### 大 学 教 材

# 优 化 选 讲

董云达著

#### 内容简介

本书是作者在多年教学讲义的基础上编写而成的。它包含了优化的基本理论 和方法。

首先,介绍了无约束优化方法:最陡下降法,共轭方向法,Newton-Raphson 方法,Davidon 变尺度法(也称拟Newton法)等基本的迭代方法。然后,又 详细地介绍了约束优化的 Karush-Kuhn-Tucker 定理和相应的迭代方法;增广 Lagrange 乘子法,原始-对偶内点法,线性规划的原始对偶内点法,大规模半定规 划的 Douglas-Rachford 方法等。书中的带\*部分,可以跳过不讲。

本书的特色不求杂而全,只求取材精要,再进行透彻地论述。绝大部分是经 典理论,也有少部分的最新结果。

作为大学教材,本书适合于数学专业的高年级本科生、研究生,也是广大教 师和科研人员了解优化、研究优化的好帮手。

| 第一草 | <b>绪论</b>             | 1  |
|-----|-----------------------|----|
| 1.1 | 优化问题的几个方面             | 3  |
| 1.2 | Taylor 定理以及复合函数的求梯度法则 | 5  |
| 1.3 | 无约束优化问题的最优性条件         | 7  |
| 1.4 | 几个常用的假设               | 9  |
| 1.5 | 下降方向                  | 11 |
| 1.6 | 精确线搜索                 | 11 |
| 1.7 | 不精确线搜索                | 13 |
| 1.8 | Sherman-Morrison 公式   | 17 |
| 1.9 | 无约束优化方法的一般框架以及评价标准    | 18 |
|     |                       |    |
| 第二章 | 最陡下降法                 | 21 |
| 2.1 | 方法的导出                 | 21 |
| 2.2 | 收敛性与收敛率               | 23 |
| 2.3 | 执行细节                  | 26 |
| 2.4 | 克服锯齿现象的一种方法           | 27 |
| 2.5 | Kantorovich 不等式       | 28 |
| 2.6 | 在深度学习方面的一个应用          | 29 |
| 第三章 | 共轭梯度法                 | 31 |
|     |                       |    |
| 3.1 | 所研究的问题                | 31 |
| 3.2 | 共轭方向法的一般描述            | 31 |
| 3.3 | 线性共轭梯度法               | 33 |
| 3.4 | 收敛率                   | 35 |
| 3.5 | 预处理                   | 37 |
| 3.6 | 非对称情形                 | 39 |
| 3.7 | 非线性情形                 | 39 |

| 3.8        | 实用的 PR' 方法                     | 45  |
|------------|--------------------------------|-----|
| 3.9        | 一个密切相关的方法                      | 47  |
|            |                                |     |
| 第四章        | Newton-Raphson方法               | 49  |
| 4.1        | 方法的导出                          | 49  |
| 4.2        | 收敛性和收敛率                        | 51  |
| 4.3        | 一个实用形式                         | 53  |
| 4.4        | 自协调函数                          | 54  |
| 4.5        | Nesterov-Nemirovski 方法         | 56  |
| 4.6        | 一个有趣的例子                        | 60  |
| 第五章        | Davidon 变尺度方法                  | 63  |
| 5.1        | 割线方程与 Davidon 方法               | 63  |
| 5.2        | 对称秩二校正公式                       | 64  |
| 5.3        | DFP 方法                         | 66  |
| 5.4        | BFGS 方法                        | 68  |
| 5.5        | BFGS 方法的收敛性                    | 71  |
| 5.6        | BFGS 方法的超线性收敛性*                | 75  |
| 5.7        | Perry 方法和 Perry-Shanno 方法      | 80  |
| 5.8        | 对称秩一校正公式                       | 82  |
| 5.9        | 附 I: 一个数值例子                    | 84  |
| 5.10       | 附 <b>II:</b> Fredholm 第二类型积分方程 | 85  |
|            |                                |     |
| 第六章        | Marquardt 方法                   | 87  |
| 6.1        | 最小二乘问题                         | 87  |
| 6.2        | Gauß-Newton 方法                 | 88  |
| 6.3        | Levenberg-Marquardt 方法         | 89  |
| 6.4        | 收敛性分析                          | 93  |
| 6.5        | 子问题的解法                         | 94  |
| 6.6        | 另一重要形式                         | 96  |
| 6.7        | 非线性方程组的 Broyden 方法             | 97  |
| 6.8        | 最小二乘求解器                        | 97  |
| 第七章        | 约束优化的基本理论                      | 101 |
| 第七早<br>7.1 |                                | 101 |
| 7.2        |                                | 101 |
| 7.3        | A                              | 102 |
| 7.4        | 约束限制与 KKI 定理                   | 106 |
| 1.4        | 口风划的取几江京针                      | 109 |

