UNIVERSIDAD DE LA REPÚBLICA FACULTAD DE CIENCIAS ECONÓMICAS Y DE ADMINISTRACIÓN

1ª REVISIÓN DE ECONOMETRÍA II 14 de mayo de 2014

EJERCICIO 1 – (25 puntos)

Utilizando los datos de la Encuesta Continua de Hogares 2008 del INE, Uruguay se estima el efecto de la educación del padre en la educación de los hijos. Para ello se seleccionó una muestra de adolescentes de entre 16 y 20 años que convivían con su madre y con su padre en el momento de la encuesta.

Las variables utilizadas fueron:

Aniosed: los años de educación aprobados por el adolescente

Edad: la edad del adolescente

AniosedPadre: los años de educación aprobados por el padre

EdadPadre: la edad del padre

EdadPadre2: la edad del padre al cuadrado

AniosedMadre: los años de educación aprobados por la madre

Se realizaron un conjunto de estimaciones que se informan a continuación:

Estimación 1: Estimación MCO de Aniosed sobre Edad, AniosedPadre, EdadPadre y EdadPadre2.

. reg aniosed aniosedpadre edad edadpadre edadpadre2

Source	SS	df	MS		Number of o	obs =	5410 859.27
Model Residual	30783.8432 48409.1328	4 5405	7695.9608 8.95636129		Prob > F R-squared Adj R-squar	= =	0.0000 0.3887 0.3883
Total	79192.976	5409	14.6409643		Root MSE	=	2.9927
aniosed	Coef.	Std. E	 rr. t	P> t	[95% Coni	. Inte	erval]
aniosedpadre edad edadpadre edadpadre2 _cons	.59958 .04082 .23145 00236 -3.30307	.010793 .008853 .044578 .000434	3 4.61 8 5.19 4 -5.44	0.000 0.000 0.000 0.000 0.002	.5784277 .0234688 .1440605 0032182 -5.421507	.058	07449 81812 88437 15131 84646

Estimación 2: Estimación VI de Aniosed sobre Edad, AniosedPadre, EdadPadre y EdadPadre2 utilizando AniosedMadre como instrumento de AniosedPadre

. ivreg aniosed edad edadpadre edadpadre2 (aniosedpadre = aniosedmadre)

Instrumental variables (2SLS) regression

Source	SS	df	MS		Number of obs		5410 363.82
Model Residual	12256.4693 66936.5067	4 5405	3064.11732 12.3841826		Prob > F R-squared Adj R-squared	=	0.0000 0.1548 0.1541
Total	79192.976	5409	14.6409643		Root MSE	=	3.5191
aniosed	Coef.	Std. E	rr. t	P> t	[95% Conf.	 Int	erval]
aniosedpadre edad edadpadre edadpadre2 _cons	1.090474 0002746 0451697 .0006075 .321502	.0314 .010 .0548 .0005	686 -0.03 719 -0.82 403 1.12	0.000 0.980 0.410 0.261 0.803	1.028801 0212233 1527407 0004517 -2.204154		.152147 0206742 0624012 0016666 .847158
Instrumented: Instruments:	aniosedpadre edad edadpad		dpadre2 anio	sedmadre			

Estimación 3: Estimación MCO de Aniosedpadre sobre Edad, Aniosedmadre, EdadPadre y EdadPadre2

reg aniosedpadre aniosedmadre edad edadpadre edadpadre2

Source	SS	df		MS		Number of obs F(4, 5405)		5410 327.57
Model Residual	15563.2493 64198.6701	4 5405		.81232 8776448		Prob > F R-squared Adj R-squared	= =	0.0000 0.1951 0.1945
Total	79761.9194	5409	14.7	461489		Root MSE	=	3.4464
aniosedpadre	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
aniosedmadre edad edadpadre edadpadre2 _cons	.7738269 .0663299 2695273 0005343 4.831708	.022 .010 .0362 .0000 .6492	084 749 819	34.43 6.58 -7.43 -6.53 7.44	0.000 0.000 0.000 0.000 0.000	.7297669 .0465612 3406407 0006948 3.558892	 	8178869 0860985 1984139 0003738

Contraste 1: Contraste de Hausman sobre la endogeneidad de la variable aniosedpadre

