TRASMISSÃO DE SINAL

Sinais Analógicos

Sinais analógicos recebem a influência de ruídos externos, ou seja, novos sinais que são somados aos sinais originais e que eventualmente podem ser filtrados.

Sinais Digitais

- Produzidos a partir de fenômenos que apresentam apenas alguns valores discretos aos quais podemos associar valores.
- Têm uma temporização e repetição previsíveis, podendo ser codificados
- Aplicação em transmissão de dados
- Parâmetros
 - Amplitude constante
 - Frequência constante em Hz normalmente

- Codificação dos dados (bits) em sinais digitais
- Necessidade de manter a integridade
- Métodos
 - —NRZ (Non-Return to Zero)
 - -NRZI (NRZ Invert)
 - -Manchester
 - -Manchester diferencial

- NRZ (Non-Return to Zero)
 - -Mais simples
 - 2 níveis de tensão para representar "1" e "0"

- NRZI (Non-Return to Zero Invert)
 - -Mais robusta diferencial

- Manchester
 - -Dados sinalizados por uma rampa
 - Subida indica um nível alto
 - Descida indica um nível baixo

- Manchester diferencial
 - Codificação no instante em que ocorre a troca de dados
 - Se novo dado é nível "0", ocorre uma rampa
 - Se novo dado é nível "1", permanece imutável

- Sinais Digitais:
 - Perda na Transmissão:
 - Os meios de transmissão não são perfeitos;
 - A imperfeição provoca a perda de sinais;
 - Três causas para essas perdas:
 - Atenuação
 - Distorção
 - Ruído

- Sinais Digitais:
 - Perda na Transmissão:
 - Atenuação (perda de energia): quando um sinal trafega por um meio de transmissão, ele perde parte de sua energia para superar a resistência do meio;
 - Para compensar essas perdas são utilizados amplificadores para o sinal.

- Sinais Digitais:
 - Perda na Transmissão:
 - Distorção (mudança na forma): pode ocorrer em um sinal composto, quando os componentes do sinal no receptor possuem fases;

- Sinais Digitais:
 - Perda na Transmissão:
 - Distorção (mudança na forma):

At the receiver

- Sinais Digitais:
 - Perda na Transmissão:
 - Ruído (alteração do sinal): vários tipos de ruídos podem causar danos ao sinal original:
 - Ruído térmico ou Ruído Branco): é a movimentação aleatório de elétrons em um fio criando um sinal extra;
 - <u>Ruído induzido</u>: provém de motores e aparelhos elétricos(transmissor) para o meio físico(receptor);
 - <u>Linha Cruzada</u>: um meio físico (transmissor) interfere no sinal de outro meio físico (receptor);
 - Impulso: é um sinal com grande energia em um curto espaço de tempo provenientes de cabos de força, relâmpagos, etc.

- Sinais Digitais:
 - Perda na Transmissão:
 - Ruído (alteração do sinal):

- Multiplexação
- A multiplexação permite que múltiplos pares de remetentes e receptores, utilizando frequências diferentes, comuniquem-se simultaneamente através de um meio compartilhado.

MODEMS

Modems

- Modem Interno
- Modem Externo
- Modem on-board

OBS.:

Existem ainda dois tipos de modems: <u>modem voice ou</u> <u>não voice</u>. Modem não voice é um modem com secretária eletrônica, ou seja, não permite a interação de voz humana na ligação entre origem e destino.

Modems

- Hand Shaking

É o recurso para testar e armazenar as condições da linha. Esse teste é o barulho ouvido ao iniciar uma conexão discada.

- WinModem

Permite a conexão com a internet através da linha telefônica, porém quem modula e demodula o sinal é CPU do computador.

Modems

- MOH (Modem On Hold)

Recurso que identifica ligação enquanto conectado a internet com a opção de atender. Ao atender, o modem continua conectado, porém sem tráfego com o provedor. Ao término, a Internet volta.

