

## local dimension of a locally Euclidean space

 ${\bf Canonical\ name} \quad {\bf Local Dimension Of A Locally Euclidean Space}$ 

Date of creation 2013-03-22 18:55:34 Last modified on 2013-03-22 18:55:34

Owner joking (16130) Last modified by joking (16130)

Numerical id 7

Author joking (16130) Entry type Theorem Classification msc 53-00 Let X be a locally Euclidean space. Recall that the local dimension of X in  $y \in X$  is a natural number  $n \in \mathbb{N}$  such that there is an open neighbourhood  $U \subseteq X$  of y homeomorphic to  $\mathbb{R}^n$ . This number is well defined (please, see parent object for more details) and we will denote it by  $\dim_y X$ .

**Proposition.** Function  $f: X \to \mathbb{N}$  defined by  $f(y) = \dim_y X$  is continuous (where on  $\mathbb{N}$  we have discrete topology).

Proof. It is enough to show that preimage of a point is open. Assume that  $n \in \mathbb{N}$  and  $y \in X$  is such that f(y) = n. Then there is an open neighbourhood  $U \subseteq X$  of y such that U is homeomorphic to  $\mathbb{R}^n$ . Obviously for any  $x \in U$  we have that U is an open neighbourhood of x homeomorphic to  $\mathbb{R}^n$ . Therefore f(x) = n, so  $U \subseteq f^{-1}(n)$ . Thus (since y was arbitrary) we've shown that around every point in  $f^{-1}(n)$  there is an open neighbourhood of that point contained in  $f^{-1}(n)$ . This shows that  $f^{-1}(n)$  is open, which completes the proof.  $\square$ 

**Corollary.** Assume that X is a connected, locally Euclidean space. Then local dimension is constant, i.e. there exists natural number  $n \in \mathbb{N}$  such that for any  $y \in X$  we have

$$\dim_y X = n.$$

*Proof.* Consider the mapping  $f: X \to \mathbb{N}$  such that  $f(y) = \dim_y X$ . Proposition shows that f is continuous. Therefore f(X) is connected, because X is. But  $\mathbb{N}$  has discrete topology, so there are no other connected subsets then points. Thus there is  $n \in \mathbb{N}$  such that  $f(X) = \{n\}$ , which completes the proof.  $\square$ 

**Remark.** Generally, local dimension need not be constant. For example consider  $X_1, X_2 \subseteq \mathbb{R}^3$  such that

$$X_1 = \{(x, 0, 0) \mid x \in \mathbb{R}\} \quad X_2 = \{(x, y, 1) \mid x, y \in \mathbb{R}\}.$$

One can easily show that  $X = X_1 \cup X_2$  (with topology inherited from  $\mathbb{R}^3$ ) is locally Euclidean, but  $\dim_{(0,0,0)} X = 1$  and  $\dim_{(1,1,1)} X = 2$ .