

PM8841

Device Specification

80-NA554-1 Rev. D

May 13, 2013

Submit technical questions at: https://support.cdmatech.com

Confidential and Proprietary – Qualcomm Technologies, Inc.

NO PUBLIC DISCLOSURE PERMITTED: Please report postings of this document on public servers or websites to: DocCtrlAgent@qualcomm.com.

Restricted Distribution: Not to be distributed to anyone who is not an employee of either Qualcomm or its subsidiaries without the express approval of Qualcomm's Configuration Management.

Not to be used, copied, reproduced, or modified in whole or in part, nor its contents revealed in any manner to others without the express written permission of Qualcomm Technologies, Inc.

Qualcomm is a trademark of QUALCOMM Incorporated, registered in the United States and other countries.

All QUALCOMM Incorporated trademarks are used with permission. Other product and brand names may be trademarks or registered trademarks of their respective owners.

This technical data may be subject to U.S. and international export, re-export, or transfer ("export") laws. Diversion contrary to U.S. and international law is strictly prohibited.

Qualcomm Technologies, Inc.
5775 Morehouse Drive
San Diego, CA 92121
U.S.A.
© 2012–2013 Qualcomm Technologies, Inc.

Revision history

Bars appearing in the margin (as shown here) indicate where technical changes have occurred for this revision. The following table lists the technical content changes for all revisions.

Revision	Date	Description
Α	April 2012	Initial release
В	June 2012	 Updated Table 2-2 (Expected maximum currents at PI and PO pad types) Added content to Chapter 3 through Chapter 7. Since this is all new material, change
		bars are not used to identify changes on any of these pages.
С	October 2012	■ Changed BiCMOS to CMOS in Section 1.2 (PM8841 introduction)
		 Updated the V_MPP pad voltage grouping in Table 2-1 (I/O description (pad type) parameters)
		 Removed Table 2-2 (Expected maximum currents at PI and PO pad types)
		■ Updated the OPT_2 and OPT_1 entries, and removed the final entry in Table 2-3 (Pin descriptions – IC-level interface functions)
		 Updated Table 2-4 (Pin descriptions – configurable input/output functions), and also updated the second note under this table
		 Removed the VDD_MSM_IO entry from Table 3-1 (Absolute maximum ratings)
		 Added the I_BAT3 entry to Table 3-3 (DC power-supply currents)
		■ Updated the S3 default voltage to 0.950 V, and changed the S5 default-on status to "Y" in Table 3-5 (Regulator summary)
		■ Updated multiple values in Table 3-7 (HF-SMPS performance specifications), including a new table footnote
		■ Updated Figure 3-1 (Example power sequences)
		 Added the "MPPs configured as current drivers" section and note 3 to Table 3-10 (Multipurpose-pin performance specifications)

Revision	Date	Description
D	May 2013	■ Added V_INT row to Table 2-1
		 Updated Functional Description column and added third note under Table 2-4
		 Added Steady state parameter in Table 3-1
		Removed the Tc row and replaced it with the TA and TJ rows in Table 3-2
		■ Table 3-3:
		□ Added a row for IBAT_2
		□ Updated note 2, added note 4, and updated Typ and Max values
		■ Table 3-5:
		 Updated all Specified range (V) value ranges
		 Updated Default value (V) and Expected use for HF-SMPS row
		□ Added all notes following
		■ Updated Note in Section 3.5.1
		■ Table 3-7:
		 Updated comments in Efficiency, Output ripple voltage, and Response to load transitions rows
		 Made PWM <-> PFM Parameter, Min, Typ, and Max value changes as noted by change bars,
		 Added 100 KHz to 1 MHz sub-row to Power-supply ripple rejection parameter
		 Added Peak output impedance row
		 Updated Output voltage ranges Parameter
		□ Added two sub-rows to Rated load current (I_rated)/Low-power PFM mode
		 Updated comments in first and third rows
		 Updated Comments in all rows except Temperature coefficient, Efficiency – PWM mode, Response to voltage setting, Output ripple, Constant load, and PSR rows
		□ Added PWM and PFM sub-rows under Load regualation and Line regulation rows
		□ Removed following note 3
		■ Replaced Figure 3-1, Figure 3-2, Figure 3-3, and added Figure 3-5
		■ Updated Min, Typ, and Max values as noted by change bars in Table 3-8
		■ Added Table 3-9
		■ Updated second paragraph in Table 3.6.1
		■ Updated content in Section 3.6.2
		■ Replaced Table 3-10, including following notes
		■ Added Table 3-11
		■ Added Table 3-6
		■ Updated text in Section 3.7
		■ Updated Table 3-12:
		 Changed Leakage current parameter to Power supply current
		□ Updated Comments in Output current row
		 Added footnote 5 to MPP configured as analog output (buffered VREF output) row and added note 5,
		 Updated note 4 and Typ, Max, and Unit values as noted by change bars
		■ Updated Line 4 row supplier information in Table 4-1
		■ Added PM8841 ES3/CS row to Table 4-2
		 Added MPP configured as analog output (buffered VREF output) row to Table 4-2
		 Added Table 7-1 and following note
		 Updated Fab and Assembly sites in Section 7.2

Contents

1	Intr	oduction 8
	1.1	Documentation overview
	1.2	PM8841 introduction
	1.3	PM8841 features
		1.3.1 New features integrated into the PM8841
		1.3.2 Summary of PM8841 features
	1.4	Terms and acronyms
	1.5	Special marks
2	Pin	Definitions
_	2.1	I/O parameter definitions
	2.2	Pin descriptions
3	Elec	ctrical Specifications
	3.1	Absolute maximum ratings
	3.2	Recommended operating conditions
	3.3	DC power consumption
	3.4	Digital logic characteristics
	3.5	Output power management
		3.5.1 Reference circuit
		3.5.2 HF-SMPS
		3.5.3 FT-SMPS
	3.6	IC-level interfaces
		3.6.1 Poweron circuits and the power sequences
		3.6.2 OPT[2:1] hardwired controls
		3.6.3 SPMI and the interrupt managers
	3.7	Multipurpose pin specifications
4	Med	chanical Information
	4.1	Device physical dimensions
	4.2	Part marking
		4.2.1 Specification-compliant devices
		4.2.2 Daisy chain devices
	4.3	Device ordering information
		4.3.1 Specification-compliant devices

		4.3.2 Daisy-chain devices	41
	4.4	Device moisture-sensitivity level	41
	4.5	Thermal characteristics	41
5	Car	rier, Storage, & Handling Information	43
•	5.1	Carrier	
	0.12	5.1.1 Tape and reel information	
	5.2	Storage	
		5.2.1 Bagged storage conditions	
		5.2.2 Out-of-bag duration	
	5.3	Handling	
		5.3.1 Baking	
		5.3.2 Electrostatic discharge	
	5.4	Barcode label and packing for shipment	45
6	PCE	B Mounting Guidelines	46
	6.1	RoHS compliance	
	6.2	SMT parameters	
		6.2.1 Land pad and stencil design	
		6.2.2 Reflow profile	
		6.2.3 SMT peak package-body temperature	49
		6.2.4 SMT process verification	49
	6.3	Daisy-chain components	49
	6.4	Board-level reliability	50
	6.5	High-temperature warpage	51
7	Part	t Reliability	52
	7.1	Reliability qualifications summary	
	7.2		

Figures

Figure 1-1	High-level PM8841 functional block diagram	10
Figure 2-1	PM8841 pin assignments (top view)	14
Figure 3-4	S5-8 efficiency plots (measured) on a PM8841 device	29
Figure 3-6	Example PM8x41 dual poweron sequence	34
Figure 4-2	PM8841 device marking (top view, not to scale)	39
Figure 6-1	Stencil printing aperture area ratio (AR)	47
Figure 6-2	Acceptable solder paste geometries	47

Tables

Table 1-1	Primary PM8841 documentation	. 8
Table 1-2	PM8841 feature summary	11
Table 1-3	Terms and acronyms	11
Table 1-4	Special marks	13
Table 2-1	I/O description (pad type) parameters	15
Table 2-2	Pin descriptions – output power management functions	16
Table 2-3	Pin descriptions – IC-level interface functions	17
Table 2-4	Pin descriptions – configurable input/output functions	17
Table 2-5	Pin descriptions – no connect, do not connect, and reserved	17
Table 2-6	Pin descriptions – input DC power	18
Table 2-7	Pin descriptions – grounds	18
Table 3-1	Absolute maximum ratings	19
Table 3-2	Recommended operating conditions	20
Table 3-3	DC power-supply currents	20
Table 3-4	Digital I/O characteristics	21
Table 3-5	Regulator summary	22
Table 3-6	Voltage-reference performance specifications	23
Table 3-7	HF-SMPS performance specifications	23
Table 3-8	3000 mA FT-SMPS performance specifications (single phase)	27
Table 3-9	Multiphase FT-SMPS performance specifications	28
Table 3-10	Specifications for single poweron sequence	30
Table 3-11	Poweron circuit performance specifications with dual poweron sequence	33
Table 3-12	2 Multipurpose-pin performance specifications	35
Table 3-13	B MPP pairs	36
Table 4-1	PM8841 marking line definitions	39
Table 4-2	Device identification code/ordering information details	40
Table 4-3	Source configuration code	40
Table 4-4	MSL ratings summary	41
Table 6-1	Qualcomm typical SMT reflow-profile conditions (for reference only)	48
Table 7-1	PM8841 IC reliability evaluation	52

1 Introduction

1.1 Documentation overview

Technical information for the PM8841 device is primarily covered by the documents listed in Table 1-1; all of these documents should be studied for a thorough understanding of the IC and its applications. Released PM8841 documents are posted on the CDMA Tech Support Website (https://support.cdmatech.com) and are available for download.

Table 1-1 Primary PM8841 documentation

Document number	Title/description
80-NA554-1	PM8841 Device Specification
(this document)	Provides all PM8841 electrical and mechanical specifications. Additional material includes pin assignment definitions; shipping, storage, and handling instructions; PCB mounting guidelines; and part reliability. This document can be used by company purchasing departments to facilitate procurement.
80-NA554-4	PM8841 Device Revision Guide
\	Provides a history of PM8841 revisions. This document explains how to identify the various IC revisions and discusses known issues (or bugs) for each revision, and how to work around them.
80-NA555-5	PM8841 and PM8941 Design Guidelines
	 Detailed functional and interface descriptions for both ICs
	Key design guidelines are illustrated and explained, including:
	□ Technology overviews
	□ DC power distribution
	□ Interface schematic details
	□ PCB layout guidelines
	□ External-component recommendations
	□ Ground and shielding recommendations

This PM8841 device specification is organized as follows:

Chapter 1	Provides an overview of PM8841 documentation, shows a high-level PM8841 functional block diagram, lists the device features, and lists terms and acronyms used throughout this document.
Chapter 2	Defines the IC pin assignments.
Chapter 3	Defines the IC electrical performance specifications, including absolute maximum ratings and recommended operating conditions.
Chapter 4	Provides IC mechanical information, including dimensions, markings, ordering information, moisture sensitivity, and thermal characteristics.
Chapter 5	Discusses shipping, storage, and handling of PM8841 devices.
Chapter 6	Presents procedures and specifications for mounting the PM8841 onto printed circuit boards (PCBs).
Chapter 7	Presents PM8841 reliability data, including definitions of the qualification samples and a summary of qualification test results.

1.2 PM8841 introduction

The PM8841 device (Figure 1-1), plus its companion PM8941 device, integrates all wireless handset power management, general housekeeping, and user interface support functions into two mixed-signal ICs. Their versatile designs are suitable for multimode, multiband phones, and other wireless products such as data cards and PDAs.

The PM8841 mixed-signal CMOS device is available in the 98-pin wafer-level nanoscale package (98 WLNSP) that includes several ground pins for improved electrical ground, mechanical stability, and thermal continuity.

The PM8841 document set is organized by the following device functionality:

- Output power management
- IC interfaces
- Configurable pins (MPPs) that can be configured to function within these two categories, and perhaps as a user interface function

Most of the information contained in this device specification is organized accordingly – including the circuit groupings within the block diagram (Figure 1-1), pin descriptions (Chapter 2), and detailed electrical specifications (Chapter 3). Refer to the *PM8841 and PM8941 Design Guidelines* (80-NA555-5) for more detailed diagrams and descriptions of each PM8841 function and interface.

Two major functional blocks:

1) Output power management

Figure 1-1 High-level PM8841 functional block diagram

1.3 **PM8841** features

NOTE Some of the hardware features integrated within the PM8841 must be enabled through the modem IC software. See the latest version of the applicable software release notes to identify the enabled PMIC features.

1.3.1 New features integrated into the PM8841

- Supplemented by the PM8941 (the master device in the PM8941/PM8841 device combination)
- Multiphase FT-SMPS circuits (S5 S8) provide power to the modem IC's quad-Krait applications processor system
- The slave and PBUS interface (SPMI) is shared with the PM8941 to provide modem IC communications, including interrupts
- Programmable boot sequencer and reset control
- Plug-and-play support

1.3.2 Summary of PM8841 features

The PM8841 features are listed in Table 1-2.

Table 1-2 PM8841 feature summary

Feature	PM8841 capability	
Output voltage regulation		
Switched-mode power supplies		
HF-SMPS	Two; one at 2.0 A, one at 1.0 A	
Individual FT-SMPS	Two; each at 3.0 A	
Multi-phase FT-SMPS	Four; each at 3.0 A	
IC-level interfaces		
Primary status and control	2-line SPMI	
PM8941 interface	Power-on, resets, and shared SPMI	
Interrupt managers	Supported by SPMI	
Optional hardware configurations	OPT bits select hardware configuration	
Power sequencing	Power-on, power-off, and soft resets	
Extra features	Level translation; external regulator enables; detect inputs & interrupt outputs	
Configurable I/Os	Vr. 160.	
MPPs	4; configurable as digital inputs or outputs; level-translating bidirectional I/Os; analog multiplexer inputs; or VREF analog outputs	
Package	100 Vs Vs	
Size	4.45 × 3.58 × 0.55 mm	
Pin count and package type	98-pin WLNSP	

1.4 Terms and acronyms

Table 1-3 defines terms and acronyms used throughout this document.

Table 1-3 Terms and acronyms

Term or acronym	Definition
ADC	Analog-to-digital converter
API	Application programming interface
ATC	Auto-trickle charger
AVS	Adaptive voltage scaling
BMS	Battery monitoring system
BW	bandwidth
CDMA	Code division multiple access
DVS	Dynamic voltage scaling
FT-SMPS	Fast-transient SMPS

Table 1-3 Terms and acronyms (cont.)

Term or acronym	Definition
GPIO	General-purpose input/output
GSM	Global system for mobile communications
HF-SMPS	High-frequency SMPS
HK	Housekeeping
HSED	Headset send/end detect
HS-USB	High-speed USB
ID	Identification
LDO	Low dropout (linear regulator)
Li	Lithium
LPG	Light pulse generator
MPP	Multipurpose pin
MUX	Multiplexer
OTG	On-the-go
OVP	Over-voltage protection
PA	Power amplifier
PBM	Pulse burst modulation
PCB	Printed circuit board
PDA	Personal digital assistant
PFM	Pulse-frequency modulation
PLL	Phase-locked loop
PM	Power management
PWM	Pulse-width modulation
QCT	Qualcomm CDMA Technologies division
RCO	RC oscillator
RTC	Realtime clock
RUIM	Removable user identity module
SMBC	Switched-mode battery charger
SMPL	Sudden momentary power loss
SMPS	Switched-mode power supply (DC-to-DC converter)
SPMI	Slave and PBUS interface
SS-USB	Super-speed USB
SSC	SMPS step control
SVS	Static voltage scaline
тсхо	Temperature-compensated crystal oscillator
UART	Universal asynchronous receiver/transmitter
UICC	Universal integrated circuit card

Table 1-3 Terms and acronyms (cont.)

Term or acronym	Definition
UIM	User identity module
UMTS	Universal mobile telecommunications system
USB	Universal serial bus
UVLO	Under-voltage lockout
VCO	Voltage-controlled oscillator
VCTCXO	Voltage-controlled temperature-compensated crystal oscillator
WLNSP	Wafer-level NSP
WLED	White LED
XO	Crystal oscillator
Zero-IF or ZIF	Zero intermediate frequency

1.5 Special marks

Special marks used in this document are defined in Table 1-4.

Table 1-4 Special marks

Mark	Definition
[]	Brackets ([]) sometimes follow a pin, register, or bit name. These brackets enclose a range of numbers. For example, DATA [7:4] may indicate a range that is 4 bits in length, or DATA[7:0] may refer to eight DATA pins.
_N	A suffix of _N indicates an active low signal. For example, PON_RESET_N.
0x0000	Hexadecimal numbers are identified with an x in the number, (for example, 0x0000). All numbers are decimal (base 10) unless otherwise specified. Non-obvious binary numbers have the term binary enclosed in parentheses at the end of the number, [for example, 0011 (binary)].
I	A vertical bar in the outside margin of a page indicates that a change was made since the previous revision of this document.

2 Pin Definitions

The PM8841 is available in the 98 WLNSP – see Chapter 4 for package details. A high-level view of the pin assignments is illustrated in Figure 2-1.

1 VDD _S5	2 VDD _S5	3 VSW _S5	4 VREG _S5	5 VREG _S6	6 VREG _S2	7 VSW _S2	8 VDD _S2	9 VDD _S2
10 GND _S5	11 VSW _S5	12 VSW _S5	13 GND	14 GND	15 GND	16 VSW _S2	17 VSW _S2	18 GND _S2
19 VDD _S6	20 GND _S5	21 GND	22 GND	23 GND	24 GND _REF		25 GND _S2	26 GND
27 VSW _S6	28 VSW _S6	29 GND	30 GND	31 REF _BYP	32 VDD_ MSM_IO	33 MPP _01	34 MPP _02	35 GND S1
36 GND _S6	37 GND _S6	38 GND	39 GND	40 GND	41 VDD_ INT_BYP	42 VREG _S1	43 NC	44 VSW _S1
45 GND	46 GND	47 REMOTE_ GND_SNS	48 GND	49 GND	50 VDD _PON	51 OPT_2	52 OPT_1	53 VDD _S1
54 GND _S7	55 GND _S7	56 GND	57 GND	58 GND	59 XO_IN	60 VREG _S3	61 PON_1	62 GND _S3
63 VSW _S7	64 VSW _S7	65 GND	66 GND	67 GND	68 PS_ HOLD	69 RESIN _N	70 NC	71 VSW _S3
72 VDD _S7	73 GND _S8	74 GND	75 GND	76 SPMI _DATA	77 SPMI _CLK	78 MPP _03	79 GND _S4	80 VDD _S3
81 GND _S8	82 VSW _S8	83 VSW _S8	84 GND	85 GND	86 MPP _04	87 VSW _S4	88 VSW _S4	89 GND _S4
90 VDD _S8	91 VDD _S8	92 VSW _S8	93 VREG _S8	94 VREG _S7	95 VREG _S4	96 VSW _S4	97 VDD _S4	98 VDD _S4
OUTPUT PI	WR	IC I/F	MPPs ar GPIOs		No nnection	Powe	r	Ground

Figure 2-1 PM8841 pin assignments (top view)

2.1 I/O parameter definitions

Table 2-1 I/O description (pad type) parameters

Symbol	Description				
Pad attribute					
Al	Analog input				
AO	Analog output				
DI	Digital input (CMOS)				
DO	Digital output (CMOS)				
PI	Power input; a pin that handles 10 mA or more of current flow into the device				
PO	Power output; a pin that handles 10 mA or more of current flow out of the device				
Z	High-impedance (high-Z) output				
Pad voltage gr	oupings				
V_INT	Internally generated voltage supply voltage for some poweron circuits				
V_PAD	Supply for modem IC interfaces; connected to VDD_MSM_IO				
V_MPP	Selectable supply for MPP circuits; options include: □ 0 = VPH_PWR (3.6 V) □ 1 = VPH_PWR (3.6 V) □ 2 = VDD_MSM_IO (1.8 V)				
	□ 3 = VDD_MSM_IO (1.8 V)				

2.2 Pin descriptions

Descriptions of all pins are presented in the following tables, organized by functional group:

Table 2-2	Output power management
Table 2-3	IC-level interfaces
Table 2-4	$Configurable\ input/output-GPIO\ and\ MPPs$
Table 2-5	No connect, do not connect, and reserved pins
Table 2-6	Power-supply pins
Table 2-7	Ground pins

Table 2-2 Pin descriptions – output power management functions

Pad #	Pad name	Pad name or	Pad charac	cteristics 1	Functional description		
Pau #	and/or function	alt function	Voltage	Туре			
Switched	-mode power supply (S	SMPS) circuits					
44	VSW_S1		_	РО	S1 SMPS switching output		
42	VREG_S1		_	Al	S1 SMPS sense point		
7, 16, 17	VSW_S2		_	РО	S2 SMPS switching output		
6	VREG_S2		_	Al	S2 SMPS sense point		
71	VSW_S3		-	РО	S3 SMPS switching output		
60	VREG_S3		-	Al	S3 SMPS sense point		
87, 88, 96	VSW_S4		-	РО	S3 SMPS switching output		
95	VREG_S4		<u> </u>	Al	S3 SMPS sense point		
3, 11, 12	VSW_S5		-	PO	S3 SMPS switching output		
4	VREG_S5		- (Al	S3 SMPS sense point		
27, 28	VSW_S6		70.0	РО	S3 SMPS switching output		
5	VREG_S6		10,3	Al	S3 SMPS sense point		
63, 64	VSW_S7	C	0 - 0	РО	S3 SMPS switching output		
94	VREG_S7		-	Al	S3 SMPS sense point		
82, 83, 92	VSW_S8	700	- 1	РО	S3 SMPS switching output		
93	VREG_S8	00, 910,	100	Al	S3 SMPS sense point		
47	REMOTE_GND_SNS	7303		Al	Remote ground sense for multi-phase SMPS (S5 – S8)		
Bandgap	voltage reference (VR	EF) circuits			1		
31	REF_BYP		_	AO	Bandgap reference bypass cap		

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-3 Pin descriptions – IC-level interface functions

Pad #	Pad name	Pad name or	Pad characteristics ¹		Functional description
ı au #	and/or function	nd/or function alt function	Voltage	Туре	i uncuonal description
51	OPT_2			DI	Option HW configuration control bit 2
52	OPT_1			DI	Option HW configuration control bit 1
59	XO_IN		V_PAD	DI	XO clock input
69	RESIN_N		V_INT	DI	PMIC reset input
68	PS_HOLD		V_PAD	DI	Power supply hold control input
61	PON_1		V_PAD	DI	Edge-triggered power-on input
77	SPMI_CLK		V_PAD	DO	Slave and PBUS interface clock
76	SPMI_DATA		V_PAD	DI, DO	Slave and PBUS interface data

^{1.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-4 Pin descriptions – configurable input/output functions

Pad #	Pad name	Configurable	Pad charac	cteristics ²	Functional description		
		function	Voltage	Туре	Functional description		
MPP functions ¹							
33	MPP_01		6- X	AO-Z	Configurable MPP; default Hi-Z out		
34	MPP_02			AO-Z	Configurable MPP; default Hi-Z out		
78	MPP_03	3	10	AO-Z	Configurable MPP; default Hi-Z out		
86	MPP_04	-0 ¹	· - 0	AO-Z	Configurable MPP; default Hi-Z out		

^{1.} Each MPP pair can be used as a level translator by using different rail voltages.

NOTE All MPPs default to their high-Z state at power-up, and must be configured after power-up for their intended purposes.

NOTE MPPs can be configured as analog inputs; however, with no AMUX present in the PMIC, the voltage cannot be read.

NOTE Only odd MPPs (MPP_1 and MPP_3) can be configured as analog outputs. Only even MPPs (MPP_02 and MPP_04) have current sink capability.

Table 2-5 Pin descriptions - no connect, do not connect, and reserved

Pad #	Pad name	Functional description		
43, 70	NC	No connect; not connected internally		

^{2.} Refer to Table 2-1 for parameter and acronym definitions.

Table 2-6 Pin descriptions – input DC power

Pad #	Pad name	Functional description
41	VDD_INT_BYP	Bypass capacitor for internal supply voltage
32	VDD_MSM_IO	Power supply for PMIC/modem IC I/Os
50	VDD_PON	Power supply for power-on circuits
53	VDD_S1	Power supply for S1 buck converter
8, 9	VDD_S2	Power supply for S2 buck converter
80	VDD_S3	Power supply for S3 buck converter
97, 98	VDD_S4	Power supply for S4 buck converter
1, 2	VDD_S5	Power supply for S5 buck converter
19	VDD_S6	Power supply for S6 buck converter
72	VDD_S7	Power supply for S7 buck converter
90, 91	VDD_S8	Power supply for S8 buck converter

Table 2-7 Pin descriptions - grounds

Pad #	Pad name	Functional description
13, 14, 15, 21, 22, 23, 26, 29, 30, 38, 39, 40, 45, 46, 48, 49, 56, 57, 58, 65, 66, 67, 74, 75, 84, 85	GND	Ground for all non-specialized circuits
24	GND_REF	Ground for bandgap reference circuit
35	GND_S1	Ground for S1 buck converter circuits
18, 25	GND_S2	Ground for S2 buck converter circuits
62	GND_S3	Ground for S3 buck converter circuits
79, 89	GND_S4	Ground for S4 buck converter circuits
10, 20	GND_S5	Ground for S5 buck converter circuits
36, 37	GND_S6	Ground for S6 buck converter circuits
54, 55	GND_S7	Ground for S7 buck converter circuits
73, 81	GND_S8	Ground for S8 buck converter circuits

Electrical Specifications

Absolute maximum ratings 3.1

Operating the PM8841 under conditions beyond its absolute maximum ratings (Table 3-1) may damage the device. Absolute maximum ratings are limiting values to be considered individually, when all other parameters are within their specified operating ranges. Functional operation and specification compliance under any absolute maximum condition, or after exposure to any of these conditions, is not guaranteed or implied. Exposure may affect device reliability.

Table 3-1 Absolute maximum ratings

Parameter	Min	Max	Units
0: 0			<u> </u>
Poweron-circuits supply voltage	-0.5	+6.0	V
Steady state	-0.5	+6.0	V
Transient (<10 ms)	-0.5	+7.0	V
00 40 10			
Voltage on any non-power-supply pin 1	-0.5	V _{XX} + 0.5	V
	Poweron-circuits supply voltage Steady state Transient (<10 ms)	Poweron-circuits supply voltage -0.5 Steady state -0.5 Transient (<10 ms) -0.5	Poweron-circuits supply voltage

^{1.} V_{XX} is the supply voltage associated with the input or output pin to which the test voltage is applied.

Recommended operating conditions 3.2

Operating conditions include parameters that are under the control of the user: power-supply voltage and ambient temperature (Table 3-2). The PM8841 meets all performance specifications listed in Section 3.3 through Section 3.7 when used within the recommended operating conditions, unless otherwise noted in those sections (provided the absolute maximum ratings have never been exceeded).

3.3 DC power consumption

This section specifies DC power-supply currents for the various IC operating modes (Table 3-3). Typical currents are based on IC operation at room temperature (+25°C) using default parameter settings.

Table 3-3 DC power-supply currents

	Parameter	Comments	Min	Тур	Max	Units
I_BAT1	Supply current, active mode 1 1	3.	_	2.9	3.0	mA
I_BAT2	Supply current, active mode 2 ²		_	1.9	3	mA
I_BAT3	Supply current, sleep mode ³		_	110	120	μA
I_BAT4	Supply current, off mode ⁴		-	3	10	μΑ

^{1.} I_BAT1 is the total supply current from the main battery with the PMIC on, crystal oscillators on, and the following outputs enabled but without loading: VREG_S1 = 0.95 V, VREG_S2 = 0.9 V, VREG_S5 = 0.9 V.

- 2. I_BAT2 is the total supply current from the main battery with the PMIC on, crystal oscillators on, and the following outputs enabled but without loading: VREG_S1 = 0.95 V, VREG_S2 = 0.9 V, and VREG_S3 = 0.9 V.
- I_BAT3 is the total supply current from the main battery with the PMIC on, the master bandgap reference in its low-power mode, and the following outputs enabled in their low-power modes but without loading: VREG S1 = 0.67 V, VREG S2 = 0.5 V.
- 4. I_BAT4 is the total supply current from the main battery with the PMIC off. This only applies when the temperature is between -30°C and 60°C.

^{1.} Specified range accommodates *low-voltage* lithium batteries on the low end, and *high-voltage* lithium batteries on the high end.

^{2.} V_{XX} is the supply voltage associated with the input or output pin to which the test voltage is applied.

3.4 Digital logic characteristics

PM8841 digital I/O characteristics such as voltage levels, current levels, and capacitance are specified in Table 3-4.

Table 3-4 Digital I/O characteristics

	Parameter	Comments 4	Min	Тур	Max	Units
V _{IH}	High-level input voltage		0.65 · V _{IO}	_	V _{IO} + 0.3	V
V_{IL}	Low-level input voltage		-0.3	-	0.35 · V _{IO}	V
V_{SHYS}	Schmitt hysteresis voltage		15	-	_	mV
ΙL	Input leakage current 1	V_{IO} = max, V_{IN} = 0 V to V_{IO}	-0.20	-	+0.20	μΑ
V _{OH}	High-level output voltage	I _{out} = I _{OH}	V _{IO} - 0.45	-	V _{IO}	V
V _{OL}	Low-level output voltage	I _{out} = I _{OL}	0	-	0.45	V
I _{OH}	High-level output current ²	V _{out} = V _{OH}	3	-	_	mA
I _{OL}	Low-level output current 2	$V_{out} = V_{OL}$	-	_	-3	mA
C _{IN}	Input capacitance 3	0:10	-	_	5	pF

^{1.} MPP pins comply with the input leakage specification only when configured as a digital input, or set to its tri-state mode.

3.5 Output power management

Output power management circuits include:

- Bandgap voltage reference circuit
- HF-SMPS circuits
- FT-SMPS circuits

The PM8841 is supplemented by the PM8941 to provide all the regulated voltages needed for most wireless handset applications. Independent regulated power sources are required for various electronic functions to avoid signal corruption between diverse circuits, support power-management sequencing, and to meet different voltage-level requirements.

A total of eight programmable voltage regulators are provided by the PM8841, with all outputs derived from a common bandgap reference circuit. Each regulator can be set to a low-power mode for power savings.

A high-level summary of the regulators and their intended uses is presented in Table 3-5.

^{2.} Output current specifications apply to all digital outputs unless specified otherwise, and are superseded by specifications for specific pins (such as MPP pins).

^{3.} Input capacitance is guaranteed by design, but is not 100% tested.

^{4.} V_{IO} is the supply voltage for the MSM/PM IC interface (most PMIC digital I/Os).

PM8841 Device Specification Electrical Specifications

Table 3-5 Regulator summary

Function	Circuit type	Default voltage (V) ¹	Specified range (V) ²	Programmable range (V)	Rated current (mA) ³	Default on	Expected use
S1	HF-SMPS	0.950	0.675 – 1.050	0.375 - 3.050	2000	Υ	Modem IC memory and PLLs
S2	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	Υ	Modem IC core, SDC, and USB
S3	HF-SMPS	0.900	0.500 - 1.050	0.375 - 3.050	1000	_	Modem IC modem subsystem
S4	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	_	Modem IC graphics
S5	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	Υ	Modem IC quad-Krait microprocessors
S6	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	-	
S7	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	-	
S8	FT-SMPS	0.900	0.500 - 1.050	0.350 - 2.250	3000	-	

- 1. All regulators have output voltage default settings. The default voltage and poweron state depends on the PBS configurations.
- 2. The specified range corresponds to the range where performance is tested
- 3. Rated current is the maximum current for which specification compliance is guaranteed unless otherwise stated.

3.5.1 Reference circuit

All PMIC regulator circuits, and some other internal circuits, are driven by a common, on-chip voltage-reference circuit. An on-chip series resistor supplements an off-chip $0.1~\mu F$ bypass capacitor at the REF_BYP pin to create a lowpass function, which filters the reference voltage distributed throughout the device.

NOTE Do not load the REF_BYP pin and do not share the REF_GND pin with any other block. Use an MPP configured as an analog output if the reference voltage is needed off-chip.

Applicable voltage-reference performance specifications are given in Table 3-6.

Table 3-6 Voltage-reference performance specifications

Parameter	Comments	Min	Тур	Max	Units
Nominal internal VREF	At REF_BYP pin	_	1.250	_	V
Output voltage deviations					
Normal operation	Over temperature only, -20 to +120°C	-0.32	_	+0.32	%
Normal operation	All operating conditions	-0.50	_	+0.50	%
Sleep mode	All operating conditions	-1.00	_	+1.00	%

3.5.2 HF-SMPS

The PM8841 includes two high-frequency switched-mode power supply (HF-SMPS) circuits. They support PWM and PFM modes, and automatically transition between PWM and PFM modes depending on the load current. Pertinent performance specifications are given in Table 3-7.

Table 3-7 HF-SMPS performance specifications

Parameter	Comments ^{2, 3}	Min	Тур	Max	Units
Output voltage ranges					
Programmable range	12.5 mV steps	0.375	_	1.5625	V
	25 mV steps	1.550	_	3.1250	V
Rated load current (I_rated)	Continuous current delivery				
PWM mode					
S1		_	2000	_	mA
S3		_	1000	_	mA
PFM mode					
S1		_	_	200	mA
S3		_	_	200	mA
Short circuit/peak current (through inductor)	VREG pin shorted; current limit is set via SPMI programming.	0.7 * I_limit	l_limit	1.3 *I_limit	mA

Table 3-7 HF-SMPS performance specifications (cont.)

Parameter	Comments ^{2, 3}	Min	Тур	Max	Units
Voltage error					
PWM mode	V_out > 1.0 V, I_rated/2	-1	_	+1	%
	V_out < 1.0 V, I_rated/2	-10	_	+10	mV
PFM mode	V_out > 1.0 V, I_rated/2	-1	_	+1	%
	V_out < 1.0 V, I_rated/2	-10	_	+10	mV
Overall error ¹					
PWM mode	V_out > 1.0 V, I_rated/2	-2	_	+2	%
	V_out < 1.0 V, I_rated/2	-20	_	+20	mV
PFM mode	V_out > 1.0 V, I_rated/2	-2	_	+4	%
	V_out < 1.0 V, I_rated/2	-20	_	+40	mV
Temperature coefficient		-100	_	+100	ppm/C
Efficiency	VBAT 3.6 V				
PWM mode	V out = 1.8 V, I load = 300 mA		90	_	%
	V_out = 1.8 V, I_load = 10 and 600 mA		85	_	%
PFM mode	V out = 1.8 V, I load = 800 mA		80	_	%
1 1 W Mode	V_out = 1.2 V, I_load = 5 mA	.0, _	80	_	%
Enable settling time	From enable to within 1% of final				,,,
Slow start	value	0,		500	110
Fast start	1, 1,	_	_	100	µs µs
Enable overshoot	9. 3.	•		100	μο
Slow start	V out > 1.0 V, no load	_	_	3	%
Glow Start	V out < 1.0 V, no load			30	mV
Fast start	V out > 1.0 V, no load			6	%
i doi sidit	V_out < 1.0 V, no load	_	_	60	mV
Voltage-step settling time, per least significant bit (LSB)	To within 1% of final value	_	_	10	μs
Response to load transitions	PWM mode				
Dip due to low-to-high load	400 mA load change in 0.05*I_rated to I_rated range	_	_	40	mV
Spike due to high-to-low load	T400 mA load change in 0.05*I_rated to I_rated range	-	_	70	mV
Output ripple voltage	Tested at the switching frequency and 20 MHz measurement BW				
PWM pulse-skipping mode	40 mA load	_	20	40	mVpp
PWM non-pulse-skipping mode	I_rated	_	10	20	mVpp
PFM mode	50 mA load	_	30	50	mVpp
Load regulation	V_in ≥ V_out + 1 V; I_load = 0.01 · I_rated to I_rated	_	_	0.25	%

Table 3-7 HF-SMPS performance specifications (cont.)

Parameter	Comments ^{2, 3}	Min	Тур	Max	Units
Line regulation	V_in = 3.2 V to 4.2 V; I_load = 100 mA	-	_	0.25	%/V
Power-supply ripple rejection (PSRR)					
50 Hz to 1 kHz		_	40	_	dB
1 kHz to 100 kHz		o -	20	_	dB
100 kHz to 1 MHz		_	30	_	dB
Output noise					
F < 5 kHz		_	-101	_	dBm/Hz
F = 5 kHz to 10 kHz		_	-106	_	dBm/Hz
F = 10 kHz to 500 kHz		_	-106	_	dBm/Hz
F = 500 kHz to 1 MHz		_	-116	_	dBm/Hz
F > 1 MHz			-116	_	dBm/Hz
Peak output impedance	1 kHz to 1 MHz	. D	150	_	mΩ
Ground current		Vic			
PWM mode, no load	100		550	750	μA
PFM mode, no load	33.	0 -	20	30	μΑ

- 1. Overall error includes voltage error, load and line regulation, and errors due to temperature and process.
- 2. All specifications apply over the device's recommended operating conditions, load current range, and capacitor ESR range, unless noted otherwise.
- 3. Performance characteristics that may degrade if the rated output current is exceeded:
 - Voltage error
- Efficiency
- Output ripple

Figure 3-1 S1 efficiency plot (measured) on a PM8841 device

Figure 3-2 S3 efficiency plot (measured) on a PM8841

3.5.3 FT-SMPS

The PM8841 includes six fast-transient switched-mode power supply (FT-SMPS) circuits; four are combined in a multi-phase scheme to create the quad-Krait microprocessor power rail. All FT-SMPS circuits support PWM and PFM modes, and automatically transition between PWM and PFM modes depending on the load current. Pertinent performance specifications are given in Table 3-8 and Table 3-9.

Table 3-8 3000 mA FT-SMPS performance specifications (single phase)

Parameter	Comments 1, 2	Min	Тур	Max	Unit
Output voltage ranges	Selected in SW				
LV range	5 mV increments	0.350	_	1.275	V
MV range	10 mV increments	0.700	_	2.250	V
Rated load current (I_rated)	©				
Normal PWM mode		_	_	3000	mA
Low-power PFM mode	LPM_CL = 1.0 A	_	_	500	mA
	LPM_CL = 0.5 A	_	_	250	mA
Voltage error					
PWM mode	V_out > 0.8 V	-1	_	+1	%
	V_out < 0.8 V	-8	_	+8	mV
PFM mode	V_out > 0.8 V	-2	_	+2	%
	V_out < 0.8 V	-16	_	+16	mV
Temperature coefficient	. 🔀	-100	0	+100	ppm/C
Efficiency – PWM mode	VBAT = 3.6 V; V_out = 0.9 V				
I_load = TBD mA	3.	_	TBD	_	%
I_load = TBD mA	, 0, 4,	_	TBD	_	%
Enable responses	From enable to within 1% of final value, 100 μ s with Cload = 10 μ F, no load				
Settling time	S. Pail	_	_	100	μs
Overshoot	100 W.O. V.	_	_	+3	%
Response to load transitions	PWM mode				
Dip due to low-to-high load	500 to 2500 mA load change	_	_	40	mV
Overshoot due to high-to-low load	2500 to 500 mA load change	_	_	70	mV
Response to voltage setting					
Settling time		_	_	1	μs
Overshoot		_	_	TBD	%
Output ripple, constant load					
PWM mode		_	5	10	mVpp
PFM mode		_	20	25	mVpp
Load regulation					
PWM mode		_	_	0.25	%
PFM mode		_	_	0.50	%
Line regulation	V_in = 3.0 V to 4.4 V				
PWM mode		_	_	0.10	%/V
PFM mode		_	_	0.25	%/V

Table 3-8 3000 mA FT-SMPS performance specifications (single phase) (cont.)

Parameter	Comments 1, 2	Min	Тур	Max	Unit
PSRR	Power-supply ripple rejection ratio				
50 to 1000 Hz		_	50	_	dB
1 to 100 kHz		_	30	_	dB
Ground current					
No load, PFM mode		_	65	100	μA
No load, PWM mode		_	350	600	μA

- 1. All specifications apply over the device's recommended operating conditions, load current range, and capacitor ESR range, unless noted otherwise.
- 2. Performance characteristics that may degrade if the rated output current is exceeded:
 - Voltage error
- Efficiency
- Output ripple

Figure 3-3 S2/S4 efficiency plot (measured) on a PM8841 device

Table 3-9 Multiphase FT-SMPS performance specifications

Parameter	Comments ^{1, 2}	Min	Тур	Max	Unit
Output voltage ranges	Selected in SW				
LV range	5 mV increments	0.350	_	1.275	V
MV range	10 mV increments	0.700	_	2.250	V
Rated load current (I_rated)					
Normal PWM mode		_	_	12	Α
Low-power PFM mode		_	_	0.5	Α

Table 3-9 Multiphase FT-SMPS performance specifications (cont.)

Voltage error					
PWM mode	V_out > 0.8 V	-1	-	1	%
	V_out > 0.8 V	-8	-	8	mV
PFM mode	V_out > 0.8 V	-1	-	3	%
	V_out > 0.8 V	-8	_	24	mV
Enable responses	From enable to within 1% of final value 100 µs with Cload = 10 µF, no load	_	-	100	μs
Responses to load transitions		_	_	40	mV
Dip due to low-to-high	2 A to 10 A load change	_	_	70	mV
Overshoot due to high- to-low	10 A to 2 A load change				
Output ripple, constant load	6				
PWM mode	4()	_	5	10	mVpp
PFM mode	84	_	12	20	mVpp
Ground current	, D.				
No load, PFM mode	10. 0	_	65	100	μΑ
No load, PWM mode		_	1.85	2.85	mA

- 1. All specifications apply over the device's recommended operating conditions, load current range, and capacitor ESR range, unless noted otherwise.
- 2. Performance characteristics that may degrade if the rated output current is exceeded:

Figure 3-4 S5-8 efficiency plots (measured) on a PM8841 device

3.6 IC-level interfaces

The IC-level interfaces include poweron circuits; the SPMI; and interrupt managers. Parameters associated with these IC-level interface functions are specified in the following subsections. MPP functions are also considered part of the IC-level interface functional block, but they are specified in their own section (Section 3.7).

3.6.1 Poweron circuits and the power sequences

Dedicated input pins continuously monitor PM8941 output signals that might trigger a poweron sequence. When triggered, the PM8841 circuits are powered on, and then its regulators are enabled.

PM8841 ES1 devices exhibit a single poweron sequence as shown in Figure 3-5. ES2 devices and onwards exhibit the dual poweron sequence as shown in Figure 3-6.

The I/Os to/from the poweron circuits are basic digital control signals that must meet the voltage-level requirements stated in Section 3.4. Additional poweron-circuit performance specifications are listed in Table 3-9. More complete definitions for time intervals included in the table are provided in the *PM8841* and *PM8941* Design Guidelines (80-NA555-5).

Table 3-10 Specifications for single poweron sequence

Parameter	Comments	Min	Тур	Max	Units
Internal pullup resistor	At KYPD_PWR_N and CBL_PWR_N pins	150	200	250	kΩ
tmbg	Poweron trigger to MBG_EN/pre-pon PBS sequence (includes debounce time of the poweron trigger)	12.01	15.99	20.02	msec
tBMS	Time for BMS to make an open circuit voltage measurement	48.00	64.00	80.00	msec
tprepon1	Time from MBG_EN to start of first regulator event	64.95	86.60	108.25	msec
tgpio21	Time from MBG going HIGH until GPIO21 begins to go HIGH	16.95	22.60	28.25	msec
tprebuck	Hardcoded delay in PBS OTP to allow external boost bypass or prebuck to settle	7.50	10.00	12.50	msec
tMBG_slave	Poweron event for slave PMIC to MBG_EN/prepon PBS sequence (includes debounce time of the poweron trigger)	12.01	15.99	20.02	msec
tprepon_slave	Time from MBG_EN to start of first regulator event	11.70	15.60	19.50	msec
tpbs_dly1	Hardcoded delay to allow the slave PMIC to boot core supplies before continuing PON sequence	36.62	48.80	61.00	msec
tsettle	Regulator settling time	-	-	500.00	µsec
treg ¹	Time between regulator enables	73.24	_	622.07	µsec
tBBCLK_1	Time from the XO_OUT_D0 clock enable to the first clock edge	14.25	19.00	23.75	msec

Table 3-10 Specifications for single poweron sequence (cont.)

Parameter	Comments	Min	Тур	Max	Units
tsec_reg	Time from LDO24 enable to the next regulator in the sequence (LDO12)	18.75	25	31.25	msec
tpbs_dly2	Time between first clock edge and PON_ RESET_N being set high	_	30	_	msec
tpshold	Time for MSM to assert PS_HOLD (PS_HOLD timeout)	150	200	250	msec
tpbs_dly3	Time delay between PON_OUT dropping low and the beginning of the LDO21 turn-off event (PBS controlled)	0.34	0.46	0.57	msec
tpbs_dly4	Wait time (hardcoded in the PBS) for the Krait rail to go low and turn-off event start for S2B. The assumption is that the entire Poff sequence in PM8941 will finish by this time.	5.26	7.02	8.77	msec
tpbs_dly5	Wait time (hardcoded in PBS) between the instant the MPP1 goes low and the beginning of the GPIO21 turn-off event.	2.27	3.02	3.78	msec
Debounce timer ²	12.4	16	-	10256	msec

^{1.} t_{reg} for LDO24 to LDO7 is about 200 µsec; VREF_LPDDR is derived from LDO1 and turns on about 250 µsec after LDO1.

^{2.} Delay between triggering event (such as keypad press) and corresponding interrupt; a programmable value.

Figure 3-5 Example PM8x41 single poweron sequence

Table 3-11 Poweron circuit performance specifications with dual poweron sequence

Parameter	Comments	Min	Тур	Max	Units
Internal pullup resistor	At KYPD_PWR_N and CBL_PWR_N pins	150	200	250	kΩ
tmbg	Poweron trigger to MBG_EN/pre-pon PBS sequence (includes debounce time of the power-on trigger)	12.01	15.99	20.02	msec
tBMS	Time for BMS to make an open circuit voltage measurement	48.00	64.00	80.00	msec
tprepon1	Time from MBG_EN to start of first regulator event	64.95	86.60	108.25	msec
tgpio21	Time from MBG going HIGH till GPIO21 begins to go HIGH	16.95	22.60	28.25	msec
tprebuck	Hardcoded delay in PBS OTP to allow external boost bypass or prebuck to settle	7.50	10.00	12.50	msec
tMBG_slave	Poweron event for slave PMIC to MBG_EN/pre-pon PBS sequence (includes debounce time of the power-on trigger)	12.01	15.99	20.02	msec
tprepon_slave	Time from MBG_EN to start of first regulator event	11.70	15.60	19.50	msec
tpbs_dly1	Hardcoded delay to allow slave PMIC to boot core supplies before continuing PON sequence	36.62	48.80	61.00	msec
tsettle	Regulator settling time	-	_	500.00	µsec
treg ¹	Time between regulator enables	73.24	_	622.07	µsec
tBBCLK_1	Time from the enable of the XO_OUT_D0 clock to the first clock edge	14.25	19.00	23.75	msec
treset1	Time between first clock edge and PON_RESET_N being set high	TBD	TBD	TBD	msec
tpshold	Time for MSM to assert PS_HOLD (PS_HOLD timeout)	150	200.00	250	msec
tpbs_dly2	Time between SPON message from MSM to S5B turning ON	2.44	3.20	4.06	msec
tpbs_dly3	Time delay between PON_OUT dropping low and the beginning of turn-off event of LDO21 (PBS controlled)	0.34	0.46	.057	msec
tpbs_dly4	Wait Time (hardcoded in PBS) for the Krait rail to go low, and the beginning of turn-off event for S2B. We assume that the entire Poff sequence in PM8941 shall finish by this time	5.26	7.02	8.77	msec
tpbs_dly5	Wait time (hardcoded in PBS) between the instant the MPP1 goes low, and the beginning of the GPIO21 turn-off event	2.27	3.02	3.78	msec
Debounce timer ²		16	_	10256	msec

^{1.} t_{reg} for LDO24 to LDO7 is about 200 µsec; VREF_LPDDR is derived from LDO1 and turns on about 250 µsec after LDO1.

^{2.} Delay between triggering event (such as keypad press) and corresponding interrupt; a programmable value.

Figure 3-6 Example PM8x41 dual poweron sequence

3.6.2 OPT[2:1] hardwired controls

Two pins (OPT_2 and OPT_1) must be hardwired to ground or VDD, or be left open (high-impedance state or Hi-z); this yields nine possible combinations. At the time of this document's release, one combination has been assigned for the MSM8x74 chipset:

■ OPT[2:1] = GND, GND

3.6.3 SPMI and the interrupt managers

The SPMI is a bidirectional, two-line digital interface that meets the voltage-level and current-level requirements stated in Section 3.4.

PMIC interrupt managers support the chipset modem and its processors, and communicates with the modem IC via SPMI. Since the interrupt managers are entirely embedded functions, additional performance specifications are not required.

3.7 Multipurpose pin specifications

The PM8841 includes four multipurpose pins (MPPs), and they can be configured for any of the functions specified within Table 3-12. All MPPs are high-Z at power on (set as disabled current sinks). All MPPs can be setup as interrupt trigger sources.

Table 3-12 Multipurpose-pin performance specifications

Parameter	Comments	Min	Тур	Max	Units		
MPP configured as digital input ¹							
Logic high input voltage	10 10 10	0.65 · V_M	-	_	V		
Logic low input voltage	100	-	-	0.35 · V_M	V		
MPP configured as digital output ¹							
Logic high output voltage	I _{out} = I _{OH}	V_M - 0.45	-	V_M	V		
Logic low output voltage	$I_{out} = I_{OL}$	0	-	0.45	V		
MPP configured as bidirectional I/O 2							
Nominal pullup resistance	Programmable range ⁴	0.6	_	30	kΩ		
Maximum frequency		200	_	-	kHz		
Switch on resistance		_	20	50	Ω		
Power-supply current		_	6	7	μΑ		

Table 3-12 Multipurpose-pin performance specifications (cont.)

Parameter	Comments	Min	Тур	Max	Units
MPP configured as analog	g input (analog multiplexer input)	•	<u>'</u>		· ·
Input current		_	_	100	μA
Input capacitance		_	_	10	pF
MPP configured as analog	g output (buffered VREF output) 3, 5	+	+		- !-
Output voltage error	-50 μA to +50 μA		_	30	mV
Temperature variation	Due to buffer only; does not include VREF variation (see Table 3-6)	-0.03	_	+0.03	%
Load capacitance		-	-	25	pF
Power-supply current		_	0.17	0.20	mA
MPP configured as level to	translator				
Maximum frequency		4	-	_	MHz
MPPs configured as curre	ent drivers ⁵	2			
Power-supply voltage	.63	_	V_{DD}	_	V
Output current	Programmable in 5 mA increments	0	_	40	mA
Output current accuracy	Any programmed current value	-20	_	+20	%
Dropout voltage	V_IN – V_OUT, with I_OUT within the accuracy limits of its current setting	10-	_	1000	mV
Power supply current	Driver disabled	_	105	115	μA

- 1. Input and output stages can use different power supplies, thereby implementing a level translator. See Table 2-1 for V_M supply options. Other specifications are included in Section 3.4.
- 2. MPP pairs are listed in Table 3-13.
- 3. MPPs can be configured as analog inputs; however, with no AMUX present in the PMIC, the voltage cannot be read
- 4. Pullup resistance is programmable to values of 0.6 k Ω , 10 k Ω , 30 k Ω , or open.
- 5, Only odd MPPs (MPP_1 and MPP_3) can be configured as analog outputs. Only even MPPs (MPP_02 and MPP_04) have current sink capability.

Table 3-13 MPP pairs

MPP#		MPP#
1	<->	2
3	<->	4

4 Mechanical Information

4.1 Device physical dimensions

The PM8841 is available in the 98-pin wafer-level nanoscale package (98 WLNSP) that includes dedicated ground pins for improved grounding, mechanical strength, and thermal continuity. The 98 WLNSP package has a 4.45×3.58 mm body with a maximum height of 0.55 mm. Pin 1 is located by an indicator mark on the top of the package, and by the ball pattern when viewed from below. A simplified version of the 98 WLNSP outline drawing is shown in Figure 4-1.

NOTE Click the link below to download the 98 WLNSP outline drawing (NT90-NA035-1) from the CDMA Tech Support website.

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481aa6ab3

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the package drawing to be notified of any changes.

PM8841 Device Specification Mechanical Information

Figure 4-1 98 WLNSP (4.45 × 3.58 × 0.55 mm) package outline drawing

NOTE This is a simplified outline drawing. Click the link below to download the complete, up-to-date package outline drawing:

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481aa6ab3

4.2 Part marking

4.2.1 Specification-compliant devices

Figure 4-2 PM8841 device marking (top view, not to scale)

Table 4-1 PM8841 marking line definitions

Line	Marking	Description
1	PM8841	Qualcomm product name
2	PBB	P = product configuration code See Table 4-2 for assigned values. BB = feature code See Table 4-2 for assigned values.
3	xxxxxxxx	XXXXXXXX = traceability information
4	FAYWWRR	F = supply source code ■ F = A for Global Foundries, Fab3, Singapore A = assembly site code ■ A = □ A for STATSChipPAC, SCS, Singapore □ B for Amkor, ATC, China Y = single-digit year WW = work week (based on calendar year) RR = product revision ■ See Table 4-2 for assigned values.
5	•xx	• = dot identifying pin 1 XX = traceability information

NOTE For complete marking definitions of all PM8841 variants and revisions, refer to the *PM8841 Device Revision Guide* (80-NA554-4).

4.2.2 Daisy chain devices

This information will be included in future revisions of this document.

4.3 Device ordering information

4.3.1 Specification-compliant devices

This device can be ordered using the identification code shown in Figure 4-3 and explained below.

Figure 4-3 Device identification code

Ordering information details for all samples available to date are summarized in Table 4-2.

Table 4-2 Device identification code/ordering information details

PMIC variant	P value	RR value	HW ID #	S value 1	BB value ²
ES sample type	200	0.			
PM8841 ES1	0	00	v1.0	0	VV
PM8841 ES2	0	01	v2.0	0	VV
PM8841 ES3/CS	0	02	v2.1	0	VV
Other sample types will be	e included in futu	re revisions of th	is document.		

^{1. &#}x27;S' is the source configuration code that identifies all the qualified die fabrication-source combinations available at the time a particular sample type was shipped. S values are defined in Table 4-3.

Table 4-3 Source configuration code

S value Die		F value = TBD						
0	CMOS	TBD	_	_	_			
Other columns and rows will be added in future revisions of this document, if needed.								

^{2. &#}x27;BB' is the feature code that identifies an IC's specific feature set, which distinguishes it from other versions or variants. Defined feature sets available at the time of this document's release are:

VV = null set; all devices available at this time have the same feature set.

4.3.2 Daisy-chain devices

This information will be included in future revisions of this document.

4.4 Device moisture-sensitivity level

Plastic-encapsulated surface mount packages are susceptible to damage induced by absorbed moisture and high temperature. A package's moisture-sensitivity level (MSL) indicates its ability to withstand exposure after it is removed from its shipment bag, while it is on the factory floor awaiting PCB installation. A low MSL rating is better than a high rating; a low MSL device can be exposed on the factory floor longer than a high MSL device. All pertinent MSL ratings are summarized in Table 4-4.

MSL	Out-of-bag floor life	Comments
1	Unlimited	≤ 30°C/85% RH
2	1 year	≤ 30°C/60% RH; PM8841 rating
2a	4 weeks	≤ 30°C/60% RH
3	168 hours	≤ 30°C/60% RH
4	72 hours	≤ 30°C/60% RH
5	48 hours	≤ 30°C/60% RH
5a	24 hours	≤ 30°C/60% RH
6	Mandatory bake before use. After bake, must be reflowed within the time limit specified on the label.	≤ 30°C/60% RH

Qualcomm follows the latest IPC/JEDEC J-STD-020 standard revision for moisture-sensitivity qualification. *The PM8841 devices are classified as MSL2; the qualification temperature was 250°C*. This qualification temperature (250°C) should not be confused with the peak temperature within the recommended solder reflow profile (see Section 6.2.3 for more details).

4.5 Thermal characteristics

Rather than provide thermal resistance values θ_{JC} and θ_{JA} , validated thermal package models are provided through the CDMA Tech Support website. A thermal model for each device is provided within the *Power_Thermal* subfolder for each chipset family. Designers can extract thermal resistance values by conducting their own thermal simulations.

NOTE Click the link below to download the PM8841 thermal package model from the CDMA Tech Support website.

This link will be included in future revisions of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the PM8841 thermal package model to be notified of any changes.

5 Carrier, Storage, & Handling Information

5.1 Carrier

5.1.1 Tape and reel information

All Qualcomm carrier tape systems conform to EIA-481 standards.

A simplified sketch of the PM8841 tape carrier is shown in Figure 5-1, including the proper part orientation, maximum number of devices per reel, and key dimensions.

Figure 5-1 Carrier tape drawing with part orientation

Tape-handling recommendations are shown in Figure 5-2.

Figure 5-2 Tape handling

5.2 Storage

5.2.1 Bagged storage conditions

PM8841 devices delivered in tape and reel carriers must be stored in sealed, moisture barrier, anti-static bags. Refer to the *IC Packing Methods and Materials Specification* (80-VK055-1) for the expected shelf life.

5.2.2 Out-of-bag duration

The out-of-bag duration is the time a device can be on the factory floor before being installed onto a PCB. It is defined by the device MSL rating, as described in Section 4.4.

5.3 Handling

Tape handling was described in Section 5.1.1. Other (IC-specific) handling guidelines are presented below.

5.3.1 Baking

Wafer-level packages such as the 98 WLNSP should not be baked.

5.3.2 Electrostatic discharge

Electrostatic discharge (ESD) occurs naturally in laboratory and factory environments. An established high-voltage potential is always at risk of discharging to a lower potential. If this discharge path is through a semiconductor device, destructive damage may occur.

ESD countermeasures and handling methods must be developed and used to control the factory environment at each manufacturing site.

Qualcomm products must be handled according to the ESD Association standard: ANSI/ESD S20.20-1999, *Protection of Electrical and Electronic Parts, Assemblies, and Equipment.*

Refer to Section 7.1 for the PM8841 ESD ratings.

5.4 Barcode label and packing for shipment

Refer to the *IC Packing Methods and Materials Specification* (80-VK055-1) for all packing-related information, including barcode-label details.

6 PCB Mounting Guidelines

6.1 RoHS compliance

The device is lead-free and RoHS-compliant. Its SnAgCu solder balls use TBD composition. Qualcomm defines its lead-free (or Pb-free) semiconductor products as having a maximum lead concentration of 1000 ppm (0.1% by weight) in raw (homogeneous) materials and end products. Qualcomm package environmental programs, RoHS compliance details, and tables defining pertinent characteristics of all Qualcomm IC products are described in the *IC Package Environmental Roadmap* (80-V6921-1).

6.2 SMT parameters

This section describes Qualcomm board-level characterization process parameters. It is included to assist customers with their SMT process development; it is not intended to be a specification for their SMT processes.

6.2.1 Land pad and stencil design

The land pattern and stencil recommendations presented in this section are based on Qualcomm internal characterizations for lead-free solder pastes on an eight-layer PCB built primarily to the specifications described in JEDEC JESD22-B111.

Qualcomm recommends characterizing the land patterns according to each customer's processes, materials, equipment, stencil design, and reflow profile prior to PCB production. Optimizing the solder stencil pattern design and print process is critical to ensure print uniformity, decrease voiding, and increase board-level reliability.

General land-pattern guidelines:

- Non-solder-mask-defined (NSMD) pads provide the best reliability.
- Keep the solder-able area consistent for each pad, especially when mixing via-in-pad and non-via-in-pad in the same array.
- Avoid large solder-mask openings over ground planes.
- Traces for external routing are recommended to be less than or equal to half the pad diameter to ensure consistent solder-joint shapes.