Modem xDSL

Formas de transmissão	Descrição	
HDSL (High bit-rate DSL)	Simétrico com taxa de até 2 Mbps.	
HDLS2 ou SHDSL	Melhoria do HDSL utilizando uma única linha, ou seja, um único par trançado.	
SDSL (Symetrical DSL)	Simétrico, full-duplex utilizando dois fios.	
ADSL (Asymmetric DSL)	Assimétrico, DOWN até 8 Mbps e UP até 1 Mbps, voz e dados, com dois fios.	
RADSL (Rate Adaptative ADSL)	Semelhante ao ADSL, porém ajusta automaticamente a velocidade de conexão de acordo com a qualidade da linha e a distância da central.	
VDSL (Very High DSL)	ADSL com até 50 Mbps de DOWN. Residencial com 1 par de fios.	
IDSL (ISDN DSL)	Suporte a serviços de redes digitais.	

Tipos de Modulação de Sinal

- Modulação por amplitude (AM)
- Modulação por freqüência (FM)
- Modulação por fase (PM)

COMUTAÇÃO DE DADOS

Comutação de Circuitos

- Recursos da rede (banda) são divididos em "pedaços" -Pedaços alocados às chamadas;
- O pedaço do recurso fica ocioso se não for usado pelo seu dono - (não compartilha);
- A divisão da banda de um canal é feita em "pedaços" (multiplexação):
- FDM Frequency Division Multiplexing -divisão de frequência
- TDM Time Division Multiplexing divisão de tempo

Comutação de Circuitos – FDM e TDM

Para TDM, para cada circuito é designado o mesmo compartimento

Comutação de Circuitos

Recursos fim a fim reservados para "chamada"

- largura de banda do enlace, capacidade de comutação
- recursos dedicados: sem compartilhamento
- desempenho tipo circuito (garantido)
- exige preparação de chamada

Comutação de Circuitos

Vantagens dos circuitos virtuais

- Economiza cálculos de rotas (Precisa ser feito somente uma vez no início da sessão).
- Economiza o tamanho do cabeçalho.
- Facilita o fornecimento de QoS.
- Mais complexo. Menos flexível

- Cada fluxo de dados fim a fim é dividido em pacotes;
- Pacotes dos usuários A, B, C, compartilham os recursos da rede;
- Cada pacote usa toda a banda do canal (taxa de transmissão total do link);
- Recursos são usados quando necessário,

- Disputa por recursos:
- A demanda total pelos recursos pode superar a quantidade disponível;
- Congestionamento: pacotes são enfileirados, esperam para usar o enlace;
- Armazena e retransmite: pacotes se deslocam uma etapa por vez;
- Transmite num enlace;
- Espera a vez no próximo;

Perda de pacote

- fila (ou buffer) antes do enlace no buffer tem capacidade finita
- pacote chegando à fila cheia descartado (ou perdido)
- último pacote pode ser retransmitido pelo nó anterior, pela origem ou de forma nenhuma

Virtual LAN

VLAN

As VLANs dividem uma rede LAN em grupos lógicos permitindo que mesmo computadores ligados fisicamente a gridges separadas possam forma uma rede virtual.

Para diferenciar uma VLAN da outra, é atribuído um ID diferente a cada uma delas.

OBS.:

"Qualquer computador dentro de uma VLAN pode se comunicar com qualquer outro computador em uma mesmaVLAN, porém não fora da sua."

Sua classificação é baseada na área de abrangência:

- redes pessoais ou curta distância (WPAN),
- redes locais (WLAN)
- redes metropolitanas (WMAN)
- redes de longa distância (WWAN).

Nomes em uma Wireless Network ou SSID

Nome da rede Wireless:

- Cada Access Point deve ser configurado com um identificador (case sensitive ID).
- Acesso seguro que só permite aos clientes com o ID correto acessar a rede.

- Topologia das redes sem fio

Ad-Hoc

Identificador único para cada Uma das comunicações simultâneas

Infra-estrutura

O Access Point cria as comunicações para conectar outros Hosts wireless dentro de sua área de cobertura.

Como os dados são transmitidos na rede Wireless?

- Uma máquina transmite de cada vez;
- Regras do mecanismo de acesso ao Meio
 CSMA/CA (Carrier Sense Multiple Access With Collision Avoidance)
- Através dessas regras define-se quem irá acessar o meio Físico.

