

- □ 代数通常被认为是符号的操作,其发展分为 两个历史阶段。
 - 古典代数(19世纪以前): "每一个符号总是代表一个数",以方程根的计算与分布为其研究中心。
 - 近世代数(19世纪以后): "符号可以代表任何东西",研究对象为各种代数系统。

- □ 近世代数起始于19世纪初,形成于20世纪30 年代。
- □ 代表人物:
 - 法国数学家伽罗瓦(E.Galois)
 - 挪威数学家阿贝尔(N.H.Abel)
 - 英国数学家德·摩根(A.De.Morgan)
 - 英国数学家布尔(G.Boole).

数字通信的可靠性问题与保密问题

- □ 数字通信的可靠性问题:除了改进设备外,还可以 采用高效的有检错和纠错能力的编码。利用近世代 数方法可以得到更高效的检错码和纠错码。
- □ 数字通信的保密性问题:研究数字通信的加密与解密的方法与理论称为密码学,密码学的数学基础主要是数论和近世代数,涉及群、环、域的许多内容。

主要的代数结构

- → 群
- → 环
- → 域
- → 格
- → 布尔代数

第九章 代数系统

- □ 9.1二元运算及其性质
 - 一元和二元运算定义及其实例
 - ■二元运算的性质
- □ 9.2代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- □ 9.3代数系统的同态与同构

第九章 代数系统

- 口 9.1二元运算及其性质
 - 一元和二元运算定义及其实例
 - ■二元运算的性质
- □ 9.2代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- □ 9.3代数系统的同态与同构

集合上的运算

□ 集合A上的运算

「集合A上的运昇

$$\frac{1}{a}$$
 ($a \neq 0$) a 的倒数
 $\begin{bmatrix} x \end{bmatrix}$ 大于等于 x 的最小整数
 $\begin{bmatrix} x \end{bmatrix}$ 小于等于 x 的最大整数
 $\begin{bmatrix} x \end{bmatrix}$ 小于等于 x 的最大整数
 $\begin{bmatrix} x \end{bmatrix}$ 二元
if $x = 0$ then y else z 三元

9.1 二元运算及其性质

- 口 定义9.1 设S为集合,函数 $f: S \times S \rightarrow S$ 称为S上的二元运算,简称为二元运算.
 - *S*中任何两个元素都可以进行运算,且运 算的结果惟一.
 - \blacksquare S中任何两个元素的运算结果都属于S,即S对该运算封闭.

- 例1判断下面的运算哪些是相应集合上的二元运算:
- □ (1) 自然数集合N上的+, -, ×, ÷
 - 十和×是
- □ (2) 整数集合Z上+, -, ×, ÷
 - +, 一和×是
- □ (3) 非零实数集R*上+, -, ×, ÷
 - ■×和÷是

□ (4) 设 $M_n(\mathbf{R})$ 表示所有n 阶($n \ge 2$)实矩阵的集合,则矩阵加法和乘法:

$$M_{n}(R) = \left\{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \middle| a_{ij} \in R, i, j = 1, 2, ..., n \right\}$$

- ■都是二元运算.
- \Box (5) S为任意集合,P(S)上的 \cup 、 \cap 、 \cup 、 \oplus
 - ■都是二元运算.

- \square (6) S^S 为S上的所有函数的集合,函数的复合运算°:
 - °是 S^S 上的二元运算.
- □ 例如: $S=\{a,b\}$,则 S^S 包含如下函数:

一元运算的定义与实例

口 定义9.2 设S为集合,函数 $f:S \rightarrow S$ 称为S上的一元运算,简称一元运算。

□ 例2

- (1) 求相反数是整数集合Z,有理数集合Q和实数集合R上的一元运算
- (2) 求倒数是非零有理数集合Q*,非零实数集合R*上一元运算
- (3) 求共轭复数是复数集合C上的一元运算
- (4) 在幂集P(S)上规定全集为S,则求绝对补运算~是P(S)上的一元运算.

