FAT AK27

UA "Datendurchgängigkeit in der CAE-Prozesskette"

5_Änderungen von FATXML Version 1.2 R2 zu Version 1.2 R3

FAT-AK27 UA "Datendurchgängigkeit in der CAE-Prozesskette"

In FATXML V1.2 Revision 3 wurde das XML-Schema neu aufgebaut. Dadurch ist eine Weiterverwendung der Entity-Selektion nach FATXML-Standard in anderen Formaten möglich.

Das FATXML-Format selber wurde nicht geändert!

Inhalt

1) Beschreibung des neuen Aufbaus der Schema-Files

1.) Ergänzungen und Änderungen V1.2 R2 zu V1.2 R3

► Schema-File zur Entity Selektion "FATXML_ENTITY_V1.2_R3.xsd"

1.) Ergänzungen und Änderungen V1.2 R2 zu V1.2 R3

► Änderung FAXTML Schema-File

```
<?xml version="1.0" encoding="UTF-8"?>
                                                                                 Entity-Schema inkludieren
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
  <xs:include schemaLocation="FATXML_ENTITY_V1.2_R3.xsd"/>
                                                                                 Entity-Type verwenden und
                                                                                  um FATXML-spezifische
                                                                                    Attribute ergänzen
<xs:element name="CAE PART MEMBER" min0ccurs="0" max0ccurs="unbounded">
  <xs:complexType>
    <xs:sequence>
      <xs:element name="ENTITY" min0ccurs="0" max0ccurs="unbounded">
        <xs:complexType>
          <xs:complexContent>
            <xs:extension base="entity_type">
              <xs:attribute name="INSTANCE" type="xs:positiveInteger" use="optional" default="1"/>
              <xs:attribute name="LINK" type="xs:string" use="optional" default="NO"/>
            </r></re>/xs:extension>
          </r></xs:complexContent>
        </xs:complexType>
      </r></re>/xs:element>
    </r></re></re>
    <xs:attribute name="ID" type="xs:integer" use="required"/>
    <xs:attribute name="COLOR" type="rqbcolor or empty" use="optional"/>
  </xs:complexType>
</r></re>/xs:element>
                                                                           Forschungsvereinigung
                                                                           Automobiltechnik
```

FAT AK27

UA "Datendurchgängigkeit in der CAE-Prozesskette"

5_Änderungen von FATXML Version 1.1 zu Version 1.2 R2

FAT-AK27 UA "Datendurchgängigkeit in der CAE-Prozesskette"

In FATXML V1.2 wurden einige XML-Knoten ergänzt und an einigen Stellen die Dokumentation weiter spezifiziert wo es bei V1.1 zu unterschiedlichen Interpretationen gekommen ist.

Inhalt

- 1) Ergänzungen und Änderungen
- 2) Spezifikation der Dokumentation
- 3) Erweiterungen für die nächste FATXML-Version im Test (CAE_AUXILIARY_DATA)

► Umgang mit Zeilenumbrüchen / Sonderzeichen

XML-Formate haben üblicherweise keine Zeilenlängenbeschränkung. Zur Übertragung der FATXML-Daten durch die CAE-Solver muß die Zeilenlänge jedoch auf die maximal mögliche Zeilenlänge des Solvers beschränkt werden. In Version V1.1 wurde der Zeilenumbruch durch den Knoten <VALUE ORDER="x">
gesteuert.

Ab Version V1.2 soll der Zeilenumbruch durch Steuerzeichen (Escape Sequenzen) erfolgen. Die maximal zulässige Zeilenlänge passt der Preprozessor für das jeweilige Export-Solverformat automatisch an.

Die Postprozessoren sollen den Knoten <VALUE ORDER> auch in Version V1.2 unterstützen, um die Aufwärtskompatibilität zu wahren.

