂O (c). The data on the heat of solution yield the following values for  $S_{200}$ : Favre and Valson, 2-4.9; Berthelot, 10 -4.31; Thomsen, 15 -4.59.

NaBrO (aq.). Thomsen¹⁵ measured the heat of reaction of Br₂ (g) with 2 NaOH (400). His data yield for NaBrO (aq.), Qf = 78.67. Berthelot's⁸¹ data on the same reaction are apparently uncertain.

- NaBrO₃ (aq.). From the ions, we have obtained for NaBrO₃ ( $\infty$ ), Qf=68.68. The data of Lange and Robinson,² who measured the heat of dilution in the very dilute range of concentration at 25°, have been converted to 18° and extrapolated to 200 H₂O.
- **NaI** (aq.). The heat of neutralization of HBr (aq.) with NaOH (aq.) was measured by Berthelot¹⁰ and Richards and Rowe.³ The latter data have been recomputed, giving  $N=13.855_{201}$ . The heat of dilution data of Wust and Lange² and Lange and Robinson,² at 25°, have been used to obtain values at 18° from  $\infty$  to  $5\,\mathrm{H}_2\mathrm{O}$ .
- NaI (c). The heat of solution data yield the following values for  $S_{200}$ : Favre and Valson, 1.7(?); Berthelot, 1.552; Thomsen, 1.147; Pickering, 1.392; Varet, 1.280; Mosnier, 1.40; and Wust and Lange, 1.555.
  - NaI (liq.). We have estimated the heat of fusion.
- NaI (g). Vapor pressure data were reported by von Wartenberg and Albrecht¹ and Ruff and Mugdan.¹ We have taken  $V = -38.6^{1100}$  and calculated -50.4 for the heat of sublimation at 18°. Sommermeyer¹ calculated, from the spectral absorption limit of sodium iodide vapor,  $D^z = -70$ .
- NaI·2 H₂O (c). The data on the heat of solution yield the following values for  $S_{200}$ : Favre and Valson,² -5.7(?); Berthelot,¹⁰ -3.80; and Thomsen,¹⁵ -3.98.
- $NaI(C_2H_5OH)$ . Pickering⁸ measured the heat of solution of sodium iodide in ethyl alcohol.
- NaIO₃ (aq.). From the ions, we have obtained for NaIO₃ ( $\infty$ ), Qf=111.98. The heat of dilution was measured at 25° by Lange and Robinson.²
- $Na_2S$  (aq.). Berthelot¹⁴ measured the heat of neutralization of  $H_2S$  (aq.) with 2 NaOH (aq.); Thomsen¹⁵ and Sabatier,¹ that of  $H_2S$  (g) with 2 NaOH (aq.). Their data yield for  $Na_2S$  (400), Qf = 104.98, 105.20, and 104.98, respectively. Sabatier¹ also measured the heat of mixing  $Na_2S$  (aq.) with 2 HCl (aq.), and of the reaction of  $Na_2S$  (aq.) with  $I_2$  (s). These latter data yield Qf = 105.3 and 104.1, respectively. Sabatier¹ measured the heat of dilution of  $Na_2S$  (aq.) from 20 to 400  $H_2O$ . We have estimated the values to infinite dilution.
- $Na_2S$  (c). The existing data yield the following values for  $S_{400}$ : Sabatier, 15.19; and Rengade and Costeaunu, 15.5(?).
- $Na_2S$  (liq.). Friedrich gave F = -1.65,  920  from the freezing point lowering constant.
- $Na_2S \cdot nH_2O$  (c). Sabatier¹ measured the heats of solution of the hydrates with  $4\frac{1}{2}$ , 5, and 9 moles of  $H_2O$ .
- NaHS (aq.). Berthelot¹⁴ measured the heat of reaction of NaOH (110) with H₂S(880); Thomsen¹⁵ that of NaHS(400) with NaOH(400); Sabatier¹ that of NaHS(1470) with HCl(110). These data yield the following values for NaHS(400): 61.28, 61.49, 61.32, and 61.75. Sabatier¹

measured the heat of dilution of aqueous NaHS from 4 to 200 H₂O. We have estimated the values to infinite dilution, assuming no dissociation of HS⁻ (aq.).

 $NaHS \cdot nH_2O$  (c). Sabatier¹ measured the heats of solution of the anhydrous salt and the dihydrate.

 $NaS_n$  (aq.). Sabatier¹ measured the heat of reaction of  $I_2$  with  $Na_2S_2$  (aq.),  $Na_2S_3$  (aq.), and  $Na_2S_4$  (aq.), respectively.

Na₂S₄ (c). Sabatier¹ measured the heat of solution.

 $Na_2SO_3$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $H_2SO_3$  (400) with 2 NaOH (200); de Forcrand⁴ that of  $H_2SO_3$  (220) with 2 NaOH (150), and of  $Na_2SO_3$  (550) with 2 HCl(110). These data yield for  $Na_2SO_3$  ( $\infty$ ), Qf = 263.2, 264.2, and 265.1, respectively. We have estimated the heat of dilution.

 $Na_2SO_3 \cdot nH_2O$  (c). de Forcrand⁴ measured the heats of solution of the anhydrous salt and the heptahydrate. Arii,¹ from vapor pressure data, calculated, for  $Na_2SO_3$  (c) +7  $H_2O$  (liq.) =  $Na_2SO_3 \cdot 7 H_2O$  (c), Q = 2.67.

NaHSO₃ (aq.). Thomsen, ¹⁵ de Forcrand, ⁴ and Lindner ¹ measured the heat of reaction of NaOH (aq.) with  $H_2SO_3$  (aq.). Their data yield the following values for Qf: Thomsen, NaHSO₃(600), 206.30; de Forcrand, NaHSO₃(370), 207.12; Lindner, NaHSO₃(600), 206.17; Lindner NaHSO₃(111), 207.15. de Forcrand ⁴ also measured the heat of mixing NaHSO₃ (aq.) with NaOH (aq.), and of Na₂SO₃ (aq.) with  $H_2SO_3$  (aq.). These latter data yield for NaHSO₃(500), Qf = 205.6 and 206.40.

Na₂SO₄ (aq.). The heat of neutralization of H₂SO₄ (aq.) with NaOH (aq.) was measured by Favre and Silbermann, Andrews, 2, 7, 11 Favre, 3 Hess,⁵ Thomsen,¹⁵, Berthelot,⁴ Recoura,² Mathews and Germann,¹ Richards and Rowe, 4 and Thorvaldson, Brown, and Peaker. 1 The data of the last six investigations yield, respectively, for  $Na_2SO_4(400)$ , Qf = 330.69, 330.68, 331.4, 330.1, 331.06, and 331.06. Thomsen¹⁵ measured the heat of mixing 2 NaCl(100) with H₂SO₄(200) and of Na₂SO₄(200) with 2 HCl(100). Subtraction of these heats of reaction gives that for 2 NaCl  $(100) + H_2SO_4(200) = Na_2SO_4(200) + 2 HCl(100)$ ; whence we have obtained the value for Na₂SO₄(200). In another pair of such "double decomposition" experiments, Thomsen¹⁵ used twice the dilutions. His data yield, for Na₂SO₄(400), Qf = 330.68 and 331.02. Berthelot⁴ performed similar "double decomposition" experiments, and his data yield, for Na₂SO₄ (400), Qf = 331.25 from Na⁺, SO₄⁻⁻, H⁺, NO₃⁻, and Qf = 331.07, from Na+, SO₄--, H+, Cl-. The data of Thomsen, 15 Varali-Thevenet, 1 and Lange and Streeck¹ have been used to obtain values for the heat of dilution of Na₂SO₄ (aq.) from  $\infty$  to 50 H₂O.

 $Na_2SO_4$  (c, II). The data on the heat of solution yield the following values for  $S_{400}$ : Thomsen,  15  0.257; Tilden,  2  0.25; Pickering,  5  -0.09. Other data on the heat of solution, lacking in most cases necessary information as to temperatures and concentration, were reported by Graham,  1  Favre and Valson,  2  Berthelot,  10  Berthelot and Ilosvay,  1  and Varali-Thevenet.  1  Mixter  6  measured, in a bomb calorimeter, the heat

of the reaction,  $3 \text{ Na}_2\text{O}_2$  (c) +S (c) = Na₂SO₄ (c) +2 Na₂O (c), and his data yield Qf=328.4. See also Ruff and Friedrich.¹

Na₂SO₄ (c, I). For the heat of transition, see Hullner and Tammann¹ and Hare.¹

Na₂SO₄ (liq.). Hare determined the heat of fusion.

 $Na_2SO_4 \cdot 10 H_2O$  (c). The heat of solution data yield the following values for  $S_{400}$ : Thomsen, ¹⁵ -18.76; Tilden, ² -18.53; Pickering, ⁵ -19.15; Berthelot, ¹⁰ -18.85; Favre and Valson, ² -18.9(?); Perreu, ¹ -18.6.

NaHSO₄ (aq.). Thomsen¹⁵ and Berthelot⁶ measured the heat of mixing Na₂SO₄(200) with  $H_2$ SO₄(200) to be -1.870 and -2.10, respectively. Taking -1.90 gives for NaHSO₄(200), Qf = 270.29. The data of Thomsen¹⁵ yield values for the heat of dilution from 10 to 800  $H_2$ O.

 $NaHSO_4$  (c). For  $S_{200}$ , the data of Thomsen¹⁵ yield 1.25 and those of Berthelot 1.3.

NaHSO₄ · H₂O (c). Favre⁸ measured the heat of solution.

 $Na_2S_2O_5$  (aq.). We have taken equal to zero the heat of the reaction,  $2 \text{ HSO}_3^-$  (aq.) =  $S_2O_5^-$  (aq.) +  $H_2O$  (liq.).

 $Na_2S_2O_5$  (c). de Forcrand⁴ measured the heat of solution in water and in NaOH (aq.). These data give, for  $Na_2S_2O_5$  (c), Qf=349.2 and 348.8, respectively.

 $\rm Na_2S_2O_3$  (aq.). Thomsen  15  measured the heat of reaction of  $\rm Na_2S_2O_3$  (aq.) with HClO (aq.); Berthelot  103  that of  $\rm Na_2S_2O_3$  (aq.) with KBr (aq.). Their data yield, respectively, for  $\rm Na_2S_2O_3$  (aq.), Qf=260.5 and 263.7. Bichowsky measured the heat of mixing aqueous  $\rm CaS_2O_3$  with concentrated aqueous HCl, forming rhombic sulfur. Assuming the reaction,  $\rm S_2O_3^-$  (aq.) =  $\rm SO_3^-$  (aq.) + S (c, rhombic), his data, Q=-3.94, yield, for  $\rm S_2O_3^-$  (aq.), Qf=145.1; whence, for  $\rm Na_2S_2O_3$  (aq.) Qf=260.1. Thomsen measured the heat of mixing aqueous  $\rm Na_2S_2O_3$  with aqueous HCl to be -2.2. Assuming the same reaction as before we have obtained, for  $\rm Na_2S_2O_3$  (aq.), Qf=261.8.

 $Na_2S_2O_3$  (c). The data of Berthelot⁹² yield  $S=2.0_{440}$ ; Fogh¹ found S=1.4.

 $Na_2S_2O_3 \cdot 5 H_2O$  (c,  $\alpha$ ). The data of Thomsen¹⁵ and Berthelot¹⁰⁸ yield, for  $S_{400}$ , -11.33 and -10.6, respectively.

 $Na_2S_2O_3 \cdot 5 H_2O$  (c,  $\beta$ ). Muller¹¹ measured the heat of solidification of the supercooled liquid, and found, for the  $\alpha$  and  $\beta$  forms of the solid, respectively,  $F^{17.5} = -9.3$  and -8.0; whence, for the  $\alpha$  to  $\beta$  transition,  $T = -1.3^{17.5}$ .

 $Na_2S_2O_3$  (5). Qf for this substance is obtained from the foregoing data.

 $Na_2S_2O_6$  (aq.). The value for this substance is obtained from those for the ions.

 $Na_2S_2O_6 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the anhydrous salt and the dihydrate.

 $Na_2S_3O_6$  (aq.). Berthelot¹⁰⁸ measured the heat of reaction of  $Na_2S_3O_6$  (aq.) with  $KBr_3$  (aq.). His data yield Qf = 394.6.

Na₂S₃O₆·3.H₂O (c). Berthelot¹⁰⁸ measured the heat of solution.

 $Na_2S_4O_6$  (aq.). Thomsen¹⁵ and Berthelot¹⁰⁸ measured the heat of the reaction,  $2 Na_2S_2O_3$  (aq.)  $+I_2$  (c) =  $(2 NaI+Na_2S_4O_6)$  (aq.). Their data yield, for  $Na_2S_4O_6$  (aq.), Qf=387.3 and 388.1, respectively. Berthelot¹⁰⁸ also measured the heat of reaction between  $Na_2S_4O_6 \cdot 2 H_2O$  (c) and  $KBr_3$  (aq.) (with the formation of sulfate), and the heat of solution of the dihydrate; and from these data we have obtained, for  $Na_2S_4O_6$  (aq.), Qf=387.2.

 $Na_2S_4O_6 \cdot 2 H_2O$  (c). Berthelot¹⁰⁸ measured the heat of solution.

 $NaI \cdot nSO_2$  (c). From measurement of the dissociation pressure at various temperatures, Ephraim and Kornblum¹ found for n=4, D=-9.63, and for n=2, D=-10.0; de Forcrand and Taboury, found for n=2, D=-10.25.

Na₂Se (aq.). Fabre¹ measured the heat of neutralization of NaOH (220) with  $H_2$ Se (g) and  $H_2$ Se (4000), respectively. His data yield for Qf, Na₂Se (440), 77.12; Na₂Se (4400), 78.64.

 $Na_2Se \cdot nH_2O$  (c). Fabre¹ measured the heats of solution of the anhydrous salt and of the hydrates with  $4\frac{1}{2}$ , 9, and 16 moles of  $H_2O$ .

NaHSe (aq.). Fabre¹ measured the heat of the reaction of  $H_2$ Se (aq.) with NaOH (aq.), and of NaHSe (aq.) with NaOH (aq.). These data yield, respectively, Qf = 31.24 and 30.81, for NaHSe (aq.).

 $Na_2SeO_3$  (aq.). Thomsen¹⁵ measured the heat of neutralization of  $H_2SeO_3$  (aq.) with NaOH (aq.). His data yield, for  $Na_2SeO_3$  (800), Qf = 238.22.

NaHSeO₃ (aq.). Thomsen¹⁵ found Q = 14.76 for the reaction, NaOH  $(400) + H_2 SeO_3(800) = NaHSeO_3(1200) + H_2O$  (liq.).

 $Na_2SeO_4$  (aq.). The data of Thomsen¹⁵ yield  $N=30.41_{800}$ , and those of Metzner,²  $N=31.05_{440}$ ; whence we have computed, for  $Na_2SeO_4(800)$ , Qf=260.99 and for  $Na_2SeO_4(440)$ , Qf=261.41.

NaHSeO₄ (aq.). Thomsen¹⁵ and Metzner² measured the heat of mixing Na₂SeO₄ (aq.) with  $H_2$ SeO₄ (aq.). Their data yield, respectively, NaHSeO₄ (400) Qf = 201.72 and NaHSeO₄ (220), Qf = 201.79.

 $Na_2SeO_4(c)$ . Mixter¹⁰ measured, in a bomb calorimeter, the heat of reaction between amorphous Se and  $Na_2O_2$  to be 95.9.

Na₂TeO₄ (c). As for the foregoing, Mixter¹⁰ found 149.7.

NaNO₃ (aq.). The heat of neutralization of NaOH (aq.) with HNO₃ (aq.) was measured by Hess, Andrews, I Favre and Silbermann, Favre, Thomsen, Berthelot, Mathews and Germann, and Richards and Rowe. The accurate data of Richards and Rowe were recomputed by Rossini, Giving  $N = 13.929_{201}$ . The data on the heat of dilution of NaNO₃ from infinite dilution to  $25 \, \text{H}_2\text{O}$ , (Pratt, Richards and Rowe, Nernst and Naude, Lange and Robinson²) were reviewed by Rossini, who gave values from  $\infty$  to  $25 \, \text{H}_2\text{O}$ . The data of Stahlberg, Stackelberg, and van Deventer and van der Stadt have been utilized to obtain values from

25 to 5 H₂O. Other data on the heat of dilution were given by Bishop,¹ Rümelin,¹ and Mondain-Monval.³

- NaNO₃ (c). The existing data on the heat of solution have been recomputed to give the following values for  $S_{200}$ : Winkelmann,¹ -4.91; Berthelot,^{10, 131} -4.83; Tilden,² -4.91; Zawidski and Schagger,¹ -5.02; Thomsen,¹⁵ -5.03; Scholz,¹ -5.05; Stackelberg,¹ -5.04; Varali-Thevenit,¹-4.84; Haigh,¹ -4.95; and Mondain-Monval,³-4.86. The average of these values is  $-4.94 \pm 0.07$ . Brönsted,¹⁰ by measuring the electromotive force of cells at various temperatures, found, for KCl (c) +NaNO₃ (c) = NaCl (c) +KNO₃ (c), Q = 0.340. Anticipating the values for KCl (c) and KNO₃ (c), we have computed for NaNO₃ (c), Q = 111.72. This corresponds to  $S = -4.965_{200}$ .
- NaNO₂ (c). The data of Matignon and Marchal³ and Swietoslawski⁶ yield identical values for the heat of solution.

NaNH₂ (c). de Forcrand²⁴ measured the heat of solution in water.

 $NaNH_3$  (c). Joannis³ found D = -5.19.20

 $NaX \cdot nNH_3$  (c). Joannis⁶ measured the temperature coefficient of the dissociation pressure of  $NaCl \cdot 5 NH_3$  (c); Biltz and Hansen¹ measured those of  $NaCl \cdot 5 NH_3$  (c),  $NaBr \cdot 5\frac{1}{4} NH_3$  (c),  $NaBr \cdot 5\frac{3}{4} NH_3$  (c),  $NaI \cdot 4\frac{1}{5} NH_3$  (c), and  $NaI \cdot 6 NH_3$  (c).

 $Na_2SO_4 \cdot (NH_4)_2SO_4 \cdot H_2O$  (c). Matignon and Meyer¹ measured the heat of solution.

 $NaPO_3$  (aq.). Thomsen¹⁵ and Giran¹ measured the heat of neutralization of HPO₃ (aq.) with NaOH (aq.). Their data give, respectively, NaPO₃ (600), Qf = 292.67, and NaPO₃ (aq.), Qf = 293.08.

NaPO₃ (c). Giran¹ measured the heat of solution.

 $Na_nH_{3-n}PO_3$  (aq.). Thomsen¹ measured the heat of mixing  $H_3PO_3$  (400). with 1, 2, and 3 moles of NaOH(200), respectively, forming  $NaH_2PO_3(600)$ ,  $Na_2HPO_3(800)$ , and  $Na_3PO_3(1000)$ .

 $NaH_2PO_3 \cdot nH_2O$  (c). Amat¹ measured the heats of solution of  $NaH_2PO_3$  (c) and  $NaH_2PO_3 \cdot 2\frac{1}{2}H_2O$  (c).

 $Na_2HPO_3 \cdot nH_2O$  (c). Amat¹ measured the heats of solution of the anhydrous salt and the pentahydrate.

 $Na_nH_{2-n}PO_2$  (aq.). Thomsen¹⁵ measured the heat of mixing  $H_3PO_2$  (250) with 1 and 2 moles of NaOH(200), respectively.

 $Na_3PO_4 \cdot 12 H_2O$  (c). Joly⁴ measured the heat of solution.

 $Na_3PO_4$  (c). The data of Mixter, who measured the heat of reaction between  $1\frac{1}{2}$   $Na_2O$  (c) and  $\frac{1}{2}$   $P_2O_5$  (c), in a bomb calorimeter, yield Qf = 446. We have obtained, by estimating the heat of dehydration of the dodecahydrate, Qf = 457.

 $Na_3PO_4$  (aq.). The data of Thomsen¹⁵ and Berthelot and Louguinine³ yield, respectively,  $N=34.10_{903}$  and  $N=33.45_{663}$ ; whence, for  $Na_3PO_4$  (800), we have computed Qf=471.54 and 470.53. Berthelot and Louguinine³ measured the heat of dilution from 330 to 1980  $H_2O$ .

NaH₂PO₄ (aq.). Thomsen¹⁵ and Berthelot and Louguinine³ measured the heat of mixing H₃PO₄ (aq.) with NaOH (aq.). Their data yield,

respectively,  $NaH_2PO_4(300)$ , Qf = 364.64, and  $NaH_2PO_4(440)$ , Qf = 364.68. Berthelot and Louguinine³ measured the heat of mixing NaH₂PO₄(440) with HCl(110) and of H₃PO₄(440) with NaCl(110), their data yielding, for  $NaH_2PO_4(440)$ , Qf = 365.03.

Na₂HPO₄ (aq.). Thomsen¹⁵ and Berthelot and Louguinine³ measured the heat of mixing H₃PO₄ (aq.) with 2 NaOH (aq.); Berthelot and Louguinine³ measured the heat of mixing Na₂HPO₄(440) with NaOH (aq.). These data yield, respectively, for  $Na_2HPO_4(400)$ , Qf=420.81, 419.93, and 420.43. Berthelot and Louguinine³ measured the heat of dilution of  $Na_2HPO_4$  (ag.) from 220 to 880  $H_2O$ .

Na₂HPO₄·nH₂O (c). Thomsen¹⁵ and Pfaundler² measured the heats of solution of the anhydrous salt and the hydrates with 7 and 12 moles of H₂O. Thomsen¹⁵ also measured that of the dihydrate. Their data yield for  $S_{400}$  the following respective values, for Thomsen and Pfaundler: for  $Na_2HPO_4$  (c), 5.65, 5.37; dihydrate, -0.38, ...; heptahydrate, -11.60, -11.38; dodecahydrate, -22.74, -22.53. See also Perreu. Muller-Erzbach⁴ measured the temperature-dissociation pressure relationship for the heptahydrate.

NaH₃P₂O₇ (aq.). Thomsen¹⁵ and Giran¹ found, respectively, NaOH  $(400) + H_4P_2O_7(800)$ , N = 14.38; NaOH (aq.)  $+ H_4P_2O_7$  (aq.), N = 15.29.

NaH₃P₂O₇·nH₂O (c). Giran¹ measured the heats of solution of the

anhydrous salt and the monohydrate.

Na₂H₂P₂O₇ (aq.). Thomsen¹⁵ and Giran¹ found, respectively,  $2 \text{ NaOH}(200) + \text{H}_4\text{P}_2\text{O}_7(800), \quad N = 28.64^{17.5}; \quad 2 \text{ NaOH} (aq.) + \text{H}_4\text{P}_2\text{O}_7(aq.), \quad N = 29.94.$  Favre and Silbermann³ also measured this heat of neutralization.

 $Na_2H_2P_2O_7 \cdot nH_2O$  (c). Giran¹ measured the heats of solution of the anhydrous salt and the hexahydrate.

 $Na_3HP_2O_7$  (aq.). Giran¹ found N=43.05. Na₃HP₂O₇·nH₂O (c). Giran¹ measured the heats of solution of the anhydrous salt and the mono- and hexahydrates.

 $Na_4P_2O_7$  (aq.). Thomsen¹⁵ found  $N=52.74_{1600}$ ; Giran, N=50.91.

 $Na_4P_2O_7 \cdot n\hat{H}_2O$  (c). Thomsen¹⁵ measured the heats of solution of the anhydrous salt and the decahydrate.

Na₂H₂P₂O₅ (c). Amat¹ measured the heats of solution, in aqueous H₂SO₄, of Na₂H₂P₂O₅ (c) and of 2 NaH₃PO₃ (c). The difference yields, for  $Na_2H_2P_2O_5$  (c)  $+H_2O$  (liq.) =  $2 NaH_2PO_3$  (c), Q=4.80.

Na₂H₂P₂O₅ (aq.). Amat¹ measured the heat of solution.

 $Na_nH_{4-n}P_2O_6$  (aq.). Joly² measured the heat of mixing  $H_4P_2O_6(330)$ with 1, 2, 3, and 4 moles of NaOH (220), respectively.

NaNH4HPO4 (aq.). Berthelot and Louguinine3 measured the heat of mixing  $NaH_2PO_4(440)$  with  $NH_3(110)$ .

Na(NH₄)₂PO₄ (aq.). Berthelot and Louguinine³ measured the heat of mixing NaNH₄HPO₄ (550) with NH₃ (110).

Na₂NH₄PO₄ (aq.). Berthelot¹⁴⁶ measured the heat of mixing  $Na_2HPO_4(440)$  with  $NH_3(110)$ .

NaNH₄HPO₄·4 H₂O (c). Thomsen¹⁵ measured the heat of solution. Na_nH_{3-n}AsO₄ (aq.). Thomsen¹⁵ measured the heat of mixing H₃AsO₄ (200) with 1, 2, and 3 moles of NaOH (100), respectively.

Na₃AsO₄ · 12 H₂O (c). Joly⁴ measured the heat of solution.

 $Na_3AsO_4$  (c). The data of Mixter, who measured in a bomb calorimeter the heat of reaction between As (c) and  $2\frac{1}{2}Na_2O_2$  (c), yield Qf=361. By estimating the heat of dehydration of the dodecahydrate, we have obtained Qf=366.

 $Na_nH_{3-n}AsO_3$  (aq.). Thomsen¹⁵ measured the heat of mixing of  $H_3AsO_3(200)$  with 1, 2, and 3 moles of NaOH (aq.), respectively.

 $Na_3SbO_4$  (c). The data of Mixter⁹ on the reaction of Sb (c) with  $2\frac{1}{2}Na_2O_2$  (c) yield Qf=349.

 $Na_3SbO_4$  (aq.). We have estimated S=11.

 $3 \text{ Na}_2\text{S} \cdot \text{Sb}_2\text{S}_3$  (aq.). Berthelot⁹⁹ measured the heat of reaction of  $3 \text{ Na}_2\text{S} \cdot \text{Sb}_2\text{S}_3$  (aq.) with 6 HCl (aq.).

 $Na_3BiO_4$  (c). The data of Mixter⁹ yield Qf = 284.

 $Na_2C_2$  (c). de Forcrand²³ measured the heat of solution of  $Na_2C_2$  (c) in  $H_2SO_4$  (aq.); Matignon¹⁶ that in HCl (aq.). Their data yield, respectively, Qf = -4.4 and -4.06.

 $NaHC_2$  (c). Matignon¹⁶ measured the heat of solution in water and in HCl (aq.). His data yield, respectively, Qf = -25.19 and -25.05.

Na₂CO₃ (aq.). Berthelot⁴ and Thomsen¹⁵ measured the heat of reaction of CO₂(aq.) with 2 NaOH (aq.); Muller¹ that of Na₂CO₃ (aq.) with 2 HCl (aq.). Their data yield, respectively, for Na₂CO₃(200), Qf=276.0, 276.24, and 275.7. Berthelot⁴ performed some "double decomposition" experiments, and his data yield the following values for Na₂CO₃(200): from Na⁺, CO₃⁻⁻, H⁺, C₂H₃O₂⁻, 276.1; from Na⁺, CO₃⁻⁻, H⁺, SO₄⁻⁻, 267.4; and from Na⁺, CO₃⁻⁻, H⁺, NO₃⁻, 276.8. Data on the heat of dilution were reported by Thomsen, ¹⁵ Perreu, ² and Laksonen. ¹ These data covered the range as dilute as 200 H₂O. Values to infinite dilution have been estimated. See also Swallow and Alty. ¹

Na₂CO₃ (c, II). The data on the heat of solution have been recomputed to give the following values for S₂₀₀: Favre and Valson,² ?; Berthelot,¹⁰ 6.0; Ostwald,¹ 5.80; Berthelot and Ilosvay,¹ 5.8; Tilden,² 5.74; Thomsen,¹⁵ 5.88; Pickering,⁷ 5.70; Donnan and Hope,¹ 5.85. See also Swallow and Alty.¹

 $Na_2CO_3$  (c, I). Doelter¹ quoted Wegscheider¹ as giving  $T=0.4_{\rightarrow II}^{450}$ .  $Na_2CO_3$  (liq.). Sackur¹ determined the heat of fusion from freezing point lowering data.

 $Na_2CO_3 \cdot H_2O$  (c). For  $S_{200}$ , the data of Thomsen¹⁵ yield 2.50, those of Donnan and Hope¹ 1.95. The dissociation pressure data of Caven and Sand¹ give Qf = 341.6.

 $Na_2CO_3 \cdot 7 H_2O$  (c). For  $S_{200}$ , the data of Thomsen¹⁵ yield -10.50, those of Donnan and Hope¹ -10.55.

 $Na_2CO_3 \cdot 10 H_2O$  (c). The heat of solution data yield the following values for  $S_{200}$ : Favre and Valson,² ?; Tilden,² -14.82; Thomsen,¹⁵

-15.91; Pickering, 7 -15.91; Donnan and Hope, 1 -15.25; and Perreu, 1 -16.0.

NaHCO₃ (aq.). Berthelot⁴ measured the heat of mixing CO₂(1600) with NaOH (110); Thomsen¹⁵ that of NaHCO₃(200) with NaOH (200); Muller¹ that of NaHCO₃(1000) with HCl(90). Their data yield, respectively, NaHCO₃(1700), Qf = 222.41, NaHCO₃(200), Qf = 222.67, and NaHCO₃(1000), Qf = 222.0.

NaHCO₃ (c). The data of Berthelot¹⁰ yield  $S = -4.1_{300}$ , whence Qf = 226.4. The dissociation pressure data of Caven and Sand¹ yield the same value.

 $m Na_2C_2O_4$  (aq.). The heat of neutralization of aqueous oxalic acid with aqueous NaOH was measured by Berthelot⁷ and Thomsen.¹⁵ Their data yield, respectively, Na₂C₂O₄ (aq.), Qf=310.92, and Na₂C₂O₄ (600), Qf=310.58. Berthelot⁷ also performed 2 pairs of "double decomposition" experiments, his data yielding for Na₂C₂O₄(220), Qf=311.42 from Na⁺, C₂O₄⁻⁻, H⁺, SO₄⁻⁻, and Qf=311.30 from Na⁺, C₂O₄⁻⁻, H⁺, C₂H₃O₂⁻. Roth and Eymann¹ measured the heat of neutralization of aqueous NaOH with solid oxalic acid containing 26.7% of H₂O, and the heat of solution of the latter. Their data yield for Na₂C₂O₄(1120), Qf=310.39.

Na₂C₂O₄ (c). Berthelot¹⁰ measured the heat of solution.

NaHC₂O₄ (aq.). Berthelot⁶ measured the heat of mixing Na₂C₂O₄ (220) with H₂C₂O₄ (220); Berthelot⁷ and Thomsen¹⁵ that of mixing H₂C₂O₄ (aq.) with NaOH (aq.). Their data yield, respectively, NaHC₂O₄ (400), Qf = 252.5, NaHC₂O₄ (400), Qf = 252.43, and NaHC₂O₄ (220), Qf = 252.50.

 $NaHC_2O_4 \cdot nH_2O$  (c). Berthelot^{10, 131} measured the heat of solution of the anhydrous salt and its monohydrate.

NaCHO₂ (aq.). Thomsen¹⁵ measured the heat of neutralization of aqueous formic acid with aqueous NaOH; Berthelot⁷ performed 2 pairs of "double decomposition" experiments involving H⁺, Cl⁻, Na⁺, CHO₂⁻. Their data yield, respectively, NaCHO₂(400), Qf = 157.29, NaCHO₂(165), Qf = 157.25, and NaCHO₂(110), Qf = 157.19.

NaCHO₂ (c). Berthelot¹⁰ measured the heat of solution of sodium formate.

 $NaC_2H_3O_2$  (aq.). The heat of neutralization of aqueous acetic acid with aqueous NaOH was measured by Berthelot,⁷ Thomsen,¹⁵ and Richards and Mair.¹ These data yield, respectively, for  $NaC_2H_3O_2(200)$ , Qf=175.38, 175.08, and 175.237. Data on the heat of dilution were reported by Berthelot⁵ and Thomsen.¹⁵ Richards and Gucker¹ measured the heat of dilution in the range 25 to 1600  $H_2O$ . We have extrapolated these data to infinite dilution, and, using the data of Gnesotto and Fabris,¹ who obtained a value for the heat of fusion of  $NaC_2H_3O_2 \cdot 3H_2O$  (c), we have extended the values to  $3H_2O$ .

 $NaC_2H_3O_2$  (c). The data on the heat of solution of sodium acetate yield the following values for  $S_{200}$ : Berthelot, 7, 131 4.0; Thomsen, 15 3.88; and Pickering, 7 3.95.

 $NaC_2H_3O_2 \cdot 3 H_2O$  (c). The heat of solution data yield the following values for  $S_{200}$ : Berthelot, 7, 131 -4.61; Thomsen, 15 -4.86; Pickering, 7 -4.77; and Calvet, 1 -4.72.

 $NaC_2H_3O_2(C_2H_5OH)$ . Pickering⁸ measured the heat of solution of sodium acetate in ethyl alcohol.

NaCH₃O(CH₃OH), NaC₂H₅O(C₂H₅OH). de Forcrand¹⁶ measured the heat of solution of Na (c) in methyl alcohol and in ethyl alcohol. See also Cavalier.¹

 $NaC_2H_3O_3$  (aq.). de Forcrand³ measured the heat of neutralization of aqueous glycollic acid.

 $NaC_2H_3O_3 \cdot nH_2O$  (c). de Forcrand³ measured the heats of solution of the anhydrous salt, the hemihydrate, and the dihydrate of sodium glycollate.

 $NaC_2H_3O_3 \cdot HC_2H_3O_3$  (c). de Forcrand³ measured the heat of solution of sodium acid glycollate.

NaC₂H₃O₄ (aq.). de Forcrand³ measured the heat of neutralization to form sodium glyoxylate.

NaC₂H₃O₄ (c). de Forcrand¹⁷ measured the heat of solution of sodium glyoxylate.

NaC₂H₅O₂ (aq.). de Forcrand^{6a} measured the heat of solution of liquid ethylene glycol in aqueous NaOH.

 $NaC_2H_5O_2$  (c). de Forcrand^{6a} measured the heat of solution of sodium glycol.

NaC₂H₅O₂·C₂H₆O₂ (c). de Forcrand^{6a} measured the heat of solution of sodium glycol-glycol.

 $NaC_2H_5O_2 \cdot CH_3OH$  (c). de Forcrand^{6a} measured the heat of solution of sodium glycol-methanol.

NaC₂H₅O₂·C₂H₅OH (c). de Forcrand^{6a} measured the heat of solution of sodium glycol-ethanol.

 $NaC_2H_5SO_4$  (aq.). Thomsen¹⁵ measured the heat of the reaction,  $Na_2SO_4(400) + Ba(C_2H_5SO_4)_2(800) = BaSO_4$  (c)  $+2 NaC_2H_5SO_4(600)$ .

 $Na_2S_2O_5 \cdot C_2H_2O_2 \cdot 2 H_2O$  (c). de Forcrand³ measured the heat of solution.

NaCN (aq.). The data of Thomsen¹⁵ yield  $N=2.75_{200}$ .

 $NaCN \cdot nH_2O$  (c). Joannis¹ measured the heat of solution of the anhydrous salt, the hemihydrate, and the dihydrate.

NaCNO (c). Lemoult¹ measured the heat of solution of NaCNO (c) in HCl (aq.) and in HNO₃ (aq.).

NaCNO (aq.). Lemoult measured the heat of solution of NaCNO (c) in water.

NaCN₂H (aq.). Lemoult¹ measured the heat of neutralization of HCN₂H (c), and of HCN₂H (aq.), with NaOH (aq.).

NaCNS (aq.). Joannis¹ measured the heat of neutralization, his data yielding N=14.04. The heat of dilution was measured by Partington and Soper¹ in the range 3.55 to 330  $H_2O$ . We have extrapolated the values to infinite dilution.

**NaCNS** (c). The data of Vrzhesnevskii¹ and Partington and Soper¹ yield, respectively, for  $S_{200}$ , -1.77 and -1.80.

NaCNS(C₂H₅OH). Partington and Soper¹ measured the heat of solution of NaCNS (c) in various amounts of ethyl alcohol.

 $Na_2SiO_3$  (c). The data of Tammann³ (quoted by Mulert¹), who measured the heat of solution in 20% HF (aq.), yield Qf=371.2. Matignon¹¹ measured the heat of mixing  $Na_2SiO_3$  (c) with HCl (aq.), his data yielding Qf=351.

 $Na_2SiO_3$  (gls.). In a bomb calorimeter, Mixter⁵ measured the heat of reaction of Si (c) with  $2 Na_2O_2$  (c) and of SiC (c) with  $4 Na_2O_2$  (c); Tschernobaeff¹ that of SiO₂ ( $\alpha$  Quartz) with  $Na_2CO_3$  (c). Their data yield, respectively, Qf=373.5, 374.7, and 348.

Na₂SiF₆ (aq.). Thomsen¹⁵ and Hantke¹ measured the heat of neutralization of H₂SiF₆ (aq.) with 2 NaOH (aq.).

NaHSiF₆ (aq.). Thomsen¹⁵ measured the heat of mixing H₂SiF₆ (200) with NaOH (200).

 $Na_2SiF_6$  (c). The data of Hantke¹ yield S = -10.3. Truchot² measured the heat of reaction of  $SiF_4$  (g) with 2 NaF(110).

 $Na_nSn_m$  (c). Biltz and Holverscheit¹ measured the heats of solution, in HCl(8) containing FeCl₃ (aq.), of NaSn₂ (c), NaSn (c), Na₄Sn₃ (c), Na₂Sn (c), Na₄Sn (c), and of their respective component parts.

Na₂SnO₃ (c). Mixter⁷ measured the heat of reaction of Sn (c) with 2 Na₂O₂ (c).

Na₄SnO₄ (aq.). Thomsen¹⁵ measured the heat of mixing SnCl₄(400) with 8 NaOH (100).

 $Na_2PbO_3$  (c). Mixter⁸ measured the heat of reaction of Pb (c) with  $2 Na_2O_2$  (c) and of PbO₂ (c) with  $Na_2O$  (c). His data yield Qf=202.4 and 203.2, respectively.

 $2 \text{ NaI} \cdot \text{PbI}_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt, the tetrahydrate, and the hexahydrate.

 $2 \text{ Na}_2\text{S}_2\text{O}_3 \cdot \text{PbS}_2\text{O}_3$  (aq.). Fogh¹ measured the heat of mixing PbS₂O₃ (c) with  $2 \text{ Na}_2\text{S}_2\text{O}_3$  (aq.).

2 Na₂S₂O₃ · PbS₂O₃ (c). Fogh¹ measured the heat of solution.

 $Na_2ZnO_2$  (c). Mixter¹¹ measured the heat of reaction of Zn (c) with  $Na_2O_2$  (c).

 $Na_2Zn(SO_4)_2 \cdot nH_2O$  (c). Graham³ measured the heats of solution of the anhydrous salt and of the tetrahydrate.

NaCd_n (c). Biltz and Haase¹ measured the heats of solution of Na (c), Cd (c), NaCd₂ (c), and NaCd₅ (c) in HCl(8).

 $Na_2CdO_2$  (c). Mixter¹⁵ measured the heat of reaction of Cd (c) with  $Na_2O_2$  (c).

NaHg_n (liq.). Berthelot⁵⁶ measured the heat of solution of NaHg₂₅ (liq.) in HCl(330); von Wartenberg⁸ measured the heat of solution of Na (c) in 164 Hg (liq.). Their data yield, respectively, NaHg₂₅ (liq.), Qf = 19.6, and NaHg₁₆₄ (liq.), Qf = 20.2. The heat of dilution of NaHg_n (liq.) with Hg (liq.) was measured by Cady¹ and Richards and Conant.¹

 $NaHg_n(c)$ . Berthelot⁵⁵ measured the heat of solution of  $NaHg_{1.03}(c)$  in water, and also (Berthelot⁵⁶) of the solid amalgams, with n=1.05, 2.15, 4.05, and 6.0, in HCl(330). von Wartenberg⁸ measured the heat of solution of  $Na_3Hg$  (c) in Hg (liq.). Biltz and Meyer² measured the heats of solution, in HCl(8), of the solid amalgams, with  $n=\frac{1}{3},\frac{2}{3},1,\frac{1}{7},2$ , and 4.

nNaBr · HgBr₂ (aq.). Varet⁶ measured the heats of mixing HgBr₂

(4400) with 1, 2, 4, and 8 moles of NaBr(220), respectively.

4 Na₂S·HgS (aq.). Berthelot¹¹⁵ measured the heat of mixing 6 Na₂S (aq.) with HgCl₂ (aq.).

nNaCN·Hg(CN)₂ (aq.). Varet² measured the heat of mixing

Hg(CN)₂(440) with 1 and 2 moles of NaCN(110), respectively.

nNaX·Hg(CN)₂(aq.). Varet² measured the heat of mixing Hg(CN)₂ (440) with 1 and 2 moles of NaCl(110), NaBr(110), and NaI(110), respectively.

 $NaX \cdot Hg(CN)_2 \cdot nH_2O(c)$ . Varet² measured the heats of solution of  $NaCl \cdot Hg(CN)_2 \cdot 1_{\frac{1}{4}} H_2O(c)$ ,  $NaBr \cdot Hg(CN)_2 \cdot 2 H_2O(c)$ , and  $NaI \cdot Hg(CN)_2 \cdot 2 H_2O(c)$ .

 $Na_2O \cdot CuO_2$  (c). Mixter¹² measured the heat of reaction of  $Na_2O_2$  (c) with CuO (c).

 $Na_2CO_3 \cdot CuCO_3 \cdot nH_2O$  (c). de Carli¹ measured the heats of solution of the anhydrous salt and the trihydrate in HCl(314).

 $Na_2O_2\cdot Ag_2O$  (c). Mixter  12  measured the heat of reaction of  $Na_2O_2$  (c) with  $Ag_2O$  (c).

 $Na_3Ag(S_2O_3)_2$  (aq.). Fogh¹ measured the heat of mixing AgNO₃ (110) with  $5 Na_2S_2O_3$  (220).

nNaCN · AgCN (aq.). Varet⁵ measured the heats of dissolving AgCN (c) in NaCN (550), 2 NaCN (220), 2 NaCN (330), and 2 NaCN (1320), respectively.

Na₂PtCl₄ (aq.). Thomsen¹⁵ measured the heat of reaction of Na₂PtCl₆ (900) with 2 CuCl (c).

 $Na_2PtCl_6$  (aq.). Thomsen¹⁵ measured the heat of neutralization. His data yield  $N=27.02_{1200}$ , with Qf=280.0. Thomsen¹⁵ measured the heat of reaction of  $Na_2PtCl_6 \cdot 6 \cdot H_2O$  (c) with 2 Co (c) in HCl (aq.); Gire,² that of  $Na_2PtCl_6$  (aq.) with 2 Co (c). Their data yield, respectively, Qf=280.6 and 285.9. The dissociation pressure data of Gire,¹ together with the heat of solution, yield Qf=278.

 $Na_2PtCl_6$  (c). Thomsen¹⁵ found  $S=8.49_{800}^{17.6}$ ; Gire,²  $S=7.09_{4200}^{17}$ .  $Na_2PtCl_6 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the dihydrate and the hexahydrate.

 $Na_2PtBr_6$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $Na_2PtBr_6$  (aq.) with 2 Co (c).

 $Na_2PtBr_6 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the anhydrous salt and the hexahydrate.

 $Na_2PtI_6$  (aq.). Pigeon¹ measured the heats of reaction of  $Na_2PtI_6$  (aq.), and of 2  $I_2$  (c), with 2 Co (c) in NaI (aq.).

 $Na_2IrCl_6$  (aq.). Ogawa¹ gave, for  $Na_2IrCl_6$  (aq.) + NaCl (aq.) + Hg (liq.) =  $Na_3IrCl_6$  (aq.) + HgCl (c), Q = 2.21.

Na₃RhCl₆ (aq.). Gire² measured the heat of reaction of Na₃RhCl₆

(aq.) with  $1\frac{1}{2}$  Co (c).

 $Na_3RhCl_6$  (c). Gire² found  $S=7.83_{6000}^{19}$ . His data¹ on the dissociation pressure yield Qf=353.

Na₃RhCl₆·12 H₂O (c). Gire² measured the heat of solution.

 $Na_2MnO_4$  (c). Mixter¹¹ measured the heat of reaction of Mn (c) with  $3 Na_2O_2$  (c).

2 NaBr · MnBr₂ (aq.). Varet⁶ measured the heat of mixing MnBr₂

(220) with 2 NaBr (110).

 $Na_2SO_4 \cdot MnSO_4 \cdot nH_2O$  (c). Graham³ measured the heats of solution of the anhydrous salt and the dihydrate.

 $Na_3FeCO(\tilde{C}N)_5$  (aq.). Muller⁸ found N=41.6.

 $Na_3FeCO(CN)_5 \cdot n\hat{H}_2O$  (c). Muller⁸ measured the heats of solution of the anhydrous salt and the heptahydrate.

 $Na_2CoO_3$  (c). Mixter¹¹ measured the heat of reaction of Co (c) with  $2 Na_2O_2$  (c).

2 NaBr · CoBr₂ (aq.). Varet⁶ measured the heat of mixing CoBr₂ (220) with 2 NaBr (110).

Na₂Ni(CN)₄ (aq.). Varet⁶ measured the heat of solution of Ni(CN)₂

(c) in 2 NaCN (aq.).

 $Na_2CrO_4$  (aq.). Thomsen¹⁵ found  $N = 24.72_{800}^{18.9}$ ; Morges,¹  $N = 23.68_{440}^{19.5}$ . Their data yield, respectively,  $Na_2CrO_4(800)$ , Qf = 322.27, and  $Na_2CrO_4(440)$ , Qf = 321.4.

 $Na_2CrO_4 \cdot nH_2O$  (c). Berthelot⁹⁵ measured the heats of solution of

the anhydrous salt, the tetrahydrate, and the decahydrate.

 $m Na_2CrO_4$  (10). The data of Berthelot⁵¹ yield, for  $m Na_2CrO_4$ ·10  $m H_2O$  (c), F=-12.3; those of Morgan and Benson,  $F=-15.2^{19.9}$ . We have selected F=-15.0, which yields the value of Qf for  $m Na_2CrO_4$  (10).

Na₂Cr₂O₇ (aq.). Thomsen¹⁵ and Morges¹ measured the heat of mixing CrO₃ (aq.) with NaOH (aq.). Their data yield, respectively,

 $Na_2Cr_2O_7(1200)$ , Qf = 465.62, and  $Na_2Cr_2O_7(660)$ , Qf = 465.54.

 $Na_2MoO_4$  (aq.). Pechard¹ and Pissarjewsky² measured the heat of neutralization of  $H_2MoO_4$  (c) with NaOH (aq.), the latter using an excess of NaOH (aq.). Their data yield, respectively,  $Na_2MoO_4$  (880), Qf=358.6, and  $Na_2MoO_4$  (440), Qf=355.64. Pechard¹ performed a "double decomposition" experiment involving  $Na^+$ ,  $MoO_4^-$ ,  $H^+$ ,  $SO_4^-$ , his data yielding, for  $Na_2MoO_4$  (440), Qf=358.4.

 $Na_2MoO_4$  (c, II). Mixter¹⁰ measured the heat of reaction of Mo (c) with  $3 Na_2O_2$  (c).

Na₂MoO₄ (c, I). Hare¹ measured the heat of transition.

 $Na_2WO_4$  (aq.). Pissarjewsky² measured the heat of neutralization of  $H_2WO_4$  (c) with excess NaOH (aq.).

 $Na_2WO_4$  (c, II). Mixter⁶ measured the heat of reaction of W (c) with  $3 Na_2O_2$  (c).

Na₂WO₄ (c, I). Hare measured the heat of transition.

NaVO₅ (aq.). Ruff and Friedrich¹ measured the heat of solution of  $V_2O_5$  (c) in  $(22\frac{3}{4} \text{ NaOH} + 8 \text{ H}_2O_2)$  (177).

 $(Na_2O_2)_2 \cdot UO_4 \cdot 9 H_2O$  (c). Pissarjewsky² measured the heat of solution of this hydrate in  $5 H_2SO_4(55)$ , and the heat of mixing  $(UO_2SO_4 + H_2SO_4)$  (aq.) with  $2 Na_2SO_4(310)$ .

 $(Na_2O_2)_2 \cdot UO_4$  (c). Pissarjewsky² measured the heat of solution of  $(Na_2O_2)_2 \cdot UO_4 \cdot 9$  H₂O (c) in water.

 $Na_2U_2O_7 \cdot 1\frac{1}{2} H_2O$  (c). Pissarjewsky² measured the heat of solution of this hydrate in  $4 H_2SO_4(55)$ .

 $NaVO_3$  (aq.). Matignon¹² measured the heat of reaction of  $V_2O_5$  (c) with 2 NaOH (aq.) to be 38.3 at 15°.

 $\rm Na_2 U \, O_4$  (c). Mixter  14  measured the heats of the reactions, U (c)  $+3 \, \rm Na_2 O_2$  (c)  $= \rm Na_2 U \, O_4$  (c)  $+2 \, \rm Na_2 O$  (c)  $+ \, \rm U \, O_3$  (c)  $+ \, \rm Na_2 O$  (c)  $= \rm Na_2 U \, O_4$  (c)  $+ \, \rm U \, O_2$  (c)  $+ \, \rm Na_2 O_2$  (c)  $= \, \rm Na_2 U \, O_4$  (c)  $+ \, \rm Na_2 \, O_2$  (c)  $+2 \, \rm Na_2 \, O$  (c)  $= 3 \, \rm Na_2 \, U \, O_4$  (c)  $+ \, \rm to \, be \, 341.8, \, 96.1, \, 110.9, \, and \, 285.1, \, respectively; whence, for <math display="inline">\rm Na_2 \, U \, O_4$  (c)  $+ \, \rm Q \, f \, = \, 500.4, \, 487.2, \, 486.7, \, and \, 482.8.$ 

 $n\text{NaCl} \cdot \text{ThCl}_4 \cdot m\text{H}_2\text{O}$  (c). Chauvenet² measured the heats of solution of 2 NaCl  $\cdot$  ThCl₄ (c) and NaCl  $\cdot$  ThCl₄ · 10 H₂O (c).

NaBO₂ (aq.). Berthelot⁴ measured the heat of mixing  $H_3BO_3(220)$  with NaOH(110); later, Berthelot¹³ performed a "double decomposition" experiment with Na⁺, BO₂⁻, H⁺, Cl⁻; and again (Berthelot⁵⁰) measured the heat of mixing  $H_3BO_3(220)$  with NaOH(110). His data yield, respectively, for NaBO₂(330), Qf = 233.1, 233.4, and 231.7. Thomsen¹⁵ measured the heat of mixing  $H_3BO_3(150)$  with NaOH(150) and performed a "double decomposition" experiment involving Na⁺, BO₂⁻, H⁺, SO₄⁻. His data yield, respectively, NaBO₂(300), Qf = 231.6, and NaBO₂(150), Qf = 232.1.

 $Na_2B_4O_7$  (aq.). Berthelot⁴ and Thomsen¹⁵ measured the heat of mixing  $4\,H_3BO_3$  (aq.) with  $2\,NaOH$  (aq.). Their data yield, respectively,  $Na_2B_4O_7(1100)$ , Qf=753.5, and  $Na_2B_4O_7(900)$ , Qf=752.6.

Na₂B₄O₇ (c). Favre and Valson² measured the heat of solution.

 $Na_2B_4O_7 \cdot 10 H_2O$  (c). The data of Thomsen¹⁵ yield  $S = -25.8_{1600}$ ; those of Favre and Valson² S = -22.2.

 $Na_3BO_3$  (aq.). Thomsen¹⁵ found  $N=10.32_{600}^{18.3}$ .

 $Na_3BO_3$  (c). Mixter⁶ measured the heat of reaction of  $B_2O_3$  (c) with  $3 Na_2O$  (c).

 $NaBO_3 \cdot 4 H_2O$  (c). Tanatar⁹ found S = -11.56 in water and S = -8.98 in  $H_2SO_4(200)$ .

NaAlO₂ (c). Mixter¹⁶ measured the heat of reaction of Al₂O₃ (c) with Na₂O (c).

3 NaF·AlF₃ (aq.). The data of Baud¹ yield the heat of mixing AlF₃ (aq.) with 3 NaF (aq.).

3 NaF·AlF₃· $3\frac{1}{2}$  H₂O (c). Baud¹ measured the heat of mixing AlF₃ (660) with 3 NaF (220) to form 3 NaF·AlF₃· $3\frac{1}{2}$  H₂O (c).

3 NaF·AlF₃ (c, II). Baud¹ measured the heats of solution of 3 NaF·AlF₃(c) and of 3 NaF·AlF₃· $3\frac{1}{2}$  H₂O (c) in HF (aq.).

3 NaF · AlF₃ (c, I). Roth and Bertram¹ measured the heat of transition.

3 NaF · AlF₃ (liq.). Roth and Bertram¹ measured the heat of fusion. nNaCl · AlCl₃ (c). Baud¹ measured the heats of solution of NaCl · AlCl₃ (c), 3 NaCl · AlCl₃ (c), and 3 NaCl · 2 AlCl₃ (c).

 $NaAl(SO_4)_2 \cdot 12 H_2O$  (c). Ephraim and Wagner¹ measured the vapor pressure at various temperatures.

NaCl·AlCl₃·6NH₃ (c). Baud¹ measured the heat of solution.

 $Na_2O \cdot Al_2O_3 \cdot nSiO_2$  (c). Mulert¹ measured the heats of solution of  $Na_2O \cdot Al_2O_3 \cdot 3 SiO_2$  (c, natrolite) and of  $Na_2O \cdot Al_2O_3 \cdot 4 SiO_2$  (c, dehydrated analcite) in 20% HF (aq.).

 $n\mathrm{Na_2SO_4}\cdot\mathrm{CaSO_4}\cdot m\mathrm{H_2O}$  (c). Barre¹ measured the heats of solution of  $\mathrm{CaSO_4}\cdot\mathrm{Na_2SO_4}$  (c),  $\mathrm{CaSO_4}\cdot2~\mathrm{H_2O}$  (c) +  $\mathrm{Na_2SO_4}$  (c), 2  $\mathrm{Na_2SO_4}$   $\cdot\mathrm{CaSO_4}\cdot2~\mathrm{H_2O}$  (c), and 2  $\mathrm{Na_2SO_4}$  (c) +  $\mathrm{CaSO_4}\cdot2~\mathrm{H_2O}$  (c).

 $NaSrPO_4 \cdot 9 H_2O$  (c). Joly⁴ measured the heat of reaction of  $Na_3PO_4$  (aq.) with  $SrCl_2$  (aq.).

 $NaSrAsO_4 \cdot 9.H_2O$  (c). Joly₄ measured the heat of reaction of  $Na_3AsO_4$  (aq.) with  $SrCl_2$  (aq.).

