Aerothermodynamic Design Sensitivities for a Reacting Gas Flow Solver on an Unstructured Mesh Using a Discrete Adjoint Formulation

Kyle B. Thompson

Mechanical and Aerospace Engineering Department North Carolina State University

> Aerothermodynamics Branch NASA Langley Research Center

> > April 19, 2016

Outline

- Introduction
- 2 Flow Solver
 - Fully-Coupled Method
 - Decoupled Method
- Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

●000000 0000000 00000000 00000000 0000

Introduction - Design

Lift/Drag Objective Function¹

- Exploring design space using high-fidelity CFD is challenging
- zero-order methods (sampling) are prohibitively expensive
- Need to be intelligent about techniques for evaluating sensitivity to design parameters
- Gradient-based optimization much more efficient than sampling, but requires calculating sensitivity derivatives

¹Credit: FUN3D Tutorial Examples.

 \bullet > 100 design variables in OM6 wing shape optimization

- $\bullet > 100$ design variables in OM6 wing shape optimization
- How do you to compute sensitivity of that many DVs?

- $\bullet > 100$ design variables in OM6 wing shape optimization
- How do you to compute sensitivity of that many DVs?

Direct differentiation approach - Expensive

- Navier-Stokes equations can be directly differentiated to yield sensitivity derivatives necessary for gradient-based optimization
- Finite difference requires a minimum of one flow solution for each design variable sensitivity
- Prohibitively expensive for large number of design parameters

- ullet > 100 design variables in OM6 wing shape optimization
- How do you to compute sensitivity of that many DVs?

Adjoint approach - More efficient

- Solve adjoint equations in addition to Navier Stokes flow equations to obtain sensitivity derivatives
- One flow and adjoint solution needed for each cost function, regardless of number of design variables
- Considerably more efficient than direct differentiation approach for large number of design parameters

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Introduction - Design

- Adjoint-based design optimization has recieved considerable attention in compressible, perfect gas CFD solvers^{2,3}, but very little in reacting flow solvers
- Difficulty of adjoint approach lies in implementating exact linearizations for 2nd-order flux construction scheme
- Particularly difficult for reacting flows, due to
 - Complexity of linearizing the additional equations for multi-species chemical kinetics
 - Resorting to Automatic Differentiation tools incurs performance overhead that is implementation-specific⁴
 - Serious memory and computational cost concerns when simulating a large number of species

²E. J. Nielsen et al. Computers & Fluids 33.9 (2004), pp. 1131-1155.

³J. E. Peter and R. P. Dwight. Computers & Fluids 39.3 (2010), pp. 373-391.

⁴ J.-D. Müller and P. Cusdin. International Journal for Numerical Methods in Fluids 47.8-9 (2005), pp. 939–945.

Introduction - Improvement to State of the Art

- Current state of the art
 - Attempts made at both continuous⁵ and discrete⁶ adjoint formulations for a compressible reacting flow solver
 - These attempts suffer from quadratic scaling in memory and computational cost with number of species
 - Recent scheme at Barcelona Supercomputing Center⁷ is promising, but only for incompressible reacting flows
- Proposed improvement to the state of the art
 - New decoupled scheme for both hypersonic flow solver and adjoint solver that is robust for high-speed flows in chemical non-equilibrium
 - New scheme significantly improves scaling in computational cost and memory with number of species

⁵S. R. Copeland, F. Palacios, and J. J. Alonso. *52nd Aerospace Sciences Meeting*. American Institute of Aeronautics and Astronautics, 2014.

⁶B. Lockwood et al. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2011.

⁷M. K. Esfahani and G. Houzeaux. 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2016.

Introduction - Decoupled Approach

- Reacting gas simulations require solving a large number of conservation equations
- Memory concerns
 - Size of Jacobians scales quadratically with number species in gas mixture
 - Solving system of equations in a tightly-coupled fashion can be limited by memory constraints
- Cost concerns
 - Cost of solving the linear system scales quadratically with number of species in gas mixture
- Efficiently solving adjoint problem is a primary motivator
 - Solving adjoint system particularly costly if linear solver is slow
 - ullet Can be necessary to store jacobian twice o large memory overhead

Introduction - Decoupled Approach

- Loosely-coupled solvers have become popular in the combustion community⁸
 - Decouple species conservation equations from meanflow equations, and solve two smaller systems

$$\begin{pmatrix}
\square & \square & \dots & \square \\
\square & \square & \dots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\square & \dots & \dots & \square
\end{pmatrix}
\rightarrow
\begin{pmatrix}
\square & \dots & \square \\
\vdots & \ddots & \vdots \\
\square & \dots & \square
\end{pmatrix}$$
and
$$\begin{pmatrix}
\square & \square & \dots & \square \\
\square & \square & \dots & \vdots \\
\vdots & \vdots & \ddots & \vdots \\
\square & \dots & \square
\end{pmatrix}$$

$$(4+ns)\times(4+ns)$$

$$ns\times ns$$

 Candler, et al.⁹ originally derived this for Steger-Warming scheme, this work extends to Roe FDS scheme

⁸V. Sankaran and M. Olsen. 16th AIAA Computational Fluid Dynamics Conference. 2003.

