

TEL: +886 3 4244445 FAX: +886 3 4202444

ADDR.: No. 99, Dianyan Rd., Yang-Mei city, Taoyuan,

Taiwan, R.O.C.

E-mail: <a href="mailto:mhko@cht.com.tw">mhko@cht.com.tw</a> http://www.chttl.com.tw

Report No: TSC-101-11-AP-27-1 (SAR ) **Date of Issue: Dec. 12, 2012** 

# **SAR Test Report**

**Device Under Test:** 10.1 Rugged Notebook

Model No.: ALGIZ-XRW

**Applicant:** Handheld Group AB

This Test report applied to the tested sample only.

This report shall not be reproduced in part without prior written permission of Telecommunication Laboratories Testing & Certification Center, Chunghwa Telecom Co., Ltd.



# Chunghwa Telecom CO., Ltd Telecommunication Laboratories Testing & Certification Center



Report No: TSC-101-11-AP-27-1 (SAR)

Applicant: Handheld Group AB

**TEL.**: 46-510-547170

Addr.: Kinnegatan 17, 53133, Lidköping, Sweden

**Device Under Test**: 10.1 Rugged Notebook

Trade name: Handheld Model No.: ALGIZ-XRW

**Manufacturer**: WINMATE Communication INC.

Applied Date: Nov. 22, 2012 Date of Sample Arrived: Nov. 22, 2012

**Date of Finished:** Nov. 30, 2012

**Applied standard:** IEEE 1528 2003, 47 CFR §2.1093, OET 65 Supplement C 01-01

**Cited Document**: KDB 447498, 450824, 616217, 248227, 616217, 648474, 941225,

FCC DA02-1438,

**Test Equipment**: Refer to page 22

**Test Environment** : 23°C, 50 % R.H.

Test results: IEEE 1528 2003 Complied

SAR 1g = 1.192 W/kg (Maximum), Refer to page 24

| Approved by  | Reviewed by      | Test Engineer |  |
|--------------|------------------|---------------|--|
| Ko Ming Hong | Chia-cheng chang | Shin-yen Du   |  |
| Ko Ming-Hong | Chia-cheng Chang | Shin-yen Du   |  |





# **TABLE OF CONTENTS**

| 1. GENERAL INFORMATION                                                                                                                                                                                                                      | 4         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.1 EUT DESCRIPTION                                                                                                                                                                                                                         |           |
| 2. SAR MEASUREMENT SYSTEM                                                                                                                                                                                                                   | 5         |
| 2.1 ALSAS-10U SYSTEM DESCRIPTION 2.2 ISOTROPIC E-FIELD PROBE 2.3 BOUNDARY DETECTION UNIT AND PROBE MOUNTING DEVICE 2.4 DAQ-PAQ (ANALOG TO DIGITAL ELECTRONICS) 2.5 AXIS ARTICULATED ROBOT 2.6 ALSAS UNIVERSAL WORKSTATION 2.7 PHANTOM TYPES |           |
| 3. TISSUE SIMULATING LIQUID                                                                                                                                                                                                                 |           |
| 3.1 THE COMPOSITION OF THE TISSUE SIMULATING LIQUID                                                                                                                                                                                         | 10<br>10  |
| 4. SAR MEASUREMENT PROCEDURE                                                                                                                                                                                                                | 13        |
| 4.1 SAR SYSTEM VALIDATION                                                                                                                                                                                                                   | 28        |
| 5. SAR EXPOSURE LIMITS                                                                                                                                                                                                                      | 29        |
| 6. TEST EQUIPMENT LIST                                                                                                                                                                                                                      | 30        |
| 7. MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                  | 31        |
| 8 SAR TEST RESULTS                                                                                                                                                                                                                          | 32        |
| 9. EUT PHOTOGRAPHS                                                                                                                                                                                                                          | 38        |
| A. TEST CONFIGURATIONS AND TEST DATA                                                                                                                                                                                                        | 46        |
| A.1 TEST CONFIGURATIONA.2 LIQUID LEVEL PHOTOA.3 TISSUE LIQUIDS DIELECTRIC PARAMETER                                                                                                                                                         | 50<br>51  |
| A.3.1 2450 MHz TISSUE LIQUIDS DIELECTRIC MEASUREMENT DATA                                                                                                                                                                                   |           |
| A.3.2 850 MHz TISSUE LIQUIDS DIELECTRIC MEASUREMENT DATA A.3.3 1900 MHz TISSUE LIQUIDS DIELECTRIC MEASUREMENT DATA A.4. TEST DATA A.4.1 802.118 Mode                                                                                        | 51<br>52  |
| A.4.1 602.11B MODE  A.4.2 GPRS MODE                                                                                                                                                                                                         |           |
| A.4.3 WCDMA Mode                                                                                                                                                                                                                            | 97<br>127 |







| Report No: TSC-101-11-AP-27-1 (SAR) |     |
|-------------------------------------|-----|
| A. 4.5 DIPOLE CALIBRATION DATA      | 157 |
| A. 4.6 Probe Calibration Data       | 167 |







# 1. General Information

#### 1.1 EUT Description

| Product Name            | 10.1 Rugged Notebook                                                   |
|-------------------------|------------------------------------------------------------------------|
| Trade Name              | Handheld                                                               |
| Model No.               | ALGIZ-XRW                                                              |
| Operation Frequency     | GPRS/EGPRS850, WCDMA Band 5 CDMA2000 BC0, U/L 824-                     |
|                         | 849MHz, D/L 869-894 MHz; GPRS/EGPRS1900, WCDMA                         |
|                         | Band 2 CDMA2000 BC1, U/L 1850-1910MHz, D/L 1930-1990                   |
|                         | MHz; WiFi and Bluetooth 2402-2483MHz                                   |
| FCC ID                  | YY3-ALGIZXRW                                                           |
| Antenna Type            | INTERNAL(WLAN/Bluetooth Antenna Gain: 2dBi; Mobile Antenna Gain: 2dBi) |
| Device Category         | Portable                                                               |
| Battery                 | Handheld Group AB, ALGX-08A, Rating:DC11.1V, 5200mAh, 57.72Whr         |
| WLAN Module             | Sparklan (RT3090BC4)                                                   |
| Mobile Module           | Sierra MC 8355                                                         |
| RF Exposure Environment | Uncontrolled                                                           |
| Output Power            | Please refer to P.21                                                   |
| (Conducted)             |                                                                        |

#### 1.2 Test Environment

Ambient conditions in the laboratory:

| Items            | Required | Actual         |
|------------------|----------|----------------|
| Temperature (°C) | 24       | See first page |
| Humidity (%RH)   | 55       | See first page |







#### 2. SAR Measurement System

#### 2.1 ALSAS-10U System Description

ALSAS-10-U is fully compliant with the technical and scientific requirements of IEEE 1528, IEC 62209, EN50361, CENELEC, ARIB, ACA, and the Federal Communications Commission. The system comprises of a six axes articulated robot which utilizes a dedicated controller. ALSAS-10U uses the latest methodologies and FDTD modeling to provide a platform which is repeatable with minimum uncertainty.

#### 2.1.1 Applications

Predefined measurement procedures compliant with the guidelines of CENELEC, IEEE, IEC, FCC, etc are utilized during the assessment for the device. Automatic detection for all SAR



maximum are embedded within the core architecture for the system, ensuring that peak locations used for centering the zoom scan are within a 1mm resolution and a 0.05mm repeatable position. System operation range currently available up-to 6 GHz in simulated tissue.

#### 2.1.2 Area Scans

Area scans are defined prior to the measurement process being executed with a user defined variable spacing between each measurement point (integral) allowing low uncertainty measurements to be conducted. Scans defined for FCC applications utilize a 10mm<sup>2</sup> step integral, with 1mm interpolation used to locate the peak SAR area used for zoom scan assessments.

Where the system identifies multiple SAR peaks (which are within 25% of peak value) the system will provide the user with the option of assessing each peak location individually for zoom scan averaging.





#### 2.1.3 Zoom Scan (Cube Scan Averaging)

The averaging zoom scan volume utilized in the ALSAS-10U software is in the shape of a cube and the side dimension of a 1 g or 10 g mass is dependent on the density of the liquid representing the simulated tissue. A density of 1000 kg/m³ is used to represent the head and body tissue density and not the phantom liquid density, in order to be consistent with the definition of the liquid dielectric properties, i.e. the side length of the 1 g cube is 10mm, with the side length of the 10 g cube 21,5mm.

When the cube intersects with the surface of the phantom, it is oriented so that 3 vertices touch the surface of the shell or the center of a face is tangent to the surface. The face of the cube closest to the surface is modified in order to conform to the tangent surface.

The zoom scan integer steps can be user defined so as to reduce uncertainty, but normal practice for typical test applications (including FCC) utilize a physical step of 7x7x7 (5mmx5mmx5mm) providing a volume of 30mm in the X & Y axis, and 30mm in the Z axis.

#### 2.1.4 ALSAS-10U Interpolation and Extrapolation Uncertainty

The overall uncertainty for the methodology and algorithms the used during the SAR calculation was evaluated using the data from IEEE 1528 based on the example f3 algorithm:

$$f_3(x, y, z) = A \frac{a^2}{\frac{a^2}{a^2 + x'^2 + y'^2}} \cdot \left( e^{-\frac{2z}{a}} + \frac{a^2}{2(a+2z)^2} \right)$$

#### 2.2 Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change. A number of methods is used for calibrating probes, and these are outlined in the table below:

| Calibration Frequency | Air Calibration | Tissue Calibration |  |
|-----------------------|-----------------|--------------------|--|
| 2450MHz               | TEM Cell        | Temperature        |  |

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:









SAR is assessed with a calibrated probe which moves at a default height of 5mm from the center of the diode, which is mounted to the sensor, to the phantom surface (in the Z Axis). The 5mm offset height has been selected so as to minimize any resultant boundary effect due to the probe being in close proximity to the phantom surface.

The following algorithm is an example of the function used by the system for linearization of the output from the probe when measuring complex modulation schemes.

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

#### 2.2.1 Isotropic E-Field Probe Specification

| Calibration in Air      | Frequency Dependent                                   |  |  |
|-------------------------|-------------------------------------------------------|--|--|
| Candration in An        |                                                       |  |  |
|                         | Below 2GHz Calibration in air performed in a TEM Cell |  |  |
|                         | Above 2GHz Calibration in air performed in waveguide  |  |  |
| Sensitivity             | $0.70 \ \mu V/(V/m)^2$ to $0.85 \ \mu V/(V/m)^2$      |  |  |
| Dynamic Range           | 0.0005 W/kg to 100W/kg                                |  |  |
| Isotropic Response      | Better than 0.2dB                                     |  |  |
| Diode Compression point | Calibration for Specific Frequency                    |  |  |
| (DCP)                   |                                                       |  |  |
| Probe Tip Radius        | < 5mm                                                 |  |  |
| Sensor Offset           | 1.56 (+/- 0.02mm)                                     |  |  |
| Probe Length            | 290mm                                                 |  |  |
| Video Bandwidth         | @ 500 Hz: 1dB                                         |  |  |
|                         | @1.02 KHz: 3dB                                        |  |  |
| Boundary Effect         | Less than 2% for distance greater than 2.4mm          |  |  |
| Spatial Resolution      | Diameter less than 5mm Compliant with Standards       |  |  |







#### 2.3 Boundary Detection Unit and Probe Mounting Device

ALSAS-10U incorporates a boundary detection unit with a sensitivity of 0.05mm for detecting all types of surfaces. The robust design allows for detection during probe tilt (probe normalize) exercises, and utilizes a second stage emergency stop. The signal electronics are fed directly into the robot controller for high accuracy surface detection in lateral and axial detection modes (X, Y, & Z).

The probe is mounted directly onto the Boundary Detection unit for accurate tooling and displacement calculations controlled by the robot kinematics. The probe is connect to an isolated probe interconnect where the output stage of the probe is fed directly into the amplifier stage of the Daq-Paq

#### 2.4 Daq-Paq (Analog to Digital Electronics)

ALSAS-10U incorporates a fully calibrated Daq-Paq (analog to digital conversion system) which has a 4 channel input stage, sent via a 2 stage auto-set amplifier module. The input signal is amplified accordingly so as to offer a dynamic range from 5µV to 800mV. Integration of the fields measured is carried out at board level utilizing a Co-Processor which then sends the measured fields down into the main computational module in digitized form via an RS232 communications port. Probe linearity and duty cycle compensation is carried out within the main Daq-Paq module.

| ADC                      | 12 Bit                                               |
|--------------------------|------------------------------------------------------|
| Amplifier Range          | 20mV to 200mV and 150mV to 800mV                     |
| Field Integration        | Local Co-Processor utilizing proprietary integration |
|                          | algorithms                                           |
| Number of Input Channels | 4 in total 3 dedicated and 1 spare                   |
| Communication            | Packet data via RS232                                |

#### 2.5 Axis Articulated Robot



ALSAS-10U utilizes a six axis articulated robot, which is controlled using a Pentium based real-time movement controller. The movement kinematics engine utilizes proprietary (Thermo CRS) interpolation and extrapolation algorithms, which allow full freedom of movement for each of the six joints within the working envelope. Utilization of joint 6 allows for full probe rotation with a tolerance better than 0.05mm around the central axis.

| Robot/Controller Manufacturer | Thermo CRS                        |
|-------------------------------|-----------------------------------|
| Number of Axis                | Six independently controlled axis |
| Positioning Repeatability     | 0.05mm                            |
| Controller Type               | Single phase Pentium based C500C  |
| Robot Reach                   | 710mm                             |
| Communication                 | RS232 and LAN compatible          |







#### 2.6 ALSAS Universal Workstation

ALSAS Universal workstation allows for repeatability and fast adaptability. It allows users to do calibration, testing and measurements using different types of phantoms with one set up, which significantly speeds up the measurement process.

#### 2.7 Phantom Types

The ALSAS-10U allows the integration of multiple phantom types. SAM Phantoms fully compliant with IEEE 1528,EN50361 Universal Phantom, and Universal Flat.

#### 2.7.1 APREL Laboratories Universal Phantom

The Universal Phantom is used on the ALSAS-10U as a system validation phantom. The Universal Phantom has been fully validated both experimentally from 800MHz to 6GHz and numerically using XFDTD numerical software. The shell thickness is 2mm overall, with a 4mm spacer located at the NF/MB intersection providing an overall thickness of 6mm in line with the requirements of IEEE-1528.

The design allows for fast and accurate measurements, of handsets, by allowing the conservative SAR to be evaluated at on frequency for both left and right head experiments in one measurement.









