Coding Bird

· · · 드론으로 배우는

프로그래밍 교실

Ch6-1. 타이머와 작곡

∵ 목차 ∵

01	타이버 나눠모기	01
	타이머란?	02
	라이브러리 추가하기	03
	Timer 코드 작성 ······	04
02	음 만들어보기	06
	음과 주파수	07
	도레미파솔라시도	08
03	작곡 해보기 ····	10
	떳다 떳다 비행기	11
	비행기 코드 앞 부분	12
	비행기 코드	14
	나만의 음악 만들기	15
	모터 연결하기	16

· · 드론으로 배우는

프로그래밍 교실

초판발행 2016년 9월 23일 지은이 이상준 l 펴낸이 CodingBird 펴낸곳 WHIT l 주소 안산시 한양대학로55 창업보육센터 B01

Published by WHIT. Printed in Korea Copyright © 2016 CodingBird & WHIT

이 책의 저작권은 CodingBird와 WHIT에 있습니다. 저작권법에 의해 보호를 받는 저작물이므로 무단 복제 및 무단 전재를 금합니다.

01 타이머 다뤄보기

아두이노에서 타이머는 일정한 시간이 지난 뒤, 원하는 명령을 실행할 때 주로 사용됩니다.

알람과 같은 기능을 만들거나 일정 시간마다 반복되는 작업을 수행하고 싶을 때 타이머를 사용하면 손 쉽게 원하는 기능을 구현할 수 있습니다. 타이머를 사용하는 방법을 알아봅시다.

타이머란?

타이머 정의

타이머란 정해 놓은 시각에 맞추어 신호를 발생시키는 장치입니다.

예를 들어 알람이나 스톱워치 등이 있습니다.

<그림1-1> 타이머

Timer

아두이노에서도 알람과 같은 기능을 사용할 수 있는데, 이 때 사용되는 것이 Timer입니다.

이 Timer는 타이머 인터럽트라고도 불리는데, 이는 끼어들다는 뜻인 interrupt처럼 동작하기 때문입니다.

<그림1-2> 전화 받는 상황

어떤 일을 하고 있을 때 전화가 오면 하던 일을 중단하고 전화를 받게 됩니다. 이러한 상황이 interrupt가 발생된 상황인데, 타이머 인터럽트는 시간에 의해 interrupt를 발생시킵니다.

라이브러리 추가하기

라이브러리 관리

다른 사람들이 만들어 놓은 함수나 코드를 사용할 수 있게 해 놓은 것을 라이브러리라고 합니다.

우리는 타이머 인터럽트를 쓰기 쉽게 만들어 놓은 TimerThree라는 라이브러리를 사용할 것입니다.

① 스케치 – 라이브러리 포함하기 – 라이브러리 관리를 실행합니다.

<그림1-3> 라이브러리

timerthree를 검색하여 설치합니다.

<그림1-4> 라이브러리

Timer 코드 작성

Timer 코드

1 다음과 같이 코드를 작성하여 아두이노에 업로드합니다.

```
ch6_1_1_timer
  #include <TimerThree.h>
 3|boolean SW = false;
 4
 5 void blinkLED() {
 6
     SW = !SW;
     digitalWrite(3, SW);
 8|}
 9
10 void setup() {
    Serial.begin(9600);
11
12.
    -pinMode(3, OUTPUT);
    Timer3.initialize(3000000); //1000000us = 1s
131
    Timer3.attachInterrupt(blinkLED);
141
     Timer3.pwm(5, 10);
15
16|}
17
18 void loop() {
     Serial.println("1초마다 실행될 문구");
191
     delay(1000);
20
21 | }
```

<그림1-5> Timer 코드 작성

- ② 모터를 연결합니다(16페이지를 참고)
- ③ 🔟 버튼을 눌러 시리얼 모니터를 켭니다.

꿀TIP

보드 선택 에러

툴-보드에서 아두이노 우노가 선택되어 있는 경우 다음과 같은 에러가 발생합니다.

```
C:#Users#whit#Do
TIMSK3 = O;
```

4 보드레이트를 맞춘 후 메인보드의 스위치를 켠 후, 시리얼 모니터에서 값이 1초마다 확인되는지, 모터가 3초에 한 번씩 도는지 확인합니다.