⁹G. V. Candler, P. K. Subbareddy, and I. Nompelis. AIAA Journal 51.5 (2013), pp. 1245–1254.

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

OOOOOO OOO OOO OOO

Introduction - Choice of Code and Implementation

- FUN3D chosen as code to facilitate all research presented, because
 - Excellent infrastructure for adjoint-based design analysis and optimization
 - Robust hypersonic flow solver
 - NASA Langley Research Center supporting me through the Pathways program
- Decision to pursue discrete adjoint, rather than continuous adjoint, due to current FUN3D implementation

Outline

- Introduction
- 2 Flow Solver
 - Fully-Coupled Method
 - Decoupled Method
- 3 Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

Fully-Coupled Point Implicit Method

- All work presented is for inviscid flows in chemical non-equilibrium, using a one-temperature model, but is extendable to viscous flows.
- Beginning with the semi-discrete form

$$rac{\partial \mathbf{U}}{\partial t} + rac{1}{V} \sum_f (\mathbf{F} \cdot \mathbf{S})^f = \mathbf{W}$$

$$\mathbf{U} = \begin{pmatrix} \rho_{1} \\ \vdots \\ \rho_{ns} \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{pmatrix}, \quad \mathbf{F} \cdot \mathbf{S} = \begin{pmatrix} \rho_{1} \overline{U} \\ \vdots \\ \rho_{ns} \overline{U} \\ \rho u \overline{U} + p s_{x} \\ \rho u \overline{U} + p s_{y} \\ \rho u \overline{U} + p s_{z} \\ (\rho E + p) \overline{U} \end{pmatrix} S, \quad \mathbf{W} = \begin{pmatrix} \dot{\rho}_{1} \\ \vdots \\ \dot{\rho}_{ns} \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Fully-Coupled Point Implicit Method

• Using the Roe FDS scheme to compute the inviscid flux at the face, \mathbf{F}^f , and linearizing the system results in

$$\frac{\delta \mathbf{U}^n}{\Delta t} + \frac{1}{V} \sum_{f} \left(\frac{\partial \mathbf{F}^f}{\partial \mathbf{U}^L} \delta \mathbf{U}^L + \frac{\partial \mathbf{F}^f}{\partial \mathbf{U}^R} \delta \mathbf{U}^R \right)^n \mathbf{S}^f - \frac{\partial \mathbf{W}}{\partial \mathbf{U}} \delta \mathbf{U}^n \\
= -\frac{1}{V} \sum_{f} (\mathbf{F}^f \cdot \mathbf{S}^f)^n + \mathbf{W}^n$$

Which can be thought of more simply as

$$\mathbf{A}\mathbf{u} = \mathbf{b}$$

$$\mathbf{A}
ightarrow rac{(4+ns) imes (4+ns)}{\mathsf{Jacobian Block}}$$

$$\mathbf{b}
ightarrow rac{(4+ns) imes 1}{\mathsf{Residual}}$$

Fully-Coupled Point Implicit Method

- Constructing the Jacobian in a fully-coupled fashion results in large, dense block matricies
- Using a stationary iterative method (i.e., Gauss-Seidel, SSOR, etc.), work is dominated by matrix-vector products

$$Cost \rightarrow O((4 + ns)^2)$$

 Leads to onerous quadratic scaling with respect to number of species

- The main idea is to separate the meanflow and species composition equations, adding a new equation for the total mixture density
- Leads to two sets of conserved variables

$$\mathbf{U}' = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho w \\ \rho E \end{pmatrix} \qquad \hat{\mathbf{U}} = \begin{pmatrix} \rho_1 \\ \vdots \\ \rho_{ns} \end{pmatrix}$$

Meanflow Species Composition

- The fluxes are solved in two sequential steps
 - The mixture fluxes are first solved as

$$\frac{\partial \mathbf{U}'}{\partial t} + \frac{1}{V} \sum_{f} (\mathbf{F}' \cdot \mathbf{S})^{f} = 0$$

Followed by the species fluxes

$$rac{\partial \hat{\mathbf{U}}}{\partial t} + rac{1}{V} \sum_{f} (\hat{\mathbf{F}} \cdot \mathbf{S})^{f} = \hat{\mathbf{W}}$$

