PCI 总线双串口及打印口芯片 CH353

中文手册 (二): 4 串口 版本: 1 http://wch.cn

1、封装

四串口

有关双串口+并口的应用说明和引脚图请参考手册(一)CH353DS1.PDF。

2、引脚

2.1. 电源线

引脚号	引脚名称	类型	引脚说明
23, 52, 77, 97, 98	VCC	电源	正电源端
1, 4, 26, 28, 53, 73	GND	电源	公共接地端
58, 62	RSVD	保留	保留引脚,禁止连接
2, 25, 27, 29, 99, 100	NC.	空脚	禁止连接

2.2. PCI 总线信号线

引脚号	引脚名称	类型	引脚说明	
81	RST	输入	系统复位信号线,低电平有效	
82	CLK	输入	系统时钟信号线,上升沿有效	

83-90, 93-96, 5-8, 17-22, 30-31, 33-40	AD31∼ADO	三态输出 及输入	地址和双向数据复用信号线
91, 9, 16, 32	CBE3~CBE0	输入	总线命令和字节使能复用信号线
15	PAR	三态双向	奇偶校验信号线
92	IDSEL	输入	初始化设备选择信号线,高电平有效
10	FRAME	输入	帧周期开始信号线,低电平有效
12	TRDY	三态输出	目标设备准备好信号线,低电平有效
13	DEVSEL	三态输出	目标设备选中信号线,低电平有效
14	INTA	开漏输出	INTA 中断请求信号线,低电平有效

2.3. 串口 0 和串口 1 信号线

引脚号	引脚名称	类型	引脚说明		
48/78	CTSO/CTS1	输入	MODEM 信号,清除发送,低电平有效,内置弱上拉		
47/76	DSR0/DSR1	输入	MODEM 信号,数据装置就绪,低电平有效,内置弱上拉		
46/75	RIO/RI1	输入	MODEM 信号,振铃指示,低电平有效,内置弱上拉		
45/74	DCDO/DCD1	输入	MODEM 信号,载波检测,低电平有效,内置弱上拉		
44/72	RXDO/RXD1	输入	异步串行数据输入,内置弱上拉电阻		
43/51	DTRO/DTR1	输出	MODEM 信号,数据终端就绪,低电平有效		
42/50	RTSO/RTS1	输出	MODEM 信号,请求发送,低电平有效		
42/30	K13U/K131	刊 山	在半双工通讯时为串行数据正在发送状态指示,高有效		
41/49	TXDO/TXD1	输出	异步串行数据输出		

2.4. 扩展 CH432Q 信号线

引脚号	引脚名称	类型	引脚说明		
63-70	D7 \sim D0	三态双向	8 位并行数据输出及输入,内置上拉,接 D7~D0		
57	WR#	输出	写选通输出,低电平有效,接 WR#		
56	RD#	输出	读选通输出,低电平有效,接 RD#		
79	ALE	输出	复用地址的地址锁存使能输出,高电平有效,接 ALE		
80	A3	输出	地址线 A3 输出或者外扩串口选择输出,		
00	AS		低电平对应串口 2,高电平对应串口 3		
61	INT1	输入	串口 3 的中断状态输入,高电平有效,内置上拉电阻		
60	HALF#	输入	半双工通讯模式使能,低电平有效,内置上拉电阻		
59	INT#	输入	中断请求输入,低电平有效,内置上拉电阻,接 INT#		

2.5. 辅助信号线

引脚号	引脚名称	类型	引脚说明	
54	ΧI	输入	晶体振荡的输入端,需要外接晶体及振荡电容	
55	X0	输出	晶体振荡的反相输出端,需要外接晶体及振荡电容	
71	SCL	开漏输出 及输入	串口内部频率系数选择输入,内置上拉电阻, 可以外接串行 EEPROM 配置芯片 24CXX 的 SCL 引脚	

11	SDA	开漏输出 及输入	外部配置芯片使能,高电平有效,内置下拉电阻, 可以外接串行 EEPROM 配置芯片 24CXX 的 SDA 引脚
3	M4S	输入	功能模式选择输入,内置下拉电阻
24	CFG1	输入	PCI 配置选择输入,内置下拉电阻

