CSC 348 – Midterm

Astrid Augusta Yu

May 17, 2020

Contents

1 Questions 1

2 Scratch Work 8

1 Questions

1. P = "I can assign partial credit for a question"

Q = "You leave it blank"

 $(\neg P \leftrightarrow Q) \equiv$ "I cannot assign partial credit for a question if and only if you leave it blank"

 $(P \leftrightarrow \neg Q) \equiv$ "I can assign partial credit for a question if and only if you do not leave it blank"

P	Q	$\neg P \leftrightarrow Q$	$P \leftrightarrow \neg Q$
\overline{T}	Т	F	F
T	F	${ m T}$	${ m T}$
\mathbf{F}	T	${ m T}$	${ m T}$
\mathbf{F}	F	F	F

Their truth tables are the same, so "I cannot assign partial credit for a question if and only if you leave it blank" is equivalent to "I can assign partial credit for a question if and only if you do not leave it blank".

2. Yes. $(v_5, v_6, v_2, v_5, v_3, v_2, v_1, v_3, v_4, v_0, v_1, v_6)$ is an Eulerian trail.

3.

Base Step
$$1, 2, 4, 7, 8, 11, 13, 14 \in S$$

Recursive Step $x \in S \rightarrow x + 15 \in S$ (1)

4.

Theorem 1. For some universe U, $A \triangle B = A \cup B \leftrightarrow A \cap B = \emptyset$

First, we will define the following lemmas:

Lemma 1. Let A and B be sets in the universe U. $A \setminus B = A \cap \overline{B}$

Proof. By definition of $A \setminus B$,

$$A \setminus B = \{ x \in U | (x \in A) \land (x \notin B) \}$$
 (2)

By definition of set complement,

$$A \setminus B = \left\{ x \in U | (x \in A) \land (x \in \overline{B}) \right\} \tag{3}$$

By definition of intersection,

$$A \setminus B = A \cap B \tag{4}$$

Therefore,
$$A \setminus B = A \cap B$$
.

Lemma 2. Let A be a set in the universe U. $A \setminus \emptyset = A$

Proof. By definition of set difference,

$$A \setminus \emptyset = \{ x \in U | (x \in A) \land (x \notin \emptyset) \}$$
 (5)

Since there are no elements in \emptyset , x can never be an element of \emptyset . Therefore,

$$A \setminus \emptyset = \{ x \in U | (x \in A) \land T \} \tag{6}$$

By definition of disjunction, this simplifies to

$$A \setminus \emptyset = \{ x \in U | x \in A \} \tag{7}$$

By definition of A,

$$A \setminus \emptyset = A \tag{8}$$

Therefore,
$$A \setminus \emptyset = A$$
.

Lemma 3. $A \triangle B = (A \cup B) \setminus (A \cap B)$

Proof. By definition of symmetric difference,

$$A \triangle B = \{ x \in U | (x \in A \land x \notin B) \lor (x \in B \land x \notin A) \}$$
 (9)

Applying the distributive property for propositions,

$$A \triangle B = \{ x \in U | [x \in A \lor (x \in B \land x \notin A)] \land [x \notin B \lor (x \in B \land x \notin A)] \}$$
 (10)

Applying the distributive property again,

$$A \triangle B = \{x \in U | (x \in A \lor x \in B) \land (x \in A \lor x \notin A) \land (x \notin B \lor x \in B) \land (x \notin B \lor x \notin A)\}$$

$$(11)$$

By the law of the excluded middle, we can reduce some terms from this expression.

$$A\triangle B = \{x \in U | (x \in A \lor x \in B) \land T \land T \land (x \notin B \lor x \notin A)\}$$

$$\tag{12}$$

By definition of disjunction,

$$A \triangle B = \{ x \in U | (x \in A \lor x \in B) \land (x \notin B \lor x \notin A) \}$$
 (13)

Applying DeMorgan's Law,

$$A\triangle B = \{x \in U | (x \in A \lor x \in B) \land \neg (x \in B \land x \in A)\}$$
(14)

By definition of intersection,

$$A \triangle B = \{ x \in U | x \in A \lor x \in B \} \cap \{ x \in U | \neg (x \in B \land x \in A) \}$$
 (15)

By definition of set complement,

$$A\triangle B = \{x \in U | x \in A \lor x \in B\} \cap \overline{\{x \in U | x \in B \land x \in A\}}$$
 (16)

By definition of intersection,

$$A\triangle B = \{x \in U | x \in A \lor x \in B\} \cap \overline{A \cap B}$$

$$\tag{17}$$

By definition of union,

$$A\triangle B = (A \cup B) \cap \overline{A \cap B} \tag{18}$$

By Lemma 1, this is equivalent to

$$A\triangle B = (A \cup B) \setminus (A \cap B) \tag{19}$$

Therefore,
$$A \triangle B = (A \cup B) \setminus (A \cap B)$$
.

Now, we will prove Theorem 1.

Proof. Suppose $A \cap B = \emptyset$.

