Signal Processing Fourier Analysis on Finite Abelian Groups

6.S096

January 30, 2024

Plan

• Today's Content: Fourier Analysis on Finite Abelian Group.

Plan

- Today's Content: Fourier Analysis on Finite Abelian Group.
- **Goal:** Decompose Functions on Finite Abelian Groups, analogous to the continuous case.

Plan

- Today's Content: Fourier Analysis on Finite Abelian Group.
- Goal: Decompose Functions on Finite Abelian Groups, analogous to the continuous case.
- We will mostly follow Bao Luong's eponymous textbook.
- Classes at MIT?

Definition (Vector Space)

[?] A vector space is a set V equipped with an + and scalar multiplication such that

① Commutativity: u + v = v + u for all $u, v \in V$

4□ > 4□ > 4 = > 4 = > = 90

Definition (Vector Space)

[?] A vector space is a set V equipped with an + and scalar multiplication such that

- **1** Commutativity: u + v = v + u for all $u, v \in V$
- **2** Associativity: (u+v)+w=u+(v+w) and $a\cdot (b\cdot v)=(a\cdot b)\cdot v$ for all $u, v, w \in V$ and all $a, b \in \mathbb{C}$

January 30, 2024

Definition (Vector Space)

[?] A vector space is a set V equipped with an + and scalar multiplication such that

- **① Commutativity:** u + v = v + u for all $u, v \in V$
- **3 Associativity:** (u+v)+w=u+(v+w) and $a\cdot (b\cdot v)=(a\cdot b)\cdot v$ for all $u,v,w\in V$ and all $a,b\in\mathbb{C}$
- **3 Additive Identity:** There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$

3 / 17

Definition (Vector Space)

- [?] A vector space is a set V equipped with an + and scalar multiplication such that
 - **1** Commutativity: u + v = v + u for all $u, v \in V$
 - **2** Associativity: (u+v)+w=u+(v+w) and $a\cdot (b\cdot v)=(a\cdot b)\cdot v$ for all $u,v,w\in V$ and all $a,b\in \mathbb{C}$
 - **3 Additive Identity:** There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$
 - **4 Additive Inverse:** For every $v \in V$, there exists $w \in V$ such that v + w = 0
 - **6** Multiplicative Identity: $1 \cdot v = v$ for all $v \in V$

3 / 17

Definition (Vector Space)

- [?] A vector space is a set V equipped with an + and scalar multiplication such that
 - **1** Commutativity: u + v = v + u for all $u, v \in V$
 - **2** Associativity: (u+v)+w=u+(v+w) and $a\cdot (b\cdot v)=(a\cdot b)\cdot v$ for all $u,v,w\in V$ and all $a,b\in \mathbb{C}$
 - **3 Additive Identity:** There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$
 - **4 Additive Inverse:** For every $v \in V$, there exists $w \in V$ such that v + w = 0
 - **1** Multiplicative Identity: $1 \cdot v = v$ for all $v \in V$
 - **Obstributive Properties:** $a \cdot (u + v) = a \cdot u + a \cdot v$ and $(a + b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in F$ and all $u, v \in V$

Definition (Vector Space)

- [?] A vector space is a set V equipped with an + and scalar multiplication such that
 - **1** Commutativity: u + v = v + u for all $u, v \in V$
 - **2** Associativity: (u+v)+w=u+(v+w) and $a\cdot (b\cdot v)=(a\cdot b)\cdot v$ for all $u,v,w\in V$ and all $a,b\in \mathbb{C}$
 - **3 Additive Identity:** There exists an element $0 \in V$ such that v + 0 = v for all $v \in V$
 - **4 Additive Inverse:** For every $v \in V$, there exists $w \in V$ such that v + w = 0
 - **1** Multiplicative Identity: $1 \cdot v = v$ for all $v \in V$
 - **Obstributive Properties:** $a \cdot (u + v) = a \cdot u + a \cdot v$ and $(a + b) \cdot v = a \cdot v + b \cdot v$ for all $a, b \in F$ and all $u, v \in V$

Linear Algebra II

Example

The space of complex polynomials of degree at most n, denoted as $\mathbb{C}[x]_{\leq n}$, is a complex vector space. Addition is polynomial addition, and scalar multiplication is polynomial scalar multiplication.

