Домашнее задание по АМВ

771 группа, Христолюбов Максим 29 марта 2019 г.

1 Задача 1

Для каждого языка из \mathcal{RP} существует вероятностная MT, принимающая слова этого языка. Пусть ДМТ будет работать так же к и ВМТ, а вместо использования случайных битов будет брать биты из предоставленного ей сертификата. Так как вероятность принятия ВМТ слова из языка не нулевая, то существует такой сертификат, что ДМТ примет его, а для слова не из языка не существует такого сертификата, посколько вероятность его принятия равна 0. Причем длина сертификата полиномиальна, так как он состоит из всех используемых ВМТ битов, а из полиномиальной работы ВМТ следует полиномиальность используемых битов. Значит, существует ДМТ, распознающая этот язык с сертификатом, и этот язык \mathcal{NP} .

2 Задача 2

$$2^n \geq |x-y| \geq p_1 p_2 \dots p_k \geq n^k, \text{ значит, } k \leq \frac{n}{\ln n} \ln 2.$$
 Так как $0.99 \frac{n}{\ln n} \leq \pi(n) \geq 1.01 \frac{n}{\ln n} \ln n, \text{ то } \pi(n,2n) \geq 1.98 \frac{n}{\ln 2n} - 1.01 \frac{n}{\ln n}$ $P\{$ выбрать простое число – делитель $\} = \frac{k}{\pi(n,2n)} \leq \frac{n \ln n}{1.98 \frac{n \ln n}{\ln n + \ln 2} - 1.01 \frac{n \ln n}{\ln n}} = \frac{\frac{\ln 2}{1.98 \frac{n \ln n}{\ln n + \ln 2} - 1.01}}{1.98 \frac{n \ln n}{\ln n + \ln 2} - 1.01} \leq \frac{3}{4}$ $n \geq e^{30}, \text{ что около 1 теробайта.}$

^{*}При решение некоторых номеров обращался к Михаилу Сысаку.

Задача 3 3

(i) 3.1

Заменим вероятность ошибки $\frac{1}{3}$ на число $\frac{1-\alpha}{2}$. Тогда можно применить этот алгоритм n нечетное кол-во раз и смотреть какой ответ будет дан чаще и его выдавать. Вероятность ошибки результата будет

$$P = \sum_{i=0}^{\frac{n-1}{2}} C_n^i (\frac{1-\alpha}{2})^{n-i} (\frac{1+\alpha}{2})^i \leq \sum_{i=0}^{\frac{n-1}{2}} C_n^i (\frac{1-\alpha}{2})^{\frac{n+1}{2}} (\frac{1+\alpha}{2})^{\frac{n-1}{2}} \leq (\frac{1-\alpha}{2})^{\frac{n+1}{2}} (\frac{1+\alpha}{2})^{\frac{n-1}{2}} \sum_{i=0}^{\frac{n-1}{2}} C_n^i \leq (1-\alpha^2)^{\frac{n-1}{2}} (1-\alpha) \frac{1}{2^n} 2^n = (1-\alpha^2)^{\frac{n-1}{2}} (1-\alpha) \to 0$$
 при $n \to \infty$

Значит, существует такое n, что вероятность ошибки меньше $\frac{1}{3}$. И каждый язык, удовлетворяющий определению с $\frac{1-\alpha}{2}$ удовлетворяет определению с $\frac{1}{3}$.

3.2(ii)

Изменим алгоритм — в случае превышения полиномиального времени работы будем случайно выдавать 0 или 1 с вероятностью $\frac{1}{2}$. p вероятность, что будет превышено полиномиальное время работы, $\epsilon \leq \frac{1}{2}$ - вероятность ошибки изначального алгоритма. Тогда ошибка измененного алгоритма

$$\epsilon' = \frac{1}{2}p + \epsilon(1-p) \le \frac{1}{2}p + \frac{1}{2}(1-p) = \frac{1}{2}.$$

Значит измененный алгоритм будет удовлетворять определению, так как работает полиномиальное время.

Задача 4 4

4.1(i)

Вероятность совпадения компоненты в равенстве $A(Bx) = Cx \frac{1}{N}$, а вероятность совпадения векторов $\frac{1}{N^n} < p, \ N > \frac{1}{p^{\frac{1}{n}}}$.

