BioSentinel: Improving desiccation tolerance of yeast biosensors for deepspace missions

Sawan Dalal^{1,2}, Sergio R. Santa Maria³, Lauren Liddell⁴ and Sharmila Bhattacharya⁵

¹Space Life Sciences Training Program (SLSTP), NASA Ames Research Center, ²Department of Biology and Biochemistry, University of Houston, ³University of New Mexico, ⁴Logyx LLC, ⁵NASA Ames Research Center.

Trehalose and Desiccation Tolerance

- ♦ Trehalose: nonreducing disaccharide composed of two glucose molecules
- ♦ Found in many desiccation tolerant strains of *S. cerevisiae*
- ♦ Serves as a protective agent against the aggregation of cytoplasmic and membrane proteins during desiccation (Tapia and Koshland, 2014)

Intracellular Trehalose Screen

- ♦ Trehalose assay (Parrou and François, 1997; Tapia et al., 2015)
- ♦ Previous work: *rad51* screen found DRY1 and DRY2 strains with increased desiccation tolerance
- ♦ Sequence analysis: DRY1 (mutation in *ALG3*), DRY2 (mutations in *LEO1* and *ENV9*)
- New screen: quantifying intracellular trehalose in wild-type, original rad51, DRY1, and DRY2 strains each week after desiccation
- Comparative genome sequencing and transcriptome analysis

Troubleshooting Intracellular Trehalose Protocol

- \diamond Protocol: requires 1x10⁷ cells per mL \rightarrow didn't yield measurable amounts of glucose
- ♦ Glucose standards → didn't yield measurable amounts of glucose
- \diamond Tested cell concentrations: 1×10^7 , 5×10^7 , 1×10^8 , 2×10^8
- ♦ Tested glucose standard quantities: 1, 2.5, 5, 10, and 20 ug

	Trehalose
Strain	concentration
	(ug/mL)
wt-1 - 1x107	0.247
wt-1 - 5x107	1.158
wt-1 - 1x108	2.413
wt-1 - 2x108	4.161
wt-2 - 1x107	0.202
wt-2 - 5x107	1.218
wt-2 - 1x108	2.293
wt-2 - 2x108	4.183
wt-3 - 1x107	0.209
wt-3 - 5x107	1.315
wt-3 - 1x108	2.518
wt-3 - 2x108	4.437

Acknowledgements

- ♦ BioSentinel Team: Dr. Sergio Santa Maria, Dr. Lauren Liddell, Sofia Tieze, Tristan Caro and Dr. Sharmila Bhattacharya
- Space Life Sciences Training Program (SLSTP) Management and Students
- ♦ NASA Ames Research Center
- ♦ KBR Wyle Laboratories

