

금융통계 중간대체과제 2016580009 통계학과 김태현

- 1. 포트폴리오 종목
- 2. Weight
- 3. 모형 적합
- 4. 모형 진단
- 5. 결론
- 6. 참고

포트폴리오

Portfolio

포트폴리오 구성 종목

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

2018/01/02 ~ 2019/12/28 (2년)

- 1. SK하이닉스
 - 2. 기아차
- 3. 맥쿼리인프라
 - 4. 삼성SDI

- 5. 엔씨소프트
- 6. 유한양행
- 7. 카카오
- 8. 하이트진로

주가데이터 불러오기

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

- 🛂 SK하이닉스2018.csv
- ☑ SK하이닉스2019.csv
- 🛂 기아차2018.csv
- 🛂 기아차2019.csv
- 🖾 맥쿼리인프라2018.csv
- 🛂 맥쿼리인프라2019.csv
- III 삼성SDI2018.csv
- 🛂 삼성SDI2019.csv
- ☑ 엔씨소프트2018.csv
- ☑ 엔씨소프트2019.csv
- 🛂 유한양행2018.csv
- 🛂 유한양행2019.csv
- 🛂 카카오2018.csv
- 화카오2019.csv
- ☑ 하이트진로2018.csv
- 🛂 하이트진로2019.csv

데이터 줄처 : [한국거래소]

```
import pandas as pd
 import numpy as np
import os
 import matplotlib
 import matplotlib.font_manager as fm
 import matplotlib.pyplot as plt
from tgdm import tgdm
path = "C:/Users/ad/Desktop/강의자료3-2/금융통계/종목Data/
files = os.listdir(path)
                                                                종목별로
df_list = []
                                                                2018년 데이터와
for i in range(8):
    df1 = pd.read_csv(path+files[2*i])
                                                                2019년 데이터를
    df2 = pd.read_csv(path+files[2*i+1])
                                                                불러와서 결합하여
    df = pd.concat([df2,df1])[["년/월/일","종가"]]
                                                                List형태로 저장
    df["종가"]=df["종가"].apply(lambda x : x.replace(",",
    df.columns=["날짜/종가",files[2*i][:-8]]
    df = df.set index("날짜/종가")
    df_list.append(df)
                                     모든 종목을 하나의
price = pd.concat(df_list,axis=1)
price = price.apply(pd.to_numeric)
                                      데이터프레임으로 결합한 후
price = price[::-1]
                                      숫자형으로 변환
price
          SK하이닉스 기아차 맥쿼리인프라 삼성SDI 엔씨소프트
                                                          유한양행
                                                                   카카오 하이트진로
 날짜/종가
2018/01/02
              76600
                     32800
                                  8220
                                        212000
                                                  446500
                                                           217000
                                                                  146500
                                                                              24400
2018/01/03
              77700
                     32600
                                  8230
                                        207500
                                                   435000
                                                           215500
                                                                  149000
                                                                              24800
2018/01/04
              77100
                     31550
                                  8180
                                        208500
                                                  422500
                                                           212500
                                                                  156000
                                                                              24550
                                  8170
2018/01/05
              79300
                     31950
                                        220500
                                                   422000
                                                           217500
                                                                  156000
                                                                              24400
2018/01/08
                     32400
                                        225500
                                                  420000
                                                           215000
                                                                  159500
                                                                              23850
              78200
                                  8140
2019/12/23
               94600
                     44750
                                 11850
                                        228000
                                                   540000
                                                           243500
                                                                  148500
                                                                              27800
                     44700
2019/12/24
              93800
                                 11900
                                        225000
                                                   533000
                                                           242000
                                                                  146500
                                                                              28100
2019/12/26
              94800
                     45100
                                 11900
                                        222500
                                                  537000
                                                           246000
                                                                  148000
                                                                              27900
2019/12/27
              96000
                     44350
                                 11650
                                        233000
                                                  541000
                                                           236500
                                                                  153500
                                                                              28750
                                        236000
                                                                  153500
                                                                              29000
2019/12/30
              94100
                     44300
                                 11600
                                                  541000
                                                           236500
```

490 rows × 8 columns <8개 종목의 2018/01/02부터 2019/12/30 까지 총 490일의 종가 데이터>

추세

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

- 시작일(2018/1/2)을 기준(100)으로 했을 때의 주가 변화 추세

```
price/price.iloc[0]*100).plot(figsize=(20,10),grid = True)
plt.legend(loc=2, prop={'size':18})
plt.show()
```


일별 로그 수익률

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

- Daily Log Return : $R_{t+1} = ln\left(\frac{s_{t+1}}{s_t}\right)$

N log_return = np.log(price/price.shift(1)).dropna() ← 2018년 첫날(1월2일)의 경우 log_return.index.name = "날짜/로그수익률" 전일 종가가 없기 때문에 NaN -> 제거 log_return = log_return*100 ← Fitting할 때 값이 너무 작아서 생기는 문제를 예방하기 위해 log_return 100을 곱함

	SK하이닉스	기아차	맥쿼리인프라	삼성SDI	엔씨소프트	유한양행	카카오	하이트진로
날짜/로그수익률	ł							
2018/01/03	1.425818	-0.611623	0.121581	-2.145494	-2.609337	-0.693644	1.692088	1.626052
2018/01/04	-0.775198	-3.273870	-0.609386	0.480770	-2.915658	-1.401892	4.590970	-1.013180
2018/01/05	2.813485	1.259859	-0.122324	5.595865	-0.118413	2.325686	0.000000	-0.612872
2018/01/08	-1.396848	1.398624	-0.367873	2.242246	-0.475060	-1.156082	2.218791	-2.279891
2018/01/09	-1.676377	0.308167	-0.122926	-2.696793	0.829880	2.525967	-1.579812	2.688890
2019/12/23	-0.421942	0.111794	1.273903	-0.219058	0.185357	0.824747	-1.005034	0.722025
2019/12/24	-0.849262	-0.111794	0.421053	-1.324523	-1.304772	-0.617922	-1.355953	1.073356
2019/12/26	1.060455	0.890874	0.000000	-1.117330	0.747667	1.639381	1.018685	-0.714289
2019/12/27	1.257878	-1.676954	-2.123222	4.611135	0.742118	-3.938333	3.648829	3.001108
2019/12/30	-1.999014	-0.112803	-0.430108	1.279335	0.000000	0.000000	0.000000	0.865806

489 rows × 8 columns

Weight

weight

Weight

Weight 배정

• Weight 배정

 \mathbf{M} weight = np.array([0.2, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1])

SK 하이닉스	기아차	맥쿼리 인프라	삼성SDI	엔씨 소프트	유한양행	카카오	하이트 진로
0.2	0.2	0.1	0.1	0.1	0.1	0.1	0.1

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

Weight

Result

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

Result

```
mu_p = np.dot(log_return,weight.T)
return_pf = pd.DataFrame({"Portfolio_Return":mu_p}, index = log_return.index.tolist())

vol_pf = pd.DataFrame(return_pf**2, index = log_return.index.tolist())
vol_pf.columns = ["Portfolio_Volatility"]
```

Portfolio 수익률

2018/01/09

return_pf 2019/12/23 0.116164 Portfolio_Return 2019/12/24 -0.503087 2018/01/03 -0.038036 2019/12/26 0.547677 2018/01/04 -0.896651 2019/12/27 0.510348 2018/01/05 1.521463 2019/12/30 -0.250860 2018/01/08 0.018568

return_pf.plot() plt.rcParams['figure.figsize']=[6,3] plt.show()

489 rows × 1 columns

-0.109121

Portfolio Volatility

vol_pf		2019/12/23	0.013494
	Portfolio_Volatility	2019/12/24	0.253097
2018/01/03	0.001447	2019/12/26	0.299950
2018/01/04	0.803983	2019/12/27	0.260456
2018/01/05	2.314850	2019/12/30	0.062931
2018/01/08	0.000345		
2018/01/09	0.011907	489 rows × 1 col	umns

