Jin Wei (\$3230)
n n/n+1) = n/n+1) (2n+1) (n) n/n+1) is 1919 n Random Las Veas: Always correct random runtime
Monte Carlo: Sometimes incorrect, same runtime
Average running time: for non-randomized algorithms that depend on input
k -> nead to know authorition of inper-
(m) and an amen of the last last last last last last last last
$ g_{a} = 0 g_{a}^{a} = 1 g_{a}^{b_{a}} = b g_{b}^{b_{a}} = c g_{b}^{a} = \frac{ g_{b}^{a} }{ g_{b}^{b} } = \frac{ g_{b}^{a} }{ g_{b}^{a} } = g$
$l_{\theta}(n!): \theta(n \mid \theta^{n}) = \sqrt{2\pi n} \left(\frac{n}{\epsilon}\right)^{n} \left(1 + \theta^{n}\right)^{n} \left(1 + \theta^{n}\right)^{n} \left(1 + \theta^{n}\right)^{n} = 2^{\frac{1}{2}(16n \mid \theta \mid \theta^{n})}$
lgign ce lgn ce lg²n ce din ce n²n ce n¹gn ce n¹ ce n²n ce n¹ ce n²n Bernoulli Trials: P success Pr[X=k] = (1-p)k-1 . P (geometric distribution) q = 1-P failure E[x] = \$\frac{25}{65} \times \text{Pr}(X=k)\$
O(g(m)) = {f(n): 3 (20, no > 0 st 0 f f(n) f (g(n)) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
(4(1) - (4(1) - (4(1) - (4(1) +
$ \Theta(g(n)) = \{f(n): \exists c_1 > 0, c_2 > 0, s \in O \in c_1 g(n) \in f(n) \in c_2 g(n) \forall n > n_0 \} $ Indicator Random Variable $X_i = \{0, o \text{ therwise } E[x_i] = Pr[A]$
$O(g(n)) = \{f(n): \forall c>0, \exists n_0>0 \text{ st } 0 \leq f(n) \leq cg(n) \forall n \geq n_0\}$ $E[XY] = E[X]E[Y] \text{ if } X \text{ and } Y \text{ are independent}$
$\omega(g(n)) = \{f(n): \forall c > 0, \exists n_0 > 0 \text{ st } 0 \leq cg(n) \leq f(n) \forall n \geq n_0\}$ Hashing $\longrightarrow css230$ only cover chaining
NOTE: $2^{6n} \neq O(2^n)$, trigo is good counter example (by PHP) for h: [u] \rightarrow [M], if $u \geq (N-1)M+1$, then 3 set of N elements that collide
L'hopital if num = den = O or ± to Quiversal H if \forall distinct $x,y \in U$: $\begin{cases} Pr \\ h(x) = h(y) \end{cases} \leq \frac{1}{m} $ $\begin{cases} h(x) = 1, h_1(x) = 2, \dots \\ h_1(x) = 1, h_2(x) = 2, \dots \end{cases}$ Universal H if \forall distinct $x,y \in U$: $\begin{cases} Pr \\ h(x) = h(y) \end{cases} \leq \frac{1}{m} $ $\begin{cases} h(x) = 1, h_2(x) = 2, \dots \\ h_1(x) = 1, h_2(x) = 2, \dots \end{cases}$ Uniform H if \forall x \in U, k \in [m]: $\begin{cases} Pr \\ h(x) = h(y) \end{cases} \leq \frac{1}{m} $ Another universal All x \in U.
$ \frac{f(n)}{g(n)} \Rightarrow f(n) = \nabla (g(n)) \qquad $
Deliverise independent H if V distinct x, y & U, i, iz & [m] : [v h(x) = iz] = m
[+] Conversal
$\nabla = \infty$ \Rightarrow ω (complementarity for $(0, \Omega)$, $(0, \omega)$) $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$ $= \frac{expected}{expected} \text{ num of collisions for any } N \text{ elements } < \frac{N-1}{M} \implies \text{elem} \le \frac{1}{M}$ $= \frac{expected}{expected} \text{ cost of } n \text{ operations is } O(n) \text{ ; } f M > N$
Iterative i => i+1 Expected num of pairs (i,s) of collisions after adding x,, x,
- Correstness: loop invariant and McN is $\leq N \cdot 1 + N(N-1) \cdot \frac{1}{m} < 2N$ self-collision
initialisation, manuscrip, 18 automatica, 18 automa
- Runtime: Obvious $\frac{expected}{n} max. load (max. elem in one slot) < \int_{2N} < O(\sqrt{N})$
: total collisions ? (max. load) collisions [everything collide in 1 stot]
Recursive
- Correctness: Base case 4 Strong industrion
- Runtime: Recurrence relation 2-level hashing: O(1) ops, O(N) space
1. Recursion Tree (show ≤ 2 > if bounding!) 3. Substition Method 3. Master Method (CANNOT differ by 1gn) 3. guess t induction ; fN, = number of x; and N2 = number of Y;
$() T(n) \cdot (1)$
T(n) = a (亡) キャ(n) → use <u>more</u> terms ペーランド N, すどがするとこれが N,N2 で こ パリケート 15:5n,15;5n 15:5n,15;5n 15:5n,15;5n 15:5n,15;5n
(ase 1: $f(n) = O(n^{-19b^{n-1}})$, $\epsilon > 0$
f(n) grows polynomially slower than n loba by nº [leaf-heavy]
$\Rightarrow \varphi\left(n^{1}\beta^{L^{\alpha}}\right) \qquad \text{i.e.} lgn = O\left(n^{1-\frac{\alpha}{2}}\right) \qquad \frac{n^{2}}{\ln n} \notin O\left(n^{2-\epsilon}\right)$
(ase 2: $f(n) = \Theta(n^{-1}) f(n^{-1}) / k \ge 0$
f(n) grows at similar vates with n1964 [similar work on each level]
$\Rightarrow \varphi \left({^{n}}^{1} \Im^{k^{n}} {^{n}} \right)$
(ase 3: $f(n) = \Omega(n^{-10})^{n+1}$) $f(n) = \Omega(n^{-10})^{n+1}$
f(n) grows polynomially faster than n'Oba by nº [root-heavy]
AND f(n) satisfies regularity condition
that $Af(\frac{n}{b}) \leq cf(n)$ for some $c \in I$ (state c or range of c)
$\Rightarrow \phi \left(f(n) \right)$ i.e. nign does <u>NOT</u> satisfy regularity condition for $a=2,b=2$

