Modeling and Control of Legged Robots SS 2024

L5: 3D Vision for Robotics

M. Sc. Hao Xing

Technical University of Munich
School of Computation, Information and Technology
Chair of Cognitive Systems
Munich 04. June 2024

Contents

- 1. Introduction to Camera Projection
- 2. Epipolar Geometry
- 3. Estimating the Essential, Translation, and Rotation Matrix
- 4. Triangulation
- 5. Feature Points Detection and Description
- 6. Tutorial*

In the camera coordinate (x, y, z):

$$\frac{x_p}{f} = \frac{X_P}{Z_P} \qquad \frac{y_p}{f} = \frac{Y_P}{Z_P}$$

In the camera coordinate (x, y, z):

$$\frac{x_p}{f} = \frac{X_P}{Z_P} \qquad \frac{y_p}{f} = \frac{Y_P}{Z_P}$$

$$\begin{pmatrix} x_p \\ y_p \end{pmatrix} = \begin{pmatrix} fX_P/Z_P \\ fY_P/Z_P \end{pmatrix}$$

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_P/Z_P \\ Y_P/Z_P \\ 1 \end{bmatrix}$$

In the camera coordinate (x, y, z):

$$\begin{bmatrix} x_p \\ y_p \\ 1 \end{bmatrix} = \begin{bmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_P/Z_P \\ Y_P/Z_P \\ 1 \end{bmatrix}$$

- In perspective projection, 3D points in camera coordinates are mapped to the image plane by dividing them by their Z component and multiplying with the focal length
- After the projection it is not possible to recover the distance of the 3D point from the image.

In the image coordinate (u, v):

$$\begin{pmatrix} u_p \\ v_p \end{pmatrix} = \begin{pmatrix} \frac{fX_P}{Z_P} + c_x \\ \frac{fY_P}{Z_P} + c_y \end{pmatrix}$$

$$\begin{bmatrix} u_p \\ v_p \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & s & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} X_P/Z_P \\ Y_P/Z_P \\ 1 \end{bmatrix}$$

Recovery of camera pose (and 3D structure) from image correspondences. The required relationships are described by the two-view **epipolar geometry**.

Epipolar lines: \bar{l}_1 , \bar{l}_2 Epipoles: e_1 , e_2

R and t denote the relative pose between two perspective cameras

Epipolar lines: \bar{l}_1 , \bar{l}_2 Epipoles: e_1 , e_2

The 3D point **P** and the two camera centers span the **epipolar plane**

The correspondence of pixel p_1 in image 2 must lie on the **epipolar line** \overline{l}_2 in image 2

Epipolar lines: \bar{l}_1, \bar{l}_2

Epipoles: e_1 , e_2

$$\tilde{P}_2 = \mathbf{R}\tilde{P}_1 + \mathbf{t}$$

$$[t]_{\times}\tilde{P}_2 = [t]_{\times}R\tilde{P}_1$$

$$\tilde{P}_2^T[\boldsymbol{t}] \times \tilde{P}_2 = \tilde{P}_2^T[\boldsymbol{t}] \times \boldsymbol{R} \tilde{P}_1 = 0$$

$$E = [t]_{\times}R$$

$$\tilde{P}_2^T \mathbf{E} \tilde{P}_1 = 0$$

Epipolar lines: \bar{l}_1 , \bar{l}_2 Epipoles: e_1 , e_2

$$p_1 = K\tilde{P}_1$$
, $p_2 = K\tilde{P}_2$

$$\tilde{P}_1 = K^{-1}p_1$$
, $\tilde{P}_2 = K^{-1}p_2$

$$p_2^T K^{-1}^T E K^{-1} p_1$$

$$\mathbf{F} = K^{-1}{}^{T}\mathbf{E}K^{-1}$$

$$\overline{m{l}_2} = m{F} p_1$$
 , $\overline{m{l}_1} = p_2^T m{F}$, $p_2^T \overline{m{l}_2} = 0$, $\overline{m{l}_1} p_1 = 0$

Epipolar lines: \bar{l}_1 , \bar{l}_2 Epipoles: e_1 , e_2

Estimating the Essential Matrix

$$\tilde{P}_2^T \mathbf{E} \tilde{P}_1 = 0$$

$$x_1x_2e_{11} + y_1x_2e_{12} + x_2e_{13} + x_1y_2e_{21} + y_1y_2e_{22} + y_2e_{23} + x_1e_{31} + y_1e_{32} + e_3 = 0$$

As *E* is homogeneous we use singular value decomposition to constrain the scale.