. hausman IVPADRE MCOPADRE

	Coeffi	cients		
	(b) IVPADRE	(B) MCOPADRE	(b-B) Difference	sqrt(diag(V_b-V_B)) S.E.
aniosedpadre	1.090474	.5995863	.4908877	.0295501
anioseupaure	1.090474	.5995665	.49000//	.0293301
edad	0002746	.040825	0410996	.0059839
edadpadre	0451697	.2314521	2766219	.0319952
edadpadre2	.0006075	0023656	.0029731	.0003206

b = consistent under Ho and Ha; obtained from ivreg
B = inconsistent under Ha, efficient under Ho; obtained from regress

Valor del estadístico de hausman= 16.74

Los p-valores correspondientes a 16.74 para distintas distribuciones

	p-valor
Chi_cuadrado con 1 grado de libertad	0.000042870
F-Fisher con 1 grado de libertad en el	
numerador y 5408 en el denominador	0.00004442
Chi_cuadrado con 4 grados de libertad	0.00217117
F-Fisher con 4 grado de libertad en el	
numerador y 5408 en el denominador	0.000004
Chi-cuadrado con 10 grados de libertad	0.08031876

Se pide:

- 1. Interprete los resultados de la estimación MCO (Estimación 1)
- **2.** Explique en qué consiste el estimador de Variables Instrumentales (VI) y en qué circunstancias es preferible al estimador MCO.
- **3.** Señale brevemente cómo se obtiene el estimador de Mínimos Cuadrados en 2 Etapas (MC2E). Indique la relación entre este estimador y el estimador por Variables Instrumentales.
- **4.** Indique cómo cambian los resultados cuando se estima el modelo por MC2E (Estimación 2) respecto a las estimaciones MCO.
- 5. ¿Qué características tiene que poseer una variable para ser un buen instrumento? ¿Considera que la educación de la madre es un buen instrumento para la educación del padre en un modelo que pretende estimar el efecto de la educación del padre en la educación de los adolescentes? Justifique su opinión utilizando tanto argumentos teóricos como la información que dispone a partir de las estimaciones y contrastes realizados. Si existen aspectos que le hacen dudar respecto a la validez del instrumento, señálelos.
- 6. Analice la información correspondiente al contraste de Hausman. Indique la hipótesis nula y la alternativa, la forma del estadístico de contraste y su distribución asintótica. Concluya indicando el criterio de decisión y el p-valor de la prueba en el caso analizado. ¿Cuál es la utilidad de dicho contraste? ¿Qué implicación tiene la conclusión a la que arribó en el contraste de Hausman en el caso bajo estudio?

EJERCICIO 2 – (25 puntos)

Una compañía financiera lleva adelante una campaña de marketing para ofrecer un nuevo producto, enviando un correo promocional a cada uno de sus clientes. Finalizado el período de la promoción, se desea analizar la respuesta de los clientes, utilizando una muestra de 925 casos. En primer lugar interesa analizar los factores que explican si los clientes invierten o no (variable binaria *invierte* que toma el valor 1 en caso de que invierta y el valor 0 en caso contrario).

Parte I: Modelos MPL y Logit

De campañas anteriores, se sabe que el sexo y la edad son dos variables explicativas a tener en cuenta, y que la respuesta también parece estar asociada a si el cliente ya es un inversor activo en la firma (es decir que tiene inversiones en otros productos). El sexo y la condición de activo se recogen en las variables binarias *varon* y *activo*. Las variables *edad* y *edad*_2 recogen la edad en años cumplidos y su cuadrado, respectivamente. Los estadísticos descriptivos de esas variables se presentan a continuación:

Variable	Obs	Mean	Std. Dev.	Min	Max
varon	925	.7254054	.4465512	0	1
activo	925	.1881081	.3910099	0	1
edad	925	50.68108	13.39844	11	93
invierte	925	.5081081	.5002047	0	1

Como primera aproximación se estima un Modelo de Probabilidad Lineal (por Mínimos Cuadrados Ponderados), y luego se estima un modelo Logit. Las salidas se presentan a continuación:

Modelo de Probabilidad Lineal (primera etapa: MCO)

Source	SS	df	MS		Number of obs	
Model Residual	18.8515333 212.337656		71288332		F(4, 920) Prob > F R-squared Adj R-squared	= 0.0000 = 0.0815
Total	231.189189	924 .2	25020475		Root MSE	= .48042
invierte	Coef.	Std. Err	. t	P> t	[95% Conf.	Interval]
varon	.224002	.0358086	6.26	0.000	.1537259	.294278
activo	.2082684	.0406694	5.12	0.000	.1284528	.2880839
edad	.0154942	.0078609	1.97	0.049	.0000669	.0309216
edad_2	0001521	.0000751	-2.03	0.043	0002994	-4.77e-06
_cons	0608878	.1959057	-0.31	0.756	4453617	.3235862

