Lattice in Wonderland: An LLL Optimization Problem

Antonio Gonzalez, Fion Huang, Sara Khattab Junwen Liao, Abdullah Majmundar

University of California, Riverside

October 21, 2019

Definition

Let $n \ge 1$ and let x_1, x_2, \ldots, x_n be a basis of \mathbb{R}^n . The lattice with dimension n and basis x_1, x_2, \ldots, x_n is the set L of all linear combinations of the basis vectors with integral coefficients:

$$L = \left\{ \sum_{i=1}^n a_i x_i \mid a_1, a_2, \dots, a_n \in \mathbb{Z} \right\}.$$

Definition

Let $n \ge 1$ and let x_1, x_2, \ldots, x_n be a basis of \mathbb{R}^n . The lattice with dimension n and basis x_1, x_2, \ldots, x_n is the set L of all linear combinations of the basis vectors with integral coefficients:

$$L = \left\{ \sum_{i=1}^n a_i x_i \mid a_1, a_2, \dots, a_n \in \mathbb{Z} \right\}.$$

- ▶ A single lattice can be represented by more than one basis
- A common problem faced is what is the shortest vector in a given lattice

Shortest Vector Problem

• Let
$$\beta = \{(2,1),(1,1)\}$$
 and $L = \operatorname{Span}_{\mathbb{Z}} \beta$

Shortest Vector Problem

- Let $\beta = \{(2,1),(1,1)\}$ and $L = \operatorname{Span}_{\mathbb{Z}} \beta$
- ▶ Question: What is the shortest vector in this lattice?

Shortest Vector Problem

- Let $\beta = \{(2,1),(1,1)\}$ and $L = \operatorname{Span}_{\mathbb{Z}} \beta$
- ▶ Question: What is the shortest vector in this lattice?

$$(1)(2,1) + (-1)(1,1) = (1,0)$$

- Let $\beta = \{b_1, b_2, ..., b_n\}$ and L = Span_Z β
- ▶ Question: What is the shortest vector in this lattice?

- Let $\beta = \{b_1, b_2, ..., b_n\}$ and L = Span_Z β
- ▶ Question: What is the shortest vector in this lattice?
- ► Solution: LLL Algorithm

- Let $\beta = \{b_1, b_2, ..., b_n\}$ and $L = \operatorname{\mathsf{Span}}_{\mathbb{Z}} \beta$
- ▶ Question: What is the shortest vector in this lattice?
- ► Solution: LLL Algorithm

- Let $\beta = \{b_1, b_2, ..., b_n\}$ and $L = \operatorname{\mathsf{Span}}_{\mathbb{Z}} \beta$
- ▶ Question: What is the shortest vector in this lattice?
- ► Solution: LLL Algorithm

- Let $\beta = \{b_1, b_2, ..., b_n\}$ and $L = \operatorname{Span}_{\mathbb{Z}} \beta$
- ▶ Question: What is the shortest vector in this lattice?
- ▶ **Solution:** LLL Algorithm

LLL Algorithm

Theorem (1982)

If $x_1, x_2, ..., x_n$ is an α -reduced basis of the lattice L in \mathbb{R}^n and $y \in L$ is any nonzero vector, then

$$|x_1| \le \beta^{\frac{n-1}{2}} |y|, \beta = \frac{4}{4\alpha - 1}$$

First polynomial time algorithm to factor polynomials with rational coefficients.

Definition

Let b_1, b_2, \ldots, b_n be an ordered basis of the lattice L in \mathbb{R}^n , and let $b_1^*, b_2^*, \ldots, b_n^*$ be its Gram-Schmidt orthogonalization.

Definition

Let b_1, b_2, \ldots, b_n be an ordered basis of the lattice L in R^n , and let $b_1^*, b_2^*, \ldots, b_n^*$ be its Gram-Schmidt orthogonalization.

The basis b_1, b_2, \ldots, b_n is called *reduced* if it satisfies

(1)
$$|\mu_{i,j}| \le 1/2$$
, for $1 \le j < i \le n$,

(2)
$$|b_i^* + \mu_{i,i-1}b_{i-1}^*|^2 \ge \alpha |b_{i-1}^*|^2$$
, for $1 < i \le n$ $(\frac{1}{4} \le \alpha < 1)$.

Key Question

What is the "best" α ?

Does it have a correlation to dimension?

- Different alphas can produce different reduced bases
- \blacktriangleright We defined the "best" α to be the smallest value that produces the shortest basis vectors
- Larger alphas can be more computationally costly

LLL Algorithm Code

Core functions of LLL:

- Reduce
- Exchange

^{*}based on pseudocode by Murray B. R.

LLL Algorithm Code

Core functions of LLL:

- Reduce
- Exchange

Theorem

The total number of passes through Reduce and Exchange is at most

$$-\frac{2\log B}{\log \alpha}n(n-1)+(n-1).$$

where B is the magnitude of the largest basis vector

^{*}based on pseudocode by Murray B. R.

LLL Algorithm Code

Program functionality:

- Generates random lattice bases for a given dimension.
- ▶ Runs LLL on each basis in a given dimension using $0.35 \le \alpha \le 0.95$ with a step size of 0.05.
- For each basis, the smallest α that produces the reduced basis containing the shortest vector is the best α for that basis.
- **E**xpected α is the average of the best α 's for a dimension.

2 Possible Venues

2 Possible Venues

- $ightharpoonup \alpha$ Generation
- ► Theory

α Generation

- \blacktriangleright Create a Machine Learning Model to accurately predict an α value for any given Basis
- ► Use multiple parameters such as Dimension of the Basis, Average element value, etc.
- Save computational resources when running the LLL -Algorithm

Theory

- ▶ Why does α peak at n = 20?
- ► Can we prove that as dimension increases to infinity, the best average alpha will stay small?
- ▶ Can we prove that the LLL Algorithm terminates in Polynomial time when $\alpha = 1$?

Thank you!

Any Question?

References I

- Akhavi A. Worst-Case Complexity of the Optimal LLL Algorithm. Lecture Notes in Computer Science, vol 1776. Springer, Berlin, Heidelberg, 2000.
- Lenstra A. K., Lenstra H. W., and Lovàsz L. *Factoring Polynomials with Rational Coefficients*. Math. Ann. 261, 515-534, 1982.
- Murray B. R., Lattice Basis Reduction, An Introduction to the LLL Algorithm and its Applications, CRC Press, 2012.