

Blockchain Security | Smart Contract Audits | KYC

MADE IN GERMANY

Kvoltz

Audit

Security Assessment 20.February,2023

For

Disclaimer	2
Description	5
Project Engagement	5
Logo	5
Contract Link	5
Methodology	8
Used Code from other Frameworks/Smart Contracts (direct imports)	9
Tested Contract Files	10
Source Lines	11
Risk Level	11
Capabilities	12
Inheritance Graph	13
CallGraph	14
Scope of Work/Verify Claims	15
Modifiers and public functions	24
Source Units in Scope	25
Critical issues	26
High issues	26
Medium issues	26
Low issues	26
Informational issues	27
Audit Comments	27
SWC Attacks	28

Disclaimer

<u>SolidProof.io</u> reports are not, nor should be considered, an "endorsement" or "disapproval" of any particular project or team. These reports are not, nor should be considered, an indication of the economics or value of any "product" or "asset" created by any team. SolidProof.io do not cover testing or auditing the integration with external contract or services (such as Unicrypt, Uniswap, PancakeSwap etc'...)

SolidProof.io Audits do not provide any warranty or guarantee regarding the absolute bug- free nature of the technology analyzed, nor do they provide any indication of the technology proprietors. SolidProof Audits should not be used in any way to make decisions around investment or involvement with any particular project. These reports in no way provide investment advice, nor should be leveraged as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to help our customers increase the quality of their code while reducing the high level of risk presented by cryptographic tokens and blockchain technology. Blockchain technology and cryptographic assets present a high level of ongoing risk. SolidProof's position is that each company and individual are responsible for their own due diligence and continuous security. SolidProof in no way claims any guarantee of security or functionality of the technology we agree to analyze.

Version	Date	Description
1.0	18.November,2022	Layout projectAutomated- /Manual-Security TestingSummary
1.1	20.February,2023	• Reaudit

Network
Binance Smart Chain (BSC)

Website https://www.kvoltz.com

Telegram https://t.me/KVOLTZ

Twitter https://twitter.com/kvoltz_oficial

Facebook https://www.facebook.com/kvoltz_oficial

Instagram
https://www.instagram.com/kvoltz_oficial/

Description

In a galaxy far, far away (or not) traditionally produced electricity is traded at ever higher prices, and the government centralizes all trading and regulatory rights in a few companies. A group unites all their knowledge to develop a decentralized solution to transform this consumption relationship. In this journey, they realize a way out in the communion of clean energy generation with the cryptoactive universe. Thus is born KVOLTZ, an initiative that revolutionizes the market with investment opportunities and monetization of surplus produced by independent plants. Join this transformation and get ready for the future!

Project Engagement

During the 18th of November 2022, **Kvoltz** team engaged Solidproof.io to audit the smart contracts that they created. The engagement was technical in nature and focused on identifying the security flaws in the design and implementation of the contracts. They provided Solidproof.io with access to their code repository and whitepaper.

Logo

Contract Links

v1.0

https://github.com/rodrigooliveiraletsgo/kvoltz/commit/a02504cfa6ea686de00eeb001c5eeb8b0a874921

v1.1

Vesting:https://github.com/rodrigooliveiraletsgo/kvoltz/blob/main/KvoltzVesting

Commit: aaeec3be27ec90d762edc9a279ebc33dd57b19ed

Token: https://bscscan.com/address/

0x8F0687E0D65C9BD208742BB6045FFC3A5968ad54#code

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit vulnerability, and the impact of that event on the organization or system. Risk Level is computed based on CVSS version 3.0.

Level	Value	Vulnerability	Risk (Required Action)
Critical	9 - 10	A vulnerability that can disrupt the contract functioning in a number of scenarios, or creates a risk that the contract may be broken.	Immediate action to reduce risk level.
High	7 – 8.9	A vulnerability that affects the desired outcome when using a contract, or provides the opportunity to use a contract in an unintended way.	Implementation of corrective actions as soon as possible.
Medium	4 – 6.9	A vulnerability that could affect the desired outcome of executing the contract in a specific scenario.	Implementation of corrective actions in a certain period.
Low	2 – 3.9	A vulnerability that does not have a significant impact on possible scenarios for the use of the contract and is probably subjective.	Implementation of certain corrective actions or accepting the risk.
Informational	0 – 1.9	A vulnerability that have informational character but is not effecting any of the code.	An observation that does not determine a level of risk

<u>Auditing Strategy and Techniques</u> <u>Applied</u>

Throughout the review process, care was taken to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices. To do so, reviewed line-by-line by our team of expert pentesters and smart contract developers, documenting any issues as there were discovered.

