实验三 RC 电路频率特性的研究

19 组 朱云沁 PB20061372 赵明宇 PB19061383

实验题目:

RC 电路频率特性的研究

实验目的:

熟悉正弦稳态分析中相量的基本概念;掌握 RC 低通、高通电路和串并联选频电路的频率特性;掌握用示波器测量同频率正弦信号相位差的方法。

实验器材:

函数信号发生器、交流毫伏表、示波器、数字万用表、电阻 2 个(标称值 $2.2k\Omega$)、电容 2 个(标称值 $0.1\mu F$)、导线若干。

实验原理:

1) RC 低通电路

图 1 (a) 所示电路为 RC 低通电路。其输出电压有效值相量为

$$\dot{U}_{o} = \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}} \dot{U}_{i} = \frac{\dot{U}_{i}}{1 + j\omega RC}$$

定义转移函数为

$$H(\mathrm{j}\omega) \triangleq \frac{\dot{U}_\mathrm{o}}{\dot{U}_\mathrm{i}} = \frac{1}{1 + \mathrm{j}\omega RC} = \frac{1}{\sqrt{1 + (\omega RC)^2}} \angle - \mathrm{tg}^{-1}(\omega RC) = |H(\mathrm{j}\omega)| \angle \varphi(\omega)$$

则幅频特性为

$$|H(j\omega)| = \frac{1}{\sqrt{1 + (\omega RC)^2}} \le 1$$

相频特性为

$$\varphi(\omega) = -\operatorname{tg}^{-1}(\omega RC) < 0$$

故输出电压滞后于输入电压。定义 $|H(j\omega)|=\frac{1}{\sqrt{2}}$ 时的频率为截止频率。由于 $f=\frac{\omega}{2\pi}$,求得截止频率为

$$f_{\rm c} = \frac{1}{2\pi RC}$$

幅频特性曲线、相频特性曲线分别如图 1 (b)、(c)所示。若将电阻R两端电压作为输出电压,类似有 RC 高通电路,由于本次实验选用 RC 低通电路,此处不再赘述。

图 1 RC 低通电路 及其频率特性曲线

2) RC 串并联选频电路

图 2 (a)所示电路为 RC 串并联选频电路。其输出电压有效值相量为

$$\dot{U}_{o} = \frac{\frac{R_{2}}{j\omega R_{2}C_{2} + 1}}{R_{1} + \frac{1}{j\omega C_{1}} + \frac{R_{2}}{j\omega R_{2}C_{2} + 1}} \dot{U}_{i}$$

故转移函数为

$$H(j\omega) = \frac{1}{\left(1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}\right) + j\left(\omega R_1 C_2 - \frac{1}{\omega R_2 C_2}\right)} = |H(j\omega)| \angle \varphi(\omega)$$

幅频特性为

$$|H(\mathrm{j}\omega)| = \frac{1}{\sqrt{\left(1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}\right)^2 + \left(\omega R_1 C_2 - \frac{1}{\omega R_2 C_1}\right)^2}}$$

图 2 RC 串并联选频电路及其频率特性曲线

$$\varphi(\omega) = -\lg^{-1} \left(\frac{\omega R_1 C_2 - \frac{1}{\omega R_2 C_1}}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}} \right)$$

$$f_0 = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

定义 $|H(j\omega)| = \frac{1}{\sqrt{2}} \cdot \frac{1}{1 + \frac{R_1}{R_2} + \frac{C_2}{C_1}}$ 时的频率为截止频率,求得

$$\begin{split} f_{\text{CL}} &= \frac{\sqrt{(R_2C_1 + R_1C_1 + R_2C_2)^2 + 4R_1R_2C_1C_2} - R_2C_1 - R_1C_1 - R_2C_2}{4\pi R_1R_2C_1C_2} \\ f_{\text{CH}} &= \frac{\sqrt{(R_2C_1 + R_1C_1 + R_2C_2)^2 + 4R_1R_2C_1C_2} + R_2C_1 + R_1C_1 + R_2C_2}{4\pi R_1R_2C_1C_2} \end{split}$$

