Домашнее задание №2

Математические основы криптографии группа 2.2 30 Ноября 2022

Преподаватель: Дакуо Жан-Мишель Никодэмович / @jeandakuo

Дедлайн: Понедельник, 12 Декабря, 23:59 по МСК

Правила

- За домашнее задание вы должны набрать:
 - 15 баллов, если отправляете домашнее задание вовремя;
 - 20 баллов, если отправляете домашнее задание после дедлайна.
- Ответы без решения не принимаются (код тоже решение).
- Если вы не можете решить, но думаете, что на правильном пути, отправьте свои мысли, они могут помочь получить некоторое количество баллов.
- Плагиат это плохо :с
- Высылайте в любом удобном для прочтения формате (PDF файл). Если отправить домашнее до дедлайна, то можно получить фидбэк и возможность исправить выявленные недочеты, что позволит набрать дополнительные баллы. Домашнее задание высылайте на почту:

jeandakuo@mail.ru

Задания

Шпаргалка

- $\mathbb{N} = \{1, 2, 3, 4, ...\}$ множество натуральных чисел.
- $\mathbb{Z} = \{... -3, -2, -1, 0, 1, 2, 3, ...\}$ множество целых чисел.
- $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$ фактор множество n.

- $\mathbb{Q} = \left\{ \frac{m}{n} \mid m \in \mathbb{Z}, n \in \mathbb{N} \right\}$ множество целых чисел.
- ullet \mathbb{R} множество вещественных чисел.
- ullet $\mathbb{R}_{>0}$ множество положительных вещественных чисел.
- $\operatorname{ord}(a)$ порядок элемента a.

Задание 1 Повторение - мать учения (2 балла, $\frac{1}{3}$ каждый).

Для каждого множества распиишете, как оно выглядит и (или) покажите его структуру

- 1. Множество всех цветов в флаге Сейшельских Островов.
- 2. Пусть $A = \{2, 4, 6, 8, 10, 12\}, B = \{3, 6, 9, 12\}$. Вычислите следующие множества:
 - (a) $A \cup B$
 - (b) $A \cap B$
 - (c) $A \setminus B$
 - (d) $B \setminus A$
 - (e) $A \times B$
- 3. Найдите:
 - (a) $\mathbb{Z}_7^* = \{x \in \mathbb{Z}_7 \mid \gcd(x,7) = 1\}$
 - (b) $\mathbb{Z}_8^* = \{x \in \mathbb{Z}_8 \mid \gcd(x, 8) = 1\}$
- 4. Пусть множество $n\mathbb{Z} = \{nx \mid x \in \mathbb{Z}\}$. Найдите:
 - (a) $2\mathbb{Z}$
 - (b) $3\mathbb{Z}$
 - (c) $3\mathbb{Z} \cap 2\mathbb{Z}$

- (d) $3\mathbb{Z} \setminus 2\mathbb{Z}$
- 5. Множество можно возводить в степень, что означает следующее:

$$A^n := \underbrace{A \times A \times ... \times A}_{n \text{ times}}$$

Найдите $\{0,1\}^3$.

6. Множество 2^{A} — это множество всех подмножеств заданного множества A:

$$2^A = \{B \mid B \subset A\}$$

Пусть $X = \{1, 2, 3\}$. Найдите 2^X .

Задание 2 Группа или не группа? (2 балла, $\frac{1}{4}$ за каждый).

- **2.а** Докажите или опровергните, что следующее множество с заданной на ней операцией является группой.
 - 1. $\langle \mathbb{N}, + \rangle$.
 - 2. $\langle \mathbb{Z}, + \rangle$.
 - 3. $\langle \mathbb{Q}, * \rangle$.
 - 4. $\langle \mathbb{Z}_{12}^*, * \rangle$, где $\mathbb{Z}_{12}^* = \{x \in \mathbb{Z}_{12} \mid \gcd(x, 12) = 1\}$ и '*' это умножение по модулю 12.
 - 5. $\langle B_n, \vee \rangle$, где $B_n = \{0,1\}^n$ множество всех бинарных строк длинны n и \vee побитовая операция ИЛИ.
 - 6. $\langle B_n, \oplus \rangle$, где $B_n = \{0,1\}^n$ множество всех бинарных строк длинны n и \oplus побитовая операция XOR.
 - 7. $\langle \mathbb{F}, + \rangle$, где \mathbb{F} множество всех функций: $\mathbb{Z} \to \mathbb{Z}$ и (f+g)(x) = f(x) + g(x).

