

## Servomecanismos

# Trabalho 2 - Translação e rotação de objetos 2D

Mestrado Integrado em Engenharia Mecânica Mestrado em Engenharia de Automação Industrial

#### Objetivos

- (1) Familiarização com operações de translação e rotação de objetos 2D.
- 1 Rotações de segmentos de reta

Considere um segmento de reta limitado pelos pontos  $p_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$  e  $p_1 = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$ .

Pretende-se realizar a rotação deste segmento de reta no sistema cartesiano.

Pretende-se realizar a rotação deste segmento de reta no sistema cartesiano 2D.

- a) Visualizar o segmento de reta usando um script no Matlab.
- b) Implementar uma função que implementação a rotação de pontos 2D.

$$T = \begin{bmatrix} cos(\theta) & -sin(\theta) \\ sin(\theta) & cos(\theta) \end{bmatrix}$$

- c) Implementar as rotações de 45° e 90° ao segmento de reta.
- d) Implementar rotações de 1º ao segmento de reta de modo a visualizar a trajetória de  $p_1$  ao longo de um circulo centrado em  $p_0$  (Fig. 1).



Fig. 1. Trajetória de  $p_1$  centrado em  $p_0$ .

#### 2 Rotações e translações de polígonos 2D

Considere o polígono ilustrado da Fig. 2. Pretende-se realizar operações de translação e rotação deste segmento de reta no sistema cartesiano 2D.



Fig. 2. Polígono ao qual deverão ser implementadas operações de translação e rotação.

- a) Visualizar o polígono usando um script no Matlab.
- b) Implementar uma trajetória ao polígono definida como a rotação em torno da origem de  $0^{\rm o}$  a  $90^{\rm o}$  (Fig. 2).



Fig. 3. Trajetória a impor ao polígono de 0º a 90º.

c) Implementar uma trajetória ao polígono definida como ilustrado na Fig. 4, a qual consiste em: (i) rotações em torno da origem de  $0^{\rm o}$  a  $90^{\rm o}$ ; e (ii) rotações em torno de si mesmo de  $0^{\rm o}$  a  $180^{\rm o}$ .



Fig. 4. Trajetória a impor ao polígono 00° a 180°.

d) Implementar uma trajetória ao polígono definida pelo perímetro do quadrado, como ilustrado na Fig. 5. O movimento realiza-se por transições entre vértices. Deve ser realizada uma rotação de 90° quando o polígono atinge cada um dos vértices.



Fig. 5. Trajetória a impor ao polígono: perímetro do quadrado.

### Informação adicional

Este trabalho deve ser realizado por grupos de 2 alunos e tem a duração de uma aula.

Todos os ficheiros deverão ser compactados e enviados para o docente via Elearning até ao dia 6 de novembro de 2020. O nome do ficheiro compactado deve seguir a seguinte norma:  $Trabalho2\_[nmec1]\_[nmec2].rar$  (exemplo:  $Trabalho2\_01234\_56789.rar$ ).