

VARIÁVEIS DISCRETAS E CONTÍNUAS

ROL, MÉDIA, MODA E MEDIANA

Debora Canne

2	3	3	3	3	3	3,5	3,5	3,5	3,5
3,5	3,5	4	4	4	4	4	4	4	4
4	4	4,5	4,5	4,5	4,5	5	5	5	5

Distribuição de frequência: variável discreta

$$\bar{X} = \frac{116}{30} = 3,87$$

$$\tilde{X} = M_d = 4$$

$$M_o = 4$$

2	1	2	1	1/30= 0,03	3,33
3	5	15	6	5/30= 0,17	16,67
3,5	6	21	12	6/30= 0,20	20
4	10	40	22	10/30= 0,34	33,34
4,5	4	18	26	4/30= 0,13	13,33
5	4	20	30	4/30= 0,13	13,33
	30	116		1	100

2	1	2	1	1/30= 0,03	3,33
3	5	15	6	5/30= 0,17	16,67
3,5	6	21	12	6/30= 0,20	20
4	10	40	22	10/30= 0,34	33,34
4,5	4	18	26	4/30= 0,13	13,33
5	4	20	30	4/30= 0,13	13,33
IINOVE	30	116		1	100

Variável contínua: tabela com intervalos

Distribuição de frequência: variável contínua

classe				
1	4	4	3	12
2	12	16	5	60
3	10	26	7	70
4	4	30	9	36
	30			178

$$M \in dia$$
: $\overline{X} = \frac{\Sigma(xi.fi)}{\Sigma fi} = 178/30 = 5,93$

$$Mediana: \widetilde{X} = M_d = li_{md} + \frac{\frac{n}{2} - f_{ant}}{fi_{md}}.$$
 h

Mediana= 4 + (15-4).2/12

$$Md = 5,83$$

 $M_{o(Czuber)=li_{mo}+rac{fi_{mo}-fi_{ant}}{2.fi_{mo}-(fi_{ant}+fi_{post})}.h}$

Moda (King) = 4+((8)/8+2).2 =

Moda= 5,6

$$M_{o(King)} = li + \frac{\Delta 1}{\Delta 1 + \Delta 2}.h$$

$$M_{o(Pearson)} = 3.Md - 2.\overline{X}$$