Linear Algebra II

Example

The space of complex polynomials of degree at most n, denoted as $\mathbb{C}[x]_{\leq n}$, is a complex vector space. Addition is polynomial addition, and scalar multiplication is polynomial scalar multiplication. This vector space has a basis $\{1, x, x^2, \dots, x^n\}$ and so it has dimension n+1.

Linear Algebra II

Example

The space of complex polynomials of degree at most n, denoted as $\mathbb{C}[x]_{\leq n}$, is a complex vector space. Addition is polynomial addition, and scalar multiplication is polynomial scalar multiplication. This vector space has a basis $\{1, x, x^2, \cdots, x^n\}$ and so it has dimension n+1.

We also introduce the notion

Inner Product Space

Let V be a complex vector space. An *inner product* on V is a function $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{C}$ that satisfies the following properties for all vectors \mathbf{u} , \mathbf{v} , and scalars $a, b \in \mathbb{C}$:

- **1** Conjugate Symmetry: $\langle \mathbf{u}, \mathbf{v} \rangle = \overline{\langle \mathbf{v}, \mathbf{u} \rangle}$.
- 2 Linearity in the First Argument: $\langle a\mathbf{u} + b\mathbf{v}, \mathbf{w} \rangle = a\langle \mathbf{u}, \mathbf{w} \rangle + b\langle \mathbf{v}, \mathbf{w} \rangle$.
- **3** Positive Definiteness: $\langle \mathbf{u}, \mathbf{u} \rangle \geq 0$ with equality if and only if $\mathbf{u} = \mathbf{0}$.

6.S096 Signal Processing January 30, 2024 4 / 17

Definition

A linear transformation of vector spaces is a map $T: V \to W$ which respects addition and scalar multipliation.

Definition

A linear transformation of vector spaces is a map $T: V \to W$ which respects addition and scalar multipliation.

Definition

Let V and W be inner product spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, respectively.

Definition

A linear transformation of vector spaces is a map $T:V\to W$ which respects addition and scalar multipliation.

Definition

Let V and W be inner product spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, respectively. A linear transformation $T: V \to W$ is called an isometry if, for all vectors $u, v \in V$, the following condition holds:

$$\langle T(u), T(v) \rangle_W = \langle u, v \rangle_V.$$

Definition

A linear transformation of vector spaces is a map $T: V \to W$ which respects addition and scalar multipliation.

Definition

Let V and W be inner product spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, respectively. A linear transformation $T: V \to W$ is called an isometry if, for all vectors $u, v \in V$, the following condition holds:

$$\langle T(u), T(v) \rangle_W = \langle u, v \rangle_V.$$

Another special property of inner-products is that they allow one to compute coordinates against a basis.

Definition

A linear transformation of vector spaces is a map $T:V\to W$ which respects addition and scalar multipliation.

Definition

Let V and W be inner product spaces with inner products $\langle \cdot, \cdot \rangle_V$ and $\langle \cdot, \cdot \rangle_W$, respectively. A linear transformation $T: V \to W$ is called an isometry if, for all vectors $u, v \in V$, the following condition holds:

$$\langle T(u), T(v) \rangle_W = \langle u, v \rangle_V.$$

Another special property of inner-products is that they allow one to compute coordinates against a basis. If b_1, \dots, b_n is an orthonormal basis then

$$v = \sum_{i=1}^{n} \langle v, b_i \rangle b_i.$$

6.S096

Definition

Consider a finite nonempty set S.

