Temas de estudio para el examen de Estadística I

Jorge Antonio Gómez García

December 1, 2022

Referencias y recursos útiles

Demostraciones:

- 1. Colorario 4.13.
- 2. Teorema 4.14.
- 3. Distribución Binomial:
 - Función generadora de momentos.
 - Esperanza.
 - Varianza.
- 4. Distribución *Poisson*:
 - Función generadora de momentos.
 - Esperanza.
 - Varianza.
- 5. Distribución Gamma:
 - Función generadora de momentos.
 - Esperanza.
 - Varianza.
- 6. Distribución Normal:
 - $\bullet\,$ Función generadora de momentos.
 - Esperanza.
 - Varianza.
- 7. Estudiar multivariable antes de covarianza.
- 8. Candidatos a venir en el examen: ejercicios **5.65** y **5.86** del Wackerly. Ejercicio **6.64** no viene en el examen.

Colorario 4.13

Si Y_1 y Y_2 son variables aleatorias independientes, demuestre que:

$$cov(Y_1, Y_2) = 0.$$

D! Sea Y_1 y Y_2 variables aleatorias independientes, y μ_1 y μ_2 sus respectivas medias, además, sea

$$\mu_i = E[Y_i], \quad i = 1, 2,$$

Entonces:

$$\begin{aligned} \text{cov}(Y_1, Y_2) &= \mathbf{E} \left[(Y_1 - \mu_1) \left(Y_2 - \mu_2 \right) \right] \\ &= \mathbf{E} \left[Y_1 Y_2 \right] - \mu_1 \mu_2 \\ &= \mathbf{E} \left[Y_1 Y_2 \right] - \mathbf{E} \left[Y_1 \right] \mathbf{E} \left[Y_2 \right] \\ &= \mathbf{E} \left[Y_1 \right] \mathbf{E} \left[Y_2 \right] - \mathbf{E} \left[Y_1 \right] \mathbf{E} \left[Y_2 \right] \\ &= 0 \end{aligned}$$

Teorema 4.14

Sean X_i y Y_j variables aleatorias para $1 \le i \le n$ y $1 \le j \le m$. Entonces para las constantes a_i y b_j , $1 \le i \le n$ y $1 \le j \le m$, demuestre que:

$$\operatorname{cov}\left(\sum_{i=1}^{n} a_{i} X_{i}, \sum_{j=1}^{m} b_{j} Y_{j}\right) = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{i} b_{j} \operatorname{cov}\left(X_{i}, Y_{j}\right).$$

D! Sea X_i y Y_j variables aleatorias para $1 \le i \le n$ y $1 \le j \le m$, y recuerde que la definición de covarianza es:

$$cov(X,Y) := E[(X - E[X])(Y - E[Y])]$$
$$= E[XY] - E[X]E[Y]$$

Entonces:

$$\operatorname{cov}\left(\sum_{i=1}^{n}a_{i}X_{i},\sum_{j=1}^{m}b_{j}Y_{j}\right) = \operatorname{E}\left[\left(\sum_{i=1}^{n}a_{i}X_{i}\right)\left(\sum_{j=1}^{m}b_{j}Y_{j}\right)\right] - \operatorname{E}\left[\sum_{i=1}^{n}a_{i}X_{i}\right] \cdot \operatorname{E}\left[\sum_{j=1}^{m}b_{j}Y_{j}\right]$$

$$= \operatorname{E}\left[\sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}X_{i}Y_{j}\right] - \operatorname{E}\left[\sum_{i=1}^{n}a_{i}X_{i}\right] \cdot \operatorname{E}\left[\sum_{j=1}^{m}b_{j}Y_{j}\right]$$

$$= \sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\operatorname{E}\left[X_{i}Y_{j}\right] - \operatorname{E}\left[\sum_{i=1}^{n}a_{i}X_{i}\right] \cdot \operatorname{E}\left[\sum_{j=1}^{m}b_{j}Y_{j}\right]$$

$$= \sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\operatorname{E}\left[X_{i}Y_{j}\right] - \sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\operatorname{E}\left[X_{i}\right]\operatorname{E}\left[Y_{j}\right]$$

$$= \sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\left(\operatorname{E}\left[X_{i}Y_{j}\right] - \operatorname{E}\left[X_{i}\right]\operatorname{E}\left[Y_{j}\right]\right)$$

$$= \sum_{i=1}^{n}\sum_{j=1}^{m}a_{i}b_{j}\operatorname{cov}\left(X_{i},Y_{j}\right)$$

Ejercicio *5.86

Suponga que Z es una variable aleatoria normal estándar y que Y_1 y Y_2 son variables aleatorias con distribución χ^2 con ν_1 y ν_2 grados de libertad, respectivamente. Además. suponga que Z, Y_1 y Y_2 son independientes.

