Исследование способов согласования моделей с помощью снижения размерности пространства

Яушев Фарух Рамильевич

Московский физико-технический институт Факультет управления и прикладной математики Кафедра интеллектуальных систем

Консультант Р. В. Исаченко Научный руководитель д.ф.-м.н. В. В. Стрижов

> Москва 2020 г

Цель работы

Задача

Построить модель прогнозирования целевой переменной в пространстве высокой размерности

Проблема

Исходные данные имеют избыточную размерность. Зависимости в пространствах целевой и независимоий переменных приводят к неустоичивости модели.

Метод решения

Построить модель, учитывающую структуру пространств независимой и целевой переменных с согласованием скрытых представлений.

Постановка задачи

Данные

Дана выборка (\mathbf{X}, \mathbf{Y}) , где $\mathbf{X} = [\mathbf{x}_1, \cdots, \mathbf{x}_n]^T \in \mathbb{R}^{n \times m}$ — матрица независимых переменных, $\mathbf{Y} = [\mathbf{y}_1, \cdots, \mathbf{y}_n]^T \in \mathbb{R}^{n \times k}$ — матрица целевых переменных.

Предполагается, что между ${\bf X}$ и целевой ${\bf Y}$ существует зависимость

$$\mathbf{Y} = f(\mathbf{X}) + \boldsymbol{\varepsilon},$$

где $f: \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times k}$ — функция регрессионной зависимости, $\pmb{\varepsilon}$ - матрица регрессионных ошибок.

В качестве функции ошибки используется

Необходимо восстановить зависимость f по заданной выборке.

Базовый алгоритм

В качестве базового алгоритма используется PLS (Projection to Latent Space)

PLS — алгоритм для восстановления связи между двумя наборами данных X и Y. Алгоритм проецирует X и Y на латентное пространство \mathbb{R}^p меньшей размерности. PLS находит матрицы исходных данных X и Y в латентном пространстве T и U соответственно. Матрица объектов X и целевая матрица Y проецируются на латентное пространство следующим образом:

$$\mathbf{X}_{n \times m} = \mathbf{T}_{n \times p} \cdot \mathbf{P}_{p \times m} + \mathbf{F}_{n \times m},\tag{1}$$

$$\mathbf{Y}_{n \times k} = \mathbf{U}_{n \times p} \cdot \mathbf{Q}_{p \times k} + \mathbf{E}_{n \times k},\tag{2}$$

где ${\bf T}$ и ${\bf U}$ — матрицы описания объектов и исходов в латентном пространстве; ${\bf P}$ и ${\bf Q}$ — матрицы перехода из латентного пространства в исходное; ${\bf F}$, ${\bf E}$ — матрицы остатков.

Задача декодирования

Определение 1

Параметрическая функция $\varphi_1: \mathbb{R}^{n \times m} \to \mathbb{R}^{n \times p}$, переводящая исходные данные в латентное пространство, называется функцией кодирования.

Определение 2

Параметрическая функция $\varphi_2: \mathbb{R}^{n \times k} \to \mathbb{R}^{n \times p}$, переводящая данные из латентного пространства в исходное, называется функцией восстановления.

Определение 3

Функция $g: \mathbb{R}^{n \times p} \times \mathbb{R}^{n \times p} \to \mathbb{R}$, связывающая два низкоразмерных латентных представления, называется функцией согласования.

Постановка задачи

Общая схема

Оптимальные параметры $\theta_{\varphi_1}^*, \theta_{\psi_1}^*$ для функций кодирования φ_1 и ψ_1 находятся из следующей задачи параметрической оптимизации:

$$(\theta_{\varphi_1}^*, \theta_{\psi_1}^*) = \underset{(\theta_{\varphi_1}, \theta_{\psi_1})}{\arg \max} [g(\varphi_1(\mathbf{X}; \theta_{\varphi_1}), \psi_1(\mathbf{Y}; \theta_{\psi_1}))]. \tag{3}$$

Постановка задачи

После перехода в латентное пространство между ${\bf T}$ и ${\bf U}$ существует зависимость

$$\mathbf{U} = h(\mathbf{T}) + \boldsymbol{\eta},$$

где $h: \mathbb{R}^{n \times p} \to \mathbb{R}^{n \times p}$ — функция регрессионной зависимости, η — матрица регрессионных ошибок.

Оптимальные параметры для h выбираются минимизацией функции ошибки. Используем квадратичную функцию ошибки потерь $\mathcal L$ на $\mathbf T$ и $\mathbf U$:

$$\mathcal{L}(h|\mathbf{T},\mathbf{U}) = \left\| \mathbf{U}_{n \times p} - h(\mathbf{T}_{m \times p}) \right\|_{2}^{2} \to \min_{h}.$$

Финальная прогностическая модель имеет вид:

$$f = \psi_2 \circ h \circ \varphi_1.$$

Эксперименты

Для того, чтобы показать, что игнорирование нелинейных зависимостей может привести к неудовлетворительным результатам проведем сравнение DeepCCA и ССА на задаче классификации зашумленных цифровых изображений.

Рис.: Зашумленные изображений из набора данных MNIST

Эксперимент

Канонический анализ корреляций (ССА)

Функция согласования:

$$g(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}}) = \mathbf{corr}(\mathbf{X}\mathbf{w}_{\mathbf{x}}, \mathbf{Y}\mathbf{w}_{\mathbf{y}}),$$

Функции кодирования:

$$\varphi_1(\mathbf{X}) = \mathbf{W}_{\mathbf{x}}^{\mathbf{T}} \mathbf{X}, \ \psi_1(\mathbf{Y}) = \mathbf{W}_{\mathbf{y}}^{\mathbf{T}} \mathbf{Y},$$

Таблица: Получение нового признакового пространство размерности 15 с использованием DeepCCA и ССА. Показателем эффективности будет точность классификации линейного SVM (ACC).

	DeepCCA(L=3)	CCA
Validation data	92.74%	76.21%
Test data	92.14%	76.07%

Эксперимент

Решается задача восстановления правой части изображения по левой.

Рис.: Набор данных MNIST, каждое изображение в котором разделили пополам.

Эксперимент

Таблица: Восстановление правой части изображения по левой с использованием различных моделей. Для измерения качества моделей считается среднеквадратическое отклонения от оригинального изображения.

	EncNet1	LinNet1	EncNet2	LinNet2	DumbNet	PLS
Кол-во весов	283k	239k	283k	239k	283k	-
MSE loss	0.147	0.235	0.149	0.236	0.128	0.188

