## Analiza Matematyczna 1 Elementy topologii, podstawy analizy rzeczywistej, rachunek różniczkowy i całkowy jednej zmiennej

Ziemowit Wójcicki

21 grudnia 2022

#### Streszczenie

Wprowadzenie do analizy matematycznej, z uwzględnieniem elementów topologii przestrzeni metrycznych, rachunku różniczkowego i całkowego funkcji jednej zmiennej i podstaw analizy, różniczkowania i całkowania funkcji wektorowych. Początek pisany z myślą o kompletnym laiku lub entuzjaście nauk ścisłych, rozdziały dalsze obejmują możliwie szeroki zestaw przykładów twierdzeń i pojęć, które wydały się autorowi (w *jego* matematycznych zabawach i *subjektywnym* odczuciu) edukacyjne, przydatne i ciekawe.

# Spis treści

| 1 | $\mathbf{Pre}$              | eliminaria                                                         | 5  |  |  |
|---|-----------------------------|--------------------------------------------------------------------|----|--|--|
| 2 | $\mathbf{D}\mathbf{w}$      | ra słowa o logice i metodzie matematyki                            | 6  |  |  |
| 3 | Ele                         | menty Teorii mnogości i "żargon matematyczny"                      | 7  |  |  |
|   | 3.1                         | Zbiór i należenie do zbioru.                                       | 7  |  |  |
|   | 3.2                         | Relacje, funkcje i zasada abstrakcji                               | 12 |  |  |
|   |                             | 3.2.1 Funkcje                                                      | 13 |  |  |
|   |                             | 3.2.2 Złożenie funkcji                                             | 16 |  |  |
|   |                             | 3.2.3 Obraz i przeciwobraz zbioru przez funkcję                    | 19 |  |  |
|   |                             | 3.2.4 Wielomiany                                                   | 21 |  |  |
|   |                             | 3.2.5 Funkcje cyklometryczne, uzupełnienia z trygonometrii         | 23 |  |  |
|   |                             | 3.2.6 Zasada Abstrakcji                                            | 24 |  |  |
|   | 3.3                         | Teoria mocy. Klasy właściwe                                        | 25 |  |  |
|   | 3.4                         | Liczby                                                             | 29 |  |  |
|   |                             | 3.4.1 Liczby naturalne. Zasada Indukcji Matematycznej              | 29 |  |  |
|   |                             | 3.4.2 Przydatne twierdzenia i tożsamości arytmetyczne              | 32 |  |  |
|   |                             | Nierówności                                                        | 33 |  |  |
|   |                             | 3.4.3 Krótko o liczbach rzeczywistych                              | 35 |  |  |
| 4 | Granica ciągu liczbowego 4' |                                                                    |    |  |  |
|   | 4.1                         | Ciągi                                                              | 47 |  |  |
|   | 4.2                         | Granica ciągu                                                      | 50 |  |  |
|   | 4.3                         | Twierdzenia przydatne w badaniu zbieżności ciągu i szukaniu granic | 54 |  |  |
|   | 4.4                         | Własności ciągów liczbowych                                        | 58 |  |  |
|   |                             | 4.4.1 Liczba <i>e</i> Eulera                                       | 62 |  |  |
|   | 4.5                         | Granice ekstremalne                                                | 66 |  |  |
|   | 4.6                         | Proste zagadnienia interpolacyjne*                                 | 70 |  |  |
| 5 | Elei                        | menty topologii przestrzeni metrycznych i algebry liniowej         | 72 |  |  |
|   | 5.1                         | Przestrzenie metryczne                                             | 72 |  |  |
|   |                             | 5.1.1 Intuicje prowadzące do przestrzeni metrycznych               | 72 |  |  |
|   |                             | 5.1.2 Ścisłe określenie przestrzeni metrycznej                     | 72 |  |  |
|   |                             | Produkt kartezjański przestrzeni metrycznych                       | 74 |  |  |
|   | 5.2                         | Zbiory otwarte i domknięte                                         | 75 |  |  |
|   | ·-                          | 5.2.1 Operacie na podzbiorach przestrzeni metrycznych              | 78 |  |  |

|    | 5.3  | Brzeg zbioru i zbiory brzegowe                                  | 80  |
|----|------|-----------------------------------------------------------------|-----|
|    | 5.4  | Granica ciągu w przestrzeni metrycznej                          | 82  |
|    | 5.5  | Przestrzenie liniowe i unormowane. Przestrzeń $\mathbb{R}^{n*}$ | 85  |
|    | 5.6  | Różne własności przestrzeni metrycznych                         | 86  |
|    |      | 5.6.1 Zupełność                                                 | 86  |
|    |      | 5.6.2 Zwartość                                                  | 87  |
|    |      | 5.6.3 Spójność                                                  | 93  |
| 6  | Gra  | nica funkcji                                                    | 94  |
|    | 6.1  | Granica w przestrzeni metrycznej                                | 94  |
|    | 6.2  | Przypadek rzeczywisty                                           | 96  |
|    |      | 6.2.1 Granica funkcji w nieskończoności                         | 96  |
|    |      | 6.2.2 Granica niewłaściwa                                       |     |
|    |      | 6.2.3 Granice lewo i prawostronne                               |     |
|    |      | 6.2.4 Obliczanie granic, symbole nieoznaczone                   | 99  |
| 7  | Ciac | głość funkcji                                                   | 100 |
| •  | 7.1  | Intuicje                                                        | 100 |
|    | 7.2  | Ciągłość w przestrzeni metrycznej                               | 102 |
|    | 1.2  | Punkty nieciągłości funkcji rzeczywistych                       | 103 |
|    |      | Własności mocniejsze niż ciągłość                               | 104 |
|    |      | Kilka faktów teoriomnogościowych, na temat funkcji ciągłych     | 112 |
|    | 7.3  | Ciągłość bezwzględna*                                           | 113 |
|    | 7.4  | Półciągłość*                                                    | 114 |
|    | 7.5  | Twierdzenia o punkcie stałym                                    | 115 |
|    |      | . ,                                                             |     |
| 8  |      | hodna funkcji jednej zmiennej, różniczkowalność funkcji         | 116 |
|    | 8.1  | Pochodna funkcji jednej zmiennej                                | 116 |
|    | 8.2  | Różniczka funkcji jednej zmiennej                               |     |
|    | 8.3  | Podstawowe reguły i przykłady różniczkowania:                   |     |
|    | 8.4  | Pochodna w badaniu przebiegu zmienności funkcji                 | 127 |
|    | 8.5  | Wypukłość funkcji                                               | 129 |
|    |      | 8.5.1 Pochodne w badaniu wypukłości funkcji                     | 131 |
|    | 8.6  | Twierdzenia o wartości średniej                                 | 132 |
|    | 8.7  | Różniczkowalność a ciągłość funkcji                             |     |
|    | 8.8  | *Zastosowanie różniczki do rachunków przybliżonych              |     |
|    | 8.9  | *Uwagi o pochodnych cząstkowych i różniczce zupełnej funkcji    |     |
|    | 8.10 | Regula de l'Hospitala                                           | 137 |
| 9  | Fun  | kcje hiperboliczne                                              | 140 |
| 10 | Ant  | ypochodna albo inaczej całka nieoznaczona                       | 142 |
|    |      | Definicja antypochodnej                                         | 142 |
|    |      | Własności antypochodnej i twierdzenia o całkowaniu              | 144 |
|    |      | Całki funkcji wymiernych                                        | 149 |
|    |      | Całki wyrażeń zawierających funkcje trygonometryczne            | 151 |
|    |      | Całki funkcji niewymiernych                                     | 151 |
|    | 2.0  | 10.5.1. Podstawienia Eulera:                                    | 151 |

|           | 10.5.2 Metoda współczynników nieoznaczonych:                                |     |
|-----------|-----------------------------------------------------------------------------|-----|
|           | 10.6 Funkcje niperbonczne                                                   | 151 |
| 11        | Całka oznaczona                                                             | 152 |
|           | 11.1 Całka Riemmana w wersji Darboux                                        | 152 |
|           | 11.2 Klasyczna całka Riemanna                                               | 155 |
|           | 11.2.1 Równoważność całki Riemanna i całki Darboux                          |     |
|           | 11.3 Kryteria całkowalności                                                 |     |
|           | 11.4 Własności całki Riemanna                                               |     |
|           | 11.5 Klasy funkcji całkowalnych                                             |     |
|           | 11.6 Zasadnicze Twierdzenie Rachunku Całkowego, Wzór Newtona-Leibniza       |     |
|           |                                                                             |     |
|           | 11.7 Twierdzenia o wartości średniej dla całek                              |     |
|           | 11.8 Nierówności całkowe                                                    |     |
|           | 11.9 *Całkowanie przybliżone                                                |     |
|           | 11.10*Uwagi o całkowaniu funkcji wektorowych                                | 179 |
| <b>12</b> | Zastosowania geometryczne rachunku różniczkowego i całkowego                | 181 |
|           | 12.1 Krzywe w przestrzeni                                                   |     |
|           | 12.2 Pochodna funkcji określonej równaniami parametrycznymi                 | 182 |
|           | 12.3 Współrzędne biegunowe                                                  |     |
|           | 12.4 Zastosowania geometryczne całki oznaczonej                             |     |
|           |                                                                             |     |
|           | 12.4.1 Pole i objętość bryły obrotowej                                      |     |
|           | 12.4.2 Długość krzywej                                                      |     |
|           | 12.4.3 Pole figury ograniczonej krzywą opisaną we współrzędnych biegunowych | 189 |
| 13        | Szeregi liczbowe                                                            | 192 |
| -0        | 13.1 Ciąg sum częściowych i jego granica - szereg                           |     |
|           | 13.2 Kryteria zbieżności szeregów                                           |     |
|           | 13.2 Myteria zbiezności szeregow                                            | 131 |
| 14        | Całka niewłaściwa                                                           | 209 |
|           | 14.1 Definicja całki po niezwartym zbiorze                                  | 209 |
|           | 14.2 Kryteria zbieżności całek niewłaściwych                                | 209 |
|           | 14.3 Całka w badaniu zbieżności szeregu                                     |     |
| 1 -       | A 1 ' C 1 '' ( +1) 1 ' ' ' ' 1 1 1 1                                        | 015 |
| 19        | Aproksymacja funkcji (n+1)-krotnie różniczkowalnych                         | 215 |
|           | 15.0.1 Reszta wyrażona w sposób asymptotyczny, notacja Landaua              | 220 |
| 16        | Ciągi i szeregi funkcyjne                                                   | 222 |
|           | 16.1 Ciągi funkcyjne                                                        | 222 |
|           | 16.1.1 Przestrzenie funkcyjne                                               |     |
|           | 16.1.2 Całkowanie i różniczkowanie ciągów funkcyjnych                       |     |
|           | 16.2 Szeregi funkcyjne                                                      |     |
|           | 16.2.1 Kryteria zbieżności szeregów funkcyjnych                             |     |
|           | 16.2.2 Szeregi potęgowe                                                     |     |
|           | 10.2.2 Bzeregi potęgowe                                                     | ∠33 |

| Dodate      | ek A Struktury algebraiczne, ciała uporządkowane                                                   | 243               |
|-------------|----------------------------------------------------------------------------------------------------|-------------------|
| A.1         | Zbiory z działaniami                                                                               | 243               |
|             | A.1.1 Przykład: grupy                                                                              | 243               |
| A.2         | Ciała i ciała uporządkowane                                                                        | 243               |
|             | A.2.1 Podciała i rozszerzenia ciał                                                                 | 244               |
|             | A.2.2 Ciało liczb rzeczywistych                                                                    | 244               |
|             | Konstrukcja poprzez ciągi Cauchy'ego                                                               | 244               |
|             | Dowody własności specyficznych dla l. rzeczywistych                                                | 245               |
| A 3         | Ciało liczb zespolonych                                                                            | 246               |
| 11.0        | A.3.1 Postać trygonometryczna liczby zespolonej                                                    | 247               |
|             | A.3.2 Własności liczb zespolonych i najważniejsze pojęcia z nimi związane                          | 248               |
|             | A.3.3 Więcej o geometrii liczb zespolonych                                                         | 251               |
|             | A.3.4 Wzory Eulera                                                                                 | 251               |
|             | A.3.5 Zastosowania liczb zespolonych i wzorów Eulera                                               | 254               |
|             | A.3.6 Ciągi i szeregi liczb zespolonych                                                            | $\frac{254}{255}$ |
|             | A.5.0 Clągi i szeregi iczo zespolonych                                                             | 255               |
| Dodate      | ek B Elementy topologii                                                                            | 257               |
| B.1         | przestrzenie topologiczne                                                                          | 257               |
|             | B.1.1 Przestrzenie metryzowalne                                                                    | 259               |
| B.2         | Baza, podbaza i układ otoczeń topologii                                                            | 259               |
|             | B.2.1 Pełny układ otoczeń punktu                                                                   | 260               |
| B.3         | Metody wprowadzania topologii na zbiorze                                                           | 261               |
| B.4         | Homeomorfizmy przestrzeni topologicznych                                                           | 261               |
|             | B.4.1 Izometria przestrzeni metrycznych                                                            | 263               |
| B.5         | Zbiory gęste, brzegowe i nigdziegęste oraz twierdzenie Baire'a                                     | 263               |
| D - J - 4 - | de C. Warrens de mis de misseur d'adisselvement accordinate                                        | 267               |
|             | ek C Wprowadzenie do równań różniczkowych zwyczajnych Definicja równania różniczkowego zwyczajnego | 268               |
|             | Najprostsze typy równań                                                                            | 269               |
| C.2         | Równania liniowe wyższych rzędów                                                                   | 209               |
| C.5         |                                                                                                    |                   |
|             |                                                                                                    | 271               |
| C 4         | C.3.2 Równania liniowe niejednorodne                                                               | 271               |
| C.4         | Równanie różniczkowe Bernoulliego                                                                  | 271               |
| C.5         | Równanie różniczkowe Clairauta                                                                     | 271               |
| C.6         | Układy równań liniowych                                                                            | 271               |
| O =         | C.6.1 Metoda Eulera rozwiązywania jednorodnych układów równań różniczkowych                        |                   |
| C.7         | Twierdzenia o istnieniu rozwiązania równania różniczkowego                                         | 271               |
| Dodate      | ek D Całka Riemanna-Stieltjesa                                                                     | 273               |
|             | Całka Riemanna-Stieltjesa                                                                          | 273               |
|             | Wahanie funkcji                                                                                    | 277               |
| Dadet       | de E. Dáine ugun chrionic                                                                          | 200               |
|             | ek E Różne uzupełnienia                                                                            | 280               |
| E.1         | Iloczyny nieskończone                                                                              | 280               |
| E.2         | Dowód niewymierności liczby $\pi$                                                                  | 280               |
| E.3         | Oscylacja funkcji: dodatkowe kryteria ciągłości i całkowalności                                    | 281               |
| E.4         | Zbiory miary zero a całkowalność w sensie Riemanna                                                 | 282               |
| E.5         | Aproksymacja funkcji ciągiem wielomianów                                                           | 283               |

## Rozdział 1

## Preliminaria

Matematyka jest najpiękniejszym i najpotężniejszym tworem ducha ludzkiego. Tylko państwa, które pielęgnują matematyką, mogą być silne i potężne.

Stefan Banach

Ten dokument zaczął swoje życie jako moje osobiste notatki elektroniczne, powstałe w oparciu o wykłady na które uczęszczałem, a następnie literaturę. Mnie samemu służył głównie utrwalaniu i przypominaniu sobie materiału. Ćwiczyłem i ćwiczę na nim formułowanie i redagowanie twierdzeń praz dowodów. Jest to w 100% amatorski "skrypt studencki", którego autor nie jestem ani wybitnym studentem a już tym bardziej żadnym autorytetem w dziedzinie. Proszę mieć to na uwadze.

Klasycznie - gwiazdką "\*" oznaczone są paragrafy, punkty, podpunkty, przykłady, twierdzenia i zadania a nawet rozdziały, których lektura jest opcjonalna/niezalecana podczas "pierwszego czytania", gdyby patrzeć na ten dokument jak na podręcznik, czego nie zalecam studentom(, ale wierzę w istnienie entuzjastów-amatorów matematyki :) ).

Krótki esej o poznawaniu matematyki i w szczególności Analizy Matematycznej. "Dawniej określano matematykę jako naukę o liczbach i utworach przestrzennych oraz wzajemnych związkach między nimi. Jest to określenie za ciasne, jakkolwiek uzasadnione historycznie; matematyka zaczęła się bowiem od badania liczb." <sup>1</sup>

 $<sup>^1</sup>$ Jacek Troskolański,  ${\it Matematyka~w~zarysie},$  Państwowe Wydawnictwa Techniczne, Warszawa 1960

## Rozdział 2

# Dwa słowa o logice i metodzie matematyki

"Oczywiste" jest najbardziej niebezpiecznym słowem w matematyce.

Eric Temple Bell

Na początku poświęcimy trochę czasu przyzwyczajając czytelnika do "matematycznego żargonu". Terminologii oraz przyjętych sposobów zapisywania matematycznych rozumowań. Niestety, z tego względu dla nawet **odrobinę** doświadczonego studenta (a nawet ambitnego ucznia, który sięgnąłby po ten tekst), rozdział ten będzie nużący i męczący. Czytelnik może zamiast tego zabrać się po prostu za jakiś inny materiał poświęcony teorii mnogości i logice; a do tego rozdziału wracać tylko w razie pojawienia się jakichś odnośników w dalszej części skryptu. Świetną książką wprowadzającą w Teorię Mnogości jako materiał do nauki "matematycznego rozumowania" i posługiwania się tekstem matematycznym są Wykłady ze wstępu do matematyki, wprowadzenie do teorii mnogości Wojciecha Guzickiego i Piotra Zakrzewskiego. Polecam jednak przynajmniej przejrzeć paragraf Liczby.

Na początek słowniczek:

- Aksjomat (uzupełnię w przyszłości)...
- Twierdzenie (uzupełnię w przyszłości)...
- Lemat(gr.  $\lambda\nu\mu\mu\alpha$ ) twierdzenie pomocnicze, wprowadzane celem uproszczenia dowodów innych twierdzeń.
- Stwierdzenie, obserwacja, fakt, etc. tak nazywamy często twierdzenia proste, banalne, łatwe w udowodnieniu, na które jednak warto zwrócić uwage.
- Wniosek stwierdzenie, które łatwo wynika z udowodnionego już Twierdzenia, często dla jego uzasadnienia wystarcza linijka komentarza.

Zwróćmy uwagę, że lematy, stwierdzenia, obserwacje, fakty, wnioski – to wszystko są twierdzenia, które nazywamy inaczej aby podkreślić ich istotność i rolę w tekście.

## Rozdział 3

## Elementy Teorii mnogości i "żargon matematyczny"

Zbiorem jest spojenie w całość określonych rozróżnialnych podmiotów naszej poglądowości czy myśli, które nazywamy elementami danego zbioru.

Georg Cantor

#### 3.1 Zbiór i należenie do zbioru.

Przez kwantyfikatory rozumiemy zwroty "dla każdego" oraz "istnieje takie".

Przykład 1. Zdanie

Człowiek jest szczęśliwy.

możemy kwantyfikować na dwa sposoby:

- Istnieje człowiek, który jest szczęśliwy.
- Każdy człowiek jest szczęśliwy.

W matematyce zwroty takie stosujemy w stosunku do zmiennych. Np. w formule

$$x = 2$$

występuje zmienna x. Możemy zkwantyfikować formułę na dwa sposoby:

Istnieje x taki, że x = 2,

lub też

Dla każdego x taki, że x=2.

W pierwszym przypadku dodaliśmy do formuł x=2 kwantyfikator egzystencjalny, w drugim kwantyfikator ogólny. Mówimy też, że zmienna x w powyższej formule została związana odpowiednim kwantyfikatorem.

Stosuje się też występujące w logice symbole  $\forall$  i  $\exists$  na oznaczenie odpowiednio kwantyfikatora ogólnego (od ang. "for all" czyli "dla każdego") i egzystencjalnego (od ang. "exiests" czyli "istnieje").

**Definicja 3.1.1. Predykatem** lub **formą zdaniową** nazywać będziemy wyrażenie  $\varphi$ , które zawiera zmienne i staje się zdaniem (prawdziwym bądź fałszywym), gdy każdą zmienną

- zwiążemy kwantyfikatorem,
- podstawimy za nią konkretny obiekt.

Gdy predykat zależy od zmiennych  $x, y \dots$  (dowolna ilość zmiennych), to piszemy też  $\varphi(x, y, \dots)$ .

Zmienne które nie zostały związane kwantyfikatorem lub za które nie podstawiono żadnego obiektu, nazywamy w danym wyrażeniu **zmiennymi wolnymi**. Jeżeli  $\phi$  jest predykatem, to w wyrażeniu

$$\phi(x,y)$$

zmienne x oraz y są wolne. W wyrażeniu

$$\exists_x \phi(x,y)$$

zmienna x jest związana, ale zmienna y jest wolna. (Zdanie to to czytamy "istnieje x takie, że (zachodzi)  $\phi(x,y)$ "). Podobnie w wyrażeniu

$$\phi(2,y)$$

mamy jedną zmienną wolną y, podczas gdy za x podstawiliśmy 2. W obydwu przykładach nie mamy do czynienia ze zdaniem logicznym, gdyż zmienna y pozostała wolna.  $\phi$  stanie się zdaniem (w sensie logiki) gdy np. zkwantyfikujemy obydwie zmienne:

$$\forall_x \exists_y \phi(x,y)$$

(Dla każdego x istnieje y takie, że  $\phi(x,y)$ ).

Możemy też dokonać podstawienia, np.:

$$\phi(1,2),$$

albo skwantyfikować y i podstawić np. x = 0:

$$\forall_y \phi(0,y),$$

itd.

Typowe zbiory  $\mathit{przeważnie}$ będziemy oznaczać dużymi literami alfabetu łacińskiego, np.  $A,\,B,\,X,\,Y,\,Z.$ 

Zdanie

"element a należy do zbioru A"

zapisujemy symbolicznie następująco:

 $a \in A$ 

Mówimy też wtedy, że a jest "elementem zbioru A". Elementami zbiorów mogą być inne zbiory. a w powyższym przykładzie może jest jakimś zbiorem. Możemy napisać  $B \in A$  i mieć na myśli "jakieś" zbiory A i B. To na razie nie jest ważne.

Zbiory skończone (o skończonej liczbie elementów) możemy opisać wypisując ich elementy, otoczone nawiasami klamrowymi  $\{,\}$ , np. moglibyśmy zdefiniować następujące zbiory A,B:

$$A = \{1, 2, 3, 4\}$$
$$B = \{\alpha, 1, x, A\}$$
$$C = \{2, 3, \dots, 13\}$$

W ostanim przypadku nie wypisaliśmy wszystkich elementów zbioru C ale zasugerowaliśmy (wielokropkiem "..."), że chodzi o wszystkie liczby od 2 do 13. Z takim zapisem musimy być ostrożni: może chodziło o wszystkie liczby pierwsze, mniejsze od 14? Przypominamy, że liczba pierwsza, to liczba naturalna, która ma dokładnie dwa różne dzielniki naturalne: jedynkę i siebie samą. Wszystkie jawnie wypisane elementy zbioru C spełniają tę definicję...

Zapisywanie sekwencji liczb lub innych obiektów, według pewnego występującego wzorca, z użyciem wielokropka ... jest często spotykanym zabiegiem, z którego ograniczeń i podatności na interpretację trzeba sobie zdawać sprawę.

Przypomnijmy znane ze szkoły zbiory liczb:

- Zbiór liczb rzeczywisych, oznaczany R
- Zbiór liczb naturalnych, oznaczany  $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ 
  - W teorii mnogości przyjmuje się, że 0 jest częścią zbioru liczb naturalnych; jednak wielu matematyków pracujących w innych dziedzinach przyjmuje, że  $\mathbb{N} = \{1, 2, 3, 4, \ldots\}$ . Jest to kwestia umowy w analize też często wygodniej jest przyjmować, że 0 ∉  $\mathbb{N}$ ;
  - Często oznacza się  $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}$ , lub ogólniej:  $\mathbb{N}_a = \{a, a+1, a+2, \ldots\}$ , gdzie a jest liczbą naturalną.
- Zbiór liczb całkowitych, oznaczany  $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$  (takie jest niestety oznaczenie międzynarodowe, od niemieckiego Zahlen).

W dalszym ciągu poznamy również liczby zespolone, których zbiór oznacza się... literą  $\mathbb{C}$  (możemy skojarzyć np. z ich angielską nazwą "Complex numbers"). Symbol  $\equiv$  oznacza "równoważność" różnych zdań lub formuł logicznych. Moglibyśmy zdefiniować predykaty  $\varphi$ ,  $\Psi$ ,  $\psi$ ,  $\Xi$ :

- $\varphi(x) \equiv x$  jest figura geometryczna,
- $\Psi(x) \equiv x$  jest większe od zera x > 0,
- $\psi(n) \equiv "n \text{ jest liczba naturalna"} \equiv n \in \mathbb{N}.$
- $\Xi(p) \equiv p$  jest prostą na płaszcyźnie".

W tej chwili może się to wydawać skomplikowane i być może zbędnie, ale wielokrotnie zobaczymy, że zapis symboliczny pozwala nam wyrażać i analizować ogólne struktury, za "nieokreśloną formułę logiczną" o zadanych obiektach podstawiając po prostu pewien symbol. Na przykład, omówimy przy jego pomocy kolejną konwencję notacyjną.

Zapis  $x \in X$ :  $\varphi(x)$  czytamy "x należące do X takie,  $\dot{z}e$   $\varphi(x)$ ". Przy czym, każdy element x z osobna spełnia warunek  $\varphi$ . Wcześniej wypisywaliśmy elementy zbiorów w nawiasach klamrowych  $\{,\}^1$ . Zapis  $\{x \in X : \varphi(x)\}$  oznacza "zbiór, którego elementami są x należące do X takie,  $\dot{z}e$   $\varphi(x)$ ". Przykład 2. Zapis

$$A = \{ n \in \mathbb{N} : n = 2k, \text{ dla pewnego } k \in \mathbb{N} \}$$

można wyrazić jako

- "A jest zbiorem liczb  $n \in \mathbb{N}$  takich, że n = 2k dla pewnego  $k \in \mathbb{N}$ "
- "A jest zbiorem liczb n należących do zbioru liczb naturalnych i takich, że każda (z osobna) liczba n jest równa 2k dla pewnego  $k \in \mathbb{N}$ "
- A jest zbiorem liczb naturalnych n takich, że n=2k dla pewnego  $k \in \mathbb{N}$ .
- $\bullet$  A jest zbiorem liczb naturalnych podzielnych przez 2.

ale oczywiście wszystko to znaczy to samo: A jest zbiorem liczb parzystych:

$$A = \{0, 2, 4, 8, 10, 12, \ldots\}.$$

Zbiór parzystych liczb naturalnych bywa oznaczany przez  $2\mathbb{N},$ tzn.:

$$2\mathbb{N} := \{ n \in \mathbb{N} : n = 2k, \text{ dla pewnego } k \in \mathbb{N} \}.$$

**Definicja 3.1.2.** Mówimy, że zbiór A zawiera się w zbiorze B, gdy każdy element zbioru A należy również do zbioru B, czyli gdy

dla każdego  $a \in A$  zachodzi  $a \in B$ .

Widzimy też, że  $\mathbb{N}\subseteq\mathbb{Z}$ . Wystarczy rozpisać:  $\mathbb{Z}=\{\ldots,-2,-1,0,1,2,\ldots\}\subseteq\{0,1,2,\ldots\}=\mathbb{N}$  Ogólnie:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$$

**Uwaga 3.1.3.** Nie należy mylić pojęć **zawierania** się zbiorów ( $\subseteq$ ) oraz **należenia do** zbioru ( $\in$ ). Np. w poprzednim przykładzie, określiliśmy zbiory  $A = \{1, 2, 3, 4\}$  i  $B = \{\alpha, 1, x, A\}$ . Zbiór A **należy** do zbioru B ale **nie** zawiera się w tym zbiorze. Np.  $2 \in A$  ale  $2 \notin B$  - a według definicji, aby  $A \subseteq B$  to  $2 \in A$  musiałoby pociągać, że również  $2 \in B$ .

**Definicja 3.1.4. Sumą** zbiorów A i B nazywamy zbiór

$$A \cup B = \{a : a \in B \text{ lub } a \in B\}.$$

A więc zbiór elementów a takich, że a należy do chociaż jednego ze zbiorów A, B.

Przykład 3. 
$$A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3, 5\}.$$
 Wtedy  $A \cup B = \{1, 2, 3, 5, b, \alpha\}.$ 

Przykład 4. 
$$\mathbb{N}_0 = \mathbb{N} \cup \{0\} = \{0, 1, 2, 3, \ldots\}.$$

Definicja 3.1.5. Iloczynem albo przekrojem zbiorów A i B nazywamy zbiór

$$A \cap B = \{a \colon a \in A \text{ i } a \in B\}.$$

A więc zbiór elementów wspólnych zbiorów A i B.

 $<sup>^1\</sup>mathrm{pieszczotliwie}$ nazywanych też "wąsaczami".

*Przykład* 5.  $A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3\}.$  Wtedy  $A \cap B = \{1, \alpha\}.$ 

**Definicja 3.1.6. Różnicą** zbiorów A i B nazywamy zbiór

$$A \setminus B = \{a : a \in A \text{ i } a \notin B\}.$$

A więc zbiór powstający przez usunięcie ze zbioru A elementów, które należą też do zbioru B.

*Przykład* 6.  $A = \{1, 2, b, \alpha\}, B = \{1, \alpha, 3\}.$  Wtedy  $A \setminus B = \{2, b\}.$ 

Ćwiczenie 1.  $A=\{f,g,h,\delta\},\ B=\{\delta,f,g,1,2,3\}.$  Wyznaczyć zbiory  $A\cap B,\ A\cup B,\ A\setminus B$  oraz  $B\setminus A.$ 

 $\acute{C}wiczenie~2$ . Przez  $\dot{A}-\dot{B}$  definujemy **różnicę symetryczną** zbiorów A i B, tzn.

$$A \dot{-} B = (A \setminus B) \cup (B \setminus A).$$

- 1. Udowodnić, że  $A B = (A \cup B) \setminus (A \cap B)$ .
- 2. Zdefniować sumę i różnicę zbiorów A i B przy pomocy różnicy symetrycznej zbiorów A i B.

Ćwiczenie 3. TO-DO

**Twierdzenie 3.1.7.** Zbiór  $A \cap B$  jest największym (w sensie zawierania albo inaczej inkluzji, tzn. ze względu na relację porządku " $\subseteq$ ") zbiorem zawartym zarówno w zbiorze A jak i w zbiorze B, czyli

- $A \cap B \subseteq A \ i \ A \cap B \subseteq B$ ,
- Jeżeli C jest takim zbiorem, że  $C \subseteq A$  i  $C \subseteq B$ ,  $to^2 C \subseteq A \cap B$ .

Dowód. Ponieważ  $x \in A \cap B$  pociąga, że  $x \in A$ , to  $A \cap B \subseteq A$ . Analogicznie  $A \cap B \subseteq B$ .

Niech teraz C będzie dowolnym zbiorem takim, że  $C\subseteq A$  oraz  $C\subseteq B$ . Ustalmy  $x\in C$ . Wówczas z określenia zbioru C mamy, że  $x\in A$  oraz  $x\in B$ . Czyli  $x\in A\cap B$ . Pokazaliśmy, więc że

$$x \in C \implies x \in A \cap B.$$

Pokazaliśmy w ten sposób, że  $C \subseteq A \cap B$ , co kończy dowód.

 $\acute{C}wiczenie$  4. Udowodnić, że zbiór  $A \cup B$  jest najmniejszym (w sensie zawierania) zbiorem zawierającym zarówno zbiór A jak i zbiór B.

Ćwiczenie 5. Udowodnić, że dla dowolnych zbiorów A, B i C zachodzi tożsamość

$$A \setminus (B \cup C) = (A \setminus B) \setminus C.$$

**Definicja 3.1.8. Parą uporządkowaną** liczb a i b nazywamy zbiór (a,b) taki, że

$$(a,b) = (x,y)$$
 wtedy i tylko wtedy, gdy  $x = a$  oraz  $y = b$ .

a nazywamy poprzednikiem pary (a,b) a b następnikiem tej pary.

Para uporządkowana różni się od zbioru  $\{a,b\}$  np. tym, że  $(a,b) \neq (b,a)$ , gdy  $a \neq b$ , a już powinniśmy wiedzieć, że  $\{a,b\} = \{b,a\}$ . Ponadto,  $(a,a) \neq \{a\}$  podczas, gdy  $\{a,a\} = \{a\}$ .

 $<sup>^2</sup>$ jest "mniejszy" w "sensie zawierania" od  $A \cap B$ .

**Twierdzenie 3.1.9.** Parę uporządkowaną (a,b) można zdefiniować przy pomocy zbiorów w ten sposób:

$$(a,b) = \{\{a,b\},\{b\}\}.$$

Tzn. zbiór zdefiniowany w powyższy sposób spełnia założenia poprzedniej definicji.

Dowód. Chcemy pokazać, że  $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$  wtedy i tylko wtedy, gdy a = c i b = d. Dowód implikacji "w lewo". Załóżmy, że  $\{\{a\}, \{a,b\}\} = \{\{c\}, \{c,d\}\}$ . Mamy dwa przypadki:

1. a = b. Wtedy

$$\big\{\{a\},\{a,b\}\big\} = \big\{\{a\},\{a,a\}\big\} = \big\{\{a\},\{a\}\big\} = \big\{\{a\}\big\}.$$

Z założenia  $\{c,d\} \in \{\{a\}\}$  a stąd  $\{c,d\} = \{a\}$ , czyli c=a i d=a. A więc c=d=a=b.

2.  $a \neq b$ . Mamy  $\{c\} \in \{\{a\}, \{a, b\}\}$ . Ale  $a \neq b$  czyli  $\{c\} \neq \{a, b\}$ . Zatem  $\{c\} = \{a\}$ . Mamy więc, że a = c. Dalej:  $\{a, b\} \in \{\{c\}, \{c, d\}\}$ . Ponieważ  $a \neq b$ , to  $\{a, b\} = \{c, d\}$ . Wiemy, że

$$a = c \text{ oraz } a \neq b.$$

Wniosek: b = d.

Poprzednie twierdzenie służy głównie zademonstrowaniu, że różne pojęcia matematyczne mogą być zdefiniowane przy pomocy niewielkiego zestawu prostszych pojęć. Nie będziemy szerzej dyskutować metodologicznych (albo filozoficznych) zalet takiego postępowania, warto jednak mieć świadomość że wiele objektów, którymi będziemy się posługiwać, na odpowiednim poziomie ma bardziej abstrakcyjne definicje.

**Definicja 3.1.10.** Dla dowolnych zbiorów A, B zbiór

$$A \times B = \{(a, b) : a \in A \text{ oraz } b \in B\}$$

nazywamy iloczynem kartezjańskim (albo produktem kartezjańskim zbiorów A, B. Definicję możemy uogólnić indukcyjnie na dowolną skończoną ilość zbiorów: Ustalmy dow. rodzinę  $\{A_n : n \in \mathbb{N}\}$ , wtedy uogólniony iloczyn kartezjański n zbiorów określamy następująco:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) : a_1 \in A_1, \ldots, a_n \in A_n\}.$$

Przykład 7. Niech  $a_1, a_2, \ldots, a_n$  i  $b_1, b_2, \ldots, b_n$  będą takimi liczbami, że  $a_i < b_i$ ,  $i = 1, \ldots, n$ . Wtedy zbiór  $\mathsf{X}_{i=1}^n[a_i, b_i] = [a_1, b_1] \times [a_2, b_2] \times \ldots \times [a_n, b_n]$  nazywamy n-wymiarowym przedziałem albo kostką n-wymiarową.

### 3.2 Relacje, funkcje i zasada abstrakcji

Relacje - podstawowe intuicje Definicja relacji okazuje się śmiesznie prosta:

**Definicja 3.2.1.** Zbiór  $R \subseteq X \times X$  nazywamy **relacją** na zbiorze X. Zatem relacja R na zbiorze X jest więc po prostu podzbiorem iloczynu kartezjańskiego zbioru X z samym sobą. Mówimy, że relacja R jest

• **zwrotna**, gdy  $\forall_{x \in X}$ .  $(x, x) \in R$ .

- przechodnia, gdy  $\forall_{x,y,z\in X}$  jeśli  $(x,y)\in R$  i  $(y,z)\in R$ , to  $(x,z)\in R$ .
- symetryczna, gdy  $\forall_{x,y \in X}$  jeśli  $(x,y) \in R$ , to  $(y,x) \in R$ .
- antysymetryczna, gdy  $\forall_{x,y \in X}$  jeśli  $(x,y) \in R$  oraz  $(y,x) \in R$ , to x = y.
- asymetryczna, gdy  $\forall_{x,y \in X}$  jeśli  $(x,y) \in R$ , to  $(y,x) \notin R$ .
- spójna, gdy  $\forall_{x,y \in X}$  x = y lub  $(x,y) \in R$  lub  $(y,x) \in R$ .

Zbiór X nazywa się też czasem **polem relacji**  $R \subseteq X^2$ . Relacja R spójna to relacja taka, że dowolne dwa elementy należące do jej pola są ze sobą w tej relacji (lub ew. są tym samym elementem.)

Przykład 8. Zbadamy własności relacji  $R \subseteq \mathbb{Z} \times \mathbb{Z}$  zadanej następująco:

$$xRy$$
 wtedy i tylko wtedy, gdy  $x - y$  dzieli  $m$ .

Inaczej mówiąc, x i y są w relacji R wtedy i tylko wtedy, gdy istnieje takie  $k \in \mathbb{N}$ , że

$$x - y = k \cdot m$$
.

#### TO-DO

#### 3.2.1 Funkcje

Intuicje:

Ścisłe określenie pojęcia funkcji jako zbioru.

**Definicja 3.2.2.** Relację  $f \subseteq X \times Y$  nazywamy **funkcją** albo **odwzorowaniem** między zbiorami X i Y, gdy jest **prawostronnie jednoznaczna**, to znaczy

dla każdych 
$$x \in X$$
 i  $y, z \in Y$  jeśli  $(x, y) \in f$  oraz  $(x, z) \in f$  to  $z = y$ .

Zapis  $X \to Y$  czytamy "ze zbioru X w zbiór Y". Zapis  $f \colon X \to Y$  mówi nam, że f jest funkcją ze zbioru X w zbiór Y.

Warunek powinien dobrze odpowiadać naszemu założeniu, że funkcja przyporządkowanie elementowi  $x \in X$  elementu ze zbioru Y jest jednoznaczne.

**Uwaga 3.2.3** (Konwencja notacyjna 1). Piszemy y = f(x),  $\varphi(x)$  gdy dla każdego x spełniającego  $\varphi(x)$  zachodzi y = f(x). Najczęściej warunek  $\varphi$  będzie w postaci "x należy do pewnego podzbioru  $D_f$ ".

Np. mówimy, że funkcja jest "nieujemna", gdy  $f(x) > 0, x \in D_f$  (tzn. "f(x) > 0 dla każdego  $x \in D_f$ ").

Przykład 9. Zdefiniujmy funkcję  $f: \mathbb{N} \to \mathbb{N}$  wzorem  $f(x) = (-1)^x$ . Wtedy możemy napisać:

$$f(x) > 0$$
, x jest liczbą parzystą.

albo

$$f(x) = 1, x \in \{0, 2, 4, \ldots\}.$$

Obydwa wyrażenia są poprawne i dla naszej funkcji prawdziwe.

**Uwaga 3.2.4** (Konwencja notacyjna 2). Gdy funkcja określona na liczbach rzeczywistych dla wszystkich argumentów przyjmuje wartości dodatnie (nieujemne), tzn.  $f(x) \ge 0$ ,  $x \in D_f$  (f(x) > 0), to fakt ten w tekście dla uproszczenia zapisujemy  $f \ge 0$  (f > 0). Analogicznie gdy funkcja jest "ujemna" (tzn. f(x) < 0,  $x \in D_f$ ), to piszemy f < 0, itd.

**Definicja 3.2.5.** Niech  $f: X \to Y$ . Zbiór X nazywamy **dziedziną** funkcji a zbiór Y jego **przeciwdziedziną**. Zbiór Y w powyższym zapisie nie musi być **zbiorem wartości** funkcji f, tj. zbiorem  $\{y \in Y: (x,y) \in f \subseteq Y\}$ . Dziedzinę funkcji f oznaczamy czasami jako  $D_f$  albo dom(f) a przeciwdziedzinę jako  $R_f$  lub range(f) - od angielskiego "range", czyli "zasięg" funkcji.

Z powyższego określenia, dwie funkcje fi gsą równe (piszemy wtedy f=g) wtedy i tylko wtedy gdy

- 1.  $D_f = D_g$
- 2. f(x) = g(x) dla każdego  $x \in D_f(=D_g)$ .

Z warunku drugiego wynika, że musi być również  $R_f=R_g$ . Stwierdzenie, że f(x)=g(x) dla x należącego do  $D_f\cup D_g$  nie pozwala nam uznać, że f=g!

Przykład 10. Niech f i g będą dane wzorami:

$$f(x) = \frac{x^2}{x}$$
 oraz  $g(x) = x$ .

Czy f=g? Odpowiedź brzmi nie! Otóż  $f(x)=\frac{x^2}{x}=x$  dla  $x\neq 0$ . Dla x=0 funkcja f nie jest w ogóle określona, gdyż nie możemy dzielić przez 0. Dla każdego  $x\in\mathbb{R}\setminus\{0\}$  mamy więc f(x)=g(x), jednak g(0)=0 a f(0) nie istnieje i stąd  $\mathbb{R}\setminus\{0\}=D_f\neq D_g=\mathbb{R}$ .

**Definicja 3.2.6.** Mówimy, że funkcja  $f: X \to Y$  jest monotoniczna, gdy spełnia jeden z poniższych (wzajemnie się wykluczających) warunków:

- Dla każdych  $x_1, x_2 \in X$ , jeśli  $x_1 < x_2$ , to  $f(x_1) \le f(x_2)$  i wtedy mówimy, że funkcja f jest nierosnąca albo słabo malejąca;
- Dla każdych  $x_1, x_2 \in X$ , jeśli  $x_1 > x_2$ , to  $f(x_1) \ge f(x_2)$  i wtedy mówimy, że funkcja f jest niemalejąca albo słabo rosnąca.

Gdy nierówność w  $\leq$  pierwszym punkcie zamienimy na nierówność ostrą: <, to oczywiście mówimy, że funkcja f jest **malejąca** a gdy nierówność  $\geq$  w drugim punkcie na >, to mówimy, że funkcja f jest **rosnąca**. W obu przypadkach powiemy, że funkcja f jest ściśle **monotoniczna**.

Uwaga 3.2.7. Niektórzy autorzy przyjmują inne definicje:

- Funkcję (przy naszej definicji) monotoniczną określają jako słabo monotoniczną,
- a funkcję (w naszym rozumieniu) ściśle monotoniczną określają jako monotoniczną.

Można by więc też przyjąć, że funkcja monotoniczna to: albo "ściśle monotoniczna" albo "słabo monotoniczna" i operować wszystkimi trzema pojęciami w sposób jednoznaczny...

Przykład 11. Niech  $A = \{x \in \mathbb{R} : \sqrt{x} \le 4\}$ . Jak uprościś zapis zbioru A? Po pierwsze  $x \ge 0$ . Chciałoby się nierówność  $\sqrt{x} \le 4$  obustronnie podnieść do kwadratu. Wówczas po lewej stronie nierówności mamy x a po drugiej 16. Ale czy kierunek nierówności został zachowany? Otóż tak; **ponieważ** funkcja  $x \mapsto x^2$  jest rosnąca dla  $x \ge 0$ . Zatem  $x_1 < x_2 \implies f(x_1) < f(x_2)$ . Czyli

$$0 \leqslant \sqrt{x} \leqslant 4 \implies 0^2 \leqslant (\sqrt{x})^2 \leqslant 4^2 \implies 0 \leqslant x \leqslant 16.$$

Czyli A = [0, 16].

Ogólnie: możemy zadziałać na obydwie strony dowolnej nierówności (między liczbami rzeczywistymi) funkcją i

- jeżeli funkcja jest rosnąca, to zbiór rozwiązań nierówności nie zmieni się;
- jeżeli funkcja jest malejąca, to aby zbiór rozwiązań nierówności nie zmienił się, musimy zmienić kierunek nierówności.

**Definicja 3.2.8.** Funkcję  $f: X \to Y$  nazywamy **różnowartościową** i zapisujemy też jako  $f: X \stackrel{1-1}{\to} Y$ , gdy dla każdych  $x_1, x_2 \in X$  takich, że  $x_1 \neq x_2$ , zachodzi  $f(x_1) \neq f(x_2)$ .

**Uwaga 3.2.9.** Poprzez kontrapozycję równoważnie powyższej definicji funkcja  $f\colon X\to Y$  jest różnowartościowa, gdy gdy

dla każdych 
$$x_1, x_2 \in X$$
 takich, że  $f(x_1) = f(x_2)$ , zachodzi  $x_1 = x_2$ .

Łatwo zapamiętać definicję, jako zdanie, że funkcja różnowartościowa, to taka, która

różnym argumentom przyporządkowuje różne wartości.

**Definicja 3.2.10.** Funkcję  $f: X \to Y$  nazywamy funkcją "na" (zbiorze Y) i zapisujemy też jako  $f: X \stackrel{\text{na}}{\to} Y$ , gdy dla każdego  $y \in Y$  istnieje  $x \in X$  takie, że y = f(x).

Inaczej mówiąc: gdy  $f: X \to Y$  jest funkcją "na" zbiór Y, to znaczy, że  $R_f = Y$ . Surjekcja jest to zatem funkcja która "pokrywa" całą przeciwdziedzinę albo taką, że jej przeciwdziedzina i zbiór wartości są tym samym zbiorem.

Przykładami surjekcji jest funkcja identycznościowa

**Definicja 3.2.11.** Funkcję  $f\colon X\to Y$ , która jest zarówno funkcją "na" jak i funkcją różnowartościową nazywamy **wzajemnie jednoznaczną** lub **bijekcją** i zapisujemy też jako  $f\colon X\stackrel{1-1}{\underset{\text{na}}{\longrightarrow}} Y$  (lub  $f\colon X\stackrel{\text{na}}{\underset{1-1}{\longrightarrow}} Y$ ).

Bijekcje mają szczególne znaczenie w matematyce i w niektórych dziedzinach matematyki, bijekcje między szczególnymi zbiorami mają swoje własne nazwy i określenia. Np. jako "izomorfizmy" w topologii i algebrze.

Określenia: surjekcja oraz injekcja są młodsze niż "funkcja na" i "funkcja różnowartościowa". Trzeba je niestety znać ze względu na ich obecność matematyce (tym samym w literaturze matematycznej), natomiast autor skryptu postara się ich unikać, więc czytelnik na początku nie musi się nimi przejmować i ograniczyć do (chyba) intuicyjnych określeń podanych w definicjach.

Ćwiczenie 6. Zauważmy, że definicje 3.2.8 mogliśmy zapisać za pomocą kwantyfikatorów:

funkcja f jest róznowartościowa, gdy 
$$\forall_{x_1,x_2 \in X}$$
.  $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$ .

Zapisać kolejno definicje funkcji różnowartościowej i funkcji wzajemnie jednoznacznej przy pomocy kwantyfikatorów.

Definicja 3.2.12. Niech  $f\colon X\stackrel{1-1}{\underset{\mathrm{na}}{\longrightarrow}} Y$  będzie dowolną bijekcją. Funkcję  $g\colon Y\to X$  taką, że

jeśli 
$$(x, y) \in f$$
, to  $(y, x) \in g$ 

nazywamy funkcją odwrotną do funkcji f i przyjmujemy oznaczenie  $g = f^{-1}$ .

Zatem dla bijekcji  $f: X \to Y$  jej funkcja odwrotna  $f^{-1}$  to funkcja taka, że dla każdego  $y \in Y$  zachodzi:  $f^{-1}(y) = x$  dla pewnego  $x \in X$  spełniającego: y = f(x).

Zauważmy, że funkcja  $f^{-1}$  odwrotna do  $f\colon X\to Y$  jest również bijekcją:  $f^{-1}\colon Y\overset{1-1}{\underset{\mathrm{na}}{\longrightarrow}} X.$  Następna definicja, to zarazem przykład.

**Definicja 3.2.13.** Niech  $X \neq \emptyset$ . Funkcję  $f \colon X \to X$  daną wzorem f(x) = x nazywamy **identycznością** na zbiorze X. Łatwo zauważyć, że tak zdefiniowana f jest różnowartościowa i określona na zbiorze X. Zatem jest to bijekcja i ma funkcję odwrotną:  $f^{-1} \colon X \to X$ . W tym wypadku oczywiście  $f^{-1} = f$ , gdyż  $f^{-1}(x) = x = f(x)$  dla dowolnego  $x \in X$ . Zwykle identyczność na zbiorze X oznaczamy  $\mathrm{Id}_X$ . Możemy zatem napisać:

$$\mathrm{Id}_X\colon X\to X$$
,

$$\operatorname{Id}_X(x) = x, \ x \in X.$$

Znanymi ze szkoły funkcjami ze zbioru  $\mathbb{R}$  na zbior  $\mathbb{R}$  są funkcje sin i cos natomiast funkcje tan i cot są tylko funkcjami w zbior  $\mathbb{R}$ . Za to tan i cot są różnowartościowe, w przeciwieństwie do funkcji sin i cos. Wszystkie te własności widać na wykresach tych funkcji. Jeszcze jednym prostym przykładem bijekcji będzie dowolna funkcja liniowa, tj. funkcja f dana zależnością f(x) = ax + b dla pewnych ustalonych  $a, b \in \mathbb{R}$ . Przyjmując b = 0 i a = 1 widzimy, że oczywiście identyczność na  $\mathbb{R}$  jest funkcją liniową.

Przykład 12 (homografia). Funkcją homograficzną nazywamy funkcję  $f: \mathbb{R} \to \mathbb{R}$  zadaną wzorem

$$f(x) = \frac{ax+b}{cx+d}.$$

gdzie  $a,b,c,d\in\mathbb{R}$  spełniają warunek  $ad-bc\neq 0$ . Funkcja homograficzna jest funkcją różnowartościową.

#### 3.2.2 Złożenie funkcji

**Definicja 3.2.14.** Niech  $f: P \to Y$  i  $g: X \to P$  będą dowlnymi funkcjami na dow. zbiorach X, Y, P. **Złożeniem funkcji** g **z** funkcją f nazywamy zbiór (relację na zbiorze  $X \times Y$ )

$$f\circ g=\{(x,y)\colon \text{istnieje }p\in P \text{ takie, że }(x,p)\in g \text{ oraz }(p,y)\in f\}\,.$$

Jeżeli  $(x,y) \in f \circ g$ , to zapis zgodnie z dotychczasową konwencją wygląda tak:  $y = f \circ g(x)$  ale bardziej elegancko przyjęło się pisać w ten sposób:  $y = (f \circ g)(x)$ .

Zauważmy, że dla  $x \in X$  oraz  $y \in Y$  takich, że  $(x,y) \in f \circ g$  "poprawnym" jest wyrażenie y = f(g(x)), z którego możemy "obliczać y-ka w zależności od x-a". Możemy więc pisać, że

$$f \circ g = \{(x, y) : \exists_{p \in P}, g(x) = p \text{ oraz } f(p) = y\}.$$

Fakt, że f jest funkcją odwzorowującą zbiór X w zbiór Y możemy też zilustrować w formie diagramu:

$$X \stackrel{f}{\longrightarrow} Y$$

Związki między funkcjami f, g i  $f \circ g$  można zilustrować diagramem:



Oczywiście nie ma znaczenia "kształt" diagramu, np. poniższy diagram wyraża to samo co poprzedni - można powiedzieć, że jest mu równoważny; umieściliśmy tylko punkty oznaczające zbiory w jednej linii zamiast w "trójkąt":



Teraz zapowiedziane

**Twierdzenie 3.2.15.** Niech  $g: X \to P$  i  $f: P \to Y$ . Złożenie  $f \circ g$  funkcją g: Z funkcją  $f: P \to Y$ .

$$f \circ g \colon X \to Y$$
.

Dowód. Z definicji mamy, że  $f\circ g\subseteq X\times Y$ . Pokażemy, że relacja  $f\circ g$  jest prawostronnie jednoznaczna. Załóżmy, że  $y_1,y_2\in Y,\ x\in X$  oraz  $(x,y_1),(x,y_2)\in f\circ g$ .

Z definicji istnieją takie  $p_1, p_2 \in D_f \subseteq P$ , że

$$(p_1, y_1), (p_2, y_2) \in f$$

oraz jednocześnie

$$(x, p_1), (x, p_2) \in g.$$

Ale g jest funkcją, czyli relacją prawostronnie jednoznaczną, a stąd  $p_1=p_2$ . Połóżmy  $p:=p_1=p_2$  i mamy, że

$$(p, y_1), (p, y_2) \in f.$$

A stąd już z prawostronnej jednoznaczności funkcji f wynika, że  $y_1=y_2$ . Ze sposobu w jaki wybraliśmy elementy  $y_1,y_2$  i x wynika, że  $f\circ g$  jest prawostronnie jednoznaczna.

**Twierdzenie 3.2.16.** Składanie funkcji jest łączne, tj. dla odwzorowań  $h\colon X\to U,\ g\colon U\to V,$   $f\colon V\to Y$  zachodzi tożsamość

$$f \circ (g \circ g) = (f \circ g) \circ h.$$

Tożsamość tę można obrazowo zilustrować kolejnym diagramem:

$$\begin{array}{ccc}
X & Y \\
\downarrow h & f \uparrow \\
U & \xrightarrow{g} V
\end{array}$$

 $Dow \acute{o}d.$  Ustalmy funkcje pomocnicze: niech  $G=g\circ h$ oraz  $F=f\circ g.$  Gi F. Uzupełnijmy nasz diagram:



Widzimy, że  $G\colon X\to V$  oraz  $F\colon U\to Y$ . Wtedy  $f\circ G\colon X\to Y$  oraz  $F\circ h\colon X\to Y$  są odwzorowaniami, zgodnie z twierdzeniem 3.2.15.

Chcemy sprawdzić, że

$$(g \circ h) \circ f = G \circ f = h \circ F = h \circ (f \circ g).$$

Ustalmy  $x \in X$ . Wówczas istnieje  $v \in V$ , dla którego G(x) = v oraz  $y \in Y$ , dla którego f(v) = y. Czyli

$$(f \circ G)(x) = f(G(x)) = f(v) = y.$$

Jednak skoro G(x)=v, to inaczej mówiąc v=g(h(x))=g(u) dla pewnego  $u\in U$  takiego, że u=h(x). Mamy

$$(F \circ h)(x) = F(h(x)) = F(u).$$

Ale 
$$F(u) = (f \circ g)(u) = f(v) = y$$
. Zatem  $G \circ f = h \circ F$ .

Składanie odwzorowań  $X\to X$  na ogół nie jest przemienne, czyli zdarzyć się może, że  $f\circ g\neq g\circ f$  dla pewnych funkcji  $f,g\colon X\to X$ .

Przykład 13. Niech  $X = \{a, b\}$ , gdzie  $a \neq b$  oraz f(a) = b, f(b) = a, g(a) = a, g(b) = a.

**Twierdzenie 3.2.17.** Dla dowolnej funkcji  $f: X \to Y$  zachodzą tożsamości:

$$f^{-1} \circ f = Id_X$$

$$f \circ f^{-1} = Id_Y$$

Dowód. Można by powiedzieć, że teza jest prawie oczywista. Spójrzmy jednak na diagram:



Mamy:

$$f^{-1} \circ f = \{(x,y) \in X \times X \colon \exists_{z \in X} (x,z) \in f, (z,y) \in f^{-1}\} \subseteq X \times X$$

Niech  $(x,y) \in X \times X$ , to z definicji  $(x,y) \in f$  oraz  $(y,x) \in f^{-1}$ , czyli  $(x,x) \in f^{-1} \circ f$  i z prawostronnej jednoznaczności relacji  $f^{-1} \circ f$  dla każdego  $z \in X$ , jeśli  $(x,z) \in f^{-1} \circ f$ , to z=x. Zatem  $f^{-1} \circ f = X \times X = \mathrm{Id}_X$ . Analogicznie można rozumowanie przeprowadzić dla złożenia  $f \circ f^{-1}$ .

Twierdzenie 3.2.18. Dla dowolnych funkcji f, g zachodzi równość

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Zwróćmy uwazę na zmianę porządku funkcji f i g po obu stronach równości w powyższym twierdzeniu!

#### 3.2.3 Obraz i przeciwobraz zbioru przez funkcję

Niech w całym tym paragrafie  $f: X \to Y$  oraz  $B \subseteq X, C \subseteq Y$ .

**Definicja 3.2.19. Obrazem** zbioru B przez funkcję f nazywamy zbiór f[B] zdefiniowany następująco:

$$f[B] = \{ y \in Y : y = f(x) \text{ dla pewnego } x \in X \} = \{ f(x) \in Y : x \in B \}.$$

**Przeciwobrazem** zbioru C przez funkcję f nazywamy zbiór f[B] zdefiniowany następująco:

$$f^{-1}[C] = \{x \in X \colon f(x) \in C\} \,.$$

Przykład 14. Niech A=(-1,2] i  $f:\mathbb{R}\to\mathbb{R}$  dane będzie wzorem:

- 1. f(x) = x; wówczas: f[A] = (-1, 2],
- 2. f(x) = 2x + 1; wówczas: f[A] = (-1, 5],
- 3.  $f(x) = x^2$ ; wówczas: f[A] = [0, 4].

(W tych prostych przypadkach łatwo odczytać z wykresu.)

*Ćwiczenie* 7. Napisz, jakim zbiorem jest obraz  $\mathrm{Id}_{\mathbb{R}}[[0,1)]$ .

 $Przykład\ 15.\ \sin\left[\left(-\frac{\pi}{2},\frac{\pi}{2}\right]\right] = (-1,1].$ 

Fakt 1. Jeżeli  $A \subseteq B$ , to  $f[A] \subseteq f[B]$ .

**Twierdzenie 3.2.20.** Dla dowolnych zbiorów A, B i dla dowolnej indeksowanej rodziny zbiorów  $\{A_i : i \in I\}:$ 

1. 
$$f\left[\bigcup_{i\in I}A_i\right] = \bigcup_{i\in I}f[A_i]$$

2. 
$$je\dot{z}eli\ I \neq \emptyset$$
, to  $f\left[\bigcap_{i\in I}A_i\right]\subseteq\bigcap_{i\in I}f[A_i]$ ,

3.  $f[A] \setminus f[B] \subseteq f[A \setminus B]$ .

 $\label{eq:definition} \begin{array}{ll} \textit{Dow\'od.} & 1. \text{ Jeżeli } y \in f\left[\bigcup_{i \in I} A_i\right], \text{ to istnieje } i \in I \text{ takie, że } y = f(x) \text{ dla pewnego } x \in A_i. \text{ Ale to oznacza, że } y \in f[A_i], \text{ czyli } y \in \bigcup_{i \in I} f[A_i]. \text{ Mamy zawieranie } "\subseteq". \end{array}$ 

W drugą stronę, niech  $y\bigcup_{i\in I}f[A_i].$  Czyli istnieje  $i\in I$ tak, że  $y\in f[A_i],$ co oznacza, że

$$y = f(x)$$
 dla pewnego  $x \in A_i$ . Ale wtedy  $x \in \bigcup_{i \in I} A_i$ , czyli stąd już  $y \in f\left[\bigcup_{i \in I} A_i\right]$ .

2. Niech  $y \in f\left[\bigcap_{i \in I} A_i\right]$ . To znaczy, że:

$$\forall i \in I. \ y = f(x_i) \ dla \ pewnego \ x_i \in A_i.$$

Inaczej mówiąc:

dla każdego 
$$i \in I : y \in f[A_i],$$

co dokładnie oznacza, że

$$y \in \bigcap_{i \in I} f[A_i].$$

3. Niech  $y \in f[A] \setminus f[B]$ . To oznacza, że y = f(x) dla pewnego  $x \in A$  oraz równocześnie  $y \neq f(b)$  dla każdego  $b \in B$ . Czyli  $x \notin B$ , a więc  $x \in A \setminus B$ . Ostatecznie  $y \in f[A \setminus B]$ .

*Ćwiczenie* 8. Podać przykład na to, że zawieranie w punkcie 2 powyższego twierdzenia nie musi zachodzić w drugą stronę. Tzn. znaleźć takie zbiory X i  $A, B \subseteq X$ , że  $f[A] \cap f[B] \nsubseteq f[A \cap B]$ .

Przykład16. Udowodnić, że  $f\colon X\to Y$  (X,Y – dowolne zbiory) jest funkcją różnowartościową wtedy i tylko wtedy, gdy

$$f[A \cap B] = f[A] \cap f[B]$$
, dla dowolnych zbiorów  $A, B \subseteq X$ .

Dowód. Załóżmy najpierw, że f jest różnowartościowa.

Oczywiście  $f[A \cap B] \subseteq f[A] \cap f[B]$  z punktu 2 twierdzenia 3.2.20. Musimy wykazać, że zawieranie zachodzi w drugą stronę. Niech  $y \in f[A] \cap f[B]$ . Zatem

$$y = f(a)$$
, dla pewnego  $a \in A$ ,

$$y = f(b)$$
, dla pewnego  $b \in B$ .

Mamy dwa przypadki

- 1. x := a = b i wówczas y = f(x), gdzie  $x \in A \cap B$ , więc  $y \in f[A \cap B]$ .
- 2.  $a \neq b$  i wówczas, z różnowartościowości funkcji f wynika, że  $y = f(a) \neq f(b) = y$  sprzeczność.

Zatem  $f[A] \cap f[B] \subseteq f[A \cap B]$ .

W drugą stronę, niech 
$$f[A \cap B] = f[A] \cap f[B], A, B \subseteq X$$
. **TO-DO**

**Twierdzenie 3.2.21.** Jeżeli f jest funkcją różnowartościową, to dla dowolnych zbiorów A, B i dla dowolnej indeksowanej rodziny zbiorów  $\{A_i : i \in I\}$ :

1. Jeżeli 
$$I \neq \emptyset$$
, to  $f\left[\bigcap_{i \in I} A_i\right] = \bigcap_{i \in I} f[A_i]$ ,

2. 
$$f[A] \setminus f[B] = f[A \setminus B]$$
.

Dowód. Ćwiczenie. □

 $\acute{C}wiczenie$  9. Przez  $\dot{A-B}$  definujemy **różnicę symetryczną** zbiorów A i B, tzn.

$$A \dot{-} B = (A \setminus B) \cup (B \setminus A).$$

Udowodnić, że dla dowolnej funkcji f zachodzi zawieranie  $f[A] - f[B] \subseteq f[A - B]$ .

#### 3.2.4 Wielomiany

Wielomiany<sup>3</sup> bada dziedzina znana jako algebra, ale są bardzo ważne w wielu gałęziach matematyki. My wielomiany będziemy rozumieć jako pewne szczególne funkcje.

**Definicja 3.2.22.** Niech  $a_0, a_1, \ldots, a_n$  będą ustalonymi liczbami,  $a_n \neq 0$ . **Wielomianem** stopnia n nazywamy funkcję<sup>4</sup> W postaci

$$W(x) = a_0 + a_1 \cdot x + a_2 \cdot x^2 + \ldots + a_n \cdot x^n = \sum_{k=0}^n a_k x^k.$$

Stopień wielomianu oznaczamy następująco<sup>5</sup>:  $\deg W=n$ . Każdą liczbę  $a\in X$  taką, że W(a)=0 nazywamy pierwiastkiem wielomianu W.

Jeśli wielomiany W i Q mają te same współczynniki przy odpowiadających potęgach parametru, to oczywiście W(x)=Q(x) dla każd. x. W drugą stronę: zachodzi następujące

Twierdzenie 3.2.23. Niech dane będą wielomiany W i Q:

$$W(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n,$$
  

$$Q(x) = b_0 + b_1 x + \dots + b_{n-1} x^{n-1} + b_n x^n.$$

Jeżeli dla każdego  $x \in \mathbb{R}$  wielomiany W(x) i Q(x) przyjmują te same wartości to  $a_i = b_i$  dla każdego  $i = 0, 1, \ldots, n$ .

Dowód. Indukcja względem stopni wielomianu.

**Twierdzenie 3.2.24** (Bezouta). Dla każdego W liczba  $a \in \mathbb{R}$  jest pierwiastkiem wielomianu W wtedy i tylko wtedy, gdy istnieje taki wielomian P, że dla każdego  $x \in \mathbb{R}$  prawdziwa jest równość

$$W(x) = (x - a)P(x).$$

Ponadto stopień wielomianu P jest niższy niż wielomianu W.

<sup>&</sup>lt;sup>3</sup>Znane też jako sumy algebraiczne

 $<sup>^4</sup>W \colon \mathbb{K}_1 \to \mathbb{K}_2$ , gdzie  $\mathbb{K}_1$ ,  $\mathbb{K}_1$  mogą być dowolnymi ciałami (patrz dodatek) - na razie czytelnik może przyjąć, że  $\mathbb{K}_1$ ,  $\mathbb{K}_1$  są po prostu pewnymi zbiorami. W naszym przypadku: zazwyczaj liczb rzeczywistych (ogólniej: zespolonych).  $^5$ Od ang. "degree" - stopień.

Dowód. Możemy skorzystać z twierdzenia 3.4.8, które udowodnimy na stronie 33 omawiając zasadę indukcji matematycznej. We wzorze (3.7) przyjmujemy inne oznaczenia: a = x, b = a i przemnażamy ją obustronnie przez (x - a). W ten sposób mamy, że

$$x^{n} - a^{n} = (x - a)(x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}).$$

Gdy W(a) = 0, to

$$W(x) = W(x) - W(a) = (a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) - (a_0 + a_1 a + a_2 a^2 + \dots + a_n a^n) =$$

$$= a_1(x - a) + a_2(x^2 - a^2) + a_3(x^3 - a^3) + \dots + a_{n-1}(x^{n-1} - a^{n-1}) + a_n(x^n - a^n) =$$

$$= (x - a)[a_1 + a_2(x + a) + \dots + a_{n-1}(x^{n-2} + x^{n-3}a + \dots + xa^{n-3} + a^{n-2}) +$$

$$+ a_n(x^{n-1} + x^{n-2}a + x^{n-3}a^2 + \dots + x^2a^{n-3} + xa^{n-2} + a^{n-1})]$$

Stąd W(x) = (x - a)P(x), gdzie P jest wielomianem i deg P < n.

**Twierdzenie 3.2.25** (Viete'a). Niech  $x_1, x_2, \ldots, x_n$  będą pierwiastkami wielomianu  $W(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0, \ a_n \neq 0$ . Wówczas:

$$\sum_{k=1}^{n} x_k = x_1 + x_2 + \dots + x_{n-1} + x_n = -\frac{a_{n-1}}{a_n}$$

$$\sum_{i=1}^{n-1} \sum_{k=i+1}^{n} x_j x_k = x_1 x_2 + x_1 x_3 + \ldots + x_1 x_n + x_2 x_3 + x_2 x_4 + \ldots + x_2 x_n + \ldots + x_{n-1} x_n = \frac{a_{n-2}}{a_n}$$

$$\sum_{i=1}^{n-2} \sum_{j=i+1}^{n-1} \sum_{k=j+2}^{n} x_i x_j x_k = -\frac{a_{n-3}}{a_n}$$

:

$$\prod_{k=1}^{n} x_k = x_1 x_2 \cdots x_n = (-1)^n \frac{a_0}{a_n}$$

Albo inaczej:

$$\sum_{1 \leq i_1 < i_2 < \dots < i_k \leq n}^n x_{i_1} x_{i_2} x_{i_3} \cdots x_{i_k} = (-1)^k a_{n-k}, \quad dla \ ka\dot{z}dego \ k \in \mathbb{N}, 1 \leqslant k \leqslant n.$$

(Bez dowodu)

**Twierdzenie 3.2.26.** Jeżeli ułamek nieskracalny  $\frac{p}{q}$  jest pierwiastkiem wielomianu W danego:

$$W(x) = a_0 + a_1 x + \ldots + a_{n-1} x^{n-1} + a_n x^n,$$

przy czym  $a_0, \ldots, a_n \in \mathbb{Z}$ , to:

- $a_n$  jest podzielne przez q,
- $a_0$  jest podzielne przez p.

Dowód.

Jeśli 
$$W\left(\frac{p}{q}\right) = 0$$
, to:  $a_0 + a_1 \frac{p}{q} + \ldots + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + a_n \left(\frac{p}{q}\right)^n = 0$ .

Mnożąc obydwie strony przez  $q^n$  otrzymujemy, że

$$a_0q^n + a_1q^{n-1}p + \dots + a_{n-1}qp^{n-1} + a_np^n = 0.$$

a więc  $a_n p^n = q(aq^{n-1} + \ldots + a_{n-1}p^{n-1})$ , czyli  $a_n p^n$  jest podzielne przez q. Podobnie  $a_0 q^n$  jest podzielne przez p. W teorii liczb dowodzi się, że:

jeżeli liczby całkowite a, b nie mają wspólnego dzielnika innego niż 1 oraz a dzieli bc (c - całkowite), to a dzieli c.

Ułamek  $\frac{p}{q}$ z założenia jest nieskracalny, czyli pi qnie mają wspólnego dzielnika innego niż 1 i:

$$q$$
 nie dzieli  $p$  a więc również nie dzieli  $p^n$ 

więc q musi dzielić  $a_n$ . Podobnie wywnioskujemy, że p dzieli  $a_0$ .

#### 3.2.5 Funkcje cyklometryczne, uzupełnienia z trygonometrii

Nierówności trygonometryczne. Bardzo często przydają się oszacowania, które podaje następujące

Twierdzenie 3.2.27. Zachodzą następujące tożsamości trygonometryczne

- 1.  $|\sin x| < |x|$  dla dowolnego  $x \in \mathbb{R}$
- 2.  $\sin x < x < \operatorname{tg} x \ dla \ każdego \ x \in \left(0, \frac{\pi}{2}\right)$
- 3.  $0 < 1 \cos x < x \ dla \ x > 0$
- 4.  $\sin x \leq x$ , dla x > 0 ( $\sin x = x$  tylko dla x = 0)

W paragrafie 3.4, na stronie 43 przypominamy własności modułu liczb rzeczywistych. Z twierdzeń 3.4.28 i 3.2.27 otrzymujemy

Wniosek 3.2.28. Dla dowolnych  $x,y \in \mathbb{R}$  zachodzą nierówności

$$|\sin x - \sin y| \le |x - y|$$
 oraz  $|\cos x - \cos y| \le |x - y|$ .

Funkcje cyklometryczne. Reszta paragrafu będzie stanowiła przykład do definicji 3.2.12.

Definicja 3.2.29. Funkcje

$$\begin{aligned} & \text{arcsin: } [-1,1] \longrightarrow \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] \\ & \text{arccos: } [-1,1] \longrightarrow [0,\pi], \\ & \text{arctan: } \left( -\frac{\pi}{2}, \frac{\pi}{2} \right) \to \mathbb{R} \\ & \text{arc etg: } (0,\pi) \longrightarrow \mathbb{R} \end{aligned}$$

są funkcjami odwrotnymi odpowiednich funkcji trygonometrycznych, obciętych do przedziałów w którym sa one funkcjami wzajemnie jednoznacznymi. Tak więc

(3.1) 
$$\arcsin := \left(\sin\left|_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\right|^{-1},$$

(3.2) 
$$\operatorname{arccos} := \left(\cos\big|_{[0,\pi]}\right)^{-1}$$

(3.3) 
$$\arctan := \left(\tan\left|_{\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)}\right)^{-1},$$

(3.4) 
$$\operatorname{arc} \operatorname{ctg} := \left(\operatorname{ctg}\big|_{(0,\pi)}\right)^{-1}$$

#### 3.2.6 Zasada Abstrakcji

**Definicja 3.2.30.** Mówimy, że relacja  $R \subseteq X \times X$  (na ustalonym zbiorze X) jest **relacją równoważności**, gdy jest zwrotna, symetryczna i przechodnia.

**Definicja 3.2.31.** Zbiór  $\Pi = \{P_t : t \in T\}$  nazywamy **rozbiciem** albo **podziałem** (a czasem jeszcze **partycją**) zbioru  $X \neq \emptyset$ , gdy

1. 
$$X = \bigcup \Pi = \bigcup_{t \in T} P_t$$
,

2.  $P_k \cap P_l = \emptyset$  dla każdych  $k, l \in T$  takich, że  $k \neq l$ .

Zbiory  $P_t, t \in T$  nazywamy klasami podziału  $\Pi$ .

**Definicja 3.2.32.** Załóżmy, że R jest relacją równoważności w zbiorze  $X \neq \emptyset$ . Dla każdego  $x \in X$  zbiór

$$[x]_R := \{ y \in X \colon (y, x) \in R \}$$

nazywamy klasą abstrakcji wyznaczoną przez element x. Rodzinę wszystkich klas abstrakcji relacji równoważności R w zbiorze X oznaczamy symbolem X/R i nazywamy ją przestrzeniq ilorazową zbioru X względem relacji R. Zatem

$$X/R = \{ [x]_R : x \in X \}.$$

Przykład 17. Jeżeli X jest zbiorem wszystkich prostych na płaszczyźnie, a R relacją równoległości, to klasami abstrakcji względem tej relacji są kierunki.

Przykład 18. Jeżeli X jest zbiorem wszystkich trójkątów, jakie można narysować na płaszczyźnie, a R relacją przystawania trójkątów, to każda klasa tej abstrakcji jest zbiorem wszystkich trójkątów przystających. Np. jeżeli  $\Delta ABC$  jest pewnym trójkątem o kątach o miarach kolejno 90°, 60°, 30°, to  $[\Delta ABC]_R$  jest zbiorem wszystkich trójkątów prostokątnych takich, że jeden z pozostałych kątów ma miarę 30° a drugi 60°.

**Twierdzenie.** Niech X będzie dowolnym zbiorem niepustym a  $R \subseteq X^2$  relacją równoważności w tym zbiorze. Wówczas

- 1.  $X = \bigcup \{ [x]_R : x \in X \},$
- 2. dla dowolnych  $x, y \in X$ , jeżeli  $[x]_R \cap [y]_R \neq \emptyset$ , to  $[x]_R = [y]_R$ .

 $Czyli\ X/R\ jest\ rozbiciem\ zbioru\ X.$ 

Dowód. Ustalmy dowolne  $z \in [x]_R \cap [y]_R$ . Jeżeli  $t \in [x]_R$ , to tRx. Wówczas tRy z przechodniości relacji, bo xRz i zRy. Zatem  $t \in [y]_R$ , a więc  $[x]_R \subseteq [y]_R$ . Analogcznie dowodzimy, że  $[y]_R \subseteq [x]_R$ . Pokazaliśmy zatem prawdziwość warunku 1. Warunek 2. jest oczywisty, gdyż z definicji  $x \in [x]_R$  dla każdego  $x \in X$  oraz  $[x]_R \subseteq X$ .

Zachodzi twierdzenie odwrotne:

**Twierdzenie.** Jeżeli  $\Pi$  jest rozbiciem zbioru  $X \neq \emptyset$ , to istnieje taka relacja równoważności R w zbiorze X, że zbiór klas abstrakcji relacji R jest równy rodzinie  $\Pi$ .

Dwa powyższe twierdzenia możemy zapisać razem:

Twierdzenie 3.2.33 (Zasada Abstrakcji). Niech X będzie dowolnym zbiorem. Jeżeli R jest relacją równoważności w zbiorze  $X \neq \emptyset$ , to X/R jest rozbiciem zbioru X. W drugą stronę: jeżeli  $\Pi$  jest rozbiciem zbioru X, to istnieje taka relacja równoważności  $R \subseteq X^2$  w zbiorze X, że  $X/R = \Pi$ .

**Definicja 3.2.34.** Relacja równoważności R na zbiorze X wyznacza jednoznacznie odwzorowanie  $\kappa \colon X \xrightarrow{\mathrm{na}} X/R$  dane wzorem  $\kappa(x) = [x]_R$ . Nazywamy je **odwzorowaniem kanonicznym**.

Przykład 19. Niech  $X = \mathcal{P}(\{1, 2, \dots, n\})$ . Definiujemy rodzinę zbiorów:

$$P_k = \{A \in X : \text{ card } A = k\}, k = 0, 1, \dots, n.$$

Wówczas  $\Pi = \{P_k : k \in \{0, \dots, n\}\}$  jest podziałem zbioru X. Z drugiej strony, niech  $R \subseteq X \times X$  będzie relacją taką, że

$$ARB \iff A \sim B$$
, dla dowolnych  $A, B \subseteq \{1, \dots, n\}$ .

Wówczas widzimy, że  $\Pi = A/R$ .

#### 3.3 Teoria mocy. Klasy właściwe

**Definicja 3.3.1.** Mówimy, że zbiory A i B są równoliczne, gdy istnieje bijekcja  $f \colon A \xrightarrow[1-1]{\text{na}} B$ . Piszemy wtedy  $A \sim B$ .

**Definicja 3.3.2.** Mówimy, że zbiór A jest **przeliczalny**, gdy jest równoliczny ze zbiorem liczb naturalnych:  $A \sim \mathbb{N}$ . Mówimy, że zbiór jest **co najwyżej przeliczalny**, gdy jest przeliczalny lub skończony.

**Definicja 3.3.3.** Mówimy, że zbiór A jest **mocy continuum**, gdy jest równowliczny ze zbiorem liczb rzeczywistych, czyli  $A \sim \mathbb{R}$ .

Nieformalnie i bardzo nieściśle mówiąc, "mocą" zbioru nazywamy "liczbę" tudzież "liczność" jego elementów. Moc zbioru  $\mathbb N$  oznacza się w teorii mnogości przez  $\aleph_0$  ( $\aleph$  to hebrajska litera - "alef") a moc zbioru  $\mathbb R$  przez  $\mathfrak c$ .

W teorii mnogości definiuje się **liczby kardynalne**.  $\aleph_0$  i  $\mathfrak{c}$  są przykładami tzw. liczb kardynalnych. Przez |A| lub card A oznaczamy liczbę elementów zbioru A. Ten drugi zapis wiąże się ze wspomnianymi liczbami kardynalnymi - tematu tego nie będziemy zgłębiać, ale ten popularny w teorii mnogości zapis pozwoli w dalszej częsci lektury nie mylić liczby elementów zbioru A z jego

tzw.  $\mathbf{miarq}$  - również często oznaczaną przez |A|. Temat stanie się jasny dopiero na zaawansowanym etapie lektury - na razie nie należy się tym przejmować. Czytelnikowi wystarczy przyjąć, że card A to "liczba" mówiąca "ile elementów ma zbiór A".

Zatem, gdy zbiór A jest mocy continuum, to piszemy card  $A = \mathfrak{c}$  a gdy jest przeliczalny, to wówczas piszemy card  $A = \aleph_0$ . Jeżeli zbiór A jest co najwyżej przeliczalny, to możemy napisać, że card  $A \leq \aleph_0$ .

**Twierdzenie 3.3.4.** Niech X będzie dowolnym zbiorem. Relacja  $\sim \subseteq \mathcal{P}(X) \times \mathcal{P}(X)$ , czyli relacja równoliczności określona na iloczynie wszystkich podzbiorów zbioru X jest relacją równoważności.

Przykład 20. Zbadamy moc zbioru  $X = \{n \in \mathbb{N} : \exists_{x \in \mathbb{R}}. n = \operatorname{tg} x\}$ . Otóż, z definicji:  $X = \operatorname{tg}[\mathbb{N}]$ . Wiemy też, że

tg:  $\mathbb{R} \to \mathbb{N}$  – funkcja różnowartościowa,

$$\mathbb{N} \subseteq \mathbb{R} = D_{\mathrm{tg}}$$
.

Zatem funkcja t<br/>g jest bijekcją:  $g \colon \mathbb{N} \to \operatorname{tg}[\mathbb{N}]$ . Czyli  $X = \operatorname{tg}[\mathbb{N}] \sim \mathbb{N}$  albo inaczej mówiąc car<br/>d $X = \aleph_0$ .

**Pewne trudności teorii zbiorów.** Widzieliśmy już, że zbiory w istocie wyznaczane są przez pewne predykaty logiczne. Będziemy rozważać predykat  $P(x) \equiv x \notin x$ .

Zdefiniujmy pewien zbiór A następująco:

$$A = \{X \colon X \notin X\}.$$

A jest więc pewną rodziną zbiorów. Pojawia się pewien problem:

- Jeśli  $A \notin A$ , to A spełnia predykat, który określa jakie zbiory są elementami tego zbioru, czyli  $A \in A$ .
- W drugą stronę, załóżmmy więc, że  $A \in A$ . To znowu oznacza, że  $A \notin A$ .

Jak widać, otrzymujemy sprzeczność. Mówimy tu o tzw. "Paradoksie Russela  $^6$ " Wniosek: Anie może być zbiorem.

**Definicja 3.3.5. Klasę K** utożsamiamy z predykatem  $\Phi$ , albo raczej ogółem obiektów, które spełniają pewien predykat  $\Phi$ . Czasem stosuje się też oznaczenie  $\mathbf{K}_{\Phi}$  dla klasy "wyznaczonej" przez predykat  $\Phi$ .

Mówimy, że klasa  $\mathbf{K}$  jest  $\mathbf{w}$ łaściwa, gdy nie jest zbiorem.

Przykład 21. Predykat

$$\varphi(x) \equiv x \in \mathbb{R} \text{ i } x > 0$$

wyznacza klasę

$${x: x \in \mathbb{R}, x > 0}.$$

Oczywiście jest to niezmiernie nudny przykład, gdyż klasa  $\mathbf{K}_{\varphi}$  jest po prostu zbiorem  $(0, \infty)$ .

Przykład 22. Klasą Russela nazywamy klasę A wyznaczoną przez predykat P, a więc klasę

$$\mathbf{A} := \{x \colon x \notin x\}.$$

Pokazaliśmy już, że klasa Russela jest klasą właściwą, gdyż nie może być zbiorem.

<sup>&</sup>lt;sup>6</sup>Bertrand Russel – logik i matematyk angielski. Autor monumentalnego dzieła **Principia Mathematica**, w którym próbował sprowadzić całą matematykę do logiki.

Oznaczmy przez  $\mathbb{V}$  klasę wszystkich zbiorów. Jak mówiliśmy, znaczną część matematyki daje się sprowadzić do teorii mnogości. Często możemy więc uznawać klasę  $\mathbb{V}$  za "uniwersum naszych rozważań" – klasę wszystkich obiektów matematycznych, którymi się zajmujemy. Wówczas każdy zapis typu  $\{x: \varphi(x)\}$  oznacza tyle, co

$$\{x \in \mathbb{V} : \varphi(x)\}.$$

Na gruncie tej teorii daje się także określić klasę liczb kardynalnych. Oznacza się ją np. **On** (od ang. *Ordinal Numbers*).

**Uwaga 3.3.6.** Porównywać moce zbiorów możemy korzystając z różnych równoważnych warunków:

- (i)  $\mathfrak{m} \leq \mathfrak{n}$  wtedy i tylko wtedy, gdy dla każdych X,Y takich że  $|X| = \mathfrak{m}$  i  $|Y| = \mathfrak{n}$  istnieje injekcja  $f: X \to Y$ .
- (ii)  $\mathfrak{m} \leq \mathfrak{n}$  wtedy i tylko wtedy, gdy istnieją zbiory X, Y takie, że  $|X| = \mathfrak{m}$  i  $|Y| = \mathfrak{n}$  oraz  $X \subseteq Y$ .
- (iii)  $\mathfrak{m} \leq \mathfrak{n}$  wtedy i tylko wtedy, gdy dla każdego zbioru X, mocy  $|X| = \mathfrak{n}$  istnieje zbiór  $Y \subseteq X$  mocy  $|Y| = \mathfrak{m}$ .
- (iiii)  $\mathfrak{m} \leq \mathfrak{n}$  wtedy i tylko wtedy, gdy dla każdego zbioru Y, mocy  $|Y| = \mathfrak{m}$  istnieje zbiór X, mocy  $|X| = \mathfrak{m}$ , taki że  $Y \subseteq X$ .

**Uwaga 3.3.7.** Liczby naturalne są szczególnym przypadkiem liczb kardynalnych. Są to oczywiście moce zbiorów skończonych i stosuje się do nich zwykła arytmetyka. Definiuje się działania na dowolnych liczbach kardynalnych, jednak **TO-DO!!!!** 

Podajemy kilka bez dowodu kilka ważnych twierdzeń, których sens jest intuicyjny. Dowody tych rezultatów nie są jednak wcale oczywiste. Po odpowiedni wykład ponownie odsyłamy do książek wprowadzających do teorii mnogości albo przedmiotu "wstęp do matematyki" jaki obecnie realizuje się na studiach matematycznych.

Twierdzenie 3.3.8. Dla dowolnego zbioru skończonego X:  $\operatorname{card} \mathcal{P}(X) = 2^{\operatorname{card} X}$ .

Twierdzenie 3.3.9 (Cantora o potędze). Niech  $\mathfrak{m}$  będzie liczbą kardynalną. Wówczas  $\mathfrak{m} < 2^{\mathfrak{m}}$ .

Cantor udowodnił następne twierdzenie stosując tzw. metodę przekątniową. Jest ono też wnioskiem z twierdzeń 3.3.8 i 3.3.9.

Twierdzenie 3.3.10 (Cantora o przekątni). Dla dowolnego zbioru X, zachodzi  $\operatorname{card} \mathcal{P}(X) \neq \operatorname{card} X$ .

Twierdzenie 3.3.11 (Cantora-Bernsteina). Dla dowolnych zbiorów X, Y zachodzi implikacja

$$je\acute{s}li \mid X \mid \leqslant \mid Y \mid \ oraz \mid Y \mid \leqslant \mid X \mid \ to \mid X \mid = \mid Y \mid.$$

Sformułujmy powyższe twierdzenie trochę inaczej:

Twierdzenie 3.3.12 (Cantora-Bernsteina). Niech  $\mathfrak{m}$  i  $\mathfrak{n}$  będą liczbami kardynalnymi takimi, że  $\mathfrak{m} \leqslant \mathfrak{n}$  oraz  $\mathfrak{n} \leqslant \mathfrak{m}$ . Wówczas  $\mathfrak{m} = \mathfrak{n}$ .

**Lemat 3.3.13** (O trzech zbiorach). Niech X,Y,Z będą zbiorami takimi, że  $Z \subseteq Y \subseteq X$  i  $X \sim Z$ . Wtedy  $X \sim Y$ .

Dowód. Ustalmy bijekcję  $f: X \to Z$  i określmy ciąg  $(X_n)_{n \in \mathbb{N}_0}$  zbiorów:

$$X_n := \begin{cases} X, & \text{dla } n = 0 \\ Y, & \text{dla } n = 1 \\ Z, & \text{dla } n = 2 \\ f[X_{n-2}] & \text{dla } n > 2. \end{cases}$$

Wówczas:

$$\begin{split} X_0 &:= X \supseteq X_1 := Y \supseteq X_2 := Z = f[X] = f[X_0] \\ X_3 &:= f[X_1] \subseteq f[X_0] = X_2 \\ X_4 &:= f[X_2] \subseteq f[X_1] = X_3 \\ &\vdots \\ X_n &:= f[X_{n-2}] \subseteq f[X_{n-3}] = X_{n-1}. \end{split}$$

Niech  $A_n = X_n \setminus X_{n+1}, n \in \mathbb{N}_0.$ 

Ponieważ f jest bijekcją, oraz  $f[X_n] = X_{n+2}, n \in \mathbb{N}_0$ , to

$$f[A_n] = f[X_n \setminus X_{n+1}] = f[X_n] \setminus f[X_{n+1}] = X_{n+2} \setminus X_{n+3} = A_{n+2}.$$

$$A_n \cap A_m = \emptyset, \quad \text{dla } m \neq n, \quad m, n \in \mathbb{N}.$$

$$A = \bigcup_{n=0}^{\infty} A_{2n}, \text{ gdzie } A_i \cap A_j = \emptyset \text{ dla } i \neq j,$$

$$B = f[A] = \bigcup_{n=0}^{\infty} f[A_{2n}] = \bigcup_{n=0}^{\infty} A_{2n+2},$$

gdzie zbiory  $A_n$  są parami rozłączne. Mamy, że

$$B = \bigcup_{n=0}^{\infty} A_{2n}.$$

Przyjmujemy jeszcze  $C = X \setminus A$ .

$$C = (Y \cup A_0) \setminus (A_0 \cup B) = Y \setminus B$$
,

przy czym  $Y \cap A_0 = \emptyset$ ,  $A_0 \cap B = \emptyset$ .

$$g(x) = \begin{cases} x, & x \in C, \\ f(x), & x \in A. \end{cases}$$

$$g[X] = g[A \cup C] = g[A] \cup g[C] = f[A] \cup C = B \cup C = Y.$$

 $g\colon X\to Y$ jest surjekcją. Ponadto gjest injekcją, gdyż:

- -g jest injekcją na C,
- -g jest injekcją na A,

$$- g[C] \cap g[A] = \varnothing.$$

Ostatecznie g jest szukaną bijekcją między zbiorami X i Y.

Dowód twierdzenia 3.3.12 Cantora-Bernsteina. Skoro  $\mathfrak{n}\leqslant\mathfrak{m},$  to istnieją zbiory X i Y, takie że  $X\subseteq Y$  oraz

$$|Z| = \mathfrak{n} \text{ i } |Y| = \mathfrak{m}.$$

Z drugiej strony, skoro  $\mathfrak{m}\leqslant \mathfrak{n},$ to (uwaga 3.3.6) istnieje zbiór X, zawierający Yi taki, że

$$|X| = \mathfrak{n}.$$

Mamy więc zawierania:

$$Z \subseteq Y \subseteq X$$
,

oraz  $|X| = \mathfrak{n} = |Z|$ , czyli  $X \sim Z$ . Teraz wystarczy powołać się na poprzedni lemat i twierdzenie zostało udowodnione.

#### 3.4 Liczby

#### 3.4.1 Liczby naturalne. Zasada Indukcji Matematycznej

Dobry Bóg stworzył liczby naturalne, reszta jest dziełem człowieka.

Leopold Kronecker

#### Zasada Indukcji Matematycznej

**Twierdzenie 3.4.1** (Zasada Minimum). *Jeżeli*  $A \subseteq \mathbb{N}$  *jest zbiorem niepustym, to istnieje w nim liczba najmniejsza* min A *czyli taka, że dla każdego*  $a \in A$  *zachodzi*  $a \geqslant \min A$ .

**Definicja 3.4.2.** Mówimy, że zbiór A jest ograniczony z góry w zbiorze B, gdy istnieje  $b \in B$  takie, że dla każdego  $a \in A$  mamy  $a \le b$ . Analogicznie określamy ograniczenie z dołu.

**Twierdzenie 3.4.3** (Zasada Maksimum). *Jeżeli*  $A \subseteq \mathbb{N}$  *jest zbiorem niepustym i ograniczonym z* góry w zb.  $\mathbb{N}$ , to istnieje w nim liczba największa max A czyli taka, że dla każdego  $a \in A$  zachodzi  $a \leq \max A$ .

Twierdzenie 3.4.4 (Zasada Indukcji Matematycznej). Niech  $S \subseteq \mathbb{N}$  będzie zbiorem o następujących własnościach:

1.  $1 \in S$ ,

2.  $n \in S$  pociąga, że  $n + 1 \in S$  dla każdego  $n \in \mathbb{N}$ ;

Wtedy  $\mathbb{N} \subseteq S$ . (Czyli  $S = \mathbb{N}$ )

Możemy zamiast 1 przyjąć w powyższym twierdzeniu dowolne  $n_0 \in \mathbb{N}$  i wtedy otrzymamy, że  $S = \{n_0, n_0+1, n_0+2, \ldots\}.$ 

Prostą konsekwencją (właściwie przeformułowaniem powyższego twierdzenia) jest następujące

Stwierdzenie. Niech  $\varphi$  będzie dowolnym zdaniem logicznym o liczbach naturalnych. Jeżeli

- 1.  $\varphi(n_0)$  dla pewnego  $n_0 \in \mathbb{N}$  (tzn. zdanie  $\varphi$  jest prawdziwe dla  $n_0$ ),
- 2.  $\varphi(n)$  pociąga, że  $\varphi(n+1)$  dla każdego  $n \in \mathbb{N}$ ;

to  $\varphi(n), n \in \mathbb{N}$  (tzn. zdanie  $\varphi$  jest prawdziwe dla dowolnej liczby naturalnej).

Powyższa procedura stanowi jedną z metod dowodzenia twierdzeń dotyczących liczb naturalnych. Przykład~23. Udowodnić, że liczba  $n^3 + 5n$  jest podzielna przez 3 dla dowolnego  $n \in \mathbb{N}$ .

**Dwa przydatne twierdzenia.** Przećwiczymy dowodzenie tożsamości na dwóch użytecznych twierdzeniach.

**Twierdzenie 3.4.5.**  $2^{n-1} < n!$  dla dowolnej liczby naturalnej n > 4.

Dowód. Dla n=5 nierówność przyjmuje postać  $2^4=2^3\cdot 2<5!=2^3\cdot 15$  - oczywiście prawda. Załóżmy, że  $2^{k-1}< k!$  dla pewnego  $k\in\mathbb{N}$ . Wówczas:

$$2^{k-1} < k! / \cdot 2$$
$$2^k < 2k!$$

$$2^k < 2 \cdot k! = k! + k! < k! + k \cdot k! = (1+k)k! = (k+1)!$$

Zatem z założenia indukcyjnego wynikło iż  $2^k < (k+1)!$ . Na mocy twierdzenia 3.4.4 teza jest prawdziwa dla dowolnego  $n \in \mathbb{N}$ .

*Ćwiczenie* 10. Udowodnić, że dla dowolnej liczby naturalnej  $n \in \mathbb{N}, n \ge 1$  zachodzi nierówność  $n \le 2^{n-1}$ . Pokazać, że stąd wynika, że  $\log_2 n \le n-1$  dla  $n \ge 1$ .

**Twierdzenie 3.4.6.** Dla dowolnej liczby naturalnej  $n \in \mathbb{N}$ :

(3.5) 
$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}.$$

Dowód. Dla n=0 mamy  $0=\frac{0\cdot(0+1)}{2}$ . Załóżmy, że teza jest prawdziwa dla pewnego  $m\in\mathbb{N}$ . Chcemy udowodnić, że równość (3.5) zachodzi dla m+1. Nasze założenie ma postać:

(3.6) 
$$\sum_{k=0}^{m} k = \frac{m(m+1)}{2}.$$

Mamy

$$\sum_{k=0}^{m+1} k = \sum_{k=0}^{m} k + (m+1) = \frac{m(m+1)}{2} + m + 1.$$

Druga równość wynika właśnie z założenia (3.6). Trzeba sprawdzić, że

$$\frac{m(m+1)}{2} + m + 1 = \frac{(m+1)\left((m+1) + 1\right)}{2}.$$

Liczymy:

$$\frac{m(m+1)}{2} + m + 1 = \frac{m^2 + m + 2m + 2}{2} = \frac{m(m+1) + 2(m+1)}{2} = \frac{(m+1)(m+2)}{2} = \frac{(m+1)((m+1) + 1)}{2}.$$

A więc pokazaliśmy, że

$$\sum_{k=0}^{m} k = \frac{m(m+1)}{2} \implies \sum_{k=0}^{m+1} k = \frac{(m+1)((m+1)+1)}{2}.$$

Na mocy Zasady Indukcji Matematycznej twierdzenie jest prawdziwe dla dowolnego  $n \in \mathbb{N}$ .  $\Box$   $\acute{C}wiczenie$  11. Udowodnić, że  $(1+2+\ldots+n)^2=1^3+2^3+\ldots+n^3$ . Przykład 24. Udowodnić, że

$$\underbrace{\sqrt{2+\sqrt{2+\sqrt{2+\ldots+\sqrt{2}}}}}_{n-1 \text{ dw\'oiek}} = 2\cos\frac{\pi}{2^{n+1}}.$$

Oznaczmy  $p_1 = \sqrt{2}$  oraz  $p_n = \sqrt{2 + p_{n-1}}$ , dla n > 1.  $p_1 = 2\cos\frac{\pi}{2^{1+1}}$ , gdyż  $\cos\frac{\pi}{4} = \frac{\sqrt{2}}{2}$ . Mamy więc bazę inukcji. Załóżmy, że dla pewnego  $n \in \mathbb{N}$  zachodzi równość  $p_n = 2\cos\frac{\pi}{2^n}$  (założenie indukcyjne). Chcemy pokazać (teza indukcyjna), że  $p_{n+1} = 2\cos\frac{\pi}{2^{n+1}}$ . Przytoczmy znany z trygonometrii wzór:

$$1 + \cos \alpha = 2\cos^2 \frac{\alpha}{2}$$
, dla dow. kąta  $\alpha$ .

Korzystając z przytoczonej tożsamości otrzymujemy równość

$$\left|\cos\frac{\alpha}{2}\right| = \sqrt{\frac{1}{2}(1+\cos\alpha)}.$$

Zauważmy ponadto, że  $\frac{\pi}{2^n} \in \left(-\frac{pi}{2}, \frac{\pi}{2}\right), n \in \mathbb{N}.$  Stąd równość

$$\cos\frac{\pi}{2^{n+1}} = \sqrt{\frac{1}{2}\left(1 + \cos\frac{\pi}{2^n}\right)}, \ n \in \mathbb{N}.$$

Teraz wystarczy zauważyć, że

$$p_{n+1} = \sqrt{2 + 2\cos\frac{\pi}{2^n}} =$$

$$= \sqrt{\frac{4}{2}\left(1 + \cos\frac{\pi}{2^n}\right)} =$$

$$= 2\sqrt{\frac{1}{2}\left(1 + \cos\frac{\pi}{2^n}\right)} =$$

$$= 2\cos\frac{\pi}{2^{n+1}}$$

Dowód poniżeszego twierdzenia można w pierwszym czytaniu pominąć.

Twierdzenie 3.4.7. Zasada Indukcji Matematycznej, Zasada Minimum i Zasada Maksimum są równoważne.

Dowód. Załóżmy prawdziwość Zasady Minimum. Wykażemy, że stąd wynika Zasada Indukcji Matematycznej. Niech  $\varphi$  będzie pewnym zdaniem dotyczącym liczb naturalnych i niech  $\varphi(m) \Rightarrow \varphi(m+1), m \in \mathbb{N}$  oraz  $\varphi(1)$ . Zdefinujmy:  $S = \{n \in \mathbb{N} \colon \varphi(n)\}$ . Oczywiście  $S \subseteq \mathbb{N}$ . Sprawdzimy, że  $\mathbb{N} \subseteq S$ . Niech

$$\overline{S} = \{n \in \mathbb{N} : \neg \varphi(n)\} = \{n \in \mathbb{N} : \text{Nieprawda, że } \varphi(n) \}.$$

Wtedy  $\overline{S} = \mathbb{N} \setminus S \subseteq \mathbb{N}$ . Jeżeli  $\overline{S}$  jest niepusty, to istnieje liczba  $n_0 = \min \overline{S}, n_0 \neq 1 \notin \overline{S}$ . Wtedy oczywiście  $n_0 - 1 \notin \overline{S}$ , czyli  $\varphi(n_0 - 1)$  a więc  $n_0 - 1 \in S$ . Ale wtedy, z założenia zachodzi również  $\varphi(n_0)$ , czyli  $n_0 \in S$  - sprzeczność, bo  $S \cap \overline{S} = \emptyset$  z definicji. Zatem  $\mathbb{N} \setminus S = \emptyset$  i  $S \subseteq \mathbb{N}$  a stąd już  $S = \mathbb{N}$ .

Teraz załóżmy prawdziwość Zasady Indukcji Matematycznej. Niech  $\varphi(m)$  oznacza, że "każdy zbiór niepusty, zawierający liczby niewiększe niż m ma element największy".  $\varphi(1)$  - oczywiste. Załózmy, że  $\varphi(n)$  dla pewnego  $n \in \mathbb{N}$ . Pokażemy, że stąd wynika iż  $\varphi(n+1)$ . Niech A będzie zbiorem takim, że

- 1.  $A \neq \emptyset$
- 2.  $A \subseteq \mathbb{N}$
- 3.  $a \in A \Rightarrow a \leq n+1$

Jeżeli  $n+1 \in A$ , to  $n+1 = \max A$  z definicji. Załóżmy, że  $n+1 \notin A$ . Wtedy A zawiera liczby niewiększe niż  $n < n+1 \notin A$  i na mocy założenia indukcyjnego ma element największy. Zatem  $\varphi(1)$  oraz  $\varphi(n) \Rightarrow \varphi(n+1), n \in \mathbb{N}$  i stąd na mocy Zasady Indukcji Matematycznej  $\varphi(n)$  dla dowolnego  $n \in \mathbb{N}$ , co oznacza, że Zasada Maksimum jest prawdziwa.

Na koniec załóżmy, że Zasada Maksimum jest prawdziwa i pokażemy, że wynika stąd Zasada Minimum. Ustalmy dowolny zbiór  $A \subseteq \mathbb{N}$  i niech  $S = \{n \in \mathbb{N} : \forall_{a \in A}, n \leqslant a\}$ . Jeżeli  $1 \in A$ , to po prostu  $S = \emptyset$  i  $1 = \min A$ , gdyż  $A \subseteq \mathbb{N}$ . Zbiór S jest więc ograniczony z góry, przez każdy element zbioru A. Z Zasady Maksimum istnieje liczba  $s_0 = \max S$ . Załóżmy, że byłoby  $s_0 \notin A$ . Wtedy  $s_0 + 1$  jest liczbą naturalną taką, że  $s_0 < s_0 + 1 \leqslant a, a \in A$ , czyli  $s_0 + 1 \in S$  i  $s_0 + 1 > \max S$  sprzeczność. Zatem musi być  $s_0 \in A$  i każda liczba  $a \in A$  jest większa lub równa od  $s_0$ . Na mocy definicji  $s_0 = \min A$ . Z dowolności zbioru A wynika prawdziwość Zasady Minimum.

Ostatecznie mamy, że Zasada Minimum pociąga Zasadę Indukcji Matematycznej, z Zasady Indukcji wynika Zasada Maksimum a z niej Zasada Minimum. Czyli twierdzenia te są równoważne.

Ćwiczenie 12 (Nierówność Weierstrassa). Udowodnić, że dla dowolnych  $x_k\geqslant -1, x_k\neq 0, x_k$ zachodzi nierówność

$$(1+x_1)(1+x_2)\cdots(1+x_n) \ge 1+x_1+x_2+\ldots+x_n.$$

#### 3.4.2 Przydatne twierdzenia i tożsamości arytmetyczne

Poznamy kilka bardzo przydatnych tożsamości arytmetycznych, nierówności i elementarnych twierdzeń. Z niektórych będziemy korzystać w dowodach i rozumowaniach w dalszej części wykładu, wszystkie natomiast są przydatne, gdy mierzymy się z zadaniami z analizy matematycznej. Tutaj również będziemy często korzystać z indukcji.

**Twierdzenie 3.4.8.** *Jeżeli* a,b *są dowolnymi liczbami rzeczywistymi* i  $a \neq b$ , *to dla dowolnej liczby naturalnej n prawdziwa jest równość:* 

(3.7) 
$$a^n + a^{n-1}b + a^{n-2}b^2 + \ldots + ab^{n-1} + b^n = \frac{a^{n+1} - b^{n+1}}{a - b}.$$

Dowód. Dla n = 1 wzór (3.7) przyjmuje postać

$$a + b = \frac{a^2 - b^2}{a - b},$$

i po przekształceniu przyjmuje postać znanego wzoru na różnicę kwadratów dwóch liczb $^7$   $a^2-b^2=(a+b)(b-a)$ . Łatwo go sprawdzić wymnażając nawiasy. Załóżmy, że wzór (3.7) jest prawdziwy dla pewnego  $m\in\mathbb{N},$ tzn. zachodzi:  $a^m+a^{m-1}b+a^{m-2}b^2+\ldots+ab^{m-1}+b^m=\frac{a^{m+1}-b^{m+1}}{a-b}.$  Pomnóżmy tę nierówność obustronnie przez b, a następnie dodajmy do obydwu stron $a^{m+1}.$  Mamy wtedy

$$a^{m+1} + a^m b + a^{m-1} b^2 + \dots + a^2 b^{m-1} + a b^m + a^{m+1} = a^{m+1} + b \cdot \left(\frac{a^{m+1} - b^{m+1}}{b - a}\right) =$$

$$= \frac{a^{m+1} (a - b) + b(m^{m+1} - b^{m+1})}{a - b} = \frac{a^{m+1} + b^{m+1}}{a - b}.$$

Zatem nasz wzór jest prawdziwy również dla m+1. Na mocy Zasady Indukcji Matematycznej wzór (3.7) zachodzi dla dowolnej liczby naturalnej n.

Wzór (3.7) nazywamy po prostu wzorem na różnicę n-tych potęg.

**Twierdzenie 3.4.9.** Dla dowolnych  $a, b \in \mathbb{R}$  i  $n \in \mathbb{N}$  zachodzi tożsamość

(3.8) 
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Równanie (3.8) nazywamy wzorem dwumiennym newtona.

#### Nierówności

Poprzez proste rachunki, łatwo sprawdzić, że

$$\sqrt{ab} \leqslant \frac{a+b}{2} \leqslant \frac{2}{\frac{1}{a} + \frac{1}{b}}$$

dla każdych dodatnich liczb rzeczywistych a i b. Wykażemy ogólniejszą zależność. Niech  $a_1, \ldots, a_n$  będą liczbami rzeczywistymi. Przyjmiemy oznaczenia:

(3.9) 
$$A_n = \frac{\sum_{k=1}^n a_k}{n} = \frac{a_1 + a_2 + \dots + a_n}{n},$$

$$(3.10) G_n = \sqrt[n]{\prod_{k=1}^n a_k} = \sqrt[n]{a_1 \cdot a_2 \cdots a_n},$$

(3.11) 
$$H_n = \frac{n}{\sum_{k=1}^n \frac{1}{a_k}} = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}.$$

 $<sup>^7{\</sup>rm to}$ jeden ze szkolnych wzorów skróconego mnożenia

Wartość  $A_n$  nazywamy średnią arytmetyczną,  $G_n$  średnią geometryczną a  $H_n$  średnią harmoniczną liczb  $a_1, \ldots, a_n$ .

**Twierdzenie 3.4.10** (Klasyczne nierówności między średnimi). Niech  $a_1, \ldots, a_n$  będą liczbami rzeczywistymi dodatnimi i  $A_n$ ,  $G_n$ ,  $H_n$  będą określone jak wyżej. Wówczas

$$(3.12) H_n \leqslant G_n \leqslant A_n.$$

Dowód. TO-DO □

Powyższe nierówności bywają czasem nazywane nierównościami Cauchy'ego albo "nierównością AGH".

Indukcyjnie możemy udowodnić (ćwiczenie dla czytelnika), że dla dowolnego  $x \ge -1$  oraz  $n \in \mathbb{N}$ :

$$1 + nx \leqslant (1+x)^n.$$

Jest to szczególny przypadek nierówności Bernoullegio:

**Twierdzenie 3.4.11** (Nierówność Bernoulliego). Niech  $x \ge -1$ . Wówczas

$$(3.13) 1 + ax \leq (1+x)^a, dla x \geq 1,$$

oraz

$$(3.14) (1+x)^a \le 1 + ax, dla \ 0 < x \le 1.$$

Dla a=1 obie strony nierówności są oczywiście równe, natomiast dla  $a\neq 1$  równości zachodzą wtedy i tylko wtedy, gdy x=0.

**Twierdzenie 3.4.12.** *Jeżeli*  $a_1, a_2, \ldots, a_n$  *są liczbami rzeczywistymi, takimi że* 

$$a_1 > 0, a_2 > 0, \dots, a_n > 0,$$

oraz zachodzi równość

$$a_1 \cdot a_2 \cdots a_{n-1} a_n = 1,$$

to wówczas

$$a_1 + a_2 + \dots + a_{n-1} + a_n \geqslant n.$$

#### Dodatkowa garść nierówności.

1. dla dowolnych liczb  $a_1, \ldots, a_n \in \mathbb{R}$  zachodzi nierówność:

$$(a_1 + \ldots + a_n)^2 \le n(a_1^2 + \ldots + a_n^2).$$

Dowód. Mamy:

$$(a_1 + \ldots + a_n)^2 = \sum_i a_i^2 + 2\sum_{i < j} a_i a_j \leqslant \sum_i a_i^2 + \sum_{i < j} (a_i^2 + a_j^2) = n\sum_i a_i^2.$$

2. dla dowolnego kąta 0 <  $\alpha < \frac{\pi}{2}$ zachodzą nierówności:

$$\frac{\alpha}{\sin \alpha} \leqslant \frac{\pi}{2}$$
.

#### Ćwiczenia.

 $\acute{C}$ wiczenie 13. Udowodnić, że dla dowolnych liczb rzeczywistych a,b>0 zachodzi nierówność

$$\frac{a}{b} + \frac{b}{a} \geqslant 2.$$

 $\acute{C}wiczenie$ 14. Udowodnić, że dla dowolnych dodatnich liczb rzeczywistych  $a,\,b$ i czachodzi nierówność

$$\frac{ab}{a+b} + \frac{bc}{b+c} + \frac{ca}{a+c} \leqslant \frac{a+b+c}{2}.$$

 $\acute{C}wiczenie$  15. Udowodnić, że dla dowolnej liczby  $x\geqslant 0$  zachodzi nierówność

$$\sqrt{x+1} + \sqrt{x+3} \leqslant 2\sqrt{x+2}.$$

*Ćwiczenie* 16. Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem arytmetycznym o wyrazach dodatnich. Wykazać, że wówczas zachodzi nierówność:

$$\sqrt{a_1 a_n} \leqslant \sqrt[n]{a_1 a_2 \dots a_n} \leqslant \frac{a_1 + a_2}{2}.$$

*Ćwiczenie* 17. Udowodnić, że dla dowolnego  $n \in \mathbb{N}$  zachodzi nierówność

$$\sqrt{n} \leqslant \sqrt[n]{n!} \leqslant \frac{n+1}{2}, n \in \mathbb{N}.$$

### 3.4.3 Krótko o liczbach rzeczywistych.

**Definicja 3.4.13.** Liczbę nazywamy wymierną, jeśli jest (czyli, gdy *daje się przedstawić w postaci*) ułamka dwóch liczb całkowitych.

Np. liczba  $0,5=\frac{1}{2}$  - jest liczbą wymierną. Podobnie  $5=\frac{5}{1}$  i ogólnie: każda liczba całkowita  $c\in\mathbb{Z}$ , gdyż można ją przedstawić jako  $\frac{c}{1}$ . Zbiór liczb wymiernych oznaczamy jako  $\mathbb{Q}$ . Zauważmy, że z powyższych obserwacji wynika iż  $\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}$ . Ciekawszy będzie następny

Przykład 25. Liczba 8,3333...=8,(3) jest liczbą wymierną. Daje się on sprowadzić do postaci ułamka liczb całkowitych:

Niech 
$$x = 8$$
, (3). Wtedy  $10x = 83$ , (3).

$$9x = 10x - x = 83, (3) - 8, (3) = 72$$

Czyli  $x = \frac{75}{9} = \frac{25}{3}$  - ułamek liczb całkowitych, a więc liczba wymierna. Inne uzasadnienie zobaczymy w rozdziałe poświęconym szeregom liczbowym.

Szybko odkryjemy, że w zastosowaniach, niezależnie czy w czystej matematyce czy np. fizyce, pojawiają się liczby, które nie są liczbami wymiernymi.

Przykład 26. Rozważmy trójkąt prostokątny o przyprostokątnych długości 1 i przez p oznaczmy długość przeciwprostokątnej. Wtedy z twierdzenia Pitagorasa  $p^2 = 1^2 + 1^2 = 2$ . Czyli  $p = \sqrt{2}$ .

Przykład 27. Rozważmy wielomian (funkcję) wyrażoną równaniem  $f(x)=x^2-2$ . Funkcja ta przyjmuje wartość ujemną dla x=1 oraz dodatnią dla x=2 oraz wartość równą zero dla  $x=\sqrt{2}$ . Gdybyśmy jednak przyjęli, że  $D_f=\mathbb{Q}$ , to równanie f(x)=0 nie ma rozwiązania.

