0.0.1. In calculus. IPad test

- (1) Extreme Value Theorem: Every continuous function $f:[a,b]\to \mathbb{R}$ admit both max and min value \Rightarrow Compact set
- (2) Intermediate value Theorem: Given continous function $f:[a,b] \to \mathbb{R}$ for all $f(a) \leq \lambda \leq f(b) \exists c \in [a,b] \ni f(c) = \lambda \Rightarrow \text{connected}$ set

How to prove a statement: HP, then $Q, P \Rightarrow Q$ $\begin{cases}
\text{Direct Proof} \\
\text{Indirect Proof} \\
\text{by contradiction}
\end{cases}$ Mathematical Induction

1. Some preliminary

1.1. Set Theory.

Set is a collection which has two presentation

- (1) List $\{a, b, c, \cdots\}$
- $(2) \{x \mid x \in \text{alphabet}\}\$

We will assume that you are familiar with some basic set theory e.g. union, intersection, difference

1.2. The Number System.

 $\mathbb{N} = \{1, 2, 3, \cdots\}$ the set of all positive integers n natural numbers $\mathbb{Z} = \{\cdots, -2, -1, 0, -1, -2, \cdots\}$ the set of all integers called the ring of integus

 $\mathbb{Q} = \left\{ \frac{m}{n} \ : \ n, m \in \mathbb{Z}, n \neq 0 \right\} \text{ the set of all rational numbers}$ $\mathbb{R} \text{ the set all of real numbers on the real number field on real line}$ $\mathbb{C} = \left\{ z = a + ib \mid a, b \in \mathbb{R} \right\} \text{ the set of all complex numbers or the complex number filed on complex plane, where } i = \sqrt{-1}$ and $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$

Remark.

- (1) x + 2 = 0 no root in \mathbb{N} 3x - 5 = 0 no root in \mathbb{Z} $x^2 + 1 = 0$ no root in \mathbb{R}
- (2) One can construct $\mathbb Q$ from $\mathbb Z$ in algebraic way, called the fraction field of $\mathbb Z$
- (3) One can construct \mathbb{R} from \mathbb{Q} in two ways:
 - \cdot Using Dedekind cut which is given in the appendix of Rudin p17-21
 - · Using completion of matrix space
- (4) One can construct \mathbb{C} from in complex analysis

Example.

(1) Between any two rational numbers, there is another one $\frac{r+s}{s} \in \mathbb{Q}$ with r < s then $\frac{r+s}{s} \in \mathbb{Q}$ and $r < \frac{r+s}{s} \in \mathbb{Q}$

Proof. Let $r, s \in \mathbb{Q}$ with r < s, then $\frac{r+s}{2} \in \mathbb{Q}$ and $r < \frac{r+s}{2} < s$

$$r = \frac{m_1}{n_1}, s = \frac{m_2}{n_2}, \frac{r+s}{2} = \frac{\frac{m_1}{n_1} + \frac{m_2}{n_2}}{2} = \frac{m_1 n_2 + n_1 m_2}{2n_1 m_1} \in Q$$

$$s = \frac{s+s}{2} > \frac{r+s}{2} > \frac{r+r}{2} = r$$

- (2) $x^2 = \frac{4}{9}$ has exactly two rational solutions, namely, $\pm \frac{2}{3}$
- (3) $x^2 = 2$ has exactly two real root, namely, $\pm \sqrt{2}$
- (4) Is there any rational roots of $x^2 = 2$? i.e., is $\sqrt{2}$ rational?

Suppose
$$r = \frac{m}{n} \in \mathbb{Q}$$
, is a root of $x^2 = 2$, where $(m, n) = 1$
Then $\frac{m^2}{n^2} = 2 \implies m^2 = 2n^2 \implies 2 \mid m^2 \implies 2 \mid m \implies 4 \mid m^2 \implies 4 \mid 2n^2 \implies 2 \mid n \implies 2 \mid n \implies (n, m) \neq 1$

(5) Let $A = \{ r \in Q \mid r > 0 \& r^2 < 2 \}$, $B = \{ r \in Q \mid r > 0 \& r^2 > 2 \}$ Then A contains no largest numbers, i.e. max element & B contains no smallest numbers, i.e. min element *Proof.* A contains no largest numbers \Leftrightarrow given $r \in A$,

$$\exists s \in A \ni s > r$$
Now, given $r \in A$, Let $s = r - \frac{r^2 - 2}{r + 2} = \frac{2r + 2}{r + 2}$ (*1)
$$\implies s^2 - 2 = \frac{2(r^2 - 2)}{(r + 2)^2}$$
 (*2)
$$\text{Now, } r \in A, r^2 < 2 \implies r^2 - 2 < 0 :$$

$$(*_1) \& (*_2) \implies s > r \& s^2 < 2 \implies s \in A$$

$$\implies s^2 - 2 = \frac{2(r^2 - 2)}{(r+2)^2} (\star_2)$$

Now,
$$r \in A$$
, $r^2 < 2 \implies r^2 - 2 < 0$.
 $(\star_1) \& (\star_2) \implies s > r \& s^2 < 2 \implies s \in S$

(6) As you know, in calculus, the sequence $\{1, 1.4, 1.41, 1.414, 1.4142, \cdots\}$ does not converge in Q, but it converges to $\sqrt{2}$ in R

1.3. Order Sets.

Definition (Relation).

Let X be a nonempty set A, relation on X is a subset R of $X \times X =$ $\{ (x,y) \mid x,y \in X \}$

Let R be a relation on X, if $(x,y) \in \mathbb{R}$, then we say that x is retaliated to y, and is written as $xRy(x \sim y)$

Definition (Order Set). An ordered set on S, is a relation denoted by $\overline{"} < "$ on S, satisfy:

- (i) The low of trichonomy Given $x, y \in S$, one and only one of the following holds: x < y, x = y, y < x
- (ii) Transitivity: if x < y & y < z, than x < z

Notation

- (1) x < y means "x is less than y" or "x is smaller than y"
- (2) y > x means x < y
- (3) $x \le y$ means $x \le y$ or x = y, i.e. the negative of x > y

<u>Definition</u> (bdd). Let S is an ordered set & $E \subseteq S(E \neq \emptyset)$

- E is bounded above if $\exists \alpha \in S \implies x < \alpha \ \forall \ x \in E$ such α is called an upper bound of E
- E is bounded below if $\exists \beta \in S \ni \beta \leq x, \forall x \in E$, such β is called a lower bdd of E
- E is bdd is E is both bdd above and below.

<u>Definition</u> (least upper bound). Let S be an ordered set and $E \subseteq S(E \neq \emptyset)$ bdd above. An element $\alpha \in S$ is called the last upper bound or supremum of E if

- (i) α is an upper bound of E
- (ii) α is the smallest such one.

Equivalently,

- (i') $x \leq \alpha, \forall x \in E$
- (ii') if $\beta < \alpha$, then β is not an upper bdd of E, i.e. $\exists x \in E \ni x > \beta$ Such α (if exists) is denoted by

$$\alpha = sup(E)$$

similarly, one can defined the greatest lower bdd of infimum of E

Remark. if $\sup(E)$ exists then it is unique suppose $\alpha \neq \alpha'$ both lub of E \therefore by trichotomy $\alpha > \alpha'$ or $\alpha = \alpha'$ or $\alpha < \alpha'(\rightarrow \leftarrow)$

<u>Definition</u> (least upper bdd property). A ordered set S is said to have the least upper bdd property if $E \subseteq S$, $E \neq \emptyset$ and E is bdd above, then $\sup(E)$ exists in S

Example.

- (1) In Q with the normal ordining $A = \{ r \in Q \mid r > 0, r^2 < 2 \} \& B = \{ r \in Q \mid r > 0, r^2 > 2 \}$ Then A is bdd above, in fact, bdd by every element in B, but $\sup(A)$ does not exist in $Q(\cdot)$ by Ex1.5)
- (2) B is bdd below by every element of A and inf B does not exists
- (3) Note that $\sup(E) \& \inf(E)$ may not in E even if exist

Remark.

- (1) By the Example above, Q with the usual ordering has no l.u.b property
- (2) In 1.5 we will explain that R with usual ordering has the l.u.b. property. However, we usually adopt the following

The Axiom of Completence or Least upper bdd property: Every nonempty subset E of R which is bdd above has l.u.b

Theorem (l.u.b.p. \rightarrow g.l.b.p.). Let S is an ordered set if S has the l.u.b. property, then S has the g.l.b. property, i.e. if $\emptyset \neq B \subseteq S$ is bdd below, then $\inf(B)$ exists in S

Proof. (*)
Given $B(\neq \emptyset) \subseteq S$ which is bdd below
Let $L = \{ a \in S \mid a \text{ is a lower bdd of } B \}$

- $L \neq \emptyset(:B)$ is bdd below
- L is bdd above (in fact, every element in B is on upper bound of L)

 $\implies \forall a \in L \implies a \leq x, \ \forall x \in B \implies x \text{ is an upper bound}$ of L

• $\sup(L) = \alpha$ exists by assumption

Claim $\alpha = \inf B$

(i) α is a lower bdd of B, i.e. $\alpha \leq x$, $\forall x \in B$ By $\alpha = \sup L$, if $r < \alpha$, them r is not an upper bdd of $L(\because \alpha)$ is the smallest one).Hence, $r \notin B(\because \text{ every element of } B \text{ is an upper bdd of } L)$, so $\alpha \leq x, \forall x \in B$ We have proved $(r < \alpha) \implies r \notin B$ $\implies (r \in B) \implies r \geq \alpha$

(ii) α is the greated one if $\alpha < \beta$ and β is a lower bdd of B, then $\beta \notin L$, i.e. β is not a lower bdd of B, so α is the greatest one. Therefore, $\alpha = \inf(B)$

Remark. Let $E(\neq \emptyset) \subseteq \mathbb{R}$ be bdd below, then $\inf(E)$ exists and $\inf(E) = -\sup(-E)$, where $-E = \{-x \mid x \in E\}$

1.4. Field.

Recall the addition & multiplication in R

$$+: R \times R \to R((a,b) \mapsto a+b)$$

$$\times: R \times R \to R((a,b) \mapsto a \cdot b = ab)$$

<u>Definition</u>. Let X is a nonempty set A, binary operation on X is a function, $o: X \times X \to X$

Definition. Let F be a nonempty set, we say that F is a field $((F, +, \cdot)$ is a field) if there are two binary operator called addition " +" and multiplication" \cdot " on F property

```
Axioms for " +"

(A1) Commutative: \forall x, y \in F, x + y = y + x

(A2) Associative: \forall x, y, z \in F, (x + y) + z = x + (y + z)

(A3) Additive identity or zero element: \exists \ 0 \in F \implies x + 0 = 0 + x = x, \ \forall x \in F

(A4) Additive inverse on negative: For each x \in X, \ \exists -x \in F \implies x + (-x) = (-x) + x = 0

i.e. (F, +) is an abelian group Axioms for multiplication

(M1) Commutative: \forall x, y \in F, \ xy = yx

(M2) Associative: \forall x, y, z \in F, \ (xy)z = x(yz)

(M3) Muti identity: \exists 1 \neq 0 \text{ in } F \ni x1 = 1x = x

(M4) Multiplicative inverse: For each x \neq 0, \exists x^{-1} \in F \implies xx^{-1} = x^{-1}x = 1

i.e. (F = F \cdot \{0\}, \cdot) is an abelian group

Distributive Law
```

Induction from Axioms

let $(F, +, \cdot)$ be a field, we list a series of basic identity as you learn in high school in the real number system

(D1) $\forall x, y, z \in F$, (x, y)z = xz + yz & x(y + z) = xy + xz

(a) Cancellation law for "+":
$$x + y = x + z \implies y = z$$

$$\therefore x + y = x + z \implies (-x) + (x + y) = (-x) + (x + z) \implies$$

$$((-x) + x) + y = ((-x) + x) + z$$

$$\implies 0 + y = 0 + z \implies y = z$$

- (b) 0 is "1" suppose $0' \in F$ is another element satisfy A_3 , then 0 = 0+0' = 0'
- (c) $x + y = x \implies y = 0$ by (a) $\therefore x + y = x + 0 \implies y = 0$
- (d) negative -x of x is "1" if $x' \in F$, is another negative of x, them x + x' = x' + x = 0 From $x + x' = 0 \implies (-x) + (x + x') = -x + 0 = -x$
- (e) $x + y = 0 \implies y = -x$ $x+y=0 \implies (-x)+(x+y)=(-x)+0 \implies ((-x)+x)+y=$ -x

$$\implies 0 + y = -x \implies y = -x$$
(f) $-(-x) = x$
 $-(-x) + (-x) = 0$, By (d) $x = -(x)$

- (a') cancellation law if $x \neq 0$, then $xy = xz \implies y = z$, $\therefore (x^{-1})(xy) = (x^{-1})(xz) \implies (x^{-1})(xy) = (x^{-1}x)z \implies 1y = 1z \implies y = z$
- (b') 1 is "1" if 1' is another identity, then 1 = 11' = 1'(c') $x \neq 0 \& xy = x \implies y = 1$
- $xy = x1 \implies y = 1$ (d') For $x \neq 0$ in F, x^{-1} is "1"
 - if x is another one, i.e. $x'x = xx' = 1 \implies (x^{-1})(xx') = (x^{-1})1 = x^{-1}$
- (f') $x \neq 0 \Longrightarrow (x^{-1})^{-1} = x$ $(x^{-1})^{-1}(x^{-1}) = 1 \Longrightarrow x = (x^{-1})^{-1}$
- (g') 0x = x0 = 0 $(0+0)x = 0x + 0x \implies 0x = 0$
- (h') $x \neq 0 \& y \neq 0 \implies xy \neq 0$, equivalently $xy = 0 \implies x = 0$ or y = 0 $\therefore xy = 0$ then $(x^{-1})(xy) = ((x^{-1})x)y = 1y = y(\rightarrow \leftarrow)$

(i')
$$(-x)y = -(xy) = x(-y)$$

 $\therefore [(-x) + x]y = 0y = 0 = (-x)y = -(xy) \implies (-x)y = -(xy)$

(j') (-x)(-y) = xy (-x)(-y) = -(x(-y)) by (i) = -(-(xy)) = xy

-(xy)

(k)
$$-x = (-1)x$$

 $\therefore (1-1)x = 0x = 0 = 1x + (-1)x = x + (-1)x \implies (-1)x = -x$

<u>Definition</u> (Order Field). Let F is a field, we say that F is an order field if there is an ordering " < " satisfying

- (1) if x < y, then x + z < y + z, $\forall z \in F$
- (2) if x > y and y > 0, then xy > 0

 $0 < \frac{1}{y} < \frac{1}{x}$

Example. Q and R are order field under the usual ordering Some basic properties of ordered field, let F be an ordered field with ordering " < "

Now, $\frac{1}{x}, \frac{1}{y} > 0$ from x < y we get $(\frac{1}{x} \cdot \frac{1}{y})x < (\frac{1}{x} \cdot \frac{1}{y})y \implies$

Remark. By (e)(f), we conclude that C is not an ordered field \therefore C were an ordered field, then by (e), $i^2 > 0 \implies -1 > 0(\rightarrow \leftarrow)$ \therefore C is not an order field

1.5. The Real Number Field R.

Theorem. There exists an ordered field R containing Q which has the l.u.b. property. Moreover, such R is unique up to order-isomorphism i.e. if " < " and " <' " are two orders on R, them $\exists f_i(R, <) \to (R, <')$ \Longrightarrow

- (i) f is a field isomorphism, i.e. $\forall a,b \in \mathbb{R}, \ f(a+b)=f(a)+f(b), \ f(ab)=f(a)f(b), \ f(1)=1$
- (ii) f preserves ordering, $a < b \implies f(a) < f(b)$

Such R is called the real number field or real number system or real line

Theorem.

- (a) The Archimedean property of R : Given $x, y \in R$ with x > 0, $\exists n \in N \implies nx > y$
- (b) Q is dense in R: $\forall x, y \in R \text{ with } x \leq y, \ \exists \ r \in Q \implies x < r < y$ Proof.
 - (a) Let $A = \{ nx \mid n \in \mathbb{N} \} \subseteq \mathbb{R}$ if (a) were false, them A is bdd above by y, since \mathbb{R} has the l.u.b property

 $\alpha = \sup A$ exists in R, since x > 0, $\alpha - x < \alpha \implies \alpha - x$ is not an upper bdd of A

$$\implies \exists m \in \mathbb{N} \ni mx > \alpha - x \implies (m+1)x > \alpha(\rightarrow \leftarrow)$$

(b) Since x < y, y - x > 0, by (a), $\exists n \in \mathbb{N} \implies n(y - x) > 1$ By (a) again, $\exists m_1, m_2 \in \mathbb{N} \implies m_1 = m_1 1 > n_x \& m_2 = m_2 \cdot 1 > -nx$

we have $-m_2 < nx < m_1$, choose $m \in \mathbb{Z} \implies -m_2 \le m \le m_1 \& m-1 \le nx < m$

(in fact, m = [nx] + 1, where [z] in the greatest integer of z) we have $nx < m < 1 + nx < ny(\because n(y - x) > 1) \implies x < \frac{m}{n} < y$

Let
$$r = \frac{m}{n} \in \mathbb{Q}$$
, then $x < r < y$

An application of the density property of Q in R:

Given $x \in R - Q$ i.e. x is an irrational numbers, i.e. $\forall \epsilon > 0, \exists r \in R$ $Q \implies |x - r| < \epsilon$

equivalently, \exists a sequence $\{r_n\}$ in $Q \implies r_n \to x$ In fact, one may choose $\{r_n\}$ to \uparrow or \downarrow

 $\therefore \forall n \geq 1, \ \exists \ r_n \in \mathbb{Q} \implies x < r_n < \frac{1}{n} + x \text{ by Thm.1.3(b) By squeezing}$ lemma, $r_n \to x$ on $n \to \infty$

Theorem (existence of nth root). Given $x \in T$, $x > 0 \& n \in N$, \exists "1" $y > 0 \& n \in N$ $0 \implies y^n = x$

Such y is called the nth root of x & denoted by $y = \sqrt[n]{x} = x^{\frac{1}{n}}$

Proof. **not important**

"1". Suppose $y_1, y_2 > 0 \implies y_1^n = x \& y_2^n = x$ Bt trichotomy, we have

(i)
$$0 < y_1 < y_2 \implies y_1^n < y_2^n (\to \leftarrow)$$

(i)
$$0 < y_1 < y_2 \implies y_1^n < y_2^n (\rightarrow \leftarrow)$$

(ii) $0 < y_2 < y_1 \implies y_2^n < y_1^n (\rightarrow \leftarrow)$

(iii)
$$y_1 = y_2$$

" \exists ". Let $E = \{ t \in \mathbb{R} \mid t^n < x \}$

Claim:

