Teoría de códigos y polinomios torcidos

Adrián Ranea Robles

Universidad de Granada

24 de mayo de 2016

Contenidos

Introducción

Preliminares

Teoría de códigos algebraica

Códigos cíclicos torcidos

Introducción

Los códigos correctores de errores

Los códigos correctores de errores se utilizan para detectar y corregir errores que ocurren cuando la información se transmite por una canal con ruido.

Algunas aplicaciones;

- Reproductores de CD
- Envío de fotografías del espacio a la Tierra

Para ello añaden redundancia al mensaje.

El código de repetición

Caso 1.

- $ightharpoonup 1
 ightharpoonup \ll si > 1$
- $ightharpoonup 0 o ext{«no»}$
- ¿Qué pasa si hay un error?

Caso 2.

- ightharpoonup 111
 ightharpoonup «sí»
- ightharpoonup 000 ightharpoonup «no»
- Se puede corregir un error:
 - ightharpoonup 001, 010, 100 ightharpoonup 000
 - ightharpoonup 110, 101, 011 ightharpoonup 111

Preliminares

Primeras definiciones

Llamaremos alfabeto al conjunto de símbolos que utiliza un código. En nuestro caso, utilizaremos los cuerpos finitos \mathbb{F}_q .

Un código de bloque consiste en una función codificadora $E: \mathbb{F}_q^k \to \mathbb{F}_q^n$ y una función decodificadora $D: \mathbb{F}_q^n \to \mathbb{F}_q^k$, con k < n. Los elementos de \mathbb{F}_q^k se llaman mensajes, los de \mathbb{F}_q^n palabras y los de $Im(E) \subset \mathbb{F}_q^n$ se llaman palabras código.

Primeras definiciones

Código de repetición:

- $ightharpoonup 111
 ightarrow \ll si \gg \equiv 1$

111 y 000 son las palabras código. La codificación y la decodificación son las siguientes:

$$E(1) = 111$$
 $E(0) = 000$
 $D(111) = 1 = D(110) = D(101) = D(011)$
 $D(000) = 0 = D(001) = D(010) = D(100)$

Paramétros importantes

- ► La longitud de código, n.
- ▶ El número total de palabras código, M.
- La distancia mínima entre pares de palabras código, d.

La distancia (de Hamming) entre dos palabra código $d(\mathbf{x}, \mathbf{y})$ es el número de posiciones en los que \mathbf{x} e \mathbf{y} difieren. Esta distancia es una métrica en \mathbb{F}_q^n .

Código de repetición:

- ightharpoonup 111
 ightharpoonup «sí»
- ightharpoonup 000
 ightharpoonup «no»

Paramétros importantes

- La longitud de código, n.
- ▶ El número total de palabras código, M.
- La distancia mínima entre pares de palabras código, d.

La distancia (de Hamming) entre dos palabra código $d(\mathbf{x}, \mathbf{y})$ es el número de posiciones en los que \mathbf{x} e \mathbf{y} difieren. Esta distancia es una métrica en \mathbb{F}_q^n .

Código de repetición: n = 3, M = 2, d = 3

- ightharpoonup 111
 ightharpoonup «sí»
- ightharpoonup 000
 ightharpoonup «no»

Corrigiendo y detectando errores

- El decodificador debe decidir que palabra código fue transmitida.
- Esquema básico de decodificación vecino más cercano: elegir la palabra código más «cercana» a la palabra recibida.
- Supone que el canal es simétrico:
 - Cada símbolo transmitido tiene la misma probabilidad de recibirse erróneamente.
 - Si un símbolo se recibe erróneamente, cada uno de los otros posibles errores es equiprobable.

Corrigiendo y detectando errores

Proposición

Un código con una distancia mínima d puede detectar hasta d-1 errores y corregir hasta $\lfloor (d-1)/2 \rfloor$ errores.

Código de repetición: n = 3, M = 2, d = 3

- ▶ $111 \rightarrow \text{«sí»}$
- ightharpoonup 000
 ightharpoonup «no»

Corrigiendo y detectando errores

Proposición

Un código con una distancia mínima d puede detectar hasta d-1 errores y corregir hasta $\lfloor (d-1)/2 \rfloor$ errores.