|     | 7.5  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12              |
|-----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     | 7.6  | 7177 7178 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14              |
|     | 7.7  | Motzkin 定理的补充证明                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16              |
| 笋   | 八章   | 增广 Lagrange 乘子法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 19              |
| ж.  | 8.1  | Lagrange 乘子法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |
|     | 8.2  | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13<br>23        |
|     | 8.3  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\frac{25}{27}$ |
|     | 8.4  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31              |
|     | 8.5  | 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31<br>32        |
|     | 0.0  | Decree of American and the control of the control o | 32              |
| 第   | 九章   | 原始对偶内点法 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35              |
|     | 9.1  | 对数障碍法及其收敛性                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35              |
|     | 9.2  | 与对数障碍法相关的外推技术                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41              |
|     | 9.3  | 原始对偶内点法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42              |
|     |      | (http://www.com/com/com/com/com/com/com/com/com/com/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |
| 第   |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45              |
|     |      | 22.124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45              |
|     |      | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 50              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 51              |
|     | 10.5 | Salahi 预估校正算法                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53              |
| 笙   | +    | 5 二次规划 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61              |
| 712 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 61              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 62              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 63              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 64              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 67              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69              |
|     |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70              |
|     |      | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |
| 第   |      | - 17-77-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 73              |
|     | 12.1 | 标准形式与对偶1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 73              |
|     |      | 77777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 75              |
|     | 12.3 | 半正定锥上的投影 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 76              |
|     | 12.4 | 增广 Lagrange 乘子法 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 79              |

| 12.5 Douglas-Rachford 分裂方法 | 180 |
|----------------------------|-----|
| 12.6 收敛性分析                 | 181 |
| 12.7 收敛率                   | 183 |
| 12.8 执行细节                  | 186 |
| 12.9 半定规划的对数行列式函数          | 189 |
| 12.10 其它                   | 190 |
| 12.10.1 非凸二次规划             | 190 |
| 12.10.2 在超椭球体上极小化线性函数      | 191 |
| 12.10.3 凸二次半定规划简介          | 191 |
| 第十三章 凸集与凸函数                | 195 |
| 13.1 问题的提出                 | 195 |
| 13.2 凸集的定义、相对内部和凸锥         | 196 |
| 13.3 凸集分离定理、闭凸集外表示         | 198 |
| 13.4 凸函数的有效域、上图和闭性         | 201 |
| 13.5 连续可微函数的凸性判定           | 204 |
| 13.6 凸函数之间的运算              | 205 |
| 13.7 方向导数                  | 208 |
| 13.8 次梯度和次微分               | 210 |
| 13.9 次微分的有效域的稠密性           | 216 |
| 13.10 凸优化的最优性条件            | 217 |
| 13.11 初识凸函数的一阶逼近和二阶逼近      | 219 |
| 13.12 Fenchel 共轭           | 220 |
| 13.13 附: 线性广义梯度            | 226 |
| 第十四章 Hilbert 空间简介          | 229 |
| 14.1 赋范线性空间和内积空间           |     |
| 14.2 Banach 空间和 Hilbert 空间 |     |
| 14.3 正交投影与正交分解             | 233 |
| 14.4 线性算子和线性泛函             |     |
| 14.5 有界线性泛函的表示定理           |     |
| 14.6 对偶                    |     |
| 14.7 一致有界性原则与共鸣定理          |     |
| 14.8 弱收敛与弱*收敛              |     |
| 14.9 件算子和自件算子              |     |
| 14.10 正算子                  |     |
| 14.11 Fredholm 第二型积分方程的离散化 |     |
|                            |     |

| 第十五章 | 章 单调算子和邻近点方法                | 251 |
|------|-----------------------------|-----|
| 15.1 | 问题的提出                       | 251 |
| 15.2 | 凸函数次微分的极大单调性                | 252 |
| 15.3 | 极大单调算子和 Minty 定理            | 254 |
| 15.4 | 邻近点方法                       | 259 |
| 15.5 | 附: Yosida 逼近                | 263 |
| 第十六章 | <b>算子分裂方法</b>               | 269 |
| 16.1 | 问题提出                        | 269 |
| 16.2 | 基本概念                        | 270 |
| 16.3 | 方法                          | 274 |
| 16.4 | 收敛性分析                       | 276 |
| 16.5 | 算法 16.1 的一个特例               | 282 |
| 16.6 | 算法 16.2 的一个特例               | 283 |
| 附录 A | 总结                          | 287 |
| 附录 B | 线性代数的一些基本知识                 | 289 |
| 附录 C | 强 Wolfe 条件的执行细节             | 293 |
| 附录 D | 割线法                         | 295 |
| 附录 E | Dong 条件的 Matlab 程序          | 297 |
| 附录 F | 降维法和 Nelder-Mead 直接法        | 299 |
| 附录 G | Matlab 中的导数符号运算和 fmincon 简介 | 301 |
| 附录 H | 算法 3.4 的 Matlab 程序          | 303 |
| 附录 I | Hölder 不等式及其特例              | 305 |
| 附录 J | Nyström 近似                  | 307 |
| 附录 K | 测试函数集                       | 309 |
| 索引   |                             | 318 |
| 参考文献 | <b>*</b>                    | 319 |
| 后 记  |                             | 323 |

