SCMA104 Systems of Ordinary Differential Equations and Applications in Medical Science

Pairote Satiracoo

2024-08-21

Contents

1	หลักการและความสำคัญของแคลคูลัสและระบบสมการเชิงอนุพันธ์สามัญ	1
2	ลิมิต (Limits) 2.1 ความต่อเนื่อง (Continuity)	17 42
3	อนุพันธ์ (Derivatives) 3.1 อนุพันธ์ (Derivatives) 3.2 การคำนวณหาอนุพันธ์ 3.3 สูตรสำหรับหาอนุพันธ์ 3.4 อนุพันธ์อันดับสูง (High Order Derivatives)	55 55 64 69

	3.5	การตีความอนุพันธ์ (Interpretation of Derivatives)	71
	3.6	กฎลูกโซ่ (The Chain Rule)	81
	3.7	อนุพันธ์ของฟังก์ชันอินเวอร์ส (Derivatives of Inverse Functions)	91
	3.8	Differentials, Implicit Differentiation and Related Rates	97
	3.9	อนุพันธ์ของฟังก์ชันตรีโกณมิติและอินเวอร์สของฟังก์ชันตรีโกณมิติ	126
	3.10	อนุ่พันธ์ของฟังก์ชันเอกซ์โพเนนเชียลและฟังก์ชันลอการิทึม	142
4	การปร	ะยุกต์ของอนุพันธ์ (Applications of Differentiation)	153
	4.1	Applications of derivatives related to students discipline	154
	4.2	Sketching the graph of a function from the derivative	161
	4.3	การประยุกต์ของ Monotonicity และ Concavity	184
	4.4	การหาค่าเหมาะที่สุด (Optimization)	189
	4.5	รูปแบบไม่กำหนด (Indeterminate form) และกฎของโลปิตาล (L'Hopital Rule)	197
5	การหาปริพันธ์ (Integrations)		
	5.1	ปฏิยานุพันธ์ (Antiderivatives)	207
	5.2	ปริพันธ์จำกัดเขต (The Definite Integral)	213
	5.3	ทฤษฎีพื้นฐานของแคลคูลัส (The fundamental Theorem of Calculus)	217

6	เทคนิ	คของการหาปริพันธ์ (Techniques of Integration)	229
	6.1	การหาปริพันธ์โดยการเปลี่ยนตัวแปร (Integration by Substitution)	230
	6.2	การหาปริพันธ์โดยแยกส่วน (Integration by Parts)	239
	6.3	การหาปริพันธ์โดยเศษส่วนย่อย (Integration by Partial Fractions)	245
	6.4	ปริพันธ์ไม่ตรงแบบ (Improper Integrals)	252
	6.5	แบบฝึกหัด	261

Chapter 5

การหาปริพันธ์ (Integrations)

5.1 ปฏิยานุพันธ์ (Antiderivatives)

จากเรื่องการหาอนุพันธ์ ถ้าวัตถุชนิดหนึ่งมีสมการการเคลื่อนที่ คือ $s=t^3$ โดยที่วัตถุนี้เคลื่อนที่ได้ระยะ ทาง s เมตร เมื่อเวลาผ่านไป t วินาที แล้วเราสามารถบอกได้ว่าวัตถุเคลื่อนที่ด้วยความเร็ว $v=3t^2$ เมตร/วินาที แต่เรารู้ว่า $v=\frac{ds}{dt}$ ดังนั้น $\frac{ds}{dt}=3t$ ในทางกลับกันถ้าเรารู้ว่าสมการความเร็วของวัตถุชนิด 207

หนึ่ง ถ้า $v=3t^2$ แสดงว่า $\frac{ds}{dt}=3t^2$ แล้วลองนึกย้อนกลับว่าสมการการเคลื่อนที่ของวัตถุชนิดนี้ คือ สมการใด จะเห็นว่าสมการการเคลื่อนที่ของวัตถุนี้อาจจะอยู่ในรูป

$$s=t^3 \ s=t^3-2$$
 หรือ $s=t^3+5$

ซึ่งทั้งสามสมการนี้มี $\frac{ds}{dt}=3t^2$ แต่เราก็ยังไม่แน่ใจว่าเป็นสมการใดกันแน่หรืออาจไม่ใช่ทั้งสามสมการนี้ก็ได้ แต่เราสามารถคาดคะเน่ได้ว่าสมการการเคลื่อนที่ของวัตถุนี้ควรจะอยู่ในรูป

$$s = t^3 + c$$

โดยที่ c เป็นค่าคงตัว สมการการเคลื่อนที่ทั้งสี่สมการดังกล่าวนี้เป็นตัวอย่างของ "ปฏิยานุพันธ์" ของ $v=3t^2$

ในกรณีทั่วไป เราจะนิยามปฏิยานุพันธ์ของฟังก์ชันดังต่อไปนี้

นิยาม 5.1. ฟังก์ชัน F เป็นปฏิยานุพันธ์ (antiderivative) ของฟังก์ชัน f บนช่วง I ถ้า F'(x)=f(x) สำหรับทุก ๆ ค่าของ x ในช่วง I

ตัวอย่าง 5.1. จงแสดงว่า $F(x)=x^2-2x-3$ เป็นปฏิยานุพันธ์ของฟังก์ชัน f(x)=2x-2 บน ช่วง $(-\infty,\infty)$

วิธีทำ จาก $F(x)=x^2-2x-3$ จะได้ F'(x)=2x-2 นั่นคือ F'(x)=f(x) สำหรับทุก ๆ x ในช่วง $(-\infty,\infty)$

ตัวอย่าง 5.2. ให้ $f(x)=2x^{3/2}$ จงหาปฏิยานุพันธ์ของ f บนช่วง $(0,\infty)$

วิธีทำ ให้
$$F_1(x)=rac{4}{5}x^{5/2}$$
 จะได้ $F_1'(x)=2x^{3/2}$ สำหรับ $x>0$

และให้
$$F_2(x)=rac{4}{5}x^{5/2}+2$$
 จะได้ $F_2'(x)=2x^{3/2}$ สำหรับ $x>0$

และให้
$$F_3(x) = rac{4}{5} x^{5/2} - 5$$
 จะได้ $F_3'(x) = 2 x^{3/2}$ สำหรับ $x > 0$