<그림1-6> 값 확인

Timer 코드 해석

```
#include <TimerThree.h> //Timer라이브러리 사용

boolean SW = false; // LED상태 변화 변수

void blinkLED() {
  SW = !SW; // LED 상태 0이면 1로, 1이면 0으로 변환 digitalWrite(3, SW); // LED 출력
}

void setup() {
  Serial.begin(9600); // 시리얼 통신 시작 pinMode(3, OUTPUT); // 3번 핀 출력으로 설정 Timer3.initialize(3000000); // 1000000us = 1s로 3초마다 반복 설정
  Timer3.attachInterrupt(blinkLED); // blinkLED함수 적용 Timer3.pwm(5, 10); // 5번 핀에 10만큼 pwm적용
}

void loop() {
  Serial.println("1초마다 실행될 문구"); //1초마다 문구 실행 delay(1000); // 1초 쉼
}
```

02 작곡 해보기

타이머와 모터를 이용하면 특정한 음을 낼 수 있습니다. 타이머의 주기를 바꾸게 되면 주파수가 달라지게 되어, 특정 주파수에 해당하는 음을 표현할 수 있습니다.

우리가 흔히 사용하는 4옥타브의 도는 약 262Hz의 주파수를 가지고 있습니다.

음과 주파수

음과 주파수

옥타브에서 각 음에는 해당 음에 맞는 주파수가 있습니다. 아두이노의 모터에 주파수를 조정해주면 해당 음을 낼 수 있습니다.

옥타브 및 음계별 표준 주파수

(단위 : Hz)

옥타브 음계	1	2	3	4	5	6	7	8
C(도)	32.7032	65.4064	130.8128	261.6256	523.2511	1046.502	2093.005	4186.009
C#	34.6478	69.2957	138.5913	277.1826	554.3653	1108.731	2217.461	4434.922
D(레)	36.7081	73.4162	146.8324	293.6648	587.3295	1174.659	2349.318	4698.636
D#	38.8909	77.7817	155.5635	311.1270	622.2540	1244.508	2489.016	4978.032
E(n])	41.2034	82.4069	164.8138	329.6276	659.2551	1318.510	2637.020	5274.041
F(과)	43.6535	87.3071	174.6141	349.2282	698.4565	1396.913	2793.826	5587.652
F#	46.2493	92.4986	184.9972	369.9944	739.9888	1479.978	2959.955	5919.911
G(솔)	48.9994	97.9989	195.9977	391.9954	783.9909	1567.982	3135.963	6271.927
G#	51.9130	103.8262	207.6523	415.3047	830.6094	1661.219	3322.438	6644.875
A(라)	55.0000	110.0000	220.0000	440.0000	880.0000	1760.000	3520.000	7040.000
A#	58.2705	116.5409	233.0819	466.1638	932.3275	1864.655	3729.310	7458.620
B(시)	61.7354	123.4708	246.9417	493.8833	987.7666	1975.533	3951.066	7902.133

<그림2-1> 음계별 표준 주파수

모터와 진동

소리는 진동에 의해 발생 됩니다. 모터의 회전은 특정 주파수의 진동을 만들게 되고, 이 진동이 공기를 진동시키며 소리가 퍼져나가게 됩니다.

<그림2-2> 진동의 퍼져나감

도레미파솔라시도

도레미파솔 라시도 코드

1 다음과 같이 코드를 작성하여 아두이노에 업로드합니다.

ch6_1_2_melody

```
1 #include <TimerThree.h>
 3 | const int melody[] = {
     262, 294, 330, 349, 392, 440, 494, 523,
5|};
6
7 void setup() {
8|}
9
10 void loop() {
     for (int i = 0; i < 8; i++) {
11
       Timer3.initialize(1000000 / melody[i]);
12
     Timer3.pwm(5, 10);
131
      _delav(500);
14 📗
15 L
     ŀ
16|}
               <그림2-3> 도레미파솔라시도 코드
```

꿀TIP

메인 보드 스위치

메인 보드의 스위치는 좌측이 꺼짐, 우측이 켜짐입니다.