Liczba  $\sqrt{2}$  nie jest jest jednak liczbą wymierną. Dla dowodu, załóżmy nie wprost, że byłoby  $\sqrt{2} \in \mathbb{Q}$  - wtedy  $\sqrt{2} = \frac{p}{q}$  dla pewnych  $p,q \in \mathbb{Z}$  oraz ułamek  $\frac{p}{q}$  jest nieskracalny. Dalej, przekształcamy równoważnie:

$$2 = \frac{p^2}{q^2}$$
$$p^2 = 2 \cdot q^2$$
$$p = \left(2 \cdot \frac{q}{p}\right) \cdot q \in \mathbb{Z}$$

Sprzeczność z założeniem -  $\left(2 \cdot \frac{q}{p}\right) \cdot q$  nie jest liczbą niepodzielną przez q. Zatem nie może być  $\sqrt{2} = r/s$  dla r, s całkowiych, co było do udowodnienia.

Podamy jeszcze jedno twierdzenie, dające mnogość przykładów liczb niewymiernych. Przy pierwszej lekturze dowód można pominąć $^8$ . Najpierw jednak przyda nam się

**Lemat 3.4.14** (Zasada dodawania proporcji stronami). Niech  $n \in \mathbb{N}$ . Jeżeli liczby rzeczywiste  $a_1, \ldots, a_n$  i  $b_1, \ldots, b_n$  spełniają równości  $\frac{a_1}{b_1} = \frac{a_2}{b_2} = \ldots = \frac{a_n}{b_n}$  oraz  $b_1 + b_2 + \ldots + b_n \neq 0$ , to wówczas

$$\frac{a_1 + a_2 + \ldots + a_n}{b_1 + b_2 + \ldots + b_n} = \frac{a_1}{b_1}.$$

Dowód. Niech najpierw  $\frac{a_1}{b_1}=\frac{a_2}{b_2}$ . Wówczas przemnażając obustronnie  $\frac{a_1+a_2}{b_1+b_2}=\frac{a_1}{b_1}$  przez  $b_1(b_1+b_2)$  dostajemy równoważną postać tej równości:  $a_1b_1+a_2b_1=a_1b_1+a_1b_2$ . Wyraz  $a_1b_1$  występujący po obu stronach skróci się i zostaje  $a_2b_1=a_1b_2$  co jest równoważne założeniu. Ogólnie: zauważmy, że z założenia istnieje po prostu liczba rzeczywista:

$$s = \frac{a_1}{b_1} = \frac{a_2}{b_2} = \dots = \frac{a_n}{b_n}.$$

Mamy więc  $a_1 = sb_1, a_2 = sb_2, \dots, a_n = sb_n$ . Dodajemy równania stronami i mamy, że

$$a_1 + a_2 + \ldots + a_n = sb_1 + sb_2 + \ldots + sb_n = s(b_1 + b_2 + \ldots + b_n).$$

Stąd już  $s=\frac{a_1+a_2+\ldots+a_n}{b_1+b_2+\ldots+b_n}$  a porównując tę równość z definicją liczby s otrzymujemy tezę twierdzenia.

Oczywiście poprzedni lemat mówi nam, że proporcje możemy też odejmować stronami.

**Twierdzenie 3.4.15.** *Jeżeli liczba*  $n \in \mathbb{N}$  *nie jest kwadratem żadnej liczby całkowitej, to nie jest też kwadratem żadnej liczby wymiernej.* 

 $Dow \acute{o}d.$  Załóżmy, nie wprost, że teza nie jest prawdziwa. Oznacza to, że zbiór M zdefiniowany następująco:

$$M = \left\{ q \in \mathbb{N} \setminus \{0\} \colon \sqrt{n} = \frac{p}{q} \text{ dla pewnego } p \in \mathbb{N} \right\}$$

 $<sup>^8</sup>$ a na pewno nie należy się przejmować, jeśli w tej chwili prześledzenie rozumowania okaże się trudne.

jest niepusty. Zauważmy też, że jest ograniczony z dołu. Istnieje więc  $q = \min M$  i wtedy  $\sqrt{n} = \frac{p}{q}$  dla pewnego  $p \in \mathbb{N}$ . Przedstawmy n na dwa sposoby:

$$n = \frac{n \cdot pq}{pq}$$
 oraz  $n = \frac{k \cdot p^2}{k \cdot q^2}$ .

 $(k\ \mathrm{może}$  być na razie dobrane dowolnie.) Na mocy poprzedniego lematu możemy odjąć proporcje stronami; mamy wówczas

$$n = \frac{npq - kp^2}{pq - kq^2} = \frac{p}{q} \left( \frac{nq - kp}{p - kq} \right) = \sqrt{n} \frac{nq - kp}{p - kq}.$$

Podnosząc obustronnie do kwadratu i dzieląc przez n powyższą równość otrzymujemy, że

$$n = \left(\frac{nq - kp}{p - kq}\right)^2.$$

Weźmy k takie, że  $k^2 < n < (k+1)^2$ . Taka liczba jest wyznaczona jednoznacznie. Wtedy widzimy, że

$$kq$$

Ale q jest najmniejszą liczbą, która może być mianownikiem takiego ułamka - sprzeczność.  $\Box$ 

Łatwo pokazać, że suma, różnica a także iloczyn i iloraz dwóch liczb wymiernych jest również liczbą wymierną (dobre ćwiczenie).

**Stwierdzenie.** Między dowolnymi liczbami wymiernymi istnieje trzecia l. wymierna. Jeżeli np.  $r, s \in \mathbb{Q}$ , to  $r < \frac{r+s}{2} < s$  oraz zgodnie z tym co powiedzieliśmy  $\frac{r+s}{2} \in \mathbb{Q}$ .

Wobec tego, mówimy że liczby wymierne są gęste. Własność tę mają również liczby rzeczywiste:

**Stwierdzenie.** Między dowolnymi liczbami rzeczywistymi istnieje trzecia l. rzeczywista. Jeżeli np.  $r, s \in \mathbb{R}$ , to  $r < \frac{r+s}{2} < s$  oraz niewątpliwie  $\frac{r+s}{2} \in \mathbb{R}$ .

 $\acute{C}wiczenie$ 18. Niech  $D\colon \mathbb{R} \to \mathbb{R}$ będzie funkcją daną wzorem

$$D(x) = \begin{cases} 1, & \text{dla } x \in \mathbb{Q}, \\ 0, & \text{dla } x \notin \mathbb{Q}. \text{ (czyli dla } x \in \mathbb{R} \setminus \mathbb{Q}) \end{cases}$$

Wykazać, że funkcja *D nie* jest monotoniczna na *żadnym* przedziale.

Do podobnych funkcji, jak w powyższym ćwiczeniu, wrócimy jeszcze parokrotnie. Funkcja D charakteryzuje podzbiór  $\mathbb Q$  zbioru  $\mathbb R$  mówiąc nam, które elementy zbioru liczb rzeczywistych należą do jego podzbioru  $\mathbb Q$ . Stąd funkcję tego typu nazywamy funkcją charakterystyczną zbioru  $\mathbb Q$ .

**Definicja 3.4.16.** Mówimy, że zbiór  $A \subseteq \mathbb{R}$  jest **ograniczony z góry** [**z dołu**], gdy istnieje taka liczba M > 0, że

$$a \in A \Rightarrow a \leq M [a \in A \Rightarrow a \geq M]$$

Liczbę M nazywamy **ograniczeniem górnym** [**dolnym**] zbioru A. Gdy zbiór A jest ograniczony równocześnie z góry i z dołu, to mówimy po prostu, że jest **ograniczony**.

**Definicja 3.4.17.** Ustalmy zbiór  $A \subseteq \mathbb{R}$ .

Kresem górnym nazywamy najmniejsze z ograniczeń górnych zbioru A. Czyli M jest kresem górnym zbioru  $A\subseteq\mathbb{R},$  gdy

 $\forall_{M' \in \mathbb{R}}$ . Jeżeli M' jest ograniczeniem górnym zb. A, to  $M \leq M'$ .

**Kresem dolnym** nazywamy największe z ograniczeń dolnych zbioru A. Czyli M jest kresem dolnym zbioru  $A \subseteq \mathbb{R}$ , gdy

 $\forall_{M' \in \mathbb{R}}$ . Jeżeli M' jest ograniczeniem dolnym zb. A, to  $M' \leq M$ .

**Uwaga 3.4.18.** Definicja 3.4.17 uogólnia się na dowolne zbiory uporządkowane, jednak w wypadku podzbiorów  $\mathbb{R}$  wygodne są następujące równoważniki:

– M jest kresem górnym zbioru  $A \subseteq \mathbb{R}$  wtedy i tylko wtedy, gdy

M jest ograniczeniem górnym zbioru A oraz  $\forall_{\varepsilon>} \exists_{a \in A}$ .  $a > M - \varepsilon$ .

– M jest kresem dolnym zbioru  $A \subseteq \mathbb{R}$  wtedy i tylko wtedy, gdy

M jest ograniczeniem dolnym zbioru A oraz  $\forall_{\varepsilon >} \exists_{a \in A}$ .  $a < M + \varepsilon$ .

Kres górny zbioru A oznaczamy przez sup A - od łac. supremum - i tak też czasem będziemy kres górny nazywać. Kres dolny zbioru A oznaczamy inf A od łac. infimum.

Przykład 28. Rozważmy zbiór  $A = \{r \in \mathbb{R} : r^2 < 2\}$ . W zbiorze tym nie istnieje liczba największa, jednak sup  $A = \sqrt{2}$ .

Twierdzenie 3.4.19. Dla dowolnych zbiorów  $A, B \subseteq \mathbb{R}$ :

$$\inf(A+B) = \sup A + \sup B$$
,

$$\sup(A+B) = \inf A + \inf B,$$

 $gdzie\ A + B = \{a + b \in \mathbb{R} : a \in A, b \in B\}.$ 

Dowód. Ćwiczenie. □

Twierdzenie 3.4.20. Dla dowolnego zbioru  $A \subseteq \mathbb{R}$ :

$$\inf(-A) = -\sup A,$$

$$\sup(-A) = -\inf A,$$

 $gdzie \ -A := \{-a \in \mathbb{R} \colon a \in A\}.$ 

Dowód. Udowodnimy pierwszą własność, drugą dowodzi się analogicznie i zostawiamy jako ćwiczenie.

Niech  $m = \inf(-A)$ . Ponieważ

$$\forall_{-a \in -A.} - a \geqslant m \implies \forall_{-a \in -A.} a \leqslant -m \implies \forall_{a \in A.} a \leqslant -m$$

to kandydatem na nasz kres górny jest liczba M := -m. Ustalmy  $\varepsilon > 0$ . Wówczas, z uwagi 3.4.18 istnieje takie  $-a_0 \in -A$ , że  $-a_0 < m + \varepsilon$ . Czyli

$$a_0 > -m - \varepsilon = M - \varepsilon$$
.

Ponadto wiemy już, że  $a \leq M$ , dla każdego  $a \in A$  a stąd i z dowolności wyboru  $\varepsilon$ , na mocy uwagi 3.4.18 M jest supremum zbioru A. Czyli

$$\sup A = M = -m = -\inf(-A)$$

a więc

$$-\sup A = \inf(-A)$$

Ćwiczenie 19. Niech A i B będą niepustymi i ograniczonymi podzbiorami  $\mathbb R$ . Udowodnij, że: jeśli  $A\subseteq B$ , to

- 1.  $\sup A \leqslant \sup B$ ,
- 2.  $\inf A \geqslant \inf B$ .

*Ćwiczenie* 20. Załóżmy, że  $A \neq \emptyset$  jest podzbiorem liczb rzeczywistych takim, że inf A > 0. Oznaczamy  $\frac{1}{A} = \left\{ \frac{1}{a} \colon a \in A \right\}$ . Wykaż, że

$$\sup\left(\frac{1}{A}\right) = \frac{1}{\inf A}.$$

Omówimy teraz bardzo ważną własność liczb rzeczywistych.

**Aksjomat** (Aksjomat ciągłości). *Jeśli zbiór*  $A \subseteq \mathbb{R}$  *jest niepusty i ograniczony z góry, to ma kres górny.* 

W dodatkach pokazujemy konstrukcję zbioru  $\mathbb R$  spełniającego powyższą własność, w związku z tym nie koniecznie jest to "aksjomat". Stąd też omawianą własność możemy też nazywać własnością ciągłości zbioru  $\mathbb R$  albo u niektórych autorów mówi się o własności istnienia kresów górnych w zbiorze  $\mathbb R$ .

Łatwo pokazać, że aksjomat ciągłości równoważny jest poniższemu twierdzeniu:

**Twierdzenie 3.4.21.** Jeśli zbiór  $A \subseteq \mathbb{R}$  jest niepusty i ograniczony z dołu, to ma kres dolny.

Aksjomat ciągłości liczb rzeczywistych ma intuicyjny równoważnik:

Twierdzenie 3.4.22. Jeżeli A i B są niepustymi podzbiorami  $\mathbb R$  takimi, że

- $\mathbb{R} = A \cup B$ ,  $A \cap B = \emptyset$ ;
- $Je\dot{z}eli \ x \in A \ oraz \ y \in B, \ to \ x < y;$

to albo zbiór A ma element największy, albo zbiór B ma element najmniejszy.

Dowód. Zbiór B jest ograniczony z dołu, więc ma kres dolny. Niech  $b=\inf B$ . Ponieważ dowolny element  $a\in A$  ogranicza zbiór B z dołu, to  $a\leqslant b, a\in A$ . Jeżeli  $b\in A$ , to z ostatniej nierówności wynika, że b jest elementem największym zbioru A. Jeżeli  $b\in B$ , to z definicji kresu dolnego b jest elementem najmniejszym zbioru B.

W ten sposób widzimy, że aksjomat ciągłości w istocie wyraża fakt, że zbiór liczb rzeczywistych w pewnym sensie "nie ma dziur". Ciągłość to własność mocniejsza od gęstości. Liczby rzeczywiste tak jak liczby wymiere, są gęste, czyli dla dowolnych  $x, y \in \mathbb{R}$  istnieje  $r \in (a, b) \subseteq \mathbb{R}$ . Jednak zbiór  $\mathbb{Q}$  nie ma własności zbioru  $\mathbb{R}$  określonych w twierdzeniu 3.4.22:

Przykład 29. Niech  $A = \{x \in \mathbb{Q} : x^2 < 2\}$  a  $B = \{x \in \mathbb{Q} : 2 < x^2\}$ . Wówczas

- $\mathbb{Q} = A \cup B, A \cap B = \emptyset,$
- jeżeli  $x \in A$ ,  $y \in B$ , to x < y.

Ale ani w zbiorze A nie istnieje element największy ani w zbiorze B nie istnieje element najmniejszy.

Widząc nierówność  $x^2 < 2$  może nas kusić, by napisać, że  $x < \sqrt{2}$ , jednak pokazaliśmy już wcześniej, że  $\sqrt{2}$  nie jest liczbą wymierną, więc  $\sqrt{2} \notin A$  oraz  $\sqrt{2} \notin B$ , gdyż  $A, B \subseteq \mathbb{Q}$ . Widzimy, że kiedy obszar naszych rozważań jest zawężony do liczb wymiernych, to właściwie nie możemy wykonać takiego porównania. Sugeruje nam to, po raz kolejny, że zbiór  $\mathbb{Q}$  jest w pewien sposób dla nas niewystarczający. Jednak liczby wymierne cechuje prostota konstrukcji - gdy tylko mamy określone liczby całkowite, to łatwo przy ich pomocy konstruujemy liczby wymierne. Mając nawet nasze (być może na razie intuicyjne i naiwne) pojęcie "dzielenia" liczb całkowitych, powiedzieliśmy sobie, że

$$\mathbb{Q} := \left\{ \frac{p}{q} \colon \ p, q \in \mathbb{Z} \right\}.$$

Ścisłą definicję zbioru  $\mathbb Q$  można, na gruncie teorii mnogości, zbudować w oparciu o relacje (porównaj definicja 3.2.1). Wprowadzamy relację  $Q \subseteq \mathbb Z \times \mathbb Z$  na zbiorze  $\mathbb Z$  tak, aby pary liczb (p,q) odpowiadały wszystkim liczbom  $\frac{a}{b}$ , które poprzez "skracanie" licznika i mianownika, lub mnożenie równocześnie licznika i mianownika przez tę samą liczbę, będą się dały do siebie sprowadzić. Czytelnik, który przestudiował poprzednie rozdziały może się już domyślać, że w takim razie liczby wymierne w takim ujęciu będą klasami abstrakcji relacji Q. Moglibyśmy napisać, że

$$\mathbb{Q} := (\mathbb{Z} \times \mathbb{Z}) / Q.$$

Liczby wymierne są więc przykładem zastosowania pojęcia relacji oraz Zasady Abstrakcji (tj. twierdzenia 3.2.33). W poświęconych teorii mnogości książkach, czytelnik znajdzie szczegółowe omówienie tej konstrukcji, a także konstrukcji ciała  $\mathbb Z$  przy pomocy ciała  $\mathbb N$ . Samo ciało  $\mathbb N$  można skonstruować na bazie samych aksjomatów teorii zbiorów, o czym również można poczytać w podręcznikach do teorii mnogości, choćby we wspomnianej już pozycji Guzickiego i Zakrzewskiego. Można też tu polecić np. "Wstęp do matematyki współczesnej" Heleny Rasiowej, czy "Wykłady ze Wstępu do Matematyki" Wojciecha Guzickiego i Piotra Zakrzewskiego. W dodatku B, poświęconym strukturom algebraicznym można znaleźć aksomatyczne podejście do liczb naturalnych i całkowitych.

Przyjmijmy, że mamy zdefiniowany zbiór  $\mathbb Z$  z odpowiednio określonymi działaniami mnożenia i dodawania. Czytelnik po lekturze wspomnianego dodatku będzie wiedział, że to oznacza, że zdefiniowaliśmy  $ciało\ \mathbb Z$ .

Niech relacja  $Q \subseteq \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$  będzie dana zależnością

$$((k,l),(s,t)) \in Q \iff k \cdot t = l \cdot s.$$

W zapisie relacyjnym:

$$(k,l)Q(s,t) \iff k \cdot t = l \cdot s.$$

Na przykład (1,2)Q(2,4) ponieważ  $1\cdot 4=2\cdot 2$ . Ale zobaczmy, że w naszym rozumieniu arytmetyki, zachodzi równoważność

 $1 \cdot 4 = 2 \cdot 2 \iff \frac{1}{2} = \frac{2}{4}.$ 

Dokładnie tego oczekujemy po liczbach wymiernych:  $\frac{1}{2} = \frac{2}{4}$ . Pary (1,2) i (2,4) należą do tej samej klasy abstrakcji:

$$(2,4) = [(1,2)]_{O}$$

Możemy przyjąć oznaczenie  $\frac{1}{2}=[(1,2)]_Q$  - ta klasa abstrakcji jest liczbą wymierną  $\frac{1}{2}$ . Czytelnik zechce poeksperymentować, podstawiając z literki k,l,s,t różne liczby, aż sens tej definicji stanie się jasny.

Liczby niewymierne jako całość trudniej uchwycić. Znamy pewne przykłady liczb niewymiernych, np.  $\sqrt{2}$  albo liczba  $\pi$  (patrz, dodatek). Potrafimy stwierdzić, że pewne liczby są niewymierne, np. pierwiastek kwadratowy z dowolnej liczby pierwszej, liczby spełniające tezę twierdzenia 3.4.15, itd. Jednak stąd jeszcze nie widać, jak sformułować definicję, albo inaczej mówiąc: podać konstrukcję liczb rzeczywistych, która np. wyczerpywałaby wszystkie "dziury" w zbiorze  $\mathbb Q$  i "uzupełniała" go do zbioru  $\mathbb R$ . Znane są co najmniej trzy równoważne sposoby zdefiniowania liczb rzeczywistych przy pomoc. Jeden sposób - przy pomocy ciągów Cauchy'ego poznamy ogólnikowo w trakcie dalszej lektury. Drugi - przy pomocy tzw. przekrojów Dedekinda opiszemy w dodatku B - jest on blisko związany z problemem, jaki ujawnia nam przykład 29. Tutaj podamy jedynie kilka faktów związanych z liczbami wymiernymi i niewymiernymi, których czytelnik musi być świadomy.

**Lemat 3.4.23.** Jeżeli  $\frac{m}{n}$  oraz  $\frac{r}{s}$  są liczbami wymiernymi oraz  $\frac{r}{s} \neq 0$ , to  $\frac{m}{n} + \left(\frac{r}{s}\right)\sqrt{2}$  jest liczbą niewymierną.

Dowód. Załóżmy, że  $\frac{m}{n} + \left(\frac{r}{s}\right)\sqrt{2}$  jest liczbą wymierną. Czyli jest równa  $\frac{p}{q}$  dla pewnych liczb $p,q\in\mathbb{Z}$ . Ale wtedy  $\sqrt{2}=\frac{s(pn-mq)}{qnr}$  a stąd  $\sqrt{2}$  jest liczbą wymierną - sprzeczność.

Twierdzenie 3.4.24. Między dowolnymi dwiema różnymi liczbami wymiernymi istnieje liczba niewymierna.

*Dowód.* Ustalmy liczby wymierne  $\frac{m}{n}$  oraz  $\frac{r}{s}$  tak, że  $\frac{m}{n} < \frac{r}{s}$ . Wtedy

$$\frac{m}{n}<\frac{m}{n}+\frac{\sqrt{2}}{2}\left(\frac{r}{s}-\frac{m}{n}\right)<\frac{r}{s}.$$
 (Ponieważ $\frac{\sqrt{2}}{2}<1$  ).

Na mocy poprzedniego lematu - liczba pomiędzy nierównościami jest niewymierna.

Twierdzenie 3.4.25. Pomiędzy dowolnymi dwiema różnymi liczbami niewymiernymi istnieje liczba wymierna.

Dowód. Ustalmy liczby niewymierne a i b takie, że a < b. Rozważmy ich rozwinięcia dziesiętne i niech n-te miejsce dziesiętne będzie pierwszym, w którym a i b się różnią. Wtedy

$$a = a_0, a_1 a_2 \dots a_{n-1} a_n \dots,$$

$$b = a_0, a_1 a_2 \dots a_{n-1} b_n \dots,$$

gdzie  $a_n \neq b_n$ . Niech  $x = a_0, a_1 \dots a_{n-1}b_n$ . Wtedy x jest liczbą wymierną oraz oczywiste jest, że  $a < x \le b$ . Jednak b jest liczbą niewymierną, zatem musi być  $x \neq b$  i stąd mamy, że a < x < b.  $\square$ 

Twierdzenie 3.4.26. Miedzy dowolnymi dwiema liczbami rzeczywistymi istnieje liczba wymierna.

Dowód. Ustalmy dowolne  $x, y \in \mathbb{R}$ , a < b. Mamy b - a > 0. Istnieje  $n \in \mathbb{N}$  takie, że

$$n(b-a) > 1$$

Możemy na tym etapie przyjąć, że to oczywiste, ale oczekujący pełnej ścisłości czytelnik może spojrzeć na Aksjomat Archimedesa A.2.6 w dodatku B na stronie 245.

Podobnie istnieje  $m_1 \in \mathbb{N}$  takie, że

$$m_1 > na$$
,

i  $m_2 \in \mathbb{N}$  takie, że

$$m_2 > -na$$
.

Powyższa nierówność jest równoważna nierówności  $-m_2 < na$ .

Mamy więc, że

$$-m_2 < na < m_1.$$

Zatem istnieje taka liczba całkowita m, że

$$m-1 \leqslant na < m$$
.

Dalej

$$nx < m \le na + 1$$

$$nb - na > 1$$

Stad

$$a < \frac{m}{n} < b$$
.

Ogólnie: czytelnik musi wiedzieć, że między dowolnymi liczbami rzeczywistymi znajduje się liczba wymierna oraz liczba niewymierna. Należy również wiedzieć, że

- suma jak i różnica liczby wymiernej i liczby niewymiernej jest liczba niewymierna.
- iloczyn liczby wymiernej (różnej od zera) i niewymiernej jest liczbą niewymierną.
- suma, różnica jak i iloczyn (a tym samym iloraz) dwóch liczb niewymiernych *nie* musi być liczbą niewymierną!

Np. 
$$\underbrace{(1+\sqrt{2})}_{\mbox{liczba}\atop\mbox{niewymierna}} - \sqrt{2} = 1 \in \mathbb{Q}.$$

Podobnie mamy  $(1 - \sqrt{2}) + \sqrt{2} = 1$ .

Iloczyn/iloraz: 
$$\frac{\sqrt{2}}{\sqrt{2}} = 1$$
 i  $\sqrt{2} \cdot \sqrt{2} = 2$ .

Definicja 3.4.27. Modułem albo wartością bezwzględną liczby  $x \in \mathbb{R}$  nazywamy liczbę |x| daną w następujący sposób:

$$|x| = \begin{cases} x & \text{dla } x \geqslant 0, \\ -x & \text{dla } x < 0. \end{cases}$$

Możemy rozważyć funkcję  $x\mapsto |x|.$  Jej wykres wygląda następująco:



**Twierdzenie 3.4.28.** Dla dowolnych liczb rzeczywisych  $x, y, z \in \mathbb{R}$ :

$$(3.15) |x| \geqslant 0$$

$$|x| \leqslant a \text{ wtedy } i \text{ tylko wtedy, } gdy - a \leqslant x \leqslant a$$

$$(3.17) |x+y| \leqslant |x| + |y|$$

$$(3.18) ||x| - |y|| \le |x - y|$$

$$(3.19) |xy| = |x| \cdot |y|$$

 $Dow \acute{o}d.$  Własności (3.15), (3.16) oraz (3.19) wynikają wprost z definicji. Dla dowolnych  $x,y\in\mathbb{R}$ mamy

$$-|x| \leqslant x \leqslant |x| \text{ oraz } -|y| \leqslant y \leqslant |y|.$$

Dodając te nierówności stronami, otrzymujemy że

$$-(|x| + |y|) \le x + y \le |x| + |y|$$

i na mocy wzoru (3.16) mamy  $|x+y|\leqslant |x|+|y|.$  Teraz korzystając z tej własności, możemy napisać, że

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$

Stąd  $|x| - |y| \le |x - y|$ . Analogicznie możemy pokazać, że

$$|y - x| = -|x - y| \le |x| - |y|$$

czyli razem:

$$-|x-y| \leqslant |x| - |y| \leqslant |x-y|$$

i ponownie z własności (3.16) otrzymujemy, że  $||x| - |y|| \le |x - y|$ .

Zauważmy, że |x| mówi nam, jakiej długości jest odcinek o końcach 0 i x położonym na prostej  $\mathbb{R}$ . Moduł pozwala nam określać odległość między punktami na osi liczbowej. Otóż:

$$|x-a|=b$$
 oznacza, że odległość liczby  $x$  od  $a$  na osi  $\mathbb R$  jest równa  $b$ .

*Ćwiczenie* 21. Niech  $f(x) = |x-3|, x \in \mathbb{R}$ . Wyznaczyć  $f^{-1}[\{7,3\}]$ .

Rozwiqzanie. Tak naprawdę, gdy "rozkodujemy" treść tego zadania, to okazuje się, że mamy po prostu rozwiązać równania 7 = f(x) i 3 = f(x).

- |x-3|=7. Rozważmy dwa przypadki:
  - 1.  $x \ge 3$ . Wówczas  $x 3 \ge 0$  i stąd: |x 3| = x 3 = 7 a więc x = 10.
  - 2. x < 3. Wówczas x 3 < 0 i ponownie z definicji 3.4.27:

$$|x-3| = -(x-3) = -x + 3 = 10$$

a wiec x = -4.

Mamy więc, że  $x \in \{-4, 10\}$ . Można też napisać, że  $f^{-1}[\{7\}]$ .

|x-3| = 3. Moglibyśmy dokonać rachunków jak powyżej. Możemy też skorzystać z interpretacji geometrycznej modułu. Można narysować oś, zaznaczyć punkt 3 i przesunąć się o 3 na podziałce "w lewo od liczby 3" - wpadniemy na liczbę 0 i "w prawo od liczby 3" - do liczby 6.



Czyli  $x \in \{0, 6\}$ . Moglibyśmy też napisać, że  $f^{-1}[\{3\}] = \{0, 6\}$ .

Podsumowując, odpowiedź:  $x \in \{-4, 10, 0, 6\}.$ 

Możemy też powtórzyć sobie własności przeciwobrazów:

$$f^{-1}[\{7,3\}] = f^{-1}\big[\{7\} \cup \{3\}\big] = f^{-1}[\{7\}] \cup f^{-1}[\{3\}] = \{-4,10\} \cup \{0,6\} = \{-4,10,0,6\}.$$

Ćwiczenie 22. Wyznaczyć wszystkie  $x \in \mathbb{R}$ , dla których spełniona jest nierówność

$$\left| \frac{1-x}{2x+1} \right| < 3.$$

Wskazówka: pozbyć się modułu w oparciu o własność (3.16).

*Ćwiczenie* 23. Zbadać własności relacj  $R \subseteq \mathbb{Z} \times \mathbb{Z}$  zadanej następująco:

Dla dowolnych  $x, y \in \mathbb{Z}$ :  $xRy \iff |x| + |y| = 3$ .

*Ćwiczenie* 24 (Uogólniona nierówność trójkąta). Udowodnić, że dla każdych liczb rzeczywistych  $x_1, \ldots, x_n \in \mathbb{R}$   $(n \in \mathbb{N})$ , zachodzi nierówność

$$|x_1 + x_2 + \ldots + x_n| \le |x_1| + |x_2| + \ldots + |x_n|.$$

*Ćwiczenie* 25. Udowodnić, że dla dowolnych  $x_1, \ldots, x_n \in \mathbb{R}$   $(n \in \mathbb{N})$  zachodzi nierówność

$$\frac{|x_1 + \ldots + x_n|}{1 + |x_1 + \ldots + x_n|} \leqslant \frac{|x_1|}{1 + |x_1|} + \frac{|x_2|}{1 + |x_2|} + \ldots + \frac{|x_n|}{1 + |x_n|}.$$

**Definicja 3.4.29.** Funkcje min:  $\mathbb{R}^2 \to \mathbb{R}$  i max:  $\mathbb{R}^2 \to \mathbb{R}$  dane są w następujący sposób:

$$\min(x, y) = \begin{cases} y, & \text{dla } x \ge y; \\ x, & \text{dla } y > x. \end{cases}$$

$$\max(x, y) = \begin{cases} x, & \text{dla } x \ge y; \\ y, & \text{dla } y > x. \end{cases}$$

*Ćwiczenie* 26. Sprawdzić, że  $|x| = \max(-x, x) = -\min(-x, x)$ .

Ćwiczenie 27. Udowodnić, że

$$\min(x,y) = \frac{x+y-|x-y|}{2},$$

$$\max(x,y) = \frac{x+y+|x-y|}{2}.$$

Ćwiczenie 28. Udowodnić, że

$$\max(x, y) = x + y - \min(x, y),$$

$$\min(x, y) = x + y - \max(x, y).$$

 $\acute{C}wiczenie$  29. Niech A i B będą niepustymi i ograniczonymi podzbiorami  $\mathbb{R}$ . Udowodnij, że:

- 1. jeśli  $A \subseteq B$ , to  $\sup A \leqslant \sup B$ ,
- 2.  $\sup(A \cup B) = \max\{\sup A, \sup B\},\$
- 3.  $\inf(A \cup B) = \min\{\inf A, \inf B\},\$
- 4.  $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$ , o ile  $A \cap B \neq \emptyset$ ,
- 5.  $\sup(A \cap B) \ge \max\{\sup A, \sup B\}$ , o ile  $A \cap B \ne \emptyset$ ,

**Definicja 3.4.30.** Definujemy funkcję sgn:  $\mathbb{R} \to \{-1,0,1\}$  (signum - znak liczby x) wzorem:

$$\operatorname{sgn} x = \begin{cases} -1 & \operatorname{dla} x < 0, \\ 0 & \operatorname{dla} x = 0, \\ 1 & \operatorname{dla} x > 0. \end{cases}$$

*Ćwiczenie* 30. Niech |x| > |y|. Udowodnić, że wtedy  $\operatorname{sgn}(x - y) = \operatorname{sgn} x$ .

**Definicja 3.4.31.** Dla funkcji  $f: D \to \mathbb{R}$ , gdzie  $D \subseteq \mathbb{R}$  oraz dowolnego zbioru  $A \subseteq \mathbb{R}$  oznaczamy:

$$\sup_{x\in A}f(x):=\sup\{f(x)\colon x\in A\},$$

$$\inf_{x \in A} f(x) := \inf\{f(x) \colon x \in A\}.$$

*Ćwiczenie* 31. Udowodnić, że jeżeli  $f,g:\mathbb{R}\to\mathbb{R}$  są funkcjami ograniczonymi z góry, to

$$\sup_{x \in A} (f(x) + g(x)) \leqslant \sup_{x \in A} f(x) + \sup_{x \in A} g(x).$$

Twierdzenie 3.4.32. Niech  $f,g:\mathbb{R}\to\mathbb{R}$  będą funkcjami ograniczonymi z góry. Wówczas

$$|\sup_{x \in A} f(x) - \sup_{x \in A} g(x)| \leqslant \sup_{x \in A} |f(x) - g(x)|.$$

Dowód. Zauważmy, że  $f(x) = (f(x) - g(x)) + g(x) \le |f(x) - g(x)| + g(x)$ . Wówczas

$$\begin{split} \sup_{x \in A} f(x) &= \sup_{x \in A} \left( \left( f(x) - g(x) \right) + g(x) \right) \leqslant \sup_{x \in A} \left( \left| f(x) - g(x) \right| + g(x) \right) \leqslant \\ &\leqslant \sup_{x \in A} \left| f(x) - g(x) \right| + \sup_{x \in A} g(x) \end{split}$$

$$\leq \sup_{x \in A} |f(x) - g(x)| + \sup_{x \in A} g(x)$$

a stąd

$$\sup_{x \in A} f(x) - \sup_{x \in A} g(x) \leqslant \sup_{x \in A} |f(x) - g(x)|.$$

Podobnie  $g(x) = (g(x) - f(x)) + f(x) \le |g(x) - f(x)| + f(x)$  i stąd otrzymamy

$$\sup_{x\in A}g(x)\leqslant \sup_{x\in A}|g(x)-f(x)|+\sup_{x\in A}f(x)=\sup_{x\in A}|f(x)-g(x)|+\sup_{x\in A}f(x),$$

a więc

$$-\sup_{x\in A}|f(x)-g(x)|\leqslant \sup_{x\in A}f(x)-\sup_{x\in A}g(x).$$
 Łącząc obydwie uzyskane nieróności otrzymujemy tezę twierdzenia.

**Definicja 3.4.33.** Określamy **część całkowitą** |x| liczby wymiernej jako największą liczbę całkowitą, niewiększą od x. Dla liczby rzeczywistej x przyjmujemy

$$\lfloor x \rfloor = \sup\{k \in \mathbb{Z} \colon k \leqslant x\}.$$

Funkcja  $x \mapsto |x|$  nazywana jest w literaturze funkcja **podłogi** albo funkcja **entier** (z francuskiego), przy czym czesto spotyka się oznaczenie [x] zamiast |x|.

Przez  $\{x\}$  bywa oznaczana mantysa czyli część ułamkowa liczby rzeczywistej  $x \in \mathbb{R}$ , którą można wyrazić zależnością  $\{x\} = x - \lfloor x \rfloor$ .

*Ćwiczenie* 32. Narysować wykresy funkcji  $\mapsto |x|$  oraz  $x \mapsto \{x\}$ .

*Ćwiczenie* 33. Sprawdzić, że dla każdego  $x \in \mathbb{R}$  zachodza nierówności

$$\lfloor x \rfloor \leqslant x < \lfloor x \rfloor + 1.$$

### Garść dodatkowych ćwiczeń.

Ćwiczenie 34. Udowodnić, że jeżeli A i B są ograniczonymi podzbiorami zbioru liczb rzeczywistych,

 $\sup\{a \cdot b \in \mathbb{R} : a \in A, b \in B\} = \max\{\sup A \cdot \sup B, \inf A \cdot \inf B, \inf A \cdot \sup B, \sup A \cdot \inf B\}.$ 

# Rozdział 4

# Granica ciągu liczbowego

Jeżeli idziesz między dwoma policjantami zmierzającymi do pewnego komisariatu, to zmierzasz na ten sam komisariat.

Twierdzenie o trzech ciągach

## 4.1 Ciągi

Rozważmy dowolny zbiór elementów. Np. zbiór  $\{1,2,4\}$  albo zbiór  $\{a,b,c,\ldots,x,y,z\}$ . Ustawmy np. wyrazy pierwszego zbioru następująco:

$$1, 2, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, \dots$$

Albo tak:

$$1, 2, 4, 1, 2, 4, 1, 2, 4, \dots$$

Obydwa te "ciągi" składają się z elementów takiego samego zbioru, ale są to różne "byty", gdyż określiliśmy pewną kolejność występowania elementów. Podobnie ciąg wyrazów drugiego z naszych zbiorów:  $a,b,c,d,x,y,z,a,b,c,d,\ldots$  jest innym ciągiem niż ciąg  $x,z,x,y,b,a,c,x,z,x,y,b,a,c,\ldots$ ; chociaż mają ten sam zbiór "wyrazów".

Przykład 30. Rozważmy ciąg 1,  $\frac{1}{2}$ ,  $\frac{1}{3}$ ,  $\frac{1}{4}$ ,  $\frac{1}{5}$ .... Domyślamy się, jaka jest regula, według której określa się następny wyraz ciągu. Mianowicie: n-ty wyraz ciągu ma postać  $\frac{1}{n}$ . I tak np. dla n=1 mamy

$$\frac{1}{n} = \frac{1}{1} = 1.$$

a dla n=2:

$$\frac{1}{n} = \frac{1}{2}.$$

Kiedy rozważamy różne ciągi, często chcemy nadać im nazwy albo symboliczne oznaczenia podobnie jak funkcjom. Rozważamy np. ciąg elementów  $a_1, a_2, a_3, \ldots$  W powyższym przykładzie  $a_n = \frac{1}{n}, n \in \mathbb{N}$ .

Przykład 31. Zdefiniujmy taki ciąg  $b_1, b_2, b_3 \ldots$ , że  $b_n = 2n$ ,  $n \in \mathbb{N}$ . Pierwsze wyraz tego ciągu są następujące:

$$2, 4, 6, 8, 10, 12, \dots$$

W ciągach zatem, w przeciwieństwie do zbiorów, ważna jest **kolejność** elementów. Żeby zdefiniować ciąg przy pomocy już znanych pojęć matematycznych, możemy przyjąć  $f \colon \mathbb{N} \to Y$  tak, że  $a_n = f(n)$ . Ciąg jest zatem funkcją określoną na zbiorze liczb naturalnych. Lepiej, niech oznacznie dla wyrazu ciągu i dla funkcji bedzie tożsame:

**Definicja 4.1.1.** Ciągiem nazywamy funkcję  $a: \mathbb{N} \to Y$  i przyjmujemy oznaczenie:  $a(n) = a_n$ . Ciąg jest tożsamy z nieskończoną krotką  $(a_1, a_2, \ldots)$ . Sam ciąg oznaczamy symbolicznie jako  $(a_n)_{n \in \mathbb{N}}$ .

W tym rozdziale rozważamy ciągi "liczbowe" i mamy na myśli liczby rzeczywiste, zatem  $Y=\mathbb{R}$ . Uwaga: nie należy mylić ciągu  $(a_n)_{n\in\mathbb{N}}$  ze zbiorem jego wartości  $\{a_n\colon n\in\mathbb{N}\}$  (oznaczanym czasem  $\{a_n\}_{n\in\mathbb{N}}$  ale w starszych książkach w ten sposób oznaczano też sam ciąg, więc będziemy tego unikać. My w każdym razie staramy się rezerwować symbole otoczone nawiasami klamrowymi  $\{,\}$  dla zbiorów.). Ciąg  $(a_n)_{n\in\mathbb{N}}$  jest odwzorowaniem, funkcją. Zbiór wartości... cóż, zbiorem.

Przypomnimy dwa istotne rodzaje ciągów liczbowych, znane już ze szkoły.

**Definicja 4.1.2.** Ciąg  $(a_n)_{n\in\mathbb{N}}$  liczb rzeczywistych nazywamy **ciągiem arytmetycznym**, gdy istnieje taka liczba rzeczywista r, że dla każdego n spełniony jest warunek

$$a_{n+1} - a_n = r.$$

Liczbę r nazywamy **różnicą** ciągu arytmetycznego  $(a_n)_{n\in\mathbb{N}}$ .

Czytelnik łatwo zauważy, że ciąg arytmetyczne jest rosnący, gdy r>0, natomiast malejący, gdy r<0.

Stwierdzenie. Jeżeli  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem arytmetycznym, o reszcie  $r\in\mathbb{R},$  to

$$(4.1) a_n = a_1 + (n-1)r$$

Dowód. Przez indukcję (ćwiczenie).

**Stwierdzenie.** Każdy wyraz ciągu arytmetycznego, za wyjątkiem pierwszego, jest średnią arytmetyczną wyrazu poprzedniego i następnego.

Dowód. Istotnie, niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem arytmetycznym o różnicy r. Mamy

$$a_{n-1} = a_1 + (n-2)r$$
 oraz  $a_{n+1} = a_1 + nr$ ,

zatem

$$\frac{1}{2}(a_{n-1} + a_{n+1}) = \frac{1}{2}(2a_1 + (2n-2)r) = a_1 + (n-1)r = a_n.$$

**Stwierdzenie.** Suma n początkowych wyrazów ciągu arytmetycznego, którą oznaczamy przez  $S_n$ , jest dana następującym wzorem

$$(4.2) S_n = \frac{a_1 + a_n}{2} \cdot n$$

48

Dowód. Dowód poprowadzimy przez indukcje. Dla n=2 wzór jest prawdziwy, ponieważ

$$S_2 = a_1 + a_2 = \frac{a_1 + a_2}{2} \cdot 2.$$

Załóżmy, że wzór 4.2 jest prawdziwy dla pewnej liczby  $k \in \mathbb{N}$ . Rozważmy sumę  $S_{k+1}$ :

$$S_{k+1} = S_k + a_{k+1} = \frac{a_1 + a_k}{2} \cdot k + a_{k+1} =$$

$$= \frac{(a_1 + a_1 + (k-1)r)k + 2 * a)1 + kr}{2} =$$

$$= \frac{2a_1(k+1) + k(k+1)r}{2} = \frac{a_1 + (a_1 + kr)}{2}(k+1) =$$

$$= \frac{a_1 + a_{k+1}}{2}(k+1).$$

Zatem dla k+1 wzór 4.2 również jest prawdziwy i na mocy Zasady Indukcji Matematycznej równanie to jest prawdziwe dla dowolnej liczby naturalnej.

**Definicja 4.1.3.** Ciąg  $(a_n)_{n\in\mathbb{N}}$  liczb rzeczywistych nazywamy **ciągiem geometrycznym**, gdy istnieje taka liczba rzeczywsita  $q \neq 0$ , że dla każdego n spełniony jest warunek

$$\frac{a_{n+1}}{a_n} = q.$$

Liczbę r nazywamy **ilorazem** ciągu arytmetycznego  $(a_n)_{n\in\mathbb{N}}$ .

**Stwierdzenie.** Jeżeli  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem geometrycznym, o ilorazie  $q\in\mathbb{R}\setminus\{0\}$ , to

$$(4.3) a_n = a_1 \cdot q^{n-1}.$$

Dowód. Przez indukcję (ćwiczenie).

**Stwierdzenie.** Dla każdego n > 1 zachodzi równość

$$a_n^2 = a_{n-1} \cdot a_{n+1}.$$

Jeżeli wyrazy ciągu geometrycznego są dodatnie  $(a_n > 0, n \in \mathbb{N})$ , to z poprzedniego stwierdzenia zachodzi równość

$$a_n = \sqrt{a_{n-1}a_{n+1}}.$$

Zatem każdu wyraz ciągu geometrycznego za wyjątkiem ostatniego jest średnią geometryczną wyrazu poprzedniego i następnego.

**Twierdzenie 4.1.4.** Jeżeli przez  $S_n$  oznaczymy sumę n początkowych wyrazów ciągu geometrycznego  $(a_n)_{n\in\mathbb{N}}$  o ilorazie q, to

$$(4.4) S_n = a_1 \frac{1 - q^n}{1 - q}.$$

Gdy q = 1, to  $a_n = a_1$  dla każdego n i wzór 4.4 przyjmuje oczywistą postać  $S_n = n \cdot a_1$ . Dla dowolnego q dowód prowadzimy ponownie przez indukcję.

 $Dow \acute{o}d$ . Dla n=2 mamy

$$S_2 = a_1 + a_2 = a_1 + a_1 q = a_1 (1+q) = a_1 \frac{1-q^2}{1-q}.$$

Ostatnia równość wynika z tożsamości 3.4.8. Załóżmy, że wzór jest prawdziwy dla liczby naturalnej k. Rozważamy sumę  $S_{k+1}$ :

$$S_{k+1} = S_k + a_{k+1} = a_1 \frac{1 - q^n}{1 - q} + a_1 q^n = a_1 \frac{1 - q^{n+1}}{1 - q}.$$

Zatem prawdziwość wzoru dla dowolnego n wynika z Zasady Indukcji Matematycznej.

# 4.2 Granica ciągu

Zajmiemy się teraz kluczowym w matematyce pojęciem granicy ciągu. Zauważmy, że każdy kolejny wyraz ciągu  $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$  jest coraz mniejszy, ale zawsze pozostaje większy od zera. W tym wypadku "granicą" do której dążą wyrazy ciągu jest właśnie zero. Mówimy też, że ciąg "dąży" do zera. Zapisujemy ten fakt następująco:  $\frac{1}{n}\to 0$ . Dalej, np. ciąg  $\left(\cos\left(\frac{1}{n}\right)\right)_{n\in\mathbb{N}}$  dąży do 1, ciąg  $(n)_{n\in\mathbb{N}}$  dąży do nieskończoności. Zatem  $\cos\left(\frac{1}{n}\right)\to 1$  i  $n\to\infty$ .

**Definicja 4.2.1.** Mówimy, że ciąg  $(a_n)_{n\in\mathbb{N}}$  jest **zbieżny** do granicy g, gdzie g jest pewną liczą rzeczywistą, lub że ma **granicę**  $g\in\mathbb{R}$  i piszemy  $\lim_{n\to\infty}a_n=g$ , gdy dla dla dowolnej liczby rzeczywistej  $\varepsilon>0$  istnieje taka liczba naturalna N, że dla każdej liczby naturalnej  $n\geqslant N$  zachodzi  $|a_n-g|<\varepsilon$ .

Możemy zapisać ten warunek symbolicznie:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{\substack{n\in\mathbb{N}\\n>N}}|a_n-g|<\varepsilon.$$

W praktyce warunek w powyższej definicji pisze się pomijając " $n \in \mathbb{N}$ " pod kwantyfikatorem, mając w domyśle, że "wskaźnik" n wyrazu ciągu jest liczbą naturalną. Możemy też powiedzieć, że: Mówimy, że ciąg  $(a_n)_{n \in \mathbb{N}}$  jest **zbieżny** do granicy g i piszemy  $\lim_{n \to \infty} a_n = g$ , gdy dla dowolnego  $\varepsilon > 0$  **począwszy od pewnego** n zachodzi nierówność  $|a_n - g| < \varepsilon$ .

Spróbujmy jeszcze wzbogacić nasz język i wyrazić definicję w jeszcze bardziej naturalny a mniej symboliczny sposób. Weźmy takie nieprecyzyjne, niematematyczne wręcz stwierdzenie:

Prawie wszystkie liczby ze zbioru A mają własność  $\mathcal{X}$ .

Nie ważne co to za hipotetyczny zbiór A i tajemnicza własność X. Może A jest zbiorem kotów w domu pewnego matematyka a  $\mathcal X$  to "jest czarny". Problem: co to znaczy "prawie wszystkie"? 90%? Czy może "prawie wszystkie" zaczyna się dopiero od 99%? W tekście matematycznym i ścisłych definicjach nie używamy takich nieprecyzyjnych stwierdzeń. Ale np. A mogłoby być zbiorem liczb naturalnych, a własność  $\mathcal X$  oznaczać "jest większa od 1000". Rzeczywiście, tylko skończona liczba elementów zbioru A nie posiada tej własności, więc istotnie - jak wielka by ona nie była, jest "znacząco" mniejsza od nieskończoności, a tyle jest elementów zbioru A mających tę własność.

Um'owmy się więc, że dla zbioru nieskończonego A zdanie **prawie wszystkie elementy zbioru** A spełniają własność  $\mathcal X$  oznacza, że "własność  $\mathcal X$  zachodzi dla wszystkich elementów zbioru A za wyjątkiem pewnej skończonej ilości".

Pamiętając, że |x-y| wyraża odległość między liczbami na osi rzeczywistej, możemy teraz napisać, że  $\lim_{n\to\infty}a_n=g$ , gdy dla dowolnego  $\varepsilon>0$  odległość między liczbą g a prawie wszystkimi wyrazami ciągu  $(a_n)_{n\in\mathbb{N}}$  jest mniejsza od  $\varepsilon$ .

*Przykład* 32. Pokażemy z definicji, że  $\lim_{n\to\infty}\frac{1}{n}=0$ .

Ustalmy dowolną liczbę rzeczywistą  $\varepsilon > 0$ . Musimy znaleźć taką liczbę naturalną  $N \in \mathbb{N}$ , że

$$\left| \frac{1}{n} - 0 \right| = \left| \frac{1}{n} \right| = \frac{1}{n} < \varepsilon \text{ dla } n \geqslant N.$$

Ale gdy tylko pomnożymy powyższą nierówność obustronnie przez n i podzielimy przez  $\varepsilon$  (możemy to zrobić, gdyż z założenia  $\varepsilon > 0$ ), to widzimy, że

$$\frac{1}{n} < \varepsilon \iff n > \frac{1}{\varepsilon}.$$

Wystarczy więc przyjąć np.  $N=\lfloor\frac{1}{\varepsilon}\rfloor+1$  - jest to liczba naturalna, większa od  $\frac{1}{\varepsilon}$ . Zatem dla tak dobranego N dla każdego  $n\geqslant N$  mamy  $\frac{1}{n}<\varepsilon$ . Z dowolności wyboru  $\varepsilon>0$  (tzn. nie poczyniliśmy żadnych dodatkowych założeń co do  $\varepsilon$  i stąd wiemy, że dla każdej takiej liczby znajdziemy odpwiadającą mu liczbę N według powyższej procedury) mamy, że  $\lim_{n\to\infty}\frac{1}{n}=0$ .

*Ćwiczenie* 35. Udowodnić, że jeżeli p > 0, to  $\lim_{n \to \infty} \frac{1}{n^p} = 0$ .

*Ćwiczenie* 36. Udowodnić, że jeśli  $a, b, c, d \in \mathbb{R}$  oraz  $c \neq 0$ , to

$$\lim_{n \to \infty} \frac{a \cdot n + b}{c \cdot n + d} = \frac{a}{c}.$$

Przykład 33. Udowodnić, że  $\lim_{n\to\infty} a^n = 0$  o ile tylko  $0 \le a < 1$ .

Twierdzenie 4.2.2. Ciąg nie może być zbieżny do dwóch różnych granic. Innymi słowy granica ciągu jest wyznaczona jednoznacznie.

Dowód. Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem zbieżnym. Załóżmy nie wprost, że byłoby  $\lim_{n\to\infty}a_n=g_1$  i równocześnie  $\lim_{n\to\infty}a_n=g_2$  oraz  $g_1\neq g_2$ . Ustalmy dowolny  $\varepsilon>0$ . Wtedy istnieją takie  $N_1,N_2\in\mathbb{N}$ , że

$$|a_n - g_1| < \varepsilon \text{ dla } n \geqslant N_1$$

$$|a_n - g_2| < \varepsilon \text{ dla } n \geqslant N_2$$

Przyjmijmy  $N = \max{\{N_1, N_2\}}$ . Wtedy dla każdego  $n \geqslant N$  prawdziwe są nierówności:

$$|g_1 - a_n| < \varepsilon$$
.

$$|a_n - g_2| < \varepsilon.$$

Rozważmy teraz, co by było dla  $\varepsilon = \frac{1}{2}|g_1 - g_2|$ . Korzystając z nierówności trójkąta otrzymujemy wtedy

$$|g_1 - g_2| \le |g_1 - a_n| + |a_n - g_2| < 2\varepsilon = |g_1 - g_2|$$
 - oczywista sprzeczność.

Zatem ciąg nie może mieć dwóch różnych granic.

**Twierdzenie 4.2.3** (arytmetyka granic). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą ciągami liczb rzeczywistych i niech  $\lim_{n\to\infty} a_n = a$ ,  $\lim_{n\to\infty} b_n = b$ , tak że  $a,b\in\mathbb{R}$ . Wówczas

$$1. \lim_{n \to \infty} (a_n + b_n) = a + b,$$

$$2. \lim_{n \to \infty} (a_n - b_n) = a - b,$$

3. 
$$\lim_{n\to\infty} a_n \cdot b_n = a \cdot b$$
,

4. 
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{a}{b}$$
 o ile  $b\neq 0$  i  $b_n\neq 0, n\in\mathbb{N}$ .

Przykład 34. Obliczymy granicę:  $\lim_{n\to\infty}\frac{5n+7}{2+n}=\lim_{n\to\infty}\frac{n(5+\frac{7}{n})}{n(\frac{2}{n}+1)}=\lim_{n\to\infty}\frac{5+\frac{7}{n}}{\frac{2}{n}+1}=$ 

$$= \frac{\lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{7}{n}}{\lim_{n \to \infty} \frac{2}{n} + \lim_{n \to \infty} 1} = \frac{5+0}{0+1} = \frac{5}{1} = 5.$$

Bezpośrednio z 2. w poprzednim twierdzeniu 4.2.3 wynika

**Twierdzenie 4.2.4.**  $\lim_{n\to\infty} a_n = g$ , dla  $g \in \mathbb{R}$  wtedy i tylko wtedy,  $gdy \lim_{n\to\infty} |a_n - g| = 0$ .

**Twierdzenie 4.2.5** (O zachowaniu nierówności przy przejściu do granicy). Niech  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  będą ciągami zbieżnymi. Wówczas, jeżeli  $a_n \leq b_n, n \geqslant k$  dla pewnego  $k \in \mathbb{N}$ , to

$$\lim_{n\to\infty} a_n \leqslant \lim_{n\to\infty} b_n.$$

 $\begin{array}{l} \textit{Dow\'od}. \ \ \textit{Oznaczmy} \ a = \lim_{n \to \infty} a_n \ \text{i} \ b = \lim_{n \to \infty} b_n. \ \text{Niech} \ c_n = b_n - a_n. \ \text{W\'owczas} \ \text{z} \ \text{za\'oz\'enia} \ c_n \geqslant 0 \ \text{i} \\ \text{z} \ \text{twierdzenia} \ 4.2.3 \ \text{wynika, \'ze} \ \lim_{n \to \infty} c_n = b - a. \ \text{Za\'oz\'eny} \ \text{nie wprost, \'ze} \ \text{by\'eby} \ b - a < 0. \ \text{Ustalmy} \\ \varepsilon = -\frac{b-a}{2} = \frac{a-b}{2}. \ \text{Istnieje} \ N \in \mathbb{N} \ \text{takie, \'ze} \end{array}$ 

$$|a_n - a| < \varepsilon$$
 i  $|b_n - b| < \varepsilon$  dla  $n \ge N$ .

Niech  $n_0 = \max\{k, N\}$ . Wówczas, dla  $n \ge n_0$ , korzystając z nierówności trójkąta mamy uzyskujemy oszacowania

$$c_n - (b - a) \le |(b_n - a_n) - (b - a)| = |(b_n - b) - (a_n - a)| \le$$
  
$$\le |b_n - b| + |a_n - a| < 2\varepsilon = a - b$$

Czyli

$$c_n - (b - a) = c_n + a - b < a - b$$

co oznacza, że  $c_n < 0$  dla  $n \ge n_0$ , co przeczy założeniu, że  $c_n = b_n - a_n \ge 0$ .

**Uwaga 4.2.6.** Jeżeli w założeniu powyższego twierdzenia przyjmiemy ostrą nierówność:  $a_n < b_n, n \ge k$ , to teza pozostanie niezmieniona:  $\lim_{n\to\infty} a_n \le \lim_{n\to\infty} b_n$ . gdy wszystkie założenia twierdzenia są spełnione.

W szczególności, jeżeli w twierdzeniu 4.2.5 ciąg  $(x_n)_{n\in\mathbb{N}}$  spełnia  $a_n \leqslant c$  dla pewnej stałej  $c\in\mathbb{R}$  od pewnego n, to  $\lim_{n\to\infty}x_n\leqslant c$ . Analogicznie gdy  $x_n\geqslant c$ , to granica omawianego ciągu jest niemniejsza niż c. Dla uzasadnienia wystarczy w poprzednim twierdzeniu przyjąć za jeden z ciągów ciąg stały, zależnie od kierunku nierówności, której dowodzimy.

**Definicja 4.2.7.** Mówimy, że ciąg  $(a_n)_{n\in\mathbb{N}}$  jest ograniczony z góry [z dołu], gdy istnieje taka liczba  $M\in\mathbb{N}$ , że

$$a_n \leq M \ [M \leq a_n]$$
 dla każdego  $n \in \mathbb{N}$ .

Gdy ciąg jest ograniczony i z góry i z dołu to mówimy po prostu, że "jest ograniczony".

Ciągi rozbieżne do nieskończoności: Oczywistym jest, że nie każdy ciąg ma granicę w sensie, który rozważamy. Rozważmy teraz ciąg  $(n)_{n\in\mathbb{N}}$ , a więc ciąg liczb naturalnych  $0,1,2,3,\ldots$ 

Nie znajdziemy liczby rzeczywistej, do której ten ciąg byłby zbieżny. Wyrazy ciągu  $(n)_{n\in\mathbb{N}}$  rosną bowiem nieograniczenie i będą dowolnie duże dla prawie wszystkich n. O takim ciągu możemy powiedzieć, że jest rozbieżny do  $+\infty$ , rozbiego do plus-nieskończoności, etc.

Łatwo uściślić tę intuicję:

**Definicja 4.2.8.** Powiemy, że ciąg  $(a_n)_{n\in\mathbb{N}}$  jest **rozbieżny**, gdy spełnia jeden z poniższych warunków:

$$\forall_{E>0} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N} a_n > E.$$
  
$$\forall_{E>0} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N} a_n < E.$$

Oczywiście powyższe warunki wzajemnie się wykluczają. W pierwszym wypadku powiemy, że ciąg jest **rozbieżny do**  $+\infty$  (czasem w takiej sytuacji pomija się znak +) a w drugim, że jest **rozbieżny do**  $-\infty$ . Można też powiedzieć, że ciąg  $(a_n)_{n\in\mathbb{N}}$  ma po prostu granicę odpowiednio w  $+\infty$  lub  $-\infty$ , a ponadto stosujemy w tych sytuacjach konsekwentny zapis:

$$\lim_{n\to\infty} a_n = +\infty$$

i odpowiednio

$$\lim_{n \to \infty} a_n = -\infty.$$

Przykład 35. Zachodzi równość

$$\lim_{n \to \infty} a^n = \begin{cases} +\infty, & \text{gdy } a > 1; \\ 1, & \text{gdy } a = 1; \\ 0, & \text{gdy } -1 < a < 1. \end{cases}$$

Nasuwa się pytanie, czy są ciągi, które w ogóle nie mają granicy, tj. nie spełniający żadnego z warunków w definicji 4.2.8 ani nie mającego granicy rzeczywistej w sensie definicji 4.2.1.

Łatwo nasuwają się przypadki ciągów, Np. ciąg  $(a_n)_{n\in\mathbb{N}}$  dany tak, że  $a_n=\sin n, n\in\mathbb{N}$ . Wyrazy ciągu  $(\sin n)_{n\in\mathbb{N}}$  "oscylują" wokół wartości 0 w przedziałe [-1,1].

Skonstruujemy ciąg, który nie ma granicy i daje się ten fakt łatwo sprawdzić z definicji: połóżmy za  $a_n$ :

$$a_n = \begin{cases} 1 & \text{gdy } n \text{ jest nieparzyste,} \\ \frac{1}{n} & \text{gdy } n \text{ jest parzyste.} \end{cases}$$

Załóżmy najpierw, że istniałaby taka liczba  $g \in \mathbb{R}$ , że  $\lim_{n \to \infty} a_n = g$ . Musimy pokazać, że istnieje taki  $\varepsilon > 0$ , że dla każdego  $N \in \mathbb{N}$  istnieje  $n \geqslant N$  dla którego  $|a_n - g| \geqslant \varepsilon$ . Przyjmijmy  $\varepsilon = \frac{1}{2}$ . Niech  $N \in \mathbb{N}$ . Rozważmy dwa przypadki:

1. Dla  $g\leqslant \frac{1}{2}$ mamy  $|1-g|\geqslant \frac{1}{2}$ zatem wystarczy wziąć  $n=\min\{n\geqslant N\colon a_n=1\}$ i mamy

$$|a_n - g| = |1 - g| \geqslant \frac{1}{2}.$$

2. Gdy  $g>\frac{1}{2},$  przyjmujemy za nliczbę parzystą taką, że

$$n \geqslant \max \left\{ N, \frac{1}{g - 1/2} \right\}.$$

Wówczas  $\frac{1}{n}\leqslant g-\frac{1}{2}$ oraz  $\frac{1}{2}-g\leqslant -\frac{1}{n}.$  Mamy oszacowania

$$|a_n - g| = \left| \frac{1}{n} - g \right| = g - \frac{1}{n} \geqslant g - \left( g - \frac{1}{2} \right) = \frac{1}{2}.$$

W obu przypadkach g nie może być granicą ciągu  $(a_n)_{n\in\mathbb{M}}$ .

Fakt, że ciąg ten nie może mieć granicy w nieskończoności wynika z faktu, że jest on ograniczony z góry i z dołu, odpowiednio przez 1 i przez 0.

**Uwaga 4.2.9.** Niech  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  będą ciągami liczb rzeczywistych, oraz  $b_n \leq a_n$  począwszy od pewnego n. Wóczas, jeżeli  $\lim_{n\to\infty} b_n = \infty$ , to również  $\lim_{n\to\infty} a_n = \infty$ . Podobnie, jeśli  $\lim_{n\to\infty} a_n = -\infty$ , to  $\lim_{n\to\infty} b_n = -\infty$ .

# 4.3 Twierdzenia przydatne w badaniu zbieżności ciągu i szukaniu granic

Twierdzenie 4.3.1. Każdy monotoniczny i ograniczony ciąg liczb rzeczywistych jest zbieżny. Ponadto każdy ciąg zbieżny jest ograniczony.

 $Dow \acute{o}d.$  Niech np. ciąg  $(a_n)_{n\in\mathbb{N}}$  będzie niemalejący i ograniczony. Oznaczmy

$$A := \{a_n \colon n \in \mathbb{N}\}.$$

Zbiór  $A\subseteq\mathbb{R}$  jest ograniczony, więc z aksjomatu ciągłości istnieje  $a=\sup A.$  Ustalmy  $\varepsilon>0.$  Istnieje  $n_0\in\mathbb{N}$  takie, że

$$a - \varepsilon < a_{n_0} < a$$
.

Ale ponieważ ciąg  $(a_n)_{n\in\mathbb{N}}$  jest niemalejący, to

$$a \geqslant a_n \geqslant a_{n_0} > a - \varepsilon$$
, dla każdego  $n \geqslant n_0$ .

Czyli  $\lim_{n\to\infty} a_n = a$ .

Dla dowodu drugiej części twierdzenia, weźmy ciąg  $(a_n)_{n\in\mathbb{N}}$  zbieżny do pewnej liczby  $a\in\mathbb{R}$ . Niech  $\varepsilon>0$  i N będzie taką liczbą, że

$$|a_n - a| < \varepsilon, n \geqslant N.$$

Przyjmijmy

$$M = \max\{|a_1 - a|, |a_2 - a|, \dots, |a_N - a|\}.$$

Wówczas

$$-M \leqslant a_n \leqslant M$$
, dla  $n \in \mathbb{N}$ .

Tak naprawdę, dokładniej mówiąc mamy dwie implikacje: jeśli ciąg jest niemalejący i ograniczony z góry, to jest zbieżny oraz jeśli ciąg jest nierosnący i ograniczony z dołu, to jest zbieżny.

Zauważmy, że gdy ciąg jest niemalejący (nierosnący) i nieograniczony z góry (z dołu), to jest on rozbieżny do nieskończoności (minus nieskończoności). Stąd i z poprzedniego twierdzenia wynika następujący

Wniosek 4.3.2. Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb rzeczywistych.

1. Jeżeli  $(a_n)_{n\in\mathbb{N}}$  jest niemalejący (tj. słabo rosnący), to  $(a_n)_{n\in\mathbb{N}}$  ma granicę (własciwą lub niewłaściwą) oraz

$$\lim_{n\to\infty} a_n = \sup\{a_n \colon n\in\mathbb{N}\};$$

2. Jeżeli  $(a_n)_{n\in\mathbb{N}}$  jest nierosnący (tj. słabo malejący), to  $(a_n)_{n\in\mathbb{N}}$  ma granicę (własciwą lub niewłaściwą) oraz

$$\lim_{n \to \infty} a_n = \inf\{a_n \colon n \in \mathbb{N}\}.$$

*Ćwiczenie* 37. Udowodnić, że z faktu iż każdy ciąg monotoniczny i ograniczony jest zbieżny wynika Aksjomat 3.4.3 ciągłości.

Przykład 36 (Ciąg określony rekurencyjnie). Zdefiniujmy ciąg następująco

$$\begin{cases} a_1 = 1 \\ a_n = \frac{1}{2}a_n \end{cases}$$

Oczywiście łatwo zauważyć, że jest to ciąg geometryczny i  $a_n = \frac{1}{2^{n-1}} \to 0$  ale zapomnijmy o tym na chwilę: spróbujemy znaleźć metodę, która pozwoli nam radzić sobie również z bardziej skomplikowanymi ciągami zadanymi rekurencyjnie. Zauważmy, że  $a_n \leqslant a_{n-1}$  oraz  $1 \geqslant a_n \geqslant 0$ , zatem ciąg jest monotoniczny i ograniczony. Wiemy, że granica istnieje - oznaczmy ją a:

$$\lim_{n \to \infty} a_n = a$$

Ale również

$$\lim_{n \to \infty} a_{n-1} = a.$$

Układamy równanie:

$$a = \lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{2} a_{n-1} = \frac{1}{2} a$$

zatem 2a=a - jedyna liczba rzeczywista spełniająca to równanie to 0. Zauważmy, że gdybyśmy nie sprawdzili, że ciąg w ogóle **jest** zbieżny, rozumowanie byłoby niepoprawne. Nie moglibyśmy sobie po prostu założyć, że ciąg jest zbieżny do granicy  $a\in\mathbb{R}$  a następnie zająć się jej wyznaczaniem.

**Twierdzenie 4.3.3.** Niech  $(a_n)_{n\in\mathbb{N}}$  będzie zbieżnym do zera, a  $(b_n)_{n\in\mathbb{N}}$  ciągiem ograniczonym. Wtedy

$$\lim_{n \to \infty} a_n \cdot b_n = 0.$$

 $\begin{array}{ll} \textit{Dow\'od.} \text{ Niech } M \text{ będzie ograniczeniem ciągu } (b_n)_{n \in \mathbb{N}}, \text{ tzn. } |b_n| \leqslant M, n \in \mathbb{N}. \text{ Ustalmy dowolny} \\ \varepsilon > 0. \text{ Istnieje } N \in \mathbb{N} \text{ takie, } \dot{\text{ze}} \ a_n < \frac{\varepsilon}{M}, n \geqslant N. \text{ W\'owczas } a_n \cdot b_n < \frac{\varepsilon}{M} \cdot M = \varepsilon, n \geqslant N, \text{ czyli (z dowolności wyboru } \varepsilon) \text{ oznacza to, } \dot{\text{ze}} \lim_{n \to \infty} a_n b_n = 0. \end{array}$ 

Zauważmy, że powyższe twierdzenie można również zastosować do poprzedniego przykładu. Podamy jeszcze jeden:

Przykład 37. Łatwo możemy uzasadnić, że

$$\lim_{n \to \infty} \frac{\sin n}{n} = 0.$$

Zauważmy, że sin  $n \le 1$  oraz oczywiście  $\frac{1}{n} \to 0$  więc równość wynika z poprzedniego twierdzenia. Przykład 38 (Iteracyjne obliczanie pierwiastków). Ustalmy liczbę a > 0 i zdefiniujmy rekurencyjnie ciąg  $(a_n)_{n \in \mathbb{N}}$  biorąc  $dowolne\ a_1 > 0$  oraz

$$a_{n+1} = \frac{1}{2} \left( a_n + \frac{a}{a_n} \right) \text{ dla } n \geqslant 1.$$

Pokażemy, że wtedy

$$\lim_{n \to \infty} a_n = \sqrt{a}.$$

Twierdzenie 4.3.4 (O trzech ciągach). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$ ,  $(c_n)_{n\in\mathbb{N}}$  będą ciągami liczb rzeczywistych, tak że  $a_n\leqslant b_n\leqslant c_n$  od pewnego miejsca, tzn. istnieje  $N\in\mathbb{N}$ , że nierówności te zachodzą dla każdego  $n\geqslant N$ . Wówczas, jeżeli  $\lim_{n\to\infty}a_n=\lim_{n\to\infty}c_n=g$ , to

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = \lim_{n \to \infty} c_n = g.$$

Dowód. Ustalmy  $\varepsilon > 0$ . Istnieją takie  $N_1, N_2 \in \mathbb{N}$ , że

$$(4.5) |a_n - g| < \varepsilon, \text{ dla } n \geqslant N_1$$

oraz

$$(4.6) |c_n - g| < \varepsilon, \text{ dla } n \geqslant N_2.$$

Niech  $N := \max\{N_1, N_2\}$ . Z (4.5) i (4.6) mamy, że

$$(4.7) -\varepsilon < a_n - g oraz c_n - g < \varepsilon dla n \ge N.$$

Z założenia zachodzą nierówności  $a_n \leq b_n \leq c_n, n \in \mathbb{N}$ . Odejmując od nich stronami g i korzystając z oszacowań (4.7) otrzymujemy ciąg nierówności

$$-\varepsilon < a_n - g \leqslant b_n - g \leqslant c_n - g < \varepsilon$$
, dla  $n \geqslant N$ .

Pokazaliśmy, że dla każdego  $\varepsilon>0$  istnieje takie  $N\in\mathbb{N},$  że  $|b_n-g|<\varepsilon$  dla  $n\geqslant N$  czyli  $\lim_{n\to\infty}b_n=g.$ 

Przykład 39. Udowodnimy, że  $\lim_{n\to\infty} \sqrt[n]{q}=1$  dla dowolnego  $q>0,\ q=$  constans. Skorzystamy z twierdzeń 4.3.4 oraz 4.2.4. Najpierw weźmy q<1. Niech  $a_n:=1-\sqrt[n]{q}$ . Chcemy pokazać, że  $\lim_{n\to\infty} a_n=0$ . (Wówczas  $\lim_{n\to\infty} |1-\sqrt[n]{q}|=0$  i stąd  $\sqrt[n]{q}\to 1$ .) Z nierówności Bernoulliego:

$$1 - n \cdot a_n \leqslant (1 - a_n)^n = q$$

i stąd $0\leqslant a_n\leqslant \frac{1-q}{n},\ n\in\mathbb{N}.$  Oczywiście  $\lim_{n\to\infty}\frac{q-1}{n}=0$ i stąd $a_n\geqslant 0$ i wówczas  $a_n\to 0$ na mocy twierdzenia o trzech ciągach. Jeżeliq>1, to bierzemy  $a_n:=\sqrt[p]{q}-1$ i wówczas mamy  $a_n\geqslant 0$ i ponownie szacujemy:  $1+na_n\leqslant (1+a_n)^n=q$ a stąd $0\leqslant a_n\leqslant \frac{q-1}{n}\stackrel{n\to\infty}{\longrightarrow} 0.$  Zatem  $\lim_{n\to\infty}a_n=0,$ gdzie  $a_n=1-\sqrt[p]{q},$ czyli  $\lim_{n\to\infty}\sqrt[p]{q}=1.$ 

Twierdzenie 4.3.5.  $Je\dot{z}eli\lim_{n\to\infty}a_n=g,\ to\lim_{n\to\infty}|a_n|=|g|.$ 

Dowód. Ze wzoru (3.18):

$$0 \leqslant ||a_n| - |g|| \leqslant |a_n - g|.$$

Stąd i z twierdzenia o trzech ciągach (4.3.4):

$$\lim_{n \to \infty} |a_n - g| = 0 \Longrightarrow \lim_{n \to \infty} ||a_n| - |g|| = 0.$$

Z twierdzenia 4.2.4:

$$\lim_{n \to \infty} a_n = a \Longrightarrow \lim_{n \to \infty} |a_n - a| = 0.$$

Łącząc dwa poprzednie fakty:

$$\lim_{n \to \infty} a_n = a \Longrightarrow \lim_{n \to \infty} ||a_n| - |a|| = 0 \Longrightarrow \lim_{n \to \infty} |a_n| = |g|.$$

Twierdzenie 4.3.6. Zachodzą następujące fakty:

- 1.  $\lim_{n \to \infty} a^n n^k = 0$  dla każdej liczby 0 < a < 1 i  $k \geqslant 0$ .
- 2.  $\lim_{n\to\infty} \frac{a^n}{n!} = 0$ , dla każdego  $a \in \mathbb{R}$ .
- 3.  $\lim_{n\to\infty} \frac{n^k}{a^n} = 0$ , dla każdego a > 1 i  $k \in \mathbb{R}$ .
- 4.  $\lim_{n \to \infty} \sqrt[n]{a} = 1$ , a > 0.
- $5. \lim_{n \to \infty} \sqrt[n]{n} = 1.$

Dowód. 4. Zbadamy przypadki. Dla a=1:  $\sqrt[n]{a}=\sqrt[n]{1}=1$  więc ciąg  $(a_n)_{n\in\mathbb{N}}$  jest stały, równy 1 i przy  $n\to\infty$  dąży do 1.

Załóżmy, że a>1. Wówczas  $\sqrt[n]{a}>1$ . Z nierówności Bernoulliego otrzymujemy oszacowania:

$$a = (\sqrt[n]{a})^n = (1 + \underbrace{\sqrt[n]{a} - 1}_{>0})^n \ge 1 + n(\sqrt[n]{a} - 1).$$

Stąd

$$c-1 \geqslant n(\sqrt[n]{a}-1),$$

$$0 \leqslant \sqrt[n]{a} - 1 \leqslant \frac{1}{n}(a - 1).$$

Teraz, z twierdzenia o trzech ciągach wynika, że  $\lim_{n\to\infty}(\sqrt[n]{a}-1)=0$ , czyli  $\lim_{n\to\infty}\sqrt[n]{a}=1$ .

Pozostaje przypadek, gdy  $a \in (0,1)$ . Mamy  $\frac{1}{a} > 1$ .

$$\lim_{n \to \infty} \sqrt[n]{a} = \lim_{n \to \infty} \frac{1}{\frac{1}{\sqrt[n]{a}}} = 1.$$

### 4.4 Własności ciągów liczbowych

**Definicja 4.4.1.** Niech  $(x_n)_{n\in\mathbb{N}}$  będzie dowolnym ciągiem oraz  $(n_k)_{k\in\mathbb{N}}$  rosnącym ciągiem liczb naturalnych. Ciąg  $(x_{n_k})_{k\in\mathbb{N}}$  nazywamy **podciągiem ciągu**  $(x_n)_{n\in\mathbb{N}}$  wyznaczonym przez ciąg wskaźników  $(n_k)_{k\in\mathbb{N}}$ .

Przykład 40. Niech  $x_n = \frac{1}{n}, n \in \mathbb{N}$  a  $n_k = 2k$ . Wtedy  $x_{n_k} = \frac{1}{2k}, k \in \mathbb{N}$ . Czyli mamy ciąg  $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \ldots$  a wybrany przez nas podciąg tego ciągu to ciąg  $\frac{1}{2}, \frac{1}{4}, \frac{1}{6}, \ldots$ 

**Lemat 4.4.2.** Dla dowolnego ciągu wskaźników  $(n_k)_{k\in\mathbb{N}}$  zachodzi  $n_k \geqslant k$ .

Dowód. Dowód przeprowadzimy indukcyjnie. TODO

Twierdzenie 4.4.3. Podciąg ciągu zbieżnego jest zbieżny do tej samej granicy.

Dowód. Ustalmy ciąg  $(x_n)_{n\in\mathbb{N}}$  zbieżny do granicy g, ciąg wskaźników  $(n_k)_{k\in\mathbb{N}}$  i dowolny jego podciąg  $(x_{n_k})_{k\in\mathbb{N}}$ . Ustalmy dowolny  $\varepsilon>0$ . Istnieje  $N_\varepsilon\in\mathbb{N}$  takie, że dla każdego  $n\geqslant N_\varepsilon$  naturalnego zachodzi

$$|a_n - a| < \delta.$$

Zauważmy, że dla  $n_k \geqslant k, k \in \mathbb{N}$ : jeżeli  $k \geqslant N_{\varepsilon}$ , to  $n_k \geqslant N_{\varepsilon}$  i  $a_{n_k}$  jest wyrazem ciągu  $(a_n)_{n \in \mathbb{N}}$ , zatem

$$|a_{nk} - a| < \varepsilon$$
, dla  $k \ge N_{\varepsilon}$ .

Z dowolności wyboru  $\varepsilon$  mamy, że  $\lim_{k\to\infty} a_{n_k} = a$ .

Teraz widać już, dlaczego ciąg  $(\sin n)_{n\in\mathbb{N}}$  nie może mieć granicy. Weźmy  $x_n=n\pi$  oraz  $y_n=(2n+1)\pi$ . Mamy dwa podciągi ciągu  $(\sin n)_{n\in\mathbb{N}}$ :

$$(\sin x_n)_{n\in\mathbb{N}}$$
 oraz  $(\sin y_n)_{n\in\mathbb{N}}$ .

Łatwo zauważymy, że

$$\lim_{n \to \infty} \sin x_n = 0,$$

oraz

$$\lim_{n\to\infty}\sin y_n=1.$$

Nie jest możliwym zatem, by ciąg  $(\sin n)_{n\in\mathbb{N}}$  miał granicę, gdyż wtedy każdy jego podciąg musiałby być zbieżny do tej samej granicy; a właśnie pokazaliśmy przykład, że tak nie jest.

Udowodnimy teraz bardzo pożyteczny lemat, z którego kilkukrotnie potem skorzystamy.

Lemat 4.4.4 (O przedziałach zstępujących). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą takimi ciągami liczb rzeczywistych, że

$$a_n \leqslant a_{n+1}, n \in \mathbb{N},$$

$$b_n \geqslant b_{n+1}, n \in \mathbb{N},$$

$$a_n < b_n, n \in \mathbb{N}$$
.

Wówczas, jeżeli

$$\lim_{n \to \infty} (b_n - a_n) = 0,$$

to istnieje wspólna granica skończona c tych ciągów:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n = c.$$

Dowód. Najpierw zauważmy, że ciągi  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  są w istocie zbieżne:

 $a_0 \leqslant a_n \leqslant b_n, n \in \mathbb{N}$  - zatem ciąg  $(b_n)_{n \in \mathbb{N}}$  jest ograniczony z dołu. Z założenia jest też malejący,

zatem na mocy twierdzenia 4.3.1 jest zbieżny. Analogicznie możemy pokazać, że zbieżny jest ciąg  $(a_n)_{n\in\mathbb{N}}$ .

Dalej, z założenia

$$\lim_{n \to \infty} (b_n - a_n) = \lim_{n \to \infty} b_n - \lim_{n \to \infty} a_n = 0$$

a stąd już wynika, że  $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n$  (z arytmetyki granic – tw. 4.2.3).

Granica jest wyznaczona jednoznacznie (tw. 4.2.2) i twierdzenie jest udowodnione.

Powyższe stwierdznie możemy zinerpretować bardziej "geometrycznie": jeżeli mamy ciąg  $([a_n, b_n])_{n \in \mathbb{N}}$  przedziałów spełniających następujące warunki:

- $[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], n \in \mathbb{N}$  (mówimy wtedy, że ciąg jest **zstępujący**),
- długości  $|b_n a_n|$  kolejnych przedziałów dążą do zera;

to istnieje dokładnie jeden punkt wspólny c wszystkich przedziałów ciągu:

$$\bigcap_{n=1}^{\infty} [a_n, b_n] = \{c\}.$$

Za chwilę wprowadzimy twierdzenie Bolzano-Weierstrassa – bardzo ważny, klasyczny wynik w analizie matematycznej. Jeden z "tradycyjnych" dowodów tego twierdzenia opiera się o Lemat 4.4.4 – i ten dowód pokażemy. Lemat ten okazuje się użyteczny w klasycznej analizie dość często i sama metoda dowodzenia w oparciu o "przedziały zstępujące" nazywa się metodą Bolazno-Weierstrassa.

Nim przejdziemy do dowodu wspomnianego twierdzenia, przećwiczymy metodę badając trochę prostszy problem. Pokażemy, że  $|\mathbb{R}| \neq \aleph_0$ , tj. że zbiór liczb rzeczywistych i zbiór liczb naturalnych nie są równoliczne. Klasyczny dowód tego faktu podał Georg Cantor w 1891 roku, stosując tzw. "Metodę przekątniową", do dziś związaną z jego nazwiskiem. Owa metoda Cantora jest standardowym elementem wykładu teorii mocy. Samo pojęcie równoliczności badał jednak już w pierwszej połowie XIX wieku Bernard Bolzano, który zwrócił uwagę, że dwa dowolne przedziały na prostej, niezależnie od długości, mają tyle samo elementów. I my zbadamy ten fakt, a w tym celu posłużymy się metodą Bolzano.

Lemat 4.4.5. Przedział [0,1] nie jest równoliczny ze zbiorem liczb naturalnych.

Dowód. Niech  $f: \mathbb{N} \to [0,1]$  będzie dowolną funkcją. Niech  $f(k) = c_k$  dla  $k \in \mathbb{N}$ . Widzimy, że funkcja ta jest ciągiem. Podzielmy przedział [0,1] na trzy domknięte podprzedziały, długości  $\frac{1}{3}$  każdy i niech  $[a_0,b_0]$  będzie tym z nich, do którego należy  $c_0$ .

Tak więc  $[a_0,b_0]\subseteq [0,1],\ b_0-a_0=\frac{1}{3}$  oraz  $c_0\notin [a_0,b_0].$  Załóżmy, że dla pewnego  $k\in\mathbb{N}$  zdefiniowaliśmy już przedział  $[a_k,b_k]$  tak, że  $[a_k,b_k]\subseteq [0,1],\ b_k-a_k=\frac{1}{3^{k+1}}$  oraz  $c_k\notin [a_k,b_k].$  Wówczas dzielimy przedział  $[a_k,b_k]$  na trzy domknięte podprzedziały równej długości i definiujemy  $[a_{k+1},b_{k+1}]$  jako ten podprzedział, do którego nie należy  $c_{k+1}.$  Mamy wtedy:

$$[a_{k+1}, b_{k+1}] \subseteq [a_k, b_k], \ b_{k+1} - a_{k+1} = \frac{1}{3^{k+2}}$$
  
oraz  $c_{k+1} \notin [a_{k+1}, b_{k+1}].$ 

Mamy zatem zdefiniowany indukcyjnie ciąg przedziałów  $[a_n, b_n]$  taki, że dla każdej liczby naturalnej  $n \in \mathbb{N}$ :

$$[a_{n+1}, b_{n+1}] \subseteq [a_n, b_n], \ b_{n+1} - a_{n+1} = \frac{1}{3^{n+1}}$$
  
oraz  $c_{n+1} \notin [a_n, b_n].$ 

Zauważmy, że  $\lim_{n\to\infty}(b_n-a_n)=\lim_{n\to\infty}\frac{1}{3^{n+1}}=0$ . Na mocy lematu 4.4.4 o przedziałach zstępujących ciągi  $(a_n))_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  są zbieżne do tej samej granicy. Przyjmijmy

$$c = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n.$$

Zauważmy teraz, że dla każdej liczby naturalnej n mamy  $c \in [a_n, b_n]$ , podczas gdy  $c_n \notin [a_n, b_n]$ . Zatem  $c \neq c_n$  dla każdego n.

Z dowolności f, nie istnieje funkcja z  $\mathbb{N}$  w [0,1], w której zbiór wartości wyczerpywałby przedział [0,1] (inaczej: nie istnieje surjekcja  $\mathbb{N}$  na [0,1]); tym bardziej nie istnieje funkcja z  $\mathbb{N}$  na całe  $\mathbb{R}$ .  $\square$ 

**Twierdzenie 4.4.6.** Zbiór wszystkich liczb rzeczywistych  $\mathbb{R}$  nie jest równoliczny ze zbiorem wszystkich liczb naturalnych  $\mathbb{N}$ .

Dowód. Korzystając z poprzedniego lematu i faktu, że  $|[0,1]| = |\mathbb{R}|$  o czym świadczy chociażby funkcja tg:  $(-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbb{R}$ , będąca bijekcją. (I oczywiście  $[0,1] \subseteq (-\frac{\pi}{2}, \frac{\pi}{2})$ ).

Twierdzenie 4.4.7 (Bolzano-Weierstrassa). Z dowolnego ciągu ograniczonego można wybrać podciąg zbieżny.

Dowód. Rozważmy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}$  ograniczony. Istnieją zatem liczby rzeczywiste a i b takie, że  $x_n\in[a,b], n\in\mathbb{N}$ . Skorzystamy z lematu o przedziałach zstępujących. Indukcyjnie określmy ciągi liczb  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$ :

Przyjmujemy  $a_0 = a$  i  $b_0 = b$ .

Dzielimy przedział [a,b] na połowy. Co najmniej jedna połowa musi zawierać nieskończenie wiele wyrazów ciągu  $(x_n)_{n\in\mathbb{N}}$  - w przeciwnym razie wyrazów ciągu byłoby skończenie wiele - sprzeczność z definicją ciągu. Wybieramy tę połowę, która zawiera nieskończenie wiele wyrazów (dowolną, jeśli w obydwu mieści się nieskończenie wiele wyrazów ciągu) i dzielimy ponownie na połowy. Dostajemy np. przedział  $[a,\frac{a+b}{2}]=[a_0,\frac{a_0+b_0}{2}]$  i przyjmujemy  $a_1=a_0,\,b_1=\frac{a_0+b_0}{2}$ . Otrzymany przedział  $[a_1,b_1]$  ponownie dzielimy na połowy i wybieramy tę, która zawiera nieskończenie wiele wyrazów ciągu  $(x_n)_{n\in\mathbb{N}}$ .

Postępując w ten sposób nieskończnie wiele razy dostajemy ciągi  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  (zarazem ciąg przedziałów  $([a_n,b_n])_{n\in\mathbb{N}}$ ) o następujących własnościach:

- 1.  $a_n \leqslant a_{n+1}, n \in \mathbb{N}$
- 2.  $b_{n+1} \leqslant b_n, n \in \mathbb{N}$
- 3. Dla każdego  $n \in \mathbb{N}$  istnieje  $m \in \mathbb{N}$ , że  $a_n \leqslant x_k \leqslant b_n$  dla  $k \geqslant m$ .
- 4.  $b_n a_n = \frac{a_{n-1} + b_{n-1}}{2^n}$

Z punktów 1, 2 i 4 na mocy lematu o przedziałach zstępujących istnieje granica  $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n\in\mathbb{R}$ . W podpunkcie trzecim dla każdego  $n\in\mathbb{N}$  bieżemy np.  $x_m$  i oznaczamy jako  $y_n$ . W ten sposób

otrzymujemy podciąg  $(y_n)_{n\in\mathbb{N}}$  ciągu  $(x_n)_{n\in\mathbb{N}}$  taki, że  $a_n\leqslant y_n\leqslant b_n$  i na mocy twierdzenia o trzech ciągach

$$\lim_{n \to \infty} y_n = \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \in \mathbb{R}.$$

Czyli podciąg ten jest zbieżny, koniec dowodu

Zauważmy, że własność 4. naszego ciągu przdziałów w powyższym dowodzie jest intuicyjna, jednak dla formalności moglibyśmy przeprowadzić łatwy dowód indukcyjny. Oczywiście połowa długości przedziału [a,b] wynosi  $\frac{b-a}{2}$ . Czyli:

dla dla n=1mamy  $\left[a_{1},b_{1}\right]$ - wybrana połowa przedziału  $\left[a,b\right]$ i stąd

$$b_1 - a_1 = \frac{b - a}{2} = \frac{b_0 - a_0}{2}.$$

Załóżmy, że dla pewnego  $m \in \mathbb{N}$  zachodzi  $b_m - a_m = \frac{b_{m-1} - a_{m-1}}{2^m}$ .

Dzielimy przedział  $[a_m, b_m]$  na połowy i zgodnie z definicją naszego ciągu podziałów wybieramy jedną, zawierającą nieskończenie wiele wyrazów ciągu  $(x_n)_{n\in\mathbb{N}}$ . Np. niech to będzie "prawa" połówka i mamy:

$$[a_{m+1}, b_{m+1}] = \left[\frac{a_m + b_m}{2}, b_m\right]$$

Obliczamy długość przedziału:  $b_{m+1} - a_{m+1} =$ 

$$=b_m-\frac{a_m+b_m}{2}=\frac{2b_m-a_m-b_m}{2}=\frac{1}{2}(b_m-a_m)=\frac{1}{2}\left(\frac{b_{m-1}-a_{m-1}}{2^m}\right)=\frac{b_{m-1}-a_{m-1}}{2^{m+1}}.$$

Analogicznie postąpimy jeśli nieskończenie wiele wyrazów ciągu będzie leżało w lewej połowie przedziału. Z Zasady Indukcji Matematycznej nasz wzór na odległość między wyrazami ciągu jest prawdziwy dla każdej liczby naturalnej. Podobne rozumowanie można by przeprowadzić w dowodzie lematu 4.4.5

Dla ćwiczenia, pokażemy też inny dowód – oparty na nieco innej obserwacji:

### Lemat 4.4.8. Dowolny ciąg liczbowy zawiera podciąg monotoniczny.

Dowód. Ustalmy ciąg  $(a_n)_{n\in\mathbb{N}}$ . Wykażemy, że jeżeli z tego ciągu nie można wybrać podciągu niemalejącego, to można wybrać z niego podciąg malejący. Najpierw pokażemy, że jeśli z ciągu niemożna wybrać podciągu ściśle rosnącego, to ciąg ten ma wyraz największy. Załóżmy nie wprost, że byłoby przeciwnie. Załóżmy, że z ciągu  $(a_n)_{n\in\mathbb{N}}$  niemożna wybrać podciągu ściśle rosnącego. Wtedy  $a_1$  nie nie jest największym wyrazem ciągu  $(a_n)_{n\in\mathbb{N}}$ . Przyjmujemy  $n_1=1$ . Istnieje  $n_2\in\mathbb{N}$  takie, że  $a_{n_2}>a_{n_1}$ . Jeżeli dla każdego  $n>n_2$  zachodzi nierówność  $a_n\leqslant a_{n_2}$ , to największy z wyrazów  $a_1,a_2,\ldots,a_{n_2}$  jest największym wyrazem ciągu  $(a_n)_{n\in\mathbb{N}}$ . Jeśli nie, to istnieje taka liczba naturalna  $n_3>n_2$ , że  $a_{n_3}>a_{n_2}$ . Podobne rozumowanie doprowadzi nas do wniosku, że musi istnieć taka liczba naturalna  $n_4>n_3$ , że  $a_{n_4}>a_{n_3}$ . Powtarzając to rozumowanie nieskończenie wiele razy, dochodzimy do wniosku, że z ciągu  $(a_n)_{n\in\mathbb{N}}$  można wybrać podciąg ściśle rosnący, wbrew założeniu. Zatem procedura nie może być kontynuowana bez ograniczeń, musimy więc trafić na największy wyraz.

Załóżmy teraz, że ciąg  $(a_n)_{n\in\mathbb{N}}$  nie zawiera ciągu niemalejącego. Niech  $a_{m_1}$  będzie największym wyrazem ciągu  $(a_n)_{n\in\mathbb{N}}$ . Z ciągu  $a_{m_1+1}, a_{m_1+2}, \ldots$  nie można wybrać podciągu niemalejącego bo byłby to również podciąg niemalejący ciągu  $(a_n)_{n\in\mathbb{N}}$ . Wobec tego ten ciąg ma wyraz największy. Niech

 $a_{m_2}$  będzie największym spośród wyrazów  $a_{m_1+1}, a_{m_1+2}, \ldots$  Dalej, niech  $a_{m_3}$  będzie największym spośród wyrazów  $a_{m_2+1}, a_{m_2+2}, \ldots, a_{m_4}$  największym spośród wyrazów  $a_{m_3+1}, a_{m_3+2}, \ldots$ itd. Mamy zatem  $a_{m_1} \geqslant a_{m_2} \geqslant a_{m_3} \geqslant \ldots$  Przy czym nieskończenie wiele razy muszą wystąpić równości, w przeciwnym razie możliwe byłoby wybranie podciągu stałego, który jest niemalejący i jednocześnie nierosnący. Stąd mamy, że istnieje podciąg ściśle rosnący ciągu  $a_{m_1}, a_{m_2}, \ldots$  i jest on oczywiście również podciągiem ciągu  $(a_n)_{n\in\mathbb{N}}$ .

Teraz zapowiedziany

Dowód. Oczywiście dla ciągu ograniczonego, dowolny jego podciąg również jest ograniczony. Z poprzedniego lematu wynika, że można wybrać taki podciąg aby był monotoniczny i jako również ograniczony - jest on zbieżny.

*Ćwiczenie* 38. Obliczyć, jeśli istnieje, granicę  $\lim_{n\to\infty} \frac{3^{n+1}+n^2}{7\cdot 2^n+n}$ .

### 4.4.1 Liczba e Eulera.

W tym paragrafie omówimy pewnę szczególną stałą matematyczną, która zdefiniowana jest przy pomocy granicy ciągu liczb rzeczywistych.

**Definicja 4.4.9.** Przyjmijmy  $e_n := \left(1 + \frac{1}{n}\right)^n$ . **Liczbą Eulera** nazywamy granicę ciągu  $e_n$  i zwyczajowo oznaczamy po prostu przez e.

Oczywiście musimy udowodnić, że taka granica w ogóle istnieje! Tzn. zbadać zbieżność ciągu  $(e_n)_{n\in\mathbb{N}}$ .

Twierdzenie 4.4.10. Ciąg  $(e_n)_{n\in\mathbb{N}}$  jest zbieżny. Ponadto  $2 \leq e < 3$ , gdzie  $e = \lim_{n\to\infty} e_n$ .

 $Dow \acute{o}d.$  Najpierw zauważmy, że na mocy nierówności Bernoulliego mamy oszacowanie wartości ciągu z dołu

$$2 = 1 + 1 = 1 + n \frac{1}{n} \le \left(1 + \frac{1}{n}\right)^n, \ n \in \mathbb{N}.$$

Nam oszacowanie z góry będzie potrzebne do dowodu zbieżności. Korzystając z dwumianu newtona (3.8)

$$\left(1 + \frac{1}{n}\right)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} \cdot \left(\frac{1}{n}\right)^k = \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n^k}}_{\text{Gdyż } n^k \geqslant n!} \leqslant \sum_{k=0}^n \frac{n!}{(n-k)!k!n!} = \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n^k}}_{\text{Gdyz } n^k \geqslant n!} = \underbrace{\sum_{k=0}^n \frac{n!}{(n-k)!k!n^k}}_{\text{Gdyz } n^k \geqslant n!}$$

$$= \sum_{k=0}^{n} \frac{1}{(n-k)!k!} \leqslant \sum_{k=0}^{n} \frac{1}{k!}.$$

Zauważmy, że  $e_1=2, e_2=2+\frac{1}{4}<3$ a dla n>2mamy z powyższego oszacowania:

$$\sum_{k=0}^{n} \frac{1}{k!} = \frac{1}{0!} + \frac{1}{1!} + \sum_{k=2}^{n} \frac{1}{k!} = 2 + \sum_{k=2}^{n} \frac{1}{k!} < 3.$$

Wiemy zatem, że ciąg jest ograniczony. Wykażemy, że jest on monotoniczny a z tąd już zbieżność wynika z twierdzenia 4.3.1. Chcemy pokazać, że  $e_{n+1} > e_n$  a łatwiej pokazać równoważną nierówność:  $\frac{e_{n+1}}{e_n} > 1$ . Mamy

$$\frac{e_{n+1}}{e_n} = \frac{\left(1 + \frac{1}{n+1}\right)^{n+1}}{\left(1 + \frac{1}{n}\right)^n} = \left(\frac{n^2 + 2n}{n^2 + 2n + 1}\right) \cdot \frac{n+2}{n+1} = \left(\frac{n^2 + 2n + 1 - 1}{n^2 + 2n + 1}\right)^n \frac{n+2}{n+1}$$
$$= \left(1 + \frac{-1}{n^2 + 2n + 1}\right)^n \frac{n+2}{n+1}.$$

Po ostatniej równości korzystamy znowu z nierównośc Bernoulliego i otrzymujemy, że

$$\frac{e_{n+1}}{e_n} \geqslant \left(1 + n \frac{-1}{n^2 + 2n + 1}\right) \frac{n+2}{n+1} = \left(\frac{n^2 + n + 1}{n^2 + 2n + 1}\right)^n \frac{n+2}{n+1} = \frac{n^3 + 3n^2 + 3n + 2}{n^3 + 3n^2 + 3n + 1} > 1.$$

A więc ciąg  $(e_n)_{n\in\mathbb{N}}$  jest zbieżny, do liczby z przedziału [2, 3), co było do udowodnienia.

Podobnie jak jak liczba  $\pi$ , która począwszy naturalnie pojawia się w geometrii ale stykamy się z nią na każdym kroku w całej matematyce, tak liczba e jest podstawową stałą w analizie matematycznej i drugą z podstawowych stałych pojawiających się niemal wszędzie we współczesnej matematyce. W przybliżeniu liczba Eulera wynosi:

$$e \approx 2,71828182845904523536.$$

Ciekawostka - zauważmy, że łatwo zapamiętać aż dziewięć miejsc po przecinku przybliżenia liczby e, gdyż charakterystyczny czterocyfrowy ciąg "jeden-osiem-dwa-osiem" powtarza się dwukrotnie:  $e\approx 2,718281828$ . Zasadniczo warto pamiętać, że e to około 2,72, podobnie jak powinniśmy pamiętać, że  $\pi$  to około 3,14.

*Ćwiczenie* 39. Udowodnić, że ciąg  $(a_n)_{n\in\mathbb{N}}$  określony wzorem  $a_n=\left(1+\frac{1}{n}\right)^{n+1}$  jest zbieżny. Wywnioskować, że dla  $n=1,2,3,\ldots$ :

$$\left(1 + \frac{1}{n}\right)^n < e < \left(1 + \frac{1}{n}\right)^{n+1}.$$

Przykład 41. Pokażemy, że  $\lim_{n\to\infty}(1+n)^{\frac{1}{n}}=e$ . Podstawmy  $t=\frac{1}{n}, n\in\mathbb{N}$ , to wtedy  $n=\frac{1}{t}, n\in\mathbb{N}$  oraz gdy  $n\to 0$ , to  $t\to\infty$  (gdyż  $t=\frac{1}{n}\stackrel{n\to\infty}{\longrightarrow}\infty$ ).

$$\lim_{n \to 0} (1+n)^{\frac{1}{n}} = \lim_{t \to \infty} \left(1 + \frac{1}{t}\right)^t = e.$$

Przykład 42. Zobaczymy przykład typowej klasy zadań "na liczenie ciągów".

Obliczmy granicę 
$$\lim_{n \to \infty} \left( \frac{n-3}{n+2} \right)^{2n+1}$$
 Mamy  $\lim_{n \to \infty} \left( \frac{n-3}{n+2} \right)^{2n+1} = \lim_{n \to \infty} \left( \frac{n+2-5}{n+2} \right)^{2n+1}$ 

$$\lim_{n \to \infty} \left(1 + \frac{-5}{n+2}\right)^{2n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{\frac{n+2}{-5}}\right)^{2n+1} = \lim_{n \to \infty} \left[\left(1 + \frac{1}{\frac{n+2}{-5}}\right)^{\frac{n+2}{-5}}\right]^{\frac{-5(2n+1)}{n+2}}$$

Teraz zauważmy, że część w nawiasach kwadratowych dąży do e (jest to granica pewnego podciągu ciągu wyrazów  $e_n = (1 + \frac{1}{n})^n$  - porównaj twierdzenie 4.4.3 na stronie 58). Zatem nasza granica jest postaci

$$e^{\lim_{n\to\infty} a_n}$$
, gdzie  $a_n = \frac{-5(2n+1)}{n+2}$ .

Latwo obliczamy, że  $\lim_{n\to\infty}a_n=-10$ i stąd szukana granica wynosi  $e^{-10}$ 

Można spotkać sporo "granic prowadzących do liczby e", jak w powyższym przykładzie. Bynajmniej nie jest to tylko jakiś dziwny rodzaj zadań służący (wyłącznie) dręczeniu studentów, ale jak najbardziej granice tego typu występują w fizyce, ekonomii i innych "realistycznych" zastosowaniach. Nie mowiąc o matematyce teoretycznej. Trzeba umieć sobie z nimi radzić. Warto mieć w pamięci następujące

Twierdzenie 4.4.11. Zachodzi równość

$$\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right)^n = \frac{1}{e}$$

Dowód. Obliczamy

$$\lim_{n \to \infty} \left( 1 - \frac{1}{n} \right)^n = \lim_{n \to \infty} \left( 1 + \frac{1}{-n} \right)^{-(-n)} = \lim_{n \to \infty} \left[ \left( 1 + \frac{1}{-n} \right)^{-n} \right]^{-1} =$$

$$= \left[ \lim_{n \to \infty} \left( 1 + \frac{1}{-n} \right)^{-n} \right]^{-1} = [e]^{-1} = \frac{1}{e}.$$

Fakt, że mogliśmy wejśc z granicą "pod nawias  $(\cdots)^{-1}$ " wynika właściwie z twierdzenia 2 ze strony 103, które dopiero poznamy.

Ponadto w tym miejscu lektury, dla wprawy proponuję od razu proste

Ćwiczenie 40. Obliczyć granicę

$$\lim_{n \to \infty} \left( \frac{n+7}{n-2} \right)^{4n-2}$$

Zachecam też spróbować nieco inne rachunkowo

Ćwiczenie 41. Obliczyć granicę

$$\lim_{n \to \infty} \left( \frac{n^2 + 3}{n^2 + 1} \right)^{2n^2 + 1}$$

Twierdzenie 4.4.12. Niech  $(a_n)_{n\in\mathbb{N}}$  będzie dowolnym ciągiem liczb rzeczywistych, zbieżnym. Oznaczmy  $\lim_{n\to\infty}a_n=a$ . Wówczas

$$\lim_{n \to \infty} \left( 1 + \frac{a_n}{n} \right)^{a_n} = e^a.$$

Dowód. Ćwiczenie.

Twierdzenie 4.4.13.  $e^x > x + 1$  dla dowolnego  $x \in \mathbb{R}$ .

 $Dow \acute{o}d.$  Dla x<-1nierówność jest oczywista. Przypomnijmy nierówność Bernoulliego, zmieniając trochę oznaczenia:

$$1 + na \le (1+a)^n, \ x \ge -1.$$

Podstawiamy  $a=\frac{x}{n}$ i mamy

$$1+x \leqslant \left(1+\frac{x}{n}\right)^n \stackrel{n\to\infty}{\longrightarrow} e.$$

Zatem nierówność wynika z twierdzenia 4.2.5 o zachowaniu nierówności przy przejściu do granicy.

Ćwiczenie 42. Obliczyć granicę  $\lim_{n\to\infty}\left(\frac{3n-2}{3n+2}\right)^{n+1}.$ 

### 4.5 Granice ekstremalne

Możemy wprowadzić dodatkowe narzędzie, pozwalające na badanie podciągów, granic i ganic podciągów różnych ciągów liczb rzeczywistych. Określmy teraz działania na symbolach  $-\infty, +\infty$  i liczbach rzeczywistych (czyli przypomnijmy: elementach  $ciała \mathbb{R}$ )

$$-(+\infty) = -\infty - (-\infty) = +\infty$$

$$c + (+\infty) = c + \infty = +\infty + c = +\infty, \ c \in \mathbb{R}$$

$$c + (-\infty) = c - \infty = -\infty + c = -\infty, \ c \in \mathbb{R}$$

$$c \cdot (\pm \infty) = \pm \infty \cdot c = \pm \infty, \ c \in \mathbb{R}, c > 0$$

$$c \cdot (\pm \infty) = \pm \infty \cdot c = \mp \infty, \ c \in \mathbb{R}, c < 0$$

$$\frac{c}{\pm \infty} = 0, \ c \in \mathbb{R}$$

$$\left| \frac{c}{0} \right| = +\infty \text{ dla l. rzeczywistej } c \neq 0$$

Wyrażenia  $(-\infty) + (+\infty)$ ,  $+\infty + (-\infty)$  oraz  $\frac{0}{0}$  pozostają niezdefiniowane, podobnie jak  $0 \cdot (\pm \infty)$   $((\pm \infty) \cdot 0)$ . Porównaj: symbole nieoznaczone.

**Uwaga 4.5.1.** Nawet dwa ostatnie z powyższych symboli można zdefiniować w użyteczny sposób: np. w teorii miary i teorii prawdopodobieństwa jako 0. Wszystko zależy od kontekstu. W przypadku obliczania granic, są to "symbole nieoznaczone".

Definicja 4.5.2. Zbiór  $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$  będziemy nazywali rozszerzonym zbiorem liczb rzeczywistych.

Uwaga 4.5.3. Powyższa struktura nie jest już ciałem!

**Definicja 4.5.4.** Ustalmy dowolny ciąg  $(a_n)_{n\in\mathbb{N}}$ . Niech

$$E = \left\{ g \in \overline{\mathbb{R}} \colon \text{ istnieje taki podciąg } (a_{n_k})_{k \in \mathbb{N}} \text{ ciągu } (a_n)_{n \in \mathbb{N}}, \text{ że } \lim_{k \to \infty} a_{n_k} = g. \right\}.$$

Definiujemy **granicę dolną**  $\liminf_{n\to\infty} a_n$  ciągu  $(a_n)_{n\in\mathbb{N}}$  wzorem

$$\liminf_{n \to \infty} a_n = \inf E$$

oraz **granicę górną**  $\limsup_{n\to\infty} a_n$  ciągu  $(a_n)_{n\in\mathbb{N}}$  wzorem

$$\limsup_{n \to \infty} a_n = \sup E.$$

Sam zbiór nazywamy zbiorem punktów skupienia ciągu  $(a_n)_{n\in\mathbb{N}}$  albo jego granic częściowych.

**Twierdzenie 4.5.5.** Niech  $(a_n)_{n\in\mathbb{N}}$  będzie dowolnym ograniczonym ciągiem liczb rzeczywistych. Wtedy

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \left( \inf_{k \geqslant n} a_k \right) = \sup_{n \geqslant 0} \inf_{k \geqslant n} a_k$$

$$\limsup_{n \to \infty} a_n = \lim_{n \to \infty} \left( \sup_{k \geqslant n} a_k \right) = \inf_{n \geqslant 0} \sup_{k \geqslant n} a_k$$

**Twierdzenie 4.5.6.** Dla dowolnego ciągu  $(a_n)_{n\in\mathbb{N}}$  liczb rzeczywistych

$$\liminf_{n \to \infty} a_n \leqslant \limsup_{n \to \infty} a_n.$$

Twierdzenie 4.5.7. Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą ciągami liczb rzeczywistych takimi, że dla pewnego  $N \in \mathbb{N}$ :  $a_n \leq b_n$  o ile tylko  $n \geq N$ . Wówczas

$$\liminf_{n\to\infty} a_n \leqslant \liminf_{n\to\infty} b_n, \ \limsup_{n\to\infty} a_n \leqslant \limsup_{n\to\infty} b_n.$$

Najważniesze twierdzenie z tej części, to

Twierdzenie 4.5.8. Dla dowolnego ciągu  $(a_n)_{n\in\mathbb{N}}$  liczb rzeczywistych granica  $\lim_{n\to\infty} a_n$  właściwa (tj. skończona) istnieje wtedy i tylko wtedy, gdy

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Jeżeli granica ta istnieje, to  $\lim_{n\to\infty} a_n = \liminf_{n\to\infty} a_n = \limsup_{n\to\infty} a_n$ .

Przykład 43. Zbadamy granicę ciągu  $(a_n)_{n\in\mathbb{N}}$  danego wzorem

$$a_n = \left(1 + (-1)^n \frac{1}{n}\right)^n.$$

Dla  $n=2k, k\in\mathbb{N}$  mamy podciągi wyrazów  $(a_n)_{n\in\mathbb{N}}$  postaci  $a_{2k}=\left(1+\frac{1}{2k}\right)^{2k}$ . Wtedy z twierdzenia 4.4.12 mamy, że  $\lim_{k\to\infty}a_{2k}=e.$  Z kolei dla n=2k-1 otrzymujemy podciągi w postaci

$$a_{2k+1} = \left(1 - \frac{1}{2k-1}\right)^{2k-1} \stackrel{n \to \infty}{\to} \frac{1}{e}.$$

Wtedy mamy zbiór granic częściowych  $E=\left\{e,\frac{1}{e}\right\}$  (wyczerpaliśmy wszystkie możliwe podciągi, gdyż każda liczba naturalna  $n \in \mathbb{N}$  jest liczbą parzystą lub nieparzystą, czyli: postaci 2k lub 2k-1). Widzimy teraz, że

$$\limsup_{n \to \infty} a_n = e \text{ oraz } \liminf_{n \to \infty} a_n = \frac{1}{e}.$$

Granice górna i dolna są różne, zatem granica  $\lim_{n\to\infty} a_n$  nie istnieje.

Twierdzenie 4.5.9. Dla dowolnego ciągu liczb dodatnich  $(x_n)_{n\in\mathbb{N}}$  zachodzi

$$\liminf_{n\to\infty}\frac{x_{n+1}}{x_n}\leqslant \liminf_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\frac{x_{n+1}}{x_n}$$

Dowód. Środkowa nierówność jest powtórzeniem twierdzenia 4.5.6. Udowodnimy prawą nierówność. Niech  $g:=\limsup_{n\to\infty}\frac{x_{n+1}}{x_n}$ . Jeżeli  $g=+\infty$ , to nierówność oczywiście zachodzi. Niech więc

 $g \in \mathbb{R}$ . Weźmy dowolne  $\alpha > g$ . Istnieje (lemat 4.5.13)  $N \in \mathbb{N}$  takie, że  $\frac{x_{n+1}}{x_n} \leqslant \alpha, \ n \geqslant N$ . Inaczej mówiąc  $x_{N+k+1} \leq x_{N+k}\alpha$  dla  $k \in \mathbb{N}$ . Możemy napisać, że dla każdego p > 0 i dla kolejnych  $k = 0, 1, 2, \dots, p - 1$  mamy:

$$x_{N+1} \leqslant x_N \alpha$$

$$x_{N+2} \leqslant x_{N+1}\alpha$$
$$x_{N+3} \leqslant x_{N+2}\alpha$$
$$\vdots$$

Mnożąc kolejne nierówności stronami otrzymujemy:

$$x_{N+1} \leqslant x_N \alpha$$

$$x_{N+2} \leqslant x_{N+1} \alpha \leqslant x_N \alpha^2$$

$$x_{N+3} \leqslant x_{N+2} \alpha \leqslant x_{N+1} \alpha^2 \leqslant x_N \alpha^3$$

$$\vdots$$

$$x_{N+p} \leqslant x_{N+p-1} \alpha \leqslant \dots \leqslant x_{N+1} \alpha^{p-1} \leqslant x_N \alpha^p.$$

Mamy zatem  $x_{N+p} \le x_N \alpha^p$ . Możemy wyrazić dowolne  $n \ge N$  jako n = N+p dla odpowiedniego p>0 i wtedy p=n-N. Nasze oszacowanie ma zatem postać

$$x_n \leqslant x_N \alpha^{n-N}, \ n \geqslant N.$$

Dalej  $\sqrt[n]{x_n} \leqslant \sqrt[n]{x_N \alpha^{-N}} \alpha$ . Przechodząc do granicy<sup>1</sup> otrzymujemy, że

$$\limsup_{n \to \infty} \sqrt[n]{x_n} \leqslant \alpha$$

Z dowolności  $\alpha$  i  $g < \alpha$  możemy przyjąć  $\alpha \to g$  i wtedy mamy, że

$$\limsup_{n \to \infty} \sqrt[n]{x_n} \leqslant g.$$

Lewą nierówność można udowodnić analogicznie.

