Chapter 7 - Graphing Continuous Data

Laura Saba

July 10, 2017

What this chapter covers

- Mean and Median
- ▶ Error, Bias, Precision, and Percentiles
- Graphing data to show scatter
- Beware of data massage

Mean

- ▶ one of the most common statistics calculated on any data set (right or wrong)
- ▶ arithmetic mean = average

$$\sum_{i=1}^{N} x_i$$

Arithmetic Mean in R

Table 7.1. The body temperature of 12 individuals in degrees centigrade. Motulsky 2014 p. 62

```
bodyTemp = c(37.0,36.0,37.1,37.1,36.2,37.3,
36.8,37.0,36.3,36.9,36.7,36.8)
```

Calculate Arithmatic Mean Via Formula

```
# via formula
sum(bodyTemp) / length(bodyTemp)
```

```
## [1] 36.76667
```

Calculate Arithmatic Mean Via Function in Base R

```
# via base function
mean(bodyTemp)
## [1] 36.76667
# with rounding to match book
round(mean(bodyTemp),2)
## [1] 36.77
```

Potential Outlier Effect on Mean

```
bodyTemp2 = c(37.0,36.0,37.1,371,36.2,37.3,
36.8,37.0,36.3,36.9,36.7,36.8)
mean(bodyTemp2)
```

```
## [1] 64.59167
```

Median

Often, we want a measure of the central tendency that is more robust to outliers than the mean.

- ▶ median = middle value = 50th percentile
- if even number of sample, take of average of the two middle ones
- \triangleright e.g., for body temperature (N = 12), take the average the 6th and 7th ranked values

Ranking data in R

```
ranked.bodyTemp = bodyTemp[order(bodyTemp)]
#OR
ranked.bodyTemp = sort(bodyTemp)
ranked.bodyTemp
```

```
## [1] 36.0 36.2 36.3 36.7 36.8 36.8 36.9 37.0 37.0 37.1
```

Median Using Formula

```
ranked.bodyTemp[6:7]

## [1] 36.8 36.9

(ranked.bodyTemp[6] + ranked.bodyTemp[7])/2

## [1] 36.85
```

Median Using Function in Base R

[1] 36.85

```
median(bodyTemp)

## [1] 36.85

## With outlier (typo)
median(bodyTemp2)
```

Geometric Mean

Another central measure that is more robust to outliers or 'skewed' distributions is the **geometric mean**.

- geometric mean = $\exp\left[\frac{1}{n}\sum_{i=1}^{n}\ln x_i\right]$
- ▶ to be able to calculate the geometric mean, all values must be greater than zero

Geometric Mean Using Formula

```
## Step 1 - take log of values
logged.bodyTemp = log(bodyTemp)

## Step 2 - average logged values
avg.logged.bodyTemp = mean(logged.bodyTemp)

## Step 3 - take antilog of average of logged values
geoMean.bodyTemp = exp(avg.logged.bodyTemp)
geoMean.bodyTemp
```

```
## [1] 36.76465
```

Geometric Mean - Creating a Function

```
gm = function(a) exp(mean(log(a)))
gm(bodyTemp)
```

```
## [1] 36.76465
```

Geometric Mean - Type of Log

[1] 36.76465

It doesn't matter if you use a natural log, log base 10, log base 2, etc.

```
exp(mean(log(bodyTemp)))
## [1] 36.76465
10^(mean(log10(bodyTemp)))
## [1] 36.76465
2^(mean(log2(bodyTemp)))
## [1] 36.76465
1.234^(mean(log(bodyTemp, 1.234)))
```

Harmonic Mean

Not commonly used, the **harmonic mean** is similar to the geometric mean, in that the values are tranformed then averaged and then averaged value is reverse transformed.

- harmonic mean = $\left[\frac{1}{n}\sum_{i=1}^{n}\frac{1}{x_i}\right]^{-1}$
- to be able to calculate the harmonic mean, all values must be greater than zero

Harmonic Mean Using Formula

```
## Step 1 - take reciprocal of values
recip.bodyTemp = 1/bodyTemp
## Step 2 - average reciprocal values
avg.recip.bodyTemp = mean(recip.bodyTemp)
## Step 3 - take reciprocal of the average
##
            of reciprocal values
harmMean.bodyTemp = 1/avg.recip.bodyTemp
harmMean.bodyTemp
```

```
## [1] 36.76263
```

Harmonic Mean - Creating a Function

```
hm = function(a) 1/(mean(1/a))
hm(bodyTemp)
```

```
## [1] 36.76263
```

Trimmed Mean

Often, we don't want to include the extreme values in the measure of central tendency. In that case, a **trimmed mean** is often used.

trimmed mean = mean of most of the values, ignoring the highest and lowest values

Trimmed Mean Using Formula

```
## Step 1 - reduce to interquartile range,
## i.e., remove bottom 25% and top 25%

11 = quantile(bodyTemp,0.25)
ul = quantile(bodyTemp,0.75)
iqr.bodyTemp = bodyTemp[bodyTemp>=11 & bodyTemp<=ul]

## Step 2 - average values in the interquartile range
trimmed.bodyTemp = mean(iqr.bodyTemp)
trimmed.bodyTemp</pre>
```

```
## [1] 36.86667
```

Trimmed Mean - Using a Function

```
mean(bodyTemp,trim=0.25)
```

[1] 36.86667

Mode

Rather than the mean, we might want to know what is most likely value. In that case, you would report the **mode** instead.

