$\mathbf{MTH375} :$ Mathematical Statistics - Homework #4

Cason Konzer

February 10, 2022

 $\underline{\text{Key Concepts}}\textsc{:}$ Rao-Blackwell Theorem, Exponential Families of Distributions, UMVUEs, Lehman-Sheffé Theorem.

1. Let X_1, \ldots, X_n be a sample of *iid Binomial* (k = 1, p) random variables.

(a) Write out the likelihood function $L(p|x_1, \dots x_n)$, and find a sufficient statistic for p. Solution:

We know that for each X_i its pmf is $f(x_i; p) = p^{x_i}(1-p)^{1-x_i}$.

With this we can compute the likelihood function $L(p|x_1,\ldots,x_n)=f(x_1;p)\cdots f(x_n;p)$.

- $L(p) = p^{x_1}(1-p)^{1-x_1} \cdots p^{x_n}(1-p)^{1-x_n}$.
- $L(p) = p^{x_1 + \dots + x_n} (1 p)^{n x_1 \dots x_n}$.
- $L(p) = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$.

We can now see that $T = \sum_{i=1}^{n} x_i$ is a sufficient statistic for p.

(b) Use your answer to (a) to find an UMVUE for p. Solution:

For each X_i we have $E(X_i) = kp = p$.

Thus ...

- $E(T) = nE(X_i) = np$.
- $np \cdot \frac{1}{n} = p$.
- $\bullet \ T \cdot \frac{1}{n} = \overline{X}.$
- $\bullet \ E(\overline{X}) = E(T) \cdot \frac{1}{n} = np \cdot \frac{1}{n} = p.$

We can now see that \overline{X} is an UMVUE for p.

(c) Evaluate $E(\overline{X}^2)$. Hint: Use $E(\overline{X})$ and $V(\overline{X})$. Solution:

We know $V(\overline{X}) = E(\overline{X}^2) - E(\overline{X})^2$.

For each X_i we have $V(X_i) = kpq = p(1-p)$.

Thus ...

$$\bullet \ V(\overline{X}) = V\left(\frac{T}{n}\right) = \frac{V(T)}{n^2} = \frac{nV(X_i)}{n^2} = \frac{p(1-p)}{n}.$$

- $E(\overline{X})^2 = p^2$.
- $E(\overline{X}^2) = V(\overline{X}) + E(\overline{X})^2 = \frac{p(1-p)}{n} + p^2$.
- (d) Use your answer to (c) to find an UMVUE for p^2 .

 Solution:

Some simplification implies ...

•
$$E(\overline{X}^2) = \frac{p(1-p)}{n} + p^2 = \frac{p-p^2+np^2}{n} = \frac{p+p^2(n-1)}{n}$$
.

•
$$E(\overline{X}) + p^2(n-1) = nE(\overline{X}^2)$$
.

•
$$p^2(n-1) = nE(\overline{X}^2) - E(\overline{X}).$$

•
$$p^2 = \frac{nE(\overline{X}^2) - E(\overline{X})}{n-1} = E\left(\frac{n\overline{X}^2 - \overline{X}}{n-1}\right).$$

We can now see that $\frac{n\overline{X}^2 - \overline{X}}{n-1}$ is an UMVUE for p^2 .

- 2. Let X_1, \ldots, X_n be a sample of $iid\ Normal(\mu, 1)$ random variables. We know \overline{X} is UMVUE for μ .
- (a) Find an UMVUE for μ^2 .

Solution:

We know
$$E(X_i) = \mu$$
, $E(\overline{X}) = \frac{nE(X_i)}{n} = \mu$, $V(X_i) = 1^2$ and $V(\overline{X}) = \frac{nV(X_i)}{n^2} = \frac{1}{n}$.

Thus
$$\overline{X} \sim N(\mu, \frac{1}{n})$$
.

From above $E(\overline{X}^2) = V(\overline{X}) + E(\overline{X})^2$.

- $E(\overline{X}^2) = \frac{1}{n} + \mu^2$.
- $\bullet \ E(\overline{X}^2) \frac{1}{n} = \mu^2.$
- $E(\overline{X}^2 \frac{1}{n}) = \mu^2$.

We can now see that $\overline{X}^2 - \frac{1}{n}$ is an UMVUE for μ^2 .

(b) Use the MGF of \overline{X} to compute $E(\overline{X}^3)$.

Solution:

We need to solve for the third moment of \overline{X} .

 $\bullet \ M_{\overline{X}}(t) = e^{\mu t + t^2/2}.$

•
$$M'_{\overline{X}}(t) = (\mu + t/2)e^{\mu t + t^2/2} = \mu e^{\mu t + t^2} + \frac{t}{2}e^{\mu t + t^2}$$
.

