Parabola, Locus – Parametric Representation

Parabola

- > Parts of a Parabola & Definition
- > Introduction of parameters (dummy variables)
- > CHORDS
 - > Gradient of a Chord
 - > Equation of a Chord
 - > The Focal Chord
- > TANGENTS
 - > Gradient of a Tangent
 - > Equation of a Tangent
 - > Intersection of two Tangents
 - > Intersection of Tangents of the Focal Chord
- > NORMALS
 - > Gradient of a Normal
 - > Equation of a Normal
 - > Intersection of two Normals
- > Reflection Property
- Chord of Contact

Parts of a Parabola & Definition

The locus of a parabola is a set of points equidistant from one fixed point and one fixed line.

$x^2 = 4ay$		$(x-h)^2 = 4a(y-1)$	$(x-h)^2 = 4a(y-k)$	
Focus	(0, a)	Focus	(h, k+a)	
Directrix	y = -a	Directrix	y = k - a	
Vertex	(0, 0)	Vertex	(h, k)	

Parabola Summary

Dummy Variables	$P(2ap,ap^2)$ $Q(2aq,aq^2)$
Gradient of Chord	$\frac{p+q}{2}$
Equation of Chord	$y - \frac{1}{2}(p+q)x + apq = 0$
The Focal Chord Length	$y = \frac{1}{2}(p+q)x - apq$ $l = 4a$
Gradient of Tangent	x
Equation of Tangent	$\frac{x}{2a}$ $y - px + ap^2 = 0$
	$y = px - ap^2$
Intersection of two Tangents	T(a(p+q),apq)
Intersection of Tangents of Focal Chord	Tangents of the focal chord intersect at right angles on the directrix
Gradient of Normal	_1
	p
Equation of Normal	$x + py - ap^3 - 2ap = 0$
	$x + py = ap^3 + 2ap$
Intersection of two Normals	$N(-apq(p+q), a(p^2 + pq + q^2 + 2)$

Introduction of parameters (dummy variables)

In 3U, we want to use parameters (dummy variables). We use p & q, not x and y. (2ap, ap²) & (2aq, aq²) represents points on the locus of a parabola

Let
$$x = 2ap$$
, $y = ap^2$

Eliminate "p"
$$p = \frac{x}{2a}$$
Sub in $y = ap^2$

$$y = a\left(\frac{x^2}{4a^2}\right)$$

$$= \frac{x^2}{4a}$$

$$\therefore x^2 = 4ay$$

CHORDS

Gradient of a Chord

$$m = \frac{aq^2 - ap^2}{2aq - 2ap}$$
$$= \frac{a(q - p)(q + p)}{2a(q - p)}$$
$$= \frac{p + q}{2}$$

Equation of a Chord (using the 2 point formula)

$$y - ap^{2} = \frac{p+q}{2}(x-2ap)$$

$$2y - 2ap^{2} = (p+q)x - 2ap^{2} - 2apq$$

$$0 = y - \frac{1}{2}(p+q)x + apq$$

$$y = \frac{1}{2}(p+q)x - apq$$

If PQ is a Focal Chord, then pq = -1

For PQ to be a focal chord, it passes through (0, a)

Sub (0, a) into the Equation of a Chord

$$0 = y - \frac{1}{2}(p+q)x + apq$$

$$0 = a - \frac{1}{2}(p+q).0 + apq$$

$$0 = a + apq$$

$$-a = apq$$

$$-1 = pq$$

The Latus Rectum (Special Case Focal Chord) passes through (0,a)
$$x = 0; y = a \quad y - \frac{1}{2}(p+q)x + apq$$

$$Sub y = a \text{ in } x$$

$$pq = -1 \qquad x^2 = yaa$$

$$x = \pm 2a$$

$$\therefore l = 4a$$

TANGENTS

Gradient of a Tangent

$$x^{2} = 4ay$$

$$y = \frac{x^{2}}{4a}$$

$$y' = \frac{x}{2a}$$

Equation of a Tangent at P(2ap,ap²)

