

RoboticsPS10 – Solutions

Andreas Birk
Constructor University

Part 10: Registration

Given two point-sets $A = \{a_i\}$ and $B = \{b_i\}$ where each a_i corresponds to the spatially transformed, i.e., rotated and translated (with noise), point b_i :

	F	4	E	3
i	X	У	Х	У
1	0.00	0.00	2.10	2.71
2	1.00	0.00	3.01	3.72
3	0.00	1.00	1.24	3.79
4	1.00	1.00	1.79	4.56
5	2.00	0.50	3.04	4.63

Use Horn's algorithm to determine the underlying rotation R and translation t.

no noise example first

ground truth: rotation by 45 deg, translation by $(2,3)^T$

$$R = \begin{pmatrix} c(45^{o}) & s(45^{o}) \\ -s(45^{o}) & c(45^{o}) \end{pmatrix}$$
$$= \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$

$$t = (2,3)^T$$

	Α		В	
i	Х	х у		У
1	0	0	2	3
2	1	0	2.71	3.71
3	0	1	1.29	3.71
4	1	1	2	4.41
5	2	0.5	3.06	4.77

no noise, rotation by 45 deg, translation by $(2,3)^T$

	А		В	
i	х у		Х	у
1	0	0	2	3
2	1	0	2.71	3.71
3	0	1	1.29	3.71
4	1	1	2	4.41
5	2	0.5	3.06	4.77

compute centroids
$$\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$$
 $\bar{b} = \frac{1}{n} \sum_{i=1}^{n} b_i$

	А			Е	3
	Х	У		Х	У
	0	0		2	3
	1	0		2.71	3.71
	0	1		1.29	3.71
	1	1		2	4.41
	2	0.5		3.06	4.77
\overline{a}	0.80	0.50	$\overline{m{b}}$	2.21	3.92

subtract centroids \overline{a} and \overline{b} from A and B, i.e.,

$$A' = \{a_i - \overline{a}\} = \{a_i'\}$$
 $B' = \{b_i - \overline{b}\} = \{b_i'\}$

	Α			
	Х	У)
	0	0		4
	1	0		2.
	0	1		1.
	1	1		2
	2	0.5		3.
\overline{a}	0.80	0.50	\overline{b}	2.

В				
X	У			
2	3			
2.71	3.71			
1.29	3.71			
2	4.41			
3.06	4.77			
2.21	3.92			

	<u> </u>	۱,	E	3'
i	Х	У	X	у
1	-0.80	-0.50	-0.21	-0.92
2	0.20	-0.50	0.49	-0.21
3	-0.80	0.50	-0.92	-0.21
4	0.20	0.50	-0.21	0.49
5	1.20	0.00	0.85	0.85

compute matrix
$$W = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} b'_i \cdot a'^T_i$$

$$W_1 = b_1' \cdot a_1'^T$$

$$= {\binom{-0.21}{-0.92}} \cdot (-0.80 \quad -0.50)$$

$$= \begin{pmatrix} 0.1697 & 0.1061 \\ 0.7354 & 0.4596 \end{pmatrix}$$

	Д	\ ′	В	3'
i	Х	У	Х	У
1	-0.80	-0.50	-0.21	-0.92
2	0.20	-0.50	0.49	-0.21
3	-0.80	0.50	-0.92	-0.21
4	0.20	0.50	-0.21	0.49
5	1.20	0.00	0.85	0.85

compute matrix
$$W = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} b'_i \cdot a'^T_i$$

$$W_2 = b_2' \cdot a_2'^T$$

$$= {0.49 \choose -0.21} \cdot (0.20 -0.50)$$

$$= \begin{pmatrix} 0.0990 & -0.2475 \\ -0.0424 & 0.1061 \end{pmatrix}$$

and so on for W_3 to W_5 ...

