P-77-2011

원격차단밸브의 선정 및 설치에 관한 기술지침

2011. 12.

한국산업안전보건공단

안전보건기술지침의 개요

- O 작성자: 한국기술사회 유철진
- O 제·개정 경과
 - 2011년 10월 화학안전분야 제정위원회 심의(제정)
- O 관련 규격 및 자료
 - HSE, "The selection of ROSOV (Remotely Operated Shut-off Valve) for the effective isolation of hazardous liquids and gases", 2004
- O 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자: 2011년 12월 26일

제 정 자: 한국산업안전보건공단 이사장

P-77-2011

원격차단밸브의 선정 및 설치에 관한 기술지침

1. 목적

이 지침은 위험물질을 함유하고 있는 시스템에서 누출사고가 발생하는 경우 화재 및 폭발을 방지하기 위하여 신속하게 원격 차단하는 것을 주목적으로 설치하는 원격차단밸브의 선정 및 설치에 필요한 기술적 사항을 제시하는데 그 목적이 있다.

2. 적용범위

이 지침은 위험물질을 함유하고 있는 시스템에 적용하며, 위험물질 누출 등 비상 사태 시에 설비와 장치를 안전하게 조작 및 정지를 하여야 하는 비상조치계획에도 준용한다.

3. 정의

- (1) 이 지침에서 사용되는 용어의 정의는 다음과 같다
 - (가) "원격차단밸브 (Remotely operated shutoff valve, ROSOV)"라 함은 위험물질을 함유하고 있는 시스템에서 누출사고가 발생하는 경우 설비를 신속하게 차단하는 것을 주목적으로 하는 밸브를 말하며, 밸브의 조작은 밸브 자체로부터 떨어진 지점에서 이루어진다.
 - (나) "이중기능차단밸브"라 함은 공정제어의 기능과 함께 비상차단 등의 기능을 가 진 밸브를 말한다.
 - (다) "과잉유량밸브 (Excess flow valve)"라 함은 정상상태에서는 항상 열려 있지만 유량이 어느 한계를 초과하면 자동으로 닫히도록 설계되어 있는 밸브를 말한다.
- (2) 기타 이 지침에서 사용하는 용어의 정의는 특별한 규정이 있는 경우를 제외하고는 「산업안전보건법」, 같은 법 시행령, 같은 법 시행규칙 및 「산업안전보건기준에 관한 규칙」에서 정하는 바에 의한다.

P-77-2011

4. 일반사항

- (1) 원격차단밸브는 독성물질의 경우 수동으로 차단하면 작업자들이 독성분위기에 노출되는 것을 방지시켜 준다.
- (2) 인화성 물질의 경우 원격차단밸브가 작동함으로써 누출에 따른 화재 및 폭발위험을 방지시켜 주며, 특히 석유화학 콤비나트와 같이 복합 콤플렉스단지는 공장들이 밀집되어 있고, 파이프와 구조물로 서로 연결되어 있어서 인화성 물질의 누출로 인한 증기운 폭발의 위험성이 크므로, 차단밸브의 필요성이 높다.
- (3) 원격차단밸브는 안전기준에 적합한 내화재성을 가지고 있어야 한다.
- (4) 원격차단밸브의 설치를 고려하여야 할 시설은 다음과 같다.
 - (가) 화학 및 석유화학 제조시설
 - (나) 위험물질 저장시설
 - (다) 위험물질 유통시설
 - (라) 장거리 파이프라인
 - (마) 해상설비
 - (바) 기타 인화성 및 독성물질 또는 액화가스 취급시설 (예로, 자동차 공장에서 자동 차에 연료를 주입하는 시설 등)
- (5) 원격차단밸브의 기능에서 다음과 같은 요구사항은 고려하지 않는다.
 - (가) 공정제어 수단
 - (나) 용기의 압력방출 수단
 - (다) 발열폭주반응 발생 시에 긴급방출 및 급냉 수단
 - (라) 정비 목적으로 설비의 차단이 필요한 경우
- (6) 원격차단밸브를 설치하기 전에 취하여야 할 단계적 안전조치는 다음과 같다.
 - (가) 위험물질을 보다 위험성이 적은 물질로 대체
 - (나) 공정지역 및 탱크에서 위험물질의 저장량을 줄임

P-77-2011

- (다) 설비에 대한 예방정비, 검사 및 테스트를 철저히 함으로써 저장물질의 손실방 지
- (라) 방유제 등 완화 수단

5. 선정기준

5.1 일반사항

- (1) 신규설비를 설계할 경우는 처음부터 원격차단밸브의 설치여부를 검토하여야 한다.
- (2) 기존설비는 다른 방법에 의해 '위험수준을 합리적으로 실용적인 수준으로 낮출 수 있는'(As low as reasonably practical, ALARP) 경우, 다시 말하여 원격차단밸브 의 설치가 현실적으로 실용적이지 않다는 것을 입증할 수 있는 경우를 제외하고는 일단 설치여부를 검토하여야 한다.
- (3) 1차적으로 위험이 충분히 낮아서 원격차단밸브를 설치하지 않아도 되는 경우(1차적 선정기준)를 검토한 후 2차적으로 원격차단밸브의 설치가 필요한 경우(2차적 선정기준)를 검토한다.
- (4) 원격차단밸브의 설치가 합리적으로 실용적(Reasonably practical)인지 여부를 결정하기 위한 평가절차는 <부록 1>에 따른다.

5.2 1차적 선정기준

- (1) 수동조작에 실패하여도 위험물질의 최대 예상 누출양이 아주 적은 경우
- (2) 작업자가 수동차단을 시도하는 동안에 인화성 분위기에 빠져 들어가더라도 심각 한 상해나 사망의 위험에 노출되는 상황이 발생하지 않는 경우
- (3) 작업자가 수동차단을 시도하는 동안에 독성물질의 농도가 건강에 위협을 주는 수 준 이상의 독성지역에 들어갔지만 심각한 상해나 사망의 위협에 노출되는 상황이 발생하지 않고, 근로자가 자력으로 탈출할 수 있는 경우
- (4) 위험물질의 누출속도 및 누출시간이 잠재적으로 심각한 위험을 주는 정도가 아닌 경우

P-77-2011

5.3 2차적 선정기준

- (1) 위험물질이 가압 하에서 액화가스로 다량 존재하는 경우
- (2) 수시로 연결 및 해체 작업이 일어나는 플렉시블 로딩암(Flexible loading arm), 호 스 또는 이와 유사한 취약한 장치에 밸브가 설치되어 있는 경우
- (3) 방유제 외부의 장소에서 위험물질의 봉쇄가 실패할 가능성이 있는 경우
- (4) 공정 내부에서 인화성 물질이 누출하여 열 복사, 과압 등 그 피해결과가 공정 외부 또는 오프사이트까지 확대할 가능성이 있는 경우
- (5) 수동조작의 실패로 인하여 누출시간이 길어져서(최소 약 20분) 다수의 오프사이트 희생자가 발생할 가능성이 있는 경우

6. 작동

6.1 일반사항

- (1) 적절한 시간 내에 타이트하게 잠글 수 있어야 한다.
- (2) 화재 또는 폭발 등 외부위험에서도 타이트한 상태를 계속적으로 유지할 수 있어야 한다.
- (3) 일반적으로 게이트밸브(Gate valve) 또는 플러그밸브(Plug valve)를 사용한다.

6.2 작동방법

- (1) 독성 또는 인화성 가스 감지기와 같은 감지시스템에 의하여 독성 또는 인화성 가스가 일정한 농도 이상이 되면 즉시 자동적으로 차단할 수 있으며, 자동작동방식의 이점은 다음과 같다.
 - (가) 위험물질의 누출을 신속하게 차단할 수 있다.
 - (나) 휴먼에러의 가능성을 감소시킬 수 있다.
 - (다) 작업자들을 보호할 수 있다.

P-77-2011

- (2) 작업자가 밸브에서 일정한 거리에 떨어져 위치한 조작버턴(Push button)을 누름으로써 차단할 수 있으며, 다음 사항을 고려하여야 한다.
 - (가) 조작버턴은 작업자가 접근하기 용이하고, 안전한 곳에 위치하여야 한다.
 - (나) 조작버턴은 라벨링(Labelling) 표시 등 식별이 용이하여야 한다.
 - (다) 수동작동이 타당성을 가지기 위해서는 적절한 운전지침을 마련하여야 한다.
 - (라) 비상탈출경로 등을 설치하여 비상사태에서 수동작동을 백업할 수 있어야 한다.