• Since the mixture density was determined in the first step, step two actually solves for the species mass fractions

$$\delta \hat{\mathbf{U}}^n = \rho^{n+1} \hat{\mathbf{V}}^{n+1} - \rho^n \hat{\mathbf{V}}^n = \rho^{n+1} \delta \hat{\mathbf{V}}^n + \hat{\mathbf{V}}^n \delta \rho^n$$
$$\hat{\mathbf{V}} = (c_1, \dots, c_{ns})^T, c_s = \rho_s/\rho$$

The Roe FDS scheme species mass fluxes can be rewritten as

$$\hat{\mathbf{F}}_{\rho_s} = c_s \mathbf{F}'_{\rho} + (c_s^L - \tilde{c}_s) \rho^L \lambda^+ + (c_s^R - \tilde{c}_s) \rho^R \lambda^-$$

$$\frac{\partial \hat{\mathbf{F}}_{\rho_s}}{\partial c_s^L} = w \mathbf{F}_{\rho} + (1 - w) \rho^L \lambda^+ - w \rho^R \lambda^-$$

$$\frac{\partial \hat{\mathbf{F}}_{\rho_s}}{\partial c_s^R} = (1 - w) \mathbf{F}_{\rho} + (w - 1) \rho^L \lambda^+ + w \rho^R \lambda^-$$

Jacobian Approximations

Step 1:
$$\frac{\partial \mathbf{F}}{\partial \mathbf{U}'}\Big|_{\hat{\mathbf{V}}} = 5 \times 5 \text{ Roe FDS Jacobian}$$
Step 2:
$$\frac{\partial \mathbf{F}}{\partial \hat{\mathbf{V}}}\Big|_{\hat{\mathbf{U}}'} = \begin{pmatrix} \frac{\partial F_{\rho_1}}{\partial c_1} & 0 \\ & \ddots & \\ 0 & & \frac{\partial F_{\rho_{ns}}}{\partial c_{ns}} \end{pmatrix}$$

Chemical source term linearized via

$$\hat{\mathbf{W}}^{n+1} = \hat{\mathbf{W}}^n + \frac{\partial \hat{\mathbf{W}}}{\partial \mathbf{U}} \Big|_{\mathbf{U}'} \frac{\partial \mathbf{U}}{\partial \hat{\mathbf{V}}}$$
$$\mathbf{C} = \frac{\partial \hat{\mathbf{W}}}{\partial \mathbf{U}} \Big|_{\mathbf{U}'} \frac{\partial \mathbf{U}}{\partial \hat{\mathbf{V}}}$$

• Full system to be solved in step two

$$\rho^{n+1} \frac{\delta \hat{\mathbf{V}}^{n}}{\Delta t} + \frac{1}{V} \sum_{f} (\frac{\partial \hat{\mathbf{F}}^{f}}{\partial \mathbf{V}^{L}} \delta \mathbf{V}^{L} + \frac{\partial \hat{\mathbf{F}}^{f}}{\partial \hat{\mathbf{V}}^{R}} \delta \hat{\mathbf{V}}^{R})^{n,n+1} \mathbf{S}^{f} - \mathbf{C}^{n,n+1} \delta \mathbf{V}^{n}$$

$$= -\frac{1}{V} \sum_{f} (\hat{\mathbf{F}}^{n,n+1} \cdot \mathbf{S})^{f} + \mathbf{W}^{n,n+1} - \hat{\mathbf{V}}^{n} \frac{\delta \rho^{n}}{\Delta t} - R_{\rho}$$

$$R_{\rho} = -\frac{1}{V} \sum_{f} \sum_{s} (\hat{F}^{n,n+1}_{\rho_{s}} \cdot \mathbf{S})$$

• R_{ρ} is included to preserve $\sum_{s} c_{s} = 1$, $\sum_{s} \delta c_{s} = 0$.

Outline

- Introduction
- 2 Flow Solver
 - Fully-Coupled Method
 - Decoupled Method
- Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

Cost and Memory Savings of the Decoupled Flow Solver

- Most significant savings comes from the source term linearization being purely node-based
 - Convective contributions to block Jacobians are diagonal
 - Source term jacobian is dense block Jacobian
 - In the global system (w/chemistry), all off-diagonal block jacobians are diagonal

$$\begin{pmatrix}
\Box & & & \\
& \ddots & & \\
& & \Box & & \\
& & & \ddots & \\
& & & & \Box
\end{pmatrix}
\begin{pmatrix}
\delta \hat{\mathbf{V}}_1 \\
\vdots \\
\delta \hat{\mathbf{V}}_i \\
\vdots \\
\delta \hat{\mathbf{V}}_{nodes}
\end{pmatrix} = \begin{pmatrix}
\hat{b}_1 \\
\vdots \\
\hat{b}_i \\
\vdots \\
\hat{b}_{nodes}
\end{pmatrix} - \begin{pmatrix}
(\sum_{j=1}^{N_{nb}} [\setminus] \delta \hat{\mathbf{V}}_j)_1 \\
\vdots \\
(\sum_{j=1}^{N_{nb}} [\setminus] \delta \hat{\mathbf{V}}_j)_i \\
\vdots \\
(\sum_{j=1}^{N_{nb}} [\setminus] \delta \hat{\mathbf{V}}_j)_{nodes}
\end{pmatrix}$$

