Classification Algorithms – Rules

Outline

- Generating Rules
- The Covering Algorithm
- Rules VS Decision Lists

Generating Rules

- Decision tree can be converted into a rule set
- Straightforward conversion:
 - each path to the leaf becomes a rule makes an overly complex rule set
- More effective conversions are not trivial
 - (e.g. C4.5 tests each node in root-leaf path to see if it can be eliminated without loss in accuracy)

Covering algorithms

- Strategy for generating a rule set directly: for each class in turn find rule set that covers all instances in it (excluding instances not in the class)
- This approach is called the covering approach because at each stage a rule is identified that covers some of the instances

Example: generating a rule

Example: generating a rule, II

If x > 1.2 then class = a

Example: generating a rule, III

If true then class = a

If x > 1.2 and y > 2.6 then class = a

If x > 1.2 then class = a

Example: generating a rule, IV

If true then class = a

If x > 1.2 and y > 2.6 then class = a

If x > 1.2 then class = a

- Possible rule set for class "b":
 - If $x \le 1.2$ then class = b
 - If x > 1.2 and $y \le 2.6$ then class = b
- More rules could be added for "perfect" rule set

Rules vs. trees

 Corresponding decision tree: (produces exactly the same predictions)

- But: rule sets can be more clear when decision trees suffer from replicated subtrees
- Also: in multi-class situations, covering algorithm concentrates on one class at a time whereas decision tree learner takes all classes into account

A simple covering algorithm

- Generates a rule by adding tests that maximize rule's accuracy
- Similar to situation in decision trees: problem of selecting an attribute to split on
 - But: decision tree inducer maximizes overall purity
- Each new test reduces rule's coverage:

Selecting a test

- Goal: maximize accuracy
 - t total number of instances covered by rule
 - p positive examples of the class covered by rule
 - t-p number of errors made by rule
 - \Rightarrow Select test that maximizes the ratio p/t
- We are finished when p/t = 1 or the set of instances can't be split any further

Example: contact lens data, 1

If?

Rule we seek:

then recommendation = hard

2/8

```
Age = Young
Age = Pre-presbyopic
Age = Presbyopic
Spectacle prescription = Myope
Spectacle prescription = Hypermetrope
Astigmatism = no
Astigmatism = yes
Tear production rate = Reduced
Tear production rate = Normal
```

Example: contact lens data, 2

If?

Rule we seek:

then recommendation = hard

```
2/8
Age = Young
                                                1/8
Age = Pre-presbyopic
                                                1/8
Age = Presbyopic
                                                3/12
Spectacle prescription = Myope
                                                1/12
Spectacle prescription = Hypermetrope
                                                0/12
Astigmatism = no
                                                4/12
Astigmatism = yes
                                                0/12
Tear production rate = Reduced
                                                4/12
Tear production rate = Normal
```

Modified rule and resulting data

Rule with best test added:

```
If astigmatism = yes
    then recommendation = hard
```

• Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended
				lenses
Young	Myope	Yes	Reduced	None
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Reduced	None
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Reduced	None
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Reduced	None
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Myope	Yes	Reduced	None
Presbyopic	Myope	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Reduced	None
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement, 1

Current state:

```
If astigmatism = yes
    and ?
    then recommendation = hard
```

2/4

```
Age = Young

Age = Pre-presbyopic

Age = Presbyopic

Spectacle prescription = Myope

Spectacle prescription = Hypermetrope

Tear production rate = Reduced

Tear production rate = Normal
```

Further refinement, 2

Current state:

```
If astigmatism = yes
    and ?
    then recommendation = hard
```

```
Age = Young 2/4

Age = Pre-presbyopic 1/4

Age = Presbyopic 1/4

Spectacle prescription = Myope 3/6

Spectacle prescription = Hypermetrope 1/6

Tear production rate = Reduced 0/6

Tear production rate = Normal 4/6
```

Modified rule and resulting data

Rule with best test added:

```
If astigmatism = yes
    and tear production rate = normal
    then recommendation = hard
```

• Instances covered by modified rule:

Age	Spectacle prescription	Astigmatism	Tear production rate	Recommended
				lenses
Young	Myope	Yes	Normal	Hard
Young	Hypermetrope	Yes	Normal	hard
Pre-presbyopic	Myope	Yes	Normal	Hard
Pre-presbyopic	Hypermetrope	Yes	Normal	None
Presbyopic	Муоре	Yes	Normal	Hard
Presbyopic	Hypermetrope	Yes	Normal	None

Further refinement, 3

Current state:

```
If astigmatism = yes
    and tear production rate = normal
    and ?
    then recommendation = hard
```

```
Age = Young
Age = Pre-presbyopic
Age = Presbyopic
Spectacle prescription = Myope
Spectacle prescription = Hypermetrope
```

Further refinement, 4

Current state:

```
If astigmatism = yes
    and tear production rate = normal
    and ?
    then recommendation = hard
```

```
Age = Young 2/2

Age = Pre-presbyopic 1/2

Age = Presbyopic 1/2

Spectacle prescription = Myope 3/3

Spectacle prescription = Hypermetrope 1/3
```

- Tie between the first and the fourth test
 - We choose the one with greater coverage

The result

Final rule:

```
If astigmatism = yes
    and tear production rate = normal
    and spectacle prescription = myope
    then recommendation = hard
```

 Second rule for recommending "hard lenses": (built from instances not covered by first rule)

```
If age = young and astigmatism = yes
    and tear production rate = normal
    then recommendation = hard
```

- These two rules cover all "hard lenses":
 - Process is repeated with other two classes

Pseudo-code for PRISM

For each class C

Initialize E to the instance set

While E contains instances in class C

Create a rule R with an empty left-hand side that predicts class C

Until R is perfect (or there are no more attributes to use) do

For each attribute A not mentioned in R, and each value v,

Consider adding the condition A = v to the left-hand side of R

Select A and v to maximize the accuracy p/t

(break ties by choosing the condition with the largest p)

Add A = v to R

Remove the instances covered by R from E

Rules vs. decision lists

- PRISM with outer loop removed generates a decision list for one class
 - Subsequent rules are designed for rules that are not covered by previous rules
 - But: order doesn't matter because all rules predict the same class
- Outer loop considers all classes separately
 - No order dependence implied
- Problems: overlapping rules, default rule required

Separate and conquer

- Methods like PRISM (for dealing with one class) are separate-and-conquer algorithms:
 - First, a rule is identified
 - Then, all instances covered by the rule are separated out
 - Finally, the remaining instances are "conquered"
- Difference to divide-and-conquer methods:
 - Subset covered by rule doesn't need to be explored any further

Conclusions

- Basically, two ways of learning decision rules:
 - from decision trees (straightforward, more effectively)
 - directly from data
- The covering approach
- The PRISM algorithm
- Decision rules vs. Decision lists