Uvod u linearne mešovite modele

Milica Popović Stijačić i Bojana Dinić Banja Luka, 18.04.2019.

R studio

- User-friendly verzija R-a
- Šta mi je potrebno za analize? Kako bih to u SPSS-u, da mogu?
- Učitavanje paketa
- Gde se kuca "skript"?
- Čuvanje skripta
- Kako se učitavaju podaci?

Zagrevanje prstiju - vezbanje

- vezba zagrevanja
- Skript cas 1

- Dva načina otvaranja skripta:
 - Dupli klik
 - Ili otvaranje preko notepad-a

1. Uvid u podatke

Da li ima pogrešnih unosa ili kodova?

Koji tip podataka su varijable i da li tip treba definisati ukoliko nije dobro prepoznat?

Da li ima nedostajućih podataka (označiti ih kao "NA")?

Kakva je distribucija podataka?

2. "Trimovanje" podataka

Koju transformaciju primeniti?

Eliminisanje očiglednih grešaka (prebrza ili prespora RT za konkretan zadatak)

Eliminisanje odstupajućih i istupajućih vrednosti

Koliko podaka je ok da se izbaci?

- do 5% u slučaju distribucija s velikim br. opservacija u krajevima, u ostalim slučajevima do 15%
- kritika modela: šta se dešava kad se zadrži samo do 2,5 SD

3. Dalje sređivanje podataka

Centriranje kontinuiranih varijabli (AS = 0)

Skaliranje (centrirane vrednosti / SD)

Kategorijalne varijable se pretvaraju u *dummy* varijable (u R-u je to automatski)

Određujemo koja će biti referentna kategorija

	mnogo	srednje
## malo	0	0
## mnogo	1	0
## srednje	0	1

4. Provera uslova za primenu LM

Normalnost distribucije ZV i kontinuiranih prediktora i odsustvo ekstrema i autlajera

Linearni odnos između NV i ZV

Nezavisnost merenja, odsustvo multikolinearnosti između prediktora

Homoskedascitet – ujednačenost varijansi ZV po nivoima NV

Normalnost distribucije reziduala

Da počnemo...

$$Y = a + bX + \varepsilon$$

$$Y = \beta 0 + \beta X + \varepsilon$$

$$Y = a + b1X1 + b2X2 + ... + biXi + \epsilon$$

 $Y = \beta 0 + \beta 1X1 + \beta 2X2 + ... + \beta iXi + \epsilon$

Linearni mešoviti modeli

Fiksni efekti

razlike između nivoa su važne i nivoi su poznati i mogu se ponoviti

predvidivi efekti – postoje očekivanja da će ostvariti efekat na ZV

Slučajni efekti (uvek kategorijalni)

nivoi nisu važni, niti poznati, niti se mogu ponoviti, jednostavno su tu, izvučeni iz populacije (min. 5 nivoa)

nepredvidivi efekti, ali koji imaju neki sklop

Zašto slučajni efekti?

- Bolja estimacija fiksnih efekata, jer se greška bolje objašnjava
- Šta su najčešće slučajni efekti?

Ispitanici

Stimulusi

Da se podsetimo...

$$Y = a + bX + \varepsilon$$

$$Y = a + bX + (1|ispitanik) + \varepsilon$$

podešavanje odsečka za svakog ispitanika

(Non-)mixed model: no random effects

Mixed model: random intercept

Da se podsetimo...

$$Y = a + bX + \varepsilon$$

$$Y = a + bX + (0+broj slova|ispitanik) + \varepsilon$$

podešavanje nagiba za prediktor "broj slova" za svakog ispitanika

Mixed model: random slope

Da se podsetimo...

$$Y = a + bX + \varepsilon$$

 $Y = a + bX + (1+broj slova|ispitanik) + \varepsilon$

podešavanje interakcije nagiba i odsečka za prediktor "broj slova" za svakog ispitanika

Mixed model: random intercept and slope

