Universität Konstanz

Seminarvortrag:
Von Magnetismus
und Altermagnetismus

L.Šmejkal et al. PRX 12, 040501 (2022)

Julian Beisch

Konstanz, 07.06.2024

Magnete sind überall (nicht nur am Kühlschrank):

- Elektrische Motoren
 - Lautsprecher
- Medizin
 - **MRT**
- Digitaler Speicher
 - HDD
 - Skyrmions(?)

Wikipedia.com

Universität Konstanz

Ag Nowak Pressemitteilung

Computing – Spintronics – Magnonen(?)

Forschung (Nowak, Gönnenwein, Bossini....)

S.Blundell, Magnetism in Condensed matter (2000)

Magnete sind überall (nicht nur am Kühlschrank):

- Elektrische Motoren
 - Lautsprecher
- Medizin
 - MRT
- Digitaler Speicher
 - HDD
 - Skyrmions(?)
- Computing Spintronics Magnonen(?)
- Forschung (Nowak, Gönnenwein, Bossini....)

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Alles aber keine Neuheiten

- IK2
- Festkörperphysik

Wechselwirkender Magnetismus

- Quantenmechanischer Ursprung von Spins nicht relevant
- Vorstellung von Ørsted (Uhlenbeck-Goudsmith)
 - e⁻ rotieren um eigene Achse
 - Begründet magnetisches Moment
- Noch einfacheres Bild:
 - Jeder Spin ein Stabmagnet mit magnetischem Moment µ_{Bohr}

Gebundende e⁻ Kooperativer WWM Magnetismus

<u>Aufgabe</u>

Wie groß müsste ein magnetisches Feld sein um einen Spin bei Raumtemperatur auszurichten?

<u>Aufgabe</u>

Wie groß müsste ein magnetisches Feld sein um einen Spin bei Raumtemperatur auszurichten?

− Ergebnis: ~10³ T

Würdigung: Sehr groß und nicht physikalisch!

- "Beweis": Simulation

7

Weiss-Model eines Ferromagneten

$$\mathbf{Modell} \quad B_{\mathrm{Mf}} = g \cdot \lambda \cdot M$$

NI 80.000.000 Gau\$\hat{\text{Gau}} \hat{\text{\$\text{Gau}}} \hat{\text{\$\text{\$\text{Gau}}}} \hat{\text{\$\text{\$\text{Gau}}}} \hat{\text{\$\exitt{\$\exitt{\$\text{\$\exittit{\$\exittit{\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exittit{\$\text{\$\text{\$\exittit{\$\text{\$\$\exittit{\$\text{\$\tilie{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\tilie{\$\text{\$\text{\$\text{\$\text{\$\text{\$\$\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\exittit{\$\text{\$\til\exittit{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\}\exittit{\$\text{\$\}\exittit{\$\text{\$\$\exittit{\$\exititit{\$\text{\$\}\exittit{\$\text{\$\text{\$\}\exittit{\$\text{\$\text{

P. Weiss Journ. de phys. (4) 6, 661 (1907)

Kritik

10

"Das Feld [der Atome] ist jedoch mehr als tausendmal schwächer als das Molekularfeld [...]. Diese Interpretationsschwierigkeit [soll] weniger als Einwand denn als Hinweis für die Suche nach neuen Hypothesen [...] angesehen werden [...]."P. Weiss Journ. de phys. (4) 6, 661 (1907)

Model war dennoch auf den Prinzipien der statistischen
 Physik begründet und "formal befriedigend".
 W.Heisenberg Z.Physik 49, 619-636, (1928)

 Model war erfolgreich, nur die großen Felder sorgten für Unmut

Heisenbergs Lösung

Etwa 20 Jahre später konnte Heisenberg die Probleme mit Hilfe der Austauschwechselwirkung lösen

Diese wollen wir nun in Teilen herleiten

Heisenbergs Lösung

Etwa 30 Jahre später konnte Heisenberg die Probleme mit Hilfe der Austauschwechselwirkung lösen

- Diese wollen wir nun in Teilen herleiten.
- Betrachten wir zwei Elektronen (eines Atoms)

Heisenbergs Lösung

- Aufteilen der Wellenfunktion in einen Orts-teil und einen Spin-teil
 - $\varPsi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$
- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden
 - Elektronen => Antisymmetrisierung

Heisenbergs Lösung

- Aufteilen der Wellenfunktion in einen Orts-teil und einen Spin-teil
 - $\varPsi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$
- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden
 - Elektronen => Antisymmetrisierung
 - Daraus folgen zwei Fälle

$$- \phi(\vec{r}_1,\vec{r}_2) = -\phi(\vec{r}_2,\vec{r}_1) \Leftrightarrow \chi(s_1,s_2) = \chi(s_2,s_1)$$

