Mixed models applied to breeding

Alencar Xavier March 13th - March 15th, 2019

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 3/11/2019 3/11/2019 Mixed models applied to breeding Mixed models applied to breeding

Schedule

- · Module 1: Intro to mixed models
- · Module 2: Fitting mixed models
- · Module 3: Advanced topics
- · Module 4: Signal detection
- · Module 5: Association analysis

Module 1 - Introduction to mixed models

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/170

· Quantitative Geneticist, Corteva Agrisciences

· Adjunct professor, Dpt. of Agronomy, Purdue University

Luiz Brito

· Assistant Professor of Animal Sciences, Purdue University

Hinayah Oliveira

Instructors

Alencar Xavier

· Post-doc, Dtp. of Animal Sciences, Purdue University

Katy Rainey

· Associate Professor, Dpt. of Agronomy, Purdue University

2/170

Outline

Part 1: Concepts

- · History of mixed models
- · Mixed models in plant breeding
- · Fixed and random terms
- Model notation
- · Variance decomposition

Part 2: Applications

- · Selection models
- · Practical examples
- · Variance components
- · Ridges and Kernels

5/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Part 1 - Concepts

History of mixed models

Francis Galton - 1886: Regression and heritability

Ronald Fisher - 1918: Infinitesimal model (P = G + E)

Sewall Wright - 1922: Genetic relationship

Charles Henderson - 1968: BLUP using relationship

Mixed models in plant breeding

- · Heart and soul of plant breeding (Xavier et al 2017)
- · Variance components and heritability (Johnson and Thompson 1994)
- Trait associations (Gianola and Sorensen 2014)
- Estimation of genetic and breedingvalues (Piepho et al 2008)
- · Prediction of unphenotyped lines (de los Campos et al 2013)
- Selection index (Wientjes et al. 2016)
- · Genome-wide association analysis (Yang et al 2014)
- · All sorts of inference (Robinson 1991)

8/170

7/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Fixed and random terms

Fixed effect

- · Assumed to be invariable (often you cannot recollect the data)
- · Inferences are made upon the parameters
- · Results can not be extrapolated to other datasets
- · Example: Overall mean and environmental effects

Random effects

- · You may not have all the levels available
- · Inference are made on variance components
- · Prior assumption: coefficients are normally distributed
- · Results can not be extrapolated to other datasets
- · Example: Genetic effects

Let's unleash the beast

9/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Mixed models applied to breeding

Model notation

- Linear model: y = Xb + Zu + e
- With variance: $y \sim N(Xb, ZKZ\sigma_u^2 + I\sigma_e^2)$

Assuming: $u \sim N(0, K\sigma_u^2)$ and $e \sim N(0, I\sigma_e^2)$

Henderson equation

$$\begin{bmatrix} X'X & Z'X \\ X'Z & Z'Z + \lambda K^{-1} \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

Summary:

- We know (data): $x = \{y, X, Z, K\}$
- We want (parameters): $heta = \{b, u, \sigma_a^2, \sigma_e^2\}$
- Estimation based on Gaussian likelihood: $L(x|\theta)$

Model notation

- y = vector of observations (n)
- X = design matrix of fixed effects (n x p)
- · Z = design (or incidence) matrix of random effects (n x q)
- $K = \text{random effect correlation matrix } (q \times q)$
- \mathbf{u} = vector of random effect coefficients (q)
- b = vector of fixed effect coefficients (p)
- **e** = vector of residuals (*n*)
- σ_a^2 = marker effect variance (1)
- σ_u^2 = random effect variance (1)
- σ_e^2 = residual variance (1)
- $\lambda = \sigma_e^2/\sigma_u^2$ (Regularization parameters) (1)

11/170

12/170

Model notation

The mixed model can also be notated as follows

$$y = Wg + e$$

Solved as

$$[W'W + \Sigma]g = [W'y]$$

Where

$$W = [X, Z]$$

$$g = [b, u]$$

$$\Sigma = egin{bmatrix} 0 & 0 \ 0 & \lambda K^{-1} \end{bmatrix}$$

Variance decomposition

13/170 14/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

Part 2 - Applications

Selection

- 1 Genetic values
- · BLUPs or BLUEs from replicated trials
- · Captures additive and non-additive genetics together
- 2 Breeding values
- $\dot{}$ Use pedigree information to create K
- · Captures additive genetics (heritable)
- · Trials not necessarily replicated
- 3 Genomic Breeding values
- · Genotypic information replaces pedigree
- · Any signal: additivity, dominance and epistasis

15/170

16/170

Examples

- · Example 1: Balanced data, no kinship
- · Example 2: Balanced data, with kinship
- · Example 3: Unbalanced data, with kinship
- · Example 4: Balanced data, missing individual

Example 1

Data:

 $Model: Phenotype = Environment_{(F)} + Genotype_{(R)}$

17/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

17

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Example 1

Design matrix W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4	
##	1	1	0	0	1	0	0	0	
##	2	1	0	0	0	1	0	0	
##	3	1	0	0	0	0	1	0	
##	4	1	0	0	0	0	0	1	
##	5	0	1	0	1	0	0	0	
##	6	0	1	0	0	1	0	0	
##	7	0	1	0	0	0	1	0	
##	8	0	1	0	0	0	0	1	
##	9	0	0	1	1	0	0	0	
##	10	0	0	1	0	1	0	0	
##	11	0	0	1	0	0	1	0	
##	12	9	9	1	9	9	9	1	

Example 1

W'W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	4	0	0	1	1	1	1
##	EnvE2	0	4	0	1	1	1	1
##	EnvE3	0	0	4	1	1	1	1
##	GenG1	1	1	1	3	0	0	6
##	GenG2	1	1	1	0	3	0	6
##	GenG3	1	1	1	0	0	3	6
##	GenG4	1	1	1	0	0	0	3

19/170 20/170

Example 1

Left-hand side ($W'W + \Sigma$):

Assuming independent individuals: K = I

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.64/9.56 = 0.17$

Example 1

Right-hand side (W'y):

```
## [,1]
## EnvE1 202
## EnvE2 204
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG3 156
## GenG4 164
```

21/170 22/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Example 1

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

EnvE1 50.50 ## EnvE2 51.00 ## EnvE3 52.75 ## GenG1 -0.71 ## GenG3 0.55 ## GenG4 3.08

Shrinkage

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

$$BLUE = \frac{w'y}{w'w} = \frac{sum}{n}$$
 = simple average

$$BLUP = rac{w'y}{w'w + \lambda} = rac{sum}{n + \lambda}$$
 = biased average = $BLUE imes h^2$

Note:

- More observations = less shrinkage
- ' Higher heritability = less shrinkage: $\lambda = \frac{h^2-1}{h^2}$

23/170 24/170

Example 2

If we know the relationship among individuals:

```
## GenG1 GenG2 GenG3 GenG4
## GenG1 1.00 0.64 0.23 0.48
## GenG2 0.64 1.00 0.33 0.67
## GenG3 0.23 0.33 1.00 0.31
## GenG4 0.48 0.67 0.31 1.00
```