2 배터리를 연결한 후, 메인보드의 스위치를 켜, 음이 나오는지 확인합니다.

<그림2-4> 배터리 연결

도레미파솔 라시도 코드 해석

```
#include <TimerThree.h> // TimerThree 라이브러리 사용
const int melody[] = {// 멜로디 배열 선선
 262, 294, 330, 349, 392, 440, 494, 523, // 음의 주파수 값
};
void setup() {
void loop() {
 for (int i = 0; i < 8; i++) {// 1부터 8까지 1씩 증가
 Timer3.initialize(1000000 / melody[i]); // 주파수로 적용
 Timer3.pwm(5, 10); // pwm적용으로모터 회전
 delay(500); // 0.5초 쉼
```

주파수, 주기와 모터

주파수는 주기의 역수입니다. 수식으론 f = 1/t로 표현합니다.

만약, 주파수가 262Hz이면, 주기는 1/262 초가 됩니다. 즉, 1초에 262번 진동을 하게 되고, 같은 말로 262분의 1초에 한 번 진동하는 것입니다.

Timer3.initialize(1000000 / 262)를 하게 되면 1000000us=1s로 1초 동안 262번 진동하라고 초기화 해 놓는 것이고.

Timer3.pwm(5, 10)을 하게 되면 위에서 정한 262Hz의 주파수로 모터를 회전시켜라고 명령하게 됩니다.

03 작곡 해보기

실제 노래에는 도레미와 같은 음이 있고, 그 음이 얼마나 오래 지속되는지 표현하는 음표가 있습니다.

아두이노에서 음과 음표를 적용하는 방법을 알아보고,

자신이 좋아하는 노래의 악보를 아두이노 코드로 변환하여, 아두이노를 노래하게 만들어 봅시다.

떳다 떳다 비행기

비행기 악보

다음은 우리가 흔히 알고 있는 동요 중 하나인 비행기의 악보입니다.

비행기

<그림3-1> 비행기 악보

음표 매칭

우선 가사의 첫 시작은 '떳'입니다.

• '떳'의 음인 라의 주파수 : 440

• '떳'의 음표 : 점8분음표

두번째 가사인 다의 경우

• '다'의 음인 솔의 주파수 : 392

• '다'의 음표: 16분음표

다음과 같이 매칭하여 사용합니다.

4분음표:1000(1초)8분음표:500(0.5초)

• 16분음표: 250(0.25초)

• 점4분음표 : 1500(1.5초)

점8분음표: 750(0.75초)

점16분음표: 375(0.375초)

비행기 코드 앞 부분

비행기 코드 앞 부분

1 다음과 같이 코드를 작성하여 아두이노에 업로드합니다.

```
ch6_1_3_write_song_1
 1 #include <TimerThree.h>
 2
 3 const int melody[] = {
     262, 294, 330, 349, 392, 440, 494, 523,
 5|};
 6
7 const int LEN2 = 2000;
8 const int LEN_DOT2 = 3000;
9 const int LEN4 = 1000;
10 const int LEN_DOT4 = 1500;
11 const int LEN8 = 500;
12 const int LEN_DOT8 = 750;
13 const int LEN16 = 250;
14 const int LEN_DOT16 = 375;
15
16 void setup() {
17
18|}
19
20 void loop() {
21
   hitNote(melody[5], LEN_DOT8);
22 hitNote(melody[4], LEN16);
23 hitNote(melody[3], LEN8);
    hitNote(melody[4], LEN8);
241
25|}
26
27 void hitNote(int note, int len) {
    Timer3.initialize(1000000 / note);
28
29 Timer3.pwm(5, 10);
30 delay(len);
31 | }
```

꿀TIP

메인 보드 스위치

메인 보드의 스위치는 좌측이 꺼짐, 우측이 켜짐입니다.

