Problem 1 (6.11). Prove that L^{∞} is complete.

Proof. To show that L^{∞} is complete, we must show every Cauchy sequence converges. To that end, let $\{f_n\}$ be any Cauchy sequence in L^{∞} and let $\varepsilon > 0$ be chosen. Since $\{f_n\}$ is Cauchy, there exists $N_1 \in \mathbb{N}$ such that for all $n, m \geq N_1$, we have

$$||f_n - f_m||_{\infty} = \inf \{M : m \{t : |f_n(t) - f_m(t)| > M\} = 0\} < \frac{\varepsilon}{2}.$$

So for any fixed $n, m \geq N_1$, there exists $M < \frac{\varepsilon}{2}$ such that $m\{t : |f_n(t) - f_m(t)| > M\} = 0$. implying that $m\{t : |f_n(t) - f_m(t)| > \frac{\varepsilon}{2}\} = 0$. So then on the set $L^{\infty} \setminus \{t : |f_n(t) - f_m(t)| > \frac{\varepsilon}{2}\}$, the sequence $\{f_n\}$ converges to some function f almost everywhere. We must show that this limit function f is in L^{∞}

Since $f_n \to f$ almost everywhere, there exists $N_2 \in \mathbb{N}$ such that for any $n > N_2$, $|f_n - f| < \frac{\varepsilon}{2}$. Let $N = \max\{N_1, N_2\}$. Then for any fixed n > N, we can see that

$$||f_n - f||_{\infty} = \inf \{ M : m \{ t : |f_n(t) - f(t)| > M \} = 0 \} < \varepsilon$$

which, because ε is arbitrary, means that $||f_n - f|| \to 0$. Thus $f \in L^{\infty}$ and so L^{∞} is complete.

Problem 2 (6.13). Let C = C[0,1] be the space of all continuous functions on [0,1] and define $||f|| = \max |f(x)|$. Show that C is a Banach space.

Proof. To show that the space $(C, \|\cdot\|)$ is a Banach space, we must show $\|f\| = \max |f(x)|$ is indeed a norm and that C with this norm is a complete space.

First, we will show that $\|\cdot\|$ defined above on C is a norm. That is, we must show the following the following three properties:

- (i) For any $f \in C$, ||f|| = 0 if and only if f = 0.
- (ii) For any $f, g \in C$, $||f + g|| \le ||f|| + ||g||$.
- (iii) For any $f \in C$ and for all $\alpha \in \mathbb{R}$, $\|\alpha f\| = |\alpha| \|f\|$.

For (i), first suppose that ||f|| = 0. Then $\max |f(x)| = 0$ which is true only if f(x) = 0 for any $x \in [0, 1]$. Conversely, suppose f = 0. Then for any $x \in [0, 1]$, we have that $||f|| = \max |f(x)| = \max 0 = 0$.

To prove (ii), fix $f, g \in C$. By the triangle inequality, we know that $|f + g| \leq |f| + |g|$. The max function adheres to the triangle inequality and so

$$||f + g|| = \max |f + g|$$

 $\leq \max |f| + \max |g|$
 $= ||f|| + ||g||.$

Finally, let $\alpha \in \mathbb{R}$ and $f \in C$ be chosen. Then

$$\|\alpha f\| = \max |\alpha f| = \max |\alpha| |f|$$
$$= |\alpha| \max |f|$$
$$= |\alpha| ||f||$$

where the last equality follows since α is a scalar and not dependent upon taking the max over [0,1].

To show C is complete, let $\{f_n\}$ be a Cauchy sequence on C. Let $\varepsilon > 0$ be chosen. Since $\{f_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$, we have that

$$||f_n - f_m|| < \varepsilon.$$

From how $\|\cdot\|$ is defined, this implies that $|f_n(x) - f_m(x)| < \varepsilon$ for any $x \in [0, 1]$. But this means we can always find n > N large enough so that $|f_n - f| < \varepsilon$ i.e., $\{f_n\}$ converges to a function f pointwise. Because $x \in [0, 1]$, this means that that this convergence is uniform and so $||f_n - f|| < \varepsilon$ i.e., $||f_n - f|| \to 0$. Thus, $f \in C$ and so C is a complete space.

Therefore, having shown that $||f|| = \max |f|$ is a norm and C is a complete space, C is a Banach space.

Problem 3 (5.1). Let f be the function defined

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & x \neq 0\\ 0 & x = 0. \end{cases}$$

Find $D^+f(0)$, $D_+f(0)$, $D^-f(0)$, and $D_-f(0)$.

Proof. First, we will note that

$$D^{+}(0) = \frac{f(0+h) - f(0)}{h} = \overline{\lim}_{h \to 0^{+}} \sin\left(\frac{1}{h}\right) = 1.$$

Similarly,

$$D^{-}(0) = \frac{f(0) - f(0 - h)}{h} = \overline{\lim}_{h \to 0^{+}} \sin\left(\frac{1}{h}\right) = 1.$$

However, this flips once we look at the limit inferior i.e.,

$$D_{+}(0) = \lim_{h \to 0^{+}} \sin\left(\frac{1}{h}\right) = -1$$

and

$$D_{-}(0) = \frac{f(0) - f(0 - h)}{h} = \overline{\lim}_{h \to 0^{+}} \sin\left(\frac{1}{h}\right) = -1..$$