 $NaBaPO_4 \cdot 9 H_2O$  (c).  $Joly^4$  measured the heat of reaction of  $Na_3PO_4$  (aq.) with  $BaCl_2$  (aq.).

 $NaBaAsO_4 \cdot 9 H_2O$  (c). Joly⁴ measured the heat of reaction of  $Na_3AsO_4$  (aq.) with  $BaCl_2$  (aq.).

NaLiClI(c, melt). Beketoff⁸ measured the heats of solution of the melt, of LiCl (c) + NaI (c), and of LiI (c) + NaCl (c).

## Potassium

K (c). Standard state.

K (liq.). The data on the heat of fusion yield the following values: Joannis, 2-0.61; Rengade, 4-0.574; Bridgman, 2-0.501.

**K** (g). The vapor pressure of potassium was measured by Kroner, Fiock and Rodebush, Edmondson and Egerton, and Killian. See also van Laar And Rodebush. Following the same procedure as with sodium, we have calculated that the amount of  $K_2$  in potassium vapor at these temperatures is less than 1%. For the heat of vaporization of K (liq.), we have selected V = -20.00 + 0.0025(t + 273.1); whence, for K (g), Qf = -19.80.

The values for the energy states of gaseous monatomic potassium are from Fowler,³ de Bruin,^{1, 4} and Bowen.^{1, 5} See also Braunbek¹ and Bacher and Goudsmit.¹

 $K_2$  (g). Nusbaum and Loomis¹ and Loomis and Nusbaum² reported the energy of dissociation,  $K_2$  (g) = 2 K (g), with each substance in its normal state, to be  $0.51\pm0.02$  volt-electrons. See also Carelli and Pringsheim,¹ Crane and Christy,¹ and Ditchburn.¹ The values for the

energy states of gaseous diatomic potassium are from Mulliken.⁶ See also Jevons.¹

KOH (aq.). The heat of solution of K (c) in water was measured by Favre and Silbermann,³ Thomsen,¹⁵ Joannis,² and Rengade.¹ The data of the last three investigations yield for the reaction, K (c) +H₂O (liq.) = KOH(200) +  $\frac{1}{2}$ H₂ (g), the respective values,  $Q = 48.1 \pm 0.3$ ,  $45.83 \pm 0.28$ , and  $46.42 \pm 0.15$ . We have selected 46.4, whence for KOH(200), Qf = 114.8. The heat of dilution of KOH (aq.) was measured by Berthelot,²⁰ Sabatier,¹ Thomsen,¹⁵ de Forcrand,⁵⁵ Pratt,¹ and Richards and Rowe.² The data in the range from 25 to 400 H₂O were reviewed by Rossini,⁵ who gave values from  $\infty$  to 25 H₂O. The other data have been utilized to obtain values from 25 to 3 H₂O.

 $K^+$  ( $\infty$ ). From the foregoing data we have computed, for  $K^+$  ( $\infty$ ) +OH⁻ ( $\infty$ ), Qf = 114.930; whence, for  $K^+$  ( $\infty$ ), Qf = 60.27.

**KOH** (c, II). The heat of solution data yield the following values for  $S_{200}$ : Berthelot, ¹⁰ 12.76; Thomsen, ¹⁵ 13.18; and de Forcrand, ³⁴ 12.80.

**KOH** ·  $nH_2O$  (c). Berthelot²⁰ measured the heats of solution of the hydrates with  $\frac{7}{8}$  and 2 moles of  $H_2O$ ; de Forcrand,³⁴ those with 0.25, 0.535, 0.91, 1.16, and 1.55 moles of  $H_2O$ .

KOH (c, I). Hevesy¹ determined the heat of transition.

KOH (g). von Wartenberg and Albrecht¹ gave  $V = -32.45^{1500}$ .

 $K_2O$  (c). Rengade³ measured the heats of solution of K (c) and  $K_2O$  (c). The difference gives, for  $K_2O$  (c) +  $H_2$  (g) = 2 K (c) +  $H_2O$  (liq.), Q = -17.8; whence, for  $K_2O$  (c), Qf = 86.2. Beketoff's² data on the heat of solution of  $K_2O$  (c), yield Qf = 94 (?).

 $K_2O_n$  (c). de Forcrand⁶⁶ measured the heats of solution of  $K_2O_3$  (c) and  $K_2O_4$  (c) in  $H_2SO_4$  (aq.).

KH (c). Moutier¹ calculated the heat of dissociation from the dissociation pressure data of Troost and Hautefeuille.⁸ Keyes¹ computed D from his data on the dissociation pressure. Kasarnowsky and Proskurnin¹ reported that Monossohn measured the heats of solution of K (c) and KH (c), and found, for the latter, Qf = 8 to 10. The data of Moutier and Keyes yield, respectively, for KH (c), Qf = 14.7 and 9.8.

**KF** (aq.). Guntz¹ and Mulert¹ measured the heat of neutralization of HF (aq.) with KOH (aq.). Their data yield, respectively, KF (400), Qf = 138.12, and KF (80), Qf = 140.7. Berthelot and Guntz² measured the heat of mixing HCl(110) with KF(110) and of HF(110) with KCl(110); whence, for KF(110), Qf = 138.70. The heat of dilution was measured by Lange and Eichler, Lange and Messner, de Forcrand, sa and Guntz.

KF (c). The heat of solution data yield the following values for  $S_{200}$ : Guntz,  1  3.60; de Forcrand,  $^{12, 58}$  4.20; and Lange and Eichler,  1  3.85.

KF (liq.). According to Plato, the heat of fusion is -6.27.80

KF (g). The vapor pressure was measured by Ruff, Schmidt, and Mugdan¹ and von Wartenberg and Schultz.¹ See also van Laar.⁹

KF · 2 H₂O (c). The data on the heat of solution yield the following

values for  $S_{200}$ : Guntz¹, -1.05; de Forcrand,⁵⁸ -2.11; and Lange and Eichler.¹ -1.96.

KF · 4 H₂O (c). de Forcrand⁵⁸ measured the heat of solution.

KHF₂ (aq.). Guntz¹ measured the heat of mixing KOH (aq.) with 2 HF (aq.) and of HF (aq.) with KF (aq.), his data yielding, respectively, KHF₂ (aq.), Qf = 213.38, and KHF₂ (400), Qf = 213.53. Guntz¹ also measured the heat of dilution of KHF₂ (aq.) from 28 to 222 H₂O. We have extrapolated his data to infinite dilution, assuming no dissociation of HF₂- (aq.).

KHF₂ (c). The data of Guntz¹ and de Forcrand⁶⁰ yield identical values for the heat of solution.

KF·nHF (c). Guntz⁴ measured the heats of solution of KF·2 HF (c) and KF·3 HF (c).

KCl (aq.). The heat of neutralization of HCl (aq.) with KOH (aq.) was measured by Hess,^{1, 5} Andrews,^{2, 7, 11} Favre and Silbermann,³ Favre,³ Berthelot,^{10, 19, 4, 84} Thomsen,¹⁵ Muller,^{1, 40} Richards and Rowe,³ and Gillespie, Lambert, and Gibson.¹ The data from the last two investigations were recomputed by Rossini,⁶ giving N=14.085₂₀₁. The heat of dilution of KCl (aq.) was measured by van Deventer and van der Stadt,¹ Scholz,³ Stackelberg,¹ Varali-Thevenet,¹ Rümelin,¹ Bishop,¹ Brönsted,⁹ Magie,¹ Colson,⁵ Pratt,¹ Stearns and Smith,¹ Richards and Rowe,² Laksonen,¹ Mondain-Monval,³ Wust and Lange,¹ Sandonnini and Gerosa,¹ Nernst and Orthmann,^{1, 2} Harrison and Perman,¹ Nernst and Naudè,¹ Holluta and Werner,¹ Lange and Leighton,¹ and Partington and Soper.¹ The modern data on the dilute range were reviewed by Rossini,⁵ who gave values from ∞ to 25 H₂O.

KCl (c). The data on the heat of solution of KCl (c) have been recomputed to give the following values for S200 (the value following the investigator's name shows the data before conversion to 18° and 200  $H_2O$ ): Andrews, ¹⁴ -...; Winkelmann, ¹ -5.02₁₃₂°, -4.37; Berthe $lot,^{10}$  -4.19₂₀₀²¹, -4.31; Rechenberg, -4.43₂₀₀^{18.2}, -4.44; Ostwald, 1  $-4.56_{278}^{17}$ , -4.50; Berthelot and Ilosvay,  $-4.30_{104}^{18}$ , -4.36; Thom-sen,  $\frac{15}{4}$  = 4.427₂₀₀¹⁸, -4.427; Pickering,  $\frac{7}{4}$  = 4.480₄₀₀¹⁸, -4.467; Scholz,  $\frac{1}{4}$  $-5.28_{220}^{0}$ ; -4.48; Stackelberg,  $-4.291_{100}^{18}$ , -4.362; Varali-Thevenet,  $-4.291_{100}^{18}$  $-5.52_{415}^{0}$ , -4.79; Zemczuzny and Rambach,  $-4.433_{100}^{18}$ , -4.45(?); Brönsted,  $^9 - 4.404_{200}^{19.7}$ , -4.466; Haigh,  $^1 - 4.321_{400}^{20-22}$ , -4.44; Colson,  5  $-4.545_{220}^{17.9}$ , -4.542; Cohen, Heldermann, and Moesveld,  $-4.398_{200}^{18}$ , -4.398; Laksonon,²  $-5.28_{220}$ , -4.57; Mondain-Monval,³  $-4.27_{100-200}$ . -4.30; Wust and Lange,  $-4.123_{50}^{25}$ , -4.500; Gire,  $-4.66_{250}^{11.5}$ , -4.41; Sandonnini and Gerosa,  $1-4.508_{214}$  18?, -4.51(?); Holluta and Werner,  1   $-4.517_{90.3}^{18.5}$ , -4.59; Cohen and Kooy,  1   $-4.373_{200}^{20}$ , -4.447; Partington and Soper,  1   $-4.266_{180}^{25}$ , -4.518; Roth and Eymann,  1   $-4.322_{150}^{21}$ , -4.448; Lange and Monheim,  2   $-4.694_{500}^{12.5}$ , -4.453; Agostini,  $-4.314_{300}$  and  $-4.32_{800}$ , (?). We have selected as the best value for  $S_{200}$ , the average of those from the data of Cohen and Kooy, -4.447, Roth and Eymann, -4.448, and Lange and Monheim, -4.453.

There is an old value by Andrews¹⁶ for the heat of the reaction  $K(c) + \frac{1}{2} \operatorname{Cl}_2(g) = K\operatorname{Cl}(c)$ .

KC1 (liq.). The data on the heat of fusion are: Zemczuzny and Rambach, -4.69; Plato, -6.41.

KCl (g). The vapor pressure was measured by Hackspill and Grandadam, Flock and Rodebush, Horiba and Baba, Jackson and Morgan, Ruff and Mugdan, and von Wartenberg and Albrecht. We have taken  $V = -38.4^{1200}$ . From the spectral absorption limit, Franck, Kuhn, and Rollefson calculated, for KCl (g),  $D^z = -103$ .

KClO (aq.). Berthelot¹⁵¹ measured the heat of reaction of KOH (aq.) with HClO (aq.), and also (Berthelot²⁶) of 2 KOH (aq.) with Cl₂ (aq.). Neumann and Muller² performed similar experiments. Their data yield the following values, respectively, for KClO (aq.), 85.81, 86.74, 86.36, and 85.44.

KClO₃ (aq.). From the ions, we have computed, for KClO₃( $\infty$ ), Qf=81.02. The data of Stackelberg¹ give the heat of dilution from 125 to 500 H₂O. We have estimated the values to  $\infty$  H₂O.

 $\mathrm{KClO_3}$  (c). The data on the heat of solution yield the following values for  $S_{400}$ : Berthelot,  10  -9.36; Thomsen,  15  -10.18; Stackelberg,  1  -10.15. Frankland measured, in a bomb calorimeter, the heat of decomposition of  $\mathrm{KClO_3}$  (c) into  $\mathrm{KCl}$  (c) and  $\mathrm{O_2}$  (g). Thomsen  15  also determined the heat of decomposition of  $\mathrm{KClO_3}$  (c), his data yielding Qf = 94.65.

 $KClO_4$  (c). Berthelot and Vielle⁴ determined the heat of decomposition of  $KClO_4$  (c) into KCl (c) and  $O_2$  (g), in a bomb calorimeter using potassium picrate and ammonium picrate as the auxiliary combustibles. Their data yield, for  $KClO_4$  (c), Qf = 110.9 and 113.0, respectively.

KClO₄ (aq.). The heat of solution data have been recomputed to give the following values for S: Berthelot,  79  -11.54₃₀₀; Stackelberg,  1  -12.30₁₀₀₀, and -11.81₅₀₀; Noyes and Samet,  1  -12.27₄₆₀; and Latimer and Ahlberg,  1  -12.62₁₈₀₀. We have estimated the heat of dilution from 200 to  $\infty$  H₂O, utilizing the data on the heat of solution, which were obtained at various concentrations.

KBr (aq.). The heat of neutralization of HBr (aq.) with KOH (aq.) was measured by Berthelot, ¹⁹ Thomsen, ¹⁵ and Richards and Rowe. ³ The data of Richards and Rowe have been recomputed, giving  $N=14.061_{201}$ . Data on the heat of dilution were reported by Wust and Lange, ² Rümelin, ¹ Dunnington and Hoggard, ¹ and Berthelot. ⁸³

**KBr** (c). The data on the heat of solution have been recomputed, giving the following values for  $S_{200}$ : Berthelot,  10  -5.15; Berthelot and Ilosvay,  1  -5.01; Thomsen,  15  -5.091; Scholz,  1  -5.07; Brönsted,  4  -5.110; Walden,  3  -5.085; and Wust and Lange,  2  -5.119.

KBr (liq.). The value for the heat of fusion has been estimated.

KBr (g). The vapor pressure of KBr was measured by Fiock and Rodebush, von Wartenberg and Albrecht, and Ruff and Mugdan. We have taken Fiock and Rodebush's value,  $V = -40.1^{1000}$ . See also Sommermeyer and Franck, Kuhn, and Rollefson.

- KBrO (aq.). Thomsen¹⁵ measured the heat of reaction between Br₂ (1400) and 2 KOH (40). His data yield, for KBrO (aq.), Qf = 81.70. Berthelot's⁸¹ data on the reaction between bromine and aqueous KOH are apparently uncertain.
- KBrO₃ (aq.). Thomsen found  $N=13.77_{801}$ . The heat of dilution from 200 to  $\infty$  H₂O has been estimated.
- **KBrO**₃ (c). The heat of solution data yield the following values for  $S_{400}$ : Berthelot,  45  -9.32; Thomsen,  15  -10.12; and Stackelberg,  1  -9.87.
- KI (aq.). The heat of neutralization of HI (aq.) with KOH (aq.) was measured by Berthelot, ¹⁹ Thomsen, ¹⁵ and Richards and Rowe. The data of Richards and Rowe have been recomputed, giving  $N\!=\!13.975_{201}$ . The heat of dilution was measured by Wust and Lange² and Dunnington and Hoggard. ¹
- **KI** (c). The data on the heat of solution yield the following values for  $S_{200}$ : Berthelot,  10  -5.00; Berthelot and Ilosvay,  1  -4.99; Thomsen,  15  -5.197; Scholz,  1  -5.05; Walden,  3  -5.206; and Wust and Lange,  2  -5.168. We have selected as the best value the average of those of Thomsen, Walden, and Wust and Lange.
- **KI** (g). Vapor pressure data were reported by Fiock and Rodebush,¹ Ruff and Mugdan,¹ and von Wartenberg and Albrecht.¹ See also Mayer,³ Weinberg,² and Reis.¹ We have selected  $V = -37.6^{900}$ . From Franck, Kuhn, and Rollefson's¹ value for KI (g) = K (g) + I (g), calculated from the spectral absorption limit, we have computed, for KI (g), Qf = 30.3; while from Mayer's³ value for KI (g) = K⁺ (g) + I⁻ (g), we have computed, for KI (g), Qf = 28.2. See also Sommermeyer.¹
- KI (methyl alcohol, ethyl alcohol, acetonitrite, acetone). Walden³ measured the heat of solution of KI (c) in these liquids.
- $KI_3$  (c). Berthelot⁶⁴ measured the heat of solution of  $KI_3$  (c) and of KI (e) in  $H_2O$ , and of  $I_2$  (c) in KI (aq.).
- KIO₃ (aq.). Berthelot⁴² and Thomsen¹⁵ measured the heat of neutralization of HIO₃ (aq.) with KOH (aq.). Their data yield, respectively,  $N=14.10_{440}$  and  $13.80_{800}$ , giving, for KIO₃ (800), Qf=115.00 and 114.85. From Berthelot's⁴⁵ measurement of the heat of reaction of 3 I₂ (c) with 6 KOH (220), we have calculated, for KIO₃ (aq.), Qf=114.5. Some few data on the heat of dilution of KIO₃ (aq.), from 110 to 500 H₂O, were reported by Berthelot⁴⁵ and Stackelberg.¹ We have estimated the values to  $100 \text{ H}_2\text{O}$  and to infinite dilution.
- **KIO**₃ (c). The data on the heat of solution yield the following values for  $S_{400}$ : Berthelot,  45  -5.57; Thomsen,  15  -6.78; and Stackelberg,  1  -6.61.
  - $KIO_4$  (aq.). The data of Thomsen¹⁵ yield  $N = 5.13_{1200}$ .
- $KH_4IO_6$ ,  $K_2H_3IO_6$ ,  $K_3H_2IO_6$  (aq.). Thomsen¹⁵ measured the heat of mixing  $H_5IO_6$  (600) with 1, 2, and 3 moles of KOH (600), respectively.
- $KIO_3 \cdot HIO_3$  (aq.). Thomsen¹⁵ measured the heat of mixing  $KIO_3$  (800) with  $HIO_3$  (800).
  - KIO₃·HIO₃ (c). Berthelot⁴⁵ measured the heat of solution.

- $KI \cdot KCl$  (c, fresh melt). Beketoff⁸ measured the heats of solution of the fresh melt and of KCl (c) + KI (c).
- $K_2S$  (aq.). Sabatier¹ measured the heat of neutralization of 2 KOH (200) with  $H_2S$  (g). His data yield, for  $K_2S$  (400), Qf = 110.4. Sabatier¹ measured the heat of dilution from 7 to 400  $H_2O$ . We have estimated the heat of dilution from 400 to  $\infty$   $H_2O$  to be zero.
- $K_2S$  (c). Sabatier¹ found  $S=10_{580}$ , Favre and Silbermann,³ S=10.6, Rengade and Costeanu,¹  $S=22.6_{400}$ ?
- $K_2S \cdot nH_2O$  (c). Sabatier¹ measured the heats of solution of the dihydrate and the pentahydrate.
- $K_2S_n$  (aq.). Sabatier¹ measured the heats of reaction of  $I_2$  (c) with  $K_2S_{3\frac{1}{2}}$  (aq.), and  $K_2S_4$  (aq.), respectively.
  - $K_2S_{3\frac{1}{4}}$  (c). Sabatier¹ measured the heat of solution.
- $K_2S_4 \cdot nH_2O$  (c). Sabatier¹ measured the heats of solution of the anhydrous salt, the hemihydrate, and the dihydrate.
- KHS (aq.). Sabatier¹ measured the heat of reaction of  $H_2S$  (aq.) with KOH (aq.), and of KHS (aq.) with KOH (aq.). His data yield, for KHS (200), Qf = 64.07 and 64.47, respectively. The heat of dilution was measured by Sabatier¹ from 2.8 to 200  $H_2O$ . We have estimated the value to  $\infty$   $H_2O$ , assuming no dissociation of HS⁻ (aq.).
- KHS·nH₂O (c). Sabatier¹ measured the heats of solution of KHS (c) and KHS· $\frac{1}{4}$ H₂O (c).
- K₂SO₄ (aq.). Berthelot^{4, 7} and Thomsen¹⁵ each measured the heat of neutralization of H₂SO₄ (aq.) with KOH (aq.), and performed a number of pairs of "double decomposition" experiments involving K2SO4 (aq.). Muller¹⁰ measured the heat of neutralization of H₂SO₄(55) with KOH (aq.) of various concentrations. Brönsted, 10 from electromotive force measurements, obtained the heat of the reaction, KCl (c)  $+\frac{1}{2}$  Na₂SO₄ (c) =NaCl (c) +  $\frac{1}{2}$  K₂SO₄ (c), whence, by using the heat of solution of K₂SO₄ (c), we have obtained a value for K₂SO₄ (aq.). The foregoing data have been recomputed to give the following values for K₂SO₄(400): Berthelot, neutralization, 336.46; Berthelot, "double decomposition," K+, SO₄--, Na+, OH-, 336.25; Berthelot, "double decomposition," K+, SO₄--, H+, Cl-, 337.05; Berthelot, "double decomposition," K+, SO₄-, H+, NO₃-, 336.01; Berthelot, "double decomposition," K+, SO₄--, Na+, Cl-, 336.37; Berthelot, "double decomposition," K+, SO₄--, Na+, NO₃-, 335.91; Thomsen, neutralization, 336.05; Thomsen, "double decomposition," K⁺, SO₄⁻⁻, H⁺, NO₃⁻, 336.69; Thomsen, "double decomposition," K⁺, SO₄⁻⁻, Na⁺, OH⁻, 336.12; Thomsen, "double decomposition," K+, SO₄--, H+, Cl-, 336.56; Thomsen, "double decomposition," K+, SO₄--, H+, Cl-, 336.33; Muller, neutralization, 336.58; Brönsted, Qf of solid + heat of solution, 336.44. There are old values of the heat of neutralization by Hess,⁵ Andrews,^{7, 2} Favre and Silbermann,³ and Favre.³ The heat of dilution of K₂SO₄ (aq.) was measured by Lange and Streeck, Mondain-Monval, Brönsted, Rümelin, 1 Varali-Thevenet, 1 and Scholz. 1

 $K_2SO_4$  (c, II). The data on the heat of solution yield the following values for  $S_{400}$ : Favre and Silbermann,³ (?); Favre,⁸ (?); Berthelot,¹⁰ (?); Berthelot and Ilosvay,¹ (?); Tilden,² -6.13; Pickering,² -6.54; Thomsen,¹⁵ -6.33; Scholz,¹ -6.72; Varali-Thevenet,¹ -6.76; Brönsted,⁹ -6.38; Mondain-Monval,³ -6.60 (?); Cohen and Kooy,¹ -6.444. We have taken the average of the values from Pickering, Thomsen, Brönsted, and Cohen and Kooy.

KHSO₄ (aq.). Berthelot⁶ and Thomsen¹⁵ measured the heat of mixing  $H_2SO_4$  (aq.) with  $K_2SO_4$  (aq.). Their data yield, for KHSO₄ (200), Qf = 273.02 and 273.20, respectively. The heat of dilution of KHSO₄ (aq.) was measured by Berthelot⁶ and Thomsen.¹⁵

**KHSO₄** (c, III). The data on the heat of solution yield the following values for  $S_{200}$ : Graham,² (?); Favre,⁸ (?); Berthelot,¹⁰ -3.0 (?); Thomsen,¹⁵ -3.75.

KHSO₄ (c, II), KHSO₄ (c, I). Bridgman⁷ determined the heats of transition.

KHSO₃ (aq.). Berthelot⁹² measured the heat of mixing  $H_2SO_3(275)$  with KOH(110). His data yield, for KHSO₃(385), Qf = 209.70.

K₂SO₄ (c, I). Hare measured the heat of transition.

 $K_2SO_3$  (aq.). Berthelot⁹² measured the heat of neutralization of  $H_2SO_3$  (aq.) with KOH (aq.). His data yield, for  $K_2SO_3(500)$ , Qf = 271.2.

 $K_2SO_3$  (c). Berthelot⁹² measured the heat of solution. The data of Martin and Metz,¹ who measured the heat of reaction, in a bomb calorimeter, between  $K_2SO_3$  (c), Mg (c), and  $O_2$  (g), yield Qf=273.

K₂SO₃·H₂O (c). Berthelot⁹² measured the heat of solution.

 $K_2S_2O_5 \cdot nH_2O$  (c). Berthelot⁹⁴ measured the heats of solution of the anhydrous salt and the hemihydrate.

 $K_2S_2O_3$  (c). Berthelot⁹³ measured the heat of solution. The data of Martin and Metz,¹ who measured, in a bomb calorimeter, the heat of the reaction,  $K_2S_2O_3$  (c) +Mg (c) +2½  $O_2$  (g) =  $K_2SO_4$  (c) +MgSO₄ (c), yield Qf=283.

 $K_2S_2O_6$  (c). The data of Martin and Metz¹ (see  $K_2S_2O_3$  (c)) yield Qf=415.8. The data of Thomsen¹⁵ on the reaction,  $K_2S_2O_6$  (c) =  $K_2SO_4$  (c) +SO₂ (g), yield Qf=413.7.

 $K_2S_2O_6$  (aq.). Thomsen¹⁵ measured the heat of solution of  $K_2S_2O_6$  (c).

 $K_2S_2O_7$  (c). Berthelot⁴ measured the heat of solution of  $K_2S_2O_7$  (c) in  $H_2O$  to form 2 KHSO₄ (aq.).

 $K_2S_2O_7$  (aq.). Berthelot⁴ measured the heat of solution of  $K_2S_2O_7$  (c) in  $H_2O$ , taking the initial heat of solution, i. e., before  $S_2O_7$ —(aq.) was hydrated to  $2 \text{ HSO}_4$ —(aq.).

 $K_2S_2O_8$  (aq.). The value of Qf for this substance is computed from those for the aqueous ions.

K₂S₂O₈ (c). Berthelot¹⁰⁷ measured the heat of solution.

 $K_2S_3O_6$  (c). Berthelot¹⁰³ measured the heat of reaction of  $K_2S_3O_6$  (c) with  $KBr_3$  (aq.). His data yield Qf=411.2. The data of Martin and  $Metz^1$  (see  $K_2S_2O_3$  (c)) yield Qf=402.

K₂S₃O₆ (aq.). The data of Berthelot¹⁰³ and Thomsen¹⁵ yield, respectively,  $S = -12.45_{650}$  and  $-12.38_{500}$ .

K₂S₄O₆ (c). The data of Martin and Metz¹ (see K₂S₂O₃ (c)) yield Of=393. Thomsen¹⁵ measured the heat of solution.

 $K_2S_4O_6$  (aq.). This value is obtained from those for the aqueous ions. K₂S₅O₆ (aq.). Berthelot¹⁰³ measured the heat of reaction of K₂S₅O₆

(aq.) with  $10 \, \mathrm{KBr_3}$  (aq.), and also of  $\mathrm{K_2S_5O_6}$  (aq.) with  $3 \, \mathrm{NaOH}$  (aq.). His data yield, respectively, Qf = 398.1 and 400.7.

K₂S₅O₆ (c). The data of Martin and Metz¹ (see K₂S₂O₃(c)) yield Qf = 386. We have estimated 408.

 $K_2S_5O_6 \cdot 1\frac{1}{2} H_2O$  (c). Berthelot¹⁰³ measured the heat of solution.

 $KI \cdot 4SO_2$  (c). Ephraim and Kornblum¹ found D = -9.67.

K₂Se (aq.). Fabre measured the heat of reaction of H₂S (g) with 2 KOH(220), and of H₂S(4000) with 2 KOH(220). His data yield, for  $K_2Se(440)$ , Qf = 82.72, and for  $K_2Se(4400)$ , Qf = 83.76.

K₂Se·nH₂O (c). Fabre¹ measured the heats of solution of the anhydrous salt and of the hydrates, with 9, 14, and 19 moles of H₂O.

KHSe (aq.). The data of Fabre, who measured the heat of mixing KOH (aq.) with  $H_2$ Se(4000), yield, for KHSe(4200), Qf = 34.03.

 $K_2SeO_4$  (aq.). The data of Metzner^{2, 1} yield  $N=31.19_{440}$ , whence for  $K_2SeO_4(440)$ , Qf=266.95. We have estimated the heat of dilution to  $\infty$  H₂O.

KHSeO₄ (aq.). Metzner^{2, 1} found, for the heat of mixing H₂SeO₄ (220) with  $K_2 SeO_4(220)$ ,  $Q^{15} = -1.24$ .

K₂TeO₃ (aq.). Metzner^{1, 2} found, for the heat of solution of TeO₂ (c) in KOH (aq.),  $Q^{15} = 22.76$ .

 $K_2 \text{TeO}_4$  (aq.). The data of Metzner^{1, 2} yield  $N=31.24_{220}$ .

KNO₃ (aq.). The heat of neutralization of HNO₃ (aq.) with KOH (aq.) was measured by Hess,⁶ Andrews,^{2, 7, 11} Favre and Silbermann,³ Favre,³ Berthelot,⁴ Thomsen,¹⁵ and Richards and Rowe.³ The data of Richards and Rowe were recomputed by Rossini,  6  giving  $N=14.165_{201}$ . Data on the heat of dilution of KNO₃ (aq.) were given by Winklemann,¹ Scholz, Stackelberg, Varali-Thevenet, Rümelin, Bishop, Colson, Pratt, Richards and Rowe, Mondain-Monval, Nernst and Orthmann, 1 Nernst and Naudè, 1 Roth, 11 Roth and Eymann, 1 Roth and Muller, 5 and Lange and Monhein.² The modern data in the dilute range were reviewed by Rossini,⁵ who gave values from ∞ to 25 H₂O.

KNO₃ (c, III). The data on the heat of solution have been recomputed to give the following values for S₂₀₀: Person,⁶ (?); Winkelmann,¹ -8.42; Berthelot, 10 (?); Tilden, 2 -8.12; Thomsen, 15 -8.49; Pickering, 7 -8.41; Scholz, -8.51; Stackelberg, -8.43; Varali-Thevenet, -8.28; Haigh, 1 -8.28; Colson, 5 -8.65; Mondain-Monval, 3 -8.3; Holluta and Werner, 1 -8.57; Berenger-Calvet, 1 -8.25; Zawidski and Schogger, 1 (?); Roth, 11 -8.282; Roth and Muller, 5 -8.467; Cohen and Kooy, 1 -8.395; Roth and Eymann, 1 -8.399; Lange and Monhein, 1 -8.404. We have taken the average of the last three values.

KNO₃ (c, II), KNO₃ (c, I). Potassium nitrate shows a change of crystal form at about 128°. According to Bridgeman's^{6a} analysis, there are really two transitions with  $T = 0.62_{I \to II}^{126}$  and  $1.17_{II \to III}^{128}$ . See also Bellati and Romanese.³

KNO₃ (liq.). Data for obtaining the heat of fusion were recorded by Person¹ and Goodwin and Kalmus.¹

 $KNH_3$  (c). Joannis³ found D = -6.4.

 $\mathbf{KX} \cdot n\mathbf{NH}_3$  (c). Biltz and Hansen¹ measured the temperature coefficient of the dissociation pressure for  $\mathbf{KBr} \cdot 4\mathbf{NH}_3$  (c),  $\mathbf{KI} \cdot 4\mathbf{NH}_3$  (c), and  $\mathbf{KI} \cdot 6\mathbf{NH}_3$  (c).

KH₂PO₄ (c). Graham¹ measured the heat of solution.

KH₂AsO₄ (c). Graham¹ measured the heat of solution.

 $K_2CO_3$  (aq.). Berthelot⁴ measured the heat of mixing  $CO_2$  (aq.) with 2KOH (aq.); Muller¹ that of mixing  $K_2CO_3$  (aq.) with 2HCl (aq.). Their data yield, respectively, for  $K_2CO_3(1800)$ , Qf = 280.61, and for  $K_2CO_3(1950)$ , Qf = 280.66. Data on the heat of dilution were given by Berthelot,⁴ Thomsen,¹⁵ Rümelin,¹ and de Forcrand.⁵² We have estimated the values from 400 to  $\infty$   $H_2O$ .

 $K_2CO_3$  (c). The data on the heat of solution yield the following values for  $S_{400}$ : Berthelot, ¹⁰ 6.8 (?); Berthelot and Ilosvay, ¹ 6.66; Ostwald, ¹ 6.64; Thomsen, ¹⁵ 6.59.

K₂CO₃ (liq.). Sackur¹ reported the heat of fusion.

 $K_2CO_3 \cdot nH_2O$  (c). Thomsen  15  measured the heats of solution of  $K_2CO_3 \cdot \frac{1}{2} \ H_2O$  (c) and  $K_2CO_3 \cdot 1\frac{1}{2} \ H_2O$  (c). Berthelot's  10  measurement of the heat of solution of the latter lacks adequate information as to concentration and temperature.

KHCO₃ (aq.). Berthelot⁴ measured the heat of mixing CO₂ (aq.) with KOH (aq.); Muller¹ that of mixing KHCO₃ (aq.) with HCl (aq.). Their data yield, respectively, for KHCO₃(1900), Qf = 225.01, and for KHCO₃(1000), Qf = 224.96.

**KHCO₃** (c). The data of Berthelot¹⁰ and de Forcrand⁵³ yield for the the heat of solution,  $-5.2_{400}$  and  $-5.2_{220}$ , respectively. The dissociation pressure data of Caven and Sand² yield Qf = 228.9.

 $5(K_2CO_3 \cdot 1\frac{1}{2} H_2O) \cdot 4KHCO_3$  (c). de Forcrand⁵⁴ measured the heat of solution.

 $K_2C_2O_4$  (aq.). Berthelot¹⁰ measured the heat of neutralization of  $H_2C_2O_4(220)$  with 2 KOH(110). Berthelot and Guntz¹ measured the heat of mixing KF(110) with  $\frac{1}{2} H_2C_2O_4(220)$ , and of HF(110) with  $\frac{1}{2} K_2C_2O_4(220)$ . Their data yield, respectively, for  $K_2C_2O_4(440)$ , Qf = 316.16, and for  $K_2C_2O_4(220)$ , Qf = 316.5.

K₂C₂O₄ (c). Berthelot¹⁰ measured the heat of solution of potassium oxalate.

 $K_2C_2O_4 \cdot H_2O$  (c). For the heat of solution, the data of Berthelot¹⁰ and Thomsen¹⁵ yield, respectively,  $-7.57_{400}$ , and  $-7.52_{800}$ .

KCHO₂ (aq.). Berthelot⁸ measured the heat of neutralization of aqueous formic acid with KOH (aq.), and performed "double decom-

position" experiments involving K⁺, CHO₂⁻, H⁺, Cl⁻. His data yield, respectively, for KCHO₂(480), Qf = 159.67, and for KCHO₂(330), Qf = 160.18.

KCHO₂ (c). Berthelot¹⁰ measured the heat of solution of potassium formate.

 $KC_2H_3O_2$  (aq.). Berthelot¹⁰ and Berthelot and Guntz¹ performed "double decomposition" experiments involving  $K^+$ ,  $C_2H_3O_2^-$ ,  $H^+$ ,  $Cl^-$  and  $K^+$ ,  $C_2H_3O_2^-$ ,  $H^+$ ,  $F^-$ , respectively. Their data yield, for  $KC_2H_3O_2(110)$ , Qf=178.43 and 177.69. Thomsen¹⁵ measured the heat of dilution of aqueous potassium acetate from 5 to 200  $H_2O$ . We have estimated the values to infinite dilution.

 $KC_2H_3O_2$  (c). The data of Thomsen¹⁵ and Berthelot^{10, 131} yield, for the heat of solution of potassium acetate,  $3.34_{200}$  and  $3.37_{200}$ , respectively.

 $KCH_3O(CH_3OH)$ . de Forcrand¹⁶ measured the heat of solution of K (c) in methyl alcohol.

 $KC_2H_5O(C_2H_5OH)$ . de Forcrand¹⁶ and van Deventer and Reicher² measured the heat of solution of K (c) in ethyl alcohol. Their data, respectively, yield for  $KC_2H_5O$  (60  $C_2H_5OH$ ), Qf=116.49, and for  $KC_2H_5O$  (427  $C_2H_5OH$ ), Qf=117.64.

 $KC_2H_3O_3$  (aq.). de Forcrand³ measured the heat of neutralization of aqueous glycollic acid.

 $KC_2H_3O_3 \cdot n H_2O$  (c). de Forcrand³ measured the heats of solution of the anhydrous salt and the hemihydrate of potassium glycollate.

KCN (aq.). Berthelot²⁷ measured the heat of neutralization of HCN(110) with KOH(110). His data yield  $N=2.93_{220}$ . Thomsen¹⁵ measured the heat of dilution from  $62\frac{1}{2}$  to 150 H₂O.

KCN (c). The data of Berthelot¹⁰ and Thomsen¹⁵ yield, respectively, for the heat of solution,  $-2.93_{200}$  and  $-3.08_{1740}$ .

**KCNO** (aq.). The data of Berthelot¹⁰⁹ yield N=12.2.

KCNO (c). The heat of solution was measured by Berthelot. 10

KCNS (aq.). The data of Joannis¹ yield N=14.0. Partington and Soper¹ measured the heat of dilution at 25° in the range 2.3 to 200 H₂O. We have converted their data to 18° and extrapolated to infinite dilution.

**KCNS** (c). The heat of solution data yield the following values for  $S_{200}$ : Joannis, -5.98; Wrzesnewsky, -6.22; Partington and Soper, -6.00.

KCNS · nSO₂ (c). Ephraim and Kornblum¹ found for  $n = \frac{1}{2}$ , D = -11.3, and for n = 1, D = -9.9.

 $K_2SiF_6$  (c). Truchot² measured the heat of reaction of  $H_2SiF_6$  (330) with 2KOH(110), and of  $SiF_4$  (g) with 2KF (aq.); Hantke,¹ that of  $H_2SiF_6$  (220) with 2KOH(110). Their data yield, respectively, for  $K_2SiF_6$  (c), Qf = 683.9, 684.5, and 682.1.

 $K_2SnCl_6$  (aq.). Thomsen¹⁵ measured the heat of mixing 2KCl(150) with  $SnCl_4$ (300).

 $K_2SnCl_6$  (c). The heat of solution was measured by Thomsen.¹⁵  $K_2SnCl_6 \cdot H_2O$  (c). Thomsen.¹⁵ measured the heat of solution.

 $KCl \cdot nPbCl_2 \cdot mH_2O$  (c). Brönsted,¹⁰ from electromotive force measurements, determined the heat of reaction of KCl(c) with  $PbCl_2(c)$  and  $H_2O$  (liq.) to form  $KCl \cdot 2 \ PbCl_2$  (c) and  $KCl \cdot PbCl_2 \cdot \frac{1}{3} \ H_2O$  (c), respectively.

 $2KI \cdot PbI_2 \cdot nH_2O$  (c). Berthelot⁸⁹ measured the heats of solution of the anhydrous salt and the dihydrate.

 $4KI \cdot 3PbI_2 \cdot nH_2O$  (c). Berthelot⁸⁹ measured the heats of solution of  $4KI \cdot 3PbI_2$  (c, fresh melt) and the hexahydrate.

 $K_2SO_4 \cdot PbSO_4$  (c). The data of Barre, who measured the heats of solution of  $K_2SO_4 \cdot PbSO_4$  (c) and of  $K_2SO_4$  (c) + PbSO₄ (c), and Brönsted, who measured the heats of solution of the double salt and of  $K_2SO_4$  (c) in Pb(NO₃)₂ (aq.), yield, for  $K_2SO_4$  (c) + PbSO₄ (c) =  $K_2SO_4 \cdot PbSO_4$  (c), Q = -0.02 and 5.30, respectively. From electromotive force measurements, Brönsted found Q = 5.09.

 $K_2Zn(SO_4)_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the anhydrous salt, the dihydrate, and the hexahydrate. The first data on the anhydrous salt and the hexahydrate were obtained by Graham.² The vapor pressure data of Caven and Ferguson² yield, for the hexahydrate, Qf = 1010.9.

 $2KCN \cdot Zn(CN)_2$  (c). Berthelot¹¹⁴ measured the heat of solution.

KHg_n (liq.). The data of Berthelot,⁵⁶ Lewis and Keyes,¹ and Smith and Ball,¹ yield, respectively: n=57.5, Qf=25.6; n=86.5 Qf=26.0; n=145, Qf=25.9.

KHg_n (c). Berthelot⁵⁵ measured the heat of solution of KHg_{2.59} (c) in H₂O and in HCl(200), and (Berthelot⁵⁶) of four solid amalgams, with n ranging from 1.45 to 12.0, in HCl(300).

nKCl·HgCl₂ (aq.). Berthelot⁸³ measured the heat of mixing HgCl₂ (440) with  $\frac{1}{2}$ ,  $\frac{3}{4}$ , 1, 2, and 4 moles of KCl(110), respectively; Thomsen¹⁵ that of HgCl₂ (c) with 2KCl(150).

 $nKCl \cdot HgCl_2 \cdot mH_2O$  (c). Berthelot⁸³ measured the heats of solution of  $KCl \cdot HgCl_2$  (c) and its monohydrate,  $2KCl \cdot HgCl_2$  (c),  $4KCl \cdot 3HgCl_2$  (c) and its trihydrate, and  $2KCl \cdot HgCl_2 \cdot H_2O$  (c). Thomsen¹⁵ also measured the heat of solution of the last named compound and, for it, their data yield the values: Thomsen,  $-16.43_{600}$ ; Berthelot,  $-16.53_{970}$ .

nKBr·HgBr₂ (aq.). Berthelot⁸³ measured the heats of mixing KBr(110) with HgBr₂(4400); Varet⁶ of KBr(220) with HgBr₂(4400). Thomsen¹⁵ measured the heat of solution of HgBr₂ (c) in 2KBr(150).

nKBr·HgBr₂·mH₂O (c). Berthelot⁸³ measured the heats of solution of KBr·HgBr₂ (c) and of its monohydrate, in 5 KBr (110). Thomsen¹⁵ measured the heat of solution of 2 KBr·HgBr₂ (c).

nKI·HgI₂ (aq.). Berthelot⁸⁵ measured the heat of solution of HgI₂ (c, red) in 2, 3, 4, and 6 moles of KI(110); Thomsen¹⁵ that in 2 KI(200) +500 H₂O.

 $nKI \cdot HgI_2 \cdot mH_2O$  (c). Berthelot⁸³ measured the heats of solution of  $KI \cdot HgI_2$  (c) and of its monohydrate, in 13 KI(110); Thomsen¹⁵ that of  $2KI \cdot HgI_2$  (c) in water.

- $nKCN \cdot Hg(CN)_2$  (aq.). Berthelot⁸⁵ measured the heats of mixing  $Hg(CN)_2(440)$  with  $\frac{1}{2}$ , 1, 2, 4, 8, and 16 moles of KCN(110); Varet² that with 1 and 2 moles of KCN(110).
- 2 KCN·Hg(CN)₂ (c). Berthelot¹⁰ measured the heat of solution.  $nKCl·Hg(CN)_2$  (aq.). Berthelot⁸⁶ measured the heats of mixing Hg(CN)₂(440) with  $\frac{1}{2}$ , 1, 2, 4, and 8 moles of KCl(110); Varet² that with 2 moles of KCl(110).
- $KC1 \cdot Hg(CN)_2 \cdot nH_2O$  (c). Berthelot⁸⁵ measured the heat of solution of the anhydrous salt and of its monohydrate.
- $nKBr \cdot Hg(CN)_2$  (aq.). Berthelot⁸³ measured the heats of mixing  $Hg(CN)_2(440)$  with  $\frac{1}{2}$ , 1, 2, 4, and 8 moles of KBr(110); Varet² those with 1 and 2 moles of KBr(110).
- $\mathbf{KBr} \cdot \mathbf{Hg}(\mathbf{CN})_2 \cdot n\mathbf{H}_2\mathbf{O}$  (c). Berthelot⁸³ measured the heats of solution of the anhydrous salt and the hydrate with  $1\frac{1}{2}$  moles of  $\mathbf{H}_2\mathbf{O}$ .
- $nKI \cdot Hg(CN)_2$  (aq.). Berthelot^{S3} measured the heats of mixing  $Hg(CN)_2(440)$  with  $\frac{1}{2}$ , 1, 2, 4, and 8 moles of KI(110); Varet² that with 2 moles of KI(110).
- $KI \cdot Hg(CN)_2 \cdot nH_2O$  (c). Berthelot⁸³ measured the heats of solution of the anhydrous salt and the hydrate with  $\frac{1}{2}H_2O$ .
- $KCl \cdot CuCl_2$  (c). Vriens¹ measured the heat of solution of this double salt; Agostini,¹ that of the double salt, of  $CuCl_2$  (c), and of KCl (c). Their data yield, respectively, Qf = 159.8 and 162.4.
- 2 KCl·CuCl₂ (c). The electromotive force data of Brönsted¹⁰ yield Qf = 244.78.
- $2 \text{ KCl} \cdot \text{CuCl}_2$  (c). Bouzat and Chauvenet² measured the heat of solution of  $2 \text{ KCl} \cdot \text{CuCl}_2$  (c); Agostini¹ that of  $2 \text{ KCl} \cdot \text{CuCl}_2$  (c), of KCl (c), and of CuCl₂ (c). Their data yield, respectively; Qf = 265.7 and 266.2.
- $2 \text{ KCl} \cdot \text{CuCl}_2 \cdot 2 \text{ H}_2\text{O}$  (c). Bouzat and Chauvenet² measured the heat of solution, as did Vriens¹ and Favre and Valson.¹ The data of Bouzat and Chauvenet, and Vriens, yield, respectively, Qf = 407.5 and 407.0.
- $K_2Cu(SO_4)_2$  (c,  $\alpha$ ) (prepared below 130°). The data of Thomsen¹⁵ and Pickering⁴ yield, respectively, for the heat of solution: 9.48₆₀₀ and 9.67₈₀₀.
- $K_2Cu(SO_4)_2$  (c,  $\beta$ ) (prepared between 180 and 200°). The data of Pickering⁴ yield  $S=6.23_{800}$ .
- K₂Cu(SO₄)₂ (c, fused). The data of Pickering⁴ yield S=8.37₈₀₀. Graham² also measured the heat of solution.
- $K_2Cu(SO_4)_2 \cdot 2 H_2O$  (c). The data of Thomsen¹⁵ yield  $S=-1.17_{600}$ .  $K_2Cu(SO_4)_2 \cdot 6 H_2O$  (c). Data on the heat of solution were reported by Graham² and Favre.⁸ The data of Thomsen¹⁵ and Pickering⁵ yield  $S=-13.50_{600}$  and  $-13.77_{800}$ , respectively. The dissociation pressure data of Caven and Ferguson¹ yield Qf=962.7.
- $K_2Cu(CO_3)_2$  (c). Pickering¹¹ measured the heat of solution of three crystalline forms of this double salt in HCl(35).

 $nKX \cdot n'AgX \cdot mH_2O$  (c). Berthelot⁸⁶ measured the heats of solution of KCl·AgCl (c), KBr·AgBr (c), 3 KBr·AgBr· $\frac{1}{2}$  H₂O (c), KI·AgI· $\frac{1}{4}$  H₂O (c), 2 KI·AgI· $\frac{1}{2}$  H₂O (c), 3 KI·AgI (c), 3 KI·AgI· $\frac{1}{2}$  H₂O (c), and 3 KI·2 AgI· $\frac{1}{2}$  H₂O (c).

KAg(CN)₂ (aq.). Varet⁵ measured the heat of solution of AgCN (c) in KCN(550).

KAg(CN)₂ (c). Berthelot¹⁰ measured the heat of solution of KAg (CN)₂ (c), and the heat of mixing AgNO₃(440) with 2 KCN(110).

K₂Ag(CN)₃ (aq.). Varet⁵ measured the heats of solution of AgCN (c) in 2 KCN (110), 2 KCN (165), and 2 KCN (660), respectively.

KAu(CN)₂ (aq.). Biltz and Wien¹ measured the heat of solution of AuCl (c) in excess KCN (aq.).

 $K_2Ni(CN)_4$  (aq.). Varet⁵ measured the heat of solution of  $Ni(CN)_2$  (c) in 2 KCN (aq.).

 $K_2CO_3 \cdot CoCO_3 \cdot nH_2O$  (c). de Carli¹ measured the heats of solution of the anhydrous salt and the tetrahydrate in HCl(314).

 $KFe(SO_4)_2$  (aq.). Thomsen¹⁵ measured the heat of mixing KFe  $(SO_4)_2$  (600) with 3 KOH (400).

 $K_2$ Fe(SO₄)₂ (aq.). Berthelot¹⁰⁰ measured the heat of mixing FeSO₄ (220) with  $K_2$ SO₄(220).

 $K_3$ Fe(SO₄)₃ (aq.). Berthelot¹⁰⁰ measured the heat of mixing Fe₂ (SO₄)₃(660) with  $3K_2$ SO₄(220).

 $K_2Fe(SO_4)_2 \cdot 6$   $H_2O(c)$ . The data of Graham¹ yield  $S=10.3_{200}$ .

 $K_2$ Fe(SO₄)₂·4 H₂O (c). Caven and Ferguson² measured the dissociation pressure of the hexahydrate at various temperatures. Their data yield D=-10.4.

 $K_nH_{3-n}Fe(CN)_6$  (aq.). Joannis¹ measured the heat of reaction of  $K_4Fe$  (CN)₆ (aq.) with  $\frac{1}{2}$  Br₂ (liq.),  $K_4Fe(CN)_6$  (aq.) with  $\frac{1}{2}$  Cl₂ (g),  $H_3Fe(CN)_6$  (aq.) with KOH (aq.), and  $H_3Fe(CN)_6$  (aq.) with 2KOH (aq.). These data yield, respectively, the values for the heats of formation of  $K_3Fe(CN)_6$  (aq.),  $KH_2Fe(CN)_6$  (aq.), and  $K_2HFe(CN)_6$  (aq.).

K₃Fe(CN)₆ (c). Joannis¹ measured the heat of solution.

 $K_4$ Fe(CN)₆ (aq.). The data of Joannis,¹ Muller,² and Chretien and Guinchant¹ yield, respectively, for N: 55.1; 56.08₁₃₉₀; 57.5₅₂₀₀. Muller's² data yield, for  $K_4$ Fe(CN)₆ (aq.), Qf = 119.50.

 $K_nH_{4-n}Fe(CN)_6$  (aq.). Muller² measured the heat of mixing  $H_4Fe$  (CN)₆ (aq.) with 1, 2, and 3 moles of KOH (aq.).

 $K_4$ Fe(CN)₆ (c). Berthelot¹⁰ found  $S = -11.96_{510}^{12}$ ; Schottky,  $S = -12.39_{1000}^{17}$ .

 $K_4$ Fe(CN)₆·3  $H_2$ O (c). Berthelot¹⁰ found  $S = -16.92_{590}^{11}$ ; Schottky,  $S = -15.69_{1000}^{17}$ .

 $K_3$ FeCO(CN)₅ (aq.). Muller⁹ found N=42.0.

 $K_3$ FeCO(CN)₅· $nH_2$ O (c). Muller⁹ measured the heats of solution of the anhydrous salt and the hydrate with  $3\frac{1}{2}H_2$ O.

KMnO₄ (aq.). Thomsen¹⁵ measured the heats of reaction of 2 KMnO₄ (aq.) with 10 FeCl₂ (aq.), with 5 H₂O₂ (aq.), and with 5 SnCl₂ (aq.),

respectively, and his data yield, for  $KMnO_4$  (aq.), the average value Qf = 182.5.

KMnO₄ (c). The data of Thomsen¹⁵ yield  $-10.42_{500}$  and  $-10.10_{700}$  for the heat of solution.

**KReO₄** (aq.). Roth and Becker⁴ measured the heat of neutralization of HReO₄ (aq.), and gave the value  $N_{\infty}^{20}=13.5\pm0.1$ . Converted to 18°, this value becomes  $13.61\pm0.1$ . From the ions we have calculated, for KReO₄ ( $\infty$ ), Qf=284.5. We have estimated the heat of dilution of aqueous KReO₄ from the data of Roth and Becker⁴ on the heat of solution of the solid salt.

 $KReO_4$  (c). The data of Roth and Becker⁴ yield  $-13.88_{3600}$  for the heat of solution.

 $K_2Mn(SO_4)_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heats of solution of the anhydrous salt, the dihydrate, and the tetrahydrate.

 $K_2PdCl_4$  (aq.). Thomsen¹⁵ measured the heat of reaction of  $K_2PdCl_4$  (1400) with Co (c) and 2 CuCl (c), respectively; Joannis,⁴ that of  $K_2PdCl_4$  (aq.) with 2 CuCl (c). Their data yield, respectively, Qf = 247.8, 248.9, and 251.4.

 $K_2$ PdCl₄ (c). Thomsen¹⁵ found  $S = -13.64_{800}^{19.5}$ ; Joannis, S = -4.6 (?).

 $K_2$ PdCl₆ (c). Thomsen¹⁵ measured the heat of reaction of  $K_2$ PdCl₆ (c) with 4 KI(400), and with 4 CuCl (c) in water. His data yield, respectively, Qf = 291.26 and 292.95.

K₂PdCl₆ (aq.). Thomsen¹⁵ estimated the heat of solution.

 $K_2PdBr_4$  (aq.). Joannis⁴ measured the heat of reaction of Pd (c) with  $Br_2$  (liq.) and 2 KBr (aq.).

K₂PdBr₄ (c). Joannis⁴ measured the heat of solution.

 $K_2PtCl_4$  (c). Thomsen¹⁵ measured the heat of reaction of  $K_2PtCl_4$  (c) with Co (c) in water.

K₂PtCl₄ (aq.). Thomsen¹⁵ measured the heat of solution of K₂PtCl₄ (c).

 $K_2PtCl_6$  (aq.). Thomsen¹⁵ measured the heat of reaction of Na₂PtCl₆ (c) with 2 KCl(100); Gire² that of  $K_2PtCl_6$  (aq.) with 2 Co (c). Their data yield, respectively, Qf = 286.2 and 289.7.

 $K_2PtCl_6$  (c). The data of Thomsen¹⁵ yield for the reaction, Na₂PtCl₆ (aq.) +2 KCl (aq.) =  $K_2PtCl_6$  (c) +2 NaCl (aq.), Q=13.42. Hence, S=-13.42. Gire² found  $S=-12.15_{6600}^{12.5}$ . Gire's data on the dissociation pressure of  $K_2PtCl_6$  (c) yield Qf=291.

 $K_2$ PtBr₄ (aq.). Thomsen¹⁵ measured the heat of reaction of  $K_2$ PtBr₄ (1500) with Br₂ (liq.), and of  $K_2$ PtBr₄ (750) with Co (c). His data yield, respectively, Qf = 210.77 and 210.72.

K₂PtBr₄ (c). Thomsen¹⁵ measured the heat of solution.

K₂PtBr₆ (c). Thomsen¹⁵ measured the heat of reaction of K₂PtBr₆ (c) with 2 Co (c) in water.

 $K_2PtBr_6$  (aq.). Thomsen¹⁵ measured the heat of solution of  $K_2PtBr_6$  (c).

K₂IrCl₆ (c). The data of Gire¹ on the dissociation pressure-temperature relationship yield Qf = 286.

K₂IrCl₆ (aq.). Gire² measured the heat of solution of K₂IrCl₆ (c).