•
$$M_{\overline{X}}^2(t) = \mu(\mu + t/2)e^{\mu t + t^2} + \frac{1}{2}e^{\mu t + t^2} + \frac{t}{2}(\mu + t/2)e^{\mu t + t^2}$$
.

•
$$M_{\overline{X}}^2(t) = \left(\mu^2 + \frac{\mu t}{2}\right)e^{\mu t + t^2} + \frac{1}{2}e^{\mu t + t^2}\left(\frac{\mu t}{2} + \frac{t^2}{2}\right)e^{\mu t + t^2}.$$

•
$$M_{\overline{X}}^2(t) = \mu^2 e^{\mu t + t^2} + \frac{\mu t}{2} e^{\mu t + t^2} + \frac{1}{2} e^{\mu t + t^2} \frac{\mu t}{2} e^{\mu t + t^2} + \frac{t^2}{2} e^{\mu t + t^2}.$$

$$\bullet \ M_{\overline{X}}^2(t) = \mu^2 e^{\mu t + t^2} + \mu t e^{\mu t + t^2} + \frac{1}{2} e^{\mu t + t^2} + \frac{t^2}{2} e^{\mu t + t^2}.$$

•
$$M_{\overline{X}}^3(t) = \mu^2(\mu + t/2)e^{\mu t + t^2} + \mu e^{\mu t + t^2} + \mu t(\mu + t/2)e^{\mu t + t^2} + \frac{1}{2}(\mu + t/2)e^{\mu t + t^2} + \frac{2t}{2}e^{\mu t + t^2} + \frac{t^2}{2}(\mu + t/2)e^{\mu t + t^2}.$$

$$\bullet \ \ M_{\overline{X}}^3(t) = \Big(\mu^3 + \frac{\mu^2 t}{2}\Big)e^{\mu t + t^2} + \mu e^{\mu t + t^2} + \Big(\mu^2 t + \frac{\mu t^2}{2}\Big)e^{\mu t + t^2} + \Big(\frac{\mu}{2} + \frac{t}{4}\Big)e^{\mu t + t^2} + \frac{2t}{2}e^{\mu t + t^2} + \Big(\frac{\mu t^2}{2} + \frac{t^3}{4}\Big)e^{\mu t + t^2}.$$

•
$$M_{\overline{X}}^3(0) = \mu^3 + \mu + \frac{\mu}{2} = \mu^3 + \frac{3\mu}{2} = E(\overline{X}^3).$$

(c) Use (b) to find an UMVUE for μ^3 .

Solution:

We have $\mu^3 = E(\overline{X}^3) - \frac{3\mu}{2}$

Thus ...

•
$$\mu^3 = E(\overline{X}^3) - \frac{3E(\overline{X})}{2} = E\left(\overline{X}^3 - \frac{3\overline{X}}{2}\right)$$

We can now see that $\overline{X}^3 - \frac{3\overline{X}}{2}$ is an UMVUE for μ^3 .

3. Let X_1, \ldots, X_n be a sample of *iid* random variables with common pdf $f(x_i; \theta)$.

$$f(x_i; \theta) = \frac{3x_i^2}{\theta^3}$$
 for $0 \le x_i \le \theta$.

(a) the likelihood function $L(\theta|x_1, \dots x_n)$, and find a sufficient statistic T for θ . Solution:

We can compute the likelihood function $L(\theta|x_1,\ldots,x_n)=f(x_1;\theta)\cdots f(x_n;\theta)$.

•
$$L(\theta) = \frac{3x_1^2}{\theta^3} \cdots \frac{3x_n^2}{\theta^3} = \left(\frac{3}{\theta^3}\right)^n \prod_{i=1}^n x_i^2$$
 for $0 \le x_i \le \theta$.

We can now see that $T = \max\{X_i, ..., X_n\}$ is a sufficient statistic for θ , as T provides the lower bound on θ .

(b) Find the pdf of T, E(T), and an UMVUE for θ . Solution:

We will first solve for the CDFs of X_i and T then the requested . . .