- $E \neq \emptyset$, Let $t = \frac{x}{1+x}$, then 0 < t < 1, hence $t^n < t < x$, $\therefore t \in$ $E \& E \neq \emptyset$
- E is bdd above, in fact E is bdd above by 1+x if t>1+x>1, then $t^n > t > x$, so E is bdd above by 1 + 1Therefore $y = \sup E$ exists & is finite
- Claim $y > 0 \& y^n = x$, clearly, y > 0 (: $\frac{x}{1+x} \in E \& \frac{x}{1+x} > 0$) by trichotomy, we have $y^n < x$, $y^n > x$, $y^n = x$

Now, to show that (i) & (ii) are impossible, do (iii) holds $y^n = x$ By the identity, $b^n - a^n = (b - a)(b^{n-1} + b^{n-2}a + \dots + a^{n-1})$

(i)
$$y^n < x$$
 choose $0 < h < 1 = \alpha \& 0 < \frac{x - y^n}{n(y+1)^{n-1}}, 0 < h < \min \{\alpha, \beta\}$

put a = y, b = y + h in (\star) , we obtain

$$(y+h)^n - y^n < hn(y-h)^{n-1} < hn(y+1)^{n-1} < x - y^n$$

 $\implies (y+h)^n < x \implies y+h \in E \& y+h > y(\to \leftarrow) \therefore \text{ (i) fails}$

(ii)
$$y^n > x$$
, Let $k = \frac{y^n - x}{ny^{n-1}}$, Then $0 < k < y$, $k = \frac{y^n - x}{ny^{n-1}} < \frac{y^n}{ny^{n-1}} = \frac{y}{n} < y$ if $t > y - k > 0$, then $y^n - t^n \le y^n - (y - k)^n < kny^{n-1}$ by $(\star) = y^n - x$ $\implies t^n > x \implies t \in E \implies E$ is bdd above by $y - k \implies \sup E \le y - k(\rightarrow \leftarrow)$ \therefore (ii) fails

Corollary. Let
$$a, b \in \mathbb{R}$$
 with $a, b > 0$, $n \in \mathbb{N}$ Then $(ab)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$
 $\therefore a^{\frac{1}{n}}, b^{\frac{1}{n}} > 0$ & $(a^{\frac{1}{n}} \cdot b^{\frac{1}{n}}) = ab$, By (1) in Thm 1.4 $(a, b)^{\frac{1}{n}} = a^{\frac{1}{n}}b^{\frac{1}{n}}$

infinite in \mathbb{R}

After discuss the real number \mathbb{R} , sometimes, we have to work with the extended real number system $\mathbb{R}^* = [-\infty, \infty] = \mathbb{R} \cup \{+\infty, -\infty\}$ with observe, $x \in \mathbb{R}$

$$\lim_{n\to\infty} (-n) = -\infty, \lim_{n\to\infty} n = \infty, \lim_{n\to\infty} (\frac{1}{n} + n) = \infty, \lim_{n\to\infty} (n^2 - n) = \infty$$
$$x \pm \infty = \pm \infty, \ 0 \cdot (\pm \infty) = 0, \ \infty - \infty \text{ is not define}$$

Element in $\mathbb{R} \subseteq \mathbb{R}^*$ are called finite. Now, given any nonempty subset $E \subseteq \mathbb{R}$,

$$\sup E = \begin{cases} +\infty \text{ if } E \text{ is not bdd above} \\ \text{finite if } E \text{ is bdd above} \end{cases} \quad \& \text{ inf } E = \begin{cases} -\infty \text{ if } E \text{ is not bdd below} \\ \text{finite if } E \text{ is bdd below} \end{cases}$$

Note that if $A \subseteq B$, then $\sup A \le \sup \& \inf A \ge \inf B$ $\therefore \emptyset \subseteq B, \ \forall B \subseteq \mathbb{R}, \ \text{One may define sup } \emptyset = -\infty, \inf \emptyset = +\infty$

1.6. The Complex Number Field \mathbb{C} .

Consider the contention product $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R} = \{ (a, b) \mid a, b \in \mathbb{R} \}$ Note that $(a, b) = (c, d) \Leftrightarrow a = c \& b = d$, From now, we can write $\mathbb{C} = \mathbb{R}^2$

Operation on \mathbb{C} Given $(a,b),(c,d)\in\mathbb{C}$

- (1) (a,b) + (c,d) = (a+c,b+d)(2) (a,b)(c,d) = (ac-bd,ad+bc)

It is easy to see that, with these operations, \mathbb{C} is a field.

Note that

- \cdot the zero element is (0,0)
- the negative of (a,b) is -(a,b)=(-a,-b)
- the identity is (1,0)
- \cdot if $(a,b) \neq (0,0)$, then $(a,b)^{-1} = \left(\frac{1}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right)$

R is a subset of C (not vary important) consider that map

$$f: \mathbb{R} \to \mathbb{C}$$
 define by $f(a) = (a, 0), \ a \in \mathbb{R}$

we have (1)f is injective $(2)f(1) = (1,0) : \forall a,b \in \mathbb{R}$ $f(a+b) = (a+b,0) = (a,0) + (b,0) = f(a) + f(b), f(a \cdot b) = (ab,0) = (a,0) \cdot (b,0)$

f is a field homomorphism

 $f: \mathbb{R} \to \mathbb{C}$ is an injective and isomorphism

Therefore, we identify \mathbb{R} with $f(\mathbb{R})$ through the injective f i.e. $a \in \mathbb{R}$ is identified with f(a,0) in \mathbb{C}

$$ab = (a, 0) \cdot (b, 0), \ a + b = (a, 0) + (b, 0) \ \forall \ a, b \in \mathbb{R}$$

Change (a,b) to a+bi

Now, we can transform an element $(a,b) \in \mathbb{C}$ into the normal form:

$$(a,b) = (a,0)+(0,b) = (a,0)(1,0)+(b,0)(0,1) = a1+bi = a+ib,$$
 where $i = (0,1)$

Therefore, from new on, we write $\mathbb{C} = \{ a + ib \mid a, b \in \mathbb{C} \}$

An element $z = a + ib \in \mathbb{C}$ is called a complex number

Hence, under this notification, $z = a + ib, w = c + id \in \mathbb{C}$

(1)
$$z + w = (a + c) + i(b + d)$$

(2)
$$zw = (ac - bd) + i(ad + bc)$$

and the a is called the real part of z, a = Re(z), b is called imaginary part of z, b = Imz

Some basic properties of complex numbers whose proofs are easy

 $\forall z, w \in \mathbb{C}$

$$\cdot \quad \overline{z+w} = \overline{z} + \overline{w} \qquad \cdot \quad \overline{zw} = \overline{z} \cdot \overline{w} \qquad \cdot \quad \operatorname{Re}z = \frac{z+\overline{z}}{2}$$

·
$$\mathrm{Im} z = \frac{z - \overline{z}}{2i}$$
 · $|z| = 0 \Leftrightarrow z = 0$ · Triangle inequality $|z + w| \leq |z| + |w|$

·
$$||z| - |w|| \le |z - |z|$$
 · \mathbb{C} is not an ordered · $|z|^2 = z\overline{z}$ $w|$ field

$$\cdot \quad |\overline{z}| = |z| \qquad \qquad \cdot \quad |\text{Re}z| \le |z|, |\text{Im}z| \le \cdot \quad |zw| = |z||w|$$

Proof.
$$|z+w| \le |z| + |w|$$

 $|z+w|^2 = (z+w)(\overline{z+w}) = (z+w)(\overline{z}+\overline{w}) = z\overline{z} + z\overline{w} + w\overline{z} + w\overline{w}$
 $= |z|^2 + 2\text{Re}(z\overline{w}) + |w|^2 \le |z|^2 + 2|z\overline{w}| + |w|^2 = |z|^2 + 2|z||w| + |w|^2 =$
 $(|z| + |w|)^2$
∴ $|z+w| \le |z| + |w|$

Theorem (basic algebraic theorem).

- (a) $x^2 + 1$ has no root in \mathbb{R}
- (b) $x^2 + 1$ has two distinct roots in \mathbb{C}

Proof.

(a)
$$1 > 0$$
, $x^2 > 0$, $\forall x \in \mathbb{R} - \{0\} \implies x^2 + 1 > 0 \ \forall x \neq 0$
 $0^2 + 1 = 1 > 0$, $\therefore x^2 + 1 > 0$, $\forall x \in \mathbb{R}$. Hence, $x^2 + 1 = 0$ has no root in \mathbb{R}

(b)
$$i^2 = (0,1)(0,1) = (0-1,0) = (-1,0) = -1$$

 $(-i)^2 = (-(0,1))^2 = (0,-1)^2 = (0,-1)(0,-1) = -1, \therefore \pm i$
are root of $\mathbb C$

Conclusion: Every non const polynomial $f(x) \in \mathbb{R}[x]$ has n roots where $n = \deg f(x)$

The complex root is even

no important proof

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in \mathbb{R}[x], \ a_n \neq 0, \ n \geq 1$ if $\alpha = a + ib \in \mathbb{C}$ is a root of f(x), then $0 = f(\alpha) = a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0$ $0 = f(\overline{\alpha}) = a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \dots + a_1 \overline{\alpha} + a_0$ $\therefore (x - \alpha) | f(x), \ (x - \overline{\alpha}) | f(x) \implies (x - \alpha)(x - \overline{\alpha}) | f(x) \implies$ $(x^2 - (\alpha - \overline{\alpha})x + |\overline{\alpha}|^2) | f(x)$ $\implies (x^2 - 2ax + (a^2 + b^2)) | f(x)$ $\therefore \text{ quadratic function must have two roots in } \mathbb{C}$

The fundamental Theorem of Algebra

Every non zero polynomial $f(x) \in \mathbb{C}[x]$ has at least one root in \mathbb{C} Therefore, if deg f(x) = n, then f(x) has n roots in $\mathbb{C}(C, M)$

 $f(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_t)^{e_t} (a_1 x^2 + b_1 + c_1)^{l_1} \cdots (a_s x^2 + b_s x + c_s)^{l_s}$, where $\lambda_1, \dots, \lambda_t \in \mathbb{R}$, $a_i, b_i, c_i \in \mathbb{R} \& e_1 + \dots + e_t + 2l_1 + \dots + 2l_s = \deg f(x)$ which shows that all roots of f(x) are in \mathbb{C} In fact, we have the famous theorem: The fundamental theorem of algebra

Every non zero polynomial $f(x) \in \mathbb{C}[x]$ has at least one root in \mathbb{C}

 \therefore if deg f(x) = n, then f(x) has n roots in $\mathbb{C}(C, M)$

Theorem (Cauchy-Scheming Inequal). Given $z_1 \cdots, z_n, w_1, \cdots, w_n \in \mathbb{C}$, we have

$$\left| \sum_{j=1}^{n} z_{j} \overline{w}_{j} \right| \leq \left(\sum_{j=1}^{n} |z_{j}|^{2} \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} |w_{j}|^{2} \right)^{\frac{1}{2}}$$

and " = " holds $\Leftrightarrow \exists \lambda \in \mathbb{C} \ni w_j = \lambda z_j, \ 1 \leq j \leq n,$ In patricial, if $x_1, \dots, x_n, y_1, \dots, y_n \in \mathbb{R}$, then

$$\left| \sum_{j=1}^{n} x_j y_j \right| \le \left(\sum_{j=1}^{n} x_j^2 \right)^{\frac{1}{2}} \left(\sum_{j=1}^{n} y_j^2 \right)^{\frac{1}{2}}$$

and " = " $holds \Leftrightarrow \exists \ t \in \mathbb{R} \ni \ y_j = tx_j, \ 1 \le j \le n$

The proof is too long, I am lazy

1.7. Euclidean Spaces \mathbb{R}^n .

Definition. the n-dimensional Euclidean space \mathbb{R}^n

$$= \{ x = (x_1, \dots, x_n) \mid x_i \in \mathbb{R}, 1 \le i \le n \} = \mathbb{R} \times \dots \times \mathbb{R}$$

Note that

$$(x_1, \dots, x_n) = (y_1, \dots, y_n) \Leftrightarrow x_i = y_i \ \forall \ 1 \le i \le n$$

We are going to introduce the structure of \mathbb{R}^n

- · vector space · inner product space
- · normed linear space · matrix space

<u>Definition.</u> Two operation on \mathbb{R}^n as follows:

- · $Addition + : \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n, \ (x, y) \mapsto x + y = (x_1 + y_1, \cdots, x_n + y + n)$
- · Scalar multiplication · : $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $(a,x) \mapsto ax = (ax_1, \dots, ax_n)$

we skip space example here.

1.8. Countability of Sets.

Given two nonempty set A, B and a function $f: A \to B, f(A) = \{f(a) \mid a \in A\}$ is called the image of A under f

Some basic things

$$E \subseteq A$$
, $f(E) = \{f(a) \mid a \in E\}$ the image of E under f f is infective(one-to-one) $x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \Leftrightarrow f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2$ f is surjective(onto) if $f(A) = B$, f is bijective if f is one-to-one and onto

Given $F \subseteq B$, $f^{-1}(F) = \{ x \in X \mid f(x) \in F \}$ called the inverse image of f under F

Example

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ x \in \mathbb{R}$$

$$f^{-1}([0,1]) = \{ x \in \mathbb{R} \mid f(x) \in [0,1] \} = \{ x \in \mathbb{R} \mid x^2 \in [0,1] \} = [-1,1]$$

$$f^{-1}([-1,1]) = [-1,1]$$

Properties of inverse image

- $F_1 \subseteq F_2 \subseteq B \implies f^{-1}(F_1) \subseteq f^{-1}(F_2)$
- Inverse image presences set operation $\forall F_{\alpha} \subseteq B, \ \alpha \in I, \ F \subseteq B$
 - (i) $f^{-1}(\bigcup_{\alpha \in I} F_{\alpha}) = \bigcup_{\alpha \in I} f^{-1}(F_{\alpha})$

 - (ii) $f^{-1}(\cap_{\alpha \in I} F_{\alpha}) = \cap_{\alpha \in I} f^{-1}(F_{\alpha})$ (iii) $f^{-1}(B F) = f^{-1}(B) f^{-1}(F)$
- Given $S \subseteq A$, $f'(f'(S)) \supseteq S$, " = " \Leftrightarrow one-to-one, **example:** $f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ S = [0,1], \ f(S) = [0,1], \ f^{-1}(f(S)) = [0,1]$ $f^{-1}([0,1]) = [-1,1]$
- Given $F \subseteq B$, $f(f^{-1}(F)) \subseteq F$," = " \Leftrightarrow "onto", **example** $f(x) = x^2, x \in \mathbb{R}, F = [-1,1], f(f^{-1}([-1,1])) = f([-1,1]) =$
- For $y \in B$, $f^{-1}(\{y\}) = f^{-1}(y) = \{x \in A \mid f(x) = y\}$ the inverse image of y, example

$$f: \mathbb{R} \to \mathbb{R}, \ f(x) = x^2, \ f^{-1}(1) = \{1, -1\}, \ f^{-1}(2) = \emptyset$$

Definition (cardinality). Let A, B are two set ew say that A and B have the same cardinality if \exists a bijective map $f: A \to B$, which is denoted by $A \sim B$

From now on, we write |A| as the cardinality of A

Claim " \sim " is an \equiv relation among all sets

- (i) Reflexion: \forall set A, $A \sim^{1A} A$, which 1_A is identity mapping
- (ii) Symmetry: $A \sim^f B \implies B \sim^{f^{-1}} A$
- (iii) Transitive: $A \sim^f B \& B \sim^g C \implies A \sim^{gof} C$

So we gave some property:

- Any two " \equiv " are either disjoint or identical
- \overline{X} is a disjoint union of " \equiv " classes $[A] = \{ B \in \overline{X} \mid B \sim A \}$ the " \equiv " class set by A

Ant two element in an " \equiv " class have the same cardinality Notation For $n \in \mathbb{N}$, $\mathbb{N}_m = \{1, 2, \cdots, n\}$

<u>Definition</u>. Let A be a set

- (a) A is a finite set if $A = \emptyset$ or $A \sim \mathbb{N}_n$ for some $n \in \mathbb{N}$
- (b) A is a infinite set if A is not a finite set
- (c) A is countable if $A \sim \mathbb{N}$
- (d) A is uncountable if A is not countable.
- (e) A is at most countable if A is finite or countable

Remark.

- (1) when A, B are finite sets, $A \sim B \Leftrightarrow |A| = |B|$, i.e. A, B have same number.
- (2) where A, B are infinite and $A \sim B$, i.e. |A| = |B|, the concept is abstract.
- (3) $\{a, b, c\} \cup \mathbb{N} \sim \mathbb{N}, f : \mathbb{N} \to \{a, b, c\} \cup \mathbb{N}, f(1) = a, f(2) = b, f(3) = c, \cdots$
- (4) Any finite set can not equivalent to a proper subset, i.e. A is finite, $B \subseteq A$

Then $A \sim B$, In fact |B| < |A|, but infinite different

(5) Any finite set A can be listed an $A = \{a_1, \dots, a_n\}$ where n = |A|

Now, we consider the case of countable set

Recall, in calculus, a real sequence $\{a_n\}$, e.g.

$$a_n = \frac{1}{n} \left\{ \frac{1}{n} \right\}, \ a_n = 1 - \frac{1}{n} \left\{ 1 - \frac{1}{n} \right\}, \ a_n = \begin{cases} 0 \text{ if } n \text{ is odd} \\ 1 \text{ if } n \text{ is even} \end{cases}$$

<u>Definition</u>. Let X be a nonempty set, a sequence in X is a function $a: \mathbb{N} \to X$

Given a sequence = in X, a is "1" determine by a(n), $\in \mathbb{N}$ We write

$$a = \{ a(1), a(2), \dots, a(n), \dots \} = \{ a_1, a_2, \dots, a_n, \dots \} = \{ a_n \} = \{ a_n \}_{n=1}^{\infty}$$

Remark.

- (1) For a sequence $\{a_n\}$ in X, a_n may not be distinct. If all a_n are distinct, then we say that $\{a_n\}$ is a distinct sequence in X.
- (2) We usually use $\{a_n\}, \{b_n\}$ to denote sequence
- (3) A sequence $\{a_n\}$ in X in fact is a function from $\mathbb{N} \to X$, So $\{a_n \mid n \in \mathbb{N}\}$ is the image of the sequence.
- (4) $\{a_n\}$ is a sequence, a_n is called the n^{th} term of the sequence.
- (5) A sequence in X may begin at 0, i.e. $\{a_n\}_{n=0}$ By a changing index, we can make it from $\{b_n\}_{n=1}^{\infty}$, $b_n = a_{n+1}$, $n = 1, 2, \cdots$

<u>Definition</u> (increasing).

