Практическое занятие №2

Тема: Алгоритмы и способы их описания (продолжение).

Цель занятия: Изучение графического способа описания алгоритмов.

Задание 1.

Создайте линейный алгоритм для вычисления площади прямоугольника по заданной длине и ширине.

Задание 2.

Составить блок схему алгоритма вычисления периметра и площади квадрата со стороной а.

Задание 3.

Составить блок схему алгоритма вычисления экономического сечения провода для случая, когда максимальный ток в линии 65 А и экономическая плотность тока 1,1 A/мм².

Задание 4.

Составить блок схему алгоритма вычисления экономического сечения медного провода для случая, когда максимальный ток в линии 35 A и число часов использования максимальной мощности 3500 ч.

Задание 5.

Составить блок схему алгоритма вычисления максимального тока в линии 35 кВ, если по ней передаётся мощность 3100 кВт с коэффициентом мощности 0,8.

Задание 6.

Составить блок схему алгоритма вычисления допустимого тока для алюминиевого провода A16 длиной 100 м, если температура его поверхности 50 0 C, а температура окружающей среды 25 0 C. Удельное сопротивление алюминиевого провода 0,028 Ом*мм 2 /м.

Задание 7.

Придумайте свой собственный линейный алгоритм и изобразите его в виде блок схемы.

Задание 8.

Определить результаты выполнения алгоритма (рисунок 1) при следующих значениях исходных данных: x=-7; x=0; x=5.

Задание 9. Придумайте свой собственный циклический алгоритм и изобразите его в виде блок схемы.

Задание 10. Построить блок-схему алгоритма, который для заданных x, y, z позволяет вычислить a, b, если:

1)
$$a = \frac{\sqrt{|x-1|} - \sqrt[3]{|y|}}{1 + \frac{x^2}{2} + \frac{y^2}{4}}$$
, $b = x \left[\operatorname{arctg}(z) + e^{-(x+3)} \right]$;
2) $a = \frac{3 + e^{y-1}}{1 + x^2 |y - \operatorname{tg}(z)|}$, $b = 1 + |y - x| + \frac{(y - x)^2}{2} + \frac{|y - x|^3}{3}$;
3) $a = \frac{2 \cos \left(x - \frac{\pi}{6} \right)}{\frac{1}{2} + \sin^2(y)}$, $b = 1 + \frac{z^2}{3 + \frac{z^2}{5}}$.