Example 2

Then we estimate λK^{-1}

```
## GenG1 GenG2 GenG3 GenG4
## GenG1 0.15 -0.09 0.00 -0.01
## GenG2 -0.09 0.22 -0.02 -0.10
## GenG3 0.00 -0.02 0.10 -0.02
## GenG4 -0.01 -0.10 -0.02 0.17
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.64/17.70 = 0.09$

25/170 26/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Example 2

And the left-hand side becomes

Example 2

We can find coefficients through least-square solution

$$g = (LHS)^{-1}(RHS) = (W'W + \Sigma)^{-1}W'y$$

[,1] ## EnvE1 51.05 ## EnvE2 51.55 ## EnvE3 53.30 ## GenG1 -1.32 ## GenG3 0.03 ## GenG4 2.45

Genetic coefficients shrink more: Var(A) < Var(G)

27/170 28/170

Example 3

What if we have missing data?

```
## 1 Env Gen Phe
## 1 E1 G1 47
## 2 E1 G2 51
## 3 E1 G3 NA
## 4 E1 G4 58
## 5 E2 G1 52
## 6 E2 G2 46
## 7 E2 G3 52
## 8 E2 G4 NA
## 9 E3 G1 53
## 10 E3 G3 58
## 11 E3 G3 58
## 12 E3 G4 52
```

Example 3

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	1	1	0	0	1	0	0	0
##	2	1	0	0	0	1	0	0
##	4	1	0	0	0	0	0	1
##	5	0	1	0	1	0	0	0
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	9	0	0	1	1	0	0	0
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

29/170 30/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

29/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019

Mixed models applied to breeding

Example 3

W'W:

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	3	0	0	1	1	0	1
##	EnvE2	0	3	0	1	1	1	0
##	EnvE3	0	0	4	1	1	1	1
##	GenG1	1	1	1	3	0	0	0
##	GenG2	1	1	1	0	3	0	0
##	GenG3	0	1	1	0	0	2	0
##	GenG4	1	0	1	0	0	0	2

Example 3

Left-hand side ($W'W + \Sigma$):

```
## EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG3 GenG4
## EnvE1 3 0 0 1.00 1.00 0.00 1.00
## EnvE3 0 3 0 1.00 1.00 1.00 0.00
## EnvE3 0 0 4 1.00 1.00 1.00 1.00
## GenG1 1 1 1 1 0.00 0.00 0.00 0.01
## GenG3 0 1 1 0.00 0.01 0.07 0.01
## GenG4 1 0 1 0.00 0.00 0.01 0.07 0.01
## GenG4 1 0 0 1 0.00 0.00 0.00 0.01
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.21/19.61 = 0.06$

31/170 32/170

Example 3

Right-hand side (W'y):

```
## [,1]
## EnvE1 156
## EnvE2 150
## EnvE3 211
## GenG1 152
## GenG2 145
## GenG3 110
## GenG4 110
```

Example 3

Find coefficients through least-square solution

$$g=(LHS)^{-1}(RHS)=(W'W+\Sigma)^{-1}W'y$$

```
## [,1]
## EnvE1 54.14
## EnvE2 51.70
## EnvE3 53.82
## GenG1 -2.56
## GenG2 -4.68
## GenG3 2.15
## GenG4 0.81
```

33/170 34/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

24/45

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Example 4

What if we are missing data from a individual?

Example 4

Rows of missing points are removed

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	2	1	0	0	0	1	0	0
##	3	1	0	0	0	0	1	0
##	4	1	0	0	0	0	0	1
##	6	0	1	0	0	1	0	0
##	7	0	1	0	0	0	1	0
##	8	0	1	0	0	0	0	1
##	10	0	0	1	0	1	0	0
##	11	0	0	1	0	0	1	0
##	12	0	0	1	0	0	0	1

35/170 36/170

Example 4

W'W:

3/11/2019

##		EnvE1	EnvE2	EnvE3	GenG1	GenG2	GenG3	GenG4
##	EnvE1	3	0	0	0	1	1	1
##	EnvE2	0	3	0	0	1	1	1
##	EnvE3	0	0	3	0	1	1	1
##	GenG1	0	0	0	0	0	0	0
##	GenG2	1	1	1	0	3	0	0
##	GenG3	1	1	1	0	0	3	0
##	GenG4	1	1	1	9	9	9	3

Example 4

Left-hand side ($W'W + \Sigma$):

```
EnvE1 EnvE2 EnvE3 GenG1 GenG2 GenG3 GenG4
                    0 0.00 1.00 1.00 1.00
## EnvE1
                    0 0.00 1.00 1.00 1.00
## EnvE3
                    3 0.00 1.00 1.00 1.00
## GenG1
                    0 0.14 -0.08 0.00 -0.01
## GenG2
                    1 -0.08 3.19 -0.02 -0.09
         1 1
                    1 0.00 -0.02 3.09 -0.01
## GenG3
         1 1
                   1 -0.01 -0.09 -0.01 3.15
## GenG4
```

Regularization: $\lambda = \sigma_e^2/\sigma_u^2 = 1.79/22.78 = 0.08$

37/170 38/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Example 4

Right-hand side (W'y):

```
## [,1]
## EnvE1 155
## EnvE2 152
## EnvE3 158
## GenG1 0
## GenG2 145
## GenG3 156
## GenG4 164
```

Example 4

Find coefficients through least-square solution

$$g=(LHS)^{-1}(RHS)=(W'W+\Sigma)^{-1}W'y$$

[,1]
EnvE1 52.06
EnvE2 51.06
EnvE3 53.06
GenG1 -1.82
GenG2 -3.48
GenG3 -0.07
GenG4 2.38

39/170 40/170

Variance components

Expectation-Maximization REML (1977)

$$\sigma_u^2=rac{u'K^{-1}u}{q-\lambda tr(K^{-1}C^{22})}$$
 and $\sigma_e^2=rac{e'y}{n-p}$

Bayesian Gibbs Sampling (1993)

$$\sigma_u^2=rac{u'K^{-1}u+S_u
u_u}{\chi^2(q+
u_u)}$$
 and $\sigma_e^2=rac{e'e+S_e
u_e}{\chi^2(n+
u_e)}$

Predicted Residual Error Sum of Squares (PRESS) (2017)

- $\lambda = argmin(\sum e_i^2/(1-h_{ii})^2)$
- Where $H = (I + K\lambda)^{-1}$ and $e = y \mu Hy$

41/170 42/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Mixed models applied to breeding

Ridges and Kernels

Kernel

3/11/2019

$$y = Xb + Zu + e$$
, $u \sim N(0, K\sigma_u^2)$

Ridge

$$y = Xb + Ma + e$$
, $a \sim N(0, I\sigma_a^2)$

Where

- M is the genotypic matrix, $m_{ij} = \{0, 1, 2\}$
- $K = \alpha MM'$
- u = Ma
- $\sigma_a^2 = \alpha \sigma_u^2$