Note that some terms are products of two image measurements and hence amplify measurement noise asymmetrically. Thus, the normalized 8-point algorithm whitens the observations to have zero-mean and unit variance before the calculation and back-transforms the matrix recovered by SVD accordingly.

Estimating the Translation and Rotation

From E, we can recover the direction of the translation vector t. We have:

$$\hat{\boldsymbol{t}}^T \boldsymbol{E} = \hat{\boldsymbol{t}}^T [\boldsymbol{t}]_{\times} \boldsymbol{R} = 0$$

Thus, \mathbf{E} is singular and we obtain $\hat{\mathbf{t}}$ as the left singular vector associated with singular value 0. In practice the singular value will not be exactly 0 due to measurement noise, and we choose the smallest one. The other two singular values are roughly equal

$$E = U\Sigma V^T$$
, $\Sigma = diag(1, 1, 0)$ to scale

Estimating the Translation and Rotation

Two possible choices of the rotation matrix R:

$$R_1 = UZV^T$$
 or $R_1 = UZ^TV^T$, where $Z = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Two possible choices of translation direction \hat{t}

 $\hat{\boldsymbol{t}} = \boldsymbol{u}_3$ or $-\boldsymbol{u}_3$, where \boldsymbol{u}_3 is the last column of \boldsymbol{U}

Estimating the Translation and Rotation

Four possible solutions: can be solved by point triangulation

Triangulation

How to recover 3D geometry with known intrinsic and extrinsic?

Given noisy 2D image correspondings p_1 and p_2 , the two light rays might not intersect. We want to recover the 3D point P that is closest to the two rays.

Triangulation

In the projection process $p_i = K\tilde{P}_i$, both sides are homogeneous, they have the same direction but different magnitude.

To account for this, we consider the cross product $p_i \times K\tilde{P}_i = 0$, in a rowwise form:

$$\underbrace{\begin{bmatrix} x_i k_{i3} - k_{i1} \\ y_i k_{i3} - k_{i2} \end{bmatrix}}_{\mathbf{A}_i} \tilde{P}_i = 0$$

Stacking N \geq 2 observations of a point, we obtain a linear system $A\tilde{P}_i = 0$. As \tilde{P}_i is homogeneous this leads to a constrained least squares problem. The solution to this problem is the **right singular vector** corresponding to the smallest singular value of A.

Detection and description

- Features should be invariant to perspective effects and illumination
- The same point should have similar vectors independent of pose/viewpoint
- Plain RGB/intensity patches will not have this property, we need something better

Scale Invariant Feature Transform (SIFT)

- SIFT constructs a scale space by iteratively filtering the image with a Gaussian
- Adjacent scales are subtracted, yielding Difference of Gaussian (DoG) images

Interest points (=blobs) are detected as extrema in the resulting scale space

Scale Invariant Feature Transform (SIFT)

- SIFT rotates the descriptor to align with the dominant gradient orientation
- Gradient histograms are computed for local sub-regions of the descriptor
- All histograms are concatenated and normalized to form a 128D feature vector

Scale Invariant Feature Transform (SIFT)

Example

Example of two images with SIFT correspondences (green: correct, red: wrong)

Detection and Description

- Many algorithms for feature detection and description have been developed, e.g.,
 SIFT, SURF, U-SURF, BRISK, ORB, FAST, and recently deep learning based ones
- SIFT was a seminal work due to its invariance and robustness which revolutionized recognition and in particular matching and enabled the development of large-scale SfM techniques which we discuss in this lecture
- Despite >20 years old, SIFT is still used today (e.g., in the SfM pipeline COLMAP)
- Feature correspondences can be retrieved with efficient nearest neighbor search
- Ambiguous matches are typically filtered by computing the ratio of distance from the closest neighbor to the distance of the second closest
- A large ratio (>0.8) indicates that the found match might not be the correct one

Tutorial:

Requirements

Python 3, numpy, opencv \geq 3.1x

Contents:

- 1. Feature points detection: SIFT and OBR
- 2. Feature matching: Brute Force, KNN.
- 3. Estimating the essential matrix
- 4. Decompose the estimated essential matrix: singular values, vectors
- 5. Estimating translation and rotation matrix
- 6. Get the angle errors for the translation direction and rotation matrix.