LSM Tree Implementation

Nicolas Drizard

TF: Lukas Maas May, 3rd 2015

Outline

- Introduction
- 2 Design
 - Data Structure
 - Operations
 - Persistency
 - Implementation details
 - Parallel Reads
 - Alternative Merging Strategy
- Seriments
- Future Steps

- Introduction
- 2 Design
 - Data Structure
 - Operations
 - Persistency
 - Implementation details
 - Parallel Reads
 - Alternative Merging Strategy
- 3 Experiments
- 4 Future Steps

LSM-Tree

Figure: LSM Tree structure

Data Structure Dperations Persistency mplementation details Parallel Reads Alternative Merging Strategy

- Introduction
- 2 Design
 - Data Structure
 - Operations
 - Persistency
 - Implementation details
 - Parallel Reads
 - Alternative Merging Strategy
- 3 Experiments
- 4 Future Steps

Layers Architecture

Figure: Merging Strategy

Data Structure
Operations
Persistency
Implementation details
Parallel Reads
Alternative Merging Strategy

Operations

- READ
 - **1** Linear search in C_0
 - binary search in other components
- APPEND (insert, update, delete)
 - **1** Linear search in C_0 (removing/updating keys)
 - Merging if full

Introduction Design Experiments Future Steps Data Structure
Operations
Persistency
Implementation details
Parallel Reads
Alternative Merging Strategy

Each component contains two arrays: keys and values. C_0 and buffer on memory

Optimizations

- Memory Mapped File
- Bounds Check
- Fault tolerance strategy
- Bloom Filter

Parallel Design

Two approaches are considered:

- Killing threads operating on deeper component once the key is found in its lowest component.
- Threads communication through a shared variable storing the lowest component on which the key has been found so far

Figure: Alternative Merging Strategy

- Introduction
- 2 Design
 - Data Structure
 - Operations
 - Persistency
 - Implementation details
 - Parallel Reads
 - Alternative Merging Strategy
- 3 Experiments
- 4 Future Steps

Set Up

- 1 000 000 keys inserted
- keys are int, values string of size 32

Set Up

5 different LSM structures used:

- **2** C_0 size = 2000; size ratios = 3
- C_0 size = 1000; size ratios = 3 and then 9
- C_0 size = 1000; size ratios = 5

Figure: Uniform Reads

Figure: Uniform Updates

Figure: Skewed reads (20% start)

Figure: Skewed updates (20% start)

Figure: Skewed reads (20% end)

Figure: Skewed updates (20% end)

Figure: Skewed reads (10% end) and 50% out of range

- Introduction
- 2 Design
 - Data Structure
 - Operations
 - Persistency
 - Implementation details
 - Parallel Reads
 - Alternative Merging Strategy
- 3 Experiments
- 4 Future Steps

Introduction Design Experiments Future Steps

- Experiments on Bloom Filter and Parallel implementation
- Possibility to choose the merging strategy