当 $R_1 = R_2 \perp C_1 = C_2$ 时,幅频特性曲线、相频特性曲线分别如图 2 (b)、(c)所示

3) 李萨如图形法测相位差

为了测量示波器 CH1、CH2 输入的同频率交流信号的相位差,切换时基模式为 XY,如图 3 所示。 设 CH1、CH2 信号分别为

$$\begin{cases} u_{\rm i} = \sqrt{2} U_{\rm i} \cos(\omega t + \varphi_{\rm i}) \\ u_{\rm o} = \sqrt{2} U_{\rm o} \cos(\omega t + \varphi_{\rm o}) \end{cases}$$
其中, $-\pi < \varphi_{\rm i}, \varphi_{\rm o} \leq \pi$ 。消去 t ,得李萨如图形的解析式为

$$\left(\frac{u_{\rm i}}{\sqrt{2}U_{\rm i}}\right)^2 + \left(\frac{\frac{u_{\rm i}}{\sqrt{2}U_{\rm i}}\cos(\varphi_{\rm o}-\varphi_{\rm i}) - \frac{u_{\rm o}}{\sqrt{2}U_{\rm o}}}{\sin(\varphi_{\rm o}-\varphi_{\rm i})}\right)^2 = 1$$

令 $\frac{du_i}{du} = 0$, 求得在横轴上的投影长度为

$$A = 2\sqrt{2}U_{\rm i}$$

令 $u_0 = 0$,求得与横轴的两交点距离为

$$B = 2|\sqrt{2}U_{\rm i}\sin(\varphi_{\rm o} - \varphi_{\rm i})|$$

故相位差角的绝对值为

$$|\varphi_{0} - \varphi_{i}| = \sin^{-1}\left(\frac{B}{A}\right)$$

相位差角的正负,即 CH2 信号是滞后还是超前于 CH1 信号,可在标准时基模式下通过波形来判断。

实验内容:

1) RC 低通电路频率特性研究

测量电阻R、电容C,按图 4 搭建好电路。设定信号源电压为 1.000 Vrms,用 毫伏表精确测得输入电压有效值 U_i 。

在 $50Hz\sim5kHz$ 范围内改变信号源频率,对每个频率f,用毫伏表测量输出电 压有效值 U_0 ,用示波器光标测量李萨如图形上A/2、B/2点,共记录 10 组数据, 并找出 $U_{\rm o}=\frac{1}{\sqrt{2}}U_{\rm i}$ 时的截止频率 $f_{\rm c}$ 。实验中,当A/2随频率产生较大变化时,应当 及时调节信号源电压,使得输入电压大小测量值保持不变。

图 4 RC 低通电路频率特性研究电路图

为了判断输出电压是滞后还是超前于输入电压,观察标准时基模式下示波器显示的波形,并画下 $f = f_c$ 时的波形 图。

·实验数据

f/Hz	50.00	100.00	200.00	300.00	708.00	1000.00	2000.00	3000.00	4000.00	5000.00		
$U_{\rm o}$	0.994V	0.988V	0.962V	0.919V	0.709V	0.591V	0.365V	248.2mV	190.3mV	154.2mV		
$ H(j\omega) $	0.991	0.985	0.959	0.916	0.707	0.589	0.364	0.247	0.190	0.154		
B/2	72.00mV	168.00mV	348.00mV	501.00mV	928.50mV	1.08100V	1.26775V	1.31675V	1.33400V	1.33975V		
A/2	1.39200V	1.39200V	1.39200V	1.39200V	1.39200V	1.39150V	1.39150V	1.39150V	1.39150V	1.39150V		
$\varphi(\omega)$	-2.96°	-6.93°	-14.48°	-21.09°	-41.84°	-50.97°	-65.65°	-71.13°	-73.47°	-74.33°		
F	$R=2.1988$ k Ω				$C = 0.103 \mu F$				$U_{\rm i} = 1.003 { m V}$			

表 1 RC 低通电路频率特性研究-实验数据

·数据处理

根据表 1 数据及示波器波形(见附录),由 $|H(j\omega)|=\frac{u_o}{u_i}$ 、 $|\varphi(\omega)|=\sin^{-1}\frac{B/2}{A/2}$,算得各组数据的 $|H(j\omega)|$ 、 $\varphi(\omega)$,填入表 1 中。

根据表 1 数据,作得实验电路的幅频特性曲线、相频特性曲线,并标注截止频率 $f_{\rm c}$,如图 5、6 所示。

φ(ω)

