

Ministry of Primary and Secondary Education

COMBINED SCIENCE SYLLABUS

2024-2030

FORM 1 - 4

Curriculum Development and Technical Services Box MP 133 Mt Pleasant Harare

@ 2024 All rights reserved

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education would like to acknowledge contributions made by the following towards the development and production of this Heritage-based Combined Science syllabus:

- The National Science Syllabus Panel
- Zimbabwe School Examinations Council (ZIMSEC)
- Ministry of Higher and Tertiary Education, Innovation, Science and Technology Development (MoHTEISTD)
- UNICEF
- UNESCO

TABLE OF CONTENTS

Acknowledgements

1. 0 PREAMBLE	3
1.1 Introduction	3
1.2 Rationale	3
1.3 Summary of Content	
1.4 Assumptions	
1.5 Cross Cutting Issues	4
2. 0 PRESENTATION OF SYLLABUS	
3. 0 AIMS	5
4. 0 OBJECTIVES	6
5. 0 TOPICS	6
6. 0 METHODOLOGY AND TIME ALLOCATION	7
7. 0 SCOPE AND SEQUENCE CHART	9
8. 0 CONTENT MATRIX	16
9. 0 ASSESSMENT	67
9.4 SPECIFICATION GRID	73

1.0 PREAMBLE

1.1 INTRODUCTION

This Heritage-Based Combined Science syllabus covers four years of Secondary Education, Forms 1-4. The syllabus provides knowledge and skills in Combined Science and a suitable preparation for the study of science beyond Ordinary level. It aims to equip learners in their diverse needs with scientific skills of long-term value in an increasingly technological world. A learner- centred and hands on approach to the learning area is adopted to develop scientific thinking and application of acquired knowledge and skills through exploitation of country's heritage.

1.2 RATIONALE

This syllabus develops learners' scientific skills in Physics, Chemistry and Biology. It develops knowledge of scientific concepts and principles and their application in solving everyday problems. It fosters creativity, innovation, critical thinking and problem-solving abilities among learners. It also enables learners to acquire 21st century scientific skills for an innovation and knowledge driven education.

1.3 SUMMARY OF CONTENT

The Combined Science learning area covers concepts in Biology, Chemistry and Physics. The syllabus covers scientific skills such as observing, recording, measuring, presentation, analysis and interpretation of data. The Combined Science also promotes the impartation of practical skills such as handling of apparatus, chemicals, plant and animal specimens safely and confidently.

1.4 ASSUMPTIONS

It is assumed that learners have:

- knowledge of the content of the Science and Technology syllabus offered in the Junior School Module
- engaged in science experiments
- engaged in project and collaborative work
- used measuring instruments such as rulers, thermometers, clocks and balances

1.5 CROSS- CUTTING THEMES

The following cross-cutting priorities have to be taken into consideration in the teaching and learning of Heritage-based Combined Science, for further studies, life and work.

- Gender stereotyping
- Children's rights and responsibilities
- Disaster risk management
- Entrepreneurship
- Health and wellbeing
- Environmental management
- Climate change

2.0 PRESENTATION OF THE SYLLABUS

This Form 1 to 4 Heritage-based Combined Science syllabus is presented as a single document which consists of the preamble, rationale, summary of content, assumptions, cross cutting themes, aims, objectives, topics, methodology, time allocation, scope and sequence, content matrix and assessment. The content is divided into Biology, Chemistry and Physics sections.

3.0 AIMS

The aims of the syllabus are to enable learners to further:

- 3.1 develop desirable scientific literacy
- 3.2 acquire critical thinking, creativity and problem-solving skills that apply to real life situations
- 3.3 gain scientific practical skills, accuracy, objectivity, integrity, enquiry and team work
- 3.4 develop attitudes relevant to science such as self-initiative, self-managing and enterprising
- 3.5 relate scientific practices to sustainable use of natural resource
- 3.6 use science to extract value from our natural resources
- 3.7 participate in the technological development of Zimbabwe and the global world

4.0 OBJECTIVES

Learners will be able to:

- 4.1 apply scientific principles in solving everyday problems and in understanding new situations
- 4.2 conduct experiments, record results, describe observations and draw conclusions
- 4.3 demonstrate an understanding of scientific terms, laws, facts, concepts, theories and phenomena
- 4.4 exhibit knowledge and understanding in relation to scientific and technological applications with their social, economic and environmental implications
- 4.5 show relevant attitudes to science such as accuracy and precision, objectivity, integrity, enquiry initiative and inventiveness
- 4.6 portray knowledge and understanding of scientific instruments and apparatus including techniques of operations and aspects of safety.
- 4.7 use different forms of data presentation to give rational explanations of scientific phenomena.
- 4.8 draw scientific diagrams in two dimensions.
- 4.9 relate scientific principles, formulae and methods to solving qualitative and quantitative problems.
- 4.10 apply scientific principles, methods and techniques in value addition and beneficiation of our natural resources.
- 4.11 use appropriate methods of recycling and/or disposing wastes.
- 4.12 communicate scientific information logically and concisely

5.0 TOPICS

5.1 BIOLOGY:

- Laboratory rules and safety
- Cells and levels of organization
- Nutrition
- Respiratory system
- Transport systems
- Reproduction in plants and animals
- Health and diseases

5.2 CHEMISTRY:

- Matter
- Acids, Bases and Salts
- Oxidation and Reduction
- Industrial Processes
- Organic Chemistry

5.3 PHYSICS:

- Measurements
- Force
- Energy
- Magnetism
- Electricity
- Robotics

6.0 METHODOLOGY AND TIME ALLOCATION

6.1 METHODOLOGY

Emphasis should be placed on providing learners with practical experience so that they see Science as an active and exciting learning area. Principles of individualisation, concreteness, totality and wholeness, self-activity and stimulation should under pin the implementation of teaching/learning methods in this learning area. The following methods are suggested:

- 6.1.1 Experimentation
- 6.1.2 Demonstrations
- 6.1.3 Problem solving
- 6.1.4 Field trips
- 6.1.5 Games
- 6.1.6 Cooperative learning/Group work
- 6.1.7 Simulations
- 6.1.8 Research/ Surveys/Case studies
- 6.1.9 Question and Answer
- 6.1.10 Discussions

- 6.1.11 Interviews and Report writing
- 6.1.12 Concept mapping
- 6.1.13 Visual tactile
- 6.1.14 Individualisation

6.2 TIME ALLOCATION

 For adequate coverage of the syllabus, a time allocation of 8 periods of 35 minutes per week is recommended. Double periods are recommended to accommodate practical work. The class size should not exceed 35 learners. At least 2 educational tours per year are recommended.

7.0 **SCOPE AND SEQUENCE**

7.1 BIOLOGY

TOPIC	Form 1	Form 2	Form 3	Form 4
Laboratory Safety and apparatus	Laboratory rules and safetyIntroduction to laboratory apparatus			
Cells and levels of organisation	 Plant and animal cell structure Similarities and differences of plant and animal cells 	Types of variation: continuous and discontinuous	 Structures and functions of specialised cells Use of a microscope 	Ecosystems
Nutrition	• Diet	PhotosynthesisDigestive system in humans	 Factors affecting rate of photosynthesis Conditions necessary for photosynthesis Teeth and digestion 	 Human diet: balanced diet Deficiency diseases Food tests
Respiratory systems	Respiratory gases	Respiratory organsBreathing mechanism	Gaseous exchange in alveoli	Respiration: aerobic and anaerobic respiration

