Book draft

Mathematical Foundations of Reinforcement Learning

Shiyu Zhao

Contents

C	Contents				
P	Preface Overview of this Book				
O					
1	Basic Concepts				
	1.1	A grid world example	13		
	1.2	State and action	14		
	1.3	State transition	15		
	1.4	Policy	16		
	1.5	Reward	18		
	1.6	Trajectories, returns, and episodes	20		
	1.7	Markov decision processes	23		
	1.8	Summary	24		
	1.9	Q&A	24		
2	Stat	te Values and Bellman Equation	26		
	2.1	Motivating example 1: Why are returns important?	27		
	2.2	Motivating example 2: How to calculate returns?	28		
	2.3	State values	30		
	2.4	Bellman equation	31		
	2.5	Examples for illustrating the Bellman equation	33		
	2.6	Matrix-vector form of the Bellman equation	36		
	2.7	Solving state values from the Bellman equation	38		
		2.7.1 Closed-form solution	38		
		2.7.2 Iterative solution	39		
		2.7.3 Illustrative examples	39		
	2.8	From state value to action value	41		
		2.8.1 Illustrative examples	42		
		2.8.2 The Bellman equation in terms of action values	43		
	2.9	Summary	44		

	2.10	Q&A	44		
3	Optimal State Values and Bellman Optimality Equation				
	3.1	Motivating example: How to improve policies?	47		
	3.2	Optimal state values and optimal policies	48		
	3.3	Bellman optimality equation	49		
		3.3.1 Maximization of the right-hand side of the BOE	50		
		3.3.2 Matrix-vector form of the BOE	51		
		3.3.3 Contraction mapping theorem	51		
		3.3.4 Contraction property of the right-hand side of the BOE	55		
	3.4	Solving an optimal policy from the BOE	57		
	3.5	Factors that influence optimal policies	60		
	3.6	Summary	64		
	3.7	Q&A	65		
4	Valı	ue Iteration and Policy Iteration	67		
	4.1	Value iteration	68		
		4.1.1 Elementwise form and implementation	68		
		4.1.2 Illustrative examples	69		
	4.2	Policy iteration	72		
		4.2.1 Algorithm analysis	72		
		4.2.2 Elementwise form and implementation	75		
		4.2.3 Illustrative examples	77		
	4.3	Truncated policy iteration	80		
		4.3.1 Comparing value iteration and policy iteration	80		
		4.3.2 Truncated policy iteration algorithm	82		
	4.4	Summary	84		
	4.5	Q&A	84		
5	Moi	nte Carlo Methods	87		
	5.1	Motivating example: Mean estimation	88		
	5.2	MC Basic: The simplest MC-based algorithm	90		
		5.2.1 Converting policy iteration to be model-free	90		
		5.2.2 The MC Basic algorithm	91		
		5.2.3 Illustrative examples	93		
	5.3	MC Exploring Starts	96		
		5.3.1 Utilizing samples more efficiently	96		
		5.3.2 Updating policies more efficiently	97		
		5.3.3 Algorithm description	98		
	5.4	MC ϵ -Greedy: Learning without exploring starts	99		
		$5.4.1 \epsilon$ -greedy policies	99		

5.5	5.4.3	Illustrative examples	101
5.5	1.7		101
		ration and exploitation of ϵ -greedy policies	102
5.6		ary	107
5.7	Q&A		107
Sto	chastic	Approximation	110
6.1	Motiva	ating example: Mean estimation	111
6.2	Robbi	ns-Monro algorithm	112
	6.2.1	Convergence properties	114
	6.2.2	Application to mean estimation	117
6.3	Dvoret	tzky's convergence theorem	118
	6.3.1	Proof of Dvoretzky's theorem	119
	6.3.2	Application to mean estimation	121
	6.3.3	Application to the Robbins-Monro theorem	121
	6.3.4	An extension of Dvoretzky's theorem	122
6.4	Stocha	astic gradient descent	123
	6.4.1	Application to mean estimation	125
	6.4.2	Convergence pattern of SGD	125
	6.4.3	A deterministic formulation of SGD	127
	6.4.4	BGD, SGD, and mini-batch GD	128
	6.4.5	Convergence of SGD	130
6.5	Summ	ary	132
6.6	Q&A		132
Ten	nporal-	Difference Methods	134
	-		135
•••			135
			137
		- v	139
7.2			142
			142
		-	143
7.3			147
		-	149
1.1			149
		-	150
		- · · ·	150 153
		-	153
7 5		_	153 154
		-	$\frac{154}{157}$
	Stoc 6.1 6.2 6.3 6.4 6.5 6.6 Tem 7.1 7.2 7.3 7.4	Stochastic 6.1 Motive 6.2 Robbi 6.2.1 6.2.2 6.3 Dvore 6.3.1 6.3.2 6.3.3 6.3.4 6.4 Stocha 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.5 Summ 6.6 Q&A Temporal- 7.1 TD leader 7.1.1 7.1.2 7.1.3 7.2 TD leader 7.2.1 7.2.2 7.3 TD leader 7.4.1 7.4.2 7.4.3 7.4.4 7.5 A unif	Stochastic Approximation

	7.7	Q&A	158
8	Valı	ne Function Approximation	160
	8.1	Value representation: From table to function	161
	8.2	TD learning of state values based on function approximation	164
		8.2.1 Objective function	165
		8.2.2 Optimization algorithms	170
		8.2.3 Selection of function approximators	171
		8.2.4 Illustrative examples	173
		8.2.5 Theoretical analysis	176
	8.3	TD learning of action values based on function approximation	188
		8.3.1 Sarsa with function approximation	188
		8.3.2 Q-learning with function approximation	189
	8.4	Deep Q-learning	190
		8.4.1 Algorithm description	191
		8.4.2 Illustrative examples	193
	8.5	Summary	195
	8.6	Q&A	196
9	Poli	cy Gradient Methods	199
	9.1	Policy representation: From table to function	200
	9.2	Metrics for defining optimal policies	201
	9.3	Gradients of the metrics	206
		9.3.1 Derivation of the gradients in the discounted case	208
		9.3.2 Derivation of the gradients in the undiscounted case	213
	9.4	Monte Carlo policy gradient (REINFORCE)	218
	9.5	Summary	221
	9.6	Q&A	221
10	Act	or-Critic Methods	223
	10.1	The simplest actor-critic algorithm (QAC)	224
	10.2	Advantage actor-critic (A2C)	225
		10.2.1 Baseline invariance	225
		10.2.2 Algorithm description	228
	10.3	Off-policy actor-critic	229
		10.3.1 Importance sampling	229
		10.3.2 The off-policy policy gradient theorem	232
		10.3.3 Algorithm description	234
	10.4	Deterministic actor-critic	235
		10.4.1 The deterministic policy gradient theorem	235
		10.4.2 Algorithm description	242

	10.5 Summary	
	10.0 %	211
A	Preliminaries for Probability Theory	245
В	Measure-Theoretic Probability Theory	250
\mathbf{C}	Convergence of Sequences	257
	C.1 Convergence of deterministic sequences	257
	C.2 Convergence of stochastic sequences	260
D	Preliminaries for Gradient Descent	264
Bi	Bibliography	
Symbols		276
Index		278