Ridges and Kernels

Kernel methods:

- Genetic signal is captured by the relationship matrix K
- · Random effect coefficients are the **breeding values** (BV)
- * Efficient to compute BV when $markers \gg individuals$
- Easy use and combine pedigree, markers and interactions

Ridge methods:

- $\dot{}$ Genetic signal is captured by the design matrix M
- · Random effect coefficients are the marker effects
- · Easy way to make predictions of unobserved individuals
- · Enables to visualize where the QTLs are in the genome

42.7

41/170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Mixed models applied to breeding

Ridges and Kernels

Kernel model

$$\begin{bmatrix} X'X & Z'X \\ X'Z & Z'Z + K^{-1}(\sigma_e^2/\sigma_u^2) \end{bmatrix} \begin{bmatrix} b \\ u \end{bmatrix} = \begin{bmatrix} X'y \\ Z'y \end{bmatrix}$$

Ridge model

$$\begin{bmatrix} X'X & M'X \\ X'M & M'M + I^{-1}(\sigma_e^2/\sigma_a^2) \end{bmatrix} \begin{bmatrix} b \\ a \end{bmatrix} = \begin{bmatrix} X'y \\ M'y \end{bmatrix}$$

Both models capture same genetic signal (de los Campos 2015)

Ridges and Kernels

```
K = tcrossprod(M)/ncol(M)
GBLUP = reml(y=y,K=K); Kernel_GEBV = GBLUP$EBV
RRBLUP = reml(y=y,Z=M); Ridge_GEBV = M%*%RRBLUP$EBV
plot(Kernel_GEBV,Ridge_GEBV, main='Comparing results')
```


Break

45/170
file:///C/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 45/170 file:///C/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 46/170
3/11/2019 Mixed models applied to breeding 3/11/2019 Mixed models applied to breeding

Example 1 - Sorghum

Module 2 - Fitting mixed models

Example 1 - load data

3/11/2019

Example dataset from Kevin's agridat package

Example 1 - Getting design matrix

- · Linear model: Pheotype = Env + Gen
- In algebra notation: y = Xb + Zu + e

```
y = dt$yield
X = model.matrix(y~env,dt)
Z = model.matrix(y~gen-1,dt) # "-1" means no intercept
```

Assuming:

- $u \sim N(0, I\sigma_a^2)$
- $e \sim N(0, I\sigma_e^2)$

49/170 50/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

Example 1 - Visualize X and Z matrices

SEE=function(A,...)image(t(1-A[nrow(A):1,]),axes=F,col=gray.colors(2),...)
par(mfrow=c(1,2),mar=c(1,1,3,1))
SEE(X, main=paste("X matrix (",paste(dim(X),collapse=' x '),")"))
SEE(Z, main=paste("Z matrix (",paste(dim(Z),collapse=' x '),")"))

Example 1 - Fit the model

```
# Using the NAM package (same for rrBLUP, EMMREML, BGLR)
require(NAM, quietly = TRUE)
fit1 = reml(y=y,X=X,Z=Z)

# Alternatively, you can also use formulas with NAM
fit1b = reml(y=dt$yield,X=~dt$env,Z=~dt$gen )

# Using the Lme4 package
require(lme4, quietly = TRUE)
fit2 = lmer(yield ~ env + (1|gen), data=dt)
```

51/170 52/170

Example 1 - Variance components

```
fit1$VC[c(1:2)] # same with fit1b$VC

## Vg Ve
## 1 189680.4 442075.6

data.frame((summary(fit2))$varcor)$vcov

## [1] 189680.4 442075.6
```

· VC can be used to measure broad-sense heritability

$$H=rac{\sigma_g^2}{\sigma_g^2+\sigma_e^2/n}=rac{189680.4}{189680.4+442075.6/10.32}=0.85$$

53/170 54/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

Example 1 - DIY BLUPs

```
iK = diag(ncol(Z))
Lambda = 442075.6/189680.4
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[ c(1:ncol(X))]
my_blup = g[-c(1:ncol(X))]
```

Example 1 - The coefficients

blue1 = fit1\$Fixed[,1]; blup1 = fit1\$EBV
blue2 = fit2@beta; blup2 = rowMeans(ranef(fit2)\$gen)
par(mfrow=c(1,2));
plot(blue1,blue2,main="BLUE"); plot(blup1,blup2,main="BLUP")

file:///C/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 54/

Mixed models applied to breeding

Example 1 - DIY BLUPs

par(mfrow=c(1,2))
plot(my_blue,blue1,main="BLUE")
plot(my_blup,blup1,main="BLUP")

3/11/2019

55/170 56/170

Example 1 - DIY Variance components

```
\begin{split} \sigma_e^2 &= \frac{e'y}{n-p} \text{ and } \sigma_u^2 = \frac{u'K^{-1}u + tr(K^{-1}C^{22}\sigma_e^2)}{q} \\ &= \text{g. x. } \% \text{ my_blue - Z. } \% \text{ my_blup} \\ &\text{Ve = c(y\%\%e)/(length(y)-ncol(X))} \\ &\text{Ve} \\ &\# \text{ [1] } 442075.6 \\ &\text{trKC22 = sum(diag(iK\%\%(solve(LHS)[-c(1:ncol(X)),-c(1:ncol(X))])))} \\ &\text{Vg = Vg = c(t(my_blup)\%\%iK\%\%my_blup+trKC22\%Ve)/ncol(Z)} \\ &\text{Vg} \\ &\# \text{ [1] } 189680.4 \end{split}
```

57/170 58/170

Mixed models applied to breeding

Starting from bad variance components

Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))

 $my_blue = g[c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]$

Vg = c(t(my_blup)%*%iK%*%my_blup+trKC22*Ve)/ncol(Z)
if(!i%5){cat('It',i,'VC: Vg =',Vg,'and Ve =',Ve,'\n')}}

It 5 VC: Vg = 191751.1 and Ve = 441110.7

It 10 VC: Vg = 189728.4 and Ve = 442053.2 ## It 15 VC: Vg = 189681.5 and Ve = 442075.1

It 20 VC: Vg = 189680.4 and Ve = 442075.6 ## It 25 VC: Vg = 189680.4 and Ve = 442075.6

LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)

 $e = y - X%*my_blue - Z%*my_blup; Ve = c(y%*%e)/(length(y)-ncol(X))$

trKC22 = sum(diag(iK%*%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

57/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Ve = Vg = 1
for(i in 1:25){
 Lambda = Ve/Vg;