Código de repetición: n = 3, M = 2, d = 3

- ightharpoonup 111
 ightharpoonup «sí»
- ightharpoonup 000
 ightharpoonup «no»

Detecta hasta 2 errores y corrige hasta 1 error.

Teoría de códigos

algebraica

Un código lineal de longitud n sobre \mathbb{F}_q es un subespacio vectorial del espacio vectorial \mathbb{F}_q^n .

Un [n, k]-código lineal es un código lineal de longitud n sobre sobre \mathbb{F}_q con dimensión k como subespacio vectorial.

Podemos identificar el espacio de mensajes con el espacio vectorial \mathbb{F}_q^k . Así, las funciones de codificación/decodificación serían:

$$E: \mathbb{F}_q^k \to \mathbb{F}_q^n, \ D: \mathbb{F}_q^n \to \mathbb{F}_q^k$$

Proposición

Sea C un código lineal. Toda combinación lineal de palabras código de C es una palabra código de C.

Proposición

La distancia mínima d(C) de un código lineal C es igual a la mínima distancia entre los pares $(\mathbf{x}, 0)$ con \mathbf{x} no nulo.

Límite de Singleton

Si C es un [n, k]-código lineal entonces $d \le n - k + 1$.

A los códigos que consiguen la igualdad se les llama códigos separables de distancia máxima.

Ejemplo: Reed-Solomon. Utilizado en CDs, DVDs, Blu-ray, QR,

Matriz generatriz y codificación

Una matriz G de tamaño $k \times n$ cuyas filas forman una base para un [n, k]-código lineal se llama matriz generatriz del código.

Si C es un [n, k]-código lineal con matriz generatriz G, entonces la función de codificación puede escribirse como:

$$E: \mathbb{F}_q^k \to \mathbb{F}_q^n$$
$$\mathbf{x} \mapsto \mathbf{x} G$$

Matriz generatriz y codificación. Ejemplo

Sea C el código linear sobre \mathbb{F}_2^4 de dimensión 2 con matriz generatriz

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

Matriz generatriz y codificación. Ejemplo

Sea C el código linear sobre \mathbb{F}_2^4 de dimensión 2 con matriz generatriz

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\{0000,$$

Matriz generatriz y codificación. Ejemplo

Sea C el código linear sobre \mathbb{F}_2^4 de dimensión 2 con matriz generatriz

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\{0000, 1011,$$

Matriz generatriz y codificación. Ejemplo

Sea C el código linear sobre \mathbb{F}_2^4 de dimensión 2 con matriz generatriz

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\{0000, 1011, 0101,$$

Matriz generatriz y codificación. Ejemplo

Sea C el código linear sobre \mathbb{F}_2^4 de dimensión 2 con matriz generatriz

$$G = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\{0000, 1011, 0101, 1100\}$$

Clases laterales y decodificación

Sea C un [n, k]-código lineal sobre \mathbb{F}_q y \mathbf{a} un vector de \mathbb{F}_q^n . El conjunto $\mathbf{a} + C = \{\mathbf{a} + \mathbf{x} \mid \mathbf{x} \in C\}$ se llama una clase lateral de C.

Proposición

Si C es un [n,k] código lineal sobre \mathbb{F}_q , entonces cada vector de \mathbb{F}_q^n está en alguna clase lateral de C, cada clase lateral contiene q^k vectores y dos clases laterales son idénticas o disjuntas.

Clases laterales y decodificación

Esquema vecino más cercano:

Clases laterales y decodificación

Esquema vecino más cercano:

1. Particionamos \mathbb{F}_q^n en clases laterales de C.

Clases laterales y decodificación

Esquema vecino más cercano:

- 1. Particionamos \mathbb{F}_q^n en clases laterales de C.
- 2. Para cada clase lateral, elegimos un representante con número de componentes no nulas mínimo.

Clases laterales y decodificación

Esquema vecino más cercano:

- 1. Particionamos \mathbb{F}_q^n en clases laterales de C.
- 2. Para cada clase lateral, elegimos un representante con número de componentes no nulas mínimo.

Al recibir una palabra **y**:

Clases laterales y decodificación

Esquema vecino más cercano:

- 1. Particionamos \mathbb{F}_q^n en clases laterales de C.
- 2. Para cada clase lateral, elegimos un representante con número de componentes no nulas mínimo.

Al recibir una palabra **y**:

1. Buscamos la clase lateral que contiene a \mathbf{y} . Esta será de la forma $\mathbf{e} + C$

Clases laterales y decodificación

Esquema vecino más cercano:

- 1. Particionamos \mathbb{F}_q^n en clases laterales de C.
- 2. Para cada clase lateral, elegimos un representante con número de componentes no nulas mínimo.

Al recibir una palabra y:

- 1. Buscamos la clase lateral que contiene a \mathbf{y} . Esta será de la forma $\mathbf{e} + C$
- 2. $\mathbf{y} \mathbf{e}$ fue la palabra de código enviada.

Clases laterales y decodificación

Sea
$$C = \{0000, 1011, 0101, 1100\}.$$

Clases laterales y decodificación

Sea
$$C = \{0000, 1011, 0101, 1100\}.$$

$$0000 + C = \{0000, 1011, 0101, 1110\}$$

Clases laterales y decodificación

Sea
$$C = \{0000, 1011, 0101, 1100\}.$$

$$0000 + C = \{0000, 1011, 0101, 1110\}$$

 $1000 + C = \{1000, 0011, 1101, 0110\}$

Clases laterales y decodificación

Sea
$$C = \{0000, 1011, 0101, 1100\}.$$

$$0000 + C = \{0000, 1011, 0101, 1110\}$$

 $1000 + C = \{1000, 0011, 1101, 0110\}$
 $0100 + C = \{0100, 1111, 0001, 1010\}$

Clases laterales y decodificación

Sea
$$C = \{0000, 1011, 0101, 1100\}.$$

$$0000 + C = \{0000, 1011, 0101, 1110\}$$
 $1000 + C = \{1000, 0011, 1101, 0110\}$
 $0100 + C = \{0100, 1111, 0001, 1010\}$
 $0010 + C = \{0010, 1001, 0111, 1100\}$

Códigos cíclicos

Un código lineal C de longitud n es cíclico si verifica:

$$(c_0, c_1, \ldots, c_{n-1}) \in C \implies (c_{n-1}, c_0, \ldots, c_{n-1}) \in C$$

Los códigos cíclicos se pueden implementar de forma eficiente usando dispositivos hardware llamados registros de desplazamiento.

Representación polinomial

$$\phi: \mathbb{F}_q^n
ightarrow \mathbb{F}_q[x]/(x^n-1) \ (c_0,c_1,\ldots,c_{n-1}) \mapsto c_0+c_1x+\cdots+c_{n-1}x^{n-1}$$

 $ightharpoonup \phi$ es un isomorfismo de espacios vectoriales.

Son equivalentes:

$$i) (c_0, c_1, \dots, c_{n-1}) \in C \implies (c_{n-1}, c_0, \dots, c_{n-2}) \in C$$

 $ii) x(c_0 + c_1x + \dots + c_{n-1}x^{n-1}) \in \phi(C)$

Representación polinomial

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_a[x]/(x^n-1)$:

$$x(c_0 + c_1x + \cdots + c_{n-1}x^{n-1})$$

Representación polinomial

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_a[x]/(x^n-1)$:

$$x(c_0 + c_1x + \cdots + c_{n-1}x^{n-1})$$

= $xc_0 + xc_1x + \cdots + xc_{n-1}x^{n-1}$

Representación polinomial

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_q[x]/(x^n-1)$:

$$x(c_0 + c_1x + \dots + c_{n-1}x^{n-1})$$

= $xc_0 + xc_1x + \dots + xc_{n-1}x^{n-1}$
= $c_0x + c_1x^2 + \dots + c_{n-1}x^n$

Representación polinomial

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_a[x]/(x^n-1)$:

$$x(c_0 + c_1x + \dots + c_{n-1}x^{n-1})$$

$$= xc_0 + xc_1x + \dots + xc_{n-1}x^{n-1}$$

$$= c_0x + c_1x^2 + \dots + c_{n-1}x^n$$

$$= c_{n-1} + c_0x + c_1x^2 + \dots + c_{n-2}x^{n-1}$$

Representación polinomial

Si
$$f(x) \in \phi(C)$$
, entonces

$$\{xf(x), x^2f(x), x^3f(x), \dots, x^{n-1}f(x)\}$$

también están en $\phi(C)$.

