Observación del bosón W en colisiones protón-protón de los datos primarios de Singleelectron.

Practicas Profesionales

Jeremy Rangel Martinez¹

¹Benemérita Universidad Autónoma de Puebla

9 de diciembre de 2024

Variables

El sample proporcionado fue el de single electron. Este conjunto de datos contiene eventos seleccionados por triggers que identifican electrones reconstruidos, y su análisis es clave para estudiar procesos del Modelo Estándar como el decaimiento de bosones W y Z, así como para buscar señales de nueva física. El objetivo de este análisis fue identificar y caracterizar eventos que contienen electrones, utilizando variables relevantes como energía transversal (E_T), pseudorapidez (η), y energía faltante (MET). También se consideraron eventos con partículas adicionales, como muones, para comprender los posibles fondos y la naturaleza de los eventos.

Determinación de Partículas en el Análisis de Datos

El sample contiene partículas debías a las colisiones protón-protón algunas de ellas son electrones, muones, taus, partículas generadas, energía faltante, entre otras. Sin embargo, la mayoría de ella son debidas a backgrounds. Pero es muy probable que busquemos procesos que impliquen electrones.

Determinación de Partículas en el Análisis

Un indicio de que se trata a un candidato W es la presencia de una partícula cargada acompañada de MET, que indica la presencia de un neutrino no detectado. Además, el bosón Z se desintegra en dos leptones con cargas opuestas.

- Electrón con MET: El evento debe contener un electrón y Missing Transverse Energy (MET).
- **Descartar Muones y Taus:** Filtrar eventos con muones y taus para evitar confusión con $W \to \mu \nu$ o $W \to \tau \nu$.
- Evitar Fondo de $Z \rightarrow e^+e^-$: Si hay dos electrones, calcular la masa invariante para verificar si es un evento de Z.
- Fondo de QCD: Utilizar cortes en MET y masa transversa para reducir el fondo.

Limpieza y Preparación de Datos

Masa transversa con solo 350 eventos

Figura: Masas transversales

Limpieza y Preparación de Datos

Cortes en de los datos que implican Electrones:

- Energía transversa E_T20GeV
- Momento transverso $p_T : p_T > 20 \, GeV$.
- Pseudorapidez η : $|\eta| < 2,47$, excluyendo $1,327 < |\eta| < 1,52$.
- Ángulo azimutal $\phi: |\phi| < 2\pi$
- Isolation iso < 1

Cortes en de los datos que implican MET:

- Momento transverso $p_T : p_T > 20 \, GeV$
- Ángulo azimutal $\phi: |\phi| < 2\pi$
- Significancia del MET met_significance > 4

Masa Transversa

En el proceso de limpieza de datos, uno de los pasos importantes es la selección de eventos en los que se puede identificar la masa transversa (m_T) , que es una herramienta clave para eventos con Missing Transverse Energy (MET), como en la producción de bosones W que decaen en partículas invisibles, como los neutrinos. La masa transversa se calcula usando la siguiente fórmula:

$$m_T = \sqrt{2 \cdot p_T^{\mathsf{l}} \cdot |\vec{E}_T^{\mathsf{miss}}| \cdot (1 - \cos(\Delta \phi))} \tag{1}$$

Masa Transversa

Figura: Masas transversal

Señal y BackGround

Figura: Masas transversal de la señal y de fondo

Ajuste (Fit) de Datos

Para mejorar la precisión en la identificación del bosón W, se aplicó un ajuste utilizando las funciones de distribución Breit-Wigner y Crystal Ball. Este ajuste fue esencial para modelar correctamente la forma de la distribución de masa invariante del bosón W.

Figura: Fit del espectro de masa transversa

Ajuste (Fit) de Datos

Figura: modelo del espectro de la masa transversa