CRISTIAN LACEY

、(347) 861-2405 | ■ clacey@princeton.edu | ☆ cristianlacey.github.io | to cristian-lacey

Education _

Princeton University Princeton, NJ

Ph.D. in Mechanical and Aerospace Engineering, Advisor: Michael E. Mueller, GPA: 4.00/4.00

Expected May 2023

The Cooper Union

New York, NY

B.E. IN MECHANICAL ENGINEERING, GPA: 3.98/4.00

May 2018

Honors _

2019	Sayre Award for Academic Excellence, Highest-ranking graduate student after first year.	Princeton University
2019	Daniel and Florence Guggenheim Foundation Fellowship, Competitive second-year fellowship.	Princeton University
2018	Gordon Y. S. Wu Fellowship in Engineering, Competitive first-year fellowship.	Princeton University
2018	Henri D. Dickinson Award, Highest cumulative ranking upon graduation.	The Cooper Union
2018	Alexander C. Grove Memorial Prize , For scholarship, personal integrity, and professional promise.	The Cooper Union
2018	The Mechanical Engineering Design Prize, For excellence in mechanical design.	The Cooper Union
2016	Tyler G. Hicks Mechanical Engineering Prize , For academic achievement during the first two years.	The Cooper Union
2015	Howard Silfin Mechanical Engineering Internship Award, For ability to conduct quality research.	The Cooper Union
2014	Half-tuition scholarship, Merit scholarship for all four years.	The Cooper Union

Peer-Reviewed Publications _____

- Lacey, C.E., Novoselov, A.G., Mueller, M.E., In-Situ Adaptive Manifolds: Enabling computationally efficient simulations of complex turbulent reacting flows, *Proceedings of the Combustion Institute* 38 (2019) submitted.
- Novoselov, A.G., **Lacey, C.E.**, Perry, B.A., Mueller, M.E., Large Eddy Simulation of a turbulent lifted flame using multi-modal manifold-based models: Feasibility and interpretability, *Proceedings of the Combustion Institute* 38 (2019) submitted.

Conference Papers & Presentations _____

- Baglione, M., Chin, A., Faddoul, R., **Lacey, C.E.**, Mosin, A., Rundell, J., Zhang, O., Optimizing condenser water supply temperature to minimize energy usage, 2020 ASHRAE Winter Conference, Orlando, FL, February 1-5, 2020.
- Lacey, C.E., Novoselov, A.G., Mueller, M.E., In-Situ Adaptive Manifolds: Enabling simulations of complex turbulent reacting flows, 72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA, November 23-26, 2019.
- Novoselov, A.G., Lacey, C.E., Mueller, M.E., Large Eddy Simulations of turbulent flames using two-dimensional reduced-order manifold models, 72nd Annual Meeting of the APS Division of Fluid Dynamics, Seattle, WA, November 23-26, 2019.
- Wei, H., Bianco, V., **Lacey, C.E.**, Trubatch, A.D., Yecko, P.A., Experimental quantification of volume loss rate and flow dynamics due to a magnetically localized fluid region in a laboratory model blood vessel flow (Poster), 12th International Conference on the Scientific and Clinical Applications of Magnetic Carriers, Copenhagen, DK, May 22-26, 2018.

Research _____

High-Fidelity Manifold-Based Modeling of Turbulent Combustion

Princeton, NJ Jan. 2019 - Present

PRINCETON UNIVERSITY

- Developing In-Situ Adaptive Manifolds (ISAM), a new computational approach for manifold-based modeling that enables more general yet computationally efficient turbulent combustion models via on-the-fly adaptive tabulation.
- Integrating ISAM with the multi-modal manifold model, facilitating simulations of realistic, multi-modal systems without any a priori information about the combustion mode.
- · Generalizing manifold models to accommodate multiple inlet streams, liquid fuels, and staged combustion.
- Leveraging neural networks to construct hybrid physics-based and data-based manifold models of turbulent combustion, a novel approach culminating in far more generally applicable models.

Magnetic Nanoparticle Feedback Control System

New York, NY

THE COOPER UNION Sept. 2017 - May 2018

- Investigated using a magnetic control system to direct drug-coated magnetic nanoparticles to disease targets, increasing the effectiveness of treatments such as chemotherapy while decreasing the side-effects.
- Designed and constructed an experimental setup comprising a closed-loop flow channel, nanoparticle cluster, webcam, stepper motors, and electromagnets on rails.
- Wrote a Python program using OpenCV to track the location of a nanoparticle cluster in real-time.
- Programmed an Arduino to actuate stepper motors and vary electromagnet strength in feedback control loop.

Employment _____

Smith Engineering, PLLC

New York, NY May 2017 - Apr. 2018

ENGINEERING INTERN

- Trained predictive models in Microsoft Azure Machine Learning Studio.
- Integrated machine learning models with a local PI database using Python and API requests.
- Prepared screens in PI Vision for real-time data visualization.
- Wrote Python programs to scrape data using API requests and WebDrivers.
- Built Con Edison electric and steam rate structures in MATLAB.

Projects _____

Genetic Algorithm for Structural Design and Topological Optimization

Princeton, NJ

Nov. 2018 - Jan. 2019

PRINCETON UNIVERSITY

- Developed a Python package that employs a genetic algorithm to optimize truss structures.
- Versioned with Git and coordinated with a team to proactively avoid merge conflicts.
- Leveraged Coveralls and Codacy for code coverage evaluations and linting.
- Generated automatic documentation with Sphinx and Read the Docs.

Analysis and Design of a Wind Turbine Tower

New York, NY

Oct. 2017 - Nov. 2017

- Designed a wind turbine tower to satisfy strength and deflection specifications.
- Modeled the tower geometry in SolidWorks.
- · Meshed the solid geometry in ANSYS Meshing.
- Simulated the design in ANSYS APDL and Workbench.
- Documented results in final report and delivered presentation.

CFD Analysis and Design of a Turbojet Compressor

New York, NY

Apr. 2017 - May 2017

THE COOPER UNION

THE COOPER UNION

- Designed the compressor stage of a turbojet engine to satisfy pressure and compression ratio specifications.
- Modeled the compressor geometry in BladeGen and SolidWorks.
- Meshed the solid geometry in HyperMesh and ANSYS Meshing.
- Simulated the design transiently in ANSYS Fluent and performed post-processing in CFD-Post.
- Documented results in final report and delivered presentation.

Skills

Software ANSYS Fluent, ANSYS APDL, HyperMesh, SolidWorks, AutoCAD, MATLAB.

Languages Python, C, Fortran.

Tools Make, Git, Mercurial, UNIX command-line, LTFX.

IoT Raspberry Pi, Arduino.

Memberships _____

Honor Societies Tau Beta Pi.

Professional Associations APS DFD, ASME.