Group Project Presentation

DSBA 6160: Big Data Design, Storage, and Provenance

Alpha Group 1: Tony Bejos, Josh Peterson, Michael Lewis and Kevin Ovendorf

Part I

Introduction

Accessing and Loading MIMIC III Database

- Attained Training Certification through CITI online training program to gain access to MIMIC III database
 - 90% Score Required
 - Learned about human research practices and regulations
 - o Patient Privacy remains essential
- Prior to loading the tables into MySQL, each table reviewed and discussed by the team
 - o 27 Tables
 - Millions of Rows
 - Entity vs Assosciation

MIMIC III Database Build Overview

- Created a MYSQL db named mimic_iii_project
- Created table schema prior to load
- Extracted all zip files and utilized LOAD DATA LOCAL IN FILE code to load
- Created indexes on all tables for ease of use

```
LOAD DATA LOCAL INFILE 'ADMISSIONS.csv' INTO TABLE ADMISSIONS
   FIELDS TERMINATED BY ',' ESCAPED BY '\\' OPTIONALLY ENCLOSED BY '"'
   LINES TERMINATED BY '\n'
  IGNORE 1 LINES
   (@ROW ID,@SUBJECT ID,@HADM ID,@ADMITTIME,@DISCHTIME,@DEATHTIME,@ADMISSION TYPE,@ADMISSION LOCATION,@DISCHARGE LOCATION,@INSURANCE,@LANGUAGE,@RELIGION,@MARITAL STATUS,@ETHNICITY,@EDRI
  ROW_ID = @ROW_ID,
   SUBJECT ID = @SUBJECT ID,
   HADM ID = @HADM ID,
   ADMITTIME = @ADMITTIME,
   DISCHTIME = @DISCHTIME,
   DEATHTIME = IF(@DEATHTIME='', NULL, @DEATHTIME),
   ADMISSION_TYPE = @ADMISSION_TYPE,
   ADMISSION_LOCATION = @ADMISSION_LOCATION,
   DISCHARGE_LOCATION = @DISCHARGE_LOCATION,
   INSURANCE = @INSURANCE,
   LANGUAGE = IF(@LANGUAGE='', NULL, @LANGUAGE),
   RELIGION = IF(@RELIGION='', NULL, @RELIGION),
   MARITAL STATUS = IF(@MARITAL STATUS='', NULL, @MARITAL STATUS),
   ETHNICITY = @ETHNICITY,
   EDREGTIME = IF(@EDREGTIME='', NULL, @EDREGTIME),
   EDOUTTIME = IF(@EDOUTTIME='', NULL, @EDOUTTIME),
   DIAGNOSIS = IF(@DIAGNOSIS='', NULL, @DIAGNOSIS),
   HOSPITAL EXPIRE FLAG = @HOSPITAL EXPIRE FLAG,
   HAS CHARTEVENTS DATA = @HAS CHARTEVENTS DATA;
```


Part II

Notable Tables and Characteristics

DRGCODES

- Diagnosis Related Groups are codes used by the hospital for grouping diagnoses.
- There are two sources for these codes: MS and HCFA
- Can change over time, so must also use the description field when extracting these records

<u>ICUSTAYS</u>

- Defines each ICU Stay, so patients can have multiple ICUStay_ID
- Provides the ICU database source relevant to that patient; they used CareVue from 2001-2008 and Metavision from 2008-2012

INPUTEVENTS CV & INPUTEVENTS MV

- These tables house the events that take place during a patient stay in either the CareVue or Metavision database.
- Each DB has similar, but different fields so must be familiar with each.

LABEVENTS

- This table contains all lab measurements for a certain patients
- Lab measurements include the results from sampling a patient specimen (ie blood, urine, saliva)
- Time for these events is logged when specimen is acquired, not when data is available.

MICROBIOLOGYEVENTS

- This table is similar to the LABEVENTS table except it details situations where microbiology is required
- Provides details and results from various tests involving microbiology cultures

NOTEEVENTS

- Details the patient notes taken by a doctor or nurse during the course of their ICU Stay
- Category is an important field as it can often tell us when a patient is discharged
- The TEXT field can be very long and should be extracted carefully as a result

ADMISSIONS

- Entity All hospital admissions data
- Notably includes demographics of patients and admission/discharge times.
- Also include binary expiry flag that shows if patient is deceased.

