ASM31AX003

ARM® Cortex®-M0+ 32 位 汽车级低功耗微控制器数据手册

Sine Microelectronics Co.,Ltd 赛腾微电子有限公司

1 简介

ASM31AX003 是一款符合汽车级 AEQ-Q100 标准、内嵌 32 位 ARM® Cortex®-M0+内核的超低功耗、Low Pin Count 和宽电压工作范围(2.4V~5.5V)的微控制器,最高可运行在24MHz,内置64K/32K/16K 字节的嵌入式 Flash,4K 字节的 SRAM,集成了12 位 1Msps高精度 SAR型 ADC、RTC、比较器、多路 UART、SPI、I2C 和 PWM 等丰富的外设接口,具有高整合度、高抗干扰、高可靠性的特点。ASM31AX003 配合成熟的 Keil μVision调试开发软件,支持 C 语言及汇编语言在线快速开发与调试。

ASM31AX003 典型应用

ASM31AX003 系列具有低电压、低功耗、低待机电流、高集成度外设、高效率操作、快速唤醒及高性价比等优势,可广泛适用汽车门窗升降控制、座椅调节、电动后视镜等汽车车身控制领域。

2 产品信息

2.1 产品特性

内核

- ◆ ARM® Cortex®-M0+内核,最高运行到24MHz
- ◆ 一个24位系统定时器
- ◆ 支持低功耗睡眠模式
- ◆ 单周期32位硬件乘法器

> 存储器

- ◆ 64K/32K字节嵌入式Flash,具有擦写保护功能
- ◆ 4K字节SRAM

时钟与电源

- ◆ 4路可选时钟源
 - 外部4MHz~24MHz高速晶振
 - 外部32.768KHz晶振
 - 内部4MHz-24MHz高速时钟
 - 内部低速38.4KHz/32.768KHz时钟
 - 支持硬件时钟监视
- ◆ 电源管理
 - 两种低功耗工作模式: Sleep、Deep Sleep
 - 低电压检测,可配置为中断或复位

> 中断

- ◆ 嵌套向量中断控制器(NVIC)用于控制32个中 断源,每个中断源可设置为4个优先级
- ◆ 支持串行调试(SWD)带2个观察点/4个断点

> 超低功耗

- ◆ 动态功耗:120uA/MHz@5V
- ◆ 静态功耗: 0.6uA@5V

▶ 通信接口

- ◆ 两路标准UART&一路超低功耗UART
- ◆ SPI标准通讯接口,最高达8Mbits/s
- ◆ I2C标准通讯接口,最高达1Mbits/s
- ◆ One-Wire通讯接口

蜂鸣器频率发生器

▶ 定时器/计数器

- ◆ 1x16位高级控制定时器:有4通道PWM输出/输入捕获,支持3路互补输出,以及死区生成和紧急停止功能
- ◆ 1x16位通用定时器,支持4路比较输出/输入捕获,PWM输出
- ◆ 1x16位可编程定时器阵列,支持5路输入捕获/ 比较输出,PWM输出
- ◆ 2x16/32位基础定时器/计数器
- ◆ 1x16位低功耗定时器
- ◆ 自动唤醒定时器
- ◆ 系统窗口看门狗和独立看门狗定时器

> RTC

- ◆ 支持RTC计数(秒/分/小时)及万年历功能(日/月 /年)
- ◆ 支持闹铃功能寄存器(秒/分/小时/日/月/年)
- ◆ 支持RTC从Deep Sleep模式唤醒系统

> ADC

- ◆ 7通道12位1Msps采样速率,12位SAR型ADC
- ▶ 电压比较器(VC)
- ➤ 低电压检测器(LVD)
- ➤ 硬件CRC-16模块
- > 工作条件
 - ◆ 宽电压工作范围2.4V至5.5V
 - ◆ 宽工作频率最高至24MHz
 - ◆ 工作温度: -40℃至+105℃
- ▶ 16字节的芯片唯一ID(CID)
- > AEC-Q100 Grade 2
- > 开发工具
 - ◆ 全功能的嵌入式调试解决方案
 - ◆ 在系统编程(ISP编程)方案
- ➤ 封装形式: TSSOP20/QFN20

2.2订购信息

芯片型号	Flash 容量	封装形式	出货形式
ASM31AX003F6T	32K	TSSOP20	卷带或者管装
ASM31AX003F8T	64K	TSSOP20	卷带或者管装
ASM31AX003F6Q	32K	QFN20	卷带或者管装
ASM31AX003F8Q	64K	QFN20	卷带或者管装

3 产品功能概述

在下面的章节里面将对 ASM31AX003 系列产品的功能以及周边基本特性做一个简单的 概述。

3.1 **32 位 Cortex®-M0+内核**

ARM® Cortex®-M0+处理器是最新一代的嵌入式 32 位 RISC 处理器,该处理器引脚数少、 功耗低,能够提供满足 MCU 实现需要的低成本平台,同时提供卓越的计算性能和先进的 中断系统响应。Cortex®-M0+处理器全面支持 Keil & IAR 调试器,包含了一个硬件调试电 路,支持2线式的SWD调试接口。

Cortex®-M0+特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
CoreMark/MHz	2.46
DMIPS/MHz	0.95
中断	32 个中断源
中断优先级	可配置 4 级中断优先级
增强指令	单周期 32 位乘法器
调试接口	支持 SWD 2 线式调试接口,支持 4 个硬中断(break point)
	以及2个观察点(watch point)

3.2 存储器(Memory)

3.2.1 嵌入式闪存存储器(Flash)

