Relación de problemas. Tema 1

- 1. Resuelva los siguientes problemas de programación lineal gráficamente y mediante el método del SIMPLEX:
 - a) Maximizar $x_1 + 5x_2$, S.A.

$$-2x_1 + x_2 \le 4,$$

$$-x_1 + x_2 \le 1,$$

$$2x_1 + x_2 \le 6,$$

$$x_1, x_2 \ge 0.$$

b) Minimizar $x_1 - x_2$, S.A.

$$x_1 + x_2 \le 3,$$

 $2x_1 - x_2 \ge 1,$
 $x_2 \le 2,$
 $x_1, x_2 \ge 0.$

c) Maximizar $x_1 + x_2$, S.A.

$$-x_1 + x_2 \le 1$$

$$x_1 + x_2 \le 3$$

$$x_1 - 2x_2 \le 4$$

 $x_1 \ge 0$, x_2 n.r.s. (No restringida en signo)

2. Determine los problemas duales de los siguientes problemas de programación lineal:

a) Max.
$$z = 2x_1 + x_2$$
, S.A.

$$-x_1 + x_2 \le 1,$$

$$x_1 + x_2 \le 3,$$

$$x_1 - 2x_2 \le 4,$$

$$x_1, x_2 \ge 0,$$

b) Min. $z = 2x_1 + x_2$, S.A.

$$-x_1 + x_2 \ge 1,$$

 $x_1 + x_2 \le 3,$
 $x_1 - 2x_2 = 4,$
 $x_1 \ge 0, x_2 \text{ n.r.s.}$

3. Una empresa fabrica tres tipos de productos químicos A, B y C a partir de dos sustancias D y E. La siguiente tabla muestra en gramos los recursos necesarios para fabricar 1 gr de cada producto:

RECURSO	A	В	С	DISPONIBLE
D	5	1	3	20
E	1	5	3	30
BENEFICIO (euros por gramos)	40	30	15	

Se pide

- a) Maximice los ingresos empleando los recursos disponibles.
- b) Determine el valor por unidad (precio dual) de los recursos D y E.
- 4. Una empresa fabrica tres tipos de productos químicos A, B y C a partir de dos sustancias D y E. La siguiente tabla muestra en gramos los recursos necesarios para fabricar 1 gramo de cada producto:

RECURSO	Α	В	С	DISPONIBLE
D	1	2	1	20
E	2	1	1	30
BENEFICIO (euros por gramos)	40	30	20	

Se pide

- a) Maximice los ingresos empleando los recursos disponibles.
- b) Determine el valor por unidad (precio dual) de los recursos D y E.
- c) Realice un análisis de sensibilidad a cambio en los costes. ¿Cuál sería el resultado si el beneficio obtenido por cada gramo del producto A fuese 35 euros y se mantuviera el beneficio por gramo de B y C?
- d) Realice un análisis de sensibilidad a cambio en los recursos. ¿Cuál sería el resultado si se dispusiese de 40 g del recurso E?
- 5. Considere el siguiente problema:

Maximizar
$$z = x_1 - 2x_2 + 3x_3$$
,
S.A. $x_1 + x_2 + x_3 \le 10$,
 $x_1 - x_2 \le 5$,
 $x_1 - x_3 \le 5$,
 $x_1, x_2, x_3 \ge 0$.

- (a) Resuelva este problema mediante el método del *simplex*.
- (b) Realice un análisis de sensibilidad para los cambios en los recursos.
- (c) ¿Cuál es el precio dual de los recursos asociados a cada restricción?

6. Considere el siguiente problema:

Maximizar
$$z = x_1 + x_2 + x_3$$
,
S.A. $x_1 - x_2 + x_3 \le 10$,
 $x_1 + x_2 - x_3 \le 10$,
 $x_1, x_2, x_3 > 0$.

- (a) Resuelva este problema mediante el método del simplex.
- (b) Realice un análisis de sensibilidad para los cambios en los recursos.
- (c) ¿Cuál es el precio dual de los recursos asociados a cada restricción?

7. Considere el siguiente problema:

Maximizar
$$z = 2x_1 + x_2 + x_3$$
,
S.A. $x_1 + x_2 + x_3 \le 8$,
 $x_1 - x_2 + 2x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

- (a) Resuelva este problema mediante el método del simplex.
- (b) Realice un análisis de sensibilidad para los cambios en los costes.
- (c) ¿Cuál es el precio dual de los recursos asociados a cada restricción?

8. Considere el siguiente problema:

Maximizar
$$z = 5x_1 + x_2 - 2x_3$$
,
S.A. $x_1 + x_2 + x_3 \le 10$,
 $2x_1 + x_2 - x_3 \le 10$,
 $x_1, x_2, x_3 \ge 0$.

- (a) Resuelva este problema mediante el método del simplex.
- (b) Realice un análisis de sensibilidad para los cambios en los recursos.
- (c) ¿Cuál es el precio dual de los recursos asociados a cada restricción? (Primer Parcial 2017/18)

9. Considere el siguiente problema:

Maximizar
$$z = 5x_1 + x_2 + 2x_3$$
,
S.A. $2x_1 + x_2 + x_3 \le 20$,
 $x_1 + 2x_2 + x_3 \le 20$,
 $x_1, x_2, x_3 \ge 0$.

- (a) Resuelva este problema mediante el método del simplex.
- (b) Realice un análisis de sensibilidad para los cambios en los costes (coeficientes de la función objetivo).

- (c) ¿Cuál es el precio dual de los recursos asociados a cada restricción? (Febrero 2018)
- 10. En una empresa los trabajadores trabajan 5 días consecutivos y descansan los 2 siguientes. En función del día el número de trabajadores requeridos viene dado por la tabla siguiente.

DIA	Lun.	Mar.	Mie.	Jue.	Vie	Sab.	Dom.
NUM.	17	13	15	19	14	16	11

Plantee un problema de programación lineal para determinar el número mínimo de trabajadores que requiere la empresa.

11. Hay que distribuir el agua de 2 pantanos entre tres ciudades. La tabla de costes de distribución es la siguiente:

	CIUDADES			OFERTA		
CENTRAL	Α	В	\mathbf{C}	M litros/dia		
I	7	8	10	50		
II	9	7	8	50		
DEMANDA						
M litros/dia	40	40	40			

Plantee le problema del transporte dado por dicha tabla. ¿Está equilibrado? ¿Cómo puede equilibrarlo?

12. Un equipo está formado por cuatro nadadores multidisplinares en los 100 metros braza, espalda, mariposa y libres. Su mejor tiempo (segundos) en cada prueba viene dado por la siguiente tabla

Nadador	Braza	Espalda	Mariposa	Libres
Gary Hall	54	53	51	54
Mark Spitz	57	52	52	51
Montgomery	53	56	54	50
Jerkstrensky	54	53	55	56

Plantee el problema de asignación de estos nadadores en la prueba 400 metros estilos (100 metros en cada estilo) para maximizar la probabilidad de victoria.