

https://seasawher.github.io/kitamado/

@seasawher

1 Some basics of algebraic number theory

Lemma 1.3

quotation. Recall that $(,)_{\text{Tr}_{K/\mathbb{Q}}}$ is non-degenerate if the Gramm matrix with respect to one (and hence any) basis of L over F is invertible.

Proof. Almost trivial. Try to prove it.

Proposition 1.4

quotation. Let $\{\beta_1, \dots, \beta_n\}$ be the dual basis of $\{\alpha_1, \dots, \alpha_n\}$ with respect to $(,)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then, for any $x \in O_K$, we have $x = (x, \alpha_1)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_1 + \dots + (x, \alpha_n)_{\operatorname{Tr}_{K/\mathbb{Q}}}\beta_n$.

Proof. Since the trace form $(\ ,\)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ is nondegenerate, $K \to K^*$ s.t. $x \mapsto (\cdot, x)_{\operatorname{Tr}_{K/\mathbb{Q}}}$ is a isomorphism. Let $p_i \colon K \to \mathbb{Q}$ be a projection map such that $p_i(x_1\alpha_1 + \cdots + x_n\alpha_n) = x_i$. Then, we set β_j the preimage of p_j .

Lemma 1.7

quotation. To see this, we take $t \in P(O_K)_P$ with $t \notin P^2(O_K)_P$.

remark. From Nakayama's lemma.

Adjacent to Lemma 1.8

quotation. For a nonzero prime ideal P of O_K , we set $P \cap \mathbb{Z} = (p)$, where p is a prime of Z. Because O_K is a free Z-module of rank $[K : \mathbb{Q}]$, O_K/P is a finite extension of $\mathbb{Z}/(p)$ with degree at most $[K : \mathbb{Q}]$.

Proof. There is a canonical surjection $O_K/pO_K \to O_K/P$, so we get $\#(O_K/P) \le \#(O_K/pO_K)$. But we obtain $O_K/pO_K \cong O_K \otimes_{\mathbb{Z}} \mathbb{Z}/p\mathbb{Z}$. Since O_K is a free \mathbb{Z} -module of rank $n = [K : \mathbb{Q}]$, we conclude $O_K/pO_K \cong (\mathbb{Z}/p\mathbb{Z})^n$. So, $\#(O_K/P) \le \#(O_K/pO_K) = p^n$.

Lemma 1.8

quotation.

$$\bigoplus_{i=1}^r O_K/P_i^{e_i} = \bigoplus_{i=1}^r (O_K/P_i^{e_i})_{P_i}$$

Proof. Because $O_K/P_i^{e_i}$ is a local ring with maximal ideal $P_i/P_i^{e_i}$.

Adjacent to Theorem 1.9

quotation. we consider the value $\sqrt{\det(\langle e_i, e_j \rangle)}$.

remark. Why we get $\det(\langle e_i, e_j \rangle)$? Apply Gram-Schmidt orthonormalization.

Adjacent to Theorem 1.9

quotation. Then $\operatorname{vol}(M, \langle, \rangle)$ is equal to the volume of the *n*-dimensional parallelpiped Π spanned by e_1, \dots, e_n ,

Proof. Let $F:(V,\langle,\rangle)\to\mathbb{R}^n$ be an isometric isomorphism. Then, we generate

$$vol(M, \langle, \rangle)^{2} = \det(\langle e_{i}, e_{j} \rangle)$$
$$= \det(\langle Fe_{i}, Fe_{j} \rangle)$$

We set $E = (Ee_1, \dots, Fe_n)$. $E \in M_n(\mathbb{R})$. Then we get $(\langle Fe_i, Fe_j \rangle)_{i,j} = {}^t EE$, and $vol(M, \langle, \rangle) = |\det E|$. From Yukie[3] Theorem 4.9.1, $|\det E| = vol(\Pi)$.

Proposition 1.11

quotation. The form \langle , \rangle_K is an inner product on V.

remark. \langle , \rangle_K is trivially an inner product on K. Why should we show this?

