Axiomatic Framework of Area

Tom M. Apostol

We assume there exists a class \mathcal{M} of measurable sets in the plane and a set function a, whose domain is \mathcal{M} , with the following properties:

Nonnegative Property

For each set S in \mathcal{M} , we have $a(S) \geq 0$.

Axiom. \exists – Nonnegative Property

¶ Additive Property

If S and T are in \mathcal{M} , then $S \cup T$ and $S \cap T$ are in \mathcal{M} , and we have $a(S \cup T) = a(S) + a(T) - a(S \cap T)$.

Axiom. \exists – Additive Property

¶ Difference Property

If S and T are in \mathscr{M} with $S \subseteq T$, then T - S is in \mathscr{M} , and we have a(T - S) = a(T) - a(S).

Axiom. \exists – Difference Property

¶ Invariance Under Congruence

If a set S is in \mathcal{M} and if T is congruent to S, then T is also in \mathcal{M} and we have a(S) = a(T).

Axiom. \exists – Invariance Under Congruence

¶ Choice of Scale

Every rectangle R is in \mathcal{M} . If the edges of R have lengths h and k, then a(R) = hk.

Axiom. \exists — Choice of Scale

Exhaustion Property

Let Q be a set that can be enclosed between two step regions S and T, so that

$$S \subseteq Q \subseteq T. \tag{1}$$

If there is one and only one number c which satisfies the inequalities

$$a(S) \le c \le a(T)$$

for all step regions S and T satisfying (1.1), then Q is measurable and a(Q) = c.

Axiom. \exists – Exhaustion Property