

第5章 定时/计数器及串行通信应用

5.1 定时/计数器

5.2 单片机串行通信

问题的提出:

1、在微机应用系统中,普遍用到定时/计数的功能,如对工业过程量信 号的定时采样、对流水生产工艺中某一产品的计数(或计件),因此,定时/ 计数具有广泛的应用背景。

2、在前面的程序设计一章,大家已学习了软件延时(即通过执行一个循 环程序进行时间的延迟)实现定时功能,但这种定时具有明显的缺点:一是 循环程序执行占用CPU时间,降低CPU的利用率;二是定时时间不精确或计算 比较麻烦。

因此,针对应用广泛的定时/计数功能,必须在CPU中用硬件来实现定时/ 计数功能。

问题的解决:

由于定时/计数功能的普遍性应用,特别是在长时间定时或定时精度要求 较高的场合,通常选用硬件实现定时,采用硬件实现定时,我们希望:

- 1、定时/计数的功能及工作方式是可编程的。即可选它作定时器,也可作 计数器,同时,可选择几种工作方式。
- 2、定时/计数值在规定的范围内是可编程的。即根据需要, 通过软件来设 定定时值或计数值。
- 3、当达到定时/计数的设定值时,应向CPU申请中断,以便实现定时/计数 控制。

5.1 定时/计数器

Q51系列单片机内部提供2个定时/计数器T0和T1(AT89S 系列有3个),既可用作定时器,也可用作计数器,还 可作为串行口的波特率发生器。定时/计数器实现软、 硬件结合. 给应用系统的设计带来很多方便之处。

Q主要作用:对外部脉冲计数、产生精确定时时间、作 串行口的波特率发生器。

05

第五章 定时器及串行通信应用

5.1.1定时/计数器的定时和计数功能

1、定时器/计数器T0、T1的结构

2、定时与计数的概念

定时: 指采用具有精确的固定周期的脉冲信号进行计数, 一般是利用内部振荡脉冲, 即机器周期: fosc / 12 (= 1 / T) 作为计数脉冲;

计数: 指对外部输入脉冲进行计数;

波形等间隔,次数已定,时间确定 即对机器周期T进行计数。

左图定时时间为 N*T

计数:脉冲不等间隔。

每个下降沿计数一次

确认一次负跳变需两个机器周期, 所以, 计数频率最高为fosc / 24。

5.1.2 定时/计数器的控制

- 1. 工作方式控制寄存器TMDD
- u用于控制定时器/计数器的功能和工作方式
- uTMDD格式: (字节地址89H)

D7	D6	D5	D4	D3	D2	D1	D0
GATE	C/\overline{T}	M1	MD	GATE	C/T	<u>M</u> 1	MO
定田	寸器1方	式字段		定日	寸器0方	式字段	

操作模式控制位

GATE: 门控制

	CAMP 4nl) TAME 4	<u> </u>	-1
9	M1M0	方式	计数器配置	
a	0 0	0	TLx低5位与THx的8位构成13位计数器	Ł
9	0 1	1	TLx与THx构成16位计数器	
C	1 0	2	自动重装初值(THx)的8位(TLx溢出时)计数器	分
C	1 1	3	仅用于T0,分成两个8位计数器,T1停止计数	

qC/ T= 1计数方式;

2、状态控制寄存器TCON

TCON格式: (字节地址88H)

D7	D6	D5	D4	D3	D2	D1	D0
TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0

TF1: 定时器T1溢出史斯藝卡。

u 当定时器1溢出时控制硬件置1;

定时器0 控制位

u 当响应中断转向中断服务程序时由硬件清O。

TR1: 定时器T1运行控制位。

u 由软件置位/复位,控制定时器是否运行。

TF0: 功能与TF1类似。

TRO: 功能与TR1类似。

5.1.3 定时/计数器的工作方式

1、方式0

T0的等效逻辑结构

当存赶败工作方式师, 赶败器的的数维磁周澄:

(819819針魏納個次方晶振周期×12

例1: 选用T0操作模式0, 用于定时, 由P1.0输出周期为10ms的方波。设 晶振fosc=6MHz。

编程思路: P1.0输出周期为10ms宽的方波, 只要每 开始 10mc的方法 由此可提用TO它时5mc **ORG 0100H** 设定时器T0工作方式 初值为: MOV TMOD,#00H 启动定时器T0 SETB TRO 169 LP1: MOV TL0, #1CH 预置定时初值 MOV TH0, #0B1H LP2: JBC TF0, LP3 No 110 5ms定时到? AJMP LP2 Yes LP3: CPL P1.0 清定时到标志 SJMP LP1 P1.0输出反相

