

### AME554-Additive Manufacturing Technologies

## **Project Presentation**

# COVID-19 Killer-A Smart Alcohol Sanitizing Robot

Chih-Yi Wu 2700335481 Jiaoran Wang 6205909903 Yaan Wang 7849395029

18/11/20

### **Contents**





Goals and Background



• Additive Manufacturing



\_\_

\_\_



Conclusions & Future Works







Time-consuming And Laborious

Difficult To Reach Narrow Places

**Expensive Equipment** 

Wild COVID-19 Spreading



**Floor Sanitation** 



**Fully Automatic** 



**Small Size** 



**Low Cost** 







# Prototyping







#### Isolation shelfs







□ Robot CAR









□ CAD Assembly



# Components





















UNO R3 board (with IO expansion board) Battery compartment



Wheels Infrared receiver



**Control Methods:** 

- **Infrared Control**
- Obstacle Avoidance
- Line Tracking
- Bluetooth Control
- Write-in Path Planning











Spraying Device



**3D Printed** Components







#### **Disinfectant Spraying Device**







• Spray System Components

• 2- PCB Schematic









DISINFECTANT
Spraying Device





Components **3D Printed** 











# Components







### 3D Printer and Filament Material





PRUSA i3 MK2







**Filament Spools** 



- 1. PLA (1.5mm grey)
- 2. PLA (1.5mm black)
- 3. TPU (3.0mm blue)
- 4. TPU (1.5mm red)



nterface
PrusaSlicer-2.2.0 based on Slic3r
File Edit Window View Configuration Help







### **Summary of Model Printing Information**

|  | Name               |                                  | Infill (%) | Infill shape                  | Filament width(mm) | Method | Time  | Weight(g<br>) |
|--|--------------------|----------------------------------|------------|-------------------------------|--------------------|--------|-------|---------------|
|  | Isolation<br>shelf | Top plate                        | 10%        | Rectangular                   | 0.35               | FAST   | 1h15m | 26.9          |
|  |                    | Storeroom                        | 20%        |                               |                    |        | 3h4m  | 70.5          |
|  |                    | Bottom Frame                     |            |                               |                    |        | 3h20m | 72.6          |
|  | Trailer            | wheel                            |            | Concentric                    | 0.10               | DETAIL | 33m   | 4.2           |
|  |                    | Panel                            |            | Triangular                    | 0.20               | NORMAL | 2h52m | 40.1          |
|  |                    | Shaft                            | 50%        | Triangular<br>+<br>Concentric | 0.10               | DETAIL | 1h2m  | 2.3           |
|  |                    | Shaft<br>(for experiment<br>use) | 20%        |                               |                    |        | 50m   | 1.9           |
|  |                    |                                  | 80%        |                               |                    |        | 1h18m | 2.7           |
|  |                    |                                  | 90%        |                               |                    |        | 1h22m | 2.9           |
|  | Water<br>Tank      | Tank                             | 20%        | Concentric                    | 0.35               | FAST   | 1h59m | 50.1          |
|  |                    | Tank Holder                      |            |                               |                    |        | 2h1m  | 44.4          |
|  |                    |                                  |            |                               |                    |        |       |               |





# **Multichip Antenna Printing**







#### **✓** Shaft with different infill(%)



**✓** Deformation Curve











Filament Width (mm)

[0.10mm, 0.15mm, 0.20mm, 0.35mm]

Method

| Number | Method         |  |  |
|--------|----------------|--|--|
| 1      | ULTRADETAIL    |  |  |
| 2      | DETAIL         |  |  |
| 3      | LINEAR ADVANCE |  |  |
| 4      | OPTIMAL        |  |  |
| 5      | NORMAL         |  |  |
| 6      | FAST           |  |  |

Infill (%):

[5%, 10%-90% ( $\Delta$ =10%)]



Printing complexity



Time(mins)

Structural Strength





Independent Variable: [X1, X2, X3]







## PRUSA i3 MK2-infill setting













# Parameter → Printing Efficiency (time)

Time(min) = 494.241 - 635.714\*Filament\_Width(mm) + 2.249\*Infill - 67.744\*Method(i)





### Linear Regression



# > Pearson Correlation Analysis



# **Problems and Optimization**



## Problems and Optimization





Axle of the wheel





# **Problems and Optimization**







#### References

https://en.wikipedia.org/wiki/Pearson\_correlation\_coefficient

- [1] The SPSSAU project (2020). SPSSAU. (Version 20.0)[Online Application Software]. Retrieved from https://www.spssau.com.
- [2] Hauke J, Kossowski T. Comparison of Values of Pearson's and Spearman's Correlation Coefficients on the Same Sets of Data[J]. Quaestiones Geographicae, 2011, 30(2):87-93.
- [3] Arndt S, Turvey C, Andreasen N C. Correlating and predicting psychiatric symptom ratings: Spearmans r versus Kendalls tau correlation[J]. Journal of Psychiatric Research, 1999, 33(2):97-104.
- [1] The SPSSAU project (2020). SPSSAU. (Version 20.0)[Online Application Software]. Retrieved from https://www.spssau.com.
- [2] Sun Dao-de. Selection of the Linear Regression Model According to the Parameter Estimation[J]. Wuhan University Journal of Natural Sciences, 2000, 5(4):400-405.
- [3] Barassi M R. Microeconometrics; Methods and Applications by A. Colin Cameron; Pravin K. Trivedi[J]. 2005.