20

CLAIMS

30990088

- 1. A computing apparatus comprising:
 - a trusted hardware module (120);
 - a plurality of further hardware modules (102,104,106);
- a shared communication infrastructure (110) by which the modules can communicate with each other; and
 - a first communication path (122a;122b;122c), distinct from the communication infrastructure, by which a first one (102;104;106) of the further modules can communicate directly with the trusted module but cannot communicate directly with any other of the further modules.
- 2. An apparatus as claimed in claim 1, wherein the trusted module and the first further module each include a respective computing engine which partakes in the direct communication *via* the first communication path.
 - 3. An apparatus as claimed in claim 1 or 2, wherein:

the first further module (102) is operable to supply to the trusted module a request (156) for operation on data; and

in response to such a request, the trusted module is operable to generate a response (158) and to supply the response to the first further module *via* the first communication path (122a) and not *via* the shared communication infrastructure.

- 4. An apparatus as claimed in claim 3, wherein the trusted module includes means (132) for storing policy information regarding such operations which can and/or cannot be permitted, and is operable to generate the response with reference to the policy information.
- 5. An apparatus as claimed in any preceding claim, wherein the trusted module is operable to generate an encryption and/or decryption key and to supply that key to the

15

20

25

first further module *via* the first communication path and not *via* the shared communication infrastructure.

- 6. An apparatus as claimed in claim 5, wherein the first further module is operable to use the key for encryption and/or decryption of data communicated *via* the shared communication infrastructure.
- 7. An apparatus as claimed in any preceding claim, wherein the trusted module is operable to generate a challenge (142) and to supply the challenge to the first further module *via* the first communication path or *via* the shared communication infrastructure using encryption set up using the first communication path.
- 10 8. An apparatus as claimed in claim 7, wherein:

in response to the challenge, the first further module is operable to generate a response (144a,144b,144c) and to supply the response to the trusted module *via* the first communication path or *via* the shared communication infrastructure using encryption set up using the first communication path; and

the trusted module is operable to use the response in generating an integrity metric of the apparatus.

9. An apparatus as claimed in any preceding claim, wherein:

the first further module (106) has a zone (114) for private data and a zone (116) for non-private data; and

the first further module is operable to supply and/or receive data from/for the private data zone *via* the first communication path (122c) and not *via* the shared communication infrastructure.

10. An apparatus as claimed in claim 9, wherein the first further module is operable to supply and/or receive data from/for the non-private data zone *via* the shared communication infrastructure.

15

20

25

- 11. An apparatus as claimed in claim 9 or 10, wherein the first further module has an interface (118) between the private and non-private data zones which is operable to inhibit the passing of data from the private data zone to the non-private data zone.
- 12. An apparatus as claimed in any preceding claim, wherein the first further module is a network interface module (106).
 - 13. An apparatus as claimed in any preceding claim, and including a second communication path (122a;122b), distinct from the communication infrastructure and the first communication path (122c), by which a second one (102;104) of the further modules can communicate directly with the trusted module but cannot communicate directly with any other of the further modules.
 - 14. An apparatus as claimed in claim 13, wherein:

the first further module (102) is operable to supply to the trusted module a request (164) for a transfer of data between the first and second further modules; and

in response to such a request, the trusted module is operable to generate a response (164) and to supply the response to the first or second further module (104) *via* the first or second communication path (122b), as the case may be, and not *via* the shared communication infrastructure.

- 15. An apparatus as claimed in claim 14, wherein the trusted module includes means (132) for storing policy information regarding such transfers which can and/or cannot be permitted, and is operable to generate the response with reference to the policy information.
- 16. An apparatus as claimed in claim 14 or 15, wherein:

in response to an appropriate such transfer response, the first or second further module is operable to supply the data to the trusted module *via* the first or second communication path, as the case may be; and

in response to the receipt of such data, the trusted module is operable to relay the data to the second or first further module, as the case may be, *via* the second or first communication path, as the case may be.

- 17. An apparatus as claimed in any of claims 13 or 16, wherein the second further module is a main processor unit (102) of the apparatus or a non-volatile data storage module (104).
 - 18. An apparatus as claimed in any of claims 13 to 17, and including at least a third communication link (122b), distinct from the communication infrastructure and the other communication links (122a,122c), by which at least a third one (104) of the further modules can communicate directly with the trusted module but cannot communicate directly with any other (102,106) of the further modules.
 - 19. An apparatus as claimed in claim 18, wherein the second further module is a main processor unit (102) of the apparatus and the third further module is a non-volatile data storage module (104).
- 15 20. An apparatus as claimed in any preceding claim, wherein the trusted hardware module (120) is adapted to measure an integrity metric of the computing apparatus.