TD Capteurs de Températures

Exercice 1 : Capteur Résistif – Conditionnement potentiométrique

On désire mesurer la température par une résistance thermométrique de nickel dont le comportement avec la température T exprimée en ${}^{\circ}C$ est donné par : $R(T) = R_0(1 + AT + BT^2)$ avec $R_0 = 100~\Omega,~A = 5,49167.10^{-3}/{}^{\circ}C$ et $B = 6,66667.10^{-6}/{}^{\circ}C^2$. La résistance thermométrique est montée en série avec une résistance fixe R et le tout est alimenté par une source de tension de fem Vg = 1~V et de résistance interne $Rg = 50~\Omega$.

- 1. Donner l'expression de la tension de mesure $V_{mes}(T)$ prise aux bornes de la résistance thermométrique.
- 2. On choisit comme référence de température $T_0 = 0$ °C et on limite l'étendue de mesure à ± 10 °C. Donner l'expression de la variation $\Delta R(T)$ de la valeur de la résistance thermométrique pour une température T à partir de la référence prise pour T_0 .
- 3. En déduire la variation ΔV_{mes} correspondante.
- 4. Quelle valeur donner à R pour avoir un maximum de sensibilité (on ne considérera pour cela que la partie linéaire $\Delta V_{mes,lin}$ de l'expression ΔV_{mes} ?
- 5. Donner dans ce cas l'expression de la sensibilité en fonction de A, B et T.
- 6. Que devient cette sensibilité dans le cas d'une approximation linéaire du fonctionnement ?

Exercice 2 : Capteur résistif – conditionnement 2 fils, 3 fils, pont Wheatstone

Pour mesurer la température d'un liquide, comprise entre 50°C et 70°C, on utilise une sonde PT100 de résistance R_{θ} . On donne le coefficient de température a=3.85 10^{-3} ° C^{-1} . On veut étudier les circuits de conditionnement du capteur (A. et B.).

A. **Montage 1 :** Les amplificateurs opérationnels du circuit de conditionnement sont tous considérés comme idéaux. Le générateur fournit un courant constant I = 10 mA.

- 1. Calculer la sensibilité de la sonde PT100
- 2. Exprimer la tension U_{θ} en fonction de R_0 , a, θ et I; avec $R_0 = R_{\theta}(\theta = 0^{\circ}C)$
- 3. Montrer l'intérêt du montage de l'amplificateur opérationnel A1, en recalculant la tension U_{θ} en son absence et précisant le cas où l'introduction du montage A1 est nécessaire.
- 4. Dans le montage construit autour de **Al**, la tension U_0 est égale à R_0I . Montrer que la tension U'_{θ} s'écrit sous la forme : $U'_{\theta} = -b\theta$; exprimer b en fonction de a, U₀, R₂ et R₁.
- 5. On souhaite inverser la tension U'_{θ} pour obtenir la tension U'_{θ} qui s'écrit : $U''_{\theta} = b\theta$. Donner un montage à amplificateur opérationnel assurant cette fonction et qui complète l'ensemble (sur la figure donnée précédemment).

B. Montage 2 : Cette fois-ci, on place la sonde PT100 dans un pont comme présenté sur le montage 1.

Montage 2-a

Montage 2-b

- 1. Exprimer la valeur de la tension différentielle ΔE_m en fonction de R_θ , R_2 , R_3 , R_4 et V.
- 2. Déterminer la condition d'équilibre du pont.
- 3. On suppose que la variation de la résistance des fils de liaisons (en traits fins sur le montage 2a) n'est pas négligeable et qu'elle dépend de la température (effet parasite non contrôlé).
 - a. Exprimer la nouvelle valeur de ΔE_m .
 - b. Recalculer la nouvelle condition d'équilibre du
- 4. Pour remédier aux inconvénients induits par la variation de la résistance des fils, on se propose de câbler le capteur selon le montage ci-contre.
 - a. Identifier le montage
 - Exprimer la nouvelle valeur de ΔE_m .
 - Recalculer la condition d'équilibre et interpréter.
- 5. Proposer un autre montage pour la compensation thermique. Exprimer la nouvelle valeur de ΔE_m . Interpréter.