모형 적합

Model fitting

GARCH 모형

```
▶ from arch import arch model
■ am = arch_model(return_pf, mean="constant", vol="Garch",p=1,o=0,q=1, dist="normal",
   res_garch = am.fit()
                                              Neg. LLF: 656.672197556883
   Iteration:
                       Func. Count:
   Iteration:
                       Func. Count:
                                              Neg. LLF: 656.6385626614021
                                              Neg. LLF: 656,294153950011
   Iteration:
                       Func. Count:
                       Func. Count:
                                              Neg. LLF: 656.0292161125747
   Iteration:
   Iteration:
                       Func. Count:
                                              Neg. LLF: 656.0277900150882
                       Func. Count:
                                              Neg. LLF: 655.9500931868131
   Iteration:
                       Func. Count:
                                              Neg. LLF: 655.8427539171087
   Iteration:
                       Func. Count:
                                              Neg. LLF: 655.8157502957483
   Iteration:
                                              Neg. LLF: 655.8105153547926
   Iteration:
                  9. Func. Count:
                       Func. Count:
                                              Neg. LLF: 655,8097986160137
   Iteration:
                                         77, Neg. LLF: 655.8097803635014
   Iteration:
                  11. Func. Count:
  Optimization terminated successfully.
                                            (Exit mode 0)
              Current function value: 655.8097796522372
               Iterations: 11
               Function evaluations: 78
               Gradient evaluations: 11
```

```
plt.plot(vol_pf,color="gray")
plt.plot(res_garch.conditional_volatility**2, color="r")
plt.title("GARCH",fontsize=20)
plt.ylabel("Volatility",fontsize = 15)
plt.xlabel("Date",fontsize = 15)
plt.xlabel("Date",fontsize = 15)
plt.legend(["Real", "Estimate"])
plt.xticks(["2018/01/03","2018/05/31","2018/10/30","2019/03/28","2019/08/21"])
plt.rcParams['figure.figsize']=[12,6]
plt.ylim(0,6)
plt.show()
```


12

GJR-GARCH 모형

```
gir_garch = am.fit()
                      Func. Count:
                                            Neg. LLF: 654.6068965714094
  Iteration:
  Iteration:
                      Func. Count:
                                            Neg. LLF: 654.6060086146795
  Iteration:
                      Func. Count:
                                            Neg. LLF: 654.5957153916952
                      Func. Count:
                                            Neg. LLF: 654.3021153370714
   Iteration:
  Iteration:
                      Func. Count:
                                            Neg. LLF: 654.1683394141695
  Iteration:
                      Func. Count:
                                            Neg. LLF: 653.9833448561546
                                            Nea. LLF: 653.9161705694946
  Iteration:
                      Func. Count:
  Iteration:
                      Func. Count:
                                            Neg. LLF: 653.8212920090908
                      Func. Count:
                                            Neg. LLF: 653.8027332856387
   Iteration:
  Iteration:
                      Func. Count:
                                            Neg. LLF: 653.7937900826537
                      Func. Count:
                                            Neg. LLF: 653.7911191022504
   Iteration:
                      Func. Count:
                                            Neg. LLF: 653.7873497541331
   Iteration:
  Iteration:
                      Func. Count:
                                            Neg. LLF: 653.7872817134091
                                            Neg. LLF: 653.787268324651
  Iteration:
                      Func. Count:
  Optimization terminated successfully.
                                         (Exit mode 0)
              Current function value: 653.7872676075299
              Iterations: 14
              Function evaluations: 113
              Gradient evaluations: 14
```

```
plt.plot(vol_pf,color="gray")
plt.plot(gjr_garch.conditional_volatility**2, color="r")
plt.title("GJR-GARCH",fontsize=20)
plt.ylabel("Volatility",fontsize = 15)
plt.xlabel("Date",fontsize = 15)
plt.legend(["Real","Estimate"])
plt.xticks(["2018/01/03","2018/05/31","2018/10/30","2019/03/28","2019/08/21"])
plt.rcParams['figure.figsize']=[12,6]
plt.ylim(0,6)
plt.show()
```


Inspired by Pantone Color 13

E-GARCH 모형

```
am = arch_model(return_pf,mean="constant", vol="EGarch",p=1,o=1,q=1,)
E garch = am.fit()
Iteration:
                    Func. Count:
                                            Neg. LLF: 653.1580620359164
Iteration:
                    Func. Count:
                                            Neg. LLF: 652.9693107815815
Iteration:
                    Func. Count:
                                            Neg. LLF: 652.9534021394346
                                            Neg. LLF: 652.9212263047164
Iteration:
                    Func. Count:
                                           Neg. LLF: 652.9159655097517
Iteration:
                    Func. Count:
Iteration:
                    Func. Count:
                                            Neg. LLF: 652.9157884137567
Iteration:
                    Func. Count:
                                      64, Neg. LLF: 652.9003497213128
                                            Neg. LLF: 652,8982621022044
Iteration:
                    Func. Count:
Iteration:
                    Func. Count:
                                            Neg. LLF: 652.898257593473
                                         (Exit mode 0)
Optimization terminated successfully.
            Current function value: 652.8982575934973
            Iterations: 9
            Function evaluations: 78
            Gradient evaluations: 9
```

```
plt.plot(vol_pf,color="gray")
plt.plot(E_garch.conditional_volatility**2, color="r")
plt.title("E-GARCH",fontsize=20)
plt.ylabel("Volatility",fontsize = 15)
plt.xlabel("Date",fontsize = 15)
plt.legend(["Real","Estimate"])
plt.legend(["Real","Estimate"])
plt.xticks(["2018/01/03","2018/05/31","2018/10/30","2019/03/28","2019/08/21"])
plt.rcParams['figure.figsize']=[12,6]
plt.ylim(0,6)
plt.show()
```


Model Evaluation

GARCH

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

GARCH

전체적인 추세는 따라가지만 급격한 변화는 잘 따라가지 못함.

```
plt.plot(garch.resid)
plt.rcParams['figure.figsize']=[3,3]
plt.xticks(["2018/01/03","2018/10/30","2019/08/21"])
plt.ylim(-5,5)
plt.show()
```

2 - 0 - D4 - 2018/01/03 2018/10/30 2019/08/21

Volatility clustering이 약하게 존재 ▶ from statsmodels.graphics.tsaplots import plot_acf

plot_acf(garch.resid,lags=50)
plt.rcParams['figure.figsize']=[6,3]
plt.show()

GJR-GARCH

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

GJR-GARCH

GARCH보다는 약간 개선되었지만

→ 여전히 급격한 변화는 잘 따라가지

못함.

plt.plot(gjr_garch.resid)
plt.ylim(-5,5)|
plt.rcParams['figure.figsize']=[3,3]
plt.xticks(["2018/01/03","2018/10/30","2019/08/21"])
plt.show()

Volatility clustering이 약하게 존재 plot_acf(gjr_garch.resid, lags=50)
plt.rcParams['figure.figsize']=[6,3]
plt.show()

GJR-GARCH

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

E-GARCH

GARCH나 GJR-GARCH보다는 조금 더 올라가야 할 때 잘 올라감.

plt.plot(E_garch.resid)
plt.ylim(-5,5)
plt.rcParams['figure.figsize']=[3,3]
plt.xticks(["2018/01/03","2018/10/30","2019/08/21"])
plt.show()

Volatility clustering이 약하게 존재 plot_acf(E_garch.resid, lags=50)
plt.rcParams['figure.figsize']=[6,3]
plt.show()

LR, AIC/BIC

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

•LR, AIC/BIC

1. GARCH garch.summary()

gjr_garch.summary()