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^{|S|}$. In fact, V_S is a complex vector space which can be equipped with an inner product

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^|S|$. In fact, V_S is a complex vector space which can be equipped with an inner product

$$\langle f,g\rangle=\sum_{s\in S}f(s)\overline{g}(s).$$

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^|S|$. In fact, V_S is a complex vector space which can be equipped with an inner product

$$\langle f,g\rangle=\sum_{s\in S}f(s)\overline{g}(s).$$

Naturally, one can ask what is the dimension of V_S .

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^{|S|}$. In fact, V_S is a complex vector space which can be equipped with an inner product

$$\langle f,g\rangle=\sum_{s\in S}f(s)\overline{g}(s).$$

Naturally, one can ask what is the dimension of V_S . The dimension is exactly |S|: consider the basis of Dirac delta functions

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^|S|$. In fact, V_S is a complex vector space which can be equipped with an inner product

$$\langle f,g\rangle = \sum_{s\in S} f(s)\overline{g}(s).$$

Naturally, one can ask what is the dimension of V_S . The dimension is exactly |S|: consider the basis of Dirac delta functions

$$\delta_{s}(x) = \begin{cases} 1 & \text{if } x = s, \\ 0 & \text{if } x \neq s. \end{cases}$$

6.S096 Signal Processing

Definition

Consider a finite nonempty set S. Let V_S be the space of complex-valued functions on S, that is, the space of functions $S \to \mathbb{C}$.

Note that this is equivalent to specifying a tuple in $\mathbb{C}^|S|$. In fact, V_S is a complex vector space which can be equipped with an inner product

$$\langle f,g\rangle=\sum_{s\in S}f(s)\overline{g}(s).$$

Naturally, one can ask what is the dimension of V_S . The dimension is exactly |S|: consider the basis of Dirac delta functions

$$\delta_s(x) = \begin{cases} 1 & \text{if } x = s, \\ 0 & \text{if } x \neq s. \end{cases}$$

Let Δ_S be the set of such δ_s functions. This implies that V_S is a |S|-dimensional complex vector space.

Recall that \mathbb{C}^* is the group of complex numbers under multiplication.

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x,y \in G$.

6.S096 Signal Processing

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x.y \in G$.

Definition (Characters)

A character of a group G is a group homomorphism χ from G to \mathbb{C}^* .

6.5096 Signal Processing January 30, 2024 7,

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x.y \in G$.

Definition (Characters)

A character of a group G is a group homomorphism χ from G to \mathbb{C}^* .

The character corresponding to the trivial homomorphism is called the *trivial* (or *principal*) character.

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x.y \in G$.

Definition (Characters)

A character of a group G is a group homomorphism χ from G to \mathbb{C}^* .

The character corresponding to the trivial homomorphism is called the *trivial* (or *principal*) character.

Example

If χ is a character on G and $g \in G$, then $g^{|G|} = 1$ and so $\chi(g)^{|G|} = 1$. What does this say about the image of χ ?

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x.y \in G$.

Definition (Characters)

A character of a group G is a group homomorphism χ from G to \mathbb{C}^* .

The character corresponding to the trivial homomorphism is called the *trivial* (or *principal*) character.

Example

If χ is a character on G and $g \in G$, then $g^{|G|} = 1$ and so $\chi(g)^{|G|} = 1$. What does this say about the image of χ ?

Fact (Characters form a group)

The characters on a group ${\it G}$ form a group under pointwise multiplication.

Recall that \mathbb{C}^* is the group of complex numbers under multiplication. Also, recall that an *abelian* group is a group G in which the group operation is commutative, so xy = yx for all $x.y \in G$.

Definition (Characters)

A character of a group G is a group homomorphism χ from G to \mathbb{C}^* .

The character corresponding to the trivial homomorphism is called the *trivial* (or *principal*) character.

Example

If χ is a character on G and $g \in G$, then $g^{|G|} = 1$ and so $\chi(g)^{|G|} = 1$. What does this say about the image of χ ?

Fact (Characters form a group)

The characters on a group ${\it G}$ form a group under pointwise multiplication.

Characters II

This group is called the *dual* group of G, and is denoted as \hat{G} .

