Linear	Algebra
--------	---------

Fall 2022

Dec. 27, 2022.

Page 1

· Osthogonal vectors & Subspaces Orthogonality:

· Projections

· Orthnormal Basis

· Gran-Schmidt

Vi, Vz, ..., Vn

Gran-Schmidt

(Examples)

lineally independent

Osthonormal

diagonal entries > 0.

The columns of Q are orthnormal

rank(A) = r.

Determinants: · Definition and Examples

Anxn

· Properties 1-10.

A or det A

· Formulas: (a) LDU(?)

(b) Cofactor expansion:

Important:

det (A)= air Cin + aiz Ciz + ··· + ain Cin

(a) det (AB) = det (A) det (B); (c) Techniques: Recursion Relation,

(b) $\det(A^T) = \det(A)$;

Vandermonde Matrix.

det A = \(\sum \alpha_1 any \, \text{det P.}

(d) Applications: Inverse Volume Gramer's

Pivots.

	Page 2
Eigenvalues & Eigenvectors	
Anxn Square matrix	
$Ax = \lambda x$ $\lambda : eigenvalue$	
$V(\pm 0)$: eigenvec	
$(A - \lambda I) x = 0$	
$\Rightarrow x \in N(A-\lambda I)$ $P(x)=det(A-\lambda I)$	I): Characteristic polynomial
deg po	x) = m
Computation: $P(\lambda) = (\lambda)$	$(-)$ $(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda)$
7=7. 7. eigenvalue -(-x)+($\lambda + \cdots + \lambda_n (-\lambda) + \cdots + \lambda_1 \cdots \lambda_n$
Solve Ax = Ax for x	= a_1+ + ann det A = Trace (A)
,h-	= Trace (A)
x → eigenvector.	
Diagonalizability: Anxn diagonalizable There exist n linearly V1, V2,, Vn	independent eigenvectors:
$S = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix} \longrightarrow eigenve$	ctor matrix
λ , $\lambda_2 \lambda_n \longrightarrow eigenv$	alnes
	alue matrix
	together)
$\langle \Rightarrow A = S/S'$	$A^{k} = S\Lambda^{k}S^{-1}, k=1,2,\cdots$

Table on Page 306. Properties of Eigenvalues and Eigenvectors.
Complex number / vector / matrix.
· z = a + bi : a, b \in R \tag{Hermitian} = Conjugate Transpose
$\vec{z} = \begin{bmatrix} z_1 \\ z_2 \\ \vdots \\ z_n \end{bmatrix} \in \mathbb{C}^n, \chi ^2 = \chi^H \chi$
$A^{H} = (\overline{A})^{T}.$
AH = A Hermitian matrix: Properties.
· Unitary Matrix: UHU=UUH=In
Properties.
· Similarity Transformations: Same eigenvalues
$A \longrightarrow M^{-1}AM = B \longrightarrow x \text{ eigenvector of } A$
> M x eigenvector of B.
Change of Basis
· Spectral Theorem / Real : QAQ= 1 given A = AT
Change of Basis Spectral Theorem Real: $O^{\dagger}AO = \Lambda$ given $A = A^{\dagger}$ (Schur's Lemma) Complex: $U^{\dagger}AU = \Lambda$ given that $A^{H} = A$.
. Normal Matrix
· Jordan Forms (m=2,3)
Jordan Forms ("12,0)

		*				7				
r	$\overline{}$									Comment
۲.)		$\overline{}$		N / l	_		1 \	dratic	1
1	/.	11.	1)_	r+-	101	ALAC	4	مباردا	death/	Toms
1	-n	SILVE	1/2	Hnile	LIAL	VILLES		CKMA	MINTIE	
- 9	•	711100	<i>–</i>	1	•	•				

Page 4

· Definitions: Positive Definiteness + Quadratic Forms

· Tests: 6B+6C (-> Positive Definiteness.

- · Quidric Surfaces.
- · Law of Inertia.
- · Quadratic Forms.

· Singular Value Decomposition.

· Applications.

Additional Page.

			Fall 2022 Pec. 28, 2022.
	Nonhomogeneous	x = 0 Homo	geneous
Amxn	m = n, $m < N$, $m > n$.	Special So Complete	lution(s) Solutions
(a) I_m A	 Invertible matrix rank LU Factorization / Four Fundamental Eigenvalues and E Determinants Anxm, Bmxn B = In-AB = In = In-AB =	Subspaces Eigenvectors - Im - BA	Special Matrices: • Projection matrix. • Rotation matrix. • Osthogonal matrix. • Positive definite matrix. • Hermitian Matrix. • Unitary Matrix.
	$\begin{bmatrix} I_m & B \\ A & I_n \end{bmatrix} = \begin{bmatrix} I_m & B \\ A & I_n \end{bmatrix} = \begin{bmatrix} I_m & B \\ A & I_n \end{bmatrix}$		
`	$ \begin{bmatrix} I_{m} & 0 \\ -A & I_{n} \end{bmatrix} = \begin{bmatrix} I \end{bmatrix} $		
1.5	- 0 ml 2 m-m () T	- 2121	(1) +(2) => Done! #. $\frac{1}{ \lambda E_n - A_B } = \frac{1}{2m} \lambda I_{nn} - B_A $
In	$-A(\frac{1}{\lambda}) = (Im)(\frac{1}{\lambda})$ $+A(\frac{1}{\lambda}) = (1 + m)(\frac{1}{\lambda})$	7	1 NEn-AB = Jm NIm-BA