3、配置

CH353 芯片具有两种主要功能模式: 双串口+并口功能模式、4 串口功能模式。当 M4S 引脚接高电平或者 VCC 时,CH353 芯片工作于 4 串口功能模式。具体的功能配置方法和有关外部配置芯片的说明以及有关串口 0 和串口 1 内部时钟的说明请参考手册(一)CH353DS1. PDF。对于 CH432Q 外扩的串口 2 和串口 3,有关其串口的说明请参考 CH432Q 的数据手册 CH432DS1. PDF。

3.1. 串口功能配置

在 4 串口功能模式下,CH353 芯片的串口 0 和串口 1 支持全双工或者半双工通讯。当 HALF#引脚接地或者接低电平时,CH353 工作于半双工通讯方式。这种半双工通讯又可以分为两种具体应用: 半双工串口(包括但不限于 RS485 通讯应用)、IrDA 红外串口 SIR。在半双工串口应用中,串口 0 的 RTS0 引脚和串口 1 的 RTS1 引脚用于串行数据正在发送状态指示,高电平有效,可以用于自动控制 RS485 收发器的收发切换。在红外串口 SIR 应用中,RXD0 和 TXD0 引脚可以直接连接 ZHX1810、HSDL3000、TFBS4711、TFDU4100 等红外线收发器的 RXD 和 TXD 引脚,CH353 内部自动实现红外编解码。下表为串口功能配置。

引脚组合状态	HALF#引脚悬空或者接高电平	HALF#引脚接地或者接低电平
CTSO 引脚接高电平	串口 0 为全双工通讯	串口 0 为红外串口 SIR
CTSO 引脚接地或者接低电平	CTSO 用于 MODEM 信号	串口 0 为半双工通讯,如 RS485
CTS1 引脚接高电平	串口1为全双工通讯	串口1为全双工通讯
CTS1 引脚接地或者接低电平	CTS1 用于 MODEM 信号	串口 1 为半双工通讯,如 RS485

4、寄存器

有关寄存器的基本约定、PCI 配置空间的说明、配置寄存器的位说明以及串口寄存器的说明,请参考手册(一)。

5、功能说明

5.1. 查询与中断

CH353 芯片的串口 0 和串口 1 以及 CH432Q 芯片外扩的串口 2、串口 3 合用一个 PCI 中断请求引脚,所以在进入 PCI 中断服务程序后,首先应该分析出是否为 CH353 请求中断,以及是串口 0、串口 1 还是 CH432Q 芯片外扩的串口 2、串口 3 的中断请求。当进入中断服务程序后,有专用状态分析和依次查询两种方法:

专用状态分析是指首先读取 SSR 专用状态寄存器,SOINT 标志有效说明是串口 0 中断,S1INT 标志有效说明是串口 1 中断,INT#标志有效说明是 CH432Q 中断,当 INT#标志有效时,如果 INT1 标志无效则说明是串口 2 中断,如果 INT1 标志有效则说明是串口 3 中断,根据分析结果直接处理并退出,无中断则直接退出。

依次查询是指首先读取串口 0 的 IIR 寄存器,有中断则处理并退出,无中断则读取串口 1 的 IIR 寄存器,有中断则处理并退出,无中断则读取串口 2 的 IIR 寄存器,有中断则处理并退出,无中断则读取串口 3 的 IIR 寄存器,有中断则处理并退出,无中断则直接退出。

当确认是某个串口的中断后,如果有必要还可以进一步分析 LSR 寄存器,分析中断原因并处理。如果串口工作于中断方式,那么需要设置 IER 寄存器以允许相应的中断请求,并设置 MCR 寄存器

中的 0UT2 以允许中断输出。

如果串口工作于查询方式,那么无需设置 IER 和 MCR, 只需查询 LSR 寄存器并分析处理。

5.2. 串口操作

具体操作可以参考 CH353DS1. PDF,或者单串口芯片 16C550 或者双串口芯片 CH432 的说明。

5.3. 应用说明

有关串口的应用说明请参考手册(一)。

CH353 芯片以及外扩 CH432Q 芯片的串口输出引脚都是 CMOS 电平,兼容 TTL 电平,输入引脚能够兼容 CMOS 电平和 TTL 电平,通过外加 RS232 电平转换器,可以进一步转换为 RS232 串口。

