PopovIViac 28122024-101709

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $4524~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью плюс $9~\mathrm{дБм}$.

Колебание ПЧ формируется с помощью генератора меандра частотой 1045 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 14670 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 5570 МГц до 5620 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

1) -79 дБм 2) -82 дБм 3) -85 дБм 4) -88 дБм 5) -91 дБм 6) -94 дБм 7) -97 дБм 8) -100 дБм 9) -103 дБм

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1 = r_3$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 230 МГц, частота ПЧ 50 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

Варианты ОТВЕТА:

- 1) 1150 MΓ_Ц
- 2) 740 MΓ_{II}
- 3) 180 МГц
- 4) 460 МГц.

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = -0.43959 + 0.27178i, s_{31} = 0.27247 + 0.4407i.$$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

Варианты ОТВЕТА:

- 1) -48 дБн 2) -50 дБн 3) -52 дБн 4) -54 дБн 5) -56 дБн 6) -58 дБн 7) -60 дБн
- 8) -62 дБн 9) 0 дБн

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью минус 0.8 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 14 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность на выходе промежуточной частоты измерена с помощью широкополосного измерителя мощности с входным сопротивлением 50 Ом, и получено значение минус 6.9 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

Варианты ОТВЕТА:

- 1) 3.8 дБ 2) 4.4 дБ 3) 5 дБ 4) 5.6 дБ 5) 6.2 дБ 6) 6.8 дБ 7) 7.4 дБ 8) 8 дБ
- 9) 8.6 дБ

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Psi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 1?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

Варианты ОТВЕТА:

$$1) \ \{7; -59\} \quad 2) \ \{16; -115\} \quad 3) \ \{10; -45\} \quad 4) \ \{13; -73\} \quad 5) \ \{4; -45\} \quad 6) \ \{16; -87\}$$

7) $\{4; 25\}$ 8) $\{7; 25\}$ 9) $\{4; -45\}$

Для полного подавления **верхней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 34 градусов.

Чему равна индуктивность компонента фазовращателя, если частота $\Pi \Psi$ равна $121~\mathrm{M}\Gamma_{\mathrm{H}}$?

Варианты ОТВЕТА:

1) 35 нГн 2) 123.7 нГн 3) 79.3 нГн 4) 54.5 нГн