K₃IrCl₆ (aq.). Gire² measured the heat of the reaction, K₂IrCl₆ (aq.)  $+\frac{1}{2}$  Co (c) + KCl (aq.) = (K₃IrCl₆ +  $\frac{1}{2}$  CoCl₂) (aq.).

K₃IrCl₆ (c). Gire² measured the heat of solution. His data (Gire¹) on the dissociation pressure yield Qf = 373.

 $K_2CrO_4$  (ag.). The data of Morges yield  $N=22.78_{440}$ ; those of Sabatier⁵ yield  $N = 25.4_{440}$ . The heat of dilution was measured by Roth, Schwartz, and Buchner.1

K₂CrO₄ (c, II). Graham² and Morges¹ measured the heat of solution. the data of the latter yielding  $S = -5.25_{543}$ .

K₂CrO₄ (c, I). Hare measured the heat of transition.

K₂Cr₂O₇ (aq.). Morges¹ measured the heat of mixing CrO₃ (220) with KOH(110); Berthelot, 95 K₂Cr₂O₇(660) with 2 KOH(110), and 2 K₂CrO₄ (220) with 2 HCl(110); Sabatier,⁵ CrO₃(220) with KOH(110), and  $K_2\text{Cr}_2\text{O}_7(220)$  with 2 KOH(110). Their data yield, respectively, for  $K_2Cr_2O_7(400)$ , Qf=469.8, 471.6, 471.4, 471.8, and 471.8. The data of Stackelberg¹ give the heat of dilution.

 $K_2Cr_2O_7$  (c). The data on the heat of solution yield the following values for  $S_{400}$ : Graham, (?); Morges, 1 -16.61; Berthelot, 95 -16.20; Thomsen,  15  -16.70; Stackelberg,  1  -16.68. We have selected the average of the last two values.

 $KCl \cdot CrO_3$  (c). Morges¹ measured the heat of solution.

K₂Cr₂O₇·CrO₃ (c). Graham² measured the heat of solution. KCr(SO₄)₂ (aq.). Thomsen¹⁵ measured the heat of mixing KCr  $(SO_4)_2(600)$  with 3 KOH (400).

 $KCr(SO_4)_2 \cdot nH_2O$  (c). Thomsen¹⁵ measured the heat of solution of the dodecahydrate. Kraus, Fricke, and Querengasser¹ measured the vapor pressures of the various hydrates over a range of temperature.

KNH₄CrO₄ (aq.). Sabatier⁵ measured the heat of mixing K₂Cr₂O₇ (440) with  $2 NH_3(110)$ .

KNH₄CrO₄ (c). Sabatier⁵ measured the heat of solution.

 $K_2MoO_4$  (aq.). Pechard¹ found, for  $H_2MoO_4$  (c) +2 KOH(440), N = 24.1.

2 KCl·UOCl₂·2 H₂O (c). Aloy¹ measured the heat of solution.

KVO₅ (aq.). This value is obtained from those for the aqueous ions. KVO₃ (aq.), KVO₄ (aq.). Pissarjewsky⁴ measured the heat of mix-

ing KVO₃ (aq.) with 2 H₂O₂ (aq.) and H₂O₂ (aq.), respectively.

KVO₃ (c), KVO₄ (c). Pissarjewsky⁴ measured the heats of solution.  $nKCl \cdot ThCl_4 \cdot mH_2O$  (c). Chauvenet² measured the heats of solution of 2 KCl ·ThCl₄ (c) and KCl · ThCl₄ · 9 H₂O (c).

3 KF · AlF₃ (aq.). The data of Baud¹ yield for the heat of mixing 3 KF (aq.) with AlF₃ (aq.), Q = -1.51.

3 KF · A1F₃ · nH₂O (c). Baud¹ measured the heats of solution of the anhydrous salt and the hydrate with 31 H2O.

nKCl·AlCl₃ (c). Baud¹ measured the heats of solution of KCl·AlCl₃ (c), 3 KCl·AlCl₃ (c), and 3 KCl·2 AlCl₃ (c).

KCl·AlCl₃·6 NH₃ (c). Baud¹ measured the heat of solution.

 $KAl(SO_4)_2$  (aq.). Thomsen¹⁵ measured the heat of mixing KAl  $(SO_4)_2(600)$  with 3 KOH(400).

 $\mathrm{KAl}(\mathrm{SO_4})_2 \cdot n\mathrm{H_2O}$  (c). Favre and Silbermann³ and Thomsen¹⁵ measured the heat of solution of the dodecahydrate, the latter's data yielding  $S = -10.10_{800}$ . The heats of dehydration have been calculated from the vapor pressure data of Kraus, Fricke, and Querengasser.¹ See also Ephraim and Wagner.¹

 $K_2O \cdot Al_2O_3 \cdot nSiO_2$  (solid). Mulert¹ measured the heats of solution, in 20% HF (aq.), of  $K_2O \cdot Al_2O_3 \cdot 4$  SiO₂ (c, leucite), of  $K_2O \cdot Al_2O_3 \cdot 6$  SiO₂ (c, adular), and of  $K_2O \cdot Al_2O_3 \cdot 6$  SiO₂ (gls.); Tammann (as reported by Mulert¹) those of  $K_2O \cdot Al_2O_3 \cdot 4$  SiO₂ (c, leucite), of  $K_2O \cdot Al_2O_3 \cdot 4$  SiO₂ (gls.), of  $K_2O \cdot Al_2O_3 \cdot 6$  SiO₂ (c, microcline), and of  $K_2O \cdot Al_2O_3 \cdot 6$  SiO₂ (gls.). For the first substance the respective data yield, Qf = 1379.8 and 1374.7; for the last substance, Qf = 1754.9 and 1738.0.

 $nKCl \cdot MgCl_2 \cdot mH_2O$  (c, fresh melt). Berthelot and Ilosvay¹ measured the heats of solution of the fresh melts of  $KCl \cdot MgCl_2$  (c),  $KCl \cdot MgCl_2 \cdot 6H_2O$  (c),  $2KCl \cdot MgCl_2$  (c), and  $4KCl \cdot MgCl_2$  (c).

 $K_2Mg(SO_4)_2$  (c) (prepared below 150°). Pickering⁴ found  $S = 11.53_{800}$ ; Thomsen, ¹⁵  $S = 10.62_{600}$ .

 $K_2Mg(SO_4)_2$  (c) (fresh melt). The data of Berthelot and Ilosvay,¹ and Pickering⁴ yield, respectively, for  $S_{800}$ , 6.92 and 7.30.

 $K_2Mg(SO_4)_2 \cdot 2 H_2O$  (c). Thomsen¹⁵ measured the heat of solution.  $K_2Mg(SO_4)_2 \cdot 4 H_2O$  (c). Caven and Ferguson² measured the dissociation pressure over a range of temperature, finding D=-10.4.

 $K_2Mg(SO_4)_2 \cdot 5 H_2O(c)$ . Thomsen¹⁵ measured the heat of solution.

 $K_2Mg(SO_4)_2 \cdot 6 H_2O$  (c). The data on the heat of solution yield for  $S_{800}$ : Graham,² (?); Thomsen,¹⁵ -10.10; Pickering,⁵ -9.94.

2 KCl·CaCl₂ (c) (fresh melt). Berthelot and Ilosvay¹ measured the heat of solution.

 $K_2SO_4 \cdot nCaSO_4 \cdot H_2O$  (c). Barre¹ measured the heats of solution of the following:  $K_2SO_4 \cdot CaSO_4 \cdot H_2O$  (c),  $K_2SO_4$  (c)  $+ CaSO_4 \cdot 2 H_2O$  (c),  $K_2SO_4 \cdot 5 CaSO_4 \cdot H_2O$  (c), and  $K_2SO_4$  (c)  $+ 5 (CaSO_4 \cdot 2 H_2O)$  (c).

**KCaFeCO(CN)**₅ · 5  $H_2O$  (c). Lecocq¹ measured the heat of combustion in a bomb calorimeter, finding Q = 2152.

 $K_2SO_4 \cdot SrSO_4$  (c). Barre¹ measured the heats of solution of  $K_2SO_4$  ·  $SrSO_4$  (c) and of  $K_2SO_4$  (c) +  $SrSO_4$  (c).

KLiCII (c) (fresh melt). Beketoff⁸ measured the heats of solution of the fresh melt, of LiCl (c) + KI (c), and of LiI (c) + KCl (c).

NaCl·KCl (c) (fresh melt). Beketoff⁸ measured the heats of solution of the fresh melt and of NaCl (c) + KCl (c).

KNaCII (c) (fresh melt). Beketoff⁸ measured the heats of solution of the fresh melt, of NaCl (c) + KI (c), and of NaI (c) + KCl (c).

 $Na_nK_m$  (liq.). Joannis² measured the heats of solution of Na (c), K (c), NaK (liq.), NaK₂ (liq.), NaK₃ (liq.), and Na₂K (liq.) in water.

Na₂KPO₄ (aq.). Berthelot and Louguinine³ measured the heat of mixing Na₂HPO₄(220) with KOH(110).

3 KCNS · NaCNS (c). Wrzesnewsky¹ measured the heats of solution of KCNS (c), of NaCNS (c), and of 3 KCNS · NaCNS (c).

## Rubidium

Rb (c). Standard state.

**Rb** (liq.). The data on the heat of fusion are: Rengade,  4  -0.524³⁹; Bridgman,  1  -0.552³⁹.

Rb (g). Vapor pressure data were reported by Hackspill¹ and Killian.¹ See also van Laar.⁴ The values for the energy states of gaseous monatomic rubidium are from Fowler,³ Miller and Laporte,¹ and Bacher and Goudsmit.¹

**RbOH** (aq.). The heat of solution of Rb (c) in water was measured by Beketoff³ and Rengade.¹ Their data yield, respectively, for Rb (c)  $+\mathrm{H}_2\mathrm{O}$  (liq.)  $=\mathrm{RbOH}(200)+\frac{1}{2}\,\mathrm{H}_2$  (g), Q=48.2 and 47.3. Taking the latest value, we have obtained, for LiOH(200), Qf=115.7. de Forcrand⁵⁵ measured the heat of dilution of RbOH (aq.) from 3.18 to 223 H₂O. We have estimated the heat of dilution from 200 to  $\infty$  H₂O to be zero.

Rb⁺( $\infty$ ). The foregoing data give for Rb⁺( $\infty$ ) + OH⁻( $\infty$ ), Qf = 115.7; whence, for Rb⁺( $\infty$ ), Qf = 61.04.

**RbOH** ·  $n\mathbf{H}_2\mathbf{O}$  (c). de Forcrand⁴⁴ measured the heats of solution of RbOH (c, II), RbOH · 0.613 H₂O, and RbOH · H₂O (c); and later (de Forcrand⁵⁵) that of RbOH · 2 H₂O (c).

RbOH (c, I). Hevesy¹ measured the heat of transition.

 $Rb_2O$  (c). Rengade³ measured the heat of solution in  $H_2O$ . The similar data of Beketoff³ are somewhat doubtful.

 $Rb_2O_n$  (c). de Forcrand  66  estimated the heats of formation of  $Rb_2O_2$  (c) and  $Rb_2O_{4^{\circ}}(c)$  .

**RbH** (c). Kasarnowsky¹ quoted unpublished values of Monossohn, giving Qf = 12.

**RbF** (aq.). From the ions, we have obtained, for RbF ( $\infty$ ), Qf = 139.24. Lange and Monheim² measured the heat of dilution of RbF (aq.) in the very dilute region, and their data have been converted to 18° giving values from  $\infty$  to 100 H₂O.

 $R\bar{b}F$  (c). de Forcrand⁵⁷ measured the heat of solution.

RbF (liq.). We have estimated the heat of fusion.

RbF (g). The vapor pressure of RbF was measured by Von Wartenberg and Schulz¹ and Ruff, Schmidt, and Mugdan.¹

 $RbF \cdot nH_2O$  (c). de Forerand⁵⁹ measured the heats of solution of  $RbF \cdot \frac{1}{3} H_2O$  (c) and  $RbF \cdot \frac{1}{2} H_2O$  (c).

 $RbHF_2$  (aq.). From the ions, we have obtained Qf = 214.4.

RbHF₂ (c). de Forcrand⁶⁰ measured the heat of solution.

401

**RbCl** (aq.). From the ions, we have obtained, for RbCl ( $\infty$ ), Qf = 100.727. The heat of dilution has been estimated from  $\infty$  to  $100 \text{ H}_2\text{O}$ .

**RbCl** (c). The data on the heat of solution have been recomputed to give the following values for  $S_{200}$ : de Forcrand, ⁴⁶ -4.36; Zemczuzny and Rambach, -4.43; Haigh, -4.34.

RbCl (liq.). We have estimated the heat of fusion.

RbCl (g). Vapor pressure data were reported by von Wartenberg and Schulz¹ and Ruff and Mugdan.¹ See also Sommermeyer.¹

RbBr (aq.). From the ions, we have obtained, for RbBr ( $\infty$ ), Qf = 89.71. We have estimated the heat of dilution in the range  $\infty$  to  $100 \, \mathrm{H}_2\mathrm{O}$ .

RbBr (c). de Forcrand⁵⁷ measured the heat of solution.

RbBr (liq.). Plato^{1, 2} measured the heat of fusion.

RbBr (g). Vapor pressure data were reported by von Wartenberg and Schulz¹ and Ruff and Mugdan.¹

**RbI** (aq.). From the ions, we have obtained for RbI ( $\infty$ ), Qf = 74.41. We have estimated the heat of dilution from  $\infty$  to  $100 \text{ H}_2\text{O}$ .

**RbI** (c). The data on the heat of solution yield the following values for  $S_{200}$ : de Forcrand, ^{12, 57} -6.55; Mosnier, ¹ -5.86.

RbI (liq.). We have estimated the heat of fusion.

**RbI** (g). Vapor pressure data were reported by von Wartenberg and Schulz¹ and Ruff and Mugdan.¹ Sommermeyer,¹ from absorption spectra of RbI(g), estimated  $D^z = -77.5$ .

Rb₂S (aq.). Rengade and Costeaunu² measured the heat of neutralization of RbOH (aq.) with H₂S (aq.). Their data yield, for Rb₂S (550), Qf = 112.5. From the ions, we have obtained for Rb₂S ( $\infty$ ), Qf = 112.08.

Rb₂S (c). Rengade and Costeaunu² measured the heat of solution.

 $Rb_2SO_4$  (aq.). deForcrand⁴⁶ measured the heat of neutralization of RbOH (aq.) with  $H_2SO_4$  (aq.) His data, combined with the heat of dilution, give, for  $Rb_2SO_4$  ( $\infty$ ), Qf=337.64. From the ions, we have obtained 337.88. Lange and Streeck¹ measured the heat of dilution at 25°. We have used their data to obtain values at 18° from  $\infty$  to 200  $H_2O$ .

Rb₂SO₄ (c). deForcrand⁴⁶ measured the heat of solution.

RbHSO₄ (aq.). deForcrand⁴⁶ measured the heat of reaction of RbOH(110) with  $H_2SO_4(220)$ , and of RbHSO₄(330) with RbOH(110). His data yield, for RbHSO₄(330), Qf = 274.09 and 274.42, respectively.

RbHSO₄ (c). deForcrand⁴⁶ measured the heat of solution.

 $\mathbf{RbI \cdot 4SO_2}$  (c). The data of Ephraim and Kornblum¹ and deForcrand and Taboury,¹ on the temperature coefficient of the dissociation pressure, give, respectively, D = -10.1 and -10.1.

**RbNO**₃ (aq.). From the ions, we have computed for RbNO₃ ( $\infty$ ), Qf = 110.23. We have estimated the heat of dilution for the range  $\infty$  to  $100 \text{ H}_2\text{O}$ .

RbNO₃ (c, II). Haigh¹ measured the heat of solution.

RbNO₃ (c, I). Bridgman^{6a} measured the heat of transition.

 $RbX \cdot nNH_3$  (c). Biltz and Hansen¹ measured the temperature coefficient of the dissociation pressures of  $RbBr \cdot 3NH_3$ (c) and  $RbI \cdot 6NH_3$ (c).

 $Rb_2CO_3$  (aq.). deForcrand⁴⁹ measured the heat of neutralization of RbOH (aq.) with  $CO_2$  (aq.) His data, together with the heat of dilution, give for  $Rb_2CO_3$  ( $\infty$ ), Qf=282.76. From the ions, we have obtained 282.58. deForcrand⁵² measured the heat of dilution of  $Rb_2CO_3$  (aq.), from 5.76 to 226  $H_2O$ . We have estimated the heats of dilution to 2000 and  $\infty$   $H_2O$ .

Rb₂CO₃ (c). deForcrand^{49, 52} measured the heat of solution, and LeBeau¹ obtained data on the dissociation pressure at various temperatures.

 $Rb_2CO_3 \cdot nH_2O$  (c). deForcrand⁵² measured the heats of solution of  $Rb_2CO_3$  with 1,  $1\frac{1}{2}$ , and  $3\frac{1}{2}$  moles of  $H_2O$ .

RbHCO₃ (aq.). deForcrand⁵³ measured the heat of reaction of RbOH(110) with  $CO_2(1800)$ . His data yield for RbHCO₃(1800), Qf = 225.91.

**RbHCO**₃ (c). deForcrand⁵³ measured the heat of solution. His data yield Qf = 230.44. The data of Caven and Sand² on the dissociation pressure at various temperatures yield Qf = 232.8.

 $3(Rb_2CO_3 \cdot 1\frac{1}{2} H_2O) \cdot 2 RbHCO_3$  (c). de Forcrand⁵⁴ measured the heat of solution.

**RbCNS** (aq.). From the ions, we have obtained Qf = 42.0.

**RbCNS** (c). The heat of solution is estimated to be -14.

RbCNS  $\cdot \frac{1}{2}$  SO₂ (c). Ephraim and Kornblum¹ reported D = -10.6.

 $2RbI \cdot PbI_2 \cdot nH_2O$  (c). Mosnier¹ measured the heats of solution of the anhydrous salt and the tetrahydrate.

 $2RbCl \cdot CuCl_2 \cdot nH_2O$  (c). Bouzat and Chauvenet² measured the heats of solution of the anhydrous salt and the dihydrate.

 $nRbCl \cdot ThCl_4 \cdot mH_2O$  (c). Chauvenet² measured the heat of solution of  $2RbCl \cdot ThCl_4$  (c),  $2RbCl \cdot ThCl_4 \cdot 9H_2O$  (c), and  $4RbCl \cdot ThCl_4$  (c).

 $RbAl(SO_4)_2 \cdot nH_2O$  (c). For the dodecahydrate we have estimated the heat of solution to be -11. The heats of dissociation of the various hydrates have been calculated from the dissociation pressure data of Kraus, Fricke, and Querengasser¹ and Ephraim and Wagner.¹

## Cesium

Cs (c). Standard state.

Cs (liq.). The data on the heat of fusion are: Rengade,  $-0.501^{28.5}$ ; Bridgman,  $-0.51.^{28}$ 

Cs (g). Vapor pressure data were reported by Hackspill, Kroner, Scott, and Langmuir and Kingdom. See also Boer and Dippel, van Laar, and Egerton. The values for the energy states of gaseous monatomic cesium are from Fowler, Miller and Laporte, and Bacher and Goudsmit.

CESIUM 403

- **CsOH** (aq.). The heat of solution of Cs (c) in water was measured by Beketoff^{4, 6} and Rengade.¹ Their data yield, for Cs (c) +H₂O (liq.) = CsOH (200) +½H₂ (g),  $Q = 51 \pm 1$  and  $48.32 \pm 0.10$ , respectively. Taking Rengade's value, we have computed, for CsOH (200), Qf = 116.7. deForcrand⁵⁵ measured the heat of dilution of CsOH (aq.) from 2.16 to 222 H₂O. We have estimated the heat of dilution from 200 to  $\infty$  H₂O to be zero.
- Cs⁺( $\infty$ ). From the foregoing data we have obtained for Cs⁺( $\infty$ ) +OH⁻( $\infty$ ), Qf = 116.7; whence, for Cs⁺( $\infty$ ), Qf = 62.04.
- CsH (c). Kasarnowsky² quoted unpublished values of Monossohn, giving Qf = 12.
- CsOH (c, II). The heat of solution was measured by deForcrand⁴⁴ and by Beketoff.⁴ Their values yield, for S, 16.56₁₁₀ and 16.0₃₃₀, respectively.
  - **CsOH** (c, I). Hevesy¹ measured the heat of transition.
  - CsOH · H₂O (c). deForcrand⁴⁴ measured the heat of solution.
- $Cs_2O$  (c). The heat of solution in  $H_2O$  was measured by Beketoff⁶ and Rengade.^{1, 3} Their values yield  $S=83.1_{3400}$  and  $72.2_{1800}$ , respectively.
- Cs₂O₄ (c). deForcrand⁵⁶ measured the heat of solution in H₂SO₄ (aq.).
- CsF (aq.). From the ions, we have obtained, for CsF ( $\infty$ ), Qf = 140.24. We have estimated the heat of dilution from 800, 200, and 100 H₂O to  $\infty$  H₂O.
  - CsF (c). The heat of solution was measured by deForcrand.⁵⁷
  - CsF (liq.). We have estimated the heat of fusion.
- CsF (g). Vapor pressure data were reported by von Wartenberg and Schulz¹ and Ruff, Schmidt, and Mugdan.¹
- $CsF \cdot nH_2O$  (c). deForcrand⁵⁹ measured the heats of solution of  $CcF \cdot \frac{2}{3} H_2O$  (c) and  $CsF \cdot 1\frac{1}{2} H_2O$  (c).
  - $CsHF_2$  (aq.). From the ions, we have computed Qf = 215.4.
  - CsHF₂ (c). The heat of solution was measured by deForcrand.⁶⁰
- CsCl (aq.). From the ions, we have obtained, for CsCl ( $\infty$ ), Qf = 101.727. The heat of dilution was measured by Richards and Rowe³ at 18° from 25 to 400 H₂O, and by Lange and Messner¹ at 25° in the very dilute region. The latter values have been converted to 18° and combined with the former to give values from 25 to  $\infty$  H₂O.
- CsCl (c, II). The data on the heat of solution of CsCl (c) in  $H_2O$  yield the following values for  $S_{200}$ : deForcrand,  46  -4.61; deForcrand,  $^{12.57}$  -4.54; Haigh,  1  -4.37.
- CsCl (c, I). Zemczuzny and Rambach¹ measured the heat of transition.
  - CsCl (liq.). We have estimated the heat of fusion.
- CsCl (g). Vapor pressure data were reported by von Wartenberg and Schulz, Ruff and Mugdan, and Fiock and Rodebush.
  - CsBr (aq.). From the ions, we have obtained, for CsBr ( $\infty$ ), Qf

=90.71. The heat of dilution has been estimated for the range  $\infty$  to 100 H₂O.

CsBr (c). The heat of solution was measured by deForcrand. 12, 57 CsBr (liq.). We have estimated the heat of fusion.
CsBr (g). Vapor pressure data were reported by von Wartenberg

and Schulz¹ and Ruff and Mugdan.¹ Sommermeyer¹ calculated, from absorption spectra.  $D^z = -89.8$ .

CsI (aq.). From the ions, we have obtained, for CsI ( $\infty$ ), Qf = 75.41. We have estimated the heat of dilution from  $\infty$  to 100 H₂O.

CsI (c). The heat of solution was measured by deForcrand. 12, 57 His data give  $S_{110} = -8.12$ ; whence, for CsI (c), Qf = 83.90. Beketoff⁸ measured the heats of solution of NaCl (c) + CsI (c), NaI (c) + CsCl (c), KCl (c) + CsI (c), and KI (c) + CsCl (c). His data yield two identical values for the heat of formation of CsI (c), namely 83.88.

CsI (liq.). We have estimated the heat of fusion.
CsI (g). Vapor pressure data were reported by von Wartenberg and Schulz and Ruff and Mugdan. We have taken  $V = -36.0^{1000}$  or  $V_s$ = -46.7 at  $18^{\circ}$ ; whence Qf = 37.2. Mayer's data for the reaction,  $Cs^+(g) + I^-(g) = CsI(g)$ , give, for CsI(g), Qf = 38.2. From the limit of the absorption spectrum, Franck, Kuhn, and Rollefson¹ calculated  $D^z = -75.0$ ; whence  $Q_t = 30.5$ . Sommermever, from similar data, gave  $D^z = -77.8$ ; whence Qf = 33.3. See also Visser.²

CsI₃ (c), CsI₄(c). Foote, Bradley, and Fleischer¹ obtained dissociation pressure data on these substances.

 $Cs_2S$  (aq.). From the ions, we have obtained, for  $Cs_2S$  ( $\infty$ ), Qf=114.08.

Cs₂S (c). Rengade and Costeaunu¹ measured the heat of solution.

Cs₂SO₄ (aq.). deForcrand⁴⁶ measured the heat of neutralization of LiOH (aq.) with H₂SO₄ (aq.). His data, together with the heat of dilution, yield, for  $Cs_2SO_4$  ( $\infty$ ), Qf = 339.56. From the ions, we have obtained 339.88. The heat of dilution of Cs₂SO₄ (aq.) was measured at 25° in the very dilute range by Lange and Streeck.1 Their values have been converted to 18° and extrapolated to 200 H₂O.

Cs₂SO₄ (c). deForcrand⁴⁶ measured the heat of solution.

CsHSO₄ (aq.). deForcrand⁴⁶ measured the heat of reaction between  $CsOH(110) + H_2SO_4(220)$ , and between  $CsHSO_4(330) + CsOH(110)$ . His data yield for CsHSO₄ (330), Qf = 275.47 and 275.79, respectively.

CsHSO₄ (c). deForcrand⁴⁶ measured the heat of solution.

CsI · 4SO₂ (c). Ephraim and Kornblum¹ and deForcrand and Taboury¹ found D = -10.9 and -9.9, respectively.

CsNO₃ (aq.). From the ions, we have computed, for CsNO₃ ( $\infty$ ), Qf = 111.23. Values for the heat of dilution were given for the range 25 to 400H₂O by Richards and Rowe, 2, 8 and we have extrapolated their values to  $\infty$  H₂O.

CsNO₃ (c, II). Haigh¹ measured the heat of solution.

CsNO₃ (c, I). Bridgman^{6a} measured the heat of transition.

CESIUM 405

 $Cs_2CO_3$  (aq.). deForcrand⁴⁹ measured the heat of neutralization of CsOH (aq.) with  $CO_2$  (aq.). His data yield, for  $Cs_2CO_3(2000)$ , Qf = 284.81; whence (with an estimated heat of dilution to  $\infty$  H₂O), for  $Cs_2CO_3$  ( $\infty$ ), Qf = 284.85. From the ions, we have obtained 284.58. deForcrand⁵² measured the heat of dilution from 7.59 to 228 H₂O. We have estimated the values to 2000 and  $\infty$  H₂O.

Cs₂CO₃ (c). deForcrand⁴⁹ measured the heat of solution, and Lebeau¹ the dissociation pressure at various temperatures.

 $Cs_2CO_3 \cdot 3\frac{1}{2} H_2O$  (c). deForcrand⁵² measured the heat of solution.  $CsHCO_3$  (aq.). deForcrand⁵³ measured the heat of the reaction of CsOH(110) with  $CO_2(1800)$ . His data yield, for  $CsHCO_3(1900)$ , Qf = 227.16.

CsHCO₃ (c). deForcrand⁵³ measured the heat of solution. His data give Qf = 231.0. Caven and Sand² found, from dissociation pressures, D = -29.0; whence Qf = 241.

 $5Cs_2CO_3 \cdot 2CsHCO_3 \cdot nH_2O$  (c). deForcrand  54  measured the heats of solution of  $5Cs_2CO_3 \cdot 2CsHCO_3 \cdot 10H_2O$  (c) and  $5Cs_2CO_3 \cdot 2CsHCO_3 \cdot 17\frac{1}{2}H_2O$  (c).

CsCNS  $\cdot \frac{1}{2}$ SO₂ (c). Ephraim and Kornblum¹ found D = -10.1.

 $2CsCl \cdot CuCl_2 \cdot nH_2O$  (c). Bouzat and Chauvenet² measured the heats of solution of the anhydrous salt and the dihydrate.

nCsCl·ThCl₄·mH₂O (c). Chauvenet² measured the heats of solution of 2CsCl·ThCl₄ (c), 2CsCl·ThCl₄·8H₂O (c), and 4CsCl·ThCl₄(c).

 $\operatorname{CsAl}(\mathrm{SO_4})_2 \cdot n\mathrm{H_2O}$  (c). We have assumed that the heat of solution of  $\operatorname{CsAl}(\mathrm{SO_4})_2 \cdot 12~\mathrm{H_2O}$  (c) is -11.5, by analogy. The heats of dissociation of the various hydrates have been calculated from the vapor pressure measurements of Krause, Fricke, and Querengasser¹ and Ephraim and Wagner.¹

CsLiCII (c, melt). Beketoff⁸ measured the heats of solution of CsLiCII (c, melt) and of CsI (c) + LiCl (c).

CsNaCII (c, melt). Beketoff⁸ measured the heats of solution of the melt and of NaCl (c) + CsI (c).

CsKCII (c, melt). Beketoff⁸ measured the heats of solution of the melt and of KCl (c) +CsI (c).

## ELEMENT 87

M (c). Standard state.

# References

- A^{BEL} and Proisl, 1. Z. Elektrochem. 35, 712-715 (1929) Abel and Schmidt,
- 1. Z. physik. Chem. A136, 430-436 (1928) Abel, Schmidt, and Boemer,
- Z. physik. Chem. A148, 337-348 (1930) Abich,
- 1. Ann. 26, 314 (1831)
- Abria,
- 1. Compt. rend. 22, 372-374 (1846)
- Adolph and Henderson,
- 1. J. Biol. Chem. 50, 463-490 (1922) Adwentowski.
- 1. Chem. Zentr. 1, 1106-7 (1910) d'Aladern,
- 1. Compt. rend. 116, 1457-9 (1893) Agostini,
- 1. Atti accad. Lincei 7, 1030-2 (1928)
- 2. Atti accad. Lincei 8, 393-4 (1928)
- Allen and Lombard,
- 1. Am. J. Sci. 43, 175-195 (1917) Allen, White, and Wright,
- 1. Am. J. Sci. 21, 89-108 (1906) Allmand.
  - 1. J. Chem. Soc. 95, 2151-2167 (1909)
- 2. J. Chem. Soc. 99, 840-845 (1911) Allmand and Polack,
- 1. J. Chem. Soc. 115, 1020-1039 (1919)
- 1. Gas. u. Wasserfach 48, 1035-1036, 1057-1069 1081-1086, 1107-1112 (1905)
- Aloy,
- 1. Compt. rend. 122, 1541-1543 (1896)
- Alt.
- 1. Ann. Physik. 19, 739-782 (1906) Alterthum,
- 1. Z. tech. Physik. 6, 540-544 (1925)
- Alterthum and Koref, 1. Z. Elektrochem. 31, 508-511 (1925) Amat.
- 1. Ann. chim. phys. (6) 24, 289-373 (1891) Amagat,
  - 1. Ann. chim. phys. (6) 29, 68 (1893)
  - 2. Compt. rend. 114, 1093 (1892)
- 3. Compt. rend. 114, 1322 (1892) Anderson,
- 1. J. Am. Chem. Soc. 48, 2285-2295 (1926)
- 2. J. Chem. Soc. 1653-1656 (1930) Anderson and Noyes,
- 1. J. Phys. Chem. 17, 249 (1913) Andre.
  - 1. Ann. Chim. Phys. (6) 3, 66-129 (1884)
  - 2. Compt. rend. 92, 1452-1454 (1881)
  - 3. Compt. rend. 93, 58-61 (1881)
  - 4. Compt. rend. 98, 298-300 (1884)

- Andreae.
- 1. Z. physik. Chem. 7, 241-273 (1891) Andrews,
- 1. Ann. chim. phys. (3) 4, 316 (1842)
- 2. Ann. chim. phys. (3) 14, 68 (1845)
- 3. Ann. Physik. (2) 59, 428-446 (1843)
- 4. Ann. Physik. (2) 75, 27-50 (1848)
- 5. Ann. Physik. (2) 75, 501-577 (1848)
- 6. Ann. Physik. (2) 77, 508 (1848)
- 7. Brit. Assoc. Advancement Sci. Rept. 63, (1849)
- 8. J. Am. Chem. Soc. 47, 1597-1602 (1925)
- 9. J. Am. Chem. Soc. 48, 1287-1298 (1926)
- 10. J. Chem. Soc. 1, 27 (1848)
- 11. J. Chem. Soc. 23, 432-441 (1870)
- 12. J. Chem. Soc. 105, 444 (1914)
- 13. J. Phys. Chem. 30, 1497-1500 (1926)
- 14. Phil. Mag. (3) 32, 321-339 (1848)
- 15. Phil. Mag. (4) 4, 498-499 (1852)
- 16. Phil. Mag. (3) 32, 426-434 (1848)
- 17. Proc. Roy. Soc. (London) A24, 455-459 (1876)
- 18. Phys. Rev. 33, 454-458 (1929)
- Andrussow,
  - 1. Z. physik. Chem. 115, 273-288 (1925)
- 2. Z. physik. Chem. 116, 81-96 (1925) Angelesen and Popeer,
- Z. physik. Chem. A156, 304-308 (1931) Antoine,
  - Compt. rend. 107, 681-684 (1888)
  - Compt. rend. 107, 778-780 (1888)
- Compt. rend. 107, 836-837 (1888) Ansdell,
- 1. Chem. News 41, 75-76 (1880)
- 2. Proc. Roy. Soc. (London) 30, 117-122 (1880) Archibold and Ure,
  - 1. Trans. Roy. Soc. Can. (3) 21, Sec. 3, 133-144 (1927)
- Arctowski,
- 1. Z. anorg. allgem. Chem. 12, 413-416 (1896) Arii,
- 1. Bull. Inst. Phys. Chem. Research (Tokyo) 7, 893 (1928)
- 2. Bull. Inst. Phys. Chem. Research (Tokyo) 8, 545 (1919)
- 3. Bull. Inst. Phys. Chem. Research (Tokyo) 8, 719 (1929)
- 4. Sci. Repts. Tôhoku Imp. Univ. 22, 182-199 (1933)
- Arrhenius,
  - 1. Z. physik. Chem. 1, 631-648 (1887)
- 2. Z. physik. Chem. 4, 96-116 (1889) Asundi,
- 1. Nature 123, 47-48 (1929)
- 2. Proc. Roy. Soc. (London) A124, 277-296 (1929)

Aten,

1. Z. physik. Chem. 54, 55-97 (1906) Atkins and Wallace,

1. J. Chem. Soc. 103, 1461-1472 (1913)

Atkinson, Heycock, and Pope,

1. J. Chem. Soc. 117, 1410-1426 (1920) Atlas Powder Co.,

1. Chem. Met. Eng. 20, 320-326 (1919) Atwater and Rosa,

1. Phys. Rev. 9, 214-251 (1899)

Atwater and Snell,

1. J. Am. Chem. Soc. 25, 659-699 (1903) van Aubel,

1. Compt. rend. 156, 456-457 (1913)

Auerbach.

 Z. physik. Chem. 121, 337-360 (1926) Aufenast and Terrey.

1. J. Chem. Soc. 1546-1549 (1926) Aumeras,

1. J. chim. phys. 24, 548-571 (1927)

Auwers and Kelligs.

1. Ber. 55, 3872-9 (1922)

Auwers and Roth,

1. Ann. 373, 239-248 (1910)

Auwers, Roth, and Eisenlohr,

1. Ann. 373, 267-290 (1910) 2. Ann. 385, 102-116 (1911)

Awbery,

1. Proc. Phys. Soc. (London) 39, 417-420 (1927)

Awbery and Griffiths,

1. Proc. Phys. Soc. (London) 38, 378-398

2. Proc. Roy. Soc. (London) A141, 1-16 (1933)

B ACH, 1. Z. physik. Chem. 9, 241-263 (1892)

2. Z. Physik 37, 193-209 (1926)

3. Z. Physik 43, 309-320 (1927)

Bacher and Goudsmit,

1. "Atomic Energy States," McGraw-Hill Book Co., New York (1932)

Backlung,

1. Oversikt av Finska Vetenskaps-Soc. Forh. 54, No. 22 (1911)

Bäckstrom.

1. J. Am. Chem. Soc. 47, 2432-2442 (1925)

2. J. Chem. Soc. 125, 430-434 (1924)

3. Z. physik. Chem. 97, 179-228 (1921)

4. Medd. Vetenskapsakad. Nobelinst. 411 (1921) Badamir.

1. Proc. Phys. Soc. 43, 538-544 (1931)

Badger,

1. J. Am. Chem. Soc. 46, 2166-2172 (1924) Bagster,

1. J. Chem. Soc. 111, 494-497 (1917) Bahr,

1. Z. anorg. allgem. Chem. 71, 79-95 (1911) Baille and Fery,

1. Ann. chim. phys. 17, 246-256 (1889) Baker,

1. J. Chem. Soc. 65, 611-624 (1894)

Baker (Continued)

2. Proc. Roy. Soc. (London) 68, 9-10 (1901) Balareff.

1. Z. anorg. allgem. Chem. 71, 70-72 (1911) Baly,

1. Phil. Mag. (5) 49, 517 (1900)

Baly and Donnan,

1. J. Chem. Soc. 81, 907-923 (1902)

1. J. Phys. Chem. 29, 1345-1363 (1925)

Barker and Duffendack,

1. Phys. Rev. 26, 339-345 (1925) Barratt and Bonar,

1. Phil. Mag. 9, 519-524 (1930)

Barre,

1. Ann. chim. phys. (8) 24, 145-256 (1911)

2. Compt. rend. 156, 1017-1019 (1913) Barschall,

1. Z. Elektrochem. 17, 345-348 (1911)

Bartell and Ying Fur,

1. J. Phys. Chem. 33, 1758-1768 (1929) Bartlett.

1. Nature 125, 459-460 (1930)

Bartoli and Stracciati,

1. Ann. chim. phys. (6) 29, 285 (1893) Barton,

1. Phys. Rev. 30, 614-633 (1927)

Barus,

1. Phil Mag. 29, 141-157 (1890)

2. U. S. Geol. Survey Bull. 103, (1893) Bates,

1. Z. physik. Chem. Bodenstein Festband, 329-32 (1931)

Battelli,

1. Atti accad. sci. Torino, Classe sci. fis. mat. nat. 41, 25-76 (1891)

Baubigny,

Compt. rend. 124, 499-502 (1897)

1. Ann. chim. phys. (8) 1, 8-27 (1904)

2. Compt. rend. 132, 553-556 (1901)

Baud, Ducelliez, and Gay,

1. Compt. rend. 158, 629-631 (1914) Baud and Gay,

1. Ann. chim. phys. (8) 17, 398-418 (1909) Baur and Brunner,

1. Z. Elektrochem. 32, 517 (1926)

Baur and Glaessner,

1. Z. physik. Chem. 43, 354-368 (1903) Baxter,

1. J. Am. Chem. Soc. 52, 3468 (1930)

Baxter, Bezzenberger, and Wilson,

1. J. Am. Chem. Soc. 42, 1386-1393 (1920) Baxter and Cooper,

1. J. Am. Chem. Soc. 46, 923-933 (1924)

Baxter, Curie, Hönigschmid, LeBeau, and Meyer,

1. J. Am. Chem. Soc. 56, 753-764 (1934) Baxter and Grose,

1. J. Am. Chem. Soc. 37, 1061-1072 (1915) Baxter, Hickey, and Holmes,

1. J. Am. Chem. Soc. 29, 127-136 (1907) Baxter and Lansing,

1. J. Am. Chem. Soc. 42, 419-426 (1920)

Baykoff,

1. Rev. met. 8, 315 (1911)

Beattie and Lawrence,

1. J. Am. Chem. Soc. 52, 6-14 (1930) Beck,

1. Z. anorg. allgem. Chem. 174, 31-41 (1928) Becker and Meyer,

1. Z. anorg. allgem. Chem. 43, 251-266 (1905) Beckmann,

1. Z. anorg. allgem. Chem. 51, 96-115 (1906)

2. Z. anorg. allgem. Chem. 55, 175-187 (1907)

3. Z. anorg. allgem. Chem. 74, 297-359 (1912)

4. Z. anorg. allgem. Chem. 77, 90-102 (1912)

5. Z. physik. Chem. 65, 289-337 (1909)

Beckmann and Liesche,

1. Z. anorg. allgem. Chem. 89, 171-190 (1914) Bedeau,

1. Ann. chim. phys. 24, 553-563 (1911) Behn.

1. Ann. Physik. 1, 270-274 (1900)

2. Ann. Physik. (4) 16, 653-666 (1905) Beketoff,

1. Ber. 12, 856-857 (1879)

2. Bull. Acad. Sci. Russ. 32, 186-194 (1888)

3. Bull. Acad. Sci. Russ. 33, 173-175 (1890)

4. Bull. Acad. Sci. Russ. 34, 169-173 (1892)

5. Bull. Acad. Sci. Russ. 34, 291-292 (1892)

6. Bull. Acad. Sci. Russ. 35, 541-544 (1894)

7. J. Russ. Phys. Chem. Soc. 15, 277-295 (1883)

8. Z. anorg. allgem. Chem. 40, 355-371 (1904) Bellati and Lussana,

1. Atti ist. Veneto (6) 7, 1051-1059 (1889) Bellati and Romanese,

1. Atti ist. Veneto (5) 6, 1051-1095 (1880)

2. Atti ist. Veneto (6) 1, 1053-1069 (1883)

3. Atti ist. Veneto (6) 3, 653-669 (1885)

4. Atti ist. Veneto (6) 4, 1395-1419 (1886)

5. Atti ist. Veneto (6) 6, 1395 (1887)

Bengtsson,

 Arkiv. Mat. Astron. Fysik. A20, No. 28, 1-18 (1928)

Bengtsson and Grundstroem,

1. Z. Physik 57, 1-10 (1929)

Bengtsson and Hulthen,

1. Trans. Faraday Soc. 25, 751-757 (1929) Bengtsson and Rydberg,

1. Z. Physik 57, 648-657 (1929)

2. Z. Physik 59, 540-557 (1930)

Bennewitz,

1. Ann. Physik 59, 193-224 (1919) Benoit.

1. Bull. soc. chim. 33, 908-917 (1923)

2. Dissertation, Nancy (1923)

Bent and Hildebrand,

1. J. Am. Chem. Soc. 49, 3011-3027 (1927) Benton and Drake,

1. J. Am. Chem Soc. 54, 2186-2194 (1932) Berenger-Calvet,

1. J. chim. phys. 24, 324-345 (1927) Berger,

1. Compt. rend. 146, 400-401 (1908) Berger and Crut.

1. Compt. rend. 173, 977-982 (1921)

Bergius,

1. "Nernst Festschrift," pp. 68-85, Knapp,

Bergman,

1. J. Russ. Phys. Soc. 56, 177-232 (1925) Bergstrom,

1. J. Am. Chem. Soc. 46, 1559-1568 (1924)

2. J. Phys. Chem. 26, 358-376 (1922)

Berkenheim.

1. Z. physik. Chem. 136, 231-258 (1928) Berl and Saenger,

1. Monatsh. 53-54, 1036-1056 (1929)

Berliner and May,

1. J. Am. Chem. Soc. 49, 1007-1011 (1927) Berner,

1. Arch. Math. Naturvidenskab. (6) 39, 1-134 (1926)

2. J. Chem. Soc. 127, 2747-2750 (1925)

3. J. Chem. Soc. 338-341 (1927)

4. Tids. Kemi 16, 97, 118 (1919)

Bernhardt,

1. Physik. Z. 26, 165 (1925)

Bernini,

1. Nuovo Cimento (5) 10, 13 (1905)

2. Nuovo Cimento (5) 12, 314 (1906)

3. Physik. Z. 7, 168 (1906)

Bernoulli,

1. Helv. Chim. Acta. 2, 720-728 (1919)

Berthelot,

1. Ann. chim. phys. (4) 26, 462-470 (1872)

2. Ann. chim. phys. (4) 29, 289-328 (1873)

3. Ann. chim. phys. (4) 29, 328-351 (1873)

4. Ann. chim. phys. (4) 29, 433-514 (1873)

5. Ann. chim. phys. (4) 30, 145-204 (1873)

6. Ann. chim. phys. (4) 30, 433-442 (1873)

7. Ann. chim. phys. (4) 30, 456-539 (1873)

8. Ann. chim. phys. (4) 40, 456 (1873)

9. Ann. chim. phys. (5) 4, 8-20 (1875)

10. Ann. chim. phys. (5) 4, 74-131 (1875)

11. Ann. chim. phys. (5) 4, 154-160 (1875)

12. Ann. chim. phys. (5) 4, 160-179 (1875)

13. Ann. chim. phys. (5) 4, 180-185 (1875)

14. Ann. chim. phys. (5) 4, 186-205 (1875) 15. Ann. chim. phys. (5) 4, 205-214 (1875)

16. Ann. chim. phys. (5) 4, 214-228 (1875)

17. Ann. chim. phys. (5) 4, 445-460 (1875)

18. Ann. chim. phys. (5) 4, 467-488 (1875)

19. Ann. chim. phys. (5) 4, 500-513 (1875)

20. Ann. chim. phys. (5) 4, 513-526 (1875)

21. Ann. chim. phys. (5) 4, 526-531 (1875)

22. Ann. chim. phys. (5) 4, 531-534 (1875)

23. Ann. chim. phys. (5) 5, 5-27 (1875)

24. Ann. chim. phys. (5) 5, 145 (1875)

25. Ann. chim. phys. (5) 5, 289-318 (1875)

26. Ann. chim. phys. (5) 5, 318-356 (1875)

27. Ann. chim. phys. (5) 5, 433-493 (1875)

28. Ann. chim. phys. (5) 6, 145-178 1875)

29. Ann. chim. phys. (5) 6, 178-190 (1875)

30. Ann. chim. phys. (5) 6, 209-214 (1875)

31. Ann. chim. phys. (5) 6, 325-334 (1875)

32. Ann. chim. phys. (5) 9, 165 (1876)

33. Ann. chim. phys. (5) 9, 174-180 (1876)

34. Ann. chim. phys. (5) 9, 289-297 (1876)

```
Berthelot (Continued)
Berthelot (Continued)
 35. Ann. chim. phys. (5) 9, 297-306 (1876)
                                                       95. Ann. chim. phys. (6) 1, 92-101 (1884)
                                                       96. Ann. chim. phys. (6) 1, 101-111 (1884)
 36. Ann. chim. phys. (5) 9, 307-316 (1876)
                                                       97. Ann. chim. phys. (6) 6, 358-367 (1885)
 36a. Ann. chim. phys. (5) 9, 316-328 (1876)
                                                       98. Ann. chim. phys. (6) 7, 410-426 (1886)
 37. Ann. chim. phys. (5) 9, 328-338 (1876)
                                                       99. Ann. chim. phys. (6) 10, 123-144 (1887)
 38. Ann. chim. phys. (5) 10, 162-169 (1877)
                                                       100. Ann. chim. phys. (6) 11, 310-317 (1887)
 39. Ann. chim. phys. (5) 10, 377-389 (1877)
     Ann. chim. phys. (5) 10, 389-396 (1877)
                                                       101. Ann. chim. phys. (6) 11, 350-362 (1887)
     Ann. chim. phys. (5) 10, 433-447 (1877)
                                                       102. Ann. chim. phys. (6) 11, 364 (1887)
     Ann. chim. phys. (5) 12, 312-318 (1877)
                                                       103. Ann. chim. phys. (6) 17, 436-480 (1889)
                                                       104. Ann. chim. phys. (6) 17, 480-494 (1889)
      Am. chim. phys. (5) 12, 536-550 (1877)
                                                       105. Ann. chim. phys. (6) 18, 571-574 (1889)
      Ann. chim. phys. (5) 12, 550-559 (1877)
                                                       105a. Ann. chim. phys. (6) 19, 515-532 (1890)
 45. Ann. chim. phys. (5) 13, 5-20 (1878)
                                                       106. Ann. chim. phys. (6) 23, 563-570 (1891)
 46. Ann. chim. phys. (5) 13, 20-29 (1878)
                                                       107. Ann. chim. phys. (6) 26, 526-555 (1892)
 47. Ann. chim. phys. (5) 14, 368-373 (1878)
                                                       108. Ann. chim. phys. (6) 28, 126-139 (1893)
     Ann. chim. phys. (5) 14, 443-445 (1878)
                                                       109. Ann. chim. phys. (7) 11, 145-150 (1897)
 49. Ann. chim. phys. (5) 14, 445-453 (1878)
                                                       110. Ann. chim. phys. (7) 13, 64-70 (1898)
 50. Ann. chim. phys. (5) 15, 185-220 (1878)
                                                       111. Ann. chim. phys. (7) 13, 77 (1898)
 51. Ann. chim. phys. (5) 17, 129-132 (1879)
                                                       112. Ann. chim. phys. (7) 14, 207-208 (1898)
 52. Ann. chim. phys. (5) 17, 132-137 (1879)
                                                       113. Ann. chim. phys. (7) 15, 294-321 (1898)
 53. Ann. chim. phys. (5) 17, 137-139 (1879)
                                                       114. Ann. chim. phys. (7) 17, 453-458 (1899)
 54. Ann. chim. phys. (5) 18, 345-349 (1879)
                                                       115. Ann. chim. phys. (7) 17, 458-470 (1899)
 55. Ann. chim. phys. (5) 18, 433-442 (1879)
                                                       116. Ann. chim. phys. (7) 20, 145-149 (1900)
 56. Ann. chim. phys. (5) 18, 442-457 (1879)
                                                       117. Ann. chim. phys. (7) 20, 158-162 (1900)
 57. Ann. chim phys. (5) 20, 247-254 (1880)
                                                       118. Ann. chim. phys. (7) 20, 163-188 (1900)
 58. Ann. chim. phys. (5) 20, 255-265 (1880)
                                                       119. Ann. chim. phys. (7) 20, 189-196 (1900)
 59. Ann. chim. phys. (5) 20, 504-521 (1880)
                                                       120. Ann. chim. phys. (7) 20, 197-205 (1900)
 60. Ann. chim. phys. (5) 20, 521-531 (1880)
                                                       121. Ann. chim. phys. (7) 21, 296-307 (1900)
 61. Ann. chim. phys. (5) 21, 153-157 (1880)
                                                       122. Ann. chim. phys. (7) 22, 307-317 (1901)
  62. Ann. chim. phys. (5) 21, 164-172 (1880)
                                                       123. Ann. chim. phys. (7) 22, 317-320 (1901)
  63. Ann. chim. phys. (5) 21, 194-199 (1880)
                                                       124. Ann. chim. phys. (7) 22, 322-326 (1901)
  64. Ann. chim. phys. (5) 21, 370-380 (1880)
                                                       125. Ann. chim. phys. (7) 22, 327-329 (1901)
  64a. Ann. chim. phys. (5) 21, 386-398 (1880)
                                                       126. Ann. chim. phys. (7) 22, 464-478 (1901)
  65. Ann. chim. phys. (5) 22, 422-429 (1881)
                                                       127. Ann. chim. phys. (7) 22, 479-482 (1901) 128. Ann. chim. phys. (7) 25, 78-98 (1902)
  66. Ann. chim. phys. (5) 22, 429-431 (1881)
  67. Ann. chim. phys. (5) 22, 459-464 (1881)
                                                       129. Ann. chim. phys. (8) 3, 163-181 (1904)
  68. Ann. chim. phys. (5) 22, 464-472 (1881)
                                                       130. Compt. rend. 70, 941-944 (1870)
  69. Ann. chim. phys. (5) 23, 85-93 (1881)
                                                       131. Compt. rend. 77, 24-32 (1873)
  70. Ann. chim. phys. (5) 23, 118-124 (1881)
                                                       132. Compt. rend. 78, 716-719 (1874)
  71. Ann. chim. phys. (5) 23, 176-188 (1881)
                                                       133. Compt. rend. 78, 1175-1176 (1874)
  72. Ann. chim. phys. (5) 23, 188-197 (1881)
                                                       134. Compt. rend. 82, 1281-1283 (1876)
  73. Ann. chim. phys. (5) 23, 209-214 (1881)
                                                       135. Compt. rend. 84, 734-740 (1877)
  74. Ann. chim. phys. (5) 23, 214-225 (1881)
  75. Ann. chim. phys. (5) 23, 243-352 (1881)
                                                             Compt. rend. 84, 1408-1412 (1877)
  76. Ann. chim. phys. (5) 23, 252-269 (1881)
                                                       137.
                                                             Compt. rend. 86, 279-283 (1878)
  77. Ann. chim. phys. (5) 23, 566-571 (1881)
                                                        138.
                                                             Compt. rend. 87, 617 (1878)
  78. Ann. chim. phys. (5) 27, 205-214 (1882)
                                                        139.
                                                             Compt. rend. 87, 917 (1883)
  79. Ann. chim. phys. (5) 27, 214-229 (1882)
                                                        140.
                                                             Compt. rend. 90, 841-846 (1880)
  80. Ann. chim. phys. (5) 27, 222-225 (1882)
                                                             Compt. rend. 90, 1511-1515 (1880)
  81. Ann. chim. phys. (5) 27, 374-387 (1882)
                                                             Compt. rend. 91, 17-22 (1880)
  82. Ann. chim. phys. (5) 27, 383-389 (1882)
                                                             Compt. rend. 94, 912-916 (1883)
  83. Ann. chim. phys. (5) 29, 201-231 (1883)
                                                             Compt. rend. 100, 81-85 (1884)
                                                        144.
  84. Ann. chim. phys. (5) 29, 231-234 (1883)
                                                        145.
                                                             Compt. rend. 103, 911-917 (1886)
  85. Ann. chim. phys. (5) 29, 234-239 (1883)
                                                        146.
                                                             Compt. rend. 103, 966 (1886)
  86. Ann. chim. phys. (5) 29, 239-249 (1883)
                                                             Compt. rend. 133, 555-569 (1901)
                                                        147.
  87. Ann. chim. phys. (5) 29, 249-271 (1883)
                                                             Compt. rend. 139, 93-97 (1904)
  88. Ann. chim. phys. (5) 29, 271-277 (1883)
  89. Ann. chim. phys. (5) 29, 277-289 (1883)
                                                             Compt. rend. 139, 97-98 (1904)
  90. Ann. chim. phys. (5) 29, 351-355 (1883)
                                                        150. Bull. soc. chim. (2) 20, 110-117 (1873)
                                                        151. "Thermochimie," Gauthier-Villars, Paris
  91. Ann. chim. phys. (5) 30, 519-539 (1883)
  92. Ann. chim. phys. (6) 1, 73-78 (1884)
                                                             (1897)
  93. Ann. chim. phys. (6) 1, 79-81 (1884)
                                                       152. "Essai de mecanique chimique fondée sur
  94. Ann. chim. phys. (6) 1, 81-91 (1884)
                                                             la thermochimie," Dunod, Paris (1879)
```