	A'		B'	
i	X	У	X	У
1	-0.80	-0.50	-0.21	-0.92
2	0.20	-0.50	0.49	-0.21
3	-0.80	0.50	-0.92	-0.21
4	0.20	0.50	-0.21	0.49
5	1.20	0.00	0.85	0.85

$$W = W_1 + W_2 + \dots + W_5$$

$$= \begin{pmatrix} 0.1697 & 0.1061 \\ 0.7354 & 0.4596 \end{pmatrix} + \begin{pmatrix} 0.0990 & -0.2475 \\ -0.0424 & 0.1061 \end{pmatrix} + \dots$$

$$= \begin{pmatrix} 1.9799 & -0.7071 \\ 1.9799 & 0.7071 \end{pmatrix}$$

compute SVD of $W = USV^T$

$$W = \begin{pmatrix} 1.9799 & -0.7071 \\ 1.9799 & 0.7071 \end{pmatrix} = USV^T$$

$$U = \begin{pmatrix} -0.70711 & -0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}, S = \begin{pmatrix} 2.8 & 0 \\ 0 & 1 \end{pmatrix}, V^T = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

rotation $R = UV^T$

$$R = \begin{pmatrix} -0.70711 & -0.70711 \\ -0.70711 & 0.70711 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$

translation $t = \overline{b} - R\overline{a}$

$$t = \begin{pmatrix} 2.212 \\ 3.919 \end{pmatrix} - \begin{pmatrix} -0.70711 & -0.70711 \\ -0.70711 & 0.70711 \end{pmatrix} \begin{pmatrix} 0.80 \\ 0.50 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Α			E	3
Х	У		Х	У
0	0		2	3
1	0		2.71	3.71
0	1		1.29	3.71
1	1		2	4.41
2	0.5		3.06	4.77
0.80	0.50	\overline{b}	2.21	3.92

error

$$E(R,t) = \sum_{i=1}^{n} (\|a_i'\|^2 + \|b_i'\|^2) - 2(\sigma_1 + \sigma_2)$$
$$= 7.6 - 2(2.8 + 1)$$
$$= 0$$

with
$$S = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} = \begin{pmatrix} 2.8 & 0 \\ 0 & 1 \end{pmatrix}$$

ground truth:

rotation
$$R = \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$
, translation $t = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

result of Horn's Algorithm:

rotation
$$R = \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$
, translation $t = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

error
$$E(R,t)=0$$

now, with noise on B, i.e., HW numbers (and same ground truth)

	F	4	E	3
i	X	У	X	У
1	0.00	0.00	2	3
2	1.00	0.00	2.71	3.71
3	0.00	1.00	1.29	3.71
4	1.00	1.00	2	4.41
5	2.00	0.50	3.06	4.77

	Α		В	
i	X	У	X	У
1	0.00	0.00	2.10	2.71
2	1.00	0.00	3.01	3.72
3	0.00	1.00	1.24	3.79
4	1.00	1.00	1.79	4.56
5	2.00	0.50	3.04	4.63

B without noise

B with noise

with noise, rotation by 45 deg, translation by $(2,3)^T$

	F	4	E	3
i	х у		Х	У
1	0.00	0.00	2.10	2.71
2	1.00	0.00	3.01	3.72
3	0.00	1.00	1.24	3.79
4	1.00	1.00	1.79	4.56
5	2.00 0.50		3.04	4.63

compute centroids
$$\bar{a} = \frac{1}{n} \sum_{i=1}^{n} a_i$$
 $\bar{b} = \frac{1}{n} \sum_{i=1}^{n} b_i$

	Α			E	3
	Х	У		Х	у
	0	0		2.10	2.71
	1	0		3.01	3.72
	0	1		1.24	3.79
	1	1		1.79	4.56
	2	0.5		3.04	4.63
ī	0.80	0.50	$\overline{m{b}}$	2.236	3.881

subtract centroids \bar{a} and \bar{b} from A and B, i.e.,

$$A' = \{a_i - \overline{a}\} = \{a_i'\}$$
 $B' = \{b_i - \overline{b}\} = \{b_i'\}$

	ļ ,	7		В		
	Х	у		Х	у	
	0	0		2.10	2.71	
	1	0		3.01	3.72	
	0	1		1.24	3.79	
	1	1		1.79	4.56	
	2	0.5		3.04	4.63	
\overline{a}	0.80	0.50	\overline{b}	2.236	3.881	

	A	\ ′	В	3'
i	X	У	Х	У
1	-0.80	-0.50	-0.14	-1.17
2	0.20	-0.50	0.77	-0.16
3	-0.80	0.50	-0.99	-0.09
4	0.20	0.50	-0.45	0.68
5	1.20 0.00		0.80	0.75

compute matrix
$$W = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} b'_i \cdot a'^T_i$$

$$W_1 = b_1' \cdot a_1'^T$$

$$= \begin{pmatrix} -0.14 \\ -1.17 \end{pmatrix} \cdot \begin{pmatrix} -0.80 & -0.50 \end{pmatrix}$$

$$= \begin{pmatrix} 0.1089 & 0.0681 \\ 0.9370 & 0.5856 \end{pmatrix}$$

and so on for W_2 to W_5 ...

