

ELEC 3210 Introduction to Mobile Robotics Lecture 17

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

Recap L16

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Recap L16

- Basic concepts of Motion Planning
- Planning as graph search problem
- How to construct the graph?
- Combinatorial Planning
 - Resolution Completeness
 - Visibility Graph, Voronoi Diagram, Cell Decomposition
- Sampling-based Planning
 - Probabilistic Completeness
 - Probabilistic road maps (PRM)
 - Rapidly exploring random tree (RRT)

Probabilistic road maps (PRM)

Probabilistically Complete

• Do not work well for some problems, narrow passages

Rapidly Exploring Random Trees

- Idea: aggressively probe and explore the C-space by expanding incrementally from an initial configuration
- The explored territory is marked by a tree rooted at the initial

• The algorithm: Given ${\it C}$ and q_0

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
```

 $G.add_edge(q_{near}, q_{rand})$

6 until condition

Sample from a bounded region centered around q_0

• The algorithm: Given ${\it C}$ and q_0

Algorithm 1: RRT

```
1 G.init(q_0)

2 repeat

3 q_{rand} \rightarrow RANDOM\_CONFIG(C)

4 q_{near} \leftarrow NEAREST(G, q_{rand})

5 G.add\_edge(q_{near}, q_{rand})

6 until condition
```


Finds closest vertex in G using a distance function

• The algorithm: Given ${\it C}$ and q_0

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 | q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 | q_{near} \leftarrow NEAREST(G, q_{rand})
5 | G.add\_edge(q_{near}, q_{rand})
6 until condition
```


Several stategies to find q_{near} given the closest vertex on G:

- take closest vertex
- Check intermediate points at regular intervals and split edge at q_{near}

• The algorithm: Given ${\it C}$ and q_0

Algorithm 1: RRT

```
1 G.init(q_0)

2 repeat

3 q_{rand} \rightarrow RANDOM\_CONFIG(C)

4 q_{near} \leftarrow NEAREST(G, q_{rand})

5 G.add\_edge(q_{near}, q_{rand})

6 until condition
```


Connect nearest point with random point that travels from q_{near} to q_{rand}

- No collision: add edge
- Collision: new vertex is q_i , as close as possible to C_{obs}

• The algorithm: Given ${\it C}$ and q_0

Algorithm 1: RRT

```
1 G.init(q_0)
2 repeat
3 q_{rand} \rightarrow RANDOM\_CONFIG(C)
4 q_{near} \leftarrow NEAREST(G, q_{rand})
5 G.add\_edge(q_{near}, q_{rand})
6 until condition
```


Connect nearest point with random point that travels from q_{near} to q_{rand}

- No collision: add edge
- Collision: new vertex is q_i , as close as possible to C_{obs}

- RRT is exploring the space, explore until the final configuration is reached
- Can add bias to the goal when expanding randomly
- Pros:
 - Balance between greedy search and exploration
 - Easy to implement
- Cons
 - Metric sensivity
 - Unknown rate of convergence

Courtesy: Steven LaValle

RRT*

- Basic Idea
 - RRT is simple, but is prone to be probabilistic incomplete
 - Add rewire function: swap new point in as parent for nearby vertices who can be reached along shorter path through new point than through their original (current) path
 - RRT* is asymptotically optimal.

Bi-RRT

- Some problems require more effective methods: bidirectional search
- Grow two RRTs
- In every other step, try to extend each tree towards the newest vertex of the other tree

Courtesy: Wolfram Burgard

RRT Page

https://lavalle.pl/rrt/

Courtesy: Steven LaValle

Graph Search

Search-based Method

- State space graph: a mathematical representation of a search algorithm
 - For every search problem, there's a corresponding state space graph
 - Connectivity between nodes in the graph is represented by (directed or undirected) edges

Grid-based graph: use grid as vertices and grid connections as edges

The graph generated by probabilistic roadmap (PRM)

Ridiculously tiny search graph for a tiny search problem

From Graph to Search Tree

- The search always start from start state X_s
 - Searching the graph produces a search tree, this is a "what if" tree of plans and outcomes
 - Back-tracing a node in the search tree gives us a path from the start state to that node
 - For many problems we can never actually build the whole tree, too large or inefficient we only want to reach the goal node asap.

