

Figure 2.1 Schematic representation of a deterministic one-tape Turing machine (DTM).

A program for a DTM specifies the following information:

- (1) A finite set Γ of tape symbols, including a subset $\Sigma \subset \Gamma$ of input symbols and a distinguished blank symbol $b \in \Gamma \Sigma$;
- (2) a finite set Q of *states*, including a distinguished *start-state* q_0 and two distinguished *halt-states* q_Y and q_N ;
- (3) a transition function $\delta: (Q \{q_Y, q_N\}) \times \Gamma \to Q \times \Gamma \times \{-1, +1\}.$

Figure 2.4 Schematic representation of a nondeterministic one-tape Turing machine (NDTM).

*Michael R. Garey and David S. Johnson. 1972/1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Proof of Cook's Theorem (Garey & Johnson, 1972*)

Variable	Range	Intended meaning
		· · · · · · · · · · · · · · · · · · ·
Q[i,k]	$0 \leqslant i \leqslant p(n) \\ 0 \leqslant k \leqslant r$	At time i , M is in state q_k .
H[i,j]	$0 \leqslant i \leqslant p(n) \\ -p(n) \leqslant j \leqslant p(n) + 1$	At time i, the read-write head is scanning tape square j.
S[i,j,k]	$ \begin{array}{l} 0 \leqslant i \leqslant p(n) \\ -p(n) \leqslant j \leqslant p(n) + 1 \\ 0 \leqslant k \leqslant v \end{array} $	At time i , the contents of tape square j is symbol s_k .

Figure 2.7 Variables in $f_L(x)$ and their intended meanings.

^{*}Michael R. Garey and David S. Johnson. 1972/1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Proof of Cook's Theorem (Garey & Johnson, 1972)

- $x \in L \iff$ there is an accepting computation of M on x
 - there is an accepting computation of M on x with p(n) or fewer steps in its checking stage and with a guessed string w of length exactly p(n)
 - there is a satisfying truth assignment for the collection of clauses in $f_L(x)$.

*Michael R. Garey and David S. Johnson. 1972/1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Proof of Cook's Theorem

truth assignments.

Clause group	Restriction imposed		
		Clause group	Clauses in group
G_1	At each time i , M is in exactly one state.		
G_2	At each time i, the read-write head is scanning exactly one tape square.	G_1	$\{Q[i,0],Q[i,1],\ldots,Q[i,r]\},\ 0\leqslant i\leqslant p(n)$ $\{\overline{Q[i,j]},\overline{Q[i,j']}\},\ 0\leqslant i\leqslant p(n),0\leqslant j< j'\leqslant r$
G_3	At each time i , each tape square contains exactly one symbol from Γ .	G_2	$ \{H[i,-p(n)],H[i,-p(n)+1],\ldots,H[i,p(n)+1]\}, 0 \le i \le p(n) \{\overline{H[i,j]},\overline{H[i,j']}\}, 0 \le i \le p(n),-p(n) \le j < j' \le p(n)+1 $
G_4	At time 0, the computation is in the initial configuration of its checking stage for input x .	G_3	$ \{S[i,j,0],S[i,j,1],\ldots,S[i,j,\nu]\}, \ 0 \le i \le p(n),-p(n) \le j \le p(n)+1 $ $ \{\overline{S[i,j,k]},\overline{S[i,j,k']}\},0 \le i \le p(n),-p(n) \le j \le p(n)+1,0 \le k < k' \le \nu $
G_5	By time $p(n)$, M has entered state q_Y and hence has accepted x .	G_4	$\{Q[0,0]\}, \{H[0,1]\}, \{S[0,0,0]\}, \{S[0,1,k_1]\}, \{S[0,2,k_2]\}, \cdots, \{S[0,n,k_n]\},$
G_6	For each time i , $0 \le i < p(n)$, the configuration of M at time $i+1$ follows by a single application of the transition function δ		${S[0,n+1,0]}, {S[0,n+2,0]}, \dots, {S[0,p(n)+1,0]},$ where $x = s_{k_1} s_{k_2} \cdots s_{k_n}$
	from the configuration at time i.	G_5	$\{Q[p(n),1]\}$
.8 Clause group	s in $f_L(x)$ and the restrictions they impose on satisf		Figure 2.9 The first five clause groups in $f_L(x)$.

*Michael R. Garey and David S. Johnson. 1972/1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.

Proof of Cook's Theorem

The remaining subgroup of G_6 guarantees that the *changes* from one configuration to the next are in accord with the transition function δ for M. For each quadruple (i,j,k,l), $0 \le i < p(n)$, $-p(n) \le j \le p(n) + 1$, $0 \le k \le r$, and $0 \le l \le v$, this subgroup contains the following three clauses:

$$\{\overline{H[i,j]}, \overline{Q[i,k]}, \overline{S[i,j,l]}, H[i+1,j+\Delta]\}$$

$$\{\overline{H[i,j]}, \overline{Q[i,k]}, \overline{S[i,j,l]}, Q[i+1,k']\}$$

$$\{\overline{H[i,j]}, \overline{Q[i,k]}, \overline{S[i,j,l]}, S[i+1,j,l']\}$$

where if $q_k \in Q - \{q_Y, q_N\}$, then the values of Δ , k', and l' are such that $\delta(q_k, s_l) = (q_{k'}, s_{l'}, \Delta)$, and if $q_k \in \{q_Y, q_N\}$, then $\Delta = 0$, k' = k, and l' = l.

Length $[f_L(x)] = |U| \cdot |C| = O(p(n)^4)$, and is bounded by a polynomial function of n as desired.

*Michael R. Garey and David S. Johnson. 1990. Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA.