

Recap

- Spam email classification:
 - Binary classification of emails: Spam vs. Ham (Legitimate message)

- A group of experts write rules determining whether an email is spam or not.
- A programmer implement the rules into computer code

Machine Learning

- Function is everywhere!
 - Function $\rightarrow f$; Input instance $\rightarrow x$; Output Targe $\rightarrow y$

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.

Classification vs. Regression

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.
- Linear Regression is a Regression algorithm.

• Regression:

• The output targets $f(x) \in Y$ is continuous, or has a continuous component (e.g., stock price prediction).

• Classification:

• The output targets $f(x) \in Y$ is one of a finite set of discrete categories (e.g., mail classification).

Supervised Learning

- Machine Learning Task:
 - learn an (unknown) function $f: X \to Y$ that maps input instances $x \in X$ to output targets $f(x) \in Y$.
- Linear Regression is a Supervised Learning algorithm.
- Supervised Learning: The output targets are known in the set of training examples:
 - $(x_1, y_1), (x_2, y_2) \dots (x_i, y_i)$

[e.g., predict stock price]

• Training data vs. Test data

All Data

Training Data

Test Data

Supervised Learning

• Training data vs. Test data

All Data

Training Data

Test Data

- The goal of machine learning algorithms is to build a function (hypothesis) h(x) such that:
 - h matches f well on the training data $\rightarrow h$ is able to fit data that it has see
 - h also matches f well on the test data $\rightarrow h$ is able to generalize to unseen data
- To achieve the goal, we want to choose h from a "nice" class of functions that depends on a vector of parameters w:
 - $h(x) \equiv h_w(x) \equiv h(w, x)$

Do we need to make assumptions on the data?

No free lunch theorem: we must make such assumptions.

• Informal theorem: for any machine learning algorithm \mathcal{A} , there must exist a task \mathcal{P} on which it will fail

 We use prior knowledge (i.e., we believe linear function is enough) to design an ML algorithm here

Which Hypothesis?

- Hypothesis class: $\mathcal{H} = \{h\}$
 - E.g.: linear models, quadratic models, neural networks, etc.
- An example:
 - M_1 : x is Red $\Rightarrow x \in C_1$
 - M_2 : x is a Square or x is a Diamond => $x \in C_1$
 - M_3 : x is Red and x is a Quadrilateral => $x \in C_1$

Occam's Razor

William of Occam (1288 – 1348)
English Franciscan friar, theologian and philosopher.

"Entia non sunt multiplicanda praeter necessitatem"

- Entities must not be multiplied beyond necessity.
- i.e. Do not make things needlessly complicated.
- i.e. Prefer the simplest hypothesis that fits the data.

House Price Prediction

- Given the floor size in square feet, predict the selling price:
 - Input *x*: the floor size of the house

• Need to learn a function (hypothesis) h such that $h(x) \approx f(x)$

- Is this a classification or regression task?
 - Regression, because the house price is real-valued.
 - Would a problem with only two labels $y_1 = 0.5$ and $y_2 = 1.0$ still be regression?

House Price Prediction

Linear Regression

• Use a linear function to approximate the real (unknown) function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1]^T [1, x] = w_1 x + w_0$$

- In our case, $h_{\mathbf{w}}(X)$ is a straight line
 - w_0 is the intercept (or the bias term)
 - w_1 controls the slope
- Actually, the floor size of the house is not the only factor determining its sell price. There are many factors: $(x_1, ..., x_d)$.

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x_1, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Assumption: the prediction results are the linear combination of input attributes (features).

Error Measurement

• Our linear approximation function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Error Measurement: Find **w** that obtains the best fit on the training data, i.e. find **w** that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(X_n) - y_n)^2$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

- *N*: Total number of samples in training set
- $J(\mathbf{w})$: Error function
- $\hat{\mathbf{w}}$: Optimimal \mathbf{w} that minimize $J(\mathbf{w})$
- Why do we use the square errors?

Inductive Learning Hypothesis

- Learning = finding the "right" parameters $\mathbf{w}^T = [w_0, w_1, ..., w_d]$
 - Find w that minimizes an error function $J(\mathbf{w})$ which measures the misfit between $h(\mathbf{x}_i, \mathbf{w})$ and t_i .
 - Expect that $h(\mathbf{x}, \mathbf{w})$ performing well on training examples $\mathbf{x}_i \Longrightarrow h(\mathbf{x}, \mathbf{w})$ will perform well on arbitrary test examples $\mathbf{x}_i \in \mathbf{X}$.