Heisenbergs Lösung

Aufteilen der Wellenfunktion in einen Orts-teil und einen Spin-teil

-
$$\Psi(q_1,q_2) = \phi(\vec{r}_1,\vec{r}_2) \cdot \chi(s_1,s_2)$$

- Dies ist noch kein physikalischer Zustand
 - Muss noch symmetrisiert werden
 - Elektronen => Antisymmetrisierung
 - Daraus folgen zwei Fälle

$$\begin{split} \varPsi_{\mathrm{S}} &= \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_{1}, \vec{r}_{2}) + \phi(\vec{r}_{2}, \vec{r}_{1}) \right] \cdot \chi_{S} \\ \varPsi_{\mathrm{T}} &= \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_{1}, \vec{r}_{2}) - \phi(\vec{r}_{2}, \vec{r}_{1}) \right] \cdot \chi_{T} \end{split}$$

$$\varPsi_{\mathrm{T}} = \frac{1}{\sqrt{2}} \left[\phi(\vec{r}_1, \vec{r}_2) - \phi(\vec{r}_2, \vec{r}_1) \right] \cdot \chi_T$$

Triplett,

(sym.)

(asym.)

Heisenbergs Lösung

Hamiltonian

$$\overline{} \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_{12} + \mathcal{H}_{\text{Mag}}$$

- $\mathcal{H}_{12} \propto rac{e^2}{ec{r}_{12}}$ "nur" eine Coulomb Wechselwirkung
- Gesamtenergie $U=\int \Psi^\star \mathcal{H} \Psi \mathrm{d}V$

Heisenbergs Lösung

Hamiltonian

$$\overline{} \mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_{12} + \mathcal{H}_{\text{Mag}}$$

- $\mathcal{H}_{12} \propto rac{e^2}{ec{r}_{12}}$ "nur" eine Coulomb Wechselwirkung
- Gesamtenergie $U=\int \varPsi^\star \mathcal{H} \Psi \mathrm{d}V$
- $U_S = I_1 + I_2 + K_{12} + J_{12}$

$$U_T = I_1 + I_2 + K_{12} - J_{12}$$

$$\begin{split} U &= \frac{1}{2} \iint [\varphi_1^*(r_1)\varphi_2^*(r_2) \pm \varphi_2^*(r_1)\varphi_1^*(r_2)] (\mathcal{X}_1 + \mathcal{X}_2 + \mathcal{X}_{12}) \\ &\times [\varphi_1(r_1)\varphi_2(r_2) \pm \varphi_2(r_1)\varphi_1(r_2)] \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &= \frac{1}{2} \left\{ \int \varphi_1^*(r_1)\mathcal{X}_1 \varphi_1(r_1) \, \mathrm{d}V_1 + \int \varphi_2^*(r_1)\mathcal{X}_1 \varphi_2(r_1) \, \mathrm{d}V_1 \right. \\ &+ \int \varphi_1^*(r_2)\mathcal{X}_2 \varphi_1(r_2) \, \mathrm{d}V_2 + \int \varphi_2^*(r_2)\mathcal{X}_2 \varphi_2(r_2) \, \mathrm{d}V_2 \\ &+ \iint \varphi_1^*(r_1)\varphi_2^*(r_2)\mathcal{X}_{12} \varphi_1(r_1)\varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &+ \iint \varphi_2^*(r_1)\varphi_1^*(r_2)\mathcal{X}_{12} \varphi_2(r_1)\varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_1^*(r_1)\varphi_2^*(r_2)\mathcal{X}_{12} \varphi_2(r_1)\varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_1^*(r_1)\varphi_2^*(r_2)\mathcal{X}_{12} \varphi_2(r_1)\varphi_1(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_2^*(r_1)\varphi_1^*(r_2)\mathcal{X}_{12} \varphi_1(r_1)\varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &\pm \iint \varphi_2^*(r_1)\varphi_1^*(r_2)\mathcal{X}_{12} \varphi_1(r_1)\varphi_2(r_2) \, \mathrm{d}V_1 \, \mathrm{d}V_2 \\ &= I_1 + I_2 + K_{12} \pm J_{12}, \end{split}$$

S.Chikazumi *Physics of Ferromagnetism* (2009)

Heisenbergs Lösung

Ergebnis und Interpretation

$$- U_S - U_T = 2 \cdot J_{12} = 2 \cdot \int \int \phi_1^{\star}(\vec{r}_1) \phi_2^{\star}(\vec{r}_2) \mathcal{H}_{12} \phi_1(\vec{r}_2) \phi_2(\vec{r}_1) \, \mathrm{d}V_1 \, \mathrm{d}V_2$$

