PATENT APPLICATION

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re application of

Docket No: Q77771

Tomohiro TAKAHASHI, et al.

Appln. No.: 10/673,361

Group Art Unit: Unknown

Confirmation No.: 4357

Examiner: Unknown

Filed: September 30, 2003

For: PRINTING METHOD AND PRINTING APPARATUS

SUBMISSION OF PRIORITY DOCUMENTS

Commissioner for Patents P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

Submitted herewith are three (3) certified copies of the priority documents on which claims to priority was made under 35 U.S.C. § 119. The Examiner is respectfully requested to acknowledge receipt of said priority documents.

Respectfully submitted,

SUGHRUE MION, PLLC

Telephone: (202) 293-7060

Facsimile: (202) 293-7860

WASHINGTON OFFICE 23373
CUSTOMER NUMBER

Enclosures:

Japan 2002-290406

Japan 2003-317214 Japan 2003-317215

Date: June 23, 2004

Tomohiro TAKAHASHI et al Q77771
PRINTING METHOD AND PRINTING
APPARATUS
Filing Date: September 30, 2003
Darryl Mexic 202-293-7060
1 of 3

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2003年 9月 9日

出願番号 Application Number:

特願2003-317215

[ST. 10/C]:

[JP2003-317215]

出 願 人
Applicant(s):

セイコーエプソン株式会社

2003年10月20日

特許庁長官 Commissioner, Japan Patent Office

【書類名】

特許願

【整理番号】

10102190

【提出日】

平成15年 9月 9日

【あて先】

特許庁長官殿

【国際特許分類】

B41J 29/00

H04N 1/00

【発明者】

【住所又は居所】

長野県諏訪市大和3丁目3番5号 セイコーエプソン 株式会社

内

【氏名】

小島 聖司

【特許出願人】

【識別番号】

000002369

【氏名又は名称】

セイコーエプソン 株式会社

【代理人】

【識別番号】

100068755

(| 弁理士]

【氏名又は名称】

恩田 博宣

【選任した代理人】

【識別番号】

100105957

【弁理士】

【氏名又は名称】

恩田 誠

【手数料の表示】

【予納台帳番号】

002956

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】

0105451

【書類名】特許請求の範囲

, 【請求項1】

原稿の画像を読み取って画像データを生成するためのスキャナ部と、前記画像データをメモリ領域に記憶し、該メモリ領域の画像データに基づいて媒体に前記原稿の画像を印刷するためのプリンタ部とを備え、前記原稿の複数枚のコピー印刷を行う複合機システムであって、

前記スキャナ部による前記画像の読み取り動作によって生成された画像データに基づいて、コピー印刷に必要とする前記原稿の画像の領域判定を行うとともに、該画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定して、その判定結果に基づいてコピー印刷のための処理を変更することを特徴とする複合機システム。

【請求項2】

前記領域判定された原稿について再度スキャナ部が読み取ってコピー印刷を行う際、前記メモリ領域に収まると判定した場合には、前記領域判定の結果に基づいて、前記原稿の読み取り動作のスキャン幅を変更し、前記メモリ領域に収まらないと判定した場合には、スキャン幅を変更せずに原稿の読み取り動作を行うことを特徴とする請求項1に記載の複合機システム。

【請求項3】

前記メモリ領域に収まると判定した場合、該メモリ領域に前記領域判定結果に基づいて保存した画像データを利用して、設定枚数までのコピー印刷を行うことを特徴とする請求項 1又は2に記載の複合機システム。

【請求項4】

前記メモリ領域に収まらないと判定した場合、前記コピー印刷の都度、前記スキャナ部による原稿の読み取り動作を行い、その読み取り動作による画像データを用いて、設定枚数までのコピー印刷を行うことを特徴とする請求項3に記載の複合機システム。

【請求項5】

原稿の画像を読み取って画像データを生成するためのスキャナ部と、前記画像データをメモリ領域に記憶し、該メモリ領域の画像データに基づいて媒体に前記原稿の画像を印刷するためのプリンタ部とを備え、前記原稿の複数枚のコピー印刷を行う複合機システムであって、

所定の設定パラメータで前記コピー印刷を行った場合に前記画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定し、収まると判定した場合、前記原稿のコピー印刷を行う際に前記スキャナ部による前記画像の読み取り動作によって生成され前記メモリ領域に保存された画像データを用いて、設定枚数までのコピー印刷を行い、収まらないと判定した場合、前記スキャナ部による前記画像の読み取り動作によって生成された画像データに基づいて、コピー印刷に必要とする前記原稿の画像の領域判定を行うとともに前記領域判定の結果から画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定し、前記メモリ領域に収まると判定した場合、前記領域判定の結果に基づいて該メモリ領域に保存した画像データを利用して設定枚数までのコピー印刷を行うことを特徴とする複合機システム。

【請求項6】

前記領域判定はスキャナ部による印刷を伴わない画像読み取り動作によって行われ、前記領域判定された原稿について再度スキャナ部が読み取ったデータに基づき該メモリ領域に保存した画像データを利用して、設定枚数までのコピー印刷を行うことを特徴とする請求項5に記載の複合機システム。

【書類名】明細書

、【発明の名称】複合機システム

【技術分野】

[0001]

本発明は、複数の機能を有する複合機システムに関するものである。

【背景技術】

[0002]

