MF20006: Introduction to Computer Science

Lecture 3: Computer Networks

Hui Xu xuh@fudan.edu.cn

Outline

1. Internet: IP and Routing

2. Messaging

3. Practice: Packet Analysis

1. Internet: IP and Routing

Pre Knowledge: Wired Communication

- □Use physical media such as copper cables or optical fibers.
- □Send data (bits) as electrical or light signals over the wire.
 - > Electrical signals: the bits are turned into tiny changes in voltage or current.
 - Light signals: In a fiber-optic cable, the bits are turned into pulses of light.

Pre Knowledge: Wireless Communication

- □Send information using electromagnetic waves.
 - ➤ Examples: Wi-Fi, Bluetooth, Cellular (4G/5G), Satellite.
- □Digital data is modulated onto a carrier wave.
 - ➤ Transmitted through the air.
 - > Receiver demodulates the signal to recover the original data.

The Problem We Studied in this Lecture

- □How do two computers exchange information over the Internet?
 - ➤ This may not be hard to understand with 1-on-1 wired/wireless communication.
 - ➤ Based on some pre-agreed protocols.
- □Problem: Billions of devices accessing Internet simultaneously.
 - ➤ How can messages be delivered reliably to their destinations?
 - ➤ The process is similar to the way a traditional postal system works.

Internet: Network of Networks

- **□Originally named ARPANET.**
 - ➤ Built in the late 1960s by the U.S. Department of Defense's ARPA (Advanced Research Projects Agency).
- □Goal: To connect research computers at universities and labs.
 - ➤ First message sent October 29, 1969 (between UCLA & Stanford).
- □ARPANET proved packet-switched networking works.
 - ➤ Circuit switching: Dedicated path is established between sender and receiver.
 - ➤ Packet switching: Multiple conversations can share the same path

ARPANET

Problem Scenario

Detailed Questions and Techniques

- □How does a client get registered in a network?
 - ➤ MAC address: Similar to the receiver ID, which is unique.
 - ➤IP address: Similar to the physical address or postal code.
 - A receiver may stay at different locations.
 - Similarly, an MAC address may be configured with different IP addresses.
 - >ARP: Address Resolution Protocol to map the MAC addresses with IP addresses.
- □How does the data get delivered to the destination?
 - > Routing among different networks via the routing table.

MAC (Media Access Control) Address

- □ Each network interface controller (NIC) has a unique MAC address.
- □A MAC address has 48 bits (Similar to citizen ID).
 - ➤ 24 bits: manufacturer specific
 - ▶24 bits: manufacturer's organizationally unique identifier
- **□** Designed for local network communications.

MAC: B8:27:EB:8F:9A:BC

IP (Internet Protocol) Address

- □ Each device can be configured with one or several IP addresses.
- □An IPv4 address is 32 bits long, and it is usually written as four decimal numbers separated by dots, *e.g.*, 192.168.1.1.
- □IPv6 address has 128 bits, and it can support more addresses.

IP: 192.168.1.3

B8:27:EB:8F:9A:BC

IP Address and Networks

- □An IP address has two parts.
 - ➤ **Network part:** The left n bits that identify the network.
 - ➤ Host part: The rest bits identifies the device on that network.
- **□**How to determine the network part?
 - ➤CIDR notation, e.g., 192.168.1.1 / 24 (number of prefix bits).
 - >Uses subnet masks, e.g., 192.168.1.1 / 255.255.255.0.
- □IP Addresses within the same network must share the same network prefix.
 - >e.g., 192.168.1.1 / 24 and 192.168.1.100 / 24 are within the same network.
 - >e.g., 192.168.1.1 / 26 and 192.168.1.100 / 26 do not belong to the same network.

Local Area Network (LAN)

- □Each device has an IP address within a local area network.
- □The LAN typically uses a gateway to connect to external networks.

>All IP addresses in the LAN can reach the outside world through this gateway.

Address Resolution Protocol (ARP)

- **□MAC** addresses are used for transmission in a LAN.
- □But a host only knows the target (e.g., gateway) IP address.
- **PARP** translates an IP address to the MAC address.

IP: 192.168.1.2

MAC: 34:7D:F6:4C:5D:6E

Gateway IP: 192.169.1.1

IP: 192.168.1.3

MAC: B8:27:EB:8F:9A:BC

Gateway IP: 192.169.1.1

1) Src: 34:7D:F6:4C:5D:6E Dst: FF:FF:FF:FF:FF

Msg: who has the IP address 192.168.1.1?

