Merge Sort and Master's Theorem

Subhabrata Samajder

IIIT, Delhi Summer Semester, 5th May, 2022

Sorting

Sorting Problem

Given n numbers x_1, x_2, \ldots, x_n arrange them in *increasing order*. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \ldots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_n}$.

In-place Sorting: A sorting algorithm is called **in-place** if no additional memory is used besides the input array.

Sorting

Sorting Problem

Given n numbers x_1, x_2, \ldots, x_n arrange them in *increasing order*. In other words, find a sequence of distinct indices $1 \le i_1, i_2, \ldots, i_n \le n$, such that $x_{i_1} \le x_{i_2} \le \cdots \le x_{i_n}$.

In-place Sorting: A sorting algorithm is called **in-place** if no additional memory is used besides the input **array**.

Mergesort Algorithm

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

The Algorithm:

• Scan the first set until the right place to insert b_1 is found.

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

The Algorithm:

- Scan the first set until the right place to insert b_1 is found.
- Insert b_1 .

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

The Algorithm:

- Scan the first set until the right place to insert b_1 is found.
- Insert b_1 .
- Continue the scan from that place until the right place to insert b₂ is found.

Problem: Suppose we have two lists $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_m)$ of numbers sorted in an increasing order. Merge them to get a bigger sorted list.

Basic Idea: For each numbers in the second set, find it's correct place in the first set.

The Algorithm:

- Scan the first set until the right place to insert b_1 is found.
- Insert b_1 .
- Continue the scan from that place until the right place to insert b₂ is found.
- Repeat this for all elements of *B*.

Note:

• Since the b's are sorted, we never have to go back.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

It is inefficient to move elements each time an insertion is performed.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.
- Each element is copied exactly once.

Note:

- Since the b's are sorted, we never have to go back.
- The total number of comparisons, in the worst case, is m + n.

Question: What about data movements?

- It is inefficient to move elements each time an insertion is performed.
- Since the merge produces the elements one by one in sorted order, we copy them to a temporary array.
- Each element is copied exactly once.

Complexity:

- Time: O(n+m) comparisons.
- Space: $\mathcal{O}(n+m)$ data.

A: 3 4 7 11 13 14 15 16

M:

M: 1 2 3

M: 1 2 3 4 5 6 7 8

M: 1 2 3 4 5 6 7 8 9

M: 1 2 3 4 5 6 7 8 9 10

M: 1 2 3 4 5 6 7 8 9 10 11

M: 1 2 3 4 5 6 7 8 9 10 11 12

M: 1 2 3 4 5 6 7 8 9 10 11 12 13

M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14

M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

M: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Mergesort

The merge procedure is used as a basis for the divide-and-conquer sorting algorithm, known as the **mergesort**.

Mergesort

The merge procedure is used as a basis for the divide-and-conquer sorting algorithm, known as the **mergesort**.

The Algorithm:

- Divide the sequence into two equal or close-to-equal parts.
- Sort each part separately using *recursion*.
- Merge the two sorted parts into one sorted sequence, using the merge algorithm.

Merging Phase:

6 2 8 5 10 9 12 1 15 7 3 13 4 11 16 14

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8

Merging Phase:

2 5 6 8 1 9 10 12

Merging Phase:

2 5 6 8 1 9 10 12

Merging Phase:

2 5 6 8 1 9 10 12 3 7 13 15

Merging Phase:

2 5 6 8 1 9 10 12 3 7 13 15

Merging Phase:

2 5 6 8 1 9 10 12 3 7 13 15

Recurrences: Divide and Conquer

Divide and Conquer Relations: The Basic Idea

• The original problem is divided into smaller subproblems.

Divide and Conquer Relations: The Basic Idea

• The original problem is divided into smaller subproblems.

• Each subproblem is solved recursively.

Divide and Conquer Relations: The Basic Idea

• The original problem is divided into smaller subproblems.

Each subproblem is solved recursively.

• A *combine* algorithm is used to solve the original problem.