最近、PCからスキャン指示を行うネットワークスキャン機能(Scanner)、PCから印刷指示を行うネットワークプリンタ機能(Printer)、ローカルコピー機能(Copy)など複数機能を有するスキャナー体型のプリンタ(SPC複合装置)は、比較的安価なものが実用化されており、一般家庭に普及しつつある。このSPC複合装置は、原稿台上の原稿を一方向に走査しながらその画像を読み取って画像データを生成するためのスキャナ部と、前記画像データをSDRAM等のメモリ領域に一時的に記憶し、このメモリ領域から読み出した画像データに基づいて用紙に印刷画像を印刷するためのプリンタ部とを備えている。SPC複合装置は、スキャナ部による読み取り動作とプリンタ部による印刷動作とを並行して行って、コピー時間の短縮化を図っている。すなわち、前記原稿の画像の一部を読み取ってその画像データをメモリ領域に書き込み記憶しながら、これと並行させて前記メモリ領域から読み出した前記画像データに基づいて用紙に印刷するという並行処理を、原稿の全範囲に亘って順次繰り返し行うことにより、短時間なコピー処理を実現している

[0003]

但し、前記メモリの記憶容量のサイズは限られているため、前述のコピー処理中に空き 領域が無くなった場合には、印刷に供すべく既に読み出した画像データが存在していたメ モリ領域の部分への画像データの上書きを許容している。この上書きは、特に高画質のカ ラーコピーのような画像データサイズが大きくなるケースに起こり得て、当然ながら、こ の一枚目のコピー終了時のメモリには、そのコピーに供した印刷画像に対応する一部の画 像データしか残っていない。このため、原稿台上の同一原稿を複数枚コピーする場合にも 、一枚コピーする度にスキャナ部による再読み取り動作を行う必要がある。

$[0\ 0\ 0\ 4\]$

一方、低画質のコピー (例えば、モノクロコピー) であれば、画像データのサイズは小さいために、前記メモリ領域に、前記印刷画像に対応する全ての画像データが収まる場合がある。この場合には、メモリ領域に格納した画像データを利用して複数枚コピーを行うことにより、そのコピー時の再読み取り動作(スキャン動作)が省略される。従って、コピー時間が短縮化され、高速な複数枚のコピー印刷処理が実現される。

【発明の開示】

【発明が解決しようとする課題】

[0005]

ところで、従来のSPC複合装置では、コピー開始前に原稿の読み取りサイズが不明であることから、スキャナ部の読み取りサイズは、読み取り可能な最大原稿サイズもしくは印字用紙サイズに基づいて設定されている。従って、高画質のカラーコピーを行う場合には、実際に読み取り対象となる原稿サイズが小さかったとしても、メモリ領域の画像データを利用した高速な複数枚のコピー印刷処理を行うことができなかった。また、原稿サイズが小さい場合、スキャナ部は必要以上の領域を読み取ることとなり、読み取り時間が長くなるため複数枚のコピー印刷処理が遅くなってしまう。

[0006]

本発明は上記問題点を解決するためになされたものであって、その目的は、複数枚のコピー印刷処理を高速に行うことができる複合機システムを提供することにある。

【課題を解決するための手段】

[0007]

上記目的を達成するため、本発明は、原稿の画像を読み取って画像データを生成するた

2/

めのスキャナ部と、前記画像データをメモリ領域に記憶し、該メモリ領域の画像データに基づいて媒体に前記原稿の画像を印刷するためのプリンタ部とを備え、前記原稿の複数枚のコピー印刷を行う複合機システムであって、前記スキャナ部による前記画像の読み取り動作によって生成された画像データに基づいて、コピー印刷に必要とする前記原稿の画像の領域判定を行うとともに、該画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定して、その判定結果に基づいてコピー印刷のための処理を変更する。

[0008]

これによれば、スキャナ部による読み取り動作によって生成された画像データに基づいて、原稿の画像の領域判定が行われるとともに、該画像に対応する全ての画像データがメモリ領域に収まるか否かが判定される。その判定結果に基づいて、コピー印刷処理が適切に行われ、複数枚のコピー印刷処理を高速に行うことができる。

[0009]

この複合機システムにおいて、前記領域判定された原稿について再度スキャナ部が読み取ってコピー印刷を行う際、前記メモリ領域に収まると判定した場合には、前記領域判定の結果に基づいて、前記原稿の読み取り動作のスキャン幅を変更し、前記メモリ領域に収まらないと判定した場合には、スキャン幅を変更せずに原稿の読み取り動作を行う。

[0010]

これによれば、領域判定された原稿について再度スキャナ部が読み取ってコピー印刷を 行う際には、印刷画像に対応する全ての画像データがメモリ領域に収まると判定されてコ ピー時間の短縮が可能である場合にのみスキャン幅が変更されるので、実用上好ましいも のとなる。

$[0\ 0\ 1\ 1]$

この複合機システムにおいて、前記メモリ領域に収まると判定した場合、該メモリ領域 に前記領域判定結果に基づいて保存した画像データを利用して、設定枚数までのコピー印 刷を行う。

$[0\ 0\ 1\ 2]$

これによれば、メモリ領域に保存された画像データを利用して、設定枚数までのコピー 印刷が行われ、スキャナ部による読み取り動作を省略することができ、複数枚のコピー印刷を高速に行うことができる。 ,

[0013]

この複合機システムにおいて、前記メモリ領域に収まらないと判定した場合、前記コピー印刷の都度、前記スキャナ部による原稿の読み取り動作を行い、その読み取り動作による画像データを用いて、設定枚数までのコピー印刷を行う。

$[0\ 0\ 1\ 4\]$

これによれば、印刷画像に対応する全ての画像データがメモリ領域に収まらないときには、1枚目のコピー印刷と2枚目以降のコピー印刷とで同じ印刷処理が行われるため、実用上好ましいものとなる。