Protocolo (CSMA/CA)

- Uma estação que necessita transmitir "escuta" o meio. Se o meio estiver ocupado ele adia a transmissão. Se o meio estiver ocioso por um determinado período a estação recebe permissão para transmitir;
- A estação receptora verifica o pacote e envia um pacote ACK.
 Quando o transmissor recebe este pacote indica que não houve colisão. Se o remetente não recebe o ACK então fica detectado que houve colisão, e após um tempo randômico de espera, a estação transmite novamente. Se o ACK chegar corrompido, também é detectado colisão.
- Depois da primeira transmissão, cada computador da rede recebe um tempo para transmitir. Assim, a partir desse momento não haverá mais colisões.

de 100 metros e 11 Mbps. Frequência de 5,8 Ghz, 54 Mbps, 8 canais por ponto de acesso que permite mais usuários conectados, menor chance de interferência e alcance reduzido. Frequência de 2,4 Ghz, combina características dos padrões 802.11a e 802.11b. Padrão similar aos outros mas com melhorias no serviço de QoS para ligações telefônicas, transmissão de vídeo em alta resolução e outras aplicações multimídia. Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy)				
de 100 metros e 11 Mbps. Frequência de 5,8 Ghz, 54 Mbps, 8 canais por ponto de acesso que permite mais usuários conectados, menor chance de interferência e alcance reduzido. Frequência de 2,4 Ghz, combina características dos padrões 802.11a e 802.11b. Padrão similar aos outros mas com melhorias no serviço de QoS para ligações telefônicas, transmissão de vídeo em alta resolução e outras aplicações multimídia. Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até 1 Mbps, a atual é o 4.0. A 3.0		Padrão	Características	
 que permite mais usuários conectados, menor chance de interferência e alcance reduzido. Frequência de 2,4 Ghz, combina características dos padrões 802.11a e 802.11b. Padrão similar aos outros mas com melhorias no serviço de QoS para ligações telefônicas, transmissão de vídeo em alta resolução e outras aplicações multimídia. Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até 1 Mbps, a atual é o 4.0. A 3.0 		802.11b	Frequência de <i>2,4 Ghz</i> , mais suscetível a interferência, alcance de <i>100 metros</i> e <i>11 Mbps</i> .	
802.11a e 802.11b. Padrão similar aos outros mas com melhorias no serviço de QoS para ligações telefônicas, transmissão de vídeo em alta resolução e outras aplicações multimídia. Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até 1 Mbps, a atual é o 4.0. A 3.0		802.11a	Frequência de <i>5,8 Ghz, 54 Mbps,</i> 8 canais por ponto de acesso que permite mais usuários conectados, menor chance de interferência e alcance reduzido.	
para ligações telefônicas, transmissão de vídeo em alta resolução e outras aplicações multimídia. Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até <i>1 Mbps</i> , a atual é o 4.0. A 3.0		802.11g	/ 11σ	
falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até 1 Mbps, a atual é o 4.0. A 3.0		802.11e para ligações telefônicas, transmissão de vídeo em		
807.15	falhas da segurança WEP (Wired Equivalent Privacy) As versões antigas transferem até 1 Mbps, a atual é o		Utiliza encriptação avançada (AES). Padrão que vem resolver as falhas da segurança WEP (Wired Equivalent Privacy)	
			As versões antigas transferem até 1 Mbps, a atual é o 4.0. A 3.0 utiliza a mesma frequência do 802.11 chegando a 24 Mbps.	

- Precauções em redes wifi
 - A antena não pode ser instalada na altura do computador.
 - Não instalar computadores com antena no nível do chão para evitar campos eletromagnéticos gerados pelos tapetes e carpetes.
 - Manter longe de equipamentos domésticos que operam nas mesmas frequências das redes sem fio como: microondas, telefones etc.
 - Evitar superfícies metálicas, paredes de concreto e grandes recipientes com água.

RF Barreira	Criticidade	Exemplos
Ar	Minima	
Madeira	Baixa	Divisorias
Gesso	Baixa	Paredes Internas
Material Sintetico	Baixa	Divisorias
Asbestos	Baixa	Tetos
Vidros	Baixa	Janelas
Agua	Media	Madeira Umidas, Aquarios
Tijolos	Media	Paredes Internas e Externas
Marmore	Media	Paredes Internas
Rolo de Papel	Alta	Rolos de Papel
Concreto	Alta	Pisos, Paredes Externas
Vidro a prova de balas	Alta	Salas de Segurança
Metal	Muito Alta	Mesas, Divisórias de Metal