3/11/2019

Mixed models applied to breeding

Example 2 - Barley

Example 2 - load data

Another example dataset from Kevin's agridat package

```
data(steptoe.morex.pheno,package='agridat')
dt = steptoe.morex.pheno
head(dt)
```

```
## gen env amylase diapow hddate lodging malt height protein yield
## 1 Steptoe MN92 22.7 46 149.5 NA 73.6 84.5 10.5 5.5315
## 2 Steptoe MTi92 30.1 72 178.0 10 76.5 NA 11.2 8.6403
## 3 Steptoe MTd92 26.7 78 165.0 15 74.5 75.5 13.4 5.8990
## 4 Steptoe ID91 26.2 74 179.0 NA 74.1 111.0 12.1 8.6290
## 5 Steptoe OR91 19.6 62 191.0 NA 71.5 90.0 11.7 5.3440
## 6 Steptoe WA91 23.6 54 181.0 NA 73.8 112.0 10.0 6.2700
```

59/170 60/170

Example 2 - Getting design matrix

```
• Linear model: Phe = Env + Gen
```

```
• In algebra notation: y = Xb + Zu + e
```

```
X = model.matrix(~env,dt)
Z = model.matrix(~gen-1,dt) # "-1" means no intercept
y = dt$yield
```

61/170 62/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019

Example 2 - DIY BLUPs

```
iK = diag(ncol(Z))
Lambda = 0.637997/0.132009
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[c(1:ncol(X))]
my_blup = g[-c(1:ncol(X))]
```

Example 2 - Fit the model

```
# Fit
fit0 = reml(y=y, X=X, Z=Z)
# BLUE and BLUP
blue0 = fit0$Fixed[,1]
blup0 = fit0$EBV
# Get VC
fit0$VC[c(1:2)]
            Vg
                      Ve
## 1 0.1320092 0.6379967
```

Mixed models applied to breeding

Example 2 - DIY BLUPs

```
par(mfrow=c(1,2))
plot(my_blue,blue0,main="BLUE")
plot(my_blup,blup0,main="BLUP")
```

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

63/170 64/170

Example 2 - Check variance components

```
\begin{split} \sigma_e^2 &= \frac{e'y}{n-p} \text{ and } \sigma_u^2 = \frac{u'K^{-1}u + tr(K^{-1}C^{22}\sigma_e^2)}{q} \\ &= \text{g. } 7 \text{ m. } \text{m. } \text{m
```

Mixed models applied to breeding

trKC22 = sum(diag(iK%*%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))

Starting from bad variance components

Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))

 $my_blue = g[c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]$

Vg = c(t(my_blup)%*%iK%*%my_blup+trKC22*Ve)/ncol(Z)
if(!i%5){cat('It',i,'VC: Vg =',Vg,'and Ve =',Ve,'\n')}}

It 5 VC: Vg = 0.1336139 and Ve = 0.6370751

It 10 VC: Vg = 0.1320386 and Ve = 0.6379797 ## It 15 VC: Vg = 0.1320097 and Ve = 0.6379964

It 20 VC: Vg = 0.1320092 and Ve = 0.6379967 ## It 25 VC: Vg = 0.1320092 and Ve = 0.6379967

LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)

 $e = y - X%*my_blue - Z%*my_blup; Ve = c(y%*%e)/(length(y)-ncol(X))$

65/170

3/11/2019

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Ve = Vg = 1
for(i in 1:25){
 Lambda = Ve/Vg;

3/11/2019

Mixed models applied to breeding

Example 3 - Barley GEBV

Using genomic information!

```
data(steptoe.morex.geno,package='agridat')
gen = do.call("cbind",lapply(steptoe.morex.geno$geno,function(x) x$data))
gen = rbind(0,2,gen)
rownames(gen) = c('Morex','Steptoe',as.character(steptoe.morex.geno$pheno$gen))
rownames(gen)[10] = "SM8"
gen = gen[gsub('gen','',colnames(Z)),]
K = GRM(ITMP(gen),T)
```

67/170 68/170

Example 3 - Fit the model

```
# Fit modeL
fit0 = reml(y=y,X=X,Z=Z,K=K)

# BLUE and BLUP
blue0 = fit0$Fixed[,1]
gebv0 = fit0$EBV

# Get VC
fit0$VC[c(1:2)]

## Vg Ve
## 1 1.027988 0.6575786
```

Example 3 - DIY BLUPs

```
diag(K) = diag(K)+1e-08; iK = solve(K)
Lambda = 0.6575/1.0280
W = cbind(X,Z)
Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_blue = g[ c(1:ncol(X))]
my_gebv = g[-c(1:ncol(X))]
```

69/170 70/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Mixed models applied to breeding

Example 3 - DIY BLUPs

par(mfrow=c(1,2))
plot(my_blue,blue0,main="BLUE")
plot(my_gebv,gebv0,main="GEBV")

Example 3 - Check variance components

$$\begin{split} &\sigma_e^2 = \frac{e'y}{n-p} \text{ and } \sigma_u^2 = \frac{u'K^{-1}u + tr(K^{-1}C^{22}\sigma_e^2)}{q} \\ &\text{e = y - X \%\% my_blue - Z \%\% my_blup} \\ &\text{Ve = c(y\%\%e)/(length(y)-ncol(X))} \\ &\text{w# [1] 0.6379967} \\ &\text{trKC22 = sum(diag(iK\%\%(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))} \\ &\text{Vg = c(t(my_blup)\%\%iK\%\%my_blup+trKC22*Ve)/ncol(Z)} \\ &\text{Vg} \end{split}$$

71/170 72/170

Example 4 - Soybeans

3/11/2019

snp-BLUP

```
data(tpod,package='NAM')
X = matrix(1,length(y),1)
Z = gen
dim(Z)
## [1] 196 376
```

73/170 74/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Example 3 - Fit the model

Fit using the Lme4 package
fit0 = reml(y=y,X=X,Z=Z) # same as remL(y=y,Z=gen)
marker_values = fit0\$EBV
gebv0 = c(gen %*% marker_values)
Marker effects
plot(marker_values,pch=16, xlab='SNP')

Example 3 - DIY BLUPs

```
iK = diag(ncol(Z))
Lambda = fit0$\text{VC[2] / fit0$\text{VC[1]}}
W = cbind(X,Z)
Sigma = diag( c(0,rep(Lambda,ncol(Z))) )
LHS = crossprod(W) + Sigma
RHS = crossprod(W,y)
g = solve(LHS,RHS)
my_mu = g[ c(1:ncol(X))]
my_marker_values = g[-c(1:ncol(X))]
my_gebv = c(gen %*% my_marker_values) # GEBVs from RR
```

75/170 76/170

Example 3 - DIY BLUPs

```
par(mfrow=c(1,2))
plot(my_marker_values, marker_values, main="Markers")
plot(my_gebv, gebv0, main="GEBV")
```


