# Time Series Data Analysis and Forecasting

**MSDS** 

**Module 2** 

# **Topic Covered**

- Measures of central tendency
- Measure of dispersion
- Types of time series data
- Numerical description
- Autocorrelation functions
- partial autocorrelation functions
- Differencing method
- Log transformation

# Measures of central tendency

- Measures of central tendency are summary statistics represent the center point or typical value of a dataset.
- These measures are mean, median, and mode
- These statistics indicate where most values in a distribution fall and are also referred to as central location of a distribution.
- Choosing the best measure of central tendency depends on the type of data you have.

# Measures of central tendency

#### **Mean**

 The mean is arithmetic average, to calculate mean add up all of values and divide by the number of observations in your dataset.

$$\frac{x_1 + x_2 + \dots + x_n}{n}$$

#### Median

- The median is the middle value. It is the value that splits the dataset in half, making it a natural measure of central tendency.
- To find the median, order your data from smallest to largest, and then find the data point that has
  an equal number of values above it and below it

#### Mode

- The mode is the value that occurs the most frequently in your data set, making it a different type of measure of central tendency than the mean or median.
- To find the mode, sort the values in your dataset by numeric values or by categories. Then identify the value that occurs most often.

#### Mean Vs Median



Given data- 10, 20, 60, 40, 25, 35 where n = 6Arithmetic mean= = (10 + 20 + 60 + 40 + 25 + 35)/6 = 190/6 = 31.66

#### Measure of dispersion

- It is used to represent the scattering of data.
- It show the various aspects of the data spread across various parameters
- It helps to understand if the data points are close together or far apart.



#### Different Measures to find dispersion

- Range
- Variance
- Standard Deviation
- Mean Deviation
- Quartile Deviation

#### **Variance**

- It measures variability of given data from the mean.
- Variance is equal to square of standard deviation.

$$Variance(\sigma^2) = \frac{(x - \bar{x})^2}{n}$$

Where x is observation data given,

 $\overline{x}$  is the mean of the data

n number of observation

Example- Find the variance for the data 1, 2, 5, 4, 8, 4, here n=6

Arithmetic mean( $\bar{x}$ )= (1+2+5+4+8+4)/6 = 24/6=4Variance=  $(\sigma^2) = \frac{(x-\bar{x})^2}{n} = [(1-4)^2 + (2-4)^2 + (5-4)^2 + (4-4)^2 + (8-4)^2 + (4-4)^2]/6 = (9+4+1+0+16+0)/6$ = 30/6=5

#### **Standard Deviation**

- It measures amount of variation/dispersion of a set of values.
- Dispersion tells how much data is spread out.
- A lower standard deviation indicates that data is close to center.
- higher value of standard deviation represents that data spread is more.

Standard Deviation = 
$$\sqrt{Variance(\sigma^2)}$$

#### **Mean Deviation**

- mean deviation of the data set as the value which tells us how far each data is from the centre point of the data set.
- It is the average of the deviation.

Mean Deviation = 
$$\frac{\sum_{1}^{n} |x_i - \mu|}{n}$$
where
$$\mu = \frac{x_1 + x_2 + ... + x_n}{n}$$

**Example-** Find the mean deviation of the data set, {4, 5, 6, 7, 8} about the mean of the data set. Then we first find the mean of the data set,m the central tendency.

• Mean = (4 + 5 + 6 + 7 + 8)/5 = 6

Mean Deviation = (2+1+0+1+2)/5 $\Rightarrow$  Mean Deviation = 1.2

#### White Noise in Time series

- Time series generated from uncorrelated variables is used as a model for noise in engineering applications where it is called white noise
- Noise is independent and identically distributed (iid) random variables with mean 0 and variance  $\sigma_w^2$
- Represented by  $w_t = iid(0, \sigma_w^2)$



A collection of 500 such random variables,  $\sigma_w^2 = 1$ 

## **Moving averages**

One can replace white noise series  $\boldsymbol{w_t}$  by moving average that smooths the series.

Consider replacing  $w_t$  in previous slide example by average of its current value and its immediate neighbors in past and future.

Given by equation---

$$v_t = \frac{1}{3}(w_{t-1} + w_t + w_{t+1})$$



#### **Autoregressions**

By calculating output using second order equation.

$$x_t = x_{t-1} - 0.9x_{t-2} + w_t$$

- Do it successively for t=1,2,...,500
- This equation represents a regression or prediction of the current value  $x_t$  of a time series as a function of past two values.



#### **Types of Time Series Data**

There are two major types

- -Stationary
- -Non-stationary

**Stationary**: A dataset should follow thumb rules without having Trend, Seasonality, Cyclical, and Irregularity components of time series.

- •mean value of them should be completely constant in data.
- •variance should be constant with respect to time-frame
- •Covariance measures relationship between two variables.



## **Stationary Time Series**

A time series is said to be **strictly stationary** if its properties are not affected by a change in the time origin.

- If the joint probability distribution of the observations yt, yt+1,..., yt+n is exactly the same as the joint
- probability distribution of the observations yt+k, yt+k+1,..., yt+k+n then the time series is strictly stationary.
- When n = 0 the stationarity assumption means that the probability distribution of  $y_t$  is the same for all time periods
- Stationary implies a type of statistical **equilibrium** or **stability** in the data.