2) Src: A4:5E:60:1A:2B:3C

Dest: 34:7D:F6:4C:5D:6E

Msg: It's me Internet

IP: 192.168.1.1

MAC: A4:5E:60:1A:2B:3C

Routing among Different Networks

- □Suppose from 192.168.1.2 to 61.152.229.228.
 - ➤ Step 1: Client inquiries the MAC address of the gateway via ARP.
 - ➤ Step 2: Client composes a message with the destination IP: 61.152.229.228.
 - ➤ Step 3: Client sends the message to the gateway's MAC address.
 - >Step 4: The gateway checks the routing table and forwards the message via the outside port to 58.40.96.1.

Routing Table

- □ Each device has a route table.
- □The entries specify the next hop based on the destination.

Destination	Next Hop	Interface		
default	192.168.1.1	eth0		

```
MacBook-Pro-2:artisan huixu$ netstat -rnRouting tablesInternet:DestinationGatewayFlagsdefault192.168.1.1UGScg127127.0.0.1UCS127.0.0.1UH
```

Routing Table

Destination	Next Hop	Interface
default	58.40.96.117	outside

Routing Table

Destination	Next Hop	Interface
61.152.229.0/24	-	inside
default	61.152.114.25	outside

Private Network

- □Three ranges of IP addresses are reserved for private network.
- □Private addresses are not routable on the public Internet.
- □Access Internet via a gateway with Network Address Translation.
- □Widely used due to the limited number of IPv4 addresses.

Range	Next Hop	No. of Addresses
1	10.0.0.0 – 10.255.255.255	16777216
2	172.16.0.0 – 172.31.255.255	1048576
3	192.168.0.0 – 192.168.255.255	65536

Network Address Translation (NAT)

Source Addres	S	Translated Address			
IP	Port	IP	Port		
192.168.1.2	12345	58.40.96.117	32123		
192.168.1.2	12346	58.40.96.117	32124		
192.168.1.2	12347	58.40.96.117	32125		

Internet

- □Composed of many autonomous systems (AS).
- □ Each AS is an independent network entity, such as
 - ➤ Internet Service Provider (ISP)
 - ➤ Large high-tech organizations
- **□Within an Autonomous System:**
 - ➤ Multiple routers manage multiple networks
 - ➤ Uses OSPF for internal routing

- □Interconnection between Autonomous Systems:
 - > Use BGP for communication between different ASes

Open Shortest Path First (OSPF)

- **□OSPF** is a dynamic routing protocol.
- **□Build the routing table within the same autonomous systems.**
 - > Find the shortest path to each destination based on Dijkstra's algorithm.
 - ➤ Convert a network topology to a spanning tree.

Example AS

Rank 🗸	AS Number	Organisation	Total IPv4 Addresses
1	<u>AS749</u>	DoD Network Information Center	224,675,888
2	<u>AS4134</u>	No.31,Jin-rong Street Beijing 100032	102,264,959
3	<u>AS7018</u>	■ AT&T Services, Inc.	92,705,503
4	<u>AS7922</u>	Comcast Cable Communications, LLC	69,615,412
5	<u>AS8075</u>	Microsoft Corporation	63,707,003
6	<u>AS4837</u>	CHINA UNICOM China169 Backbone	56,944,270
7	<u>AS16509</u>	Mazon.com, Inc.	48,741,833
8	<u>AS4766</u>		46,124,863
9	<u>AS17676</u>	SoftBank Mobile Corp. Tokyo Port City Takeshiba	40,782,687
10	<u>AS701</u>	■ Verizon Business	40,144,718

Ip Details JSON View JSON Raw Security Risk unknown Registered For Fudan University Network and Information Engineering Center 5th Floor, Yifu Building 220 Handan Road Asia/Eastern Asia **UN Region** World Bank Region East Asia & Pacific World Bank Income Level Upper middle income Country China ISO ALPHA-2 CN ISO ALPHA-3 CHN Principal Subdivision 上海市 ISO 3166-2 CN-SH City Postal Code 31.05 Latitude Longitude 121.4 (CST) China Standard Time Timezone Local Time Sunday, September 27, 2020 10:38 Confidence moderate Carrier CERNET2 IX at Shanghai Jiaotong University AS24364 ASN 202.120.234.0/23

