For example, if $\rho_s = \rho_{vW}$ in the stage of the big bang nucleosynthesis, the evolving equations (7) - (8) become

$$\overset{\cdot}{R}^{2}(t) + K = \eta \rho_{vF} R^{2}(t)$$

$$\overset{\cdot \cdot}{R}(t) = -\frac{1}{2} \eta \left(\rho_{vF} + 3p_{vF}\right) R(t),$$

This is consistent with the conventional theory.

III. THE SORTS AND AVERAGE DENSITY OF DARK MATTER

Recent astronomical observations show that the universe expanded with a deceleration early and is expanding with an acceleration now. This implies that there is dark energy^[6]. $\rho_{de}/\rho_{tot} = 0.73$, $\rho_M/\rho_{tot} = 0.27$, $\rho_M = \rho_{VM} + \rho_{DM}$, $\rho_{VM} \sim \rho_B$, $\rho_{DM}/\rho_{tot} = 0.23$ and $\rho_B/\rho_{tot} = 0.04$, here ρ_{de} is the density of dark energy, ρ_{tot} is the density of the total energy of the universe (c=1), ρ_{VM} is the energy density of visible matter, ρ_{DM} is the energy density of dark matter, and ρ_B is the energy density of visible baryon matter. According to the cosmological model without singularity^[5], in the V-breaking, the effects of s-matter are equivalent to that of the so-called dark energy, and $\rho_v = \rho_M$. According to this dark-matter model [3, 4], because of the symmetry of F-matter and W-matter, we have

$$\rho_{M} = \rho_{v} = \rho_{vF} + \rho_{vW} = 2\rho_{vF}, \quad \rho_{B} = \rho_{vFB},
\rho_{vF} = \rho_{vFB} + \rho_{vFu}, \quad \rho_{vW} = \rho_{vWB} + \rho_{vWu},
\rho_{vFB} = \rho_{vWB}, \quad \rho_{vFu} = \rho_{vWu}, \quad \rho_{vD} = \rho_{vFu} + \rho_{vW} = \rho_{DM},$$
(9)

where ρ_v is the total energy density of v-matter, ρ_{vF} and ρ_{vW} are respectively the energy density of v-F-matter and the energy density of v-W-matter, ρ_{vFB} and ρ_{vWB} are respectively the energy density of v-F-baryon matter (v-FBM) and the energy density of v-W-baryon matter (v-WBM), ρ_{vFu} is the energy density of unknown v-F-matter (v-UFM), ρ_{vWu} is the energy density of v-W-matter (v-UWM) corresponding to v-UFM, and ρ_{vD} is the total energy density of invisible v-matter. Here v-FBM is the given and visible matter which contains given baryon matter, black holes and neutrinos etc., F-matter contains v-FBM and invisible and unknown v-UFM. Considering $\rho_{vF}=\rho_{vW}$ because F-matter and W-matter are symmetric and can transform from one into another when temperature is high enough, we can determine the ratios of a density to another.