Übungsblatt 2 - mit Lösungen

Formale Sprachen und Grammatiken

{Theoretische Informatik}@AIN3

Prof. Dr. Barbara Staehle Wintersemester 2021/2022 HTWG Konstanz

AUFGABE 2.1 ALPHABETE UND SPRACHEN

Wir betrachten das Alphabet $\Sigma = \{1, 2, 3, 4, 5, a, b, c\}$, sowie die Worte $\omega_1 = ca5$, $\omega_2 = c$ und $\omega_3 = 321c$.

TEILAUFGABE 2.1.1 2 PUNKTE

- a) Geben Sie 3 Wörter an, die Worte über Σ^* (und verschieden zu $\omega_1, \omega_2, \omega_3$) sind, und 2 Wörter, die nicht zu Σ^* gehören.
- b) Geben Sie 2 (beliebige) formale Sprachen über Σ^* an.
- c) Bestimmen Sie $\omega_1\omega_2$, $\omega_2\omega_1\omega_3$ und ω_1^3 .
- d) Geben Sie Σ^0, Σ^1 und Σ^2 (andeutungsweise, nicht alle Elemente) an.
- e) Bestimmen Sie die Anzahl der Elemente von Σ^5 und geben Sie ein beispielhaftes Wort aus Σ^5 an.

LÖSUNG

- a) $111, abc, 54a34b2 \in \Sigma^*$
 - $x5y, ax, 999 \notin \Sigma^*$
- b) $L_1 = \{abc, 12345\} \subseteq \Sigma^*$
 - $L_2 = \{\varepsilon\} \subseteq \Sigma^*$
 - $L_3 = \{5^n \mid n \in \mathbb{N}\} \subseteq \Sigma^*$
- c) $\omega_1 \omega_2 = ca5c$
 - $\omega_2 \omega_1 \omega_3 = cca5321c$
 - $\omega_1^3 = ca5ca5ca5$
- d) $\Sigma^0 = \{\varepsilon\}$
 - $\Sigma^1 = \{1, 2, 3, 4, 5, a, b, c\} = \Sigma$
 - $\Sigma^2 = \{11, 12, 13, \dots, 1c, 21, 21, \dots, cc\}$
- e) $|\Sigma^5| = 8^5 = 32768$
 - $x = 1234a \in \Sigma^5$

TEILAUFGABE 2.1.2 3 PUNKTE

Betrachten Sie zusätzlich $N = \{S, B, Z\}$, sowie die folgenden Grammatiken:

- $G_1 = (N, \Sigma, P_1, S)$ mit $P_1 : S \rightarrow \varepsilon \mid S1 \mid S2 \mid S3 \mid S4 \mid S5$
- $G_2 = (N, \Sigma, P_2, S)$ mit $P_2 : S \rightarrow aSa \mid bSb \mid cSc \mid a \mid b \mid c \mid \varepsilon$

$$S \rightarrow ZB$$

• $G_3 = (N, \Sigma, P_3, S)$ mit $P_3 : Z \rightarrow 1 \mid 2 \mid 3 \mid 4 \mid 5$ $B \rightarrow a \mid b \mid c \mid aZB \mid bZB \mid cZB$

Geben Sie an ob und wenn ja wie (geben Sie also ggf. die Ableitung an) das Wort

- a) 12345 aus *G*₁
- b) 12*ab* aus *G*₁
- c) abc aus G_2
- d) aabbcbbaa aus G_2
- e) 1b2a3c aus G_3
- f) 2c3bb2 aus G_3

abgeleitet werden kann.

LÖSUNG

$$S \Rightarrow S5$$

 \Rightarrow \$45

 \Rightarrow \$345 a) 12345 aus G_1 :

⇒ *\$*2345

⇒ 12345

- b) 12ab aus G_1 : nicht ableitbar, da G_2 keine Buchstaben erzeugt.
- c) abc aus G_2 : nicht ableitbar, da erster und letzter Buchstabe gleich sein müssen.

$$s \Rightarrow asa$$

⇒ aaSaa

d) aabbcbbaa aus G_2 : ⇒ aab\$baa

⇒ aabbSbbaa

⇒ aabbcbbaa

 $S \Rightarrow ZB$

 $\Rightarrow ZbZB$

 $\Rightarrow ZbZaZB$

 $\Rightarrow ZbZaZc$ e) 1b2a3c aus G_3 :

 $\Rightarrow ZbZa3c$

 $\Rightarrow Za2a3c$

 $\Rightarrow Zb2a3c$

 \Rightarrow 1b2a3c

f) 2c3bb2 aus G_3 : nicht ableitbar, da keine zwei Buchstaben aufeinander folgend können.

