Криптография

Лекция 4. Цифровые подписи.

Требования к цифровой подписи

- Подпись удостоверяет автора сообщения именно автор подписи, и никто иной, сознательно подписал документ
- Подписанный документ нельзя изменить любое изменение документа приводит к тому, что подпись становится недействительной
- Подпись нельзя использовать повторно она является частью документа, перенести подпись на другой документ невозможно
- От подписи невозможно отречься автор не может сформировать отказ от своей подписи или утверждать, что подпись создана не им.

Симметричная схема (с посредником)

Недостатки симметричной схемы

- Нужны защищенные каналы для обмена закрытими ключами между Трентом и каждым из остальных участников
- Если Боб получил от Алисы подписанное сообщение, он может продемонстрировать подпись кому-то еще только через Трента
- Трент должен хранить базу сообщений, либо пересылать Бобу копию шифрованного сообщения Алисы
- Самое главное: необходим Трент сторона, которой все доверяют

Асимметричная схема

Алгоритм DSA (Digital Signature Algorit

(Digital Signature Algorithm) открытые простые р, q ——➤ р, q

закрытый ключ: **X** < q

сообщение — ➤ хеш Н

сообщение и

секретное случайное $\mathbf{K} < \mathbf{q}$

подпись:

Alice

$$\mathbf{R} = (\mathbf{g}^{\kappa} \mod \mathbf{p}) \mod \mathbf{q} \longrightarrow$$

$$S = (K^{-1}(H + X*R)) \mod q$$

сообщение — ➤ хеш Н

проверка подписи:

 $U1 = (H * S^{-1}) \mod q$ $U2 = (R * S^{-1}) \mod q$

 $V = ((g^{U1} * y^{U2}) \mod p) \mod q$

если V = R, то подпись верна

название системы	год	вычислительная задача	примечание
RSA (Rivest-Shamir-Adleman)	1977	разложение на простые множители	
ESIGN (Efficient digital SIGNature)	1985	разложение на простые множители	быстрее, чем RSA
Эль-Гамаля (Elgamal)	1985	дискретный логарифм	
Шнорра (Schnorr)	1989	дискретный логарифм	модификация схемы Эль-Гамаля
DSA (Digital Signature Algorithm)	1991	дискретный логарифм	
ECDSA (Elliptic Curve Digital Signature Algorithm)	1999	дискретный логарифм на эллиптич. кривых	
ΓΟCT P 34.10-2012	2012	дискретный логарифм на эллиптич. кривых	

Подсознательный канал (на примере DSA)

- Алиса и Боб выбирают
 Z закрытый ключ для подсознательного канала
- Алиса подписывает сообщение. Она выбирает случайное число **К** так, чтобы:
 - для передачи 1: параметр подписи **R** был квадратичным вычетом по модулю **Z** (существует **n** такое, что $R = n^2 \mod Z$)
 - для передачи 0:
 R не был квадратичным вычетом по модулю **Z**
- Боб проверяет подпись, а затем восстанавливает переданный бит из параметра R, зная Z
- Передать несколько бит можно, используя сразу несколько модулей **Z**

Уничтожение подсознательного канала

- Число К должно генерироваться совместно обеими сторонами
- Алиса не должна контролировать ни один бит числа К
- Боб не должен узнать ни один бит числа К
- Боб должен иметь возможность проверить, что для подписи использовалось именно сгенерированное К

выбирает **k1** $\mathbf{u} = \mathbf{g}^{k_1} \mod \mathbf{p}$ $\mathbf{k2} \longleftarrow \mathbf{k1}$ $\mathbf{k2} \longleftarrow \mathbf{k2}$ $\mathbf{K} = k_1 * k_2 \mod (\mathbf{p} - 1)$ $\mathbf{k2} \mod \mathbf{p}$ $\mathbf{mposepset}, \forall \mathbf{ro} \pmod {\mathbf{q}} = \mathbf{R}$

Атака "человек посередине" (Man-in-the-Middle, MitM)

Сертификат открытого ключа

Цепочка доверия

Пример: цепочка сертификатов в протоколе TLS

Сеть доверия (Web of Trust, WoT)

- Принадлежность открытого ключа участнику сети удостоверяют другие участники
- Возможны различные уровни доверия:
 - 1. "Я его знаю"
 - 2. "Я знаю того, кто его знает"
 - 3. "Я знаю того, кто знает того, кто его знает" и так далее.

Задача*

Трент поручил Бобу разработать интерактивный телефонный справочник. Боб написал программу, которая на запрос *{имя}* отвечает парой *{имя, номер_телефона}*, сопровождаемой *подписью* Трента. Подпись доказывает, что абонент с определенным именем действительно имеет определенный номер телефона.

Помогите Бобу модернизировать программу так, чтобы она дополнительно возвращала доказательство отсутствия в справочнике абонента с определенным именем. Доказательство должно представлять собой структуру данных, подписанную Трентом.

Трент опасается передавать Бобу личный ключ подписи, поэтому все доказательства должны быть созданы Трентом заранее, в момент формирования справочника.

Ссылки

- Обратная связь:
 - android.ruberoid@gmail.com
 - lesswrongru.slack.com @android_ruberoid
- Анонсы:
 - facebook.com/kocherga.club
 - w vk.com/kocherga club
 - w vk.com/kocherga_prog
- Материалы лекций:
 - github.com/notOcelot/Kocherga_crypto
- Видео:
 - youtube.com/channel/UCeLSDFOndl4eKFutg3oowHg

