Analysis of Algorithms Sorting in linear time

Arturo Calderón (the TA guy)

September 5, 2020

Outline

- Algorithmic Complexity Analysis
 - Introduction
 - Asymptotic Bounds
 - Correctness of Algorithms
 - Excercises

Outline

- Algorithmic Complexity Analysis
 - Introduction
 - Asymptotic Bounds
 - Correctness of Algorithms
 - Excercises

When measuring an algorithm efficiency we must consider:

- Speed.

When measuring an algorithm efficiency we must consider:

- Speed.
- Memory usage.
- Scalability.

 Speed is measured in terms of the number of operations relative to the size of the input.

When measuring an algorithm efficiency we must consider:

- Speed.
- Memory usage.
- Scalability.

When measuring an algorithm efficiency we must consider:

- Speed.
- Memory usage.
- Scalability.

Measuring speed!

• Speed is measured in terms of the number of operations relative to the size of the input.

Intuition

An asymptotic bound is a curve that represents the limit of a function.

Intuition

An asymptotic bound is a curve that represents the limit of a function.

For the purpose of analyzing the speed of an algorithm, tree typical asymptotic bounds are used.

- Big O (Upper bound)
- 0.000
- ullet Big $\Theta(\mathsf{Expected\ bound})$

Intuition

An asymptotic bound is a curve that represents the limit of a function.

For the purpose of analyzing the speed of an algorithm, tree typical asymptotic bounds are used.

- Big O (Upper bound)
- **2** Big $\Omega(Lower bound)$

Intuition

An asymptotic bound is a curve that represents the limit of a function.

For the purpose of analyzing the speed of an algorithm, tree typical asymptotic bounds are used.

- Big O (Upper bound)
- **2** Big $\Omega(Lower bound)$
- **3** Big $\Theta(Expected bound)$

Outline

- Algorithmic Complexity Analysis
 - Introduction
 - Asymptotic Bounds
 - Correctness of Algorithms
 - Excercises

Big O (Upper bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in O(g(n))$.

• $f(n) \in O(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n > n_0$.

Big O (Upper bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in O(g(n))$.

Definition

• $f(n) \in O(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Big Ω (Lower bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in \Omega(g(n))$.

• $f(n) \in \Omega(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

Big Ω (Lower bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in \Omega(g(n))$.

Definition

• $f(n) \in \Omega(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \ge c \cdot g(n)$ for all $n \ge n_0$.

Big Θ (Expected bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in \Theta(g(n))$.

• $f(n) \in O(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n > n_0$

Big Θ (Expected bound)

Intuition

• Let f(n) and g(n) be two real valued functions, lets build intuition on the meaning of $f(n) \in \Theta(g(n))$.

Definition

• $f(n) \in O(g(n))$ if there exists $c, n_0 > 0$ such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Outline

- Algorithmic Complexity Analysis
 - Introduction
 - Asymptotic Bounds
 - Correctness of Algorithms
 - Excercises

Loop invariant and loop conditional

• A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

Facts!

 To prove an algorithm is correct we must find a loop conditional that ensures the algorithm terminates.

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

- To prove an algorithm is correct we must find a loop conditional that ensures the algorithm terminates.
- The loop invariant mus be true:

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

- To prove an algorithm is correct we must find a loop conditional that ensures the algorithm terminates.
- The loop invariant mus be true:
 - ▶ Before the loop starts

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

- To prove an algorithm is correct we must find a loop conditional that ensures the algorithm terminates.
- The loop invariant mus be true:
 - Before the loop starts
 - ▶ Before each iteration of the loop

Loop invariant and loop conditional

- A loop invariant is a condition that is necessarily true immediately before and immediately after each iteration of a loop.
- A loop conditional is a statements that controls the termination of the loop.
- Both loop invariant and loop conditional must be different conditions.

- To prove an algorithm is correct we must find a loop conditional that ensures the algorithm terminates.
- The loop invariant mus be true:
 - ▶ Before the loop starts
 - ▶ Before each iteration of the loop
 - After the loop terminates

Outline

- Algorithmic Complexity Analysis
 - Introduction
 - Asymptotic Bounds
 - Correctness of Algorithms
 - Excercises

Well, now you know the basics. Time to work!

From Dasgupta's Algorithms book, exercise 0.1

Using the definition in each of the following situations indicate wether f = O(g), or $f = \Omega(g)$, or both (in which case $f = \Theta(g)$).

Well, now you know the basics. Time to work!

From Dasgupta's Algorithms book, exercise 0.1

Using the definition in each of the following situations indicate wether f=O(g), or $f=\Omega(g)$, or both (in which case $f=\Theta(g)$).

$$f(n) = n - 100, g(n) = n - 200$$

Well, now you know the basics. Time to work!

From Dasgupta's Algorithms book, exercise 0.1

Using the definition in each of the following situations indicate wether f = O(q), or $f = \Omega(q)$, or both (in which case $f = \Theta(q)$).

- f(n) = n 100, g(n) = n 200
- $f(n) = n2^n, g(n) = 3^n$

Let's try this one!

Show that $\sum\limits_{k=1}^{n}\frac{1}{k^{2}}$ is bounded by a constant. (help me here!).

From Cormen's book exercise 2.1-3

Consider the searching problem:

Input: A sequence of n numbers $A = \langle a_1, a_2, ..., a_n \rangle$ and a value v.

Output: An index i such that v=A[i] or the special value NIL if v does not appear in A.

Write pseudocode for linear search, which scans through the sequence, looking for v. Using a loop invariant, prove that your algorithm is correct. Make sure that your loop invariant fulfills the three necessary properties.

From Cormen's book exercise 2.3-4

We can express insertion sort as a recursive procedure as follows. In order to sort $A\,[1...n]$, we recursively sort $A\,[1...n-1]$ and then insert $A\,[n]$ into the sorted array. Write a recurrence for the running time of this recursive version of insertion sort.

From Cormen's book exercise 3.1-7

Prove that $o\left(g\left(n\right)\right)\cap\omega\left(g\left(n\right)\right)$ is the empty set.

From Cormen's book exercise 3.2-8

Show that $k \ln k = \Theta(n)$ implies that $k = \Theta(\frac{n}{\ln n})$.

From Cormen's book exercise 4.3-1, 4.3-6

① Show that the solution of $T(n) = T(\lceil \frac{n}{2} \rceil) + 1$ is $O(\lg n)$.

From Cormen's book exercise 4.3-1, 4.3-6

- **①** Show that the solution of $T(n) = T(\lceil \frac{n}{2} \rceil) + 1$ is $O(\lg n)$.
- ② Show that the solution of $T(n) = 2T(\lfloor \frac{n}{2} \rfloor) + 1$ is $\Omega(n \lg n)$.