ดังนั้น F_1,F_2 และ F_3 ต่างก็เป็นปฏิยานุพันธ์ของ $f(x)=2x^{3/2}$ บนช่วง $(0,\infty)$ และแต่ละค่าคงตัว C ถ้าให้ $F(x)=(4/5)x^{5/2}+C$ จะทำให้ $F'(x)=2x^{3/2}$ สำหรับทุก $x\in(0,\infty)$

ดังนั้น เราสามารถสรุปได้ว่าฟังก์ชัน F ใด ๆ ที่

$$F(x) = \frac{4}{5}x^{5/2} + C$$

เป็นปฏิยานุพัน์ของ $f(x)=2x^{3/2}$ บนช่วง $(0,\infty)$ เมื่อ C เป็นค่าคงตัว

จากตัวอย่างนี้ฟังก์ชัน F ที่นิยาม โดย (

210

) เป็นรูปทั่วไปของปฏิยานุพันธ์ของ $f(x)=2x^{3/2}$ บน $(0,\infty)$ และให้สังเกตว่าช่วง $(0,\infty)$ เป็น โดเมนของ f

ข้อสังเกต

- 1. ถ้า f และ g เป็นฟังก์ชันซึ่ง $f^{'}(x)=g^{'}(x)$ สำหรับทุก ๆ x ในช่วง I แล้วจะมีค่าคงที่ K ที่ ทำให้ f(x)=g(x)+K
- 2. ถ้า F เป็นปฏิยานุพันธ์เฉพาะของ f บนช่วง I แล้วแต่ละปฏิยานุพันธ์ของ f บนช่วง สามารถถูก เขียนได้ในรูป F(x)+C เมื่อ C เป็นค่าคงตัว

5.1.1 แบบฝึกหัด

จงหาปฏิยานุพันธ์ของฟังก์ชันที่กำหนดให้ดังต่อไปนี้

2

$$f(x) = 0$$

$$f(x) = 4x$$

$$f(x) = 3x^2$$

$$f(x) = x^3$$

$$f(x) = \sqrt{x}$$

$$f(x) = e^x$$

$$f(x) = \sin x$$

$$f(x) = \frac{1}{x^2 + 1}$$

เฉลยแบบฝึกหัด 1.1.1 กำหนดให้ C แทนค่าคงตัวใด ๆ

2

- 1. *C*
- $2.2x^2 + C$
- 3. $x^3 + C$
- 4. $\frac{x^4}{4} + c$

$$5. \frac{2x^{3/2}}{3} + C$$

6.
$$e^x + C$$

$$7. - \cos x + C$$

8.
$$\tan^{-1} x + C$$

5.2 ปริพันธ์จำกัดเขต (The Definite Integral)

5.2.1 Integration คืออะไร

Integration Calculus เป็นวิชาที่เกี่ยวกับการคำนวณหา พื้นที่และปริมาตรของรูปทรงต่างๆโดยอาศัยหลัก การที่ว่า รูปทรงใดๆเกิดจากการ ประกอบกันของชิ้นส่วนเล็กๆจำนวนมากมาย (infinity) ในบทนี้เราจะ ศึกษา เกี่ยวกับ

- การประมาณค่าพื้นที่
- The definite integral

• ทฤษฎีเบื้องต้น และทฤษฎีพื้นฐานของแคลคูลัส

5.2.2 การประมาณค่าพื้นที่และปริพันธ์จำกัดเขต

พิจารณาฟังก์ชัน $y=f(x)\geq 0$ บนช่วงเปิด [a,b] ถ้าเราต้องการประมาณค่าพื้นที่ที่ล้อมรอบด้วยส่วน โค้ง y=f(x) แกน x และเส้นตรง x=a , x=b

การประมาณค่าพื้นที่

วิธีการหนึ่งที่ทำได้ก็คือ การหาผลรวมของพื้นที่รูปสี่เหลี่ยมผืนผ้าที่มาประกอบกันคุมพื้นที่ดังรูป ยิ่งขนาด ของรูปสี่เหลี่ยม ผืนผ้าเล็กมากๆ ความถูกต้องของการประมาณค่าจะยิ่งใกล้เคียงค่าจริงยิ่งขึ้น แนวคิดเกี่ยว กับการประมาณค่าโดยอาศัยรูปสี่เหลี่ยมผืนผ้านั้นเป็นวิธีการพื้นฐานที่ใช้ในการคำนวณหาพื้นที่ใต้ส่วนโค้ง การหาพื้นที่ A ที่ล้อมรอบด้วย ส่วนโค้ง y=f(x) แกน x และเส้นตรง x=a , x=b เราต้อง แบ่งช่วง [a,b] ออกเป็น n ช่วงเล็กๆขนาด เท่ากันคือ $\frac{b-a}{n}$ สำหรับ I=0,1,2,...,n-1 ลากเส้น ตรงแนวดิ่งตัวส่วนโค้งและสร้างรูปสี่เหลี่ยมผืนผ้าทางด้านขวาของ เส้นตรงแนวดิ่งนี้ จะได้ว่าความสูงของ สี่เหลี่ยมผืนผ้ารูปที่ I คือ $\frac{b-a}{n} \times f(x_i)$ ดังนั้น

พ.ท.ทั้งหมดของสี่เหลี่ยมผืนผ้า n รูป คือ

$$A(n) = \sum_{i=0}^{n-1} \frac{b-1}{n} f(x_i)$$

โดยที่ $x_i=a+rac{i}{n}(b-a)$

ขณะที่จำนวนของช่วงย่อยต่างๆเพิ่มขึ้น ขนาดของช่วงย่อยเหล่านี้คือ $\frac{b-a}{n}$ จะลดลง และพื้นที่ A(n) จะ เข้าใกล้ พื้นที่ A ที่เราต้องการคำนวณ ดังนั้นพื้นที่ A สามารถหาค่าได้จากสมการข้างล่างนี้

$$A = \lim_{n \to \infty} \sum_{i=0}^{n-1} \frac{b-a}{n} f(x_i)$$

ถ้าเรากำหนดให้ $\Delta x = \frac{b-a}{n}$ นิยามของการ integrate คือ $\int_a^b f(x) dx = \lim_{\Delta \to 0} \sum_a^b f(x_i) \Delta x$ โดยที่ a และ b เป็นลิมิตของการอินทิเกรท และสัญลักษณ์ $\int_a^b f(x) dx$ เป็นจำนวน ไม่ใช่ฟังก์ชัน และ เรียกสัญลักษณ์นี้ว่า definite integral