A function $a : \mathbb{N} \to \mathbb{N}$ is increasing, a is \uparrow , if $a(n) \le a(n+1) \ \forall \ n \ge 1$ a is strictly increasing, a is st. \uparrow , if $a(n) < a(n+1) \ \forall \ n \ge 1$

Now, given a st. \uparrow function $n : \mathbb{N} \to \mathbb{N}$, i.e. $n(k) < n(k+1), k \ge 1$ i.e. $n_k < n_{k+1}, k \ge 1$, i.e. $n_1 < n_2 < \dots < n_k < \dots$, i.e. $\{n_k\}_{k=1}^{\infty}$ is a st. sequence in \mathbb{N}

Definition. Let $\{a_n\}$ be a sequence in X and $\{n_k\}$ be a st. \uparrow sequence in \mathbb{N} , then the sequence $\{a_{n_k}\}$ is called a subsequence of $\{a_n\}$ In fact

$$\mathbb{N} \to_{st.}^n \mathbb{N} \to_{seq}^a X \Rightarrow a \circ n : \mathbb{N} \to X \text{ is a function,}$$

where, it also a sequence in X

hence, it also a sequence in X

$$a \circ n = \{ a \circ n(k) \} = \{ a(n(k)) \} = \{ a_{n(k)} \} = \{ a_{n_k} \}$$

Remark. if $\{a_{n_k}\}$ is st. \uparrow in \mathbb{N} , then $k \leq n_k \ \forall \ k \geq 1$

 \therefore By mathematical Induction

- $\cdot 1 \leq n_1$
- · Assume it's true for k > 2, i.e. $k < n_k$
- · Consider k + 1, $k + 1 \le n_k + 1 \le n_{k+1}$

Example

Let $\{a_n\}$ be a sequence in X, then $\{a_{2k}\}$ and $\{a_{2k-1}\}$ are subsequence of $\{a_n\}$

Finally, we will assume that you are familiar with the following property of the countability of sets:

- (1) Every subset of a countable set is at most countable. The proof needs the well ordering of \mathbb{N} : Every nonempty subset of \mathbb{N} has the smallest element
- (2) Countable union of countable sets is countable
- (3) If A_1, A_2, \dots, A_n are countable, then so is $A_1 \times \dots \times A_n$
- (4) If A is countable, then so is $A^n \equiv A \times \cdots \times A \ \forall n \geq 1$
- (5) $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{Q}^n, \forall n \geq 1 \text{ are countable}$
- (6) The set $\{a_n \mid a_n = 0 \text{ or } 1\}$ is uncountable

This can be proved by Canton diagonal process

 \therefore if it is countable, then we can list it, $a_0A = \left\{ a_1^{(1)}, a_2^{(2)}, \cdots \right\}$ where

$$a^{(1)} = \{a_n^{(1)}\} = a_1^{(1)}, a_2^{(1)}, \cdots; a^{(2)} = \{a_n^{(2)}\} = a_1^{(2)}, a_2^{(2)}, \cdots$$
Now, construct a sequence $\{a_n\}$ in $A \ni \{a_n\} \neq a_n^{(k)} \ \forall k > 1$

Now, construct a sequence $\{a_n\}$ in $A \ni \{a_n\} \neq a^{(k)} \ \forall \ k \geq$ $1(\rightarrow\leftarrow)$

Recall, intervals in \mathbb{R} , $-\infty < a \le b < \infty$, following are finite bdd interval

$$(a,b) = \{ x \in \mathbb{R} \mid a < x < b \}$$
 open interval $[a,b] = \{ x \in \mathbb{R} \mid a \le x \le b \}$ closed interval $(a,b] = \{ x \in \mathbb{R} \mid a < x \le b \}$ open-closed $[a,b) = \{ x \in \mathbb{R} \mid a \le x < b \}$ closed-open

An interval I in \mathbb{R} is said to be non-degenerate if the endpoint of I are distinct i.e. length > 0. Otherwise, it is degenerate.

Note.

$$(0,1) \text{ is uncountable, } \because (0,1) = \left\{ \sum_{n=1}^{\infty} \frac{a_n}{2^n} \mid a_n = 0 \text{ or } 1, n \in \mathbb{N} \right\}$$

$$x \in (0,1) \text{ has a unique binary representation, so } (0,1) \sim A,$$
where A is $\{\{a_n\} \mid a_n = 0 \text{ or } 1\}$ which is uncountable

All non-degenerate intervals in \mathbb{R} are uncountable.

: It sufficient to consider bdd non-degenerate interval in \mathbb{R} , given $\infty < a < b < \infty$

$$\begin{array}{l} (a,b) \text{ is uncountable}(\because (0,1) \sim (a,b)) \\ \text{Note that } (0,1) \sim \mathbb{R}(\because (0,1) \rightarrow (\frac{\pi}{-2},\frac{\pi}{2}) \rightarrow \mathbb{R}) \end{array}$$

2. Basic Point Set Topology

To know the "closeness", "limit" and "continue"

Notation. Let X be a nonempty set. The power set of X is denoted by p(X) or 2^X , i.e. $\mathscr{P}(X) = 2^X$ which is the collect of all subset, if |X| = n, then $|\mathscr{P}(X)| = 2^n$

2.1. Topological Spaces.

<u>Definition</u>. Let X be a nonempty set and $\mathscr{T} \subseteq \mathscr{P}(X)$, we say that \mathscr{T} is a topology on X if it satisfies

- (1) $\emptyset, X \in \mathscr{T}$
- (2) \mathscr{T} is closed under arbitrary union, i.e. $U_{\alpha} \in \mathscr{T}$, $\alpha \in I \implies \bigcup_{\alpha \in I} U_{\alpha} \in \mathscr{T}$
- (3) \mathscr{T} is closed under finite intersection i.e. $U_1, \dots, U_n \in \mathscr{T} \implies U_1 \cap \dots \cap U_n \in \mathscr{T}$

In this chapter, the pair (X, J) or simply J is called a topological space and members in T are called open set in X or open subsets of X

Remark.

- (1) X: a nonempty set, there is at least two trivial topology on X
 - $\mathcal{P}(x)$ is the largest topology on X w.r.t inclusion X with this topology is called a discrete topological space
 - $\mathscr{T}_0 = \{\emptyset, X\}$ is the smallest topology on X w.r.t inclusion X with this topology is called an indiscrete topological space
- (2) How many topology can be define on $\{a\}$, $\{a,b\}$?

In the following X is a topology space

<u>Definition</u> (neighborhood). Let $p \in X$, a neighborhood of P is an open set U containing p

Definition (Hausdorff space). X is a Hausdorff space if any two distinct points can be separated by open set, i.e. $\forall p \neq q$ in X, \exists neighborhood U of p and V of $q \in U \cap V = \emptyset$

<u>Definition</u> (closed set). A subset $F \subseteq X$ is said to be closed if $F^C = X - F$ is open in X

Theroem 2.1. The collection of all closed subsets of X satisfied

- (a) \emptyset , X are closed
- (b) Arbitrary intersection of closed set if closed
- (c) Finite union of closed sets is closed

Proof.

(a)
$$X - \emptyset = X$$
 is open $\therefore \emptyset$ is closed $X - X = \emptyset$ is open $\therefore X$ is closed

(b) Given closed sets
$$F_{\alpha}, \alpha \in I$$
, $X - \bigcap_{\alpha \in I} F_{\alpha} = \bigcup_{\alpha = I} (X - F_{\alpha})$ is open,... $\bigcap_{\alpha = I} F_{\alpha}$ is closed.

(c) Given closed set
$$F_1, \dots, F_n, X - \bigcup_{i=1}^n F_i = \bigcap_{i=1}^n (X - F_i)$$
 is open,
$$\therefore \bigcup_{i=1}^n F_i \text{ is closed.}$$

Definition. Let $Y \subseteq X$ and

$$\mathscr{T}_{y} = \{ U \cap Y \mid U \text{ is open in } X \}$$

Theroem 2.2. \mathcal{T}_Y is also a topology space

Proof. To proof \mathscr{T}_Y is a topology space, we take the topology's definition

(a)
$$\emptyset, Y \in \mathscr{T}_Y \ (\because \emptyset = \emptyset \cap Y, \ Y = X \cap Y)$$

(b) Given
$$U_{\alpha} \cap Y \in \mathscr{T}_{Y}$$
, $\alpha \in I$, where U_{α} is open in X

$$\bigcup_{\alpha \in I} (U_{\alpha \cap Y}) = (\bigcup_{\alpha \in I} U_{\alpha}) \cap Y \implies \bigcup_{\alpha \in I} (U_{\alpha} \cap Y) \in \mathscr{T}_{Y}$$
(c) Given $U_{1} \cap Y, \dots, U_{n} \cap Y$, where U_{i} is open in X , $1 \leq i \leq n$

 $\bigcap_{i=1}^{n} (U_i \cap Y) = (\bigcap_{i=1}^{n} U_i) \cap Y \implies \bigcap_{i=1}^{n} (U_i \cap Y) \in \mathscr{T}_Y$

 $\therefore \mathscr{T}_Y$ is a topology on Y

Definition. In Theorem 2.2, with the topology \mathcal{T}_Y on Y, is called a topological subspace of X and \mathcal{T}_Y is called the relative topology of Y in X. Members in \mathcal{T}_Y are called open set in Y or relative open sets in Y.

2.2. Metric Spaces & Subspace.

In this chapter, we will introduce a class of topology space whose topology in induced by a metric.

Definition. Let X be a nonempty set. A metric or distance function in a function

$$d: X \times X \to \mathbb{R}, \ (a,b) \mapsto d(a,b)$$

satisfying:

- (a) $\forall a, b \in X, d(a, b) \geq 0$ and $d(a, b) = 0 \Leftrightarrow a = b$
- (b) $\forall a, b \in X, d(a, b) = d(b, a)$ symmetry
- $(c) \ \forall a,b,c \in X, d(a,b) \leq d(a,c) + d(a,b) \ triangle \ inequality$

if d is a metric on X, then the pair (X,d) or simply X is called a metric space and $\forall a, b \in X$, d(a,b) is called the distance between a & b

Examples

(1) Let X be a nonempty set define by

$$d(a,b) = \begin{cases} 0 \text{ if } a = b \\ 1 \text{ if } a \neq b \end{cases}$$

Then d is a metric on X, called the discrete metric and with this metric X is called a discrete metric space. In particular, any set admits a metric.

(2) The most important metric spaces are the Euclidean space \mathbb{R}^k , the metric d is called the Euclidean or standard or usual metric on \mathbb{R}^k . There are other metrics on \mathbb{R}^k induced the same metric topology on \mathbb{R}^k , in fact, they are all equivalent, e.g $\forall 1 \leq p \leq \infty$, We can define a metric d_p on \mathbb{R}^k as follows

•
$$1 \le p < \infty$$
, $d_p(x, y) = ||x - y||_p = \left(\sum_{i=1}^k |x_i - y_i|^p\right)^{\frac{1}{p}}$
• $p = \infty$, $d_{\infty}(x, y) = \max_{1 \le i \le k} |x_i - y_i|$

Note that $d_2 = d$ is the Euclidean metric on \mathbb{R}^k

Remark. In fact, every normed linear space $(V, ||\cdot||)$ is a metric space whose metric is induced by its norm

(3) Let (X,d) be a metric space and $Y\subseteq X,\ Y\neq\emptyset$. Then the restriction of d to $Y \times Y$ is also a metric on Y, with this metric, Y is called a metric subspace of X

Definition (ball). Given $p \in X \& r > 0$

 $B(p,r) = \{x \in X \mid d(x,p) < r\}$: open ball with center p and radius r $\overline{B}(p,r) = \{x \in X \mid d(x,p) \le r\}$: closed ball with center p and radius r

Example

(1) The discrete metric space $X: p \in X, r > 0$

$$B(p,r) = \begin{cases} \{p\} & \text{if } 0 \le r \le 1\\ X & \text{if } r > 1 \end{cases}$$

$$\overline{B}(p,r) = \begin{cases} \{p\} & \text{if } 0 \le r < 1\\ X & \text{if } r \ge 1 \end{cases}$$

(2) In the Euclidean space \mathbb{R}^k , $p \in \mathbb{R}^k$, r > 0

 $B(p,r) = \{x \in \mathbb{R} \mid \parallel x - p \parallel < r \} \text{ is a ""true"" open } \overline{B}(p,r) = \{x \in \mathbb{R} \mid \parallel x - p \parallel \leq r \} \text{ is a "true" closed ball }$ In particular, for k=1 in \mathbb{R}

B(p,r) = (p-r,p+r): a symmetric opne interval $\overline{B}(p,r) = [p-r,p+r]$: a symmetric close interval

However, w.r.t $d_1 \& d_{\infty}$, we have, e.g. in \mathbb{R}^2

 $B_1(0,1) = \{(x,y) \mid |x-0| + |y-0| < 1\}$

 $B_{\infty}(0,1) = \{(x,y) \mid \max\{|x|,|y|\} \le 1\}$

(3) What is the open balls in $S = [0, 1] \subseteq \mathbb{R}$?

$$B_S(0, \frac{1}{2}) = \{x \in S \mid |x - 0| < \frac{1}{2}\} = [0, \frac{1}{2}] = B(0, \frac{1}{2}) \cap [0, 1]$$

$$B_S(0, 3) = [0, 1] = B(0, 3) \cap [0, 1]$$

Prop 2.2 Let S be a metric subspace of a metric space X, then $\forall p \in S \& r > 0$, $B_S(p,r) = B(p,r) \cap S$

Proof.
$$B_S(p,r) = \{x \in S \mid d(x,p) < r\} = \{x \in X \mid d(x,p) < r\} \cap S$$

= $B(p,r) \cap S$

2.3. Open Sets in Metric Spaces.

We will see that every metric on a set induce a topology on X

<u>Definition</u> (interior point). Let $S \subseteq X$ be a set, and $p \in S$, we say that p is an interior point of S if $\exists r > 0$, $\exists B(p,r) \subseteq S$ Denote by S^o or int(S) by the set of all interior point of S

<u>Definition</u> (open). Let $S \subseteq X$, we say that S is open if all points of S are interior points of S

Remark.

(1) Every open set S is a union of a open balls in X.

 $\therefore \forall x \in S, x \text{ is an interior point of } S, \exists r_x > 0 \ni B(x, r_x) \subseteq S$

$$\therefore S = \bigcup_{x \in S} B(x, r_x)$$

- (2) $S^o \subseteq S$ by definition
- (3) S is open $\Leftrightarrow S = S^o$

Prop 2.3

(a)
$$S \subseteq T \implies S^o \subseteq T^o$$

$$\because p \in S^o \implies \exists \ r > 0 \ni B(p,r) \subseteq S \subseteq T \implies p \in T^o$$

(b) Every open ball B(p,r) in X is open

: Give $q \in B(p,r)$, Let $\delta = r = d(p,q)$.Claim $B(q,\delta) \subseteq B(p,r)$ which says q is an interior point of B(p,r).Since $q \in B(p,r)$ is arbitrary, so B(p,r) is open. Given $x \in B(q,\delta)$

$$d(x,p) \le d(x,q) + d(q,p) < \delta + d(q,p) = r - d(p,q) + d(q,p) = r$$

(c) $\forall S \subseteq X, S^o$ is always open

 \therefore Given $p \in S^o$, $\exists r > 0 \ni B(p,r) \subseteq S$

$$\implies B(p,r) \subseteq S^o \implies p$$
 is a interior point of S^o

 $\therefore S^o$ is open

(d)
$$\forall S \subseteq X, S^{oo} = (S^o)^o = S^o$$

 \because by definition of open set and (c)

Now, let $T = \{ U \subseteq X \mid U \text{ is open in } X \}$

Prop 2.4 T is a topology on X. In particular, X is a topology space.

Proof.

$$(\mathbf{i})\ \emptyset, X \in \mathscr{T}, \because \emptyset = \emptyset,\ X^o = X$$

(ii)
$$U_{\alpha} \in \mathcal{T}, a \in I$$
 are open $\Longrightarrow \bigcup_{\alpha \in I} U_{\alpha}$ is open

Given an arbitrary point $p \in \bigcup_{\alpha \in I} U_{\alpha} \implies \exists \alpha_0 \in I \ni p \in U_{\alpha_0}$

$$U_{\alpha_0}$$
 is open, $\exists r > 0 \ni B(p,r) \subseteq U_{\alpha_0} \subseteq \bigcup_{r \in \mathcal{I}} U_{\alpha_0}$

$$\therefore p$$
 is an interior point of $\bigcup_{\alpha \in I} U_{\alpha}$ $\therefore \bigcup_{\alpha \in I} U_{\alpha}$ is open, i.e. $\bigcup_{\alpha \in I} U_{\alpha} \in T$

(iii) $U_1, \dots, U_n \in T \implies U_1 \cap \dots \cap U_n \in T$ \therefore Given $p \in U_1 \cap \dots \cap U_n \implies p \in U_i \ 1 \le i \le n$. Each U_i is open, $\exists r_i > 0 \ B(p, r_i) \subseteq U_i, \ 1 \le i \le n \implies B(p, r) \subseteq U_1 \cap \dots \cap U_n$ $\implies p$ is an interior point of $U_1 \cap \dots \cap U_n$ p is arbitrary, so $U_1 \cap \dots \cap U_n$ is open, i.e. $U_1 \cap \dots \cap U_n \in T$ Therefore, T is a topology on X

<u>Definition</u>. Let X be a metric space with metric d. The topology T in prop 2.4 is called the metric topology(include by d)

Let X be a metric space and $Y \subseteq X$, Then Y is a metric subspace of X, and $\forall y \in Y, r > 0$, $B_Y(y,r) = B(y,r) \cap Y$. In fact, we have more

Prop 2.5 A subset $A \subseteq Y$ is open in $Y \Leftrightarrow A = U \cap Y$ for some open set U in X, in particular, the metric topology on T is just the relation topology of Y on X

Proof. (\Rightarrow) suppose $A \subseteq Y$ is open in Y. Then

$$A = \bigcup_{y \in A} B_Y(y, r_y) = \bigcup_{y \in A} (B(y, r_y) \cap Y) = (\bigcup_{y \in A} B(y, r_y)) \cap Y$$

Let $U = \bigcup_{y \in Y} B(y, r_y)$, then U is open in X and $A = U \cap Y$

(⇐) Suppose $A = U \cap Y$ where $U \subseteq X$ is open $\forall y \in A, y \in U \cap Y \implies y \in U \implies \exists r > 0 \ni B(y,r) \subseteq U \implies B(y,r) \cap Y \subseteq U \cap Y = A \implies B_Y(y,r) \subseteq A, ∴ A is open in <math>Y$.