TOPIC	Form 1	Form 2	Form 3	Form 4
Transport systems	 Osmosis and diffusion Components of blood 	 Root and stem structure Water and ion uptake Heart structure and associated blood vessels 	 Transpiration: factors affecting rate of transpiration Measurement of transpiration Plasmolysis Turgidity Blood circulation 	 Adaptations of plants to reduce transpiration Structure of blood vessels
REPRODUCTIVE SYSTEMS	 Reproduction in plants: flower structure, pollination, fertilisation, seed dispersal Human reproductive organs Puberty 	 Detailed structure of a wind- and insect-pollinated flower Functions of human reproductive organs 	 Structure of the seed Germination Male and female reproductive systems Sex cells Fertilisation, pregnancy, placenta and child care Menstrual cycle 	 Asexual and sexual reproduction in plants Inheritance Methods of contraception Contraceptives
HEALTH AND DISEASES	 Health and hygiene Methods of transmission of pathogens. Common parasitic diseases: cholera, Ebola, malaria, bilharzia 	 Sexually Transmitted Infections (STIs) Life cycle of bilharzia parasite and symptoms of bilharzia 	 Sexually Transmitted Infections (STIs) Signs and symptoms, causes and treatment/control of cholera, Ebola, malaria and typhoid Abuse of drugs: medicinal uses, addiction, hallucination, depressants 	HIV/AIDSImmunity

CHEMISTRY

TOPIC	Form 1	Form 2	Form 3	Form 4
SEPARATION	FiltrationMagnetismWinnowingDecantingEvaporation	Applications of: filtration, magnetism, winnowing, decanting, evaporation	Distillation, fractional distillation	Paper chromatography
MATTER	 States of matter Kinetic theory Periodic Table: identification of elements Metals and non- metals Elements, mixtures and compounds 	 Concentrations of solutions Groups and periods 	 Structure of atoms Electronic configurations Periodic table Nuclide notation Names and groups of elements Mole concept, empirical and molecular formulae Concentration 	Reactivity series Factors affecting rate of reaction

ACIDS, BASES AND SALTS	Identification of acids and bases: litmus paper test	Acid- base reactions	 pH scale preparation of salts reactions of metal + acid, acid + base, acid + carbonate 	Titration of bases with acid
INDUSTRIAL PROCESSES	Production of peanut butter	Production of soap	 Fractional distillation of liquid Electrolysis Electroplating 	Haber processContact process
OXIDATION AND REDUCTION	Rusting: factors	Chemical reactions: combustion	Extraction of iron	Alloy formation
	Collibria	3		,

PHYSICS

TOPIC	Form 1	Form 2	Form 3	Form 4
DATA PRESENTATION	Tallies, tables, bar graphs	straight line graphs	pie charts, line graphs, interpretation	pie charts, line graphs, interpretation and analysis
MEASUREMENT	Physical quantitiesS.I units	PrefixesConversionsDensity	Physical quantities, accuracy and precisionDensity of liquids	Derived quantities
FORCE	Effects of forceTypes of forceMeasurement of force	Moments of forceResultant forceLevers	Weight/mass machines: inclined plane, pulleys, levers and gears	Principles of pressureFluid systemspumps
ENERGY	Types of energyEnergy conversions	 Law of conversion of energy Calculations on work Properties of light Sound energy 	 Petrol and diesel engines Heat transfer: convection, conduction and radiation 	 Heat transfer applications: solar water heater and solar cooker Telecommunications

MAGNETISM AND ELECTRICITY	 Magnets, poles, fields, compass Static electricity: charges 	 Attraction and repulsion Circuit symbols and diagrams 	ElectromagnetismMotor effectGenerator effectElectroscope	 Power generation Electrical safety
	 Current electricity: conductors and insulators Circuit components 	Measurement of electricity	 Lightning Ohm's Law Resistance Resistors Electrical power and energy 	Domestic electricity
 ROBOTICS Principles of robotic systems 	 Introduction to robotics -History of robots -Types of robots -Basic components of a robot 	Safety and ethics in robotics	Sensors and actuators	

• robot design	• Tools	and	•	Logic gates		
methodologies	applications robot design	for	•	Tools and applications for robot design	K	
robot construction and programming	Robot constructiRobot programn			2/1/2	•	Robot construction Robot programming

8.0 COMPETENCY MATRIX

FORM 1

8.1.1 BIOLOGY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
LABORATORY SAFETY AND APPARATUS	 explain laboratory rules identify laboratory apparatus and their uses demonstrate use of laboratory apparatus 	 Laboratory rules laboratory apparatus: beaker, measuring cylinder, test tube, crucible, 	 discussing laboratory rules discussing and drawing laboratory apparatus taking readings from laboratory apparatus 	 Multimedia & Braille/Jaws software laboratory apparatus

CELLS AND LEVELS OF ORGANISATION	 describe the structure of a plant and an animal cell list similarities and differences between plant and animal cells define balanced diet 	tripod stand, wire gauze, Bunsen burner, spirit burner, spatula, funnel • Plant cell: cell membrane, cell wall, cytoplasm, nucleus, permanent vacuole • Animal cell: cell membrane, cytoplasm, nucleus cytoplasm, nucleus carbohydrates,	 Using bio viewers and hand lenses to observe and draw cells (avoid using fresh human blood or cheek cells) Naming different kinds 	 Charts on cells Models of cells ICT tools and braille/jaws softwares Onion Hand lens
NOTRITION	 list component of balanced diet name functions of nutrients 	 Carbonydrates, proteins, fats, vitamins, fibre, mineral salts and water Functions of nutrients 	of foods and discussions of their nutrients Discussing function of nutrients	 Charts of collection of foods Food samples E-learning packages

RESPIRATORY SYSTEM	 State the percentage composition of air Identify respiratory gases describe the test for carbon dioxide gas test for oxygen gas 	 Nitrogen 78%, oxygen 20%, carbon dioxide 0,03%, rare gases, water vapour less in air Oxygen and carbon dioxide Carbon dioxide Oxygen 	 Discussing the composition of air Comparing oxygen in inhaled and exhaled air experiment Blowing into lime water or bicarbonate indicator Using glowing wooden splint for oxygen test 	 Model of breathing system Internet Inverted jar, candle, water trough Lime water/bicarbonate indicator Glowing wooden splint
TRANSPORT SYSTEMS	 describe water movement in plants identify components of blood stating the functions of each component 	 Osmosis Diffusion Components of blood Functions of the components 	 Demonstrating water movement in a plant using potassium permanganate/ methylene blue/coloured solutions Observing components of blood cells 	 use of potted plants ICT tools & braille/ jaws software Bio viewer, bioset
REPRODUCTION IN PLANTS AND HUMANS	 describe structure of a simple flower describe pollination and fertilization 	 Flowers, carpel, stamens Pollen grains Ovule, ovary, fruit Signs of puberty, such as breasts, 	Observing a flower using hand lens/ bio viewers	Charts on flowersFlowersModels of human beingComputer

		state signs of puberty	beard, mensuration, growth of pubic hair, widening of pelvic girdle, voice deepening	Emphasising on pre- mensural symptoms such as period pain	SimulationsICT tools
HEALTH DISEASES	AND	 describe a healthy person state importance of hygiene 	 State of being mentally, socially and physically well Importance of personal hygiene and food hygiene 	 Discussing the state of a health person Cleaning of classrooms Carrying simple disinfection of drains Discussing cleaning of a toilet 	 ICT tools Disinfectants Brooms Mops EMA resource person Print media
		 list ways of disposing litter/ waste, stating their advantages and disadvantages describe methods of transmission of diseases 	 Burying, recycling, burning water, food, vectors, contact cholera – water ebola - contact malaria - vector bilharzia - vector 	 Picking and burying wastes Discussing methods of disease transmission 	

8.1.2 CHEMISTRY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
SEPARATION	State methods of separating mixtures	 Filtration, Magnetism, Winnowing, Decanting, Evaporation 	Carrying out experiments to illustrate methods of separating	MagnetSulphurICT tools
MATTER	 identify the three states of matter describe properties of solids, liquids and gases in terms of kinetic theory of matters describe the arrangement of particles 	 solids, liquids and gases properties of solids, liquids and gases particle arrangement in solids, liquids and gases Kinetic theory 	 Identifying the three states using salt, water and air Compressing a gas in syringe Discussing particle arrangement in solids, liquids and gases Carrying out experiments on heating ice block, candle 	 salt, water, stones, syringe, beakers, ice, candles naphthalene flakes iodine crystals models

	 in solids, liquids and gases identify mixtures, elements and compounds Describe the factors that affect solubility Identify metals and nonmetals on periodic tables 	Elements, mixtures, Compounds Particle size, temperature, stirring Common	 wax, naphthalene, iodine crystals Dissolving potassium permanganate crystals in water Identifying elements on the Periodic Table Mixing of iron and Sulphur, sand and maize grains Heating iron and sulphur Dissolving salt/sugar, iron/Sulphur in water Identifying elements on periodic table 	 Periodic Tables iron filings Sulphur powder sand, maize beakers spatulas salt/sugar water
ACIDS AND BASES	 identify acids and bases using red and blue litmus list properties of acids and bases 		Dipping litmus paper in HCL, NaOH, H2O, CuSO4, tap water	Red/blue litmus Solutions (acids and base)

