Logistics systems planning I Optimization of logistics systems Transportation planning – Shortest path problems (Part 2)

Univ.-Prof. Dr. Michael Schneider

Deutsche Post Chair – Optimization of Distribution Networks (DPO)
RWTH Aachen University

schneider@dpo.rwth-aachen.de

Course agenda

- Fundamentals
- Transportation planning
 - Introduction
 - Shortest path problems
 - Minimum spanning tree problem
 - Traveling salesman problem
 - Vehicle routing problems
 - Arc routing problems
- Warehouse planning
- 4 Introduction to location planning

Agenda

- Shortest path problems
 - Dijkstra algorithm
 - FIFO algorithm
 - Floyd-Warshall algorithm

Dijkstra algorithm

- Most well-known shortest path algorithm (Dijkstra 1959, Dantzig 1960)
- Assumes non-negative arc weights c_{ij}
- In each iteration:
 - select node $i \in V$
 - \blacksquare examine outgoing arcs $(i,j) \in \delta^+(i)$ and associated labels d(j)
- Distinction between unmarked, temporarily marked, and ultimately marked nodes

Dijkstra algorithm – ideas

- Source node s temporarily marked with d(s) = 0, all other unmarked
- In each iteration, select temporarily marked node i with minimum label value d(i)
- Successor nodes $j:(i,j)\in\delta^+(i)$ are temporarily marked with $d(j):=d(i)+c_{ij}$ if label improves. Afterwards, node i is ultimately marked
- Selection of node *i* with minimum label guarantees that no shorter path to this node can exist
- Non negative arc weights \rightarrow nodes i are traversed in non-decreasing order of label values

Dijkstra algorithm – pseudocode

Algorithm 1: Dijkstra algorithm

```
// Initialization
SET d(s) := 0, pred(s) := undef, L := \{s\}
SET d(i) := \infty for all i \in V \setminus \{s\}
// Loop
while L \neq \emptyset do
     SELECT i \in L with d(i) = \min_{k \in L} d(k)
     SET L := L \setminus \{i\} // set i as ultimately marked
     for j:(i,j)\in\delta^+(i) do
          if d(j) > d(i) + c_{ii} then
             // Update label
           \mathsf{SET}^{-}d(j) := d(i) + c_{ij}; \ \mathsf{pred}(j) := i
               SET L := L \cup \{j\}
// Output: predecessors pred(\cdot) and distances d(\cdot)
```

Set L contains all temporarily marked nodes. Note: each node i is selected exactly once.

Dijkstra algorithm – example

 (\cdot) temporarily marked, $[\cdot]$ ultimately marked

DPO

LSP / OLS

Dijkstra algorithm – example

Iteration	selected	temporarily	new labels
	node <i>i</i>	marked	
Init.	_	s = 1	d(1)=0
1	1	2,3	d(2)=1, d(3)=4
2	2	3,4,5,6	d(3)=3, $d(6)=d(4)=5$, $d(5)=7$
3	3	4,5,6	d(6)=4
4	6	4,5,7	d(7) = 9
5	4	5,7	d(5)=6, d(7)=7
6	5	7	_
7	7	_	_

Result

node <i>i</i>	1	2	3	4	5	6	7
distance $d(i)$	0	1	3	5	6	4	7
predecessor pred(i)	undef	1	2	2	4	3	4

Comments

1993)

- When looking for a shortest path from s to t, the algorithm can be stopped as soon as t is ultimately marked
- In undirected graphs (edges instead of arcs), replace each edge by two anti-parallel arcs

Runtime mostly determined by the selection of nodes with minimal labels (node i with $d(i) = \min_{k \in L} d(k)$). Efficient implementations differ with regards to the data structures used to store set L of temporarily marked nodes (see Ahuja et al.

