Search Trees

- Explain Binary Search Trees
- Implement insert/delete operations
- Analyze the performance of binary search trees
- Explain balanced search trees

Maps and Hashtables - Review

- A map is a a collection of key/value entries keys are unique
- Map ADT: get(k), put(k, v), remove(k), size(), isEmpty(), entrySet(), keySet(), values()
- We can use a **doubly linked list** to implement an unsorted map:
 - put takes O(1) time
 - get and remove take O(n) time
- Can we do better?
 - Use hash tables

Maps and Hashtables - Review

- lacktriangle A hash function h maps keys of a given type to integers in a fixed interval [0, N-1]
- \bullet The integer h(x) is called the hash value of key x
- A hash table for a given key type consists of
 - Hash function h
 - Array (called **table**) of size N
- When implementing a map with a hash table, the goal is to store item (k, o) at index i = h(k)
- A hash function composed of two functions:

Hash code:

 h_1 : keys \rightarrow integers

Compression function:

 h_2 : integers $\rightarrow [0, N-1]$

Maps and Hashtables - Review

- Hash code implementation:
 - Memory address of the key
 - Integer cast reinterpret the bits of the key as an integer
 - Component sum partition the bits of the key into components of fixed length (e.g., 16 or 32 bits) and we sum the components
 - Polynomial accumulation
- Compression functions:
 - Division: h2 (y) = y mod N
 - Multiply, Add and Divide (MAD): h2 (y) = (ay + b) mod N
- Collision Handling
 - Separate Chaining
 - Linear and quadratic probing
- lacktriangle The **expected running time** of operations in a hash table is O(1)

Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014

Binary Search Trees

Binary Search Trees

- In this lecture we use a search-tree structure to efficiently implement a sorted map.
- Recall that three most fundamental methods of a map are:
 - get(k): Returns the value v associated with key k, if such an entry exists; otherwise returns null.
 - put(k, v): Associates value v with key k, replacing and returning any existing value if the map already contains an entry with key equal to k.
 - remove(k): Removes the entry with key equal to k, if one exists, and returns its value; otherwise returns null.

Ordered Maps

In a sorted map, entries are stored in order by their keys:

- This allows us to **support nearest neighbor queries** (finding the item in a data structure that is closest to a given item, or key closest to lookup key):
 - Item with largest key less than or equal to k
 - Item with smallest key greater than or equal to k

Binary Search

- Binary search can perform nearest neighbor queries on an ordered map that is implemented with an array, sorted by key
 - similar to the high-low children's game (I-low, m-middle, h-high)
 - at each step, the number of candidate items is halved
 - terminates after O(log n) steps
- Example: find(7)

Recall Binary Trees

A full binary tree (sometimes proper binary tree) is a tree in which every node other than the leaves has two children.

Recall Binary Trees

A complete binary tree is a binary tree in which every level, except possibly the last, is completely filled, and all nodes are as far left as possible.

Binary Search Trees

- Binary trees are an excellent data structure for storing entries of a map, assuming we have an order relation defined on the keys.
- A binary search tree is a proper binary tree: each internal position p stores a key-value pair (k, v) such that:
 - Keys stored in the left subtree of p are less than k.
 - Keys stored in the right subtree of p are greater than k.

Traversing Binary Trees

- Traversal strategy specifies the order in which the current node, the left subtree, and the right subtree are visited.
 - Inorder traversal: the left subtree is visited first, then the current node followed by the right subtree
 - We assume the left subtree always comes before the right subtree

■ The **Inorder** traversal gives: **1**, **2**, **4**, **6**, **8**, **9**

Binary Search Trees

In the example below, the leaves of the tree serve only as "placeholders."

