Assignment &2

Submitted To:

Mam Hina Naz

Submitted By: Rabia Foreed

Reg No:

FA20_BSM_034

Course Title:

Sampling & Design Analysis.

Assignment &R

QNO1: A Sample of Size n=3 is to be....??
Solution:

and 12, Population Size N=5 and Sample Size n=3

Thus the number of possible samples Which can be drown without replacement is:

$$\binom{N}{n} = \binom{5}{3} = 10$$

Sample	Sample Values	Sample Mean(x)	Sample No	Sample Values	Sample Moon
1	0,3	1.5	6	3,9	6
2	0,6	3	7	3,12	7.5
3	0,9	4.5	8	6,9	7.5
4	0,12	6	9	6,12	9
5	3.6	4.5	10	9,12	10.5

The Sampling distribution of the Sample mean X and its mean and S.D are:

X + (X) + X + (X)f(X)2.25/10 1.5/10 1/10 1.5 3/10 4/10 40.5/10 9/10 4.5 2/10 2 72/10 12/10 2/10 6 2 112.5/10 15/10 2/10 7.5 2 81/10 9/10 9 1 1/10 10.5/10 110.25/10 10.5 1/10 427.5/10 60/10 $E(\bar{X}) = 2\bar{X} + (\bar{X}) = \frac{60}{10} = 6$ $Var(\overline{X}) = \overline{2}\overline{X}^2 f(\overline{X}) - \overline{[2}\overline{X}f(\overline{X})]^2$ $= \frac{427.5}{10} - \left(\frac{60}{10}\right)^2 = 42.75 - 36 = 6.75$ mean and variance of Population are. 12 2x=30 9 81 144 2x2= 270 36 $M = \frac{2x}{N} = \frac{30}{5} = 6$ $6^2 = \frac{2 \cdot \chi^2}{N} - \left(\frac{2 \cdot \chi}{N}\right)^2 = \frac{270}{5} - \left(\frac{30}{5}\right)^2 = 54 - 36$

To Verify

$$E(\bar{X}) = \mu = 6$$

$$Var(\bar{X}) = \frac{6^{2}(N-n)}{n} = \frac{18}{3}(\frac{5-3}{5-1}) = 3$$
Hence Proved.

are Written on Slips of paper and put in a hat. Two slips are randomly selected with replacement.

@ Find the mean , Standard deviation and Variance of the population.

(b) List all possible sample size n=2 and calculate the mean of each

Bolution:

(0)

| population |
$$M = 12.5$$
| 5
| $6 = 5.59$
| 10
| $6^2 = 31.25$
| 80

(b) These means from the sampling distribution of the sample mean:

		.,	Sample	Sample "	Va
	sample	Sample mean X	15,5	10	leau random so
	5,5	5	15210	12.5	m a finite
V	5,10	7.5		15	"men
	5,15	10	15,15	15	3
	5,20	12.5	15,20	17.5	
	10,5	7.5W,0V	20,5	12.5	
	10,10	10	20110	15	
	10:15	1 3.5	20,20	90	
	10,20	15	1	i of	

We are given the following data:

Population A: M1 = 4.3 years, 61 = 0.6 years, n1=49

opulation B: U2 = 4.0 years, 62 = 0.4 years, n2=36

Solution: Both sample sizes (n=49, n=36) are arge enough to assume that the sampling distribution of the difference $\overline{X_1} - \overline{X_2}$ is approximately normal with moon σ

 $U\bar{\chi}_1 - \bar{\chi}_2 = U_1 - U_2 = 4.3 - 4.0 = 0.3$ years.

and $5.0 \Rightarrow 6 \overline{x}_1 - 6 \overline{x}_2 = \left| \frac{61^2}{n_1} + \frac{61^2}{n_2} \right| = \left| \frac{0.36}{49} + 0.16 \right|$

= 0.1086 years.
Thus the variable
$$\overline{X} = (\overline{X_1} - \overline{X_2}) - (\mu_1 - \mu_2)$$

$$\frac{\chi_1 - \chi_2}{\sqrt{\Theta_1^2 + \Theta_2^2}} = \frac{\chi_1 - \chi_2}{\eta_1}$$

$$\overline{X} = (\overline{X_1} - \overline{X_2}) = 0.3$$
 is approximately normal.