0.00°

100

101

102

103

104

//Hz

-10.00°

-20.00°

-30.00°

-40.00°

-50.00°

-70.00°

-80.00°

-90.00°

图 6 RC 低通电路频率特性研究-相频特性曲线

·误差分析

由 $|H(j\omega)| = \frac{1}{\sqrt{1+(\omega RC)^2}}, \varphi(\omega) = -\operatorname{tg}^{-1}(\omega RC)$,算得各频率下 $|H(j\omega)|$ 、 $\varphi(\omega)$ 的理论值和相对误差,如表 2 所示。

f/Hz		50.00	100.00	200.00	300.00	708.00	1000.00	2000.00	3000.00	4000.00	5000.00
<i>H</i> (jω) /V	测量值	0.991	0.985	0.959	0.916	0.707	0.589	0.364	0.247	0.190	0.154
	理论值	0.997	0.990	0.962	0.920	0.704	0.575	0.332	0.228	0.173	0.139
	相对误差	0.65%	0.50%	0.28%	0.38%	0.34%	2.48%	9.78%	8.50%	9.65%	10.46%
$\varphi(\omega)$	测量值	-2.96°	-6.93°	-14.48°	-21.09°	-41.84°	-50.97°	-65.65°	-71.13°	-73.47°	-74.33°
	理论值	-4.07°	-8.10°	-15.89°	-23.12°	-45.21°	-54.90°	-70.64°	-76.82°	-80.04°	-82.00°
	相对误差	27.15%	14.41%	8.87%	8.75%	7.47%	7.16%	7.06%	7.40%	8.20%	9.36%

表 2 RC 低通电路频率特性研究-实验误差:

此外,考虑截止频率的测量误差:

截止频率 f_c 的理论值为

$$f_{\text{c}} = \frac{1}{2\pi RC} = \frac{1}{2\pi \times 2.1988 \text{k}\Omega \times 0.103 \mu\text{F}} = 702.744 \text{Hz}$$

相对误差为

$$\left| \frac{f_{\text{c}} - f_{\text{c}}}{f_{\text{c}}} \right| \times 100\% = \left| \frac{708.00 - 702.744}{702.744} \right| \times 100\% = 0.75\%$$

总体上看, $|H(j\omega)|$ 的测量值偏大,频率较高时误差更大, $|\varphi(\omega)|$ 的测量值偏小且误差较大。截止频率的测量值偏大。造成误差的因素可能有:

测量电容和电阻时,导线老化、接触不良等原因导致 R_1 、 C_1 的测量值偏大,因而计算出 $|H(j\omega)|$ 、 f_c 的理论值偏小, $|\varphi(\omega)|$ 的理论值偏大;

信号源频率升高时,其输出电压有波动,监测该信号的实验者调整不当,导致被测网络的输入电压大于初始值。

2) RC 串并联选频电路频率特性研究

测量电阻 R_1 、 R_2 ,电容 C_1 、 C_2 ,按图 7 搭建好电路。设定信号源电压为 1.000 Vrms,用毫伏表精确测得输入电压有效值 U_i 。

在 50Hz~5kHz 范围内改变信号源频率,对每个频率f,用毫伏表测量输出电压有效值 U_0 ,用示波器光标测量李萨如图形上A/2、B/2点,共记录 10 组数据,并找出 $\varphi(\omega)=0$ 时的谐振频率 f_0 以及 $U_0=\frac{1}{\sqrt{2}}\cdot\frac{U_1}{1+\frac{R_1}{R_2}+\frac{C_2}{C_1}}$ 时的截止频率