• Matrix-vector products o inner products: $O(ns^2) o O(ns)$

Cost and Memory Savings of the Decoupled Flow Solver

Comparing size of Jacobian systems, using Compressed Row Storage

$$\mathbf{A}_d = \mathsf{Decoupled}$$
 system Jacobians $\mathbf{A} = \mathsf{Fully\text{-}coupled}$ system Jacobians

Relative Memory Cost =
$$\frac{size(\mathbf{A}_d)}{size(\mathbf{A})}$$

= $\lim_{ns \to \infty} \frac{(ns^2 + 5^2)(N_{nodes}) + (ns + 5^2)(N_{nbrs})}{(ns + 4)^2(N_{nodes} + N_{nbrs})}$
= $\frac{N_{nodes}}{N_{nodes} + N_{nbrs}}$

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Numerical Results: 2D Cylinder

- Fully-coupled and decoupled methods both implemented in the Generic Gas Path of FUN3D
- Tested on 2D cylinder case
 - $V_{\infty}=5000$ m/s, $\rho_{\infty}=0.001$ kg/m³, and $T_{\infty}=200$ K
- Inviscid flow, with 1-Temperature model

Numerical Results: 2D Cylinder

- Verification of implementation
 - 5-species air model: N, N₂, O, O₂, and NO with five reactions

 Surface pressure, surface temperature, and mass fractions on stagnation line agree between decoupled and fully coupled implementations

Numerical Results: 2D Cylinder

- On structured grids $N_{nbrs} \approx 6 N_{nodes}$
 - Half precision off-diagonal $N_{nbrs} = \frac{6N_{nodes}}{2}$

Memory Cost
$$\approx \frac{N_{nodes}}{N_{nodes} + N_{nbrs}} = \frac{N_{nodes}}{N_{nodes} + 6N_{nodes}/2} = \frac{1}{4}$$

• Linear speedup in solver: $\frac{O(ns^2)}{O(ns)} = O(ns)$

ntroduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Numerical Results: Axisymmetric Spherically Capped Cone

- Verify that the decoupled scheme is robust at high velocities
 - $V_{\infty} = 15000 \text{ m/s}, \ \rho_{\infty} = 0.001 \text{ kg/m}^3, \ T_{\infty} = 200 \text{ K}.$
 - 11-species air model N, N₂, O, O₂, NO, N⁺, N₂⁺, O⁺, O₂⁺, NO⁺, and electrons, with 22 possible reactions.
 - Inviscid flow, with 1-Temperature model

Numerical Results: Axisymmetric Spherically Capped Cone

• Surface pressure and surface temperature agree between decoupled and fully coupled implementations

ntroduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Numerical Results: Axisymmetric Spherically Capped Cone

- Necessary to scale source term magnitude by $0.001 \le w \le 1$ for the first 500 iterations, due to extreme reaction rates
- Both schemes converge in a similar number of iterations
- Decoupled scheme $\approx 2x$ faster

Outline

- Introduction
- 2 Flow Solver
 - Fully-Coupled Method
 - Decoupled Method
- Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

 The derivation of the adjoint approach to compute design sensitivities begins with forming the Lagrangian and differentiating with respect to the design variables

$$L(\mathbf{D}, \mathbf{Q}, \mathbf{X}, \mathbf{\Lambda}) = f(\mathbf{D}, \mathbf{Q}, \mathbf{X}) + \mathbf{\Lambda}^T \mathbf{R}(\mathbf{D}, \mathbf{Q}, \mathbf{X})$$

D = design variables

f = cost function

 $\mathbf{Q} = \mathsf{flow} \; \mathsf{variables}$

 $\mathbf{R} = \mathsf{flow} \; \mathsf{residual}$

X =computational grid

 $\Lambda = \text{costate variables}$

 The derivation of the adjoint approach to compute design sensitivities begins with forming the Lagrangian and differentiating with respect to the design variables

$$L(\mathbf{D}, \mathbf{Q}, \mathbf{X}, \mathbf{\Lambda}) = f(\mathbf{D}, \mathbf{Q}, \mathbf{X}) + \mathbf{\Lambda}^T \mathbf{R}(\mathbf{D}, \mathbf{Q}, \mathbf{X})$$

$$\frac{\partial L}{\partial \mathbf{D}} = \left\{ \frac{\partial f}{\partial \mathbf{D}} + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \frac{\partial f}{\partial \mathbf{X}} \right\} + \left[\frac{\partial \mathbf{Q}}{\partial \mathbf{D}} \right]^T \left\{ \frac{\partial f}{\partial \mathbf{Q}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{Q}} \right]^T \mathbf{\Lambda} \right\}$$

$$+ \left\{ \left[\frac{\partial \mathbf{R}}{\partial \mathbf{D}} \right]^T + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}} \right]^T \right\} \mathbf{\Lambda}$$