嵌入式闪存存储器,用于存放程序和数据。内建全集成的 Flash 控制器,无需外部高压 输入,由全内置电路产生高压来编程,支持 ISP、IAP 功能。

- ASM31AX003 系列支持 64K/32K 字节。

3.2.2 内置 SRAM

4K字节的内置 SRAM。

3.3 时钟系统

- 一个频率为 4M~24MHz 的可配置高精度内部时钟 HIRC。在配置为 16MHz 时,从低功 耗模式到工作模式的唤醒时间为 3us,全电压全温度范围内的频率偏差<±2.5%,无需外 接昂贵的高频晶体。
- 一个频率为 4M~24MHz 的外部高速晶振 HXT。
- 一个频率为 32.768kHz 的外部低速晶振 LXT。
- 一个频率为 32.768kHz/38.4kHz 的内部低速时钟 LIRC。

3.4 工作模式

- 1) 运行模式 Active: CPU 运行,周边功能模块运行。
- 2) 休眠模式 Sleep: CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式 Deep Sleep: CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

可以通过软件来选择运行在哪种工作模式。休眠模式时 CPU 时钟关闭,其他部分依然可以工作,可以通过中断来唤醒 CPU。深度休眠模式下,系统主时钟关闭,绝大部分模块停止工作,系统工作在内置的 38.4KHz/32.768KHz 内置低速时钟上,可以通过 RTC 中断或外部的唤醒引脚来唤醒芯片。在正常工作模式下,可以选择分频方式工作或停止一些不需要使用的模块的时钟来实现功耗和性能之间的灵活切换。

中断控制器

Cortex®-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ) 输入,有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。 详情请参考"ARM® Cortex®-M0+ Technical Reference Manual"与"ARM® v6-M Architecture Reference Manual".

32 个中断源,如表 3-1 中断源所示:

表 3-1 中断源

中断号	中断源	简介	Sleep 模式唤醒	DeepSleep 模式唤醒	向量地址
0	GPIO_PA	GPIOA中断	Y	Y	0x0000 0040
1	GPIO_PB	GPIOB中断	Υ	Y	0x0000 0044
2	GPIO_PC	GPIOC中断	Υ	Y	0x0000 0048
3	GPIO_PD	GPIOD中断	Υ	Y	0x0000 004C
4	Flash	Flash中断	N	N	0x0000 0050
5	保留	-	-	-	0x0000 0054
6	UART0	UART0中断	Υ	N	0x0000 0058
7	UART1	UART1中断	Y	N	0x0000 005C
8	LPUART	LPUART中断	Υ	Υ	0x0000 0060
9	保留	-	-	-	0x0000 0064
10	SPI	SPI中断	Υ	N	0x0000 0068
11	保留	-	-	-	0x0000 006C
12	I2C	I2C中断	Υ	N	0x0000 0070
13	保留	-	-	-	0x0000 006C
14	TIM10	TIM10中断	Υ	N	0x0000 0078
15	TIM11	TIM11中断	Υ	N	0x0000 007C
16	LPTIM	LPTIM中断	Υ	Υ	0x0000 0080
17	保留	-	-	-	0x0000 007C
18	TIM1	TIM1中断	Υ	N	0x0000 0088
19	TIM2	TIM2中断	Υ	N	0x0000 008C
20	保留	-	-	-	0x0000 0088
21	PCA	PCA中断	Υ	N	0x0000 0094
22	WWDG	WWDG中断	Υ	N	0x0000 0098
23	IWDG	IWDG中断	Υ	Υ	0x0000 009C
24	ADC	ADC中断	Υ	N	0x0000 00A0
25	LVD	LVD中断	Υ	Y	0x0000 00A4
26	VC	VC中断	Υ	Υ	0x0000 00A8
27	保留	-	-	-	0x0000 00A4
28	AWK	AWK中断	Υ	Υ	0x0000 00B0
29	ONEWIRE	1-WIRE中断	Υ	N	0x0000 00B4
30	RTC	RTC中断	Υ	Υ	0x0000 00B8
31	CLKTRIM	CLKTRIM中断	Υ	Y ^注 1	0x0000 00BC

注 1: 只有在选择内部低速监控外部低速时钟功能时才能唤醒

3.6 复位控制器

本产品具有 9 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 0x00000000。

编号	中断源
0	上电/掉电复位
1	外部Reset Pin复位
2	IWDG复位
3	WWDG复位
4	系统软件复位
5	欠电压(LVD)复位
6	LOCKUP复位
7	寄存器CPURST复位
8	寄存器MCURST复位

3.7 通用 IO 端口

最多可提供 16 个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种功耗模式下把 MCU 唤醒到工作模式。支持 Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16 个通用 IO 可支持外部异步中断。

3.8 定时器和看门狗

ASM31AX003产品包含 1 个高级控制定时器、1 个通用定时器、1 个可编程计数器阵列、2 个基础定时器、1 个低功耗基本定时器、1 个系统窗口看门狗定时器、1 个独立看门狗定时器和 1 个系统嘀嗒(SysTick)定时器。

下表比较了高级控制定时器、通用定时器和基础定时器的功能:

PWM 输 捕捉/比 互补输 定时器类型 名称 计数器位宽 预分频系数 计数方向 出 较通道 出 1/2/4/8/16/ TIM1 16位 递增、递减、递增/递减 有 4 3对 高级 64/256/1024 1/2/4/8/16/ 无 通用 TIM2 16位 递增、递减、递增/递减 有 64/256/1024 可编程计数器 1/2/4/8/16/ 无 **PCA** 16位 递增 有 5 32 阵列 1/2/4/8/16/ 无 低功耗 **LPTIM** 16位 递增 无 无 64/256/1024 1/2/4/8/16/ TIM10 16/32位 递增 无 无 无 64/256/1024 基础 1/2/4/8/16/ TIM11 16/32位 递增 无 无 无 64/256/1024

表 3-2 定时器特性表

3.8.1 高级控制定时器(TIM1)

1 个高级控制定时器(TIM1)可以被看成是分配到 6 个通道的三相 PWM 发生器,它具有带死区插入的互补 PWM 输出,还可以被当成完整的通用定时器。四个独立的通道可以用于:

- 输入捕获
- 输出比较
- 产生 PWM(边缘或中心对齐模式)
- 单脉冲输出配置为 16 位标准定时器时,它与 TIMx 定时器具有相同的功能。配置为 16 位 PWM 发生器时,它具有全调制能力(0~100%)。

在调试模式下,计数器可以被冻结,同时 PWM 输出被禁止,从而切断由这些输出所控制的开关。很多功能都与通用 TIM 定时器相同,内部结构也相同,因此高级控制定时器可以通过定时器链接功能与其他 TIM 定时器协同操作,提供同步或事件链接功能。

3.8.2 通用定时器(TIM2)

通用定时器(TIM2)有一个 16 位的自动加载递加/递减计数器、一个 16 位的预分频器和 4 个独立的通道,每个通道都可用于输入捕获、输出比较、PWM 和单脉冲模式输出,它们还能通过定时器链接功能与高级控制定时器共同工作,提供同步或事件链接功能。在调试模式下,计数器可以被冻结。任一标准定时器都能用于产生 PWM 输出。

3.8.3 可编程计数器阵列(PCA)

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可以用作一个通用的时钟计数/事件计数器的捕获/比较功能。PCA的每个模块都可以进行独立编程,提供输入捕捉比较或脉冲宽度调制。

3.8.4 低功耗定时器(LPTIM)

低功耗定时器为 1 个异步的 16 位可选定时器。在系统时钟关闭后仍然可以通过内部低速 LIRC 或者外部低速晶体振荡器计时/计数。通过中断可以在低功耗模式下唤醒系统。

3.8.5 基础定时器(TIM10/11)

基础定时器包含 2 个 16/32 位可选定时器 TIM10/TIM11。TIM10/TIM11 功能完全相同,都是是同步定时/计数器,可以选择工作在重载模式和非重载模式。TIM10/TIM11 可以对外部脉冲进行计数或者实现系统定时。

3.8.6 **独立看门狗(IWDG)**

独立的看门狗是一个 20 位递减计数器。它由内部独立的 LIRC 提供时钟;由于内部 LIRC 独立于主时钟,因此它可在停机和待机模式下工作。它既可用作看门狗,以在发生问题时复位器件,也可用作自由运行的定时器,以便为应用程序提供超时管理。通过选项字节,可对其进行硬件或软件配置。在调试模式下,计数器可以被冻结。

3.8.7 系统窗口看门狗(WWDG)

系统窗口看门狗基于一个 8 位递减计数器,支持 20 位的预分频,它由 APB 时钟(PCLK)

提供时钟。它可以作为看门狗以在发生问题时复位器件,具有早期警告中断功能,并且 计数器可在调试模式下被冻结。

3.8.8 SysTick 定时器

此定时器专用于实时操作系统,但也可用作标准递减计数器。它具有以下特性:

- 24 位递减计数器
- 自动重载功能
- 当计数器计为0时,产生可屏蔽系统中断
- 可编程时钟源(HCLK 或 HCLK/4)

3.9 RTC(实时时钟)

- 支持 RTC 计数(秒/分/小时)及万年历功能(日/月/年)
- 支持闹铃寄存器(秒/分/小时/日/月/年)
- RTC 可以从 Deep Sleep 模式唤醒系统

3.10 通用异步收发器 UART0~UART1, LPUART

- 2 路通用异步收发器(Universal Asynchronous Receiver/Transmitter)
- 1 路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter)

3.11 同步串行接口(SPI)

1 路同步串行接口(Serial Peripheral Interface),支持主从模式。

3.12 I2C 总线接口

1 路 I2C 接口,支持主从模式。采用串行同步时钟,可实现设备之间以不同的速率传输数据,串行 8 位双向数据传输最大速度可达 1Mbps。

3.13 One-Wire 总线

支持 One-Wire 总线协议

3.14 蜂鸣器(BEEP)

蜂鸣器模块可以在 BEEP 引脚上产生一个 1KHz, 2KHz, 4KHz 的蜂鸣信号, 用来驱动外部的蜂鸣器。

2 个基础定时器 TIM10/TIM11 与 1 个 LPTIM 可以功能复用输出,为 Buzzer 提供可编程 驱动频率。可以支持互补输出,不需要额外的三级管。

3.15 **自动唤醒(AWK)**

AWK 是用于当 MCU 进入低功耗模式时提供一个内部的唤醒时间基准。该时间基准的时钟是由内部的低速 RC 振荡器时钟(LIRC)或者通过预分频的 HXT 晶振时钟来提供的。

3.16 时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟来校准内部 RC 时钟,亦可使用内部 RC 时钟去检测外部晶振时钟是否工作正常。

3.17 **唯一 ID** 号

每颗芯片出厂时都具备唯一的 16 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。ID 地址 0X1800 00F0-0X1800 00FF

3.18 CRC16 硬件循环冗余校验码

符合 ISO/IEC13239 中给出的多项式 F(x) = X¹⁶ + X¹² + X⁵ + 1。

3.19 **12 Bit SAR 型 ADC**

单调不失码的 12 位逐次逼近型模数转换器,在 16M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择电源电压。7 个外部通道,可以实现单次,扫描,循环转换。在 扫描/循环模式下,自动进行在选定的一组模拟输入上的转换。

- 输入电压范围: 0 to VDDA
- 转换周期: 16/20 clock cycles
- 可以从外部端子,内部 TIM1、TIM2、TIM10/TIM11、VC 等模块来触发 ADC 采样
- 采样完成(EOC)中断

3.20 低电压检测器(LVD)

对芯片电源电压或芯片引脚电压进行检测。8档电压监测值(2.5-4.4V)。可根据上升/下降边沿产生异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

3.21 电压比较器(VC)

芯片引脚电压监测/比较电路。3个可配置的正/负外部输入通道;1个内部BGR 2.5V 参考电压。VC 输出可供定时器 TIM1、TIM10/TIM11、LPTimer 与可编程计数阵列 PCA 捕获、门控、外部计数使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置软件防抖。