Prop 2.6 Every metric space X is Hausdorff

Proof. Given $p,q \in X$, $p \neq q$. Choose $r = \frac{1}{2}d(p,q) > 0$. Then $B(p,r) \cap B(q,r) = \emptyset$. So X is Hausdorff $(\because x \in B(p,r) \cap B(q,r) = d(x,p) < r \& d(x,q) < r \implies d(p,q) \le d(p,x) + d(x,q) < r + r = 2r = d(p,q)(\rightarrow \leftarrow)$

Remark. Let $S \subseteq X$, where X is a metric space. Then S^o is the largest(w.r.t inclusion) open set contained in S. $\because \forall$ open set $U \subseteq S$, $U^o \subseteq S^o \implies U \subseteq S^o \subseteq S$. In fact, $S^o = \bigcup_{U \subseteq S} U$ (which is the

definition of intension of S in a topology space X)

2.4. Closed Sets.

<u>Definition</u> (Closed set). $F \subseteq X$ is closed $\Leftrightarrow F^C = X - F$ is open in X

By Theorem 2.1, the collection of all close sets in X has the properties

- (i) \emptyset , X are closed in X
- (ii) F_{α} is closed in X, $\alpha \in I \Longrightarrow \bigcap_{\alpha \in I} F_{\alpha}$ is closed in X(iii) F_1, \dots, F_n are closed in $X \Longrightarrow \bigcup_{i=1}^n F_i$ is closed in X

Example

Intersection of infinitely many open set may not be open

in \mathbb{R} with Euclidean topology, $\left(-\frac{1}{n},\frac{1}{n}\right)$ is open in $\mathbb{R} \ \forall \ n \geq 1 \implies$

$$\bigcap_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n}) = \{0\} \text{ is not open }$$

Prop 2.8 Let X be a metric space and $Y \subseteq X$ and $B \subseteq Y$, Then B is closed in $Y \Leftrightarrow B = F \cap Y$ for some closed set F in X

Proof. (\Rightarrow) Suppose B is close in $Y \implies Y - B$ is open in $Y \implies$ $Y - B = U \cap Y$ (by prop 2.5) for some open set U in $X \implies Y - (Y - Y)$ $B) = Y - (U \cap Y) \implies B = (X - U) \cap Y$. where (X - U) is close. (\Leftarrow) Suppose $B = F \cap Y$, where F is closed in $X \implies Y - B =$ $Y - (F \cap Y) = (X - F) \cap Y \implies Y - B$ is open in $Y \implies B$ is close in Y.

In metic space, one can use sequence to detect the closeness of a set Example

- **1.** We know that [a,b) is not closed in \mathbb{R} , however, \exists a sequence $\{x_n\}$ in $[a,b) \ni x_n \to b$ on $n \to \infty$, e.g. $b - \frac{1}{n} \to b$
- **2.** $A = \{\frac{1}{n} \mid n \ge 1\} = \{1, \frac{1}{2}, \frac{1}{3}, \cdots\}$ is not close in \mathbb{R} if $\mathbb{R} A$ will open, them $\exists r > 0, \ B(0, r) \subseteq \mathbb{R} A(\rightarrow \leftarrow)$ $A \cup \{0\}$ is closed in \mathbb{R}

$$R\setminus (A\cup\{0\})=(-\infty,0)\cup (1,\infty)\cup (\bigcup_{n=1}^\infty (\frac{1}{n+1},\frac{1}{n})) \text{ is open }$$

 $\therefore A \cup \{0\}$ is closed

<u>Definition</u> (Adherent, clousure \cdots). Let X be a metric space with metric d, $T \subseteq X$ be a subset. (important)

(1.) A point $p \in X$ is said to be an adherent point of T if $\forall r > 1$ $0, B(p,r) \cap T \neq \emptyset, equivalent, \forall neighborhood U of p, U \cap T \neq \emptyset$ (2.) Let \overline{T} or cl(T) denote the set of all adherent points of T, called the closure of T, i.e. $\overline{T} = \{ p \in X \mid p \text{ is an adherent point of } T \}$

(3.) A point $p \in X$ is said to be a limit point or accumulation point of T if $\forall r > 0$, $B(p,r) \cap T - \{p\} \neq \emptyset$, equivalently, \forall neighborhood U of p, $U \cap T - \{p\} \neq \emptyset$

Denote by T' the set of all accumulation points of T, called the devied set of T.

- (4.) $p \in T$ and $p \notin T'$, then p is called an isolated point of T, i.e. $\exists r > 0 \ni B(p,r) \cap T = \{p\}$
- (5.) A subset $T \subseteq X$ is said to be perfect if T is closed and every points of T is an accumulated point of T, i.e. T is closed & T' = T
- **(6.)** A subset $T \subseteq X$ is said to be bounded if $\exists R > 0$ and $p \in X \ni T \subseteq B(p,R)$
- (7.) A subset $T \subseteq X$ is said to be dense if $\overline{T} = X$, e.g. $\overline{\mathbb{Q}} = \mathbb{R}$
- (8.) A point $p \in X$ is said to be a boundary point of T if $\forall r > 0$, $B(p,r) \cap T \neq \emptyset$ & $B(p,r) \cap (X \setminus T) \neq \emptyset$. Denote by ∂T or bd(T) the set of all boundary points of T

Prop 2.9 Let X be a metric space. All sets and point below are subset of X

(1) $S \subseteq T \implies \overline{S} \subseteq \overline{T} \& S' \subseteq T'$ $\therefore p \in \overline{S} \implies \forall r > 0, B(p,r) \cap S \neq \emptyset \implies B(p,r) \cap T \neq \emptyset \implies p \in \overline{T}$ $p \in S' \implies \forall r > 0, B(p,r) \cap S - \{p\} \neq \emptyset \implies B(p,r) \cap T - \{p\} \neq \emptyset$ (2) \overline{T} is always closed in X

We want to know \overline{T} is closed on $X \to X - \overline{T}$ is open $\to \forall p \in X - \overline{T}$ is an interior point $\Longrightarrow \exists r > 0, \ B(p,r) \subseteq X - \overline{T}$ $\therefore p \notin \overline{T} \Rightarrow \exists r' > 0 \ni B(p,r') \cap T = \emptyset$ But we want to get $B(p,r') \cap \overline{T}$, so we check every point in B(p,r') is not in \overline{T} , let $q \in B(p,r')$, $\exists \ \delta > 0$, $B(q,\delta) \subseteq B(p,r')$ $\Longrightarrow B(q,\delta) \cap T = \emptyset \Longrightarrow q \notin \overline{T}$ because if $q \in \overline{T}, \forall r > 0 \ni B(q,r) \cap T \neq \emptyset$ $\Longrightarrow B(p,r) \cap \overline{T} = \emptyset$

Let $p \in X - \overline{T} \implies p \notin \overline{T} \implies \exists r > 0 \ni B(p,r) \cap T = \emptyset \implies B(p,r) \cap \overline{T} = \emptyset \ (\because \forall q \in B(p,r), \ \exists \ \delta > 0 \ni B(q,\delta) \subseteq B(p,r) \implies B(q,\delta) \cap T = \emptyset \implies q \notin \overline{T})$

 $\therefore B(p,r) \subseteq X - \overline{T}, \because p$ is an interior point of $X - \overline{T}$. Hence, $X - \overline{T}$ is open, i.e. \overline{T} is closed.

(3) $T \subseteq \overline{T}(: \forall p \in T, \forall r > 0, B(p,r) \cap T \neq \emptyset)$

(4) $p \in T' \implies \forall r > 0$, $B(p,r) \cap T - \{p\}$ is an infinite set, say x_1, \dots, x_n , Let $\delta = \frac{1}{2} \min\{d(p, x_i) \mid 1 \le i \le n\}$. Then $B(p, \delta) \cap T - \{p\} = \emptyset(\rightarrow \leftarrow)$ to $p \in T'$, $x \in B(p, \delta) \cap T - \{p\} \implies d(x, p) < \delta \implies x = x_i$ for some $1 \le i \le n$ & we get $d(x_i, p) < \delta \le \frac{1}{2}d(x_i, p)$

 \therefore no such x i.e. $B(p,\delta) \cap T - \{p\} = \emptyset$

- (5) Any finite subset of X has no accumulation points in X by (4). In particular, it is closed by (6)(c) below.
- **(6)** TFAE
- (a) S is closed
- (b) S contains all it's adherent point, i.e. $\overline{S} \subseteq S$
- (c) S contains all it's accumulation points, i.e. $S' \subseteq S$
- (d) $S = \overline{S}$
- (7) $\overline{\overline{S}} = \overline{S}$ by (2) and (6)

Proof. of (6)

- (a) \Rightarrow (b) Suppose S is closed $\Longrightarrow X \setminus S$ is open $\Longrightarrow \forall p \in X S \Longrightarrow \exists r > 0 \ni B(p,r) \subseteq X \setminus S \Longrightarrow B(p,r) \cap S = \emptyset \Longrightarrow p \notin \overline{S}$ $\therefore \overline{S} \subseteq S$, i.e. (b) holds
- $(b) \Rightarrow (c) :: S' \subseteq \overline{S}$
- (c) \Rightarrow (d) Suppose $S' \subseteq S$. To prove $S = \overline{S}$ if not, then $S \subsetneq \overline{S}$, i.e. $\exists \ p \in \overline{S} \ \& \ p \notin S \implies \forall r > 0, \ B(p,r) \cap S \neq \emptyset \ (\because p \in \overline{S})$ (d) \Rightarrow (a) by (2)

- (8) \overline{S} is the smallest closed set in X containing S \therefore We know that $S \subseteq \overline{S}$, if F is closed in $X \& F \subseteq S$, then $\overline{F} \subseteq \overline{S}$ by (1), $F = \overline{F} \subseteq \overline{S}$ by (6), $\therefore \overline{S}$ is the smallest such one.
- (9) In fact, $\overline{S} = \bigcap_{F \subset S} F$
- (10) $p \in S$ is an isolated point $\Leftrightarrow \exists r > 0 \ni B(p,r) \cap S = \{p\}$
- (\Rightarrow) Suppose $p \in S$ is an isolated point of S. Then $p \in S' \implies \exists r > 0 \ni B(p,r) \cap S \{p\} = \emptyset \implies B(p,r) \cap S = \{p\}$ (\Leftarrow) Trivial
- (11) S is dense in $X \Leftrightarrow \forall p \in X \& r > 0$, $B(p,r) \cap S \neq \emptyset \Leftrightarrow \forall$ open set $U \neq \emptyset$, $U \cap S \neq \emptyset$

Proof. (\Rightarrow) Suppose S is dense in X, i.e. $\overline{S} = X$, So $\forall p \in X, p \in \overline{S} \implies \forall r > 0, \ B(p,r) \cap S \neq \emptyset$

(⇐) Suppose the condition holds, $\forall p \in X \& r > 0, \ B(p,r) \cap S \neq \emptyset \implies p \in \overline{S} \implies X \subseteq \overline{S} \subseteq X, \therefore \overline{S} = X$

(12)
$$\partial S = \partial(X - S)$$
 In particular, $\partial S = \overline{S} \cap \overline{(X - S)}$, In particular, ∂S is closed in X , \therefore It suffices to prove $\partial S = \overline{S} \cap \overline{(X - S)}$, $\therefore \partial(X - S) = \overline{X - S} \cap \overline{X} - (X - S) = \overline{X - S} \cap \overline{S} = \partial S$ $\forall p \in \partial S \implies \forall r > 0, B(p, r) \cap S \neq \emptyset \& p \in \overline{X - S} \implies p \in \overline{S} \cap \overline{X - S}$ $\therefore \partial S \subseteq \overline{S} \cap \overline{X - S}$, Conversely, $p \in \overline{S} \cap \overline{X - S} \implies p \in \overline{S} \& p \in \overline{X - S} \implies \forall r > 0, B(p, r) \cap S \neq \emptyset \& B(p, r) \cap (X - S) \neq \emptyset \implies p \in \partial S$ $\therefore \overline{S} \cap \overline{(X - S)} \subseteq \partial S \therefore \partial S = \overline{S} \cap \overline{(X - S)}$

2.5. Examples.

We give some simple examples of open sets, closed sets, adherent, accumulation, isolated and boundary points.

- **1.** In a discrete metric space X, every subset of X is both open and close, $\forall x \in X$, $B(p,r) \begin{cases} \{x\} \text{ if } 0 < r \leq 1 \\ X \text{ if } r > 1 \end{cases}$
- \therefore Every singleton is open in X, so every subset of X is open.
- **2.** In \mathbb{R} . Consider the set $S = [0, 1) \cup \{3\}$, $S^{\circ} = \emptyset$, $S' = \{0\}$, $\overline{S} = S \cup \{0\}$
- **3.** In \mathbb{R} , consider the set $S = \{\frac{1}{n} \mid n = 1, 2, \dots\}, S^{\circ} = \emptyset, S' = \{0\}, \overline{S} = S \cup \{0\}$
- **4.** In \mathbb{R}^2 , consider $S = \{(x, y) \in \mathbb{R}^2 \mid x > 0, y > 0\}$, S is open $\overline{S} = \{(x, y) \in \mathbb{R}^2 \mid x \geq 0, y \geq 0\}$ $\partial S = \{(x, 0) \mid x \geq 0\} \cup \{(y, 0) \mid y \geq 0\}$
- **5.** Let B(0,1) be the unit open ball in \mathbb{R}^k . Then $\partial B(0,1) = S^{k-1}$ is the unit (k-1)-sphere. In particular, for $k=2, \partial B(0,1) = S^1$ in the unity circle in the plane \mathbb{R}^2 . Similarly, for the closed unit ball $\overline{B}(0,1)$ in \mathbb{R}^k . Now, we define some special sets in \mathbb{R}^n
 - Internals in \mathbb{R} : $-\infty < a \le b < \infty$ [a, b] close interval which is closed in \mathbb{R} (a, b) open interval which is closed in \mathbb{R} Infinite intervals:
 - $(-\infty, b]$: close in $\mathbb R$, $(-\infty, b)$ open in $\mathbb R$
 - \bullet k-dimensional interval (rectangle or k-cell) I

$$I = I_1 \times \cdots \times I_k$$

where I_j is an interval in \mathbb{R} , $1 \leq j \leq k$

- (i) I is bounded \Leftrightarrow each I_j is bounded I is unbounded $\Leftrightarrow I_j \neq \emptyset$ & some I_j is unbounded
- (ii) $I = [a_1, b_1] \times \cdots [a_k, b_k], -\infty < a_j \le b_j < \infty, \ 1 \le j \le k$ k-dimensional closed(compact) interval in \mathbb{R}^k

- Convex sets in \mathbb{R}^k $S \subseteq \mathbb{R}^k$ is convex if $\forall x, y \in S$, \overline{xy} is the line segment joining x & yNote that all open balls, closed balls, intervals are convex in \mathbb{R}^k
- Star-like sets in \mathbb{R}^k with w.r.t some point $x_0, S \subseteq \mathbb{R}^k$ is star-like w.r.t. $x_0 \in S$ if $\forall x \in S$, $\overline{xx_0} \subseteq S$
- **6.** We know that \mathbb{Q} is dense in \mathbb{R} , hence \mathbb{Q}^k is dense in \mathbb{R}^k . Note that \mathbb{Q}^k is countable, hence \mathbb{R}^k has a countable dense subset \mathbb{Q}^k , i.e. \mathbb{R}^k is separable.
- 7. $\partial \mathbb{Q} = \mathbb{R}, \ \partial \mathbb{Q}^k = \mathbb{R}^k$
- **8.** \mathbb{Z} is closed in \mathbb{R} , $\mathbb{Z} = \bigcup_{n=-\infty}^{\infty} (n-1,n)$ is open $\implies \mathbb{Z}$ is close.

or $\mathbb{Z}' = \emptyset \subseteq \mathbb{Z}$, $\therefore \mathbb{Z}$ is close.

9. Let $S \subseteq \mathbb{R}$ be a nonempty set which is bounded above. Then $\alpha = \sup S$ exists. Moreover, $\alpha \in \overline{S}$. $\forall r > 0, \exists x_0 \in S \ni \alpha - r < \infty$ $x_0 \le \alpha < \alpha - r \implies (\alpha - r, \alpha + r) \cap S \ne \emptyset \implies \alpha \in \overline{S}$

2.6. Compact Set in Metric Space.

- Compact sets in metric space, which is closely related to the extreme value problem.
- Compact set \mathbb{R}^k will be discussed in next section.

Definition. Let X be a topology space and $S \subseteq X$. A collection $\mathcal{U} =$ $\{U_{\alpha}\}_{{\alpha}\in I}$ of open sets in X is called an open covering of S if

$$S \subseteq \bigcup \mathscr{U} = \bigcup_{\alpha \in I} U_{\alpha}$$

Definition. Let X be a topology space, $S \subseteq X$ and $\mathscr{U} = \{U_{\alpha}\}_{{\alpha}\in I}$ be an open covering of S. We say that \mathcal{U} has a countable(finite) sub covering of S if \exists a countable (finite) sub-collection of \mathscr{U} which also covers S. i.e. \mathcal{U} has a countable (finite) subcovering in S if

 $\exists \ a \ sequence \ \{\alpha_n\} \ in \ I \ni S \subseteq \bigcup_{\alpha_n}^{\infty} U_{\alpha_n} \ (countable)$

 $\exists \ a \ sequence \ \{\alpha_n\} \ in \ I \ni S \subseteq \overset{n=1}{U_{\alpha}} \cup \cdots \cup U_{\alpha_n}(finite)$

Example

- (1) X is discrete metric space. Then $\{\{x\} \mid x \in X\}$ is an open covering of X
- (2) In \mathbb{R} , $\{(0, 1 \frac{1}{n}) \mid n \in \mathbb{N}\}$ is an open covering of (0, 1). In fact, $(0,1) = \bigcup_{n=0}^{\infty} (0, 1 - \frac{1}{n})$

(3) $\{B(0,n) \mid n \in \mathbb{N}\}\$ is an open covering of \mathbb{R}^k

<u>Definition</u> (compact). Let X be a topology space. A subset $K \subseteq X$ is said to be compact if **every** open covering of K admit a finite subcovering

Examples

- (1) Let X be a topology space and $K \subseteq X$ be a finite set. Then K is compact.
- (2) In a discrete metric space X, a subset $K \subseteq X$ is compact $\Leftrightarrow K$ is a finite set.
- (3) (0,1) is not compact in $\mathbb{R}(\{0,1-\frac{1}{n}\mid n\in\mathbb{N}\})$, but [0,1] is compact

Theroem 2.10. Let X be a metric space and $K \subseteq Y \subseteq X$. Then K is compact in $X \Leftrightarrow K$ is compact in Y.

Proof. (\Rightarrow) Suppose K is compact in X. Given an open covering $\{V_{\alpha}\}_{{\alpha}\in I}$ of open sets in Y which covers K. By Prop 2.5, each $V_{\alpha}=U_{\alpha}\cap Y$, where U_{α} is open in X. Now,

$$K \subseteq \bigcup_{\alpha \in I} V_{\alpha} = \bigcup_{\alpha \in I} (U_{\alpha} \cap Y) = (\bigcup_{\alpha \in I} U_{\alpha}) \cap Y \implies K \subseteq \bigcup_{\alpha \in I} U_{\alpha}$$

By the compactness of K in X, $\exists \alpha_1, \dots, \alpha_n \in I \ni K \subseteq \bigcup_{i=1}^n U_{\alpha_i} \Longrightarrow$

$$K \cap Y \subseteq (\bigcup_{i=1}^{n} U_{\alpha_i}) \implies K \subseteq \bigcup_{i=1}^{n} (U_{\alpha_i} \cap Y) = \bigcup_{i=1}^{n} V_{\alpha_i}$$

 $\therefore K$ is compact in Y

(\Leftarrow)Suppose K is compact in Y. Given a open covering $\{U_{\alpha}\}_{{\alpha}\in I}$ of K by open sets in X.

$$K \subseteq \bigcup_{\alpha \in I} U_{\alpha} \implies K \cap Y \subseteq (\bigcup_{\alpha \in I} U_{\alpha}) \cap Y \implies K \cap Y \subseteq \bigcup_{\alpha \in I} (U_{\alpha} \cap Y)$$

By Prop 2.5, $\{U_{\alpha} \cap Y \mid \alpha \in I\}$ is an open covering of K by open set in Y. By assumption, K is compact in $Y, \exists \alpha_1, \cdots, \alpha_n \in I \ni K \subseteq \bigcup_{i=1}^n (U_{\alpha_i} \cap Y) = (\bigcup_{i=1}^n U_{\alpha_i}) \cap Y \implies K \subseteq \bigcup_{i=1}^n U_{\alpha_i}$ $\therefore K$ is compact in X

<u>Definition.</u> Let X be a metric space and $S \subseteq X$ be a nonempty set. The diameter of S is defined to be $dia(S) = \sup\{d(x,y) \mid x,y \in S\}$ which generated the diameter of a circle in \mathbb{R}^2

Theroem 2.11. Let X be a metric space and $K \subseteq X$ be a compact set. Then K is closed and bounded

Proof. K is bounded

Fix a point $p \in K$. Then $K \subseteq \bigcup_{n=1}^{\infty} B(p,n)$. $\therefore K$ is compact $\Longrightarrow \exists N \in \mathbb{N} \ni K \subseteq B(p,1) \cup \cdots \cup B(p,N) \Longrightarrow K \subseteq B(p,N)$ $\therefore K$ is bounded **K** is closed, i.e. X-K is open Fix $p \in X-K$. Then $p \neq x$, $\forall x \in K$. Hence, d(x,p)>0, $\forall x \in K$ Let $r_x = \frac{1}{2}d(x,p)>0, x \in K$. Them $\{B(x,r_x) \mid x \in K\}$ is an open covering of K. $\therefore K$ is compact $\Longrightarrow \exists x_1, \cdots, x_n \in K \ni B(x_1,r_{x_1}) \cup \cdots \cup B(x_n,r_{x_i})$. Let $V = \bigcap_{i=1}^n B(p,r_{x_i}) = B(p,r)$, where $r = \min\{r_{x_1}, \cdots, r_{x_n}\}$. Then as we can see that $V \subseteq X-K$, all point in X-K are inner point. So X-K is open, i.e. K is close.

To show that $V \subseteq X - K$, i.e. $V \cap K \neq \emptyset$, it suffices to show

$$V \cap (\bigcup_{i=1}^{n} B(x_i, r_{x_i})) = \emptyset$$

Now,

$$V \cap (\bigcup_{i=1}^{n} B(x_i, r_{x_i})) = \bigcup_{i=1}^{n} (V \cap B(r_i, r_{x_i}))$$

$$\subseteq \bigcup_{i=1}^{n} (B(p, r_{x_i} \cap B(x_i, r_{x_i}))) = \emptyset$$

Remark. The converse of Thm 2.11 is false, i.e. closed & bounded may not be compact, e.g. X is an infinite set with discrete metric. Then X is not compact, but X is closed and bounded.

Theroem 2.12. Let X be a metric space, $K \subseteq X$ be compact & $L \subseteq K$ be a closed set in X. Then L is compact.

Proof. Let $\{U_{\alpha}\}_{{\alpha}\in I}$ be an open covering of L. Then $\{U_{\alpha}\}_{{\alpha}\in I}\cup\{X-L\}$ is an open covering of K. By the compactness of K, $\exists \alpha_1, \dots, \alpha_n \in I \ni K \subseteq U_{\alpha_1} \cup \dots \cup U_{\alpha_n} \cup (X-L)$. By $L \subseteq K$ \therefore L is compact

Corollary 2.13.

- (a) Let X be a metric space, $K \subseteq X$ be compact and F be a closed set in X. Then $K \cap F$ is compact.
- (b) If X is a compact metric space, then every closed subset F of X is compact.

Proof.

(a)

$$K$$
 is compact \implies K is closed (Thm 2.11)
 \implies $K \cap F$ is closed in X
 \implies $K \cap F$ is compact

(b) follows (a)

Remark. Let X be a metric space. If K is closed in X and F is closed in K, then F is closed in X. \therefore F is closed in F \Longrightarrow $F = L \cap F$, where L is closed in K \Longrightarrow F is closed in X.

Theroem 2.14. Let X be a metric space, $\{K_{\alpha}\}_{{\alpha}\in I}$ be a collection of compact subsets of X with the property:

$$\forall \alpha_1, \cdots, \alpha_n \in I, K_{\alpha_1} \cap \cdots \cap K_{\alpha_n} \neq \emptyset$$

Them
$$\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$$

Proof. Fix
$$\alpha_0 \in I$$
. Assume that $\bigcap_{\alpha \in I} K_{\alpha} = \emptyset \implies X - \bigcap_{\alpha \in I} K_{\alpha}$
 $\implies X - \emptyset = X \implies X = \bigcup_{\alpha \in I} (X - K_{\alpha})$

each K_{α} is compact $\Longrightarrow K_{\alpha}$ is closed $\Longrightarrow X - K_{\alpha}$ is open so $\{X - K_{\alpha}\}$ is an open covering of X. Now,

$$K_{\alpha_0} \subseteq X = \bigcup_{\alpha \in I} (X - K_\alpha) \implies K_{\alpha_0} \subseteq \bigcup_{\alpha \in I} (X - K_\alpha)$$

$$K_{\alpha}$$
 is compact $\Longrightarrow \exists \alpha_1, \cdots, \alpha_n \in I - \{\alpha_0\} \ni K_{\alpha_0} \subseteq (X - K_{\alpha_1}) \cup \cdots \cup (X - K_{\alpha_n}) \Longrightarrow K_{\alpha_0} \cap K_{\alpha_1} \cap \cdots \cap K_n = \emptyset(\to \leftarrow)$

Corollary 2.15. Let X be a metric space and $\{K_n\}_{n=1}^{\infty}$ be a decrease sequence of nonempty compact sets of X. Them $\bigcap_{n=1}^{\infty} \neq \emptyset$. In addition,

if $dia_{n\to\infty}\infty 0$, them $\bigcap_{n=1}^{\infty} K_n$ is a singleton.

Proof. $\forall j 1, \dots, j_k \in \mathbb{N}, K_{j1} \cap \dots \cap K_{jk} \neq \emptyset, K_{j1} \cap \dots \cap K_{jk} = K_t$, where $t = \max\{j_1, \dots, j_k\}$. By Thm 2.14 $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$, if $\lim_{n \to \infty} \operatorname{dia}(K_n) = 0$

and $p, q \in \bigcap_{n=1}^{\infty} K$ and $p \neq q$, them $\operatorname{dia}(K_n) \geq d(p,q) \ \forall n \geq 1 \implies$

$$\lim_{n\to\infty} \operatorname{dia}(K_n) \ge d(p,q) > 0 \to (\longrightarrow) : \bigcap_{n=1}^{\infty} K_n = \{p\} \text{ is a simpleton.}$$

Remark. The usual form of Cor 2.15, X is a metric space, $\{K_n\}$ is a decrease sequence of nonempty closed sets in X with K_i is compact

$$\implies \bigcap_{n=1}^{\infty} K_n \neq \emptyset$$

Example In \mathbb{R} , $\{(0, \frac{1}{n} \mid n \geq 1]\}$ is decrease and every finite subcollec-

tion of
$$\{(0, \frac{1}{n}) \mid n \ge 1\}$$
 is nonempty, but $\bigcap_{n=1}^{\infty} (0, \frac{1}{n}) = \emptyset$, $\bigcap [0, \frac{1}{n}] = \emptyset$

Theroem 2.17. Let X be a metric space and $K \subseteq X$, TFAE:

- (i) K is compact
- (ii) Every infinite subset has an accumulation point in K
- (iii) K is sequentially compact
- (iv) K is complete and totally bounded

<u>Definition</u> (Convergence). $\{a_n\}$ converge if $\exists \ a \in X \ni \forall \ \epsilon \geq 0 \exists N \ni \mathbb{N} \ni \forall n \geq N, \ d(a_n, a) < \epsilon.$ Such a is called the limit of $\{a_n\}$, which is denoted by $\lim_{n \to \infty} a_n = a \text{ or } a_n \to a \text{ on } n \to \infty.$

<u>Definition</u> (Cauchy). We say that $\{a_n\}$ is Cauchy if $\forall \epsilon > 0$, $\exists N \in \mathbb{N} \ni \forall n, m \geq \mathbb{N}, \ d(a_n, a_m) < \epsilon$

<u>Definition</u>. A metric X is said to be sequence compact if every sequence has a convergent subsequence

<u>Definition</u>. A metric space X is said to be complete if every Cauchy sequence in X convergence.

<u>Definition</u>. Let X be a metric space & $K \subseteq X$. We say that K is totally bounded if $\forall r > 0, \exists x_1, \dots, x_n \in K \ni K \subseteq B(x_1, r) \cup \dots \cup B(x_n, r)$

Remark. Totally bounded can implies bounded, but not converse. K is totally bounded, for $r = 1, \exists x_1, \dots, x_n \in K \subseteq B(x_1, 1) \cup \dots \cup B(x_n, 1) \implies K \subseteq B(x_1, R)$ for sime large R

• Take an "infinite" set X with discrete metric. Then X is bounded(e.g. $X \subseteq B(x_0, 2)$, where $x_0 \in X$) but for $r = \frac{1}{2}$, $X \subsetneq B(x_1, \frac{1}{2}) \cup \cdots \cup B(x_n, \frac{1}{2}) \ \forall x_1, \cdots, x_n$

Lemma 2.18 (To prove (ii) to (i)).

Suppose (ii) holds in Thm 2.17. Then K is totally bounded

Proof. If not, then $\exists r > 0, \ni$ no finite open balls with radius r and center K cover K. Choose $x_1 \in k \implies K \subsetneq B(x_1,r) \implies \exists x_2 \in K - B(x_1,r), \ K \subsetneq B(x_1,r) \cup B(x_2,r) \implies \exists x_3 \in K - (B(x_1,r) \cup B(x_2,r))$ By induction, counting this process, we obtain an infinite set $T = \{x_1, x_2, \cdots, x_n, \cdots\} \subseteq K$ with $d(x_i, x_j) \ge r \forall i \ne j$. By (ii), T has an accumulation poion $p \in K$. In particular $B(p, \frac{r}{4}) \cap T - \{p\}$ is an infinite set, hence, $\exists i \ne j \ni x_i, x_j \in B(p, \frac{r}{4}) \cap T - \{p\} \implies d(x_i, x_j) \le d(x_i, p) + d(x, j) < \frac{r}{4} + \frac{r}{4} = \frac{r}{2} < r(\rightarrow \leftarrow) \therefore K$ is totally bounded.

Lemma 2.19. Suppose (ii) holds in T and $\{E_{\alpha} \mid \alpha \in I\}$ is an open covering of K. Then $\exists r > 0$ (called a Lebegoue number w.r.t. the open covering $\{E_{\alpha}\}_{\alpha \in I}$) $\ni \forall x \in K, B(x,r) \subseteq E_{\alpha}$ for some $\alpha \in I$

Proof. if K is a finite set, let $K = \{x_1, \cdots, x_n\}K \subseteq \bigcup_{\alpha \in I} E_{\alpha} \implies x_i \in E_{\alpha_i}$ for some $\alpha_i \in I$, $1 \le i \le n \implies \exists r_i > 0 \ni B(x_i, r_i) \subseteq E_{\alpha_i}, 1 \le i \le n$. Let $r = \min\{r_1, \cdots, r_n\}$. Then $B(x_i, r) \subseteq B(x_i, r_i) \subseteq E_{\alpha_i}, 1 \le i \le n$. Now, assume that K is infinite set. Assume that no such K > 0, i.e. $\forall r > 0, \exists x_r \in K \ni B(x_r, r) \not\subseteq E_{\alpha} \forall x \in I$. Now, for $K = \frac{1}{k}, r = 1, 2, \cdots$, we obtain a sequence $\{x_k\}$ in K, with $K = \frac{x_r}{k} \ni K$ is an infinite set(: For $K = 1, r = \frac{1}{1} = 1 \exists x_1 \in K \ni K = 1$). Then $K = 1, r = \frac{1}{1} = 1 \exists x_1 \in K \ni K = 1$. Then $K = 1, r = \frac{1}{1} = 1 \exists x_1 \in K \ni K = 1$. Then $K = 1, r = \frac{1}{1} = 1 \exists x_1 \in K \ni K = 1$. Then $K = 1, r = \frac{1}{1} = 1 \exists x_1 \in K \ni K = 1$. Then $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Let $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Let $K = 1, r \in K = 1$. Then $K = 1, r \in K = 1$. Let

Then for $r=\frac{1}{2}, \exists x_2 \in K-\{x_1\} \ni B(x_2,\frac{1}{2}) \subsetneq E_\alpha \forall \alpha \in I$. Continue this process, we conclude that $x_i \neq x_j \forall i \neq j$, so T is an infinite set. By the assumption of (ii). Then an accumulation point $p \in K$. Now $K=\bigcup_{\alpha \in I} E_\alpha \implies p \in E_\alpha$ for some $\alpha \in I \implies \exists \epsilon > 0 \ni B(p,\epsilon) \subseteq E_{\alpha_0}$. Since $p\ni T', B(p,\epsilon)\cap T-\{p\}$ is an infinite set. Choose $m>>0\ni \frac{1}{m}<\frac{\epsilon}{2} \& x_m \in B(p,\frac{\epsilon}{2})\cap T$. Claim $B(x_m,\frac{1}{m})\subseteq B(p,\epsilon)\subseteq E_{\alpha_0}(\to \leftarrow)$ to our constrain, hence Lemma 2.19 holds.

$$y \in B(x_m, \frac{1}{m}) \Rightarrow d(y, p) \le d(y, x_m) + d(x_m, p) < \frac{1}{m} + \frac{\epsilon}{2} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
$$\Rightarrow y \in B(p, \epsilon)$$

Proof. (Thm 2.17 (i)(ii))

 $(i) \Rightarrow (ii)$ Suppose K is compact. Given an infinite set $T \subseteq K$. We must prove that T has an accumulation point in K, if not, $\forall x \in K, x$ is not an accumulation point of $K, \exists r_x > 0 \ni B(x, r_n) \cap T - \{x\} = \emptyset \implies B(x, r_x) \cap T \subseteq \{x\}$. Clearly $\{B(x, r_x \mid x \in K)\}$ is an open covering of K. By (i), K is compact

$$\Rightarrow \exists x_1, \dots, x_n \in K \ni K \subseteq B(x_1, r_{x_1}) \cup \dots \cup B(x_n, r_{x_n})$$

$$= (T \cap B(x_1, r_{x_1})) \cup \dots \cup (T \cap B(x_n, r_{x_n}))$$

$$\subseteq \{x_1\} \cup \{x_2\} \cup \dots \cup \{x_n\}$$

$$= \{x_1\} \cup \{x_2\} \cup \dots \cup \{x_n\}$$

$$= \{x_1, \dots, x_n\} (\rightarrow \leftarrow)$$

to T is an infinite set, \therefore (ii) holds.

 $(ii) \Rightarrow (i)$ In Thm 2.17 i.e. we must prove that K is compact under the assumption of (ii). Suppose $\mathscr{U} = \{E_{\alpha}\}_{\alpha \in I}$ is an open covering of K. By Lemma 2.19, \exists a r > 0 w.r.t. \mathscr{U} , by Lemma 2.18, $\exists x_1, \dots, x_k \in K \ni K \subseteq B(x_1, r) \cup \dots \cup B(x_k, r) \subseteq E_{\alpha_1} \cup \dots \cup E_{\alpha_k}$, where $B(x_i, r) \subseteq E_{\alpha_i}$, $1 \le i \le k$. Therefore, \mathscr{U} has a finite sub covering. Hence K is compact and (i) holds.

Remark.

- (1) $(ii) \implies (i)$ is exercise 26
- (2) More or less, by Lemma 2.18 & 19, one can see that (i) and (ii) are also equal to (iii) and (iv)

2.7. Compact Sets in Euclidean Spaces \mathbb{R}^k .

- We know that any compact set in a metric space is close and bounded
- Close and bounded subset my not be compact (infinite discrete)
- We will see that every closed and bounded subset of \mathbb{R}^k is always compact which is the famous H.B. Theorem, i.e. $K \subseteq \mathbb{R}^k$ is compact $\Leftrightarrow K$ is closed and bounded

Theroem 2.20. Let $\{I_n = [a_n, b_n]\}_{n=1}^{\infty}$ be a sequence of closed and bounded intervals in \mathbb{R} , if $\{I_n\}$ is decreasing i.e. $I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots$, then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$. Moreover, if $\lim_{n\to\infty} (b_n - a_n) = 0$, then $\bigcup_{n=1}^{\infty} I_n$ is a simpleton.

Proof. Claim $T = \{a_n \mid n \in \mathbb{N}\}$ is bounded above and $x = \sup T$ exists. $\therefore a_n \leq a_{m+n} (\because \{a_n\} \text{ is increasing, i.e. } [a_1,b_2] \supseteq [a_2,b_2], \ a_2 \geq a_1)$ $a_n \leq a_{m+n} \leq b_{m+n} \leq b_m (: \{b_n\} \text{ is decreasing }) \implies T \text{ is bounded}$

above by all $b_n \implies x = \sup T$ exists and $x \le b_n \forall n \ge 1$. Clearly, $a_n \le x \ \forall n \ge 1$, $a_n \le x \le b_n$, $a_n \ge x \ge b_n$, argument as in Corollary 2.16.

Theroem 2.21. Let $\{I_n = [a_{n,1}, b_{n,1}] \times \cdots \times [a_{n,k}, b_{n,k}]\}$ be a decreasing sequence of closed and bounded intervals in \mathbb{R}^k . Then $\bigcap \neq \emptyset$.

Moreover, if $\lim_{n\to\infty} dia(I_n) = 0$, then $\bigcup_{n=1}^{\infty}$ is a simpleton.

