

flip flop A Each f/f must change state instantly at the same time, otherwise we might end up at the wrong state

We can use a <u>master-slave</u> approach to make sure that changes propagate instantly.

The clock behaves as such:

When D and C are 1 the state of the master becomes 1. the only way to change the value of the circuit (master) is for C to change from 1 to 0 (negative edge)

When clock is 1, y is a copy of the input when clock is 0, y doesn't change

Q is a copy of y when clock is 0, no change when clock is 1

Problem statement: Design the clocked sequential circuit for the

below specification using JK flip flops.

JK Excitation table

Q(t)	Q(t+1)	J	K				
0	0	0	X				
0	1	1	X				
1	0	X	1				
1	1	X	0				
(b) <i>JK</i>							

	sent ate l(t)	In put	Next State Q(t+1)		f/f in puts				
A	В	×	A	В	JA	1 ^C A	\mathcal{I}^{ϱ}	KB	
0	0	0	0	0	0	×	O	×	L
0	0	l	0	1	0	×	١	X	
0	1	0	١	0	١	X	X	١	
0	(١	0	1	O.	×	X	0	
١	0	0	1	0	X	0	0	X	
l	0	1	ĺ	1	X	0	l	×	
١	١	0	١	1	×	0	X	0	
ı	١	1	0	0	×	1	X	١	~

 $2^{4} = Bx$, $K^{4} = BX$