# 3. Tissue Simulating Liquid

## 3.1 The composition of the tissue simulating liquid

| INGREDIENT | 900MHz | 850MHz | 1900MHz | 1900MHz | 2450MHz | 2450MHz |
|------------|--------|--------|---------|---------|---------|---------|
| (% Weight) | Head   | Body   | Head    | Body    | Head    | Body    |
| Water      | 40.92% | 53.92% | 52.64%  | 68.64%  | 73.2    | 70.2    |
| Salt       | 1.48%  | 0.98%  | 0.36%   | 0.36%   | 0.04    | 0.1     |
| Sugar      | 56.5%  | 44.5%  | 0%      | 0%      | 0%      | 0%      |
| HEC        | 0.40%  | 1%     | 0%      | 0%      | 0%      | 0%      |
| Preventol  | 0.10%  | 0.10%  | 0%      | 0%      | 0%      | 0%      |
| DGBE       | 0%     | 0%     | 47.0%   | 31.0%   | 26.7%   | 29.7%   |

#### 3.2 Tissue Calibration Result

The dielectric parameters of the liquids were verified prior to the SAR evaluation using APREL Dielectric Probe Kit and Anritsu MS4623B Vector Network Analyzer

| Head Tissue Simulant Measurement |                              |                       | Oct. 18               | Oct. 18 2012      |  |
|----------------------------------|------------------------------|-----------------------|-----------------------|-------------------|--|
| Frequency                        | Frequency                    |                       | Dielectric Parameters |                   |  |
| [MHz]                            | Description                  | ε <sub>r</sub>        | σ [s/m]               | Tissue Temp. [°C] |  |
| 900 MHz                          | Reference result ± 5% window | 41.5± 5%              | $0.97 \pm 5\%$        | N/A               |  |
|                                  | Measured                     | 41.7                  | 0.96                  | 23.0              |  |
| <b>Body Tissue Si</b>            | imulant Measurem             | ent                   | Nov. 27               | 7 2012            |  |
| Frequency                        |                              | Dielectric Parameters |                       | Tissue Temp.      |  |
| [MHz]                            | Description                  | ε <sub>r</sub>        | σ [s/m]               | [°C]              |  |
| 835 MHz                          | Reference result ± 5% window | 55.2± 5%              | $0.97 \pm 5\%$        | N/A               |  |
|                                  | Measured                     | 53.1                  | 0.95                  | 23.0              |  |







| Head Tissue Simulant Measurement Oct. 24 |                      |                       | 2012                  |                   |  |
|------------------------------------------|----------------------|-----------------------|-----------------------|-------------------|--|
| Frequency                                |                      | Dielectric Parameters |                       | Tissue Temp.      |  |
| [MHz]                                    | Description          | ε <sub>r</sub>        | σ [s/m]               | [°C]              |  |
| 1000 MHz                                 | Reference result     | 40.0± 5%              | $1.40 \pm 5\%$        | N/A               |  |
| 1900 MHZ                                 | 1900 MHz ± 5% window |                       | 1.41                  | 23.0              |  |
| <b>Body Tissue S</b>                     | imulant Measurem     | ent                   | Nov. 2'               | 7 2012            |  |
| Frequency                                | guonav               |                       | Dielectric Parameters |                   |  |
| [MHz]                                    | Description          | ε <sub>r</sub>        | σ [s/m]               | Tissue Temp. [°C] |  |
| Reference result                         |                      | 53.3± 5%              | $1.52 \pm 5\%$        | N/A               |  |
| 1900 MHz                                 | ± 5% window          | 52.0                  | 1.49                  | 23.0              |  |

| <b>Head Tissue S</b> | <b>Head Tissue Simulant Measurement</b> |                |                | Oct. 18 2012 |  |  |
|----------------------|-----------------------------------------|----------------|----------------|--------------|--|--|
| Frequency            |                                         | Dielectric Pa  | arameters      | Tissue Temp. |  |  |
| [MHz]                | Description                             | ε <sub>r</sub> | σ [s/m]        | [°C]         |  |  |
| 2450 MHz             | Reference result                        | 39.2± 5%       | $1.80 \pm 5\%$ | N/A          |  |  |
| 2430 MITZ            | ± 5% window                             | 39.5           | 1.81           | 23.0         |  |  |
| <b>Body Tissue S</b> | imulant Measurem                        | ent            | Nov. 26 2012   |              |  |  |
| Frequency            |                                         | Dielectric Pa  | arameters      | Tissue Temp. |  |  |
| [MHz]                | Description                             | ٤ <sub>r</sub> | σ [s/m]        | [°C]         |  |  |
| 2450 MHz             | Reference result                        | 52.7± 5%       | $1.95 \pm 5\%$ | N/A          |  |  |
| 2430 MITZ            | ± 5% window                             | 52.4           | 1.98           | 23.0         |  |  |







#### 3.3 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

| Target Frequency | Не                | ad      | Во                | ody     |
|------------------|-------------------|---------|-------------------|---------|
| (MHz)            | $\epsilon_{ m r}$ | σ (S/m) | $\epsilon_{ m r}$ | σ (S/m) |
| 150              | 52.3              | 0.76    | 61.9              | 0.80    |
| 300              | 45.3              | 0.87    | 58.2              | 0.92    |
| 450              | 43.5              | 0.87    | 56.7              | 0.94    |
| 835              | 41.5              | 0.90    | 55.2              | 0.97    |
| 900              | 41.5              | 0.97    | 55.0              | 1.05    |
| 915              | 41.5              | 0.98    | 55.0              | 1.06    |
| 1450             | 40.5              | 1.20    | 54.0              | 1.30    |
| 1610             | 40.3              | 1.29    | 53.8              | 1.40    |
| 1800 – 2000      | 40.0              | 1.40    | 53.3              | 1.52    |
| 2450             | 39.2              | 1.80    | 52.7              | 1.95    |
| 3000             | 38.5              | 2.40    | 52.0              | 2.73    |
| 5800             | 35.3              | 5.27    | 48.2              | 6.00    |

 $(\varepsilon_r = \text{relative permittivity}, \sigma = \text{conductivity and } \rho = 1000 \text{ kg/m}^3)$ 







#### 4. SAR Measurement Procedure

#### 4.1 SAR System Validation

#### 4.1.1 Validation Dipoles



The dipoles used is based on the IEEE-1528 standard, and is complied with mechanical and electrical specifications in line with the requirements of both IEEE and FCC Supplement C. the table below provides details for the mechanical and electrical specifications for the dipoles.

| Frequency | L (mm) | h (mm) |
|-----------|--------|--------|
| 900 MHz   | 149    | 83.9   |
| 1900 MHz  | 68     | 39.5   |
| 2450MHz   | 51.5   | 30.4   |

#### 4.1.2 Validation Result

| Frequency | Power            | $SAR_{1g}$ | Power Drift | Date         |
|-----------|------------------|------------|-------------|--------------|
| (MHz)     |                  | (mw/g)     | (%)         |              |
| 900       | 1 W              | 10.8       | -           | Oct. 18 2010 |
|           | 500mW            | 5.58       | 4.438       | Oct. 24 2012 |
|           | Normalize to 1 W | 11.16      |             |              |
| 1900      | 1 W              | 39.7       | -           | Oct. 18 2010 |
|           | 250mW            | 9.587      | -2.901      | Oct. 18 2012 |
|           | Normalize to 1 W | 38.35      |             |              |
| 2450      | 1 W              | 52.4       | -           | Nov. 10 2009 |
|           | 500mW            | 26.015     | -2.336      | Oct. 18 2012 |
|           | Normalize to 1 W | 52.03      |             |              |

Note: The validation dipoles was calibrated on Nov. 10 2009 and Oct. 18 2010 by Aprel Labs which din't provide the power drift in validation report. We will request our validation Labs provides the validation report to meet the FCC KDB450824 requirements next periodic validation.





#### 835MHz System validation

#### SAR Test Report

Report Date : 24-Oct-2012 By Operator : 123

Measurement Date : 24-Oct-2012

Starting Time : 24-Oct-2012 03:32:47 PM End Time : 24-Oct-2012 03:55:28 PM Scanning Time : 1361 secs

Product Data

Device Name : validation

: 123 Serial No. : Dipole Type : 900 Model

Frequency : 900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s) : 2 mm Length Width : 161 mm Depth : 1 mm
Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 5.581 W/kg Power Drift-Finish: 5.829 W/kg

Power Drift (%) : 4.438

Picture

Phantom Data

Name Type Size (mm) : APREL-Uni : Uni-Phantom : 280 x 280 x 200 : User Define Serial No. : User Define

Location : Center

Description : Uni Phantom

Tissue Data

: HEAD Type

Serial No. : 900 Frequency : 900.00 MHz Last Calib. Date : 24-Oct-2012 Temperature : 23.00 °C Ambient Temp. : 23.00 °C

Humidity : 50.00 RH%

Epsilon : 41.70 F/m

Sigma : 0.96 S/m

Density : 1000.00 kg/cu. M

Probe Data

: Probe 255 Name

Model Type : E020

: E-Field Triangle

Serial No. : 255







Report No: TSC-101-11-AP-27-1 (SAR)
Last Calib. Date: 06-Dec-2011
Frequency: 900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6.8

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 24-Oct-2012
Set-up Time : 2:37:02 PM

Area Scan : 4x12x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Mid









1 gram SAR value : 5.225 W/kg Area Scan Peak SAR : 4.614 W/kg Zoom Scan Peak SAR : 9.138 W/kg

# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
| Measurement System       |                    |                             |            |                                          |                                    |
| Probe Calibration        | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy           | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical            | 10.9               | rectangular                 | $\sqrt{3}$ | √ср                                      | 4.4                                |
| Isotropy                 |                    |                             |            |                                          |                                    |
| Boundary Effect          | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit          | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics      | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time            | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time         | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition     | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner         | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |







| Mech.                                                  | ·   |             |            |     |      |
|--------------------------------------------------------|-----|-------------|------------|-----|------|
|                                                        |     |             |            |     |      |
| Restriction                                            |     |             |            |     |      |
| Probe Positioning with respect to Phantom Shell        | 2.9 | rectangular | $\sqrt{3}$ | 1   | 1.7  |
| Extrapolation and Integration                          | 3.7 | rectangular | √3         | 1   | 2.1  |
| Test Sample Positioning                                | 4.0 | normal      | 1          | 1   | 4.0  |
| Device Holder<br>Uncertainty                           | 2.0 | normal      | 1          | 1   | 2.0  |
| Drift of Output<br>Power                               | 4.4 | rectangular | $\sqrt{3}$ | 1   | 2.6  |
|                                                        |     |             |            |     |      |
| Phantom and Setup                                      |     |             |            |     |      |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 3.4 | rectangular | $\sqrt{3}$ | 1   | 2.0  |
| Liquid<br>Conductivity(target)                         | 5.0 | rectangular | $\sqrt{3}$ | 0.7 | 2.0  |
| Liquid Conductivity(meas.)                             | 0.0 | normal      | 1          | 0.7 | 0.0  |
| Liquid Permittivity(target)                            | 5.0 | rectangular | $\sqrt{3}$ | 0.6 | 1.7  |
| Liquid Permittivity(meas.)                             | 0.5 | normal      | 1          | 0.6 | 0.3  |
| Combined Uncertainty                                   | -   | RSS         |            |     | 9.6  |
| Combined Uncertainty (coverage factor=2)               |     | Normal(k=2) |            |     | 19.2 |







SAR-Z Axis at Hotspot x:1.08 y:0.76







#### 1900MHz System validation

#### SAR Test Report

Report Date : 18-Oct-2012

By Operator : 123

Measurement Date : 18-Oct-2012

 Starting Time
 : 18-Oct-2012
 04:30:47 PM

 End Time
 : 18-Oct-2012
 04:50:43 PM

 Scanning Time
 : 1196 secs

Product Data

Device Name : validation

: 123 Serial No. : Dipole Type Model : 1900 Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time :  $0 \min(s)$ : 2 mm Length : 68 mm Width : 1 mm Depth

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start: 10.671 W/kg Power Drift-Finish: 10.361 W/kg

Power Drift (%) : -2.901

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : User Define

: Center Location

Description : Uni\_Phantom

Tissue Data

: HEAD Type Serial No. : 1900 Frequency : 1900.00 MHz

Last Calib. Date: 18-Oct-2012

: 1000.00 kg/cu. M

: Probe 255 Name

Model : E020







Туре : E-Field Triangle

Serial No. : 255

Last Calib. Date: 06-Dec-2011 : 1900.00 MHz Frequency

Duty Cycle Factor: 1 Conversion Factor: 5.8
Probe Sensitivity: 1.20

1.20  $\mu V/(V/m)^2$ 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete : 23.00 °C Tissue Temp. : 23.00 °C Ambient Temp. Set-up Date : 18-Oct-2012 Set-up Time : 3:05:01 PM

Area Scan : 5x7x1 : Measurement x=15mm, y=15mm, z=4mmZoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

: Rotated Left 90° DUT Position

Separation : 0 Channel : Mid



1 gram SAR value : 9.587 W/kgArea Scan Peak SAR: 10.670 W/kg Zoom Scan Peak SAR : 18.916 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup> (1- g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------|------------------------------------|
| Measurement System                               |                    |                             |            |                                    |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                  | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>          | 1.5                                |
| Hemispherical<br>Isotropy                        | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                | 4.4                                |
| Boundary Effect                                  | 1.0                | rectangular                 | √3         | 1                                  | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | √3         | 1                                  | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | √3         | 1                                  | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                  | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                  | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | √3         | 1                                  | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                  | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | √3         | 1                                  | 0.2                                |
| Restriction                                      |                    |                             |            |                                    |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                  | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                  | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                  | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                  | 2.0                                |
| Drift of Output<br>Power                         | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                  | 1.7                                |
| Phantom and Setup                                |                    |                             |            |                                    |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                  | 2.0                                |
| Liquid<br>Conductivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                | 2.0                                |
| Liquid Conductivity(meas.)                       | 0.7                | normal                      | 1          | 0.7                                | 0.5                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                | 1.7                                |
| Liquid Permittivity(meas.)                       | 1.3                | normal                      | 1          | 0.6                                | 0.8                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                    | 9.4                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                    | 18.9                               |







SAR-Z Axis at Hotspot x:0.09 y:-0.24







#### 2450MHz System validation

#### SAR Test Report

Report Date : 18-Oct-2012 By Operator : 123

Measurement Date : 18-Oct-2012

Starting Time : 18-Oct-2012 11:55:08 AM End Time : 18-Oct-2012 12:12:29 PM Scanning Time : 1041 secs

Product Data

Device Name

: validation : 123 Serial No. : Other Type Model : 2450 Frequency : 2450.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s) : 45 mm Length Width : 3 mm Depth : 2 mm
Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 24.552 W/kg Power Drift-Finish: 23.978 W/kg

Power Drift (%) : -2.336

Picture

Phantom Data

Name Type Size (mm) : APREL-Uni : Uni-Phantom : 280 x 280 x 200 : User Define Size ... Serial No. : User Define

Location : Center

Description : Uni Phantom

Tissue Data

: HEAD Type

Serial No. : 2450 Frequency : 2450.00 MHz Last Calib. Date: 18-Oct-2012 Temperature : 24.00 °C Ambient Temp. : 24.00 °C
Humidity : 50.00 RH%
Epsilon : 39.50 F/m
Sigma : 1.81 S/m

Density : 1000.00 kg/cu. M

Probe Data

: Probe 255 Name

Model Type : E020

: E-Field Triangle

Serial No. : 255







Report No: TSC-101-11-AP-27-1 (SAR)
Last Calib. Date: 06-Dec-2011
Frequency: 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.7

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 24.00 °C
Ambient Temp. : 24.00 °C
Set-up Date : 18-Oct-2012
Set-up Time : 11:54:51 AM

Area Scan : 4x6x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Mid









1 gram SAR value : 26.015 W/kg Area Scan Peak SAR : 23.056 W/kg Zoom Scan Peak SAR : 52.745 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> (1-<br>g)  | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
| Measurement System                               |                    |                             |            |                           |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical<br>Isotropy                        | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                         | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | √3         | 1                         | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | √3         | 1                         | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | √3         | 1                         | 0.2                                |
| Restriction                                      |                    |                             |            |                           |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                         | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Drift of Output<br>Power                         | 2.3                | rectangular                 | √3         | 1                         | 1.3                                |
| Phantom and Setup                                |                    |                             |            |                           |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | √3         | 1                         | 2.0                                |
| Liquid<br>Conductivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                       | 2.0                                |
| Liquid Conductivity(meas.)                       | 0.6                | normal                      | 1          | 0.7                       | 0.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)                       | 0.8                | normal                      | 1          | 0.6                       | 0.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                           | 9.3                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                           | 18.7                               |







SAR-Z Axis at Hotspot x:1.10 y:0.76









#### 4.2 Arrangement Assessment Setup

#### 4.2.1 Test Positions for body-worn

Body-worn operating configurations should be tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in normal use configurations. A separation distance of 1.5 cm between the back of the device and a flat phantom is recommended for testing body-worn SAR compliance under such circumstances. Other separation distance may be use, but not exceed 2.5 cm.

