

Thesis Title

Candidate Full Name

Thesis to obtain the Master of Science Degree in

Aerospace Engineering

Supervisor(s): Prof. Full Name 1

Dr. Full Name 2

Examination Committee

Chairperson: Prof. Full Name Supervisor: Prof. Full Name 1 (or 2) Member of the Committee: Prof. Full Name 3

Month Year

Dedicated to someone special...

Acknowledgments

A few words about the university, financial support, research advisor, dissertation readers, faculty or other professors, lab mates, other friends and family...

Resumo Inserir o resumo em Português aqui com o máximo de 250 palavras e acompanhado de 4 a 6 palavras-chave...

Palavras-chave: palavra-chave1, palavra-chave2,...

Abstract

Insert your abstract here with a maximum of 250 words, followed by 4 to 6 keywords...

Keywords: keyword1, keyword2,...

Contents

	Ackı	nowledgments
	Res	umo
	Abs	tract
	List	of Tables xii
	List	of Figures
	Non	nenclature
	Glos	ssaryxiɔ
1	Intro	oduction 1
	1.1	Motivation
	1.2	Topic Overview
	1.3	Objectives
	1.4	Thesis Outline
2	Вас	kground 3
	2.1	Theoretical Overview
	2.2	Theoretical Model 1
	2.3	Theoretical Model 2
3	lmp	lementation 5
	3.1	
		Verification and Validation
4	Res	ults 7
+		
		Problem Description
		Baseline Solution
	4.3	Enhanced Solution
		4.3.1 Figures
		4.3.2 Equations
		4.3.3 Tables
		4.2.4 Mixing

5	Con	clusions	13
	5.1	Achievements	13
	5.2	Future Work	13
Bi	bliog	raphy	15
Α	Vec	tor calculus	17
	A.1	Vector identities	17
В	Tecl	hnical Datasheets	19
	B 1	Some Datasheet	19

List of Tables

4.1	Table caption shown in TOC.	ξ
4.2	Memory usage comparison (in MB)	10
4.3	Another table caption	10
4.4	Yet another table caption	10
4.5	Very wide table	10

List of Figures

4.1	Caption for figure in TOC	7
4.2	Some aircrafts	8
4.3	Schematic of some algorithm	8
4.4	Figure and table side-by-side	11

Nomenclature

Greek symbols

- α Angle of attack.
- β Angle of side-slip.
- κ Thermal conductivity coefficient.
- μ Molecular viscosity coefficient.
- ρ Density.

Roman symbols

- C_D Coefficient of drag.
- C_L Coefficient of lift.
- C_M Coefficient of moment.
- p Pressure.
- u Velocity vector.
- u,v,w Velocity Cartesian components.

Subscripts

- ∞ Free-stream condition.
- i, j, k Computational indexes.
- *n* Normal component.
- x,y,z Cartesian components.
- ref Reference condition.

Superscripts

- * Adjoint.
- T Transpose.

Glossary

- **CFD** Computational Fluid Dynamics is a branch of fluid mechanics that uses numerical methods and algorithms to solve problems that involve fluid flows.
- **CSM** Computational Structural Mechanics is a branch of structure mechanics that uses numerical methods and algorithms to perform the analysis of structures and its components.
- MDO Multi-Disciplinar Optimization is an engineering technique that uses optimization methods to solve design problems incorporating two or more disciplines.

Introduction

Insert your chapter material here...

1.1 Motivation

Relevance of the subject...

1.2 Topic Overview

Provide an overview of the topic to be studied...

1.3 Objectives

Explicitly state the objectives set to be achieved with this thesis...

1.4 Thesis Outline

Briefly explain the contents of the different chapters...

Background

Insert your chapter material here...

2.1 Theoretical Overview

Some overview of the underlying theory about the topic...

2.2 Theoretical Model 1

The research should be supported with a comprehensive list of references. These should appear whenever necessary, in the limit, from the first to the last chapter.

A reference can be cited in any of the following ways:

- Citation mode #1 [1]
- Citation mode #2 Jameson et al. [1]
- Citation mode #3 [1]
- Citation mode #4 Jameson, Pierce, and Martinelli [1]
- Citation mode #5 [1]
- Citation mode #6 Jameson et al. 1
- Citation mode #7 -
- Citation mode #8 Jameson et al.
- Citation mode #9 1998
- Citation mode #10 [1998]

Several citations can be made simultaneously as [2, 3].

This is often the default bibliography style adopted (numbers following the citation order), according to the options:

```
\usepackage{natbib} in file Thesis_Preamble.tex, \bibliographystyle{abbrvnat} in file Thesis.tex.
```

Notice however that this style can be changed from numerical citation order to authors' last name with the options:

```
\usepackage[numbers]{natbib} in file Thesis_Preamble.tex, \bibliographystyle{abbrvunsrtnat} in file Thesis.tex.
```

Multiple citations are compressed when using the sort&compress option when loading the natbib package as \usepackage[numbers,sort&compress] {natbib} in file Thesis_Preamble.tex, resulting in citations like [4-7].