2、工作方式1

T0的等效逻辑结构

当为庭時华佑太式F时,计数曜盼时数循鄚围是为:

(65536-655数6初值的18次晶振周期×12

例2: 用定时器T1产生一个50Hz的方波,由P1.1输出,仍用程序查询方式, fosc=12Mz_o

编程思路:方波周期T=1/50=0.02s=20ms,用T1定时10ms。

3、工作方式2

T0的等效逻辑结构

器户时间为计数器初值暂存器。 智振周期义元式,TLO为8位计数

SJMP LOOP

例3: 用定时器1, 模式2计数, 要求每计满3次, 将P1.0端取反。

编程思路: T1工作于计数方式,外部计数脉冲由T1 (P3.0) 引脚引入,每来一

ORG 0100H F1的状态。 MOV TMOD, #60H 计数初值: MoV 1+14 7, #253 MOV TL1, #253 SETB TR1 LOOP: JBC TF1, REP SJMP LOOP REP: **CPL P1.0**

等待T1计数到

T1方式2计数

取反

送初值

启动T1

方式2与方式0、1的区别:

方式0方式1: 计数溢出后, 计数器为全0, 因而循环定时或循环计数 应用时就存在反复设置初值的问题,这给程序设计带来许多不便。同 时也会影响计时精度。

方式2: 具有自动重装载功能,即自动加载计数初值。16位计数器分 为两部分,TL0为计数器,TH0作为预置寄存器。当计数溢出时,由预 置寄存器THO以硬件方法自动给计数器TLO重新加载。

方式2在串口通讯时,常用作波特率发生器。

05

第五章 定时器及串行通信应用

4、工作方式3

只有T0能工作于方式3,此时T1的的一些控制位已被T0借用,只能工作在方式0、方式1或方式2下,等效电路参见下图:

5、定时/计数器的初始化和初值确定

为使定时/计数器正常工作,首先必须对定时/计数器进行初 始化,然后再开启定时或计数。定时计数器的初始化包括以下内容。

(1) 确定工作方式——对TMDD赋值;

如: MOV TMOD, #06H: 设定T0为计数器工作方式。

(2) 预置定时计数器中计数的初值——直接写入TH和TL;

如: MOV THO, #00H ; 设定计数初值。 **MOV** TL0, #00H

- (3) 根据需要开放定时/计数器的中断——对IE位赋值:
- (4) 启动定时器/计数器:

SETB TRO 如:

初值的计算方法:

X=M-计数值

M是定时器的最大计数值。视工作方式不同而不同。

工作方式0: 13位定时/计数方式,因此,最多可以计到2的13次方,也 就是8192次。

工作方式1: 16位定时/计数方式,因此,最多可以计到2的16次方,也 就是65536次。

工作方式2和工作方式3:都是8位的定时/计数方式,因此,最多可以计 到2的8次方,也说是256次。

预置值计算: 用最大计数量减去需要的计数次数即可。

通过上面的任务, 我们掌握了计数程序的编制方法, 下面我们再

看看定时程序怎样编制。

首先我们看一下下面的程序段。

TMOD, #01H MOV

MOV TL0, #00H

MOV THO, #4CH

SETB TRO

以上程序是一个定时初始化程序段,计数方式和它类似。

5.1.4 应用举例

例1: 已知focs=12MHZ, 利用定时器使图中发光二极 管VD进行秒闪烁,要求亮50ms,暗50ms,采用中断编 程。

编程思路: T0定时每50ms中断一次,中断程序使P1.0反相一次。

初值为:

 $X=2^{16}-t \times fosc/12=65536-12 \times 50 \times 1000/12=15536=3CB0H$

ORG 0000H

SJMP START

ORG 000BH

LJMP TIME0

START: MOV TMOD,#01H

MOV TH0, #3CH

MOV TL0, #0B0H

SETB TR0

MOV IE, #82H

WAIT: SJMP WAIT

TIME0: MOV TH0, #3CH

MOV TL0, #0B0H

CPL P1.0

RETI

中断程序入口

开放中断与定时器

主程序其他任务

重置初值

改变输出状态

中断返回

中南大學

用定时器T1完成时钟秒、分、时的定时。已知晶体振荡频率为12MHz。 例2:

分析: 由于机器周期 $T = 1 \mu S$,采用方式1能定时的最长时间也只有 65.536ms。要得到长时间的定时,必须采用软件计数器。例如定时器定时50ms,对 50ms计数20次为1秒,对1秒计数60次为1分,对1分计数60次为1小时。

> 50ms计数次数=50000/1=50000次 定时初值=65536-50000=15536 秒计数初值(50H单元)=20 分计数初值(51H单元)=60 时计数初值(52H单元)=60

例3:如图开始时P1.0亮,延时0.2秒后左移至P1.1亮,如此左移7次至P1.7亮,再延时0.2秒右移至P1.6亮,如此右移7次后至P1.0亮。

编程思路: 延时程序由T0定时 10ms, 连续延时20次为0.2秒。

初值为:

 $X=2^{16}-t \times fosc/12=65536-6 \times 10 \times 1000/12=60536=0D8F0H$

定时程序:

DELAY: SETB TR0

AGAIN: MOV THO, D8H

MOV TLO, #0F0H

LOOP2: JBC TF0, LOOP3

LJMP LOOP2

LOOP3: DJNZ R3, AGAIN

CLR TR0

RET

END

启动定时器

预置时间常数

等待10mS定时到

等待0.2S定时到

关定时器、返回

例4: 要求当P3.3每来3个脉冲时, P1.0的状态翻转改变一次。

分析: 定时器T0工作在计数方式, 计数3次将P1.0输出取反一 次。由于计数初值小,因此采用方式2最好。

> 计数次数=3次 计数初值=256-3=253

程序:

5.1.5 定时/计数器T2

- 1、T2的寄存器
- 1) T2CON控制寄存器

7	6	5	4	3	2	1	0
TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2	CP/RL2

• TF2 定时器2 溢出标志:

定时器2 溢出时置位,必须由软件清除。当RCLK或TCLK等于1 时TF2 将不 会置位。

• EXF2 定时器2 外部标志:

当EXEN2=1且T2EX 的负跳变产生捕获或重装时EXF2置位;定时器2中断开 放时EXF2=1 将使CPU 从中断向量处执行定时器2 中断子程序。EXF2 位必须 用软件清零。在递增/递减计数器模式(DCEN=1)中EXF2 不会引起中断。

 RCLK 接收时钟标志:

> RCLK=1时, 定时器2 的溢出脉冲作为串行口模式1和模式3的接收时钟, RCLK=0 时, 将定 时器1的溢出脉冲作为接收时钟。

• TCLK 发送时钟标志:

TCLK=1时, 定时器2 的溢出脉冲作为串行口模式1和模式3的发送时钟, TCLK=0 时, 将 定时器1的溢出脉冲作为发送时钟。

• EXEN2 定时器2 外部使能标志:

当其置位且定时器2 未作为串行口时钟时,允许T2EX 的负跳变产生捕获或重装,EXEN2= 0 时, T2EX 的跳变对定时器2 无效。

• TR2 定时器2 启动/停止控制位:

置1 时启动定时器。

• C/T2 定时器/计数器选择:

置0时定时器2工作在定时状态,置1时工作在计数器状态。

• CP/RL2 捕获/重装标志:

置位时, EXEN2=1时, T2EX 的负跳变产生捕获; 清零时, EXEN2=1则定时器2 溢出或T2EX 的负跳变都可使定时器自动重装。当RCLK=1 或TCLK=1 时该位无效且定时器强制为溢出时 自动重装。

2) T2MDD方式控制寄存器

7	6	5	4	3	2	1	0
_	_	_	_	_	_	T2OE	DCEN

- 一 不可用,保留将来之用。
- T20E 定时器2 输出使能位: T20E=1, 允许T2输出; T20E=0, 禁止T2输出。
- DCEN 向下计数使能位:

定时器2 可配置成向上/向下计数器, DCEN=0, T2加1计数; DCEN=1且T2EX=1时, T2加1计数; DCEN=1且T2EX=0时, T2减1计 数。

2、T2的工作方式

定时器 2 工作方式

RCLK+TCLK	CP/RL2	TR2	模式
0	0	1	16 位自动重装
0	1	1	16 位捕获
1	X	1	波特率发生器
X	X	0	(关闭)

1) 定时/计数自动重装方式(递增/递减计数器)