Characters II

This group is called the *dual* group of G, and is denoted as \hat{G} .

Theorem

If G is a finite abelian group, then G and \hat{G} are isomorphic.

Let us sketch the proof of this result. For this, we will need the following result.

Characters II

This group is called the *dual* group of G, and is denoted as \hat{G} .

Theorem

If G is a finite abelian group, then G and \hat{G} are isomorphic.

Let us sketch the proof of this result. For this, we will need the following result.

Theorem (Structure Theorem for Finite Abelian Groups)

Every finite abelian group G can be expressed ^a as the direct product of cyclic groups:

6.S096 Signal Processing January 30, 2024 8 / 17

Characters II

This group is called the *dual* group of G, and is denoted as \hat{G} .

Theorem

If G is a finite abelian group, then G and \hat{G} are isomorphic.

Let us sketch the proof of this result. For this, we will need the following result.

Theorem (Structure Theorem for Finite Abelian Groups)

Every finite abelian group G can be expressed a as the direct product of cyclic groups:

$$G\cong \mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times \ldots \times \mathbb{Z}_{n_k}$$

where n_1, n_2, \ldots, n_k are positive integers whose product is |G|.

ais isomorphic

Finishing the Proof

Moreover, one can verify that the group of characters on $\widehat{G_1 \times G_2}$ is isomorphic $\widehat{G_1} \times \widehat{G_2}$, so this boils down to the following result.

Lemma

The dual $\widehat{\mathbb{Z}}_n$ is isomorphic to \mathbb{Z}_n for all $n \geq 1$.

9 / 17

How do characters relate to each other?

Theorem (Orthogonality Relation I)

$$\sum_{g \in G} \chi(g) = \begin{cases} |G| & \text{if } \chi \text{is trivial,} \\ 0 & \text{otherwise.} \end{cases}$$

6.5096 Signal Processing January 30, 2024 10 / 17

How do characters relate to each other?

Theorem (Orthogonality Relation I)

$$\sum_{g \in G} \chi(g) = \begin{cases} |G| & \text{if } \chi \text{is trivial,} \\ 0 & \text{otherwise.} \end{cases}$$

This gives rise to an orthogonality result.

Corollary (Orthogonality of Characters)

$$\langle \chi, \chi' \rangle = \begin{cases} |G| & \text{if } \chi = \chi', \\ 0 & \text{if } \chi \neq \chi'. \end{cases}$$

6.S096 Signal Processing January 30, 2024 10/17

We can also compute a slightly different sum (where we fix the group element and vary the character).

6.S096 Signal Processing

We can also compute a slightly different sum (where we fix the group element and vary the character).

Corollary (Summing over characters)

If $g \in G$ then

$$\sum_{\chi \in \widehat{G}} \chi(g) = egin{cases} |G| & ext{ if } g = 1_G \ 0 & ext{ otherwise}. \end{cases}$$

6.5096 Signal Processing January 30, 2024 11,

We can also compute a slightly different sum (where we fix the group element and vary the character).

Corollary (Summing over characters)

If $g \in G$ then

$$\sum_{\chi \in \widehat{G}} \chi(g) = egin{cases} |G| & \textit{if } g = 1_G \ 0 & \textit{otherwise}. \end{cases}$$

Finally, one can also prove.

6.S096 Signal Processing January 30, 2024 11 / 17

We can also compute a slightly different sum (where we fix the group element and vary the character).

Corollary (Summing over characters)

If $g \in G$ then

$$\sum_{\chi \in \widehat{G}} \chi(g) = egin{cases} |G| & \textit{if } g = 1_G \\ 0 & \textit{otherwise}. \end{cases}$$

Finally, one can also prove.

Corollary

If $g \in G$ then

$$\sum_{g \in G} \chi(g) \overline{\chi}(g') = \begin{cases} |G| & \text{if } g = g' \\ 0 & \text{otherwise.} \end{cases}$$

11 / 17

Character Matrix

What we just proved can be put together in a concise way. Let us enumerate the characters χ_1, \dots, χ_n .

