Sistemas de Defesa: Uma abordagem para desvios de obstáculos no auxílio do controle de um quadricóptero em tempo real

Bruno da Silva Giovanini

Paulo F.F. Rosa¹ (Orientador)

¹Instituto Militar de Engenharia - IME Laboratório de Robótica e Inteligência Computacional Programa de Pós-graduação em Engenharia de Defesa

3 de fevereiro de 2015

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- Cronograma
- Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- 6 Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Introdução I

- Crescente utilização para missões civis e militares
- Voos em ambientes fechados e restritos
- Risco de colisão com equipamentos críticos e sensíveis
- Difícil controle e manuseio

Introdução II

Figura: Filmagem indoor

Introdução III

Figura: Inspeção de equipamentos sensíveis

Objetivo

- Evitar colisões de um quadricóptero, estimando constantemente a trajetória futura do veículo, com base na sua dinâmica, seu estado atual, o input de controle corrente e a distância para os obstáculos, medida através de sensores ultrassônicos embarcados
- Maior segurança no voo desta plataforma em ambientes restritos

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- 6 Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

O quadricóptero - A Plataforma

 Veículo voador com quatro rotores com decolagem e aterrissagem vertical [9]

Figura: Plataforma Parrot Ardrone 2.0. Fonte [1]

O quadricóptero - Dinâmica de Voo I

- Seis graus de liberdade e quatro atuadores
- Três são movimentos lineares (x,y,z) e três são angulares (ϕ,θ,ψ)
- Sistema *underactuated*, movimentos (x,y) dependentes dos movimentos (ϕ,θ)
- Objetivo é manter a estabilidade do eixo central controlando quatro motores independentes eletronicamente

O quadricóptero - Dinâmica de Voo II

Figura: Estrutura e orientação dos motores (a), as forças e momentos atuando no quadricóptero (b) e os movimentos gerados a partir das variações de velocidades dos motores (c). Fontes [2], [8] e [4].

Sistemas embarcados para navegação

- Obtenção de informações sobre a posição, velocidade e atitude de um veículo com relação a um dado referencial
- Fornecidas por sensores inerciais: acelerômetros e giroscópios
- Magnetômetros incluídos melhoram a medida da atitude do veiculo

IMU I

- Componente eletrônico onde estão montados os sensores.
- Três acelerômetros: aceleração linear (x,y,z)
- Três giroscópios: velocidade angular (ϕ, θ, ψ)

Figura: Estrutura do Sistema de Navegação acoplada ao veículo (esquerda) e os movimentos gerados no quadricóptero (direita). Fonte [5]

IMU II

Figura: Gráfico das medições dos sensores inerciais da IMU do VANT-IME. Fonte [3]

Controle PID I

- Método comum para controle de robôs
- Controle fechado que reage a mudanças no ambiente captadas por sensores
- Três parâmetros constantes: Proporcional (P), Integral (I) e Derivativo (D)

Controle PID II

- Proporcional (P)
 - É tipicamente o erro.
 - Fórmula: A B, onde A é a posição atual e B é onde deveria estar
- Integral (I)
 - É o acúmulo dos erros passados no tempo.
 - Fórmula: $A/t_1 + B/t_2 + C/t_3$, sendo A o erro em t_1 , B em t_2 e C em t_3
- Derivativo (D)
 - É a mudança do erro no tempo.
 - Fórmula: (A B)/t, sendo A o erro inicial e B o erro depois do tempo t

Controle PID III

- Cada parâmetro tem seu ganho K associado
- Soma ponderada: $P * K_p + I * K_i + D * K_d$

Figura: Desempenho do sistema para diferentes ganhos K_p , K_i e K_d . Fonte [6]

PID para quadricópteros I

Figura: Controle PID de um quadricóptero. Fonte [7]

PID para quadricópteros II

Figura: Controle PID por eixo. Fonte [7]

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

O Problema: Segurança em voo para quadricóptero I

- Auxíliar o controle da plataforma com base na dinâmica, estado atual, controle corrente e distância para obstáculos
- Dado $\mathcal{X} \subset \mathbb{R}^n$ o espaço de estados do robô, $\mathcal{U} \subset \mathbb{R}^n$ o espaço do input de controle, t o tempo, $\mathbf{x}(t)$ o estado do robô no tempo t e $\mathbf{u}(t)$ o input de operação no tempo t. A dinâmica do robô é uma função em $\mathbf{f} \in \mathcal{X} \times \mathcal{U} \times \mathbb{R} \to \mathbb{R}^n$ e é dada pela relação 1:

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t), t) \tag{1}$$

• Com $\mathbf{x_0} = \mathbf{x}(0)$ e uma constante de *input* de operação \mathbf{u} , o estado do robô será:

$$\mathbf{x} = \mathbf{g}(\mathbf{x}, \mathbf{u}, t) \tag{2}$$

onde $\mathbf{g} \in \mathcal{X} imes \mathcal{U} imes \mathbb{R} o \mathcal{X}$ é a solução da equação diferencial 1

O Problema: Segurança em voo para quadricóptero II

- Obstáculos restringem as posições possíveis do robô
- Sendo $\mathcal{O} \subset \mathbb{R}^3$, a subárea do espaço \mathbb{R}^n de movimentos possíveis do robô ocupadas por obstáculos e as regiões escondidas por eles quando vistas robô e $\mathcal{R}(x)$, a subárea ocupada pelo robô no estado $x \in \mathcal{X}$
- O Problema: Definir a menor variação de controle $\Delta \mathbf{u} \in \mathcal{U}$ necessária para evitar colisão na janela de tempo $t \in [0, \tau]$, onde τ é um horizonte de tempo já definido:

min:
$$\Delta \mathbf{u}$$

Sujeito a: $\forall t \in [0, \tau], \mathcal{R}(\mathbf{g}(\mathbf{x}, \mathbf{u} + \Delta \mathbf{u}, t)) \cap \mathcal{O} = \emptyset$ (3)

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Metodologia I

• Divisão em etapas

Figura: Etapas do método

Metodologia II

- Componentes necessários
 - Plataforma de voo (quadricóptero) com interface de comunicação e SDK código aberto
 - Sensores ultrassônicos
 - Conputer on module para embarque na plataforma: Raspberry PI
- Software necessário
 - Matlab com pacote Simulink
 - Kit de desenvolvimento para quadricópteros do Matlab Simulink
 - Raspberry Pi Support from MATLAB

Metodologia III

• Estratégia de implementação

Figura: Estratégia de implementação

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Cronograma

Figura: Cronograma físico.

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricóptero
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Viabilidade da proposta

- Quatro quadricópteros com 45cm de diâmetro
- Dois Raspberry PI modelo B com processador de 700MHz, 512MB de memória
- Sensores ultrassónicos
- Matlab R2013a com Simulink

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricópter
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Resultados esperados

Foram elaboradas três missões

Figura: Missão 1. Veículo cercado e estabilizado

Figura: Missão 2: Veículo em movimento com obstáculo a frente. Desvio pelos lados

Figura: Missão 3: Trajeto completo num ambiente com obstáculos

- Introdução
- 2 Tópicos tutorias
- 3 O Problema: Segurança em voo para quadricópter
- 4 Metodologia
- Cronograma
- 6 Viabilidade da proposta
- Resultados esperados
- 8 Conclusão

Conclusão

- Enfoque em um tema surgente e relevante
- Inúmeras aplicações na área de defesa
- Construção do módulo de desvio de obstáculos da plataforma VANT-IME

Referências I

AR.Drone Developer Guide.

Quadcopter (x-mode build log).

R. A. da Paixao, P. F. F. Rosa, and J. M. M. Neto.

An attitude heading and reference system: basic concepts and prototype.

In Industrial Electronics (ISIE), 2011 IEEE International Symposium on, pages 2225–2230. IEEE, 2011.

J. M. B. Domingues.

Quadrotor prototype.

Uneversidade Tecnica deLisboa. Dissertacio, 2009.

I A F JUNIOR

Simulação e implementação em tempo real de sistemas de navegação inercial integrados ins/gps.

Master's thesis, IME, 2009.

Referências II

R. Kingdom.

Pid controller tutorial for robots.

O. Liang.

Quadcopter pid explained and tuning.

A. A. Mian and W. Daobo.

Modeling and backstepping-based nonlinear control strategy for a 6 dof quadrotor helicopter.

Chinese Journal of Aeronautics, 21(3):261-268, 2008.

A. L. Salih, M. Moghavvemi, H. A. Mohamed, and K. S. Gaeid.

Flight pid controller design for a uav quadrotor.

Scientific Research and Essays, 5(23):3660-3667, 2010.

Obrigado

bsgiovanini@gmail.com

