191220154 AsHL

$$\begin{aligned} &1.\left[\,y+2*(x+1)-1=(x+1)^2\,\right]\,x:=x+1;\,\left[\,y+2*x-1=x^2\,\right]_{AS}\\ &y=x^2\ \Rightarrow\ y+2*x+1=x^2+2*x+1\\ &\left[\,y=x^2\,\right]\,x:=x+1;\,\left[\,y+2*x-1=x^2\,\right]_{SP}\\ &\left[\,y+2*x-1=x^2\,\right]\,y:=y+2*x-1;\,\left[\,y=x^2\,\right]_{AS}\\ &\left[\,y=x^2\,\right]\,x:=x+1;\,y:=y+2*x-1;\,\left[\,y=x^2\,\right]_{SC} \end{aligned}$$

The weakest assertion is $y = x^2$.

$$egin{aligned} \left[\ y = z \wedge (x + y) - y = w \ \right] \ x = x + y \ \left[\ y = z \wedge x - y = w \ \right] \ _{AS} \ \\ \left[\ x - (x - y) = z \wedge x - y = w \ \right] \ y := x - y; \ \left[\ x - y = z \wedge y = w \ \right] \ _{AS} \ \\ \left[\ x - y = z \wedge y = w \ \right] \ x := x - y; \ \left[\ x = z \wedge y = w \ \right] \ _{AS} \end{aligned}$$

The weakest assertion is $y = z \wedge x = w$.

$$\begin{array}{l} \left[i \wedge (b - (a + 1) < x_0)\right] \ a := a + 1; \ \left[i \wedge (b - a < x_0)\right] \ _{AS} \\ i \wedge (a < b) \wedge (b - a = x_0) \ \Rightarrow \ i \wedge (b - a - 1 < x_0) \\ \left[i \wedge (a < b) \wedge (b - a = x_0)\right] \ a := a + 1; \ \left[i \wedge (b - a < x_0)\right] \ _{SP} \\ \left[i \wedge (b - a < x_0)\right] \ y := x + y; \ \left[i \wedge (b - a < x_0)\right] \ _{AS} \\ \left[i \wedge (a < b) \wedge (b - a = x_0)\right] \ a := a + 1; \ y := x + y; \ \left[i \wedge (b - a < x_0)\right] \ _{SC} \\ i \wedge (a < b) \ \Rightarrow \ b - a \geq 0 \\ \left[i\right] \ \textit{while} \ a < b \ \textit{do} \ (a := a + 1; \ y := x + y;) \ \left[i \wedge \neg (a < b)\right] \ _{WHT} \\ i \wedge \neg (a < b) \ \Rightarrow \ y = x * b \end{array}$$

Let the loop invariant i be $y=x*a\wedge a\leq b$ to satisfy the above derivation Also consider the case where while does not execute at all, then y=x*b The weakest assertion is $(y=x*a\wedge a\leq b)\vee y=x*b$.

while true do skip changes nothing in the state, it also does not terminate,so it is impossible to find a non-negative metric that decreases on each iterationWe simply put down false for the weakest assertion.

$$\{i \land \textit{true}\}\ \textit{skip}\ \{i\}$$
 $i \land \textit{false} \Rightarrow \textit{false}$ $\{i\}\ \textit{while true do skip}\ \{i \land \neg \textit{true}\}$ We simply put down \textit{true} for the weakest assertion.

2. The loop invariant is $\ (x=y \land x \leq 100) \lor x=0.$

Actually $x=y \land x \le 100$ is the "real" i, however x=0 does not satisfy it. $\{x+1 \le 100\}\ x := x+1;\ \{x \le 100\}\ _{AS}$ $((x = y \land x \le 100) \lor x = 0) \land x < 100 \implies x + 1 \le 100$ $\{\,((x=y \land x \leq 100) \lor x=0) \land x < 100\,\}\; x:=x+1;\; \{\,x \leq 100\,\}_{SP}$ $\{x = x \land x \le 100\}\ y = x;\ \{x = y \land x \le 100\}\ _{AS}$ $x \le 100 \Rightarrow x = x \land x \le 100$ $\{x \le 100\}\ y = x;\ \{x = y \land x \le 100\}\ _{SP}$ $x = y \land x \le 100 \implies (x = y \land x \le 100) \lor x = 0$ $\{x < 100\}\ y = x;\ \{(x = y \land x < 100) \lor x = 0\}\ _{WC}$ $\{((x = y \land x \le 100) \lor x = 0) \land x < 100\}\ x := x + 1;\ y := x;$ $\{(x = y \land x \le 100) \lor x = 0\}$ SC $\{(x = y \land x \le 100) \lor x = 0\}$ while x < 100 do (x := x + 1; y := x;) $\{((x = y \land x < 100) \lor x = 0) \land \neg(x < 100)\}_{WHT}$ $x = 0 \Rightarrow (x = y \land x \le 100) \lor x = 0$ $\{x=0\}$ while x<100 do $(x:=x+1;\ y:=x;)$ $\{((x = y \land x < 100) \lor x = 0) \land \neg(x < 100)\}\$ SP $((x=y \land x \leq 100) \lor x=0) \land \lnot(x < 100) \ \Rightarrow \ x=100 \land y=100$

3. (a) i.
$$\{ \textbf{\textit{true}} \} \ x := x + 1; \ \{ \ x = x + 1 \}$$

the precondition of the triple "true" always holds,

the program as a single assignment command always terminates,

 $\{x=0\}$ while x<100 do $(x:=x+1;\ y:=x;)\ \{x=100 \land y=100\}$ $_{WC}$

however the postcondition "x=x+1" makes no sense logically.

If we try to apply the assignment rule to this triple we may get:

$$\{x+1=x+1+1\}\ x:=x+1;\ \{x=x+1\}$$

but there is no such thing as $true \Rightarrow x+1=x+2$.

ii. The condition that supports $\,\{\, {\it true}\,\}\,\, x := e; \,\, \{\, x = e\,\}\,$ is $\,e[e/x] = e$,

that is to say, either x does not occur in e at all, or e = x.

We then have
$$\,\{\,e=e\,\}\;x:=e;\;\{\,x=e\,\}\,$$
 $_{AS}$

$$true \Rightarrow e = e$$

$$\{ true \} x := e; \{ x = e \} _{SP}$$

(b) [true] while true do skip [true]

The triple cannot be proved simply because the program does not terminate.

4. The partial correctness Hoare logic rule for $\emph{repeat}\ c\ \emph{until}\ b$ is

$$\frac{\{p\}\ c\ \{i\}\quad \{i\land \neg b\}\ c\ \{i\}}{\{p\}\ \textit{repeat}\ c\ \textit{until}\ b\ \{i\land b\}}$$