	31	25	24	20	19	15	14	12	11	7	6		0	
			imm[31:12]							rd		opcode		$\mathbf{Type}\text{-}\mathbf{U}$
Γ		im	m[20 10:1 11 19]	9:12]						rd		opcode		$\mathbf{Type}\text{-}\mathbf{UJ}$
		imm[11:0			rs1		fun	ct3		rd		opcode		Type-I
Γ	imm[12 10):5]	rs2		rs1		fun	ct3	imn	n[4:1 11]		opcode		$\mathbf{Type}\text{-}\mathbf{SB}$
Γ	imm[11:	5]	rs2		rs1		fun	ct3	im	m[4:0]		opcode		$\mathbf{Type}\text{-}\mathbf{S}$
Г	funct5	funct2	rs2		rs1		fun	ct3		$^{\mathrm{rd}}$		opcode		Type-R

RV32I Base Integer Instruction Set

	imm[31:12] rd 0110111 LUI rd, imm												
		imm[31:12]			rd	0010111	· '						
	in	$\frac{\min[31.12]}{\min[20 10:1 11 19:12]}$			rd	1101111	AUIPC rd, offset						
	imm[11:0		rs1	000	rd	1101111	JAL rd, offset						
		rs2		000			JALR rd, rs1, offset						
imm[12 10:			rs1		imm[4:1 11]	1100011	BEQ rs1, rs2, offset						
imm[12 10:		rs2	rs1	001	imm[4:1 11]	1100011	BNE rs1, rs2, offset						
imm[12 10:		rs2	rs1	100	imm[4:1 11]	1100011	BLT rs1, rs2, offset						
imm[12 10:		rs2	rs1	101	imm[4:1 11]	1100011	BGE rs1, rs2, offset						
imm[12 10:		rs2	rs1	110	imm[4:1 11]	1100011	BLTU rs1, rs2, offset						
imm[12 10:		rs2	rs1	111	imm[4:1 11]	1100011	BGEU rs1, rs2, offset						
	imm[11:0		rs1	000	rd	0000011	LB rd, offset(rs1)						
	imm[11:0		rs1	001	rd	0000011	LH rd, offset(rs1)						
	imm[11:0	•	rs1	010	rd	0000011	LW rd, offset(rs1)						
	imm[11:0]	1	rs1	100	rd	0000011	LBU rd, offset(rs1)						
	imm[11:0]	-	rs1	101	rd	0000011	LHU rd, offset(rs1)						
imm[11:5]		rs2	rs1	000	imm[4:0]	0100011	SB rs2, offset(rs1)						
imm[11:5]		rs2	rs1	001	imm[4:0]	0100011	SH rs2, offset(rs1)						
imm[11:5]		rs2	rs1	010	imm[4:0]	0100011	SW rs2, offset(rs1)						
	imm[11:0		rs1	000	rd	0010011	ADDI rd, rs1, imm						
	imm[11:0		rs1	010	rd	0010011	SLTI rd, rs1, imm						
	imm[11:0		rs1	011	rd	0010011	SLTIU rd, rs1, imm						
	imm[11:0]	rs1	100	rd	0010011	XORI rd, rs1, imm						
	imm[11:0		rs1	110	rd	0010011	ORI rd, rs1, imm						
	imm[11:0		rs1	111	rd	0010011	ANDI rd, rs1, imm						
00000	00	shamt[4:0]	rs1	001	rd	0010011	SLLI rd, rs1, imm						
00000	00	shamt[4:0]	rs1	101	rd	0010011	SRLI rd, rs1, imm						
01000	00	shamt[4:0]	rs1	101	rd	0010011	SRAI rd, rs1, imm						
00000	00	rs2	rs1	000	rd	0110011	ADD rd, rs1, rs2						
01000	00	rs2	rs1	000	rd	0110011	SUB rd, rs1, rs2						
00000	00	rs2	rs1	001	rd	0110011	SLL rd, rs1, rs2						
00000	00	rs2	rs1	010	rd	0110011	SLT rd, rs1, rs2						
00000	00	rs2	rs1	011	rd	0110011	SLTU rd, rs1, rs2						
00000	00	rs2	rs1	100	rd	0110011	XOR rd, rs1, rs2						
00000	00	rs2	rs1	101	rd	0110011	SRL rd, rs1, rs2						
01000	00	rs2	rs1	101	rd	0110011	SRA rd, rs1, rs2						
00000	00	rs2	rs1	110	rd	0110011	OR rd, rs1, rs2						
00000	rs2	rs1	111	rd	0110011	AND rd, rs1, rs2							
0000 pred	pred succ	00000	000	00000	0001111	FENCE pred, succ							
0000000	pred	00000	00000	001	00000	0001111	FENCE.I						
		1	I .	1	1	l	J						