 $\mathbf{D} = \mathsf{design} \ \mathsf{variables}$

f = cost function

 $\mathbf{Q} = \text{flow variables}$

 $\mathbf{R} = \text{flow residual}$

X =computational grid $\Lambda =$ costate variables

 The derivation of the adjoint approach to compute design sensitivities begins with forming the Lagrangian and differentiating with respect to the design variables

$$L(\mathbf{D}, \mathbf{Q}, \mathbf{X}, \mathbf{\Lambda}) = f(\mathbf{D}, \mathbf{Q}, \mathbf{X}) + \mathbf{\Lambda}^T \mathbf{R}(\mathbf{D}, \mathbf{Q}, \mathbf{X})$$

$$\frac{\partial L}{\partial \mathbf{D}} = \left\{ \frac{\partial f}{\partial \mathbf{D}} + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \frac{\partial f}{\partial \mathbf{X}} \right\} + \left[\left[\frac{\partial \mathbf{Q}}{\partial \mathbf{D}} \right]^T \left\{ \frac{\partial f}{\partial \mathbf{Q}} + \left[\frac{\partial \mathbf{R}}{\partial \mathbf{Q}} \right]^T \mathbf{\Lambda} \right\} \right]$$

$$+ \left\{ \left[\frac{\partial \mathbf{R}}{\partial \mathbf{D}} \right]^T + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}} \right]^T \right\} \mathbf{\Lambda}$$

D = design variables

f = cost function

 $\mathbf{Q} = \text{flow variables}$

 $\mathbf{R} = \text{flow residual}$

X =computational grid $\Lambda =$ costate variables

- Need to eliminate flow variable dependence on design variables, $\frac{\partial \mathbf{Q}}{\partial \mathbf{D}}$
- Adjoint equation

$$\left[\frac{\partial \mathbf{R}}{\partial \mathbf{Q}}\right]^T \mathbf{\Lambda} = -\frac{\partial f}{\partial \mathbf{Q}}$$

ullet Solve for $oldsymbol{\Lambda}$ and compute sensitivity derivatives

$$\frac{\partial L}{\partial \mathbf{D}} = \left\{ \frac{\partial f}{\partial \mathbf{D}} + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \frac{\partial f}{\partial \mathbf{X}} \right\} + \left\{ \left[\frac{\partial \mathbf{R}}{\partial \mathbf{D}} \right]^T + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}} \right]^T \right\} \mathbf{\Lambda}$$

Fully Coupled Iterative Method

Adjoint problem is a linear system

$$\begin{pmatrix} \frac{\partial \mathbf{R}_{\rho_{i}}}{\partial \rho_{j}}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho_{j}}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho_{j}}^{T} \\ \frac{\partial \mathbf{R}_{\rho_{i}}}{\partial \rho_{\mathbf{u}}}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho_{\mathbf{u}}}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho_{\mathbf{u}}}^{T} \\ \frac{\partial \mathbf{R}_{\rho_{i}}}{\partial \rho_{\mathbf{E}}}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho_{\mathbf{E}}}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho_{\mathbf{E}}}^{T} \end{pmatrix} \begin{pmatrix} \mathbf{\Lambda}_{\rho_{i}} \\ \mathbf{\Lambda}_{\rho \mathbf{u}} \\ \mathbf{\Lambda}_{\rho \mathbf{E}} \end{pmatrix} = - \begin{pmatrix} \frac{\partial f}{\partial \rho_{i}} \\ \frac{\partial f}{\partial \rho_{i}} \\ \frac{\partial f}{\partial \rho_{\mathbf{E}}} \end{pmatrix}$$

 Can be solved with Krylov method (i.e. GMRES), but time marching similar to flow solver shown to be more robust

$$\left(\frac{V}{\Delta t}\mathbf{I} + \frac{\partial \mathbf{R}_1}{\partial \mathbf{Q}}^T\right) \Delta \Lambda = -\frac{\partial f}{\partial \mathbf{Q}} - \frac{\partial \mathbf{R}_2}{\partial \mathbf{Q}}^T \Lambda$$

 Straightforward to formulate, but cost and memory requirements scale quadratically with number of species

