Задача 1-1 (30 баллов). Семейство \mathcal{H} хеш-функций h, принимающих m значений, называется C-универсальным, если для произвольных различных ключей x и y справедливо $P[h(x) = h(h)] \leqslant C/m$. Рассмотрим семейство хеш-функций

$$h_a(x) = |((ax) \bmod 2^w)/2^{w-l}|,$$

определенных на w-битных ключах x ($0 \le x < 2^w$) и дающих l-битные хеш-значения, где a — случайное нечетое число на отрезке $[1,2^w]$. Покажите, что существует абсолютная константа C, такая что данное семейство является C-универсальным.

Решение. Обозначения:

- w количество бит в ключах x, $0 \le x < 2^w$.
- l количество бит в хеш-значениях, $m = 2^l$.
- a случайное нечетное число из множества $\{1,3,5,\ldots,2^w-1\}$ (всего 2^{w-1} чисел).

Идея доказательства:

Мы будем анализировать вероятность совпадения хеш-значений $h_a(x)$ и $h_a(y)$ при случайном выборе a. Для этого рассмотрим разность $s_x - s_y$, где $s_x = (ax) \bmod 2^w$ и $s_y = (ay) \bmod 2^w$. Заметим, что $s_x - s_y \equiv a(x-y) \pmod 2^w$.

Совпадение хеш-значений $h_a(x) = h_a(y)$ эквивалентно тому, что верхние l битов s_x и s_y совпадают, то есть разность $s_x - s_y$ делится на 2^{w-l} .

Доказательство:

1. Определим разность $d = x - y \neq 0$.

Поскольку $x \neq y$, то $d \neq 0$ и $d \in \{-2^w + 1, \dots, 2^w - 1\}$.

2. Выразим условие совпадения хеш-значений через a и d.

Хеш-значения совпадают, если

$$h_a(x) = h_a(y) \quad \Leftrightarrow \quad \left| \frac{(ax) \bmod 2^w}{2^{w-l}} \right| = \left| \frac{(ay) \bmod 2^w}{2^{w-l}} \right|.$$

Это эквивалентно тому, что

$$\frac{(ax) \bmod 2^w}{2^{w-l}} - \frac{(ay) \bmod 2^w}{2^{w-l}} \in [0,1).$$

Таким образом,

$$((ax) - (ay)) \bmod 2^w < 2^{w-l}$$

3. Преобразуем неравенство:

$$(ad) \bmod 2^w < 2^{w-l}$$
.

Это означает, что ad делится на 2^{w-l} при приведении по модулю 2^w , то есть

$$2^{w-l} \mid (ad) \pmod{2^w}$$
.

4. Рассмотрим два случая в зависимости от d.

Случай 1: d чётное, то есть $v_2(d) \geqslant 1$, где $v_2(d)$ — показатель степени при разложении d на простые множители, соответствующий двойке.

Пусть $v_2(d) = t \ge 1$, тогда $d = 2^t d'$, где d' — нечётное число.

Случай 2: d нечётное, то есть $v_2(d) = 0$.

5. Анализируем вероятность в обоих случаях.

Случай 1: $v_2(d) = t \ge 1$.

Поскольку a — нечётное, $v_2(a) = 0$. Тогда $v_2(ad) = v_2(a) + v_2(d) = t$.

Значит, ad делится на 2^t , но не на 2^{t+1} .

Для того чтобы $2^{w-l} \mid ad$, необходимо, чтобы $w-l \leqslant t$, то есть $t \geqslant w-l$.

Если $t \geqslant w - l$, то $v_2(ad) \geqslant w - l$, и неравенство выполняется.

В этом случае $ad \mod 2^w$ будет делиться на 2^{w-l} .

Случай **2:** $v_2(d) = 0$.

Поскольку $v_2(a) = 0$, то $v_2(ad) = 0$. Следовательно, ad не делится на 2^{w-l} , и неравенство не выполняется.

6. Вывод вероятности:

Случай 1: Когда $v_2(d) \geqslant w - l$, то $ad \mod 2^w$ делится на 2^{w-l} .

Однако, поскольку $v_2(ad) = t$, а $t \geqslant w - l$, то

$$ad \mod 2^w = 2^t k \pmod{2^w}$$
,

где k — нечётное число.

Количество таких a равно количеству нечётных чисел в $[1, 2^w - 1]$, то есть 2^{w-1} .

Но поскольку d фиксировано, и a пробегает все нечётные числа, $ad \mod 2^w$ будет принимать каждое значение, кратное 2^t , ровно один раз.

Число значений a, для которых $ad \mod 2^w$ делится на 2^{w-l} , равно

$$N = \frac{2^{w-1}}{2^{t-(w-l)}} = 2^{l-1}.$$

Здесь мы делим общее число нечётных a на количество возможных значений $ad \mod 2^w$, которые делятся на 2^{w-l} .

Таким образом, вероятность

$$P[h_a(x) = h_a(y)] = \frac{N}{2^{w-1}} = \frac{2^{l-1}}{2^{w-1}} = \frac{1}{2^{w-l}} = \frac{1}{2^l} = \frac{1}{m}.$$

Случай **2:** Когда $v_2(d) < w - l$.

Тогда $ad \mod 2^w$ не делится на 2^{w-l} , и неравенство не выполняется для любого a. Таким образом,

$$P[h_a(x) = h_a(y)] = 0 \leqslant \frac{1}{m}.$$