Proof. $\forall 1 \leq j \leq k, \{[a_{n,j}, b_{n,j}]\}$ is a decrease sequence of closed and bounded intervals in \mathbb{R} . By Thm 2.20, $\exists x_j \in \bigcap_{n=1}^{\infty} [a_{n,j}, b_{n,j}]$. Set x =

 (x_1, \dots, x_k) . Then $x \in \bigcap I_n$. Then last statement also follows from the argument in corollary 2.16.

Theroem 2.22. Every k-dimensional closed and bounded interval I = $[a_1, b_1] \times \cdots \times [a_k, b_k]$ in \mathbb{R}^k is compact.

Proof. Put $\delta = (\sum_{i=1}^k (b_i - a_i)^2)^{\frac{1}{2}}$ which is the diametric of I. Then $\forall x,y \in I, \parallel x-y \parallel \leq \delta$. If I were not compact, them \exists an open covering $\{E_{\alpha}\}_{\alpha \in J}$ admitting not finite sub covering(\star). Put $c_j = \frac{a_j + b_j}{2}$, $1 \leq j \leq k$. The intervals $[a_j,c_j]$ and $[c_j,b_j]$, $1 \leq j \leq k$, determines 2^k closed and bounded subinterval of I whose union is I. By (\star), at least one of them, say I_1 which cannot be covered by finitely many E_{α} . Continuing this process, we get a sequence $\{I_n\}$ of closed and bounded subintervals of I satisfy's

- a) $I \subseteq I_1 \subseteq \cdots$, i.e. $\{I_n\}_{n=1}^{\infty}$ is decreasing.
- b) Each I_n cannot be covered by finitely many E_{α}
- c) dia $(I_n) = 2^{-n}, \ \delta \to 0 \text{ on } n \to \infty$

By Thm 2.21,
$$\bigcap_{n=1}^{\infty} I_n = \{x\}$$
 i.e. $x \in I_n \subseteq I \ \forall \ n \ge 1 \subseteq \bigcup_{\alpha=1}^{\infty} E_{\alpha}$
 $\therefore x \in E_{\alpha_0}$ for some $\alpha_0 \in J$, E_{α_0} is open $\implies \exists r > 0 \ni B(x,r) \subseteq E_{\alpha_0}$.
Choose $n_0 >> 0 \ni \frac{1}{2^{n_0}} < \frac{r}{\delta} (\because \frac{1}{2^n} \to 0)$. Since $x \in I_{n_0}, \forall y \in I_{n_0}, \parallel y - x \parallel \le 2^{-n_0} \delta < \frac{r}{\delta} \cdot \delta = r \implies y \in B(x,r), \because I_{n_0} \subseteq B(x,r) \subseteq E_{\alpha_0} (\to \leftarrow)$.
Therefore I is compact.

Combining Thm 2.22 and results in section 2.6, we conclude that the following sets in compact:

- i) [a, b] is compact in $\mathbb{R}(\text{Thm 2.22 with } k = 1)$
- ii) $[a,b] \times [c,d]$ is compact in \mathbb{R}^2 (Thm 2.22 with k=2)
- iii) Every closed ball $\overline{B}(x,r)$ in \mathbb{R}^k is compact by Thm 2.12 and 2.22
- iv) $\{0\} \cup \{\frac{1}{n} \mid n = 1, 2, \dots\}$ is compact in \mathbb{R} , In fact, if $a_n \to a$, them teh set $\{a\} \cup \{a_n \mid n = 1, 2, \dots\}$ is compact in \mathbb{R}

Theroem 2.23. Every closed and bounded subset K of \mathbb{R}^k is compact.

Proof. Choose a large closed and bounded interval I in \mathbb{R}^k , $K \subseteq I$. By Thm 2.22, I is compacted, so K is a closed subset of I. By Thm 2.12, K is compacted.

Combining Thm 2.17 and Thm 2.23, we can characterize compacted set in \mathbb{R}^k

Theroem 2.24. Let $K \subseteq \mathbb{R}^k$ TFAE:

- i) K is closed and bounded
- ii) K is compacted
- iii) Every infinite subset of K has an accumulation point
- iv) K is sequence compact
- v) K is complete and totally bounded

From these we can deduce:

Theroem 2.25 (Bolzano-Weiestrace). Every bounded infinite subset T in \mathbb{R}^k has an accumulation point in \mathbb{R}^k

Proof. Since T is bounded, choose a large closed and bounded interval I in $\mathbb{R}^k \ni T \subseteq I$. Now, T become an infinite subset of the compact set I. By Thm 2.24 (iii), T has an accumulation point in I.

Theroem 2.26 (Cantor intersection). Let $\{\mathbb{Q}_n\}$ be a sequence of nonempty set in \mathbb{R}^k satisfying:

- a) $\{Q_n\}$ is decreasing
- b) Q_n is closed $\forall n \geq 1 \& Q_1$ is compact.

Then $\bigcap_{n=1}^{\infty} Q_n \neq \emptyset$, Moreover, if $dia(Q_n) \to 0$ on $n \to \infty$, then $\bigcap_{n=1}^{\infty} Q_n$ is a simpleton.

Proof. By (b), each Q_n is compact ($:Q_1 \supseteq Q_n \forall n \ge 1$). Therefore, it follows form Cor 2.16 and 2.15.

2.8. Countability & Separability.

Motivation: In \mathbb{R}^k , we have two facts:

- \mathbb{Q}^k is dense in \mathbb{R}^k i.e. $\overline{\mathbb{Q}^k} = \mathbb{R}^k \ \& \ \mathbb{Q}^k$ is countable. i.e. \mathbb{R}^k has a countable dense subset. i.e. \mathbb{R}^k is separable.
- $\{B(x,r) \mid x \in \mathbb{Q}^k, r \in \mathbb{Q}^+\}$ is a countable collection of open ball in \mathbb{R}^k satisfying: \forall open set $U \subseteq \mathbb{R}^k$ and $y \in U \exists B(x,r) \in \mathscr{B} \ni y \in B(x,r) \subseteq U$. In particular, U is a union of some sub collection of \mathscr{B} . $U = \bigcup_{y \in U} B_y$, i.e. \mathbb{R}^k is of 2^{nd} countable.
- X is a metric space $x \in X$, $N_x = \{B(x, \frac{1}{n}) \mid n \in \mathbb{N}\}$ is a countable collection of nbh of x. Such N_x satisfies: \forall nbh U of $x, \exists n \in \mathbb{N} \ni B(x, \frac{1}{n}) \subseteq U(\because \exists r > 0 \ni B(x, r) \subseteq U$, choose $n >> 0 \ni \frac{1}{n} < r$). Then $x \in B(x, \frac{1}{n}) \subseteq B(x, r) \subseteq U$. i.e. Each point of X has a countable nbh base(system) i.e. X is of 1^{st} countable, i.e. \mathbb{R}^k has a countable base.

<u>Definition</u>. Let X be a topological space

- (1) X is first if every point of X has a countable nbh system(or base), i.e. \exists a countable collection $\{V_n \mid n \in \mathbb{N}\}$ of nbh of $x \ni \forall$ nbh U of $x, \exists n \in \mathbb{N}, V_n \subseteq U$
- (2) X is of second countable if X has a countable a base, i.e. \exists a countable collection $\mathscr{B} = \{B_n \mid n \in \mathbb{N}\}$ of open sets in $X \ni$ every open set U is a union of some subcollection of \mathscr{B} or \forall open set U in X and $x \in U$, $\exists n \in \mathbb{N} \ni x \in B_n \subseteq U$
- (3) X is separable if X has a countable dense subset, i.e. \exists a countable set $D \subseteq X \ni \overline{D} = X$.

Remark.

(1) Every 2^{nd} countable topology space X is of 1^{st} countable, but not converse. \therefore Let $\mathscr{B} = \{B_1, B_2, \dots\}$ be a countable base for X. Given $p \in X$, let $\mathscr{B}_p = \{B_n \mid p \in B_n\}$ Then \mathscr{B} , so \mathscr{B}_p is countable and is a collection of open set in X containing of p.

Claim \mathscr{B}_p is a nbh system (or base) of p. Let U be a nbh of p. Then $U = \bigcup_{n \in F} B_n$, $F \subseteq \mathbb{N}$. In particular, $p \in B_n$ for some $n \in F$. Hence, $B_n \in B_p$ & $p \in B_n \subseteq U$, $\therefore \mathscr{B}_p$ is a countable nbh system of p. Hence, X is of 1^{st} countable.

Consider X an uncountable set with discrete metric. Hence, X is 1^{st} countable. In fact, $\forall p \in X$, $N_p = \{\{p\}\}$ is a countable nbh base of p. However, X is not of 2^{nd} countable. Note that if \mathscr{B} is a base for the discrete space X then $\mathscr{B} \subseteq \{\{x\} \mid x \in X\}$

Now, X is uncountable, so is \mathcal{B} . Hence, X is not of 2^{nd} countable.

- (2) We know that every metric space is of 1^{st} countable. In fact, $\forall p \in X$, $N_p = \{B(p, \frac{1}{n}) \mid n \in \mathbb{N}\}$ is a countable nbh system of p
- (3) We know that \mathbb{R} is separable with countable dense subset \mathbb{Q} . In general, \mathbb{R}^n is separable with countable dense subset \mathbb{Q}^n (Exercise 22)

Theroem 2.27. Every 2^{nd} countable topology space is separable

Remark. Note that X is a metric space. $D \subseteq X$.

D is dense in $X \Leftrightarrow \overline{D} = X \Leftrightarrow \forall$ nonempty open set U in $X, U \cap D \neq \emptyset$ $\Leftrightarrow \forall x \in X, \exists \text{ a sequence } \{a_n\} \text{ in } D$ $\ni a_n \to x \text{ on } n \to \infty$

Proof.

- (\Rightarrow) Suppose $\overline{D}=X$, i.e. D is dense in X, i.e. $\forall x\in X,\ x\in\overline{D}$. Now, given a nonempty open set U in X. Choose $x\in U$ So U is a nbh of x, hence $U\cap D\neq\emptyset$
- (\Leftarrow) Suppose the condition holds, them $\forall x \in X$ and nbh U of x, $U \cap D \neq \emptyset \implies x \in \overline{D} \implies X \subseteq \overline{D} \subseteq X \implies \overline{D} = X$, i.e. D is dense in X.

Proof. (Theorem 2.27) Let $\mathscr{B} = \{B_1, B_2, \cdots, B_n, \cdots\}$ be a countable base of X. Choose a point $x_n \in B_n$, $n \in \mathbb{N}$ and form the set $D = \{x_1, x_2, \cdots, x_n, \cdots\}$, then D is countable.

Claim: D is dense in X, i.e. $\overline{D} = X$. Given a nonempty open set U in X, then $\exists n \in \mathbb{N} \ni B_n \subseteq U \implies x_n \in U \implies U \cap D \neq \emptyset$. Hence, $\overline{D} = X$ by the remark above. So X is separable.

Theroem 2.28. Every separable metric space X is of 2^{nd} countable.

Proof. Choose a countable dense subset D of X. Form the countable collection of open ball $\mathscr{B} = \{B(x,r) \mid x \in D, r \in \mathbb{Q}^+\}$ (it is countable). Claim \mathscr{B} is a base for X. We are done.

(Note that \mathscr{B} is a base for a topology space $X \Leftrightarrow$ every open set in X is a union of some subcollection of $\mathscr{B} \Leftrightarrow \forall$ open set $U \subseteq X$ and $p \in U$, $\exists B \in \mathscr{B} \ni x \in B \subseteq U$)

(\Rightarrow) Given an open set U in X and $p \in U$ by assumption $U = \bigcup_{\alpha \in I} B_{\alpha}$, where $B_{\alpha} \in \mathscr{B} \implies p \in B_{\alpha_0}$ for some $\alpha_0 \in I \implies p \in B_{\alpha_0} \subseteq U$ (\Leftarrow) Suppose the condition holds. To prove \mathscr{B} is a base for X. Given a nonempty open set U in X. $\forall \ p \in U, \exists B_p \in \mathscr{B} \ni pinB_p \subseteq U$. $\therefore U = \bigcup_{p \in U} B_p \therefore \mathscr{B}$ is a base for X. By the remark above, it is enough to show: Given a nonempty open set $U \subseteq X$ and $p \in U$, $\exists B(x,r) \in \mathscr{B} \ni p \in B(x,r) \subseteq U$. Now, $p \in U$ and U is open $\Longrightarrow \exists t > 0 \ni B(p,r) \subseteq U$. Choose $r \in \mathbb{Q}^+ \ni \frac{t}{4} < r < \frac{t}{2}$, Since D is dense in X, $B(p,r) \cap D \neq \emptyset$. Choose $x \in B(p,r) \cap D$. Then $B(x,r) \in \mathscr{B}$

Claim $p \in B(x,r) \subset U$

- $d(x,p) < r \implies p \in B(x,r)$
- $\forall y \in B(x,r), \ d(y,p) \leq d(y,x) + d(x,p) < r + r = 2r < t \implies y \in B(p,t) \subseteq U \ \therefore y \in U \ \therefore B(x,r) \subseteq U.$

Corollary 2.29. The Euclidean space \mathbb{R}^k is of 2^{nd} countable.

Note that from the proof of Thm 2.28, \mathbb{R}^k has a countable base of the form:

$$\mathcal{B} = \{B(x,r) \mid x \in \mathbb{Q}^k \& r \in \mathbb{Q}^+\}$$
$$= = \{A_1, A_2, \dots\}$$

Theroem 2.30. Every compact metric space X is of 2^{nd} countable.

Proof. The last statement follows from Thm 2.27 To prove X is of 2^{nd} countable. For each $n \in \mathbb{N}$, $\{B(x, \frac{1}{n}) \mid x \in X\}$ is an open covering of X,

i.e. $X = \bigcup_{x \in \mathbb{R}} B(x, \frac{1}{n})$. By companies of X, it has a finite subcovering

say $X = \bigcup_{n=0}^{n} B(x_{n_i}, \frac{1}{n})$. Then \mathscr{B} is a countable collection of open balls

in X.Claim \mathscr{B} is a base for X. It suffices to show: given a nonempty open set U and $p \in U$, $\exists B(x_{n_i}, \frac{1}{n}) \ni \mathscr{B} \ni p \in B(x_{n_i}, \frac{1}{n}) \subseteq U$. From $p \in U$ and U is open, $\exists r > 0 \ni B(p, r) \subseteq U$. Choose $n >> 0 \ni$

$$\frac{2}{n} < r$$
. Since $X = \bigcup_{i=1}^{l_n} B(x_{n_i}, \frac{1}{n}), \ p \in B(x_{n_i}, \frac{1}{n})$ for some $1 \le i \le l_n$.

Finally, $p \in B(x_{n_i}, \frac{1}{x}) \subseteq U$

• $d(p, x_{n_i}) < \frac{1}{n} \implies p \in B(x_{n_i}, \frac{1}{n})$

•
$$\forall y \in B(x_{n_i}, \frac{1}{n}), d(y, p) \le d(y, x_{n_i}) + d(x_{n_i}, p) < \frac{1}{n} + \frac{1}{n} = \frac{2}{n}$$

$$\therefore p \in B(x_{n_i}, \frac{1}{n}) \subseteq U$$

Theroem 2.31 (Lindelof Covering). Let $S \subseteq \mathbb{R}^k$. Them every open coverning $\mathscr{U} = \{U_\alpha \mid \alpha \in I\}$ of S has a countable subcovernings.

Proof. Let $\{a_1, A_2, \dots\}$ be the countable base of \mathbb{R}^k defined as above. Note that $S \subseteq \bigcup_{\alpha \in I} \forall x \in S, x \in U_\alpha$ for some $\alpha \in I$. Hence $\exists n \in I$

 $\mathbb{N} \ni xinA_n \subseteq U_{\alpha}$. Of course, there may be infinitely many such n. We choose one of them and fix it, say $x \in A_{m(x)} \subseteq U_{\alpha}(\text{e.g. } m(x) = \min\{n \in \mathbb{N} \mid x \in A_n \subseteq U_{\alpha}\})$. Then the collection $\{A_{m(x)} \mid x \in S\}$ is a countable open covering of S. Finally, for each $A_{m(x)}$, choose $U_{\alpha_{m(x)}} \ni A_{m(x)} \subseteq U_{\alpha_{m(x)}}$. Then $\{U_{\alpha_{m(x)}} \mid x \in X\}$ is a countable subcoverning of S.

Corollary 2.32. Let $S \subseteq \mathbb{R}^k$ be open, if $S = \bigcup_{\alpha \in I} U_{\alpha}$ is a union of

open sets in X, then $S = \bigcup_{n=1}^{\infty} U_{\alpha_n}$ is a countable union. : By Lindelof covering theorem.

2.9. Perfect Sets in Metric Spaces. Recall a subset E in a metric space X is perfect if E is closed in X and and every point of E is its accumulation point. i.e. E' = E

Example

- $-\infty < a < b < \infty$, [a, b] is perfect
- \mathbb{R} is perfect

Theroem 2.33. Every nonempty perfect set E in \mathbb{R}^k is uncountable

Proof. E is an infinite set (: finite set has no accumulation point), Suppose E were countable, write $E = \{x_1, x_2, \cdots\}$. We use induction to construct a sequence $\{V_n\}$ of open sets in X as follows:

Let V_1 be any neighborhood of $y_1 = x_1$, e.g. $V_1 = B(x_1, r)$, it's closure is $\overline{V_1} = \overline{B}(x_1, r)$, $x_1 \in E'$, $V_1 \cap E$ is an infinite set, so $\exists y_2 \in V_1 \cap E \ni y_2 \neq y_1$. Choose a neighborhood V_2 of $y_2 \ni$

- $(i) \ \overline{V_2} \subseteq V_1$
- (ii) $x_1 \notin \overline{V_2}$

(iii) $V_2 \cap E \neq \emptyset$ (: $y_2 \in E = E'$ and it's also an infinite set)

Suppose that, for $n \geq 3$, V_n has been chosen $\ni V_n$ is a neighborhood of some $y_n \in E \ni$

- $(1) \ \overline{V_n} \subseteq V_{n-1}$
- $(2) x_{n-1} \notin \overline{V_n}$
- (3) $V_n \cap E \neq \emptyset$ is an infinite set

Since $V_n \cap E$ is an infinite set, $\exists y_{n+1} \in V_n \cap E \ni y_{n+1} \neq y_n$. Again, choose a neighborhood V_{n+1} of $y_{n+1} \ni$

$$(1) \ \overline{V_{n+1}} \subseteq V_n$$

- $(2) x_n \notin \overline{V_{n+1}}$
- (3) $V_{n+1} \cap E \neq \emptyset$ is an infinite set.

By induction, we have constructed such sequence $\{V_n\}$. Put $K_n = \overline{V_n} \cap E$, $n \ge 1$. Then $\{K_n\}$ is a decrease sequence of nonempty compact sets in \mathbb{R}^k .