INDUSTRIAL PROCESSES	 outline production of peanut butter Outline the production of oil from peanut butter State uses of oil 	 Processes: Shelling, roasting, grinding and packaging Equipment: sheller, peanut butter making machine Preparing peanut butter to produce oil 	 Winnowing basket Mortar and pestle Grinding stone (guyo/imbokodo)
OXIDATION AND REDUCTION	 state conditions necessary for rusting explain methods of preventing rusting 	 Conditions: oxygen and moisture Methods: painting, galvanising, plating	iron nailsoilmultimedia
ORGANIC CHEMISTRY	 identify forms of fuels compare the efficiency of different fuels 	 Fuels: liquid, solid, gaseous Carrying out experiments to compare the efficiency of fuels 	 Wood, Paraffin, Methylated spirit burner, Bunsen burners

8.1.3 PHYSICS

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
DATA PRESENTATION	 Present data in the form of tallies, tables and bar graphs Interpret data presented in the form of tallies, tables and bar graph 	tallies, tables and bar graphs	collecting and presenting data in the form of tallies, tables and bar graphs	multimedia
MEASUREMENTS	 estimate physical quantities identify appropriate instruments for measuring physical quantities measure accurately read an instrument scale to the nearest division identify units including S.I units 	 Length, mass, time and temperature Length, mass, time and temperature SI units: metre (m), kilogram(kg), degree Celsius second(s) Parallax error and zero error 	 Estimating length, time, mass and temperature Measuring length, time, temperature and mass Taking measurements at different points 	 Metre rule Thermometer Balance Stop watch ICT tools

FORCE	 demonstrate the effect of forces on position, shape and size identify various types of force state the unit of force identify instruments for measuring force 	deformation of solids, change of position, change in speed and direction Types of forces: gravitational force, weight, mechanical force electrostatic force, magnetic force and friction S.I unit: newton (N) Force meter	 Carrying out experiments on effects of forces Carrying out experiments on gravitational force, push and pull, electrostatic force, magnetic force, friction Measuring force using spring balance or force meter 	 Metre rule Thermometer Balance Stop watch ICT tools Foam rubber, springs, trolleys, rubber bands Magnets, rulers, bricks Trolleys Masses Force meter Spring balance
ENERGY	 describe effects of energy identify different -forms of energy list forms of potential energy 	 Spring balance Effects of energy Forms and sources of energy Kinetic, potential, light, 	Demonstrating the effects of energy: burning fuels, bouncing a ball, making objects move, compressing a spring	spring, candle, ball, catapult, magnesium ribbon

	heat, electrical, chemical, sound • Forms of potential energy: gravitational, elastic, chemical	 Running upstairs, lighting a torch, clapping hands, raising a brick Carrying out experiments to show potential energy 	 torch, brick, musical instruments trolleys catapult torch cell
 identify energy conversions construct energy chains identify energy convertors 	 Energy conversion: energy changes, energy chains Energy convertors 	 Lighting a torch Using a dynamo to light a bulb Using a catapult and solar panel Discussing various energy convertors 	 Torch Dynamo Catapult Solar panel Bulb Green plants Engines refrigerator Cell Bulb Solar cells Generators

MAGNETISM	identify types of magnets	Magnets: bar • Classifying magnets	
		magnets, horse shoe magnets, C	 Horse shoe magnets
		-magnets, E- magnets	Bar magnets
			C-magnets
	distinguish magnetic	Magnetic and Using magnets to	E-magnets
	material from non- magnetic materials	non-magnetic identify magnetic and non-magnetic materials	 Steel, iron nails, copper, aluminium, wood,
		• suspending a bar magnet	plastic, glassbar magnet, string, campus,
	identify the poles of a magnet	 Poles and magnets: South and north poles: earth as magnet using a campus 	g,
EL EGEDIOITY		•	
ELECTRICITY	state the two types of chargesdescribe the production of	Static electricity perspex on hair or dry cloth	PolythenePerspexDry cloth
	charges • define current		PlasticWood

	 distinguish between conductors and insulators identify components of direct current (d.c) circuit draw and label a simple direct current (d.c) circuit 	 Conductors and insulators Cells, batteries, bulbs, switches, resistors, standard symbols 	on conductivity of different materials • Drawing circuit diagrams using symbols	
ROBOTICS Principles of robotic systems	 Define robotics and robot Outline the history and evolution of robotics identify types of robots List basic components of robots 	 Evolution of robotics Fixed and mobile robots Basic components of a robot motion sensors 	 Discussing the history and evolution of robotics Identifying types of robots Naming components of robots 	Robotic kitsChartsCameraLED

- gears		• Drones
- Micro controller such as ESP32, ESP8266 and STM32		
- power source	00	
-Motors (actuators)		
such as Savor motor, Stepper motor, DC		
motor and Vibration		
motor		
- motor drive		

FORM 2

8.2.1 BIOLOGY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
TYPES OF VARIATION	 state differences among living organisms compare continuous and discontinuous variation 	 variation: height, mass, shoe size, skin/ coat colour, sex, right or left handedness, tongue rolling 	comparing height, mass, shoe size, skin/ coat colour, sex, right or left handedness, tongue rolling	leavesseeds in a podICT tools
NUTRITION	 explain importance of plants as producers state the word equation for photosynthesis 	Animals as consumers of foodPhotosynthesis	Discussing the conversion of solar energy to chemical energy by plants	Charts on leaf structureICT tools
	describe digestive system of humans	Digestive system in Humans: alimentary canal	Observing a model of the alimentary canal	Models of the alimentary canal

RESPIRATORY ORGANS	respiration ca	• Carrying out experiments to show that energy is released during burning of food (during respiration) • Models of respiration • ICT tools
TRANSPORT SYSTEMS	stem did ep ph xy describe water and ion untake by plants	ot and stem uctures of a otyledonous plant: dermis, cortex, oem, cambium, em The mosts and active take Obscussing the internal structures of a root and stem Viewing of prepared slides Carrying out an experiment to show arrangement of vascular tissue using dye Plant ICT tools Microscope Bio-viewer
	 system name the main blood vessels to and from the 	ucture of heart: labelling structure of label

REPRODUCTIIVE SYSTEMS	 distinguish between monocotyledonous and dicotyledonous plant seeds describe functions of cotyledon and endosperm 	 ventricles and valves; bicuspid and tricuspid, semi lunar valves Movement of blood Structure of maize and bean seeds: testa, radicle, plumule, endosperm and cotyledon 	comparing internal and external features of the monocotyledonous and dicotyledonous plant seeds	multimedia
	state the functions of the female and male reproductive systems	 Human reproductive systems: Penis, testis, sperm duct, urethra, prostate glands, vagina, ovary, oviduct, uterus, cervix 	discussing the functions of male and female reproductive systems	 models of reproductive systems multimedia
HEALTH AND DISEASES	 state causes of diseases describe causes of bilharzia describe the life cycle of bilharzia parasite 	 Contaminated food, water, air Bilharzia worm Snail-human host Eggs in water 	discussing the transmission of bilharzia parasite and methods of preventing spread of bilharzia	 bilharzia life cycle chart multimedia

