Fyzikální praktikum 1 FJFI ČVUT v Praze

09 - Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem

Jméno: Simona Velichová

Datum měření: 3. 10. 2022

Číslo skupiny: 8 - pondělí 14:00

Doba vypracování: 12 h

Klasifikace:

1 Pracovní úkoly

1. DÚ: V přípravě odvoď te vztah (6)

- 2. Pomocí kompenzátoru ocejchujte stupnici voltmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 3. Pomocí kompenzátoru ocejchujte stupnici miliampérmetru (cejchujte v celém rozsahu stupnice). Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 4. Pomocí kompenzátoru ocejchujte odporovou dekádu. Měření proveďte pro 1é hodnot v rozsahu 100 1000 Ω . Pro 10 naměřených hodnot sestrojte kalibrační křivku a vyneste ji do grafu.
- 5. Rozšiřte rozsah miliampérmetru dvakrát a určete jeho vnitřní odpor R_0 . Měření proveďte pro 10 různých nastavení obvodu, t.j. pro 10 různých proudů.
- 6. Rozšiřte rozsah voltmetru dvakrát a určete jeho vnitřní odpor. měření proveďte pro 10 různých nastavení obvodů, t.j. 10 různých napětí.
- 7. Při zpracování výsledků z měření vnitřních odporů vezměte v úvahu výsledky získané cejchováním stupnic voltmetru, miliampérmetru a odporové dekády a proveďte korekci naměřených hodnot. Diskutujte rozdíl mezi výsledkem získaným bez korekce a s korekcí.

2 Použité přístroje a pomůcky

Miliampérmetr, voltmetr, zdroj 0-20 V, odporová dekáda, reostaty 155 Ω a 6 000 Ω , dva vypínače, multimetr, odporové normály 100 Ω , 1 000 Ω a 10 000 Ω , technický kompenzátor QTK Metra, Westonův normální článek, vodiče.

3 Teoretický úvod

3.1 Kompenzační metoda

Kompenzační metoda se obvykle používá pro přesné měření elektromotorických napětí zdrojů se stejnosměrným proudem. Hlavním přístrojem je kompenzátor, pomocí kterého lze určit nulový proud v obvodu na galvanometru, čímž se následně určí neznámí proud a napětí. Využívá se zde faktu, že indikovat nulový proud v obvodu lze s větší přesností, než jakoukoli absolutní nenulovou hodnotu. Kompenzátor navíc nezatěžuje zdroj proudem a také díky předchozímu poznatku je velmi přesný.

Před měřením je třeba kompenzátor zkalibrovat pomocí Westonova normálního článku, který se používá k jako normál elektromotorického napětí. Při teplotě $t=20^{\circ}\mathrm{C}$ má hodnotu $U_{20}=1,\,01865$ V. [2] Článek má dlouhodobě stabilní napětí dané vztahem

$$U_t = U_{20} - 4,06(t - 20)10^{-5} - 0,95(t - 20)^2 10^{-6}.$$
 (1)

Mezi napětím U, elektrickým odporem R a proudem I platí obecně známý Ohmův zákon:

$$U = RI \tag{2}$$

4 Postup měření

Před začátkem měření kompenzátor zkalibrujeme Westonovým normálním článkem, jenž připojíme ke svorkám kompenzátoru označených U_N . Toto provádíme za účelem přesného nastavení pomocného proudu. S článkem manipulujeme se zvýšenou opatrností. Zároveň si zapíšeme teplotu v místnosti pro následný výpočet napětí U_t podle vztahu (1) a v průběhu hlídáme stálost pomocného proudu během měření.

Po připojení článku přepneme spínač na U_N a galvanometr odaretujeme. Seřídíme ho tak, aby ukazoval nulu. Nejprve konfigurujeme spínačem a otáčením "hrubě", poté spínačem a otáčením "jemně" dokud nebude výchylka nulová. Po úspěšném provedení odpojíme Westonův článek a muůžeme začít s měřením.