 $\overline{V_n}$ is closed, E is closed $\Longrightarrow K_n = \overline{V_n} \cap E$ is closed, each $\overline{V_n}$ is bounded $\therefore K_n$ is closed and bounded by H.B. theorem, K_n is compact.

$$\begin{array}{c} \cdot \not \boxtimes \neq V_n \cap E \subseteq \overline{V_n} \cap E \implies E_n = \overline{V_n} \cap E \neq \emptyset \\ \cdot \overline{V_n} \cap E \supseteq \overline{V_{n+1}} \cap E = K_{n+1} :: \{K_n\} \text{ is decrease.} \end{array}$$

By Cantor's intersection theorem, $\bigcap_{n=1}^{\infty} K_n \neq \emptyset$. Pick $y \in \bigcap_{n=1}^{\infty} K_n$, $y \in E(\because K_n \subseteq E \forall n \geq 1)$. Since $x_n \notin \overline{V_{n+1}} \ \forall n \geq 1$, so $x_n \notin K_n \forall n \geq 1 \implies y \notin E(\rightarrow \leftarrow)$ to $E = \{x_1, x_2, \cdots\}$ $\therefore E$ is uncountable.

Corollary 2.34. Every nondegenerate intervvl is uncountable.

Proof. : Every nondegenerate interval I in \mathbb{R} must contain a closed and bounded interval [a, b] with a < b which is perfect, so it is uncountable by theorem 2.31. Hence I is uncountable.

Construction of the Cantor set $\underline{P} \subseteq [0,1]$ in \mathbb{R} which is a perfect set

- (a) Remove the middle third open subinterval of [0,1]. There are two closed subintervals $[0,\frac{1}{3}]$ and $[\frac{2}{3},1]$. Let $C_1=(\frac{1}{3},\frac{2}{3})$ and $E_1=[0,\frac{1}{3}]\cup [\frac{2}{3},1]$
- (b) Remove te middle thirds of $[0, \frac{1}{3}]$ and $[\frac{2}{3}, 1]$ respectively. There are $2^2 = 4$ subintervals $[0, \frac{1}{3^2}]$, $[\frac{2}{3^2}, \frac{3}{3^2}]$, $[\frac{6}{3^2}, \frac{7}{3^2}]$, $[\frac{8}{3^2}, 1]$
- (c) Countinue this process, we get a sequence $\{C_n\}$ of open sets and a sequence $\{E_n\}$ of closed sets satisfy
 - (i) $E_0 \supseteq E_1 \supseteq E_2 \subseteq \cdots$, i.e. $\{E_n\}$ is a decrease sequence of closed sets in [0,1]
- (ii) Each E_n is a union of 2^n closed intervals, each of length 3^{-n}
- (iii) Each C_n is a union of 2^{n-1} open subintervals, each of length 3^{-n} . total length is $\frac{2^{n-1}}{3^n}$

Definition.
$$P(or\ C) = \bigcap_{n=1}^{\infty} E_n = [0,1] - \bigcup_{n=1}^{\infty} C_n (= \bigcap_{n=1}^{\infty} ([0,1] - C_n))$$

Properties of Cantor set P:

- (1) $\underline{P} \neq \emptyset$ by Cantor's intersection theorem
- (2) \underline{P} is compact (: \underline{P} is closed bein \cap of closed set and $\underline{P} \subseteq [0,1], [0,1]$ is compact)
- (3) \underline{P} is nowhere dense, i.e. $\overline{\underline{P}}^{\circ} = \emptyset$, i.e. $\underline{P}^{\circ} = \emptyset$ $\therefore \underline{P}$ contains no nonempty open subintervals($\because \underline{P}^{\circ} \neq \emptyset \implies \exists x \in P^{\circ} \implies \exists \delta > 0, (x \delta, x + \delta) \subseteq \underline{P}$). If $\alpha < \beta$ and $(\alpha, \beta) \subseteq \underline{P}$, them $(\alpha,\beta)\subseteq E_n\forall n\geq 1.$ Choose $n>>0\ni \frac{1}{2^n}<\beta-\alpha.$ Then for $n>>0,\ E_n$ contains subinterval of length $\geq \frac{1}{2^n} (\to \leftarrow)$. Hence, \underline{P} is nowhere dense.

(4)
$$\underline{P} = \{ \sum_{n=1}^{\infty} \frac{a_n}{3^n} \mid a_n = 0 \text{ or } 2 \forall n \ge 1 \}$$

Recall the ternarry representation of a number $x \in [0, 1], x = \sum_{n=0}^{\infty} \frac{a_n}{3^n}, a_n = \frac{a_n}{3^n}$ $0, 1, 2 \forall n \geq 1$

if $fraca_n 3^n$ the a_n can be 1, then $\frac{1}{3} + \frac{1}{3}$ is not in \underline{P} if you want to represent $\frac{1}{3}$, you need use $0 + \frac{2}{3^2} + \frac{2}{3^3} + \cdots$, i.e.

This can be used to prove that \underline{P} is uncountable by $\underline{P} \to [0,1], x =$ $\sum_{n=1}^{\infty} \frac{a_n}{3^n} \to \sum_{n=1}^{\infty} \frac{a_n/2}{2^n}$ is bijative $\therefore \underline{P}$ is uncountable.

- (5) \underline{P} is of measure zero (i.e. the length of \underline{P} is zero)
- \therefore The totally length remove in the construction of \underline{P} is $\frac{1}{3} + \frac{2}{3^2} + \frac{2^2}{3^3} +$ $\cdots = 1$. This also proves that <u>P</u> is nowhere dence.
- (6) \underline{P} is perfect. In particular, by theorem 2.31, \underline{P} is uncountable \therefore Obviously \underline{P} is a nonempty closed set. Let $x \in \underline{P}$. Then $\forall (\alpha, \beta) \ni$ $x \in (\alpha, \beta)$. We prove that $(\alpha, \beta) \cap \underline{P} - \{x\} \neq \emptyset$, which says that x is an accumulation points of \underline{P} . Hence \underline{P} is perfect. By $x \in \underline{P}$, $x \in$ $E_n \ \forall n \geq 1$. Then \exists a closed subinterval $I_n \subseteq E_n \ni x \in I_n$. Choose $n >> 0 \ni I_n \subseteq (\alpha, \beta)$. Let x_n be an end point of $I_n \ni x \neq x_n$. By construction, $x_n \in \underline{P}$, so

$$x_n \in (\alpha, \beta) \cap \underline{P} - \{x\}$$

i.e. x is an accumulation point of \underline{P} , Hence \underline{P} is perfect.

<u>Definition.</u> Let X be a metric space (or topological space) $A, B \subseteq X$. We sat that A and B are separated if both $A \cap \overline{B}$ and $\overline{A} \cap B$ are empty sets.

<u>Definition</u>. A subset $E \subseteq X$ is called connected if E is not a union of two nonempty separated sets and E is disconnected if E is not connected

Remark. X is connected \Leftrightarrow X is not a union of two nonempty separated sets.

X is disconnected $\Leftrightarrow X$ is a union of two nonempty separated sets, say, $X = A \cup B$, A and B are nonempty separated. i.e. $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$, i.e. $A = \overline{A}$, $B = \overline{B}$: A and B are closed : A and B are both open and closed.

Remarks and Examples

- (1) Separated sets and disjoint
- (2) [0,1] and (1,2) are not separated
- (3) (0,1) and (1,2) are separated

Theroem 2.35. Let $E \subseteq \mathbb{R}$ be a set. Then E is connected $\Leftrightarrow E$ is an interval

Proof. We may assume that $E \neq \emptyset$

(⇒) Assume that E is connected. If E were not an interval, then $\exists \ x < y \text{ in } E \text{ and } z \notin E \ni x < Z < y$. Let $A = (-\infty, z) \cap E$ and $B = (z, \infty) \cap E$. Then A, B are nonempty, $\overline{A} \cap B = \emptyset$, $A \cap \overline{B} = \emptyset$ and

$$E = E \cap (\mathbb{R} - \{z\})$$

$$= E \cap [(-\infty, z) \cup (z, \infty)]$$

$$= (E \cap (-\infty, z)) \cup (E \cap (z, \infty))$$

$$= A \cup B$$

- \therefore $\{A,B\}$ is a nonempty separation of E ($\rightarrow\leftarrow$) to connected. \therefore E is an interval
- (\Leftarrow) Suppose E is an interval. To show that E is connected. If not, then \exists two nonempty separated sets A and $B \ni E = A \cup B$. Pick $x \in A$ and $y \in B$. Then $x \neq y(\because A \cap B = \emptyset)$. We may assume that x < y. Define $z = \sup(A \cap [x, y])$, By (9) in section 2.5, $z \in \overline{A \cap [x, y]} \in \overline{A}$. Hence $z \notin B(\because \overline{A} \cap B = \emptyset)$. Also $x \leq z \leq y$. But $y \in B$ and $z \notin B \implies x \leq z < y$

If $z \notin A$, then x < z < y and $z \notin E(\rightarrow \leftarrow)$ to E is an interval. If $z \in A$, then $z \notin \overline{B}(\because A \cap \overline{B} =)$, since $z \notin B$, $z \in \mathbb{R} - \overline{B}$ which is open $\Longrightarrow \exists \delta > 0 \ni (z - \delta, z + \delta) \subseteq \mathbb{R} - \overline{B}$. Choose $z < z_1 < z + \delta < y$, i.e. $z < z_1 < y$. Then $z, y \in E$, z < y and $z_1 \notin E(\rightarrow \leftarrow)$ to E is an interval

Application of Connectedness

X: connected topological space (or metric space)

P: a property on X

 $D = \{ x \in X \mid P \text{ holds at } x \}$

If one can prove D is nonempty and closed and open, them D=X $\therefore X=D\cup (X-D),\ \overline{D}\cap (X-D)=$ and $D\cap \overline{(X-D)},$ i.e. D and X-D are separated

Since X is connected and $D \neq \emptyset$, so $X - D = \emptyset$, i.e. X = D

3. Infinite Sequence & Series

- We will assume you are familiar with all operations of real(complex) sequence
- \bullet We have defined sequence in a set X

Recall: let $\{a_n\}$ be a real or complex sequence, $\{a_n\}$ converges if $\exists a \in \mathbb{R}(\mathbb{C})$ satisfying $\forall \epsilon > 0, \exists N \in \mathbb{N} \ni \forall n \geq N, |a_n = a| < \epsilon$

- Now, we study the properties of a sequence in a metric space(topological space)
- **3.1. Convergent Sequence.** Let X be a metric space $\&\{x_n\}$ be a sequence in $X, x : \mathbb{N} \to X$

<u>Definition.</u> We say that $\{x_n\}$ convergences (in X) if $\exists p \in X$ satisfying $\forall \epsilon > 0, \exists N \in \mathbb{N} \ni \forall n \geq N, d(x_n, p) < \epsilon$, Otherwise, $\{x_n\}$ divergences.

Remark.

- (1) If $\{x_n\}$ convergences as in definition, them p is called the limit of the sequence $\{x_n\}$ and is denoted by $\lim_{n\to\infty} x_n = p$ or $x_n \to p$ as $n \to \infty$
- (2) $x_n \to p$ as $n \to \infty \Leftrightarrow the \ real \ sequence \ \{d(x_n, p)\}$ convergences to 0, i.e. $\lim_{n \to \infty} d(x_n, p) = 0$
- (3) if $\{x_n\}$ convergences, them its limit is !
- (4) The convergence of a sequence depends not only the sequence but also on the space.

e.g.
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
 in \mathbb{R} , but $\{\frac{1}{n}\}$ divergences in $(0,1)$

Recall Let $\{x_n\}$ are a sequence in a set X with is a function $x : \mathbb{N} \to X$. The image of the sequence = the image of the function $X = \{x_n \mid n = 1, 2, \dots\}$

Remark. The range of a sequence may be finite. e.g. $\{(-1)^n\}$ in \mathbb{R} , whose range $\{-1,1\}$ is finite, but $\{\frac{1}{n}\}$ has range $\{\frac{1}{n} \mid n=1,2,\cdots\}$

<u>Definition</u>. A sequence $\{x_n\}$ in X is said to be bounded if its range is a bounded subset of X

Remark. A sequence $\{x_n\}$ in X is said to be bounded if its range is a bounded subset of X

Example

- (1) Every const sequence $\{p\}$ in a metric space convergence, i.e. $\lim p =$
- (2) $\lim_{n\to\infty} \frac{1}{n} = 0$ in \mathbb{R} and $\{\frac{1}{n}\}$ is bounded (but the range is finite) (3) $\{(-1)^n\}$ divergences, but $\{(-1)^n\}$ is bounded. (range is finite).
- (4) $\{n^2\}$ divergences in \mathbb{R} and is unbounded. In fact, $\lim_{n\to\infty} n^2 = +\infty$ which range is infinite)
- (5) $\lim_{n\to\infty} \left(1 + \frac{(-1)^n}{n}\right) = 1$ and $\left\{1 + \frac{(-1)^n}{n}\right\}$ is bounded. (range is infinite)
- (6) $\{i^n\}$ divergence and it's bounded (range is finite)
- (7) Identify all convergence sequence in a discrete metric space X. $\{x_n\}$ convergence to $p \Leftrightarrow \forall \epsilon > 0 \exists N \in \mathbb{N} \ni \forall n \geq N, d(x_n, p) < \epsilon \Leftrightarrow \{x\}n\}$ is almost constant.

In metric space, we can use sequences to characterise adherent and accumulation point

Theroem 3.1. Let $\{x_n\}$ be a sequence in a metric space X and $E \subseteq X$ (a) $x_n \to p$ as $n \to \infty \Leftrightarrow \forall$ neighborhood U of $p, \exists N \in \mathbb{N} \ni \forall n \geq$ $N, x_n \in U$

- (b) If $\{x_n\}$ convergences, them its limit is!
- (c) If $\{x_n\}$ convergences, them its range is bounded, but not converse
- (d) $p \in \overline{E} \Leftrightarrow \exists \ a \ sequence \ \{a_n\} \ in \ E \ni a_n \to p$
- (e) $p \in E' \Leftrightarrow \exists \ a \ distinct \ sequence(a_n \neq a_m \forall n \neq m) \ \{a_n\} \ in \ E \ni$ $a_n \to p$

Proof.

(a)

$$x_n \to p \iff \forall \epsilon > 0, \exists N \in \mathbb{N} \ni d(x_n, p) < \epsilon(\forall n \ge N)$$

 $\Leftrightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} \ni x_n \in B(p, \epsilon)(\forall n \ge N)$
 $\Leftrightarrow \forall \text{ neighborhood } U \text{ of } p, \exists N \in \mathbb{N} \ni \forall n \ge N, x_n \in U$

- (b) Suppose $x_n \to p$, $x_n \to q$ and $p \neq q$, let $\epsilon = \frac{1}{2}d(p,q)$. By definition, $\exists N_1 \ni \forall n \geq N_1, d(x_n, p < \epsilon) \text{ and } \exists N_2 \ni \forall n \geq \tilde{N_2}, d(x_n, q) < \epsilon$ Let $N = \max\{N_1, N_2\}$ them $\forall n \geq N$, above holds. Hence $d(p,q) \leq$ $d(p, x_N) + d(x_N, q) < \epsilon + \epsilon = 2\epsilon = d(p, q) (\rightarrow \leftarrow) : p = q$
- (c) We have seen bounded sequence may not converges. If $x_n \to \infty$ p, them for $\epsilon = 1, \exists N \in \mathbb{N} \ni \forall n \geq N, d(x_N, p) < 1$, i.e. $\forall n \geq N$ $N, x_n \in B(p,1)$. Let $R = \max\{d(p,x_1), \cdots, d(p,x_{n-1})\} + 1$, Then $x_n \in B(p,R) \forall n \geq 1 : \{x_n\} \text{ is bounded}$

(d) (\Rightarrow) Suppose $p \in \overline{E}$. Them $\forall n \geq 1, B(p, \frac{1}{n}) \cap E \neq \emptyset$. Choose $a_n \in B(p,\frac{1}{n}) \cap E, n \geq 1$. We get a sequence $\{a_n\}$ in E and $0 \leq n$ $d(x_n, p) < \frac{1}{n}, \forall n \ge 1.$ By squeezing lemma, $\lim_{n\to\infty} d(a_n, p) = 0$, i.e. $a_n \to p$ as $n\to\infty$ (\Leftarrow) Suppose the conditions holds. $\forall r > 0, \exists N \in \mathbb{N} \ni \forall n \geq N, d(a_n, p) <$ $r \implies \forall n \geq N, a_n \in B(p,r) \implies B(p,r) \cap E \neq \emptyset : p \in E$ (e) It's similar to above.

Theroem 3.2. For real or complex sequences $\{x_n\}$ and $\{y_n\}$, $\lim_{n\to\infty} x_n =$ x, $\lim_{n\to\infty} y_n = y$, $a, b \in \mathbb{R}$ or \mathbb{C} , $c \in \mathbb{R}$ or \mathbb{C}

- (1) $\lim c = c$
- $(2) \lim_{n \to \infty} (ax_n + by_n) = ax + by = a \lim_{n \to \infty} x_n + b \lim_{n \to \infty} y_n$
- (3) $\lim_{n \to \infty} x_n y_n = xy = \lim_{n \to \infty} x_n \lim_{n \to \infty} y_n$ (4) If $y \neq 0$, $\lim_{n \to \infty} \frac{x_n}{y_n} = \frac{x}{y} = \frac{\lim_{n \to \infty} x_n}{\lim_{n \to \infty} y_n}$ (5) If $\{z_n\}$ is a complex sequence, them $z_n \to z$ as $n \to \infty \Leftrightarrow z_n \to z$
- $Rez_n \rightarrow z \& Imz_n \rightarrow z (using |Rew|, |Imw| \le |w| \le |Rew| +$ $|Imw| \forall w \in \mathbb{C}$)
- (6) (Squeezing Lemma) If $\{x_n\}\{y_n\}$ and $\{t_n\}$ are real sequence \ni

$$x_n \le t_n \le y_n \text{ for } n >> 0$$

and
$$\lim x_n = \lim y_n = l$$
, them $\lim_{n \to \infty} t_n = l$
(7) $\lim_{n \to \infty} x_n = x \implies \lim_{n \to \infty} |x_n| = |x| (using ||x_n| - |x|| \le |x_n - x|)$

Examples.

(i)
$$\lim_{n \to \infty} (1 - \frac{i}{n}) = 1$$
 (Re $(1 - \frac{i}{n}) = 1$, Im $(1 - \frac{i}{n}) = \frac{1}{n}$)

$$(ii) \lim_{n \to \infty} \frac{1}{n} \sin \frac{1}{n} = 0$$

$$0 \le \left| \frac{1}{n} \sin \frac{1}{n} \right| \le \frac{1}{n} \implies \lim_{n \to \infty} \left| \frac{1}{n} \sin \frac{1}{n} \right| = 0$$

$$\implies \left| \lim_{n \to p} \frac{1}{n} \sin \frac{1}{n} \right| = 0 \implies \lim_{n \to \infty} \frac{1}{n} \sin \frac{1}{n}$$

(iii)
$$\{(-1)^n\}$$
 divergence, but $|(-1)^n| = 1 \to 1$

For sequences in \mathbb{R}^k including in $\mathbb{C} \approx \mathbb{R}^2$, we have.