RV64I Base Integer Instruction Set (in addition to RV32I)

	imm[11:0)]	rs1	110	rd	0000011
	imm[11:0)]	rs1	011	rd	0000011
imm[11:5]		rs2	rs1	011	imm[4:0]	0100011
00000	0	shamt[5:0]	rs1	001	rd	0010011
00000	0	shamt[5:0]	rs1	101	rd	0010011
01000	0	shamt[5:0]	rs1	101	rd	0010011
	imm[11:0)]	rs1	000	rd	0011011
0000000		shamt[4:0]	rs1	001	rd	0011011
0000000		shamt[4:0]	rs1	101	rd	0011011
0100000		shamt[4:0]	rs1	101	rd	0011011

LWU rd, offset(rs1)
LD rd, offset(rs1)
SD rs2, offset(rs1)
SLLI rd, rs1, imm
SRAI rd, rs1, imm
ADDIW rd, rs1, imm
SLLIW rd, rs1, imm
SRLIW rd, rs1, imm
SRLIW rd, rs1, imm
SRAIW rd, rs1, imm

31	25	24	20	19		15	14	12	11	,	7	6		0	
funct5	funct2	rs2			rs1		fun	ct3		$^{\mathrm{rd}}$		(opcode		Type-R
	imm[11:0]				rs1		fun	ct3		$^{\mathrm{rd}}$		(opcode		Type-I
imm[11	:5]	rs2			rs1		fun	ct3	in	nm[4:0]		(opcode		Type-S

RV64I Base Integer Instruction Set (in addition to RV32I) contd

00000	00	rs2	rs1	000	rd	0111011	ADDW r
01000	00	rs2	rs1	000	rd	0111011	SUBW rd
00000	00	rs2	rs1	001	rd	0111011	SLLW rd
00000	00	rs2	rs1	101	rd	0111011	SRLW rd
01000	00	rs2	rs1	101	rd	0111011	SRAW rd

rd, rs1, rs2rd, rs1, rs2d, rs1, rs2 d, rs1, rs2 rd, rs1, rs2

RV128I Base Integer Instruction Set (in addition to RV64I)

