Prüfung am Computer Relationale Datenbanken – 3. Semester

Seminargruppe: CS12

Lehrbeauftragter: Prof. Dr. Ingolf Brunner

Datum: 12.12.2013

Name		Vorname	Matrikelnummer	Login				
			_					
Dieser Programmentwurf besteht aus 4 Aufgaben auf 3 Seiten.								
Seitenanzahl der Lösung des Programmentwurfs:								
(Bei Angabe Lösungsseiten bitte durchnummerieren)								

Zugelassene Hilfsmittel:

- bereitgestellte Dokumention / Unterlagen auf dem Fileserver

Bearbeitungszeit: 80 Minuten

Aufgaben

Beantworten Sie die folgenden Fragen in Stichpunkten:

1. Was versteht man unter einer Universalrelation?

2 Punkte

2. Für die Darstellung welcher Beziehung eigenen sich Inklusionsabhängigkeiten?

2 Punkte

3. Was versteht man unter einer Cood-vollständigen Sprache?

2 Punkte

Bitte lösen Sie die folgende Aufgabe anhand des Datenbankmanagementsystems PostgreSQL. Verwenden Sie ausschließlich den Ihnen zu Beginn des Programmentwurfs übergebenen Klausur-Login am lokalen Rechner und den entsprechenden Klausur-Login am Datenbankserver!

4. Aufgabe - Datenbank *Maklerdatenbank*

Beispielanwendung einer *Maklerdatenbank*, welche über einen Bestand an *Objekten, Maklern,* sowie *Kunden* verfügt. Bearbeiten Sie die folgenden Teilaufgaben und speichern Sie die SQL-Befehle zum Erzeugen und Bearbeiten fortlaufend in einem SQL-File im Homeverzeichnis ihres Klausurnutzers.

Markieren Sie die einzelnen Teilaufgaben mit Kommentaren!

- **4. a)** Beschreiben Sie diese Anwendung in einem ER-Diagramm:
- 4 a) 1) Erstellen Sie die Entities:
 - Personen mit den Spezialisierungen:
 - **Makler**
 - (Name (Vorname, Nachname), Telefonnummer, Website_URL, ID_Nr)
 - Kunden
 - (Name (Vorname, Nachname), Telefonnummer, E-Mail, ID_Nr)
 - Objekte mit den Spezialisierungen
 - **Häuser** (Fläche, Zimmerzahl, Preis, Nebengebäude, ID_Nr)
 - Wohnungen (Fläche, Zimmerzahl, Preis, Etage, ID_Nr)
 - Adresse

(Strasse, Hausnummer, PLZ, Ort, ID_Nr)

Verwenden Sie falls notwendig mehrwertige oder zusammengesetzte Attribute.

10 Punkte

- 4 a) 2) Ordnen sie den Personen und den Objekten mittels Beziehungen Adressen zu.
- **4 a) 3)** Definieren Sie die Beziehung "Besichtigung" mit dem Attributen "Datum" und "Uhrzeit" zwischen *Objekte*, *Makler* und *Kunden*.

4 Punkte

4 b) Transformieren Sie das ER-Diagramm nach den Transformationsregeln in das objektrelationale Modell und implementieren Sie Ihren Entwurf mittels SQL. Den Zwischenschritt des objektrelationalen Modells müssen Sie nicht schriftlich niederlegen. Sorgen Sie mittels einer Fremdschlüsselbeziehung dafür, dass nur in der Datenbank eingetragene Ferienwohnungen vermietet werden können.

16 Punkte

4 c) Befüllen Sie die Datenbank mit den folgenden Beispieldatensätzen:

Beispiel für einen Makler:

Vor- name	Nachname	Strasse	Haus- nummer	PLZ	Ort	Telefon- nummer	Website_URL
Max	Muster	Dorfplatz	1	12345	Ödland	0123/456	www.muster.test

Beispiel für einen Kunden:

Vor- name	Nachname	Strasse	Haus- nummer	PLZ	Ort	Telefon- nummer	E-Mail
Erika	Mustermann	Bahnhofs- platz	2	34567	Großmuster- stadt	0456/123456	em@mail.org

Beispiele für Häuser:

Fläche	Zimmer- zahl	Preis	Neben- gebäude	Straße	Haus- nummer	PLZ	Ort
140	5	158.000,00 €	Garage, Gartenhaus	Am Wald	5	12345	Ödland
210	8	210.000,00 €	Garage, Stall,	Am Wald	8	12345	Ödland
			Scheune				

Beispiele für Wohnungen:

Fläche	Zimmer- zahl	Preis	Etage	Strasse	Haus- nummer	PLZ	Ort
56	2	68.000,00€	2	Bahnhofsplatz	45	12345	Ödland
86	3	12.000,00€	3	Lindenallee	34	12345	Ödland

5 Punkte

4 d) Schreiben Sie eine Triggerfunktion, welche bei jeder Änderung an den Daten der **Besichtigung** das Datum der Änderung und den Usernamen des Bearbeiters speichert!

Ergänzen Sie dazu die **Besichtigung** um die notwendigen Felder ohne die Tabelle neu anzulegen!

5 Punkte

Speichern Sie ein Script zum Anlegen Ihrer Datenbank unter dem Namen "Vorname_Nachname.sqf" im Homeverzeichnis Ihres Klausur-Logins (Windows: H:\ bzw. Linux ~I.)

Viel Erfolg!