BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – JUSQU'À 100 FACTEURS TRAITÉS NUMÉRIQUEMENT

CHRISTOPHE BAL

Document, avec son source LATEX, disponible sur la page https://github.com/bc-writing/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons « Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International ».

Table des matières

1.	Ce qui nous intéresse	2
2.	Notations utilisées	2
3.	Les carrés parfaits	2
3.1.	Structure	2
3.2.	Distance entre deux carrés parfaits	2
4.	Une démonstration intéressante	3
5.	Une tactique informatique	5
5.1.	De potentiels bons candidats	5
5.2.	Les cas gagnants	5
5.3.	Les cas perdants	5
6.	Sources utilisées	5

Date: 14 Fév. 2024.

1. CE QUI NOUS INTÉRESSE

Dans l'article « Note on Products of Consecutive Integers » 1 , Paul Erdős démontre que pour tout couple $(n,k) \in \mathbb{N}^* \times \mathbb{N}^*$, le produit de (k+1) entiers consécutifs $n(n+1) \cdots (n+k)$ n'est jamais le carré d'un entier. Plus précisément, l'argument général de Paul Erdős est valable pour $k+1 \geq 100$, soit à partir de 100 facteurs.

Dans ce document, via l'outil informatique principalement, nous nous proposons de traiter les cas laissés de côté par Paul Erdős.

2. Notations utilisées

Dans la suite, nous emploierons les notations suivantes.

- $\forall (n,k) \in (\mathbb{N}^*)^2$, $\pi_n^k = \prod_{i=0}^{k-1} (n+i)$. Par exemple, $\pi_n^1 = n$, $\pi_n^2 = n(n+1)$ et $\pi_{n+2}^4 = (n+2)(n+3)(n+4)(n+5)$.
- ${}^{2}\mathbb{N} = \{n^{2}, n \in \mathbb{N}\}$ est l'ensemble des carrés parfaits. On note aussi ${}^{2}_{*}\mathbb{N} = {}^{2}\mathbb{N} \cap \mathbb{N}^{*}$. \mathbb{N}_{sf} est l'ensemble des naturels non nuls sans facteur carré 2 .
- \mathbb{P} désigne l'ensemble des nombres premiers. $\forall (p;n) \in \mathbb{P} \times \mathbb{N}^*, \ v_p(n) \in \mathbb{N}$ est la valuation p-adique de n, c'est-à-dire $p^{v_p(n)} \mid n$ et $p^{v_p(n)+1} \nmid n$, autrement dit $p^{v_p(n)}$ divise n, contrairement à $p^{v_p(n)+1}$.
- $\forall (n,m) \in \mathbb{N}^2$, $n \wedge m$ désigne le PGCD de n et m.
- 2 \mathbb{N} désigne l'ensemble des nombres naturels pairs. 2 \mathbb{N} + 1 est l'ensemble des nombres naturels impairs.

3. Les carrés parfaits

3.1. Structure.

Fait 3.1. $n \in {}_*^2\mathbb{N}$ si, et seulement si, $\forall p \in \mathbb{P}$, $v_p(n) \in 2\mathbb{N}$.

Démonstration. Immédiat à valider.

3.2. Distance entre deux carrés parfaits.

Fait 3.2. Soit $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ tel que N > M.

(1)
$$N^2 - M^2 > 2N - 1$$
.

(2) Notons nb_{sol} le nombre de solutions $(N, M) \in \mathbb{N}^* \times \mathbb{N}^*$ de $N^2 - M^2 = \delta$.

Par exemple, pour $\delta \in [1; 20]$, nous avons :

(a)
$$nb_{sol} = 0$$
 si $\delta \in \{1, 2, 4, 6, 10, 14, 18\}$.

(b)
$$nb_{sol} = 1$$
 si $\delta \in \{3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20\}$.

(c)
$$nb_{sol} = 2 \text{ si } \delta \in \{15\}$$
.

Démonstration.

(1) Comme
$$N-1 \geq M$$
, nous obtenons : $N^2-M^2 \geq N^2-(N-1)^2=2N-1$.

^{1.} J. London Math. Soc. 14 (1939).

^{2.} En anglais, on dit « square free ».

(2) Le point précédent permet d'utiliser le programme Python suivant afin d'obtenir rapidement les longues listes de nombres indiquées.

```
from collections import defaultdict
from math import sqrt, floor
def sol(diff):
    solfound = []
    for i in range(1, (diff + 1) // 2 + 1):
        tested = i**2 - diff
        if tested < 0:</pre>
            continue
        tested = floor(sqrt(i**2 - diff))
        if tested == 0:
            continue
        if tested**2 == i**2 - diff:
            solfound.append((i, tested))
    return solfound
all_nbsol = defaultdict(list)
for d in range(1, 101):
    all_nbsol[len(sol(d))].append(d)
print(all nbsol)
```

4. Une démonstration intéressante

Dans un échange sur https://math.stackexchange.com est indiquée une référence vers une preuve du fait $\forall n \in \mathbb{N}^*$, $\pi_n^{10} \notin {}^2\mathbb{N}$ (voir la section 6). Voici cette preuve complétée avec certains arguments laissés sous silence dans la source utilisée.

Preuve. Supposons que $\pi_n^{10} \in {}_*^2\mathbb{N}$.

Clairement, $\forall p \in \mathbb{P}_{\geq 10}$, $\forall i \in [0; 9]$, $v_p(n+i) \in 2\mathbb{N}$. On doit donc s'intéresser à $p \in \{2, 3, 5, 7\}$. Voici ce que l'on peut observer très grossièrement.