3.22 嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4 个硬断点以及多个软断点。

3.23 高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

4 系统架构图

主要的系统构成:

- 1 个 AHB 总线系统 Master:
 - Cortex®-M0+内核
- 6 个 AHB 总线 Slave
 - 内部 SRAM
 - 内部 FLASH
 - AHB to APB Bridge,包含所有 APB 接口的外设
 - GPIO接口
 - RCC
 - CRC 等 AHB 接口模块

系统的模块框图如图 4-1 功能结构图所示:

图 4-1 功能结构图

5 存储器映射

系统的地址空间总共有 4GB,包含程序存储空间,数据存储空间,周边模块寄存器,I/O端口等。数据使用小端对齐格式,就是数据的高字节保存在内存的高地址中,而数据的低字节保存在内存的低地址中。整个系统地址空间的划分如下图,图 5-1 所示:

图 5-1 存储器映射

5.1 存储空间和模块地址

下面表 5-1 给出了 ASM31AX003 器件内部包含的各模块的地址空间和边界信息。 表 5-1 ASM31AX003 存储器映射和外设寄存器编址

Bus	Boundary address	Size	Peripheral
	0xE000 0000 - 0xE00F FFFF	Coretex-M0 internal	
	0x4003 0000 - 0xDFFF FFFF	peripheral	保留
	0x4003_0000 - 0xD111_11111 0x4002_1000 - 0x4002_1FFF	1KB	GPIOD
	0x4002_1000 - 0x4002_1111 0x4002_1000 - 0x4002_1BFF	1KB	GPIOC
	0x4002_1000 - 0x4002_1BFF 0x4002_1000 - 0x4002_17FF	1KB	GPIOB
	0x4002_1000 - 0x4002_17FF 0x4002_1000 - 0x4002_13FF	1KB	GPIOA
	0x4002_1000 - 0x4002_13FF 0x4002_0C00 - 0x4002_0FFF	1KB	
AHB			保留 CDC4C
,	0x4002_0800 - 0x4002_0BFF	1KB	CRC16
	0x4002_0400 - 0x4002_07FF	1KB	FMC
	0x4002_0000 - 0x4002_03FF	1KB	RCC
	0x4000_5400 - 0x4001_FFFF		保留
	0x4000_5000 - 0x4000_53FF	1KB	LPUART
	0x4000_4C00 - 0x4000_4FFF	1KB	DEBUG
	0x4000_4800 - 0x4000_4BFF	1KB	BEEP
	0x4000_4400 - 0x4000_47FF	1KB	LPTIM
	0x4000_4000 - 0x4000_43FF	1KB	LVD/VC
	0x4000_3C00 - 0x4000_3FFF	1KB	TIM2
	0x4000_3800 - 0x4000_3BFF	1KB	1-WIER
	0x4000_3400 - 0x4000_37FF	1KB	CLKTRIM
	0x4000_3000 - 0x4000_33FF	1KB	RTC
	0x4000_2C00 - 0x4000_2FFF	1KB	ADC
	0x4000_2800 - 0x4000_2BFF	1KB	AWK
	0x4000_2400 - 0x4000_27FF	1KB	IWDT
APB	0x4000_2000 - 0x4000_23FF	1KB	WWDT
APD	0x4000_1C00 - 0x4000_1FFF	1KB	SYSCTRL
	0x4000_1800 - 0x4000_1BFF	1KB	TIM10/11
	0x4000_1400 - 0x4000_17FF	1KB	PCA
	0x4000_1000 - 0x4000_13FF	1KB	TIM1
	0x4000 0C00 - 0x4000 0FFF	1KB	I2C
	0x4000 0800 - 0x4000 0BFF	1KB	SPI
	0x4000 0400 - 0x4000 07FF	1KB	UART1
	0x4000 0000 - 0x4000 03FF	1KB	UART0
	0x2000 1000 - 0x3FFF FFFF		保留
	0x2000 0000 - 0x2000 0FFF	4KB	SRAM
	0x1800 0100 - 0x1FFF FFFF		保留
	0x1800 0000 - 0x1800 00FF	256B	Factory Information
AHB	0x0800 0200 - 0x17FF FFFF		保留
	0x0800 0000 - 0x0800 01FF	512B	Option Bytes
	0x0001 0000 - 0x07FF FFFF		保留
	0x0000 0000 - 0x0000 FFF	64K	FLASH
	0.0000_0000 0.0000_1111		