Wniosek 4.5.10. Jeżeli dla pewnego ciągu  $(a_n)_{n\in\mathbb{N}}$  istnieje granica  $\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ , to istnieje również granica ciągu  $(\sqrt[n]{a_n})_{n\in\mathbb{N}}$  oraz  $\lim_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}$ .

*Ćwiczenie* 43. Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem takim, że  $\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=q\in\mathbb{R},\ q=\text{const.}$  Pokazać, że jeżeli q<1, to  $\lim_{n\to\infty}a_n=0$ .

że jeżeli q < 1, to  $\lim_{n \to \infty} a_n = 0$ . Sugestia: najpierw zająć się przypadkiem  $a_n \ge 0, n \in \mathbb{N}$  a potem uzupełnić dowód do  $a_n$  dowolnego. Można przeprowadzić bardzo podobne rozumowanie jak w dowodzie poprzedniego twierdzenia.

**Lemat 4.5.11.** Dla dowolnych ciągów liczb rzeczywistych:  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  ściśle rosnącego zachodzi:

$$\liminf_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}\leqslant \liminf_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_n}{b_n}\leqslant \limsup_{n\to\infty}\frac{a_{n+1}-a_n}{b_{n+1}-b_n}.$$

Dowód. W opracowaniu! TO-DO

Bezpośrednio z powyższego oszacowania mamy:

$$\frac{1}{\lim\sup_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{x_N\alpha^{-N}}\alpha\leqslant \lim_{n\to\infty}\sqrt[n]{x_N\alpha^{-N}}\alpha=\alpha$$

Twierdzenie 4.5.12 (Stolza). Niech  $(x_n)_{n\in\mathbb{N}}$  będzie dowolnym ciągiem, a  $(y_n)_{n\in\mathbb{N}}$  ciągiem monotonicznym i  $\lim_{n\to\infty}y_n=\infty$ . Wtedy,

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\lim_{n\to\infty}\frac{x_n-x_{n-1}}{y_n-y_{n-1}},$$

o ile granica po prawej stronie istnieje (skończona lub nie).

*Ćwiczenie* 44. Obliczyć  $\lim_{n\to\infty} \frac{\ln n}{n}$ .

W dalszej części lektury podamy jeszcze jedno twierdzenie (tw. 5.4.12) charakteryzujące granice ekstremalne, tutaj jednak jesteśmy już w stanie udowodnić jego najużyteczniejszą w toku wykładu część:

**Lemat 4.5.13.** Niech  $(x_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb rzeczywistych, E zbiorem jego granic częściowych oraz oznaczmy  $\bar{x}=\limsup_{n\to\infty}x_n=\sup E.$  Wówczas:

Jeżeli 
$$\mathbb{R} \ni \alpha > \bar{x}$$
, to istnieje  $n_0 \in \mathbb{N}$  taka, że  $x_n < \alpha, n \geqslant n_0$ .

Dowód. Niech więc  $\bar{x}=\sup E$ . Przypuśćmy, nie wprost, że istnieje liczba  $\alpha>\bar{x}$  taka, że  $x_n\geqslant\alpha$  dla nieskończenie wielu n. Niech  $\{x_{n_k}\colon k\in\mathbb{N}\}$  będzie zbiorem tych wyrazów ciągu  $(x_n)_{n\in\mathbb{N}}$ , to wtedy  $\lim_{k\to\infty}x_{n_k}\geqslant\alpha>\bar{x}$  - sprzeczność z definicją liczby  $\bar{x}$ .

### 4.6 Proste zagadnienia interpolacyjne\*

**Definicja 4.6.1.** Zagadnienie **interpolacji** w naukach ścisłych i - szczególnie - technicznych, polega na znalezieniu funkcji y = f(x), która w danych z góry, różnych od siebie punktach (np. wynikach pomiaru, rezultatach przeprowadzonego wielokrtotnie doświadczenia)

$$x_0, x_1, \ldots, x_n;$$

przybiera dane wartości

$$y_0, y_1, \ldots, y_n,$$

tj. funkcji 
$$f: X \to Y$$
,  $\{x_0, x_1, \dots, x_n\} \subseteq X$ ,  $\{y_0, y_1, \dots, y_n\} \subseteq Y$  takiej, że  $f(x_k) = y_k, k \in \{1, \dots, n\}$ .

Postawiony powyżej problem ma nieskończenie wiele rozwiązań, ponieważ można poprowadzić nieskończenie wiele krzywych, przechodzących przez skończoną ilość punktów  $x_0, x_1, \ldots, x_n$ . Załóżmy jednak, że chcemy, aby funkcja f była wielomianem najniższego stopnia. Zachodzi następujące

**Twierdzenie 4.6.2.** Istnieje dokładnie jeden wielomian stopnia co najwyżej n-tego, który w punktach  $\{x_0, x_1, \ldots, x_n\}$  przybiera wartości  $\{y_0, y_1, \ldots, y_n\}$ .

Dowód. Zauważmy, że wyrażenie

$$\frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)(x_i-x_1)\cdot(x_i-x_{i-1})(x_i+x_{i+1})\cdots(x_i-x_n)}$$

jest wielomianem stopnia n, przyjmującym w punkcie  $x=x_i$  wartość 1, a w pozostałych punktach wartość 0. Wobec tego wyrażenie, dane sumą:

$$W(x) = \sum_{i=0}^{n} f(x_i) \prod_{\substack{0 \le j \le n \\ j \ne i}} \frac{x - x_j}{x_i - x_j} =$$

$$(4.9) \qquad = \sum_{i=0}^{n} f(x_i) \frac{(x-x_0)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_i-x_0)\cdot(x_i-x_{i-1})(x_i+x_{i+1})\cdots(x_i-x_n)}.$$

jest wielomianem stopnia co najwyżej n-tego (pewne wyrazy mogą ulec redukcji), który dla  $x=x_i$  przybiera wartość  $y_i=f(x_i), i\in\{0,1,\ldots,n\}$ . Gdyby istniał inny wielomian, np. P o tej samej własności, to wielomian W-P byłby wielomianem stopnia co najwyżej n-tego mającym n+1 punktów zerowych  $W(x_0)-P(x_0), W(x_1)-P(x_1),\ldots,W(x_n)-P(x_n)$ .

Wzór 4.9 nazywamy wzorem interpolacyjnym Lagrange'a.

Wzór interpolacyjny Newtona. Każdy wielomian stopnia mniejszego lub równego n można zapisać w postaci

$$(4.10) W(x) = c_0 + c_1(x - x_0) + c_2(x - x_0)(x - x_1) + \dots + c_n(x - x_0)(x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

dobierając odpowiednio współczyniki  $c_1, \ldots, c_n$ . Wyznaczamy je z warunków  $W(x_k) = y_k$  dla  $k = 0, 1, \ldots, n$ . W tym celu przyjmujemy oznaczenia:

$$w_1(x) = \frac{W(x) - W(x_0)}{(x - x_0)}, w_2(x) = \frac{W_1(x) - W_1(x_1)}{(x - x_1)}, \dots, w_n(x) = \frac{W_{n-1}(x) - W_{n-1}(x_{n-1})}{(x - x_{n-1})}.$$

Łatwo sprawdzić, że funkcje  $w_1, w_2, \dots, w_n$  są znowu wielomianami, bo zgodnie ze wzorem 4.10

$$w_k(x) = c_1^{(k)} + c_2^{(k)}(x - x_1) + \dots + c_n^{(k)}(x - x_1) \dots (x - x_{n-1}), k \in \{1, \dots, n\}.$$

Zatem  $c_0^{(k)} = W(x_0)$ ,  $c_1 = w_1(x_1), \ldots, c_n = w_n(x_n)$ . Podstawiając te wyniki do wzoru 4.10 otrzymujemy

$$(4.11) W(x) = W(x_0) + w_1(x_1)(x - x_0) + w_2(x_2)(x - x_0)(x - x_1) + \dots + w_n(x_n)(x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

Wzór 4.11 nazywamy wzorem interpolacyjnym Newtona. Wzór ma nad wzorem Lagrange'a np. taką przewagę, że gdybyśmy odrzucili z punktów  $x_0, x_1, \ldots, x_n$  ostatni, to we wzoreze 4.11 zniknąłby tylko ostatni wyraz, a inne wyrazy pozostałyby niezmienione.

W praktyce obliczanie współczynników  $w_k(x_k)$  wzoru 4.11 wygodnie wykonuje się tworząc następuącą tabelę (wypisujemy dla przypadku n=4):

Dwie pierwsze kolumny tabeli są z góry dane. Kolumny dalsze obliczamy kolejno dzieląc, zgodnie ze wzorami, różnicę dwu wyrazów kolumny poprzedniej przez różnicę odpowiadających wyrazów kolumny pierwszej. Górne wyrazy wszystkich kolumn, poza pierwszą, są szukanymi współczynnikami.

## Rozdział 5

# Elementy topologii przestrzeni metrycznych i algebry liniowej

## 5.1 Przestrzenie metryczne

#### 5.1.1 Intuicje prowadzące do przestrzeni metrycznych

#### 5.1.2 Ścisłe określenie przestrzeni metrycznej

**Definicja 5.1.1.** Mówimy, że para  $(X, \rho)$  jest **przestrzenią metryczną**, gdy X jest dowolnym zbiorem a  $\rho: X \times X \to [0, +\infty)$  odwzorowaniem, oraz  $\rho$  spełnia następujące własności

- (M1)  $\rho(x,y) = 0$  wtedy i tylko wtedy, gdy x = y,
- (M2)  $\rho(x,y) = \rho(y,x)$  dla dowolnych  $x,y \in X$ , (symetria)
- (M3)  $\rho(x,y) \leq \rho(x,z) + \rho(z,y)$  dla dow.  $x,y,z \in X$ . (warunek trójkąta).

Metrykę bardzo często oznacza się przez d,  $\rho$ ,  $\sigma$ .

Przykład 44. Przestrzeń ( $\mathbb{R}, d_e$ ), gdzie  $d_e(x, y) := |x - y|$  nazywamy metryką naturalną na prostej. Łatwo wykazać, że faktycznie mamy do czynienia z przestrzenią metryczną odwołując się do twierdzenia 3.4.28 i porównoując z definicją przestrzeni metrycznej.

 $\mbox{\it Cwiczenie}$ 45. Niech Xbędzie dowolnym niepustym zbiorem. Określ<br/>my funkcję  $d\colon X\to\{0,1\}$ wzorem

$$d(x,y) = \begin{cases} 0, & \text{gdy } x = y, \\ 1, & \text{gdy } x \neq y. \end{cases}$$

Udowodnić, że para (X, d) jest przestrzenią metryczną. Nazywamy ją przestrzenią metryczną **dyskretną** albo **zero-jedynkową** (w skrócie: przestrzenią 0-1).

Często będziemy stosować oznaczenie  $d_e$  na przestrzeń euklidesową, ale nie jest jakimś powszechnie przyjętym oznaczeniem na metrykę euklidesową. Często stosuje się też zapis  $(\mathbb{R}, |\cdot - \cdot|)$ , gdzie  $|\cdot - \cdot|$  oznacza metrykę daną jako  $(x,y)\mapsto |x-y|$ .

Oznaczenie d dla metryki 0-1 nie jest uniwersalne, będziemy zawsze pisać jeśli będzie mowa o metryce dyskretnej.

Przykład 45. Przestrzenią metryczną jest para  $(S^1,\ell)$ , gdzie  $S^1=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2=1\}$  oraz  $\ell(a,b)=\{|\stackrel{\frown}{ab}|\colon |\stackrel{\frown}{ab}|\leqslant \pi\}$   $(|\stackrel{\frown}{ab}|$  oznacza długość łuku, którego końcami są punkty  $a,b\in\mathbb{R}^2$  i zawartego w  $S^1$ ).

A więc przestrzenią jest okrąg jednostkowy (tzn. o promieniu równym jeden) o środku w punkcie (0,0) wraz z odległością między dwoma leżącymi na nim punktami określoną jako długość łuku, jaki oddzielają od okręgu, przy czym zawsze wybieramy krótszy z dwóch łuków w ten sposób wyznaczonych.

Przykład 46 (Inne metryki na  $\mathbb{R}^n$ ). Funkcje  $d_m, d_t \colon (\mathbb{R}^n)^2 \to [0, \infty)$  dane dla każdych  $x, y \in \mathbb{R}^n$ ,  $x = (x_1, \dots, x_n), y = (y_1, \dots, y_n)$ :

$$d_m(x,y) = \max_{1 \le k \le n} |x_k - y_k|,$$

$$d_t(x,y) = \sum_{k=1}^{n} |x_k - y_k|$$

są metrykami na  $\mathbb R$  - nazywamy je odpowiednio metryką maksimum i metryką taksówkową. Przy n=1 obydwie metryki sprowadzają się do metryki naturalnej na prostej.

Dla ćwiczenia warto zapisać sobie powyższe metryki dla n=2 i narysować jak w tej przestrzeni wyglądają różne zbiory, np. kula K(0,1).

*Ćwiczenie* 46. Sprawdzić, że jeżeli para  $(X, \rho)$  jest przestrzenią metryczną, to przestrzenią metryczną jest również para  $(X, \rho^*)$ , gdzie metryka  $\rho^* : X \times X \to [0, \infty)$  jest dana wzorem

$$\rho^*(x,y) = \frac{\rho(x,y)}{1 + \rho(x,y)}.$$

Możemy w ten sposób od razu wygenerować kilka kolejnych przykładów przestrzeni metrycznych przyjmując  $X=\mathbb{R}$ , a za  $\rho$  kolejno metrykę naturalną, metrykę dyskretną, maksimum i taksówkową z poprzednich przykładów. Podobnie, kolejne dwa ćwiczenia pokazują sposoby generowania nowych metryk, gdy mamy już daną pewną metrykę d.

*Ćwiczenie* 47. Wykazać, że jeżeli  $\rho$  jest metryką w X, to metryką na  $\mathbb R$  jest również funkcja  $\rho^{1/2} \colon X \to [0, \infty)$  dana wzorem

$$\rho^{1/2}(x,y) = \sqrt{\rho(x,y)}.$$

 $\acute{C}wiczenie$  48. Sprawdzić, że jeżeli  $\rho$  jest metryką w X, to metryką jest również funkcja  $\tilde{\rho}\colon X^2\to [0,1]$  dana wzorem

$$\tilde{\rho}(x,y) = \min\{1, \, \rho(x,y)\}.$$

Metrykę  $\tilde{\rho}$  określa się czasem mianem standadrowej metryki ograniczonej, indukowanej przez metrykę  $\rho$ .

*Ćwiczenie* 49. Zinterpretować geometrycznie metrykę centralną, tj. metrykę  $d_c \colon \mathbb{R}^2 \to \mathbb{R}$  daną wzorem

$$d_c\bigg((x_1,y_1),(x_2,y_2)\bigg) = \begin{cases} (x_2-x_1)^2 + (y_2-y_1)^2, & \text{gdy punkty } (x_1,y_1),(x_2,y_2) \text{ i } (c_1,c_2) \text{ są współliniowe,} \\ x_1^2 + y_2^2, & \text{w przeciwnym wypadku.} \end{cases}$$

gdzie punkt  $c = (c_1, c_2) \in \mathbb{R}^2$  jest dany - nazywamy go centrum metryki  $d_c$ . Dlaczego metryka ta nazywana też jest metryką kolejową?

#### Produkt kartezjański przestrzeni metrycznych

Przykład 47 (Euklidesowa przestrzeń metryczna). W przestrzeni ( $\mathbb{R}^n, d_e$ ), metryką jest funkcja określona wzorem:

$$d_e(x,y) = \sqrt{\sum_{k=1}^{n} (x_k - y_k)^2},$$

dla dow. punktów  $x, y \in \mathbb{R}^n$ ,  $x = (x_1, x_2, \dots, x_n)$  i  $y = (y_1, y_2, \dots, y_n)$ .

 $d_e$  nazywamy metryką euklidesową albo naturalną na  $\mathbb{R}^n$ . Oczywiście, przy n=1 otrzymujemy wcześniej określoną metrykę naturalną na prostej. Czasami dla n>1 piszemy po prostu  $d_e^{(n)}$ .

Sprawdzenie, że  $d_e$  jest metryką na  $\mathbb{R}^n$  wymaga skorzystania z tzw.: Nierówności Cauchy'ego-Buniakowskiego-Schwarza (w skrócie "nierówność CBS"), najczęściej w polskiej literaturze występującej jako "nierówność Cauchy'ego-Schwarza".

**Twierdzenie 5.1.2** (Nierówność Cauchy'ego-Buniakowskiego-Schwarza). *Jeśli*  $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ , to zachodzi nierówność

$$\left(\sum_{k=1}^{n} a_k b_k\right)^2 \leqslant \left(\sum_{k=1}^{n} a_k^2\right) \left(\sum_{k=1}^{n} b_k^2\right).$$

 $Dow \acute{o}d$ . Ustalmy funkcję  $f: \mathbb{R} \to \mathbb{R}$  daną wzorem:

$$f(t) = \left(\sum_{k=1}^{n} a_k^2\right) t^2 - 2\left(\sum_{k=1}^{n} a_k b_k\right) t + \sum_{k=1}^{n} b_k^2.$$

Zauważmy, że  $f \ge 0$ , gdyż  $f(t) = \sum_{k=1}^{n} (a_k t - b_k)^2 \ge 0$ ,  $t \in \mathbb{R}$ . Stąd wyróżnik  $\Delta$  równania kwadratowego f(t) = 0 jest mniejszy lub równy zero:

$$\Delta = 4 \left( \sum_{k=1}^{n} a_k b_k \right)^2 - 4 \left( \sum_{k=1}^{n} a_k^2 \right) \left( \sum_{k=1}^{n} a_k b_k^2 \right) \le 0.$$

Ale stąd już widać, że jest to nasza dowodzona nierówność. Koniec dowodu.

*Ćwiczenie* 50. Korzystająć z nierówności Cauchy'ego-Schwarza udowodnić, że jeżeli  $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathbb{R}$ , to

$$\sqrt{\sum_{k=1}^{n} (a_k + b_k)^2} \leqslant \sqrt{\sum_{k=1}^{n} a_k^2} + \sqrt{\sum_{k=1}^{n} b_k^2}.$$

**Twierdzenie 5.1.3.** Niech  $(X_1, \rho_1), (X_2, \rho_2), \ldots, (X_n, \rho_n)$  będą przestrzeniami metrycznymi. Wówczas zbiór  $X_1 \times X_2 \times \ldots \times X_n$  jest przestrzenią metryczną o metryce  $\rho \colon X_1 \times \ldots \times X_n \to [0, \infty)$  danej wzorem

$$\rho(x,y) = \rho((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sqrt{\sum_{k=1}^n (\rho_k(x_k, y_k))^2}$$

 $Dow \acute{o}d.$  Ustalamy  $x=(x_1,\ldots,x_n),y=(y_1,\ldots,y_n),z=(z_1,\ldots,z_n).$  Korzystając n-krotniez warunku (M3) mamy nierówności

(5.2) 
$$\rho_k(x_k, y_k) \leq \rho_k(x_k, z_k) + \rho_k(z_k, y_k), \ k = 1, 2, \dots, n.$$

Z nierówności (5.1) wynika nierówność

(5.3) 
$$\sum_{k=1}^{n} \rho_k(x_k, z_k) \rho_k(z_k, y_k) \leqslant \sqrt{\sum_{k=1}^{n} \rho_k(x_k, z_k)} \sqrt{\sum_{k=1}^{n} \rho_k(z_k, y_k)} = \rho(x, z) \rho_k(z, y).$$

Szacujemy

$$(\rho(x,y))^{2} = \sum_{k=1}^{n} (\rho_{k}(x_{k},y_{k}))^{2} \underset{(5.2)}{\leqslant} \sum_{k=1}^{n} (\rho_{k}(x_{k},z_{k}) + \rho_{k}(z_{k},y_{k}))^{2} =$$

$$= \sum_{k=1}^{n} (\rho_{k}(x_{k},z_{k}))^{2} + 2 \sum_{k=1}^{n} \rho_{k}(x_{k},z_{k}) \rho_{k}(z_{k},y_{k}) + \sum_{k=1}^{n} (\rho_{k}(z_{k},y_{k}))^{2} \underset{(5.3)}{\leqslant} (\rho(x,z))^{2} + 2\rho(x,z)\rho(z,y) + (\rho(z,y))^{2} =$$

$$= (\rho(x,z) + \rho(z,y))^{2}.$$

Czyli  $\rho(x,y) \leqslant \rho(x,z) + \rho(z,y)$  dla dowolnych  $x,y,z \in X^n.$ 

Przyjmując  $X_k = \mathbb{R}$  i  $\rho_k = |\cdot - \cdot|$  w poprzednim twierdzeniu otrzymujemy metrykę euklidesową z przykładu 47. Stąd jest to w pewien sposób "naturalna" metryka dla produktu przestrzeni, jednak oczywiście niejedyna. Łatwo sprawdzić, że metryką przy założeniach poprzedniego twierdzenia jest na przykład metryka dana wzorem

$$\rho(x,y) = \sum_{k=1}^{n} \rho_k(x_k, y_k).$$

## 5.2 Zbiory otwarte i domknięte

Ustalmy dla tego paragrafu przestrzeń metryczną  $(X, \rho)$ . Dla każdego zbioru  $A \subseteq X$  oznaczamy przez A' jego dopełnienie  $X \setminus A$  względem przestrzeni X.

**Definicja 5.2.1.** Dla dow.  $x \in X$  oraz l. rzeczywistej r > 0 zbiór

$$K(x,r) = \{ y \in X : \rho(x,y) < r \}$$

nazywamy kulą otwartą w przestrzeni X o środku x oraz promieniu r.

**Uwaga 5.2.2.** Zbiór  $\overline{K}(x,r) = \{y \in X : \rho(x,y) \le r\}$  często nazywany jest "kulą domkniętą".

**Definicja 5.2.3.** Mówimy, że zbiór  $U \subseteq X$  jest zbiorem **otwartym** (w przetrzeni X), gdy dla każdego  $x \in U$  istnieje kula o środku w tym punkcie zawarta w zbiorze U, tzn.  $\exists_{\varepsilon>0}$ ,  $K(x,\varepsilon) \subseteq U$ .

**Definicja 5.2.4.** Mówimy, że zbiór  $F \subseteq X$  jest zbiorem **domkniętym** (w przetrzeni X), gdy zbiór  $F' := X \setminus F$  jest zbiorem otwartym.

**Definicja 5.2.5.** Zbiór otwarty U, zawierający punkt x nazywamy **otoczeniem** punktu x. Gdy U jest otoczeniem punktu x, to zbiór  $S := U \setminus \{x\}$  nazywamy **sąsiedztwem** punktu x. Kula otwarta o środku w punkcie x sama w sobie jest otoczeniem punktu x. Zbiór  $K(x,r) \setminus \{x\}$  nazywamy sąsiedztwem punktu x.

Otoczenie punktu jest pojęciem topologicznym. W przypadku przestrzeni metrycznej można posługiwać się pojęciem kuli otwartej wszędzie tam, gdzie w definicjach i twierdzeniach występuje pojęcie otoczenia. Niekiedy w podręcznikach wprowadzających w tematykę przestrzeni metrycznych otoczenie punktu traktuje się jako synonim kuli otwartej. Jeżeli istnieje zbiór otwarty zawierający punkt, to z definicji istnieje też kula otwarta o środku w tym punkcie, zawarta w tym otoczeniu, a gdy istnieje kula o środku w zadanym punkcie to jest ona po prostu otoczeniem w myśl wprowadzonej przez nas definicji.

Istnieje też w topologii jeszcze inna definicja otoczenia punktu x: określa się je jako zbiór V, który jedynie zawiera zbiór otwarty U, taki że  $x \in U$ . Wtedy w szczególności jest V jest otwarty to można o nim powiedzieć, że jest otoczeniem otwartym. My jednak przyjmujemy, że otoczenie punktu jest zbiorem otwartym.

Ponadto kulę w literaturze światowej często oznacza się  $B(x,\varepsilon)$  (od ang. ball). Czesem też pisze się w dolnym indeksie przestrzeń albo metrykę, gdy nie wynika z kontekstu, o jaką przestrzeń chodzi. Np.:  $B_d(x,\varepsilon)$  albo  $B_X(x,\varepsilon)$  może oznaczać kulę w przestrzeni metrycznej (X,d). My będziemy czasem oznaczać sąsiedztwo punktu x przez  $S(x,\varepsilon)$  – jednak uwaga: tak bywa oznaczana sfera, czyli zbiór  $\{y\in X\colon \rho(x,y)=r\}$ . Często w rozumowaniach teoretycznych nie potrzebujemy oznaczenia na promień, nawet jeśli rozważamy kule i sąsiedztwa otwarte. Będziemy wtedy oznaczać odpowiednio otoczenie punktu  $x\in X$  przez  $K_x$ ,  $B_x$ ,  $U_x$ , kule przez K, B,  $K_x$ , etc., oraz sąsiedztwo przez S,  $S_x$ , itp.

Wszystkie te dodatkowe uwagi techniczne, terminologiczne, notacyjne mają w większości ułatwić czytelnikowi korzystanie z innej literatury, ze względu na różnorodność ujęć, z którymi można się zetknąć. Nie należy się nimi specjalnie przejmować w kontekście dalszej lektury.

**Definicja 5.2.6.** Punkt  $x \in X$  nazywamy **punktem skupienia** zbioru  $A \subseteq X$ , gdy dla każdego sąsiedztwa  $S_x$  punktu x zachodzi

$$S_x \cap A \neq \emptyset$$

Zbiór wszystkich punktów skupienia zbioru A nazywamy **pochodną** zbioru A i oznaczamy  $A^d$ .

**Lemat 5.2.7** (Hausdorffa). Jeżeli  $(X, \rho)$  jest przestrzenią metryczną, to dla każdych  $x, y \in X$ ,  $x \neq y$  istnieją takie zbiory otwarte  $U, V \subseteq X$ , że

- 1.  $U \cap V = \emptyset$ ,
- $2. x \in U, y \in V.$

 $Dowód. \text{ Wystarczy przyjąć } \varepsilon = \frac{\rho(x,y)}{2}. \text{ Wówczas oczywiście } K(x,\varepsilon) \cap K(y,\varepsilon) = \varnothing.$ 

**Twierdzenie 5.2.8.** Niech  $A, B \subseteq X$  i  $A^d$ ,  $B^d$  będą pochodnymi tych zbiorów. Wtedy

- 1.  $(A \cup B)^d = A^d \cup B^d$ .
- $2. (A^d)^d \subseteq A^d.$
- 3.  $\bigcup_{i \in I} A_i^d \subseteq \left(\bigcup_{i \in I} A_i\right)^d$  dla dowolnej rodziny  $\{A_n \colon n \in I\}$ .

Twierdzenie 5.2.9. Jeżeli x jest punktem skupienia zbioru A, to dowolne otoczenie punktu x zawiera nieskończenie wiele punktów zbioru A.

Dowód. Ustalmy zbiór A i jego punkt skupienia x. Załóżmy, że istnieje otoczenie  $K(x,\epsilon)$  punktu x takie, że  $K(x,\epsilon) \cap A = \{a_1,a_2,\ldots,a_n\}$ . Przyjmijmy  $\varepsilon = \min_{1 \le k \le n} \rho(x,a_k)$ . Oczywiście  $\varepsilon > 0$ . Wtedy otoczenie  $K(x,\varepsilon)$  nie zawiera ani jednego punktu zbioru A różnego od x - sprzeczność.

Wniosek 5.2.10. Skończony zbiór nie ma punktów skupienia.

#### Twierdzenie 5.2.11.

- 1. Dla dowolnej rodziny  $\{U_t \colon t \in T\}$  zbiorów otwartych zbiór  $\bigcup_{t \in T} U_t$  jest otwarty.
- 2. Dla dowolnej rodziny  $\{F_t : t \in T\}$  zbiorów domkniętych zbiór  $\bigcap_{t \in T} F_t$  jest domknięty.
- Dowód. 1. Niech  $x\in\bigcup_{t\in T}U_t$ . Oznacza to, że istnieje  $t_0\in T$  iż  $x\in U_{t_0}$ . A z otwartości zbioru  $x\in U_{t_0}$  istnieje r>0 iż  $K(x,r)\subseteq U_{t_0}$ . A więc  $K(x,r)\subseteq U_{t_0}\subseteq\bigcup_{t\in T}U_t$  z dowolności wyboru x wynika otwartość naszej sumy.
  - 2. Zauważmy, że jeżeli  $\{F_t : t \in T\}$  jest rodziną zbiorów domkniętych, to  $\{X \setminus F_t : t \in T\}$  jest rodziną zbiorów otwartych.  $\bigcup_{t \in T} X \setminus F_t$  jest zbiorem otwartym na mocy poprzedniego punktu. Ale w takim razie zbiór  $\bigcup_{t \in T} X \setminus F_t = X \setminus \bigcap_{t \in T} F_t$  jest otwarty, czyli zbiór  $\bigcap_{t \in T} F_t$  jest domknięty.  $\square$

#### Twierdzenie 5.2.12.

- 1. Dla dowolnej skończonej rodziny  $U_1, U_2, \dots U_n$  zbiorów otwartych zbiór  $\bigcap_{t=1}^n U_t$  jest otwarty.
- 2. Dla dowolnej skończonej rodziny  $F_1, F_2, \dots F_n$  zbiorów domkniętych zbiór  $\bigcup_{t=1}^n F_t$  jest domkniętych zbiór t

 $Dow \acute{od}$ . 1. Niech  $x \in \bigcap_{t=1}^n U_t$ . Oznacza to, że istnieją takie liczby  $r_1, r_2, \dots, r_n > 0$ , że

$$K(x, r_t) \subseteq U_t, \ t = 1, 2, \dots, n.$$

Niech  $r=\min\{r_1,r_2,\ldots,r_n\}$ . Wówczas  $K(x,r)\subseteq K(x,r_t)\subseteq U_t$  dla dowolnego  $t=1,\ldots,n$ . Wnioskujemy:

$$y \in K(x,r) \implies (\forall_{t \in \{1,\dots,n\}}, y \in K(x,r_t)) \implies (\forall_{t \in \{1,\dots,n\}}, y \in U_t) \implies y \in \bigcap_{t=1}^n U_t.$$

A więc  $K(x,r)\subseteq\bigcap_{t=1}^n U_t$  czyli suma jest otwarta i teza została udowodniona.

2. 
$$F_1, F_2, \dots, F_n$$
 - domknięte  $\implies X \setminus F_1, X \setminus F_2, \dots, X \setminus F_n$  - otwarte.

$$\bigcap_{t=1}^{n} X \setminus F_{t} \text{ - otwarty (z poprzedniego punktu)}$$

$$X \setminus \bigcup_{t=1}^{n} F_{t} \text{ - otwarty } \Longrightarrow \bigcup_{t=1}^{n} F_{t} \text{ - domknięty.}$$

Powyższe twierdzenie nie zostaje w mocy dla nieskończonych rodziny zbiorów odpowiednio otwartych i domkniętych.

*Przykład* 48. Rozważmy ciąg zbiorów otwartych  $\left(-\frac{1}{n}, 1 + \frac{1}{n}\right), n \in \mathbb{N}$ . Wówczas przekrój

$$\bigcap_{n=1}^{\infty} \left( -\frac{1}{n}, 1 + \frac{1}{n} \right) = [0, 1]$$

jest zbiorem domkniętym.

Rozważmy teraz ciąg zbiorów domkniętych  $[-1+\frac{1}{n},1-\frac{1}{n}],\,n\in\mathbb{N}.$  Wówczas suma

$$\bigcup_{n=1}^{\infty} \left[ -1 + \frac{1}{n}, 1 - \frac{1}{n} \right] = (-1, 1)$$

jest zbiorem otwartym.

#### 5.2.1 Operacje na podzbiorach przestrzeni metrycznych

Ustalmy przestrzeń metryczną  $(X, \rho)$ .

**Definicja 5.2.13.** Wnętrzem zbioru  $A \subseteq X$  w przestrzeni X nazywamy zbiór

int 
$$A=\bigcup\left\{ U\subseteq X\colon U \text{ jest zbiorem otwartym i } U\subseteq A\right\}.$$

Zbiór int A jest więc największym (w sensie inkluzji) zbiorem otwartym, zawartym w zbiorze A. Zauważmy, że  $x \in \text{int } A$  wtedy i tylko wtedy, gdy istnieje otoczenie  $U_x$  punktu a, takie że  $U_x \subseteq A$ .

**Uwaga 5.2.14.** int  $A = \{x \in X : A \text{ jest otoczeniem punktu } x\}.$ 

Przykład49. W przypadku przestrzeni  $\mathbb{R}^n$ z naturalną metryką, łatwo o intuicyjne przykłady:

- int[0,2] = (0,2),
- int[-1,1) = (-1,1),
- int(-1,1) = (-1,1),
- $\operatorname{int}\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$

Twierdzenie 5.2.15.

- 1. int  $A \subseteq A$ , dla dow.  $A \subseteq X$ .
- 2.  $int(int A) = int A dla dow. A \subseteq X$ .
- 3. int X = X.
- 4. int A = A dla dow. zbioru otwartego  $A \subseteq X$ .
- 5.  $int(A \cap B) = int A \cap int B \ dla \ dow. \ A, B \subseteq X$ .

Dowód. 1. Niech  $x \in \text{int } A$ , to  $x \subseteq U \subseteq A$  dla pewn. otoczenia U - czyli  $x \in A$ .

**Definicja 5.2.16.** Domknięciem zbioru  $A \subseteq X$  w przestrzeni X nazywamy zbiór

$$\operatorname{cl} A = \bigcap \{ F \subseteq X \colon F \text{ jest zbiorem domkniętym i } A \subseteq F \}$$

Zbiór clA jest zatem najmniejszym (w sensie inkluzji) zbiorem domkniętym, zawierającym zbiór A. Domknięcie zbioru A bywa też często oznaczane:  $\overline{A}$ .

**Uwaga 5.2.17.**  $x \in \operatorname{cl} A$  wtedy i tylko wtedy, gdy  $A \cap U_x \neq \emptyset$  dla każdego otoczenia  $U_x$  punktu x.

 $Dow \acute{o}d.$   $x \in \operatorname{cl} A$  gdy x nie jest punktem wewnętrznym zbioru  $X \setminus A$ , czyli w każdym otoczeniu  $U_x$  punktu x istnieje punkt nienależący do  $X \setminus A$  (a więc należący do A).

Zauważmy, że powyższa charakteryzacja jest bardzo podobna do definicji punktu skupienia. Jednak punkt x jest punktem skupienia zbioru A, gdy przecięcie każdego sqsiedzta punktu x ze zbiorem A jest niepuste, podczas gdy aby x należał do domknięcia potrzeba i wystarcza aby przecięcie każdego otoczenia punktu x ze zbiorem A było niepuste. Podsumowując i formułując powyższe fakty (równoważnie) w języku kul otwartych, możemy napisać iż:

$$x \in \operatorname{cl} A \iff \forall_{\varepsilon > 0}. K(x, \varepsilon) \cap A \neq \emptyset,$$
  
$$x \in A^d \iff \forall_{\varepsilon > 0}. K(x, \varepsilon) \setminus \{x\} \cap A \neq \emptyset.$$

Sformułowanie przy pomocy zbiorów otwartych, przenosi się jednak bez zmian na przestrzenie topologiczne.

 $Przykład\ 50.\ cl(-1,3) = [-1,3].$ 

**Definicja 5.2.18.** Mówimy, że zbiór  $A \subseteq X$  jest **gęsty** (w X), gdy cl A = X.

Przykład 51. Zbiór liczb wymiernych jest gęsty w zbiorze liczb rzeczywistych.

*Ćwiczenie* 51. Udowodnić, że zbiór  $A \subseteq X$  jest gęsty w X wtedy i tylko wtedy, gdy  $U \cap A \neq \emptyset$  dla dowolnego niepustego zbioru otwartego  $U \subseteq X$ .

#### Twierdzenie 5.2.19.

- 1.  $A \subseteq \operatorname{cl} A \ dla \ dow. \ A \subseteq X$ .
- 2.  $\operatorname{cl}(\operatorname{cl} A) = \operatorname{cl} A \ dla \ dow. \ A \subseteq X$ .
- 3.  $\operatorname{cl} F = F$  dla dow. zbioru domkniętego  $F \subseteq X$ .

4.  $\operatorname{cl} \emptyset = \emptyset$ .

5. cl X = X.

6.  $\operatorname{cl}(A \cup B) = \operatorname{cl} A \cup \operatorname{cl} B$  dla dow.  $A, B \subseteq X$ .

Dowód. 1. Niech  $x \in A$ . Wówczas  $x \in F$  dla każdego F zawierającego A a w szczególności gdy F jest zbiorem domkniętym. Czyli  $x \in \operatorname{cl} A$  z definicji domknięcia.

2. Z poprzedniego punktu cl $A\subseteq\operatorname{cl}(\operatorname{cl} A).$  Niech więc  $x\in\operatorname{cl}(\operatorname{cl} A).$  Z drugiej strony, cl $A\subseteq\operatorname{cl} A$ -zbiór domknięty, czyli  $x\in\operatorname{cl} A$ z definicji domknięcia zbioru. A więc również  $\operatorname{cl}(\operatorname{cl} A)\subseteq\operatorname{cl} A.$ 

*Ćwiczenie* 52. Pokazać, że  $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl} A \cap \operatorname{cl} B$  dla dow.  $A, B \subseteq X$ , gdzie X - prz. metryczna. Podać przykład pokazujący, że inkluzja nie zachodzi w drugą stronę.

**Twierdzenie 5.2.20.** Dla dowolnego zbioru  $A \subseteq X$  zachodzi cl  $A = A \cup A^d$ .

**Definicja 5.2.21.** Średnicą zbioru  $A \subseteq X$  nazywamy liczbę

$$\operatorname{diam} A = \sup \{ \rho(x, y) \colon x, y \in A \}$$

**Definicja 5.2.22.** Odległością zbiorów  $A, B \subseteq X$  nazywamy liczbę

$$dist(A, B) = \inf \{ \rho(a, b) \colon a \in A, b \in B \}.$$

Analogicznie odległością punktu  $x \in X$ od zbioru  $A \subseteq X$ określamy liczbę

$$dist(x, A) = \inf \{ \rho(x, a) \colon a \in A \}.$$

 $\acute{C}wiczenie$  53. Niech  $(X, \rho)$  będzie przestrzenią metryczną. Wykazać, że cl $A = \{x \in X \colon d(x, A) = 0\}$ 

**Uwaga 5.2.23.** diam  $A = \operatorname{diam} \operatorname{cl} A, A \subseteq X$  dla dow. prz. metrycznej X.

## 5.3 Brzeg zbioru i zbiory brzegowe

**Definicja 5.3.1. Brzegiem** zbioru  $A \subseteq X$  nazywamy zbiór

$$\bigg\{x\in X\colon \forall_{r>0.}\ K(x,r)\cap A\neq\varnothing \text{ oraz } K(x,r)\cap (X\setminus A)\neq\varnothing\bigg\},$$

który oznaczamy przez frA od ang. frontier. Zauważmy, że jest to po prostu taki zbiór, że w otoczeniu dowolnego jego elementy leżą zarówno punkty należące do A jak i punkty należące do jego dopełnienia A' względem przestrzeni X.

Mówimy, że zbiór A jest **brzegowy**, gdy int  $A = \emptyset$ .

Gdy int cl $A = \emptyset$ , czyli domknięcie zbioru A jest zbiorem brzegowym, to mówimy, że zbiór A jest **nigdziegęsty**.

Brzeg zbioru A oznaczany jest w literaturze także przez  $\partial A$  oraz Bd A od ang. boundary.

Przykład 52. Niech  $x \in \mathbb{R}$ . Wówczas int  $cl\{x\} = int\{x\} = \emptyset$  zatem zbiór  $\{x\}$  jest nigdziegesty.

Z definicji łatwo widać, że zbiór  $A\subseteq X$  (w przestrzeni metrycznej X) jest brzegowy wtedy i tylko wtedy, gdy  $\operatorname{cl}(X\setminus Z)=X$ .

#### Twierdzenie 5.3.2. Niech $A \subseteq X$ . Wówczas

- 1. fr  $A = \operatorname{cl} A \setminus \operatorname{int} A$ ,
- 2. fr A jest zbiorem domkniętym,
- 3.  $\operatorname{cl} A = \operatorname{int} A \cup \operatorname{fr} A$ ,
- 4. int  $A = A \setminus \operatorname{fr} A$ ,
- 5.  $fr(X \setminus A) = fr A$ ,
- 6. fr cl  $A \subseteq \operatorname{fr} A$ ,
- 7. fr  $A = \overline{A} \cap \overline{X \setminus A}$ .

#### Dowód.

- 1. Niech  $x \in \operatorname{fr} A$ . Wówczas dla każdego otoczenia  $U_x$  punktu x mamy  $U_x \cap A \neq \emptyset$ , zatem  $x \in \operatorname{cl} A$ . Załóżmy, że byłoby x int A. Wówczas musiałoby istnieć otoczenie  $U_x$  punktu x takie, czyli zbiór otwarty tak, że  $x \in U_x \subseteq A$ . Ale z założenia w każdym otoczeniu x istnieją punkty nie należące do A. Sprzeczność dowodzi, że  $x \notin \operatorname{int} A$ . Mamy więc, że  $\operatorname{fr} A \subseteq \operatorname{cl} A \setminus \operatorname{int} A$ . W drugą stronę, niech  $x \in \operatorname{cl} A \setminus \operatorname{int} A$ . Oczywiście wtedy w każdym otoczeniu punktu x znajdują się punkty należące do A a z drugiej strony żadne takie otoczenie nie zawiera się w A, czyli istnieją w nim również punkty leżące w A'. Stąd wynika, że  $x \in \operatorname{fr} A$ .
- 2. Musimy wykazać, że zbiór  $X \setminus \operatorname{fr} A$  jest zbiorem otwartym w X. Niech  $x \in X \setminus \operatorname{fr} A$ . To znaczy, że

$$x \in X$$

oraz istnieje r > 0 takie, że

$$K(x,r) \cap A = \emptyset$$
 lub  $K(x,r) \cap (X \setminus A) = \emptyset$ .

Gdyby było  $K(x,r)\cap (X\setminus A)=\varnothing$ , to  $K(x,r)\nsubseteq X$  - sprzeczność, bo  $x\in X$ . A więc  $K(x,r)\cap A=\varnothing$ , a to oznacza że  $K(x,r)\subseteq X\setminus A\subseteq X$ . Z dowolności wyboru x wynika, że zbiór  $X\setminus \mathrm{fr}\, A$  jest zbiorem otwartym w X, czyli  $\mathrm{fr}\, A$  jest w X domknięty.

- 3. Z 1. mamy fr  $A = \operatorname{cl} A \setminus \operatorname{int} A$ , wiec fr  $A \cup \operatorname{int} A = (\operatorname{cl} A \setminus \operatorname{int} A) \cup \operatorname{int} A = \operatorname{cl} A$ .
- 4. Niech  $x \in \text{int } A$ . Z jednej strony  $x \in A$ , gdyż  $\int A \subseteq A$ . Z drugiej, ponieważ istnieje takie otoczenie  $U_x$  punktu x, że  $U_x \subseteq A$ , to nie istnieją punkty należące do  $(X \setminus A) \cap U_x$  a stąd x nie może należeć do fr A. Czyli  $x \in A \setminus \text{fr } A$ . W drugą stronę [TO-DO]
- 5. fr $(X \setminus A) = \{x : \forall_{r>0} K(x,r) \cap A \neq \emptyset \text{ i } K(x,r) \cap (X \setminus A) \neq \emptyset \} = \text{fr } A \text{ z samej definicji.}$  Powinno to być oczywiste.
- 6. w opracowaniu
- 7. tożsamość 7 jest często wykorzystywana jako definicja brzegu zbioru.

**Twierdzenie 5.3.3.** Niech  $A \subseteq X$ , gdzie X jest przestrzenią metryczną. Wówczas następujące warunki są równoważne

- 1. A jest zbiorem brzegowym,
- 2.  $A \subseteq \operatorname{fr} A$ ,
- 3.  $\operatorname{cl}(X \setminus A) = X$ .

Dowód. Załóżmy, że zbiór A jest brzegowy, czyli int  $A=\varnothing$ . Wówczas fr  $A=\operatorname{cl} A\setminus\operatorname{int} A=\operatorname{cl} A$ . Ale  $A\subseteq\operatorname{cl} A$  z własności domkniecia. A więc  $A\subseteq\operatorname{fr} A$ .

Załóżmy więc teraz, że  $A\subseteq \operatorname{fr} A$  i pokażemy, że wówczas  $X=\operatorname{cl}(X\setminus A)$ . Niech  $x\in X$ . Jeżeli  $x\notin A$ , to  $x\in X\setminus A\subseteq\operatorname{cl}(X\setminus A)$ . Załóżmy więc, że  $x\in A$ . Wówczas, z założenia  $x\in \operatorname{fr} A$ , czyli w dowolnym otoczeniu punktu x leżą punkty należące do  $X\setminus A$ . Jest więc x punktem skupienia zbioru  $X\setminus A$ , a stąd  $x\in\operatorname{cl}(X\setminus A)$ . Wykazaliśmy, że  $X\subseteq (X\setminus A)$ . W drugą stronę: jeżeli  $x\in\operatorname{cl}(X\setminus A)$ , to albo  $x\in X\setminus A$  i wtedy  $x\in X$ , albo x jest punktem skupienia zbioru  $X\setminus A$  w przestrzeni X, czyli i tak należy do X.

Pozostaje wykazać, że jeżeli cl $(X\setminus A)=X$ , to zbiór A jest brzegowy. Niech ponownie  $x\in X$ . Wówczas z założenia  $x\in (X\setminus A)$  lub x jest punktem skupienia zbioru  $X\setminus A$ , czyli w dowolnym sąsiedztwie punktu x leżą punkty należące do  $X\setminus A$ . Załóżmy, że byłoby  $x\in \operatorname{int} A$ . Wtedy istnieje zbiór otwarty  $U_x\subseteq A$ ,  $x\in U_x$ . Ale  $U_x\cap (X\setminus A)=\varnothing$  - sprzeczność z założeniem, że  $U_x\subseteq A$ . Czyli  $x\notin A$  dla każdego  $x\in X$  oraz int  $A\subseteq A\subseteq X$ . Stąd już wynika, że koniecznie int  $A=\varnothing$ , czyli zbiór A jest brzegowy.

**Twierdzenie 5.3.4.** Niech  $A \subseteq X$ . Wówczas  $X = \operatorname{int} A \cup \operatorname{fr} A \cup \operatorname{int}(X \setminus A)$  i zbiory te są parami rozłączne.

*Ćwiczenie* 54. Pokazać, że jeżeli zbiór jest nigdziegęsty, to jest brzegowy ale nie zachodzi implikacja w drugą stronę.

## 5.4 Granica ciągu w przestrzeni metrycznej

**Definicja 5.4.1.** Mówimy, że ciąg  $(x_n)_{n\in\mathbb{N}}$  wyrazów przestrzeni metrycznej  $(X,\rho)$  jest zbieżny do granicy  $x\in X$ , gdy

$$\forall_{\varepsilon>0} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N}. \ \rho(x_n, x) < \varepsilon.$$

Analogicznie jak dla ciągów rzeczywistych określamy podciąg  $(x_{n_k})_{k\in\mathbb{N}}$  ciągu  $(x_n)_{n\in\mathbb{N}}$  w przestrzeni metrycznej, poprzez pewien ciąg  $(n_k)_{k\in\mathbb{N}}$  liczb naturalnych.

**Definicja 5.4.2.** Niech dany będzie ciąg  $(x_n)_{n\in\mathbb{N}}$  w przestrzeni metrycznej  $(X,\rho)$  oraz podciąg  $(x_{n_k})_{k\in\mathbb{N}}$  zbieżny do pewnej granicy w przestrzeni X. Wówczas  $\lim_{k\to\infty} x_{n_k}$  nazywamy **punktem** skupienia ciągu  $(x_n)_{n\in\mathbb{N}}^{-1}$ .

**Definicja 5.4.3.** Mówimy, że ciąg  $(x_n)_{n\in\mathbb{N}}$  wyrazów przestrzeni metrycznej  $(X,\rho)$  jest ograniczony, gdy wszystkie jego wyrazy są zawarte w pewnej kuli. Tzn. istnieją takie  $s\in X,\ r\in\mathbb{R},\ r>0$ , że  $\{x_n\colon n\in\mathbb{N}\}\subseteq K(s,r)$ .

<sup>&</sup>lt;sup>1</sup>nazywa się je też **granicami częściowymi** 

Twierdzenie 5.4.4.  $\lim_{n\to\infty} x_n = x \iff \lim_{n\to\infty} d(x_n, x) = 0.$ 

Dowód. Ustalmy  $\varepsilon > 0$ . Istnieje  $N \in \mathbb{N}$  takie, że

$$0 \le d(x_n, x) < \varepsilon$$
, dla każdego  $n \ge N$ .

Zatem ciąg liczb rzeczywistych  $\big(d(x_n,x)\big)_{n\in\mathbb{N}}$ jest zbieżny do zera.

W drugą stronę, jeżeli  $\lim_{n\to\infty} d(x,x_n)=0$ , to znaczy że dla każdego  $\varepsilon>0$  istnieje  $N\in\mathbb{N}$  takie, że  $d(x,x_n)<\varepsilon$  o ile  $n\geqslant N$ , czyli  $\lim_{n\to\infty}x_n=x$ .

Twierdzenie 5.4.5. Granica ciągu zbieżnego w przestrzeni metrycznej jest wyznaczona jednoznacznie.

Dowód. Niech (X,d) będzie prz. metryczną, a  $(x_n)_{n\in\mathbb{N}}$  zbieżnym ciągiem wyrazów tej przestrzeni i załóżmy, że byłoby  $x_1\neq x_2$  oraz  $\lim_{n\to\infty}x_n=x_1$  i  $\lim_{n\to\infty}x_n=x_2$ . Wówczas

$$0 \leqslant d(x_1, x_2) \leqslant d(x_1, x_n) + d(x_n, x_n) \stackrel{n \to \infty}{\longrightarrow} 0.$$

Zatem  $d(x_1, x_2) = 0$  i stąd  $x_1 = x_2$  wbrew założeniom.

**Twierdzenie 5.4.6.** *Jeżeli ciąg*  $(x_n)_{n\in\mathbb{N}}$  *jest zbieżny, to jest ograniczony.* 

*Dowód.* Rozważmy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}\subseteq X$  taki, że  $x_n\to x$  dla pewnego  $x\in X$ . Wtedy dla pewnego  $N\in\mathbb{N}$   $\rho(x_n,x)<1$  o ile  $n\geqslant N$ . Niech

$$M = \max\{\rho(x_1, x), \rho(x_2, x), \dots, \rho(x_{N-1}, x), \rho(x_N, x), 1\}.$$

Wtedy dla n < N mamy  $x_n \in K(x, M)$  a dla  $n \ge N$   $x_n \in K(x, 1) \subseteq K(x, M)$ .

Związki między ciągami a własnościami przestrzeni metrycznych i ich podzbiorów.

**Definicja 5.4.7.** Niech  $\rho_1: X \times X \to X$ ,  $\rho_2: X \times X \to X$  będą metrykami w ustalonym zbiorze X. Mówimy, że metryki  $\rho_1$  i  $\rho_2$  są **równoważne**, gdy dowolny zbieżny ciąg  $(x_n)_{n \in \mathbb{N}}$  wyrazów zbioru X jest zbieżny do tej samej granicy  $x \in X$  w obydwu metrykach.

**Twierdzenie 5.4.8.** Niech X będzie dowolnym zbiorem a  $\rho_1: X \times X \to X$ ,  $\rho_2: X \times X \to X$  będą metrykami. Jeżeli istnieją takie liczby  $\alpha > 0$  i  $\beta > 0$ , że

$$\alpha \cdot \rho_1(x, y) \leqslant \rho_2(x, y) \leqslant \beta \cdot \rho_1(x, y),$$

dla dowolnych  $x, y \in X$ , to metryki  $\rho_1$  i  $\rho_2$  są równoważne.

Dowód. Łatwe ćwiczenie - korzystamy dwukrotnie z twierdzenia o trzech ciągach.

Przykład 53. Zbadamy równoważność metryk  $d(x,y)=\frac{|x-y|}{1+|x-y|}$  i metryki euklidesowej.

Przykład 54. Zbadamy równoważność metryk  $d(x,y) = \min(|x-y|,1)$  i metryki euklidesowej.

Ćwiczenie 55. Wykazać, że dla dowolnych stałych  $a_1,\dots,a_n>0$  funkcja  $d_\sigma^*$  dana wzorem

$$d_{\sigma}^{*}(x,y) = \sum_{k=1}^{n} a_{k} \frac{|x_{k} - y_{k}|}{1 + |x_{k} - y_{k}|}, y = (y_{1}, y_{2}, \dots, y_{n}), x = (x_{1}, x_{2}, \dots, x_{n})$$

jest metryką na  $\mathbb{R}^n$ , równoważną metryce euklidesowej (patrz, przykład 47).

**Twierdzenie 5.4.9.** Dla dowolnego zbioru  $A \subseteq X$ , gdzie X jest prz. metryczną  $x \in A$  jest punktem skupienia zbioru A wtedy i tylko wtedy, gdy jest granicą pewnego ciągu  $(x_n)_{n\in\mathbb{N}}$  takiego, że  $x_n \in A \setminus \{x\}, n \in \mathbb{N}$ .

**Lemat 5.4.10.** Jeżeli  $(X, \rho)$  jest przestrzenią metryczną,  $A \subseteq X$ , to  $x \in \operatorname{cl} A$  wtedy i tylko wtedy, gdy istnieje taki ciąg  $(x_n)_{n \in \mathbb{N}}$  elementów należących do A, że

$$x = \lim_{n \to \infty} x_n$$
.

Dowód. Załóżmy, że  $A\subseteq X$  oraz, że  $(x_n)_{n\in\mathbb{N}}$  jest ciągiem elementów należących do A zbieżnym do x. Dla dowolnego otoczenia otwartego  $U_x$  punktu x istnieje  $n_0\in\mathbb{N}$  takie, że  $x_n\in U_x$  dla  $n\leqslant n_0$ . Wobec tego  $U\cap A\neq\varnothing$ . Z dowolności U wynika, że  $x\in\operatorname{cl} A$ .

Załóżmy teraz, że  $x \in cl A$ . Dla każdego  $n \in \mathbb{N}$  kula otwarta  $B(x, \frac{1}{n})$  przecina niepusto zbiór A. Wybierzmy (korzystając z pewnika wyboru) z każdego zbioru  $A \cap B(x, \frac{1}{n})$  element  $x_n$ . Ponieważ  $\rho(x, x_n) \leqslant \frac{1}{n}$ , to

$$\lim_{n \to \infty} x_n = x.$$

**Twierdzenie 5.4.11.** Jeżeli X jest przestrzenią metryczną, to zbiór  $F \subseteq X$  jest domknięty wtedy i tylko wtedy, gdy dla dowolnego zbieżnego ciągu  $(x_n)_{n\in\mathbb{N}}$  wyrazów ze zbioru F jego granica należy do F:

$$\lim_{n\to\infty} x_n \in F.$$

Dowód. Załóżmy najpierw, że F jest domkniętym podzbiorem przestrzeni metrycznej X. Weźmy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}$  zbieżny.

Niech  $\lim_{n\to\infty} x_n = x$ . Wtedy na mocy poprzedniego lematu  $x \in F$ .

Załóżmy teraz, że dla każdego zbieżnego ciągu elementów ze zbioru F, jego granica leży w zbiorze F. Weźmy dowolny  $x \in \operatorname{cl} F$ . Z lematu, istnieje ciąg  $(x_n)_{n \in \mathbb{N}}$  elementów zbioru F zbieżny do x. Czyli  $x \in F$  z założenia i stąd mamy, że  $\operatorname{cl} F \subseteq F$ . Czyli  $F = \operatorname{cl} F$  i F jest zbiorem domkniętym.  $\square$ 

 $\acute{C}wiczenie$  56. Niech  $(X, \rho)$  będzie przestrzenią metryczną,  $x \in A \subseteq X$  i istnieją takie ciągi  $(\alpha_n)_{n \in \mathbb{N}}$ ,  $(\beta_n)_{n \in \mathbb{N}}$ , że  $\alpha_n \in A$ ,  $\beta_n \in X \setminus A$  dla każdego  $n \in \mathbb{N}$  i

$$\lim_{n \to \infty} \alpha_n = \lim_{n \to \infty} \beta_n = x.$$

- Czy A = X?
- Czy int  $A = \emptyset$ ?
- Czy A jest zbiorem brzegowym?

Na koniec wrócimy do tematu granic ekstremalnych i podamy jedno twierdzenie charakteryzujące granice ekstremalne, które teraz jesteśmy w stanie łatwo udowodnić.

**Twierdzenie 5.4.12.** Niech  $(x_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb rzeczywistych, E zbiorem jego granic częściowych oraz oznaczmy  $\bar{x} = \limsup x_n = \sup E$ . Wówczas:

1. 
$$\bar{x} \in E$$
,

84

- 2. Jeżeli  $\mathbb{R} \ni \alpha > \bar{x}$ , to istnieje  $n_0 \in \mathbb{N}$  taka, że  $x_n < \alpha$ , dla  $n \geqslant n_0$ .
- 3.  $\bar{x}$  jest jedyną liczbą spełniającą warunki 1. i 2.

Dowód. Niech więc  $\bar{x} = \sup E$ .

- 1. Jeżeli  $\bar{x} = +\infty$ , to istnieje  $(n_k)_{k \in \mathbb{N}} \subseteq \mathbb{N}$  tak, że  $x_{n_k} \stackrel{k \to \infty}{\longrightarrow} +\infty$ , czyli  $+\infty \in E$  i oczywiście  $\bar{x} \in E$ . Załóżmy więc, że  $\bar{x} \in \mathbb{R}$ . Czyli istnieje przynajmniej jedna liczba  $g \in \mathbb{R}$  będąca granicą pewnego podciągu ciągu  $(x_n)_{n \in \mathbb{N}}$ . Zbiór granic częściowych ciągu jest zbiorem domkniętym, zatem  $\bar{x} = \sup E \in E$ .
- 2. udowodniliśmy już ten fakt jako lemat 4.5.13.
- 3. Dla dowodu jedyności liczby  $\bar{x}$  załóżmy, że  $p,q\in\mathbb{R}$  spełniają 1. i 2. Dla ustalenia uwagi możemy przyjąć, że p< q. Weźmy  $\alpha$  leżące między p i q:  $p<\alpha< q$ . Istnieje więc  $n_p$  takie, że  $x_n<\alpha,n\geqslant n_p$  gdyż p spełnia 2. Ale wówczas q nie może należeć do E:  $q>x_n,n\geqslant n_p$  a E jest zbiorem granic częściowych ciągu  $(x_n)_{n\in\mathbb{N}}$ .

Można (ćwiczenie) sformułować analogiczne stwierdzenie dla granicy dolnej.

## 5.5 Przestrzenie liniowe i unormowane. Przestrzeń $\mathbb{R}^{n*}$

TO-DO:

- 1. Ogólna dyskusja przestrzeni współrzędnych.
- 2. Wzmianka o przestrz. liniowych.
- 3. Przestrzenie unormowane. (w trakcie)
- 4. Norma wyznaczona przez metrykę. (w trakcie)
- 5. Przestrzeń  $\mathbb{R}^n$ .
- 6. Zbieżność ciągów w  $\mathbb{R}^n$ .

**Definicja 5.5.1.** Niech X będzie przestrzenią liniową nad ciałem  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ .

Odwzorowanie  $\|\cdot\|: X \to [0, \infty)$  nazywamy **normą** przestrzeni X, jeśli dla dowolnych elementów  $x, y \in X$  oraz skalarów  $a \in \mathbb{K}$ :

- $(N1) ||x|| = 0 \Rightarrow x = \theta, (\theta \text{wektor zerowy w prz. } X)$
- $(N2) ||ax|| = |a| \cdot ||x||$  (jednorodność),
- (N3)  $||x+y|| \le ||x|| + ||y||$  (podaddytywność).

Wówczas  $(X, \|\cdot\|)$  nazywamy **przestrzenią unormowaną**.

Przykład 55. Na ciele  $\mathbb C$  liczb zespolonych łatwo określić dwie różne normy  $\|\cdot\|_1$  oraz  $\|\cdot\|_2$ :

$$||a + bi||_1 := |a + bi| = \sqrt{a^2 + b^2},$$
  
 $||a + bi||_2 := |a| + |b|.$ 

**Definicja 5.5.2.** Jeżeli  $(X, \|\cdot\|)$  jest przestrzenią metryczną, to odw<br/>zorowanie  $\rho \colon X^2 \to \mathbb{R}$  dane wzorem

$$\rho(x,y) = ||x - y||$$

jest przestrzenią metryczną. Mówimy, że  $(X, \rho)$  jest przestrzenią metryczną z normą wyznaczoną (zadaną, generowaną) przez metrykę  $\rho$ .

**Definicja 5.5.3.** Niech  $(x_n)_{n\in\mathbb{N}}$  będzie ciągiem wyrazów przestrzeni unormowanej X i  $x\in X$ . Przyjmujemy że  $\lim_{n\to\infty}x_n=x$ , gdy

$$\lim_{n \to \infty} ||x_n - x|| = 0.$$

Zauważmy, że  $(\|x_n - x\|)_{n \in \mathbb{N}}$  jest po prostu ciągiem liczb rzeczywistych.

**Twierdzenie 5.5.4.** Niech  $(\bar{x}_k)_{k\in\mathbb{N}} = \left(x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)}\right)_{k\in\mathbb{N}}$  będzie ciągiem wyrazów przestrzeni  $\mathbb{R}^n$  oraz  $\bar{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ . Wówczas  $\lim_{k\to\infty} \bar{x}_k = \bar{x}$  wtedy i tylko wtedy, gdy

$$\lim_{k \to \infty} x_j^{(k)} = x_j, \quad dla \ ka\dot{z}dego \ j \in \{1, \dots, n\}.$$

 $Dow \acute{o}d$ . Jeżeli  $\bar{x}_k \to \bar{x}$ , to z oszacowania

$$|x_j^{(k)} - x_j| \le \|\bar{x}_k - \bar{x}\| = \sqrt{\sum_{i=1}^n (x_i^{(k)} - x_i)^2}$$

i twierdzenia o trzech ciągach wynika, że  $x_j^{(k)} \to x_j, j=1,\dots,n.$ 

Teraz załóżmy, że  $x_j^{(k)} \to x_j, j=1,\dots,n$ . Ustalmy  $\varepsilon>0$ . Istnieje  $N\in\mathbb{N}$  takie, że dla  $k\geqslant N$  zachodzi

$$|x_j^{(k)} - x_j| < \frac{\varepsilon}{\sqrt{n}}, \ 1 \leqslant j \leqslant k.$$

Stąd mamy, że  $\|\bar{x}_k - \bar{x}\| = \sqrt{\sum_{i=1}^n (x_i^{(k)} - x_i)^2} < \varepsilon$  i ostatecznie  $\bar{x}_k \to \bar{x}$ .

*Ćwiczenie* 57. Uogólnić twierdzenie 4.2.3 o arytmetyce granic na przestrzenie  $\mathbb{R}^n$ .

## 5.6 Różne własności przestrzeni metrycznych

#### 5.6.1 Zupełność

**Definicja 5.6.1.** Ciągiem Cauchy'ego nazywamy ciąg  $(x_n)_{n\in\mathbb{N}}$  wyrazów danej przestrzeni metrycznej  $(X, \rho)$  spełniający następujący warunek Cauchy'ego:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{\substack{n,m\in\mathbb{N}\\n,m\geqslant N}}\rho(a_n,a_m)<\varepsilon.$$

Inaczej mówiąc, ciąg  $(x_n)_{n\in\mathbb{N}}$  jest zbieżny, gdy:

$$\lim_{n \to \infty} \operatorname{diam} \left\{ x_m \colon m \geqslant n \right\} = 0.$$

Jeśli ciąg  $(x_n)_{n\in\mathbb{N}}$  jest ciągiem Cauchy'ego, to prawie wszystkie jego wyrazy leżą w kuli o dowolnie małym promieniu (tzn. tylko skończona ilość wyrazów leży poza kulą o zadanym promieniu). Zatem jest to ciąg ograniczony.

**Definicja 5.6.2.** Przestrzeń metryczną nazywamy **zupełną**, gdy każdy ciąg spełniający warunek Cauchy'ego jest w niej ciągiem zbieżnym.

Podstawowy przykład zapewnia następujące

Twierdzenie 5.6.3. Przestrzeń  $(\mathbb{R}, |\cdot|)$  jest zupełna.

Dowód. Ustalmy dowolny ciąg  $(a_n)_{n\in\mathbb{N}}$  spełniający warunek Cauchy'ego. Istnieje  $N\in\mathbb{N}$  takie, że  $|a_n-a_N|<1$  dla dowolnego  $n\in\mathbb{N}$ . A więc

$$1 - a_N \leqslant a_n \leqslant 1 + a_N$$
, dla każdego  $n \in \mathbb{N}$ 

gdzie  $a_N$  jest pewnym konkretnym wyrazem ciągu. Czyli ciąg  $(a_n)_{n\in\mathbb{N}}$  jest ograniczony. Na mocy twierdzenia 4.4.7 Bolzano-Weierstrassa, istnieje podciąg  $(a_{n_k})$  zbieżny, np. do granicy g. Ponieważ  $n_k \geqslant k$  dla każdego  $k \in \mathbb{N}$  (patrz lemat 4.4.2), to  $|a_k - a_{n_k}| \leqslant \varepsilon$ . Z dowolności  $\varepsilon$  wnosimy, że  $\lim_{k \to \infty} (a_k - a_{n_k}) = 0$ , czyli  $\lim_{k \to \infty} a_k = \lim_{k \to \infty} a_{n_k} = g^2$ .

*Ćwiczenie* 58. Udowodnić następujące *twierdzenie Cantora* (zauważmy, że jest to pewne uogólnienie lematu 4.4.4):

**Twierdzenie.** Niech  $(X, \rho)$  będzie przestrzenią metryczną zupelną i niech  $(H_n)_{n \in \mathbb{N}}$  będzie ciągiem podzbiorów niepustych i ograniczonych<sup>3</sup> w X takim, że  $H_{n+1} \subseteq H_n$ ,  $n \in \mathbb{N}$  oraz  $\lim_{n \to \infty} \operatorname{diam} H_n = 0$ .

Wówczas zbiór  $\bigcap_{n=1}^{\infty} H_n$  składa się dokładnie z jednego punktu.

**Definicja 5.6.4.** Przestrzeń unormowaną, która wraz z metryką wyznaczoną przez swoją normę stanowi przestrzeń metryczną zupełną, nazywamy **przestrzenią Banacha**.

#### 5.6.2 Zwartość

Ustalmy przestrzeń metryczną  $(X, \rho)$ .

**Definicja 5.6.5.** Mówimy, że rodzina  $\mathcal{U} \subseteq \mathcal{P}(X)$  *zbiorów otwartych* jest **pokryciem** zbioru  $A \subseteq X$  jeżeli  $A \subseteq \bigcup \mathcal{U}$ .

Dowolną podrodzinę pokrycia  $\mathcal{U}$  przestrzeni X nazywamy **podpokryciem** przestrzeni X.

**Definicja 5.6.6.** Mówimy, że podzbiór  $A \subseteq X$  przestrzeni metrycznej jest **zwarty**, jeżeli z każdego podpokrycia tego zbioru można wybrać jego podpokrycie skończonym.

**Definicja 5.6.7.** Mówimy, że podzbiór  $A \subseteq X$  przestrzeni metrycznej jest **ciągowo zwarty**, jeżeli z każdego ciągu wyrazów tego zbirou można wybrać podciąg zbieżny do granicy leżącej w tym zbiorze.

Możemy rozważać zbiory zwarte same w sobie jako przestrzenie metryczne:

 $<sup>^2</sup>$ w wyrażeniu po lewej stronie ostatniej równości oczywiście bez znaczenia jest, że dla przejrzystości wskaźnik ciągu oznaczyliśmy jako k zamiast n

 $<sup>^{\</sup>bar{3}}$ można udowodnić dla zbiorów niepustych i domkniętych zamiast ograniczonych.

**Uwaga 5.6.8.** Niech  $X \subseteq Y \subseteq Z$ . Zbiór X jest zwarty względem Z wtedy i tylko wtedy, gdy jest zwarty względem Y.

Pojęcia "przestrzeni otwartej" lub "przestrzeni domkniętej" nie mają zastosowania, gdyż każda przestrzeń metryczna jest swoim podzbiorem otwartym i domkniętym zarazem.

**Twierdzenie 5.6.9.** Przestrzeń metryczna  $(X, \rho)$  jest zwarta wtedy i tylko wtedy, gdy dla każdej rodziny  $\mathcal{R} \subseteq \mathcal{P}(X)$  zbiorów domkniętych, takiej że  $X \subseteq \bigcup \mathcal{R}^4$  istnieje podrodzina skończona.

**Twierdzenie 5.6.10** (Borela-Lebesgue'a). Niech  $(X, \rho)$  będzie przestrzenią metryczną. Wówczas X jest zwarta wtedy i tylko wtedy, gdy jest ciągowo zwarta.

Dowód. Najpierw załóżmy, że X jest ciągowo zwarta. Niech  $\{U_i\colon i\in I\}$  będzie pokryciem otwartym przestrzeni X. Wykażemy, że istnieje liczba  $\lambda>0$  taka, że

$$\forall_{x \in X} \exists_{i \in I}. K(x, \lambda) \subseteq U_i.$$

Przypuśćmy, że powyższe zdanie nie jest prawdziwe, czyli

$$\forall_{n \in \mathbb{N}} \exists_{x_n \in X} \forall_{i \in I}. K\left(x_n, \frac{1}{n}\right) \nsubseteq U_i.$$

Z ciągu można jednak wybrać podciąg  $(x_{n_k})_{k\in\mathbb{N}}$  zbieżny do  $x_0\in X$ . Ponieważ  $\{U_i\colon i\in I\}$  jest pokryciem otwartym, więc istnieje  $r_0>0$  oraz  $i_0\in I$  takie, że  $K(x_0,r_0)\subseteq U_{i_0}$ . Ze zbieżności  $(x_{n_k})_{k\in\mathbb{N}}$  mamy, że

$$\exists_{k \in \mathbb{N}} \forall_{k > k_0} |x_{n_k} - x_0| < \frac{1}{2} r_0.$$

Zatem, dobierając k tak, by było  $k>k_0$  oraz  $n_k>2/r_0$  otrzymujemy następujący ciąg inkluzji:

$$K\left(x_{n_k}, \frac{1}{n_k}\right) \subseteq K\left(x_{n_k}, \frac{1}{2}r_0\right) \subseteq K(x_0, r_0) \subseteq U_{i_0},$$

co przeczy (\*).

Mając $\lambda>0$ o podanej wyżej własności, postępujemy następująco:

- wybieramy  $y_1 \in X$ ;
- następnie przyjmujemy  $y_2 \in X \setminus K(y_1, \lambda)$ ;
- $y_3 \in X \setminus (K(y_1, \lambda) \cup K(y_2, \lambda));$
- itd. indukcyjnie przyjmujemy

$$y_n \in X \setminus \bigcup_{k=1}^{n-1} K(y_k, \lambda)$$

otrzymujemy ciąg  $(y_n)_{n\in\mathbb{N}}$  taki, że  $|y_n-y_m|\geqslant \lambda$  dla dowolnych  $n,m\in\mathbb{N}$ . Ale ciąg taki nie posiada podciągów zbieżnych. Sprzeczność. Zatem nasza konstrukcja może być powtórzona tylko skończoną ilość kroków, tj. dla pewnego  $k\in\mathbb{N}$  istnieją  $y_1,\ldots,y_k$  takie, że

$$\bigcup_{n=1}^{k} K(y_n, \lambda) = X.$$

 $<sup>^4</sup>$ nazywa się też taką rodzinę pokryciem domkniętego przestrzeni X, wówczas jednak musimy nazywać pokryciem otwar1tym, to co my nazwaliśmy po prostu pokryciem.

Ale każda kula  $K(y_n, \lambda)$  zawarta jest w pewnym zbiorze  $U_{i_n}$ , czyli

$$\bigcup_{n=1}^{k} U_{i_n} = X.$$

Załóżmy teraz, że przestrzeń X jest zwarta.

Rozważmy ciąg  $(x_n)_{n\in\mathbb{N}}$ , który nie posiada żadnego podciągu zbieżnego. Zatem jego zbiór wyrazów  $A = \{x_n : n \in \mathbb{N}\}$  jest zbiorem domkniętym. Ponieważ  $X \setminus A$  jest zbiorem otwartym, to

$$\forall_{x \in X \setminus A} \exists_{r_x > 0}. K(x, r_x) \subseteq X \setminus A.$$

Z drugiej strony dla każdego  $x_n$  istnieje  $\varepsilon_n>0$  taki, że  $K(x_n,\varepsilon_n)\cap A$  jest zbiorem skończonym. Oczywiście zbiór

$$\{K(x, r_x) \colon x \in X \setminus A\} \cup \{K(x_n, \varepsilon_n) \colon n \in \mathbb{N}\}$$

jest pokryciem otwartym przestrzeni X. Gdy jednak wybierzemy z niego dowolne skończone podpokrycie X, to jego suma będzie zawierać tylko skończoną liczbę kul  $K(x_n, \varepsilon_n)$  a zatem tylko skończoną liczbę punktów zbioru A. Ale A jest zbiorem nieskończonym - sprzeczność.

Jak widzimy, w wypadku przestrzeni metrycznych zwartość i ciągowa zwartość są równoważne (nie jest tak w przypadku ogólniejszych struktur - topologii; przy czym każda przestrzeń metryczna jest przestrzenią topologiczną ale nie odwrotnie - istnieją topologie "niemetryzowalne", tj. nie dające się zdefiniować jako pewna przestrzeń metryczna).

Twierdzenie 5.6.11. Domknieta podprzestrzeń zwartej przestrzeni metrycznej jest zwarta.

Dowód 1. Ustalmy przestrzeń metryczną X zwartą i niech  $F\subseteq X$  będzie zbiorem domkniętym. Weźmy dowolne pokrycie  $\{U_t\colon t\in T\}$  przestrzeni F (z metryką indukowaną z X). Chcemy pokazać, że istnieje podpokrycie skończone przestrzeni F. Zauważmy, że  $\{U_t\}_{t\in T}\cup F'$  jest pokryciem otwartym przestrzeni X. Ze zwartości X istnieje podpokrycie  $U_{t_1},U_{t_2},\ldots,U_{t_n}\in \{U_t\}_{t\in T}\cup F'$  i

$$F \subseteq X \subseteq \bigcup_{i=1}^{n} U_{t_i}.$$

Jeżeli F' znajduje się wśród zbiorów  $U_{t_1}, U_{t_2}, \dots, U_{t_n}$ , to po prostu odrzucamy ten zbiór. Szukanym podpokryciem jest więc rodzina  $\{U_{t_1}, U_{t_2}, \dots, U_{t_n}\}$  lub  $\{U_{t_1}, \dots, U_{t_n}\} \setminus \{F'\}$ .

 $Dowód\ 2$ . Niech X będzie przestrzenią metryczną zwartą oraz  $F\subseteq X$  zbiorem domkniętym. Ustalmy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}$  tak, że

$$x_n \in F \subseteq X, \ n \in \mathbb{N}$$

i już widzimy, że ze zwartości X musi istnieć podciąg  $(x_{n_k})_{k\in\mathbb{N}}$  zbieżny. Ale  $\lim_{k\to\infty}x_{n_k}\in F$  z domkniętości F (twierdzenie 5.4.11). Zatem dowolny ciąg wyrazów przestrzeni F ma podciąg zbieżny do granicy leżącej w F i twierdzenie jest udowodnione.

Twierdzenie 5.6.12. Zwarty podzbiór przestrzeni metrycznej jest domknięty.

Dowód. Niech X będzie przestrzenią zwartą oraz  $F \subseteq X$  będzie zbiorem domkniętym. Ustalmy pokrycie otwarte  $\mathcal{U}$  zbioru F. Wtedy  $\mathcal{U} \cup \{X \setminus F\}$  jest pokryciem otwartym X. Ze zwartości X istnieje podpokrycie skończone  $\mathcal{U}_0 \subseteq \mathcal{U} \cup \{X \setminus F\}$ . Wtedy rodzina  $\mathcal{U}_0 \setminus \{X \setminus F\} \subseteq \mathcal{U}$  jest podpokryciem skończonym  $\mathcal{U}$ . Pokazaliśmy dla dowolnego pokrycia otwartego zbioru F istnieje podpokrycie skończone, co oznacza, że F jest zwarty.

Ćwiczenie 59. Udowodnić twierdzenie 5.6.12 w oparciu o ciągową definicję zwartości.

Przykład 56. Dowolny przedział domknięty  $[a,b] \subseteq \mathbb{R}$  jest zbiorem zwartym na mocy twierdzenia 4.4.7 Bolzano-Weierstrassa, gdyż jeżeli wyrazy ciągu leżą w przedziałe [a,b], to znaczy że jest on ograniczony. Zauważmy, że granica taka może leżeć na krańcu przedziału (tj. być równa a lub b), zatem wnętrze (a,b) tego przedziału nie musi (i nie jest) być zbiorem zwartym.

Twierdzenie 5.6.13. Iloczyn (produkt) kartezjański n przestrzeni metrycznych zwartych jest przestrzenią metryczną zwartą.

Dowód. Niech  $X_1,X_2,\ldots,X_k$  będą przestrzeniami metrycznymi zwartymi. Dla k=1twierdzenie jest prawdziwe w sposób oczywisty. Załóżmy jego prawdziwość dla k-1. Ustalmy ciąg  $(x_n)_{n\in\mathbb{N}},$  tak że  $x_n=\left(x_1^{(n)},x_2^{(n)},\ldots,x_k^{(n)}\right)\in X_1\times X_2\times\ldots\times X_k.$  Z założenia ciąg punktów  $y_n=\left(x_1^{(n)},x_2^{(n)},\ldots,x_{k-1}^{(n)}\right)\in X_1\times X_2\times\ldots\times X_{k-1}$  zawiera podciąg zbieżny  $(y_{n_i})_{i\in\mathbb{N}}$ - zatem jego ciągi składowe  $\left(x_j^{(n_i)}\right)_{i\in\mathbb{N}},\ j=1,\ldots,k-1$  są zbieżne z definicji. Ze zwartości przestrzeni  $X_k$  z ciągu  $(x_k^{(n)})_{n\in\mathbb{N}}$  można wybrać podciąg zbieżny  $(x_k^{(n_i)})_{i\in\mathbb{N}}.$  Mamy zatem, że zbieżne są ciągi

$$\left(x_1^{(n_i)}\right)_{i\in\mathbb{N}}, \left(x_2^{(n_i)}\right)_{i\in\mathbb{N}}, \ldots, \left(x_k^{(n_i)}\right)_{i\in\mathbb{N}}$$

Stad, z definicji zbieżny jest ciąg  $(x_{n_i})_{i\in\mathbb{N}}$ , gdzie

$$x_{n_i} = \left( \left( x_1^{(n_i)} \right)_{i \in \mathbb{N}}, \left( x_2^{(n_i)} \right)_{i \in \mathbb{N}}, \dots, \left( x_k^{(n_i)} \right)_{i \in \mathbb{N}} \right)$$

będący podciągiem ciągu  $(x_n)_{n\in\mathbb{N}}$ . Na mocy Zasady Indukcji Matematycznej twierdzenie jest prawdziwe dla dowolnego k.

Przykład 57. Kostka n-wymiarowa  $[a_1,b_1]\times\ldots\times[a_n,b_n]\subseteq\mathbb{R}^n$ , jest prz. metryczną zwartą.

Twierdzenie 5.6.14. Podzbiór zwarty dowolnej przestrzeni metrycznej jest domknięty i ograniczony (tj. zawarty w pewnej kuli).

Dowód. Ustalmy przestrzeń metryczną  $(X, \rho)$ . Niech  $A \subseteq X$  będzie podzbiorem zwartym - wtedy musi on być też domknięty. Wybierzmy punkt  $a_0 \in A$  i rozważmy funkcję  $x \mapsto \rho(a_0, x) \ (X \to \mathbb{R})$ . Ponieważ A jest zbiorem zwartym, istnieje E > 0 takie, że dla każdego  $a \in A$  zachodzi nierówność  $\rho(a_0, a) \leqslant E$ , stąd zbiór A jest zawarty w kuli  $K(a_0, E)$ .

**Twierdzenie 5.6.15** (Charakteryzacja zbiorów zwartych w przestrzeni  $\mathbb{R}^n$ ). *Jeżeli*  $E \subseteq \mathbb{R}^n$ , to następujące warunki są równoważne:

- 1. E jest zwarty,
- 2. Każdy nieskończony podzbiór<sup>5</sup> zbioru E ma punkt skupienia należący do E,
- 3. E jest ograniczony i domknięty.

Dowód. TO-DO: jeszcze raz przejrzeć i poprawić dowód.

 $<sup>^5</sup>$ niejawnie zakładamy, że dodatkowo E jest nieskończony.

- (1)  $\Rightarrow$  (2). Niech  $A \subseteq E$  będzie zbiorem nieskończonym. Załóżmy, że żaden punkt zbioru E nie jest punktem skupienia zbioru A. x jest punktem skupienia zbioru A, gdy każde otoczenie punktu x zawiera co najmniej jeden punkt  $y \neq x$  taki, że  $y \in A$ . Zatem z naszego założenia wynka, że każdy punkt  $x \in E$  ma otoczenie  $K(x, \varepsilon)$  zawierające nie więcej niż jeden punkt zbioru A (jeśli  $x \in A$  to właśnie x jest tym jedynym punktem). Żadna skończona podrodzina rodziny  $\{K(x, \varepsilon): x \in E, \varepsilon \text{ dowolne}\}$  nie może pokryć zbioru A, więc również jego nadzbioru E. Sprzeczność, gdyż zbiór E jest zwartyE.
- (2)  $\Rightarrow$  (3). Załóżmy, że zbiór E nie jest ograniczony. Wtedy istnieje ciąg  $(x_n)_{n\in\mathbb{N}}$  punktów, takich że  $|x_n| > n, n \in \mathbb{N}$ . Zbiór  $\{x_n \colon n \in \mathbb{N}\}$  jest nieskończony i z założeń nie ma punktów skupienia w  $\mathbb{R}^n$  a więc tym bardziej w E. Mamy, że E musi być ograniczony. Załóżmy, że E nie byłby domknięty. Wtedy istnieje  $x_0 \in \mathbb{R}^n$ , taki że  $x_0 \in E^d$  i  $x_0 \notin E$ . Istnieje ciąg  $(x_n)_{n\in\mathbb{N}}$  wyrazów zbioru E taki, że  $|x_n x_0| < \frac{1}{n}, n \in \mathbb{N}$ . Niech E będzie zbiorem tych punktów. Wówczas E jest zbiorem nieskończonym (w przeciwnym razie wyrażenie  $|x_n x_0|$  byłoby od pewnego E stałą). E jest punktem skupienia zbioru E i jedynym takim punktem skupienia E0, który równocześnie należy do E1. Gdyby np. E2, to

$$|x_n - x_1| \ge |x_0 - x_1| - |x_n - x_0| \ge |x_0 - x_1| - \frac{1}{n} \ge \frac{1}{2}|x_0 - x_1|$$
, od pewnego  $n$ ,

co dowodzi, że  $x_1 \notin S^d$ . S nie ma punktów skupienia w E i E jest domknięty.

• (3)  $\Rightarrow$  (1). Niech  $E \subseteq \mathbb{R}^n$  będzie domkniętym i ograniczonym podzbiorem przestrzeni euklidesowej. Wtedy istnieje odcinek [a,b] taki, że  $E \subseteq [a,b]^n \subseteq \mathbb{R}^n$ . Ponieważ kostka  $[a,b]^n$  jest zwarta, to E jako jej podzbiór domknięty jest zbiorem zwartym (na mocy twierdzenia 5.6.14).

Mamy, że  $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)$ . Możemy jeszcze dodatkowo zauważyć, że  $(1) \Rightarrow (3)$  wynika z poprzedniego twierdzenia (5.6.14).

Fakt, że podzbiór przestrzeni euklidesowej jest zwarty wtedy i tylko wtedy, gdy jest ograniczony znany jest też pod nazwą twierdzenia Heinego-Borela.

**Twierdzenie 5.6.16.** Każdy nieskończony i ograniczony podzbiór przestrzeni  $\mathbb{R}^n$  ma punkt skupienia w  $\mathbb{R}^n$ .

Dowód. Niech  $E \subseteq \mathbb{R}^n$  będzie nieskończony i ograniczony. Ograniczony, zatem zawarty w pewnej kuli otwartej. Możemy wziąć n-wymiarową kostkę K zawierającą tę kulę i wtedy, mamy że E jest zwarty w zbiorze zwartym. Z poprzedniego twierdzenia wynika, że E ma punkt skupienia należący do K.

Lemat 5.6.17. Jeżeli ciąg Cauchy'ego zawiera podciąg zbieżny, to sam jest ciągiem zbieżnym.

Dowód. Niech (X,d) będzie przestrzenią metryczną. Rozważamy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}$  Cauchy'ego wyrazów przestrzeni X, zawierający podciąg  $(x_{n_k})_{k\in\mathbb{N}}$  zbieżny do pewnej granicy g. Ustalmy  $\varepsilon>0$ . Istnieje  $K\in\mathbb{N}$  takie, że

$$d(x_{n_k}, g) < \frac{\varepsilon}{2}, \ k > N$$

 $<sup>^6</sup>$ Możemy zauważyć, że nie korzystamy tu właściwie z własności specyficznych dla przestrzeni  $\mathbb{R}^n$ . Implikacja ta zachodzi tak naprawdę dla dowolnej przestrzeni zwartej.

oraz  $N \in \mathbb{N}$  takie, że

$$d(x_m, x_n) < \frac{\varepsilon}{2}, \ m, n > N.$$

Niech  $M = \max\{N, K\}$ , a wówczas dla  $k \ge M$  mamy, że

$$d(x_k,g) \leqslant d(x_k,x_{n_k}) + d(x_{n_k},g) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

gdyż  $n_k \ge k \ge M \ge K$  pociąga nierówności

$$d(x_k, x_{n_k}) < \frac{\varepsilon}{2},$$

$$d(x_{n_k},g)<\frac{\varepsilon}{2}.$$

Zatem  $\lim_{k\to\infty}x_k=\lim_{n\to\infty}x_n=g,$ czyli ciąg  $(x_n)_{n\in\mathbb{N}}$ jest zbieżny.

Twierdzenie 5.6.18. Przestrzeń metryczna zwarta jest zupełna.

Dowód. Rozważmy dowolną przestrzeń metryczną zwartą i pewien ciąg Cauchy'ego jej wyrazów. Ze zwartości wynika, że istnieć musi podciąg zbieżny tego ciągu i teza wynika z poprzedniego lematu.  $\Box$ 

**Twierdzenie 5.6.19.** Jeżeli  $\{K_t: t \in T\}$  jest rodziną zwartych podzbiorów ustalonej przestrzeni metrycznej X, taką że iloczyn dowolnej skończonej podrodziny rodziny  $\{K_t\}_{t\in T}$  jest niepusty, to zbiór  $\bigcap_{t\in T} K_t$  jest niepusty.

Dowód. Zdefiniujmy kolejną rodzinę zbiorów przyjmując  $G_t = K'_t$ . Ustalmy zbiór  $j \in T$ , tym samym wybierając z rodziny  $\{K_t\}_{t \in T}$  pewien zbiór  $K_j$ . Przypuśćmy, że w  $K_j$  nie ma takiego punktu, który należałby do wszystkich zbiorów  $K_t, t \in T$ . Wówczas zbiory  $G_t, t \in T$  tworzą pokrycie zbioru  $K_j$ . Ze zwartości tego ostatniego, znajdziemy skończoną ilość wskaźników  $t_1, t_2, \ldots, t_n$  takich, że  $K_j \subseteq G_{t_1} \cup G_{t_2} \cup \ldots \cup G_{t_n}$ . Ale to oznacza, że zbiór

$$K_i \cap K_{t_1} \cap K_{t_2} \cap \ldots \cap K_{t_n}$$

jest pusty. Sprzeczność z założeniem.

*Ćwiczenie* 60. W oparciu o twierdzenie 5.6.19 uzasadnić, że jeżeli  $(K_n)_{n\in\mathbb{N}}$  jest ciągiem zstępującym (tzn.  $K_{n+1}\subseteq K_n, n\in\mathbb{N}$ ) zbiorów zwartych i niepustych, to zbiór  $\bigcap_{n=1}^{\infty}K_n$  jest niepusty.

Ćwiczenie 61. Uogólnić lemat 4.4.4 o przedziałach zstępujących, w następujący sposób:

Niech k będzie liczbą naturalną. Jeżeli  $(K_n)_{n\in\mathbb{N}}$  jest ciągiem kostek k-wymiarowych,  $K_{n+1}\subseteq K_n$ ,  $n\in\mathbb{N}$ , to zbiór  $\bigcap_{n=1}^{\infty}K_n$  jest niepusty.

 $\acute{C}wiczenie$  62. Udowodnić, że nie istnieje pokrycie przestrzeni  $\mathbb R$  (z metryką naturalną) przeliczalną liczbą rozłącznych odcinków domkniętych.

### 5.6.3 Spójność

Definicja 5.6.20. Mówimy, że dwa zbiory  $A,B\subseteq X$ ustalonej przestrzeni metrycznej Xsą oddzielone, jeżeli

$$A \cap \operatorname{cl} B = \varnothing \text{ oraz } \operatorname{cl} A \cap B = \varnothing$$

Mówimy, że zbiór  $C \subseteq X$  jest **spójny**, gdy nie jest sumą dwóch zbiorów odd<br/>dzielonych.

**Uwaga 5.6.21.** Zbiory rozłączne nie muszą być oddzielone. Np. przedziały [-1,0) i [0,1] nie są oddzielone, bo  $0 \in cl[-1,0)$ :

$${\rm cl}[-1,0)\cap[0,1]=[-1,0]\cap[0,1]=\{0\}\neq\varnothing.$$

Ćwiczenie 63. Podać przykład zbiorów oddzielonych.

Twierdzenie 5.6.22. Zbiór  $C \subseteq \mathbb{R}$  jest spójny wtedy i tylko wtedy, gdy

$$\forall_{x,y \in C} \forall_{z \in \mathbb{R}}$$
 jeżeli  $x < z < y$  to  $z \in C$ .

## Rozdział 6

# Granica funkcji

Intuicje Chcemy określić wartość, do której "dążą" wyrazy funkcji, gdy jej argumenty dążą do zadanego punktu. Granica g funkcji f w punkcie  $x_0 \in D_f$  istnieje, gdy możemy znaleźć wartości f(x) dowolnie bliskie g o ile tylko weźmiemy argument x odpowiednio bliski  $x_0$ .

## 6.1 Granica w przestrzeni metrycznej

**Definicja 6.1.1.** Mówimy, że funkcja  $f\colon X\to Y$  ma granicę  $g\in Y$  w punkcie skupienia  $x_0$  przestrzeni X w sensie Cauchy'ego, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x \in X} 0 < \rho(x, x_0) < \delta \Rightarrow \sigma(f(x), g) < \varepsilon.$$

Równoważnie, możemy powiedzieć, że dla każdego sąsiedztwa  $S_X(x_0)$  punktu  $x_0$  w przestrzeni X, istnieje takie otoczenie  $U_Y(g)$  (kula  $K_Y(g,\delta)$ ) punktu g w przestrzeni Y, że jeżeli

$$x \in S_X(x_0) \implies f(x) \in U_Y(g).$$

**Definicja 6.1.2.** Mówimy, że funkcja  $f\colon X\to Y$  ma granicę  $g\in Y$  w punkcie skupienia  $x_0$  przestrzeni X w sensie Heinego, gdy dla każdego ciągu  $(x_n)_{n\in\mathbb{N}}$  wyrazów przestrzeni X takiego, że  $x_n\neq x_0, n\in\mathbb{N}, \lim_{n\to\infty}x_n=x_0$  zachodzi  $\lim_{n\to\infty}f(x_n)=g$ .

**Twierdzenie 6.1.3.** Funkcja  $f: X \to Y$  ma granicę w punkcie  $x_0$  w sensie Cauchy'ego wtedy i tylko wtedy, gdy ma w tym punkcie granicę w sensie Heinego. Innymi słowy, definicje Cauchy'ego i Heinego granicy funkcji w punkcie są równoważne.

 $Dow \acute{o}d.$ Rozważamy dowolną funkcję  $f \colon X \to Y$ między przestrzeniami metrzycznymi  $(X, \rho),$   $(Y, \sigma).$ 

Załóżmy najpierw, że funkcja f ma w punkcie  $x_0 \in X$  granicę g sensie Heinego. Załóżmy nie wprost, że funkcja nie ma granicy g w punkcie  $x_0$  w sensie Cauchy'ego. Istnieje zatem taki  $\varepsilon > 0$ , że dla każdego  $\delta > 0$  istnieje  $x \in X$  taki, iż

$$\rho(x_0, x) < \delta$$
 ale  $\sigma(f(x), g) \geqslant \varepsilon$ .

Przyjmijmy  $\delta_n := \frac{1}{n}$  i określmy przez  $x_n$  taki punkt w X, że

$$\rho(x_0, x_n) < \delta_n \quad \text{oraz} \quad \sigma(f(x), g) \geqslant \varepsilon.$$

Ponieważ  $0 \le \rho(x_0,x_n) < \delta_n, n \in \mathbb{N}$  i  $\lim_{n \to \infty} \delta_n = 0$ , to  $\lim_{n \to \infty} \rho(x_0,x_n) = 0$  na mocy twierdzenia 4.3.4 o trzech ciągach czyli  $\lim_{n \to \infty} x_n = x$  (na mocy tw. 5.4.4). Z drugiej strony  $\sigma(f(x_n),g)$  jest stale różne od zera (większe od  $\varepsilon > 0$ ), czyli granica  $\lim_{n \to \infty} f(x_n)$  nie może być równa g - sprzeczność z założeniem, o ciągłości f w punkcie  $x_0$  w sensie Heinego.

W drugą stronę, niech funkcja f ma teraz w punkcie  $x_0 \in X$  granicę g sensie Cauchy'ego. Ustalmy ciąg  $(x_n)_{n\in\mathbb{N}}$  zbieżny do  $x_0\in X$ , taki że  $x_n\neq x_0, n\in\mathbb{N}$ . Niech  $\varepsilon>0$  będzie dowolnie obrany. Wówczas z założenia istnieje  $\delta>0$  takie, że

(6.1) 
$$\rho(x, x_0) < \delta \text{ pociąga, } \dot{z}e \ \sigma(f(x), g) < \varepsilon.$$

Ponieważ  $x_n \to x_0$ , to istnieje takie  $N \in \mathbb{N}$ , że

$$\rho(x_n, x_0) < \delta$$
, dla każdego  $n \ge N$ .

Z warunku (6.1) wynika, że w takim razie dla każdego  $n \ge N$   $\sigma(f(x_n), g) < \varepsilon$ . Pokazaliśmy, że  $\lim_{n \to \infty} f(x_n) = g$ .

**Twierdzenie 6.1.4** (O trzech funkcjach). Niech X będzie przestrzenią metryczną i  $f, g, h \colon X \to \mathbb{R}$ . Wówczas, jeśli dla pewnego sąsiedztwa S punktu  $x_0 \in X$  zachodzi warunek

$$f(x) \leqslant g(x) \leqslant h(x), \ x \in S,$$

oraz dla pewnej liczby  $g \in \mathbb{R}$  zachodzą równości

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} h(x) = g,$$

to

$$\lim_{x \to x_0} g(x) = g.$$

Dowód. Z twierdzenia 4.3.4 w oparciu o definicję Heinego granicy funkcji.

Odpowiednikiem twierdzenia 5.6.3 dla funkcji jest

**Twierdzenie 6.1.5.** Niech  $f: X \to Y$  będzie odwzorowaniem między przestrzeniami metrycznymi  $(X, \rho), (Y, \sigma), gdzie Y$  jest przestrzenią zupelną, oraz niech  $x_0 \in X$ . Wówczas granica  $\lim_{x \to x_0} f(x)$  istnieje wtedy i tylko wtedy, gdy

$$(6.2) \qquad \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x_1,x_2 \in X} \left( 0 < \rho(x_1,a) < \delta \ i \ 0 < \rho(x_2,a) < \delta \implies \sigma(f(x_1),f(x_2)) \right)$$

Dowód. Jeżeli  $\lim_{x\to x_0} f(x) = g \in Y$ , to dla każdego  $\varepsilon>0$  oczywiście istnieje takie  $\delta>0$ , że warunek  $0<\rho(x,x_0)<\delta$  pociąga za sobą nierówność  $\sigma(f(x),g)<\frac{1}{2}\varepsilon$ . Zatem, gdy pierwsza nierówność jest prawdziwa dla pewnych  $x_1,x_2\in X$ , to

$$\sigma(f(x_1), f(x_2)) \le \sigma(f(x_1), g) + \sigma(g, f(x_2)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

W drugą stronę, przypuśćmy nie wprost, że granica funkcji f w punkcie  $x_0$  nie istnieje. Wówczas musi istnieć taki ciąg  $(x_n)_{n\in\mathbb{N}}$ , że  $x_n\to x_0,\quad x_n\neq x_0,\ n\in\mathbb{N}$  ale ciąg  $\left(f(x_n)\right)_{n\in\mathbb{N}}$  jest rozbieżny. Z równości  $\lim_{n\to\infty}x_n=x_0$  wynika jednak, że dla ustalonego  $\delta>0$  istnieje  $N\in\mathbb{N}$  takie, że dla każdych  $n,k\geqslant N$  mamy

$$0 < \rho(x_n, a) < \delta \text{ oraz } 0 < \rho(x_k, a) < \delta.$$

A z naszego założenia oznacza to, że  $\sigma(f(x_n), f(x_k)) < \varepsilon$ . Wobec warunku Cauchy'ego 5.6.3 ciąg  $(f(x_n))_{n \in \mathbb{N}}$  jest zbieżny, wbrew założeniu.

## 6.2 Przypadek rzeczywisty

Będziemy rozważać przypadek, gdy  $\rho \colon D \to \mathbb{R}$ , gdzie  $D \subseteq \mathbb{R}$  i  $\rho(x,y) = |x-y|$ .

*Ćwiczenie* 64. Ustalmy  $n \in \mathbb{N} \setminus \{0\}$ . Uzasadnić, że  $\lim_{x \to 1} \frac{x^n - 1}{x - 1} = n$ . Wskazówka: wzór na różnicę n-tych potęg (patrz, tw. 3.4.8).

Przykład 58. Niech  $f: \mathbb{R} \setminus \{2\} \to \mathbb{R}$  będzie dana wzorem

$$f(x) = \frac{x^2 - 4}{x - 2}.$$

Obliczymy  $\lim_{x\to 2} f(x)$ , czyli granicę funkcji f w punkcie 2. Oczywiście, funkcja jest nieokreślona w samym punkcie x=2, ale jest określona w każdym sąsiedztwie tego punktu. Dla  $x\neq 2$  mamy:

$$\frac{x^2 - 4}{x - 2} = \frac{(x - 2)(x + 2)}{x - 2} = x + 2.$$

Wiec

$$\lim_{x \to 2} f(x) = \lim_{x \to 2} (x+2) = 2 + 2 = 4.$$

Przykład 59. Obliczymy granicę  $\lim_{x\to 1} \frac{x^3-1}{x^2-1}$ . Można określić funkcję  $x\mapsto \frac{x^3-1}{x^2-1}, x\in\mathbb{R}\setminus\{0\}$ . Dla  $x\neq 0$  (aczkolwiek dowolnie blisko zera) możemy obliczyć:

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x - 1)(x^2 + x + 1)}{(x - 1)(x + 1)} = \lim_{x \to 1} \frac{x^2 + x + 1}{x + 1} = \frac{1^2 + 1 + 1}{1 + 1} = \frac{3}{2}$$

Przykład 60. Wykażemy, że funkcja  $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$  dana wzorem

$$f(x) = \frac{x + |x|}{2x}$$

nie ma granicy w punkcie x = 0.

#### 6.2.1 Granica funkcji w nieskończoności

**Definicja 6.2.1.** Mówimy, że funkcja  $f:(a,+\infty)\to\mathbb{R}$  ma granicę  $g\in\mathbb{R}$  w **plus** nieskończoności (w sensie Cauchy'ego) i piszemy  $\lim_{x\to+\infty}f(x)=g$  albo, że  $f(x)\to g$ , przy  $x\to\infty$ , gdy

$$\forall_{\varepsilon>0} \exists_{A \in (a,+\infty)} \forall_{x>A} . |f(x) - g| < \varepsilon.$$

Analogicznie, mówimy że funkcja  $f\colon (-\infty,b)\to \mathbb{R}$  ma granicę  $g\in \mathbb{R}$  w **minus** nieskończoności i piszemy  $\lim_{x\to -\infty} f(x)=g$ , gdy

$$\forall_{\varepsilon > 0} \exists_{A \in (-\infty,b)} \forall_{x < A} |f(x) - g| < \varepsilon.$$

W powyższych przypadkach, mówimy też, że f ma granicę skończoną (w odpowiednio plus/minus nieskończoności).

**Definicja 6.2.2.** Mówimy, że funkcja  $f:(a,\infty)\to\mathbb{R}$  ma granicę g w **plus** nieskończoności (w sensie Heinego) i piszemy  $\lim_{n\to+\infty}f(x)=g$  albo, że  $f(x)\to g$ , przy  $x\to\infty$ , gdy

dla każdego ciągu  $(x_n)_{n\in\mathbb{N}}$  takiego, że  $x_n>a, n\in\mathbb{N}$  oraz  $\lim_{n\to\infty}x_n=\infty$  ciąg  $(f(x_n))_{n\in\mathbb{N}}$  wartości funkcji dąży do g przy  $n\to\infty$ , czyli

$$\lim_{n \to \infty} f(x_n) = g.$$

Analogicznie mówimy, że  $f: (-\infty, b)$ , gdy dla każdego ciągu  $(x_n)_{n \in \mathbb{N}}$  takiego, że  $x_n < b, n \in \mathbb{N}$  oraz  $\lim_{n \to \infty} x_n = \infty$  zachodzi  $\lim_{n \to \infty} f(x_n) = g$ .

#### 6.2.2 Granica niewłaściwa

**Definicja 6.2.3.** Mówimy, że funkcja  $f \colon D \to \mathbb{R}$  dąży do  $\pm \infty$  gdy x dąży do  $x_0 \in D$  albo, że ma w punkcie  $x_0 \in D$  granicę  $\pm \infty$ , gdy dla każdego ciągu  $(x_n)_{n \in \mathbb{N}}$ ,  $\lim_{n \to \infty} x_n = x_0$  zachodzi  $\lim_{n \to \infty} f(x_n) = \pm \infty$ . Mówimy wtedy, że f ma w  $x_0$  granicę **niewłaściwą** i piszemy  $\lim_{x \to x_0} f(x) = \pm \infty$ . Przez  $\pm \infty$  rozumiemy, że w powyższej definicji można przyjąć (równocześnie za każde wystąpienie tego symbolu) plus albo minus nieskończoność.

*Ćwiczenie* 65. Zdefiniować granicę *niewłaściwą* funkcji  $f: D \to \mathbb{R}$  w (plus/minus) *nieskończoności*. Z twierdzenia 6.1.5, mamy

**Uwaga 6.2.4.** Niech dana będzie funkcja  $f: D \to \mathbb{R}$ , gdzie  $D \subseteq \mathbb{R}$  i  $x_0 \in X$ . Wówczas skończona granica  $\lim_{x \to \infty} f(x) \in \mathbb{R}$  istnieje wtedy i tylko wtedy, gdy

$$(6.3) \qquad \forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x_1, x_2 \in X} \left( 0 < |x_1 - a| < \delta \text{ i } 0 < |x_2 - a| < \delta \implies |f(x_1) - f(x_2)| \right)$$

*Ćwiczenie* 66. Uzasadnić, że gdy funkcja f nie posiada granicy skończonej w punkcie  $g \in \mathbb{R}$ , to istnieje ciąg  $(x_n)_{n\in\mathbb{N}}$  taki, że  $x_n \to g$ ,  $x_n \neq g$ ,  $n \in \mathbb{N}$  oraz ciąg  $(f(x_n))_{n\in\mathbb{N}}$  jest rozbieżny.

#### 6.2.3 Granice lewo i prawostronne

**Definicja 6.2.5.** Mówimy, że funkcja<sup>1</sup>  $f:(a,b)\to\mathbb{R}$  ma **granicę lewostronną** (właściwą) w punkcie  $x_0\in(a,b)$ , gdy istnieje taka liczba  $g\in\mathbb{R}$ , że

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in (a, x_0)}$$
 jeśli  $x_0 - \delta < x < x_0$  to  $|g - f(x)| < \varepsilon$ .

Piszemy wtedy  $f(x-) = \lim_{x \to x_0-} f(x) = g$ .

Zauważmy, że  $\lim_{\varepsilon \to 0} f(x-\varepsilon) = \lim_{x \to x_0 -} f(x)$ . Stąd czasem widujemy też w literaturze zapis  $\lim_{x \to x_0 - \varepsilon} f(x)$  albo  $\lim_{x \to x_0 - 0} f(x)$ .

Analogicznie mamy definicję granicy prawostronnej:

**Definicja 6.2.6.** Mówimy, że funkcja  $f:(a,b)\to\mathbb{R}$  ma **granicę prawostronną** (właściwą) w punkcie  $x_0\in(a,b)$ , gdy istnieje taka liczba  $g\in\mathbb{R}$ , że

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} \forall_{x \in (a, x_0)}$$
 jeśli  $x_0 < x < x_0 + \delta$  to  $|g - f(x)| < \varepsilon$ .

Piszemy wtedy  $f(x+) = \lim_{x \to x_0+} f(x) = g$ .

 $<sup>^{1}</sup>$ w szczególności może być  $(a,b)=(-\infty,+\infty)=\mathbb{R}$ 

**Twierdzenie 6.2.7.** Funkcja  $f: D \to \mathbb{R}$ ,  $D \subseteq \mathbb{R}$  ma granicę w punkcie  $x_0 \in \operatorname{cl} D$  wtedy i tylko wtedy, gdy istnieją w tym punkcie granica lewo i prawostronna oraz są sobie równe. Wtedy

$$\lim_{x \to x_0 -} f(x) = \lim_{x \to x_0 +} f(x) = \lim_{x \to x_0} f(x).$$

Przykład 61. Funkcja  $f(x) = \frac{1}{x}$  określona jest na  $D = \mathbb{R} \setminus \{0\}$  oraz  $0 \in \operatorname{cl} D = \mathbb{R}$ . Mamy

$$\lim_{x\to 0-}\frac{1}{x}=-\infty\neq +\infty=\lim_{x\to 0+}\frac{1}{x}$$

zatem f nie ma granicy w 0.

Rozważmy funkcję  $g(x) = \frac{1}{|x|}$ . Jest ona również określona na D oraz

$$\lim_{x \to 0-} \frac{1}{|x|} = \lim_{x \to 0+} \frac{1}{|x|} = +\infty,$$

 $zatem \lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{1}{|x|} = +\infty.$ 

**Definicja 6.2.8.** Mówimy, że funkcja  $f:(a,b)\to\mathbb{R}$  ma **granicę lewostronną** niewłaściwą  $+\infty$   $[-\infty]$  w punkcie  $x_0\in(a,b)$ , gdy

$$\forall_{E>0} \exists_{\delta>0} \forall_{x \in (a,b)} \ x_0 - \delta < x < x_0 \Rightarrow f(x) > E[f(x) < -E].$$

Z twierdzenie o równoważności definicji granicy ciągu mamy dwa oczywiste twierdzenia.

**Twierdzenie 6.2.9.** Funkcja  $f:(a,b) \to \mathbb{R}$  ma granicę lewostronną w punkcie  $x_0 \in (a,b)$  równą  $g \in \mathbb{R}$ , gdy dla każdego ciągu  $(x_n)_{n \in \mathbb{N}}$  takiego, że

- 1.  $x_n < x_0, n \in \mathbb{N}$ ,
- $2. \lim_{n \to \infty} x_n = x_0;$

 $zachodzi \lim_{n\to\infty} f(x_n) = g.$ 

**Twierdzenie 6.2.10.** Funkcja  $f:(a,b)\to\mathbb{R}$  ma granicę lewostronną w punkcie  $x_0\in(a,b)$  równą  $g\in\overline{\mathbb{R}}$ , gdy dla każdego ciągu  $(x_n)_{n\in\mathbb{N}}$  takiego, że

- 1.  $x_n > x_0, n \in \mathbb{N}$ ,
- $2. \lim_{n \to \infty} x_n = x_0;$

 $zachodzi \lim_{n \to \infty} f(x_n) = g.$ 

**Twierdzenie 6.2.11.** Funkcja f rosnąca w przedziałe  $(a,b) \subseteq \mathbb{R}$  ma w każdym punkcie tego przedziału granice jednostronne (skończone lub nie).

Dowód. Z założenia, zbiór  $\{f(t)\colon a < t < x\}$  jest ograniczony z góry, przez liczbę f(x). Niech więc  $A = \sup_{a < t < x} f(t)$ . Oczywiście  $f(x) \leqslant A$ . Musimy udowodnić, że f(x-) = A. Ustalmy  $\varepsilon > 0$ . Z definicji kresu górnego wynika, że istnieje  $x - \delta$ , dla pewn.  $\delta > 0$ , że  $a < x - \delta < x$  oraz

$$A - \varepsilon < f(x - \delta) \leqslant A$$
.

Z monotoniczności f mamy, że

$$f(x - \delta) \le f(t) \le A$$
, dla  $t \in (x - \delta, x)$ .

Porównując nasze oszacowania, wnioskujemy iż

$$|f(t) - A| < \varepsilon$$
, gdy  $x - \delta < t < x$ .

Stąd 
$$f(x-) = A = \sup_{a < t < x} f(t)$$
. Analogicznie dowodzimy, że  $f(x+) = \inf_{x < t < b} f(t)$ .

#### 6.2.4 Obliczanie granic, symbole nieoznaczone.

Definicja 6.2.12. Następujące wyrażenia nazywamy symbolami nieoznaczonymi.

$$\frac{0}{0}, \ \frac{\infty}{\infty}, \ 0^0, \ \infty^0, \ \infty^0, \ 1^\infty, \ \infty-\infty, \ 0\cdot\infty.$$

Np.  $(-n)\cdot (-1/n)=1$  jest ciągiem stałym zbieżnym do 1. Mimo, że  $n\to\infty,\,\frac{1}{n}\to0.$ 

**Granice specjalne.** Wyróżnia się jeszcze kilka tożsamości, do których daje się sprowadzić niektóre trudniejsze granice:

(6.4) 
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \ln a,$$

(6.5) 
$$\lim_{x \to \pm \infty} \frac{\ln(1+x)}{x} = 1,$$

(6.6) 
$$\lim_{x \to 0} \frac{\log_a(x+1)}{x} = \log_a e \text{ dla } a > 0 \text{ i } a \neq 1,$$

(6.7) 
$$\lim_{x \to 0} \frac{(1+x)^a - 1}{x} = a.$$

## Rozdział 7

# Ciągłość funkcji

## 7.1 Intuicje

Pojęcie ciągłości funkcji bieże się od próby sformalizowania tej własności funkcji, że jej wykres jest ciąglq linią, nie mającą nigdzie przerw - w zadanym przedziale, w przypadku funkcji jednej zmiennej, określonej na  $\mathbb{R}$ . Uogólnia się to również na wykresy funkcji wielu zmiennych (różne powierzchnie w przestrzeni, etc.). Jak to zwykle bywa, intuicje mogą się okazać zawodne w przypadku skomplikowanych obiektów matematycznych. Ale dla "prostych" funkcji:



Rysunek 7.1: Funkcja y = f(x) jest ciągła w widocznym przedziale.



