ECEN 743: Reinforcement Learning Assignment 3

- 1. (2 points) Let $x, y \in \mathbb{R}^n$. The triangle inequality states that $||x + y|| \le ||x|| + ||y||$. Use this to show that $||x y|| \ge ||x|| ||y||$.
- 2. (2 points) Consider an MDP with discount factor $\gamma \in (0,1)$. Show that

$$\sup_{\pi} \|V_{\pi}\|_{\infty} \le \frac{\max_{s,a} |r(s,a)|}{(1-\gamma)}.$$

- 3. (2 points) Show that the Bellman operator T is a monotone operator, i.e, for any $V_1, V_2 \in \mathbb{R}^{|\mathcal{S}|}$ with $V_1 \geq V_2$ (elementwise), $TV_1 \geq TV_2$.
- 4. (3 points) Consider the function $f: \mathbb{R}^n \to \mathbb{R}^n$, f(u) = Au, where $A \in \mathbb{R}^n \times \mathbb{R}^n$. Assume that the row sums of A is strictly less than 1, i.e., $\sum_j |a_{ij}| \le \alpha < 1$. Show that $f(\cdot)$ is a contraction mapping with respect to $\|\cdot\|_{\infty}$.
- 5. (4 points) Let \mathcal{U} be a given set, and $g_1 : \mathcal{U} \to \mathbb{R}$ and $g_2 : \mathcal{U} \to \mathbb{R}$ be two real-valued functions on \mathcal{U} . Also assume that both functions are bounded. Show that

$$|\max_{u} g_1(u) - \max_{u} g_2(u)| \le \max_{u} |g_1(u) - g_2(u)|$$

- 6. (7 points) Consider the value iteration algorithm $V_{k+1} = TV_k$, with an arbitrary V_0 , where T is the Bellman operator.
 - (a) Show that, for n > m

$$||V_m - V_n||_{\infty} \le \frac{\gamma^m}{(1 - \gamma)} ||V_0 - V_1||_{\infty}.$$

(b) Let V^* be the optimal value function. Show that

$$||V_m - V^*||_{\infty} \le \frac{\gamma^m}{(1 - \gamma)} ||V_0 - V_1||_{\infty}.$$

(c) Show that

$$||V_m - V^*||_{\infty} \le \frac{\gamma}{(1-\gamma)} ||V_{m-1} - V_m||_{\infty}.$$

7. (5 points) Let \bar{Q} be such that $\|\bar{Q} - Q^*\|_{\infty} \le \epsilon$, where Q^* is the optimal Q-value function. Let $\bar{\pi}$ be the greedy policy with respect to \bar{Q} , i.e., $\bar{\pi}(s) = \arg\max_a \bar{Q}(s,a)$. Show that

$$||V^* - V_{\overline{\pi}}||_{\infty} \le \frac{2\epsilon}{(1 - \gamma)}$$