Decoupled Iterative Method

Rewrite conserved variables similar to decoupled flow solver

$$\begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial \rho}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho}^{T} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho}^{T} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial \rho \mathbf{u}}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho \mathbf{u}}^{T} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho \mathbf{u}}^{T} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial \rho E}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho E}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho E}^{T} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho E}^{T} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial c_{s}}^{T} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial c_{s}}^{T} & \frac{\partial \mathbf{R}_{\rho E}}{\partial c_{s}}^{T} & \frac{\partial \mathbf{R}_{\rho s}}{\partial c_{s}}^{T} \end{pmatrix} \begin{pmatrix} \Lambda_{\rho} \\ \Lambda_{\rho \mathbf{u}} \\ \Lambda_{\rho E} \\ \Lambda_{c_{s}} \end{pmatrix} = -\begin{pmatrix} \frac{\partial f}{\partial \rho} \\ \frac{\partial f}{\partial \rho \mathbf{u}} \\ \frac{\partial f}{\partial \rho E} \\ \frac{\partial f}{\partial c_{s}} \end{pmatrix}$$

Decoupled Iterative Method

Rewrite conserved variables similar to decoupled flow solver

$$\begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho \mathbf{u}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial \rho E}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho E}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho E}}{\partial \rho E}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho s}}{\partial \rho E}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho}}{\partial c_{s}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial c_{s}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho E}}{\partial c_{s}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho s}}{\partial c_{s}}^{\mathsf{T}} \end{pmatrix} = - \begin{pmatrix} \frac{\partial f}{\partial \rho} \\ \frac{\partial f}{\partial \rho} \\ \frac{\partial f}{\partial \rho \mathbf{u}} \\ \end{pmatrix}$$

- Recognize that there is an analogue to the species mass equation decoupling used in the flow solver
- Linear system can be decomposed as block jacobi scheme

Decoupled Iterative Method

• Separate into two systems and solve as block jacobi scheme

$$\left(\frac{V}{\Delta t}\mathbf{I} + \frac{\partial \mathbf{R}_{\rho_{s}}}{\partial c_{s}}^{\mathsf{T}}\right) \Delta \Lambda_{c_{s}} = -\frac{\partial f}{\partial c_{s}} - \frac{\partial \mathbf{R}_{\rho_{s}}}{\partial c_{s}}^{\mathsf{T}} \Lambda_{c_{s}} - \frac{\partial \mathbf{R}_{\rho_{s}}}{\partial \rho}^{\mathsf{T}} \Lambda_{\rho} - \frac{\partial \mathbf{R}_{\rho_{s}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} \Lambda_{\rho \mathbf{u}} - \frac{\partial \mathbf{R}_{\rho_{s}}}{\partial \rho \mathcal{E}}^{\mathsf{T}} \Lambda_{\rho \mathcal{E}}$$

$$\begin{bmatrix} \frac{V}{\Delta t} \mathbf{I} + \begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \Delta \Lambda_{\rho} \\ \Delta \Lambda_{\rho \mathbf{u}} \end{pmatrix} = \\ - \begin{pmatrix} \frac{\partial \mathbf{f}}{\partial \rho} \\ \frac{\partial \mathbf{f}}{\partial \rho \mathbf{u}} \end{pmatrix} - \begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho} \mathbf{E}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \Lambda_{\rho} \\ \Lambda_{\rho \mathbf{u}} \end{pmatrix} - \begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial c_{s}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial c_{s}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{u}}^{\mathsf{T}} & \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial \rho \mathbf{E}}^{\mathsf{T}} \end{pmatrix} \begin{pmatrix} \Lambda_{\rho} \\ \Lambda_{\rho \mathbf{u}} \end{pmatrix} - \begin{pmatrix} \frac{\partial \mathbf{R}_{\rho}}{\partial c_{s}}^{\mathsf{T}} \\ \frac{\partial \mathbf{R}_{\rho \mathbf{u}}}{\partial c_{s}}^{\mathsf{T}} \end{pmatrix} \Lambda_{c_{s}}$$

Outline

- Introduction
- 2 Flow Solver
 - Fully-Coupled Method
 - Decoupled Method
- Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

ntroduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Design Problem: Hypersonic Retro Propulsion Vehicle

- Apply adjoint to design Reaction Control System (RCS) jet system to shape shock interaction to maintain maximum drag at minimum surface temperature
- This annular nozzle configuration has been shown to have a steady solution for inviscid flow

