1 Orderings

Prefixes:

- \bullet o = order
- r = removed
- zk = ring of integers of nf
- nothing = finite set

1.1 Regular p-orderings

• GEN pord(GEN nf, GEN pr, GEN S, long first = 1, long trunc = −1, GEN* ex = NULL, GEN* inv = NULL)

Return in a vector beginning by S[first] the first trunc elements of a pr-ordering of the set S. If trunc = -1, it is set to #S. Set to *ex the extraction small vector and to *inv the invariant vector as it would be returned by pord_e(nf, pr, S, trunc)

- GEN pord_e(GEN nf, GEN pr, GEN S, long trunc = -1)

 Return in a vector the first trunc-1 invariant exponents of any pr-ordering of the set S. If trunc = -1, it is set to #S.
- int ispord(GEN nf, GEN pr, GEN S, long trunc = -1, GEN *i = NULL)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a pr-ordering of the set S, 0 otherwise. If trunc = -1, it is set to #S. If 0 is returned, set to *i the index of the first element of S responsible for failure.
- GEN pord_get_e(GEN nf, GEN pr, GEN po, long trunc = -1)
 Return in a vector the first trunc 1 invariant exponents of the pr-ordering po. If trunc = -1, it is set to #po.
- GEN zkpord(GEN nf, GEN pr, long n) Return a pr-ordering of length n of nf.
- GEN iszkpord(GEN nf GEN pr, GEN S)

 Return 1 if the sequence S is a pr-ordering of length #S of nf, 0 otherwise.
- GEN zkpord_e(GEN nf, GEN pr, long n)

 Return the n first invariant exponents of any pr-ordering of nf.

1.2 r-removed \mathfrak{p} -orderings

- GEN rpord(GEN nf, GEN pr, GEN S, long r, long trunc = -1, GEN* ex = NULL, GEN* inv = NULL)
 Return in a vector the first trunc elements of a r-removed pr-ordering of the set S. If trunc = -1, it
 is set to #S*(r+1). Set to *ex the extraction small vector and to *inv the invariant vector as it would
 be returned by rpord_e(nf, pr, S, r, trunc).
- GEN rpord_e(GEN nf, GEN pr, GEN S, long r, long trunc = -1)

 Return in a vector the first trunc-1 invariant exponents of any r-removed pr-ordering of the set S. If trunc = -1, it is set to #S*(r+1).
- GEN isrpord(GEN nf, GEN pr, GEN S, long r, long trunc = -1)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a r-removed pr-ordering of the set S, 0 otherwise. If trunc = -1, it is set to #S*(r+1). Set to *i the index of the first element of S responsible for failure.
- GEN rpord_get_e(GEN nf, GEN pr, GEN rpo, long r, long trunc = -1)

 Return in a vector the first trunc 1 invariant exponents of the r-removed pr-ordering rpo. If trunc = -1, it is set to #rpo.
- GEN zkrpord(GEN nf, GEN pr, long r, long n)
 Return a r-removed pr-ordering of length n of nf.
- GEN iszkrpord(GEN nf, GEN pr, long rpo, long r)

 Return 1 if the sequence S is a r-removed pr-ordering of length #S of nf, 0 otherwise.
- GEN zkrpord_e(GEN nf, GEN pr, long r, long n)

 Return the n first invariant exponents of any r-removed pr-ordering of nf.

1.3 \mathfrak{p} -orderings of order h

• GEN opord(GEN nf, GEN pr, GEN S, long h, long first, long trunc = −1, GEN* ex = NULL, GEN* inv = NULL)

Return in a vector beginning by S[first] the first trunc elements of a pr-ordering of order h of the set S. If trunc = -1, it is set to #S. Set to *ex the extraction small vector and to *inv the vector of invariants as it would be returned by opord_e(nf,npr, S, r, trunc).

- GEN opord_e(GEN nf, GEN pr, GEN S, long h, long trunc = -1)

 Return in a vector the first trunc-1 invariant exponents of any pr-ordering of order h of the set S. If trunc = -1, it is set to #S.
- GEN isopord(GEN nf, GEN pr, GEN S, long h, long trunc = -1)

 Return 1 if the sequence of the first trunc elements of S is the beginning of a pr-ordering of order h of the set S, 0 otherwise. If trunc = -1, it is set to #S. Set to *i the index of the first element of S responsible for failure.