ตัวอย่าง 5.3. จงคำนวณหาพื้นที่ ที่ล้อมรอบด้วยส่วนโค้ง $y=x^2$ เส้นตรง x=0, x=4 และแกน x วิธีทำ สูตรสำหรับประมาณค่าพื้นที่ คือ $\sum_{i=0}^{n-1} \frac{b-a}{n} f(x_i)$

กรณีที่ 1 : ใช้รูปสี่เหลี่ยมผืนผ้า 4 รูป

เรามี
$$f(x)=x^2$$
 , $a=0$, $b=4$, $n=4$ และ

$$x_0 = 0 \;\;,\;\; x_1 = 1 \;\;,\;\; x_2 = 2 \;\;,\;\; x_3 = 3 \;\;$$
 จะได้ว่า พื้นที่โดยประมาณคือ

$$[1 \times (0)^2] + [1 \times (1)^2] + [1 \times (1)^2] + [1 \times (3)^2]$$

$$= [0] + [1] + [4] + [9] = 14$$

กรณีที่ 2 : ใช้รูปสี่เหลี่ยมผืนผ้า 8 รูป พื้นที่โดยประมาณคือ

การประมาณค่าพื้นที่ที่ล้อมรอบด้วยส่วนโค้ง y = x2 เส้นตรง x = 0, x = 4 และแกน x

5.3 ทฤษฎีพื้นฐานของแคลคูลัส (The fundamental Theorem of Calculus)

วิชาแคลคูลัสแบ่งออกเป็น 2 สาขา คือ แคลคูลัสที่เกี่ยวกับการหาอนุพันธ์ ซึ่งถือกำเนิดมาจากความต้องการ ที่จะหาความชันของฟังก์ชัน และแคลคูลัส ที่เกี่ยวกับการอินทิเกรท ซึ่งถือกำเนิดมาจากความต้องการที่จะ หาพื้นที่ใต้กราฟ

ทฤษฎีพื้นฐานของแคลคูลัสเป็นทฤษฎีที่เป็นตัวเชื่อมระหว่าง 2 สาขาทางแคลคูลัส และใช้แสดงความเกี่ยว เนื่องของการหา antiderivative ของฟังก์ชันหนึ่งกับการคำนวณหา definite integral ของฟังก์ชันนั้น

$$\int_{a}^{b} f(x)dx = \lim_{\Delta \to 0} \sum_{a}^{b} f(x_{i})\Delta x$$

เราใช้สัญลักษณ์ $\int f(x)dx$ แทน antiderivative ของฟังก์ชัน f(x) และเรียกสัญลักษณ์นี้ว่า indefinite integral

ทฤษฎี 5.1. (ทฤษฎีพื้นฐานของแคลคูลัส) ถ้า f เป็นฟังก์ชันต่อเนื่องในช่วง [a,b] แล้ว

1. ถ้า
$$g(x)=\int_a^x f(t)\ dt$$
 แล้ว $g'(x)=f(x)$

2.
$$\int_a^b f(x) \ dx = F(b) - F(a)$$
 เมื่อ F คือ antiderivative ของ f

ข้อสังเกต ข้อสรุป 1. ในทฤษฎีข้างต้นสามารถเขียนในรูป

$$\frac{d}{dx} \left(\int_{a}^{x} f(t) \ dt \right) = f(x)$$

ตัวอย่าง 5.4. จงหาอนุพันธ์ของ $g(x) = \int_0^x \sqrt{1+t^4} \ dt$

วิธีทำ เนื่องจาก $f(t)=\sqrt{1+t^4}$ เป็นฟังก์ต่อเนื่อง

ดังนั้น จากทฤษฎีพื้นฐานของแคลคูลัส $\dfrac{d}{dx}\left(g(x)
ight)=\sqrt{1+x^4}$

ตัวอย่าง 5.5. จงหา
$$\frac{d}{dx}\int_0^{x^2}\sin t\ dt$$

วิธีทำ ให้ $U=x^2$ ดังนั้น

$$=x^2$$
 ดังนั้น
$$\frac{d}{dx} \int_0^{x^2} \sin t \ dt = \frac{d}{dx} \int_0^U \sin t \ dt$$

$$= \frac{d}{dU} \left(\int_0^U \sin t \ dt \right) \frac{dU}{dx} \quad \text{(โดยกฎลูกโซ่)}$$

$$= \sin U \frac{dU}{dx} \quad \text{(โดยทฤษฎีพื้นฐานทางแคลคูลัส)}$$

$$= \sin x^2 \cdot 2x$$

$$= 2x \cdot \sin x^2$$

ตัวอย่าง 5.6. จงหา $\int_0^2 e^x \ dx$ โดยใช้ทฤษฎีพื้นฐานทางแคลคูลัส

วิธีทำ เนื่องจาก $F(x)=e^x$ เป็น antiderivative ของ $f(x)=e^x$ และ f(x) เป็นฟังก์ต่อเนื่อง ใน ช่วง [0,2]

ดังนั้น
$$\int_0^2 e^x \ dx = F(2) - F(0) = e^2 - e^0 = e^2 - 1$$

5.3.1 สูตรพื้นฐานของการอินทิเกรท (Basic Integration Rules)

จากทฤษฎีพื้นฐานทางแคลคูลัส (The fundamental Theorem of Calculus) เราทราบว่า ถ้า $g(x)=\int_a^x f(t)\ dt$ แล้ว g'(x)=f(x) และจากนิยามของ antiderivative เราสรุปได้ว่า $g(x)=\int_a^x f(t)\ dt$ เป็น antiderivative ของ f(x) ซึ่งเรามักจะเขียน $\int f(x)\ dx$ แทน antiderivative ของ f(x)

