

Ceng 111 – Fall 2021 Week 12b

Credit: Some slides are from the "Invitation to Computer Science" book by G. M. Schneider, J. L. Gersting and some from the "Digital Design" book by M. M. Mano and M. D. Ciletti.

- Any recursive algorithm can be transformed into an iterative algorithm.

 The reverse is also true

Recursion vs. Iteration

- Which one is better?
- Better in what way?
 - Resource-wise:
 - Iteration without stacks
 - 2. Iteration with stacks
 - 3. Recursion
 - Implementation-wise:
 - 1. Recursion
 - 2. Iteration without stack
 - 3. Iteration with stack

CENCTA!

Big-O Notation; O()

f(n) is O(g(n)) if and only if there exists a real constant c>0, and a positive integer n_0 , such that $|f(n)| \le c|g(n)|$ for all $n \ge n_0$

- **Example:** for $f(n) = 2n^2$, $g(n) = n^2$.
 - f(n) is $O(g(n)) = O(n^2)$
 - But, it is also O(n³) and O(n⁴)
 - We prefer the smallest.
 - For example:

$$f(n) = 9 \log n + 5(\log n)^3 + 3n^2 + 2n^3 \in O(n^3)$$

Today

- Recursion vs. iteration
- Complexity

Administrative Notes

- THE3:
 - Deadline: 16 January.
- Final:
 - 5 Feb December, Saturday, 13:30

Other notations for computational complexity: $\Omega()$ Notation

f(n) is $\Omega(g(n))$ if and only if there exists a real constant c > 0, and positive integer n_0 , such that $c|g(n)| \le |f(n)|$ for all $n \ge n_0$

- Lower boundary for f(n).
- \blacksquare 2n = $\Omega(n)$
- $n^2 = \Omega(n^2)$

Other notations for computational complexity: $\Theta()$ notation

■ $f(n) \in \Theta(g(n))$ if and only if there exists positive real constants c_1 and c_2 , and a positive integer n_0 , such that

$$c_1|g(n)| \le |f(n)| \le c_2|g(n)|$$

- Lower and upper boundary for f(n).
- \blacksquare 2n = $\Theta(n)$
- $n^2 = \Theta(n^2)$

Example: We want to show that $1/2n^2 + 3n = \Theta(n^2)$.

Solution:
$$f(n) = 1/2n^2 + 3n$$
, $g(n) = n^2$

To show desired result, we need determine positive constants c_1 , c_2 , and n_0 such that

$$0 \le c_1$$
. $n^2 \le 1/2n^2 + 3n \le c_2$. n^2 for all $n \ge n_0$.

Dividing by n^2 , we get $0 \le c_1 \le 1/2 + 3/n \le c_2$

 $c_1 \le 1/2 + 3/n$ holds for any value of $n_0 \ge 1$ by choosing

$$c_1 \le 1/2$$

 $1/2 + 3/n \le c_2$ holds for any value of $n_0 \ge 1$ by choosing $c_2 \ge 7/2$

Thus, by choosing $c_1 = 1/2$ and $c_2 = 7/2$ and $n_0 = 1$, we can verify $1/2n^2 + 3n = \Theta(n^2)$.

Certainly other choices for the constants exist.

Relationships among O, Ω , and Θ -**Notations**

Notations $\bullet \ f(n) \ is \ O(g(n)) \ iff \ g(n) \ is \ \Omega(f(n))$ $\bullet \ f(n) \ is \ \Theta(g(n)) \ iff \ f(n) \ is \ O(g(n)) \ and \ f(n) \ is \ \Omega(g(n))$

• $\Theta(g(n)) = O(g(n)) \cap \Omega(g(n))$

Properties

- We can ignore low-order terms in an algorithm's growth-rate function.
 - If an algorithm is O(n³+4n²+3n), it is also O(n³).
 - We only use the higher-order term as algorithm's growth-rate function.
- 2. We can ignore a multiplicative constant in the higher-order term of an algorithm's growth-rate function.
 - If an algorithm is O(5n³), it is also O(n³).
- O(f(n)) + O(g(n)) = O(f(n)+g(n))
 - We can combine growth-rate functions.
 - If an algorithm is $O(n^3) + O(4n^2)$, it is also $O(n^3 + 4n^2) \rightarrow So$, it is $O(n^3)$.
 - Similar rules hold for multiplication.

Properties

 A = B implies that B = A, right?
 But, f(n) = O(g(n)) does not imp f(n). But, f(n) = O(g(n)) does not imply O(g(n)) =

- We prefer to see the '=' operator here as a membership operation:
 - f(n) = O(g(n)) implies that $f(n) \in O(g(n))$.
 - That means O(g(n)) is a set.