Princip práce s kompenzátorem spočívá v tom, že na svorky označené U_X připojíme vodiče spojující obvod a spínač přepneme na příslušné U_X . Galvanometr musí ukazovat nulovou výchylku, proto manipulujeme s otočnými knoflíky, dokud toho nedocílíme. Kompletní a důkladný návod pro operování s kompenzátorem najdeme v Návodech k přístrojům [2].

4.1 Cejchování voltmetru

Pracujeme se schématem na Obr.5(a). Používáme zdroj stejnosměrného napětí o 10 V. Na svorky voltmetru dáváme pomocí reostatu R_1 o 115 Ω různá stejnosměrná napětí. Na kompenzátoru nastavíme rozsah na 15 V. Hodnotu napětí U_v na voltmetru odečteme a prostřednictvím kompenzátoru určujeme korektní hodnotu napětí U_x . Měření provedeme tímto způsobem desetkrát pro deset různých hodnot napětí.

4.2 Cejchování ampérmetru

V tomto případě používáme schéma na Obr.5(b). Postupujeme obdobně jako u předchozího voltmetru. Reostatem a měnitelným zdrojem si nastavujeme počáteční hodnotu proudu, kterou odečteme z miliampérmetru. Hodnotu napětí U_x na kompenzátoru si zapíšeme. Používáme zde odporový normál o hodnotě $R_N=1~000~\Omega$. Samotnou hodnotu měrného proudu určíme vztahem

$$I_x = \frac{U_x}{R_N}. (3)$$

kde I_x je měrný proud, U_x úbytek napětí a R_N odporový normál. Měření provedeme tímto způsobem desetkrát pro deset různých hodnot proudu.

4.3 Cejchování dekády

Nyní pracujeme se zapojením na Obr.5(c). Dbáme na to, aby v průběhu měření protékala stejná hodnota proudu I. Upravujeme ho pomocí reostatu R_1 o 6 000 Ω . Používáme dva různé odporové normály R_N , tzn. pro hodnoty R_X v intervalu 100-400 Ω využijeme R_N o hodnotě 100 Ω , kdežto pro interval 500-10 000 Ω využijeme R_N o hodnotě 1 000 Ω . Měříme napětí U_X na kompenzátoru a po přepnutí spínače napětí U_N na odporovém normálu. Poměr napětí na obou odporech je roven poměru hodnot příslušných odporů.

Odtud máme vzorec pro výsledný skutečný odpor

$$R = \frac{U_X}{U_N} R_N. (4)$$

kde R je skutečný odpor
, U_X napětí na kompenzátoru. U_N napětí na odporovém normálu
a R_N odporový normál.

4.4 Rozšíření rozsahu miliampérmetru

Stupnici miliampérmetru rozšiřujeme dvakrát. Pracujeme s obvodem na Obr.6(a). Pomocí reostatu a měnitelného zdroje nastavujeme počáteční hodnotu proudu, kterou následně odečteme z ampérmetru. Snažíme se s proudem pohybovat v poslední třetině stupnice. Měření opakujeme desetkrát pro deset různých hodnot proudu.

Potřebujeme-li změnit rozsah ampérmetru n-krát, pak pro odpor platí

$$R_d = \frac{R_0}{n-1} \tag{5}$$

kde R_0 je vnitřní odpor ampérmetru, R_d je odpor dekády a n je kolikrát byl ampérmetr rozšířen.

4.5 Rozšíření rozsahu voltmetru

Stupnici voltmetru rozšiřujeme dvakrát. Pracujeme s obvodem na Obr.6(b). Zapojíme spínač a prostřednictvím reostatu a měnitelného zdroje nastavujeme hodnotu napětí, kterou odečteme z voltmetru. Opět se s proudem snažíme pohybovat v poslední třetině stupnice. Měření opakujeme desetkrát pro deset různých hodnot napětí.

Podobně jako u ampérmetru lze snadno odvodit vztah pro vnitřní odpor voltmetru

$$R_V = \frac{R_d}{n-1} \tag{6}$$

kde R_V je vnitřní odpor voltmetru, R_d je odpor dekády a n je kolikrát byl voltmetr rozšířen.