7~N(0,1)

We want $P(\overline{X}_1 - \overline{X}_2 \geqslant 0.5)$

Transforming (\(\overline{X}_1 - \overline{X}_1 \)) to \(\overline{Z}_2 \) value, we find that

$$7 = 0.5 - 0.3 = 1.84$$

Hence using table of areas under Normal wave , we find

$$P(\bar{X}_{1} - \bar{X}_{2} \; 70.5) = \left(\frac{(\bar{X}_{1} - \bar{X}_{2}) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{G_{1}^{2}}{n_{1}} + \frac{G_{2}^{2}}{n_{2}}}} \right) \frac{0.5 - 0.3}{0.1086}$$

$$= (771.84) = 1 - P(7=1.84)$$

= 0.0329

Let a population-I having values
4.6 and 8 and population-2 have the values
2 & 4. Sample ob Size two with replacement

are drawn from both populations. Construct ment distribution of difference between son Saultina means.

Pop_I

4,6 &8 Popsize N1=3

No.	Sample	Size 1 11 = 2	2 (WR)
	(7)	amples Nin	-
Sample	Mean	Sample	= $0 = 0$
4,4	λ, 4		Mean
4,6	- 5	6,8	7
4,8		8,4	6
	6	8,6	7
6,4	5		Q
6,6		8,8	
- 1 4	1 0	1/	

ROPIT
2 & 4 Rop Size N2=2 Sample Size; n2 = 2(WR)

and the second of the second o

All	possible Mean	0- 01	$= 2^{2} = 4$ Mean α_{2}
2,2	2	4,2	3
2,4	3	4,4	4

All possible Dibberence (X1-X2)

	The state of the s									Y
)				Χ.					
		4	5	6	5	16	7	6	17	8
Υ.	K	2	3	4	3	4	5	4/	5	6
W.Z.	3	1	2	3	2	3	4	3	4	5
	3		2	3	2	3	4	3	4	5
	4	0		2	1	2	3	2	3	4

D.,	1	710111	21112	131213
Difference d= x1-x2	1+	1 P(d)	(d)(d)	9, b(9)
d= x1-x2				, /
0	1	1/36	0	0
<u>1</u>	4	4/36	4/36	4/36
2	8	8/36	16/36	32/36
3	10	10/36	30/36	90/36
4	8	8/36	32/36	128/36
5	4	4/36	20/36	100/36
6	1	1/36	6/36	36/36
	21=36	36/36=1	=E(g)	390/3(E(d2)

Mean: $L \bar{\chi}_1 - \bar{\chi}_2 = Ud = E(d) = 108/36 = 3$

Variance:
$$6\frac{1}{x_1-x_2} = 6\frac{1}{4} = E(d^2) - \left[E(d)\right]^2 = \frac{390}{36} - \frac{108}{36}$$

Mean & Variance = 10.83-9=1.83

Pop I & Pop II

$$\begin{array}{c|cccc}
X & X^{2} \\
4 & 16 \\
6 & 36 \\
8 & 64 \\
\hline
2x=18 & 2x^{2}=16
\end{array}$$

Pop mean:
$$U_1 = \frac{2}{2} \times |N| = \frac{18}{3} = 6$$

Pop variance: $G_1^2 = \frac{2}{2} \times \frac{2}{N} - (\frac{2}{2} \times \frac{2}{N})^2$
 $= \frac{20}{2} - (\frac{6}{2})^2$
 $= \frac{1.0}{2}$

$$\begin{array}{c|c}
 & \text{Pop-II} \\
 & \text{X} & \text{X}^{2} \\
 & \text{A} & \text{4} \\
 & 4 & \frac{16}{2x^{2}} & \text{20}
\end{array}$$

