

Boolean Expressions Examples -2

Give the Boolean expression for the logic circuits shown
Write the truth table too

Boolean Expressions Examples -3

Give the Boolean expression for the logic circuits shown

С				BC	0—0	\overline{BC}									
Α	В	С	D	AB	ВС	\overline{BC}	F	Α	В	С	D	AB	ВС	\overline{BC}	F
0	0	0	0	0	0	1	1	1	0	0	0	0	0	1	1
0	0	0	1	0	0	1	1	1	0	0	1	0	0	1	1
0	0	1	0	0	0	1	1	1	0	1	0	0	0	1	1
0	0	1	1	0	0	1	1	1	0	1	1	0	0	1	1
0	1	0	0	0	0	1	1	1	1	0	0	1	0	1	1
0	1	0	1	0	0	1	1	1	1	0	1	1	0	1	1
0	1	1	0	0	1	0	0	1	1	1	0	1	1	0	1
0	1	1	1	0	1	0	1	1	1	1	1	1	1	0	1

Boolean Algebra - 1

Recall: "+" – OR operation

"•" – AND operation "
$$\frac{}{A}$$
" – NOT operation

OR Operation	AND Operation	Law		
A + A = A	$A \cdot A = A$	Idempotent		
A + 1 = 1	A · 0 = 0	Annulment		
A + 0 = A	A · 1 = A	Identity		
$A + \overline{A} = 1$	$A \bullet \overline{A} = 0$	Complement		
A + B = B + A	$A \cdot B = B \cdot A$	Commutative		
$A + (B \cdot C) = (A + B) \cdot (A + C)$	$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$	Distributive		
A + (B + C) = (A + B) + C	$A \cdot (B \cdot C) = (A \cdot B) \cdot C$	Associative		

Boolean Algebra - 2

De-Morgan's Theorems (2 variables)

$$AB = \overline{\overline{A} + \overline{B}}$$

$$A + B = \overline{A}\overline{B}$$

Verification of Boolean Expressions - 1

Prove Associative Law for OR operation: (A + B) + C = A + (B + C)

$$LHS = (A + B) + C$$

$$RHS = A + (B + C)$$

↓		
Α	В	Č
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

(A+B)	(B+C)
0	0
0	1
1	1
1	1
1	0
1	1
1	1
1	1

LHS= (A+B)+C
0
1
1
1
1
1
1
1

RHS= A+(B+C)
0
1
1
1
1
1
1
1

Verification of Boolean Expressions - 2

Prove Associative Law for OR operation:

a)
$$A \cdot (B \cdot C) = (A \cdot B) \cdot C$$

b)
$$A \cdot (B + C) = (A \cdot B) + (A \cdot C)$$

RHS: (A.B).C

Α	В	С
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

(B.C)	(A.B)
0	0
0	0
0	0
1	0
0	0
0	0
0	1
1	1

	_
LHS= A.(B.C)	
0	
0	
0	
0	
0	
0	
0	
1	

RHS= (A.B).C
0
0
0
0
0
0
0
1

Computer Organization – Intro1

DIGITAL COMPUTER - Hardware

Von Neumann architecture (1945): Instruction data and program data in same memory

https://www.youtube.com/watch?v=HEjPop-aK_w

Computer Organization - Intro2

DIGITAL COMPUTER - Software

MEMORY Basics

Volatile: Stored info is lost when power is turned off

Acknowledgements

- 1. Allan R. Hambley, 'Electrical Engineering Principles & Applications, Pearson Education, First Impression, 6/e, 2013
- 2. M. Morris Mano, Charles R. Kime, 'Digital Design and Computer Organization', Pearson Education, December 1994.
- 3. https://www.electronics-tutorials.ws/boolean/bool 6.html