- 8. $\langle \mathbb{F}, \circ \rangle$, где \mathbb{F} множество всех функций: $\mathbb{Z} \to \mathbb{Z}$ и $(f \circ g)(x) = f(g(x))$.
- **2.b** Для каждой группы из (a):
- 1. Найдите порядок группы.
- 2. Выпишите таблицу Кэли (только для конечных групп).
- 3. Найдите нейтральный элемент.
- 4. Для каждого элемента a найдите порядок этого элемента: $\operatorname{ord}(a)$ (только для конечных групп)
- 5. Является ли группа цикличной? Если да, найдите генераторный элемент.
- 6. Является ли группа абелевой?

Задание 3 Уникальность обратного (1 балл).

Докажите, что в группе G для любого элемента $a \in G$ существует единственный обратный:

$$\forall a \in G : \exists! a^{-1} : aa^{-1} = a^{-1}a = e$$

Задание 4 Использование теории групп в теории чисел (2 балла).

Теорема: Если n — простое, и $a, b \in \{1, ..., n-1\}$, тогда уравнение $ax \equiv b \pmod{n}$ имеет единственное решение на множестве $\{1, ..., n-1\}$.

Докажите данную теорему, используя теорию групп.

Задание 5 Использование теории чисел в теории групп (2 балла).

Hanomuhahue: Если a — это элемент группы G, тогда обозначение $\langle a \rangle$ означает все элементы сгенерированные a:

$$\langle a \rangle = \{..., a^{-2}, a^{-1}, e, a, a^2, ...\}$$

Пусть $\operatorname{ord}(a) = n$.

Tasks:

5.а $(\frac{2}{5}$ **балла)** Докажите, что $\langle a \rangle$ - это подгруппа группы G. Каков порядок данной подгруппы?

5.b $(\frac{2}{5}$ **балла)** Докажите, что $\langle a \rangle$ — это абелева группа.

5.с $(\frac{2}{5}$ балла) Докажите, что $a^m = e \iff m : n$.

5.d $(\frac{2}{5}$ балла) Докажите, что $a^k = a^l \iff k \equiv l \pmod{n}$.

5.е $(\frac{2}{5}$ балла) Докажите, что ord $(a^k) = \frac{n}{\gcd(n,k)}$.

Задание 6 Теорема Лагранжа (5 points).

Одним из следствий теоремы Лагранжа является:

Пусть G — группа с подгруппой $H \subset G$. Тогда, |H| делит |G|.

Давайте это докажем! Для простоты скажем, что G абелева.

Для начала определим класс смежности. *Класс смежности gH* — это множество всех элементов из H умноженных на $g \in G$:

$$gH = \{gh \mid g \in G, h \in H\}$$

Заметим, что если $g \notin H$, тогда gH — не группа.

Задания:

- **6.а** (1 балл) Докажите, что если $g \in H$, тогда gH = H
- **6.b** (1 балл) Докажите, что любой элемент $g \in G$ принадлежит какому-либо классу смежности.
- **6.с** (1 балл) Докажите, что для $g_1, g_2 \in G$ их классы смежности либо эквивалентны $(g_1H = g_2H)$, либо непересекаются $(g_1H \cap g_2H = \varnothing)$.

Таким образом, можно сказать, что любой элемент из G принадлежит ровно к одному классу смежности.

6.d (1 балл) Пусть есть 2 различных элемента $h_1, h_2 \in H$. Очевидно, что $gh_1, gh_2 \in gH$. Докажите, что $gh_1 \neq gh_2$.

Что это значит? Различные элементы $h_i \in H$ отображаются в различные элементы $gh_i \in gH$. Тогда, |gH| = |H| для любого $g \in G$.

Таким образом, можно разбить группу G на части одинакого размера |H| (рис. 1). Это доказывает, что |G| делится на |H|. Теорема Лагранжа доказана. \square

Важное следствие:

6.е (1 балл) Докажите, что $\forall a \in G \ |G| : \operatorname{ord}(a)$.