图 7 RC 串并联选频电路频率特性研究电路图

 f_{cL} 、 f_{cH} 。实验中,当A/2随频率产生较大变化时,应当及时调节信号源电压,使得输入电压大小测量值保持不变。

为了判断输出电压是滞后还是超前于输入电压,观察标准时基模式下示波器显示的波形,并分别画下 $f = f_{cL}$ 时和 $f = f_{cH}$ 时的波形图。

·实验数据

f/Hz	50.00	100.00	215.50	300.00	716.00	1000.00	2449.00	3000.00	4000.00	5000.00	
$U_{\rm o}$	69.6mV	131.8mV	236.4mV	279.5mV	0.339V	319.1mV	236.4mV	220.7mV	179.4mV	150.7mV	
$ H(j\omega) $	0.069	0.131	0.236	0.279	0.338	0.318	0.236	0.220	0.179	0.150	
B/2	1.34550V	1.24800V	981.50mV	763.75mV	0	240.50mV	936.00mV	1.04650V	1.17000V	1.21875V	
A/2	1.40075V	1.40076V	1.40077V	1.40078V	1.40079V	1.40080V	1.40081V	1.40082V	1.40083V	1.40084V	
$\varphi(\omega)$	73.85°	62.99°	44.48°	33.04°	0.00°	-9.89°	-41.93°	-48.34°	-56.64°	-60.47°	
$R_1 = 2.$	$R_1 = 2.1988 \text{k}\Omega$		$R_2 = 2.2420 \text{k}\Omega$		$C_1 = 0.103 \mu F$		$C_2 = 98,4 \text{nF}$		$U_i = 1.003 V$		

表 3 RC 低通电路频率特性研究-实验数据

根据表 3 数据及示波器波形(见附录),由 $|H(j\omega)| = \frac{u_0}{u_i}$ 、 $|\varphi(\omega)| = \sin^{-1}\frac{B/2}{A/2}$,算得各组数据的 $|H(j\omega)|$ 、 $\varphi(\omega)$,填入表 3 中。

根据表 3 数据,作得实验电路的幅频特性曲线、相频特性曲线,并标注谐振频率 f_0 ,截止频率 f_{cL} 、 f_{cH} ,如图 8、9 所示。

谐振频率 f_0 的测量值为

截止频率 $f_{\rm cL}$ 、 $f_{\rm cH}$ 的测量值为

$$f_0 = 716.00$$
Hz

$$f_{\rm cL}=215.50{\rm Hz}$$

 $f_{\rm cH} = 2449.00 {\rm Hz}$

相对误差,如表4所示。

f/Hz		50.00	100.00	215.50	300.00	716.00	1000.00	2449.00	3000.00	4000.00	5000.00
<i>H</i> (jω) /V	测量值	0.069	0.131	0.236	0.279	0.338	0.318	0.236	0.220	0.179	0.150
	理论值	0.071	0.136	0.242	0.286	0.341	0.332	0.236	0.207	0.166	0.137
	相对误差	2.67%	3.20%	2.65%	2.70%	0.76%	4.19%	0.25%	6.51%	7.83%	9.35%
	测量值	73.85°	62.99°	44.48°	33.04°	0.00°	-9.89°	-41.93°	-48.34°	-56.64°	-60.47°
$\varphi(\omega)$	理论值	77.92°	66.51°	44.70°	32.76°	-0.21°	-12.86°	-46.07°	-52.66°	-60.86°	-66.21°
	相对误差	5.22%	5.29%	0.48%	0.85%	100.00%	23.12%	8.99%	8.20%	6.92%	8.67%

表 4 RC 串并联选频电路频率特性研究-实验误差

此外,考虑谐振频率、截止频率的测量误差:

谐振频率fo的理论值为

$$f_{0\,\,\text{\tiny{$\frac{1}{2}$}}} = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi\times\sqrt{2.1988\text{k}\Omega\times2.2420\text{k}\Omega\times0.103\mu\text{F}\times98.4\text{nF}}} = 712.022\text{Hz}$$

相对误差为

$$\left| \frac{f_{0 \text{ pp}} - f_{0}}{f_{0 \text{ pp}}} \right| \times 100\% = \left| \frac{712.022 - 716.00}{712.022} \right| \times 100\% = 0.56\%$$

截止频率 $f_{\rm cL}$ 、 $f_{\rm cH}$ 的理论值分别为

$$\begin{split} \boldsymbol{f}_{\text{cL}\, 2} &= \frac{\sqrt{(R_2C_1 + R_1C_1 + R_2C_2)^2 + 4R_1R_2C_1C_2} - R_2C_1 - R_1C_1 - R_2C_2}{4\pi R_1R_2C_1C_2} = 213.610\text{Hz} \\ \boldsymbol{f}_{\text{cH}\, 2} &= \frac{\sqrt{(R_2C_1 + R_1C_1 + R_2C_2)^2 + 4R_1R_2C_1C_2} + R_2C_1 + R_1C_1 + R_2C_2}{4\pi R_1R_2C_1C_2} = 2373.372\text{Hz} \end{split}$$