Methodology

The auditing process follows a routine series of steps:

- 1. Code review that includes the following:
 - i) Review of the specifications, sources, and instructions provided to SolidProof to make sure we understand the size, scope, and functionality of the smart contract.
 - ii) Manual review of code, which is the process of reading source code line-byline in an attempt to identify potential vulnerabilities.
 - iii) Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to SolidProof describe.
- 2. Testing and automated analysis that includes the following:
 - i) Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run those test cases.
 - ii) Symbolic execution, which is analyzing a program to determine what inputs causes each part of a program to execute.
- 3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the established industry and academic practices, recommendations, and research.
- 4. Specific, itemized, actionable recommendations to help you take steps to secure your smart contracts.

Used Code from other Frameworks/Smart Contracts (direct imports)

Imported packages:

```
./IBEP20.sol";
./Context.sol";
./Ownable.sol";
/BEP20.sol
```

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise, after the security review. A different Hash could be (but not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of this review.

V1.0

File Name	SHA-1 Hash
contracts/IBEP20.sol	a7a267d41c9651eb5d9b6d1655416fad77b872c9
contracts/BEP20.sol	dcd45b12d022ffd3595b4d29c3ae7074e0aed25e
contracts/Context.sol	719844505df30bda93516e78eab1ced3bfe9ff4a
contracts/KvoltzVesting.sol	491abfa6161b1229c0b764f227fa9f95cb0c7c21
contracts/Ownable.sol	6e1d4b1c71b11ab929022ce1194ded1b6153788e
contracts/Kvoltz.sol	780fad3c894a3e893bcc984684d0293cbbf48e6e

Metrics

Source Lines v1.0

Capabilities

v1.0

Components

≫ Contracts	Libraries	Interfaces	Abstract
3	0	1	2

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

External	Internal	Private	Pure	View
31	55	0	1	27

StateVariables

Capabilities

Inheritance Graph

V1.0

Call Graph

V1.0

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested (Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main contract (usual the same name as team appended with .sol).

We will verify the following claims:

- 1. Is contract an upgradeable
- 2. Correct implementation of Token standard
- 3. Deployer cannot mint any new tokens
- 4. Deployer cannot burn or lock user funds
- 5. Deployer cannot pause the contract
- 6. Deployer can set fees
- 7. Deployer can blacklist/antisnipe address
- 8. Overall checkup (Smart Contract Security)

Is contract an upgradeable

Name	
Is contract an upgradeable?	No

Correct implementation of Token standard

	ERC20				
Function	Function Description		Tested	Verified	
totalSupply	Provides information about the total token supply	\checkmark	\checkmark	\checkmark	
balanceOf	Provides account balance of the owner's account	√	√	1	
transfer	Executes transfers of a specified number of tokens to a specified address	√	√	√	
transferFrom	Executes transfers of a specified number of tokens from a specified	√	√	√	
approve	Allow a spender to withdraw a set number of tokens from a specified account	√	√	1	
allowance	Returns a set number of tokens from a spender to the owner	√	√	√	

Deployer cannot mint any new tokens

Name	Exist	Tested	Status
Deployer cannot mint	-	-	-
Max / Total Supply	N/A		

Comments:

The tokens are be minted to the following addresses at the time of deployment:

- IDO_WALLET = 0x043a25e730C64e3D93b6D6ADce88D0bC06ba1bCc
- TEAM_WALLET = 0x928bb80267FfC88a3EfE6BC81B226D97Dd1Fcb89
- ECOSYSTEM_WALLET = 0x01399a8F0F4aA025af68E6a56ce5bD5883EEa503
- MARKETING_WALLET = 0xD387ce9e89Ab1d1B2c7c596902711b771565B639
- STRATEGICRESERVE_WALLET = 0x4c6Cb05FD4D5C6dEb6838240Cdb3611b551473A8
- EXCHANGE_WALLET = 0xfE84C0d87aA631b1E3e6bD0F9F1c80EEdBC0B15C

Deployer cannot burn or lock user funds

Name	Exist	Tested	Status
Deployer can lock	-	-	-
Deployer cannot burn	_	-	-

Deployer cannot pause the contract

Name	Exist	Tested	Status
Deployer cannot pause	-	-	-

Deployer can set fees

Name	Exist	Tested	Status
Deployer cannot set fees over 25%	\checkmark	\checkmark	\checkmark
Deployer cannot set fees to nearly 100% or more	√	√	√

Comments:

Maximum fees cannot be more than 25%

Deployer cannot blacklist/antisnipe addresses

Name	Exist	Tested	Status
Deployer can blacklist/antisnipe addresses	-	-	-

Overall checkup (Smart Contract Security)

Legend

Modifiers and public functions

 $\sqrt{1.1}$

Kvoltz

KvoltzVesting

Ownership Privileges:

- Set liquidity pool address and tax address
- Set KovaltzToken and BUSD Address in the vesting contract even after deployment.
- Set a new Admin and advisors address for the advisor token allocation in the contract
- Set Airdrop, Seed Sale, and Private Sale status to true or false at any time because there is no protection against it.
- Start the Token Generation Event but cannot stop it, once it is called.
- The owner can withdraw the vesting contract balance at any time.

Source Units in Scope

V1.0

File	Logic Contracts	Interfaces	Lines	nLines	nSLOC	Comment Lines	Complex. Score
contracts/IBEP20.sol		1	94	23	17	66	21
contracts/BEP20.sol	1		188	164	118	6	86
contracts/Context.sol	1		24	24	9	12	1
contracts/KvoltzVesting.sol	1		423	419	310	58	257
contracts/Ownable.sol	1		83	83	31	41	24
contracts/Kvoltz.sol	1		94	94	76	1	51
Totals	5	1	906	807	561	184	440

Legend

Attribute	Description
Lines	total lines of the source unit
nLines	normalized lines of the source unit (e.g. normalizes functions spanning multiple lines)
nSLOC	normalized source lines of code (only source-code lines; no comments, no blank lines)
Comment Lines	lines containing single or block comments
Complexity Score	a custom complexity score derived from code statements that are known to introduce code complexity (branches, loops, calls, external interfaces,)

Audit Results

Critical issues

No critical issues

High issues

No high issues

Medium issues

No medium issues

Low issues

Issue	File	Туре	Line	Description
#1	All	Contract doesn't import npm packages from source (like OpenZeppelin etc.)		We recommend importing all packages from npm directly without flattening the contract. Functions could be modified or can be susceptible to vulnerabilities

Informational issues

Issue	File	Туре	Line	Description
#1	All	NatSpec documentation missing	-	If you started to comment your code, also comment all other functions, variables etc.

Audit Comments

We recommend you to use the special form of comments (NatSpec Format, Follow link for more information https://docs.soliditylang.org/en/v0.5.10/natspec-format.html) for your contracts to provide rich documentation for functions, return variables and more. This helps investors to make clear what that variables, functions etc. do.

20. February, 2022:

- There is still an owner (Owner still has not renounced ownership)
- · Read the whole report and modifiers section for more information.

Note for Investors: The SolidProof team only Audited the vesting and KVZ (BEP20) token contracts for KVOLTZ. If the project has other contracts (for example. Presale contract), and they were not provided to us in the audit scope then we cannot comment on its security and we are not responsible for it in any way.