4.4 自协调函数 55

引理 4.4.2 设 f 在 X 上是自协调的,  $x \in intX$ ,  $h^T \nabla^2(x)h < 1$ 。则有

(i) 
$$x + h \in intX$$
.

(ii) f(x+h) 的上、下界可以表示为

$$f(x) + \nabla f(x)^T h - \sqrt{h^T \nabla^2 f(x) h} - \ln \left( 1 - \sqrt{h^T \nabla^2 f(x) h} \right), \tag{4.9}$$

$$f(x) + \nabla f(x)^T h + \sqrt{h^T \nabla^2 f(x) h} - \ln \left( 1 + \sqrt{h^T \nabla^2 f(x) h} \right). \tag{4.10}$$

(iii) 并且对于所有的  $d \in \mathbb{R}^n$ , 总有

$$1 - \sqrt{h^T \nabla^2 f(x) h} \leq \frac{\sqrt{d^T \nabla^2 f(x+h) d}}{\sqrt{d^T \nabla^2 f(x) d}} \leq \frac{1}{1 - \sqrt{h^T \nabla^2 f(x) h}}$$

证 分三部分。首先,我们先来证明结论 (ii) 与结论 (iii) 成立,然后,再来证明结论 (i) 也必然成立。

为了证明 (ii), 我们定义  $\phi(t)=h^T\nabla^2 f(x+th)h$ 。则  $\phi(t)$  是连续可微的,并且

$$|\phi'(t)| = |\nabla^3 f(x + th)[h, h, h]| \le 2\phi(t)^{3/2}.$$
 (4.11)

于是,将  $\phi(t)^{-1/2}$  在 t=0 处展开,便可以得到

$$\begin{split} \phi(t)^{-1/2} &= \phi(0)^{-1/2} + t \big[\frac{d}{ds}\phi(s)^{-1/2}\big]_{s=\xi} &\quad 0 < \xi < t \\ &= \phi(0)^{-1/2} - t \frac{1}{2}\phi(\xi)^{-3/2}\phi'(\xi). \end{split}$$

结合 (4.11), 进一步可以推导出

$$\phi(0)^{-1/2} - t \le \phi(t)^{-1/2} \le \phi(0)^{-1/2} + t, \ \forall t \in [0, 1],$$

即

$$\frac{\phi(0)}{\left(1+t\sqrt{\phi(0)}\right)^2} \le \phi(t) \le \frac{\phi(0)}{\left(1-t\sqrt{\phi(0)}\right)^2}, \quad \forall t \in [0,1].$$

记  $r = \sqrt{\phi(0)} = \sqrt{h^T \nabla^2 f(x) h}$ 。 由題设知 r < 1,从而有

$$\frac{r}{(1+rt)^2} \le h^T \nabla^2 f(x+th)h \le \frac{r}{(1-rt)^2}.$$
 (4.12)

将 (4.12) 中右边不等式积分两次

$$\begin{split} f(x+h) &\leq f(x) + \nabla f(x)^T h + \int_0^1 \int_0^\tau \frac{r^2}{(1-rt)^2} dt \, d\tau \\ &= f(x) + \nabla f(x)^T h - (r+\ln(1-r)) \\ &= f(x) + \nabla f(x)^T h - \sqrt{h^T \nabla^2 f(x) h} - \ln\left(1 - \sqrt{h^T \nabla^2 f(x) h}\right). \end{split}$$

(该公式的推导要求  $1+v^Tu$  和  $1+z^Tw$  不同时为 0,这儿的假设条件正好使之满足),则有

$$\det(\tilde{M}) = \det(M) \frac{s^T y}{s^T M s} = \det(M) \frac{s^T y}{\|s\|^2} \frac{1}{q}.$$