#### 4.3 SAR Measurement Procedure

The ALSAS-10U calculates SAR using the following equation,

$$SAR = \frac{\sigma |E|^2}{\rho}$$

σ: represents the simulated tissue conductivity

ρ: represents the tissue density

The EUT is set to transmit at the required power in line with product specification, at each frequency relating to the LOW, MID, and HIGH channel settings.

Pre-scans are made on the device to establish the location for the transmitting antenna, using a large area scan in either air or tissue simulation fluid.

The EUT is placed against the Universal Phantom where the maximum area scan dimensions are larger than the physical size of the resonating antenna. When the scan size is not large enough to cover the peak SAR distribution, it is modified by either extending the area scan size in both the X and Y directions, or the device is shifted within the predefined area.

The area scan is then run to establish the peak SAR location (interpolated resolution set at 1mm<sup>2</sup>) which is then used to orient the center of the zoom scan. The zoom scan is then executed and the 1g and 10g averages are derived from the zoom scan volume (interpolated resolution set at 1mm<sup>3</sup>).





## 5. SAR Exposure Limits

SAR assessments have been made in line with the requirements of IEEE-1528, FCC Supplement C, and comply with ANSI/IEEE C95.1-1992 "Uncontrolled Environments" limits. These limits apply to a location which is deemed as "Uncontrolled Environment" which can be described as a situation where the general public may be exposed to an RF source with no prior knowledge or control over their exposure.

Limits for General Population/Uncontrolled Exposure (W/kg)

| Type Exposure                                            | Uncontrolled<br>Environment Limit |
|----------------------------------------------------------|-----------------------------------|
| Spatial Peak SAR (1g cube tissue for brain or body)      | 1.60 W/kg                         |
| Spatial Average SAR (whole body)                         | 0.08 W/kg                         |
| Spatial Peak SAR (10g for hands, feet, ankles and wrist) | 4.00 W/kg                         |







# 6. Test Equipment List

| Instrument                          | Manufacturer | Model No.      | Calibration Due | Calibration<br>Cycle(year) |
|-------------------------------------|--------------|----------------|-----------------|----------------------------|
| Data Acquisition Package            | Aprel        | ALS-DAQ-PAQ-2  | NCR             | NCR                        |
| Aprel Laboratories Probe            | Aprel        | ALS-E020(255)  | 10-Nov-2012     | 1                          |
| Aprel Laboratories Probe            | Aprel        | ALS-E020(SGL1) | 10-Feb-2013     | 1                          |
| *Aprel Laboratories Dipole          | Aprel        | ALS-D-900-S-2  | 18-Oct-2013     | 3                          |
| *Aprel Laboratories Dipole          | Aprel        | ALS-D-1900-S-2 | 18-Oct-2013     | 3                          |
| *Aprel Laboratories Dipole          | Aprel        | ALS-D-2450-S-2 | 10-Nov-2012     | 3                          |
| Boundary Detection Sensor           | Aprel        | ALS-PMDPS-2    | NCR             | NCR                        |
| System                              |              |                |                 |                            |
| Dielectric Probe Kit                | Aprel        | ALS-PR-DIEL    | NCR             | NCR                        |
| Universal Work Station              | Aprel        | ALS-UWS        | NCR             | NCR                        |
| Device Holder 2.0                   | Aprel        | ALS-H-E-SET-2  | NCR             | NCR                        |
| Left Ear SAM Phantom                | Aprel        | ALS-P-SAM-L    | NCR             | NCR                        |
| Right Ear SAM Phantom               | Aprel        | ALS-P-SAM-R    | NCR             | NCR                        |
| Flat Phantom                        | Aprel        | ALS-P-UP-1     | NCR             | NCR                        |
| Aprel Dipole Spacer                 | Aprel        | ALS-DS-U       | NCR             | NCR                        |
| SAR Software                        | Aprel        | ALSAS-10       | NCR             | NCR                        |
| CRS C500C Controller                | Thermo       | ALS-C500       | NCR             | NCR                        |
| CRF F3 Robot                        | Thermo       | ALS-F3         | NCR             | NCR                        |
| Power Amplifier                     | Mini-Circuit | ZHL-42         | NCR             | NCR                        |
| Directional Coupler                 | Agilent      | 778D-012       | NCR             | NCR                        |
| Power meter                         | HP           | 437B           | May 11 2013     | 1                          |
| Vector S/G                          | R&S          | SMU200A        | May 11 2013     | 1                          |
| Wireless Communications<br>Test Set | Agilent      | 8960           | May 11 2013     | 1                          |
| Vector Network                      | Anritsu      | MS4623B        | May 15 2013     | 1                          |

<sup>\*</sup>The ALS-D-2450-S-2 dipole meet KDB 450824 requirements for the extended 3-year calibration interval. Please refer to P.163 and P.166 (return loss -25.451dB vs -29.4dB; impedance  $46.2\Omega$  vs  $50.7\Omega$ )







# 7. Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> (1-<br>g)  | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
| Measurement System                               |                    |                             |            |                           |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical<br>Isotropy                        | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                         | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                         | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | √3         | 1                         | 0.2                                |
| Restriction                                      |                    |                             |            |                           |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | $\sqrt{3}$ | 1                         | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Drift of Output<br>Power                         | 4.4                | rectangular                 | $\sqrt{3}$ | 1                         | 2.6                                |
| Phantom and Setup                                |                    |                             |            |                           |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                         | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                       | 2.0                                |
| Liquid Conductivity(meas.)                       | 0.0                | normal                      | 1          | 0.7                       | 0.0                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)                       | 0.5                | normal                      | 1          | 0.6                       | 0.3                                |
| Combined Uncertainty                             |                    | RSS                         |            |                           | 9.6                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                           | 19.2                               |





## **8 SAR Test Results**

# **Conducted power measured(Mobile)**

| Mode                        | Channel | Output Power(dBm) |
|-----------------------------|---------|-------------------|
| 850MHz<br>GPRS/EGPRS        | 128     | 32.2/32.1         |
|                             | 190     | 31.8/31.6         |
|                             | 251     | 32.0/31.9         |
| 1900MHz<br>GPRS/EGPRS       | 512     | 28.6/28.5         |
|                             | 661     | 28.9/28.8         |
|                             | 810     | 28.9/28.7         |
| WCBMA Band 5<br>WCDMA/HSUPA | 4132    | 24.83/24.43       |
|                             | 4183    | 24.74/24.23       |
| WCDMA D. 12                 | 4233    | 24.52/24.50       |
| WCBMA Band 2<br>WCDMA/HSUPA | 9262    | 24.07/24.13       |
|                             | 9538    | 24.70/24.77       |
| CDMA2000 BC0                | 1013    | 24.40/24.49       |
| 1X/EVDO                     | 384     | 23.32/23.50       |
|                             | 777     | 23.48/23.49       |
| CDMA2000 BC1                | 25      | 23.71/23.59       |
| 1X/EVDO                     | 600     | 23.64/23.58       |
|                             | 1175    | 23.84/23.72       |
|                             |         | 23.52/23.50       |







# Conducted power measured(WiFi and Bluetooth)

| Mode          | Channel<br>(Freq. MHz)               | Output Power |         |  |  |
|---------------|--------------------------------------|--------------|---------|--|--|
|               |                                      | PK(dBm)      | AV(dBm) |  |  |
|               |                                      |              |         |  |  |
| 802.11b       | 1(2412)                              | 16.9         | 10.3    |  |  |
|               | 6(2437)                              | 17.2         | 10.5    |  |  |
|               | 11(2462)                             | 16.7         | 10.2    |  |  |
| 802.11g       | 1(2412)                              | 13.6         | 7.5     |  |  |
|               | 6(2437)                              | 13.9         | 7.7     |  |  |
|               | 11(2462)                             | 13.5         | 7.5     |  |  |
| 802.11n(HT20) | 5(2422)                              | 13.7         | 7.6     |  |  |
|               | 8(2437)                              | 13.9         | 7.7     |  |  |
|               | 11(2452)                             | 13.6         | 7.4     |  |  |
| 802.11n(HT40) | 5(2422)                              | 13.7         | 7.6     |  |  |
|               | 8(2437)                              | 13.8         | 7.6     |  |  |
|               | 11(2452)                             | 13.6         | 7.5     |  |  |
| Bluetooth     | $3.9dBm \ge Output power \ge 1.8dBm$ |              |         |  |  |

This EUT use the same model of WiFi/BT and mobile modules with TSC-101-10-AP-07.

# Chunghwa Telecom CO., Ltd Telecommunication Laboratories Testing & Certification Center





Report No: TSC-101-11-AP-27-1 (SAR)

# **SAR Measured(Mobile)**

| Test Position<br>Body | Test<br>Configuration | Frequency |         | Conducted<br>Power<br>(dBm) | SAR<br>1g | Power<br>Drift | Limit<br>(W/kg) |
|-----------------------|-----------------------|-----------|---------|-----------------------------|-----------|----------------|-----------------|
|                       |                       | Channel   | MHz     | Max                         | (W/kg)    | %              |                 |
| 850MHz<br>GPRS        | Side Touch            | 128       | 824.20  | 32.2                        | 0.427     | 3.166          | 1.6             |
|                       | Side Touch            | 190       | 836.60  | 31.8                        | 0.419     | -1.142         | 1.6             |
|                       | Side Touch            | 251       | 848.80  | 32.0                        | 0.429     | -1.152         | 1.6             |
|                       | Front Touch           | 190       | 836.60  | 31.8                        | 0.241     | -4.411         | 1.6             |
| 1900MHz<br>GPRS       | Side Touch            | 512       | 1850.20 | 28.6                        | 0.705     | 1.429          | 1.6             |
|                       | Side Touch            | 661       | 1880.00 | 28.9                        | 0.675     | -1.023         | 1.6             |
|                       | Side Touch            | 810       | 1909.80 | 28.9                        | 0.656     | 1.569          | 1.6             |
|                       | Front Touch           | 661       | 1880.00 | 28.9                        | 0.324     | -0.647         | 1.6             |







| Test Position<br>Body | Test<br>Configuration | Frequency |         | Conducted<br>Power<br>(dBm) | SAR<br>1g | Power<br>Drift | Limit<br>(W/kg) |
|-----------------------|-----------------------|-----------|---------|-----------------------------|-----------|----------------|-----------------|
|                       |                       | Channel   | MHz     | Max                         | (W/kg)    | %              |                 |
| WCBMA<br>Band 5       | Side Touch            | 4132      | 826.40  | 24.83                       | 0.357     | 0.123          | 1.6             |
|                       | Side Touch            | 4182      | 836.40  | 24.74                       | 0.358     | 2.578          | 1.6             |
|                       | Side Touch            | 4233      | 846.60  | 24.52                       | 0.462     | -3.166         | 1.6             |
|                       | Front Touch           | 4182      | 836.40  | 24.74                       | 0.232     | 0.100          | 1.6             |
| WCBMA<br>Band 2       | Side Touch            | 9262      | 1852.40 | 24.07                       | 1.192     | 4.848          | 1.6             |
|                       | Side Touch            | 9400      | 1880.00 | 24.70                       | 1.105     | 3.765          | 1.6             |
|                       | Side Touch            | 9538      | 1907.60 | 24.40                       | 1.165     | 0.379          | 1.6             |
|                       | Front Touch           | 9400      | 1880.00 | 24.70                       | 0.869     | 4.349          | 1.6             |







| Test Position Body    | Test<br>Configuration | Frequency |         | Conducted<br>Power<br>(dBm) | SAR<br>1g | Power<br>Drift | Limit<br>(W/kg) |
|-----------------------|-----------------------|-----------|---------|-----------------------------|-----------|----------------|-----------------|
| Dody                  | Configuration         | Channel   | MHz     | Max                         | (W/kg)    | %              |                 |
|                       | Side Touch            | 1013      | 824.7   | 23.32                       | 0.938     | 4.144          | 1.6             |
| CDMA2000              | Side Touch            | 384       | 836.52  | 23.48                       | 0.838     | 0.068          | 1.6             |
| BC0                   | Side Touch            | 777       | 848.31  | 23.71                       | 0.691     | -3.462         | 1.6             |
| 1X                    | Front Touch           | 384       | 836.52  | 23.48                       | 0.564     | -3.999         | 1.6             |
|                       | Side Touch            | 25        | 1851.25 | 23.64                       | 1.110     | -1.838         | 1.6             |
| CDMA2000<br>BC1<br>1X | Side Touch            | 600       | 1880    | 23.84                       | 1.062     | -0.928         | 1.6             |
|                       | Side Touch            | 1175      | 1908.75 | 23.52                       | 0.907     | -3.270         | 1.6             |
|                       | Front Touch           | 600       | 1880    | 23.84                       | 0.726     | -3.837         | 1.6             |







### SAR Measured(WiFi)

| Test Position Antenna |          | Frequency |      | Conducted<br>Power (dBm) |      | SAR<br>1g | Power   | Limit (W/kg) |
|-----------------------|----------|-----------|------|--------------------------|------|-----------|---------|--------------|
| Body                  | Type     | Channel   | MHz  | Max                      | Av   | (W/kg)    | Drift % |              |
| 802.11b_ Side         | INTERNAL | 1         | 2412 | 16.9                     | 10.3 | 0.153     | 4.817   | 1.6          |
| 802.11b_ Side         | INTERNAL | 6         | 2437 | 17.2                     | 10.5 | 0.140     | 3.572   | 1.6          |
| 802.11b_ Side         | INTERNAL | 11        | 2462 | 16.9                     | 10.3 | 0.194     | 4.304   | 1.6          |
| 802.11b_ Front        | INTERNAL | 6         | 2437 | 17.2                     | 10.5 | 0.107     | 4.191   | 1.6          |

#### Note:

- 1. The test signals (Tx power, Continuous mode and Channel) were Controlled by "RF test utility" which provides by Manufacturer during WiFi SAR testing.
- 2. Mobile and WiFi system can't use at the same time.
- 3. According to KDB 248227, SAR is not required for 802.11g channels when the maximum average output power is less than 1/4 dB higher than that measured on the corresponding 802.11b channels.
- 4. Bluetooth Conducted Maximum Output power  $\leq$  3.9dBm. The MPE is 7.72 x  $10^{-4}$  mW/cm<sup>2</sup> which is compliant with the MPE limits of 1.1310.

### 1.1310 MPE Limits

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

| Frequency range<br>(MHz)                               | Electric field Magnetic field strength (V/m) (A/m) |                         | Power density<br>(mW/cm²)                   | Averaging time (minutes)   |  |  |  |  |
|--------------------------------------------------------|----------------------------------------------------|-------------------------|---------------------------------------------|----------------------------|--|--|--|--|
| (A) Lim                                                | (A) Limits for Occupational/Controlled Exposures   |                         |                                             |                            |  |  |  |  |
| 0.3–3.0<br>3.0–30<br>30–300<br>30–1500<br>1500–100,000 | 614<br>1842/f<br>61.4                              | 1.63<br>4.89/f<br>0.163 | *(100)<br>*(900/f²)<br>1.0<br>f/300<br>5    | 6<br>6<br>6<br>6           |  |  |  |  |
| (B) Limits                                             | for General Populati                               | on/Uncontrolled Exp     | oosure                                      |                            |  |  |  |  |
| 0.3–1.34                                               | 614<br>824/f<br>27.5                               | 1.63<br>2.19/f<br>0.073 | *(100)<br>*(180/f²)<br>0.2<br>f/1500<br>1.0 | 30<br>30<br>30<br>30<br>30 |  |  |  |  |

f = frequency in MHz

= Plane-wave equivalent power density
 Note 1 to Table 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

pational/controlled limits apply provided he or she is made aware of the potential for exposure.