Pop mean =
$$M_2 = \frac{2x}{N} = \frac{6}{2} = 3$$

Pop varian $u = 6^2 = \frac{2x^2}{N} - (\frac{2x}{N})^2$
= $116/3 - (\frac{18}{3})^2$
= 3.66

$$U_{\overline{\chi}_{1}-\overline{\chi}_{1}} = \mu_{1}-\mu_{1} \Rightarrow$$

$$3 = 6-3=3$$

$$6_{\overline{\chi}_{1}}^{2}-\overline{\chi}_{1} = \frac{6_{1}^{2}}{n_{1}} + \frac{6_{2}^{2}}{n_{2}}$$

$$1.83 = \frac{3.66}{2} + \frac{1}{2} = 1.83$$

Mean: $U\bar{x}_1 - \bar{x}_2 = E(d) = \frac{109}{36} = 3$

Voriance:
$$6\frac{1}{2} - 1 = E(d^2) - (E(d)) = \frac{390}{36} - (\frac{108}{34})^2$$

compute mean a Variance of Sampling distribution of odd number that

SINO	1 Samul		N'' = 4/= 1	6 }1,2	3,4)
1	Sample	Propostion	Sr.No	Sample	Proportion?
१	1,2	Τ.	9	3,\	1
3	1,3	1/2	10	3,2	/2
4	1,4	1/2		3,3	
5	2,1		12	3,4	V ₂
6	2,2	0	13	4,1	72
7	2,3	1/2	7 14 1 1 15 1	4,a 4,3	O 1/2
8	2,4	0	16	494	72
P	f	$f(\hat{\mathbf{p}})$	P f (P)	p_t(6)	_
0	4	4116	0	3116 0	
1/2	8	1.0	41k	4116	N NOW MY
1	4	7116	116	6/16	H
	21=16	1	11.0		

Mean & variance

$$U\hat{p} = \hat{z}\hat{p} \cdot f(\hat{p}) = 8/16 = 1/2$$

$$E(\hat{p}^2)^2 - (\hat{z}(\hat{p}))^2$$

$$= 6/16 - (1/2)^2 = 6/16 - 1/8$$

$$= 3/16 = 1/8$$

Verification:

$$\mathcal{A}\hat{p} = P \Rightarrow \frac{1}{2} = \frac{1}{2}$$

$$\hat{p} = \frac{pq}{n}$$

$$\frac{1}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{8}$$

2no6

let \hat{P}_1 deposesents the proportion of even number in a random sample $n_1=a$ without replacement from a finite population consisting of values 4,6,9 Similarly,...?

Sol: $\frac{(a) E(\hat{p}_i - \hat{p}_i) = P_i - p_i}{\text{Pop 1}}$

We have pop 1:46,9
N1=3

$$n_1 = 2$$

$$\binom{N_1}{n_1} = 3$$

Pop2 3,3,5 $N_{2}=3$ $n_{3}=2$ $\binom{N_{2}}{n_{1}}=3$

	Pop 1			Po	P 2	
No	Sample	Sample Proportion	Ř.)	Sample	sample value	Sample Proportion
1	4,6	3/1		1	2,3	1/2
2	4,9	1/2		2.	2,5	X.
3	6,9	1/2		3	3,5	0
H	ere 3x	3=9	Possib	le di	Herence	me
	P,	- Pz ar	e.		W	
			P,			
	P2	1.0	0.5	0.5		
	0.5	0.5	0	0		
	0.5	0.5	0	0		
	0	1.0	0.8	16	8 \	
		y Vari	ance	(V ₁ -	VL)	
P1-P2 =	9 6				$q_{r}(9)$	
0 -	4	4/9		0	0	
0.5		4/9		1/9	/ 9	
1.0	Magazina promining programma magazina.	4/9 4/9 1/a		/9	Va	
	' 9	1		3/9	79	
E	(P,-PL)	= E(q,	1 = Eq.	f(d) = 3	9= 1/3	
Var	(P,-P)	= 100(9)=	2,-()	$\left(\frac{1}{2}\right)^2 = \frac{1}{9}$	- 1 : 1/9	

Verification: