โดย : Admin

ที่มา: http://th.wikipedia.org

PID controller หัวใจของระบบควบคุมทางอุตสาหกรรม ซึ่งเป็นอะไรที่จำเป็นอย่างยิ่งสำหรับช่างเทคนิคและวิศวกร หรือเปรียบเสมือนอาวุธประจำกายชนิดหนึ่งของวิศวกรหรือช่างเทคนิคที่ทำงานเกี่ยวข้องกับระบบควบคุมอุตสาหกรรม ดังนั้น หากใครลืม (หรือคืนอาจารย์ไปหมดแล้ว) ก็ทบทวนหรือรีเฟรชกันใหม่ได้ หรือหากถ้ายังไม่เคยรู้จักหรือเข้าใจมาก่อนก็ติดตาม ได้ดังต่อไปนี้

PID controller

ระบบควบคุมแบบสัดส่วน-ปริพันธ์-อนุพันธ์ (อังกฤษ: PID controller) เป็นระบบควบคุมแบบป้อนกลับที่ใช้กันอย่างกว้าง ขวาง ซึ่งค่าที่นำไปใช้ในการคำนวณเป็นค่าความผิดพลาดที่หามาจากความแตกต่างของตัว แปรในกระบวนการและค่าที่ ต้องการ ตัวควบคุมจะพยายามลดค่าผิดพลาดให้เหลือน้อยที่สุดด้วยการปรับค่าสัญญาณขา เข้าของกระบวนการ ค่าตัวแปร ของ PID ที่ใช้จะปรับเปลี่ยนตามธรรมชาติของระบบ

แผนภาพบล็อกของการควบคุมแบบพีไอดี

วิธีคำนวณของ PID ขึ้นอยู่กับสามตัวแปรคือค่าสัดส่วน, ปริพันธ์ และ อนุพันธ์ ค่าสัดส่วนกำหนดจากผลของความผิดพลาดใน ปัจจุบัน, ค่าปริพันธ์กำหนดจากผลบนพื้นฐานของผลรวมความผิดพลาดที่ซึ่งพึ่งผ่านพ้นไป, และค่าอนุพันธ์กำหนดจากผลบน พื้นฐานของอัตราการเปลี่ยนแปลงของค่าความผิดพลาด น้ำหนักที่เกิดจากการรวมกันของทั้งสามนี้จะใช้ในการปรับ กระบวนการ

โดยการปรับค่าคงที่ใน PID ตัวควบคุมสามารถปรับรูปแบบการควบคุมให้เหมาะกับที่กระบวนการต้องการได้ การตอบสนอง ของตัวควบคุมจะอยู่ในรูปของการไหวตัวของตัวควบคุมจนถึงค่าความผิด พลาด ค่าโอเวอร์ชูต (overshoots) และ ค่าแกว่ง ของระบบ (oscillation) วิธี PID ไม่รับประกันได้ว่าจะเป็นระบบควบคุมที่เหมาะสมที่สุดหรือสามารถทำให้กระบวน การมีความ เสถียรแน่นอน

การประยุกต์ใช้งานบางครั้งอาจใช้เพียงหนึ่งถึงสองรูปแบบ ขึ้นอยู่กับกระบวนการเป็นสำคัญ พีไอดีบางครั้งจะถูกเรียกว่าการ ควบคุมแบบ PI, PD, P หรือ I ขึ้นอยู่กับว่าใช้รูปแบบใดบ้าง การควบคุมแบบ PID ได้ชื่อตามการรวมกันของเทอมของตัวแปรทั้งสามตามสมการ:

$$MV(t) = P_{\text{out}} + I_{\text{out}} + D_{\text{out}}$$

เมื่อ

 $m{P}_{
m out}$, $m{I}_{
m out}$ และ $m{D}_{
m out}$ เป็นผลของสัญญาณขาออกจากระบบควบคุม PID จากแต่ละเทอมซึ่งนิยามตามรายละเอียดด้านล่าง

เทอมของสัดส่วน (บางครั้งเรียก *อัตราขยาย*) จะ เปลี่ยนแปลงเป็นสัดส่วนของค่าความผิดพลาด การ ตอบสนองของสัดส่วนสามารถทำได้โดยการคูณค่า ความผิดพลาดด้วยค่าคงที่ K_p , หรือที่เรียกว่าอัตรา ขยายสัดส่วน

เทอมของสัดส่วนจะเป็นไปตามสมการ:

$$P_{\text{out}} = K_p e(t)$$

เมื่อ

 P_{out} : สัญญาณขาออกของเทอมสัดส่วน K_p : อัตราขยายสัดส่วน, ตัวแปรปรับค่าได้

e: ความผิดพลาด = SP - PV .

t: เวลา

ผลอัตราชยายสัดส่วนที่สูงค่าความ ผิดพลาดก็จะเปลี่ยนแปลงมากเช่นกัน แต่ถ้าสูงเกินไประบบจะไม่เสถียรได้ ในทางตรง กันข้าม ผลอัตราชยายสัดส่วนที่ต่ำ ระบบควบคุมจะมีผลตอบสนองต่อกระบวนการน้อยตามไปด้วย

ผลจากเทอมปริพันธ์ (บางครั้งเรียก reset) เป็น สัดส่วนของขนาดความผิดพลาดและระยะเวลาของ ความผิดพลาด ผลรวมของความผิดพลาดในทุกช่วง เวลา (ปริพันธ์ของความผิดพลาด) จะให้ออฟเซตสะสม ที่ควรจะเป็นในก่อนหน้า ความผิดพลาดสะสมจะถูกคูณ โดยอัตราขยายปริพันธ์ ขนาดของผลของเทอมปริพันธ์ จะกำหนดโดยอัตราขยายปริพันธ์, K; เทอมปริพันธ์จะเป็นไปตามสมการ:

$$I_{\text{out}} = K_i \int_0^t e(\tau) \, d\tau$$

เมื่อ

l_{out}: สัญญาณขาออกของเทอมปริพันธ์

 $rac{1}{20} extbf{\emph{K}}_{m{i}}$: อัตราขยายปริพันธ์, ตัวแปรปรับค่าได้

e : ความผิดพลาด = SP - PV .

t: เวลา

T: ตัวแปรปริพันธ์หุ่น

เทอมปริพันธ์ (เมื่อรวมกับเทอมสัดส่วน) จะเร่งกระบวนการให้เข้าสู่จุดที่ต้องการและขจัดความผิดพลาดที่เหลืออยู่ที่ เกิด จากการใช้เพียงเทอมสัดส่วน แต่อย่างไรก็ตาม เทอมปริพันธ์เป็นการตอบสนองต่อความผิดพลาดสะสมในอดีต จึงสามารถ

อัตราการเปลี่ยนแปลงของความผิดพลาดจาก
กระบวนการนั้นคำนวณหาจากความชันของ ความผิด
พลาดทุกๆเวลา (นั่นคือ เป็นอนุพันธ์อันดับหนึ่ง
สัมพันธ์กับเวลา) และคูณด้วยอัตราขยายอนุพันธ์ K_d ขนาดของผลของเทอมอนุพันธ์ (บางครั้งเรียก *อัตรา*)
ขึ้นกับ อัตราขยายอนุพันธ์ K_d เทอมอนุพันธ์เป็นไปตามสมการ:

$$D_{\rm out} = K_d \frac{d}{dt} e(t)$$

เนื่อ

 $oldsymbol{D_{out}}$: สัญญาณขาออกของเทอมอนุพันธ์ $oldsymbol{K_d}$:อัตราขยายอนุพันธ์, ตัวแปรปรับค่าได้

e : ความผิดพลาด = SP - PV .

t : เวลา

เทอมอนุพันธ์จะชะลออัตราการเปลี่ยนแปลงของสัญญาณขาออกของระบบควบคุมและ ด้วยผลนี้จะช่วยให้ระบบควบคุม
เข้าสู่จุดที่ต้องการ ดังนั้นเทอมอนุพันธ์จะใช้ในการลดขนาดของโอเวอร์ชูตที่เกิดจาเทอมปริพันธ์และ ทำให้เสถียรภาพของการ
รวมกันของระบบควบคุมดีขึ้น แต่อย่างไรก็ตามอนุพันธ์ของสัญญาณรบกวนที่ถูกขยายในระบบควบคุมจะไวมากต่อการ
รบกวนในเทอมของความผิดพลาดและสามารถทำให้กระบวนการไม่เสถียรได้ถ้าสัญญาณ รบกวนและอัตราขยายอนุพันธ์มี
ขนาดใหญ่เพียงพอ