1. Defina $W=\frac{Z}{\sqrt{Y_1}}$. Encuentre E[W] y var[W]. ¿Qué suposiciones se necesitan acerca del valor de ν_1 ? [Sugerencia: $W=Z(1/\sqrt{Y_1})=g(Z)h(Y_1)$. El ejercicio **4.112** puede ayudarle].

Esperanza. D!

$$E[W] = E\left[Z \cdot \frac{1}{\sqrt{Y_1}}\right]$$
$$= E[Z] E\left[\frac{1}{\sqrt{Y_1}}\right]$$
$$= 0 \cdot E\left[\frac{1}{\sqrt{Y_1}}\right]$$
$$= 0$$

Varianza. D! Sea la definición de varianza:

$$var[X] := E\left[(X - E[X])^2 \right]$$
$$= E\left[X^2 \right] - (E[X])^2$$

Entonces tenemos:

$$\operatorname{var}[W] = \operatorname{var}\left[Z \cdot \frac{1}{\sqrt{Y_1}}\right]$$

$$= \operatorname{E}\left[\left(Z \cdot \frac{1}{\sqrt{Y_1}}\right)^2\right] - \left(\operatorname{E}\left[Z \cdot \frac{1}{\sqrt{Y_1}}\right]\right)^2$$

$$= \operatorname{E}\left[Z^2 \cdot \frac{1}{Y_1}\right] - \left(\operatorname{E}\left[Z\right] \cdot \operatorname{E}\left[\frac{1}{Y_1}\right]\right)^2$$

$$= \operatorname{E}\left[Z^2 \cdot \frac{1}{Y_1}\right] - \left(0 \cdot \operatorname{E}\left[\frac{1}{Y_1}\right]\right)^2$$

$$= \operatorname{E}\left[Z^2 \cdot \frac{1}{Y_1}\right] - 0$$

$$= \operatorname{E}\left[Z^2 \cdot \frac{1}{Y_1}\right]$$

$$= \operatorname{E}\left[Z^2 \cdot \operatorname{E}\left[\frac{1}{Y_1}\right]\right]$$

$$= \operatorname{E}\left[Z^2 \cdot \operatorname{E}\left[\frac{1}{Y_1}\right]\right]$$

$$= \operatorname{E}\left[Z^2 \cdot \operatorname{E}\left[\frac{1}{Y_1}\right]\right]$$

Note que Z es una variable aleatoria normal estándar, por lo que E $\left[Z^2\right]=1.$ [...]

2. Defina $U = Y_1/Y_2$. Encuentre E(U) y V(U). ¿Qué suposiciones se necesitan acerca del valor de ν_1 y ν_2 ? Use la sugerencia del inciso anterior.

Esperanza:

D! Note que Y_1 y Y_2 son variables aleatorias **independientes** con distribución χ^2 . La esperanza de una función gamma es $E[X] = \alpha \beta$, donde α y β son los parámetros de la distribución. En el caso particular de una distribución χ^2 con ν grados de libertad, $\alpha = \nu/2$ y $\beta = 2$, entonces, $E[X] = \nu$. Por lo tanto, $E[Y_1] = \nu_1$ y $E[Y_2] = \nu_2$. Así, tenemos que:

$$\begin{split} \mathbf{E}[U] &= \mathbf{E}\left[\frac{Y_1}{Y_2}\right] \\ &= \mathbf{E}\left[Y_1\right] \mathbf{E}\left[\frac{1}{Y_2}\right] \\ &= \mathbf{E}\left[Y_1\right] \cdot \frac{1}{\mathbf{E}\left[Y_2\right]} \\ &= \nu_1 \cdot \frac{1}{\nu_2} \\ &= \frac{\nu_1}{\nu_2} \end{split}$$

Varianza:

