Towards Higher Observational Type Theory From parametricity to identity types

Thorsten Altenkirch

Functional Programming Laboratory School of Computer Science University of Nottingham

jww Ambrus Kaposi, Michael Shulman, Elif Üsküplü and Szumi Xie

June 9, 2025

What is equality?

```
data _\equiv {A : Set} : A \rightarrow A \rightarrow Set where refl : {a : A} \rightarrow a \equiv a
```

- The inductive definition doesn't define equality.
- It reflects equality.
- Intensional Type Theory: equality is definitional identity.

HOTT Vision

- A type has elements.
- Every type comes with an equality type.
- Every function preserves equality (apply path)
- We can coerce between equal types (transport)
- Equality is *observational*.

Towards HOTT

- A theory of parametricity (POTT) [POPL24, TYPES24]
- Narya (implemented by Mike and Elif).
- 3 Define fibrant types using a higher coinductive type in Narya.
- Show that type formers are fibrant.

Narya: natural numbers

Bridge types

Streams

```
def Stream (A : Type) : Type ≔
   codata [ x .head : A
 | x .tail : Stream A ]
def from (n : N) : Stream N ≔
  [ .head \rightarrow n | .tail \rightarrow from (suc. n) ]
def map_suc (ns : Stream N) : Stream N ≔ [
| .head → suc. (ns .head)
| .tail → map_suc (ns .tail)]
def thm (n : N) :
  Br (Stream N) (from (suc. n)) (map_suc (from n))≔ [
| .head → suc. (rel n)
  .tail → thm (suc n)
```

Bridges in the universe

```
An A<sub>1</sub> : U
A_2: Br U A_0 A_1
a<sub>o</sub>: A<sub>o</sub>
a<sub>1</sub> : A<sub>1</sub>
A<sub>2</sub> a<sub>0</sub> a<sub>1</sub> : U
def Gel (A B : Type) (R : A \rightarrow B \rightarrow Type) :
            Br Type A B = sig a b \rightarrow (
                                              ungel: R a b )
Gel (a_0 \ a_1 \rightarrow A_2 \ a_0 \ a_1) = A_2?
not supported by the cubical semantics.
```

Fibrant types (as a higher coinductive type)

```
def isFib (A : Type) : Type := codata [
  | x .trr.p : A.0 \rightarrow A.1
| x .trl.p : A.1 \rightarrow A.0
| x .liftr.p : (a0 : A.0) \rightarrow A.2 a0 (x.2 .trr a0)
| x .liftl.p : (a1 : A.1) \rightarrow A.2 (x.2 .trl a1) a1
| x .id.p : (a0 : A.0) (a1 : A.1)
                            → isFib (A.2 a0 a1) ]
def Fib : Type ≔
       sig (t: Type, f: isFib t)
Bridges in Fib \cong equivalences
(A_2,f_2): Br Fib (A_0,f_0) (A_2,f_1)
A_2: Br U A_0 A_1
f_2 .trr : A_0 \rightarrow A_1
f_2 .liftr: (a_0 : A_0) \rightarrow A_2 \ a_0 \ (f_2 .trr \ a_0)
```

Fibrant type constructors

```
Example A \times B
def fprod (A B : Type)
           (fA : isFib A) (fB : isFib B)
  : isFib (A \times B)
| .trr.p → u0 →
  (fA.2 .trr (u0 .fst), fB.2 .trr (u0 .snd))
| .liftr.p → u0 →
   (fA.2 .liftr (u0 .fst), fB.2 .liftr (u0 .snd))
To prove .id.p we use that (wrt extensional equality):
 A2 a0 a1 \times B2 b0 b1 \cong Br (A2 \times B2) (a0, b0) (a1, b1)
And that isFib is preserved by \cong.
```

Fibrant types

- **●** 0, 1, 2
- Π-types
- \bullet Σ -types
- Indexed W-types
- Indexed M-types

Is Fib fibrant?

- We can define a fibrant equivalent of bridges in the universe: equivalence.
- We can prove logical equivalence (encode, decode).
- But we cannot show that is a retract!
- We need Gel $(a_0 \ a_1 \rightarrow A_2 \ a_0 \ a_1) = A_2$
- Revisit the semantics for the parametricity calculus?!

Future plans

- Semantics for higher coinductive types
- Implement a native version of HOTT.
- Add higher inductive types
- Semicubical types (fibrant ?)