Rysunek 7.2: Funkcja y = f(x) nie jest ciągła w punkcie x = -1.

Przykład 62. Funkcja  $f: \mathbb{R} \to \mathbb{R}$  zadana wzorem:

$$f(x) = \begin{cases} x - 1, & \text{dla } x \le 0; \\ x, & \text{dla } x > 0. \end{cases}$$

nie jest ciągła w punkcie x=0. Otóż f(0)=-1, ale gdy argumenty x>0 leżą dowolnie blisko punktu 0 (możemy myśleć o przedziałach  $(0,\varepsilon)$ , gdzie  $\varepsilon>0$  jest dowolnie małe), to f(x) leży blisko punktu 0 na osi OY. Inaczej mówiąc  $\lim_{x\to 0+} f(x)=0 \neq -1 = \lim_{x\to 0-} f(x)$  – łatwo zinterpretować tę sytuację jako "dziurę" w wykresie funkcji. Przyjrzyjmy się wykresowi:



Często w wypadku funkcji zdefiniowanych "kawałkami" na różnych podzbiorach  $\mathbb R$  "podejrzanymi" punktami, w których może wystąpić nieciągłość, są granice przedziałów – momenty w których "przechodzimy na inną definicję".

Przykład63. Funkcja  $f\colon \mathbb{R} \to \mathbb{R}$ zadana nastąpująco:

$$f(x) = \begin{cases} x^2 + 1, & \text{dla } x \leq 0; \\ e^x, & \text{dla } x > 0. \end{cases}$$

jest ciągła wszędzie, włącznie z punktem x=0. Poniżej wykres funkcji f wyrysowany w programie SageMath:



## 7.2 Ciągłość w przestrzeni metrycznej

Niech  $(X, \rho)$ ,  $(Y, \sigma)$  będą przestrzeniami metrycznymi.

**Definicja 7.2.1.** Mówimy, że funkcja  $f: X \to Y$  jest ciągła w punkcie  $x_0 \in X$  w sensie Heinego, gdy dla każdego ciągu  $(x_n)_{n \in \mathbb{N}}$  wyrazów X zbieżnego do  $x_0$  ciąg wartości  $(f(x_n))_{n \in \mathbb{N}}$  jest zbieżny do  $f(x_0)$ .

**Definicja 7.2.2.** Mówimy, że funkcja  $f\colon X\to Y$  jest **ciągła** w sensie Cauchy'ego w punkcie  $x_0\in X,$  gdy

$$\forall_{\varepsilon>0}\exists_{\delta>0}\forall_{x\in X}.\ \rho(x_0,x)<\delta\Rightarrow\sigma\big(f(x_0),f(x)\big)<\varepsilon.$$

**Definicja 7.2.3.** Mówimy, że funkcja  $f: X \to Y$  jest **ciągła** w sensie Cauchy'ego (Heinego), gdy jest ciągła w każdym punkcie  $x \in X$  w sensie Cauchy'ego (Heinego).

Twierdzenie 7.2.4. Definicje Cauchy'ego i Heinego ciągłości funkcji sa równoważne.

Dowód. Wynika z twierdzenia 6.1.3.

Przykład 64. Funkcje trygonometryczne są ciągłe w swoich dziedzinach. Dla przykładu pokażemy, że sinus jest funkcją ciągłą. Ustalmy  $x_0 \in \mathbb{R}$ . Z podstaw trygonometrii wiadomo, że

$$\sin \alpha - \sin \beta = 2 \sin \frac{\alpha - \beta}{2} \cos \frac{\alpha + \beta}{2}, \alpha, \beta \in \mathbb{R},$$

Biorąc pod uwagę, że  $\cos(\alpha) \leq 1$  dla dowolnego  $\alpha$ , mamy oszacowanie

$$|\sin x - \sin x_0| \le 2 \left| \sin \frac{x - x_0}{2} \right|$$
, dla dowolnego  $x \in \mathbb{R}$ .

Weźmy dowolny ciąg  $(x_n)_{n\in\mathbb{N}}$  zbieżny do  $x_0$ . Wówczas  $\lim_{n\to\infty}\frac{x_n-x_0}{2}=0$ , ponadto  $\sin(\alpha)<\alpha$  dla  $\alpha>0$ , a więc

$$0 \leqslant \lim_{n \to \infty} |\sin x_n - \sin x_0| \leqslant 2 \lim_{n \to \infty} \left| \sin \frac{x_n - x_0}{2} \right| \leqslant \lim_{n \to \infty} \frac{x_n - x_0}{2} = 0.$$

A więc  $\lim_{n\to\infty} \sin x_n = \sin x_0$ , czyli funkcja sin jest ciągła w  $x_0$ . Punkt ten wybraliśmy dowolnie, więc wnioskujemy że jest ciągła w całej dziedzinie.

**Twierdzenie 7.2.5.** Niech  $I, P \subseteq \mathbb{R}$  będą przedziałami oraz niech  $f: I \to P$  będzie ciągłą bijekcją. Wówczas funkcją  $f^{-1}: P \to I$  jest ciągła w P.

Dowód wynika np. z twierdzenia 7.2.29 na stronie 111 i twierdzenia Cantora-Heinego, ze strony 106. Czytelnik może spróbować udowodnić powyższe twierdzenie samemu, bardziej elementarnymi metodami.

*Ćwiczenie* 67. Niech  $A \subseteq X$ . Wykazać, że funkcja  $x \mapsto \operatorname{dist}(x, A)$  jest ciągła oraz  $\operatorname{dist}(x, A) = 0$  wtedy i tylko wtedy, gdy  $x \in \operatorname{cl} A$ .

W trakcie obliczania granic często posługujemy się następującym faktem, wynikającym niemal wprost z definicji Heinego ciągłości funkcji:

Fakt 2. Niech X będzie przestrzenią metryczną, Y dowolnym zbiorem i  $f: X \to Y$  będzie funkcją ciągłą. Dla dowolnego ciągu  $(x_n)_{n \in \mathbb{N}}$  wyrazów przestrzeni X, zachodzi:

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right).$$

Przykład 65. Ponieważ funkcja sinus jest ciągłą, to możemy wykonać następujące rachunki:

$$\lim_{n\to\infty}\sin\frac{1}{n}=\sin\left(\lim_{n\to\infty}\frac{1}{n}\right)=\sin0=0.$$

#### Punkty nieciągłości funkcji rzeczywistych

Ustalmy funkcję  $f: X \to \mathbb{R}$ . Wyróżnimy dwie sytuacje, w których funkcja f nie spełnia warunku ciągłości w zadanym punkcie  $x_0 \in X$ .

**Definicja 7.2.6.** Mówimy, że  $x_0 \in X$  jest **punktem nieciągłości pierwszego rodzaju** funkcji f, jeżeli istnieją skończone granice  $\lim_{x \to x_0^-} f(x)$  oraz  $\lim_{x \to x_0^+} f(x)$  ale są one różne lub  $f(x+) = f(x-) \neq f(x)$ .

**Definicja 7.2.7.** Mówimy, że  $x_0 \in X$  jest **punktem nieciągłości drugiego rodzaju** funkcji f, gdy nie istnieje choć jedna z granic  $\lim_{x \to x_0^-} f(x)$  lub  $\lim_{x \to x_0^+} f(x)$ .

Przykład 66. Funkcja  $f: \mathbb{R} \to \mathbb{R}$  dana wzorem

$$f(x) = \begin{cases} \frac{1}{x}, & \text{dla } x \neq 0; \\ 0, & \text{dla } x = 0. \end{cases}$$

ma w punkcie x = 0 nieciągłość pierwszego rodzaju, gdyż

$$f(0-) = \lim_{x \to 0-} f(x) = -\infty \neq +\infty = \lim_{x \to 0+} f(x) = f(0+).$$

Ponadto również  $f(0) = 0 \neq f(0+)$  i  $f(0) \neq f(0-)$ .

Prostym wnioskiem z twierdzenia 6.2.11 jest, że funkcja rosnąca (malejąca) nie ma nieciągłości drugiego rodzaju.

Przykład 67. Niech  $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$  będzie dana wzorem

$$f(x) = \begin{cases} \frac{e^{\frac{1}{x}}}{1 + e^{\frac{1}{x}}}, & \text{dla } x \neq 0; \\ 1, & \text{dla } x = 0. \end{cases}$$

Można sprawdzić, że

$$\lim_{x \to 0^{+}} f(x) = 1,$$

$$\lim_{x \to 0^{-}} f(x) = 0.$$

Zatem f ma w punkcie x=0 nieciągłość pierwszego rodzaju.

Przykład 68. Funkcja  $f: \mathbb{R} \to \mathbb{R}$  określona wzorem

$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{dla } x \neq 0; \\ 1, & \text{dla } x = 0. \end{cases}$$

jest ciągła poza punktem x=0. Nie istnieje bowiem skończona granica  $\lim_{x\to 0} \sin\frac{1}{x}$  (wystarczy sprawdzić, że nie istnieje chociaż jedna z granic przy  $x\to 0^+$  lub przy  $x\to 0^-$ ), więc również nie istnieją granice f(0+) i f(0-). Funkcja ma więc w zerze nieciągłość drugiego rodzaju.

 $\acute{C}wiczenie$  68. Sprawdzić, że funkcja  $f: \mathbb{R} \to \mathbb{R}$  określona wzorem

$$f(x) = \begin{cases} \frac{\sin x}{x}, & \text{dla } x \neq 0; \\ 1, & \text{dla } x = 0. \end{cases}$$

jest ciągła (wszędzie, w całej dziedzinie).

#### Własności mocniejsze niż ciągłość

Definicja 7.2.8. Mówimy, że funkcja  $f: X \to Y$  jest jednostajnie ciągła, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x_1,x_2 \in X}. \ \rho(x_1,x_2) < \delta \Rightarrow \sigma(f(x_1),f(x_2)) < \varepsilon.$$

Przykład 69. Najbardziej oczywistymi przykładami funkcji jednostajnie ciągłych w  $\mathbb{R}$  są funkcje  $\mathrm{Id}_{\mathbb{R}}$  (czyli  $x\mapsto x$ ) oraz sin. W oby wypadkach dla dowolnego  $\varepsilon>0$  wystarczy przyjąć  $\delta=\varepsilon$ . Wypadku sinusa podstawienie to działa, gdyż

$$|\sin x_1 - \sin x_2| \le |x_1 - x_2|. \ x_1, x_2 \in \mathbb{R}.$$

Przykład 70. Funkcja  $x \mapsto x^2$  jest ciągła na  $\mathbb{R}$  ale nie jest jednostajnie ciągła.

Załóżmy nie wprost, że fbyłaby ciągła jednostajnie. Weźmy  $\varepsilon=1.$  Z założenia istnieje  $\delta>0$ takie, że

$$|x - y| \implies |x^2 - y^2| < 1.$$

Weźmy dowolne y i niech  $x=y+\frac{\delta}{2}$ . Chodzi nam o to, że wówczas

$$y-x=rac{\delta}{2}$$
czyli  $|x-y|=rac{\delta}{2}<\delta,$ 

a zatem dla dowolnie dobranego y i tak do niego dobranego x powinna być spełniona nierówność  $|x^2-y^2|<1$ . Ale to oznacza, że

$$\left|x^2 - \left(x + \frac{\delta}{2}\right)^2\right| = \left|x^2 - x^2 + 2x\frac{\delta}{2} - \left(\frac{\delta}{2}\right)^2\right| = \left|x\delta - \frac{\delta^2}{4}\right| < 1.$$

Czyli

$$x < \frac{1}{\delta} + \frac{\delta}{4}$$
.

To znaczy, że dla x nie spełniających prawej strony powyższej nierówności nie może być  $|x^2 - y^2| < 1$ , wbrew temu, co powiedzieliśmy o wyborze x i y.

(Jeśli czytelnika jeszcze to nie przekonuje: można np. prostu położyć  $y:=2/\delta$  i  $x=y+\delta/4$ ).

Przykład 71. Funkcja  $x \mapsto \sqrt{x}$  jest jednostajnie ciągła na  $[1, +\infty)$ .

Istotnie: niech  $\varepsilon>0$ . Weźmy  $x,y\in[1,\infty)$  i x>y tak aby  $x-y<2\varepsilon$ . Zauważmy, że

$$\frac{\sqrt{x} - \sqrt{y}}{x - y} = \frac{\sqrt{x} - \sqrt{y}}{x - y} \cdot \left(\frac{\sqrt{x} + \sqrt{y}}{\sqrt{x} + \sqrt{y}}\right) = \frac{1}{\sqrt{x} + \sqrt{y}} < \frac{2\varepsilon}{\sqrt{x} + \sqrt{y}} \leqslant \frac{2\varepsilon}{2} = \varepsilon.$$

A więc można przyjąć  $\delta=2\varepsilon$ . W każdym razie – widzimy, że warunek jednostajnej ciągłości jest spełniony.

 $\acute{C}wiczenie$  69. Pokazać, że warunek jednostajnej ciągłości funkcji f można sformułować następująco:

Funkcja  $f: X \to Y$  jest jednostajnie ciągła wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{E \subset X}$$
 diam  $E < \delta \Rightarrow \text{diam } f[E] < \varepsilon$ .

Przy pomocy twierdzeń o arytmetyce granic możemy udowodnić

**Twierdzenie 7.2.9.** Niech  $f,g:X\to Y$  będą funkcjami ciągłymi określonymi na przestrzni metrycznej X. Wówczas ciągłe są funkcje f+g,  $f\cdot g$  oraz  $\frac{f}{g}$  (pod warunkiem, że  $g(x)\neq 0, x\in X$ ).

**Twierdzenie 7.2.10.** Niech X, Y, Z będą przestrzeniami metrycznymi,  $A \subseteq X$  oraz

$$f: A \to Y, \ q: \ f[A] \to Z.$$

Wówczas funkcja  $h := g \circ f$  jest ciągła w punkcie  $x \in A$ , gdy f jest ciągła w punkcie x a funkcja g jest ciągła w punkcie f(x).

**Uwaga 7.2.11.** Iloczyn dwóch funkcji jednostajnie ciągłych, nie musi być funkcją jednostajnie ciągłą.

Na dowód podamy

Przykład 72. Funkcje  $\mathrm{Id}_{\mathbb{R}}$  oraz sin:  $\mathbb{R} \to \mathbb{R}$  są jednostajnie ciągłe na  $\mathbb{R}$ , jednak ich produkt  $x \mapsto x \sin x$  nie jest funkcją jednostajnie ciągłą, co dowodzi uwagi 7.2.11

Następne twierdzenie daje nam do dyspozycji szeroką klasę funkcji, dla których możemy stosować warunek jednostajnej ciągłości; jednak za chwilę pokażemy twierdzenie ogólniejsze, zatem poniższy dowód ma wyłącznie charakter poglądowy i dydaktyczny

**Twierdzenie** (Heinego-Cantora - przypadek szczególny). *Jeżeli funkcja f jest określona i ciągła* w przedziale domkniętym [a, b], to jest ona również jednostajnie ciągła w tym przedziale.

Dowód. Dowód poprowadzimy nie wprost. Załóżmy, że dla pewnego  $\varepsilon > 0$  nie istnieje takie  $\delta > 0$ , żeby spełniona była definicja jednostajnej ciągłości. W takim przypadku dla dowolnej liczby  $\delta > 0$  istnieją w przedziale [a,b] takie dwie liczby  $x_0^{(1)}$  i  $x^{(1)}$ , że

$$|x^{(1)}-x_0^{(1)}|<\delta, \text{ a równocześnie } \left|f\left(x^{(1)}\right)-f\left(x_0^{(1)}\right)\right|\geqslant \varepsilon.$$

Weźmy teraz ciąg  $(\delta_n)_{n\in\mathbb{N}}$  liczb dodatknich,  $\delta_n\to 0$ .

Jak pokazaliśmy wyżej, dla każdego  $\delta_n$  znajedziemy w przedziale [a,b] wartości  $x_0^{(n)}$  i  $x^{(n)}$  takie, że

$$|x^{(n)} - x_0^{(n)}| < \delta_n$$
, a równocześnie  $\left| f\left(x^{(n)}\right) - f\left(x_0^{(n)}\right) \right| \geqslant \varepsilon$ .

Na mocy twierdzenia 4.4.7 Bolzano-Weierstrassa z ciągu ograniczonego  $(x^{(n)})_{n\in\mathbb{N}}$  można wybrać podciąg zbieżny do pewnego punktu  $x_0$  przedziału [a,b]. Oznaczmy go  $(x^{(n_k)})_{k\in\mathbb{N}}$ . Mamy  $|x^{(n_k)}-x_0^{(n_k)}|<\delta_{n_k}\overset{k\to\infty}{\longrightarrow}\lim_{n\to\infty}\delta_n=0$  i stąd  $x^{(n_k)}-x_0^{(n_k)}\to 0$ . W takim razie ciąg  $x_0^{(n_k)}$  również dąży do  $x_0$ . W takim razie na mocy ciągłości funkcji w punkcie  $x_0$  powinno być

$$f(x^{n_k}) \to f(x_0) \text{ oraz } f(x_0^{(n)}) \to f(x_0), \text{ czyli } f(x^{n_k}) - f(x_0^{(n_k)}) \to 0,$$

co przeczy temu, że dla wszystkich  $n |f(x^{(n_k)}) - f(x_0^{(n_k)})| \ge \varepsilon$ .

Przykład 73. Funkcja  $f:[0,+\infty)\to\mathbb{R}$  dana wzorem  $f(x)=\sqrt{x}$  jest jednostajnie ciągła na  $[0,+\infty)$ . Istotnie: pokazaliśmy już wcześniej, że f jest jednostajnie ciągła na  $[1,+\infty)$ . Z poprzedniego twierdzenia, wynika, że f jest jednostajnie ciągła również np. na przedziale [0,2]. Ustalmy  $\varepsilon>0$ . Weźmy takie  $\delta_1>0$  i takie  $\delta_2>0$ , że

dla każdych 
$$x,y \in [0,2]$$
:  $|x-y| < \delta_1$  pociąga, że  $|f(x)-f(y)| < \varepsilon$ ; dla każdych  $x,y \in [1,+\infty)$ :  $|x-y| < \delta_2$  pociąga, że  $|f(x)-f(y)| < \varepsilon$ .

Bierzemy  $\delta = \min\{\delta_1, \delta_2, 1\}$ . Wówczas, gdy  $|x - y| < \delta$ , to |x - y| < 1 a więc nie jest możliwe<sup>1</sup>, aby x i y nie leżały razem w przedziale [0, 2] lub  $[1, +\infty)$  - mamy dwa przypadki:

- 1.  $x, y \in [1, \infty)$  i wówczas  $|x y| < \delta_2$  pociąga, że  $|f(x) f(y)| < \varepsilon$ ;
- 2.  $x, y \in [0, 2]$  i wtedy  $|x y| < \delta_1$  pociąga, że  $|f(x) f(y)| < \varepsilon$ .

Widzimy, że gdy  $|x-y| < \delta$  to musi być  $|f(x)-f(y)| < \delta$ , czego chcieliśmy dowieść.

**Definicja 7.2.12.** Niech  $(X, \rho)$ ,  $(Y, \sigma)$  będą przestrzeniami metrycznymi. Mówimy, że funkcja  $f \colon X \to Y$  spełnia warunek Lipschitza ze stałą  $L \geqslant 0$ , gdy dla dowolnych  $x_1, x_2 \in X$  zachodzi

(7.1) 
$$\sigma(f(x_1), f(x_2)) \leqslant L \cdot \rho(x_1, x_2).$$

Najmniejszą liczbą L (o ile istnieje) dla której spełniona jest powyższa nierówność dla dowolnych  $x_1, x_2 \in X$  nazywamy **stałą Lipschitza** funkcji f. Funkcję spełniającą warunek Lipschitza ze stałą L < 1 nazywamy **kontrakcją** albo **odwzorowaniem zwężającym**.

 $<sup>^1</sup>$ zwróćmy uwagę, na długośc przedziału:  $|[0,2]\cap[1,+\infty)|=|[1,2]|=1.$ 

Twierdzenie 7.2.13. Funkcja spełniająca warunek Lipschitza jest jednostajnie ciągla.

Dowód. Niech  $(X, \rho), (Y, \sigma)$  - przestrzenie metryczne i  $f: X \to Y$  sp. warunek Lipschitza z ustaloną stałą  $L \leq 0$ . Weźmy dowolne  $\varepsilon > 0$ . wówczas dla  $\delta = \frac{\varepsilon}{L}$  dostajemy, że dla dowolnych  $x, y \in X$  spełniających  $\rho(x, y) < \delta$  zachodzi

$$\sigma(f(x), f(y)) \le L\rho(x, y) < L\delta = L \cdot \frac{\varepsilon}{L} = \varepsilon.$$

czyli f jest jednostajnie ciągła na X.

*Ćwiczenie* 70. Niech  $I \subseteq \mathbb{R}$  będzie przedziałem. Udowodnić, że funkcja  $f: I \to \mathbb{R}$  spełniająca dla pewnych  $L \geqslant 0$  i  $\alpha \in (0,1]$ , warunek<sup>2</sup>

$$|f(x) - f(y)| \le L|x - y|^{\alpha}, \ x, y \in I$$

jest jednostajnie ciągła na I.

Twierdzenie 7.2.14 (Heinego-Cantora). Każda funkcja ciągła na przestrzeni zwartej jest jednostajnie ciągła.

Dowód. Niech  $f\colon X\to Y$  będzie funkcją ciągłą działającą z przestrzeni zwartej  $(X,\rho)$  w przestrzeń metryczną  $(Y,\sigma)$ . Ustalmy dowolny  $\varepsilon>0$ . Z ciągłości f dla każdego  $x\in X$  istnieje liczba  $\delta_x>0$  taka, że  $\sigma(f(x),f(y))<\varepsilon/2$  dla każdego  $y\in K(x,\delta_x)$ .

Ze zwartości X z pokrycia  $\left\{K\left(x,\frac{\delta_x}{2}\right):x\in X\right\}$  można wybrać podpokrycie skończone

$$K\left(x_1, \frac{\delta_{x_1}}{2}\right), K\left(x_2, \frac{\delta_{x_2}}{2}\right), \dots, K\left(x_m, \frac{\delta_{x_m}}{2}\right).$$

Niech  $\delta = \frac{1}{2} \min\{\delta_{x_1}, \delta_{x_2}, \dots, \delta_{x_m}\}$ . Wówczas dla dowolnych  $x, y \in X$  takich, że  $\rho(x, y) < \delta$  istnieje punkt  $x_k$  taki, że  $x \in K\left(x_k, \frac{\delta_{x_k}}{2}\right)$ . Wtedy

$$\rho(y, x_k) \leqslant \underbrace{\rho(y, x)}_{\substack{<\delta \leqslant \frac{\delta x_k}{2} \\ \text{z zalożenia}}} + \underbrace{\rho(x, x_k)}_{\substack{<\frac{\delta x_k}{2} \\ \text{z zalożenia}}} < \frac{\delta_{x_k}}{2} + \frac{\delta_{x_k}}{2} = \delta_{x_k},$$

zatem  $x, y \in K(x_k, \delta_{x_k})$   $\left(x \text{ również należy do tej kuli, ponieważ } K\left(x_k, \frac{\delta_{x_k}}{2}\right) \subseteq K\left(x_k, \delta_{x_k}\right)\right)$ . Możemy już obliczyć

$$\sigma(f(x), f(y)) \le \sigma(f(x), f(x_i)) + \sigma(f(x_i), f(y)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Stąd mamy, że  $f \colon X \to Y$  jest jednostajnie ciągła, co było do okazania.

Dowód można też przeprowadzić, przy pomocy ciągowej definicji zwartości:

 $<sup>^2</sup>$ mówimy wtedy, że funkcja fspełnia warunek Höldera ze stałą Li wykładnikiem  $\alpha.$ 

Dowód. Niech  $f: X \to Y$  będzie funkcją ciągłą działającą z przestrzeni zwartej  $(X, \rho)$  w przestrzeń metryczną  $(Y, \sigma)$ .

Przypuśćmy, że f nie jest jednostajnie ciągła, tzn.:

$$\exists_{\varepsilon>0} \forall_{\delta>0} \exists_{x_1, x_2 \in X} \rho(x_1, x_2) < \delta \text{ i } \sigma\left(f(x_1), f(x_2)\right) \geqslant 0.$$

Weźmy  $\varepsilon$  spełniający \*. Niech  $\delta = \frac{1}{n}$ , gdzie  $n \in \mathbb{N}$ . Wtedy istnieją  $x_n, x_n' \in X$  takie, że  $\rho(x_n, x_n') < \frac{1}{n}$  oraz  $\sigma(f(x_n), f(x_n')) \geqslant 0$ . Ze zwartości przestrzeni X istnieje  $a \in X$  oraz ciąg  $(n_k)_{k \in \mathbb{N}}$  liczb naturalnych taki, że  $\lim_{k \to \infty} x_{n_k} = a$ .

$$\rho(x'_{n_k}, a) \leqslant \rho(x'_{n_k}, x_{n_k}) + \rho(x_{n_k}, a) < \frac{1}{n} + \rho(x_{n_k}, a) \longrightarrow 0.$$

W takim razie  $x_{n_k}\to 0$  i  $x'_{n_k}\to 0$ . Ale f jest funkcją ciągła w a. Wówczas  $f(x_{n_k})\to f(a)$  i  $f\left(x'_{n_k}\right)\to f(a)$ . Stąd wynika, że

$$0=\sigma\left(f(x),f(a)\right)=\lim_{k\to\infty}\sigma\left(f(x_{n_k}),f(x'_{n_k})\right)\geqslant\varepsilon>0 \ \text{ - sprzeczność}.$$

Funkcja f musi być jednostajnie ciągła.

Wniosek 7.2.15. Jeżeli funkcja ciągła f jest określona na przedziale domkniętym [a, b], to jest również jednostajnie ciągła w tym przedziale.

**Definicja 7.2.16.** Mówimy, że funkcja  $f:[a,b] \to \mathbb{R}$  ma własność **Darboux**, gdy dla dowolnego  $y \in [f(a), f(b)]$  istnieje takie  $c \in (a,b)$ , że f(c) = y.

**Lemat 7.2.17** (Bolzano). Niech  $f:[a,b] \to \mathbb{R}$ , a < b będzie funkcją ciąglą oraz  $f(a) \cdot f(b) < 0$ . Wtedy istnieje takie  $c \in (a,b)$ , że f(c) = 0.

Dowód. Dla ustalenia uwagi przyjmijmy, że f(a) < 0 a f(b) > 0. Podzielimy przedział [a,b] na połowy punktem  $c_0 = \frac{a+b}{2}$ . Jeśli  $f(c_0) = 0$ , to  $c = c_0$  i twierdzenie jest udowodnione. Jeśli  $f(c_0) \neq 0$ , to na końcach jednego z przedziałów  $[a, c_0]$ ,  $[c_0, b]$  funkcja przyjmuje wartości różnych znaków na lewym końcu wartość ujemną, a na prawym dodatnią. Oznaczając ten przedział przez  $[a_1, b_1]$ , mamy  $f(a_1) < 0$ ,  $f(b_1) > 0$  i  $[a_1, b_1] \subseteq [a, b]$ . Dzielimy ten nowy przedział na połowy punktem  $c_1 = \frac{a_1 + b_1}{2}$ . Jeśli  $f(c_1) = 0$ , to twierdzenie jest udowodnione. Kontynuujemy ten proces:

Jeśli dla  $m \in \mathbb{N}$  mamy przedział  $[a_m, b_m] \subseteq [a_{m-1}, b_{m-1}]$  taki, że  $f(a_m) < 0$  i  $f(b_m) > 0$ , to dzielimy go punktem  $c_m = \frac{a_m + b_m}{2}$ . Jeśli  $f(c_m) = 0$  - twierdzenie jest udowodnione. W przeciwnym wypadku, wybieramy ten z przedziałów  $[a_m, c_m]$ ,  $[c_m, b_m]$  na końcach którego funkcja f przyjmie wartości różnych znaków.

Albo po skończonej liczbie kroków trafimy w punkt, w którym f przyjmuje wartość zero, albo otrzymamy zdefiniowany indukcyjnie nieskończony ciąg  $([a_n,b_n])_{n\in\mathbb{N}}$  niepustych przedziałów zstępujących a dla n-tego przedziału, jego długość wynosi  $b_n-a_n=\frac{b-a}{2^n}\stackrel{n\to\infty}{\longrightarrow} 0$ . Wtedy na mocy lematu 4.4.4 o przedziałach zstępujących istnieje taki punkt  $c\in[a,b]$ , dla którego  $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$ . Zauważmy teraz, że

$$f(a_n) < 0, \ f(b_n) > 0, \ n \in \mathbb{N}, \ \text{i stad} \ \lim_{n \to \infty} f(a_n) \leqslant 0, \ \lim_{n \to \infty} b_n \geqslant 0.$$

Korzystając z ciągłości funkcji f:  $f(c) = \lim_{n \to \infty} f(a_n)$  i  $f(c) = \lim_{n \to \infty} f(b_n)$ , czyli  $f(c) \le 0$  i zarazem  $f(c) \ge 0$ . Ostatecznie f(c) = 0.

**Twierdzenie 7.2.18** (Darboux I). Każda funkcja ciągła  $f:[a,b] \to \mathbb{R}$  ma własnośc Darboux.

Dowód. Weźmy dowolny  $y \in (f(a)), f(b)$ ). Zdefinujmy funkcję pomocniczą  $F: [a, b] \to \mathbb{R}$  wzorem F(x) = f(x) - y. Funkcja ta jest oczywiście ciągła. Poniważ f(a) < y < f(b), to F(b) = f(a) - c < 0, zaś F(b) = f(b) - c > 0. Zatem na mocy lematu Bolzano, istnieje punkt  $x \in [a, b]$  taki, że F(x) = 0, czyli f(x) = y.

**Uwaga 7.2.19.** Twierdzenie nie zachodzi w drugą stronę. Np. funkcja  $f: [-1,1] \to [-1,1]$  określona wzorem

$$f(x) = \begin{cases} \sin\left(\frac{1}{x}\right) & \text{dla } x \neq 0; \\ 0 & \text{dla } x = 0. \end{cases}$$

ma własność Darboux ale nie jest ciągła w punkcie x = 0. Podobnie funkcja  $f: [-1, 1] \rightarrow [0, 2]$  dana wzorem

$$f(x) = \begin{cases} -x, & x \in [-1, 0]; \\ x+1, & x \in (0, 1]; \end{cases}$$

ma własność Darboux ale nie jest ciągła w punkcie x=0 (ćwiczenie).

**Uwaga 7.2.20.** Twierdzenie, często określane jako tw. Darboux jako pierwszy w istocie udowodnił Bernard Bolzano - matematyk, który pracował samotnie i nie opublikował swoich prac, które doczekały się dopiero wydania po śmierci autora. Ponadto w literaturze występuje ono czasem jako twierdzenie Bolzano-Cauchy'ego. Możemy sformułować:

**Twierdzenie** (Bolzano-Cauchy'ego). Jeżeli  $f: D \to \mathbb{R}$  jest funkcją ciągłą, a zbiór  $D \subseteq \mathbb{R}$  przedziałem, to zbiór wartości funkcji jest także przedziałem.

Widzimy, że tak naprawdę powyższe twierdzenie wyraża dokładnie tę samą treść, co twierdzenie 7.2.18.

**Uwaga 7.2.21.** Jeszcze ogólniej, na gruncie topologii twierdzenie Darboux przyjmuje postać stwierdzenia:

**Twierdzenie.** Jeśli  $f: X \to Y$  jest ciągłą funkcją różnowartościową między przestrzeniami metrycznymi (topologicznymi) X i Y, oraz X jest zb. spójnym, to przestrzeń Y również jest zbiorem spójnym.

Dowód. Ćwiczenie. Wskazówka: założyć nie wprost, że f[X] nie jest spójny.

**Uwaga 7.2.22.** Jeżeli  $I, P \subseteq \mathbb{R}$  są przedziałami a  $f: I \to P$  ciągłą bijekcją, to albo funkcja f jest w I rosnąca, albo malejąca.

 $Dow \acute{o}d.$  Załóżmy, że istniały<br/>by takie punkty  $x_1, x_2, x_3 \in I,$  że  $x_1 < x_2 < x_3$ oraz

$$f(x_1) < f(x_2)$$
 i  $f(x_2) > f(x_3)$ 

lub

$$f(x_1) > f(x_2)$$
 i  $f(x_2) < f(x_3)$ .

Niech np.  $f(x_1) < f(x_2)$  i  $f(x_2) > f(x_3)$ . Wtedy

$$\min\{f(x_1), f(x_3)\} = f(x_1)$$

$$\max\{f(x_1), f(x_3)\} = f(x_3)$$

Mamy  $x_1 < c < x_2 < x_3$  oraz  $f(c) = f(x_3)$  - sprzeczność, ponieważ f jest różnowartościowa.

*Ćwiczenie* 71. Wykazać, że każde ciągłe odzworowanie f przedziału  $[a,b] \subseteq \mathbb{R}$  w siebie ma co najmniej jeden punkt stały, tj. punkt  $x \in [a,b]$  taki, że f(x) = x.

Twierdzenie 7.2.23. Jeśli funkcja jest ściśle monotoniczna w przedziale domkniętym i ma własność Darboux, to jest ciągła w tym przedziale.

Dowód. [TO-DO:WIP] Niech  $y \in [f(a), f(b)]$ , to z założenia istnieje  $x \in [a, b]$  takie, że y = f(x). Założmy najpierw, że  $x \in (a, b)$ . Z twierdzenia 6.2.11 granice f(x-), f(x+) istnieją i

$$f(x-) \leqslant f(x) \leqslant f(x+)$$
.

Ustalmy  $\varepsilon > 0$ . Wówczas mamy:

dla pewn. 
$$\delta_1 > 0: x - \delta_1 < t < x \implies |f(x) - f(t)| < \varepsilon$$
, dla pewn.  $\delta_2 > 0: x < t < x + \delta_2 \implies |f(x) - f(t)| < \varepsilon$ .

Niech  $\delta = \min\{\delta_1, \delta_2\}$ , to dla  $t \in (x - \delta, x + \delta)$  zachodzi  $|f(x) - f(t)| < \varepsilon$  czyli

$$\lim_{t \to x} f(t) = f(x).$$

Funkcja f jest ciągła w x.

**Uwaga 7.2.24.** Założenie zwartości (ograniczoności i domkniętości) dziedziny funkcji w powyższym twierdzeniu nie może być pominięte. Np. funkcja  $f:(0,1] \to \mathbb{R}$  określona wzorem

$$f(x) = \frac{1}{x}$$

jest ciągła, ale nie jest ograniczona. Podobnie funkcja  $f: \mathbb{R} \to \mathbb{R}$  dana jako  $f(x) = e^x$  nie jest ograniczona, mimo że jej dziedzina - cała prosta rzeczywista - jest domknięta. Klasycznie twierdzenie dotyczy funkcji  $f: [a,b] \to \mathbb{R}, [a,b] \subseteq \mathbb{R}$ .

**Twierdzenie 7.2.25.** Funkcja  $f: X \to Y$ , gdzie X, Y są przestrzeniami metrycznymi, jest ciągła wtedy i tylko wtedy, gdy dla dowolnego zbioru otwartego  $U \subseteq X$  zbiór  $f^{-1}[U]$  jest otwarty.

 $Dow \acute{o}d.$  Najpierw przeprowadzimy dowód w lewo: rozważ<br/>my dowolny  $x \in X.$  Chcemy sprawdzić, że

(\*) 
$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{x'}, x' \in K(x,\delta) \Rightarrow f(x') \in K(f(x),\varepsilon)$$

Ustalmy więc dowolny  $\varepsilon > 0$ . Zbiór  $K(f(x), \varepsilon)$  jest otwarty, zatem z założenia zbiór  $f^{-1}[K(f(x), \varepsilon)]$  jest również otwarty i stąd istnieje pewne otoczenie  $K(x, \delta) \subseteq f^{-1}[K(f(x), \varepsilon)]$  punktu x. Ale z definicji przeciwobrazu dla każdego punktu  $x' \in K(x, \delta)$  mamy  $f(x') \in K(f(x), \varepsilon)$  czyli inaczej mówiąc zachodzi warunek (\*). W drugą stronę: ustalmy dowolny zbiór otwarty  $U \subseteq X$ . Rozważmy dowolny  $x \in f^{-1}[U]$ . Istnieje  $y = f(x) \in U$  wraz z otoczeniem (otwartość U)  $K(y, \varepsilon) \subseteq U$ . Z ciągłości f dla otoczenia  $K(f(x), \varepsilon)$  istnieje takie otoczenie  $K(x, \delta)$  punktu x, że dla każdego  $x' \in K(x, \delta)$  zachodzi  $f(x') \in K(f(x), \varepsilon) = K(y, \varepsilon)$ . Czyli  $K(x, \delta) \subseteq f^{-1}[K(y, \varepsilon)] \subseteq f^{-1}[U]$ . Stąd zbiór  $f^{-1}[U]$  jest otwarty.

Łatwo z powyższego twierdzenia uzasadnić

**Wniosek 7.2.26.** Funkcja  $f: X \to Y$  określona na przestrzeniach metrycznych  $(X, \rho)$ ,  $(X, \sigma)$  jest ciągła wtedy i tylko wtedy, gdy dla dowolnego zbioru domkniętego  $F \subseteq Y$  zbiór  $f^{-1}[F]$  jest domknięty.

*Ćwiczenie* 72. Sprawdzić, że  $f^{-1}[X \setminus B] \subseteq X \setminus f^{-1}[B]$ ,  $B \subseteq Y$  i udowodnić poprzednie twierdzenie. *Ćwiczenie* 73. Udowodnić, że jeżeli  $f: X \to Y$ , gdzie X, Y są przestrzeniami metrycznymi, jest funkcją ciągłą, to  $f[\operatorname{cl} E] \subseteq \operatorname{cl} f[E]$  dla dowolnego zb.  $E \subseteq X$ .

Rozwiązanie. Niech  $y \in f[\operatorname{cl} E]$ . Wówczas y = f(x) dla pewnego  $x \in \operatorname{cl} E$ . Istnieje ciąg  $(x_n)_{n \in \mathbb{N}}$  wyrazów zbioru  $E, x_n \to x$ . Zauważmy, że  $f(x_n) \in f[E]$ ,  $n \in \mathbb{N}$ . Z ciągłości funkcji f musi być  $f(x_n) \to f(x)$ . Czyli  $y = f(x) \in \operatorname{cl} f[E]$ . A więc  $y \in f[\operatorname{cl} fE] \Rightarrow y \in \operatorname{cl} f[E]$ .

Twierdzenie 7.2.25 może stanowić punkt wyjścia dla topologicznej definicji ciągłości, więc pozwolimy sobie na drobny wstęp na ten temat. Tak naprawdę, w przestrzeni metrycznej "nasze" definicje ciągłości (Cauchy'ego, Heinego) pokrywają się z ową ogólną definicją topologiczną. Topologią  $\mathcal T$  na zbiorze X jest wyróżniona rodzina jego podzbiorów, spełniających pewne własności ("aksjomaty"). Parę  $(X,\mathcal T)$  nazywamy przestrzenią topologiczną. Zbiory rodziny  $\mathcal T$  nazywają się zbiorami otwartymi tej przestrzeni. Czytelnik może się stąd domyślać, że zbiory otwarte w przestrzeni metrycznej wyznaczają w jakiś sposób na niej topologię. Przestrzenie metryczne są szczególnym przypadkiem przestrzeni topologicznej. Równoważnik ciągłości w twierdzeniu 7.2.25 jest prawdziwy dla funkcji określonej między przestrzeniami topologicznymi, również nie będącymi przestrzeniami metrycznymi. Mógłby on więc również stanowić definicję ciągłości.

Twierdzenie 7.2.27. Obraz ciągły przestrzeni zwartej jest przestrzenią zwartą.

 $Dow \acute{o}d.$  Niech  $f\colon X\to Y$ będzie odwzorowaniem ciągłym przestrzeni zwartej Xna przestrzeń Y.Rozważmy dowolne pokrycie  $\mathcal V$  przestrzeni Y.Rodzina

$$\{f^{-1}[V]\colon V\in\mathcal{V}\}$$

jest pokryciem przestrzeni X na mocy tego, że f jest na Y oraz składa się ze zbiorów otwartych, gdyż f jest ciągłe. Ze zwartości przestrzeni X wynika, że istnieje skończenie wiele zbiorów  $f^{-1}[V_1], \ldots, f^{-1}[V_n]$ , gdzie  $V_i \in \mathcal{V}$ , które pokrywają przestrzeń X. Stąd

$$Y = f[X] = f[f^{-1}[V_1] \cup \dots \cup f^{-1}[V_n]] = V_1 \cup \dots \cup V_n.$$

Koniec dowodu.

**Lemat 7.2.28.** Niech  $f: X \to Y$  będzie ciągłą bijekcją zwartej przestrzeni metrycznej  $(X, \rho)$  na przestrzeń metryczną  $(Y, \sigma)$ . Wówczas dla każdego zbioru otwartego  $U \subseteq X$  zbiór f[U] jest otwarty.

Dowód. Ustalmy zbiór otwarty  $U\subseteq X$ . Wówczas  $X\setminus U$  zbiorem otwartym i zawartym w zbiorze zwartym X, a więc zwartym na mocy twierdzenia 5.6.11. Z poprzedniego twierdzenia wynika, że  $f[X\setminus U]$  jest zbiorem zwartym. Z założenia, że funkcja jest na Y zachodzi równość  $f[X\setminus U]=Y\setminus f[U]$ . W takim razie zbiór  $Y\setminus f[U]$  jest zwarty, a więc domknięty i stąd f[U] jest zbiorem otwartym.

**Twierdzenie 7.2.29.** Niech  $f: X \to Y$  będzie ciągłą bijekcją zwartej przestrzeni metrycznej  $(X, \rho)$  na przestrzeń metryczną  $(Y, \sigma)$ . Wówczas odwzorowanie odwrotne  $f^{-1}: Y \to X$  jest ciągłą bijekcją przestrzeni Y na przestrzeń X.

Dowód. Ustalmy zbiór otwarty  $U \subseteq X$ . Z różnowartościowości funkcji f wynika, że  $(f^{-1})^{-1}[U] = f[U]$ . Z poprzedniego lematu wynika teraz otwartość zbioru f[U]. Czyli przeciwobraz dowolnego zbioru otwartego U przez funkcję  $f^{-1}$  jest otwarty i z twierdzenia 7.2.25 funkcja  $f^{-1}$  jest ciągła. □

**Twierdzenie 7.2.30** (Weierstrassa). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ciąłą. Wtedy jej obraz jest zbiorem ograniczonym, tzn.  $m \le f(x) \le M$  dla pewnych stałych m i M. Ponadto funkcja f osiąga swoje kresy, tzn. istnieją takie  $\underline{x}, \overline{x} \in X$ , że

$$f(\underline{x}) = \inf_{x \in X} f(x), \ f(\overline{x}) = \sup_{x \in X} f(x).$$

Wtedy oczywiście

$$f(\underline{x}) \leqslant f(x) \leqslant f(\overline{x}), \ dla \ ka\dot{z}dego \ x \in [a, b].$$

Klasyczne twierdzenie 7.2.30 Weierstrassa stanowi wniosek z twierdzenia 4.4.7 Bolzano-Weierstrassa. Czytelnik zechce spróbować przeprowadzić dowód. Po tak dużej dawce topologii przestrzeni metrycznych, wynagrodzimy włożony w ich studiowanie wysiłek, przeprowadzając znacznie prostszy dowód, znacznie współcześniejszej i bardziej ogólnej wersji twierdzenia:

**Twierdzenie 7.2.31** (Weierstrassa). Funkcja ciągła, określona na przestrzeni zwartej, o wartościach w  $\mathbb{R}$  jest ograniczona i przyjmuje swoje kresy.

Dowód. Niech  $f: X \to \mathbb{R}$  będzie funkcją ciągłą, a X będzie zwartą przestrzenią metryczną. Wówczas zbiór f[X] jest zwarty jako ciągły obraz przestrzeni zwartej. Na mocy twierdzenia 5.6.14 f[X] jest domknięty i ograniczony. Zatem f jest funkcją ograniczoną. Z definicji supremum i infimum oraz domkniętości f[X] mamy, że inf f[X], sup  $f[X] \in f[X]$ . □

#### Kilka faktów teoriomnogościowych, na temat funkcji ciągłych.

Twierdzenie 7.2.32. Jeżeli f jest funkcją zmiennej rzeczywistej, monotoniczną o wartościach rzeczywistych, to zbiór jej punktów nieciągłości jest co najwyżej przeliczalny.

Dowód. Dla ustalenia uwagi, przypuśćmy, że  $f:(a,b)\to\mathbb{R}$  jest niemalejąca, i niech  $K=\{x\in(a,b)\colon f$  jest nieciągła w  $x\}$ . Dla każdego  $x\in K$  mamy f(x-)< f(x+). Dla każdego takiego x istnieje więc taka liczba  $r_x\in\mathbb{Q}$ , że

$$f(x-) < r_x < f(x+).$$

Oczywiste jest, że dla  $x_1 \neq x_2$ :  $r_{x_1} \neq r_{x_2}$ . Niech np.  $x_1 < x_2$ , to wówczas

$$f(x_1-) < r_{x_1} < f(x_1+) \le f(x_2-) < r_{x_2} < f(x_2+).$$

Oznacza to, że istnieje wzajemnie jednoznaczne odwzorowanie między K a pewnym podzbiorem zbioru  $\mathbb{Q}$ , a ten musi być oczywiście co najwyżej przeliczalny.

**Lemat 7.2.33.** Ustalmy X, Y - prz. metryczne. Niech  $f, g \colon X \to Y$  będą funkcjami ciąglymi i  $E \subseteq X$  będzie zbiorem gęstym w X. Wówczas, jeżeli  $f(x) = g(x), x \in E$ , to f = g (tzn.  $f(x) = g(x), x \in X$ )

 $Dow \acute{o}d$ . Załóżmy nie wprost, że  $f(x) \neq g(x)$  dla pewnego  $x \in X \setminus E$ . Niech  $U, V \subseteq Y$  tak, że

U, V - są zbiorami otwartymi;

$$U \cap V = \varnothing,$$
 
$$f(x) \in U, \ g(x) \in V.$$

(Zbiory takie istnieją na mocy 5.2.7.) Wówczas  $x \in f^{-1}[U] \cap g^{-1}[V] \subseteq X$ . Z gęstości zbioru E:  $X = E \cup E^d$ .  $x \notin E$  z założenia, więc x jest punktem skupienia zbioru E. Zatem istnieje w  $E \cap f^{-1}[U] \cap g^{-1}[V]$ (otoczenie punktu x!) pewien punkt c. Ale wówczas  $f(c) \neq g(c)$ . Ale  $c \in E$  - sprzeczność z założeniem.

Twierdzenie 7.2.34. Zbiór funkcji ciągłych jest mocy continuum.

 $\label{eq:Dowod} \mbox{Dowod. Niech $C = \{f \in \mathbb{R}^{\mathbb{R}} \colon f \text{ jest ciągła.}\}.$ Określamy $F \colon C \xrightarrow{\mathrm{na}} \mathbb{R}^{\mathbb{Q}}$ wzorem $F(f) = f \big|_{\mathbb{Q}}$. Z teorii mnogości wiadomo, że card $\mathbb{R}^{\mathbb{Q}} = \mathfrak{c}$ i stąd wynika teza.}$ 

#### 7.3 Ciągłość bezwzględna\*

Ten temat można pominąć w pierwszym czytaniu.

**Definicja 7.3.1.** Niech  $I \subseteq \mathbb{R}$  będzie przedziałem i dana będzie funkcja  $f \colon I \to \mathbb{R}$ . Funkcję f nazywamy bezwzględnie ciągłą na przedziałe I, gdy dla każdego  $\varepsilon > 0$  istnieje takie  $\delta > 0$ , że dla każdego skończonego ciągu  $(a_1, b_1), (a_2, b_2), \ldots, (a_n, b_n)$  przedziałów otwartych i rozłącznych i takich, że

1.) 
$$(a_k, b_k) \subseteq I, k \in \{1, \dots, n\},\$$

$$2.) \quad \sum_{k=1}^{n} (b_k - a_k) \leqslant \delta;$$

zachodzi nierówność

$$\sum_{k=1}^{n} |f(b_k) - f(a_k)| \leqslant \varepsilon.$$

**Uwaga 7.3.2.** Złożenie dwóch funkcji bezwzględnie ciągłych *nie* musi być funkcją bezwzględnie ciągłą!

**Twierdzenie 7.3.3.** Każda funkcja bezwzględnie ciągła  $f: I \to \mathbb{R}$ , gdzie  $I \subseteq \mathbb{R}$  jest przedziałem, jest jednostajnie ciągła.

Powyższe twierdzenie nie zachodzi w drugą stronę.

**Twierdzenie 7.3.4.** Niech  $f: I \to \mathbb{R}$ , gdzie  $I \subseteq \mathbb{R}$  jest przedziałem. Jeżeli f spełnia warunek Höldera dla stałej  $L \geqslant 0$  i wykładnika  $\alpha \in (0,1]$ , czyli:

$$|f(x) - f(y)| \leqslant L|x - y|^{\alpha}, \ x, y \in I,$$

to jest bezwzględnie ciągła.

#### 7.4 Półciągłość\*

Ten rozdział jest w dużej mierze opcjonalny.

**Twierdzenie 7.4.1.** Funkcja  $f: X \to \mathbb{R}$ , X - prz. metryczna; jest ciągła wtedy i tylko wtedy, gdy zachodzą równocześnie warunki

- (1) dla dow.  $c \in \mathbb{R}$  zbiór  $\{x \in X : f(x) > c\}$  jest zbiorem otwartym;
- (2) dla dow.  $c \in \mathbb{R}$  zbiór  $\{x \in X : f(x) < c\}$  jest zbiorem otwartym.

Dowód. Implikacja w prawo wynika z twierdzenia 7.2.25. W drugą stronę: ustalmy dow.  $x_0 \in X$ . Rozważmy dowolny  $\varepsilon > 0$ . Niech  $c_1 = f(x_0) - \varepsilon$  i  $c_2 = f(x_0) + \varepsilon$ . Wtedy, z założenia istnieją takie  $r_1, r_2 > 0$ , że

$$K(x_0, r_1) \subseteq \{x \in X : f(x) > f(x_0) - \varepsilon\},\$$

$$K(x_0, r_2) \subseteq \{x \in X : f(x) < f(x_0) + \varepsilon\},$$

Przyjmijmy  $r = \min\{r_1, r_2\}$  i wtedy

$$K(x_0, r) \subseteq K(x_0, r_1) \cap K(x_0, r_2) = \{x \in X : |f(x) - f(x_0)| < \varepsilon\}.$$

Pokazaliśmy zatem, że  $\forall_{\varepsilon>0}\exists_{r>0}\forall_{x\in X}x\in K(x_0,r)\Rightarrow f(x)\in K(f(x_0),\varepsilon).$  f jest ciągła w punkcie  $x_0$  a z dowolności wyboru tego punktu: jest ciągła w X.

**Definicja 7.4.2.** Ustalmy funkcję  $f: X \to \mathbb{R}$ , gdzie X - prz. metryczna. Jeżeli f spełnia warunek (1) z poprzedniego twierdzenia, to mówimy, że jest **półciągła z góry**. Jeżeli f spełnia warunek (2) to mówimy, że jest **półciągła z dołu**.

Z poprzedniego twierdzenia wynika w sposób oczywisty

Twierdzenie 7.4.3. Funkcja jest ciągła wtedy i tylko wtedy, gdy jest równocześnie półciągła z dołu i z góry.

Przykład 74. Ustalmy a > 0. Funkcja  $f: \mathbb{R} \to \mathbb{R}$  dana wzorem

$$f(x) = \begin{cases} a, & x \geqslant 0, \\ -a, & x < 0. \end{cases}$$

jest półciągła z góry w x = 0, chociaż nie jest w tym punkcie ciągła.

Przykład 75. Funkcja  $x\mapsto |x|$  jest półciągła z góry. Podobnie  $x\mapsto \lceil x\rceil$  jest półciągła z dołu.

#### 7.5 Twierdzenia o punkcie stałym

Punktem stałym odwzorowania f nazywamy każdy taki punkt x jego dziedziny, że f(x) = x.

**Twierdzenie 7.5.1** (Banacha o punkcie stałym). Niech  $(X, \rho)$  będzie przestrzenią metryczną zupelną a  $T: X \to X$  odzworowaniem zwężającym. Wówczas istnieje dokładnie jeden punkt  $a \in X$  taki, że T(a) = a. Ponadto ciąg  $(T^n(x))_{n \in \mathbb{N}}$  dla dowolnego  $x \in X$  jest zbieżny do a oraz

$$\rho(T^n(x), a) \leqslant L^n \cdot \rho(x, a),$$

gdzie L jest stałą, dla której T spełnia warunek Lipschitza.

Dowód. Niech  $a \in X$ . Pokażemy, że ciąg  $(T^n(a))_{\mathbb{N}}$  spełnia warunek Cauchy'ego. Indukcyjnie udowodnimy najpierw, że

$$\rho\left(T^{n+1}(x), T^n(x)\right) \leqslant L^n \rho(T(x), x)$$

Dla n=0:  $\rho\left(T^1(x),T^0(x)\right)=\rho(T(x),x)$ . Dla n=1 mamy  $\rho\left(T^2(x),T^1(x)\right)=\rho(T\left(T(x)\right),T(x))\leqslant L\rho\left(T(x),x\right)$ . Zafóżmy, że dla pewnego  $m\in\mathbb{N}$  zachodzi:

$$\rho\left(T^{m+1}(x), T^m(x)\right) \leqslant L^m \rho(T(x), x).$$

Pokażemy, że

$$\rho(T^{m+2}(x), T^{m+1}(x)) \leq L^{m+1}\rho(T(x), x).$$

Mamy:

$$\begin{split} \rho\left(T^{m+2}(x),T^{m+1}(x)\right) &= \rho\left(T(T^{m+1}(x)).T(T^m(x))\right) \leqslant L\rho\left(T^{m+1}(x),T^m(x)\right) \leqslant \\ &\leqslant L\cdot L^m\rho(T(x),x) = L^{m+1}\rho(T(x),x). \end{split}$$

Ustalmy teraz dowolne  $m, n \in \mathbb{N}, m > n$ . Wtedy

$$\begin{split} \rho\left(T^{m}(x), T^{n}(x)\right) &\leqslant \rho\left(T^{m}(x, T^{m-1})(x)\right) + \rho\left(T^{m-1}(x, T^{m-2})(x)\right) + \ldots + \rho\left(T^{n+1}(x, T^{n})(x)\right) \leqslant \\ &\leqslant L^{m-1}\rho(T(x), x) + L^{m-2}\rho(T(x), x) + \ldots + L^{n}\rho(T(x), x) = (L^{m-1} + L^{m-2} + \ldots + L^{n}) \cdot \rho(T(x), x) \leqslant \\ &\leqslant \rho(T(x), x) \cdot \sum_{k=n}^{\infty} L^{k} = L^{n} \frac{\rho(T(x), x)}{1 - L} = C \cdot L^{n}. \end{split}$$

Ustalmy  $\varepsilon > 0$ . Wtedy istnieje  $n_0 \in \mathbb{N}$  takie, że  $C \cdot L^{n_0} < \varepsilon$ . Biorąc dowolne  $m, n \ge n_0$  mamy

$$\rho(T^m(x), T^n(x)) \leqslant C \cdot L^{\min(n,m)} \leqslant C \cdot L^{n_0} < \varepsilon.$$

Stąd mamy już, że ciąg  $(T^n(x))_{n\in\mathbb{N}}$  spełnia warunek Cauchye'go, a zatem z zupełności przestrzeni X jest zbieżny. Niech

$$a = \lim_{n \to \infty} T^n(x).$$

T jest ciągła (gdyż spełnia warunek Lipschitza), zatem

$$T(a) = T\left(\lim_{n \to \infty} T^n(x)\right) = \lim_{n \to \infty} T(T^n(x)) = \lim_{n \to \infty} T^{n+1}(x) = a.$$

Indukcyjnie możemy pok<br/>zać, że  $\rho(T^n(x),a) \leqslant L^n \rho(x,a), n \in \mathbb{N}$  dla dowolnego  $x \in X.$  (ćwiczenie)

W matematyce istnieje wiele twierdzeń o punktach stałych. Np. słynne

**Twierdzenie** (Brouwera o punkcie stałym). Niech K jest n-wymiarową kulą domkniętą w przestrzeni  $\mathbb{R}^n$  oraz  $T\colon K\to K$  będzie odwzorowaniem ciągłym. Wówczas istnieje taki punkt  $a\in K$ , że T(a)=a.

## Rozdział 8

# Pochodna funkcji jednej zmiennej, różniczkowalność funkcji

#### 8.1 Pochodna funkcji jednej zmiennej

**Definicja 8.1.1** (Pochodna funkcji jednej zmiennej w punkcie). Niech  $D \subseteq \mathbb{R}$  będzie zbiorem otwartym,  $f: D \to \mathbb{R}$  oraz  $x_0 \in D$ . **Pochodną funkcji** f w punkcie  $x_0$  nazywamy granicę

(8.1) 
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

i oznaczamy ją  $f'(x_0)$ .

Przykład 76. Obliczmy pochodną funkcji  $\mathbb{R} \to \mathbb{R}$  danej wzorem  $y = x, \ x \in \mathbb{R}$  (czyli identyczności na  $\mathbb{R}$ ). Ustalmy  $x_0 \in \mathbb{R}$ . Wtedy

$$\frac{\mathrm{d}x}{\mathrm{d}y} = (x)' = \lim_{x \to x_0} \frac{x - x_0}{x - x_0} = \lim_{x \to x_0} 1 = 1$$

Uwaga 8.1.2. Pochodna z dowolnej stałej jest równa 0 (ćwiczenie).

Wyrażenie 
$$\frac{f(x) - f(x_0)}{x - x_0}$$
 oznaczamy przez  $\frac{\Delta f}{\Delta x}$  a czasem też np.  $\frac{\Delta y}{\Delta x}$  (gdy przyjmujemy  $y = f(x)$ )

i nazywamy ilorazem różnicowym. Pochodną oznaczamy też czasem jako  $\frac{\mathrm{d}f}{\mathrm{d}x}$  lub  $\frac{\mathrm{d}y}{\mathrm{d}x}$  - jest to oznaczenie pochodzące od Leibniza<sup>1</sup> i spotykane wciąż w fizyce, matematyce stosowanej a także powszechne w niektórych działach matematyki, np. w teorii równań różniczkowych.

Rozważać będziemy dowolną funkcję różniczkowalną f. Ustalmy dowolny punkt  $x_0 \in D_f$  oraz rozważmy przyrost zmiennej x w okolicy  $x_0$ , a więc liczbę h taką, że  $x = x_0 + h$ . Często oznacza się przyrost przez  $\Delta x$ . Tradycyjna konwencja, używana np. w fizyce, jest taka że  $\Delta x$  oznacza "zmianę"

<sup>&</sup>lt;sup>1</sup>Gottfried Wilhelm Leibniz (1646-1716) - niemiecki polihistor: matematyk i fizyk ale także filozof, inżynier, historyk, prawnik i dyplomata. Niezależnie od Isaaca Newtona wynalazca rachunku różniczkowego i całkowego. Jako osobisty asystent księcia Hanoweru - Jerzego Ludwika podróżował po całej Europie z tajnymi misjami dyplomatycznymi, które nie tylko przysparzały mu licznych przygód ale też dały okazję poznać wszystkich ważniejszych filozofów i naukowców swoich czasów. Był też twórcą jednej z pierwszych koncepcji "maszyny liczącej", czyli proto-komputera.

jakiejś wartości x, różnicę o którą pewna zmienna x się "zmienia" albo różnicę między faktyczną własnością a jej przybliżeniem. Mamy zatem ustalony punkt  $x_0$  i wyrażamy zmienną x równaniem:  $x = x_0 + \Delta x$ . Sam przyrost  $\Delta x$  to różnica między wartościami x i  $x_0$ .



Rysunek 8.1: Przyrost  $\Delta y$  zależy od przyrostu  $\Delta x$ .

Z powyższego wykresu widzimy, że dla ustalonego przyrostu  $\Delta x$  ustalonego argumentu  $x_0$  odpowiadająca im zmiana (przyrost) argumentu y wynosi  $\Delta y = f(x + \Delta x) - f(x)$ :

 $x_0 + \Delta x - x_0 = \Delta x$  - długość przedziału  $[x_0, x_0 + \Delta x]$  w którym rozpatrujemy zachowanie funkcji f.

$$f(x_0 + \Delta x) - f(x_0) = y_2 - y_1 = \Delta y$$
 - o tyle zmienia się  $y$  w przedziale  $[x_0, x_0 + \Delta x]$ .

Wyrażenie

$$\frac{\Delta y}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

nazywamy ilorazem różnicowym . Zauważmy, że jeżeli oznaczamy  $x=x_0+\Delta x$  to mamy

$$\frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + \Delta x) - f(x_0)}{x_0 + \Delta x - x_0} = \frac{f(x_0 + \Delta x) - f(x)}{\Delta x}.$$

Przechodząc do granicy otrzymujemy pochodną, zatem mamy inny zapis definicji 8.1.1:

(8.2) 
$$f'(x_0) = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x) - f(x)}{\Delta x_0}.$$

W tej postaci czasem rachunki bywają łatwiejsze.

#### Definicja 8.1.3. Oznaczamy

$$f'(x+) := \lim_{\Delta x \to 0+} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

oraz

$$f'(x-) := \lim_{\Delta x \to 0-} \frac{f(x+\Delta x) - f(x)}{\Delta x}.$$

f'(x+) nazywamy **pochodną prawostronną** a f'(x-) **pochodną lewostronną** funkcji f. Pochodne prawo i lewostronne możemy rozważać również w krańcach przedziału, jeśli funkcja nie jest określona na zbiorze otwartym.

Oczywiste jest, że jeśli granice f'(x+), f'(x-) istnieją i f'(x+) = f'(x-), to f jest różniczkowalna w x i f'(x) = f'(x+) = f'(x-). Ustalmy zbiór  $E \subseteq \mathbb{R}$ , niebędącym zbiorem otwartym, ale niezawierającym punktów izolowanych. Możemy przyjąć, że funkcja f określona na zbiorze E jest różniczkowalna, gdy istnieje jej pochodna w każdym punkcie  $x \in \text{int } E$  oraz w każdym punkcie brzegowym istnieje jej pochodna lewostronna lub prawostronna.

Przykład 77. Mówiliśmy już, że funkcja  $f: \mathbb{R} \to \mathbb{R}$  dana wzorem:

$$f(x) = \begin{cases} x^2 + 1, & \text{dla } x \le 0; \\ e^x, & \text{dla } x > 0. \end{cases}$$

jest ciągła w punkcie x=0. Zauważmy, że  $f'(0+)=e^0=1$  oraz  $f'(0-)=2\cdot 0=0$ . Zatem  $f'(0+)\neq f'(0-)$ , czyli nie może istnieć pochodna f'(0) (nie istnieje granica (8.1)).

 $\acute{C}wiczenie$  74. Udowodnić, że jeżeli f jest różniczkowalna w x, to

$$\lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h} = f'(x).$$

Dodatkowo, można spróbować pokazać, że istnieją funkcje, które nie są różniczkowalne w x a mimo to powyższa granica istnieje.

 $\acute{C}wiczenie$  75. Udowodnić z definicji pochodnej, że  $(x^n)'=nx^{n-1}$  dla dowolnej liczby naturalnej n. Wskazówka: skorzystać ze wzoru (3.4.8) na różnicę n-tych potęg.

Przypomnijmy, że otwartość podzbioru D przestrzeni  $\mathbb{R}$  (w domyśle z metryką naturalną) oznacza, iż dla każdego  $x \in D$  istnieje taki otwarty przedział  $(a,b) \subseteq \mathbb{R}$ , że  $x \in (a,b) \subseteq D$ . Warunek ten zapewnia, że możemy rozważać w punkcie x granice obustronne.

**Definicja 8.1.4.** Jeżeli funkcja  $f: D \to \mathbb{R}$ , gdzie D jest zbiorem otwartym, jest różniczkowalna w każdym punkcie swojej dziedziny, to mówimy że jest **różniczkowalna** a jej pochodną nazywamy funkcje g taką, że

$$g(x) = f'(x), x \in D$$

i przyjmujemy oznaczenie q = f'.

Interpretacja fizyczna pochodnej. Niech x(t) oznacza położenie na osi OX punktu materialnego w chwili  $t \in [0, +\infty)$ . Ustalmy pewną chwilę  $t_0$ . Średnią prędkość punktu w przedziale czasu  $[t_0, t]$  (dla  $t > t_0$ ) definiuje się jako  $v_{\text{śr}} := \frac{x(t) - x(t_0)}{t - t_0}$ . **Prędkość chwilową**  $v(t_0)$  w chwili  $t_0$  definijemy jako granicę:

$$v(t_0) = x'(t_0) = \lim_{t \to t_0} \frac{x(t) - x(t_0)}{t - t_0}.$$

Interpretacja geometryczna pochodnej. Ustalmy funkcję f określoną w otoczeniu pewnego  $x_0 \in \mathbb{R}$ . Oznaczmy punkt  $P = (x_0, f(x_0))$ . Niech dodatkowo  $H = (x_1, f(x_1))$  będzie dowolnym punktem położonym na wykresie funkcji f. Prostą przechodzącą przez punkty P i H nazywamy sieczną. Równanie siecznej PH ma więc postać (porównaj wzór (??))

$$y = \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0) + f(x_0).$$

Wyrażenie  $\frac{f(x_1)-f(x_0)}{x_1-x_0}$  jest tu współczynnikiem kierunkowym. Zbliżając się punktem H do punktu P, czyli przechodząc do granicy przy  $x_1 \to x_0$  otrzymujemy **styczną** do wykresu funkcji f w punkcie  $(x_0, f(x_0))$ . Jeżeli istnieje pochodna funkcji f w punkcie  $x_0$ , to mamy

$$\lim_{x_1 \to x_0} y = \lim_{x_1 \to x_0} \left( \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x_1 - x_0) + f(x_0) \right) = f'(x_0)(x - x_0) + f(x_0).$$

Uzasadniliśmy następujące

**Twierdzenie 8.1.5.** Jeżeli funkcja f jest różniczkowalna w punkcie  $x_0$  swojej dziedziny, to prosta o równaniu

$$y = f(x_0) + f'(x_0)(x - x_0)$$

jest styczną do wykresu funkcji w punkcie  $(x_0, f(x_0))$ .

Z drugiej strony:

**Twierdzenie 8.1.6.** Jeżeli funkcja f jest ciągła w punkcie  $x_0$  i istnieje taka liczba  $c \in \mathbb{R}$ , że prosta o równaniu

$$y = f(x_0) + c(x - x_0)$$

jest styczną do wykresu funkcji f w punkcie  $x_0$ , to funkcja f jest w tym punkcie różniczkowalna oraz  $f'(x_0) = c$ .

Dowód. **TO-DO:** mam wątpliwości co do poprawności tego dowodu :/ Oznaczmy  $y = g(x), x \in \mathbb{R}$ , tak że wykres funkcji g jest styczną do wykresu funkcji f w punkcie  $x_0$ . Wówczas g jest funkcją ciągłą (jest to funkcja liniowa) oraz  $(x_0, f(x_0)) = (x_0, g(x_0))$ .

Mamy równość

$$c = \frac{g(x) - f(x_0)}{x - x_0}$$

oraz istnieją granice  $\lim_{x\to x_0} (f(x)-f(x_0))$ ,  $\lim_{x\to x_0} (g(x)-f(x_0))$ ,  $\lim_{x\to x_0} (x-x_0)$ . Z arytmetyki granic zachodzi równość:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{g(x) - f(x_0)}{x - x_0}$$

Ale granica po prawej stronie równości istnieje i jest równa c

Jak później zobaczymy, pochodne są narzędziem służącym do dokładnego badania tego jak zachowuje się "wykres" funkcji. Korzystając z pochodnych jesteśmy w stanie przynajmniej naszkicować wykres funkcji  $\mathbb{R} \to \mathbb{R}$ , włącznie z funkcjami zadanymi względnie skomplikowanymi równaniami. Pomaga nam to określić zachowanie funkcji. Kiedy funkcja rośnie, maleje, gdzie osiąga największe wartości, etc. Pochodne mają więc duże znaczenie praktyczne.

**Definicja 8.1.7.** Rozważmy krzywą, będącą wykresem funkcji o równaniu  $y = f(x), x \in \mathbb{R}$ . Prostą prostopadłą do prostej stycznej w punkcie  $x_0 \in \mathbb{R}$ , przechodzącą przez punkt  $x_0$ , nazywamy normalną do krzywej.

Z geometrii analitycznej wiemy, że proste o równaniach

$$y = a_1 x + b_1, \quad y = a_2 x + b_2$$

sa prostopadle wtedy i tylko wtedy, gdy ich współczynniki kierunkowe a<sub>1</sub>, a<sub>2</sub> spełniaja równość

$$a_1 \cdot a_2 = -1.$$

Stąd

Obserwacja. Normalna do krzywej  $\{(x,y) \in \mathbb{R}^2 : y = f(x)\}$  w punkcie  $(x_0,y_0)$  ma równanie

$$y - y_0 = -\frac{1}{f'(x_0)}(x - x_0).$$

Zauważmy, że ponieważ f' pochodna funkcji f jest również funkcją, to możemy rozważać jej pochodną. Oznaczymy ją przez f'' lub  $f^{(2)}$  i nazwiemy **drugą pochodną funkcji** f. Analogicznie f''' lub  $f^{(3)}$  będzie oznaczać **trzecią pochodną funkcji** i ogólnie

$$f^{(n)}$$
 oznacza  $n$ -tą pochodną funkcji  $f$ .

 $\acute{C}wiczenie$  76. Sprawdzić, że jeżeli f i g są funkcjami dwukrotnie różniczkowalnymi, to wówczas

$$(fg)'' = f''g + 2f'g' + g''.$$

 $\acute{C}wiczenie$  77. Niech f,g będą funkcjami n-krotnie różniczkowalnymi. Wykazać, że wówczas

$$(f(x)g(x))^{(n)} = \sum_{k=1}^{n} \binom{n}{k} f^{(k)}(x)g^{(n-k)}(x), \ x \in D_{f \cdot g}.$$

Wskazówka: skorzystać z indukcji matematycznej.

**Definicja 8.1.8.** Definiujemy  $C^n$  jako zbiór funkcji mających n-tą pochodną ciąglą. Gdy  $f \in C^n$ , to mówimy, że funkcja f jest klasy  $C^n$ .

Przyjmujemy też, dla dow. przedziału  $D \subseteq \mathbb{R}$ :

$$C^nD = \{f \colon D \to \mathbb{R} \colon f \text{ ma } n\text{-tą pochodną ciągłą w przedziale } D\}$$

Jeżeli  $n=\infty$ , to  $C^\infty$  jest zbiorem funkcji nieskończenie wiele razy różniczkowalnych w swojej dziedzinie, a  $C^\infty D$  funkcji, których obcięcie do zbioru D jest nieskończenie wiele razy różczniczkowalne.

Przykład 78.  $C^2(0,1)$  jest zbiorem wszystkich funkcji  $f:(0,1)\to\mathbb{R}$  dwukrotnie różniczkowalnych w (0,1) tak, że f'' jest ciągła.

Przykład 79.  $\sin, \cos \in C^{\infty}$ .

Przykład 80. Rozważmy funkcję  $f: \mathbb{R} \to \mathbb{R}$  daną wzorem

$$f(x) = \begin{cases} \delta(x) & \text{dla } x \in [0, 1] \\ \sin x & \text{dla } x \in \mathbb{R} \setminus [0, 1] \end{cases}$$

Wtedy  $f\big|_{(-\infty,0)} \in C^{\infty}(-\infty,0)$  oraz  $f\big|_{(1,+\infty)} \in C^{\infty}(1,+\infty)$  natomiast  $f\big|_{[0,1]}$  nie jest różniczkowalna.

#### 8.2 Różniczka funkcji jednej zmiennej

**Definicja 8.2.1** (Różniczka funkcji rzeczywistej jednej zmiennej). Różniczką w punkcie  $x_0 \in (a, b)$  funkcji  $f: (a, b) \to \mathbb{R}$  różniczkowalnej (w punkcie  $x_0$ ) nazywamy wyrażenie  $f'(x_0)\Delta x$  i oznaczamy  $d_{x_0}f(\Delta x)$ . Czyli różniczka w punkcie  $x_0$  w tym ujęciu jest pewną funkcją, której argumentem jest przyrost  $\Delta x$ :

 $d_{x_0}f\colon U\to\mathbb{R},\ \text{gdzie}\ U\ \text{jest pewnym otoczeniem}\ x_0;$ 

$$d_{x_0} f(\Delta x) = f'(x_0) \Delta x.$$

Często punkt  $x_0$  jest nam dany w kontekście zadania i pomijamy go. Wówczas, tradycyjnie różniczkę oznacza się jako df lub dla funkcji danej zależnością y=f(x) przez dy oraz wtedy piszemy

$$\mathrm{d}f = \mathrm{d}y = f'(x_0)\Delta x$$

W starszych podręcznikach można zetknąć się z następującym zapisem różniczki.

$$dy = f'(x_0) dx$$
.

Wynika to stąd, jak je kiedyś rozumiano pojęcie samej pochodnej. W XVII-XVIII wieku nie operowano jeszcze ścisłym pojęciem granicy, różniczkę rozumiano jako "nieskończenie małą" wielkość a pochodną jako stosunek różniczek. Stąd właśnie zapis, który jak wspominaliśmy wciąż jest w zastosowaniu

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}.$$

Niestety próby ścisłego zdefiniowania różniczki w tym rozumieniu prowadziły do licznych sprzeczności logicznych i obecnie definiujemy pochodną jako granice (8.1) a różniczki przy pomocy pochodnej a nie na odwrót. Zamiast mówić o wartościach nieskończenie małych (dx, dy,...), mówimy raczej od "zbieganiu do zera" ( $x \to 0, y \to 0,...$ ).

My jednak możemy spróbować tradycyjny zapis uzasadnić następująco

$$\mathrm{d}x \stackrel{\mathrm{def}}{=} (x)' \Delta x = 1 \cdot \Delta x = \Delta x,$$

gdzie x rozumiemy jako funkcję identycznościową  $x\mapsto x$ . Wcześniej już pokazaliśmy, że pochodna takiej funkcji jest funkcją stale równą jeden. Możemy też stąd przyjąć, że pochodną daje się wyrazić jako iloraz:

$$f'(x) = \frac{\mathrm{d}y}{\mathrm{d}x}.$$

Podkreślmy jeszcze raz, że powyższa równość to co najwyżej **tożsamość** wynikająca z definicji **różniczki** a nie **definicja** pochodnej.

Przykład 81. Weźmy funkcję wyznaczoną przez równanie  $y = f(x) = \sin^2(x)$ . Obliczmy pochodną f' funkcji f:

$$\frac{\sin^2(x+\Delta x) - \sin^2(x)}{\Delta x} = \frac{1}{\Delta x} \left( \left( \sin(x) \cos(\Delta x) + \sin(\Delta x) \cos(x) \right)^2 - \sin^2 x \right) =$$

$$= \frac{1}{\Delta x} \left( \sin^2(x) \cos^2(\Delta x) + 2\sin(x) \sin(\Delta x) \cos(x) \cos(\Delta x) + \sin^2(\Delta x) \cos^2(x) - \sin^2 x \right)$$

Zauważmy, że

$$\lim_{\Delta x \to 0} \underbrace{\frac{\sin(\Delta x)}{\Delta x}}_{\text{cos}(0)=1} \underbrace{\cos(\Delta x)}_{\text{cos}(0)=1} 2\sin(x)\cos(x) = 2\sin(x)\cos(x).$$

Pozostałe składniki dążą do zera:

$$\frac{1}{\Delta x} \left( \sin^2(x) \cos^2(\Delta x) + \sin^2(\Delta x) \cos^2(x) - \sin^2 x \right) =$$

$$= \frac{1}{\Delta x} \left( \sin^2 x \left( \underbrace{\cos^2(\Delta x) - 1}_{\text{sin}^2(\Delta x)} \right) + \sin^2(\Delta x) \cos^2 x \right) = \frac{\sin^2(\Delta x)}{\Delta x} \left( \sin^2 x + \cos^2 x \right) =$$

$$= \frac{\sin(\Delta x)}{\Delta x} \sin(\Delta x) \xrightarrow{\Delta x \to 0} 1 \cdot \sin(0) = 0.$$

Wszystkie poniższe równości są prawdą w świetle przyjętych oznaczeń i definicji i przeprowadzonych powyżej rachunków:

$$y' = f'(x) = (\sin^2 x)' = \frac{\mathrm{d}f}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin^2(x)\right) = 2\sin(x)\cos(x).$$

#### 8.3 Podstawowe reguły i przykłady różniczkowania:

W ostatnim przykładzie widzieliśmy, że obliczanie pochodnych z definicji może być nader uciążliwe. A obliczaliśmy pochodną bardzo prostej funkcji  $x\mapsto \sin^2 x$ . Istnieje niewielki zestaw rachunkowych własności pochodnych, które pozwalają obliczać pochodne będące złożeniem, sumą bądź różnicą, ilorazem i iloczynem funkcji, których pochodne już znamy, bez korzystania z definicji pochodnych. Istnieje też wiele "standardowych pochodnych". Znajomość wzorów na te pochodne (lub tablica takowych pod ręką) i tych podstawowych reguł rachunkowych jest podstawą w posługiwaniu się pochodnymi.

**Twierdzenie 8.3.1.** Niech  $f:(a,b) \to \mathbb{R}$  będdzie funkcją różniczkowalną a  $c \in \mathbb{R}$  dowolną stałą. Wtedy

$$(c \cdot f)' = c \cdot f'$$
.

Dowód. Oczywisty - z definicji i własności granic.

**Twierdzenie 8.3.2.** Niech  $f, g: (a, b) \to \mathbb{R}$  będą funkcjami różniczkowalnymi. Wtedy

$$(f+g)' = f' + g'.$$

Dowód. Ćwiczenie. □

Z powyższych dwóch twierdzeń wynika, że operacja różniczkowania jest liniowa, tzn.  $(a \cdot f + b \cdot g)' = a \cdot (f') + b \cdot (g')$  dla dowolnych funkcji różniczkowalnych f, g oraz  $a, b \in \mathbb{R}$ .

**Twierdzenie 8.3.3.** Niech  $f, g: (a, b) \to \mathbb{R}$  będą funkcjami różniczkowalnymi oraz  $g \neq 0$   $(g(x) \neq 0, x \in (a, b))$ . Wtedy

$$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}.$$

Dowód. Załóżmy, że funkcje f, g są różniczkowalne w punkcie  $x_0 \in (a, b)$ . Ponieważ

$$\frac{\frac{1}{g}(x) - \frac{1}{g}(x_0)}{x - x_0} = -\frac{g(x) - g(x_0)}{x - x_0} \cdot \frac{1}{g(x)g(x_0)}.$$

to uwzględniając ciągłość funkcji g w punkcie  $x_0$  otrzymujemy

$$\left(\frac{1}{g}\right)'(x_0) = -\frac{g'(x_0)}{((g(x_0))^2}.$$

Z poprzedniego twierdzenia i powyższego wzoru otrzymujemy równość z tezy.

**Twierdzenie 8.3.4** (o pochodnej złożenia funkcji). Niech g będzie funkcją różniczkowalną w punkcie  $x_0$ , a f funkcją różniczkowalną w punkcie  $y_0 = g(x_0)$ . Wówczas funkcja  $f \circ g$  jest różniczkowalna w  $x_0$  oraz

$$(8.3) (f \circ g)'(x_0) = f'(g(x_0)) \cdot g'(x_0).$$

Dowód. Obliczamy

$$(8.4) (f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{(f \circ g)(x_0 + \Delta x) - (f \circ g)(x_0)}{\Delta x}.$$

Niech  $\Delta y = g(x_0 + \Delta x) - g(x_0)$ . Wtedy  $\Delta y \xrightarrow{\Delta x \to 0} 0$  oraz równanie (8.4) przyjmuje postać

(8.5) 
$$(f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{f(y_0 + \Delta y) - f(y_0)}{\Delta x}.$$

Jeśli założymy, że  $\Delta y \neq 0$ , to z powyższego mamy

$$(f \circ g)'(x_0) = \lim_{\Delta x \to 0} \frac{f(y_0 + \Delta y) - f(y_0)}{\Delta y} \cdot \frac{g(x_0 + \Delta x) - g(x_0)}{\Delta x} =$$

$$= \lim_{\Delta y \to 0} \frac{f(y_0 + \Delta y) - f(y_0)}{\Delta y} \cdot g'(x_0) = f'(y_0)g'(x_0) = f'(g(x_0))g'(x_0).$$

więc funkcja  $f \circ g$  jest różniczkowalna w  $x_0$  i zachodzi wzór (8.3).

Powyższe twierdzenie jest znane jako reguła łańcuchowa.

*Ćwiczenie* 78. Niech  $f(x) = \mathbf{TO-DO}$ 

Przykład 82 (Pochodna logarytmiczna). Pochodna funkcji złożonej  $y = \ln f(x), x \in D_f$  dow. funkcji f z funkcją  $x \mapsto \ln x$  wyraża się w myśl twierdzenia o poch. funkcji złożonej wzorem

(8.6) 
$$\frac{\mathrm{d}}{\mathrm{d}y}\ln f(x) = (\ln f(x))' = \frac{f'(x)}{f(x)}.$$

Czasem łatwiej jest obliczyć pochodną logarytmiczną niż pochodną f'. Wówczas obliczamy f' z wzoru (8.6) w postaci  $f'(x) = f(x) \cdot (\ln f(x))'$ ,  $x \in D_f$ .

Twierdzenie 8.3.5 (o pochodnej funkcji odwrotnej). Jeżeli funkcja f jest ciągla i ściśle monotoniczna w otoczeniu  $(x_0 - \delta, x_0 + \delta)$  pewnego punktu  $x \in D_f$  oraz ma pochodną właściwą  $f'(x_0) \neq 0$ . Wtedy

(8.7) 
$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$$

 $gdzie \ y_0 = f(x_0) \ (czyli \ x_0 = f^{-1}(y_0)).$ 

Podstawowe pochodne: Znając już nasze reguły rachunkowe, możemy przytoczyć podstawowe pochodne:

$$(8.8) (x^a)' = a \cdot x^{a-1}, a \in \mathbb{R}$$

(8.9) 
$$(\ln x)' = \frac{1}{x}, x \neq 0$$

(8.10) 
$$(a^{x})' = a^{x} \ln a, a \in \mathbb{R}$$
  
(8.11)  $(e^{x})' = e^{x}$ 

$$(8.11) (e^x)' = e^x$$

$$(8.12) \qquad (\log_a x)' = \frac{1}{x \ln a}$$

$$(8.13) \qquad (\sin x)' = \cos x$$

$$(8.14) \qquad (\cos x)' = -\sin x$$

(8.15) 
$$(\operatorname{tg} x)' = \frac{1}{\cos^2 x}$$

(8.16) 
$$(\operatorname{ctg} x)' = -\frac{1}{\sin^2 x}$$

(8.17) 
$$(\arcsin x)' = \frac{1}{\sqrt{1 - x^2}}$$

(8.18) 
$$(\arccos x)' = -\frac{1}{\sqrt{1-x^2}}$$
(8.19) 
$$(\operatorname{arctg})' = \frac{1}{1+x^2}$$

(8.19) 
$$(\operatorname{arctg})' = \frac{1}{1 + r^2}$$

(8.20) 
$$(\operatorname{arcctg})' = -\frac{1}{1+x^2}$$

Uzasadnimy, że

$$\frac{\mathrm{d}(a^x)}{\mathrm{d}y} = \frac{\mathrm{d}}{\mathrm{d}y}a^x = (a^x)' = a^x \ln a.$$

#### Lemat 8.3.6.

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1.$$

Dow'od. Podstawmy  $e^x-1=\frac{1}{t}.$  Wted<br/>y $x=\ln\left(1+\frac{1}{t}\right)$ a ponadto przy  $t\to\pm\infty,\,x$ dąży do zera i otrzymujemy

$$\lim_{t \to \pm \infty} \frac{1 + \frac{1}{t} - 1}{\ln\left(1 + \frac{1}{t}\right)} = \lim_{t \to \pm \infty} \frac{1}{t \ln\left(1 + \frac{1}{t}\right)} = \lim_{t \to \pm \infty} \frac{1}{\ln\left(1 + \frac{1}{t}\right)^t} =$$

$$= \frac{1}{\ln\left[\lim_{t \to \pm \infty} \left(1 + \frac{1}{t}\right)^t\right]} = \frac{1}{\ln e} = 1.$$

Mamy

$$\lim_{h\to 0}\frac{a^{x+h}-a^x}{h}=a^x\lim_{h\to 0}\frac{a^h-1}{h}.$$

Zauważmy, że  $a^h = e^{h \ln a}$ . Zatem

$$\lim_{h \to 0} \frac{e^{h \ln a} - 1}{h} = \ln a \lim_{h \to 0} \frac{e^{h \ln a} - 1}{h \ln a}.$$

Podstawmy  $t = h \ln a$ , wtedy  $t \to 0$  i z poprzedniego lematu

$$\ln a \cdot \lim_{t \to 0} \frac{e^t - 1}{t} = \ln a \cdot 1 = \ln a.$$

Zatem

$$(a^x)' = a^x \ln a.$$

Teraz wystarczy przyjąć a=e i mamy, że  $(e^x)'=e^x$  - i liczba e jest jedyną taką liczbą, dla której pochodna funkcji wykładniczej jest równa wyjściowej funkcji. Można też było skorzystać ze wzoru (6.5).

Niech  $f(x) = \ln x$ . Zauważmy, że traktując w tym wzorze x jako funkcję identycznościową, możemy sztucznie potraktować to wyrażenie jako złożenie funkcji identycznościowej  $x\mapsto x$  z funkcją  $x\mapsto \ln x$  i zastosować regułę łańcuchową. Porównaj tw. 8.3 i wzór (8.6) z przykładu do twierdzenia. Mamy zatem

$$(\ln x)' = \frac{x'}{x} = \frac{1}{x}.$$

Pamietamy, że policzyliśmy już pochodną (x)' = 1.

Dalej niech  $f(x) = x^a$ ,  $a \in \mathbb{R}$ . Stosując ponownie wzór (8.6) możemy otrzymać, że

$$(x^a)' = x^a (a \ln x)' = ax^a \frac{1}{x} = ax^{a-1}.$$

(zauważmy, że proponowaliśmy jako ćwiczenie wykazać prawdziwość powyższego wzoru, dla a naturalnych - wciąż po można się tego podjąć. Ponadto z tego wzoru wynika, że  $(x)'=(x^1)'=1\cdot x^{1-1}=1\cdot x^0=1\cdot 1=1.)$  Teraz niech  $f(x)=a^x$ . Skorzystamy z twierdzenia 8.3.5. Jeżeli y=f(x), to  $f^{-1}(y)=\frac{\ln y}{\ln a}$  - wystarczy zlogarytmować obustronnie równanie y=f(x):

$$y = a^{x}$$

$$\ln y = \ln a^{x} = x \ln a$$

$$x = \frac{\ln y}{\ln a} = f^{-1}(y).$$

Zatem

$$f'(x) = \frac{1}{(f^{-1}(y))'}.$$
$$(a^x)' = \frac{1}{\left(\frac{\ln y}{\ln a}\right)'} = y \ln a.$$

Ostatnia równość wynika z tego, że  $(\frac{\ln y}{\ln a})' = \frac{1}{\ln a} \cdot (\ln y)' = \frac{1}{\ln a} \cdot \frac{1}{y}^2$  Zauważmy jeszcze, że  $y = a^x$  a więc  $y \ln a = a^x \ln a$  i ostatecznie  $(a^x)' = a^x \ln a$ .

 $<sup>^2 \</sup>ln a$ jest po prostu stałą, gdyż ajest ustalone a nie jest żadną zmienną, natomiast pokazaliśmy już, że  $(\ln x)' = \frac{1}{x}$ dla zmiennej x. Tutaj zmienną było po prostu y.

Pochodne funkcji trygonometrycznych.

$$(\sin x)' = \lim_{\Delta x \to 0} \frac{\sin(x + \Delta x) - \sin(x)}{\Delta x} = \lim_{\Delta x \to 0} \frac{2}{\Delta x} \sin\left(\frac{x + \Delta x - x}{2}\right) \cos\left(\frac{x + \Delta x + x}{2}\right) = \lim_{\Delta x \to 0} \frac{2}{\Delta x} \sin\left(\frac{\Delta x}{2}\right) \cos\left(\frac{x + \Delta x + x}{2}\right) = \lim_{\Delta x \to 0} \frac{\sin\left(\frac{\Delta x}{2}\right)}{\frac{\Delta x}{2}} \cos\left(\frac{2x + \Delta x}{2}\right) = \lim_{\Delta x \to 0} \cos(x + \frac{\Delta x}{2}) = \cos x \text{ (ostatnia równość z ciągłości funkcji cos.)}$$

Analogicznie obliczamy pochodną funkcji cos (ćwiczenie). Pozostaje obliczyć tg' i ctg'.

**Pochodne funkcji cyklometrycznych.** Skorzystamy z twierdzenia o pochodnej funkcji odwrotnej. Funkcja arcsin:  $(-1,1) \rightarrow \left(-\frac{1}{2}\pi, \frac{1}{2}\pi\right)$  jest funkcją odwrotną funkcji

$$\sin\left|_{\left(-\frac{\pi}{2},\frac{\pi}{2}\right)}\right|$$

czyli obcięcia funkcji sin:  $\mathbb{R} \to : (-1,1)$ . Zatem niech  $y = \arcsin x$  i ze wzoru 8.3.5:

$$(\arcsin x)' = \frac{1}{(\sin y)'} = \frac{1}{\cos x} = \frac{1}{\sqrt{1 - \sin^2 y}} = \frac{1}{\sqrt{1 - x^2}}, \ (x = \sin y \text{ skoro } y = \arcsin x!)$$

przy czym cos y>0, ponieważ pamiętamy, że  $y\in\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)$  i z tego samego powodu pozwalamy sobie dla uproszczenia napisać  $\sin y$  zamiast  $\sin\left|_{\left(-\frac{1}{2}\pi,\frac{1}{2}\pi\right)}(y)\right|$ . Analogicznie otrzymamy pozostałe wzory. Np.

$$(\arctan x)' = \frac{1}{(\operatorname{tg} y)'} = \cos^2 x = \frac{1}{1 + \operatorname{tg}^2 y} = \frac{1}{1 + x^2}.$$

#### Ciekawe przypadki.

Przykład 83. Rozważmy funkcję  $f: \mathbb{R} \to [0, +\infty)$  daną wzorem f(x) = |x|. Funkcja f nie jest różniczkowalna w punkcie x = 0:

$$f'(0+) = \lim_{x \to 0+} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0} \frac{x}{x} = 1.$$

$$f'(0-) = \lim_{x \to 0-} \frac{|x| - |0|}{x - 0} = \lim_{x \to 0-} \frac{-x}{x} = -1.\text{Gdyż } x < 0 \text{ gdy } x \to 0 - .$$

Zatem  $f'(0+) \neq f'(0-)$  czyli pochodna funkcji f w zerze nie istnieje.

Zobaczmy, co się dzieje, gdy  $x \neq 0$ . Niech najpierw x > 0, to wtedy możemy obliczyć  $(f\big|_{(0,+\infty)})' = (|x|)' = (x)' = 1$ . Dla x < 0 mamy funkcję  $f\big|_{(-\infty,0)}$  i jej pochodną: (|x|)' = (-x)' = -1.

W ten sposób możemy przyjąć, że 
$$(|x|)' = \frac{\mathrm{d}|x|}{\mathrm{d}y} = \begin{cases} 1, & \text{dla } x > 0; \\ -1, & \text{dla } x < 0. \end{cases}$$

Zauważmy jeszcze, że

$$\frac{|x|}{x} = \begin{cases} 1, & \text{dla } x > 0; \\ -1, & \text{dla } x < 0. \end{cases}$$

Możemy więc przyjąć:

$$(|x|)' = \frac{|x|}{x}, \text{ dla } x \neq 0.$$

Równie prawdziwy będzie zapis

$$|x|' = \operatorname{sgn} x, \ x \neq 0.$$

Przykład 84. Obliczymy  $(x^x)'$ . Przyjmijmy  $f(x) = x^x, x \in \mathbb{R}$ .

$$x^x = e^{\ln x^x} = e^{x \ln x}$$

$$(x^{x})' = (e^{x \ln x})' = e^{x \ln x} (x \ln x)' = x^{x} (x \ln x)' =$$
$$= x^{x} \left( \ln x + x \frac{1}{x} \right) = x^{x} (\ln x + 1).$$

*Ćwiczenie* 79. Obliczyć pochodną funkcji f danej wzorem  $f(x) = x^{x^x}, x \in \mathbb{R}$ .

#### 8.4 Pochodna w badaniu przebiegu zmienności funkcji

Pochodne są w istocie narzędziem służącym głównie badaniu przebiegu zmienności funkcji, tj. jej monotoniczności w danych podzbiorach dziedziny, czy potocznie mówiąc: "kształtu" jej wykresu.

**Definicja 8.4.1.** Ustalmy  $x_0 \in \mathbb{R}$ . Na "prostej rzeczywistej", tj. zbiorze  $\mathbb{R}$  otoczenie  $K(x_0, \varepsilon)$  punktu  $x_0$  jest przedziałem postaci  $(x_0 - \varepsilon, x_0 + \varepsilon)$ . Lewostronnym sąsiedztwem punktu  $x_0 \in \mathbb{R}$  o promieniu  $\varepsilon > 0$  nazwiemy przedział  $(x_0 - \varepsilon, x_0)$ . Prawostronnym sąsiedztwem punktu  $x_0 \in \mathbb{R}$  o promieniu  $\varepsilon > 0$  nazwiemy przedział  $(x_0, x_0 + \varepsilon)$ . Sąsiedztwem  $U(x_0, \varepsilon)$  nazwiemy przedział  $K(x_0, \varepsilon) \setminus \{x_0\}$ .

#### Monotoniczność funkcji.

**Definicja 8.4.2.** Mówimy, że funkcja f przechodząc przez punkt  $x_0 \in D_f$ :

- $\bullet$  rośnie gdy w pewnym otoczeniu punktu x funkcja f jest rosnąca;
- $\bullet$  maleje gdy w pewnym otoczeniu punktu x funkcja f jest malejąca.

Zatem moglibyśmy na przykład powiedzieć, że funkcja maleje (w dotychczasowym rozumieniu, patrz monotoniczność funkcji 3.2.6) w przedziałe (a,b), gdy maleje przechodząc przez każdy punkt  $x_0 \in (a,b)$ .

**Twierdzenie 8.4.3.** Niech funkcja f ma w pewnym otoczeniu punktu  $x_0 \in D_f$  pochodną skończoną. Jeśli

- $f'(x_0) > 0$ , to funkcja f przechodząc przez punkt  $x_0$  rośnie.
- $f'(x_0) < 0$ , to funkcja f przechodząc przez punkt  $x_0$  maleje.

Dowód. Rozpatrzymy przypadek, gdy  $f'(x_0) > 0$ .

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} > 0$$
, zatem można znaleźć takie otoczenie  $(x_0 - \delta, x_0 + \delta)$ 

punktu  $x_0$ , w którym przy  $x \neq x_0$ :

$$\frac{f(x) - f(x_0)}{x - x_0} > 0.$$

Niech najpierw  $x_0 < x < x_0 + \delta$ , tak że  $x - x_0 > 0$ . Z powyższej nierówności wynika wtedy, że  $f(x) - f(x_0) > 0$ , czyli  $f(x) > f(x_0)$ . Analogicznie, jeżeli  $x_0 - \delta < x < x_0$  i  $x - x_0 < 0$ , to mamy, że  $f(x) > f(x_0)$ . Koniec dowodu.

**Definicja 8.4.4.** Mówimy, że funkcja  $f: I \to \mathbb{R}$   $(I \subseteq \mathbb{R}$  - przedział) ma w punkcie  $x_0 \in I$ :

1. **minimum lokalne**, jeżeli istnieje takie otoczenie  $U_{x_0}$  punktu  $x_0$ , że

$$f(x_0) \leqslant f(x), \ x \in U_{x_0} \cap I,$$

2. maksimum lokalne, jeżeli istnieje takie otoczenie  $U_{x_0}$  punktu  $x_0$ , że

$$f(x_0) \geqslant f(x), x \in U_{x_0} \cap I.$$

Czyli minimum/maksimum to wartość funkcji w punkcie spełniającym odpowiednią z powyższych własności. Ponadto, jeżeli nierówności w obydwu definicjach zastąpimy nierównościami ostrymi a otoczenie  $U_{x_0}$  sąsiedztwem  $U_{x_0} \setminus \{x_0\}$ , to powiemy, że dane minimum/maksimum jest **właściwe**.

Warto jeszcze wspomnieć, że największy element w zbiorze maksimów lokalnych nazywa się, całkiem logicznie, **maksimum globalnym** lub po prostu wartością największą funkcji f. Analogicznie określa się **minimum globalne** a punkt który jest globalnym maksimum/minimum nazywa się **ekstremum globalnym**.

*Ćwiczenie* 80. Udowodnić, że zbiór ekstremów funkcji ciągłej o wartościach rzeczywistych jest co najwyżej przeliczalny.

**Lemat 8.4.5** (Fermata). Niech  $f:[a,b] \to \mathbb{R}$  osiąga w pewnym  $x_0 \in (a,b)$  minimum lub maksimum lokalne oraz istnieje pochodna funkcji f w tym punkcie. Wtedy  $f'(x_0) = 0$ .

Dowód. Niech na przykład f osiąga w punkcie c maksimum lokalne. Załóżmy, że byłoby  $f'(c) \neq 0$ . Wtedy albo f'(c) > 0 i wtedy, jeśli x > c jest dostatecznie bliskie c, to f(x) > f(c), albo f'(c) < 0 i wtedy, jeśli x < c jest dostatecznie bliskie c, to f(x) > f(c). W obu wypadkach mamy sprzeczność, bo f(c) nie może być wtedy największą wartością funkcji f w przedziale [a, b].

**Twierdzenie 8.4.6** (Rolle'a). Niech  $f:[a,b] \to \mathbb{R}$  będzie ciągła w przedziałe domkniętym [a,b] oraz różniczkowalna w przedziałe (a,b). Jeżeli f(a)=f(b), to istnieje taki punkt  $c\in(a,b)$ , że f'(c)=0.

Dowód. Z ciągłości funkcji f w przedziale [a,b] na mocy twierdzenia 7.2.30 Weierstrassa przyjmuje ona wartości najmniejszą  $f(\underline{x})$  i największą  $f(\overline{x})$  w tym przedziale. Rozpatrzmy dwa przypadki:

1.  $f(\underline{x}) = f(\overline{x})$ . Wtedy w przedziale [a,b] funkcja f zachowuje stałą wartość:  $f(\underline{x}) \leqslant f(x) \leqslant f(\overline{x}), x \in [a,b]$  i  $f(\underline{x}) = f(\overline{x})$ . Stąd f'(x) = 0 w całym przedziale, a za c możemy przyjąć dowolny punkt z przedziału (a,b).

2.  $f(\underline{x}) < f(\overline{x})$ . Wiemy, że funkcja osiąga obydwie te wartości, ponieważ jednak f(a) = f(b), to z ciągłości choćby jedna z nich jest osiągnięta w pewnym punkcie  $c \in (a, b)$ . W takim razie z lematu 8.4.5 Fermata wynika, że f'(c) = 0.

Geometrycznie powyższe twierdzenie oznacza, że jeżeli skrajne rzędne krzywej y = f(x) są równe, to na krzywej znajdzie się punkt, w którym styczna jest równoległa do osi Ox.

Przykład 85. Rozważmy funkcję kwadratową  $f: \mathbb{R} \to \mathbb{R}, \ f(x) = ax^2 + bx + c, \ x \in \mathbb{R}$ . Załóżmy, że  $b^2 - 4ac = 0$ . Wówczas oczywiście f'(x) = 0 dla  $x = \frac{-b}{2a}$ .

*Ćwiczenie* 81. Niech f będzie funkcją klasy  $C^n$  i  $x_0 < x_1 < \ldots < x_n$ , że

$$f(x_0) = f(x_1) = \ldots = f(x_n) = 0.$$

Wykazać, że wówczas istnieje taki punkt  $\xi \in (x_0, x_n)$ , że  $f^{(n)}(\xi) = 0$ .

#### 8.5 Wypukłość funkcji

Niemiecki matematyk, Hermann Minkowski stwierdził "interesuje mnie wszystko, co jest wypukłe". Przyjrzyjmy się zatem temu, co w matematyce znaczy "wypukłość" i komplementarnie "wklęsłość".

Niech X będzie przestrzenią liniową (wektorową) nad ciałem liczb rzeczywistych.

**Definicja 8.5.1.** Zbiór  $W \subseteq X$  nazywamy **wypukłym**, gdy

$$\forall_{x,y \in W} \forall_{\substack{\alpha,\beta \geqslant 0 \\ \alpha+\beta=1.}} \alpha x + \beta y \in W.$$

Oznacza to po prostu, że dla dowolnych dwóch punktów  $x,y\in W$  odcinek  $\overline{xy}$  zawiera się w zbiorze W.

Twierdzenie 8.5.2. Przekrój dowolnej rodziny zbiorów wypukłych jest zbiorem wypukłym.

Dowód. Niech  $\mathcal{R} \subseteq \mathcal{P}(X)$  będzie dowolną rodziną zbiorów wypukłych. Ustalmy  $x,y \in \bigcap \mathcal{R}$ . Wtedy dla każdego  $R \in \mathcal{R}$  i dowolnych  $\alpha, \beta \geqslant 0$  mamy  $\alpha x + \beta y \in R$ , gdyż R jest wypukły z założenia. Z dowolności R wnosimy, że  $\alpha x + \beta y \in \bigcap \mathcal{R}$ . Zatem przekrój ten jest wypukły.

**Definicja 8.5.3.** Niech W będzie zbiorem wypukłym. Funkcję  $f: W \to \mathbb{R}$  nazywamy wypukłą, gdy dla dowolnych  $x, y \in W$  i  $\alpha, \beta \ge 0$  takich, że  $\alpha + \beta = 1$  zachodzi nierówność

$$f(\alpha x + \beta y) \le \alpha f(x) + \beta f(y).$$

Jeżeli powyższa nierówność jest ostra, to mówimy, że f jest ściśle wypukła.

Podstawiając  $\alpha = \lambda$ ,  $\beta = (1 - \lambda)$ , mamy że funkcja f jest wypukła, gdy dla dow.  $\lambda \in (0, 1)$  zachodzi  $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ .

Analogicznie otrzymamy drugie oszacowanie.

Rozważamy tutaj zbiory  $W \subseteq \mathbb{R}$  lub  $W \subseteq \mathbb{R}^n$ , możemy jednak rozważać również funkcje określone na przestrzeni metrycznej lub liniowej o wartościach w  $\mathbb{R}$ .

Jeżeli odwrócimy nierówność w powyższej definicji, to dostaniemy definicję funkcji wklęsłej.

**Uwaga 8.5.4.** Funkcja funkcji wypukłej f (np.  $e^f$ ) jest również wypukła.

**Uwaga 8.5.5.** Jeżeli W jest zbiorem wypukłym,  $f_1, \ldots, f_n$  funkcjami wypukłymi, a  $c_1, \ldots, c_n \ge 0$  stałymi, to funkcja  $f := c_1 f_1 + \ldots + c_n f_n$  również jest funkcją wypukłą (na zbiorze W).

**Twierdzenie 8.5.6.** Dowolna funkcja  $f: I \to \mathbb{R}$  wypukła  $(I \subseteq \mathbb{R}$  - przedział) spełnia następujący warunek

(8.21) 
$$f\left(\frac{x+y}{2}\right) \leqslant \frac{f(x)+f(y)}{2}, \ x,y \in I$$

Dowód. f jest wypukła, więc:  $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ , dla dowolnego  $\lambda \in (0, 1)$ . Wystarczy podstawić  $\lambda = \frac{1}{2}$ .

Nierówność 8.21 nazywamy **nierównością Jensena**. Jest to przykład nierówności funkcyjnej. Dla funkcji wklęsłej otrzymamy analogiczne twierdzenie zmieniając kierunek znaku nierówności w 8.21.

Przy pomocy nierówności Jensena można wyprowadzić wiele bardzo ważnych nierówności, wykorzystywanych w różnych działach matematyki.

*Ćwiczenie* 82. Ustalmy liczby  $t_1, t_2, \ldots, t_n \in [0, 1]$  takie, że  $t_1 + \ldots + t_n = 1$ . Udowodnić, że dla dowolnego przedziału  $I \subseteq \mathbb{R}$  i funkcji wypukłej  $f \colon I \to \mathbb{R}$  prawdziwa jest uogólniona nierówność Jensena:

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \leqslant \sum_{k=1}^{n} t_k f(x_k), \ x_1, \dots, x_n \in I.$$

Napisać jak wygląda powyższa nierówność dla  $t_1 = t_2 = \ldots = t_n = \frac{1}{n}$ .

**Twierdzenie 8.5.7.** Jeżeli funkcja  $f:(a,b) \to \mathbb{R}$  jest wypukła, to dla a dowolnych a < s < t < u < b zachodzą nierówności

(8.22) 
$$\frac{f(t) - f(s)}{t - s} \leqslant \frac{f(u) - f(s)}{u - s} \leqslant \frac{f(u) - f(t)}{u - t}.$$

Dowód. Podstawmy  $t = \lambda s + (1 - \lambda)u$  dla pewnego  $\lambda \in (0, 1)$ . Czyli

$$\lambda = \frac{u-t}{u-s}, \quad 1-\lambda = \frac{t-s}{u-s}.$$

Dalej, z definicji 8.5.3, mamy nierówność

$$f(t) \leqslant \frac{u-t}{u-s}f(s) + \frac{t-s}{u-s}f(u).$$

Odejmującf(s)obustronnie od powyższej nierówności otrzymujemy, że

$$f(t) - f(s) = -\frac{t-s}{u-s}f(s) + \frac{t-s}{u-s}f(u),$$

czyli zachodzi pierwsze z oszacowań (8.22).

**Twierdzenie 8.5.8.** Niech  $D \subseteq \mathbb{R}$  będzie przedziałem otwartym. Jeżeli funkcja  $f: D \to \mathbb{R}$  jest wypukła w D, to jest ciągła w D.

Dowód. Załóżmy nie wprost, że f nie jest ciągła w punkcie  $x \in D$ . Istnieje zatem  $\varepsilon > 0$  i ciąg o wyrazach  $\{x_n : n \in \mathbb{N}\} \subseteq D$ , takie że

$$|f(x_n) - f(x)| \ge \varepsilon, n \in \mathbb{N}.$$

Ponieważ co najmniej po jednej stronie punktu x leży nieskończenie wiele wyrazów ciągu  $(x_n)_{n\in\mathbb{N}}$  (w przeciwnym razie ciąg ten nie byłby nieskończony), to możemy zawęzić rozważania do podciągu złożonego z wyrazów mniejszych albo podciągu wyrazów większych od x (tak żeby podciąg ten był nieskończony). Niech np.  $x_n < x, n \in \mathbb{N}$ . Dla każdego n mamy dwa przypadki:

$$f(x_n) - f(x) \geqslant \varepsilon$$
,

lub

$$f(x_n) - f(x) \leqslant -\varepsilon.$$

Znowu możemy rozważać dwa podciagi – jeśli nieskończenie wiele wyrazów ciągu  $(x_n)$  spełnia pierwszy przypadek, to możemy rozważać granicę

$$\lim_{n \to \infty} \frac{f(x_n) - f(x)}{x_n - x} = -\infty.$$

Weźmy  $t \in D$ , takie że  $x < t < x_n, n \in \mathbb{N}$  a wówczas, zgodnie z (8.22)

$$-\infty < \frac{f(t) - f(x)}{t - x} \leqslant \frac{f(x_n) - f(x)}{x_n - x}, \ n \in \mathbb{N}.$$

Otrzymaliśmy sprzeczność.

W drugim przypadku mamy

$$\lim_{n \to \infty} \frac{f(x_n) - f(x)}{x_n - x} = +\infty,$$

więc bierzemy  $u \in D$ , takie że  $u > x_n, n \in \mathbb{N}$  i wówczas dla każdego  $n \in \mathbb{N}$  zachodzi oszacowanie

$$\frac{f(x_n) - f(x)}{x_n - x} \leqslant \frac{f(u) - f(x)}{u - x} < +\infty$$

ponownie sprzeczność.

Analogicznie możemy postąpić, gdy mamy ciąg  $x_n > x, n \in \mathbb{N}$ .

#### 8.5.1 Pochodne w badaniu wypukłości funkcji

Wprost z definicji (i interpretacji geometrycznej) wyukłości funkcji mamy:

**Twierdzenie 8.5.9.** Jeżeli  $f:(a,b) \to \mathbb{R}$  jest różniczkowalna na przedziale (a,b), to f jest wypukla, gdy dla każdych  $x, x_0 \in (a,b)$  zachodzi nierówność  $f'(x_0)(x-x_0) \leq f(x) - f(x_0)$ .

**Twierdzenie 8.5.10.** Niech  $D \subseteq \mathbb{R}$  będzie przedziałem otwartym. Funkcja różniczkowalna  $f: D \to \mathbb{R}$  jest wypukła wtedy i tylko wtedy, f' jest niemalejąca.

Wniosek 8.5.11. Jeżeli  $f:(a,b)\to\mathbb{R}$  jest dwukrotnie różniczkowalna na przedziale (a,b), to f jest wypukła, gdy dla każdego  $x\in(a,b)$  zachodzi  $f''(x)\geqslant0$ .

#### Punkty przegięcia funkcji:

**Definicja 8.5.12.** Niech  $f: D \to \mathbb{R}$  będzie funkcją,  $D \subseteq \mathbb{R}$  oraz  $x_0 \in D$  będzie takim punktem, że f jest określona w pewnym otoczeniu tegu punktu. Punkt  $x_0$  nazywamy **punktem przegięcia** wykresu funkcji f, jeżeli w sąsiedztwie lewostronnym punktu  $x_0$  funkcja f jest wypukła, a w prawostronnym sąsiedztwie p.  $x_0$  jest odwrotnie wypukła albo na odwrót - wypukła odwrotnie w lewostronnym sąsiedztwie i wypukła w prawostronnym.

**Twierdzenie 8.5.13.** Jeżeli funkcja  $f:(a,b) \to \mathbb{R}$  jest klasy  $C^2$ , to wykres funkcji f ma w punkcie  $x_0 \in (a,b)$  punkt przegięcia wtedy i tylko wtedy, gdy  $f''(x_0) = 0$  oraz druga pochodna zmienia znak przechodząc przez punkt  $x_0$ .

Przykład 86. Pokazać, że dla każdej ciągłej i wypukłej funkcji  $f: I \to \mathbb{R}$ , gdzie  $I \subseteq \mathbb{R}$  jest przedziałem otwartym, istnieje jej skończona pochodna wszędzie, ewentualnie poza co najwyżej przeliczalnym zbiorem  $A \subseteq \mathbb{R}$ .

#### 8.6 Twierdzenia o wartości średniej

**Twierdzenie 8.6.1** (Lagrange'a o wartości średniej). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ciąglą w przedziale domkniętym [a,b], a < b oraz różniczkowalną w przedziale otwartym (a,b). Wtedy istnieje taki punkt  $\xi \in (a,b)$ , że dla niego spełniona będzie nierówność

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}.$$

Dowód. Zdefinujmy funkcję pomocniczą  $F: [a, b] \to \mathbb{R}$  wzorem

$$F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a).$$

Łatwo zauważyć, że funkcja ta spełnia wszystkie założenia twierdzenia Rolle'a. Rzeczywiście jest ona ciągła w [a,b], jako różnica funkcji ciągłej i funkcji liniowej. W przedziale (a,b) ma ona pochodna skończona, równa

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}.$$

Podstawiając pod x kolejno a i b sprawdzamy, że F(a) = F(b) = 0, czyli F przyjmuje na końcach przedziału te samą wartość.