### Berthelot and Andre.

- 1. Ann. chim. phys. (6) 11, 332-341 (1887)
- 2. Ann. chim. phys. (6) 21, 384-397 (1890)
- 3. Ann. chim. phys. (6) 22, 5-17 (1891)
- 4. Ann. chim. phys. (7) 17, 433-453 (1899) Berthelot and Delepine,
  - 1. Ann. chim. phys. (7) 19, 5-56 (1900)
  - 2. Ann. chim. phys. (7) 19, 57-66 (1900)
  - 3. Ann. chim. phys. (7) 21, 289-296 (1900)
- 4. Compt. rend. 129, 920-926 (1899)

## Berthelot and Engel,

- 1. Ann. chim. phys. (7) 21, 284-288 (1890) Berthelot and Fabre.
- 1. Ann. chim. phys. (6) 14, 92-101 (1888) Berthelot and Fogh,
- 1. Ann. chim. phys. (6) 22, 18-24 (1891) Berthelot and Gaudechon,
- 1. Compt. rend. 140, 753-761 (1905)
- Berthelot and Guntz,
  - 1. Ann. chim. phys. (6) 3, 355-362 (1884)
- 2. Ann. chim. phys. (6) 3, 362-368 (1884) Berthelot and Ilosvay,
- 1. Ann. chim. phys. (5) 29, 295-343 (1883) Berthelot and Louguinine,
  - 1. Ann. chim. phys. (5) 6, 289-305 (1875)
  - 2. Ann. chim. phys. (5) 6, 305-311 (1875)
  - 3. Ann. chim. phys. (5) 9, 23-43 (1876) 4. Ann. chim. phys. (6) 13, 321-339 (1888)
- Berthelot and Matignon,
  - 1. Ann. chim. phys. (6) 21, 409-416 (1890)
- 2. Ann. chim. phys. (6) 23, 518-563 (1891)
- 3. Ann. chim. phys. (6) 27, 289-302 (1892)
- 4. Ann. chim. phys. (6) 27, 303 (1892)
- 5. Ann. chim. phys. (6) 27, 310-319 (1892)
- 5a. Ann. chim. phys. (6) 28, 126-139 (1893)
- 6. Ann. chim. phys. (6) 28, 139-144 (1893)
- 7. Ann. chim. phys. (6) 28, 565-574 (1893)
- 8. Ann. chim. phys. (6) 30, 547-565 (1893)
- 9. Ann. chim. phys. (7) 2, 144 (1894)
- 10. Compt. rend. 114, 1145-1149 (1892)
- 11. Compt. rend. 116, 1333-1339 (1893)
- Compt. rend. 113, 246-249 (1891) Berthelot and Moissan,
- Ann. chim. phys. (6) 23, 570-574 (1891) Berthelot and Ogier,
  - 1. Ann. chim. phys. (5) 23, 197-199 (1881)
  - 2. Ann. chim. phys. (5) 23, 199-201 (1881)
  - 3. Ann. chim. phys. (5) 23, 201-209 (1881)
  - 4. Ann. chim. phys. (5) 23, 225-229 (1881)
  - 5. Ann. chim. phys. (5) 30, 382-400 (1883)
  - 6. Ann. chim. phys. (5) 30, 410-411 (1883)
  - 7. Ann. chim. phys. (6) 4, 230-247 (1885)
- 8. Compt. rend. 92, 769-774 (1881)

## Berthelot and Petit,

- 1. Ann. chim. phys. (6) 18, 65-80 (1889)
- 2. Ann. chim. phys. (6) 18, 80-106 (1889)
- 3. Ann. chim. phys. (6) 18, 107-140 (1889)
- 4. Ann. chim. phys. (6) 20, 5-12 (1890)
- 5. Ann. chim. phys. (6) 20, 13-20 (1890)
- 6. Ann. chim. phys. (6) 108, 1144-1148 (1889) Berthelot and Recoura,
  - 1. Ann. chim. phys. (6) 13, 298-304 (1888)
  - 2. Ann. chim. phys. (6) 13, 304-321 (1888)

- Berthelot and Recoura (Continued)
- 3. Ann. chim. phys. (6) 13, 340-344 (1888) Berthelot and Rivals,
- 1. Ann. chim. phys. (7) 7, 29-47 (1896)
- 2. Ann. chim. phys. (7) 7, 47-50 (1896) Berthelot and Vieille,
  - 1. Ann. chim. phys. (5) 21, 564-574 (1880)
  - 2. Ann. chim. phys. (5) 27, 194-202 (1882)
  - 3. Ann. chim. phys. (5) 27, 202-205 (1882)
  - 4. Ann. chim. phys. (5) 27, 225-227 (1882)
  - 5. Ann. chim. phys. (6) 1, 91-92 (1884)
  - 6. Ann. chim. phys. (6) 4, 59-84 (1885)
  - 7. Ann. chim. phys. (6) 6, 546-556 (1885)
- 8. Ann. chim. phys. (6) 10, 433-455 (1887)
- 9. Ann. chim. phys. (6) 10, 455-463 (1887)
- 10. Ann. chim. phys. (7) 2, 339-351 (1894)
- 11. Bull. soc. chim. (2) 43, 172-262 (1885)
- 12. Compt. rend. 99, 1097-1103 (1884)
- 13. Compt. rend. 102, 1284-1286 (1886)
- Berthoud, 1. J. chim. phys. 15, 3-29 (1917) Berthoud and Brun,
- 1. J. chim. phys. 21, 143-160 (1924) Berthout,
- 1. J. chim. phys. 20, 77-86 (1923) Bethe,
- 1. Z. Physik 57, 815-821 (1929)
- Bettendorff.
- 1. Ann. 144, 110-114 (1867) Bèutler,
- 1. Z. Physik 50, 581-599 (1928)
- Beutler and Polanyi,
- 1. Z. Physik 47, 379-406 (1928) Bichowsky,
  - 1. "International Critical Tables," vol. V, pp. 169-211, McGraw-Hill Book Co., New York (1929)
  - 2. "International Critical Tables," vol. V, pp. 212-213, McGraw-Hill Book Co., New York (1929)
  - 3. J. Am. Chem. Soc. 44, 116-132 (1922)
- J. Am. Chem. Soc. 45, 2225-35 (1923) Bichowsky and Copeland,
- J. Am. Chem. Soc. 50, 1315-1322 (1928) Bijl,
- 1. Z. physik Chem. 41, 641-671 (1902) Biltz,
  - 1. Nachr. kgl. Ges. Wiss. Göttingen, 293-317 (1908)
  - 2. Z. anorg. allgem. Chem. 71, 427-438 (1911)
  - 3. Z. anorg. allgem. Chem. 83, 188-192 (1913)
  - 4. Z. anorg. allgem. Chem. 89, 134-140 (1914)
  - 5. Z. anorg. allgem. Chem. 130, 83-139 (1923)
- 6. Z. anorg. allgem. Chem. 134, 25-36 (1924)
- 6a. Z. anorg. allgem. Chem. 148, 192-206 (1925)
- 6b. Z. anorg. allgem. Chem. 148, 145-151 (1925)
- 7. Z. physik. Chem. 19, 385-430 (1896)
- 8. Z. physik. Chem. 67, 561-593 (1909)
- Z. physik. Chem. 82, 688-694 (1913)
- Biltz, Bröhan, and Wein,
- 1. Z. anorg. allgem. Chem. 148, 207-216 (1925) Biltz and Fendius.
- 1. Z. anorg. allgem. Chem. 176, 49-63 (1928)

Biltz and Fetkenheuer,

- 1. Z. anorg. allgem. Chem. 83, 163-176 (1913) Biltz and Fischer,
  - 1. Z. anorg. allgem. Chem. 124, 230-247 (1922)
- 2. Z. anorg. allgem. Chem. 129, 1-14 (1923) Biltz and Haase,
- 1. Z. anorg. allgem. Chem. 129, 141-160 (1923) Biltz and Hansen,
- 1. Z. anorg. allgem. Chem. 127, 1-33 (1923) Biltz and Hohorst,
- 1. Z. anorg. allgem. Chem. 140, 261-276 (1924) Biltz and Holverscheit,
- Z. anorg. allgem. Chem. 140, 261-276 (1924)
   Biltz and Hüttig,
  - 1. Z. anorg. allgem. Chem. 109, 89-110 (1920)
  - 2. Z. anorg. allgem. Chem. 109, 111-112 (1920)
  - 3. Z. anorg. allgem. Chem. 114, 241-265 (1920)
- 4. Z. anorg. allgem. Chem. 119, 115-131 (1921) Biltz and Jeep,
- 1. Z. anorg. allgem. Chem. 162, 32-48 (1927) Biltz and Juza,
- Z. anorg. allgem. Chem. 190, 161-177 (1930)
   Biltz and Keunecke,
- Z. anorg. allgem. Chem. 147, 171-187 (1925)
   Biltz, Klatte, and Rahlfs,
- 1. Z. anorg. allgem. Chem. 166, 339-350 (1927) Biltz and Mau,
- 1. Z. anorg. allgem. Chem. 148, 170-191 (1925) Biltz and Messerknecht,
  - 1. Z. anorg. allgem. Chem. 129, 161-175 (1923)
- 2. Z. anorg. allgem. Chem. 148, 157-169 (1925) Biltz and Meyer,
  - 1. Ber. 22, 725-727 (1889)
  - 2. Z. anorg. allgem. Chem. 176, 23-45 (1928)
- 3. Z. physik. Chem. 4, 249-269 (1889) Biltz and Pieper,
- 1. Z. anorg. allgem. Chem. 134, 13-24 (1924) Biltz and Preuner,
- 1. Z. physik Chem. 39, 323-341 (1902) Biltz and Rahlfs,
  - 1. Z. anorg. allgem. Chem. 148, 145-151 (1925)
- 2. Z. anorg. allgem. Chem. 166, 351-376 (1927) Biltz and Stollenwerk,
- 1. Z. anorg. allgem. Chem. 114, 174-202 (1920)
- 1. Z. anorg. aligem. Chem. 114, 174-202 (1920)
  2. Z. anorg. aligem. Chem. 119, 97-114 (1921)
- Biltz and Wagner,
  1. Z. anorg. allgem. Chem. 134, 1-12 (1924)
  Biltz and Wein,
- 1. Z. anorg. allgem. Chem. 148, 192-206 (1925)
  - 1. Compt. rend. 49, 799-804 (1859)
- Birge,
  - Bull. Natl. Research Council (11) 57, 69-259 (1926)
  - 2. J. Optical Soc. Am. 8, 233-244 (1924)
  - 3. Nature 122, 842 (1928)
  - 4. Proc. Natl. Acad. Sci. 14, 12-19 (1928)
  - 5. Phys. Rev. 27, 641 (1926)
  - 6. Phys. Rev. 28, 1157-1181 (1926)
  - 7. Phys. Rev. 34, 379 (1929)
  - 8. Phys. Rev. 34, 1062-1063 (1929)
  - 9. Trans. Faraday Soc. 25, 718-725 (1929)
  - 10. Trans. Faraday Soc. 25, 707-716 (1929)

- Birge (Continued)
- 11. Phys. Rev. Supplement 1, 1-73 (1929) Birge and Hopfield,
  - 1. Astrophys. J. 68, 257-278 (1929)
  - 2. Nature 116, 15 (1925)
  - 3. Nature 114, 642-643 (1924)
- 4. Phys. Rev. 29, 356 (1927) Birge and Sponer,
- 1. Phys. Rev. 28, 259-283 (1926)
- Bishop,
  - 1. Phys. Rev. 26, 169-186 (1908)
- Bjerrum,
  - 1. Z. physik. Chem. 73, 724-759 (1910)
  - 2. Z. physik. Chem. 79, 537-550 (1912)
- 3. Z. physik. Chem. 81, 281-297 (1912)

—, Edinburg (1803)

Black,
1. "Lectures on the Elements of Chemistry,"

# Blair,

- 1. Phys. Rev. 36, 173-186 (1930)
- Blarez,
  - 1. Comp. rend. 103, 639-640 (1886)
  - 2. Compt. rend. 103, 746 (1886)
- 3. Compt. rend. 103, 1133-1135 (1886)

#### Blaschke.

- 1. Biochem. Z. 158, 428-434 (1925)
- Blaserna, 1. Atti. accad. Lincei (5A) 11, 365-368 (1893)
- Blaszkewska,
  1. Bull. intern. acad. polonaise, Classe sci.,
  - math., nat. (A) 409 (1925)

## Bleakney,

- Phys. Rev. 36, 1303-1308 (1930)
- Block and Block,
- 1. Compt. rend. 158, 1161-1164 (1914) Blumcke,
- 1. Wied. Ann. (3) 34, 10-21 (1888)
- Bock and Moser,
- Monatsh. 34, 1825-1849 (1913)
- Bockhorst,
- Dissertation, Amsterdam (1915)
   Bode,
- 1. Z. anorg. allgem. Chem. 195, 195-200 (1931) Bodenstein,
  - 1. Z. physik. Chem. 29, 295-314 (1899)
  - 2. Z. physik. Chem. 29, 315-333 (1899)
  - 3. Z. physik. Chem 29, 429-448 (1899)
  - 4. Z. physik. Chem. 30, 113-139 (1899)
- 5. Z. physik. Chem. 100, 68-123 (1922) Bodenstein and Cramer,
- 1. Z. Elektrochem. 22, 327-339 (1916)

#### Bodenstein and Dunant,

- Z. physik. Chem. 61, 437-446 (1908)
   Bodenstein and Gunther,
- 1. Trans. Electrochem. Soc. 49, 227-235 (1926) Bodenstein, Gunther, and Hoffmeister,
- 1. Z. angew. Chem. 37, 875-883 (1926)
- Bodenstein and Jung,
- Z. physik. Chem. 121, 127-135 (1926)
   Bodenstein and Katayama,
- 1. Z. Elektrochem. 15, 244-249 (1909) Bodenstein and Plaut,
- 1. Z. physik. Chem. 110, 399-416 (1924)

Bodenstein and Schmidt,

- 1. Z. physik. Chem. 123, 28-32 (1926) Bodisko.
- 1. J. Russ. Phys. Chem. Soc. 20, 500-503 (1888) 2. J. Russ. Phys. Chem. Soc. 21, 7-9 (1889)
- Bodländer.
  - 1. Z. Elcktrochem. 8, 833-843 (1902)
- 2. Z. physik. Chem. 27, 56-74 (1896)

Bodländer and Storbeck,

- 1. Z. anorg. allgem. Chem. 31, 458-476 (1902)
- 1. Dissertation, Zurich (1926). Monats. Bull. schweiz. Ver. Gas-Wasserfach, No. 449, 5-31 (1926)

Boer and Dippel,

- 1. Z. physik. Chem. B21, 273-277 (1933) Bogojawlensky,
- 1. Mem. Soc. Dorpat (3) 1, (1904) Bogorodskii,
  - 1. J. Russ. Phys. Chem. Soc. 43, 1262-1268 (1911)
- 2. J. Russ. Phys. Chem. Soc. 43, 1268-1272 (1911) Bogros,
- 1. Compt. rend. 191, 322-324 (1930) Bohr,
- 1. Ann. Physik (3) 68, 500-525 (1899) du Bois and Wills,
- 1. Verhandl. deut. path. Ges. 1, 168-169 (1906) Bolts,
- 1. Z. physik. Chem. 80, 338-360 (1912) Bone and Coward,
- 1. J. Chem. Soc. 97, 1219-1225 (1910) Bone and Jordan,
  - 1. J. Chem. Soc. 71, 41-61 (1897)
- 2. J. Chem. Soc. 79, 1042-1063 (1901) Bonino and Vaglio,
- 1. Nuovo Cimento (8) 5, 115-126 (1928) Bonhoeffer,
- 1. Z. physik. Chem. 116, 391-400 (1925)

Bonhoeffer and Haber,

- 1. Z. physik. Chem. A137, 263-288 (1928) Bonhoeffer and Harteck,
- 1. Z. physik. Chem. B4, 113-141 (1929) Bonhoeffer and Reichardt.
  - 1. Z. Elektrochem. 34, 652-654 (1928)
- 2. Z. physik. Chem. A139, 75-97 (1928)
- 1. Ann. chim. phys. (7) 23, 317-378 (1901)
- 2. Compt. rend. 127, 367-369 (1898)
- 3. Compt. rend. 127, 516-519 (1898) Bonnell and Jones,
- 1. J. Chem. Soc. 318-321 (1926) Bonnier.
- 1. Ann. chim. 5, 37-94 (1926)
- Booth and Bowen,

- 1. J. Chem. Soc. 127, 342-345 (1925)
- 1. Ann. Physik 69, 473-504 (1922)
- 2. Ber. deut. physik. Ges. 21, 13-24 (1919)
- 3. Z. Physik 1, 45-48 (1920)
- 4. Z. tech. Physik 7, 24-31 (1926) Born and Gerlach,
  - 1. Z. Physik 5, 433-441 (1921)

- Bornemann,
- 1. Metallurgie 5, 61-68 (1908) Bornemann and Hengstenberg,
- 1. Metall. u. Erz 17, 313-319, 339-349 (1920)
  - Z. physik. Chem. 58, 585-624 (1907).
  - Physik. Z. 6, 548-553 (1905)
- 3. Nachr. Ges. Wiss. Göttingen, 333 (1906) Boudouard,
  - 1. Ann. chim. phys. (7) 24, 5-85 (1901)
- 2. Compt. rend. 130, 132-134 (1900) Bouzat,
  - 1. Ann. chim. phys. (7) 29, 305-383 (1903)
- 2. Ann. chim. phys. (8) 4, 145-195 (1905) Bouzat and Chauvenet,
  - 1. Compt. rend. 158, 40-92 (1914).
- 2. Compt. rend. 177, 1293-1295 (1923) Bouzat and Leluan,
- 1. Compt. rend. 178, 635-637 (1924) Bowen,
  - 1. J. Chem. Soc. 123, 1199-1206 (1923)
  - 2. Phys. Rev. 29, 231-247 (1927)
  - 3. Phys. Rev. 29, 510-512 (1927)
  - 4. Phys. Rev. 31, 34-38 (1928)
  - 5. Phys. Rev. 31, 497-502 (1928)
  - Phys. Rev. 31, 967-968 (1928) 7. Phys. Rev. 36, 600 (1930)
- Bowen and Millikan,
  - 1. Phys. Rev. 25, 295-305 (1925)
- 2. Phys. Rev. 25, 591-605 (1925)
- 3. Phys. Rev. 26, 150-164, 310-318 (1925)
- 4. Phys. Rev. 28, 256-258 (1926)
- 5. Proc. Natl. Acad. Sci. 10, 199-203 (1924) Branch,
- 1. J. Am. Chem. Soc. 37, 2316-2326 (1915) Branch and Miyamoto,
- 1. J. Am. Chem. Soc. 52, 863-868 (1930) Brandt,
- 1. Z. Physik 8, 32-44 (1922)

Brantley and Beckman,

- 1. J. Am. Chem. Soc. 52, 3956-3962 (1930) Braun,
- 1. Ann. Physik 17, 359-363 (1905) Braunbek,
- 1. Z. Physik 63, 165, 718 (1930)
- Braune.
- 1. Z. anorg. allgem. Chem. 111, 109-147 (1920) Braune and Knoke.
- 1. Z. physik. Chem. A135, 49-62 (1928) Braune and Koref,
- 1. Z. anorg. allgem. Chem. 87, 175-197 (1914) Braune and Ramstetter,
- Z. physik. Chem. 102, 480-503 (1922) Braune and Tiedje,
- 1. Z. anorg. allgem. Chem. 152, 39-51 (1926) Bray and Connolly,
- 1. J. Am. Chem. Soc. 33, 1485-1487 (1911) Bredemeier.
- 1. Z. anorg. allgem. Chem. 151, 109-112 (1926) Bredig, Carter, and Enderli,
- 1. Monatsh. 53-54, 1023 (1924) Bredig and Teichmann,
- 1. Z. Elektrochem. 31, 449-453 (1925)

Brice,

1. Phys. Rev. 35, 960-972 (1930)

Bridgman.

- 1. J. Am. Chem. Soc. 36, 1344-1363 (1914)
- 2. Phys. Rev. 3, 153-203 (1914)
- 3. Phys. Rev. 6, 1-33 (1915)
- 4. Phys. Rev. 6, 94-112 (1915)
- 5. Proc. Am. Acad. Arts. Sci. 47, 347-438 (1911)
- 6. Proc. Am. Acad. Arts. Sci. 51, 55-124 (1915)
- 6a. Proc. Am. Acad. Arts. Sci. 51, 581-625 (1916)
- 7. Proc. Am. Acad. Arts. Sci. 52, 91-187 (1916)
- 3. Proc. Am. Acad. Arts. Sci. 58, 166-242 (1923)
- Briegleb, 1. Z. physik. Chem. 144, 340-358 (1929)
- Briggs and Migrdichian,
- 1. J. Phys. Chem. 28, 1121-1135 (1924) Brill.
- 1. Ann. Physik (4) 21, 170-188 (1906) 2. Z. anorg. allgem. Chem. 45, 275-292 (1904)
- 3. Z. anorg. allgem. Chem. 57, 721-738 (1907) Briner,
  - 1. Compt. rend. 142, 1416-1418 (1906)
- 2. Compt. rend. 162, 387-392 (1916)
- 3. J. chim. phys. 4, 267-284 (1906)
- 4. J. chim. phys. 4, 476-485 (1904)
- 5. J. chim. phys. 13, 18-32 (1915) Briner, Boner, and Rothen,
- 1. J. chim. phys. 23, 788-807 (1926)
- Briner and Kahn,
- 1. J. chim. phys. 12, 534-563 (1914) Briner and Pylkoff,
- 1. J. chim. phys. 10, 640-679 (1912)
- Britton,
- 1. Trans. Faraday Soc. 25, 520-525 (1929)
- 1. Ann. Physik (2) 55, 341 (1842)

Broadway and Fraser,

- 1. J. Chem. Soc. 420-429, 1933
- Brody, Jennings, and Hayes,
- 1. Trans. Am. Soc. Steel Treating 10, 615-629 (1926)

Brody and Millner,

- 1. Chem. Rundschau Mitteleuropa u. Balkan **4,** 150-151 (1929)
- 2. Z. anorg. allgem. Chem. 164, 86-95 (1927) Brodsky,
- 1. Z. physik. Chem. 121, 1-25 (1926) Brons,
  - 1. Physica 2, 1108 (1935)
  - 2. Nature 135, 873 (1935)
  - 3. Nature 136, 796 (1935)

## Brönsted.

- 1. Z. Elektrochem. 19, 754-757 (1913)
- 2. Z. Elektrochem. 20, 81-83 (1914)
- 2a. Z. physik. Chem. 50, 481-486 (1905)
- 3. Z. physik. Chem. 55, 371-382 (1906)
- 4. Z. physik. Chem. 56, 645-685 (1906)
- 5. Z. physik. Chem. 65, 84-92 (1908)
- 6. Z. physik. Chem. 65, 744 (1909)
- 7. Z. physik. Chem. 68, 693-725 (1910)
- 8. Z. physik. Chem. 77, 129-144 (1911)
- 9. Z. physik. Chem. 77, 315-330 (1911)
- 10. Z. physik. Chem. 80, 206-234 (1912)

- Brönsted (Continued)
- 11. Z. physik. Chem. 88, 479-489 (1914) Brown,
- 1. J. Chem. Soc. 83, 987-994 (1903)
- 2. J. Chem. Soc. 87, 265-269 (1905)
- 3. Phys. Rev. 38, 1179-1186 (1931)
- 4. Phys. Rev. 38, 709-711 (1931)

## Brown and Acree,

- 1. J. Am. Chem. Soc. 38, 2145-2156 (1916) Brown and Gibson,
- 1. Phys. Rev. 40, 529-543 (1932)

- 1. J. Am. Chem. Soc. 45, 311-321 (1923) Bruhl,
  - 1. Ber. 28, 2847-2869 (1895)
  - 2. Ber. 32, 1222-1236 (1899)
- de Bruin.
  - 1. Z. Physik 38, 94-103 (1926) 2. Z. Physik 39, 869-876 (1926)
  - 3. Z. Physik 46, 856-872 (1928)
  - 4. Z. Physik 53, 658-664 (1929)

### Brun,

- 1. Compt. rend. 186, 1729-1731 (1928) Bruner,
  - 1. Ber. 27, 2102-2107 (1894)
- 2. Compt. rend. 120, 914-916 (1895)

## Bruni and Levi,

- 1. Gazz. chim. ital. 45II, 161-179 (1915)
- 2. Gazz. chim. ital. 471, 259-272 (1917) Brunner,
- 1. See Neumann, Kroger, and Kunz.1
- Bruylants and Christiaen, 1. Bull. soc. chim. Belg. 34, 144-150 (1925)
- Bubnoff,
- 1. Z. physik. Chem. 88, 641-670 (1914) Buchan,
- 1. Trans. Faraday Soc. 23, 672-676 (1927) Buchner and Prins,
- 1. Z. physik, Chem. 81, 113-120 (1912) Budde,
- 1. Z. anorg. allgem. Chem. 78, 169-177 (1912) Buffington.
- 1. Private communication Bunsen,
  - 1. Ann. 93, 1-50 (1855)
  - 2. Ann. Physik 46, 97-103 (1839)
  - 3. Ann. Physik 141, 1-31 (1870)
- 4. Phil. Mag. (4) 41, 161-182 (1871)

Burdick and Freed,

- 1. J. Am. Chem. Soc. 43, 518-530 (1921)
- Bureau of Standards,
  - 1. Unpublished
- 2. Circ. 11, 3d ed. (1917)

## Burian,

- 1. Z. Elektrochem. 37, 238-251 (1931)
- Burnett,
- See Millar and Sullivan¹
- Burrau,
  - 1. Kgl. Danske Videnskab. Seilskab Math .fysi. Medd. 7, No. 14, 2-18 (1927)
- Burrell and Robertson,
  - 1. Bur. Mines Tech. Papers 142, (1915)
  - 2. J. Am. Chem. Soc. 37, 1893-1902 (1916)

Burrell and Robertson (Continued)

- 3. J. Am. Chem. Soc. 37, 2842-86 (1915)
- 4. J. Am. Chem. Soc. 37, 2691-96 (1915)

Burrows and Lucarini.

- 1. J. Am. Chem. Soc. 49, 1157-1161 (1927) Bussey and Buignet,
- 1. Ann. chim. phys. (4) 3, 231-264 (1864) Butkow,
  - 1. Z. Physik 58, 232-249 (1929)

Butkow and Terenin.

1. Z. Physik 49, 865-884 (1928)

Butler and Hiscocks,

1. J. Chem. Soc. 128, 2554-2562 (1926)

Butler and Maass,

- 1. J. Am. Chem. Soc. 52, 2184-2198 (1930) Butler and Robertson,
  - 1. Proc. Roy. Soc. (London) A125, 694-712 (1929)

## ADY,

- C AD1, 1. J. Phys. Chem. 2, 551-564 (1898)
- 2. J. Phys. Chem. 3, 127-136 (1899)

Cady and Hildebrand,

- 1. J. Am. Chem. Soc. 52, 3839-3843 (1930) Cahours.
- 1. Ann. chim. phys. (3) 20, 369-379 (1847)
- 2. Ann. chim. phys. (3) 23, 327-358 (1848) Cailletet.
  - 1. Compt. rend. 85, 851-852 (1877)
  - 2. Compt. rend. 99, 213-215 (1884)
- 3. Compt. rend. 112; 1170-1176 (1891)

Cailletet and Bordet,

- 1. Compt. rend. 95, 58-61 (1882) Cailletet and Colardeau,
- 1. Compt. rend. 106, 1489-1494 (1888)
- Cailletet, Colardeau, and Riviere, 1. Compt. rend. 130, 1585-1591 (1900)
- Cailletet and Mathias. 1. J. phys. radium, 5, 549 (1886)
- 2. J. phys. radium, 6, 414-426 (1887)

Callendar and Griffiths,

1. Trans. Roy. Soc. (London) A182, 119-157 (1891)

## Calvet,

1. Compt. rend. 189, 530-533 (1929)

Cambi and Devoto,

- 1. Gazz. chim. ital. 57, 836-855 (1927)
- Cameron and Breazeate,
- 1. J. Phys. Chem. 8, 335-340 (1904) Cameron and Robinson,
- 1. J. Phys. Chem. 11, 273-278 (1907)
- 2. J. Phys. Chem. 11, 577-580, 690-694 (1907) Campbell.
  - 1. J. Am. Chem. Soc. 20, 78-79 (1896)
  - 2. J. Am. Chem. Soc. 22, 205-206 (1900)
- 3. J. Iron Steel Inst. London, 59, 211-228 (1901) Campbell and Hartman,
- 1. J. Am. Chem. Soc. 20, 690-695 (1898) Campbell and Thompson,
- 1. J. Am. Chem. Soc. 19, 754-759 (1897) Cantelo.
  - 1. J. Phys. Chem. 30, 1641-1645 (1926)

Cardoso,

Arch. sci. phys. nat. 30, 432-433 (1910)

Cardoso and Arni,

1. J. chim. phys. 10, 504-508 (1912) Cardoso and Bell,

1. J. chim. phys. 10, 497-503 (1912) Cardoso and Braume,

- 1. Compt. rend. 151, 141-143 (1910)
- 2. J. chim. phys. 10, 509-513 (1912)
- Cardoso and Bruno.
- 1. J. chim. phys. 20, 347-351 (1923)

Cardoso and Fiorentino, 1. J. chim. phys. 23, 841-847 (1926)

Cardoso and Germann,

1. J. chim. phys. 11, 632-637 (1911)

Carhart and others,

- 1. Chem. News, 90, 225-27 (1904)
- deCarli. 1. Atti accad. Lincei 7, 1033-1036 (1928)
- Atti accad. Lincei 9, 417-419 (1929)
- Carlton-Sutton,
- 1. Proc. Roy. Soc. (London) 93, 155-176 (1917) Carpenter and Jette.
- 1. J. Am. Chem. Soc. 45, 578-590 (1923) Carrelli and Pringsheim.
- 1. Z. Physik 44, 643-652 (1927)
- 1. Trans. Roy. Soc. (London) A225, 357-420 (1926)

Cassuto,

Carroll.

1. Physik. Z. 5, 233-236 (1904)

Catalan,

- 1. Anales soc. espan. fis. quim. 21, 213-236 (1923)
- Anales soc. espan. fis. quim. 21, 321-329 (1923)
- 3. Anales soc. espan. fis. quim. 27, 832-845 (1929)

Catalan and Sancho,

1. Anales soc. espan. fis. quim. 29, 327-661 (1931)

Cath.

1. Proc. Acad. Sci. Amsterdam 21, 656-663 (1919)

Cath and Onnes,

1. Proc. Acad. Sci. Amsterdam 20, 1160-1162 (1918)

Cavalier,

- 1. Compt. rend. 122, 1486-1488 (1896) Cavazzi,
- 1. Gazz. chim. ital. II46, 122-135 (1916)
- 2. Rend. accad. Bologna, 2, 205 (1896)

Caven and Ferguson,

- 1. J. Chem. Soc. 121, 1406-1414 (1922)
- 2. J. Chem. Soc. 125, 1307-1312 (1924)

Caven and Sand,

- 1. J. Chem. Soc. 99, 1359-1369 (1911)
- 2. J. Chem. Soc. 105, 2752 (1914)

Cederberg,

- 1. "Die Thermodynamische Berechnung Chemischen Affinitaten," ----- Berlin (1916) Centnerszwer,
- 1. Z. physik. Chem. 85, 99-112 (1913)

Centnerszwer and Bruzs,

- 1. Z. physik. Chem. 114, 237-250 (1924)
- Z. physik. Chem. 115, 365-376 (1925)
   Centnerszwer, Falk, and Awerbuch,
- 1. Z. physik. Chem. 115, 29-53 (1925)

Centnerszwer and Krustinson,

- 1. Z. physik. Chem. 124, 225-235 (1926) Chapman,
- 1. J. Chem. Soc. 75, 734-747 (1899) Chappuis,
  - 1. Ann. chim. phys. (6) 15, 498-517 (1888)
- 2. Compt. rend. 104, 897-900 (1887)

Chappuis and Riviera,

- 1. Compt. rend. 104, 1505 (1887) Chassevent,
- 1. Compt. rend. 179, 44-46 (1924) Chaudron.
  - 1. Ann. chim. (9) 16, 221-281 (1921)
  - 2. Compt. rend. 170, 1056-1058 (1920)
- 3. Compt. rend. 172, 152-155 (1921)
- Chauvenet,
  - 1. Ann. chim. phys. (8) 23, 275-280 (1911)
  - 2. Ann. chim. phys. (8) 23, 425-490 (1911)
  - 3. Ann. chim. phys. (8) 28, 536-544 (1913)
  - 4. Chem. Ztg. 34, 940 (1910)
  - 5. Compt. rend. 164, 630-633 (1917)
  - 6. Compt. rend. 164, 816-818 (1917)
  - 7. Compt. rend. 165, 25-28 (1917)

Chauvenet and Nicolle,

- 1. Compt. rend. 166, 781-783 (1916)
- 1. Compt. rend. 188, 1660-1662 (1929) Chretien and Guinchant,
- 1. Compt. rend. 137, 65-68 (1903) Christiansen.
  - 1. Z. physik. Chem. 103, 99-138 (1923)
  - 2. J. Chem. Soc. 413-421 (1926)

Christomanos,

1. Ber. 10, 1645-1647 (1877)

Christy and Naudè,

1. Phys. Rev. 37, 903-919 (1931)

Chroustchoff,

1. Compt. rend. 104, 1711-1714 (1887)

Chroustchoff and Martinoff,

1. Ann. chim. phys. 11, 234-263 (1887)

Claasen and Veenemans,

- Z. Physik 80, 343-345 (1933)
   Clark,
  - лагк, 1. Am. J. Sci. (5) 7, 1-23 (1924)

Clark and Hetherington,

- 1. J. Am. Chem. Soc. 49, 1909-1918 (1927) Clayton and Giauque,
- 1. J. Am. Chem. Soc. 54, 2610-2626 (1932) Claude,
- 1. Compt. rend. 169, 1039-1041 (1919) Clement,
- 1. Bur. Mines Bull. No. 17 (1911) Clements, Adams, and Haskins,
- Bur. Mines Bull. No. 7 (1909)
   Clusius,
  - 1. Z. physik. Chem. B4, 1-13 (1919)
  - 2. Z. physik. Chem. B3, 41-79 (1929)

Clusius and Hiller,

- 1. Z. physik. Chem. B4, 158-168 (1929) Clusius and Teske,
- 1. Z. physik. Chem. B6, 135-151 (1929) Cochet.
- 1. Z. angew. Chem. 44, 367-372 (1931) Cohen,
  - 1. Trans. Faraday Soc. 7, 122-135 (1911)
  - 2. Z. physik. Chem. 14, 53-92 (1894)
  - 3. Z. physik. Chem. 30, 623-627 (1899)
  - 4. Z. physik Chem. 33, 57-62 (1900)
  - 5. Z. physik. Chem. 34, 621-31 (1900)
- Cohen and Bredee,
  1. Verhandel. Akad. Wetenschappen Amster
  - dam 34, 377-390 (1925)
  - 2. Z. physik. Chem. 117, 143-155 (1925)
- Cohen and Bruins,
- 1. Verhandel. Akad. Wetenschappen Amsterdam 25, 1046-1054 (1917)
- Verhandel. Akad. Wetenschappen Amsterdam 25, 1277-1282 (1917)
- 3. Verhandel. Akad. Wetenschappen Amsterdam 26, 586-594 (1917)
- 4. Z. physik. Chem. 93, 43-58 (1918)

Cohen, Chattaway, and Tombrock,

1. Z. physik. Chem. 60, 706-727 (1907)

Cohen and Helderman,

- Proc. Acad Sci. Amsterdam 17, 1050-1054 (1915)
- 2. Proc. Acad. Sci. Amsterdam 28, 2-12 (1925)
- 3. Verhandel. Akad. Wetenschappen Amsterdam 23, 1015-1032 (1914)
- 4. Z. physik. Chem. 113, 145-156 (1924)

Cohen, Helderman, and Moesveld,

1. Z. physik. Chem. 96, 259-274 (1920)

Cohen, Hetterschij, and Moesveld,

- 1. Z. physik. Chem. 94, 210-232 (1920) Cohen and Inouye,
- 1. Z. physik. Chem. 75, 219-231 (1910)

Cohen and Joss,

- 1. J. Am. Chem. Soc. 50, 727-733 (1928)
- 2. Verhandel. Akad. Wetenschappen Amsterdam 36, 980-986 (1927)

Cohen and Jung,

- 1. Z. physik. Chem. 110, 705-724 (1924) Cohen and Kooy,
- Z. physik. Chem. 139, 273-350 (1928)
   Cohen, Kruisheer, and Moesveld,
  - 1. Z. physik. Chem. 96, 437-470 (1920)

Z. physik. Chem. 96, 437-470
 Cohen, Moesveld, and Helderman,

 Proc. Acad. Sci. Amsterdam 27, 657-664 (1924)

Cohen and Strengers,

- 1. Z. physik. Chem. 52, 129-170 (1905)
- Cohen, Verkade, Miyoka, Coops, and Hoeve,
- 1. Z. physik. Chem. A126, 290-296 (1927)
- Cohen and Visser,
  1. Arch. neerland sci. (IIIA) 5, 295-305 (1900)
- 2. Z. physik. Chem. 36, 517-523 (1901) Cohn,
  - J. Am. Ceramic. Soc. 7, 359-376, 475-488, 548-562 (1924)

Collenberg,

- 1. Z. physik. Chem. 109, 353-374 (1924) Collins and Cameron,
- 1. J. Phys. Chem. 32, 1705-1716 (1928) Colson.
  - 1. Ann. chim. phys. (6) 19, 407-420 (1890)
  - 2. Ann. chim. phys. (8) 12, 433-467 (1907)
  - 3. Compt. rend. 140, 865-867 (1905)
  - 4. Compt. rend. 161, 414-416 (1915)
  - 5. Compt. rend. 161, 458-461 (1915)

Colson and Darzen,

- 1. Compt. rend. 118, 250-253 (1894) Compton,
- 1. Proc. Am. Phil. Soc. 61, 212-226 (1922) Compton and Boyce,
  - 1. Phys. Rev. 33, 115 (1929)

Compton, Boyce, and Nickerson,

1. Phys. Rev. 33, 1085 (1929)

Compton, Boyce, and Russell, 1. Phys. Rev. 33, 179-185 (1928)

Conant and Fieser,

- 1. J. Am. Chem. Soc. 45, 2194-2218 (1923) deConinck.
- 1. Compt. rend. 131, 1219-1225 (1900)

Constam and White,

- 1. Am. Chem. J. 29, 1-49 (1903) Coolidge,
- 1. J. Am. Chem. Soc. 50, 2166-2178 (1928) Coolidge and Coolidge,
- 1. J. Am. Chem. Soc. 49, 100-104 (1927) Cooper,
- Proc. Trans. Nova Scotian Inst. Sci. 17, 82-90 (1927)

Coops and Verkade,

- 1. Rec. trav. chim. 44, 983-1011 (1925) Copaux,
- 1. Z. anorg. allgem. Chem. 74, 351-364 (1912) Copaux and Philips,
  - 1. Compt. rend. 171, 630-632 (1920)
- 2. Compt. rend. 176, 579-583 (1923) Copeland.
  - 1. J. Am. Chem. Soc. 52, 2580-2581 (1930)
  - 2. Phys. Rev. 36, 1221-1231 (1930)

Cordes and Sponer,

1. Z. Physik 63, 334-344 (1930)

Coster and Brons,

- 1. Physica 1, 155-160 (1934)
- 2. Physica 1, 648 (1934)
- 3. Proc. Acad. Sci. Amsterdam 38, 961 (1935) Cottrell.
- J. Phys. Chem. 2, 492-495 (1898)
   Cotty.
- 1. Ann. chim. phys. (8) 24, 282-288 (1911)

Coward and Wilson,

1. J. Chem. Soc. 115, 1380-1389 (1919)

Cragoe, Meyers, and Taylor,

- 1. J. Am. Chem. Soc. 42, 206-229 (1930) Crane and Christy,
- 1. Phys. Rev. 36, 421-429 (1930)

Crockes.

 Proc. Roy. Soc. (London) A76, 458-461 (1905) Crommelin,

- Communications Phys. Lab. Univ. Leiden, No. 115
- Proc. Acad. Sci. Amsterdam 13, 54-65 (1910)
- Proc. Acad. Sci. Amsterdam 16, 477-485, (1913)
- Proc. Acad. Sci. Amsterdam 17, 959-962 (1915)
- 5. Rec. trav. chim. 42, 814-817 (1923)
- 6. Verhandel. Akad. Wetenschappen Amsterdam 21, 684-685 (1912)

Crommelin, Bijleveld, and Brown,

 Proc. Acad. Sci. Amsterdam 34, 1314-1317 (1931)

Crommelin and Gibson,

1. Verhandel. Akad. Wetenschappen Amsterdam 36, 173-176 (1927)

Crut,

1. Dissertation, Paris (1923)

Curtis,

 Proc. Roy. Soc. (London) A118, 157-169 (1928)

Curtis and Harvey,

 Proc. Roy. Soc. (London) A121, 381-401 (1928)

Cuthbertson and Cuthbertson,

 Proc. Roy. Soc. (London) 85, 306-308 (1911)

Czepinsky,

- 1. J. Russ. Phys. Chem. Soc. 31, 315-322 (1899)
- 2. Z. anorg. allgem. Chem. 19, 208-282 (1899)

D^{AHMLOS} and Jung, 1. Z. physik. Chem. B21, 317-322 (1933) Damiens,

1. Ann. chim. 18, 282-312 (1922)

Dana,

 Proc. Am. Acad. Arts and Sci. 60, 241-267 (1926)

Dana, Burdick, and Jenkins,

- J. Am. Chem. Soc. 49, 2801-2806 (1927)
   Dana, Jenkins, Burdick, and Timms,
  - 1. Refrigerating Eng. 12, 387-405 (1926)
- Dana and Onnes,
  1. Verhandel. Akad. Wetenschappen Amster
  - dam 34, 1335-1339 (1925)
    2. Proc. Acad. Sci. Amsterdam 29, 1051-1060 (1926)

Daniels and Bright,

1. J. Am. Chem. Soc. 42, 1131-1141 (1920)

1. Compt. rend. 154, 1232-1234 (1912) Davis and Johnston,

- 1. J. Am. Chem. Soc. 56, 1045-1047 (1934) Deb.
- 1. Proc. Roy. Soc. (London) A127, 197-217 (1930)

Deb and Dutt,

1. Z. Physik 67, 137-146 (1931)

Debray,

- 1. Compt. rend. 77, 123-126 (1873)
- 2. Compt. rend. 86, 513-517 (1878)

Dejardin,

1. Compt. rend. 178, 1067-71 (1924)

1. Ann. chim. phys. (7) 15, 469-574 (1898)

2. Bull. soc. chim. 29, 1166-1167 (1903)

3. Compt. rend. 123, 650-653 (1896)

4. Compt. rend. 124, 1525-1528 (1897)

5. Compt. rend. 126, 964-967 (1898)

6. Compt. rend. 131, 684-686 (1900)

7. Compt. rend. 131, 745-747 (1900)

8. Compt. rend. 132, 777-779 (1901)

9. Compt. rend. 136, 451-453 (1903)

Delepine and Hallopeau,

1. Compt. rend. 129, 600-603 (1899)

Delepine and Rivals,

1. Compt. rend. 129, 520-523 (1899)

Dennis, Corey, and Moore,

1. J. Am. Chem. Soc. 46, 657-674 (1924)

Dennison,

1. Proc. Roy. Sci. (London) A115, 483-486 (1927)

Dent and Cobb.

1. J. Chem. Soc. 1903-1912 (1929)

Derby and Yngve,

1. J. Am. Chem. Soc. 38, 1439-1451 (1916)

1. Compt. rend. 16, 981 (1843)

2. Compt. rend. 23, 149-152 (1846)

Despretz.

1. Ann. chim. phys. (3) 36, 5 (1847)

2. Ann. chim. phys. (2) 37, 180 (1828)

3. Compt. rend. 29, 48 (1849)

4. Compt. rend. 29, 709-724 (1849)

van Deventer and Cohen,

1. Maandblad voor Natuur Wetenschappen Amsterdam, 18, 103-108 (1894)

van Deventer and Reicher.

1. Maandblad voor Natuur Wetenschappen Amsterdam, 17, 93-99 (1891)

2. Z. physik. Chem. 5, 177-180 (1890)

van Deventer and van der Stadt,

1. Z. physik. Chem. 9, 43-56 (1892) Deville.

1. Compt. rend. 56, 195-201 (1863)

2. Compt. rend. 56, 322-324 (1863)

3. Compt. rend. 62, 1157-1160 (1866)

Deville and Hautefeuille,

1. Compt. rend. 69, 152-158 (1869)

Deville and Troost,

1. Ann. chim. phys. (3) 58, 252-299 (1860)

2. Compt. rend. 56, 891-898 (1863)

3. Compt. rend. 64, 237-243 (1867)

4. Compt. rend. 91, 83-85 (1880)

DeVries and Rodebush,

1. J. Am. Chem. Soc. 49, 656-666 (1927) Dew and Taylor,

1. J. Phys. Chem. 31, 277-290 (1927)

1. Chem. News, 78, 325-326 (1898)

2. Phil. Mag. 18, 210-216 (1884)

3. Proc. Roy. Soc. (London) 68, 360-366 (1901)

Dewar and Jones,

1. Proc. Roy. Soc. (London) 76, 558-573 (1905)

2. Proc. Roy. Soc. (London) 85, 574-588 (1911) Dhavale,

1. Nature, 123, 799 (1829)

2. Proc. Roy. Soc. (London) A131, 109-121

Dickinson,

1. Bur. Standards Bull. 11, 189-257 (1915)

Dickinson, Harper, and Osborne,

1. Bur. Standards Bull. 10, 235-266 (1913)

Dickinson and Osborne,

1. Bur. Standards Bull. 12, 49-81 (1915)

2. J. Franklin Inst. 179, 489-493 (1915)

Dieke and Hopfield,

1. Z. Physik 40, 299-308 (1926)

Dieterici.

1. Ann. Physik (3) 37, 494-508 (1889)

2. Ann. Physik (4) 16, 593-620 (1905)

Dingle.

1. Proc. Roy. Soc. (London) A117, 407-416 (1928)

2. Proc. Roy. Soc. (London) A128, 600-624 (1930)

Dinkler,

1. Dissertation, Aachen (1924)

Ditchburn,

1. Proc. Roy. Soc. (London) A117, 486-508 (1928)

Ditte,

1. Ann. chim. phys. (5) 13, 67-75 (1878)

2. Ber. 9, 1130-1131 (1876)

3. Ber. 9, 1432 (1876)

4. Compt. rend. 70, 935-940 (1870)

5. Compt. rend. 72, 762-766 (1871)

6. Compt. rend. 72, 858-862 (1871)

7. Compt. rend. 73, 108-111, 111-112 (1871)

8. Compt. rend. 83, 56-58 (1876) 9. Compt. rend. 83, 223-225 (1876)

10. Compt. rend. 85, 1103-1106 (1877)

11. Compt. rend. 140, 1162-1167 (1905)

Ditte and Metzner,

1. Ann. chim. phys. (6) 29, 389-400 (1893)

2. Compt. rend. 115, 936-939 (1892) Dixon.

1. Z. physik. Chem. Bodenstein Festschrift, 679-686 (1931)

Dodd.

1. J. Am. Chem. Soc. 42, 1579-1594 (1920)

Dodge and Davis,

1. J. Am. Chem. Soc. 49, 610-620 (1927)

Doepke,

1. Dissertation, Braunschweig (1928)

Doerinckel,

1. Z. anorg. allgem. Chem. 66, 20-36 (1910) Dolch,

1. Z. Elektrochem. 26, 455-459 (1920)

Donath,

1. Z. Elektrochem. 32, 316-319 (1926)

Donnan and Hope,

1. Trans. Faraday Soc. 5, 244-250 (1909) Doolan and Partington.

1. Trans. Faraday Soc. 20, 342-344 (1924)

Dragert.

1. Dissertation, Berlin (1914)

Drozdowski and Pietrzak,

1. Bull. intern. acad. sci. Cracovie (A) 219-240

Drucker and Huettner,

1. Z. physik. Chem. A131, 237-266 (1928)

Drucker, Jimeno, and Kangro,

1. Z. physik. Chem. 90, 513-552 (1915)

Drummond.

1. J. Am. Chem. Soc. 49, 1901-1904 (1927)

Duclaux and Jeantet,

1. Compt. rend. 173, 581-583 (1921)

Duffendack and Fox,

1. Astrophys. J. 64, 277 (1926)

2. Astrophys. J. 65, 214-237 (1927)

1. Ann. chim. phys. (3) 8, 180-183 (1843)

2. Compt. rend. 7, 871 (1838)

Duncan,

1. Astrophys. J. 62, 145-159 (1925).

2. J. Am. Chem. Soc. 51, 2697-2705 (1929) Dunkel.

1. Z. physik. Chem. B7, 81-107 (1930)

Dunn,

1. Chem. News, 43, 121 (1881)

Dunnington and Hoggard.

1. Am. Chem. J. 22, 207-218 (1899)

Durrer.

1. Dissertation, Aachen (1915)

Dutoit,

1. J. chim. phys. 24, 110-114 (1927)

1. Proc. Roy. Soc. (London) A137, 366-372 (1932)

E ASTMAN,
1. Bur. Mines Circ. No. 6125, 1-15 (1929)

2. J. Am. Chem. Soc. 44, 975-998 (1922)

Eastman and Duschak,

1. Bur. Mines Tech. Paper No. 225 (1919) Eastman and Evans,

1. J. Am. Chem. Soc. 46, 888-903 (1924)

Eastman and Robinson,

1. J. Am. Chem. Soc. 50, 1106-1114 (1928)

Eastman and Sullivan.

1. See Randall²

Eastman, Williams, and Young,

1. J. Am. Chem. Soc. 46, 1178-1183 (1924) Eckart.

1. Phys. Rev. 36, 878-892 (1930)

Eckman and Rossini,

1. Bur. Standards J. Research 3, 597-618 (1929) Edgar and Calingaert,

1. J. Am. Chem. Soc. 51, 1540-1550 (1929) Edgar and Cannon,

1. J. Am. Chem. Soc. 44, 2842-2849 (1922) Edgerton,

1. J. Chem. Soc. 105, 647-657 (1914) Edlen,

1. Nature, 127, 44 (1931)

Z. Physik 72, 559-568 (1931)

Edlen and Ericson.

1. Compt. rend. 190, 116-118 (1930)

2. Nature 124, 688-689 (1929)

3. Nature 125, 233 (1930)

4. Z. Physik 59, 656-679 (1930)

5. Z. Physik 64, 64-74 (1930)

Edlen and Stenman,

Z. Physik 66, 328-338 (1930)

Edmondson and Egerton, Proc. Roy. Sci. (London) A113, 520-533

(1927)

2. Proc. Roy. Soc. (London) A113, 533-539

Egerton,

1. Phil. Mag. (6) 33, 33-48 (1917)

2. Phil. Mag. 39, 1-20 (1920)

3. Phil. Mag. 48, 1048-1054 (1924)

4. Proc. Roy. Soc. (London) 103, 469-486 (1923)

Egerton and Edmondson,

1. "International Critical Tables," vol. III, p. 207, McGraw-Hill Book Co., New York (1929)

Ehlert and Hempel,

1. Z. Elektrochem. 18, 727-729 (1912)

Ehrhardt,

1. Ann. Physik (3) 24, 215-258 (1885)

Elbe and Simon,

1. Z. physik. Chem. B6, 79-87 (1929)

Ellingson,

1. J. Am. Chem. Soc. 37, 699-709 (1915) Elliott,

1. Proc. Roy. Soc. (London) A123, 629-644 (1929)

2. Proc. Roy. Soc. (London) A127, 638-657 (1930)

Elliott and McIntosh,

1. J. Phys. Chem. 12, 163-166 (1908) Ellis,

1. J. Am. Chem. Soc. 38, 737-762 (1916)

Phys. Rev. 33, 27-36 (1929)

Ellsworth and Hopfield.

1. Phys. Rev. 27, 639 (1926)

Emery and Benedict,

1. Am. J. Physiology 28, 301 (1911)

Emmett, Hendricks, and Brunauer,

1. J. Am. Chem. Soc. 52, 1456-1464 (1930) Emmett and Shultz,

1. J. Am. Chem. Soc. 51, 3249-3262 (1929) Engel,

1. Ann. chim. phys. (6) 13, 344-388 (1888)

2. Ann. chim. phys. (6) 17, 338-384 (1889) Engels,

1. Gas. u. Wasserfach 62, 493-500 (1919) Ephraim,

1. Ber. 45, 1322-1331 (1912)

2. Ber. 46, 3103-3113 (1913)

3. Ber. 50, 1069-1088 (1917)

4. Ber. 51, 706-710 (1918)

5. Ber. 52, 236-241 (1919)

6. Ber. 52, 241-254 (1919) 7. Ber. 58, 2262-2267 (1925)

8. Ber. 59, 1219-1231 (1926)

Ephraim (Continued)

9. Z. physik. Chem. 81, 513-538 (1913)

10. Z. physik. Chem. 83, 196-220 (1913) Ephraim and Bolle,

1. Ber. 48, 638-648 (1915)

2. Ber. 48, 1770-1777 (1915))

Ephraim and Jahnsen,

1. Ber. 48, 41-56 (1915)

Ephraim and Kornblum,

1. Ber. 49, 2007-2021 (1916)

Ephraim and Michel.

1. Helv. Chim. Acta 4, 900-924 (1921)

Ephraim and Millmann,

1. Ber. 50, 529-541 (1917)

Ephraim and Miller.

1. Ber. 54, 973-978 (1921)

Ephraim and Wagner,

1. Ber. 50, 1088-1110 (1917)

Ericson and Edlen,

1. Z. Physik 59, 656-679 (1930)

1. Phys. Rev. 35, 309-314 (1930)

Estreicher,

1. Bull. intern. acad. sci. Cracovie (A) 831-844 (1903)

2. Bull. intern. acad. sci. Cracovie (A) 183-196

Estreicher and Schneer,

1. Bull. intern. acad. sci. Cracovie (A) 344-348 (1910)

Estreicher and Staniewski,

1. Bull. intern. acad. sci. Cracovie (A) 349-351 (1910)

Eucken,

1. Ann. 440, 111-121 (1924)

2. Ber. deut. physik. Ges. 18, 4-18 (1918)

3. Ber. deut. physik. Ges. 18, 18-26 (1918) Eucken and Donath,

1. Z. physik. Chem. 124, 181-203 (1926) Eucken and Fried,

1. Z. physik. 29, 36-70 (1924)

2. Z. Physik 32, 150-158 (1925)

Eucken and Hauch,

1. Z. physik. Chem. 134, 161-177 (1928) Eucken and Hiller,

1. Z. physik. Chem. B4, 142-157 (1929)

Eucken and Hoffman,

1. Z. physik. Chem. B5, 442-451 (1929)

Eucken and Karwat,

1. Z. physik. Chem. 112, 467,485 (1924)

Eucken, Karwat, and Fried,

1. Z. Physik 29, 1-35 (1924)

Eucken and Lude,

1. Z. physik. Chem. B5, 413-441 (1929)

Eucken and Meyer,

1. Chem. Fabrik 177-179, 195-196 (1928)

1. Proc. Roy. Soc. (London) A133, 417-430 (1931)

Evershein,

1. Ann. Physik 8, 539-567 (1902)

Ewald,

1. Ann. Physik 44, 1213-1237 (1914)

Ewing,

1. J. Am. Chem. Soc. 49, 1964-1973 (1927) Ewing, Krey, Law, and Lang,

1. J. Am. Chem. Soc. 49, 1958-1962 (1927) Ewing, Rodgers, Miller, and McGovern,

1. J. Am. Chem. Soc. 54, 1335-1343 (1932) Evber.

1. Z. physik. Chem. A144, 1-21 (1929)

 $\mathbf{F}^{ ext{ABRE}}$ 

1. Ann. chim. phys. (6) 10, 472 (1887)

2. Ann. chim. phys. (6) 10, 505 (1887)

3. Ann. chim. phys. (6) 14, 110-120 (1888) Faians.

1. Ber. 53B, 643-665 (1920)

2. Ber. 55B, 2826-2838 (1922)

3. Ber. deut. physik. Ges. 21, 539-549 (1919)

4. Ber. deut. physik. Ges. 21, 709 (1919)

5. Naturwissenschaften 9, 729-740 (1921)

6. Z. Elektrochem. 31, 63-70 (1925)

7. Z. Physik 1, 101-118 (1920)

Falcke.