- GEN opord_get_e(GEN nf, GEN pr, GEN opo, long h, long trunc = -1)
 Return in a vector the first trunc 1 invariant exponents of the pr-ordering of order h opo. If trunc = -1, it is set to #opo.
- GEN zkopord(GEN nf, GEN pr, long h, long n) Return a pr-ordering of order h of length n of nf.
- GEN iszkopord(GEN nf, GEN pr, long opo, long h)

 Return 1 if the sequence S is a pr-ordering of order h of length #S of nf, 0 otherwise.
- GEN zkopord_e(GEN nf, GEN pr, long h, long n)

 Return the n first invariant exponents of any pr-ordering of order h of nf.

2 Factorial ideals

Prefixes:

- s = finite set
- zk = the whole ring of integers of nf
- \bullet q = the whole ring of integers of the quadratic field nf
- rem = removed
- \bullet mod = modulus

2.1 Regular factorial ideals

- GEN sfact(GEN nf, GEN S, long k)

 Return the k-th factorial ideal of the set S.
- GEN sfact_vec(GEN nf, GEN S, long n = -1)

Return in a vector the first n factorial ideals of the set of algebraic integers S. If n=-1, it is set to #S-1. Faster than building the vector by incremental calls to sfact.

- GEN sfactnorm(GEN nf, GEN S, long k)

 Return the norm of the k-th factorial ideal of the set S.
- GEN sfactnorm_vec(GEN nf, GEN S, long n = -1)

 Return in a vector the norms of the first n factorial ideals of the set S. If n=-1, it is set to #S-1. Faster than building the vector by incremental calls to sfactnorm.
- GEN zkfact(GEN nf, long k)
 Return the k-th factorial ideal of nf.

• GEN zkfact_vec(GEN nf, long n)

Return in a vector the n first factorial ideals of nf. Faster than building the vector by incremental calls to zkfact.

• GEN zkfactnorm(GEN nf, long k)

Return the norm of the k-th factorial ideal of nf. Faster than calling idealnorm(nf, zkfact(nf, k)).

• GEN zkfactnorm_vec(GEN nf, long n)

Return in a vector the norm of the n first factorial ideals of nf. Faster than building the vector by incremental calls to zkfactnorm.

• GEN qfact(GEN nf, long k)

Return the k-th factorial ideal of the quadratic number field nf. Faster than calling zkfact.

• GEN qfact_vec(GEN nf, long n)

Return in a vector the first n factorial ideals of the quadratic number field nf.

• GEN qfactnorm(GEN nf, long k)

Return the norm of the k-th factorial ideal of the quadratic number field nf. Faster than calling idealnorm(nf,qfact(nf,k)) or zkfactnorm.

• GEN qfactnorm_vec(GEN nf, long n)

Return in a vector the norms of the first n factorial ideals of the quadratic number field nf.

2.2 r-removed factorial ideals

• GEN sremfact(GEN nf, GEN S, long r, long k)

Return the k-th r-removed factorial ideal of the set S.

• GEN sremfact_vec(GEN nf, GEN S, long r, long n)

Return in a vector the n first r-removed factorial ideals of the set S. If n = -1, it is set to ((r+1)*#S)-1. Faster than building the vector by incremental calls to sremfact.

• GEN sremfactnorm(GEN nf, GEN S, long r, long k)

Return the norm of the k-th r-removed factorial ideal of the set S.

• GEN sremfactnorm_vec(GEN nf, GEN S, long r, long n)

Return in a vector the norms of the n first r-removed factorial ideals of the set S. If n = -1, it is set to ((r+1)*#S)-1. Faster than building the vector by incremental calls to sremfactnorm.

• GEN zkremfact(GEN nf, long r, long k)

Return the k-th r-removed factorial ideal of nf.

• GEN zkremfact_vec(GEN nf, long r, long n)

Return in a vector the n first r-removed factorial ideals of nf. Faster than building the vector by incremental calls to zkremfact.

- GEN zkremfactnorm(GEN nf, long r, long k)
 Return the norm of the k-th r-removed factorial ideal of nf.
- GEN zkremfactnorm_vec(GEN nf, long r, long n)

 Return in a vector the norms of the first n r-removed factorial ideals of nf. Faster than building the vector by incremental calls to zkremfactnorm.

