A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 4EF

Bookmark

Show all steps: (

ON

Problem

Prove part:

If p is a prime, $\phi(p^n) = p^n - p^{n-1} = p^{n-1}(p-1)$. (HINT: For any integer a, a and p^n have a common divisor $\neq \pm 1$ iff a is a multiple of p. There are exactly p^{n-1} multiples of p between 1 and p^n .)

Step-by-step solution

Step 1 of 3

Consider any arbitrary prime number p. Objective is to prove that

$$\phi(p^n) = p^n - p^{n-1}$$

If p is any prime, then the only divisors of p will be 1 and p itself. So, the following numbers, that are less than p,

$$1, 2, 3, ..., p-1$$

will be relatively prime to p.

Thus, by the definition of Euler phi function, $\phi(p) = p - 1$.

Comment

Step 2 of 3

If $p \nmid a$, then $\gcd(a,p)=1$ and also $\gcd(a,p^n)=1$. Note that, this is a necessary and sufficient condition. That is, $\gcd(a,p^n)=1$ if and only if $p \nmid a$.

Observe that the following numbers

$$p,2p,3p,...,(p^{n-1})p$$
 are divisible by p , and there are total p^{n-1} integers between 1 and p^n . Thus, the set $\{1,2,3,...,p^n\}$ contains exactly p^n-p^{n-1} integers that are relatively prime to p^n .

Comment

Step 3 of 3

Hence, by the definition of Euler phi function $\phi(p^n) = p^n - p^{n-1}$.

Comment