2.3 Theoretical Model 2

Other models...

Implementation

Insert your chapter material here...

3.1 Numerical Model

Description of the numerical implementation of the models explained in Chapter 2...

3.2 Verification and Validation

Basic test cases to compare the implemented model against other numerical tools (verification) and experimental data (validation)...

Results

Insert your chapter material here...

4.1 Problem Description

Description of the baseline problem...

4.2 Baseline Solution

Analysis of the baseline solution...

4.3 Enhanced Solution

Quest for the optimal solution...

4.3.1 Figures

Insert your section material and possibly a few figures...

Make sure all figures presented are referenced in the text!

Images

Figure 4.1: Caption for figure.

(a) Airbus A320

(b) Bombardier CRJ200

Figure 4.2: Some aircrafts.

Make reference to Figures 4.1 and 4.2.

By default, the supported file types are .png,.pdf,.jpg,.mps,.jpeg,.PNG,.PDF,.JPG,.JPEG.

See http://mactex-wiki.tug.org/wiki/index.php/Graphics_inclusion for adding support to other extensions.

Drawings

Insert your subsection material and for instance a few drawings...

The schematic illustrated in Fig. 4.3 can represent some sort of algorithm.

Figure 4.3: Schematic of some algorithm.

4.3.2 Equations

Equations can be inserted in different ways.

The simplest way is in a separate line like this

$$\frac{\mathrm{d}q_{ijk}}{\mathrm{d}t} + \mathcal{R}_{ijk}(\mathbf{q}) = 0.$$
(4.1)

If the equation is to be embedded in the text. One can do it like this $\partial \mathcal{R}/\partial \mathbf{q} = 0$. It may also be split in different lines like this

Minimize
$$Y(\alpha, \mathbf{q}(\alpha))$$

w.r.t. α , (4.2)
subject to $\mathcal{R}(\alpha, \mathbf{q}(\alpha)) = 0$
 $C(\alpha, \mathbf{q}(\alpha)) = 0$.

It is also possible to use subequations. Equations 4.3a, 4.3b and 4.3c form the Naver–Stokes equations 4.3.

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho u_j \right) = 0, \tag{4.3a}$$

$$\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j + p \delta_{ij} - \tau_{ji}) = 0, \quad i = 1, 2, 3,$$
(4.3b)

$$\frac{\partial}{\partial t} (\rho E) + \frac{\partial}{\partial x_j} (\rho E u_j + p u_j - u_i \tau_{ij} + q_j) = 0.$$
 (4.3c)

4.3.3 Tables

Insert your subsection material and for instance a few tables...

Make sure all tables presented are referenced in the text!

Follow some guidelines when making tables:

- · Avoid vertical lines
- · Avoid "boxing up" cells, usually 3 horizontal lines are enough: above, below, and after heading
- Avoid double horizontal lines
- Add enough space between rows

Model	C_L	C_D	C_{My}
Euler	0.083	0.021	-0.110
Navier-Stokes	0.078	0.023	-0.101

Table 4.1: Table caption.

Make reference to Table 4.1.

Tables 4.2 and 4.3 are examples of tables with merging columns:

An example with merging rows can be seen in Tab.4.4.

If the table has too many columns, it can be scaled to fit the text widht, as in Tab.4.5.

	Virtual memory [MB]					
	Euler Navier–Stokes					
Wing only	1,000	2,000				
Aircraft	5,000	10,000				
(ratio)	$5.0 \times$	$5.0 \times$				

Table 4.2: Memory usage comparison (in MB).

		w = 2		w = 4			
	t = 0	t = 1	t = 2	t = 0	t = 1	t=2	
$\overline{dir} = 1$							
c	0.07	0.16	0.29	0.36	0.71	3.18	
c	-0.86	50.04	5.93	-9.07	29.09	46.21	
c	14.27	-50.96	-14.27	12.22	-63.54	-381.09	
dir = 0							
c	0.03	1.24	0.21	0.35	-0.27	2.14	
c	-17.90	-37.11	8.85	-30.73	-9.59	-3.00	
c	105.55	23.11	-94.73	100.24	41.27	-25.73	

Table 4.3: Another table caption.

ABC		hea	der	
0	1.1	2.2	3.3	4.4
IJK	arc	group		0.6
.0.1	9.000		0.7	1.2

Table 4.4: Yet another table caption.

Variable	а	b	С	d	е	f	g	h	i	j
Test 1	10,000	20,000	30,000	40,000	50,000	60,000	70,000	80,000	90,000	100,000
Test 2	20,000	40,000	60,000	80,000	100,000	120,000	140,000	160,000	180,000	200,000

Table 4.5: Very wide table.

4.3.4 Mixing

If necessary, a figure and a table can be put side-by-side as in Fig.4.4

Legend								
Α	В	С						
0	0	0						
0	1	0						
1	0	0						
1	1	1						

Figure 4.4: Figure and table side-by-side.

Conclusions

Insert your chapter material here...

5.1 Achievements

The major achievements of the present work...

5.2 Future Work

A few ideas for future work...