$[0\ 0\ 1\ 5]$

本発明では、原稿の画像を読み取って画像データを生成するためのスキャナ部と、前記画像データをメモリ領域に記憶し、該メモリ領域の画像データに基づいて媒体に前記原稿の画像を印刷するためのプリンタ部とを備え、前記原稿の複数枚のコピー印刷を行う複合機システムであって、所定の設定パラメータで前記コピー印刷を行った場合に前記画像に前記メモリ領域に収まるか否かを判定し、収まると判定した場合、前記原稿のコピー印刷を行う際に前記スキャナ部による前記画像の読み取り動作によって生成され前記メモリ領域に保存された画像データを用いて、設定枚数までのコピー印刷を行い、収まらないと判定した場合、前記スキャナ部による前記画像の読み取り動作によって生成された画像データに基づいて、コピー印刷に必要とする前記原稿の画像の領域判定を行うとともに前記領域判定の結果から画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定し、前記メモリ領域に収まると判定した場合、前記領域判定の結果に基づいて該メモリ領域に保存した画像データを利用して設定枚数までのコピー

印刷を行う。

[0016]

これによれば、所定の設定パラメータに基づいて、原稿の画像に対応する全ての画像データがメモリ領域に収まると判定された場合には、画像の領域判定を行うことなく、スキャナ部による読み取り動作によって生成されメモリ領域に保存された画像データを用いて、設定枚数までのコピー印刷が行われる。一方、所定の設定パラメータに基づいて、原稿の画像に対応する全ての画像データがメモリ領域に収まらないと判定された場合、スキャナ部による画像の読み取り動作によって生成された画像データに基づいて、コピー印刷に必要とする原稿の画像の領域判定が行われる。この場合、所定の設定パラメータに基づく原稿の画像ではなく、スキャナ部による読み取り動作によって、実際の原稿の画像が領域に関立され、その領域判定の結果から印刷画像に対応する全ての画像データがメモリ領域に収まるか否かが判定される。ここで、収まる判定の場合には、領域判定の結果に基づいて収まるか否かが判定される。ここで、収まる判定の場合には、領域判定の結果に基づいてコピー印刷に必要となる画像データがメモリ領域に保存されるので、該画像データを利用することで設定枚数までのコピー印刷を短時間に行うことができる。

[0017]

この複合機システムにおいて、前記領域判定はスキャナ部による印刷を伴わない画像読み取り動作によって行われ、前記領域判定された原稿について再度スキャナ部が読み取ったデータに基づき該メモリ領域に保存した画像データを利用して、設定枚数までのコピー印刷を行う。

[0018]

これによれば、スキャナ部による印刷を伴わない画像読み取り動作によって領域判定が行われるので、領域判定のために必要な解像度で読み取り動作を行うことができる。また、領域判定された原稿について再度スキャナ部によって読み取り動作が行われるので、印刷解像度の画像データをメモリ領域に保存することができる。そして、その画像データを利用することにより設定枚数までのコピー印刷を高速に行うことができる。

【発明を実施するための最良の形態】

$[0\ 0\ 1\ 9]$

以下、本発明を複合機に具体化した一実施形態を、図1~図6に従って説明する。

図1は、本実施形態の複合機を示す斜視図であり、図2は、原稿台カバーを開いた状態の複合機を示す斜視図である。

$[0\ 0\ 2\ 0]$

本実施形態の複合機は、PCからスキャン指示を行うネットワークスキャン機能(Scanner)、PCから印刷指示を行うネットワークプリンタ機能(Printer)、ローカルコピー機能(Copy)など複数機能を有する複合装置(以下、SPC複合装置という)である。図1及び図2に示すように、SPC複合装置1は、原稿の画像を読み取って画像データとして入力するためのスキャナ部2と、画像データに基づいて画像を用紙等の媒体に印刷するプリンタ部3と、ユーザが操作するための操作パネル部4とを備える。SPC複合装置1において、スキャナ部2で読み取った画像データがプリンタ部3に送信され内部の処理回路で印刷データに変換され、その印刷データに基づく画像が用紙に印刷されることでローカルコピー機能が実現される。

[0021]

スキャナ部2はプリンタ部3の上に配置されており、そのスキャナ部2の上部には、読み取る原稿を載置するための例えばA4版の原稿台ガラス6と、原稿を読み取る際や不使用時に原稿台ガラス6を覆う原稿台カバー7とが設けられている。原稿台カバー7は、開閉可能に形成され、閉止した際には原稿台ガラス6上に載置された原稿を原稿台ガラス6側に押圧する機能も有している。

[0022]

また、SPC複合装置1の背面側にはプリンタ部3へ用紙を供給するための用紙供給部11が設けられ、その用紙供給部11には、カット紙(図示しない)を保持する給紙トレー12が備えられている。SPC複合装置1の前面側の下部に、プリンタ部3で印刷され

た用紙を排紙する排紙部13が設けられ、その排紙部13には、不使用時に排紙口を塞ぐ ことが可能な排紙トレー14が備えられている。さらに、排紙部13の上部に操作パネル 部4が設けられている。なお、本実施形態においては、前記カット紙の最大用紙サイズと してA4版を例に説明するが、これは一例であり、何等これに限るものではない。

[0023]

操作パネル部4のほぼ中央には、液晶ディスプレイ16が設けられている。液晶ディスプレイ16は、設定項目や設定状態、動作状態等を文字にて表示することが可能であるとともに、スキャナ部2で読み取った画像を表示することも可能である。この液晶ディスプレイ16の左側には、電源ボタン17と、スキャンボタン18と、設定表示ボタン19と、クリアボタン20とが設けられている。電源ボタン17は、SPC複合装置1の電源を投入、遮断するためのボタンである。スキャンボタン18は、スキャナ部2による原稿の読み取りを開始させるためのボタンである。設定表示ボタン19は、ユーザにより設定されたコピー機能に対する設定状態を液晶ディスプレイ16に表示させるためのボタンである。クリアボタン20は、コピー機能に対する設定をクリアし、各設定項目をデフォルト値に変更するためのボタンである。