Note 2 to Table 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.





# 9. EUT Photographs



Front View of EUT









Rear View of EUT







Transmit Antenna Location





0263



WLAN/Bluetooth Card Label









WLAN/Bluetooth Card Rear view



WLAN/Bluetooth Card Front view









Front View of WLAN/Bluetooth Antenna and Dimension



Rear View of of WLAN/Bluetooth Antenna and Dimension









Mobile Module









Front View of Mobile Antenna and Dimension



Rear View of Mobile Antenna and Dimension







# A. TEST CONFIGURATIONS AND TEST DATA

# **A.1 TEST CONFIGURATION**

# WiFi Side Touch

































# A.2 LIQUID LEVEL PHOTO

Liquid Level in Flat Phantom > 15cm







### A.3 TISSUE LIQUIDS Dielectric Parameter

### A.3.1 2450 MHz TISSUE LIQUIDS Dielectric measurement data

#### Head Tissue

Tissue Data

Epsilon : 39.5 F/m Sigma : 1.81 S/m

## **Body Tissue**

Tissue Data

Epsilon : 52.4 F/m Sigma : 1.98 S/m

### A.3.2 850 MHz TISSUE LIQUIDS Dielectric measurement data

#### 900MHz Head Tissue

Tissue Data

Epsilon : 41.7 F/m Sigma : 0.96 S/m

### 850 MHz Body Tissue

Tissue Data

Epsilon : 53.1 F/m Sigma : 0.95 S/m

# A.3.3 1900 MHz TISSUE LIQUIDS Dielectric measurement data

#### Head Tissue

Tissue Data

Epsilon : 39.5 F/m Sigma : 1.41 S/m

### **Body Tissue**

Tissue Data

Epsilon : 52.0 F/mSigma : 1.49 S/m







#### A.4. TEST DATA

#### A.4.1 802.11b Mode

#### Low Channel Side Touch

### SAR Test Report

Report Date : 26-Nov-2012

: 123 By Operator

Measurement Date : 26-Nov-2012

Starting Time : 26-Nov-2012 03:24:59 PM End Time : 26-Nov-2012 03:47:06 PM

Scanning Time : 1327 secs

Product Data

: Winmate Device Name Serial No. : Notebook HH

Type : Other
Model : 2437
Frequency : 2450.00 MHz : Other Type

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm

Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.098 W/kg Power Drift-Finish: 0.113 W/kg

Power Drift (%) : 4.817

Picture

Phantom Data

: APREL-Uni Name : Uni-Phantom Type : 280 x 280 x : User Define Size (mm) : 280 x 280 x 200 Serial No.

Location : Center

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 2450 Frequency : 2437.00 MHz

Last Calib. Date: 26-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 52.40 F/m
Sigma : 1.98 S/m

Density : 1000.00 kg/cu. m







Probe Data

Name : Probe 255

Model : E020

: E-Field Triangle Type

: 255 Serial No.

Last Calib. Date : 06-Dec-2011 : 2450.00 MHz Frequency

Duty Cycle Factor: 1 Conversion Factor: 4.7

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 26-Nov-2012
Set-up Time : 8:54:38 AM
Area Scan : 8x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : Low









1 gram SAR value : 0.153 W/kg Area Scan Peak SAR : 0.115 W/kg Zoom Scan Peak SAR : 0.120 W/kg





# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-                                      | 1.5                                |
|                                                  |                    | _                           | 7-         | cp) <sup>1/2</sup>                       |                                    |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         | 1 0                |                             | /5         | 1                                        | 0.6                                |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 4.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    |                             |            |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 1.4                | normal                      | 1          | 0.7                                      | 0.0                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 1.4                | normal                      | 1          | 0.6                                      | 0.0                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 10.6                               |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 21.2                               |







SAR-Z Axis at Hotspot x:7.09 y:-6.24









#### Mid Channel Side Touch

### SAR Test Report

: 26-Nov-2012 Report Date

: 123 By Operator

Measurement Date : 26-Nov-2012

Starting Time : 26-Nov-2012 03:00:27 PM End Time : 26-Nov-2012 03:22:02 PM

Scanning Time : 1295 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

: Other Type Model : 2437

Frequency : 2450.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Width : 190 mm : 50 mm Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.073 W/kg Power Drift-Finish: 0.075 W/kg

Power Drift (%) : 3.572

Picture

Phantom Data

: APREL-Uni Name Type : Uni-Phantom : 280 x 280 x 200 : User Define Size (mm) Serial No.

: Center Location

Description : Uni\_Phantom

Tissue Data

: BODY Type

Serial No. : 2450 Frequency : 2437.00 MHz Last Calib. Date : 26-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 50.00 RH%
Epsilon : 52.40 F/m : 1.98 S/m Sigma

Density : 1000.00 kg/cu. m







Probe Data

Name : Probe 255

Model : E020

: E-Field Triangle Type

: 255 Serial No.

Last Calib. Date : 06-Dec-2011 : 2450.00 MHz Frequency

Duty Cycle Factor: 1 Conversion Factor: 4.7

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 26-Nov-2012
Set-up Time : 8:54:38 AM
Area Scan : 8x6x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : Mid









1 gram SAR value : 0.140 W/kg Area Scan Peak SAR : 0.187 W/kg Zoom Scan Peak SAR : 0.290 W/kg





# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty          | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> 1 (1- g)   | Standard<br>Uncertainty<br>(1-g) % |
|-----------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
|                                   |                    |                             |            |                           |                                    |
| Measurement System                |                    |                             |            |                           |                                    |
| - 1 - 7 - 1 - 1                   | 0.5                |                             |            |                           | 2 5                                |
| Probe Calibration                 | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                    | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical                     | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Isotropy                          |                    |                             |            |                           |                                    |
| Boundary Effect                   | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                         | 4.7                | rectangular                 | $\sqrt{3}$ | 1                         | 2.7                                |
| Detection Limit                   | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Readout Electronics               | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                     | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                  | 1.7                | rectangular                 | $\sqrt{3}$ | 1                         | 1.0                                |
| RF Ambient Condition              | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner Mech.            | 0.4                | rectangular                 | $\sqrt{3}$ | 1                         | 0.2                                |
|                                   |                    |                             |            |                           |                                    |
| Restriction                       |                    |                             |            |                           |                                    |
| Probe Positioning with respect to | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Phantom Shell Extrapolation and   | 3.7                | rectangular                 | √3         | 1                         | 2.1                                |
| Integration                       | 3.7                | rectangular                 | V 3        | _                         | 2.1                                |
| Test Sample                       | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Positioning Device Holder         | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Uncertainty                       | 2.0                | 110111101                   | _          | _                         | 2.0                                |
| Drift of Output<br>Power          | 3.6                | rectangular                 | $\sqrt{3}$ | 1                         | 2.1                                |
|                                   |                    |                             |            |                           |                                    |
| Phantom and Setup                 |                    |                             |            |                           |                                    |
| Phantom Uncertainty(shape &       | 3.4                | rectangular                 | $\sqrt{3}$ | 1                         | 2.0                                |
| thickness tolerance) Liquid       | 5.0                | rectangular                 | √3         | 0.7                       | 2.0                                |
| Conductivity(target) Liquid       | 1.4                | normal                      | 1          | 0.7                       | 0.0                                |
| Conductivity(meas.)               |                    |                             |            |                           |                                    |
| Liquid Permittivity(target)       | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)        | 1.4                | normal                      | 1          | 0.6                       | 0.0                                |
| Combined Uncertainty              |                    | RSS                         |            |                           | 10.5                               |
| Combined Uncertainty              |                    | Normal(k=2)                 |            |                           | 21.1                               |
| (coverage factor=2)               |                    |                             |            |                           |                                    |





# SAR-Z Axis at Hotspot x:31.10 y:-0.22

0.30-0.25 0.20 SAR (mW//g) -91.0 0.10 0.05-0.00 10 15 20 25 30 Z Distance (mm)





# High Channel Side Touch

#### SAR Test Report

Report Date : 13-Nov-2012

: 123 By Operator

Measurement Date : 13-Nov-2012

Starting Time : 13-Nov-2012 01:58:20 PM End Time : 13-Nov-2012 02:22:41 PM

Scanning Time : 1461 secs

Product Data

Device Name : Winmate Serial No. : M970D : Other Type

Model : 2437 Frequency : 2462.00 MHz

Max. Transmit Pwr : 1 W Drift Time :  $0 \min(s)$ Length : 268 mm : 205 mm Width : 18 mm Depth Antenna Type : Internormation : Touch : Internal

Power Drift-Start: 0.021 W/kg Power Drift-Finish: 0.021 W/kg

Power Drift (%) : 4.304

Picture

Phantom Data

: APREL-Uni Name Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : User Define

: Center Location

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 2450 · 2450 : 2462.00 MHz

Frequency Last Calib. Date : 12-Nov-2012 Temperature : 24.00 °C : 24.00 °C Ambient Temp. Humidity
Epsilon : 50.00 RH% Epsilon : 53.20 F/m Density : 1.99 S/m

: 1000.00 kg/cu. m

Probe Data

: Probe 255 Name

Model : E020







Type : E-Field Triangle

Serial No. : 255

Last Calib. Date: 06-Dec-2011 Frequency: 2450.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 4.7

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 24.00 °C
Ambient Temp. : 24.00 °C
Set-up Date : 13-Nov-2012
Set-up Time : 8:11:44 AM

Area Scan : 7x8x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Touch Separation : 0 Channel : High









1 gram SAR value : 0.297 W/kg Area Scan Peak SAR : 0.362 W/kg Zoom Scan Peak SAR : 0.680 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                              | Tolerance<br>Value | Probability<br>Distribution | Divisor    | (1-g)                     | Standard<br>Uncertainty<br>(1-g) % |
|-------------------------------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
| Measurement System                                    |                    |                             |            |                           |                                    |
| Probe Calibration                                     | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                                        | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical<br>Isotropy                             | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Boundary Effect                                       | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                                             | 4.7                | rectangular                 | $\sqrt{3}$ | 1                         | 2.7                                |
| Detection Limit                                       | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Readout Electronics                                   | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                                         | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                                      | 1.7                | rectangular                 | $\sqrt{3}$ | 1                         | 1.0                                |
| RF Ambient Condition                                  | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner<br>Mech.                             | 0.4                | rectangular                 | $\sqrt{3}$ | 1                         | 0.2                                |
| Restriction                                           |                    |                             |            |                           |                                    |
| Probe Positioning<br>with respect to<br>Phantom Shell | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Extrapolation and Integration                         | 3.7                | rectangular                 | √3         | 1                         | 2.1                                |
| Test Sample<br>Positioning                            | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Device Holder<br>Uncertainty                          | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Drift of Output<br>Power                              | 4.3                | rectangular                 | $\sqrt{3}$ | 1                         | 2.5                                |
| Phantom and Setup                                     |                    |                             |            |                           |                                    |
| Phantom Uncertainty(shape & thickness tolerance)      | 3.4                | rectangular                 | $\sqrt{3}$ | 1                         | 2.0                                |
| Liquid<br>Conductivity(target)                        | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                       | 2.0                                |
| Liquid Conductivity(meas.)                            | 1.4                | normal                      | 1          | 0.7                       | 0.0                                |
| Liquid Permittivity(target)                           | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)                            | 1.4                | normal                      | 1          | 0.6                       | 0.0                                |
| Combined Uncertainty                                  |                    | RSS                         |            |                           | 9.5                                |
| Combined Uncertainty (coverage factor=2)              |                    | Normal(k=2)                 |            |                           | 19.1                               |







SAR-Z Axis at Hotspot x:0.08 y:22.76







#### A.4.2 GPRS Mode

#### 850MHz Low Channel Side Touch

### SAR Test Report

Report Date : 28-Nov-2012 By Operator : 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 09:23:57 AM End Time : 28-Nov-2012 09:50:49 AM Scanning Time : 1612 secs

Product Data

Device Name : Winmate Serial No. : Notebook HH : Other

Type Model Model : 850 Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W

Drift Time : 0 min(s) Length : 265 mm Width : 190 mm : 50 mm Depth

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start: 0.409 W/kg Power Drift-Finish: 0.421 W/kg

Power Drift (%) : 3.166

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom : 280 x 280 x 200 Size (mm) Serial No. : User Define

: Center Location

: Uni\_Phantom Description

Tissue Data

: BODY Type : 835 : 835.00 MHz Serial No.

Frequency Last Calib. Date: 28-Nov-2012 Temperature : 23.00 °C

Ambient Temp. : 23.00 °C

Humidity : 55.00 RH%

Epsilon : 53.80 F/m : 53.80 F/m

: 0.98 S/m : 1000.00 kg/cu. m Sigma Density







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 4 Conversion Factor: 7.1

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 4

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:40:51 AM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : Low









1 gram SAR value : 0.427 W/kg Area Scan Peak SAR : 0.458 W/kg Zoom Scan Peak SAR : 0.730 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                               | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> (1- g)     | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
| Measurement System                                     |                    |                             |            |                           |                                    |
|                                                        |                    |                             |            |                           |                                    |
| Probe Calibration                                      | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                                         | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical<br>Isotropy                              | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Boundary Effect                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                                              | 4.7                | rectangular                 | √3         | 1                         | 2.7                                |
| Detection Limit                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Readout Electronics                                    | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                                          | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                                       | 1.7                | rectangular                 | $\sqrt{3}$ | 1                         | 1.0                                |
| RF Ambient Condition                                   | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner                                       | 0.4                | rectangular                 | $\sqrt{3}$ | 1                         | 0.2                                |
|                                                        |                    |                             |            |                           |                                    |
| Restriction                                            |                    |                             |            |                           |                                    |
| Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Extrapolation and Integration                          | 3.7                | rectangular                 | √3         | 1                         | 2.1                                |
| Test Sample Positioning                                | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Device Holder<br>Uncertainty                           | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Drift of Output<br>Power                               | 3.2                | rectangular                 | $\sqrt{3}$ | 1                         | 1.8                                |
|                                                        |                    |                             |            |                           |                                    |
| Phantom and Setup                                      |                    |                             |            |                           |                                    |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                         | 2.0                                |
| Liquid Conductivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                       | 2.0                                |
| Liquid Conductivity(meas.)                             | 1.0                | normal                      | 1          | 0.7                       | 0.7                                |
| Liquid Permittivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)                             | 2.5                | normal                      | 1          | 0.6                       | 1.5                                |
| Combined Uncertainty                                   |                    | RSS                         |            |                           | 9.6                                |
| Combined Uncertainty (coverage factor=2)               |                    | Normal(k=2)                 |            |                           | 19.1                               |







SAR-Z Axis at Hotspot x:0.08 y:-0.24









#### 850MHz Mid Channel Side Touch

#### SAR Test Report

: 28-Nov-2012

Report Date By Operator : 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 08:55:21 AM End Time : 28-Nov-2012 09:22:29 AM Scanning Time : 1628 secs

Product Data

: Winmate Device Name : Notebook HH : Other Serial No.