CALLOUT

- Entity Provides information about ICU discharge planning
- Shows when a caregiver suggests callout, and if patient complied
- Also has "REQUEST" fields outlining specific diagnoses

CAREGIVERS

Entity table including caregiver information and CGID key field

CPTEVENTS

- Association table outlines billing events
- One-to-many relationship with CAREGIVERS through CGID foreign key

CHARTEVENTS

- Association table w/ 330 million rows physical measurements and "chartable" events
- 5 different foreign keys (joins PATIENTS, ADMISSIONS, ICUSTAYS, D_ITEMS, CAREGIVERS all with one-to-many relationships)

DATETIMEEVENTS

- Association table w/ 4 million rows datetime of all measurements of a patient
- 5 different foreign keys (joins PATIENTS, ADMISSIONS, ICUSTAYS, D_ITEMS, CAREGIVERS all with one-to-many relationships)

PATIENTS

- Entity table identifies the patient's sex, date of birth, date of death, and a mortality signifier
- One-to-many relationship with ADMISSIONS and ICUSTAYS

OUTPUTEVENTS

- Entity table identifies the chart times of the output events as well as details concerning the solutions and the caregivers responsible for the admission
- This table joins with the following tables:
 - PATIENTS
 - ADMISSIONS
 - ICUSTAYS
 - o D ITEMS
 - CAREGIVERS

PRESCRIPTIONS

- Entity table contains the identifiers and details about prescriptions written in the hospital
- Joins with the PATEINTS, ADMISSIONS, and ICUSTAYS tables

PROCEDUREEVENTS MV

- Entity table contains the identifiers and details regarding events surrounding procedures
- Joins with the following tables:
 - PATEINTS
 - ADMISSIONS
 - ICUSTAYS
 - o D_ITEMS

PROCEDURES ICD

- Association table contains identifiers and the order in which procedures took place with the associated ICD-9 procedure code.
- Joins with the PATIENTS, ADMISSIONS, and D_ICD_PROCEDURES tables

SERVICES

- Association table Contains transfer times along with the previous service performed as well as the current service being performed
- Joins with the PATIENTS and ADMISSIONS tables

TRANSFERS

- Entity table contains the identifiers and details regarding the transfers of patients
- Joins with the PATIENTS, ADMISSIONS, and ICUSTAYS tables.

<u>DICTIONARY TABLES</u> (5 total 'D_' tables)

- Association tables: provide a high-level dictionary of procedural terminology used in the medical field
 - o D CPT
 - D_ICD_PROCEDURES
 - o C_ICD_DIAGNOSES
 - o D_ITEMS
 - o D LABITEMS
- ICD9_CODE links DIANGOSES_ICD and PROCEDURES_ICD tables separately with a one-to-one relationship
- ITEM_ID links the following tables with a one-to-one relationship:
 - CHARTEVENTS, DATETIMEEVENTS, INPUTEVENTS_MV, MICROBIOLOGYEVENTS, OUTPUTEVENTS, PROCEDUREEVENTS_MV, LABEVENTS

DIAGNOSES ICD

- Association table contains diagnoses which relate to a specific hospital's admissions through the use of the ICD9 Code system.
- Links to the PATIENTS table with a one-to-many relationship
- Links to the ADMISSIONS table with a one-to-one relationship

PART III

Exploring Major Characteristics of the MIMIC III Database

Top Five Patient Diagnoses

- Displayed is the top five patient diagnostics from the database.
- The initial exploration was to find the most common diagnoses.
- This allows further drilling down because a baseline of what patients are dealing with has been presented

Pneumonia Procedures

- Displays the number of each procedure performed on the pneumonia diagnostic ranked from high to low, Venous Cath NEC being the most commonly performed
- This plot was derived from the top five diagnostics, pneumonia being the second most common.

Gender: Deaths By Service

- This displays the proportion of individuals, separated by gender, who died within the hospital during a particular visit.
- The largest difference between the genders was recorded at the ENT (ear, nose, and throat) where there was a difference of > 5%.
- Beyond this plot, patients were bucketed into age groups for each service to further investigate the death rate of these services.

Mortality Statistics

Goals were to find:

- Average hospital stay for deceased patients
- Most common diagnoses shared among deceased grouped by any time series and gender

Achieved by creating a view joining:

- ADMISSIONS
- PATIENTS
- DIAGNOSES_ICD
- D_ICD_DIAGNOSES

Condition - HOSPITAL_EXPIRE_FLAG = 1

Average Hospital Stay

Commonly Shared Diagnoses - Deceased Patients

First-Visit Services Rendered by Age Group

- Displays the services rendered to first-time ICU visits by age group
- Assists hospital with predicting the resources needed and helps prioritize patients
- This graph shows the age for Plastic Surgery, shows to be a more common service for younger people in relation to other services.

