Router RL para selección de LLM

Alumno: Iñaki Larrumbide

Profesor: Miguel Augusto Azar

Materia: Aprendizaje por refuerzo

1 · Introducción

Hoy se ven cada vez más los productos basados en LLM y arquitecturas multi-agente, capaces de resolver tareas desde muy simples hasta altamente complejas. Esto plantea un nuevo desafío: **elegir el modelo óptimo para cada consulta**. Cada LLM ofrece capacidades distintas y existe un claro *trade-off* entre potencia (calidad) y latencia / coste.

Modelo	Ventana tokens	Latencia base	Coste relativo	
GPT-3.5-16 k	GPT-3.5-16 k 16 k		Bajo	
Gemini-32 k			Medio	
GPT-40-128 k				

El reto es elegir, para cada consulta, el modelo que maximice **calidad** sin disparar **latencia** ni coste.

En lugar de reglas fijas proponemos un **agente de Aprendizaje por Refuerzo (RL) tabular** que aprende esa política a partir de recompensas simuladas.

2 · Modelado RL

Componente	Definición
Acciones (3)	$0 \rightarrow GPT-3.5-16 \text{ k} \cdot 1 \rightarrow GPT-40-128 \text{ k} \cdot 2 \rightarrow Gemini-32 \text{ k}$
Estados (36)	Triple tupla $<$ context_window, n_tools, resp_size $>$ • $context_window \in \{$ small $(< 4 \text{ k}), $ medium $(4-32 \text{ k}), $ large $(> 32 \text{ k})\}$ • $n_tools \in \{0, 1, 2, \ge 3\}$ • $resp_size \in \{$ short $(< 256 \text{ tok}), $ medium $(256-1024), $ long $(> 1024)\}$
Recompensa	$R = quality - \lambda \cdot latency_s$ $con \lambda = 1.0.$ Si $context = large y el modelo no soporta la ventana (3.5-16 k o Gemini-32 k) \Rightarrow \mathbf{R} = -10$
Transición	Episodio = 100 consultas; se descarta el estado (large, 0 tools, short) por ser irreal.

3 · Parámetros de simulación

- Base ($\mu \pm \sigma$) de calidad y latencia por (n_tools, resp_size, modelo) extraída de benchmarks internos y datos ficticios para una primera version.
- Penalizaciones/bonificaciones añadidas:
 - \circ context = medium: 3.5 -0.10 q +0.20 s · 4o +0.15 q +0.20 s.
 - \circ context = large: 3.5 -0.30 q +0.40 s · 4o +0.25 q +0.40 s · Gemini -0.05 q +0.25 s.
 - o $n_tools \ge 3$ o $resp_size = long$: 4o +0.15 q extra.

4 · Algoritmos implementados

Método Hiper-parámetros		Episodios para converger		
Q-Learning tabular	$\alpha = 0.1, \gamma = 0.95, \epsilon$ -greedy $(1 \rightarrow 0.05)$	≈ 40 k		
SARSA(0)	mismos α, γ, ε	convergencia más suave, valor final menor		

5 · Resultados finales

Entrenamiento: 120 000 episodios $\cdot \lambda = 1.0$

Política	Reward medio (10 000 ep.)			
Q-Learning	+19.33			
SARSA(0)	+15.29			
Baseline (siempre GPT-3.5-16 k)	-38.99			

5.1 Política aprendida (extracto)

context / tools / resp	Modelo elegido
small · 0 · short	3.5-16 k
small · 0 · medium / long	Gemini-32 k
small · 1 · long	GPT-40-128 k

small $\cdot \geq 3$ · short	GPT-40-128 k
medium · 1 · medium / long	GPT-40-128 k
medium · 2 · long	GPT-40-128 k
large · (≥ 1) · *	GPT-40-128 k (único factible)

5.2 Convergencia

Q-Learning \rightarrow plateau \approx +19; SARSA \rightarrow +15. La RL supera al baseline por \approx +59 pts.

6 · Discusión

• Decisiones lógicas

- Consultas simples \rightarrow 3.5-16 k.
- Prompts medianos con \leq 2 tools \rightarrow Gemini-32 k.
- Contexto grande $/ \ge 3$ tools / respuesta larga \rightarrow GPT-40-128 k.
- Ganancia neta El agente RL aprende a usar GPT-3.5-16 k o Gemini-32 k en todos los casos donde la calidad adicional de GPT-40 no compensa su coste y su mayor latencia.

Así:

- **Ahorro directo**: menos llamadas a GPT-4o ⇒ menor factura de tokens.
- Respuesta más rápida: consultas simples pasan de ~700 ms (40) a ~250 ms (3.5).
- Calidad preservada: en los estados "pesados" (contexto grande, ≥3 tools o respuesta larga) sí se selecciona GPT-4o, manteniendo la precisión donde realmente importa.

El resultado agregado se ve en el reward: de **–38.99** (baseline que siempre usa 3.5) pasamos a **+19.33** con la política RL, evidenciando que el agente equilibra correctamente **coste, latencia y calidad**.

• Robustez — $\cos \lambda \in [0.8, 1.2]$ la política conserva la misma estructura; solo cambian algunos estados limítrofes.

7 · Conclusiones

•	El agente Q-Learning	g <mark>tabular</mark> a	prende una	política a	alineada a	la lógica	de negocio.
---	----------------------	--------------------------	------------	------------	------------	-----------	-------------

- Reduce costes (menos uso de GPT-40) manteniendo calidad cuando hace falta.
- Implementable en producción como diccionario de 36 × 3 valores → decisión < 1 ms.
- Con feedback real puede evolucionar a *online learning* incremental.