BGP Prefix

AS 4538

Receiving From					Transit To			
AS174	Cogent Communications	AS4134	No.31Jinrong Street	AS9405	Test platform Service Center	AS23910	China Next Generation Internet CERNET2	
AS4637	Telstra International Limited	AS4789	NAPI at CERNET	AS23911	China Next	AS24348	CERNET2 IX at	
AS4837	CHINA UNICOM China169 Backbone	AS6453	TATA COMMUNICATIONS		Generation Internet Beijing IX		Tsinghua University	
AS6939	Hurricane Electric	AS7497	AMERICA INC Computer Network	AS24349	CERNET2 IX at Peking University	AS24350	CERNET2 IX at Beijing University of Posts and Telecommunications	
400000	ITC	4000011	Information Center	AS24353	CERNET2 IX at Xian	AS24355	CERNET2 IX at	
AS9808	China Mobile	AS23911	China Next Generation Internet Beijing IX		Jiaotong University		University of Electronic Science and Technology of China	
				AS24357	CERNET2 IX at South China University of Technology	AS24358	CERNET2 IX at Huazhong University of Science and Technology	
				AS24361	CERNET2 IX at Southeast University	AS24362	CERNET2 IX at University of Science and Technology of China	
				AS24363	CERNET2 IX at Shandong University	AS24364	CERNET2 IX at Shanghai Jiaotong University	

2. Messaging

The OSI Model

- □A 7-layer framework for understanding network communication.
- □ Developed by ISO to standardize networking.

Message Encapsulation/Decapsulation

Message Encapsulation

Encapsulate each piece of data:

Transmission Control Protocol (TCP)

- **□**Data can be lost during transmission over the network.
- □TCP provides reliable, ordered, error-checked delivery of data.
- □Turn the Internet's "best effort" IP service into a virtual connection.
- **□Three phases:**
 - > Handshake: Establish the connection between sender and receiver
 - ➤ Data Transfer: Send and receive data reliably
 - ➤ Termination: Close the connection gracefully

TCP: Three-Way Handshake

TCP: Data Transfer

TCP: Close

Domain Name Service (DNS)

DNS acts like a phone book for the Internet.

➤ Translate human-readable domain names into IP addresses.

➤ Make the Internet easier to use.

192.168.1.2/24

192.168.1.2/24

1) Src: 192.168.1.2:12346

Dst: 202.106.0.20:53

Msg: what is IP for "eastmony.com"?

nameserver

202.106.0.20

2) Src: 202.106.0.20:53

Dst: 58.40.96.117:32124

Msg: It's 61.152.229.228

Domain Name in a Tree Structure

- **□**Domain names are organized in a tree-like hierarchy.
- □ Each node is managed by an organization.

Root DNS Server

□13 root servers (A-M) and hundreds of mirrors around the world.

Hypertext Transfer Protocol (HTTP)

- □An application-layer protocol used by web browsers and servers.
 - ➤ Work on top of TCP/IP.
 - ➤ Transfer web pages, images, and other resources over the Internet.
- □Define how browsers request and servers respond with content.
 - ➤ Request (from client):
 - URL: the address of the resource
 - Method: GET, POST, PUT, DELETE, etc.
 - Headers: additional info (e.g., browser type, cookies)
 - ➤ Response (from server):
 - Status code: 200 OK, 404 Not Found, 500 Internal Server Error
 - Headers: content type, length, cookies, etc.
 - Body: the actual content (HTML, JSON, image...)

HTTP: An Example

1) Client (browser) sends a request.

```
GET /about HTTP/1.1
Host: www.example.com
User-Agent: Firefox/141.0
```

2) Server processes it and sends back a response.

3. Practice: Packet Analysis

Practice: Network Traffic Analysis with Wireshark

- **□Download** and install Wireshark.
 - >https://www.wireshark.org/download.html
- □Access a website (e.g., <u>www.fudan.edu.cn</u>) and capture the network traffic with Wireshark.
 - > Filter related packets.
 - >Interpret the meaning of each related packets.