10, 1201 Base integer instruction set (in addition to 10, 011)											
	imm[11:0]		rs1	111	rd	0000011	LDU rd, offset(rs1)				
	imm[11:0]		rs1	010	$^{\mathrm{rd}}$	0001111	LQ rd, offset(rs1)				
imm[11	:5]	rs2	rs1	100	imm[4:0]	0100011	SQ rs2, offset(rs1)				
00000	sh	amt[6:0]	rs1	001	$^{\mathrm{rd}}$	0010011	SLLI rd, rs1, imm				
00000	sh	amt[6:0]	rs1	101	$^{\mathrm{rd}}$	0010011	SRLI rd, rs1, imm				
01000	sh	amt[6:0]	rs1	101	$^{\mathrm{rd}}$	0010011	SRAI rd, rs1, imm				
	imm[11:0]			000	$^{\mathrm{rd}}$	1011011	ADDID rd, rs1, imm				
000000		shamt[5:0]	rs1	001	$^{\mathrm{rd}}$	1011011	SLLID rd, rs1, imm				
000000		shamt[5:0]	rs1	101	$^{\mathrm{rd}}$	1011011	SRLID rd, rs1, imm				
010000		shamt[5:0]	rs1	101	$^{\mathrm{rd}}$	1011011	SRAID rd, rs1, imm				
00000	00	rs2	rs1	000	$^{\mathrm{rd}}$	1111011	ADDD rd, rs1, rs2				
01000	00	rs2	rs1	000	$^{\mathrm{rd}}$	1111011	SUBD rd, rs1, rs2				
00000 00		rs2	rs1	001	$^{\mathrm{rd}}$	1111011	SLLD rd, rs1, rs2				
00000	00000 00		rs1	101	$^{\mathrm{rd}}$	1111011	SRLD rd, rs1, rs2				
01000 00		rs2	rs1	101	rd	1111011	SRAD rd, rs1, rs2				

RV32M Standard Extension for Integer Multiply and Divide

Г	00000	01	rs2	rs1	000	rd	0110011	M
	00000	01	rs2	rs1	001	rd	0110011	M
	00000	01	rs2	rs1	010	rd	0110011	M
	00000	01	rs2	rs1	011	rd	0110011	M
Г	00000	01	rs2	rs1	100	rd	0110011	D
Г	00000	01	rs2	rs1	101	rd	0110011	D
	00000	01	rs2	rs1	110	rd	0110011	R
	00000	01	rs2	rs1	111	rd	0110011	R

MUL rd, rs1, rs2 MULH rd, rs1, rs2 MULHSU rd, rs1, rs2 MULHU rd, rs1, rs2 OIV rd, rs1, rs2 DIVU rd, rs1, rs2 REM rd, rs1, rs2 REMU rd, rs1, rs2

RV64M Standard Extension for Integer Multiply and Divide (in addition to RV32M)

00000	01	rs2	rs1	000	rd	0111011	MULW
00000	01	rs2	rs1	100	rd	0111011	DIVW 1
00000	01	rs2	rs1	101	rd	0111011	DIVUW
00000	01	rs2	rs1	110	rd	0111011	REMW
00000	01	rs2	rs1	111	rd	0111011	REMUV

rd, rs1, rs2 rd, rs1, rs2W rd, rs1, rs2 V rd, rs1, rs2 JW rd, rs1, rs2

RV128M Standard Extension for Integer Multiply and Divide (in addition to RV64M)

00000	01	rs2	rs1	000	rd	1111011	MULD rd, rs1, rs2
00000	01	rs2	rs1	100	rd	1111011	DIVD rd, rs1, rs2
00000	01	rs2	rs1	101	rd	1111011	DIVUD rd, rs1, rs2
00000	01	rs2	rs1	110	$^{\mathrm{rd}}$	1111011	REMD rd, rs1, rs2
00000	01	rs2	rs1	111	rd	1111011	REMUD rd, rs1, rs2

RV32A Standard Extension for Atomic Instructions

00010	aq	rl	00000	rs1	010	$^{\mathrm{rd}}$	0101111
00011	aq	rl	rs2	rs1	010	rd	0101111
00001	aq	rl	rs2	rs1	010	rd	0101111
00000	aq	rl	rs2	rs1	010	rd	0101111

LR.W~aqrl,~rd,~(rs1)SC.W~aqrl,~rd,~rs2,~(rs1)AMOSWAP.W aqrl, rd, rs2, (rs1)AMOADD.W aqrl, rd, rs2, (rs1)

31	25	24	20	19		15	14	12	11	7	6	0	
funct5	funct2		rs2		rs1		fun	ct3		rd	opcode		Ту
	imm[11:0]				rs1		fun	ct3		rd	opcode		Ty