$[0\ 0\ 2\ 4]$

液晶ディスプレイ16の右側には、カラーコピーボタン22と、モノクロコピーボタン23と、ストップボタン24と、コピー枚数設定ボタン25(25a,25b)とが設けられている。カラーコピーボタン22は、カラーコピーを開始させるためのボタンであり、モノクロコピーボタン23はモノクロコピーを開始させるためのボタンである。したがって、これらのコピーボタン22,23は、コピー動作の開始指示と、出力すべき画像がカラー又はモノクロのいずれであるかを選択する選択手段とを兼ねている。ストップボタン24は、一旦開始したコピー動作を中止させるためのボタンである。コピー枚数設定ボタン25は、表面に「+」又は「-」が表記された2つのボタン25a,25bで構成され、「+」ボタン25aを押すことにより設定枚数が増加され、「-」ボタン25bを押すことにより設定枚数が減少される。

[0025]

液晶ディスプレイ16の手前側には、液晶ディスプレイ16に表示される設定項目を切り替えるメニューボタン26が設けられている。メニューボタン26は、左右に配置された2つのボタンで構成され、それぞれ左向きの矢印または右向きの矢印が表記されている。左右いずれかのメニューボタン26が押される毎に、表示される設定項目が決められた順に順次切り替わり、一通り表示し終わると最初の設定項目が表示される。左右の矢印は、設定項目を表示する順番を変更するためであり、両ボタン26は、互いに他のボタンを押した際の表示順と逆の順番で設定項目を表示する。

[0026]

プリンタ部3は、カラー画像の出力が可能な構成であり、例えば、シアン(C)、マゼンタ(M)、イエロ(Y)、ブラック(K)の4色の色インクを、印刷用紙等の媒体上に吐出してドットを形成することによって画像を形成するインクジェット方式を採用している。なお、色インクとして、上記4色に加えて、ライトシアン(薄いシアン、LC)、ライトマゼンタ(薄いマゼンタ、LM)、ダークイエロ(暗いイエロ、DY)を用いてもよい。

[0027]

図3は、SPC複合装置1の電気的構成を示すブロック図である。なお、図3には、コピー機能を実現するための回路構成を記載しており、パソコン等に接続してプリンタやスキャナとして機能する場合に必要となるインターフェース回路や処理回路等は省略している。

[0028]

SPC複合装置1は、プリンタ部3のケース内に全体的な制御を司るメイン基板(図示略)を備える。このメイン基板には、CPU組み込みASIC (Application Specific IC) 41、プログラムROM42、第1のSDRAM43、及び第2のSDRAM44

とが実装されている。

[0029]

ASIC41は、CPU45、スキャナ入力回路46、画像処理回路47、及びヘッド制御ユニット49が内蔵されており、それらはASIC41上の内部バス41aに接続されている。また、その内部バス41aには、ASIC41に外付けされるプログラムROM42と第1のSDRAM43と操作パネル部4とが接続されている。プログラムROM42には、CPU45により実行される制御プログラムなどが記憶されている。第1のSDRAM43には、制御プログラムを実行して処理する画像データや印刷データなどが一時的に記憶される。

[0030]

第2のSDRAM44は、スキャナ入力回路46と画像処理回路47に接続されており、各回路46,47における処理の前後の画像データや印刷データが一時的に格納される。この第2のSDRAM44のメモリ領域には、ラインバッファ44a、マイクロウィーブ(Micro Weave)バッファ44b、イメージバッファ44cがそれぞれ割り当てられている。各バッファ44a~44cのメモリサイズは、大きい順に、マイクロウィーブバッファ44b、ラインバッファ44a、イメージバッファ44cとなっている。ちなみに、最大のメモリ領域が割り当てられたマイクロウィーブバッファ44bのメモリサイズは12[Mbyte]である。

$[0\ 0\ 3\ 1]$

スキャナ入力回路 4 6 にはスキャナ部 2 が接続されている。スキャナ部 2 は、原稿台ガラス 6 に載置された原稿を光学的に読み取って C C D (電荷結合素子) 2 a に蓄えられた電荷を、A/D変換回路 2 b によって A/D変換する。そして、スキャナ部 2 は、A/D変換されたデータを A S I C 4 1 のスキャナ入力回路 4 6 に入力する。

[0032]

スキャナ入力回路46は、CPU45の制御の下、スキャナ部2から入力される各ラスタラインデータ(RGBの多階調画像データ)を第2のSDRAM44のラインバッファ44aに取44aに一旦蓄える。そして、スキャナ入力回路46は、このラインバッファ44aに取り込んだRGBデータに対してライン間補正処理を順次施し、同一ラインに対するRGBデータとして画像処理回路47に送る。なお、ライン間補正処理とは、スキャナ部2の構造上発生するR、G、Bの各リニアセンサ間の読み取り位置のズレを補正する処理である。詳述すると、スキャナ部2が有するCCD2aは、R(レッド)、G(グリーン)、B(ブルー)の3色に対し色毎に1ラインずつのリニアセンサを有している。これら3本のリニアセンサは、読取キャリッジ(図示略)の走査方向に平行に並べられているため、原稿の同一ラインに照射された反射光を同時に受光することができない。すなわち、原稿の同一ラインに照射された反射光が各リニアセンサに受光される際には、時間的なズレが生じることになる。このため、リニアセンサの配列に伴う遅延時間分だけ遅れて送られてくるデータを同期させるための処理である。