- (5) 设S为集合,令A为S上所有双射函数的集合, $A \subseteq S^S$,求一个双射函数的反函数为A上的一元运算.
- (6) $\operatorname{En}(n \geq 2)$ 阶实矩阵的集合 $M_n(\mathbf{R})$ 上,求转置矩阵是 $M_n(\mathbf{R})$ 上的一元运算.

二元与一元运算的表示

- □ 1. 算符
 - 可以用°,*,·,⊕,⊗,∆ 等符号表示二元或一元运算,称为算符.
 - 对二元运算 $^{\circ}$,如果 x 与 y 运算得到 z,记做 $x ^{\circ} y = z$
 - 对一元运算 Δ ,x的运算结果记作 Δx .
- □ 2. 表示二元或一元运算的方法:
 - 解析公式
 - 运算表

- □ 解析公式
 - 例 设R为实数集合,如下定义R上的二元 运算*:

$$\forall x, y \in \mathbb{R}, \ x * y = x.$$

那么
$$3*4=3$$
, $0.5*(-3)=0.5$

运算表

□ 运算表:表示有穷集上的一元和二元运算

O	a_1	a_2	 a_n	a_i	oa_i
a_1	$a_1 \circ a_1$	a_1 o a_2	 $a_1 \circ a_n$	a_1	oa_1
a_2	a_2 o a_1	a_2 o a_2	 $a_2 \circ a_n$	a_2	$\circ a_2$
•				•	•
•				•	•
•				•	•
a_n	$a_n \circ a_1$	a_n o a_2	 $a_n o a_n$	a_n	$\circ a_n$

二元运算的运算表

一元运算的运算表

运算表实例

例3 设全集 $S=\{a,b\}$,定义在P(S)上的 \oplus 和 ~运 算的运算表如下

0	Ø	<i>{a}</i>	{b}	{a,b}	x	~x
Ø	Ø	<i>{a}</i>	{ <i>b</i> }	{a,b}	Ø	{a,b}
{a}	{a}	Ø	{a.b}	{ b }	{a}	{b}
{ b }	{ b }	$\{a,b\}$	Ø	{a}	{ <i>b</i> }	<i>{a}</i>
$\{a,b\}$	$\{a,b\}$	} {b}	<i>{a}</i>	Ø	{a,b}	Ø

二元运算的性质

- 定义9.3 设。为S上的二元运算,
- □ (1) 若对任意 $x,y \in S$ 有 $x \circ y = y \circ x$, 则称运算在S 上满足交换律.
- □ (2) 若对任意x,y,z∈S有 ($x \circ y$) $\circ z = x \circ (y \circ z)$,则称 运算在S上满足结合律.
- □ (3) 若对任意 $x \in S$ 有 $x \circ x = x$, 则称运算在S上满足幂等律.

二元运算的性质

- 定义9.4设 \circ 和*为S上两个不同的二元运算,
- □ (1) 若对任意x,y,z ∈ S有 (x*y)°z=(x°z)*(y°z), z°(x*y)=(z°x)*(z°y), 则称°运算对*运算满足分配律.
- □ (2) 若°和*都可交换,且对任意 $x,y \in S$ 有 x°(x*y)=x, x*(x°y)=x, 则称°和*运算满足吸收律.

集合	运算	交换律	结合律	幂等律
Z,Q,R	普通加法+	有	有	无
	普通乘法×	有	有	无
$M_n(R)$	矩阵加法+	有	有	无
	矩阵乘法×	无	有	无
P(B)	并し	有	有	有
	交∩	有	有	有
{0,1}	合取<	有	有	有
	析取>	有	有	有
A^A	函数复合°	无	有	无

集合	运算	分配律	吸收律
Z,Q,R	普通加法+ 普通乘法×	×对+可分配 +对×不分配	无
$M_n(R)$	矩阵加法+ 矩阵乘法×	×对+可分配 +对×不分配	无
P(B)	并∪ 交∩	○对○可分配 ○对○可分配	有
{0,1}	合取^ 析取√	△对△可分配 △对△可分配	有

特异元素:单位元

定义9.5 设。为S上的二元运算,

(1) 如果存在 $e_l(\vec{u}e_r) \in S$,使得对任意 $x \in S$ 都有 $e_l \circ x = x$ (或 $x \circ e_r = x$),则称 $e_l(\vec{u}e_r)$ 是S中关于 。运算的左(或右)单位元.

