Lista 5

Analiza Numeryczna M

Weronika Jakimowicz

16.11.2022

ZAD 1.

а.

$$\sum_{k=0}^{n} \lambda_k(\mathbf{x}) \equiv 1$$

Zauważmy, że

$$\sum_{k=0}^{n} \lambda_k(x) = \sum_{k=0}^{n} 1 \cdot \lambda_k(x)$$

Czyli $\sum_{k=0}^{n}$ interpoluje funkcję w węzłach

$$(x_0, 1), (x_1, 1), (x_2, 1), \ldots, (x_k, 1).$$

Bez trudu można zauważyć, że jedynym wielomianem który to robi jest wielomian q(x) = 1, więc

$$\sum_{k=0}^{n} \lambda_k(x) = q(x) = 1.$$

b.

$$\sum_{k=0}^{n} \lambda_{k}(0) x_{k}^{j} = \begin{cases} 1 & j = 0 \\ 0 & \text{wpp} \end{cases}$$

Jeżeli j = 0, to mamy

$$\sum_{k=0}^{n} \lambda_{k}(0) x_{k}^{j} = \sum_{k=0}^{n} \lambda_{k}(0)$$

co z poprzedniego podpunktu jest zawsze równe 1. Jeżeli j $\neq 0$, to interpolujemy funkcję f w węzłach

$$(x_0, x_0^j), (x_1, x_1^j), \ldots, (x_k, x_k^j).$$

W tym celu możemy użyc $q(x) = x^{j}$, czyli

$$\sum_{k=0}^{n} \lambda_k(x) x_k^j = q(x) = x^j$$

co po wstawieniu x = 0 daje

$$\sum_{k=0}^n \lambda_k(\emptyset) x_k^j = \mathsf{q}(\emptyset) = \emptyset^j = \emptyset\,.$$

ZAD 2.

$$f[x_0, x_1, \ldots, x_k] = \frac{f[x_1, x_2, \ldots, x_k] - f[x_0, x_1, \ldots, x_{k-1}]}{x_k - x_0}$$

Twierdzenie 6.2.1. z "Analiza numeryczna" Kincaid.

Po pierwsze, jeżeli interpolujemy funkcję f przez wielomain p_k stopnia k+1-tego w węzłach $(x_0,y_0),(x_1,y_1),\ldots,(x_k,y_k)$, to jest ten wielomian wyrażony jednoznacznie (Twierdzenie 6.1.1. – Kicnaid). Niech więc p_k,p_{k-1} interpolują funkcję f w odpowiednio węzłach $(x_0,y_0),\ldots,(x_k,y_k)$ i $(x_0,y_0),\ldots,(x_{k-1},y_{k-1})$. Dalej, niech q będzie wielomianek interpolującym f w węzłach $(x_1,y_1),\ldots,(x_k,y_k)$.

Dla ułatwienia dowodu, wprowadźmy lemat że

$$q(x) + \frac{x - x_k}{x_k - x_0} [q(x) - p_{k-1}(x)]$$

interpoluje funkcję w węzłach $(x_0,y_0),(x_1,y_1),\ldots,(x_k,y_k).$ Wielomian $q(x)-p_{k-1}(x)$ ma miejsca zerowe dla

$$x_1, \ldots, x_{k-1},$$

więc nie wpływa na węzły $(x_1,y_1),\ldots,(x_{k-1},y_{k-1})$. Co więcej, przechodzi on przez (x_k,y_k) i $(x_0,-y_0)$. W takim razie, wielomian

$$(x_k - x)(q(x) - p_{k-1}(x))$$

ma miejsce zerowe dodatkowo dla x_k i przechodzi przez $(x_0,-y_0)$. Ponieważ $x_k > x_0$, to $x_0 - x_k < 0$, więc

$$\frac{x_{k}-x}{x_{0}-x_{k}}[q(x)-p_{k-1}(x)] = \frac{x-x_{k}}{x_{k}-x_{0}}[q(x)-p_{k-1}(x)]$$

przechodzi tylko przez (x_0, y_0) , a w pozostałych węzłach ma miejsca zerowe. Czyli

$$q(x) + \frac{x - x_k}{x_k - x_0} [q(x) - p_{k-1}(x)]$$

jest przechodzące przez wszystkie k+1 węzłów.

Skoro istnieje tylko jeden wielomian k-tego stopnia przechodzący przez ustalone węzły $(x_0,y_0),\ldots,(x_k,y_k)$, to zachodzi

$$p_k(x) = q(x) + \frac{x - x_k}{x_k - x_0} [q(x) - p_{k-1}(x)].$$

Współczynnik przy x^k po lewej stronie to

$$f[x_0, \ldots, x_k],$$

natomiast współczynnik przy x^k po prawej stronie to

$$\frac{f[x_1, \ldots, x_k] - f[x_0, \ldots, x_{k-1}]}{x_k - x_0}$$

co daje nam dowodzoną zależność:

$$f[x_0, \, \ldots, \, x_k] = \frac{f[x_1, \, \ldots, \, x_k] - f[x_0, \, \ldots, \, x_{k-1}]}{x_k - x_0} \, .$$

ZAD 3.

Dla k = 1

$$p[x, x_1] = \frac{p[x_1] - p[x]}{x_1 - x} = \frac{p(x_1) - p(x)}{x_1 - x}$$

co jest wielomianem stopnia n-1, bo dzielimy wielomian stopnia n przez wielomian stopnia 1. Załóżmy, że jest teza jest prawdziwa dla wszystkich \leq k, wtedy

$$p\!\left[\,x\,,\,x_{1}\,,\,\ldots\,,\,x_{k+1}\,\right]\,=\,\frac{p\!\left[\,x_{1}\,,\,\ldots\,,\,x_{k+1}\,\right]\,-\,p\!\left[\,x\,,\,x_{1}\,,\,\ldots\,,\,x_{k}\,\right]}{x_{k+1}\,-\,x}\,.$$

Z założenia indukcyjnego wiemy, że p $[x,x_1,\ldots,x_k]$ jest wielomianem stopnia n - k. Pierwsza część róznicy w liczniku jest wartością niezależną od x. W takim razie do stopnia szukanego wielomianu przyczynia się tylko wielomian stopnia n - k dzielony przez wielomian stopnia 1. Daje nam to wielomian stopnia n-k-1, czyli n-(k+1) co kończy dowód.

ZAD 4.

Х	-2	-1	0	1	2	3
p(x)	31	5	1	1	11	61

Bedziemy uzywac wzoru interpolacyjnego Newtona, czyli potrzebujemy roznicy dzielonej y:

xΘ		х1		\mathbf{x}_2		хз		X4		X 5
31	-26	5 11	-4	1	0	1 5	10	11 20	50	61
			-3		1		5	20		
				1	0	1				

Wzór interpolacyjny Newtona:

$$p(x) = \sum_{k=0}^{5} [y_0, ..., y_k] \prod_{j=0}^{i-1} (x - x_j)$$

$$p(x) = \sum_{k=0}^{5} [y_0, \dots, y_k] \prod_{j=0}^{i-1} (x - x_j) =$$

$$= 31 - 26(x+2) + 11(x+2)(x+1) - 3(x+2)(x+1)x + (x+2)(x+1)x(x-1)$$

Dla drugiego wielomianu zmienia się jedynie wartość na szczycie, czyli $[x_0,x_1,\ldots,x_5]$. Wynosi ono wtedy $-\frac{31}{120}$ zamiast 0 i mamy

$$q(x) = p(x) - \frac{31}{120}(x+2)(x+1)x + (x+2)(x+1)x(x-1)(x-2)$$

ZAD 5.