6 引脚配置和功能说明

6.1 ASM31AX003 TSSOP20/QFN20 配置

图 6-2 QFN20 引脚配置

6.1 ASM31AX003 引脚复用

表 6-1 引脚功能复用

封	 装			GPIOx AFR[i+3:i]								
TSSOP20	QFPN20	Config	0	1	2	3	4	5	6	7	8	F
1	18		PD4	TIM1_CH1	PCA_CH0	RTC_1HZ	TIM10_TOG	UART0_TXD	TIM10_EXT	BEEP	TIM2_CH1	VCIN2
2	19		PD5	TIM1_CH1N	PCA_CH4	SPI_MISO	I2C_SCL	UART1_TXD	TIM10_GATE	UART0_TXD	TIM2_CH4	AIN5
3	20		PD6	TIM1_CH2	PCA_CH3	SPI_MOSI	I2C_SDA	UART1_RXD	LPTIM_EXT	UART0_RXD	TIM2_CH2	AIN6
4	1	NRST										
5	2	OSC_IN	PA1	TIM1_CH2N		SPI_CLK	I2C_SDA	UART0_RXD	TIM10_TOG	UART1_RXD		
6	3	OSC_OUT	PA2	TIM1_CH3		SPI_NSS	I2C_SCL	UART0_TXD	TIM10_TOGN	UART1_TXD	TIM2_CH2	
7	4	VSS										
8	5	VCAP										
9	6	VDD										
10	7		PA3	TIM1_CH3N	PCA_CH2	SPI_NSS	RTC_1HZ	LPUART_RXD	PCA_ECI	VC0_OUT	TIM2_CH3	
11	8	X32K_IN	PB5	TIM1_BKIN	PCA_CH4	SPI_CLK	I2C_SDA	UART0_RXD	TIM11_TOG	LVD_OUT	TIM2_CH1	
12	9	X32K_OUT	PB4	LPTIM_GATE	PCA_ECI	SPI_NSS	I2C_SCL	UART0_TXD	TIM11_TOGN			
13	10		PC3	TIM1_CH3	TIM1_CH1N		I2C_SDA	UART1_TXD	PCA_CH1	1-WIRE	TIM2_CH3	AIN1
14	11		PC4	TIM1_CH4	TIM1_CH2N		I2C_SCL	UART1_RXD	PCA_CH0	CLK_MCO	TIM2_CH4	AIN2
15	12		PC5	TIM1_BKIN	PCA_CH0	SPI_CLK		LPUART_TXD	TIM11_GATE	LVD_OUT	TIM2_CH1	VCIN1
16	13		PC6	TIM1_CH1	PCA_CH3	SPI_MOSI		LPUART_RXD	TIM11_EXT	CLK_MCO	TIM2_CH4	AIN0
17	14	SWDIO	PC7	TIM1_CH2	PCA_CH4	SPI_MISO		UART1_RXD	LIRC_OUT	LXT_OUT		
18	15	SWDCLK	PD1		PCA_ECI			UART1_TXD	HIRC_OUT	VC0_OUT		
19	16		PD2	TIM1_CH2	PCA_CH2	SPI_MISO	RTC_1HZ	LPUART_TXD	LPTIM_TOG	1-WIRE	TIM2_CH3	AIN3/ VCIN0
20	17		PD3	TIM1_CH3N	PCA_CH1	SPI_MOSI	HXT_OUT	UART0_RXD	LPTIM_TOGN		TIM2_CH2	AIN4

6.2 **ASM31AX003** 引脚功能说明

Pin No.	Pin No.	Pin Name	Pin Type	Description
TSSOP20	QFN20			
			PD4	PD4 通用数字输入/输出引脚
			TIM1_CH1	TIM1 PWM 输出 1
			PCA_CH0	PCA 捕获输入/比较输出 0
			RTC_1HZ	RTC 1HZ 输出
_	1.0	554	TIM10_TOG	TIM10 翻转输出
1	18	PD4	UART0_TX	UART0 TX
			TIM10_EXT	TIM10 外部脉冲输入
			BEEP	BEEP 输出
			TIM2_CH1	TIM2 捕获输入/比较输出 1
			VCIN2	电压比较器输入通道 2
			PD5	PD5 通用数字输入/输出引脚
			TIM1_CH1N	TIM1 PWM 输出 1 反相
			PCA_CH4	PCA 捕获输入/比较输出 4
			SPI MISO	SPI 模块主机输入从机输出信号
			I2C_SCL	I ² C 时钟
2	19	PD5	UART1 TX	UART1 TX
			TIM10_GATE	TIM10 门控
			UART0_TX	UART0 TX
			TIM2_CH4	TIM2 捕获输入/比较输出 4
			AIN5	ADC 模拟输入通道 5
			PD6	PD6 通用数字输入/输出引脚
			TIM1_CH2	TIM1 PWM 输出 2
			PCA_CH3	PCA 捕获输入/比较输出 3
			SPI_MOSI	SPI 模块主机输出从机输入信号
3	20	PD6	I2C_SDA	I ² C 数据
5	20	1 00	UART1_RX	UART1 RX
			LPTIM_EXT	LPTIM 外部脉冲输入
			UART0_RX	UART0 RX
			TIM2_CH2	TIM2 捕获输入/比较输出 2
			AIN6	ADC 模拟输入通道 6
4	1	NRST	NRST	复位输入端口,低有效,芯片复位
			OSC_IN	外部晶振输入
			PA1	PA1 通用数字输入/输出引脚
			TIM1_CH2N	TIM1 PWM 输出 2 反相
5	2	PA1	SPI_CLK	SPI 模块时钟信号
J	_		I2C_SDA	I ² C 数据
			UART0_RX	UART0 RX
			TIM10_TOG	TIM10 翻转输出
			UART1_RX	UART1 RX
			OSC_OUT	外部晶振输出
			PA2	PA2 通用数字输入/输出引脚
6	3	PA2	TIM1_CH3	TIM1 PWM 输出 3
			SPI_NSS	SPI 模块从机片选信号
			I2C_SCL	I ² C 时钟
		1	-1	

ASM31AX003 数据手册

			UART0_TX	UARTO TX
			TIM10_TOGN	TIM10 翻转反相输出
			UART1 TX	UART1 TX
			TIM2_CH2	TIM2 捕获输入/比较输出 2
7	4	VSS	GND	芯片地
8	5	VCAP	Power	LDO 内核供电(仅限内部电路使用,外部连接电容)
9	6	VDD	Power	芯片电源
		100	PA3	PA3 通用数字输入/输出引脚
			TIM1_CH3N	TIM1 PWM 输出 3 反相
			PCA_CH2	PCA 捕获输入/比较输出 2
			SPI NSS	SPI 模块从机片选信号
10	7	PA3	RTC_1HZ	RTC 1HZ 输出
10	'	17.0	LPUART RX	LPUART RX
			PCA ECI	PCA 外部时钟
			VC0 OUT	电压比较器 0 输出
			TIM2 CH3	TIM2 捕获输入/比较输出 3
			X32K_IN	外部 32K 晶振输入
			PB5	PB5 通用数字输入/输出引脚
			TIM1_BKIN	TIM1 刹车信号输入
				PCA 捕获输入/比较输出 4
			PCA_CH4	
11	8	PB5	SPI_CLK	SPI 模块时钟信号
			I2C_SDA	I ² C 数据
			UARTO_RX	UARTO RX
			TIM11_TOG	TIM11 翻转输出
			LVD_OUT	低压检测比较器输出
			TIM2_CH1	TIM2 捕获输入/比较输出 1
			X32K_OUT	外部 32K 晶振输出
			PB4	PB4 通用数字输入/输出引脚
			LPTIM_GATE	LPTIM 门控
12	9	PB4	PCA_ECI	PCA 外部时钟
			SPI_NSS	SPI 模块从机片选信号
			I2C_SCL	I ² C 时钟
			UARTO_TX	UARTO TX
			TIM11_TOGN	TIM11 翻转反相输出
			PC3	PC3 通用数字输入/输出引脚
			TIM1_CH3	TIM1 PWM 输出 3
			TIM1_CH1N	TIM1 PWM 输出 1 反相
40	40	500	I2C_SDA	I ² C 数据
13	10	PC3	UART1_TX	UART1 TX
			PCA_CH1	PCA 捕获输入/比较输出 1
			1-WIRE	1-wire 输入输出
			TIM2_CH3	TIM2 捕获输入/比较输出 3
			AIN1	ADC 模拟输入通道 1
			PC4	PC4 通用数字输入/输出引脚
			TIM1_CH4	TIM1 PWM 输出 4
14	11	PC4	TIM1_CH2N	TIM1 PWM 输出 2 反相
			I2C_SCL	I ² C 时钟
			UART1_RX	UART1 RX

