§7.3–Trigonometric Substitution

Tom Lewis

Spring Semester 2015

An overview The sine substitution The tangent substitution The secant substitution

Outline

An overview

The sine substitution

The tangent substitution

The secant substitution

Quadratic forms

We will learn techniques for solving integrals that contain roots of quadratic functions of x. There are three types:

Example	Туре
$\int (9-x^2)^{1/2} dx$	$\sqrt{a^2-x^2}$
$\int_0^1 \frac{1}{(1+x^2)^2} dx$	$\sqrt{a^2+x^2}$
$\int \frac{1}{\sqrt{x^2 - 16}} dx$	$\sqrt{x^2-a^2}$

An overview

The sine subsitution

The tangent substitution

The secant substitution

Sine substitutions

• For integrals containing the form $\sqrt{a^2 - x^2}$, make the substitution

$$x = a\sin(\theta)$$
, $-\pi/2 \leqslant \theta \leqslant \pi/2$.

• Under this substitution, $dx = a\cos(\theta)d\theta$ and

$$\sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \sin^2(\theta)}$$
$$= \sqrt{a^2 (1 - \sin^2(\theta))}$$
$$= a \cos(\theta).$$

Problem

Evaluate the following integrals using trigonometric substitutions:

- $\bullet \int (9-x^2)^{1/2} dx$
- $\int_0^{1/2} x^3 \sqrt{1 4x^2} dx$
- $\bullet \int \frac{x}{(9-x^2)^{5/2}} dx$

An overview

The sine subsitution

The tangent substitution

The secant substitution

Problem

Find the area enclosed by the ellipse: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Tangent substitutions

• For integrals containing the form $\sqrt{a^2 + x^2}$, make the substitution

$$x = a \tan(\theta), \quad -\pi/2 \leqslant \theta \leqslant \pi/2.$$

• Under this substitution, $dx = a \sec^2(\theta) d\theta$ and

$$\sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 \tan^2(\theta)}$$
$$= \sqrt{a^2(1 + \tan^2(\theta))}$$
$$= a \sec(\theta).$$

An overview

The sine subsitution

The tangent substitution

The secant substitution

Problem

Solve the following integrals:

•
$$\int \frac{1}{\sqrt{x^2 + 4}} dx$$

$$\bullet \int_0^1 \frac{1}{(1+x^2)^2} dx$$

Secant substitutions

• For integrals containing the form $\sqrt{x^2 - a^2}$, make the substitution

$$x = a \sec(\theta)$$
, $0 < \theta < \pi/2$ or $\pi < \theta < 3\pi/2$.

• Under this substitution, $dx = a \sec(\theta) \tan(\theta) d\theta$ and

$$\begin{split} \sqrt{x^2 - a^2} &= \sqrt{a^2 \sec^2(\theta) - a^2} \\ &= \sqrt{a^2 (\sec^2(\theta) - 1)} \\ &= a \tan(\theta). \end{split}$$

An overview

The sine subsitution

The tangent substitution

The secant substitution

Problem

Solve the integrals:

$$\bullet \int \frac{1}{\sqrt{x^2 - 16}} dx$$

$$\bullet \int_3^6 \frac{\sqrt{x^2 - 9}}{x} dx$$