▶ Umgang mit Zeilenumbrüchen / Sonderzeichen a) Entfall der bisherigen Lösung mit <VALUE ORDER=,,x"> Knoten

```
<CAE_PART_MEMBER ID="1" COLOR="rgba(25,50,50,1.00)">
                                                             <CAE PART MEMBER ID="1" COLOR="rgba(25,50,50,1.00)">
           <ENTITY>
                                                                          <ENTITY>
                       <TYPE>
                                                                                      <TYPE>
                                   <VALUE ORDER="1">
                                                                                     SHELL
                                   SHELL
                                                                                     </TYPE>
                                   </VALUE>
                                                                                      <ID>
                       </TYPE>
                                                                                     11704
                       <ID>
                                                                                     </ID>
                                   <VALUE ORDER="1">
                                                                          </ENTITY>
                                   11704
                                   </VALUE>
                       </ID>
           </ENTITY>
```

- Schlankeres Format
- Zeilenumbruch muss neu implementiert werden

▶ Umgang mit Zeilenumbrüchen / Sonderzeichen
b) Beispiel: Escape-Sequenzen und XML-Notation für Sonderzeichen

Zeilenumbruch mittels Escape-Sequenz

Escape Sequence	Zeichen
\a	Alert
\b	Backspace
\f	Formfeed
\n	Newline
\r	Carriage return
\t	Horizontal tab
\v	Vertical tab
\'	Single quotation mark
\"	Double quotation mark
\\	Backslash
\?	Literal question mark
\000	ASCII character (octal notation)

XML Notation	Zeichen
<	<
>	>
&	&
"	и
'	•
•	_

Sonderzeichen werden mittels Escape-Sequenzen und XML-Notation umgesetzt

▶ Umgang mit Zeilenumbrüchen / Sonderzeichen
b) Beispiel: Escape-Sequenzen und XML-Notation für Sonderzeichen

Intended Text:	C-Syntax:	XML-Syntax:	XML-Block in Solver-Deck:
Example A: A tab.	Example A: A\ttab.	Example A: A tab.	Example A: A\ttab.
Example B: A newline.	Example B: A\nnewline.	Example B: A newline.	Example B: A\nnewline.
Example C: A path C:\test.	Example C: A path C:\\test.	Example C: A path C:\test.	Example C: A path C:\\test.
Example D: (&) (#) (") (%) (<) (>)(,)	Example D: (&) (#) (\") (%) (<) (>) (,)	Example D: (&) (#) (") (%) (<) (>) (,)	Example D: (&) (#) (") (%) (<) (>) (\054)

FAT

Forschungsvereinigung Automobiltechnik

syntax of target solver.

Umsetzung Sonderzeichen im Detail

- Die Verwendung von Escape-Sequenzen bzw. der XML-Notation ist nur für die Werte der XML-Elemente (Knoten) zulässig
- Die Verwendung der XML-Notation für die unten angegeben Zeichen ist zwingend erforderlich um XMLbzw. Solver Errors zu vermeiden
- Die Escape-Sequenzen dienen im wesentlichen zur Erhaltung der Formatierung der Inhalte und nicht des XML selber (daher nur innerhalb von XML-Elementen zulässig)

Escape Sequence	Zeichen
\n	Newline
\t	Horizontal tab
//	Backslash
\?	?
\'	Single quotation mark
\"	Double quotation mark

XML Notation	Zeichen
<	<
>	>
&	&
* ;	*
\$;	\$

Bisher bekannte Zeichen, die mit Solvern kollidieren (LS-DYNA)

▶ Umsetzung Kommentarzeilen im gepackten Format

Um Probleme im gepackten Format zu vermeiden sollten XML-Kommentare dort mit einem nach- (<--) bzw. vorangestellten (-->) Leerzeichen versehen werden. Das wiederhergestellte XML kann sonst ungültig werden, wenn – Zeichen als Kommentar verwendet werden.

