States of Conductance (g_K, g_{Na})

Darshan Mandge

Computational Neurophysiology Lab Department of Biosciences & Bioengineering IIT Bombay

February 11th, 2014

Outline

- Activation, Deactivation and Inactivation
- States of Conductances
- Dependence of $g_{Na} \& g_{Na}$ on V_m and t

Activation, Deactivation and Inactivation

BB 636 Course Material, IIT Bombay

Some Terminology

- Gating: Conformational changes in an ion channel induced by an extrinsic source (i.e., voltage, ligands, stretch, etc.). Such conformational changes are responsible for functional properties like activation and inactivation.
- Activation: Opening of a channel due to the presence of a gating signal.
- **Deactivation**: Closing of a channel due to removal of the gating signal (i.e. the opposite of activation).
- Inactivation: Closing of a channel in the continued presence
 of the gating signal. The term "inactivation" is usually only
 applied to voltage-gated channels, whereas "desensitization"
 describes the analogous process for ligand-gated channels.

State of Conductances

Potassium Conductance

Sodium Conductance

Dependence of g_{Na} and g_K on V_m & Time

- Variation of g_{Na} and g_K at different values of V_m
- Both Magnitude & Rate of Change of g_{Na} and g_K vary with the extent of depolarization
- g_{Na} and g_K to be evaluated as functions of voltage & time

Hodgkin-Huxley Model

Points to be covered

- Parallel Conductance Model for Active Membrane
- Gating Variables
- Modelling $g_K(V_m, t)$ and $g_{Na}(V_m, t)$
- Results from Hodgkin Huxley Model-Fit with Experimental Data
- Summary
- Current Equations for I_{Na} , I_K , I_L and I_C

Parallel Conductance Model for Active Membrane

The equation for membrane current is

$$I_m = I_C + I_K + I_{Na} + I_L$$
 or $I_m = C_m \frac{dVm}{dt} + g_K(V_m, t)(V_m - E_K) + g_{Na}(V_m - E_{Na}) + g_L(V_m - E_L)$

Image from Johnston and Wu, 1994

Modelling $g_K(V_m, t)$ and $g_{Na}(V_m, t)$

$$g_K(V_m,t) = Y_K(V_m,t)\bar{g}_K$$
 $g_{Na}(V_m,t) = Y_{Na}(V_m,t)\bar{g}_{Na}$

where $Y_K(V_m, t)$, $Y_{Na}(V_m, t)$ = function of gating variables between 0 and 1

 \bar{g}_k , $\bar{g}_{Na} = \text{maximum } K^+ \& Na^+ \text{conductances}$.

- The K^+ channels have an activation variable,n and
- Na⁺ channels have an activation variable, m and an inactivation variable,h.

The gating variables

For **Potassium Channels**, there is one gating variable **n** (activation gating variable)

For **Sodium Channels**, there is two gating variable m (activation gating variable)

h (inactivation gating variable)

The gating variables

For **Potassium Channels**, there is one gating variable **n** (activation gating variable)

$$n \stackrel{\beta_n}{\underset{\alpha_n}{\rightleftharpoons}} (1-n)$$

$$Activated(Open) \stackrel{\beta_n}{\underset{\alpha_n}{\rightleftharpoons}} Deactivated(Closed)$$

 α_n and β_n are the rate constants (functions of V_m)

The gating variables

For **Potassium Channels**, there is one gating variable **n** (activation gating variable)

$$n \stackrel{\beta_n}{\underset{\alpha_n}{\rightleftharpoons}} (1-n)$$

$$Activated(Open) \stackrel{\beta_n}{\underset{\alpha_n}{\longleftarrow}} Deactivated(Closed)$$

 $lpha_n$ and eta_n are the rate constants (functions of V_m) $\frac{dn}{dt} = lpha_n (1-n) - eta_n n$

Potassium Conductance, g_K

$$n(t) = \frac{\alpha_n}{\alpha_n + \beta_n} - \left(\frac{\alpha_n}{\alpha_n + \beta_n} - n_0\right) \exp\left(-t(\alpha_n + \beta_n)\right)$$

At $t = \infty$, $n_\infty = \frac{\alpha_n}{\alpha_n + \beta_n}$, $\tau_n = \frac{1}{\alpha_n + \beta_n}$

 n_{∞} and τ_n = are the steady state value and time constants of 'n' at a particular V_m , respectively.