两边取对数

$$\ln \det(\tilde{M}) = \ln \det(M) - \ln q + \ln \frac{s^T y}{\|s\|^2}.$$
 (5.23)

将 (5.22) 減去 (5.23), 并且利用  $\varphi(\cdot) = \text{trace}(\cdot) - \ln \det(\cdot)$ , 整理可以得到

$$\varphi(\tilde{M}) = \varphi(M) + 1 - \frac{q}{\cos^2\theta} + \ln\frac{q}{\cos^2\theta} + \ln\cos^2\theta + \frac{\|y\|^2}{s^Ty} - \ln\frac{s^Ty}{\|s\|^2} - 1.$$

既然对于所有的 t > 0 总有  $1 - t + \ln t \le 0$  以及根据假设条件 (5.18)

$$\frac{\|y\|^2}{s^T y} - \ln \frac{s^T y}{\|s\|^2} - 1 \le \bar{\mu} - \ln \mu - 1 \tag{5.24}$$

有一个正的上界 (记作 c), 那么我们就有

$$\varphi(\tilde{M}) \le \varphi(M) + \ln \cos^2 \theta + c.$$

重新写出上、下标,则有

$$\varphi(M_{k+1}) \leq \varphi(M_k) + \ln \cos^2 \theta_k + c \leq \varphi(M_0) + \sum_{j=0}^k \ln \cos^2 \theta_j + (k+1)c.$$

由于当M正定时,

$$\varphi(M) = \operatorname{trace}(M) - \ln \operatorname{det}(M) = \sum_{i} (\lambda_i - \ln \lambda_i) > 0,$$

其中 $\lambda_i$  为M 的特征值,所以,我们可以推导出

$$k \min_{j=0,\dots,k-1} \{-\ln \cos^2 \theta_j\} \le \sum_{j=0}^{k-1} (-\ln \cos^2 \theta_j) < \varphi(M_0) + kc.$$

这个不等式表明, 当  $k > \varphi(M_0)$  时, 我们有

$$\min_{j=0,\dots,k-1} \{-\ln \cos^2 \theta_j\} < \varphi(M_0)/k + c < 1 + c.$$

也就是说,当  $k>\varphi(M_0)$  时,序列  $\{\cos^2\theta_k\}$  存在一个子列使得  $1/e^{c+1}$  为其一个正的下界。

第四步,我们证明:整个序列  $\{x^k\}$  必然收敛到问题的唯一解点。 在第三步中,我们已经说明了  $\{\cos^2\theta_k\}$  必然存在一个有正下界的子列。结合 (5.19) 可以知道: 序列  $\{\|\nabla f(x^k)\|\}$  相应地存在一个收敛于 0 的子列。记这个收敛于 0 的子列

#### 7.7 Motzkin 定理的补充证明

本节主要介绍如何利用 Tucker 定理证明 Motzkin 定理。

定义 7.7.1 一个集合  $X \subseteq R^n$  称为锥, 当且仅当对于任给的  $x \in X$ ,  $\lambda > 0$ ,  $\lambda x$  总在 X 中。

下面,我们介绍点与闭凸锥分离定理,它本身具有简洁优美的优点。

定理 7.7.1 (点与闭凸锥分离定理) 假设 n 维向量 c 不属于非空闭凸锥  $C \subset R^n$ ,则存在一个非零 n 维向量 p 使得

$$p^T c < 0 \le p^T z, \ \forall z \in C. \tag{7.35}$$

证 既然集合 C 是一个非空闭凸集,那么必然存在唯一的点  $\bar{c} \in C$ ,使得

$$||c - \overline{c}|| = \min_{c,c} ||c - u|| \Rightarrow (c - \overline{c})^T (z - \overline{c}) \le 0, \quad \forall z \in C.$$

考虑到 C 又是一个锥,于是对于所有的  $\gamma > 0$ ,总有  $\gamma z \in C$ ,从而

$$(c-\bar{c})^T(\gamma z-\bar{c}) \leq 0 \Rightarrow \gamma (c-\bar{c})^T z \leq (c-\bar{c})^T c - ||c-\bar{c}||^2, \forall z \in C.$$

令  $p = \bar{c} - c$ , 则  $p \neq 0$ 。并且,

$$\gamma p^T z \ge p^T c + \|p\|^2 \quad \Leftrightarrow \quad p^T z \ge (p^T c + \|p\|^2)/\gamma.$$

对于左边的不等式, $\phi \gamma \to 0^+$  便可以推导出 $p^Tc \le -\|p\|^2 < 0$ ; 而对于右边的不等式,我们再 $\phi \gamma \to +\infty$  就得到了 (7.35) 右边的关系式。