Let S be a \mathbb{Q} vector space and \langle,\rangle a inner product on S. Then, bilinear form extended to $S \otimes_{\mathbb{Q}} \mathbb{R}$ may not be an inner product. For example, set $S = \mathbb{Q}[\sqrt{2}]$ and $\langle x, y \rangle = xy$.

Lemma 1.12

quotation. $\#(O_K/I)$ is finite. Then I is a free \mathbb{Z} -module of rank n.

Proof. $I \subset O_K$ is a free \mathbb{Z} -module. Since $\#(O_K/I)$ is finite, we get $\forall x \in K \exists n \in \mathbb{Z}$ s.t. $nx \in I$. So we obtain $I \otimes_{\mathbb{Z}} \mathbb{Q} = K$. The rank of I is n.

Lemma 1.16

quotation. We have $[K':K] = e_1 f_1 + \cdots + e_r f_r$.

Proof. See the proof of Prop 1.4. We obtain $O_{K'} \subset O_K \beta_1 \oplus \cdots \oplus O_K \beta_n$ for some $\beta_i \in K'$. That implies there is an injection such that $O_{K'} \to \bigoplus_i O_K$. Because localization is a flat module, we get $(O_{K'})_P \subset (O_K)_P \beta_1 \oplus \cdots \oplus (O_K)_P \beta_n$. Since $(O_K)_P$ is a PID, $(O_{K'})_P$ is a free $(O_K)_P$ -module. The rank is [K':K] because

$$(O_{K'})_P \otimes_{(O_K)_P} K = (O_{K'} \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} K = O_{K'} \otimes_{O_K} K = K'.$$

Thus, as a O_K/P module,

$$O_{K'}/PO_{K'} \cong O_K/P \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P \otimes_{(O_K)_P} (O_K)_P) \otimes_{O_K} O_{K'}$$

$$\cong (O_K/P \otimes_{O_K} (O_K)_P) \otimes_{(O_K)_P} (O_{K'})_P$$

$$\cong \bigoplus_{[K':K]} (O_K/P \otimes_{O_K} (O_K)_P)$$

$$\cong \bigoplus_{[K':K]} O_K/P.$$

Then it follows that

$$\#(O_K/P)^{[K':K]} = \#(O_{K'}/PO_{K'})$$

$$= \prod_i \#(O_{K'}/P_i^{e_i})$$

$$= \prod_i \#(O_{K'}/P_i')^{e_i}$$

$$= \prod_i \#(O_K/P)^{e_i f_i}.$$

Thus $[K':K] = \sum_i e_i f_i$.

Adjacent to Lemma 1.17

quotation. We take a integral basis $\{\omega_1, \dots, \omega_n\}$ of O_K , we denote by $\{\beta_1, \dots, \beta_n\}$ the dual basis with respect to $(\ ,\)_{\operatorname{Tr}_{K/\mathbb{Q}}}$. Then we have $\mathcal{M} = \mathbb{Z}\beta_1 + \dots + \mathbb{Z}\beta_n$.

Proof. See the note of Prop 1.4.

Lemma 1.17

quotation. Indeed, because $\#(O_K/\mathcal{D}_K) = \#(\mathcal{M}/O_K)$,

Proof. See Yukie[1] Proposition 1.8.6.

Theorem 1.18

quotation. Then we have

$$|D_{K/\mathbb{Q}}| \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

Proof. We may assume that $S = \{p \in \mathbb{Z} \mid p \text{ is ramified}\}$. Set $B = O_K$ and $I = D_K$.

