Bacterial diversity in the freshwater sponges of Sundarban and their potential role in biomonitoring toxic element pollution

Dhruba Bhattacharya¹, Namrata Jiya², Sangita Mondal¹, Agnita Acharya¹, Abhijit Chatterjee³, Utpal Bakshi⁴, Avinash Sharma^{2*}, Abhrajyoti Ghosh^{1*}

¹Department of Biological Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India

²National Centre for Microbial Resource, BRIC-National Centre for Cell Science, Pune-411007, India

³Department of Chemical Sciences, Bose Institute, EN Block, Sector-V, Kolkata-700091, India

⁴Instistitute of Health Sciences, Presidency University, Kolkata

*Corresponding author:

Abhrajyoti Ghosh, Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata-700091, WB, India.

E-mail: abhrajyoti.ghosh@jcbose.ac.in / aghosh78@gmail.com, Tel.: +917044287317

Avinash Sharma, National Centre for Microbial Resource, BRIC-National Centre for Cell Science, Pune-411007, India

E-mail: avinash@nccs.res.in

Table S1: Sample IDs, sponge sample details, physicochemical parameters, and concentrations of potentially toxic elements (PTEs) measured in this study.

Sample ID	Group ID	Location	Sample	Physicochemical properties							Concentration of PTEs (mg/L)						
				pН	Conductivity (mS/cm)	Salinity (ppt)	TDS (mg/L)	Resistivity (Ω·m)	DO concentration (mg/L)	As	Zn	Fe	Cu	Pb	Cd	Cr	
SP1.1	SP1	Sagar island	Spongilla alba	8.1	10.4	12.5	10.4	76.8	8.9	2.3	0.975	16.25	0.65	0	0	0.275	
SP1.2	SP1	Sagar island	Spongilla alba	8.4	11.1	11.9	10.1	77.2	8.4	2.75	1.025	15.25	0.725	0	0	0.3	
SP1.3	SP1	Sagar island	Spongilla alba	8	11.27	12.3	10.1	76.6	8.6	2.375	1.175	17.75	0.7	0	0	0.325	
SP2.1	SP2	Sagar island	Eunapius carteri	7.9	13.9	16.4	12.2	81.5	7.7	3.025	1.325	14.75	0.85	0	0	0	
SP2.2	SP2	Sagar island	Eunapius carteri	7.8	13.4	16.7	12.4	82	7.3	2.975	1.2	15.75	0.925	0	0	0	
SP2.3	SP2	Sagar island	Eunapius carteri	8.1	13.7	16.4	12	81.8	7.3	3.9	1.15	16.5	1.025	0	0	0	
SP3.1	SP3	Sagar island	Ephydatia fluviatilis	7.7	11.5	13.2	10.8	78.2	8.7	3.5	1.475	14.75	0.975	0	0	0	
SP3.2	SP3	Sagar island	Ephydatia fluviatilis	8.1	11.3	13.2	10.6	77.9	8.6	4.05	1.775	14	1.15	0	0	0	
SP3.3	SP3	Sagar island	Ephydatia fluviatilis	7.9	11.3	12.9	10.7	78	8.3	3.775	1.7	14.5	1.025	0	0	0	
SP4.1	SP4	Ghoramara	Radiospongilla cerebellata	7.3	7.7	7	5.7	47.6	9.6	2.55	1.725	22.75	1.3	0	0	0	
SP4.2	SP4	Ghoramara	Radiospongilla cerebellata	7.3	7.5	7.5	5.5	47.2	9.5	2.45	1.625	24	1.375	0	0	0	
SP4.3	SP4	Ghoramara	Radiospongilla cerebellata	7.4	7.2	7.2	5.4	47.4	9.6	2.325	1.775	22.25	1.525	0	0	0	
SP5.1	SP5	Ghoramara	Ephydatia meyeni	7.3	6.7	6.7	6.1	36.8	8.9	3.375	1.1	17.25	0.9	0	0.475	0.4	
SP5.2	SP5	Ghoramara	Ephydatia meyeni	7.3	6.4	6.3	6.3	37	9.1	3.6	1.225	19.25	1.025	0	0.375	0.3	
SP5.3	SP5	Ghoramara	Ephydatia meyeni	7.5	6.4	6.6	6.3	37.1	8.8	3.95	1.375	19	1.025	0	0.325	0.4	
SP6.1	SP6	Ghoramara	Spongilla alba	7.5	6.3	7.7	6.7	42.5	9.3	4.95	0.725	14.75	0.65	0.275	0	0.225	
SP6.2	SP6	Ghoramara	Spongilla alba	7.6	6.2	7.9	6.8	42.2	9	5.3	0.475	13.25	0.475	0.475	0	0.275	
SP6.3	SP6	Ghoramara	Spongilla alba	7.3	6.6	7.3	6.7	42.6	9.4	5.25	0.425	14.75	0.55	0.3	0	0.4	

Table S2: Sample IDs, water sample details, physicochemical parameters, and concentrations of potentially toxic elements (PTEs) measured in this study.