Usando la linealidad de C se deduce:

$$\forall p(x) \in \mathbb{F}_q[x]/(x^n-1), \ p(x)f(x) \in \phi(C)$$

Representación polinomial

Teorema

Los códigos cíclicos de longitud n sobre \mathbb{F}_q son justamente los ideales del anillo $\mathbb{F}_q[x]/(x^n-1)$

Proposición

Sea C un código cíclico de longitud n. Entonces C está generado por un divisor g(x) de (x^n-1) en $\mathbb{F}_q[x]$. Si g(x) mónico y de grado mínimo, g(x) es único y se llama el polinomio generador de C.

Codificación

Dado un mensaje $\mathbf{a} = (a_0, \dots, a_{n-1})$, y su representación polinomial a(x), mediante multiplicación de polinomios podemos realizar la codificación:

$$E: \mathbb{F}_q[x]/(x^n-1) \to \mathbb{F}_q[x]/(x^n-1) \ a(x) \mapsto a(x)g(x)$$

Matriz generatriz

Lema

Sea C un código cíclico con polinomio generador $g(x) = g_0 + g_1 x + \cdots + g_r x^r$ de grado r. Entonces la dimensión de C es n - r y una matriz generatriz para C es la siguiente matriz $(n - r) \times n$:

$$G = \begin{pmatrix} g_0 & g_1 & \cdots & g_r & 0 & 0 & \cdots & 0 \\ 0 & g_0 & g_1 & \cdots & g_r & 0 & \cdots & 0 \\ 0 & 0 & g_0 & g_1 & \cdots & g_r & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & g_0 & g_1 & \cdots & g_r \end{pmatrix}$$

Matriz generatriz. Demostración

$$g_0$$
 no puede ser 0 (en caso contrario $(0,g_1,\ldots,g_r,0,\ldots)\in\mathcal{C}\Rightarrow (g_1,\ldots,g_r,0,\ldots)\in\mathcal{C})$

Las n-r filas de la matriz G son linealmente independientes por la forma escalonada de la matriz.

Estas n-r filas representan los polinomios código $g(x), xg(x), \ldots, x^{n-r-1}g(x)$. Veamos que forman un sistema de generadores.

Matriz generatriz. Demostración

$$c(x) \in C \implies \exists m(x) \in \mathbb{F}_q[x]/(x^n-1) ext{ tal que:}$$
 $c(x) = m(x)g(x)$ $= (m_0 + m_1x + \cdots + m_{n-r-1}x^{n-r-1})g(x)$ $= m_0g(x) + m_1xg(x) + \cdots + m_{n-r-1}x^{n-r-1}g(x)$

 \implies G es una matriz generatriz de C y la dimensión de C es n-r \square .

Listado de códigos

Proposición

Hay una correspondencia uno a uno entre los divisores mónicos de x^n-1 en $\mathbb{F}_q[x]$ y los códigos cíclicos sobre \mathbb{F}_q de longitud n.

Este resultado facilita el listado de todos los códigos cíclicos de una longitud dada. Veamos un ejemplo.