XML-Kommentar ungepackt:

XML-Kommentar im gepackten Format:

Umgang mit Zeilenumbrüchen / Sonderzeichen
 c) Kompakte Schreibweise im Solverdeck

► Umgang mit Zeilenumbrüchen / Sonderzeichen c) Kompakte Schreibweise im Solverdeck

```
FATXML
<?xml version="1.0" encoding="iso-8859-1" standalone="no"?>
```

FESTIGKEITSKLEBER

```
<CAE META DATA VERSION="1.1+">
       <GENERATED BY>
               <NAME>
                       8.4.0.2
               </NAME>
       </GENERATED_BY>
                                                             Umformatierung mit
       <SOLVER>
               <NAME>
                                                             Solver-spezifischen
                       NASTRAN
               </NAME>
                                                             Restriktionen ->
       </SOLVER>
       <UNIT MASS="KG" TIME="S" LENGTH="CM"/>
       <CAD_PART TYPE="PART" INSTANCE="1">
               <ID>
                       14600
               </ID>
               <PDM DATA>
                              property 14600-ConnSpot: FESTIGKEITSKLEBER
                       </NAME>
                       <PDM TREEPATH>
                              /root/ZSB TUER/ZB TUER LINKS/VERBINDUNGSTECHNIK/KLEBUNGEN/
                       </PDM_TREEPATH>
                       <PDD PROPERTIES>
                              <PDD PROPERTY ID="1" PDD ID="14600">
                                      <MATERIAL DENSITY="le-11">
```

FATXML im Solverdeck

CDATA / 1 NAME FATXML V1.1 <?xml version="1.0" encoding="iso-8859-1" standalone="no"?><CAE_META_DATA VERSI</pre> ON="1.1+"><GENERATED BY><NAME>8.4.0.2</NAME></GENERATED BY><SOLVER><NAME>NASTRA N</NAME></SOLVER><UNIT MASS="KG" TIME="S" LENGTH="CM"/><CAD PART TYPE="PART" IN STANCE="1"><ID>14600</ID><PDM DATA><NAME>property 14600-ConnSpot: FESTIGKEITSKL EBER</NAME><PDM_TREEPATH>/root/ZSB_TUER/ZB_TUER_LINKS/VERBINDUNGSTECHNIK/KLEBUN GEN/</PDM TREEPATH><PDD PROPERTIES><PDD PROPERTY ID="1" PDD ID="14600"><MATERIA L DENSITY="le-11"><NAME>FESTIGKEITSKLEBER</NAME></MATERIAL></PDD PROPERTY></PDD _PROPERTIES></PDM_DATA><CAE_DATA><CAE_PART_MEMBER ID="1" COLOR="#FFFFFFFF"/></C AE_DATA></CAD_PART><CAD_PART_TYPE="PART" INSTANCE="1"><ID>14700</ID><PDM_DATA>< NAME>property 14700-ConnSpot: STUETZKLEBER</NAME><PDM TREEPATH>/root/ZSB TUER/Z B TUER LINKS/VERBINDUNGSTECHNIK/KLEBUNGEN/</PDM TREEPATH><PDD PROPERTIES><PDD P ROPERTY ID="1" PDD ID="14700"><MATERIAL DENSITY="1.2e-09"><NAME>STUETZKLEBER</N AME></MATERIAL></PDD_PROPERTY><PDD_PROPERTY ID="2" PDD_ID="14700"><MATERIAL></NA ME>STAHL MASSELOS</NAME></MATERIAL></PDD PROPERTY></PDD PROPERTIES></PDM DATA>< CAE DATA><CAE PART MEMBER ID="1" COLOR="#FFFFFFF"/></CAE DATA></CAD PART><CAD PART TYPE="GROUP" INSTANCE="1"><ID>K_000</ID><PDM_DATA><NAME>KLEBUNGEN</NAME><P DM_TREEPATH>/root/ZSB_TUER/ZB_TUER_LINKS/VERBINDUNGSTECHNIK/</PDM_TREEPATH></PD M DATA><CAE DATA><CAE PART MEMBER ID="1" COLOR="#FFFFFFFF"><ENTITY><TYPE>CAD PA RT MEMBER</TYPE><ID>14600</ID></ENTITY><ENTITY><TYPE>CAD PART MEMBER</TYPE><ID> 14700</ID></ENTITY><ENTITY><TYPE>SOLID</TYPE><ID>386-438 14949-14953 21263-2133 4 32402-32430 32493-32555 33390-33399 33420-33454 33529-33560 33812 33815-33818 </ID></ENTITY><ENTITY><TYPE>PLINK</TYPE><ID>53-66 117-230 12527 12529-12530 125 32-12539 12554 32431-32492 32556-32689 32927-32994 33400-33419 33455-33528 3356 1-33628 33655-33810 33813-33814 33819-33826</ID></ENTITY></CAE PART MEMBER></CA E_DATA></CAD_PART><CAD_PART TYPE="PART" INSTANCE="1"><ID>14500</ID><PDM DATA><N AME>property 14500-ConnSpot: SCHWEISSPUNKTE</NAME><PDM TREEPATH>/root/ZSB TUER/ ZB TUER LINKS/VERBINDUNGSTECHNIK/SCHWEISSUNGEN/</PDM TREEPATH></PDM DATA><CAE D

