CENTRO DE ESTATÍSTICA APLICADA - CEA - USP

RELATÓRIO DE CONSULTA

TÍTULO DO PROJETO: "Estudo das emissões otoacústicas em recém-nascidos pré-

termo".

PESQUISADOR: Christiane Boari Brandina

ORIENTADORA: Renata M. M. Carvalho

INSTITUIÇÃO: Faculdade de Medicina da Universidade de São Paulo

FINALIDADE DO PROJETO: Mestrado

PARTICIPANTES DA ENTREVISTA: Christiane Boari Brandina

Renata M. M. Carvalho

Antonio Carlos Pedroso Lima

Carmen Diva Saldiva

Rogério Ruscitto do Prado

DATA: 27/11/2001

FINALIDADE DA CONSULTA: Planejamento do experimento e orientação sobre

dimensionamento amostral.

RELATÓRIO ELABORADO POR: Rogério Ruscitto do Prado

1. Introdução

Todos os indivíduos sadios apresentam funcionamento constante do sistema auditivo, porém os testes realizados para verificação da audição consistem em fornecer um estímulo ao ouvido e medir a correspondente intensidade de resposta a este estímulo.

Com a realização do estudo a pesquisadora visa comparar a capacidade auditiva em recém-nascidos a termo e pré-termo através de emissões espontâneas, em que não há estímulo para obtenção da uma resposta.

O objetivo da consulta é discutir o planejamento do experimento e determinar o dimensionamento da amostra.

2. Descrição do Estudo

Serão considerados os recém-nascidos a termo com emissões transientes presentes (resposta positiva ao teste com estímulos) e recém-nascidos pré-termo ouvintes, que estiverem internados em maternidades públicas da cidade de São Paulo ainda não determinadas.

Todos os recém-nascidos serão submetidos ao aparelho que mede as emissões otoacústicas, podendo ou não apresentar respostas.

Os bebês serão acompanhados por um determinado período de tempo e serão registradas a presença ou não de emissões espontâneas. No caso de presença, serão medidas a freqüência e a amplitude dessas emissões.

O mesmo bebê pode apresentar mais de uma emissão espontânea, pois serão realizadas as medições em ambos os ouvidos e cada faixa de freqüência corresponde a uma determinada região da cóclea. Assim o recém-nascido pode apresentar diversas regiões com emissões.

O aparelho que faz as medidas de freqüência e amplitude as registra de forma gráfica.

A Figura 1 ilustra uma possível resposta do aparelho para um dos ouvidos de um recém-nascido.

Figura 1: Resposta gráfica do aparelho de emissões otoacústicas para um ouvido de um recém-nascido.

3. Variáveis do Estudo

- Dados pessoais;
- Idade gestacional (semanas);
- Medidas de freqüência (Hz);
- Medidas de amplitude (dB);
- Presença da emissão.

4. Situação do Projeto

O projeto está em fase de planejamento.

5. Sugestão do CEA

Foi sugerido à pesquisadora procurar definir faixas de freqüências que correspondam a determinadas regiões da cóclea e registrar o número de emissões obtidas em cada faixa e orelha, a fim de comparar os grupos e orelhas quanto à distribuição das emissões espontâneas.

Os dados devem ser organizados em um formato de planilha para registro dos dados, em que cada recém-nascido deve ser registrado em uma linha e cada variável correspondente ao mesmo em uma coluna. A Figura 5.1 ilustra um possível formato para essa planilha.

Figura 5.1: Planilha de registro dos dados.

			Ouvido direito			Ouvido esquerdo					
Recém-nascido	Idade gestacional	Presença de emissões	Freqüência 1	Amplitude 1	Freqüência 2	Amplitude 2 .	Freqüência 1	Amplitude 1	Freqüência 2	Amplitude	2
1	37	Sim	4700	-2,4	3200	3,7	1800	-5,5			

Em anexo seguem exemplos de dimensionamentos amostrais baseados na proporção de presença e ausência de emissões otoacústicas e na freqüência média em que foram obtidas as maiores amplitudes na amostra já coletada.

6. Conclusão

A pesquisadora deve definir as regiões da cóclea referentes às faixas de freqüências e coletar o número de emissões otoacústicas em cada região, bem como a amplitude de cada emissão.

Caso os dados já estejam todos coletados e devidamente armazenados em uma planilha até o final de junho de 2002, sugere-se submeter o trabalho para a triagem para ser analisado no segundo semestre de 2002.

