Computational Economics Homework 6

James Graham

March 16, 2016

Exercise 1: Show that X'X is invertible.

First, I show that X'X is positive definite. A matrix A is positive definite if z'Az > 0 $\forall z \in \mathbb{R}^n/\{0\}$. Let $z \in \mathbb{R}^n/\{0\}$, then $z'(X'X)z = (Xz)'(Xz) \neq 0$ where the non-zero result follows from the fact that the linear independence of X implies $Xz \neq 0 \ \forall z \in \mathbb{R}^n/\{0\}$. Now, since (Xz)'(Xz) is a square term, it cannot be negative, and assuming X is not a matrix of zeros, then z'(X'X)z > 0, and so X'X is positive definite.

Now, the positive definiteness of X'X implies that det(X'X) > 0 by Sylvester's Criterion. A positive determinant implies X'X is non-singular, which implies that X'X is invertible.

Exercise 2: Show that the projection matrix is the identity when k = n

We have $P = X(X'X)^{-1}X'$. When k = n, X is a square, $k \times k$ matrix. Since X has linearly independent columns, they form a set of basis vectors for \mathbb{R}^k . Then, by the theorem on page 25 of the notes, $P = X(X'X)^{-1}X'$ is the projection matrix on \mathbb{R}^k .

Now, by the Orthogonal Projection Theorem II (OPT II), Py = y iff $y \in S = span(X) = \mathbb{R}^k$. So $Py = y \ \forall y \in \mathbb{R}^k$. That is, P is the identity matrix for elements in \mathbb{R}^k .

Geometric intuition:

The OPT II implies that projecting an element, y, onto the space, S, from which it came leaves y unaltered. We construct projections by taking linear combinations of vectors in S, and $y \in S$ can be constructed from itself.

When $n \neq k$, some elements, x, are outside the space. Projecting x onto the S involves finding the closest point to x inside S. This point, \hat{x} , will not be equal to x, and so $\hat{x} = Px \neq x$.

However, when n = k, our space is the entire set of k-valued real vectors. Then any vector in \mathbb{R}^k is inside the space. Thus projecting a vector in \mathbb{R}^k onto S is simply projecting onto \mathbb{R}^k itself. Hence, the projection returns the element being projected.

Exercise 3: Show that projecting $y \in \mathbb{R}^n$ onto span(1) is the mean of the elements of y.

The projection is $P = X(X'X)^{-1}X'$ where $X = \alpha[1, 1, ..., 1]' = \alpha \mathbb{1}$ for some $\alpha \in \mathbb{R}$. This is the case because $S = span(\mathbb{1})$ is just linear combinations of the one vector, and X must have linearly independent columns. Without loss of generality, suppose $\alpha = 1$.

$$P = \mathbb{1}(\mathbb{1}'\mathbb{1})^{-1}$$

$$= \mathbb{1}\left(\sum_{i=1}^{n} 1 \times 1\right)^{-1} \mathbb{1}'$$

$$= \mathbb{1}(n)^{-1}\mathbb{1}$$

$$= \mathbb{1}\frac{1}{n}\mathbb{1}'$$

And so

$$Py = \mathbb{1} \frac{1}{n} \mathbb{1}'y$$
$$= \mathbb{1} \frac{1}{n} \left(\sum_{i=1}^{n} 1 \times y_i \right)$$
$$= \mathbb{1} \bar{y}$$

where \bar{y} is the mean of the elements of y.

Exercise 4: Show that if X has a constant column, then elements of \hat{u} sum to 0.

Let $\tilde{X} = [\mathbb{1}, X] \in \mathcal{M}(n \times k + 1)$ be the matrix with a ones column. Notice that as long as k < n, then \tilde{X} will be linearly independent, like X. Let $S = span(\tilde{X})$. Note that $\mathbb{1} \in S$ since $\mathbb{1} \in col(\tilde{X})$. By OPT II, $P\mathbb{1} = \mathbb{1}$, since $\in S$. Note, also, that since P is symmetric, P = P', so $\mathbb{1}'P' = \mathbb{1}'P = \mathbb{1}'$.

Now, $\hat{u} = My = (I - P)y$. The sum of residuals is then given by

$$1'\hat{u} = 1'(I - P)y
= (1'I - 1'P)y
= (1' - 1')y
= 0'y
= 0$$

So with a column of ones in the \hat{X} vector, the sum of residuals always sums to zero.

Exercise 5: Show that if S is nonempty in \mathbb{R}^n , then $S \bigcap S^\perp = \{0\}$

Note that if $x \in S^{\perp}$, then $\langle x, y \rangle = 0 \ \forall y \in S$.

Suppose $x \in S \cap S^{\perp}$, then $x \in S$ and $x \in S^{\perp}$. Since $x \in S^{\perp}$, then $\langle x, y \rangle = 0 \ \forall y \in S$. Since $x \in S$, then $\langle x, x \rangle = 0$. But this is only possible for x = 0. Therefore, $x \in S \cap S^{\perp}$ implies that x = 0 which implies that $S \cap S^{\perp} = \{0\}$.