1. Ber. 46, 743 (1923)

2. Z. Elektrochem. 21, 37-50 (1915)

3. Z. Elektrochem. 22, 121-133 (1916)

4. Z. Elektrochem. 27, 268-278 (1921)

5. Z. Elektrochem. 33, 1-11 (1927)

Falcke and Fischer,

1. Z. Elektrochem. 32, 194-201 (1926) Falckenstein,

1. Z. physik. Chem. 59, 313-335 (1907)

2. Z. physik. Chem. 65, 371-379 (1909) Faraday,

1. "Experimental Researches in Chemistry and Physics," ----, London (1859)

2. Phil. Trans. Roy. Soc. (London) 113, 189 (1823)

3. Phil. Trans. Roy. Soc. (London) 135, 1-155 (1845)

Farkas,

1. Z. physik. Chem. B5, 467-475 (1929)

Faucon.

1. Ann. chim. phys. (8) 19, 70-152 (1910)

2. Compt. rend. 146, 470-473 (1908) Favre,

1. Ann. chim. phys. (5) 10, 163-174 (1844)

2. Compt. rend. 17, 1196-1197 (1843)

3. Compt. rend. 71, 772 (1871)

4. Compt. rend. 73, 890-896 (1871)

5. Compt. rend. 73, 936-943 (1871)

6. Compt. rend. 73, 971-979 (1871)

7. Compt. rend. 73, 1147 (1873)

8. Compt. rend. 77, 101-105 (1873)

9. Compt. rend. 77, 649-656 (1873)

10. Compt. rend. 78, 1257-1265 (1874)

11. J. pharm. chim. 24, 241 (1853)

12. J. pharm. chim. 24, 311 (1853)

13. See Berthelot152

Favre and Quaillard,

1. Compt. rend. 50, 1150-1154 (1660)

Favre and Silbermann.

1. Ann. chim. phys. (3) 34, 357-450 (1852)

2. Ann. chim. phys. (3) 36, 5-47 (1852)

Favre and Silbermann (Continued)

- 3. Ann. chim. phys. (3) 37, 406-508 (1853)
- 4. Compt. rend. 20, 1565-1568 (1845)
- 5. Compt. rend. 21, 944-950 (1845)
- 6. Compt. rend. 22, 483-487 (1846)
- 7. Compt. rend. 22, 823-825 (1846)
- 8. Compt. rend. 22, 1140-1143 (1846)
- 9. Compt. rend. 23, 199-206 (1846)
- 10. Compt. rend. 23, 411-413 (1846)
- 11. Compt. rend. 24, 1081-1090 (1847)
- 12. J. pharm. chim. (3) 24, 241 (1853)
- 13. J. pharm. chim. (3) 24, 311 (1853)

## Favre and Valson,

- 1. Compt. rend. 73, 1144-1152 (1871)
- 2. Compt. rend. 77, 577-584 (1873)
- 3. Compt. rend. 77, 802-809 (1873)
- 4. Compt. rend. 77, 907-915 (1873)

## Felsing,

1. Dissertation, Massachusetts Inst. Tech. (1914)

Felsing and Thomas.

- 1. Ind. Eng. Chem. 21, 1269-1272 (1929) Felsing and Wohlford,
- 1. J. Am. Chem. Soc. 54, 1442-1445 (1932)
- Fenning and Tizard,
- 1. Proc. Roy. Soc. (London) A115, 318-333 (1927)

Fenning and Cotton,

1. Proc. Roy. Soc. (London) A141, 17-28 (1933)

#### Ferguson,

- J. Am. Chem. Soc. 40, 1628 (1918)
- 2. J. Chem. Soc. 127, 2096-2100 (1925)
- Phys. Rev. 31, 969-972 (1928)

## Fery,

- 1. Ann. chim. phys. (7) 28, 428-432 (1903) Fichter.
  - 1. Ber. deut. physik. Ges. 21, 539 (1919)
- 2. Z. anorg. allgem. Chem. 54, 322 (1907) Fichter and Jenny,
- 1. Helv. chim. acta 5, 448-454 (1922) Finckh,
- 1. Z. anorg. allgem. Chem. 45, 116-125 (1905) Findlay,
- 1. Phys. Rev. 36, 5-12 (1930)

Finkelnburg and Mecke,

- 1. Z. Physik 54, 198-214 (1929)
- 2. Z. Physik 54, 597-631 (1929)

Finkelnburg and Schumacher,

1. Z. physik. Chem. Bodenstein Festschrift, 704-716 (1931)

## Finkelstein,

- 1. Ber. 39, 1585-1592 (1906)
- 2. Z. Physik 61, 234-235 (1930)

## Fiock,

- 1. Bur. Standards J. Research 5, 481-505 (1930) Fiock and Ginnings,
- 1. Bur. Standards J. Research 8, 321-324 (1932) Fiock, Ginnings, and Holton,
- 1. Bur. Standards J. Research 6, 881-900 (1931) Fiock and Rodebush,
  - 1. J. Am. Chem. Soc. 48, 2522-2528 (1926)

## Fischer,

- 1. Z. anorg. allgem. Chem. 78, 41-67 (1912)
- 2. Z. anorg. allgem, Chem. 200, 332-342 (1931)

# Fischer and Alt,

1. Ann. Physik (4) 9, 1149-1185 (1902)

Fischer and Biltz,

1. Z. anorg. allgem. Chem. 176, 81-111 (1928) Fischer and Geiger.

1. See Sherman¹

Fischer and Rahlfs.

- 1. Z. anorg. allgem. Chem. 211, 349-367 (1933)
- 2. Z. Elektrochem. 38, 592 (1932)

Fischer and Tropsch,

- 1. Ber. 50, 765-767 (1917)
- Fischer and Wrede,
  - 1. Sitzber. kgl. preuss. Akad. Wiss. 687-715 (1904)
  - 2. Z. physik. Chem. 69, 218-235 (1909)

## Fleharty,

- 1. J. Am. Chem. Soc. 55, 2646-2649 (1933) Fogh,
- 1. Ann. chim. phys. 21, 43-69 (1890)
- 2. Compt. rend. 114, 920 (1892)

Fogler and Rodebush,

- J. Am. Chem. Soc. 45, 2080-2090 (1923) Fonda and Van Aernem,
- 1. Ind. Eng. Chem. 14, 539-540 (1922)
- Foote, Bradley, and Fleischer,
  - 1. J. Phys. Chem. 37, 21-27 (1933)

Foote and Mohler,

- 1. J. Am. Chem. Soc. 42, 1832-1839 (1920) Foote and Saxton,
- 1. J. Am. Chem. Soc. 36, 1695-1704 (1914) Foote and Scholes,
- 1. J. Am. Chem. Soc. 33, 1309-1326 (1911) Foote and Smith.
- 1. J. Am. Chem. Soc. 30, 1344-1350 (1908) de Forcrand,
  - 1. Ann. chim. (6) 3, 5-48 (1915)
  - 2. Ann. chim. phys. (6) 3, 129-141 (1884)
- 3. Ann. chim. phys. (6) 3, 187-242 (1884)
- 4. Ann. chim. phys. (6) 3, 242-249 (1884)
- 5. Ann. chim. phys. (6) 11, 277-285 (1887)
- 6. Ann. chim. phys. (6) 11, 445-483 (1887)
- 6a. Ann. chim. phys. (6) 20, 433-447 (1890)
- 7. Ann. chim. phys. (6) 27, 525-548 (1892)
- 8. Ann. chim. phys. (7) 27, 26-66 (1902)
- 9. Ann. chim. phys. (8) 9, 234-241 (1906)
- 10. Ann. chim. phys. (8) 15, 433-490 (1908)
- 11. Ann. chim. phys. (8) 15, 458 (1908) 12. Ann. chim. phys. (8) 24, 256-282 (1911)
- 13. Ann. chim. phys. (8) 26, 209-227 (1912)
- 14. Bull. soc. chim. 35, 781-790 (1906)
- 15. Compt. rend. 100, 244-247 (1885)
- 16. Compt. rend. 101, 318-321 (1885)
- 17. Compt. rend. 101, 1495 (1885)
- 18. Compt. rend. 102, 1397-1399 (1886)
- 19. Compt. rend. 102, 1557-1559 (1886)
- 20. Compt. rend. 103, 59-61 (1886)
- 21. Compt. rend. 120, 682-684 (1895)
- 22. Compt. rend. 120, 737-740 (1895)
- 23. Compt. rend. 120, 1215-1218 (1895)

```
Fowler (Continued)
de Forcrand (Continued)
 24. Compt. rend. 121, 66-69 (1895)
                                                    2. Proc. Roy. Soc. (London) A123, 422-439
 25. Compt. rend. 127, 514-516 (1898)
                                                          (1929)
                                                    3. "Report on Series in Line Spectra," Physi-
 26. Compt. rend. 130, 778-780 (1900)
                                                          cal Society of London, London (1922)
 27. Compt. rend. 130, 834-837 (1900)
                                                    4. Trans. Roy. Soc. (London) A225, 1-47
 28. Compt. rend. 130, 1017-1019 (1900)
 29. Compt. rend. 130, 1308-1311 (1900)
                                                          (1925)
                                                   Fowler and Freeman,
 30. Compt. rend. 130, 1388-1391 (1900)
                                                   1. Proc. Roy. Soc. (London) A114, 662-689
 31. Compt. rend. 130, 1465-1468 (1900)
 32. Compt. rend. 130, 1620-1622 (1900)
                                                          (1927)
 33. Compt. rend. 132, 688-690 (1901)
                                                  Fowler and Hartree,
 34. Compt. rend. 133, 157-159 (1901)
                                                    1. Proc. Roy. Soc. (London) A111, 83 (1926)
                                                   Fowler and Hartog,
 35. Compt. rend. 133, 223-226 (1901)
                                                   1. J. Chem. Soc. 79, 299-301 (1901)
 36. Compt. rend. 133, 368 (1901)
                                                  Fowler and Selwyn,
 37. Compt. rend. 133, 513-515 (1901)
 38. Compt. rend. 133, 1304-1306 (1902)
                                                   1. Proc. Roy. Soc. (London) A118, 34-51 (1928)
 39. Compt. rend. 134, 708-711 (1902)
                                                    2. Proc. Roy. Soc. (London) A120, 312-326
 40. Compt. rend. 134, 1426-1429 (1902)
                                                   Fox,
 41. Compt. rend. 134, 1544 (1902)
 42. Compt. rend. 135, 36-39 (1902)
                                                    1. Trans. Faraday Soc. 5, 68-87 (1909)
 43. Compt. rend. 140, 990-992 (1905)
                                                   Foxton and Shutt,
 44. Compt. rend. 142, 1252-1255 (1906)
                                                    1. Trans. Faraday Soc. 23, 480-488 (1927)
                                                  Fraenkel and Snipischski,
 45. Compt. rend. 143, 98-99 (1906)
 46. Compt. rend. 144, 1402-1404 (1907)47. Compt. rend. 145, 702-705 (1907)
                                                    1. Z. anorg. allgem. Chem. 125, 235-251 (1922)
                                                   Franck,
  48. Compt. rend. 146, 217-220 (1908)
                                                    1. Z. Physik 11, 155-160 (1922)
                                                    2. Z. Physik. Chem. 120, 144-156 (1926)
  49. Compt. rend. 146, 511-515 (1908)
                                                  Franck and Bodea,
  50. Compt. rend. 146, 802-806 (1908)
                                                    1. Z. angew. Chem. 44, 382 (1931)
  51. Compt. rend. 147, 165-169 (1908)
                                                  Franck and Heimann,
  52. Compt. rend. 149, 97-100 (1909)
                                                    1. Z. Elektrochem. 33, 469-475 (1927)
  53. Compt. rend. 149, 719-721 (1909)
                                                  Franck and Hochwald,
  54. Compt. rend. 149, 825-829 (1909)
                                                    1. Z. Elektrochem. 31, 581-589 (1925)
  55. Compt. rend. 149, 1341-1344 (1909)
                                                   Franck, Knipping, and Kruger,
  56. Compt. rend. 150, 1399-1402 (1910)
  57. Compt. rend. 152, 27-31 (1911)
                                                    1. Ber. deut. physik. Ges. 21, 728-732 (1919)
                                                   Franck, Kuhn, and Rollefson,
  58. Compt. rend. 152, 1073-1077 (1911)
                                                    1. Z. Physik 43, 155-163 (1927)
  59. Compt. rend. 152, 1208-1211 (1911)
                                                   Frankland,
  60. Compt. rend. 152, 1556-1559 (1911)
                                                    1. Phil. Mag. 32, 182-199 (1866)
  61. Compt. rend. 156, 1439-1443 (1913)
                                                   Franklin and Kraus,
  62. Compt. rend. 156, 1809-1813 (1913)
                                                    1. Am. Chem. J. 21, 8-14 (1899)
  63. Compt. rend. 157, 441-444 (1913)
                                                   Freas, Johnston, and Kline,
  64. Compt. rend. 158, 20-23 (1914)
                                                    1. J. Am. Chem. Soc. 51, 2082-2093 (1929)
  65. Compt. rend. 158, 843-846 (1914)
  66. Compt. rend 158, 991-994 (1914)
                                                   Fredenhagen,
                                                    1. Z. physik. Chem. A201, 210-224 (1933)
  67. Compt. rend. 160, 467-470 (1915)
  68. Compt. rend. 176, 355-358 (1923)
                                                   Fredenhagen and Krefft,
  69. Compt. rend. 176, 873-876 (1923)
                                                    1. Z. physik. Chem. A141, 221-222 (1929)
  70. Compt. rend. 181, 15-17 (1925)
                                                   Frederichson,
  71. Compt. rend. 182, 609-612 (1926)
                                                    1. Phys. Rev. 31, 1130 (1928)
  71a. Compt. rend. 182, 1191-1194 (1926)
                                                   Frederichson and Watson,
  72. J. chim. phys. 15, 517-540 (1907)
                                                    1. Phys. Rev. 30, 429-437 (1927)
de Forcrand and Fonzes-Diacon,
                                                   Freeman,
  1. Ann. chim. phys. (7) 26, 247-271 (1902)
                                                    1. Proc. Roy. Soc. (London) A121, 318-343
  2. Compt. rend. 134, 229-231 (1902)
                                                          (1928)
de Forcrand and Massol,
                                                   Freeth and Verschoyle,
  1. Compt. rend. 134, 743-747 (1902)
                                                    1. Proc. Roy. Soc. (London) A130, 453-463
de Forcrand and Taboury,
                                                          (1931)
  1. Compt. rend. 169, 162-165 (1919)
                                                   Freeze,
                                                    1. Chem. Ztg. 44, 294 (1920)
```

Frings,

1. Z. wiss. Phot. 15, 165-182 (1915)

1. Proc. Roy. Soc. (London) A110, 476-501

(1926)

#### Frerichs.

- 1. Phys. Rev. 34, 1239-1246 (1929)
- 2. Phys. Rev. 36, 398-409 (1930)
- 3. Z. Physik 80, 150-160 (1933)

## Fresno.

- 1. Z. anorg. allgem. Chem. 170, 222-224 (1928) Fricke and Havestadt,
- 1. Z. Elektrochem. 33, 441-455 (1927) Fried,
- 1. Z. physik. Chem. 123, 406-428 (1926) Friedel and Crafts.
- 1. Compt. rend. 106, 1764-1770 (1887) Friedrich.
- 1. Metall u. Erz 11, 167 (1914)

#### Friedrich.

- 1. Stahl u. Eisen 31, 1909-1917 (1911) Fries,
  - 1. U. S. Dept. Agr. Bur. Animal Ind. Bull. 94,
  - 2. U. S. Dept. Agr. Bur. Animal Bull. 124, (1910)

### Frost,

- 1. Dissertation, Univ. California (1923)
- Frost and Bichowsky,
  - 1. Unpublished

#### Frowein,

- 1. Z. physik. Chem. 1, 5-14 (1887)
- 2. Z. physik. Chem. 1, 362-364 (1887) Fruth.
- 1. Phys. Rev. 31, 614-628 (1928)

Füchtbauer and Holm,

- 1. Phys. Z. 26, 345-349 (1925)
- Fues,

## 1. Ann. Physik 63, 1-27 (1920) Fukuda,

- 1. Sci. Papers Inst. Phys. Chem. Research (Tokyo) 15, 227-245 (1931)
- Fujioka and Nakamura,
- 1. Astrophys. J. 65, 210 (1927)
- Furnas and Brown,
  - 1. Ind. Eng. Chem. 20, 507-510 (1928)

### ۱ AIN,

- G^{AIN},
  1. Ann. chim. phys. (8) 14, 224-288 (1908)
- 1. Phys. Rev. 21, 711 (1923)
- Gale and Monk.
- 1. Astrophys. J. 59, 125 (1924)

## Galitzine,

1. Ann. Physik (3) 41, 588-626 (1890)

#### Galt and others,

1. Brit. Assoc. Advancement Sci. 69, 246-249

- 1. Gazz. chim. ital, 28 II, 253-261 (1898) Garner and Abernethy,
- 1. Proc. Roy. Soc. (London) A99, 213-235 (1921)
- Garner, Madden, and Rushbrooke,
- 1. J. Chem. Soc. 2491-2502 (1926)

## Garner and McKie,

1. J. Chem. Soc. 2451-2457 (1927)

- Garner and Rushbrooke,
- 1. J. Chem. Soc. 1351-1358 (1927)
- Garran,
- 1. Trans. Faraday Soc. 24, 201-207 (1928) Garrick.
- 1. Trans. Faraday Soc. 23, 560-563 (1927) Gartlein,
  - 1. Phys. Rev. 31, 782 (1928)
- 2. Phys. Rev. 32, 320 (1928)

### Gaudechon.

- 1. Ann. chim. phys. (8) 22, 145-247 (1911)
- 2. Compt. rend. 144, 1419-1422 (1907)
- 3. Compt. rend. 145, 1421-1425 (1907) Gautier.
  - Compt. rend. 128, 939-941 (1899)
- 2. Dissertation, Paris (1888)

## Gaviola.

- 1. Nature 122, 313-314 (1928) Gay,
- 1. Dissertation, Paris (1895)
- Gebhart, Dissertation, Erlangen (1903), see Kroner²
- Genvresse.
- 1. Bull. soc. chim. (3) 9, 219-227 (1893) Gerke,
- 1. J. Am. Chem. Soc. 44, 1684-1704 (1922) Gerke and Geddes,
- 1. J. Phys. Chem. 31, 886-889 (1927) Gerke and Rourke,
- 1. J. Am. Chem. Soc. 49, 1855-58 (1927) Germann and McIntyre,
- 1. J. Phys. Chem. 29, 102-105 (1925) Germann and Taylor,
- 1. J. Am. Chem. Soc. 48, 1154-1159 (1926) Gero,
- 1. Z. Physik 95, 747 (1935) Gerth,
- 1. Z. Elektrochem. 27, 287-292 (1921) Getman,
  - 1. J. Am. Chem. Soc. 39, 1806-1816 (1917)
  - 2. J. Am. Chem. Soc. 40, 611-619 (1918)
- 3. J. Phys. Chem. 32, 91-102 (1928) Getman and Gibbons,
- 1. Am. Chem. J. 48, 124-138 (1912)
- Ghosh.
- 1. Z. Physik 78, 521-526 (1932)
- Ghosh, Malanti, and Mukkerjee,
- 1. Phys. Rev. 35, 1491-1494 (1930) Giauque,
  - 1. J. Am. Chem. Soc. 52, 4816-4831 (1930)
- 2. J. Am. Chem. Soc. 53, 507-514 (1931) Giauque and Johnston,
- 1. J. Am. Chem. Soc. 51, 2300-2321 (1929)
- Giauque and Overstreet. 1. J. Am. Chem. Soc. 54, 1731-1744 (1932)
- Giauque and Wiebe,
- 1. J. Am. Chem. Soc. 50, 101-122 (1928)
- 2. J. Am. Chem. Soc. 50, 2193-2202 (1928)
- 3. J. Am. Chem. Soc. 51, 1441-1449 (1929) Gibbs,
  - 1. Am. J. Sci. (3) 18, 277-293 (1879)
- 2. Am. J. Sci. (3) 18, 371-387 (1879)

Gibbs and Ruedy,

1. Phys. Rev. 40, 204 (1932)

Gibbs and Vieweg,

1. Phys. Rev. 34, 400 (1929)

Gibbs and White.

1. Phys. Rev. 32, 318-319 (1928)

2. Proc. Natl. Acad. Sci. 14, 345-348 (1928) Gibson,

1. Dissertation, Breslau (1911)

2. J. Phys. Chem. 32, 1197-1205 (1928)

3. Storrs School Agr. Expt. Station Bull. 6, 182 (1890)

Gibson and Heitler,

1. Z. Physik 49, 465-472 (1928)

Gibson, Parks, and Latimer,

1. J. Am. Chem. Soc. 42, 1542-1550 (1920) Gibson and Ramsperger,

1. Phys. Rev. 30, 598-607 (1927) Geiseler,

1. Z. Physik 42, 265-275 (1927)

Gieseler and Grotrian,

1. Z. Physik 34, 374-388 (1925)

2. Z. Physik 39, 377-390 (1926)

Gilbert and Levi,

1. J. Chem. Soc. 527-535 (1929) Gillespie,

1. J. Am. Chem. Soc. 47, 305-312 (1925)

2. J. Am. Chem. Soc. 48, 28-33 (1926)

3. J. Math. and Phys. Mass. Inst. Tech. 4, 84-96 (1925)

4. Proc. Natl. Acad. Sci. 11, 73-74 (1925) Gillespie and Ambrose,

1. J. Phys. Chem. 35, 3105-3110 (1931) Gillespie and Beattie,

1. J. Am. Chem Soc. 52, 4239-4246 (1930)

2. Phys. Rev. 36, 1008-1013 (1930)

3. Phys. Rev. 37, 655 (1931)

Gillespie and Hall,

1. J. Am. Chem. Soc. 48, 1207-1219 (1926) Gillespie, Lambert, and Gibson,

1. J. Am. Chem. Soc. 52, 3806-3813 (1930) Gillespie and Laurie,

1. J. Am. Chem. Soc. 53, 2978-2983 (1931)

Gilmour, 1. J. Soc. Chem. Ind. 41, 293-294 (1922)

Gilroy, Phys. Rev. 38, 2217-2233 (1931)

1. Dissertation, Braunschweig; "Landolt-Börnstein Physikalisch Chemische Tabellen," Fifth Edition, Springer, Berlin (1923)

Giordani and Mattias,

1. Rend. accad. sci. fis. Napoli (7) (4a) 35, (1929)

Giran,

1. Ann. chim. phys. (7) 30, 203-288 (1903)

2. Ann. chim. phys. (8) 14, 565-574 (1908)

3. Bull. soc. chim. 13, 1049-1053 (1913)

4. Compt. rend. 134, 711-717 (1902)

5. Compt. rend. 139, 1219-1221 (1904)

6. Compt. rend. 140, 1704-1707 (1906)

7. Compt. rend. 146, 1270-1272 (1908)

Girardet,

1. Bull. soc. chim. 7, 1028-1034 (1910)

1. Ann. chim. 4, 183-221 (1925)

2. Ann. chim. 4, 370-409 (1925)

3. Compt. rend. 174, 1700-1703 (1922)

Gjaldbaek,

1. Z. anorg. allgem. Chem. 144, 269-288 (1924) Glaser,

1. Metallurgie 1, 103-108 (1904)

2. Metallurgie 1, 121-128 (1904)

3. Z. anorg. allgem. Chem. 36, 1-35 (1903) Glasstone,

1. J. Chem. Soc. 121, 1456-1469 (1922) Glockler,

1. J. Am. Chem. Soc. 48, 2021-2026 (1926)

Gnesotta and Fabris, 1. Atti ist. Veneto 70 II, 471 (1911)

Golblum and Stoffella, 1. J. chim. phys. 8, 135-188 (1910)

Goldschmidt.

1. Ber. 52, 753-761 (1919)

2. Z. Physik 20, 159-165 (1923)

Goldschmidt and Maarseveen,

1. Z. physik. Chem. 25, 91-99 (1898) Goodwin and Kalmus,

1. Phys. Rev. 28, 1-24 (1909)

Gottlieb.

1. J. prakt. Chem. (2) 28, 385-421 (1883) Gosselin and Gosselin,

1. Compt. rend. 187, 1050-1052 (1928) Goubeu,

1. Compt. rend. 158, 121-122 (1914) Graham,

1. Ann. chim. phys. (3) 13, 188 (1845)

2. Phil. Mag. 22, 329 (1843)

3. Phil. Mag. 24, 401 (1844)

Granger,

1. Ann. chim. phys. (8) 64, 5-90 (1878) Grassi,

1. J. pharm. chim. 8, 170 (1845)

2. J. prakt. Chem. 36, 193 (1845)

Grau and Roth.

Z. anorg. allgem. Chem. 188, 173-185 (1930)

2. Z. anorg. allgem. Chem. 188, 186-199 (1930) Grau and Russ,

1. Z. Elektrochem. 13, 573-578 (1907)

Green and Loring,

1. Phys. Rev. 30, 574-591 (1927)

2. Phys. Rev. 31, 707 (1928)

Greensfelder and Latimer,

1. J. Am. Chem. Soc. 50, 3286-3290 (1928) Greenwood.

1. Engineering 92, 419 (1911)

2. Proc. Roy. Soc. (London) A82, 396-408 (1909)

3. Proc. Roy. Soc. (London) A83, 433-491 (1910)

4. Trans. Faraday Soc. 7, 145-157 (1911)

5. Z. Elektrochem. 18, 319-326 (1912)

6. Z. physik. Chem. 76, 484-490 (1911) Gremmer,

1. Z. Physik 59, 154-167 (1929)

#### Greulich,

- Z. anorg. allgem. Chem. 168, 197-202 (1927)
   Griffiths.
- 1. Proc. Roy. Soc. (London) A89, 573 (1914)
- Trans. Roy. Soc. (London) A186, 261-341 (1895)

## Grignard and Muret,

1. Compt. rend. 183, 581-585 (1926)

## Grimm,

- "Handbuch der Physik," vol. xxiv, pp. 466-598, Springer, Berlin (1927)
- 2. Z. Elektrochem. 31, 474-480 (1925)

#### Griveau,

1. Compt. rend. 166, 993-996 (1918)

#### Groningen,

1. Dissertation, Delft (1921)

#### Gross,

1. Monatsh. 48, 243-250 (1927)

#### Gruener.

- 1. Z. anorg. allgem. Chem. 56, 145-152 (1907)
- 1. Z. anorg. allgem. Chem. 80, 337-396 (1913) Grunberg and Faermann,
- 1. Z. anorg. allgem. Chem. 193, 193-236 (1930) Gruneisen,
  - Ber. deut. physik. Ges. 14, 322-334 (1912)
     Grunmach.
  - 1 Sitzber kgl. preuss. Akad. Wiss. 1198-1202 (1904)

#### Guillemard,

- 1. Ann. chim. phys. (8) 14, 311-432 (1908) Guinchant,
  - 1. Ann. chim. 10, 30-84 (1918)
  - 2. Compt. rend. 121, 354-357 (1895)
  - 3. Compt. rend. 122, 943-945 (1896)
  - 4. Compt. rend. 145, 68-70 (1907)
  - 5. Compt. rend. 145, 320-327 (1907)

## Guinchant and Chretien,

- 1. Compt. rend. 139, 51-54, 288-289 (1904) Gunther,
  - 1. Z. Elektrochem. 23, 197-199 (1917)

## Gunther and Wekua,

- Z. physik. Chem. A154, 193-206 (1931)
   Guntz,
- 1. Ann. chim. phys. (6) 3, 5-66 (1884)
- 2. Ann. chim. phys. (6) 13, 388-411 (1888)
- 3. Ann. chim. phys. (8) 4, 5-25 (1905)
- 4. Bull. soc. chim. 13, 114-115 (1895)
- 5. Compt. rend. 96, 1659-1661 (1883)
- 6. Compt. rend. 98, 300-303 (1884)
- 7. Compt. rend. 98, 303-514 (1884)
- 8. Compt. rend. 101, 161-164 (1885)
- 9. Compt. rend. 105, 673-679 (1887)
- 10. Compt. rend. 110, 1337-1339 (1889)
- 11. Compt. rend. 112, 1212-1215 (1891)
- 12. Compt. rend. 122, 465-467 (1896)
- 13. Compt. rend. 123, 694-696 (1896)
- 14. Compt. rend. 123, 995-997 (1896)
- 15. Compt. rend. 124, 1866-1868 (1898)
- Compt. rend. 136, 1071-1072 (1903)

- Guntz and Basset,
  - 1. Compt. rend. 140, 863-864 (1905)
  - 2. J. chim. phys. 4, 1-9 (1906)

## Guntz and Benoit,

- 1. Ann. chim. 20, 5-33 (1923)
- 2. Compt. rend. 176, 219-220 (1923)
- Guntz and Gunz,
  - 1. Ann. chim. 2, 101-132 (1914)
- Compt. rend. 157, 977-981 (1913)
   Guntz and Martin,
- Bull. soc. chim. 5, 1004-1011 (1909)
   Guntz and Raederer,
- 1. Compt. rend. 142, 400-401 (1906) Guthrie and Libman,
- 1. J. Am. Chem. Soc. 51, 1711-1715 (1929) Gutmann,
- 1. Ann. 299, 267-286 (1898)

## Gustavson,

- J. Russ. Phys. Chem. Soc. 51, 96 (1906)
   Guye and Drouginine,
  - 1. J. chim. phys. 8, 473-514 (1910)

# H ABER,

- "Thermodynamik technischer Gasreaktionen," p. 89, Oldenbourg, München (1905)
- 2. Z. angew. Chem. 27, 473-477 (1914)
- 3. Z. Elektrochem. 16, 244-246 (1910)
- 4. Z. Elektrochem. 20, 597-604 (1914)
- 5. Z. physik. Chem. 68, 726-752 (1910)

## Haber and Fleischman,

- Z. anorg. allgem. Chem. 51, 336-347 (1906)
   Haber and Greenwood,
- 1. Z. Elektrochem. 21, 241-245 (1915)
- Haber and Kerschbaum,
  1. Z. Elektrochem. 20, 296-305 (1914)
  Haber and Koenig.
  - 1. Z. Elektrochem. 13, 725-743 (1907)
- 2. Z. Elektrochem. 14, 689-695 (1908)

## Haber and Maschke,

- 1. Z. Elektrochem. 21, 128-130 (1915) Haber and Moser,
- 1. Z. Elektrochem. 11, 593-609 (1905)
- Haber and van Oordt,
  - Z. anorg. allgem. Chem. 43, 111-115 (1905)
  - Z. anorg. allgem. Chem. 44, 341-398 (1905)
     Z. anorg. allgem. Chem. 47, 42-44 (1905)
- Haber and Richardt,
  1. Z. anorg. allgem. Chem. 38, 5-64 (1904)
  Haber and Rossignol,
  - 1. Ber. 40, 2144-2154 (1907)
  - 2. Z. Elektrochem. 14, 181-196 (1908)
  - 3. Z. Elektrochem. 14, 513-514 (1908)
  - 4. Z. Elektrochem. 14, 688 (1908)

## Haber and Tamaru,

- Z. Elektrochem. 21, 191-206 (1915)
   Haber, Tamaru, and Oeholm,
- 1. Z. Elektrochem. 21, 206-228 (1915)
- Haber, Tamaru, and Ponnaz,
- 1. Z. Elektrochem. 21, 89-106 (1915)

## Haber and Zisch,

1. Z. Physik 9, 302-326 (1922)

#### Hablutzel,

- 1. Dissertation, Stanford Univ. (1926) Hackspill,
- 1. Compt. rend. 154, 877-880 (1912)

#### Hackspill and Grandadam,

1. Ann. chim. 5, 218-250 (1926)

#### Haehnel

- 1. J. prakt. Chem. 108, 61-74 (1924)
- 2. J. prakt. Chem. 108, 187-193 (1924) Hagen,
- 1. Ann. Physik 16, 610-618 (1882)

## Hagen and Sieverts,

- Z. anorg. allgem. Chem. 185, 254-266 (1929)
   Hagenback and Luthy,
- 1. Naturwissenschaften 12, 1183-1186 (1924) Haggerty and Weiler,
- 1. J. Am. Chem. Soc. 51, 1623-1626 (1929) Hahn,
- 1. Z. physik. Chem. 44, 513-547 (1903)
- 2. Z. physik. Chem. 48, 735-738 (1904) Haigh,
- 1. J. Am. Chem. Soc. 34, 1137-1159 (1912) Halla,
- 1. Z. anorg. allgem. Chem. 180, 83-88 (1929)
- 2. Z. Elektrochem. 14, 411-414 (1908) Halferdahl,
- 1. Mining and Met. 8, 468 (1927)

## Hammerl,

- 1. Compt. rend. 89, 97-98 (1879)
- 2. Compt. rend. 90, 312-313 (1880)
- 3. J. Phys. Chem. 72, II, 11-12 (1875)

#### Hammerschmid and Lange,

- Z. physik. Chem. A160, 445-465 (1932)
   Hammisk,
- 1. Phil. Mag. 44, 590-594 (1922)

## Hannay,

- 1. Proc. Roy. Soc. (London) 33, 294-321 (1882) Hansen and Thorsen,
  - "International Critical Tables," vol. V, pp. 392-407, McGraw-Hill Book Co., New York (1929)

## Hantke,

- 1. Z. angew. Chem. 39, 1065-1071 (1926) Hantzsch,
  - 1. Ber. 58, 941-961 (1925)
- 2. Z. physik. Chem. 61, 257-312 (1907) Hara and Shinozaki,
- 1. J. Soc. Chem. Ind. Japan 26, 884 (1923)
  - 1. Phil. Mag. 48, 412-421 (1924)

## Harman and Worley,

- 1. Trans. Faraday Soc. 20, 502-508 (1925) Harned,
- J. Am. Chem. Soc. 42, 1808-1809 (1920)
   Harned and Brumbaugh,
- J. Am. Chem. Soc. 44, 2729-2748 (1922)
   Harrison.
- J. Optical Soc. Am. 17, 389-416 (1928)
   Harrison and Engwicht
- 1. J. Optical Soc. Am. 18, 287-301 (1929) Harrison and Perman,
  - 1. Trans. Faraday Soc. 23, 1-22 (1927)

#### Harteck,

- 1. Z. physik. Chem. A134, 1-20 (1928)
- 2. Z. physik. Chem. A134, 21-25 (1928)
- Hartley and Campbell,
- 1. J. Chem. Soc. 93, 741-745 (1908) Hartman.
  - 1. Dissertation, Delft (1925)

## Hartman and Schneider,

- 1. Z. anorg. allgem. Chem. 180, 275-283 (1929) Hartog,
- 1. Compt. rend. 104, 1793-1796 (1887)
- Harvey and Schuette, 1. J. Am. Chem. Soc. 48, 2065-2068 (1926)
- Haslam,
- 1. Ind. Eng. Chem. 16, 782-784 (1924) Haslam and Forrest,
- 1. Gas Age Record 52, 615-618 (1923) Hautefeuille and Perrey,
- 1. Compt. rend. 99, 33-35 (1884) Hedvall,
- 1. Z. anorg. allgem. Chem. 98, 47-69 (1916) Heike,
- 1. Z. anorg. allgem. Chem. 118, 254 (1921) Heike and Leroux,
- 1. Z. anorg. allgem. Chem. 92, 119-126 (1915) Heinerth,
- 1. Z. Elektrochem. 37, 61-76 (1931)

## Heitler and Herzberg,

- 1. Z. Physik 53, 52-56 (1929)
- Hempel and Schubert,
  - 1. Z. Elektrochem. 18, 729-730 (1912)

## Henderson and Stegeman,

- 1. J. Am. Chem. Soc. 40, 84-89 (1918) Henglein.
- 1. Z. anorg. allgem. Chem. 123, 137-165 (1922)
- 2. Z. Physik 12, 245-252 (1923)
- 3. Z. Physik 18, 64-69 (1923)
- 4. Z. physik. Chem. 98, 1-13 (1921)

## Henglein and Kruger,

- 1. Z. anorg, allgem. Chem. 130, 181-187 (1923) Henglein, Rosenberg, and Muchlinski,
  - 1. Z. Physik 11, 1-11 (1922)

## Henning,

- 1. Ann. Physik 21, 849-878 (1906)
- 2. Ann. Physik 29, 441-465 (1909)
- 3. Ann. Physik 43, 282-294 (1914)
- 4. Ann. Physik 58, 759-760 (1919)
- 5 Z. physik. Chem. 97, 467-477 (1921) Henning and Stock,
- 1. Z. Physik 4, 226-240 (1921)
- Henri,
- Compt. rend. 190, 179-181 (1930)
   Nature 125, 275 (1930)
- "Structures des Molecules," Hermann, Paris, (1925)

## Henri and Teves,

- Compt. rend. 179, 1156-1159 (1924)
   Henri and Wolff,
- 1. J. phys. radium 10, 81-106 (1929) Hepburn,
- 1. Phys. Rev. 29, 212 (1927)

## Herbst,

- 1. Physik. Z. 27, 366-371 (1926)
- 2. Z. tech. Physik 7, 467-468 (1926)

#### Herschkowitsch.

- 1. Z. anorg. allgem. Chem. 115, 159-167 (1921)
- 2. Z. physik. Chem. 27, 123-166 (1898)

## Herta,

- 1. Ann. Physik 17, 193-200 (1882) Herz,
  - 1. Z. Elektrochem. 25, 323-324 (1919)
- 2. Z. anorg. allgem. Chem. 170, 237-240 (1928) Herz and Lorentz.
- 1. Z. physik. Chem. A140, 406-422 (1929) Herz and Rathmann,
- 1. Chem. Ztg. 36, 1417-1418 (1913)

## Herzberg.

- 1. Nature 122, 505-506 (1928)
- 2. Z. Physik 52, 815-845 (1929)
- 3. Z. physik. Chem. B4, 223-226 (1929)
- Herzberg and Sponer,
- 1. Z. physik. Chem. B26, 1-7 (1934) Herzfeld,
- 1. Z. Elektrochem. 31, 357-358 (1925) Hess,
  - 1. Ann. chim. phys. (2) 75, 88 (1840)
  - 2. Ann. chim. phys. (2) 75, 101 (1840)
  - 3. Ann. chim. phys. (3) 4, 374 (1842)
  - 4. Ann. chim. phys. (4) 4, 309 (1865)
  - 5. Ann. Physik 50, 3884 (1840)
  - 6. Ann. Physik 52, 97-113 (1841)
  - 7. Ann. Physik 53, 499-513 (1841)
  - 8. Ann. Physik 53, 535-548 (1841)
  - 9. Ann. Physik 56, 463-478 (1842)
  - 10. Ann. Physik 56, 593-603 (1842)
  - 11. Bull. acad. sci. Russ. Classe phys. math. 9, 81-85 (1851)

### van Heteren,

- 1. Z. anorg. allgem. Chem. 42, 129-173 (1904) Heumann and Kocklin,
  - 1, Ber. 16, 602 (1883)

### Heusler.

- 1. Z. anorg. allgem. Chem. 154, 353-374 (1926) Hevesy,
- 1. Z. physik. Chem. 73, 667-684 (1910) Heycock and Lamplough,
- 1. Proc. Chem. Soc. (London) 28, 3-4 (1912) Heycock and Neville.
  - 1. J. Chem. Soc. 61, 888-914 (1892)
- 2. J. Chem. Soc. 71, 383-422 (1897)

### Heydweiller,

1. Ann. Physik 28, 503-512 (1909)

## Hibbert and Fuller,

- J Am. Chem. Soc. 35, 978-989 (1913) Hightower and White,
- 1. Ind. Eng. Chem. 20, 10-15 (1928) Higley.
- 1. J. Am. Chem. Soc. 26, 613-632 (1904) Hildebrand.
  - 1. J. Am. Chem. Soc. 34, 246-258 (1912)
- 2. J. Am. Chem. Soc. 40, 45-49 (1918) Hildebrand, Foster, and Beebe,
  - 1. J. Am. Chem. Soc. 42, 545-548 (1920)

#### Hill,

- 1. Phys. Rev 20, 259-266 (1922)
- Hill and Bacon,
- 1. J. Am. Chem. Soc. 49, 2487-2495 (1927)
- 1. J. Am. Chem. Soc. 52, 3869-3877 (1930)
- Hincke and Brantley,
- 1. J. Am. Chem. Soc. 52, 48-52 (1930) Hirn.
  - 1. Compt. rend. 70, 592-604 (1870)
- 2. Compt. rend. 70, 831-834 (1870) Hirobe,
- 1. J. Faculty Sci. Imp. Univ. Tokyo, Section I (4) 155-222 (1926)

#### Hirsch.

- 1. Trans. Electrochem. Soc. 20, 57-102 (1911) Hittorf.
- 1. Ann. Physik (5) 126, 193-228 (1865)

#### Hoeflake and Scheffer,

- 1. Rec. trav. chim. 45, 191-200 (1926)
- van't Hoff, Kenrick, and Dawson,
  - 1. Z. physik. Chem. 39, 27-60 (1902)
- van't Hoff, Armstrong, Hinrichsen, Weigert, and
  - 1. Z. physik. Chem. 45, 257-306 (1903)

## Hofman and Wanjukow,

1. Trans. Am. Inst. Mining Met. Eng. 43, 523-577 (1912)

#### Hogness and Harkness,

- 1. Phys. Rev. 32, 936-941 (1928)
- Hogness and Kvalnes,
- 1. Phys. Rev. 32, 942-945 (1928)

## Hogness and Lunn,

1. Phys. Rev. 27, 732-738 (1926)

## Holborn, Scheel, and Henning,

1. "Wärmetabellen," Vieweg, Braunschweig (1919)

## Holland,

1. Z. Elektrochem. 18, 234-236 (1913)

## Hollman.

1. Z. physik. Chem. 37, 193-213 (1901)

## Holluta and Werner,

1. Z. physik. Chem. 129, 262-284 (1927)

## Holsboer,

- 1. Z. physik. Chem. 39, 691-710 (1902) Holst,
  - 1. Bull. Inst. intern. froid 6, 48-59 (1915)
  - 2. Communication Phys. Lab. Univ. Leiden No. 140 (1914)
  - 3. Communication Phys. Lab. Univ. Leiden No. 144B, 11-63 (1913)
- 4. Proc. Acad. Sci. Amsterdam 18, 829-839 (1916) Holst and Hamburger,
  - 1. Verhandl. Akad. Wetenschappen Amsterdam 24, 798 (1915)
  - 2. Z. physik. Chem. 91, 513-547 (1916)

- 1. Z. anorg. allgem. Chem. 209, 241-248 (1932) Homfray,
  - 1. Z. physik. Chem. 74, 129-201 (1910)

Honda and Ishigaki.

1. Sci. Repts. Tôhoku Imp. Univ. 14, 219-235

## Hopfield,

- 1. Astrophys. J. 59, 114-124 (1924)
- 2. Nature 112, 437-438 (1923)
- 3. Phys. Rev. 26, 282 (1925)
- 4. Phys. Rev. 27, -701 (1926)
- 5. Phys. Rev. 37, 160-166 (1931)

## Hopfield and Birge,

Phys. Rev. 29, 922 (1927)

## Hopfield and Leifson,

1. Phys. Rev. 25, 716 (1925)

## Hoppel,

Physik. Z. 8, 204-209 (1907)

#### Horek,

1. Dissertation, Berlin (1909)

## Hori,

- 1. Rept. Japanese Nitrogen Fixation Inst. No. 10, 29 (1926)
- 2. Sci. Papers Inst. Phys. Chem. Research (Tokyo) 4, 48, 59-78 (1925)
- 3. Z. Physik 44, 834-854 (1927)
- 4. Z. Physik 59, 91-101 (1929)
- 5. Z. Physik 61, 481-489 (1930)
- 6. Z. Physik 71, 478-531 (1931)

#### Horiba,

- 1. Proc. Acad. Sci. Amsterdam 25, 387-394 (1923)
- 2. Z. physik. Chem. 106, 295-302 (1923)

## Horiba and Baba,

- 1. Bull. Chem. Soc. Japan 3, 11-17 (1928) Horiba and Inouve.
- 1. Sexagint, Y. Osake, Chem. Inst. Dept. Sci. Kyoto Imp. Univ. 279-287 (1927)

## Horn,

1. Am. Chem. J. 37, 619-628 (1907) Horstmann,

- 1. Ber. 2, 137-140 (1869)
- 2. Ber. 2, 299-302 (1869)
- 3. Ber. 9A, 749-758 (1876)

## Horton and Davies,

- 1. Proc. Roy Soc. (London) A97, 23 (1920) Hückel.
- 1. Ann. 451, 117-132 (1926)

## Hückel and Friedrich,

1. Ann. 451, 132-160 (1927)

1. J. Chem. Soc. 127, 1332-1347 (1925)

Hughes and Dixon, 1. Phys. Rev. 10, 495-514 (1917)

## Hughes and Klein,

1. Phys. Rev. 23, 340-463 (1924)

- 1. Trans. Electrochem. Soc. 15, 435-439 (1909) Hullner and Tammann,
- 1. Z. anorg. allgem. Chem. 43, 224 (1905) Hulthen.
- 1. Arkiv. Mat. Astron. Fysik B21, No. 5 (1929) Humphreys, de Bruin, and Meggers,
  - 1. Bur. Standards J. Research 6, 287-293 (1931)

#### Hund,

- 1. Z. Physik 32, 1-18 (1925)
- 2. Z. Physik 51, 759-795 (1928)

## 1. J. Phys. Chem. 10, 330-360 (1906)

- 2. Trans. Faraday Soc. 22, 194-206 (1926)
- Hutchisson.
  - 1. J. Am. Chem. Soc. 50, 1895-1900 (1928)

## Hüttig.

- 1. Z. anorg. allgem. Chem. 123, 31-42 (1922)
- 2. Z. anorg. allgem. Chem. 124, 322-332 (1922) Hüttig and Brodkarb,
  - 1. Dissertation, Jena (1926)

## Hüttig and Krajewski,

- 1. Z. anorg. allgem. Chem. 141, 133-169 (1924) Hüttig and Kurre,
- 1. Z. anorg. allgem. Chem. 126, 167-175 (1923) Hüttig and Martin,
- 1. Z. anorg. allgem. Chem. 125, 269-280 (1922)
- Hüttig and Pohle, 1. Z. anorg. allgem. Chem. 138, 1-16, (1924)
- Hüttig and Reuscher,
  - Z. anorg, allgem, Chem. 137, 155-180 (1924)

## Hüttig and Schliessmann,

1. Z. anorg. allgem. Chem. 148, 87-92 (1925)

## Hüttig and Slonim,

- 1. Z. anorg. allgem. Chem. 181, 65-77 (1929) Hurter,
- 1. Dinglers Polytech. J. 224, 71-80 (1877)
- Hylleraas.
  - Naturwissenchaften 17, 982-983 (1929)
  - 2. Z. Physik 44, 871-886 (1927)
  - 3. Z. Physik 48, 469-494 (1928) 4. Z. Physik 63, 771-794 (1930)
  - 5. Z. Physik 65, 209-225 (1930)

I. G. FARBENFABRIK,
1. "Landolt-Börnstein Physikalisch Chemische Tabellen," Fifth Edition, Second Supplement, part 2, pp. 163-166, Springer, Berlin (1931)

## Iitaka.

1. Sci. Repts. Tôhoku Imp. Univ. 8, 99-114

## Imanishi.

- 1. Sci. Papers Inst. Phys. Chem. Research (Tokyo) 10, 193-210 (1929)
- 2. Sci. Papers Inst. Phys. Chem. Research (Tokyo) 10, 237-252 (1929)

## Ingold,

1. J. Chem. Soc. 2816-2817 (1926)

# Ingram,

- 1. Phys. Rev. 32, 172-178 (1928)
- 2. Phys. Rcv. 33, 907-913 (1929)

## Ipate'v and Frost,

1. Ber. 63B, 1104 (1930)

## Isambert,

- 1. Ann. chim. phys. (5) 28, 332-349 (1883)
- 2. Compt. rend. 66, 1260-1262 (1868)
- 3. Compt. rend. 70, 456-457 (1870)
- 4. Compt. rend. 86, 332-333 (1878)
- 5. Compt. rend. 86, 968-970 (1878)

## Isambert (Continued)

- 6. Compt. rend. 91, 768-771 (1880)
- 7. Compt. rend. 92, 919-922 (1881)
- 8. Compt. rend. 95, 731-734 (1881)
- 9. Compt. rend. 95, 1355-1358 (1882)
- 10. Compt. rend. 96, 1499-1502 (1883)
- 11. Compt. rend. 100, 355-356 (1885)
- 12. Compt. rend. 102, 1386-1388 (1886)
- 13. Dissertation, Toulouse (1868)

#### Ishikawa,

- 1. Bull. Chem. Soc. Japan 2, 294-299 (1927)
- 2. J. Soc. Chem. Ind. Japan, 43, 560 (1922)
- 3. J. Chem. Soc. Japan, 44, 708.
- Sci. Repts. Tôhoku Imp. Univ. 22, 131-137 (1933)

## Ishikawa and Kimura,

 Sexagint, y. Osaka Chem. Inst. Dept. Sci. Kyoto Imp. Univ. 255-269 (1927)

## Ishikawa and Muroka,

1. Sci. Repts. Tôhoku Imp. Univ. 22, 139-155 (1933)

#### Ishikawa and Shibata,

- 1. Bull. Chem. Soc. Jap. 1, 169-172 (1926) Ishikawa and Yoshida,
- Bull. Inst. Phys. Chem. Research (Tokyo) 9, 87 (1930)

#### Isnardi,

- 1. Ann. Physik 61, 264-272 (1920)
- 2. Z. Elektrochem. 21, 405-417 (1915)

# TACK,

1. Proc. Roy. Soc. (London) 115, 373-390 (1927)

## Jackson and Morgan,

- 1. Ind. Eng. Chem. 13, 110-118 (1921)
- Jacob,
  1. Dissertation, Breslau (1924)

## Jaeger and Rosenbohm,

1. Verhandl. Akad. Wetenschappen Amsterdam 36, 763-778 (1927)

## Jaeger and von Steinwehr,

- 1. Z. physik. Chem. 114, 59-64 (1924)
- 2. Z. physik. Chem. 119, 214-218 (1926)
- 3. Z. physik. Chem. 135, 305-346 (1928)
- Z. anorg. allgem. Chem. 101, 1-214 (1917)
   Jahn,
  - 1. Ann. Physik (3) 28, 491-497 (1886)
  - 2. Ann. Physik (3) 37, 408-443 (1889)
  - 3. Z. anorg. allgem. Chem. 60, 337-357 (1908)
- Z. physik. Chem. 11, 787-793 (1893)
   Jakob,
  - Forsch. Gebiete Ingenieurw. No. 310, 9-19 (1928)

## Jakob and Fritz,

- Z. Ver. deut. Ing. 73, 629-636 (1929)
   Jakowkin,
- Z. physik. Chem. 29, 613-657 (1899)
   Jamin,
  - 1. Compt. rend. 70, 715-717 (1870)
  - 2. Compt. rend. 70, 969-970 (1870)

#### Jander.

- 1. Z. anorg. allgem. Chem. 168, 113-124 (1927) Jannek and Meyer,
- Z. anorg. allgem. Chem. 83, 51-96 (1913)
   Jarolimek,
  - 1. Monatsh. 4, 193-202 (1883)
  - 2. Monatsh. 3, 835-837 (1882)
  - Sitzber. Akad. Wiss. Wien. Math. Naturw. Klasse (II) 86, 989-991 (1882)
  - Sitzber. Akad. Wiss. Wien. Math. Naturw. Klasse (II) 87, 522-531 (1883)

#### Jarry,

- 1. Ann. chim. phys. (7) 17, 327-388 (1899) Jellinek,
- Z. anorg. allgem. Chem. 49, 229-276 (1906)
   Jellinek and Czerwinski,
  - 1. Z. physik. Chem. 102, 438-479 (1922)
- Jellinek, Czerwinski, Wolff, and Tomoff,
- 1. Z. Elektrochem. 31, 542-545 (1925)
- Jellinek and Deubel,
- Z. Elektrochem. 35, 451-457 (1929)
   Jellinek and Diethelm.
- 1. Z. anorg. allgem. Chem. 124, 203-229 (1922) Jellinek and Golubowski,
- 1. Z. physik. Chem. A147, 461-469 (1930) Jellinek and Koop,
- 1. Z. physik. Chem. A145, 305-329 (1929)
- Jellinek and Podjaski,
- 1. Z. anorg. allgem. Chem. 171, 261-270 (1928) Jellinek and Rudat,
- 1. Z. anorg. allgem. Chem. 175, 281-320 (1928)
- 2. Z. physik. Chem. A143, 55-61 (1929)
- 3. Z. physik. Chem. A143, 244-264 (1929) Jellinek and Uloth,
- 1. Z. physik Chem. 119, 161-200 (1926)
- Jellinek and Zakowski,
- 1. Z. anorg. allgem. Chem. 142, 1-53 (1925) Jellinek and Zucker,
- Z. anorg. allgem. Chem. 171, 271-274 (1928)
   Jenckel,
- 1. Z. physik. Chem. A155, 100-108 (1931) Jenkins,
  - 1. Phys. Rev. 31, 539-558 (1928)
  - 2. Phys. Rev. 35, 315-335 (1930)
  - Proc. Roy Soc. (London) A110, 456-463 (1926)

## Jenkins and Pye,

- Phil. Trans. Roy Soc. (London) A213, 67 (1913)
- 2. Phil Trans. Roy. (London) A215, 353 (1915) Jenkins and Shorthose,
  - "International Critical Tables," vol. III, p. 217, McGraw-Hill Book Co., New York (1928)

### Jevons,

 "Report on Band Spectra of Diatomic Molecules," Cambridge Univ. Press, Cambridge (1932)

## Jewett,

1. Phil. Mag. (6) 4, 546-554 (1902)

## Jirsa,

1. Chem. Listy 19, 114 (1925)

Jirsa (Continued)

- 2. Chem. Listy 19, 120, 195, 306, (1925)
- 3. Chem. Listy 19, 191 (1925)
- 4. Z. anorg. allgem. Chem. 158, 33-60 (1926) Jirsa and Diamant,
- 1. Z. physik. Chem. 123, 261-274 (1926) Joannis,
  - 1. Ann. chim. phys. (6) 26, 482-548 (1882)
  - 2. Ann. chim. phys (7) 12, 358-384 (1887)
  - 3. Ann. chim. phys. (8) 7, 5-118 (1906)
- 3a. Compt. rend. 94, 797-800 (1882)
- 4. Compt. rend. 95, 295-297 (1882)
- 5. Compt. rend. 102, 1161-1164 (1886)
- Compt. rend. 112, 337-339 (1891)
- Joannis and Crozier,
- 1. Compt. rend. 118, 1149-1151 (1894) Job,
- 1. Compt. rend. 176, 1805-1808 (1923)
- Johnson,
  - J. Am. Chem. Soc. 33, 777-795 (1911)
  - 2. J. Am. Chem. Soc. 34, 877-880 (1912)
  - 3. Proc. Roy. Soc. (London) A122, 161-200 (1929)
  - 4. Trans. Faraday Soc. 25, 649-668 (1929)
  - 5. Z. physik. Chem. 65, 36-40 (1908)

Johnson and Asundi,

- 1. Proc. Roy Soc. (London) A123, 560-574 (1929)
- 2. Proc. Roy. Soc. (London) A124, 668-688 (1929)

Johnson and Jenkins,

1. Proc. Roy. Soc. (London) A116, 327-351 (1927)

Johnson and McIntosh,

- 1. J. Am. Chem. Soc. 31, 1138-1144 (1909) Johnston.
  - 1. J. Am. Chem. Soc. 30, 1357-1365 (1908)
  - 2. J. Am. Chem. Soc. 32, 938-946 (1910)
  - 3. J. Am. Chem. Soc. 37, 2001-2020 (1915)
  - 4. Z. physik. Chem. 62, 330-358 (1908)
  - 5. Z. physik. Chem. 65, 737-743 (1908)
  - Ind. Eng. Chem. 9, 873-878 (1917)
- Johnston and Adams,
- 1. Am. J. Sci. (4) 31, 501-514 (1911)
- 2. Z. anorg. allgem. Chem. 72, 11-30 (1911)

Johnston, Fenwick, and Leopold,

1. "International Critical Tables," vol. III, p. 204, McGraw-Hill Book Co., New York (1928)

Johnston and Giauque,

- J. Am. Chem. Soc. 51, 3194-3214 (1929) Johnston and Long,
- 1. J. Chem. Physics 2, 389-395, 710 (1934) Jolibois,
  - Compt. rend. 149, 287-289 (1909)
  - 2. Compt. rend. 151, 382-384 (1910)
- 3. Compt. rend. 152, 1767-1769 (1911) Joly,
- 1. Compt. rend. 100, 447-450 (1885)
- 2. Compt. rend. 102, 259-262 (1886)
- 3. Compt. rend. 103, 1197-1199 (1886)
- 4. Compt. rend. 104, 1702-1705 (1887)

- Joly (Continued)
  - 5. Trans. Roy. Soc. (London) 186, 322-323 (1905)
- Jones and Becker,
  - 1. J. Chem. Soc. 2669-2676 (1927)

Jones and Hartmann,

- 1. J. Am. Chem. Soc. 37, 752-775 (1915) Jones and Kaplan,
  - 1. J. Am. Chem. Soc. 50, 1845-1864 (1928)
  - 2. J. Am. Chem. Soc. 50, 2066-2076 (1928)

Jones, Langmuir, and Mackay,

- 1. Phys. Rev. 30, 201-214 (1927)
- Jones and Schumb,
- 1. Proc. Am. Acad. Art. Sci. 56, 199-236 (1921) Jonker.
- 1, Z. anorg. allgem. Chem. 62, 89-107 (1909) Joos,
- 1. Physik. Z. 26, 734-737 (1925)

Joos and Hüttig,

- 1. Z. Elektrochem. 32, 201-204 (1926)
- Jorissen, 1. Chem. Weckblad 9, 415-420 (1912)
- 2. Z. physik. Chem. 74, 308-324 (1910)
- Jorissen and van der Stadt,
- 1. J. prakt. Chem. 51, 102-106 (1895) Jost.
- Z. anorg. allgem. Chem. 57, 414-430 (1908)
- Z. Elektrochem. 14, 373-375 (1908)
- Z. physik. Chem. A153, 143-152 (1931) Jouniaux,
- 1. Compt. rend. 129, 883-886 (1899)
- 2. J. chim. phys. 1, 609-616 (1904) Joyner,
- Z. anorg. allgem. Chem. 77, 103-115 (1912) Jung and Ziegler,
  - 1. Z. physik. Chem. A150, 139-144 (1930)
- 2. Z. physik. Chem. B10, 86-88 (1930)

K^{AHLBAUM},
1. Z. physik. Chem. 13, 14-55 (1894) Kahlenberg.