By Lemma 3,

$$A\triangle B = (A \cup B) \setminus \emptyset \tag{20}$$

By Lemma 1, this is equivalent to

$$A \triangle B = (A \cup B) \setminus \emptyset \tag{21}$$

By Lemma 2,

$$A\triangle B = (A \cup B) \setminus \emptyset \tag{22}$$

Since it is given that $A \cap B = \emptyset$,

$$A\triangle B = (A \cup B) \setminus (A \cap B) \tag{23}$$

This is consistent with the result in Lemma 3.

Therefore,
$$A \cap B = \emptyset$$
 if and only if $A \triangle B = A \cup B$.

5.

Theorem 2. $(A \times B) \cap (B \times A) = \emptyset$ if and only if $A \triangle B = A \cup B$.

First we will define a lemma:

Lemma 4. $A \cap B = \emptyset$ if and only if $(A \times B) \cap (B \times A) = \emptyset$

Proof. (\rightarrow) Suppose $A \cap B = \emptyset$, and seeking a contradiction, that there exists an $(a,b) \in (A \times B) \cap (B \times A)$.

By the definition of intersection,

$$(a,b) \in (A \times B) \land (a,b) \in (B \times A) \tag{24}$$

By definition of cartesian product,

$$(a \in A) \land (b \in B) \land (a \in B) \land (b \in A) \tag{25}$$

Rearranging terms,

$$(a \in A \land a \in B) \land (b \in A \land b \in B) \tag{26}$$

By definition of intersection,

$$(a \in (A \cap B)) \land (b \in (A \cap B)) \tag{27}$$

 $\rightarrow \leftarrow$

This is a contradiction because $(A \cap B) = \emptyset$.

Therefore, if $A \cap B = \emptyset$ then $(A \times B) \cap (B \times A) = \emptyset$.

 (\leftarrow) Suppose $(A \times B) \cap (B \times A) = \emptyset$, and seeking a contradiction, that there exists an $x \in (A \cap B)$.

By definition of intersection, $x \in A$ and $x \in B$.

Thus, by definition of cartesian product,

$$(x,x) \in (A \times B) \tag{28}$$

Additionally,

$$(x,x) \in (B \times A) \tag{29}$$

Given (28) and (29) are both true, by definition of intersection,

$$(x,x) \in (A \times B) \cap (B \times A) \tag{30}$$

 $\rightarrow \leftarrow$

This is a contradiction because by our assumption, $(A \times B) \cap (B \times A) = \emptyset$.

Therefore,
$$A \cap B = \emptyset \leftrightarrow (A \times B) \cap (B \times A) = \emptyset$$
.

Now, we will prove Theorem 2.

Proof. (\leftarrow) Suppose $A \triangle B = A \cup B$.

By Theorem 1, $A \cap B = \emptyset$.

By Lemma 4, $(A \times B) \cap (B \times A) = \emptyset$.

Therefore, $(A \times B) \cap (B \times A) = \emptyset \rightarrow A \triangle B = A \cup B$.

 (\rightarrow) Suppose $A \triangle B = A \cup B$. By a symmetric argument, $A \triangle B = A \cup B \rightarrow (A \times B) \cap (B \times A) = \emptyset$.

Therefore,
$$A \triangle B = A \cup B \leftrightarrow (A \times B) \cap (B \times A) = \emptyset$$
.

6. $\deg_{K_n}(v) = n - 1$

7.

Theorem 3. Let $n \in \mathbb{Z}^+$ and $K_n = (V, E)$. K_n is Eulerian if and only if n is odd.

Proof. (\rightarrow) Suppose that K_n is Eulerian. Thus, all vertices have even degree. Since this is a complete graph, all vertices have the same degree. Therefore, by definition of even, for all vertices $v \in V$, for some $i \in \mathbb{N}$, $\deg_{K_n}(v) = 2i$.

By definition of a complete graph, all vertices also have degree $\deg_{K_n}(v) = n - 1$, so by the transitive law of equality,

$$2i = n - 1$$
$$2i + 1 = n \tag{31}$$

By definition of odd, n is odd.

 (\leftarrow) Suppose that n is odd. By definition of odd, for some $j \in \mathbb{N}$, n = 2j + 1. By definition of a complete graph, all vertices $v \in V$ have degree

$$\deg_{K_n}(v) = n - 1$$

$$= (2j + 1) - 1 = 2j$$
(32)

By definition of even, all vertices $v \in V$ therefore have even degree. By definition of Eulerian, K_n is thus Eulerian.

Therefore, K_n is Eulerian $\leftrightarrow n$ is odd.

8.

Theorem 4. Let $n \in \mathbb{Z}_{\geq 3}$ and $K_n = (V, E)$. K_n has $\frac{(n-1)!}{2}$ unique cycles of length n.

Proof. For the purposes of our proof, we will define V_n as the vertex set of K_n and E_n as the edge set of K_n for any $n \in \mathbb{N}$.