Design Problem: Parameterization

Design sensitivities given by

$$\frac{\partial L}{\partial \mathbf{D}} = \left\{ \frac{\partial f}{\partial \mathbf{D}} + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \frac{\partial f}{\partial \mathbf{X}} \right\} + \left\{ \left[\frac{\partial \mathbf{R}}{\partial \mathbf{D}} \right]^T + \left[\frac{\partial \mathbf{X}}{\partial \mathbf{D}} \right]^T \left[\frac{\partial \mathbf{R}}{\partial \mathbf{X}} \right]^T \right\} \mathbf{\Lambda}$$

- Define cost functions => *f*
 - Total vehicle drag (with and without jet thrust contribution)
 - Total vehicle surface temperature (in lieu of heating, since these are inviscid simulations)
- Define design parameters => D
 - Plenum pressure
 - Plenum temperature
 - Jet placement and geometry
- Define mesh parameters => X
 - Custom grid generation utility
 - Faciliate all grid dependencies by wrapping in complex variables

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Design Problem: Grid Generation and Governing Equations

- Grid generation tool provides straightforward way to get mesh sensitivities
 - All parameters can be perturbed by a complex source term, and jacobian calculated via frechet derivatives
 - Structured mesh generation is fast and robust
 - Easy to convert to unstructured grid accepted by FUN3D
- Propose to limit research to inviscid flow, due to large jump in complexity going to full Navier-Stokes
 - Decoupled approach changes very little with addition of viscous terms
 - Viscous terms considerably more exhausting to implement
 - Grid generation process significantly more complicated
 - Scope of research is to demonstrate the new decoupled formulation for flow and adjoint solvers

Outline

- Introduction
- Plow Solver
 - Fully-Coupled Method
 - Decoupled Method
- Cost and Memory Savings
 - Cost and Memory Savings of the Decoupled Flow Solver
 - Numerical Results: 2D Cylinder
 - Numerical Results: Axisymmetric Spherically Capped Cone
- 4 Adjoint Solver
 - Derivation of Discrete Adjoint Formulation
 - Fully Coupled Iterative Method
 - Decoupled Iterative Method
- Design Problem
- 6 Concluding Remarks

Concluding Remarks - Summary of work

Completed work

- Derivation of decoupled method for Roe FDS in adjoint and flow solver
- Implementation/verification of decoupled scheme in flow solver
- Exact linearization of 2nd-order Roe FDS scheme and chemical source term for both fully coupled and decoupled methods
- Implementation of fully coupled adjoint scheme for inviscid flow

Proposed work

- Implementation of decoupled adjoint scheme
- Optimization of Hypersonic Retro Propulsion configuration using fully coupled and decoupled schemes for inviscid flow and adjoint solvers

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Concluding Remarks

- Design problem provides good testbed for a truly unique hypersonic application
 - Parameterization is well defined
 - Non-linearity of design space is a concern
 - Optimal steady solution exists?
- Decoupling the species equations yield impressive benefits at minimal cost in robustness
 - 2 times faster and 1/3 required memory for both 2D Cylinder and Sphere-Cone 11-species cases
 - Convergence issues at very high velocities can be offset by scaling source term as solution progresses
- Decoupled adjoint approach is a significant improvement to the state of the art
 - Preliminary testing has shown that memory overhead in adjoint is significantly reduced with decoupled scheme
 - Can expect speedup in adjoint solve similar to flow solve

Acknowledgements

- Thanks to the FUN3D team at NASA Langley Research Center, for their support in integrating aspects of the compressible gas path into the reacting gas path of FUN3D.
- Thanks to the Entry Systems Modeling Project within the NASA Game Changing Development Program for their funding and support of this research.

References I

References II

References III

- Candler, G. V., Subbareddy, P. K., and Nompelis, I. "Decoupled Implicit Method for Aerothermodynamics and Reacting Flows". In: *AIAA Journal* 51.5 (2013), pp. 1245–1254.
- Copeland, S. R., Palacios, F., and Alonso, J. J. "Adjoint-Based Aerothermodynamic Shape Design of Hypersonic Vehicles in Non-Equilibrium Flows". In: 52nd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics. 2014.
- Esfahani, M. K. and Houzeaux, G. "Implementation of discrete adjoint method for parameter sensitivity analysis in chemically reacting flows". In: 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. American Institute of Aeronautics and Astronautics, 2016.

References IV

- Lockwood, B. et al. "Uncertainty Quantification in Viscous Hypersonic Flows using Gradient Information and Surrogate Modeling". In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, 2011.
- Müller, J.-D. and Cusdin, P. "On the performance of discrete adjoint CFD codes using automatic differentiation". In: *International Journal for Numerical Methods in Fluids* 47.8-9 (2005), pp. 939–945.
- Nielsen, E. J. et al. "An implicit, exact dual adjoint solution method for turbulent flows on unstructured grids". In: Computers & Fluids 33.9 (2004), pp. 1131–1155.
- Peter, J. E. and Dwight, R. P. "Numerical sensitivity analysis for aerodynamic optimization: A survey of approaches". In: Computers & Fluids 39.3 (2010), pp. 373–391.