Modelo de Probabilidad Lineal (segunda etapa: MCP)

Source	SS	df	MS		Number of obs	=	925
					F(4, 920)	=	24.57
Model	99.1914851	4	24.7978713		Prob > F	=	0.0000
Residual	928.667992	920	1.00942173		R-squared	=	0.0965
					Adj R-squared	=	0.0926
Total	1027.85948	924	1.11240203		Root MSE	=	1.0047
	I						
	<u></u>						
invierte_sd	Coef.	Std.	Err. t	P> t	[95% Conf.	In	terval]
varon_sd	.2253788	.03	695 6.1	0.000	.1528628		2978948
activo_sd	.1998861	.0439	127 4.5	5 0.000	.1137055		2860667
edad_sd	.0162957	.0079	604 2.0	5 0.041	.000673		0319184
edad_2_sd	0001594	.0000	767 -2.0	8 0.038	0003098	-8	.95e-06
_cons	1683939	.418	044 -0.4	0 0.687	9888244	٠	6520366

Modelo LOGIT

Iteration 0: log likelihood = -641.03952
Iteration 1: log likelihood = -601.93102
Iteration 2: log likelihood = -601.86236
Iteration 3: log likelihood = -601.86236

Logistic regression Number of obs = 925 LR chi2(4) = 78.35 Prob > chi2 = 0.0000 Log likelihood = -601.86236 Pseudo R2 = 0.0611

invierte	Coef.	Std. Err.	Z	P> z	[95% Conf	. Interval]
varon	.9536943	.1581827	6.03	0.000	.643662	1.263727
activo	.9137479	.1847788	4.95	0.000	.551588	1.275908
edad	.0699453	.0356054	1.96	0.049	.0001599	.1397306
edad_2	0006869	.000341	-2.01	0.044	0013552	0000186
_cons	-2.488358	.8899918	-2.80	0.005	-4.232709	7440058

Marginal effects after logit

y = Pr(invierte) (predict)

= .50816352

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
varon*	.2321776	.03637	6.38	0.000	.160887	.303468	.725405
activo*	.2192487	.04097	5.35	0.000	.138952	.299545	.188108
edad	.0174817	.0089	1.96	0.049	.000039	.034924	50.6811
edad_2	0001717	.00009	-2.01	0.044	000339	-4.7e-06	2747.9

^(*) $\mbox{dy/dx}$ is for discrete change of dummy variable from 0 to 1

Se pide:

- 1. Explique por qué el estimador MCO es ineficiente en el caso de variable dependiente binaria. Indique brevemente los pasos que componen la estimación de modelos binarios en dos etapas por Mínimos Cuadrados Ponderados (MCP).
- **2.** ¿Cuáles son las principales ventajas y desventajas de la estimación del modelo Logit en comparación con el MPL?
- **3.** Escriba la verosimilitud de la muestra para el modelo Logit y obtenga las condiciones de primer orden que dan lugar al estimador Máximo Verosímil.
- **4.** Obtenga el efecto parcial asociado a la condición de activo en el modelo Logit, interprete el resultado y compárelo con el efecto parcial obtenido por MPL. Realice los cálculos en los valores promedio de los restantes regresores. En todos los casos presente las fórmulas de cálculo utilizadas.
- **5.** Obtenga el efecto parcial de un año de edad adicional para una mujer de 30 años que no es cliente activa, e interprete el resultado. Presente la fórmula de cálculo utilizada.

Parte II: Mínimos Cuadrados no lineales

Considere ahora la posibilidad de estimar el mismo modelo pero utilizando el estimador de Mínimos Cuadrados No Lineales. La ecuación a estimar sería la siguiente:

$$y = \Lambda(x'\beta) + u$$

Donde $\Lambda(\)$ representa la distribución de probabilidad acumulada de una variable aleatoria logística estándar.

Se pide:

- 1. ¿Cómo se define el estimador de Mínimos Cuadrados no Lineales?
- **2.** Obtenga las condiciones de primer orden del estimador MCNL en el modelo anterior.
- **3.** Compare dichas condiciones con las que surgen en la estimación por Máxima Verosimilitud del modelo Logit.