I Restitution du cours

- 1 Donner la définition d'une série absolument convergente et énoncer le théorème de comparaison par domination/négligeabilité.
- 2 Énoncer la règle de d'Alembert et donner la définition d'une série alternée.
- 3 Donner la définition du produit de Cauchy de deux séries numériques et énoncer la formule de Stirling.

II Questions de cours

- 1 Énoncer et démontrer la condition nécessaire de convergence d'une série numérique.
- 2 Montrer que si une série est convergente, alors ses sommes partielles vérifient : $\lim_{n\to +\infty}(S_{2n}-S_n)=0.$ Dans le cas de la série harmonique, montrer que $\lim_{n\to +\infty}(S_{2n}-S_n)\geq \tfrac{1}{2} \text{ et conclure}.$
 - 3 Donner la nature de la série $\sum_{n>0} \frac{(n!)^2}{(2n)!}$ par le critère de d'Alembert.

III Exercices d'entraînement

Exercice 1:

Soit $x \in \mathbb{R}^+$.

Montrer que le reste d'ordre n de la série $\sum_{n\geq 1} \frac{(-1)^n}{(n+x)^2}$ est le terme général d'une série convergente.

Exercice 2 :

Pour $n \in \mathbb{N} \setminus \{0, 1\}$, on pose $u_n = \ln \left(1 - \frac{1}{n^2}\right)$.

Montrer la convergence de la série $\sum_{n\geq 2} u_n$ et calculer sa somme.

Exercice 3:

Déterminer la nature, selon $x \in \mathbb{C}$, de la série $\sum_{n \geq 0} \frac{x^n}{\binom{2n}{n}}$.

Exercice 4

Soient $\sum u_n$ et $\sum v_n$ deux séries convergentes à termes généraux positifs.

Montrer que la série de terme général $\sqrt{u_n v_n}$ est convergente.

Exercice 5:

À l'aide d'une comparaison série-intégrale, montrer la divergence de la série $\sum_{n\geq 2} \frac{1}{n\ln(n)}$ et donner un équivalent de ses sommes partielles.

IV Exercices d'approfondissement

 $\underline{Exercice~6:}$

Soit $p \in]-1;1[$.

Montrer que l'on a : $\sum_{n=0}^{+\infty} (n+1)p^n = \frac{1}{(1-p)^2}$.

Exercice 7:

Soit $f: \mathbb{N}^* \longrightarrow \mathbb{N}^*$ injective.

Démontrer que $\sum_{n\geq 1} \frac{f(n)}{n^2}$ est divergente.