4.2 (iv)

 $(ABx)^Tx = (Cx)^Tx$ и $(ABx)^Ty = (Cx)^Ty$ — равенства двух многочленов степени 2. По лемме Шварца-Зиппеля $P\{\text{ошибка}\} \leq \frac{2}{N} < p, \ N > \frac{2}{p}$

$$P\{$$
ошибка $\} \le \frac{2}{N} < p, N > \frac{2}{p}$

Задача 5 5

(i) 5.1

Пусть кол-во ребер минимального разреза e, тогда из каждой вершин выходит не более e ребер, иначе существовал бы разрез минимальнее.

$$P\{$$
выбрать ребро из разреза $\}=rac{e}{E}=rac{e}{rac{1}{2}eV}=rac{2}{V}$

5.2(ii)

Алгоритм выдаст верный ответ, если по ходу работы не будет стянуто ни одно из ребер, его пересекающих. На первом шаге вероятность выбрать ребро не из разреза $\frac{n-2}{n}$, на втором $\frac{n-3}{n-1}$ и так далее, вероятность выдать верный ответ $\frac{n-2}{n}\frac{n-1}{n-3}\dots frac 13=\frac{2}{(n-1)n}$

5.3(ii)

Если повторять алгоритм
$$n^2$$
 раз $P\{\text{ошибки}\} \leq \left(1-\frac{2}{n(n-1)}\right)^{n^2} \leq \left(1-\frac{2}{n^2}\right)^{n^2} \to e^{-2} < 0.15$ Значит, начиная с достаточно большого n_0 вероятность правильного

ответа будет превышать 0,85.

Задача 6 6

Заменив каждую дезъюнкцию $(a \lor b)$ на $(\overline{a} \to b) \land (\overline{b} \to a)$. Теперь построим граф на всех литералах, такой что ребро (u,v) принадлежит графу, если в конъюнкцию входит $(u \to b)$. Покажем, что формула выполнима тогда и только тогда, когда для любой переменной x нельзя достичь x из \overline{x} и \overline{x} из x.

Пусть формула выполнима. Предположим, для x можно достичь его из отрицания и наоборот. Если x = 0 в выполняющем наборе, тогда в одной из импликаций, которая ведет от отрицания к переменной импликация не выполнена, что противоречит выполнимости. Аналогично, если x=1.

Обратно, все x, из которого можно достичь \bar{x} обозначим его x=0. Из единичной вершины не может быть достижима нулевая вершина, так как тогда бы формула была б невыполнимой. Всем вершинам, достижимых из единичных, присвоим 1. Это присваивание непротиворечиво, так как если бы x и \overline{x} были бы достижимы из y=1 это значило бы что они достижимы друг из друга, что не возможно. Остальным вершинам значения можно присвоить произвольно и получить выполняющий набор, значит, формула выполнима.

Преобразование импликаций, построение графа, поиск компонент сильной связности (для проверки достижимости каждой переменной ее отрицания и наоборот) потребует полиномиального времени, значит, $2-SAT \in \mathcal{P}$.

7 Задача 7

7.1 (i)

Доказательство по индукции. На 1 шаге колода равновероятно перемешана. Если на k шаге все карты под n-1 были равномерно перемешаны, тогда на (K+1) шаге мы засовываем верхнюю карту в случайное место. Если засунули карту выше n-1 карты, то под ней ничего не изменилось. Если ниже n-1 карты, под которой p-1 карта, то фактически карта была вставленно в случайное из p мест. То есть новая перестановка была составлена сначала выбором одного из p мест, а потом заполнением оставшихся мест одной из случайных перестановок, чья вероятность $\frac{1}{(p-1)!}$, тогда вероятность новой перестановки из p карт $\frac{1}{(p-1)!}\frac{1}{p}=\frac{1}{p!}$, то есть они равновероятны.

7.2 (ii)

Вставка в равновероятно перемешанную колоду эквивалента вставке в одно из случайных мест между картами, что как было показано ранее порождает равновероятную перестановку.

7.3 (iii)

Матожидание времени работы алгоритма найдем как сумму матожиданий времени работы на n-1 шагах работы алгоритма, где матожидание k-ого шага — это сколько нужно раз в среднем попытаться засунуть верхнюю карту колоды, в которой под n-1 картой k карт, чтобы она вставилась под n-1 карту, и под ней оказалось k+1 карт. Вероятность засунуть карту под n-1 на k-ом шаге $\frac{k+1}{n}$, значит, матожидание времени работы k-ого шага равно $\frac{n}{k+1}$. Матожидание алгоритма:

$$E = \sum_{k=1}^{n-1} \frac{n}{k+1}$$

8 Д-1 из файла

8.1 (i)

 $T(n)=4T(\frac{n}{2})+4F(n,\frac{n}{2})+\Theta(n^2)$, где F(n,k) — время стягивание графа на n вершинах и порогом k.

8.2 (ii)

 $F(n,k) = \Theta(n(n-k)) = \Theta(n^2),$ так как нужно избавиться от n-k вершин, которые в худшем случае соеденены со всеми остальными вершинами.

$$T(n) = 4T(\frac{n}{2}) + \Theta(n^2)$$
 По мастер теореме $T(n) = \Theta(n^2 \log n).$

8.3 (ii)

$$\frac{dp}{dk}=p_{k+1}-p_k=-\frac{3}{8}p_k^2,\, p_0=1$$
— задача Коши, $p_k=\frac{8}{3k+8}.$