TEILAUFGABE 2.1.3 2 PUNKTE

Geben Sie für jede Grammatik an, welche Sprache diese erzeugt (also $\mathcal{L}(G_1), \mathcal{L}(G_2), \mathcal{L}(G_3)$).

LÖSUNG

- a) $\mathcal{L}(G_1) = \{\text{beliebige Zahl mit mindestens einer Ziffer, die nur aus } 1,2,3,4,5 \text{ besteht, oder } \epsilon\} = \{1,2,3,4,5\}^*$
- b) $\mathcal{L}(G_2) = \{\text{Palindrom aus den Buchstaben a,b,c oder das leere Wort}\} = \{\omega \in \Sigma^* \mid \omega \text{ von vorne und hinten gelesen ist gleich}\}$
- c) $\mathcal{L}(G_3) = \{\text{beliebig lange Hintereinaderreihung von Bausteinen}$ aus einer Zahl (1,2,3,4,5) und Buchstabe $(a,b,c)\} = \{1a,1b,1c,2a,\ldots,1c5a5a4b2c,\ldots\}$

Aufgabe 2.2 Grammatiken, Ableitungen und Syntaxbäume für D_4

Teilaufgabe 2.2.1 Eine Grammatik für die Dyck-Sprache D_4 , 1 Punkt

Aus der Vorlesung ist Ihnen die Dyck-Sprache D_4 bekannt, sowie eine Grammatik G_4 mit $\mathcal{L}(G_4) = D_4$.

Geben Sie die Grammatik G_4 , welche die Sprache D_4 (alle korrekt geklammerten Ausdrücke mit den Klammerpaaren (), [], { }, <>) erzeugt an.

LÖSUNG

 D_4 wird von der Grammatik G_4 erzeugt: $\mathcal{L}(G_4) = D_4$

- $G_4 = \{N, \Sigma, P, S\} = \{\{S\}, \{(,), [,], \{,\}, <, >\}, P, S\}$
- Die Produktionsmenge *P* besteht aus den Regeln:
 - $S \rightarrow \varepsilon$
 - $S \rightarrow SS$
 - $S \rightarrow [S]$
 - $S \rightarrow (S)$
 - $S \rightarrow \{S\}$
 - $S \rightarrow \langle S \rangle$

Teilaufgabe 2.2.2 Ableitung des Wortes $[] < \{([])()\} >$, 3 Punkte

- a) Geben Sie eine Linksableitung des Wortes $[] < \{([])()\} > an.$
- b) Geben Sie eine Rechtsableitung des Wortes $[] < \{([])()\} > an$.

LÖSUNG

 \Rightarrow SS $\Rightarrow [S]S$ \Rightarrow []S \Rightarrow [] < S > $[] < \{S\} >$ a) Linksableitung: in jedem Schritt wird das linkeste Nonterminal ersetzt: \Rightarrow [] < {SS} > $\Rightarrow [] < \{(S)S\} >$ $\Rightarrow [] < \{([S])S\} >$ \Rightarrow [] < {([])S} > \Rightarrow [] < {([])(S)} > \Rightarrow [] < {([])()} > $S \Rightarrow SS$ $\Rightarrow S < S >$ $\Rightarrow S < \{S\} >$ $\Rightarrow S < \{SS\} >$ $\Rightarrow S < \{S(S)\} >$ b) Rechtsableitung: in jedem Schritt wird das rechteste Nonterminal ersetzt: $\Rightarrow S < \{S()\} >$ $\Rightarrow S < \{(S)()\} >$ $\Rightarrow S < \{([S])()\} >$ \Rightarrow $S < \{([])()\} >$ \Rightarrow [S] < {([])()} > \Rightarrow [] < {([])()} >

Teilaufgabe 2.2.3 Syntaxbaum zur Ableitung des Wortes $[] < \{([])()\} >$, 2 Punkte

- a) Geben Sie für Ihre Linksableitung des Wortes $[] < \{([])()\} > den dazugehörigen Syntaxbaum an.$
- b) Geben Sie für Ihre Rechtsableitung des Wortes $[] < \{([])()\} > den dazugehörigen Syntaxbaum an.$

