will create a loop as in the previous question but specifically for $\mathbf{p} = \mathbf{5}$ and $\mathbf{p} = \mathbf{10}$. Then, I will simply plot the curves of the original signal and the reconstructed signal on the same graph.

for p=5:

N=1

N=2

for p=10:

N=1

N=2

N=3

We can observe that $\bf p$ helps improve the quality of the reconstructed signal, but not as much as increasing $\bf N$. It is visually noticeable that the reconstructed signal follows the original signal better as $\bf N$ increases, while with $\bf p$, the changes are minimal and harder to detect. These findings coincide with those from the previous questions.