定理 7.7.2 (Tucker 定理) 设  $D \in \mathbb{R}^{m \times n}$ , 则不等式组

$$Dx \ge 0$$
,  $D^Ty = 0$ ,  $y \ge 0$ 

总存在一组解  $(\bar{x}, \bar{y})$  使得  $D\bar{x} + \bar{y} > 0$ 。

证 记  $D^T = (d^1, d^2, \dots, d^m)$ 。 构造相应的集合

$$X_1 = \left\{ \sum_{i \neq 1} -y_i d^i : y_i \ge 0, i \ne 1 \right\}. \tag{7.36}$$

分两种情形进行讨论。

情形一  $d^1 \in X_1$ 。此时,必然存在  $y_i \ge 0$ , i = 2, ..., m 使得

$$d^{1} = \sum_{i \neq 1} -y_{i}d^{i}$$
.

设 $\gamma \in (0,0.01)$ ,记 $t = x^T z/n$ ,则中心路径的无穷模邻域定义如下

$$\mathcal{N}_{\infty}^{-}(\gamma) := \{(x, \lambda, z) \in \mathcal{F}^{0} : x_{i}z_{i} \geq \gamma t, i = 1, \dots, n\}.$$

显然,当 $\gamma$ 充分小时,中心路径的无穷模邻域可以看作 $\mathcal{F}^0$ 的一个近似。而且, 它还是中心路径的一个大邻域。



图 10.3: 二维无穷模邻域示意图

当 n=2 时,分别以  $x_1z_1, x_2z_2$  为横轴与纵轴,图 10.3 显示了该方法是如何 顺着(xz 平面上的)中心路径的无穷模邻域进行迭代的。

Salahi 预估校正算法,每次迭代主要分为: 预估步和校正步。但它要求迭代 序列在中心路径的无穷模邻域内,其中的参数 γ 取为 0.001 或更小。

预估步 已知  $(x, \lambda, z) \in \mathcal{N}_{-}(\gamma)$  解下面的线性方程组

$$A^{T}\Delta\lambda^{a} + \Delta z^{a} = 0, \quad A\Delta x^{a} = 0, \tag{10.15}$$

$$z_i \Delta x_i^a + x_i \Delta z_i^a = -x_i z_i, i = 1, ..., n.$$
 (10.16)

得到  $\Delta x^a$ ,  $\Delta \lambda^a$ ,  $\Delta z^a$ 。

校正步 取  $\mu_{min}$  为下边 (10.19) 的较小的正根。解下面的线性方程组

$$A^T \Delta \lambda + \Delta z = 0$$
,  $A \Delta x = 0$ , (10.17)

$$z_i \Delta x_i + x_i \Delta z_i = \mu_{\min} - x_i z_i - \Delta x_i^a \Delta z_i^a, \ i = 1, ..., n.$$
 (10.18)

解之得  $\Delta x$ ,  $\Delta \lambda$ ,  $\Delta z$ 。 计算最大可行步长  $\alpha_c \in [0,1]$  使得

$$x(\alpha_c) = x + \alpha_c \Delta x$$
,  $\lambda(\alpha_c) = \lambda + \alpha_c \Delta \lambda$ ,  $z(\alpha_c) = z + \alpha_c \Delta z$ 

仍在  $\mathcal{N}_{-}(\gamma)$  内。 将  $x(\alpha_c)$ ,  $\lambda(\alpha_c)$ ,  $z(\alpha_c)$  作为新的迭代点。

为了分析 Salahi 预估校正算法的收敛性,我们先做一些准备工作。

记

$$\phi(x, z, \mu) := \frac{1}{n} \sum_{i=1}^{n} \left( \frac{x_i z_i}{\mu} - \ln \frac{x_i z_i}{\mu} - 1 \right).$$

#### 12.3 半正定锥上的投影

对于大规模的半定规划,内点法往往是无能为力的。因此,人们转而考虑如何将增广 Lagrange 乘子法和 Douglas-Rachford 分裂方法用于大规模的半定规划。为了介绍这方面的工作,我们先了解一下有关概念和半正定维上的投影及其性质。

令  $S^n$  和  $S^n_+$  分别表示所有 n 阶实对称矩阵和正半定矩阵的集合。则  $S^n_+$  是一个非空闭凸锥,简称半正定锥。对于给定的  $Q \in S^n_-$  极小化问题

$$\min \|Q - X\|_F, \quad \text{s.t. } X \succeq 0$$

的解,记作  $Q_+$ ,存在并且唯一。以后,我们称之为到半正定锥上的投影。 接下来,我们来讨论一个实对称矩阵到半正定锥上的投影的基本性质。

定理 12.3.1 若  $Q=P^T\Lambda P$  是  $Q\in S^n$  的谱分解, 其中 P 满足  $P^TP=PP^T=I$ , 则  $Q_+=P^T\Lambda_+P$ , 其中  $\Lambda_+$  是将  $\Lambda$  对角线上的负元变为零得到, 且  $Q_+=Q+[-Q]_+$ .

