Machine Learning and Causal Inference

MIXTAPE TRACK

Traditional strategy: $Y_i = \delta D_i + X_i'\beta + \varepsilon_i$, or

1. Regress Y_i on X_i and compute the residuals,

$$\tilde{Y}_{i} = Y_{i} - \hat{Y}_{i}^{OLS},$$

$$\hat{Y}_{i}^{OLS} = X'_{i} (X'X)^{-1} X'Y$$

2. Regress D_i on X_i and compute the residuals,

$$\begin{array}{rcl} \tilde{D}_{i} & = & D_{i} - \hat{D}_{i}^{OLS}, \\ \hat{D}_{i}^{OLS} & = & X_{i}' \left(X'X \right)^{-1} X'D \end{array}$$

3. Regress \tilde{Y}_i on \tilde{D}_i .

Traditional strategy: $Y_i = \delta D_i + X'_i \beta + \varepsilon_i$, or

1. Regress Y_i on X_i and compute the residuals,

$$\tilde{Y}_{i} = Y_{i} - \hat{Y}_{i}^{OLS},$$

$$\hat{Y}_{i}^{OLS} = X'_{i} (X'X)^{-1} X'Y$$

2. Regress D_i on X_i and compute the residuals,

$$\tilde{D}_{i} = D_{i} - \hat{D}_{i}^{OLS},
\hat{D}_{i}^{OLS} = X'_{i} (X'X)^{-1} X'D$$

3. Regress \tilde{Y}_i on \tilde{D}_i .

When OLS might not be the right tool for the job:

- \triangleright there are many variables in X_i
- \blacktriangleright the relationship between X_i and Y_i or D_i may not be linear

ML-augmented regression strategy:

1. Predict Y_i using X_i with ML and compute the residuals,

$$ilde{Y}_i = Y_i - \hat{Y}_i^{ML},$$

 $\hat{Y}_i^{ML} = \text{prediction generated by ML}$

2. Predict D_i using X_i with ML and compute the residuals,

$$\tilde{D}_i = D_i - \hat{D}_i^{ML},$$
 $\hat{D}_i^{ML} = \text{prediction generated by ML}$

3. Regress \tilde{Y}_i on \tilde{D}_i .

ML-augmented regression strategy:

1. Predict Y_i using X_i with ML and compute the residuals,

$$ilde{Y}_i = Y_i - \hat{Y}_i^{ML},$$

 $\hat{Y}_i^{ML} = \text{prediction generated by ML}$

2. Predict D_i using X_i with ML and compute the residuals,

$$\tilde{D}_i = D_i - \hat{D}_i^{ML},$$
 $\hat{D}_i^{ML} = \text{prediction generated by ML}$

3. Regress \tilde{Y}_i on \tilde{D}_i .

Two flavors of machine-assisted causal inference:

- 1. Post-double selection lasso (PDS lasso), introduced by Belloni, Chernozhukov, and Hansen
- 2. Double/De-biased machine learning (DML), introduced by Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins

Machine-Assisted Causal Inference

No identification ex machina! Still rely on

What variables to include in X_i ? The omitted variables bias formula is our guide. Uncontrolled (bivariate) regression gives us:

$$\hat{\delta}^{\mathsf{bivariate}} o \delta + \beta \frac{\mathsf{Cov}\left(D_i, X_i\right)}{\mathsf{Var}\left(D_i\right)}$$

We need to control for variables that

- affect the outcome
- are correlated with treatment
- Beware of **bad control**: including post-treatment variables in X_i

PDS Lasso: Preliminaries

Begin with flexible version of our regression model:

$$Y_{i} = \tau D_{i} + g(X_{i}) + \varepsilon_{i}$$

Approximate the two CEFs,

$$m_D(X_i) \equiv E[D_i|X_i]$$

 $m_Y(X_i) \equiv E[Y_i|X_i] = \tau m_D(X_i) + g(X_i),$

With a sparse linear approximation:

$$m_Y(X_i) = X_i' \gamma_Y + \underline{r_i}$$

 $m_D(X_i) = X_i' \gamma_D + \underline{s_i}$

 X_i should contain a **dictionary** of nonlinear transformations like powers and interactions

PDS Lasso: The Recipe

PDS is implemented in three steps:

- 1. Lasso Y_i on X_i , collect retained features in X_i^Y
- 2. Lasso D_i on X_i , collect retained features in X_i^D
- 3. Regress Y_i on D_i and $X_i^Y \cup X_i^D$

Caveats and considerations:

- Standardizing controls pre-lasso is important
- ▶ BCH have a formula for the penalty parameter, but cross-validation seems to work just fine
- ► Inference: just use robust SEs from last step!

Time for python!

DML: Preliminaries

Stick with flexible version of our regression model:

$$Y_{i} = \tau D_{i} + g(X_{i}) + \varepsilon_{i}$$

1. Predict Y_i using X_i with ML and compute the residuals,

$$egin{array}{lll} & ilde{Y}_i & = & Y_i - \hat{Y}_i^{DML}, \ & \hat{Y}_i^{DML} & = & ext{prediction generated by ML} \end{array}$$

2. Predict D_i using X_i with ML and compute the residuals,

$$ilde{D}_i = D_i - \hat{D}_i^{DML},$$

 $\hat{D}_i^{DML} = \text{prediction generated by ML}$

3. Regress \tilde{Y}_i on \tilde{D}_i . \hat{Y}_i^{DML} and \hat{D}_i^{DML} should be predictions generated by a machine learning model trained on a set of observations that *does not include i*. We accomplish this via *cross-fitting*

DML: Recipe

- 1. Divide the sample into K folds
- 2. For k = 1, ..., K
 - a Train a model to predict Y given X, leaving out observations i in fold $k: \hat{Y}^{-k}(x)$
 - b Train a model to predict D given X, leaving out observations i in fold $k: \hat{D}^{-k}(x)$
 - c Form residuals $\tilde{Y}_i = Y_i \hat{Y}^{-k}(X_i)$ and $\tilde{D}_i = D_i \hat{D}^{-k}(X_i)$
- 3. Regress \tilde{Y}_i on \tilde{D}_i .

Caveats and considerations:

- Cross-validation to choose tuning parameters
- ► Inference: use robust SEs from last step

Time for python!

That's a wrap

What I hope you've gotten out of the last couple of days:

- Clarity on distinction between predictive and causal questions
- ► Foot in the door with python implementations of some common modern supervised machine learning methods
- Tools for using ML methods to control for high dimensional covariates in the service of causal inference

Preview for future workshops:

- Use ML to predict heterogeneous treatment effects (e.g., random causal forests)
- ► ML and instrumental variables

Thank you!