- \bullet Au maximum deux facteurs (n+i) de π_n^{10} sont divisibles par $5\,.$
- \bullet Au maximum deux facteurs (n+i) de π_n^{10} sont divisibles par 7 .
- Les points précédents donnent au moins 6 facteurs (n+i) de π_n^{10} non divisibles par 5 et 7, c'est-à-dire du type $2^{\alpha}3^{\beta}C^2$ avec $(\alpha, \beta, C) \in (\mathbb{N}^*)^3$.

Nous avons alors l'une des alternatives suivantes pour chacun des 6 facteurs (n+i) vérifiant $v_p(n+i) \in 2\mathbb{N}$ pour $p \in \mathbb{P}_{>5}$.

- [A1] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times 2\mathbb{N}$
- [A2] $(v_2(n+i), v_3(n+i)) \in 2\mathbb{N} \times (2\mathbb{N}+1)$
- [A3] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times 2\mathbb{N}$
- [A4] $(v_2(n+i), v_3(n+i)) \in (2\mathbb{N}+1) \times (2\mathbb{N}+1)$

Comme nous avons six facteurs pour quatre alternatives, ce bon vieux principe des tiroirs va nous permettre de lever des contradictions.

- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\mathbf{1}]$. Dans ce cas, $(n+i,n+i')=(N^2,M^2)$ avec $(N,M)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $N^2-M^2\in[1;9]$. Selon le fait 3.2, seuls les cas suivants sont possibles mais ils lèvent tous une contradiction.
 - (1) $N^2 M^2 = 3$ avec (N, M) = (2, 1) est possible, mais ceci donne $n = 1^2 = 1$, puis $\pi_1^{10} = 10! \in {}^2\mathbb{N}$, or ceci est faux car $v_7(10!) = 1$.
 - (2) $N^2-M^2=5$ avec (N,M)=(3,2) est possible d'où $n\in [1;4]$. Nous venons de voir que n=1 est impossible. De plus, pour $n\in [2;4]$, $v_7(\pi_n^{10})=1$ montre que $\pi_n^{10}\in {}^2\mathbb{N}$ est faux.
 - (3) $N^2 M^2 = 7$ avec (N, M) = (4, 3) est possible d'où $n \in [1; 9]$, puis $n \in [5; 9]$ d'après ce qui précède. Mais ici, $\forall n \in [5; 9]$, $v_{11}(\pi_n^{10}) = 1$ montre que $\pi_n^{10} \in {}^2\mathbb{N}$ est faux.
 - (4) $N^2-M^2=8$ avec (N,M)=(3,1) est possible d'où n=1, mais ceci est impossible comme nous l'avons vu ci-dessus.
 - (5) $N^2 M^2 = 9$ avec (N, M) = (5, 4) est possible d'où $n \in [9; 16]$, puis $n \in [10; 16]$ d'après ce qui précède. Or $\forall n \in [10; 16]$, $v_{17}(\pi_n^{10}) = 1$, donc $\pi_n^{10} \in {}^2\mathbb{N}$ est faux.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A}\,\mathbf{2}]$. Dans ce cas, $(n+i,n+i')=(3N^2,3M^2)$ avec $(N,M)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $3(N^2-M^2)\in \llbracket 1\,; 9 \rrbracket$, puis $N^2-M^2\in \llbracket 1\,; 3 \rrbracket$. Selon le fait 3.2, nécessairement $N^2-M^2=3$ avec (N,M)=(2,1), d'où $n\in \llbracket 1\,; 3 \rrbracket$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A3}]$.

 Dans ce cas, $(n+i,n+i')=(2N^2,2M^2)$ avec $(N,M)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $2(N^2-M^2)\in[1;9]$, puis $N^2-M^2\in[1;4]$. Selon le fait 3.2, nécessairement $N^2-M^2=3$ avec (N,M)=(2,1), d'où $n\in[1;2]$, mais on sait que cela est impossible.
- Deux facteurs différents (n+i) et (n+i') vérifient $[\mathbf{A4}]$. Dans ce cas, $(n+i,n+i')=(6N^2,6M^2)$ avec $(N,M)\in\mathbb{N}^*$. Par symétrie des rôles, on peut supposer N>M, de sorte que $6(N^2-M^2)\in \llbracket 1\,; 9 \rrbracket$, puis $N^2-M^2=1$, mais c'est impossible d'après le fait 3.2. □

Dans le document « Carrés parfaits et produits d'entiers consécutifs – Des solutions à la main » , nous avons adapté la preuve ci-dessus, avec patience, pour démontrer que $\forall n \in \mathbb{N}^*$, $\pi_n^k \notin {}^2\mathbb{N}$ si $k \in \{9,11,12,13\}$. Comme ces adaptations sont très mécaniques, et a priori peu gourmandes informatiquement, il semble opportun de tenter un traitement numérique des cas laissés de côté dans l'article de Paul Erdős.

BROUILLON - CARRÉS PARFAITS ET PRODUITS D'ENTIERS CONSÉCUTIFS – JUSQU'À 100 FACTEURS TRAITÉS NUM

5. Une tactique informatique

5.1. De potentiels bons candidats.

TODO

5.2. Les cas gagnants.

TODO

5.3. Les cas perdants.

TODO

6. Sources utilisées

L'idée centrale de ce document vient d'un échange consulté le 13 février 2024, et titré « Product of 10 consecutive integers can never be a perfect square » sur le site https://math.stackexchange.com.