МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 5.2

Спектрометрия α-излучения с помощью полупроводникового детектора

Б03-104 Куланов Александр • **Цель работы:** С помощью кремниевого поверхностно-барьерного детектора измеряются спектры α -частиц, испускаемых различными радиоактивными ядрами - 226 Ra, 238 U, 241 Am + 230 Th и 239 Pu. Исследуется тонкая структура α — излучения и последовательность радиоактивных распадов в семействе урана.

1 Теоретические сведения

К числу радиоактивных процессов относятся α - и β -распады (в том числе и K-захват), γ -излучение, деление ядер, а также испускание запаздывающих нейтронов и протонов. В этой работе изучается α -распад.

Энергию вылетающих из ядра α -частиц легко подсчитать на основе законов сохранения. Если родительское (исходное) ядро имеет массу M_1 , а дочернее (конечное) - M_2 , то законы сохранения энергии и импульса записываются в форме

$$M_2c^2 = M_1c^2 + m_{\alpha}c^2 + T_1 + T_{\alpha},$$

 $p_1 + p_{\alpha} = 0$

где T_1 и p_1 - кинетическая энергия и импульс отдачи дочернего ядра, а T_α и p_α - кинетическая энергия и импульс α -частицы.

Ясно, что вылет α -частицы из ядра возможен лишь в том случае, если разность энергий покоя родительского и дочернего ядра будет больше энергии покоя α -частицы. В силу того, что реально α -распад испытывают лишь тяжелые ядра с A>200, энергия отдачи ядра очень мала и фактически кинетическая энергия α -частицы равна разности энергий покоя исходного и конечного ядер. Именно поэтому вылетающие α -частицы имеют строго определенную энергию.

Однако экспериментально обнаружено, что энергетический спектр α -частиц многих α -активных ядер состоит из нескольких линий, одна из которых преобладающее. Дискретность линий и их относительная интенсивность объяснимы, поскольку, во-первых, α -частицы могут испускаться ядром, находящимися в возбужденном состоянии (длинно-пробежные α -частицы), а во-вторых может происходить α -распад из основного состояния родительского ядра на возбужденные состояния дочернего ядра (короткопробежные α -частицы). Так как период полураспада для α -частиц примерно в 10^5 раз больше периода α -распада, то интенсивность длиннопробежных α -частиц очень мала.

Тяжелые ядра, как правило, в основном состоянии деформированы (исключением являются магические ядра). Это означает, что низколежащими состояниями являются вращательные полосы, и именно на эти состояния обычно и происходит распад родительского ядра, приводящий к появлению группы короткопробежных α -частиц. Как известно, энергия вращательных уровней определяется выражением

$$E_{\rm Bp} = \frac{\hbar^2}{2\mathcal{T}}l(l+1).$$

Тем самым измерение тонкой структуры энергетического спектра α частиц дает возможность определить момент инерции ядра \mathcal{I} .

Периоды полураспада α-активных ядер очень сильно зависят от энергии вылетающих частиц. Экспериментально установленная зависимость (закон Гейгера-Нэттола) имеет вид:

$$\lg T_{1/2} = \frac{a}{\sqrt{E_{\alpha}}} + b. \tag{1}$$

Коэффициенты a и b очень слабо зависят от заряда ядра Z.

2 Экспериментальная установка

В состав экспериментальной установки входит альфа-спектрометр, форвакуумный насос и персональный компьютер. (Рис. 1)

Рис. 1: Блок-схема спектрометра α -излучения

Форвакуумный насос, соединенный с корпусом альфа-спектрометра вакуум-ным шлангом, откачивает измерительную камеру до давления 0,2 мм рт. ст.

Установка автоматически поддерживает давление в измерительной камере в рабочем диапазоне от 0,2 до 2,0 мм рт. ст. Откачка блокируется при разгер-метизации камеры. Соединение и отсоединение измерительной камеры с атмосферой осуществляется с помощью двух электромагнитных клапанов.

