전형적인 CNN의 구조

Convolution Layer - Pooling Layer - ··· - Fully-connected Layer

Best CNN architecture - LeNet5

· LeNet의 발전

- CNN을 최초 개발한 Yann LeCun이 우편번호의 필기체를 인식하기 위한 용도로 개발 시작.
- 1998년 최종적으로 발표한 구조가 LeNet5
- 초기에는 컴퓨팅 능력이 떨어져 파라미터 수가 작은 망을 개발.
- LeNet5에서는 성능 향상을 위 해 더 큰 구조로 설계.

Best CNN architecture - LeNet5

· LeNet의 구조

Convolution Layer: 3 Pooling Layer: 2

Fully-connected Layer:2

Layer	Layer Type	Feature Maps	Kernel(Filter)	Input size	Trainable para	Activation
Input	image	-	-	32x32	-	-
C1	Conv	6	5x5	28x28	156	Sigmoid
S2	Sub Sampling	6	2x2	14x14	12	Tanh
C3	Conv	16	5x5	10x10	1516	Tanh
S4	Sub Sampling	16	2x2	5x5	32	Sigmoid
C5	Conv	120	5x5	1x1	48120	Tanh
F6	Dense	-	-	84	10164	Tanh
Output	Dense	-	-	10	-	Softmax

```
lenet 5 model = keras.models.Sequential([
         keras.layers.Conv2D(6, kernel size=5, strides=1, activation='tanh',
         input shape=train x[0].shape, padding='same'), #C1
         keras.layers.AveragePooling2D(), #S2
         keras.layers.Conv2D(16, kernel size=5, strides=1, activation='tanh',
         padding='valid'), #C3
         keras.layers.AveragePooling2D(), #S4
         keras.layers.Flatten(), #Flatten
         keras.layers.Dense(120, activation='tanh'), #C5
         keras.layers.Dense(84, activation='tanh'), #F6
         keras.layers.Dense(10, activation='softmax') #Output layer
12 ])
```

Input을 32*32로 받아 영상의 중앙에 위치시켜 처리 (이미지의 디테일에 대한 고려가 많아져 더 우수한 성능을 보임)

10

11

13

Padding을 same으로 주어 특징맵의 사이즈가 input과 동일한 size로 출력하게 함.

Best CNN architecture - AlexNet

- ImageNet 영상 데이터베이스 기반 대회 ILSVRC(2012)에서 우승한 팀이 개발한 CNN 구조.
- 구조적 관점에서 LeNet5와 크게 다르지 않지만 높은 성능을 얻기 위해 다양한 고려가 들어감.
- 특히 GPU를 사용해 의미 있는 결과를 얻어 이후 CNN구조 설계시 GPU 사용이 대세가 됨.
- 6억 3000만개의 연결로 구성된 방대한 CNN 구조.

Best CNN architecture - AlexNet

Convolution Layer: 5
Pooling Layer: 3
Fully-connected Layer: 3

Type / Stride / Padding	Filter Shape	Input Size	
Conv / s4 / p2	11 x 11 x 3 x 96	224 x 224 x 3	
Conv / s1 / p2	5 x 5 x 96 x 256	55 x 55 x 96	
Max Pool / s2	3 x 3	-	
Conv / s1/ p1	3 x 3 x 256 x 384	27 x 27 x 256	
Max Pool / s2	3 x 3	-	
Conv/s1/p1	3 x 3 x 384 x 384	13 x 13 x 384	
Conv/s1/p1	3 x 3 x 384 x 256	13 x 13 x 384	
Max Pool / s2	3 x 3	-	
FC	9216 x 4096	9216	
FC	4096 x 4096	4096	
FC	4096 x 1000	4096	

1. 활성화함수 ReLU 사용

2. Multiple GPUs

: 2개의 GPU를 사용한 병렬적 구조 → one-GPU 네트워크에 비해 error rate을 약 1.7% 낮춰줌.

3. Local Response Normalization(LRN)

$$b_{x,y}^i = a_{x,y}^i / (k + \alpha \sum_{j=max(0,i-n/2)}^{j=min(N-1,i+n/2)} a_{x,y}^j)^{\beta}$$

where

 $b_{x,y}^{i}$ – regularized output for kernel i at position x,y

 $a_{x,y}^{i}$ - source outu of kernel i applied at position x, y

N — total number of kernels

n — size of the normalization neigbourhood

 $\alpha, \beta, k, (n)$ – hyperparameters

- Convolution Layer 다음 Local Response Normalization 수행.
- 같은 위치의 픽셀에 대하여 복수의 feature map 간 정규화를 하는 기법.
- ReLU를 사용하게 되면 양수의 방향으로 입력 값을 그대로 사용 → Pooling시 매우 큰 하나의 픽셀 값이 주변의 픽셀에 영향을 미치게 됨 → 이를 방지하기 위해 같은 위치에 있는 픽셀끼리 정규화.

Best CNN architecture - AlexNet

4. Overlapped Pooling

Non-overlapping pooling

Overlapping pooling

5. Data Augmentation(데이터 증식)

- Pooling은 일반적으로 필터를 겹치지 않게 Stride를 적절히 조정하여 사용. 동일한 이미지들을 조금씩 변형시켜가며 학습 Overfitting을 방지
- AlexNet에서는 Stride를 좁혀 Overlapping 하는 구조 사용.
- 정확도는 약 0.4%가 향상되나, Overlapping의 사용은 연산량을 증가시킴.
- Mirroring / Random Crops / PCA Color Augmentation 등
- AlexNet에서는 데이터 양을 약 2048배 증진.

Best CNN architecture - GoogLeNet

- ILSVRC(2014)에서 우승을 차지한 구조. 구글 리서치에서 개발.
- 인셉션 모듈(Inception Module)을 사용해 효과적으로 파라미터 사용
- 실제로 AlexNet보다 망의 깊이는 약 2배 이상 깊어졌으나, 10배 적은 파라미터를 가지고 에러율을 약 10% 낮추는 결과

Best CNN architecture - GoogLeNet