The equation now becomes

$$n(t) = n_{\infty} - (n_{\infty} - n_0) \exp\left(\frac{-t}{\tau_n}\right)$$

$$g_K(V_m, t) = \left[n_{\infty} - (n_{\infty} - n_0) \exp\left(\frac{-t}{\tau_n}\right)\right] \bar{g}_k$$
or $\sigma_K(V_m, t) = \left[n(V_m, t)\right] \bar{\sigma}_k$

or $g_K(V_m, t) = [n(V_m, t)] \bar{g}_k$

It was found that when $[n(V_m, t)]^4$, the fit with experimental data was very good. Thus, the final equation is

$$g_K(V_m,t)=\left[n(V_m,t)\right]^4\bar{g}_k$$

Results from Hodgkin Huxley Model

Sodium Conductance, g_{Na}

There are 2 gating variables: $\mathbf{m}(\text{activation})$ and $\mathbf{h}(\text{inactivation})$

$$m \stackrel{\beta_m}{\underset{\alpha_m}{\rightleftharpoons}} (1-m)$$

 $\mathsf{Activated}(\mathsf{Open})^{\overset{\beta_m}{\underset{\alpha_m}{\longleftarrow}}}\mathsf{Deactivated}(\mathsf{Closed})$

$$h \stackrel{eta_h}{\underset{lpha_h}{\rightleftharpoons}} (1-h)$$

Non-inactivated $\underset{\alpha_h}{\overset{\beta_h}{\rightleftharpoons}}$ Inactivated

 α_m , α_h , β_m and β_h are the rate constants (functions of V_m)

Sodium Conductance, g_{Na}

$$\frac{dm}{dt} = \alpha_m (1 - m) - \beta_m m, \ m_{\infty} = \frac{\alpha_m}{\alpha_m + \beta_m}, \ \tau_m = \frac{1}{\alpha_m + \beta_m}$$

$$\frac{dh}{dt} = \alpha_h (1 - h) - \beta_h h, \ h_{\infty} = \frac{\alpha_h}{\alpha_h + \beta_h}, \ \tau_h = \frac{1}{\alpha_h + \beta_h}$$

The equations for m and h

$$m(t) = m_{\infty} - (m_{\infty} - m_0) \exp\left(\frac{-t}{\tau_m}\right)$$

$$h(t) = h_{\infty} - (h_{\infty} - h_0) \exp\left(\frac{-t}{\tau_h}\right)$$

But at $t = \infty$, $h_{\infty} = 0$ as all the channels are in the inactivated state.

Thus,
$$h(t) = h_0 \exp\left(\frac{-t}{\tau_h}\right)$$

Sodium Conductance, g_{Na}

Now,

$$g_{Na}(V_m,t) = [m(V_m,t)h(V_m,t)]\bar{g}_{Na}$$

But the above equation did not give a good fit with the experimental data. The equations fitted well when the m variable was raised to 3.

Thus,
$$g_{Na}(V_m,t)=\left[m(V_m,t)^3h(V_m,t)\right]ar{g}_{Na}$$
 or

$$g_{Na}(V_m,t) = \left(m_{\infty} - (m_{\infty} - m_0) \exp\left(\frac{-t}{\tau_m}\right)\right)^3 \left(h_0 \exp\left(\frac{-t}{\tau_h}\right)\right) \bar{g}_{Na}$$

Results From Hodgkin Huxley Model

Summary: How Hodgkin and Huxley did this?

- Voltage clamp at a different depolarizing voltages
- **2** Calculate steady state value (x_{∞}) and time constant, τ at each clamping voltage, V_m (x=n, m or h)
- ① Determine α_x and β_x with the following formulae $x_{\infty} = \frac{\alpha_x}{\alpha_x + \beta_x}$, $\tau_x = \frac{1}{\alpha_x + \beta_x}$
- ① Plot the points for $\alpha_{\rm x}$ and $\beta_{\rm x}$ vs. V_m and derive an empirical curve fit equations
- ① Use these equations for α_x and β_x to calculate the steady state value (n_∞) and time constants, τ at different V_m .
- **1** Determine the maximum conductances, \bar{g}_x and initial values using the experimental data. Calculate g_x
- Check if the values of conductances calculated fit with the experimental data.

Hodgkin-Huxley Results

Use these Current Equations to generate an AP

Potassium Current, I_K

$$I_K(V_m,t)=[n(V_m,t)]^4\,\bar{g}_K$$

Sodium Current, I_{Na}

$$I_{Na}(V_m,t) = \left[m(V_m,t)^3h(V_m,t)\right]\bar{g}_{Na}(V_m-E_{Na})$$
 or

Leakage Current, I_L The leakage current is the current carried mostly by CI^- ions.

$$I_L = \bar{g}_L * (V_m - E_L)$$

Capacitive Current, I_C

$$I_C = C_m \frac{dv_m}{dt}$$

 C_m is the membrane capacitance So we can now calculate the membrane current as

$$I_m = I_C + I_K + I_{Na} + I_L$$

References

- Foundations of Cellular Neurophysiology, 1st Edition, Johnston and Wu. 1994.
- Hodgkin, Alan L., and Andrew F. Huxley. "A quantitative description of membrane current and its application to conduction and excitation in nerve." The Journal of physiology 117.4 (1952): 500.