 $若e \in S$ 关于。运算既是左单位元又是右单位元,则称e为S上关于。运算的单位元. 单位元也叫做幺元.

*	α	β	γ	δ
α	δ		β	γ
β	α	β	γ	δ
γ		β	γ	γβ、δ为左单位元
δ	α	β	γ	δ
*	α	β	γ	δ
α	α	β	γ	る
β	β	α	γ	δ α为单位元
γ	γ	δ	α	β
δ	$ \delta $	δ	β	γ

特异元素:零元

(2) 如果存在 $\theta_l(\vec{u}\theta_r) \in S$,使得对任意 $x \in S$ 都 有 $\theta_l \circ x = \theta_l$ (或 $x \circ \theta_r = \theta_r$),则称 $\theta_l(\vec{u}\theta_r)$ 是S 中关于。运算的左(或右)零元. 若 $\theta \in S$ 关于。运算既是左零元又是右零元,则称 $\theta \to S$ 上关于运算。的零元.

0	f_1	f_2	f_3	f_4	
		f_2			f ₂ f ₃ 为 左零元
f_2	f_2	f_2	f_2	f_2	<u> </u>
f_3	f_3	f_3	f_3	f_3	
		f_3			

可逆元素和逆元

(3) 设°为S上的二元运算, 令e为S中关于运算°的单位元.

对于 $x \in S$,如果存在 y_l (或 y_r) $\in S$ 使得 $y_l \circ x = e$ (或 $x \circ y_r = e$)

则称 $y_l(\mathbf{g} y_r)$ 是x的左逆元(或右逆元).

关于。运算,若 $y \in S$ 既是 x 的左逆元又是 x 的右逆元,则称y为x的逆元,如果 x 的逆元存在,就称 x 是可逆的,逆元记作 x^{-1} .

集合	运算	单位元	零元	逆元
Z,Q,R Q,R	普通加法 普通乘法	0	无	<i>x</i> 逆元– <i>x</i> <i>x</i> 逆元 <i>x</i> ^{−1}
		-		(<i>x</i> ≠0)
{0, 1}	合取△	1	0	1的逆元是1
	析取>	0	1	0的逆元是0
P(B)	并し	Ø	В	Ø的逆元是Ø
	交∩	В	Ø	B的逆元是 B

运算表与运算的性质

- □ 设代数系统 <*A*,*>,运算的性质可以从运算表中看出
 - 封闭性:表中的每个元素都属于A;
 - 交换性:表关于主对角线对称;
 - 幂等性:主对角线上的每一个元素与它所 在行(列)的表头元素相同;
 - 结合律的判断比较复杂。

运算表与特异元素

- 有幺元:该元素所对应的行和列依次与运 算表的行和列相一致;
- 有零元:该元素所对应的行和列中的元素 都与该元素相同;
- 设A 中有幺元,a 和 b 互逆,当且仅当位于a 所在行,b 所在列的元素以及b 所在行,a 所在列的元素都是幺元。

判断运算*的性质

*	а	b	c
а	a	b	\boldsymbol{c}
b	b	\mathcal{C}	a
<i>C</i>	C	а	b

- □封闭
- □可交换
- □ 幺元:a
- \Box a的逆元是a,b和c互为逆元

关于结合律的判断

*	a	b	С
a	a*a	a*b	a*c
b	b*a	b*b	b*c
С	c*a	c*b	c*c

*	a*a	a*b	a*c
a	a*(a*a)	a*(a*b)	a*(a*c)
b	b*(a*a)	b*(a*b)	b*(a*c)
С	c*(a*a)	c*(a*b)	c*(a*c)

•	•	•	•	•	

*	a	b	С
a*a	(a*a)*a	(a*a)*b	(a*a)*c
b*a	(b*a)*a	(b*a)*b	(b*a)*c
c*a	(c*a)*a	(c*a)*b	(c*a)*c

.

- \square 需要针对运算元素的每种选择进行验证,若|A|=n,一般需要验证n3个等式.
- □ 通过对具体运算性质的分析也可能简化验证的复杂性.

