

UNIVERSIDAD NACIONAL DE CAJAMARCA

FACULTAD DE INGENIERÍA

ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE SISTEMAS

SÍLABO DE LA ASIGNATURA DE SISTEMAS INTELIGENTES

I. Información general

1.1. Facultad : Ingeniería

1.2. Departamento Académico : Sistemas, Estadística e Informática

1.3. Carrera profesional : Ingeniería de Sistemas1.4. Asignatura : Sistemas Inteligentes

1.5. Código : 11Q239

1.6. Línea Curricular : Algoritmos y programación

1.7. Régimen: Semestral1.8. Ubicación: Quinto ciclo1.9. Naturaleza: Obligatorio

1.10. Prerrequisito : Teoría de autómatas y lenguajes formales

1.11. Horas de teoría : 02
 1.12. Horas de práctica : 03
 1.13. Créditos : 03
 1.14. Semestre académico : 2024 - I

1.15. Fecha de inicio
1.16. Fecha de culminación
1.17. Duración
18. Docente
10 de junio de 2024
20 de setiembre de 2024
15 Semanas (Grupos B y C)
Edwin Alberto Valencia Castillo.

Correo : evalencia@unc.edu.pe

Código ORCID : <u>https://orcid.org/0000-0002-5898-3076</u>

Teléfono : 949675414

II. Sumilla.

La asignatura de Sistemas Inteligentes corresponde a estudios de la especialidad, es de carácter teórico - práctico y tiene como propósito que el estudiante adquiera los principios y fundamentos que le permita modelar, caracterizar y gestionar un sistema como inteligente, procesos, desde la captura de datos, almacenamiento, organización y distribución de conocimiento, que permita su desarrollo y manejo independiente, dentro de los controles preestablecidos. Los contenidos generales de la asignatura son: Enfoques y paradigmas de los sistemas inteligentes. Tendencias de inteligencia artificial, ciencia de datos y la inteligencia artificial. Redes neuronales, Aplicaciones: Machine Learning, Deep Learning y Lenguaje natural.

III. Competencias a las que se orienta la asignatura.

Competencia general	Competencia específica	Resultado de la asignatura en relación a las competencias	
Competencia Genérica G6: Demuestra pensamiento crítico y creativo en el estudio	Nivel Intermedio: Construye Aplicaciones visuales, de escritorio y WEB, usando el paradigma de programación orientada a objetos, estructura de datos, Arquitectura	El estudiante será capaz de comprender y aplicar paradigmas y enfoques de sistemas inteligentes, incluyendo las últimas tendencias en inteligencia artificial y ciencia	

profesional,	con	cliente/servidor y la Teoría de	de datos, así como diseñar,
profesional, interés y naturali para tomar decisiones coherentes pertinentes.		cliente/servidor y la Teoría de autómatas, para automatizar procesos operacionales de la organización y de distintas áreas de conocimiento.	modelar y caracterizar sistemas inteligentes mediante la implementación de aplicaciones prácticas utilizando técnicas de Machine Learning y Deep Learning. Además, desarrollará y gestionará sistemas de procesamiento del lenguaje natural (NLP) empleando estas mismas técnicas avanzadas,
	estas mismas té	·	
		'	
		integral para abordar problemas	
		complejos y crear soluciones	
			innovadoras en el ámbito de los
			sistemas inteligentes.

IV. Organización de las unidades y resultados de aprendizaje.

Unidad Didáctica I: Paradigmas y Enfoques en Sistemas Inteligentes		Resultado de aprendizaje (RA1): Comprender y aplicar paradigmas y enfoques de sistemas inteligentes, incluyendo tendencias en inteligencia artificial y ciencia de datos		
Semana	Contenidos (saberes esenciales)	Estrategias (actividades formativas)	Indicadores de desempeño	
1	Introducción al Machine Learning Fundamentos del machine learning. Tipos de aprendizaje: supervisado, no supervisado y por refuerzo.	Lectura y discusión de artículos sobre fundamentos de machine learning. Instalación y configuración de Python, Jupyter Notebook, y bibliotecas básicas (NumPy, Pandas, Scikit-Learn). Exploración de datasets	Ensayo sobre tipos de aprendizaje y reporte de configuración del entorno.	
2	Evaluación de Algoritmos de Regresión Conceptos de regresión. Métricas de evaluación de modelos de regresión (MSE, RMSE, MAE).	Implementación de modelos de regresión lineal. Evaluación y validación de modelos.	Cuaderno de Jupyter con la implementación y evaluación del modelo de regresión lineal	
3	Evaluación de Algoritmos de Clasificación Conceptos de clasificación. Métricas de evaluación de modelos de clasificación (precisión, recall, F1-score, AUC-ROC).	Implementación de modelos de clasificación (k-NN, Logistic Regression). Evaluación y validación de modelos	Cuaderno de Jupyter con la implementación y evaluación del modelo de clasificación	
4	Aprendizaje Supervisado - Clasificación con Naive Bayes Fundamentos del algoritmo Naive Bayes. Aplicaciones y limitaciones de Naive Bayes.	Implementación de un clasificador Naive Bayes. Evaluación y validación del clasificador.	Cuaderno de Jupyter con la implementación y evaluación del clasificador Naive Bayes	
5	Aprendizaje Supervisado - Regresión y Clasificación con Árboles de Decisión Fundamentos de los árboles de decisión. Técnicas de poda y evaluación de árboles de decisión	Implementación de árboles de decisión para regresión y clasificación. Evaluación y validación de los modelos.	Cuaderno de Jupyter con la implementación y evaluación del modelo de árbol de decisión	
	Proyecto Final: Implementación y comparació clasificación. Examen unidad 01	Entregable: Informe final del proyecto comparativo, incluyendo análisis, visualizaciones y código fuente.		