• 16 位自动重装模式中, 定时器T2 可通过C/T2 配置为定时器/计数器, 编程控 制递增/递减计数。计数的方向是由DCEN 递减计数使能位确定的, DCEN 位于 T2MOD 寄存器 中当, DCEN=0 时, 定时器2 默认为向上计数, 当DCEN=1 时, 定时器2 可通过T2EX 确定递增或递减计数。

- 当DCEN=0 时, 定时器2 自动递增计数, 在该模式中通过设置EXEN2 位进行选择。如果 EXEN2=0. 定时器2 递增计数到溢出后将TF2 置位, 然后将RCAP2L 和RCAP2H 中的16 位值 作为重新装载值装入定时器2. RCAP2L 和RCAP2H 的值是通过软件预设的。如果EXEN2=1. 16 位重新装载可通过溢出或T2EX 从 $1 \rightarrow 0$ 的负跳变实现,此负跳变同时将EXF2置位,如果 定时器2中断被使能,则当TF2 或EXF2置1时产生中断。
- DCEN=1时, 定时器2 可递增或递减计数, 此模式允许T2EX 控制计数的方向。当T2EX=1时 定时器2递增计数, 计数到0FFFFH 后溢出并置位TF2, 还将产生中断(如果中断被使能)。 定时器2的溢出将使RCAP2L和RCAP2H中的16位值作为重新装载值放入TL2和TH2。当T2EX = 0时,将使定时器2递减计数,当TL2 和TH2 计数到等于RCAP2L 和RCAP2H 时,定时器产生溢 出,定时器2溢出置位TF2,并将0FFFFH重新装入TL2和TH2。当定时器2递增/递减产生溢 出时,外部标志位EXF2 翻转,如果需要可将EXF2 位作为第17 位,在此模式中EXF2 标志不 会产生中断。

定时器 2 自动重装模式 (DCEN=0)

2) 定时/计数捕获方式

- 在捕获模式中通过T2CON 中的EXEN2 设置两个选项。如果EXEN2= 0 . 定时器2 作为一 个16 位定时器或计数器(由T2CON 中C/T2 位选择),溢出时置位TF2(定时器2 溢出 标志位),该位可用于产生中断(通过使能IE 寄存器中的定时器2 中断使能位)。如果 EXEN2=1, 与以上描述相同, 但增加了一个特性, 即外部输入T2EX 由1 变0 时, 将定 时器2 中TL2 和TH2 的当前值各自捕获到RCAP2L 和RCAP2H。另外T2EX 的负跳变使 T2CON 中的EXF2 置位, EXF2 也象TF2 一样能够产生中断, 其向量与定时器2溢出中断 地址相同、定时器2 中断服务程序通过查询TF2 和EXF2 来确定引起中断的事件。
- 捕获模式如图所示,在该模式中TL2 和TH2 无重新装载值。甚至当T2EX 产生捕获事件 时. 计数器仍以T2EX 的负跳变或振荡频率的1/12计数。

3) 波特率发生器方式

- 寄存器T2CON 的位TCLK 和或RCLK 允许从定时器1 或定时器2 获得串行口发送和接收的波特率。当TCLK=0 时定时器1作为串行口发送波特率发生器,当TCLK=1时定时器2 作为串行口发送波特率发生器。RCLK对串行口接收波特率有同样的作用,通过这两位串行口能得到不同的接收和发送波特率,一个通过定时器1 产生,另一个通过定时器2 产生。
- 定时器2工作在波特率发生器模式时与自动重装模式相似,当TH2 溢出时,波特率发生器模式使定时器2 寄存器重新装载来自寄存器,寄存器RCAP2H 和RCAP2LR 的值由软件预置。当串行口工作于模式1 和模式3 时,波特率由下面给出的定时器2 溢出率所决定:

串行口方式
$$1$$
和 3 波特率= $\frac{T2 溫出率}{16} = \frac{振荡频率}{32 \times (65536 - X)}$

式中的X为16位无符号数 (即RCAP2H和RCAP2L的16位的值)。

4) 可编程时钟输出方式

• 当C/T2=0 (T2工作在定时器方式)时,置位T20E则定时器T2可从P1.0输出占 空比为1:1的时钟信号。时钟输出频率为:

时钟输出频率=
$$\frac{振荡频率}{4'(65536-X)}$$

式中的X为16位无符号数 (即RCAP2H和RCAP2L的16位的值)。

5.1.6 定时器T3-WDT监视定时器

5.6.1 WDT的功能和应用特点

当系统的CPU部位受到干扰信号的作用时,将使系统失控。最典型的故障是 破坏程序计数器PC的状态值。导致程序在地址空间内"乱飞",或者陷入死循环。而 我们对这种情况的处理主要有这么几种方法: (1) 指令冗余技术: (2) 软件陷阱技 术: (3) 看门狗技术。

看门狗是利用一个专门的定时器,来监控主程序的运行,也就是说在主程 序的正常运行过程中,我们要在看门狗定时时间到之前对定时器进行复位,如果出 现死循环,或者说PC指针不能回来,那么看门狗得不到复位,其定时时间到后就会 产生一个信号使单片机复位,程序重新开始运行。

要激活或复位89S51看门狗,只需向看门狗复位寄存器WDTRST(地址为 A6H) 顺序写入1EH和E1H即可。

MOV 0A6H, #1EH ; 先送1EH

MOV 0A6H, #0E1H ; 后送E1H

注意事项:

- 1. 89S51的看门狗必须由程序激活后才开始工作。所以必须保证CPU有可靠的上电 复位。否则看门狗也无法工作。
- 2. 看门狗使用的是CPU的晶振。在晶振停振的时候看门狗也无效。
- 3. 89S51只有14位计数器,在16383个机器周期内必须至少喂狗(看门狗复位)一 次,而且这个时间是固定的,无法更改。当晶振为12M时每16个毫秒需喂狗一次。 89S52只有13位计数器, 在8191个机器周期内必须至少喂狗一次。当晶振为12M时每 8个毫秒需喂狗一次.

- 5.2 单片机串行通信
- 5.2.1 串行通信概述
 - 1. 数据通信的传输方式

【并行通信和串行通信】

并行通信:数据的各位同时送出。占用I/0多,速度快。

串行通信:数据的各位逐位送出。线路简单,速度慢。

串行数据通信两种形式

【异步通信】在这种通信方式中,接收 器和发送器有各自的时钟, 它们的工作 是非同步的, 异步通信用一帧来表示一 个字符, 其内容如下: 一个起始位, 接 着是若干个数据位 和一个停止位。

特点:

- a) 无需传送同步脉冲
- b) 发送/接收端的两个时钟源可彼此独立
- c) 字符帧长度也不受限
- d) 设备简单化
- e) 每帧含有起始位和停止位, 降低了有效数据的传输速率

【同步通信】发送器和接收器由同一个 时钟源控制, 同步传输方式去掉了起始 位和停止位, 只在传输数据块时先送出 一个同步头(字符)标志即可。在没有 信息要传输时,要填上空字符,因为同 步传输不允许有间隙。

特点:

- 山 同步数据帧由同步字符和数据组成
- u 传输速率较高(可56kbps以上)
- u 要求发送/接收时钟始终保持严格同步

同步通信数据格式

串行数据通信的传输速率 3

串行数据传输速率有两个概念,即每秒转送的位数bps (Bit per second)和每秒符号数—波特率(Band rate),波特率也叫 比特率。在具有调制解调器的通信中、波特率与调制速率有关。

举例:设有一帧信息,1个起始位、8个数据位、1个停止位,传 输速率为每秒960个字符。求波特率。

解: $(1+8+1) \times 960 = 9600 \text{ b/s} = 9600 \text{ g}$ 特。

4. 串行数据传送方向

单工通讯: 数据单向传送。

半双工通讯:数据可分时双向传送。

全双工通讯: 可同时进行发送和接收。

5. 串行接口功能

发送器: 并® 串数据格式转换,添加标识位和校验位,一帧发送结束,设 置结束标志,申请中断。

接收器: 串图并数据格式转换, 检查错误, 去掉标识位, 保存有效数据, 设置接收结束标志,申请中断。

控制器:接收编程命令和控制参数,设置工作方式:同步/异步、字符格 式、波特率、校验方式、数据位与同步时钟比例等。

5.2.2 80C51串行口简介

串行口结构与工作原理

发送缓冲器SBUF只能写入不 能读出。

接收缓冲器SBUF只能读出不 能写入。

05

第五章 定时器及串行通信应用

串行口结构示意图

串行接口输入/输出引脚: TXD(P3.1)、RXD(P3.0)