[0033]

また、スキャナ入力回路46は、ライン間補正処理と並行して、RGBデータの読み取り解像度 [dpi]を、プリンタ部3が印刷するための印字解像度 [dpi]に変換する解像度変換処理も行う。つまり、RGBデータの読み取り解像度が、印字解像度よりも低い場合には、線形補間等を行って隣接するデータ間に新たなデータを生成し、逆に印字解像度よりも高い場合には、一定の割合でデータを間引く等して、RGBデータの解像度を印字解像度に揃える。尚、これは拡大若しくは縮小コピーする際にも同様である。

[0034]

画像処理回路47は、解像度変換処理が施された画像データを取り込み、色変換、ハーフトーン処理、マイクロウィーブ処理などの画像処理を行う。色変換処理は、RGBの多階調画像データから、CMYKの4色の多階調画像データに変換する処理である。ハーフトーン処理は、多階調データを面積階調データに変換する処理である。マイクロウィーブ処理は、行間の縞(バンディング)を防止すべく、ドットラインの形成方法を調節する処

理である。

. [0035]

この画像処理回路47において、マイクロウィーブ処理が施されたデータはマイクロウィーブバッファ44bに格納される。さらに、画像処理回路47は、そのバッファ44bに格納したデータを所定のサイズ毎に読み出して、諸情報(例えば、各色毎のノズル数、ヘッド走査回数など)に基づき並び替えた後、イメージバッファ44cに転送する。このデータ転送の結果、イメージバッファ44cには、プリンタ部3に設けられた書込キャリッジ(図示略)の走査毎の各ノズルにインクを吐出させるためのヘッド駆動データが格納される。

[0036]

イメージバッファ44cに記憶された走査毎のヘッド駆動データ(印刷データ)はCPU45によって読み出され、ヘッド制御ユニット49に転送される。ヘッド制御ユニット49は、CPU45の制御によりヘッド駆動データに基づいてプリンタヘッド50を駆動し、インク滴の吐出の有無や、吐出するインク滴の量を制御する。これによって、スキャナ部2が読み取った画像に対するコピー印刷が実現される。

[0037]

本実施形態のSPC複合装置1では、複数枚のコピー印刷の実行時にて、印刷画像に対応する全ての画像データがマイクロウィーブバッファ44bに収まる場合には、マイクロウィーブバッファ44bに保存した画像データを用いて設定枚数までの印刷を行う機能を有する。この機能によって、コピー時間の短縮化を図っている。

[0038]

具体的に、マイクロウィーブバッファ $4.4\,b$ には、CMYKO2値データの形態で記憶されるため、印刷画像の画像データのサイズ S [byte] は下式のように計算される。 $S=R\,h\times R\,v\times W\times H\times A\times C \ne 8$

ここで、Rh [dpi] は印字領域の横方向印字解像度、Rv [dpi] は印字領域の縦方向印字解像度、W [inch] は印字領域の横幅、H [inch] は印字領域の高さである。Aは1画素 [pixel] 当たりのbit数である。また、Cは色数であり、カラーコピーの場合はCMYKで4色となる。従って、例えばRh=Rv=720 [dpi]の印字解像度でA4用紙の全面に亘って縁無しにカラーコピーする場合、画像データサイズSは、S=720 [dpi] ×720 [dpi] ×8.268 [inch] ×11.7 [inch] ×2 [bit] ×4/8 [bit/byte] =50147735 [byte] =48 [Mbyte] となる。

[0039]

また、Rh=Rv=360 [dpi] の印字解像度でA4用紙の全面に亘って縁無しにカラーコピーする場合には、その画像データサイズSは、S=360 [dpi] \times 360 [dpi] \times 8.268 [inch] \times 11.7 [inch] \times 2 [bit] \times 4/8 [bit/byte] = 12536934 [byte] = 12.0 [Mbyte] となる。

$[0\ 0\ 4\ 0]$

そして、このようにして計算した画像データのサイズSを、マイクロウィーブバッファ44bのメモリサイズと比較すれば、一枚目の用紙に印刷された印刷画像に対応する全ての画像データが、マイクロウィーブバッファ44bに収まるか否かを判定することができる。

$[0\ 0\ 4\ 1]$

ちなみに本実施形態のマイクロウィーブバッファ44bのメモリサイズは12 [Mbyte] である。そのため、上記計算例のように、720 [dpi] の印字解像度で印刷を行う場合、画像データのサイズSが48 [Mbyte] であることから、画像データがマイクロウィーブバッファ44bに収まらない判定となる。この場合、コピー印刷処理において、マイクロウィーブバッファ44bには、データが存在している記憶領域にデータの上書きが行われるため、コピー印刷の終了後、マイクロウィーブバッファ44bには、印刷画像の一部に対応するデータしか残っていないこととなる。その結果、一枚の用紙にコ

ピー印刷をする度に、スキャナ部2による原稿の再読み取り動作が必要になる。

[0042]

一方、360 [dpi]の印字解像度で印刷を行う場合、画像データのサイズSが12.0 [Mbyte] であることから、画像データがマイクロウィーブバッファ44bに収まる判定となる。この場合、1枚のコピー印刷処理の終了後、マイクロウィーブバッファ44bには、印刷画像に対応する全てのデータが残っているため、この画像データを利用して設定枚数までのコピー印刷を行うことができる。よって、スキャナ部2による再読み取り動作の必要がなくなり、印刷時間を短縮することができる。

