### Combinatorial Game Theory Ideas

Kartik Sabharwal

February 13, 2017

### 1 Five After Zero

#### 1.1 Motivation

Let N(i) denote the nimber of the game with i pins, where i > 0. It so happens that for any i such that N(i) = 0, N(i + 1) = 5.

#### 1.2 Patterns

For the purposes of this section, we can turn this observation into a claim. What would we need to show to prove the claim?

- 1. we can derive a state s from i such that N(s) = 0
- 2. we can derive a state s from i such that N(s) = 1
- 3. we can derive a state s from i such that N(s) = 2
- 4. we can derive a state s from i such that N(s) = 3
- 5. we can derive a state s from i such that N(s) = 4
- 6. we can derive no state s from i such that N(s) = 5

So consider a number i such that N(i) = 0. We want to show that i + 1 satisfies properties 1 through 6. Is there a pattern in how situations where N(n) = 5 achieve states that satisfy properties 1 through 5 above?

|    | 0  | 1   | 2        | 3    | 4              |
|----|----|-----|----------|------|----------------|
| 5  |    | 2.2 | 2        | 3    | 3.1            |
| 9  |    |     | 1.7,2+4  | 7    | 4.4,1+5        |
| 13 | 12 | 4+6 |          | 6.6  | 10,4.8,1+9     |
| 17 | 16 | 6+8 | 2+12,8.8 | 6.10 | 1+13,3+11,4+10 |
| 23 | 22 | ?   | 9+11     | 21   | 20             |

### 2 Record-breaking Nimbers?

Also notice that  $\{i: N(i) = \max_{j \in [i]}(N(j))\} = \{1, 2, 3, 5, 11, 19\}$  which may mean that if a given number of pins corresponds to a nimber higher than the ones before it, the number is likely to be prime.

## 3 Nimber-Pin Graph

| pins | vari | orig |
|------|------|------|
| 0    | 0    | 0    |
| 1    | 1    | 1    |
| 2    | 2    | 2    |
| 3    | 3    | 3    |
| 4    | 0    | 1    |
| 5    | 5    | 4    |
| 6    | 1    | 3    |
| 7    | 3    | 2    |
| 8    | 0    | 1    |
| 9    | 5    | 4    |
| 10   | 4    | 2    |
| 11   | 7    | 6    |
| 12   | 0    | 4    |
| 13   | 5    | 1    |
| 14   | 6    | 2    |
| 15   | 2    | 7    |
| 16   | 0    | 1    |
| 17   | 5    | 4    |
| 18   | 8    | 3    |
| 19   | 9    | 2    |
| 20   | 4    | 1    |
| 21   | 3    | 4    |
| 22   | 0    | 6    |
| 23   | 5    | 7    |
| 24   | 2    | 4    |



# 4 Expanded Nimber Graph