D! Note que Y_1 y Y_2 son variables aleatorias **independientes** con distribución χ^2 . La varianza de una función gamma es $var[X] = \alpha \beta^2$, donde α y β son los parámetros de la distribución. En el caso particular de una distribución χ^2 con ν grados de libertad, $\alpha = \nu/2$ y $\beta = 2$, entonces, $var[X] = 2\nu$. Por lo tanto, $var[Y_1] = 2\nu_1$ y $var[Y_2] = 2\nu_2$. Así, tenemos que:

$$var[U] = var \left[\frac{Y_1}{Y_2} \right]$$
$$= [...]$$

Distribución Binomial

Función generadora de momentos

 $\mathbf{D}!$ Sea X una variable aleatoria con distribución binomial, con parámetros n y p. Entonces:

$$M(t) = \mathbf{E} \left[e^{tX} \right] = \sum_{k=0}^{n} e^{tk} \binom{n}{k} p^k (1-p)^{n-k}$$

$$= \sum_{k=0}^{n} \binom{n}{k} (pe^t)^k (1-p)^{n-k}$$
Por el binomio de Newton tenemos:
$$= (pe^t + 1 - p)^n$$

$$= (pe^t + q)^n$$

Esperanza

 $\mathbf{D}!$ Sea X una variable aleatoria con distribución binomial, con parámetros n y p. Entonces:

$$E[X] = \sum_{x=0}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$= \sum_{x=0}^{n} x \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$= np \sum_{x=1}^{n} \frac{(n-1)!}{(x-1)!(n-1-(x-1))!} p^{x-1} (1-p)^{n-1-(x-1)}$$

$$= np \sum_{x=1}^{n} \binom{n-1}{x-1} p^{x-1} (1-p)^{n-1-(x-1)}, \quad \text{Cambio de variable: } y = x-1$$

$$= np \sum_{y=0}^{n-1} \binom{n-1}{y} p^{y} (1-p)^{n-1-y}, \quad \text{Note que la suma parece bin} (n-1,p)$$

$$= np \cdot 1$$

$$= np$$

Varianza

D! Sea X una variable aleatoria con distribución binomial, con parámetros n y p. Entonces:

Calcule $\mathbf{E}[X^2]$:

$$\begin{split} & \operatorname{E}[X^2] = \sum_{x=0}^n x^2 \binom{n}{x} p^x (1-p)^{n-x} \\ & = \sum_{x=0}^n [x + (x-1) + x] \binom{n}{x} p^x (1-p)^{n-x} \\ & = \sum_{x=0}^n x (x-1) \binom{n}{x} p^x (1-p)^{n-x} + \sum_{x=0}^n x \binom{n}{x} p^x (1-p)^{n-x} \\ & = \sum_{x=2}^n \frac{n(n-1)(n-2)!}{(x-2)!(n-2-(x-2))!} p^x (1-p)^{n-x} + np \\ & = n(n-1) p^2 \sum_{x=2}^n \binom{n-2}{x-2} p^{x-2} (1-p)^{n-2-(x-2)} + np, \quad \text{Cambio de variable: } y = x-2 \\ & = n(n-1) p^2 \underbrace{\sum_{y=0}^{n-2} \binom{n-2}{y} p^y (1-p)^{n-2-y}}_{1} + np, \quad \text{Note que la suma parece bin} (n-2,p) \\ & = n(n-1) p^2 \cdot 1 + np \\ & = n(n-1) p^2 + np \end{split}$$

Por lo tanto, ya podemos calcular la varianza var[X]:

$$var[X] = E[X^{2}] - (E[X])^{2}$$

$$= \underbrace{n(n-1)p^{2} + np}_{E[X^{2}]} - \underbrace{(np)^{2}}_{(E[X])^{2}}$$

$$= (n^{2} - n)p^{2} + np - n^{2}p^{2}$$

$$= p^{2}p^{2} - np^{2} + np - p^{2}p^{2}$$

$$= -np^{2} + np$$

$$= np(1-p)$$

Distribución Poisson

Función generadora de momentos

D! Sea X una variable aleatoria con distribución Poisson, con parámetro λ . Entonces:

$$\begin{split} M(t) &:= \mathbf{E} \left[e^{tX} \right] = \sum_{x=0}^{\infty} e^{tx} e^{-\lambda} \frac{\lambda^x}{x!} \\ &= e^{-\lambda} \sum_{x=0}^{\infty} \frac{e^{tx} \lambda^x}{x!} \\ &= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!}, \quad \text{Cambio de variable: } y = \lambda e^t \\ &= e^{-\lambda} \cdot \sum_{y=0}^{\infty} \frac{y^x}{x!} \\ &= e^{-\lambda} \cdot e^y, \quad \text{Recuerde que } y = \lambda e^t \\ &= e^{-\lambda} \cdot e^{\lambda e^t} \\ &= e^{\lambda e^t - \lambda} \\ &= e^{\lambda (e^t - 1)} \end{split}$$