Base Case. Suppose n = 3. K_3 has exactly 1 cycle of length 3.

$$\frac{(n-1)!}{2} = \frac{(3-1)!}{2} = 1 \tag{33}$$

Therefore, the theorem holds for n = 3.

Inductive Hypothesis. Suppose n = k. K_k has $\frac{(k-1)!}{2}$ unique cycles of length k. Additionally, let S_k be the set of unique k-length cycles of K_k .

Induction Step. Consider the graph $K_{k+1} = (V_{k+1}, E_{k+1})$. Choose a $v \in V_{k+1}$. Note that K_{k+1} can be constructed from K_k by adding v and connecting it to all the other vertices, by definition of complete graph.

Let S_k be the set of k-length cycles in K_k . By the inductive hypothesis, $|S_k| = \frac{(k-1)!}{2}$. We will construct S_{k+1} , the set of (k+1)-length cycles in K_{k+1} , from the elements of S_k , using the following method:

Choose a cycle $c \in S_k$ and an edge (a, b) that c traverses. By definition of a member of S_k , c has length k.

Let d be the cycle equivalent to c, but with (a, b) removed and replaced with (a, v, b). d is an element of S_{k+1} . Note that since we removed 1 edge and added 2 new edges, the length of the new cycle is k-1+2=k+1, so all d we can create using this method will have length k+1.

By the inductive hypothesis, there are $\frac{(k-1)!}{2}$ unique k length cycles to choose from in S_k . Additionally, each of these cycles, having a length of k, has k edges to choose from. Therefore, there are

$$k \cdot \frac{(k-1)!}{2} = \frac{k!}{2} = \frac{((k+1)-1)!}{2} \tag{34}$$

cycles that can be created using this method.

Now, we will prove that every cycle created using a different choice of cycle in $c \in S_k$ and edge in c is unique.

Claim 1. Suppose that the cycles $c_1, c_2 \in S_k$ generated the cycles $d_1, d_2 \in S_{k+1}$ respectively. If $c_1 \neq c_2$ then $d_1 \neq d_2$.

Proof. By way of contradiction, suppose that $d_1 = d_2 = d \in S_{k+1}$.

By definition of d as an element in S_{k+1} , the following are true:

- (a) Recall that v is an arbitrary node not in K_k . Thus, (a, v, b) is a subpath of d.
- (b) (a,b) is a path of both c_1 and c_2 .

Let p_1, p_2 be the paths created by removing (a, b) from c_1, c_2 respectively. By definition of an element of S_{k+1} , adding (a, v, b) to either p_1 or p_2 creates c.

Conversely then, removing (a, v, b) from c creates both p_1 and p_2 . This means that $p_1 = p_2$.

Let $p = p_1 = p_2$. By definition of p_1 , adding (a, b) to p will create c_1 . By definition of p_2 , adding (a, b) to p will also create c_2 . Therefore, $c_1 = c_2$. $\rightarrow \leftarrow$

This is impossible because $c_1 \neq c_2$ by definition. Therefore, if $c_1 \neq c_2$ then any d_1 and d_2 created from them respectively will not be the same.

Claim 2. Suppose c is a cycle in S_k , and $(a_1,b_1),(a_2,b_2)$ are edges in c that are replaced to generate the cycles $d_1,d_2 \in S_{k+1}$ respectively. If $(a_1,b_1) \neq (a_2,b_2)$ then $d_1 \neq d_2$.

Proof. By way of contradiction, suppose that $d_1 = d_2 = d \in S_{k+1}$. Thus, by definition of an element in S_{k+1} , the following are true:

- (a) For some $t, u \in V_k$, d contains the subpath (t, v, u).
- (b) There is an edge $(t, u) \in E_k$ that c passes through, and it can be replaced with (t, v, u) to build d. Conversely, replacing (t, v, u) in d with (t, u) builds c.

Let p_1, p_2 be the paths created by removing (a_1, b_1) and (a_2, b_2) from c_1 and c_2 respectively. By our original assumption, adding (a_1, v, b_1) and (a_2, v, b_2) to p_1 and p_2 respectively will build c. Conversely, removing (a_1, v, b_1) and (a_2, v, b_2) from d will create p_1 and p_2 respectively.

However, by definition of a cycle, v only occurs once in c. Thus, there is only one unique subpath (t, v, u) in d. Therefore, $(t, v, u) = (a_1, v, b_1) = (a_2, v, b_2)$, so $a_1 = a_2$ and $b_1 = b_2$. $\rightarrow \leftarrow$

This is a contradiction because our condition is that $(a_1, b_1) \neq (a_2, b_2)$.

Therefore, if $(a_1, b_1) \neq (a_2, b_2)$ then $d_1 \neq d_2$.

By Claims 1 and 2, no cycle/pair combination will generate the same cycle. Therefore, all of our generated (k+1)-length cycles are unique.

Therefore, by the principle of mathematical induction, there are $\frac{(n-1)!}{2}$ unique cycles in K_n .

2 Scratch Work

