EE111 - TEST I

Show all your work in the space provided. Answers with a simple "yes", "no", or a single number are incomplete and will not be given full credit. Answers in the form: ans = $\frac{a+sqrt(b)}{c}$ are fine where appropriate. Good English is required on essays.

Problem 1. (5 points) Derive the truth table for the following function: $\mathbf{F} = (x + z')(y' + z)'$

Problem 2. (5 points) Give the binary equivalent of the following hexadecimal number: $14A0.2A_{16}$

Problem 3. (11 points) Perform binary subtraction of the following two's complement numbers by taking the two's complement of the subtrahend (be sure to indicate if an underflow or overflow occurs):

- a) (5 points) 0101010 0110
- b) (5 points) 0111010 1010

Problem 4. (7 points) Minimize the number of operators in the following Boolean expression: x'y + x'z + y'z + x'y'z.

Problem 5. (6 points) Evaluate the following, assuming unsigned binary numbers (be sure to indicate if an underflow or overflow occurs): (101010 - 111)/101

Problem 6.	(5 points)	Represent	the following	${\bf number\ in}$	BCD: 5280_{10} .
------------	------------	-----------	---------------	--------------------	--------------------

- **Problem 7.** (11 points) Perform binary multiplication with the following two's complement numbers:
 - a) 101010 X 0101

b) 011010 X 1110

Problem 8. (7 points) Using Truth-Tables, prove the following expressions are equivalent,

$$x' + y'z + yz' = (xy'z' + xyz)'$$

Problem 9. (7 points) Represent the following function in Canonical Form: $\mathbf{F} = x \oplus y \odot z$.

Problem 10. (5 points) Briefly explain what a behavioral representation is and why it is used.