They can be represented as null references in practice, thereby **reducing the number of nodes in half** (number of leaves in a full binary tree with *n* nodes is equal to (n+1)/2)

Search Tables vs Search Trees

- A search table is an ordered map implemented by means of a sorted sequence
 - We store the items in an array-based sequence,
 sorted by key
 - We use an external comparator for the keys
- Performance:
 - Searches take $O(\log n)$ time, using binary search
 - **Inserting** a new item takes *O*(*n*) time, since in the worst case we have to shift *n* items to make room for the new item
 - **Removing** an item takes O(n) time, since in the worst case we have to shift n-1 items to compact the items after the removal

Search Tables vs Search Trees

- The lookup table is **effective only for ordered maps of small size** or for maps on which searches are the
 most common operations, while insertions and
 removals are rarely performed (e.g., credit card
 authorizations)
- We can use a **search-tree structure** to efficiently implement a **sorted map**
 - Achieve better performance for insertions and removals

Binary Search Trees

- A binary search tree is a binary tree storing keys (or key-value entries) at its internal nodes and satisfying the following property:
 - Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. We have key(u) ≤ key(v) ≤ key(w)
- External nodes do not store items

- An inorder traversal of a binary search trees
 visits the keys in increasing order
 - The left-most child has the smallest key
 - The right-most child has the largest key

Search

- To search for a key k, we trace a downward path starting at the root
- The next node visited depends on the comparison of k with the key of the current node
- If we reach a leaf, the key is not found
- Example: get(4):
 - Call TreeSearch(4,root)
- The algorithms for nearest neighbor queries are similar

```
Algorithm TreeSearch(k, v)

if T.isExternal (v)

return v

if k < key(v)

return TreeSearch(k, left(v))

else if k = key(v)

return v

else { k > key(v) }

return TreeSearch(k, right(v))
```


Insertion

- The map operation $put(k, \nu)$ begins with a search for an entry with key k.
 - If found, that entry's existing value is reassigned.
 - Otherwise, the new entry can be inserted into the underlying tree by expanding the leaf that was reached at the end of the failed search into an internal node.

```
Algorithm TreeInsert(k, v):

Input: A search key k to be associated with value v

p = \text{TreeSearch}(\text{root}(), k)

if k == \text{key}(p) then

Change p's value to (v)

else

expandExternal(p, (k, v))
```

 \bullet expandExternal(p, e): Stores entry e at the external position p, and expands p to be internal, having two new leaves as children.

Insertion

- To perform operation put(k, o), we search for key k (using TreeSearch)
- Assume k is not already in the tree, and let w be the leaf reached by the search
- We insert k at node w and expand w into an internal node
- Example: insert 5

Deletion

- Deleting an entry from a binary search tree is a bit more complex than inserting a new entry
 - the position of an entry to be deleted might be anywhere in the tree (as opposed to insertions, which always occur at a leaf).
 - node has no children
 - node has one child
 - node is internal
- To delete an entry with key k, we begin by calling TreeSearch(root(), k) to find the position p storing an entry with key equal to k (if any).

Deletion – node has no children

- lacktriangle Assume key k is in the tree, and let ν be the node storing k
 - Remove v and its leafs (placeholders)
 - Replace v with a leaf (placeholder)
- Example: remove 4

Deletion – node has one child

- To perform operation remove(k), we search for key k
- Assume key k is in the tree,
 and let let v be the node
 storing k
- If node v has a leaf child
 w, we remove v and w from
 the tree with operation
 removeExternal(w), which
 removes w and its parent
- Example: remove 4

Deletion – node has two children

- We consider the case where the key k to be removed is stored at a node v whose children are both internal
 - we find the internal node
 w that follows v in an
 inorder traversal
 - we copy key(w) into node v
 - we remove node w and its left child z (which must be a leaf, why?) by means of operation removeExternal(z)
- Example: remove 3

Performance

- Consider an ordered map with n items implemented by means of a binary search tree of height h
 - the space used is O(n)
 - methods get, put and remove take O(h) time
- The height h is O(n) in the worst case and $O(\log n)$ in the best case

Performance

On average, a binary search tree with n keys generated from a random series of insertions and removals of keys has expected height O(logn)