Type-R Type-I

RV32A Standard Extension for Atomic Instructions contd

00100	aq	rl	rs2	rs1	010	$_{ m rd}$	0101111
01000	aq	rl	rs2	rs1	010	rd	0101111
01100	aq	rl	rs2	rs1	010	rd	0101111
10000	aq	rl	rs2	rs1	010	rd	0101111
10100	aq	rl	rs2	rs1	010	rd	0101111
11000	aq	rl	rs2	rs1	010	rd	0101111
11100	aq	rl	rs2	rs1	010	rd	0101111

AMOXOR.W aqrl, rd, rs2, (rs1) AMOOR.W aqrl, rd, rs2, (rs1) AMOAND.W aqrl, rd, rs2, (rs1) AMOMIN.W aqrl, rd, rs2, (rs1) AMOMAX.W aqrl, rd, rs2, (rs1) AMOMINU.W aqrl, rd, rs2, (rs1) AMOMAXU.W aqrl, rd, rs2, (rs1)

RV64A Standard Extension for Atomic Instructions (in addition to RV32A)

						(,
00010	aq	rl	00000	rs1	011	rd	0101111
00011	aq	rl	rs2	rs1	011	rd	0101111
00001	aq	rl	rs2	rs1	011	rd	0101111
00000	aq	rl	rs2	rs1	011	rd	0101111
00100	aq	rl	rs2	rs1	011	rd	0101111
01000	aq	rl	rs2	rs1	011	rd	0101111
01100	aq	rl	rs2	rs1	011	rd	0101111
10000	aq	rl	rs2	rs1	011	rd	0101111
10100	aq	rl	rs2	rs1	011	rd	0101111
11000	aq	rl	rs2	rs1	011	rd	0101111
11100	aq	rl	rs2	rs1	011	rd	0101111

LR.D aqrl, rd, (rs1)

SC.D aqrl, rd, rs2, (rs1)

AMOSWAP.D aqrl, rd, rs2, (rs1)

AMOADD.D aqrl, rd, rs2, (rs1)

AMOOR.D aqrl, rd, rs2, (rs1)

AMOOR.D aqrl, rd, rs2, (rs1)

AMOOR.D aqrl, rd, rs2, (rs1)

AMOAND.D aqrl, rd, rs2, (rs1)

AMOMIN.D aqrl, rd, rs2, (rs1)

AMOMAX.D aqrl, rd, rs2, (rs1)

AMOMINU.D aqrl, rd, rs2, (rs1)

AMOMAXU.D aqrl, rd, rs2, (rs1)

RV128A Standard Extension for Atomic Instructions (in addition to RV64A)

00010	aq	rl	00000	rs1	100	rd	0101111
00011	aq	rl	rs2	rs1	100	rd	0101111
00001	aq	rl	rs2	rs1	100	rd	0101111
00000	aq	rl	rs2	rs1	100	rd	0101111
00100	aq	rl	rs2	rs1	100	rd	0101111
01000	aq	rl	rs2	rs1	100	rd	0101111
01100	aq	rl	rs2	rs1	100	rd	0101111
10000	aq	rl	rs2	rs1	100	rd	0101111
10100	aq	rl	rs2	rs1	100	rd	0101111
11000	aq	rl	rs2	rs1	100	rd	0101111
11100	aq	rl	rs2	rs1	100	rd	0101111

LR.Q aqrl, rd, (rs1)
SC.Q aqrl, rd, rs2, (rs1)
AMOSWAP.Q aqrl, rd, rs2, (rs1)
AMOADD.Q aqrl, rd, rs2, (rs1)
AMOXOR.Q aqrl, rd, rs2, (rs1)
AMOOR.Q aqrl, rd, rs2, (rs1)
AMOAND.Q aqrl, rd, rs2, (rs1)
AMOMIN.Q aqrl, rd, rs2, (rs1)
AMOMIN.Q aqrl, rd, rs2, (rs1)
AMOMIN.Q aqrl, rd, rs2, (rs1)
AMOMINU.Q aqrl, rd, rs2, (rs1)
AMOMINU.Q aqrl, rd, rs2, (rs1)
AMOMAXU.Q aqrl, rd, rs2, (rs1)