Sample id	Group id	Location	Sample		Physicochemical properties						Concentration of PTEs (mg/L)						
				pН	Conductivity (mS/cm)	Salinity (ppt)	TDS (mg/L)	Resistivity (Ω·m)	DO concentration (mg/L)	As	Zn	Fe	Cu	Pb	Cd	Cr	
S1.1	S1	Sagar island	Water	8.1	10.4	12.5	10.4	76.8	8.9	0.058	0.025	0.45	0.014	0.03	0.026	0.017	
S1.2	S1	Sagar island	Water	8.4	11.1	11.9	10.1	77.2	8.4	0.061	0.031	0.51	0.017	0.03	0.03	0.021	
S1.3	S1	Sagar island	Water	8	11.27	12.3	10.1	76.6	8.6	0.055	0.036	0.61	0.017	0.034	0.029	0.013	
S2.1	S2	Sagar island	Water	7.9	13.9	16.4	12.2	81.5	7.7	0.044	0.028	0.44	0.019	0.039	0.019	0.018	
S2.2	S2	Sagar island	Water	7.8	13.4	16.7	12.4	82	7.3	0.049	0.031	0.4	0.02	0.044	0.016	0.015	
S2.3	S2	Sagar island	Water	8.1	13.7	16.4	12	81.8	7.3	0.051	0.028	0.47	0.021	0.051	0.014	0.017	
S3.1	S3	Sagar island	Water	7.7	11.5	13.2	10.8	78.2	8.7	0.074	0.031	0.61	0.031	0.068	0.022	0.025	
S3.2	S3	Sagar island	Water	8.1	11.3	13.2	10.6	77.9	8.6	0.081	0.035	0.68	0.035	0.071	0.025	0.031	
S3.3	S3	Sagar island	Water	7.9	11.3	12.9	10.7	78	8.3	0.073	0.038	0.62	0.038	0.077	0.028	0.027	
S4.1	S4	Ghoramara	Water	7.3	7.7	7	5.7	47.6	9.6	0.055	0.022	0.58	0.026	0.041	0.03	0.03	
S4.2	S4	Ghoramara	Water	7.3	7.5	7.5	5.5	47.2	9.5	0.058	0.023	0.61	0.019	0.043	0.025	0.032	
S4.3	S4	Ghoramara	Water	7.4	7.2	7.2	5.4	47.4	9.6	0.06	0.02	0.58	0.021	0.049	0.028	0.03	
S5.1	S5	Ghoramara	Water	7.3	6.7	6.7	6.1	36.8	8.9	0.039	0.016	0.34	0.011	0.024	0.019	0.011	
S5.2	S5	Ghoramara	Water	7.3	6.4	6.3	6.3	37	9.1	0.037	0.015	0.33	0.01	0.029	0.02	0.014	
S5.3	S5	Ghoramara	Water	7.5	6.4	6.6	6.3	37.1	8.8	0.039	0.019	0.37	0.015	0.032	0.029	0.019	
S6.1	S6	Ghoramara	Water	7.5	6.3	7.7	6.7	42.5	9.3	0.045	0.032	0.51	0.019	0.035	0.029	0.017	
S6.2	S6	Ghoramara	Water	7.6	6.2	7.9	6.8	42.2	9	0.049	0.033	0.55	0.025	0.036	0.031	0.02	
S6.3	S6	Ghoramara	Water	7.3	6.6	7.3	6.7	42.6	9.4	0.051	0.031	0.47	0.023	0.041	0.025	0.018	

Fig. S1: Confocal microscopy images of sponge spicules showing megascleres and gemmoscleres. Megascleres appear as elongated spicules, while gemmoscleres are indicated by arrows. (A–F) Spicules of *Spongilla alba* (SP1), *Eunapius carteri* (SP2), *Ephydatia fluviatilis* (SP3), *Radiospongilla cerebellata* (SP4), *Ephydatia meyeni* (SP5), and *Spongilla alba* (SP6).

Fig. S2: Alignment of the 28S rDNA D3 domain from *Spongilla alba* (GenBank accession No. PV413052), *Eunapius carteri* (GenBank accession No. PV413055), *Ephydatia fluviatilis* (GenBank accession No. PV413050), *Radiospongilla cerebellata* (GenBank accession No. PV413053), *Ephydatia meyeni* (GenBank accession No. PV413054), and *Spongilla alba* (GenBank accession No. PV413051). Sequences were aligned using ClustalW. Identical sites and gaps are indicated by hyphens.

Fig. S3: Neighbour Joining tree based on D3 domain of 28S rDNA sequences of freshwater sponges, constructed using the Tamura 3-parameter model in MEGA. Bootstrap values (expressed as percentages based on 1000 replicates) are displayed at the nodes. The scale bar represents genetic distance.

Fig. S4: Concentrations of various potentially toxic elements (PTEs) measured in sponge and water samples. Significance levels are indicated as follows: *p < 0.05; **p < 0.01; ***p < 0.001, ****p < 0.0001.

Fig. S5: The rarefaction curves obtained based on number of reads and the values of alpha diversity indices based on number of OTUs in sponge and water samples.

Fig. S6: Relative abundance of top ten phyla in sponge (A) and water samples (B), and top ten genera in sponge (C) and water (D) samples.

Fig. S7: Relative abundance of phyla in *Spongilla alba* (A) and its ambient water (B) collected from Sagar Island

Fig. S8: Relative abundance of phyla in *Eunapius carteri* (A) and its ambient water (B) collected from Sagar Island

Fig. S9: Relative abundance of phyla in *Ephydatia fluviatilis* (A) and its ambient water (B) collected from Sagar Island

Fig. S10: Relative abundance of phyla in *Radiospongilla cerebellata* (A) and its ambient water (B) collected from Ghoramara

Fig. S11: Relative abundance of phyla in *Ephydatia meyeni* (A) and its ambient water (B) collected from Ghoramara

Fig. S12: Relative abundance of phyla in *Spongilla alba* (A) and its ambient water (B) collected from Ghoramara