0.1. The (he)art of gluing. The slice functor hides greater potential. Indeed, even if we don't have a morphism of \mathbb{Z} -posets (but just a \mathbb{Z} -equivariant map), then the slice functor can still be applied, obtaining a partially defined map.

Proposition 0.1. Let $J \xrightarrow{f} J'$ be a a \mathbb{Z} -equivariant map (not necessarily increasing) between \mathbb{Z} -posets, \mathscr{P} a J-slicing on \mathscr{D} . Suppose that $\mathscr{P}_{\psi} \subseteq \mathscr{P}_{\phi}^{\perp}$ whenever one of the following conditions holds:

(a)
$$f(\phi) > f(\psi)$$

(b)
$$f(\phi) + 1 > f(\psi)$$
 and $\phi + 1 < \psi$

Then

$$(f_{\Omega}(\mathscr{P}))_{\phi} = \mathscr{P}_{f^{-1}(\phi)}$$

defines a J'-slicing on \mathcal{D} .

Proof. Part (1) of definition of slicing follows from \mathbb{Z} -equivariance of f, while part (2) follows from condition (a) above. Pick $0 \neq X \in \mathcal{D}$ and consider its Postnikov tower with respect to \mathcal{P} :

$$0 = Y_0 \xrightarrow{\beta_1} \cdots \xrightarrow{\beta_n} Y_n = X$$

with cone(β_i) = $H^{\phi_i}_{\mathscr{P}}(X)$. Going from left to right, if we encounter an i so that $f(\phi_{i+1}) > f(\phi_i)$ then by condition (b)

$$\operatorname{Hom}_{\mathscr{D}}(H_{\mathscr{D}}^{\phi_{i+1}}(X), H_{\mathscr{D}}^{\phi_{i}}(X)[1]) = 0$$

Using **Proposition ??** and the 3×3 **Lemma**, we can complete the identity of Y_i to get a diagram:

We then replace β_i with $Y_{i-1} \longrightarrow A$ and β_{i+1} with $A \longrightarrow Y_{i+1}$. Iterating this process¹, we get a factorization

$$0 = Z_0 \xrightarrow{\gamma_1} \cdots \xrightarrow{\gamma_n} Z_n = X$$

¹This is somehow reminiscent of the 'bubble sort' algorithm.

with cone $(\gamma_i) = H^{\phi_{k_i}}_{\mathscr{P}}(X)$ for some k_i and $f(\phi_i) \geq f(\phi_{i+1})$ for all i. To get a factorization with the strict latter inequality we use the same argument as in the proof of **Proposition 1.14**.

The above proof also shows that, in the same hypotheses and notation, $(f_{\Omega}(\mathscr{P}))_{\phi}$ consists of objects $X \in \mathscr{D}$ so that $H_{\mathscr{P}}^{\psi}(X) = 0$ for $f(\psi) \neq \phi$. Also, **Proposition 1.16** holds when f is bijective.

Definition 0.2. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} . An abelian \mathbb{Z} -slicing \mathscr{P} on $\mathfrak{D}_{\mathfrak{t}}$ is called:

- perverse filtration if $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $n < \phi \psi$
- grading filtration if it is a perverse filtration and $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $2 \leq n = \phi \psi$
- mixed filtration if $\mathscr{P}_{\psi}[n] \subseteq \mathscr{P}_{\phi}^{\perp}$ for $n > \psi \phi$

The following implications hold:

$$mixed \implies grading \implies perverse$$

Clearly, a torsion pair on $\mathfrak{D}_{\mathfrak{t}}$ (seen as an abelian \mathbb{Z} -slicing via the inclusion $[1] \subseteq \mathbb{Z}$) is always a grading filtration. Historically, grading filtrations first appeared in [?] under the name of 'radical filtrations', while mixed filtrations are covered in the last section of [?].

Definition 0.3. A map $\mathbb{Z} \xrightarrow{p} \mathbb{Z}$ is called **perversity** if it is a monotone contraction, i.e. if

$$0 \le p(\phi) - p(\psi) \le \phi - \psi$$

whenever $\phi \geq \psi$ in \mathbb{Z} .