References V

Sankaran, V. and Olsen, M. "Stability Analysis of Fully-Coupled and Loosely-Coupled Schemes for Combustion CFD". In: 16th AIAA Computational Fluid Dynamics Conference. 2003.

Introduction Flow Solver Cost and Memory Savings Adjoint Solver Design Problem Concluding Remarks References Backup

Design Problem: Hypersonic Retro Propulsion Vehicle

- Benefits of using RCS jet shape shock interaction to maintain maximum drag at minimum surface temperature
 - Lower total mass: Jet propellent mass is less than equivalent TPS material required
 - Lower surface temperature: Jet stream "shrouds" surface in cooler pocket
 - Higher total drag: Jet could propel combustable gas (i.e. methane) to ignite in shock layer and increase drag

 For the Roe flux difference splitting scheme, the species mass fluxes are given by

$$F_{\rho_s} = \frac{\rho_s^L \mathbf{U}^L + \rho_s^R \mathbf{U}^R}{2} - \frac{\tilde{c}_s(\lambda_1 dv_1 + \lambda_2 dv_2) + \lambda_3 dv_{3_s}}{2}$$

$$dv_1 = \frac{p^R - p^L + \tilde{\rho}\tilde{a}(\mathbf{U}^R - \mathbf{U}^L)}{\tilde{a}^2}$$

$$dv_2 = \frac{p^R - p^L - \tilde{\rho}\tilde{a}(\mathbf{U}^R - \mathbf{U}^L)}{\tilde{a}^2}$$

$$dv_{3_s} = \frac{\tilde{a}^2(\rho_s^R - \rho_s^L) - \tilde{c}_s(p^R - p^L)}{\tilde{a}^2}$$

$$\lambda_1 = \mid \tilde{\mathbf{U}} + \tilde{a} \mid, \quad \lambda_2 = \mid \tilde{\mathbf{U}} - \tilde{a} \mid, \quad \lambda_3 = \mid \tilde{\mathbf{U}} \mid$$

• The notation signifies a Roe-averaged quantity

$$\tilde{\mathbf{U}} = wU^{L} + (1 - w)\mathbf{U}^{R}$$

$$w = \frac{\tilde{\rho}}{\tilde{\rho} + \rho^{R}}$$

$$\tilde{\rho} = \sqrt{\rho^{R} \rho^{L}}$$

The species mass fluxes must sum to the total mass flux

$$F_{\rho} = \sum_{s} F_{\rho_s} = \frac{\rho^L \mathbf{U}^L + \rho^R \mathbf{U}^R}{2} - \frac{\tilde{c}_s(\lambda_1 dv_1 + \lambda_2 dv_2) + \lambda_3 dv_3}{2}$$
$$dv_3 = \frac{\tilde{a}^2(\rho^R - \rho^L) - (\rho^R - \rho^L)}{\tilde{a}^2}$$

• Substituting back into species mass flux equation

$$F_{\rho_s} = \tilde{c}_s F_{\rho} + \frac{(c_s^L - \tilde{c}_s)\rho^L(\mathbf{U}^L + \mid \tilde{\mathbf{U}}\mid)}{2} + \frac{(c_s^R - \tilde{c}_s)\rho^R(\mathbf{U}^R - \mid \tilde{\mathbf{U}}\mid)}{2}$$

 This can be simplified to yield a form similar to that derived by Candler, et. al for the Steger-Warming scheme

$$F_{\rho_s} = \tilde{c}_s F_{\rho} + (c_s^L - \tilde{c}_s) \rho^L \lambda^+ + (c_s^R - \tilde{c}_s) \rho^R \lambda^-$$
$$\lambda^+ = \frac{\mathbf{U}^L + |\tilde{\mathbf{U}}|}{2}, \quad \lambda^- = \frac{\mathbf{U}^R - |\tilde{\mathbf{U}}|}{2}$$

• Differentiating with respect to the mass fraction, c_s , the left and right state contributions are

$$\frac{\partial F_{\rho_s}}{\partial c_s^L} = wF_{\rho} + (1 - w)\rho^L \lambda^+ - w\rho^R \lambda^-$$

$$\frac{\partial F_{\rho_s}}{\partial c_s^R} = (1 - w)F_{\rho} + (w - 1)\rho^L \lambda^+ + w\rho^R \lambda^-$$

Again, where w is the Roe-averaged density weighting

$$w = \frac{\tilde{\rho}}{\tilde{\rho} + \rho^R}, \quad \tilde{\rho} = \sqrt{\rho^R \rho^L}$$