Theroem 3.3. Let $\{x_n\}$ be a sequence in \mathbb{R}^k , where

$$x_n = (x_{1,n}, x_{2,n}, \cdots, x_{k,n}), n = 1, 2, \cdots$$

(a)
$$x_n \to p(p_1, \dots, p_k)$$
 in $\mathbb{R}^k \Leftrightarrow x_{i,n} \to p_i \forall 1 \le i \le k$, i.e. $\lim_{n \to \infty} (x_{1,n}, \dots, x_{k,n}) = (\lim_{n \to \infty} x_{1,n}, \dots, \lim_{n \to \infty} x_{k,n})$ if exists

(b) Let $\{x_n\}\{y_n\}$ be sequences in \mathbb{R}^k and $\{d_n\}$ be a sequence in \mathbb{C} and $a, b \in \mathbb{R}$. If $x_n \to x, y_n \to y$ and $d_n \to d$, then

- $ax_n + by_n \to ax + by$
- $\bullet < x_n, y_n > \to < x, y >$
- \bullet $d_n x_n \to d_x$
- $\bullet ||x_n|| \to ||x||$

If k = 3, them $x_n \times y_n \to x \times y$

Proof.

(a) It follows from the inequation $\forall y \in \mathbb{R}^k |y_i| \leq ||y|| \leq \sum_{i=1}^k |y_i|$

Suppose
$$x_n \to p \implies ||x_n - p|| \to 0$$

 $\implies \forall 1 \le i \le k, |x_{i,n} - p_i| \to 0 \forall 1 \le k \le n$
 $\implies \forall 1 < i < k, x_{i,n} \to p_i \text{ as } n \to \infty$

 (\Leftarrow)

Suppose
$$x_n \to p_i, 1 \le i \le k \implies ||x_{i,n} - p_i|| \to 0 \ \forall 1 \le k \le n$$

$$\implies \sum_{i=1}^k |x_{i,n} - p_i| \to 0$$

$$\implies ||x_n - p_i|| \to 0 \implies x_n \to p$$

(b) By (a)

$$ax_n + by_n = (ax_{1,n}, ax_{2,n}, \cdots, ax_{k,n}) + (by_{1,n}, \cdots, by_{k,n})$$

 $= (ax_{1,n} + by_{1,n}, \cdots, ax_{k,n} + by_{k,n})$
 $\rightarrow (ax_1 + by_1, \cdots, ax_k + by_k) = ax + by$

$$\bullet < x_n, y_n > = \sum_{i=1}^k x_{i,n} y_{i,n} \to \sum_{i=1}^n x_i y_i = < x, y >$$

•
$$d_n x_n = (d_n x_{1,n}, \dots, d_n x_{k,n}) \to (dx_1, \dots, dx_k) = dx$$

 $||x_n|| = (\sum_{i=1}^k x_{i,n}^2)^{\frac{1}{2}} \implies (\sum_{i=1}^k x_i^2)^{\frac{1}{2}} = ||x||$

• $x_n \times y_n = (x_{2,n}y_{3,n} - x_{3,n}y_{2,n}, \cdots) \to (x_2y_3 - x_3y_2, \cdots) = x \times y$

3.2. Subsequences.

Theroem 3.4.

(a) If $\{x_n\}$ convergences to p, i.e. $\lim_{n\to\infty} x_n = p$, them so is every subsequence of $\{x_n\}$

(b) If X is compact and $\{x_n\}$ is a sequence in X, them $\{x_n\}$ has a convergent subsequence.

(c) Every bounded sequence $\{x_n\}$ in \mathbb{R}^k has a converge subsequence.

Proof. (a) Given a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ (Note that $\{n_k\}$ is strictly increasing, i.e. $n_1 < n_2 < \cdots$, hence, $k \leq n_k \ \forall k \geq 1$), $d(x_{n_k}, p) < \epsilon$. This proves $x_{n_k} \to p$ as $k \to \infty$

(b) Let $T = \{x_n \mid n \ge 1\}$ be the range of $\{x_n\}$

Case 1: T is a finite set. In this case, some x_{n_0} must appear infinitely many times in the sequence $\{x_n\}$. Choose $n_1 = n_0 \ni x_{n_1} = x_{n_0}$, and $n_2 > n_1 \ni x_{n_1} = x_{n_2}, \cdots$. In this way, we get a const subsequence $\{x_{n_k}\}$ which convergence to x_{n_0}

Case 2: T is an infinite set. In this case, T is an infinite subset of the compact metric space X. By Thm 2.17 (ii), T has an accumulation point p in X. By Thm 3.1 (e), \exists a sequence in T which converges to p. We may arrange such sequence to be a subsequence of $\{x_n\}$. We are done

 $y_1 = x_n$, choose $n_2 \to n_1 \ni x_{n_2}$ appears in $\{y_j\}$. Then $\{x_{n_k}\}$ is a subsequence of $\{x_n\}$ and $\{y_j\}$, $\therefore x_{n_k} \to p$

(c) : Since $\{x_n\}$ is bounded, we may choose a closed ball $\overline{B}(0,R)$ or a closed n-dimensional interval in $\mathbb{R}^k \ni \{x_n\}$ is a sequence in K, By (b), $\{x_n\}$ has a convergence subsequence.

Remark. Thm 3.4(a) can be used to detect the divergence of a sequence, e.g. $\{(-1)^n\}$ in \mathbb{R} which divergences, \therefore It has two subsequences $\begin{cases} x_{2n} \to 1 \\ x_{2n-1} \to -1 \end{cases}$ which is different.

<u>Definition.</u> Let $\{x_n\}$ be a sequence in X. A point $p \in X$ is called a subsequential limit of $\{x_n\}$ if \exists a subsequence $\{x_{n_k}\}$ of $\{x_n\} \ni x_{n_k} \to p$ as $k \to \infty$

Examples

- (1) If $\{x_n\}$ convergences to p, then $\{x_n\}$ has only on subsequence limit p ($E = \{p\}$)
- (2) $\{(-1)^n\}$ has two subsequence limit 1 and -1, $E = \{1, -1\}$
- (3) $\{n\}$ has no subsequence limit $(E = \emptyset)$

Let $\{x_n\}$ be a sequence in X and E be the set of all subsequence limits of $\{x_n\}$

Theroem 3.5. As above, E is a closed subset of X

Proof. If E is a finite set, them E is closed.

Now, assume that E is an infinite set, to show that E is closed, we must prove $E'\subseteq E$, i.e. E contains all its accumulation point. Given $q\in E'$, to prove $q\in E$, i.e. \exists a subsequence $\{x_{n)k}\}\ni x_{n_k}\to q$. Since E is infinite, $\{x_n\}$ is not a constant sequence, so we can choose $x_{n_1}\neq q$. Let $\delta=d(x_n,q)$, We construct subsequence $\{x_{n_k}\}$ of $\{x_n\}$ satisfying : $d(x_{n_k},q)\leq \frac{\delta}{2^{k-1}}\forall k\geq 1$. If it is done, them by squeezing lemma, $d(x,q)\to 0$ as $k\Longrightarrow \infty$.

Now, to construct such subsequence $\{x_{n_k}\}$. By induction, suppose k=1 we are done, we have found $n_1 < n_2 < \cdots < n_{k-1}, k \geq 2$. To find x_{n_k} . Since $q \in E', B(q, \frac{\delta}{2^k}) \cap E - \{q\} \neq \emptyset$. Choose $x \in B(q, \frac{\delta}{2^k}) \cap E - \{q\}$. Now, $x \in E, \exists$ a subsequence of $\{x_n\}$ which convergence to x. Hence $\exists n_k > n_{k-1} \ni d(x_{n_k}, x) < \frac{\delta}{2^k}$. Finally, $d(x_{n_k}, q) \leq d(x_{n_k}, x) + d(x, q) < \frac{\delta}{2^k} + \frac{\delta}{2^k} = \frac{\delta}{2^{k-1}}$. By induction, such subsequence $\{x_{n_k}\}$ can be found.

3.3. Cauchy Sequences.

Recall
$$x_n \to p \implies \forall \epsilon > 0 \ \exists N \in \mathbb{N} \ni \forall n \geq N, \ d(x_n, p) < \frac{\epsilon}{2}.$$

$$\therefore \forall m, n \geq N, \ d(x_m, x_n) \leq d(x_m, p) + d(p, x_n) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

<u>Definition</u>. A sequence $\{x_n\}$ in X is called a Cauchy sequence if it satisfies the Cauchy condition: $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ni \forall n, m \geq N, d(x_n, x_m) < \epsilon$

Remark.

- (i) Convergence sequence is Cauchy
- (ii) Cauchy sequence may not convergence, e.g. in (0,1) $\{\frac{1}{n}\}$ is Cauchy, but not convergence in (0,1)

$$\forall n, m \in \mathbb{N}, \ m \ge n, \ |\frac{1}{n} - \frac{1}{m}| \le \frac{1}{n} + \frac{1}{m} \le \frac{2}{n}$$

$$\forall \epsilon > 0, \ Choose \ N \in \mathbb{N} \ni \frac{2}{N} < \epsilon.$$

$$Them \ \forall n, m \ge N, \ |\frac{1}{n} - \frac{1}{m}| \le \frac{2}{N} < \epsilon \ \therefore \ \{\frac{1}{n}\} \ is \ Cauchy.$$

(iii)
$$\{x_n\}$$
 is Cauchy $\Leftrightarrow \lim_{n,m\to\infty} d(x_n,x_m) = 0$

(iv) Let $E_n = \{x_n, x_{n+1}, \dots\} n \ge 1$. Them $\{x_n\}$ is Cauchy $\Leftrightarrow \lim_{n \to \infty} dia(E_n) = 0$

Recall the definition of diameter: Let $S\subseteq V, S\neq\emptyset$. The diameter of S is $dia(S)=\sup\{d(x,y)\mid x,y\in S\}$ Let

Proof. (\Rightarrow) Suppose $\{x_n\}$ is Cauchy. Then $\forall \epsilon > 0$, $\exists N \in \mathbb{N} \ni \forall n, m \geq N, d(x_n, x_m) < \frac{\epsilon}{2}$. Then $\forall n \geq N$, dia $(E_n) \leq \frac{\epsilon}{2} < \epsilon \implies \lim_{n \to \infty} \text{dia } (E_n) = 0$ (\Leftarrow) Suppose $\lim_{n \to \infty} \text{dia } (E_n) = 0$, $\forall \epsilon > 0, \exists N \in \mathbb{N} \ni \forall n \geq N, \text{dia}(E_n) < \epsilon \implies \forall n, m \geq N, (x_n, x_m \in E_n), d(x_n, x_m \leq) \text{dia } (E_N) < \epsilon$ $\therefore \{x_n\}$ is Cauchy.

Remark. Every Cauchy seq $\{x_n\}$ in a metric space is bounded. For $\epsilon = 1, \exists N \in \mathbb{N} \ni \forall m, n \geq N, d(x_n, x_m) < 1$, In particular, $\forall n \geq N, d(x_n, x_N) < 1$. Let $R = \max\{d(x_i, x_N) \mid 1 \leq i \leq N-1\} + 1$. Then $x_n \in B(x_N, R) \forall n \geq 1$, i.e. $\{x_n \mid n \geq 1\} \subseteq B(x_N, R)$. Hence $\{x_n\}$ is bounded.

Theroem 3.6. (a) Every Cauchy sequence in a compact metric space converges.

(b) Every Cauchy sequence in \mathbb{R}^k convergences.

Proof. (a) Let $\{x_n\}$ be a Cauchy sequence in compact metric space X. Since X is compact, X is sequencially compact, so $\{x_n\}$ has a subsequence $\{x_{n_k}\} \ni x_{n_k} \to p$ as $k \to \infty$ for some $p \in X$.

Now to prove $x_n \to p$. Given $\epsilon > 0, \exists N \in \mathbb{N} \ni \forall n, m > N, d(x_n, x_m) < \frac{\epsilon}{2}(\because \{x_n\} \text{ is Cauchy}), \exists k_0 \in \mathbb{N} \ni \forall k \geq k_0, d(x_{n_k}, p) < \frac{\epsilon}{2}(\because x_{n_k} \to p).$ Hence, $\forall n \geq N, d(x_n, p) \leq d(x_n, x_{n_k}) + d(x_{n_k}, p) < \frac{\epsilon}{2} + \frac{\epsilon}{2} < \epsilon$, where k >> 0

Another proof of (a)

By (2)&(4) above,

$$\lim_{n\to\infty} \operatorname{tia}(\overline{E}_n) = \lim m \to \infty \operatorname{dia}(E_n) = 0$$

where $E = \{x_n, x_{n+1}, \dots\}, n \ge 1$

Now, each $\overline{E_n}$ is compact(: closed subset of compact set X) and nonempty $\forall n \geq 1$, and $\{\overline{E_n}\}$ is decreasing(: $E_n \supseteq E_{n+1} \Longrightarrow \overline{E_n} \supseteq$

 \overline{E}_{n+1}) and dia $(\overline{E}_n \to 0)$. By Cantor's Intersection Theorem, $\bigcap_{n=1} \overline{E_n} =$

- $\{p\}$ Claim: $x_n \to p$ as $n \to \infty$, $\forall \epsilon > 0, \exists N \in \mathbb{N} \to \operatorname{dia}(\overline{E}_n) < \epsilon$. Since $p \in \overline{E}_n \forall n \geq 1, \forall n \geq N \& d(x_n, p) < \operatorname{dia}(\overline{E}_n) < \epsilon, \therefore x_n \to p$
- (b) Given a Cauchy sequence $\{x_n\}$ in \mathbb{R}^k . Then $\{x_n\}$ is bounded, choose a large k-dimensional closed interval

$$I = [a_1, b_1] \times \cdots \times [a_n, b_n]$$

 $\exists x_n \in I \forall n \geq 1$. Now, H.B. Theorem says that I is compact. Therefore, $\{x_n\}$ becomes a Cauchy sequence in the compact metric space I. By (a) $x_n \to p$ for some $p \in I$. This proves (b).

<u>Definition</u>. A metric space X is said to be complete if every Cauchy sequence in X convergences.

Rmks and Examples

- (1) In a complete metric space X, a sequence $\{x_n\}$ is Cauchy \Leftrightarrow it convergences.
- (2) By Thm. 2.6, we have two classes of complete metric spaces
 - Compact metric space
 - Euclidean space \mathbb{R}^k

In fact, \mathbb{R}^k is a Banach Space (complete normed linear space) and Hilbert space

- (3) A closed subset S of a complete metric space X is complete.
- \therefore Let $\{x_n\}$ be a Cauchy sequence in S. Then $\{x_n\}$ is a Cauchy sequence in X, hence, $x_n \to p$ for some $p \in X$. So $p \in \overline{S} = S$. Hence, S is complete.

- (4) Every closed subset of \mathbb{R}^k is complete.
- \therefore (3), In particular, every closed interval and closed ball in \mathbb{R}^k ,
- (5) (0,1) and \mathbb{Q} are not complete

<u>Definition</u>. Let $\{x_n\}$ be a real sequence

- (i) We say that $\{x_n\}$ is increasing, if $x_n \leq x_{n+1} \forall n \geq 1$
- (ii) We say that $\{x_n\}$ is strictly increasing, if $x_n < x_{n+1} \forall n \ge 1$
- (iii) We say that $\{x_n\}$ is decreasing, if $x_n \ge x_{n+1} \forall n \ge 1$
- (iv) We say that $\{x_n\}$ is strictly decreasing, if $x_n > x_{n+1} \forall n \geq 1$
- (v) We say that $\{x_n\}$ is monotonic if either $\{x_n\}$ is increasing or decreasing.
- (vi) We say that $\{x_n\}$ is strictly monotonic if either $\{x_n\}$ is strictly increasing or strictly decreasing

Examples

- $\{2n+1\}$ is increasing, $2n+1 \to +\infty$
- $\{-n\}$ is decreasing, $-n \to -\infty$
- $\{\frac{1}{n}\}$ is decreasing, $\frac{1}{n} \to 0$
- $\{\frac{1}{-n}\}$ is increasing, $\frac{1}{-n} \to 0$

We will show that every monotonic sequence convergences in $\mathbb{R}^* = [-\infty, \infty]$

Theroem 3.7. Let $\{a_n\}$ be a sequence

- (a) Let $\{a_n\}$ be increasing
- (i) If $\{a_n\}$ is bounded above, then $\{a_n\}$ convergence, in fact, $a_n \to supa_n = sup\{a_n \mid n \ge 1\}$
- (ii) If $\{a_n\}$ is not bonded above, then $a_n \to \infty$
- (b) Let $\{a_n\}$ be decreasing
- (a) If $\{a_n\}$ is bounded below, then $\{a_n\}$ convergences, in fact $a_n \to \inf\{a_n \mid n \ge 1\}$
- (b) If $\{a_n\}$ is not bounded below, them $\{a_n\} \to -\infty$

Remark. $\{a_n\}$ is increasing $\Leftrightarrow \{-a_n\}$ is decreasing. So, to study monotonic sequence, it suffices to consider the case of increasing sequence.

Proof. It suffices to prove (a) By same argument or considering $\{-a_n\}$, one can prove

(a) (i) $\{a_n\}$ is bounded above $\implies \{a_n \mid n \geq 1\}$ is bounded $\implies \alpha = \sup a_n$ exists and is finite Claim: $a_n \to \alpha$ as $n \to \infty$.

Given $\epsilon > 0 \exists n_0 \in \mathbb{N} \to \alpha - \epsilon < a_{n_0}$. Then $\forall n \geq n_0$, we have $\alpha - \epsilon < a_{n_0} \le a_n \le \alpha < \alpha + \epsilon$, i.e. $\forall n \ge n_0$, $|a_n - \alpha| < \epsilon$. This proves $a_n \to \alpha$

- (ii) $\forall M > 0$, since $\{a_n\}$ is not bounded above, $\exists n_0 \in \mathbb{N} \to \mathbb{N}$ $a_{n_0} \geq M \implies \forall n \geq M, a_n \geq a_{n_0} \geq M$. This proves $a_n \to +\infty$
- (b) is similar

(i') $\{a_n\}$ is bounded below \implies $\{-a_n\}$ is bounded above \implies $\lim_{n \to \infty} (-a_n) = \sup(-a_n) \implies -\lim_{n \to \infty} a_n = -\inf_{n \to \infty} a_n$ (ii') Similar

Remark. Let $\{a_n\}$ be a monotonic sequence, then $\{a_n\}$ convergences $\Leftrightarrow \{a_n\}$ is bounded