Connectivity in undirected graphs

Definition 3.15: Connectivity in undirected graphs

Let G = (V, E) be an undirected graph.

- (i) Two vertices $s, t \in V$ are called *connected* in G if G contains an s-t walk.
- (ii) The graph G is callled *connected* if each pair of vertices in G is connected.

connected

disconnected

Definition 3.16: Connectivity in directed graphs

Let G = (V, A) be a directed graph.

- (i) G is called *connected*, if the undirected graph G', obtained from G by ignoring arc directions, is connected.
- (ii) Let $s, t \in V$. The vertex t can be *reached* from s in G if G contains a directed s-t walk.
- (iii) The graph G is called *strongly connected* if every vertex in G can be reached from every other vertex.

strongly connected

Connected but not strongly connected

Definition 3.17: Connected components in undirected graphs

Let G=(V,E) be an undirected graph. A *connected component* of G is an induced subgraph G[W] such that G[W] is connected and $W\subseteq V$ is maximal with respect to this property, i.e., for every $X\subseteq V$ with $X\supsetneq W$ the graph G[X] is not connected.

Figure 3.23: The above graph G has four connected components: $G[\{v_1, v_2\}], G[\{v_3\}], G[\{v_4, v_5, v_6, v_7, v_{10}, v_{12}\}], \text{ and } G[\{v_8, v_9, v_{11}\}].$

Definition 3.19: Connected components in directed graphs

Let G = (V, A) be a directed graph.

- (i) The *connected components* of G are the connected components of the undirected graph G', which results from G by ignoring arc directions.
- (ii) A strongly connected component of G is an induced directed subgraph G[W] such that G[W] is strongly connected and $W\subseteq V$ is maximal with respect to this property.

Figure 3.24: A graph G with two connected components and five strongly connected components (in red): $G[\{v_{10}\}]$, $G[\{v_{1}, v_{2}, v_{3}, v_{5}, v_{6}, v_{9}\}]$, $G[\{v_{4}, v_{8}, v_{11}\}]$, $G[\{v_{7}, v_{12}, v_{13}\}]$, and $G[\{v_{14}\}]$.