Lab 3: Pseudocode for DQN

Course staff

Algorithm 1 DQN

- 1: INPUT: target network update period τ , total number of episodes E, initial time steps before update init, learning rate α , exploration prob ϵ , batchsize for training N
- 2: INITIALIZE: DQN principal network $Q_{\theta}(s, a)$ with parameters θ , target network $Q_{\theta^{-}}(s, a)$ with parameters θ^{-} , time steps counter counter ϵ 0, empty buffer $R \leftarrow \{\}$
- 3: **for** e = 1, 2, 3...E **do**
- 4: while episode not terminated do
- 5: Execute actions
- 6: $counter \leftarrow counter + 1$
- 7: Given state s_t , for prob ϵ , take action uniformly random; otherwise, take action by being greedy $a_t \leftarrow \arg\max_a Q_{\theta}(s_t, a)$
- 8: Save experience tuple $\{s_t, a_t, r_t, s_{t+1}\}$ to buffer R
- 9: Training θ by gradients
- 10: Sample N tuples $\{s_i, a_i, r_i, s_i'\}$ from replay buffer R (uniformly)
- 11: Compute target $d_j = r_j + \gamma \max_{a'} Q_{\theta_i^-}(s'_j, a')$ for $1 \le j \le N$
- 12: Compute empirical loss

$$L = \frac{1}{N} \sum_{j=1}^{N} (Q_{\theta}(s_j, a_j) - d_j)^2$$

- 13: Update $\theta \leftarrow \theta \alpha \nabla_{\theta} L$
- 14: Update target network θ^-
- 15: **if** $counter \mod \tau = 0$ **then**
- 16: Update target parameter $\theta^- \leftarrow \theta$

Additional hints

- The gradient computation $\nabla_{\theta}L$ needs to be implemented with autodiff packages such as Pytorch of Tensorflow. Note that the loss function of DQN is almost identical to that of a regression problem.
- In the pseudocode above, the target for Q-function learning is highlighted in red. Think about what happens when s'_j is a terminal state, what should be the value of $\max_{a'} Q(s'_j, a')$? What changes do we need when implementing the pseudocode?
- There are additional techniques that could further improve DQN, just a few examples: (1) Sampling: Instead of sampling uniformly from buffer, sample using adaptive distribution (prioritized replay buffer); (2) Double Q-learning: DQN can overestimate Q values. To mitigate the issue, use Double DQN; (3) Exploration constant: Exploration constant can be made adaptive instead of a fixed value. Start with large ε and gradually decrease ε to be small. However, for this lab, if implemented properly, none of the above change is needed.