关于结合律的判断(上例)

惟一性定理

- 口 定理9.1 设。为S上的二元运算, e_l 和 e_r 分别为S中关于运算的左和右单位元,则 $e_l = e_r = e$,且e为S上关于。运算的惟一的单位元.
- 口证: $e_l = e_l^{\circ} e_r$ (e_r)为右单位元) $e_l^{\circ} e_r = e_r$ (e_l)为左单位元) 所以 $e_l = e_r$,将这个单位元记作 e_r . 假设e'也是 S 中的单位元,则有 $e' = e^{\circ} e'$

=*e*

惟一性定理

- 口 定理9.2 设。为S上的二元运算, θ_l 和 θ_r 分别为 S中关于运算的左和右零元,则 $\theta_l = \theta_r = \theta$,且 θ 为S上关于。运算的惟一的零元.
- □证明略。

惟一性定理

- 口 定理9.3 设 \circ 为S上的二元运算, e和 θ 分别为 \circ 运算的单位元和零元。如果|S|>1,则 $e\neq\theta$ 。
- □ 证明:用反证法。

设 $e = \theta$, 则对于任意的 $x \in S$, 必有

 $x = e * x = \theta * x = \theta = e$

于是S中只有一个元素,与|S| > 1矛盾。

□ 注意: $|S| \ge 2$,单位元与零元是不同的; |S| = 1时,这个元素既是单位元也是零元.

惟一性定理

- □ 定理9.4 设。为S上可结合的二元运算,e为该运算的单位元,对于x ∈ S 如果存在左逆元 y_i 和右逆元 y_r ,则有 $y_i = y_r = y$,且 y是 x 的惟一的逆元,记作 x^{-1} 。
- 口 证: 由 $y_l^{\circ}x = e$ 和 $x^{\circ}y_r = e$ 得 $y_l = y_l^{\circ}e = y_l^{\circ}(x^{\circ}y_r) = (y_l^{\circ}x)^{\circ}y_r = e^{\circ}y_r = y_r$ 令 $y_l = y_r = y$,则 y 是 x 的逆元.

假若 $y' \in S$ 也是 x 的逆元,则

$$y'=y'\circ e=y'\circ (x\circ y)=(y'\circ x)\circ y=e\circ y=y$$
所以 y 是 x 惟一的逆元.

9.1二元运算及其性质(回顾)

第九章 代数系统

- □ 9.1二元运算及其性质
 - 一元和二元运算定义及其实例
 - ■二元运算的性质
- 口 9.2代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- □ 9.3代数系统的同态与同构

9.2 代数系统

- 口 定义9.6 非空集合S和S上k个一元或二元运算 $f_1, f_2, ..., f_k$ 组成的系统称为代数系统, 简称代数, 记做 < $S, f_1, f_2, ..., f_k$ >.
- □ 例如:
 - (1) <N,+>,<Z,+,·>,<R,+,·>是代数系统,+和·分别表示普通加法和乘法.
 - $(2) < M_n(R), +, \cdot >$ 是代数系统,十和·分别表示 n 阶 $(n \ge 2)$ 实矩阵的加法和乘法.
 - (3) <*P*(*S*),∪,∩,~>是代数系统,∪和∩为并和交,~为绝对补.

实例

□ (4) $\langle Z_n, \oplus, \otimes \rangle$ 是代数系统, $Z_n = \{0,1,...,n-1\}$, \oplus 和 \otimes 分别表示模n的加法和乘法,对于 $x,y \in Z_n$, $x \oplus y = (x+y) \bmod n$, $x \otimes y = (xy) \bmod n$

\oplus_4	0	1	2	3
0	0	1	2	3
1	1	2	3	0
2	2	3	0	1
3	3	0	1	2

代数系统的成分与表示

- □ 构成代数系统的成分:
 - 集合(也叫载体,规定了参与运算的元素)
 - 运算(这里只讨论有限个二元和一元运算)
 - 代数常数(通常是与运算相关的特异元素: 如单位元等)
- □ 研究代数系统时,如果把运算具有它的特异元素也作为系统的性质之一,那么这些特异元素可以作为系统的成分,叫做代数常数.