	Δ	\ ′	B'		
i	Х	У	X	У	
1	-0.80	-0.50	-0.14	-1.17	
2	0.20	-0.50	0.77	-0.16	
3	-0.80	0.50	-0.99	-0.09	
4	0.20	0.50	-0.45	0.68	
5	1.20	0.00	0.80	0.75	

$$W = W_1 + W_2 + \dots + W_5 = \begin{pmatrix} 1.9339 & -1.0371 \\ 2.0119 & 0.9621 \end{pmatrix} = USV^T$$

•
$$U = \begin{pmatrix} -0.697399 & -0.716683 \\ -0.716683 & 0.697399 \end{pmatrix}$$

•
$$S = \begin{pmatrix} 2.7908 & 0 \\ 0 & 1.4144 \end{pmatrix}$$

$$V^T = \begin{pmatrix} -0.9999 & 0.0121 \\ 0.0121 & 0.9999 \end{pmatrix}$$

A. Birk, Constructor University

20

rotation $R = UV^T$

$$R = \begin{pmatrix} -0.697399 & -0.716683 \\ -0.716683 & 0.697399 \end{pmatrix} \begin{pmatrix} -0.99999 & 0.0121 \\ 0.0121 & 0.9999 \end{pmatrix} = \begin{pmatrix} 0.6887 & -0.7251 \\ 0.7251 & 0.6887 \end{pmatrix}$$

translation $t = \overline{b} - R\overline{a}$

$$t = \begin{pmatrix} 2.236 \\ 3.881 \end{pmatrix} - \begin{pmatrix} 0.6887 & -0.7251 \\ 0.7251 & 0.6887 \end{pmatrix} \begin{pmatrix} 0.80 \\ 0.50 \end{pmatrix} = \begin{pmatrix} 2.02 \\ 2.96 \end{pmatrix}$$

error

$$E(R,t) = \sum_{i=1}^{n} (\|a_i'\|^2 + \|b_i'\|^2) - 2(\sigma_1 + \sigma_2)$$

$$= 8.68 - 2(2.7908 + 1.41435)$$

$$= 0.266815944$$

with
$$S = \begin{pmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{pmatrix} = \begin{pmatrix} 2.7908 & 0 \\ 0 & 1.41435 \end{pmatrix}$$

ground truth:

rotation
$$R = \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$
, translation $t = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$

result of Horn's Algorithm:

rotation
$$R = \begin{pmatrix} 0.6887 & -0.7251 \\ 0.7251 & 0.6887 \end{pmatrix}$$
, translation $t = \begin{pmatrix} 2.02 \\ 2.96 \end{pmatrix}$ quite accurate,

quite accurate, despite few points and high noise

error
$$E(R, t) = 0.266815944$$

additional example with scale (and no noise) ground truth: rotation by 45 deg, translation by $(2,3)^T$, scale 2.7

$$R = \begin{pmatrix} c(45^{o}) & s(45^{o}) \\ -s(45^{o}) & c(45^{o}) \end{pmatrix}$$
$$= \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$

$$t = (2,3)^T$$

$$s = 2.7$$

	A	7	В		
i	X	У	X	У	
1	0	0	2.00	3.00	
2	1	0	3.91	4.91	
3	0	1	0.09	4.91	
4	1	1	2.00	6.82	
5	2	0.5	4.86 7.77		

compute centroids \overline{a} and \overline{b} and subtract them from A and B

$$A' = \{a_i - \overline{a}\} = \{a_i'\}$$
 $B' = \{b_i - \overline{b}\} = \{b_i'\}$

	A	4			В		
	Х	у			Х	у	
	0	0			2.00	3.00	
	1	0			3.91	4.91	
	0	1			0.09	4.91	
	1	1			2.00	6.82	
	2	0.5			4.86	7.77	
\overline{a}	0.80	0.50		\overline{b}	2.573	5.482	