5 Vypracování

Teploměr v místnosti ukazoval teplotu t=21.5 °C. Podle vztahu (1) bylo dopočteno napětí Westonova normálního článku na $U_{21,5}=1.0179$ V. Chybu kompenzátoru bereme jako nejmenší díl stupnice tj. 0,1 mV. Domácí úkol (pracovní úkol číslo 1) je na Obr.4 v příloze.

5.1 Cejchování voltmetru

Naměřené hodnoty napětí na kompenzátoru U_x byly porovnány s hodnotami napětí U_v , které ukazoval voltmetr. Tyto hodnoty byly zpracovány do grafu na Obr.1 a proloženy lineárním fitem funkce $U_x = U_v \cdot \mathbf{x} + \mathbf{b}$. Tímto byla sestrojena kalibrační křivka

$$U_x = 0.979(\pm 0.002) \cdot U_v - 1.041(\pm 0.012) \tag{7}$$

kde parametry byly i s jejich chybami určeny programem Python. Tímto byla nalezena kalibrační rovnice, z níž byly zjištěny hodnoty korigovaného napětí. Chybu voltmetru bereme jako nejmenší díl stupnice tj. 0,2 V.

U_v [V]	U_x [V]
1	0,929
2	1,894
3	2,894
4	3,891
5	4,883
6	5,848
7	6,812
8	7,780
9	8,743
10	9,756

hodnoty napětí na voltmetru U_v a na kompenzátoru U_x .

Obr. 1: Kalibrační křivka závislosti skutečného napětí U_x na neměřených hodnotách napětí na voltmetru U_v .

5.2Cejchování ampérmetru

Odporový normál R_N byl pro všech deset měření 1 000 Ω . Hodnoty měrného proudu I_x vypočteného ze vztahu (3) byly porovnány s hodnotami proudu I_a , které ukazoval miliampérmetr. Tyto hodnoty byly zpracovány do grafu na Obr.2 a proloženy lineárním fitem funkce $I_x = I_a \cdot \mathbf{x} + \mathbf{b}$. Tímto byla sestrojena kalibrační křivka

$$I_x = 1,061(\pm 0,009) \cdot I_a - 0,988(\pm 0,005)$$
 (8)

kde parametry byly i s jejich chybami určeny programem Python. Tímto byla nalezena kalibrační rovnice, z níž byly zjištěny hodnoty korigovaného proudu. Chybu miliampérmetru bereme jako nejmenší díl stupnice tj. 0,02 mA.

I_a [mA]	U_x [V]	I_x [mA]
0,1	0,1107	0,1107
0,2	0,2164	0,2164
0,3	0,3311	0,3311
0,4	0,4376	0,4376
0,5	0,5500	0,5500
0,6	0,6583	0,6583
0,7	0,7626	0,7626
0,8	0,8669	0,8669
0,9	0,9627	0,9627
1,0	1,0583	1,0583

Naměřené hodnoty napětí na kompenzátoru U_x a I_a . vypočteného měrného proudu I_x podle vztahu (3).

Obr. 2: Kalibrační křivka závislosti skutečného proudu proudu na miliampérmetru I_a , I_x na neměřených hodnotách proudu na miliampérmetru

5.3 Cejchování dekády

Odporový normál R_N byl pro všech první čtyři měření 100 Ω , pro zbylých šest poté 1 000 Ω . Hodnoty odporu na odporové dekádě R_X byly společně s hodnotami napětí na kompenzátoru pro odporovou dekádu U_X a hodnotami napětí pro normálu U_N zaznamenány do tabulky Tab.3. Skutečný odpor R byl získán ze vztahu (4). Výsledné odpory byly zpracovány do grafu na Obr.3 a proloženy lineárním fitem funkce $R = R_X \cdot \mathbf{x} + \mathbf{b}$. Tímto byla sestrojena kalibrační křivka

$$R = 1,0002(\pm 0,0006) \cdot R_X + 0,2606(\pm 0,4232) \tag{9}$$

kde parametry byly i s jejich chybami určeny programem Python. Tímto byla nalezena kalibrační rovnice, z níž byly zjištěny hodnoty korigovaného odporu. Chybu odporové dekády bereme jako nejmenší možnou hodnotu tj. $0.1~\Omega.$