Method	Running Time
size, isEmpty	O(1)
get, put, remove	O(h)
firstEntry, lastEntry	O(h)
ceilingEntry, floorEntry, lowerEntry, higherEntry	O(h)
subMap	O(s+h)
entrySet, keySet, values	O(n)

- We define a TreeMap class that implements the sorted map ADT while using a binary search tree for storage.
- ◆ The TreeMap class is declared as a child of the AbstractSortedMap base class, thereby inheriting support for performing comparisons based upon a given (or default) Comparator, a nested MapEntry class for storing key-value pairs, and concrete implementations of methods keySet and values based upon the entrySet method, which we will provide.

- For representing the tree structure, our TreeMap class maintains an instance of a subclass of the
 LinkedBinaryTree class from Section 8.3.1.
- In this implementation, we choose to represent the search tree as a proper binary tree, with explicit leaf nodes in the binary tree as sentinels (null), and map entries stored only at internal nodes.

```
/** An implementation of a sorted map using a binary search tree. */
    public class TreeMap<K,V> extends AbstractSortedMap<K,V> {
      // To represent the underlying tree structure, we use a specialized subclass of the
      // LinkedBinaryTree class that we name BalanceableBinaryTree (see Section 11.2).
      protected BalanceableBinaryTree<K,V> tree = new BalanceableBinaryTree<>();
      /** Constructs an empty map using the natural ordering of keys. */
      public TreeMap() {
                                                 // the AbstractSortedMap constructor
        super():
        tree.addRoot(null);
                                                 // create a sentinel leaf as root
11
      /** Constructs an empty map using the given comparator to order keys. */
      public TreeMap(Comparator<K> comp) {
14
        super(comp);
                                                 // the AbstractSortedMap constructor
15
        tree.addRoot(null);
                                                 // create a sentinel leaf as root
16
      /** Returns the number of entries in the map. */
18
      public int size() {
        return (tree.size() -1) / 2; // only internal nodes have entries
20
      /** Utility used when inserting a new entry at a leaf of the tree */
      private void expandExternal(Position<Entry<K,V>> p, Entry<K,V> entry) {
        tree.set(p, entry);
                                                 // store new entry at p
        tree.addLeft(p, null);
                                                 // add new sentinel leaves as children
        tree.addRight(p, null);
26
27
```

```
28
      // Omitted from this code fragment, but included in the online version of the code,
      // are a series of protected methods that provide notational shorthands to wrap
29
30
      // operations on the underlying linked binary tree. For example, we support the
31
      // protected syntax root() as shorthand for tree.root() with the following utility:
      protected Position<Entry<K,V>> root() { return tree.root(); }
32
33
34
      /** Returns the position in p's subtree having given key (or else the terminal leaf).*/
35
      private Position<Entry<K,V>> treeSearch(Position<Entry<K,V>> p, K key) {
36
        if (isExternal(p))
37
          return p;
                                                   // key not found; return the final leaf
38
        int comp = compare(key, p.getElement());
39
        if (comp == 0)
40
          return p;
                                                   // key found; return its position
41
        else if (comp < 0)
42
          return treeSearch(left(p), key);
                                                   // search left subtree
43
        else
44
          return treeSearch(right(p), key); // search right subtree
45
     Code Fragment 11.3: Beginning of a TreeMap class based on a binary search tree.
```

```
/** Returns the value associated with the specified key (or else null). */
46
47
      public V get(K key) throws IllegalArgumentException {
48
        checkKey(key);
                                                  // may throw IllegalArgumentException
        Position < Entry < K, V>> p = treeSearch(root(), key);
49
50
        rebalanceAccess(p);
                                                 // hook for balanced tree subclasses
        if (isExternal(p)) return null;
51
                                                     unsuccessful search
52
        return p.getElement().getValue();
                                                  // match found
53
54
      /** Associates the given value with the given key, returning any overridden value.*/
55
      public V put(K key, V value) throws IllegalArgumentException {
56
        checkKey(key);
                                                  // may throw IllegalArgumentException
57
        Entry < K, V > newEntry = new MapEntry <> (key, value);
58
        Position < Entry < K, V>> p = treeSearch(root(), key);
59
        if (isExternal(p)) {
                                                  // key is new
60
          expandExternal(p, newEntry);
61
          rebalanceInsert(p);
                                                  // hook for balanced tree subclasses
62
          return null:
        } else {
                                                  // replacing existing key
          V \text{ old} = p.getElement().getValue();
65
          set(p, newEntry);
          rebalanceAccess(p);
                                                  // hook for balanced tree subclasses
66
          return old:
68
69
```

```
/** Removes the entry having key k (if any) and returns its associated value. */
70
71
      public V remove(K key) throws IllegalArgumentException {
        checkKey(key);
                                                   // may throw IllegalArgumentException
        Position<Entry<K,V>> p = treeSearch(root(), key);
74
        if (isExternal(p)) {
                                                   // key not found
          rebalanceAccess(p);
75
                                                   // hook for balanced tree subclasses
76
          return null;
        } else {
          V \text{ old} = p.getElement().getValue();
78
79
           if (isInternal(left(p)) && isInternal(right(p))) { // both children are internal
             Position<Entry<K,V>> replacement = treeMax(left(p));
80
81
             set(p, replacement.getElement());
82
             p = replacement;
          } // now p has at most one child that is an internal node
83
84
           Position < Entry < K, V>> leaf = (is External(left(p)) ? left(p) : right(p));
           Position<Entry<K,V>> sib = sibling(leaf);
85
86
          remove(leaf);
87
          remove(p);
                                                   // sib is promoted in p's place
          rebalanceDelete(sib);
88
                                                   // hook for balanced tree subclasses
89
          return old:
90
91
```