	A	'	B'		
ï	X	У	Х	У	
1	-0.80	-0.50	-0.57	-2.48	
2	0.20	-0.50	1.34	-0.57	
3	-0.80	0.50	-2.48	-0.57	
4	0.20	0.50	-0.57	1.34	
5	1.20 0.00		2.29	2.29	

compute
$$W = \sum_{i=1}^{n} W_i = \sum_{i=1}^{n} b_i' \cdot a_i'^T = \begin{pmatrix} 5.346 & -1.909 \\ 5.346 & 1.909 \end{pmatrix}$$
 and its SVD

$$U = \begin{pmatrix} 0.70711 & 0.70711 \\ 0.70711 & -0.70711 \end{pmatrix}, S = \begin{pmatrix} 2.8 & 0 \\ 0 & 1 \end{pmatrix}, V^T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

rotation $R = UV^T$

$$R = \begin{pmatrix} 0.70711 & 0.70711 \\ 0.70711 & -0.70711 \end{pmatrix} \begin{pmatrix} 7.56 & 0 \\ 0 & 2.7 \end{pmatrix} = \begin{pmatrix} 0.70711 & 0.70711 \\ -0.70711 & 0.70711 \end{pmatrix}$$

scale factor

$$s = \sqrt{\frac{\sum_{i=1}^{n} ||b_i'||^2}{\sum_{i=1}^{n} ||a_i'||^2}}$$

$$= \sqrt{\frac{0.89 + 0.29 + 0.89 + 0.29 + 1.44}{6.49 + 2.11 + 6.49 + 2.11 + 10.50}}$$

$$= \sqrt{\frac{3.8}{0.89 + 0.29 + 0.89 + 0.29 + 1.44}}$$

	A	\'	B'		
i	X	У	X	У	
1	-0.80	-0.50	-0.57	-2.48	
2	0.20	-0.50	1.34	-0.57	
3	-0.80	0.50	-2.48	-0.57	
4	0.20	0.50	-0.57	1.34	
5	1.20	0.00	2.29	2.29	

translation $t = \overline{b} - sR\overline{a}$

$$t = \begin{pmatrix} 2.573 \\ 5.482 \end{pmatrix} - 2.7 \begin{pmatrix} -0.70711 & -0.70711 \\ -0.70711 & 0.70711 \end{pmatrix} \begin{pmatrix} 0.80 \\ 0.50 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

ļ ,	4		E	3
Х	у		Х	У
0	0		2.00	3.00
1	0		3.91	4.91
0	1		0.09	4.91
1	1		2.00	6.82
2	0.5		4.86	7.77
0.80	0.50	$\overline{m{b}}$	2.573	5.482

Suppose the correspondences between the points in A and B from the previous problem are not known. What do the nearest neighbor correspondences in a first step of the Iterative Closest Point (ICP) algorithm look like?

ckeck Euclidean distances of all a_i to all b_i

$ a_i,b_i $	b_1	b_2	b_3	b_4	b_5
a_1	3.428	4.781	3.986	4.903	5.537
a_2	2.925	4.224	3.795	4.632	5.058
a_3	2.708	4.053	3.052	3.988	4.734
a_4	2.033	3.378	2.798	3.651	4.162
a_5	2.212	3.371	3.373	4.070	4.257

ckeck Euclidean distances of all a_i to all b_i

$ a_i,b_i $	b_1	b_2	b_3	b_4	b_5
a_1	3.428	4.781	3.986	4.903	5.537
a_2	2.925	4.224	3.795	4.632	5.058
a_3	2.708	4.053	3.052	3.988	4.734
a_4	2.033	3.378	2.798	3.651	4.162
a_5	2.212	3.371	3.373	4.070	4.257

 b_1 is always the closest, i.e., start: all a_i correspond to b_1

 b_1 is always the closest, i.e., start: all a_i correspond to b_1

$ a_i, b_i $	b_1	b_2	b_3	b_4	b_5
a_1	3.428	4.781	3.986	4.903	5.537
a_2	2.925	4.224	3.795	4.632	5.058
a_3	2.708	4.053	3.052	3.988	4.734
a_4	2.033	3.378	2.798	3.651	4.162
a_5	2.212	3.371	3.373	4.070	4.257

all a_i correspond to b_1 , hence B for Horn only consists of b_1

	Α			E	3
	X	У		Х	у
	0	0		2.10	2.71
	1	0		2.10	2.71
	0	1		2.10	2.71
	1	1		2.10	2.71
	2	0.5		2.10	2.71
\overline{a}	0.80	0.50	$\overline{m{b}}$	2.10	2.71

