Fibra de Aramida

FELIPE MANTUANI DE MIRANDA

JUAN CASSIUS CARNEIRO PEREIRA

RICARDO CÓRDOBA ALMEIDA DOS SANTOS

Fibra de Aramida

A fibra de aramida é um tipo de polímero com estrutura molecular única que lhe confere propriedades como alta resistência à tração, leveza e resistência química. Essa fibra tem sido amplamente utilizada em diversas aplicações industriais, desde o reforço de estruturas até a fabricação de equipamentos de proteção.

Composição Química

Propriedades Mecânicas da Fibra de Para-Aramida

Propriedade	Valor
Resistência à Tração	3.600 - 3.800 MPa
Módulo de Elasticidade	70 - 130 GPa
Alongamento na Ruptura	3,3 - 4,4%
Densidade	1,44 g/cm ³

Propriedades Térmicas

Property	PPD-T	MPD-I
Density (g /cm ³)	1.44	1.38
Water uptake (%)	3.9	5.2
Thermal Properties		
T _g (°C)	>	275
T _m (°C)	$> 500 d^{b}$	$365 d^b$
T_d (°C, in N_2)	520-540	400-430
Tensile Properties		
Strength (GPa)	2.9-3.0	0.59-0.86
Modulus (GPa)	70-112	7.9-12.1
Elongation (%)	2.4-3.6	20-45
Crystallinity (%)	100	68-95
Flammability (L.O.I.)	29	29
^a 65 % RH	b Decomposes (d)	

Características da Fibra de Aramida

1 Resistência à Tração

A fibra de aramida é conhecida por sua alta resistência à tração, superior à do aço.

2 Leveza

Apesar de sua alta resistência, a fibra de aramida é leve, tornando-a ideal para aplicações que exigem baixo peso.

3 Resistência Química

Essa fibra é resistente a agentes químicos, ácidos e bases, o que a torna adequada para ambientes agressivos.

Produção da Fibra de Aramida

Polimerização

O processo de produção da fibra de aramida começa com a polimerização de monômeros de aramida, formando um polímero de alta resistência.

Tratamento Térmico

Os filamentos passam por um tratamento térmico para cristalizar e reforçar ainda mais a estrutura da fibra.

— Fiação

O polímero é então fundido e extrudado em filamentos finos, que são estirados e orientados para melhorar suas propriedades.

Aramid washing PPTA drying - fund fitration extruder ----air-gap spinning drying .0000000 Scouring / neutralization

Vantagens da Fibra de Aramida

Resistência Excepcional

A fibra de aramida possui uma resistência à tração e à abrasão muito superior à de outros materiais, como o aço.

Durabilidade

Essa fibra é altamente resistente a agentes químicos, intempéries e desgaste, prolongando a vida útil dos produtos.

Leveza

Sua baixa densidade torna a fibra de aramida uma excelente opção para aplicações que requerem materiais leves.

Isolamento Térmico

A fibra de aramida possui propriedades de isolamento térmico, tornando-a útil em aplicações que envolvem altas temperaturas.

Aplicações da Fibra de Aramida

Reforço de Estruturas

A fibra de aramida é utilizada no reforço de estruturas, como pontes e edifícios, aumentando sua resistência e durabilidade.

Equipamentos de Proteção

Essa fibra é amplamente empregada na fabricação de equipamentos de proteção individual, como coletes à prova de balas e capacetes.

Indústria Aeroespacial

A fibra de aramida é crucial em aplicações aeroespaciais, sendo utilizada na construção de aeronaves e satélites.

Usos Industriais da Fibra de Aramida

Aeroespacial

Componentes estruturais leves e de alta resistência para aeronaves e foguetes.

Automotivo

Freios, pneus e outras peças com necessidade de alta resistência e baixo peso.

Construção Civil

Reforço de estruturas, cabos de sustentação e materiais de isolamento.

Esportes

Materiais de proteção e equipamentos esportivos de alto desempenho.

Conclusão e Considerações Finais

As fibras de aramida são materiais versáteis com propriedades que a tornam essenciais em diversas aplicações industriais.