数据格式:按不同方式,一帧位数 8/10/11发送/接收时,数据皆低位在 前。

一帧字符发送/接收结束,置位标志位(TI/RI)并申请串行口中断。

中断控制:中断允许位ES

中断入口: 0023H

2 串行口控制

SCON	D7	D6	D5	D4	D3	D2	D1	D0
	SMO	SM1	SM2	REN	TB8	RB8	TI	RI
位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H

SMD、SMI: 工作方式选择位(四种工作方式)

SM2: 多机通信控制位

REN: 允许接收控制位

TB8: 发送的第九位数

RB8: 接收的第九位数

SMD SMI工作方式选择

0 0 方式0 移位寄存器

0 1 方式1 8位UART(10)

1 0 方式2 9位UART(11)

1 1 方式3 9位UART(11)

TI / RI: 发送/接受中断请求标志位,该标志在中断服务程序

中也必须由软件清零。

波特率的设置

在串行通信中, 收发双方对传送的数据速率, 即波特率要有一定的约 定。80C51单片机的串行口通过编程可以有4种工作方式。其中,方式0和方式 2的波特率是固定的,方式1和方式3的波特率可变,由定时器1的溢出率决定 (AT89S系列还可由T2的溢出率决定),下面加以分析。

1) 方式0和方式2

在方式0中,波特率为时钟频率的1/12,即 $f_{osc}/12$,固定不变。 在方式2中,波特率取决于PCON中的SMDD值,当SMDD=0时,波特率 为 $f_{osc}/_{64}$; 当SMOD =1时, 波特率为 $f_{osc}/_{32}$ 。即:

波特率=
$$\frac{2^{SMOD} \cdot f_{osc}}{64}$$

2) 方式1和方式3

80C51在方式1和方式3下,波特率由定时器1的溢出率和SMD共同决定。

即:

方式1和方式3波特率=
$$\frac{2^{\text{SMOD}}}{32}$$
、T1的溢出率

当定时器1做波特率发生器使用时,通常是工作在方式2,即自动重装载 的8位定时器。设计数的预置值(初始值)为X,那么每过256-X个机器周期,定 时器溢出一次。为了避免因溢出而产生不必要的中断,此时应禁止T1中断。波 特率为:

方式1和方式3波特率=
$$\frac{2^{\text{SMOD}}}{32}$$
, $\frac{f_{\text{osc}}}{12'(256-X)}$

定时器1产生的常用波特率

			定时器1				
波特率/(b/s)	f _{osc} /MHz	SMDD	c/ T	模式	初始值		
方式0: 1	12	×	×	×	×		
方式2: 375 k	12	1	×	×	×		
方式1、3: 62.5 k	12	1	0	2	FFH		
19. 2 k	11.0592	1	0	2	FDH		
9.6 k	11.0592	0	0	2	FDH		
4.8 k	11.0592	0	0	2	FAH		
2.4 k	11.0592	0	0	2	F4H		
1.2 k	11.0592	0	0	2	E8H		
137. 5 k	11. 986	0	0	2	1DH		
110	6	0	0	2	72H		
110	12	0	0	1	FEEBH		

5.2.3 串行通信应用实例

1、方式0

数据输出(发送)

当数据写入SBUF后,数据从RXD端在移位脉冲(TXD)的控制下,逐位移出。 当8位数据全部移出后,TI由硬件置位,发生中断请求。若CPU响应中断,则从 0023H单元开始执行串行口中断服务程序。

接口逻辑

MOV SCON, #00H

SETB P1.0

MOV A, #DATA

MOV SBUF, A

WAIT: JNB TI, WAIT

CLR

CLR P1.0

方式0

选通74LS164

启动发送

等待发送结束

清除发送标志 关74LS164

数据输入(接收)

要实现接收数据,必须首先把SCON中的允许接收位REN设置为1。当REN设 置为1时,数据就在移位脉冲的控制下,从RXD端输入。当接收到8位数据时,置位 接收中断标志位RI,发生中断请求。

例:数据通过外接74LS165输入,其接 口逻辑如图所示。由逻辑图可知, 通 过外接74LS165, 串行口能够实现数据 的并行输入。

外接移位寄存器输入

RQ: CLR P1.0

SETB P1.0

MOV SCON, #10H

JNB RI, \$

CLR RI

MOV A, SBUF

读入并行数据

方式0、允许接收

等待数据到

清除接收标志 读数据

2、串行工作方式1

方式1为10位为一帧的异步串行通信方式。其帧格式为1个起始位、8个数据位 和1个停止位,如下图所示。

	起始位	D_0	D_1	D_2	D_3	D_4	D_5	D_6	D ₇	停止位
--	-----	-------	-------	-------	-------	-------	-------	-------	----------------	-----