$R_X [\Omega]$	U_X [V]	$R_N [\Omega]$	U_N [V]	$R\left[\Omega\right]$
100	0,0603	100	0,0597	101,01
200	0,1189	100	0,0592	200,84
300	0,1789	100	0,0591	302,71
400	0,2365	100	0,0590	400,85
500	0,2942	1000	0,5862	501,88
600	0,3555	1000	0,5912	601,32
700	0,4142	1000	0,5908	701,08
800	0,4748	1000	0,5926	801,21
900	0,5349	1000	0,5935	901,26
1000	0,5927	1000	0,5915	1002,03

Tab. 3: Hodnoty odporu na dekádě R_X , naměřené napětí na kompenzátoru pro odporovou dekádu U_X , odporový normál R_N , naměřené napětí na kompenzátoru pro odporový normál U_N a skutečný odpor R vypočten ze vztahu (4).

Obr. 3: Kalibrační křivka závislosti skutečného odporu R na hodnotách odporu na odporové dekádě R_X .

5.4 Rozšíření rozsahu miliampérmetru

Stupnici miliampérmetru jsme rozšířily dvakrát, tzn. n=2. Proto použitím vzorce (5) dostaneme rovnost $R_d=R_0$. Naměřené a dopočtené hodnoty jsou zaznamenány v Tab.4. Z naměřené hodnoty proudu na miliampérmetru I byl určen rozšířený proud I_r . Ze vztahu (8) byl spočten korigovaný proud I_k , z čehož byl dále určen korigovaný rozšířený proud I_{kr} . Dále použitím vzorce (5) byl vypočítán vnitřní odpor miliampérmetru R_0 , a nakonec korigovaný vnitřní odpor miliampérmetru R_0 , pomocí vzorce (9).

Aritmetickým průměrem byl následně získán jak výsledný vnitřní odpor miliampérmetru R_0 , tak korigovaný vnitřní odpor miliampérmetru R_{0k} včetně odchylek. Tyto veličiny byly stanoveny na $R_0=(113,51\pm0,88)~\Omega$ a $R_{0k}=(113,77\pm0,88)~\Omega$.

I [mA]	I_r [mA]	$I_k [\mathrm{mA}]$	I_{kr} [mA]	$R_0 [\Omega]$	$R_{0r} [\Omega]$
0,60	0,30	0,54	0,27	111,0	111,26
0,65	0,33	0,59	0,30	113,5	113,76
0,70	0,35	0,64	0,32	111,0	111,26
0,75	0,38	0,70	0,35	108,3	108,56
0,80	0,40	0,75	0,37	112,6	112,86
0,85	0,43	0,80	0,40	116,4	116,66
0,90	0,45	0,86	0,43	115,0	115,26
0,94	0,47	0,90	0,45	116,2	116,46
0,96	0,48	0,92	0,46	115,1	115,36
1,00	0,50	0,96	0,48	116,0	116,26

Tab. 4: Tabulka naměřených a vypočtených hodnot. Zleva naměřený proud na miliampérmetru I, rozšířený proud I_r , korigovaný proud vypočtený pomocí vztahu (8) I_r , korigovaný rozšířený proud I_{kr} , vnitřní odpor miliampérmetru vypočtený pomocí vzorce (5) R_0 , korigovaný vnitřní odpor miliampérmetru vypočtený pomocí vzorce (9) R_{0r} .

