Применение нейронных сетей для вычисления функциональных интегралов в квантовой теории поля

Чистяков В. В.

научный консультант на курсе MSU.AI: Васильев А. В.

научный руководитель: Белокуров В. В.

Введение в тему

$$\langle O(x(t_1),...,x(t_n))\rangle = \int D[x(t)] \frac{\exp\left(-S[x(t)]\right)}{Z} O(x(t_1),...,x(t_n)) \approx$$

$$pprox \int d^N x P(x) O(x) pprox rac{1}{M} \sum_{k=1}^M O(X_k)$$

$$X_k \sim P(x)$$
 $P(x) = \frac{\exp(-S(x))}{Z}$

Задача генерации

- Необходимо генерировать набор траекторий
- MCMC (Metropolis)
- затрачивает существенное время
- не учитывает симметрии задачи

Normalizing flow

multiscale architecture

Loss

$$\begin{split} P_g(x) &= r(z) \left| det \frac{\partial g}{\partial z} \right|^{-1} & z = g^{-1}(x) \qquad r(z) = \frac{1}{(2\pi)^{N/2}} \exp\left(-\frac{1}{2}z^2\right) \\ L[w] &= D_{KL}(P_g|P) - \ln Z = \int dx P_g(x) \left(\ln P_g(x) + S(x)\right) = \frac{1}{M} \sum_{i=1}^M \left(S(x_i) + \ln P_g(x_i)\right) \\ L[w] &= \frac{1}{M} \sum_{i=1}^M \left(S(g(z_i)) - \ln \left| \det \frac{\partial g}{\partial z} \right|\right) + const \end{split}$$

Метрики

- -Вычислить Z по сгенерированному набору, после чего найти KLдивергенцию
- квадрат волновой функции
- двухточечная функция Грина.

$$G(s) = \frac{1}{N} \sum_{i=1}^{N} \langle x_i x_{i+s} \rangle$$

$$H = \frac{p^2}{2} + V(x) \qquad S = \sum_{i=1}^{N} \frac{(x_{i+1} - x_i)^2}{2a} + aV(x_i)$$

$$H = |p| + V(x) \qquad S = \sum_{i=1}^{N} \ln\left(1 + \frac{(x_{i+1} - x_i)^2}{a^2}\right) + aV(x_i)$$

$$H = \sqrt{p^2 + 1} + V(x)$$

$$S = \sum_{i=1}^{N} \ln\left(y_i K_1(ay_i)\right) + aV(x_i) \qquad y_i = 1 + \frac{(x_{i+1} - x_i)^2}{a^2}$$

К1-функция Макдональда

осциллятор:
$$V(x) = \frac{x^2}{2}$$

Двухточечная функция Грина осциллятора

Учет симметрии ортогональной

1.0

Двойная потенциальная яма

Loss	$\langle V \rangle$	$\langle K \rangle$	$\beta \langle E \rangle$	KL
134.3 ± 0.1	1.11	0.61	110	24

Потенциал Морзе

Потенциал Морзе

α	Loss	$\langle V \rangle$	$\langle K \rangle$	$\beta \langle E \rangle$	KL	$\langle V \rangle_{theor}$	$\langle K \rangle_{theor}$
0.5	-8.56 ± 0.1	-0.37	0.1	-8.64	0.08 ± 0.1	-0.37	0.09
1	-3.26 ± 0.2	-0.24	0.14	-3.2	0.06 ± 0.2	-0.25	0.125

Ультрарелятивистский осциллятор

ультрарелятивистский осциллятор

релятивистский осциллятор m=w=1

Ускорение МСМС

Журналы

-ЭЧАЯ

-Вестник Московского университета

Спасибо за внимание!

