Rail ou Route

• Etude du problème 4 entrepot E1, E2, E3, E4

E1 50t C1 noute 12 Re/t C2 noute 11 Re/t
E2 40t C1 nail 12 Re/t C1 noute 14 Re/t
E3 35t C1 noute 9 Re/t C3 nail 11 Re/t C3
E4 65t C2 nail 4 R/t_nout 5 R/t C3 nail 10 Re/t noute 14 Re/t

Soit le tableau Suivant

	Cir	C1t	Czr	Czt	Car	C3t
EI	12	ø	11	ø	ø	ø
E2	14	12	Ø	Ø	ø 14 14	ø
Eg	9	Ø	Ø	Ø	14	10
E4	Ø	Ø	5	4	14	10

Donnée:

E={1,2,3,4} ensemble des entrepots Vie E Cir ensemble des prix sur route VIEE Cit ensemble des prun sur rail (train)

Variable

Charge pour chaque liaison Vi, je E xij

Contrainte

- (1) $10 \le C_1 t_1 2 \le 50$ $10 \le C_2 t_1 2 \le 50 \sim$ $10 \le C_3 t_1 3 + C_3 t_1 4 \le 50$
- (2) $x_{17,1} + x_{27,1} = 50$ $x_{17,2} + x_{16,2} = 40$ $x_{17,3} + x_{37,3} + x_{36,4} = 35$ $x_{27,4} + x_{24,4} + x_{37,4} + x_{34,4} = 65$

Objectif

Min (& & Eur) xir,jx cir,j)

Construction de l'equipage

Luction 1, Il suffit de trouver une combinaison adequate par exemple: 1-2,3-6,4-5 et 7-8 fonctionne

Question 2,

Donnée: Langue = [Anglais, Français, Neerlandais, Norvegien] Avion = [Chasseur, Transport, Bombardier, Planeur, Ravitailleur] Pilote = {1-8} Note L. Nepe je Pilote le Langue NoteA NAja je Pilote a & Avion

Variable

L'ensembles des affectation VI, je P rij (binaire)

Contrainte

Vije Pilote Vle Langue Moy (Min (Mil+Mjl)) > 10 Vae Avion Moy (Min (Mia+Mja)) > 10 VjePilote Énij=1 ViePilote Énij=1

Max (\(\frac{P}{\sum_{i}} \frac{P}{i} \) (Max (Moy(nil+njl)) + Max (Moy(nil+njl))) Objectif

Construction d'un Stade

Question 1

Donné:

Durée d1-18 A ememble des arc

Variable

 $t_{i \in [1-18]}$ le l'emp de de hut

Contrante

VeijeA tj≥ti+di

Object of Min (t fin)

Luestion 2 Vonnée:

 $\mathcal{D}_{1 \in [1+18]}$ nombre de remaine gagné $r_{\lambda-18}$ recluction maximal durée d [1-18] coût supplementaire $\mathcal{C}_{[1-18]}$ prime

Variable

nombre de semaine d'avance a

Contrainte $(i,j) \in A$ $ti + di - Di \leq kj$ $\forall x \in A$ $Sx < \pi i$ Objects $Max (P \times \pi - \sum_{i=1}^{18} Cix Si)$