นั่นคือ

จากเนื้อหาเรื่องการหาอนุพันธ์ของฟังก์ชันเราทราบว่า $\frac{d}{dx} (\ln |x| + C) = \frac{1}{x}$, เมื่อ C เป็นค่าคงที่ ดังนั้นจากคำอธิบายในข้างต้น เราสรุปได้ว่า

$$\int \frac{1}{x} \, dx = \ln|x| + C$$

ในทำนองเดียวกัน เราสามารถใช้ความรู้เรื่องการหาอนุพันธ์สร้างสูตรพื้นฐานของการอินทิเกรทได้ดังนี้

1.
$$\int Cf(x) \ dx = C \int f(x) \ dx$$
 เมื่อ C เป็นค่าคงที่

2.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

3.
$$\int k \ dx = kx + C$$
 เมื่อ k, C เป็นค่าคงที่

4.
$$\int x^n \ dx = \frac{x^{n+1}}{n+1} + C$$
 เมื่อ $n \neq -1$

$$5. \int \frac{1}{x} dx = \ln|x| + C$$

$$6. \int e^x \ dx = e^x + C$$

7.
$$\int a^x \ dx = \frac{a^x}{\ln a} + C$$
 เมื่อ a เป็นจำนวนบวก และ $a \neq 1$

$$8. \int \sin x \ dx = -\cos x + C$$

9.
$$\int \cos x \ dx = \sin x + C$$

$$10. \int \sec^2 x \ dx = \tan x + C$$

11.
$$\int \csc^2 x \ dx = -\cot x + C$$

12.
$$\int \sec x \tan x \ dx = \sec x + C$$

13.
$$\int \csc x \cot x \ dx = -\csc x + C$$

14.
$$\int \frac{1}{x^2 + 1} \ dx = \arctan x + C$$

$$15. \int \frac{1}{\sqrt{1-x^2}} \ dx = \arcsin x + C$$

ตัวอย่าง 5.7. จงหา
$$\int (9x^5-4\csc^2x)\ dx$$

วิธีทำ

$$\int (9x^5-4\csc^2x)\ dx\ =9\int x^5\ dx-4\int\csc^2x\ dx \qquad (สูตร\ 1\ \mathrm{liaz}\ 2)$$

$$=\frac{9}{6}x^6-4(-\cot x)+C \qquad (สูตร\ 4\ \mathrm{liaz}\ 11)$$

$$=\frac{3}{2}x^6+4\cot x+C$$

ตัวอย่าง 5.8. จงหา
$$\int \frac{\cos \theta}{\sin^2 \theta} \ d\theta$$

วิธีทำ

$$\begin{split} \int \frac{\cos \theta}{\sin^2 \theta} \ d\theta &= \int \left(\frac{1}{\sin \theta}\right) \left(\frac{\cos \theta}{\sin \theta}\right) \ d\theta \\ &= \int \csc \theta \cot \theta \ d\theta \\ &= -\csc \theta + C \quad (สูตร 13) \end{split}$$

ตัวอย่าง 5.9. จงหา
$$\int \frac{x^3+2\sqrt{x}-3}{x^{\frac{3}{2}}} \ dx$$
 วิธีทำ จะเห็นว่า
$$\frac{x^3+2\sqrt{x}-3}{x^{\frac{3}{2}}} = \frac{x^3}{x^{\frac{3}{2}}} + \frac{2\sqrt{x}}{x^{\frac{3}{2}}} - \frac{3}{x^{\frac{3}{2}}}$$

$$= x^{\frac{3}{2}} + 2x^{-1} - 3x^{-\frac{3}{2}}$$

$$\int \frac{x^3+2\sqrt{x}-3}{x^{\frac{3}{2}}} \ dx = \int x^{\frac{3}{2}} \ dx + 2\int x^{-1} \ dx - 3\int x^{-\frac{3}{2}} \ dx$$

$$= \frac{x^{\frac{3}{2}+1}}{\frac{3}{2}+1} + 2\ln|x| - \frac{3x^{-\frac{3}{2}+1}}{-\frac{3}{2}+1} + C$$

$$= \frac{x^{\frac{5}{2}}}{\frac{5}{2}} + 2\ln|x| - \frac{3x^{-\frac{1}{2}}}{-\frac{1}{2}} + C$$

$$= \frac{2}{5}x^{\frac{5}{2}} + 2\ln|x| + \frac{6}{\sqrt{x}} + C$$

ตัวอย่าง 5.10. จงหา
$$\int_0^1 \left(x^4 - \frac{2}{1+x^2}\right) \ dx$$

วิธีทำ

$$\begin{split} \int_0^1 \left(x^4 - \frac{2}{1+x^2} \right) \ dx &= \int_0^1 x^4 \ dx - 2 \int_0^1 \frac{1}{1+x^2} \ dx \\ &= \frac{x^5}{5} \Big|_0^1 - 2 \arctan x \Big|_0^1 \\ &= \left(\frac{1}{5} - 0 \right) - 2 \left(\arctan 1 - \arctan 0 \right) \\ &= \frac{1}{5} - 2 \left(\frac{\pi}{4} - 0 \right) \\ &= \frac{1}{5} - \frac{\pi}{2} \end{split}$$

Chapter 6

เทคนิคของการหาปริพันธ์ (Techniques of Integration)

ในบทนี้เราจะศึกษาวิธีต่างๆ ที่สำคัญในการช่วยหาปริพันธ์ของฟังก์ชันต่างๆ เทคนิคแรก คือ การเปลี่ยน ตัวแปร (the substitution rule) ซึ่งวิธีนี้มีการประยุกต์มาจากกฎลูกโซ่ เทคนิคถัดมา คือ integration by part ซึ่งประยุกต์มาจากการหาอนุพันธ์ของผลคูณของฟังก์ชัน และเทคนิคสุดท้าย คือ integration by partial fraction โดยการเลือกใช้เทคนิคต่างๆ จะขึ้นอยู่กับ integrand

