Classe: MASTER RAIA

TD N°2 INTERFACES DE COMMUNICATION

Exercice nº1

Nous allons brancher sur une carte Arduino un capteur de température infrarouge avec communication par bus IZC.

Les Caractéristiques du capteur sont :

- le capteur fonctionne sur 12 bits
- plage de mesure : -40°C à 85°C
- la mesure est linéaire
- le capteur envoi d'abord les bits de poids faible (B7 à B0) puis ceux de poids plus forts (B11 à B8)

La liaison IZC est classique donc les adresses sont sur 7 bits

On relève la trame I2C suivante :

- 1) Décodage de la trame :
- Entourez sur la trame le bit de START.
- Relevez l'adresse du capteur. La mettre en hexadécimal
- Entourez sur la trame le bit de R/W
- Quel est son état logique et que cela signifie-t-il ?
- Entourez sur la trame les bits d'acquittement (ACK)
- Entourez sur la trame les bits de données transmis par le capteur
- Entourez sur la trame les bits de non-acquittement (NACK)
- Entourez sur la trame le bit de STOP
- 2) Analyse des données :
- Calculez la résolution du capteur
- Donnez la valeur des 12 bits de mesure que le capteur a envoyé (lus sur la trame)
- En déduire la température mesurée par le capteur

Classe: MASTER RAIA

_		
EXE	rcice	nZ

✓	SPI est l'abréviation de			
✓	SPI est un protocole			
✓	Ce protocole utilise une relation maître/esclave entre les composants ; lorsque le maí			
	initie la communication en sélectionnant un esclave, les données peuvent être transférées			
	·			
✓	ll existe de nombreux composants compatibles SPI.			
✓	Le protocole SPI utilise 4 signaux de communication (+ la masse) :			
	•::			
	•::			
	•:			
	•:			
✓	Procédure de transfert de données :			
	• Le maitre(SCLK) qui doit être supportée par l'esclave			

•	Le maitre	(2CLK)	qui doit	être su	pportée	par l'	esclave
	(jusqu'à 70MHZ).						

•	Le maitre	en activant	((snuvent ar	∙tif à Π	v)
•	LG 1110111 G		((900ACIII ar	ılı a v	٧).

- Le maitre active -----et -----et -----
- L'esclave renvoie les données de la même manière sur le fil MISO.

Exercice nº3

Donner les avantages et les inconvénients du protocole SPI.

AVANTAGES	INCONVENIENTS