ДЗ-9: вычисление пределов с помощью эквивалентов

1. Вычислить

(a)
$$\lim_{x \to \pi/2} \left(\frac{\pi}{\cos x} - 2x \operatorname{tg} x \right);$$

(c)
$$\lim_{x\to 2} \frac{e^x - e^2}{(x-4)e^x + xe^2}$$
;

(b)
$$\lim_{x \to a} \frac{\sin x - \sin a}{x - a};$$

(d)
$$\lim_{x \to 1} \frac{\ln(2x^2 - x)}{\ln(x^4 + x^2 - x)}$$
.

2. Вычислите

(a)
$$\lim_{x \to 0+} \frac{\arccos(1-x)}{\sqrt{x}}$$
;

(c)
$$\lim_{x \to a} \frac{a^{a^x} - a^{x^a}}{a^x - x^a};$$

(b)
$$\lim_{x\to 0-} \frac{\ln(2x^2-x)}{\ln(x^4+x^2-x)}$$
;

(d) (*)
$$\lim_{x \to \infty} (x^2 - \ln(\operatorname{ch} x^2))$$
.

3. Докажите, что если $f(x) \sim g(x)$ при $x \to x_0$, то $\sqrt{f(x)} \sim \sqrt{g(x)}$ при $x \to x_0$.

4. Докажите, что при $x \to \infty$ многочлен эквивалентен своему старшему члену, т.е.

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \sim a_n x^n x \to \infty.$$

Комментарии:

1) говорят, что функции f и g эквивалентны при $x \to x_0$ и пишут $f \sim g$, если $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$.

2) Правило замены на эквивалент:

$$f \sim f_1, \ g \sim g_1$$
 при $x \to x_0$ \Rightarrow $\lim_{x \to x_0} f \cdot g = \lim_{x \to x_0} f_1 \cdot g_1, \ \lim_{x \to x_0} \frac{f}{g} = \lim_{x \to x_0} \frac{f_1}{g_1}.$

3) Таблица эквивалентов при $x \to 0$:

•
$$\sin x \sim x$$
;

•
$$e^x - 1 \sim x$$
;

•
$$\operatorname{tg} x \sim x$$
;

•
$$a^x - 1 \sim x \ln a$$
:

•
$$\arcsin x \sim x$$
;

•
$$\ln(1+x) \sim x$$
;

•
$$arctg x \sim x$$
;

•
$$\log_a(1+x) \sim x/\ln a$$
;

•
$$1 - \cos x \sim x^2/2$$
;

•
$$(1+x)^{\alpha}-1\sim \alpha x$$
;

4) $\operatorname{ch} x := \frac{e^x + e^{-x}}{2}$ – гиперболический косинус.