- Kompaktes Format
- Nutzt die maximale Spaltenbreite des jeweiligen Solvers voll aus

Forschungsvereinigung Automobiltechnik

-/NAMES

► Transformationsmatrix

- Auf jede Knoten-Koordinate p z. B. wird dazu eine Transformation der Form p' = R * p + T angewandt.
 - R ist eine Rotationsmatrix (ggf. mit Spiegelung)
 T ist ein Translationsvektor
- Fehlt eine Angabe, so muss der Default-Wert aus der Einheits-Transformation verwendet werden.
- Eine reine Spiegelung an der x-z-Ebene kann durch <R22> -1 </R22> vollständig dargestellt werden.
- Es ist aber auch nicht schädlich, in jedem Fall alle Werte anzugeben.

► Transformationsmatrix

```
<UNIT LENGTH="MM" MASS="KG" TIME="MS"/>
<CAD_PART TYPE="PART" INSTANCE="1">
 <ID>AAA</ID>
 <PDM DATA>
 <NAME>FORMAT</NAME>
 <VERSION>A</VERSION>
 <VARIANTE>C</VARIANTE>
 <ALTERNATIVE>1</ALTERNATIVE>
 <PRODUCT_STATUS>Pre-Release/PRODUCT_STATUS>
 <PART_STATUS>BF</PART_STATUS>
 <PDM_TREEPATH>FATXML V1.2/</PDM_TREEPATH>
 <PROJECT IDENTIFIER>FATXML</PROJECT IDENTIFIER>
 <CAD FILENAME>fatxml format.CATPart
 <CAD_FILEPATH>/home/fatxml</CAD_FILEPATH>
 <PDA>ENT</PDA>
 <CAD_DATE>2014.12.03</CAD_DATE>
 <PDM_DATE>2014.12.03</PDM_DATE>
 <DESIGNER>Thomas Deiters/DESIGNER>
 <PART_COMMENT>Format/PART_COMMENT>
 <TRANSFORMATION>
   <R11> 0.866241746174 </R11>
   <R12> 0.0102114873677 </R12>
   <R13> 0.499520733014 </R13>
   <T1> 1322, 16454384 </T1>
   <R21> -0.000546741659181 </R21>
   <R22> -0.999771143404 </R22>
   <R23> 0.0213860209296 </R23>
   <T2> -5.57718391056 </T2>
   <R31> -0.499624797481 </R31>
   <R32> 0.0187985729081 </R32>
   <R33> 0.866037917991 </R33>
   <T3> 668.72856913 </T3>
 </TRANSFORMATION>
```

<TRANSFORMATION> wird unterhalb
 <CAD PART> Knoten eingebettet

► Freier Knoten auf oberster Ebene <CAE_AUXILIARY_DATA>

- Bisher nur <AUXILIARY_DATA> innerhalb des CAD_PART vorgesehen
- In <CAE_AUXILIARY_DATA> k\u00f6nnen die Pre-Prozessoren bauteilunabh\u00e4ngige, modell\u00fcbergreifende oder preprozessorspezifische Daten ablegen und ins FATXML schreiben.
- In diesen Knoten können die Pre-Prozessoren alle spezifischen, preprozessorelevanten Daten und Kommentare schreiben, um eine neue Preprozessor-Datenbasis aus einem FEM-Solverdeck zu generieren, ohne Informationen zu verlieren
- Separate Kommentarzeiln des Preprozessors im Solverdeck können somit entfallen und komplett in FATXML integriert werden.
 Damit ist sicher gestellt, dass die preprozessorspezifischen Daten in der CAE-Prozesskette nicht verloren gehen.