- Gibt eine Energiedifferenz zwischen dem Singlett und dem Triplett Zustand basierend auf der Coulombenergie und der asymmetrischen Wellenfunktion.
- Abhängig vom Überlapp der Wellenfunktionen
 - Eisen/Nickel-Salz Lösungen sind nicht
 ferromagnetisch W.Heisenberg Z.Physik 49, 619-636, (1928)
- Je nach Situation ist entweder der Triplett oder der Singlett Zustand energetisch günstiger

Heisenbergs Lösung

- Ergebnis und Interpretation
 - $U_S U_T = 2 \cdot J_{12}$
- Konstruktion eines "effektiven Hamiltonian":
 - Zur Unterscheidung von T u. S geht sowohl S² und S₁S₂

Heisenbergs Lösung

Ergebnis und Interpretation

-
$$U_S - U_T = 2 \cdot J_{12}$$

– Konstruktion eines "effektiven Hamiltonian":

$$- \mathcal{H}_{\text{eff.}} = -2J_{12} \cdot S_1 \cdot S_2$$

- Obacht mit dem Vorzeichen und der 2
- Semiklassische N\u00e4herung

$$J > 0 \Leftrightarrow U_S > U_T$$

$$J < 0 \Leftrightarrow U_S < U_T$$

Heisenbergs Erweiterung

-
$$\mathcal{H}_{\mathrm{Heisenberg}} = -\sum_{\langle i,j \rangle} J_{ij} \cdot S_i \cdot S_j$$

W.Heisenberg Z.Physik 49, 619-636, (1928)

"Beweis durch Simulation"

Erfolge

 Luis Neél verwendete das Heisenberg Modell zur Entdeckung/Beschreibung von Antiferro-und Ferrimagnetismus.

en désignant par
$$\lambda$$
 et μ les proportions des ions magnétiques réparties sur chacun des deux groupes de sites.

L. Néel An. de phys. 12, 137-198 (1948)

- Simulationen/Berechnungen von Magnonen/Dispersionen
 - Aktuelle Forschung zu (gequetschten) Magnonen
 - Forschungsgebiet der Spintronik
- Nicht nur direkte Wechselwirkung

Weitere Arten von magnetischer **Ordnung**

- Ferrimagnete (1930er)
 - Antiferromagnete mit unterschiedlicher Magnetisierung für verschiedene Untergitter

L. Néel An. de phys. 12, 137-198 (1948)

N. Jiang et al. Nature 11,1601 (2020)

- Helimagnetismus (1959)
 - A. Yoshimori J. Phys. Soc. Jpn. 14, 807-821 (1959)
- Spin Glässer(1973)
 - Zufälliges aber kooperatives Einfrieren von Spins

D. Sherrington et al. PRL 35,26 (1975)

Kollinear und Nicht-kollinear

G. Toulouse, Commun. Phys. 2, 115 (1977).

Wikipedia.com

Fkf.mpg.de

Obacht

Wikipedia.com

Pfeildarstellung der Spins ist semi-klassisch. Stets beachten dass es sich um quantenmechansiche Magnetisierungsdichten handelt.

NEWSFLASH

TECHNOLOGY

INTERNATIONAL BUSINESS TIMES"

Revolutionary 'Magic Magnet' Altermagnetism Paves the Way for Advanced Electronic Devices

20.02.24

Experimental Evidence for a New Type of Magnetism

January 18, 2024 • Physics 17, s10

Physik

Süddeutsche Zeitung

Eine neue Art von Magnetismus

28.02.24

ALTERMAGNETISMUS

Neue Art von Magnetismus entdeckt Spektrum

22.02.24

27

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM: $M \neq 0$ $U_{\text{Hall}} \neq 0$

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM:
$$M \neq 0$$
 $U_{\text{Hall}} \neq 0$

- AFM:
$$M=0$$
 $U_{\mathrm{Hall}}=0$

Hall Effekt mit B-Feld

Mit B-Feld bereits bekannt

Anormaler Hall Effekt

Kein externes Feld B = 0

- FM:
$$M \neq 0$$
 $U_{\rm Hall} \neq 0$

- AFM:
$$M=0$$
 $U_{\rm Hall}=0$

- ??:
$$M = 0$$
 $U_{\text{Hall}} \neq 0$

(in manchen Richtungen)