Exercice 2: A corriger

La résistance R d'un capteur de température, varie aveac la température absolue T, suivant la loi $R = R_0 exp(\frac{B}{T} - \frac{B}{T_0})$ où B, $R_0 = 12k\Omega$ et T_0 sont des constantes. Soient ρ la résistivité, S la section et L la longueur du matériau.

- 1. Identifier le capteur et le type de matériau dont il est fabriqué. Justifier votre Réponse. Donner avec précision le type du capteur.
- 2. Exprimer le coefficient de température $\alpha = \frac{1}{R} \frac{dR}{dT}$ en fonction de B et T. 3. Calculer B sachant que $\alpha(T = 298K) = -4$, $135.10^{-2}K^{-1}$.
- 4. Le coefficient de dilatation linéaire du matériau est $\lambda = \frac{1}{L} \frac{dL}{dT} = 10^{-5} K^{-1}$.
 - a. Exprimer $\frac{d \ln R}{dT}$ en fonction des dérivées de ln ρ , ln L et ln S.
 - b. La dilatation est dite isotrope (i.e. la variation de S est égale à la variation de L^2). Relier les variations de ln S à λ .
 - En déduire une relation entre les variations de résistance avec la température dues à la variation de la résistivité d'une part et aux variations de dimensions (caractérisées par λ) d'autre part.
 - d. Quel paramètre, entre la variation de résistivité et la variation des longueurs, influence le plus fortement les variations de résistance ?

On adopte comme conditionneur du thermomètre un montage potentiométrique simple en utilisant une résistance constante R₁. Le générateur a pour f.é.m. E et pour résistance interne r. Le voltmètre possède une résistance interne R_d

- 5. Exprimer V₁, la tension donnée par le voltmètre, en fonction de R₁, R, R_d, r et E.
- Comment doit-on choisir R_d pour que la tension V₁ ne dépende pas du voltmètre utilisé ? Quelle est alors l'expression de V₁ ? On suppose cette condition désormais réalisée.
- 7. Exprimer ΔV_1 en fonction de ΔR , R_0 , R_1 , r et E.

8. Montrer que la sensibilité du pont s'écrit sous la forme $S = \frac{E}{(\frac{R_0}{\sqrt{R_2}} + \sqrt{R_2})^2}$ E avec $R_2 = R_1 + r$. Pour quelle valeur de R_1 , cette sensibilité est-elle maximale au voisinage de T_0 ? Calculer cette sensibilité maximale.

Exercice n°3: Mesure de débit avec un thermocouple

On désire mesurer le débit Q d'un liquide à l'intérieur d'une canalisation à l'aide de deux thermocouples de type T(annexe1) Un dispositif de chauffage assure l'élévation de la température du fluide entre les soudures A et B. Cette élévation de température est d'autant plus faible que le débit Q est grand.

- 1. Quelle est la soudure la plus chaude, A ou B?
- 2. Quelle est la valeur de la FEM E1 fournie par le thermocouple T₁, si la température au point A est de 100°C et celle au point C de 0°C ?
- 3. Même question si la température au point C est de 25°C?
- 4. Montrer que U ne dépend pas de la température du point C.

Pour un débit variant de 10 à 100 kg/h, la différence de température Tb-Ta varie de 50 à 10°C.

- 5. Calculer la tension U, pour un débit de 10 kg/h et une température du point A de 100°C.
- 6. Quelle est la précision en % sur la mesure, pour un débit de 10 kg/h, si la température du point A varie de 80 à 100°C.

Exercice 4:

On souhaite utiliser une sonde Pt100 de classe B comme capteur de température sur une plage de mesure allant de 0 à 300 °C.

- 1. Rappeler les significations de Pt et 100 de la sonde Pt 100 (avec précision).
- 2. Préciser le mesurande et la grandeur de sortie de la Pt100 ? Qualifier ce capteur (Actif/Passif, Analogique/Numérique/TOR) ?
- 3. A l'aide de **l'annexe 2**, donner l'erreur maximale de température ΔT à 200 °C. En déduire la plage des valeurs limites de température.