Zusätzliches Attribut ID_NAME unter PDD_PROPERTY

- Die unterschiedlichen Zonen k\u00f6nnen mit ID_NAME benannt werden.
 Dadurch kann z.B. die Zuweisung von Tailored-Blanks im CAD-Konvertierungsprozess \u00fcber benannte Abschnitte erfolgen.
- ID_NAME kann ein beliebiger String sein.
- Die Zuordnung im FATXML selber erfolgt weiterhin nur über die ID

► Änderungen am Schema allgemein

- Aufgrund der Festlegung, daß keine leeren Knoten exportiert werden sollen (Datensparsamkeit) wurden im Schema-File fast alle XML-Knoten und Attribute auf optional gesetzt und müssen nicht mehr zwingend vorhanden sein.
- Die minimal erforderlichen XML-Knoten bzw. Attribute müssen jedoch weiterhin exportiert werden, sofern es notwendig ist.

Beispiel:

```
<SOLVER> <NAME> PAMCRASH </NAME> </SOLVER>
```

XML-Knoten <NAME> muss exportiert werden, wenn Knoten <SOLVER> existiert

FAT-AK27 UA "Datendurchgängigkeit in der CAE-Prozesskette"

In FATXML V1.2 wurden einige XML-Knoten ergänzt und an einigen Stellen die Dokumentation weiter spezifiziert wo es bei V1.1 zu unterschiedlichen Interpretationen gekommen ist.

Inhalt

- 1) Ergänzungen und Änderungen
- 2) Spezifikation der Dokumentation
- 3) Erweiterungen für die nächste FATXML-Version im Test (CAE_AUXILIARY_DATA)

<INCLUDE_MODULE> nur für Solver mit ID_OFFSET der Includes (LS-Dyna)

```
<?xml version="1.0"?>
            <CAE META DATA noNamespaceSchemaLocation="S CAE</pre>
            <INCLUDE MODULE>
            <INCLUDE MODULE>
            <SOLVER>
            <NAME>
Knotenansicht zusammengeklappt
            LS-DYNA
            </NAME>
            </SOLVER>
            <GENERATED_BY>
            <NAME>
            ANSA
            </NAME>
            </GENERATED BY>
            <ID OFFSET TYPE="IDNOFF"> 1000000 </ID OFFSET>
            <ID_OFFSET TYPE="IDEOFF"> 1000000 </ID_OFFSET>
            <ID OFFSET TYPE="IDPOFF"> 1000000 </ID OFFSET>
            <ID_OFFSET TYPE="IDMOFF"> 1000000 </ID_OFFSET>
            <ID OFFSET TYPE="IDSOFF"> 1000000 </ID OFFSET>
            <ID OFFSET TYPE="IDFOFF"> 1000000 </ID OFFSET>
            <ID_OFFSET TYPE="IDDOFF"> 1000000 </ID_OFFSET>
            <ID_OFFSET TYPE="IDROFF"> 1000000 </ID_OFFSET>
            <UNIT LENGTH="mm" MASS="kg" TIME="s"/>
```

- Der Solver schreibt die FATXML-Inhalte des Modells in eine FATXML-Datei zusammen und fügt die ID OFFSET Daten ein
- Die Inhalte der einzelnen Includes werden getrennt durch:

```
<INCLUDE_MODULE>
..FATXML aus dem Include..
</INCLUDE_MODULE>
```

Die Knoten CAE_META_DATA und XML Version der INCLUDES müssen jedoch entfernt werden, damit ein gültiger XML-Block entsteht

```
<?xml version="1.0"?>
< CAE_META_DATA VERSION="1.2">
...
</ CAE_META_DATA >
```


► Solver Schlüsselwörter (TYPE-Knoten)

Festlegung Solver-Schlüsselwörter:

- Pam-Crash ohne nachfolgenden Slash (/)
- LS-Dyna ohne führenden Stern (*)
- Abaqus ohne führenden Stern (*)

Bisherige stillschweigend durchgeführte Vorgehensweise wird dokumentiert.

