Time domain features expressions.

Feature Name	Feature Expression	Feature Connotation
Max	$T_1 = max\langle x(i) \rangle$	Intensity
Min	$T_2 = min\langle x(i) \rangle$	Intensity
Mean	$T_{\mathcal{3}} = \frac{1}{N} \sum_{i=1}^{N} x(i)$	Shift
Variance	$T_4 = \frac{1}{N} \sum_{i=1}^{N} [x(i) - T_3]^2$	Degree of dispersion
Standard deviation	$T_5 = \sqrt{T_4}$	Stability
Mean absolute deviation	$T_6 = \frac{1}{N} \sum_{i=1}^{N} x(i) - T_3 $	Degree of dispersion
Root mean square	$T_7 = \sqrt{\frac{1}{N} \sum_{i=1}^{N} x(i)^2}$	Stability
Average difference	$T_8 = \frac{1}{N} \sum_{i=1}^{N} [x(i) - T_3]$	Amplitude scale
Absolute energy	$T_9 = \sum_{i=1}^N x(i)^2$	Energy distribution
Peak to peak distance	$T_{10} = T_1 - T_2$	Periodicity
Sum of absolute differences	$T_{11} = \sum_{i=0}^{N-1} x(i+1) - x(i) $	Intensity of change
Shannon Entropy	$T_{12} = -\sum_{i=1}^{N} p(x(i)) \cdot \log_2 p(x(i))$	Uncertainties
Area under the curve	$T_{13} = \sum_{i=0}^{N-1} [(i+1) - (i)] \cdot \frac{x(i+1) + x(i)}{2}$	Energy distribution
Autocorrelation	$T_{14} = \frac{\frac{1}{N-k} \sum_{i=k+1}^{N} [x(i) - T_3] [x(i-k) - T_3]}{\frac{1}{N} \sum_{i=1}^{N} [x(i) - T_3]^2}$	Periodicity
Signal center point	$T_{15} = rac{\sum_{i=0}^{N} i \cdot x(i)^2}{\sum_{i=0}^{N} x(i)^2}$	Shift
Neighbor peaks	$T_{16} = Number of peaks$	Repeatable
Signal distance	$T_{17} = \sum_{i=0}^{N-1} \sqrt{1 + [x(i+1) - x(i)]^2}$	Difference in point in time
Total energy	$T_{18} = \frac{\sum_{i=0}^{N} x(i)^2}{N}$	Overall strength and power
Zero crossing rate	$T_{19} = Number of signal reversals$	Rate of change
Skewness	$T_{20} = rac{1}{N} \sum_{i=1}^{N} \left[rac{x(i) - T_3}{T_5} ight]^3$	Symmetry
kurtosis	$T_{21} = \frac{1}{N} \sum_{i=1}^{N} \left[\frac{x(i) - T_3}{T_5} \right]^4$	Peak distribution pattern
Number of positive/negative turning points	$T_{22} = Number\ of\ PTP$ $T_{23} = Number\ of\ NTP$	Waveform characteristics

Frequency domain features expressions.

Feature Name	Feature Expression	Feature Connotation
Max power spectrum	$F_1 = MAX(S(f_k)), 0 \le f_k \le f_{max}$	Main frequency components
Max frequency	$F_2 = MAX(f_k), 0 \le f_k \le f_{max}$	High frequency and bandwidth
Median frequency	$F_3=f_m$	Spectral characteristics
	which $\int_0^{f_m} S(f)df = 0.5 \int S(f)df$	
Spectral centroid	$F_4 = \frac{\int f \cdot S(f) df}{\int S(f) df}$	The center of the frequency
Power bandwidth	$F_5 = \frac{f_h - f_l}{F_A} f_h$ is high frequency -3dB point,	Bandwidth and energy
	f_l is the low frequency -3dB point	
Spectral distance	$F_6 = \int [S_1(f) - S_2(f)]^2 df$	Similarity between frequency
Spectral entropy	$F_7 = -\sum\nolimits_{k = 1}^K {P({f_k}) \cdot log_2 P({f_k})},$	Uncertainty in frequency
	which $P(f_k) = \frac{S(f_k)}{\int S(f_k)df}$	
Spectral spread	3 0 0 0	Bandwidth
	$F_8 = \sqrt{\frac{\int (f - F_4)^2 \cdot S(f) df}{\int S(f) df}}$	
Spectral skewness	$\int (f - F_4)^3 \cdot S(f) df$	Degree of skewness of the frequency
	$F_9 = \frac{\int (f - F_4)^3 \cdot S(f) df}{\int S(f) df}$ F_{o}^3	
Spectral kurtosis	$\int (f - F_4)^4 \cdot S(f) df$	Degree of kurtosis in the frequency
	$F_{10} = rac{\int (f - F_4)^4 \cdot S(f)df}{\int S(f)df}$	
Spectral roll-off	$F_{11} = f_{off},$	Energy decreases with frequency
	which $\int_{0}^{f_{off}} S(f)df = 0.95 \int S(f)df$	
Spectral roll-on	$F_{12}=f_{on},$	Energy rises with frequency
	which $\int_{0}^{f_{on}} S(f)df = 1.15 \int S(f)df$	
Fundamental frequency	$F_{13} = f_a,$ $ f_{13} = f_a,$ $ f_{13} = f_a,$	Harmonic analysis
Human range energy	which $ X(a) = max\langle X(k) \rangle$ $\int_{0}^{2.5Hx} S(f) df$	Body energy range
	$F_{14} = \frac{\int_{0.6 \text{Hz}}^{2.5 \text{Hz}} S(f) df}{\int S(f) df}$	
Spectral slope	$F_{15} = K \cdot log_2\left(\frac{H_{high}}{H_{low}}\right)$	Filter characteristics and frequency response
	H_{high}/H_{low} is the amplitude at high/low frequencies, K is the scaling factor	
Spectral variation	$F_{16} = 1 - rac{\int_{1}^{f_{K}} f^{2} \cdot S_{1}(f) \cdot S_{2}(f) df}{\sqrt{\left[\int_{1}^{f_{K}/2} f^{2} \cdot S_{1}(f) df\right]\left[\int_{f_{K}/2}^{f_{K}} f^{2} \cdot S_{2}(f) df ight]}}$	Spectral structure and frequency response
	$S_1(f)$ is $(1 \sim \frac{f_K}{2})$ of the spectrum,	
	$S_2(f)$ is $(\frac{f_K}{2} \sim f_K)$ of the spectrum	