6.3 밸브 작동장치(Actuator)

- (1) 밸브 작동장치의 구동방법은 다음과 같다.
 - (가) 공기압식
 - (나) 유압식
 - (다) 전기에너지 방식
- (2) 기계적 스프링이나 가압유체 저장 등 파워를 공급하는 부분이 실패하는 경우라도 그 기능을 지속적으로 수행할 수 있어야 한다.
- (3) 밸브 작동장치 및 제어시스템을 적절히 조합함으로써 기존의 수동작동을 원격자 동작동으로 바꿀 수 있다.
- (4) 밸브 작동장치의 설계는 안전 요구사항과 시스템의 특성에 부합하여야 한다.
- (5) 밸브 작동장치는 다음 사항을 고려하여 올바른 사이즈를 결정하여야 한다.
 - (가) 조립체의 정력학적 및 동역학적 힘
 - (나) 이 힘을 프로세스에 적용시키는 효과
 - (다) 시스템에서 작동빈도
 - (라) 밸브 작동장치의 작동에 필요한 공기 또는 유압의 최대 및 최소범위
- (6) 밸브 작동장치와 밸브 몸체가 서로 다른 제작업자로부터 공급되는 경우 안전 요구 사항을 포함하여 시스템의 완벽성에 대한 책임소재를 분명히 하여야 한다.

P-77-2011

6.4 페일 모드(Fail mode)

- (1) 일반적으로 기동력의 공급이 실패하는 경우 위험물질을 봉쇄하기 위하여 닫히는 구조를 가지고 있다.
- (2) 유틸리티의 손실 등으로 최초의 셧다운(Shut-down)후 차단밸브를 다시 열 수 있는 능력은 안전상 매우 중요하므로, 기동파워의 백업을 마련하여야 한다.

6.5 이중기능차단밸브

- (1) 공정제어의 기능을 동시에 가진 이중기능차단밸브를 사용할 수 있다.
- (2) 일반적으로 공정제이용 밸브는 미세한 여닫기 동작을 취할 수 있도록 설계되어 있으므로, 타이트한 밀봉이 이루어지지 않을 수 있다. 따라서 완벽하게 타이트한 차단이 이루어질 수 있어야 한다.
- (3) 공정제어와 비상차단의 기능은 별개로 유지하여야 한다.

6.6 과잉유량밸브(Excess flow valve)

- (1) 과잉유량밸브는 정상상태에서는 항상 열려 있지만 유량이 어느 한계를 초과하면 닫히도록 설계되어 있다.
- (2) 과잉유량밸브는 정상상태에서는 양방향으로 흐를 수 있으나 과잉유량이 되면 특정한 방향으로만 흐른다.
- (3) 정상운전에서 예상되는 최대유량을 초과하도록 설계하며, 최대 50 % 이상의 높은 설정치를 가진 것도 있다.
- (4) 과잉유량밸브의 이점은 다음과 같다.
 - (가) 기계적 구조가 단순하다.
 - (나) 자동으로 작동함으로써 휴먼에러를 방지할 수 있다.
 - (다) 이물질이 밸브에 끼어 밸브의 막힘을 방지할 수 있다.
 - (라) 용기에 근접하여 설치할 수 있다
 - (마) 가격이 낮아 원격차단밸브의 대체용으로 검토할 수 있다.

7. 신뢰성 및 완벽성

7.1 원격차단밸브의 위험

- (1) 원격차단밸브에 수반될 수 있는 잠재위험은 다음과 같다.
 - (가) 높은 팽창계수를 가진 액체를 봉쇄함으로써 발생하는 과압
 - (나) 긴 배관에서 밸브를 급격하게 잠글 경우 압력서지현상(Hammering)이 발생하여 설비에 손상을 입힘
 - (다) 설치, 정비 및 테스트 과정에서 발생하는 위험
 - (라) 시스템의 복잡성 증대에 따른 위험
 - (마) 오작동에 의한 밸브의 트립 가능성과 그에 따른 영향
- (2) 석유화학 콤비나트나 파이프라인으로 상호 연결된 공장에서는 시스템의 복잡성에 따른 잠재 위험이 크므로, 차단밸브의 위치선정에 주의가 필요하다.
- (3) 새로운 잠재위험의 존재 가능성에 대하여서도 지속적인 관심을 가져야 한다.

7.2 비상차단시스템의 실패요인

- (1) 밸브의 사양이 잘못되어 타이트하게 닫히지 않는 경우
- (2) 불충분한 정비 및 검정테스트로 인하여 밸브가 타이트하게 닫히지 않는 경우
- (3) 근로자가 교육을 충분히 받지 않았거나 불명확한 지시에 따라 서비스하여야 할 밸브를 제대로 작동시키지 못하는 경우
- (4) 차단에는 성공하였으나 차단밸브와의 사이에 적절치 못한 공간으로 말미암아 다 량의 물질이 누출하는 경우
- (5) 화재 및 폭발 등 급박한 상황에서 밸브가 제대로 서비스하지 못하는 경우
- (6) 기동파워의 손실로 밸브가 작동하지 못하는 경우

P-77-2011

7.3 정비, 검사 및 테스트

- (1) 적절하고 정기적인 정비, 검사 및 검정테스트를 함으로써 원격차단밸브의 신뢰성 및 완벽성을 유지할 수 있다.
- (2) 필요한 검사와 테스트의 주기를 결정하는 요인은 다음과 같다.
 - (가) 밸브가 공정유체 및 공정조건에 부합되는 정도
 - (나) 밸브 재질의 적절성
 - (다) 이전의 운전경험 및 테스트 기록
- (3) 신뢰성이 낮을수록 밸브의 검사와 테스트는 보다 자주 실시하여야 한다.

