Any 3	A X
	We know that $H(q) = -\frac{2}{2} \int_{q} \log \frac{q}{2} x$
	1=1 11
	2 100 8
(cos rego	For a binary posture (Yes/No) = - \frac{5}{2} p \log p \\ (H(g))
Con res	(H(g))
60-0/12	
Entropy	= - p(Yes (). log (p(Yes ()))
	· ·
	-p(No/g). log (p(No/g))
	For wild, let & - left wild and 2 - right hild
	: Decrease in Entrophy
	between parent & = $H(q) - \frac{1}{2} p \log_2 p$ child nodes
	child nodes
	= H(q) - p(Yes)-log(p(Yes)) + p(No)-log(p(No))
1	
	+ p(Yes). log (p(Yes)) + p(No). log(p(No))
	eo.) (9)
	29)
	$\frac{7=5}{N=9}$ $\frac{H(9)=-1.5(00.5+5(00.5))}{(10.5)(10.5)(10.5)}$
	10 23
	(L) (R)
	Y=3 $Y=2$ $H(2)=-1212$
	$N=2$ $N=3$ $\frac{1}{5}\log \frac{2}{5} + \frac{2}{5}\log \frac{2}{5}$
	- [- 3 23]
	$= -\left[\frac{0.75}{1.32} \right]$
	LU:74 7 053.J

= 6.97
= H(q)
LP!
: #7G= U() - No U() - No U(0)
: #7G = H(q) - NP. H(q) - NR. H(q) i.e drop
in error
= 1 - 5(0.97) - 25(0.97)
16
= 0.03
: As can be seen from the above example,
for a binary peature & H(q) & [0,1]
And also entrophy at chill (entrophy at
And also entrophy of child < entrophy of
Parent
as the size of the dataset splits.
Drop in error for Binary Jealure 5 1
Same applies to multiway branching as well.
(g) (g)
$H(q) = -\begin{bmatrix} 8 & \log 8 + 7 & \log 7 \\ 15 & 02 & 15 \end{bmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
2 1
(q_1) (q_2) (q_3)
Y=3 $Y=7$ $Y=3$ $H(q)=0.97=H(q)=H(g)$
17 37 62
N=2 $N=3$ $N=2$
i. Prop in orror = H(g) - 5 (H(g)) - 5 (H(g)) - 5 (H(g))
$\frac{1}{15}$ Prop in Prior = $H(q) - \frac{5}{15} \left(H(q)\right) - \frac{5}{15} \left(H(q)\right) - \frac{5}{15} \left(H(q)\right)$
le Ia
= 0.03

	Uate: / /	
child node	the measure of impurity of a	
As can be see Entrophy	a from example 1 & 2:	
	purity of nodes	
Since Gain &	$v) = 2(q) - \sum_{i=1}^{ V } \frac{N_i^{i}}{N_i^{i}} 2(i)$	
	Entrophy sum cop proportion	
	of parent of entrophy of each child node	
To maximize	> child nodes > Entrophy should be of child	
	as pure as nodes possible should be less	
· gain «	Sum of Entrophies	
	Of child nædes.	
Hener, maximis	zing gain is equivalent to	