[0043]

ここで、図4のように、L版サイズの写真P1を原稿台ガラス6に載置して、720 [dpi]の印字解像度でA4サイズの用紙に複数枚のコピーを実施する場合の動作について説明する。

[0044]

この場合、スキャナ部 2 は、読み取り可能な最大原稿サイズもしくは印字用紙サイズ (印字領域の横幅W×印字領域の高さH) に基づいて、A 4 サイズの印刷画像があることを前提に読み取り動作を開始する。このとき、画像処理回路 4 7 からマイクロウィーブバッファ 4 4 b に A 4 サイズの領域に対応した画像データが転送され、マイクロウィーブバッファ 4 4 b の記憶領域には画像データの上書きが行われながら、1 枚目のコピー印刷が実施される。従って、二枚目のコピー印刷をするときにも、スキャナ部 2 による写真 P 1 の再読み取り動作が必要となる。

[0045]

本実施形態では、1枚目のコピー印刷のための原稿の読み取り動作で得られた画像データに基づいて、コピー印刷に必要となる原稿の画像の領域判定を行い、次のコピー印刷の処理では、その領域判定に基づいて実際に印刷画像が存在する領域のみの画像データをマイクロウィーブバッファ44bに保存する。

[0046]

具体的に、CPU45は、1枚目のコピー印刷の際に領域判定することによって、写真P1のコピー印刷に必要な領域として横幅W1と高さH1を取得し、その横幅W1と高さH1を含む情報を画像処理回路47やヘッド制御ユニット49等に通知する。画像処理回路47は、横幅W1と高さH1とに応じた画像処理を行い、マイクロウィーブ処理を施した画像データをマイクロウィーブバッファ44bの所定のアドレスに順次格納する。

[0047]

図5には、マイクロウィーブバッファ44bに、A4サイズの印刷画像に対応した画像データを記憶する場合のデータイメージ(図中左側)と、写真(L版)サイズの印刷画像に対応した画像データを記憶する場合のデータイメージ(図中右側)とを示している。図5に示すように、マイクロウィーブバッファ44bには、先頭アドレス(0番地)から順に各色(C, M, Y, Kの色)の画像データが記憶されている。ここで、印刷画像に対応する画像データは、A4サイズよりもL版サイズの方が少なくなり、スキャナ部2が読み取った画像領域における各走査ラインに対応する画像データのアドレスも変更される。

$[0\ 0\ 4\ 8]$

このように、マイクロウィーブバッファ44bに、写真P1の画像領域(W1×H1)に応じた画像データを格納すると、印刷画像に対応する全ての画像データを納めることが可能となる。そして、マイクロウィーブバッファ44bに格納した画像データを利用することにより、3枚目以降のコピー印刷処理において、スキャナ部2による再読み取り動作を省略できることから、複数枚のコピー印刷の処理時間が短縮される。

[0049]

つまり、本実施形態のSPC複合装置1では、複数枚のコピー印刷を実行する際に、1 枚目のコピー印刷の処理で取り込んだ画像の領域判定を行い、その領域判定の結果によっ て、印刷画像に対応する全ての画像データがマイクロウィーブバッファ44bに収まるか 否かを判定する。そして、画像データがマイクロウィーブバッファ44bに収まる場合と 収まらない場合とで、2枚目移行のコピー印刷処理を変更するよう構成している。

次に、SPC複合装置1における複数枚のコピー印刷処理について図6のフローチャートを用いて説明する。

先ず、ユーザが操作パネル部 4 のコピー枚数設定ボタン 2 5 を操作してコピー枚数 (例えば、5 枚)を設定するとともに、メニューボタン 2 6 を操作してコピー品質モード等を設定する。そして、写真 P 1 を原稿台ガラス 6 に載置した後、カラーコピーボタン 2 2 をオンした時に、図 6 の処理が開始される。

[0051]

ステップ100において、CPU45は、操作パネル部4からコピー枚数、コピー品質モード等の情報を受信し、SDRAM43に設定する。続くステップ110において、CPU45は、その設定に応じた制御信号をスキャナ部2に出力し、スキャナ部2に原稿画像を読み取らせる。ここで、スキャナ部2は、最大原稿サイズ(A4サイズ)の印刷画像があることを前提に、コピー品質モードの情報に含まれる所定の読み取り解像度で写真P1の読み取りを行う。

[0052]

ステップ 120 において、CPU45 は、印字サイズ、印字解像度等の設定に応じた制御信号を画像処理回路 47 に出力し、該画像処理回路 47 に所定の画像処理(色変換処理、ハーフトーン処理、マイクロウィーブ処理など)を行わせる。このとき、マイクロウィーブ処理が施された画像データが画像処理回路 47 からマイクロウィーブバッファ 44 b の所定のアドレスに順次記憶される。そして、CPU45 は、その画像データをヘッド制御ユニット 49 に転送し、該データに基づいてプリンタヘッド 50 を駆動することで一枚目の用紙に写真 P1 の画像を印刷する。またこのとき、CPU45 は、一定の割合で画像データを間引くことにより、印刷解像度よりも低い解像度(例えば、50 [d p i])の画像データをスキャナ入力回路 46 から取得して SDRAM43 に一旦格納する。

[0053]

その後、ステップ130において、CPU45は、SDRAM43に格納した低解像度の画像データを用いて、読み取り画像の領域判定を行い、ステップ140に移行して、印刷画像に対応する全ての画像データがマイクロウィーブバッファ44bに収まるか否かを判定する。すなわち、CPU45は、その領域判定によって、実際に印刷画像が存在する領域(写真P1の画像領域)として横幅W1と高さH1等の情報を取得し、それに基づいて印刷画像の画像データのサイズSを計算する。そして、そのサイズSとマイクロウィーブバッファ44bのメモリサイズとを比較することで、マイクロウィーブバッファ44bに画像データが収まるか否かを判定する。

