binary heap

1 heap property

P < u & P < v

2. per colonost perfect binary tree

Merse: result O(n)

(NULL path leagth)

np((u) = # edges on this poth

npl(p) = min (upl(u), npl(u)) + 1

leftist heap

- 1. heap property
- 2. binary there with leftist property (leftist thee)

for any node u, the shortest clescending path from u to any node with must cut most one child

of a lear or has he right child hpl(u.left) ≥ npl(u.right) for any u.

np((NULL) = -)

Lemma

there are at most log_(n+1) nodes the right puth of a leftist tree with n nodes.

nodes on right path

4

7 hodes in leftist tree $1 = 2^{r-1}$ $1 = 2^{r-1}$ $1 = 2^{r-1}$ $1 = 2^{r-1}$ $1 = 2^{r-1}$

buse r=1inductive hypothese r=k+1 32^{k-1} 32^{k-1} 32^{k+1}

Merse

assume Hi. noot & Harroot

Merce (H., Hz)

1. Define A, u, B, and Az, uz, Bz as follow.

2. If $u_1 == NULL$

3. If Uz== HULL return Hi

4. If u1. key < u2. key

5, B* = merge (B1, H2)

b. H = A

if npl(B*. root) ≤ mpl(A1. root)

Insertion

Meye

Ollan)

Deletemin

merge (A, B)
Olloni

Delete Ollgn)

U_K 9

0 (lg n)

Decreasekey Ollan)

