Ga₂S₃: optical properties and perspectives for THz applications

 $\frac{Zhiming\ Huang^a,\ J.-G.\ Huang^a,\ K.A.\ Kokh^{b,c},\ V.A.\ Svetlichnyi^b,\ A.V.\ Shabalina^b,}{Yu.M.\ Andreev^{b,d},\ and\ G.V.\ Lanskii^{b,d}.}$

^aShanghai Institute of Technical Physics CAS, Shanghai, 200083, China
^bSiberian Physical-Technical Institute of Tomsk State University, Tomsk, Russia
^cInstitute of Geology and Mineralogy SB RAS, Novosibirsk, Russia
^dInstitute of Monitoring of Climatic and Ecological Systems SB RAS, Tomsk, Russia

Abstract—Optical properties of nonlinear Ga_2S_3 are studied to reveal possibility for THz applications. The results establish that 3-d (bulky) Ga_2S_3 is a strong potential competitor to a layered GaSe and its solid solutions those possess outstanding optical properties.

I. INTRODUCTION

Searching for low optical loss, high nonlinear and optical damage threshold, suitably anisotropic materials is the top issue in the field of efficient phase matched THz generation. Among most attractive materials, GaSe shows extreme low mechanical properties due to the layered structure that hold back the out-of-door and commerce applications. Last decade, attention turned to modify its physical properties by doping with isovalent elements. Heavy S-doped or solid solution crystals $GaSe_{1-x}S_x$, x<0.44, had been demonstrated to be of impressive results in usability and mid-IR & THz generation efficiency [1-3]. However, these crystals are still layered structure that limits sample fabrication with high optical quality facets.

Recently, a 3-d (bulky) gallium sequisulfide (Ga_2S_3) semiconducting material was characterised as promising anisotropic nonlinear material with a direct band gap around 2.8 eV. It possesses very high laser induced damage threshold (30 times larger than that of AGS), wide transparency range (0.44-25 μ m) and nonlinearity similar to that for GaSe [4]. Its birefringence of 0.025 is something larger than that of CdSe that allows SHG phase matching for wavelength longer than 1910 μ m. However, transparency spectrum presented in Ref. [4] does not show transparency edges and specific features in the mid-IR but THz optical properties and applications is not considered at all.

In this study, single crystals Ga_2Se_3 were grown by vertical Bridgman and flux methods. Optical properties related to the efficiency of frequency conversion were carefully verified and compared with that for pure GaSe and $GaSe_{1-x}S_x$ crystals. The chemical composition were determined by a scanning electron microscope. The X-ray diffraction patterns were obtained with a Shimadzu XRD-6000 diffractometer operating with the Cu K α radiation. The Raman measurements were carried out using an InWia (Renishaw, England) spectrometer in a backscattering or surface normal reflection configuration at the room temperature under microscope with $\times 50$ magnification. First measurement in THz region are carried out with a FTIR spectrometer Vertex 80v (Bruker): 5-680 cm⁻¹, spectral resolution <0.2 cm⁻¹, with using LHe cooled Si bolometer.

II. RESULTS

The Ga_2S_3 boule grown by Bridgman method is easy fractioned (Fig. 1A) on subcentimeter sections due to rich quantity of cracks of a few tens of microns in length (Fig. 1B), which are probably the cause of the samples opacity.

Fig. 1. (A) Photograph of Ga₂S₃ grown by Bridgman method and (B) cracks pictured with 50 µm space resolution.

In turn, the millimeter-sized crystals grown by flux method are faceted and transparent (Fig.2).

Fig.2. Photograph of polycrystalline Ga_2S_3 grown by flux method.

Chemical composition shows the crystals are small Ga excess. XRD-diffraction patterns of the powders verify Cc monoclinic structure for all grown crystals. X-ray diffraction patterns of the crystal powders correspond well to the monoclinic phase Ga_2S_3 (PDF Card # 00-016-0500), but intensities of the peaks do not fully coincide with the reference. The latter may be caused by the presence of other Ga_2S_3 polymorphs in the probe.

The Ga_2S_3 fine powder was pressed in a tablet with fine KBr powder as a buffer. Restored absorption spectrum for Ga_2S_3 powder is presented in Fig.3. It shows that the transparency window is 0.48-25 µm with the only specific feature as a

multiphonon absorption peak at 24 μ m. So, it has demonstared that Ga_2S_3 really possesses the widest transparency range and shortest absorption edge among anisotropic mid-IR crystals.