Step 1 Let $p \in \mathbb{Z}$ be a prime number. Then B_p and I_p are free \mathbb{Z}_p -module of rank n. So there is a matrix $C \in M_n(\mathbb{Z}_p) \cap GL_n(\mathbb{Q}_p)$ such that the following diagram

$$I_p \longrightarrow B_p$$

$$\downarrow \qquad \qquad \downarrow$$

$$\mathbb{Z}_p^n \stackrel{C}{\longrightarrow} \mathbb{Z}_p^n$$

commute. Then

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \#(\operatorname{Coker} C)$$

$$= \#(\mathbb{Z}_p/(\det C)\mathbb{Z}_p)$$

$$= \#(\widehat{\mathbb{Z}}_p/(\det C)\widehat{\mathbb{Z}}_p)$$

$$= \#(B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p).$$
 (See Yukie[1] Proposition 1.2.13)

Step 2 It follows that

$$\begin{split} B/I \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p &\cong B/I \otimes_B B \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}_p \\ &\cong B/I \otimes_B \bigoplus_i \widehat{B}_{P_i} \qquad \qquad \text{(See Yukie[1] Theorem 1.3.23)} \\ &\cong \bigoplus_i \widehat{B}_{P_i}/P_i^{\operatorname{ord}_{P_i}(I)} \widehat{B}_{P_i} \\ &\cong \bigoplus_i B/P_i^{\operatorname{ord}_{P_i}(I)} \end{split}$$

Step 3 Set $J = I \cap \mathbb{Z}$. Because B/I is finitely generated \mathbb{Z} -module, we get

$$\operatorname{Supp}_{\mathbb{Z}}(B/I) = V(\operatorname{ann}_{\mathbb{Z}}(B/I)) = V(J).$$

See Matsumura[4] adjacent to Theorem 4.4 if you do not understand the first equation. And for any prime number $p \in \mathbb{Z}$, then we obtain

$$\begin{split} p \not \in \operatorname{Supp}_{\mathbb{Z}}(B/I) &\iff B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p = 0 \\ &\iff \#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = 1 \\ &\iff \forall i \ \#(B/P_i^{\operatorname{ord}_{P_i}(I)}) = 1 \\ &\iff \operatorname{ord}_{P_i}(I) = 0 \\ &\iff p \text{ is unramified} \end{split}$$

Thus we conclude $V(J) = \operatorname{Supp}_{\mathbb{Z}}(B/I) = S$.

Step 4 Then we get

$$\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p) = \prod_i \#(B/P_i^{\operatorname{ord}_{P_i}(I)})$$

$$= \prod_i \#(B/P_i)^{\operatorname{ord}_{P_i}(I)}$$

$$= \prod_i \#(\mathbb{Z}/p)^{f_i \operatorname{ord}_{P_i}(I)}.$$

So we conclude $\log_p(\#(B/I \otimes_{\mathbb{Z}} \mathbb{Z}_p)) \leq n - 1 + n \log_p(n)$.

Step 5 Recall that $J = \operatorname{ann}_{\mathbb{Z}}(B/I)$. Then we get

$$B/I \cong (B/I)/J(B/I)$$

$$\cong \bigoplus_{p \in S} (B/I)/p^e(B/I) \qquad (e \text{ depends on } p)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I)$$

$$\cong \bigoplus_{p \in S} B/(p^eB+I) \otimes_{\mathbb{Z}} \mathbb{Z}_p$$

$$\cong \bigoplus_{p \in S} B_p/(p^eB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/(JB_p+I_p)$$

$$\cong \bigoplus_{p \in S} B_p/I_p$$

Now we conclude that

$$|D_{K/\mathbb{Q}}| = \#(B/I) = \prod_{p \in S} \#(B_p/I_p) \le \prod_{p \in S} p^{n-1+n\log_p(n)}.$$

2 Theory of heights

Theorem 2.3

quotation. We set $n = [K : \mathbb{Q}]$. Let $\{\omega_1, \dots, \omega_n\}$ be the integral basis of O_K . Then $\{x\omega_1, \dots, x\omega_n\}$ is a basis of V.

Proof. There is a $c_{ij} \in \mathbb{Z}$ such that $x\omega_i = \sum_j c_{ij}\omega_i$. Set $C = (c_{ij}) \in M_n(\mathbb{Z})$. Then $\det C = N_{K/\mathbb{Q}}(x) \neq 0$, so we get $C \in GL_n(\mathbb{Q})$. And we obtain the assertion.

