

PROJEKT INŻYNIERSKI

Tytuł pracy dyplomowej inżynierskiej

Imię NAZWISKO

Nr albumu: \(\text{wpisac właściwy} \)

Kierunek: (wpisać właściwy)

Specjalność: (wpisać właściwą)

PROWADZĄCY PRACĘ

〈tytuł lub stopień naukowy oraz imię i nazwisko〉
KATEDRA 〈wpisać właściwą〉
Wydział Automatyki, Elektroniki i Informatyki

OPIEKUN, PROMOTOR POMOCNICZY \(\stopie\'n \text{ nazwisko} \)

Gliwice 2022

Tytuł pracy

Tytuł pracy dyplomowej inżynierskiej

Streszczenie

(Streszczenie pracy – odpowiednie pole w systemie APD powinno zawierać kopię tego streszczenia.)

Słowa kluczowe

(2-5 slow (fraz) kluczowych, oddzielonych przecinkami)

Thesis title

Thesis title in English

Abstract

(Thesis abstract – to be copied into an appropriate field during an electronic submission – in English.)

Key words

(2-5 keywords, separated by commas)

Spis treści

ı wstęp	1
2 [Analiza tematu]	3
3 Wymagania i narzędzia	5
4 [Właściwy dla kierunku – np. Specyfikacja zewnętrzna]	7
5 [Właściwy dla kierunku – np. Specyfikacja wewnętrzna]	9
6 Weryfikacja i walidacja	11
7 Podsumowanie i wnioski	13
Bibliografia	15
Spis skrótów i symboli	19
Ź ródła	21
Lista dodatkowych plików, uzupełniających tekst pracy	23
Spis rysunków	25
Spis tabel	27

Wstęp

- wprowadzenie w problem/zagadnienie
- osadzenie problemu w dziedzinie
- cel pracy
- zakres pracy
- zwięzła charakterystyka rozdziałów
- jednoznaczne określenie wkładu autora, w przypadku prac wieloosobowych tabela z autorstwem poszczególnych elementów pracy

[Analiza tematu]

- sformułowanie problemu
- osadzenie tematu w kontekście aktualnego stanu wiedzy (state of the art) o poruszanym problemie
- studia literaturowe [3, 4, 2, 1] opis znanych rozwiązań (także opisanych naukowo, jeżeli problem jest poruszany w publikacjach naukowych), algorytmów,

Wzory

$$y = \frac{\partial x}{\partial t} \tag{2.1}$$

jak i pojedyncze symbole x i y składa się w trybie matematycznym.

Wymagania i narzędzia

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

[Właściwy dla kierunku – np. Specyfikacja zewnętrzna]

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)

Rysunek $4.1 \colon \text{Podpis}$ rysunku po rysunkiem.

[Właściwy dla kierunku – np. Specyfikacja wewnętrzna]

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings) lub **int** a; (biblioteka minted). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1 i rys. 5.2, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

Rysunek 5.2: Pseudokod w minted.

Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tablica 6.1: Nagłówek tabeli jest nad tabela.

Tablica 0.1. Nagiowek tabeli jest nad tabelą.													
	metoda												
				alg. 3	alg. 4	$\gamma = 2$							
ζ	alg. 1	alg. 2	$\alpha = 1.5$	$\alpha = 2$	$\alpha = 3$	$\beta = 0.1$	$\beta = -0.1$						
0	8.3250	1.45305	7.5791	14.8517	20.0028	1.16396	1.1365						
5	0.6111	2.27126	6.9952	13.8560	18.6064	1.18659	1.1630						
10	11.6126	2.69218	6.2520	12.5202	16.8278	1.23180	1.2045						
15	0.5665	2.95046	5.7753	11.4588	15.4837	1.25131	1.2614						
20	15.8728	3.07225	5.3071	10.3935	13.8738	1.25307	1.2217						
25	0.9791	3.19034	5.4575	9.9533	13.0721	1.27104	1.2640						
30	2.0228	3.27474	5.7461	9.7164	12.2637	1.33404	1.3209						
35	13.4210	3.36086	6.6735	10.0442	12.0270	1.35385	1.3059						
40	13.2226	3.36420	7.7248	10.4495	12.0379	1.34919	1.2768						
45	12.8445	3.47436	8.5539	10.8552	12.2773	1.42303	1.4362						
50	12.9245	3.58228	9.2702	11.2183	12.3990	1.40922	1.3724						

Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

Bibliografia

- [1] Imię Nazwisko i Imię Nazwisko. *Tytuł strony internetowej.* 2021. URL: http://gdzies/w/internecie/internet.html (term. wiz. 30.09.2021).
- [2] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu konferencyjnego".
 W: Nazwa konferecji. 2006, s. 5346–5349.
- [3] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. "Tytuł artykułu w czasopiśmie". W: *Tytuł czasopisma* 157.8 (2016), s. 1092–1113.
- [4] Imię Nazwisko, Imię Nazwisko i Imię Nazwisko. *Tytuł książki*. Warszawa: Wydawnictwo, 2017. ISBN: 83-204-3229-9-434.

Dodatki

Spis skrótów i symboli

DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)

MVC model – widok – kontroler (ang. model-view-controller)

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi
ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

```
if (_nClusters < 1)

throw std::string ("unknown number of clusters");

if (_nIterations < 1 and _epsilon < 0)

throw std::string ("You should set a maximal number of iteration or

minimal difference -- epsilon.");

if (_nIterations > 0 and _epsilon > 0)

throw std::string ("Both number of iterations and minimal epsilon set

-- you should set either number of iterations or minimal

epsilon.");
```

Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

Spis rysunków

4.1	Podpis rysunku po rysunkiem	8
5.1	Pseudokod w listings	1(
5.2	Pseudokod w minted	10

Spis tablic

6.1	Nagłówek	tabeli jest nac	l tabelą																	12
-----	----------	-----------------	----------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	----