- J. Phys. Chem. 5, 215-232 (1901)
- Kahlenberg and Koenig,
- 1. J. Phys. Chem. 12, 290-292 (1908) Kailan and Jahn,
- Z. anorg. allgem. Chem. 68, 243-250 (1910)
- Kallman and Rosen,
  - Physik. Z. 30, 772-777 (1929)
- 2. Z. Physik 58, 52 (1929)
- Kameyama,
- 1. J. Faculty Eng. Tokyo Imp. Univ. 10, No. 8, 9, 10

Kameyama and Oka,

- 1. J. Chem. Soc. Japan 30, 317 (1927)
- 2. Proc. Imp. Acad. Japan 3, 161-163 (1927) Kamura,
- 1. Chem. Met. Eng. 24, 437 (1921)
- Kaplan.
  - 1. Phys. Rev. 33, 638 (1929) 2. Phys. Rev. 35, 436 (1930)
  - 3. Phys. Rev. 35, 957-959 (1930)
  - 4. Proc. Natl. Acad. Sci. 15, 226-229 (1929)
  - 5. Phys. Rev. 45, 899 (1934)

Karrer and Fioroni,

1. Ber. 55B, 2854-2863 (1922)

### Karwat,

1. Z. physik. Chem. 112, 486-490 (1924)

# Kasarnowsky,

1. Z. anorg. allgem. Chem. 170, 811-819 (1928)

# 2. Z. Physik 61, 236-238 (1930)

3. Z. physik. Chem. 109, 287-301 (1924)

# Kasarnowsky and Proskurnin,

1. Z. Physik 43, 512-515 (1927)

### Kassel

1. Phys. Rev. 34, 817 (1929)

2. Z. physik. Chem. B2, 264-265 (1929) Kast and Selle.

1. Ber. 59, 1958-1962 (1926)

## Kawakami,

- Sci. Repts. Tôhoku Imp. Univ. 14, 559-569 (1925)
- 2. Z. anorg. allgem. Chem. 167, 345-363 (1927)

Kayser and Runge,

- 1. Ann. Physik (3) 46, 225-243 (1892)
- 2. Ann. Physik (3) 52, 114-118 (1894)

### Keesom,

 Communications Phys. Lab. Univ. Leiden 137, 47-51 (1911)

### Keesom and Houlhoff.

 Communications Phys. Lab. Univ. Leiden Suppl. No. 65

# Keesom and Onnes,

 Communications Phys. Lab. Univ. Leiden No. 153a (1918)

Keesom, Weber, and Norgaard,

 Proc. Acad. Sci. Amsterdam 32, 864-873 (1929)

Keesom, Weber, and Schmidt,

1. Proc. Acad. Sci. Amsterdam 32, 1314-1323 (1911)

### Keffler.

1. J. Phys. Chem. 33, 37-51 (1929)

## Keffler and Guthrie,

1. J. Phys. Chem. 31, 58-68 (1927) Kellev.

- 1. J Am. Chem. Soc. 51, 180-187 (1929)
- 2. J. Am. Chem. Soc. 51, 779-786 (1929)
- 3. J. Am. Chem. Soc. 51, 1145-1150 (1929)
- 4. J. Am. Chem. Soc. 51, 1400-1406 (1929)
- J. Am. Chem. Soc. 51, 2738-2741 (1929)
   Kemble,

1. Phys. Rev. 19, 394-395 (1922)

# Kendall,

- 1. J. Am. Chem. Soc. 38, 1480-1497 (1916)
- . 2. Phil. Mag. (6) 23, 958 (1912)

# Keppeler and d'Ans,

- 1. Z. physik. Chem. 62, 89-118 (1908) Keyes,
  - 1. J. Am. Chem. Soc. 34, 779-788 (1912)

# Keyes and Felsing,

1. J. Am. Chem. Soc. 42, 246-251 (1920)

Keyes, Gillespie, and Mitsukuri,

- 1. J. Am. Chem. Soc. 44, 707-717 (1922) Keyes and Hara,
  - 1. J. Am. Chem. Soc. 44, 479-485 (1922)

Keyes and Kenney,

1. Refrigerating Eng. 3, No. 4, No. 7 (1917) Keyes and Marshall,

1. J. Am. Chem. Soc. 49, 156-173 (1927)

Keyes, Taylor, and Smith,

 J. Math. Phys. Mass. Inst. Tech. 1, 211-242 (1922)

### Kharasch.

- 1. Bur. Standards J. Research 2, 359-430 (1929) Kichlu,
  - 1. Z. Physik 39, 372 (1926)

Kiehl and Hart.

- 1. J. Am. Chem. Soc. 50, 2337-2345 (1928) Kiess,
  - 1. Bur. Standards J. Research 5, 775-779 (1930)
- 2. Bur. Standards J. Research 8, 393-401 (1932) Kiess and de Bruin,
  - Bur. Standards J. Research 2, 1117-1136 (1929)
- Bur. Standards J. Research 4, 667-692 (1930)
   Killian,
- 1. Phys. Rev. 27, 578-587 (1926)

### Kimura,

 Sci. Papers Inst. Phys. Chem. Research (Tokyo) 18, 141-149 (1932)

Kimura and Uchida,

 Sci. Papers. Inst. Phys. Chem. Research (Tokyo) 18, 109-128 (1932)

King and Partington,

1. J. Chem. Soc. 925-929 (1926)

# Kirejew,

1. Z. Elektrochem. 35, 217-220 (1929)

Kirschner,

1. Z. physik. Chem. 79, 245-247 (1912)

Kistiakowsky, Klosdorf, and Taylor,

1. J. Am. Chem. Soc. 49, 2200-2206 (1927) Klein,

1. Z. physik. Chem. 36, 361-371 (1901)

Klemenc and Hayek,

- 1. Monatsh. 53-54, 407-412 (1929)
- 2. Z. anorg. allgem. Chem. 186, 181-224 (1929)

Klemenc and Herzog,

1. Monatsh. 47, 405-413 (1927)

# Klemm,

1. Z. anorg. allgem. Chem. 163, 240-254 (1927)

Klemm and Brautigan,

1. Z. anorg. allgem. Chem. 163, 225-234 (1927)

Klemm and Henkel,

1. Z. anorg. allgem. Chem. 207, 73-86 (1932)

Klemm and Tanke.

1. Z. anorg. allgem. Chem. 200, 343-366 (1931) Klinkhardt,

1. Ann. Physik 84, 167-200 (1927)

Klosky, Woo, and Flanigan,

1. J. Am. Chem. Soc. 49, 1280-1284 (1927)

# Knauss,

1. Phys. Rev. 32, 417-426 (1928)

### Kneser,

1. Ann. Physik 79, 597-609 (1926)

# Knietsch,

 Fifth International Congr. Applied Chem. 1, 672-674 (1903) Knight and Rich,

1. J. Chem. Soc. 99, 87-95 (1911) Knipping,

1. Naturwissenschaften 9, 667 (1921)

2. Z. Physik 7, 328-340 (1921)

Knudsen.

1. Ann. Physik 29, 179-193 (1909)

Kobel and Roth,

1. Biochem. Z. 203, 159-163 (1928)

Koenigsberger,

Naturwissenschaften 14, 779-789 (1926)

Koerber,

1. Ann. Physik 37, 1014-1045 (1912)

Kohlschütter and Feitkneckt,

1. Helv. Chim. Acta. 6, 337-369 (1923) Kohn,

1. Z. Physik 3, 143-156 (1920)

Kohn and Guckel,

1. Naturwissenschaften 12, 139-140 (2924)

2. Z. Physik 27, 305-355 (1924)

Kohnert,

1. Dissertation, Berlin (1914)

Kohnstamm and Cohen.

1. Ann. Physik (3) 65, 344-357 (1899) Kolosovskii,

1. Bull. soc. chim. 41, 422-428 (1927)

2. J. chim. phys. 23, 353-358 (1926)

3. J. chim. phys. 24, 56-61 (1927)

4. J. Russ. Phys. Chem. Soc. 57, 17-21 (1925)

5. J. Russ. Phys. Chem. Soc. 57, 22-26 (1925) Kondratjew,

1. Z. physik. Chem. B7, 70-73 (1930)

Kondratjew and Leipunsky,

1. Z. Physik 44, 708-712 (1927)

Konovalov,

1. J. chim. phys. 23, 359-362 (1926)

2. Z. physik. Chem. 1, 39-45 (1887)

Kopfermann and Schweitzer.

1. Z. Physik 61, 87-94 (1930)

Koppel,

1. Z. anorg. allgem. Chem. 67, 293-301 (1910)

1. Ann. Physik 36, 49-73 (1911)

2. Z. anorg. allgem. Chem. 66, 73-92 (1910)

Korvezee.

1. Rec. trav. chim. 50, 1085-1091 (1931) Kracek.

1. J. Am. Chem. Soc. 52, 1436-1442 (1930)

Krafft and Knocke,

1. Ber. 42, 202-206 (1909)

Krahmer.

1. Z. Electrochem. 226, 97-104 (1920) Krase,

1. J. Phys. Chem. 32, 463-465 (1928)

Krase and Yee,

1. J. Am. Chem. Soc. 46, 1358-1366 (1924) Kratzer.

1. Ann. Physik 71, 72-103 (1923)

2. Z. Physik 23, 298-323 (1924)

Kraus,

1. J. Am. Chem. Soc. 30, 653-668 (1903)

Kraus, Fricke, and Querengasser,

1. Z. anorg. allgem. Chem. 181, 38-54 (1929) Krauss and Gerlach,

1. Z. anorg. allgem. Chem. 140, 61-80 (1924)

Kremers and Stevens,

1. J. Am. Chem. Soc. 45, 614-617 (1923)

Kiess and Kiess,

1. Bur. Standards J. Research 5, 1205-1241 (1930)

2. Bur. Standards J. Research 6, 621-672 (1931) Kroeker.

1. Neues Jahrb. Mineral. Geol. II, 125-138 (1892)

Kroner,

1. Dissertation, Leipzig (1913)

2. Ann. Physik 40, 438-452 (1913)

1. Ann. Physik 64, 288-304 (1921)

2. Phys. Rev. 34, 1123-1131 (1929)

Krummacher.

1. Z. Biol. 46, 302 (1904)

Kuenen,

1. Phil. Mag. 4, 173-194 (1895)

2. Phil. Mag. (5) 44, 174-199 (1897)

Kuenen and Robson,

1. Phil. Mag. (6) 3, 149-158 (1902)

Naturwissenschaften 14, 600-800 (1926)

Kuhn and Arrhenius,

1. Z. Physik 82, 716-722 (1933)

Kurbatoff,

1. Z. physik. Chem. 43, 104-108 (1903)

2. J. Russ. Phys. Chem. Soc. 34, 659 (1902)

L AAR, van
1. Compt. rend. 178, 2250-2252 (1924)

2. "L'hydrogene et les gas nobles," Sijthoff, Leiden (1923)

3. Proc. Acad. Sci. Amsterdam, 18, 1220-1235 (1916)

4. Proc. Acad. Sci. Amsterdam 20, 138-140 (1918)

5. Rec. trav. chim. 39, 371-410 (1920) 6. Rec. trav. chim. 39, 647-655 (1920)

7. Rec. trav. chim. 43, 598-599 (1924)

8. "Tables Annuelles de Constantes et Données Numeriques," vol. VII, part one, p. 196, Gauthier-Villars, Paris, and McGraw-Hill Book Co., New York (1930)

9. Z. anorg. allgem. Chem. 148, 235-255 (1925)

10. Z. physik Chem. 17, 545-549 (1895)

11. Proc. Acad. Sci. Amsterdam 35, 624-635 (1932)

Laby.

1. Phil. Mag. (6) 16, 789-796 (1908)

Ladenburg and Kruegel,

1. Ber. 32, 1818-1822 (1899)

Ladenburg and Minkowski,

1. Z. Physik 6, 153-164 (1921)

Ladenburg and Senftleben,

1. Naturwissenschaften 11, 1013-1014 (1923) Lagerlof,

1. J. prakt. Chem. 69, 513-540 (1904)

### Laksonen,

- 1. Soc. Sci. Fennica Commentationes Phys-Math. 1, No. 12, 1-4 (1921)
- 2. Soc. Sci. Fennica Commentationes Phys.-Math. 1, No. 13 (1921)

### Lamb and Simmons,

- 1. J. Am. Chem. Soc. 43, 2188-2202 (1921) Lande.
  - 1. Z. Physik 2, 380-404 (1920)
  - Z. Physik 4, 410-423 (1921)

- 1. Chem. Met. Eng. 14, 87-90 (1916) Landrieu,
- 1. Compt. rend. 140, 867-870 (1905)
- 2. Compt. rend. 142, 580-582 (1906)

# Landrieu and Baylocq,

- 1. Bull. soc. chim. 45, 217-225 (1929) Landrieu and Blatt,
- 1. Bull. soc. chim. 35, 1424-1436 (1924)

### Lang,

- 1. Phys. Rev. 30, 762-769 (1927)
- 1a. Phys. Rev. 31, 773 (1928)
- 2. Phys. Rev. 32, 732-745 (1928)
- 3. Phys. Rev. 34, 697 (1929)
- 4. Phys. Rev. 35, 445-451 (1930)
- Phys. Rev. 35, 664 (1930)
- 6. Proc. Natl. Acad. Sci. 13, 341-346 (1927)
- 7. Proc. Natl. Acad. Sci. 14, 32-36 (1928) Lang and Sawyer,
- 1. Z. Physik 71, 453-459 (1931)

# Lange,

- 1. Fortschr. Chem. Physik physik. Chem. 19. 1-83 (1928)
- 2. Physik. Z. 29, 760-770 (1928)
- 3. Z. physik. Chem. 116, 337-349 (1925)

### Lange and Dürr.

- 1. Z. physik. Chem. 118, 129-139 (1925)
- Z physik. Chem. 121, 361-384 (1926)

### Lange and Eichler,

Z. physik. Chem. 129, 285-300 (1927)

### Lange and Fuoss,

- Z. physik. Chem. 125, 431-441 (1927) Lange and Leighton,
  - 1. Z. Elektrochem. 34, 566 (1928)
  - 2. See Lange and Robinson¹

# Lange and Messner,

- 1. Naturwissenschaften 15, 521 (1927)
- 2. Z. Elektrochem. 33, 431-440 (1927)

### Lange and Monheim,

- Z. Elektrochem. 35, 29-33 (1929)
- Z. physik. Chem. A150, 349-369 (1930) Lange and Robinson,
- 1. Chem. Rev. 9, 89-116 (1931)
- Z. physik. Chem. A148, 97-111 (1930)
- Lange and Schwartz,
- Z. physik. Chem. A133, 129-150 (1928) Lange and Shibata,
- 1. Z. physik. Chem. A149, 465-471 (1930) Lange and Simon,
- 1. Z. physik. Chem. A134, 374-380 (1928) Lange and Streeck.
  - 1. Z. physik. Chem. A157, 1-31 (1931)

### Langlois,

- Compt. rend. 103, 1009-1010 (1886)
- 1. Gen. Elec. Rev. 29, 153-159 (1926)
- 2. J. Am. Chem. Soc. 28, 1357-1379 (1906)
- 3. J. Am. Chem. Soc. 34, 860-877 (1912)
- 4. J. Am. Chem. Soc. 37, 417-458 (1915)
- 5. Phil. Mag. (6) 27, 188-189 (1914)
- 6. Z. Elektrochem. 23, 217-243 (1917)
- Langmuir and Mackay,

- 1. J. Am. Chem. Soc. 36, 1708-1722 (1914)
- 2. Phys. Rev. 4, 377-386 (1914)
- 3. Z. Elektrochem. 20, 498-505 (1914)

# Langmuir and Kingdon,

- Proc. Roy. Soc. (London) A107, 61-79 (1925) Laporte,
- 1. Proc. Natl. Acad. Sci. 12, 496-503 (1926) Laporte and Young.
- 1. Phys. Rev. 34, 1225-1226 (1929)
- La Rosa,
- 1. Ann. Physik 30, 369-380 (1909)

# Larson.

1. J. Am. Chem. Soc. 46, 367-372 (1924)

# Larson and Dodge,

1. J. Am. Chem. Soc. 45, 2918-2930 (1923)

# Laschtschenko,

- 1. Ann. inst. Polytech. Don Novocerkask 2-II, 8 (1913)
- 2. Ann. inst. Polytech. Don Novocerkask 3, 59 (1914)
- 3. Ann. inst. Polytech. Don Novocerkask 3,-
- 59 (1914) 4. J. Russ. Phys. Chem. Soc. 42, 1604-1614
- (1910)5. J. Russ. Phys. Chem. Soc. 43, 793-803 (1911)
- 6. J. Russ. Phys. Chem. Soc. 46, 311-333 (1914)
- 7. J. Russ. Phys. Chem. Soc. 48, 279 (1916)
- 8. J. Chem. Soc. 121, 972-978 (1922)

# Z. Metallkunde 10, 253-255 (1919)

### Latimer,

- 1. J. Am. Chem. Soc. 44, 90-97 (1922)
- 2. J. Am. Chem. Soc. 48, 1234-1237 (1926) Latimer and Ahlberg,
  - 1. J. Am. Chem. Soc. 52, 549-553 (1930)
- 2. J. Am. Chem. Soc. 54, 1900-1904 (1932)
- Latimer and Greensfelder, 1. J. Am. Chem. Soc. 50, 2202-2213 (1928)
- Lavoisier and Laplace, 1. Mem. Acad. Sci. France 355 (1780)
- Lebeau,
- 1. Ann. chim. phys. (8) 6, 422-432 (1905) 2. Compt. rend. 138, 1496-1498 (1904)
- LeBlanc and Eschmann,
- 1. Z. Elektrochem. 17, 20-34 (1911)

# LeBoucher, Fischer, and Biltz,

- 1. Z. anorg. allgem. Chem. 207, 61-72 (1932) LeChatelier,
- 1. Ann. chim. phys. (6) 27, 566 (1892)
- 2. Bull. soc. chim. 17, 791-792 (1897)
- 3. Compt. rend. 99, 1074-1077 (1884)
- 4. Compt. rend. 100, 50-52, 441-444 (1885)
- 5. Compt. rend. 101, 1005-1008 (1885)
- 6. Compt. rend. 115, 654-656 (1892)

### LeChatelier (Continued)

- 7. Compt. rend. 116, 390-392 (1893)
- 8. Compt. rend. 120, 623-625 (1895)
- 9. Compt. rend. 121, 323-326 (1895)
- 10. Compt. rend. 122, 80-82 (1896)

### Lecher,

1. Sitzber. Akad. Wiss. Wien Math.-naturw. Klasse 78 II, 711-728 (1878)

1. Bull. soc. chim. Belg. 25, 72-85 (1911)

# Lederle,

- 1. Z. physik. Chem. B17, 353-361 (1932)
- Z. physik, Chem. B17, 362-368 (1932)

### Leduc,

1. Compt. rend. 142, 46-48 (1906)

### Lehtonen,

1. Soc. Sci. Fennica Commentationes, Phys.-Math. 1, No. 13, 1-8 (1921)

# Leifson,

1. Astrophys. J. 63, 73-89 (1926)

### Leitner.

1. Arch. Wärmewirt. 9, 233 (1928)

Lemarchand.

## 1. Compt. rend. 179, 41-43 (1924)

Lemoine, 1. Ann. chim. phys. 30, 289-395 (1893)

# 2. Compt. rend. 125, 603-605 (1897)

### Lemoult,

- 1. Ann. chim. phys. (7) 16, 338-432 (1899)
- 2. Ann. chim. phys. (8) 10, 395-432 (1907)
- 3. Ann. chim. phys. (8) 13, 562-574 (1908)
- 4. Ann. chim. phys. (8) 14, 184-190 (1908)
- 5. Ann. Chim. phys. (8) 14, 289-310 (1908)
- 6. Compt. rend. 123, 559-562 (1896)
- 7. Compt. rend. 126, 343-346 (1898)
- 8. Compt. rend. 143, 772-775 (1906)
- 9. Compt. rend. 143, 902-904 (1906)
- 10. Compt. rend. 145, 374-376 (1907)
- 11. Compt. rend. 148, 1602-1604 (1909)
- 12. Compt. rend. 152, 1402-1404 (1911)
- 13. Seventh Intern. Congr. Applied Chem. 10, 75-78 (1909)

### Lennard-Jones,

- 1. Trans. Faraday Soc. 25, 668-686 (1929)
- 2. Proc. Roy. Soc. (London) A109, 584-597 (1925)

# Lennard-Jones and Dent,

- 1. Proc. Roy. Soc. (London) A113, 673-689 (1927)
- 2. Proc. Roy Soc. (London) A113, 690-691 (1927)

# Lennard-Jones and Taylor,

 Proc. Roy. Soc. (London) A109, 476-508 (1925)

# Lerner-Steinberg,

Z. physik. Chem. 122, 121-125 (1926)

### Leroux,

1. Compt. rend. 151, 384-387 (1910)

# Leroy,

- 1. Ann. chim. phys. (7) 21, 87-144 (1900)
- 2. Compt. rend. 130, 508-510 (1900)

### Lescoeur,

- 1. Ann. chim. phys. (6) 16, 378 (1889)
- 2. Ann. chim. phys. (6) 19, 35-67 (1890)
- 3. Ann. chim. phys. (6) 19, 533-556 (1890)
- 4. Ann. chim. phys. (6) 21, 511-565 (1890)
- 5. Ann. chim. phys. (6) 25, 423-433 (1892)
- 6. Ann. chim. phys. (6) 28, 237-256 (1893)
- 7. Ann. chim. phys. (7) 2, 78-117 (1894)
- 8. Ann. chim. phys. (7) 4, 213-234 (1896) Lespieau,
  - 1. Bull. soc. chim. 11, 71-76 (1894)

### Levalt-Ezerschkii,

- 1. J. Russ. Phys. Chem. Soc. 44, 665-678 (1912) Levin,
  - 1. "Nernst Festschrift," pp. 252-257, Knapp, Halle (1912)

### Lewis,

- 1. J. Am. Chem. Soc. 28, 158-171 (1906)
- 2. J. Am. Chem. Soc. 28, 1380-1395 (1906)
- 3. J. Am. Chem. Soc. 46, 2027-2032 (1924)
- 4. Z. physik. Chem. 55, 449-476 (1906)

# Lewis and Adams.

- 1. J. Am. Chem. Soc. 37, 2308-2316 (1915) Lewis and Brighton.
- 1. J. Am. Chem. Soc. 39, 1906-1912 (1917) Lewis and Keyes.
  - 1. J. Am. Chem. Soc. 34, 119-122 (1912)
- 2. J. Am. Chem. Soc. 35, 340-344 (1913)

# Lewis and Kraus,

- 1. J. Am. Chem. Soc. 32, 1459-1468 (1910) Lewis and Lacey,
- 1. J. Am. Chem. Soc. 37, 1976-1983 (1915) Lewis and Randall,
  - 1. J. Am. Chem. Soc. 33, 476-488 (1911)
  - 2. J. Am. Chem. Soc. 36, 1969-1993 (1914)
- 3. J. Am. Chem. Soc. 37, 458-470 (1915)
- 4. J. Am. Chem. Soc. 43, 233-254 (1921)
- 5. "Thermodynamics and the Free Energy of Chemical Substances," McGraw-Hill Book Co., New York (1923)

## van Liempt,

- 1. Z. anorg. allgem. Chem. 111, 280-288 (1920)
- 2. Z. anorg. allgem. Chem. 114, 105-116 (1920)
- 3. Z. anorg. allgem. Chem. 120, 267-276 (1922)
- 4. Z. anorg. allgem. Chem. 129, 263-264 (1923) Lindner,
- 1. Monatsh. 33, 613-672 (1912)
- 2. Sitzber. Akad. Wiss. Wien Math.-naturw. Klasse (IIB) 121, 261-318 (1912) Linderstrom-Lang,
- 1. Compt. rend. trav. lab. Carlsberg 15, No. 4, (1924)

### Linebarger.

- 1. Z. physik. Chem. 13, 500-538 (1894) Linhart,
- 1. J. Am. Chem. Soc. 40, 158-163 (1918) Lipsett, Johnson, and Maass,
  - 1. J. Am. Chem. Soc. 49, 925-943 (1927)
  - 2. J. Am. Chem. Soc. 49, 1940-1949 (1927)
- 3. J. Am. Chem. Soc. 50, 2701-2703 (1928) Lipski,
  - 1. Z. Elektrochem. 15, 189-206 (1909)

Littleton.

- 1. Chem. News 74, 289-290 (1896) Livingood,
- Phys. Rev. 34, 185-198 (1929) Lloyd,
- 1. J. Phys. Chem. 12, 398-403 (1908)
- Lloyd, Brown, Bonnell, and Jones, J. Chem. Soc. 658-666 (1928)
- Lochte, Holtgreven, and Bawn.
- 1. Trans. Faraday Soc. 28, 698-704 (1932) Loomis,
- 1. Phys. Rev. 31, 323-332 (1928)
- Loomis and Nusbaum,
  - 1. Phys. Rev. 37, 1712 (1931)
- 2. Phys. Rev. 39, 89-98 (1932)
- 3. Phys. Rev. 40, 380-386 (1932) Loomis and Walters,
- 1. J. Am. Chem. Soc. 48, 2051-2055 (1926) Loomis and Wood.
- Phys. Rev. 32, 223-236 (1928)
- Lorenz and Fox,
- 1. Z. physik. Chem. 63, 122-125 (1908)

Lorenz and Hering,

- 1. Z. anorg. allgem. Chem. 177, 1-12 (1928)
- 2. Z. anorg allgem. Chem. 178, 337-345 (1929) Lorenz and Katayama,
- Z. physik. Chem. 62, 119-128 (1908) Lorenz and Schulz,
- 1. Z. anorg. allgem. Chem. 170, 247-256 (1928) Lorenz and Winzer,
- 1. Z. anorg. allgem. Chem. 181, 193-202 (1929) Louguinine.
  - 1. Ann. chim. phys. (5) 17, 229-268 (1879)
  - 2. Ann. chim. phys. (5) 558-562 (1880)
  - 3. Ann. chim. phys. (5) 21, 139-144 (1880)
  - 4. Ann. chim. phys. (5) 23, 384-389 (1881)
  - 5. Ann. chim. phys. (5) 25, 140-144 (1882)
  - 6. Ann. chim. phys. (6) 8, 128-144 (1886)
- 7. Ann. chim. phys. (6) 11, 220-234 (1887)
- 8. Ann. chim. phys. (6) 18, 378-404 (1889)
- 9. Ann. chim. phys. (6) 23, 179-231 (1891)
- 10. Ann. chim. phys. (7) 7, 251-282 (1896)
- 11. Ann. chim. phys. (7) 13, 334-377 (1898)
- 13. Ann. chim. phys. (7) 26, 228-247 (1902)
- 14. Compt. rend. 91, 297-300 (1880)
- 15. Compt. rend. 91, 329-330 (1880)
- 16. Compt. rend. 93, 274-276 (1881)
- 17. Compt. rend. 98, 94-97 (1884)
- 18. Compt. rend. 100, 63-66 (1885)
- 19. Compt. rend. 101, 1061-1064 (1885) 20. Compt. rend. 101, 1154-1156 (1885)
- 21. Compt. rend. 106, 1289-1291 (1888)
- 22. Compt. rend. 106, 1472-1473 (1888)
- 23. Compt. rend. 107, 597-600 (1888)
- 24. Compt. rend. 107, 624-626 (1888)
- 25. Compt. rend. 108, 620-622 (1889)
- Lowenstein, 1. Z. physik. Chem. 56, 513 (1906)
- Lozier,
  - 1. Phys. Rev. 44, 575 (1933)
  - 2. Phys. Rev. 45, 752 (1934)
  - 3. Phys. Rev. 45, 840 (1934)

Ludlam.

- 1. Trans. Faraday Soc. 21, 610-612 (1925) Lumwer,
  - 1. "Verflussigung der Kohle und Herstellung der Sonnentemperatur," Vieweg, Braunschweig (1914)

Lunden,

- 1. J. chim. phys. 6, 681-698 (1908) Lunge and Marmier,
- 1. Z. angew. Chem. 10, 105-115 (1897) Luther and Sammet,
- Z. Elektrochem. 11, 293-295 (1905) Lyman,
  - 1. Nature 114, 641-642 (1924)

- M AASS and Hatcher, 1. J. Am. Chem. Soc. 42, 2548-2570 (1920) Maass and Hiebert,
- 1. J. Am. Chem. Soc. 46, 2693-2700 (1924) Maass and Maass,
- 1. J. Am. Chem. Soc. 50, 1352-1368 (1929) Maass and McIntosh,
  - 1. J. Am. Chem. Soc. 36, 737-742 (1914)
- 2. Trans. Roy. Soc. Can. IV. 65-73 (1914) Maass and Waldbauer.
- 1. J. Am. Chem. Soc. 47, 1-9 (1925) Maass and Wright,
- 1. J. Am. Chem. Soc. 43, 1098-1111 (1921) McAmis and Felsing,
- 1. J. Am. Chem. Soc. 47, 2633-2637 (1925) McCoy and Smith,
- 1. J. Am. Chem. Soc. 33, 468-476 (1911) McCrae and Wilson,
- Z. anorg. allgem. Chem. 35, 11-15 (1903) McDavid,
- 1. J. Chem. Soc. (Trans.) 41, 246 (1922) McHaffie,
- 1. J. Chem. Soc. 112-116 (1927) MacInnes and Braham,
- 1. J. Am. Chem. Soc. 39, 2110-2126 (1917) McIntosh,
- 1. J. Phys. Chem. 11, 306-317 (1907)
- J. Phys. Chem. 12, 167-170 (1928) McIntosh and Steele,
- 1. Proc. Roy. Soc. (London) 73, 450-456 (1904) Mack, Laporte, and Lang,
- 1. Phys. Rev. 31, 747 (1928)
- Mack, Osterhof, and Kraner,
- 1. J. Am. Chem. Soc. 45, 617-623 (1923) Mackay,
  - 1. Phil. Mag. 46, 828-835 (1923)
- 2. Phys. Rev. 24, 319-329 (1924)
- McKelvy and Taylor,
- 1. Bur. Standards Bull. 18, 655-693 (1923) McKinley and Pearce,
- Proc. Iowa Acad. Sci. 34, 216 (1927) McLauchlan.
- 1. Z. physik. Chem. 44, 600-633 (1903) McLennan and Crawford,
- 1. Nature 124, 874 (1929)

McLennan and McLay.

- 1. Trans. Roy. Soc. Can. 21, 63-77 (1927)
- 2. Trans. Roy. Soc. Can. 22, 1-13 (1928)

McLennan, McLay, and Crawford,

- Proc. Roy. Soc. (London) A125, 570-578 (1929)
- Proc. Roy. Soc. (London) A129, 579-588 (1930)

McLennan, McLay, and Smith,

- 1. Proc. Roy. Soc. (London) A112, 76-94 (1926) McLennan, Young, and McLay,
  - Trans. Roy. Acad. Sci. Can. (III) 18, 77-88 (1924)

McMorris and Badger.

- 1. J. Am. Chem. Soc. 55, 1952-1957 (1933) McMorris and Yost,
- 1. J. Am. Chem. Soc. 54, 2247-2256 (1932)
- McRae and Van Voorhis,
  1. J. Am. Chem. Soc. 43, 547-553 (1921)
- Maeda,
- Bull. Inst. Phys. Chem. Research Tokyo 2, 350 (1923)

Magie,

1. Phys. Rev. 35, 265-271 (1912)

Magnus and Braner,

- 1. Z. anorg. allgem. Chem. 151, 140-152 (1926) Magnus and Hodler,
- 1. Ann. Physik 80, 808-822 (1926)

Magnus and Mannheimer,

- 1. Z. physik. Chem. 121, 267-288 (1926) Magnus and Oppenheimer,
- 1. Z. anorg. allgem. Chem. 168, 305-308 (1928) Magmusson,
- 1. J. Phys. Chem. 11, 21-46 (1907) Maier,
  - 1. Bur. Mines Tech. Paper No. 360 (1925)
  - 1a. Bur. Mines Circ. No. 2926 (1929)
  - 2. Dissertation, Prague, (1927)
- 3. J. Am. Chem. Soc. 48, 356-364 (1926)
- 4. J. Am. Chem. Soc. 51, 194-207 (1929)
- J. Am. Chem. Soc. 52, 2159-2170 (1930)
   Maier, Parks, and Anderson,
- J. Am. Chem. Soc. 48, 2564-2576 (1926)
   Maier and Ralston,
- 1. J. Am. Chem. Soc. 48, 364-374 (1926) Majumdar,
- 1. Indian J. Phys. 2, 257-266 (1928) Malbot,
- Ann. chim. phys. (6) 18, 404-409 (1889)
   Mallard and LeChatelier.
- Compt. rend. 97, 102-105 (1883)
   Malquori,
- 1. Atti accad. Lincei (6) 7, 249-251 (1928) Manchot,
- 1. Z. anorg. allgem. Chem. 120, 300-308 (1922)
- 2. Z. anorg. allgem. Chem. 140, 22-36 (1924) Manchot and Loren,
- 1. Z. anorg. allgem. Chem. 134, 297-316 (1924) Mannheimer,
- 1. Z. physik. chem. Unterricht 37, 45-47 (1924) Marc and Simek,
- Z. anorg. allgem. Chem. 82, 17-19 (1913)
   Marchal,
  - 1. Bull. soc. chim. 39, 401-408 (1926)
  - 2. Compt. rend. 175, 270-272 (1922)
  - 3. Compt. rend. 176, 299-301 (1923)

- Marchal (Continued)
  - 4. J. chim. phys. 22, 325-348 (1925)
  - 5. J. chim. phys. 22, 413-431, 493-517 (1925)
- 6. J. chim. phys. 23, 38-60 (1926) Marchwald and Helmholz.
- 1. Z. anorg. allgem. Chem. 124, 81-104 (1922) Marignac,
- 1. Arch. neerland sci. 42, 209 (1871)
- 2. Arch. sci. phys. nat. 33, 170-198 (1868) Marketos,
- 1. Compt. rend. 155, 210-213 (1912)
  - 1. Phil. Mag. (5) 43, 27-32 (1897)

Marshall and Bramston-Cook,

- 1. J. Am. Chem. Soc. 51, 2019-2029 (1929) Marshall and Bruzs,
- 1. J. Phys. Chem. 29, 1184-1186 (1925) Marshall and Ramsay,
- 1. Phil. Mag. (5) 41, 38-52 (1896) Martin,
- 1. Phys. Rev. 41, 167-193 (1932)
- Martin and Metz,
- Z. anorg. allgem. Chem. 127, 83-100 (1923)
   Massol,
  - 1. Ann. chim. phys. (7) 1, 145-227 (1894)
- 2. Compt. rend. 134, 653-655 (1902) Matheson and Maass.
- 1. J. Am. Chem. Soc. 51, 674-687 (1929) Mathews.
  - 1. J. Am. Chem. Soc. 33, 1291-1309 (1911)
  - 2. J. Am. Chem. Soc. 48, 562-576 (1926)
  - 3. J. Phys. Chem. 21, 536-569 (1917)
- Mathews and German, 1. J. Phys. Chem. 15, 73-82 (1911)
- 1. J. Phys. Chem. 15, 73-82 (1911) Mathias,
- 1. Ann. chim. phys. 21, 69-144 (1890)
- 2. Compt. rend. 106, 1146-1149 (1888)
- Mathias, Crommelin, and Onnes,
  - Ann. Physik 19, 239-247 (1923)
     Compt. rend. 174, 1395-1397 (1922)
  - 3. Compt. rend. 174, 1395-1397 (192)
  - 4. Compt. rend. 176, 939-940 (1923)
  - Communications Phys. Lab. Univ. Leiden No.A152, 1377 (1924)

Mathias, Onnes, and Crommelin,

 Proc. Acad. Sci. Amsterdam 17, 953-959 (1915)

### Matignon,

- 1. Ann. chim. phys. (6) 28, 70-125 (1893)
- 2. Ann. chim. phys. (6) 28, 289-394 (1893)
- 3. Ann. chim. phys. (6) 28, 498-528 (1893)
- 4. Ann. chim. phys. (8) 8, 242-283 (1906)
- 5. Ann. chim. phys. (8) 8, 402-426 (1906)
- 6. Ann. chim. phys. (8) 8, 426-433 (1906)
- 7. Ann. chim. phys. (8) 8, 433-440 (1906)
- 8. Ann. chim. phys. (8) 10, 104-118 (1907)
- 9. Ann. chim. phys. (8) 14, 5-125 (1908)
- 10. Bull. soc. chim. 13, 791-793 (1913)
- 11. Bull. soc. chim. 35, 29-31 (1924)
- 12. Chem. Ztg. 29, 986-987 (1905)
- 13. Chem. Ztg. 38, 894-895 (1914)
- 14. Compt. rend. 110, 1267-1270 (1891)
- 15. Compt. rend. 113, 198-200 (1891)

### Matignon (Continued)

- Compt. rend. 124, 1026-1028 (1897)
- 17. Compt. rend. 141, 53-55 (1905)
- 18. Compt. rend. 154, 772-775 (1912)
- 19. Compt. rend. 154, 1351-1353 (1912)

### Matignon and Delepine,

- 1. Ann. chim. phys. (8) 10, 130-144 (1907) Matignon and Deligny,
- 1. Compt. rend. 121, 422-424 (1895)
- 2. Compt. rend. 125, 1103-1105 (1897)

### Matignon and Frejacques,

- 1. Bull. soc. chim. 31, 307-316, 394-412 (1922) Matignon and Marchal,
  - 1. Bull. soc. chim. 27, 254-257 (1920)
  - 2. Bull. soc. chim. 39, 167-190 (1926)
- 3. Compt. rend. 170, 232 (1920)
- 4. Compt. rend. 181, 859-861 (1925)
- 5. Compt. rend. 183, 927-929 (1926)

### Matignon and Meyer,

1. Compt. rend. 166, 686-688 (1918)

## Matignon and Trannoy,

- Ann. chim. phys. (8) 8, 284-288 (1906)
- 1. Z. anorg. allgem. Chem. 124, 39-55 (1922)
- Matsui, Fukushima, and Nakada,
- 1. J. Soc. Chem. Ind. Japan 30, 330 (1927) Matsui and Nakata,
  - 1. J. Soc. Chem. Ind. Japan 28, 740 (1925)
- 2. J. Soc. Chem. Ind. Japan Suppl. 32, 79 (1929) Matsui, Nanai, and Fukushima,
- 1. J. Soc. Chem. Ind. Japan 29, 162 (1926) Matthies,
- 1. Physik. Z. 7, 395-397 (1906)
- Maurer,
- 1. Z. anorg. allgem. Chem. 108, 273-302 (1919) Maxwell and Haves.
- 1. J. Am. Chem. Soc. 48, 584-593 (1926)
- 1. Ann. Physik 45, 1-28 (1914)
- 2. J. Chem. Physics 1, 327-334 (1933)
- 3. Z. Physik 61, 798-804 (1930)
- 4. Z. physik. Chem. 113, 220-234 (1924) Mayer and Jacoby,
- 1. Gas u. Wasserfach 52, 282-286 (1909)

# Mayes and Partington,

1. J. Chem. Soc. 2594-2605 (1926)

### Mazotto,

- 1. Atti accad. sci. Torino Classe sci. fis. mat. nat. 17, 132 (1881)
- 2. Mem. Inst. Classe Sci. Mat. Natur. (3) 7, 11 (1891)
- 3. Mem. Inst. Lombardo 16, 1-29 (1886) Mecke.
- 1. Nature 125, 526-527 (1930)
- 2. Naturwissenschaften 14, 881-882 (1926)
- 3. Z. Physik 32, 823-834 (1925)
- 4. Z. Physik 42, 390-425 (1927)
- 5. Z. physik. Chem. B7, 108-129 (1930) Mecke and Guillery,
- 1. Physik. Z. 28, 479-492 (1927)

### Mees.

1. Dissertation, Utrecht (1916)

- Meggers and de Bruin,
- Bur. Standards J. Research 3, 765-781 (1929) Meggers, deBruin, and Humphreys,
  - 1. Bur. Standards J. Research 3, 129-162 (1929)
- 2. Bur. Standards J. Research 3, 731-763 (1929) Meggers and Kiess,
- 1. J. Optical Soc. Am. 12, 417-447 (1926)

# Meggers and Laporte,

1. Phys. Rev. 28, 642 (1926)

- Meggers and Russell,
- 1 Bur. Standards J. Research 2, 733-769 (1929) Meier and Meyerhof,
- 1. Biochem. Z, 150, 233-242 (1924)

### Meissner,

1. Z. Physik 40, 839-875 (1927)

### Melcher,

1. J. Am. Chem. Soc. 32, 50-66 (1910) Mellor.

1. "A Comprehensive Treatise on Inorganic and Theoretical Chemistry," Longmans-Green, London (1922)

# Mensching and Meyer.

1. Ber. 20, 1883 (1887)

### Menzies.

- 1. "International Critical Tables," vol. III, p. 202, McGraw-Hill Book Co., New York (1928)
- 2. J. Am. Chem. Soc. 41, 1783-1787 (1919)
- 3. J. Am. Chem. Soc. 42, 1951-1956 (1920)
- 3a. Proc. Natl. Acad. Sci. 5, 558-562 (1919)
- 4. Proc. Roy. Soc. (London) 122, 134-143 (1929)
- 5. Z. physik. Chem. 130, 90-94 (1927)

## Metzner, 1. Ann. chim. phys. (7) 15, 203-288 (1898)

- 2. Compt. rend. 123, 998-1000 (1896) van der Meulen,
- 1. Rec. trav. chim. 2, 69-90 (1883)

Meuthen,

## 1. Ferrum 10, 1-21 (1912)

- Meyer,
  - 1. Compt. rend. 148, 346-348 (1909) 1a. Compt. rend. 133, 817 (1901)
- 2. Dissertation, München (1908)
- 3. See Randall²

### Meyer and Altmayer.

- 1. Ber. 40, 2134-2144 (1907)
- 2. Gas u. Wasserfach 52, 326-328 (1909)

### Meyer and Biltz,

1. Ber. 22, 725-727 (1889)

### Meyer and Henseling,

1. Gas u. Wasserfach 52, 166-171 (1909)

# Meyer and Rutgers,

1. Z. anorg. allgem. Chem. 57, 104-112 (1908)

Meyer and Schaffer,

1. Rec. trav. chim. 46, 754-762 (1927)

Meyers and Van Dusen,

- 1. Refrigerating Eng. 13, 180-185 (1926) Meyerhof,
  - 1. Arch. ges. Physiol. (Pflügers) 195, 23-74 (1922)
  - 2. Biochem. Z. 129, 594-604 (1922)

### Meilens and Wartenberg,

1. Z. anorg. allgem. Chem. 116, 267-268 (1921)

### Milen,

- 1. J. Phys. Chem. 33, 498-508 (1929) Millar,
  - 1. Ind. Eng. Chem. 17, 34-35 (1925)
  - 2. J. Am. Chem. Soc. 49, 3003-3010 (1927)
  - 3. J. Am. Chem. Soc. 50, 1875-1883 (1928)
  - 4. J. Am. Chem. Soc. 50, 2653-2656 (1928)
  - 5. J. Am. Chem. Soc. 51, 207-214 (1929)
- 6. J. Am. Chem. Soc. 51, 215-222 (1929)
- Millar and Sullivan, 1. Bur. Mines Tech. Paper No. 424 (1928)
- Miller and Laporte, 1. See Bacher and Goudsmit1
- Miller and Terrey,
- 1. J. Chem. Soc. 605-610 (1927)
- Millikan and Bowen,
  - 1. Phys. Rev. 25, 600-605 (1925)

  - 2. Phil. Mag. 4, 561-580 (1927)
- 3. Proc. Natl. Acad. Sci. 13, 531-535 (1927)
- 1. J. Am. Chem. Soc. 31, 1099-1130 (1909)
- 1. J. Chem. Soc. 123, 1055-1069 (1923)
- Mitscherlich.
  - 1. Ann. Physik 29, 193-231 (1833)
  - 2. Ann. Physik (2) 88, 328-331 (1852)
- 3. Sitzber. preuss. Akad. Wiss. 425 (1833) Mitsukuri.
- 1. Bull. Chem. Soc. Japan No. 1, 30-34 (1926) Mitsukuri and Aoki,
  - 1. Sci. Repts. Tôhoku Imp. Univ. 15, 61-71 (1926)

### Mitsukuri and Hara,

- 1. Proc. Imp. Acad. Japan 5, 27-29 (1929)
- 2. Sci. Repts. Tôhoku Imp. Univ. 15, 205-208 (1926)

# Mittasch,

- 1. Z. anorg. allgem. Chem. 41, 827-833 (1928) Mittasch, Kuss, and Schueter,
- 1. Z. anorg. allgem. Chem. 159, 1-36 (1926) Mixter,
  - 1. Am. J. Sci. (4) 12, 347-357 (1901)
  - 2. Am. J. Sci. (4) 16, 214-228 (1903)
  - 3. Am. J. Sci. (4) 19, 434-444 (1905)
  - 4. Am. J. Sci. (4) 22, 13-18 (1906)
  - 5. Am. J. Sci. (4) 24, 130-140 (1907)
  - 6. Am. J. Sci. (4) 26, 125-137 (1908)
  - 7. Am. J. Sci. (4) 27, 229-234 (1909)
  - 8. Am. J. Sci. (4) 27, 393-397 (1909)
  - 9. Am. J. Sci. (4) 28, 103-111 (1909)
  - 10. Am. J. Sci. (4) 29, 488-496 (1910)
  - 11. Am. J. Sci. (4) 30, 193-201 (1910)

  - 12. Am. J. Sci. (4) 32, 202-206 (1911)
  - 13. Am. J. Sci. (4) 33, 45-48 (1912) 14. Am. J. Sci. (4) 34, 141-156 (1912)
- 15. Am. J. Sci. (4) 36, 55-69 (1913)
- 16. Am. J. Sci. (4) 39, 295-299 (1915)
- 17. Am. J. Sci. (4) 40, 23-32 (1915) Moers.
- 1. Z. anorg. allgem. Chem. 113, 179-228 (1920) Mohler and Foote.
  - 1. Bur. Standards Bull. 16, 669-700 (1920)
  - 2. Phys. Rev. 15, 555-556 (1920)

### Moissan,

- 1. Bull. soc. chim. 21, 928-931 (1899)
- 2. Compt. rend. 128, 384-387 (1899)
- 3. "Le four Electrique," p. 159, ----, Paris, (1897)
- Moldenhauer,
- 1. Z. anorg. allgem. Chem. 51, 369-390 (1906) Moldenhauer and Roll-Hansen,
- 1. Z. anorg. allgem. Chem. 82, 130-140 (1913) Moles,
- 1. Z. physik. Chem. 90, 70-88 (1915)
- Moles and Crespi.
  - 1. Z. physik. Chem. 100, 337-345 (1922)

### Moles and Payá,

- 1. Anales soc. españ. fís. quím. 20, 563-570 (1922)
- Moles and Gomez,
- 1. Z. physik. Chem. 80, 513-530 (1912)

### Moles and Gonzales,

1. Anales. Soc. españ. fís. quím. 21, 204-212 (1923)

# Mollier,

- 1. Z. Kälte-Ind. 2, 66-70, 85-91 (1895)
- Mond, Ramsay, and Shields,
  - 1. Trans. Roy. Soc. (London) A191, 105-126 (1898)
- 2. Z. physik. Chem. 25, 657-685 (1898) Mondain-Monval,
  - 1. Bull. soc. chim. 39, 1349-1368 (1926)
  - 2. Compt. rend. 176, 301-304 (1923)
- 3. Compt. rend. 176, 889-892 (1923)
- 4. Compt. rend. 182, 58-60 (1926)
- 5. Compt. rend. 182, 1465-1468 (1926)
- Mooney and Ludlum,
- 1. Proc. Roy. Soc. Edinburgh 49, 160-169 (1929) Moore and Winmill,
- 1. J. Chem. Soc. 101, 1635-1676 (1912)
- Moose and Parr,
- 1. J. Am. Chem. Soc. 46, 2656-2661 (1924) Morgan and Benson,
- 1. J. Am. Chem. Soc. 29, 1168-1175 (1907) Morgan, Carter, and Harrison,
- 1. J. Chem. Soc. 127, 1917-1925 (1925)
- Morgan and Owen,
- 1. J. Am. Chem. Soc. 29, 1439-1442 (1907) Morgen and Hildebrand,
- 1. J. Am. Chem. Soc. 48, 911-918 (1926)
- Morges.
- 1. Compt. rend. 86, 1443-1446 (1878) Morley,
- 1. Z. anal. Chem. 49, 100 (1904) Morris.
- 1. Phys. Rev. 32, 456-458 (1928)
- Mortimer and Pearce,
- 1. J. Phys. Chem. 21, 275-293 (1917)
- Moser and Herzner,
- 1. Monatsh. 44, 115-122 (1923)
- Mosnier,
- 1. Ann. chim. phys. (7) 12, 374-426 (1897) Mott,
- 1. Trans. Electrochem. Soc. 34, 255-295 (1918) Moureu and Andre.
- 1. Ann. chim. (9) 1, 113-144 (1914)

Moureu and Bongrand,

1. Compt. rend. 170, 1025-1028 (1920)

Moureu and Boutaric,

1. J. chim. phys. 18, 348-352 (1920) Moureu, Boutaric, and Dufraisse,

1. J. chim. phys. 18, 333-347 (1921) Moutier,

1. Compt. rend. 79, 1242-1245 (1874)

Mrozowski, 1. Nature 125, 528-529 (1930)

2. Z. Physik 62, 314-330 (1930)

Mukherji,

1. Z. Physik 70, 552-558 (1931)

Mulder and van der Meulen,

1. Rec. trav. chim. 1, 65-67 (1882)

2. Rec. trav. chim. 1, 73-90 (1882)

Müller, Muller and Fauvel, 1. Z. Elektrochem. 33, 134-144 (1927)

Müller-Erzbach,

1. Ber. 19, 2874-2879 (1886)

2. Ber. 20, 1628 (1887)

3. Z. physik. Chem. 17, 446-458 (1895)

4. Z. physik. Chem. 19, 135-154 (1896)

5. Z. physik. Chem. 21, 545-555 (1896) Mulert,

1. Z. anorg. allgem. Chem. 75, 198-240 (1912) Mullenhoff,

1. Ber. 18, 1365-1367 (1885)

Muller.

