## Топология I, листочек 4

Я буду здесь и далее обозначать открытость конца интервала через квадратную скобку, смотрящую наружу. То есть интервал между 0 и 1 будет записываться как [0,1[.

## 1. Что получится, если разрезать ленту Мёбиуса по средней линии? А если повторить процедуру?

Лента Мёбиуса определятся как фактор пространство квадрата  $I^2/\sim$ , где I=[0,1], а отношение эквивалентности объединяет в один класс точки (a,0) и (1,1-a). Выкинем из ленты отрезок между точками (0,0.5) и (1,0.5). Полученное пространство будет линейно связным. назавем  $H_+=[0,1]\times ]0.5$ , 1] верхнюю часть и  $H_-=[0,1]\times [0,0.5]$ . Заметим, что факторизация не связывает точки  $H_+$  между собой, а значит  $H_+$  гомеоморфно квадрату без одной стороны, а он линейно связен. Тоже самое можно сказать и про  $H_-$ . Тогда пусть  $A\in H_-$  и  $B\in H_+$ . Тогда точку A можно связать прямой с точкой M=(0,0), которая по факторизации эквивалентна точке N=(1,1), а уже её можно связать с точкой B. Тогда отображение  $(t\in [0,0.5]\mapsto A+2t\overline{AM})\cup (t\in [0.5,1]\mapsto N+(2t-1)\overline{NB})$  опишет путь из A в B и будет непрерывным. А значит разрезанная лента Мёбиуса линейно связна.



Теперь повторим процедуру, вырезав ещё отрезки  $[0,1] \times \{0.75\}$  и  $[0,1] \times \{0.25\}$ . Тогда нетрудно видеть, что лента распадется на 2 несвязные части.



Это верно из того соображения, что если склеить красные кусочки через ST и синие через FH и PR, то выйдут 2 ленты Мёбиуса, а их разрезание по месту склейки оставит их связными.

- 2. Докажите, что следующие определения  $\mathbb{R}P^n$  эквивалентны:
  - (*i*) сфера в  $\mathbb{R}^{n+1}$  с отождествленными противоположными точками;
  - (ii) диск  $D^n$  с отождествленными противоположными точками границы  $\partial D^n = S^{n-1}$ ;
  - (iii) множество всех прямых в  $\mathbb{R}^{n+1}$ , проходящих через начало координат (введите на этом множестве естественную топологию);
  - (iv) множество всех гиперплоскостей в  $\mathbb{R}^{n+1}$ , проходящих через начало координат (введите на этом множестве естественную топологию).
  - $(i) \simeq (ii)$  Диск можно непрерывно вложить в сферу следующим образом.

$$\varphi:(x_1,...,x_n)\mapsto (\sqrt{1-x_1^2-...-x_n^2},x_1,...,x_n)$$

Пусть факторизация диска и сферы из условия заданны соответственно отображениями  $\pi_D$  и  $\pi_S$ . Дополним диаграмму с  $\varphi$  отображением  $\varphi'$  естественным образом, чтобы она коммутировала.

1

$$D^{n} \xrightarrow{\varphi} S^{n}$$

$$\downarrow^{\pi_{D}} \downarrow^{\pi_{S}}$$

$$D^{n}/\sim \xrightarrow{\varphi'} S^{n}/\sim$$

Это возможно в силу того, что  $\varphi$  переводит элементы одного класса в один и тот же класс.  $\varphi'$  – очевидно биекция.  $\varphi$  – непрерывное отображение, причем очевидно, что оно является непрерывной биекцией из компактного диска в хаусдорфову полусферу, а значит  $\varphi$  переводит отрытые в открытые. Отображение  $\pi_S$  и  $\pi_D$  являются непрерывными. К тому же  $\pi_S$  переводит открытые в открыты, так как  $\pi_S^{-1}[\pi_S[U]] = U \cup -U$  – открыто, отображение  $\pi_D$  переводит в открытые множества, открытые и симметричные по границе  $-\partial D^n \cap U = \partial D^n \cap U$  относительно центра. Тогда  $\varphi'[U] = \pi_S[\varphi[\pi_D^{-1}[U]]]$  переводит открытые в открытые, точно также прообразы открытых открыты  $\varphi'^{-1}[V] = \pi_D[\varphi^{-1}[\pi_S^{-1}[V]]]$ , аргумент  $\pi_D$  здесь симметричен по границе относительно центра. Тогда  $\varphi'$  – гомеоморфизм и  $D^n/\sim S^n/\sim$ .

 $(i)\sim (ii)$  Здесь прямые можно отождествить с их пересечениями на сфере, а расстояние между прямыми задать как угол между ними, что тоже самое, что длина минимальной из 2 дуг соединяющих точки пересечения. Пусть L – множество прямый, а S – сфера. Тогда будут две проекции  $\pi_L:S\longrightarrow L$ , ставящая точке прямую через неё проходящую, и  $\pi_S:S\longrightarrow S/\sim$ . Тогда можно будет дополнить диаграмму:

$$L \xrightarrow{\pi_L} S \xrightarrow{\pi_S} L \xrightarrow{\varphi} S/\sim$$

Потому как обе проекции делят шар на одинаковые классы. Прообразами шаров при  $\pi_L$  будут двойные шары  $B \cup -B$ , а они открыты. Образом же шара из S будет пучок прямы, проходящий через этот шар и центр сферы, а он открыт. Тогда  $\pi_L$  переводит открытые в открытые, а также непрерывно. Тогда как и в прошлом пункте если проходить между L и  $S/\sim$  через S, то открытые будут оставаться открытыми.

- $(iii) \simeq (iv)$  Здесь стоит заметить, что углы между плоскостями и прямыми, перпендикулярными к ним совпадают, а значит сопоставляя плоскости её ортогональное дополнение, мы построим биективную изометрию, а значит и гомеоморфизм.
- 3. Докажите, что следующие пространства попарно гомеоморфны (по определению, все они называются комплексным проективным пространством  $\mathbb{C}P^n$ ):
  - (i) сфера  $S^{2n+1}$  в  $\mathbb{C}^{n+1} = \mathbb{R}^{2n+2}$  с отождествленными точками вида  $x \sim \lambda x$  для  $\lambda \in \mathbb{C}, |\lambda| = 1;$
  - (ii) диск  $D^{2n} \in \mathbb{C}^n = \mathbb{R}^{2n}$  с отождествленными противоположными точками границы  $\partial D^{2n} = S^{2n-1}$  вида  $x \sim \lambda x$  для  $\lambda \in \mathbb{C}$ ,  $|\lambda| = 1$ ;
  - (iii) множество всех комплексных прямых  $\mathbb{C}$  в  $\mathbb{C}^{n+1}$ , проходящих через начало координат (введите на этом множестве естественную топологию);
  - (iv) множество всех комплексных гиперплоскостей  $\mathbb{C}^n$  в  $\mathbb{C}^{n+1}$ , проходящих через начало координат (введите на этом множестве естественную топологию).

Я буду использовать далее следующее обозначение  $\mathbb{U}=\{z\in\mathbb{C}\mid |z|=1\}.$ 

 $(i) \simeq (ii)$  Здесь доказательство такое же, как и в действительном случае, кроме того, что отображение  $\phi$  задается иначе.

$$\varphi: (x_1, ..., x_n) \mapsto (\sqrt{1 - x_1 \overline{x_1} - ... - x_n \overline{x_n}}, x_1, ..., x_n)$$

Также достроим диаграмму:

$$D^{n} \xrightarrow{\varphi} S^{n}$$

$$\downarrow^{\pi_{D}} \qquad \downarrow^{\pi_{S}}$$

$$D^{n}/\sim \xrightarrow{\varphi'} S^{n}/\sim$$

Это возможно в силу того, что  $\varphi$  переводит элементы одного класса в один и тот же класс.  $\varphi'$  – очевидно биекция.  $\varphi$  – непрерывное отображение, причем очевидно, что оно является непрерывной биекцией из компактного диска в хаусдорфову полусферу, а значит  $\varphi$  переводит отрытые в открытые. Отображение  $\pi_S$  и  $\pi_D$  являются непрерывными. К тому же  $\pi_S$  переводит открытые в открыты, так как  $\pi_S^{-1}[\pi_S[U]] = \mathbb{U}U$  – объединение отрытых – открыто, отображение

 $\pi_D$  переводит в открытые множества, симметричные по границе  $\mathbb{U}(\partial D \cap U) = \partial D \cap U$  относительно центра. Тогда  $\varphi'[U] = \pi_S[\varphi[\pi_D^{-1}[U]]]$  переводит открытые в открытые, точно также прообразы открытых открыты  $\varphi'^{-1}[V] = \pi_D[\varphi^{-1}[\pi_S^{-1}[V]]]$ , аргумент  $\pi_D$  здесь симметричен по границе относительно центра. Тогда  $\varphi'$  – гомеоморфизм и  $D^n/\sim S^n/\sim$ .