LÖSUNG

Links- und Rechtsableitung führen zum selben Syntaxbaum. G_4 ist eindeutig:

AUFGABE 2.3 3 PUNKTE

Geben Sie für das Alphabet $\Sigma = \{1, 2, 3, 4, 5, a, b, c\}$ (siehe Aufgabe 2.1) folgende Grammatiken (Chomsky-Typ egal) an:

- a) G_1 mit $\mathcal{L}(G_1) = \Sigma^2$; G_1 soll genau die Wörter der Länge 2 über Σ erzeugen
- b) G_2 mit $\mathcal{L}(G_2) = \{1a, 1b, ..., 4c, 5c\}$; G_2 soll genau die 15 möglichen Kombinationen aus einer Zahl und einem Buchstaben (einstellige korrekte Hausnummer) erzeugen
- c) G_3 mit $\mathcal{L}(G_3) = \{a1, a2, ..., c4, c5\}$; G_4 soll genau die 15 möglichen Kombinationen aus einem Buchstaben und einer Zahl (einstellige korrekte Gebäudenummer) erzeugen
- d) G_4 mit $\mathcal{L}(G_4) = \{$ korrekt formulierte Hausnummern beliebiger Länge über $\Sigma \}$ Beispiele für korrekt formulierte Hausnummern beliebiger Länge (die von G_4 erzeugt werden sollen):

Beispiele für nicht korrekt formulierte Hausnummern beliebiger Länge (die von G_4 **nicht** erzeugt werden sollen):

e) $G_5 \text{ mit } \mathcal{L}(G_5) = \mathcal{L}(G_2) \cup \mathcal{L}(G_3) = \{1a, 1b, \dots, 4c, 5c, a1, a2, \dots, c4, c5\}$ = { korrekt formulierte einstellige Haus- oder Gebäudenummer über Σ }

LÖSUNG

Mögliche Lösungen:

a) •
$$G_1 = (N_1, \Sigma, P_1, S)$$

•
$$N_1 = \{S, T\}$$

b) •
$$G_2 = (N_2, \Sigma, P_2, S)$$

•
$$N_2 = \{S, T\}$$

•
$$P_2 = \begin{array}{ccc} S & \rightarrow & 1T \mid 2T \mid 3T \mid 4T \mid 5T \\ T & \rightarrow & a \mid b \mid c \end{array}$$

c) •
$$G_3 = (N_3, \Sigma, P_3, S)$$

•
$$N_3 = \{S, T\}$$

•
$$P_3 = \begin{array}{ccc} S & \rightarrow & aT \mid bT \mid cT \\ T & \rightarrow & 1 \mid 2 \mid 3 \mid 4 \mid 5 \end{array}$$

d) •
$$G_4 = (N_4, \Sigma, P_4, S)$$

•
$$N_4 = \{S, T\}$$

e) •
$$G_5 = (N_5, \Sigma, P_5, S)$$

•
$$N_5 = \{S, S_1, S_2, T_1, T_2\}$$

$$S \rightarrow S_1 \mid S_2$$

•
$$P_5 = T_1 \rightarrow a \mid b \mid c$$

$$S_2 \rightarrow aT_2 \mid bT_2 \mid cT_2$$

$$T_2 \rightarrow 1|2|3|4|5$$

AUFGABE 2.4 DIE CHOMSKY-HIERARCHIE, 2 PUNKTE

Sei $N = \{A, B, C\}$ das Alphabet der Nonterminale, $\Sigma = \{1, 2, 3\}$ das Alphabet der Terminale über welchem verschiedene Grammatiken definiert sind. Im Folgenden ist aus jeder dieser Grammatiken eine Regel angegeben.

Geben Sie für jede der Regeln an, von welchem Chomsky-Typ sie (maximal) ist. Wenn also eine Regel vom Typ 0, 1 und 2 ist, dann ist die Lösung "Typ 2".

Begründen Sie Ihre Entscheidung.