Z twierdzenia Rolle'a wynika więc, że istnieje taki punkt  $c \in (a, b)$ , że F'(c) = 0. Tak więc

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$
 czyli szukane  $\xi = c$ .

Ćwiczenie 83. Korzystając z twierdzenia Lagrange'a o wartości średniej, udowodnić że

$$\sin(x+h) - \sin x = h \cos \xi$$
 dla pewnego  $x < \xi < x+h$ .

**Twierdzenie 8.6.2** (Cauchy'ego o wartości średniej). Niech  $f,g:[a,b] \to \mathbb{R}$  będą ciągłe w przedziale domkniętym [a,b] oraz różniczkowalne w przedziale (a,b). Wówczas istnieje takie  $\xi \in (a,b)$ , że

$$g'(\xi) \cdot (f(b) - f(a)) = f'(\xi) \cdot (g(b) - g(a)).$$

 $Dow \acute{o}d.$  Zdefiniujmy funkcję pomocniczą  $\varphi \colon [a,b] \to \mathbb{R}$ w następujący sposób:

$$\varphi(x) = (f(b) - f(a))g(x) - (g(b) - g(a))f(x), x \in [a, b].$$

 $\varphi$  jest różniczkowalna na (a,b) oraz h(a)=h(b) i z twierdzenia Rolle'a istnieje takie  $\xi\in(a,b)$ , że  $\varphi'(\xi)=0$ . Ale

$$0 = \varphi'(\xi) = (f(b) - f(a))g'(\xi) - (g(b) - g(a))f'(\xi)$$

co kończy dowód.

Zauważmy, że twierdzenie Lagrange'a jest przypadkiem szczególnym twierdzenia Cauchy'ego: wystarczy w tym drugim położyć za g funkcję identycznościową:  $g(x)=x,\ x\in[a,b]$  by otrzymać twierdzenie Lagrange'a.

#### 8.7 Różniczkowalność a ciągłość funkcji

**Twierdzenie 8.7.1.** Funkcja  $f:(a,b) \to \mathbb{R}$  różniczkowalna w przedziałe (a,b) jest w tym przedziałe ciągła.

Dowód. Rozważmy dowolny  $x_0 \in (a, b)$ . Zauważmy, że  $\frac{f(x_0+h)-f(x_0)}{h}h = f(x_0+h)-f(x_0)$ . Przechodząc do granicy mamy

$$\lim_{h \to 0} (f(x_0 + h) - f(x_0)) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} h = f'(x_0) \cdot \lim_{h \to 0} h = 0$$

Zatem  $\lim_{h\to 0} (f(x_0+h)-f(x_0))=0 \Leftrightarrow f(x_0)=\lim_{h\to 0} f(x_0+h)$ . Dowolny  $x\neq x_0$  przedstawiamy jako  $x_0+h$  i wtedy dla  $h\to 0$  zachodzi  $x\to x_0$ . Ostatecznie mamy, że  $\lim_{x\to x_0} f(x)=f(x_0)$ . Z dowolności wyboru  $x_0\in (a,b)$  f jest ciągła w całym przedziale (a,b).

Twierdzenie odwrotne nie jest prawdziwe. Porównaj przykład 77 na stronie 118. Klasyczny przykład podajemy poniżej – czytelnik zechce przeprowadzić rachunki:

Przykład 87. Funkcja  $f: \mathbb{R} \to \mathbb{R}$  dana wzorem

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & \text{dla } x \neq 0; \\ 0, & \text{dla } x = 0. \end{cases}$$

jest funkcją różniczkowalną oraz f' jest dana wzorem

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x}, & \text{dla } x \neq 0; \\ 0, & \text{dla } x = 0. \end{cases}$$

Zauważmy, że f' <u>nie</u> jest ciągła w dziedzinie (jest nieciągła w punkcie x = 0).

Jak wspominaliśmy, twierdzenie znane jako tw. Darboux pochodzi od Bolzano. Podamy drugie bardzo ważne twierdzenie – do którego dla porządku będziemy odnosić się jako do "drugiego twierdzenia Darboux". Należy mieć na uwadze, że w literaturze możemy się spotkać po prostu z określeniem "twierdzenie Darboux" w odniesieniu do poniższego twierdzenia.

**Twierdzenie 8.7.2** (Darboux II). Niech  $f: D \to \mathbb{R}$  będzie funkcją różniczkowalną w przedziale  $D \subseteq \mathbb{R}$ . Wówczas pochodna f' tej funkcji ma w tym przedziale własność Darboux.

Dowód. Niech  $D \subseteq \mathbb{R}$  będzie przedziałem, a  $f: D \to \mathbb{R}$ .

Ustalmy  $a, b \in D$ , a < b. Dla dalszych rozważań możemy przyjąć, że  $f'(a) \neq f'(b)$ . Weźmy teraz punkt y z przedziału (f'(a), f'(b)) i zdefiniujmy dwie funkcje  $f_a, f_b \colon D \to \mathbb{R}$  następująco

$$f_a(t) = \begin{cases} f'(a), & \text{gdy } t = a, \\ \frac{f(t) - f(a)}{t - a}, & \text{gdy } t \in D \setminus \{a\}; \end{cases}$$

$$f_b(t) = \begin{cases} f'(b), & \text{gdy } t = b, \\ \frac{f(b) - f(t)}{b - t}, & \text{gdy } t \in D \setminus \{b\}; \end{cases}$$

Zauważmy, że  $f_a(a) = f'(a)$ ,  $f_a(b) = f_b(a)$ ,  $f_b(b) = f'(b)$ . Zatem element y leży pomiędzy liczbami  $f_a(a)$  a  $f_a(b)$  lub pomiędzy liczbami  $f_b(a)$  a  $f_b(b)$ . Jeżeli y leży pomiędzy liczbami  $f_a(a)$  oraz  $f_b(b)$ , to ponieważ funkcja  $f_a$  jako ciągła ma własność Darboux, więc istnieje taki element  $s \in (a, b]$ , że  $y = f_a(s)$ , tj.

(8.23) 
$$y = \frac{f(s) - f(a)}{s - a}.$$

Z twierdzenia 8.6.1 Lagrange'a o wartości średniej istnieje taki punkt  $\xi \in (a, s)$ , że

(8.24) 
$$\frac{f(s) - f(a)}{s - a} = f'(\xi).$$

Z równości 8.23 i 8.24 wynika zatem, że  $y = f'(\xi)$  dla pewnej liczby  $\xi \in (a, s) \subseteq (a, b)$ , co kończy dowód w rozważanym przypadku.

Jeżeli y leży pomiędzy liczbami  $f_b(a)$  i  $f_b(b)$ , to postępujemy analogicznie.

*Ćwiczenie* 84. Udowodnić powyższe twierdzenie, korzystając z lematu 8.4.5 Fermata. Wskazówka: dobrać odpowiednią funkcję pomocniczą.

**Twierdzenie 8.7.3.** Niech  $f:(a,b) \to \mathbb{R}$  będzie funkcją różniczkowalną. Wówczas f spełnia warunek Lipschitza ze stałą Lipschitza L wtedy i tylko wtedy, gdy jej pochodna jest ograniczona przez L.

Dowód. Załóżmy, że f spełnia warunek Lipschitza ze stałą L. Niech  $x_0 \in (a, b)$ . Wówczas dla  $x \in (a, b), x \neq x_0$ :

$$\left| \frac{f(x) - f(x_0)}{x - x_0} \right| = \frac{|f(x) - f(x_0)|}{|x - x_0|} \le L.$$

Stąd  $|f'(x_0)| \leq L$ . Dla dowodu w drugą stronę załóżmy, że  $|f'(x)| \leq L$  dla wszystkich  $x \in (a, b)$ . Niech  $x_1, x_2 \in (a, b)$ . Możemy przyjąć, że  $x_1 < x_2$ . Z twierdzenia 8.6.1 Lagrange'a o wartości średniej wynika, że istnieje takie  $\xi \in (x_1, x_2)$ , że

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1).$$

Ponieważ  $|f'(\xi)| \leq L$ , to

$$|f(x_2) - f(x_1)| = |f'(\xi)||x_2 - x_1| \le L|x_2 - x_1|,$$

i stąd f spełnia warunek Lipschitza ze stałą L.

Przykład 88. Przypomnijmy, że funkcja  $f(x)=\sqrt{x}$  jest jednostajnie ciągła (przykład 71). Jednak pochodna  $f'(x)=\frac{1}{\sqrt{x}}$  jest oczywiście nieograniczona (wystarczy spojrzeć, że przy  $x\to 0$   $f'(x)\to \infty$ , więc funkcja f jest przykładem funkcji jednostajnie ciągłej, ale nie spełniającej warunku Lipschitza.

**Twierdzenie 8.7.4.** Jeżeli funkcja f jest klasy  $C^2(a,b)$ , to punkt  $(x_0, f(x_0))$  jest punktem przegięcia wykresu funkcji f wtedy i tylko wtedy, gdy  $f''(x_0) = 0$  oraz f'' zmienia znak przy przejściu przez punkt  $x_0$ .

### 8.8 \*Zastosowanie różniczki do rachunków przybliżonych

Różniczkę w punkcie możemy definiować jako część liniową przyrostu funkcji w otoczeniu punktu  $x_0$ .



Rysunek 8.2: Porównanie przyrostu  $\Delta y$  wartości funkcji f i przyrostu dy.

Jak widzimy  $\Delta y \approx \mathrm{d} y$ dla odpowiednio "małego" przyrostu y.

**Twierdzenie 8.8.1.** Niech  $f:(a,b)\to\mathbb{R}$  będzie funkcją ciąglą oraz  $x\in(a,b)$  - ustalone.

(8.25) 
$$f(x + \Delta x) \approx f'(x) \cdot \Delta x + f(x).$$

Dowód. Równość z tezy możemy inaczej zapisać jako  $f(x + \Delta x) - f(x) = f'(x) \cdot \Delta x + o(\Delta x)$ , gdzie  $\frac{o(\Delta x)}{\Delta x} \xrightarrow{\Delta x \to 0} 0$ . Przy  $\Delta x \to 0$ , korzystając z ciągłości funkcji uzyskujemy  $f(x + \Delta x) \to f(x)$  oraz x jest ustalone, zatem f'(x) jest stałą i  $f'(x) \cdot \Delta x \to 0$ .

$$\lim_{\Delta x \to 0} (f(x + \Delta x) - f(x)) = 0 = \lim_{\Delta x \to 0} f'(x) \cdot \Delta x.$$

Warto przywyknąć do powyższej tożsamości i różnych wygodnych (równoważnych) sposobów jej wyrażenia:

$$f(x + \Delta x) \approx df + f(x)$$

$$\Delta f = f(x + \Delta x) - f(x) \approx f'(x)\Delta x = f'(x) dx.$$

Przykład 89. Obliczymy w przybliżeniu liczbę  $\sqrt{4,3}$ . Zgodnie ze wzorem 8.25 mamy

$$\sqrt{x + \Delta x} \approx (\sqrt{x})' \cdot \Delta x + \sqrt{x} = \frac{1}{2\sqrt{x}} \cdot \Delta x + \sqrt{x}.$$

Podstawmy x = 4 i  $\Delta x = 0, 3$ . Wtedy

$$\sqrt{x + \Delta x} = \sqrt{4 + 0.3} = \sqrt{4.3} \approx \frac{1}{2\sqrt{4}} \cdot 0.3 + \sqrt{4} = \frac{0.3}{4} + 2 = \frac{3}{40} + 2 = \frac{83}{40}.$$

Zatem  $\sqrt{4,3}\approx\frac{83}{40}$ . Porównajmy jeszcze wynik z obliczeniami kalkulatora:  $\sqrt{4,3}=2,0736\ldots$ , podczas gdy  $\frac{83}{40}=2,075$ .

Przykład90. Pokażemy, że t<br/>g $x\approx x$ dla xbliskich zeru. We wzorze

$$f(x + \Delta x) \approx f'(x)\Delta x + f(x)$$

za punkt x, w pobliżu którego szukamy przybliżenia funkcji tg przyjmujemy 0 oraz przyrost  $\Delta x$  oznaczać będziemy jako x (zmieniamy tylko oznaczenia, zaraz zobaczymy dlaczego). Mamy  $f(0+x)\approx f'(0)\cdot x+f(0)$  czyli kładąc f= tg mamy tg $(0+x)\approx [{\rm tg}(0)]'x+{\rm tg}(0)$ . Dalej  $[{\rm tg}(x)]'=\frac{1}{\cos^2(x)}$  oraz  $\cos^2(0)=1$  i tg(0)=0 zatem

$$tg(x+0) = tg(x) \approx \frac{1}{\cos^2(0)} \cdot x + tg(0) = 1 \cdot x + 0 = x.$$

 $\acute{C}wiczenie$  85. Uzasadnić, że  $\sin x \approx x$  dla x bliskich zeru.

# 8.9 \*Uwagi o pochodnych cząstkowych i różniczce zupełnej funkcji

**Definicja 8.9.1. Pochodną cząstkową** funkcji  $f: D \to \mathbb{R}, D \subseteq \mathbb{R}^n$  po zmiennej  $x_k$  definiujemy jako granicę (jeśli istnieje)

$$\lim_{\Delta x_k \to 0} \frac{f(x_1, x_2, \dots, x_k + \Delta x_k, \dots, x_n) - f(x_1, x_2, \dots, x_k, \dots, x_n)}{\Delta x_k}$$

i oznaczamy jako

$$\frac{\partial f}{\partial x_k}(x_1,\ldots,x_n)$$
 lub  $\frac{\partial f(x_1,\ldots,x_n)}{\partial x_k}$ 

**Definicja 8.9.2. Różniczką zupełną**  $df(a_1,\ldots,a_n,\Delta a_1,\ldots,\Delta a_n)$  funkcji  $f\colon D\to\mathbb{R},\ D\subseteq\mathbb{R}^n$  w punkcie  $(a_1,\ldots,a_n)$  nazywamy wyrażenie

$$\frac{\partial f(a_1,\ldots,a_n)}{\partial x_1} \Delta a_1 + \cdots + \frac{\partial f(a_1,\ldots,a_n)}{\partial x_n} \Delta a_n.$$

Ponownie różniczkę zupełną funkcji wielu zmiennych f będziemy często oznaczać po prostu df. Niech  $\overrightarrow{x} = (a_1, \dots, a_n)$ . Przyrost  $\overrightarrow{x}$  zapiszemy jako  $\Delta \overrightarrow{x} = (\Delta a_1, \dots, \Delta a_n)$ . Wtedy stosujemy zapis  $f(a_1, \dots, a_n) = f(\overrightarrow{x})$ . Odpowiadający przyrost wartości  $\Delta f$  funkcji f wyraża się wzorem

$$\Delta f = f(\overrightarrow{x} + \Delta \overrightarrow{x}) - f(\overrightarrow{x}) = \frac{\partial f(\overrightarrow{x})}{\partial x_1} \Delta a_1 + \dots + \frac{\partial f(\overrightarrow{x})}{\partial x_n} \Delta a_n + o(\Delta \overrightarrow{x}),$$

gdzie  $\frac{o(\Delta x)}{\Delta x} \xrightarrow{\Delta x \to 0} 0$ . Zatem  $f(\overrightarrow{x} + \Delta \overrightarrow{x}) \approx df(\overrightarrow{x}, \Delta \overrightarrow{x}) + f(\overrightarrow{x})$ . Ponadto, jeżeli przyjmiemy

$$df(\overrightarrow{x}) = \left[\frac{\partial f(\overrightarrow{x})}{\partial x_1}, \cdots, \frac{\partial f(\overrightarrow{x})}{\partial x_n}\right],$$

to d $f(\overrightarrow{x}, \Delta \overrightarrow{x}) = df(\overrightarrow{x}) \circ \Delta \overrightarrow{x}$ , gdzie o oznacza zwykły iloczyn skalarny. Mamy postać różniczki zupełnej funkcji analogiczną do równości 8.25.

$$f(\overrightarrow{x} + \Delta \overrightarrow{x}) \approx df(\overrightarrow{x}) \circ \Delta \overrightarrow{x} + f(\overrightarrow{x})$$

#### 8.10 Regula de l'Hospitala

**Reguła de l'Hospitala:** jeżeli dla pewnego wyrażenia  $\frac{f}{g}$  przy przejściu do granicy otrzymujemy symbol nieoznaczony  $\left[\frac{0}{0}\right]$  lub  $\left[\frac{\infty}{\infty}\right]$ , to pod pewnymi warunkami możemy obliczyć pochodne f' i g' i wtedy  $\lim \frac{f}{g} = \lim \frac{f'}{g'}$ .

**Lemat 8.10.1.** Niech  $f:(0,d)\to\mathbb{R}$  będzie ciągła, istnieje granica  $\lim_{x\to 0^+} f(x)=0$ , oraz istnieje pochodna  $f':(0,d)\to\mathbb{R}$  funkcji f i jej granica  $\lim_{x\to 0^+} f'(x)$ . Wówczas

$$\lim_{x \to 0+} \frac{f(x)}{x} = \lim_{x \to 0+} f'(x).$$

Dowód. Otóż

$$\frac{f(x) - f(0)}{x - 0} = f'(\lambda x), \text{ gdzie } 0 < \lambda < 1.$$

Jeśli  $x \to 0^+$ , to  $\lambda x \to 0^+$ , a zatem

$$\lim_{x \to 0^+} \frac{f(x)}{x} = \lim_{x \to 0^+} f'(x).$$

Twierdzenie 8.10.2. Niech  $f,g\colon (a,b)\to \mathbb{R}$  są ciągłe w całej dziedzinie, oraz

$$\lim_{x \to a^+} f(x) = \lim_{x \to a^+} g(x) = 0.$$

Dalej, niech istnieją pochodne  $f', g' \colon (a, b) \to \mathbb{R}$  odpowiednio funkcji f i  $g, g' \neq 0$  oraz istnieje granica  $\lim_{x \to a^+} \frac{f'(x)}{g'(x)}$ . Wówczas

$$\lim_{x \to a^{+}} \frac{f(x)}{g(x)} = \lim_{x \to a^{+}} \frac{f'(x)}{g'(x)}.$$

Dowód. Zdefiniujmy f(a)=g(a)=0. Oznaczmy u=f(x). Wówczas mamy  $x=\varphi(u), \ f(x)=f(\varphi(x))=F(u),$ 

$$F'(u) = \frac{f'(x)}{g'(x)}.$$

Jeżeli  $x \to a^+$ , to  $u \to 0^+$  i na odwrót, zatem

$$\lim_{x \to a^+} \frac{f(x)}{g(x)} = \lim_{x \to a^+} \frac{F(u)}{u} = \lim_{x \to a^+} F'(u) = \lim_{x \to a^+} \frac{f'(x)}{g'(x)}.$$

**Twierdzenie 8.10.3.** Niech  $f,g\colon (a,+\infty)\to \mathbb{R}$  są ciągłe dla x>a, oraz  $\lim_{x\to\infty} f(x)=\lim_{x\to\infty} g(x)=0$ . Niech ponadto istnieją  $w(a,\infty)$  pochodne f',g' funkcji f i g oraz  $g'\neq 0$ . Wówczas, jeżeli istnieje

$$\lim_{x \to \infty} \frac{f'(x)}{g'(x)},$$

to

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Dowód. Niech  $x = \frac{1}{u}$ . Wtedy

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{u \to 0^+} \frac{f(1/u)}{g(1/u)} = \lim_{u \to 0^+} \frac{f'(1/u)(-1/u^2)}{g'(1/u)(-1/u^2)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}.$$

Uwaga 8.10.4. W twierdzeniu 8.10.3 założenie

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = 0$$

można zastąpić założeniem

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} g(x) = \infty.$$

Dowód pomijamy (ćwiczenie).

Przykład 91. Obliczymy  $\lim_{x\to 0}\frac{e^x-1}{x}$ . Zauważmy, że  $\lim_{x\to 0}(e^x-1)=0$  oraz  $\lim_{x\to 0}x=0$  zatem nie zastosujemy twierdzeń o arytmetyce granic, gdyż mamy do czynienia z symbolem nieoznaczonym  $\begin{bmatrix} 0\\0 \end{bmatrix}$ . Jednak stosując naszą regułę łatwo dostajemy:

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{(e^x - 1)'}{(x)'} = \lim_{x \to 0} \frac{e^x}{1} = \lim_{x \to 0} e^x = 1.$$

Przykład 92. Obliczymy (ponownie) granicę  $\lim_{x\to 1}\frac{x^3-1}{x^2-1}$ . Gdybyśmy wstawili x=1, to otrzymamy symbol nieoznaczony  $\begin{bmatrix} 0\\0 \end{bmatrix}$ . Korzystając z reguły de l'Hospitala:

$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1} = \lim_{x \to 1} \frac{(x^3 - 1)'}{(x^2 - 1)'} = \lim_{x \to 1} \frac{3x^2}{2x} = \frac{3}{2}$$

Zdarza się, że również pochodne przy przejściu do granicy dają nam jeden z wymienionych symboli nieoznaczonych - czasem regułę daje się zastosować  $kilka\ razy$  aż pozbędziemy się symbolu nieoznaczonego.

Ćwiczenie 86. Obliczyć granicę

$$\lim_{x\to 0}\frac{\sin\operatorname{tg} x-\operatorname{tg}\sin x}{\arcsin\operatorname{arcsin} x-\arctan\arcsin x}.$$

## Rozdział 9

# Funkcje hiperboliczne

Definicja 9.0.1. Sinusem hiperbolicznym nazywamy funkcję sinh:  $\mathbb{R} \to \mathbb{R}$  określoną jako

$$\sinh x = \frac{e^x - e^{-x}}{2}, x \in \mathbb{R}$$

a cosinusem hiperbolicznym funkcję cosh:  $\mathbb{R} \to \mathbb{R}$  określoną jako

$$\cosh x = \frac{e^x + e^{-x}}{2}, x \in \mathbb{R}$$

Funkcje te narodziły się w trakcie rozważań geometrycznych, zbiór  $\{(\cosh(t),\sinh(t))\colon t\in\mathbb{R}$  jest wykresem (w tej postaci, tzw. parametryzacją) prawej (dodatniej) gałęzi hiperboli o równaniu  $x^2-y^2=1$ . (o parametryzacji krzywych powiemy trochę w rozdziale o całkowaniu). Oprócz tego używa się funkcji **tangensa hiperbolicznego** tanh i **cotangensa hiperbolicznego** coth danych wzorami  $\tan x=\frac{\sinh x}{\cosh x}$  i  $\coth x=\frac{\cosh x}{\sinh x}$  dla dowolnych  $x\in\mathbb{R}$ .

Twierdzenie 9.0.2. Funkcje sinh, cosh spełniają następujące tożsamości hiperboliczne

- 1.  $\cosh^2 x \sinh^2 x = 1, x \in \mathbb{R}$ ;
- 2.  $\cosh 0 = 1 \text{ oraz } \sinh 0 = 0$ ;
- 3.  $\cosh(-x) = \cosh x \ oraz \sinh(-x) = -\sinh x, \ x \in \mathbb{R}$ .

Dowód. Proste ćwiczenie.

**Uwaga 9.0.3.** Sinus hiperboliczny jest funkcją odwracalną. Rzeczywiście:  $(\sinh x)' = \cosh x > 0$  zatem sinh jest f. ściśle monotoniczną  $\Rightarrow$  różnowartościową  $\Rightarrow$  odwracalną (uwzgl. jeszcze że  $D_{\rm sinh} = R_{\rm sinh}$ . Podobnie cosinus hiperboliczny jest f. odwracalną. Te funkcje odwrotne do sinusa i cosinusa hiperbolicznego nazywane są **funkcjami polowymi** lub funkcjami **area-hiperboliczn** i bywają w polskiej literaturze oznaczane odpowiednio arcsinh i arccosh, ale np. w literaturze anglojęzycznej przeważnie oznaczane są po prostu jako sinh<sup>-1</sup> i cosh<sup>-1</sup>.

Twierdzenie 9.0.4.  $(\sinh)' = \cosh \ oraz \ (\cosh') = \sinh$ .

Lemat 9.0.5. Funkcje odwrotne do funkcji hiperbolicznych spełniają tożsamości:

$$\sinh^{-1}(y) = \ln\left(y + \sqrt{y^2 + 1}\right)$$

$$\cosh^{-1}(y) = \ln\left(y + \sqrt{y^2 - 1}\right)$$

Dowód. Niech  $y = \sinh x, x \in \mathbb{R}$   $(x = \sinh^{-1} y)$ . Czyli  $y = \frac{e^x - e^{-x}}{2}$ . Podstawmy  $t = e^x$ , wówczas  $y = \frac{1}{2} \left( \frac{t-1}{t} \right)$  i stąd mamy równanie  $t^2 - 2yt - 1 = 0$ , o dwóch rozwiązaniach:

$$t = y \pm \sqrt{y^2 + 1}$$

Uwzględniając, że  $t=e^x>0$  możemy wziąć  $t=y+\sqrt{y^2+1}$  i stąd już logarytmując równość

$$e^x = y + \sqrt{y^2 + 1}$$

otrzymujemy, że

$$\sinh^{-1} = x = \ln\left(y + \sqrt{y^2 + 1}\right).$$

Drugą tożsamość z tezy dowodzimy analogicznie (ćwiczenie).

Twierdzenie 9.0.6. Pochodzne funkcji odwrotnych do funkcji hiperbolicznych mają postać:

$$(\sinh^{-1}(y))' = \frac{1}{\sqrt{y^2 + 1}},$$

$$(\cosh^{-1}(y))' = \frac{1}{\sqrt{y^2 - 1}}.$$

Dowód. W oparciu o porzedni lemat i reguły różniczkowania - proste ćwiczenie.

Definicja 9.0.7. Tangensem hiperbolicznym nazywamy funkcję tanh określoną wzorem

$$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}}.$$

Cotangensem hiperbolicznym nazywamy funkcję coth określoną wzorem coth  $x = \frac{1}{\tanh x}$ .

Twierdzenie 9.0.8. Zachodzą tożsamości:

$$\tanh x = \frac{\sinh x}{\cosh x}$$

$$\coth x = \frac{\cosh x}{\sinh x}$$

Dowód. Łatwe ćwiczenie.

### Rozdział 10

# Antypochodna albo inaczej całka nieoznaczona

#### 10.1 Definicja antypochodnej

**Definicja 10.1.1.** Niech  $D \subseteq \mathbb{R}$  będzie przedziałem niezdegenerowanym i  $f: D \to \mathbb{R}$ . Mówimy, że funkcja  $F: D \to \mathbb{R}$  jest **funkcją pierwotną** funkcji f, jeżeli funkcja F jest różniczkowalna w F oraz

$$F'(x) = f(x), x \in D.$$

Przykład 93. Funkcja  $F(x)=2x,\ x\in\mathbb{R}$  jest funkcją pierwotną funkcji  $f(x)=x^2,\ x\in\mathbb{R}$ , ponieważ

$$F'(x) = (x^2)' = 2x, \ x \in \mathbb{R}$$

Przykład 94. Niech  $f: \mathbb{R} \to \mathbb{R}$  będzie dana wzorem  $f(x) = 3x - \sin(x)$ . Funkcja F dana wzorem  $F(x) = x^3 + \cos(x)$ ,  $x \in \mathbb{R}$  jest funkcją pierwotną funkcji f.

**Uwaga 10.1.2.** Jeżeli  $F_1, F_2 \colon D \to \mathbb{R}$  są funkcjami pierwotnymi funkcji f, to istnieje taka stała  $C \in \mathbb{R}$ , że

$$F_2(x) = F_1(x) + C, x \in D.$$

Dowód. Rozważmy funkcję  $\varphi \colon D \to \mathbb{R}$  określoną wzorem  $\varphi(x) = F_2(x) - F_1(x), x \in D$ . Wtedy funkcja  $\varphi$  jest różniczkowalna, oraz  $\varphi'(x) = F_2'(x) - F_1'(x) = f(x) - f(x) = 0, x \in D$ . Zatem funkcja  $\varphi$  jest stała, tzn. istnieje  $C \in \mathbb{R}$ , że  $\varphi(x) = C$  dla każdego  $x \in D$ . Stąd  $F_2(x) = F_1(x) + C, x \in D$ .  $\square$ 

**Definicja 10.1.3.** Jeżeli  $f: \mathbb{R} \to \mathbb{R}$  ma funkcję pierwotną, to zbiór wszystkich funkcji pierwotnych funkcji f nazywamy **całką nieoznaczoną** albo **antypochodną** funkcji f i oznaczamy

$$\int f \operatorname{lub} \int f(x) \, \mathrm{d}x.$$

Każda funkcja ciągła ma funkcję pierwotną, jednak tylko dla pewnych typów funkcji istnieją ich funkcje pierwotne wyrażające się poprzez funkcje elementarne. Antypochodne funkcji, które nie dają się wyrazić za pomocą funkcji logarytmu, funkcji trygonometrycznych i cyklometrycznych i

skończonej ilości podstawowych działań arytmetycznych (dodawanie, możenie, odejmowanie, dzielenie), potęgowania (w tym - pierwiastkowania) nazywamy **całkami nieelementarnymi**. Ważną klasą całek nieoznaczonych, które są nieelementarne tworzą tzw. **całki eliptyczne**. Całkami nieelementarnymi są na przykład całki

$$\int e^{x^2} dx$$
,  $\int \frac{\sin x}{x} dx$ ,  $\int \frac{e^x}{x} dx$ ,  $\int \frac{1}{\ln x} dx$ ,  $\int \sqrt{1+x^3} dx$ .

Zauważmy, że wobec uwagi 10.1.2:

$$\int f = \left\{ \Phi \in D^{\mathbb{R}} \colon \exists_{C \in \mathbb{R}} \forall_{x \in D} \Phi(x) = F(x) + C \right\} = \left\{ F + C \colon C \in \mathbb{R} \right\},\,$$

gdzie  $F\colon D\to\mathbb{R}$  jest dowolną funkcją pierwotną funkcji f. Będziemy często dla uproszczenia pisać:

$$\int f(x) dx = F(x) + C, C - dowolna stała.$$

lub

$$\int f(x) \, \mathrm{d}x = F(x) + constans.$$

Przypomnijmy, że  $(\ln x)' = \frac{1}{x}$ . Funkcja  $x \mapsto \ln x$  jest określona tylko dla x > 0, podczas gdy funkcja  $x \mapsto \frac{1}{x}$  jest określona dla wszystkich x rzeczywistych różnych od zera. Na dla jakich x możemy obliczyć  $\int \frac{1}{x} dx$ ?

- 1.) x > 0, to oczywiście  $(\ln x)' = \frac{1}{x}$ .
- 2.) x<0,to wtedy |x|=-x>0i korzystając z reguły łańcuchowej oraz przykładu 83 możemy obliczyć

$$(\ln|x|))' = \frac{1}{|x|} \left(\frac{|x|}{x}\right)' = \frac{1}{|x|} \cdot \frac{|x|}{x} = \frac{1}{x}.$$

Zatem i w tym przypadku istnieje funkcja pierwotna dla funkcji  $x \mapsto \frac{1}{x}$ .

Do tego oczywiście ln  $|x|=\ln x$  dla x>0. Zatem funkcja  $F(x)=\ln |x|, x\in (-\infty,0)\cup (0,+\infty)$  jest funkcją pierwotną funkcji  $f(x)=\frac{1}{x}, x\in (-\infty,0)\cup (0,+\infty)$  i stąd:

$$\int \frac{1}{x} \, dx = \ln|x| + C, \ x \in (-\infty, 0) \cup (0, +\infty)$$

Opierając się na wzorach podstawowych pochodnych, możemy podać listę "podstawowych" ca-

łek, z których można korzystać obliczając całki bardziej złożonych funkcji:

(10.1) 
$$\int x^a \, dx = \frac{1}{a+1} x^{a+1} + C, \ C \in \mathbb{R}, \ dla \ a \neq 1$$

(10.2) 
$$\int x^{-1} dx = \int \frac{1}{x} dx = \ln|x| + C, \ C \in \mathbb{R}, \ dla \ x \in \mathbb{R} \setminus \{0\}$$

(10.3) 
$$\int a^x dx = \frac{a^x}{\ln a} + C, \ C \in \mathbb{R} \ (\text{dla dow. } a \in \mathbb{R})$$

(10.4) 
$$\int e^x \, \mathrm{d}x = e^x + C, \ C \in \mathbb{R}$$

(10.5) 
$$\int a^x \, \mathrm{d}x = \frac{a^x}{\ln a} + C, \ C \in \mathbb{R}$$

(10.6) 
$$\int \sin x \, \mathrm{d}x = -\cos x + C, \ C \in \mathbb{R}$$

(10.7) 
$$\int \cos x \, \mathrm{d}x = \sin x + C, \ C \in \mathbb{R}$$

(10.8) 
$$\int \frac{1}{\sin^2 x} dx = -\operatorname{ctg} x + C, \ C \in \mathbb{R}$$

(10.9) 
$$\int \frac{1}{\cos^2 x} \, \mathrm{d}x = \operatorname{tg} x + C, \ C \in \mathbb{R}$$

(10.10) 
$$\int \frac{1}{1+x^2} \, \mathrm{d}x = \arctan x + C, \ C \in \mathbb{R}$$

(10.11) 
$$\int \frac{1}{\sqrt{1-x^2}} \, \mathrm{d}x = \arcsin x + C, \ C \in \mathbb{R}$$

## 10.2 Własności antypochodnej i twierdzenia o całkowaniu

**Twierdzenie 10.2.1** (O liniowości całki). Niech  $f: D \to \mathbb{R}$  oraz  $g: I \to D$  będą funkcjami ciągłymi w przedziałe  $D \subseteq \mathbb{R}$  a  $a, b \in \mathbb{R}$  będą dane. Wówczas

$$\int (a \cdot f + b \cdot g) = a \cdot \int f + b \cdot \int g,$$

gdzie

$$a \cdot \int f + b \cdot \int g = \{a \cdot F + b \cdot G \colon F' = f \ i \ G' = g\}.$$

**Twierdzenie 10.2.2** (O całkowaniu przez podstawienie). Niech  $f: D \to \mathbb{R}$  będzie funkcją ciągłą w przedziałe  $D \subseteq \mathbb{R}$  oraz niech  $g: I \to D$  będzie funkcją klasy  $C^1$  w przedziałe  $I \subseteq D$ . Wtedy

$$\int (f \circ g) \cdot g' = \left( \int f \right) \circ g,$$

$$gdzie \left( \int f \right) \circ g = \left\{ F \circ g \colon F \in \int f \right\}.$$

Metoda oparta o powyższe twierdzenie jest podstawą obliczania prostych całek, ale sztuka znajdywania odpowiedniego podstawienia wymaga wpary i doświadczenia. Aby sprawnie opanować tego typu rachunki, warto przeliczyć wiele przykładów.

Przykład 95 (trywialny).

Obliczymy 
$$\int \cos(2x) dx$$
. Podstawmy  $t = 2x$ . Wtedy  $\frac{dt}{dx} = (2x)' = 2$  i stąd  $dx = \frac{1}{2} dt$ .

Łatwo obliczamy całkę:

$$\int \cos(2x) \, dx = \int \cos(t) \frac{1}{2} \, dt = \frac{1}{2} \int \cos(t) \, dt = \frac{1}{2} \sin(t) + C$$

i pamiętając, że t = 2x mamy

$$\int \cos(2x) \, \mathrm{d}x = \frac{1}{2}\sin(2x) + C$$

Przykład 96 (łatwy).

Obliczymy 
$$\int 2e^{\sin x} \cos x \, dx$$
.

Podstawiamy  $t = \sin x$ . Stąd  $\frac{\mathrm{d}t}{\mathrm{d}x} = \cos x$  czyli  $\mathrm{d}t = \cos x\,\mathrm{d}x$ . Zatem

$$\int 2e^{\sin x}\cos x \,dx = 2\int e^t \,dt + C = 2e^{\sin x} + C.$$

Przykład 97 (trudny).

Obliczymy 
$$\int \frac{1}{\sqrt{a^2 + x^2}} dx$$
. Podstawmy  $t = x + \sqrt{a + x^2}$ .

Wtedy

$$\frac{\mathrm{d}t}{\mathrm{d}x} = (x + \sqrt{a + x^2})'$$

i dalej

$$dt = \left(1 + \frac{2x}{2\sqrt{a + x^2}}\right) dx = \left(1 + \frac{x}{\sqrt{a + x^2}}\right) dx$$

czyli

$$\mathrm{d}t = \frac{\sqrt{a+x^2} + x}{\sqrt{a+x^2}} \, \mathrm{d}x.$$

Mamy

$$\int \frac{1}{\sqrt{a^2 + x^2}} \, \mathrm{d}x = \int \frac{\sqrt{a + x^2} + x}{\sqrt{a + x^2}} \left( \frac{1}{x + \sqrt{a + x^2}} \right) \, \mathrm{d}x = \int \frac{\mathrm{d}t}{t} = \ln|t| + C = \ln|x + \sqrt{a + x^2}| + C$$

Ćwiczenie 87. Pokazać, że

$$\int e^{ax} \, \mathrm{d}x = \frac{1}{a} e^{ax} + C, \text{ dla } a \in \mathbb{R}.$$

*Przykład* 98. Pokażemy, że jeżeli  $\int f(x) dx = F(x) + C$ , to  $\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C$ .

Podstawmy t=ax+b, to wówczas  $\frac{\mathrm{d}t}{\mathrm{d}x}=a$ , czyli

$$\frac{1}{a} \, \mathrm{d}t = \mathrm{d}x.$$

Mamy  $f(ax + b) dx = f(t) \frac{1}{a} dt$ , czyli

$$\int f(ax+b) \, dx = \frac{1}{a} \int f(t) \, dt = \frac{1}{a} F(t) + C = \frac{1}{a} F(ax+b) + C.$$

Podstawiając  $f(t)=e^t$  i t=ax otrzymujemy rozwiązanie poprzedniego ćwiczenia. A jak wygląda rozwiązanie całki  $\int e^{2x+1} dx$ ? A dla całki  $\int \sin(7x+1) dx$ ?

Ćwiczenie 88. Udowodnić, że:

1. 
$$\int \frac{f'(x)}{f(x)} dx = \ln|f(x)| + C$$
,

2. 
$$\int \frac{f'(x)}{2\sqrt{f(x)}} dx = \sqrt{f(x)} + C,$$

3. 
$$\int f'(x)f(x) dx = \frac{1}{2}f^2(x) + C.$$

Przykład 99. Korzystając z poprzedniego ćwiczenia łatwo sprawdzić, że na przykład

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + C, \int \frac{2x+1}{x^2+x} \, \mathrm{d}x = \ln|2x+1| + C.$$

Przykład 100. Również łatwo obliczyć całkę:

$$\int \tan x \, dx = \int \frac{\sin x}{\cos x} \, dx = -\int \frac{(\cos x)'}{\cos x} \, dx = -\ln|\cos x| + C.$$

Przykład101. Obliczymy całkę  $\int \frac{2x+1}{\sqrt{4x+1}} \, \mathrm{d}x.$  Podstawiamy  $t^2 = 4x+1$ i mamy

$$\frac{\mathrm{d}x}{\mathrm{d}t}(4x+1) = \frac{4\,\mathrm{d}x}{\mathrm{d}t} = 2t \implies 4\,\mathrm{d}x = 2t\,\mathrm{d}t,$$

$$t^2 = 4x + 1 \implies 2x = \frac{t^2 - 1}{2}.$$

Czyli

$$\int \frac{2x+1}{\sqrt{4x+1}} dx = \int \frac{\frac{t^2-1}{2}+1}{t} \frac{t}{2} dt = \frac{1}{4} \int (t^2+1) dt =$$
$$= \frac{t^3}{12} + \frac{t}{4} + C = \frac{\sqrt{(4x+1)^3}}{12} + \frac{1}{4} \sqrt{4x+1} + C.$$

**Twierdzenie 10.2.3** (O całkowaniu przez części). Niech  $f, g: D \to \mathbb{R}$  będą funkcjami klasy  $C^1$  w przedziałe  $D \subseteq \mathbb{R}$ . Wtedy

$$\int f \cdot g' = f' \cdot g - \int f' \cdot g, \ gdzie$$

$$f' \cdot g - \int f' \cdot g = \left\{ f \cdot g - \Psi \colon \Psi \in \int f' \cdot g \right\}.$$

Przykład 102.

$$\int 2x \ln x \, dx = \int (x^2)' \ln x \, dx = 2x \ln x - \int x^2 (\ln x)' \, dx = 2x \ln x - \int x^2 \cdot \frac{1}{x} \, dx =$$

$$= 2x \ln x - \int x \, dx = 2x \ln x - \frac{1}{3}x^3 + C$$

 $Przykład\ 103.$ 

$$\int \ln x \, dx = \int 1 \cdot \ln x \, dx = \int (x)' \cdot \ln x \, dx = x \ln x - \int x (\ln x)' \, dx =$$

$$= x \ln x - \int x \cdot \frac{1}{x} \, dx = x \ln x - \int dx = x \ln x - x + C$$

Przykład 104.

Obliczymy 
$$\int x^2 \sin x \, dx$$
. Podstawmy  $f'(x) = \sin x$ ,  $g(x) = x^2$ . Wtedy 
$$g'(x) = 2x \text{ oraz } f(x) = \int f'(x) \, dx = -\cos x - \text{zapominamy na chwilę o stałej.}$$
 
$$\int x^2 \sin x \, dx = \cos x \cdot x^2 + \int 2x \cos x \, dx$$

zatem dalej po prawej stronie występuje całka - nie możemy tego uznać za końcowy wynik. Zatem całkujemy przez części po raz kolejny:

$$\int 2x \cos x \, dx = 2 \int x(\sin x)' \, dx = 2 \left( x \sin x - \int (x)' \sin x \, dx \right) = 2 \left( x \sin x - \int 1 \cdot \sin x \, dx \right) =$$
$$= 2(x \sin x - (-\cos x)) + C = 2(x \sin x + \cos x) + C.$$

Ostatecznie:

$$\int x^2 \sin x \, \mathrm{d}x = x^2 \cos x + 2(x \sin x + \cos x) + C.$$

Przykład 105 (Całka "pętląca się").

$$\int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx = e^x \sin x - \left( -e^x \cos x - \int -e^x \cos x \, dx \right) =$$

$$e^x \sin x + e^x \cos x - \int e^x \cos x \, dx. - \text{Zauważmy, że oblczanie po raz kolejny całki z}$$

 $e^x \cos x$  jest bezcelowe - moglibyśmy tak obliczać w nieskończoność. Możemy jednak dodać do całego rócenania obustronnie  $\int e^x \cos x \, dx$  i wtedy mamy, że

$$2\int e^x \cos x \, dx = e^x (\sin x + \cos x) + C \Rightarrow \int e^x \cos x \, dx = \frac{e^x}{2} (\sin x + \cos x) + C$$

Zauważmy, że nie podzieliliśmy C przez 2. Jest to zbyteczne z powodu dowolności stałej (dla stałej  $\frac{1}{2}C$  przyjmujemy nową stałą  $C := \frac{1}{2}C$  - "połowę" poprzedniej stałej).

*Ćwiczenie* 89. Obliczyć całkę  $\int x^3 \arctan(x^2) dx$ .

Przykład 106 (Całkowanie "tabelkowe").

Obliczymy teraz  $\int x^3 \sin x \, dx$ . Tym razem pokażemy nową sztuczkę. Utwórzmy następującą tabelkę:

| Uważamy na znak $\downarrow$ | Liczymy pochodne | Liczymy całki |
|------------------------------|------------------|---------------|
| +                            | $x^3$            | $\sin x$      |
|                              | $3x^2$           | $-\cos x$     |
| +                            | 6x               | $-\sin x$     |
| _                            | 6x               | $\cos x$      |
| $Koniec! \rightarrow$        | 0                | $\sin x$      |

Rozwiązanie jest pewną sumą 4 iloczynów wyrażeń z tabeli (gdyż piąta pochodna funkcji  $x\mapsto x^3$  jest równa zero i wszystkie pozostałe iloczyny się zerują). k-ty składnik tej sumy powstaje przez pomnożenie pochodnej z pierwszej komórki k-tego wiersza z całką z drugiej komórki (k+1)-szego(!) wiersza:

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C.$$

Przykład 107 (Iloczyn  $e^x \cdot f(x)$ ).

Obliczymy 
$$\int e^x x^2 dx$$
.

| Uważamy na znak $\downarrow$            | Liczymy pochodne | Liczymy całki |  |
|-----------------------------------------|------------------|---------------|--|
| +                                       | $x^2$            | $e^x$         |  |
| _                                       | 2x               | $e^x$         |  |
| +                                       | 2                | $e^x$         |  |
| $\overline{\text{Koniec!}} \rightarrow$ | 0                | $e^x$         |  |

Zatem: 
$$\int e^x x^2 dx = x^2 e^x - 2x \cdot e^x + 2e^x + C = e^x (x^2 - 2x + 2) + C.$$

Przykład 108. Obliczymy, korzystając z tabelki, jeszcze raz całkę

$$\int \ln x \, \mathrm{d}x.$$

| znak | pochodne      | całki |                                           |
|------|---------------|-------|-------------------------------------------|
| +    | $\ln x$       | 1     |                                           |
| _    | $\frac{1}{x}$ | x     | zauważamy, że $\frac{1}{x} \cdot x = 1$ ! |

Mamy jak poprzednio

$$\int \ln x \, dx = \ln x \cdot x - \int \left(\frac{1}{x} \cdot x\right) dx = x \ln x - \int dx = x \ln x - x.$$

Pułapką w tym zadaniu mogłoby być, gdyby zamiast skorzystać z tego, że dostajemy w pewnym momencie całkę z 1, zaczęlibyśmy liczyć kolejne pochodne i liczyć każdą kolejną całkę niepotrzebnie przez części:

| znak | pochodne         | całki           |
|------|------------------|-----------------|
| +    | $\ln x$          | 1               |
| _    | $\frac{1}{x}$    | x               |
| +    | $-\frac{1}{x^2}$ | $\frac{1}{x^2}$ |
| _    | $\frac{2}{x^3}$  | $\frac{6}{x^3}$ |
| :    | :                | :               |
|      |                  |                 |

Ćwiczenie 90. Obliczyć następujące trzy, proste całki:

(a) 
$$\int e^x (x^3 - 1) dx$$
. (b)  $\int \cos^2 x dx$ . (c)  $\int tg x dx$ .

Ćwiczenie 91. Dla utrwalenia omawianych metod proponujemy do policzenia zestaw prostych całek

$$\int e^x \sin e^x \, dx \qquad \int x \arctan x \, dx \qquad \int x \sqrt{1 - x^2} \, dx$$

$$\int \left(\frac{1 - x}{x}\right)^2 \, dx \qquad \int x^2 e^{-x} \, dx \qquad \int \ln^2 x \, dx$$

 $\acute{C}wiczenie$  92 (Uogólnione całkowanie przez części). Zbadać, że jeżeli funkcje f,g są n-krotnie różniczkowalne w przedziale (a,b), to zachodzi równość:

$$h^{(n)}(x)g(x) + (-1)^{n-1}g^{(n)}(x)f(x) = \frac{\mathrm{d}}{\mathrm{d}x} \left( \sum_{j=0}^{n-1} (-1)^j h^{(n-j-1)}(x)g^{(j)}(x) \right).$$

Wywnioskować stąd, że jeżeli fi gmają  $n\text{-tą pochodną ciągłą, to$ 

$$\int_{a}^{b} f^{(n)}(x)g(x) dx = \left[ \sum_{j=0}^{n-1} (-1)^{j} h^{(n-j-1)}(x)g^{(j)}(x) \right]_{a}^{b} + (-1)^{n-1} \int_{a}^{b} f(x)g^{(n)}(x) dx.$$

# 10.3 Całki funkcji wymiernych

Rozkład na ułamki proste: Mamy do policzenia całkę wymierną, tzn. postaci

$$\int \frac{P(x)}{Q(x)} \, \mathrm{d}x,$$

gdzie P i Q są wielomianami zmiennej x. Z całkami tego typu według poniższej procedury:

1. Jeżeli  $\deg P \geqslant \deg Q$ , to wykonujemy dzielenie wielomianów i otrzymujemy dzielnik W i (potencjalnie) resztę R z dzielenia P przez Q. Mamy: P(x) = W(x)Q(x) + R(x) a stąd

$$\frac{P(x)}{Q(x)} = W(x) + \frac{R(x)}{Q(x)}$$

2. Znajdujemy rozkład Q na czynniki liniowe i kwadratowe

$$Q(x) = q(x - a_1)^{n_1} \cdots (x - a_k)^{n_k} \cdot (x^2 + b_1 x + c_1)^{m_1} \cdots (x^2 + b_l x + c_l)^{m_l}$$

3. Gdy rozkład mianownika jest postaci, jak wyżej, to rozkład na ułamki proste ma postać:

$$\begin{split} \frac{P(x)}{Q(x)} &= \\ &= \frac{A_{1,1}}{x+a_1} + \frac{A_{2,1}}{(x+a_1)^2} + \ldots + \frac{A_{n_1,1}}{(x+a_1)^{n_1}} + \ldots + \\ &+ \frac{A_{1,k}}{x+a_k} + \frac{A_{2,k}}{(x+a_k)^2} + \ldots + \frac{A_{n_k,1}}{(x+a_k)^{n_k}} + \ldots + \\ &+ \frac{B_{1,1}x + C_{1,1}}{x^2 + b_1x + c_1} + \frac{B_{2,1}x + C_{2,1}}{(x^2 + b_1x + c_1)^2} + \ldots + \frac{B_{m_1,1}x + C_{m_1,1}}{(x^2 + b_1x + c_1)^{m_1}} + \ldots + \\ &+ \frac{B_{1,l}x + C_{1,l}}{x^2 + b_lx + c_l} + \frac{B_{2,l}x + C_{2,l}}{(x^2 + b_lx + c_l)^2} + \ldots + \frac{B_{2,l}x + C_{2,l}}{(x^2 + b_lx + c_l)^{m_l}}. \end{split}$$

Przykład 109. Rozłożyć na ułamki proste:

$$\frac{3x^5 + x^2 - 4}{x^2 - x + 2}$$

Pozostawiamy sprawdzenie, że

$$3x^5 + x^2 - 4 = (x^2 - x + 2)(3x^3 + 3x^2 - 3x - 8) + 12 - 2x.$$

Mamy

$$\frac{3x^5 + x^2 - 4}{x^2 - x + 2} = 3x^3 + 3x^2 - 3x - 8 + \frac{-2x + 12}{x^2 - x + 2}.$$

Przykład 110. Obliczymy całkę  $\int \frac{\mathrm{d}x}{1+x^4}$ . Zauważmy, że

$$\frac{1}{1+x^4} = \frac{1}{2} \left( \frac{1-x^2}{1+x^4} + \frac{1+x^2}{1+x^4} \right).$$

Z liniowości całki wynika, że mamy do policzenia dwie całki:  $\int \frac{1-x^2}{1+x^4} dx$  i  $\int \frac{1+x^2}{1+x^4} dx$ .

*Ćwiczenie* 93. Udowodnić, że  $\pi < \frac{22}{7}$  dowodząc, że

$$0 < \int_0^1 \frac{x^4 (1-x)^4}{1+x^2} \, \mathrm{d}x = \frac{22}{7} - \pi.$$

Wzór redukcyjny:

$$\int \frac{\mathrm{d}x}{(1+x^2)^n} = \frac{1}{(2n-2)(1+x^2)^{n-1}} - \frac{2n-3}{2n-2} \int \frac{\mathrm{d}x}{(1+x^2)^{n-1}}, \ n \geqslant 2 \ (n \in \mathbb{N}).$$

## 10.4 Całki wyrażeń zawierających funkcje trygonometryczne

Podstawienie uniwersalne:

Wzory redukcyjne: Podamy jeszcze kilka wzorów rekurencyjnych, na całki z potęg funkcji trygonometrycznych. Niech  $n \in \mathbb{N}$ ,  $n \ge 2$ . Wtedy

$$\int \sin^n x \, dx = \frac{n-1}{n} \int \sin^{n-2} x \, dx - \frac{1}{n} \sin^{n-1} x \cos x$$

$$\int \cos^n x \, dx = \frac{n-1}{n} \int \cos^{n-2} x \, dx - \frac{1}{n} \cos^{n-1} x \sin x$$

$$\int tg^n x \, dx = \frac{1}{n-1} tg^{n-1} x - \int tg^{n-2} x \, dx$$

## 10.5 Całki funkcji niewymiernych

#### 10.5.1 Podstawienia Eulera:

I podstawienie

$$\sqrt{ax^2 + bx + c} = t \pm x\sqrt{a}, \ a > 0$$

II podstawienie

$$\sqrt{ax^2 + bx + c} = xt \pm \sqrt{c}, \ c > 0$$

III podstawienie

$$\sqrt{a(x-x_1)(x-x_2)} = |x-x_1|t, \ \Delta > 0$$

#### 10.5.2 Metoda współczynników nieoznaczonych:

Wzór Ostrogradskiego:

$$\int \frac{W_n(x)}{\sqrt{ax^2 + bx + c}} \, dx = (a_{n-1}x^{n-1} + \dots + a_1x + a_0)\sqrt{ax^2 + bx + c} + A \int \frac{dx}{\sqrt{ax^2 + bx + c}}.$$

$$\int \sqrt{ax^2 + bx + c} \, dx = \int \frac{ax^2 + bx + c}{\sqrt{ax^2 + bx + c}} \, dx$$

## 10.6 Funkcje hiperboliczne

Całki funkcji hiperbolicznych

# Rozdział 11

# Całka oznaczona

"Całka" to szerokie określenie na całą klasę powiązanych ze sobą pojęć. Pomijając antypochodną, omówioną w poprzednim rozdziale, całki służą badaniu pewnego rodzaju miar (pól, objętości, prawdopodobieństwa (w probabilistyce), a w fizyce np. masy) zbiorów, poprzez proces rozkładania bryły Najprostszy przykład, na którym się skupimy – mamy obszar w jednym "wymiarze" określony przez przedział [a,b] a w drugim poprzez wartość pewnej funkcji  $f\colon [a,b]\to\mathbb{R}$ . Naszym celem jest zbadanie pola obszaru "pod wykresem funkcji" w tym przedziałe.

Pierwszą ścisłą definicję takiej całki podał Georg Friedrich Bernhard Riemann. Zaczniemy jednak od definicji całki w wersji jaką podał Jean Darboux, a w dalszej części rozdziału zbadamy ich związki (w istocie wykażemy, że definicje te pokrywają się).

#### 11.1 Całka Riemmana w wersji Darboux

Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją ograniczoną na [a,b]. Wprowadzimy tera szereg oznaczeń, które dla funkcji f tej postaci będą obowiązywać w całym rozdziałe. Niech więc

$$m=\inf\left\{f(x)\colon x\in[a,b]\right\}$$

$$M = \sup \{ f(x) \colon x \in [a, b] \}$$

Mówimy, że  $\pi = \{x_0, x_1, \dots, x_n\}, n \in \mathbb{N}$  jest podziałem przedziału [a, b], jeżeli

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$$

Zbiór wszystkich podziałów przedziału [a, b] oznaczamy symbolem  $\mathcal{P}[a, b]$ . Ustalmy  $\pi = \{x_0, x_1, \dots, x_n\} \in \mathcal{P}[a, b]$ . Oznaczamy

$$m_k = \inf \{ f(x) \colon x \in [x_{k-1}, x_k] \}$$

$$M_k = \sup \{ f(x) \colon x \in [x_{k-1}, x_k] \}$$

$$\Delta x_k = x_k - x_{k-1} \text{ dla } k = 1, 2, \dots, n.$$

Określamy sumę dolną

$$\underline{S}(f,\pi) = \sum_{k=1}^{n} m_k \Delta x_k$$

oraz sumę górną

$$\overline{S}(f,\pi) = \sum_{k=1}^{n} M_k \Delta x_k$$

Zauważmy, że

$$\sum_{k=1}^{n} \Delta x_k = \sum_{k=1}^{n} (x_k - x_{k-1}) = x_n - x_0 = b - a$$

oraz  $m \leqslant M_k \leqslant M_k \leqslant M$ , k = 1, 2, ..., n. Zatem  $m\Delta x_n \leqslant m_k \Delta x_k \leqslant M_k \Delta x_k \leqslant M \Delta x_n$ , k = 1, 2, ..., n. Stąd

$$\sum_{k=1}^{n} m \Delta x_k \leqslant \sum_{k=1}^{n} m_k \Delta x_k \leqslant \sum_{k=1}^{n} M_k \Delta x_k \leqslant \sum_{k=1}^{n} M \Delta x_k$$

$$m(b-a) \leqslant \underline{S}(f,\pi) \leqslant \overline{S}(f,\pi) \leqslant M(b-a).$$

Definiujemy całkę dolną

$$\int_{a}^{b} f(x) dx = \sup \{ \underline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \} = \int_{a}^{b} f(x) dx$$

oraz całkę górną:

$$\overline{\int_{a}^{b}} f(x) dx = \inf \left\{ \overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \right\} = \overline{\int_{a}^{b}} f$$

Zachodzi oczywista nierówność

$$\int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x$$

**Uwaga 11.1.1.** Jeżeli  $\widetilde{\pi} \in \mathcal{P}[a,b]$  jest **zagęszczeniem** lub **podpodziałem** podziału  $\pi$ , tzn.  $\pi \subseteq \widetilde{\pi}$ , to

$$S(f,\pi) \leqslant S(f,\widetilde{\pi}) \leqslant \overline{S}(f,\widetilde{\pi}) \leqslant \overline{S}(f,\pi)$$

Dowód. Załóżmy najpierw, że  $\widetilde{\pi} = \pi \cup \{\widetilde{x}\}$ , gdzie  $\widetilde{x} \notin \pi$ , czyli zagęszczenie  $\widetilde{\pi}$  zawiera tylko jeden dodatkowy element. Możemy przyjąć, że

$$\pi = \{x_0, \dots, x_n\},$$

$$\widetilde{\pi} = \{x_0, \dots, x_{k-1}, \widetilde{x}, x_k, \dots, x_n\},$$

$$a = x_0 < \dots < x_{k-1} < \widetilde{x} \le x_k < \dots < x_n = b$$

Oznaczmy

$$\widetilde{m_1} = \inf\{f(x) \colon x_{k-1} \leqslant x < \widetilde{x}\},\$$
 $\widetilde{m_2} = \inf\{f(x) \colon \widetilde{x} \leqslant x \leqslant x_k\},\$ 

Oczywiście  $\widetilde{m_1}, \widetilde{m_2} \ge m_k = \inf\{f(x) \colon x_{k-1} \le x \le x_k\}$ . Wówczas

$$\underline{S}(f,\widetilde{\pi}) - \underline{S}(f,\pi) = \widetilde{m_1}(\widetilde{x} - x_{k-1}) + \widetilde{m_2}(x_k - \widetilde{x}) - m_k(x_k - x_{k-1}) =$$

$$= \widetilde{m_1}\widetilde{x} - \widetilde{m_1}x_{k-1} + \widetilde{m_2}x_k - \widetilde{m_2}\widetilde{x} - m_kx_k + m_kx_{k-1} =$$

$$= \widetilde{m_1}\widetilde{x} + (-m_k\widetilde{x} + m_k\widetilde{x}) - \widetilde{m_1}x_{k-1} + \widetilde{m_2}x_k - \widetilde{m_2}\widetilde{x} - m_kx_k + m_kx_{k-1} =$$

$$= \widetilde{x}(\widetilde{m_1} - m_k) + m_k\widetilde{x} - m_kx_k - x_{k-1}(\widetilde{m_1} - m_k) + \widetilde{m_2}x_k = \widetilde{m_2}\widetilde{x} =$$

$$= (\widetilde{x} - x_{k-1})(\widetilde{m_1} - m_k) + \widetilde{m_2}x_k - \widetilde{m_2}\widetilde{x} + m_k\widetilde{x} - m_kx_k =$$

$$= (\widetilde{x} - x_{k-1})(\widetilde{m_1} - m_k) + (\widetilde{m_2} - m_k)x_k = \widetilde{x}(m_2 - m_k) =$$

$$= (\widetilde{x} - x_{k-1})(\widetilde{m_1} - m_k) + (x_k - \widetilde{x})(\widetilde{m_2} - m_k) \geqslant 0$$

Jeżeli  $\widetilde{\pi}$  posiada k punktów więcej niż  $\pi$ , to powtarzamy rozumowanie k-krotnie. Dowód oszacowania dla sum górnych jest analogiczny.

Wniosek 11.1.2. Niech  $(\pi_i)_{i\in\mathbb{N}}$  będzie ciągiem podziałów przedziału [a,b] o tej własności, że  $\pi_{n+1}$  jest zagęszczeniem podziału  $\pi_n$  dla każdego n. Wówczas

$$\underline{\int_{a}^{b}} f(x) dx = \lim_{n \to \infty} \underline{S}(f, \pi_n)$$

$$\overline{\int_a^b} f(x) \, \mathrm{d}x = \lim_{n \to \infty} \overline{S}(f, \pi_n)$$

Definicja 11.1.3. Mówimy, że ograniczona funkcja  $f:[a,b]\to\mathbb{R}$  jest całkowalna w sensie Riemanna w przedziałe [a,b], jeżeli

$$\underline{\int_{a}^{b}} f(x) \, \mathrm{d}x = \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x$$

Tę wspólną wartość oznaczamy

$$\int_a^b f(x) \, \mathrm{d}x$$

i nazywamy całką ozaczoną Riemanna (albo całką Darboux) dla funkcji f w przedziale [a, b]. Piszemy też  $f \in \mathcal{R}[a, b]$ .

Należy się tu pewien komentarz historyczny: definicję całki Bernhard Riemann podał w 1854 w swojej pracy doktorskiej, a drukiem w czasopiśmie naukowym opublikowano ją w 1868 roku. Podaną przez nas konstrukcję całki podał Jean Darboux w pracy z 1870, a w 1875 wykazał jej równoważność z całką Riemanna w swojej "Rozprawie o teorii funkcji nieciągłych" (w tej samej pracy podał też twierdzenie, które wiążemy z jego nazwiskiem.) Stąd można mówić też o całce Darboux, ale biorąc pod uwagę pierwszeństwo i przełomowy charakter prac Riemanna, a także równoważność obu konstrukcji, przeważnie mówi się o całce i całkowalności w sensie Riemanna również tam, gdzie występuje konstrukcja Darboux. Wydaje się, że najlepiej mówić, że podaliśmy konstrukcję całki Riemanna w wersji Darboux albo "wersję Darboux całki Riemanna". Całka Darboux w ogólności wydaje się łatwiejsza w zastosowaniu, aczkolwiek nie jest to regułą. Podamy również definicję klasyczną i czasem będziemy z niej korzystać.

#### 11.2 Klasyczna całka Riemanna

Niech  $\pi_n = \{x_0, x_1, \dots, x_n\}$  będzie podziałem przedziału [a, b]. Określmy średnicę podziału diam $(\pi_n)$  następująco:

$$\operatorname{diam}(\pi_n) = \max_{k \in \{1, \dots, n\}} \Delta x_k.$$

Definicja 11.2.1. Ciąg podziałów  $(\pi_k)_{k\in\mathbb{N}}$  nazywamy normalnym ciągiem podziałów, jeżeli

$$\lim_{k\to\infty} \operatorname{diam}(\pi_k) = 0.$$

Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją ograniczoną.

**Definicja 11.2.2.** Jeżeli dla dowolnego ciągu normalnego podziałów  $(\pi_k)_{k\in\mathbb{N}}$  (oznaczamy przez  $n_k$  ilość elementów podziału  $\pi_k$ , tzn.  $\pi_k = \{x_0, x_1, \ldots, x_{n_k}\}$ ) przedziału [a, b] oraz dowolnego ciągu punktów pośrednich  $\xi_i \in [x_{i-1}, x_i], i \in \{1, \ldots, n_k\}$  istnieje granica

(R) 
$$\lim_{k \to \infty} \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i$$

to funkcję f nazywamy całkowalną w sensie Riemanna a granicę (R) nazywamy całką Riemanna funkcji f na przedziale [a,b]. Czasem będziemy też mówić o **sumie całkowej Riemanna** albo **sumie całkowej średniej**, mając na myśli sumy postaci

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i.$$

Czasem będziemy oznaczać taką sumę przez  $\sigma_n(f,\pi)$ .

Przy ustalonym podziałe  $\pi$  przedziału [a,b] łatwo zauważyć, że

$$\underline{S}(f,\pi) \leqslant \sigma_n(f,\pi) \leqslant \overline{S}(f,\pi)$$

Poniższa uwaga daje punkt wyjścia dla jeszcze jednej czasem używanej definicji całki, w której całkę górną i dolną definiuje się jako granice ciągów sum górnych i dolnych zamiast kresów.

#### 11.2.1 Równoważność całki Riemanna i całki Darboux

Jak już zauważyliśmy, prawdą jest:

**Lemat 11.2.3.** Sumy całkowe Riemanna zawsze leżą między odpowiadającymi im sumami górnymi i dolnymi Darboux.

Twierdzenie 11.2.4. Definicje całki Riemanna i Darboux są równoważne.

Dowód. Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją ograniczoną. Załóżmy, że f jest całkowalna w sensie Darboux. Ustalmy ciąg normalny podziałów  $(\pi_k)_{k\in\mathbb{N}}$  przedziału [a,b] i punkty pośrednie  $\xi_i, i\in\{1,\ldots,n_k\}$ . Mamy

$$\sum_{i=1}^{n_k} \inf \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i =$$

$$\underline{S}(f, \pi_k) \leqslant \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \leqslant \overline{S}(f, \pi_k) =$$

$$= \sum_{i=1}^{n_k} \sup \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i \to \overline{\int_a^b} f.$$

$$\left( i \sum_{i=1}^{n_k} \inf \{ f(x_i) \colon x \in [x_{i-1}, x_i] \} \Delta x_i \to \underline{\int_a^b} f \right)$$

Z twierdzenia o trzech ciągach mamy już, że  $\sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \to \int_a^b f$ 

W drugą stronę. Załóżmy, że funkcja fjest całkowalna w sensie Riemanna. Dla dowolnego podziału  $\pi$ 

$$\sum_{i=1}^{n_k} \inf\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i \leqslant \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \leqslant \sum_{i=1}^{n_k} \sup\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i.$$

(Można dobrać  $\xi_i$  aby odległości były dowolnie male.)

Jeśli weźmiemy ciąg normalny podziałów  $(\pi_k)_{k\in\mathbb{N}}$ , to dla każdego k wybieramy takie punkty pośrednie  $\xi_i$ , żeby spełniało nierówność

$$\overline{S}(f, \pi_k) - \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i < \frac{1}{k}.$$

Jeżeli  $k \to \infty$ , to

$$\lim_{k \to \infty} \left( \overline{S}(f, \pi_k) - \sum_{i=1}^{n_k} f(\xi_i) \Delta x_i \right) = 0.$$

Granica  $\lim_{k\to\infty}\sum_{i=1}^{n_k}f(\xi_i)\Delta x_i=I$  istnieje z założenia o całkowalności w sensie Riemanna.

Czyli istnieje granica  $\lim_{k\to\infty} \overline{S}(f,\pi_k) = \overline{\int_a^b} f = I$ . Analogicznie dla dowolnego k dobieramy  $\xi_i$ , żeby zachodziło

$$\sum_{i=1}^{n_k} f(\xi_i) \Delta x_i - \underline{S}(f, \pi_k) < \frac{1}{k}.$$

W ten sposób analogicznie otrzymaliśmy  $\int_a^b f = I$ . Ostatecznie  $\int_a^b f = \overline{\int_a^b} f$ .

**Uwaga 11.2.5.** Dla dowolnej ograniczonej funkcji  $f:[a,b]\to\mathbb{R}$  i ciągu normalnego  $(\pi_n)_{n\in\mathbb{N}}$  podziałów przedziału [a,b] zachodzą (porównaj z wcześniejszą uwagą) równości

(11.1) 
$$\int_{a}^{b} f = \lim_{n \to \infty} \overline{S}(f, \pi_n),$$

(11.2) 
$$\underline{\int_{\underline{a}}^{b} f} = \lim_{n \to \infty} \underline{S}(f, \pi_n).$$

W ogólności wyznaczanie całek Riemanna z definicji jest bardzo trudne. Po omówieniu twierdzeń o całkowaniu podamy kilka skromnych, łatwiejszych przykładów takich rozumowań. Istnieje wiele metod rachunkowych liczenia całek z pominięciem definicji, w oparciu o tablice znanych całek (podobnie jak korzystamy z tablic pewnych "standardowych" pochodnych) – zademonstrujemy jednak tylko kilka z nich. Niestety, metody rachunkowe stosują się tylko do pewnych klas funkcji i na dodatek – są trudniejsze od metod wyznaczania pochodnych.

Podamy za to przykład funkcji niecałkowalnej w sensie Riemanna. Niecałkowalność łatwo udowodnić korzystając z definicji Darboux.

Przykład111. Funkcja $D\colon [a,b]\to \mathbb{R}$  (przedz.  $[a,b]\subseteq \mathbb{R}$ jest dowolny) określona wzorem

$$D(x) = \begin{cases} 0 & \text{dla } x \in \mathbb{R}; \\ 1 & \text{dla } x \in \mathbb{Q}. \end{cases}$$

(znana jako Funkcja Dirichleta) nie jest całkowalna w sensie Riemanna.

Rzeczywiście, łatwo zauważymy, że dla każdego podziału  $\pi$  przedziału [a,b] musi być  $\overline{S}(f,\pi)=1$  i  $\underline{S}(f,\pi)=0$ . Zatem

$$0 = \int_a^b D(x) \, \mathrm{d}x \neq \overline{\int_a^b} D(x) \, \mathrm{d}x = 1.$$

Interpretacja geometryczna całki Riemanna. Wracamy do zagadnienia, które zasygnalizowaliśmy we wstępie do tego rozdziału.

Fakt 3. Jeżeli funkcja  $f:[a,b]\to\mathbb{R}$  jest w [a,b] nieujemna, to:

$$\int_a^b f(x) \, \mathrm{d}x \text{ jest polem figury } \{(x,y) \in \mathbb{R} \colon 0 \leqslant y \leqslant f(x), x \in [a,b]\}$$

tj. obszaru ograniczonego osią OX, prostymi x=a, x=b i wykresem (krzywą) funkcji f.

Przykład 112. W oparciu o to co powiedzieliśmy, możemy np. uzasadnić, że

$$\int_0^1 \sqrt{1 - x^2} \, \mathrm{d}x = \frac{\pi}{4}.$$

I to bez żadnych rachunków ani nawet szczególnie formalnych rozważań! Istotnie;

Zauważmy, że ponieważ  $y^2+x^2=1$  jest równaniem wyznaczającym okrąg o środku w punkcie (0,0) i promieniu długości 1, to po przekształceniu tego równania do postaci:  $y=\pm\sqrt{1-x^2}$ , wykres funkcji f(x)=y jest górną lub dolną połową okręgu (zależnie od wybranego znaku). Czyli nasza całka wyraża pole *ćwiartki* okręgu  $(x\in[0,1],y\geqslant0,$  *ćwiczenie*: wykonać rysunek dla zobrazowania tej sytuacji) a więc wynosi  $\frac{\pi}{4}$ .

## 11.3 Kryteria całkowalności

**Twierdzenie 11.3.1** (I kryterium całkowalności w sensie Riemanna). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ograniczoną. Funkcją f jest całkowalna w sensie Riemanna wtedy i tylko wtedy, gdy

(\*) 
$$\forall_{\varepsilon>0} \exists_{\pi \in \mathcal{P}[a,b]} \ \overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

Dowód. Najpierw załóżmy, że  $f \in \mathcal{R}[a, b]$ , czyli

$$I = \underbrace{\int_{\underline{a}}^{b} f} = \overline{\int_{a}^{b} f}$$

$$\underbrace{\int_{\underline{a}}^{b} f} = \sup \{ \underline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \}$$

$$\overline{\int_{a}^{b} f} = \inf \{ \overline{S}(f, \pi) \colon \pi \in \mathcal{P}[a, b] \}$$

Ustalmy dowolne  $\varepsilon > 0$ . Istnieje  $\pi_1 \in \mathcal{P}[a, b]$  takie, że

$$I - \frac{\varepsilon}{2} < \underline{S}(f, \pi_1)$$

oraz  $\pi_2 \in \mathcal{P}[a,b]$ , że

$$\overline{S}(f, \pi_2) < I + \frac{\varepsilon}{2}$$

Niech  $\pi=\pi_1\cup\pi_2.$ Wtedy  $\pi$ jest zagęszczeniem podziałów  $\pi_1$ oraz  $\pi_2$ i mamy

$$I - \frac{\varepsilon}{2} < \underline{S}(f, \pi_1) \leqslant \underline{S}(f, \pi) \leqslant \overline{S}(f, \pi) \leqslant \overline{S}(f, \pi_2) < I + \frac{\varepsilon}{2}.$$

Zatem  $\overline{S}(f,\pi) - \underline{S}(f,\pi) \leqslant I + \frac{\varepsilon}{2} - \underline{S}(f,\pi)$  ale  $\underline{S}(f,\pi) > I - \frac{\varepsilon}{2}$  i  $I + \frac{\varepsilon}{2} \geqslant 0$  wice

$$I + \frac{\varepsilon}{2} - \underline{S}(f, \pi) < I + \frac{\varepsilon}{2} - \left(I - \frac{\varepsilon}{2}\right) = \varepsilon$$

i stąd

$$\overline{S}(f,\pi) - S(f,\pi) < \varepsilon$$

Teraz załóżmy, że spełniony jest warunek (\*). Ustalmy  $\varepsilon > 0$ . Z (\*) istnieje taki podział  $\pi \in \mathcal{P}[a,b]$ , że

$$\overline{S}(f,\pi) - S(f,\pi) < \varepsilon$$

Ale

$$\underline{S}(f,\pi) < \varepsilon \leqslant \underbrace{\int_{\underline{a}}^{b}}_{f} f \leqslant \overline{\int_{a}^{b}}_{f} f \leqslant \overline{S}(f,\pi)$$

$$\overline{\int_{a}^{b}}_{f} f - \int_{a}^{b}_{f} f < \varepsilon$$

Z dowolności wybour  $\varepsilon$  otrzymujemy, że

$$0 \leqslant \overline{\int_a^b} f - \int_a^b f \leqslant 0 \Rightarrow \overline{\int_a^b} f = \int_a^b f.$$

**Twierdzenie 11.3.2** (II kryterium całkowalności w sensie Riemanna). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ograniczoną. Funkcja f jest całkowalna wtedy i tylko wtedy, gdy

$$(*) \ \forall_{\varepsilon>0} \exists_{\delta>0} \forall_{\pi \in \mathcal{P}[a,b]}. \ \mathrm{diam}(\pi) < \delta \Rightarrow \overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$$

Dowód. Jeżeli f jest całkowalna, to  $\overline{S}(f,\pi) - \underline{S}(f,\pi) = 0 < \varepsilon, \varepsilon > 0$ , więc prawa strona implikacji w warunku (\*) jest zawsze prawdziwa i stąd cały warunek jest spełniony.

Załóżmy, że warunek (\*) jest spełniony. Wtedy dla każdego  $\varepsilon > 0$  wystarczy dobrać podział  $\pi$  przedziału [a,b] o średnicy mniejszej od  $\delta$ , by zachodziło oszacowanie  $\overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon$  a stąd już, przy  $\varepsilon \to 0$  dostaniemy analogicznie jak w dowodzie poprzedniego kryterium, że całka  $\int_a^b f$  istnieje.

#### 11.4 Własności całki Riemanna

Wprost z definicji łatwo uzasadnić

Twierdzenie 11.4.1. Jeżeli f jest funkcją całkowalną w przedziale [a, b], to

$$m(b-a) \leqslant \int_a^b f \leqslant M(b-a).$$

Jeżeli ponadto  $f \geqslant 0$  to z powyższej równości natychmiast mamy, że

$$\int_{a}^{b} f \geqslant 0.$$

Twierdzenie 11.4.2. Jeżeli f,g są funkcjami całkowalnymi w przedziałe [a,b] oraz  $f\leqslant g,$  to

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

Dowód. Ustalamy  $\pi$  - podział przedziału [a,b]. Dla każdego  $i \in \{1,\ldots,n\}$  oznaczamy

$$m_i(f) = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

$$M_i(g) = \sup_{x \in [x_{i-1}, x_i]} g(x)$$

Mamy

$$\sum_{i=1}^n m_i(f) \Delta x_i \leqslant \sum_{i=1}^n M_i(g) = \underline{S}(g,\pi) \leqslant \underline{\int_a^b g} = \int_a^b g. \text{ (g jest całkowalna)}$$

Zatem:

$$\forall_{\pi \in \mathcal{P}[a,b]} \cdot \underline{S}(f,\pi) \leqslant \int_{a}^{b} g.$$

$$\int_{a}^{b} f = \int_{a}^{b} f = \sup\{\underline{S}(f,\pi) \colon \pi \in \mathcal{P}[a,b]\} \leqslant \int_{a}^{b} g.$$

Wnioskiem z powyższego twierdzenia jest, że jeśli funkcje f i |f| są całkowalne w danym przedziale [a,b], to  $\int_a^b |f| \le \int_a^b$ . Czytelnik może sprawdzić ten fakt w ramach ćwiczenia. W dalszej częsci pokażemy, że nie trzeba zakładać całkowalności funkcji |f|.

**Twierdzenie 11.4.3.** Jeżeli f jest funkcją calkowalną w na przedziale [a,b] a  $\lambda$  dowolną liczbą rzeczywistą, to funkcja  $\lambda f$  jest calkowalna na przedziale [a,b] oraz

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

Dowód. Przypomnijmy, że

$$\sup \lambda A = \lambda \sup A,$$

$$\inf \lambda A = \lambda \inf A$$

dla dow. zbioru<sup>1</sup>  $A \subseteq \mathbb{R}$  i  $\lambda \ge 0$ . Rozważymy przypadki:

1)  $\lambda > 0$ . Niech  $\pi \in \mathcal{P}[a, b]$ .

$$\overline{S}(\lambda f, \pi) - \underline{S}(\lambda f, \pi) = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right) \Delta x_i = \sum_{i=1}^{n} \left( \sup \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} - \inf \{ \lambda f(x) \colon x \in [x_{i-1}, x_i] \} \right)$$

$$=\lambda\left(\overline{S}(f,\pi)-\underline{S}(f,\pi)\right)$$

$$\int_a^b \lambda f = \sup\{\overline{S}(\lambda f, \pi) \colon \pi \in \mathcal{P}\} = \sup\{\lambda \overline{S}(f, \pi)\} = \lambda \int_a^b f = \lambda \int_a^b f, \text{ bo } f \text{ jest calkowalna}.$$

Analogicznie pokazujemy, że  $\int_{\underline{a}}^{\underline{b}} \lambda f = \lambda \int_{\underline{a}}^{\underline{b}} f = \lambda \int_{\underline{a}}^{\underline{b}} f$ . Mamy, że  $\int_{\underline{a}}^{\underline{b}} \lambda f = \overline{\int_{\underline{a}}^{\underline{b}}} \lambda f$  i ostatecznie

 $\lambda f$ jest całkowalna a ponadto z wyprowadzonych po drodze równości wynika, że

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

2)  $\lambda = -1$ . Przypomnijmy jeszcze wzory

$$\sup(-A) = -\inf A$$

$$\inf(-A) = -\sup A$$

dla dow.  $A \subseteq \mathbb{R}($ , gdzie  $-A = \{-a : a \in A\})$ .

$$\underline{S}(-f,\pi) = \sum_{i=1}^{n} \inf\{-f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i = -\sum_{i=1}^{n} \sup\{f(x) \colon x \in [x_{i-1}, x_i]\} \Delta x_i = -\overline{S}(f,\pi).$$

Podobnie  $\overline{S}(-f,\pi) = -\underline{S}(f,\pi)$ .

$$\int_{-\infty}^{b} (-f) = \sup\{\underline{S}(-f,\pi) \colon \pi \in \mathcal{P}[a,b]\} = \sup\{-\overline{S}(f,\pi) \colon \pi \in \mathcal{P}[a,b]\} = 0$$

$$-\inf\{\overline{S}(f,\pi)\colon \pi\in\mathcal{P}[a,b]\} = -\overline{\int_a^b}f = -\int_a^bf.$$

 $<sup>^{1}\</sup>lambda A := \{\lambda a \colon a \in A\}$ 

Analogicznie

$$\overline{\int_a^b}(-f) = -\underline{\int_a^b}f = -\int_a^bf.$$

-fjest całkowalna ponieważ $\overline{\int_a^b}(-f)=\int_a^b(-f).$ 

3)  $\lambda < 0$ . Wtedy  $-\lambda > 0$ .

$$\underline{\int_a^b \lambda f} = \underline{\int_a^b} \left( -(-\lambda)f \right) = -\overline{\int_a^b} \left( (-\lambda)f \right) = -(-\lambda) \int_a^b f = \lambda \int_a^b f.$$

Analogicznie możemy pokazać, że również

$$\overline{\int_{a}^{b}} \lambda f = \overline{\int_{a}^{b}} (-(-\lambda)f) = \lambda \int_{a}^{b} f.$$

Ostatecznie  $\lambda f$ jest całkowalna w przedziale [a,b]i

$$\int_{a}^{b} \lambda f = \lambda \int_{a}^{b} f.$$

**Twierdzenie 11.4.4** (Addytywność całki). Niech  $f_1, f_2$  będą funkcjami całkowalnymi w przedziale [a, b]. Wówczas funkcja  $f_1 + f_2$  jest również całkowalna w przedziale [a, b] oraz

$$\int_{a}^{b} (f_1 + f_2) = \int_{a}^{b} f_1 + \int_{a}^{b} f_2.$$

Dowód. Ćwiczenie. Całkowalność można sprawdzić za pomocą I-szego kryterium całkowalności, równość z tezy daje się rozpisać z definicji.

Dla swobody rachunków, z poprzednich dwóch twierdzeń należy po prostu zapamiętać, że operacja całkowania jest **liniowa**, tzn.:

$$\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g, \quad \alpha, \beta \in \mathbb{R}, f, g \in \mathcal{R}[a, b].$$

**Twierdzenie 11.4.5.** Dla dowolnej funkcji całkowalnej  $f:[a,b] \to \mathbb{R}$ , funkcja |f| jest całkowalna oraz

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}x.$$

Dla dowolnej funkcji f określamy funkcje pomocnicze  $f^+$  i  $f^-$  wzorami:

$$f^+(x) = \max\{f(x), 0\}, x \in D_f,$$

$$f^{-}(x) = \max\{-f(x), 0\}, x \in D_f,$$

Łatwo sprawdzić, że dla dowolnej funkcji f:

$$f = f^+ - f^-$$
, oraz  $|f| = f^+ + f^-$ .

**Lemat 11.4.6.** Jeżeli  $f: [a,b] \to \mathbb{R}$  jest funkcją całkowalną, to całkowalne są funkcje  $f^+$  i  $f^-$ .

 $Dow \acute{o}d$ . Zauważmy, że dla dowolnego przedziału  $I \subseteq [a, b]$ :

$$\sup_{x \in I} f(x) = \sup_{x \in I} f^+(x),$$

ale

$$\inf_{x \in I} f(x) \leqslant \inf_{x \in I} f^{+}(x).$$

Zatem

$$0 \leqslant \sup_{x \in I} f^{+}(x) - \inf_{x \in I} f^{+}(x) \leqslant \sup_{x \in I} f(x) -_{x \in I} f(x).$$

Stąd, ponieważ f jest całkowalna, mamy dla dowolnego  $\varepsilon>0$  istnieje taki podział  $\pi$  przedziału [a,b], że zachodzą nierówności:

$$0 \leqslant \overline{S}(f^+, \pi) - \underline{S}(f^+, \pi) \leqslant \overline{S}(f, \pi) - \underline{S}(f, \pi) < \varepsilon,$$

czyli funkcja  $f^+$  jest całkowalna na mocy pierwszego kryterium całkowalności. Ponieważ  $f^-=f^+-f$ , to również  $f^-$  jest całkowalna jako suma funkcji całkowalnych.

Dowód twierdzenia 11.4.5. Po pierwsze mamy

$$\int_{a}^{b} |f| = \int_{a}^{b} (f^{+} + f^{-}),$$

więc funkcja |f| jest całkowalna jako suma funkcji całkowalnych. Mamy

$$\left| \int_{a}^{b} f \right| = \left| \int_{a}^{b} f^{+} - f^{-} \right| \le \left| \int_{a}^{b} f^{+} \right| + \left| \int_{a}^{b} f^{-} \right| =$$

$$= \int_{a}^{b} f^{+} + \int_{a}^{b} f^{-} = \int_{a}^{b} (f^{+} + f^{-}) = \int_{a}^{b} |f|.$$

Mogliśmy opuścić moduły po zastosowaniu warunku trójkąta w pierwszej nierówności, gdyż  $f^+ \ge 0$  i  $f^- \ge 0$  (w razie wątpliwości porównaj twierdzenie 11.4.2).

**Twierdzenie 11.4.7.** Niech  $f: [a,b] \to \mathbb{R}$  będzie funkcją ograniczoną oraz niech  $c \in (a,b)$ . Wówczas f jest całkowalna w przedziałe [a,b] wtedy i tylko wtedy,  $gdy \ f\big|_{[a,c]}$  i  $f\big|_{[c,b]}$  są całkowalne odpowiednio w przedziałach [a,c] i [c,b]. Wtedy

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Uogólniając powyższe twierdzenie dostajemy

**Twierdzenie 11.4.8.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ograniczoną oraz  $P_j$  będą takimi przedziałami domkniętymi, że

$$[a,b] = \bigcup_{j=1}^{m} P_j$$

oraz inf  $P_i \cap \inf P_j = \emptyset, i \neq j$ . Wówczas f jest całkowalna w przedziale [a,b] wtedy i tylko wtedy, gdy dla każdego  $j \in \{1,\ldots,m\}$  funkcja  $f|_{P_i}$  jest całkowalna w przedziale  $P_j$ . Ponadto

$$\int_{a}^{b} f = \sum_{j=1}^{m} \int_{P_j} f.$$

**Twierdzenie 11.4.9.** *Jeżeli f jest całkowalna na przedziale* [a,b] *to jest całkowalna w dowolnym przedziale*  $[\alpha,\beta] \subseteq [a,b]$ .

**Twierdzenie 11.4.10.** Niech f będzie całkowalna w przedziale [a,b] oraz g:  $[\inf f[a,b], \sup f[a,b]] \rightarrow \mathbb{R}$  będzie funkcją ciąglą. Wówczas  $g \circ f$  jest całkowalna w przedziale [a,b].

*Ćwiczenie* 94. Udowodnić, że jeżeli  $f \ge 0$  jest funkcją całkowalną na przedziale [a,b] w sensie Riemanna, oraz  $\int_a^b f = 0$ , to wówczas f = 0.

#### 11.5 Klasy funkcji całkowalnych

**Twierdzenie 11.5.1.** Każda funkcja ciągła  $f:[a,b] \to \mathbb{R}$  jest całkowalna w sensie Riemanna.

Dowód. Funkcja  $f:[a,b] \to \mathbb{R}$  jest ciągła i określona na przedziale domkniętym (czyli zbiorze zwartym) a stąd jest jednostajnie ciągła na mocy twierdzenia 7.2.14 Heinego-Cantora. Pokażemy, że funkcja spełnia warunek (\*) z I-szego kryterium całkowalności (tw. 11.3.1). Ustalmy  $\varepsilon > 0$ . Z jednostajnej ciągłości istnieje  $\delta > 0$  takie, że

$$\forall_{x,y\in[a,b]}\left(|x-y|<\delta\Rightarrow|f(x)-f(y)|<rac{arepsilon}{b-a}
ight).$$

Niech  $\pi = \{x_0, \dots, x_n\}$  będzie takim podziałem przedziału [a, b], że diam $(\pi) < \delta$ . Wtedy

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{k=1}^{n} (M_k - M_k) \Delta x_k < \sum_{k=1}^{n} \frac{\varepsilon}{b-a} \Delta x_k = \frac{\varepsilon}{b-a} \sum_{k=1}^{n} \Delta x_k = \frac{\varepsilon}{b-a} (b-a) = \varepsilon.$$

Z I-szego kryterium całkowalności wynika, że funkcja f jest całkowalna w przedziale [a,b].

**Twierdzenie 11.5.2.** Każda funkcja monotoniczna i ograniczona  $f:[a,b] \to \mathbb{R}$  jest całkowalna w sensie Riemanna.

Dowód. Jeżeli funkcja f jest funkcją stałą, to teza wynika natychmiastowo. Załóżmy, że f jest funkcją niemalejącą, różną od stałej -  $f(a) \neq f(b)$ .

Ustalmy  $\varepsilon > 0$ . Weźmy podział  $\pi = \{x_0, \dots, x_n\}$  przedziału [a, b], że diam $(\pi) < \frac{\varepsilon}{f(b) - f(a)}$ . Wówczas

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k < \left(\sum_{k=1}^{n} (M_k - m_k)\right) \cdot \frac{\varepsilon}{f(b) - f(a)}.$$

Ale  $M_i = f(x_i), m_i = f(x_{i-1})$ . Czyli

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \frac{\varepsilon}{f(b) - f(a)} \cdot \underbrace{(f(x_n) - f(x_0))}_{\parallel} = \frac{\varepsilon}{f(b) - f(a)} (f(b) - f(a)) = \varepsilon.$$

$$\sum_{k=1}^{n} (f(x_k) - f(x_{k-1}))$$

Twierdzenie 11.5.3. Każda funkcja wypukła jest całkowalna w sensie Riemanna.

Dowód. Wynika z wniosku 8.5.8 i twierdzenia 11.5.1.

Przykład 113. Obliczymy całkę funkcji  $f:[0,1] \to \mathbb{R}$  określonej jako  $f(x) = x, x \in [0,1]$ . Funkcja ta jest ciągła, więc całka jest równa dowolnej sumie całkowej (dolnej/górnej sumie Darboux, sumie Riemanna): Podzielmy przedział [0,1] na n równych części uzyskując podział

$$\pi = \left\{ \frac{0}{n}, \frac{1}{n}, \frac{2}{n}, \dots, \frac{n-1}{n}, \frac{n}{n} \right\}.$$

Czyli punkty  $x_k = \frac{k-1}{n}$  dla  $k=1,2,\ldots,n$  stanowią punkty podziału  $\pi$ . Łatwo też sprawdzimy, że długości przedziałów się zgadzają:  $\frac{1}{n}$ .  $\Delta x_k = x_k - x_{k-1} = \frac{k}{n} - \frac{k-1}{n} = \frac{1}{n}$  (tak jak już powiedzieliśmy - przedział podzieliliśmy na n równych części.) Dalej, weźmy  $\xi_k = \frac{k}{n} \in [x_{k-1}, x_k]$  i wówczas  $f(\xi_k) = \xi_k = \frac{k}{n}$ . Czyli mamy

$$\int_0^1 f(x) dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k) \Delta x_k = \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{n} \cdot \frac{1}{n} = \lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^n k =$$

$$= \lim_{n \to \infty} \frac{1}{n^2} \frac{n(n+1)}{2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}.$$

Przykład 114. Obliczymy całkę funkcji  $f \colon \mathbb{R} \to [-1,1]$  określonej jako  $f(x) = \sin x, x \in \mathbb{R}$ . Przykład 115. Obliczymy całkę funkcji  $f \colon \mathbb{R} \to \mathbb{R}$  określonej wzorem  $f(x) = x^2, x \in \mathbb{R}$  w przedziale [0,a], gdzie a>0 jest dane. Przyjmujemy  $\pi_n:=\left\{\frac{a}{n},\frac{2a}{n},\ldots,\frac{(n-1)a}{n},\frac{na}{n}\right\}$  i

$$\Delta x_k := \frac{a}{n}, \quad \xi_k := x_k$$

Wówczas

$$\lim_{n \to \infty} \operatorname{diam}(\pi_n) = \lim_{n \to \infty} \frac{a}{n} = 0.$$

$$\sum_{k=1}^{n} f(\xi_k) \Delta x_k = \sum_{k=1}^{n} f\left(\frac{ka}{n}\right) \frac{a}{n} = \sum_{k=1}^{n} \left(\frac{ka}{n}\right)^2 \frac{a}{n} =$$

$$= \sum_{k=1}^{n} k^2 \left(\frac{a}{n}\right)^3 = \left(\frac{a}{n}\right)^3 \frac{n(n+1)(2n+1)}{6} \xrightarrow{n \to \infty} \frac{a^3}{6}$$

Ćwiczenie 95. Obliczyć z definicji całkę funkcji  $f:[0,2]\to\mathbb{R}$  (na przedziale [1,10]) danej wzorem f(x)=x+1.

*Ćwiczenie* 96. Sprawdzić, że funkcja  $f:[0,1] \to \{1,0\}$  dana wzorem

$$f(x) = \begin{cases} 1, & \text{dla } x = \frac{1}{n}, \ n \in \mathbb{N}; \\ 0, & \text{w pozostałych przypadkach.} \end{cases}$$

jest całkowalna w sensie Riemanna w przedziale [0,1]. Wyznaczyć  $\int\limits_0^1 f(x)\,\mathrm{d}x.$ 

Przykład 116. Pokażemy, że następująca funkcja  $f:[0,1] \to \mathbb{R}$  (f. Riemanna) jest niemalejącą, nieciągłą w całej dziedzinie funkcją całkowalną w sensie Riemanna:

$$f(x) = \begin{cases} 0, & \text{dla } x \in [0, 1] \setminus \mathbb{Q}; \\ \frac{1}{q}, & \text{dla } x = \frac{p}{q}, \ p, q \in \mathbb{N}, \ \text{NWD}(p, q) = 1; \\ 1, & \text{dla } x = 0. \end{cases}$$

- 1. Z własności liczb rzeczywistych i określenia funkcji, oczywiste jest że nie jest ona monotoniczna w przedziale [0, 1].
- 2. Rozważmy dowolny  $a \in [a,b] \cap \mathbb{Q}$ . Każda liczba rzeczywista jest granicą pewnego ciągu liczb wymiernych, ale weźmy np. ciąg  $(x_n)_{n \in \mathbb{N}}$  określony wzorem  $x_n = \frac{p}{q} + \frac{1}{n}$  dla pewnych  $p,q \in \mathbb{Z}$ . Wtedy  $x_n \to \frac{p}{q} \in \mathbb{Q}$  i  $x_n \in \mathbb{Q}, n \in \mathbb{N}$  ale  $\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} \frac{1}{nq} = 0 \neq f(\frac{p}{q}) = \frac{1}{q}$ . Zatem f nie jest ciągła w przedziale [0,1] (aczkolwiek można pokazać, że jest ciągła w punktach niewymiernych swojej dziedziny!)
- 3. Oczywiste jest, że  $\underline{S}(f,\pi)=0$  dla dowolnego podziału  $\pi$  odcinka [0,1]. (W każdym podprzedziałe  $[x_{k-1},x_k]$  prz. [0,1] znajdziemy liczbę niewym. i  $m_k=0$ ). Zatem

$$\int_0^1 f = 0.$$

 $f\geqslant 0,$   $\int\limits_0^{\overline{1}}f\geqslant 0$ . Pokażemy, że dla dowolnego  $\varepsilon>0$  istnieje  $\overline{S}(f,\pi)<\varepsilon$  i tym samym  $\int\limits_0^{\overline{1}}f=0$ . Ustalmy  $\varepsilon>0$ . Weźmy  $N\in\mathbb{N}$  takie, że  $\frac{1}{N}<\frac{\varepsilon}{2}$ . Rozważmy zbiór

$$A = \left\{ \frac{p}{q} \colon p \leqslant q, \ q < N, p, q \in \mathbb{N} \right\}.$$

Zbiór A jest skończony. Niech m=|A|. Podzielmy przedział [0,1] na  $n=m\cdot N$  równych części. Wybieramy punkty podziału  $0=\frac{0}{n}<\frac{1}{n}<\frac{2}{n}<\ldots<\frac{n-1}{n}<\frac{n}{n}=1$  uzyskując podział  $\pi_k$  przedziału [0,1]. Określamy  $\overline{S}(f,\pi_k)$ :

$$\overline{S}(f, \pi_k) = \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A = \varnothing}} M_k \Delta x_k + \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A \neq \varnothing}} M_k \Delta x_k \leqslant$$

$$\leqslant \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A = \varnothing}} 1 \cdot \frac{1}{n} + \sum_{\substack{k \in \{1, \dots, n\} \\ \left[\frac{k-1}{n}, \frac{k}{n}\right] \cap A \neq \varnothing}} \frac{1}{N} \cdot \frac{1}{n} \leqslant$$

$$\leqslant \frac{m}{n} + n \cdot \frac{1}{N} \cdot \frac{1}{n} = \frac{m}{n} + \frac{1}{N} = \frac{m}{m \cdot N} + \frac{1}{N} < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Z dowolności wyboru  $\varepsilon$  mamy inf $\{\overline{S}(f,\pi): \pi \text{ jest podziałem przedziału } [0,1]\} = 0$ . Zatem

$$\overline{\int_0^1} f = \underline{\int_0^1} f = 0 \text{ i stad } \int_0^1 f = 0.$$

# 11.6 Zasadnicze Twierdzenie Rachunku Całkowego, Wzór Newtona-Leibniza

**Definicja 11.6.1.** Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją całkowalną w sensie Riemanna oraz niech  $F:[a,b]\to\mathbb{R}$  będzie dana wzorem

(FGC) 
$$F(x) = \int_{a}^{x} f(t) dt, x \in [a, b]$$

Funkcję F nazywamy funkcją górnej granicy całkowania.

**Twierdzenie 11.6.2** (Zasadnicze Twierdzenie Rachunku Całkowego). Niech  $f \in \mathcal{R}[a,b]$  oraz  $F \colon [a,b] \to \mathbb{R}$  będzie dana wzorem (FGC). Wówczas

- F jest ciaqla:
- jeżeli f jest ciągła  $w x_0 \in [a,b]$ , to F jest różniczkowalna  $w x_0$  oraz zachodzi wzór

$$F'(x_0) = f(x_0).$$

Dowód. Załóżmy, że f jest całkowalna na przedziale [a,b]. Ustalmy  $x,y \in [a,b], x < y$ . Wtedy

$$|F(y) - F(x)| = \left| \int_a^y f(t) dt - \int_a^x f(t) dt \right| =$$

$$= \left| \int_a^x f(t) dt + \int_x^y f(t) dt - \int_a^x f(t) dt \right| =$$

$$= \left| \int_a^y f(t) dt \right| \le \int_a^y |f(t)| dt \le \int_a^y M dt = M(x - y).$$

Czyli  $|F(y)-F(x)| \leq M|x-y|$ ;  $x,y \in [a,b]$ . Funkcja F spełnia warunek Lipschitza, ze stałą M>0, zatem jest jednostajnie ciągła.

Załóżmy, że f jest ciągła w punkcie  $x_0$ .

Ustalmy  $\varepsilon > 0$ . Mamy

$$\exists_{\delta>0} \forall_{x \in [a,b]} (|x-x_0| < \delta \Rightarrow |f(x)-f(y)| < \varepsilon).$$

$$\forall_{x \in (x_0 - \delta, x_0 + \delta) \cap [a, b]}. f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon.$$

Ustalmy  $h \in \mathbb{R}, \, |h| < \delta.$ Rozważmy przypadki:

• h > 0. Ze stosownych własności całki:

$$\int_{x_0}^{x_0+h} (f(x_0) - \varepsilon) \, \mathrm{d}x \le \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \le \int_{x_0}^{x_0+h} (f(x_0) + \varepsilon) \, \mathrm{d}x$$
$$(f(x_0) - \varepsilon)h \le \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \le (f(x_0) + \varepsilon)h$$

Dzielimy obustronnie przez h i mamy

$$f(x_0) - \varepsilon \leqslant \frac{1}{h} \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x \leqslant f(x_0) + \varepsilon.$$

• h < 0. Mamy

$$\int_{x_0+h}^{x_0} (f(x_0) - \varepsilon) \, \mathrm{d}x \le \int_{x_0+h}^{x_0} f(x) \, \mathrm{d}x \le \int_{x_0+h}^{x_0} (f(x_0) + \varepsilon) \, \mathrm{d}x$$
$$(f(x_0) - \varepsilon)(-h) \le \int_{x_0+h}^{x_0} f(x) \, \mathrm{d}x \le (f(x_0) + \varepsilon)(-h)$$

Pamiętamy (własność), że gdy zamieniamy granice całkowania to zmieniamy znak całki. Mamy

$$f(x_0) - \varepsilon \leqslant \frac{1}{h} \int_{x_0}^{x_0+h} f(x) dx \leqslant f(x_0) + \varepsilon.$$

Zatem, dla każdego  $h \in (-\delta, \delta) \setminus \{0\}, \left| \frac{1}{h} \int_{x_0}^{x_0+h} f(x) \, \mathrm{d}x - f(x_0) \right| \leqslant \varepsilon$ , czyli

$$\lim_{h \to 0} \frac{1}{h} \int_{x_0}^{x_0 + h} f(x) \, \mathrm{d}x = f(x_0).$$

$$F(x_0 + h) - F(x_0) = \int_a^{x_0 + h} f(x) dx - \int_a^{x_0} f(x) dx = \int_{x_0}^{x_0 + h} f(x) dx.$$

Mamy równość

$$\frac{1}{h} \int_{-\pi}^{x_0+h} f(x) \, \mathrm{d}x = \frac{F(x_0+h) - F(x_0)}{h}$$

i dalej

$$\lim_{h \to 0} \frac{F(x_0 + h) - F(x_0)}{h} = f(x_0).$$

Zatem F jest różniczkowalna w  $x_0$  oraz  $F'(x_0) = f(x_0)$ .

Zatem, jeżeli f jest ciągła w zadanym przedziale (a,b), to F jest funkcją pierwotną funkcji f w tym przedziale (funkcją pierwotną funkcji  $f|_{(a,b)}$ ).

Wniosek 11.6.3. Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją ciągłą. Wówczas

$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a),$$

gdzie  $\Phi \colon [a,b] \to \mathbb{R}$ jest jakąkolwiek funkcją pierwotną funkcji f.

Dowód. Rozważmy funkcję f - ciągłą i niech  $\Phi$  będzie jakąkolwiek jej funkcją pierwotną. Wtedy również funkcja górnej granicy całkowania F funkcji f jest jej funkcją pierwotną. Istnieje takie  $C \in \mathbb{R}$ , że dla każdego  $x \in [a,b]$   $F(x) = \Phi(x) + C$ .

$$F(b) - F(a) = \int_{a}^{b} f(x) dx - \int_{a}^{a} f(x) dx = \int_{a}^{b} f(x) dx.$$

$$F(b) - F(a) = \Phi(b) + C - \Phi(a) - C = \Phi(b) - \Phi(a).$$

Zachodzi znacznie mocniejsze twierdzenie:

**Twierdzenie 11.6.4** (Wzór Newtona Leibniza). Załóżmy, że  $f:[a,b] \to \mathbb{R}$  jest całkowalna w sensie Riemanna oraz ma funkcję pierwotną  $\Phi:[a,b] \to \mathbb{R}$ . Wówczas

(NL) 
$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a).$$

 $Dow \acute{o}d.$  Ustalmy  $\varepsilon>0.$  fjest całkowalna, czyli istnieje taki podział  $\pi=\{x_0,\ldots,x_n\}$  przedziału [a,b],że

(11.3) 
$$\overline{S}(f,\pi) - \underline{S}(f,\pi) < \varepsilon.$$

Ponadto mamy oszacowania

(11.4) 
$$\underline{S}(f,\pi) \leqslant \int_{a}^{b} f(x) \, \mathrm{d}x \leqslant \overline{S}(f,\pi).$$

Skoro f ma funkcję pierwotną  $\Phi$ , to  $\Phi'(x) = f(x), x \in [a, b]$ . Z twierdzenia 8.6.1 Lagrange'a o wartości średniej dla każdego  $i \in \{1, \ldots, n\}$  istnieje  $\xi \in (x_{i-1}, x_i)$ .

(11.5) 
$$\frac{\Phi(x_i) - \Phi(x_{i-1})}{x_i - x_{i-1}} = \Phi'(\xi_i) = f(\xi_i).$$

Mamy  $m_i \leqslant f(\xi_i) \leqslant M_i$ ,

$$\underline{S}(f,\pi) \leqslant \sum_{i=1}^{n} f(\xi_i) \Delta x_i \leqslant \overline{S}(f,\pi)$$

$$\sum_{i=1}^{n} f(\xi_i) \Delta x_i \stackrel{\text{(11.5)}}{=} \sum_{i=1}^{n} (\Phi(x_i) - \Phi(x_{i-1})) = \Phi(x_n) - \Phi(x_0) = \Phi(b) - \Phi(a) \text{ zatem}$$

(11.6) 
$$\underline{S}(f,\pi) \leqslant \Phi(b) - \Phi(a) \leqslant \overline{S}(f,\pi).$$

Z równości (11.3), (11.4), (11.6) mamy

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}x - (\Phi(b) - \Phi(a)) \right| < \varepsilon.$$

Z dowolności wyboru  $\varepsilon$  mamy, że

$$\int_{a}^{b} f(x) dx = \Phi(b) - \Phi(a).$$

Uwaga 11.6.5. Istnieją funkcje całkowalne w sensie Riemanna, które nie mają funkcji pierwotnej i odwrotnie - istnieją funkcje mające f. pierwotne ale nie będące całkowalnymi w sensie Riemanna.

Przyjmujemy kilka bardzo wygodnych oznaczeń:

$$f(x)\Big|_a^b := f(b) - f(a),$$

Wzór ten być niejednoznaczny: np.

$$f(x) + g(x)\Big|_{a}^{b} = f(b) + g(b) - (f(a) + g(a))$$

czy też

$$f(x) + g(x)|_a^b = f(x) + g(b) - g(a)$$
?

Dlatego będziemy również używać oznaczenia:

$$[f(x)]_a^b := f(b) - f(a).$$

Z użyciem drugiej notacji, nie ma wątpliwości, że  $\left[f(x)+g(x)\right]_a^b:=f(b)+g(b)-(f(a)+g(a)).$  Gdy we wzorze na wyraz funkcji f występują parametry, to dla uniknięcia pomyłki, za jaką "literkę" podstawić granice całkowania piszemy:

$$f(x)\Big|_{x=a}^{x=b} = f(b) - f(a),$$

lub

$$\left[f(x)\right]_{x=a}^{x=b} = f(b) - f(a).$$

Przykład 117. 
$$\int_{-1}^{2} dt = t \Big|_{-1}^{2} = 2 - (-1) = 2 + 1 = 3.$$

Przykład 118. 
$$\int_0^T (v_0 + gt) dt = \left[ v_0 t + \frac{1}{2} g t^2 \right]_{t=0}^{t=T} = v_0 T + \frac{1}{2} g T^2.$$

Przykład 119. Obliczymy pole S obszaru ograniczonego łukiem kosinusoidy od  $y=\cos x$  od  $x=-\frac{\pi}{2}$  do  $x=\frac{\pi}{2}$  i osią OX. Otóż

$$S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos x \, dx = \left[ \sin x \right]_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = 1 - (-1) = 2.$$

(Porównaj: interpretacja geometryczna całki oznaczonej na stronie  $157)\,$ 

Ćwiczenie 97. Rozwiązać równanie  $\int_0^x (1+t) \, \mathrm{d}t = 0$  (niewiadomą w tym równaniu jest górna granica całkowania x).

**Twierdzenie 11.6.6** (O całkowaniu przez części). Załóżmy,  $\dot{z}e\ f,g\colon [a,b]\to\mathbb{R}\ sq\ takimi\ funkcjami\ różniczkowalnymi, <math>\dot{z}e\ f',g'\ sq\ całkowalne\ w\ przedziale\ [a,b]$ .  $W\acute{o}wczas$ 

$$\int_{a}^{b} f(x)g'(x) dx = f(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} f'(x)g(x) dx.$$

Dowód. f, g jako różniczkowalne są też ciągłe a stąd całkowalne (tw. 11.5.1). Do tego f', g' są ciągłe z założenia i mamy, że:

ciągłe są funkcje f'g, fg' oraz f'g + fg'.

Dalej (fg)' = f'g + fg', zatem fg jest funkcją pierwotną dla funkcji f'g + fg'. Ostatecznie

$$\int_{a}^{b} \left( f'g + fg' \right) = f(x)g(x) \Big|_{a}^{b}.$$

**Twierdzenie 11.6.7** (O całkowaniu przez podstawienie dla całki oznaczonej). Załóżmy,  $\dot{z}e\ f: [a,b] \to \mathbb{R}$  jest funkcją ciąglą,  $a\ \varphi \colon [\alpha,\beta] \to [a,b]$  jest taką funkcją różniczkowalną,  $\dot{z}e\ \varphi'$  jest całkowalna w przdziale [a,b].  $W\acute{o}wczas$ 

$$\int_a^b f(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt = \int_\alpha^\beta f(\varphi(x)) \varphi'(x) dx.$$

 $Dowód.\ f$  jest ciągła, więc całkowalna w przedz.  $[a,b].\ \varphi$  jest różniczkowalna, stąd ciągła i również różniczkowalna w  $[\alpha,\beta].$ 

 $f \circ \varphi$  jest całkowalna w  $[\alpha, \beta]$ ,

 $(f \circ \varphi) \circ \varphi'$ jest całkowalna w  $[\alpha, \beta]$ .

F - funkcja pierwotna dla f.

$$(F \circ \varphi)'(x) = F'(\varphi(x)) \cdot \varphi'(x) = f(\varphi(x)) \cdot \varphi'(x).$$

 $F \circ \varphi$  jet funkcją pierwotną dla  $(f \circ \varphi)\varphi'$ , czyli

$$\int_{\alpha}^{\beta} f(\varphi(x)) \varphi'(x) dx = F(\varphi(\beta)) - F(\varphi(\alpha)) =: I.$$

Jeżeli  $\varphi(\alpha) < \varphi(\beta)$ , to

$$I = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) \, \mathrm{d}t.$$

Dla  $\varphi(\alpha) = \varphi(\beta) = 0$  zachodzi równość

$$0 = I = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) \, \mathrm{d}t.$$

Jeśli  $\varphi(\alpha) > \varphi(\beta)$ , to  $I = -(F(\varphi(\alpha)) - F(\varphi(\beta))) =$ 

$$= -\int_{\varphi(\beta)}^{\varphi(\alpha)} f(t) dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(t) dt.$$

*Ćwiczenie* 98. Niech  $f:[0,1]\to\mathbb{R}$  będzie funkcją ciągłą i taką, że dla dowolnego  $x\in\mathbb{R}$ :

$$\int_0^1 f(xt) \, \mathrm{d}t = 0.$$

Wykazać, że f = 0.

Rozwiązanie. Podstawmy u=xt, to wówczas  $\frac{\mathrm{d}u}{\mathrm{d}t}=x$ , czyli mamy

$$\mathrm{d}t = \frac{\mathrm{d}u}{r}$$

Ponadto t = 0, to u = 0 a gdy t = 1, to u = x. Zatem

$$\int_0^1 f(xt) dt = \int_0^x f(u) \frac{du}{x} = \frac{1}{x} \int_0^x f(u) du = 0, \ x \in \mathbb{R} \setminus \{0\}.$$
$$F(x) := \int_0^x f(u) du = 0 \cdot x = 0, \ d \text{la } x \neq 0.$$

Z ciągłości funkcji f i twierdzenia 11.6.4:  $F'(x)=f(x), x\in(0,1]$ . Mamy więc, że  $f(x)=F'(x)=0, x\in(0,1]$ . Zatem f(x)=0 dla  $x\in[0,1]$ , czyli f=0.