Example 3 - Heritability from RR

77/170 78/170

Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

1 0.01 0.03 0.16

3/11/2019 Mixed models applied to breeding 3/11/2019

Estimate VC from bad starters

```
W = cbind(X,Z); iK = diag(ncol(Z))
Ve = Vg = 1 # Bad starting values
for(i in 1:100){ # Check the VC convergence after few iterations
    Lambda = Ve/Vg;
    Sigma = as.matrix(Matrix::bdiag(diag(0,ncol(X)),iK*Lambda))
    LHS = crossprod(W) + Sigma; RHS = crossprod(W,y); g = solve(LHS,RHS)
    my_blue = g[ c(1:ncol(X))]; my_blup = g[-c(1:ncol(X))]
    e = y - X%*%my_blue - Z%*%my_blup; Ve = c(y%*%e)/(length(y)-ncol(X))
    trKC22 = sum(diag(iK%**(solve(LHS)[(ncol(X)+1):(ncol(W)),(ncol(X)+1):(ncol(W))])))
    Vg = c(t(my_blup)%*%iK%*my_blup+trKC22*Ve)/ncol(Z)
    if(!i%25){cat('It',i,'VC: Vg = ',Vg,'and Ve = ',Ve,'\n')}}
## It 25 VC: Vg = 0.0002960602 and Ve = 0.01801226
## It 50 VC: Vg = 7.428217e-05 and Ve = 0.02818575
## It 75 VC: Vg = 4.000965e-05 and Ve = 0.02956763
```

Break

79/170

77/170

Outline

- · Multivariate models
- · Bayesian methods
- · Machine learning
- · G x E interactions

Module 3 - Advanced topics

82/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Multivariate models

Multivariate models

Mixed models also enable us to evaluate multiple traits:

- · More accurate parameters: BV and variance components
- · Information: Inform how traits relate to each other
- · Constrains: May increase computation time considerably

It preserves the same formulation

$$y = Xb + Zu + e$$

However, we now stack the traits together:

$$y = \{y_1, y_2, \dots, y_k\}, X = \{X_1, X_2, \dots, X_k\}', b = \{b_1, b_2, \dots, b_k\},\ Z = \{Z_1, Z_2, \dots, Z_k\}', u = \{u_1, u_2, \dots, u_k\}, e = \{e_1, e_2, \dots, e_k\}.$$

84/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

83/

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Multivariate models

The multivariate variance looks nice at first

$$Var(y) = Var(u) + Var(e)$$

But can get ugly with a closer look:

$$Var(u) = Z(G\otimes \Sigma_a)Z' = egin{bmatrix} Z_1GZ_1'\sigma_{a_1}^2 & Z_1GZ_2'\sigma_{a_{12}} \ Z_2GZ_1'\sigma_{a_{21}} & Z_2GZ_2'\sigma_{a_2}^2 \end{bmatrix}$$

and

$$Var(e) = R \otimes \Sigma_e = egin{bmatrix} R\sigma_{e_1}^2 & R\sigma_{e_1e_2} \ R\sigma_{e_2e_1} & R\sigma_{e_2}^2 \end{bmatrix}$$

Multivariate models

You can still think the multivariate mixed model as

$$y = Wg + e$$

Where

$$y=egin{bmatrix} y_1\ y_2\end{bmatrix}, W=egin{bmatrix} X_1 & 0 & Z_1 & 0\ 0 & X_2 & 0 & Z_2\end{bmatrix}, g=egin{bmatrix} b_1\ b_2\ u_1\ u_2\end{bmatrix}, e=egin{bmatrix} e_1\ e_2\end{bmatrix}$$

85/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

85/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Mixed models applied to breeding

3/11/2019

Mixed models applied to breeding

Multivariate models

Left-hand side ($W'R^{-1}W + \Sigma$)

$$\begin{bmatrix} X_1'X_1\Sigma_{e_{11}}^{-1} & X_1'X_2\Sigma_{e_{12}}^{-1} & X_1'Z_1\Sigma_{e_{11}}^{-1} & X_1'Z_2\Sigma_{e_{12}}^{-1} \\ X_2'X_1\Sigma_{e_{12}}^{-1} & X_2'X_2\Sigma_{e_{22}}^{-2} & X_2'Z_1\Sigma_{e_{12}}^{-1} & X_2'Z_2\Sigma_{e_{22}}^{-1} \\ Z_1'X_1\Sigma_{e_{11}}^{-1} & Z_1'X_2\Sigma_{e_{12}}^{-1} & G^{-1}\Sigma_{a_{11}}^{-1} + Z_1'Z_1\Sigma_{e_{11}}^{-1} & G^{-1}\Sigma_{a_{12}}^{-1} + Z_1'Z_2\Sigma_{e_{12}}^{-1} \\ Z_2'X_1\Sigma_{e_{12}}^{-1} & Z_2'X_2\Sigma_{e_{22}}^{-1} & G^{-1}\Sigma_{a_{11}}^{-1} + Z_2'Z_1\Sigma_{e_{12}}^{-1} & G^{-1}\Sigma_{a_{22}}^{-1} + Z_2'Z_2\Sigma_{e_{22}}^{-1} \end{bmatrix}$$

Right-hand side $(W'R^{-1}y)$

$$\begin{bmatrix} X_1'(y_1\Sigma_{e_1}^{-1} + y_2\Sigma_{e_12}^{-1}) \\ X_2'(y_1\Sigma_{e_22}^{-1} + y_2\Sigma_{e_12}^{-1}) \\ Z_1'(y_1\Sigma_{e_12}^{-1} + y_2\Sigma_{e_1}^{-1}) \\ Z_2'(y_1\Sigma_{e_12}^{-1} + y_2\Sigma_{e_12}^{-1}) \end{bmatrix}$$

Multivariate models

data(wheat, package = 'BGLR')
G = NAM::GRM(wheat.X);
Y = wheat.Y; colnames(Y) = c('E1','E2','E3','E4')
mmm = NAM::rem1(y = Y, K = G)
knitr::kable(round(mmm\$VC\$GenCor,2))

	E1	E2	E3	E4
E1	1.00	-0.25	-0.22	-0.50
E2	-0.25	1.00	0.96	0.55
E3	-0.22	0.96	1.00	0.72
E4	-0.50	0.55	0.72	1.00

87/170 88/170

Multivariate models

mmm\$VC\$Vg

```
## E1 E2 E3 E4

## E1 0.6277835 -0.1446924 -0.1102175 -0.2743640

## E2 -0.1446924 0.5440731 0.4419945 0.2822577

## E3 -0.1102175 0.4419945 0.3919626 0.3130735

## E4 -0.2743640 0.2822577 0.3130735 0.4828705

mmm$VC$Ve

## E1 E2 E3 E4

## E1 0.53504246 0.08247812 -0.1159118 0.06882868

## E2 0.08247812 0.56214755 0.2973841 0.15795801
```

E3 -0.11591175 0.29738408 0.6714234 0.11086214 ## E4 0.06882868 0.15795801 0.1108621 0.59405228

Multivariate models

- · Selection indeces, co-heritability, indirect response to selection
- · Study residual and additive genetic association among traits

biplot(princomp(mmm\$VC\$GenCor,cor=T),xlim=c(-.4,.4),ylim=c(-.11,.11))