Type Model : 850 Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time :  $0 \min(s)$ Length : 265 mm : 190 mm Width : 50 mm Depth

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start: 0.420 W/kg Power Drift-Finish: 0.415 W/kg Power Drift (%) : -1.142

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 Serial No. : User Define

: Center Location

Description : Uni Phantom

Tissue Data

: BODY Type Serial No. : 835 Frequency : 835.00 MHz

Last Cal Temperature
Ambient Temp. : 25.
Humidity : 55.00 RHo
Epsilon : 53.80 F/m
: 0.98 S/m
: 1000.00 k Last Calib. Date: 28-Nov-2012

: 1000.00 kg/cu. m

: SGL1 Name Model : 1900







Туре : E-Field Triangle

Serial No. : SGL1

Last Calib. Date : 10-Feb-2012 : 835.00 MHz Frequency

Duty Cycle Factor: 4

Conversion Factor: 7.1
Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

: 4 Crest Factor

Scan Type : Complete Scan Type
Tissue Temp.
Ambient Temp. : 23.00 °C : 23.00 °C Set-up Date : 28-Nov-2012 Set-up Time : 8:40:51 AM

Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm: 5x5x8 : Measurement x=8mm, y=8mm, z=4mm Zoom Scan

Other Data

: Rotated Left 90° DUT Position

Separation : 0 : Mid Channel







1 gram SAR value : 0.419 W/kg Area Scan Peak SAR : 0.451 W/kg Zoom Scan Peak SAR : 0.710 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    |                             |            |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 1.1                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.7                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                | 2 4                |                             | /5         | -                                        |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 1.0                | normal                      | 1          | 0.7                                      | 0.7                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.5                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.4                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 18.8                               |







SAR-Z Axis at Hotspot x:0.08 y:-0.24







### 850MHz High Channel Side Touch

### SAR Test Report

Report Date : 28-Nov-2012

: 123 By Operator

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 09:53:55 AM End Time : 28-Nov-2012 10:20:55 AM

Scanning Time : 1620 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

: Other Type : 850 Model

Frequency : 850.00 MHz

Max. Transmit Pwr : 2 W Drift Time : 0 min(s) Length : 265 mm Width : 190 mm : 50 mm Depth Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.419 W/kg Power Drift-Finish: 0.414 W/kg Power Drift (%) : -1.152

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom : 280 x 280 x 200 : User Define Size (mm) Serial No.

: Center Location

: Uni\_Phantom Description

Tissue Data

Type : BODY Serial No. : 835 Frequency : 835.00 MHz

Last Calib. Date : 28-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.80 F/m : 0.98 S/m Sigma

Density : 1000.00 kg/cu. m







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 4 Conversion Factor: 7.1

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 4

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:40:51 AM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : High







1 gram SAR value : 0.429 W/kg Area Scan Peak SAR : 0.470 W/kg Zoom Scan Peak SAR : 0.740 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                               | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> (1- g)     | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------|--------------------|-----------------------------|------------|---------------------------|------------------------------------|
| Measurement System                                     |                    |                             |            |                           |                                    |
|                                                        |                    |                             |            |                           |                                    |
| Probe Calibration                                      | 3.5                | normal                      | 1          | 1                         | 3.5                                |
| Axial Isotropy                                         | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5                                |
| Hemispherical<br>Isotropy                              | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                       | 4.4                                |
| Boundary Effect                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Linearity                                              | 4.7                | rectangular                 | √3         | 1                         | 2.7                                |
| Detection Limit                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                         | 0.6                                |
| Readout Electronics                                    | 1.0                | normal                      | 1          | 1                         | 1.0                                |
| Response Time                                          | 0.8                | rectangular                 | $\sqrt{3}$ | 1                         | 0.5                                |
| Integration Time                                       | 1.7                | rectangular                 | $\sqrt{3}$ | 1                         | 1.0                                |
| RF Ambient Condition                                   | 3.0                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Probe Positioner Mech.                                 | 0.4                | rectangular                 | $\sqrt{3}$ | 1                         | 0.2                                |
|                                                        |                    |                             |            |                           |                                    |
| Restriction                                            |                    |                             |            |                           |                                    |
| Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | $\sqrt{3}$ | 1                         | 1.7                                |
| Extrapolation and Integration                          | 3.7                | rectangular                 | √3         | 1                         | 2.1                                |
| Test Sample Positioning                                | 4.0                | normal                      | 1          | 1                         | 4.0                                |
| Device Holder<br>Uncertainty                           | 2.0                | normal                      | 1          | 1                         | 2.0                                |
| Drift of Output Power                                  | 1.2                | rectangular                 | $\sqrt{3}$ | 1                         | 0.7                                |
|                                                        |                    |                             |            |                           |                                    |
| Phantom and Setup                                      |                    |                             |            |                           |                                    |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 3.4                | rectangular                 | √3         | 1                         | 2.0                                |
| Liquid Conductivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                       | 2.0                                |
| Liquid Conductivity(meas.)                             | 1.0                | normal                      | 1          | 0.7                       | 0.7                                |
| Liquid Permittivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                       | 1.7                                |
| Liquid Permittivity(meas.)                             | 2.5                | normal                      | 1          | 0.6                       | 1.5                                |
| Combined Uncertainty                                   |                    | RSS                         |            |                           | 9.4                                |
| Combined Uncertainty (coverage factor=2)               |                    | Normal(k=2)                 |            |                           | 18.8                               |







SAR-Z Axis at Hotspot x:0.09 y:-0.24







#### 1900MHz Low Channel Side Touch

#### SAR Test Report

: 27-Nov-2012 Report Date

By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 08:40:44 PM End Time : 27-Nov-2012 09:06:58 PM

Scanning Time : 1574 secs

Product Data

Device Name : Winmate : Notebook HH : Other Serial No.

Type Model : 1900 Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time :  $0 \min(s)$ Length : 265 mm : 190 mm Width : 50 mm Depth

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start: 0.745 W/kg Power Drift-Finish: 0.755 W/kg

Power Drift (%) : 1.429

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom : 280 x 280 x 200 Size (mm) Serial No. : User Define

: Center Location

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 1900 Frequency : 1900.00 MHz

Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m Sigma

: 1.49 S/m : 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 1800.00 MHz

Duty Cycle Factor: 4 Conversion Factor: 5.8

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 4

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : Low







1 gram SAR value : 0.705 W/kg Area Scan Peak SAR : 0.681 W/kg Zoom Scan Peak SAR : 1.481 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                               | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                        |                    |                             |            |                                          |                                    |
| Measurement System                                     |                    |                             |            |                                          |                                    |
| Probe Calibration                                      | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                         | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                          | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                               |                    |                             |            |                                          |                                    |
| Boundary Effect                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                              | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                                    | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                          | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                       | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                                   | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                                 | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                        |                    |                             |            |                                          |                                    |
| Restriction                                            |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                          | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample Positioning                                | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                           | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                               | 1.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.8                                |
|                                                        |                    |                             |            |                                          |                                    |
| Phantom and Setup                                      |                    |                             |            |                                          |                                    |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                             | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                             | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                                   |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)               |                    | Normal(k=2)                 |            |                                          | 19.0                               |







SAR-Z Axis at Hotspot x:8.10 y:7.76









#### 1900MHz Middle Channel Side Touch

SAR Test Report

ALSAS-10U VER 2.3.8.90 **APREL Laboratories** 

#### SAR Test Report

Report Date : 27-Nov-2012 By Operator : 123

Measurement Date : 27-Nov-2012 Starting Time : 27-Nov-2012 07:46:11 PM End Time : 27-Nov-2012 08:12:12 PM Scanning Time : 1561 secs

Product Data

Device Name WinmateNotebook HHOther Serial No.

Type : Other
Model : 1900
Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s)

Length : 265 mm

Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.829 W/kg Power Drift-Finish: 0.820 W/kg

Power Drift (%) : -1.023

Picture

Phantom Data

: APREL-Uni Name Type : Uni-Phantom : 280 x 280 x 200 : User Define Size (mm)

Serial No. : Center Location

: Uni\_Phantom Description

Tissue Data

: BODY Type

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C

Ambient Temp. : 23.00 °C

Humidity : 55.00 RH%

Epsilon : 52.00 F/m

Sigma : 1.49 S/m : 1.49 S/m Sigma







Density : 1000.00 kg/cu. m

Probe Data

Name : SGL1 Model : 1900

Type : E-Field Triangle

Serial No. : SGL1

Last Calib. Date: 10-Feb-2012 Frequency: 1800.00 MHz

Duty Cycle Factor: 4 Conversion Factor: 5.8

Probe Sensitivity: 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 4

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Meas

Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Mid









1 gram SAR value : 0.675 W/kg Area Scan Peak SAR : 0.729 W/kg Zoom Scan Peak SAR : 1.481 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    |                             |            |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                | 2 4                | , ,                         | /5         | 1                                        | 0.0                                |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid<br>Conductivity(meas.)                    | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 19.0                               |







# SAR-Z Axis at Hotspot x:0.08 y:7.76







#### 1900MHz High Channel Side Touch

#### SAR Test Report

Report Date By Operator : 28-Nov-2012

: 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 08:17:37 AM End Time : 28-Nov-2012 08:38:09 AM Scanning Time : 1232 secs

Product Data

Device Name : Winmate : Notebook HH : Other Serial No.

Type Model : 1900 Frequency : 1900.00 MHz

Max. Transmit Pwr : 1 W Drift Time : 0 min(s) Length : 265 mm : 190 mm Width : 50 mm Depth

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start: 0.866 W/kg Power Drift-Finish: 0.880 W/kg

Power Drift (%) : 1.569

Picture

Phantom Data

: APREL-Uni Name Type : Uni-Phantom : 280 x 280 x 200 Size (mm) Serial No. : User Define

: Center Location

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 1900 Frequency : 1900.00 MHz

Last Calib. Date: 27-Nov-2012 Last Callb. Date : 27-NOV-2012

Temperature : 23.00 °C

Ambient Temp. : 23.00 °C

Humidity : 55.00 RH%

Epsilon : 52.00 F/m

Sigma : 1.49 S/m

Density : 1000.00 kg/cu. m







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 2000.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:12:04 AM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation : High Channel







1 gram SAR value : 0.656 W/kg Area Scan Peak SAR : 0.799 W/kg Zoom Scan Peak SAR : 1.331 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                                           | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
| Measurement System                                                 |                    |                             |            |                                          |                                    |
|                                                                    | 2 5                | 7                           | 1          | 1                                        | 2 5                                |
| Probe Calibration                                                  | 3.5                | normal                      | 7.0        | (1-                                      | 3.5                                |
| Axial Isotropy                                                     | 3.7                | rectangular                 | √3         | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical<br>Isotropy                                          | 10.9               | rectangular                 | √3         | √cp                                      | 4.4                                |
| Boundary Effect                                                    | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                                          | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                                    | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                                                | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                                      | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                                   | 1.7                | rectangular                 | √3         | 1                                        | 1.0                                |
| RF Ambient Condition                                               | 3.0                | rectangular                 | √3         | 1                                        | 1.7                                |
| Probe Positioner<br>Mech.                                          | 0.4                | rectangular                 | √3         | 1                                        | 0.2                                |
|                                                                    |                    |                             |            |                                          |                                    |
| Restriction Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | √3         | 1                                        | 1.7                                |
| Extrapolation and Integration                                      | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                                         | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                                       | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                                           | 1.6                | rectangular                 | √3         | 1                                        | 0.9                                |
| Di                                                                 |                    |                             |            |                                          |                                    |
| Phantom and Setup Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | √3         | 1                                        | 2.0                                |
| Liquid<br>Conductivity(target)                                     | 5.0                | rectangular                 | √3         | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                                         | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid<br>Permittivity(target)                                     | 5.0                | rectangular                 | √3         | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                                         | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                                               |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)                           |                    | Normal(k=2)                 |            |                                          | 19.0                               |







SAR-Z Axis at Hotspot x:0.09 y:15.76







#### A.4.3 WCDMA Mode

### 850MHz Band 5 Low Channel Side Touch

### SAR Test Report

Report Date : 27-Nov-2012 By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 05:26:32 PM End Time : 27-Nov-2012 05:47:11 PM

Scanning Time : 1239 secs

Product Data

Device Name : Winmate
Serial No. : Notebook HH
Type : Other

Type : Other
Model : 850
Frequency : 850.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)

Length : 265 mm

Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.285 W/kg Power Drift-Finish: 0.286 W/kg

Power Drift (%) : 0.123

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom : 280 x 280 x 200 : User Define : Center Size (mm) Serial No.

Location : Center

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 835 Frequency : 835.00 MHz

Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.10 F/m
Sigma : 0.95 S/m







Density : 1000.00 kg/cu. m

Probe Data

Name : SGL1 Model : 835

Type : E-Field Triangle

Serial No. : SGL1

Last Calib. Date: 10-Feb-2012 Frequency: 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

Probe Sensitivity: 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Meas

Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Low







1 gram SAR value : 0.357 W/kg Area Scan Peak SAR : 0.404 W/kg Zoom Scan Peak SAR : 0.570 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of                        | Tolerance | Probability  | Divisor    | C <sub>i</sub>            | Standard    |
|----------------------------------|-----------|--------------|------------|---------------------------|-------------|
| Uncertainty                      | Value     | Distribution |            | (1-                       | Uncertainty |
|                                  |           |              |            | g)                        | (1-g) %     |
|                                  |           |              |            |                           |             |
| Measurement System               |           |              |            |                           |             |
|                                  |           |              |            |                           |             |
| Probe Calibration                | 3.5       | normal       | 1          | 1                         | 3.5         |
| Axial Isotropy                   | 3.7       | rectangular  | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup> | 1.5         |
| Hemispherical                    | 10.9      | rectangular  | $\sqrt{3}$ | √cp                       | 4.4         |
| Isotropy                         |           |              | •          | ,                         |             |
| Boundary Effect                  | 1.0       | rectangular  | $\sqrt{3}$ | 1                         | 0.6         |
| Linearity                        | 4.7       | rectangular  | √3         | 1                         | 2.7         |
| Detection Limit                  | 1.0       | rectangular  | √3         | 1                         | 0.6         |
| Readout Electronics              | 1.0       | normal       | 1          | 1                         | 1.0         |
| Response Time                    | 0.8       | rectangular  | $\sqrt{3}$ | 1                         | 0.5         |
| Integration Time                 | 1.7       | rectangular  | $\sqrt{3}$ | 1                         | 1.0         |
| RF Ambient Condition             | 3.0       | rectangular  | $\sqrt{3}$ | 1                         | 1.7         |
|                                  | 0.4       | _            | ,          |                           |             |
| Probe Positioner<br>Mech.        | 0.4       | rectangular  | $\sqrt{3}$ | 1                         | 0.2         |
| Mecii.                           |           |              |            |                           |             |
| Restriction                      |           |              |            |                           |             |
| Probe Positioning                | 2.9       | rectangular  | $\sqrt{3}$ | 1                         | 1.7         |
| with respect to                  |           |              |            |                           |             |
| Phantom Shell                    |           | _            |            |                           |             |
| Extrapolation and                | 3.7       | rectangular  | √3         | 1                         | 2.1         |
| Integration Test Sample          | 4.0       | normal       | 1          | 1                         | 4.0         |
| Positioning                      | 1.0       | HOIMAI       | -          | _                         | 1.0         |
| Device Holder                    | 2.0       | normal       | 1          | 1                         | 2.0         |
| Uncertainty                      |           |              |            |                           |             |
| Drift of Output                  | 0.1       | rectangular  | $\sqrt{3}$ | 1                         | 0.1         |
| Power                            |           |              |            |                           |             |
| Phantom and Setup                |           |              |            | 1                         |             |
| Phantom                          | 3.4       | rectangular  | √3         | 1                         | 2.0         |
| Uncertainty(shape &              |           | rectangular  | V 3        | -                         | 2.0         |
| thickness tolerance)             |           |              |            |                           |             |
| Liquid                           | 5.0       | rectangular  | $\sqrt{3}$ | 0.7                       | 2.0         |
| Conductivity(target)             |           |              | ,          |                           |             |
| Liquid                           | 2.1       | normal       | 1          | 0.7                       | 1.4         |
| Conductivity(meas.) Liquid       | 5.0       | rogtangulas  | <i></i>    | 0.6                       | 1.7         |
| Liquid<br>  Permittivity(target) | 3.0       | rectangular  | √3         | 0.6                       | <u> </u>    |
| Liquid                           | 3.8       | normal       | 1          | 0.6                       | 2.3         |
| Permittivity(meas.)              | 2.5       |              | _          |                           |             |
| Combined Uncertainty             |           | RSS          |            |                           | 9.6         |
| Combined Uncertainty             |           | Normal(k=2)  |            |                           | 19.2        |
| (coverage factor=2)              |           |              |            | ]                         |             |