- mode = the value(s) that occurs most often
- usually only relevant if the values are integers or a number with only one or two significant digits
- a data set can have more than one mode

Mode by hand

```
(cnts = table(bodyTemp))
## bodyTemp
## 36 36.2 36.3 36.7 36.8 36.9 37 37.1 37.3
## 1 1 1 1 2 1 2 2 1
(max.cnts = cnts[cnts==max(cnts)])
## bodyTemp
## 36.8 37 37.1
## 2 2 2
names(max.cnts)
## [1] "36.8" "37"
               "37.1"
```

Mode - Creating Function

[1] "36.8" "37" "37.1"

```
modeDist = function(a) {
  cnts = table(a)
  max.cnts = cnts[cnts==max(cnts)]
  output = names(max.cnts)
  return(output)
}
modeDist(bodyTemp)
```

Comparison of Central Tendency Measures of Body Temperature

Original Data Set

type	value
arithematic mean	36.77
median	36.85
geometric mean	36.76
harmonic mean	36.76
trimmed mean (25% from either end)	36.87
mode	36.8, 37, 37.1

Comparison of Central Tendency Measures of Body Temperature

Data Set with Typo

type	value
arithematic mean	64.59
median	36.85
geometric mean	44.54
harmonic mean	39.71
trimmed mean (25% from either end)	36.87
mode	36.8, 37

ERROR, BIAS, PRECISION, AND PERCENTILES

Error

With respect to data values, error is often used to the describe the variation between data values. This can include:

- biological variation
- experimental error, i.e., imprecision
- technical error, e.g., typos

Statisticians tend to prefer the terms **scatter** or **variability** rather than error.

Bias

When the error is systematic, it is referred to as **bias**. "Systematic" indicates that the added error affects each value in a similar manner, e.g.,

- faulty thermometer
- bug in code that converts degrees Celsius to degrees Fahrenheit

Bias data are NOT accurate.

*Accuracy - the proximity of measured values to the true value

Precision

Precision is a measure of how reproducible the measured values are, i.e., little scatter.

Precision and accuracy are independent, e.g., your measurements can have little scatter, but a large bias.

Figure 1: accuracy vs precision

Percentiles

The X th percentile is the measured value with X % of the values less than its value.

```
quantile(bodyTemp)
##
       0% 25% 50% 75% 100%
## 36,000 36,600 36,850 37,025 37,300
sum(bodyTemp<quantile(bodyTemp)[2])</pre>
## [1] 3
sum(bodyTemp<quantile(bodyTemp)[2])/length(bodyTemp)</pre>
## [1] 0.25
```

GRAPHING DATA TO SHOW SCATTER OR DISTRIBUTION

Scatterplots

Scatterplots are used to display every data point. This makes it easy to:

- find outliers
- get a general idea of scatter
- estimate median and possibly mean

Scatterplots - Lots of data

When you have lots of data points, the utility of the scatter plot diminishes.

Scatterplot - Example Code

```
plot(jitter(rep(0,length(bodyTemp)),amount=0.05),
     bodyTemp,
     xlim=range(-1,1),
     ylim=range(35.5,37.5),
     axes=FALSE,
     frame.plot=TRUE,
     xlab="",
     pch=20,
     cex=2)
axis(2, seq(35.5, 37.5, by=0.5))
segments(-0.2, mean(bodyTemp), 0.2, mean(bodyTemp), lwd=3)
```

Box-and-whisker plots

Box-and-whisker plots, or just box plots, give you an idea about the distribution of the data without plotting every single point.

Minimum (Maximum Value in the Data, $Q_3 + I.5*IQR$)

Box-and-whisker plots - Body Temperature

With Outlier

Box-and-whisker plot - R Code

boxplot(bodyTemp,main="Original Data",cex=2)

Box-and-whisker plot - WARNING

Not all program/people use the same definitions for where whiskers should end. Some use:

- ▶ 5% and 95% percentiles
- maximum and minimum values

Always double check the programs documentation for details. You can change most of these properties in the boxplot R function, e.g., range option $\sf R$

Frequency distribuiton histograms

When there is a lot of data points or if you want to identify a mode, a histogram is helpful.

hist(bigData)

bigData

Histograms - Breakpoints

```
par(mfrow=c(2,2))
hist(bigData,breaks=5)
hist(bigData,breaks=10)
hist(bigData,breaks=20)
hist(bigData,breaks=40)
```


Cumulative frequency distribution

```
par(mfrow=c(1,1))
plot(ecdf(bigData),ylab="cumulative percent")
```


BEWARE OF DATA MASSAGE

Often publications include graphics that do not contain the data that was actually collected.

Beware of:

- filtering out impossible data (e.g., a child older than their parent, smoker that smokes more than 100 packs a day)
- adjusted data (e.g., values adjusted for different demographics of sample)
- smoothing (e.g., making plots pretty)
- variables that are the ratio of two measurements (e.g., enzyme activity by cell count)
- normalized data (e.g., calculated percents)

What did we learned

- Continuous variables are common in medical research.
- Several ways to determine the central tendency of data (mean, median, mode, geometrical mean, harmonic mean).
- Graphics to consider:
- 1. scatter plot (smaller number of values)
- 2. box plot (larger number of values)
- 3. histograms (details about shape of distribution)
- 4. cumulative distribution
- 'Final' graphics are often massaged, be wary.