RV32S Standard Extension for Supervisor-level Instructions

00000	00	00000	00000	000	00000	1110011
00000	00	00001	00000	000	00000	1110011
00000	00	00010	00000	000	00000	1110011
00010	00	00010	00000	000	00000	1110011
00100	00	00010	00000	000	00000	1110011
00110	00	00010	00000	000	00000	1110011
01111	01	10010	00000	000	00000	1110011
00010	00	00100	rs1	000	00000	1110011
00010	00	00101	00000	000	00000	1110011
	csr[11:0]		rs1	001	rd	1110011
	csr[11:0]		rs1	010	rd	1110011
	csr[11:0]		rs1	011	rd	1110011
	csr[11:0]		zimm[4:0]	101	rd	1110011
	csr[11:0]		zimm[4:0]	110	rd	1110011
	csr[11:0]		zimm[4:0]	111	rd	1110011

ECALL
EBREAK
URET
SRET
HRET
MRET
DRET
SFENCE.VM rs1
WFI
CSRRW rd, csr, rs1
CSRRS rd, csr, rs1
CSRRC rd, csr, zimm
CSRRSI rd, csr, zimm
CSRRSI rd, csr, zimm

31		25	24	20	19	15	14	12	11	7	6		0	
		imm[11:0]			1	rs1	fun	ct3		rd	0	pcode		Type-I
	imm[11:	:5]	1	rs2	1	rs1	fun	ct3	im	m[4:0]	O	pcode		Type-S
	rs3	funct2	1	rs2	1	rs1	fun	ct3		$^{\mathrm{rd}}$	O	pcode		Type-R4
f	unct5	funct2]	rs2	1	rs1	fun	ct3		rd	0	pcode		Type-R

RV32F Standard Extension for Single-Precision Floating-Point

i	mm[11:0]		rs1	010	frd	0000111	FLW frd, offset(rs1)
imm[11:	5]	frs2	rs1	010	imm[4:0]	0100111	FSW frs2, offset(rs1)
frs3	00	frs2	frs1	rm	frd	1000011	FMADD.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1000111	FMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001011	FNMSUB.S rm, frd, frs1, frs2, frs3
frs3	00	frs2	frs1	rm	frd	1001111	FNMADD.S rm, frd, frs1, frs2, frs3
00000	00	frs2	frs1	rm	frd	1010011	FADD.S rm, frd, frs1, frs2
00001	00	frs2	frs1	rm	frd	1010011	FSUB.S rm, frd, frs1, frs2
00010	00	frs2	frs1	rm	frd	1010011	FMUL.S rm, frd, frs1, frs2
00011	00	frs2	frs1	rm	frd	1010011	FDIV.S rm, frd, frs1, frs2
00100	00	frs2	frs1	000	frd	1010011	FSGNJ.S frd, frs1, frs2
00100	00	frs2	frs1	001	frd	1010011	FSGNJN.S frd, frs1, frs2
00100	00	frs2	frs1	010	frd	1010011	FSGNJX.S frd, frs1, frs2
00101	00	frs2	frs1	000	frd	1010011	FMIN.S frd, frs1, frs2
00101	00	frs2	frs1	001	frd	1010011	FMAX.S frd, frs1, frs2
01011	00	00000	frs1	rm	frd	1010011	FSQRT.S rm, frd, frs1
10100	00	frs2	frs1	000	rd	1010011	FLE.S rd, frs1, frs2
10100	00	frs2	frs1	001	rd	1010011	FLT.S rd, frs1, frs2
10100	00	frs2	frs1	010	rd	1010011	FEQ.S rd, frs1, frs2
11000	00	00000	frs1	rm	rd	1010011	FCVT.W.S rm, rd, frs1
11000	00	00001	frs1	rm	rd	1010011	FCVT.WU.S rm, rd, frs1
11010	00	00000	rs1	rm	frd	1010011	FCVT.S.W rm, frd, rs1
11010	00	00001	rs1	rm	frd	1010011	FCVT.S.WU rm, frd, rs1
11100	00	00000	frs1	000	rd	1010011	FMV.X.S rd, frs1
11100	00	00000	frs1	001	rd	1010011	FCLASS.S rd, frs1
11110	00	00000	rs1	000	frd	1010011	FMV.S.X frd, rs1