相对误差为

$$\left| \frac{f_{\text{cL}} = -f_{\text{cL}}}{f_{\text{cL}}} \right| \times 100\% = \left| \frac{213.610 - 215.50}{213.610} \right| \times 100\% = 0.88\%$$

$$\left| \frac{f_{\text{cH } !\!\! !\!\! !} - f_{\text{cH}}}{f_{\text{cH } !\!\! !\!\! !}} \right| \times 100\% = \left| \frac{2373.372 - 2449.00}{2373.372} \right| \times 100\% = 3.19\%$$

总体上看,频率较低时, $|H(j\omega)|$ 的测量值偏小,频率较高时偏大且误差更大; $\varphi(\omega)$ 的测量值偏小且误差较大。谐振频率、截止频率的测量结果均略有偏大。造成误差的因素可能有:

测量电容和电阻时,导线老化、接触不良等原因导致 R_1 、 R_2 、 C_1 、 C_2 的测量值偏大,因而计算出 $|H(j\omega)|$ 、 $f_{\rm cL}$ 、 $f_{\rm cH}$ 、 f_0 的理论值偏小, $\varphi(\omega)$ 的理论值偏大或偏小;

信号源频率升高时,其输出电压有波动,监测该信号的实验者调整不当,导致被测网络的输入电压大于初始值,因而测得 U_0 偏大。

另外,由谐振频率的测量误差较小可见,根据相位差为0来判断谐振频率点,准确度较高。

思考题:

1) 两个不同频率的正弦量,能否测量其相位差?为什么? 不能。

设两个正弦量的表达式分别为

$$A(t) = A_{\rm m} \sin (\omega_1 t + \varphi_{10})$$

$$B(t) = B_{\rm m} \sin (\omega_2 t + \varphi_{20})$$

则其相位之差为

$$\Delta \varphi = (\omega_1 - \omega_2)t + (\varphi_{10} - \varphi_{20})$$

能用一般方法测量。

若通过示波器等仪器测得 ω_1 、 ω_2 ,则t前的系数 $\omega_1 - \omega_2$ 可以确定;但 $\varphi_{10} - \varphi_{20}$ 与初始时间t = 0的选取有关,因此 $\Delta \varphi$ 的函数式不唯一,测量 $\Delta \varphi$ 无意义。

2) 据你所知,测量频率、振幅和相位差有哪些方法?

测量频率

对于满足条件的电信号,使用数字万用表(Freq档)、示波器(Meas功能)、频谱仪、频率计等仪器直接测量;对于一般情况,从原理上讲,有无源测频法(谐振法、电桥法等)、有源测频法(拍频法、差频法等)、电子计数法等。

测量振幅

对于满足条件的电信号,使用示波器(Meas 功能)、交流毫伏表(Vp-p 按键)等仪器测量峰峰值,计算得振幅;对于特定波形,还可用数字万用表、交流毫伏表等仪器测量有效值,换算得振幅。

测量相位差

对于满足条件的电信号,使用相位计(相位-电压转换式或相位-时间转换式)等仪器直接测量; 对于同频率正弦信号,使用示波器进行测量时,主要有时域法和李萨如图形法(不能确定符号)。

3) 根据实验结果说明选频电路的作用?

对于 RC 低通电路,由表 1 原始数据和图 5 幅频特性知,低频信号的电压放大倍数较高且趋近于 1,输入、输出信号的相位趋近相同;而高频信号的电压放大倍数较低且趋近于 0,相位差较大。其通带为 $0\sim f_c$ 。从效果上看,该电路选取低频信号,衰减高频信号,因此起到低通滤波器的作用。对于 RC 高通电路,低频信号被衰减,高频信号顺利通过,起到高通滤波器的作用。

对于 RC 串并联选频电路,由表 3 原始数据和图 8 幅频特性知,信号频率越接近 f_0 ,电压放大倍数越高,输入、输出信号的相位差越小;频率在通带 $f_{cL}\sim f_{cH}$ 范围之外的信号,电压放大倍数较低且趋近于 0,相位差较大。从效果上看,该电路使接近谐振频率的信号顺利通过(相位近似不变、幅值减小的倍数最少),衰减其他频率的信号,因此可用于选取一定频率的信号。