DASEI SEMESTRE 2024-I Página 2 de 6

Unidad Didáctica II: Aplicaciones de Machine Learning y Deep Learning		Resultado de aprendizaje (RA2): Diseñar, modelar y caracterizar sistemas inteligentes, implementando aplicaciones prácticas utilizando técnicas de Machine Learning y Deep Learning.		
Semana	Contenidos (saberes esenciales)	Estrategias (actividades formativas)	Indicadores de desempeño	
6	Aprendizaje Supervisado - Regresión y Clasificación con Random Forests Fundamentos de los Random Forests. Ventajas y desventajas de los Random Forests	Implementación de Random Forests para regresión y clasificación con Scikit- Learn. Evaluación y validación de los modelos.	Cuaderno de Jupyter con la implementación y evaluación de modelo de Random Forest	
7	Combinación de Clasificadores - Bootstrapping, Bagging, Boosting Conceptos de combinación de clasificadores. Fundamentos de Bootstrapping, Bagging, y Boosting.	Implementación de modelos de Bagging (Random Forests) y Boosting (AdaBoost, Gradient Boosting) Evaluación y comparación de los modelos.	Cuaderno de Jupyter con la comparación de modelos de Bagging y Boosting.	
8	Aprendizaje Supervisado - Clasificación con Máquinas Vector de Soporte Fundamentos de las máquinas de vectores de soporte (SVM). Aplicaciones y limitaciones de SVM.	Implementación de SVM para clasificación. Evaluación y validación del modelo.	Cuaderno de Jupyter con la implementación y evaluación del clasificador SVM.	
9	Aprendizaje Supervisado - Regresión y Clasificación con Redes Neuronales Fundamentos de las redes neuronales artificiales (ANN). Arquitectura y entrenamiento de redes neuronales.	Implementación de redes neuronales para regresión y clasificación con TensorFlow/Keras. Evaluación y validación de los modelos.	Cuaderno de Jupyter con la implementación y evaluación del modelo de red neuronal	
10	Técnicas de Aprendizaje No Supervisado - Agrupamiento Fundamentos del aprendizaje no supervisado y técnicas de agrupamiento. Algoritmos de agrupamiento: K-means, DBSCAN, Hierarchical Clustering	Implementación de algoritmos de agrupamiento. Evaluación y validación de los resultados de agrupamiento.	Cuaderno de Jupyter con el proyecto de agrupamiento.	
	Proyecto Final: Desarrollo de un proyecto cor Learning, desde la preparación de datos hasta modelo. Examen unidad 02		Entregable: Informe final del proyecto, incluyendo todos los pasos del proceso, resultados obtenidos, código fuente y visualizaciones.	
Unidad Didáctica III: Procesamiento del Lenguaje Natural (NLP) con Machine Learning y Deep Learning		Resultado de aprendizaje (RA3): Desarrollar y gestionar sistemas de procesamiento del lenguaje natural (NLP) con técnicas de Machine Learning y Deep Learning		
Semana	Contenidos (saberes esenciales)	Estrategias (actividades formativas)	Indicadores de desempeño	
11	Técnicas de Detección de Anomalías Fundamentos de la detección de anomalías. Aplicaciones en diferentes campos. Aprendizaje por Refuerzo y Control Fundamentos del aprendizaje por refuerzo. Principios de control y toma de decisiones	Implementación de técnicas de detección de anomalías. Implementación de algoritmos de aprendizaje por refuerzo (Q-learning). Evaluación y validación de los modelos	Cuaderno de Jupyter con el proyecto de detección de anomalías y de aprendizaje por refuerzo	
12	Parametrización Automática y Optimización de Algoritmos Fundamentos de la parametrización automática. Técnicas de optimización de hiperparámetros.	Implementación de técnicas de optimización de hiperparámetros (Grid Search, Random Search). Evaluación y comparación de los resultados.	Cuaderno de Jupyter con el proyecto de optimización de hiperparámetros.	