实例

- □ 代数系统<Z,+,0> 集合Z,运算+,代数常数0
- □ 代数系统<P(S), \cup , \cap , \varnothing , S >
- 集合P(S),运算 \cup 和 \cap ,代数常数是 \emptyset 和S

代数系统的表示

□ (1) 列出所有的成分:集合、运算、代数常数 (如果存在)

如 $\langle Z,+,0\rangle,\langle P(S),\cup,\cap,\varnothing,S\rangle$

- 口(2)列出集合和运算,在规定系统性质时不涉及 具有单位元的性质(无代数常数)
 - 如 $\langle Z, + \rangle, \langle P(S), \cup, \cap \rangle$
- □ (3) 用集合名称简单标记代数系统,在前面已经对代数系统作了说明的前提下使用如代数系统Z, *P*(*S*)

同类型的代数系统

- □ 定义9.7 如果两个代数系统中运算的个数相同, 对应运算的元数相同,且代数常数的个数也相同,则称它们是同类型的代数系统.
- ■例如: $V_1 = \langle \mathbf{R}, +, \cdot, 0, 1 \rangle$, $V_2 = \langle P(B), \cup, \cap, \emptyset, B \rangle$ V_1, V_2 是同类型的代数系统,它们都含有2个二元运算,2个代数常数.

运算性质比较

V_1	V_2
+ 可交换、可结合	U可交换、可结合
• 可交换、可结合	∩可交换、可结合
- 对 + 可分配	∩对∪可分配
+ 对 - 不可分配	∪对∩可分配
+与•没有吸收律	∪与∩满足吸收律

同类型的代数系统仅仅是具有相同的成分,不一定具有相同的运算性质!

子代数系统

- 口 定义9.8 设 $V = \langle S, f_1, f_2, ..., f_k \rangle$ 是代数系统, $B \neq S$ 的非空子集,如果 $B \Rightarrow f_1, f_2, ..., f_k$ 都是封闭的,且 $B \Rightarrow S \Rightarrow f_1, f_2, ..., f_k \Rightarrow f_k \Rightarrow f_1, f_2, ..., f_k \Rightarrow f_k \Rightarrow f_1, f_2, ..., f_k \Rightarrow f_$
- □ 例如:
 - N是<Z,+>的子代数, N也是<Z,+,0>的子代数
 - N-{0}是<Z,+>的子代数, 但不是<Z,+,0>的子代数

关于子代数的术语

- \Box (1) 最大的子代数: 就是V本身
- \Box (2) 最小的子代数:如果令V中所有代数常数构成的集合是B,且B对V中所有的运算都是封闭的,则B就构成了V的最小的子代数
- 口(3)最大和最小的子代数称为V的平凡的子代数.
- \Box (4) 若B是S的真子集,则B构成的子代数称为V的真子代数.

实例

□ 设 $V=\langle Z,+,0\rangle$,令 $nZ=\{nz\mid z\in Z\}$,n为自然数,则nZ是V的子代数

证 任取 n**Z** 中的两个元素 $nz_1, nz_2(z_1, z_2 \in \mathbf{Z})$,则有 $nz_1 + nz_2 = n(z_1 + z_2) \in n\mathbf{Z}$

即 nZ 对+运算是封闭的. 又

 $0 = n \cdot 0 \in n\mathbf{Z}$

所以,nZ 是 V 的子代数.

 \square 当n=1和0时,nZ是V的平凡的子代数,其他的都是V的非平凡的真子代数.

积代数

□ 定义9.9 设 V_1 =<A,°>和 V_2 =<B,*>是同类型的代数系统,°和*为二元运算,在集合A×B上如下定义二元运算•,

 $\forall < a_1, b_1 >, < a_2, b_2 > \in A \times B$,有 $< a_1, b_1 > \blacksquare < a_2, b_2 > = < a_1 \circ a_2, b_1 * b_2 >$ 称 $V = < A \times B$, $\blacksquare > 为 V_1 = V_2$ 的 积 代 数 , 记 作 $V_1 \times V_2$ 这 时 也 称 V_1 和 V_2 为 V 的 因 子 代 数 .