One key parameter that should be evaluated is the ratio of aperture area to sidewall area, known as the area ratio (AR). Qualcomm recommends square apertures for optimal solder-paste release. In this case, a simple equation can be used relating the side length of the aperture to the stencil thickness (as shown and explained in Figure 6-1). Larger area ratios enable better transfer of solder paste to the PCB, minimize defects, and ensure a more stable printing process. Inter-aperture spacing should be at least as thick as the stencil; otherwise, paste deposits may bridge.

Figure 6-1 Stencil printing aperture area ratio (AR)

Guidelines for an acceptable relationship between L and T are listed below, and are shown in Figure 6-2:

- R = L/4T > 0.65 best
- $0.60 \le R \le 0.65$ acceptable
- \blacksquare R < 0.60 not acceptable

1	Stencil		Stencil thickness, T (μm)						
	Aperture L (μm)	75			10			105	110
1	210	0.70	0.66	0.62	0.58	0.55	0.53	0.50	0.48
								0.52	
	230	0.77	0.72	0.68	0.64	0.61	0.58	0.55	0.52
	240	0.80	0.75	0.71	0.67	0.63	0.60	0.57	0.55
	250	0.83	0.78	0.74	0.69	0.66	0.63	060	0.57
	260	0.87	0.81	0.76	0.72	0.68	0.65	0.62	0.59

Figure 6-2 Acceptable solder paste geometries

Qualcomm provides an example PCB land pattern and stencil design for the 98 WLNSP package.

NOTE Click the link below to download the 98 WLNSP land/stencil drawing (LS90-NA035-1) from the CDMA Tech Support Website.

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481a266be

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the land/stencil drawing to be notified of any changes.

Click the **Help** button to download the latest revision of *Using CDMA Tech Support Documents and Downloads User Guide* (80-V7273-1). This document includes subscription instructions.

6.2.2 Reflow profile

Reflow profile conditions typically used by Qualcomm for lead-free systems are listed in Table 6-1 and shown in Figure 6-3.

Table 6-1 Qualcomm typical SMT reflow-profile conditions (for reference only)

Profile stage	Description	Temp range	Condition
Preheat	Initial ramp	< 150°C	3°C/sec max
Soak	Flux activation	150 to 190°C	60 to 75 sec
Ramp	Transition to liquids (solder-paste melting point)	190 to 220°C	< 30 sec
Reflow	Time above liquidus	220 to 245°C ¹	50 to 70 sec
Cool down	Cool rate – ramp to ambient	< 220°C	6°C/sec max

^{1.} During the reflow process, the recommended peak temperature is 245°C (minimum). This temperature should not be confused with the peak temperature reached during MSL testing, as described in Section 6.2.3.

Figure 6-3 Qualcomm typical SMT reflow profile

6.2.3 SMT peak package-body temperature

This document states a peak package-body temperature in three other places within this document, and without explanation, they may appear to conflict. The three places are listed below, along with an explanation of the stated value and its meaning within that section's context.

1. Section 4.4 – Device moisture-sensitivity level

PM8841 devices are classified as MSL2@250°C. The temperature (250°C) included in this designation is the lower limit of the range stated for moisture resistance testing during the device qualification process, as explained in #2 below.

2. Section 7.1 – Reliability qualifications summary

One of the tests conducted for device qualification is the moisture resistance test. Qualcomm follows J-STD-020-C, and hits a peak reflow temperature that falls within the range of $260^{\circ}\text{C} + 0/-5^{\circ}\text{C}$ (255°C to 260°C).

3. Section 6.2.2 – Reflow profile

During a production board's reflow process, the temperature seen by the package must be controlled. Obviously, the temperature must be high enough to melt the solder and provide reliable connections, but it must not go so high that the device might be damaged. The recommended peak temperature during production assembly is 245°C. This is comfortably above the solder melting point (220°C), yet well below the proven temperature reached during qualification (250°C or more).

6.2.4 SMT process verification

Qualcomm recommends verification of the SMT process prior to high-volume board assembly, including:

- In-line solder-paste deposition monitoring
- Reflow profile measurement and verification
- Visual and x-ray inspection after soldering to confirm adequate alignment, solder voids, solder-ball shape, and solder bridging
- Cross-section inspection of solder joints for wetting, solder-ball shape, and voiding

6.3 Daisy-chain components

Daisy-chain packages use the same processes and materials as actual products; they are recommended for SMT characterization and board-level reliability testing. In fact, all SMT process recommendations discussed above can be performed using daisy-chain components.

Ordering information is given in Section 4.3.2.

Daisy-chain PCB routing recommendations are available for download.

NOTE Click the link below to download the 98 WLNSP daisy-chain interconnect drawing (DS90-NA035-1) from the CDMA Tech Support Website.

https://downloads.cdmatech.com/qdc/drl/objectId/0901001481a22846

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the daisy-chain interconnect drawing to be notified of any changes.

Click the **Help** button to download the latest revision of *Using CDMA Tech Support Documents and Downloads User Guide* (80-V7273-1). This document includes subscription instructions.

6.4 Board-level reliability

Qualcomm conducts characterization tests to assess the device's board-level reliability, including the following physical tests on evaluation boards:

- Drop shock (JESD22-B111)
- Temperature cycling (JESD22-A104)
- Cyclic bend testing optional (JESD22-B113)

Board-level reliability data is available for download.

NOTE Click the link below to download the 98 WLNSP board-level reliability data (BR80-TBD) from the CDMA Tech Support Website.

This link will be included in future revisions of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the board-level reliability document to be notified of any changes.

6.5 High-temperature warpage

Qualcomm measures high-temperature warpage using a shadow moire system; the measured data is available for download.

NOTE Click the link below to download the 98 WLNSP high-temperature warpage data (WP80-TBD) from the CDMA Tech Support Website.

This link will be included in future revisions of this document.

If you have permission to view the document, a prompt will be presented for initiating the download.

NOTE Subscribe to the high-temperature warpage document to be notified of any changes.

7 Part Reliability

7.1 Reliability qualifications summary

Table 7-1 PM8841 IC reliability evaluation

Tests, standards, and conditions	Sample Size	Result
Average failure rate (AFR) in FIT (λ) failure in billion device-hours HTOL: JESD22-A108-D	48	0F/48 ELFR = 727 DPPM AFR = 16 FITs
Mean time to failure (MTTF) $t = 1/\lambda$ in million hours		64 Mhours
ESD – Human-body model (HBM) rating JESD22-A114-F	3	±2000 V
ESD - Charge-device model (CDM) rating JESD22-C101-D	3	±500 V
Latch-up (I-test): EIA/JESD78C Trigger current: ±100 mA; temperature: 85°C	6	±100 mA
Latch-up (Vsupply overvoltage): EIA/JESD78 Trigger voltage: stress at 1.5 × Vdd max per device specification; temperature: 85°C	6	6.6 V
Moisture resistance test (MRT): J-STD-020C Reflow @ 260 +0/-5°C	462	MSL1 pass
Temperature cycle: JESD22-A104-D Temperature: -55°C to 125°C; number of cycles: 1000 Soak time at minimum/maximum temperature: 8-10 minutes Cycle rate: 2 cycles per hour (cph) Preconditioning: JESD22-A113-F MSL1, reflow @ 260 +0/-5°C	231	Pass
Unbiased highly accelerated stress test (HAST) JESD22-A118; 130° C / 85% RH and 96 hrs Preconditioning: JESD22-A113-F MSL1, reflow @ 260 +0/-5°C	231	Pass
High-temperature storage life: JESD22-A103-C Temperature = 150°C; time= 1000 hours	231	Pass
Physical dimensions: JESD22-B100-A	75	
Solder ball shear JESD22-B117	30	

Table 7-1 PM8841 IC reliability evaluation (cont.)

Tests, standards, and conditions	Sample Size	Result
Internal/external visual Ball diameter, height & x-ray	30	
Flammability UL-STD-94 Flammability test – not required		See note.

Note: Qualcomm ICs are exempt from the flammability requirements due to their sizes per UL/EN 60950-1, as long as they are mounted on materials rated V-1 or better. Most PWBs onto which our ICs mounted are rated V-0 (better than V-1).

7.2 Qualification sample description

Device characteristics

Device name:PM8841

Package type:98 WLNSP

Package body size:4.45 mm \times 3.58 mm \times 0.55 mm

Lead count:98

Lead composition:TBD

Fab process:0.18 μm CMOS

Fab sites: GF, Fab3, Singapore;

Assembly sites:STATSChipPAC, SCS, Singapore; Amkor, ATC, China; ASE, ASE-kh, Taiwan

Solder ball pitch: 0.4 mm