1. Ann. chim. phys. (6) 15, 517-533 (1888)

2. Ann. chim. phys. (7) 20, 377-384 (1900)

3. Ann. chim. phys. (8) 9, 263-271 (1906)

4. Ann. chim. phys. (8) 20, 116-130 (1910)

5. "Biltz Festschrift," —, Hannover (1927)

6. Bull. soc. chim. 44, 608-611 (1885)

7. Bull. soc. chim. 13, 1053-1056 (1913)

8. Bull. soc. chim. 15, 491-494 (1914)

9. Bull. soc. chim. 15, 494-497 (1914)

10. Bull. soc. chim. 23, 8-13 (1918)

11. Z. physik. Chem. 86, 177-242 (1914)

12. Z. physik. Chem. 112, 161-166 (1924)

13. Z. physik. Chem. 123, 1-27 (1926)

Muller and Meyers,

1. Am. Soc. Refrigerating Eng. J., 7, 419-425 (1921)

Mulliken,

1. Nature 122, 842-843 (1928)

2. Phys. Rev. 30, 785-811 (1927)

3. Phys. Rev. 32, 186-222 (1928)

4. Phys. Rev. 32, 761-772 (1928)

5. Phys. Rev. 33, 730-747 (1929)

6. Rev. Modern Phys. 4, 1-86 (1932)

1. Z. Elektrochem. 27, 367-368 (1921)

Mund,

1. Bull. Acad. Roy. Soc. Belg. 529-542 (1919) Mundel,

1. Z. physik. Chem. 85, 435-465 (1913)

Muraka.

1. Sci. Papers Inst. Phys. Chem. Research, Tokyo 15, 41-67 (1930)

2. Z. Physik 69, 507 (1931)

Musceleanu,

1. Bull. acad. Roumaine 1, 145-175 (1913)

2. J. Chem. Soc. 104, 382 (1913)

Muthmann and Beck,

1. Ann. 331, 46-63 (1904)

Muthmann and Weiss,

1. Ann. 331, 1-46 (1904)

Muthmann, Weiss, and Riedebauch,

1. Ann. 355, 58-99 (1907)

N ACKEN, 1. Zement. 11, 245-247, 257-268 (1922)

Nakamura,

Z. physik. Chem. B3, 80-82 (1929)

Narayan and Rao,

1. Z. Physik 45, 350-363 (1927)

1. Z. Elektrochem. 33, 532-534 (1927)

2. Z. physik. Chem. A135, 209-236 (1928)

Naumann,

1. Ber. 2, 345-348 (1869)

2. Dissertation, Berlin (1907)

3. Liebig Ann. chim. 5, 341-367 (1867)

Nelson, 1. Ind. Eng. Chem. 22, 971-972 (1930)

Nernst,

1. Nachr. Ges. Wiss. Göttingen 1-40 (1906) 2. Z. anorg. allgem. Chem. 45, 126-131 (1905)

3. Z. anorg. allgem. Chem. 49, 213-228 (1906)

4. Z. Elektrochem. 9, 622-628 (1903)

5. Z. Elektrochem. 16, 96-102 (1910)

5a. Z. Elektrochem. 22, 37-38 (1916)

6. Z. physik. Chem. 2, 23-28 (1888)

Nernst and Naudè,

1. Z. Elektrochem. 33, 532-534 (1927) Nernst and Orthmann,

1. Sitzber. preuss. Akad. Wiss. 51-56 (1926)

2. Z. physik. Chem. A135, 199-208 (1928)

Nernst and von Wartenberg,

1. Nachr. Ges. Wiss. Göttingen 35 (1905) Neuberg,

1. Ber. 24, 2543-2544 (1891)

Neumann,

1. Neues Jahrb. Mineral. Geol. (Beilage Bd.) A53, 1-58 (1926)

2. Z. anorg. allgem. Chem. 145, 193-238 (1925)

Neumann and Bergve,

1. Z. Elektrochem. 21, 152-160 (1915)

Neumann and Jacob,

1. Z. Elektrochem. 30, 557-576 (1924)

Neumann and Kohler,

1. Z. Elektrochem. 34, 218-237 (1928)

Neumann, Kroger, and Haebler,

Z. anorg. allgem. Chem. 196, 65-78 (1931)

2. Z. anorg. allgem. Chem. 204, 81-96 (1932)

3. Z. anorg. allgem. Chem. 207, 145-149 (1932) Neumann, Kroger, and Kunz,

1. Z. anorg. allgem. Chem. 207, 133-144 (1932) Neumann and Muller,

1. Z. angew. Chem. 38, 193-195 (1925)

2. Z. anorg. allgem. Chem. 182, 235-254 (1929)

3. Z. anorg. allgem. Chem. 185, 428 (1930)

Newton,

1. J. Am. Chem. Soc. 50, 3258-3261 (1928) Niederschulte.

1. Dissertation, Erlangen (1901)

Nielsen and Brown,

1. J. Am. Chem. Soc. 49, 2423-2426 (1927)

2. J. Am. Chem. Soc. 50, 9-19 (1928)

Nikiten.

1. J. Russ. Phys. Chem. Soc. 48, 54-75 (1916) 2. J. Russ. Phys. Chem. Soc. 52, 235-249 (1920)

Nilson and Pettersson,

1. Z. physik. Chem. 1, 27-38 (1887)

2. Z. physik. Chem. 4, 206-225 (1889)

Nippert,

1. Dissertation, Breslau (1913)

Norton and Johnston,

1. Am. J. Sci. (5) 12, 467-476 (1926)

Noyes and Brann,

1. J. Am. Chem. Soc. 34, 1016-1027 (1912)

Noyes and Beckman,

1. Proc. Natl. Acad. Sci. 13, 737-743 (1927)

Noyes and Chow,

1. J. Am. Chem. Soc. 40, 739-763 (1918)

Noves and Ellis.

1. J. Am. Chem. Soc. 39, 2532-2544 (1917)

Noves and Freed.

1. J. Am. Chem. Soc. 42, 476-487 (1920) Noyes and Kohr,

1. Z. physik. Chem. 42, 336-342 (1902)

Noyes, Kato, and Sosman,

1. J. Am. Chem. Soc. 32, 159-178 (1910)

Noves and Sammet.

1. Z. physik. Chem. 43, 513-539 (1903)

Noyes and Tuley,

1. J. Am. Chem. Soc. 47, 1336-1341 (1925) Noyes and Wobbe,

1. J. Am. Chem. Soc. 48, 1882-1887 (1926) Noyes and Westbrook,

1. J. Am. Chem. Soc. 43, 726-734 (1921)

1. Z. Elektrochem. 13, 297-305 (1907)

Nusbaum and Loomis,

1. Phys. Rev. 39, 179 (1932)

Nydegger,

1. Chem. Met. Eng. 29, 1141-1142 (1923)

O BERHOFFER and Grosse,

1. Stahl u. Eisen 47, 576-582 (1927)

1. Proc. Phys. Math. Soc. Japan (3) 2, 223

Ochi,

1. J. Soc. Chem. Ind. Japan 26, 6 (1923)

2. J. Soc. Chem. Ind. Japan 26, 89 (1923)

3. Tokyo Ind. Lab. Repts. 18, 339

4. Tokyo Ind. Lab. Repts. 18, 549 Oddo,

 Atti accad. Lincei 10, 452-458 (1901) Oesterheld.

1. Z. anorg. allgem. Chem. 97, 1-40 (1916) Ogawa,

1. J. Chem. Soc. Japan 50, 125-129 (1929)

Ogier,

1. Ann. chim. phys. (5) 20, 5-66 (1880)

2. Compt. rend. 87, 210-213 (1876)

3. Compt. rend. 89, 705-708 (1879)

4. Compt. rend. 92, 83-86 (1881)

5. Compt. rend. 92, 669-678 (1881)

6. Compt. rend. 92, 922-924 (1881)

7. Compt. rend. 94, 82-86 (1882)

8. Compt. rend. 96, 646-648 (1883)

Oholm,

1. Medd. Vetenskapsakad. Nobelinst. 5, No. 4. (1919)

Oku,

1. Bull. Inst. Phys. Chem. Research Tokyo 1, 84, (1928)

Olmstead,

1. Phys. Rev. 20, 613-630 (1922)

Olson and Glockler,

1. Proc. Natl. Acad. Sci. 9, 122-126 (1923)

Olszewski,

1. Ann. Physik (4) 7, 818-823 (1902)

2. Ber. 27, 3305-3306 (1894)

3. Bull. Intern. Acad. Cracovic 197 (1886)

4. Bull. Intern. Acad. Cracovie 1 (1889)

5. Bull. Intern. Acad. Cracovie 792 (1906)

6. Compt. rend. 99, 133-136 (1884)

7. Compt. rend. 99, 706-707 (1884)

8. Compt. rend. 100, 350-357 (1885)

9. Compt. rend. 100, 940-943 (1885)

10. Phil. Mag. 13, 722-724 (1907)

11. Phil. Mag. 39, 188-212 (1895)

Oman,

1. Tek. Tid. Uppl. (D) 54, 81 (1924) Onnes,

1. Proc. Acad. Sci. Amsterdam 14, 678-684 (1912)

Onnes and Braak,

1. Proc. Acad. Sci. Amsterdam 11, 333-341

1a. Communications Phys. Lab. Univ. Leiden No. A107

Onnes and Crommelin,

1. Proc. Acad. Sci. Amsterdam 14, 163-185

2. Proc. Acad. Sci. Amsterdam 18, 515-520 (1915) Onnes, Dorsman, and Holst,

1. Proc. Acad. Sci. Amsterdam 17, 950-953 (1915)

Onnes and Keesom,

1. Proc. Acad. Sci. Amsterdam 16, 440-445 (1913)

1a. Verhandel. Akad. Wetenschappen Amsterdam 22, 389 (1913)

1b. Communications Phys. Lab. Univ. Leiden No. 137d

Onnes and Martinez,

1. Communications Phys. Lab. Univ. Leiden No. 156b

Onnes and Weber,

1. Communications Phys. Lab. Univ. Leiden No. 147b

2. Proc. Acad. Sci. Amsterdam 16, 215-227 (1913)

Onnes and Weber (Continued)

 Proc. Acad. Sci. Amsterdam 18, 493-507 (1915)

Orndorff and Terrasse,

1. Am. Chem. J. 18, 173-207 (1896)

Osborne, Stimson, and Fiock,

- 1. Bur. Standards J. Research 5, 411-505 (1930) Osborne and Van Dusen,
- 1. Bur. Standards Bull. 14, 439-472 (1918) Osmond,
  - 1. Compt. rend. 103, 743-746, 1135-1137 (1886)
  - 2. Compt. rend. 113, 474-476 (1891)

Ossipov,

- 1. Ann. chim. phys. (6) 20, 303-371 (1890) Ostwald,
  - 1. J. prakt. Chem. 133, 1-19 (1882)

PADOA,

1. Gazz. chim. ital. 51, (2) 239-245 (1921)
Paneth, Haken, and Rabinowitsch,

1. Ber. 57, 1891-1903 (1929)

Parks,

1. J. Am. Chem. Soc. 47, 338-345 (1925) Parks and Barton,

- 1. J. Am. Chem. Soc. 50, 24-26 (1928) Parks, Hablutzel, and Webster,
- J. Am. Chem. Soc. 49, 2792-2795 (1927)
   Parks and Huffman,
- 1. J. Am. Chem. Soc. 48, 2788-2793 (1926)
- Parks and Kelley, 1. J. Phys. Chem. 32, 734-750 (1928)
- Parks, Kelley, and Huffman,1. J. Am. Chem. Soc. 51, 1969-1973 (1929)
- Parks and Nelson,
- 1. J. Phys. Chem. 32, 61-66 (1928)

Parravano and Cesaris,

1. Gazz. chim. ital. 471, 144-149 (1928)

Parravano and Malquoro,

- 1. Atti acad. Lincei 7, 19-23 (1928)
- 2. Atti acad. Lincei 1, 189-192 (1928)
- 3. Gazz. chim. ital. 56, 3-19 (1926)
- 4. Z. physik. Chem. 130, 167-169 (1927)

Partington,

1. J. Chem. Soc. 99, 466-478 (1911)

Partington and Huntingford,

- 1. J. Chem. Soc. 123, 160-170 (1923) Partington and Soper,
- 1. Phil. Mag. 7, 209-247 (1929)

Parts,

- 1. Z. physik. Chem. A131, 405-408 (1928) Paschen,
  - 1. Ann. Physik 29, 625-663 (1909)
- 2. Ann Physik 30, 746-754 (1909)
- 3. Ann. Physik 35, 860-880 (1911)
- 4. Ann. Physik 42, 840-842 (1913)
- 5. Ann. Physik 60, 405-453 (1919)
- 6. Ann. Physik 71, 142-161 (1923)
- 7. Ann. Physik 71, 537-561 (1923)
- 8. Naturwissenschaften 18, 752 (1930)
- Sitzber. preuss. Akad. Wiss. Physik-Math. Klasse, 563, 536-546 (1928)

Paschen and Kruger,

- 1. Ann. Physik 7, 1-8 (1930)
- 2. Ann. Physik 8, 1005-1016 (1931)

Paschen and Meissner,

1. Ann. Physik 43, 1223-1226 (1914)

Passler and Konig,

1. Z. angew. Chem. 44, 288-291 (1931)

Paterno and Mazzucchelli,

1. Gazz. chim. ital (I) 50, 30-53 (1920) Pattabhiramiah and Rao,

- 1. Indian J. Phys. 3, 437-444 (1928)
- Patkowski and Curtis,
- Trans. Faraday Soc. 25, 725-736 (1929)
   Patnode and Papish,
- 1. J. Phys. Chem. 34, 1494-1496 (1930) Patterson,
  - 1. Ber. 38, 210-213 (1905)

Patterson, Cripps, and Whytlaw-Gray,

- 1. Proc. Roy. Soc. (London) A86, 579-590 (1912) Pavlov and Leipunsky,
  - Nature 118, 843 (1926)

Payn and Perman,

1. Trans. Faraday Soc. 25, 599-610 (1929)

Pearce and Eversole,

1. J. Phys. Chem. 32, 209-220 (1928)

Pearce and Farr,

1. J. Phys. Chem. 18, 729-758 (1914)

Pearce and Peters,

1. J. Phys. Chem. 33, 873-878 (1929)

Pease and Chesebro,

- 1. J. Am. Chem. Soc. 50, 1464-1469 (1928) Pease and Cook,
- 1. J. Am. Chem. Soc. 48, 1199-1206 (1926) Pechard,
- 1. Ann. chim. phys. (6) 28, 537-565 (1893) Pelabon.
  - 1. Ann. chim. phys. (7) 25, 365-432 (1902)
  - 2. Ann. chim. phys. (8) 17, 526-566 (1909)
  - 3. Bull. soc. chim. 21, 402-407 (1899)
  - 4. Compt. rend. 137, 920-922 (1903)
  - 5. Compt. rend. 138, 277-279 (1904)
  - 6. Compt. rend. 140, 1389-1393 (1905)
- Z. physik. Chem. 26, 659-689 (1898)
   Pellaton.
- 1. J. chim. phys. 13, 426-464 (1915)

Perman and Atkinson,

- 1. Z. physik. Chem. 33, 215-222 (1900)
- 2. Z. physik. Chem. 33, 577-578 (1900)

Perman and Lovett,

- 1. Trans. Faraday Soc. 22, 1-19 (1926) Perreu,
- 1. Compt. rend. 189, 167-170 (1929)
- Compt. rend, 189, 285-287 (1929)

Perrier and Roux,

1. Mem. Soc. Sci. Nat. Vandoise 1, 109-136

Perrin,

1. Ann. phys. 11, 5-108 (1919) Perry,

1. J. Phys. Chem. 31, 1737-1741 (1927)

Perry and Hardwell,

1. J. Am. Chem. Soc. 47, 2629-2632 (1925)

Perry and Porter,

- 1. J. Am. Chem. Soc. 48, 299-302 (1926)
  - 1. Ann. chim. phys. (3) 21, 295-335 (1847)
  - 2. Ann. chim. phys. (3) 24, 129-163 (1848)
  - 3. Ann. chim. phys. (3) 24, 265-277 (1848)
  - 4. Ann. chim. phys. (3) 27, 250-272 (1849)
- 5. Ann. chim. phys. (3) 30, 73 (1850) 6. Ann chim. phys. (3) 33, 448-464 (1851)
- 7. Ann. Physik (2) 70, 386-393 (1847)
- 8. Ann. Physik (2) 76, 426-441 (1849)
- 9 Compt. rend. 23, 162-163 (1846)
- 10. Compt. rend. 23, 336-344 (1890)
- Peters and Weil,

- 1. Z. physik. Chem. A148, 27-35 (1930) Petersen,
  - 1. J. prakt. Chem. 46, 328-335 (1892)
  - 1a. J. pharm. chim. (3) 8, 170 (1843)
  - 2. J. prakt. Chem. 48, 88-91 (1893)
  - 3. Z. physik. Chem. 4, 384-412 (1889)
  - 4. Z. physik. Chem. 5, 259-266 (1890)
  - 5. Z. physik. Chem. 8, 601-623 (1891) 6. Z. physik. Chem. 11, 174-184 (1893)
- Petit.
  - 1. Ann. chim. phys. (6) 18, 145-203 (1889) 2. Bull. soc. chim. 37, 615-623 (1925)
- Pettersson,
  - 1. Dissertation, Upsala (1879)
  - 2. J. prakt. Chem. 24, 129-168 (1881)
  - 3. J. prakt. Chem. 24, 293-310 (1881)
- 4. Översikt Finska Vetenskaps-Soc. Förh. 35, 2-9 (1878)

# Pfaundler,

- 1. Ann. Physik (3) 63, 36-43 (1897)
- 2. Ber. 4, 773-776 (1871)
- 3. Ber. 6, 1537-1538 (1873)
- 4. Sitzber. Akad. Wiss. Wien. Math.-naturw. Klasse (II) 64, 240-244 (1871)
- 5. Sitzber. Akad. Wiss, Wien. Math.-naturw. Klasse. (II) 71, 155-178 (1875)

# Pickering,

- 1. J. Chem. Soc. 45, 686-690 (1884)
- 2. J. Chem. Soc. 47, 98-99 (1885)
- 3. J. Chem. Soc. 47, 100-107 (1885)
- 4. J. Chem. Soc. 49, 1-11, 12-16 (1886)
- 5. J Chem. Soc. 49, 260-310 (1886)
- 6. J. Chem. Soc. 51, 75 (1887)
- 7. J. Chem. Soc. 51, 290-356 (1887)
- 8. J. Chem. Soc. 53, 865-878 (1888)
- 9. J. Chem. Soc. 57, 64-184 (1890)
- 10. J. Chem. Soc. 67, 664-683 (1895)
- 11. J. Chem. Soc. 99, 800-811 (1911)
- 12. Phil. Mag. 39, 510-528 (1895)
- 13. Proc. Roy. Soc. (London) 49, 11-32 (1890)
- 1. Ann. chim. phys. 13, 145-228 (1878)
- 2. Arch. sci. phys. nat. 61, 16 (1878)
- 1. Z. physik. Chem. 62, 385-419 (1908) Pierre,
- 1. Ann. chim. phys. 15, 325-408 (1845) Piersol,
  - 1. Phys. Rev. 25, 785 (1925)

### Pietsch,

- 1. Dissertation, Berlin (1926)
- Pietsch and Wilcke,
- 1. Z. Physik 43, 342-353 (1927)

### Pigeon.

- 1. Ann. chim. phys. (7) 2, 433-502 (1894)
- 2. Compt. rend. 110, 77-80 (1890)
- Pilling. 1. Phys. Rev. 18, 362-368 (1921)
- Piloty and Steinbock,
- 1. Ber. 35, 3101-3117 (1902)

### Pionchon,

- 1. Ann. chim. phys. 11, 33-111 (1887)
- 2. Compt. rend. 103, 1122-1125 (1886)
- 3. Compt. rend. 106, 1344-1347 (1888)
- 4. Compt. rend. 115, 162-165 (1892)

# Pissarjewsky,

- 1. J. Russ. Phys. Chem. Soc. 32, 609-626 (1900)
- 1a. J. Russ. Phys. Chem. Soc. 40, 367 (1908)
- 2. Z. anorg. allgem. Chem. 24, 108-122 (1900)
- 3. Z. anorg. allgem. Chem. 25, 378-398 (1900) 4. Z. physik. Chem. 40, 368-371 (1902)
- van der Plaats.
- 1. Rec. trav. chim. 5, 149-183 (1886)
- Planck.
- 1. Sitzber. preuss. Akad. Wiss. Physik .- math. Klasse, 914-931 (1919)

# Plank,

1. Z. physik. Chem. 100, 372-392 (1922)

### Plank and Vahl,

- 1. Forsch. Gebiete Ingenieurw. (A) 2, 11 (1931)
- 1. Z. physik. Chem. 55, 721-737 (1906)
- 2. Z. physik. Chem. 58, 350-372 (1907)

### Plummer.

- 1. Ind. Eng. Chem. 22, 630-632 (1930) Podszus,
- 1. Z. Physik 19, 20-30 (1923)

# Poetker,

1. Phys. Rev. 30, 812-624 (1927)

# Pohland and Mehl,

- 1. Z. physik. Chem. A164, 48-54 (1933) Poindexter,
- 1. Phys. Rev. 26, 859-868 (1925)

### Pollitzer.

- 1. Z. anorg. allgem. Chem. 64, 121-148 (1909)
- 2. Z. Elektrochem. 17, 5-14 (1911) Pollok,
  - 1. J. Chem. Soc. 85, 603-611 (1904)

# Porter,

- 1. J. Am. Chem. Soc. 48, 2055-2058 (1926)
- 2. Trans. Faraday Soc. 13, 371-400 (1918) Porter and Perry.
- 1. J. Am. Chem. Soc. 48, 2059-2060 (1926)

# Portillo,

- 1. Anales. soc. espan. fis. quim. 27, 236-250 (1929)
- 2. Anales soc. espan. fis. quim. 27, 544-554 (1929)

### Pott,

1. Dissertation, Preiburg (1905)

Potter.

- 1. Trans. Electrochem. Soc. 11, 259-263 (1907) Prandtl and Huttner,
- 1. Z. anorg. allgem. Chem. 149, 235-262 (1925) Pratolongo,
- 1. Atti. accad. Lincei 22 II, 716-720 (1913) Pratt,
- 1. J. Franklin Inst. 185, 663-695 (1918) Precht and Kraut,
  - 1. Liebig Ann. 178, 129-149 (1875)

Prescott.

- 1. J. Am. Chem. Soc. 48, 2534-2550 (1926) Prescott and Hincke,
  - 1. J. Am. Chem. Soc. 49, 2744-2753 (1927)
- 2. J. Am. Chem. Soc. 50, 3228-3237 (1928) Preuner,
- 1. Z. anorg. allgem. Chem. 55, 279-288 (1907) Preuner and Brockmoller,
- 1. Z. physik. Chem. 81, 129-170 (1912) Preuner and Schupp,
- Z. physik. Chem. 68, 157-168 (1909) Prideaux,
- 1. J. Chem. Soc. 97, 2032-2044 (1910) Pring and Fairlie,
- 1. J. Chem. Soc. 101, 91-103 (1912) Prins,
- 1. Univ. Leiden Publications 17, 1095 (1915) Proskurnin and Kasarnowsky,
- 1. Z. anorg. allgem. Chem. 170, 301-310 (1928) la Provastaye and Desain,
- 1. Ann. chim. phys. (2) 8, 5-19 (1843) Pugh and Thomas,
- 1. J. Chem. Soc. 1051-1061 (1926)

Pullinger and Gardner,

- 1. Proc. Chem. Soc. (London) 7, 3 (1891) Purcell and de Lange,
- 1. J. Chem. Soc. 275-299 (1929) Puschin,
  - 1. Z. physik. Chem. 124, 16-22 (1926)

OUENEY,

1. J. Phys. radium, 10, 448-452 (1929)

R AABE,
1. Res. trav. chim. 1, 158-166 (1882) Rabe and Pollock,

1. Ber. 45, 2924-2927 (1912)

Ramsay,

- 1. Proc. Roy. Soc. (London) A71, 421 (1903)
- 2. Z. physik. Chem. 5, 221-226 (1890)
- 3. Z. physik. Chem. 44, 74 (1903)

Ramsay and Shield,

1. J. Chem. Soc. 63, 833-837 (1893)

Ramsay and Travers,

1. Phil. Trans. Roy Soc. (London) 197, 47-89 (1901)

Ramsay and Young,

- 1. J. Chem. Soc. 49, 453-461 (1886)
- 2. J. Chem. Soc. 49, 790-813 (1886)
- 3. Phys. Rev. 26, 851-858 (1925)
- 4. Trans. Roy. Soc. (London) A177, 71-122, (1886)

Ramsperger and Porter,

- 1. J. Am. Chem. Soc. 48, 1267-1273 (1926) Ramstetter and Hantke,
- 1. Z. physik. Chem. Bodenstein Festband, 662-668 (1931)

Randall,

1. Ann. Physik 33, 739-746 (1910)

2. "International Critical Tables," vol. VII, pp. 224-353, McGraw-Hill Book Co., New York (1930)

Randall and Bichowsky,

- 1. J. Am. Chem. Soc. 40, 368-375 (1918) Randall and Bisson,
- J. Am. Chem. Soc. 42, 347-367 (1920) Randall and Gerard,
- 1. Ind. Eng. Chem. 20, 1335-1340 (1928)

Randall, Nielsen, and West,

1. Ind. Eng. Chem. 23, 388-400 (1931)

Randall and Rossini,

1. J. Am. Chem. Soc. 51, 323-345 (1929)

Randall and Tamele,

- 1. "International Critical Tables," vol. VII, p. 293, McGraw-Hill Book Co., New York (1930)
- 2. "International Critical Tables," vol. VII, p. 300, McGraw-Hill Book Co., New York (1930)

Randall and White,

- 1. "International Critical Tables," vol. VII, p. 238, McGraw-Hill Book Co., New York (1930)
- See Bacher and Goudsmit¹
- 2. "International Critical Tables," vol. VII, p. 241, McGraw-Hill Book Co., New York (1926)
- 3. J. Am. Chem. Soc. 48, 2514-2517 (1926)

Randall and Young,

1. "International Critical Tables," vol. VII, p. 239, McGraw-Hill Book Co., New York (1930)

Rao.

- 1. Proc. Phys. Soc. (London) 39, 408-416 (1927)
- 2. Proc. Phys. Soc. (London) 43, 68-71 (1931)
- 3. Proc. Phys. Soc. (London) 44, 343-348 (1932)
- 4. Proc. Roy. Soc. (London) A124, 465 (1925) 5. Proc. Roy. Soc. (London) A133, 220-228
- (1931)6. Z. Physik 58, 251 (1929)

Rao and Badami,

1. Proc. Roy Soc. (London) A131, 154-169 (1931)

Rao and Narayan,

- 1. Indian J. Phys. 2, 467-476 (1927)
- 2. Proc. Roy Soc. (London) A119, 607 (1928)
- 3. Z. Physik 57, 865-868 (1929)
- 4. Z. Physik 59, 687-689 (1930)

Rao, Narayan, and Rao,

- 1. Indian J. Physics 2, 467-476 (1928)
- 2. Indian J. Physics 2, 477-483 (1928)

Raoult.

- 1. Ann. chim. phys. (6) 2, 66-93 (1884) Rasmussen,
- 1. Z. Physik 62, 494-507 (1930)

### Rassow.

- Z. anorg. allgem. Chem. 114, 117-150 (1920)
   Rav.
- 1. Proc. Roy. Soc. (London) 101, 509-516 (1922) Read,
- 1. Phys. Rev. 45, 752 (1934)
- von Rechenberg,
  - 1. J. prakt. Chem. 19, 143-145 (1879)
- 2. J. prakt. Chem. 22, 1-45 (1880)

### Recoura,

- 1. Ann. chim. phys. (6) 10, 5-68 (1887)
- 2. Ann. chim. phys. (7) 4, 494-527 (1895)
- 3. Compt. rend. 110, 1029-1032 (1889)
- 4. Compt. rend. 148, 1105-1108 (1909)

### Regnault,

- 1. Ann. chim. phys. (3) 8, 19-29 (1843)
- 2. Ann. chim. phys. (3) 26, 268-278 (1849)
- 3. Ann. chim. phys. (4) 24, 375-445 (1871)
- 4. Compt. rend. 36, 676 (1853)
- 5. Mem. acad. roy. sci. France 21, 1-748 (1847)
- 6. Mem. acad. roy. sci. France 26, 1-333 (1862)
- Mem. acad. roy. sci. France 26, 335-760 (1862)
- 8. Mem. acad. roy. sci. France 26, 761-882 (1862)
- Mem. acad. roy. sci. France 26, 883-906 (1862)
- 10. Phil. Mag. (4) 5, 473-483 (1853)
- "Relations des experiences entreprises par l'ordre du minister et sur les propositions de la commission des machines à vapeur," vol. I, pp. 635-748, . . . . Paris (1847)

### Reich,

- Physik. Z. 7, 73-89 (1906)
- Reicher and van Deventer,
  - Maandblad voor Natuur Wetenschappen, Amsterdam 16, 90-94 (1890)
  - 2. Z. physik. Chem. 5, 559-565 (1890)

### Reilly and Hickinbottom,

- 1. Sci. Proc. Roy. Dublin Soc. 16, 132-142 (1920) Reinders,
- Proc. Acad. Sci. Amsterdam 17, 703-718 (1914)
- Verhandel. Akad. Wetenschappen Amsterdam, 23, 596-610 (1914)
- 3. Z. anorg. allgem. Chem. 93, 213-230 (1915)
- 4. Z. anorg. allgem. Chem. 109, 52-62 (1919) Reinders and Goudriaan.
- 1. Z. anorg. allgem. Chem. 126, 85-103 (1923)
- Reinders and Hamburger, 1. Z. anorg. allgem. Chem. 89, 71-96 (1914) Reis,
  - 1. Z. Elektrochem. 26, 408-412 (1920)
- 2. Z. Physik 1, 294-298 (1920)

### Reisenfeld,

1. J. chim. phys. 7, 561-569 (1909)

### Remy and Kohn,

- 1. Z. anorg. allgem. Chem. 137, 365-388 (1924) Rengade.
  - 1. Ann. chim. phys. (8) 14, 540-553 (1908)
  - 2. Bull. soc. chim. (4) 15, 130-147 (1914)
  - 3. Compt. rend. 145, 236-238 (1907)

### Rengade (Continued)

- 4. Compt. rend. 156, 1897-1899 (1913) Rengade and Costeanu,
  - 1. Bull. soc. chim. 15, 717-723 (1914)
- 2. Compt. rend. 158, 946-948 (1914)

### Renou,

- 1. Compt. rend. 70, 929-931 (1870)
- Rex, 1. Z. physik. Chem. 55, 355-370 (1906)
- Reyer,
  1. Dissertation, Braunschweig (1923); see
  "Landolt-Börnstein Physikalisch Chemische Tabellen," Fifth Edition, Springer,
  Berlin (1923)

### Rhead and Wheeler,

- 1. J. Chem. Soc. 99, 1140-1153 (1911)
- Ribalquine,
- Bull. acad. imp. sci. (Petrograd) 34, 165-168 (1891)

### Richards,

- 1. Chem. News 75, 278-279 (1897)
- 1a. Chem. News 68, 58, 69, 82, 105 (1893)
- Electrochem. Met. Ind. 6, 250-252 (1908);
   Trans. Am. Electrochem. Soc. 13, 447-451 (1908)

### Richards and Barry,

- 1. J. Am. Chem. Soc. 37, 993-1020 (1915)
- Richards and Burgess, 1. J. Am. Chem. Soc. 32, 431-460 (1910)
- Richards and Conant,
- 1. J. Am. Chem. Soc. 44, 601-612 (1922) Richards and Daniels,
- 1. J. Am. Chem. Soc. 41, 1732-1768 (1919) Richards and Davis,
  - 1. J. Am. Chem. Soc. 39, 341-354 (1917)
- 2. J. Am. Chem. Soc. 42, 1599-1617 (1920) Richards and Dole,
- 1. J. Am. Chem. Soc. 51, 794-802 (1929) Richards and Forbes,
- 1. Z. physik. Chem. 58, 683-752 (1907)
- Richards and Garrod-Thomas, 1. Z. physik. Chem. 72, 165-201 (1910)
- Richards, Frevert, and Teeter, 1. J. Am. Chem. Soc. 50, 1293-1302 (1928)
- Richards and Gucker,

  1. J. Am. Chem. Soc. 51, 712-727 (1929)
- Richards and Hall, 1. J. Am. Chem. Soc. 51, 707-712 (1929)
- 2. J. Am. Chem. Soc. 51, 731-736 (1929) Richards and Jesse,
- 1. J. Am. Chem. Soc. 32, 268-288 (1910) Richards and Lewis,
  - 1. Proc. Am. Acad. Arts. Sci. 34, 87-98 (1898)
- 2. Z. physik. Chem. 28, 1-12 (1899)

### Richards and Mair.

- 1. J. Am. Chem. Soc. 51, 737-740 (1929)
- 2. J. Am. Chem. Soc. 51, 740-748 (1929)
- Richards, Mair, and Hall,
- 1. J. Am. Chem. Soc. 51, 727-730 (1929) Richards and Mathews,
  - 1. J. Am. Chem. Soc. 30, 8-13 (1908)
  - 2. J. Am. Chem. Soc. 33, 863-888 (1911)
  - 3. Proc. Am. Acad. Arts. Sci. 46, 512-638 (1911)

Richards and Rowe,

- 1. J. Am. Chem. Soc. 42, 1621-1635 (1920)
- 2. J. Am. Chem. Soc. 43, 770-796 (1921)
- 3. J. Am. Chem. Soc. 44, 684-707 (1922)
- 4. Proc. Am. Acad. Arts Sci. 49, 191 (1913) Richards, Rowe, and Burgess,
- 1. J. Am. Chem. Soc. 32, 1176-1186 (1910) Richards and Shipley,
- 1. J. Am. Chem. Soc. 38, 989-999 (1916) Richards and Smyth,
  - 1. J. Am. Chem. Soc. 44, 524-545 (1922)
- 2. J. Am. Chem. Soc. 45, 1455-1460 (1923) Richards and Tamaru,
- 1. J. Am. Chem. Soc. 44, 1060-1066 (1922) Richards and Thorvaldson,
- 1. J. Am. Chem. Soc. 44, 1051-1060 (1922) Richards and Wilson,
- 1. Z. physik. Chem. 72, 129-164 (1910) Richardson,
  - 1. J. Chem. Soc. 49, 761-776 (1886)
  - 2. J. Chem. Soc. 51, 397-403 (1887)
  - Proc. Roy Soc. (London) A113, 368-419 (1926)
  - Proc. Roy. Soc. (London) A115, 528-548 (1927)
- 5. Trans. Faraday Soc. 25, 686 (1929) Richardson and Das,
  - Proc. Roy. Soc. (London) A122, 688-718 (1929)
- Proc. Roy. Soc. (London) A125, 309-330 (1929)

Richardson and Davidson

- 1. Proc. Roy. Soc. (London) A123, 54-80 (1929)
- Proc. Roy. Soc. (London) A123, 466-488 (1929)
- 3. Proc. Roy. Soc. (London) A124, 50-68 (1929)
- 4. Proc. Roy. Soc. (London) A124, 69-88 (1929)
- 5. Proc. Roy. Soc. (London) A125, 23-50 (1929) von Richter.
- 1. Ber. 19, 1057-1062 (1886)

Rideal,

- 1. Phil. Mag. 42, 156-163 (1921)
- Rideal and Kunz,
- 1. J. Phys. Chem. 24, 379-392 (1920)
- Riesenfeld and Milchsack.
- 1. Z. anorg. allgem. Chem. 85, 401-429 (1914) Riesenfeld and Schumacher,
- 1. Z. physik. Chem. A138, 268-285 (1928)
- Riesenfeld and Wassmuth,
- 1. Z. physik. Chem. A143, 397-434 (1929) Riiber and Schetelig,
- 1. Z. physik. Chem. 48, 345-352 (1904) Rinkenbach,
- 1. Ind. Eng. Chem. 19, 474-476 (1927) Rinse,
- 1. Rec. trav. chim. 47, 33-36 (1928) Ritschl,
- 1. Z. Physik 42, 172-210 (1927) Ritz.
- 1. Ann. Physik 12, 264-310 (1903) Rivals.
  - 1. Ann. chim. phys. (7) 12, 501-574 (1897)

Rivals (Continued)

- 2. Compt. rend. 120, 625-627 (1895)
- 3. Compt. rend. 120, 627-628 (1895)
- 4. Compt. rend. 122, 617-619 (1896)
- 5. Compt. rend. 122, 1488-1489 (1896)
- 6. Compt. rend. 122, 1489-1491 (1896)
- Roberts and Smyth,
- 1. J. Am. Chem. Soc. 43, 1061-1079 (1921) Robertson,
  - 1. J. Chem. Soc. 81, 1233-1243 (1902)
  - 2. Proc. Chem. Soc. (London) 18, 131-132 (1902)

Robertson and Acree,

- 1. Am. Chem. J. 49, 474-520 (1913) Rodebush,
- 1. Proc. Natl. Acad. Sci. 13, 185-188 (1927) Rodebush, Andrews, and Taylor,
- 1. J. Am. Chem. Soc. 47, 313-319 (1925) Rodebush and Coons,
- 1. J. Am. Chem. Soc. 49, 1953-1955 (1927) Rodebush and DeVries,
- 1. J. Am. Chem. Soc. 47, 2488-2493 (1925) Rodebush and Dixon,
- 1. J. Am. Chem. Soc. 47, 1036-1043 (1925)
- 2. Phys. Rev. 26, 851-858 (1925)

Rodebush and Henry,

- 1. Z. anorg. allgem. Chem. 52, 3159 (1930) Rodebush and Michalek,
- 1. Proc. Natl. Acad. Sci. 14, 131-132 (1928) Rodebush and Troxel,
- J. Am. Chem. Soc. 52, 3467 (1930)
   Rodebush and Walters,
- 1. J. Am. Chem. Soc. 52, 2654-2665 (1930) Rogers,
- 1. Am. J. Sci (3) 43, 301-314 (1892) Rolla,
- 1. Atti accad. Lincei 21 II, 278-283 (1912)
- 2. Nuovo Cimento (6) 9, 384 (1915) Rolla and Accame,
- 1. Atti accad. Lincei 22 II, 109-116 (1913) Roos,
  - 1. Dissertation, Leipzig (1916)
- 2. Z. anorg allgem. Chem. 94, 329-357 (1916) Roozeboom,
  - 1. Rec. trav. chim. 3, 26-53 (1884)
  - 2. Rec. trav. chim. 3, 54-66 (1884)
  - 3. Rec. trav. chim. 3, 67-76 (1884)
  - 4. Rec. trav. chim. 4, 65-73 (1885)
  - 5. Rec. trav. chim. 3, 77-96 (1884)
  - 6. Rec. trav. chim. 4, 108-124 (1885)
  - 7. Rec. trav. chim. 4, 361-378 (1885)
- 8. Z. physik. Chem. 2, 449-481 (1888)
- 9. Z. physik. Chem. 4, 31-65 (1889) Rosen.
- 1. Z. Physik 43, 69-130 (1927)
- Rosenhain,
- J. Soc. Chem. Ind. 25, 239-240 (1906)
   Rosenhain and Ewen,
- J. Inst. Metals 8, 149-173 (1912)
   Rossini.
  - 1. Bur. Standards J. Research 4, 313-327 (1930)
  - 2. Proc. Natl. Acad. Sci. 16, 694-699 (1930)
  - 3. Bur. Standards J. Research 6, 1-36 (1931)

### Rossini (Continued)

- 4. Bur. Standards J. Research 6, 37-49 (1931)
- 5. Bur. Standards J. Research 6, 791-806 (1931)
- 6. Bur. Standards J. Research 6, 847-856 (1931)
- 7. Bur. Standards J. Research 7, 47-55 (1931)
- 8. Bur. Standards J. Research 7, 329-330 (1931)
- 9. Proc. Natl. Acad. Sci. 17, 343-347 (1931)
- 10. Bur. Standards J. Research 8, 119-139 (1932)
- 11. Bur. Standards J. Research 9, 679-702 (1932)
- 12. Bur. Standards J. Research 11, 553-559 (1933)
- 13. Bur. Standards J. Research 12, 735-750 (1934)
- 14. Proc. Natl. Acad. Sci. 20, 323-327 (1934)
- J. Research Natl. Bur. Standards 13, 21-35 (1934)
- J. Research Natl. Bur. Standards 13, 189-202 (1934)

### Rossini and Frandsen,

- 1. Bur. Standards J. Research 9, 733-747 (1932)
- 1. Z. anorg. allgem. Chem. 114, 117-150 (1920)

# Roth,

- 1. Ann. 373, 249-266 (1910)
- "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, Springer, Berlin (1923)
- 3. Rec. trav. chim, 45, 248-256 (1926)
- 4. Z. angew. Chem. 41, 397-401 (1928)
- 5. Z. angew. Chem. 42, 981-984 (1929)
- 6. Z. Elektrochem. 16, 654-662 (1910)
- 7. Z. Elektrochem. 17, 489-795 (1911)
- 8. Z. Elektrochem. 18, 99-100 (1912)
- 9. Z. Elektrochem. 21, 1-5 (1915)
- 10. Z. Elektrochem. 26, 288-291 (1920)
- 11. Z. physik. Chem. 130, 539-544 (1927)
- 12. Z. physik. Chem. A136, 317-320 (1928)
- 13. Z. physik. Chem. A145, 289-297 (1929)

### Roth and von Auwers,

- 1. Ann. 407, 145-175 (1915)
- "Landolt-Börnstein Physikalisch-Chemische Tabellen," First Supplement, Springer, Berlin (1927)

## Roth and Banse,

- "Landolt-Börnstein Physikalisch-Chemische Tabellen," Second Supplement, Part Two, Springer, Berlin (1931)
- 2. Arch. Eisenhutten 6, 43-46 (1932-1933)

# Roth and Becker,

- 1. Z. physik. Chem. A145, 461-469 (1929)
- Z. physik. Chem. Bodenstein Festschrift, 55-60 (1931)
- 3. Z. physik. Chem. A159, 1-26 (1932)
- 4. Z. physik. Chem. A159, 27-39 (1932)
- 5. Z. physik. Chem. A159, 415-416 (1932)

# Roth and Bertram,

1. Z. Elektrochem. 35, 297-308 (1929)

### Roth and Chall,

1. Z. Elektrochem. 34, 185-199 (1928)

### Roth and Doepke,

1. Ber. 60, 530-536 (1927)

### Roth, Doepke, and Banse,

1. Z. physik. Chem. A133, 431-442 (1928)

### Roth and Ellinger,

 "Landolt-Börnstein, Physikalisch-Chemische Tabellen, Fourth Edition, Springer, Berlin (1912)

### Roth and Eymann,

- 1. Z. physik. Chem. A143, 321-353 (1929)
- Roth, Grau, and Meichsner,
- 1. Z. anorg. allgem. Chem. 193, 161-175 (1930) Roth and Lassee,
  - 1. Ann. 441, 48-53 (1925)

### Roth and Macheleidt,

1. Dissertation, Braunschweig (1921)

### Roth and Moosbrugger,

 "Landolt-Börnstein, Physikalisch-Chemische Tabellen, Fifth Edition, Springer, Berlin (1923)

### Roth and Muller,

- 1 Ber. 60, 643-645 (1927)
- 2. Ber. 62B, 1188-1194 (1929)
- "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, First Supplement, Springer, Berlin (1927)
- 4. Z. physik. Chem. A144, 253-258 (1929)
- Z. physik. Chem. Cohen Festband (1927)
   Roth and Murawski,
- "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, Springer, Berlin (1923)

### Roth and Naeser,

- 1. Z. Elektrochem. 31, 461-466 (1925)
- Roth, Naeser, and Doepke,
- 1. Ber. 59, 1397-1399 (1926)

### Roth and Peters,

 "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, Springer, Berlin (1923)

# Roth and Richter,

1. Z. physik. Chem. A170, 123-133 (1934)

### Roth and Schwartz,

1. Z. physik. Chem. 134, 456-466 (1926)

Roth, Schwartz, and Breckner,

1. Ber. 61, 1544 (1928)

# Roth and Wallasch,

1. Ber. 46, 896-911 (1913)

# Roth and Wolff,

 "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, First Supplement, Springer, Berlin (1927)

### Rothmund.

 "Nernst Festschrift," pp. 391-394 Knapp, Halle (1912)

Rotinjanz and Suchodski,

1. Z. physik. Chem. 87, 635-637 (1914)

Ruark, Mohler, Foote, and Chenault,

1. Bur. Standards Sci. Papers 19, 463-486 (1924) Rowe,

1. Phil. Mag. (7) 3, 534-546 (1927)

### Rudberg,

1. Ann. Physik 19, 125-135 (1930)

# Rudder and Ferrer,

1. Chem. Ztg. 50, 251 (1926)

### Rudolphi,

1. Z. physik. Chem. 17, 277-300 (1895)

Ruer and Nakamote,

- 1. Rec. trav. chim. 42, 675-682 (1923)
- 1. Z. anorg. allgem. Chem. 99, 73-104 (1917) Ruff and Ascher.
- 1. Z. anorg. allgem. Chem. 196, 413-420 (1931) Ruff and Bergdahl,
- 1. Z. anorg. allgem. Chem. 106, 76-94 (1919) Ruff and Bormann,
- 1. Z. anorg. allgem. Chem. 88, 397-409 (1914) Ruff and Bretschneider.
- Z. anorg. allgem. Chem. 206, 59-61 (1932) Ruff and Fischer,
- 1. Z. anorg. allgem. Chem. 179, 161-185 (1929) Ruff and Foerster,
- 1. Z. anorg. allgem. Chem. 131, 321-347 (1923) Ruff and Friedrich,
- Z. anorg. allgem. Chem. 89, 279-306 (1914) Ruff and Gersten,
- 1. Ber. 45, 63-72 (1912)
- 2. Ber. 46, 394 (1913)
- 3. Ber. 46, 409 (1913)
- Ruff and Graf,
- 1. Ber. 40, 4199-4205 (1907)

Ruff and Greiger,

- 1. Z. anorg. allgem. Chem. 211, 145-149 (1933) Ruff and Hartmann,
- 1. Z. anorg. allgem. Chem. 133, 29-45 (1924) Ruff and Heinzelmann,
- 1. Z. anorg. allgem. Chem. 72, 63-84 (1911)
- Ruff and Josephy, Z. anorg. allgem. Chem. 153, 17-32 (1926)
- Ruff and Keilig, 1. Z. anorg. allgem. Chem. 88, 410-423 (1914)
- Ruff and Konschak. 1. Z. Elektrochem. 32, 515-525 (1926)
- Ruff and Laass,
- 1. Z. anorg. allgem. Chem. 183, 214-222 (1929) Ruff and Martin,
- 1. Z. angew. Chem. 25, 49-56 (1912)

Ruff, Menzel, and Plaut,

- 1. Z. anorg. allgem. Chem. 206, 61-63 (1932) Ruff and Mugdan,
- 1. Z. anorg. allgem. Chem. 117, 147-171 (1921) Ruff and Schmidt,
- Z. anorg. allgem. Chem. 117, 172-190 (1921) Ruff, Schmidt, and Mugdan,
- 1. Z. anorg. allgem. Chem. 123, 83-88 (1922) Ruff and Wallauer.
- Z. anorg. allgem. Chem. 196, 421-428 (1931) Rümelin,
- 1. Z. physik. Chem. 58, 449-466 (1907) Runge,
- 1. Physica. 1, 254-261 (1921)

Runge and Paschen,

- 1. Ann. Physik (3) 61, 641-686 (1897) Rushton and Daniels,
- 1. J. Am. Chem. Soc. 48, 384-389 (1926) Russ,
- 1. Z. physik. Chem. 82, 217-222 (1913) Russell,
  - 1. Astrophys. J. 66, 184-216 (1927)

### Russell (Continued)

- Astrophys. J. 66, 233-255 (1927)
- 3. Astrophys. J. 66, 282-328 (1927)
- Astrophys. J. 66, 346-353 (1927)
- 5. Phys. Rev. 31, 27-33 (1928)
- 6. Phys. Rev. 34, 821-857 (1929)

Russell, Compton, and Boyce,

- 1. Proc. Natl. Acad. Sci. 14, 280-283 (1928) Russell and Lang,
- 1. Astrophys. J. 66, 13-42 (1927)

Russell and Meggers,

- 1. Bur. Standards Sci. Papers 22, 329-373 (1927) Russell and Saunders,
- Astrophys. J. 61, 38-69 (1925) Ryde and Asundi,
- 1. Nature 124, 57-58 (1929)
- Ryschkewitsch,
  - 1. Z. Elektrochem. 27, 57-64, 445-452 (1921)
- 2. Z. Elektrochem. 31, 54-62, 160 (1925)

Ryschkewitsch and Merck,

1. Z. Elektrochem. 32, 42-45 (1926)

# C ABATIER,

- D 1. Ann. chim. phys. (5) 22, 5-98 (1891)
  - 2. Bull. soc. chim. 1, 88-91 (1889)
  - 3. Bull. soc. chim. 6, 215 (1891)
  - 4. Compt. rend. 93, 56-58 (1881)
- 5. Compt. rend. 103, 267-269 (1886)
- 6. Compt. rend. 112, 862-864 (1891)
- 7. Compt. rend. 118, 918 (1894)
- 8. Compt. rend. 118, 980-983 (1894)
- 9. Compt. rend. 125, 301-305 (1897) Sackur,
- 1. Z. Physik. Chem. 78, 550-563 (1912) Salet.
- 1. Compt. rend. 86, 1080-1081 (1878)
- Salis, 1. Ann. Physik 76, 145-162 (1925)
- Saltmarsh. 1. Phil. Mag. 47, 874-882 (1924)
- Sameshima and Fukaya, J. Chem. Soc. Japan 44, 690 (1923)
- Sammet. 1. Z. physik. Chem. 53, 641-691 (1905)
- Sand,
- 1. Z. physik. Chem. 50, 465-480 (1905) Sandeman,
- Proc. Roy. Soc. Edinburgh 49, 245-255 (1929) Sandonnini,
- 1. Atti accad. Lincei (6) 1, 448-453 (1925) Sandonnini and Gerosa,
- 1. Gazz. chim. ital. 55, 916-938 (1925) Satterly and Patterson,
- 1. Trans. Roy. Soc. Can. (3) 13, 123 (1913) Sauerwald,
- 1. Z. Elektrochem. 28, 183-185 (1922) Saunders,
  - 1. Astrophys. J. 20, 188-201 (1904)
  - 2. Astrophys. J. 56, 73-83 (1922)
- 3. Proc. Natl. Acad. Sci. 12, 556-560 (1926) Sawyer and Beese,
- 1. Science 64, 44-46 (1926)

Sawyer and Humphreys,

1. Phys. Rev. 32, 583-592 (1928)

Sawyer and Lang,

1. Phys. Rev. 34, 712-719 (1929)

Sawyer and Paschen,

1. Ann. Physik 84, 1-19 (1927)

Sawyer and Smith,

1. Phys. Rev. 29, 357 (1927)

Schaafsma and Dieke,

1. Z. Physik 55, 164-186 (1929) Schall.

1. Ber. 17, 2199-2212 (1884)

Scheffer,

 Proc. Acad. Sci. Amsterdam 13, 829-837 (1911)

 Proc. Acad. Sci. Amsterdam 21, 664-677 (1919)

3. Verhandel. Akad. Wetenschappen Amsterdam 24, 271-283 (1915)

4. Verhandel. Akad. Wetenschappen Amsterdam 24, 1513-1527 (1916)

Z. physik. Chem. 71, 214-234 (1910)
 Z. physik. Chem. 76, 161-173 (1911)

Scheffer and Meyer,

 Proc. Acad. Sci. Amsterdam 21, 1204-1212 (1919)

 Proc. Acad. Sci. Amsterdam 21, 1338-1348 (1919)

Scheffer and Treub.

 Proc. Acad. Sci. Amsterdam 14, 536-547 (1911)

2. Z. physik. Chem. 81, 308-332 (1912)

Scheffer and Voogd,

1. Rec. trav. chim. 45, 214-223 (1926)

Schenck,

1. Z. Elektrochem. 24, 248-255 (1918)

Schenck and Albers,

1. Z. anorg. allgem. Chem. 105, 145-166 (1919) Schenck and Borkenstein,

1. Z. anorg. allgem. Chem. 142, 143-179 (1925) Schenck and Heller,

1. Ber. 38, 2132 (1905)

Schenck and Hempelman,

1. Metall u. Erz 10, 283-297 (1913)

Schenck, Kragelch, and Eisenstecken,

1. Z. anorg. allgem. Chem. 164, 313-325 (1927)

Schenck, Mihr, and Banthien,

1. Ber. 39, 1506-1521 (1906)

Schenck and Rassback,

1. Ber. 40, 2185-2201 (1907)

2. Ber. 40, 2947-2950 (1907)

Schenck and Raub,

1. Z. anorg. allgem. Chem. 178, 225-251 (1929)

Schenck, Semiller, and Falcke,

1. Ber. 40, 1704-1730 (1907)

Scheuerer-Kestner,

1. Ann. chim. phys. (6) 15, 262-266 (1888)

2. Ann. chim. phys. (6) 24, 213-224 (1891)

Scheurer-Kestner and Meunier-Dolphus,

1. Ann. chim. phys. (4) 21, 436-479 (1870)

2. Ann. chim. phys. (5) 2, 325-332 (1874)

3. Ann. chim. phys. (6) 8, 267-281 (1886)

Schloesing,

1. Compt. rend. 74, 1552-1556 (1872)

2. Compt. rend. 75, 70-72 (1872)

Schmid and Gero,

1. Z. Physik 96, 546 (1935)

Schmidlin,

1. Ann. chim. phys. (8) 7, 195-279 (1906) Schmidt and Walter,

1. Ann. Physik 72, 565-594 (1923)

Schneer,

 "Societe Francaise de Physique, Recueil de Constants Physique," p. 325, ——, Paris

(191

Scholz,
1. Ann. Physik (3) 45, 193-206 (1892)

Schott, Swift, and Yost,1. J. Am. Chem. Soc. 50, 721-727 (1928)Schottky.

