Overfitting vs. Underfitting

The model complexity balance

Underfitting \leftarrow Optimal Model \rightarrow Overfitting

Terms:

- ▶ Underfitting: Too simple, misses patterns
- Overfitting: Too complex, captures noise
- ► Generalization: Performance on unseen data

Key Properties:

- ► High training error → underfitting
- ► High validation error → overfitting
- Regularization tackles overfitting

Bias-Variance Tradeoff

Error decomposition

$$\mathbb{E}[(y - \hat{f}(x))^2] = \mathsf{Bias}^2 + \mathsf{Variance} + \mathsf{Noise}$$

Terms:

- ▶ Bias: Error from wrong assumptions
- ► Variance: Sensitivity to data fluctuations
- Noise: Irreducible error

Key Properties:

- ▶ High bias → underfitting
- ightharpoonup High variance ightarrow overfitting
- ► Regularization: ↓variance, ↑bias

Regularization Fundamentals

Constraint-based learning

$$L_{\text{reg}}(\mathbf{w}) = L(\mathbf{w}) + \lambda \cdot R(\mathbf{w})$$

Terms:

- ► L(w): Original loss function
- $ightharpoonup R(\mathbf{w})$: Penalty function
- $\triangleright \lambda$: Regularization strength

Key Properties:

- Penalizes large weights
- Promotes simpler models
- Improves generalization

Vector Norms

Weight magnitude measures

$$\|\mathbf{w}\|_p = \left(\sum_{i=1}^n |w_i|^p\right)^{1/p}$$

Common Norms:

- $\|\mathbf{w}\|_1 = \sum_{i=1}^n |w_i|$ (L1: sum of absolutes)

Key Properties:

- ► L1: Creates sparse solutions
- L2: Creates small, distributed weights
- Different geometric constraints

Ensemble Learning

Multiple models, one prediction

$$f_{\text{ensemble}}(x) = \frac{1}{M} \sum_{i=1}^{M} f_i(x)$$

Terms:

- $ightharpoonup f_i(x)$: Individual model
- ▶ *M*: Number of models
- ► Var reduction: $Var(f_{ensemble}) \approx \frac{Var(f_i)}{M}$

Key Properties:

- Reduces variance through averaging
- Dropout implicit ensemble
- ▶ Diverse models → better performance

Bernoulli Distribution

Random variable with two possible outcomes

$$X \sim \text{Bernoulli}(p) \Rightarrow P(X = 1) = p$$

$$E[X] = p$$
, $Var[X] = p(1-p)$

Terms:

- p: Probability of success (outcome 1)
- ▶ 1 p: Probability of failure (outcome 0)
- X: Random variable

Key Properties:

- Simplest discrete probability distribution
- ▶ Special case of binomial with n = 1

L2 Regularization (Ridge)

Squared penalty that shrinks all weights

$$egin{aligned} & L_{ ext{reg}}(\mathbf{w}) = L(\mathbf{w}) + rac{\lambda}{2} \|\mathbf{w}\|_2^2 \ & \mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left(
abla_{\mathbf{w}} L + \lambda \mathbf{w}^{(t)}
ight) \end{aligned}$$

Terms:

► L(w): Loss function

 $\triangleright \lambda$: Regularization strength parameter

w: Model weight vector

 $ightharpoonup \nabla_{\mathbf{w}} L$: Gradient of loss

Key Properties:

- Proportional weight reduction
- Reduces variance, increases bias
- Equivalent to Gaussian prior
- ▶ Does not induce sparsity (unlike L1 regularization)

L1 Regularization (Lasso)

Absolute value penalty that induces sparsity

$$L_{\text{reg}}(\mathbf{w}) = L(\mathbf{w}) + \lambda \|\mathbf{w}\|_1$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left(
abla_{\mathbf{w}} L + \lambda \cdot \operatorname{sgn}(\mathbf{w}^{(t)})
ight)$$

Terms:

- $\|\mathbf{w}\|_1$: L1 norm (sum of absolute values of weights)
- ▶ $sgn(\mathbf{w})$: Sign function, where $sgn(w_i) \in \{-1, 0, 1\}$ for $w_i \neq 0$ and $sgn(0) \in [-1, 1]$
- $\triangleright \lambda$: Regularization parameter

Key Properties:

- ► Forces exact zeros in weights (sparse solution)
- Enables feature selection
- Equivalent to Laplace prior (sharp peak)

Elastic Net Regularization

Hybrid approach balancing sparsity and smoothness

$$L_{\text{reg}}(\mathbf{w}) = L(\mathbf{w}) + \lambda_1 \|\mathbf{w}\|_1 + \frac{\lambda_2}{2} \|\mathbf{w}\|_2^2$$

$$\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \left(\nabla_{\mathbf{w}} L + \lambda_1 \operatorname{sgn}(\mathbf{w}^{(t)}) + \lambda_2 \mathbf{w}^{(t)} \right)$$

Terms:

- λ_1 : L1 regularization parameter (sparsity control)
- λ_2 : L2 regularization parameter (smoothness control)
- $\|\mathbf{w}\|_1$: L1 norm (sum of absolute values of weights)
- $\|\mathbf{w}\|_{2}^{2}$: Squared L2 norm (sum of squared weights)

Key Properties:

- Combines L1 sparsity and L2 stability
- ► Handles correlated features effectively
- Optimal when features outnumber samples

Standard Dropout

Kind of like ensemble of subnetworks

Training: $\mathbf{O}_{Tr} = \mathbf{m} \odot \mathbf{h}$, $\mathbf{m} \sim \text{Bernoulli}(1 - p)$

Inference: $\mathbf{O}_{ln} = (1-p)\mathbf{h}$

Terms:

- m: Binary mask (0=dropped, 1=kept)
- ▶ h: Hidden layer activations
- $ightharpoonup O_{Tr}$: Output during training (dropout on)
- ▶ O_{In}: Output during inference (dropout off)
- p: Probability of dropping a neuron

Key Properties:

 \triangleright Scaling during inference by keep probability (1-p)

Expectation of training and inference outputs are equal: $E[\mathbf{O}_{Tr}] = E[\mathbf{O}_{In}]$

Inverted Dropout

Training-time scaling for simplified inference

Training:
$$\mathbf{O}_{\mathit{Tr}} = \frac{\mathbf{m} \odot \mathbf{h}}{1-p}, \quad \mathbf{m} \sim \mathsf{Bernoulli}(1-p)$$

Inference: $O_{ln} = h$

Terms:

- ▶ m: Binary mask (0=dropped, 1=kept)
- h: Hidden layer activations
- ► O_{Tr}: Output during training (dropout on)
- ▶ O_{In}: Output during inference (dropout off)
- p: Probability of dropping a neuron

Key Properties:

- Upscales activations during training
- Expectation of training and inference outputs are equal: $E[\mathbf{O}_{Tr}] = E[\mathbf{O}_{In}]$

Standard Dropout (Quick Proof)

Why scale during inference?

Training:

Drop neurons randomly:

$$O_{Tr,i} = m_i \cdot h_i, \quad m_i \sim \mathsf{Bernoulli}(1-p)$$

Expected output:

$$E[O_{Tr,i}] = E[m_i \cdot h_i] = E[m_i] \cdot E[h_i] = (1-p) \cdot E[h_i]$$

Inference:

- ▶ Without scaling: $O_{In,i} = h_i$
- ▶ Problem: $E[O_{Tr,i}] = (1-p) \cdot E[h_i] \neq E[h_i] = E[O_{In,i}]$
- ► Scale by (1 p) during inference: $O_{ln,i} = (1 p) \cdot h_i$
- ► Now: $E[O_{Tr,i}] = (1 p) \cdot E[h_i] = E[O_{In,i}]$

N

Inverted Dropout (Quick Proof)

Why no scaling at inference?

Training:

▶ Drop neurons and scale up:

$$O_{Tr,i} = \frac{m_i \cdot h_i}{1-p}, \quad m_i \sim \mathsf{Bernoulli}(1-p)$$

► Expected output:
$$E[O_{Tr,i}] = E\left[\frac{m_i \cdot h_i}{1-\rho}\right] = \frac{E[m_i \cdot h_i]}{1-\rho} = \frac{E[m_i] \cdot E[h_i]}{1-\rho} = E[h_i]$$

Inference:

- No dropout, no scaling: $O_{In,i} = h_i$
- ► Check: $E[O_{Tr,i}] = E[h_i] = E[O_{In,i}]$
- Success! No scaling needed at inference time.

Benefit: Simpler and faster inference! Implemented this way in most libaries

Early Stopping

Temporal regularization

$$\mathbf{w}^* = \mathbf{w}^{(t^*)}$$
 where $t^* = \arg\min_t L_{\mathsf{val}}(\mathbf{w}^{(t)})$

Terms:

- $\mathbf{w}^{(t)}$: Weights at training iteration t
- ► L_{val}: Validation loss
- ▶ t*: Optimal stopping iteration

Key Properties:

- Training path passes near optimal solution
- Implicit regularization without penalty term
- Requires validation set and patience parameter

Batch Normalization

Implicit regularization effect

$$\hat{x} = \frac{x - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}} \quad y = \gamma \hat{x} + \beta$$

Terms:

- $\blacktriangleright \mu_B, \sigma_B^2$: Batch mean and variance
- $ightharpoonup \gamma, \beta$: Learnable scale and shift parameters
- $ightharpoonup \epsilon$: Small constant for numerical stability

Key Properties:

- Reduces internal covariate shift
- Adds noise during training (regularizes)
- Smooths loss landscape

Data Augmentation

Dataset-level regularization

$$\tilde{x} = T(x)$$
 where $T \in \mathcal{T}$

Terms:

- T: Transformation function
- > T: Set of valid transformations
- \triangleright \tilde{x} : Augmented data sample

Key Properties:

- Increases dataset size and diversity
- Encodes domain-specific invariances
- ► Common examples: rotation, cropping, mixup