•
$$F_{X_i} = \int_0^{x_i} \frac{3x^2}{\theta^3} dx = \frac{x^3}{\theta^3} \Big|_0^{x_i} = \frac{x_i^3}{\theta^3}.$$

•
$$F_T = P(T \le t) = P(X_1 \le t \& \dots \& X_n \le t) = \left(F_{X_i}\right)^n = \left(\frac{m^3}{\theta^3}\right)^n = \frac{m^{3n}}{\theta^{3n}}.$$

•
$$f_T = \frac{d}{dx} \left[\frac{m^{3n}}{\theta^{3n}} \right] = \frac{3nm^{3n-1}}{\theta^{3n}}.$$

$$\bullet \ E(T) = \int_0^\theta \frac{3nm^{3n}}{\theta^{3n}} \, dm = \frac{3nm^{3n+1}}{(3n+1)\theta^{3n}} \Big|_0^\theta = \frac{3n\theta^{3n+1}}{(3n+1)\theta^{3n}} - \frac{3n(0)^{3n+1}}{(3n+1)\theta^{3n}} = \frac{3n\theta}{3n+1}.$$

•
$$T^* = \frac{3n+1}{3n}T$$
; $E(T^*) = E(\frac{3n+1}{3n}T) = \frac{3n+1}{3n}E(T) = \theta$

We can now see that $T^* = \max\{X_i, ..., X_n\} \frac{3n+1}{3n}$ is an UMVUE for θ .

4. Let X_1, \ldots, X_n be a sample of *iid* random variables with common pdf $f(x_i; \theta_1, \theta_2)$.

$$f(x_i; \theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x_i - \theta_2)/\theta_1}$$
 for $x_i > \theta_2$.

(a) Show that the pair $\left(\sum_{k=1}^{n} X_k, X_{(1)}\right)$ is sufficient for (θ_1, θ_2) . We use the notation $X_{(1)} = \min\{X_1, \dots, X_n\}$, the 1^{st} order statistic.

Solution:

We can compute the likelihood function $L(\theta_1, \theta_2 | x_1, \dots, x_n) = f(x_1; \theta_1, \theta_2) \cdots f(x_n; \theta_1, \theta_2)$.

•
$$L(\theta_1, \theta_2) = \frac{1}{\theta_1} e^{-(x_1 - \theta_2)/\theta_1} \cdots \frac{1}{\theta_1} e^{-(x_n - \theta_2)/\theta_1} = \frac{1}{\theta_1^n} \Big(e^{\theta_2/\theta_1 - x_1/\theta_1} \cdots e^{\theta_2/\theta_1 - x_n/\theta_1} \Big).$$

•
$$L(\theta_1, \theta_2) = \frac{1}{\theta_1^n} \left(e^{n\theta_2/\theta_1 - \sum_{k=1}^n x_k/\theta_1} \right)$$
 for $x_i > \theta_2$.

As this likelihood function is an exponential family of ditributions, it is straightforward to see that the pair $(\sum_{k=1}^{n} X_k, X_{(1)})$ is sufficient for (θ_1, θ_2) .

For clarity, $X_{(1)}$ is in this pair as θ_2 has an upperbound of $X_{(1)}$ and appears in the term $\frac{n\theta_2}{\theta_1}$ within our family.

(b) Find a pair (T_1, T_2) which is an UMVUE for (θ_1, θ_2) . Solution:

We will first solve for $F(x_i; \theta_1, \theta_2)$.

•
$$F_{X_i} = \int_{\theta_2}^{x_i} \frac{1}{\theta_1} e^{\theta_2/\theta_1 - x/\theta_1} dx = -e^{\theta_2/\theta_1 - x/\theta_1} \Big|_{\theta_2}^{x_i} = e^{\theta_2/\theta_1 - \theta_2/\theta_1} - e^{\theta_2/\theta_1 - x_i/\theta_1} = 1 - e^{\theta_2/\theta_1 - x_i/\theta_1}.$$

Next we will need $F_{X_{(1)}}$.

•
$$F_{X_{(1)}}(m) = P(\min\{X1, \dots, Xn\} \le m) = 1 - P(\min\{X1, \dots, Xn\} > m)$$

•
$$F_{X_{(1)}}(m) = 1 - [P(X_i > m)]^n = 1 - [1 - F_{X_i}(m)]^n = 1 - (e^{\theta_2/\theta_1 - m/\theta_1})^n = 1 - e^{n\theta_2/\theta_1 - nm/\theta_1}$$
.

Following $f_{X_{(1)}}$...

•
$$f_{X_{(1)}}(m) = \frac{d}{dm}[F_{X_{(1)}}(m)] = \frac{d}{dm}[1 - e^{n\theta_2/\theta_1 - nm/\theta_1}] = \frac{n}{\theta_1}e^{n\theta_2/\theta_1 - nm/\theta_1}.$$

Continuing, we will now solve for $E(X_{(1)})$.