Рис. 1: Разбиение G на классы смежности

Задание 7 Изоморфизм (2 балла).

Изоморфизм — это биективное отображение из группы $\langle G, \oplus \rangle$ в группу $\langle H, \otimes \rangle$

$$f: G \to H$$

где для любых $a, b \in G$:

$$c = a \oplus b$$
$$f(c) = f(a) \otimes f(b)$$

Биективность отображения f означает, что для любого $g \in G$ существует единственный $h \in H$: f(g) = h и для любого $h \in H$ существует единственный $g \in G$: h = f(g). Тогда, для отображения f можно найти обратное f^{-1} такое, что: $g = f^{-1}(h)$.

Такие группы G и H называются uзоморфнымu и обозначаются $G \cong H$. В терии групп изоморфные группы могут рассмариватся как одинаковые группы обладающие одинаковыми свойствами.

Задание: Даны 2 группы:

- $\langle \mathbb{R}, + \rangle$ все действительные числа по сложению.
- $\langle \mathbb{R}_{>0}, \cdot \rangle$ положительные действительные числа по умножению.

Найдите изоморфизм f между ними и его обратный f^{-1} .

Задание 8 Гомоморфное шифрование (2 балла).

 Γ омоморфизм — это отображение из группы $\langle G, \oplus \rangle$ в группу $\langle H, \otimes \rangle$

$$f:G\to H$$

, где для любых $a, b \in G$:

$$c = a \oplus b$$
$$f(c) = f(a) \otimes f(b)$$

В криптографии, существуют алгоритмы гомоморфного шифрования. Пусть дано пространство сообщений \mathcal{M} и пространство шифротекстов \mathcal{C} . Для заданного ключа k, функция гомоморфного шифрования $E_k: \mathcal{M} \to \mathcal{C}$, удовлетворяет свойству:

$$E_k(m_1) \otimes E_k(m_2) = E_k(m_1 \oplus m_2)$$

для $m_1, m_2 \in \mathcal{M}$, где \otimes — это действие над сообщениями и \oplus — действие над шифротекстами.

Задание: Докажите, что RSA является алгоритмом гомоморфного шифрования. В каких случаях это может быть полезно?

Задание 9 Рубашка и пиджак (2 балла).

G — группа. Пусть a,b-2 элемента из G. Также, $a_1,a_2,...,a_k \in G$.

9.а Докажите, что
$$(ab)^{-1} = b^{-1}a^{-1}$$
.

9.b На основании (a) найдите $(a_1 \cdot a_2 \cdot ... \cdot a_k)^{-1}$. Докажите вашу правоту, используя метод математической индукции.

Задание 10 Генератор подгруппы (5 балла).

Пусть q — простое число, такое, что:

$$q = 2 \cdot p_1 \cdot p_2 \cdot \dots \cdot p_n + 1$$

, где $p_1,...,p_n$ — это n различных нечетных простых чисел.

Такое q задает группу \mathbb{Z}_q^* по умножению по модулю q.

Приведите эффективный (с полимиальной сложностью по времени) алгоритм, который принимает $q, p_1, ..., p_n$ в качестве входных значений и для любого $i \in \{1, ..., n\}$ возвращает элемент $a_i \in \mathbb{Z}_q^*$, такой, что $\operatorname{ord}(a_i) = p_i$.

Материалы

Книги

- 1. A. J. Menezes, P. C. van Oorschot, S. A. Vanstone *Handbook of Applied Cryptography*
 - ch. 2.5.1 Groups
 - ch. 12.6.1 Diffie-Hellman key agreement
- 2. R. Lidl, H. Niederreiter Finite Fields
- 3. N. C. Carter Visual Group Theory
- 4. Ch. Paar, J. Pelzl Understanding Cryptography. A Textbook for Students and Practitioners
- 5. (RUS) V. B. Alekseev Abel's Theorem in Problems and Solutions

Видео

- 1. Playlist: Abstract Algebra by Socratica
- 2. Playlist: Group Theory by Daniil Rudenko
- 3. Set Theory All-in-One Video by Dr. Will Wood