Code Fragment 11.4: Primary map operations for the TreeMap class.

```
92
       /** Returns the position with the maximum key in subtree rooted at Position p. */
 93
       protected Position<Entry<K,V>> treeMax(Position<Entry<K,V>> p) {
 94
         Position<Entry<K,V>> walk= p;
 95
         while (isInternal(walk))
 96
           walk = right(walk);
 97
         return parent(walk);
                                                     we want the parent of the leaf
 98
 99
       /** Returns the entry having the greatest key (or null if map is empty). */
100
       public Entry<K,V> lastEntry() {
101
         if (isEmpty()) return null;
102
         return treeMax(root()).getElement();
103
104
       /** Returns the entry with greatest key less than or equal to given key (if any). */
105
       public Entry<K,V> floorEntry(K key) throws IllegalArgumentException {
                                                  // may throw IllegalArgumentException
106
         checkKey(key);
107
         Position<Entry<K,V>> p = treeSearch(root(), key);
108
         if (isInternal(p)) return p.getElement(); // exact match
109
         while (!isRoot(p)) {
110
           if (p == right(parent(p)))
111
             return parent(p).getElement();
                                                 // parent has next lesser key
112
           else
113
             p = parent(p);
114
115
         return null:
                                                  // no such floor exists
116
```

```
117
       /** Returns the entry with greatest key strictly less than given key (if any). */
118
       public Entry<K,V> lowerEntry(K key) throws IllegalArgumentException {
119
         checkKey(key);
                                                  // may throw IllegalArgumentException
120
         Position<Entry<K,V>> p = treeSearch(root(), key);
121
         if (isInternal(p) && isInternal(left(p)))
122
           return treeMax(left(p)).getElement(); // this is the predecessor to p
123
         // otherwise, we had failed search, or match with no left child
124
         while (!isRoot(p)) {
           if (p == right(parent(p)))
125
126
              return parent(p).getElement(); // parent has next lesser key
127
           else
128
             p = parent(p);
129
130
         return null;
                                                   // no such lesser key exists
131
```