Problems with growth rate analysis

An algorithm with a smaller growth rate will not run faster than one with a higher growth rate for all n, but only for all 'large enough' n!

Algorithms with identical growth rates may have strikingly different running times because of the constants in the running time functions.

The value of n where two growth rates are the same is called the break-even point.

Problems with growth rate analysis

Notation	Name	Example		
O(1)	constant	Determining if a number is even or odd; using a constant-size lookup table or hash table		
$O(\log n)$	logarithmic	Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap.		
$O(n^c), \ 0 < c < 1$	fractional power	Searching in a kd-tree		
O(n)	linear	Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry.		
$O(n\log n) = O(\log n!)$	linearithmic, loglinear, or quasilinear	Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort		
$O(n^2)$	quadratic	Multiplying two <i>n</i> -digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), shell sort, quicksort (worst case), selection sort or insertion sort		
$O(n^c), \ c > 1$ polynomial or algebraic		Tree-adjoining grammar parsing; maximum matching for bipartite graphs		
$L_n[\alpha, c], 0 < \alpha < 1 = e^{(c+o(1))(\ln n)^{\alpha}(\ln \ln n)^{1-\alpha}}$	L-notation or sub-exponential	Factoring a number using the quadratic sieve or number f sieve		
$O(c^n), \ c>1$ exponential		Finding the (exact) solution to the traveling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search		
O(n!)	factorial	Solving the traveling salesman problem via brute-force search; finding the determinant with expansion by minors.		

From Wikipedia

				n		
Function	10	100	1,000	10,000	100,000	1,000,000
1	1	1	1	1	1	1
log ₂ n	3	6	9	13	16	19
n	10	10 ²	10 ³	104	105	10 ⁶
n * log ₂ n	30	664	9,965	105	106	10 ⁷
n²	10 ²	104	106	108	1010	1012
n³	10³	10^{6}	10 ⁹	10^{12}	1015	1018
2 ⁿ	10³	1030	1030	103,0	10 10 ³⁰ ,	103 10301,030

Importance of Developing Efficient Algorithms

Sequential search vs Binary search

Array size	No. of comparisons by seq. search	No. of comparisons by bin. search
128	128	8
1,048,576	1,048,576	21
~4.10 ⁹	~4.109	33

Execution times for algorithms with the given time complexities:

n	f(n)=n	nlgn	n² '	2 ⁿ
20	0.02 μs	0.086 μs	0.4 μs	1 ms
10^{6}	1μs ·	19.93 ms	16.7 min	31.7 years
10 ⁹	1 s	29.9s	31.7 years	!!! centuries

Anaysis of Algorihms, A.Yazici

Other Notations

o-Notation: f(n) is o(g(n)), "little-oh of g of n" is the following set:

 $o(g(n)) = \{f(n) : for all positive real constant c > 0, there exists a constant <math>n_0 \ge 0$ such that $0 \le |f(n)| < c|g(n)|$ for all $n \ge n_0$

We use o-notation to denote an upper bound that is not asymptotically tight, whereas O-notation may be asymptotically tight. Intuitively, in the o-notation, the function f(n) becomes insignificant relative to g(n) as n approaches infinity, that is,

 $\lim_{n \to \infty} f(n)/g(n) = 0$ Ex: $n^2/2 \in o(n^3)$, since $\lim_{n \to \infty} (n^2/2)/n^3 = \lim_{n \to \infty} 1/2n = 0$

Ex: $2n = o(n^2)$, but $2n^2 \neq o(n^2)$

Proposition: $f(n) \in o(g(n)) \Rightarrow O(f(n)) \subset O(g(n))$

Other Notations

- ω Notation: f(n) is ω (g(n)), "little-omega of g of n", is the following set:
- $\omega(g(n)) = \{f(n) : \underline{\text{for all positive real constant }} c > 0, \text{ there exists a constant } n_0 \ge 0 \text{ such that } 0 \le c|g(n)| < |f(n)| \text{ for all } n \ge n_0\}$
- ω -notation denotes a lower bound that is not asymptotically tight. The relation f(n) = ω (g(n)) implies that,

 $\lim_{n\to\infty} f(n)/g(n) = \infty$, if the limit exists.

That is, f(n) becomes arbitrarily large relative to g(n) as n approaches infinity.