8.2.2 CHEMISTRY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
SEPARATION	state the applications of filtration, winnowing magnetism and evaporation	application: treatment of water, grain separation, separation of metallic objects from grain before grinding, separation of metallic waste for recycling, sugar production	discussing applications of the separation methods	• multimedia
MATTER	 determine the concentrations by colour densities of dissolved substances determine the concentration of a substance by varying the 	Mole concept: concentration	 carrying out experiments on dissolving-coloured substances (differing amounts to be dissolved) 	potassium permanganateammonium dichromate

	amount of solute in a given solvent			
ACIDS, BASES AND SALTS	describe an acid-base reaction	Acids-base reactions	Carrying out experiments to demonstrate acid- base reactions	 litmus paper Dilute HCl, H₂SO4 and NaOH solution
INDUSTRIAL PROCESSES	Outline the manufacture of soap	Production of soap/ saponification	Making soapVisiting soap manufacturing companies	NaOH solution, NaCl solution, plant /animal fat
OXIDATION AND REDUCTION	 write simple word equations define oxidation and reduction in terms of oxygen distinguish between physical and chemical changes 	Chemical reactions	 burning Magnesium ribbon melting ice, burning sugar/mealie- meal 	burner Magnesium ribbon and mealie meal/sugar
ORGANIC CHEMISTRY	define complete and incomplete combustion of fuels	Complete and incomplete combustion	lighting burners (methylated spirit) with long and short wicks/ paraffin stove	Burner (paraffin/ methylated)Gas burners

•	list the products of complete and incomplete combustion of fuels	•	Global warming,	•	lighting Bunsen burner sleeve wide/narrow		
•	describe the effects of burning fuels		deforestation,	•	Carrying out environmental awareness campaign	•	Posters, drama.

8.2.3 PHYSICS

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
DATA PRESENTATION	Construct a straight- line graph from appropriate data	• Straight line graph	 Drawing a straight- line graph from given data 	 multimedia
MEASUREMENTS	convert unitsmeasure mass of a liquid	Multiples of S.I units	Converting metre to centimetre, millimetre, kilogram to gram, minutes to second	Metre rule, balance, stopwatch,
	measure the volume of an irregular object	 Measurement of mass Measurement of volume by displacement 	Carrying out experiments on measurement by differences of mass	Beaker and water

	 determine the thickness, volume and mass of small objects calculate density 	 Measurement of volume, thickness and mass of small objects Formula for density 	 Carrying out experiments on measurement of irregular objects Carrying out experiments on measurements of volume, thickness and mass 	 Measuring cylinder Irregular objects Overflow can String Book, seeds, pins Metre rule Balance Stopwatch
FORCES	 calculate the resultant of a pair of inline forces define moment of a force calculate moment of a force state the principle of moments 	 Balanced and unbalanced forces Resultant force Moment of force = force x perpendicular distance from the pivot 	 carrying out experiments to find mass and volume Carrying out experiments to demonstrate equal and unequal forces 	Regular and irregular objects, liquids • force meters, levers,

	At equilibrium:	Demonstrating moments	• masses,
	Clockwise	of force	balance, metre
	moments = anti	Of force	rule,
	clock wise		ruie,
	moments		
	momonts	16	
			 spring balance
apply the principle of		0.0	
moments in simple			
calculations			
	C//	applying the principle of	
define friction	(,)	moments	
	• Frictional forces:		
	forces opposing		
measure friction	motion		
	 nature of surface 		
)		
state the applications of		• Carrying out	
frictional force	and alternative	experiments to	
	 car braking system 	investigate frictional	
	tyre treads	forces	
*O-//	 soles of shoes 		
	 road surfaces 		

MACHINES	 define a machine construct a simple machine 	Simple machines: levers	Lifting a load using a crowbarConstructing a simple machine	CrowbarPlanksmasses
ENERGY	 state the law of conservation of energy define work and energy 	Conservation of energy Work and energy	 Carrying out experiments to demonstrate Work done = Energy used 	force meterobjectruler
	 state the S.I unit of work and energy calculate the work done or energy used by forces 	Joule (J) Work done or energy used = force x distance moved	Solving problems on work done and energy used	 bulb, torch, fire, candle, sun light source, slits screen
	 list sources of light energy show that light travels in a straight line 	bulb	 observing sources of light carrying out experiments to demonstrate that light 	ballmultimedia

	explain the production and transmission of sound	Sound Energy • vibrations • passing of sound energy through different media	 travels in a straight line (production of shadows) Producing sound using musical instruments Conducting a bell jar experiment to show that sound requires a material medium for transmission 	 musical instruments Tuning fork bell jar vacuum pump electric bell
MAGNETISM AND ELECTRICITY	 describe properties of magnets state the law of magnetism draw magnetic fields 	 Polarity, field direction and strength Attraction, repulsion, like and unlike poles Magnetic fields 	 Illustrating properties of magnets Carrying out experiments using magnets Demonstrating magnetic fields 	 bar magnets, string, compass bar magnets iron filings, magnets, plain paper

	 define current and voltage state the S.I units of current and voltage measure current and 	Current: ampere (A) Voltage: Volt (V)	 Discussing the meaning of current and voltage Carrying out experiments to measure current and voltage 	 Ammeter Voltmeter Circuit boards Connecting wires Light bulbs
Dringinles of	determine electrical power	Power = Current x Voltage	Calculating electrical power	ICT to alla
Principles of robotic systems	 Discuss safety and ethics in robotics 	Safety in roboticsEthics in robotics	Discussing safety and ethics in robotics	ICT toolsRobotic kits
Robot design methodologies	 Identify tools and applications for robot design use tools and applications for robot design 	CAD tools, simulation software, micro controllers (Arduino)	Computer simulation and coding (scratch)	Resource persons
Robot construction and programming	Construct and code	Robot design and construction	Constructing robots	

FORM 3

8.2.1 BIOLOGY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
STRUCTURE AND FUNCTION OF A CELL	 identify specialized cells draw and label specialised cells 	 Specialised cells red blood cell muscle cell palisade cell root hair cell Functions of specialised cells 	Drawing specialised cell structures	 Microsope Charts Bio-viewers Biosets Printed multimedia ICT tools Prepared slides
	 state the function(s) of the specialised cells use a microscope to observe cell structure 		Using microscope/bio-viewer to observe specialized cells	

NUTRITION		Material Enland	Use of a microscope only. Identification of parts not necessary Avoiding using fresh, animal cells.	
Factors affecting the rate of photosynthesis	describe experiments on factors which affect the rate of photosynthesis describe the fate of end products of photosynthesis	 Water, light carbon dioxide, chlorophyll Carbohydrates and oxygen Translocation, storage and structure formation, respiration Epidermis, stomata, vascular tissue, mesophyll, guard cells Surface area, stomata, palisade cells, air spaces. 	affecting rate of	 lodine solution Leaves Glowing splint Light source Pond weed Sodium hydrogen carbonate/Soda lime/Sodium hydroxide Microscope Bio-viewer ICT tools

	 identify parts of the internal structure of a leaf describe how the leaf is adapted for photosynthesis 		bio- viewer/microscope • Examining the external leaf structure
HUMAN NUTRITION Alimentary canal	 draw and label parts of the alimentary canal and associated organs identify parts of the alimentary canal of a human state the functions of parts of the alimentary canal of a human 	 Mouth, oesophogus stomach, small and large intestines, gall bladder, pancreas, liver Ingestion, digestion, absorption, assimilation and egestion 	 Watching video simulation to examine human alimentary canal Identifying parts using a chart ICT tools Recommended textbooks
NUTRITION	Name types of teeth and their functions	Incisor-cutting-bitingCanines-tearing	 Discussing the functions of teeth and their structure Skeleton model Visking tubing/egg shell