ASM31AX003 数据手册

				ASIVIS IAAUUS 数据于加
			PCA_CH0	PCA 捕获输入/比较输出 0
			CLK_MCO	CPU 时钟输出
			TIM2_CH4	TIM2 捕获输入/比较输出 4
			AIN2	ADC 模拟输入通道 2
			PC5	PC5 通用数字输入/输出引脚
			TIM1_BKIN	TIM1 刹车信号输入
			PCA CH0	PCA 捕获输入/比较输出 0
			SPI CLK	SPI 模块时钟信号
15	12	PC5	LPUART_TX	LPUART TX
			TIM11_GATE	TIM11 门控
			LVD_OUT	低压检测比较器输出
			TIM2 CH1	TIM2 捕获输入/比较输出 1
			VCIN1	模拟输入
			PC6	PC6 通用数字输入/输出引脚
			TIM1_CH1	TIM1 PWM 输出 1
			PCA CH3	PCA 捕获输入/比较输出 3
			SPI MOSI	SPI 模块主机输出从机输入信号
16	13	PC6	LPUART RX	LPUART RX
			TIM11_EXT	TIM11 外部脉冲输入
			CLK MCO	CPU 时钟输出
			TIM2 CH4	TIM2 捕获输入/比较输出 4
			AINO	ADC 模拟输入通道 0
			SWDIO	SWD IO
			PC7	PC7 通用数字输入/输出引脚
			TIM1 CH2	TIM1 PWM 输出 2
			PCA CH4	PCA 捕获输入/比较输出 4
17	14	PC7	SPI MISO	SPI 模块主机输入从机输出信号
			UART1 RX	UART1 RX
			LIRC OUT	内部低频 RC 时钟 38.4KHZ 输出
			X32K_OUT	外部低频晶振输出
			SWDCLK	SWD 时钟
			PD1	PD1 通用数字输入/输出引脚
			PCA_ECI	PCA 外部时钟
18	15	PD1	UART1 TX	UART1 TX
			HIRC_OUT	内部高频 RC 时钟 24MHZ 输出
			VC0 OUT	电压比较器 0 输出
			PD2	PD2 通用数字输入/输出引脚
			TIM1_CH2	TIM1 PWM 输出 2
			PCA_CH2	PCA 捕获输入/比较输出 2
			SPI MISO	SPI 模块主机输入从机输出信号
			RTC 1HZ	RTC 1HZ 输出
19	16	PD2	LPUART_TX	LPUART TX
			LPTIM_TOG	LPTIM 翻转输出
			1-WIRE	1-wire 输入输出
			TIM2 CH3	TIM2 捕获输入/比较输出 3
			VCIN0	电压比较器输入通道 0
			AIN3	ADC 模拟输入通道 3
20	17	PD3	PD3	PD3 通用数字输入/输出引脚
20	17	רחט	LDO	1 00 四用奴寸制/V制山 月脚

ASM31AX003 数据手册

	TIM1_CH3N	TIM1 PWM 输出 3 反相
	PCA_CH1	PCA 捕获输入/比较输出 1
	SPI_MOSI	SPI 模块主机输出从机输入信号
	HXTL_OUT	外接高频晶振输出
	UART0_RX	UARTO RX
	LPTIM_TOGN	LPTIM 翻转反相输出
	TIM2_CH2	TIM2 捕获输入/比较输出 2
	AIN4	ADC 模拟输入通道 4

电气特性

最大绝对额定值 7.1

如无特殊说明,所有典型值均基于室温和电源电压 3.3V 测试。

最小值和最大值如下表中定义的工作温度、工作电压、工作频率范围所示。如无特殊说 明,所有数据均在此范围内测试。

表 7-1 工作和贮藏条件

	•	1 1 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1			
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vpower	电源电压		0		5.5	V
Viopin	IO 的电压		-0.3		Vpower+0.3	V
Vop	工作电压		2.4	3.3	5.5	V
Tstg	存储温度		-40	25	150	°C
Тор	工作温度		-40	25	105	°C
Fcpu	CPU 工作频率		8		24M	Hz
VESDHBM	ESD @ Human Body Mode		7			KV
VESDCDM	ESD @ Charge Device Mode		1.5			KV
VESDMM	ESD @ machine Mode		400			V
llatchup	Latch up current		T.B.D			mA

推荐工作条件

参数	符号	条件	额定值		単位	参考
一	何与	余件	最小值	最大值	毕 ሢ	参 写
电源电压	VDD	-	2.4	5.5	V	
VCAP 电容	Cs	-	0.47	2.2	μF	
工作温度	Та	-	-40	105	°C	

注意:

- 推荐工作条件是确保半导体芯片正常工作的条件。在推荐工作条件的范围内,电气特 性的所有规格值均可得到保证。务必在推荐工作条件下使用半导体芯片。超出该条件 的使用可能会影响半导体的可靠性。
- 对于本数据手册中未记载的项目、使用条件或逻辑组合的使用,本公司不做任何保障。 如果用户考虑在所列条件之外使用本芯片,请事前联系销售代表。

直流特性

表 7-2 工作电流特性

Symbol	Parameter	Condition				Тур	Max ⁽¹⁾	Unit	
					4M	480			
	All Peripherals clock ON,	V _{core} =1.2V VDD=2.4V-5.5	HIRC	Clock	8M	960]	
	Run while(1) in Flash	VDD=2.4V-5.5 V	source		16M	1920		μA	
	i idoli				24M	2880			
					4M	400			
I _{DD} (Run Mode)	All Peripherals clock OFF, Run while(1) in Flash	V _{core} =1.2V VDD	HIRC	Clock	8M	800			
		=2.4V-5.5V	source		16M	1600		μΑ	
					24M	2400			
	All Peripherals clock OFF, Except RTC,IWDG , LPTIM,AWK	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	1.25		μΑ	
	All Peripherals clock OFF,except RTC	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	1.05		μА	
	All Peripherals clock OFF,except IWDG	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	1.1		μА	
	All Peripherals clock OFF,except LPTIM	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	1.1		μА	
l _{DD}	All Peripherals clock OFF,except AWK	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	1.0		μА	
(DeepSlee p Mode)	All Peripherals clock OFF,	V _{core} =1.2V VDD =2.4V-5.5V			Ta=-40 to 25°C	0.8		μА	

Power On Reset/Brown Out Reset

表 7-3 POR/Brown Out

	per 0 : 0 : 4 = 10 : 10 : 10 : 10 : 10 : 10 : 10 : 10								
Symbol	Parameter	Condition	Min	Тур	Max	Unit			
Vpor	POR 释放电压(上电过程) BOR 检测电压(掉电过程)		2.2	2.25	2.3	٧			

^{1.} Guaranteed by characterization results at 85 °C, unless otherwise specified.

7.4 交流特性

7.4.1 输出特性—端口 PA, PB, PC, PD

Symbol	Papameter	Condition	Min	Max	Unit
V _{OH}	High level output	Sourcing 4 mA, VDD = 3.3 V (see Note 1)	VDD-0.25		V
V OH	voltage Source Current	Sourcing 6 mA, VDD = 3.3 V (see Note 2)	VDD-0.6		V
W.	Low level output	Sinking 4 mA, VDD = 3.3 V (see Note 1)		VSS+0.25	V
V _{OL}	voltage Sink Current	Sinking 6 mA, VDD = 3.3 V (see Note 2)		VSS+0.6	
Management	High level output voltage Double Source Current	Sourcing 8 mA, VDD = 3.3 V (see Note 1)	VDD-0.25		V
V _{OHD}		Sourcing 12 mA, VDD = 3.3 V (see Note 2)	VDD-0.6		V
	Low level output voltage Double Sink Current	Sinking 8 mA, VDD = 3.3 V (see Note 1)		VSS+0.25	V
V _{OLD}		Sinking 12 mA, VDD = 3.3 V (see Note 2)	VSS+0.6		V

Notes:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

7.4.2 输入特性—端口 PA, PB, PC, PD, NRST

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT+}	Positive-going input	VDD=3.3	1.8	2	2.2	V
	threshold voltage	VDD=5.5	2.9	3.1	3.3	V
V _{IT-}	Negative-going input	VDD=3.3	1.8	2	2.2	V
VIT-	threshold voltage	VDD=5.5	2.9	3.1	3.3	V
\/	Input voltage hysteresis	VDD=3.3	0.7	0.7	0.7	V
V _{hys}	(VIT+ - VIT-)	VDD=5.5	0.9	0.9	0.9	V
Rpullhigh	Pullup Resistor	Pullup enable		80		Kohm
Cinput	Input Capacitance			5		pf

7.4.3 端口漏电特性—PA, PB, PC, PD

Symbol	Papameter	Conditions	VDD	Max	Unit
likg	Leakage current	V (see Note 1,2)	2.5 V/3.6 V	±50	nA

Notes:

- 1. The leakage current is measured with VSS or VDD applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.

7.4.4 定时器/计数器输入采样要求

Symbol	Parameter	Conditions	Min	Max	Unit
T(int)	External interrupt timing	External trigger signal for the interrupt flag(see Note 1)	30		ns
T(cap)	Timer Captuter timing	TIM1/TIM2 capture pulse width Fsystme =4Mhz	0.5		μs
f _{EXT}	Timer clock frequency applied to pin	TIM1,TIM2,TIM10,TIM11 external clock input Fsystme =4Mhz	0	f _{TIMxCLK} /2	MHz
T(PCA)	PCA clock frequency applied to pin	PCA external clock input Fsystme =4Mhz	0	f _{PCACLK} /2	MHz

Note:

1. The external signal sets the interrupt flag every time the minimum t(int) parameters are met. It may be set even with trigger signals shorter than t(int).