Matrix Notation

- Linear Regression Learning Task
 - learn w given training examples $\langle X, y \rangle$.
 - The training data is denoted as < X, y >, where X is a N × D data matrix consisting of N data examples such that each data example is a D dimensional vector. y is a N × 1 vector consisting of corresponding target values for the examples in X.
- The derivation of the least squares estimate can be done by first converting the expression of the squared loss into matrix notation, i.e.,

$$J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{N} (y_i - \mathbf{w}^T \mathbf{x}_i)^2 = \frac{1}{2} (\mathbf{y} - \mathbf{X} \mathbf{w})^T (\mathbf{y} - \mathbf{X} \mathbf{w})$$

Analytical Solution

• To minimize the error, we first compute its derivative with respect to **w**:

$$\frac{\partial LL(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{2} \frac{\partial}{\partial \mathbf{w}} (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

• Note that, we use the fact that $(\mathbf{X}\mathbf{w})^T\mathbf{y} = \mathbf{y}^T\mathbf{X}\mathbf{w}$, since both quantities are scalars, and the transpose of a scalar is equal to itself. Continuing with the derivative:

$$\frac{\partial LL(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{2} (2\mathbf{w}^T \mathbf{X}^T \mathbf{X} - 2\mathbf{y}^T \mathbf{X})$$

Analytical Solution

• Setting the derivation to 0, we get:

$$2\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X} - 2\mathbf{y}^{\top}\mathbf{X} = 0$$

$$\mathbf{w}^{\top}\mathbf{X}^{\top}\mathbf{X} = \mathbf{y}^{\top}\mathbf{X}$$

$$(\mathbf{X}^{\top}\mathbf{X})^{\top}\mathbf{w} = \mathbf{X}^{\top}\mathbf{y} \text{ (Taking transpose both sides)}$$

$$(\mathbf{X}^{\top}\mathbf{X})\mathbf{w} = \mathbf{X}^{\top}\mathbf{y}$$

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

The Moore-Penrose pseudo-inverse

Summary

• Our linear approximation function:

•
$$h_{\mathbf{w}}(X) = \mathbf{w}^T X = [w_0, w_1, ..., w_d]^T [1, x, ..., x_d]$$

= $w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_d x_d$

• Error Measurement: Find w that minimizes the sum of square errors:

$$J(\mathbf{w}) = \frac{1}{2N} \sum_{n=1}^{N} (h_w(X_n) - y_n)^2$$
$$\widehat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmin}} J(\mathbf{w})$$

Analytical Solution:

$$\widehat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Machine Learning as Optimization

At this point, we move away from the situation where a perfect solution exists, and the learning task it to reach the perfect solution. Instead, we focus on finding the *best possible* solution which optimizes certain criterion.

- Learning is optimization
- Faster optimization methods for faster learning
- Let $w \in \mathbb{R}^d$ and $S \subset \mathbb{R}^d$ and $f_0(w), f_1(w), \dots, f_m(w)$ be real-valued functions.
- Standard optimization formulation is:

minimize
$$f_0(w)$$

subject to $f_i(w) \leq 0, i = 1, ..., m$.

- Methods for general optimization problems
 - Simulated annealing, genetic algorithms
- Exploiting *structure* in the optimization problem
 - Convexity, Lipschitz continuity, smoothness

Convexity

Convexity is a property of certain functions which can be exploited by optimization algorithms. The idea of convexity can be understood by first considering convex sets. A convex set is a set of points in a coordinate space such that every point on the line segment joining any two points in the set are also within the set. Mathematically, this can be written as:

$$w_1, w_2 \in S \Rightarrow \lambda w_1 + (1 - \lambda)w_2 \in S$$

where $\lambda \in [0, 1]$. A convex function is defined as follows:

• $f: \mathbb{R}^d \to \mathbb{R}$ is a convex function if the domain of f is a convex set and for all $\lambda \in [0, 1]$:

$$f(\lambda w_1 + (1 - \lambda)w_2) \le \lambda f(w_1) + (1 - \lambda)f(w_2)$$

Some examples of convex functions are:

- Affine functions: $w^{\top}x + b$
- $||w||_p$ for $p \ge 1$
- Logistic loss: $\log(1 + e^{-yw^{\top}x})$

Convex Functions

Convex Optimization

• Optimality Criterion

minimize
$$f_0(w)$$

subject to $f_i(w) \leq 0, i = 1, ..., m$.

where all $f_i(w)$ are convex functions.

- w_0 is feasible if $w_0 \in Dom f_0$ and all constraints are satisfied
- A feasible w^* is optimal if $f_0(w^*) \leq f_0(w)$ for all w satisfying the constraints

• Denotes the direction of steepest ascent

$$\nabla E(\mathbf{w}) = \begin{bmatrix} \frac{\partial E}{\partial w_0} \\ \frac{\partial E}{\partial w_1} \\ \vdots \\ \frac{\partial E}{\partial w_d} \end{bmatrix}$$

• A small step in the weight space from \mathbf{w} to $\mathbf{w} + \delta \mathbf{w}$ changes the objective (or error) function. This change is maximum if $\delta \mathbf{w}$ is along the direction of the gradient at \mathbf{w} and is given by:

$$\delta E \simeq \delta \mathbf{w}^{\top} \nabla E(\mathbf{w})$$

• Since $E(\mathbf{w})$ is a smooth continuous function of \mathbf{w} , the extreme values of E will occur at the location in the input space (\mathbf{w}) where the gradient of the error function vanishes, such that:

$$\nabla E(\mathbf{w}) = 0$$

• The vanishing points can be further analyzed to identify them as saddle, minima, or maxima points.

Taylor Expansion

One can also derive the local approximations done by first order and second order methods using the Taylor expansion of $E(\mathbf{w})$ around some point \mathbf{w}' in the weight space.

$$E(\mathbf{w}') \simeq E(\mathbf{w}) + (\mathbf{w}' - \mathbf{w})^{\top} \nabla + \frac{1}{2} (\mathbf{w}' - \mathbf{w})^{\top} \mathbf{H} (\mathbf{w}' - \mathbf{w})$$

For first order optimization methods, we ignore the second order derivative (denoted by \mathbf{H} or the Hessian). It is easy to see that for \mathbf{w} to be the local minimum, $E(\mathbf{w}) - E(\mathbf{w}') \leq 0$, $\forall \mathbf{w}'$ in the vicinity of \mathbf{w} . Since we can choose any arbitrary \mathbf{w}' , it means that every component of the gradient ∇ must be zero.

- 1. Start from any point in variable space
- 2. Move along the direction of the steepest descent
 - By how much?
 - A learning rate (η)
 - What is the direction of steepest descent?

• Gradient descent is a first-order optimization method for convex optimization problems. It is analogous to "hill-climbing" where the gradient indicates the direction of steepest ascent in the local sense.

• Training Rule for Gradient Descent

$$\mathbf{w} = \mathbf{w} - \eta \nabla E(\mathbf{w})$$

• For each weight component:

$$w_j = w_j - \eta \frac{\partial E}{\partial w_j}$$

• The key operation in the above update step is the calculation of each partial derivative.

$$\frac{\partial E}{\partial w_j} = \frac{\partial}{\partial w_j} \frac{1}{2} \sum_i (y_i - \mathbf{w}^\top \mathbf{x}_i)^2$$

$$= \frac{1}{2} \sum_i \frac{\partial}{\partial w_j} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2$$

$$= \frac{1}{2} \sum_i 2(y_i - \mathbf{w}^\top \mathbf{x}_i) \frac{\partial}{\partial w_j} (y_i - \mathbf{w}^\top \mathbf{x}_i)$$

$$= \sum_i (y_i - \mathbf{w}^\top \mathbf{x}_i) (-x_{ij})$$

• where x_{ij} denotes the j^{th} attribute value for the i^{th} training example.

• The final weight update rule:

$$w_j = w_j + \eta \sum_i (y_i - \mathbf{w}^\top \mathbf{x}_i) x_{ij}$$

- Error surface contains only one global minimum
- Algorithm *will* converge
 - Examples need not be linearly separable
- η should be small enough
- Impact of too large η ?
- Too small η ?

Issues with Gradient Decent

Non-convex Example

- Issues with Gradient Decent:
 - Slow convergence
 - Stuck in local minima

- One should note that the second issue will not arise in the case of convex problem as the error surface has only one global minima.
- More efficient algorithms exist for batch optimization, including Conjugate Gradient Descent and other quasi-Newton methods. Another approach is to consider training examples in an online or incremental fashion, resulting in an online algorithm called Stochastic Gradient Descent.

Stochastic Gradient Descent (SGD)

- Update weights after every (or a small subset of) training example(s).
- For sufficiently small η , closely approximates Gradient Descent.

Gradient Descent	Stochastic Gradient Descent
Weights updated after sum-	Weights updated after ex-
ming error over all examples	amining each example
More computations per	Significantly lesser computa-
weight update step	tions
Risk of local minima	Avoids local minima

• Why SGD?

The analytical approach discussed earlier involves a matrix inversion $((\mathbf{X}^{\top}\mathbf{X})^{-1})$ which is a $(D+1) \times (D+1)$ matrix. Alternatively, one could solve a system of equations. When D is large, this inversion can be computationally expensive $(O*D^3)$ for standard matrix inversion. Moreover, often, the linear system might have singularities and inversion or solving the system of equations might yield numerically unstable results.

Stochastic Gradient Descent (SGD)

To compute the gradient update rule one can differentiate the error with respect to each entry of \mathbf{w} .

$$\frac{\partial J(\mathbf{w})}{\partial w_j} = \frac{1}{2} \frac{\partial}{\partial w_j} \sum_{i=1}^{\mathbf{w}} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$$

$$= \sum_{i=1}^{\mathbf{w}} (\mathbf{w}^{\top} \mathbf{x}_i - y_i) x_{ij}$$

Using the above result, one can perform repeated updates of the weights:

$$w_j := w_j - \eta \frac{\partial J(\mathbf{w})}{\partial w_j}$$

Questions?

