447 20fa exam 1 due 5p Fri Nov 6

You are welcome (and encouraged) to:

- use analytical and numerical computational tools -- specify the tool(s) in sourcecode and/or text:
- reuse example sourcecode and other materials provided in this course;
- consult textbooks, websites, and other publicly-available materials -- include full citation(s)
 with the URL and/or DOI.

You are not permitted to discuss the exam problems or share any part of your solutions with anyone other than the Professor or TA for this course.

- By submitting your exam solution on Canvas, you are affirming your understanding of and adherence to these restrictions.
- We will answer questions during the class Zoom meetings Tue Nov 3 and Thu Nov 5.
- We will also answer questions posted to the Canvas Discussion board until 5p Fri Nov 6.

The exam deadline is 5p Fri Nov 6 on Canvas.

- Final submissions received before this deadline will receive +2 bonus points (equal to one subproblem).
- Everyone automatically receives a deadline extension to 11:59p Sun Nov 8. **No further** deadline extensions will be granted -- please plan accordingly.

problem (1.)

Consider the following block diagram:

subproblem (1a.)

Determine the transfer function G_{yr} from r to y.

subproblem (1b.)

Determine the transfer function G_{ud} from d to y.

problem (2.)

Consider the following process model:

$$P(s) = rac{b(s)}{a(s)} = rac{b_1 s^2 + b_2 s + b_3}{a_0 s^3 + a_1 s^2 + a_2 s + a_3}$$

where b_1, b_2, b_3 and a_0, a_1, a_2, a_3 are nonzero parameters.

subproblem (2a.)

Suppose $a_0=10$, $a_2=1$, $a_3=2$; what range of values for a_1 ensure P is stable?

subproblem (2b.)

Assume P is stable -- if a constant input is applied to P, what output is produced?

problem (3.)

Consider the following nonlinear system (NL):

$$\dot{x}_1 = x_2 + x_1(1-x_1^2-x_2^2), \ \dot{x}_2 = -x_1 + x_2(1-x_1^2-x_2^2).$$

subproblem (3a.)

Create a phase portrait of the nonlinear system (NL) on the square $x_1, x_2 \in (-1.5, +1.5)$: use plt.quiver or plt.streamplot as in the examples presented in lecture / provided on homework solutions.

subproblem (3b.)

Linearize the nonlinear system about the equilibrium $x_e=0\in\mathbb{R}^2$: provide matrix A such that $\dot x\simeq Ax$ for x near x_e .

problem (4.)

Consider the state-space linear system $\dot{x} = Ax + Bu$.

subproblem (4a.)

Suppose $\lambda\in\mathbb{C}$ is an eigenvalue of A, so that there exists a nonzero vector $v\neq 0$ such that $Av=\lambda v$.

Show that $e^{\lambda t}$ is an eigenvalue of e^{At} where $t\in\mathbb{R}$, and explain what this means about the trajectory initialized at x(0)=v.

subproblem (4b.)

If
$$A=\begin{bmatrix}0&\omega\\-\omega&0\end{bmatrix}$$
 , verify that $e^{At}=\begin{bmatrix}\cos\omega t&\sin\omega t\\-\sin\omega t&\cos\omega t\end{bmatrix}$ by verifying that $x(t)=e^{At}x(0)$ solves $\dot{x}=Ax$ for all $x(0)$.

problem (5.)

Consider proportional-integral control of an unstable first-order process:

$$C(s) = k_P + rac{1}{s} k_I, \; P(s) = rac{1}{s-1},$$

and suppose k_P , k_I are chosen to make the roots of the characteristic polynomial of the closed-loop system $\frac{PC}{1+PC}$ equal to $-\sigma\pm j\omega$:

$$k_P = 2\sigma + 1, \; k_I = \sigma^2 + \omega^2.$$

In the following subproblems, we will hold $k_I=1$ constant and let k_P vary.

subproblem (5a.)

Plot the root locus of the closed-loop characteristic polynomial as k_P varies.

subproblem (5b.)

Determine the range of k_P that results in a stable closed-loop system -- you may do this analytically (e.g. pen-and-paper) or numerically (e.g. using the root locus from (5a.)).