1.

If a/b is rational, let $n=\lfloor a/b \rfloor, b=p^s\cdot c$ and $d=\operatorname{ord}_p(c), m=(p^d-1)/c$, then

$$rac{a}{b} = n + p^{-s} \cdot rac{(a-nb)m}{p^d-1} = n + p^{-s} \sum_{j=1}^{\infty}{(a-nb)mp^{-jd}}.$$

Conversely, if

$$x = n + \sum_{j=1}^N c_j p^{-j} + p^{-N} \sum_{j=1}^\infty m p^{-jd}$$

where $n \in \mathbb{Z}, c_i \in \{0,1,\cdots,p-1\}, m \in \{0,1,\cdots,p^d-1\}$, then

$$x = n + \sum_{j=1}^N c_j p^{-j} + p^{-N} m rac{1}{p^d - 1}$$

is clearly rational.

3.

Determine all $(a,b)\in\mathbb{Q}^2$ such that for any

$$q = p + \frac{2 - p^2}{ap + b},$$

(1) $p>0, p^2<2$ implies q>p and $q^2<2$,

and (2) p>0, $p^2>2$ implies 0< q< p and $q^2>2$.

Solution: Since $(q-p)/(2-p^2)>0$ for any p>0, $a,b\geqslant 0$. Note that

$$q^2-2=(q+\sqrt{2})(p-\sqrt{2})\left(1-rac{p+\sqrt{2}}{ap+b}
ight),$$

so for any p>0, $ap+b>p+\sqrt{2}$, i.e. $a\geqslant 1$ and $b^2\geqslant 2$. Clearly such $\left(a,b\right)$ satisfy (1)(2).

5.

Prove that for $a>0, n\in N$, $\min\{a,1\}\leqslant a^{1/n}\leqslant \max\{a,1\}$.

Proof: If $a\leqslant 1$, then a^x is monotonically decreasing, so $a^1\leqslant a^{1/n}\leqslant a^0$. Otherwise a^x is monotonically increasing, so $a^0\leqslant a^{1/n}\leqslant a^1$. In both cases $\min\{a,1\}\leqslant a^{1/n}\leqslant \max\{a,1\}$.

6.

Let $n\geqslant 2$, $\alpha_1,\cdots,\alpha_n\geqslant 0$, such that $\alpha_1+\cdots+\alpha_n=1$. Prove that for $x_1,\cdots,x_n>0$, $x_1^{\alpha_1}\cdots x_n^{\alpha_n}\leqslant \alpha_1x_1+\cdots+\alpha_nx_n$.

Proof: Let $G=x_1^{lpha_1}\cdots x_n^{lpha_n}$, then

$$\sum_{i=1}^n lpha_i x_i - G = \sum_{i=1}^n lpha_i \int_G^{x_i} 1 - rac{G}{x} \, \mathrm{d}x \geqslant 0.$$

(Since each $\int_G^{x_i} (1 - G/x) \, \mathrm{d}x \geqslant 0$).

Prove that in $\mathbb{R} \cup \{-\infty, \infty\}$,

(1) $\inf_{\alpha \in I} (-x_{\alpha}) = -\sup_{\alpha \in I} x_{\alpha}$

Let $M=\sup_{\alpha\in I}x_\alpha$, then -M is a lower bound of $\{-x_\alpha\}$. For any lower bound m' of $\{-x_\alpha\}$, -m' is an upper bound of $\{x_\alpha\}$, so $-m'\geqslant M$ i.e. $m'\leqslant -M$. Hence $-M=\inf_{\alpha\in I}x_\alpha$.