Mixed models applied to breeding

89/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Multivariate models

When do additional traits contribute?

```
# Fit E4, predict E2
fit_E4=bWGR::mrr(matrix(Y[,4]),wheat.X); cor(fit_E4$hat[,1],Y[,2])
## [1] 0.3988844

# Fit E4 and E1, E4 predict E2
fit_E4E1=bWGR::mrr(Y[,c(1,4)],wheat.X); cor(fit_E4E1$hat[,2],Y[,2])
## [1] 0.3931193

# Fit E4 and E3, E4 predict E2
fit_E4E3=bWGR::mrr(Y[,3:4],wheat.X); cor(fit_E4E3$hat[,2], Y[,2])
## [1] 0.5279279
```

Bayesian methods

91/170 92/170

Bayesian methods

The general framework on a hierarchical Bayesian model follows:

$$p(\theta|x) \propto p(x|\theta)p(\theta)$$

Where:

- Posterior probability: $p(\theta|x)$
- · Likelihood: $p(x|\theta)$
- Prior probability: $p(\theta)$

For the model:

$$y = Xb + Zu + e, \quad u \sim N(0, K\sigma_a^2), \ e \sim N(0, I\sigma_e^2)$$

- Data $(x = \{y, X, Z, K\})$
- Parameters ($\theta = \{b, u, \sigma_a^2, \sigma_e^2\}$)

Bayesian methods

Probabilistic model:

$$p(b, u, \sigma_a^2, \sigma_e^2 | y, X, Z, K) \propto N(y, X, Z, K | b, u, \sigma_a^2, \sigma_e^2) \times N(b, u | \sigma_a^2, \sigma_e^2) \times \chi^{-2}(\sigma_a^2, \sigma_e^2 | S_a, S_e, \nu_a, \nu_e)$$

93/170 94/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

Bayesian methods

REML: the priors (S_a, S_e, ν_a, ν_e) are estimated from data.

Hierarchical Bayes: You provide priors. Here is how:

$$\sigma_a^2 = rac{u'K^{-1}u + S_a
u_a}{\chi^2(q +
u_a)}$$

sigma2a=(t(u)%*%iK%*%u+Sa*dfa)/rchisq(df=ncol(Z)+dfa,n=1)

$$\sigma_e^2 = rac{e'e + S_e
u_e}{\chi^2 (n +
u_e)}$$

sigma2e=(t(e)%*%e+Se*dfe)/rchisq(df=length(y)+dfe,n=1)

Bayesian methods

What does it mean for you? If your "prior knowledge" tells you that a given trait has approximately $h^2 = 0.5$ (nothing unreasonable). In which case, half of the phenotypic variance is due to genetics, and the other half is due to error. Your prior shape is:

Mixed models applied to breeding

$$S_a = S_e = \sigma_y^2 imes 0.5$$

We usually assign small a prior degrees of freeds. Samething like four or five prior degrees of freedom. That means that assuming $\nu_0 = 5$, you are yielding to your model 5 data points that support heritability 0.5

$$\nu_a = \nu_e = 5$$

Example of prior influence: In a dataset with 300 data points, 1.6% of the variance components information comes from prior (5/305), and 98.4% comes from data (300/305).

95/170 96/170

Bayesian methods

For whole-genome regression models

$$y = \mu + Ma + e$$
, $a \sim N(0, I\sigma_b^2)$, $e \sim N(0, I\sigma_e^2)$

We scale the prior genetic variance based on allele frequencies

$$S_b = rac{\sigma_y^2 imes 0.5}{2 \sum p_j (1-p_j)}$$

Two common settings:

- · All markers, one random effect: Bayesian ridge regression
- · Each markers as a random effect: BayesA

Machine learning methods

- · Parametric methods for prediction: L1-L2
- · Semi-parametric methods for prediction: Kernels
- · Non-parametric methods for prediction: Trees and nets

97/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

97/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

3/11/2019

98/170

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Machine learning methods

L1-L2 machines include all mixed and Bayesian models we have seen so far. The basic framework is driven by a single (random) term model:

$$y = Xb + e$$

The univariate soltion indicates how the model is solved. A model without regularization yields the least square (LS) solution. If we regularize by deflating the nominator, we get the L1 regularization (LASSO). If we regularize by inflating the denominator, we get the L2 regularization (Ridge). For any combination of both, we get a elastic-net (EN). Thus:

$$b_{LS} = rac{x'y}{x'x}, \;\; b_{Lasso} = rac{x'y-\lambda}{x'x}, \;\; b_{Ridge} = rac{x'y}{x'x+\lambda}, \;\; b_{EN} = rac{x'y-\lambda_1}{x'x+\lambda_2}$$

Whereas the Bayesian and mixed model framework resolves the regularization as $\lambda = \sigma_e^2/\sigma_b^2$ ML methods search for λ through (*k*-fold) cross-validation.

Machine learning methods

Common loss functions in L1-L2 machines

- · LS (no prior, no shrinkage): $argmin(\sum e_i^2)$
- · L1 (Laplace prior with variable selection): $argmin(\sum e_i^2 + \lambda \sum |b_j|)$
- · L2 (Gaussian prior, unique solution): $argmin(\sum e_i^2 + \lambda \sum b_i^2)$

Other losses that are less popular

- Least absolute: $argmin(\sum |e_i|)$ based on $b_{LA} = rac{nMD(x imes y)}{x'x}$
- \cdot ε-loss: $argmin(\sum e_i^2, |e_i| > \epsilon)$ used in support vector machines

99/170

100/170

Machine learning methods

Cross-validations to search for best value of lambda

```
lasso = glmnet::cv.glmnet(x=wheat.X,y=rowMeans(Y),alpha=1);
ridge = glmnet::cv.glmnet(x=wheat.X,y=rowMeans(Y),alpha=0);
par(mfrow=c(1,2)); plot(ridge); plot(lasso)
```


Machine learning methods

Re-fit the model using this best value

lasso = glmnet::glmnet(x=wheat.X,y=rowMeans(Y),lambda=lasso\$lambda.min,alpha=1)
ridge = glmnet::glmnet(x=wheat.X,y=rowMeans(Y),lambda=ridge\$lambda.min,alpha=0)
par(mfrow=c(1,2)); plot(lasso\$beta,main='LASSO'); plot(ridge\$beta,main='RIDGE');

101/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

101/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#

102/170

3/11/2019

3/11/2019

3/11/2019

Mixed models applied to breeding

Machine learning methods

Of course, the losses presented above are not limited to the application of prediction and classification. Below, we see an example of deploying LASSO for a graphical model (Markov Random Field): How the traits of the multivariate model relate in terms of additive genetics:

Mixed models applied to breeding

ADJ=huge::huge(mmm\$VC\$GenCor,.3,method='glasso',verbose=F)\$path[[1]] plot(igraph::graph.adjacency(adjmatrix=ADJ),vertex.label.cex=3)