#### **Non-stationary Time Series**

- If either the **mean-variance** or **covariance** is changing with respect to time, the dataset is called non-stationary.
- A simple example of a non-stationary process is a random walk



## Types of stationarity

When it comes to identifying if the data is stationary, it means identifying the fine-grained notions of stationarity in the data.

Types of stationarity observed in time series data include

- Trend Stationary A time series that does not show a trend.
- Seasonal Stationary A time series that does not show seasonal changes.
- Strictly Stationary The joint distribution of observations is invariant to time shift.

# Why checking stationarity is important?

- Non-stationary data can lead to unreliable model outputs and inaccurate predictions, just because the models aren't expecting it.
- Easier modeling and forecasting.
- Stationarity simplifies complexities within time series data, making it **easier to model** and forecast than non-stationary time series.
- When the statistical properties of a time series remain constant over time, it's much easier to use historical data to develop accurate models of the time series and forecast future values of the series.
- By confirming stationarity, analysts can identify any potential issues in the data that might violate this essential assumption.

## **Testing for Stationarity**

- When investigating a time series, one need to check stationary before applying various models.
- determining that time series is constant in mean and variance are constant and not dependent on time.
- Some methods to check stationarity are :-
  - -by visualization
  - -Autocorrelation Function (ACF)
  - -Augmented Dickey-Fuller Test (ADF)

#### **Autocovariance Functions**

• It is defined as the second moment product for all s and t,

$$\gamma_{x}(s,t) = cov(x_s, x_t) = E[(x_s - \mu_s)(x_t - \mu_t)]$$

- It measures the linear dependence between two points on the same series observed at different times.
- Vary smooth series exhibit autocovariance functions that stay large even when t and s are far

## **Autocorrelation Functions(ACF)**

ACF measures the linear predictability of series at time t, say  $x_t$ , Using only  $\chi_{S}$ .

It is defined as,

$$\rho(s,t) = \frac{\gamma(s,t)}{\sqrt{\gamma(s,s)\gamma(t,t)}}. \quad \text{where } \gamma(s,t) \text{is autocovariance} \\ \text{function}$$



#### **Augmented Dickey-Fuller Test**

it is based on two hypothesis:

- 1. The null hypothesis states that there exists a unit root in the time series and is non-stationary.
- 2. The alternative hypothesis states that there exists no unit root in the time series and is stationary or trend stationary.

$$y_t = c + \beta_t + \alpha Y_{t-1} + \phi \Delta Y_{t-1} + e_t$$

where,

yt= value in the time series at time t or lag of 1 time series

**delta yt** = first difference of the series at time (t-1)

Formula for ADF test is----

$$y_t = c + \beta_t + \alpha Y_{t-1} + \phi \Delta Y_{t-1} + \phi_2 \Delta Y_{t-2} ... + \phi_p \Delta Y_{t-p}$$

# Non stationary Vs Stationary

| stationary Time Series                                                                                                                                               | Non-Stationary Time Series                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistical properties of a stationary time series are independent of the point in time where it is observed.                                                        | Statistical properties of a non-stationary time series is <b>a function of time</b> where it is observed.                                                                                          |
| Mean, variance and other statistics of a stationary time series remains <b>constant</b> . Hence, the conclusions from the analysis of stationary series is reliable. | Mean, variance and other statistics of a non-<br>stationary time series <b>changes with time</b> . Hence,<br>the conclusions from the analysis of a non-<br>stationary series might be misleading. |
| A stationary time series always reverts to the long-<br>term mean.                                                                                                   | A non-stationary time series <b>does not revert</b> to the long term mean.                                                                                                                         |
| A stationary time series will not have trends, seasonality, etc.                                                                                                     | Presence of trends, seasonality makes a series non-<br>stationary.                                                                                                                                 |

#### How to remove non-stationarity?

- One can fix a non-stationary time series by making it "stationary."
- A non-stationary time series is like a toy car that doesn't run in a straight line. Sometimes it goes fast and sometimes it goes slow, so it's hard to predict what it will do next.

Common methods to convert non-stationary to stationary are:-

- By differencing
- By seasonal differencing
- By log transformation

# Differencing

- It is a way to make a non-stationary time series stationary
- compute differences between consecutive observations. This is known as **differencing**.
- Differencing can help stabilise the mean of a time series by removing changes in the level of a time series, and therefore eliminating (or reducing) trend and seasonality.
- There can do it upto two-levels, first order difference and second order difference.

$$y_t' = y_t - y_{t-1}$$

#### **Seasonal Differencing**

- A seasonal difference is the difference between an observation and the previous observation from the same season.
- Where m=the number of seasons.
- These are called "lag-m" differences, because we substract observation after a lag of m period.

$$y_t' = y_t - y_{t-m}$$

## Log transformation

- Log transformation can be used to stabilize the variance of a series with non-constant variance. This is done using log() fuction.
- One limitation of log transformation is that it can be applied only to positively valued time series.
- Taking a log shrinks the values towards 0.
- For values that are close to 1, the shrinking is less and for the values that are higher, the shrinking is more, thus reducing the variance

```
cbind("Sales ($million)" = a10,
    "Monthly log sales" = log(a10),
    "Annual change in log sales" = diff(log(a10),12)) %>%
    autoplot(facets=TRUE) +
    xlab("Year") + ylab("") +
    ggtitle("Antidiabetic drug sales")
```

#### Log transformation



#### **Review Question**

- What is time series data?
- Differentiate between seasonality and trends.
- Discuss two methods to covert non-stationary time series to stationary time-series.