Divide and Conquer Relations: Problem Statement

Assumptions:

- # Subproblems: a.
- Size of Each Subproblem: 1/b of the original problem.
- Combine Algorithm: Takes time cn^k .

where a, b, c, and k are some constant.

Divide and Conquer Relations: Problem Statement

Assumptions:

- # Subproblems: a.
- Size of Each Subproblem: 1/b of the original problem.
- Combine Algorithm: Takes time cn^k .

where a, b, c, and k are some constant.

Then,

$$T(n) = aT(n/b) + cn^k.$$

Divide and Conquer Relations: Problem Statement

Assumptions:

- # Subproblems: a.
- Size of Each Subproblem: 1/b of the original problem.
- Combine Algorithm: Takes time cn^k .

where a, b, c, and k are some constant.

Then,

$$T(n) = aT(n/b) + cn^k.$$

For Simplicity: Further assume that $n = b^m$, so that n/b is always an integer (b is an integer greater than 1).

Expand:

$$T(n) = a\{aT(n/b^2) + c(n/b)^k\} + c(n)^k$$

Expand:

$$T(n) = a\{aT(n/b^2) + c(n/b)^k\} + c(n)^k$$

= $a\{a\{aT(n/b^3) + c(n/b^2)^k\} + c(n/b)^k\} + cn^k$

Expand:

$$T(n) = a\{aT(n/b^2) + c(n/b)^k\} + c(n)^k$$

$$= a\{a\{aT(n/b^3) + c(n/b^2)^k\} + c(n/b)^k\} + cn^k$$

$$\vdots$$

$$= a\{a\{a\{\cdots a\{T(n/b^m) + c(n/b^{m-1})^k\} + \cdots\} + cn^k,$$
where $n/b^m = 1$.

Expand:

$$T(n) = a\{aT(n/b^2) + c(n/b)^k\} + c(n)^k$$

$$= a\{a\{aT(n/b^3) + c(n/b^2)^k\} + c(n/b)^k\} + cn^k$$

$$\vdots$$

$$= a\{a\{a\{\cdots a\{T(n/b^m) + c(n/b^{m-1})^k\} + \cdots\} + cn^k,$$

where $n/b^m = 1$.

Assume: T(1) = c.

Expand:

$$T(n) = a\{aT(n/b^2) + c(n/b)^k\} + c(n)^k$$

$$= a\{a\{aT(n/b^3) + c(n/b^2)^k\} + c(n/b)^k\} + cn^k$$

$$\vdots$$

$$= a\{a\{a\{\cdots a\{T(n/b^m) + c(n/b^{m-1})^k\} + \cdots\} + cn^k,$$

where $n/b^m = 1$.

Assume: T(1) = c.

Remark: A different value would change the end result by only a constant.

$$T(n) = ca^m + ca^{m-1}b^k + ca^{m-2}b^{2k} + \cdots + cb^{mk}$$

$$T(n) = ca^{m} + ca^{m-1}b^{k} + ca^{m-2}b^{2k} + \dots + cb^{mk}$$
$$= c\sum_{i=0}^{m} a^{m-i}b^{ik} = ca^{m}\sum_{i=0}^{m} \left(\frac{b^{k}}{a}\right)^{i},$$

$$T(n) = ca^{m} + ca^{m-1}b^{k} + ca^{m-2}b^{2k} + \dots + cb^{mk}$$
$$= c\sum_{i=0}^{m} a^{m-i}b^{ik} = ca^{m}\sum_{i=0}^{m} \left(\frac{b^{k}}{a}\right)^{i},$$

which is a simple geometric series.

- $a > b^k$:
 - The factor of the geometric series is less than 1.

- $a > b^k$:
 - The factor of the geometric series is less than 1.
 - So the series converges to a constant as $m \to \infty$.

The following cases may arise:

- $a > b^k$:
 - The factor of the geometric series is less than 1.
 - So the series converges to a constant as $m \to \infty$.
 - Therefore,

$$T(n) = \mathcal{O}(a^m) = \mathcal{O}(a^{\log_b n}) = \mathcal{O}(n^{\log_b a}),$$

as $m = \log_b n$.