	 Describe mechanical and chemical digestion Explain the importance of digestion Describe the function of a typical enzymes (amylase) Identify the end products of digestion 	 -gripping Premolar and molar -grinding Chewing Mechanical-breaking down into smaller pieces chemical – use of enzymes to convert from insoluble to soluble smaller molecules Increase surface area for enzyme action and solubility Catalysis for conversion of starch to maltose/glucose 	 Observing types of teeth on the skeleton models Using a model to examine action of amylase on starch
RESPIRATORY SYSTEMS Gaseous exchange in alveoli	 state the differences between inhaled and exhaled air describe the role of the alveoli in gaseous exchange 	 Percentage composition of inhaled and exhaled air Diffusion of carbon dioxide and oxygen 1 cell thick, moist, large surface area, 	 Carrying out an experiment to show the change in proportions of carbon dioxide and oxygen in inhaled and exhaled air ICT tools Limewater/bicarbonate indicator solution

	explain how the alveoli is adapted for gaseous exchange network of because capillaries	lood • Describing gaseous exchange in the alveoli
TRANSPORT SYSTEMS Transpiration	• state factors temperature,	eed, process of transpiration face sity, eata eter eneral process of transpiration • Carrying out experiments to investigate factors affecting the rate of transpiration
	 measure transpiration in a plant outline the importance of transpiration 	Explaining the importance of transpiration
Plasmolysis and turgidity	 explain the terms plasmolysis and turgidity Plasmolysis Turgidity 	 Discussing plasmolysis and turgidity ICT tools Potato strips

	describe the effects of water loss and water gain in plant cells	 Watching video simulations on plasmolysis and turgidity carrying out experiments to demonstrate plasmolysis and turgidity using potato strips
Blood circulation	 state the functions of blood describe circulatory system Transport, Defence, Homeostasis Blood circulatory system 	Watching video Circulatory System
REPRODUCTIVE SYSTEMS Wind and insect pollinated flowers	 explain the structures of wind and insect pollinated flowers Wind pollinated flower Insect pollinated flower 	structure of wind • Multimedia

Germination	 describe the process of germination investigate conditions necessary for germination Germination Moisture, warmth, oxygen Discussing process of germination Carrying out experiments to demonstrate conditions
	 calculate percentage germination Determining germination percentage
Reproductive systems	 draw and label the male and female reproductive system state the functions of the male and female reproductive system male and female reproductive system drawing the male and female reproductive system male and female reproductive system functions incomparison of the male and female reproductive systems models of reproductive organs ICT tools
	 describe the structure and functions of sex cells draw and label the sex cells Sperm and ovum Drawing the structure of sex cells Multimedia Bio-viewers

	 describe the role of the placenta identify the substances exchanged in the placenta 	 Hormones i.e. progesterone, oestrogen Ovulation Menstruation Placenta Nutrients, wastes, antibodies, oxygen 	 Illustrating the menstrual cycle Watching video simulations of the placenta Listing the substances exchanged in the placenta 	Multi-mediaMulti-media
HEALTH AND DISEASES	 list sexually transmitted infections (STIs) describe the signs, symptoms and effects of: Gonorrhoea, Syphilis, Chancroid, Genital herpes state the causative agents of: 	 Gonorrhoea Syphilis Chancroid Genital herpes Pathogens virus bacteria 	 Discussing STIs Identifying the sign, symptoms and effects of STIs Watching videos on signs and symptoms of STIs Listing the causes 	Bio-viewersMulti-media

 Gonorrhoea, Syphilis, Chancroid, Genital herpes state the control methods and treatment 	Abstinence, condoms, contact tracing	
and symptoms of malaria,	MalariaTyphoidEbolaCholera	 Using the signs and symptoms Discussing the causes Outlining the disease control methods
 describe the effects of tobacco smoking on health describe effects of excessive 	 Emphysema, bronchitis, lung cancer, low birth weight Liver cirrhosis, social implications, reduced reaction time 	 Discussing the effects of smoking Identifying effects of excessive alcohol consumption

consumption alcohol • explain effects of of mandrax cannabis • outline the effect breathing solvent	and s of	

8.2.2 PHYSICS

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
DATA PRESENTATION	 Interpret and analyse data from pie charts and line graphs 	pie charts and line graphs	explaining data presented in form of pie chart and line graphs	 multimedia
MEASUREMENT Physical quantity	 measure physical quantities accurately using appropriate instruments read instruments scale to the nearest fraction of the division determine density 	 Measurement of physical quantities: length (thickness and internal diameter) current, voltage Density: liquids and irregular objects 	current, voltage	 Vernier calipers Voltmeter Ammeter Measuring cylinder Strings Balance Multimedia

FORCE	define weight, momentum and inertia	Weight,Momentum	Defining weight, momentum and inertia	Spring balancesTrolleys
Weight/mass	 explain Newton's laws of motion calculate force, given mass and acceleration 		 Discussing Newton's laws of motion limited to linear motion Verifying Newton's second law of motion experimentally 	Ticker timer
Machines	 describe the uses and applications of machines determine Mechanical Advantage (MA), Velocity Ratio (VR) and efficiency of levers inclined plane, pulleys and gears 	ratio and efficiency	 Lifting different loads using the simple machines Carrying out experiments to determine MA, VR and efficiency Calculating mechanical advantage and 	 Crow bar Wheel barrow Scissors Pulleys Inclined plane Gears Bearings

	 explain energy loses in machines describe ways of improving efficiency in machines 	moving parts	simple machines	
Petrol and diesel engines	 describe the operation of a four-stroke petrol and diesel engine explain the role of the fuel injector and carburettor outline the difference between petrol and diesel engines 	 Strokes: intake compression, power and exhaust Fuel and air supply Computer box Ignition methods, efficiency, carbon monoxide production 	 Demonstrating intake, compression, power and exhaust using an engine model Showing how the fuel injector and the carburettor works and their importance Examining the ignition and fuel economy of petrol and diesel engine 	 Model of a four-stroke petrol engine Engine block Fuel injector
ENERGY heat transfer	give a molecular account of the heat transfer	conduction, good and bad conductors	carrying out experiments with	ironcopper

	 explain convection in terms of the kinetic theory state good and bad reflectors, absorbers and emitters of heat 	 convection in liquids and gases good and bad reflectors, absorbers and emitters of heat 	 metal and non-metal rods demonstrating heat movement in liquids and gases carrying out experiments on absorption, emission and reflection of heat using different surfaces 	 aluminium wood glass smoke chamber copper sulphate crystals black painted surface white painted and shiny surfaces
MAGNETISM Electromagnetism	describe an experiment to demonstrate that a current carrying conductor has a magnetic field around it.	Magnetic field patterns of long straight conductor, solenoid	Demonstrating magnetic field around a current carrying conductor, using iron filings and plotting compass	 Copper wire Iron filings Source of direct current Plotting compass
Motor effect	Illustrate how movement is produced in a current carrying wire in a magnetic field	Motor effect: Interaction of magnetic fields, electrical energy converted to kinetic energy, motion	Carrying out an experiment using a current carrying wire between magnets	Copper coil, source of direct currentmagnets

	describe the operation of a direct current (d.c) motor	electrical to mechanical energy	constructing and operating an electric motor	electric motormodel of a motor
Generator effect	describe an experiment which shows that a change in magnetic field can induce an electro motive force (e.m.f) in a conductor	the generator principle, magnetic field, electric field and e.m.f	carrying out an experiment which illustrates the generator effect	copper coilgalvanometermagnetsource of d.c
	state the factors which affect the magnitude of induced e.m.f	strength of a magnet, relative motion, number of turns and area of coil	 carrying out experiments to investigate factors which affect the magnitude of induced e.m.f. 	 magnets of different strengths coils of different turns coils of different area
	 describe the operation of an alternating current (a.c) and d.c generator 	mechanical energy to electrical energy	 illustrating output voltage graphically discussing factors affecting output voltage 	a.c generatord.c generatormultimedia
ELECTRICITY Electroscope	Describe simple experiments to show electrostatic	Electron, positive and negative charges	Demonstrating electrostatic charging	Electroscope

	charging using an electroscope Describe forces between charges	The coulomb (C), like and unlike charges	Demonstrating attraction and repulsion of charges using an electroscope	
Principles of robotic systems Sensors and actuators	 identify sensors and actuators explain the functions of the sensors describe function of actuators 	 Temperature sensors, ultrasonic sensors, light sensor, pressure sensor, proximity sensor, Actuators electric, hydraulic pneumatic 	Identifying sensors and actuators • Discussing functions of sensors and actuators	online resources ICT tools Robotic kits Resource persons Braille/jaws software
Robot design methodologies	 identify tools and applications for robot design apply tools and applications for robot design 	CAD tools, simulation software, micro controllers (Arduino)	 Computer simulation and coding (scratch) Writing structured programs to control robots for defined tasks 	ICT toolsRobotic kitsResource personsBraille
Robot construction and programming Logic gates	Describe logic gatesConstruct and code	 Logic gates: NOT, OR, AND, NAND, NOR and Truth tables Robot design and construction 	Describing logic gatesConstructing robots	ICT toolsRobotic kitsResource personsBraille

