Sarcină: a scrie un program C pentru expresia aritmetică dată, ținând cont de precedența operațiilor.

Nivel de bază

1	$R = 3t^2 + 3l^5 + 4.9$	16	$S = \sqrt{\cos 4y^2 + 7,151}$
2	$K = \ln(p^2 + y^3) + e^p$	17	$N = 3y^2 + \sqrt{y+1}$
3	$G = n(y+3.5) + \sqrt{y}$	18	$Z = 3y^2 + \sqrt{y^3 + 1}$
4	$D = 9,8a^2 + 5,52\cos t^5$	19	$P = n\sqrt{y^3 + 1,09g}$
5	$L = 1,51\cos x^2 + 2x^3$	20	$U = e^{k+y} + tg x \sqrt{y}$
6	$M = \cos 2y + 3.6e^x$	21	$P = e^{y+5.5} + 9.1h^3$
7	$N = m^2 + 2.8 m + 0.55$	22	$T = \sin(2u)\ln(2y^2 + \sqrt{x})$
8	$T = \sqrt{ 6y^2 - 0.1y + 4 }$	23	$G = e^{2y} + \sin(f)$
9	$V = \ln(y + 0.95) + \sin x^4$	24	$F = 2\sin(0.214y^5 + 1)$
10	$U = e^y + 7,355k^2 + \sin^2 x$	25	$G = e^{2y} + \sin(f^2)$
11	$S = 9,756y^7 + 2tgx$	26	$Z = \sin\left(p^2 + 0.4\right)^3$
12	$K = 7t^2 + 3\sin x^3 + 9,2$	27	$W = 1,03v + e^{2y} + tg x $
13	$E = \sqrt{ 3y^2 + 0.5y + 4 }$	28	$T = e^{y+h} + \sqrt{ 6,4y }$
14	$R = \left \sqrt{\sin^2 y + 6,835} + e^x \right $	29	$N = 3y^2 + \sqrt{ y+1 }$
15	$H = \sin y^2 - 2.8y + \sqrt{ y }$	30	$W = e^{y+r} + 7,2\sin r$

Sarcină: a scrie un program C pentru expresia aritmetică dată, ținând cont de precedența operațiilor.

Nivel intermediar

1	$G = \frac{e^{2y} + \sin f}{\ln(3.8y + f)}$	16	$W = \frac{4t^3 + \ln r}{e^{y+r} + 7,2\sin r}$
2	$F = \ln d + \frac{3.5d^2 + 1}{\cos 2y}$	17	$H = \frac{y^2 - 0.8y + \sqrt{y}}{23.1n^2 + \cos n}$
3	$U = \frac{\ln(k - y) + y^4}{e^y + 2,355k^2}$	18	$R = \frac{\sqrt{\sin^2 y + 6,835}}{\ln(y+k) + 3y^2}$
4	$G = \frac{9,33w^3 + \sqrt{w}}{\ln(y+3,5) + \sqrt{y}}$	19	$E = \frac{\ln(0.7y + 2q)}{\sqrt{3y^2 + 0.5y + 4}}$
5	$D = \frac{7,8a^2 + 3,52t}{\ln(a+2y) + e^y}$	20	$K = \frac{2t^2 + 3l + 7,2}{\ln y + e^{2l}}$
6	$L = \frac{0.81\cos i}{\ln y + 2i^3}$	21	$Q = \frac{\sqrt{k + 2.6 p \sin k}}{x - d^3}$
7	$N = \frac{m^2 + 2,8m + 0,355}{\cos 2y + 3,6}$	22	$S = \frac{4,351y^3 + 2t\ln t}{\sqrt{\cos 2y + 4,351}}$
8	$T = \frac{2,37\sin(t+1)}{\sqrt{4y^2 - 0,1y + 5}}$	23	$R = \frac{\sin^2 y + 0.3d}{e^y + \ln d}$
9	$V = \frac{(y+2w)^3}{\ln(y+0.75)}$	24	$U = \frac{\ln(2k+4,3)}{e^{k+y} + \sqrt{y}}$
10	$Z = \frac{2t + y\cos t}{\sqrt{y + 4,831}}$	25	$L = \cos^2 c + \frac{3t^2 + 4}{\sqrt{c + t}}$
11	$D = y^2 + \frac{0.5n + 4.8}{\sin y}$	26	$T = \frac{\sin 2u}{\ln(2y + u)}$
12	$R = \frac{\sin(2t+1)^2 + 0.3}{\ln(t+y)}$	27	$Z = \frac{\sin(p+0.4)^2}{y^2 + 7.325p}$
13	$A = \frac{\sin(2y+h) + h^2}{e^h + y}$	28	$W = \frac{0,004v + e^{2y}}{e^{\frac{y}{2}}}$
14	$P = \frac{e^{y+2.5} + 7.1h^3}{\ln\sqrt{y+0.04h}}$	29	$T = \frac{0,355h^2 - 4,355}{e^{y+h} + \sqrt{2,7y}}$
15	$F = \frac{2\sin(0,354y+1)}{\ln(y+2j)}$	30	$N = \frac{3y^{2} + \sqrt{y+1}}{\ln(p+y) + e^{p}}$

Sarcină: a scrie un program C pentru expresia aritmetică dată, ținând cont de precedența operațiilor.