DPO

Dijkstra algorithm – visualizations

- https://qiao.github.io/PathFinding.js/visual/
- https://www.cs.usfca.edu/~galles/visualization/Dijkstra.html
- https://www-m9.ma.tum.de/graph-algorithms/spp-dijkstra/ index_de.html

Agenda

- 1 Shortest path problems
 - Dijkstra algorithm
 - FIFO algorithm
 - Floyd-Warshall algorithm

FIFO algorithm – prerequisites

- The following label-correcting algorithms
 - require that no cycles with negative length exist
 - allow arc weights $c_{ij} < 0$ for some arcs (i, j)
 - allow directed cycles
- FIFO algorithm (s-to-all shortest path problem)
- Floyd-Warshall algorithm (all-pairs shortest path problem)

FIFO algorithm – ideas I

- Order of arc selection strongly affects the runtime of our generic shortest path algorithm
- Naive implementation:
 - \blacksquare arbitrary order of arcs $(i, j) \in A$: Check optimality condition in this order and update labels of nodes if necessary.
 - repeat until optimality condition is met: $d(i) < d(i) + c_{ii}, \forall (i, j) \in A.$
- All arcs are traversed at most (|V|-1) times
 - \blacksquare all node labels having a shortest path which consists of k arcs are correct after kth iteration (proof by induction over k).
 - worst-case complexity of complete procedure is $\mathcal{O}(|V||A|)$.

FIFO algorithm - ideas II

- FIFO builds upon this idea but considers that label d(j) can only change if label d(i) has changed for an arc $(i,j) \in A$
- If d(j) changes, all arcs $(j, k) \in \delta^+(j)$ must be examined in next iteration
- Instead of storing the information about these arcs, it is sufficient to store the nodes *j* themselves
- Store nodes *j* in a queue following the FIFO principle (first in first out).

FIFO algorithm – pseudocode

Algorithm 2: FIFO algorithm

```
// Initialization
SET d(s) := 0, pred(s) := undef, Q := (s)
SET d(i) := \infty for all i \in V \setminus \{s\}
// Loop
while Q \neq \emptyset do
    REMOVE first element i \in Q from queue
    for i:(i,j)\in\delta^+(i) do
         if d(i) > d(i) + c_{ii} then
             \mathsf{SET}\ d(j) := d(i) + c_{ij}
             SET pred(j) := i
              if j \notin Q then
                   APPEND i to queue Q
               predecessors pred(\cdot) and distances d(\cdot)
// Output:
```

FIFO algorithm – example I

Graph contains cycles and arcs with negative weights. Examples: $C_1 = (1,3,1)$, $C_2 = (5,6,7,5)$, or $C_3 = (1,5,6,7,9,4,3,1)$. No cycle with negative length

FIFO algorithm – example II

Iteration	selected node <i>i</i>	Queue Q after iteration	new labels $d(j)<\infty$
Init.	_	S	d(s) = 0
1	5		
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			

FIFO algorithm - example III

Queue Q: s

Agenda

- Shortest path problems
 - Dijkstra algorithm
 - FIFO algorithm
 - Floyd-Warshall algorithm

Floyd-Warshall algorithm

- Solution of shortest path problem for all pairs of nodes
 - solve s-to-all shortest path problem using each node as source node s
 - depending on characteristics of digraph (cycles, positive arc weights): apply previous algorithms
- Simultaneous approach: Floyd-Warshall algorithm (also known as triple algorithm)
- only prerequisite: no cycles with negative length

Floyd-Warshall algorithm – ideas I

- Introduction of labels
 - \blacksquare d(i,j): upper bound for length of path from i to j.
 - pred(i,j): predecessor of j on path from i to j.
- Initialization of labels
 - d(i, i) := 0, pred(i, i) := undef for all nodes $i \in V$ (path from i to i has length 0)
 - $d(i,j) := c_{ij}$, pred(i,j) := i for all arcs $(i,j) \in A$ (arc (i,j) is path from i to j, not necessarily minimal)
 - $d(i,j) := \infty$ for all remaining pairs $(i,j) \notin A$, $i \neq j$ (no path from i to j is known)