6.1 การหาปริพันธ์โดยการเปลี่ยนตัวแปร (Integration by Substitution)

พิจารณา indefinite integral ที่อยู่ในรูปของ

$$\int f(g(x))g'(x)dx$$

ถ้ากำหนดให้ F(x) เป็น antiderivative ของ f(x), นั่นคือ F'(x)=f(x) แล้วโดยการใช้กฎลูกโซ่ เราจะได้ว่า

$$\frac{d}{dx}F(g(x)) = F'(g(x))g'(x)$$

หรือ

$$\int F'(g(x))g'(x)dx = F(g(x)) + C$$

และถ้ากำหนดให้ u=g(x) และพิจารณาสมการที่

$$eqn - sub$$
 230

เราจะได้ว่า

$$\int F'(g(x))g'(x)dx = F(g(x)) + C = F(u) + C = \int F'(u)du$$

หรือ

$$\int f(g(x))g'(x)dx = \int f(u)du$$

สรุป แล้ว เมื่อ เรา ทำการ เปลี่ยน ตัวแปร u=g(x) เรา จะ ได้ ว่า du=g'(x)dx ดัง นั้น $\int f(g(x))g'(x)dx$ สามารถ ถูก เขียน ให้ อยู่ ใน รูป ของ $\int f(u)du$ ซึ่ง ทำให้ สามารถ หา ปริ พันธ์ ได้ นั่นเอง

ทฤษฎี 6.1. ถ้า u=g(x) แล้ว

$$\int f(g(x))g'(x)dx = \int f(u)du$$

ตัวอย่าง 6.1. จงหาปริพันธ์ต่อไปนี้ $\int x^2(x^3+1)^5 dx$

วิธีทำ โดยการเปลี่ยนตัวแปร $u=x^3+1$ เราจะได้ว่า $du=3x^2dx$ ดังนั้นเราสามารถเขียน integral ใหม่ได้ดังนี้

$$\int x^{2}(x^{3}+1)^{5}dx = \int u^{5}\frac{1}{3}du$$

$$= \frac{1}{3}\int u^{5}du$$

$$= \frac{1}{3}\frac{u^{6}}{6} + C$$

$$= \frac{1}{18}(x^{3}+1)^{6} + C$$

ตัวอย่าง 6.2. จงหาปริพันธ์ต่อไปนี้ $\int \sqrt{2x+3} dx$

วิธีทำ โดยการเปลี่ยนตัวแปร u=2x+3 เราจะได้ว่า du=2dx ดังนั้นเราสามารถเขียน integral ใหม่ได้ดังนี้

$$\int \sqrt{2x+3} dx = \int \sqrt{u} \frac{1}{2} du$$

$$= \frac{1}{2} \int u^{1/2} du$$

$$= \frac{1}{2} \frac{u^{3/2}}{3/2} + C$$

$$= \frac{1}{3} (2x+3)^{3/2} + C$$

ตัวอย่าง 6.3. จงหาปริพันธ์ต่อไปนี้ $\int \frac{1}{x} (1 + \ln x)^2 dx$

วิธีทำ โดยการเปลี่ยนตัวแปร $u=1+\ln x$ เราจะได้ว่า $du=\frac{dx}{x}$ ดังนั้นเราสามารถเขียน integral ใหม่ได้ดังนี้

$$\int \frac{1}{x} (1 + \ln x)^2 dx = \int u^2 du$$

$$= \frac{u^3}{3} + C$$

$$= \frac{1}{3} (1 + \ln x)^3 + C$$

6.1.1 แบบฝึกหัด

จงหาปริพันธ์ต่อไปนี้

1.
$$\int \sqrt{x+1} dx$$

2.
$$\int (x^2 - 2x)\sqrt{x^3 - 3x^2 + 1}dx$$

3.
$$\int \sin x e^{\cos x} dx$$

4.
$$\int \tan \sec^2 x dx$$

$$5. \int \frac{(\ln x)^2}{x} dx$$

6.1.2 การหาปริพันธ์โดยการแทนด้วยฟังก์ชันตรีโกณมิติ (Trigonometric Substitutions)

เราสามารถใช้วิธีการเปลี่ยนตัวแปรเพื่อหาปริพันธ์ของฟังก์ชันในรูปแบบต่อไปนี้

- $1. \int \sin^m x \cos^n x dx$
- 2. $\int \tan^m x \sec^n x dx$
- 3. $\int \cot^m x \csc^n x dx$

โดยในบทนี้จะยกตัวอย่างเฉพาะในกรณีแรกเท่านั้น ส่วนกรณีที่เหลือสามารถใช้หลักการเดียวกัน พิจารณาจากตัวอย่างต่อไปนี้ **ตัวอย่าง 6.4.** จงหาปริพันธ์ต่อไปนี้ $\int \sin^3 x \cos x dx$

วิธีทำ โดยการเปลี่ยนตัวแปร $u=\sin x$ เราจะได้ว่า $du=\cos x dx$ ดังนั้น

$$\int \sin^3 x \cos x dx = \int u^3 du = \frac{1}{4}u^4 + C = \frac{1}{4}\sin^4 x + C$$

ในกรณีของ integral แบบแรก $\int \sin^m x \cos^n x dx$ เราจะแบ่งการพิจารณาเป็น 2 กรณี ดังนี้

กรณีที่ 1 ถ้า m หรือ n อย่างน้อยหนึ่งตัวที่เป็นจำนวนบวกคี่ สมมติให้ m เป็นจำนวนบวกคี่ ดัง นั้นเราสามารถที่จะเขียน m=2k+1 เราจะแยก $\sin x$ ออกมาจาก $\sin^{2k}x$ และจะใช้เอกลักษณ์ $\sin^2x=(1-\cos^2x)$ ในการจัดรูป integral ดังนี้

$$\int \sin^m x \cos^n x dx = \int (\sin^2 x)^k \cos^n x \sin x dx$$

$$= \int (1 - \cos^2 x)^k \cos^n x \sin x dx$$

$$= -\int (1 - u^2)^k u^n du$$
236

โดยเรากำหนดให้ $u=\cos x$ สังเกตว่า integral สุดท้ายจะง่ายต่อการหาอนุพันธ์

ตัวอย่าง 6.5. จงหาปริพันธ์ของ $\int \sin^3 x \cos^3 x dx$

กรณีที่ 2 ถ้า m และ n เป็นจำนวนบวกคู่ ในกรณีนี้เราสามารถที่จะใช้เอกลักษณ์ตรีโกณมิติต่อไปนี้ในการ ทำให้ integral อยู่ในรูปที่ง่ายต่อการหาค่าปริพันธ์

$$\sin^2 x = \frac{1}{2}(1-\cos 2x) \qquad \cos^2 x = \frac{1}{2}(1+\cos 2x)$$

โดยพิจารณาจากตัวอย่างต่อไปนี้

ตัวอย่าง 6.6. จงหาปริพันธ์ของ $\int \sin^2 x \cos^2 x dx$

6.2 การหาปริพันธ์โดยแยกส่วน (Integration by Parts)

ในบทนี้เราจะใช้การแปลง (transformation) ในการเปลี่ยนรูปของ integral บางประเภทให้อยู่ในรูปที่ง่าย ต่อการหา โดยเริ่มต้นจากการพิจารณาอนุพันธ์ของผลคูณของฟังก์ชัน ต่อไปนี้

$$\frac{d}{dx}(uv) = v\frac{du}{dx} + u\frac{dv}{dx}$$

หรือ เขียนให้อยู่ในรูปของ

$$u(x)v'(x) = \frac{d}{dx}(u(x)v(x)) - v(x)u'(x)$$

โดยการหาปริพันธ์เทียบกับ x เราจะได้ว่า

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx$$
239

หรือ

$$\int udv = uv - \int vdu$$

สูตรการหาปริพันธ์นี้ เรียกว่า integration by parts

ในการใช้สูตรดังกล่าว เราจำเป็นที่จะต้องแบ่ง integrand ออกเป็น 2 ส่วนด้วยกัน คือ ส่วนของ u และ dv โดยอาศัยหลักการต่อไปนี้

- 1. ส่วน dv ต้องเป็นส่วนที่ง่ายต่อการหาปริพันธ์
- 2. ในพจน์ของ $\int v du$ จะต้องง่ายต่อการหา

ตัวอย่าง 6.7. จงหาปริพันธ์ของ $\int xe^x dx$

ตัวอย่าง 6.8. จงหาปริพันธ์ของ $\int x \sin x dx$

ตัวอย่าง 6.9. จงหาปริพันธ์ของ $\int e^x \sin 2x dx$

ตัวอย่าง 6.10. จงหาปริพันธ์ของ $\int \ln x dx$

ตัวอย่าง 6.11. จงหาปริพันธ์ของ $\int x\sqrt{x+1}dx$

6.3 การหาปริพันธ์โดยเศษส่วนย่อย (Integration by Partial Fractions)

เราจะศึกษาวิธีการหาปริพันธ์ของ rational ฟังก์ชัน หรือฟังก์ชันที่อยู่ในรูปของ

$$R(x) = \frac{P(x)}{Q(x)}$$

โดยที่ P(x),Q(x) คือพหุนามใดๆ ซึ่งจะเรียกวิธีต่อไปนี้ว่า partial fractions หลักการอยู่ที่การแยก เศษส่วน R(x) ให้อยู่ในรูปของผลรวมต่อไปนี้

$$R(x) = \frac{P(x)}{Q(x)} = p(x) + F_1(x) + F_2(x) + \dots + F_m(x)$$

โดยที่ p(x) คือ พหุนามที่ได้จากการหาร และ $F_k(x)$ จะเป็นเศษส่วนที่ง่ายต่อการหาปริพันธ์ 245

พิจารณาตัวอย่างต่อไปนี้

$$\frac{-1+x^2+x^3+x^4}{x+x^3} = 1+x-\frac{x+1}{x+x^3}$$
$$= 1+x-\frac{1}{x}+\frac{x-1}{1+x^2}$$

หลังการแยกเศษส่วน เราสามารถที่จะหาปริพันธ์ได้ง่ายขึ้น

$$\int \frac{-1+x^2+x^3+x^4}{x+x^3} dx = \int \left(1+x-\frac{1}{x}+\frac{x}{1+x^2}-\frac{1}{1+x^2}\right) dx$$
$$= x + \frac{1}{2}x^2 - \ln|x| + \frac{1}{2}\ln(x^2+1) - \tan^{-1}x + C$$

ในการแยกเศษส่วน R(x) ในสมการ

$$partial-frac$$

ผลลัพธ์ที่ได้จะมีเศษส่วน $F_k(x)$ เพิ่มขึ้นมา โดยเศษส่วน $F_k(x)$ นี้จะอยู่ในรูปของ

$$\frac{A}{(ax+b)^n}$$
 পর্বীত $\frac{Ax+B}{(ax^2+bx+c)^n}$

อย่างใดอย่างหนึ่ง (ซึ่งมีการพิสูจน์ในวิชาคณิตศาสตร์ขั้นสูง) และเราจะเรียกเศษส่วนนี้ว่า partial fraction หรือเศษส่วนย่อย ตัวอย่างในสมการ

$$exa-partial-frac$$

เศษส่วนย่อย คือ $-rac{1}{x}$ และ $rac{x-1}{1+x^2}$

โดยทั่วไปเราสามารถจำแนก rational function ได้เป็น 2 ประเภท

- 1. proper rational function ซึ่งเป็นกรณีที่ดีกรีของ P(x) น้อยกว่าดีกรีของ Q(x)
- 2. improper rational function ในกรณีนี้ดีกรีของ P(x) มากกว่าหรือเท่ากับดีกรีของ Q(x) ในสมการ

$$exa-partial-frac$$

rational function นี้เป็นแบบ improper ดังนั้นเมื่อทำการตั้งหารยาวผลลัพท์ที่ได้จะเป็นผลบวกของ พหุนาม 1+x และ proper rational function $-\frac{x+1}{x+x^3}$ ดังนั้นเราสามารถที่จะสมมติ ให้ rational function ของเราที่จะศึกษาต่อไปในบทนี้เป็น proper และเราจะหาวิธี ในการแยก proper rational function ให้อยู่ในรูปผลรวมของเศษส่วนย่อยให้ได้ โดยเราจะเริ่มต้นจากกรณีที่ตัวประกอบของตัวหารเป็น linear factors แล้วจึงพิจารณาในกรณีที่เป็น quadratic factors