Proposition 2.5

quotation.

$$h_K(x) \le \sum_{\sigma \in K(\mathbb{C})} \log \left(\max_{1 \le i \le n} \{|x_i|_{\sigma}\} \right).$$

remark. Misprint. Add $1/[K : \mathbb{Q}]$ into the right.

Proposition 2.6

quotation. for any $x \in \overline{\mathbb{Q}}^n$.

remark. Misprint. Exclude the case x = 0.

Proposition 2.8

quotation. We consider two morphisms $\phi_1 \colon X \to \mathbb{P}^{m_1}$ and $\phi_2 \colon X \to \mathbb{P}^{m_2}$ over $\overline{\mathbb{Q}}$. If $\phi_1^* \mathcal{O}_{\mathbb{P}^{m_1}} \cong \phi_2^* \mathcal{O}_{\mathbb{P}^{m_2}}$, then there is a constant C such that, for any $x \in X(\overline{\mathbb{Q}})$,

$$|h_{\phi_1}(x) - h_{\phi_2}(x)| \le C.$$

Proof. Remark that $\mathcal{O}_{\mathbb{P}^{m_1}}(1)$ is a Serre's twisted sheaf. See Bosch[2] 9.2/Definition 3. or Hartshorne[6] section 2.5 Adjacent to Proposition 5.12. We set $L = \phi_1^* \mathcal{O}_{\mathbb{P}^{m_1}}$ and set $k = \overline{\mathbb{Q}}$ and $\mathscr{F} = \mathcal{O}_{\mathbb{P}^{m_1}}(1)$. Since X is a projective variety over k and L is an invertible sheaf on X, so $H^0(X, L) = \Gamma(X, L)$ is a k-vector space of finite dimension. (See Hartshorne[6] section 2.5 Theorem 5.19. and Hartshorne[6] section 2.4 Prop 4.10)

Let $\{t_0, \dots, t_m\}$ be a basis of $H^0(X, L)$ and let X_0, \dots, X_{m_1} be the homogenous coordinates of \mathbb{P}^{m_1} . Note that each X_i is a global section of \mathscr{F} . And we set $s_i = \phi_1^* X_i \in H^0(X, L)$, where $\phi_1^* X_i$ is the image of $X_i \in H^0(\mathbb{P}^m, \mathscr{F})$ by the canonical map $\mathscr{F} \to \phi_{1*} \phi_1^* \mathscr{F}$. It follows from Hartshorne[6] section 2.7 Theorem 7.1 that s_0, \dots, s_{m_1} generate L. Because for any $x \in X$ the each germ $(s_i)_x$ is a linear combination of $(t_i)_x$, so t_0, \dots, t_m generate L.

There is a morphism $\phi \colon X \to \mathbb{P}^m$ such that $L \cong \phi^* \mathcal{O}_{\mathbb{P}^m}(1)$ and $s_i = \phi^* X_i$ under this isomorphism. See Hartshorne[6] section 2.7 Theorem 7.1(b). There is another explanation on what ϕ is. For any $x \in X$, we can consider the germ $(t_i)_x \in L_x$. Denote $(t_i)_x$ by $t_i(x)$. Since L is a line bundle, $L_x \cong \mathcal{O}_{X,x}$. Then we define the map $\phi \colon X \to \mathbb{P}^m$ by $\phi(x) = (t_0(x), \dots, t_m(x))$. Note that there is a scalar ambiguity in choice of morphism $L_x \to k$. If $\forall i \ t_i(x) = 0$, then $(t_i)_x$ cannot generate L_x , which is a contradiction. Thus for any $x \in X$, there is an index i such that $t_i(x) \neq 0$.

Then, the rest of the proof is almost trivial.

Theorem 2.9

quotation. First, suppose that L is globally generated.

remark. What "globally generated" means? We say L is globally generated iff there is an exact sequence $\bigoplus_I O_X \to L \to 0$. Even if L is an invertible sheaf, L is not necessarily globally generated. For example, set $X = \mathbb{P}^m$, $L = \mathcal{O}_{\mathbb{P}^m}(-1)$. Since $\Gamma(X, L) = 0$, L is not globally generated.