При использовании детектора в спектрометрических целях особое значение приобретает его разрешающая способность, т. е. ширина кривой распределения импульсов по амплитудам при строго постоянной энергии регистрируемых частиц. Форма такой кривой распределения обычно бывает близка к кривой ошибок (гауссовой кривой)

$$W(U)dU = \frac{1}{\sqrt{2\pi}\sigma}e^{-(U-U_0)^2/(2\sigma^2)}dU$$

Распределение (5) имеет вид колокола с максимумом при $U=U_0$. Разрешающую способность спектрометра определяют по величине δ ширине кривой W(U), измеренной на половине высоты. Энергетическим разрешением спектрометра обычно называют величину

$$R = \frac{\delta}{U_0} \cdot 100\%.$$

Нетрудно найти связь между δ и σ :

$$\delta = 2\sqrt{2\ln 2}\sigma.$$

Одной из основных причин, вызывающих разброс импульсов по амплитуде, является статистическая флуктуация числа электрондырочных пар, создаваемых падающей частицей. Среднее число пар N равно

$$N = E/E_{\rm cp}$$

где E - энергия, теряемая частицей в детекторе, а $E_{\rm cp}=3.6$ эВ - энергия, необходимая для создания пары электрон-дырка. Среднеквадратичное отклонение σ равно

$$\sigma = \sqrt{N} = \sqrt{E/E_{\rm cp}}$$

Вклад флуктуаций числа пар в энергетическое разрешение

$$R_{\text{флук}} = \frac{\sigma}{N} \cdot 100\% = \sqrt{\frac{E_{\text{cp}}}{E}} \cdot 100\%.$$

3 Обработка результатов

Сначала получим спектр Ra и будем использовать его для калибровки. Номера каналов, соответствующих пикам: 1938, 2221, 2417, 3092. Этим пикам соответствуют энергии 4.784, 5.490, 6.002, 7.687 Мэв.

Рис. 2: Калибровочный график спектрометра

Результаты измерений и их обработки с учетом калибровки занесем в таблицу:

	N_i	ΔN_i	E_i , МэВ	ΔE_i , МэВ	R_i	$R_{\Phi\pi}, 10^{-4}$
²³⁸ U	1672	67	4,12	0,17	0,04	9,35
²³⁸ U	1925	51	4,75	0,13	0,03	8,70
241 Am $+^{230}$ Th	1909	47	4,71	0,12	0,02	8,74
241 Am $+^{230}$ Th	2241	31	5,55	0,08	0,01	8,06
²³⁹ Pu	2118	31	5,24	0,08	0,01	8,29
²²⁶ Ra	1938	37	4,79	0,09	0,02	8,67
²²⁶ Ra	2221	40	5,50	0,10	0,02	8,09
²²⁶ Ra	2417	44	5,99	0,11	0,02	7,75
²²⁶ Ra	3092	37	7,69	0,09	0,01	6,84

Для проверки закона Гейгера-Нетолла построим график $T_{1/2}(1/\sqrt{E_{\alpha}})$. Времена полураспада приведем в таблице:

	Образец	$^{226}\mathrm{Ra}$	222 Ra	²¹⁸ Po	²¹⁴ Po
ĺ	$T_{1/2}$	1620 лет	3.82 суток	3.11 мин	$1.63 \cdot 10^{-4} \text{ c}$

Таблица 1: Время полураспадов 226 Rа и его дочерних ядер

Рис. 3: График для проверки закона Гейгера - Нетолла

Отсюда коэффициенты a и b:

$$a = 150 \pm 10$$
$$b = -58 \pm 5$$

Оценка данных коэффициентов из формул:

$$a \approx 1.6Z = 141$$

$$b \approx -1.6Z^{2/3} - 21.4 = -53$$

4 Выводы

В ходе работы были проведены измерения спектров α -излучения, были получены энергии α -распадов для разных веществ. Также был проверен закон Гейгера-Нетолла связывающий период полураспада с энергией излучения. Коэффициенты совпадают с теоретическими, график действтительно имеет вид прямой.