- $a > b^k$:
- $a = b^k$:
 - The factor of the geometric series is equal to 1.

The following cases may arise:

- $a > b^k$:
- $a = b^k$:
 - The factor of the geometric series is equal to 1.
 - Thus

$$T(n) = \mathcal{O}(a^m m) = \mathcal{O}(n^k \log n),$$

since, $a = b^k \implies \log_b a = k$ and $m = \log_b n$.

- $a > b^k$:
- $a = b^k$:
- $a < b^k$:
 - The factor of the geometric series is greater than 1.

- $a > b^k$:
- $a = b^k$:
- $a < b^k$:
 - The factor of the geometric series is greater than 1.
 - Let $F = b^k/a$ (F is a constant).

- $a > b^k$:
- $a = b^k$:
- $a < b^k$:
 - The factor of the geometric series is greater than 1.
 - Let $F = b^k/a$ (F is a constant).
 - First element of the series is a^m , therefore we obtain

$$T(n) = \frac{a^m(F^{m+1}-1)}{F-1}$$

- $a > b^k$:
- $a = b^k$:
- $a < b^k$:
 - The factor of the geometric series is greater than 1.
 - Let $F = b^k/a$ (F is a constant).
 - First element of the series is a^m , therefore we obtain

$$T(n) = \frac{a^m(F^{m+1} - 1)}{F - 1}$$
$$= \mathcal{O}(a^m F^m) = \mathcal{O}((b^k)^m) = \mathcal{O}((b^m)^k)$$

- $a > b^k$:
- $a = b^k$:
- $a < b^k$:
 - The factor of the geometric series is greater than 1.
 - Let $F = b^k/a$ (F is a constant).
 - First element of the series is a^m , therefore we obtain

$$T(n) = \frac{a^m(F^{m+1}-1)}{F-1}$$

$$= \mathcal{O}(a^m F^m) = \mathcal{O}((b^k)^m) = \mathcal{O}((b^m)^k)$$

$$= \mathcal{O}(n^k).$$

Master's Theorem: A Simpler Version

Theorem

The solution of the recurrence relation $T(n) = aT(n/b) + cn^k$, where a and b are integer constants, $a \ge 1, b \ge 2$, and c and k are positive constants, is

$$T(n) = \begin{cases} \mathcal{O}(n^{\log_b a}) & \text{if } a > b^k \\ \mathcal{O}(n^k \log n) & \text{if } a = b^k \\ \mathcal{O}(n^k) & \text{if } a < b^k \end{cases}$$

Merge Sort: Cost Analysis

$$T(n) = 2T(\lceil n/2 \rceil) + \mathcal{O}(n) = \mathcal{O}(n \log n)$$
 [By Master's theorem].

$$T(n) = 2T(\lceil n/2 \rceil) + \mathcal{O}(n) = \mathcal{O}(n \log n)$$
 [By Master's theorem].

Note: The number of data movements is $O(n \log n)!!$

$$T(n) = 2T(\lceil n/2 \rceil) + \mathcal{O}(n) = \mathcal{O}(n \log n)$$
 [By Master's theorem].

Note: The number of data movements is $O(n \log n)!!$

Drawbacks:

- Not as easy to implement.
- Additional storage required during each merge step.
- Thus, mergesort is not an in-place algorithm.
- This copying must be done every time two smaller sets are merged, making the procedure slower.

$$T(n) = 2T(\lceil n/2 \rceil) + \mathcal{O}(n) = \mathcal{O}(n \log n)$$
 [By Master's theorem].

Note: The number of data movements is $O(n \log n)!!$

Drawbacks:

- Not as easy to implement.
- Additional storage required during each merge step.
- Thus, mergesort is not an in-place algorithm.
- This copying must be done every time two smaller sets are merged, making the procedure slower.

Home Work: Write the algorithm for Mergesort and implement it in C.

Books Consulted

Introduction to Algorithms: A Creative Approach by Udi Manber.

Introduction to Algorithms by Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein. Thank You for your kind attention!