Ex:
$$n^2/2 = \omega(n)$$
, since $\lim_{n \to \infty} (n^2/2)/n = \infty$, but $n^2/2 \neq \omega(n^2)$

Other notations

~ - Notation: Given the function g(n), we define $^{\sim}g(n)$ to be the set of all functions f(n) having the property that

$$\lim_{n\to\infty} f(n)/g(n) = 1,$$

If $f(n) \in {}^{\sim}g(n)$, then we say that f(n) is *strongly* asymptotic to g(n) and denote this by writing $f(n) \stackrel{\sim}{} g(n)$.

Ex:
$$n^2 = {}^{\sim} (n^2)$$
, since $\lim_{n \to \infty} n^2 / n^2 = 1$,

Property: $f(n) \sim g(n) \Rightarrow f(n) \in \Theta(g(n))$

Family of Bachmann–Landau notations

Notation	Naming	Meaning
f(n) is $O(g(n))$	Big Omicron Big O Big Oh	f is bounded <u>above</u> by g (up to constant factor, as it was with Θ) asymptotically
$f(n)$ is $\Omega(g(n))$	• Big Omega	f is bounded <u>below</u> by g (up to constant factor, as it was with Θ) asymptotically
$f(n)$ is $\Theta(g(n))$	• Big Theta	f is bounded <u>both above and below</u> by g (up to constant factors) asymptotically
f(n) is $o(g(n))$	• Small Omicron • Small O • Small Oh	f is dominated by g asymptotically
$f(n)$ is $\omega(g(n))$	• Small Omega	f dominates g asymptotically
$f(n) \sim (g(n))$	on the order oftwiddles	f is equal to g asymptotically


```
def is_member(Item, List):
    for x in List:
        if Item == x:
            return True
    return False
```



```
def binary_search(item, List):
    # List: Sorted in ascending order
    length = len(List)
    middle = len(List)/2

if item == List[middle]:
    return True
    if length == 1:
        return False
    if item < List[middle]:
        return binary_search(item, List[:middle])
    else:
        return binary search(item, List[middle+1:])</pre>
```



```
def csort(A):
        # Assume that the numbers are in the range 1,...,k
        k = max(A)
        C = [0] * k
        # Count the numbers in A
        for x in A:
                C[x-1] += 1
        # Accumulate the counts in C
        i = 1
        while i < k:
                C[i] += C[i-1]i += 1
        # Place the numbers into correct locations
        B = [0] * len(A)
        for x in A:
                B[C[x-1]-1] = x C[x-1] -= 1
        return B
```

```
def f(List):
    length = len(List)
    changed = True
    while changed:
        changed = False
        i = 0
        while i < length-1:
            if List[i] > List[i+1]:
                 (List[i], List[i+1]) = (List[i+1], List[i])
                 changed = True
            i += 1
    return List.
```


Exercises on Complexity

- What is the complexity of the following?
- Finding the minimum or the maximum in a list, which is (a) sorted or (b) unsorted.
- Finding the average of numbers in a list.
- Assume that we have a sorted list L.
 - What is the complexity of sorting L after inserting a new number?

3. What is the complexity of checking whether a list is sorted?

Design of a solution

S. Kalkan & G. Ucoluk - CEng 111

ABSTRACT DATA TYPES

Remember Stacks?

Stacks

- LIFO:
 - Last In First Out
- We have seen it before (in the Shunting-Yard algorithm)
- Main operations:
 - Push
 - Pop

Stacks (cont'd)

Operations:

- 1. Push
- Pop
- 3. Top/Peek
 - Get the top element without removing it
- 4. Is-Empty
 - Checks whether the stack is empty
- 5. Length
 - # of elements

Stacks: Formal definition

push(item, stack)

 $item \odot stack$

- $new() \rightarrow \emptyset$
- $popoff(\xi \odot S) \rightarrow S$
- $top(\xi \odot S) \rightarrow \xi$
- $isempty(\emptyset) \rightarrow \mathsf{TRUE}$
- $isempty(\xi \odot S) \rightarrow \mathsf{FALSE}$

Stacks in Python

Stack Operation

- Pop
- Push
- Top/Peek
- Is-Empty
- Length

Corresponding Python Op.

- **■** L.pop()
- L.append(item)
- L[-1]
- L == []
- len(L)

Implementing Stacks in Python

```
def CreateStack():
     """Creates an empty stack"""
     return []
def Push (item, Stack):
     """Add item to the top of Stack"""
     Stack.append(item)
def Pop(Stack):
     """Remove and return the item at the top of the Stack"""
     return Stack.pop()
def Top (Stack):
     """Return the value of the item at the top of the
         Stack without removing it"""
     return Stack[-1]
def IsEmpty(Stack):
     """Check whether the Stack is empty"""
     return Stack == []
```