Amortized Analysis * NO probability 1. Aggregate Analysis - average cost of worst sequence of operations - simple to understand but tedious in practice true after any i 2. Accounting (Banker's) Method → set c(i) for each op st & t(i) = & c(i) * only upper bound - invariant: always enough credit to pay off any next op) set c(:) as low as possible t(i) -> overpay c(i) 1. tighter bound - expensive t(:) - lower ((i) 2. analysis easier (credit nearer to 0) 3. Potential Method > cheap op > dp(i) >0 → expensive op → dø(1) c 0 → \$ (i) is "credit amount" after i-th op * state & check 1. \$ (0) = O 2. \$\(\psi(i) \geq 0 \ \nabla i to be valid \$\psi\$ function : t(·) + φ(·) - φ(·-·)

amortized cost = actual cost + $(\phi(n) - \phi(0))$

* is an upper bound

Common Recurrences τ(?) + ο(ι) 0(197) 27(2)+0(1) 0 (") La cut in half every query 0 (%) 7 (=) + o(n) 4 1 (19 (n!)) = 1 /n 19 n) 0 (~ 19 ~) $27\left(\frac{n}{2}\right) + o(n)$ 27 () + 0 (n 19 m) 0 (n 192 m) T(Nn) + 0(19n) 0(19n) 7 (n-1) + 0(hm) 0 (n hm) ~Hn $2T\left(\frac{n}{z}\right) + \frac{n}{19n} \qquad \Theta\left(n \mid 9 \mid 9 \mid n\right)$ 27 (1/2) + 0(1) + (19 1) 27 (An) + 0 (ign) + (ign igign) $\int_{i=1}^{n} f(i) di \leq \sum_{i=1}^{n} f(i) \leq \int_{i=1}^{n+1} f(i) di$ $\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e}$ $\left(1+\frac{a}{n}\right)^{bn+\epsilon} \approx e^{ab}$

Comparison-based Sorting

Ly n! universe