Najdłuższy cykl prosty w grafie

Kamil Chlebek, Arkadiusz Błasiak, Piotr Jaromin $8\ {\rm czerwca}\ 2015$

Spis treści

1	Teoria			
	1.1	Graf		
	1.2			
	1.3	Algory	tm genetyczny	4
		1.3.1	Etapy algorytmu	4
		1.3.2	Funkcja oceny	
		1.3.3	Selekcja	4
		1.3.4	Krzyżowanie	4
		1.3.5	Mutacja	4
2	Program			
	2.1	GUI		6
		2.1.1	Opis obszarów okna	6
	2.2		ga	
		2.2.1	Generowanie grafu	7
		2.2.2	Wczytywanie grafu z pliku	7
		2.2.3	Znajdowanie najdłuższej ścieżki w grafie	Ć

1 Teoria

1.1 Graf

Graf to zbiór wierzchołków, które mogą być połączone krawędziami w taki sposób, że każda krawędź kończy się i zaczyna w którymś z wierzchołków

Rysunek 1: Graf nieskierowany

1.2 Cykl

Cykl jest ścieżką, która rozpoczyna się i kończy w tym samym wierzchołku (ścieżka ta może posiadać wielokrotnie ten sam wierzchołek). Cykl o długości 1 nazywa się pętlą.

Cykl prosty - jest ścieżką, która rozpoczyna się i kończy w tym samym wierzchołku (ścieżka ta nie może posiadać wielokrotnie tego samego wierzchołka)

Rysunek 2: Cykl prosty w grafie

1.3 Algorytm genetyczny

Algorytm genetyczny - rodzaj algorytmu przeszukującego przestrzeń alternatywnych rozwiązań problemu w celu wyszukania rozwiązań najlepszych.

1.3.1 Etapy algorytmu

- 1. Losowanie początkowej populacji
- 2. Selekcja populacja jest poddawana ocenie (korzystając z funkcji oceny), wybierane są najlepsze osobniki
- 3. Krzyżowanie złączanie uprzednio wybranych osobników
- 4. Mutacja wprowadzenie losowych zmian w osobniku
- 5. Rodzi się kolejne pokolenie. Najlepsze osobniki są powielane, a najsłabsze usuwane. Jeżeli nie przekroczono ilości iteracji, algorytm powraca do kroku drugiego. W przeciwnym wypadku wybieramy najlepszego osobnika z populacji.

1.3.2 Funkcja oceny

Funkcja oceny to miara jakości dowolnego osobnika w populacji. Dla każdego osobnika jest ona ilością wierzchołków w ścieżce.

1.3.3 Selekcja

Za pomocą selekcji turniejowej wybieramy 2 osobniki, które poddajemy krzyżowaniu.

1.3.4 Krzyżowanie

Krzyżowanie zachodzi z pewnym prawdopodobieństwem (określonym przez użytkownika). Pierwsza połowa chromosomów z jednego osobnika jest łączona z drugą połową drugiego osobnika oraz druga połowa pierwszego z pierwszą połową drugiego. Wynikiem są dwa nowe osobniki.

1.3.5 Mutacja

Mutacja zachodzi z pewnym prawdopodobieństwem, które użytkownik może ustawić przed uruchomieniem programu (domyślnie wynosi 0.5). W wylosowanym miejscu w ścieżce dodajemy losowy wierzchołek przez który jeszcze nie przechodziliśmy. Proces jest powtarzany, aż do osiągnięcia prawidłowej ścieżki, bądź przekroczenia maksymalnej liczby iteracji

Rysunek 3: Krzyżowanie

Rysunek 4: Mutacja

2 Program

2.1 GUI

Rysunek 5: Interfejs programu

2.1.1 Opis obszarów okna

- pole Wykres: obrazuje zmianę populacji w zależności od czasu, jest generowany w czasie rzeczywistym
- pole Konfiguracja: służy do ustalenia parametrów początkowych:
 - Liczebność populacji: liczba naturalna z przedziału 1 100, określa ilość początkowych osobników
 - Maksymalna początkowa długość ścieżki: liczba naturalna z przedziału 2 100, określa przez maksymalnie ile wierzchołków przechodzi osobnik
 - Prawdopodobieństwo mutacji: ułamek z przedziału 0.0 1.0, określa prawdopodobieństwo zajścia mutacji
 - Prawdopodobieństwo krzyżowania: ułamek z przedziału 0.0 1.0, określa prawdopodobieństwo zajścia krzyżowania

- Obszar Logów: wyświetla informacje dotyczące algorytmu
- Przycisk Start: uruchamia program
- Przycisk Stop: zatrzymuje program
- Przycisk Wykres: pokazuje cały wykres

2.2 Obsługa

2.2.1 Generowanie grafu

Rysunek 6: Okno generowania grafu

- 1. Kliknij w przycisk "plik" znajdujący się w lewym górnym rogu programu;
- 2. Wybierz "Generuj graf";
- 3. W nowo otwartym oknie określ ilość wierzchołków i prawdopodobieństwo krawędzi;
- 4. Po kliknięciu "Generuj graf", wybierz ścieżkę do zapisania nowo utworzonego grafu.

2.2.2 Wczytywanie grafu z pliku

Rysunek 7: Okno wczytywania grafu

- 1. Kliknij w przycisk "plik" znajdujący się w lewym górnym rogu programu;
- 2. Wybierz "Wczytaj graf";
- 3. Określ ścieżkę z zapisanym grafem;
- 4. Po kliknięciu "Open", program załaduje podany graf.

2.2.3 Znajdowanie najdłuższej ścieżki w grafie

Po wczytaniu grafu kliknąć przycisk "start"