[0054]

ここで、画像データが収まらないと判定した場合、CPU45は、ステップ150に移行して、ステップ110と同様に、設定に応じた制御信号をスキャナ部2に出力し、スキャナ部2に原稿画像を読み取らせる。続くステップ160においても、ステップ120と同様に画像処理を行い、マイクロウィーブバッファ44bに画像データを順次記憶するとともに、その画像データに基づいてプリンタヘッド50を駆動することで2枚目の用紙に写真P1の画像を印刷する。そして、ステップ170にて設定コピー枚数分(5枚分)の印刷をしたことを判定するまで、ステップ150,160の処理を繰り返し行い、5枚分の印刷をした時点で本処理を終了する。

[0055]

一方、ステップ140にて画像データが収まると判定した場合、CPU45は、ステップ180に移行して、領域判定の結果に応じた制御信号をスキャナ部2に出力し、スキャナ部2に原稿画像を読み取らせる。ここで、スキャナ部2は、領域判定により得られた写真P1の画像サイズ(L版サイズ)に応じてスキャン幅を変更し写真P1の読み取りを行う。

[0056]

ステップ190において、CPU45は、前記領域判定で得た画像領域の横幅W1,高さH1を含む制御信号を画像処理回路47に出力し、該画像処理回路47にてその画像領域に応じた画像処理(色変換処理、ハーフトーン処理、マイクロウィーブ処理など)を行わせる。そして、マイクロウィーブ処理が施された画像データが画像処理回路47からマイクロウィーブバッファ44bの所定のアドレスに順次記憶される。その後、CPU45は、その画像データをヘッド制御ユニット49に転送し、該データに基づいてプリンタヘッド50を駆動することで2枚目の用紙に写真P1の画像を印刷する。このステップ190の処理では、ステップ120やステップ160の処理に対し、マイクロウィーブバッファ44bにおける画像データの書き込みアドレスと読み出しアドレスとが変更される(図5参照)。つまり、マイクロウィーブバッファ44bには、領域判定で得た画像領域の横幅W1,高さH1に基づいて、保存すべき画像データのアドレスが設定され、写真サイズ(L版サイズ)の印刷画像に応じた全ての画像データが格納される。

[0057]

その後、ステップ200において、CPU45は、設定コピー枚数分(5枚分)印刷したか否かを判定する。ここで、印刷していない場合、CPU45は、ステップ210に移行して、マイクロウィーブバッファ44bに記憶された画像データを利用して用紙に写真P1の画像を印刷する。そして、このステップ210の印刷処理を設定枚数繰り返し行い、設定枚数分印刷した時点で本処理を終了する。

[0058]

以上記述したように、本実施の形態によれば、以下の効果を奏する。

(1)写真P1の1枚目のコピー印刷を行う際に、スキャナ部2にて読み取られた画像データに基づいて、コピー印刷に必要とする写真P1の画像の領域判定が行われるとともに、領域判定された画像に対応する全ての画像データがマイクロウィーブバッファ44bに収まるか否かが判定される。その領域判定の結果に基づいて、2枚目以降のコピー印刷を適切に行うことができるので、複数枚のコピー印刷処理を高速に行うことができる。

$[0\ 0\ 5\ 9]$

(2) 2枚目のコピー印刷を行う際に、領域判定された画像に対応する全ての画像データがマイクロウィーブバッファ 4 4 b に収まると判定された場合、スキャナ部 2 のスキャン幅が変更される。一方、収まらないと判定された場合、スキャン幅が変更されず 1 枚目のコピー印刷と同じスキャン幅でスキャナ部 2 の読み取り動作が行われる。このようにすれば、画像データがマイクロウィーブバッファ 4 4 b に収まり、コピー時間の短縮が可能である場合にのみ、スキャン幅が変更されるので、実用上好ましいものとなる。

[0060]

(3) 画像データがマイクロウィーブバッファ44bに収まると判定された場合、2枚目のコピー印刷を行う際にスキャナ部2の読み取り動作によってマイクロウィーブバッファ44bに保存された画像データを利用して、設定枚数までのコピー印刷が行われる。この場合、3枚目以降のコピー印刷処理では、スキャナ部2による再読み取り動作が省略され、コピー時間の短縮を図ることができる。

[0061]

(4) 画像データがマイクロウィーブバッファ44bに収まらないと判定された場合、2枚目以降のコピー印刷の都度、1枚目のコピー印刷と同じスキャン幅でスキャナ部2による読み取り動作が行われ、その読み取り動作による画像データを用いて設定数枚までのコピー印刷が行われる。この場合、1枚目のコピー印刷と2枚目以降のコピー印刷とで同じ印刷処理が実施され、実用上好ましいものとなる。

[0062]

(5) 印字解像度よりも低い解像度の画像データによって写真 P 1 の画像が領域判定されるので、印字解像度の画像データを用いて領域判定をする場合と比較して、C P U 4 5 の処理負荷が低減され、領域判定の処理を迅速に行うことができる。

[0063]

