R Package Development

Yuze Zhai

December 15, 2022

Contents

1	Introduction
	1.1 Abstract
	1.2 Literature Review
2	Methodology
	2.1 Cox, Ross & Rubinstein Binomial Lattice Model
	2.2 Phelim Boyle Trinomial Lattice Model

Chapter 1

Introduction

1.1 Abstract

This is the brief of my STAT0035 Project, topic "R Package Development".

1.2 Literature Review

Chapter 2

Methodology

2.1 Cox, Ross & Rubinstein Binomial Lattice Model

The Cox, Ross, Rubinstein (CRR) Binomial Model was introduced by

2.2 Phelim Boyle Trinomial Lattice Model

Extending the Binomial model, the Trinomial Lattice model was introduced by Phelim Boyle in 1988 [1].

```
Trinomial <- function(K, S, u, r, t, n, sigma = 0,</pre>
         type = "call",
2
         style = "European",
3
         all = FALSE,
         plot = FALSE) {
     # Restrict u != 1
    dt <- T/n
    M \leftarrow exp(r * dt)
    V \leftarrow M^2 * (exp(sigma^2 * dt) - 1)
    p1 \leftarrow ((V + M^2 - M) * u - (M - 1)) / ((u - 1) * (u^2 - 1))
    p3 \leftarrow (u^2 * (V + M^2 - M) - u^3 * (M - 1)) / ((u - 1) * (u^2 - 1))
    p2 <- 1 - p1 - p3
14
16
    price_tree <- Trinomial.tree(S, u, n)</pre>
    Sn <- price_tree[n + 1, ]</pre>
17
18
    if (type == "call") {
    fn \leftarrow sapply(Sn, function(x) \{max(x - K, 0)\})
    } else if (type == "put") {
    fn <- sapply(Sn, function(x) {max(K - x, 0)})</pre>
22
23
24
    price <- Trinomial.rnv(fn, p1, p2, p3, r, n, dt, K, S = price_tree, type =</pre>
    type, style = style)
26
```

Bibliography

[1] P. P. Boyle, "A lattice framework for option pricing with two state variables," *Journal of Financial and Quantitative Analysis*, vol. 23, 3 1988.