5.5 Rozšíření rozsahu voltmetru

Stupnici voltmetru jsme rozšířily dvakrát, tzn. n=2. Proto použitím vzorce (6) dostaneme rovnost $R_V=R_d$. Neměřené a dopočtené hodnoty jsou zaznamenány v Tab.5. Neměřené a dopočtené hodnoty jsou zaznamenány v Tab.5. Z naměřené hodnoty napětí na voltmetru U bylo určeno rozšířené napětí U_r . Ze vztahu (7) bylo spočteno korigované napětí U_k , z čehož bylo dále určeno korigované rozšířené napětí U_{kr} . Dále použitím vzorce (6) byl vypočítán vnitřní odpor voltmetru R_V , a nakonec korigovaný vnitřní odpor voltmetru R_{Vk} pomocí vzorce (9).

Aritmetickým průměrem byl následně získán jak výsledný vnitřní odpor voltmetru R_V , tak korigovaný vnitřní odpor voltmetru R_{Vk} včetně odchylek. Tyto veličiny byly stanoveny na $R_V=(3869\pm 19)~\Omega$ a $R_{Vk}=(3870\pm 19)~\Omega$.

U [V]	U_r [V]	U_k [V]	U_{kr} [V]	$R_V [\Omega]$	$R_{Vk} [\Omega]$
6,0	3,00	5,77	2,88	3800	3801,02
6,5	3,25	5,32	2,66	3830	3831,03
7,0	3,50	5,81	2,91	3880	3881,04
7,5	3,75	6,30	3,15	3900	3901,04
8,0	4,00	6,79	3,40	3920	3921,04
8,5	4,25	7,28	3,64	3930	3931,05
9,0	4,50	7,77	3,89	3970	3971,05
9,4	4,70	8,16	4,08	3810	3811,02
9,6	4,80	8,36	4,18	3790	3791,02
10,0	5,00	8,75	4,37	3860	3861,03

Tab. 5: Tabulka naměřených a vypočtených hodnot. Zleva naměřené napětí na voltmetru U, rozšířené napětí U_r , korigované napětí vypočtené pomocí vztahu (7) U_r , korigované rozšířené napětí $U_k r$, vnitřní odpor voltmetru vypočtený pomocí vzorce (6) R_V , korigovaný vnitřní odpor voltmetru vypočtený pomocí vzorce (9) $R_0 r$.

6 Diskuze

Před měřením v průběhu kalibrace kompenzátoru pomocí Westonova normálního článku bylo důležité zjistit teplotu v místnosti pro určení napětí U_t . Teploměr se však nacházel ve druhé místnosti a ukazoval 21,5 °C. V průběhu měření jsme si povšimly chladnějšího vzduchu v měřící místnosti, jehož teplotu spíše odhadujeme na srovnatelnou s venkovní, která se v den měření pohybovala přibližně mezi 17 °C a 19 °C. Bohužel jsme teplotu v naší místnosti, tedy ve větší blízkosti Westonova článku nezměřily, a tak se jedná o pouhou úvahu. Lze předpokládat, že výsledné U_t by se pravděpodobně lišilo v řádu setin až tisícin.

6.1 Cejchování přístrojů

Při cejchování miliampérmetru, voltmetru a odporové dekády jsme od naměřených a následně vypočítaných výsledků očekávaly téměř jistou lineární závislost, která se potvrdila. Nabízí se otázka, zda by nebylo lepší data fitovat pomocí funkce typu $y=a\cdot x$, kde by nevystupoval konstantní člen, vzhledem k tomu, že při nulovém proudu a napětí přístroje ukazovali nulovou výchylku, tedy v bodě nula by hodnota funkce byla taktéž nulová. Ve všech kalibračních křivkách však vystupují nenulové konstantní členy, kde u rovnic (7) a (8) mají zápornou hodnotu, kdežto u (9) má konstantní člen hodnotu kladnou. To znamená, že měření mohlo být ovlivněno jistými okolními jevy, či zde mola svou roli sehrát přesnost použitého přístroje. Nelze vyloučit nedokonalost kalibrace kompenzátoru, jenž by mohla vést k posunu kalibračních křivek.

