Pre-trained Deep Learning Networks for Analyzing Hyperspectral Image Data

Content

- × Introduction
- × Research Papers
- × Project Timeline
- × References

1. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale (VIT) (Vision Transformer)

Goal

Apply the Transformer architecture (originally for NLP) to image classification

Working

- Patch Splitting
 - - Input image is divided into fixed-size patches (e.g. 16×16).
 - - Each patch is flattened and linearly embedded.
- [CLS] Token + Positional Embedding
 - A learnable [CLS] token is prepended to the patch sequence.
 - - Positional embeddings are added to retain spatial order.
- Transformer Encoder
 - Sequence is passed through multi-head self-attention layers.
 - [CLS] token gathers global information via attention.
- Classification Head
 - - Final [CLS] embedding is fed into a fully connected layer.
 - - Output: class probabilities via softmax.

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

2. Masked Vision Transformers for Hyperspectral Image Classification

Goal

Leverage self-supervised masked image modeling to pretrain transformers on unlabeled hyperspectral data Working

- Patch Extraction
 - Divide hyperspectral cubes into spatial–spectral patches (e.g. 8×8×bands).
 - Apply random masking to hide some patches.
- Blockwise Patch Embedding
 - Spectral bands grouped into blocks; each block gets its own embedding layer.
 - Preserves wavelength-specific characteristics.
- Spatial-Spectral Factorized Attention
 - Alternates between spatial and spectral self-attention.
 - Efficiently models global context across space and spectrum.
- Masked Pretraining
 - Train transformer to reconstruct masked patches.
 - Learns rich representations without labels.
- Fine-Tuning
 - Attach classification head.
 - Use small labeled datasets (e.g. Houston2018) for supervised training.

3. Contrastive Learning Based on Transformer for Hyperspectral Image Classification

1. Create two "views" of each cube

For each 27×27×N patch:

- Flip it (horizontally or vertically).
- Randomly erase (zero-out) either some individual pixels or one small rectangle—but never the center pixel. That gives you View A and View B of the same original patch.
- 2. Two networks: Online vs. Target

Both networks have the same shape, but different weights:

Encoder (a tiny 2-layer Vision Transformer)

Projector (a small 2-layer feed-forward head)

Predictor (another small head, but only in the Online network)

3. Forward pass & loss

Feed View A into the **Online** network \rightarrow get prediction vector p_1 .

Feed View B into the **Target** network \rightarrow get projection vector z_2 .

Compare p_1 and z_2 with a simple "make-them-close" loss (cosine similarity).

Swap roles (View B \rightarrow Online, View A \rightarrow Target) and compute the same loss again.

Total loss = $Loss_1 + Loss_2$.

Extract features and classify

- After training keep only the transformer encoder
- Run every pixel patch through it to get a feature vector
- Train a simple SVM on just 5-10% of labeled pixels in that feature space
- Use the SVM to label the rest of your image

Class	Supervi	sed Feature E	xtraction	Unsupervised Feature Extraction										
	LDA	1D-CNN	S-CNN	3DCAE	AAE	VAE	Proposed							
1	58.54	43.33	83.33	90.48	100.00	100.00	97.05							
2	69.88	73.13	81.41	92.49	81.63	78.78	96.73							
3	65.86	65.52	74.02	90.37	95.27	92.37	95.34							
4	73.71	51.31	71.49	86.90	99.22	97.34	98.97							
5	90.32	87.70	90.11	94.25	95.17	93.87	94.82							
6	92.09	95.10	94.06	97.07	98.73	98.27	93.85							
7	96.00	56.92	84.61	91.26	96.00	98.67	95.00							
8	98.14	96.64	98.37	97.79	99.84	99.77	98.85							
9	11.11	28.89	33.33	75.91	96.30	98.15	88.88							
10	73.80	75.12	86.05	87.34	87.01	78.86	95.65							
11	55.41	83.49	82.98	90.24	89.08	81.75	98.56							
12	76.92	67.55	73.40	95.76	93.51	90.64	94.31							
13	91.30	96.86	87.02	97.49	98.56	98.56	89.37							
14	93.32	96.51	94.38	96.03	95.73	93.24	98.44							
15	67.72	39.08	75.57	90.48	97.31	97.02	99.70							
16	90.36	89.40	79.76	98.82	98.02	98.81	94.73							
AA(%)	76.89	71.66	84.44	92.04	95.09	93.51	95.64							
OA(%)	76.88	79.66	80.72	92.35	91.80	88.03	96.78							

4. Dual Selective Fusion Transformer Network for Hyperspectral Image Classification

Goal: Instead of treating every feature equally, DSFormer focuses only on what truly matters — selecting the best scales and features for each scene.

KSFTB (Kernel Selective Fusion Attention)

KSFTB is trying to decide how much to "zoom in or out" when looking at a pixel in a hyperspectral image

(TSFA) Token Selective Fusion Transformer Block TSFTB lets the model **focus only on the most relevant tokens**, skipping the distractions

General Observations

- With lots of data, self-supervised or contrastive pre-training from scratch often yields superior representations.
- Transformers outperform CNNs, But require significantly more memory.
- Contrastive learning yield better results and provide strong unsupervised pre-training.

Proposed method

- Contrastive Pretraining with CNNs: Use a CNN backbone with SimCLR-style contrastive learning to learn general HSI
 features from unlabeled patches through augmentations.
- Cross-Domain Generalization: Train on HSI data from multiple domains (different sensors or regions) to create a model that captures domain-invariant spectral-spatial patterns.
- Supervised Fine-tuning: Fine-tune the pretrained model on labeled data from a target domain to achieve high classification accuracy with minimal extra training.

Project Phase	Jun-25		Jul-25			Aug-25			Sep-25				Oct-25				Nov-25				Dec			
	w ₃	W4	W1	W2	W ₃	W4	W1	W2	W3	W4	W1	W2	W3	W4	W1	W2	W ₃	W4	W1	W2	W ₃	W4	W1	W ₂
Literature review																								
Research Paper Gathering																								
Summarizing LR																								
Thesis Proposal																								
Deciding Implementation																								
Implementation																								
Test and Finalize																								
Evaluation of Performance																								
Report Writing																								
Proof Reading/ Changes																								
Review and Submission																								

References

- 1. https://arxiv.org/abs/2010.11929
- 2._L. Scheibenreif, M. Mommert and D. Borth, "Masked Vision Transformers for Hyperspectral Image Classification," 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Vancouver, BC, Canada, 2023, pp. 2166-2176, doi: 10.1109/CVPRW59228.2023.00210. keywords: {Solid modeling;Three-dimensional displays;Training data;Computer architecture;Transformers;Data models;Convolutional neural networks},
- 3. https://doi.org/10.3390/app11188670
- 4. https://arxiv.org/abs/2410.03171

Thank you