MATH 202, Fall 202	3
In class work 15	

Name:	
Row and Seat	

"The pencil is mightier than the pen."

ROBERT M. PIRSIG

In class work **15** has questions **1** through **9** with a total of **6** points. Turn in your work at the end of class *on paper*. This assignment is due *Thursday 19 October 13:20*.

Warning: For the most part, I've only given answers, not solutions. This allows you to check your answers. Of course, for the exam, you must show all of your work.

- 1. Use *integration by parts* to find an antiderivative of each of the following:
 - (a) $\int xe^{-x} dx$

Solution:

$$\int x e^{-x} dx = -(x+1) e^{-x}$$

(b) $\int x^2 e^{-x} dx$

Solution:

$$\int x^2 e^{-x} dx = -(x^2 + 2x + 2) e^{-x}$$

- 2. Define a region of the xy plane Q by $Q = \{(x, y) | 0 \le y \le e^{-x} \text{ and } 0 \le x \le 5\}$. **Hint:** For both parts of this question, use an answer from Question 1.
 - (a) Find Area(Q)

Solution:

Area(Q) =
$$\int_{0}^{5} e^{-x} dx = 1 - \frac{1}{e^{5}}$$

(b) Find the x coordinate of the centroid of *Q*.

Solution:

Area(Q)
$$\overline{x} = \int_{0}^{5} x e^{-x} dx = 1 - \frac{6}{e^{5}}.$$

So

$$\overline{x} = \frac{1 - \frac{6}{e^5}}{1 - \frac{1}{e^5}}.$$

3. Find a formula for each antiderivative.

(a)
$$\int \frac{x+9}{(x+4)(x+5)} dx$$
 (Use partial fractions).

Solution:

$$\int \frac{x+9}{(x+4)(x+5)} \, \mathrm{d}x = 5 \ln(|x+4|) - 4 \ln(|x+5|).$$

(b) $\int \frac{x^3}{\sqrt{1-x^2}} dx$. (Use the substitution $x = \sin(\theta)$, where $\theta \in (-\frac{\pi}{2}, \frac{\pi}{2})$.)

Solution: It's OK to leave the expression in terms of a composition of a trigonometric function with an inverse trigonometric function. But here is it is explicitly as a algebraic function:

$$\int \frac{x^3}{\sqrt{1-x^2}} \, \mathrm{d}x = -\frac{x^2 \sqrt{1-x^2}}{3} - \frac{2\sqrt{1-x^2}}{3}.$$

And some alternative solutions too

$$\int \frac{x^3}{\sqrt{1-x^2}} dx = \frac{1}{3} (1-x^2)^{3/2} - (1-x^2)^{1/2},$$
$$= \frac{1}{3} \cos(\arcsin(x))^3 - \cos(\arcsin(x)).$$

All three answers are OK. Please exercise your first amendment rights and choose the solution you like the most.

4. Find the limit of each sequence a whose formula is

(a)
$$a_n = \frac{(2n-1)(7n+1)}{n^2+1}$$

Solution:

$$\lim_{n\to\infty}a_n=14.$$

(b)
$$a_n = n \ln \left(1 + \frac{\sqrt{2}}{n}\right)$$

Solution:

$$\lim_{n\to\infty}a_n=\sqrt{2}.$$

(c)
$$a_n = \sqrt{n^2 + 46n + 1} - n$$

Solution:

$$\lim_{n\to\infty}a_n=23.$$

5. Give an example of a sequence a such that $\lim_{k\to\infty} a_k = 0$ and $\lim_{n\to\infty} \sum_{k=1}^n a_k = \infty$.

Solution: An example is $a_k = \frac{1}{k}$. We have $\lim_{k \to \infty} \frac{1}{k} = 0$ and

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k}=\infty.$$

6. Give an example of a sequence a such that $\lim_{k\to\infty} a_k = 0$ and $\lim_{n\to\infty} \sum_{k=1}^n a_k$ is a real number.

Solution: An example is $a_k = \frac{1}{k^2}$. Then

$$\lim_{n\to\infty}\sum_{k=1}^n\frac{1}{k^2}$$
 converges.

7. Show that the series $\sum_{k=1}^{\infty} \sqrt{k^2 + 46k + 1} - k$ diverges. Justify your answer.

Solution: Since $\lim_{k\to\infty} \left(\sqrt{k^2+46k+1}-k\right) \neq 0$, the series $\sum_{k=1}^{\infty} \sqrt{k^2+46k+1}-k$ diverges.

8. Find the numerical value of the sum $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^k$.

Solution: $\sum_{k=0}^{\infty} 5\left(\frac{2}{3}\right)^k = 15$

9. Find the numerical value for each improper integral.

(a)
$$\int_{-\infty}^{\infty} \frac{1}{81 + x^2} \, \mathrm{d}x.$$

Solution:
$$\int_{-\infty}^{\infty} \frac{1}{81 + x^2} dx = \frac{\pi}{9}$$

(b)
$$\int_{0}^{\infty} \sin(x) e^{-x} dx.$$

Solution:
$$\int_{0}^{\infty} \sin(x) e^{-x} dx = \frac{1}{2}$$