6.2 Rozšíření rozsahu miliampérmetru

Porovnáním výsledných hodnot vnitřního odporu miliampérmetru $R_0 = (113,51 \pm 0,88) \Omega$ s korigovaným vnitřním odporem miliampérmetru $R_{0k} = (113,77 \pm 0,88) \Omega$ vidíme, že se liší v řádu desetin a setin. Výsledné hodnoty mohla ovlivnit nepřesnost nastavení hodnoty proudu na ampérmetru, jenž se nastavovala ručně. Nemělo by se však jednat o zásadní chybu.

6.3 Rozšíření rozsahu voltmetru

Porovnáním výsledných hodnot vnitřního odporu voltmetru $R_V=(3869\pm19)~\Omega$ s korigovaným vnitřním odporem voltmetru $R_{Vk}=(3870\pm19)~\Omega$ můžeme ihned konstatovat, že se od sebe příliš neliší. Stejně jako v předchozím případě u rozšiřování rozsahu miliampérmetru, mohly nastat nepatrné odchylky při nastavování hodnoty napětí na zdroji, což se opět provádělo ručně. I zde by se nemuselo jednat o zásadní chybu.

7 Závěr

Vyzkoušely jsme si práci s jednoduchými elektrickými obvody. Pomocí kompenzátoru jsme ocejchovaly stupnici voltmetru, miliampérmetru a odporovou dekádu. Pro deset různých hodnot jsme u každého přístroje sestavily kalibrační křivku, kterou jsme následně vynesly do grafů.

Pro voltmetr jsme určily kalibrační křivku jako

$$U_x = 0.979(\pm 0.002) \cdot U_v - 1.041(\pm 0.012)$$

jejíž graf je na Obr.1.

Pro miliampérmetr jsme určily kalibrační křivku jako

$$I_x = 1,061(\pm 0,009) \cdot I_a - 0,988(\pm 0,005)$$

jejíž graf je na Obr.2.

Pro odporovou dekádu jsme určily kalibrační křivku jako

$$R = 1,0002(\pm 0,0006) \cdot R_X + 0,2606(\pm 0,4232)$$

jejíž graf je na Obr.3.

Dále jsme rozšířily rozsah miliampéru a voltmetru dvakrát a stanovily jejich vnitřní odpory. Naměřené a vypočtené hodnoty jsou uvedeny v Tab.4 a Tab.5.

Vnitřní odpor miliampéru bez korigování jsme určily jako $R_0=(113.51\pm0.88)~\Omega$ a s korigováním jako $R_{0k}=(113.77\pm0.88)~\Omega$.

Vnitřní odpor voltmetru bez korigování jsme určily na $R_V=(3869\pm 19)~\Omega$ a s korigováním na $R_{Vk}=(3870\pm 19)~\Omega.$

Literatura

- [1] Kolektiv KF. Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem [online]. [cit. 2022-10-05]. Dostupné z: ttps://moodle-vyuka.cvut.cz/pluginfile.php/543643/modresource/content/13/rozsireni170928.pdf
- $[2] \ \ Kolektiv \ \ KF. \ \ N\'{a}vody \ \ k \ \ p\~r\'{i}stroj \mathring{u}m \ \ 1 \ \ [online]. \ \ [cit. \ 2022-10-07]. \ \ Dostupn\'{e} \ \ z: \ \ https://moodle-vyuka.cvut.cz/pluginfile.php/543507/modfolder/content/0/N%C3A1vody%20k%20p%C5%99%C3%ADstroj%C5%AFm/N^2C5\%AFm/N^2C5\%AFm/N^2C5\%AFm/N^2C5\%AFm/N^2C5\%AFm/N^2C5\%AFm/N^2C5\%AFm/$

Příloha

8 Domácí úkol

Obr. 4: Odvození vztahu (6)

9 Schéma zapojení

9.1 Cejchování přístrojů

Obr. 5: Příslušná schémata zapojení obvodu k cejchování pro voltmetr, ampérmetr a odporovou dekádu. Převzato z [1].

9.2 Rozšíření stupnice přístrojů

Obr. 6: Příslušná schémata zapojení obvodu k rozšíření stupnice ampérmetru a voltmetru. Převzato z [1].