First-Admit Services for Pneumonia Patients

 Search can filter by diagnosis to determine which services are commonly rendered in the case of a specific diagnosis.

ICD9 Codes and associated diagnoses and procedure

- ICD9 codes were joined with their respective short and long descriptions of its diagnosis and procedure.
- All ICD9 codes were extracted from the DIAGNOSES_ICD and PROCEDURE ICD tables.
- This serves as a foundation to pursue future analytics that deal with features such datetime, gender, and mortality rate.

Icd9 Code	Diagnoses Short	Diagnoses Long	Procedure Short	Procedure Long
3572	Neuropathy in diabet	Polyneuropathy in di	Ventr septa def rep N	Other and unspecifie
41400	Cor ath unsp vsl ntv/	Coronary atheroscler	null	null
4019	Hypertension NOS	Unspecified essentia	Lymphatic diag proc	Other diagnostic pro
V4581	Aortocoronary bypass	Aortocoronary bypas	null	null
41071	Subendo infarct, initial	Subendocardial infar	null	null
5849	Acute kidney failure	Acute kidney failure,	Urethral repair NEC	Other repair of urethra
4280	CHF NOS	Congestive heart fail	null	null
25060	DMII neuro nt st unc	Diabetes with neurol	null	null
41401	Crnry athrscl natve v	Coronary atheroscler	null	null
4019	Hypertension NOS	Unspecified essentia	Lymphatic diag proc	Other diagnostic pro
2720	Pure hypercholester	Pure hypercholester	null	null
42731	Atrial fibrillation	Atrial fibrillation	null	null
V1582	History of tobacco use	Personal history of t	null	null
2859	Anemia NOS	Anemia, unspecified	null	null
3572	Neuropathy in diabet	Polyneuropathy in di	Ventr septa def rep N	Other and unspecifie
78552	Septic shock	Septic shock	null	null

ICD9 Codes and associated diagnoses and procedure

Part IV

Analysis of Chapters 21 & 23

Chapter 21: Modeling Mortality

- Extracting predictor variables with the intent of building various models to predict mortality in the ICU:
- Existing ICU performance metrics used to test the validity of the model:
 - APACHE Scores
 - The simplified acute physiology score
 - The mortality probability model
 - The sequential organ failure assessment score
- New performance metrics are extracted...

Chapter 21: Extraction

- Only the first ICU admission of Adult patients is taken into account
- In order to successfully complete this task a number of adjustments were made to accommodate the requirements needed to work on the MIMIC-III database:
 - o Identifiers used in the MIMIC-II database do not exist in the MIMIC-III, so a new query needed to be built to recreate the ICUSTAY_DETAIL
 - This included a 'dense_rank' function 'partitioned' over SUBJECT_ID or HADM_ID to get various ICU sequences
 - Further calculations were performed to determine the following features as well:
 - AGE
 - DAYS TILL DEATH AFTER DISCHARGE

Chapter 21: Data Preparation

- The following steps were done in R after the data was extracted, this is to ensure the data is compatible with various mortality prediction models:
 - All patients older than 89 had their aged masked in MIMIC-III
 - These records were replaced with the median age of 91.4
 - All records with incomplete data were removed

Chapter 23: Propensity Score Analysis

- Model that enables best selection for test and control groups
- Patient data must be extracted from MIMIC III using SQL to build model
 - The data to be extracted includes:
 - Demographics
 - Vital Signs
 - Basic Metabolic Panels
 - Past Medical Conditions
 - Disease Severity Scores
 - Types of Admission
 - Types of ICU
- OUR GOAL is to properly extract these pieces of information to feed the model for its propensity
 analysis and enable researchers to assign subjects to the correct group

Chapter 23: Data Extraction Process

All pulled into single view to load into an analytics platform (i.e. R, Python, or SAS)

- Demographics
 - joined from ADMISSIONS and PATIENTS tables
- Vital Signs
 - o created "pivot" subquery as base_events_pivot by pulling avg values for items in CHARTEVENTS table
- Basic Metabolic Panels
 - o created "pivot" subquery as *labs_pivot* by pulling max values for items in LABEVENTS table
- Past Medical Conditions
 - Separate table for reference by analyst
- Types of Admission
 - Joined admissions table
- Types of ICU
 - Joined ICUSTAYS table