Listado de codigos

Listado de codigos

$$g_0(x)=1$$

Listado de codigos

$$g_0(x) = 1$$
$$g_1(x) = x + 1$$

Listado de codigos

$$g_0(x) = 1$$

 $g_1(x) = x + 1$
 $g_2(x) = (x + 1)^2 = x^2 + 1$

Listado de codigos

$$g_0(x) = 1$$

 $g_1(x) = x + 1$
 $g_2(x) = (x + 1)^2 = x^2 + 1$
 $g_3(x) = (x + 1)^3 = x^3 + x^2 + x + 1$

Listado de codigos

$$g_0(x) = 1$$

 $g_1(x) = x + 1$
 $g_2(x) = (x + 1)^2 = x^2 + 1$
 $g_3(x) = (x + 1)^3 = x^3 + x^2 + x + 1$
 $g_4(x) = (x + 1)^4 = x^4 + 1$

Listado de códigos. Ejemplo

Listado de códigos. Ejemplo

$$g_1(x) \rightarrow C_1 = \{0, x+1, x^2+1, x^2+x, x^3+1, x^3+x, x^3+x^2, x^3+x^2+x+1\}$$

Listado de códigos. Ejemplo

$$g_1(x) \rightarrow C_1 = \{0, x+1, x^2+1, x^2+x, x^3+1, x^3+x, x^3+x^2, x^3+x^2+x+1\}$$

 $g_2(x) \rightarrow C_2 = \{0, x^2+1, x^3+x, x^3+x^2+x+1\}$

Listado de códigos. Ejemplo

$$g_1(x) \rightarrow C_1 = \{0, x+1, x^2+1, x^2+x, x^3+1, x^3+x, x^3+x^2, x^3+x^2+x+1\}$$

 $g_2(x) \rightarrow C_2 = \{0, x^2+1, x^3+x, x^3+x^2+x+1\}$
 $g_3(x) \rightarrow C_3 = \{0, x^3+x^2+x+1\}$

Listado de códigos. Ejemplo

El primer y el último factor generan los códigos triviales $\mathbb{F}_2[x]/(x^4+1)$ y $\{0\}$ respectivamente. El resto de polinomios generan los códigos:

$$g_1(x) \rightarrow C_1 = \{0, x+1, x^2+1, x^2+x, x^3+1, x^3+x, x^3+x^2, x^3+x^2+x+1\}$$

 $g_2(x) \rightarrow C_2 = \{0, x^2+1, x^3+x, x^3+x^2+x+1\}$
 $g_3(x) \rightarrow C_3 = \{0, x^3+x^2+x+1\}$

 C_1 es un código [4, 3]-cíclico, C_2 es un código [4, 2]-cíclico y C_3 es un código [4, 1]-cíclico.

Sea θ un automorfismo de \mathbb{F}_q . Un código θ -cíclico es un código lineal C_{θ} verificando:

$$(a_0,a_1,\ldots,a_{n-1})\in \mathcal{C}_{ heta}\Rightarrow (heta(a_{n-1}), heta(a_0),\ldots, heta(a_{n-2}))$$

Consideramos el anillo de polinomios torcidos sobre \mathbb{F}_q , esto es, la extensión de Ore:

$$\mathbb{F}_{q}[x,\theta] = \{a_{0} + a_{1}x + \dots + a_{n-1}x^{n-1}, \ a_{i} \in \mathbb{F}_{q}, \ n \in \mathbb{N}\}\$$

donde la regla de multiplicación es $xa = \theta(a)x$.

Anillo de polinomios torcidos

$$\mathbb{F}_q[x,\theta]$$

- tiene un algoritmo de división euclídeo por la izquierda y por la derecha.
- es un dominio de ideales principales por la izquierda y por la derecha.

Denotamos por $K \subset \mathbb{F}_q$ al subcuerpo cuyos elementos se quedan fijos por θ .

Centro del anillo de polinomios torcidos

Proposición

Los elementos centrales de $\mathbb{F}_q[x,\theta]$ son de la forma $\sum_{i=0}^m c_i x^{i|\theta|}$ donde $c_i \in K$ y $|\theta|$ es el orden del automorfismo θ . Simbólicamente:

$$Z(\mathbb{F}_q[x,\theta]) = K[x^{|\theta|}]$$

Centro del anillo de polinomios torcidos. Demostración

Sea
$$g(x)=\sum_{i=0}^m g_i x^i\in Z(\mathbb{F}_q[x, heta]).$$

$$g(x)a_0=\sum_{i=0}^m g_i heta^i(a_0)x^i$$

$$a_0g(x)=\sum_{i=0}^m a_0g_i x^i$$
 $\Longrightarrow a_0= heta^i(a_0)\ orall a_0\in \mathbb{F}_q\implies g(x)\in \mathbb{F}_q[x^{| heta|}]$

