LAB 01 - Welcome!

PH142 Fall 2025

General Lab Overview

- 1. Announcements
- 2. Lecture Material Review
- 3. Lab Walkthrough
- 4. Lab Submission
- 5. Closing/Questions

Announcements

- **Lab01:** due 8/29 at 11:59pm
- **Quiz01:** due 9/5 at 11:59pm
- Needs Assessment: due 9/1 at 11:59pm

Key Course Resources

- Course Website
- Datahub: Run Rstudio
- Ed Discussion: Announcements, questions
- **Gradescope:** Assignment submission, grades

Week 1 Lecture Review

PPDAC Framework

- Problem: A clear statement of what we are trying to achieve
 - problem type descriptive, predictive, causative/etiologic
- **Plan**: the procedure we use to carry out the study
- Data: data collect based on the plan
- Analysis: summarization and analysis of the data to answer questions posed by your problem
- **Conclusion**: what you learned from your answers to the problem

Week 1 Lecture Review

Variable Types

- Categorical: a variable that has grouping levels
 - o **Nominal**: no underlying order or rank, e.g. blood type, zip code
 - Ordinal: with an underlying order or rank, e.g. blood pressure level (low, normal, high)
- **Quantitative**: a numeric variable which you can perform mathematical operations on
 - Discrete: can be counted, e.g. the number of cookies in the bag you got from a bakery
 - Continuous: can be measured precisely, with a rule or scale, e.g. 5.34 grams of cornstarch

Why We Use R

- When programming, you can easily save all your steps
 - Easy to re-run/duplicate
 - Easy to extend
- R is free and open source
 - This means that anyone can install and use it,
 making it more accessible than SAS/Stata
- R is flexible and ever-evolving

RStudio Panes

Source (top left): A text editor where you will write R Markdown files (labs, homework assignments, etc.)

Console (bottom left):

A place to type code and see results immediately.

Ex. $2+2 \rightarrow R$ prints 4

Environment (top right): Shows the objects you create

Files/Packages/Help (bottom right):

- View folders
- Manage packages
- Learn function documentation

Programming in R

Calculator: R can be used as a calculator

Objects: You can store values using the arrow <-

- Example: age <- 20

Vectors: Use c() to combine and store multiple numbers

Example: ages <- c(19, 20, 21)

Functions: Commands that perform tasks with your data

Example: sqrt(64) will output 8

LAB 01 Walkthrough

Lab Submission

- Follow the directions on the LAB01 file
- Make sure your Gradescope is set up
- Submit using the **Terminal Tab** (next to the console in the bottom left pane)
 - Copy and paste the given line into the terminal
 - Follow prompts (NOTE: the terminal will **not** show your password being typed out!)
- CHECK IN GRADESCOPE THAT ALL YOUR TESTS PASSED