- a) $r_1: B \to 1A$
- b) $r_2: 2CAB \rightarrow C3C$
- c) $r_3: C \rightarrow A$
- d) $r_4: AB \rightarrow 12$
- e) $r_5: C2A \rightarrow 23B$
- f) $r_6: 12 \rightarrow AB$
- g) $r_7: AB \rightarrow 1$
- h) $r_8: 2 \to 1$
- i) $r_0: B \to A1$

LÖSUNG

- a) $r_1: B \to 1A$ Typ 3 (weil der Form $N \to \Sigma N$)
- b) $r_2: 2CAB \rightarrow C3C$ Typ 0 (weil der Form $l \rightarrow r$ mit l > r)
- c) $r_3: C \to A$ Typ 2 (weil der Form $N \to (\Sigma \cup N)^*$)
- d) $r_4: AB \to 12$ Typ 1 (weil der Form $l \to r$ mit $l \le r$)
- e) $r_5: C2A \rightarrow 23B$ Typ 1 (weil der Form $l \rightarrow r$ mit $l \le r$)
- f) $r_6: 12 \rightarrow AB$ keine gültige Regel (weil auf der linken Seite nur Terminale stehen)
- g) $r_7: AB \to 1$ Typ 0 (weil der Form $l \to r$ mit l > r)
- h) $r_8: 2 \rightarrow 1$ keine Regel, weil Terminal auf Terminal abgebildet wird
- i) $r_9: B \to A1$ Typ 2 (weil der Form $N \to (\Sigma \cup N)^*$); alternativ: Typ 3, aber nur wenn nur linkslineare Regeln verwendet werden

AUFGABE 2.5 NUTZUNG EINER KONTEXTFREIEN GRAMMATIK

Gegeben sei die Grammatik $G_1 = (N, \Sigma, P, S) = (\{S\}, \{a, b\}, P, S)$ und

$$P = S \rightarrow \varepsilon \mid aSb \mid SS$$

TEILAUFGABE 2.5.1 2 PUNKTE

Nutzen Sie G_1 , um aus dem Startsymbol folgende Worte abzuleiten:

- a) $\omega_1 = \varepsilon$
- b) $\omega_2 = ab$
- c) $\omega_3 = abab$
- d) $\omega_4 = aabbab$

LÖSUNG

- a) $S \Rightarrow \varepsilon$
- b) $\begin{array}{ccc} S & \Rightarrow & aSb \\ & \Rightarrow & ab \end{array}$
 - $S \Rightarrow SS$
 - $\Rightarrow aSbS$
- c) $\Rightarrow abS$ $\Rightarrow abaSb$
 - ⇒ abab
 - $S \Rightarrow SS$
 - $\Rightarrow aSbS$
- $\Rightarrow aaSbbS$
- d) $\Rightarrow aabbs$
 - ⇒ aabbaSb
 - \Rightarrow aabbab

TEILAUFGABE 2.5.2 2 PUNKTE

Geben Sie jeweils den Syntaxbaum für Ihre Ableitung der Worte ω_3 und ω_4 an.

LÖSUNG

Abbildung 1: ω_3

Abbildung 2: ω_4

TEILAUFGABE 2.5.3 1 PUNKT

Begründen Sie, weshalb man aus G_1 die folgenden Worte NICHT ableiten kann:

a)
$$\omega_5 = abc$$

b)
$$\omega_6 = ba$$

c)
$$\omega_7 = abbba$$

LÖSUNG

- a) ω_5 enthält ein c, welches nicht in Σ enthalten ist.
- b) ω_6 kann nicht abgeleitet werden, da keine Regel die Anordnung "ba" erlaubt.
- c) ω_7 kann nicht abgeleitet werden, da die Regeln nur eine ineinander verschachtelte Anordnung von as und bs erlauben.

AUFGABE 2.6 NUTZUNG EINER KONTEXTSENSITIVEN GRAMMATIK

Gegeben sei die Grammatik $G_2 = (N, \Sigma, P, S) = (\{S, A, B, C\}, \{a, b, c\}, P, S)$ und

$$S \longrightarrow \varepsilon \mid ABCS$$

$$CA \longrightarrow AC$$

$$AC \longrightarrow CA$$

$$BA \longrightarrow AB$$

$$AB \longrightarrow BA$$

$$CB \longrightarrow BC$$

$$BC \longrightarrow CB$$

$$A \longrightarrow a$$

$$B \longrightarrow b$$

$$C \longrightarrow c$$

TEILAUFGABE 2.6.1 2 PUNKTE

Nutzen Sie G_2 , um aus dem Startsymbol folgende Worte abzuleiten:

a)
$$\omega_8 = \varepsilon$$

b)
$$\omega_9 = abc$$

c)
$$\omega_{10} = bac$$

d)
$$\omega_{11} = cbaabc$$

LÖSUNG

a)
$$S \Rightarrow \varepsilon$$

$$s \Rightarrow ABCS$$

$$\Rightarrow ABC$$

b)
$$\Rightarrow aBC$$

$$\Rightarrow abC$$

$$\Rightarrow abc$$

$$S \Rightarrow ABCS$$

$$\Rightarrow ABC$$

$$\Rightarrow BAC$$

$$\Rightarrow bAC$$
$$\Rightarrow baC$$

$$\Rightarrow$$
 bac

```
S \Rightarrow ABCS
\Rightarrow ABCABCS
\Rightarrow ABCABC
\Rightarrow BACABC
\Rightarrow BCAABC
\Rightarrow CBAABC
\Rightarrow CBAABC
\Rightarrow CBAABC
\Rightarrow CBAABC
\Rightarrow CBABC
```

TEILAUFGABE 2.6.2 1 PUNKT

 \Rightarrow cabaabc

Geben Sie die von G_2 erzeugte Sprache $\mathcal{L}(G_2)$ an, bzw. charakterisieren Sie die von G_2 erzeugten Worte so genau wie möglich.

LÖSUNG

$$L(G_2) = \{w \in \{a, b, c\}^* \mid w \text{ enthält gleichviele } a, b \text{ und } c\}$$

Aufgabe 2.7 Die Sprache der ganzen Zahlen, 3 Punkte

 $L_Z \subseteq \{-,0,1,\ldots,9\}^*$ mit $L_Z = \{\ldots,-78562,-11,-10,\ldots-1,0,1,\ldots,9,10,\ldots,5906,\ldots,\}$ sei die Sprache der ganzen Zahlen.

- a) Geben Sie eine Grammatik an, welche L_Z erzeugt.
- b) Welchen Chomsky-Typ hat Ihre Grammatik?
- c) Können Sie Ihre Grammatik so umformen, dass sie regulär ist?
- d) Können Sie einen regulären Ausdruck angeben, welcher L_Z erzeugt?

LÖSUNG

a) L_Z wird von der Grammatik G_Z erzeugt: $\mathcal{L}(G_Z) = L_Z$

- b) G_N ist vom Typ 3 (regulär), da alle Regeln der Form $N \to \Sigma \mid \Sigma N$ sind.
- c) Ist schon regulär.

d)
$$r_N = 0|(-?[1-9][0-9]^*)$$

AUFGABE 2.8 DIE OTTO-ZAHLEN, 3 PUNKTE

 $L_O \subseteq L_N \subseteq \{0, 1, \dots, 9\}^*$ mit $L_O = \{0, 1, \dots, 9, 11, 22, \dots, 99, 101, 111, 121, \dots, 573375, \dots\}$, sei die Sprache der OTTO-Zahlen, also der natürlichen Zahlen, die von vorne und hinten gelesen gleich sind.

- a) Geben Sie eine Grammatik an, welche L_O erzeugt.
- b) Welchen Chomsky-Typ hat Ihre Grammatik?
- c) Können Sie Ihre Grammatik so umformen, dass sie regulär ist?

LÖSUNG

- a) L_O wird von der Grammatik G_O erzeugt: $\mathcal{L}(G_O) = L_O$
 - $G_O = \{N, \Sigma, P, S\} = \{\{S, S_2\}, \{0, 1, 2, \dots, 9\}, P, S\}$
 - Die Produktionsmenge *P* besteht aus (zwei) Regeln:

$$S \rightarrow 0 | 1 | \dots | 9 | 1S_21 | 2S_22 | \dots | 9S_29$$

 $S_2 \rightarrow 0 | 1 | \dots | 9 | 0S_20 | 1S_21 | \dots | 9S_29 | \varepsilon$

- b) G_O ist vom Typ 2 (kontextfrei), da alle Regeln der Form $l \to r$, mit $l \le r$ und $l \in N$ sind. Erlaubte Ausnahme ist die Regel $S_2 \to \varepsilon$.
- c) Nein, da G_O vom Typ 2 ist. Mittels Pumping-Lemma lässt sich auch nachweisen, dass L_O nicht regulär ist, somit kann G_O nicht zu einer regulären Grammatik umgeformt werden. Alternativ kann man sich auch überlegen, dass man für die Otto-Zahlen keinen regulären Ausdruck finden kann.