KOSHA GUIDE P-77-2011

<부록 1> 원격차단밸브의 합리적 실용성에 대한 평가절차

1	잠재위험을 확인한다	<u> </u>	물길	- 일의 성질에 관한 자료를 =	수집하고 활용	를한(다 : 독성, 인화성(또는
		What if?		배 실패(LOC)를 일으킬 수 면적 사건 - 홍수, 지진 역 사건 - 자동차충돌, 원			
		What them?	-	 당되는 위험사건(LOC)을 험사건의 빈도를 평가한다			
2	위험성을 평가한다.	Then what?	위하 위향 위향	 람 및 환경에 대한 피해결되 배의 수준(예 사망또는 구! 험범위를 정의된 위해 수준 험범위 안에 있는 주민 수를	보다 덜한 위 으로 결정힌 를 확인한다	해)을 I다	
			위형	배결과의 심각도(예 사망지 험사건의 발생빈도를 평가	한다		
		So what?	교호 위호	C사건의 위험성(피해결과 한다 험성(결과/빈도)감소의 편' 룡이 위험감소에 총체적으	익을 이행비	용과	비교한다
3	평가결과를 기록한다.		4	만일 비용이 총체적으로 불균형하지 않다면 ROSOV를 장착한다.		5	결과를 검토하고 필요하 면 수정한다.

<그림 1> 원격차단밸브의 선정 절차 흐름도

1. 제1단계 : 잠재위험 확인

- (1) 독성물질의 누출은 장시간 위험 분위기를 형성하면서 다수의 근로자들에게, 그리고 공장 경계를 넘어서 보다 먼 곳의 주민들에게까지 커다란 영향을 준다. 또한 사람들이 독성물질에 노출되면 공장을 안전하게 제어하거나 안전하게 정지할 수 없다.
- (2) 인화성 물질의 누출은 점화가 되면 화재 및 증기운 폭발로 이어지고, 이로 인한 열복사와 과압의 영향이 다른 공장에게도 확산되어 커다란 손실을 입힐 수 있다.
- (3) 인화성과 독성을 동시에 가진 물질의 경우 선택의 기준은 각각의 위험성을 독립적

P-77-2011

으로 평가하여 적용하여야 한다.

- (4) 혼합물의 경우 각 성분 중에서 가장 영향이 큰 성분을 기준으로 평가하여 적용한다.
- (5) 화학물질 저장시스템은 각각의 용기를 별개로 보는 것 보다 전체적으로 하나로 간주하는 것이 좋다.
- (6) 비상사태의 성질과 규모는 단순히 저장물질의 양보다는 위험물질의 누출속도에 따라 결정하여야 한다. 즉, 액체 풀(Pool) 및 인화성 증기운(Vapor cloud)의 크기, 제트 플레임(Jet flame)의 길이를 결정하는 것은 누출속도이며, 이와 같은 누출속도에 영향을 주는 인자는 압력, 파열구멍의 크기 등이 있다.

2. 제2단계 : 위험성 평가

- (1) 위험성 평가는 다음과 같이 4단계로 구분하여 실시하는 것이 효과적이다.
 - (가) What if...
 - (나) What then...
 - (다) Then what...
 - (라) So what...
- (2) 위험성 평가의 중요한 정보에는 관련시설에 대한 이전의 위험과 운전분석 검토 (HAZOP)보고서와 배관계장도면(P&ID) 등이 있다.
- (3) 대다수의 경우 정성석 위험성 평가만으로 충분하나 경우에 따라 결함수기법(FTA) 과 같은 정량적 기법을 사용하여 실패의 원인 및 실패의 발생빈도와 피해결과를 정량화할 수 있다.

STEP 1: What if...

- (1) 누출을 일으킬 수 있는 가능한 원인, 즉 봉쇄실패(Loss of containment, LOC)와 같은 초기사건을 확인한다.
- (2) 가능한 원인은 다음과 같은 두 가지 범주가 있다.

