

王南飞

大数据挖掘与分析工程师

敏感信息检测背景

结构化数据

🗎 数据库

常规方法:

- 人工审核
- 标记水印
- 设置规则
- 关键字

不足:

- 主观性强
- 覆盖面小
- 实时性差

如何从形式多样的动态文件中准确识别含有敏感信息的文件?

反欺诈风控

垃圾邮件过滤

.....

NLP敏感信息检测

敏感信息检测整体流程

如何从短文本中,检测出人名,地址,企业名称等重点信息?

张亮说,顺丰的总部在深圳市南山区,快递服务很好.

实体识别

张/N亮/N说/O,/O顺/Org丰/Org的/O总/O部/O在/O深/A圳/A市/A 南/A山/A区/A,/O快/O/递/O服/O务/O很/O好/O./O

- 姓名 /N
- · 企业 /Org
- · 地址 /A
- 其余序列 /O

后处理

{张亮/Name}说, {顺丰/Org}的总部在{深圳市南山区/Address}, 快递服务很好.

表名称: dbo.number	字段名: name	
字段说 姓名 月:	数据类 varchar(255) 型:	
姓名(99%)	非敏感数据(1%)	
样本数据		
阳倩		
毋辉		
任丽娟		
竺萍		
东丹丹		
公超		
晋莹		
时梅		
巢波		
姜强		

如何从一篇文章的文本中,判断出文章是否是一篇较为敏感的文件?

敏感度判别模型

CNN-LSTM Model

LSTM-CNN Model

CNN-LSTM顺丰整体敏感信息识别模型性能

敏感	81.6%	74.1%	67.7%	
₩ ₩	精准率	召回率	F1值	j.

非敏感	75.5%	81.3%	78.3%	
コト部次次	精准率	召回率	F1值	

AVG	78.5%	77.7%	73.0%
AVG	精准率	召回率	F1值

LSTM-CNN顺丰整体敏感信息识别模型性能

敏感	91.5%	80.6%	85.7%
	精准率	_{召回率}	F1值
非敏感	74.3% _{精准率}	88.2%	80.6% F1值
AVG	82.8%	84.4%	83.2%
	精准率	_{召回率}	F1值

KMS邮件通知

亲爱的 :

您好! 经系统安全检测, 你上传的知识附件"153439-

0. x1sx. txt"识别为<mark>敏感,</mark>预测置信度为69.0%,请您关注并设定

的正确的知识密级。谢谢!

正常: 未包含敏感信息, 密级可设定为公开;

敏感:包含敏感信息,密级建议设定为内部或机密。

【知识安全,从我做起】点击查看详情

知识管理系统

总结与展望

NLP是敏感信息识别的一把利剑,

敏感信息识别是数据安全的基石。