Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik

SS 2010 8. April 2010

1. Übungsblatt zur "Mathematik II für Inf, WInf"

Gruppenübung

Aufgabe G1 (Lineare Unabhängigkeit)

Welche der folgenden Teilmengen von Vektoren aus \mathbb{R}^3 sind linear unabhängig und welche linear abhängig?

(a)
$$\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 2\\2\\1 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\}$$

(b)
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\}$$

(c)
$$\left\{ \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

Aufgabe G2 (Unterräume)

Betrachte den Vektorraum \mathbb{R}^2 . Welche der folgenden Teilmengen des \mathbb{R}^2 sind Unterräume:

- (a) Die Menge von Punkten der Geraden, die durch die Punkte (1,1) und (2,2) geht,
- (b) die Menge von Punkten der Geraden, die durch die Punkte (1,0) und (0,1) geht,
- (c) die Menge, die nur den Punkt (0,0) enthält,
- (d) die Menge von Punkten, deren Koordinaten beide positiv sind?

Aufgabe G3 (Orthonormalbasis)

Zeigen Sie, dass die Vektoren

$$v_1 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{pmatrix}, \quad v_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \quad \text{und} \quad v_3 = \begin{pmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ -\frac{1}{\sqrt{2}} \end{pmatrix},$$

eine orthonormierte Basis des \mathbb{R}^3 bilden. Stellen sie den Vektor

$$v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$$

als Linearkombination dieser Basisvektoren dar.

Aufgabe G4 (Erzeugendensystem)

Zeigen Sie, dass die Vektoren

$$v_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{und} \quad v_3 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

ein Erzeugendensystem des \mathbb{R}^2 bilden. Welche Teilmengen dieser drei Vektoren bilden eine Basis?

Hausübung

Aufgabe H1 (Unterräume)

(6 Punkte)

- (a) Welche der folgenden Mengen sind Unterräume des \mathbb{R}^n :
 - i. $\{x \in \mathbf{R}^n \mid x_1 = a\} \ (a \in \mathbf{R}),$
 - ii. $\{x \in \mathbf{R}^n \mid x_1 = 0\} \cup \{x \in \mathbf{R}^n \mid x_2 = 0\},\$
 - iii. $\{x \in \mathbf{R}^n \mid x_1 = 0\} \cap \{x \in \mathbf{R}^n \mid x_2 = 0\},\$
 - iv. $\{x \in \mathbf{R}^n \mid |x| = 1\}$?
- (b) Seien U und W Unterräume eines Vektorraums V. Beweise oder widerlege:
 - i. Der Schnitt $U \cap W$ ist ein Unterraum von V.
 - ii. Die Vereinigung $U \cup W$ ist ein Unterraum von V.