2. GJR-GARCH

Constant Mean - GARCH Model Results

Dep. Variable:	Portfolio_Return	R-squared:	-0.000
Mean Model:	Constant Mean	Adj. R-squared:	-0.000
Vol Model:	GARCH	Log-Likelihood: -6	555.810
Distribution:	Normal	AIC: 1	319.62
Method:	Maximum Likelihood	BIC: 1	1336.39
		No. Observations:	489
Date:	Wed, Jun 03 2020	Df Residuals:	485

21:52:45

Df Model:

E_garch.summary() 3. E-GARCH

Constant Mean - EGARCH Model Results

Time:

Dep. Variable:	Portfolio_Return	R-squared:	-0.000
Mean Model:	Constant Mean	Adj. R-squared:	-0.000
Vol Model:	EGARCH	Log-Likelihood:	-652.898
Distribution:	Normal	AIC:	1315.80
Method:	Maximum Likelihood	BIC:	1336.76
		No. Observations:	489
Date:	Wed, Jun 03 2020	Df Residuals:	484
Time:	22:27:44	Df Model:	5

Constant Mean - GJR-GARCH Model Results

Dep. Variable:	Portfolio_Return	R-squared:	-0.000
Mean Model:	Constant Mean	Adj. R-squared:	-0.000
Vol Model:	GJR-GARCH	Log-Likelihood:	-653.787
Distribution:	Normal	AIC:	1317.57
Method:	Maximum Likelihood	BIC:	1338.54
•		No. Observations:	489
Date:	Wed, Jun 03 2020	Df Residuals:	484
Time:	21:53:27	Df Model:	5

$$LR = 2\log\left(\frac{L_1}{L_0}\right) = 2(\log(L_1) - \log(L_0))$$

 H_0 : GARCH vs H_1 : GJR-GARCH

LR =
$$4.046 < \chi^2(1) -> H_0$$

MSE, QLIKE

Designed By L@rgo. ADSTORE **Presented By** Kim Tae Hyun

• MSE, QLIKE

dtype: float64

2.5206

2.5013

div = obs.iloc[i]/fore.iloc[i]

b = div - 1 - np.log(div)

a.append(b)

丑

Designed By L@rgo. ADSTORE Presented By Kim Tae Hyun

• <u>표</u>

	GARCH	GJR-GARCH	E-GARCH
MSE	2.5206	2.5013	2.4816
QLIKE	671.0046	668.2377	661.5894
AIC	1319.62	1317.52	1315.58
BIC	1336.39	1338.54	1336.76

위 표의 통계량에 따라서, E-GARCH 모형이 최적의 모형이다.

결론

Conclusion

결론

세 모형 모두 미세하게 volatility clustering이 존재하지만 뚜렷이 나타난다고 할 수는 없어 보이고 AutoCorrelation이 존재하지 않는다. 따라서 모두 잔차(ε_t)들이 독립인 random variable 이라고 할 수 있다. 따라서 모든 모형이 타당합니다.

LR 테스트에 따르면 검정 통계량이 모두 자유도가 1인 카이제곱 통계량보다 작게 나오므로 GARCH 모형이 셋 중에 제일 나은 모형이라는 결과가 나온다.

하지만 여러 가지 통계량들(MSE, QLIKE, AIC, BIC)과 Volatility 그래프를 종합하여 판단한다면 E-GARCH가 가장 나은 모형이다. (하지만 거의 유사하다)

참고

Reference

참고

- **■■** 서울시립대학교 통계학과 금융통계 강의자료, 김성곤 교수님
- MLQ.ai, python-for-finance : Portfolio Optimization
- ■■ 데이터 사이언스 스쿨(datascienceschool.net), ARCH/GARCH 모형
- Arch, https://arch.readthedocs.io/en/latest/univariate/univariate_volatility_forecasting.html
- https://goldinlocks.github.io/ARCH_GARCH-Volatility-Forecasting/

Instilling calm, confidence, and connection