We denote Ξ the set of perversities.

Clearly, Ξ definies a \mathbb{Z} -poset which is not totally ordered. However, it is a distributive lattice: we have meets and joins given by:

$$(p \land q)(\phi) = \min\{p(\phi), q(\phi)\}\$$

$$(p \vee q)(\phi) = \max\{p(\phi), q(\phi)\}\$$

Indeed, if we place on $\mathbb{Z} \times \mathbb{Z}$ the product order, we have an isomorphism of \mathbb{Z} -posets

$$\Xi^{\mathrm{op}} = O(\mathbb{Z} \times \mathbb{Z}) \setminus \{\emptyset, \mathbb{Z} \times \mathbb{Z}\}$$

given by sending the zero perversity to $A = \{(\phi, \psi)\}_{\phi \geq 0}$ and the identity to $B = \{(\phi, \psi)\}_{\psi \geq 0}$ $(B + i \text{ and } A + i \text{ with } i \in \mathbb{Z} \text{ generate the latter as a complete lattice})$. Considering the canonical embedding $\mathbb{Z} \hookrightarrow \mathbb{Z} \subseteq O(\mathbb{Z} \times \mathbb{Z})$ we get a sublattice of Ξ depicted as

This induces the 't-tree' described in [?], as discussed below in a farreaching generality. By the other hand, each square above contains moreover a copy of the Young lattice

with the root corresponding to the upper vertex of the square.

Proposition 0.4. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} , \mathscr{P} an abelian \mathbb{Z} -slicing on $\mathbb{O}_{\mathfrak{t}}$, \mathscr{Q} the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , p a perversity. We have:

(1) if \mathscr{P} is a perverse filtration, then \mathscr{Q} satisfies the assumptions of **Proposition 1.43** with respect to the map $\mathbb{Z} \ltimes \hat{\mathbb{Z}} \xrightarrow{f_p} \mathbb{Z} \ltimes \hat{\mathbb{Z}}$ given by

$$f_p(n,\phi) = (n + p(\lfloor \phi/2 \rfloor), -p(\lfloor \phi/2 \rfloor))$$

(2) if \mathscr{P} is a grading filtration, then \mathscr{Q} satisfies the assumptions of **Proposition 1.43** with respect to the map $\mathbb{Z} \ltimes \hat{\mathbb{Z}} \xrightarrow{g_p} \mathbb{Z} \ltimes \hat{\mathbb{Z}}$

given by

$$g_p(n,\phi) = (n+p(\phi), -p(\phi))$$

(3) if \mathscr{P} is a mixed filtration, then the abelian \mathbb{Z} -slicing induced on the heart of the bounded t-structure associated to $(g_p)_{\underline{\Omega}}(\mathscr{Q})$ is split

Proof. Let's prove (2). Suppose $g_p(n,\phi) > g_p(m,\psi)$. Then either $m-n < p(\phi) - p(\psi)$ or both $m-n = p(\phi) - p(\psi)$ and $p(\psi) < p(\psi)$. Since by definition of t-structure we can assume $m \ge n$, the second case is absurd while in the first case, since p is monotone, we have $\phi \ge \psi$ and thus by definition of perversity

$$m-n < p(\phi) - p(\psi) < \phi - \psi$$

and we get the desired Hom-vanishing by definition of grading filtration.

Suppose now $f_p(n, \phi) + 1 > f_p(m, \psi)$ and $(n+1, \phi) < (m, \psi)$. The only non absurd case is $1 < m - n \le p(\phi) - p(\psi)$. But then again we have

$$2 \le m - n \le p(\phi) - p(\psi) \le \phi - \psi$$

and we can conclude as above.

To prove (1) consider the monotone map

$$\mathbb{Z} \stackrel{\lfloor */2 \rfloor}{\longrightarrow} \mathbb{Z}$$

Applying the slice functor to the latter and starting with a perverse filtration, we get a grading filtration by the properties of the floor function and the thesis follows from part (2).

