How linear?

1 / 7

How linear?

How linear?

correlation coefficient (r): a number between -1 and 1; it measures **linear association**, that is, how tightly the points are clustered about a straight line.

Example

Data:

- (1, 2)
- (2, 3)
- (3, 1)
- (4, 6) (5, 6)

Example

Data:

- (1, 2)
- (2, 3)
- (3, 1)
- (4, 6)
- (5, 6)

Example

Data:

- (1, 2)
- (2, 3)
- (3, 1)
- (4, 6)
- (5, 6)

Expect r to be positive but not 1.

Calculating r

Calculating r

X	y	x in std. units	y in std. units	product of std. units
1	2	-1.41	-0.78	1.10
2	3	-0.71	-0.29	0.21
3	1	0	-1.26	0
4	6	0.71	1.16	0.82
5	6	1.41	1.16	1.64
mean = 3	mean = 3.6			mean = 0.75
SD = 1.41	SD = 2.06			= r

The formula in two languages

Formula for r

- 1. Convert both lists to standard units.
- 2. Multiply corresponding pairs of standard units.
- 3. *r* is the average of the products.

The formula in two languages

Formula for r

- 1. Convert both lists to standard units.
- 2. Multiply corresponding pairs of standard units.
- 3. r is the average of the products.

For those who like math notation and have read the algebra supplement:

If the data are (x_i, y_i) , $1 \le i \le n$, then

$$r = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{x_i - \mu_x}{\sigma_x} \right) \left(\frac{y_i - \mu_y}{\sigma_y} \right)$$

1. The calculation uses only standard units. So r is a pure number with no units.

1. The calculation uses only standard units. So r is a pure number with no units.

2. $-1 \le r \le 1$. Trust me.

1. The calculation uses only standard units. So r is a pure number with no units.

2. $-1 \le r \le 1$. Trust me.

The extreme cases: r=-1 is when the scatter is a perfect straight line sloping down; r=1 is when the scatter diagram is a perfect straight line sloping up.

- 1. The calculation uses only standard units. So r is a pure number with no units.
- 2. $-1 \le r \le 1$. Trust me.

The extreme cases: r=-1 is when the scatter is a perfect straight line sloping down; r=1 is when the scatter diagram is a perfect straight line sloping up.

3. It doesn't matter if you switch the variables x and y; r stays the same.

Switching axes doesn't affect linearity

Switching axes doesn't affect linearity

Linear transformations

4. **Adding a constant** to one of the lists just slides the scatter diagram, so *r* stays the same.

Linear transformations

- 4. **Adding a constant** to one of the lists just slides the scatter diagram, so *r* stays the same.
- 5. **Multiplying one the lists by a positive constant** does not change standard units, so *r* **stays the same.**

Linear transformations

- 4. **Adding a constant** to one of the lists just slides the scatter diagram, so *r* stays the same.
- 5. **Multiplying one the lists by a positive constant** does not change standard units, so *r* **stays the same.**
- 6. Multiplying just one (not both) of the lists by a negative constant switches the signs of the standard units of that variable, so *r* has the same absolute value but its sign gets switched.