At point P The gradient is: $= \frac{2ap}{2a}$ = p

Equation using 2 point formula:

$$y-ap^{2} = p(x-2ap)$$

$$y-ap^{2} = px-2ap^{2}$$

$$0 = y-px+ap^{2}$$

$$y = px-ap^{2}$$

Intersection of two Tangents

P
$$y-px+ap^2$$
 Equation 1
Q $y-qx+aq^2$ Equation 2
(Equation 1) – (Equation 2)
$$-px+qx+ap^2-aq^2 = 0$$

$$a(p^2-q^2) = px-qx$$

$$\frac{a(p-q)(p+q)}{(p-q)} = x$$

$$x = a(p+q)$$
Sub into Equation 1
$$y-pa(p+q)+ap^2 = 0$$

$$y-ap^2-apq+ap^2 = 0$$

$$y = apq$$

$$T(a(p+q),apq)$$

Intersection of Tangents of the Focal Chord

Since pq = -1
apq = -a

$$\therefore y = -a$$

Tangents of the focal chord intersect at right angles on the directrix

What is the condition for a line y = mx + c, so that it becomes a tangent to the parabola $x^2 = 4ay$?

Solve Simultaneous Equations

$$x^2 = 4ay$$

 $y = mx + c$
 $x^2 = 4a(mx + c)$
 $= 4amx + 4ac$
 $0 = x^2 - 4amx - 4ac$ A Quadratic Equation

We want 1 point of intersection, roots must be equal so $\Delta = 0$

$$0 = (4am)^{2} - 4(1)(-4ac)$$

$$= 16a^{2}m^{2} + 16ac$$

$$= am^{2} + c$$

$$c = -am^{2}$$

If...

 $c > -am^2$ No intersection $c < -am^2$ 2 points of intersection

NORMALS

Gradient of a Normal

$$\begin{array}{ccc}
\text{If } m_T & = p \\
m_N & = -\frac{1}{p}
\end{array}$$

$$MN = -1$$

Equation of a Normal at P(2ap,ap²)

$$y-ap^{2} = \frac{1}{-p}(x-2ap)$$

$$py-ap^{3} = -x+2ap$$

$$x+py = ap^{3}+2ap$$

$$0 = x+py-ap^{3}-2ap$$

Intersection of two Normals

P
$$x + py = ap^3 + 2ap$$
 Equation 1
Q $x + qy = aq^3 + 2aq$ Equation 2
(Equation 1) – (Equation 2)

$$py - qy = ap^3 - aq^3 + 2ap - 2aq$$

$$y(p - q) = a(p^3 - q^3) + 2a(p - q)$$

$$y = a(p^2 + pq + q^2) + 2a$$

$$= a(p^2 + pq + q^2 + 2)$$
Sub into Equation 1

$$x + pa(p^2 + pq + q^2 + 2) = ap^3 + 2ap$$

$$x + ap^3 + ap^2q + apq^3 + 2ap = ap^3 + 2ap$$

$$x = -apq(p + q)$$

$$N(-apq(p + q), a(p^2 + pq + q^2 + 2)$$

Reflection Property

We want to prove <MPR = <SPT = <STP

$$SP = PN$$

Definition of a parabola

$$SP = PN$$
 $PN = a + ap^2$
 $SP = a + ap^2$

Find where Tangent at P cuts the x axis

$$y - px + ap^2 = 0$$

At T,
$$x = 0$$

$$y - 0 + ap^2 = 0$$
$$y = -ap^2$$

$$y = -ap^2$$

$$T(0, -ap^2)$$

$$ST = a + ap^2$$

ST = SP

 $\therefore \Delta TSP$ is isosceles

$$<$$
STP = $<$ SPT

Base angles of an isosceles triangle

$$<$$
TSP $=$ $<$ SPM

Alternate angles in parallel lines

$$<$$
SPT = $<$ MPR

Angles in a straight line add to 180°, angle sum of a triangle.

Chord of Contact from (x_o, y_o) to $x^2 = 4ay$ Tangents P and Q are drawn from an external point (x_o, y_o) . PQ is the resultant Chord.

PQ
$$y - \frac{1}{2}(p+q)x + apq = 0$$
T
$$[a(p+q), apq]$$

So
$$x_0 = a(p+q)$$

$$y_0 = apq$$

$$p+q = \frac{x_0}{a}$$

$$pq = \frac{y_0}{a}$$

$$0 = y - \frac{1}{2} \left(\frac{x_0}{a} \right) x + a \left(\frac{y_0}{a} \right)$$
$$= 2ay - xx_0 + 2ay_0$$