证 对于任意给定的  $X \in S_{+}^{n}$ , 令  $Y = PXP^{T}$ , 则

$$\begin{split} (Q-X)^T(Q-X) &= (P^T(\Lambda-Y)P)^T(P^T(\Lambda-Y)P) \\ &= P^T(\Lambda-Y)^TPP^T(\Lambda-Y)P \\ &= P^T(\Lambda-Y)^T(\Lambda-Y)P. \end{split}$$

从而

$$\begin{split} \|Q-X\|_F^2 &= \operatorname{trace} \, (Q-X)^T (Q-X) \\ &= \operatorname{trace} \, P^T (\Lambda-Y)^T (\Lambda-Y) P \end{split} \tag{12.5}$$

$$= \operatorname{trace} (\Lambda - Y)^{T} (\Lambda - Y). \tag{12.6}$$

最后等式源于(12.5)与(12.6)中的两个矩阵有相同的特征根。这样,我们就有

$$||Q - X||_F^2 = ||\Lambda - Y||_F^2 = \sum_{j \neq i} y_{ij}^2 + \sum_{i=1}^n (\lambda_i - y_{ii})^2.$$

显然,为了使得右边的和最小,每个  $y_{ij}$   $(j \neq i)$  都必须为 0。而且,根据 X 的正半定性容易推导出  $y_{ii}$  的非负性。于是,相应的结论成立。

定理 12.3.2 (Fejer 定理) 对于任意给定的实对称矩阵 Q, 它是正半定的当且 仅当对于任给的正半定矩阵 P 总有  $\langle Q, P \rangle \geq 0$ 。

显然, f, g 都是一元凸函数, 并且满足  $dom f \cap dom g = \{0\} \neq \emptyset$ 。但

$$\partial (f+g)(0) = R \neq \emptyset = \partial f(0) + \partial g(0).$$

事实上, 若 $s \in \partial f(0)$ , 则

$$f(y) \ge f(0) + sy \implies 0 \ge 1 + sy, \forall y < 0 \implies s(-y) \ge 1, \forall y < 0.$$

这意味着: s 是某一个正数,并且对于任给的 y < 0, 总有 s > 1/(-y). 但这是不可能的!

值得指出的是, 若 f 是若干个线性函数的逐点最大值函数, 则有如下定理。

定理 13.8.5 设  $f: E \to (-\infty, +\infty]$  和  $g(x) = \max\{\langle a^i, x \rangle - b_i \colon i = 1, ..., l\}$ , 其中  $a^i \in E$ ,  $b_i \in R$ , 均为凸函数。若 ri  $\mathrm{dom} f \cap \mathrm{dom} g \neq \emptyset$ ,则

$$\partial(f(x) + g(x)) = \partial f(x) + \partial g(x).$$

定理 13.8.6 设  $f: E \to R$  为凸函数, A 是一个  $m \times n$  矩阵。则

$$\partial [f(Ax)] = A^T \partial f(Ax) = \{A^T s : s \in \partial f(Ax)\}.$$

证  $\Leftarrow$  任取  $s \in \partial f(Ax)$ , 则

$$f(Ay) \ge f(Ax) + \langle s, Ay - Ax \rangle = f(Ax) + \langle A^T s, y - x \rangle,$$

 $\mathbb{H} A^T s \in \partial [f(Ax)]_{\circ}$ 

 $\Rightarrow$  若  $A^T \tilde{s} \notin A^T \partial (f(Ax))$ , 往证  $A^T \tilde{s} \notin \partial [f(Ax)]$ 。 实际上  $\tilde{s} \notin \partial (f(Ax))$ , 即存在某个  $y \in E$ , 使得

$$f(Ay) < f(Ax) + \langle \tilde{s}, Ay - Ax \rangle = f(Ax) + \langle A^T \tilde{s}, y - x \rangle,$$