□ 注意: 积代数的定义可以推广到具有多个运 算的同类型的代数系统。

实例

$$\square$$
 $Z_2=\{0,1\}$, $V=\langle Z_2, \oplus \rangle$, $V\times V=\langle Z_2\times Z_2, \bullet \rangle$
 $Z_2\times Z_2=\{\langle 0,0\rangle,\langle 1,0\rangle,\langle 0,1\rangle,\langle 1,1\rangle\}$

•	<0,0>	<0,1>	<1,0>	<1,1>
<0,0>	<0,0>	<0,1>	<1,0>	<1,1>
<0,1>	<0,1>	<0,0>	<1,1>	<1,0>
<1,0>	<1,0>	<1,1>	<0,0>	<0,1>
<1,1>	<1,1>	<1,0>	<0,1>	<0,0>

积代数的性质

- 口 定理9.5 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $V_1 \times V_2 = \langle A \times B, \bullet \rangle$ 是它们的积代数.
 - (1) 如果∘和*运算是可交换(可结合、幂等)的,那么■运算也是可交换(可结合、幂等)的.
 - (2) 如果 e_1 和 e_2 (θ_1 和 θ_2)分别为。和 *运算的单位元(零元),那么 $<e_1,e_2>$ ($<\theta_1,\theta_2>$)也是 *运算的单位元(零元).
 - (3) 如果 x 和 y 分别为∘和 *运算的可逆元素,那么< x,y>也是 ■运算的可逆元素,其逆元就是 $< x^{-1},y^{-1}>$.

9.2代数系统(回顾)

第九章 代数系统

- □ 9.1二元运算及其性质
 - 一元和二元运算定义及其实例
 - ■二元运算的性质
- □ 9.2代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- □ 9.3代数系统的同态与同构

9.3 代数系统的同态与同构

对于作	代数系统
-----	------

$$V_1 = \langle Z_3, \oplus_3 \rangle$$

其中 $Z_3 = \{0,1,2\}$

$$V_2 = \langle A, \oplus_6 \rangle$$

其中 $A = \{0,2,4\}$

若f={<0,0>,<1,2>,<2,4>} 则在f 的作用下代数系统 V,就转换成了V

1	
此f是双射函数,	则 V_1 和 V_2 同构

⊕₃	0	1	2
0	0	1	2
$\frac{\bigoplus_{3}}{0}$ 1 2	1	2	0
2	2	0	1

⊕6	0	2	4
0	0	2	4
2	2	4	0
4	4	0	2

同态的定义

口 定义9.10 设 $V_1 = \langle A, \circ \rangle$ 和 $V_2 = \langle B, * \rangle$ 是同类型的代数系统, $f: A \to B$,且 $\forall x, y \in A$ 有 $f(x \circ y) = f(x) * f(y)$

则称f是 V_1 到 V_2 的同态映射,简称同态.

□ 例: $\langle Z, \times \rangle$; $\langle B, * \rangle$, $B = \{ E, \oplus, \emptyset, \$ \}$

*	正	负	零
正	正	负	零
负	负	正	零
零	零	零	零

$$f(n) = \begin{cases} \text{If } n > 0 \\ \text{And } n < 0 \end{cases}$$

$$\begin{cases} f(n) = \begin{cases} f(n) = 0 \\ \text{And } f(x) = f(x) = f(x) \end{cases}$$

 $< A, \circ >$

同态分类

- (1) f 如果是单射,则称为单同态.
- (2) f 如果是满射,则称为满同态,这时称 V_2 是 V_1 的同态像,记作 $V_1 \sim V_2$.
- (3) f 如果是双射,则称为同构,也称代数系统 V_1 同构于 V_2 ,记作 $V_1 \cong V_2$.
- (4)如果 $V_1=V_2$,则称作自同态.

实例

- \Box (1) 设 V_1 =< Z_1 +>, V_2 =< Z_n , \oplus >. 其中Z为整数集,+为普通加法; Z_n ={0,1,...,n-1}, \oplus 为模n加.
- 口令 $f: \mathbb{Z} \to \mathbb{Z}_n$, $f(x)=(x) \mod n$ f 显然是满射,并且 $f(x+y)=(x+y) \mod n$ $=(x) \mod n \oplus (y) \mod n$ $=f(x) \oplus f(y)$

所以f是 V_1 到 V_2 的满同态.

