In [1]:

```
import pandas as pd
import numpy as np
from plotnine import *
import matplotlib
import matplotlib.pyplot as plt

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_absolute_error

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.metrics import plot_confusion_matrix
%matplotlib inline
```

In [2]:

```
Q4 = pd.read_csv("/Users/irenehuang/Desktop/MGSC410/RSFinal/Q4.csv")
```

In [3]:

```
Q4.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 26529 entries, 0 to 26528
Data columns (total 28 columns):
                      26529 non-null int64
TD
                      26529 non-null object
Language
Subscription Type
                      26529 non-null int64
Event Type
                      26529 non-null int64
                      26529 non-null int64
Purchase Store
Ouiter
                      26529 non-null int64
Duration
                      26529 non-null int64
Demo User
                      26529 non-null int64
Free Trial User
                      26529 non-null int64
Auto Renew
                      26529 non-null int64
Country
                      26529 non-null int64
User Type
                      26529 non-null int64
Lead Platform
                      26529 non-null int64
Email Subscription
                      26529 non-null int64
Push Notification
                      26529 non-null int64
Open/Send
                      26529 non-null float64
Click/Send
                      26529 non-null float64
Send Count
                      26529 non-null int64
Open Count
                      26529 non-null int64
Click Count
                      26529 non-null int64
Unique_Open_Count
                      26529 non-null int64
Unique Click Count
                      26529 non-null int64
Start
                      26529 non-null int64
                      26529 non-null int64
Other
Completed
                      26529 non-null int64
NULL
                      26529 non-null int64
                      26529 non-null int64
Onboarding
App Launch Times
                      26529 non-null int64
dtypes: float64(2), int64(25), object(1)
memory usage: 5.7+ MB
```

In [4]:

Q4.head()

Out[4]:

	ID	Language	Subscription_Type	Event_Type	Purchase_Store	Quiter	Duration	Demo_
0	24189	ENG	0	0	0	0	31	
1	27676	ENG	0	0	1	0	31	
2	33391	FRA	0	0	1	0	31	
3	35553	JPN	0	0	1	0	31	
4	36632	ESP	0	0	0	0	31	

5 rows × 28 columns

```
In [5]:
```

```
Q4DF = pd.DataFrame(Q4)
print(Q4DF.columns)
Index(['ID', 'Language', 'Subscription_Type', 'Event_Type', 'Purchas
e Store',
       'Quiter', 'Duration ', 'Demo User ', 'Free Trial User', 'Auto
_Renew',
       'Country', 'User Type', 'Lead Platform', 'Email Subscriptio
n',
       'Push Notification', 'Open/Send', 'Click/Send', 'Send Count',
       'Open Count', 'Click Count', 'Unique Open Count', 'Unique Cli
ck Count',
       'Start', 'Other', 'Completed', 'NULL', 'Onboarding',
       'App_Launch_Times'],
      dtype='object')
In [6]:
z = StandardScaler()
In [7]:
Q4 feature = Q4.columns[2:27]
In [8]:
Q4_feature = Q4_feature.drop(["Subscription_Type","Duration ","Quiter","Send_Cou
nt", "Open_Count",
                               "Click Count", "Unique Open Count", "Unique Click Co
unt"])
In [9]:
Q4 predictors = Q4[Q4 feature]
Q4 y = Q4["Quiter"]
In [10]:
Q4 X train, Q4 X test, Q4 y train, Q4 y test = train test split(Q4 predictors, Q
4 y, test size=0.2)
z.fit(Q4 X train)
Xz train = z.transform(Q4 X train)
Xz test = z.transform(Q4 X test)
In [11]:
myLogit = LogisticRegression(penalty = "none")
```

```
In [12]:
```

```
myLogit.fit(Xz_train,Q4_y_train)
```

Out[12]:

 $\label{logisticRegression} \mbox{\tt C=1.0, class_weight=None, dual=False, fit_interce pt=True,}$

intercept_scaling=1, l1_ratio=None, max_iter=100,
multi_class='auto', n_jobs=None, penalty='none',
random state=None, solver='lbfgs', tol=0.0001, ve

rbose=0,

warm_start=False)

In [13]:

```
predictedVals = myLogit.predict(Xz_test)
```

In [14]:

accuracy_score(Q4_y_test,predictedVals)

Out[14]:

0.9046362608367885

In [15]:

```
coef = pd.DataFrame({"Coefs": myLogit.coef_[0], "Names": Q4_predictors})
coef = coef.append({"Coefs": myLogit.intercept_[0], "Names": "intercept"}, ignor
e_index = True)
coef
```

Out[15]:

	Coefs	Names
0	0.502395	(E, v, e, n, t, _, T, y, p, e)
1	-0.073433	(P, u, r, c, h, a, s, e, _, S, t, o, r, e)
2	-0.180658	$(D, e, m, o, _, U, s, e, r,)$
3	0.235723	$(F, r, e, e, _, T, r, i, a, I, _, U, s, e, r)$
4	0.140433	$(A, u, t, o, _, R, e, n, e, w)$
5	-0.300336	(C, o, u, n, t, r, y)
6	0.215688	(U, s, e, r, _, T, y, p, e)
7	-0.361991	(L, e, a, d, _, P, I, a, t, f, o, r, m)
8	0.025937	(E, m, a, i, I, $_$, S, u, b, s, c, r, i, p, t,
9	0.438137	(P, u, s, h, $_$, N, o, t, i, f, i, c, a, t, i,
10	-0.003396	(0, p, e, n, /, S, e, n, d)
11	0.028320	(C, I, i, c, k, /, S, e, n, d)
12	0.021243	(S, t, a, r, t)
13	0.128886	(O, t, h, e, r)
14	-0.016689	(C, o, m, p, l, e, t, e, d)
15	0.009699	(N, U, L, L)
16	0.005515	(O, n, b, o, a, r, d, i, n, g)
17	-2.417842	intercept

In [16]:

```
coef["Odds Coefs"] = np.exp(coef["Coefs"])
coef
```

Out[16]:

	Coefs	Names	Odds Coefs
0	0.502395	(E, v, e, n, t, _, T, y, p, e)	1.652674
1	-0.073433	$(P, u, r, c, h, a, s, e, _, S, t, o, r, e)$	0.929198
2	-0.180658	$(D, e, m, o, _, U, s, e, r,)$	0.834721
3	0.235723	$(F, r, e, e, _, T, r, i, a, I, _, U, s, e, r)$	1.265824
4	0.140433	$(A, u, t, o, _, R, e, n, e, w)$	1.150772
5	-0.300336	(C, o, u, n, t, r, y)	0.740569
6	0.215688	(U, s, e, r, _, T, y, p, e)	1.240715
7	-0.361991	$(L, e, a, d, _, P, I, a, t, f, o, r, m)$	0.696289
8	0.025937	(E, m, a, i, I, $_$, S, u, b, s, c, r, i, p, t,	1.026276
9	0.438137	(P, u, s, h, $_$, N, o, t, i, f, i, c, a, t, i, \dots	1.549818
10	-0.003396	(O, p, e, n, /, S, e, n, d)	0.996610
11	0.028320	(C, I, i, c, k, /, S, e, n, d)	1.028725
12	0.021243	(S, t, a, r, t)	1.021470
13	0.128886	(O, t, h, e, r)	1.137560
14	-0.016689	(C, o, m, p, l, e, t, e, d)	0.983449
15	0.009699	(N, U, L, L)	1.009746
16	0.005515	(O, n, b, o, a, r, d, i, n, g)	1.005530
17	-2.417842	intercept	0.089114