Linear Factors สมมติให้ rational function $R(x)=rac{P(x)}{Q(x)}$ เป็น proper และถ้าทำการแยก ตัวประกอบของ Q(x) แล้วมีเทอม ax+b ซ้ำกันทั้งหมด n เทอม (นั่นคือ $(ax+b)^n$ เป็นตัวประกอบของ Q(x)) แล้วการแยก R(x) เพื่อทำให้เป็นเศษส่วนย่อยจะต้องประกอบด้วย n เทอมต่อไปนี้

$$\frac{A_1}{ax+b} + \frac{A_2}{(ax+b)^2} + \dots + \frac{A_n}{(ax+b)^n}$$

โดยที่ A_1,A_2,\ldots,A_n เป็นค่าคงตัว

ตัวอย่าง 6.12. Distinct Linear Factors จงหา $\int rac{1}{x(x+1)} dx$

วิธีทำ โดยการแยกหาเศษย่อย เราจะได้ว่า

$$\frac{1}{x(x+1)} = \frac{1}{x} - \frac{1}{x+1}$$

ตัวอย่าง 6.13. Repeated Linear Factors จงหา $\int rac{1}{x^2(x+1)} dx$

วิธีทำ โดยการแยกหาเศษย่อย เราจะได้ว่า

$$\frac{1}{x^2(x+1)} = -\frac{1}{x} + \frac{1}{x^2} + \frac{1}{x+1}$$

ตัวอย่าง 6.14. จงหาปริพันธ์ต่อไปนี้

$$1. \int \frac{x}{x^2 + 1} dx$$

$$2. \int \frac{x^2+1}{x} dx$$

3.
$$\int \frac{1}{x(x+1)^2} dx$$

4.
$$\int \frac{1}{x^2(x+1)^2} dx$$

วิธีทำ เนื่องจาก

$$\frac{1}{x(x+1)^2} = \frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}$$

และ

$$\frac{1}{x^2(x+1)^2} = \frac{1}{x^2} - \frac{2}{x} + \frac{2}{x+1} + \frac{1}{(1+x)^2}$$

Quadratic Factors ในกรณีที่ rational function $R(x)=rac{P(x)}{Q(x)}$ เป็น proper และ $(ax^2+bx+c)^n$ เป็นตัวประกอบของ Q(x) แล้วการแยก R(x) เพื่อทำให้เป็นเศษส่วนย่อยจะต้องประกอบด้วย n เทอม 251

ต่อไปนี้

$$\frac{A_1x + B_1}{ax^2 + bx + c} + \frac{A_2x + B_2}{(ax^2 + bx + c)^2} + \dots + \frac{A_nx + B_n}{(ax^2 + bx + c)^n}$$

6.4 ปริพันธ์ไม่ตรงแบบ (Improper Integrals)

ในการนิยาม definite integral $\int_a^b f(x) dx$ เราจะสมมติให้ฟังก์ชัน f(x) นี้นิยามบนช่วงปิด [a,b] อย่างไรก็ตามในทางปฏิบัติเราอาจจะสนใจในกรณีต่อไปนี้

1. กรณีที่ช่วงที่ใช้ในการหาปริพันธ์นั้นไม่ใช่ช่วงปิด เช่น

$$[a,\infty),(-\infty,b]$$
 หรือ $(-\infty,\infty)$

2. ตัว integrand f(x) ไม่ต่อเนื่องที่จุดใดจุดหนึ่งบนช่วงของการหาปริพันธ์

และเราจะเรียก integral ใน 2 กรณีนี้ว่า improper integral ในการหาปริพันธ์นี้เราจำเป็นที่จะต้องใช้ เทคนิคพิเศษที่ช่วย โดยเราจะเริ่มต้นจากการพิจารณาตัวอย่างต่อไปนี้ ตัวอย่าง 6.15. พิจารณา $\int_1^\infty rac{1}{x^2} dx$

วิธีทำ ค่าของปริพันธ์นี้ควรจะเป็นพื้นที่ที่อยู่ระหว่างกราฟ $y=1/x^2$ แกน x และเส้นตรง x=1 ถ้า เราพิจารณาช่วงปิด [1,t] เราจะสามารถหาค่าของ

$$A(t) = \int_{1}^{t} \frac{1}{x^{2}} dx = \left[-\frac{1}{x} \right]_{1}^{t} = 1 - \frac{1}{t}$$

ถ้าสมมติให้ $t \to \infty$ เราจะสามารถหาลิมิตของ A(t) ได้ในกรณีซึ่งเท่ากับ 1 ดังนั้น เราจะนิยามให้พื้นที่ ของบริเวณที่ถูกปิดล้อมด้วย $y=1/x^2$ สำหรับ $x\in [1,\infty)$ เท่ากับค่าของลิมิตดังกล่าว และ

$$\int_1^\infty \frac{1}{x^2} dx = \lim_{t \to \infty} \int_a^t \frac{1}{x^2} dx = \lim_{t \to \infty} (1 - \frac{1}{t}) = 1$$

โดยที่ลิมิตนี้หาค่าได้

จากตัวอย่างข้างต้น ทำให้เราสามารถสร้างนิยามได้ดังต่อไปนี้

นิยาม 6.1. (Infinite Limits of Integration)

1. ถ้า $\int_a^t f(x) dx$ หาค่าได้สำหรับทุกๆ จำนวนจริง $t \geq a$ แล้ว

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx$$

ถ้าลิมิตหาค่าได้

2. ถ้า $\int_t^b f(x) dx$ หาค่าได้สำหรับทุกๆ จำนวนจริง $t \leq b$ แล้ว

$$\int_{-\infty}^b f(x) dx = \lim_{t \to -\infty} \int_t^b f(x) dx$$

ถ้าลิมิตหาค่าได้

ถ้าลิมิตในข้อ

improper1

และ

improper2

หาค่าได้ เราจะเรียก improper integral นี้ว่า convergent แต่ถ้าลิมิตหาค่าไม่ได้ว่า divergent เราจะ เรียก integral นี้ว่า divergent 3. ถ้า improper integrals $\int_a^\infty f(x)dx$ และ $\int_{-\infty}^a f(x)dx$ convergent แล้ว