ผลรวม

เทอมสัดส่วน, ปริพันธ์, และอนุพันธ์ จะนำมารวมกันเป็นสัญญาณขาออกของการควบคุมแบบ PID กำหนดให้ *u(t)* เป็น สัญญาณขาออก สมการสุดท้ายของวิธี PID คือ:

$$\mathbf{u}(\mathbf{t}) = \mathbf{MV}(\mathbf{t}) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{d}{dt} e(t)$$

รหัสเทียม

รหัสเทียม (อังกฤษ: pseudocode) ของ ขั้นตอนวิธีระบบควบคุมพีไอดี โดยอยู่บนสมมุติฐานว่าตัวประมวลผลประมวลผลแบบ ขนานอย่งสมบรูณ์แบบ เป็นดังต่อไปนี้

```
previous_error = setpoint - actual_position
integral = 0
start:
    error = setpoint - actual_position
    integral = integral + (error*dt)
    derivative = (error - previous_error)/dt
    output = (Kp*error) + (Ki*integral) + (Kd*derivative)
    previous_error = error
    wait(dt)
    goto start
```

การปรับจูน

การปรับจูนด้วยมือ

ถ้าระบบยังคงทำงาน ขั้นแรกให้ตั้งค่า K_i และ K_d เป็นศูนย์ เพิ่มค่า K_p จนกระทั่งสัญญาณขาออกเกิดการแกว่ง (oscillate) แล้วตั้งค่า K_p ให้เหลือครึ่งหนึ่งของค่าที่ทำให้เกิดการแกว่งสำหรับการตอบสนองชนิด "quarter amplitude decay" แล้วเพิ่ม K_i จนกระทั่งออฟเซตถูกต้องในเวลาที่พอเพียงของกระบวนการ แต่ถ้า K_i มากไปจะทำให้ไม่เสถียร สุดท้ายถ้าต้องการ ให้เพิ่ม ค่า K_d จนกระทั่งลูปอยู่ในระดับที่ยอมรับได้ แต่ถ้า K_d มากเกินไปจะเป็นเหตุให้การตอบสนองและโอเวอร์ชูตเกินยอมรับได้ ปกติการปรับจูน PID ถ้าเกิดโอเวอร์ชูตเล็กน้อยจะช่วยให้เข้าสู่จุดที่ต้องการเร็วขึ้น แต่ในบางระบบไม่สามารถยอมให้เกิดโอ เวอร์ชูตได้ และถ้าค่า K_p น้อยเกินไปก็จะทำให้เกิดการแกว่ง

ผลของการเพิ่มค่าตัวแปรอย่างอิสระ

ตัวแปร	ช่วงเวลาขึ้น (Rise time)	โอเวอร์ชูต (Overshoot)	เวลาสู่สมดุล (Settling time)	ความผิดพลาดสถานะคงตัว (Steady-state error)	เสถียรภาพ
K _p	ลด	เพิ่ม	เปลี่ยนแปลงเล็กน้อย	ลด	ลด
Ki	ลด	เพิ่ม	เพิ่ม	ลดลงอย่างมีนัยสำคัญ	ลด
K _d	ลดลงเล็กน้อย	ลดลงเล็กน้อย	ลดลงเล็กน้อย	ตามทฤษฏีไม่มีผล	ดีขึ้นถ้า K_d มีค่าน้อย

วิธีการ Ziegler–Nichols

วิธีการนี้นำเสนอโดย John G. Ziegler และ Nathaniel B. Nichols ในคริสต์ทศวรรษที่ 1940 ขั้นแรกให้ตั้งค่า K_i และ K_d เป็น ศูนย์ เพิ่มอัตราขยาย P สูงที่สุด, K_u , จนกระทั่งเริ่มเกิดการแกว่ง นำค่า K_u และค่าช่วงการแกว่ง P_u มาหาค่าตัวแปรที่เหลือ ดังตาราง:

Ziegler-Nichols method

Control Type	K _p	K _i	K _d
P	0.50 K_u	-	-
PI	0.45 K _u	1.2 K _p /P _u	-
PID	0.60 K_u	2 K _p /P _u .	K_pP_u/8

เนื้อหาโดย: **9engineer.com (**http://www.9engineer.com/**)**