		Coding – Python programming		
Lightning conductor	 describe the production of lightning Explain the principle of a lightning conductor state the dangers of lightning 	 Movement of charges between cloud and ground Height, conduction and earthing High voltage electrocution heating effect 	 Discussing the production of lightning Erecting a lightning conductor Discussing dangers of lightning 	Multimedia
Ohm's law	 state Ohm's law calculate resistance /voltage/current using Ohm's law describe an experiment to determine resistance 	Ohm's lawV=IRresistance	 Carrying out experiments to verify Ohm's law Carrying out calculations using Ohm's law determining resistance experimentally using a voltmeter and an ammeter 	 Voltmeter Ammeter Bulbs resistors voltmeter ammeter

	state the limitations of Ohm's law	Iimitations of Ohm's law	discussing limitations of Ohm's law	
Resistors	 construct simple electric circuits draw and interpret circuit diagrams 	simple electric circuits: cells, switches, resistors, variable resistors, bulbs ammeter, voltmeter and fuses	 setting up practical electric circuits drawing and interpreting circuit diagrams 	cellsresistorsswitchesbulbs
	calculate resistance in simple circuits	 series and parallel arrangement of resistors R =R1 +R2+R3 = 1 + 1 + 1 R R1 R2 R3 	determining total resistance of resistors in series and parallel arrangement	 fuses ammeters voltmeters leads Resistors connected in series and parallel

Electrical power and energy	 Define electrical power and energy Calculate electrical power and energy 	 Power and energy Units: watt (W), kilowatt-hour (kWh) P=VI E=VIt 	 Discussing electrical power and energy use by appliances Determining power and energy using the formulae 	 Electric iron Electric fan Heating elements Smartphones computers multimedia
	Ollblilli	49		

8.2.2 CHEMISTRY

TOPIC	OBJECTIVES	CONTENT (knowledge, skills,	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	Learners will be able to:	values and attitudes)	AOTIVITEO AND NOTES	REGOORGEO
SEPARATION	describe the processes of distillation and fractional distillation	distillation and fractional distillation	demonstrating distillation of impure water and fractional distillation of dilute ethanol	ethanoldistillation unitfractional distillation unit
MATTER	 describe the arrangement of metals and non-metals in the Periodic Table name the sub-atomic particles state the relative charges and masses of sub-atomic particles state relative position of sub-atomic particles within the atom 	metals: -position Proton, neutrons and electrons Structure of an atom: nucleus,	 Identifying positions of elements on the Periodic Table, their groups and periods Drawing the structure of an atom 	chart

 name the first 20 elements in the periodic table stating their symbols write the electronic configuration of the first 20 elements describe ionic and covalent bonding 	 Electronic configurations Bonding Ionic bonding: NaCl, MgO, Na2O Covalent bonding: H2, Cl2, H2O 	 Producing electronic configuration diagrams Burning magnesium ribbon to demonstrate chemical reaction Experimenting to form precipitates: formation of lead chloride/silver chloride/barium sulphate 	 Magnesium ribbon Lead nitrate, HCO, H₂ SO_{4ate} Barium nitrate Silver nitrate
 define relative mass/mass number define the proton number/atomic number calculate the number of neutrons from given data define isotopes 	b X • Isotopes:	 Explaining relative mass/mass number using models Defining isotopes 	Periodic Table chart

	 Define the Avogadro number State the relationship between the mole and molecular mass (Mr) or atomic mass (Ar) Calculate empirical formula and molecular mass Calculate concentration of solutions in mole/dm³ and g/dm³ 	Avogadro number Mole concept n=m Mr Empirical formula and molecular formula from percentage composition data Concentration	 Stating Avogadro constant Calculating molecular masses Calculating empirical formula Calculating concentration of solutions 	Models/use of marble to demonstrate moles
ACIDS AND BASES	identify the regions of acidity neutrality and alkalinity of substance on the pH scale and using universal indicator solution	 The pH scale Use of universal indicator solution Reaction of dilute acids with metals, bases and carbonates 	 Drawing the pH scale Carrying out experiments using universal indicator to identify the pH ranges for different substances 	 pH scale chart Universal indicator solution Ammonia solution, sodium hydroxide, vinegar/lemon juice, hydrochloric acid,

	 describe the reactions of acids with metal and bases write word and chemical equations for reactions 	 neutralization 	Reacting dilute hydrochloric acid, nitric acid and sulphuric acid with magnesium, zinc, calcium carbonate, magnesium carbonate, sodium hydroxide	waterDilute acidsHydroxidesMetal granules/powder
INDUSTRIAL PROCESSES	outline the production of nitrogen and oxygen	 Fractional distillation of liquid air 	Discussing the production of nitrogen and oxygen	Flow charts
	 define electrolysis label the general components of an electrolytic cell list properties of electrodes and electrolyte describe anode and cathode reactions for electrolysis of molten lead bromide 	 Electrolytic cell: connecting wires, cathode, anode, battery, electrolyte Electrolysis of: molten lead bromide Solid lead and bromine fumes Electrolysis of water 	 Setting up an electrolytic cell Setting out experiments on electrolysis of water 	 Battery, electrodes molten lead bromide Dilute H₂SO₄ Carbon electrodes

 explain the cathode process iron nail Cathode reaction Decoration electroplate an iron nail Copper electrode 	 state observations for the electrolysis of molten lead bromide describe the electrolysis of water 	 Electrolyte: dilute H₂S0₄ O₂ and H₂ H₂: haber process O₂: basic oxygen furnace, 	01/2/01/4	
 state the cathode, anode and electrolyte explain the cathode process Copper electroplating an iron nail Cathode reaction Decoration Setting out experiments to electroplate an iron nail Copper sulpha solution Copper electrode 	during the electrolysis of water	medical purposes		
and electrolyte electroplating an iron nail explain the cathode process electroplating an iron nail Cathode reaction Decoration experiments to electroplate an iron nail Copper sulpha solution Copper sulpha solution Decoration				
electroplating materials or prevention of electroplating in groups	 and electrolyte explain the cathode process state reasons for 	electroplating an iron nail Cathode reaction Decoration Prevention of	 experiments to electroplate an iron nail Discussing reasons for electroplating in 	• Copper sulphate

OXIDATION AND REDUCTION	 define oxidation define reduction list the raw materials used in the extraction of iron and their sources 	electrons, gain of oxygen, loss of hydrogen Reduction: gain of electrons, loss of oxygen, gain of hydrogen Part of the extraction process reaction of copper oxide with hydrogen Discussing the extraction process Visiting ZISCO steel	pper oxide drogen gas SCO steel
	 describe reactions in the blast furnace state the functions of the raw materials 	black from a control (III) Ordela control	n oxide arcoal

ORGANIC CHEMISTRY	 describe how iron and slag separate define the term hydrocarbon name the members of the homologous series with 3 carbon atoms draw the displayed structures of methane, ethane, propane, ethene, propene 	alkanes alkenes	Outlining the structures of methane, ethane, propane, ethene and propene using models	Models of atoms and bonds
	 outline the production of biogas identify factors affecting the production of biogas state the use of biogas 	role of bacteria	 Preparing a model of a bio digester 	 Model of bio digester Samples of organic waste (plant and animal waste)