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$

ตัวอย่าง 6.16. จงหา $\int_{-\infty}^0 x e^x dx$

วิธีทำ โดยการใช้ integration by part เราสามารถแสดงว่า

$$\int xe^x dx = xe^x - e^x + C$$

ดังนั้น

$$\begin{split} \int_{-\infty}^{0} x e^x dx &= \lim_{t \to -\infty} \int_{t}^{0} x e^x dx \\ &= \lim_{t \to -\infty} (-t e^t - 1 + e^t) = -1 \end{split}$$

สำหรับกรณีที่ตัว integrand f(x) ไม่ต่อเนื่อง อาจจะไม่ต่อเนื่องที่จุด c โดยที่ c อาจจะเป็นจุดภายใน ช่วงปิด [a,b] หรืออาจจะเป็นที่ขอบของช่วงปิดก็ได้ ในกรณีเราสามารถหาค่าของ improper integral ได้ ดังต่อไปนี้

นิยาม 6.2. (Infinite Integrands)

1. ถ้า f ต่อเนื่องบนช่วง [a,b) แต่ไม่ต่อเนื่องที่จุด b แล้ว

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

ถ้าลิมิตนี้หาค่าได้

2. ถ้า f ต่อเนื่องบนช่วง (a,b] แต่ไม่ต่อเนื่องที่จุด a แล้ว

$$\int_a^b f(x)dx = \lim_{t \to a^+} \int_t^b f(x)dx$$

ถ้าลิมิตนี้หาค่าได้

ถ้าลิมิตในข้อ

improper3

และ

improper4

หาค่าได้ เราจะเรียก improper integral นี้ว่า convergent แต่ถ้าลิมิตหาค่าไม่ได้ว่า divergent เราจะ เรียก integral นี้ว่า divergent 3. ถ้า f ไม่ต่อเนื่องที่จุด c โดยที่ a < c < b และ $\int_a^c f(x) dx$ และ $\int_c^b f(x) dx$ convergent แล้ว

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

ตัวอย่าง 6.17. จงหา $\int_1^5 rac{1}{\sqrt{x-1}} dx$

วิธีทำ เราสามารถใช้นิยาม

def-improper

ในการหาค่าปริพันธ์ดังต่อไปนี้

$$\begin{split} \int_{1}^{5} \frac{1}{\sqrt{x-1}} dx &= \lim_{t \to 1^{+}} \int_{t}^{5} \frac{1}{\sqrt{x-1}} dx \\ &= \lim_{t \to 1^{+}} 2\sqrt{x-1}|_{t}^{5} \\ &= \lim_{t \to 1^{+}} (4-2\sqrt{t-1}) = 4 \end{split}$$

ดังนั้น improper integral นี้จะ converge เข้าสู่ค่า 4

ตัวอย่าง 6.18. จงหา $\int_{-1}^{1} rac{1}{x^2} dx$

วิธีทำ เนื่องจาก f(x) ไม่ต่อเนื่องที่จุด 0 ดังนั้นเราสามารถใช้นิยาม

$$def-improper$$

ในการหาค่าปริพันธ์ดังกล่าว

$$\int_{-1}^{1} \frac{1}{x^{2}} dx = \lim_{t \to 0^{-}} \int_{-1}^{t} \frac{1}{x^{2}} dx + \lim_{s \to 0^{+}} \int_{s}^{1} \frac{1}{x^{2}} dx$$

$$= \lim_{t \to 0^{-}} \left[-\frac{1}{x} \right]_{-1}^{t} + \lim_{s \to 0^{+}} \left[-\frac{1}{x} \right]_{s}^{1}$$

$$= \lim_{t \to 0^{-}} \left(-\frac{1}{t} - 1 \right) + \lim_{s \to 0^{+}} \left(-1 + \frac{1}{s} \right)$$

แต่เนื่องจากลิมิตในบรรทัดสุดท้ายนี้หาค่าไม่ได้ เราจึงสรุปว่า $\int_{-1}^1 rac{1}{x^2} dx$ เป็น divergent

หมายเหตุถ้าเราไม่ใช่วิธีเบื้องต้น โดยเลือกที่จะคำนวณโดยตรงโดยไม่สนใจจุดที่ฟังก์ชันไม่ต่อเนื่อง เราจะได้

ว่า

$$\int_{-1}^{1} \frac{1}{x^2} dx = \left[-\frac{1}{x} \right]_{-1}^{1} = -1 + -1 = -2$$

ซึ่งไม่ใช่ผลลัพธ์ที่ถูกต้อง (เพราะว่ากราฟ $y=rac{1}{x^2}$ อยู่เหนือแกน x ดังนั้น $\int_{-1}^1 rac{1}{x^2} dx$ จะต้องมีค่าที่เป็น บวก)

6.5 แบบฝึกหัด

ตอนที่ 1 ตอนที่ 2 จงหา improper integrals ต่อไปนี้

2

$$\int_1^\infty \frac{1}{\sqrt{x+1}} dx$$
 divergent

$$\int_1^\infty \frac{1}{(x+1)^{3/2}} dx = \sqrt{2}$$

$$\int_{-\infty}^{-1} \frac{1}{(2x+1)^2} dx = \frac{1}{2}$$

$$\int_{-\infty}^{\infty} x e^{-x^2} dx = 0$$

$$\int_{1}^{\infty} \frac{\ln x}{x^2} dx = 1$$

$$\int_0^1 \frac{1}{\sqrt{1-x}} dx = 2$$

$$\int_0^1 \frac{x}{x^2-1} dx$$
 divergent

$$\int_0^{1/2} \frac{x}{x^2 - 1} dx = -\frac{1}{2} \ln(\frac{4}{3})$$