Nivel înalt

1	$L = \frac{\sqrt{e^{x} - \cos^{4}(x^{2}a^{5})} + \arctan^{4}(a - x^{5})}{e\sqrt{ a + xc^{4} }}$	16	$P = \frac{\sin^3 x + \ln(2y + 3x)}{t^e + \sqrt{x}}$
2	$L = \operatorname{ctg}^{2} c + \frac{2x^{2} + 5}{\sqrt{c + t}}$	17	$T = \frac{\sqrt{x+b-a} + \ln y}{\arctan(b+a)}$
3	$A = \frac{\lg(y^3 - h^4) + h^2}{\sin^3 h + y}$	18	$S = \frac{4,351y^3 + 2t\ln t}{\sqrt{\cos 2y + 4,351}}$
4	$F = \frac{\sqrt{(2+y)^2 + \sqrt[7]{\sin(y+5)}}}{\ln(x+1) - y^3}$	19	$D = \frac{K^{-arx} - a\sqrt{6} - \cos(3ab)}{\sin^2(a \cdot \arcsin x + \ln y)}$
5	$G = \frac{\operatorname{tg}(x^4 - 6) - \cos^3(z + xy)}{\cos^4 x^3 c^2}$	20	$U = \frac{\operatorname{tg}^{3} y + \sin^{5} x \sqrt{b - c}}{\sqrt{a - b + c}}$
6	$K = \frac{\sqrt{x+b-a} + \ln(y)}{\arctan(b+a)}$	21	$N = \frac{\sqrt[5]{z + \sqrt{zx}}}{e^x + a^5 \operatorname{arctg.} x}$
7	$D = \frac{\cos(x^3 + 6) - \sin(y - a)}{\ln x^4 - 2\sin^5 x}$	22	$F = \cos(x^2 + 2) + \frac{3.5x^2 + 1}{\cos^2 y}$
8	$P = \frac{a^{5} + \sin^{4}(y - c)}{\sin^{3}(x + y) + x - y }$	23	$F = \frac{\sqrt{ x + \cos^3 x + z^4}}{\ln x - \arcsin(bx - a)}$
9	$R = \frac{\cos^3 y + 2^x d}{e^y + \ln(\sin^2 x + 7.4)}$	24	$f = \frac{\cos^7 bx^5 - (\sin a^2 + \cos(x^3 + z^5 - a^2))}{\arcsin a^2 + \arccos(x^7 - a^2)}$
10	$U = \frac{e^{x^3} + \cos^2(x - 4)}{\arctan x + 5.2y}$	25	$J = \frac{\operatorname{ctg}^3 a^3 + \operatorname{arctg}^2 a}{\sqrt{y^{\operatorname{tg} x}}}$
11	$I = \frac{2.33 \ln \sqrt{1 + \cos^2 y}}{e^y + \sin^2 x}$	26	$U = \frac{\ln(x^3 + y) - y^4}{e^y + 5.4k^3}$
12	$G = \frac{\cos^3 y+x - (x+y)}{\operatorname{arctg}^4(x+a)x^5}$	27	$P = \frac{a^{5} + \arccos(a + x^{3}) - \sin^{4}(y - c)}{\sin^{3}(x + y) + x - y }$
13	$R = \frac{a}{x - a} + \frac{b^x + \cos^3 x}{\log^3 a + 4.5}$	28	$G = \frac{\operatorname{tg}(x^4 - 6) - \cos^{3x}(z + x^3 y)}{\cos^2 x^3 c^2}$
14	$R = \frac{\sin(x^2 + 4)^3 + 4.3}{\sin^3 x^4}$	29	$R = \frac{\cos^2 y + 2.4d}{e^y + \ln(\sin^2 x + 6)}$
15	$N = \frac{m^2 + 2.8m + 0.355}{\cos 2y + 3.6}$	30	$K = \frac{\sqrt{(3+x)^6 - \ln x}}{e^6 + \arcsin 6x^2}$