Nome	
Cognome	
Matricola	

Architettura degli Elaboratori

Corso di Laurea in Informatica Prima Parte Prova Finale - 14 Febbraio 2014

1.	(2 punti) Determinare l'intero (in base 10) rappresentato dalla sequenza di bit 1001010011 nella
	codifica in complemento a 2.
2.	(1.5 punti) Convertire da base 10 a base 2 il seguente numero frazionario utilizzando 4 bit.

2.	(1.5 punti) Convertire da base 10 a base 2 il seguente numero frazionario utilizzando 4 bi
	0, 7:
3.	$\left(1.5~\mathrm{punti}\right)$ Convertire da base 2 a base 10 il seguente numero frazionario.
	0,0111 ₂
4.	(1.5 punti) Convertire da base 5 a base 11 il seguente numero intero.
	134-

	1010											
5.	(1.5 pun	nti)	Conve	rtire d	la l	base	2 a	base	16 i	l seguente	numero	intero.
	1010100	101	2									

 $6.~(3~\mathrm{punti})$ Determinare la prima forma canonica della funzione descritta dalla seguente tabella di veritá:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

$$f(x_1, x_2, x_3) = \underline{\hspace{1cm}}$$

7. (6 punti) Determinare la forma SOP minimale della funzione booleana avente la seguente tabella di veritá utilizzando il metodo delle mappe di Karnaugh:

x_1	x_2	x_3	x_4	$f(x_1, x_2, x_3, x_4)$
0	0	0	0	-
0	0	0	1	0
0	0	1	0	-
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	1
0	1	1	1	0
1	0	0	0	-
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	0
1	1	1	1	0

SOP		

8.	(7 punti) Disegnare di seguito il diagramma di stato di una Rete Sequenziale a singolo ingresso (x)
	e singola uscita (z) tale che $z_j = 1$ se e solo se gli ultimi 3 bit letti x_{j-2} x_{j-1} x_j contengono due 1
	e uno 0. Si assuma che negli istanti iniziali i bit x 2 e x 1 precedentementi letti siano 0

9. (6 punti) Progettare la rete sequenziale corrispondente al seguente diagramma di stato (avente gli stati giá codificati), utilizzando flip-flop di tipo T. In particolare determinare tutte le funzioni booleane e disegnare la rete sequenziale corrispondente.

\boldsymbol{x}	y_1	y_2	Y_1	Y_2	t_1	t_2	z
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

t_1 :	t_2 :	
~ .		

Disegno della rete:

<u>ATTENZIONE</u>: scrivere le risposte su questo foglio; la vicinanza di borse o astucci e l'uso di calcolatrici e cellulari sono motivo di esclusione dalla prova.