Start Capture with Wireshark

ARP

```
888 73.928771 Chongqin ... Broadcast ARP
                                             60 Who has 192.168.1.100? Tell 192.168.1.107
889 73.928779 IntelCor ... Chongqin ... ARP
                                             42 192.168.1.100 is at 50:eb:71:bd:fc:f4
Ethernet II, Src: Chongqin 4f:6c:98 (ec:5c:68:4f:6c:98), Dst: Broadcast (ff:ff:ff:ff:ff)
 > Destination: Broadcast (ff:ff:ff:ff:ff)
 > Source: Chongqin 4f:6c:98 (ec:5c:68:4f:6c:98)
   Type: ARP (0x0806)

    Address Resolution Protocol (request)

   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: request (1)
   Sender MAC address: Chongqin 4f:6c:98 (ec:5c:68:4f:6c:98)
   Sender IP address: 192.168.1.107
   Target MAC address: 00:00:00 00:00:00 (00:00:00:00:00:00)
   Target IP address: 192.168.1.100
Ethernet II, Src: IntelCor bd:fc:f4 (50:eb:71:bd:fc:f4), Dst: Chongqin 4f:6c:98 (ec:5c:68:4f:6c:98)
 > Destination: Chongqin 4f:6c:98 (ec:5c:68:4f:6c:98)
 > Source: IntelCor bd:fc:f4 (50:eb:71:bd:fc:f4)
   Type: ARP (0x0806)
Address Resolution Protocol (reply)
   Hardware type: Ethernet (1)
   Protocol type: IPv4 (0x0800)
   Hardware size: 6
   Protocol size: 4
   Opcode: reply (2)
   Sender MAC address: IntelCor bd:fc:f4 (50:eb:71:bd:fc:f4)
   Sender IP address: 192.168.1.100
   Target MAC address: Chongqin_4f:6c:98 (ec:5c:68:4f:6c:98)
   Target IP address: 192.168.1.107
```


TCP Handshake: SYN

Ξ							
tcp.stream eq 17							
No	٥.	Time	Source	Destination	Protocol	Length Info	
Г	-	97 4.69	192.168.1.3	220.249.46.34	TCP	66 51188 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1	
		98 4.72	220.249.46.34	192.168.1.3	TCP	66 80 → 51188 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1440 SACK_PERM=1 WS=256	
		99 4.72	192.168.1.3	220.249.46.34	TCP	54 51188 → 80 [ACK] Seq=1 Ack=1 Win=132352 Len=0	
		100 4.72	192.168.1.3	220.249.46.34	HTTP	238 GET /api/toolbox/geturl.php?h=853EA31B28F6A2BAA86434EA7564E605&v=9.5.0.3517&r=0000_sogou_pinyin_94a1 HTTP/1.1	
		101 4.75	220.249.46.34	192.168.1.3	TCP	54 80 → 51188 [ACK] Seq=1 Ack=185 Win=30464 Len=0	
		102 4.75	220.249.46.34	192.168.1.3	HTTP	208 HTTP/1.1 200 OK	
		103 4.75	192.168.1.3	220.249.46.34	TCP	54 51188 → 80 [FIN, ACK] Seq=185 Ack=155 Win=132096 Len=0	
		104 4.79	220.249.46.34	192.168.1.3	TCP	54 80 → 51188 [FIN, ACK] Seq=155 Ack=186 Win=30464 Len=0	
L	-	105 4.79	192.168.1.3	220.249.46.34	TCP	54 51188 → 80 [ACK] Seq=186 Ack=156 Win=132096 Len=0	

▼ Transmission Control Protocol, Src Port: 51188, Dst Port: 80, Seq: 0, Len: 0

Source Port: 51188

Destination Port: 80

[Stream index: 17]

[TCP Segment Len: 0]

Sequence number: 0 (relative sequence number)

Sequence number (raw): 2844094833

[Next sequence number: 1 (relative sequence number)]

Acknowledgment number: 0
Acknowledgment number (raw): 0

1000 = Header Length: 32 bytes (8)

> Flags: 0x002 (SYN)

Window size value: 64240

[Calculated window size: 64240]
Checksum: 0xc41c [unverified]
[Checksum Status: Unverified]

Urgent pointer: 0

> Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation (NOP), No-Operation (NOP), SACK permitted