数据输出(发送)

数据写入SBUF后,开始发送,此时由硬件加入起始位和停止位,构成一帧数据,由TXD 串行输出。输出一帧数据后, TXD保持在高电平状态下, 并将TI 置位, 通知CPU可以进行下一个 字符的发送。

数据输入(接收)

当REN=1且接收到起始位后,在移位脉冲的控制下,把接收到的数据移入接收缓冲寄存 器(SBUF)中。当RI=0,且停止位为1或SM2=0时,停止位进入RB8位,同时置中断标志RI;否则 信息将丢失。所以,方式1接收时,应先用软件清除RI或SM2标志。

3、串行工作方式2和方式3

方式2和方式3都为11位为一帧的异步串行通信方式。其帧格式为1个起始位、9个数据位和1个停止位,如下图所示。方式2与方式3只在波特率设置上由所不同。

起始位	D_0	D_1	D_2	D_3	D_4	D_5	D_6	\mathbf{D}_7	D_8	停止位
-----	-------	-------	-------	-------	-------	-------	-------	----------------	-------	-----

方式2和方式3在8个数据位上增加了第9个数据位(D_8),其功能由用户确定,是一个可编程位。

在发送数据时,应先在SCON的TB₈位中把第9个数据位的内容准备好。这可使用如下指令完成:

SETB TB8 ; TB₈位置"1"

CLR TB8 ; TB₈位置"0"

串行口把接收到的前8个数据位送入SBUF, 而把第九数据位送入RB8。

方	法
例	•

CCON	D7	D6	D5	D4	D3	D2	D1	D0
SCON	SMO	SM1	SM2	REN	TB8	RB8	TI	RI
位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H

TT: MOV SCON, #80H

MOV A, #DATA

MOV C, PSW.0

MOV TB8, C

MOV SBUF, A

LOOP: JBC TI, NEXT

SJMP LOOP

NEXT: ...

方式2

TB8为偶校验位

启动发送

等待发送结束

例:接收一个数据字节并做奇偶校验的程序段。

RR: MOV SCON, #90H 方式2, 允许接收

CCON	D7	D6	D5	D4	D3	D2	D1	D0
SCON	SMO	SM1	SM2	REN	TB8	RB8	TI	RI
位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H

PSW.0, ONE JB

JB RB8, ERR

SJMP REXT

ONE: JNB RB8, ERR

REXT:

ERR:

奇偶校验

9位数据1的个数为偶数则 发送正确

4、点对点串行双机通信系统的设计

任务:设计一个单片机双机通信系统,单片机1从P1口输入2位BCD数据并 定期将该数据发送给单片机2,单片机2接收到单片机1的数据后显示在两 位数码管上:单片机1根据接在单片机2上按钮S1的状态控制发光二极管 LED1的亮灭。

分析:任务中单片机要求发送与接收的数据都只有一个字节,只要掌握了 串行口相关特殊功能寄存器的设置方法,采用查询方式或者中断方式发送 接收数据都较简单。任务要求从单片机1的P1口输入2位BCD数据,可以使 用BCD拨码盘实现。

双机通信电路原理图

05

第五章 定时器及串行通信应用


```
/* 单片机1通信程序 ****
#include <AT89X52.H>
unsigned char S1; // 存放接收数据
sbit LED1=P2<sup>0</sup>;
/* 单片机1串行口接收中断服务子程序 *************//
void serial(void) interrupt 4 using 1
 if (RI)
                    #接收中断标志位复位
  RI=0;
                   #接收发送端传送来的数据
      S1=SBUF;
```

知行合一、经世致用

void main(void) /* 单片机1主函数 **********

TMOD=0x20; TR1=1; // T1为方式2

TH1=0xFA; TL1=0xFA; // 波特率为4800bps

// 开启串行口中断 IE=0x90;

// 设串口为方式1、允许串行口接收 SCON=0x50;

while (4)

