Moyenne de Cesàro

Théorème : Moyenne de Cesàro

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels ou complexes.

Si (u_n) converge vers ℓ , alors $\frac{1}{n+1}\sum_{k=0}^n (u_k)$ converge également, et sa limite est ℓ .

Preuve : Moyenne de Cesàro

Soit (u_n) une suite tel que $u_n \to \ell$.

Montrons que
$$\frac{1}{n} \sum_{k=0}^{n} (u_k) \to \ell$$
.

Soit $\varepsilon \in \mathbb{R}_+^*$.

Soit $n_0 \in \mathbb{N}$ tel que pour tour $n \geqslant n_0$, $|u_n - \ell| \leqslant \frac{\varepsilon}{2}$.

$$\left| \frac{1}{n+1} \sum_{k=0}^{n} (u_k) - \ell \right| = \left| \frac{1}{n+1} \sum_{k=0}^{n} (u_k) - \frac{1}{n+1} \sum_{k=0}^{n} (\ell) \right|$$

$$= \left| \frac{1}{n+1} \sum_{k=0}^{n} (u_k - \ell) \right|$$

$$\leqslant \frac{1}{n+1} \sum_{k=0}^{n} (|u_k - \ell|)$$

$$= \frac{1}{n+1} \sum_{k=0}^{n_0 - 1} (|u_k - \ell|) + \frac{1}{n+1} \sum_{k=n_0}^{n} (|u_k - \ell|)$$

$$\leqslant \frac{1}{n+1} \sum_{k=0}^{n_0 - 1} (|u_k - \ell|) + \frac{1}{n+1} \sum_{k=n_0}^{n} \left(\frac{\varepsilon}{2}\right)$$

$$= \frac{1}{n+1} \sum_{k=0}^{n_0 - 1} (|u_k - \ell|) + \frac{n - n_0 + 1}{n+1} \times \frac{\varepsilon}{2}$$

$$\leqslant \frac{1}{n+1} \sum_{k=0}^{n_0 - 1} (|u_k - \ell|) + \frac{\varepsilon}{2}$$

De plus, il existe $n_1 \ge n_0$ tel que $\frac{1}{n_1+1} \sum_{k=0}^{n_0-1} (u_k) \le \frac{\varepsilon}{2}$.

Donc, pour tout
$$n \ge n_1$$
, $\left| \frac{1}{n+1} \sum_{k=0}^{n} (u_k) - \ell \right| \le \varepsilon$.

Donc,
$$\left| \frac{1}{n+1} \sum_{k=0}^{n} (u_k) - \ell \right| \to 0.$$

Donc,
$$\frac{1}{n+1} \sum_{k=0}^{n} (u_k) \to \ell$$
.