

HEARING AND DATA SCIENTIST

□ 1 612 438 8830 | ▼timschoof@gmail.com | ★www.timschoof.com | □ timschoof | ▼ drtimschoof

Education _____

PhD	Speech, Hearing and Phonetic Sciences	University College London, UK	2014
MRes	Speech, Language and Cognition	University College London, UK	2011
MA	Linguistics	Utrecht University, The Netherlands	2010
BA	English Language and Literature	University of Groningen, The Netherlands	2007

Experience _____

Research Scientist II Starkey Hearing Technologies

Goal: Impact future hearing aid technology

Nov 2019 - present

• Design, conduct, and analyze experiments in hearing and healthables

Research Associate University College London, UK

Project: Investigating the consequences of cochlear neuropathy in people with normal hearing thresholds

Jan 2017 - Sep 2019

- Designed, calibrated, and conducted speech perception and psychoacoustic tests and measured OAEs and EEG responses in noise-exposed middle-aged adults
- Developed reproducible workflows using MATLAB, R, and the version control system git for data collection and analysis

Postdoctoral Fellow Northwestern University, USA

Project: Examined individual differences in hearing aid outcomes

May 2015 - Dec 2016

- · Collaborated on a multi-site clinical hearing aid trial in a team of researchers and audiologists
- · Conducted speech perception, listening effort, and psychoacoustic tests on older hearing-impaired individuals
- · Analyzed data from the multi-site hearing aid trial and other experiments
- · Communicated the results of hearing science studies via peer-reviewed publications and conference presentations

Pauline Ashley Postdoctoral Fellow

University College London, UK

Project: Developed a rapid clinical assessment tool of subcortical auditory processing

Oct 2014 - Apr 2015

- · Developed a novel test paradigm for the rapid acquisition of scalp-recorded brainstem responses
- · Analyzed EEG data using signal processing and statistical analysis techniques such as bootstrapping

Skills _

- **Clinical techniques:** audiometry, tympanometry, hearing aid fitting using real-ear probe-microphone measurements, verification of hearing aid performance, taking earmold impressions
- **Experimental techniques:** speech perception and psychoacoustic task design and measurement, OAE measurement, EEG measurement and analysis
- Data analysis and programming: signal processing, statistical analysis, MATLAB, R, version control with git
- Other: Participant recruitment, writing and managing project plans

Organizational and service experience _____

Editorial board member

Journal of Speech, Language, and Hearing Research

2018 - 2020

• Peer-review 8-10 manuscripts a year

Professional development facilitator

UCL Neuroscience Careers Network

2018

- Co-organized an open science workshop with speakers from a leading funding agency and a high-impact journal
- Co-organized an interview skills workshop for early career researchers

Course coordinator and instructor

University College London, UK

Current issues in production, perception and neural processing of speech (MSc)

2017

· Developed course content, invited guest lecturers, set essay questions, taught lectures, marked coursework

Frequency Following Response Workshop

2014, 2016

- Organized a new conference within the field of auditory neuroscience
- · Invited speakers, set the conference program, secured venue and catering, handled reimbursements
- Secured over £13,000 in funding through grant applications and corporate sponsorship

Publications _

- 1. Calcus, A., Schoof, T., Rosen, S., Shinn-Cunningham, B., and Souza, P. (2020). Switching streams across ears to evaluate informational masking of speech-on-speech. *Ear and Hearing*, 41(1):208–216
- 2. Souza, P., Arehart, K., Schoof, T., Anderson, M., Strori, D., and Balmert, L. (2019). Understanding variability in individual response to hearing aid signal processing: Results from a clinical trial. *Ear and Hearing*, 40(6):1280–1292
- 3. Mai, G., Schoof, T., and Howell, P. (2019). Modulation of phase-locked neural responses to speech during different arousal states is age-dependent. *NeuroImage*, 189:734–744
- 4. Schoof, T. and Souza, P. (preprint). Multitasking with typical use of hearing aid noise reduction in older listeners. PsyArXiv, https://doi.org/10.31234/osf.io/bhq2j
- 5. Anderson, M., Rallapalli, V., Schoof, T., Souza, P., and Arehart, K. (2018). The use of self-report measures to examine changes in perception in response to fittings using different signal processing parameters. *International Journal of Audiology*, 57(11):809–815
- Souza, P., Schoof, T., and Shen, J. (2017). Can individual cognitive abilities direct audiology treatment? Audiology Today, 29(2):25–34
- 7. Schoof, T. and Rosen, S. (2016). The role of age-related declines in subcortical auditory processing in speech perception in noise. *Journal of the Association for Research in Otolaryngology*, 17(5):441–460
- 8. Schoof, T. and Rosen, S. (2015). High sentence predictability increases the fluctuating masker benefit. *Journal of the Acoustical Society of America*, 138(3):EL181–EL186
- 9. Schoof, T. and Rosen, S. (2014). The role of auditory and cognitive factors in understanding speech in noise by normal-hearing older listeners. *Frontiers in Aging Neuroscience*, 6:307
- 10. Schoof, T., Green, T., Faulkner, A., and Rosen, S. (2013). Advantages from bilateral hearing in speech perception in noise with simulated cochlear implants and residual acoustic hearing. *Journal of the Acoustical Society of America*, 133(2):1017–1030