Theorem 2.9

quotation. Let

$$\phi_{|L|} \colon X \to \mathbb{P}(H^0(X,L))$$

be a morphism associated to the complete linear system |L|. We set $h_L = h_{\phi_{|L|}}$.

Proof. Note that we want to get $h_L \in \operatorname{Func}(X)/B(X)$, which is not contained in $\operatorname{Func}(X)$.

What is a $\mathbb{P}(H^0(X,L))$? I think it is isomorphic to \mathbb{P}^m by taking a basis of $H^0(X,L)$.

Set $k = \overline{\mathbb{Q}}$. Since L be a globally generated line bundle on X, there is a basis s_0, \dots, s_m of $H^0(X, L)$ which generate L. Then we get a map $\phi_L \colon X \to \mathbb{P}^m$ such that $\phi_L^* \mathcal{O}_{\mathbb{P}^m}(1) \cong L$. We define h_L by $h_L = h_{\phi_L}$.

Theorem 2.9

quotation. Then $s_i \otimes t_j$ induces a morphism $\phi \colon X \to \mathbb{P}^N$ such that $\phi^*(O_{\mathbb{P}^N(1)}) \cong L_1 \otimes L_2$.

remark. How $s_i \otimes t_j \in H^0(X, L_1) \otimes_k H^0(X, L_2)$ define an element of $H^0(X, L_1 \otimes L_2)$? Let \mathscr{F} be a presheaf defined by $\mathscr{F}(U) = \Gamma(U, L_1) \otimes_{\mathcal{O}_X(U)} \Gamma(U, L_2)$. Then there is a canonical morphism $\mathscr{F} \to L_1 \otimes L_2$ since $L_1 \otimes L_2$ is the sheafification of \mathscr{F} . So we can see $s_i \otimes t_j \in H^0(X, L_1 \otimes L_2)$.

We denote the image of $s_i \otimes t_l$ by $s_i t_j \in H^0(X, L_1 \otimes L_2)$. Why $\{s_i t_j\}$ generate $L_1 \otimes L_2$? Take a stalk.

Theorem 2.9

quotation. tell us that $L \otimes A^n$ is globally generated for any sufficiently large n.

remark. The ampleness of A implies that

$$\exists n_1 \text{ s.t. } n \geq n_1 \Rightarrow L \otimes A^n \text{ is globally generated}$$

 $\exists n_2 \text{ s.t. } n \geq n_2 \Rightarrow A^n \text{ is globally generated}$

Then we set $n = \max_{i} \{n_i\}.$

Theorem 2.9

quotation. Then, modulo B(X), we have

$$h_{f^*(L)} = h_{f^*(C) \otimes f^*(C)^{-1}}$$

remark. See Görtz Wedhorn[5] Remark 7.10.

Theorem 2.9

quotation. Then by (1), h_L must be equal to $h_{L_1} - h_{L_2}$ modulo B(X).

remark. Let σ : {line bundles } \to Func(X)/B(X) be a map which satisfies the properties (1), (2), (3). By (3), for globally generated line bundle L, we get $\sigma_L = h_L$. Because $\Gamma(X, O_X) = k$, we obtain $\sigma_{O_X} = 0$. Thus (1) implies that $\sigma_L = h_L$ for general line bundle L.

Proposition 2.10

quotation. Let B be the Zariski closed subset of X defined by the ideal sheaf

$$\operatorname{Im}(H^0(X,L)\otimes L^{-1}\to O_X).$$

remark. What is the morphism $H^0(X,L) \otimes L^{-1} \to O_X$? Note that there is a canonical morphism $f^*f_*L \to L$ where $f\colon X \to \operatorname{Spec} k$ is a k-scheme structure. Note that f_*L is isomorphic to $\widehat{H^0(X,L)}$. We denote this canonical morphism $f^*f_*L \to L$ by

$$H^0(X,L)\otimes O_X\to L.$$

This is surjective if L is globally generated.