Przykład 120. Wyznaczymy funkcję F daną wzorem  $F(x) = \int_{-1}^{x} f(t) dt, x \in [-1, 2],$  gdzie

$$f(x) = \begin{cases} -1 & \text{dla } x \in [-1, 0), \\ \sin x & \text{dla } x \in [0, \frac{\pi}{2}], \\ x & \text{dla } \left(\frac{\pi}{2}, 1\right]. \end{cases}$$

1. Gdy  $x \in [-1, 0)$ , to

$$F(x) = \int_{-1}^{x} (-1) dt = -t \Big|_{-1}^{x} = -x + 1.$$

2. Gdy  $x \in \left[0, \frac{\pi}{2}\right]$ , to

$$F(x) = \int_{-1}^{0} (-1) dt + \int_{0}^{x} \sin t dt = -0 + 1 - \cos t \Big|_{0}^{x} = 1 - \cos 0 + \cos x = 1 - 1 + \cos x = \cos x.$$

3. Dla  $x \in \left(\frac{\pi}{2}, 1\right]$  mamy

$$F(x) = \left( \int_{-1}^{0} (-1) dt + \int_{0}^{x} \sin t dt \right) + \int_{\frac{\pi}{2}}^{x} t dt =$$
$$= \cos \frac{\pi}{2} + \int_{\frac{\pi}{2}}^{x} t dt = \frac{1}{2} t^{2} \Big|_{\frac{\pi}{2}}^{x} = \frac{1}{2} x^{2} - \frac{\pi^{2}}{8}.$$

Podsumowując wszystkie trzy przypadki:

$$F(x) = \begin{cases} -x + 1, & \text{dla } x \in [-1, 0); \\ \cos x, & \text{dla } x \in [0, \frac{\pi}{2}]; \\ \frac{1}{2}x^2 - \frac{\pi^2}{8}, & \text{dla } x \in (\frac{\pi}{2}, 1]. \end{cases}$$

 $\acute{C}wiczenie$  99. Niech  $f \colon [0,3] \to \mathbb{R}$  będzie funkcją daną wzorem:

$$f(x) = \begin{cases} x+1 & \text{dla } x \in [0,1), \\ -3x+1 & \text{dla } x \in [1,2), \\ 1 & \text{dla } x \in [2,3]. \end{cases}$$

Wyznaczyć jawny wzór funkcji  $F(x) = \int_0^x f(t) \, \mathrm{d}t, x \in [0,3].$ 

Przykład 121. Udowodnimy, że

$$(11.7) e^x \geqslant 1 + x, \ x \in \mathbb{R}.$$

Mamy dwa przypadki:

1. dla  $x \ge 0$  mamy  $e^x \ge 1$ , zatem

$$\int_0^x e^t \, \mathrm{d}t \geqslant \int_0^x 1 \, \mathrm{d}t,$$

czyli

$$e^x - 1 \geqslant x$$
.

2. dla x < 0 mamy  $e^x \le 1$ , zatem

$$\int_{x}^{0} e^{t} \, \mathrm{d}t \leqslant \int_{x}^{0} \, \mathrm{d}t,$$

czyli 
$$1 - e^x \leqslant -x$$
.

Przykład 122 (Zadanie, w którym pomocne będzie twierdzenie 11.6.2). Niech  $f:[0,+\infty)\to\mathbb{R}$  będzie taką funkcją, że f(1)=1 oraz

$$f'(x) = \frac{1}{x^2 + f^2(x)}, \ x \in [0, +\infty).$$

Udowodnić, że granica  $\lim_{x\to\infty} f(x)$  istnieje i jest mniejsza niż  $1+\frac{\pi}{4}.$ 

Rozwiązanie. Zauważmy, że f'(x) > 0 dla dowolnego  $x \in D_f$ , więc funkcja f jest rosnąca w całej dziedzine. Czyli

$$f(x) > f(1) = 1$$
dla  $x > 1$ .

Stąd uzyskujemy oszacowanie:

$$f'(x) = \frac{1}{x^2 + f^2(x)} < \frac{1}{x^2 + 1}, \ x > 1$$

Dla każdego x>1 możemy scałkować obustronnie powyższą nierówność i wówczas

$$f(x) - f(1) = \int_1^x f'(t) dt < \int_1^x \frac{dt}{t^2 + 1} = \arctan t \Big|_1^x =$$
$$= \arctan x - \arctan 1 = \arctan x - \frac{\pi}{4}$$

Czyli

$$1 < f(x) < \arctan x - \frac{\pi}{4} + 1.$$

Funkcja f jest ściśle rosnąca i ograniczona, więc granica przy  $x\to +\infty$  istnieje, a ponadto z twierdzenia 6.1.4 o trzech funkcjach

$$\lim_{x \to +\infty} f(x) < 1 - \frac{\pi}{4} + \lim_{x \to +\infty} \arctan x = 1 - \frac{\pi}{4} + \frac{\pi}{2} = 1 + \frac{\pi}{4}.$$

Logarytm naturalny liczby xmożna zdefiniować jako całkę funkcji  $x\mapsto \frac{1}{x}$ w granicach od 1 do x:

$$\ln(x) = \int_1^x \frac{1}{t} \, \mathrm{d}t.$$

Z tej postaci łatwo wynikają własności logarytmu, ciągłość, monotoniczność, itd.

Fakt 4. Dla każdych  $x \ge 1$  zachodzą nierówności

$$\frac{x-1}{x} \leqslant \ln x \leqslant x - 1.$$

## 11.7 Twierdzenia o wartości średniej dla całek

**Twierdzenie 11.7.1.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ciągłą. Wówczas istnieje  $\xi \in [a,b]$  takie, że

(11.8) 
$$f(\xi) = \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x.$$

 $Dow \acute{o}d.$  Mamy  $m \leqslant f(x) \leqslant M, \, x \in [a,b].$ Z ciągłości funkcji f:

$$m = \inf f [[a, b]] = \min f [[a, b]]$$

$$M = \sup f[[a, b]] = \max f[[a, b]]$$

oraz z własności całki

$$m(b-a) \leqslant \int_{a}^{b} f(x) \, \mathrm{d}x \leqslant M(b-a)$$
$$m \leqslant \frac{1}{b-a} \int_{a}^{b} f(x) \, \mathrm{d}x \leqslant M$$

Z własności Darboux wynika, że istnieje  $\xi \in [a,b]$  spełniające tezę twierdzenia.

**Twierdzenie 11.7.2.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ciąglą, a  $g:[a,b] \to \mathbb{R}$  funkcją całkowalną stalego znaku. Wówczas istnieje  $\xi \in [a,b]$  takie, że

(11.9) 
$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx.$$

Dowód. Mamy

$$\min_{[a,b]} f = m \leqslant f(x) \leqslant M = \max_{[a,b]} f.$$

gjest stałego znaku; załóżmy, że  $g(x)\geqslant 0, x\in [a,b].$  Wówczas  $\int_a^b g(x)\,\mathrm{d}x\geqslant 0,$  zatem przemnażając nierówności

$$(11.10) m \leqslant f(t) \leqslant M, t \in [a, b]$$

przez  $\int_a^b g(x) dx$  otrzymujemy

$$m \int_{a}^{b} g(x) dx \leqslant f(t) \cdot \int_{a}^{b} g(x) dx \leqslant M \int_{a}^{b} g(x) dx, t \in [a, b].$$

A z odpowiednich właności całki, całkując stronami (11.10) otrzymujemy

$$m \int_a^b g(x) \, \mathrm{d}x \leqslant \int_a^b f(x)g(x) \, \mathrm{d}x \leqslant M \int_a^b g(x) \, \mathrm{d}x.$$

Ponadto odwzorowanie  $t \mapsto f(t) \int_a^b g(x) \, \mathrm{d}x$  jest ciągłe (jako iloczyn odwz. ciągłego i stałej) a więc z własności Darboux istnieje  $\xi \in [a,b]$  takie, że

$$\int_{a}^{b} f(x)g(x) dx = f(\xi) \int_{a}^{b} g(x) dx.$$

**Twierdzenie 11.7.3.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ciąglą, a  $g:[a,b] \to \mathbb{R}$  funkcją monotoniczną klasy  $C^1$ . Wówczas istnieje  $\xi \in [a,b]$  takie, że

(11.11) 
$$\int_{a}^{b} f(x)g(x) dx = g(a) \int_{a}^{\xi} f(x) dx + g(b) \int_{\xi}^{b} f(x) dx.$$

 $Dow\'od.\ f$ jest ciągła, niech Fbędzie funkcją pierwotną funkcji f.

$$\int_{a}^{b} f(x)g(x) dx = \int_{a}^{b} F'(x)g(x) dx =$$

$$= F(x)g(x)\Big|_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx = I$$

Z poprzedniego twierdzenia istnieje  $\xi \in [a,b]$ takie, że

$$\int_{a}^{b} F(x)g'(x) dx = F(\xi) \int_{a}^{b} g'(x) dx = F(\xi)g(x) \Big|_{a}^{b} = F(\xi)(g(b) - g(a)).$$

Dalej

$$I = \int_{a}^{b} f(x)g(x) dx = F(b)g(b) - F(a)g(a) - F(\xi)g(b) + F(\xi)g(a) =$$

$$= g(a) (F(\xi) - F(a)) + g(b) (F(b) - F(\xi)) =$$

$$= g(a) \int_{a}^{\xi} f(x) dx + g(b) \int_{\xi}^{b} f(x) dx.$$

*Ćwiczenie* 100. Udowodnić, że dla każdego  $\varepsilon>0$  i każdych  $a,b\in\mathbb{R}$  spełniajacych  $a>b>\frac{4}{\varepsilon}$  zachodzi nierównośc:

$$\left| \int_{a}^{b} \frac{\sin x}{x} \, \mathrm{d}x \right| < \varepsilon.$$

Rozwiązanie. Ustalmy  $\varepsilon > 0$  oraz  $a > b > \frac{4}{\varepsilon}$ . Z twierdzenia 11.7.3 istnieje  $\xi \in [a,b]$  takie, iż

$$\int_a^b \frac{\sin x}{x} dx = \frac{1}{a} \int_a^\xi \sin x dx + \frac{1}{b} \int_\xi^b \sin x dx.$$

$$\left| \int_a^b \frac{\sin x}{x} dx \right| \leqslant \frac{1}{a} \left| \left[ -\cos x \right]_a^\xi \right| + \frac{1}{b} \left| \left[ -\cos x \right]_\xi^b \right| = \frac{1}{a} \left| -\cos \xi + \cos a \right| + \frac{1}{b} \left| -\cos b + \cos \xi \right| \leqslant$$

$$\leqslant \frac{1}{a} \left( \left| \cos \xi \right| + \left| \cos a \right| \right) + \frac{1}{b} \left( \left| \cos b \right| + \left| \cos \xi \right| \right) \leqslant \frac{2}{a} + \frac{2}{b} \leqslant \frac{2}{4} \varepsilon + \frac{2}{4} \varepsilon = \varepsilon;$$

Ćwiczenie 101. Wykazać, że dla pewnego  $y\in (0,\frac{\pi}{2})$  zachodzi  $\int\limits_0^{\frac{\pi}{2}}e^x\cos x\,\mathrm{d}x=e^y.$ 

#### 11.8 Nierówności całkowe

**Twierdzenie 11.8.1** (Całkowa Nierówność Cauchy'ego-Buniakowskiego-Schwarza). Niech  $f, g: [a, b] \rightarrow \mathbb{R}$  będą funkcjami ciągłymi. Wówczas

(11.12) 
$$\left| \int_a^b f(x)g(x) \, \mathrm{d}x \right| \leqslant \left( \int_a^b f^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}} \left( \int_a^b g^2(x) \, \mathrm{d}x \right)^{\frac{1}{2}}.$$

lub równoważnie

(11.13) 
$$\left(\int_a^b f(x)g(x)\,\mathrm{d}x\right)^2\leqslant \int_a^b f^2(x)\,\mathrm{d}x\int_a^b g^2(x)\,\mathrm{d}x.$$

Dowód. Załóżmy, że  $f \neq 0$  (dla funkcji f tożsamościowo równej zeru nierówność jest oczywista). Zdefinujmy funkcję  $h_t \colon [a,b] \to \mathbb{R}$ , z parametrem  $t \in \mathbb{R}$  wzorem  $h_t(x) = (tf(x) - g(x))^2$ . Funkcja  $h_t$  jest ciągła i nieujemna, a więc całkowalna w sensie Riemanna. Stąd nieujemna jest funkcja F, gdzie  $F(t) := \int_a^b h_t$ . Mamy więc równości:

$$F(t) = \int_{a}^{b} h_{t}(s) ds = t^{2} \int_{a}^{b} f^{2}(s) ds - 2t \int_{a}^{b} f(s)g(s) ds + \int_{a}^{b} g^{2}(s) ds \ge 0.$$

Trójmian kwadratowy F zależny od zmiennej t o współczynnikach rzeczywistych, jako nieujemny, musi mieć niedodatni wyróżnik:

$$0 \ge \Delta = 4 \left( \int_a^b f(s)g(s) \, ds \right)^2 - 4 \int_a^b f^2(s) \, ds \int_a^b g^2(s) \, ds.$$

Ale powyższa nierówność jest równoważna temu, że

$$\left(\int_a^b f(x)g(x) \, \mathrm{d}x\right)^2 \leqslant \int_a^b f^2(x) \, \mathrm{d}x \int_a^b g^2(x) \, \mathrm{d}x.$$

Zauważmy, że jeżeli  $g = \lambda f$  dla pewnej stałej  $\lambda$ , to obie strony nierówności (11.12) są równe. W drugą stronę, jeżeli  $\Delta = 0$ , to istnieje  $\lambda \in \mathbb{R}$  takie, że  $F(\lambda) = 0$ . Wówczas

$$\int_{a}^{b} (\lambda f(s) - g(s))^{2} ds = 0$$

a stąd, z nieujemności  $h_t$  mamy, że

$$(\lambda f(s) - g(s))^2 = 0, s \in [a, b]$$

czyli  $q = \lambda f$ .

 $\acute{C}wiczenie$  102. Niech  $f\colon [0,1] \to [0,\infty)$  będzie funkcją całkowalną w sensie Riemanna. Udowodnić, że

$$\frac{3}{4} \left( \int_0^1 f(x) \, \mathrm{d}x \right)^2 \leqslant \frac{1}{16} + \int_0^1 f(x) 32 \, \mathrm{d}x.$$

**Twierdzenie 11.8.2** (Nierówność Hermite'a-Hadamarda). Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją wypuklą. Wówczas

(11.14) 
$$f\left(\frac{a+b}{2}\right) \leqslant \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x \leqslant \frac{f(a)+f(b)}{2}.$$

Ponadto równości zachodzą tylko dla funkcji liniowych.

**Twierdzenie 11.8.3** (Całkowa Nierówność Jensena). Niech  $\varphi: [a,b] \to \mathbb{R}$  będzie funkcją calkowalną a  $f: I \to \mathbb{R}$  ciąglą i wypuklą, gdzie  $I \subseteq \mathbb{R}$  jest przedziałem. Wówczas

(11.15) 
$$f\left(\frac{1}{b-a}\int_{a}^{b}\varphi(x)\,\mathrm{d}x\right) \leqslant \frac{1}{b-a}\int_{a}^{b}f(\varphi(x))\,\mathrm{d}x.$$

 $\mathit{Fakt}$ 5 (Całkowa nierówność między średnimi). Niech  $f\colon [a,b]\to (0,\infty)$ będzie funkcją ciągłą. Wówczas

$$\exp\left(\frac{1}{b-a}\int_a^b \ln f(x) \, \mathrm{d}x\right) \leqslant \frac{1}{b-a}\int_a^b f(x) \, \mathrm{d}x.$$

Dowód możemy sprowadzić do przypadku, gdy [a,b]=[0,1], a wówczas nierówność ma postać:

$$\exp\left(\int_0^1 \ln f(x) \, \mathrm{d}x\right) \leqslant \int_0^1 f(x) \, \mathrm{d}x.$$

Zauważmy, że w powyższym fakcie, nie zakładamy że funkcja  $x \mapsto \ln f(x)$  jest całkowalna. Aby sprawdzić, że wyrażenie po lewej stronie jest poprawnie określone, korzystamy z twierdzenia Weierstrassa: funkcja f jest ciągła, ograniczona, więc przyjmuje swoje kresy: przy pewnych m, M mamy

$$m \leqslant f(x) \leqslant M, x \in [0, 1].$$

Co więcej  $m = f(x_0) > 0$  dla pewnego  $x_0 \in [0,1]$ , a dla pewnego  $x_1 \in [0,1]$ :  $f(x_1) = M$ . Czyli

$$-\infty < \ln m \le \ln f(x) \le \ln M < +\infty,$$

tj. funkcja l<br/>nf również jest ograczniona. Jako złożenie funkcji ciągłych, jest też ciągła, a więc całkowalna.

Ustalmy  $n \in \mathbb{N}$  i weźmy podział  $x_k = \frac{k}{n}, k = 1, \dots, n$  odcinka [0, 1]. Suma całkowa z prawej strony jest równa:

$$\frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right),$$

a z lewej:

$$\frac{1}{n}\sum_{k=1}^{n}\ln f\left(\frac{k}{n}\right) = \frac{1}{n}\ln\prod_{k=1}^{n}f\left(\frac{k}{n}\right) = \ln\left(\prod_{k=1}^{n}f\left(\frac{k}{n}\right)\right)^{\frac{1}{n}}$$

Korzystając z klasycznej nierówności między średnią arytmetyczną a geometryczną otrzymujemy, że

$$\frac{1}{n}\sum_{k=1}^{n}f\left(\frac{k}{n}\right) \geqslant \left(\prod_{k=1}^{n}f\left(\frac{k}{n}\right)\right)^{\frac{1}{n}} = \exp\left(\frac{1}{n}\sum_{k=1}^{n}\ln f\left(\frac{k}{n}\right)\right).$$

Przechodząc z  $n \to \infty$  otrzymujemy tezę.

*Ćwiczenie* 103. Niech  $f:[0,t]\to\mathbb{R}$  będzie funkcją różniczkowalną i taką, że

$$\int_0^1 f(x) \, \mathrm{d}x = 0.$$

Udowodnić, że

$$\left| \int_0^t f(x) \, \mathrm{d}x \right| \le \frac{1}{8} \max_{0 \le x \le 1} |f'(x)|.$$

## 11.9 \*Całkowanie przybliżone

Wprost z definicji 11.2.2 całki Riemanna możemy zauważyć, że Obserwacja. Jeżeli funkcja f jest całkowalna w przedziale [a,b], to

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \left( \frac{b-a}{n} \sum_{k=1}^{n} f\left(a + k \frac{b-a}{n}\right) \right).$$

Widzimy też, że całkę  $\int_a^b f(x) \, \mathrm{d}x$  z funkcji nieujemnej f możemy aproksymować biorąc podział  $\{x_0,\dots,x_n\}$  przedziału [a,b] i sumując prostokąty  $[x_{k-1},x_k]\times [0,\xi_k],\ k=1,\dots,n,$  gdzie  $\xi_k$  są punktami pośrednimi. Dokładniejsze przybliżenie dostaniemy w oparciu o nast. metodę:

Metoda trapezów: Będziemy przybliżać całkę

$$\int_{a}^{b} f(x) \, \mathrm{d}x$$

funkcji  $f \ge 0$ , sumą pól n trapezów. Przedział całkowania [a,b] dzielimy na n przedziałów częściowych, wszystkich tej samej długości (b-a)/n. Kolejne punkty podziału na osi OX oznaczamy

$$a = x_0, x_1, \dots, x_{n-1}, x_n = b$$

zaś odpowiadające im wartości na osi OY jako

$$y_k = f(x_k), k = 0, \dots, n.$$

Wtedy

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2n} (y_0 + y_n + 2(y_1 + y_2 + \dots + y_{n-1})),$$

a błąd $\Delta$ bezwzględny przybliżenia spełnia:

$$\Delta \leqslant \frac{(b-a)^3}{12n^2}M,$$

gdzie  $M = \sup_{x \in [a,b]} |f''(x)|.$ 

Przykład 123. Dla n = 1 mamy

$$\int_{a}^{b} f(x) dx \approx \frac{(b-a)}{2} \left( f(a) + f(b) \right)$$

Ćwiczenie 104. Obliczyć  $\int_0^1 e^{x^2} \,\mathrm{d}x$ metodą trapezów przyjmując n=5. Oszacować błąd.

Metoda prostokątów: Dzielimy przedział [a,b] na 2n (parzystą liczbę) podprzedziałów.

$$h := \frac{b-a}{2n}, \ x_i := a+ih, i=1,2,\ldots,2n.$$

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx$$

$$\approx \frac{h}{3} \left( f(x_0) + 4(f(x_1) + f(x_3) + \ldots + f(x_{2n-1})) + 2(f(x_2) + f(x_4) + \ldots + f(x_{2n-2})) + f(x_{2n}) \right).$$

Błąd bezwzględny  $\Delta$ w tym wypadku ma oszacowanie:

$$\Delta \leqslant \frac{(b-a)^3}{24n^2}M,$$

gdzie  $M = \sup_{x \in [a,b]} |f''(x)|$ .

Przykład 124. Dla n = 1 mamy

$$\int_{a}^{b} f(x) \, \mathrm{d}x \approx (b - a) f\left(\frac{a + b}{2}\right).$$

Dla n = 3 mamy TO-DO

#### 11.10 \*Uwagi o całkowaniu funkcji wektorowych

Ustalmy

$$f \colon [a,b] \to \mathbb{R}^n, f = (f_1, \dots, f_n)$$
 
$$f_i \colon [a,b] \to \mathbb{R}, f_i \text{całkowalna na } [a,b]; \ i \in \{1, \dots, n\}$$

Definiujemy

$$F(x) := \int_a^x f(t) dt = \left( \int_a^x f_1(t_1) dt_1, \dots, \int_a^x f_n(t_n) dt_n \right) \text{ gdzie } t = (t_1, \dots, t_n) \in \mathbb{R}^n.$$

**Twierdzenie 11.10.1.** F jest funkcją ciąglą. Ponadto, jeżeli  $f_1, \ldots, f_n$  są ciągle w punkcie  $x_0 \in (a,b)$ , to F jest różniczkowalna w  $x_0$ .

Twierdzenie 11.10.2. Jeżeli f ma funkcję pierwotną F, to

$$\int_{a}^{b} f = F(b) - F(a).$$

Przykład 125. Niech  $f(x) = (2x, \cos x)$ , to wówczas

$$\int_0^{\pi} f(x) \, \mathrm{d}x = \left( \int_0^{\pi} 2x \, \mathrm{d}x, \int_0^{\pi} \cos x \, \mathrm{d}x \right) = \left( x^2 \Big|_0^{\pi}, \, \sin x \Big|_0^{\pi} \right) = (\pi^2, 1).$$

Funkcje zespolone: funkcje postaci  $f = \Re \mathfrak{e} f + i \Im \mathfrak{m} f$ .

Funkcję  $f\colon [a,b]\to \mathbb{C}$ całkowalną możemy zapisać jako  $f=f_1+if_2,$ gdzie

 $f_1, f_2 \colon [a, b] \to \mathbb{R}$  są pewnymi funkcjami całkowalnymi na [a, b].

Przykład 126. Niech f(x) = 2x - i7x. Wówczas

$$\int_0^1 f(x) \, \mathrm{d}x = \left(1, -\frac{7}{2}i\right).$$

**Twierdzenie 11.10.3.** Jeżeli  $f:[a,b] \to \mathbb{R}^n$  (lub  $f:[a,b] \to \mathbb{C}$ ) jest całkowalna w sensie Riemanna, to funkcja ||f|| (|f|, gdzie  $|\cdot|$  oznacza moduł liczby zespolonej) jest całkowalna w sensie Riemanna, oraz

$$\left\| \int_{a}^{b} f \right\| \leqslant \int_{a}^{b} \|f\| \qquad \left( \left| \int_{a}^{b} f \right| \leqslant \int_{a}^{b} |f| \right)$$

Dowód. Przyjmujemy oznaczenia:

$$f = (f_1, \dots, f_n),$$

$$\|f\| = \sqrt{\sum_{k=1}^n f_k^2},$$

$$y_i = (y_1, \dots, y_n) = \left(\int_a^b f_1, \dots, \int_a^b f_n\right).$$

Szacujemy:

$$||y||^2 = \sum_{k=1}^n y_k^2 = \sum_{k=1}^n y_k \int_a^b f_k = \int_a^b \sum_{k=1}^n y_k f_k \leqslant \int_a^b \sqrt{\sum_{k=1}^n y_k^2} \sqrt{\sum_{k=1}^n f_k^2} = ||y|| \int_a^b \sqrt{\sum_{k=1}^n f_k^2} = ||y|| \int_a^b ||f||$$

Jeżeli

1. 
$$||y|| \neq 0$$
, to  $||y|| = \left\| \int_a^b f \right\| \leqslant \int_a^b ||f||$ ,

2. 
$$||y|| = 0$$
, to  $0 \le \int_a^b ||f||$ .

## Rozdział 12

# Zastosowania geometryczne rachunku różniczkowego i całkowego

#### 12.1 Krzywe w przestrzeni

Niech  $\Phi \colon [a,b] \to \mathbb{R}^n$ ,  $\Phi = (x_1,\ldots,x_n)$  gdzie  $x_i$  jest funkcją ciągłą dla  $i \in \{1,\ldots,n\}$ .

Definicja 12.1.1. Zbiór K wartości funkcji $\Phi,$ czyli

$$K = \{(x_1(t), \dots, x_n(t)) : t \in [a, b]\}$$

nazywamy **krzywą** o początku w punkcie  $\Phi(a)$  i końcu w punkcie  $\Phi(b)$ .

Jeżeli w  $\Phi(a) = \Phi(b)$ , to krzywą będziemy nazywali krzywą **zamkniętą**.  $\Phi$  nazywamy **parametryzacją** krzywej K i zwykle zakładamy, że  $\Phi|_{[a,b]}$  oraz  $\Phi|_{(a,b]}$  są różnowartościowe – mówimy wówczas, że krzywa K jest **łukiem zwykłym** albo **łukiem Jordana**. Prościej mówiąc K jest łukiem zwykłym, gdy jej wykres nie posiada punktów wielokrotnych, tj.:

$$t_1 \neq t_2 \implies (\varphi(t_1), \psi(t_1)) \neq (\varphi(t_2), \psi(t_2)), t_1, t_2 \in [\alpha, \beta].$$

Przykład 127. Korzystając z twierdzenia pitagorasa, łatwo sprawdzić, że wszystkie punkty okręgu S o środku w punkcie (0,0) i promieniu długości r otrzymamy z następujących równości:

$$\begin{cases} x = r \cos t, \\ y = r \sin t \end{cases}$$

Zatem odwzorowanie  $\Psi \colon \mathbb{R} \to \mathbb{R}^2$  dane jako  $\Psi(t) = (r \cos t, r \sin t)$  jest parametryzacją S:

$$S = \{(x, y) \in \mathbb{R} \colon \Psi(t)\} = \{(x, y) \in \mathbb{R} \colon x = r \cos t, y = r \sin t\}$$

Przykład 128. Ustalmy dwa punkty  $P_1=(x_1,y_1),\,P_1=(x_2,y_2).$  Łatwo możemy wskazać parametryzację prostej przechodzącej przez te dwa punkty:

$$\begin{cases} x = x_1 + (x_2 - x_1)t, \\ x = y_1 + (y_2 - y_1)t \end{cases}$$

Czyli odwzorowanie  $T: \mathbb{R} \to \mathbb{R}^2$  dane jako  $(x, y) = T(t) = P_1 + (P_2 - P_1)t = tP_1 + (1 - t)P_2$  jest równaniem prostej przechodzącej przez punkty  $P_1$  i  $P_2$ . Zbiór

$$K = \{(x, y) \in \mathbb{R} : x = tx_1 - (1 - t)x_2 \text{ i } y = ty_1 - (1 - t)y_2\}$$

czyli nasza "prosta" jest formalnie "krzywą". Dla  $t \in [0,1]$  równanie (x,y) = T(t) daje wszystkie punkty odcinka o końcach w punktach  $P_1$  i  $P_2$ .

Definicja 12.1.2. Jeżeli

$$\begin{cases} x_i \in C^1([a,b]), i \in \{1,\dots,n\}, \\ \sum_{i=1}^n [x_i'(t)]^2 > 0 \end{cases}$$

to mówimy, że krzywa jest gładka.

 $\acute{C}wiczenie$  105. Czy okrąg o równaniu  $x^2+y^2=1$  jest krzywą gładką? (Oczywista wskazówka: rozważyć jego równanie parametryczne).

Ćwiczenie 106. Liść Kartezjusza jest krzywą o parametryzacji danej jako:

$$\begin{cases} x = \frac{6t}{1+t^3}, \\ y = \frac{6t^2}{1+t^3}. \end{cases}$$

Wyznaczyć kilka punktów tej krzywej dla ćwiczenia i spróbować narysować wykres. Czy krzywa ta jest gładka?

**Definicja 12.1.3.** Krzywą **regularną** nazywamy krzywą złożoną ze skończonej liczby krzywych (łuków) gładkich.

**Definicja 12.1.4.** Jeżeli krzywa  $K\subseteq\mathbb{R}^n$  (ewentualnie, gdy pewien jej spójny podzbiór) jest zbiorem rozwiązań równania postaci

$$(12.1) F(x_1, \dots, x_n) = 0$$

to równanie 12.1 nazywamy jej **równaniem uwikłanym** i mówimy, że jest ona (ew. pewien jej podzbiór) "dana w sposób uwikłany".

# 12.2 Pochodna funkcji określonej równaniami parametrycznymi.

Krzywa na płaszczyźnie. Niech dany będzie układ  $\begin{cases} x=\varphi(t), \\ y=\psi(t); \end{cases} \text{ gdzie } \varphi \text{ i } \psi \text{ są ciągłe. Oczy-}$ 

wiście jest to parametryzacja pewnej krzywej K w przestrzeni  $\mathbb{R}^2$ . Niech  $(x_0,y_0)=(\varphi(t_0),\psi(t_0))$  dla pewnego  $t_0\in\mathbb{R}$  będzie punktem nieosobliwym krzywej K. Załóżmy, że  $\varphi'(t_0)\neq 0$ . Pochodna  $\varphi'$  zachowuje więc znak w pewnym otoczeniu punktu  $t_0$  a funkcja  $\varphi$  na mocy ciągłości jest wówczas w tym otoczeniu różnowartościowa. Istnieje zatem funkcja odwrotna  $\Phi:=\varphi^{-1}$ . Podsumujmy:

 $t = \Phi(x)$ , dla t w pewnym otoczeniu punktu  $t_0$ ,  $\Phi$  jest różnowartościową funkcją klasy  $C^1$ .

Podstawmy  $y=\psi(t)=\psi(\Phi(x))$ . Widzimy, że w otoczeniu punktu  $t_0,y$  jest dana funkcją zmiennej x. Przyjmijmy  $f=\psi\circ\Phi$  i wówczas możemy (w pewnym otoczeniu  $t_0$ !) posługiwać się zależnością y=f(x). Ponadto funkcja f jest również klasy  $C^1$ , gdyż f' jest ciągła, jako iloraz funkcji ciągłych, co za chwilę udowodnimy. Punkt  $\varphi(t_0), \psi(t_0)$  krzywej K, w którym  $\varphi'(t_0)=0$  i równocześnie  $\psi'(t_0)=0$  może nie dać się wyrazić zależnością y=f(x). Punkt taki nazywamy też **puntkem osobliwym**.

**Definicja 12.2.1.** Jeżeli krzywą  $K \subseteq \mathbb{R}^2$  w otoczeniu punktu  $t_0$  można przedstawić w postaci równania y = f(x), tzn. w pewnym otoczeniu  $t_0$  krzywa pokrywa się z wykresem funkcji f, to mówimy, że można ją przedstawić w postaci nieuwiklanej (w danym otoczeniu).

**Twierdzenie 12.2.2.** Niech  $x = \varphi(t)$ ,  $y = \psi(t)$ , gdzie  $\varphi$  i  $\psi$  są funkcjami ciąglymi. Wówczas, jeżeli  $\varphi'(t_0) \neq 0$  dla pewnego  $t_0$ , to istnieje takie otoczenie U punktu  $t_0$ , że

$$y' = f'(x) = \frac{\psi'(t)}{\varphi'(t)}, \ dla \ t \in U$$

Dowód. Obliczamy pochodną funkcji f, tzn. pochodną y w otoczeniu U wzgl. zmiennej x.

$$y' = (\psi((\Phi(x)))' = \Psi'(\Phi(x)) \cdot \Phi'(x) = \psi'(t)\Phi'(x).$$

Korzystając ze wzoru 8.3.5 otrzymujemy, że  $\Phi'(t) = \frac{1}{(\Phi^{-1}(t))'} = \frac{1}{(\phi(t))'}$  dla  $t \in U$ . Stąd już wystarczy podstawić

$$y' = \psi'(t)\Phi'(x) = \psi'(t)\frac{1}{\varphi'(t)} = \frac{\psi'(t)}{\varphi'(t)}$$

Oznaczając $\frac{\mathrm{d}y}{\mathrm{d}t}=\psi'(t)$ oraz $\frac{\mathrm{d}x}{\mathrm{d}t}=\varphi'(t)$ łatwo zapamiętać powyższy wzór:

(12.2) 
$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}}$$

## 12.3 Współrzędne biegunowe

Współrzędne (x,y) dowolnego punktu  $P\in\mathbb{R}^2$  można przedstawić podając odległość r punktu P od początku układu współrzędnych oraz kąt  $\alpha$  nachylenia prostej o początku w punkcie (0,0) i końcu w punkcie P - np. do osi OX. Wówczas mamy

$$\begin{cases} x = r \cos \alpha, \\ y = r \sin \alpha. \ r \geqslant 0, \alpha \in [0, 2\pi). \end{cases}$$



Rysunek 12.1: Współrzędne punktu P=(x,y)związane są z kątem  $\alpha$  i promieniem r.

Formalnie: Układ współrzędnych kartezjańskich to w istocie dane na płaszczyźnie dwie proste prostopadłe, przechodzące przez zadany punkt O zwany środkiem układu współrzędnych i arbitralnie nazywane osią OX i OY. Taki układ nazywamy też prostokątnym. Niech  $\varphi\colon\mathbb{R}^2\to\mathbb{R}^2$  dane będzie wzorem  $\varphi(r,\alpha)=(r\cos\alpha,r\sin\alpha)$ . Zauważmy, że przekształcenie takie przyporządkowuje każdemu punktowi  $(x,y)\in\mathbb{R}^2$  wzajemnie jednoznacznie punkt  $(x^*,y^*)\in\mathbb{R}^2$ . Odwzorowanie  $\varphi$  nazywamy odwzorowaniem biegunowym. Układ współrzędnych na płaszczyźnie wyznaczony przez pewien punkt O zwany biegunem oraz pewną półprostą o początku w punkcie O zwaną osią biegunową nazywamy układem współrzędnych biegunowych. Zwykle przechodząc między układem prostokątnym a biegunowym przyjmujemy, że środek (biegun, w przypadku układu biegunowego) nowo wprowadzonego układu pokrywa się ze środkiem już adanego "starego" układu.

Przykład 129. Krzywa jest zadana parametrycznie:

$$\begin{cases} x = \sqrt{3}\cos t, \\ y = 3\sin t. \ t \in \mathbb{R}. \end{cases}$$

Można ją przedstawić w postaci uwikłanej F(x,y)=0.

## 12.4 Zastosowania geometryczne całki oznaczonej

Wprost definicji wynika

Fakt 6. Pole |D| obszaru D ograniczonego krzywymi ciągłymi y=f(x) i y=g(x), gdzie  $f(x)\geqslant g(x), x\in [a,b]$  i prostymi x=a, x=b wyraża się wzorem

$$|D| = \int_a^b (f(x) - g(x)) dx.$$

#### 12.4.1 Pole i objętość bryły obrotowej

Załóżmy, że funkcja  $f:[a,b]\to\mathbb{R}$  ma ciągłą pochodną na przedziale [a,b]. Po obrocie krzywej  $y=f(x),\,a\leqslant x\leqslant b$  dookoła osi OX otrzymujemy bryłę obrotową o objętości V i polu powierzchni P i zachodzi:

$$V = \pi \int_{a}^{b} (f(x))^{2} dx,$$
$$P = 2\pi \int_{a}^{b} |f(x)| \sqrt{1 + (f'(x))^{2}} dx.$$

**Twierdzenie 12.4.1.** Jeżeli  $f:[a,b]\to [0,+\infty)$  jest funkcją ciąglą, to bryła V powstała poprzez obrót obszaru

$$D = \{(x, y) \in \mathbb{R}^2 \colon a \leqslant x \leqslant b, \ 0 \leqslant y \leqslant f(x)\}$$

 $dookoła \ osi \ OX \ ma \ objętość \ |V| \ i \ zachodzi \ równość$ 

$$|V| = \int_a^b \pi f^2(x) \, \mathrm{d}x.$$

 $Dow \acute{o}d$ . Ustalmy podział  $\Pi = \{x_0, x_1, \dots, x_n\}$  przedziału [a, b]. Określamy sumy całkowe:

$$\underline{S}(f,\Pi) = \sum_{k=1}^{n} \pi m_k^2 \Delta x_k,$$

$$\overline{S}(f,\Pi) = \sum_{k=1}^{n} \pi M_k^2 \Delta x_k.$$

Funkcja  $x \mapsto \pi(f(x))^2, x \in [a, b]$  jest ciągła, a więc całkowalna, czyli

$$\sup_{\Pi} \underline{S}(f,\Pi) = \inf_{\Pi} \overline{S}(f,\Pi) = \int_{a}^{b} \pi(f(x))^{2} dx.$$

(Kresy bierzemy po wszystkich podziałach  $\Pi$  przedziału [a,b].)

**Twierdzenie 12.4.2.** Jeżeli  $f:[a,b] \to [0,+\infty)$  jest funkcją klasy  $C^1$ , to powierzchnia obrotowa S powstala poprzez obrót krzywej

$$D = \{(x, y) \in \mathbb{R}^2 : a \leqslant x \leqslant b \ i \ y = f(x)\}$$

dookoła osi OX ma pole |S| i zachodzi równość

$$|S| = 2\pi \int_a^b f(x)\sqrt{1 + [f'(x)]^2} dx.$$

Przykład130. Objętość Vstożka o wysokości h>0i promieniu podstawy R>0można obliczyć określając funkcję  $f\colon [0,h]\to [0,+\infty)$ wzorem

$$f(x) = \frac{R}{h}x, x \in [0, h].$$

Wówczas

$$|V| = \pi \int_0^h \pi \left(\frac{R}{h}x\right)^2 dx = \pi \frac{R^2}{h^2} \int_0^h x^2 dx = \pi \frac{R^2}{h^2} \left[\frac{1}{3}x^3\right]_0^h = \frac{1}{3}\pi R^2 h.$$

#### 12.4.2 Długość krzywej

**Definicja 12.4.3. Długością krzywej** nazywamy kres górny długości łamanych wpisanych w krzywą.

Długość krzywej K oznaczamy L(K) (od ang. lenght - długość) albo przez |K|.

**Uwaga 12.4.4.** Nie każda krzywa ma długość. Przykładem jest np. tzw. **krzywa Peano**. Krzywą, która ma długość nazywamy **prostowalną**.

**Twierdzenie 12.4.5.** Jeżeli K jest krzywą gładką o parametryzacji  $\Phi: [a,b] \to \mathbb{R}^n$ ,  $\Phi(t) = (x_1(t), x_2(t), \dots, x_n(t))$ ,  $t \in [a,b]$ , to długość L(K) krzywej dana jest wzorem

$$L(K) = \int_{a}^{b} \sqrt{[x'_1(t)]^2 + \ldots + [x'_n(t)]^2} \,dt.$$

Dowód - przypadek szczególny. Przeprowadzimy najpierw dowód dla n=2. Ustalmy krzywą K oraz dowolną parametryzację  $\Psi \colon [a,b] \to K$ . Zatem możemy przyjąć  $(x(t),y(t)) = \Psi(t)$ . Ustalmy  $\varepsilon > 0$ . Niech  $\delta > 0$  będzie taką stałą, że

$$(*) \qquad \forall_{s,t \in [a,b]} |s-t| < \delta \Rightarrow \left| [y'(t)]^2 - [y'(s)]^2 \right| < \varepsilon^2.$$

Niech  $\pi \in \mathcal{P}[a, b]$  będzie takim podziałem przedziału [a, b], że  $\pi = \{x_0, x_1, \dots, x_n\}$ ,

$$a = x_0 < x_1 < \ldots < x_n = b, \operatorname{diam}(\pi) < \delta.$$

Obliczymy długość łamanej  $\ell_{\pi}$  wpisanej w krzywą K.

$$\ell_{\pi} = \sum_{i=1}^{n} \sqrt{(x(t_i) - x(t_{i-1}))^2 - (y(t_i) - y(t_{i-1}))^2}.$$

Z twierdzenia Lagrange'a istnieje takie  $\xi_i \in [t_{i-1}, t_i]$ , że

$$x'(\xi_i) = \frac{x(t_i) - x(t_{i-1})}{t_i - t_{i-1}},$$

oraz takie  $\zeta_i \in [t_{i-1}, t_i]$ , że

$$y'(\zeta_i) = \frac{y(t_i) - y(t_{i-1})}{t_i - t_{i-1}}.$$

Dalej

$$\ell_{\pi} = \sum_{i=1}^{n} \sqrt{[x'(\xi_{i})^{2} \Delta t_{i}]^{2} + [y'(\zeta_{i}) \Delta t_{i}]^{2}} =$$

$$= \sum_{i=1}^{n} \sqrt{([x'(\xi_{i})]^{2} + [y'(\xi_{i})]^{2}) + ([y'(\zeta_{i})]^{2} - [y'(\xi_{i})]^{2})} \Delta t_{i} \leqslant$$

$$\leqslant \sum_{i=1}^{n} \sqrt{[x'(\xi_{i})]^{2} + [y'(\xi_{i})]^{2}} \Delta t_{i} + \sum_{i=1}^{n} \sqrt{[y'(\zeta_{i})]^{2} - [y'(\xi_{i})]^{2}} \Delta t_{i} \leqslant$$

$$\leqslant \sum_{i=1}^{n} \varphi(\xi_{i}) \Delta t_{i} + \varepsilon \sum_{i=1}^{n} \Delta t_{i} \leqslant \overline{S}(\varphi, \pi) + \varepsilon(b - a)$$

gdzie  $\varphi(t) := \sqrt{[x'(t)]^2 + [y'(t)]^2}$  i stąd  $\varphi(\xi_i) \leq \sup \varphi([t_{i-1}, t_i])$ .

Podobnie:

$$\ell_{\pi} \geqslant \sum_{i=1}^{n} \varphi(\xi_i) \Delta t_i - \varepsilon \sum_{i=1}^{n} \Delta t_i \geqslant \underline{S}(\varphi, \pi) - \varepsilon (b - a).$$

Mamy zatem

$$S(\varphi, \pi) - \varepsilon(b - a) \le \ell_{\pi} \le \overline{S}(\varphi, \pi) + \varepsilon(b - a)$$

o ile diam $(\pi) < \delta$ .

$$\int_{a}^{b} \varphi = \sup_{\pi \in \mathcal{P}[a,b]} \underline{S}(\varphi,\pi) \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < \delta}} \underline{S}(\varphi,\pi) \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \operatorname{diam}(\pi) < \delta}} \ell_{\pi} + \varepsilon(b-a) = L(K) + \varepsilon(b-a).$$

$$\int_{a}^{b} \varphi \leqslant L(K) + \varepsilon(b - a).$$

Przy  $\varepsilon \to 0$  dostajemy, że

$$\int_{a}^{b} \varphi \leqslant L(K).$$

Z drugiej strony - ustalmy  $\gamma > 0$ . Niech  $\pi_0 \in \mathcal{P}[a,b]$  będzie takim przedziałem, że

$$(**) \int_{a}^{b} \varphi + \gamma > \overline{S}(\varphi, \pi_{0})$$

$$L(K) = \sup_{\pi \in \mathcal{P}[a,b]} \ell_{\pi} = \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \text{diam}(\pi) < 0}} \ell_{\pi} \leqslant \sup_{\substack{\pi \in \mathcal{P}[a,b] \\ \text{diam}(\pi) < 0}} (\overline{S}(\varphi, \pi) + \varepsilon(b - a)) \leqslant$$

$$\leqslant \overline{S}(\varphi, \pi) + \varepsilon(b - a) \overset{(**)}{\leqslant} \int_{a}^{b} \varphi + \gamma + \varepsilon(b - a).$$

Mamy

$$L(K) < \int_{a}^{b} \varphi + \gamma + \varepsilon(b-a)$$

i przy  $\varepsilon \rightarrow 0,\, \gamma \rightarrow 0$ otrzymujemy, że

$$\int_a^b \varphi \leqslant L(K) \leqslant \int_a^b \varphi \text{ i ostatecznie } L(K) = \int_a^b \varphi.$$

Dla krzywej K o parametryzacji  $\Phi \colon [a,b] \to \mathbb{R}^n$ ; dla każdego podziału  $\pi = \{t_0,\ldots,t_m\}$  odcinka [a,b] określmy

$$L(K,\pi) := \sum_{i=1}^{m} \|\Phi(t_i) - \Phi(t_{i-1})\|$$

 $(\|\cdot\|)$  oznacza normę) Widzimy, że jest to długość łamanej o wierzchołkach  $\Phi(t_1), \ldots, \Phi(t_n)$  wpisanej w krzywą. Zatem długość L(K) możemy wyrazić następująco:

$$L(K) = \sup_{P \in \mathcal{P}[a,b]} L(K,\pi),$$

a gdy  $L(K) < \infty$ , to krzywa K jest prostowalna. Teraz przeprowadzimy pełny

Dowód twierdzenia 12.4.5. Jeżeli  $a \leq t_{i-1} < t_i \leq b$ , to

$$\|\Phi(t_i) - \Phi(t_{i-1})\| = \left\| \int_{t_{i-1}}^{t_i} \Phi'(t) dt \right\| \le \int_{t_{i-1}}^{t_i} \|\Phi'(t)\| dt.$$

Stąd dla dowolnego podziału  $\pi \in \mathcal{P}[a,b]$  mamy

$$L(K,\pi) \leqslant \int_a^b \|\Phi'(t)\| dt$$

i stąd

$$L(K) \leqslant \int_a^b \|\Phi'(t)\| \, \mathrm{d}t.$$

Pokażemy, że nierówność w drugą stronę też zachodzi. Ustalmy dowolne  $\varepsilon > 0$ .  $\Phi$  jest klasy  $C^1$ , zatem  $\Phi'$  jest ciągła jednostajnie (tw. Heinego-Cantora) i stąd istnieje  $\delta > 0$  taka, że

$$|x - y| < \delta \Rightarrow ||\Phi'(x) - \Phi'(y)|| < \varepsilon.$$

Niech  $\pi = \{t_0, \dots, t_m\} \in \mathcal{P}[a, b]$  tak, że  $\Delta t_i < \delta, \ 1 \leq i \leq m$ . Wówczas

$$\|\Phi'(x)\| \le \|\Phi'(t_i)\| + \varepsilon$$
, dla  $x \in [t_{i-1}, t_i]$ .

Mamy

$$\int_{t_{i-1}}^{t_i} \|\Phi'(x)\| dt \leq \|\Phi'(t_i)\| \Delta t_i + \varepsilon \cdot \Delta t_i = \left\| \int_{t_{i-1}}^{t_i} \left(\Phi'(x) + \Phi'(t_i) - \Phi'(x)\right) dt \right\| + \varepsilon \Delta t_i \leq \left\| \int_{t_{i-1}}^{t_i} \left(\Phi'(x)\right) + \left\|\Phi'(t_i) - \Phi'(x)\right\| dt + \varepsilon \Delta t_i \leq \left\|\Phi(t_i) - \Phi(t_{i-1})\right\| + 2\varepsilon \Delta t_i.$$

Sumując nierówności po wszystkich  $i=1,\ldots,n$  otrzymujemy, że

$$\int_{a}^{b} \|\Phi'(t)\| dt \leqslant L(K,\pi) + 2\varepsilon(b-a) \leqslant L(K) + 2\varepsilon(b-a).$$

Przy  $\varepsilon \to 0$  dostajemy, że  $\int_a^b \|\Phi'(t)\| dt \leqslant L(K)$ , czyli ostatecznie  $L(K) = \int_a^b \|\Phi'(t)\| dt$ .

**Twierdzenie 12.4.6.** *Jeżeli funkcja*  $f:[a,b] \to \mathbb{R}$  *jest klasy*  $C^1$  w [a,b], *to krzywa* 

$$K = \{(x, y) \in \mathbb{R}^2 : a \leqslant x \leqslant b \text{ oraz } y = f(x)\}$$

jest prostowalna i jej długość |K| wyraża się wzorem

$$|K| = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, \mathrm{d}x.$$

 $Dow \acute{o}d.$  Niech  $\varphi, \psi \colon [a,b] \to \mathbb{R}$ będą określone wzorami

$$\begin{cases} \varphi(t) = t, \\ \psi(t) = f(t), \ t \in [a, b]. \end{cases}$$

Wówczas krzywa K jest postaci

$$\begin{cases} x = \varphi(t), \\ y = \psi(t) = f(t), \ t \in [a, b]. \end{cases}$$

Ponadto  $\varphi$  i  $\psi$  są klasy  $C^1$ , gdyż  $\varphi'(t) = 1, \psi'(t) = f'(t), t \in [a, b]$ . Z twierdzenia 12.4.5:

$$|K| = \int_a^b \sqrt{1 + [f'(t)]^2} \, \mathrm{d}t.$$

Przykład131. Okrąg  $S^R$ o promieniu R>0jest krzywą o przedstawieniu parametrycznym:

$$\begin{cases} x = R \cos t, \\ y = R \sin t, \ t \in [0, 2\pi]; \end{cases}$$

$$l = |S^R| = \int_0^{2\pi} \sqrt{(-R\cos t)^2 + (R\sin t)^2} \, dt = \int_0^{2\pi} \sqrt{R^2} \, dt =$$
$$= \int_0^{2\pi} R \, dt = [Rt]_0^{2\pi} = R(2\pi - 0) = 2\pi R.$$

# 12.4.3 Pole figury ograniczonej krzywą opisaną we współrzędnych biegunowych.

Będziemy rozważać obszar D ograniczony łukiem krzywej K, zadanej parametrycznie:

$$\begin{cases} x = \varphi(t) \\ y = \psi(t), & t \in [\alpha, \beta] \end{cases}$$

osią OX oraz prostymi  $x=\varphi(\alpha),\,y=\psi(\beta).$  Pole |D| tego obszaru możemy obliczyć w oparciu o następujące

Twierdzenie 12.4.7. Jeżeli  $\varphi, \psi \colon [\alpha, \beta] \to \mathbb{R}$  są ciągle,  $\varphi$  jest klasy  $C^1$  w przedziale  $[\alpha, \beta] \subseteq \mathbb{R}$  oraz

$$\psi(t) \ge 0, t \in [\alpha, \beta],$$
  
 $\varphi'(t) > 0, t \in (\alpha, \beta),$ 

to obszar

$$D = \{(x, y) \in \mathbb{R} : \varphi(\alpha) \leqslant x \leqslant \varphi(\beta) \text{ oraz } 0 \leqslant y \leqslant \psi(t)\}$$

ma pole |D| i zachodzi równość

$$|D| = \int_{\alpha}^{\beta} \psi(t) \cdot \varphi'(t) dt.$$

*Dowód.* Ponieważ  $\varphi'(t) > 0, t \in (\alpha, \beta)$ , to  $\varphi$  jest w przedziale  $[\alpha, \beta]$  rosnąca i stąd - odwracalna w tym przedziale. Niech  $a = \varphi(\alpha)$  i  $b = \varphi(\beta)$ . Wówczas  $\varphi$  odwzorowuje przedział  $[\alpha, \beta]$  na [a, b] i mamy funkcję do niej odwrotną  $\varphi^{-1}$ :  $[a, b] \to [\alpha, \beta]$ .

$$\begin{cases} x = \varphi(t) \\ y = \psi(t), & t \in [\alpha, \beta] \end{cases}$$

Zatem  $t = \varphi^{-1}(x), t \in [\alpha, \beta]$  i  $y = \psi(\varphi^{-1}(x)), x \in [a, b]$ . Ponieważ  $\varphi^{-1}$  i  $\psi$  są ciągłe, to  $\psi \circ \varphi^{-1}$  jest ciągła. Korzystając z faktu 6 i twierdzenia 11.6.7 o całkowaniu przez podstawienie przeprowadzamy rachunki:

$$|D| = \int_{a}^{b} \psi(\varphi^{-1}(x)) dx =$$

$$= \int_{\alpha}^{\beta} \psi(\varphi^{-1}(\varphi(t))) \cdot \varphi'(t) dt = \int_{\alpha}^{\beta} \psi(t)\varphi'(t) dt.$$

Możemy opuścić warunek nieujemności funkcji  $\psi$ . Komplikując nieznacznie dowód można udowodnić, że prawdziwy będzie wzór

$$|D| = \int_a^b |\psi(t)| \cdot \varphi'(t) \, \mathrm{d}t.$$

**Twierdzenie 12.4.8.** Pole bszaru plaskiego D ograniczonego łukiem AB o równaniu biegunowym  $r = f(\varphi) \ge 0$  dla  $\alpha \le \varphi \le \beta$  oraz  $\beta - \alpha \le 2\pi$  i promieniu wodzącym OA i OB o długościach odpowiednio  $f(\alpha)$ ,  $f(\beta)$ , to o ile f jest funkcją ciąglą na przedziale  $[\alpha, \beta]$  wyraża się wzorem:

$$|D| = \frac{1}{2} \int_{\alpha}^{\beta} (f(\varphi))^2 d\varphi$$

Dowód. Niech  $f: [\alpha, \beta] \to [0, \infty)$ , gdzie  $[\alpha, \beta] \subseteq [0, 2\pi]$  będzie funkcją ciągłą oraz niech

$$D = \{(\varphi, r) : \alpha \leqslant \varphi \leqslant \beta \text{ oraz } 0 \leqslant r \leqslant f(\varphi)\}$$

Ustalamy podział  $\pi$  przedziału  $[\alpha, \beta]$ :

$$\alpha = \varphi_0 < \varphi_1 < \varphi_2 < \dots < \varphi_n = \beta.$$

Dla  $k \in \{1, ..., n\}$ :

$$m_k = \inf \{ f(\varphi) \colon \varphi \in [\varphi_{k-1}, \varphi_k] \},$$
  

$$M_k = \sup \{ f(\varphi) \colon \varphi \in [\varphi_{k-1}, \varphi_k] \},$$
  

$$\Delta \varphi_k = \varphi_k - \varphi_{k-1}.$$

Sumy całkowe przyjmują postać

$$\underline{S}(f,\pi) = \sum_{k=1}^{n} \frac{1}{2} m_k^2 \Delta \varphi_k,$$

$$\overline{S}(f,\pi) = \sum_{k=1}^{n} \frac{1}{2} M_k^2 \Delta \varphi_k.$$

Mamy

$$\sup_{\pi} \underline{S}(f,\pi) = \inf_{\pi} \overline{S}(f,\pi) = \int_{a}^{b} \frac{1}{2} (f(\varphi))^{2} d\varphi.$$

Zatem obszar ${\cal D}$ ma dobrze określone pole ${\cal D}$ i wyraża się ono równością

$$|D| = \frac{1}{2} \int_{a}^{b} (f(\varphi))^{2} d\varphi.$$

Przykład132. Pole koła  $K^R = \{(x,y) \in \mathbb{R}^2 \colon x^2 + y^2 \leqslant R\}$ o promieniu R > 0:

$$\begin{split} |K^R| &= \frac{1}{2} \int_0^{2\pi} R^2 \, \mathrm{d}\varphi = \frac{1}{2} \big[ R^2 \varphi \big]_0^{2\pi} = \\ &= \frac{1}{2} R^2 2\pi - \frac{1}{2} R^2 \cdot 0 = \pi R^2. \end{split}$$

## Rozdział 13

## Szeregi liczbowe

#### 13.1 Ciąg sum częściowych i jego granica - szereg

**Definicja 13.1.1** (Szereg). Niech  $(a_n)_{n\in\mathbb{N}}$  będzie dowolnym ciągiem liczb rzeczywistych lub zespolonych. Wyrażenie

$$S_n = a_0 + a_1 + \ldots + a_{n-1} + a_n$$

nazywamy n-tą **sumą częściową szeregu**. Szeregiem nazywamy ciąg  $(S_n)_{n\in\mathbb{N}}$ , a sumą szeregu (jeśli istnieje) granicę

$$\lim_{n\to\infty} S_n.$$

Jeśli powyższa granica nie istnieje, to mówimy, że dany szereg jest **rozbieżny**, w przeciwnym wypadku nazywamy go **zbieżnym**. Sumę szeregu będziemy na ogół oznaczać

$$\sum_{n=0}^{\infty} a_n = \lim_{n \to \infty} \sum_{k=0}^{n} a_k = \lim_{n \to \infty} S_n.$$

Zwyczajowo tym samym symbolem co sumę:  $\sum_{n=0}^{\infty}a_n,$  oznacza się też sam  $szereg\left(\sum_{k=0}^na_k\right)_{n\in\mathbb{N}}.$  W

rachunkach towarzyszących zastosowaniom zazwyczaj nie prowadzi to do nieporozumień. Zauważmy, że sumowanie możemy rozpoczynać od dowolnego indeksu, niekoniecznie k=0 albo 1 oraz, że pominięcie skończonej liczby początkowych wyrazów szeregu (czyli wyrazów w każdej sumie częściowej!) nie wpływa na to jaką szereg ma granicę.

Szeregi w ogólnym ujęciu. Ciąg  $(a_n)_{n\in\mathbb{N}}$  w definicji 13.1.1 nie musi być ciągiem liczb rzeczywistych ani zespolonych. Możemy uogólnić wiele wyników z tego rozdziału na ciągi wyrazów dowolnej przestrzeni Banacha. Przestrzeń banacha jest w szczególności przestrzenią metryczną, w której mamy poprawnie określoną zbieżność ciągu i jest określona nad pewnym ciałem. Możemy więc elementy ciągów dodawać, tworząc ciągi sum częściowych. Aksjomaty tej przestrzeni gwarantują istnienie normy, będącej analogią wartości bezwzględnej liczby rzeczywistej jak i modułu liczby zespolonej. Czytelnik może spróbować, które z twierdzeń i dowodów z tego rozdziału dadzą się uogólnić, korzystając z definicji 5.6.4 i 5.5.1 oraz odpowiednich własności z paragrafu 5.5.

Przykłady szeregów rozbieżnych.

- 1. Szereg  $\sum\limits_{n=1}^{\infty}1$  jest oczywiście rozbieżny do nieskończoności, jak podpowiada nam zdrowy rozsądek. Zauważmy też, że formalnie  $S_n=\underbrace{1+1+1+\ldots+1}_{n\text{-razy}}=n$ . A więc  $\lim\limits_{n\to\infty}S_n=\lim\limits_{n\to\infty}n=+\infty$  zgodnie z intuicją.
- 2. Podobnie  $\sum_{n=1}^{\infty} n = +\infty$ . Mamy:

$$S_n = 1 + 2 + 3 + \ldots + (n-1) + n = \frac{n(n+1)}{2} = \frac{n^2 + n}{2} \xrightarrow{n \to \infty} +\infty.$$

3. Szeregiem harmonicznym nazywamy szereg postaci:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$$

Kolejny sumy częściowe  $H_n=1+\frac{1}{2}+\ldots+\frac{1}{n}$  szeregu harmonicznego nazywamy liczbami harmonicznymi. Mamy:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \ldots + \left(\underbrace{\frac{1}{2^{n} + 1} + \frac{1}{2^{n} + 2} + \ldots + \frac{1}{2^{n+1}}}_{2^{n} \text{ składników}}\right) + \ldots$$

oraz następujące oszacowania:

$$\begin{split} &\frac{1}{2} \leqslant \frac{1}{2} \\ &\frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \\ &\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2} \\ &\vdots \end{split}$$

Ogólnie, dla każdego  $n \in \mathbb{N}$  zachodzi nierówność

$$\frac{1}{2^n+1} + \frac{1}{2^n+2} + \ldots + \frac{1}{2^{n+1}} > \underbrace{\frac{1}{2^{n+1}} + \frac{1}{2^{n+1}} + \ldots + \frac{1}{2^{n+1}}}_{2^n \text{ składników}} = \frac{1}{2}$$

czyli  $H_{2^n} \ge 1 + \frac{1}{2}n, n \in \mathbb{N}$ . Z własności ciągów, ciąg sum częściowych  $(H_n)_{n \in \mathbb{N}}$  jest rozbieżny do nieskończoności.

Przykład 133. Obliczymy sumę szeregu  $\sum_{k=1}^{\infty} \frac{1}{n(n+1)}$ . Zauważmy, że wyrażenie  $\frac{1}{n(n+1)}$  ma łatwy rozkład na ułamki proste:  $\frac{1}{n} - \frac{1}{n+1}$  (ćwiczenie). Zatem obliczmy:

$$\sum_{k=1}^{\infty} \frac{1}{n(n+1)} = \sum_{k=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right) = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{k+1}\right) = \lim_{n \to \infty} \left(1 - \frac{1}{n+1}\right) = 1.$$

Mamy więc pierwszy przykład szeregu, który ma skończoną wartość. Leonard Euler w 1735 roku wykazał, że suma szeregu

(13.1) 
$$\sum_{n=1}^{\infty} \frac{1}{n^2},$$

jest równa  $\frac{\pi^2}{6}$ , rozwiązując słynny problem bazylejski. Z problemem tym zmagali się Pytanie czy skończona suma istnieje jest prostsze: korzystając z poprzedniego przykładu i oszacowania:

$$\frac{1}{(1+n)^2} < \frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$$

wnioskujemy, że

$$S_n := \sum_{k=1}^n \frac{1}{k} < 2,$$

dla dowolnego  $n \in \mathbb{N}$ , czyli ciąg sum częściowych  $(S_n)_{n \in \mathbb{N}}$  jest ograniczony. Istotnie:

$$\sum_{k=1}^{n} \frac{1}{k^2} = 1 + \sum_{k=1}^{n-1} \frac{1}{(n+1)^2} < 1 + \sum_{k=1}^{n-1} \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 + \left(1 - \frac{1}{n}\right) < 2.$$

Ponieważ wyrazy szeregu (13.1) są nieujemne, to widzimy już, że szereg ten musi być zbieżny. *Przykład* 134 (Szereg geometryczny). Szereg

$$\sum_{n=0}^{\infty} x^n, \ x \in \mathbb{R}$$

jest zbieżny gdy  $0 \le x < 1$  oraz rozbieżny dla  $x \ge 1$ .

Dowód. Przypomnijmy, że

$$\sum_{k=1}^{n} x^{k-1} = \sum_{k=0}^{n-1} x^k = \frac{1-x^n}{1-x}.$$

Dla  $0 \le x < 1$  przy  $n \to \infty$  mamy  $x^n \to 0$  i

$$\lim_{n \to \infty} \sum_{k=0}^{n-1} x^k = \sum_{n=0}^{\infty} x^n = \frac{1}{1-x} \in \mathbb{R}.$$

Przykład 135. Pokażemy ponownie (patrz, przykład 25), że liczba 8,(3) jest wymierna. Niech x=8,(3). Mamy

$$x = 8,3333... = 8 + 3 \cdot \frac{1}{10^1} + 3 \cdot \frac{1}{10^2} + 3 \cdot \frac{1}{10^3} + 3 \cdot \frac{1}{10^4} + ... = 8 + 3 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n$$

Obliczmy sumę szeregu:

$$\sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n = \frac{1}{10} \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{n-1} = \frac{1}{1 - \frac{1}{10}} = \frac{10}{9}$$

Skorzystaliśmy z wzoru na sumę szeregu geometrycznego - patrz poprzedni przykład (podstaw  $x=\frac{1}{10}$ . Uwaga: sumowanie rozpoczyna się od n=1 - dlatego wyciągamy 1/10 przed nawias aby otrzymać właściwy wykładnik - równy n-1). Zatem

$$3 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^n = \frac{3}{10} \sum_{n=1}^{\infty} \left(\frac{1}{10}\right)^{n-1} = \frac{3}{10} \cdot \frac{10}{9} = \frac{1}{3}$$

Ostatecznie  $x=8+\frac{1}{3}=\frac{25}{3}$  - jest to oczywiście liczba wymierna.

**Twierdzenie 13.1.2** (Warunek konieczny zbieżności szeregu). *Jeżeli szereg*  $\sum_{n=0}^{\infty} a_n$  *jest zbieżny, to* 

$$\lim_{n \to \infty} a_n = 0.$$

Dowód. Niech  $S_n$  będzie n-tą sumą częściową szeregu i S będzie sumą szeregu:

$$\sum_{n=0}^{\infty} a_n = S$$

Wtedy  $\lim_{n\to\infty} S_n = S$  ale również  $\lim_{n\to\infty} S_{n-1} = S$ .

Zauważmy, że  $S_n - S_{n-1} = a_n$ . Stąd

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (S_n - S_{n-1}) = \lim_{n \to \infty} S_n - \lim_{n \to \infty} S_{n-1} = S - S = 0.$$

**Uwaga 13.1.3.** Twierdzenie nie zachodzi w drugą stronę. Np.  $\frac{1}{n} \xrightarrow{n \to \infty} 0$  ale szereg  $\sum_{n=1}^{\infty} \frac{1}{n}$  jest rozbieżny, jak już wcześniej wykazaliśmy.

Twierdzenie 13.1.4 (Warunek Cauchy'ego dla szeregów).

Szereg  $\sum_{n=0}^{\infty} a_n$  jest zbieżny wtedy i tylko wtedy, gdy dla każdego  $\varepsilon > 0$  istnieje  $N \in \mathbb{Z}$  takie, że

$$\left| \sum_{k=n+1}^{m} a_k \right| < \varepsilon, \ dla \ m \geqslant n \geqslant N.$$

Dowód. Zauważmy, że dla m=n dostajemy warunek konieczny zbieżności szeregów (poprzednie twierdzenie). Warunek Cauchy'ego zbieżności ciągów zastosowany do sum częściowych szeregu ma postać:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{m,n\in\mathbb{N},m\geqslant n\geqslant N}.|S_m-S_n|<\varepsilon.$$

Wystarczy zauważyć, że

$$\sum_{k=n+1}^{m} a_k = S_m - S_n.$$

Twierdzenie 13.1.5. Szereg o wyrazach nieujemnych jest zbieżny wtedy i tylko wtedy, gdy ciąg jego sum częściowych jest ograniczony.

Dowód. Niech  $a_n \ge 0$ ,  $n \in \mathbb{N}$ . Wówczas ciąg sum częściowych  $(S_n)_{n \in \mathbb{N}}$  jest niemalejący, bo

$$S_{n+1} = S_n + a_{n+1} \geqslant S_n, n \in \mathbb{N}.$$

Szereg  $\left(\sum_{k=1}^{n} a_{k}\right)_{n\in\mathbb{N}}$  jest zbieżny wtedy i tylko wtedy, gdy ciąg sum częściowych  $(S_{n})_{n\in\mathbb{N}}$  tego szeregu jest zbieżny w  $\mathbb{R}$ , a więc wtedy i tylko wtedy, gdy ciąg sum częściowych jest ograniczony.  $\square$ 

Definicja 13.1.6 (Zbieżność bezwzględna).

Mówimy, że szereg  $\sum_{n=0}^{\infty} a_n$  jest **bezwzględnie zbieżny**, gdy zbieżny jest szereg  $\sum_{n=0}^{\infty} |a_n|$ .

Twierdzenie 13.1.7. Każdy szereg bezwzględnie zbieżny, jest zbieżny.

Dowód. Ustalmy szereg  $\sum\limits_{n=1}^{\infty}a_n$ . Chcemy pokazać, że jeżeli zbieżny jest szereg  $\sum\limits_{n=1}^{\infty}|a_n|$ , to szereg  $\sum\limits_{n=1}^{\infty}a_n$  jest zbieżny. Ustalmy  $\varepsilon>0$ . Ze zbieżności szeregu  $\sum\limits_{n=1}^{\infty}|a_n|$  i twierdzenia 13.1.4 istnieje  $N\in\mathbb{N}$ , takie iż

$$\left| |a_{m+1}| + \ldots + |a_n| \right| < \varepsilon, \ n > m \geqslant N.$$

Czyli z własności wartości bezwzględnej, dla każdego  $n \geqslant N$ zachodzi oszacowanie

$$|a_{m+1} + \ldots + a_n| \le |a_{m+1}| + \ldots + |a_n| \le ||a_{m+1} + \ldots + |a_n|| < \varepsilon.$$

Szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny na mocy twierdzenia 13.1.4.

Z ostatniego oszacowania wyciągamy

Wniosek 13.1.8. Jeżeli szereg  $\sum_{n=1}^{\infty} |a_n|$  jest zbieżny, to zachodzi nierówność

$$\left| \sum_{n=1}^{\infty} a_n \right| \leqslant \sum_{n=1}^{\infty} |a_n|.$$

Mówimy też, że szereg zbieżny, który nie jest zbieżny bezwzględnie jest zbieżny warunkowo.

Twierdzenie 13.1.9 (Riemanna). Mając dany szereg zbieżny warunkowo, można przez zamianę porządku jego składników uzyskać szereg rozbieżny lub zbieżny do z góry zadanej granicy (skończonej lub nieskończonej).

Dowód powyższego twierdzenia pomijamy. Można go znaleźć np. w *Podstawach Analizy Matematycznej* Waltera Rudina. W wypadku szeregu bezwzględnie zbieżnego (w szczególności: szeregu zbieżnego o wyrazach nieujemnych) możemy dowolnie zamieniać kolejność wyrazów nie wpływając na jego granicę (sumę).

Twierdzenie 13.1.10.  $e = \sum_{n=1}^{\infty} \frac{1}{n!}$ , gdzie e oznacza oczywiście liczbę Eulera.

 $\label{eq:Dowod} \begin{aligned} & \text{Dowod. Niech } s_n = \sum_{k=1}^n \frac{1}{k!} \text{ oraz } e_n := \left(1 + \frac{1}{n}\right)^n. \text{ Wiemy, } \\ & \text{że} \left(1 + \frac{1}{n}\right)^n \leqslant \sum_{k=1}^n \frac{1}{k!} \text{ (porównaj dowód tw. 4.4.10)}. \\ & \text{Czyli } e_n \leqslant s_n, n \in \mathbb{N}. \text{ Dalej, korzystając z twierdzenia o dwumianie newtona:} \end{aligned}$ 

$$e_n = 1 + \underbrace{\frac{n!}{(n-1)!1!n}}_{1} + \frac{n!}{(n-2)!2!n^2} + \dots + \frac{n(n-1)\cdots(n-k+1)}{k!n^k} + \dots + \underbrace{\frac{n!}{(n-n)!n!n^n}}_{\frac{1}{2}}$$

$$e_n = 1 + 1 + \frac{1}{2!} \left( \frac{n(n-1)}{n^2} \right) + \frac{1}{3!} \left( \frac{n(n-1)(n-2)}{n^3} \right) + \dots + \frac{1}{n!} \left( \frac{n - \text{wyrazów}}{n(n-1) \cdots (n-k+1)} \right)$$

$$e_n = 1 + 1 + \frac{1}{2!} \left( 1 - \frac{1}{n} \right) + \frac{1}{3!} \left( 1 - \frac{1}{n} \right) \left( 1 - \frac{2}{n} \right) + \ldots + \frac{1}{n!} \left( 1 - \frac{1}{n} \right) \cdots \left( 1 - \frac{n-1}{n} \right)$$

Zauważmy, że  $e_n > 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n}\right) + \ldots + \frac{1}{k!} \left(1 - \frac{1}{n}\right) \cdots \left(1 - \frac{k-1}{n}\right)$ dla k < n. Korzystając z twierdzenia o zachowaniu nierówności przy przejściu do granicy:

$$\lim_{n \to \infty} e_n \ge 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \ldots + \frac{1}{k!} = s_k, \ k < n.$$

Mamy więc tak naprawdę, że  $s_n \leq e, \ n \in \mathbb{N}.$  Łącząc ten fakt z poprzednim oszacowaniem, mamy iż

$$e_n \leqslant s_n \leqslant e, \ n \in \mathbb{N}.$$

Przy  $n \to \infty$  na mocy twierdzenia o trzech ciągach dostajemy, że  $s_n \to e$ , co było do okazania.  $\square$   $\acute{C}wiczenie$  107 (Twierdzenie Toeplitza). Udowodnić, że jeżeli  $(a_n)_{n \in \mathbb{N}}$  i  $(b_n)_{n \in \mathbb{N}}$  są takimi ciągami liczb rzeczywistych, że  $\sum_{n=1}^{\infty} a_n = \infty$ , a  $(x_n)_{n \in \mathbb{N}}$  ma granicę g (skończoną lub nie), to

$$\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n} a_k b_k}{\sum_{k=1}^{n} a_k} \right) = g.$$

## 13.2 Kryteria zbieżności szeregów

Omówimy teraz wiele przydatnych twierdzeń, w większości określanych jako "kryteria zbieżności szeregów". Dzięki nim będziemy w stanie rozstrzygnąć, czy dany szereg ma skończoną sumę czy też jest rozbieżny. Szczególnie liczne są metody dotyczące szeregów o wyrazach dodatnich lub przynajmniej nieujemnych, a podstawą jest tu porównywanie badanego szeregu z innymi szeregami, o których zbieżności/rozbieżności już wiemy. Jedną ze skuteczniejszych metoda badania szeregów nieujemnych podamy na końcu i będzie ona oparta na porównywaniu szeregu z całką niewłaściwą.

**Twierdzenie 13.2.1** (Kryterium Leibniza). *Jeżeli ciąg liczbowy*  $(a_n)_{n\in\mathbb{N}}$  *spełnia nast. warunki:* 

- 1.  $a_n \geqslant 0, n \in \mathbb{N},$
- $2. \lim_{n \to \infty} a_n = 0,$
- 3.  $ciag \ a_n \ jest \ nierosnacy;$

to szereg

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

jest zbieżny.

Dowód. Zauważmy, że  $S_{2^{n+1}} = S_{2^n} + (a_{2^{n+1}} - a_{2^{n+2}})$  oraz z założenia, że ciąg jest malejący  $a_{2^{n+}} - a_{2^{n+2}} \ge 0$ . Krótko mówiąc: podciąg  $(S_{2^n})_{n \in \mathbb{N}}$  jest rosnący. Zauważmy, że jest też ograniczony:

$$S_{2^n} = a_0 - a_1 + a_2 - \ldots + a_{2^n} = a_0 - (\underbrace{(a_1 - a_2)}_{\geqslant 0} + \underbrace{(a_3 - a_4)}_{\geqslant 0} + \ldots + \underbrace{(a_{2^n - 1} - a_{2^n})}_{\geqslant 0}) \leqslant a_0.$$

Ciąg  $(S_{2^n})_{n\in\mathbb{N}}$  jest zbieżny. Musimy teraz pokazać, że  $\lim_{n\to\infty}S_{2^{n+1}}=\lim_{n\to\infty}S_{2^n}$ . Wystarczy zauważyć, że  $S_{2^{n+1}}=S_{2^n}+a_{2^{n+1}}$  a  $\lim_{n\to\infty}a_{2^{n+1}}=0$  z założenia a więc

$$\lim_{n \to \infty} S_{2^{n+1}} = \lim_{n \to \infty} (S_{2^n} + a_{2^{n+1}}) = \lim_{n \to \infty} S_{2^n}.$$

Twierdzenie 13.2.2 (Kryterium Dirichleta). Jeżeli ciąg sum częściowych szeregu  $\sum_{n=0}^{\infty} a_n$  jest ograniczony, a  $(b_n)_{n\in\mathbb{N}}$  jest ciągiem liczb rzeczywistych, który jest monotoniczny i zbieżny do zera, to szereg  $\sum_{n=1}^{\infty} a_n b_n$  jest zbieżny.

Dowód. Niech  $(S_n)_{n\in\mathbb{N}}$  będzie ciągiem sum częściowych szeregu  $\sum_{n=0}^{\infty}a_n$ . Z założenia istnieje M>0 takie, że

$$|S_n| \leqslant M, n \in \mathbb{N}.$$

Zauważmy, że albo ciąg  $(b_n)$  jest nierosnący i  $b_n \ge 0, n \in \mathbb{N}$ , albo jest niemalejący i  $b_n \le 0, n \in \mathbb{N}$ . Niech np. będzie ciągiem nierosnącym. Niech  $(\sigma_n)_{n \in \mathbb{N}}$  będzie ciągiem sum częśćiowych szeregu  $\sum_{n=1}^{\infty} a_n b_n$ . Czyli

$$\sigma_n = a_1b_1 + a_2b_2 + \ldots + a_nb_n, \ n \in \mathbb{N}.$$

Ustalmy  $\varepsilon > 0$ . Dobierzmy  $N \in \mathbb{N}$  tak, że

$$b_n < \frac{\varepsilon}{2M}$$
, dla  $n \geqslant N$ .

Takie N istnieje, ponieważ z założenia  $\lim_{n\to\infty} b_n = 0$ . Obliczamy

$$\begin{aligned} a_{m+1}b_{m+1} + a_{m+2}b_{m+2} + \ldots + a_{n-1}b_{n-1} + a_nb_n + \ldots &= \\ &= b_{m+1}\left(S_{m+1} - S_m\right) + b_{m+2}\left(S_{m+2} - S_{m+1}\right) + \ldots + \\ &+ \ldots + b_{n-1}(S + n - 1 - S_{n-2}) + b_n(S_n - S_{n-1}) &= \\ &= -b_{m+1}S_m + (b_{m+1} - b_{m+2})S_{m+1} + \ldots + (b_{n-1} - b_{n-1})S_{n-1} + b_nS_n. \end{aligned}$$

Weźmy  $n > m \ge N$ . Wtedy

$$|\sigma_n - \sigma_m| = |(-b_{m+1})S_m + (b_{m+1} - b_{m+2}S_{m+1} + \dots + (b_{n-1} - b_{n-1})S_{n-1} + b_nS_n| \le$$

$$\le |-b_{m+1}||S_m| + |b_{m+1} - b_{m+2}||S_{m+1}| + \dots + |b_{n-1} - b_{n-1}||S_{n-1}| + |b_n||S_n|.$$

Ciąg  $(b_n)_{n\in\mathbb{N}}$  jest nierosnący, a więc  $b_{n+1}\leqslant b_n, n\in\mathbb{N}$ . Ostatnia suma ma postać

$$\begin{aligned} b_{m+1}|S_m| + (b_{m+1} - b_{m+2})|S_{m+1}| + \dots + b_n|S_n| &\leq \\ &\leq (b_{m+1} + (b_{m+1} - b_{m+2}) + (b_{m+2} - b_{m+3}) + \dots + (b_{n-1} - b_n)) M = 2b_{n+1}M < \varepsilon. \end{aligned}$$

Czyli  $|\sigma_n - \sigma_m| < \varepsilon$  dla  $n > m \ge N$ . Zatem szereg  $\sum_{n=0}^{\infty} a_n b_n$  jest zbieżny na mocy twierdzenia 13.1.4.

Zauważmy, że kryterium Leibniza wynika z kryterium Dirichleta. Weźmy  $b_n = (-1)^n, n \in \mathbb{N}$ . Wówczas ciąg sum częściowych szeregu  $\sum_{n=1}^{\infty} b_n$  jest ograniczony:  $S_n \in \{-1,0\}, n \in \mathbb{N}$ . Z twierdzenia

Dirichleta szereg  $\sum_{n=1}^{\infty} (-1)^n a_n$  jest zbieżny, gdy ciąg  $(a_n)_{n\in\mathbb{N}}$  jest nierosnący i zbieżny do zera.

Wprowadzimy dość prostą ale użyteczną tożsamość dotyczącą sum, w charakterze lematu przed następnym kryterium:

Twierdzenie 13.2.3 (Sumowanie częściowe). Dla dowolnych ciągów liczb  $(a_n)_{n\in\mathbb{N}}$  i  $(b_n)_{n\in\mathbb{N}}$  przyjmijmy oznaczenie

$$A_n = \sum_{k=0}^{n} a_k$$
, dla  $n \ge 0$ ,  $A_{-1} = 0$ .

W'owczas,  $je\'sli~0 \leqslant M \leqslant N$ , to

(13.2) 
$$\sum_{k=M}^{N} a_k b_k = \sum_{k=M}^{N-1} A_k (b_k - b_{k+1}) + A_N b_N - A_{M-1} b_M.$$

Dowód. Mamy

$$\sum_{k=M}^{N} a_k b_k = \sum_{k=M}^{N} (A_k - A_{k-1}) b_k =$$

$$= \sum_{k=M}^{N} A_k b_k - \sum_{k=M}^{N} A_{k-1} b_k = \sum_{k=M}^{N} A_k b_k - \sum_{k=M-1}^{N-1} A_k b_{k+1} =$$

$$= \sum_{k=M}^{N} A_k b_k - \left(\sum_{k=M}^{N-1} A_k b_{k+1} + A_{M-1} b_M\right) =$$

$$= \sum_{k=M}^{N-1} A_k (b_k - b_{k+1}) + A_{M-1} b_M + A_N b_N.$$

Tożsamość (13.2) bywa nazywana tożsamością Abela.

Namęczyliśmy się z dowodem kryterium Dirichleta, eksploatując dotychczasowe sztuczki. Teraz przećwiczymy nowe narzędzie, jakim jest ostatnie twierdzenie.

Drugi dowód Kryterium Dirichleta. Przypomnijmy założenia:  $\lim_{n\to\infty} b_n = 0, b_n \geqslant b_{n+1}, n \in \mathbb{N}$  oraz ciąg  $(A_n)_{n\in\mathbb{N}}$  sume częściowych szeregu  $\sum_{n=1}^{\infty} a_n$  jest ograniczony - np. przez M.

Chcemy pokazać, że zbieżny jest szereg  $\sum_{n=1}^{\infty} a_n b_n$ . Ustalmy  $\varepsilon > 0$ . Istnieje  $n_0 \in \mathbb{N}$  tak, że  $b_n \leqslant \frac{\varepsilon}{2M}$ ,  $n \geqslant n_0$ . Wówczas dla  $n_0 \leqslant m \leqslant n$ :

$$\left| \sum_{k=m}^{n} a_k b_k \right| = \left| \sum_{k=m}^{n-1} A_k \underbrace{(b_k - b_{k+1})}_{\geqslant 0} + A_n b_n + A_{m-1} b_m \right| \leqslant$$

$$\leqslant M |b_{n-1} - b_n + b_n + b_m| = M |b_{n-1} + b_m| \leqslant M \frac{2\varepsilon}{2M} = \varepsilon.$$

Szereg jest zbieżny wobec warunku Cauchy'ego dla szeregów.

Dla M = 0,  $b_0 = 0$  i N > M ze wzoru (13.2) otrzymujemy

**Lemat 13.2.4.** Dla dowolnych liczb  $a_0, \ldots, a_N, b_0, \ldots, b_N \in \mathbb{N}$ :

(13.3) 
$$\sum_{k=0}^{N} a_k b_k = \sum_{k=0}^{N-1} (b_k - b_{k+1}) \sum_{k=0}^{N} a_k + b_N \sum_{k=0}^{N} a_k = \sum_{k=0}^{N-1} A_k (b_k - b_{k+1}) + b_N A_N.$$

**Twierdzenie 13.2.5** (Kryterium Abela). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą ciągami liczb rzeczywistych. Jeżeli szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny a ciąg  $(b_n)_{n\in\mathbb{N}}$  monotoniczny i ograniczony, to szereg  $\sum_{n=1}^{\infty} a_n b_n$  jest zbieżny. Dowód. Oznaczmy  $A_n = \sum_{k=0}^n a_k$ . Ponieważ ciąg  $(b_n)_{n \in \mathbb{N}}$  jest monotoniczny i ograniczony, to jest zbieżny. Zbieżność szeregu  $(a_n)_{n \in \mathbb{N}}$ ,  $(b_n)_{n \in \mathbb{N}}$  oznacza, że zbieżny jest ciąg  $(A_n)_{n \in \mathbb{N}}$  i stąd istnieje M > 0 takie, że

$$|A_n| \leqslant M, n \in \mathbb{N}.$$

Szacujemy

$$\sum_{k=0}^{N-1} |A_k(b_k - b_{k+1})| = \sum_{k=0}^{N-1} |A_k| |b_k - b_{k+1}| \le M \sum_{k=0}^{N-1} |b_k - b_{k+1}| \le M |b_1 - b_N|.$$

 $\lim_{n\to\infty} M|b_1-b_N|=M|b_1-b|\in\mathbb{R}$ , gdzie b jest granicą ciągu  $(b_n)_{n\in\mathbb{N}}$ . Zatem szereg

$$\sum_{n=0}^{\infty} A_n (b_n - b_{n+1})$$

jest zbieżny bezwzględnie a ponadto zbieżny jest ciąg  $(A_nb_n)_{n\in\mathbb{N}}$ . Stąd już i z równości (13.3) wynika pożądana zbieżność.

Przykład 136. Załóżmy, że zbieżny jest szereg  $\sum_{n=1}^{\infty} a_n$ . Wówczas zbieżne są szeregi

$$\sum_{n=1}^{\infty} \sqrt[n]{n} a_n \text{ oraz } \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) a_n.$$

**Szeregi o wyrazach nieujemnych.** Podstawowym narzędziem w badaniu zbieżności szeregów o wyrazach nieujemnych jest

**Twierdzenie 13.2.6** (Kryterium porównawcze). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą pewnymi ciągami o wyrazach nieujemnych. Załóżmy, że dla pewnego  $n_0\in\mathbb{N}$  zachodzi  $a_n\leqslant b_n, n\geqslant n_0$ . Wówczas

- jeżeli szereg  $\sum_{n=1}^{\infty} b_n$  jest zbieżny, to zbieżny jest szereg  $\sum_{n=1}^{\infty} a_n$ ,
- jeżeli szereg  $\sum_{n=1}^{\infty} a_n$  jest rozbieżny, to rozbieżny jest szereg  $\sum_{n=1}^{\infty} b_n$ .

Dowód. Załóżmy, że szereg  $\sum\limits_{n=1}^{\infty}b_n$  jest zbieżny i  $a_n\leqslant b_n,\ n\geqslant n_0$  dla pewnego  $n_0\in\mathbb{N}$ . Istnieje  $n_1\in\mathbb{N}$  takie, iż  $B_m-B_n<\varepsilon$  dla  $m\geqslant n\geqslant n_1$ . Niech  $N=\max\{n_0,n_1\}$ . Wówczas

$$A_m - A_n \leqslant B_m - B_n < \varepsilon \text{ dla } m \geqslant n \geqslant N.$$

Szereg  $\sum_{n=1}^{\infty} a_n$  jest zbieżny na mocy twierdzenia 13.1.4.

W drugą stronę: jeżeli  $0 \le a_n \le b_n$ ,  $n \ge n_0$  i szereg  $\sum_{n=1}^{\infty} a_n$  jest rozbieżny, to

$$\sum_{n=0}^{\infty} b_n = \lim_{n \to \infty} B_n \geqslant \lim_{n \to \infty} A_n = \infty.$$

Uwaga 13.2.7. Gdy teza powyższego twierdzenia jest spełniona, to oczywiście na mocy twierdzenia o trzech ciągach

$$\sum_{n=1}^{\infty} a_n \leqslant \sum_{n=1}^{\infty} b_n.$$

W operowaniu powyższym kryterium dużą rolę ma znajomość wielu przykładów szeregów zbieżnych i rozbieżnych. Szczególnie warto zapamiętać przykład139.

Przydaje się też znajomość różnych nierówności, na przykłąd warto mieć na uwadze:

$$2^{n-1} \leqslant n! \leqslant n^n, n \in \mathbb{N}, n > 4$$
$$\frac{x}{1+x} \leqslant \log(1+x) \leqslant x, x > 0$$
$$\sin x \leqslant 1, x \in \mathbb{R}$$
$$\sin x \leqslant x, x > 0$$

Większość tych nierówności jest oczywista lub była już wcześniej dowodzona.

Przykład 137. Wróćmy jeszcze raz do liczby e. W różnych działach analizy, autorzy dla wygody przyjmują sumę szeregu  $\sum_{n=1}^{\infty} \frac{1}{n!}$  za definicję liczby e. Wtedy oczywiście trzeba udowodnić zbieżność tego szeregu. Zauważmy jednak, że

$$\frac{1}{n!} \leqslant \frac{1}{2^{n-1}}, \text{ dla } n > 4.$$

Wystarczy skorzystać z nierówności  $2^{n-1} \leqslant n!, \ n>4$  - porównaj tw. 3.4.5. Szereg  $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$  jest zbieżny, gdyż jest to szereg geometryczny (porównaj przykład 134) o wyrazie  $x=\frac{1}{2}$ . Stąd na mocy kryterium porównawczego szereg  $\sum_{n=1}^{\infty} \frac{1}{n!}$  jest zbieżny. Korzystając z tej zbieżności i wychodząc od tak zdefiniowanej liczby e, można oczywiście w drugą stronę dowodzić, że  $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n=e$ -czyli że taka granica istnieje. Zasadniczo, jeśli wrócimy do dowodu twierdzenie 4.4.10 to bardziej elegancko, w miejscu, gdzie szukaliśmy ograniczenia ciągu z góry, posłużyć się właśnie oszacowaniem  $2^{n-1}\leqslant n!, \ n>4$  i nawet uzasadnić od razu, że po prawej stronie mamy szereg zbieżny.

Ćwiczenie 108. Zbadać zbieżność szeregu  $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$ .

Przytoczymy jeszcze poprzednie twierdzenie w innej wersji:

**Twierdzenie 13.2.8** (Kryterium graniczne). Niech  $(a_n)_{n\in\mathbb{N}}$ ,  $(b_n)_{n\in\mathbb{N}}$  będą pewnymi ciągami tak, że  $a_n \geq 0$  oraz  $b_n > 0$  dla każdego  $n \in \mathbb{N}$ . Jeżeli istnieje granica  $G = \lim_{n \to \infty} \frac{a_n}{b_n}$  i  $G \in (0, \infty)$ , to szeregi  $\sum a_n$  i  $\sum b_n$  są albo równocześnie zbieżne albo równocześnie rozbieżne.

Dowód. Załóżmy, że  $\lim_{n\to\infty}\frac{a_n}{b_n}=G$  i ustalmy  $\varepsilon>0$ . Istnieje takie  $N\in\mathbb{N},$  że

$$G - \varepsilon < \frac{a_n}{b_n} < G + \varepsilon$$
, dla  $n \ge N$ .

Mamy  $a_n < (G+\varepsilon)b_n$  i  $G+\varepsilon \in \mathbb{R}$  więc teza wynika z twierdzenia 13.2.6. Z drugiej strony, ponieważ G<0, to możemy dobrać  $\varepsilon < G$  i wówczas  $G-\varepsilon > 0$ . Mamy

$$b_n < \frac{1}{G - \varepsilon} a_n, \ n \geqslant N.$$

Stąd ponownie teza wynika z poprzedniego twierdzenia.

**Uwaga 13.2.9.** Jeżeli  $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ , to zbieżność szeregu  $\sum b_n$  pociąga zbieżność szeregu  $\sum a_n$  a jeżeli  $\lim_{n\to\infty}\frac{a_n}{b_n}=\infty$ , to rozbieżność szeregu  $\sum b_n$  pociąga rozbieżność szeregu  $\sum a_n$ .

Przykład 138. Zbadamy zbieżność szeregu  $\sum_{n=1}^{\infty} (\ln(n+1) - \ln n)$ . Obliczmy granicę:

$$G = \lim_{n \to \infty} \frac{\ln(n+1) - \ln n}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\ln \frac{n+1}{n}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{\ln(1 + \frac{1}{n})}{\frac{1}{n}}.$$

Stąd G=1 (w razie wątpliwości: tożsamość (6.6)). Ponieważ  $G\in(0,\infty)$  oraz szereg  $\sum_{n=1}^{\infty}\frac{1}{n}$  jest rozbieżny, to również nasz wyjściowy szereg jest rozbieżny.

Przytoczymy użyteczne oszacowanie, z którego często można skorzystać porównując szeregi:

**Twierdzenie 13.2.10.** *Dla dowolnego* x > -1:

$$\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x.$$

Podobnie warto mieć w świadomości dowodzone wcześniej oszacowania, np.

$$e^x \geqslant 1 + x, \ x \in \mathbb{R},$$
  
 $\sin x \leqslant |x|, \ x \in \mathbb{R},$   
 $|\sin x| \leqslant 1, \ x \in \mathbb{R},$ 

etc.

Twierdzenie 13.2.11 (Kryterium kondensacyjne Cauchy'ego). Załóżmy, że  $(a_n)_{n\in\mathbb{N}}$  jest nierosnącym ciągiem liczb rzeczywistych dodatnich. Wówczas

szereg 
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny wtedy i tylko wtedy, gdy zbieżny jest szereg  $\sum_{n=1}^{\infty} 2^n a_{2^n}$ .

Dowód. Niech  $S_n=a_1+\ldots+a_n$  i  $T_n=2^0a_{2^0}+\ldots+2^na_{2^n}$ . Przyjrzyjmy się następującym oszacowaniom:

$$\begin{aligned} a_1 &\leqslant a_1 = 2^0 a_{2^0} \\ a_2 + a_3 &\leqslant a_2 + a_2 = 2^1 a_{2^1} \\ a_4 + a_5 + a_6 + a_7 &\leqslant a_4 + a_4 + a_4 + a_4 = 2^2 a_{2^2} \\ a_8 + a_9 + a_{10} + a_{11} + a_{12} + a_{13} + a_{14} + a_{15} &\leqslant 8 \cdot a_8 = 2^3 a_{2^3} \\ &\vdots \\ \underbrace{a_{2^n} + a_{2^n+1} + \ldots + a_{2^{n+1}-1}}_{2^n} &\leqslant 2^n a_{2^n} \end{aligned}$$

Zatem zachodzą następujące nierówności

$$a_1 + \ldots + a_n \le a_1 + \ldots + a_{2^n + 1} \le 2^0 a_{2^0} + \ldots + 2^n a_{2^n}$$

a stąd mamy oszacowania

(13.5) 
$$S_n = \sum_{k=1}^n a_k \leqslant \sum_{k=1}^{2^{n+1}-1} a_k \leqslant \sum_{k=1}^n 2^k a_{2^k} = T_n$$

Z drugiej strony

$$T_n = a_1 + (a_2 + a_2) + (a_4 + a_4 + a_4 + a_4) + \dots + (a_{2^n} + \dots + a_{2^n})$$

i mamy oszacowania kolejnych wyrazów w nawiasach prawej strony powyższej równości:

$$a_1 + a_2 \le a_1 + a_1 = 2S_1$$

$$a_2 + a_4 + a_4 + a_4 \le a_2 + a_2 + a_4 + a_4 = 2(S_4 - S_1)$$

$$a_4 + a_8 \le a_5 + a_5 + a_6 + a_6 + a_7 + a_7 + a_8 + a_8 = 2(S_8 - S_4)$$

$$\vdots$$

$$a_{2^n} + \ldots + a_{2^n} \le 2(S_{2^n} - S_{2^{n-1}})$$

Sumując stronami powyższe nierówności, otrzymujemy następujące oszacowanie

$$(13.6) T_n \leq 2(S_{2^n} - S_{2^{n-1}} + S_{2^{n-1}} - \dots - S_8 + S_8 - S_4 + S_4 - S_1 + S_1) = 2S_{2^n}.$$

Łącząc wyniki (13.5) i (13.6) otrzymujemy zależność

$$(13.7) S_n \leqslant T_n \leqslant 2S_{2^n}.$$

Prawdziwość tezy twierdzenia wynika teraz z nierówności (13.7) na mocy kryterium porównawczego.

Powyższe twierdzenie bywa również nazywane kryterium zagęszczającym, kryterium zagęszczającym Cauchy'ego, etc. Nie mylić z "kryterium Cauchy'ego", które poznamy za chwilę.

*Przykład* 139. Szereg harmoniczny rzędu p, czyli szereg  $\sum_{n=0}^{\infty} \frac{1}{n^p}$  jest zbieżny, jeżeli p > 1 i rozbieżny, jeżeli  $p \le 1$ .

 $Dow \acute{o}d.$  Jeśli $p\leqslant 0,$ to szereg oczywiście jest rozbieżny, bo nie jest spełniony warunek konieczny 13.1.2 zbieżności szeregu. Dla p>0 zastosujmy kryterim kondensacyjne 13.2.11. Przejdźmy do szeregu

$$\sum_{n=0}^{\infty} 2^n \frac{1}{2^{np}} = \sum_{n=0}^{\infty} 2^{(1-p)n}.$$

Teraz:  $2^{1-p} < 1$  wtedy i tylko wtedy, gdy 1-p < 0 i wystarczy przyjąć  $q = 2^{1-p}$  aby uzyskać zbieżny szereg geometryczny.

W szczególności z powyższego przykładu wynika rozbieżność szeregu harmonicznego, której dowodziliśmy wcześniej.

Przykład 140. Szereg  $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$  jest rozbieżny. Otóż widzimy, że szereg

$$\sum_{n=2}^{\infty} \frac{2^n}{2^n \ln 2^n} = \sum_{n=2}^{\infty} \frac{1}{\ln 2^n} = \sum_{n=2}^{\infty} \frac{1}{n \ln 2} = \frac{1}{\ln 2} \sum_{n=2}^{\infty} \frac{1}{n}$$

jest rozbieżny - jest to iloczyn stałej  $\frac{1}{\ln 2}$  i szeregu rozbieżnego. Ponadto ciąg  $(\frac{1}{n \ln n})_{n \in \mathbb{N}}$  jest nierosnący. Rozbieżność wyjściowego szeregu wynika teraz z kryterium kondensacyjnego.

*Ćwiczenie* 109. Zbadać zbieżność szeregu  $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$  w zależności od parametru  $p \in \mathbb{R}$ .

**Twierdzenie 13.2.12** (Kryterum Cauchy'ego). Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb nieujemnych.

- $Je\dot{z}eli \limsup_{n\to\infty} \sqrt[n]{a_n} < 1$ , to  $szereg \sum_{n=1}^{\infty} a_n \ jest \ zbie\dot{z}ny$ .
- Jeżeli  $\limsup_{n\to\infty} \sqrt[n]{a_n} > 1$ , to szereg  $\sum_{n=1}^{\infty} a_n$  jest rozbieżny.

Dowód. Niech  $D = \limsup_{n \to \infty} \sqrt[n]{a_n}$  i rozpatrzymy przypadki.

- 1. Niech najpierw D<1. Weźmy  $\alpha\in\mathbb{R}$  tak, że  $D<\alpha<1$ . Istnieje (lemat 4.5.13)  $N\in\mathbb{N}$  takie, że  $\sqrt[n]{a_n}<\alpha,\ n\geqslant N$ . Szereg  $\sum\limits_{n=0}^{\infty}\alpha^n$  jest zbieżny, gdyż  $\alpha\in[0,1)$  i zbieżność szeregu  $\sum\limits_{n=1}^{\infty}a_n$  wynika z kryterium porównawczego.
- 2. D>1. Weźmy ciąg  $(n_k)_{k\in\mathbb{N}}$  l. naturalnych tak, że  $\lim_{k\to\infty} \sqrt[n_k]{a_{n_k}}=D$ . A więc  $a_{n_k}>1$  dla nieskończenie wielu  $k\in\mathbb{N}$ . Czyli  $\lim_{n\to\infty}a_n\geqslant 1$  i nie może być spełniony warunek konieczny (twierdzenie 13.1.2) zbieżności szeregu.

Uwaga 13.2.13. Jeżeli lim sup $\sqrt[n]{a_n}=1$ to kryterium 13.2.12 nie rozstrzyga zbieżności szeregu!

**Uwaga 13.2.14.** Oczywiście, jeżeli ciąg  $(\sqrt[n]{a_n})_{n\in\mathbb{N}}$  jest zbieżny, to  $\limsup_{n\to\infty}\sqrt[n]{a_n}=\lim_{n\to\infty}\sqrt[n]{a_n}$  i możemy w celu posłużenia się kryterium 13.2.12 po prostu obliczyć granicę.

**Uwaga 13.2.15.** Możemy nawet opuścić warunek nieujemności wyrazów ciągu w twierdzeniu 13.2.12 zastępując wyrażenie  $\limsup_{n\to\infty} \sqrt[n]{a_n}$  przez  $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$ . W wypadku ciągu  $(z_n)$  liczb zespolonych, biorąc moduł liczby zespolonej  $z_n$  badamy granicę górną ciągu  $\sqrt[n]{|z_n|}$ .

**Twierdzenie 13.2.16** (Kryterium d'Alemberta). Załóżmy, że  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem nieujemnym.

Jeżeli istnieje granica 
$$D = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$
, to wtedy:

-  $gdy \ D < 1$ , to  $szereg \sum_{n=1}^{\infty} a_n \ jest \ zbieżny$ ,

- 
$$gdy \ D > 1$$
, to  $szereg \sum_{n=1}^{\infty} a_n \ jest \ rozbieżny$ .

Dowód. Załóżmy najpierw, że D<1. Weźmy dow. liczbę rzeczywistą  $\alpha\in(D,1)$  Istnieje  $N\in\mathbb{N}$ takie, że  $\frac{a_{n+1}}{a_n}<\alpha$ dla  $n\geqslant N.$ Czyli

$$a_n < a_{n-1}\alpha, \ a_{n+1} < a_n\alpha, \dots \ \text{dla } n \geqslant N.$$

Możliwe do otrzymania nierówności możemy mnożyć stronami przez  $\alpha~(>0!)$ 

$$a_{n+1}\alpha < a_n\alpha^2 < a_{n-1}\alpha^3.$$

$$a_{N+2}\alpha < a_{N+1}\alpha^2 < a_N\alpha^3.$$

:

$$a_n < a_{n-1}\alpha < a_{n-2}\alpha^2 < \dots < a_{N-2}\alpha^{n-N+2} < a_{N-1}\alpha^{n-N+1} < a_N\alpha^{n-N}, \ n > N.$$

Uzyskaliśmy oszacowanie  $a_n < a_N \alpha^{n-N}, \ n > N$  a ponieważ  $\alpha \in [0,1),$  to szereg

$$\sum_{n=1}^{\infty} \underbrace{(a_N \alpha^{-N})}_{\text{constans}} \alpha^n \text{ jest zbieżny (szereg geometryczny) i zbieżność szeregu } \sum_{n=1}^{\infty} a_n \text{ wynika z kryterium}$$

Teraz załóżmy, że D > 1. Jeżeli  $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1$ , to ciąg  $(a_n)_{n \in \mathbb{N}}$  jest od pewnego miejsca niemalejący a ponadto jego wyrazy są nieujemne, zatem warunek 13.1.2 konieczny zbieżności szeregu nie może być spełniony.

**Uwaga 13.2.17.** Jeżeli w powyższym twierdzeniu D=1, to tak jak poprzednio kryterium nie rozstrzyga zbieżności szeregu.

Kryterium d'Alemberta jest na ogół łatwiejsze w zastosowaniu niż Kryterium Cauchy'ego, ponieważ łatwiej jest obliczyć ułamki niż pierwiastki n-tego stopnia. Jednak Kryterium Cauchy'ego jest "silniejsze" w tym sensie, że w wielu przypadkach kryterium d'Alemberta nie daje żadnego rozstrzygnięcia podczas gdy kryterium Cauchy'ego wskazuje na zbieżność. Z drugiej strony, gdy kryterium Cauchy'ego nie daje rozstrzygnięcia, to również kryterium d'Alemberta nie daje rozstrzygnięcia zbieżności szeregu. Wystarczy przypomnieć oszacowanie (twierdzenie 4.8):

$$\liminf_{n\to\infty}\frac{x_{n+1}}{x_n}\leqslant \liminf_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\sqrt[n]{x_n}\leqslant \limsup_{n\to\infty}\frac{x_{n+1}}{x_n}.$$

Przykład 141. Zbadamy zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

Mamy

$$\frac{n+1}{2^{n+1}}\frac{2^n}{n} = \frac{1}{2}\left(\frac{n+1}{n}\right)$$

$$\lim_{n\to\infty}\frac{1}{2}\left(\frac{n+1}{n}\right) = \frac{1}{2}\lim_{n\to\infty}\frac{1+\frac{1}{n}}{1} = \frac{1}{2} < 1$$

Zatem na mocy kryterium d'Alemberta szereg ten jest zbieżny. Akurat sumę szeregu jesteśmy w tanie w miarę łatwo obliczyć. Rozpiszmy  $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \ldots = S$ . Przyjrzyjmy się sumom częściowym  $S_3$  i  $S_4$ .

$$S_3 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8}$$

$$S_4 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{4} + \frac{2}{8} + \frac{3}{16}$$

Stąd można zauważyć, że  $S_4 = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{2} \left( \frac{1}{2} + \frac{2}{4} + \frac{3}{8} \right) = \frac{1}{2} + \frac{1}{4} + \frac{1}{16} + \frac{1}{2} S_3$ . Ogólnie:

$$S_n = \frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n} + \frac{1}{2}S_{n-1}.$$

Zauważmy, że

$$2\left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^n}\right) = 1 + \frac{1}{2} + \ldots + \frac{1}{2^{k+1}} = \sum_{k=1}^n 2^{k+1} = \sum_{k=0}^{n-1} 2^k.$$

Zatem

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \lim_{n \to \infty} S_n = \lim_{n \to \infty} \left( \frac{1}{2} \sum_{k=0}^{n-1} 2^k - \frac{1}{3} S_{n-1} \right) = \frac{1}{2} \sum_{n=0}^{\infty} 2^n - \frac{1}{2} S_n$$

$$\frac{3}{2} \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=0}^{\infty} 2^n = \frac{1}{2} \left( \frac{1}{1 - \frac{1}{2}} \right) = 1.$$

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{2}{3}.$$

Widzimy jednak, że musieliśmy "pokombinować" aby uzyskać wynik. Tak jak mówiliśmy, w ogólności szukanie sumy szeregu nie jest łatwym zadaniem. Pewne dodatkowe narzędzia poznamy studiując w dalszej części szeregi funkcyjne.

*Ćwiczenie* 110. Korzystając z kryterium d'Alemberta, sprawdzić że szereg  $\sum_{n=1}^{\infty} \frac{n!}{n^n}$  jest zbieżny.

Przykład 142. Niech

$$\begin{cases} a_{2n-1} = \frac{2^{n-1}}{3^{n-1}}, \\ a_{2n} = \frac{2^{n-1}}{3^n}. \end{cases}$$

Sprawdzimy, że kryterium d'Alemberta nie pozwoli nam stwierdzić nic na temat zbieżności szeregu

$$\sum_{n=1}^{\infty} a_n,$$

podczas gdy z kryterium Cauchy'ego wynika zbieżność.

Przykład 143. Innym przykładem szeregu, który nie reaguje na kryterium d'Alemberta, ale daje się zbadać przy pomocy kryterium Cauchy'ego jest szereg  $\sum_{n=1}^{\infty} 2^{(-1)^n - n}$ . Sprawdzić, że rzeczywiście jest to prawda.

*Ćwiczenie* 111. Zbadać zbieżność szeregów  $\sum_{n=1}^{\infty} \frac{2^n \cdot n!}{n^n}$  oraz  $\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}$ .

 $\acute{C}wiczenie$  112. Zbadać zbieżność szeregu  $\sum_{n=1}^{\infty} \frac{1}{a_n a_{n+1}}$ , gdzie  $(a_n)_{n \in \mathbb{N}}$  jest ciągiem arytmetycznym, o dodatnich wyrazach.

Wskazówka: znaleźć wzór, na n-tą sumę częściową  $S_n$  szeregu.

**Uwaga 13.2.18.** Zarówno w twierdzeniu 13.2.12 jak i 13.2.16 możemy opuścić założenie o nieujemności wyrazów szeregu. Wówczas przyjmujemy odpowiednio  $\limsup_{n\to\infty} \sqrt[n]{|a_n|}$  i  $\limsup_{n\to\infty} \left|\frac{a_{n+1}}{a_n}\right|$ . Uogólnienie dowodów zostawiamy dla chętnych czytelników.

Twierdzenie 13.2.19 (Kryterium kondensacyjne Schlömilcha). Ustalmy szereg liczbowy  $\sum_{n=1}^{\infty} a_n$  o wyrazach nieujemnych taki, że ciąg jego wyrazów jest nierosnący. Niech dana będzie funkcja  $f: \mathbb{N} \to \mathbb{N}$  o tej własności, że

$$\frac{f(n+1) - f(n)}{f(n) - f(n-1)} = \frac{\Delta f(n)}{\Delta f(n-1)} < N, \ n \in \mathbb{N}$$

dla pewnego N>0. Wówczas szereg  $\sum\limits_{n=1}^{\infty}a_n$  jest zbieżny wtedy i tylko wtedy, gdy zbieżny jest szereg

$$\sum_{n=0}^{\infty} \Delta f(n) a_{f(n)} = \sum_{n=1}^{\infty} \left( f(n+1) - f(n) \right) a_{f(n)}.$$

Zauważmy, że przyjmując  $f(n)=2^n$  w powyższym twierdzeniu, otrzymamy kryterium zagęszczające Cauchy'ego.

*Ćwiczenie* 113. Korzystając z kryterium Schlömilcha udowodnić, że szereg  $\sum_{n=1}^{\infty} \frac{1}{2^{\sqrt{n}}}$  jest zbieżny. Wskazówka: przyjąć  $f(n) = n^2$ .

Ćwiczenie 114. Udowodnić następujące

**Twierdzenie** (Toeplitza). Jeżeli  $(a_n)_{n\in\mathbb{N}}$  i  $(x_n)_{n\in\mathbb{N}}$  są takimi ciągami liczb rzeczywistych, że  $\sum_{n=1}^{\infty} a_n = \infty, \ zaś\ (x_n)_{n\in\mathbb{N}} \ jest \ zbieżny \ lub \ rozbieżny \ do \ \pm \infty, \ tzn.:$ 

$$\lim_{n \to \infty} x_n = x \in \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}.$$

to zachodzi równość

$$\lim_{n \to \infty} \left( \frac{\sum_{k=1}^{n} a_k x_k}{\sum_{k=1}^{n} a_k} \right) = x.$$

## Rozdział 14

## Całka niewłaściwa

#### 14.1 Definicja całki po niezwartym zbiorze

Dotychczas określaliśmy całki Riemanna jedynie po podzbiorach przestrzeni  $\mathbb{R}$ , które są zwarte (czyli domknięte i ograniczone). Teraz określimy sposoby całkowania po zbiorach nie spełniających tego ostatniego warunku.

**Definicja 14.1.1.** Załóżmy, że funkcja  $f\colon [a,b)\to \mathbb{R}$   $[f\colon (a,b]\to \mathbb{R}]$  jest całkowalna w sensie Riemanna na każdym przedziale [a,c]  $\Big[[c,b]\Big]$  dla  $c\in (a,b)$ . Jeżeli  $b=+\infty$   $[a=+\infty]$  lub  $\lim_{c\to b^-}f(x)=\pm\infty$   $[\lim_{c\to a^+}f(x)=\pm\infty]$ , to całkę

$$\int_a^b f(x) \, \mathrm{d}x := \lim_{c \to b^-} \int_a^c f(x) \, \mathrm{d}x \ \left[ \int_a^b f(x) \, \mathrm{d}x := \lim_{c \to a^+} \int_a^c f(x) \, \mathrm{d}x \right]$$

nazywamy **całką niewłaściwą** z funkcji f na przedziale [a,b) [(a,b]] a punkt b [punkt a] nazywamy **punktem osobliwym**.

Jeżeli granica w powyższej definicji istnieje i jest skończona, to o całce niewłaściwej mówimy, że jest **zbieżna**. W przeciwnym wypadku - **rozbieżna**. Jeżeli  $f:(a,b)\to\mathbb{R}$  oraz f jest całkowalna na każdym przedziale  $[\alpha,\beta]\subseteq(a,b)$  oraz a,b są punktami osobliwymi, to

$$\int_a^b f(x) dx = \int_a^b f(x) dx + \int_c^b f(x) dx,$$

gdzie c jest dowolnym punktem przedziału (a, b).

**Definicja 14.1.2** (Zbieżność bezwzględna całki niewłaściwej). Jeżeli dla całki niewłaściwej  $\int_a^b f$  mamy, że całka  $\int_a^b |f|$  jest zbieżna to  $\int_a^b f$  nazywamy **bezwzględnie zbieżną**. W przeciwnym wypadku, jeżeli  $\int_a^b f$  jest zbieżna, to nazywamy ją zbieżną **względnie** lub **warunkowo**.