Shortest Path

■ Label for path from i to j is updated if d(i,j) > d(i,k) + d(k,j):

$$d(i,j) := d(i,k) + d(k,j)$$

$$\blacksquare$$
 $pred(i,j) := pred(k,j)$

Before update:

$$d(i, j) := 10$$

$$pred(i, j) := v$$

After update:

$$d(i,j) := d(i,k) + d(k,j) = 9$$

$$\blacksquare$$
 pred $(i,j) := w$

Optimality conditions

Optimality conditions

Given a weighted digraph $D = (V, A, c_{ij})$ and a set of labels d(i, j) with $i, j \in V$. It holds:

For each pair of nodes $(v, w) \in V \times V$, d(v, w) is the length of a shortest path from v to w

if and only if

the labels satisfy the optimality conditions

$$d(i,j) \leq d(i,k) + d(k,j) \qquad \forall (i,j,k) \in V \times V \times V.$$

Stopping criterion

- If a label $d(i, i), i \in V$ takes a negative value
 - a cycle of negative length was found
 - lacktriangleright algorithm cannot determine all shortest paths ightarrow stop
 - \blacksquare cycle can be determined using predecessor function pred(.,.)

Floyd-Warshall algorithm – pseudocode

Algorithm 3: Floyd-Warshall algorithm

```
// Initialization
SET d(i, i) := 0, pred(i, i) := undef for all i \in V
SET d(i, j) := c_{ii}, pred(i, j) := i for all (i, j) \in A
SET d(i, j) := \infty, pred(i, j) := undef for all i, j \in (V \times V) \setminus A, i \neq j
// Loop
for k \in V do
    for i \in V do
         for j \in V do
          if d(i,j) > d(i,k) + d(k,j) then
          SET d(i,j) := d(i,k) + d(k,j)
SET pred(i,j) := pred(k,j)
         if d(i, i) < 0 then
           STOP, ∃ cycle with negative cost
// Output: predecessors pred(\cdot,\cdot) and distances d(\cdot,\cdot)
```

${\sf Floyd\text{-}Warshall\ algorithm-example}$

Floyd-Warshall algorithm – example (Initialization)

$$\begin{pmatrix} \bot & 1 & 1 & \bot & \bot & \bot & \bot & \bot \\ \bot & \bot & 2 & 2 & 2 & 2 & \bot \\ \bot & \bot & \bot & \bot & \bot & \bot & 3 & \bot \\ \bot & \bot & \bot & \bot & \bot & 4 & 4 & 4 \\ \bot & 5 \\ \bot & 6 \\ 7 & \bot \\ \end{pmatrix}$$

Floyd-Warshall algorithm – example (Iteration k=1)

$$\begin{pmatrix} \bot & 1 & 1 & \bot & \bot & \bot & \bot \\ \bot & \bot & 2 & 2 & 2 & 2 & \bot \\ \bot & \bot & \bot & \bot & \bot & \bot & 3 & \bot \\ \bot & \bot & \bot & \bot & \bot & 4 & 4 & 4 \\ \bot & 5 \\ \bot & 6 \\ \hline 7 & \underline{1} & \underline{1} & \bot & \bot & \bot & \bot & \bot & \bot \\ \end{matrix}$$

Floyd-Warshall algorithm – example (Iteration k=2)

$$\begin{pmatrix} 0 & 1 & \underline{3} & \underline{5} & \underline{7} & \underline{5} & \infty \\ \infty & 0 & 2 & 4 & 6 & 4 & \infty \\ \infty & \infty & 0 & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & 0 & 1 & 2 & 2 \\ \infty & \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 & 5 \\ 1 & 2 & \underline{4} & \underline{6} & \underline{8} & \underline{6} & 0 \end{pmatrix} \qquad \begin{pmatrix} \bot & 1 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \bot \\ \bot & \bot & 2 & 2 & 2 & 2 & \bot \\ \bot & \bot & \bot & \bot & \bot & \bot & 4 & 4 & 4 \\ \bot & \underline{5} \\ \bot & \underline{6} \\ 7 & 1 & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{2} & \underline{1} \end{pmatrix}$$