SAR-Z Axis at Hotspot x:0.12 y:-7.24







#### 850MHz Band 5

#### Mid Channel Side Touch

#### SAR Test Report

Report Date : 27-Nov-2012

: 123 By Operator

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 05:04:29 PM End Time : 27-Nov-2012 05:25:09 PM

Scanning Time : 1240 secs

Product Data

Device Name : Winmate Serial No. : Notebook HH

: Other Type : Other
Model : 835
Frequency : 835.00 MHz Type

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Width Depth : 190 mm : 50 mm

Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.292 W/kg Power Drift-Finish: 0.299 W/kg

Power Drift (%) : 2.578

Picture

Phantom Data

: APREL-Uni Name : Uni-Phantom Type Size (mm) : 280 x 280 x 200 Serial No. : User Define

Location : Center

Description : Uni\_Phantom

Tissue Data

: BODY Type

Serial No. : 835 Frequency : 835.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.10 F/m
Sigma : 0.95 S/m

Density : 1000.00 kg/cu. m







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation Channel : Mid







1 gram SAR value : 0.358 W/kg Area Scan Peak SAR : 0.404 W/kg Zoom Scan Peak SAR : 0.550 W/kg







# Exposure Assessment Measurement Uncertainty

| Measurement System                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Source of<br>Uncertainty    | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
| Probe Calibration   3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                    |                             |            |                                          |                                    |
| Axial Isotropy 3.7 rectangular √3 (1- cp) 1.5 cp) 1.7 Hemispherical 10.9 rectangular √3 √cp 4.4 Isotropy Boundary Effect 1.0 rectangular √3 1 0.6 Linearity 4.7 rectangular √3 1 0.6 Linearity 4.7 rectangular √3 1 0.6 Readout Electronics 1.0 normal 1 1 1.0 Incertainty Incer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Measurement System          |                    |                             |            |                                          |                                    |
| Axial Isotropy 3.7 rectangular √3 (1- cp) 1.5 cp) 1.7 Hemispherical 10.9 rectangular √3 √cp 4.4 Isotropy Boundary Effect 1.0 rectangular √3 1 0.6 Linearity 4.7 rectangular √3 1 0.6 Linearity 4.7 rectangular √3 1 0.6 Readout Electronics 1.0 normal 1 1 1.0 Incertainty Incer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Probe Calibration           | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Hemispherical   10.9   rectangular   √3   √cp   4.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                             | _          | (1-                                      |                                    |
| Sourcopy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TT and and and and          | 10.0               |                             | /5         | cp) <sup>1/2</sup>                       | 4 4                                |
| Boundary Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Hemispherical<br>  Isotropy | 10.9               | rectangular                 | √ 3        | √cp                                      | 4.4                                |
| Linearity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Roundary Effect             | 1 0                | rectangular                 | ./3        | 1                                        | 0.6                                |
| Detection Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                    |                             |            |                                          |                                    |
| Readout Electronics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detection Limit             |                    |                             | /3         |                                          |                                    |
| Response Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                    |                             |            |                                          |                                    |
| Integration Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                    |                             |            |                                          |                                    |
| RF Ambient Condition   3.0   rectangular   √3   1   1.7     Probe Positioner   0.4   rectangular   √3   1   0.2     Mech.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                    |                             |            |                                          |                                    |
| Probe Positioner                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                    |                             |            |                                          |                                    |
| Mech.         Restriction         Restriction         Image: content of the probability of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell         2.9         rectangular rectangular         √3         1         1.7           Extrapolation and Integration         3.7         rectangular         √3         1         2.1           Integration         Test Sample         4.0         normal         1         1         4.0           Positioning         Device Holder         2.0         normal         1         1         2.0           Uncertainty         Drift of Output         2.6         rectangular         √3         1         1.5           Power         2.6         rectangular         √3         1         2.0           Phantom and Setup         Phantom         3.4         rectangular         √3         1         2.0           Uncertainty(shape & thickness tolerance)         1.iquid         5.0         rectangular         √3         0.7         2.0           Conductivity(target)         1.iquid         2.1         normal         1         0.7         1.4           Conductivity(target)         5.0         rectangular         √3         0.6         1.7           Liquid         5.0         rectangular         √3         0.6         1.7           Permittivity(meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 0.4                | rectangular                 | √3         | Т                                        | 0.2                                |
| Probe Positioning with respect to Phantom Shell         2.9         rectangular rectangular         √3         1         1.7           Extrapolation and Integration         3.7         rectangular         √3         1         2.1           Integration         Test Sample         4.0         normal         1         1         4.0           Positioning         Device Holder         2.0         normal         1         1         2.0           Uncertainty         Drift of Output         2.6         rectangular         √3         1         1.5           Power         2.6         rectangular         √3         1         2.0           Phantom and Setup         Phantom         3.4         rectangular         √3         1         2.0           Uncertainty(shape & thickness tolerance)         1.iquid         5.0         rectangular         √3         0.7         2.0           Conductivity(target)         1.iquid         2.1         normal         1         0.7         1.4           Conductivity(target)         5.0         rectangular         √3         0.6         1.7           Liquid         5.0         rectangular         √3         0.6         1.7           Permittivity(meas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             |                    |                             |            |                                          |                                    |
| with respect to Phantom Shell         Image: Control of the phantom shell         Image: Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                    |                             |            |                                          |                                    |
| Extrapolation and Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with respect to             | 2.9                | rectangular                 | √3         | 1                                        | 1.7                                |
| Integration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             | 2 7                | rogtangular                 | /2         | 1                                        | 2 1                                |
| Test Sample Positioning 1 1 1 4.0 Positioning 2 2.0 Positioning 2 2.0 Power 2 2.0 Power 2 2.6 Power 2 2.0 Power 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             | 3.7                | rectangular                 | V 3        |                                          | 2.1                                |
| Device Holder Uncertainty 2.0 normal 1 1 2.0 Uncertainty 2.6 rectangular $\sqrt{3}$ 1 1.5 Power 2.6 rectangular $\sqrt{3}$ 1 1.5 Power 2.6 Phantom and Setup Phantom 3.4 rectangular $\sqrt{3}$ 1 2.0 Uncertainty(shape & thickness tolerance) Liquid 5.0 rectangular $\sqrt{3}$ 0.7 2.0 Conductivity(target) Liquid 2.1 normal 1 0.7 1.4 Conductivity(meas.) Liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 Permittivity(target) 3.8 normal 1 0.6 2.3 Permittivity(meas.) RSS 9.7 Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                             | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Uncertainty  Drift of Output Phantom and Setup Phantom Uncertainty(shape & thickness tolerance)  Liquid Conductivity(target)  Liquid Conductivity(meas.)  Liquid Conductivity(target)  Liquid Conductivity(meas.)  Liquid Conductivity(meas.)  Liquid Permittivity(target)  Liquid Remittivity(target)  Rectangular $\sqrt{3}$ |                             | 2.0                |                             | 1          | 1                                        | 2.0                                |
| Drift of Output 2.6 rectangular $\sqrt{3}$ 1 1.5 Power 2.6 Power 2.6 rectangular $\sqrt{3}$ 1 1.5 Power 2.6 Phantom and Setup Phantom 3.4 rectangular $\sqrt{3}$ 1 2.0 Uncertainty(shape & thickness tolerance) Liquid 5.0 rectangular $\sqrt{3}$ 0.7 2.0 Conductivity(target) 2.1 normal 1 0.7 1.4 Conductivity(meas.) Liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 Permittivity(target) 2.8 normal 1 0.6 2.3 Permittivity(meas.) RSS 9.7 Combined Uncertainty RSS 9.7 Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             | 2.0                | normal                      |            | 1                                        | 2.0                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 2.6                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.5                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Power                       |                    |                             |            |                                          |                                    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Phantom and Setup           |                    |                             |            |                                          |                                    |
| Uncertainty(shape & thickness tolerance)  Liquid 5.0 rectangular $\sqrt{3}$ 0.7 2.0 Conductivity(target)  Liquid 2.1 normal 1 0.7 1.4 Conductivity(meas.)  Liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 Permittivity(target)  Liquid 3.8 normal 1 0.6 2.3 Permittivity(meas.)  Combined Uncertainty RSS 9.7 Combined Uncertainty Normal(k=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             | 3.4                | rectangular                 | √3         | 1                                        | 2.0                                |
| thickness tolerance)  Liquid 5.0 rectangular $\sqrt{3}$ 0.7 2.0 Conductivity(target)  Liquid 2.1 normal 1 0.7 1.4 Conductivity(meas.)  Liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 Permittivity(target)  Liquid 3.8 normal 1 0.6 2.3 Permittivity(meas.)  Combined Uncertainty RSS 9.7 Combined Uncertainty Normal(k=2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             | 3.1                | rectangular                 | l v S      | _                                        | 2.0                                |
| Liquid conductivity(target) 5.0 rectangular $\sqrt{3}$ 0.7 2.0 conductivity(target) 2.1 normal 1 0.7 1.4 conductivity(meas.) rectangular $\sqrt{3}$ 0.6 1.7 liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 liquid Permittivity(target) 3.8 normal 1 0.6 2.3 remittivity(meas.) combined Uncertainty RSS 9.7 combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                             |                    |                             |            |                                          |                                    |
| Liquid Conductivity(meas.)       2.1       normal       1       0.7       1.4         Liquid Permittivity(target)       5.0       rectangular v3       0.6       1.7         Liquid Permittivity(meas.)       3.8       normal       1       0.6       2.3         Combined Uncertainty       RSS       9.7         Combined Uncertainty       Normal(k=2)       19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Liquid                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                    |                             |            |                                          |                                    |
| Liquid 5.0 rectangular $\sqrt{3}$ 0.6 1.7 Permittivity(target) 3.8 normal 1 0.6 2.3 Permittivity(meas.) RSS 9.7 Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Liquid                      | 2.1                | normal                      | 1          | 0.7                                      | 1.4                                |
| Permittivity(target) Liquid 3.8 normal 1 0.6 2.3 Permittivity(meas.) Combined Uncertainty RSS 9.7 Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Liquid                      | 5.0                | rectangular                 | 1/3        | 0.6                                      | 1 7                                |
| Liquid 3.8 normal 1 0.6 2.3  Permittivity(meas.)  Combined Uncertainty RSS 9.7  Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Permittivity(target)        |                    | rectangular                 | V 2        | 0.0                                      |                                    |
| Combined Uncertainty RSS 9.7 Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Liquid                      | 3.8                | normal                      | 1          | 0.6                                      | 2.3                                |
| Combined Uncertainty Normal(k=2) 19.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                    | DCC                         |            |                                          | 0.7                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                    |                             |            |                                          |                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (coverage factor=2)         |                    | Normal(K=Z)                 |            |                                          | 19.5                               |







# SAR-Z Axis at Hotspot x:0.10 y:0.76







### 850MHz Band 5 High Channel Side Touch

#### SAR Test Report

Report Date : 27-Nov-2012

: 123 By Operator

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 06:01:20 PM : 27-Nov-2012 06:21:35 PM End Time

Scanning Time : 1215 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 850
Frequency : 850.00 MHz Type : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.418 W/kg Power Drift-Finish: 0.404 W/kg Power Drift (%) : -3.166

Picture

Phantom Data

Name : APREL-Uni : Uni-Phantom Type : 280 x 280 x 200 : User Define Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

: BODY Type

Serial No. : 835 Frequency : 835.00 MHz Last Calib. Date : 27-Nov-2012 Temperature : 23.00 °C

Ambient Temp. : 23.00 °C

Humidity : 55.00 RH%

Epsilon : 53.10 F/m

Sigma : 0.95 S/m

: 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 835

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

: 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation : High Channel









1 gram SAR value : 0.462 W/kg Area Scan Peak SAR : 0.512 W/kg Zoom Scan Peak SAR : 0.780 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-                                      | 1.5                                |
|                                                  |                    | J                           | ·          | cp) <sup>1/2</sup>                       |                                    |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    | _                           | G          |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1_         | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 3.2                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.8                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    |                             | -          |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 2.1                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 3.8                | normal                      | 1          | 0.6                                      | 2.3                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.8                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 19.6                               |







# SAR-Z Axis at Hotspot x:0.10 y:0.76







### **1900 MHz Band 2 Low Channel Rear Touch**

#### SAR Test Report

Report Date : 27-Nov-2012

By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 04:15:53 PM : 27-Nov-2012 04:36:27 PM End Time

Scanning Time : 1234 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 850
Frequency : 850.00 MHz : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Length : 265 mm

Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.581 W/kg Power Drift-Finish: 0.608 W/kg

Power Drift (%) : 4.848

Picture

Phantom Data

: APREL-Uni Name : Uni-Phantom Type : 280 x 280 x 200 : User Define Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

Type : BODY

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m
Sigma : 1.49 S/m

Density : 1000.00 kg/cu. m

Probe Data

: SGL1 Name







Model : 835

Type : E-Field Triangle

Serial No. : SGL1

Last Calib. Date : 10-Feb-2012 Frequency : 2000.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM

Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Low







1 gram SAR value : 1.192 W/kg Area Scan Peak SAR : 1.013 W/kg Zoom Scan Peak SAR : 2.362 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    |                             |            |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 4.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.8                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                | 2 4                | , ,                         | /5         | -                                        | 0.0                                |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 10.0                               |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 20.0                               |







# SAR-Z Axis at Hotspot x:-7.88 y:0.76







### **1900 MHz Band 2 Mid Channel Side Touch**

#### SAR Test Report

Report Date : 27-Nov-2012

By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 03:53:38 PM End Time : 27-Nov-2012 04:14:23 PM

Scanning Time : 1245 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 1900
Frequency : 1900.00 MHz : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 0.554 W/kg Power Drift-Finish: 0.575 W/kg

Power Drift (%) : 3.765

Picture

Phantom Data

Name : APREL-Uni : 280 x 280 x 200 : User Defin Type Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

Type : BODY

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m
Sigma : 1.49 S/m

: 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 1800

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 1900.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

: Rotated Left 90° DUT Position

: 0 Separation Channel : Mid









1 gram SAR value : 1.105 W/kg Area Scan Peak SAR : 0.909 W/kg Zoom Scan Peak SAR : 2.201 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-                                      | 1.5                                |
|                                                  |                    | _                           |            | cp) <sup>1/2</sup>                       |                                    |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         | 1 0                |                             | /5         | -                                        |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1_         | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output Power                            | 3.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    | _                           |            |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.7                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 19.4                               |







SAR-Z Axis at Hotspot x:-7.90 y:0.76









### **1900 MHz Band 2 High Channel Side Touch**

Report Date : 27-Nov-2012 By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 04:41:13 PM : 27-Nov-2012 05:02:00 PM End Time

Scanning Time : 1247 secs

Product Data

: Winmate: Notebook HH: Other Device Name Serial No.