Definition (Character Matrix)

Given a group G, we define its character matrix to be the matrix whose (s,t) entry is $\chi_s(t)$.

12 / 17

Character Matrix

What we just proved can be put together in a concise way. Let us enumerate the characters χ_1, \dots, χ_n .

Definition (Character Matrix)

Given a group G, we define its character matrix to be the matrix whose (s,t) entry is $\chi_s(t)$.

Example (Character Matrix of \mathbb{Z}_n)

Let $\zeta_n=e^{2\pi i/n}$. Then the character matrix of \mathbb{Z}_n is given by

$$\begin{bmatrix} 1 & 1 & \cdots & \cdots & 1 \\ 1 & \zeta_n & \zeta_n^2 & \cdots & \zeta_n^{n-1} \\ 1 & \zeta_n^2 & \zeta_n^4 & \cdots & \zeta_n^{2(n-1)} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 1 & \zeta_n^{(n-1)} & \zeta_n^{2(n-1)} & \cdots & \zeta_n^{(n-1)(n-1)} \end{bmatrix}$$

12 / 17

Theorem

If G is a finite abelian group of order n, then matrix $\frac{1}{\sqrt{n}}X_G$ is a unitary matrix. That is, $X_G X_G^* = nI_n$, where I_n is the $n \times n$ identity matrix.

6.S096 Signal Processing

Theorem

If G is a finite abelian group of order n, then matrix $\frac{1}{\sqrt{n}}X_G$ is a unitary matrix. That is, $X_GX_G^* = nI_n$, where I_n is the $n \times n$ identity matrix.

One can also conclude the following result.

13 / 17

Theorem

If G is a finite abelian group of order n, then matrix $\frac{1}{\sqrt{n}}X_G$ is a unitary matrix. That is, $X_GX_G^* = nI_n$, where I_n is the $n \times n$ identity matrix.

One can also conclude the following result.

Theorem,

The characters form an orthogonal basis of V_G , and each character has norm \sqrt{n} .

6.S096 Signal Processing January 30, 2024 13 / 17

Theorem

If G is a finite abelian group of order n, then matrix $\frac{1}{\sqrt{n}}X_G$ is a unitary matrix. That is, $X_GX_G^* = nI_n$, where I_n is the $n \times n$ identity matrix.

One can also conclude the following result.

Theorem

The characters form an orthogonal basis of V_G , and each character has norm \sqrt{n} . That is, the normalized characters $\frac{1}{\sqrt{n}}\chi$ form an orthonormal basis of V_G .

6.S096 Signal Processing January 30, 2024 13 / 17

We have just seen two orthonormal bases for V_G :

• Dirac deltas:

We have just seen two orthonormal bases for V_G :

• Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,

6.S096 Signal Processing January 30, 2024 14 / 17

We have just seen two orthonormal bases for V_G :

- Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,
- Normalized characters:

6.S096 Signal Processing January 30, 2024 14 / 17

We have just seen two orthonormal bases for V_G :

- Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,
- Normalized characters: $B_G = \{B_g = \frac{1}{|G|}\chi_g : g \in G\}.$

6.S096 Signal Processing January 30, 2024 14 / 17

We have just seen two orthonormal bases for V_G :

- Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,
- Normalized characters: $B_G = \{B_g = \frac{1}{|G|}\chi_g : g \in G\}.$

This allows us to define the Fourier transform.

14 / 17

We have just seen two orthonormal bases for V_G :

- Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,
- Normalized characters: $B_G = \{B_g = \frac{1}{|G|}\chi_g : g \in G\}.$

This allows us to define the Fourier transform.

Definition

The unique linear operator on V_G sending each B_g to δ_g is known as the Fourier transform.

We have just seen two orthonormal bases for V_G :

- Dirac deltas: $\Delta_G = \{\delta_g : g \in G\}$,
- Normalized characters: $B_G = \{B_g = \frac{1}{|G|}\chi_g : g \in G\}.$

This allows us to define the Fourier transform.