Floyd-Warshall algorithm – example (Iteration k=3)

$$\begin{pmatrix} 0 & 1 & 3 & 5 & 7 & \frac{4}{4} & \infty \\ \infty & 0 & 2 & 4 & 6 & \frac{3}{3} & \infty \\ \infty & \infty & 0 & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & 0 & 1 & 2 & 2 \\ \infty & \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 & 5 \\ 1 & 2 & 4 & 6 & 8 & \frac{5}{5} & 0 \end{pmatrix} \qquad \begin{pmatrix} \bot & 1 & 2 & 2 & 2 & \frac{3}{3} & \bot \\ \bot & \bot & 2 & 2 & 2 & \frac{3}{3} & \bot \\ \bot & \bot & \bot & \bot & \bot & \bot & 4 & 4 & 4 \\ \bot & 5 \\ \bot & 6 \\ 7 & 1 & 2 & 2 & 2 & \frac{3}{3} & \bot \end{pmatrix}$$

Floyd-Warshall algorithm – example (Iteration k=4)

$$\begin{pmatrix} 0 & 1 & 3 & 5 & \underline{6} & 4 & \underline{7} \\ \infty & 0 & 2 & 4 & \underline{5} & 3 & \underline{6} \\ \infty & \infty & 0 & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & 0 & 1 & 2 & 2 \\ \infty & \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 & 5 \\ 1 & 2 & 4 & 6 & \underline{7} & 5 & 0 \end{pmatrix} \qquad \begin{pmatrix} \bot & 1 & 2 & 2 & \underline{4} & 3 & \underline{4} \\ \bot & \bot & 2 & 2 & \underline{4} & 3 & \underline{4} \\ \bot & \bot & \bot & \bot & \bot & \bot & 3 & \bot \\ \bot & 5 \\ \bot & 6 \\ 7 & 1 & 2 & 2 & \underline{4} & 3 & \bot \end{pmatrix}$$

Floyd-Warshall algorithm – example (Iteration k=5)

Labels d(i, j) and predecessors pred(i, j) (no change)

$$\begin{pmatrix} 0 & 1 & 3 & 5 & 6 & 4 & 7 \\ \infty & 0 & 2 & 4 & 5 & 3 & 6 \\ \infty & \infty & 0 & \infty & \infty & 1 & \infty \\ \infty & \infty & \infty & 0 & 1 & 2 & 2 \\ \infty & \infty & \infty & \infty & 0 & \infty & 3 \\ \infty & \infty & \infty & \infty & \infty & 0 & 5 \\ 1 & 2 & 4 & 6 & 7 & 5 & 0 \end{pmatrix} \qquad \begin{pmatrix} \bot & 1 & 2 & 2 & 4 & 3 & 4 \\ \bot & \bot & 2 & 2 & 4 & 3 & 4 \\ \bot & \bot & \bot & \bot & \bot & \bot & 3 & \bot \\ \bot & 5 \\ \bot & 6 \\ 7 & 1 & 2 & 2 & 4 & 3 & \bot \end{pmatrix}$$

Floyd-Warshall algorithm – example (Iteration k = 6)

Floyd-Warshall algorithm – example (Iteration k = 7)

$$\begin{pmatrix} 0 & 1 & 3 & 5 & 6 & 4 & 7 \\ 7 & 0 & 2 & 4 & 5 & 3 & 6 \\ 7 & 8 & 0 & \underline{12} & \underline{13} & 1 & 6 \\ \underline{3} & \underline{4} & \underline{6} & 0 & 1 & 2 & 2 \\ \underline{4} & \underline{5} & \underline{7} & \underline{9} & 0 & \underline{8} & 3 \\ \underline{6} & \underline{7} & \underline{9} & \underline{11} & \underline{12} & 0 & 5 \\ 1 & 2 & 4 & 6 & 7 & 5 & 0 \\ \end{pmatrix}$$

Shortest path problems References

R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, Englewood Cliffs, New Jersey, 1993. ISBN 0-13-617549-X.