How to Construct a Search Tree?

- Maintain a container to store all the nodes to be visited
 - Intuition: When we "discover" a node, we store it in our "memory". We can only visit one node at a time, but we can teleport to any node that we discover before.
- The container is initialized with the start state X_s
- Loop
 - Remove a node from the container according to some predefined score function
 - Visit a node
 - Expansion: Obtain all neighbors of the node, and push them into the container
 - Discover all its neighbors
- End Loop

Depth First Search (DFS)

• Strategy: remove (visit) the deepest node in the container

Depth First Search (DFS)

• Implementation: maintain a last in first out (LIFO) container

Breadth First Search (BFS)

• Strategy: remove (visit) the shallowest node in the container

Breadth First Search (BFS)

 Implementation: maintain a first in first out (FIFO) container (i.e. queue)

Costs on Actions

- A practical search problem has a cost "C" from a node to its neighbor
 - Length, time, energy, etc.
- When all weight are 1, BFS finds the least-cost path with minimal steps
- For general cases, how to find the least-cost path as soon as possible?

- Strategy: remove (visit) the node with cheapest accumulated cost g(n)
 - g(n): The current best estimates of the accumulated cost from the start state to node "n"
 - Update the accumulated costs g(m) for all unvisited neighbors "m" of node "n"
 - A node that has been visited is guaranteed to have the smallest cost from the start state

- Maintain a priority queue to store all the nodes to be visited
- The priority queue is initialized with the start state X_s
- Assign g(X_s)=0, and g(n)=infinite for all other nodes in the graph
- Loop
 - If the queue is empty, return FALSE; break;
 - Remove the node "n" with the lowest g(n) from the priority queue
 - Mark node "n" as visited
 - If the node "n" is the goal state, return TRUE; break;
 - For all unvisited neighbors "m" of node "n"
 - If g(m) = infinite
 - Push node "m" into the queue
 - If $g(m) > g(n) + C_{nm}$
 - $g(m) = g(n) + C_{nm}$
 - end
- End Loop

Remove node with the smallest g(n)

- Pros
 - Complete and optimal
- Coons
 - Can only see the cost *accumulated so far* (i.e. the uniform cost), thus exploring next state in every "direction"
 - No information about goal location

Search Heuristics

31

- Overcome the shortcomings of uniform cost search by inferring the least cost to goal (i.e. goal cost)
- Designed for particular search problem
- Examples: Manhattan distance VS. Euclidean distance

A*: Combining Dijkstra's and a Heuristic

- Accumulated cost
 - g(n): The current best estimates of the accumulated cost from the start state to node "n"
- Heuristic
 - h(n): The estimated least cost from node n to goal state (i.e. goal cost)
- The least estimated cost from start state to goal state passing through node "n" is f(n) = g(n) + h(n)
- Strategy: remove (visit) the node with cheapest f(n) = g(n) + h(n)
 - Update the accumulated costs g(m) for all unvisited neighbors "m" of node "n"
 - A node that has been visited is guaranteed to have the smallest cost from the start state

A* Algorithm

- Maintain a priority queue to store all the nodes to be visited
- The heuristic function h(n) for all nodes are pre-defined
- The priority queue is initialized with the start state X_s
- Assign $g(X_s)=0$, and g(n)=infinite for all other nodes in the graph
- Loop
 - If the queue is empty, return FALSE; break;
- Only difference comparing to Dijkstra's
- Remove the node "n" with the lowest f(n)=g(n)+h(n) from the priority queue
- Mark node "n" as visited
- If the node "n" is the goal state, return TRUE; break;
- For all unvisited neighbors "m" of node "n"
 - If g(m) = infinite
 - Push node "m" into the queue
 - If $g(m) > g(n) + C_{nm}$
 - $g(m) = g(n) + C_{nm}$
- end
- End Loop

Dijkstra's VS A*

Dijkstra's algorithm visits in all directions

A* visits mainly towards the goal, but does not hedge its bets

to ensure optimality

Dijkstra's VS A*

Courtesy: YouTube 35

Reading Resources

- If you are really interested in planning
- LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.

Next Lecture

- Trajectory planning
 - Guest Lecture by Haokun Wang
 - Aerial Robot (the famous one in HKUST Robotics Institute)