Z. physik. Chem. 64, 415-448 (1908)
 Schreber,

1. Z. physik. Chem. 24, 651-665 (1897) Schreinemakers,

1. Z. physik. Chem. 82, 59-70 (1913) Schreiner,

1. Z. physik. Chem. 117, 57-87 (1925)

Schreiner and Grimnes,

1. Z. anorg. allgem. Chem. 110, 311-334 (1920) Schreiner and Seljesaeter,

Z. anorg. allgem. Chem. 137, 389-400 (1924)
 Schrotter,

1. Sitzber. Akad. Wiss. Wien 9, 414 (1852) Schuhmann.

1. J. Am. Chem. Soc. 46, 1444-1449 (1924)

2. J. Am. Chem. Soc. 47, 356-363 (1925)

Schuler and Wolf,

1. Z. Physik 33, 42-47 (1925)

2. Z. Physik 35, 277-489 (1926)

Schuller and Wartha,

1. Ann. Physik (3) 2, 359-383 (1877)

Schumacker and Sprenger,

Z. physik. Chem. B2, 267-281 (1929)
 Schumb,

1. J. Am. Chem. Soc. 45, 342-354 (1923) Schwartz,

Z. Krist. 25, 613 (1896)
 Schwarz von Bergkampf,

1. Z. Elektrochem. 38, 847-848 (1932)

Schwarz and Sturm,

Ber. 47, 1730-1740 (1914)
 Scott,

1. Phil. Mag. 47, 32-50 (1924)

Senechal,

1. Compt. rend. 156, 552-555 (1913) Senftleben,

1. Z. Physik 37, 539-546 (1926)

Senftleben and Germer.

Ann. Physik 2, 847-864 (1929)
 Shearer,

1. Phys. Rev. 17, 469-475 (1903) Shenstone,

1. Phil. Mag. 49, 951-962 (1925)

1a. Phys. Rev. 28, 449-474 (1926)

2. Phys. Rev. 30, 255-265 (1927)

Shenstone (Continued)

- 3. Phys. Rev. 31, 317-322 (1928)
- 4. Phys. Rev. 36, 669-678 (1930)

Sherman,

1. Chem. Rev. 11, 94-170 (1932)

Shibata,

- 1. J. Chem. Soc. Japan 50, 525-532 (1929)
- Tech. Repts. Tôhoku Imp. Univ. 8, 255-277 (1929)

Shorthose,

 "Thermal Properties of Melhyl Chloride," Food Investigation Board, Dept. Sci. & Ind. Research (Great Britain), No. 19 (1924)

von Siemens,

1. Ann. Physik 42, 871-888 (1913)

Sieverts and Gotta,

- 1. Ann. 453, 289-297 (1927)
- 2. Z. anorg. allgem. Chem. 172, 1-31 (1928)
- 3. Z. Elektrochem. 32, 105-109 (1926)

Sieverts, Gotta, and Halberstadt,

- 1. Z. anorg. allgem. Chem. 187, 155-164 (1930) Siggel.
- 1. Z. Elektrochem. 19, 340-344 (1913) Sill,
- 1. J. Am. Chem. Soc. 38, 2632-2643 (1916) Simon.
  - 1. Z. Physik 31, 224-228 (1925)
  - 2. Z. Physik 33, 946-947 (1925)
  - 3. Ann. Physik 68, 241-280 (1922)
- 4. Z. anorg. allgem. Chem. 165, 31-40 (1927) Simon and Fischer,
- Z. anorg. allgem. Chem. 185, 130-143 (1929)
   Simon, Fischer, and Schmidt,
- 1. Z. anorg. allgem. Chem. 185, 107-129 (1929) Simon and Glauner,
- Simon and Glauner,
  1. Z. anorg. allgem. Chem. 178, 177-201 (1929)
  Simon and Lange,
  - 1. Z. Physik 15, 312-321 (1923)

Simon and Ruhemann,

1, Z. physik. Chem. 129, 321-338 (1927)

Simon, Simson, and Ruhemann,

- Z. physik. Chem. 129, 339-348 (1927)
   Simon and Steckel,
  - 1. Z. physik. Chem. Bodenstein Festschrift, 737-744 (1931)

Simon and Thaler,

- 1. Z. anorg. allgem. Chem. 162, 253-278 (1927) Simon and Zeidler,
- 1. Z. physik. Chem. 123, 383-404 (1926) Simons.
- 1. *J. Am. Chem. Soc.* 46, 2179-2183 (1924) Simons and Hildebrand,
- 1. J. Am. Chem. Soc. 46, 2183-2191 (1924)

Sinozaki, Hara, and Mitsukuri,

 Tech. Repts. Tôhoku Imp. Univ. 6, 157-167 (1926)

Skapski and Dabrowski,

- 1. Z. Elektrochem. 38, 365-370 (1932)
- Skrabal, 1. Monatsh. 33, 99-121 (1912)
  - 2. Z. Elektrochem. 17, 665-668 (1911)

Skrabal and Buchta,

1. Montash. 35, 697-730 (1913)

Slonim and Hüttig,

- Z. anorg. allgem. Chem. 181; 55-64 (1929)
   Smellie.
- 1. J. Soc. Chem. Ind. 42, 466-468 (1923) Smith,
  - "International Critical Tables," vol. V, p. 138, McGraw-Hill Book Co., New York (1929)
  - 2. J. Chem. Soc. 867-874 (1927)
  - 3. Rev. Sci. Instruments 10, 711-722 (1925)
  - 4. Phys. Rev. 16, 383-384 (1903)
  - 5. Phys. Rev. 17, 193-232 (1903)
  - Phys. Rev. 25, 145-170 (1907)
  - 7. Phys. Rev. 33, 173-183 (1911)
  - 8. Phys. Rev. 35, 235 (1930)
- Proc. Natl. Acad. Sci. 14, 878-879 (1928)
   Smith and Ball,
- J. Am. Chem. Soc. 39, 179-218 (1917)
   Smith and Braley,
- 1. J. Am. Chem. Soc. 39, 1545-1576 (1917) Smith and Calvert,
  - 1. J. Am. Chem. Soc. 36, 1363-1382 (1914)
- J. Am. Chem. Soc. 38, 801-807 (1916)
   Smith and Hirst,
- 1. Ind. Eng. Chem. 22, 634-635 (1930)
- Smith and Lombard,
- 1. J. Am. Chem. Soc. 37, 38-70 (1915) 2. J. Am. Chem. Soc. 37, 2055-2062 (1915) Smith and Menzies,
  - 1. J. Am. Chem. Soc. 32, 1412-1434 (1910)
  - 2. J. Am. Chem. Soc. 32, 1434-1447 (1910)
  - 3. J. Am. Chem. Soc. 32, 1541-1555 (1910)
- 4. Z. physik. Chem. 76, 251-254 (1911) Smith, Stearn, and Schneider,
- 1. J. Am. Chem. Soc. 42, 32-36 (1920) Smith and Topley,
- 1. J. Chem. Soc. 1977-1979 (1932)

Smith and Woods,

- 1. J. Am. Chem. Soc. 45, 2632-2637 (1923) Smithells,
- 1. Phil. Mag. (6) 1, 476-503 (1901) Smits,
- Rec. trav. chim. 46, 445-452 (1927)
   Smits and Bokhorst,
  - Proc. Acad. Sci. Amsterdam 17, 973-982 (1915)
- Z. physik. Chem. 91, 249-312 (1916)
   Smits and DeLange,
- 1. J. Chem. Soc. 29-44 (1928)

Smits and Postma,

1. Proc. Acad. Sci. Amsterdam 17, 182-191 (1914)

Smits and Purcell,

- 1. J. Chem. Soc. 2936-2944 (1928)
- Smits and Rutgers,
- 1. J. Chem. Soc. 125, 2573-2579 (1924) Smits and Schoenmaker,
  - 1. J. Chem. Soc. 125, 2554-2573 (1924)
- 2. J. Chem. Soc. 1108-1127 (1926) Smyth,
- 1. J. Franklin Inst. 198, 795-811 (1924)

Smyth (Continued)

2. Phys. Rev. 14, 409-426 (1919)

3. Proc. Roy. Soc. (London) 104, 121-134 (1923) Smyth and Adams,

1. J. Am. Chem. Soc. 45, 1167-1184 (1923) Smyth and Roberts,

1. J. Am. Chem. Soc. 42, 2582-2607 (1920) Smyth and Steuckelberg,

1. Helv. Phys. Acta 2, 203 (1902) Snyder,

1. J. Am. Chem. Soc. 49, 2806-2807 (1927) Söderqvist,

1. Z. Physik 76, 316-319 (1932)

2. Z. Physik 76, 756-759 (1932)

3. Z. Physik 79, 638-643 (1933)

Somermeier,

1. Phys. Rev. 1, 141-153 (1913) Sommer,

1. Z. Physik 51, 451-470 (1928)

Sommermeyer,

1. Z. Physik 56, 548-562 (1929)

Sosman.

1. "International Critical Tables," vol. V, pp. 105-106, McGraw-Hill Book Co., New York (1929)

Sosman and Hostetter,

1. J. Am. Chem. Soc. 38, 807-833 (1916) Spangenberg,

1. Z. physik. Chem. 119, 419 (1926)

Speyers,

1. J. Am. Chem. Soc. 18, 146-156 (1896)

1. Proc. Natl. Acad. Sci. 13, 100-104 (1927)

2. Z. Physik 32, 19-26 (1925)

3. Z. Physik 34, 622-633 (1925)

4. Z. physik. Chem. B11, 425-432 (1931) Spring,

1. Bull acad. Belg. 11, 355-404 (1886)

Stackelberg,

1. Z. physik. Chem. 26, 533-563 (1898) Städel,

1. Ber. 15, 2559 (1882)

Stahlberg,

1. Oversikt. Finska Vetenskaps-Soc. Förh. 17, 57 (1914)

Stakhorskii,

1. J. Russ. Phys. Chem. Soc. 58, 966-982 (1926) Stansfield.

 J. Iron Steel Inst. (London) 56, 169-180 (1899)

Starck and Bodenstein,

1. Z. Elektrochem. 16, 961-966 (1910) Stearn and Smith,

1. J. Am. Chem. Soc. 42, 16-32 (1920)

Steele and Bagster,

1. J. Chem. Soc. 97, 2607-2620 (1910)

Steele, McIntosh, and Archbald,

1. Z. physik. Chem. 55, 129-199 (1906) Stegmuller,

1. Z. Elektrochem. 16, 85-92 (1910)

Steiner and Johnston,

1. J. Phys. Chem. 32, 912-939 (1928)

von Steinwehr,

1. Z. physik. Chem. 38, 185-199 (1901)

2. Z. physik. Chem. 88, 229-254 (1914)

Stelzner.

1. Dissertation, Erlangen (1901)

Stelzner and Niederschulte,

1. Ber. deut. physik. Ges. 7, 159-162 (1905)

Stiles and Felsing,

1. J. Am. Chem. Soc. 48, 1543-1547 (1926) Stirneman,

1. Neues Jahrb. Mineral. Geol. (Beilage Bd.) A52, 334-377 (1925)

Stock, Gibson, and Stamm,

1. Ber. 45, 3527-3539 (1912)

Stock, Henning, and Kuss,

1. Bcr. 54, 1119-1129 (1921)

Stock and Kuss,

1. Ber. 50, 159-164 (1917)

Stock, Kuss, and Priess,

1. Ber. 47, 3115-3149 (1914)

Stock and Poppenberg,

1. Ber. 34, 399-403 (1901)

Stock and Priess,

1. Ber. 47, 3109-3115 (1914)

Stock and Seelig,

1. Ber. 52, 672-694 (1919)

Stock, Siecke, and Pohland, 1. Ber. 57, 719-735 (1924)

Stock and Somieski,

1. Ber. 49, 111-158 (1916)

2. Ber. 50, 1739-1754 (1917)

3. Ber. 52, 695-724 (1919)

Stock, Somieski, and Wintgen, 1. Ber. 50, 1754-1769 (1917)

Stock and Stolzenberg,

1. Ber. 50, 498-502 (1917)

Stock and Wrede,

1. Ber. 40, 2923-2925 (1907)

2. Ber. 41, 540-543 (1908)

Stock and Zeidler,

1. Ber. 54, 531-541 (1921)

Stock and Zimmerman,

Monatsh. 55, 1-2 (1930)

Stohmann,

1. J. prakt. Chem. (2) 19, 115-152 (1879)

2. J. prakt. Chem. (2) 31, 273-306 (1885)

3. J. prakt. Chem. (2) 35, 136-141 (1887) 4. Z. physik. Chem. 6, 334-357 (1890)

5. Z. physik. Chem. 10, 410-411 (1892)

Stohmann and Hausmann,

1. J. prakt. Chem. (2) 55, 263-284 (1897)

2. Ber. Verhandl. Sächs. Akad. Wiss. Leipzig 49, 1 (1897)

Stohmann and Kleber.

1. J. prakt. Chem. (2) 43, 1-21 (1891)

2. J. prakt. Chem. (2) 45, 475-499 (1892)

3. J. prakt. Chem. (2) 43, 538-544 (1891) Stohmann, Kleber, and Langbein,

1. J. prakt. Chem. (2) 40, 77-95 (1889)

2. J. prakt. Chem. (2) 40, 128-157 (1889)

3. J. prakt. Chem. (2) 40, 202-229 (1889)

4. J. prakt. Chem. (2) 40, 341-364 (1889)

Stohmann, Kleber, Langbein, and Offenhauer,

- 1. J. prakt. Chem. (2) 49, 99-129 (1894)
- 2. Ber. Verhandl. Sächs. Akad. Wiss. Leipzig 45, 604 (1893)

## Stohmann and Langbein,

- 1. J. prakt. Chem. (2) 42, 361-382 (1890)
- 2. J. prakt. Chem. (2) 44, 336-389 (1891)
- 3. J. prakt. Chem. (2) 45, 305-356 (1892)
- 4. J. prakt. Chem. (2) 46, 530-546 (1893)
- 5. Ber. Verhandl. Sächs. Akad. Wiss. Leipzig 49, 1 (1897)
- J. prakt. Chem. (2) 48, 447-453 (1893)
- J. prakt. Chem. (2) 49, 483-601 (1894)
- 8. J. prakt. Chem. (2) 50, 388-400 (1894) Stohmann, Rodatz, and Herzberg.
- 1. J. prakt. Chem. (2) 35, 40 (1887)
- 2. J. prakt. Chem. (2) 33, 241-260 (1886)
- 3. J. prakt. Chem. (2) 33, 464-470 (1886)
- 4. J. prakt. Chem. (2) 34, 311-325 (1886)
- 5. J. prakt. Chem. (2) 35, 22-40 (1887)
- 6. J. prakt. Chem. (2) 36, 1-16 (1887)
- 7. J. prakt. Chem. (2) 36, 353-510 (1887) Stohmann and Schmidt,
- 1. J. prakt. Chem. (2) 50, 385-387 (1894)
- 2. J. prakt. Chem. (2) 52, 59-71 (1895)
- 3. Ber. Verhandl. Sächs. Akad. Wiss. Leipzig 47, 1 (1895)
- 4. J. prakt. Chem. (2) 53, 345-369 (1896) Stollenwerk.
- 1. Z. anorg. allgem. Chem. 156, 37-55 (1926) Stortenbeker,
- 1. Z. physik. Chem. 10, 183-202 (1892) Stratton and Partington,
- 1. Phil. Mag. 43, 436-446 (1922) Strombeck,
- 1. J. Franklin Inst. 131, 71-77, 470-476 (1891) Stubbs,
- 1. J. Chem. Soc. 103, 1445-1461 (1913) Sudborough and Millar,
- 1. J. Chem. Soc. 59, 73-81 (1891) Sur,
  - 1. Nature 116, 542 (1925)
  - 2. Phil. Mag. 2, 633-642 (1926)
- 3. Z. Physik 41, 791-793 (1927)

### Sutcliffe, Lay, and Prichard,

1. Proc. Roy. Soc. (London) A115, 88-102 (1927)

### Sutton.

- 1. Phil. Mag. 14, 275-285 (1932)
- 1. Chem. Listy 17, 47, 81, 112 (1923) Syensson,
- 1. Z. Physik 59, 333-352 (1930)
- Swallow and Alty, 1. J. Chem. Soc. 3062-3079 (1931)

# Swarts,

- 1. Bull. acad. Belg. (1924)
- 2. J. Chim. phys. 17, 3-70 (1919)
- 3. Rec. trav. chim. 32, 59-67 (1913) Swietoslawski,
  - 1. J. Am. Chem. Soc. 39, 2595-2600 (1917)
  - 2. J. Am. Chem. Soc. 42, 1090-1100 (1920)

- Swietoslawski (Continued)
  - 3. J. chim. phys. 22, 583-588 (1925)
  - 4. J. Russ. Phys. Chem. Soc. 41, 587-641 (1909)
  - 5. J. Russ. Phys. Chem. Soc. 46, 1302-1310
- 6. Z. physik. Chem. 72, 49-83 (1910)

# Swietoslawski and Bobinska,

- 1. J. Am. Chem. Soc. 49, 2476-2479 (1927)
- 2. J. chim. phys. 24, 545-547 (1927)

### Swietoslawski and Pakovick,

1. J. Russ. Phys. Chem. Soc. 46, 1284-1293 (1914)

### Swietoslawski and Popov,

- 1. J. Russ. Phys. Chem. Soc. 46, 935-975 (1914) Swietoslawski, Popov, and Pakovick,
  - 1. J. Russ. Phys. Chem. Soc. 46, 1293-1301

# Swietoslawski and Starczewska,

- 1. Bull. soc. chim. (4) 31, 654-667 (1922)
  - 2. J. chim. phys. 22, 399-401 (1925)
- 3. J. chim. phys. 23, 821-822 (1926)

- T AKAHASHI and Nukada,
  1. J. Chem. Soc. Japan 51, 589-601 (1930) Tamaru,
- 1. J. Soc. Chem. Ind. (Japan) 35, 81 (1916) Tammann,
  - 1. Arch. néerlandes sci. 244-256 (1901)
  - 2. Ann. Physik (3) 68, 629-657 (1899)
  - 3. "Krystallizieren und Schmelzen," p. 232, Barth, Leipzig (1903)
  - 4. Z. anorg. allgem. Chem. 40, 57-60 (1904)
  - 5. Z. anorg. allgem. Chem. 63, 285-305 (1909)
- 6. Z. physik. Chem. 29, 63-76 (1899)

### Tammann and Krige,

- Z. anorg. allgem. Chem. 146, 179-195 (1925) Tammann and Krings,
- 1. Z. anorg. allgem. Chem. 130, 229-245 (1923) Tammann and Ohler.
- 1. Z. anorg. allgem. Chem. 135, 118-126 (1924) Tammann and Westerhold,
- 1. Z. anorg. allgem. Chem. 149, 35-46 (1925) Tananaeff,
- 1. Z. physik. Chem. 114, 49-58 (1924) Tanatar.
  - 1. J. Russ. Phys. Chem. Soc. 23, 243-252 (1891)
  - 2. J. Russ. Phys. Chem. Soc. 24, 365-371 (1892)
  - 3. J. Russ. Phys. Chem. Soc. 24, 615-621 (1892)
  - 4. J. Russ. Phys. Chem. Soc. 24, 694-698 (1892)
  - 5. J. Russ. Phys. Chem. Soc. 25, 97-101 (1893)
  - 6. Z. anorg. allgem. Chem. 27, 304-307 (1901)
  - 7. Z. anorg. allgem. Chem. 27, 432-436 (1901)
  - 8. Z. anorg. allgem. Chem. 27, 437-441 (1901)
  - 9. Z. Physik. Chem. 26, 132-134 (1898)

### Tarassenkow,

- 1. Z. anorg. allgem. Chem. 169, 407-412 (1928) Tassilly,
  - 1. Ann. chim. phys. (7) 17, 38-125 (1899)
  - Compt. rend. 119, 371-373 (1894)
  - 3. Compt. rend. 120, 733-735 (1895)
  - 4. Compt. rend. 122, 82-84 (1896)
  - 5. Compt. rend. 122, 812-814 (1896)

### Tate,

- 1. Dissertation, Berlin (1914)
- 2. Phil. Mag. 26, 502-504 (1862)
- Tate and Lozier.
- 1. Phys. Rev. 39, 254-269 (1932)
- Tate, Smith, and Vaughan,
- 1. Phys. Rev. 43, 1054 (1933)

# Taylor.

- 1. Ind. Eng. Chem. 11, 1121-1124 (1919)
- 2. J. Am. Chem. Soc. 38, 2295-2310 (1916)
- 3. Phil. Mag. (5) 50, 37-43 (1900)
- Taylor and Anderson,
- 1 J. Am. Chem. Soc. 43, 2014-2017 (1921)
- Taylor and Hulett,
- 1. J. Am. Chem. Soc. 44, 1443-1445 (1922) Taylor and Perrott,
- 1. J. Am. Chem. Soc. 43, 484-493 (1921) Terres and Pongracz.
- 1. Z. Elektrochem. 25, 386-407 (1919)
- Terres and Schaller,
- 1. Gas u. Wasserfach 65, 761-764, 780-784, 800-802, 818-821 (1922)

# Terrey and Baker,

1. J. Chem. Soc. 2583-2586 (1930)

## Terwen.

- 1. Z. physik. Chem. 91, 469-499 (1916) von Than,
  - 1. Ann. Physik (3) 13, 84-105 (1881)
  - 2. Ann. Physik (3) 14, 393-426 (1881)
- 3. Ber. 10, 947 (1877)

### Theis,

- 1. Z. angew. Chem. 39, 1568-1574 (1926) Thiel,
- 1. Ber. 55, 2844-2845 (1922)

### Thiel and Ritter,

- 1. Z. anorg. allgem. Chem. 132, 125-158 (1923) Thiele,
- 1. Z. angew. Chem. 26, 370-375 (1913) Thiessen and Koerner.
- 1. Z. anorg. allgem. Chem. 197, 307-312 (1931) Thomas,
- 1. Ann. chim. phys. (8) 11, 204-262 (1907) Thomlinson,
  - 1. Chem. News 93, 37-38 (1905)
- 2. Chem. News 93, 152-153 (1906)
- 3. Chem. News 95, 145 (1907)

### Thompson,

- 1. J. Am. Chem. Soc. 28, 731-766 (1906)
- 2. Trans. Electrochem. Soc. 54, 91-106 (1928)

# Thompson and Armstrong,

1. Trans. Am. Electrochem. Soc. 54, 85-89 (1928)

### Thompson and Lombard,

- 1. Chem. Met. Eng. 8, 617-620 (1910)
- 2. Chem. Met. Eng. 8, 682-684 (1910)

## Thomsen,

- 1. Ann. Physik. (2) 88, 349-362 (1853)
- 2. Ann. Physik. (2) 148, 177-202 (1873)
- 3. Ann. Physik. (2) 148, 368-404 (1873)
- 4. Ann. Physik. (2) 151, 195-225 (1874)
- 5. Ber. 4, 922-925 (1871)
- 6. Ber. 4, 941-947 (1871)
- 7. Ber. 5, 508-510 (1872)

### Thomsen (Continued)

- 8. Ber. 5, 957-963 (1872)
- 9. Ber. 6, 528-531 (1873)
- 10. Ber. 6, 1330-1345 (1873)
- 10a. Ber. 6, 1553 (1873)
- 11. Ber. 15, 3023-3025 (1882)
- 12. J. prakt. Chem. 11, 133-154 (1875)
- 13. J. prakt. Chem. 21, 449-478 (1880)
- 14. "Systematisk gennemforte termokemiske undersogelsers numeriske og teoretiske resultater," ----, Copenhagen (1882-1886)
- 15. "Thermochemische Untersuchungen," vols. I, II, III, IV, Barth, Leipzig (1882, 1882, 1883, 1886)
- 16. Z. physik. Chem. 1, 369-375 (1887)
- 17. Z. physik. Chem. 9, 632-635 (1892)
- 18. Z. physik. Chem. 52, 343-348 (1905)

## Thorpe, 1. J. Chem. Soc. 37, 141-225 (1880)

### Thorsen.

- Naturwissenschaften 11, 78-79 (1923)
- 2. Naturwissenschaften 12, 705 (1924)
- 3. Z. Physik 40, 642-647 (1927)

### Thorvaldson and Brown,

- 1. J. Am. Chem. Soc. 52, 80-87 (1930)
- Thorvaldson, Brown, and Peaker,
- 1. J. Am. Chem. Soc. 51, 2678-2682 (1929) Thum,
- 1. Dissertation, Zurich (1906)

### Tiede and Birnbrauer,

- 1. Z. anorg. allgem. Chem. 87, 129-168 (1914) Tigerschioeld,
- 1. Jernkontorets Ann. 107, 67 (1923) Tilden.
  - 1. Chem. News 52, 111-112 (1885)
- 2. Proc. Roy. Soc. (London) 38, 401-414 (1884) Tilden and Barnett,
- 1. J. Chem. Soc. 69, 154-160 (1896)

# Timmermans,

- 1. Bull. soc. chim. 24, 244-269 (1910)
- 2. "International Critical Tables," vol. III, p. 216, McGraw-Hill Book Co., New York (1927)

# Timofejew,

- 1. Compt. rend. 112, 1138-1140 (1891)
- 2. Compt. rend. 112, 1223-1225 (1891)
- 3. Z. physik. Chem. 6, 141-152 (1890)

### Tollinger,

- 1. Sitzber. Akad. Wiss. Wien 72, 535-577 (1875) Tolloczko,
- 1. Bull. Intern. Acad. Cracovie 1, 1-22 (1901)
- 2. Z. physik. Chem. 30, 705-710 (1899)
- Tolloczko and Meyer.
- 1. Kosmos. Lemberg 35, 641-662 (1910)

### Tolman,

- 1. J. Am. Chem. Soc. 42, 1185-1193 (1920) Tommasi,
- 1. Compt. rend. 98, 812-813 (1884) Toshniwal.
- 1. Phil. Mag. 4, 774-787 (1927)

# Tower,

See Atwater and Snell¹

### Trautz,

- 1. Chem. Ztg. 39, 100 (1915)
- 2. Sitzber. Heidelberger Akad. Wiss. 5A, 31 (1914)
- 3. Z. anorg. allgem. Chem. 88, 285-320 (1914)
- Z. anorg. allgem. Chem. 97, 113-126 (1916)
- Z. anorg. allgem. Chem. 104, 169-211 (1918)
- 6. Z. Elektrochem. 14, 271 (1908)
- 7. Z. Elektrochem. 14, 534-544 (1908)
- 8. Z. Elektrochem. 21, 329-342 (1915)
- 9. Z. Elektrochem. 35, 110-134 (1929)
- Trautz and Badsteubner,
- 1. Z. Elektrochem. 35, 799-802 (1929)
- Trautz, Baisch, and von Dechend,
- 1. Z. Elektrochem. 14, 272-275 (1908)
- Trautz and Rhandarkar,
- 1. Z. anorg. allgem. Chem. 106, 95-125 (1919) Trautz and Dalal.
- 1. Z. anorg. allgem. Chem. 110, 1-47 (1920) Trautz and von Dechend,
- 1. Z. Elektrochem. 14, 275-280 (1906)
- Trautz and Geissler,
- 1. Z. anorg. allgem. Chem. 140, 116-148 (1924) Trautz and Gerwig.
- 1. Z. anorg. allgem. Chem. 134, 409-416 (1924) Trautz and Hinck,
- 1. Z. anorg. allgem. Chem. 93, 177-201 (1915)
- 2. Z. anorg. allgem. Chem. 97, 127-138 (1916) Trautz, Rick, and Acker,
- 1. Z. Elektrochem. 35, 122-127 (1929)
- Trautz and Schlueter,
- 1. Z. anorg. allgem. Chem. 136, 1-47 (1924) Trautz and Stackel,
- 1. Z. anorg. allgem. Chem. 122, 81-131 (1922) Trautz and Wachenheim,
- 1. Z. anorg. allgem. Chem. 97, 241-284 (1916) Treadwell,
- 1. Z. Elektrochem. 22, 414-421 (1916) Trip,
- 1. Dissertation, Jena (1926)
- Troost, 1. Compt. rend. 88, 578-581 (1879)
  - 2. Compt. rend. 94, 789 (1882)

### Troost and Hautefeuille,

- 1. Ann. chim. phys. (5) 2, 145-159 (1874)
- 2. Ann. chim. phys. (5) 7, 155-177 (1876)
- 3. Ann. chim. phys. (5) 9, 56-70 (1876)
- 4. Ann. chim. phys. (5) 9, 70-77 (1876)
- 5. Compt. rend. 70, 252-255 (1870) 6. Compt. rend. 73, 378-382 (1871)
- 7. Compt. rend. 78, 748-750 (1874)
- 8. Compt. rend. 78, 809-811 (1874) 9. Compt. rend. 83, 220-223 (1876)
- 10. Compt. rend. 83, 333-335 (1876)
- 11. Compt. rend. 83, 975-977 (1876)
- Truchot.
- 1. Compt. rend. 98, 821-824 (1884)
- 2. Compt. rend. 98, 1330-1333 (1884)
- 3. Compt. rend. 100, 794-797 (1885) Truthe,
- 1. Z. anorg. allgem. Chem. 76, 161-173 (1912) Tschelinzeff,
  - 1. Bull. soc. chim. 37, 176-187 (1925)

### Tscheltzow,

- Compt. rend. 100, 1458-1460 (1885)
- Tschernobaeff,
- 1. Rev. Mét. 21, 729 (1905)
- Tschernobaeff and Wologdine,
- 1. Compt. rend. 154, 206-208 (1912)
- Phil. Mag. 35, 435-438 (1893)
- Tubandt and Reinhold.
- 1. Z. physik. Chem. A140, 291-308 (1929) Tucker.
- 1. Trans. Roy. Soc. (London) A215, 319-351 (1915)

### Turner,

- Phys. Rev. 27, 397-406 (1926)
- 2. Phys. Rev. 31, 983-985 (1928)
- 3. Phys. Rev. 32, 727-736 (1928) Turner and Samson,
- 1. Phys. Rev. 34, 748-751 (1929)

### Tyrer,

- 1. J. Chem. Soc. 99, 1633-1645 (1911)
- J. Chem. Soc. 101, 81-90 (1912)
- 3. J. Chem. Soc. 101, 1104-1113 (1912)
- 4. J. Chem. Soc. 105, 2534-2542 (1914)

# I J MINO,

- 1. Kinzoku no Kenkyu (J. Research Inst. Metals) (Japan) 3, 385-402 (1926)
- 1a. Japan J. Eng. 5, 52 (1925)
- 2. Kinzoku no Kenkyu (J. Research Inst. Metals) (Japan) 3, 498 (1926)
- 3. Sci. Repts. Tôhoku Imp. Univ. 15, 597-617 (1926)
- 4. Sci. Repts. Tôhoku Imp. Univ. 16, 593-611 (1927)

# Urey,

1. J. Am. Chem. Soc. 45, 1445-1455 (1923)

# VAGO,

# 1. Dissertation, Budapest (1911)

# Valasek,

- 1. J. Optical Soc. Am. 17, 102-106 (1928) Valensi,
- 1. J. chim. phys. 26, 152-202 (1929) Valeur,
- 1. Ann. chim. phys. (7) 21, 470-574 (1900) Van Royen,
- Dissertation, Bonn (1911)

# Varali-Thevenet,

Verkade,

- Nuovo Cimento (6) 4, 186-197 (1902)
- Varet, 1. Ann. chim. phys. 8, 79-141 (1896)
- 2. Ann. chim. phys. 8, 240-288 (1896)
- 3. Compt. rend. 121, 598-599 (1895)
- 4. Compt. rend. 122, 1123-1125 (1896)
- 5. Compt. rend. 123, 118-119 (1896)
- 6. Compt. rend. 123, 497-500 (1896)

# Vaughan and Kistiakowsky,

- 1. Phys. Rev. 40, 456-462 (1932)
- Vaughen, 1. Dissertation, Johns Hopkins (1928)
- 1. Chem. Weekblad 19, 389-392 (1922)

Verkade (Continued)

- 2. Chem. Weekblad 25, 666-667 (1928)
- 3. Dissertation, Delft (1915)
- 4. Verhandel. Akad. Wetenschappen Amsterdam 35, 492-504 (1926)

Verkade and Coops,

- 1. Rec. trav. chim. 42, 205-228 (1923)
- 2. Rec. trav. chim. 43, 561-581 (1924)
- 3. Rec. trav. chim. 45, 545-551 (1926)
- 4. Rec. trav. chim. 46, 903-917 (1927)
- "Landolt-Börnstein Physikalisch-Chemische Tabellen," Fifth Edition, First Supplement, Springer, Berlin (1927)

Verkade, Coops, and Hartmann,

- 1. Rec. trav. chim. 41, 241-277 (1922)
- 2. Rec. trav. chim. 45, 585-606 (1926)

Verkade, Coops, Maan, and Sandbergen,

1. Ann. 467, 217-239 (1928)

Verkade, Hartmann, and Coops,

- Proc. Acad. Sci. Amsterdam 27, 859-866 (1924)
- Rec. trav. chim. 45, 373-393 (1926)
   Verschaffelt,
  - Communications Phys. Lab. Univ. Leiden 55, 1-9 (1906)
- Communications Phys. Lab. Univ. Leiden Supplement 64, 31 (1929)

Vignon,

- 1. Compt. rend. 108, 1049-1052 (1889)
- Compt. rend. 110, 226, 909-910 (1890)
   Villard.
- 1. Ann. chim. phys. (7) 10, 387-432 (1897)
- 2. Ann. chim. phys. (7) 11, 289-394 (1897)
- 3. Compt. rend. 106, 1602-1603 (1888)
- 4. Compt. rend. 107, 395-397 (1888)
- 5. Compt. rend. 118, 646-649 (1894)
- 6. Compt. rend. 118, 1096-1099 (1894)
- 7. Compt. rend. 120, 1262-1265 (1895)
- 8. Compt. rend. 123, 377-379 (1896)
- 9. J. phys. radium 3, 441-451 (1894)
- 10. J. phys. radium 5, 453-461 (1896)

Villard and Jarry,

- 1. Compt. rend. 120, 1413-1416 (1895) Villars,
  - 1. J. Am. Chem. Soc. 51, 2374-2377 (1928)
- 2. Proc. Natl. Acad. Sci. 14, 508-511 (1928)
- Villars and Condon,
- 1. Phys. Rev. 35, 1028-1032 (1930)
- Villiers,
- 1. Ann. chim. phys. (8) 30, 588-633 (1913) Violle,
- 1. Compt. rend. 85, 543-546 (1877)
- 1a. Compt. rend. 87, 981-984 (1878)
- 2. Compt. rend. 94, 28-29 (1882)
- 3. Compt. rend. 115, 1273-1275 (1892)
- 4. Compt. rend. 119, 949-950 (1894)
- 5. Compt. rend. 120, 868-869 (1895) Visser,
- 1. Physica 9, 115-118 (1929)
- 2. Z. Physik 63, 402-403 (1930)

### Voisenet.

1. Bull. soc. chim. (4) 17, 34-37 (1915)

Volmer and Estermann,

1. Z. Physik 7, 1-17 (1921)

Volmer and Kirchhoff,

- 1. Z. physik. Chem. 115, 233-238 (1925) Vosburgh.
- 1. J. Am. Chem. Soc. 49, 2222-2229 (1927)
- 2. J. Am. Chem. Soc. 50, 2386-2394 (1928) Vosburgh and Craig,
- 1. J. Am. Chem. Soc. 51, 2009-2019 (1929) Vriens.
- 1. Z. physik. Chem. 7, 194-220 (1891)

W AENTIG,

W 1. Z. physik. Chem. 68, 513-571 (1909)

Wagner,

- 1. Z. anorg. allgem. Chem. 208, 1-22 (1932) Wahlin,
  - 1. Phys. Rev. 31, 155-156 (1928)
  - 2. Phys. Rev. 32, 277-283 (1928)

Walden,

- 1. J. Am. Chem. Soc. 30, 1350-1355 (1908)
- 2. Z. anorg. allgem. Chem. 29, 371-395 (1902)
- 3. Z. physik. Chem. 58, 479-511 (1907)

Walker,

1. Z. physik. Chem. 42, 207-208 (1902)

Walker and Lumsden,

1. J. Chem. Soc. 71, 428-440 (1897)

Walker and Wood,

1. J. Chem. Soc. 77, 21-33 (1900)

Wanner,

1. Ann. Physik 2, 141-157 (1900) Warburg,

1. Z. Elektrochem. 26, 54-59 (1920)

Warren,
1. J. Am. Chem. Soc. 49, 1904-1908 (1927)

von Wartenberg.

- 1. Ann 440, 97-110 (1924)
- "Nernst Festschrift," pp. 459-463, Knapp, Halle (1912)
- 3. Z. anorg. allgem. Chem. 56, 320-336 (1907)
- 4. Z. anorg. allgem. Chem. 79, 71-87 (1912)
- 5. Z. anorg. allgem. Chem. 151, 326-330 (1926)
- 6. Z. Elektrochem. 15, 866-872 (1909)
- 7. Z. Elektrochem. 19, 482-489 (1913)
- 8. Z. Elektrochem. 20, 443-449 (1914)
- 9. Z. physik. Chem. 67, 446-453 (1909)

von Wartenberg and Albrecht,

1. Z. Elektrochem. 27, 162-167 (1921)

von Wartenberg and Bosse,

1. Z. Elektrochem. 28, 384-387 (1922)

von Wartenberg and Fitzner,

1. Z. anorg. allgem. Chem. 151, 313-325 (1926)

von Wartenberg and Hanisch,

1. Z. physik. Chem. A161, 463-469 (1932)

von Wartenberg and Henglein,

1. Ber. 55, 1005 (1922)

von Wartenberg and Klinkott,

1. Z. anorg. allgem. Chem. 193, 409-419 (1930)

von Wartenberg and Krause,

1. Z. physik. Chem. A151, 105-108 (1930)

von Wartenberg, Muchlinski, and Riedler,

1. Z. angew. Chem. 37, 457-459 (1924)

von Wartenberg and Schulz,

1. Z. Elektrochem. 27, 568-573 (1921)

von Wartenberg and Schutte,

- 1. Z. anorg. allgem. Chem. 211, 222-227 (1933) von Wartenberg and Schutza,
  - 1. Z. physik. Chem. A164, 386-388 (1933)
  - 2. Z. anorg. allgem. Chem. 206, 65-72 (1932)

von Wartenberg, Sprenger, and Taylor,

 Z. physik. Chem. Bodenstein Festschrift, 61-68 (1931)

von Wartenberg and Weigel,

- 1. Z. anorg. allgem. Chem. 142, 337-344 (1924) von Wartenberg and Werth,
- 1. Z. Elektrochem. 38, 401-402 (1932)

Wasastjerna,

Dissertation, Helsingfors (1918)

Washburn,

- 1. Trans. Am. Cer. Soc. 19, 195-201 (1917)
- 2. Bur. Standards J. Research 10, 525-558 (1933) Washburn and Strachan,
- 1. J. Am. Chem. Soc. 35, 681-714 (1913) Wasjuchnowa,
- 1. Dissertation, Berlin (1909)

Wassermann,

1. Z. physik. Chem. A146, 409-417 (1930)

Watanabe,

- Bull. Inst. Phys. Chem. Research (Tokyo) 8, 708 (1928)
- Bull. Inst. Phys. Chem Research (Tokyo)
   9, 94 (1929)
- Bull. Inst. Phys. Chem. Research (Tokyo)
   477 (1930)
- Sci. Papers Inst. Phys. Chem. Research (Tokyo) 12, 251-267 (1930)

Watase,

- Sci. Repts. Tôhoku Imp. Univ. 17, 1091-1109 (1928)
- 2. Z. physik. Chem. A147, 390-394 (1930) Watson.
- 1. Phys. Rev. 34, 372-374 (1929)

Watts and Mendenhall,

- 1. Ann. Physik 35, 783-789 (1911) Webb.
- 1. Dissertation, Princeton (1924)
- 2. J. Phys. Chem. 27, 448-454 (1923)

Weber,

- 1. Z. anorg. allgem. Chem. 21, 305-360 (1899) Wegscheider,
- 1. Z. anorg. allgem. Chem. 103, 207-220 (1918)
- 2. Z. physik. Chem. 65, 97-110 (1908)

Wehnelt and Musceleanu,

 Verhandl. deut. physik. Ges. 14, 1032-1034 (1912)

Weide and Bichowsky,

- 1. J. Am. Chem. Soc. 48, 2529-2533 (1926) Weigert,
- Z. physik. Chem. 63, 458-466 (1908)
   Weinberg.
  - 1. Ber. 52, 218 (1919)
  - 2. Z. Physik 3, 337-342 (1920)

Weiss and Kaiser,

1. Z. anorg. allgem. Chem. 65, 345-402 (1910)

Weiss, Martin, and Stimmelmayr,

- 1. Z. anorg. allgem. Chem. 65, 279-340 (1910) Weiss and Neumann,
- 1. Z. anorg. allgem. Chem. 65, 248-278 (1910) Weiss. Piccard, and Carard,
  - Arch. sci. phys. nat. 43, 113-130, 199-216 (1917)

Weizel,

- "Bandenspektren," "Handbuch der Experimentalphysik," vol. I, Supplement, Akad. Verlagsges, Leipzig (1931)
- 2. Z. Physik 52, 175-196 (1929)
- 3. Z. Physik 54, 321-340 (1929)
- 4. Z. Physik 56, 727 (1929)
- 5. Z. Physik 59, 320-332 (1930)

Weizel and Fuchbauer,

1. Z. Physik 44, 431-454 (1927)

Weizel and Kulp,

1. Ann. Physik (5) 4, 971-984 (1930)

Weizel and Pestel,

1. Z. Physik 56, 197-224 (1926)

Welch and Duschak,

- 1. Bur. Mines Tech. Paper No. 81 (1915) Wells,
- 1. J. Wash. Acad. Sci. 5, 617-622 (1915) Werner,
  - 1. Ann. chim. phys. (6) 27, 570-573 (1892)
- 2. Z. anorg. allgem. Chem. 83, 275-321 (1913) Wertenstein and Jedrzejewski,
- Compt. rend. 177, 316-319 (1923)
   Wescott,
- 1. J. Am. Chem. Soc. 42, 1335-1349 (1920) West,
- 1. J. Chem. Soc. 81, 923-929 (1902) West and Menzies,
- 1. J. Phys. Chem. 33, 1880-1892 (1929) Whalen and Tanch,
- 1. Astrophys. J. 55, 291-301 (1922) White,
- 1. Am. J. Sci. (4) 47, 1-43 (1919)
- 2. Chem. Met. Eng. 25, 17-21 (1921)
- 3. Phys. Rev. 33, 538-546 (1929)
- 4. Phys. Rev. 33, 672-683 (1927)
- 5. Phys. Rev. 33, 914-924 (1929)

Wichelhaus, 1. Ber. 6, 257 (1868)

Wiebe and Brevoort,

- 1. J. Am. Chem. Soc. 52, 622-633 (1930)
- Wiebe, Hubbard, and Brevoort, 1. J. Am. Chem. Soc. 52, 611-622 (1930)
- Wiedemann,
  1. J. prakt. Chem. 9, 338-356 (1874)
- Wiegert,
  1. Ann. Physik 24, 55-67 (1907)

1. Ann. Physik 24, 55-

Wieland,

- 1. Helv. Phys. Acta 22, 46-76, 77-94 (1929) Wigand,
- Z. physik. Chem. 63, 273-306 (1908)
   Wigner and Witmer,
- 1. Z. Physik 51, 859 (1928) Wilhelm,
- 1. Bur. Standards Sci. Papers 13, 294, 655 (1916)

Wilhelm (Continued)

2. J. Franklin Inst. 182, 525 (1916)

1. Z. anorg. allgem. Chem. 116, 71-95 (1921) Wilke and Kieninger,

1. Z. physik. Chem. 116, 215-226 (1925) Williams,

1. J. Am. Chem. Soc. 47, 2644-2652 (1925)

1. Phil. Mag. 49, 354-369 (1925)

Wilson,

1. Ind. Eng. Chem. 13, 326-331 (1921)

2. J. Am. Chem. Soc. 43, 704-725 (1921) 3. Phys. Rev. 32, 611-617 (1928)

4. Proc. Roy. Soc. (London) 58, 174-176 (1895) Wilson and Fitzgerald,

 Proc. Roy. Soc. (London) 60, 377-383 (1807) Winans,

1. Nature 123, 279 (1929)

2. Phil. Mag. (7) 7, 555-565 (1929)

Winkelmann,

1. Ann. Physik (2) 149, 1-44 (1873)

2. Ann. Physik (3) 9, 208-239 (1880)

3. Ann. Physik (3) 9, 358-393 (1880)

4. Z. physik. Chem. 60, 626-637 (1907)

Winkler.

1. Ber. 22, 1764 (1889)

2. Ber. 24, 3602-3610 (1891)

3. Ber. 34, 1408-1422 (1901)

4. Chem. Ztg. 23, 687-689 (1899)

5. "Landolt-Börnstein Physikalisch Chemische Tabellen," Fifth Edition, p. 767, Springer, Berlin (1923)

6. Math. naturw. Ber. Ungarn. 9, 195-215 (1891)

7. Matematik, Természettud, Értesitó, 25, 86-108 (1907)

8. Z. anal. Chem. 28, 269-289 (1889)

9. Z. physik. Chem. 9, 171-195 (1892)

10. Z. physik. Chem. 55, 344-354 (1906)

1. J. Phys. Chem. 32, 576-582 (1928) Wintgen,

1. Ber. 52, 724-731 (1919)

1. Ann. Physik (3) 40, 438-449 (1890) Witkowski,

1. Phil. Mag. (5) 42, 1-37 (1896)

1. Phys. Rev. 28, 1223-1241 (1926)

1. Z. Elektrochem. 30, 36-46 (1924)

2. Z. Elektrochem. 30, 49-62 (1924)

3. Z. physik. Chem. 110, 166-187 (1924)

Wohl and Kadow,

1. Z. physik. Chem. 118, 460-474 (1925)

Wohler,

1. Z. Elektrochem. 11, 836-844 (1905) Wohler and Balz.

1. Z. anorg. allgem. Chem. 139, 411-418 (1924)

2. Z. Elektrochem. 27, 406-419 (1921)

Wohler and Foss,

1. Z. Elektrochem. 12, 781-786 (1906)

Wohler and Gunther,

1. Z. Elektrochem. 29, 279-285 (1923)

Wohler and Martin,

1. Z. ges. Schiess.-Sprengstoffw. 12, 1 (1918) Wohler and Muller.

1. Z. anorg. allgem. Chem. 120, 49-70 (1921)

2. Z. anorg. allgem. Chem. 149, 125-138 (1925)

Wohler, Pluddemann, and Wohler,

1. Ber. 41, 703-717 (1908)

Wohler and Streicher, 1. Ber. 46, 1577-1586 (1913)

2. Ber. 46, 1591-1597 (1913)

Wohler and Witzmann,

1. Z. Elektrochem. 14, 97-107 (1908)

Wolchowsky,

1. J. Russ. Phys. Chem. Soc. 42, 1180-1194

Wolfender, Jackson, and Hartley,

1. J. Phys. Chem. 31, 850-861 (1927)

Wolff,

1. Ann. Physik 42, 825-839 (1913)

2. Z. Elektrochem. 20, 19-22 (1914)

Wolffenstein,

1. Ber. 27, 3307-3312 (1894)

Wologdine,

1. Compt. rend. 157, 121-123 (1913)

Wologdine and Penkiewitsch,

1. Compt. rend. 158, 498-499 (1914) Woods,

1. Phil. Mag. 2, 268-272 (1851)

Phil. Mag. 28, 106-108 (1864)

Worobieff.

1. J. Russ. Phys. Chem. Soc. 28, 458-460 (1896) Wourtzel.

1. Compt. rend. 169, 1397-1400 (1919)

Wrede,

1. "Landolt-Börnstein Physikalisch Chemische Tabellen," Fifth Edition, First Supplement, Springer, Berlin (1927)

2. Z. physik. Chem. 75, 81-94 (1910)

Wrewskii,

1. J. Russ. Phys. Chem. Soc. 59, 69-76 (1927)

2. Z. physik. Chem. 144, 244-252 (1929)

Wrewskii and Faermon,

1. Z. physik. Chem. A144, 359-382 (1929)

Wrewskii, Held, and Scukarev,

1. Z. physik. Chem. 133, 377-389 (1928)

Wrewskii, Miscenko, and Muromzew,

Z. physik, Chem. 133, 362-369 (1928)

Wrewskii and Nikol'skii,

1. J. Russ. Phys. Chem. Soc. 59, 77-88 (1927) Wrewskii and Sawaritzky,

1. Z. physik Chem. 112, 90-96 (1924)

Wrewskii and Slagoleva,

1. Z. physik. Chem. 133, 370-376 (1928) Wroblewsky,

1. Ann. Physik (3) 20, 251 (1883)

2. Ann. Physik (3) 25, 371-407 (1888)

3. Compt. rend. 94, 212-213 (1882)

4. Compt. rend. 102, 1010-1012 (1886)

5. Monatsh. 6, 204-248 (1885)

Wuellner and Grotrian,

1. Ann. Physik (3) 11, 545-604 (1880) Wrzesnewsky,

1. Z. anorg. allgem. Chem. 74, 95-121 (1912) Wulf,

1. J. Am. Chem. Soc. 47, 1944-1945 (1925)

2. Proc. Natl. Acad. Sci. 14, 609-613 (1928)

3. Proc. Natl. Acad. Sci. 14, 614-617 (1928) Wurtz,

1. Compt. rend. 76, 601-609 (1873)

2. Compt. rend. 93, 731 (1881)

Wust and Durrer,

 Forsch. Gebiete Ingenieurw. No. 241, 3-46 (1922)

Wust and Lange,

1. Z. Elektrochem. 30, 523-528 (1924)

2. Z. physik. Chem. 116, 161 (1925)

Wust, Meuthen, and Durrer,

 Forsch. Gebiete Ingenieurw. No. 204, 1-63 (1918)

2. Z. Instrumentenk. 39, 294-295 (1919)

Wyneken,

1. Z. physik. Chem. A136, 146-158 (1928)

Y AMADA,

1. J. Iron Steel Inst. (London) 105, 409-426 (1922)

2. Sci. Repts. Tôhoku Imp. Univ. 10, 453 (1921)

Trans. Faraday Soc. 28, 781-788 (1933)
 Yap and Liu,

1. Trans. Faraday Soc. 28, 788-797 (1932) Yates.

1. Phil. Mag. 2, 817-826 (1926)

Yoshida.

 Sci. Repts Tôhoku Imp. Univ. 17, 1279-1287 (1928)

Yost and Claussen,

1. J. Am. Chem. Soc. 55, 885-891 (1933) Yost and Kircher,

1. J. Am. Chem. Soc. 52, 4680-4685 (1930)

Young,

1. J. Chem. Soc. 59, 629-634 (1891)

2. Sci. Proc. Roy. Soc. (Dublin) 12, 374 (1910) Young and Fortey,

1. J. Chem. Soc. 81, 717-752 (1902)

MAKRZEWSKY,

1. Ann. Physik (3) 47, 157 (1892)

2. Bull. intern. acad. Cracovie 153 (1892) Zalesinski and Zulinski,

1. Bull. intern. acad. polonaise (A) 479 (1928) Zanninovich-Tessarin.

Gazz. chim. ital. 26A, 311-323 (1896)
 Zavrieff,

1. J. chim. phys. 7, 31-57 (1909)

Zavidski and Schagger,

Kosmos 85, 501
 Zeleny and Smith,

1. Phys. Rev. 24, 42-49 (1907)

2. Physik. Z. 7, 667-671 (1906)

Zemczuzny,

1. J. Russ. Phys. Chem. Soc. 41, 1785 (1909) Zemczuzny and Rambach,

1. Z. anorg. allgem. Chem. 65, 403-428 (1910)

 Ann. inst. anal. phys. chim. (Leningrad) 3, 14-41 (1926)

 Ann. inst. anal. phys. chim. (Leningrad) 3, 461-462 (1926)

van der Ziel,

1. Physica 1, 353-362 (1934)

Zubov,

 J. Russ. Phys. Chem. Soc. (7) 28, 687-699 (1896)

2. J. Russ. Phys. Chem. Soc. (7) 30, 926-950 (1898)

Zubov and Swietoslawski,

1. Bull. soc. chim. 37, 271-274 (1925)

Zukowsky,

Z. anorg. allgem. Chem. 71, 403-418 (1911)
 Zwicknagl,

1. Z. anorg. allgem. Chem. 151, 41-52 (1926)

# **INDEX**

# COMPOUNDS

As indicated on page 15, the formula of the substance, written according to the standard arrangement given on page 16, determines (1) the element under which the compound will be listed and (2) the position the compound will occupy in that section. In the table, all locations are exact; in the text, all main locations are exact and the sublocations are approximately in the proper order. The index for the elements is given below.

# ELEMENTS

	TABLE	TEXT		TABLE	TEXT
Actinium		337	Germanium	<b>55</b>	254
Aluminum		331	Gold	80	296
Antimony	41	224	Hafnium	103	328
Argon		171	$\mathbf{Helium}$	17	171
Arsenic	39	223	Holmium	109	334
Barium		355	Hydrogen	<b>2</b> 0	174
Beryllium		337	Illinium	110	335
Bismuth	<b>42</b>	228	Indium	61	263
Boron	105	329	Iodine	25	189
Bromine	24	185	Iridium	82	299
Cadmium	67	272	Iron	89	308
Calcium	117	343	Krypton	18	171
Carbon	43	229	Lanthanum	111	337
Cerium	111	336	Lead	58	257
Cesium	168	402	Lithium	131	362
Chlorine	22	179	Lutecium	109	334
Chromium	95	318	Magnesium	113	339
Cobalt	87	305	Manganese	92	314
Columbium	101	326	Masurium	<b>84</b>	302
Copper	73	283	Mercury	69	276
Dysprosium	109	334	Molybdenum	97	321
Erbium		334	Neodymium	110	335
Europium	109	335	Neon	17	171
Fluorine	<b>2</b> 1	178	Nickel	84	<b>302</b>
Gadolinium	109	334	Nitrogen	32	206
Gallium	60	263	Osmium	82	300

460 INDEX

	TABLE	TEXT		TABLE	TEXT
Oxygen	19	172	Sodium	137	367
Palladium	83	300	Strontium	122	351
Phosphorus	37	218	Sulfur	27	193
Platinum	81	298	Tantalum	101	326
Polonium	31	206	Tellurium	31	205
Potassium	150	384	Terbium	109	334
Praseodymium	110	335	Thallium	62	264
Protoactinium	101	326	Thorium	104	328
Radium	130	362	Thulium	109	334
Radon	18	172	Tin	56	255
Rhenium	82	300	Titanium	101	326
Rhodium	83	301	Tungsten	98	322
Rubidium	165	400	Uranium	99	323
Ruthenium	84	302	Vanadium	100	325
Samarium	109	335	Xenon	18	172
Scandium	108	333	Ytterbium	109	334
Selenium	30	<b>202</b>	Yttrium	108	334
Silicon	54	252	Zinc	64	266
Silver	77	<b>29</b> 0	Zirconium	102	327

UNIVERSAL LIBRARY UNIVERSAL LIBRARY