Esperanza

D! Sea X una variable aleatoria con distribución Poisson, con parámetro λ . Entonces:

$$\begin{split} \mathbf{E}[X] &= \sum_{x=0}^{\infty} x \frac{\lambda^x}{x!} e^{-\lambda} \\ &= \lambda \sum_{x=1}^{\infty} e^{-\lambda} \frac{\lambda^{x-1}}{(x-1)!}, \quad \text{Cambio de variable: } y = x-1 \\ &= \lambda \sum_{y=0}^{\infty} e^{-\lambda} \frac{\lambda^y}{y!}, \quad \text{Note que la suma parece $Poisson} \\ &= \lambda \cdot 1 \\ &= \lambda \end{split}$$

Varianza

D! Sea X una variable aleatoria con distribución Poisson, con parámetro λ . Entonces:

Calcule $\mathbf{E}[X^2]$:

$$\begin{split} \mathrm{E}[X^2] &= \sum_{x=0}^\infty x^2 \frac{\lambda^x}{x!} e^{-\lambda} \\ &= \sum_{x=0}^\infty [x + (x-1) + x] e^{-\lambda} \frac{\lambda^x}{x!} \\ &= \sum_{x=0}^\infty x (x-1) e^{-\lambda} \frac{\lambda^x}{x!} + \sum_{x=0}^\infty x e^{-\lambda} \frac{\lambda^x}{x!} \\ &= \lambda^2 \sum_{x=2}^\infty e^{-\lambda} \frac{\lambda^{x-2}}{(x-2)!} + \lambda, \quad \text{Cambio de variable: } y = x-2 \\ &= \lambda^2 \sum_{y=0}^\infty e^{-\lambda} \frac{\lambda^y}{y!} + \lambda, \quad \text{Note que la suma parece $Poisson} \\ &= \lambda^2 \cdot 1 + \lambda \\ &= \lambda^2 + \lambda \end{split}$$

Por lo tanto, ya podemos calcular la varianza var[X]:

$$var[X] = E[X^{2}] - (E[X])^{2}$$

$$= \underbrace{\lambda^{2} + \lambda}_{E[X^{2}]} - \underbrace{(\lambda)^{2}}_{(E[X])^{2}}$$

$$= \underbrace{\lambda^{2} + \lambda}_{A} - \underbrace{\lambda^{2}}_{A}$$

$$= \lambda$$

Distribución Gamma

Función generadora de momentos

Referencias y recursos útiles

• Binomio de Newton. Sean $m \in \mathbb{N}$ y $x, y \in \mathbb{R}$. El binomio de Newton de grado m es el polinomio:

$$(x+y)^m = \sum_{k=0}^m \binom{m}{k} x^k y^{m-k}$$

• Propiedad 1 de la ecuación combinatoria:

$$k\binom{m}{k} = m\binom{m-1}{k-1}$$

• Propiedad 2 de la ecuación combinatoria:

$$k^{2} \binom{m}{k} = m(m-1) \binom{m-2}{k-2} + k \binom{m}{k}$$

• Número de Euler (e):

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots$$

• Exponencial de Euler (e^x) :

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

En este caso nos referimos al momento de orden k de la variable aleatoria X respecto al origen.

• Serie de Taylor:

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f'''(a)}{3!}(x - a)^3 + \cdots$$
$$= \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x - a)^k$$

• Serie de Maclaurin. Una serie de Maclaurin es un serie de Taylor f(x) con a=0

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k$$

• Función generadora de momentos. Dada una variable aleatoria X, se define la función generadora de momentos como:

$$m_{\mathbf{X}}(t) = M(t) := \mathbf{E}(e^{tX})$$

• $X \sim \mathbf{Binomial}(n, p)$, dónde $n \in \mathbb{N}$ y $p \in [0, 1]$, entonces:

$$f(x) = \binom{n}{x} p^x (1-p)^{n-x}$$
, para $x \in \{0, 1, \dots, n\}$

• $X \sim \mathbf{Poisson}(\lambda)$, **dónde** $\lambda > 0$, entonces:

$$f(x) = e^{-\lambda} \frac{\lambda^x}{x!}, \text{ para } x \in \mathbb{N}$$

• $X \sim \mathbf{Gamma}(\alpha, \beta)$, **dónde** $\alpha > 0$ **y** $\beta > 0$, entonces:

$$f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \text{ para } x > 0,$$

dónde:

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$$

• $X \sim \mathbf{Normal}(\mu, \sigma^2)$, dónde $\mu \in \mathbb{R}$ y $\sigma^2 > 0$, entonces:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \text{ para } x \in \mathbb{R}$$