Question 1

Correct

Marked out of 1.00

Flag question

A binary number is a combination of 1s and 0s. Its nth least significant digit is the nth digit starting from the right starting with 1. Given a decimal number, convert it to binary and determine the value of the the 4th least significant digit.

Example

number = 23

- Convert the decimal number 23 to binary number: $23^{10} = 2^4 + 2^2 + 2^1 + 2^0 = (10111)_2$.
- The value of the 4th index from the right in the binary representation is 0.

Function Description

Complete the function fourthBit in the editor below.

Complete the function fourthBit in the editor below.

fourthBit has the following parameter(s):

int number: a decimal integer

Returns:

int: an integer 0 or 1 matching the 4th least significant digit in the binary representation of number.

Constraints

 $0 \le \text{number} < 2^{31}$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The only line contains an integer, number.

Sample Case 0

Sample Input 0

Sample Output 0 0 **Explanation 0** Convert the decimal number 32 to binary number: $32_{10} = (100000)_2$. The value of the 4th index from the right in the binary representation is 0. Sample Case 1 Sample Input 1 STDIN Function $77 \rightarrow \text{number} = 77$ Sample Output 1 1 **Explanation 1** Convert the decimal number 77 to binary number: $77_{10} = (1001101)_2$. The value of the 4th index from the right in the binary representation is 1. Answer: (penalty regime: 0 %)

Sample Input 0

STDIN Function

 $32 \rightarrow \text{number} = 32$

```
1 | /*
     * Complete the 'fourthBit'
 2
     * The function is expected
 4
     * The function accepts INTE(
 6
     */
 7
   int fourthBit(int number)
9 \ {
10
       int binary[32];
11
        int i=0;
        while(number>0)
12
13 ▼
            binary[i]=number%2;
14
15
            number/=2;
16
            1++;
17
18
        if(i>=4)
19 🔻
            return binary[3];
20
21
        else
22
23
        return 0;
24
```

	Test	Ex
~	<pre>printf("%d", fourthBit(32))</pre>	0
~	<pre>printf("%d", fourthBit(77))</pre>	1
Passe	d all tests! 🗸	

Question **2**

Correct

Marked out of 1.00

Flag question

Determine the factors of a number (i.e., all positive integer values that evenly divide into a number) and then return the pth element of the list, sorted ascending. If there is no pth element, return 0.

Example

$$n = 20$$

p = 3

The factors of 20 in ascending order are $\{1, 2, 4, 5, 10, 20\}$. Using 1-based indexing, if p = 3, then 4 is returned. If p > 6, 0 would be returned.

Function Description

Complete the function pthFactor in the editor below.

Function Description

Complete the function pthFactor in the editor below.

pthFactor has the following parameter(s):

int n: the integer whose factors are to be found

int p: the index of the factor to be returned

Returns:

int: the long integer value of the pth integer factor of n or, if there is no factor at that index, then 0 is returned

Constraints

$$1 \le n \le 10^{15}$$

$$1 \le p \le 10^9$$

Input Format for Custom Testing

Input from stdin will be processed as follows and passed to the function.

The second line contains an integer p, the 1-based index of the factor to return.

Sample Case 0

Sample Input 0

STDIN Function ----- ------ $10 \rightarrow n = 10$

 $3 \rightarrow p = 3$

Sample Output 0

5

Explanation 0

Factoring n = 10 results in $\{1, 2, 5, 10\}$. Return the p = 3^{rd} factor, 5, as the answer.

Sample Case 1

Sample Input 1

STDIN Function

```
STDIN Function
10 \rightarrow n = 10
5 \rightarrow p = 5
Sample Output 1
0
Explanation 1
Factoring n = 10 results in \{1, 2, 5, 10\}.
There are only 4 factors and p = 5,
therefore 0 is returned as the answer.
Sample Case 2
Sample Input 2
STDIN Function
1 \rightarrow n = 1
1 \rightarrow p = 1
Sample Output 2
```

inere are only 4 factors and p = 5,

therefore 0 is returned as the answer.

Sample Case 2

Sample Input 2

STDIN Function

$$1 \rightarrow n = 1$$

$$1 \rightarrow p = 1$$

Sample Output 2

1

Explanation 2

Factoring n = 1 results in $\{1\}$. The p = 1st factor of 1 is returned as the answer.

Answer: (penalty regime: 0 %)

```
1 ▼ /*
2
     * Complete the 'pthFactor' function below.
3
4
    * The function is expected to return a LONG_INTEGER.
    * The function accepts following parameters:
5
     * 1. LONG_INTEGER n
7
    * 2. LONG_INTEGER p
8
     */
9
    long pthFactor(long n, long p)
10
11 ▼ {
12
        int count=0;
        for(long i=1;i<=n;++i)</pre>
13
14 ▼
15
            if(n%i==0)
16 *
17
                count++;
                if(count==p)
18
19 *
                {
                     return i;
20
```

21222324

25 }

return 0;

	Test	Expected	Got	
~	<pre>printf("%ld", pthFactor(10, 3))</pre>	5	5	~
~	<pre>printf("%ld", pthFactor(10, 5))</pre>	0	0	~
~	<pre>printf("%ld", pthFactor(1, 1))</pre>	1	1	~

Passed all tests! 🗸