Machine learning methods

Reproducing kernel Hilbert Spaces (RKHS), is a generalization of a GBLUP... Most commonly instead of using the linear kernel ($ZZ'\alpha$), RKHS commonly uses one or more Gaussian or exponential kernels:

$$K = \exp(-\theta D^2)$$

Where D^2 is the squared Euclidean distance, and θ is a bandwidth:

- Single kernel: $1/mean(D^2)$
- Three kernels: θ ={5/q, 1/q, 0.2/q}, where q=quantile(D2,0.05)

103/170 104/170

Machine learning methods

We can use REML, PRESS (=cross-validation) or Bayesian approach to solve RKHS

Machine learning methods

file:///C/Users/u787935/Desktop/aaai/Purdue_MLM:htm#1 106/17:

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Machine learning methods

RKHS for epistasis and variance component analysis

Epistasis

Machine learning methods

For the same task (E2 predict E3), let's check members of the Bayesian alphabet

```
fit_BRR = bWGR::wgr(Y[,2],wheat.X); cor(c(fit_BRR$hat),Y[,3])
## [1] 0.5842116
fit_BayesB = bWGR::BayesB(Y[,2],wheat.X); cor(fit_BayesB$hat,Y[,3])
## [1] 0.5355413
fit_emBayesA = bWGR::emBA(Y[,2],wheat.X); cor(fit_emBayesA$hat,Y[,3])
## [1] 0.6388318
```

107/170 108/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

106/170

Machine learning methods

Tree regression and classifiers

Machine learning methods

fit_tree = party::ctree(y~.,data.frame(y=Y[,2],wheat.X)); plot(fit_tree)

cor(c(fit_tree@predict_response()),Y[,3])

[1] 0.265622

109/170 110/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

3/11/2019

Mixed models applied to breeding

Machine learning methods

fit_rf = ranger::ranger(y~.,data.frame(y=Y[,2],wheat.X)) plot(fit_rf\$predictions,Y[,3],xlab='RF predictions from E2',ylab='Yield E3',pch=20)

RF predictions from E2

Mixed models applied to breeding

cor(fit_rf\$predictions,Y[,3])

[1] 0.4056496

Genotype-Environment interactions

111/170 112/170

Genotype-Environmnet interactions

```
y=as.vector(wheat.Y); Z=wheat.X; Zge=as.matrix(Matrix::bdiag(Z,Z,Z,Z))
#
fit_g = bWGR::BayesRR(rowMeans(wheat.Y),Z)
fit_ge = bWGR::BayesRR(y,Zge)
fit_gge = bWGR::BayesRR2(y,rbind(Z,Z,Z,Z),Zge)
#
fit_g$h2
## [1] 0.4590341
fit_ge$h2
## [1] 0.6762359
fit_gge$h2
## [1] 0.6580924
```

Genotype-Environmnet interactions

GxE design matrix: Example of 4 environments, 30 individuals, 70 SNPs

113/170 114/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

113/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

114/1

3/11/2019

3/11/2019

Mixed models applied to breeding

Genotype-Environmnet interactions

GE1=matrix(fit_ge\$hat,ncol=4); GE2=matrix(fit_ge\$hat,ncol=4)
plot(data.frame(G=fit_g\$hat,GE=rowMeans(GE1),G_and_GE=rowMeans(GE2)),main='GEBV across E')

GEBV across E

Mixed models applied to breeding

Genotype-Environmnet interactions

par(mfrow=c(1,3))
plot(fit_g\$hat,rowMeans(Y),main=round(cor(fit_g\$hat,rowMeans(Y)),4),xlab='G',ylab='Obs',pch=20)
plot(c(GE1),y,main=round(cor(c(GE1),y),4),xlab='GE model',ylab='Observed',pch=20)
plot(c(GE2),y,main=round(cor(c(GE2),y),4),xlab='G+GE model',ylab='Observed',pch=20)

115/170 116/170

Break

Module 4 - Signal detection

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

Outline

- Test statistics
- · Allele coding
- · Power & resolution
- · Linkage mapping
- · LD mapping
- Structure
- · Imputation

- · GLM
- · MLM
- · WGR
- · Rare-variants
- · Validation studies

117/170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

Test statistics

 \cdot Testing associations are as simple as t-test and ANOVA

119/170 120/170

Test statistics

· A more generalized framework: Likelihood test

$$LRT = L_0/L_1 = -2(logL_1 - logL_0)$$

For the model:

$$y = Xb + Zu + e$$
$$y \sim N(Xb, V)$$

REML function is given by:

$$L(\sigma_u^2, \sigma_e^2) = -0.5(ln|V| + ln|X'V^{-1}X| + y'Py)$$

Where $V=ZKZ'\sigma_u^2+I\sigma_e^2$ and y'Py=y'e

Allele coding

Types of allele coding

- 1. Add. (1 df): {-1,0,1} or {0,1,2} Very popular (Lines, GCA)
- 2. Dom. (1 df): {0,1,0} Popular (Trees, clonals and Hybrids)
- 3. Jointly A+D (2 df): Popular on QTL mapping in F2s
- 4. Complete dominance (1 df): {0,0,1} or {0,1,1} **Very unusual**
- 5. Interactions (X df): *Marker x Factor* (epistasis and GxE)

121/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

Power and resolution

Power

3/11/2019

- · Key: Number of individuals & allele frequency
- More DF = lower power
- · Multiple testing: Bonferroni and FDR
- · Tradeoff: Power vs false positives

Resolution

- Genotyping density
- LD blocks
- · Recombination

Power: Variance of X

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

123/170

121/170

Beavis effect: 1000 is just OK

Xu S. Theoretical basis of the Beavis effect. Genetics. 2003 1;165(4):2259-68.

TABLE 4

Comparisons of predicted and observed (estimated) biases in estimated QTL effects and variances from
Beavite F, simulation experiments

Simulated	Variance explained				Additive effect			
conditions ^e	Simulated	Observed	Predicted ^b	Simulated	Observed	Predicted	Average estimated location	
10-30-100	3.00	16.76	16.0537	2.45	4.96	5.6410	11.3	
10-30-500	3.00	4.33	4.1890	2.45	2.89	2.8617	10.53	
10-30-1000	3.00	3.02	3.1846	2.45	2.56	2.4868	10.8	
10-63-100	6.25	12.65	16.5984	3.55	4.68	5.7328	10.51	
10-63-500	6.25	7.08	6.5581	3.55	3.73	3.5829	10.96	
10-63-1000	6.25	6.34	6.3566	3.55	3.60	3.5500	11.04	
10-95-100	9.50	18.68	17.3883	4.36	5.85	5.8466	10.58	
10-95-500	9.50	10.1	9.7082	4.36	4.49	4.3607	11.08	
10-95-1000	9.50	9.67	9.6028	4.36	4.44	4.3600	11.19	
40-30-100	0.75	15.78	15.6270	1.22	4.40	5.5436	10.83	
40-30-500	0.75	3.17	3.3332	1.22	2.35	2.5671	10.17	
40-30-1000	0.75	1.46	1.7961	1.22	1.85	1.8790	10.17	
40-63-100	1.56	16.31	15.7983	1.77	4.71	5.5999	10.45	
40-63-500	1.56	3.54	3.5783	1.77	2.59	2.6582	10.13	
40-63-1000	1.56	1.96	2.1435	1.77	2.09	2.0494	10.37	
40-95-100	2.40	16.55	15.9694	2.18	5.02	5.6236	10.45	
40-95-500	2.40	3.97	3.9190	2.18	2.79	2.7641	10.12	
40-95-1000	2.40	2.58	2.6970	2.18	2.36	2.2784	10.29	

⁶ Numerical values denote the number of QTL-heritability-number of progeny.