비행기 코드 앞 부분 해석

2) 배터리를 연결하고, 메인 보드의 스위치를 켠 후 음이 나오는지 확인합니다.

#include <TimerThree.h> // TimerThree 라이브러리 사용 const int melody[] = {// 멜로디 배열 선선 262, 294, 330, 349, 392, 440, 494, 523, // 음의 주파수 값 const int LEN2 = 2000; // 2분음표 길이 const int LEN_DOT2 = 3000; // 점2분음표 길이 const int LEN4 = 1000; // 4분음표 길이 const int LEN_DOT4 = 1500; // 점4분음표 길이 const int LEN8 = 500; // 8분음표 길이 const int LEN DOT8 = 750; // 점8분음표 길이 const int LEN16 = 250; // 16분음표 길이 const int LEN_DOT16 = 375; // 점16분음표 길이 void setup() { } void loop() { hitNote(melody[5], LEN_DOT8); // 라, 점8분음표 hitNote(melody[4], LEN16); // 솔, 16분음표 hitNote(melody[3], LEN8); // 파, 8분음표 hitNote(melody[4], LEN8); // 솔, 8분음표 } void hitNote(int note, int len) {// hitNote 함수 정의 Timer3.initialize(1000000 / note); // 음 주파수 설정 Timer3.pwm(5, 10); // pwm 설정

3 동요 비행기의 나머지 코드를 스스로 작성 해 봅시다.

delay(len); // 음표 길이 설정

}

비행기 코드

비행기 코드

1 loop()의 코드를 다음과 같이 변형한 후, 업로드합니다.

```
20 void loop() {
21
     hitNote(melody[5], LEN_DOT8);
22
     hitNote(melody[4], LEN16);
23
     hitNote(melody[3], LEN8);
24
     hitNote(melody[4], LEN8);
25
     hitNote(melody[5], LEN8);
26 |
27
     hitNote(melody[5], LEN8);
     hitNote(melody[5], LEN4);
28
29
30
     hitNote(melody[4], LEN8);
31
     hitNote(melody[4], LEN8);
32
     hitNote(melody[4], LEN4);
33
34
     hitNote(melody[5], LEN8);
35
     hitNote(melody[5], LEN8);
     hitNote(melody[5], LEN4);
36
37
     hitNote(melody[5], LEN_DOT8);
38
     hitNote(melody[4], LEN16);
39
40
     hitNote(melody[3], LEN8);
41
     hitNote(melody[4], LEN8);
42
     hitNote(melody[5], LEN8);
43
44
     hitNote(melody[5], LEN8);
     hitNote(melody[5], LEN4);
45
46
     hitNote(melody[4], LEN8);
47
     hitNote(melody[4], LEN8);
48
49
     hitNote(melody[5], LEN_DOT8);
     hitNote(melody[4], LEN16);
50
51
52
     hitNote(melody[3], LEN2);
53|}
```

나만의 음악 만들기

내가 원하는 노래

내가 원하는 노래의 악보를 인터넷으로 찾아서, 아두이노를 통해 재생시켜 봅시다.

<그림3-4> 뿜뿜 악보

안아줘

www.musicscore.co.kr

정준일 작사 정준일 작곡 정준일 노래

<그림3-5> 안아줘 악보

도레미파 솔라시도

<그림3-6> 도레미파솔라시도

모터 연결하기

모터 연결구성

1 드론 몸체의 좌측하단에 빨파모터(선이 빨강, 파랑)를 꼬리부터 넣어서 절반정도 끼웁니다.(너무 꽉 끼우지 않습니다.)

<그림3-6> 모터 연결하기

2 베이스 보드의 좌측 하단에 모터 꼬리를 연결합니다.

<그림3-7> 모터 연결하기

③ 베이스 보드에 배터리를 연결하고, 모터에 R프로펠러를 끼웁니다. (L을 끼울 시 바람이 밑으로 나갑니다)

<그림3-8> 모터 연결하기

꿀TIP 베이스보드 스위치

베이스 보드의 스위치는 좌측이 꺼짐, 우측이 켜짐입니다.