H. Reichlova et al. arXiv:2012.15651

Symmetrien

Zeitumkehroperator

- Gegeben durch den Operator $\,\,{\mathcal T}:t o\,-t\,$
- Angewandt auf ein paar bekannte Größen

$$\mathcal{T}: v \to \frac{\mathrm{d}x}{-\,\mathrm{d}t} = -v$$

$$\mathcal{T}: j \to \frac{\mathrm{d}q}{-\,\mathrm{d}t} = -j$$

$$\mathcal{T}: B \to -B$$

$$\mathcal{T}: S \to -S$$

Symmetrien

Zeitumkehroperator

- Gegeben durch den Operator $\mathcal{T}:t o -t$
- Angewandt auf ein paar bekannte Größen

$$\mathcal{T}: v \to \frac{\mathrm{d}x}{-\,\mathrm{d}t} = -v$$

$$\mathcal{T}: j \to \frac{\mathrm{d}q}{-\,\mathrm{d}t} = -j$$

$$\mathcal{T}: B \to -B$$

$$\mathcal{T}: S \to -S$$

Spin-Gruppen

- Eine Symmetrie stellen wir da durch
 - Spin-Raum $[T_s || T_q]$ Gitter-Raum

L.Šmejkal et al. PRX **12**, 031042 (2022)

 Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

L.Šmejkal et al. PRX 12, 031042 (2022)

35

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Ferromagnetismus

Starke Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Ferromagnetismus: Nein

Starke Magnetisierung

Folge: Bandaufspaltung

Keine Zeitumkehrsymmetrie

L.Šmejkal et al. PRX 12, 040501 (2022)

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Antiferromagnetismus

Keine Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Folge: Bandentartung

Symmetrien: Zeitumkehr + Translation $[C_2||\mathbf{t}]$

Zeitumkehr + Inversion $C_2||\bar{E}|$

(Zeitumkehrsymmetrie)

L.Šmejkal et al. PRX 12, 040501 (2022)

Antiferromagnetismus:Ja

Keine Magnetisierung

des Gitters

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Altermagnetismus

Keine Magnetisierung

Frage zur Klassifizierung: Kann eine Gittertransformation die Zeitumkehr aufheben?

Altermagnetismus: Ja

Keine Magnetisierung

Folge: Bandaufspaltung?

Symmetrien: Zeitumkehr + Rotation $[C_2||A]$

Keine Zeitumkehrsymmetrie

L.Šmejkal et al. PRX 12, 040501 (2022)

Symmetrie Beschreibung der Phasen

Ferromagnetismus

Spin-Gruppe: $[E||\mathbf{G}]$

Antiferromagnetismus

Spin-Gruppe:

$$[E||\mathbf{G}] + [C_2||\mathbf{G}]$$

Altermagnetismus

Spin-Gruppe:

$$[E||\mathbf{H}] + [C_2||\mathbf{AH}]$$

Šmejkal et al. PRX

Ferromagnetismus

- Spin-Gruppe:
- Magnetisierung
- Isotrope aufgeteilte Energiebänder

Antiferromagnetismus

Spin-Gruppe:

Magnetisum und Altermagnetismus

$$[E||\mathbf{G}] + [C_2||\mathbf{G}]$$

- Keine Magnetisierung
- Isotrope entartete Energiebänder
 - (Im nichtrelativistischen Limit)

Altermagnetismus

Spin-Gruppe:

$$[E||\mathbf{H}] + [C_2||\mathbf{AH}]$$

- Keine Magnetisierung
- Alternierende Spin-Polarisation
 - Im k- und r-Raum
- Gleichbesetze und aufgeteilte Up u. Down Bänder
 - (Im nichtrelativistischen Limit)

Magnetisum und Altermagnetismus

52

Ferromagnetismus

- Spin-Gruppe: $[E||\mathbf{G}]$
- Magnetisierung
- Isotrope aufgeteilte Energiebänder
 - Magnet-Transport-Effekte

Antiferromagnetismus

Spin-Gruppe:

$$[E||\mathbf{G}] + [C_2||\mathbf{G}]$$

- Keine Magnetisierung
 - Robust zu externen Felder
 - Keine Streufelder
- Isotrope entartete Energiebänder
 - (Im nichtrelativistischen Limit)

Altermagnetismus

Spin-Gruppe:

$$[E||\mathbf{H}] + [C_2||\mathbf{AH}]$$

- Keine Magnetisierung
- Alternierende Spin-Polarisation
 - Im k- und r-Raum
- Gleichbesetze und aufgeteilte Up u. Down Bänder
 - (Im nichtrelativistischen Limit)

Altermagnetismus

Vorteile/Einfluss

- Anomaler Hall Effekt/GMR/TMR
- Robust, weil keine Magnetisierung
 - keine Streumagentisierung (aufwendiges SAFS(GMR-Stacks) im Moment)
- Spinwellen im THz-Bereich
- Spin Dynamik im ps-Bereich (FM µs-Bereich)
- "einfache" Symmetrie Klassifizierung erlaubt Folgerung der beobachteten Eigenschaften
 - Relativistische Effekt nicht nötig aber addierbar

L.Šmejkal et al. PRX 12, 040501 (2022)

R.A.Duine et al. Nature 14, 217-219 (2018)

Altermagnetismus

Ausblick

ejkal et al. PRX 12, 040501 (2022)