Seattle Meet-up Group October 4, 2012

UEFI and pre-OS Networking

Vincent Zimmer

Usual disclaimer-These foils and opinions are mine and not necessarily those of my employer

Who am I? Vincent Zimmer

Principal Engineer at Intel Industry since 1992 Intel since 1997 Chair of UEFI network subteam Chair of UEFI PI security subteam More –

http://sites.google.com/site/vincentzimmer/

Industry BIOS Transition

Pre-2000

All Platforms BIOS were proprietary

2000
Intel invented the Extensible Firmware Interface (EFI) and provided sample implementation under free BSD terms

2004

tianocore.org, open source EFI community launched

Unified EFI (UEFI)

Industry forum, with 11 promoters, was formed to standardize EFI

2011

2005

170 members and growing!
Major MNCs shipping; UEFI
platforms crossed 50% of IA
worldwide units; Microsoft*
UEFI x64 support in Server
2008, Vista* and Win7*;
RedHat* and NovelI* OS
support

UEFI / PI is a type of BIOS BIOS- aka. the Rodney Dangerfield of Software

.net/News/index.php
?option=com_conte
nt&view=article&id=
1923:todaysrodney-dangerfieldaward-winner-isnewtgingrich&catid=121:
rodney-dangerfieldawardwinners&Itemid=96

http://www.noethics

"No respect"

Overview of the UEFI Boot Process

UEFI as an abstraction of the platform

Typical OS Loader Scenario for UEFI

One GPT disk partition is FAT32 (service partition)

OS installer puts the loader on the service partition

- Under /EFI/BOOT or /EFI/osname directory
- Ex: /efi/boot/bootx64.efi, /efi/ubuntu/grubx64.efi

NVRAM (Bootxxxx) has a device path to OS loader

• Maps to specific device, GUID partition & filename

Advantages of UEFI Boot Process

Extensible across multiple boot devices

• SATA, SAS, USB, PXE/iSCSI (IPv4/IPv6), ...

Supports multi-boot operations

- Multi-boot loaders w/o MBR chain-loading
- UEFI Forum reserves directories to avoid collisions
- Use /efi/boot directory for removable media

Device path stored in boot options (NVRAM)

Pointer to specific boot device

Boot image can be validated when loaded

Allows firmware loader to perform security checks

Building UEFI: UEFI Platform Initialization Overview

PEIMs, UEFI and DXE drivers implements networking, Update, other security features

Modular components

Temporal view of booting (more importantly, what problems we are not solving w/ this technology)

OEM/PM Extensible

3rd party extensible

UEFI Development Kit -UDK2010

Industry Standards Compliance

• UEFI 2.0, UEFI 2.1, UEFI 2.2, UEFI 2.3; PI 1.0, PI 1.1, PI 1.2

Extensible Foundation for Advanced Capabilities

- Pre-OS Security
- · Rich Networking
- Manageability

Support for UEFI Packages• Import/export modules source/binaries to many build systems

Maximize Re-use of Source Code**

- Platform Configuration Database (PCD) provides "knobs" for binaries
- ECP provides for reuse of EDK1117 (EDK I) modules
- Improved modularity, library classes and instances
- Optimize for size or speed

Multiple Development Environments and Tool Chains**

- Windows, Linux, OSX
- VS2003, VS2005, WinDDK, Intel, GCC

Fast and Flexible Build Infrastructure**

- 4X+ Build Performance Improvement (vs EDKI)
- Targeted Module Build Flexibility

Maximize the open source at www.tianocore.org

Intel® UDK2010 Enables a Common Firmware Development Foundation Across the Compute Continuum

Intel® UEFI Development Kit 2010 (Intel® UDK2010)

Specification & Tianocore.org Timeline

All products, dates, and programs are based on current expectations and subject to change without notice.

Rich Networking

IP6 Networking

- IPv6 protocols compliance
 - IPv6 ready logo approved <u>http://www.ipv6ready.org/db/index.php/public/</u>
 - Requirements for IPv6 transition http://www.antd.nist.gov/usgv6-v1.pdf
 - No IPv4 Addresses available
- Technology includes
 - IP4/6, UDP4/6, TCP4/6, DHCP4/6, MTFP4/6, iSCSI, PXE
 - Allows for concurrent network applications via design based upon MNP
 - Features dual stack: IP4, IP6, or both
- DUID-UUID support (UEFI 2.3.1)
 - Use SMBIOS system GUID as UUID

Industry moving to IPv6 for equipment procurement

VLAN Support

- Virtual Local Area Network
 - Defined in IEEE 802.1Q, to create logical groups of stations
 - Increased performance, security and improved manageability
- Technology includes

Device Path Protocol (MAC)