P-77-2011

- (가) 지진활동, 홍수 또는 강풍과 같은 자연적 사건
- (나) 장치의 오조작, 정비 불량 또는 차량 충돌과 같은 인적 사건
- (3) 장치 실패의 전형적인 예는 <별표 1>과 같다

<별표 1> 장치 실패의 유형

장 치	주 실패 모드	주 실패 원인			
파이프	구멍, 파열	부식, 침식, 케비테이션, 충격, 진동, 해머링			
파이프 및 플랜지 연결부	누설	재질의 열화, 가스킷의 잘못 사용, 조인트의 부적절한 조립			
계장 연결부	파열, 절단	충격, 진동, 잘못된 피팅, 잘못된 메이크업			
플렉시블 호스	구멍, 파열, 절단	피로, 충격손상, 오용, 잘못된 연결, 기계적 실태			
밸브	외부 누설	글랜드 씨일, 조인트 페이스			
펌프	외부 누설	드라이브 샤프트, 플랜지 페이스, 체인 록			
압축기	누설, 씨일, 플랜지페이스 손상된 연결부, 드레인	진동, 조인트 재질의 썩음, 운전원 실수, 밸브 시트 누출			
드레인 및 단순연결부	씨일 및 플랜지 페이스에서의 누설, 열려진 상태의 밸브, 큰 구멍의 파열	조인트 재질의 부식, 운전원 실수, 충격			

- (4) 인간요인에 대하여는 What if..분석기법을 사용하는 것이 효과적이다.
- (5) 인간실수의 전형적인 요인은 <별표 2>와 같다.

P-77-2011

<별표 2> 인간실수의 요인

직무 요인	- 장치 및 계장의 비합리적인 설계 - 지속적인 간섭 - 발견 또는 이해하기 어려운 정보 - 누락 또는 불분명한 지시 - 정비 불량 또는 신뢰성 없는 장치 - 고강도의 작업, 시간 압박 - 소음 및 불쾌한 작업 조건
개인적 요인	 낮은 기능 및 적성 피곤한 사원 일에 싫증나거나 자신을 잃은 사원 개인적인 질병 문제
조직상의 요인	- 높은 작업압력을 불러오는 서투른 작업 계획 - 서투른 의사소통 - 역할과 책무에 불명확성 - 빈약한 안전보건관리 - 불충분한 참모조직 수준 - 불충분한 훈련- 일상 및 비상 조직 - 불충분한 감독

STEP 2: What then...

- (1) 해당되는 위험사건(LOC)을 확인한다.
- (2) 과거의 경험 및 이력을 바탕으로 위험사건의 발생빈도를 평가한다.

STEP 3: Then what...

- (1) 사람 및 환경에 대한 피해결과를 평가한다.
- (2) 사망, 중상 등 위해의 수준을 정의한다.
- (3) 위험범주를 위해수준에 맞추어 정의한다.
 - (가) 독성물질의 경우 위험범주는 일반적으로 투여량(Dose)의 형태 또는 농도/시간

P-77-2011

의 관계식으로 표현한다.

- (나) 인화성 물질의 경우 위험범주는 일반적으로 풀 화재, 제트 화재, 화구(Fire ball) 등 화재에 따른 열복사에 의한 노출의 영향과 증기운 폭발 등 폭발에 따른 과압으로 결정한다.
- (4) 위험범위 안에 있는 근로자 및 주민의 수를 확인한다.
- (5) 피해결과에 따른 심각도(예컨대 사망자 및 중상자 수)를 평가한다.
- (6) 위험사건의 발생빈도를 평가한다.

STEP 4: So what...

- (1) 위험사건(LOC)의 위험성, 즉 발생빈도 및 피해결과를 원격차단밸브가 없는 경우와 비교한다.
- (2) 비용-편익분석 방법을 적용하여 위험성(빈도 및 결과) 감소의 편익을 이행비용과 비교한다.
- (3) 비용이 위험감소에 총체적으로 불균형한 지 여부를 결정한다.

3. 제3단계 : 평가결과 기록

- (1) 위험성 평가결과와 원격차단밸브의 설치 여부에 대한 의사결정은 철저하게 문서화하여야 한다.
- (2) 문서의 보존기간은 최소 10년이다.

4. 제4단계 : 원격차단밸브 설치

5. 제5단계 : 평가결과의 주기적 검토

(1) 시간의 경과, 국부적인 환경의 변화, 기술의 진보 등은 평가결과를 변경시킬 수 있으므로, 최소한 5년 마다 위험성 평가를 다시 하여야 한다.

P-77-2011

(2) 현지 주민수의 증가, 원격차단밸브 설치비용의 감소 등은 이전에 차단밸브의 설치가 합리적으로 실용적인 선택이 아닌 경우를 설치할 수 있도록 만든다.