Bibliography

- [1] A. Jameson, N. A. Pierce, and L. Martinelli. Optimum aerodynamic design using the Navier–Stokes equations. In *Theoretical and Computational Fluid Dynamics*, volume 10, pages 213–237. Springer-Verlag GmbH, Jan. 1998.
- [2] J. Nocedal and S. J. Wright. *Numerical optimization*. Springer, 2nd edition, 2006. ISBN:978-0387303031.
- [3] A. C. Marta, C. A. Mader, J. R. A. Martins, E. van der Weide, and J. J. Alonso. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal* of Computational Fluid Dynamics, 99(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.
- [4] A. C. Marta. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal of Computational Fluid Dynamics*, 1(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.
- [5] A. C. Marta. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal of Computational Fluid Dynamics*, 2(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.
- [6] A. C. Marta, C. A. Mader, J. R. A. Martins, E. van der Weide, and J. J. Alonso. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal* of Computational Fluid Dynamics, 3(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.
- [7] A. C. Marta. A methodology for the development of discrete adjoint solvers using automatic differentiation tools. *International Journal of Computational Fluid Dynamics*, 4(9–10):307–327, Oct. 2007. doi:10.1080/10618560701678647.

Appendix A

Vector calculus

In case an appendix if deemed necessary, the document cannot exceed a total of 100 pages... Some definitions and vector identities are listed in the section below.

A.1 Vector identities

$$\nabla \times (\nabla \phi) = 0 \tag{A.1}$$

$$\nabla \cdot (\nabla \times \mathbf{u}) = 0 \tag{A.2}$$

Appendix B

Technical Datasheets

It is possible to add PDF files to the document, such as technical sheets of some equipment used in the work.

B.1 Some Datasheet

SUNPOWER

C60 SOLAR CELL

Dimensions:

MONO CRYSTALLINE SILICON

BENEFITS

Maximum Light Capture

SunPower's all-back contact cell design moves gridlines to the back of the cell, leaving the entire front surface exposed to sunlight, enabling up to 10% more sunlight capture than conventional cells.

Superior Temperature Performance

Due to lower temperature coefficients and lower normal cell operating temperatures, our cells generate more energy at higher temperatures compared to standard c-Si solar cells.

No Light-Induced Degradation

SunPower n-type solar cells don't lose 3% of their initial power once exposed to sunlight as they are not subject to light-induced degradation like conventional p-type c-Si cells.

Broad Spectral Response

SunPower cells capture more light from the blue and infrared parts of the spectrum, enabling higher performance in overcast and low-light conditions.

Broad Range Of Application

SunPower cells provide reliable performance in a broad range of applications for years to come.

The SunPower™ C60 solar cell with proprietary Maxeon™ cell technology delivers today's highest efficiency and performance.

The anti-reflective coating and the reduced voltagetemperature coefficients

provide outstanding energy delivery per peak power watt. Our innovative all-back contact design moves gridlines to the back of the cell, which not only generates more power, but also presents a more attractive cell design compared to conventional cells.

SunPower's High Efficiency Advantage

Polic curiety of St Floenolois

Electrical Characteristics of Typical Cell at Standard Test Conditions (STC)

STC: 1000W/m². AM 1.5a and cell temp 25°C

Bin	Pmpp (Wp)	Eff. (%)	Vmpp (V)	Impp (A)	Voc (V)	Isc (A)
G	3.34	21.8	0.574	5.83	0.682	6.24
Н	3.38	22.1	0.577	5.87	0.684	6.26
ı	3.40	22.3	0.581	5.90	0.686	6.27
J	3.42	22.5	0.582	5.93	0.687	6.28

All Electrical Characteristics parameters are nominal Unlaminated Cell Temperature Coefficients

Voltage: -1.8 mV / $^{\circ}$ C Power: -0.32% / $^{\circ}$ C

Positive Electrical Ground

Modules and systems produced using these cells must be configured as "positive ground systems".

TYPICAL I-V CURVE

SPECTRAL RESPONSE

Physical Characteristics

Construction: All back contact

Thickness: 165µm ± 40µm

Diameter: 160mm (nominal)

Cell and Bond Pad Dimensions

125mm x 125mm (nominal)

Bond pad area dimensions are $7.1 \text{mm} \times 7.1 \text{mm}$ Positive pole bond pad side has "+" indicator on leftmost and rightmost bond pads.

Interconnect Tab and Process Recommendations

Tin plated copper interconnect. Compatible with lead free process.

Packaging

Cells are packed in boxes of 1,200 each; grouped in shrink-wrapped stacks of 150 with interleaving. Twelve boxes are packed in a water-resistant "Master Carton" containing 14,400 cells suitable for air transport.

Interconnect tabs are packaged in boxes of 1,200 each.

About SunPower

SunPower designs, manufactures, and delivers high-performance solar electric technology worldwide. Our high-efficiency solar cells generate up to 50 percent more power than conventional solar cells. Our high-performance solar panels, roof tiles, and trackers deliver significantly more energy than competing systems.