Code Fragment 11.5: A sample of the sorted map operations for the TreeMap class. The symmetrical utility, treeMin, and public methods firstEntry, ceilingEntry, and higherEntry are available online.

```
132
       /** Returns an iterable collection of all key-value entries of the map. */
133
       public Iterable<Entry<K,V>> entrySet() {
         ArrayList < Entry < K,V >> buffer = new ArrayList <> (size());
134
135
         for (Position<Entry<K,V>> p : tree.inorder())
136
           if (isInternal(p)) buffer.add(p.getElement());
137
         return buffer:
138
139
       /** Returns an iterable of entries with keys in range [fromKey, toKey]. */
140
       public Iterable<Entry<K,V>> subMap(K fromKey, K toKey) {
141
         ArrayList < Entry < K,V >> buffer = new ArrayList <> (size());
142
         if (compare(fromKey, toKey) < 0) // ensure that fromKey < toKey
           subMapRecurse(fromKey, toKey, root(), buffer);
143
144
         return buffer;
145
146
       private void subMapRecurse(K fromKey, K toKey, Position<Entry<K,V>> p,
147
                                   ArrayList<Entry<K,V>> buffer) {
         if (isInternal(p))
148
           if (compare(p.getElement(), fromKey) < 0)
149
             // p's key is less than from Key, so any relevant entries are to the right
150
151
             subMapRecurse(fromKey, toKey, right(p), buffer);
152
           else {
153
             subMapRecurse(fromKey, toKey, left(p), buffer); // first consider left subtree
             if (compare(p.getElement(), toKey) < 0) { // p is within range
154
               buffer.add(p.getElement()); // so add it to buffer, and consider
155
               subMapRecurse(fromKey, toKey, right(p), buffer); // right subtree as well
156
157
158
159
     Code Fragment 11.6: TreeMap operations supporting iteration of the entire map, or
```

a portion of the map with a given key range.
© 2014 Goodrich, Tamassia, Goldwasser Binary Search Trees

- if we could assume a random series of insertions and removals, the standard binary search tree supports O(log n) expected running times for the basic map operations.
- However, we may only claim O(n) worst-case time, because some sequences of operations may lead to an unbalanced tree with height proportional to n.
- A balanced binary search tree is a tree that automatically keeps its height small (guaranteed to be logarithmic) for a sequence of insertions and deletions.

- The primary operation to rebalance a binary search tree is known as a *rotation*.
- During a rotation, we "rotate" a child to be above its parent.

• In $t = \frac{T_1}{2} = \frac{T_2}{2} = \frac{T_2}{2} = \frac{T_3}{2} = \frac{T_3}{$

- A rotation can be performed to transform the left formation into the right, or the right formation into the left.
- Note that all keys in subtree 71 have keys less than that of position x, all keys in subtree 72 have keys that are between those of positions x and y, and all keys in subtree 73 have keys that are greater than that of position y.

• In the firs, $\frac{T_1}{2}$, ..., $\frac{T_2}{2}$, ..., $\frac{T_2}{2}$, ..., $\frac{T_2}{2}$, $\frac{T_3}{2}$, position x, in the second configuration, it is the left subtree of position y.

- One or more rotations can be combined to provide broader rebalancing within a tree.
- One such compound operation we consider is a *trinode restructuring*.

Java Framework for Balancing Search Trees

- The **TreeMap** class is designed in a way that allows it to be easily extended to provide more advanced tree-balancing strategies.
- Hooks for Rebalancing Operations
 - rebalanceInsert(p) is made from within the put method,
 after a new node is added to the tree at position p
 - rebalanceDelete(p) is made from within the remove method, after a node is deleted from the tree
 - rebalanceAccess(p) is made by any call to get, put, or remove that does not result in a structural change
- TreeMap class relies on storing the tree as an instance of a new nested class, BalanceableBinaryTree.
- That class is a specialization of the original LinkedBinaryTree class.