RV64F Standard Extension for Single-Precision Floating-Point (in addition to RV32F)

11000	00	00010	frs1	rm	rd	1010011	FCVT.L.S rm, rd, frs1
11000	00	00011	frs1	rm	rd	1010011	FCVT.LU.S rm, rd, frs1
11010	00	00010	rs1	rm	frd	1010011	FCVT.S.L rm, frd, rs1
11010	00	00011	rs1	rm	frd	1010011	FCVT.S.LU rm, frd, rs1

RV32D Standard Extension for Double-Precision Floating-Point

_				9	_			
	i	imm[11:0]		rs1	011	frd	0000111	FLD frd, offset(rs1)
	imm[11:	:5]	frs2	rs1	011	imm[4:0]	0100111	FSD frs2, offset(rs1)
	frs3	01	frs2	frs1	rm	frd	1000011	FMADD.D rm, frd, frs1, frs2, frs3
	frs3	01	frs2	frs1	rm	frd	1000111	FMSUB.D rm, frd, frs1, frs2, frs3
	frs3	01	frs2	frs1	rm	frd	1001011	FNMSUB.D rm, frd, frs1, frs2, frs3
Ī	frs3	01	frs2	frs1	rm	frd	1001111	FNMADD.D rm, frd, frs1, frs2, frs3
Ī	00000	01	frs2	frs1	rm	frd	1010011	FADD.D rm, frd, frs1, frs2
Ī	00001	01	frs2	frs1	rm	frd	1010011	FSUB.D rm, frd, frs1, frs2
	00010	01	frs2	frs1	rm	frd	1010011	FMUL.D rm, frd, frs1, frs2
	00011	01	frs2	frs1	rm	frd	1010011	FDIV.D rm, frd, frs1, frs2
Ī	00100	01	frs2	frs1	000	frd	1010011	FSGNJ.D frd, frs1, frs2
Ī	00100	01	frs2	frs1	001	frd	1010011	FSGNJN.D frd, frs1, frs2
	00100	01	frs2	frs1	010	frd	1010011	FSGNJX.D frd, frs1, frs2
	00101	01	frs2	frs1	000	frd	1010011	FMIN.D frd, frs1, frs2
Ī	00101	01	frs2	frs1	001	frd	1010011	FMAX.D frd, frs1, frs2
Ī	01000	00	00001	frs1	rm	frd	1010011	FCVT.S.D rm, frd, frs1
Ī	01000	01	00000	frs1	rm	frd	1010011	FCVT.D.S rm, frd, frs1

31	25	24	20	19	15	14	12	11	7	6		0	
funct5	funct2		rs2	1	rs1	fun	ct3		$^{\mathrm{rd}}$		opcode		Type-R

RV32D Standard Extension for Double-Precision Floating-Point contd

01011	01	00000	frs1	rm	frd	1010011
10100	01	frs2	frs1	000	rd	1010011
10100	01	frs2	frs1	001	rd	1010011
10100	01	frs2	frs1	010	rd	1010011
11000	01	00000	frs1	rm	rd	1010011
11000	01	00001	frs1	rm	rd	1010011
11010	01	00000	rs1	rm	frd	1010011
11010	01	00001	rs1	rm	frd	1010011
11100	01	00000	frs1	001	rd	1010011