Type Model : 1900 Frequency : 1900.00 MHz

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s)
Length : 265 mm
Width : 190 mm Width Depth : 50 mm
Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start: 0.778 W/kg Power Drift-Finish: 0.781 W/kg

Power Drift (%) : 0.379

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom Size (mm) : 280 x 280 x 200 : User Define Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

Type : BODY Serial No. : 1900 Frequency : 1900.00 MHz

Last Calib. Date : 27-Nov-2012 Temperature : 23.00 °C Ambient Temp. : 23.00 °C Humidity : 55.00 RH% Epsilon : 52.00 F/m Sigma : 1.49 S/m

Density : 1000.00 kg/cu. m

Probe Data

: SGL1 Name : 1900 Model

Type : E-Field Triangle

Serial No. : SGL1







Report No: TSC-101-11-AP-27-1 (SAR)
Last Calib. Date: 10-Feb-2012
Frequency: 2000.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 6

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM

Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : High







1 gram SAR value : 1.165 W/kg Area Scan Peak SAR : 1.196 W/kg Zoom Scan Peak SAR : 2.031 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                                           | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
| Measurement System                                                 |                    |                             |            |                                          |                                    |
| Probe Calibration                                                  | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                                     | 3.7                | rectangular                 | √3         | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical<br>Isotropy                                          | 10.9               | rectangular                 | √3         | √ cp                                     | 4.4                                |
| Boundary Effect                                                    | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                                          | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                                    | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                                                | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                                      | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                                   | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                                               | 3.0                | rectangular                 | √3         | 1                                        | 1.7                                |
| Probe Positioner<br>Mech.                                          | 0.4                | rectangular                 | √3         | 1                                        | 0.2                                |
|                                                                    |                    |                             |            |                                          |                                    |
| Restriction Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | √3         | 1                                        | 1.7                                |
| Extrapolation and Integration                                      | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                                         | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                                       | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                                           | 0.4                | rectangular                 | √3         | 1                                        | 0.2                                |
| Dharatan and Catur                                                 |                    |                             |            |                                          |                                    |
| Phantom and Setup Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | √3         | 1                                        | 2.0                                |
| Liquid<br>Conductivity(target)                                     | 5.0                | rectangular                 | √3         | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                                         | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid<br>Permittivity(target)                                     | 5.0                | rectangular                 | √3         | 0.6                                      | 1.7                                |
| Liquid<br>Permittivity(meas.)                                      | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                                               |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)                           |                    | Normal(k=2)                 |            |                                          | 18.9                               |







SAR-Z Axis at Hotspot x:-7.94 y:-7.24









#### **A.4.4 CDMA2000 Mode**

### 850 MHz Band BC0 **Low Channel Rear Touch**

#### SAR Test Report

Report Date : 28-Nov-2012 By Operator : 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 12:18:39 PM : 28-Nov-2012 12:39:32 PM End Time

Scanning Time : 1253 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 850
Frequency : 850.00 MHz : Other Type

Max. Transmit Pwr : 2 W Drift Time : 0 min(s)
Length : 265 mm
Width : 190 mm
Depth : 50 mm
Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start: 0.418 W/kg Power Drift-Finish: 0.435 W/kg

Power Drift (%) : 4.144

Picture

Phantom Data

Name : APREL-Uni Type : Uni-Phantom : 280 x 280 x 200 : User Define Size (mm) Serial No.

: Center Location

Description : Uni\_Phantom

Tissue Data

: BODY Type Serial No. : 835 Frequency : 835.00 MHz

Last Calib. Date: 28-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.80 F/m Sigma : 0.98 S/m







Density : 1000.00 kg/cu. m

Probe Data

Name : SGL1 Model : 835

Type : E-Field Triangle

Serial No. : SGL1

Last Calib. Date: 10-Feb-2012 Frequency: 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

Probe Sensitivity: 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV Offset : 1.56 mm

Measurement Data

Crest Factor : 1

Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:40:51 AM

Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

Separation : 0 Channel : Low









1 gram SAR value : 0.938 W/kg Area Scan Peak SAR : 1.030 W/kg Zoom Scan Peak SAR : 1.601 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty          | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|-----------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                   |                    |                             |            |                                          |                                    |
| Measurement System                |                    |                             |            |                                          |                                    |
| Probe Calibration                 | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                    | 3.7                | rectangular                 | $\sqrt{3}$ | (1-                                      | 1.5                                |
| TT and and and and                | 10.0               |                             | /5         | cp) <sup>1/2</sup>                       | 4 4                                |
| Hemispherical<br>Isotropy         | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Boundary Effect                   | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                         | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                   | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics               | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                     | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                  | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition              | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner                  | 0.4                |                             | $\sqrt{3}$ | 1                                        | 0.2                                |
| Mech.                             | 0.4                | rectangular                 | √ 3        | +                                        | 0.2                                |
|                                   |                    |                             |            |                                          |                                    |
| Restriction                       |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Phantom Shell                     | 3.7                |                             | /2         | 1                                        | 2.1                                |
| Extrapolation and Integration     | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Positioning                       |                    | _                           |            |                                          |                                    |
| Device Holder<br>Uncertainty      | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output                   | 4.1                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.4                                |
| Power                             |                    | 3                           | ,          |                                          |                                    |
| Phantom and Setup                 |                    |                             |            |                                          |                                    |
| Phantom                           | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Uncertainty(shape &               | J. T               | rectangular                 | 1 3        |                                          | ∠.∪                                |
| thickness tolerance)              |                    |                             |            |                                          |                                    |
| Liquid                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Conductivity(target)              |                    |                             | ' -        | •••                                      |                                    |
| Liquid                            | 1.0                | normal                      | 1          | 0.7                                      | 0.7                                |
| Conductivity(meas.)               |                    |                             | -          |                                          |                                    |
| Liquid Permittivity(target)       | 5.0                | rectangular                 | √3         | 0.6                                      | 1.7                                |
| Liquid                            | 2.5                | normal                      | 1          | 0.6                                      | 1.5                                |
| Permittivity(meas.)               |                    |                             |            |                                          |                                    |
| Combined Uncertainty              |                    | RSS                         |            |                                          | 9.7                                |
| Combined Uncertainty              |                    | Normal(k=2)                 |            |                                          | 19.4                               |
| (coverage factor=2)               |                    |                             |            |                                          |                                    |







SAR-Z Axis at Hotspot x:0.08 y:14.76







### 850 MHz Band BC0 **Mid Channel Rear Touch**

#### SAR Test Report

Report Date : 28-Nov-2012

By Operator : 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 11:35:50 AM End Time : 28-Nov-2012 11:56:39 AM

Scanning Time : 1249 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 850
Frequency : 850.00 MHz Type : Other

Max. Transmit Pwr : 2 W Drift Time : 0 min(s) Length : 265 mm Width Depth : 190 mm : 50 mm

Antenna Type : Internal Orientation : Rotated Left 90°

Power Drift-Start : 0.354 W/kg Power Drift-Finish: 0.355 W/kg

Power Drift (%) : 0.068

Picture

Phantom Data

Name : APREL-Uni : Uni-Phantom Type Size (mm) : 280 x 280 x 200 Serial No. : User Define

Location : Center

Description : Uni Phantom

Tissue Data

: BODY Type Serial No. : 835

Serial No. : 835 Frequency : 835.00 MHz Last Calib. Date: 28-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.80 F/m
Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m







Probe Data

Name : SGL1 Model : 835

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:40:51 AM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

: Rotated Left 90° DUT Position

: 0 Separation Channel : Mid









1 gram SAR value : 0.838 W/kg Area Scan Peak SAR : 0.912 W/kg Zoom Scan Peak SAR : 1.441 W/kg







## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    |                             |            |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 0.1                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.0                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                | 2 4                | , ,                         | /5         | 1                                        |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid<br>Conductivity(meas.)                    | 1.0                | normal                      | 1          | 0.7                                      | 0.7                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.5                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.4                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 18.8                               |







SAR-Z Axis at Hotspot x:0.08 y:14.76







### 850 MHz Band BC0 **High Channel Rear Touch**

#### SAR Test Report

: 28-Nov-2012 Report Date

By Operator : 123

Measurement Date : 28-Nov-2012

Starting Time : 28-Nov-2012 01:00:00 PM End Time : 28-Nov-2012 01:20:17 PM

Scanning Time : 1217 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 850
Frequency : 850.00 MHz Type : Other

Max. Transmit Pwr : 2 W Drift Time : 0 min(s) Length : 265 mm : 190 mm : 50 mm Width Depth Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.286 W/kg Power Drift-Finish: 0.276 W/kg Power Drift (%) : -3.462

Picture

Phantom Data

Name : APREL-Uni : 280 x 280 x 200 : User Defin Type Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

: BODY Type

Serial No. : 835 Frequency : 835.00 MHz Last Calib. Date : 28-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 53.80 F/m
Sigma : 0.98 S/m

Density : 1000.00 kg/cu. m







Probe Data

Name : SGL1 Model : 835

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 835.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 7.1

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 28-Nov-2012
Set-up Time : 8:40:51 AM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation : High Channel









1 gram SAR value : 0.691 W/kg Area Scan Peak SAR : 0.767 W/kg Zoom Scan Peak SAR : 1.191 W/kg





## Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-                                      | 1.5                                |
|                                                  |                    | _                           | (=         | cp) <sup>1/2</sup>                       |                                    |
| Hemispherical<br>Isotropy                        | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Boundary Effect                                  | 1.0                | wooteness les               | $\sqrt{3}$ | 1                                        | 0.6                                |
|                                                  | 4.7                | rectangular                 |            |                                          | 2.7                                |
| Linearity                                        |                    | rectangular                 | $\sqrt{3}$ | 1                                        |                                    |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ |                                          | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample Positioning                          | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder Uncertainty                        | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output Power                            | 3.5                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| TOWEI                                            |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    |                             |            |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 1.0                | normal                      | 1          | 0.7                                      | 0.7                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.5                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.6                                |
| Combined Uncertainty (coverage factor=2)         | _                  | Normal(k=2)                 |            |                                          | 19.2                               |







SAR-Z Axis at Hotspot x:0.06 y:22.76









### 1900 MHz BC1 Band **Low Channel Rear Touch**

#### SAR Test Report

: 27-Nov-2012 Report Date

By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 01:05:57 PM End Time : 27-Nov-2012 01:28:01 PM

Scanning Time : 1324 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 1900
Frequency : 1900.00 MHz Type : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm : 190 mm Width Depth : 50 mm Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.671 W/kg Power Drift-Finish: 0.659 W/kg Power Drift (%) : -1.838

Picture

Phantom Data

Name : APREL-Uni : 280 x 280 x 200 : User Defin Type Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

Type : BODY

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m
Sigma : 1.49 S/m

: 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 835

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 1800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.8

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 6x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

: Rotated Left 90° DUT Position

: 0 Separation Channel : Low







1 gram SAR value : 1.110 W/kg Area Scan Peak SAR : 1.515 W/kg Zoom Scan Peak SAR : 2.342 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                  |                    |                             |            |                                          |                                    |
| Measurement System                               |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | √3         | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                    | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                         |                    |                             |            |                                          |                                    |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                           | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample Positioning                          | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder Uncertainty                        | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output Power                            | 1.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.1                                |
| TOWEL                                            |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    |                             |            |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                      | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 19.0                               |







SAR-Z Axis at Hotspot x:0.07 y:15.78







### 1900 MHz BC1 Band **Mid Channel Rear Touch**

### SAR Test Report

Report Date : 27-Nov-2012

: 123 By Operator

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 12:25:10 PM : 27-Nov-2012 12:47:26 PM End Time

Scanning Time : 1336 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 1900
Frequency : 1900.00 MHz Type : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm : 190 mm Width Depth : 50 mm

Antenna Type : Internal
Orientation : Rotated Left 90°

Power Drift-Start : 0.515 W/kg Power Drift-Finish: 0.510 W/kg Power Drift (%) : -0.928

Picture

Phantom Data

Name : APREL-Uni : 280 x 280 x 200 : User Defin Type Size (mm) Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

: BODY Type

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m
Sigma : 1.49 S/m

: 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 835

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 1800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.8

Probe Sensitivity: 1.20 1.20 1.20  $\mu V/(V/m)^2$ 

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 6x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

: Rotated Left 90° DUT Position

: 0 Separation Channel : Mid







1 gram SAR value : 1.062 W/kg Area Scan Peak SAR : 1.195 W/kg Zoom Scan Peak SAR : 1.871 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                         | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
| Measurement System                               |                    |                             |            |                                          |                                    |
| Ficabal chieffe by been                          |                    |                             |            |                                          |                                    |
| Probe Calibration                                | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                   | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1 -                                |
| Hemispherical<br>Isotropy                        | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Boundary Effect                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                        | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                  | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                              | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                    | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                 | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                             | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner<br>Mech.                        | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                  |                    |                             |            |                                          |                                    |
| Restriction                                      |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell  | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                    | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                       | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                     | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                         | 0.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
|                                                  |                    |                             |            |                                          |                                    |
| Phantom and Setup                                |                    |                             |            |                                          |                                    |
| Phantom Uncertainty(shape & thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid<br>Conductivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                       | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid<br>Permittivity(target)                   | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                       | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                             |                    | RSS                         |            |                                          | 9.5                                |
| Combined Uncertainty (coverage factor=2)         |                    | Normal(k=2)                 |            |                                          | 18.9                               |





SAR-Z Axis at Hotspot x:0.11 y:15.76









### 1900 MHz BC1 Band **High Channel Rear Touch**

### SAR Test Report

Report Date : 27-Nov-2012

By Operator : 123

Measurement Date : 27-Nov-2012

Starting Time : 27-Nov-2012 07:20:14 PM End Time : 27-Nov-2012 07:40:50 PM

Scanning Time : 1236 secs

Product Data

Device Name : Winmate : Notebook HH Serial No.

Type : Other
Model : 1900
Frequency : 1900.00 MHz Type : Other

Max. Transmit Pwr : 0.25 W Drift Time : 0 min(s) Length : 265 mm Length : 265 mm

Width : 190 mm

Depth : 50 mm

Antenna Type : Internal

Orientation : Rotated Left 90°

Power Drift-Start : 1.070 W/kg Power Drift-Finish: 1.035 W/kg Power Drift (%) : -3.270

Picture

Phantom Data

Name : APREL-Uni : Uni-Phantom Type : 280 x 280 x 200 : User Define Size (mm)

Serial No.

Location : Center

Description : Uni Phantom

Tissue Data

: BODY Type

Serial No. : 1900 Frequency : 1900.00 MHz Last Calib. Date: 27-Nov-2012 Temperature : 23.00 °C
Ambient Temp. : 23.00 °C
Humidity : 55.00 RH%
Epsilon : 52.00 F/m
Sigma : 1.49 S/m

: 1000.00 kg/cu. m Density







Probe Data

Name : SGL1 Model : 1900

: E-Field Triangle Type

: SGL1 Serial No.

