Определение 1. Число a называют $npedenom\ nocnedoвameльности\ (x_n)$, если (x_n) можно представить в виде $x_n = a + \alpha_n$, где (α_n) — бесконечно малая последовательность. Обозначение: $\lim_{n \to \infty} x_n = a$. Говорят также, что (x_n) стремится κ a npu n, стремящемся κ бесконечности (и пишут $x_n \to a$ при $n \to \infty$).

Задача 1. Может ли последовательность иметь более одного предела?

Задача 2. Найдите предел (x_n) , если он есть: **a)** $x_n = 1 + (-0,1)^n$; **б)** $x_n = \frac{n}{n+1}$; **в)** $x_n = (-1)^n$;

$$\mathbf{r}$$
) $x_n = \frac{2^n - 1}{2^n + 1}$; д) $x_n = 1 + 0, 1 + \dots + (0, 1)^n$; **e**) $x_n = \frac{1 + 3 + \dots + 3^n}{5^n}$; ж) $x_n = \sqrt{n + 1} - \sqrt{n}$.

Определение 2. Окрестность точки a — это любой интервал, содержащий точку a. Обозначение: $\mathcal{U}(a)$.

Задача 3. Докажите, что любые две точки на прямой имеют непересекающиеся окрестности.

Определение 3. Число a называют *пределом последовательности* (x_n) , если в любой окрестности числа a содержатся *почти все* члены (x_n) (то есть все, кроме конечного числа).

Определение 4. Число a называют $npedenom\ nocnedoвательности\ (x_n)$, если для всякого числа $\varepsilon > 0$ найдётся такое число N, что при любом натуральном k > N будет выполнено неравенство $|x_k - a| < \varepsilon$.

Задача 4. Докажите эквивалентность определений 1, 3 и 4.

Задача 5. Запишите без отрицания: **a)** «число a не предел (x_n) »; **б)** « (x_n) не имеет предела».

Задача 6. $\lim_{n\to\infty}(x_n)>0$. Верно ли, что **a)** $x_n>0$ при $n\gg 0$; **б)** $(1/x_n)$ ограничена (если определена)?

Задача 7. Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$. Найдите **a)** $\lim_{n\to\infty} x_n \pm y_n$; **6)** $\lim_{n\to\infty} x_n \cdot y_n$.

в) Что можно сказать о $\lim_{n\to\infty} x_n/y_n$?

Задача 8. Найти предел $(n \to \infty)$: а) $1+q+\ldots+q^n$, где |q|<1; б) $\frac{n^2-n+1}{n^2}$; в) $\sqrt[n]{2}$; г) $\frac{n^{50}}{2^n}$; д) $\sqrt[n]{n}$.

Задача 9. Может ли последовательность без наименьшего и наибольшего членов иметь предел?

Задача 10. а) Последовательность (x_n) имеет предел. Докажите, что $(x_{n+1} - x_n)$ бесконечно малая. **б)** Верно ли обратное?

Задача 11. Последовательность (x_n) положительна, а последовательность (x_{n+1}/x_n) имеет пределом некоторое число, меньшее 1. Докажите, что (x_n) бесконечно малая.

Задача 12. Найдите: а) $\lim_{n\to\infty}\frac{4n^2}{n^2+n+1}$ б) $\lim_{n\to\infty}\frac{n^2+2n-2}{n^3+n}$; в) $\lim_{n\to\infty}\frac{n^9-n^4+1}{2n^9+7n-5}$; г) $\lim_{n\to\infty}\frac{C_n^{50}}{n^{50}}$.

Задача 13. Найдите ошибку в рассуждении: «Пусть $x_n = (n-1)/n$. Тогда $\lim_{n \to \infty} x_n = \lim_{n \to \infty} (1-1/n) = 1$. С другой стороны, $\lim_{n \to \infty} x_n = \lim_{n \to \infty} (1/n) \cdot \lim_{n \to \infty} (n-1) = 0 \cdot \lim_{n \to \infty} (n-1) = 0$. Отсюда 0 = 1.»

Задача 14. Пусть $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$ и $x_n > y_n$ при $n \in \mathbb{N}$. Верно ли, что **a)** a > b; **б)** $a \geqslant b$?

Задача 15. Обобщите теорему о двух милиционерах из листка 16 на последовательности, имеющие предел.

Задача 16. Пусть $\lim_{n\to\infty} x_n = 1$. Найти а) $\lim_{n\to\infty} \frac{x_n^2}{7}$; б) $\lim_{n\to\infty} \frac{x_n^2 + x_n - 2}{x_n - 1}$; в) $\lim_{n\to\infty} \sqrt{x_n}$.

Задача 17. а) Дана фигура, ограниченная графиком функции $y=x^2$, осью Ox и прямой x=1. Разобьём отрезок [0,1] на n равных частей и построим на каждой части прямоугольник так, чтобы его правая верхняя вершина лежала на графике (см. рис. справа). Сумму площадей прямоугольников обозначим S_n . Найдите предел (S_n) при $n\to\infty$.

б) Построим прямоугольники так, чтобы их левые верхние вершины лежали на графике. Сумму их площадей обозначим s_n . Докажите, что (s_n) стремится к тому же числу, что и (S_n) (его естественно считать nлощадью нашей фигуры).

в)* Решите ту же задачу для функции $y = x^k$, где $k \in \mathbb{N}$.

1	$\begin{vmatrix} 2 \\ a \end{vmatrix}$	2 6	2 B	2 Г	2 д	2 e	2 ж	3	4	5 a	5	6 a	6	7 a	7 6	7 B	8 a	8 6	8 B	8 Г	8 Д	9	10 a	10 б	11	12 a	12 б	12 B	12 Г	13	14 a	14 б	15	16 a	16 б	16 B	17 a	17 б	17 B