Definition

The unique linear operator on V_G sending each B_g to δ_g is known as the Fourier transform.

This operator is denoted as \mathcal{F} . We denote the Fourier transform (FT) of a function $f \in V_G$ as either $\mathcal{F}(g)$ or as \hat{f} .

14 / 17

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

1 The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f_1}, \hat{f_2} \rangle$ for all $f_1, f_2 \in G$. ^a

15 / 17

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

- **1** The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f}_1, \hat{f}_2 \rangle$ for all $f_1, f_2 \in G$. ^a
- ② \hat{f} is the unique complex-valued function in V_G whose value at g is the coefficient $\langle f, B_g \rangle$.

6.S096 Signal Processing January 30, 2024 15 / 17

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

- **1** The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f}_1, \hat{f}_2 \rangle$ for all $f_1, f_2 \in G$. ^a
- ② \hat{f} is the unique complex-valued function in V_G whose value at g is the coefficient $\langle f, B_g \rangle$. That is: $\hat{f} = \sum_{g \in G} \langle f, B_g \rangle \delta_g$.

15 / 17

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

- **1** The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f}_1, \hat{f}_2 \rangle$ for all $f_1, f_2 \in G$. ^a
- ② \hat{f} is the unique complex-valued function in V_G whose value at g is the coefficient $\langle f, B_g \rangle$. That is: $\hat{f} = \sum_{g \in G} \langle f, B_g \rangle \delta_g$.
- **3** The FT of the FT is just the reversed signal: $\hat{f}(x) = f(-x)$.

15 / 17

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

- **1** The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f}_1, \hat{f}_2 \rangle$ for all $f_1, f_2 \in G$.
- ② \hat{f} is the unique complex-valued function in V_G whose value at g is the coefficient $\langle f, B_g \rangle$. That is: $\hat{f} = \sum_{g \in G} \langle f, B_g \rangle \delta_g$.
- **1** The FT of the FT is just the reversed signal: $\hat{f}(x) = f(-x)$.
- The FT at the identity corresponds to the signal's average value:

We can prove some elegant properties of the FT.

Theorem (Properties of the Fourier Transform)

Let G be a finite abelian group.

- **1** The FT is an isometry, so $\langle f_1, f_2 \rangle = \langle \hat{f}_1, \hat{f}_2 \rangle$ for all $f_1, f_2 \in G$. ^a
- ② \hat{f} is the unique complex-valued function in V_G whose value at g is the coefficient $\langle f, B_g \rangle$. That is: $\hat{f} = \sum_{g \in G} \langle f, B_g \rangle \delta_g$.
- **1** The FT of the FT is just the reversed signal: $\hat{f}(x) = f(-x)$.
- The FT at the identity corresponds to the signal's average value: $\hat{f}(1_G) = \frac{1}{\sqrt{|G|}} \sum_{g \in G} f(g)$.
- The FT on product of groups can be computed iteratively.

^athis is known as *Plancherel's identity*

Periods

Let us put this into context. Here is one natural way this construction arises. Consider a function $f: \mathbb{Z} \to \mathbb{C}$ which is periodic modulo n for some n > 1. This function descends uniquely to a function on \mathbb{Z}_n .

Lemma (Periods dividing Periods)

If a function on \mathbb{Z}_n is periodic, then its period divides n.

Theorem

If $f \in V_{\mathbb{Z}_n}$ is a nonconstant peropdic function with period σ , and $f_{\sigma} \in V_{\mathbb{Z}_{\sigma}}$ is the corresponding restriction, then

Periods

Let us put this into context. Here is one natural way this construction arises. Consider a function $f: \mathbb{Z} \to \mathbb{C}$ which is periodic modulo n for some n > 1. This function descends uniquely to a function on \mathbb{Z}_n .

Lemma (Periods dividing Periods)

If a function on \mathbb{Z}_n is periodic, then its period divides n.