Let's prove (3). We have to show that

$$\mathscr{P}_{\psi}[1-p(\psi)] \subseteq \mathscr{P}_{\phi}[p(\phi)]^{\perp}$$

for $-p(\psi) > -p(\phi)$. We denote $n = p(\phi) - p(\psi) - 1$. Assuming again $n \ge 0$, we have $n \ge 0 > p(\psi) - p(\phi) \ge \psi - \phi$ and we can then conclude by definition of mixed filtration.

Thus, in the presence of a grading (or perverse) filtration on the heart of a bounded t-structure, associating to a perversity p the bounded t-structure coming from $(g_p)_{\Omega}(\mathcal{Q})$ defines a morphism of \mathbb{Z} -posets

$$\Xi^{\mathrm{op}} \longrightarrow \mathfrak{bts}(\mathscr{D})$$

we can restate this as:

A grading or perverse filtration on the heart of a bounded t-structure on \mathcal{D} induces a presheaf of t-structures on $\mathbb{Z} \times \mathbb{Z}$ with the product order, and thus some kind of a 'non totally ordered $\mathbb{Z} \times \mathbb{Z}$ -slicing' on \mathcal{D} .

Now, by sending an upper set of $I \in O(\mathbb{Z})$ to its characteristic function χ_I we get an embedding

$$O(\mathbb{Z})^{\mathrm{op}} \hookrightarrow \Xi$$

and the t-structure coming from $(g_{\chi_I})_{\Omega}(\mathcal{Q})$ is just the tilting of \mathfrak{t} with respect to the torsion pair coming from I.

The following proposition gives a characterization of the new heart obtained by the above construction. In the case of a mixed filtration, we get a splitting property which is often referred as 'decomposition theorem for perverse sheaves' in literature.

Proposition 0.5. Let \mathfrak{t} be a bounded t-structure on \mathscr{D} , \mathscr{P} a grading filtration on $\mathfrak{D}_{\mathfrak{t}}$, \mathscr{Q} the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , p a perversity. Denote \mathfrak{q} the bounded t-structure associated to $(g_p)_{\Omega}(\mathscr{Q})$. Then $\mathfrak{D}_{\mathfrak{q}}$ consists of objects $X \in \mathscr{D}$ so that

$$H_{\mathfrak{t}}^k(X) \in \mathscr{P}_{p^{-1}(-k)}[k]$$

for each $k \in \mathbb{Z}$. Moreover, if \mathscr{P} is a mixed filtration then for each $X \in \mathcal{O}_{\mathfrak{q}}$

$$X = \bigoplus_{n \in \mathbb{Z}} H^n_{\mathfrak{t}}(X)$$

Proof. This is very similar to **Proposition 1.31**: we have that $X \in \mathcal{O}_{\mathfrak{q}}$ if and only if

$$H^{\phi}_{\mathscr{Q}}(H^{k}_{+}(X)[-k])[k] = H^{(k,\phi)}_{\mathscr{Q}}(X) = 0$$

for $p(\phi) \neq -k$.

For the second part of the claim, the abelian \mathbb{Z} -slicing induced on $\heartsuit_{\mathfrak{q}}$ is split by **Proposition 1.46** and thus by **Proposition 1.27**

$$X = \bigoplus_{(k,\phi)} H_{\mathscr{Q}}^{(k,\phi)}(X) = \bigoplus_{n \in \mathbb{Z}} H_{\mathfrak{t}}^{n}(X)$$

where the last equality comes from the first part.

Example 0.6. Let

$$B = \bigoplus_{i \in \mathbb{N}} B_i$$

be an N-graded ring with B_0 semisimple. Denote \mathscr{A} the category of \mathbb{Z} -graded B-modules with only finitely many nonzero graded pieces. For $\phi \in \mathbb{Z}$, denote \mathscr{P}_{ϕ} the full subcategory of \mathscr{A} of modules concentrated in degree ϕ . Clearly, \mathscr{P} defines an abelian \mathbb{Z} -slicing on \mathscr{A} . Following [?] we have

$$\operatorname{Ext}_{\mathscr{A}}^{n}(\mathscr{P}_{\phi},\mathscr{P}_{\psi})=0$$

for $n > \psi - \phi$. This means that \mathscr{P} is a mixed filtration and the bounded t-structure on $\mathscr{D}^b(\mathscr{A})$ associated to $(g_1)_{\Omega}(\mathscr{Q})$ (where 1 is the identity of \mathbb{Z}) is the 'diagonal' (or 'geometric') t-structure which appears in Koszul duality and other areas.