•
$$E(X_{(1)}) = \int_{\theta_2}^{\infty} \frac{nm}{\theta_1} e^{n\theta_2/\theta_1 - nm/\theta_1} dm = -\frac{nm + \theta_1}{n} e^{n\theta_2/\theta_1 - nm/\theta_1} \Big|_{\theta_2}^{\infty}$$
.

•
$$E(X_{(1)}) = \frac{n\theta_2 + \theta_1}{n} e^{n\theta_2/\theta_1 - n\theta_2/\theta_1} - \infty e^{-\infty/\theta_1} = \frac{n\theta_2 + \theta_1}{n} e^0 - \infty \frac{e^{1/\theta_1}}{e^\infty}.$$

•
$$E(X_{(1)}) = \frac{n\theta_2 + \theta_1}{n} - \frac{\infty}{e^{\infty}} = \frac{n\theta_2 + \theta_1}{n} = \theta_2 + \frac{\theta_1}{n}$$
; As $\lim_{m \to \infty} \frac{m}{e^m} = 0$

We will now solve for $E(X_i)$.

•
$$E(X_i) = \int_{\theta_2}^{\infty} \frac{x_i}{\theta_1} e^{\theta_2/\theta_1 - x_i/\theta_1} dx = -(x_i + \theta_1) e^{\theta_2/\theta_1 - x_i/\theta_1} \Big|_{\theta_2}^{\infty}$$
.

•
$$E(X_i) = (\theta_2 + \theta_1)e^{\theta_2/\theta_1 - \theta_2/\theta_1} - (\infty + \theta_1)e^{\theta_2/\theta_1 - \infty/\theta_1} = (\theta_2 + \theta_1)e^0 - \infty e^{\theta_2 - \infty/\theta_1}$$

•
$$E(X_i) = \theta_2 + \theta_1 - \infty e^{-\infty/\theta_1} = \theta_2 + \theta_1 - \frac{\infty e^{1/\theta_1}}{e^{\infty}} = \theta_2 + \theta_1 - \frac{\infty}{e^{\infty}}.$$

• As
$$\lim_{x_i \to \infty} \frac{x_i}{e^{x_i}} = 0$$
; $E(X_i) = \theta_2 + \theta_1$.

We can now see $E\left(\sum_{k=1}^{n} X_k\right) = nE(X_k) = n\theta_2 + n\theta_1$ and $E(X_{(1)}) = \theta_2 + \frac{\theta_1}{n}$.

We will solve these two equations for solutions to θ_1 and θ_2 ...

•
$$n(\theta_1 + \theta_2) = E\left(\sum_{k=1}^n X_k\right) \; ; \; \theta_1 + \theta_2 = E(\overline{X}) \; ; \; \theta_2 = E(\overline{X}) - \theta_1.$$

•
$$\theta_2 + \frac{\theta_1}{n} = E(X_{(1)})$$
; $\theta_2 = E(X_{(1)}) - \frac{\theta_1}{n} = E(\overline{X}) - \theta_1 = \theta_2$.

•
$$\theta_1 - \frac{\theta_1}{n} = E(\overline{X}) - E(X_{(1)}) \; ; \; n\theta_1 - \theta_1 = nE(\overline{X}) - nE(X_{(1)}).$$

•
$$\theta_1(n-1) = n(E(\overline{X}) - E(X_{(1)}))$$
; $\theta_1 = \frac{n(E(\overline{X}) - E(X_{(1)}))}{n-1}$.

•
$$\theta_1 = \frac{n(E(\overline{X} - X_{(1)}))}{n-1} = E\left(\frac{n(\overline{X} - X_{(1)})}{n-1}\right).$$

•
$$\theta_2 = E(\overline{X}) - \theta_1 = E(\overline{X}) - E\left(\frac{n(\overline{X} - X_{(1)})}{n-1}\right) = \frac{(n-1)E(\overline{X})}{n-1} - E\left(\frac{n(\overline{X} - X_{(1)})}{n-1}\right).$$

•
$$\theta_2 = E\left(\frac{(n-1)\overline{X}}{n-1}\right) - E\left(\frac{n(\overline{X} - X_{(1)})}{n-1}\right) = E\left(\frac{n\overline{X} - \overline{X} - n\overline{X} + nX_{(1)}}{n-1}\right).$$

•
$$\theta_2 = E\left(\frac{nX_{(1)} - \overline{X}}{n-1}\right).$$

We can now see that the pair $(T_1, T_2) = \left(\frac{n(\overline{X} - X_{(1)})}{n-1}, \frac{nX_{(1)} - \overline{X}}{n-1}\right)$ is an UMVUE for (θ_1, θ_2) .