SWC Attacks

ID	Title	Relationships	Status
<u>SWC</u> -136	Unencrypted Private Data On- Chain	CWE-767: Access to Critical Private Variable via Public Method	PASSED
<u>SWC</u> -135	Code With No Effects	CWE-1164: Irrelevant Code	PASSED
<u>SWC</u> -134	Message call with hardcoded gas amount	CWE-655: Improper Initialization	PASSED
<u>SWC</u> -133	Hash Collisions With Multiple Variable Length Arguments	CWE-294: Authentication Bypass by Capture-replay	PASSED
<u>SWC</u> -132	Unexpected Ether balance	CWE-667: Improper Locking	PASSED
<u>SWC</u> -131	Presence of unused variables	CWE-1164: Irrelevant Code	PASSED
<u>SWC</u> -130	Right-To-Left- Override control character (U+202E)	CWE-451: User Interface (UI) Misrepresentation of Critical Information	PASSED
<u>SWC</u> -129	Typographical Error	CWE-480: Use of Incorrect Operator	PASSED
<u>SWC</u> -128	DoS With Block Gas Limit	CWE-400: Uncontrolled Resource Consumption	PASSED
<u>SWC</u> -127	Arbitrary Jump with Function Type Variable	CWE-695: Use of Low-Level Functionality	PASSED
<u>SWC</u> -125	Incorrect Inheritance Order	CWE-696: Incorrect Behavior Order	PASSED

<u>SWC</u> -124	Write to Arbitrary Storage Location	CWE-123: Write-what-where Condition	PASSED
<u>SWC</u> -123	Requirement Violation	CWE-573: Improper Following of Specification by Caller	PASSED
<u>SWC</u> -122	Lack of Proper Signature Verification	CWE-345: Insufficient Verification of Data Authenticity	PASSED
<u>SWC</u> -121	Missing Protection against Signature Replay Attacks	CWE-347: Improper Verification of Cryptographic Signature	PASSED
<u>SWC</u> -120	Weak Sources of Randomness from Chain Attributes	CWE-330: Use of Insufficiently Random Values	PASSED
<u>SWC</u> -119	Shadowing State Variables	CWE-710: Improper Adherence to Coding Standards	PASSED
<u>SWC</u> -118	Incorrect Constructor Name	CWE-665: Improper Initialization	PASSED
<u>SWC</u> -117	Signature Malleability	CWE-347: Improper Verification of Cryptographic Signature	PASSED
<u>SWC</u> -116	Timestamp Dependence	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SWC</u> -115	Authorization through tx.origin	CWE-477: Use of Obsolete Function	PASSED
<u>SWC</u> -114	Transaction Order Dependence	CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')	PASSED

<u>SWC</u> -113	DoS with Failed Call	CWE-703: Improper Check or Handling of Exceptional Conditions	PASSED
<u>SWC</u> -112	Delegatecall to Untrusted Callee	CWE-829: Inclusion of Functionality from Untrusted Control Sphere	PASSED
<u>SWC</u> -111	Use of Deprecated Solidity Functions	CWE-477: Use of Obsolete Function	PASSED
<u>SWC</u> -110	Assert Violation	CWE-670: Always-Incorrect Control Flow Implementation	PASSED
<u>SWC</u> -109	Uninitialized Storage Pointer	CWE-824: Access of Uninitialized Pointer	PASSED
<u>SWC</u> -108	State Variable Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED
<u>SWC</u> -107	Reentrancy	CWE-841: Improper Enforcement of Behavioral Workflow	PASSED
<u>SWC</u> -106	Unprotected SELFDESTRUCT Instruction	CWE-284: Improper Access Control	PASSED
<u>SWC</u> -105	Unprotected Ether Withdrawal	CWE-284: Improper Access Control	PASSED
<u>SWC</u> -104	Unchecked Call Return Value	CWE-252: Unchecked Return Value	PASSED
<u>SWC</u> -103	Floating Pragma	CWE-664: Improper Control of a Resource Through its Lifetime	PASSED
<u>SWC</u> -102	Outdated Compiler Version	CWE-937: Using Components with Known Vulnerabilities	PASSED

<u>SWC</u> -101	Integer Overflow and Underflow	CWE-682: Incorrect Calculation	PASSED
<u>SWC</u> -100	Function Default Visibility	CWE-710: Improper Adherence to Coding Standards	PASSED

Blockchain Security | Smart Contract Audits | KYC Development | Marketing

MADE IN GERMANY