Example 0.7. Let M be an n-dimensional smooth complex projective variety and consider the n-torsion pair \mathscr{P} on $\operatorname{Coh}(M)$ from Example 1.37. Using Serre duality and the Grothendieck vanishing theorem, one sees that \mathscr{P} , seen as an abelian \mathbb{Z} -slicing via the inclusion $[n] \subseteq \mathbb{Z}$, is a perverse filtration. The bounded t-structure associated to $(f_p)_{\Omega}(\mathscr{Q})$ is the one of perverse coherent sheaves as constructed in [?]. Following again the proof of **Proposition 1.15**, we can use the Harder-Narasimhan filtrations from Gieseker stability to obtain an abelian J_n -slicing on the heart of perverse coherent sheaves as done in [?].

Now we somehow review the gluing construction for t-structures in [?], but generalize it to any slicing. Our language is quite different though, and we formulate the problem very similarly to [?]. We start with two \mathbb{Z} -posets J, J'.

Definition 0.8. Let \mathscr{P} be a $J \ltimes J'$ -slicing on \mathscr{D} . We call \mathscr{P} **gluable** if it satisfies the assumptions of **Proposition 1.43** with respect to the map $J \ltimes J' \stackrel{e}{\longrightarrow} J' \ltimes J$ that exchanges coordinates. In this case we denote

$$\overline{\mathscr{P}} = e_{\Omega}(\mathscr{P})$$

By a simple computation, the gluability condition reads: $\mathscr{P}_{(\phi,\psi)} \subseteq \mathscr{P}_{(\phi',\psi')}^{\perp}$ if $\psi' > \psi$ or both $\psi' + 1 > \psi$ and $\phi' + 1 < \phi$. For example, the first condition is automatic when \mathbb{Z} acts trivially on J (in this case, it follows from the second one). In particular, if \mathbb{Z} acts trivially on J, \mathscr{P} is a J-slicing on \mathscr{D} and \mathfrak{t}_{ϕ} is a bounded t-structure on \mathscr{P}_{ϕ} for each $\phi \in J$, then using **Proposition 1.39** we get a $J \ltimes \mathbb{Z}$ -slicing \mathscr{Q} which is gluable if and only if

$$\heartsuit_{\mathfrak{t}_{\psi}}[n] \subseteq \heartsuit_{\mathfrak{t}_{\phi}}^{\perp}$$

whenever both $n \leq 0$ and $\phi < \psi$.

Remark 0.9. We have a commutative diagram of \mathbb{Z} -posets

where the horizontal isomorphism is the one from Remark 1.42. Indeed, a $\mathbb{Z} \ltimes \mathbb{Z}$ -slicing on \mathscr{D} is gluable if and only if it induces a grading filtration on the heart of the associated t-structure when seen as a $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing.

An easy combinatorial calculation finally yelds the following two remarks:

- if \mathscr{P} is a gluable $\mathbb{Z} \ltimes \mathbb{Z}$ -slicing on \mathscr{D} , then $\overline{\mathscr{P}}$ induces a grading filtration on the associated heart, allowing us again to construct new bounded t-structures depending on a perversity.
- if \mathscr{P} is a mixed filtration on the heart of a bounded t-structure and \mathscr{Q} is the associated $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing on \mathscr{D} , then \mathscr{Q} is gluable. In this case, looking at $\overline{\mathscr{Q}}$, we get a baric structure on \mathscr{D} which is usually called **weight decomposition** in literature.

In other words, the chain of implications for a $\mathbb{Z} \ltimes \hat{\mathbb{Z}}$ -slicing refines to

$$\operatorname{mixed} \implies \operatorname{gluable} \implies \operatorname{grading} \implies \operatorname{perverse}$$