T.D. XII - Statistiques descriptives

I - Séries statistiques à un caractère

Solution de l'exercice 1.

1. Représentons les notes dans un tableau d'effectifs

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	1	1	2	1	3	2	4	3	2	3	2	1	0	1	1	0	0	0

2. En utilisant le tableau précédent, on obtient le diagramme en bâtons :

- 3. La modalité 4 a un effectif de 1. La classe [10, 14] a un effectif de 3+2+3+2=10. La classe [0, 5] a un effectif de 0+0+0+1+1+2=4.
- 4. Le tableau des effectifs cumulés est le suivant :

Γ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	0	0	0	1	2	4	5	8	10	14	17	19	22	24	25	25	26	27	27	27	27

On obtient la courbe suivante :

 ${\bf 5.}\,$ L'effectif total étant de 27 étudiants, on obtient la courbe des fréquences :

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	$\frac{1}{27}$	$\frac{1}{27}$	$\frac{2}{27}$	$\frac{1}{27}$	$\frac{3}{27}$	$\frac{2}{27}$	$\frac{4}{27}$	$\frac{3}{27}$	$\frac{2}{27}$	$\frac{3}{27}$	$\frac{2}{27}$	$\frac{1}{27}$	0	$\frac{1}{27}$	$\frac{1}{27}$	0	0	0

Ainsi que la courbe des fréquences cumulées :

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
0	0	0	$\frac{1}{27}$	$\frac{2}{27}$	$\frac{4}{27}$	$\frac{5}{27}$	$\frac{8}{27}$	$\frac{10}{27}$	$\frac{14}{27}$	$\frac{17}{27}$	$\frac{19}{27}$	$\frac{22}{27}$	$\frac{24}{27}$	$\frac{25}{27}$	$\frac{25}{27}$	$\frac{26}{27}$	1	1	1	1

- **6.** La valeur modale est le caractère dont l'effectif est le plus important. Ainsi, la valeur modale est 4.
- 7. La valeur médiane est la valeur m pour laquelle le nombre d'élèves ayant eu strictement moins de m et le nombre d'élèves ayant eu strictement plus que m sont inférieurs à $\frac{27}{2}$. C'est la valeur pour laquelle les fréquences cumulées dépassent 0,5. Ainsi, la médiane vaut 9.

- 8. En utilisant un outil pour effectuer les calculs, on obtient que
 - * la moyenne vaut environ 9,52,
 - * la variance vaut environ 11,73,
 - * l'écart-type vaut environ 3,42.

Solution de l'exercice 2.

quantitatif.

- 1. La population est un ensemble de 40 téléviseurs. Le caractère étudié est le nombre de pannes. Il s'agit d'un caractère
- 2. On obtient le diagramme en bâtons suivant :

- **3.** Les valeurs modales sont les valeur ayant l'effectif le plus important. Ici, les valeurs modales sont 1 et 2.
- 4. En utilisant un outil de calcul on obtient :
 - * La moyenne vaut $\frac{11+2\times11+3\times8+4\times4+5}{40}\simeq 1{,}95.$
 - * L'écart-type vaut $\sqrt{\frac{5\cdot 1.95^2 + 11\cdot 0.95^2 + 11\cdot 0.05^2 + 8\cdot 1.05^2 + 4\cdot 2.05^2 + 3.05^2}{40}} \simeq 1,26.$
- 5. Le tableau des effectifs cumulés est :

	0	1	2	3	4	5
ĺ	5	16	27	35	39	40

Le tableau des fréquences cumulées est :

0	1	2	3	4	5
$\frac{5}{4}$	$\frac{16}{40}$	$\frac{27}{40}$	$\frac{35}{40}$	$\frac{39}{40}$	1

- **6.** La médiane est égale au plus petit caractère pour lequel la fréquence dépasse 0,5. Ainsi, la médiane vaut 2.
- ${\bf 7.\,a)}\,$ Le pourcentage de téléviseurs ayant eu entre 1 et 3 pannes est égal à

$$\frac{11+11+8}{40} = \frac{3}{4} = 75\%.$$

 ${\bf b)}\,$ Le pourcentage de téléviseurs ayant eu au moins une panne est égal à

$$\frac{40-5}{40} = \frac{7}{8} = 87,5\%.$$

II - Séries statistiques à deux caractères

Solution de l'exercice 3.

- 1. À l'aide d'un logiciel de calcul, on obtient
 - * la moyenne m_X de l'âge : $m_X \simeq 4,43$,
 - * la variance de l'âge : $\sigma_X^2 \simeq 6.10$,
 - * la moyenne du coût de maintenance : $m_Y \simeq 13,22,$
 - * sa variance : $\sigma_V^2 \simeq 32,84$,
 - * la covariance entre X et $Y: \sigma_{X,Y} \simeq 11,83$.

On obtient ainsi une droite de régression linéaire d'équation

$$y = \frac{\sigma_{X,Y}}{\sigma_X^2}(x - m_X) + m_Y = 1,93(x - 4,43) + 13,22.$$

2. Le coefficient de corrélation est égal à

$$r = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y} \simeq 0.83.$$

Solution de l'exercice 4.

- 1. À l'aide d'un logiciel de calcul, on obtient
 - * la moyenne m_t du temps : $m_X \simeq 5.5$,
 - * la variance du temps : $\sigma_t^2 \simeq 8,25$,
 - * la moyenne du nombre de nuitées : $m_N \simeq 33,1$,
 - * sa variance : $\sigma_N^2 \simeq 34.5$,
 - * la covariance entre t et $N: \sigma_{t,N} \simeq 15,6$.

On obtient ainsi une droite de régression linéaire d'équation

$$y = \frac{\sigma_{X,Y}}{\sigma_X^2}(x - m_X) + m_Y = 1.9(x - 5.5) + 33.1.$$

2. Le coefficient de corrélation est égal à

$$r = \frac{\sigma_{X,Y}}{\sigma_X \sigma_Y} \simeq 0.92.$$