MATH 425b IN-CLASS FINAL EXAM May 9, 2016 Prof. Alexander

Last Name:	1	38	
First Name:	2	18	
USC ID:	3	16	
Signature:	4	28	
	Total	95	

Problem | Points | Score

Notes:

- (1) Use the backs of the sheets if you need more room.
- (2) If you can't do part (a) of a problem, you can assume it and do part (b).
- (3) Points total 100 but 95 is the maximum score. This means the first 5 points you miss don't count against you.

(1)(38 points) In \mathbb{R}^3 , suppose

$$\omega = f(\mathbf{x}) dx_1 \wedge dx_2, \qquad \lambda \text{ is a } \mathcal{C}' \text{ 1-form},$$
 (1)

with f also C'.

- (a) Show that $d\omega = 0$ if and only if f is a function of x_1, x_2 only (it doesn't depend on x_3 .)
- (b) Suppose $d\lambda = 0$, i.e. λ is closed. Let $\beta : [0,1] \to \mathbb{R}^3$ and $\gamma : [0,1] \to \mathbb{R}^3$ be two \mathcal{C}'' curves with the same endpoints: $\beta(0) = \gamma(0) = \mathbf{a}$, $\beta(1) = \gamma(1) = \mathbf{b}$. Show that $\int_{\beta} \lambda = \int_{\gamma} \lambda$. This means the integral does not depend on the path, but only on the endpoints \mathbf{a} and \mathbf{b} . HINT: Almost no calculation is needed. Instead, what else do you know about λ , from the fact that λ is closed?
- (c) Let g be a \mathcal{C}' function on $[0,1]^2$, and parametrize the graph of g by $\Phi(u_1, u_2) = (u_1, u_2, g(u_1, u_2))$ for $(u_1, u_2) \in [0, 1]^2$. For ω from (1) above, if $d\omega = 0$, show that $\int_{\Phi} \omega$ takes the same value for all such g. HINT: Use the parametrization to express $\int_{\Phi} \omega$ as an ordinary double integral. Also use (a).
- (d) Let $g(u_1, u_2) = u_1 + u_2^2$, let Φ be as in part (c), and define the 2-form $\xi = x_2 x_3 dx_1 \wedge dx_3$. Calculate $\int_{\Phi} \xi$. HINT: No tricks here, just a basic calculation.

(2)(18 points) Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at \mathbf{x} with $f(\mathbf{x}) \neq 0$. Show directly from the definition of derivative that the square f^2 is differentiable at \mathbf{x} , and express the derivative of f^2 in terms of $f'(\mathbf{x})$ and $f(\mathbf{x})$.

HINT: "Directly from the definition" means don't use the Chain Rule or other theorems. What do you need to show about the quantity

$$f(\mathbf{x} + \mathbf{h})^2 - f(\mathbf{x})^2 - 2f(\mathbf{x})f'(\mathbf{x})\mathbf{h}$$
?

The assumption that f is differentiable tells you that

$$f(\mathbf{x} + \mathbf{h}) - f(\mathbf{x}) = f'(\mathbf{x})\mathbf{h} + (\text{what??}).$$

- (3)(16 points) We discussed in lecture that the functions $\varphi_n(x) = \frac{1}{\sqrt{\pi}} \sin nx, n \ge 1$ form an orthonormal system on $[-\pi, \pi]$.
- (a) Show that if g is an even real-valued function on $[-\pi, \pi]$, then g is orthogonal to φ_n for all $n \ge 1$.
- (b) Let f be Riemann integrable and let c_n be the nth Fourier coefficient of f relative to $\{\varphi_n\}$ (see (66), (67) in Chapter 8 for the definition.) Does the analog of Parseval's Theorem necessarily hold for this orthonormal system? In other words, is it always true that, as in (85) in Chapter 8,

$$\sum_{n=1}^{\infty} c_n^2 = \int_{-\pi}^{\pi} f(x)^2 dx?$$

Prove or give a counterexample. HINT: Is part (a) relevant?

(4)(28 points) Let $\Psi = \sigma^1 + \sigma^2$ be an affine k-chain in \mathbb{R}^n , with $\sigma^1 = [p_0, \dots, p_k]$ and $\sigma^2 = [q_0, \dots, q_k]$. Recall that $\operatorname{trace}(\sigma^1)$ is the range of σ^1 as a mapping, which is a "triangular" region with corners p_0, \dots, p_k , and similarly for σ^2 . Assume that σ^1 is nondegenerate, in the sense that the Jacobian $\frac{\partial(\sigma^1_{i_1}, \dots, \sigma^1_{i_k})}{\partial(u_1, \dots, u_k)}$ (which is constant since σ^1 is affine) is not 0, for some i_1, \dots, i_k , and the same for σ^2 .

(a*) Suppose trace(σ^1) \neq trace(σ^2). Show that there exists a k-form ω with $0 \neq \int_{\sigma^1} \omega + \int_{\sigma^2} \omega$.

HINT: Use the fact that for every neighborhood U of any point \mathbf{x}_0 , there exists a non-negative continuous function f which is positive near \mathbf{x}_0 , and 0 outside U (we know this from the partitions of unity proof.) You can then make a k-form $\omega = f(\mathbf{x})dx_I$ for some I, for which ω is 0 outside of U.

(b) Suppose that $\int_{\Psi} \omega = \int_{\sigma^1} \omega + \int_{\sigma^2} \omega = 0$ for every k-form ω . Show that $\sigma^2 = -\sigma^1$. HINT: σ^1 and σ^2 having the same trace means q_0, \ldots, q_k is just a permutation of the points p_0, \ldots, p_k . What you need to show is that the permutation is an odd one, so that $\sigma^2 = -\sigma^1$.