(2) Prove that

$$egin{aligned} \inf_{lpha \in I} x_lpha &+ \inf_{lpha \in I} y_lpha \leqslant \inf_{lpha \in I} (x_lpha + y_lpha) \leqslant \sup_{lpha \in I} x_lpha + \inf_{lpha \in I} y_lpha \ &\leqslant \sup_{lpha \in I} (x_lpha + y_lpha) \leqslant \sup_{lpha \in I} x_lpha + \sup_{lpha \in I} y_lpha. \end{aligned}$$

Proof: Note that $\inf_{\alpha \in I} x_{\alpha} + \inf_{\alpha \in I} y_{\alpha} = \inf_{\alpha \in I} (y_{\alpha} + \inf_{\beta \in I} x_{\beta}) \leqslant \inf_{\alpha \in I} (x_{\alpha} + y_{\alpha})$. Likewise $\inf_{\alpha \in I} (x_{\alpha} + y_{\alpha}) \leqslant \inf_{\alpha \in I} (\sup_{\beta \in I} x_{\beta} + y_{\alpha}) \leqslant \sup_{\alpha \in I} x_{\alpha} + \inf_{\alpha \in I} y_{\alpha}$, and the other two inequalities are the same.

(3) If $x_{\alpha}>0$, then

$$\sup_{lpha \in I} rac{1}{x_lpha} = rac{1}{\inf_{lpha \in I} x_lpha}.$$

Proof: Let $m=\inf_{\alpha\in I}x_{\alpha}$, then $1/x_{\alpha}\leqslant 1/m$ for any $\alpha\in I$. If m=0, then for any $n\in\mathbb{N}$, there exists $\alpha\in I$ such that $x_{\alpha}<1/n$, then $1/x_{\alpha}>n$ so $\sup_{\alpha\in I}1/x_{\alpha}=\infty$. Otherwise m>0, so for any $\varepsilon>0$, there exists $\alpha\in I$ such that $x_{\alpha}< m+\varepsilon$, so

$$rac{1}{x_lpha}>rac{1}{m+arepsilon}=rac{1}{m}-rac{arepsilon}{m(m+arepsilon)}>rac{1}{m}-rac{arepsilon}{m^2}.$$

Hence $\sup_{\alpha \in I} 1/x_\alpha = 1/m$.

(4) Suppose $x_{\alpha}, y_{\alpha} > 0$, then

$$\inf_{lpha \in I} x_lpha \inf_{lpha \in I} y_lpha \leqslant \inf_{lpha \in I} (x_lpha y_lpha) \leqslant \sup_{lpha \in I} x_lpha \inf_{lpha \in I} y_lpha \leqslant \sup_{lpha \in I} (x_lpha y_lpha) \leqslant \sup_{lpha \in I} x_lpha \sup_{lpha \in I} y_lpha.$$

Same as (2).

10.

For $x\in\mathbb{R}$, let $B(x)=\{b^t:t\in\mathbb{Q},t\leqslant x\}$, and define $b^x=\sup B(x)$. B(x) is clearly non-empty and bounded by $b^{\lfloor x\rfloor+1}$, so it is well-defined. If $r\in\mathbb{Q}$, then

$$b^r = \sup B(r), \, \forall r \in \mathbb{Q}.$$

Proof: $b^r \in B(r)$ and since b^t is monotonically increasing, $b^r \geqslant \sup B(r)$, hence $b^r = \sup B(r)$.

11.

Prove that for any x,y>0, $(a^x)^y=a^{xy}$, and $a^xb^x=(ab)^x$. Proof:

$$a^{xy} = \sup\{a^t : t \leqslant xy\} = \sup\{a^{uv} : u \leqslant x, v \leqslant y\} = (a^u)^v$$

 $(ab)^x = \sup\{(ab)^t : t \leqslant x\} = \sup\{a^t b^t : t \leqslant x\} = a^x b^x.$

15.

Let a,x,y>0 , a
eq 1 . Prove that $\log_a(xy)=\log_a x + \log_a y$.

Proof: Note that

$$a^{\log_a(xy)} = xy = a^{\log_a(x)}a^{\log_a(y)} = a^{\log_a(x) + \log_a(y)}.$$

Since a^x is strictly monotonic, $\log_a(xy) = \log_a x + \log_a y$.