Bibliografia

FISHER, L. D. and van BELLE, G. (1993). **Bioestatistics – A Methodology For Health Sciences.** New York: John Wiley & Sons. 991p.

ROCHON, J. (1989). The Application of the GSK Method to the Determination of Minimum Sample Sizes. **Biometrics**, **45**, 193-205.

Anexo

Os dimensionamentos amostrais são referentes ao número de recém-nascidos, desconsiderando o ouvido em que ocorrem as emissões.

Dimensionamento amostral baseado na proporção de presença e ausência de emissões otoacústicas (ver Rochon, 1989).

$$\begin{split} \boldsymbol{n}_{i} &= \frac{\lambda_{0}[\boldsymbol{p}_{1}(1 - \boldsymbol{p}_{1}) + \boldsymbol{p}_{2}(1 - \boldsymbol{p}_{2})]}{(\boldsymbol{p}_{1} - \boldsymbol{p}_{2})^{2}} \\ \boldsymbol{\lambda}_{0} &= (\boldsymbol{z}_{1 - \%} + \boldsymbol{z}_{1 - \beta})^{2} \end{split}$$

Onde:

n_i: número de recém-nascidos necessário no grupo i;

p₁: proporção de recém-nascidos em que estão presentes as emissões para o grupo a termo;

p₂: proporção de recém-nascidos em que estão presentes as emissões para o grupo pré-termo;

 $z_{1-\alpha/2}$: é o quantil de ordem 1 - $\alpha/2$ da distribuição normal padrão (α é o nível de significância do teste de igualdade de duas proporções);

 $z_{1-\beta}$: é o quantil de ordem 1 – β da distribuição normal padrão (1 – β é o poder do teste);

d: diferença entre as proporções que se pretende detectar.

Na Tabela 1 estão alguns exemplos de dimensionamentos baseados na proporção de presença e ausência de emissões otoacústicas.

Tabela 1: Exemplo de dimensionamento para alguns valores de p_1 , p_2 , α e 1- β .

Confianca	Poder	ni				
$(1 - \alpha)$	(1 - β)	p ₁ =0,5 e p ₂ =0,45	p ₁ =0,5 e p ₂ =0,40	p ₁ =0,5 e p ₂ =0,30		
95%	95%	2586	637	149		
95%	90%	2091	515	121		
90%	95%	2154	530	124		
90%	90%	1704	420	98		
95%	80%	1562	385	90		
90%	80%	1230	303	71		

Na Tabela 1 vemos que são necessários 637 recém-nascidos em cada grupo para detectar uma diferença de 0,1 na proporção de presença e ausência de emissões com 95% de confiança e 95% de poder.

Dimensionamento amostral baseado na frequência média para os maiores valores de amplitude (ver Fisher e Belle, 1993).

$$n_{i} = \frac{2(z_{1-\frac{\alpha}{2}} + z_{1-\beta})^{2}}{d^{2}}$$

$$d = \frac{|\mu_{1} - \mu_{2}|}{\sigma}$$

Onde:

n_i: número de recém-nascidos no grupo i necessário para o estudo;

 σ^2 : variância das freqüências para as maiores amplitudes (será utilizada uma estimativa da variância, $\hat{\sigma}^2$ = 817001,33);

 $z_{1-\alpha/2}$: é o quantil de ordem 1 - $\alpha/2$ da distribuição normal padrão (α é o nível de significância do teste de igualdade de duas médias);

 $z_{1-\beta}$: é o quantil de ordem 1 – β da distribuição normal padrão (1 – β é o poder do teste);

μ_i: freqüência média do grupo i.

Obs.: Os cálculos são realizados para grupos balanceados.

Na Tabela 2 estão alguns exemplos de dimensionamentos baseados na diferença média entre as freqüências de maiores amplitudes.

Tabela 2: Exemplo de dimensionamento para alguns valores de d, α e 1- β .

Confianca	Poder		ni	
$(1 - \alpha)$	(1 - β)	$ \mu_1 - \mu_2 = 100$	$ \mu_1 - \mu_2 = 200$	$ \mu_1 - \mu_2 = 500$
95%	95%	2123	531	85
95%	90%	1717	429	69
90%	95%	1768	442	71
90%	90%	1399	350	56
95%	80%	1283	321	51
90%	80%	1010	253	40

Na Tabela 2 notamos que são necessários 531 recém-nascidos em cada grupo para se detectar uma diferença de 200 Hz de freqüência entre os grupos de bebês com 95% de confiança e 95% de poder.