In general, we define $V \otimes_k O_X$ for k-module V, by setting

$$V \otimes_k O_k = f^{-1}\widetilde{V} \otimes_{f^{-1}O_{\operatorname{Spec} k}} O_X = f^*\widetilde{V}.$$

Then we get $H^0(X, L) \otimes L^{-1} \to O_X$ by tensoring L^{-1} .

Proposition 2.10

quotation. Then $\{ss_i\}$ are linearly independent elements of $H^0(X, L)$.

remark. What are ss_i ? Note that there is a canonical morphism

$$H^0(X,L) \otimes H^0(X,L_2) \to H^0(X,L \otimes L_2) \cong H^0(X,L_1)$$

Thus I guess ss_i is the image of $s \otimes s_i$.

Moreover, why ss_i are linearly independent? It suffices to show that the morphism of k-module

$$s: H^0(X, L_2) \to H^0(X, L_1)$$

is injective.

We prepare the following lemma.

lemma. Let X be an integral scheme and let L be a line bundle on X. Assume that $s \in H^0(X, L)$ is not zero. Then for any $x \in X$, $s_x \neq 0$ in L_x .

Proof. Assume that there is a $z \in X$ such that $s_z = 0$. We want to show $s = 0 \in H^0(X, L)$. Since L is invertible, there is an open affine covering $X = \bigcup_{i \in I} U_i$ such that

$$U_i = \operatorname{Spec} A_i, \ L|_{U_i} \cong \widetilde{A_i}$$

On the other hand, $s_z=0$ implies that there is an open subset $U\subset X$ such that $s|_U=0$ and $z\in U$. Since X is integral, $U\cap\operatorname{Spec} A_i\neq\emptyset$. Thus there is a $g_i\in A_i\setminus\{0\}$ such that $\emptyset\neq D(g_i)\subset U\cap\operatorname{Spec} A_i$. Then $s|_{D(g_i)}=0$ in $\Gamma(D(g_i),L)\cong A_{ig_i}$. Note that each A_i is an integral domain because X is integral. Thus we get $\forall i\ s|_{U_i}=0$ because $A_i\to A_{ig_i}$ is injective. It follows from the sheaf axiom that $s=0\in\Gamma(X,L)$. \square

Then, we can prove the injectivity of $s: O_X \to L$. First, by the lemma, $0 \to O_X \xrightarrow{s} L$ is exact. Since L_2 is flat, $0 \to L_2 \xrightarrow{s} L_1$ is exact. Since global section is left exact, we get $0 \to H^0(X, L_2) \xrightarrow{s} H^0(X, L_1)$ is exact.

Proposition 2.10

quotation. Let
$$s_1, \dots, s_n$$
 be a basis of $H^0(X, L)$. \dots Because $B = \{x \in X \mid s_1(x) = \dots = s_n(x) = 0\}.$

Proof. Why
$$B = \{x \in X \mid s_1(x) = \dots = s_n(x) = 0\}$$
? I guess
$$B = \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes L^{-1} \to O_X)$$
$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L) \otimes L^{-1}$$
$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L) \cap \operatorname{Supp} L^{-1}$$
$$= \operatorname{Supp} \operatorname{Coker}(H^0(X, L) \otimes O_X \to L)$$
 (right exactness of tensor)

Thus we get

$$x \in B \iff \operatorname{Coker}(H^0(X, L) \otimes O_X \to L)_x \neq 0$$

 $\iff \forall s \in H^0(X, L) \ x_x \in \mathfrak{m}_x L_x$
 $\iff s(x) = 0$
 $\iff s_1(x) = \dots = s_n(x) = 0$

参考文献

- [1] 雪江明彦『整数論 2 代数的整数論の基礎』(日本評論社, 2013)
- [2] Siegfried Bosch 『Algebraic Geometry and Commutative Algebra』 (Springer, 2013)
- [3] 雪江明彦『線形代数学概説』(培風館, 2006)
- [4] 松村英之『可換環論』(共立出版, 1980)
- [5] Ulrich Görtz, Torsten Wedhorn 『Algebraic Geometry I : Schemes with Examples and Exercises』 (Springer, 2010)
- [6] Robin Hartshorne [Algebraic Geometry] (Springer, 1977)