1. Let $a_{i,j} = i + j \quad \forall i, j \in \{1, .., 5\}.$

Write $(a_{i,j})_{1 \leq i,j \leq 5}$ as an array of numbers, *i.e.* as a 5×5 matrix.

2. Define a function $a:\{1,2,3,4\}^2 \to \{-1,1\}$ representing the matrix

$$A = \left(\begin{array}{rrrr} 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & -1 & 1 \end{array}\right)$$

That is, give a formula for $a_{i,j}$. Hint: One way is to use power of (-1).

3. Let R be the relation defined by

$$R = \{(1,2), (1,3), (3,4), (2,1)\} \subseteq \{1,2,3,4\}^2.$$

Define $(a_{i,j})_{1 \leq i,j \leq 4} \in M_n(\{0,1\})$ by $a_{i,j} = 1 \iff iRj$. Write $(a_{i,j})_{1 \leq i,j \leq 4}$ as a matrix.

- **4.** Let $(q_1, q_2, q_3) \in \mathbb{Q}^3$ represent the quantities (in ml) of three ingredients required to produce one glass of a cocktail.
- (a) Which vector $(r_1, r_2, r_3) \in \mathbb{Q}^3$ represents the quantities required to produce five glasses of the cocktail?
- (b) If q_1, q_2 correspond to alcohols, and q_3 to juice, are you making the cocktail stronger or weaker by replacing (q_1, q_2, q_3) by $(q_1, q_2, q_3) + (-10, -20, 30)$?
- **5.** Compute the following.

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix} + \begin{pmatrix} 6 & 2 & 1 \\ 4 & 5 & 3 \end{pmatrix}$$
.

(b)
$$3\begin{pmatrix} 1 & 2 \\ 2 & 1 \\ 3 & 2 \end{pmatrix}$$
.

(c)
$$\alpha \begin{pmatrix} x & y \\ z & w \end{pmatrix} + \beta \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.

- **6.** Are the following functions linear?
- (a) $f: \mathbb{Q} \to \mathbb{Q}$ defined by f(x) = 2x + 1.
- (b) $g: \mathbb{Q} \to \mathbb{Q}$ defined by $f(x) = x^2 + 1$.

(c)
$$k: \mathbb{Q}^3 \to \mathbb{Q}^3$$
 defined by $f(x_1, x_2, x_3) = M \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$, for $M \in M_3(\mathbb{Q})$.

- 7. Compute the following.
- (a) $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$
- (c) $\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & j \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$
- 8. Compute the following.
- (a) $\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 5 \\ 3 & 1 \end{pmatrix}$
- (b) $\begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 2 \\ 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 & 1 \\ 1 & 0 & 1 \\ 3 & 1 & 1 \end{pmatrix}$
- (c) $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} x & y & z \\ a & b & c \\ 2 & 1 & 0 \end{pmatrix}$
- **9.** Let $(x_n, y_n) \in \mathbb{Q}^2$ represent, at time $n \in \mathbb{N}^* = \mathbb{N} \cup \{0\}$, the quantity x_n of a certain plant in an ecosystem, and y_n the quantity of a pollutant. Assume that they are related in the following way: $x_0 = a \in \mathbb{Q}, \ y_0 = b \in \mathbb{Q}, \ \forall n \in \mathbb{N}^* \ x_{n+1} = 2x_n 3y_n, \ y_{n+1} = y_n/2.$
- (a) Explain the meaning of these equations.
- (b) Prove that $\forall n \in \mathbb{N}$ $\begin{pmatrix} x_n \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2^n & 0 \\ 0 & 2^{-n} \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$.

(c) Prove that, if a > 2b, then the plant will survive.

10. A portfolio is to contain three types of shares; A, B and C. To hedge certain risks, the investor wants twice as many C shares as the combined number of A and B shares and only a third as many B shares as the combined number of A and C shares. The numbers of A, B and C shares are to be a, b and c with a total of 1200.

(a) Show that
$$\begin{pmatrix} 2 & 2 & -1 \\ 1 & -3 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1200 \end{pmatrix}.$$

(b) Verify that
$$\begin{pmatrix} 2 & 2 & -1 \\ 1 & -3 & 1 \\ 1 & 1 & 1 \end{pmatrix}^{-1} = \frac{1}{12} \begin{pmatrix} 4 & 3 & 1 \\ 0 & -3 & 3 \\ -4 & 0 & 8 \end{pmatrix}.$$

- (c) Find a, b and c.
- 11. Compute $\det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.
- **12.** Prove that $\forall A, B \in M_2(Q)$ $\det(AB) = \det(A) \det(B)$.

13. Let $P \in M_2(\mathbb{Q})$ be such that $P^2 = I$. Prove that $\det(P) \in \{-1, 1\}$.