7.4.5 **内部 HIRC** 振荡器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
				4.0 8.0		
F _{MCLK}	Internal RC Oscillation frequency		4.0	16.0	24	MHz
				22.12		
				24		
_	Start-up time Not including software calibration	F _{MCLK} =4MHz		6.0		μs
		F _{MCLK} =8MHz		4.0		μs
T _{Mstart}		F _{MCLK} =16MHz		3.0		μs
		F _{MCLK} =24MHz	MHz 2.5 MHz 80		μs	
		F _{MCLK} =4MHz		80		μA
1		F _{MCLK} =8MHz		100		μΑ
I _{MCLK}	Current consumption	F _{MCLK} =16MHz		120		μΑ
		F _{MCLK} =24MHz		140		μA
DC _{MCLK}	Duty cycle		45	50	55	%
D _{evM}	Enament Davishing	VDD = 2.5V ~ 5.5V TAMB = -40°C ~ 85°C	-2.5		+2.5	%
	Frequency Deviation	VDD = 2.5V ~ 5.5V TAMB = -40°C ~ 50°C	-2.0		+2.0	%

7.4.6 内部 LIRC 振荡器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{ACLK}	Internal RC Oscillation frequency			38.4 32.768		KHz
T _{Astart}	Start-up time			30		μs
I _{ACLK}	Current consumption			0.25		μA
DC _{ACLK}	Duty cycle		45	50	55	%
	Fraguency Deviction	VDD = 2.5V ~ 5.5V TAMB = -40°C ~ 85°C	-2.0		+2.0	%
DevA	Frequency Deviation	VDD = 2.5V ~ 5.5V TAMB = -40°C ~ 50°C	-1.5		+1.5	%

7.4.7 外部 **32.768KHz** 晶振

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Fsclk	Crystal frequency			32.768		KHz
ESR _{SCLK}	Supported crystal equivalent series resistance			65	85	KOhm
Csclk	Supported crystal external external load range	There are 2 CSCLK on 2 crystal pins individually		12		pF
Idd ⁽¹⁾	Current consumption when stable	ESR=65kOhm C _{SCLK} =12pF		200	1000	nA
DC _{SCLK}	Duty cycle		40	50	60	%
T _{start}	Start-up time	ESR=65kOhm C _{SCLK} =12pF 40%-60% duty cycle has been reached		500		ms

(1) RCC_LXTCR.LXTDRV=0011,ESR=65K

7.4.8 外部 HXT 晶振

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
F _{FCLK}	Crystal frequency		4		24	MHz
ESR _{FCLK}	Supported crystal equivalent series resistance			30 400	60 1500	Ohm
C _{FCLK}	Supported crystal external external load range	There are 2 C _{FCLK} on 2 crystal pins individually		12		pF
Idd ⁽²⁾	Current consumption	24MHz Xtal ESR=30Ohm C _{FCLK} =12pF		300		μA
DC _{FCLK}	Duty cycle		40	50	60	%
T _{start}	Start-up time	4M~24MHz	200		400	μs

(2) Current consumption could vary with oscillating frequency ,RCC_HXTCR.HXTDRV=110.

7.5 **12 位 A/D** 转换器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{ADCIN}	Input voltage range	Single ended	0		VDD	V
V _{REF}	ADC reference Voltage			VDD		V
I _{ADC}		1.5MSPS		0.9		mA
C _{ADCIN}	ADC input capacitance			4		pF
FADCCLK	ADC clock Frequency				24	MHz
TADCSTART	Startup time of ADC bias current			3		μs
T _{ADCCONV}	Conversion time			16	20	cycles
ENOB		105MSPS REF=VDD		10.4		Bit
DNL	Differential non-linearity		-1		1	LSB
INL	Integral non-linearity		-3		3	LSB
E。	Offset error		-2		2	LSB
Eg	Gain error					LSB

7.6 模拟电压比较器

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{in}	Input voltage range		0		5.5	٧
V _{incom}	Input common mode range		0		5.5	V
V _{offset}	Input offset		-10		+10	mV
I _{comp}	Comparator's current			12		μА
T _{response}	Comparator's response			5		μs

7.7 低电压检测特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Vievel	VDD Detectable threshold	LVD_CR[2:0]= 000 LVD_CR[2:0]= 001 LVD_CR[2:0] = 010 LVD_CR[2:0] = 011 LVD_CR[2:0]= 100 LVD_CR[2:0] = 101 LVD_CR[2:0] = 110 LVD_CR[2:0] = 111	Typ-0.01	4.44 4.0 3.64 3.33 3.08 2.86 2.67 2.5	Typ+0.01	V
I _{comp}	Detector's current			1		μΑ
Tresponse	Detector's response time when VDD fall below or rise above the threshold			10		μs
T _{setup}	Detector's setup time when ENABLE.VDD unchanged.			10		μs

内存擦/写特性

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ECflash	Sector Endurance		20k			cycles
RETflash	Data Retention		20			Years
Tprog	Byte Program Time		5	10	20	μs
Terase	Sector Erase Time		2		4	ms
	Chip Erase Time		20		40	ms

7.9 低功耗模式返回时间

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Twakeup	Deep sleep mode to Active mode	T _{AMB} = 25°C 4M 8M 16M 24M		4.0 3.1 2.8 2.7		μs

8 封装特性

8.1 QFN20 封装

QFN20					
Symbol	Min	Nom	Max		
Α	0.70	0.75	0.80		
b	0.15	0.20	0.25		
D		3.00 BSC.			
D2	1.55 1.65 1.75				
E		3.00 BSC.			
E2	1.55	1.65	1.75		
е	0.40 BSC.				
L	0.30	0.40	0.50		
n	20				
nD	5				
nE	5				
A1	0	0.02	0.05		
А3	0.203 REF.				
К	0.20	-	-		
aaa		0.10			
bbb		0.07			
ccc		0.10			
ddd		0.05			

8.2 **TSSOP20** 封装

TSSOP20				
Symbol	Min	Nom	Max	
Α	-	-	1.20	
A1	0.05	-	0.15	
A2	0.80	1.00	1.05	
A3	0.39	0.44	0.49	
b	0.20	-	0.29	
b1	0.19	0.22	0.25	
С	0.13	-	0.18	
c1	0.12	0.13	0.14	
D	6.40	6.50	6.60	
E1	4.30	4.40	4.50	
E	6.20	6.40	6.60	
е	0.65 BSC.			
L	0.45	0.60	0.75	
L1	1.00 BSC.			
θ	0	-	8°	

9 修订记录 & 联系方式

版本	修订日期	修订内容摘要
1.1	2019/12/28	By Frank
1.0	2019/05/10	Initial Version