Fig.3. Absorption spectrum for Ga₂S₃ powder.

To record THz transparency spectra, Ga_2S_3 was first glued to 0.45-mm Si wafer with extra thin epoxy glue layer (reference transparency was recorded). Then it was abraded down to about 20 and further to about 10 μ m for transparency spectra testing. Estimated THz spectra for Ga_2S_3 are shown in Fig.4.

Fig.4. Transparency spectra for the thickness of about 20 μm (blue) and 10 μm (Cyan) Ga_2S_3 crystals.

It is seen that long wave (> $100 \mu m$) THz range is free of strong phonon absorption peaks. This data are in full accordance with recorded Raman scattering lines (Fig.5). Inte-

Fig.5. Intensive Raman scattering spectra for GaSe and GaS (as parent crystals for solid solution GaSe_{1-x}S_x) and Ga₂S₃ crystal.

nsive Raman lines shifted for less than 100 cm⁻¹ are not found. It should be noted that the Raman patterns from different blocks and powdered samples are identical, which confirms the homogeneity of composition and the absence of other phases from Ga-S system. The spectra from different excitation wavelength agree very well, so it may state, that none of the lines originates from luminescence and all they are scattered Raman lines.

Besides, it has demonstrated that higher damage threshold of a fresh cleaved facets of Ga_2S_3 single crystal from 20 up to 30 times than facets of a fresh cleaved GaSe crystal under expose to 10 ns pulses of a Nd:YAG laser ($\lambda = 1.064 \mu m$).

Based on the recorded and available data it can be assumed that Ga_2S_3 monoclinic phase is not the high temperature one as described in Ref. [4]. The crystal grown from the melt is likely to undergo a phase transition to monoclinic structure during cooling. This in turn may cause the occurrence of macro and micro cracks in the sample. Thus, to obtain high quality samples Ga_2S_3 it is necessary to conduct crystallization at lower temperature, which would be below the transition point to the monoclinic structure.

Verified and developed properties render Ga₂S₃ as a serious competitor to pure and doped GaSe in mid-IR and THz applications. It is because shorter wave transparency edge (Fig.3) that decreases multiphoton absorption for near IR pump; from 20 to 30 times higher optical damage threshold and good mechanical properties that allow processing; suitable anisotropy for PM down-conversion of 1-µm two-frequency OPO emission into THz range. In difference to data in [4], multiphonon absorption peak is recorded at 24 µm. Raman spectra (Fig.5) shows shorter wave THz edge in relation to GaSe and GaSe_{1-x}S_x. Unfortunately, Ga₂S₃ hydrolyses in water and should be well water protected.

The research was supported in parts by China foundation (Grants No. MYHT-201402, 61274138), the Tomsk State University (8.1.51.2015, crystal syntheses) and RNF (15-19-10021, physical properties study), Russian Ministry of Education and Science No.14.594.21.0001 (RFMEFI59414X0001).

REFERENCES

- [1] J.-G. Huang, Z.-M. Huang, J.-C. Tong, C. Ouyang, J.-H. Chu, Yu. Andreev, K. Kokh, G. Lanskii, and A. Shaiduko, "Intensive terahertz emission from GaSe_{0.91}S_{0.09} under collinear difference frequency generation," *Appl. Phys. Lett.* vol. 103, pp. 81104, 2013.
- [2] J. Guo, D.-J. Li, J.-J. Xie, L.-M. Zhang, Z.-S. Feng, Yu. M. Andreev, K. A. Kokh, G. V. Lanskii, A. I. Potekaev, A. V. Shaiduko and V. A. Svetlichnyi "Limit pump intensity for sulfur-doped gallium selenide crystals," *Laser Physics Let.* vol. 11, pp. 055401, 2014.
- [3] K.A. Kokh, J.F. Molloy, M. Naftaly, Yu.M. Andreev, G.V. Lanskii, and V.A. Svetlichnyi, "Growth and optical properties of solid solution crystals GaSe_{1-x}S," *Mater. Chem. & Phys.*, vol. 154, pp. 152-157, 2015.
- [4] M.J. Zhang, X.M. Jiang, L.J. Zhou, and G.C. Guo, "Two phases of Ga₂S₃: promising infrared second-order nonlinear optical materials with very high laser induced damage thresholds," *J. Mater. Chem. C.* vol. 1, pp. 4754-4760, 2013.
- [5] Z.S. Medvedeva, Chalcogenides of IIIB subgroup of Mendeleev periodic table, Nauka, Moscow, 1968. (in Russian)