TAREA 1: SOLUCIÓN Tópicos Avanzados de Ingeniería Matemática IMT3800 2020-II

Prof. Manuel A. Sánchez Agosto 2020

Preguntas

1. (Identidad DG)

Considere las definiciones vistas en clases para el esqueleto \mathcal{F}_h de la triangulación \mathcal{T}_h y el subconjunto de caras interiores \mathcal{F}_h^{int} . Además considere las definiciones para los saltos $[\![\cdot]\!]$ y promedios $\{\cdot\}$ de funciones suaves a trozos en \mathcal{F}_h . Pruebe la siguiente identidad

$$\sum_{K \in \mathcal{T}_h} \int_{\partial K} w \, v \cdot n \, ds = \int_{\mathcal{F}_h} \left[\!\!\left[w\right]\!\!\right] \cdot \left\{v\right\} \, ds + \int_{\mathcal{F}_h^{int}} \left\{w\right\} \left[\!\!\left[v\right]\!\!\right] \, ds$$

para $v \in \prod_{K \in \mathcal{T}_h} [L^2(\partial K)]^d$ y $w \in \prod_{K \in \mathcal{T}_h} L_2(\partial K)$.

Respuesta.

2. (Static condensation)

Considere el programa de elementos finitos standard en el archivo FEM1D. ipynb. Modifique el programa para resolver el sistema lineal utilizando condensación estática (static condensation) y calcule las tablas de convergencia. Compare para p=5 y para 6 secuencias de triangulaciones los tamaños de los sistema resueltos y los tiempos de ejecución. Comente sus resultados.

Respuesta

3. (Primer programa en NGSolve) El propósito de esta pregunta es que corran al menos un tutorial de NGSolve. Visiten la página de NGSolve y sigan las instrucciones para descargar e instalar NGSolve. Luego vayan a Getting started y desarrollen 1.1, 1.2 y 1.3. Presenten sus resultados para resolver el problema de Poisson

$$\begin{array}{rclcrcl} -\Delta u & = & f & \text{en} & \Omega := (0,1)^2 \\ u & = & u_D & \text{sobre} & \partial \Omega_D \\ \nabla u \cdot n & = & g_N & \text{sobre} & \partial \Omega_N \end{array}$$

donde

$$\partial\Omega_D := \{(0,y) \cup (1,y) \subset \partial\Omega\}, \quad \partial\Omega_N = \partial\Omega \setminus \partial\Omega_D.$$

y para

$$\begin{array}{rcl}
f & = & 10 \exp(-50((x - \frac{1}{2})^2 + (y - \frac{1}{2})^2)) \\
u_D & = & 1 \\
q_N & = & \sin(5x)
\end{array}$$

Calcule la solución aproximada para p=1 y h=0.05. Presente la gráfica de la solución aproximada.

Respuesta

4. (**Métodos mixtos**) Considere la solución del problema de Poisson (Dirichlet) en 2D u(x,y) = x(1-x)y(1-y). Programe en NGSolve el métodos de elementos finitos mixtos utilizando los espacios de orden mas bajo de Raviart-Thomas y Brezzi-Douglas-Marini. Presente una tabla de convergencia para cada método para una secuencia de al menos 5 triangulaciones.

Respuesta