Übungsblatt 1

Algorithmen und Datenstrukturen (WS 2013, Ulrike von Luxburg)

Präsenzaufgabe 1 (Landau-Notation) Bestimmen Sie für alle folgenden Beispiele, welcher der drei folgenden Fälle vorliegt: $f \in o(g)$, oder $f \in \Theta(g)$.

	f(n)	g(n)		f(n)	g(n)
(a) (b)	$\frac{n/2}{10n^2 + 8n + 100}$	$4n + 250$ n^3	(e) (f)	$n^{1.01}$ 2^n	$\frac{n\log(n)^5}{2^{n+1}}$
(c)	$10 \cdot \log(n)$	$\log(n^2)$	(g)	n!	2^n
(d)	n	$n\log(n)$	(h)	$(\log_2 n)^{\log_2 n}$	$2^{(\log_2 n)^2}$

Präsenzaufgabe 2 (Induktion) Folgender rekursiver Algorithmus wird bei Eingabe $n \geq 1$ insgesamt C(n) Mal aufgerufen (d.h. Zeile 1 ausgeführt).

```
1: function STUPIDALG(n)

2: if n = 1 then

3: return 1

4: else

5: return STUPIDALG(n-1) \cdot STUPIDALG(n-1)

6: end if

7: end function
```

- (a) Was berechnet der Algorithmus?
- (b) Ermitteln Sie C(n). Beweisen Sie durch vollständige Induktion.

Präsenzaufgabe 3 (Laufzeitanalyse I) Geben Sie scharfe asymptotische Schranken (d.h. von der Form $\Theta(\cdot)$) für die Laufzeit folgender Code-Fragmente in Abhängigkeit von n an. Gehen Sie davon aus, dass alle Zuweisungs- und Vergleichsoperationen konstante Zeit benötigen.

```
for i = 1 to n do
for i = 0 to n do
                                          i \leftarrow 1
                                                                                        j \leftarrow n
   for j = n downto i do
                                          while i \cdot i < n do
                                                                                         while j > 1 do
        sum \leftarrow sum + j
                                              sum \leftarrow sum + 2
                                                                                            sum \leftarrow sum + i
                                              i \leftarrow i+1
   end for
                                                                                            j \leftarrow j/2
end for
                                          end while
                                                                                         end while
                                                                                    end for
```

Präsenzaufgabe 4 (Laufzeitanalyse II) Sei A ein Array bestehend aus n reellen Zahlen $A[1], \ldots, A[n]$. Betrachten Sie folgenden Algorithmus, welcher A als Eingabe erhält.

```
1: function MagicAlgorithm(A)
      for k = length(A) downto 2 do
2:
3:
         for i = 2 to k do
4:
            if A[i] > A[i-1] then
                swap A[i] and A[i-1]
5:
             end if
6:
         end for
7:
      end for
8:
      return A
g.
10: end function
```

- (a) Welche (asymptotische) Laufzeit hat der Algorithmus?
- (b) In welcher Weise ist A bei der Ausgabe verändert worden?
- (c) Beweisen Sie die Korrektheit des Algorithmus.

Hausaufgaben zum 22. Oktober, 24:00, Abgabe per Email an Tutor

Aufgabe 0 (Wiederholung) Wiederholen Sie die Rechengesetze für Logarithmen und Matrizen, und lesen Sie die Wikipedia-Artikel zu "vollständige Induktion" und "Landau-Notation".

Aufgabe 1 (Landau-Notation, 2+3 Punkte) Die folgenden 14 Funktionen $f_i : \mathbb{N} \to \mathbb{R}$ stehen in keiner speziellen Reihenfolge:

$$2^n$$
, $n^{0.01}$, $\log n$, $\log(n^3)$, $n \log n$, n^n , 1, $\log \log n$, \sqrt{n} , $1/n$, $n!$, $\log(n^{\log n})$, 8^n , n^8

- (a) Sortieren Sie obige Funktionen in asymptotisch aufsteigender Reihenfolge und begründen Sie kurz jede aufeinanderfolgende Paarung. Nutzen Sie die Schreibweise $f_1 \prec f_2$ für $f_1 \in o(f_2)$ und $f_1 \asymp f_2$ für $f_1 \in \Theta(f_2)$, also beispielsweise $f_1 \prec f_2 \asymp f_3 \prec f_4 \prec \ldots \prec f_{12} \asymp f_{13} \prec f_{14}$.
- (b) Zeigen oder widerlegen Sie:
 - (i) für beliebige b > 1 gilt: $\log_b(n) \in \Theta(\log_2 n)$
 - (ii) $f \in \mathcal{O}(g) \Rightarrow g \in \omega(f)$
 - (iii) für $f_c(n) := \sum_{i=0}^n c^i$ und positives reelles c gilt: $f_c(n) \in \Theta(n) \Leftrightarrow c = 1$

Aufgabe 2 (Fibonacci I, 2+2 Punkte) Die Fibonacci-Folge $F_0, F_1, F_2, ...$ ist durch folgende Rekursion definiert:

$$F_0 := 0$$
, $F_1 := 1$, $F_n := F_{n-1} + F_{n-2}$.

In dieser Aufgabe zeigen wir das exponentielle Wachstum dieser Folge.

- (a) Zeigen Sie per Induktion, dass $F_n \ge 2^{0.5n}$ für alle $n \ge 6$.
- (b) Finden Sie ein c<1 so, dass $F_n\leq 2^{cn}$ für alle $n\geq 0$ ist, und beweisen Sie Ihre Antwort.

Aufgabe 3 (Fibonacci II, 2+2+2 Punkte) Eine alternative Berechnung der Fibonacci-Folge ist mittels 2 × 2 Matrizen möglich. Überzeugen Sie sich, dass gilt:

$$\begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix} \quad \text{, sowie} \quad \begin{pmatrix} F_2 \\ F_3 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} F_1 \\ F_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^2 \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

Es folgt allgemein, dass:

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}. \tag{*}$$

Zur Berechnung von F_n muss im Wesentlichen also "lediglich" $\binom{0}{1}\binom{1}{1}^n$ berechnet werden.

- (a) Beweisen Sie (\star) für $n \geq 0$. (Tipp: vollständige Induktion).
- (b) Sei X Element irgendeines Ringes (z.B. eine Matrix, oder eine Zahl). Zeigen Sie, dass $\mathcal{O}(\log n)$ Multiplikationen ausreichen um X^n zu berechnen. (Tipp: Wie lässt sich z.B. X^{64} effizienter berechnen, als mittels $X \cdot X \cdot X \cdot \dots \cdot X$?)
- (c) Die Addition zweier ℓ -Bit-Zahlen benötigt Zeit $\mathcal{O}(\ell)$, deren Multiplikation mittels geschickter Verfahren jedoch Zeit $\mathcal{O}(\ell^{1.59})$. Zeigen Sie, dass das Matrizen-Verfahren (\star) zur Berechnung von F_n asymptotisch echt schneller als das in der Vorlesung mit Laufzeit $\mathcal{O}(n^2)$ vorgestellte Verfahren ist. (Tipp: Bestimmen Sie die Gesamtanzahl benötigter skalarer Rechenoperationen und deren Bitlängen)