Machine Translation with Source-Predicted Target Morphology

Joachim Daiber

Institute for Logic, Language and Computation University of Amsterdam

Challenges:

Morphological agreement over long distances

Challenges:

Morphological agreement over long distances

Challenges:

Morphological agreement over long distances

Challenges:

- ► Morphological agreement over long distances
- Relatively freer word order

Challenges:

- ► Morphological agreement over long distances
- Relatively freer word order

Challenges:

- ► Morphological agreement over long distances
- Relatively freer word order
- Data sparsity

- ► Established methods often do not work well
- ► One example: Source-side reordering

Source-predicted target morphology?

Hypothesis:

- ▶ Predicate-argument structure (PAS) of source and target are similar
- ► Linguistic information necessary for determining morph. target inflection resides in source sentence

We explore:

- ► Target morphology as source-side prediction task
- ► Enriching source sentence with useful target properties

Three questions

- 1. Does knowing morphological target properties help?
- 2. Can we predict target morphology on the source PAS?
- 3. Which properties should we predict?

Does knowledge of morph. target properties help?

(a) Morphology projection.

(b) MT system training.

Does knowledge of morph. target properties help?

		Trans	Translation	
Decoration	Tags	MTR	BLEU	
None (baseline)	-	35.74	15.12	
Proj. manual set Proj. automatic set Proj. full set	77 225 846	+2.43 +2.42 +2.72	+1.39 +1.20 +1.39	

Table: Translation with various subsets of projected morphology (all p < 0.01).

Does knowledge of morph. target properties help?

		Word order	Lexical choice
Decoration	Tags	Kendall's $ au$	BLEU-1
None (baseline)	-	45.26	49.86
Proj. manual set	77	+4.20	+3.87
Proj. automatic set	225	+4.18	+3.39
Proj. full set	846	+4.57	+3.62

Table: Translation with various subsets of projected morphology (all p < 0.01).

Predicting target morphology on source trees

Source dependency chains

Prediction model:

- ► Conditional random field morphological tagger
- ▶ Instead of left-to-right: move down the dependency tree

Advantages of using source dependency chains:

- ► Access to syntactic information
- Soft enforcement of morphological agreement
- Combating data sparsity due to incomplete alignments

Which properties should we predict?

Problem: Many possible morphological target attributes:

- 846 combinations for German
- Might be redundant for the language pair
- Might be hard or even impossible to predict

Idea: Only include attributes if they lead to better lexical selection

Learning salient attributes

Procedure:

- 1. Decorate the source sentence with all attributes
- 2. Calc. likelihood of heldout set with word-based system (IBM model 1)
- 3. As long as the likelihood increases:
 - Find worst attribute by merging tags + recal. likelihood
 - Remove attribute, re-align
 - Repeat

Step 1: Decorate the source sentence with all attributes

German der Mann hat die Hunde gesehen

Step 2: Calc. heldout likelihhood with word-based MT

Step 2: Calc. heldout likelihhood with word-based MT

Step 2: Calc. heldout likelihhood with word-based MT

Step 3: Remove attributes by merging tags

Resulting morph. attributes (English–German)

Part of speech	Manual selection	Automatic selection
noun	gender [†] number case	gender number case
adj	gender [†] number [‡] case [‡] declension	gender number case synpos degree
verb	number ^{‡*} person ^{‡*} tense [*] mode [*]	-

Resulting morph. attributes (English–German)

	Manual selection	Automatic selection	All
Training time, 50k	36m	45m	77m
Training time, 100k	58m	82m	2h51m
Training time, 200k	1h54m	3h5m	6h44m
Tags	77	225	846
Best F ₁	72.67	74.67	62.18

Integrating the predictions into the MT system

- ▶ Use dependency chain model to make predictions for test sentence
- ► Add sparse features to words and phrase:
 - Source morphology \rightarrow target string suffixes and prefixes
 - Example: pos=det+gender=fem+number=sing+case=dat X \rightarrow -er X

Results

	Trans	lation	Word order	Lexical choice
Morph. attributes	MTR	BLEU	Kendall's $ au$	BLEU-1
No morphology	35.74	15.12	45.26	49.86
Manual selection Autom. selection	+0.74 +0.72	+0.25 +0.27	+2.10 +1.98	+1.47 +1.35

Table: Translation with predicted test decorations (all p < 0.05).

Conclusion

- Novel approach: target morphology projection
- ► Realized as:
 - 1. Dependency chain model for predicting arbitrary target morphology
 - 2. Learning procedure to determine salient morphological attributes
 - 3. Strategies for integration into MT systems
- ► Current research direction: Interaction with word order.

Thank You!

Any questions?