2.3 Factorial ideals of modulus M

- GEN sfactmod(GEN nf, GEN S, GEN M, long k)

 Return the k-th factorial ideal of modulus M of the set S.
- GEN sfactmod_vec(GEN nf, GEN S, GEN M, long n)
 Return in a vector the n first factorial ideals of modulus M of the set S. If n = -1, it is set to #S 1.
 Faster than building the vector by incremental calls to sfactmod.
- GEN sfactmodnorm(GEN nf, GEN S, GEN M, long k)
 Return the norm of the k-th factorial ideal of modulus M of the set S.
- GEN sfactmodnorm_vec(GEN nf, GEN S, GEN M, long n)
 Return in a vector the norms of the first n factorial ideals of modulus M of the set S. If n = -1, it is set to #S 1. Faster than building the vector by incremental calls to sfactmodnorm.
- GEN zkfactmod(GEN nf, GEN M, long k)

 Return the k-th factorial ideal of modulus M of nf.
- GEN zkfactmod_vec(GEN nf, GEN M, long n)
 Return in a vector the n first factorial ideals of modulus M of nf. Faster the building the vector by incremental calls to zkfactmod.
- GEN zkfactmodnorm(GEN nf, GEN M, long k)
 Return the norm of the k-th factorial ideal of modulus M of nf.
- GEN zkfactmodnorm_vec(GEN nf, GEN M, long n)

 Return in a vector the norms of the first n factorial ideals of modulus M of nf. Faster than building the vector by incremental calls to zkfactmodnorm.

3 Regular basis

3.1 Regular basis for integer-valued polynomials

• GEN zkfactpol(GEN nf, long k, const char *s, long cmode = 1)

Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th factorial ideal of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.

- GEN zkfactpol_vec(GEN nf, long n, const char *s, long cmode = 1) Return a vector v of length n + 1 such that v[i] = zkfactpol(nf,i-1,s,cmode).
- GEN zkregbasis(GEN nf, long n, const char *s, long cmode = 1)

 Return in a vector v of length n+1 a regular basis for the zk-module Int(n,X). For such a basis to exist, it is **mandatory** that all factorial ideals up to n are principal and this can be checked with the function ispolyaupto.

3.2 Regular basis for integer-valued polynomials with integer-valued r-divided differences

- GEN zkremfactpol(GEN nf, long r, long k, const char *s, long cmode = 1) Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th r-removed factorial ideal of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.
- GEN zkremfactpol_vec(GEN nf, long r, long n, const char *s, long cmode = 1) Return a vector v of length n+1 such that v[i] = zkremfactpol(nf,r,i-1,s,cmode)
- GEN zkremregbasis(GEN bnf, long r, long n, const char *s, long cmode = 1) Return in a vector v of length n+1 a regular basis for the zk-module Int(n, r, X).

It is the module of all integer-valued polynomials of bnf[X] of degree at most n such that their r first divided differences are also integer-valued.

Being a regular basis means that deg(v[i]) = i - 1 for $1 \le i \le n + 1$.

For such a basis to exist, it is **mandatory** that the n first r-removed factorial ideals of bnf are principal and this can be checked with the function ispolyaupto_rem.

If the later condition is not met, the behavior is undefined. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.

3.3 Regular basis for integer-valued polynomials of modulus M

- GEN zkfactmodpol(GEN nf, GEN M, long k, const char *s, long cmode = 1) Return a polynomial pol of degree k in zk[X] such that pol(zk) generates the k-th factorial ideal of modulus M of nf. The variable name is set to s. The flag cmode tunes the returned polynomial coefficients: 0 for t_POLMOD, 1 for t_POL, 2 for t_COL.
- GEN zkfactmodpol_vec(GEN nf, GEN M, long n, const char *s, long cmode = 1) Return a vector v of length n+1 such that v[i] = zkfactmodpol(nf,M,i-1,s,cmode).
- GEN zkmodregbasis(GEN nf, long h, long n, const char *s, long cmode = 1) Return in a vector v of length n+1 a regular basis for the zk-module Int(n, M, X). It is the module of all integer-valued polynomials pol of bnf[X] of degree at most n such that if I_M is the ideal represented by the modulus M and $m \in I_M$, then $pol(mX + s) \in zk[X]$ for all $s \in zk$.

Being a regular basis means that $\deg(v[i]) = i - 1$ for $1 \le i \le n + 1$.

For such a basis to exist, it is **mandatory** that the n first factorial ideals of modulus M of bnf are principal and this can be checked with the function ispolyaupto_mod.

If the later condition is not met, the behavior is undefined. The flag ${\tt cmode}$ tunes the returned polynomial coefficients: 0 for ${\tt t_POLMOD}$, 1 for ${\tt t_POL}$, 2 for ${\tt t_COL}$.