 $(i) \sim (ii)$  Здесь прямые можно отождествить с их пересечениями на сфере, а расстояние между прямыми задать как минимальное расстояние между унитарными векторами этих прямых. Пусть L – множество прямый, а S – сфера. Тогда будут две проекции  $\pi_L:S\to L$ , ставящая точке прямую через неё проходящую, и  $\pi_S:S\to S/\sim$ . Тогда можно будет дополнить диаграмму:

$$L \xrightarrow{\pi_L} S \xrightarrow{\pi_S} S/\sim$$

Потому как обе проекции делят шар на одинаковые классы. Непрерывная проекция  $\pi_S$ , как мы видели ранее переводит открытые в открытые. Покажем, что проекция  $\pi_L$  действует также. Пусть  $B_L^r = \{a \mid d(a,c) < r\}$  — шар прямых, расстояние которых до выделенной прямой c меньше r. Пусть  $S = \pi_L^{-1}[B_L^r]$  и  $C = \pi_L^{-1}(c)$  очевидно, что прямая однозначно определяется унитарным вектором, лежащим в ней и пусть  $e \in C$  — унитарный вектор центральной прямой. Тогда для  $x \in S$  будет верно следующее  $\|\lambda a - \mu e\| < r$  для некоторых  $\lambda, \mu \in \mathbb{U}$ , на самом деле внутри нормы можно сократить на унитарную  $\lambda$  и останется  $\|a - \mu e\| < r$  для другого  $\mu$ . Это соотношение будет определяющим для S и мы получим  $S = \mathbb{U}B_e^r$ , а значит S — открыто, а  $\pi_L$  — непрерывно. В обратную сторону, нетрудно видеть, что  $\pi_L^{-1}[\pi_L[B_e^r]] = \mathbb{U}B_e^r = \pi_L^{-1}[B_c^r]$  и так как  $\pi_L$  — сюръекция, то  $\pi_L[B_e^r] = B_c^r$ . Тогда образ открытого под действием  $\pi_L$  открыт. А тогда точно также как и вдействительном случае,  $\varphi$  сопосталяет открытым открытые в обе стороны.

 $(iii) \sim (iv)$  Здесь также строим изометрию как и в действительном случае.

4. Докажите, что  $S^n * S^m = S^{n+m+1}$  Построим отображение, где  $t \in [-1,1]$  и  $n_t^2 (\sum a_i^2 + b_i^2) + t^2 = 1$ , то есть  $n_t = \sqrt{(1-t^2)/2}$ :

$$\varphi: [((a_1,...,a_n),(b_1,...,b_m),t)] \mapsto (n_t a_1,...,n_t b_1,...,t)$$

не трудно видеть, что он склеивает точки при  $t=\pm 1$ . Тогда можно дополнить диаграмму:

$$S^{n} \times S^{m} \times I \xrightarrow{\varphi} S^{n+m+1}$$

$$S^{n} * S^{m}$$

Очевидно, что  $\varphi'$  – биекция. Проверим её непрерывность в обе стороны.  $\pi$  и  $\varphi$  – непрерывны. Пусть  $U\subseteq S^n*S^m$  – открыт, тогда  $\pi^{-1}[U]$  тоже открыто, если в  $\pi^{-1}[U]$  нет точек, с последней координатой  $\pm 1$ , то так как ограничение  $\varphi$  на прозведения, где вместо отрезка взят интервал очевидно является непрерывной биекцией, и более того в обратную сторону она тоже непрерывна:  $(a_1/n_t,...,a_{n+m}/n_t,t)$ , то  $\varphi'[U]=\varphi[\pi^{-1}[U]]$  – открыто. Если всё же  $\pi^{-1}[U]$  содержит точки с последней координатой  $\pm 1$ , то тогда она содержит все точки с соответствующим  $\pm 1$ , назовем множества точек у которых последняя координата равна 1(-1)  $P_+(P_-)$ . Так как  $\pi^{-1}[U]$  – открыто в регулярном пространстве, то оно содержит слой  $S^n \times S^m \times ]1 - \delta, 1]$  вокруг  $P_+$  или  $P_-$