从而  $A^T \tilde{s} \notin \partial [f(Ax)]$ 。

接下来,我们讨论逐点最大值函数的次微分。为此,先引入有限个集合的凸包的概念。则由一组集合 $S_1,...,S_l$ 生成的凸包定义为

$$co\{S_1, ..., S_l\} := \lambda_1 S_1 + ... + \lambda_l S_l$$
,

其中  $\lambda_1,...,\lambda_l$  是一组和为 1 的非负系数。

定理 13.8.7 设  $f_i$ :  $E \to (-\infty, +\infty]$ , i=1,...,l, 均为闭的真凸函数。记  $f=\max\{f_i: i=1,...,l\}$ . 若  $x \in \mathrm{ri}$  dom $f_i$ , i=1,...,l, 则该逐点最大值函数在 x 处的 次微分可以表示为

$$\partial f(x) = co\{\partial f_i(x) : i \in I(x)\},\$$

其中  $I(x) := \{i: f_i(x) = f(x)\}.$ 

#### 14.7 一致有界性原则与共鸣定理

在 1876 年,P. du Bois Reymond 构造了一个周期为  $2\pi$  的连续函数,使得其Fourier 级数在给定的点处发散。在总结前人五十年来大量工作的基础上,Banach 和 Steinhaus 通过借鉴 Osgood 定理的证明方法,抽象提取出了共鸣(resonance)定理。它刻画了有界线性算子族的基本性质,从而成为泛函分析中最为重要的研究成果之一。

引理 14.7.1 设  $T \in M$  Banach 空间 B 映射到赋范线性空间 Y 上的有界线性算子。则对于任意的  $x \in B$  和 r > 0. 有

$$\sup\{\|Tx'\| : x' \in \mathcal{B}(x,r)\} \ge r\|T\|,$$

其中  $\mathcal{B}(x,r) = \{x' \in \mathcal{B} : ||x' - x|| \le r\}$ 。

证 对于任意的  $\varepsilon \in \mathcal{B}$ , 我们有

$$2 \max\{\|T(x+\xi)\|, \|T(x-\xi)\|\} \ge \|T(x+\xi)\| + \|T(x-\xi)\|$$

$$\ge \|T(x+\xi-(x-\xi))\|$$

$$= 2 \|T\xi\|. \tag{14.13}$$

由线性算子范数的定义得  $\sup\{\|T(r^{-1}\xi)\|:\|r^{-1}\xi\|\leq 1\}\geq \|T\|$  (以二维空间为例,前者在单位圆面上取而后者在单位圆周上取上确界。当然,由于 T 是有界线性的,所以实际上两者的上确界相等)。于是,我们就有

$$\forall \xi \in \mathcal{B}(0, r), \sup ||T\xi|| = r \sup ||T(r^{-1}\xi)|| \ge r||T||.$$

另一方面,因为当 $\xi \in \mathcal{B}(0,r)$ 时, $x \pm \xi \in \mathcal{B}(x,r)$ ,所以

$$\sup\{\|Tx'\|: x' \in \mathcal{B}(x,r)\} \ge \max\{\|T(x+\xi)\|, \|T(x-\xi)\|\}.$$

在(14.13)式两边关于 $\xi \in \mathcal{B}(0,r)$ 取上确界即可。

$$||T|| \le \beta$$
,  $\forall T \in \mathcal{F}$ .

讨论 取 $\mathcal{B}$  和 $\mathcal{Y}$  为一维实空间, $T_n(x)=nx,\,n=1,2,...$  是一族线性算子。试问: 满足上述定理的题设条件吗? 举例说明: 如果 $\mathcal{B}$  换成不完备的赋范线性空间,那么一致有界性原则不成立。

一致有界性原则的逆否命题为下面的共鸣定理。

记  $w^k:=\lambda_{k-1}^{-1}(x^{k-1}-x^k)$ 。则序列  $\{w^k\}$  强收敛于 0。同时,由 (15.23) 可知序列  $\{\|x^k-x^*\|\}$  极限存在,因此序列  $\{x^k\}$  以范数有界,从而存在某个子列  $\{x^k\}$  使得

$$x^{k_j} \rightharpoonup x^{\infty}, \quad k_j \to +\infty.$$

结合  $w^{k_j} \in A(x^{k_j})$ , A 的极大单调性和定理 15.3.2, 我们有

$$0 \in A(x^{\infty}).$$

即弱聚点  $\{x^{\infty}\}$  是一个解点。

下证弱聚点的唯一性。若不然,则存在某个子列 $\{x^{k_l}\}$ 使得

$$x^{k_l} \rightharpoonup \hat{x}^{\infty} \neq x^{\infty}, \quad k_l \to +\infty.$$

根据刚才的讨论,  $\{||x^k - x^{\infty}||\}$  和  $\{||x^k - \hat{x}^{\infty}||\}$  极限都存在。记

$$l = \lim_{k \to \infty} \|x^k - x^\infty\|^2, \quad \hat{l} = \lim_{k \to \infty} \|x^k - \hat{x}^\infty\|^2.$$