Dla dowolnego $x \in [a,b]$ istnieje k takie, że $x \in [x_k,x_{k+1}]$. Wtedy iloczyn $(x-x_k)(x-x_{k+1})$ jest największy gdy $x = \frac{x_k + x_{k+1}}{2}$, czyli jest równo pomiędzy tymi dwoma punktami. Wtedy

$$\begin{split} (x-x_k)(x-x_{k+1}) &= \frac{x_k + x_{k+1} - 2x_k}{2} \frac{x_k + x_{k+1} - 2x_{k+1}}{2} = \\ &= -\frac{x_{k+1} - x_k}{2} \frac{x_{k+1} - x_k}{2} = -\frac{1}{4} h^2 \end{split}$$

Największą odległość jaką może mieć x względem x_{k-1} jest 2h:

$$(x_{k+1} - x_{k-1}) = a + (k+1)h - a - (k-1)h = 2h.$$

Analogicznie, największa odległość od \mathbf{x}_{k-2} to 3h etc. Dla \mathbf{x}_{k+2} również największa odległość to 2h:

$$(x_k - x_{k+2}) = a + kh - a - (k+2)h = -2h$$

i tak samo dla x_{k+3} to 3h. Odległość x_0 to kh, a x_n to (n - k)h. Daje to nam poniższą nierówność:

$$\begin{split} \prod_{i=0}^{n} |x - x_{i}| &\leq kh \cdot (k-1)h \cdot \ldots \cdot 2h \cdot \frac{1}{4}h^{2} \cdot 2h \cdot \ldots \cdot (n-k-1)h \cdot (n-k) \cdot h = \\ &= \frac{1}{4}k! \cdot \frac{n!}{k!}h^{k-1}h^{2}h^{n-k-1} = \frac{1}{4}n!h^{n} \end{split}$$

ZAD 7.

Twierdzenie ze slajdów:

Jeżeli funkcja f ma w przedziale [a,b] ciągłą (n + 1)-sza pochodną, a wielomian $L_n \in \Pi_n$ interpoluję tę funkcją w parami różnych punktach $x_0, x_1, \ldots, x_n \in [a,b]$ to dla każdego $x \in [a,b]$ zachodzi równość

 $f(x) - L_n(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi_x) p_{n+1}(x)$

$$\label{eq:gdzie} \begin{split} \text{gdzie} \ p_{n+1}(x) &= \prod_{k=0}^{n} (x-x_k)\,. \\ \text{Czyli} \end{split}$$

$$f(x) - L_1(x) = \frac{1}{2!} f^{(n+1)}(\xi_x)(x - x_0)(x - x_1)$$

i dla wartości bezwzględnej:

$$\begin{split} |\,f(x)-L_1(x)\,| &= \frac{1}{2}\,|\,f^{(n+1)}(\,\xi_x\,)\,|\,x-x_0\,|\,|\,x-x_1\,| \, \leq \\ &\leq \frac{1}{2}\,\text{max}(\,|\,f''(x)\,|\,)\,|\,\frac{x_0+x_1}{2}-x_0\,|\,|\,\frac{x_0+x_1}{2}-x_1\,| \, = \\ &= \frac{1}{2}M_2\,|\,\frac{x_1-x_0}{2}\,|\,|\,\frac{x_0-x_1}{2}\,| \, = \\ &= \frac{1}{2}M_2(\,x_1-x_0\,)^2\frac{1}{4} = \frac{1}{8}M_2(\,x_1-x_0\,)^2 \end{split}$$

ZAD 8.

Twierdzenia 6.1.7. z Kincaid-Cheney: Jeżeli węzły x_i są zerami wilomianu Czebyszewa T_{n+1} , to dla $|x| \leq 1$ jest

$$\|\,f(x)-L_n(x)\,\|\leq \frac{1}{2^n(n+1)\,!}\|f^{(n+1)}\|_{[-1,1]}$$

Rozważana przez nas norma $\|f\|_{[a,b]}$ to norma maksimum, więc

$$\|f^{(n+1)}\|_{[-1,1]} = \|e^x\|_{[-1,1]} = e^1 = e.$$

Chcemy więc znaleźć najmniejsze takie n, że

$$10^{-5} \le \frac{e}{2^n(n+1)!}$$

dla n = 6

$$2^{6}7! = 322560 \approx 3 \cdot 10^{5}$$
$$\frac{e}{2^{6}7!} \approx \frac{3}{3 \cdot 10^{5}} = 10^{-5}$$