TCP Handshake: SYN-ACK

_								
tcp.stream eq 17								
ı	No.		Time	Source	Destination	Protocol	Length	Info
/	4	97	4.69	192.168.1.3	220.249.46.34	TCP	66	51188 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM=1
		98	4.72	220.249.46.34	192.168.1.3	TCP	66	80 → 51188 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1440 SACK_PERM=1 WS=256
		99	4.72	192.168.1.3	220.249.46.34	TCP	54	51188 → 80 [ACK] Seq=1 Ack=1 Win=132352 Len=0
		100	4.72	192.168.1.3	220.249.46.34	HTTP	238	GET /api/toolbox/geturl.php?h=853EA31B28F6A2BAA86434EA7564E605&v=9.5.0.3517&r=
		101	4.75	220.249.46.34	192.168.1.3	TCP	54	80 → 51188 [ACK] Seq=1 Ack=185 Win=30464 Len=0
		102	4.75	220.249.46.34	192.168.1.3	HTTP	208	HTTP/1.1 200 OK
		103	4.75	192.168.1.3	220.249.46.34	TCP	54	51188 → 80 [FIN, ACK] Seq=185 Ack=155 Win=132096 Len=0
		104	4.79	220.249.46.34	192.168.1.3	TCP	54	80 → 51188 [FIN, ACK] Seq=155 Ack=186 Win=30464 Len=0
	L	105	4.79	192.168.1.3	220.249.46.34	TCP	54	51188 → 80 [ACK] Seq=186 Ack=156 Win=132096 Len=0

```
▼ Transmission Control Protocol, Src Port: 80, Dst Port: 51188, Seq: 0, Ack: 1, Len: 0
```

Source Port: 80

Destination Port: 51188 [Stream index: 17] [TCP Segment Len: 0]

Sequence number: 0 (relative sequence number)

Sequence number (raw): 911860538

[Next sequence number: 1 (relative sequence number)]

Acknowledgment number: 1 (relative ack number)

Acknowledgment number (raw): 2844094834 1000 = Header Length: 32 bytes (8)

Flags: 0x012 (SYN, ACK)

Window size value: 29200 [Calculated window size: 29200] Checksum: 0x336c [unverified] [Checksum Status: Unverified]

Urgent pointer: 0

> Options: (12 bytes), Maximum segment size, No-Operation (NOP), No-Operation (NOP), SACK permitted, No-Operation (NOP), Window scale

TCP Connection Termination: FIN

tcp.stream eq 17 No. Time Source Destination Protocol Lenath Info 97 4.69... 192.168.1.3 220.249.46.34 **TCP** 66 51188 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 98 4.72... 220.249.46.34 66 80 → 51188 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1 192.168.1.3 TCP 99 4.72... 192.168.1.3 220.249.46.34 54 51188 → 80 [ACK] Seq=1 Ack=1 Win=132352 Len=0 TCP 238 GET /api/toolbox/geturl.php?h=853EA31B28F6A2BAA86434EA7 100 4.72... 192.168.1.3 220.249.46.34 HTTP 101 4.75... 220.249.46.34 192.168.1.3 TCP 54 80 → 51188 [ACK] Seq=1 Ack=185 Win=30464 Len=0 102 4.75... 220.249.46.34 192.168.1.3 HTTP 208 HTTP/1.1 200 OK 54 51188 → 80 [FIN, ACK] Seq=185 Ack=155 Win=132096 Len=0 103 4.75... 192.168.1.3 220.249.46.34 TCP 54 80 → 51188 [FIN, ACK] Seq=155 Ack=186 Win=30464 Len=0 104 4.79... 220.249.46.34 192.168.1.3 TCP 54 51188 → 80 [ACK] Seq=186 Ack=156 Win=132096 Len=0 105 4.79... 192.168.1.3 220.249.46.34 TCP

▼ Transmission Control Protocol, Src Port: 51188, Dst Port: 80, Seq: 185, Ack: 155, Len: 0

Source Port: 51188

Destination Port: 80

[Stream index: 17]

[TCP Segment Len: 0]

Sequence number: 185 (relative sequence number)

Sequence number (raw): 2844095018

[Next sequence number: 186 (relative sequence number)]

Acknowledgment number: 155 (relative ack number)

Acknowledgment number (raw): 911860693 0101 = Header Length: 20 bytes (5)

> Flags: 0x011 (FIN, ACK)

Window size value: 516

[Calculated window size: 132096] [Window size scaling factor: 256]

Summary

□The OSI model has seven layers, including:

- ➤ The application layer: e.g., HTTP, DNS
- >The transport layer: TCP ensures reliable transmission.
- >The network layer: IP addresses are used for routing over the Internet.
- ➤ The data link layer: A MAC address is unique to each device.