考虑

$$\begin{split} \|x^k - x^\infty\|^2 &= \|x^k - \hat{x}^\infty + \hat{x}^\infty - x^\infty\|^2 \\ &= \|x^k - \hat{x}^\infty\|^2 + 2\langle x^k - \hat{x}^\infty, \hat{x}^\infty - x^\infty\rangle + \|\hat{x}^\infty - x^\infty\|^2. \end{split}$$

沿 ki 取极限,则

$$l = \hat{l} + \|\hat{x}^{\infty} - x^{\infty}\|^2.$$

类似地

$$\hat{l} = l + \|x^{\infty} - \hat{x}^{\infty}\|^2.$$

两式相加可以得到  $\|x^{\infty} - \hat{x}^{\infty}\| = 0$ . 与假设  $x_1^{\infty} \neq x_2^{\infty}$  矛盾!

在邻近点方法中,如何证明弱聚点的唯一性是一个挑战。上述简洁的技巧归功于 Bregman.

注:在 1976 年,Rockafellar 假设: $\lambda_k$  有一个正的下界。在 1978 年,Brézis, Lions 将其弱化为 (15.20) 并分析了邻近点方法的 O(1/k) 的收敛率。在 2014-2015 年,Dong 将其收敛率改进为定理 15.4.3 中的 1/k 的高阶无穷小。Lions 系 1994 年 Fields 奖得主。

#### 15.5 附: Yosida 逼近

本附录主要介绍 Euclid 空间中极大单调算子的 Yosida 逼近。

结合 Cauchy-Schwarz 不等式

$$\frac{\|r(x,\alpha')\|^2}{\alpha'} + \frac{\|r(x,\alpha)\|^2}{\alpha} \leq \left(\frac{1}{\alpha'} + \frac{1}{\alpha}\right) \|r(x,\alpha')\| \|r(x,\alpha)\|.$$

若  $\|r(x,\alpha)\|=0$ , 则  $\|r(x,\alpha')\|=0$ , 结论成立。否则,  $\|r(x,\alpha)\|\neq 0$ . 从而,我们可以将上述不等式重新写作

$$\frac{\|r(x,\alpha')\|^2}{\|r(x,\alpha)\|^2} - \left(1 + \frac{\alpha'}{\alpha}\right) \frac{\|r(x,\alpha')\|}{\|r(x,\alpha)\|} + \frac{\alpha'}{\alpha} \leq 0.$$

既然拋物线  $p(t) := t^2 - (1 + \alpha'/\alpha)t + \alpha'/\alpha$  开口向上(这儿  $\alpha'$  和  $\alpha$  都是给定的正数) 并且方程 p(t) = 0 有两个根 t = 1,  $t = \alpha'/\alpha \ge 1$ , 那么,  $p(t) \le 0$  当且仅当

$$1 \le \frac{\|r(x, \alpha')\|}{\|r(x, \alpha)\|} \le \frac{\alpha'}{\alpha}.$$

现在我们来证明 (ii). 对于符号  $x(\alpha)$ , 我们有

$$\frac{x - x(\alpha)}{\alpha} - F(x) \in A(x(\alpha)), \ \alpha > 0,$$

根据  $w-z \in A(x)$  和 A的单调性, 可以得到

$$\begin{split} 0 & \leq \langle x(\alpha) - x, \frac{x - x(\alpha)}{\alpha} - F(x) - w + F(x) \rangle \\ & = \langle x(\alpha) - x, \frac{x - x(\alpha)}{\alpha} - w \rangle. \end{split}$$

通过利用 Cauchy-Schwarz 不等式, 讲一步得到

$$\frac{1}{\alpha} \|x - x(\alpha)\|^2 \le \langle w, x - x(\alpha) \rangle \le \|w\| \|x - x(\alpha)\|.$$

因此,  $x - x(\alpha) = 0$  或者  $||x - x(\alpha)||/\alpha \le ||w||$ . 这意味着

$$\alpha \to 0 \implies x - x(\alpha) \to 0.$$

接下来, 只需证

$$\liminf_{\alpha \to 0} \alpha^{-1} \|x - x(\alpha)\| \ge \min\{\|w\| : w \in A(x) + F(x)\}.$$

引入记号

$$z(\alpha) = \alpha^{-1}(x - x(\alpha)). \tag{16.4}$$

则  $z(\alpha)$  是依范数有界的。显然,存在  $\{\alpha_{k}\} \to 0$ ,使得

$$||z(\alpha_k)|| \to \liminf_{\alpha \to 0} ||z(\alpha)||, \quad z(\alpha_k) \rightharpoonup z.$$