Last Calib. Date : 10-Feb-2012 Frequency : 1800.00 MHz

Duty Cycle Factor: 1 Conversion Factor: 5.8

1.20  $\mu V/(V/m)^2$ Probe Sensitivity: 1.20 1.20

Compression Point: 95.00 mV : 1.56 mm Offset

Measurement Data

Crest Factor : 1

Scan Type : Complete Scan Type : Complete
Tissue Temp. : 23.00 °C
Ambient Temp. : 23.00 °C
Set-up Date : 27-Nov-2012
Set-up Time : 12:24:41 PM
Area Scan : 5x8x1 : Measurement x=15mm, y=15mm, z=4mm
Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Zoom Scan : 5x5x8 : Measurement x=8mm, y=8mm, z=4mm

Other Data

DUT Position : Rotated Left 90°

: 0 Separation : High Channel







1 gram SAR value : 0.907 W/kg Area Scan Peak SAR : 1.081 W/kg Zoom Scan Peak SAR : 1.621 W/kg







# Exposure Assessment Measurement Uncertainty

| Source of<br>Uncertainty                               | Tolerance<br>Value | Probability<br>Distribution | Divisor    | c <sub>i</sub> <sup>1</sup><br>(1-<br>g) | Standard<br>Uncertainty<br>(1-g) % |
|--------------------------------------------------------|--------------------|-----------------------------|------------|------------------------------------------|------------------------------------|
|                                                        |                    |                             |            |                                          |                                    |
| Measurement System                                     |                    |                             |            |                                          |                                    |
| Probe Calibration                                      | 3.5                | normal                      | 1          | 1                                        | 3.5                                |
| Axial Isotropy                                         | 3.7                | rectangular                 | $\sqrt{3}$ | (1-<br>cp) <sup>1/2</sup>                | 1.5                                |
| Hemispherical                                          | 10.9               | rectangular                 | $\sqrt{3}$ | √cp                                      | 4.4                                |
| Isotropy                                               |                    |                             |            |                                          |                                    |
| Boundary Effect                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Linearity                                              | 4.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.7                                |
| Detection Limit                                        | 1.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.6                                |
| Readout Electronics                                    | 1.0                | normal                      | 1          | 1                                        | 1.0                                |
| Response Time                                          | 0.8                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.5                                |
| Integration Time                                       | 1.7                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.0                                |
| RF Ambient Condition                                   | 3.0                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Probe Positioner Mech.                                 | 0.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 0.2                                |
|                                                        |                    |                             |            |                                          |                                    |
| Restriction                                            |                    |                             |            |                                          |                                    |
| Probe Positioning with respect to Phantom Shell        | 2.9                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.7                                |
| Extrapolation and Integration                          | 3.7                | rectangular                 | √3         | 1                                        | 2.1                                |
| Test Sample<br>Positioning                             | 4.0                | normal                      | 1          | 1                                        | 4.0                                |
| Device Holder<br>Uncertainty                           | 2.0                | normal                      | 1          | 1                                        | 2.0                                |
| Drift of Output<br>Power                               | 3.3                | rectangular                 | $\sqrt{3}$ | 1                                        | 1.9                                |
|                                                        |                    |                             |            |                                          |                                    |
| Phantom and Setup                                      |                    |                             |            |                                          |                                    |
| Phantom<br>Uncertainty(shape &<br>thickness tolerance) | 3.4                | rectangular                 | $\sqrt{3}$ | 1                                        | 2.0                                |
| Liquid Conductivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.7                                      | 2.0                                |
| Liquid Conductivity(meas.)                             | 2.0                | normal                      | 1          | 0.7                                      | 1.4                                |
| Liquid Permittivity(target)                            | 5.0                | rectangular                 | $\sqrt{3}$ | 0.6                                      | 1.7                                |
| Liquid Permittivity(meas.)                             | 2.4                | normal                      | 1          | 0.6                                      | 1.5                                |
| Combined Uncertainty                                   |                    | RSS                         |            |                                          | 9.6                                |
| Combined Uncertainty (coverage factor=2)               |                    | Normal(k=2)                 |            |                                          | 19.3                               |







SAR-Z Axis at Hotspot x:0.07 y:7.78







### A. 4.5 Dipole Calibration Data

### NCL CALIBRATION LABORATORIES

Calibration File No: DC-1095 Project Number: SSI/DRB-TP-D01-032-E020-V2

### CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

CHTL Validation Dipole

Manufacturer: APREL Laboratories Part number: ALS-D-2450-9-2 Frequency: 2450 MHz Serial No: 2450-220-00751

Customer: CHTL

Calibrated: 10<sup>th</sup> November 2009 Released on: 11<sup>th</sup> November 2009

This Calibration Certificate is Incomprese Unless Accompanied with the Calibration Results Summary

Released By:

NCL CALIBRATION LABORATORIES

51 SPECTRUM WAY NEPEAN, ONTARIO CANADA K2R 1E8 Division of APREL Lab. TEL: (613) 820-4988 FAX: (613) 820-4162







| 1000 | 67-101 | 4.      | T - |      |       |
|------|--------|---------|-----|------|-------|
| NUL  | Саш    | bration | La  | Dora | iomes |

Division of APREL Laboratories.

### Conditions

Dipole 2450-220-00751 was a re-calibration.

Ambient Temperature of the Laboratory:

22 °C +/- 0.5°C

Temperature of the Tissue:

21 °C +/- 0.5°C

We the undersigned attest that to the best of our knowledge the calibration of this probe has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

We the undersigned attest that to the best of our knowledge the calibration of this device has been accurately conducted and that all information contained within this report has been reviewed for accuracy.

Stuart Nicol

C. Teodorian







# NCL Calibration Laboratories Division of APREL Laboratories.

### Calibration Results Summary

The following results relate the Calibrated Dipole and should be used as a quick reference for the user.

### Mechanical Dimensions

Length: 51.5 mm Height: 30.4 mm

### **Electrical Specification**

SWR: 1.07 U Return Loss: -29.451 dB Impedance:  $50.710 \Omega$ 

### System Validation Results

| Frequency | 1 Gram        | 10 Gram | Peak  |
|-----------|---------------|---------|-------|
| 2450 MHz  | 2450 MHz 53.9 |         | 102.1 |









#### NCL Calibration Laboratories

Division of APREL Laboratories

#### Introduction

This Calibration Report has been produced in line with the SSI Dipole Calibration Procedure SSI-TP-018-ALSAS. The results contained within this report are for Validation Dipole 2450-220-00751. The calibration routine consisted of a three-step process. Step 1 was a mechanical verification of the dipole to ensure that it meets the mechanical specifications. Step 2 was an Electrical Calibration for the Validation Dipole, where the SWR, Impedance, and the Return loss were assessed. Step 3 involved a System Validation using the ALSAS-10U, along with APREL E-020 130 MHz to 26 GHz E-Field Probe Serial Number 212.

#### References

SSI-TP-018-ALSAS Dipole Calibration Procedure
SSI-TP-016 Tissue Calibration Procedure
IEEE 1528 "Recommended Practice for Determining the Peak Spatial-Average
Specific Absorption Rate (SAR) in the Human Body Due to Wireless
Communications Devices: Experimental Techniques"

### Conditions

Dipole 2450-220-00751 was a re-calibration.

Ambient Temperature of the Laboratory: 22 °C +/- 0.5 °C Temperature of the Tissue: 20 °C +/- 0.5 °C

4







### NCL Calibration Laboratories

Division of APREL Laboratories.

### Dipole Calibration Results

### Mechanical Verification

| APREL   | APREL   | Measured | Measured |
|---------|---------|----------|----------|
| Length  | Height  | Length   | Height   |
| 51.5 mm | 30.4 mm | 52.4 mm  | 30.6 mm  |

### Tissue Validation

| Head Tissue 2450 MHz                | Measured |
|-------------------------------------|----------|
| Dielectric constant, e <sub>r</sub> | 40.7     |
| Conductivity, σ [S/m]               | 1.85     |

This page has been reviewed for content and attested to by signature within this document.

5







### NCL Calibration Laboratories

Division of APREL Laboratories

#### Electrical Calibration

| Test      | Result     |
|-----------|------------|
| S11 R/L   | -29.451 dB |
| SWR       | 1.07 U     |
| Impedance | 50.710 Ω   |

The Following Graphs are the results as displayed on the Vector Network Analyzer.

### \$11 Parameter Return Loss



This page has been reviewed for content and attested to by signature within this document.

0







### NCL Calibration Laboratories

Division of APREL Laboratories

### SWR



This page has been reviewed for content and attested to by signature within this document.

1















# NCL Calibration Laboratories Division of APREL Laboratories.

### System Validation Results Using the Electrically Calibrated Dipole

Feed power 30dbm.

| Head Tissue<br>Frequency | 1 Gram | 10 Gram | Peak<br>Above Feed Point |
|--------------------------|--------|---------|--------------------------|
| 2450 MHz                 | 53.9   | 24.0    | 102.1                    |









| Report No . | TSC-101-11-AP-2/-1 (SAR )                                                                                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             | NCL Calibration Laboratories                                                                                                                                                                                        |
|             | Division of APREL Laboratories.                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             | Test Equipment                                                                                                                                                                                                      |
|             | The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2009. |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             | 10                                                                                                                                                                                                                  |
|             | This page has been reviewed for content and attested to by signature within this document.                                                                                                                          |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |
|             |                                                                                                                                                                                                                     |





### A. 4.6 Probe Calibration Data

### NCL CALIBRATION LABORATORIES

Calibration File No.: 1392, 1393, 1394

Client.: CHTL

### CERTIFICATE OF CALIBRATION

It is certified that the equipment identified below has been calibrated in the NCL CALIBRATION LABORATORIES by qualified personnel following recognized procedures and using transfer standards traceable to NRC/NIST.

> Equipment: Miniature Isotropic RF Probe Record of Calibration Head and Body Manufacturer: APREL Laboratories Model No.: E-020 Serial No.: 255

Calibration Procedure: D01-032-E020-V2, D22-012-Tissue, D28-002-Dipole Project No:SGL-CHTL-probe-cal-5529

> Calibrated: 25<sup>th</sup> November 2011 Released: 6<sup>th</sup> December 2011

This Calibration Certificate is Incomplete Unless Accompanied with the Calibration Results Summary

Art Brennan, Quality Manager

VCL CALIBRATION LABORATORIES

Suite 102, 303 Terry Fox Dr. OTTAWA, ONTARIO

Released By:

Division of APREL Lab TEL: (613) 435-8300 FAX: (613) 435-8306







#### NCL Calibration Laboratories

Division of APREL Laboratories

#### Introduction

This Calibration Report reproduces the results of the calibration performed in line with the references listed below. Calibration is performed using accepted methodologies as per the references listed below. Probes are calibrated for air, and tissue and the values reported are the results from the physical quantification of the probe through meteorgical practices.

#### Calibration Method

Probes are calibrated using the following methods.

#### <1000MHz

TEM Cell for sensitivity in air

Standard phantom using temperature transfer method for sensitivity in tissue

#### >1000MHz

Waveguide\* method to determine sensitivity in air and tissue 
\*Waveguide is numerically (simulation) assessed to determine the field distribution and power

The boundary effect for the probe is assessed using a standard flat phantom where the probe output is compared against a numerically simulated series of data points

- o IEEE Standard 1528 (2003) including Amendment 1 IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
- EN 62209-1 (2006)
  - Human Exposure to RF Fields from hand-held and body-mounted wireless communication devices - Human models. instrumentation, and procedures-Part 1: Procedure to measure the Specific Absorption Rate (SAR) for hand-held mobile wireless devices
- IEC 62209-2 Ed. 1.0 (2010-03)
  - Human exposure to RF fields from hand-held and body-mounted wireless devices Human models, instrumentation, and procedures - Part 2: specific absorption rate (SAR) for wireless communication devices (30 MHz - 6 GHz)
- TP-D01-032-E020-V2 E-Field probe calibration procedure
- D22-012-Tissue dielectric tissue calibration procedure
- D28-002-Dipole procedure for validation of SAR system using a dipole
- IEEE 1309 Draft Standard for Calibration of Electromagnetic Field Sensors and Probes, Excluding Antennas, from 9kHz to 40GHz

Page 2 of 10







#### NCL Calibration Laboratories

Division of APREL Laboratories

#### Conditions

Probe 255 has been recalibrated and was found to be in good working order.

Ambient Temperature of the Laboratory: 22 °C +/- 1.5°C Temperature of the Tissue: 21 °C +/- 1.5°C Relative Humidity: < 60%

#### **Primary Measurement Standards**

 Instrument
 Serial Number
 Cal due date

 Power meter Anritsu MA2408A
 90025437
 Nov.3, 2012

 Power Sensor Anritsu MA2481D
 103555
 Nov.3, 2012

 Attenuator HP 8495A (70dB)
 1944A10711
 Sept. 13, 2012

 Network Analyzer Anritsu MT8801C
 MB11855
 Feb. 7, 2012

Secondary Measurement Standards

Signal Generator Agilent E4438C -506 MY55182336 June 7, 2012

#### Attestation

The below named signatories have conducted the calibration and review of the data which is presented in this calibration report.

We the undersigned attest that to the best of our knowledge the calibration of this subject has been accurately conducted and that all information contained within the results pages have been reviewed for accuracy.

Art Brennan, Quality Manager

Dan Brooks, Test Engineer

Page 3 of 10







#### NCL Calibration Laboratories

Division of APREL Laboratories.

### **Calibration Results Summary**

Probe Type: E-Field Probe E-020

Serial Number: 255

Sensor Offset: 1.56 mm

Sensor Length: 2.5 mm

Tip Enclosure: Ertalyte\*

Tip Diameter: <5 mm

Tip Length: 60 mm

Total Length: 290 mm

\*Resistive to recommended tissue recipes per IEEE-1528

Sensitivity in Air

 $\begin{array}{lll} \mbox{Channel X:} & 1.2 \ \mu \mbox{V/(V/m)}^2 \\ \mbox{Channel Y:} & 1.2 \ \mu \mbox{V/(V/m)}^2 \\ \mbox{Channel Z:} & 1.2 \ \mu \mbox{V/(V/m)}^2 \\ \end{array}$ 

Diode Compression Point: 95 mV

Page 4 of 10







#### NCL Calibration Laboratories

Division of APREL Laboratories.

#### Calibration for Tissue (Head H, Body B)

| Frequency | Tissue<br>Type | Measured<br>Epsilon | Measured<br>Sigma | Calibration<br>Uncertainty | Tolerance<br>Uncertainty<br>for 5%* | Conversion<br>Factor |
|-----------|----------------|---------------------|-------------------|----------------------------|-------------------------------------|----------------------|
| 900 H     | Head           | 42.02               | 0.99              | 3.5                        | 2.9                                 | 6.8                  |
| 900 B     | FC             |                     |                   |                            |                                     |                      |
| 1900 H    | Head           | 38.02               | 1.44              | 3.5                        | 3.1                                 | 5.8                  |
| 1900 B    | FC             |                     |                   |                            |                                     |                      |
| 2450 H    | FC             |                     |                   |                            |                                     |                      |
| 2450B     | Body           | 50.22               | 1.93              | 3.5                        | 3.25                                | 4.7                  |

<sup>\*</sup>FC, Future Calibration, as required

### **Boundary Effect:**

Uncertainty resulting from the boundary effect is less than 2.1% for the distance between the tip of the probe and the tissue boundary, when less than 0.58mm.

#### Spatial Resolution:

The spatial resolution uncertainty is less than 1.5% for 4.9mm diameter probe. The spatial resolution uncertainty is less than 1.0% for 2.5mm diameter probe.

#### DAQ-PAQ Contribution

To minimize the uncertainty calculation all tissue sensitivity values were calculated using a load impedance of 5  $M\Omega$ .

### Boundary Effect:

For a distance of 0.58mm the worst case evaluated uncertainty (increase in the probe sensitivity) is less than 2.1%.

#### NOTES:

\*The maximum deviation from the centre frequency when comparing the lower to upper range is listed.

Page 5 of 10







### NCL Calibration Laboratories

Division of APREL Laboratories.

### Receiving Pattern Air



Page 6 of 10























#### NCL Calibration Laboratories

Division of APREL Laboratories.

### Video Bandwidth

### **Probe Frequency Characteristics**



Video Bandwidth at 500 Hz 1 dB Video Bandwidth at 1.02 KHz: 3 dB

### Test Equipment

The test equipment used during Probe Calibration, manufacturer, model number and, current calibration status are listed and located on the main APREL server R:\NCL\Calibration Equipment\Instrument List May 2011.

Page 9 of 10