在计算机端的 Windows 和 Linux 操作系统下,CH353 的驱动程序能够兼容标准串口,所以绝大部分原串口应用程序完全兼容,通常不需要作任何修改。

CH353 可以用于通过 PCI 总线为计算机扩展额外的高速 RS232 串口、支持自动硬件速率控制的高 波特率串口、RS422 或者 RS485 通讯接口、SIR 红外通讯接口等。

6、参数

6.1. 绝对最大值(临界或者超过绝对最大值将可能导致芯片工作不正常甚至损坏)

名称	参数说明		最小值	最大值	单位
TA	A 工作时的环境温度 —	VCC=5V	-40	85	$^{\circ}$
17		VCC=3. 3V	-40	65	
TS	储存时的环	-55	125	$^{\circ}\!\mathbb{C}$	
VCC	电源电压(VCC 接电源,GND 接地)		-0. 5	6. 0	٧
VIO	输入或者输出引	脚上的电压	-0. 5	VCC+0. 5	V

6. 2. 电气参数 (测试条件: TA=25℃, VCC=5V, 不包括连接 PCI 总线的引脚)

(如果电源电压为 3.3V,则表中所有电流参数需要乘以 40%的系数)

名称	参数说明	最小值	典型值	最大值	单位
VCC	电源电压(请参考下面的注意事项)	3. 3	5	5. 3	V
ICC	工作时的电源电流	1	15	50	mA
VIL	低电平输入电压	-0. 5		0.8	V
VIH	高电平输入电压	2. 0		VCC+0. 5	V
VOL	低电平输出电压(4mA 吸入电流)			0. 5	V
VOH	高电平输出电压(2mA 输出电流)	VCC-0. 5			V
IIN	无上拉的输入端的输入电流			10	uA
IUP1	带弱上拉的输入端的输入电流	3	5	170	uA
IUP2	带上拉的输入端的输入电流	18	200	350	uA
IUPscl	SCL 引脚的上拉输入电流	150	250	400	uA
IDN	带下拉的输入端的输入电流	-18	-30	-80	uA

注意事项: CH353 的输入承受电压实际是电源电压加上 0.5V,例如,当 CH353 工作于 3.3V 电源电压时,外部电路提供给 CH353 的输入电压不得超过 3.8V。当 CH353 的电源电压低于 4V 时,PCI 总线的主频不得超过 33MHz,也就是说 PCI 总线不得超频工作。

6.3. 时序参数 (测试条件: TA=25℃, VCC=5V, FCLK=33.3MHz)

名称	参数说明	最小值	典型值	最大值	单位
FCLK	CLK 输入频率(PCI 总线的主频)	0	33. 3	40	MHz
FSCL	自动加载时 SCL 输出频率(两线接口主频)	FCLK / 128 = 260		KHz	
FXI	XI 输入频率、晶体频率	0. 9216	22. 1184	32	MHz

7、应用

7.1. 四 RS232 串口 (下图)

这是基于 CH353 芯片的 PCI 四通道串口的电路。U2 是并口或者 SPI 转双串口扩展芯片 CH432Q,U3/U4/U5/U6 是 RS232 电平转换芯片 75232, P3/P4/P5/P6 是 10 脚双排针或者 DB9 插针。晶体 X1 和

电容 C1 及 C2 用于时钟振荡电路。电容 C0 和 C11 \sim C15 及 C17 \sim C20 用于电源退耦,C11 \sim C15 和 C17 \sim C20 是容量为 0. 1uF 的独石或者高频瓷片电容,分别就近并联在 CH353 的四对电源引脚或者 75232 芯片的电源引脚上。

CH353 属于高频数字电路,应该考虑信号阻抗匹配,在设计 PCB 板时需要参考 PCI 总线规范。建议 CH353 的 PCI 信号线的长度都小于 35mm,尽量走弧线或者 45 度线,避免直角或者锐角走线,并且尽量将信号走线布在元件面,而在 PCB 背面保留大面积的接地覆铜。CH353 的 PCI 时钟线 CLK 的长度尽量保持在 50mm~65mm 之间,并且不宜靠近其它信号线,建议在 CLK 两侧及 PCB 背面布置接地线或者覆铜,以减少周边信号线的干扰。