Centro del anillo de polinomios torcidos. Demostración

$$egin{aligned} g(x) &= \sum_{i=0}^m g_i x^i \ &g(x) \; b_1 x = \sum_{i=0}^m g_i heta^i(b_1) x^{i+1} \ &b_1 x \; g(x) = \sum_{i=0}^m b_1 heta(g_i) x^{i+1} \ &\Longrightarrow \; g_i = heta(g_i) \; \Longrightarrow \; g_i \in \mathcal{K} \; \Longrightarrow \; g(x) \in \mathcal{K}[x^{| heta|}] \end{aligned}$$

Centro del anillo de polinomios torcidos. Demostración

Sea
$$c \ x^{j|\theta|} \in K[x^{|\theta|}]$$
, $f(x) = \sum_{i=0}^m f_i x^i \in \mathbb{F}_q[x,\theta]$.

$$c \ x^{j| heta|} imes f(x) = \sum_{i=0}^m c \ heta^{j| heta|}(f_i) x^{i+j| heta|}$$
 $f(x) imes c \ x^{j| heta|} = \sum_{i=0}^m f_i heta^i(c) x^{i+j| heta|}$

Por linealidad
$$K[x^{|\theta|}] \subset \mathcal{I}(\mathbb{F}[x^{|\theta|}])$$

 $\implies c \ x^{j|\theta|} \in Z(\mathbb{F}_q[x,\theta])$

Por linealidad, $K[x^{| heta|}] \subset Z(\mathbb{F}_q[x, heta])$ \square

Resultados conocidos

Proposición

Los elementos centrales de $\mathbb{F}_q[x,\theta]$ son los generadores de los ideales biláteros de $\mathbb{F}_q[x,\theta]$ y $(x^n-1)\subset \mathbb{F}_q[x,\theta]$ es un ideal bilátero.

Proposición

El anillo $\mathbb{F}_q[x,\theta]/(x^n-1)$ es un anillo de ideales principales por la izquierda cuyos ideales por la izquierda están generados por un divisor de x^n-1 en $\mathbb{F}_q[x,\theta]$.

Representación polinomial «torcida»

$$\phi: \mathbb{F}_q^n \to \mathbb{F}_q[x,\theta]/(x^n-1)$$

$$(c_0, c_1, \dots, c_{n-1}) \mapsto c_0 + c_1x + \dots + c_{n-1}x^{n-1}$$

lacksquare ϕ es un isomorfismo de \mathbb{F}_q -módulos

Son equivalentes:

$$(c_0, c_1, ..., c_{n-1}) \in \mathcal{C} \Rightarrow (\theta(c_{n-1}), \theta(c_0), ..., \theta(c_{n-2})) \in \mathcal{C}$$

 $x(c_0 + c_1 x + ... + c_{n-1} x^{n-1}) \in \phi(\mathcal{C})$

Representación polinomial «torcida»

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_{q}[x,\theta]/(x^{n}-1)$:

$$x(c_0 + c_1x + \cdots + c_{n-1}x^{n-1})$$

Representación polinomial «torcida»

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_a[x,\theta]/(x^n-1)$:

$$x(c_0 + c_1x + \cdots + c_{n-1}x^{n-1})$$

= $xc_0 + xc_1x + \cdots + xc_{n-1}x^{n-1}$

Representación polinomial «torcida»

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_q[x,\theta]/(x^n-1)$:

$$x(c_0 + c_1x + \dots + c_{n-1}x^{n-1})$$

= $xc_0 + xc_1x + \dots + xc_{n-1}x^{n-1}$
= $\theta(c_0)x + \theta(c_1)x^2 + \dots + \theta(c_{n-1})x^n$

Representación polinomial «torcida»

La equivalencia se basta en la siguiente igualdad en $\mathbb{F}_q[x,\theta]/(x^n-1)$:

$$egin{aligned} x(c_0+c_1x+\cdots+c_{n-1}x^{n-1}) \ &= xc_0+xc_1x+\cdots+xc_{n-1}x^{n-1} \ &= heta(c_0)x+ heta(c_1)x^2+\cdots+ heta(c_{n-1})x^n \ &= heta(c_{n-1})+ heta(c_0)x+ heta(c_1)x^2+\cdots+ heta(c_{n-2})x^{n-1} \end{aligned}$$

Representación polinomial «torcida»

Si
$$f(x) \in \phi(C)$$
, entonces

$$\{xf(x), x^2f(x), x^3f(x), \dots, x^{n-1}f(x)\}$$

también están en $\phi(C)$.

