Branch: CSE & IT

Batch:Hinglish

Theory of Computation Regular Grammar & Pumping Lemma

DPP-10

[MCQ]

1. Consider alphabet $\Sigma = \{a, b\}$, the empty string \in and the set of strings S, P, Q and R generated by the corresponding non-terminals of a regular grammar. S, P, Q and R related as follows (S is a start symbol):

$$S \rightarrow aP \mid bQ \mid \in$$

$$P \rightarrow bR \mid aS$$

$$Q \rightarrow aR \mid bS$$

$$R \rightarrow aQ \mid bP$$

- (a) $L = \{w: n_a(w) \text{ and } n_b(w) \text{ both are even} \}.$
- (b) $L = \{w: n_a(w) \text{ and } n_b(w) \text{ both are odd} \}.$
- (c) $L = \{w: n_a(w) \text{ or } n_b(w) \text{ are even} \}.$
- (d) None of these.

[MSQ]

2. Consider the following language L on alphabet $\Sigma = \{a, b\}$

$$L = \{wxw^R \mid w, \, x \, \in \, \{a, \, b\}^{\scriptscriptstyle +}\}$$

The correct regular grammar of above language is/are possible?

(a) $S \rightarrow aAa \mid bAb$

$$A \rightarrow aA \mid bA \mid a \mid b$$

$$B \rightarrow aA \mid bA \mid a \mid b$$

(b) $S \rightarrow aAa \mid bAb \mid \in$

$$A \rightarrow ab$$

(c) $S \rightarrow aA \mid bB$

$$A \rightarrow aA \mid bA \mid a$$

$$B \rightarrow bB \mid aB \mid b$$

(d) $S \rightarrow Aa \mid Bb$

$$A \rightarrow Aa \mid Ab \mid a$$

$$B \rightarrow Bb \mid Ba \mid b$$

[MCQ]

3. Consider the following statements:

 S_1 : If language is regular then, grammar must be regular.

 S_2 : If grammar is regular then, language can't be regular.

Which of the following is correct?

- (a) S_1 is true.
- (b) S_2 is true.
- (c) Both S_1 and S_2 are true.
- (d) None of these

[MCQ]

4. Consider the following grammar G:

G

$$S \rightarrow A B C$$

$$A \rightarrow aA \mid a$$

$$B \rightarrow bc$$

$$C \rightarrow cC \mid \in$$

The language generated by above grammar is?

- (a) $L = \{a^* bc c^*\}$
- (b) $L = \{a^+ b c^+\}$
- (c) $L = \{a^* b c^*\}$
- (d) None of these

[NAT]

5. For language $\{a^*bb^*a^+b^* \cup b \ a^*b\}$ the minimum pumping length will be _____.

[NAT]

6. Consider some regular expression:

$${\bf r_1}$$
: ${\bf a}^*{\bf b}{\bf b}^*{\bf c}^*({\bf a}{\bf b})^*$

$${\bf r_2}: {\bf a}^*{\bf b}^* {\bf ab} \cup {\bf (bb)}^*$$

If minimum pumping length of r_1 is P_1 and minimum pumping of r_2 is P_2 then the value of $P_1 \ast P_2$ will be

[MCQ]

- 7. Suppose, a language L has finite automata M with N states. The language generated by FA is L(M) is an infinite if and only if $\exists_w \in L$ such that
 - (a) $N \ge |w| \le 2N$
 - (b) $N \le |w| \le 2N-1$
 - $(c) \quad N \leq |w| \geq 2N{-}1$
 - (d) None of these

[MCQ]

8. Consider the following grammars G_1 and G_2 :

$$\textbf{G_1:} \: S \to aS \mid S \mid A$$

$$A \to aA \mid abA \mid \in$$

$$G_2: S \rightarrow aS \mid a$$

Which of the following grammar is/are regular?

- (a) G₁ only
- (b) G₂ only
- (c) Both G_1 only G_2
- (d) None of these

Answer Key

(a) 1.

(c, d) 2.

3. (d)

4. (b)

5. (3)6. (6)

7. (b)

(c)

Hints and Solutions

1. (a)

 $L = (aa + ab + ba + bb)^*$ Hence, option (a) is correct.

2. (c, d)

$$\begin{split} L &= \{wxw^R \mid w, \, x \in \{a, \, b\}^+\} \\ a(a+b)^+ \, a \, \mid b(a+b)^+ \, b \\ &\downarrow & \downarrow \end{split}$$

 $ab(a + b)^{+}ba$ $ba(a + b)^{+}ba$ $aa(a + b)^{+}aa$ $bb(a + b)^{+}bb$

L = Regular

Regular expression = $a(a + b)^+ a + b(a + b)^+ b$

(a) False: Given grammar is not regular.

(b) False: Given grammar is not regular.

(c) True: $a(a + b)^+a + b(a + b)^+b$ RLRG

(d) True: $a(a + b)^+a + b(a + b)^+b$ LLRG

Hence, (c, d) are correct.

3. (d)

• False: Grammar may/may not be regular.

• False: If grammar is regular, then language must be regular.

4. (b)

$$S \rightarrow ABC = aa^*bcc^*$$
 $A \rightarrow aA \mid a = aa^*$
 $B \rightarrow bc = bc$
 $C \rightarrow cC \mid \epsilon = c^*$

Regular expression = aa^*bcc^* = a^+bc^+

Hence, option (b) is correct.

5. (3)

 $L = \{a^*bb^*a^+b^* \cup ba^*b\}$ Minimal string (w) = ba, bb
Pumping length = |w| + 1
= 2 + 1
= 3

6. (**6**)

$$r_1 = a^*bb^*c^*(ab)^*$$

$$p_1 = 2$$

$$r_2 = a^*b^*ab \cup (bb)^*$$

$$p_2 = 3$$

$$p_1 * p_2 = 6$$

7. (b)

$$N \le |w| \le 2N - 1$$

Option (b) is correct.

8. (c)

$$G_1: S \rightarrow aS |S|A$$

 $A \rightarrow aA |abA| \in$
Regular grammar

Regular grammar

• $V \rightarrow T^*V \mid T^* RLRG$

• $V \rightarrow VT^* \mid T^* \quad LLRG$

 $G_2: S \rightarrow aS \mid a$

Regular grammar.

Any issue with DPP, please report by clicking here: https://forms.gle/t2SzQVvQcs638c4r5
For more questions, kindly visit the library section: Link for web: https://smart.link/sdfez8ejd80if