

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS 2024/2025 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER REGULAR EXAMINATIONS

FOR THE DEGREE OF:

BACHELOR OF SCIENCE(P106), BACHELOR OF EDUCATION (E100, E101, E103, E111, E112, E113)

COURSE CODE: MAT 413

COURSE TITLE: TOPOLOGY I

DATE: th DEC., 2024 TIME:

Instructions: See Inside

Answer question **ONE** in section A and any other **Two** from section B.

SECTION A

Question ONE is Compulsory

QUESTION ONE (30 marks)

(a) Let X be a non-empty set. Define a topology τ on X. [4 marks]

(b) Let $X = \{a, b, c\}$ be a set. Determine whether the following collections of subsets of X are topologies on X.

i)
$$\mathcal{T}_1 = \{\emptyset, \{a, b\}, \{a, c\}, \{a\}, \{a, b, c\}\}$$
 [2 marks]

ii)
$$\mathcal{T}_2 = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$
 [2 marks]

(c) Let τ be the class of subsets of \mathbb{N} consisting of \emptyset and all subsets of \mathbb{N} of the form $E_n = \{n, n+1, n+2, ...\}$ with $n \in \mathbb{N}$.

- i) List the open sets containing the positive integer 4 [2 marks]
- ii) Find the accumulation points of the set $A = \{4, 13, 28, 37\}$ [2 marks]
- iii) Determine those subsets E of \mathbb{N} for which $E' = \mathbb{N}$ [2 marks]
- (d) Consider the following topologies on $X = \{a, b, c, d\}$ and $Y = \{x, y, z, w\}$ respectively:

$$\tau = \{X, \emptyset, \{a\}, \{a, b\}, \{a, b, c\}\} \text{ and } \tau^* = \{Y, \emptyset, \{x\}, \{y\}, \{x, y\}, \{y, z, w\}\}$$

Also, consider the functions f and g from X to Y defined by:

$$f = \{(a, y), (b, z), (c, w), (d, z)\}$$
 and $g = \{(a, x), (b, x), (c, z), (d, w)\}$

Determine whether each of the given function is continuous. [6 marks]

- (e) Define a Hausdorff space. [2 marks]
- (f) Determine whether the following spaces are Hausdorff:
 - i) The Sierpinki space [1 mark]

MAT 413 Page 2 of 5

ii) The discrete space [1 mark]

(g) Distinguish between first countable and second countable spaces. [4 marks]

(h) Determine whether the real numbers with the standard Euclidean topology is a first countable space. [2 marks]

SECTION B

Answer any Two questions from this section

QUESTION TWO (20 marks)

- (a) Let $X = \{a, b, c, d\}$ and $A = \{\{a, b\}, \{b, c\}, \{d\}\}$. Find the topology on X generated by A. [3marks]
- (b) Let (X,τ) and $(X,\tau)^*$ be two topological spaces. State what is meant by:

i) $f: X \to Y$ is a homeomorphism. [2 marks]

ii) $f: X \to Y$ is a continuous map. [2 marks]

(c) Show that the real line \mathbb{R} and X = (-1, 1) are homeomorphic. [2 marks]

(d) When is a topological space said to be separable? [2 marks]

- (e) Show that \mathbb{R} , the set of real numbers with respect to the Euclidean topology is separable. [2marks]
- (f) When is a property P of a topological space X said to be hereditary? [2 marks]
- (g) In \mathbb{R} , is length a topological property? [2 marks]
- (h) Prove that the property of being Hausdorff is hereditary. [3 marks]

QUESTION THREE (20 marks)

Consider the following topology on $X = \{a, b, c, d, e\}$:

$$\tau = \{X,\emptyset,\{a\},\{a,b\},\{a,c,d\},\{a,b,c,d\},\{a,b,e\}\}$$

MAT 413 Page 3 of 5

(i) List the neighbourhoods of e in X .	[3	marks]
(ii) List the members of the relative topology τ_A on $A = \{b, c, e\}$.	[3	marks]
(iii) List the closed subsets of X .	[2	marks]
(iv) Determine the closures of the sets $\{a\}, \{b\}$ and $\{c, e\}$.	[6	marks]
(v) Which sets in ii) are dense in X ?	[2	marks]
(vi) Find the interior points of the subset $A = \{a, b, c\}$ of X .	[2	marks]
(vii) Find the exterior points of the subset $A = \{a, b, c\}$ of X .	[2	marks]
QUESTION FOUR (20 marks)			
(a)	Define the discrete topology on a set X .	[2	marks]
(b)	Determine the coarsest and the finest topologies on the set $A = \{x, y, z\}$	[4	marks]
(c)	Consider the topology $\tau=\{X,\emptyset,\{a\},\{b,c\}\}$ on the set $X=\{a,b,c\}.$ whether or not (X,τ) is a:	De	etermine
	i) T_1 — Space . Explain.	[3	marks]
	ii) Regular space. Explain.	[3	marks]
(d)	Consider the discrete topology \mathcal{D} on $X = \{a, b, c, d, e\}$.		
	i) Find a base for the discrete topology $\mathcal D$	[2	marks]
	ii) Find a subbase δ for $\mathcal D$ which does not contain any singleton sets.	[2	marks]
(e)	Show that in a T_2 -space, each singleton set is a closed set.	[4	marks]
QUESTION FIVE (20 marks)			
(a)	Let τ_1 and τ_2 be two topologies on X .		
	Show that $\tau_1 \cap \tau_2$ is also a topology on X .	[6	marks]

 $\overline{MAT \ 413}$ Page 4 of 5

- (b) Show that $\tau_1 \cup \tau_2$ may not be a topology on X even though τ_1 and τ_2 are topologies on X.
- (c) Show that any set endowed with the discrete topology is a Hausdorf space. [3 marks]
- (d) Let $f: \mathbb{R} \to \mathbb{R}$ be given by f(x) = c for all $x \in \mathbb{R}$, where c is a constant. Show that f is continuous relative to any topology τ . [3 marks]
- (e) Show that the set of real numbers $\mathbb R$ with the usual topology is a Hausdorff space. [5 marks]

MAT 413 Page 5 of 5