SCON	D7	D6	D5	D4	D3	D2	D1	D0
	SMO	SM1	SM2	REN	TB8	RB8	TI	RI
位地址	9FH	9EH	9DH	9CH	9BH	9AH	99H	98H

```
if (S1==0x55) LED1=0; // 根据S1控制LED
     else LED1=1;
```

delay20ms(); // **20ms**延时程序,没有编写


```
#include <AT89X52. H>
unsigned char code table []=\{0xc0, 0xf9, 0xa4, 0xb0, 0x99,
                                      0x92, 0x82, 0xf8, 0x80, 0x90;
unsigned char tmp;
                       // 存放接收数据
sbit S1=P1^0;
/* 显示程序 ******************************/
void display2(unsigned char x) // BCD数显示程序
 P2=table[x>>4];
                      // 显示十位
 P0=table[x&0x0f];
                           // 显示个位
```



```
/* 单片机2串行口中断服务子程序 ****************/
void serial(void) interrupt 4 using 1
 if (RI)
  RI=0;
                     // 接收中断标志位复位
     tmp=SBUF; // 接收发送端传送来的数据
```



```
void main(void) /* 单片机2主函数
                           ************
TMOD=0x20; TR1=1; // T1为方式2
TH1=0xFA; TL1=0xFA; // 波特率为4800bps
                  # 开启串行口中断
IE=0x90;
                  // 设串口为方式1、允许串行口接收
SCON=0x50;
while(1)
 if (S1) SBUF=0xaa;
      else SBUF=0x55;
     while(!TI);
                  # 等待发送数据结束
     TI=0;
                  // TI复位
 display2(tmp);
                  // 显示BCD数据
 delay10ms();
```


知行合一、经世致用

5、串行总线RS232与RS485

● 接口的物理结构

●能否支持多点通讯

●接口的电气特性

● 通讯线的差别

●通讯距离的长短

● 传输数据的最大波特率

(1) 接口的物理结构

RS232:

RS232接口连接器使用型号为DB-25的25芯插头座。一些设备与PC机连接的 RS-232接口, 因为不使用对方的传送控制 信号, 只需三条接口线, 即"发送数据"、 "接收数据"和"信号地"。所以采DB-9的9芯插头座,传输线采用屏蔽双绞线。

DB-9的9芯插头座

第五章 定时器及串行通信应用

第五章 定时器及串行通信应用

TTL/CMOS数据从T1IN、T2IN输入转换成RS-232数据从T10UT、T20UT送到电脑DB9插头; DB9插头的RS-232数据从R1IN、R2IN输入转换成TTL/CMOS数据后从R10UT、R20UT输出。

第五章 定时器及串行通信应用

RS485:

双绞线或屏蔽

线

RS485无具体的物理形状,根据工程的实际情况而采用相应的接口。

(2) 接口的电气特性

RS232: 传输电平信号

接口的信号电平值较高(信号"1"为"-3V至-15V",信号 "0"为"3至15V"), 易损坏接口电路的芯片, 又因为与TTL 电平 (0~ "<0.8V", 1~ ">2.0V") 不兼容故需使用电平转换电路方能与TTL 电路连接。

抗干扰能力差。

RS485: 横躺差分信号

逻辑 "1"以两线间的电压差为+(2—6) V表示:逻辑 "0" 以两线间的电压差为-(2-6) V表示。接口信号电平比RS-232降低 了,就不易损坏接口电路的芯片,且该电平与TTL电平兼容,可方 便与TTL电路连接。

抗干扰能力强。

(3) 通讯距离

RS232传输距离有限,最大传输距离标准值为15米,实际上也 只能用在25米左右。

RS485最大传输距离标准值为120米,实际上可达 3000米。

(4) 多点通讯支持

● RS232接口在总线上只允许连接1个收发器,不能支 持多站收发能力。

■ RS485接口在总线上是允许连接多达128个收发器。 即具有多站通讯能力,这样用户可以利用单一的 RS485接口方便地建立起设备网络。

(5) 通信线

- RS232可以采用三芯双绞线、三芯 屏蔽线等。
- RS485可以采用两芯双绞线、两芯 屏蔽线等。

双绞线的内部结构: 两线相绞

电缆线的内部结构: 两线平行

(6) 传输数据的最大波特率

- RS232传输速率较低,最高波特率为19200bps。
 虽然传输速度很慢,但在很多场合还是很实用。
- RS485的数据最高传输速率为10Mpps 。传输速度快了很多!

THANKS

《单片机与接口技术》

主讲人: 李刚