Theorem

If $f \in V_{\mathbb{Z}_n}$ is a nonconstant peropdic function with period σ , and $f_{\sigma} \in V_{\mathbb{Z}_{\sigma}}$ is the corresponding restriction, then

$$\hat{f}(s) = \begin{cases} \sqrt{\frac{n}{\sigma}} \hat{f}_{\sigma}(m) & \text{if } s = m \frac{n}{\sigma} \text{ for some } 0 \leq m < \sigma, \\ 0 & \text{otherwise.} \end{cases}$$

6.5096 Signal Processing January 30, 2024 16 / 17

Periods

Let us put this into context. Here is one natural way this construction arises. Consider a function $f: \mathbb{Z} \to \mathbb{C}$ which is periodic modulo n for some n > 1. This function descends uniquely to a function on \mathbb{Z}_n .

Lemma (Periods dividing Periods)

If a function on \mathbb{Z}_n is periodic, then its period divides n.

Theorem

If $f \in V_{\mathbb{Z}_n}$ is a nonconstant peropdic function with period σ , and $f_{\sigma} \in V_{\mathbb{Z}_{\sigma}}$ is the corresponding restriction, then

$$\hat{f}(s) = \begin{cases} \sqrt{\frac{n}{\sigma}} \hat{f}_{\sigma}(m) & \text{if } s = m \frac{n}{\sigma} \text{ for some } 0 \leq m < \sigma, \\ 0 & \text{otherwise.} \end{cases}$$

It follows that \hat{f} has at most σ nonzero values.

6.5096 Signal Processing January 30, 2024 16 / 17

Fourier Inversion:

6.S096 Signal Processing

9 Fourier Inversion: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$.

• Fourier Inversion: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.

- Fourier Inversion: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- Onvolution:

- **Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2** Convolution: $(f_1 * f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$.

17 / 17

- **1 Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2 Convolution**: $(f_1 * f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution,

6.5096 Signal Processing 17 / 17

- **9 Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2 Convolution**: $(f_1 * f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution, and a kind of orthogonality $B_s * B_t$ is nonzero exactly when s = t.

6.S096 Signal Processing January 30, 2024 17 / 17

- **Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **Convolution**: $(f_1*f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution, and a kind of orthogonality B_s*B_t is nonzero exactly when s=t. These elements form a ring with the identity being δ .

6.S096 Signal Processing January 30, 2024 17 / 17

- **9 Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2 Convolution**: $(f_1*f_2)(x):=\frac{1}{\sqrt{|G|}}\sum_{g\in G}f_1(xg^{-1})f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution, and a kind of orthogonality B_s*B_t is nonzero exactly when s=t. These elements form a ring with the identity being δ .

Most important, the FT sends convolution to multiplication:

6.S096 Signal Processing January 30, 2024 17 / 17

- **9 Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2 Convolution**: $(f_1*f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution, and a kind of orthogonality B_s*B_t is nonzero exactly when s=t. These elements form a ring with the identity being δ .

Most important, the FT sends convolution to multiplication:

$$\widehat{f_1 * f_2} = \widehat{f_1} \widehat{f_2}$$

- **9 Fourier Inversion**: By the definition of the Fourier trasnform, one gets that $\check{f} = \sum_{g \in G} \langle f, \delta_g \rangle B_g$. It follows hence that $f = \sum_{g \in G} \langle \widehat{f}, \delta_g \rangle B_g$.
- **2 Convolution**: $(f_1*f_2)(x) := \frac{1}{\sqrt{|G|}} \sum_{g \in G} f_1(xg^{-1}) f_2(g)$. The convolution is a symmetric bilinear transformation on V_G , satisfying associativity, commutativity, distribution, and a kind of orthogonality B_s*B_t is nonzero exactly when s=t. These elements form a ring with the identity being δ .

Most important, the FT sends convolution to multiplication:

$$\widehat{f_1 * f_2} = \hat{f_1} \hat{f_2}$$

1 Iterated Fourier Transforms: (See Luong's Section 4.6)

6.S096 Signal Processing