## 14.2 Kryteria zbieżności całek niewłaściwych

**Twierdzenie 14.2.1.** Załóżmy, że funkcja  $f:[a,b) \to \mathbb{R}$  jest całkowalna w sensie Riemanna na każdym przedziałe [a,c] dla  $c \in (a,b)$  oraz b jest punktem osobliwym. Wówczas dla dowolnego ciągu

 $(x_n)_{n\in\mathbb{N}}$  spełniającego warunek

$$a = x_0 < x_1 < x_2 < \dots < x_n < \dots < b,$$
$$\lim_{n \to \infty} x_n = b,$$

całka  $\int_a^b f$  jest zbieżna wtedy i tylko wtedy, gdy zbieżny jest szereg  $\sum_{n=1}^\infty a_n$ , gdzie

$$a_n = \int_{x_{n-1}}^{x_n} f(x) \, \mathrm{d}x.$$

Dowód. Wystarczy zauważyć, że zachodzą następujące równości:

$$S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(x) \, \mathrm{d}x = \int_a^{x_n} f(x) \, \mathrm{d}x.$$

**Twierdzenie 14.2.2.** Niech  $f,g:[a,b)\to\mathbb{R}$  będą funkcjami całkowalnymi na każdym przedziale [a,c) dla każdego  $c\in(a,b)$ , b punktem osobliwym oraz

$$|f(x)| \leqslant g(x), \ x \in [a, b).$$

Wówczas jeżeli  $\int_a^b g$  jest zbieżna, to  $\int_a^b f$  jest bezwzględnie zbieżna.

Dowód. Ustalmy ciąg  $(x_n)_{n\in\mathbb{N}}$  rosnący taki, że  $\lim_{n\to\infty} x_n = b$ . Oznaczmy:

$$a_n := \int_{x_{n-1}}^{x_n} f(x) \, \mathrm{d}x, \ b_n := \int_{x_{n-1}}^{x_n} |f(x)| \, \mathrm{d}x,$$
$$c_n := \int_{x_{n-1}}^{x_n} g(x) \, \mathrm{d}x, \ n \in \mathbb{N}.$$

Mamy nierówności  $|a_n| \leq b_n \leq c_n, n \in \mathbb{N}$ . Stąd, zachodzą ponizsze implikacje

$$\int_a^b |f| - \text{zbieżna}$$

$$\int_a^b g - \text{zbieżna} \xrightarrow{\text{tw.14,2.1}} \sum_{n=1}^\infty c_n - \text{zbieżny} \xrightarrow{\text{porównawcze}} \sum_{n=1}^\infty b_n - \text{zbieżny i}$$

$$\sum_{n=1}^\infty a_n \Leftarrow \sum_{n=1}^\infty a_n - \text{bezwzgl. zbieżny} \Leftarrow \sum_{n=1}^\infty |a_n| - \text{zbieżny.}$$

$$\int_a^b f - \text{zbieżna}$$

210

Czyli 
$$\int_a^b f$$
 jest bezwzględnie zbieżna.

W powyższym twierdzeniu oczywiście wystarczy aby funkcje f i g były ciągłe.

**Twierdzenie 14.2.3.** Niech  $f:[a,+\infty)\to [0,+\infty)$  będzie funkcją całkowalną na każdym przedziałe  $[a,c),\ c\in (a,b).$  Wówczas  $\int_a^\infty f$  jest zbieżna wtedy i tylko wtedy, gdy funkcja

$$F(x) = \int_{a}^{x} f(t) dt$$
 jest ograniczona.

Dowód. Najpierw implikacja "w lewo".

$$F(x) = \int_{a}^{x} f(t) dt, \ x \in [a, +\infty)$$
 jest rosnąca.

Niech x < y.  $F(y) - F(x) = \int_a^y f(t) \, \mathrm{d}t - \int_a^x f(t) \, \mathrm{d}t = \int_x^y f(t) \, \mathrm{d}t \geqslant 0$  (gdyż  $f \geqslant 0$ ). Jeżeli F jest ograniczona i monotoniczna (rosnąca), to istnieje granica  $\lim_{x \to +\infty} F(x)$  i jest ona skończona. Mamy  $\lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \int_a^x f(t) \, \mathrm{d}t$ , czyli  $\int_a^{+\infty} f$  jest skończona. W drugą stronę: jeżeli F jest nieograniczona (i rosnąca), to  $\lim_{x \to +\infty} \int_a^x f(t) \, \mathrm{d}t = +\infty$ . Stąd  $\int_a^\infty f$  jest rozbieżna.

**Twierdzenie 14.2.4.** Niech  $b \in \mathbb{R}$  lub  $b = +\infty$  oraz niech  $f: [a,b) \to \mathbb{R}$  będzie funkcją całkowalną w każdym przedziałe  $[\alpha,\beta] \subseteq [a,b)$ . Wówczas całka niewłaściwa  $\int\limits_a^b f$  jest zbieżna wtedy i tylko wtedy, gdy dla każdego  $\varepsilon > 0$  istnieje taka liczba c, że dla dowolnych  $\alpha,\beta$  spełniających nierówności  $c < \alpha < \beta < b$  zachodzi

$$\left| \int_{\alpha}^{\beta} f(x) \, \mathrm{d}x \right| < \varepsilon.$$

**Twierdzenie 14.2.5** (Kryterium porównawcze dla całek niewłaściwych). Niech  $f, g: [a, +\infty) \rightarrow [0, \infty)$  będą funkcjami całkowalnymi na każdym przedziałe  $[a, c), c \in (a, b)$  oraz istnieje takie  $A \geqslant a$ , że dla każdego  $x \in [A, \infty)$  zachodzi  $f(x) \leqslant g(x)$ . Wówczas

1. jeżeli 
$$\int_a^\infty g$$
 jest zbieżna, to zbieżna jest  $\int_a^\infty f$ ,

2. jeżeli 
$$\int_a^\infty f$$
 jest rozbieżna, to rozbieżna jest  $\int_a^\infty g$ .

 $Dow \acute{o}d.$   $\int_{a}^{A}f,$   $\int_{a}^{A}g$  – skończone, jako całki Riemanna.

1. Zdefiniujmy  $G(x):=\int_A^x g(t)\,\mathrm{d}t, x\geqslant A.$  Jeśli $\int_a^\infty g$  jest zbieżna, to funkcja G jest ograniczona. Ale

$$0 \leqslant F(x) := \int_{A}^{x} f(t) \, \mathrm{d}t \leqslant G(x), x \geqslant A.$$

Funkcja F jest ograniczona na  $[A,+\infty)$ , więc całka  $\int_A^\infty f$  jest zbieżna, a stąd zbieżna jest całka  $\int_a^\infty f$ .

2. Załóżmy, że 
$$\int\limits_a^\infty f$$
jest rozbieżna. Wtedy zachodzą implikacje

$$\int_A^\infty f$$
jest rozbieżna i stąd $F$ jest nieograniczona na  $[A,+\infty) \Rightarrow$ 

$$G$$
jest nieogranczona na  $[A,+\infty)\Rightarrow \int_A^\infty g$ jest rozbieżna  $\Rightarrow \int_a^\infty g$ jest rozbieżna.  $\qed$ 

Uwaga 14.2.6. Oczywiście, przy założeniach powyższego twierdzenia, gdy teza jest spełniona, to

$$\int_{a}^{b} f \leqslant \int_{a}^{b} g.$$

*Przykład* 144. Zbadamy całkę  $\int_{a}^{\infty} \frac{1}{x^{p}} dx, p \in \mathbb{R}$ .

Dla p = 1 mamy

$$\int_a^\infty \frac{1}{x^p} dx = \int_a^\infty \frac{1}{x} dx = \lim_{\gamma \to \infty} \log \gamma - \log a = \infty.$$

Załóżmy, że  $p \neq 0$ . Mamy

$$\int_{a}^{\infty} \frac{1}{x^{p}} dx = \left[ \frac{1}{1-p} x^{1-p} \right]_{a}^{\infty} =$$
$$= \frac{1}{1-p} \left( \lim_{\gamma \to \infty} \gamma^{1-p} - a^{1-p} \right).$$

Widać, że granica jest skończona i zarazem całka jest zbieżna wtedy i tylko wtedy, gdy p > 1.

#### 14.3 Całka w badaniu zbieżności szeregu

**Twierdzenie 14.3.1** (Kryterium całkowe zbieżności szeregów).  $Załóżmy, że f: [N, +\infty) \rightarrow [0, +\infty)$  jest funkcją całkowalną na każdym przedziale  $[N, M], M \in (N, +\infty)$  i nierosnącą. Wówczas

szereg 
$$\sum_{n=1}^{\infty} f(n)$$
 jest zbieżny wtedy i tylko wtedy, gdy całka  $\int_{N}^{+\infty} f$  jest zbieżna.

Ponadto zachodzą oszacowania

(14.1) 
$$\int_{N}^{n} f(x) dx + f(n) \leq \sum_{k=N}^{n} f(k) \leq \int_{N}^{n} f(x) dx + f(N), \ n > N.$$

 $Dow \acute{o}d.$ Z twierdzenia 11.4.1 dla każdego k>Nmamy oszacowanie:

$$f(k) \leqslant \int_{k-1}^{k} f(x) \, \mathrm{d}x \leqslant f(k-1).$$

Sumujemy stronami nierówności dla wszystkich k > N:

$$\sum_{k=N+1}^{n} f(k) \leqslant \sum_{k=N+1}^{n} \int_{k-1}^{k} f(x) \, \mathrm{d}x \leqslant \underbrace{\sum_{k=N+1}^{n} f(k-1)}_{\parallel}, \ n > N.$$

$$\sum_{k=N}^{n} f(k) - f(N) \leqslant \int_{N}^{n} f(x) dx \leqslant \sum_{k=N}^{n} f(k) - f(n)$$

Zauważmy, że stąd już widać, iż:

$$\sum_{k=N}^{\infty} f(k)$$
jest zbieżny  $\Leftrightarrow \int_{N}^{n} f(x) \, \mathrm{d}x$ jest zbieżna

Ponadto z poprzedniego oszacowania można łatwo przejść do nierówności:

$$\int_{N}^{n} f(x) dx + f(n) \leqslant \sum_{k=N}^{n} f(k) \leqslant \int_{N}^{n} f(x) dx + f(N)$$

Wniosek 14.3.2. Ponownie, niech  $f: [N, +\infty) \to [0, +\infty)$  jest funkcją całkowalną na każdym przedziale  $[N, M), M \in (N, +\infty)$  i (słabo) malejącą. Wówczas ciąg

$$\left(\sum_{k=N}^{n} f(k) - \int_{N}^{n} f(x) \, \mathrm{d}x\right)_{n \in \mathbb{N}}$$

jest zbieżny do liczby z przedziału [0, f(N)].

Dowód. Przyjmijmy  $y_n = \sum_{k=N}^n f(k) - \int_N^n f(x) dx, n \in \mathbb{N}.$ 

$$y_n \geqslant 0 \ (y_n \geqslant f(n) \geqslant 0)$$

$$y_{n+1} - y_n = \sum_{k=N}^{n+1} f(k) - \int_N^{n+1} f(x) \, dx - \sum_{k=N}^n f(k) + \int_N^n f(x) \, dx = f(n+1) - \int_n^{n+1} f(x) \, dx \le 0.$$

Ciąg  $(y_n)_{n\in\mathbb{N}}$  jest malejący i ograniczony z dołu, stąd zbieżny. Z drugiej strony

$$y_n \leqslant f(N)$$
.

Przykład 145. Nierówności (14.1) mogą służyć szacowaniu często występujących w matematyce sum. Oszacujemy np. n-ty wyraz szeregu harmonicznego; mamy

$$\sum_{k=1}^{n} \frac{1}{k} \le \int_{1}^{n} \frac{1}{x} \, \mathrm{d}x + \frac{1}{1} = \ln n + 1,$$

oraz podobnie

$$\sum_{k=1}^{n} \frac{1}{k} \ge \int_{1}^{n} \frac{1}{x} dx + \frac{1}{n} = \ln n + \frac{1}{n}.$$

Pokazaliśmy, że

$$\ln n + \frac{1}{n} \leqslant \sum_{k=1}^{n} \frac{1}{k} \leqslant \ln n + 1.$$

Przykład 146. Ciąg  $\left(1+\frac{1}{2}+\frac{1}{3}+\ldots+\frac{1}{n}-\ln n\right)_{n\in\mathbb{N}}$  jest zbieżny do liczby z przedziału [0,1].

Wystarczy przyjąć  $x_n = \left(\sum_{k=1}^n \frac{1}{k} - \int_1^n \frac{1}{x} dx\right)$  i z naszego **wniosku** mamy  $\lim_{n \to \infty} x_n = \gamma \in [0, 1]$ . Liczba  $\gamma$  nazywana jest stałą Eulera (nie mylić z **liczbą** e Eulera) albo stałą Mascheroniego (albo stałą

 $\gamma$ nazywana jest stałą Eulera (nie mylić z **liczbą** e Eulera) albo stałą Mascheroniego (albo stałą Eulera-Mascheroniego) i wynosi około 0,5772156649. Liczba ta ma wiele zastosowań w różnych gałęziach matematyki, np. teorii równań różniczkowych. Nie wiadomo, czy liczba ta jest wymierna, czy też niewymierna.

# Rozdział 15

# Aproksymacja funkcji (n+1)-krotnie różniczkowalnych

Przypomnijmy, że n-tą pochodną funkcji f oznaczamy jako  $f^{(n)}$  i  $f=f^0$ . Niech  $W(x)=a_0+a_1x+a_2x^2+\ldots+a_nx^n$ . Zauważmy, że

$$W(0) = a_0, W^{(1)}(0) = a_1, W^{(2)}(0) = 2!a_2, W^{(3)}(0) = 3!a_3, \dots, W^{(n)}(0) = n!a_n.$$

Wnioskiem jest, że wielomian W można przedstawić w postaci:

$$W(x) = W(0) + \frac{W^{(1)}(0)x}{1!} + \frac{W^{(2)}(0)x^2}{2!} + \frac{W^{(3)}(0)x^3}{3!} + \dots + \frac{W^{(n)}(0)x^n}{n!}.$$

Okazuje się, że dowolną funkcję (n+1)-krotnie różniczkowalną daje się przybliżyć poprzez podobne wyrażenie, przedstawienie takie będzie jednak obarczone pewnym błędem.

**Twierdzenie 15.0.1** (Taylora). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją klasy  $C^{n+1}$  w przedziale (a,b),  $f^{(k)}$  jest ciągła w [a,b] i zakładamy istnienie k-tych pochodnych odpowiednio lewo i prawostronnych w punktach b i a,  $k=0,1,\ldots,n$  . Ustalmy też  $x_0\in(a,b)$ . Wtedy dla każdego  $x\in(a,b)$  zachodzi następujący wzór:

(15.1) 
$$f(x) = \sum_{k=0}^{n} \left( \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) \right) + R_{n,x_0}(x),$$

gdzie funkcja  $R_{n,x_0}(x)$  nazywana resztą we wzorze Taylora spełnia warunek

$$\lim_{x \to x_0} \frac{R_{n,x_0}(x)}{(x - x_0)^n} = 0.$$

Wzór 15.1 nosi nazwę **wzoru Taylora**. Mówimy, że funkcję przedstawiliśmy przy pomocy wzoru Taylora albo rozwinęliśmy we wzór Taylora **w otoczeniu punktu**  $x_0$ . Często posługujemy się wzorem Taylora dla  $x_0 = 0$  - tę szczególną postać nazywamy **wzorem Maclaurina**. Twierdzenie 15.0.1 mówi w istocie, że przy odpowiednich założeniach:

$$f(x) \approx \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0).$$

Reszta  $R_{n,x_0}(x)$  wyraża tutaj błąd tego przybliżenia.

**Uwaga 15.0.2.** Jeżeli funkcja f spełnia założenia twierdzenia 15.0.1, a  $M \ge 0$  jest liczbą taką, że

$$|f^{n+1}(x)| \leq M$$
, dla każdego  $x \in [a, b]$ ,

to wówczas

$$|R_n(x)| \le \frac{M}{(n+1)!} |x - x_0|^{n+1}, x \in [a, b].$$

**Uwaga 15.0.3.** Twierdzenie Taylora można też udowodnić dla funkcji  $f: [a, b] \to Y$ , gdzie [a, b] jest, jak poprzednio, przedziałem rzeczywistym, ale  $(Y, \|\cdot\|)$  jest dowolną przestrzenią unormowaną. W poprzedniej uwadze zastępujemy wówczas  $|f^{n+1}(x)|$  przez  $||f^{n+1}(x)||$  i  $||R_n(x)||$  i pozostaje ona w mocy.

Wcześniej, w rozdziałe dotyczących różniczek, wyprowadziliśmy przybliżenie  $\sin x \approx x$ , dla x "bliskich" zeru. To samo przybliżenie można uzyskać przybliżając funkcję  $x \mapsto \sin x$  przy pomocy wzoru Maclaurina.

Niech  $f:[a,b]\to\mathbb{R}$  będzie funkcją spełniającą założenia twierdzenia Taylora. Istnieje wiele znanych jawnych postaci reszty  $R_{n,x_0}(x)$ , ze wzoru 15.1. Twierdzenie 15.0.1 najłatwiej udowodnić, wychodząc od postaci wzoru 15.1 z resztą wyrażoną jawnym wzorem.

Podamy kilka jawnych postaci reszty  $R_{n,x_0}(x)$ , jednak przy pierwszym czytaniu czytelnikowi może wystarczyć reszta zformułowana w twierdzeniu 15.0.5.

Twierdzenie 15.0.4 (Reszta w postaci Schlömilcha-Roche'a). Dla każdego p > 0 istnieje takie  $\xi \in [\min\{x, x_0\}, \max\{x, x_0\}], \dot{z}e$ 

$$R_{n,x_0}(x) = \frac{(x-x_0)^p (x-\xi)^{n+1-p}}{pn!} f^{n+1}(\xi).$$

Przyjmując w powyższym twierdzeniu p = n + 1 otrzymujemy postać Lagrange'a reszty

Twierdzenie 15.0.5 (Reszta w postaci Lagrange'a). Istnieje takie  $\xi \in [\min\{x, x_0\}, \max\{x, x_0\}],$  że

(15.2) 
$$R_{n,x_0}(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Inaczej: istnieje takie  $\theta \in [0, 1]$ , że

(15.3) 
$$R_{n,x_0}(x) = \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(x_0 + \theta(x-x_0)).$$

 $\acute{C}$ wiczenie 115. Przyjmując w twierdzeniu Schlömilcha-Roche'a p=n otrzymuje się tzw. **resztę** w postaci Cauchy'ego. Napisać wzór na resztę tej postaci.

Twierdzenie 15.0.6 (Reszta w postaci całkowej).

(15.4) 
$$R_{n,x_0}(x) = \int_{x_0}^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

*Ćwiczenie* 116. Wyprowadzić wzór na resztę w postaci Cauchy'ego oraz wzór na resztę w postaci Lagrange'a z postaci całkowej, korzystając z twierdzeń o wartości średniej.

Chcąc zatem znaleźć przybliżenie w otoczeniu zadanego punktu  $x_0$  funkcji f wzorem Taylora z zadaną dokładnością  $\eta$ , musimy znaleźć rozwiązanie  $n_0$  równania sup  $|R_{n,x_0}(x)| \leq \eta$  względem n. Oznaczmy raz jeszcze:  $T_n(x) = \sum_{k=0}^n \left(\frac{(x-x_0)^k}{k!} f^{(k)}(x_0)\right)$  i niech  $\Delta(x) := |f(x)-T_{n_0}(x)|$  - czyli błąd przybliżenia. Zakładając, że pochodna  $n_0$ -tego rzędu istnieje - wzór 15.1 przy  $n=n_0$  przybliża funkcję f z zadaną dokładnością, tzn.  $\Delta(x) \leq \eta$ .

Zauważmy teraz jeszcze, że również z twierdzenia 15.0.1 wynika nierówność  $e^x > x + 1$ .

Przykład 147. Pokażemy, że  $\sqrt{1+x}\approx 1+\frac{x}{2}, x\geqslant 0$  i oszacujemy błąd przybliżenia. Niech  $f(x)=\sqrt{1+x}, x\geqslant 0$ . Skorzystamy ze wzoru Taylora 15.1 przy n=1 i  $x_0=0$ .

$$f(x) = \sqrt{1+x},$$

$$f'(x) = \frac{1}{2\sqrt{1+x}},$$

$$f''(x) = -\frac{1}{4\sqrt{(1+x)^3}}.$$

$$f(x) = (x-0)^0 \frac{\sqrt{1+0}}{1!} + (x-0)^1 \frac{1}{2!} \cdot \frac{1}{2\sqrt{1+0}} + R_2(x) = 1 + \frac{x}{2} + R_2(x).$$

Uprościliśmy też notację błędu, pisząc po prostu  $R_2(x)$ . Zajmijmy się jego oszacowaniem. Skorzystamy z postaci Lagrange'a (15.2) reszty:

$$R_2(x) = \frac{x^2}{2!} \frac{1}{4\sqrt{(1+\xi)^3}}$$

dla pewnego  $\xi \in (0, x)$ . Szacujemy:

$$\left| \sqrt{1+x} - 1 - \frac{x}{2} \right| = |R_3(x)| = \left| \frac{x^2}{8} \frac{1}{\sqrt{(1+\xi)^3}} \right| \leqslant \frac{x^2}{8}$$

Zatem np. dla  $x \in [0,1]$  błąd przybliżenia jest mniejszy lub rowny  $\frac{1}{8}$ .

 $\acute{C}wiczenie$  117. Rozwinąć funkcję  $f(x)=\sqrt{1+x}$  przy pomocy wzoru Taylora z n=2 i oszacować błąd przybliżenia.

Podstawiając  $x = x_0 + h$  we wzorze (15.1) uzyskujemy alternatywną postać:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + R_n(x_0, h).$$

Np. postać Lagrange'a reszty w tym wzorze przyjmuje postać

$$R_n(x_0, h) = \frac{f^{(n+1)}(x_0 + \theta h)}{(n+1)!} h^{n+1},$$

dla pewnego  $\theta \in (0,1)$ .

Jeżeli funkcja  $f:[a,b]\to\mathbb{R}$  jest klasy  $C^\infty$  (na (a,b)), to możemy rozważać następujący szereg Taylora

(15.5) 
$$\sum_{n=1}^{\infty} \frac{(x-x_0)^n}{n!} f^{(n)}(x_0)$$

Zachodzi następujące

**Twierdzenie 15.0.7.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją klasy  $C^{\infty}$  w przedziałe (a,b). Wówczas

(15.6) 
$$f(x) = \sum_{n=1}^{\infty} \frac{(x - x_0)^n}{n!} f^{(n)}(x_0)$$

wtedy i tylko wtedy, gdy ciąg reszt  $(R_{n,x_0}(x))_{n\in\mathbb{N}}$  we wzorze 15.1 jest zbieżny do zera:

(15.7) 
$$\lim_{n \to \infty} R_{n,x_0}(x) = 0.$$

W istocie równość (15.6) oznacza, że funkcja f jest sumą szeregu funkcyjnego, ale te pojęcia zostaną dopiero wprowadzone w następnym rozdziale. Warto wtedy wrócić do tego miejsca.

**Uwaga 15.0.8.** Warunek (15.7) jest w szczególności spełniony, gdy wszystkie pochodne funkcji f są wspólnie ograniczone w przedziale (a,b), tzn. istnieje taka stała M>0, że dla dowolnego  $n\in\mathbb{N}$  zachodzi nierówność:

$$|f^{(n)}(x)| < M$$
, dla każdego  $x \in (a, b)$ .

**Twierdzenie 15.0.9.** Dla dowolnej liczby  $x \in \mathbb{R}$ :

(15.8) 
$$e^x = \sum_{n=0}^{\infty} \frac{x}{n!}.$$

Dowód. Wystarczy rozwinąć funkcję  $x\mapsto e^x$  w szereg Maclaurina (ćwiczenie).

Bywa, że liczbę e definiuje się jako sumę szeregu  $\sum_{n=1}^{\infty} \frac{1}{n!}$ . Korzystając z powyższego twierdzenia możemy udowodnić ważne

Twierdzenie 15.0.10. Liczba e jest liczbą niewymierną.

Dowód. Załóżmy nie wprost, że  $e=\frac{p}{q}$  przy czym  $p,q\in\mathbb{Z}$ . Wiemy też, że  $2<\frac{p}{q}<3$  oraz, że  $\frac{p}{q}=\sum_{n=0}^{\infty}\frac{1}{n!}$ . Pomnóżmy tę równość obustronnie przez q!. Mamy

$$p(q-1)! = \sum_{n=0}^{\infty} \frac{q!}{n!} = \sum_{n=0}^{q} \frac{q!}{n!} + \sum_{n=q+1}^{\infty} \frac{q!}{n!}$$
$$= q! + \frac{q!}{1!} + \frac{q!}{2!} + \frac{q!}{3!} + \dots + \frac{q!}{q!} + \left(\frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \dots\right).$$

Zatem pierwsza część sumy  $(\sum_{n=0}^{q} \frac{q!}{n!})$  jest oczywiście liczbą naturalną. Oszacujmy z góry drugą część sumy  $(\sum_{n=q+1}^{\infty} \frac{q!}{n!})$ :

$$\sum_{n=q+1}^{\infty} \frac{q!}{n!} = \frac{1}{(q+1)} + \frac{1}{(q+1)(q+2)} + \frac{1}{(q+1)(q+2)(q+3)} + \ldots = \sum_{n=q+1}^{\infty} \frac{1}{(q+1)^n} = \frac{1}{q} \leqslant 1.$$

Ale p(q-1)! jest liczbą naturalną a z powyższego wynika, że liczba po prawej stronie równania nie może być naturalna.  $\Box$ 

Niech  $\exp(x) := \sum_{n=1}^{\infty} \frac{x}{n!}$ . Czyli  $\exp x = e^x$  – jest to funkcja *exponent* (ang. wykładnik), inaczej funkcja wykładnicza. Korzystająć z rozwinięcia funkcji  $x \mapsto e^x$  w szereg łatwo udowodnić

#### **Twierdzenie 15.0.11.** Funkcja exp: $\mathbb{R} \to \mathbb{R}$ jest

- 1. ciągła i różniczkowalna w każdym punkcie swojej dziedziny,
- 2. ściśle rosnąca,

3. 
$$\frac{\mathrm{d}}{\mathrm{d}x} \exp(x) = \exp(x)$$
,

4. 
$$\exp(0) = 1$$
,  $\exp(x) \neq 0$ ,  $x \in \mathbb{R}$ ,

5. 
$$\exp(z+w) = \exp(x)\exp(y), x, y \in \mathbb{R},$$

6. 
$$(\exp(x))^n = \exp(xn), n \in \mathbb{N}, x \in \mathbb{R},$$

7. 
$$\lim_{x \to \infty} \exp(x) = \infty$$
  $i \lim_{x \to -\infty} \exp(x) = 0$ ,

8. 
$$\lim_{x \to \infty} x^n \exp(-x) = 0$$
.

Ćwiczenie 118. Sprawdzić wzory

(15.9) 
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}$$

(15.10) 
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}, \quad x \in \mathbb{R}$$

(15.11) 
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} x^n, \quad -1 < x \le 1$$

(15.12) 
$$(1+x)^m = \sum_{k=0}^{\infty} \frac{m(m-1)\dots(m-k+1)}{k!} x^k \quad x \in \mathbb{R}$$

(15.13) 
$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n, \quad |x| < 1.$$

*Ćwiczenie* 119. Udowodnić, że  $|\ln(1+x)-x| \le x^2$ , o ile  $x \in \mathbb{R}$ ,  $|x| \le \frac{1}{2}$ . Wskazówka: można skorzystać z rozwinięcia (15.11). Oszacowanie to można też uzyskać korzystając z całek i wzoru Newtona-Leibniza.

Przykład 148 (Zadanie teoretyczne). Niech  $a \in \mathbb{R}$  i niech f będzie dwukrotnie różniczkowalną funkcją rzeczywistą określoną na  $(a, +\infty)$ . Oznaczmy

$$M_0 = \inf_{x \in (a, +\infty)} |f(x)|,$$

$$M_1 = \inf_{x \in (a, +\infty)} |f'(x)|,$$

$$M_2 = \inf_{x \in (a, +\infty)} |f''(x)|.$$

Udowodnić, że

$$M_1^2 \leqslant 4M_0M_2.$$

 $Plan \ rozwiązania:$  Jeżeli h>0,to z twierdzenia Taylora wynika, że dla pewnego  $\xi\in(x,x+2h)$ zachodzi

$$f'(x) = \frac{1}{2h} (f(x+2h) - f(x)) - hf''(\xi).$$

Zatem

$$f'(x) \leqslant hM_2 + \frac{M_0}{h}.$$

Aby pokazać, że równość  $M_1^2=4M_0M_2$  może być spełniona, można położyć a=-1 i określić funkcje f wzorem

$$f(x) = \begin{cases} 2x^2 - 1, & \text{dla } -1 < x < 0; \\ \frac{x^2 - 1}{x^2 + 1}, & \text{dla } 0 \le x < \infty. \end{cases}$$

a następnie pokazać, że wówczas  $M_0=1, M_1=4, M_2=4.$ 

 $\acute{C}wiczenie$  120. Niech  $f:\mathbb{R}\to\mathbb{R}$  będzie funkcją klasy  $C^2$ . Załóżmy, że funkcje f i f'' są ograniczone oraz przyjmijmy oznaczenia

$$M_0 = \sup_{x \to \mathbb{R}} |f(x)|, \ M_1 = \sup_{x \in \mathbb{R}} |f'(x)|, M_2 = \sup_{x \in \mathbb{R}} |f''(x)|.$$

Udowodnić, że f' jest ograniczona, oraz

$$M_1 \leqslant 2\sqrt{M_0M_2}$$
.

*Ćwiczenie* 121. Pokazać, że jeśli funkcja  $f:[a,b]\to\mathbb{R}$  jest klasy  $C^n$ , to f' jest klasy  $C^{n-1}$  oraz F jest klasy  $C^{n+1}$ , gdzie

$$F(x) = \int_a^x f(t) dt, \ x \in [a, b].$$

Ćwiczenie 122. Korzystając ze wzoru Taylora udowodnić poniższe twierdzenie:

Twierdzenie. Niech  $f \in C^{2n+1}$ ,  $f: (a,b) \to \mathbb{R}$ ,  $x_0 \in (a,b)$  oraz

$$f(x_0) = f'(x_0) = f''(x_0) = \dots = f^{(2n-3)}(x_0) = f^{(2n-2)}(x_0) = f^{(2n-1)}(x_0) = 0.$$

Wówczas,

- jeżeli  $f^{(2n)}(x_0) > 0$ , to f ma w punkcie  $x_0$  minimum lokalne,
- $je\dot{z}eli\ f^{(2n)}(x_0) < 0$ , to f ma w punkcie  $x_0$  maksimum lokalne.

#### 15.0.1 Reszta wyrażona w sposób asymptotyczny, notacja Landaua

Notacja asymtpotyczna Landaua, to narzędzie powstałe w fizyce, obecnie często stosowane w analize złożoności komputerowych algorytmów i analize metod numerycznych oraz aproksymacyjnych.

**Definicja 15.0.12** (Notacja małego o). Niech f i g będą funkcjami określonymi w pewnym otoczeniu punktu  $a \in \mathbb{R} := \mathbb{R} \cup \{\infty\}$ .

Mówimy, że f jest asymptotycznie mniejsze od g w punkcie  $a \in \mathbb{R}$ , gdy

$$\lim_{x \to a} \frac{f(x)}{g(x)} = 0$$

i piszemy wówczas f = o(g) lub f(x) = o(g(x)).

Formalnie rzecz biorąc o(g) oznacza  $zbi\acute{o}r$  (klasę) funkcji, "asymptotycznie mniejszych" od g, co legitymizowałoby zapis  $f \in o(g)$ . Stosowanie w notacji Landaua równości usprawiedliwiają wygodne własności rachunkowe tej notacji, których tutaj nie przytoczymy.

Możemy wykorzystać notację małego o w zapisie zależności (15.1):

(15.14) 
$$f(x) = \sum_{k=0}^{n} \left( \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) \right) + o\left( (x-x_0)^n \right).$$

Przyjemną do zapamiętania postać przyjmie wzór:

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + R_n(x_0, h).$$

zapisany jako

$$f(x_0 + h) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} h^k + o(h).$$

Wtedy oznacza, to, że przy  $\lim_{h\to 0} o(h) = 0.$ 

Wspomnijmy jeszcze, że istnieje notacja "dużego O": Mówimy, że funkcja f jest asymptotycznia ograniczona względem g w punkcie a i piszemy, że f(x) = O(g(x)), gdy funkcja  $x \mapsto \frac{f(x)}{g(x)}$  jest ograniczona w pewnym otoczeniu punktu  $a \in \mathbb{R}$ .

# Rozdział 16

# Ciągi i szeregi funkcyjne

## 16.1 Ciągi funkcyjne

**Definicja 16.1.1.** Niech X będzie dowolnym zbiorem,  $(Y, \sigma)$  przestrzenią metryczną oraz  $f_n \colon X \to Y, n \in \mathbb{N}, f \colon X \to Y$  dowolnymi funkcjami.

Mówimy, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest **zbieżny punktowo** do f, jeżeli dla każdego  $x\in X$ 

$$\lim_{n \to \infty} f_n(x) = f(x).$$

Piszemy wtedy

$$\lim_{n \to \infty} f_n = f, \ f_n \xrightarrow{n \to \infty} f \text{ lub } f_n \to f.$$

**Definicja 16.1.2.** Niech X będzie dowolnym zbiorem,  $(Y, \sigma)$  przestrzenią metrycznyną oraz  $f_n \colon X \to Y, n \in \mathbb{N}, f \colon X \to Y$  dowolnymi funkcjami.

Mówimy, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest **zbieżny jednostajnie** do f, jeżeli

$$\forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n \geq N} \forall_{x \in X} \ \sigma(f_n(x), f(x)) < \varepsilon$$

Piszemy wtedy  $f_n \stackrel{X}{\Rightarrow} f$ .

**Definicja 16.1.3.** Niech  $(X, \rho)$   $(Y, \sigma)$  będą przestrzeniami metrycznynymi oraz  $f_n \colon X \to Y, n \in \mathbb{N}$ ,  $f \colon X \to Y$  dowolnymi funkcjami.

Mówimy, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest **prawie (lub niemal) zbieżny jednostajnie** do f, jeżeli dla dowolnego zbioru zwartego  $K\subseteq A$ :

$$f_n|_K \stackrel{K}{\Rightarrow} f|_K$$

Zauważmy, że jeżeli zapiszemy definicję zbieżności punktowej zachodzącej na całym zbioreze X symbolicznie, za pomocą kwantyfikatorów:

$$\forall_{x \in X} \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N}. \ \sigma(f_n(x), f(x)) < \varepsilon,$$

to wystarczy przestawić pierwszy kwantyfikator w odpowiednie miejsce by uzyskać definicję zbieżności jednostajnej.

**Twierdzenie 16.1.4.** Niech X będzie pewnym zbiorem niepustym,  $(Y, \sigma)$  przestrzenią metryczną,  $f_n, f: X \to Y, n \in \mathbb{N}.$ 

 $Ciqg(f_n)_{n\in\mathbb{N}}$  jest zbieżny jednostajnie do f wtedy i tylko wtedy, gdy

(16.1) 
$$\lim_{n \to \infty} \sup_{x \in X} \sigma(f_n(x), f(x)) = 0.$$

Przykład 149. Niech  $D \subseteq \mathbb{R}$  i  $f_n \colon D \to \mathbb{R}$  będą dane wzorem

$$f_n(x) = \frac{x}{n}, \ x \in D, n \in \mathbb{N}.$$

Oczywiście dla dowolnego  $x \in \mathbb{R}$  zachodzi  $\frac{x}{n} \xrightarrow{n \to \infty} 0$  zatem  $f_n \to 0$ , gdzie 0 rozumiemy jako funkcje stałą  $x \mapsto 0$ .

Jeżeli zatem  $f_n \stackrel{D}{\rightrightarrows} f$  dla pewnej funkcji f, to musi być f = 0.

$$\sup_{x \in \mathbb{R}} |f_n - 0| = \sup_{x \in \mathbb{R}} \left| \frac{x}{n} \right| = \infty$$

zatem nie może zachodzić równość

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}} |f_n - 0| = 0.$$

Czyli  $(f_n)_{n\in\mathbb{N}}$  nie jest zbieżny jednostajnie do 0 na całym zb.  $\mathbb{R}$ .

Przykład 150. Niech  $f_n: [0, +\infty) \to \mathbb{R}$  będą określone wzorem  $f_n(x) = xe^{-nx}, x \ge 0, n \in \mathbb{N}$ . Dla dowolnego  $x\geqslant 0$  zachodzi równość  $\lim_{n\to\infty}f_n(x)=0$ , zatem 0 jest granicą punktową ciągu  $(f_n)_{n\in\mathbb{N}}$ . Ponadto  $f_n\geqslant 0$ . Zbadajmy, czy

$$\lim_{n \to \infty} \sup_{x \geqslant 0} |f_n(x) - 0| = 0.$$

Mamy  $f_n'(x)=(xe^{-nx})'=e^{-nx}-nxe^{-nx}.$  Stąd  $f_n'(x)=0\iff x=\frac{1}{n}.$  Zatem

$$\sup_{g\geqslant 0}|f_n(x)|\leqslant |f_n(1/n)|=\frac{1}{ne},$$

a ponieważ  $\lim_{n\to\infty}\frac{1}{ne}=0,$ to oznacza że  $\sup_{g\geqslant 0}|f_n(x)|=0,$ czyli  $f_n\rightrightarrows f.$ 

Przykład 151. Niech  $f_n \colon [0,+\infty) \to \mathbb{R}$  będą określone wzorem  $f_n(x) = xe^{-nx^2}, x \geqslant 0, n \in \mathbb{N}$ . Czytelnik sprawdzi, że  $\lim_{n \to \infty} ne^{-nx^2} = 0, x \geqslant 0$ . Pokażemy, że zbieżność ta nie jest jednostajna. Ponieważ  $f_n'(x) = -2nxe^{-x^2n}$ , to

- $-f'_n(x) = 0$  tylko dla x = 0,
- $-f_n(x) > 0 \text{ dla } x < 0,$
- $-f_n(x) < 0 \text{ dla } x > 0.$

Zatem funkcja  $f_n$  ma maksimum w punkcie x = 0. Ale  $f_n(0) = n$ , zatem

$$\lim_{n \to \infty} \sup_{x \ge 0} |f_n(x)| = \lim_{n \to \infty} n = +\infty \ne 0.$$

*Ćwiczenie* 123. Udowodnić, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest zbieżny jednostajnie, gdy  $f_n\colon\mathbb{R}_+\to\mathbb{R}$  dane są wzorem  $f_n(x)=\sqrt{x+n+1}-\sqrt{x+n}$  dla każdego  $n\in\mathbb{N}$ .

*Ćwiczenie* 124. Udowodnić, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest zbieżny jednostajnie, gdy  $f_n\colon\mathbb{R}^2\to\mathbb{R}$  dane są wzorem

$$f_n(x,y) = \frac{1}{|x| + |y| + 1} \sin \frac{\sqrt{x^2 + y^2}}{n}, \ n \in \mathbb{N}.$$

**Twierdzenie 16.1.5.** Ciąg  $(f_n)_{n\in\mathbb{N}}$ ,  $f_n\colon X\to Y$  zbieżny jednostajnie spełnia następujący warunek Cauchy'ego:

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{x\in X}\forall_{n,m\geq N}.\ \sigma(f_n(x),f_m(x))<\varepsilon.$$

Dowód. Oznaczmy przez f granicę ciągu  $(f_n)_{n\in\mathbb{N}}$ . Ustalmy  $\varepsilon>0$ . Istnieje  $n_0\in\mathbb{N}$  takie, że dla  $n\geqslant N$  mamy  $\sigma\left(f_n(x),f(x)\right)<\frac{\varepsilon}{2}$ . Dla dowolnych  $n,m\geqslant N$  mamy następujące oszacowanie:

$$\sigma(f_n(x), f_m(x)) \le \sigma(f_n(x), f(x)) + \sigma(f(x), f_m(x)) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

**Twierdzenie 16.1.6.** Niech  $(Y, \sigma)$  będzie przestrzenią metryczną zupelną. Wówczas  $(f_n)_{n \in \mathbb{N}}$ ,  $f_n \colon X \to Y$  jest zbieżny wtedy i tylko wtedy, gdy spelnia warunek Cauchy'ego.

Dowód. Załóżmy, że  $\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{x\in X}$ .  $\sigma(f_n(x),f(x))<\varepsilon$ . Wówczas  $\lim_{n\to\infty}f_n(x)=f(x),x\in X$ . Pokażemy, że zbieżność jest jednostajna. Weźmy dowolne  $\varepsilon>0$ . Wówczas istnieje  $N\in\mathbb{N}$  tak, że

$$\forall_{n,m \geq N} \sigma(f_n(x), f_m(x)) < \varepsilon, \ x \in X.$$

Ustalmy  $n \in \mathbb{N}$ . Mamy  $\lim_{m \to \infty} \sigma(f_n(x), f_m(x)) = \sigma(f_n(x), f(x)) \leqslant \varepsilon, x \in X$ . Czyli ciąg  $(f_n)_{n \in \mathbb{N}}$  jest zbieżny jednostajnie z dowolności wyboru  $\varepsilon$  i n. Z poprzedniego twierdzenia dowód wynika w drugą stronę.

**Twierdzenie 16.1.7.** Niech  $(X, \rho)$ ,  $(Y, \sigma)$  będą przestrzeniami metrycznymi,  $\emptyset \neq A \subseteq X$ ,  $f_n, f \colon A \to Y$ ,  $n \in \mathbb{N}$ . Jeżeli  $f_n \stackrel{A}{\Longrightarrow} f$  oraz  $f_n, n \in \mathbb{N}$  są funkcjami ciągłymi, to f jest funkcją ciągłą.

Dowód. Niech  $x_0 \in A$ . Ustalmy  $\varepsilon > 0$ . Istnieje  $n_0 \in \mathbb{N}$  takie, że dla każdego  $n \ge n_0$ 

$$\sigma(f_n(x), f(x)) < \frac{\varepsilon}{3}, x \in X.$$

W szczególności

(\*) 
$$\sigma(f_{n_0}(x), f(x)) < \frac{\varepsilon}{3}.$$

Funkcja  $f_{n_0}$ jest ciągła zatem istnieje  $\delta>0$ taka, że

$$\forall_{x \in A} \rho(x, x_0) < \delta \Rightarrow \sigma(f_{n_0}(x), f_{n_0}(x_0)) < \frac{\varepsilon}{3}.$$

Ustalmy  $x \in A$  i załóżmy, że  $\rho(x, x_0) < \delta$ . Obliczamy:

$$\sigma(f(x), f(x_0)) \leq \sigma(f(x), f_{n_0}(x)) + \sigma(f_{n_0}(x), f_{n_0}(x_0)) + \sigma(f_{n_0}(x_0), f(x_0)) <$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

**Twierdzenie 16.1.8.** Niech  $(X, \rho)$ ,  $(Y, \sigma)$  będą przestrzeniami metrycznymi,  $\emptyset \neq A \subseteq X$ ,  $f_n, f : A \to Y, n \in \mathbb{N}$ . Jeżeli  $f_n, n \in \mathbb{N}$  są ciągłe oraz ciąg  $(f_n)_{n \in \mathbb{N}}$  jest prawie jednostajnie zbieżny do f, to f jest ciągła.

Zatem, jeżeli znajdziemy granicę punktową ciągu funkcji ciągłych, nim podejmiemy się sprawdzania jego zbieżności jednostajnej, warto zwrócić uwagę, czy sama granica jest funkcją ciągłą. Jeśli nie, to ciąg nie jest zbieżny jednostajnie i sprawa jest rozstrzygnięta. Jednakże uwaga: twierdznie nie zachodzi w drugą stronę.

Przykład 152. Niech  $f_n: [0,1] \to \mathbb{R}$  dane będą wzorem  $f_n(x) = x^n, n \in \mathbb{N}$ . Wówczas  $\lim_{n \to \infty} f_n = f$ , gdzie

$$f(x) = \begin{cases} 0, & \text{dla } 0 \leqslant x < 1, \\ 0, & \text{dla } x = 1. \end{cases}$$

f jest oczywiście nieciągła w x=1, mimo że funkcje  $f_n$  są ciągłe jako funkcje wielomianowe.

Poniższe twierdzenie może być w oczywisty sposób użyteczne, do określania zbieżności jednostajnej niektórych ciągów funkcyjncyh, ale jest też wykorzystywany dla przeniesienia niektórych twierdzeń dotyczących całkowania ciągów funkcyjnych (do których zaraz przejdziemy) na całki niewłaściwe.

**Twierdzenie 16.1.9** (Diniego). Niech E jest zwartym podzbiorem pewnej przestrzeni metrycznej. Ponadto niech  $(f_n)_{n\in\mathbb{N}}$  będzie ciągiem funkcyjnym takim, że

- $(f_n)_{n\in\mathbb{N}}$  jest niemalejący lub nierosnący,
- $f_n$  są ciągłe dla każdego n,
- $-\lim_{n\to\infty}=f.$

 $W\'owczas\ f_n \stackrel{E}{\Longrightarrow} f.$ 

Dowód. Załóżmy, że  $f_n \geqslant f_{n+1}, \ n \in \mathbb{N}$ . Ustalmy  $\varepsilon > 0$ . Przyjmijmy  $g_n = f_n - f$  a wówczas g jest funkcją ciągłą dla dowolnego n oraz  $g_n \geqslant g_{n+1}, n \in \mathbb{N}$ . Oznaczmy

$$E_n = \{ x \in E \colon g_n(x) \geqslant \varepsilon \}.$$

Z ciągłości  $g_n$  wynika, że  $E_n$  jest zbiorem domkniętym dla dowolnego n, gdyż

$$E_n = g_n^{-1} [[\varepsilon, \infty)] \subseteq E.$$

Ponieważ  $\lim_{n\to\infty}g_n(x)=0$ , więc istnieje  $N\in\mathbb{N}$  takie, że  $g_n(x)<\varepsilon$  dla  $n\geqslant N$ , czyli  $\bigcap_{n=0}^N E_n=\varnothing$ . Dowolny skończony przekrój rodziny  $\{E_n\}_{n\in\mathbb{N}}$  będzie pusty, więc ze zwartości zbioru E i twierdzenia 5.6.19 wynika, że  $\bigcap_{n\in\mathbb{N}} E_n=\varnothing$ , czyli dla dowolnego  $x\in E$  mamy, że:

dla każdego  $n \in \mathbb{N}$  zachodzi  $g_n(x) < \varepsilon$ .

A więc ciąg  $(f_n)_{n\in\mathbb{N}}$  jest zbieżny jednostajnie. Rozważając ciąg  $(-f_n)_{n\in\mathbb{N}}$  otrzymamy twierdzenie dla ciągu nierosnącego.

#### 16.1.1 Przestrzenie funkcyjne

**Przestrzeń funkcji ciągłych.** Niech (X,d) będzie przestrzenią metryczną. Oznaczamy przez  $\mathcal{C}(X)$  zbiór wszystkich funkcji ciągłych i <u>ograniczonych</u>, określonych na przestrzeni X o wartościach rzeczywistych (lub zespolonych). Spotyka się też zapisy, w których wyszczególniona jest przeciwdziedzina funkcji danej przestrzeni:  $\mathcal{C}_{\mathbb{R}}(X)$ ,  $\mathcal{C}^{\mathbb{C}}(X)$ , etc. A więc np.:

$$\mathcal{C}^{\mathbb{R}}(X) = \left\{ f \in \mathbb{R}^X : f \text{ jest funkcją ciągłą i ograniczoną.} \right\}.$$

Zauważmy, że jeśli X jest zwarta, to możemy opuścić założenie o ograniczoności i wówczas

$$\mathcal{C}(X) = \left\{ f \in \mathbb{K}^X : f \colon X \to \mathbb{R} \text{ jest funkcją ciągłą.} \right\}, \ \mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$$

**Definicja 16.1.10.** Niech  $f \in \mathcal{C}(X)$ . Supremum normą nazywamy wartość

$$||f||_{\infty} := \sup_{x \in X} |f(x)|.$$

Wówczas funkcja  $\rho_{\infty} \colon \mathcal{C}(X) \times \mathcal{C}(X) \to \mathbb{R}$  dana wzorem  $\rho_{\infty}(f,g) := \|f - g\|_{\infty}, \ f,g \in \mathcal{C}(X)$  jest metryką: **TO-DO**: rozpisać trochę uzasadnienie, albo zostawić "dla czytelnika"

**Stwierdzenie.** Ciąg funkcyjny  $(f_n)_{n\in\mathbb{N}}$ ,  $f_n\colon X\to\mathbb{R}$ ,  $n\in\mathbb{N}$  jest jednostajnie zbieżny do funkcji  $f\colon X\to\mathbb{R}$  wtedy i tylko wtedy, gdy jest do niej zbieżny w sensie metryki  $\rho\colon \mathcal{C}(X)^2\to\mathbb{R}$ .

Zbieżność  $(f_n)_{n\in\mathbb{N}}$  do f w sensie metryki oznacza tu, że

$$\forall_{\varepsilon} \exists_{N \in \mathbb{N}} \forall_{n \geq N}. \|f_n - f\|_{\infty} < \varepsilon,$$

Innymi słowy,  $f_n \stackrel{X}{\rightrightarrows} f$ , wtedy i tylko wtedy, gdy:

$$\forall_{\varepsilon} \exists_{N \in \mathbb{N}} \forall_{n \geqslant N}. \sup_{x \in X} |f_n(x) - f(x)| < \varepsilon,$$

ale powyższy warunek, to dokładnie definicja jednostajnej zbieżności.

Zbieżność w sensie metryki, jak wiemy (porównaj twierdzenie 5.4.4), można wyrazić poprzez równość  $\lim_{n\to\infty} ||f_n - f|| = 0$ . Jest to dokładnie treść twierdzenia 16.1.4, przy  $(Y, \sigma) = (\mathbb{R}, |\cdot|)$ .

Twierdzenie 16.1.11. Przestrzeń  $(C(X), \rho_{\infty})$  jest przestrzenią metryczną zupelną.

Inaczej mówiac, w przestrzeni  $\mathcal{C}(X)$  ciag  $(f_n)_{n\in\mathbb{N}}$  jest zbieżny wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m\geqslant N}. \|f_n-f_m\|_{\infty}<\varepsilon.$$

 $\acute{C}wiczenie$  125. Oczywiście, na przestrzeniach funkcyjnych możemy wprowadzać inne metryki. Dla przykładu w przestrzeni $\mathcal{C}([0,1])$  rozważmy metrykę d daną wzorem

$$d(f,g) := \int_0^1 |f(x) - g(x)| dx.$$

Ponieważ przedział [0,1] jest zwarty, to funkcje  $f,g\in\mathcal{C}([0,1])$  są ciągłe i powyższa definicja jest poprawna.

Jak wyglądaja kule otwarte w przestrzeni  $(\mathcal{C}([0,1]), \rho_{\infty})$  z metryką supremum, a jak w przestrzeni  $(\mathcal{C}([0,1]), \rho)$  z "całkową" metryką określoną powyżej?

#### 16.1.2 Całkowanie i różniczkowanie ciągów funkcyjnych

**Twierdzenie 16.1.12.** Niech  $f_n: [a,b] \to \mathbb{R}, n \in \mathbb{N}$ . Załóżmy, że

- $f_n$  są różniczkowalne dla  $n \in \mathbb{N}$ ,
- istnieje takie  $\bar{x}$ , że ciąg  $(f_n(\bar{x}))_{n\in\mathbb{N}}$  jest zbieżny do pewnej funkcji  $f\colon [a,b]\to\mathbb{R}$ ,
- $ciqg(f'_n)_{n\in\mathbb{N}}$  pochodnych jest jednostajnie zbieżny do pewnej funkcji  $g\colon [a,b]\to\mathbb{R}$ .

W'owczas

- (i) Ciąg  $(f_n)_{n\in\mathbb{N}}$  jest jednostajnie zbieżny do  $f:(a,b)\to\mathbb{R}$ ,
- (ii) funkcja f jest różniczkowalna,
- (iii) f' = g.

Dowód. Ustalmy  $\varepsilon > 0$ . Istnieje takie  $N \in \mathbb{N}$ , że

$$|f_m(\bar{x}) - f_n(\bar{x})| < \frac{\varepsilon}{2}, \ m, n \geqslant N$$

i równocześnie

$$\forall_{\substack{n,m\in\mathbb{N}\\m,n\geqslant N}}|f_m'(x)-f_n'(x)|<\frac{\varepsilon}{2(b-a)},\ x\in(a,b).$$

Funkcja  $f_n - f_m$  spełnia założenia twierdzenia Lagrange'a i stąd istnieje  $\xi \in (\bar{x}, x)$   $(\bar{x}, x \in (a, b))$  takie, że

$$\frac{(f_n(x) - f_m(x)) - (f_n(\bar{x}) - f_m(\bar{x}))}{x - \bar{x}} = f'_n(\xi) - f'_m(\xi).$$

Ustalmy  $n, m \ge n_0, x \in (a, b)$ .

$$f_n(x) - f_m(x) = (f'_n(\xi) - f'_m(\xi))(x - \bar{x}) + f_n(\bar{x}) - f_m(\bar{x}).$$

$$|f_n(x) - f_m(x)| \leq |f_n(\bar{x}) - f_m(\bar{x})| + \underbrace{|x - \bar{x}|}_{<(b-a)} |f'_n(\xi) - f'_m(\xi)| \leq \frac{\varepsilon}{2} + (b-a)\frac{\varepsilon}{2(b-a)} = \varepsilon.$$

Mamy, że ciąg  $(f_n)_{n\in\mathbb{N}}$  jest jednostajnie zbieżny.

Ustalmy  $x_0 \in (a,b)$ . Zdefinujmy funkcję  $\varphi_n \colon (a,b) \to \mathbb{R}$  następująco:

$$\varphi_n(x) = \begin{cases} \frac{f_n(x) - f_n(x_0)}{x - x_0}, & x \neq x_0 \\ f'(x_0), & x = x_0. \end{cases} \quad n \in \mathbb{N}, x \in (a, b).$$

Funkcje  $\varphi_n$  są ciągłe dla każdego  $n \in \mathbb{N}$ . Zdefinujmy też funkcję  $\varphi \colon (a,b) \setminus \{x_0\} \to \mathbb{R}, \ \varphi(x) = \frac{f(x) - f(x_0)}{x - x_0}$ . Sprawdzimy, że  $\varphi_n \rightrightarrows \varphi$ . Ustalmy  $\varepsilon > 0$ . Wówczas, korzystając ponownie z tw. Lagrange'a, dla pewnego  $\xi$  mamy

$$|\varphi_n(x) - \varphi_m(x)| = \left| \frac{f_n(x) - f_n(x_0) - f_m(x) + f_m(x_0)}{x - x_0} \right| = |f'_n(\xi) - f'_m(\xi)|.$$

 $(f'_n)_{n\in\mathbb{N}}$  jest jednostajnie zbieżny. Istnieje  $n_0\in\mathbb{N}$  tak, że

$$\forall_{\substack{n,m\in\mathbb{N}\\n}} |f'_n(x) - f'_n(x)| < \varepsilon, \ x \in (a,b).$$

Ustalmy  $n, m \ge n_0, x \in (a, b)$ . Mamy

$$|\varphi_n(x) - \varphi_m(x)| = |f'_n(\xi) - f'_m(\xi)| < \varepsilon.$$

Zatem ciąg  $(\varphi)_{n\in\mathbb{N}}$  jest jednostajnie zbieżny.

Pokażemy, że f jest różniczkowalna w  $x_0$ .

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} \left( \lim_{n \to \infty} \varphi_n(x) \right) =$$
$$= \lim_{n \to \infty} \left( \lim_{x \to x_0} \varphi_n(x) \right) = \lim_{n \to \infty} f'_n(x_0) = \varphi(x_0) = g.$$

Czyli 
$$\left(\lim_{n\to\infty} f_n(x)\right)' = (f(x))' = g(x) = \lim_{n\to\infty} f'_n(x) = f(x).$$

 $\acute{C}wiczenie$  126. Niech  $f_n(x)=\frac{x}{1+nx^2}, x\in\mathbb{R}, n\in\mathbb{N}$ . Wykazać, że ciąg jest jednostajnie zbieżny do pewnej funkcji f, ale równość

$$f'(x) = \lim_{n \to \infty} f'_n(x),$$

jest spełniona dla  $x \neq 0$ , lecz nie jest spełniona dla x = 0.

**Twierdzenie 16.1.13.** Zalóżmy, że  $f_n \colon [a,b] \to \mathbb{R}$ ,  $n \in \mathbb{N}$  są funkcjami calkowalnymi w sensie Riemanna. Jeżeli  $f_n \stackrel{[a,b]}{\rightrightarrows} f$ ,  $f \colon [a,b] \to \mathbb{R}$ , to

- (i) f jest całkowalna w sensie Riemanna,
- (ii) zachodzi wzór

$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x) dx.$$

Dowód. Przyjmijmy  $\varepsilon_n := \sup_{x \in [a,b]} |f_n(x) - f(x)|.$  Wówczas

$$f_n(x) - \varepsilon_n \leqslant f(x) \leqslant f_n(x) + \varepsilon_n, \ n \in \mathbb{N}.$$

Z definicji całki górnej i dolnej:

(16.2) 
$$\int_{\underline{a}}^{b} (f_n(x) - \varepsilon_n) \, \mathrm{d}x \le \int_{\underline{a}}^{\underline{b}} f(x) \, \mathrm{d}x \le \overline{\int_{\underline{a}}^{\underline{b}}} f(x) \, \mathrm{d}x \le \overline{\int_{\underline{a}}^{\underline{b}}} (f_n(x) + \varepsilon_n) \, \mathrm{d}x.$$

Stąd otrzymamy, że

$$0 \leqslant \int_{a}^{b} f(x) \, \mathrm{d}x - \overline{\int_{a}^{b}} f(x) \, \mathrm{d}x \leqslant 2\varepsilon_{n}(b-a).$$

Ponieważ  $f_n \stackrel{[a,b]}{\Rightarrow} f$ , to na mocy twierdzenia 16.1.4  $\lim_{n \to \infty} \varepsilon_n = 0$  a więc z twierdzenia o trzech ciągach całka górna i dolna funkcji są sobie równe. Korzystając z tej wiedzy, tym razem z równania 16.2 dostaniemy, że

$$\left| \int_{a}^{b} f(x) dx - \int_{a}^{b} f_{n}(x) dx \right| \leq \varepsilon_{n}(b - a).$$

Stąd już przy  $n\to\infty$  dostajemy, że  $\int_a^b f(x)\,\mathrm{d}x=\lim_{n\to\infty}\int_a^b f_n(x)\,\mathrm{d}x.$ 

## 16.2 Szeregi funkcyjne

W tej części będziemy zakładać, że  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$ 

**Definicja 16.2.1.** Niech  $X \neq \emptyset$  będzie dowolnym zbiorem,  $f_n \colon X \to \mathbb{K}, n \in \mathbb{N}$ . Ciąg sum częściowych  $(S_n)$  zdefiniujemy jako

$$S_n(x) := f_0(x) + f_1(x) + f_2(x) + \ldots + f_{n-1}(x) + f_n(x).$$

Ciąg  $(S_n)_{n\in\mathbb{N}}$  nazywamy **szeregiem funkcyjnym** i oznaczamy

$$\left(\sum_{k=0}^{n} f_k\right)_{n \in \mathbb{N}}$$

zaś sumę  $\lim_{n\to\infty} S_n$  tego szeregu:

$$\sum_{n=0}^{\infty} f_n$$

przy czym podobnie jak w przypadku szeregów najczęściej utożsamiamy symbol sumy szeregu z oznaczeniem samego szeregu.

Mówimy, że szereg funkcyjny jest

- zbieżny punktowo, gdy odpowiedni ciąg  $(S_n)_{n\in\mathbb{N}}$  jest zbieżny punktowo;
- zbieżny jednostajnie, gdy ciąg  $(S_n)_{n\in\mathbb{N}}$  jest jednostajnie zbieżny;
- prawie (niemal) jednostajnie zbieżny, gdy ciąg  $(S_n)_{n\in\mathbb{N}}$  jest niemal jednostajnie zbieżny;

i nazywamy odpowiednio szeregiem zbieżnym punktowo, szeregiem zbieżnym jednostajnie, szeregiem prawie (niemal) jednostajnie zbieżnym.

**Twierdzenie 16.2.2.** Jeżeli szereg funkcyjny jest jednostajnie zbieżny, to jest zbieżny punktowo. Jeżeli  $(X, \rho)$  jest przestrzenią metryczną to każdy szereg jednostajnie zbieżny jest prawie jednostajnie zbieżny a każdy szereg prawie jednostajnie zbieżny jest zbieżny punktowo.

**Twierdzenie 16.2.3.** Jeżeli  $(X, \rho)$  jest przestrzenią metryczną,  $f_n \colon X \to \mathbb{K}, n \in \mathbb{N}$  są funkcjami ciągłymi a szereg  $\sum_{n=0}^{\infty} f_n$  jest (prawie) jednostajnie zbieżny, to jego suma jest funkcją ciągłą.

Z twierdzenia o całkowaniu ciągów funkcyjnych, wynika że jeżeli szereg  $\sum_{n=0}^{\infty} f_n$  jest zbieżny jednostajnie do funkcji  $f:[a,b] \to \mathbb{R}$  na odp. przedziale, to

$$\int_{a}^{b} f = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n} = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}.$$

#### 16.2.1Kryteria zbieżności szeregów funkcyjnych

Twierdzenie 16.2.4 (Kryterium jednostajne Cauchy'ego dla szeregów funkcyjnych). Niech  $X \neq$  $\varnothing$ ,  $f_n: X \to \mathbb{K}$ ,  $n \in \mathbb{N}$ . Wówczas szereg  $\sum_{n=1}^{\infty} f_n$  jest zbieżny jednostajnie wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0}\exists_{N\in\mathbb{N}}\forall_{n,m\geqslant N}\forall_{x\in X}\left|\sum_{k=n+1}^{m}f_k(x)\right|<\varepsilon.$$

 $Dow \acute{o}d.$ 

$$\begin{split} \sum_{n=1}^{\infty} f_n \text{ jednostajnie zbieżny.} &\Leftrightarrow (S_n)_{n \in \mathbb{N}} \text{ jedn. zbieżny.} \Leftrightarrow \\ &\Leftrightarrow \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n,m \geqslant N} \forall_{x \in X} \left| S_m(x) - S_n(x) \right| < \varepsilon \Leftrightarrow \\ &\Leftrightarrow \forall_{\varepsilon > 0} \exists_{N \in \mathbb{N}} \forall_{n,m \geqslant N} \forall_{x \in X} \left| \sum_{k=n+1}^m f_k(x) \right| < \varepsilon. \end{split}$$

**Twierdzenie 16.2.5** (Kryterium Weierstrassa). Niech  $X \neq \emptyset$ ,  $f_n : X \to \mathbb{K}$ ,  $n \in \mathbb{N}$ . Jeżeli istnieje taki ciąg liczbowy  $(a_n)_{n\in\mathbb{N}}$  o wartościach dodatnich, że

$$\forall_{x \in X} \forall_{n \in \mathbb{N}}. |f_n(x)| \leqslant a_n;$$

oraz  $\sum_{n=1}^{\infty} a_n$  jest zbieżny, to szereg funkcyjny  $\sum_{n=1}^{\infty} f_n$  jest jednostajnie zbieżny.

Dowód. Szereg  $\sum_{n=0}^{\infty} a_n$  jest zbieżny, zatem dla ustalonego  $\varepsilon > 0$  istnieje  $n_0$  takie, że dla każdych  $n,m\geqslant n_0$ oraz m>nzachodzi nierówność

$$\sum_{k=n+1}^{m} a_n < \varepsilon.$$

Wykorzystamy kryterium jednostajne Cauchy'ego. Ustalmy  $n, m \ge n_0, m > n$  oraz  $x \in X$ . Mamy

$$\left| \sum_{k=n+1}^{m} f_k(x) \right| \leqslant \sum_{k=n+1}^{m} |f_k(x)| \leqslant \sum_{k=n+1}^{m} a_n < \varepsilon.$$

Twierdzenie odwrotne nie jest prawdziwe.

Przykład 153. Niech  $f_n: \mathbb{R} \to \mathbb{R}$  będą dane wzorem  $f_n(x) = \frac{\sin nx^2}{n}$ ,  $x \in \mathbb{R}$ ,  $n \in \mathbb{N}$ . Ponieważ  $|f_n(x)| \leq \frac{1}{n^2}$ ,  $x \in \mathbb{R}$ ,  $n \in \mathbb{N}$  a zbieżny jest szereg

$$\sum_{n=1}^{\infty} \frac{1}{n^2},$$

to szereg

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$$

jest zbieżny jednostajnie w  $\mathbb{R}$ .

**Twierdzenie 16.2.6** (Kryterium Abela). Niech  $X \neq \emptyset$ ,  $A \subseteq X$  oraz  $f_n \colon X \to \mathbb{K}, n \in \mathbb{N}$ ,  $g_n \colon X \to \mathbb{K}, n \in \mathbb{N}$ . Jeżeli szereg

$$\sum_{n=1}^{\infty} g_n$$

jest zbieżny jednostajnie na zbiorze A, dla każdego  $x \in A$  ciąg  $(f_n(x))_{n \in \mathbb{N}}$  jest monotoniczny oraz istnieje taka liczba M, że dla prawie wszystkich n zachodzi

$$\forall_{x \in A} |f_n(x)| \leqslant M,$$

to szereg funkcyjny

$$\sum_{n=1}^{\infty} f_n \cdot g_n$$

jest zbieżny na zbiorze A.

#### Zastosowanie szeregów funkcyjnych - przykład:

**Twierdzenie 16.2.7.** Istnieje funkcja  $\mathbb{R} \to \mathbb{R}$  ciągła na  $\mathbb{R}$  ale nie różniczkowalna w żadnym punkcie.

Dowód. Niech  $\varphi \colon \mathbb{R} \to \mathbb{R}$  będzie funkcją daną wzorem  $\varphi(x) = |x|$  dla  $|x| \leqslant 1$  a w pozostałych przypadkach  $\varphi(x) = \varphi(x+2)$ .



Łatwo stwierdzić, że dla dowolnych  $x,y\in\mathbb{R}$  zachodzi nierówność

$$(16.3) |\varphi(x) - \varphi(y)| \leqslant |x - y|,$$

więc funkcja  $\varphi$  jest ciągła.

Określamy szereg funkcyjny:

$$f(x) = \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x)$$

Z kryterium Weierstrassa możemy stwierdzić, że szereg jest zbieżny, gdyż  $\varphi(4x) \leq 1$  i mamy

$$\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n \varphi(4^n x) \leqslant \sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n < \infty.$$

Łatwo też stwierdzić, że funkcje  $x \mapsto \left(\frac{3}{4}\right)^n \varphi(4^n x)$  są ciągłe dla każdego  $n \in \mathbb{N}$ , więc suma f naszego szeregu jest funkcją ciągłą, zgodnie z twierdzeniem 16.2.3.

Ustalmy dowolny  $x \in \mathbb{R}$ . Chcemy pokazać, że funkcja f niest jest w punkcie x różniczkowalna. Określmy liczbę  $h_m := \pm \frac{1}{2} 4^{-m}$ , dobierając znak wyrażenia tak, by między liczbami  $4^m x$  a  $4^m (x + h_m)$  nie znajdywała się żadna liczba całkowita. Możemy to zrobić, gdyż  $4^m (x + h_m) = 4^m x \pm \frac{1}{2}$  więc nie ma możliwości, aby zarówno w przedziale

$$\left(4^m x - \frac{1}{2}, \ 4^m x\right),\,$$

jak i w przedziale

$$\left(4^m x, \ 4^m x + \frac{1}{2}\right),$$

leżały liczby całkowite, toteż wystarczy wybrać odpowiedni z przedziałów.

Rozważmy wyrażenie

$$\Delta_n := \frac{\varphi(4^n(x+h_m)) - \varphi(4^n x)}{h_m}$$

Korzystając z (16.3) otrzymujemy oszacowanie

$$|\Delta_n| \le 4^n \frac{|x + \delta_m - x|}{|\delta_m|} = 4^n \frac{|\delta_m|}{|\delta_m|},$$

czyli

$$|\Delta_n| \leqslant 4^n.$$

Po raz pierwszy przykład funkcji funkcji ciągłej i nieróżniczkowalnej zarazem w każdym punkcie zbioru  $\mathbb R$  podał Karl Weierstrass w roku. Funkcja Weierstrassa jest sumą szeregu

$$\sum_{n=0}^{\infty} a^n \cos(b^n \pi x),$$

gdzie a jest pewną liczbą z przedziału [0,1). Łatwo sprawdzić, że funkcja ta jest ciągła. Funkcja ta jest nieróżniczkowalna w każdym punkcie x, gdy dodatkowo  $ab>1+\frac{3}{2}\pi$ , jednak dowód jest rachunkowo bardziej skomplikowany, w porównaniu z funkcją z której korzystaliśmy w dowodzie twierdzenia 16.2.7.

#### 16.2.2 Szeregi potęgowe

**Definicja 16.2.8.** Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb zespolonych. Szereg funkcyjny

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

nazywamy szeregiem potęgowym o środku w punkcie  $x_0$ .

Najczęściej rozważamy szereg o środku w zerze -  $x_0 = 0$ ,  $\sum_{n=1}^{\infty} a_n x^n$ .

Dla uproszczenia wykładu w dalszej części przyjmujemy, że  $0^0 = 1$ .

#### Definicja 16.2.9. Wartość

$$R = \sup \left\{ x \ge 0 \colon \text{ szereg } \sum_{n=0}^{\infty} |a_n| (x - x_0)^n \text{ jest zbieżny.} \right\}$$

nazywamy **promieniem zbieżności** szeregu potęgowego  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ .

Zatem jeśli R jest promieniem zbieżności szeregu potęgowego  $\sum_{n=0}^{\infty} a_n x^n$ , to szereg ten jest zbieżny dla |x| < R, a dla |x| > R jest rozbieżny. Np. dla szeregu geometrycznego  $\sum_{n=0}^{\infty} x^n$  mamy oczywiście R=1 i zwróćmy uwagę, że dla x=1 albo x=-1 szereg geometryczny jest rozbieżny. Zbieżność w krańcach przedziału zbieżności, tj. zbieżność dla punktów x=R, x=-R musimy sprawdzać oddzielnie (podstawić R, -R pod x i zbadać uzyskany szereg).

**Twierdzenie 16.2.10.** Jeżeli szereg  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  jest zbieżny w pewnym punkcie  $x_0 \neq x_1 \in \mathbb{C}$ , to jest zbieżny prawie jednostajnie i bezwzględnie w kole

$$K(x_0, |x_0 - x_1|) = \{x \in \mathbb{C} : |x - x_0| < |x_0 - x_1|\}.$$

Jeżeli szereg ten jest rozbieżny w pewnym punkcie  $x_2$ , to jest on rozbieżny w zbiore  $\mathbb{C}\setminus \overline{K}(x_0,|x-x_0|)$ .

Pokażemy, że jeżeli szereg  $\sum_{n=0}^{\infty} a_n x^n$  jest zbieżny w pewnym punkcie  $x_0 \neq x_1 \in \mathbb{C}$ , to jest zbieżny jednostajnie i bezwzględnie w kole  $K(0,x_1)=\{x\in\mathbb{C}\colon |x|< x_1\}$ . Z warunku koniecznego zbieżności szeregu wynika, że  $a_n x^n \stackrel{n\to\infty}{\longrightarrow} 0$ . Ciąg ten jest zatem ograniczony, np. przez M>0. Niech  $x\in K(0,x_1)$ , to

$$|a_n x^n| < |a_n| x_1^n = |a_n x^n| \cdot \frac{x_1^n}{|x|^n} \le M \left(\frac{x_1}{|x|}\right)^n.$$

Przyjmując  $q:=x_1/|x|$  otrzymujemy szereg  $\sum_{n=0}^{\infty}Mq^n$  geometryczny, zbieżny, którego wyraz ogólny ograniczającza szereg  $\sum_{n=0}^{\infty}a_nx^n$  i na mocy kryterium Weierstrassa zbieżności szeregów funkcyjnych, szereg ten również jest zbieżny.

Wniosek 16.2.11. Funkcja  $f(x) := \sum_{n=1}^{\infty} a_n (x - x_0)^n$  jest w swoim kole zbieżności ciągła jako granica prawie jednostajna ciągu funkcji ciągłych.

Twierdzenie 16.2.12 (Abela). Załóżmy, że  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem rzeczywistym. Jeżeli szereg potegowy  $\sum_{n=0}^{\infty}a_nx^n$ ,  $x\in\mathbb{R}$  o dodatnim promieniu zbieżności R jest zbieżny w jednym z końców przedziału zbieżności, to suma szeregu jest w tym punkcie ciągła.

 $Dow \acute{o}d.$  Pokażemy, że funkcja fjest ciągła w R,czyli  $\lim_{x\to R-}f(x)=\sum_{n=0}^{\infty}a_nR^n.$  Mamy przypadki

1. R=1: Ustalmy  $\varepsilon>0$ . Chcemy pokazać, że istnieje  $\delta>0$  takie iż

$$\left| f(x) - \sum_{n=0}^{\infty} a_n \right| < \varepsilon, \text{ dla } x > 1 - \delta.$$

Obliczamy

$$\sum_{k=0}^{n} a_k x^k = \sum_{k=0}^{n} (S_k - S_{k-1}) x^k = \sum_{k=0}^{n} S_k x^k - \sum_{k=0}^{n} S_{k-1} x^k =$$

$$= \sum_{k=0}^{n-1} S_k x^k - S_n x^n - \sum_{k=0}^{n-1} S_k x^{k+1} = \sum_{k=0}^{n-1} S_k (x^k - x^{k+1}) + S_n x^n =$$

$$= (1 - x) \sum_{k=0}^{n-1} S_k x^k + S_n x^n.$$

Przy  $n \to \infty$  dla |x| < 1 mamy  $S_n x^n \to 0$  a stąd  $x^n \to 0$ , bo  $(S_n)_{n \in \mathbb{N}}$  jest ciągiem niemalejącym, ograniczonym. Mamy

$$\sum_{n=0}^{\infty} a_n x^n = (1-x) \sum_{n=0}^{\infty} S_n x^n.$$

 $S = \lim_{n \to \infty} S_n$ czyli istnieje  $n_0 \in \mathbb{N}$ takie, że

$$|S_n - S| < \frac{\varepsilon}{2}, \ n \geqslant n_0$$

Przeprowadzamy obliczenia dla  $x \in [0, 1)$ :

$$|f(x) - S| = \left| \sum_{n=0}^{\infty} a_n x^n - S \right| \stackrel{??}{=} \left| (1 - x) \sum_{n=0}^{\infty} S_n x^n - (1 - x) \sum_{n=0}^{\infty} S x^n \right| \leqslant$$

$$\leqslant (1 - x) \sum_{n=0}^{\infty} |S_n - S| x^n = (1 - x) \sum_{n=0}^{n_0 - 1} |S_n - S| x^n + \underbrace{(1 - x) \sum_{n=n_0}^{\infty} \sum_{n=n_0}^{\frac{\varepsilon_2}{2} z (*)}}_{\leqslant (1 - x) \sum_{n=0}^{\infty} x^n = 1} <$$

$$< (1 - x) \sum_{n=0}^{\infty} |S_n - S| x^n + \frac{\varepsilon}{2}.$$
Funkcja ograniczona na [0,1]

Zatem istnieje takie  $\delta>0$ , że dla dowolnego x, jeżeli  $1-x<\delta$ , to

$$(1-x)\sum_{n=0}^{n_0-1} |S_n - S| x^n < \frac{\varepsilon}{2}.$$

2.  $R \neq 1$ : Rozważmy funkcję  $g \colon [0,1] \to \mathbb{R}$  daną wzorem  $g(t) = f(Rt), t \in [0,1]$ .

$$g(t) = \sum_{n=0}^{\infty} a_n R^n t^n.$$

Oznaczmy  $\lambda_f=\limsup_{n\to\infty}\sqrt[n]{|a_n|}$ i  $\lambda_g=\limsup_{n\to\infty}\sqrt[n]{|a_nR^n|}.$  Wówczas

$$\lambda_g = \limsup_{n \to \infty} \sqrt[n]{|a_n R^n|} = R \limsup_{n \to \infty} \sqrt[n]{|a_n|} = R \cdot \lambda_f = 1.$$

Promieniem zbieżności szeregu  $\sum_{n=0}^{\infty} a_n R^n t^n$  jest 1 oraz g jest ciągła w 1. Ale  $f(x) = g\left(\frac{x}{R}\right)$ ,  $x \in (-R, R]$ , czyli f jest ciągła w R.

Twierdzenie 16.2.13 (Cauchy'ego-Hadamarda). Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem liczb zespolonych oraz niech

$$\lambda = \limsup_{n \to \infty} \sqrt[n]{|a_n|}.$$

Wówczas promień zbieżności szeregu  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  wynosi

- 0,  $je\dot{z}eli\ \lambda = +\infty$ ,
- $+\infty$ ,  $je\dot{z}eli\ \lambda=0$ ,
- $\frac{1}{\lambda}$ ,  $je\dot{z}eli\ \lambda \in (0,\infty)$ .

Dowód. Zastosujemy kryterium Cauchy'ego zbieżności szeregów. Zgodnie z oznaczeniami w tezie twierdzenia

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = \lim_{n \to \infty} \sqrt[n]{|(x - x_0)^n| \cdot |a_n|} = |x - x_0| \lim_{n \to \infty} \sqrt[n]{|a_n|} = |x - x_0| \lambda.$$

Rozważmy trzy przypadki

1.  $\lambda = 0$ .

W tym wypadku szereg jest zbieżny, dla każdego  $x \in \mathbb{R}$ . Rzeczywiście, dla dowolnego  $x \in \mathbb{R}$  mamy wówczas

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda = 0 < 1.$$

Na mocy kryterium Cauchy'ego szereg  $\sum\limits_{n=0}^{\infty}a_{n}(x-x_{0})^{n}$ jest bezwzględnie rozbieżny.

2.  $\lambda = +\infty$ .

W tym wypadku oczywiście szereg jest zbieżny tylko dla  $x=x_0$ . Jeśli  $x\neq x_0$ , to

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda = \infty.$$

Na mocy kryterium Cauchy'ego szereg  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  jest rozbieżny.

3.  $\lambda \in (0, +\infty)$ .

Mamy wówczas

$$\lim_{n \to \infty} \sqrt[n]{|a_n(x - x_0)^n|} = |x - x_0|\lambda < \infty.$$

Na mocy kryterium Cauchy'ego wnioskujemy, że

- szereg  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  jest bezwględnie zbieżny, jeżeli  $|x-x_0|\lambda < 1$ , czyli kiedy

$$|x-x_0|<\frac{1}{\lambda}$$

- szereg  $\sum\limits_{n=0}^{\infty}a_n(x-x_0)^n$  jest rozbieżny, jeżeli  $|x-x_0|\lambda>1,$ czyli kiedy

$$|x - x_0| > \frac{1}{\lambda}$$

Czyli mamy, że szereg jest zbieżny, dla  $x\in \left(x_0-\frac{1}{\lambda},x_0+\frac{1}{\lambda}\right)$ , natomiast nie wiemy jak szereg zachowuje się w krańcach przedziału (punktach  $x=x_0-\frac{1}{\lambda}$  i  $x=x_0+\frac{1}{\lambda}$ )

**Uwaga 16.2.14.** Oczywiście, możemy w powyższym twierdzeniu zastąpić  $\lambda$  również granicą  $\lambda = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$ . Porównaj twierdzenie 13.2.16 i wzór 4.8.

Przykład 154. Rozważmy szereg  $\sum_{n=0}^{\infty} x^{2n} = 1 + x^2 + x^4 + \dots$  Możemy określić ciąg  $(a_n)_{n \in \mathbb{N}}$  następująco:

$$a_n = \begin{cases} 1, & \text{gdy } n \text{ jest parzyste;} \\ 0, & \text{gdy } n \text{ jest nieparzyste.} \end{cases}$$

Wtedy

$$\sum_{n=0}^{\infty} x^{2n} = \sum_{n=0}^{\infty} a_n x^n.$$

Dalej, badamy podciągi ciągu  $(a_n)_{n\in\mathbb{N}}$ .

$$\lim_{k \to \infty} \sqrt[2k]{|a_{2k}|} = 1,$$

$$\lim_{k \to \infty} \sqrt[2k-1]{|a_{2k-1}|} = 0.$$

Zatem  $\limsup_{n\to\infty} \sqrt[n]{|a_n|} = 1$ , więc szereg jest zbieżny dla |x| < 1. Łatwiej było oczywiście zauważyć, że nasz szereg jest szeregiem geometrycznym o ilorazie równym  $x^2$ . W każdym bądź razie wykazaliśmy, że kołem zbieżności naszego szeregu jest K(0,1). Przyjmujemy R=1.

Przykład 155. Rozważmy szereg  $\sum_{n=0}^{\infty} \frac{1}{n^2} (x - x_0)^n$ , gdzie  $x_0 \in \mathbb{R}$  jest ustalonym środkiem szeregu. Mamy

$$\limsup_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = \lim_{n \to \infty} \frac{1}{\sqrt[n]{n^2}} = 1,$$

zatem szereg ten jest bezwzględnie zbieżny w kole  $K(x_0,1)$ , czyli R=1. Ale zauważmy, że dla x takich, że  $|x-x_0|=1$  również szereg ten jest zbieżny, gdyż jest on szeregiem  $\sum \frac{1}{n^2}$ . Obszarem zbieżności jest koło domknięte  $\overline{K}(x_0,R)$ .

Przykład 156. Rozważmy szereg  $\sum_{n=0}^{\infty} \frac{1}{n} (x-x_0)^n$ , gdzie  $x_0 \in \mathbb{R}$ . Łatwo pokazać, że podobnie jak w poprzednim przykładzie promień zbieżności R jest równe 1, ale tym razem, dla  $x=x_0+1$  otrzymujemy szereg  $\sum \frac{1}{n}$  – szereg rozbieżny. Z kolei dla  $x=x_0-1$  mamy szereg zbieżny  $\sum (-1)^n \frac{1}{n}$  na mocy kryterium Leibniza. Przykłąd ten pokazuje, że szereg może być zbieżny dla niektórych i rozbieżny dla innych punktów leżących na brzegu swojego koła zbieżności.

#### Różniczkowanie i całkowanie szeregów potęgowych.

**Twierdzenie 16.2.15.** Niech  $(a_n)_{n\in\mathbb{N}}$  będzie ciągiem rzeczywistym,  $x_0$  ustalonym punktem, oraz niech szereg

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n, x \in \mathbb{R}$$

ma dodatni promień zbieżności R. Wówczas szereg

$$\sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

ma również promień zbieżności R, funkcja  $f(x) = \sum_{n=0}^{\infty} a_n x^n$ ,  $x \in (-R, R)$  jest różniczkowalna oraz

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}.$$

Dowód. Korzystając z twierdzenia Cauchy'ego–Hadamarda znajdujemy promień szeregu  $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$ :

$$\limsup_{n \to \infty} \sqrt[n]{|na_n|} = \lim_{n \to \infty} \sqrt[n]{n} \limsup_{n \to \infty} \sqrt[n]{|a_n|} = \limsup_{n \to \infty} \sqrt[n]{|a_n|} = R$$

Jest to oczywiście promień zbieżności szeregu  $\sum_{n=0}^{\infty} a_n x^n$ . Odnotujmy, że:

- (1) szereg  $\sum_{n=1}^{\infty} na_n(x-x_0)^{n-1}$  jest (niemal) jednostajnie zbieżny w kole o pr. R i środku  $x_0$ ,
- (2) szereg  $\sum_{n=0}^{\infty} a_n (x-x_0)^n$  jest zbieżny przynajmniej w jednym punkcie.

Powyższe obserwacje pozwalają nam skorzystać z twierdzenia o różniczkowaniu ciągów funkcyjnych. Z (1) i (2) f jest różniczkowalna na mocy twierdzenia 16.1.12 oraz zachodzi równość

$$\left(\sum_{n=0}^{\infty} a_n (x - x_0)^n\right)' = \sum_{n=0}^{\infty} (a_n (x - x_0)^n)'.$$

Przykład 157. Możemy obliczyć sumę szeregu  $\sum_{n=1}^{\infty} (-1)^n nx^n$ . Oznaczamy:

$$f(x) = \sum_{n=1}^{\infty} (-1)^n nx^n, |x| < 1;$$

Mamy 
$$f(x) = x \sum_{n=1}^{\infty} (-1)^n x^{n-1} = x \sum_{n=1}^{\infty} (-1)^n (x^n)' = x \left( \sum_{n=1}^{\infty} (-x)^n \right)' = x \left( \frac{-x}{1+x} \right)' = x \left($$

(16.4) 
$$\sum_{n=1}^{\infty} (-1)^n n x^n = \frac{-x}{(1+x)^2}$$

Szereg Taylora a szereg potęgowy.

Niech  $f(x) = \sum_{n=0}^{\infty} a_n x^n$ , oraz  $f(0) = a_0$ . Zbadajmy kolejne pochodne funkcji f:

$$f'(x) = \sum_{n=1}^{\infty} na_n x^{n-1}, f'(0) = a_1,$$

$$f''(x) = \sum_{n=2}^{\infty} n(n-1)a_n x^{n-2}, f''(0) = 2a_2,$$

$$f'''(x) = \sum_{n=3}^{\infty} n(n-1)(n-2)a_n x^{n-3}, f'''(0) = 6a_3$$

$$f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1) \cdot \dots \cdot (n-k+1)a_n x^{n-k}, f^{(k)}(0) = k! a_k$$

Zauważmy, że  $\sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$ . Ponadto widzimy, że f jest klasy  $C^{\infty}$ . I oczywiście

można uogólnić i pokazać, że również:

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n.$$

Widzimy, że powyższe wyrażenie, to znany nam szereg Taylora.

Twierdzenie 16.2.16 (O całkowaniu funkcji analitycznej). Funkcje analityczne posiadają funkcje pierwotne wewnątrz swojego obszaru zbieżności. W szczególności dla funkcji f:

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

funkcja

$$F(x) = \int_0^x f(t) dt = \int_0^x \sum_{n=0}^\infty a_n t^n dt = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$$

ma ten sam promień zbieżności co f.

Dowód. Ponieważ funkcje  $f_n$  i f są ciągłe w swoim obszarze zbieżności, to odpowiednie całki istnieją. Całkując dla dowolnego  $n \in \mathbb{N}$  wyrażenie

$$f(x) = f_1(x) + \ldots + f_n(x) + R_{n+1}(x),$$

otrzymujemy

$$\int_0^x f(t) dt = \int_0^x a_0 dt + \int_0^x a_1 t dt + \dots + \int_0^x a_n t^n dt + \int_0^x R_{n+1}(t) dt =$$

$$= a_0 t + \frac{a_1}{2} t^2 + \dots + \frac{a_n}{n+1} t^{n+1} + \int_0^x R(t)_{n+1} dt = \sum_{k=0}^n \frac{a_k}{k+1} t^{k+1} + \int_0^x R(t)_{n+1} dt.$$

Musimy wykazać, że

(16.5) 
$$\lim_{n \to \infty} \int_0^x R_{n+1}(t) \, \mathrm{d}t = 0.$$

Ustalmy  $\varepsilon > 0$ . Ze zbieżności jednostajnej szeregu wynika, że dla n > N zachodzi nierówność

$$|R_{n+1}(x)| < \varepsilon$$
,

dla wszystkich xleżących w przedziale zbieżności tego szeregu. Wówczas dla  $n\,>\,N$ zachodzi oszacowanie

 $\left| \int_0^x R_{n+1}(t) \, \mathrm{d}t \right| \leqslant \int_0^x |R_{n+1}(t)| \, \mathrm{d}t \leqslant x \cdot \varepsilon,$ 

П

co dowodzi, że zachodzi równość (16.5).

Przykład 158. Ponownie obliczymy sumę szeregu  $\sum_{n=1}^{\infty} \frac{n}{2^n}$ . Tym razem rozważając szereg potęgowy  $\sum_{n=0}^{\infty} x^n$ .

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}, \ |x| < 1$$
 
$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{\infty} x^n = \sum_{n=1}^{\infty} n x^{n-1} = \left(\frac{1}{1-x}\right)' = \frac{1}{(1-x)^2}, \ |x| < 1$$
 Zatem 
$$\sum_{n=1}^{\infty} n x^n = \sum_{n=0}^{\infty} n x^n = \frac{x}{(1-x)^2}, \ \mathrm{dla} \ |x| < 1$$

Podstawmy  $x = \frac{1}{2}$ . |x| < 1 i wtedy z powyższej równości mamy

$$\sum_{n=1}^{\infty} n \left(\frac{1}{2}\right)^n = \sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{\frac{1}{2}}{(1 - \frac{1}{2})^2} = 2.$$

Przykład 159. Znajdziemy rozwinięcie funkcji  $f(x) = \ln(1+x)$  w szereg potęgowy. Zauważmy, że  $\ln(1+x) = \int \frac{1}{1+x} \, \mathrm{d}x$  (całka elementarna). Korzystając z wzoru na sumę szeregu geometrycznego obliczamy

$$\ln(1+x) = \int_0^x \frac{\mathrm{d}t}{1+t} = \int_0^x \frac{\mathrm{d}t}{1-(-t)} = \int_0^x \sum_{n=1}^\infty (-t)^{n-1} \, \mathrm{d}t = \sum_{n=1}^\infty \int_0^x (-1)^{n-1} t^{n-1} \, \mathrm{d}t = \sum_{n=1}^\infty (-1)^{n-1} \frac{x^n}{n} \quad \text{i jak widzimy, jest to szereg potęgowy.}$$

Przykład 160. Podobnie jak powyżej, korzystając z sumy  $\sum_{n=1}^{\infty} x^n = \frac{1}{1-x}$ , |x| < 1 otrzymać możemy też, że:

$$\ln \frac{1}{1-x} = \sum_{n=1}^{\infty} \frac{x^n}{n}$$
, dla  $|x| < 1$ .

Sumując wzory z poprzednich dwóch przykładów dostajemy kolejny wzór:

$$\frac{1}{2}\ln\frac{1+x}{1-x} = \sum_{n=1}^{\infty} \frac{x^{2n-1}}{2n-1}, \text{ dla } |x| < 1.$$

Przykład 161. Wykażemy, że szereg  $\sum_{n=1}^{\infty} n! x^n$  jest zbieżny tylko dla x=0.

Fakt, że szereg jest zbieżny dla x=0 jest oczywisty. Niech  $x\neq 0$ . Wówczas na podstawie obliczeń:

 $\lim_{n \to \infty} \left| \frac{(n+1)! x^{n+1}}{n! x^n} \right| = \lim_{n \to \infty} |(n+1)x| = +\infty > 1$ 

rozbieżność szeregu wynika z kryterium d'Alemberta.

Przykład 162. Zbadamy obszar zbieżności szeregu  $\sum_{n=1}^{\infty} \frac{1}{n!x^n}$ . Szereg jest określony dla  $x \neq 0$ . Korzystamy z kryterium d'Alemberta:

$$\lim_{n \to \infty} \left| \frac{n! x^n}{(n+1)! x^{n+1}} \right| = \lim_{n \to \infty} \frac{1}{(n+1)|x|} = 0 < 1.$$

Szereg jest zbieżny niezależnie od wyboru  $x \in \mathbb{R} \setminus \{0\}$ .

Przykład163. Wyznaczymy obszar zbieżności szeregu  $\sum_{n=1}^{\infty} \frac{x^n}{n 10^{n-1}}.$ 

*Ćwiczenie* 127. Wykazać, że szereg  $\sum_{n=1}^{\infty} \frac{x^n}{n!}$  jest zbieżny dla każdego  $x \in \mathbb{R}$ .

*Ćwiczenie* 128. Wyznaczyć obszar zbieżności szeregu  $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ .

Ćwiczenie 129. Zbadać promień zbieżności szeregów  $\sum_{n=1}^{\infty} 2^n x^n$  i  $\sum_{n=1}^{\infty} 3^n (x-2)^n$ .

*Ćwiczenie* 130. Zbadać promień zbieżności szeregu  $\sum_{n=1}^{\infty} 2^n \sin \frac{x}{3^n}.$ 

Przykład 164. Szereg  $\sum_{n=1}^{\infty} \frac{x^n}{n2^n}$ .

Wrócimy na chwilę do twierdzenie 15.0.7. Udowodnimy jego następującą wersję

**Twierdzenie 16.2.17.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją klasy  $C^{\infty}$  w przedziale (a,b), tak że wszystkie jej pochodne dowolnego rzędu są współnie ograniczone; tzn. istnieje taka stała M > 0, że dla dowolnego  $n \in \mathbb{N}$  zachodzi nierówność:

$$|f^{(n)}(x)| < M$$
, dla każdego  $x \in (a,b)$ .

Wówczas szereg Talyora tej funkcji jest (do niej) zbieżny jednostajnie.

Mówimy wtedy, że funkcja f jest **analityczna**. W ten sposób najpełniej wyraziliśmy fakt, że

$$f(x) = \sum_{n=1}^{\infty} \frac{(x - x_0)^n}{n!} f^{(n)}(x_0), \text{ dla dowolnego } x \in (a, b).$$

Dowód. Dla dowolnego n > 0 istnieje  $\theta_n$  leżące między  $x_0$  a x i takie, że

$$f(x) = \sum_{k=0}^{n} \frac{(x-x_0)^k}{k!} f^{(k)}(x_0) + \frac{(x-x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\theta_n).$$

Zatem każdy wyraz  $\frac{(x-x_0)^k}{k!}f^{(k)}(x_0), k=1,\ldots,n$  jak i  $R:=\frac{(x-x_0)^{n+1}}{(n+1)!}f^{(n+1)}(\theta_n)$  są ograniczone przez M. Przerzucając R na drugą stronę powyższego równania, otrzymujemy równość, którą szacujemy:

$$\left| f(x) - \sum_{k=0}^{n} \frac{(x - x_0)^k}{k!} f^{(k)}(x_0) \right| =$$

$$= \left| \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\theta_n) \right| \le$$

$$\le \frac{|x - x_0|^{n+1}}{(n+1)!} M \le \frac{\theta_n^{n+1}}{(n+1)!} M.$$

Przy  $n \to \infty$  ostatnie wyrażenie dąży do zera, więc otrzymujemy że

$$f(x) = \sum_{n=0}^{\infty} \frac{(x - x_0)^n}{n!} f^{(n)} f(x_0).$$

Ponieważ szereg  $\sum_{n=0}^{\infty} \frac{(x-x_0)^n}{n!} M$  jest zbieżny, i ogranicza badany szereg Taylora, to z kryterium weierstrassa zbieżność ta ma charakter jednostajny.

# Dodatek A

# Struktury algebraiczne, ciała uporządkowane

## A.1 Zbiory z działaniami

Niech  $\mathbb{K}$  będzie dowolnym zbiorem.

Definicja A.1.1. Działaniem wewnętrznym w zbiorze  $\mathbb{K}$  nazywamy każdą funkcję  $f \colon \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ .

Operacją jest np. dodawanie:  $+: \mathbb{K} \times \mathbb{K} \to \mathbb{K}$  ale oczywiście przyjmujemy, że a+b oznacza +(a,b) dla  $a,b \in \mathbb{K}$ . Chodzi nam o to, by zdefiniować ściśle różnego rodzaju operacje na dwóch argumentach zbioru, takie jak suma, iloczyn ale także np. składanie funkcji w określonym zbiorze funkcji. Działania na zbiorze oznaczamy często np.  $+,-,\circ,\bullet,\star,*$  i piszemy np.  $a-b,f\circ g,\bar{v}\bullet \bar{u},\alpha\star\beta,x*y$  dla różnych elementów zbiorów, na których działania są określone.

#### A.1.1 Przykład: grupy

# A.2 Ciała i ciała uporządkowane

**Definicja A.2.1.** Uporządkowaną piątkę  $(\mathbb{K}, \oplus, \bullet, \theta, \eta)$ , gdzie  $\oplus : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$ ,  $\bullet : \mathbb{K} \times \mathbb{K} \to \mathbb{K}$  nazywamy **ciałem**, gdy

- 1. spełnia aksjomaty dodawania:
  - (C.1.a) przemienność dodawania:  $a \oplus b = b \oplus a, \ a,b \in \mathbb{K},$
  - (C.1.b) laccność dodawania:  $(a \oplus b) \oplus c = b \oplus (a \oplus c), \ a, b, c \in \mathbb{K},$
  - (C.1.c)  $\theta$  jest elementem neutralnym dodawania:  $a \oplus \theta = a, \ a \in \mathbb{K}$ ,
  - (C.1.d) dla każdego  $a \in \mathbb{K}$  istnieje element przeciwny czyli  $b \in \mathbb{K}$  takie, że  $a+b=\theta$ . (i przyjmujemy oznacznie b=-a)
- 2. spełnia aksjomaty mnożenia:
  - (C.2.a) przemienność mnożenia:  $a \bullet b = b \bullet a, \ a, b \in \mathbb{K},$

- (C.2.b) laczność mnożenia:  $(a \bullet b) \bullet c = b \bullet (a \bullet c), \ a, b, c \in \mathbb{K},$
- (C.2.c)  $\eta$  jest elementem neutralnym mnożenia:  $a \bullet \eta = a, \ a \in \mathbb{K}$ ,
- (C.2.d) dla każdego  $a \in \mathbb{K} \setminus \{\theta\}$  istnieje element odwrotny czyli  $b \in \mathbb{K}$  takie, że  $a \bullet b = \eta$ . (i przyjmujemy oznaczenie  $b = a^{-1}$ )
- 3. aksjomat rozdzielności mnożenia względem dodawania:

(C.3) 
$$a \bullet (b \oplus c) = a \bullet b \oplus a \bullet c, \ a, b, c \in \mathbb{K}$$

Działanie • nazywamy **multiplikatywnym** (mnożeniem) a  $\oplus$  **addytywnym** (dodawaniem) w ciele  $\mathbb{K}$ . Liczbę  $\eta$  nazywamy **jedynką**  $\boldsymbol{w}$   $\boldsymbol{ciele}$   $\mathbb{K}$  a  $\theta$  **zerem**  $\boldsymbol{w}$   $\boldsymbol{ciele}$   $\mathbb{K}$ . Oznaczmy  $\mathbb{K}^* := \mathbb{K} \setminus \{\theta\}$ . Wówczas  $(\mathbb{K}, +, \theta)$  i  $(\mathbb{K}^*, \bullet, \eta)$  stanowią grupy - nazywamy je odpowiednio grupą addytywną i grupą multiplikatywną ciała  $(\mathbb{K}, \oplus, \bullet, \theta, \eta)$ .

Zbiór  $\mathbb{K}$  nazywamy **ciałem uporządkowanym** gdy jest ciałem, które dodatkowo spełnia warunki

- 1.1. a + b < a + c, dla dowolnych  $a, b, c \in \mathbb{K}$  takich, że b < c,
- 1.2.  $a \bullet b > \theta$ , jeżeli  $a > \theta$  i  $b > \theta$ ,

Jeżeli  $a > \theta$ , to  $a \in \mathbb{K}$  nazywamy **elementem dodatnim**, jeżeli  $a < \theta$  to a nazywamy **elementem ujemnym**.

#### A.2.1 Podciała i rozszerzenia ciał

**Definicja A.2.2.** Niech  $(\mathbb{K}, +, \cdot, 0, 1)$  będzie ciałem. Podzbiór  $\emptyset \neq \mathbb{L} \subseteq \mathbb{K}$  nazywamy **podciałem** ciała  $\mathbb{K}$ , gdy  $(\mathbb{K}, +|_{\mathbb{L} \times \mathbb{L}}, \cdot|_{\mathbb{L} \times \mathbb{L}}, 0, 1)$  jest ciałem. Jeżeli  $\mathbb{L}$  jest podciałem ciała  $\mathbb{K}$ , to mówimy że  $\mathbb{K}$  jest rozszerzeniem ciała  $\mathbb{L}$ .

Przykład 165. Ciało  $\mathbb{Q}$  jest podciałem ciała  $\mathbb{R}$ . W dalszej części poznamy też ciało  $\mathbb{C}$ , które jest rozszerzeniem ciała  $\mathbb{R}$  (a więc  $\mathbb{R}$  jest jego podciałem).

**Twierdzenie A.2.3.** Niech  $\mathbb{K}$  będzie ciałem. Podzbiór  $\emptyset \neq \mathbb{L} \subseteq \mathbb{K}$  jest podciałem ciała  $\mathbb{K}$  wtedy i tylko wtedy, gdy spełnia następujące warunki

- 1.  $1 \in \mathbb{L}$ ,
- 2.  $x y \in \mathbb{L}, x, y \in \mathbb{L},$
- 3.  $x \cdot y^{-1} \in \mathbb{L}, x, y \in \mathbb{L}$ .

#### A.2.2 Ciało liczb rzeczywistych

Konstrukcja poprzez ciągi Cauchy'ego

**Struktura ilorazowa.** Niech dane będą przestrzenie  $X, X^*$  oraz określone na nich relacje równoważności  $R \subseteq X$ ,  $R^* \subseteq X^*$ .

**Definicja A.2.4.** Mówimy, że odwzorowanie  $F: X \to X^*$  jest **zgodne z relacjami** R i  $R^*$ , gdy  $xRy \Leftrightarrow F(x)R^*F(y)$ , tj.

$$(x,y) \in R \Leftrightarrow (F(x),F(y)) \in R^*.$$

Gdy  $F: X \to X^*$  jest zgodne z relacjami R i  $R^*$ , to istnieje takie odwzorowanie  $G: X/R \to X^*/R^*$  przestrzeni ilorazowych, że

$$G \circ \varphi = \varphi^* \circ F,$$

gdzie  $\varphi \colon X \to X/R$ ,  $\varphi \colon X^* \to X^*/R^*$  są odwozorawniami kanonicznym między odpowiednimi przestrzeniami, co ilustruje następny diagram<sup>1</sup>.

$$\begin{array}{ccc} X & \stackrel{F}{\longrightarrow} X^* \\ \downarrow^{\varphi} & & \downarrow^{\varphi^*} \\ X/R & \stackrel{G}{\longrightarrow} X^*/R^* \end{array}$$

Ciągi Cauchy'ego. Będziemy oznaczać przez  $\mathbb{Q}^{\infty}$  zbiór wszystkich ciągów liczb wymiernych. Niech  $\mathcal{C} \subseteq \mathbb{Q}^{\infty}$  będzie zbiorem wszystkich tych ciągów z  $\mathbb{Q}^{\infty}$ , które spełniają warunek Cauchy'ego. Określamy relację R na  $\mathcal{C}$  następująco:

$$(q_n)_{n=1}^{\infty} R(p_n)_{n=1}^{\infty} \iff \forall_{\varepsilon \in \mathbb{O}^+} \exists_{N \in \mathbb{N}} \forall_{n,m \geqslant N}. |q_n - p_m| < \varepsilon,$$

gdzie  $\mathbb{Q}^+$  oznacza liczby wymierne dodatnie.

**Definicja A.2.5.** Przyjmujemy, że  $\mathbb{R} = \mathcal{C}/R$ .

Reprezentacja dziesiętna liczb rzeczywistych. Warto jeszcze przytoczyć następujący fakt: ułamek zwykły  $\frac{a}{b}$  można zapisać w postaci skończonej w zapisie o podstawie p wtedy i tylko wtedy, gdy wszystkie czynniki pierwsze liczby b są również czynnikami pierwszymi liczby p.

#### Dowody własności specyficznych dla l. rzeczywistych

**Aksjomat** (Archimedesa). *Każdy odcinek jest krótszy od pewnej wielokrotności długości dowolnego innego odcinka.* 

Często posługujemy się arytmetyczną formą tego starożytnego "aksjomatu", co więcej w matematyce, którą się zajmujemy jest to aksjomat co najwyżej z nazwy. Zachodzi po prostu następujące

**Twierdzenie A.2.6.** Jeżeli  $x, y \in \mathbb{R}$  i y > 0, to istnieje taka liczba naturalna n, że  $x < n \cdot y$ .

 $Dow \acute{o}d.$  Jeżeli x<0,to nie ma czego dowodzić. Niech więcx>0. Załóżmy nie wprost, że  $nx\leqslant y$ dla każdego  $n\in\mathbb{N}.$  Oznaczmy

$$A = \{nx \colon n \in \mathbb{N}\}.$$

Zbiór  $A \subseteq \mathbb{R}$  jest ograniczony z góry przez y zatem istnieje jego kres górny – oznaczmy  $\alpha = \sup A$ . Liczba  $\alpha - x$  (bo x > 0) jest ściśle mniejsza od  $\alpha$  więc nie może być ograniczeniem górnym zbioru A (z definicji  $\alpha$  jest najmniejszym z ograniczeń górnych zbioru A). Istnieje zatem  $mx \in A$  (dla pewnego  $m \in \mathbb{N}$ ) takie, że  $\alpha - x < mx$ . Ale wówczas

$$\alpha < (m+1)x \leqslant \alpha \text{ (gdyż } (m+1)x \in A).$$

Taka nierówność stanowi oczywistą sprzeczność. Koniec dowodu.

 $<sup>^1</sup>$ diagramy *skierowane*, w których wybierając dowolną drogę skierowaną między dwoma wierzchołkami, otrzymamy ten sam wynik względem składania morfizmów nazywamy *diagramami przemiennymi*.

Mówi się, że liczby rzeczywsite spełniają **aksjomat Archimedesa** a także, że liczby rzeczywiste są **archimedesowskie**. Żeby nie wprowadzać w błąd, często mówimy też po prostu o **własności Archimedesa**.

**Uwaga A.2.7.** Mimo, że  $\mathbb{Q}$  nie spełnia aksjomatu ciągłości, z którego skorzystaliśmy w dowodzie twierdzenia A.2.6, to oczywiście również ma własność archimedesa.

### A.3 Ciało liczb zespolonych

Liczby zespolone stanowią rozszerzenie liczb rzeczywistych. Ciało liczb rzeczywistych jest podciałem ciała ( $\mathbb{C},0,1,+,\cdot$ ) liczb zespolonych. Nim w ogóle zdefiniujemy ciało  $\mathbb{C}$ , nauczymy się podstaw rachunkowych i intuicji oraz zastosowań liczb zespolonych, które potem wyprowadzimy z definicji algebraicznej ciała.

Definicja A.3.1. Jednostką urojoną nazywamy pewien element  $i \in \mathbb{C}$  taki, że

$$i^2 = 1.$$

 $0 \cdot i = i \cdot 0 = 0$ , gdzie  $0 \in \mathbb{R}$  jest el. neutralnym dodawania w ciele  $\mathbb{R}$ .

Liczbą zespoloną nazywamy:

- każdą liczbę rzeczywistą, ( $\mathbb{R} \subseteq \mathbb{C}$ .)
- liczbę i,
- ogólnie: liczbę postaci  $z=x+yi,\ x,y\in\mathbb{R}$ . Gdy y=0, to  $z=x\in\mathbb{R}$ . Wówczas x nazywamy częscią rzeczywistą liczby z a y jej częscią urojoną. Oznaczamy

$$\Re z = x$$
,  $\Im z = y$ .

Przykład 166. Rachunki na liczbach zespolonych wykonujemy identycznie jak na liczbach rzeczywistych, pamiętając że  $i^2 = -1$  a tym samym  $\sqrt{-1} = i \; lub(!) \; \sqrt{-1} = -i \; (\text{gdyż} \; (-i)^2 = (-1)^2 \cdot i^2 = 1 \cdot i^2 = 1 \cdot (-1) = -1)$ . Szybko się z tym oswoimy:

- $(2+7i)3i = 6i + 21i^2 = 6i 21$ ,
- $2 \cdot (4 5i) = 4 10i$ ,
- $4i \cdot 12i = 48i^2 = -48$ . W tym wypadku można napisać, że  $\Im m \, 48i^2 = 0$ .

Ogólnie, można powiedzieć, że jeżeli  $z \in \mathbb{C} \cap \mathbb{R}$ , to  $\mathfrak{Im} z = 0$ . Gdy  $\mathfrak{Im} z \neq 0$ , to  $z \in \mathbb{C} \setminus \mathbb{R}$ .

Przykład 167. Niech  $x, y, a, b \in \mathbb{R}$ . Obliczymy iloczyn liczb  $z, w \in \mathbb{C}$  określonych jako z = x + iy i w = a + ib. Mamy  $(x + iy)(a + ib) = xa + ibx + iya + iyib = xa + i(bx + ya) + i^2yb = xa + i(bx + ya) - yb = xa - yb + i(bx + ya)$ . Zatem  $z \cdot w = xa - yb + i(bx + ya)$ . Możemy napisać, że

$$\mathfrak{Re}\,z=x,\ \ \mathfrak{Im}\,z=y.$$

$$\Re e w = a, \quad \Im \mathfrak{m} w = b.$$

$$\Re (z \cdot w) = xa - yb$$
, oraz  $\Im (z \cdot w) = bx + ya$ .

Przykład 168.

$$\frac{1}{2} \left( \frac{1}{1 - ix} + \frac{1}{1 + ix} \right) = \frac{1}{2} \left( \frac{1 + ix + 1 - ix}{(1 - ix)(1 + ix)} \right) = \frac{1}{2} \cdot \frac{2}{1^2 - (ix)^2} =$$

$$= \frac{1}{1 - i^2 x^2} = \frac{1}{1 - (-1)x^2} = \frac{1}{1 + x^2}.$$

#### A.3.1 Postać trygonometryczna liczby zespolonej.

Każdą liczbę zespoloną z=x+iy możemy utożsamiać z punktem na płaszczyźnie o współrzędnych (x,y). Moglibyśmy pisać z=x+yi=(x,y) ale dla wygody będziemy pisać Z=(x,y). Punkt Z można opisać podając długość odcinka  $\overline{OZ}$  łączącego punkt (0,0) z punktem Z i kąta  $\varphi$  nachylenia odcinka  $\overline{OZ}$  do osi OX (porównaj - współrzędne biegunowe 12.3). Będziemy mówić o płaszczyźnie zespolonej a pierwszą oś oznaczać przez  $\Re \mathfrak{e}$  i nazywać osią rzeczywistą. Drugą - pionową - oś oznaczymy przez  $\Im \mathfrak{m}$  i będziemy nazywać osią zespoloną.



Rysunek A.1: Współrzędne punktu Z=(x,y) związane są z kątem  $\varphi$  i promieniem |z|.

Modułem liczby zespolonej znazywamy liczbę  $|z|:=\sqrt{x^2+y^2}.$  Niech  $\varphi$  będzie takim kątem, że

$$\cos \varphi = \frac{x}{|z|}, \ \sin \varphi = \frac{y}{|z|}.$$

Kąt  $\varphi$  nazywamy **argumentem liczby zespolonej** z. Kąt ten jest oczywiście miarą kąta skierowanego, którego pierwszym ramieniem jest dodatnia półoś rzeczywista, a drugie ramię wyznaczone jest przez wektor  $\overrightarrow{OZ}$ , Z=(x,y). Jeżeli  $\varphi\in[0,2\pi)$ , to  $\varphi$  określamy **argumentem głównym liczby** z i oznaczamy  $\varphi=\operatorname{Arg} z$ .

Liczbę zespoloną z=x+iy, gdzie  $\varphi=\operatorname{Arg} z$  możemy teraz zapisać w **postaci trygonome-** trycznej:

$$z = x + iy = |z|\cos\varphi + i|z|\sin\varphi = |z|(\cos\varphi + i\sin\varphi).$$

Definicja A.3.2. Oznaczmy  $\mathbb{C}=\mathbb{R}^2$ . Ciałem  $\mathbb{C}$  liczb zespolonych nazywamy uporządkowaną czwórkę

$$(\mathbb{C}, \cdot, +, (0,0), (1,0)),$$

gdzie działania  $\cdot$  i + zdefiniowane są następująco:

$$(a,b) + (c,d) = (a+c,b+d), \ a,b,c,d \in \mathbb{R}$$

$$(a,b)\cdot(c,d)=(ac-bd,ad+bc),\ a,b,c,d\in\mathbb{R}$$

Czytelnik może sprawdzić, że tak zdefiniowana struktura w istocie jest ciałem. Przyjmujemy oznaczenia: dla każdych  $a,b\in\mathbb{R}$ :

- -a := (a,0).
- -b := (0,b).
- -i := (0,1).

