LATEX TEMPLATE

XIAOXIANG ZHOU

Contents

1. Introduction	1
2. Examples	1
2.1. Theorem environment	1
References	3

1. Introduction

This is a document for beginning with ease. Sometimes I felt disturbed by the structures of the LATEX document. I don't know how to reset the arranges among paragraphs, and some environments crash with each other.

Rep Irr Π Char WDrep \mathcal{A}_{cusp}

The structure of documents:

- (1) document class;
- (2) packages;
- (3) symbols, containing math operators and other symbols;
- (4) global settings;
- (5) blocks for special features;

2. Examples

2.1. Theorem environment.

Theorem 2.1 (see [2, Theorem 18.5.1]). ...

Setting 2.2. ...

Definition 2.3. ...

Lemma 2.4. ...

Proposition 2.5. ...

Corollary 2.6. ...

Date: September 17, 2023.

M	M(1)	M(2)	M(3)	M(4)	M(5)	M(6)	OEIS
$\mathcal{C}\mathrm{om}$	1	1	1	1	1	1	
$\mathcal{A}_{\mathrm{SS}}$	1	2	6	24	120	720	
\mathcal{L} ie	1	1	2	6	24	120	
$\mathcal{T}(E_{\mathcal{C}\mathrm{om}})$	1	1	3	15	105	945	A001147
$\mathcal{T}(E_{\mathcal{A}ss})$	1	2	12	120	1680	30240	A001813
$\mathcal{T}(E_{\mathcal{L}\mathrm{ie}})$	1	1	3	15	105	945	A001147
$R_{\mathcal{C}om}$	0	0	2	14	104	944	
$(R_{\mathcal{A}ss})$	0	0	6	96	1560	29520	
R_{Ass}	0	0	1	9	81	825	
$\mathcal{E}\mathrm{nd}_{\mathbb{C}^k}$	k^2	$2k^2$	$3k^2$	$4k^2$	$5k^2$	$6k^2$	
\mathcal{C} om $\circ \mathcal{L}$ ie							
:							
· · · · · · · · · · · · · · · · · · ·							

Conjecture 2.7
Claim 2.8
Example 2.9
Exercise 2.10
Fact 2.11
Question 2.12
Warning 2.13
Black box
Conventions and Notations. \dots
Remark 2.14
Remarks.
1
2

References

- [1] Jens Niklas Eberhardt. K-motives and Koszul duality. Bulletin of the London Mathematical Society, 54(6):2232–2253, 2022.
- $[2]\ {\rm Ravi\ Vakil}.$ The rising sea: Foundations of algebraic geometry. $preprint,\,2017.$

School of Mathematical Sciences, University of Bonn, Bonn, 53115, Germany, $Email\ address:$ email:xx352229@mail.ustc.edu.cn