1

a(10) = 0.5

GATE 2023 CH-58

EE23BTECH11201 - Abburi Tanusha*

1.0

0.9

0.8

0.7

0.6

0.5

a(t)

Question: A fresh catalyst is loaded into a reactor before the start of the following catalytic reaction:

The activity of the catalyst at t = 10 hours is given by 0.5

$A \rightarrow \text{Products}$

The catalyst gets deactivated over time. The instantaneous activity a(t), at time t, is defined as the ratio of the rate of reaction $-r_A(t)'$ (mol. $(g_{cat})^{-1}hr^{-1}$) to the rate of reaction with fresh catalyst. Controlled experimental measurements led to an empirical correlation:

$$-r_A(t)' = -0.5t + 10$$

where t is in hours. The activity of the catalyst at t = 10 hours is given by (rounded off to one decimal place):

(GATE 2023 CH)

Solution:

	Values	Parameters	Description
Γ	$-r_A(t)'$	-0.5t + 10	Rate of reaction at time t
ſ	$-r_{A}(0)'$	10	Rate of fresh catalyst
	a(t)	$\frac{-r_A(t)'}{-r_A(0)'}$	Activity of a catalyst at time t
TABLE 0			

GIVEN PARAMETERS

$$-r_A(t)' = -0.5t + 10 \tag{1}$$

The rate of reaction for fresh catalyst ,at t = 0;

$$-r_A(0)' = 10 (2)$$

$$-r_A(10)' = -0.5(10) + 10 (3)$$

$$= -5 + 10$$
 (4)

$$= 5 \tag{5}$$

The activity of a catalyst at a time 't' is given by:

$$a(t) = \frac{-0.5t + 10}{10} \tag{6}$$

$$a(10) = \frac{-r_A(10)'}{-r_A(0)'}$$

$$= \frac{-0.5(10) + 10}{10}$$
(8)

$$=\frac{-0.5(10)+10}{10}\tag{8}$$

$$=\frac{5}{10}\tag{9}$$

$$=0.5\tag{10}$$