FSQRT.D rm, frd, frs1
FLE.D rd, frs1, frs2
FLT.D rd, frs1, frs2
FEQ.D rd, frs1, frs2
FCVT.W.D rm, rd, frs1
FCVT.WU.D rm, rd, frs1
FCVT.D.W rm, frd, rs1
FCVT.D.WU rm, frd, rs1
FCVT.D.WU rm, frd, rs1
FCVT.D.WU rm, frd, rs1

RV64D Standard Extension for Double-Precision Floating-Point (in addition to RV32D)

11000	01	00010	frs1	rm	rd	1010011
11000	01	00011	frs1	$_{ m rm}$	rd	1010011
11100	01	00000	frs1	000	rd	1010011
11010	01	00010	rs1	rm	frd	1010011
11010	01	00011	rs1	rm	frd	1010011
11110	01	00000	rs1	000	frd	1010011

FCVT.L.D rm, rd, frs1 FCVT.LU.D rm, rd, frs1 FMV.X.D rd, frs1 FCVT.D.L rm, frd, rs1 FCVT.D.LU rm, frd, rs1 FMV.D.X frd, rs1

15	13	12	10	9	7	6	5 4	2	1	0	
	funct3			imm8			rd'		op		Type-CIW
	funct3	imi	m3	rs1'		imm2	rd'		op		Type-CL
	funct3	imi	m3	rs1'		imm2	rs2'		op		Type-CS
	funct3	imm1		rd/rs1			imm5		op		Type-CI
	funct3			imi	m11				op		Type-CJ
	funct3	imi	m3	rs1'			imm5		op		Type-CB
	funct4			rd/rs1			rs2		op		Type-CR
	funct3		imm6				rs2		op		Type-CSS

RV32C Standard Extension for Compressed Instructions

000	nzimm[5:4 9:6 2 3]				rd'	00	C.ADDI4SPN rd, rs1, imm
001	imm[rs1'	imm[7:6]	frd'	00	C.FLD frd, offset(rs1)
010	imm		rs1'	imm[2 6]	rd'	00	C.LW rd, offset(rs1)
011	imm		rs1'	imm[2 6]	frd'	00	C.FLW frd, offset(rs1)
101	imm		rs1'	imm[7:6]	frs2'	00	C.FSD frs2, offset(rs1)
110	imm[5:3]		rs1'	imm[2 6]	rs2'	00	C.SW rs2, offset(rs1)
111	imm		rs1'	imm[2 6]	frs2'	00	C.FSW frs2, offset(rs1)
000	0	-	00000		00000	01	C.NOP
000	nzimm[5]	rs	$s1/rd \neq 0$	nz	imm[4:0]	01	C.ADDI rd, rs1, imm
001			imm[11 4 9:8 10 6 7	7 3:1 5]	. ,	01	C.JAL rd, offset
010	imm[5]	rs	$s1/rd \neq 0$	iı	nm[4:0]	01	C.LI rd, rs1, imm
011	nzimm[9]	rs	s1/rd=2	nzim	m[4 6 8:7 5]	01	C.ADDI16SP rd, rs1, imm
011	nzimm[17]	ro	$1 \neq \{0, 2\}$	nzir	nm[16:12]	01	C.LUI rd, imm
100	0	00	rs1'/rd'	nz	imm[4:0]	01	C.SRLI rd, rs1, imm
100	0	01	rs1'/rd'	nz	imm[4:0]	01	C.SRAI rd, rs1, imm
100	nzimm[5]	10	rs1'/rd'	nz	imm[4:0]	01	C.ANDI rd, rs1, imm
100	01	1	rs1'/rd'	00	rs2'	01	C.SUB rd, rs1, rs2
100	01	1	rs1'/rd'	01	rs2'	01	C.XOR rd, rs1, rs2
100	01	1	rs1'/rd'	10	rs2'	01	C.OR rd, rs1, rs2
100	01	1	rs1'/rd'	11	rs2'	01	C.AND rd, rs1, rs2
100	11	1	rs1'/rd'	00	rs2'	01	C.SUBW rd, rs1, rs2
100	11	1	rs1'/rd'	01	rs2'	01	C.ADDW rd, rs1, rs2
101			imm[11 4 9:8 10 6 7	7[3:1[5]		01	C.J rd, offset
110	imm[8	8[4:3]	rs1'		1[7:6 2:1 5]	01	C.BEQZ rs1, rs2, offset
111	imm[8	3[4:3]	rs1'	imn	1[7:6 2:1 5]	01	C.BNEZ rs1, rs2, offset
000	0	rs	$s1/rd \neq 0$	nz	imm[4:0]	10	C.SLLI rd, rs1, imm
001	imm[5]		frd	imi	n[4:3 8:6]	10	C.FLDSP frd, offset(rs1)
010	imm[5]		$rd \neq 0$		n[4:2 7:6]	10	C.LWSP rd, offset(rs1)
011	imm[5]		frd	imi	n[4:2 7:6]	10	C.FLWSP frd, offset(rs1)
100	rd"		rs1		00000	10	C.JR rd, rs1, offset
1000	$rd \neq 0$		$rd \neq 0$		rs2≠ 0	10	C.MV rd, rs1, rs2
100	1 00000				00000	10	C.EBREAK
100	rd" rs1				00000	10	C.JALR rd, rs1, offset
1001	$rs1/rd \neq 0$				rs2≠ 0	10	C.ADD rd, rs1, rs2
101	imm[5:3 8:6]			frs2	10	C.FSDSP frs2, offset(rs1)	
110	imm[5:2 7:6]				rs2	10	C.SWSP rs2, offset(rs1)
111		imm[5:2 7]	7:6]		frs2	10	C.FSWSP frs2, offset(rs1)