Usando la linealidad de C se deduce:

$$\forall p(x) \in \mathbb{F}_q[x,\theta]/(x^n-1), \ p(x)f(x) \in \phi(C)$$

Representación polinomial «torcida»

Teorema

Los códigos θ -cíclicos de longitud n sobre \mathbb{F}_q son justamente los ideales por la izquierda del anillo $\mathbb{F}_q[x,\theta]/(x^n-1)$.

Representación polinomial «torcida»

Un factor por la derecha de grado n-k de x^n-1 genera un [n,k]-código lineal.

 $\mathbb{F}_q[x,\theta]$ no es en general un dominio de factorización única. Como hay muchos mas factores por la derecha que en el caso conmutativo, existen más codigos θ -cíclicos que cíclicos.

Nótese que aunque la factorización no sea única, los grados de los polinomios torcidos irreducibles en la factorización de un elemento en $\mathbb{F}_q[x,\theta]$ si son únicos salvo permutación.

Ejemplo

Vamos a buscar todos los [4, 2]-códigos θ -cíclicos con $\theta(a)=a^2$ sobre \mathbb{F}_4 .

Sea α un generador del grupo multiplicativo de \mathbb{F}_4 , esto es, un cero de $z^2+z+1\in\mathbb{F}_2$ en $\overline{\mathbb{F}_2}$. Así, $\mathbb{F}_4=\left\{0,1,\alpha,\alpha^2\right\}$.

Calculamos los factores mónicos por la derecha de grado dos de $x^4 + 1 \in \mathbb{F}_4[x, \theta]$.

Ejemplo

$$g_{1}(x) = x^{2} + 1$$

$$g_{2}(x) = x^{2} + \alpha x + \alpha^{2}$$

$$g_{3}(x) = x^{2} + \alpha^{2}x + \alpha$$

$$g_{4}(x) = x^{2} + \alpha^{2}x + \alpha^{2}$$

$$g_{5}(x) = x^{2} + x + \alpha$$

$$g_{6}(x) = x^{2} + x + \alpha^{2}$$

$$g_{7}(x) = x^{2} + \alpha x + \alpha$$

Ejemplo

Las factorizaciones correspondientes son:

$$x^{4} + 1 = (x^{2} + 1)(x^{2} + 1)$$

$$= (x^{2} + \alpha x + \alpha)(x^{2} + \alpha x + \alpha^{2})$$

$$= (x^{2} + \alpha^{2}x + \alpha^{2})(x^{2} + \alpha^{2}x + \alpha)$$

$$= (x^{2} + \alpha^{2}x + \alpha)(x^{2} + \alpha^{2}x + \alpha^{2})$$

$$= (x^{2} + \alpha^{2}x + \alpha)(x^{2} + \alpha^{2}x + \alpha)$$

$$= (x^{2} + x + \alpha)(x^{2} + x + \alpha^{2})$$

$$= (x^{2} + \alpha x + \alpha)(x^{2} + \alpha x + \alpha)$$

Ejemplo

Como $x^4+1=(x+1)(x+1)(x+1)(x+1)$, los factores irreducibles de $x^4+1\in \mathbb{F}_4[x,\theta]$ en cualquier descomposicón son todos de grado uno. Por lo tanto, ninguno de los $g_i(x)$ anteriores es irreducible.

El polinomio g_1 genera el único [4, 2]-código cíclico sobre \mathbb{F}_4 . Los otros polinomios generan un código [4, 2] (los seis códigos son equivalentes).

Para más información:

GRACIAS