DATA QUALITY II

Prof. Alexander Huth 3.3.2020

LAST TIME

- * Data = signal + noise
- * How much is signal, how much is noise?
- * What does it mean to be noise?
- * Repeatability!

LAST TIME

- * Methods for assessing repeatability
 - * Signal-to-noise ratio (SNR)
 - * Explainable variance (EV)
 - * Mean pairwise correlation (MPWC)
 - * Coherence spectrum

LAST TIME

- * Information trade-off problem
 - * You can sacrifice useful information to increase repeatability

- * Potential solution to information tradeoff problem: test how much information is in the data
- * Information about what?
- * Information about when each datapoint comes from in the stimulus

- 1. (Optional: temporally up-sample data)
- 2. Average n-1 repeats
- 3. In n'th repeat, take timepoint t^*
- 4. Decide which of T timepoints in average response best matches t^* (by correlation)

 $t \rightarrow$ channels N-1 repeats, averaged correlation time t* Nth repeat

 $t \rightarrow$ channels N-1 repeats, choose max in row averaged t^* correlation time t* Nth repeat

h/t James Gao, Anwar Nuñez

- * A measure of how much information there is about the stimulus in the measured responses
- * Perhaps a more absolute (& thus comparable) measure than repeatability

* Assume that our data was generated by a linear process with Gaussian noise:

$$y = X\beta_{true} + \epsilon$$

 $y = X \cdot beta_{true} + \epsilon$

* What's the best we could possibly do at predicting new data?

* Even if beta_true is known exactly, our best prediction would still be wrong

$$y = X\beta_{true} + \epsilon$$
$$\hat{y} = X\beta_{true}$$
$$y - \hat{y} = \epsilon$$

* We can reduce the effect of the noise by averaging multiple trials together

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = X \beta_{true} + \epsilon_N$$

\bar{y} = \frac{1}{N} = X \beta_{true} + \e

* But that only reduces noise, does not eliminate it

We can reduce the effect of the noise by averaging multiple trials together

$$\bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = X \beta_{true} + \epsilon_N$$

athcal{N}(0, \sigma^2) \mathcal{N}(0,

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$
 $\epsilon_N \sim \mathcal{N}(0, \frac{\sigma^2}{N})$

* Maximum predictive performance of a model is limited by size of noise, and thus by repeatability of the data

CC = \mbox{corr}(y, \hat{\frac{\mbox{cov}(y, \hat{\sqrt{\mbox{var}(y) \mbox{\hat{y})}}}

* Suppose we quantify predictive performance as the correlation between predicted and actual (averaged) responses

$$CC = \operatorname{corr}(y, \hat{y}) = \frac{\operatorname{cov}(y, \hat{y})}{\sqrt{\operatorname{var}(y)\operatorname{var}(\hat{y})}}$$

* Can we find *CCmax*, the maximum possible performance we should be able to get with our noisy data?

$$CC = \operatorname{corr}(y, \hat{y}) = \frac{\operatorname{cov}(y, \hat{y})}{\sqrt{\operatorname{var}(y)\operatorname{var}(\hat{y})}}$$

* Can we find *CCmax*, the maximum possible performance we should be able to get with our noisy data?

$$CC_{max} = \frac{1}{\sqrt{1 + \frac{1}{N}SNR^{-1}}}$$

CC_{max} = \frac{1}{ {N}SNR^{-1}}}

For derivation see Hsu et al. 2004, Schoppe et al., 2016

* Using CCmax, we can define the "normalized" correlation coefficient:

$$CC_{norm} = \frac{CC}{CC_{max}}$$

 $CC_{norm} = \frac{CC}{CC}$

* Using CCmax, we can define the "normalized" correlation coefficient:

CC_{norm} = \frac{\mbox \hat{y})}{\sqrt{\mbox{var}}

$$CC_{norm} = \frac{\text{cov}(y, \hat{y})}{\sqrt{\text{var}(\hat{y})SP}}$$

$$SP = \frac{1}{N-1} \left(N \operatorname{var}(y) - \frac{1}{N} \sum_{i=1}^{N} \operatorname{var}(y_i) \right)$$

"signal power": bias-corrected version of signal variance

- Many approaches:
 - Sahani & Linden (2003)
 - Hsu, Borst, & Theunissen (2004)
 - David & Gallant (2005)
 - Schoppe et al. (2016)
- All have problems with very noisy data (e.g. fMRI)

David 2005 method HBT 2004 method

- Recommended procedure given in:
 Schoppe, Harper, Willmore, King, & Schnupp (2016)
- (But there's room to improve on this!)

- * Knowing the noise ceiling is important
- * Because it can save you from being overly pessimistic

NEXT TIME

* Next time: model comparison!