RV64C Standard Extension for Compressed Instructions (in addition to RV32C)

011	imm[5:3]	rs1'	imm[7:6]	rd'	00
111	imm[5:3]	rs1'	imm[7:6]	rs2'	00
001	imm[5]	rs	$s1/rd \neq 0$	ir	01	
100	nzimm[5]	00	rs1'/rd'	nz	imm[4:0]	01
100	nzimm[5]	01	rs1'/rd'	nz	imm[4:0]	01
000	nzimm[5]	rs	$s1/rd \neq 0$	nz	10	
011	imm[5]		$rd \neq 0$	imı	10	
111		imm[5:3 8]	3:6]		10	

 ${\rm C.LD}\ {\rm rd},\ {\rm offset(rs1)}$ C.SD rs2, offset(rs1) $C.ADDIW\ rd,\ rs1,\ imm$ C.SRLI rd, rs1, imm C.SRAI rd, rs1, imm C.SLLI rd, rs1, imm ${\rm C.LDSP\ rd,\ offset(rs1)}$ $C.SDSP\ rs2,\ offset(rs1)$

15		13	12		10	9	7	6	5	4	2	1		0	
	funct3		imm3			rs1'	rs1' imm2		2	rd'			op		$\mathbf{Type}\text{-}\mathbf{CL}$
	funct3		imm3		rs1'		imm2		rs2'			op		Type-CS	
	funct3		imm1	imm1 rd/rs1			imm5				op		Type-CI		
	funct3		imm6				rs2				op		Type-CSS		

RV128C Standard Extension for Compressed Instructions (in addition to RV64C)

1011200 500	100 1200 Standard Extension for Compressed Instructions (in addition to 100 010)								
001	imm[5:4 8]	rs1'	imm[7:6]	rd'	00	C.LQ rd, offset(rs1)			
101	imm[5:4 8]	rs1'	imm[7:6]	rs2'	00	C.SQ rs2, offset(rs1)			
001	imm[5]	rd	im	m[4 9:6]	10	C.LQSP rd, offset(rs1)			
101	imm[5:	4 9:6]		rs2	10	C.SQSP rs2, offset(rs1)			