therefore, 1st ICP step with Horn finds only a translation as

$$W = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = USV^T \text{ with } U = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, S = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, V^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

hence

•
$$R = UV^T = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = I$$

•
$$t = \bar{b} - R\bar{a} = {2.10 \choose 2.71} - I \cdot {0.8 \choose 0.5} = {1.30 \choose 2.21}$$

apply R and t to B from k = 1 (the original B)

$$k = 1$$

	F	4	E	3
i	X	У	X	У
1	0.00	0.00	2.10	2.71
2	1.00	0.00	3.01	3.72
3	0.00	1.00	1.24	3.79
4	1.00	1.00	1.79	4.56
5	2.00	0.50	3.04	4.63

$$k = 2$$

	H	4	E	3
i	X	У	Х	У
1	0.00	0.00	0.800	0.500
2	1.00	0.00	1.707	1.507
3	0.00	1.00	-0.057	1.577
4	1.00	1.00	0.490	2.354
5	2.00	0.50	1.741	2.418

all points in B moved by
$$-t = \begin{pmatrix} -1.30 \\ -2.21 \end{pmatrix}$$

	F	4	Е	3
i	X	У	X	У
1	0.00	0.00	0.800	0.500
2	1.00	0.00	1.707	1.507
3	0.00	1.00	-0.057	1.577
4	1.00	1.00	0.490	2.354
5	2.00	0.50	1.741	2.418

all points in B moved by
$$-t = \begin{pmatrix} -1.30 \\ -2.21 \end{pmatrix}$$

ckeck Euclidean distances of all a_i to all new b_i

$ a_i,b_i $	b_1	b_2	b_3	b_4	b_5
a_1	0.943	2.277	1.578	2.405	2.979
a_2	0.539	1.665	1.899	2.409	2.529
a_3	0.943	1.781	0.580	1.440	2.245
a_4	0.539	0.870	1.204	1.447	1.600
a_5	1.200	1.049	2.322	2.391	1.935

there are now new nearest neighbors and hence new correspondences $a_1 \leftrightarrow b_1, a_2 \leftrightarrow b_1, a_3 \leftrightarrow b_3, a_4 \leftrightarrow b_1, a_5 \leftrightarrow b_2$

$$a_1 \leftrightarrow b_1, a_2 \leftrightarrow b_1, a_3 \leftrightarrow b_3, a_4 \leftrightarrow b_1, a_5 \leftrightarrow b_2$$

$ a_i, b_i $	b_1	b_2	b_3	b_4	b_5
a_1	0.943	2.277	1.578	2.405	2.979
a_2	0.539	1.665	1.899	2.409	2.529
a_3	0.943	1.781	0.580	1.440	2.245
a_4	0.539	0.870	1.204	1.447	1.600
a_5	1.200	1.049	2.322	2.391	1.935

the B for Horn is based on these correspondences

$$k = 2$$

	F	4	E	3
i	х у		X	У
1	0.00	0.00	0.800	0.500
2	1.00	0.00	1.707	1.507
3	0.00	1.00	-0.057	1.577
4	1.00	1.00	0.490	2.354
5	2.00	0.50	1.741	2.418

	F	4	E	3
i	х у		X	У
1	0.00	0.00	0.800	0.500
2	1.00	0.00	0.800	0.500
3	0.00	1.00	-0.057	1.577
4	1.00	1.00	0.800	0.500
5	2.00	0.50	1.707	1.507

$$a_1 \leftrightarrow b_1$$
, $a_2 \leftrightarrow b_1$, $a_3 \leftrightarrow b_3$, $a_4 \leftrightarrow b_1$, $a_5 \leftrightarrow b_2$

all points in B moved by
$$-t = \begin{pmatrix} -1.30 \\ -2.21 \end{pmatrix}$$

	F	4	E	3
i	X	У	Х	У
1	0.00	0.00	0.800	0.500
2	1.00	0.00	0.800	0.500
3	0.00	1.00	-0.057	1.577
4	1.00	1.00	0.800	0.500
5	2.00	0.50	1.707	1.507

use this as input for Horn's method to get new R and t

iterate until $R \approx I$ and $t \approx (0,0)^{\mathrm{T}}$