Rachunek prawdopodobieństwa i statystyka

termin	oznaczenie	uwagi
gęstość	f(x)	uogólnienie prawdopodobieństwa,
dystrybuanta	F(x)	$F(t) = \int_{-\infty}^{t} f(x) dx, \text{ ppb zdarzenia } (-\infty, t),$
kwantyl (rzędu α)	x_{α}	x_{α} takie, że $F(x_{\alpha}) = \alpha$,
kwantyl (rzędu α)	x_{α}	x_{α} takie, że $F(x_{\alpha}) = 1 - \alpha$.

Poniżej — polecenia w języku R¹ oraz w środowisku Octave².

\mathbf{Jezyk} R

Rozkład	pdf	cdf	kwantyl	generator
normalny	dnorm	pnorm	qnorm	rnorm
Poisson	dpois	ppois	qpois	rpois
χ^2	dchisq	pchisq	qchisq	rchisq
itd	d*	p*	q*	r*

Octave

Rozkład	pdf	cdf	kwantyl	generator
N(0,1)	stdnormal_pdf	$stdnormal_cdf$	stdnormal_inv	stdnormal_rnd
Poisson	poisspdf	poisscdf	poissinv	poissrnd
χ^2	poisspdf chi2pdf	chi2cdf	chi2inv	chi2rnd
itd	*pdf	*cdf	*inv	*rnd

1 Testowanie hipotez

Test średniej

Hipotezy : $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0, H_1: \mu > \mu_0.$

Założenia: wariancja σ^2 znana, obserwacje pochodzą z rozkładu $N(\mu, \sigma^2)$.

Statystyka testowa :
$$Z = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1).$$

Test dwóch średnich

Hipotezy : $H_0: \mu_1 - \mu_2 = \mu_0, H_1: \mu_1 - \mu_2 \neq \mu_0, H_1: \mu_1 - \mu_2 > \mu_0.$

https://www.r-project.org/

²https://www.gnu.org/software/octave/

Założenia: wariancje σ_1^2, σ_2^2 znane, równe lub nie, obserwacje pochodzą z rozkładów $N(\mu_1, \sigma_1^2), N(\mu_2, \sigma_2^2)$.

Statystyka testowa :
$$Z = \frac{(\bar{X_1} - \bar{X_2}) - \mu_0}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1).$$

Test średniej bez wariancji

Hipotezy : $H_0: \mu = \mu_0, H_1: \mu \neq \mu_0, H_1: \mu > \mu_0.$

Założenia: wariancja σ^2 nie jest znana, liczebność próbki n jest mała, obserwacje pochodzą z rozkładu $N(\mu, \sigma^2)$.

Statystyka testowa :
$$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n-1}} \sim t(n-1)$$
, gdzie $s^2 = \sum_{k=1}^n (x_k - \bar{x})^2$.

Test dwóch średnich bez wariancji

Hipotezy : $H_0: \mu_1 - \mu_2 = \mu_0, H_1: \mu_1 - \mu_2 \neq \mu_0, H_1: \mu_1 - \mu_2 > \mu_0.$

Założenia: wariancje σ_1^2 , σ_2^2 nie są znane, lecz równe, obserwacje pochodzą z rozkładów $N(\mu_1, \sigma^2)$, $N(\mu_2, \sigma^2)$.

Statystyka testowa :
$$t = \frac{(\bar{X}_1 - \bar{X}_2) - \mu_0}{s} \sqrt{\frac{n_1 n_2}{n_1 + n_2}} \sim t(n_1 + n_2 - 2)$$
, gdzie
$$s^2 = \frac{n_1 s_1^2 + n_2 s_2^2}{n_1 + n_2 - 2}.$$

Test wariancji

Hipotezy: $H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2, H_1: \sigma^2 > \sigma_0^2$.

Założenia: wariancja σ^2 nie jest znana, obserwacje pochodzą z rozkładu $N(\mu, \sigma^2)$.

Statystyka testowa :
$$\chi^2 = \frac{ns^2}{\sigma_0^2} \sim \chi^2(n-1)$$
.

Test dwóch wariancji

Hipotezy: $H_0: \sigma_1^2 = \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2, H_1: \sigma_1^2 > \sigma_2^2$.

Założenia: wariancje σ_1^2 , σ_2^2 nie są znane, obserwacje pochodzą z rozkładów $N(\mu_1, \sigma_1^2)$, $N(\mu_2, \sigma_2^2)$.

Statystyka testowa : $F = \frac{s_1^2}{s_2^2} \cdot \frac{n_2 - 1}{n_1 - 1} \sim F(n_1 - 1, n_2 - 1).$

Wskaźnik częstości

Hipotezy : $H_0: p = p_0, H_1: p \neq p_0, H_1: p > p_0.$

Założenia: n duże, tzn. n > 30, a także $np_0 \ge 5$.

Statystyka testowa : $Z = \frac{p - p_0}{\sqrt{p_0(1 - p_0)}} \sqrt{n} \sim N(0, 1).$