Zauważmy, że teraz (a, b) = a + bi:

$$a+b\cdot i=(a,0)+(b,0)(0,1)=(a,0)+(b\cdot 0-0\cdot 1,b\cdot 1+0\cdot 0)=(a,0)+(0,b)=(a,b).$$

**Uwaga A.3.3.** Przypisując w powyższy sposób liczbom  $rzeczywistym\ a,b\in\mathbb{R}$  liczby  $zespolone\ (a,0),(0,b)\in\mathbb{C}$  wskazaliśmy funkcję różnowartościową ze zbioru  $\mathbb{R}$  w zbiór  $\mathbb{C}$ .

# A.3.2 Własności liczb zespolonych i najważniejsze pojęcia z nimi związane.

**Sprzężeniem** liczby z = x + yi nazywamy liczbę  $\overline{z} := x - yi$ .

Twierdzenie A.3.4. Ustalmy dowolne  $z, w \in \mathbb{C}$ . Wówczas

- 1.  $|z|^2 = z\bar{z}$ ,
- 2.  $\overline{z+w} = \overline{z} + \overline{w}$ .
- 3.  $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$ ,
- $4. |z \cdot w| = |z| \cdot |w|,$
- 5.  $|\bar{z}| = |z|$ .

*Ćwiczenie* 131. Sprawdzić, że dla dowolnego  $z \in \mathbb{C}$ :

- 1.  $z + \overline{z} = 2\Re \mathfrak{e} z$ ,
- $2. \ z \overline{z} = 2i \cdot \mathfrak{Im} \, z,$
- 3.  $\Re e z \leq |z|$ .

**Twierdzenie A.3.5** (Nierówność trójkąta w  $\mathbb{C}$ ). Dla dowolnych  $z, w \in \mathbb{C}$ , zachodzi

$$|z + w| \leqslant |z| + |w|.$$

Dowód. Obliczamy:

$$0 \leqslant |z+w|^2 = (z+w)\overline{(z+w)} = z\overline{z} + z\overline{w} + \overline{z}w + w\overline{w} =$$

$$= |z|^2 + \left(z\overline{w} + \overline{z}\overline{w}\right) + |w|^2 = |z|^2 + 2\Re \epsilon z\overline{w} + |w|^2 \leqslant$$

$$\leqslant |z|^2 + 2|z\overline{w}| + |w|^2 = |z|^2 + 2|z||\overline{w}| + |w|^2 = (|z| + |w|)^2.$$

Pierwiastkujemy obustronnie nierówność (zwracamy uwagę, że lewa strona jest nieujemna) i otrzymujemy tezę.

Wniosek A.3.6. Para  $(\mathbb{C}, \rho)$ , gdzie  $\rho(z, w) = |z - w|$  jest przestrzenią metryczną.

**Twierdzenie A.3.7** (Nierówność Cauchy'ego-Buniakowskiego-Schwarza). *Jeżeli*  $a_1, \ldots, a_n, b_1, \ldots, b_n \in \mathbb{C}$ , to zachodzi nierówność

(A.1) 
$$\left| \sum_{k=1}^{n} a_k \bar{b}_k \right|^2 \leqslant \left( \sum_{k=1}^{n} |a_k|^2 \right) \left( \sum_{k=1}^{n} |b_k|^2 \right).$$

Dowód. Niech  $A = \sum_{k=1}^{n} |a_k|^2$ ,  $B = \sum_{k=1}^{n} |b_k|^2$  oraz  $C = \sum_{k=1}^{n} a_k \bar{b}_k$ . Jeżeli B = 0, to  $b_1 = \ldots = b_n = 0$  i natychmiastowo otrzymujemy, że teza jest prawdziwa. Załóżmy więc, że B > 0. Korzystając z własności liczb zespolonych (twierdzenie A.3.4 i następujące po nim ćwiczenia):

$$\sum_{k=1}^{n} |Ba_k - Cb_k|^2 = \sum_{k=1}^{n} (Ba_k - Cb_k)(B\overline{a}_k - \overline{C} \cdot \overline{b}_k) =$$

$$= B^2 \sum_{k=1}^{n} -B\overline{C} \sum_{k=1}^{n} a_k \overline{b}_k - BC \sum_{k=1}^{n} \overline{a}_k b_k + |C|^2 \sum_{k=1}^{n} |b_k|^2 =$$

$$= B^2 A - B|C|^2 = B(AB - |C|^2).$$

Ponieważ pierwsza suma po lewej jest nieujemna, więc wnioskujemy, że  $B(AB-|C|^2)\geqslant 0$ . Ponieważ B>0, więc wnioskujemy stąd, że

$$\left(\sum_{k=1}^{n} |a_k|^2\right) \left(\sum_{k=1}^{n} |b_k|^2\right) - \left|\sum_{k=1}^{n} a_k \overline{b}_k\right|^2 = AB - |C|^2 \geqslant 0.$$

Skoro zbiór  $\mathbb C$  stanowi ciało, to istnieje w nim element odwrotny dla każdego elementu tego ciała. Zauważmy, że jeżeli  $z=a+bi\neq 0$  jest liczbą zespoloną, to odwrotność (to znaczy liczba  $z^{-1}$  taka, ze:  $z^{-1}z=1$ ) tej liczby ma postać

$$z^{-1} = \frac{a}{|z|^2} + \frac{-b}{|z|^2}i = \frac{\overline{z}}{|z|^2}.$$

W takim razie wykonalne jest dzielenie liczb, o ile dzielnik jest różny od zera. Rozważmy dwie liczby z=x+yi i  $w=a+bi\neq 0$ . Wówczas

$$\frac{x+yi}{a+bi} = \frac{(x+yi)(a-bi)}{(a+bi)(a-bi)} = \frac{xa+yb}{a^2+b^2} + \frac{ya-xb}{a^2+b^2}i.$$

Mnożenie liczb zespolonych w postaci trygonometrycznej. Zauważmy, że

(A.2) 
$$|z| (\cos \varphi + i \sin \varphi) \cdot |w| (\cos \psi + i \sin \psi) =$$

$$= |z| \cdot |w| ((\cos \varphi \cos \psi - \sin \varphi \sin \psi) + i(\cos \varphi \sin \psi + \sin \varphi \cos \psi)) =$$

$$= |zw| (\cos(\varphi + \psi) + i \sin(\varphi + \psi)).$$

Możemy stąd własność |zw| = |z||w| zinterpretować/uzasadnić geometrycznie oraz wyciągnąć

Wniosek A.3.8. Dla dowolnych liczb zespolonych  $z, w \in \mathbb{C}$ :

- 1.  $\operatorname{Arg}(z \cdot w) = \operatorname{Arg} z + \operatorname{Arg} w$ ,
- 2.  $\operatorname{Arg}\left(\frac{z}{w}\right) = \operatorname{Arg} z \operatorname{Arg} w$ ,
- 3.  $\operatorname{Arg} z^n = n \operatorname{Arg} z$ .

Najważniejszym wnioskiem z tożsamości (A.2) jest:

Twierdzenie A.3.9 (Wzór de Moivre'a).

(A.3) 
$$(\cos \phi + i \sin \phi)^n = \cos(n\phi) + i \sin(n\phi).$$

Wzór A.3 pozwala na efektywne wykonywanie operacji potęgowania liczb zespolonych. Niech  $z = |z| (\cos \varphi + i \sin \varphi)$ . Wówczas zachodzi równość

$$z^{n} = |z|^{n} (\cos n\varphi + i \sin n\varphi).$$

Definicja A.3.10. Pierwiastkiem stopnia  $n \in \mathbb{N} \setminus \{1\}$  z liczby zespolonej z nazywamy każdą liczbę  $z_p$  taką, że  $(z_p)^n = z$ .

Twierdzenie A.3.11. Jeżeli  $z \neq 0$  jest liczbą zespoloną i  $z = |z|(\cos \phi + i \sin \phi)$ , to dla każdego  $n \in \mathbb{N}$  istnieje dokładnie n różnych pierwiastków:  $z_0, z_2, \ldots, z_{n-1}$ , n-tego stopnia z liczby z i wyrażają się one wzorem

$$z_k = \sqrt[n]{|z|} \left( \cos \frac{\phi + 2k\pi}{n} + i \sin \frac{\phi + 2k\pi}{n} \right), \ gdzie \ k = 0, 1, 2, \dots, n - 1.$$

 $\acute{C}wiczenie$  132. Zinterpretować powyższe twierdzenie geometrycznie – sporządzić rysunek i dokonać objaśnień.

**Lemat A.3.12.** Dla dowolnego  $x \neq 2K\pi, K \in \mathbb{Z}$  zachodzi równość

$$\frac{1}{2} + \sum_{k=1}^{N} \cos(kx) = \frac{\sin\left(N + \frac{1}{2}\right)x}{2\sin\frac{x}{2}}.$$

Twierdzenie A.3.13. Dla dowolnego  $x \neq 2K\pi, K \in \mathbb{Z}$  zachodzi równość

$$\sum_{k=0}^{N} \sin(kx) = \frac{\sin\left(\frac{Nx}{2}\right) \sin\left(\frac{(N+1)x}{2}\right)}{\sin\frac{x}{2}}.$$

Twierdzenie A.3.14. Dla każdego  $n \in \mathbb{N}$  zachodzi równość

$$\sin((2n+1)x) = {2n+1 \choose 1} \cos^{2n} x \sin x - {2n+1 \choose 3} \cos^{2(n-1)} x \sin^3 x +$$

$$+ {2n+1 \choose 5} \cos^{2(n-2)} x \sin^5 x - \dots + (-1)^n \sin^{2n+1} x =$$

$$= \sum_{k=0}^n {2n+1 \choose 2k+1} (-1)^k \cos^{2(n-k)}(x) \sin^{2k+1}(x).$$

*Ćwiczenie* 133. Zbadać własności relacj  $R \subseteq \mathbb{C} \times \mathbb{C}$  zadanej następująco:

$$(x,y) \in R \iff \mathfrak{Re} \ x = \mathfrak{Im} \ y$$

#### A.3.3 Więcej o geometrii liczb zespolonych.

Odwzorowanie  $z\mapsto uz+v$  dla pewnych  $u,v\in\mathbb{C},\,u\neq0$  jest przekształceniem geometrycznym². Dokładniej, jest złożeniem:

- i) obrotu o kąt Arg u,
- ii) jednokładności wzgledem środka układu współrzędnych o skali |u|,
- iii) przesunięcia o v.

Przykład 169. Przez  $\mu(\mathbb{C}_n)$  oznaczamy zbiór wszystkich pierwiastków n-tego stopnia z liczby 1 w ciele liczb zespolonych:

$$\mu(\mathbb{C}_n) := \{ z \in \mathbb{C} \colon z^n = 1 \}$$

Łatwo zauważyć, że  $\left(\mu(\mathbb{C}_n), \cdot\right)$  jest grupą. Pierwiastki  $z_k, k = 0, 1, 2, 3, 4, \dots, n-1$  z jedynki są postaci  $z_k = \cos\frac{2k\pi}{n} + i\sin\frac{2k\pi}{n}$ . Zinterpretujmy zbiór  $\mu(\mathbb{C}_n)$  geometrycznie:

Przykład170. Funkcją homograficzną albo homografią nazywamy funkcję  $f\colon \mathbb{C} \to \mathbb{C}$ zadaną wzorem

$$f(z) = \frac{az+b}{cz+d}, z \in \mathbb{C}$$

gdzie  $a, b, c, d \in \mathbb{R}$  spełniają warunek  $ad - bc \neq 0$ .

**Twierdzenie** (Zasadnicze twierdzenie algebry). Każdy wielomian zespolony stopnia n>0 ma dokładnie n pierwiastków zespolonych  $z_1, z_2, \ldots, z_n \in \mathbb{C}$  a co za tym idzie daje się przedstawić w postaci  $a(z-z_1) \cdot \cdots \cdot (z-z_n)$  dla pewn.  $a \in \mathbb{C}$ .

 $<sup>^{2}</sup>$ afinicznym

#### A.3.4 Wzory Eulera

Przypomnijmy, że dla dowolnej liczby rzeczywistej  $x \in \mathbb{R}$ :

$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!},$$

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!},$$

$$\exp x = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

Oczywiście  $\exp(x) = e^x$  dla  $x \in \mathbb{R}$ . Pokażemy, że tożsamości te pozwalają rozszerzyć definicje funkcji sin, cos i exp na zbiór  $\mathbb{C}$ .

Określimy funkcje S, C i E wzorami:

$$S(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \ z \in \mathbb{C}$$

$$C(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \ z \in \mathbb{C}$$

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ z \in \mathbb{C}.$$

Szeregi po prawych stronach równości są (jednostajnie) zbieżne, więc funkcje te są poprawnie zdefiniowane, ciągłe i oczywiście  $S|_{\mathbb{R}}=\sin,\,C|_{\mathbb{R}}=\cos$  i  $E|_{\mathbb{R}}=\exp$ . Możemy  $przyjq\acute{c}$ , że

$$\sin z := S(z), \ z \in \mathbb{C};$$
  
 $\cos z := C(z), \ z \in \mathbb{C};$   
 $\exp z := E(z), \ z \in \mathbb{C}.$ 

Twierdzenie A.3.15 (Eulera). Dla dowolnej liczby rzeczywistej x zachodzi tożsamość

$$(A.4) e^{ix} = \cos x + i\sin x$$

Dowód. Korzystamy z naszych nowo przyjętych definicji funkcji sin, cos i exp jako zespolone szeregi potęgowe:

$$e^{ix} = \sum_{n=1}^{\infty} \frac{(ix)^n}{n!} = 1 + ix + \frac{(ix)^2}{2} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \frac{(ix)^6}{6!} + \dots =$$

$$= 1 + ix - \frac{x^2}{2} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \frac{x^6}{6!} + \frac{ix^7}{7!} + \dots =$$

$$= \left(\frac{x^0}{0!} - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots\right) + \left(\frac{ix^1}{1!} - \frac{ix^3}{3!} + \frac{x^5}{5!} + \frac{ix^7}{7!} - \dots\right) =$$

$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + i\left(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\right) =$$

Historycznie wzór A.4 po raz pierwszy pojawił się w rozważaniach geometrycznych Rogera Cotesa ok. 1714 roku pod postacią:

$$ix = \ln(\cos x + i\sin x).$$

Dla  $x=\pi$  otrzymujemy tożsamość  $e^{i\pi}+1=0$ , często nazywaną w popularnej kulturze matematycznej "najpiękniejszym równaniem matematyki", gdyż zawiera w sobie wyłącznie: dwie najważniejsze stałe matematyczne e i  $\pi$ , element neutralny 0 dodawania, element neutralny 1 mnożenia, jednostkę urojoną, działanie potęgowania oraz działania grupowe: mnożenie  $(i\cdot\pi)$  i dodawanie - czyli w pewnym sensie najbardziej "podstawowe" działania oraz szczególne liczby i stałe.

Za pomocą naszego wzoru możemy wyprowadzić dwie ważne tożsamości trygonometryczne:

Twierdzenie A.3.16. Dla dowolnej liczby zespolonej z zachodzą wzory

(A.5) 
$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \qquad \cos z = \frac{e^{iz} + e^{-iz}}{2}.$$

Dowód. Odejmijmy stronami równości  $e^{i(-z)} = \cos(-z) + i\sin(z)$  i  $e^{iz} = \cos z + i\sin z$  i wówczas korzystając z tego, że  $\sin(-z) = -\sin z$  i  $\cos z = \cos(-z)$  otrzymamy pierwszy wzór. Drugi otrzymujemy podobnie, dodając równości stronami.

W wzór A.4 i wzory A.5 nazywamy wzorami Eulera. Przypmnijmy, że funkcja sinh jest zdefiniowana wzorem sin  $x=\frac{e^x-e^{-x}}{2}=\frac{1}{2}\left(\exp(x)-\exp(-x)\right)$ . Nic nie stoi na przeszkodzie, by teraz rozszerzyć jej definicję na liczby zespolone, teraz gdy uczyniliśmy to dla funkcji exp. Podstawmy z=ix. Mamy

$$\sinh z = \sinh(ix) = \frac{e^{ix} - e^{-ix}}{2} = i\sin(x).$$

Podobnie dostajemy, że

$$\cosh z = \cosh(ix) = \frac{e^{ix} + e^{-ix}}{2} = \cos x.$$

Otrzymaliśmy więc prosty związek między funkcjami trygonometrycznymi i hiperbolicznymi. Zauważmy, że  $\cos^2 x + \sin^2 x = \cos^2 x - i^2 \sin^2 x = \cosh^2(ix) - \sinh^2(ix) = 1$ .

Postać wykładnicza liczby zespolonej. Każda liczba  $z\in\mathbb{C}$  różna od zera ma następujące przedstawienia:

$$z = |z|(\cos \varphi + i \sin \varphi) = |z|e^{i\varphi}.$$

Dowolny punkt o współrzędnych biegunowych  $(r,\varphi)$  możnemy utożsamić z liczbą zespoloną  $re^{i\varphi}$ :

$$z = x + iy = r\cos\varphi + ir\sin\varphi = r(\cos\varphi + i\sin\varphi) = re^{i\varphi}.$$

Z drugiej strony, niech z = x + yi. Wóczas

$$e^z = e^{x+yi} = e^x e^{yi} = e^x (\cos y + i \sin y).$$

Przykład 171. Łatwo pokazaać, że  $|e^{ix}|=1$ . Otóż

$$|e^{ix}| = |\cos x + i\sin x| = \sqrt{\cos^2 x + \sin^2 x} = 1.$$

#### A.3.5 Zastosowania liczb zespolonych i wzorów Eulera.

Pokażemy różne zastosowania liczb zespolonych, ich związków z funkcjami trygonometrycznymi i współrzędnymi biegunowymi. W szczególności pokażemy jak postać trygonometryczna liczby zespolonej oraz wzoróy Eulera upraszczają niektóre rachunki oraz pozwalają łatwo wyprowadzić pewne podstawowe tożsamości trygonometryczne.

Przykład 172. Obliczymy całkę  $\int \cos(3x)\sin(5x)\,\mathrm{d}x$ . Moglibyśmy np. skorzystać z tożsamości

$$\sin(ax)\cos(bx) = \frac{1}{2}\left(\sin\left((a+b)x\right) + \sin\left((a-b)x\right)\right).$$

Jednak aby swobodnie rozwiązywać całki funkcji typu  $\sin(ax)\sin(bx)$ ,  $\cos(ax)\cos(bx)$  itd. musielibyśmy nauczyć się kolejnych wzorów. Metoda którą pokażemy wymaga jedynie pamiętania wzorów Eulera. Mamy

$$\begin{aligned} &\cos(3x)\sin(5x) = \frac{(e^{i3x} + e^{-i3x})(e^{i5x} - e^{-i5x})}{2 \cdot 2i} = \\ &= \frac{e^{3ix}e^{i5x} - e^{i3x}e^{-i5x} + e^{-i3x}e^{i5x} - e^{-i3x}e^{-i5x}}{2 \cdot 2i} = \frac{e^{i8x} - e^{-i8x} + e^{i2x} - e^{-i2x}}{2 \cdot 2i} = \\ &= \frac{1}{2} \left( \frac{e^{i(8x)} - e^{-i(8x)}}{2i} + \frac{e^{i(2x)} - e^{-i(2x)}}{2i} \right) = \frac{1}{2} \left( \sin(8x) + \sin(2x) \right). \end{aligned}$$

Stąd już

$$\int \cos(3x)\sin(5x)\,dx = \frac{1}{2}\int (\sin(8x) + \sin(2x))\,dx = -\left(\frac{1}{16}\cos(8x) + \frac{1}{4}\cos(2x)\right) + C.$$

Przykład 173. Wyznaczymy ogólną postać rozwiązania całki

$$\int e^{ax} \sin(bx) \, \mathrm{d}x.$$

Ze wzorów Eulera mamy

$$\int e^{ax} \sin(bx) \, \mathrm{d}x = \mathfrak{Im} \left( \int e^{ax} e^{ibx} \, \mathrm{d}x \right) =$$

$$= \mathfrak{Im} \left( \int e^{ax+ibx} \, \mathrm{d}x \right) =$$

$$= \mathfrak{Im} \left( \int e^{(a+ib)x} \, \mathrm{d}x \right) =$$

$$= \mathfrak{Im} \left( \frac{1}{a+ib} e^{(a+ib)x} \right) + C =$$

$$= \mathfrak{Im} \left( \frac{1}{a+ib} \left( \frac{a-ib}{a-ib} \right) e^{(a+ib)x} \right) + C =$$

$$= \mathfrak{Im} \left( \frac{a-bi}{a^2+b^2} e^{(a+ib)x} \right) + C =$$

$$= \mathfrak{Im} \left( \frac{a-bi}{a^2+b^2} e^{ax} (\cos(bx) + i\sin(bx)) \right) + C =$$

$$\begin{split} &=\Im\mathfrak{m}\left(\frac{a}{a^2+b^2}e^{ax}(\cos(bx)+i\sin(bx))-\frac{bi}{a^2+b^2}e^{ax}(\cos(bx)+i\sin(bx))\right)+C=\\ &=\frac{e^{ax}}{a^2+b^2}\Im\mathfrak{m}\Big(a\cos(bx)+b\sin(bx)+i(-b\cos(bx)+\sin(bx))\Big)+C=\\ &=\frac{e^{ax}}{a^2+b^2}\Big(a\sin(bx)-b\cos(bx)\Big)+C \end{split}$$

Bez wzorów Eulera z całkami tej postaci radzimy sobie oczywiście całkując przez części. Ćwiczenie 134. Analogicznie do poprzedniego przykładu wyznaczyć ogólną postać rozwiązania całki

$$\int e^{ax} \cos(bx) \, \mathrm{d}x.$$

 $\acute{C}wiczenie$  135. Obliczyć  $\int \sin^3(x) \, \mathrm{d}x$  korzystając z wzorów Eulera.

#### A.3.6 Ciągi i szeregi liczb zespolonych

Ciąg liczb $(z_n)_{n\in\mathbb{N}}$  zespolonych jest według definicji 5.4.1 zbieżny do liczby  $z\in\mathbb{C}$  na mocy definicji, gdy

$$\forall_{\varepsilon>0}\exists_{n\in\mathbb{N}}\forall_{n\geq N}.\ |z_n-z|<\varepsilon.$$

Inaczej mówiąc, gdy  $\lim_{n\to\infty}|z_n-z|=0$ . Wówczas ciąg modułów  $(|z_n-z|)_{n\in\mathbb{N}}$  jest zwyczajnym ciągiem liczb rzeczywistych.

#### Szeregi liczb zespolonych.

**Definicja A.3.17.** Szereg  $\sum_{n=0}^{\infty} z_n$  nazywamy **zbieżnym bezwzględenie**, gdy zbieżny jest szereg  $\sum_{n=0}^{\infty} |z_n|$  a **zbieżnym względnie** lub **warunkowo**, gdy jest zbieżny ale nie bezwzględnie zbieżny.

Krótko przytoczymy fakty na temat zbieżności szeregów liczb rzeczywistych, które pozostają w mocy w przypadku szeregu liczb zespolonych:

- Jeżeli szereg  $\sum_{n=0}^{\infty} z_n$  jest zbieżny, to  $\lim_{n\to\infty} z_n = 0$ .
- Szereg bezwzględnie zbieżny pozostaje zbieżny do tej samej sumy przy dowolnej zmianie kolejności sumowania wyrazów.
- Szereg  $\sum_{n=0}^{\infty} z_n$  jest zbieżny wtedy i tylko wtedy, gdy

$$\forall_{\varepsilon>0}\exists_{n_0\in\mathbb{N}}\forall_{\substack{n,m\in\mathbb{N}\\m>n\geqslant n_0}}\cdot\left|\sum_{k=n+1}^mz_k\right|<\varepsilon.$$

Twierdzenie A.3.18. Szereg  $\sum_{n=0}^{\infty} z_n$  jest zbieżny do sumy s wtedy i tylko wtedy, gdy zbieżne są szeregi  $\sum_{n=0}^{\infty} \Im m z_n$  i  $\sum_{n=0}^{\infty} \Re \mathfrak{e} z_n$  odpowiednio do  $\Im m s$  i  $\Re \mathfrak{e} s$ . Wówczas

$$\sum_{n=0}^{\infty} z_n = \sum_{n=0}^{\infty} \mathfrak{Re}\, z_n + i \sum_{n=0}^{\infty} \mathfrak{Im}\, z_n.$$

Do szeregów zespolonych stosują się kryterium porównawcze oraz kryteria Cauchy'ego i d'Alemberta.

Przykład 174. Zbadamy zbieżność szeregu  $\sum_{n=1}^{\infty} \frac{n(2+i)^n}{2^n}.$ 

## Dodatek B

## Elementy topologii

#### B.1 przestrzenie topologiczne

Greckie słowo *tópos* oznacza miejsce, położenie, zaś *lógos* przetłumaczyć można jako słowo lub naukę. Topologia jest to zatem "nauka o położeniu".

**Definicja B.1.1.** Niech X będzie dowolnym niepustym zbiorem. Rodzinę  $\mathcal{T} \subseteq \mathcal{P}(X)$  nazywamy topologią na X, gdy

- (T1)  $X, \emptyset \in \mathcal{T},$
- (T2) jeżeli  $A, B \in \mathcal{T}$ , to  $A \cap B \in \mathcal{T}$ ,
- (T3) jeżeli  $\mathcal{R} \subseteq \mathcal{T}$ , to  $\bigcup \mathcal{R} \in \mathcal{T}$ .

#### Parę $(X, \mathcal{T})$ nazywamy **przestrzenią topologiczną**.

Wprost z definicji widzimy, że topologia jest zbiorem niepustym. W przestrzeni w której nie mamy określonej metryki, ale mamy wprowadzoną topologię, dwa punkty leżą w pewnym sensie "blisko siebie", gdy należą do jednego zbioru otwartego (mimo, że bez metryki nie mamy pojęcia odległości między punktami). Najprostszą topologią na zbiorze  $X \neq \emptyset$  jest rodzina  $\{\emptyset, X\}$  - nazywamy ją **topologią trywialną**. Innym oczywistym przykładem topologii, którą można wprowadzić na dowolnym niepustym zbiorze X jest jej zbiór potęgowy  $\mathcal{P}(X) = 2^X$ .

Dla wielu zastosowań, tak ogólne przestrzenie topologiczne wymagają jeszcze dodatkowej własności. Felix Hausdorff wprowadził dodatkowy aksjomat:

**Definicja B.1.2.** Mówimy, że przestrzeń topologiczna  $(X, \mathcal{T})$  jest **przestrzenią Hausdorffa**, gdy spełnia następujący **aksjomat Hausdorffa**:

(TH) Dla dowolnych dwóch punktów  $x_1, x_2 \in X, x_1 \neq x_2$ , istnieją zbiory otwarte  $U, V \in \mathcal{T}$ , takie, że  $x_1 \in U$  a  $x_2 \in V$ , oraz  $U \cap V = \emptyset$ .

Przykład 175. Niech  $a \neq b$ . Rodzina  $\tau = \{\{a,b\}, \{b\}, \varnothing\}$  jest topologią na zbiorze  $X = \{a,b\}$ . Przestrzeń  $(X,\tau)$  nazywamy **przestrzenią dwupunktową Aleksandrowa** albo **dwukropkiem Aleksandrowa**.

Przykład 176. Jeżeli X jest zbiorem z określoną na nim relacją liniowego częściowego porządku  $\leq$ , to przedziałem otwartym możemy nazwać każdy zbiór postaci

$$(a,b)_{\prec} = \{x \in X : a \leq x \leq b \text{ i } a \neq x \neq b\}$$

lub

$$(a, \rightarrow)_{\prec} = \{x \in X : a \leq x \text{ i } x \neq a\}, \ (\leftarrow, a)_{\prec} = \{x \in X : x \leq a \text{ i } x \neq a\}.$$

Rodzinę wszystkich przedziałów otwartych na X oznaczymy przez Intv $\leq (X)$ . Topologią porzadkową na X nazywamy rodzinę

$$\mathcal{T}_{\preceq} = \bigg\{ U \subseteq X \colon \forall_{x \in U} \exists_{D \in \operatorname{Intv}_{\preceq}(X)}. x \in D \subseteq U \bigg\}.$$

**Definicja B.1.3.** Niech  $(X, \mathcal{T})$  będzie przestrzenią topologiczną i  $Y \subseteq X$ . Rodzina

$$\mathcal{T}_Y := \{ U \cap Y \colon U \in \mathcal{T} \}$$

jest topologią na zbiorze Y. Mówimy, że  $\mathcal{T}_Y$  jest topologią dziedziczoną (z przestrzeni  $(X, \mathcal{T})$ ), albo indukowaną w Y. Przestrzeń  $(Y, \mathcal{T}_Y)$  nazywamy podprzestrzenią przestrzeni  $(X, \mathcal{T})$ .

**Definicja B.1.4. Przestrzenią ośrodkową** nazywamy przestrzeń metryczną X zawierającą przeliczalny podzbiór  $O \subseteq X$ , gęsty w X. Zbiór O nazywamy **ośrodkiem** przestrzeni X.

Definicja B.1.5. Przestrzeń ośrodkową metryczną zupełną nazywamy przestrzenią polską.

**Definicja B.1.6. Zbiorem doskonałym** nazywamy domknięty podzbiór D przestrzeni metrycznej, taki że każdy punkt  $x \in D$  jest zarazem jego punktem skupienia:  $x \in D^d$ .

Widać, że zbiór A jest doskonały wtedy i tylko wtedy, gdy  $A=A^d$ . Niech  $(X,\rho)$  będzie przestrzenią metryczną. Wówczas, wprost z twierdzeń 5.4.9 i 5.4.11 zbiór  $A\subseteq X$  jest doskonały wtedy i tylko wtedy, gdy

- 1. jeżeli  $x \in A$ , to  $x = \lim_{n \to \infty} x_n$  dla pewnego ciągu  $(x_n)_{n \in \mathbb{N}}$  takiego, że
  - (a)  $x_n \in A, n \in \mathbb{N},$
  - (b)  $x_n \neq x, n \in \mathbb{N}$ ;
- 2. jeżeli  $(x_n)_{n\in\mathbb{N}}$  jest zbieżnym ciągiem,  $x_n\in A, n\in\mathbb{N},$  to  $\lim_{n\to\infty}x_n\in A.$

**Twierdzenie B.1.7.** Niech  $D \subseteq \mathbb{R}^n$  będzie niepustym zbiorem doskonałym. Wówczas D jest nieprzeliczalny.

**Twierdzenie B.1.8** (Cantora-Bendixsona). Niech X będzie przestrzenią polską. Wówczas X można jednoznacznie przedstawić w postaci  $X=D\cup C,$  gdzie D jest zbiorem doskonałym, a C zbiorem przeliczalnym i otwartym.

#### B.1.1 Przestrzenie metryzowalne

Niech  $(X, \rho)$  będzie przestrzenią metryczną.

**Definicja B.1.9.** Definiuemy rodzinę  $\mathcal{T}_{\rho}$  wzorem:

$$\mathcal{T}_{\rho} := \Big\{ U \subseteq X \colon \forall_{x \in U} \exists_{\varepsilon > 0} \colon K(x, \varepsilon) \subseteq U \Big\}.$$

**Twierdzenie B.1.10.** Rodzina  $\mathcal{T}_{\rho}$  jest topologią na zbiorze X. Jej bazą jest rodzina  $\mathcal{B}_{\rho} = \{K(x, \varepsilon) : x \in X \mid \varepsilon > 0\}.$ 

Stąd rodzinę  $\mathcal{T}_{\rho}$  nazywamy topologią wyznaczoną przez metrykę  $\rho$ , albo indukowaną przez metryką  $\rho$ .

**Definicja B.1.11.** Mówimy, że topologia  $\mathcal{T}$  na zbiorze X jest **metryzowalna**, gdy istnieje taka metryka  $\rho$  na zbiorze X, że  $\mathcal{T} = \mathcal{T}_{\rho}$ .

Czytelnik zauważy, że wiele twierdzeń i definicji dotyczących przestrzeni metrycznych, sformułowanych w odpowiednim rozdziale, jest sformułowanych i dowodzonych w oparciu o pojęcie i własności zbioru otwartego, nie odwołując się do pojęcia metryki ani kuli otwartej. Tego typu pojęcia i wnioski bez zmian przenoszą się na przestrzenie topologiczne, które nie są metryzowalne. W szczególności definicja 5.2.13 wnętrza i definicja 5.2.16 domknięcia zbioru oraz ich własności, sformułowane między innymi w twierdzeniach 5.2.15 i 5.2.19. *Nie* przenosi się natomiast w ogólności twierdzenie 5.2.8. Jest ono jednak prawdziwe dla przestrzeni Hausdorffa.

Twierdzenie B.1.12. Przestrzenie metryzowalne są przestrzeniami Hausdorffa.

Tak naprawdę fakt ten wprowadziliśmy już ukradkiem pod nazwą "Lematu Hausdorffa" omawiając przestrzenie metryczne w toku głównego wykładu – Lemat 5.2.7.

### B.2 Baza, podbaza i układ otoczeń topologii

**Definicja B.2.1. Bazą** przestrzeni topologicznej  $(X, \mathcal{T})$  nazywamy taką rodzinę  $\mathcal{B} \subseteq \mathcal{T}$ , że każdy zbiór otwarty  $U \in \mathcal{T}$  jest sumą pewnych zbiorów z rodziny  $\mathcal{B}$ . Rodzinę  $\mathscr{P} \subseteq \mathcal{T}$  nazywamy **podbazą** przestrzeni X, gdy rodzina wszystkich skończonych przekrojów zbiorów rodziny  $\mathscr{P}$ , tj. rodzina

$$\left\{ U_1 \cap U_2 \cap \ldots \cap U_n \colon \quad n \in \mathbb{N}, \ U_1, \ldots, U_n \in \mathscr{P} \right\}$$

jest bazą przestrzeni X.

Zatem  $\mathcal{B}$  jest baza przestrzeni  $(X, \mathcal{T})$ , gdy

$$\forall_{G \in \mathcal{T}} \exists_{\mathscr{B} \subseteq \mathcal{B}} G = \bigcup \mathscr{B}.$$

Łatwo sprawdzić, że równoważnie

$$\forall_{G \in \mathcal{T}} (x \in G \Rightarrow \exists_{U \in \mathcal{B}} x \in U \subseteq G).$$

Podamy jeszcze jedną charakteryzację bazy:

Twierdzenie B.2.2.  $\mathcal{B}$  jest bazą przestrzeni  $(X, \mathcal{T})$  wtedy i tylko wtedy, gdy

- 1.  $\forall_{x \in X} \exists_{U \in \mathcal{B}} x \in U$ ,
- 2.  $\forall_{U_1,U_2\in\mathcal{B}}\exists_{x\in U_1\cap U_2}\exists_{U\in\mathcal{B}} x\in U\subseteq U_1\cap U_2$ .

Powyższe warunkie przyjmuje się czasem za aksjomaty bazy. Własność 1 wynika z otwartości zbioru X. Aksjomat 2 wynika z tego, że zbiór  $U_1 \cap U_2$  jest otwarty. Pełny dowód równoważności definicji z powyższymi warunkami pominiemy.

Mamy też wygodną charakteryzację podbazy:

Twierdzenie B.2.3.  $\mathscr{P}$  jest podbazą przestrzeni  $(X,\mathcal{T})$  wtedy i tylko wtedy, gdy

$$\forall_{x \in X} \exists_{U \in \mathscr{P}} x \in U.$$

#### B.2.1 Pełny układ otoczeń punktu

**Definicja B.2.4.** Niech  $(X, \mathcal{T})$  będzie przestrzenią topologiczną i niech  $x \in X$ . Rodzinę  $\mathcal{B}(x)$  wszystkich otoczeń punktu x, mającą tę własność, że dla każdego zbioru  $U \in \mathcal{T}$  zawierającego x istnieje zbiór  $V \in \mathcal{B}(x)$  zawierający U; czyli wówczas

$$x \in U \subseteq V \in \mathcal{B}(x),$$

nazywamy bazą w punkcie x, bazą otoczeń punktu x lub układem otoczeń punktu x (topologii  $\mathcal{T}$  albo przestrzeni X).

Rodzinę  $\{\mathcal{B}(x)\}_{x\in X}$  nazywamy **pełnym**(albo **fundamentalnym**) **układem otoczeń** przestrzeni  $(X, \mathcal{T})$  (lub topologii  $\mathcal{T}$ ).

Widzimy, że z powyższej definicji każdy zbiór  $G \in \mathcal{T}$  jest sumą pewnej podrodziny rodziny  $\{U \in \mathcal{B}(x) \colon x \in X\}$  (mówimy: generowanej przez  $\{\mathcal{B}(x)\}_{x \in X}$ ).

**Twierdzenie B.2.5.** Bazę punktu  $x \in X$  charakteryzują następujące własności (które można zatem przyjąć jako aksjomaty bazy otoczeń punktu x):

- 1.  $\forall_{x \in X} \mathcal{B}(x) \neq \emptyset \ i \ \forall_{U \in \mathcal{B}(x)} \ x \in U$ ,
- 2.  $y \in U \in \mathcal{B}(x) \Rightarrow \exists_{V \in \mathcal{B}(y)} : V \subseteq U$ ,
- 3.  $\forall_{U_1,U_2\in\mathcal{B}(x)}\exists_{U\in\mathcal{B}(x)}: U\subseteq U_1\cap U_2$ .

Przykład 177. W wypadku przestrzeni metrycznej  $(X, \rho)$  najprostszym przykładem układu otoczeń, dla dowolnego punktu  $x \in X$  jest rodzina kul otwartych

$$\mathcal{B}(x) = \{K(x, \varepsilon) : \varepsilon > 0\}.$$

Albo nawet rodzina kul domkniętych

$$\mathcal{B}(x) = \left\{ \overline{K}(x, \varepsilon) : \varepsilon > 0 \right\},$$

gdyż zawsze  $x \in K(x,\varepsilon) \subseteq \overleftarrow{K}(x,\varepsilon)$  dla  $\varepsilon > 0$ .

#### B.3 Metody wprowadzania topologii na zbiorze

Załóżmy, że mamy dany niepusty zbiór X. Wprowadzić topologię  $\mathcal T$  na zbiorze X możemy na różne sposoby.

- Możemy zdefiniować pewien podzbiór  $\mathcal{T} \subseteq \mathcal{P}(X)$  spełniający aksjomay (T1)-(T3).
- Możemy też określić pewną rodzinę  $\mathcal{B} \subseteq \mathcal{P}(X)$  spełniającą aksjomaty bazy podane w twierdzeniu B.2.2 i wówczas rodzina

$$\mathcal{T}:=\left\{igcup \mathscr{B}\colon \mathscr{B}\subseteq \mathcal{B}
ight\}$$

jest topologią na X.

- Możemy określić rodzinę  $\mathscr{P} \subseteq \mathcal{P}(X)$  spełniającą aksjomat bazy podany w twierdzeniu B.2.3 i wówczas rodzina  $\mathcal{B}$  wszystkich skończonych przekrojów zbiorów z rodziny  $\mathscr{P}$  będzie bazą topologii  $\mathcal{T}$ , której postać będzie znowu, jak wyżej.
- Możemy wreszcie zdefiniować rodzinę  $\{\mathcal{B}(x)\}_{x\in X}$  indeksowaną elementami ze zbioru X, spełniającą aksjomaty z twierdzenia B.2.5 i wówczas topologią jest rodzina

$$\mathcal{T} := \left\{ U \in \mathcal{P}(X) \colon U = \bigcup_{x \in A} \mathcal{B}(x) \text{ dla pewn. } A \subseteq X \right\}.$$

Istnieją jeszcze inne sposoby wprowadzania topolgii. Nie wspominaliśmy tu np. o twierdzeniu Kuratowskiego o operacji wnętrza, która pozwala wprowadzić operację wnętrza int:  $\mathcal{P}(X) \to \mathcal{P}(X)$  w sposób abstrakcyjny, jako funkcję spełniającą odpowiednie aksjomaty. Wówczas topologię możemy określić jako te zbiory  $A \subseteq X$ , dla których int A = A. Komplementarne twierdzenie zachodzi dla operacji domknięcia. Tego typu metody i techniki znajdzie czytelnik w podręcznikach do topologii.

### B.4 Homeomorfizmy przestrzeni topologicznych

Homeomorfizm jest też nazywany izomorfizmem topologicznym i stanowi, analogicznie do izomorfizmów w algebrze, taki rodzaj przekształcenia między topologiami, że zachowuje wzajemnie ich topologiczne właściwości.

**Definicja B.4.1.** Niech  $(X, \mathcal{T}_X)$  i  $(Y, \mathcal{T}_Y)$  będą przestrzeniami topologicznymi. Mówimy, że funkcja  $f \colon X \to Y$ , jest **ciągła** w punkcie  $x_0 \in X$ , gdy dla każdego otoczenia  $U_{f(x_0)} \in \mathcal{T}_Y$  punktu  $f(x_0)$  istnieje takie otoczenie  $V_{x_0} \in \mathcal{T}_X$  puntku  $x_0$ , że  $f[V_{x_0}] \subseteq U_{f(x_0)}$ .

**Twierdzenie B.4.2.** Niech X i Y będą przestrzeniami topologicznymi, a  $f: X \to Y$  funkcją. Wówczas nastepujące warunki są równoważne:

- 1. funkcja f jest ciągła;
- 2. przeciwobraz dowolnego zbioru otwartego przez funkcję f jest otwarty;
- 3. przeciwobraz dowolnego zbioru domkniętego przez funkcję f jest domknięty;
- 4. istnieje podbaza przestrzeni Y, dla której przeciwobrazy jej elementów są otwarte;

- 5.  $f[\operatorname{cl} A] \subseteq \operatorname{cl} f[A]$  dla każdego zbioru  $A \subseteq X$ ;
- 6. cl  $f^{-1}[A] \subseteq f^{-1}[\operatorname{cl} b]$  dla każdego zbioru  $B \subseteq Y$ ;
- 7.  $f^{-1}[\text{int }B] \subseteq \text{int } f^{-1}[B]$  dla każdego zbioru  $B \subseteq Y$ .

**Definicja B.4.3.** Niech  $(X, \mathcal{T}_X)$  i  $(Y, \mathcal{T}_Y)$  będą przestrzeniami topologicznymi. Funckję  $f \colon X \to Y$  nazywamy **homeomorfizmem** między przestrzeniami X i Y, gdy

- 1. funkcja f jest bijekcją,
- 2. funkcja f jest ciągła,
- 3. funkcja  $f^{-1}$  odwrotna do f jest ciągła.

Jeżeli funkcja f nie jest na Y ale jest homeomorfizmem między X a f[X], to mówimy że f jest **zanurzeniem** przestrzeni X w przestrzeń Y.

W powyższej definicji homeomorfizmu może budzić wątpliwość, czy w ogóle może istnieć funkcja spełniająca dwa pierwsze warunki ale nie spełniająca trzeciego? Zbadamy następujący

Przykład 178. Niech  $S^1$  będzie okręgiem jednostkowym z topologią dziedziczoną z przestrzeni euklidesowej  $\mathbb{R}^2$  a funkcja  $f\colon [0,2\pi)\to S^1$  będzie dana wzorem

$$f(t) = (\cos t, \sin t), \ t \in [0, 2\pi).$$



Rysunek B.1: Geometrycznie mówiąc: funkcja "zawija" odcinek o długości  $2\pi$  w okrąg o pormieniu 1 i długości  $2\pi$ .

Funkcja f jest ciągła i bijektywna. Jej funkcja odwrotna  $f^{-1}$  nie jest jednak ciągła w punkcie t=(1,0):  $f^{-1}(1,0)=0$ . Rozważmy dowolny otwarty łuk  $L\subseteq S^1$ , otaczający punkt (1,0) i  $|L|<2\pi$ . Wówczas istnieje  $x\in(0,2\pi)$  takie, że  $f^{-1}[L]\subseteq[0,x)\cup(x,2\pi)$ .

Inaczej: obraz zbioru zwartego przez funkcję ciągłą musi być zwarty (patrz twierdzenie 7.2.27).  $f^{-1}$  nie może być więc funkcją ciągłą, bo  $[0,2\pi)=f^{-1}[S^1]$  a zbiór  $S^1\subseteq\mathbb{R}^2$  jest zwarty i  $[0,2\pi)$  nie stanowi przestrzeni zwartej w  $\mathbb{R}$ .

*Ćwiczenie* 136. Definiujemy funkcję  $g: [0,1] \cup (2,3] \rightarrow [0,2]$  wzorem

$$g(x) = \begin{cases} x, & \text{dla } 0 \le x \le 1, \\ x - 1, & \text{dla } 2 < x \le 3, \end{cases}$$

Funkcja odwrotna jest postaci

$$g^{-1}(y) = \begin{cases} y, & \text{dla } 0 \le y \le 1, \\ y+1, & \text{dla } 1 < y \le 2, \end{cases}$$

Sprawdzić, że funkcja g jest ciągła, ale  $g^{-1}$  nie jest ciągła w punkcie y=1.

Powracając na chwilę do zagadnienia równoważności metryk ze strony 83, zauważmy że prawdziwy jest

Fakt 7. Metryki  $d_1$ ,  $d_2$  w przestrzeni X są równoważne wtedy i tylko wtedy, gdy przekształcenie identycznościowe  $\mathrm{Id}_X \colon X \to X$  jest homeomorfizmem przestrzeni  $(X, d_1)$  i  $(X, d_2)$ .

#### B.4.1 Izometria przestrzeni metrycznych

W przypadku przestrzeni metrycznej – której podstawową cechą jest istnienie dobrze określonego pojęcia odległości – chcielibyśmy mieć odpowiedni rodzaj topologicznego izomorfizmu, który dodatkowo zachowuje "geometryczny kształt" przekształcanych zbiorów. Przekształcenie, które zachowuje stosunki odległości między punktami przekształcanych zbiorów w geometrii nazywa się izometriami. Przystawanie figur w geometrii można wyrazić, jako fakt że istnieje między nimi izometria.

**Definicja B.4.4.** Mówimy, że odwzorowanie  $f: X \to Y$  jest **izometrią** przestrzeni metrycznych  $(X, \rho), (Y, \sigma), \text{ gdy}$ 

$$\sigma(f(x_1), f(x_2)) = \rho(x_1, x_2), \quad x_1, x_2 \in X.$$

Prostymi przykładami izometrii będą np. przesunięcie (nazywane też translacją), obrót wokół punktu albo symetria środkowa w przestrzeni euklidesowej  $\mathbb{R}^2$ .

**Twierdzenie B.4.5.** Izometria surjektywna między przestrzeniami metrycznymi  $(X, \rho)$ ,  $(Y, \sigma)$ , jest homeomorfizmem przestrzeni topologicznych  $(X, \mathcal{T}_{\rho})$  i  $(Y, \mathcal{T}_{\sigma})$ .

Gdy taka izometria istnieje, to mówimy, że przestrzenie X i Y są **izometryczne** lub **izometrycznie homeomorficzne**.

**Uwaga B.4.6.** Zbiór izometrii przestrzeni metrycznej w siebie wraz z operacją składania przekształceń jest grupą, którą nazywamy po prostu grupą izometrii. Jest to podgrupa wszystkich bijekcji danej przestrzeni metrycznej w siebie.

### B.5 Zbiory gęste, brzegowe i nigdziegęste oraz twierdzenie Baire'a

Ustalmy przestrzeń  $(X, \mathcal{T})$ . Przypomnijmy, że zbiór  $E \subseteq X$  nazywamy

• gęstym, gdy  $\operatorname{cl} E = X$ ;

- brzegowym, gdy int  $E = \emptyset$ ;
- niegdziegestym, gdy int cl $E = \emptyset$ .

**Definicja B.5.1.** Zbiór  $A \subseteq X$  nazywamy **zbiorem pierwszej kategorii (Baire'a)**, gdy jest sumą przeliczalnej ilości zbiorów nigdziegęstych. **Zbiorem drugiej kategorii (Baire'a)** nazywamy po prostu zbiór  $A \subseteq X$  nie będący zbiorem pierwszej kategorii. Zbiór  $A \subseteq X$  nazywamy **rezydualnym**, gdy jego dopełnienie  $X \setminus A$  jest zbiorem pierszej kategorii.

Warto zauważyć, że gęstość zbioru  $E\subseteq X$  oznacza, że z każdym niepustym zbiorem otwartym w X ma on co najmniej jeden punkt wspólny. Jeśli  $X=\operatorname{cl} G$ , to implikacja wynika z charakteryzacji domknięcia (uwagi 5.2.17). W drugą stronę, załóżmy nie wprost, że

$$\forall_{\varnothing \neq U \in \mathcal{T}}. U \cap G \neq \varnothing$$

ale

$$X \setminus \operatorname{cl} G \neq \emptyset$$
.

 $U:=X\setminus\operatorname{cl} G$  jest zbiorem otwartym, więc z założenia istnieje  $x\in U\cap G$ . Jednak jeżeli  $x\in U$ , to  $x\notin\operatorname{cl} G$  a więc i  $x\notin G$ . Nie może więc być  $U\cap G\neq\varnothing$ . Mamy  $X\setminus\operatorname{cl} G=\varnothing$  i oczywiście  $\operatorname{cl} G\subseteq X$ , czyli  $X=\operatorname{cl} G$ .

Czasem w ten sposób definiuje się gęstość, jednak nie korzystamy z tego faktu w tym wykładzie. Podamy za to z dowodami dwa dodatkowe twierdzenia, charakteryzujące pojęcia zbioru brzegowego i nigdziegęstości - przy pomocy zbiorów otwartych.

**Twierdzenie B.5.2.** Zbiór  $E \subseteq X$  jest brzegowy wtedy i tylko wtedy, gdy dla każdego niepustego zbioru otwartego U zachodzi nierówność

$$U \cap (X \setminus E) \neq \emptyset$$
.

Dowód. Jeżeli int  $E=\varnothing$ , to znaczy że żaden niepusty zbiór otwarty U nie może zawierać się w E, czyli zbiór  $U\cap (X\setminus E)$  jest niepusty. W drugą stronę, niech E spełnia nierówność z tezy dla dowolnego zbioru otwartego U. Weźmy U= int E i załóżmy nie wprost, że  $U\neq\varnothing$ . Ale  $U\subseteq E$  więc nie może zachodzić nierówność  $U\cap (X\setminus E)\neq\varnothing$  i mamy sprzeczność.

**Twierdzenie B.5.3.** Zbiór  $E \subseteq X$  jest nigdziegęsty wtedy i tylko wtedy, gdy dla każdego niepustego zbioru otwartego U istnieje taki niepusty zbiór otwarty  $V \subseteq U$ , że  $V \cap E = \emptyset$ .

Dowód. Załóżmy najpierw, że zbiór E jest spełnia warunek z tezy. Przypuśćmy nie wprost, że int  $\overline{E} \neq \varnothing$ . Niech  $U := \operatorname{int} \overline{E}$ . Zbiór U jest otwarty i niepusty, zatem z założenia istnieje taki otwarty i niepusty zbiór V, że  $V \subseteq U \subseteq \overline{E}$  i  $V \cap E = \varnothing$ . Jednak, z definicji domknięcia, zachodzi nierówność  $V \cap E \neq \varnothing$ . Sprzeczność.

W drugą stronę, niech E będzie zbiorem nigdziegęstym. Załóżmy, nie wprost, że istnieje otwarty zbiór  $U \neq \emptyset$  taki, że dla każdego otwartego zbioru V:

$$V \not\subseteq U$$
 lub  $V \cap E \neq \varnothing$ .

Weźmy  $V:=U\setminus \overline{E}$ . Wówczas zbiór  $V\neq\varnothing$  jest otwarty i  $V\subseteq U$ , więc wobec założenia musi zachodzić nierówność  $V\cap E\neq\varnothing$ . Weźmy więc  $x\in V\cap E$ . Z definicji V oznacza to, że  $x\notin \overline{E}$ . Istnieje zatem takie otoczenie otwarte B punktu x, że  $B\cap E=\varnothing$ . Ale  $x\in E$  - sprzeczność.  $\square$ 

**Twierdzenie B.5.4** (Cantora). Niech (X,d) będzie przestrzenią metryczną. Przestrzeń X jest zupełna wtedy i tylko wtedy, gdy dla każdego ciągu  $(F_n)_{n\in\mathbb{N}}$  zstępującego niepustych, domkniętych podzbiorów X i takich, że  $\lim_{n\to\infty}$  diam  $F_n=0$ , zbiór  $\bigcap_{n\in\mathbb{N}} F_n$  jest jednopunktowy.

Dowód. Załóżmy najpierw, że X jest przestrzenią zupełną. Ponieważ zbiory  $F_n$  są niepuste, to możemy utworzyć ciąg  $(a_n)_{n\in\mathbb{N}}$  taki, że  $a_n\in F_n,\,n\in\mathbb{N}$ . Z założenia  $F_{n+1}\subseteq F_n,\,n\in\mathbb{N}$ , więc  $\lim_{n\to\infty} \operatorname{diam} F_n=0$ . Ustalmy  $\varepsilon>0$ , to istnieje  $N\in\mathbb{N}$  takie, że dla n>N:  $\operatorname{diam} F_n<\varepsilon$ . Dla dowolnych liczb naturalnych m,n>N:  $a_n,a_m\in F_N\subseteq F_n$ . Wówczas

$$d(a_n, a_m) \leq \operatorname{diam} F_N \leq \operatorname{diam} F_n < \varepsilon.$$

Pokazaliśmy, że  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem Cauchy'ego. Jako że X jest zupełna, to istnieje punkt  $a\in X$ , do którego ciąg ten jest zbieżny. Dodatkowo, dla każdego  $m\in\mathbb{N}$ :  $a\in F_m$ . Otóż, ponieważ zbiór  $F_m$  jest domknięty, oraz  $a_k\in F_m, k\geqslant m$ , więc podciąg  $(a_k)_{k\geqslant n}$  ciągu  $(a_n)_{n\in\mathbb{N}}$  zawiera się w  $F_m$  oraz  $\lim_{k\to\infty}a_k=a\in F_m$ . Z dowolności wyboru m wynika, że

$$a \in \bigcap_{n \in \mathbb{N}} F_n$$
.

TO-DO: jednoznaczność i dowód w druga stronę.

**Twierdzenie B.5.5.** Niech X będzie przestrzenią metryczną zupelną, a  $E \subseteq X$  dowolnym zbiorem pierwszej kategorii. Wówczas E jest brzegowy w X a co za tym idzie  $X \neq E$ .

Dowód. Niech

$$X = \bigcup_{n=1}^{\infty} Z_n$$

dla pewnego ciągu  $(Z_n)_{n\in\mathbb{N}}$  zbiorów nigdziegestych.

Ustalmy dowolny zbiór otwarty  $U\subseteq X$ . Ponieważ  $Z_1$  jest nigdziegęsty, to istnieje taka kula  $K_1$  otwarta w X, że  $K_1\subseteq U$  i  $K_1\cap Z_1=\varnothing$ . Definujemy ciąg kul  $(K_n)_{n\in\mathbb{N}}$  rekurencyjnie:  $K_1$  jak wyżej i dla każdej liczby naturalnej n>2, z gęstości  $Z_n$  wynika istnienie takiej kuli otwartej  $K_n\subseteq K_{n-1}$ , że  $K_n\cap Z_n=\varnothing$ . Niech  $r_n$  oznacza promień kuli  $K_n$ . Dla każdej kuli  $K_n$  bierzemy kulę  $K'_n$  o promieniu  $\delta_n=\frac{1}{2^{n+1}}r_n$  i przyjmujemy  $F_n:=\operatorname{cl} K'_n$ . Mamy ciąg zbiorów domkniętych  $(F_n)_{n\in\mathbb{N}}$  oraz zachodzą zawierania

(B.1) 
$$F_n \subseteq K_n \subseteq X \setminus Z_n, \quad n \in \mathbb{N}$$

(B.2) 
$$F_n \subseteq F_{n+1} \subseteq U, \quad n \in \mathbb{N}$$

a ponadto, ponieważ ciąg  $(r_n)_{n\in\mathbb{N}}$  jest ograniczony przez  $r_1$ , to mamy równość

(B.3) 
$$\lim_{n \to \infty} \operatorname{diam} F_n = \lim_{n \to \infty} \frac{1}{2^n} r_n = 0$$

Z zupełności przestrzeni X oraz zależności (B.2) i (B.3) na mocy twierdzenia Cantora przekrój rodziny  $\{F_n\}$  jest jednoelementowy. Istnieje  $x \in X$  taki, że

$$\bigcap_{n=1}^{\infty} F_n = \bigcap_{n=1}^{\infty} X \setminus Z_n = X \setminus \bigcup_{n=1}^{\infty} Z_n = X \setminus Z = \{x\} \subseteq U.$$

Czyli  $U \cap (X \setminus Z) \neq \emptyset$  i stąd zbiór Z jest brzegowy (na mocy twierdzenia B.5.2)

Twierdzenia Baire'a ma liczne zastosowania w Analize Funkcjonalnej - rozwinięcia i uogólnienia klasycznej analizy, którą to większości zajmujemy się w tej publikacji. Z twierdzenia Baire'a korzysta się na przykład w dowodach twierdzenia Banacha-Steinhouse'a czy twierdzenia o wykresie domkniętym.

## Dodatek C

# Wprowadzenie do równań różniczkowych zwyczajnych

Rozważmy równanie:

$$f''(x) + f(x) = 0, x \in \mathbb{R}$$

Niewiadomą w tym równaniu jest funkcja f. Szukamy funkcji  $f: \mathbb{R} \to \mathbb{R}$ , dwukrotnie różniczkowalnej i takiej, że spełniona jest powyższa zależność. Niech  $y = \sin x$ . Wówczas  $y' = \cos x$ ,  $y'' = -\sin x$ . Wówczas mamy  $y'' + y = -\sin x + \sin x = 0$ . Przyjmujemy y = f(x) - znaleźliśmy rozwiązanie naszego pierwszego równania różniczkowego.

Równania różniczkowe nie sposób omawiać, nie zwróciwszy uwagi na ich liczne zastosoania. Pobieżnie omówimy kilka bardzo różnych problemów, prowadzących do sformułowania różnych równań różniczkowych.

**Rozpad promieniotwórczy.** Niech m(t) oznacza masę pierwiastka promieniotwórczego w chwili t. Przyjmijmy, że masa pierwiastka, która ulega rozpadowi w umownie "małym" przedziale czasowym  $[t, t + \Delta t]$  jest proporcjonalna do iloczynu m(t) i  $\Delta t$ . Mamy zatem równanie w postaci:

(C.1) 
$$\Delta m = -\lambda m(t) \Delta t.$$

Dzieląc obie strony równania przez  $\Delta t$  otrzymujemy, że  $\frac{\Delta m}{\Delta t} = -\lambda m(t)$ . Przechodząc do granicy z  $\Delta t \to 0$  otrzymujemy, że  $\frac{\mathrm{d}m}{\mathrm{d}t} = -\lambda m(t)$ . Jest to nasze pierwsze równanie różniczkowe:

$$m'(t) = -\lambda m(t).$$

Łatwo zauważyć, że funkcja  $m(t) = e^{-\lambda t}$  jest rozwiązaniem równania C.1:

$$m'(t) = \frac{\mathrm{d}}{\mathrm{d}t} (e^{-\lambda t}) = -\lambda e^{-\lambda t} = -\lambda m(t).$$

Zauważmy jednak, że również  $m(t) = Ce^{-\lambda t}$  jest rozwiązaniem równania C.1 dla dowolnej stałej  $C \in \mathbb{R}$ .  $m(t) = e^{-\lambda t}$  jest rozwiązaniem szczególnym (albo inaczej całką szczególną) naszego równania. Jest to nasza pierwsza ważna lekcja: rozwiązania równania różniczkowego może stanowić

nieskończona rodzina funkcji. Najczęściej spotkamy się z równaniami, które spełnia więcej niż jedna funkcja. **Rozwiązaniem ogólnym** równania będziemy nazywać rodzinę funkcji, zależnych od określonej liczby parametrów.

**Spadek z małej wysokości.** Na spadający punkt materialny działa siła ciężkości proporcjonalna do przyspieszenia ziemskiego oraz siła oporu powietrza proporcjonalna do ciężkości punktu. Jeżeli y(t) oznacza odległość punktu od Ziemi, to funkcja y spełnia równanie

$$y''(t) = -g - Dy'(x),$$

gdzie  $g \approx 9,80$  jest przyspieszeniem ziemskim, a D współczynnikiem oporu powietrza.

Rozwój populacji. Model Malthusa rozwoju populacji (1798). Thomas Malthus zakładał, że przyrost ludności jest proporcjonalny do liczby ludzi. Takie założenie wyraża się równaniem

$$P'(t) = \lambda P(t),$$

gdzie P(t) oznacza liczbę osobników populacji w chwili t a  $\lambda>0$  jest współczynnikiem proporcjonalności. Warto zauważyć, że ten naiwny model ten jest wysoce nierealistyczny, jeśli chcemy go odnosić - tak jak historycznie czynił to Malthus - do ludzkości. Założenie o proporcjonalności przyrostu do populacji nie uwzględnia szeregu czynników, które wpływają na złożone, rzeczywiste zjawiska populacyjne.

**Koszt produkcji.** Dla kosztu K(x) wyprodukowania x > 0 jednostek towaru zachodzi zależność:

$$K'(x) = \lambda \frac{K(x)}{x}, K(x) > 0$$

gdzie  $\lambda$  jest współczynnikiem proporcjonalności, który może wynikać z teoretycznej analizy modelu produkcji lub obserwacji empirycznych.

Przyjmujemy y = K(x). Równanie można przepisać w postaci

(C.2) 
$$y' = \lambda \frac{y}{x}.$$

Jest to tzw. równanie o zmiennych rozdzielonych.

### C.1 Definicja równania różniczkowego zwyczajnego

Definicja C.1.1. Równaniem różniczkowym zwyczajnym rzędu n nazywamy równanie postaci

(C.3) 
$$F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0,$$

gdzie  $F: D \to \mathbb{R}, D \subseteq \mathbb{R}^{n+2}$ , dla pewnego  $n \in \mathbb{N}$ .

O równaniu C.3 mówimy, że jest w postaci uwikłanej. Gdy równanie różniczkowe jest postaci

$$y^{(n)}(t) = f(t, y(t), y'(t), \dots, y^{(n-1)}(t)),$$

to mówimy, że jest w postaci normalnej.

**Definicja C.1.2.** Funkcję y nazywamy **rozwiązaniem** (szczególnym) w przedziale  $I \subseteq D \subseteq \mathbb{R}$  równania różniczkowego C.3, gdy

- y jest n-krotnie różniczkowalna;
- $(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) \in D$  dla każdego  $t \in I$ ;
- $F(t, y(t), y'(t), y''(t), \dots, y^{(n)}(t)) = 0$  dla każdego  $t \in I$ .

**Definicja C.1.3.** Rodzinę funkcji  $y(t, C_1, C_2, \dots, C_n)$ , gdzie  $(C_1, C_2, \dots, C_n) \in \mathbb{R}^n$  (tj. funkcji zależących od n parametrów) nazywamy **rozwiązaniem ogólnym** albo **całką ogólną**, gdy dla każdego doboru parametrów funkcja  $y(t, C_1, \dots, C_n)$  jest rozwiązaniem równiania C.3.

**Uwaga C.1.4** (Interpretacja geometryczna). Niech  $f\colon D\to\mathbb{R}$ , ,  $D\subseteq\mathbb{R}$  oraz niech dane jest równanie różniczkowe postaci

$$y'(x) = f(x, y(x)).$$

Z każdym punktem  $(x, y(x)) \in D$  możemy powiązać trójkę (x, y(x), a), gdzie a = f(x, y(x)) określa tangens nachylenia (współczynnik kierunkowy) prostej przechodzącej przez punkt (x, y(x)) do osi OX. Każdą taką prostą nazywamy **kierunkiem** równania w punkcie (x, y(x)).

**Polem kierunków** równania C.3 nazywamy zbiór wszystkich kierunków równania dla  $(x, y(x)) \in D$ .

Jeśli y jest rozwiązaniem w I, to zbiór  $\{(x,y(x),y'(x))\in\mathbb{R}^3\colon x\in I\}$  zawiera się w zbiorze  $\{(x,y(x),a)\in\mathbb{R}^3\colon a=f(x,y(x)),(x,y(x))\in D\}$ 

**Definicja C.1.5.** Rozważmy rodzinę krzywych  $\mathcal{K}$ , będących wykresami funkcji postaci  $f(x, C_1, C_2, \ldots, C_n)$  gdzie  $C_1, \ldots, C_n$  są pewnymi stałymi. Równanie różniczkowe F, którego rozwiązaniem są funkcje  $f(x, C_1, C_2, \ldots, C_n)$  zależne od n parametrów  $C_1, \ldots, C_n$  nazywamy **równaniem różniczkowym rodziny krzywych**  $\mathcal{K}$ . W starszej literaturze polskojęzycznej bardzo często rodzinę  $\mathcal{K}$  nazywa się rodziną linii a równanie F oczywiście równaniem różniczkowym rodziny linii.

## C.2 Najprostsze typy równań

Definicja C.2.1. Zagadnieniem Cauchy'ego albo zagadnieniem początkowym nazywamy układ równań

$$\begin{cases} y'(t) = f(t, y(t)), \\ y(0) = y_0. \end{cases}$$

dla pewnego danego  $y_0$ .

Równania zależne tylko od zmiennej niezależnej. Rozwiążemy równanie  $y'(x) = \frac{2x}{x^2 + 1}$ .

$$y'(t) = \frac{2t}{t^2 + 1} / \int_0^x dt$$

$$\int_{0}^{x} y'(t) dt = \int_{0}^{x} \frac{2t}{t^{2} + 1} dt$$

Podstawmy  $t^2 + 1 = s$  i wówczas

$$2t \, \mathrm{d}t = \mathrm{d}s.$$

Gdy t=0, to s=1 a gdy t=x to  $s=x^2+1$ . Mamy więc do policzenia całkę

$$\int_{1}^{x^{2}+1} \frac{\mathrm{d}s}{s} = [\ln|s|]_{1}^{x^{2}+1} = \ln(x^{2}+1) - \ln 1 = \ln(x^{2}+1).$$

Ostatecznie  $y(x)-y(0)=\ln(x^2+1)$ . Gdybyśmy mieli do czynienia np. z Zagadnieniem Cauchy'ego

$$\begin{cases} y'(x) = \frac{2x}{x^2 + 1}, \\ y(0) = 1. \end{cases}$$

to rozwiązaniem byłaby funkcja y dana wzorem  $y(x) = \ln(x^2 + 1) - 1$ .

Równania o zmiennych rozdzielonych: równanie postaci

$$(C.4) g(y)y'(x) = f(x),$$

gdzie fi gsą znanymi funkcjami określonymi i ciągłymi w pewnym przedziale.

Przykład 179. Przypomnijmy równanie C.2:

$$y' = \lambda \frac{x}{y}$$
. (y jest funkcją zmiennej  $x$ )

Przerzucamy się na inny zapis pochodnej i przekształcamy:

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \lambda \frac{x}{y}$$

$$\frac{\mathrm{d}y}{y} = \lambda x \, \mathrm{d}x$$

Całkujemy obustronnie:

$$\int \frac{\mathrm{d}y}{y} = \lambda \int x \, \mathrm{d}x$$

$$\ln y + C_1 = \frac{\lambda}{2}x^2 + C_2.$$

Możemy przyjąć  $C_0 = C_2 - C_1$  i mamy

$$\ln y = \frac{\lambda}{2}x^2 + C_0.$$

$$e^{\ln y} = y = \exp\left(\frac{\lambda}{2}x^2 + C_0\right).$$

Przykład 180. Rozwiążemy równanie y'(x) = y(x)(1 - y(x)).

Równania różniczkowe jednorodne:

- C.3 Równania liniowe wyższych rzędów
- C.3.1 Równania liniowe jednorodne
- C.3.2 Równania liniowe niejednorodne
- C.4 Równanie różniczkowe Bernoulliego
- C.5 Równanie różniczkowe Clairauta
- C.6 Układy równań liniowych

Przykład 181.

$$\begin{cases} x'(t) = -x(t) \\ y'(t) = x(t) + y(t) \end{cases}$$

Przykład 182. Rozwiązać układ równań:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = 3x + 1, \ \frac{\mathrm{d}y}{\mathrm{d}t} = x + y$$

Metoda d'Alemberta:

- C.6.1 Metoda Eulera rozwiązywania jednorodnych układów równań różniczkowych
- C.7 Twierdzenia o istnieniu rozwiązania równania różniczkowego.

**Lemat C.7.1** (Gronwalla). Niech  $u, g: [0, +\infty) \to [0, +\infty)$  będą funkcjami ciągłymi, spełniającymi nierówność

$$u(t) \leqslant \delta + \int_{a}^{t} g(s)u(s) \,\mathrm{d}s, t \in [a, +\infty),$$

 $gdzie \delta jest nieujemną stałą. Wtedy$ 

$$u(t) \le \delta \exp\left(\int_a^t g(s) ds\right), t \in [a, +\infty).$$

Twierdzenie C.7.2 (Picarda-Lindelöfa). Rozważmy zagadnienie początkowe

(\*) 
$$\begin{cases} y'(t) = f(t, y(t)), \\ y(t_0) = s_0 \end{cases}$$

gdzie  $t_0, y_0 \in \mathbb{R}, \ f : D \to \mathbb{R}, D \subseteq \mathbb{R}^2, \ (t_0, s_0) \in \mathbb{R}^2.$ Niech  $\mathbf{P} = [t_0 - b, t_0 + b] \times [y_0 - b, y_0 + b], \ a, b \in (0, +\infty).$  Załóżmy, że  $f|_{\mathbf{P}}$  jest ciągla oraz spełnia warunek Lipschitza ze stałą L względem drugiej zmiennej. Oznaczmy  $M = \max\{|f(t,s)|: (t,s) \in \mathbf{P}\}$ . Niech

$$0<\delta<\min\left\{a,\frac{b}{M},\frac{1}{L}\right\},$$

przy czym jeśli M=0, to przyjmujemy, że  $\frac{b}{M}=\infty$ . Wówczas istnieje dokładnie jedna funkcja  $y\colon [t_0-\delta,t_0+\delta]\to \mathbb{R}$ , będąca rozwiązaniem zagadnienia początkowego (\*).

**Twierdzenie C.7.3** (Peana). Niech  $f:[a,b]\times\mathbb{R}\to\mathbb{R}$ . Jeżeli istnieje kula  $K(y_0,x_0)\subseteq\mathbb{R}$  taka, że  $f|_{[a,b]\times K(y_0,x_0)}$  jest ciągła, to istnieje  $\delta>0$ , że zagadnienie Cauchy'ego

$$\begin{cases} y'(x) = f(x, y(x)) \\ y(x_0) = y_0 \end{cases}$$

ma przynajmniej jedno rozwiązanie w przedziałe  $(x_0 - \delta, x_0 + \delta)$ .

**Twierdzenie C.7.4** (Peana). *Jeżeli funkcje*  $x,y \colon [0,T] \to \mathbb{R}$  są różniczkowalne i spełniają dla  $0 \le t \le T$  warunki:

$$x'(t) = f(t, x(t)),$$
  
$$y'(t) < f(t, y(t)),$$

$$y(0) \leqslant x(0),$$

to  $y(t) \leqslant x(t)$  dla  $0 \leqslant t \leqslant T$ .

## Dodatek D

## Całka Riemanna-Stieltjesa

#### D.1 Całka Riemanna-Stieltjesa

**Definicja D.1.1.** Niech  $f:[a,b] \to \mathbb{R}$  bedzie funkcją ograniczoną a  $\mu:[a,b] \to \mathbb{R}$  dowolną funkcją. Jeżeli dla dowolnego ciagu normalnego  $(\pi_k)_{k\in\mathbb{N}}$  przedziału [a,b] oraz dowolnego ciągu punktów pośrednich  $\xi_i \in [x_{i-1},x_i], i \in \{1,\ldots,n_k\}$  istnieje granica

$$\lim_{k \to \infty} \sum_{i=1}^{n_k} f(\xi_i) \Delta \mu(x_i), \text{ gdzie } \Delta \mu(x_i) := \mu(x_i) - \mu(x_{i-1}),$$

to granicę tę oznaczamy

$$\int_{a}^{b} f(x) \, \mathrm{d}\mu(x)$$

i nazywamy całką ozaczoną Riemanna-Stieltjesa dla funkcji f w przedziale [a,b]. Możemy też oznaczać  $\Delta\mu(x_i)=\Delta\mu_i$ . Całka powyższa bywa oznaczana

$$\int_a^b f d\mu \text{ lub } \int_a^b f(x)\mu(dx)$$

przy czym drugiego oznaczenia nie będziemy tu stosować. Będziemy też pisać, że funkcja f jest "całkowalna w sensie R-S" względem funkcji  $\mu$ .

W większości wymagamy, by  $\mu$  była funkcją niemalejącą.

Całka Riemanna-Stieltjesa ma bardzo silny związek z całkowaniem całki Riemmana przez podstawienie.

**Twierdzenie D.1.2.** Niech  $\mu \colon [a,b] \to \mathbb{R}$  będzie niemalejąca i różniczkowalna w [a,b] oraz  $f \colon [a,b] \to \mathbb{R}$  będzie funkcją ograniczoną. f jest całkowalna w sensie Riemanna-Stieltjesa na [a,b] względem  $\mu$  wtedy i tylko wtedy, gdy funkcja  $f\mu'$  jest całkowalna w sensie Riemanna na przedziale [a,b]. Wtedy

(D.1) 
$$\int_a^b f(x) \, \mathrm{d}\mu(x) = \int_a^b f(x)\mu'(x) \, \mathrm{d}x.$$

Dowód. Wystarczy spojrzeć na postać sum całkowych i zastosować twierdzenie Lagrange'a o wartości średniej do funkcji  $\mu'$ .

Ciekawą postać przyjmie uogólnienie twierdzenia o zamianie zmiennych:

**Twierdzenie D.1.3** (Zamiana zmiennych w całce Riemanna-Stieltjesa). Niech  $\varphi \colon [A, B] \xrightarrow{na} [a, b]$  będzie funkcją rosnącą,  $\mu \colon [a, b] \to \mathbb{R}$  funkcją niemalejącą i  $f \colon [a, b] \to \mathbb{R}$  całkowalną w sensie R-S wzgl. funkcji  $\mu$  na przedziale [a, b]. Określimy funkcje  $g, \nu \colon [A, B] \to \mathbb{R}$  wzorami

$$\nu(y) = \mu(\varphi(y)), \ g(y) = f(\varphi(y)).$$

Wówczas g jest całokwalna w sensie R-S względem funkcji ν i

$$\int_a^b f \, \mathrm{d}\mu = \int_A^B g \, \mathrm{d}\nu$$

Czyli

$$\int_a^b f(x) d\mu(x) = \int_{\varphi^{-1}(a)}^{\varphi^{-1}(b)} g(t) d\nu(t).$$

*Ćwiczenie* 137. Pokazać, że jeśli całka  $\int_{h(a)}^{h(b)} f d\mu$  istnieje, to

$$\int_a^b f(h(x)) d\mu(h(x)) = \int_{h(a)}^{h(b)} f(x) d\mu(x).$$

Całka Riemanna-Stieltjesa spełnia analogiczne do całki Riemanna własności:

**Twierdzenie D.1.4.** Jeżeli f, g są funkcjami całkowalnymi w przedziale [a,b] względem f.  $\mu$  oraz  $f \leq g$ , to

$$\int_a^b f \, \mathrm{d}\mu \leqslant \int_a^b g \, \mathrm{d}\mu.$$

**Twierdzenie D.1.5.** Jeżeli f, g są funkcjami całkowalnymi w przedziale [a, b] względem f.  $\mu$  a  $u, v \in \mathbb{R}$  dowolnymi stałymi, to

$$\int_a^b (u \cdot f + v \cdot g)(x) d\mu(x) = u \int_a^b f(x) d\mu(x) + v \int_a^b g(x) d\mu(x).$$

**Twierdzenie D.1.6.** Jeżeli  $f:[a,b] \to \mathbb{R}$  jest funkcją całkowalną na [a,b] w sensie Riemanna-Stieltjesa względem funkcji niemalejącej  $\mu:[a,b] \to \mathbb{R}$ , to

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}\mu(x) \right| \le \int_{a}^{b} |f(x)| \, \mathrm{d}\mu(x)$$

**Twierdzenie D.1.7.** Jeżeli  $f:[a,b] \to \mathbb{R}$  jest funkcją całkowalną na [a,b] w sensie Riemanna-Stieltjesa względem funkcji niemalejącej  $\mu:[a,b] \to \mathbb{R}$  oraz  $|f(x)| \leq M, x \in [a,b]$ , to

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}\mu(x) \right| \leqslant M \left( \mu(b) - \mu(a) \right)$$

Dowód. Ustalmy  $\varepsilon > 0$  i niech  $(\pi_k)_k$  będzie ciągiem normalnym podziałów przedziału [a, b]. Istnieje takie  $N \in \mathbb{N}$ , że dla każdego k > N istnieje podział  $\pi = \{x_0, x_1, \dots, x_{n_k}\}$  przedziału [a, b], tak że

$$\left| \int_{a}^{b} f(x) \, \mathrm{d}\mu(x) - \sum_{k=1}^{n_k} f(\xi_k) \Delta\mu(x_k) \right| < \varepsilon,$$

gdzie  $\xi_k, k=0,\dots,n_k$ są pewnymi punktami pośrednimi. Oczywiście wówczas

$$\sum_{k=1}^{n_k} f(\xi_k) \mu(x_k) - \varepsilon \leqslant \int_a^b f(x) \, \mathrm{d}\mu(x) \leqslant \sum_{k=1}^{n_k} f(\xi_k) \mu(x_k) + \varepsilon.$$

Funkcja fjest ograniczona, z założenia, więc istnieją  $m,M\in\mathbb{R}$ takie, że

$$m \leqslant f(x) \leqslant M, \ x \in [a, b],$$

w szczególności, gdy  $x=\xi_k\,k=1,\ldots,n$ . Ponadto, ponieważ  $\mu$  jest funkcją niemalejącą i  $a=x_0< x_1<\ldots< x_{n-1}< x_n=b$ , to

$$\mu(a) = \mu(x_0) \leqslant \mu(x_1) \leqslant \ldots \leqslant \mu(x_{n-1}) \leqslant \mu(x_n) = \mu(b)$$

Mamy oszacowania:

$$m(\mu(b) - \mu(a)) - \varepsilon = \sum_{k=1}^{n_k} m(\mu(x_k) - \mu(x_{k-1})) - \varepsilon \leqslant \sum_{k=1}^{n_k} f(\xi_k) \mu(x_k) - \varepsilon \leqslant \int_a^b f(x) \, \mathrm{d}\mu(x)$$

oraz

$$\int_a^b f(x) \, \mathrm{d}\mu(x) \leqslant \sum_{k=1}^{n_k} f(\xi_k) \mu(x_k) + \varepsilon \leqslant \sum_{k=1}^{n_k} M(\mu(x_k) - \mu(x_{k-1})) + \varepsilon = M(\mu(b) - \mu(a)) + \varepsilon.$$

Pokazaliśmy, że dla każdego  $\varepsilon>0$  mamy pewien podział  $\pi$  wraz z punktami pośrednimi  $\xi_k$  dla którego powyższe oszacowania są prawdziwe. Przy  $\varepsilon\to0$  otrzymujemy tezę.

Definicję całki Riemanna-Stieltjesa moglibyśmy wprowadzić również poprzez sumy górne i dolne, podobnie jak czyniliśmy to w rozdziale 11. Przytoczyliśmy definicję opartą na definicji 11.2.2. Dowód powyższego twierdzenia łatwo przekształcić w dowód analogicznego twierdzenia dla zwykłej całki Riemanna, opartego na definicji 11.2.2 zamiast 11.1.3 (wersji Darboux definicji całki).

Dowody pozostałych twierdzeń zostawiamy jako ćwiczenie. Możemy korzystać z ugólnień sum Darboux: dla podziału  $\pi = \{x_0, x_1, \dots, x_n\}, M = \sup f(x), m = \inf f(x)$ :

$$\overline{S}(\pi, f, \mu) = \sum_{k=1}^{n} M \Delta \mu(x_k),$$

$$\underline{S}(\pi, f, \mu) = \sum_{k=1}^{n} m\Delta\mu(x_k).$$

Możemy łatwo określić dwie szerokie klasy funkcji całkowalnych w sensie R-S.

**Twierdzenie D.1.8.** Jeżeli  $f:[a,b] \to \mathbb{R}$  jest funkcją monotoniczną  $a \ \mu:[a,b] \to \mathbb{R}$  funkcją niemalejącą i ciągłą, to f jest całkowalna w sensie Riemanna-Stieltjesa względem funkcji  $\mu$ .

**Twierdzenie D.1.9.** Jeżeli  $f:[a,b] \to \mathbb{R}$  jest funkcją ciąglą na [a,b] to jest całkowalna w sensie Riemanna-Stieltjesa względem dowolnej funkcji niemalejącej  $\mu:[a,b] \to \mathbb{R}$ .

 $\acute{C}wiczenie$ 138. Wykazać, że jeżeli dla dowolnej funkcji ciągłej fo wahaniu skończonym na [a,b]zachodzi równość

 $\int_{a}^{b} f(x) \, \mathrm{d}f(x) = \frac{1}{2} (f^{2}(b) - f^{2}(a)).$ 

#### Przykłady.

Przykład 183. Obliczymy całkę  $\int_{0}^{\frac{\pi}{2}} \sin x \, dx^2$ . Korzystając z twierdzenia D.1.2 a następnie ze zwykłego wzoru na całkowanie przez części, otrzymujemy

$$\int_0^{\frac{\pi}{2}} \sin x \, dx^2 = \int_0^{\frac{\pi}{2}} \sin x (x^2)' \, dx = 2 \int_0^{\frac{\pi}{2}} x \sin x \, dx =$$

$$= 2 \left( -\underbrace{x \cos x}_0^{\left( \frac{\pi}{2} \right)} - \int_0^{\frac{\pi}{2}} (-\cos x) \, dx \right) =$$

$$= 2 \int_0^{\frac{\pi}{2}} \cos x \, dx = 2 \sin x \Big|_0^{\frac{\pi}{2}} = 2.$$

Przykład 184. Niech  $E = \{y_1, \dots, y_k\}$  oraz funkcja  $\mu \colon \mathbb{R} \to E$  będzie dla pewnych ustalonych  $a_1, \dots, a_k \in [0, 1]$  dana wzorem

$$\mu(x) = \begin{cases} y_i, & \text{dla } x = a_i, i \in \{1, \dots, k\}; \\ 0, & \text{dla } x \notin \{a_1, \dots, a_k\}. \end{cases}$$

Wówczas funkcja  $\mu$  jest oczywiście niemalejąca i mamy:

$$\int_0^1 x^2 \, \mathrm{d}\mu(x) = \sum_{i=1}^k a_i^2 y_i^2.$$

Powyższy przykład ma zgrabną interpretację fizyczną. Moment bezwładności prostego drugu o jednostkowej długości dany jest względem osi przechodzącej przez koniec drutu i prostopadłej do niego dany jest wzorem  $\int_0^1 x^2 \, \mathrm{d}m$ , gdzie m(x) oznacza masę odcinka [0,x]. Jeżeli gęstość masy odcinka [0,x] jest dana funkcją ciągła  $\varrho$  - to oznacza:  $m'(x)=\varrho(x)$  - to moment bezwładności jest dany jako całka:

$$\int_0^1 x^2 \varrho(x) \, \mathrm{d}x.$$

Jeżeli drut składa się z mas  $m_i$  skoncentrowanych w punktach  $a_i$ , to powyższa całka przyjmuje postać:

$$\int_0^1 x^2 \varrho(x) \, \mathrm{d}x = \sum_{i=1}^k a_i^2 m_i.$$

#### D.2 Wahanie funkcji

**Definicja D.2.1** (Wahanie funkcji). Niech  $D \subseteq \mathbb{R}$  i  $f: [a,b] \to \mathbb{R}$  będzie funkcją ograniczoną na przedziałe [a,b]. Ustalmy  $m \ge 2$  elementowy podział  $\pi$  przedziału [a,b]. Wahaniem funkcji  $f: [a,b] \to \mathbb{R}$  względem podziału  $\pi$  nazywamy liczbę

$$V_a^b(f,\pi) := \sum_{k=1}^m |f(x_k) - f(x_{k-1})|.$$

Gdy wiadomo, że funkcja jest określona na [a,b] (albo wcześniej powiedziane, że rozważamy jej zacieśnienie do tego przedziału) to oczywiście możemy pomijać w zapisie indeksy:  $V_a^b(f,\pi) = V(f,\pi)$ .

Wahaniem funkcji f na przedziale [a, b] nazywamy wielkość

$$V_a^b(f) := \sup_{\pi \in \mathcal{P}[a,b]} V_a^b(f,\pi).$$

Z definicji wahanie jest liczbą nieujemną. Jeżeli  $V_a^b(f) < \infty$ , to mówimy, że funkcja f jest funkcją o wahaniu ograniczonym albo, że ma wahanie skończone w przedziale [a,b].

**Twierdzenie D.2.2.** Niech  $f, g: [a,b] \to \mathbb{R}$  będą funkcjami o wahaniu skończonym. Wówczas

1. funkcja f + g jest funkcją o wahaniu skończonym oraz

$$V_a^b(f+g) \leqslant V_a^b(f) + V_a^b(g);$$

2. dla dow.  $\lambda \in \mathbb{R}$  funkcja  $\lambda f$  jest funkcją o wahaniu skończonym oraz

$$V_a^b(\lambda f) = |\lambda| V_a^b(f);$$

3. dla dow.  $x, y \in [a, b], x < y \ zachodzi$ 

$$|f(y) - f(x)| \leq V_x^y(f);$$

4. dla dowolnej liczby  $\xi \in \mathbb{R}$ ,  $a < \xi < b$ :

$$V_a^b(f) = V_a^{\xi}(f) + V_{\xi}^b(f);$$

5.  $funkcja\ f\circ g\ jest\ funkcja\ o\ wahaniu\ skończonym.$ 

**Uwaga D.2.3.** Jeżeli  $f, g: [a, b] \to \mathbb{R}$ , to wystarczy by funkcja g miała wahanie skończone, aby złożenie  $g \circ f$  było funkcją o wahaniu skończonym.

**Twierdzenie D.2.4.** Dowolna funkcja  $f:[a,b]\to\mathbb{R}$  monotoniczna jest funkcją o wahaniu ograniczonym oraz

$$V_a^b(f) = |f(b) - f(a)|.$$

Twierdzenie D.2.5. Funkcje spełniające warunek Lipschitza mają wahanie skończone na ograniczonym przedziale.

Przykład185. Funkcja  $f\colon [0,1]\to \mathbb{R}$ określona wzorem

$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \in (0, 1]; \\ 0, & x = 0. \end{cases}$$

jest ciągła, ale w oczywisty sposób nie ma skończonego wahania w swojej dziedzinie.

Poniższe twierdzenie ma znaczenie w procesie definiowania Całkie Lebesgue'a-Stieltjesa, którą zajmiemy się w (planowanym) 2-gim tomie.

**Twierdzenie D.2.6** (Jordana o rozkładzie). Każda funkcja  $f:[a,b] \to \mathbb{R}$  ma wahanie skończone w[a,b] wtedy i tylko wtedy, gdy daje się przedstawić w postaci różnicy dwóch funkcji niemalejących na przedziale [a,b].

Dowód. Określamy funkcje  $f_1$  i  $f_2$  wzorami

$$f_1(x) = \frac{1}{2} \Big( V_a^x(f) + f(x) - f(a) \Big),$$

$$f_2(x) = \frac{1}{2} \Big( V_a^x(f) - f(x) + f(a) \Big).$$

Pokażemy, że  $f_1(a) = f_2(a) = 0$  oraz  $f(x) = f(a) + f_1(x) - f_2(x)$ . **TO-DO** 

**Uwaga D.2.7.** Jeżeli f jest ciągła, to  $f_1$  i  $f_2$  wskazane w dowodzie powyższego twierdzenia możemy wybrać ciągłe.

**Wniosek D.2.8.** Funkcja  $f:[a,b]\to\mathbb{R}$  o wahaniu skończonym w [a,b] ma w każdym punkcie granice jednostronne.

Twierdzenie D.2.9. Każda funkcja o wahaniu skończonym ma przeliczalnie wiele punktów nieciągłości.

Wahanie funkcji ma naturalny związek z całką Riemanna-Stieltjesa:

**Twierdzenie D.2.10.** Dla dow. funkcji  $f: [a,b] \to \mathbb{R}$  zachodzi równość

$$V_a^b(f) = \int_a^b \mathrm{d}f(x).$$

Rozważmy będziemy funkcje  $f,g,\alpha\colon [a,b]\to\mathbb{R}.$  Określ<br/>my funkcję Hwzorem

$$H(x) = \int^x f(t) \, \mathrm{d}\alpha(t), x \in [a, b].$$

Jeżeli f jest ciągła a  $\alpha$  ma wahanie skończone, to funkcja H ma wahanie skończone w przedziale [a,b]. Jeżeli ponadto g jest ciągła, to

$$\int_{a}^{b} f(x) dH(x) = \int_{a}^{b} (g \circ f)(x) d\alpha(x).$$

Pojęcie wahania funkcji pozwala jeszcze rozszerzyć klasę funkcji całkowalnych w sensie Riemanna-Stieltjesa:

**Twierdzenie D.2.11.** Jeżeli  $f, \mu \colon [a,b] \to \mathbb{R}$  będą funkcjami takimi, że f jest ciągla, a g ma wahanie skończone, to wówczas istnieje całka  $\int_a^b f \,\mathrm{d}\mu$ .

**Twierdzenie D.2.12.** Jeżeli dla pewnej funkcji  $\mu$ , określonej na [a,b], istnieje całka Riemanna-Stieltjesa  $\int_a^b f \, \mathrm{d}\mu$  dla dowolnej funkcji ciąglej  $f \colon [a,b] \to \mathbb{R}$ , to wówczas funkcja  $\mu$  ma wahanie skończone na [a,b].

Jako ciekawostkę zostawiamy jeszcze jedną tożsamość całkową:

**Twierdzenie D.2.13** (Nierówność Czebyszewa). Niech  $f,g:[a,b]\to\mathbb{R}$  będą funkcjami o tej samej monotoniczności. Wówczas

$$(D.2) \qquad \frac{1}{b-a} \int_a^b f(x)g(x) \, \mathrm{d}x \geqslant \left(\frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x\right) \left(\frac{1}{b-a} \int_a^b g(x) \, \mathrm{d}x\right).$$

Jeśli f i g są przeciwnie monotoczne (np. f jest rosnąca a g malejąca), to nierówność w (D.2) należy odwrócić.

 $\acute{C}wiczenie$ 139. Niech  $f\colon [a,b]\to \mathbb{R}$ będzie funkcją różniczkowalną o pochodnej ograniczonej. Wykazać, że wówczas

$$V_a^b(f) \leqslant \frac{(b-a)^2}{12} \cdot \sup_{a \leqslant x \leqslant b} \left| f'(x) \right|^2.$$

## Dodatek E

## Różne uzupełnienia

### E.1 Iloczyny nieskończone

Twierdzenie E.1.1. Jeżeli iloczyn nieskończony  $\prod_{n=1}^{\infty} a_n$  jest zbieżny, to  $\lim_{n\to\infty} a_n = 1$ .

**Twierdzenie E.1.2.** Jeżeli  $(a_n)_{n\in\mathbb{N}}$  jest ciągiem liczb rzeczywistych z przedziału (0,1), to następujące warunki są równoważne:

1. szereg 
$$\sum_{n=1}^{\infty} a_n$$
 jest zbieżny,

2. 
$$iloczyn \prod_{n=1}^{\infty} (1+a_n) jest zbieżny,$$

3. 
$$iloczyn \prod_{n=1}^{\infty} (1 - a_n) jest zbieżny.$$

Twierdzenie E.1.3 (Wzór Wallisa).

$$\prod_{n=1}^{\infty} \frac{2n}{2n-1} \cdot \frac{2n}{2n+1} = \frac{\pi}{2}.$$

## E.2 Dowód niewymierności liczby $\pi$

Twierdzenie. Liczba  $\pi$  jest niewymierna.

 $Dow \acute{o}d.$  Załóżmy, nie wprost, że  $\pi=\frac{a}{b}$ dla pewnych  $a,b\in\mathbb{Z}.$  Definiujemy wielomiany

$$f(x) = \frac{x^n (a - bx)^n}{n!},$$

$$F(x) = f(x) - f^{(2)}(x) + f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x),$$

dla pewnej liczby n. Łatwo widzimy, że  $x \mapsto n! f(x)$  jest całkowala oraz, że  $f^{(k)}(0)$  istnieje. Podobnie  $f^{(k)}\left(\frac{a}{b}\right)$ , gdyż  $f(x) = f\left(\frac{a}{b} - x\right)$ . Obliczamy

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(F'(x)\sin x - F(x)\cos x\right) = F''(x)\sin x + F(x)\sin x = f(x)\sin x,$$

(E.1) 
$$\int_0^{\pi} f(x) \sin x \, dx = [F'(x) \sin x - F(x) \cos x]_0^{\pi} = F(\pi) + F(0).$$

 $F(\pi) + F(0)$  jest liczbą całkowitą, gdyż  $f^{(k)}(\pi)$  i  $f^{(k)}(0)$  są liczbami całkowitymi. Ale dla  $0 < x < \pi$  mamy:

$$0 < f(x)\sin x < \frac{\pi^n a^n}{n!},$$

więc całka E.1 jest dodatnia, chociaż dowolnie mała - wystarczy dobrać odpowiednio duże n. Stąd E.1 jest sprzeczne -  $\pi$  nie może być liczbą wymierną.

# E.3 Oscylacja funkcji: dodatkowe kryteria ciągłości i całkowalności

**Definicja E.3.1.** Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ograniczoną na przedziale I:=[a,b]. Oscylację  $\omega_f(I)$  funkcji f w przedziale I definiujemy wzorem

$$\omega_f(I) = \sup_{a \le x_1, x_2 \le b} |f(x_1) - f(x_2)|.$$

Równoważnie:

$$\omega_f(I) = \sup_{a \leqslant x \leqslant b} f(x) - \inf_{a \leqslant x \leqslant b} f(x).$$

Oscylację funkcji f w punkcie  $x \in \text{int } I = (a, b)$  definiujemy jako

$$\omega_f(x) = \lim_{h \to 0+} \underbrace{\omega_f \Big( (x - h, x + h) \Big)}_{\text{oscylacja w przedziale}}.$$

Możemy też określić oscylację w punktach x=a i x=b jako

$$\omega_f(a) = \lim_{h \to 0+} \omega_f\Big((a, a+h)\Big), \quad \omega_f(b) = \lim_{h \to 0+} \omega_f\Big((b-h, b)\Big).$$

Pojęcie oscylacji jak i poniższe twierdzenie uogólnia się na dowolne funkcje  $f\colon X\to Y$ , gdzie X jest przestrzenią topologiczną a (Y,d) przestrznią metryczną. Zamiast przedziału przyjmuje się wówczas otoczenie otwarte punktu, a wartość oscylacji w otoczeniu to średnica obrazu funkcji przez dane otoczenie.

**Twierdzenie E.3.2.** Niech  $f:[a,b] \to \mathbb{R}$  będzie ograniczona na [a,b]. Funkcja f jest ciągła w  $x \in [a,b]$  wtedy i tylko wtedy, gdy  $\omega_f(x) = 0$ .

**Twierdzenie E.3.3** (III kryterium całkowalności w sensie Riemanna). Niech  $f:[a,b] \to \mathbb{R}$  będzie funkcją ograniczoną, a  $\pi = \{x_0, x_1, \dots, x_n\}$  podziałem przedziału [a,b] a  $\delta_k := \max_{1 \leqslant i \leqslant k} \Delta x_i$ . Ozna-

czymy przez  $\omega_i := M_i - m_i$  oscylację funkcji f na przedziale  $[x_{i-1}, x_i]$ ,  $i \in \{1, \ldots, n\}$ . Funkcja f jest całkowalna w sensie Riemanna na przedziale [a, b] wtedy i tylko wtedy, gdy

(\*) 
$$\lim_{\delta_n \to 0} \sum_{i=1}^n \omega_i \Delta x_i = 0.$$

Granice te należy rozumieć tak, że

$$\forall_{\varepsilon>0} \exists_{\delta>0} \forall_{\pi \in \mathcal{P}[a,b]}. \, \delta_n < \delta \implies \sum_{i=1}^n \omega_i \Delta x_i < \varepsilon.$$

Dowód. Zauważmy, że

$$\overline{S}(f,\pi) - \underline{S}(f,\pi) = \sum_{i=1}^{n} (M_i - m_i) \Delta x_i = \sum_{i=1}^{n} \omega_i \Delta x_i.$$

Zatem, jeśli warunek (\*) jest spełniony, to przy  $\varepsilon \to 0$  otrzymamy, że  $\overline{S}(f,\pi) = \underline{S}(f,\pi) = \int_a^b f$ .

Uzasadnienie w drugą stronę na razie zostawiamy czytelnikowi. (**TO-DO**: dowód w drugą stronę.)

### E.4 Zbiory miary zero a całkowalność w sensie Riemanna

Zagadnienia z tego paragrafu stanowią (bardzo mały) przedsmak pojęć z teorii miary i całki Lebesgue'a i jako takie można je bez żalu ominąć.

Możemy powiedzieć, że zbiór  $A \subseteq \mathbb{R}$  jest **miary zero**, gdy dla każdego  $\varepsilon > 0$  istnieje co najwyżej przeliczalny ciąg  $(I_j)_{j \in J}$  przedziałów otwartych, taki że

$$A \subseteq \bigcup_{j \in J} I_j \text{ oraz } \sum_{j \in J} |I_j| < \varepsilon,$$

gdzie  $|I_j|$  jest oczywiście długością przedziału  $I_j$ . O takim zbiorze A mówie się też czasem, że jest on nieistotny albo zaniedbywalny.

Przykład 186. Każdy zbiór przeliczalny jest zaniedbywalny. W rezultacie np. zbiór liczb wymiernych jest zaniedbywalnym podzbiorem zbioru liczb rzeczywistych.

**Definicja E.4.1.** Niech  $\varphi(x)$  będzie dowolnym predykatem logicznym, gdzie x przyjmuje wartości z  $\mathbb{R}$ 

Mówimy, że  $\varphi(x)$  prawie wszędzie, lub  $\varphi(x)$  dla prawie każdego  $x \in \mathbb{R}$ , gdy zbiór  $\{x \in \mathbb{R} : \sim \varphi(x)\}$  jest miary zero.

Krótko mówiąc, wartości x, dla których  $\varphi(x)$  nie zachodzi, są w pewien sposób "zaniedbywalne". Na ćwiczenie proponujemy udowodnić całkiem intuicyjne

**Twierdzenie E.4.2.** Jeżeli f i g są funkcjami całkowalnymi w sensie Riemanna na przedziale [a,b], oraz zbiór  $\{x \in [a,b]: f(x) \neq g(x)\}$  jest miary zero (czyli f(x) = g(x) prawie wszędzie), to

$$\int_{\alpha}^{\beta} f(x) \, \mathrm{d}x = \int_{\alpha}^{\beta} g(x) \, \mathrm{d}x$$

dla każdych  $\alpha < \beta$ ,  $\alpha, \beta \in [a, b]$ .

W oparciu o pojęcie zbioru miary zero możemy wprowadzić jeszcze jedną charakteryzację funkcji mierzalnych w sensie Riemanna:

**Twierdzenie E.4.3.** Ograniczona funkcja  $f:[a,b] \to \mathbb{R}$  jest całkowalna w sensie Riemanna wtedy i tylko wtedy, gdy zbiór  $D(f) := \{x \in [a,b]: f \text{ nie jest ciągła } w x\}$  jest miary zero.

Ćwiczenie 140. Udowodnić, że każdy zbiór przeliczalny jest miary zero.

Ćwiczenie 141. Uzasadnić, że funkcja Riemanna z przykładu 116 jest całkowalna w sensie Riemanna, dowodząc, że zbiór jej punktów nieciągłości jest miary zero.

### E.5 Aproksymacja funkcji ciągiem wielomianów

**Definicja E.5.1.** Niech  $f \colon [0,1] \to \mathbb{R}$ . **Wielomianem Bernsteina** stopnia n funkcji f nazywamy funkcję daną wzorem

$$\sum_{k=0}^{n} {n \choose k} f\left(\frac{k}{n}\right) B_k^n(x), \ n \in \mathbb{N}, x \in [0, 1],$$

gdzie  $B_k^n(x)$  to tak zwany wielomian bazowy Bernsteina dany wzorem

$$B_k^n(x) = \begin{cases} \binom{n}{k} x^k (1-x)^{n-k} & \text{dla } k \in \{0, 1, \dots, n\}, \\ 0 & \text{dla } k < 0 \text{ lub } k > n. \end{cases}$$

Same wielomiany bazowe Bernsteina znajdują zastosowanie w grafice komputerowej i modelowaniu różnych powierzchni. Możemy się przyjżeć kilku pierwszym wielomianom bazowym:

$$\begin{split} B_0^0(x) &= 1 \\ B_0^1(x) &= 1 - x \\ B_1^1(x) &= x \\ B_0^2(x) &= (1 - x)^2 \\ B_1^2(x) &= 2(1 - x)x \\ B_2^2(x) &= x^2 \\ B_0^3(x) &= (1 - x)^3 \\ B_1^3(x) &= 3(1 - x)^2 x \\ B_2^3(x) &= 3(1 - x)x^2 \\ B_3^3(x) &= x^3 \end{split}$$

Zauważmy ponadto, że  $B_k^n(x) \ge 0, x \in [0,1]$  i  $B_k^n(x) = B_{n-k}^k(1-x)$ .

Będziemy dla funkcji f jej wielomiany bernsteina stopnia n oznaczać w tym rozdziale przez  $f_n$ . Zapamiętajmy:

$$f_n(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

**Lemat E.5.2.** Dla dowolnych  $n \in \mathbb{N}$ ,  $x \in [0, 1]$ :

1. 
$$\sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} = 1$$

2. 
$$\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx$$

3. 
$$\sum_{k=0}^{n} k^2 \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2 + nx$$

4. 
$$\sum_{k=0}^{n} (k-nx)^2 \binom{n}{k} x^k (1-x)^{n-k} = nx(1-x).$$

 $Dowód. \ 1. \ \text{Mamy } 1=1^n=(x+(1-x))^n=\sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k}. \ \text{Dla dowodu wzoru } 2. \ \text{Podstawmy w } 1. \ n-1 \ \text{za} \ n. \ \text{W\'owczas}$ 

$$\sum_{k=0}^{n-1} n \binom{n-1}{k} x^k (1-x)^{n-1-k} = 1.$$

Mnożymy powyższą równość obustronnie przez nx i mamy:

$$\sum_{k=0}^{n} n \binom{n-1}{k} x^{k+1} (1-x)^{n-1-k} = \sum_{k=0}^{n} n \binom{n-1}{k-1} x^k (1-x)^{n-k} = nx.$$

Ponadto  $n\binom{n-1}{k-1}=n\frac{(n-1)!}{(k-1)!(n-k)!}=k\frac{n!}{k!(n-k)!}=k\binom{n}{k}$ . Podstawiając ten wynik do poprzedniego wzoru dowód równości 2. jest zakończony. Teraz podstawmy n-1 za n we wzorze 2.. Wówczas mamy

$$\sum_{k=0}^{n-1} k \binom{n-1}{k} x^k (1-x)^{n-1-k} = (n-1)x.$$

Po przemnożeniu stronami przez nx:

$$\sum_{k=0}^{n-1} kn \binom{n-1}{k} x^{k+1} (1-x)^{n-k-1} = n(n-1)x^2$$

$$\sum_{k=1}^{n} (k-1)n \binom{n-1}{k-1} x^k (1-x)^{n-k} = n(n-1)x^2$$

$$\sum_{k=1}^{n} (k-1)k \binom{n}{k} x^k (1-x)^{n-k} = n(n-1)x^2$$

Do ostatniej równości dodajemy stronami równość 2.:  $\sum_{k=0}^{n} k \binom{n}{k} x^k (1-x)^{n-k} = nx.$ 

$$\sum_{k=1}^{n} \left( (k-1)k \binom{n}{k} x^k (1-x)^{n-k} + k \binom{n}{k} x^k (1-x)^{n-k} \right) = n(n-1)x^2 + nx.$$

$$\sum_{k=1}^{n} \left( k^{2} \binom{n}{k} x^{k} (1-x)^{n-k} - \left( k \binom{n}{k} x^{k} (1-x)^{n-k} \right) + k \binom{n}{k} x^{k} (1-x)^{n-k} \right) = n(n-1)x^{2} + nx.$$

Mamy 3.:

$$\sum_{k=1}^{n} k^{2} \binom{n}{k} x^{k} (1-x)^{n-k} = n(n-1)x^{2} + nx.$$

Postostało do udowodnienia już tylko 4.:

$$\sum_{k=0}^{n} (k - nx)^{2} B_{k}^{n}(x) = \sum_{k=0}^{n} k^{2} B_{k}^{n}(x) - \sum_{k=0}^{n} 2knx B_{k}^{n}(x) + \sum_{k=0}^{n} n^{2} x^{2} B_{k}^{n}(x) =$$

$$= n(n-1)x^{2} + nx - 2nx \cdot nx + n^{2}x^{2} \cdot 1 = -nx^{2} + nx = nx(1-x).$$

Twierdzenie E.5.3 (Stone'a-Weierstrassa). Dowolną funkcję ciąglą, określoną na przedziale zwartym można aproksymować ciągiem wielomianów, zbieżnym jednostajnie do tej funkcji.

Dowód. Ustalmy  $f:[a,b]\to\mathbb{R}$ . Chcemy sprawdzić, że  $f_n\stackrel{[a,b]}{\rightrightarrows}f$ . Rozpatrzmy najpierw szczególny przypadek, gdy a=0,b=1. Funkcja ciągła na przedziale [a,b] jest jednostajnie ciągła (twierdzenie 7.2.14). Ustalmy  $\varepsilon>0$ . Istnieje  $\delta>0$  takie, że

$$\forall_{x,y \in [0,1]} \left( |x-y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{2} \right).$$

Funkcja f jest ograniczona, gdyż jest ciągła na [0,1]. Istnieje M>0 takie, ż

$$|f(x) \le M, \ x \in [0, 1].$$

Rozważamy przypadki:

1. Gdy 
$$\left| x - \frac{k}{n} \right| < \delta$$
, to  $|f(x) - f(y)| < \frac{\varepsilon}{2}$ ;

2. Gdy 
$$\left| x - \frac{k}{n} \right| \ge \delta$$
, to  $\left( \frac{nx - k}{n} \right)^2 \ge \delta^2 \Leftrightarrow \left( \frac{nx - k}{n\delta} \right)^2 \ge 1$ . Stąd 
$$\left| f(x) - f\left( \frac{k}{n} \right) \right| \le |f(x)| + \left| f\left( \frac{k}{n} \right) \right| \le 2M \le 2M \left( \frac{nx - k}{n\delta} \right)^2.$$

Czyli w każdym przypadku  $\left|f(x)-f\left(\frac{k}{n}\right)\right|<\frac{\varepsilon}{2}+2M\left(\frac{nx-k}{n\delta}\right)^2$ . Korzystając z lematu E.5.2 uzyskujemy oszacowanie:

$$|f(x) - f_n(x)| = \left| \sum_{k=0}^n \binom{n}{k} f(x) x^k (1-x)^{n-k} - \sum_{k=0}^n f\left(\frac{n}{k}\right) x^k (1-x)^{n-k} \right| \le$$

$$\le \sum_{k=0}^n \left| f(x) - f\left(\frac{n}{k}\right) \right| x^k (1-x)^{n-k} < \sum_{k=0}^n \left(\frac{\varepsilon}{2} + 2M \left(\frac{nx-k}{n\delta}\right)^2\right) x^k (1-x)^{n-k} =$$

$$= \frac{\varepsilon}{2} \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} + 2M \sum_{k=0}^n \binom{n}{k} \frac{(nx-k)^2}{(n\delta)^2} x^k (1-x)^{n-k} =$$

$$= \frac{\varepsilon}{2} + \frac{2M}{(n\delta)^2} nx (1-x) = \frac{\varepsilon}{2} + \frac{2M}{n\delta^2} x (1-x).$$

 $\frac{2M}{n\delta^2} \xrightarrow{n \to \infty} 0$  a wartości ciągłego odwzorowania  $x \mapsto x(1-x)$  zawężonego do przedziału [0,1] są ograniczone. Stąd  $\frac{2M}{n\delta^2}x(1-x) \xrightarrow{n \to \infty} 0$ . Istnieje zatem  $n_0$  takie, że

$$\frac{2M}{n\delta^2}x(1-x) < \frac{\varepsilon}{2}, \text{ dla } n \geqslant n_0.$$

Aby udowodnić twierdzenie dla funkcji  $f\colon [a,b]\to\mathbb{R}$  dowolnej (pozbyć się założenia, że a=0, b=1), wystarczy zdefiniować funkcję g(x)=(b-a)f(x)+a. Funkcja g jest ciągłą funkcją określoną na przedziale [0,1] i jak już udowodniliśmy istnieje ciąg wielomianów  $(g_n)_{n\in\mathbb{N}}, g_n\stackrel{[1,0]}{\to} g$ . Ale  $f(x)=\frac{g(x)-a}{b-a}, x\in [a,b]$  jest wtedy funkcją jednostajnie ciągłą i ciąg wielomianów dany wzorem  $f_n(x)=\frac{g_n(x)-a}{b-a}, x\in [a,b]$  jest zbieżny jednostajnie do f.

## Bibliografia

- [1] Walter Rudin, Podstawy analizy matematycznej, Wydawnictwo Naukowe PWN (2020).
- [2] Witold Kołodziej, Analiza matematyczna, Wydawnictwo Naukowe PWN.
- [3] Kazimierz Kuratowski, Rachunek różniczkowy i całkowy, Wydawnictwo Naukowe PWN.
- [4] Marek Kordos, Wykłady z historii matematyki.
- [5] Ryszard Rudnicki, Wykłady z analizy matematycznej, Wydawnictwo Naukowe PWN (2012).
- [6] G.M. Fichtenholz, Rachunek rózniczkowy i całkowy Tom 1, Wydawnictwo Naukowe PWN.
- [7] G.M. Fichtenholz, Rachunek rózniczkowy i całkowy Tom 2, Wydawnictwo Naukowe PWN.
- [8] Krzysztof Maurin, Analiza Część 1 Elementy, Wydawnictwo Naukowe PWN.
- [9] Aleksander Błaszczyk, Sławomir Turek, Teoria Mnogości, Wydawnictwo Naukowe PWN.
- [10] Andrzej Białynicki-Birula, Algebra, Wydawnictwo Naukowe PWN.
- [11] I.N. Bronsztejn, H. Muhlig, G. Musiol, K.A. Siemiendiajew, *Nowoczesne kompendium mate-matyki*, Wydawnictwo Naukowe PWN.
- [12] Ryszard Rudnicki, Dynamika populacyjna.
- [13] William Moebs, Samuel J. Ling, Jeff Sanny, Fizyka dla szkół wyższych. Tom 1.
- [14] Andrzej Ostrowski, Matematyka z przykładami zastosowania w naukach ekonomicznych.
- [15] Chiang A., Podstawy ekonomii matematycznej.
- [16] E. H. Lockwood A Book of Curves, Cambridge University Press (1961).
- [17] Andreescu T. Problems in Real Analysis Advanced Calculus on the Real Axis, Springer (2009).
- [18] Bernard R. Gelbaum, John M. H. Olmsted, Counterexamples in Analysis.
- [19] L. Olsen, A new proof of Darboux's theorem, Amer. Math. Monthly 111 (2004).
- [20] J. A. Oguntuase, On an inequality of Gronwall, J. Inequal. Pure and App. Math. 2 (2001).
- [21] Constantin P. Niculescu, A Note on the Denjoy-Bourbaki Theorem, Real Analysis Exchange (2003)

- [22] Ivan Niven, A simple proof that  $\pi$  is irrational.
- $[23]\ https://mathworld.wolfram.com/BernsteinPolynomial.html$
- $[24]\ \ https://mathworld.wolfram.com/EulerFormula.html$