DASEI SEMESTRE 2024-I Página 3 de 6

13	Aplicaciones Avanzadas de NLP - Embeddings y Modelos Preentrenados Fundamentos de embeddings de palabras (Word2Vec, GloVe). Introducción a modelos de lenguaje preentrenados (BERT, GPT).	Implementación de embeddings de palabras. Uso de modelos de lenguaje preentrenados para tareas de NLP.	Cuaderno de Jupyter con el proyecto de clasificación de texto.
14	Desarrollo de un proyecto integral de NLP ut Deep Learning Examen unidad 03	Informe final del proyecto, incluyendo todos los pasos del proceso, resultados obtenidos, código fuente y visualizaciones	
15	Examen de aplazados		

V. Estrategias Metodológicas.

De acuerdo con la naturaleza del curso, sus contenidos serán desarrollados en diferentes niveles de aprendizajes aplicación, análisis, síntesis y evaluación a través de actividades diseñadas para mejorar el aprendizaje. Se pondrá mucho énfasis en métodos activos y de aprendizaje significativo, entre otras se usarán las siguientes estrategias metodológicas:

- **5.1. Video Exposición Participativa o Dialogada:** También llamada exposición didáctica, es un tipo de clase expositiva que combina tres actividades: la exposición verbal docente, la interrogación y el diálogo. Esta estrategia proporciona variedad y versatilidad a la tradicional exposición docente, fomentando la participación del estudiante y compromiso hacia su propio proceso de aprendizaje.
- **5.2. Panel virtual:** el estudiante participa en una conversación o desarrolla una exposición, con réplicas ordenadas y públicas, que permitan seleccionar criterios, adquirir habilidades de argumentos y elaborar juicios sustentables.
- **5.3. Foros de discusión:** Por medio de preguntas, llevar a los estudiantes a la discusión y análisis de información pertinente al tema.
- **5.4. Simulación y juego:** Aprender a partir de la acción tanto sobre contenidos como sobre el desempeño de los alumnos ante situaciones simuladas.
- **5.5. Asesoría y laboratorio:** El estudiante se enfrenta a casos de aplicación práctica y que demanda un trabajo analítico en la aplicación de las diferentes metodologías y habilidades en la utilización de las herramientas de software.
- **5.6. Trabajo en pequeños grupos:** El estudiante debate, asimila, demuestra tolerancia con la finalidad de enriquecer el resultado del trabajo aplicado a un caso dentro de una organización empresarial.
- **5.7. Palabras clave:** Ejercita en resumir nuestro pensamiento, escogiendo los aspectos que consideramos más importantes.
- **5.8. Lluvia de ideas:** Se promueve una libre presentación de ideas sin restricciones ni limitaciones sobre un tema determinado.
- **5.9. Aprendizaje basado en problemas:** Los estudiantes trabajan en grupos para sintetizar y construir el conocimiento para resolver los problemas que se le presentan y que por lo general son tomados de situaciones reales.
- **5.10. Desarrollo de casos:** El estudiante debate, asimila y discute aspectos relevantes relacionados con casos de estudio asignados.
- **5.11.** Confrontación de ideas: permite debatir posiciones contrapuestas sobre un mismo asunto.
- **5.12. Intercambio de Ideas:** Es un espacio de encuentro entre el docente y los estudiantes para exponer ideas respecto a un tema o una situación. En este sentido, el docente involucra a los estudiantes

DASEI SEMESTRE 2024-I Página 4 de 6

- en la presentación de ideas u opiniones y en el análisis de contenidos, de modo que participen activamente en el proceso de enseñanza-aprendizaje.
- **5.13. Método de Preguntas:** Por medio de preguntas, llevar a los estudiantes a la discusión y análisis de información pertinente al tema.
- **5.14. Exposición Virtual:** Actividad que permite a los estudiantes presentar conceptos, hechos, opiniones y/o comportamientos vinculados a un tema. En esta actividad, el recurso principal es el lenguaje oral, aunque también puede serlo un texto escrito.
- **5.15.** Clase Invertida: Con el aula invertida, los estudiantes tienen acceso directo al conocimiento y el docente actúa de entrenador y mentor. Con el modelo del aula invertida, los estudiantes tienen que preparar sus momentos de contacto. Durante los momentos de contacto, los docentes pueden enfocarse en la aplicación y la profundización del procesamiento del material de aprendizaje.