Vermeidet, daß der Solver FATXML als Solver-Input interpretiert.

► COLOR → Definition der Transparenz erforderlich

Definition der Transparenz:

Direkter Alphakanal (R, G, B, α):

R,G,B: Integer von 0-255

α: 0.00 transparent, 1.00 voll deckend (2 stellige Fließkommazahl)

Link zur Dokumentation (CSS-Standard):

http://www.w3.org/wiki/CSS/Properties/color/RGBA

► CAE_PART_MEMBER → minOccur = 0

Änderung des Schemas:

- CAE_PART_MEMBER → minOccur = 0
- Reine Strukturen sind bisher laut Schema ungültig, da keine FE-Elemente (CAE_PART_MEMBER) vorhanden sind
- Durch die Änderung kann FATXML Strukturen ohne FE-Elemente übertragen

► ID_OFFSET (LS-Dyna)

Beibehaltung des Schemas:

- Das Schema erlaubt die freie Definition des TYPE (String) von ID_OFFSET
- Aufzählungsliste der LS-Dyna TYPEs wurde bisher nicht verwendet
- Durch die freie Definition ist ID_OFFSET nicht alleine an LS-Dyna gebunden
- → Entfernen der Aufzählungsliste aus dem Schema (IDNOFF, IDEOFF, IDPOFF, ..)
 Grundsätzlich wird das Verhalten jedoch nicht verändert

```
<ID_OFFSET TYPE="IDNOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDEOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDPOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDNOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDSOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDFOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDFOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDDOFF">10000</ID_OFFSET>
<ID_OFFSET TYPE="IDDOFF">10000</ID_OFFSET></ID_OFFSET></ID_OFFSET</pre>
```

LS-Dyna Keywörter für den Offset von Knoten, Elementen, etc.

▶ TREEPATH

- Hier ist nur der Treepath aus dem PDM-System bis zur Bauteilebene einzutragen (Ursprung/Quelle des Bauteils)
- Der PDM_TREEPATH beinhaltet nicht den Bauteilnamen.

► PAMCRASH CDATA-Karte

- Der Name der CDATA-Karte muss mit "FATXML" beginnen, damit beim Einlesen eines Modells einfach zwischen gewöhnlichen und FATXML CDATA-Karten unterschieden werden kann.
- Hinter dem String FATXML dürfen weitere Zeichen folgen

```
#---5---10----5---20----5---30----5---40----5---50----5---60----5---70----5---80
CDATA / 1
NAME FATXML
<?xml version="1.0" encoding="UTF-8"?><CAE_META_DATA VERSION="1.2"><CAE_AUXILIAR
Y_DATA><my_attribute>PRE-PROZESSOR_DATEN</my_attribute></CAE_AUXILIARY_DATA><SOL
...
END_CDATA
```


FAT-AK27 UA "Datendurchgängigkeit in der CAE-Prozesskette"

In FATXML V1.2 wurden einige XML-Knoten ergänzt und an einigen Stellen die Dokumentation weiter spezifiziert wo es bei V1.1 zu unterschiedlichen Interpretationen gekommen ist.

Inhalt

- 1) Ergänzungen und Änderungen
- 2) Spezifikation der Dokumentation
- 3) Erweiterungen für die nächste FATXML-Version im Test (CAE_AUXILIARY_DATA)

3.) Erweiterungen für die nächste FATXML-Version im Test

Erweiterung CAE_MAT (CAE_AUXILIARY_DATA)

- Ziel: Materialinformationen im gesamten CAE-Prozess verfügbar machen
- Mit dem <CAE_MAT> Knoten sollen Materialdokumentation und Farbgebung übertragen werden können.
- Das FE-Material wird über die Attribute MID bzw. Name referenziert.
- Das COLOR-Attribut enthält die Materialfarbe (Format analog Farbgebung unter CAE_PART_MEMBER)
- <Comment> enthält die Materialdokumentation
- Es können beliebig viele eindeutige CAE_MAT Knoten hinterlegt werden

