小作业 1 报告 _ 编写生命游戏程序

王永赫 1 - 2014013406 - jlmhkwang@gmail.com

Abstract

小作业 1 要求编写一个生命游戏程序(细胞自动机),要求使用 JavaScript 单元测试框架 mocha (http://mochajs.org/) 进行单元测试,技术文档要求说明程序实现的技术细节以及单元测试方案(包括单元测试环境、测试用例设计、测试结果以及运行测试的方法等)。

KeyWords

javascript - mocha - eslint

1 清华大学软件学院 - 软件 41 班

	日求	
1	发布与运行方式	1
1.1	线上 (github-pages)	1
1.2	运行方式	1
2	实现技术细节	1
2.1	模块划分	1
2.2	全局变量	1
2.3	外部库引用	1
3	单元测试方案	1
3.1	环境	1
3.2	方案	1
3.3	周围细胞计数	1
3.4	数据更新	_
3.5	语法静态分析	

1. 发布与运行方式

1.1 线上 (github-pages)

发布链接: 点我

或复制到浏览器地址栏:

http://cyclops-thss.github.io/LifeGame/

1.2 运行方式

在 src 子目录中, 到终端键入 npm install, 后打开test.html、index.html 即可。

2. 实现技术细节

2.1 模块划分

1、绘图显示模块 (render.js)

负责提供向屏幕上的画布绘制图形的接口、控制 <canvas>的边长等。

2、游戏逻辑模块(logic.js)

负责存储进行中数据和进行数据更新,使用绘图显示的接口。

另外直观验证逻辑可以在图形界面上测试,对于任何输入一定会终止计时器(所有全死)或完全稳定(界面不动)或周期变化且周期很小。

3、定时器模块(timer.js)

负责处理计时和动画相关的事情,使用逻辑接口。

4、界面交互模块(ui.js) 负责与用户交互和控制游戏,使用其他接口。

5、测试模块 (test.js)

负责开发期间测试各个接口和内部函数,保证其功能稳定。

2.2 全局变量

g_renderer: 绘图模块的代表 g_controller: 逻辑模块的代表

g timer: 计时器的代表

由于闭包内部函数外部不可见,它们都带有 test 成员用来把接口暴露给测试用。

2.3 外部库引用

jQuery, MaterializeCSS

3. 单元测试方案

3.1 环境

mocha (使用 chai 的 assert)、代码静态分析使用 eslint。 测试请打开 test.html,运行 npm test 会报错(没有导入那些 js)。

3.2 方案

主要测试各个函数和参数(绘图的模块还是需要浏览器 上测试),游戏逻辑的测试更详细,如下两个例子:

3.3 周围细胞计数

由于画布无限,数组需要周而复始的访问,这方面设计了测试用例 [[1,2,3],[2,3,4],[3,4,5]]测试几个关键点,比如左上角周围应该返回 26,结果正确,这个步骤保证后续的计算不出问题;

3.4 数据更新

为了验证更新算法是否正确,取一个测试用例 [[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 0, 0], [0, 0, 0, 0]],运行一次 update 函数,与标准结果 [[1, 1, 1, 0], [1, 0, 1, 0], [1, 1, 1, 0], [0, 0, 0, 0]] 对比进行验证,结果正确。

3.5 语法静态分析

使用 eslint 保证基本的例如 tab 对齐的统一等不出问题。

Acknowledgments

感谢《软件工程 (3)》的老师和助教团队!