FORM 4

8.2.1 BIOLOGY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
CELLS AND LEVELS OF ORGANISATION Ecosystems	 explain the term ecosystem list components of an ecosystem 	 Organisms and their environment Physical and biological components 	 Discussing the term ecosystem Identifying components of an ecosystem Examining various ecosystems e.g. garden, pond, forest 	Multi-media
	 explain natural ecosystem construct food chains, food webs and pyramids of biomass 	 Natural ecosystem Food chains, food webs and pyramids of biomass Energy flow 	 Engaging in field trips to observe natural ecosystem Illustrating food chains, food 	Multimedia

	 explain how energy is lost in food chains and food webs describe the carbon and nitrogen cycles 	Carbon and nitrogen cycles	 webs and pyramids of biomass Discussing energy input and energy flow Explaining the carbon and nitrogen cycles 	
	 describe an artificial ecosystem explain biodiversity identify problems caused by limited bio-diversity 	 Garden, pond and plantation Bio-diversity Soil infertility, pests and diseases 	 Visiting plantations, pond, garden Discussing biodiversity Explaining problems caused by limited biodiversity 	Multimedia
NUTRITION	 explain the term balanced diet list components of a balanced diet describe the functions of the components of a balanced diet in the body 	 Balanced diet Components of a balanced diet Functions of carbohydrates, fats, proteins, vitamins (A, C, D), mineral salts (iodine, calcium, iron), water, roughage 	 Discussing balanced diet Identifying components of a balanced diet Discussing functions of the nutrients in the body 	Food samplesMultimedia

	explain the term deficiency disease state causes of deficiency diseases	Deficiency diseases Kwashiorkor, goitre, rickets, scurvy, anaemia and night blindness	 Explaining deficiency diseases Watching videos and pictures of people suffering from deficiency diseases Listing causes of various deficiency diseases 	
	Describe the tests for starch, simple sugars, protein and fats	• Food tests	 Carrying out experiments to test for starch, simple sugars, protein and fats Watching videos on the food tests to observe colour changes 	 lodine solution Benedict solution/Clinistix Ethanol Sodium hydroxide, copper sulphate
Respiratory system	 describe aerobic and anaerobic respiration state word equations for aerobic and 	 Aerobic and anaerobic respiration Word equations: glucose + oxygen→carbon 	 Discussing aerobic and anaerobic respiration Writing down word equation 	MultimediaSmall animalsGerminating seeds

	anaerobic respiration	dioxide + water + energy • glucose→lactic acid + less energy	Carrying out experiments to show release of energy and carbon dioxide from animals and germinating seeds.	
TRANSPORT SYSTEMS:	describe adaptations of plant leaves to reduce transpiration	Reduction of surface area, thickness of cuticle, distribution of stomata, presence of hairs	 Discussing adaptations of plant leaves to minimize water loss Carrying out experiment to demonstrate the distribution, role of stomata and water loss Field touring to identify various types of leaves 	Plant samplesPotometer Multimedia
	 describe the structure of blood vessels draw and label the structure of blood vessels 	 Veins, arteries and capillaries Structure of blood vessels Lumen, valves, thickness 	 Discussing the structure of blood vessels Illustrating the structure of veins, capillaries and arteries 	ModelsMultimedia

DEDDODUOTIVE	outline the differences among blood vessels.		 Watching video simulations on the structure of blood vessels Listing the differences among blood vessels 	
REPRODUCTIVE SYSTEMS	 explain asexual reproduction in plants identify methods of asexual reproduction in plants state advantages and disadvantages of asexual reproduction outline the differences between sexual and asexual reproduction in plants 	 Asexual/vegetative reproduction Methods of asexual reproduction: rhizomes, cuttings, tubers Advantages and disadvantages of asexual reproduction Differences between sexual and asexual reproduction 	 Discussing asexual reproduction in plants Listing methods of asexual reproduction Identifying advantages and disadvantages of asexual reproduction Listing differences between sexual and asexual reproduction 	

	 describe methods of contraception advantages and disadvantages of different methods 	Natural methods, barrier methods, hormonal methods and spermicides	 Discussing contraceptive methods, Stating examples Identifying advantages and disadvantages 	PicturesSamplesMultimedia
HEALTH AND DISEASES	 explain the term immunity describe passive, active, natural and artificial immunity explain how infants acquire immunity 	 Immunity Passive, active, natural and artificial immunity Breastfeeding, immunisation schedule 	 Discussing immunity Identifying different types of immunity Discussing how infants acquire immunity 	Resource personsMultimedia
	 describe how HIV/AIDS is spread describe effects of HIV on the body explain how the spread of HIV/AIDS can be controlled 	 HIV/AIDS Inability to resist infection Methods of controlling the spread of HIV/AIDS 	Discussing the spread of HIV/AIDS Explaining effects of HIV on the body Discussing methods of controlling the spread of HIV/AIDS	Resource personsMultimedia

8.2.2 CHEMISTRY

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
SEPARATION	Describe paper chromatography	Paper chromatography: solvent, mixture of dyes, solvent front, initial position of dye and solvent,	Carrying out an experiment to separate mixtures using paper chromatography	Filter paper
MATTER	 Describe the reactions of metals with water, steam, air and dilute acids Write equations for the reaction of metals with oxygen, dilute acids and water List metals in order of decreasing reactivity Predict the reactivity of a metal from its position in the reactivity series 	Reactivity series	Carrying out experiments to react magnesium, iron, zinc and copper, lead with air, water/steam and dilute acids	MetalsDilute acids

ACIDS AND BASES	 Identify apparatus used in a titration Describe an acid /base titration procedure Calculate moles and concentrations of solutions from titrations 	Acid-base titrations	Titrating dilute sodium hydroxide against hydrochloric acid	Dilute acidsNaOH(aq)Phenolphthalein
INDUSTRIAL PROCESSES	 List the raw materials used to manufacture ammonia Describe the manufacture of ammonia State the conditions needed for the production of ammonia 	 Haber Process Raw materials: -Hydrogen from electrolysis of water -Nitrogen from fractional distillation of air Pressure:200 atm Catalyst: Iron Temperature: 450 °C – 500 °C 	 Describing the Haber process Conducting educational tours to Sable Chemicals 	Flow chart of the Haber Process
	 List the raw materials used to manufacture sulphuric acid Describe the manufacture of sulphuric acid 	 Contact process Raw materials: sulphur dioxide from burning iron pyrites/sulphur, oxygen from air Pressure: 1 atm 	Discussing the contact process	

OXIDATION AND REDUCTION	 State the conditions needed for the production of sulphuric acid List down alloys of iron State the percentage composition of alloys of iron Explain the uses and properties of alloys of iron 	mild steelstainlesssteelcast iron	Discussing the uses of alloys of iron	 Mild steel Stainless steel utensils Cast iron objects
ORGANIC CHEMISTRY	 State the homologous series to which ethanol belongs Draw the displayed structural formula of ethanol Describe the production of concentrated ethanol List uses of ethanol 	- Fermentation	Fermenting sugar solution and maize meal solution (maheu)	 Sugar solution Maize meal solutions Yeast/malt Fractional distillation apparatus
	 Define the term global warming List the causes of global warming 	Combustion	Discussing effects of combustion, veld fires and deforestation	Multimedia

8.2.3 PHYSICS

TOPIC	OBJECTIVES Learners will be able to:	CONTENT (knowledge, skills, values and attitudes)	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
MEASUREMENTS	 Express quantities in terms of S.I units Derive other units from base units 	 Derived units SI units newton, joule, watt, volts, ampere 	Expressing derived quantity units in terms of base units	Print and electronic media
FORCE	 Define pressure Calculate pressure in fluids Describe effect of depth on pressure Describe atmospheric pressure Describe the construction and use of a simple manometer 	 Pressure P=F/A Pressure in fluids P= h Atmospheric pressure manometer 	 Determining pressure of solid objects Demonstrating variation of pressure with depth Demonstrating atmospheric pressure Constructing and using a simple manometer to determine fluid pressure 	 Solid objects of different cross- sectional area Container with holes at different depth Water barometer Oil, water

	Explain the function and operation of simple fluid systems	Fluid system: siphon and hydraulic systems (car braking system and hydraulic jack)	Demonstrating the operation of a siphon, hydraulic jack and car braking system	Siphon hydraulic jack
	Describe the structures, functions and operations of simple pumps	Lift pump: Blair pumpForce pump: bicycle pump	Illustrating operation of a Blair pump and a bicycle pump	Model of a Blair pumpbicycle pump
ENERGY	Describe the functions and designs of a solar cooker and a solar water heater	Solar cookerSolar water heater	Discussing qualitatively functions and design of a solar cooker and solar water heater	 A curved reflective surface Black container Water heater
TELECOMMUNICATION	Describe communication over a distance by telephone, cell phone and email	Transmission, decoding receiver	Discussing communication over a distance	ICT gadgets
MAGNETISM	describe hydro and thermal power generation	hydro and thermal power generation	Outlining the energy conversions involved in hydro and thermal power generation	Model hydro and thermal power generations

ELECTRICITY	 Describe electrical hazards and safety precautions Describe wiring of a three-pin plug Explain the use of a two-pin plug Describe uses of electricity in the home 	 Hazards safety precautions Damaged insulation, overheating cables, damp conditions live wire, neutral wire, earth wire, fuse, colour codes Two pin plug, double insulations Discussing uses of electricity in the home Reading of electricity meter, determining the costs of electricity used Discussing ways of saving electricity Discussing the use of solar systems as alternative sources of energy in homes 	 Charts Three pin plugs, fuse Radio Different fuse ratings Switches Three pin plugs Two pin plugs
	 Calculate cost of electricity Discuss different methods of saving electricity Explain the use of solar photo voltaic systems 	 appliances Heating Lighting Powering electrical devices Meter reading costs per unit Energy saving bulbs, solar panels, biogas 	

		 Alternative sources of energy, switch off appliances not in use low power rating appliances solar photo voltaic cells 		
Robot construction and programming	construct and code	Robot design and construction	Constructing robots	ICT toolsRobotic kitsResource persons
		68		

9.0 ASSESSMENT

The Heritage-based Combined Science learning area at Lower Secondary school level (Form 1-4) shall be assessed through School Based Continuous Assessment (SBCA) and Summative Assessment (SA). These assessments shall be guided by the principles of inclusivity, practicability, authenticity, transparency, flexibility, validity and reliability. The principles are crucial for creating a supportive and effective learning environment that fosters growth and development in learners at secondary level. In addition to SBCA and SA those aspects that cannot be assessed through the continuous and summative modes will be assessed through learner profiling. The aspect to be profiled will include soft skills among others. Arrangements, accommodations and modifications must be visible to enable candidates with special needs to access assessments. This section covers the assessment objectives, the assessment model, the scheme of assessment, and the specifications for continuous assessment.

9.1 ASSESSMENT OBJECTIVES

The following objectives reflect those aspects of the aims that will be assessed. Specific behavioural learning objectives are stated in each section of the syllabus.

9.1.1 KNOWLEDGE AND COMPREHENSION

Learners should be able to demonstrate knowledge and understanding of:

- scientific instruments and apparatus, techniques and aspects of safety;
- scientific units, terminology, symbols and conventions;
- scientific quantities and how they are determined;
- scientific phenomena, facts and laws, definitions, concepts, theories and models;
- personal, social, economic and environmental implications of science applications.

9.1.2 HANDLING INFORMATION AND SOLVING PROBLEMS

Learners should be able to demonstrate, in familiar and unfamiliar situations, their ability to:

- extract information relevant to a particular context from data presented in diagrammatic, symbolic, graphical, numerical or verbal form;
- use data to recognize patterns, formulate hypotheses and draw conclusions;
- translate information from one form to another;
- communicate logically and concisely;
- explain facts, observations and phenomena in terms of scientific laws, theories and models;

- explain technological applications of science and evaluate their associated personal, social, economic, and environmental implications;
- make logical decisions based on the examination of evidence and arguments;
- apply scientific principles, formulae and methods to solve qualitative and quantitative problems;
- suggest explanations of unfamiliar facts, observations and phenomena;

9.1.3 EXPERIMENTAL SKILLS

Learners should be able to:

- follow instructions for practical work;
- plan, organise and carry out experimental investigations;
- select appropriate apparatus and materials for experimental work;
- · use apparatus and materials effectively and safely;
- make accurate, systematic observations and measurements, recognising the variability of experimental measurements;
- observe, measure and record results of experimental procedures;
- identify possible sources of error in experimental procedures;
- draw conclusions and make generalisations from experiments;
- extract information from data presented in diagrammatic, graphical or numerical form.

9.2 Assessment Model

Assessment of learners at Lower secondary school level for Combined Science will be both Continuous and Summative as illustrated in Figure 1. Continuous Assessment will include recorded activities from the School Based Project and other activities done by the learners for assessment while summative will include terminal examinations, end of week, month, term, year or check points assessments.

Fig. 1 Assessment Model

In addition, learners shall be profiled and learner profile records established. Learner profile certificates shall be issued for checkpoints assessment in schools as per the dictates of the Teacher's Guide to Learning and Assessment. The aspects to be profiled shall include learner's prior knowledge, values and skills, and subsequently the new competences acquired at any given point.

9.3 Scheme of Assessment

Learners at Lower secondary level will be assessed using both School Based Continuous Assessment and Summative Assessment. From Form 1 -4, learners will do a school-based project per form, per year and per learning area which will contribute 20% to the end of term and year mark. Public examination candidates at secondary level are expected to complete two (2) school-based projects per learning area at form 3 and 4 levels, which will contribute 20% to the final mark at Form 4.

FORM OFASSESSMENT	WEIGHTING
School Based Continuous Assessment	20%
Summative Assessment	80%
Total	100%

9.4: School – Based Project: Continuous Assessment Scheme

The Table given below shows the Learning and Assessment Scheme for the School Based Project.

Project Execution Stages	Project Stage Description	Timelines	Marks
1	Problem Identification	January	5
2	Investigation of related ideas to the problem/innovation	February	10
3	Generation of possible solutions	March	10
4	Selecting the most suitable solution	April-May	5
5	Refinement of selected solution	June	5
6	Presentation of the final solution	July	10
7	Evaluation of the solution and Recommendations	August-September	5
	TOTAL		50

The learning and assessment scheme shows the stages that shall be executed by pupils and the timeline at which each stage shall be carried out. Possible marks, totalling 50, are highlighted to indicate how much can be allocated.

9.5 Description of the Summative Assessment

Summative assessment consists of three (3) papers of different weighting

Paper	Paper type	Marks	Duration	Weighting
1	Multiple Choice	40	1 hours	24%
2	Structured questions	100	2 hours	32%
3	Practical	40	1 hour 30 mins	24%
TOTAL			VO	80%

Paper 1

Duration: 1 hour

The paper consists of 40 multiple choice questions. It will be set to cover all topics of the syllabus

Paper 2 Theory (2 hours, 100 marks) section A, B, C and D:

Section A – made up of 6 compulsory structured questions of variable marks which add up to 40 marks.

- Section B 20 marks, will be based on the Biology section of the syllabus. It will consist of three free-response Biology questions. Candidates will be required to answer any two questions.
- Section C 20 marks, will be based on the Chemistry section of the syllabus. It will consist
 of three free-response Chemistry questions. Candidates will be required to answer any
 two questions
- Section D 20 marks, will be based on the Physics section of the syllabus. It will consist
 of three free-response Physics questions. Candidates will be required to answer any two
 questions

.

Paper 3 Practical Examination (1 hour 30 minutes, 40 marks)

This is a practical consisting of two compulsory questions of 20 marks each from any two sections of the syllabus

NOTE: Examination questions on all papers may be set requiring candidates to apply knowledge to novel situations.

9.6 Skills weighting and the Specification Grid (The percentages vary with the nature of the learning area as such there is need for customisation of the same)

Skill	Paper 1	Paper 2	Paper 3
Knowledge	40%	40%	25%
Application and Analysis	40%	40%	50%
Problem solving	20%	20%	25%
TOTAL	100%	100%	100%

9.7 ASSESSMENT INSTRUMENTS/TOOLS:

THE FOLLOWING ARE SUGGESTED TOOLS

Form of Assessment	Suggested Assessment Tools/instruments
Profiling	Check list Observation schedules Rating Scale
Continuous Assessment	Practical activities School based continuous projects
Summative Assessment	Tests Exercises