

Sistema de Monitoramento O3Link

Guilherme Alves dos Santos

Jorge Wilker Mamede de Andrade

Mauricio Lasca Gonçales

Roger de Lima Araujo de Melo

Ordem Cronológica de Eventos

Definição

Seleção do Sensor

Testes

Desenvolvimento do Código

Integração com atuadores

Proposta de Valor

Qual problema resolvemos, como funciona?

Problema

O ozônio é um gás potencialmente perigoso, e em concentrações acima de 10 ppm é letal. Ele está presente em procedimentos e ambiente de trabalho, principalmente na área da saúde e indústria.

Solução

Sistema integrado de monitoramento em tempo real dos níveis de O3, com transmissão de dados, alertas e ventilação automática

Hardware

Topologia e arquitetura do sistema

Componentes Principais

- Sensor de ozônio ZE14O3
- Microcontrolador RaspberryPi Pico W
- Fan 5V
- Buzzer
- Display OLED para interface local
- Servo Motor

Especificações Técnicas

- Faixa de detecção: 0-100 ppm
- Precisão: ±1% do valor medido
- Tempo de resposta: < 90 segundos
- Conectividade: WiFi

Arquitetura do Sistema

Organização das tarefas e fluxo de dados

Topologia do Hardware

TOPOLOGIA EM MALHA

Blocos Funcionais

Funcionamento do Sensor

Sensor ZE14O3

Princípio de Detecção Eletroquímico

Utiliza uma célula eletroquímica para reagir seletivamente com as moléculas de ozônio, gerando um sinal elétrico proporcional à concentração.

Desempenho Otimizado

Oferece alta precisão e estabilidade de medição na faixa de 0 a 100 ppm.

 $O_3 + 2H^+ + 2e^- \rightarrow O_2 + H_2O$

Frame Bit a Bit

Estrutura de dados transmitida pelo sensor

Start Byte	OxFF	Delimitador de início do frame (0xFF)
Gas Type	Ox2A	Tipo de gás a ser medido
Unit	0x03	Unidade base para os cálculos
Concentration (High Byte)	16	Valor da concentração de ozônio em PPM (0-100 PPM), bit mais significativo
Concentration Low Byte	8	Valor da concentração de ozônio em PPM (0-100 PPM), bit menos significativo
Full Range (High Byte)	32	Intervalo de medição, bit mais significativo
Full Range (Low Byte)	8	Intervalo de medição, bit menos significativo
Checksum	8	Soma de verificação CRC para garantia da integridade dos dados

Lógica de Execução do Código

Compreenda o fluxo sequencial de operações que garantem a funcionalidade do sistema.

Gerenciamento de Tarefas com FreeRTOS

O FreeRTOS otimiza a execução concorrente de funções essenciais do sistema.

FreeRTOS

Cumpre o objetivo de acionar os atuadores durante o intervalo exato das leituras críticas

Filas de Dados

Utilizadas para comunicação segura entre tarefas, permitindo a passagem de leituras dos sensores e comandos para os atuadores de forma assíncrona.

Semáforos e Mutexes

Implementam sincronização e exclusão mútua, prevenindo condições de corrida ao acessar recursos compartilhados, como o buffer da fila de dados.

Gateway Central

O Gateway Central atua como o principal ponto de coleta e processamento de dados dos sensores de ozônio distribuídos. Ele é responsável por consolidar as informações antes de enviá-las para a plataforma de monitoramento.

Coleta e Agregação

Recebe dados de múltiplos sensores, agregando-os em um fluxo unificado.

Transmissão Segura

Envia os dados processados via WiFi para o broker MQTT de forma criptografada.

Pré-processamento

Realiza validação e filtragem básica dos dados para garantir a integridade.

Gerenciamento Remoto

Permite configuração e atualizações de firmware dos sensores remotamente.

Sensores O3

Coletam leituras locais de ozônio

Gateway Central

Ponto principal de consolidação e roteamento

Servidor

Armazena e processa dados consolidados

Gateway

Recebe e envia dados bidirecionais

Web

Plataforma de exibição dos dados em localhost ou website

Melhorias Futuras

O sistema atual estabelece uma base sólida, mas há um vasto potencial para inovações que o tornarão ainda mais poderoso e versátil. Vislumbramos um futuro onde a segurança ambiental é integrada à rotina diária e acessível a todos.

Dispositivo Vestível

Monitoramento pessoal de ozônio em tempo real para profissionais em ambientes de risco.

IA e Análise Preditiva

Algoritmos para prever picos de ozônio e otimizar a resposta à incidentes.

Aplicação Dedicada

Elaborar uma aplicação para gerenciar de maneira mais efetiva os dados e obter mais funcionalidades

Integração em nuvem

Armazenar os dados em nuvem para poder fornecer à aplicação

Perguntas