VI. Evaluación del aprendizaje.

Evaluación	Resultados de	Evidencias (indicadores de	Instrumento de	Semana
	aprendizaje	desempeño)	evaluación	
EV1	RA-1	Cuestionario de evaluación	Lista de cotejo	cinco
		Informe de prácticas de	Rúbrica	
		laboratorio		
		Proyecto de la unidad 01		
EV2	RA-2	Cuestionario de evaluación	Lista de cotejo	diez
		Sustentación de proyecto de	Rúbrica	
		aplicación		
		Proyecto de la unidad 02		
EV3	RA-3	Cuestionario de evaluación	Lista de cotejo	catorce
		Informe de prácticas de	Rúbrica	
		laboratorio		
		Proyecto de la unidad 03		
Aplazado	Se realizará en la semana 15 y a través de una evaluación teórica-práctica con			áctica con
	sus respectivos criterios e indicadores. (Por la naturaleza de la asignatura no			
	hay recuperación)			

Especificaciones:

- La evaluación de la presente asignatura es de carácter integral donde se evaluarán los conocimientos adquiridos, su aplicación práctica y las actitudes frente al desarrollo de la asignatura.
- Todas las calificaciones son en escala vigesimal.
- El estudiante estará en la condición de inhabilitado con 30% o más de inasistencias del número real de sesiones desarrolladas en el ciclo, no teniendo derecho a rendir al examen de aplazados.
- Los calificativos con NP (No se presentó), equivale a cero (0). Las faltas justificadas o no justificadas se toman como inasistencias para calcular el porcentaje de inhabilitado; en caso se tramite la justificación respectiva solamente se recupera la evaluación no rendida.
- Las notas se expresan en números enteros, en una escala de calificaciones de 0 a 20 puntos. La nota mínima aprobatoria es de once (11) puntos para todo tipo de evaluación. Únicamente para la nota final, la fracción de 0.5 punto o más se redondea a la unidad inmediatamente superior a favor del estudiante.
- Solamente tienen derecho a rendir el examen de aplazados los estudiantes con promedio promocional desaprobatorio, igual o mayor a 5 y registrar el 70% mínimo de asistencia.

DASEI SEMESTRE 2024-I Página 5 de 6

Facultad de Ingeniería Departamento de Sistemas, Estadística e Informática

- El examen de aplazados incluirá todos los contenidos del curso tanto de teoría como de práctica. La nota del examen de aplazado es la nota promocional del curso (La calificación máxima a obtener es once).
- El promedio final se calculará a partir de la siguiente fórmula:

PF= (EV1+EV2 +EV3)/3

Para efectos del presente curso, las calificaciones se calcularán de las siguientes formas:

EV1= 0.20PL + 0.50EU + 0.30 PU EV2= 0.20PL + 0.50EU + 0.30 PU EV3= 0.20PL + 0.50EU + 0.30 PU

Donde:

PL= Promedio laboratorios EU= Examen de unidad

PU= Proyecto de unidad

VII. Referencias.

- [1] François Chollet. Deep Learning with Python. Ed. Manning. Second Edition. New York. USA. 2021.
- [2] John C. Shovic and Alan Simpson. Python All in One for Dummies. Ed. Wiley. 3rd Edition. New Jersey. USA. 2024.
- [3] Kevin Murphy. Probabilistic Machine Learning. Ed. MIT Press. London. England. 2022.
- [4] Jeff Prosise. Applied Machine Learning and AI for Engineers. Ed. O'REILLY. California. USA. 2023.
- [5] Jhon Paul Mueller and Luca Massaron. Artificial Intelligence for dummies. Ed. Wiley. 2nd Edition. New Jersey. USA. 2022.
- [6] Miroslaw Staron. Machine Learning Infrastructure and Best Practices for Software Engineers. Ed. Packt. 1st Edition. Birmingham. UK. 2024.
- [7] Sinan Ozdemir. Principles of Data Science. Ed. Packt. 3rd Edition. Birmingham. UK. 2024.
- [8] Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning. https://www.deeplearningbook.org/
- [9] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Approach. Ed. Pearson. Third Edition. New Jersey. USA. 2010.
- [10] Andrew McMahon. Machine Learning Engineering with Python. Ed. Packt. Second Edition. Birmingham. UK. 2023.
- [11] Sebastian Raschka and Vahid Mirjalili. Python Machine Learning. Ed. Packt. Third Edition. Birmingham. UK. 2019.

Cajamarca Junio del 2024.

Dr. Ing. Edwin Valencia Castillo

DASEI SEMESTRE 2024-I Página 6 de 6