- Support Hybrid LAN topology
- Multiple VLAN for one station
- VLAN configuration by HII

VLAN unaware Station

End Station

End Station

VLAN2

VLAN1

VLAN2 VLAN3

Enabling the quarantining of networks

UEFI iSCSI Solutions

IPsec - Network Security

- Secure Internet Protocol Communication
 - Protects any application traffic across an IP network
 - Mandatory for IPv6
- Features include
 - AH, ESP, IKE version 2
 - HMAC-SHA1, TripleDES-CBC, AES-CBC
 - Transport/Tunnel mode
 - Pre shared Key/X.509 certificate authentication

UEFI PXE Solutions

- Preboot eXecution Environment
 - General network booting
 - Independent of data storage device
 - IPv4 based PXE defined in PXE 2.1
 - IPv6 based PXE is defined in UEFI 2.3
- Technology includes
 - Dual network stack support
 - Evolution of network boot to IPv6 define IETF RFC 5970
 - DUID-UUID support
 - Use SMBIOS system GUID as UUID

Security Features

Pressure on BIOS

What is Security from BIOS Perspective

Secure Boot - UEFI

- Defined a policy for Image loading
 - Especially for network-loaded images
- Cryptographically signed
 - Private key at signing server, Public key in platform

Measured Boot -Trusted Computing Group (TCG)

 Trusted Platform Module (TPM) - Isolated storage and execution for Logging changes, attestation

NIST 800-147 -Security Guidelines for System BIOS Implementations - Capsule updates, firmware mngt protocol, authenticate user/admin w/ UID

UEFI User Identification

Pre-boot Authentication

- Facilitates appropriate user and platform administrator existence
- A standard framework for user-authentication devices
 - Static password, Network auth protocols, Smart cards, USB key & fingerprint sensors

Support for various pre-boot authenticators

UEFI Secure Boot VS TCG Trusted Boot

UEFI authenticate OS loader (pub key and policy)

Check signature of before loading

 UEFI Secure boot will stop platform boot if signature not valid (OEM to provide remediation capability)

 UEFI will require remediation mechanisms if boot fails UEFI Firmware

UEFI OS Ldr, Drivers

Kernel

Drivers

Apps

UEFI PI will measure OS loader & UEFI drivers into iTPM PCR (Platform Configuration Register)

TPM

 Incumbent upon other SW to make security decision using attestation

NIST Implementation Requirements

Make sure UEFI PI code is protected

The NIST BIOS Protection Guidelines break down to three basic requirements...

- 1. The BIOS must be protected
- 2. BIOS updates must be signed
- 3. BIOS protection cannot be bypassed

UEFI Image (driver & application/OS loader) Signing

Put them altogether: UEFI Secure Boot

Summary

- OS absent networking important for deployment, provisioning, management, recovery
- Extensible architecture allows for rich pre-OS entworking
- Threats of UEFI extensibility are real
- Address w/ open standards and open source
- Netboot6 and Secure boot are coming w/ next OS wave (and like longevity of any shrinkwrap OS release, will continue for 10 yrs)
- Challenges in ecosystem enabling

For more information - UEFI Networking & Security

Intel Technology Journal, Volume 15, Issue 1, 2011, UEFI Today: Bootstrapping the Continuum, UEFI Networking and Pre-OS Security http://www.intel.com/technology/itj/2011/v15i1/pdfs/Intel-Technology-Journal-Volume-15-Issue-1-2011.pdf

UEFI 2.3.1a specification: chapters 15, 21-27 www.uefi.org

Beyond BIOS: Developing with the Unified Extensible Firmware Interface, 2nd Edition, Zimmer, et al, ISBN 13 978-1-934053-29-4 http://www.intel.com/intelpress

"DHCPv6 Options for Network Boot," Internet RFCs, ISSN 2070-1721, RFC 5970, September 2010, http://www.rfc-editor.org/rfc/rfc5970.txt

Zimmer, et al, "Trusted Platforms: UEFI, PI, and TCG-based firmware," Intel/IBM whitepaper,

http://download.intel.com/technology/efi/SF09 EFIS001 UEFI PI TCG White Paper.pdf

UEFI Industry Resources

www.uefi.org

UEFI Open Source

www.tianocore.org

Intel UEFI Resources

www.intel.com/UDK

Intel EBC Compiler

http://software.intel.com/en-us/articles/intel-ccompiler-for-efi-byte-code-purchase/

UEFI Books/ Collateral

www.intel.com/intelpress

http://www.intel.com/technology/itj/2011/v15i1/index.htm

Seattle Meet-up

Thank You

Contact: vincent.zimmer@intel.com vincent.zimmer@gmail.com

Backup