On doit mesurer la température dans un four à 200°C distant de 20 m de la centrale de mesure. Celle-ci est constitué d'un générateur de courant d'intensité I0=1,000mA constante quel que soit la température et d'un système de mesure de la tension U. Celui-ci est considéré comme idéal (le courant de mesure prélevé est nul). On utilise pour relier la sonde de température un fil de résistance de $r=85~\Omega$ par km de fil.

Analyse de la méthode 2 fils :

- 4. Calculer la résistance $R_{\rm fils}$ des fils de liaisons. En déduire la plage des valeurs limites de la résistance mesurée par la centrale de mesure $R_{\rm m}$ =U/ I_0 .
- 5. L'erreur induite par la résistance des fils de liaisons est-elle négligeable ? Justifier.

Analyse de la méthode 4 fils :

- 6. Quelle est la valeur de I_m?
- 7. Expliquer pourquoi ce système de mesure est plus juste ? Dans la suite du problème, on utilisera la méthode 4 fils. On souhaite linéariser la relation entre T et R pour T variant entre 0 et 300 K. On recherche donc à établir l'équation T = a.R + b
- 8. En utilisant **l'annexe 3**, déterminer les coefficients a et b de la droite passant par les points M (0°C) et N (300°C). A partir de cette équation, trouver la température correspondante à une résistance 175,86 Ω.
- 9. En comparant à la valeur donnée par l'annexe 2, calculer l'erreur de linéarité engendrée ϵ_l . Estelle négligeable ? Justifier. On mesure une tension U=173,6 mV lorsque la sonde est placée dans le four à 200°C à l'aide d'un voltmètre sur un calibre 300mV ayant comme formule d'incertitude $\Delta U=1~\%~U+1,5~\text{mV}.$
- 10. Calculer l'incertitude sur la mesure de la tension ΔU et la valeur R_m de la résistance mesurée. Cette mesure de tension est-elle cohérente ? Justifier.

Annexe 2 : Valeurs des tolérances d'une PT100

Température °C	Tolérance IEC 751: 1983 (NF C 42-330, DIN 43760, BS 1904)					
	Classe A		Classe B			
	±°C	±Ω	±°C	±Ω		
-200	0,55	0,24	1,3	0,56		
100	0,35	0,14	0,8	0,32		
0	0,15	0,06	0,3	0,12		
100	0,35	0,13	0,8	0,3		
200	0,55	0,2	1,3	0,48		
300	0,75	0,27	1,8	0,64		
400	0,95	0,33	2,3	0,79		
500	1,15	0,38	2,8	0,93		
600	1,35	0,43	3,3	1,06		
650	1,45	0,46	3,6	1,13		

Annexe 3 : Résistance de la PT100 en fonction de la température

Température (°C)	Résistance (Ω)				
0	100,00				
50	119,40				
100	138,51				
150	157,33				
200	175,86				
250	194,10				
300	212,05				

 $Annexe~1: Table~pour~Thermocouple~de~Type~T\\ ITS-90~Table~for~Type~T~Thermocouple~(Ref~Junction~0°C)~~http://reotemp.com$

00											
°C	0	1	2	3	4	5	6	7	8	9	10
				Ther	moelec	tric Vol	tage in	mV			
0	0.000	0.039	0.078	0.117	0.156	0.195	0.234	0.273	0.312	0.352	0.39
10	0.391	0.431	0.470	0.510	0.549	0.589	0.629	0.669	0.709	0.749	0.79
20	0.790	0.830	0.870	0.911	0.951	0.992	1.033	1.074	1,114	1.155	1.196
30	1.196	1.238	1.279	1.320	1.362	1.403	1.445	1.486	1.528	1.570	1.612
40	1.612	1.654	1.696	1.738	1.780	1.823	1.865	1.908	1.950	1.993	2.036
50	2.036	2.079	2.122	2.165	2.208	2.251	2.294	2.338	2.381	2.425	2.468
60	2.468	2.512	2.556	2.600	2.643	2.687	2.732	2.776	2.820	2.864	2.909
70	2.909	2.953	2.998	3.043	3.087	3.132	3.177	3.222	3.267	3.312	3.35
80	3.358	3.403	3.448	3.494	3.539	3.585	3.631	3.677	3.722	3.768	3.81
90	3.814	3.860	3.907	3.953	3.999	4.046	4.092	4.138	4.185	4.232	4.27
100	4.279	4.325	4.372	4.419	4.466	4.513	4.561	4.608	4.655	4.702	4.75
110	4.750	4.798	4.845	4.893	4.941	4.988	5.036	5.084	5.132	5.180	5.22
120	5.228	5.277	5.325	5.373	5.422	5.470	5.519	5.567	5.616	5.665	5.71
130	5.714	5.763	5.812	5.861	5.910	5.959	6.008	6.057	6,107	6.156	6.20
140	6.206	6.255	6.305	6.355	6.404	6.454	6.504	6.554	6.604	6.654	6.70
150	6.704	6.754	6.805	6.855	6.905	6.956	7.006	7.057	7.107	7.158	7.20
160	7.209	7.260	7.310	7.361	7.412	7.463	7.515	7.566	7.617	7.668	7.72
170	7.720	7.771	7.823	7.874	7.926	7.977	8.029	8.081	8.133	8.185	8.23
180	8.237	8.289	8.341	8.393	8.445	8.497	8.550	8.602	8.654	8.707	8.75
190	8.759	8.812	8.865	8.917	8.970	9.023	9.076	9.129	9.182	9.235	9.28
200	9.288	9.341	9.395	9.448	9.501	9.555	9.608	9.662	9.715	9.769	9.82
210	9.822	9.876	9.930	9.984	10.038	10.092	10.146	10.200	10.254	10.308	10.36
220	10.362	10.417	10.471	10.525	10.580	10.634	10.689	10.743	10.798	10.853	10.90
230	10.907	10.962	11.017	11.072	11.127	11.182	11.237	11.292	11.347	11.403	11.45
240	11.458	11.513	11.569	11.624	11.680	11.735	11.791	11.846	11.902	11.958	12.01
250	12.013	12.069	12.125	12.181	12.237	12.293	12.349	12.405	12.461	12.518	12.57
260	12.574	12.630	12.687	12.743	12.799	12.856	12.912	12.969	13.026	13.082	13.13
270	13.139	13.196	13.253	13.310	13,366	13.423	13.480	13.537	13.595	13.652	13.70
280	13.709	13.766	13.823	13.881	13.938	13.995	14.053	14.110	14.168	14.226	14.28
290	14.283	14.341	14.399	14.456	14.514	14.572	14.630	14.688	14.746	14.804	14.86
300	14.862	14.920	14.978	15.036	15.095	15.153	15.211	15.270	15.328	15.386	15.44
310	15.445	15.503	15.562	15.621	15.679	15.738	15.797	15.856	15.914	15.973	16.03
320	16.032	16.091	16.150	16.209	16.268	16.327	16.387	16.446	16.505	16.564	16.62
330	16.624	16.683	16.742	16.802	16.861	16.921	16.980	17.040	17.100	17.159	17.21
340	17.219	17,279	17.339	17.399	17.458	17.518	17.578	17.638	17.698	17.759	17.81
350	17.819	17.879	17.939	17.999	18.060	18.120	18.180	18.241	18.301	18.362	18.42
360	18.422	18.483	18.543	18.604	18.665	18.725	18.786	18.847	18.908	18.969	19.03
370	19.030	19.091	19.152	19.213	19.274	19.335	19.396	19.457	19.518	19.579	19.64
380	19.641	19.702	19.763	19.825	19.886	19.947	20.009	20.070	20.132	20.193	20.25
390	20.255	20.317	20.378	20.440	20.502	20.563	20.625	20.687	20.748	20.810	20.87
400	20.872										