尚、上記実施の形態は、以下の態様で実施してもよい。

・図6のステップ130の領域判定処理を行う前に、コピー品質モードの情報(印字解 ·像度などの設定パラメータ)に基づいて、印刷画像(A 4 サイズの画像)に対する全ての 画像データがマイクロウィーブバッファ44bに収まるか否かの判定処理を追加してもよ い。そして、収まる判定の場合には、図6のステップ130~190の処理を迂回し、ス テップ210において、マイクロウィーブバッファ44bに格納された画像データを用い てコピー印刷を行うようにする。一方、コピー品質モードの情報に基づいて収まらないと 判定された場合にステップ130に移行して、上記実施形態と同様にステップ130~2 10の処理を実施する。この場合、予め設定された印字解像度などが低く、最大印字サイ ズの印刷画像に対する全ての画像データがマイクロウィーブバッファ44bに収まる場合 には、領域判定処理等を実施することなく、マイクロウィーブバッファ44bの画像デー 夕を利用した高速なコピー印刷処理を実現することができる。また、コピー品質モードの 情報に基づいて収まらないと判定された場合でも、スキャナ部2による印刷画像の読み取 り動作によって生成された画像データに基づいて、コピー印刷に必要とする実際の画像の 領域判定が行われるとともに、該画像に対応する全ての画像データがマイクロウィーブバ ッファ44bに収まるか否かが判定される。そして、収まる判定の場合には、領域判定の 結果に基づいてコピー印刷に必要となる画像データがマイクロウィーブバッファ44bに 保存されるので、該画像データを利用することで設定枚数までのコピー印刷を短時間に行 うことができる。

$[0\ 0\ 6\ 4]$

・上記実施形態では、印刷画像の領域判定に基づいて、スキャナ部2のスキャン幅を変更して、マイクロウィーブバッファ44bに画像データを格納するよう構成していたが、これに限定されるものではない。つまり、スキャナ部2のスキャン幅は変更せず、印刷画像の領域判定に基づいて、画像処理回路47の画像処理を変更することにより、マイクロウィーブバッファ44bに写真P1のサイズ(L版サイズ)に応じた画像データ(図5参照)を保存するようにしてもよい。このようにしても、高速なコピー印刷処理を実現することができる。

$[0\ 0\ 6\ 5]$

・上記実施形態では、マイクロウィーブバッファ44bに保存した画像データ(CMY Kの4色の画像データ)を利用して3枚目以降のコピー印刷をするものであったが、これに限定するものではない。例えば、色変換処理を施す前のRGBの画像データをバッファに保存し、該RGBの画像データを利用して3枚目以降のコピー印刷を行うようにしてもよい。

[0066]

・上記実施形態では、1枚目のコピー印刷をするためにスキャナ部2が取り込んだ画像データに基づいて、写真P1の画像の領域判定をするものであったが、これに限定されるものではない。つまり、複数枚のコピー印刷処理において、スキャナ部2による印刷を伴わない画像読み取り動作によって生成される画像データに基づいて、領域判定を行ってもよい。具体的には、1回目の読み取り動作としては、領域判定のために必要な解像度(印字解像度よりも低い解像度)で画像の取り込みを行うプレスキャン動作でもよい。

[0067]

・上記実施形態では、スキャナ機能とプリンタ機能とコピー機能の複数機能を有するSPC複合装置1に具体化したが、別々の機器であるスキャナとプリンタとを接続することでコピー機としての機能を実現した複合機システムに具体化してもよい。

[0068]

上記実施形態から把握される技術的思想を以下に記載する。

(1)前記領域判定の処理にて原稿画像の幅と高さの情報を取得し、その情報に基づいて、前記画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定することを特徴とする請求項1~6のいずれか1項に記載の複合機システム。

[0069]

(2) 前記領域判定で使用される画像データは、印字解像度よりも低い解像度であるこ

とを特徴とする請求項1~6のいずれか1項に記載の複合機システム。

、(3) 前記領域判定に基づいて、前記メモリ領域の画像データの書き込みアドレスと読み出しアドレスとを変更することを特徴とする請求項1~6のいずれか1項に記載の複合機システム。

【図面の簡単な説明】

- [0070]
 - 【図1】SPC複合装置を示す斜視図。
 - 【図2】スキャナ部のカバーを開いた状態のSPC複合装置を示す斜視図。
 - 【図3】SPC複合装置の電気的構成を示すブロック図。
 - 【図4】写真を原稿台ガラスに載置した状態を示す説明図。
 - 【図5】マイクロウィーブバッファの画像データを示す説明図。
 - 【図6】第1実施形態における複数枚のコピー印刷処理を示すフローチャート。

【符号の説明】

[0071]

1…SPC複合装置、2…スキャナ部、3…プリンタ部、44b…メモリ領域としてのマイクロウィーブバッファ、P1…原稿としての写真。

【書類名】図面

【図2】

【図4】

【図5】

【図6】

【書類名】要約書

,【要約】

【課題】複数枚のコピー印刷処理を高速に行うことができる複合機システムを提供する。 【解決手段】複合機システムとしてのSPC複合装置は、原稿から画像を読み取って画像 データを生成するためのスキャナ部と、該画像データをバッファに記憶し、該データに基 づいて原稿の画像を印刷するプリンタ部とを一体として具備し、原稿の複数枚のコピー印 刷を行う。SPC複合装置において、スキャナ部による1回目の読み取り動作によって生 成された画像データに基づいて、コピー印刷に必要とする原稿の画像の領域判定を行うと ともに、該画像に対応する全ての画像データが前記メモリ領域に収まるか否かを判定して 、その判定結果に基づいてコピー印刷のための処理を変更する。

【選択図】 図6

特願2003-317215

出願人履歴情報

識別番号

[000002369]

1. 変更年月日

1990年 8月20日 新規登録

[変更理由] 住 所

東京都新宿区西新宿2丁目4番1号

氏 名

セイコーエプソン株式会社