实例 (续)

- □ (2) 设 V_1 =<R,+>, V_2 =<R*,·>, 其中R和R*分别为实数集与非零实数集,+和・分别表示普通加法与乘法.
- 口令 $f: \mathbf{R} \rightarrow \mathbf{R}^*$, $f(x) = \mathbf{e}^x$ f 显然是单射,并且 $f(x+y) = \mathbf{e}^{x+y}$ $= \mathbf{e}^x \cdot \mathbf{e}^y$ $= f(x) \cdot f(y)$ 则 $f \neq V_1$ 到 V_2 的单同态.

实例 (续)

×	正	负	+	偶	奇
正负	正负	负 正		偶奇	 奇 偶

口 (3) 设 V_1 =<{正, 负},×>, V_2 =<{奇, 偶},+>. 令 f(正) = 偶, f(负) = 奇 这两个代数系统是同构的。

实例 (续)

□ (4) 设V=<Z,+>,其中Z为整数集,+为普通加法. $\forall a \in Z$,令 $f_a:Z\to Z$, $f_a(x)=ax$,

因为: $\forall x,y \in \mathbb{Z}$,

$$f_a(x+y)=a(x+y)=ax+ay=f_a(x)+f_a(y)$$

所以,

 f_a 是V的自同态.

当a=0时,称 f_0 为零同态;

当 $a=\pm 1$ 时,称 f_a 为自同构;

除此之外其他的 f_a 都是单自同态.

课后习题

19. 设 $V_1 = \langle A, \circ \rangle, V_2 = \langle B, * \rangle$ 为同类型代数系统, $V_1 \times V_2$ 是积代数,定义函数 $f: A \times B \to A$, $f(\langle x, y \rangle) = x$,证明 $f \in V_1 \times V_2$ 到 V_1 的同态映射.

证明: 设 $V_1 \times V_2 = \langle A \times B, \cdot \rangle, \forall \langle x_1, y_1 \rangle, \langle x_2, y_2 \rangle \in A \times B$,有

$$f(\langle x_1, y_1 \rangle \cdot \langle x_2, y_2 \rangle) = f(\langle x_1 \circ x_2, y_1 * y_2 \rangle) = x_1 \circ x_2$$

$$f(\langle x_1, y_1 \rangle) \circ f(\langle x_2, y_2 \rangle) = x_1 \circ x_2$$

于是f是 $V_1 \times V_2$ 到 V_1 的同态映射.

定义9.9 设 V_1 =<A, \circ >和 V_2 =<B,*>是同类型的代数系统, \circ 和*为二元运算,在集合A×B上如下定义二元运算 \bullet ,

 $\forall < a_1,b_1>, < a_2,b_2> \in A \times B$,有

$$< a_1, b_1 > \blacksquare < a_2, b_2 > \equiv < a_1 \circ a_2, b_1 * b_2 >$$

称 $V=<A\times B$,">为 V_1 与 V_2 的<mark>积代数</mark>,记作 $V_1\times V_2$. 这时也称 V_1 和 V_2 为V的因子代数.

定义9.10 设 V_1 =<A, \circ >和 V_2 =<B,*>是同类型的代数系统, $f:A\to B$,且 $\forall x, y\in A$ 有 $f(x\circ y)=f(x)*f(y)$ 则称f是 V_1 到 V_2 的同态映射,简称同态.

9.3代数系统的同态与同构(回顾)

9.3代数系统的同态与同构
$$\bigcirc$$
 $f:A \rightarrow B$ \bigcirc $f(x \circ y) = f(x) * f(y)$

第九章 代数系统(回顾)

- □ 9.1二元运算及其性质
 - 一元和二元运算定义及其实例
 - ■二元运算的性质
- □ 9.2代数系统
 - 代数系统定义及其实例
 - 子代数
 - 积代数
- □ 9.3代数系统的同态与同构