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

Linkage mapping

- · Generally on experimental pops (F2, DH, RIL, BC)
- · Based on single-marker analysis or interval mapping
- · Recombination rates would increase power

Multiple testing:

GWAS tests m hypothesis:

• No correction: $\alpha = 0.05/m$

• Bonferroni: $\alpha = 0.05/m$

• FDR (25%): $\alpha = 0.05/(m \times 0.75)$

125/170 126/170

125/170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

LD mapping (or association mapping)

- · Use of historical LD between marker and QTL
- · AM allowed studies on random panels
- · Dense SNP panels would increase resolution

127/170 128/170

^{*}Using Equation 17
'Using Equation 8.

Structure

- 1. Confounding associations with sub-populations
- 2. Major limitation of association mapping
- 3. Structure: PCs, clusters, subpopulation (eg. race)

Mixed models applied to breeding

Structure

129/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

129/17

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

400/470

3/11/2019

3/11/2019

Mixed models applied to breeding

Imputation

Less missing values = more obs. = more detection power

- · Markov models: Based on flanking markers
- · Random forest: Multiple decision trees capture LD
- · kNN & Projections: Fill with similar haplotypes

GLM (generalized linear models)

• Full model (L_1):

$$y = Xb + m_j a + e$$

· Null model (L_0):

$$y = Xb + e$$

- 1. Advantage: Fast, not restricted to Gaussian traits
- 2. Popular methodology on human genetic studies
- 3. Xb includes (1) environment, (2) structure and (3) covariates

131/170 132/170

MLM (mixed linear models)

• Full model (L_1):

$$y = Xb + Zu + m_j a + e$$

· Null model (L_0):

$$y = Xb + Zu + e$$

- 1. The famous "Q+K model"
- 2. Advantage: Better control of false positives, no need for PCs
- 3. Polygenic effect (u) assumes $u \sim N(0, K\sigma_u^2)$
- 4. Faster if we don't reestimate $\lambda = \sigma_e^2/\sigma_u^2$ for each SNP

cMLM (compressed MLM)

- 1. Uses the same base model as MLM
- 2. Advantage: Faster than MLM
- 3. Based on clustered individuals:
- $\cdot \,\,\, Z$ is indicates the subgroup
- *K* is the relationship among subgroup
- Often needs PCs to complement K

133/170 134/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

3/11/2019 Mixed models applied to breeding

WGR (whole-genome regression)

- 1. Tests all markers at once
- 2. Advantage: No double-fitting, no PCs, no Bonferroni
- Model (BayesB, BayesC, SSVS):

$$y = Xb + Ma + e$$

· Marker effects are from a mixture of distributions

 $a_i \sim Binomial \text{ with } p(\pi) = 0 \text{ and } p(1-\pi) = a_i$

WGR (whole-genome regression)

200

300

135/170 136/170

133/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Rare variants

- 1. Screen a set (s) of low MAF markers on NGS data
- 2. Advantage: Detect signals from low power SNPs
- 3. Applied to uncommon diseases (not seen in plant breeding)
- 4. Two possible model
- Full model 1 (L_1): $y = Xb + M_sa + e$
- Full model 2 (L_2): $y = Xb + PC_1(M_s) + e$
- · Null model (L_0): y = Xb + e

Test either $LR(L_1, L_0)$ or $LR(L_2, L_0)$

Validation studies

- · QTLs detected with 3 methods, across 3 mapping pops
- · Validations made on 3 unrelated populations

Figure 2 Stacked plots of GWAS and OTL results. From upper to lower panels are results from the Bayesian-based multi-variant (A) stepwire regression (B) and single variant(C) models for GWAS and the joint OTL mapping result (D). The red dashed line in the OTL plot indicates the J,000 permutation threshold and black lines show the OTL confidence intervals. Red squares in panel (A), trangels in panel (B) and circles

137/170 138/170

file:///C/Users/u787935/Desktop/aaar/Purdue_MLM.html#1 139/170 file:///C/Users/u787935/Desktop/aaar/Purdue_MLM.html#1 138/1

3/11/2019 Mixed models applied to breeding 3/11/2019 Mixed models applied to breeding

Break

Module 5 - Association analysis

Prelude: Data & Structure

Getting some data

Example dataset from the *SoyNAM* package. We are querying two of the forty biparental families with a shared parental IA3023, grown in 18 environment.

```
Data = SoyNAM::BLUP(trait = 'yield', family = 2:3)

## solving BLUE of checks

## solving BLUP of phenotypes

## No redundant SNPs found

## There are 312 markers with MAF below the threshold

## Removing markers with more than 50% missing values

## Imputing with expectation (based on transition prob)

## removing repeated genotypes

## solving identity matrix

## indiviual 1 had 37 duplicate(s)

## indiviual 169 had 1 duplicate(s)

## indiviual 182 had 1 duplicate(s)
```

141/170 142/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

141/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

3/11/2019

Mixed models applied to breeding

Mixed models applied to breeding

Genomic relationship matrix

```
y = Data$Phen
M = Data$Gen
```

Z = apply(M,2,function(snp) snp-mean(snp))
ZZ = tcrossprod(Z)

Sum2pq = sum(apply(M,2,function(snp){p=mean(snp)/2; return(2*p*(1-p))}))

G = ZZ/Sum2pq

Kernel commonly deployed, referred in VanRaden (2008)

$$G = rac{(M-P)(M-p)'}{2\sum_{j=1}^{J} p_j (1-p_j)}$$

Genomic relationship matrix

image(G[,241:1], main='GRM heatmap',xaxt='n',yaxt='n')

143/170 144/170

Structure parameters (1) PCs

```
Spectral = eigen(G,symmetric = TRUE)
PCs = Spectral$vectors[,1:5]
plot(PCs,xlab='PC 1',ylab='PC 2',main='Population on eigen spaces',col=Data$Fam,pch=20)
```


PC 1

Cluster Dendrogram

GeneticDistance

Mixed models applied to breeding

Structure parameters (2) Clusters

GeneticDistance = Gdist(M,method=6)

Tree = hclust(GeneticDistance,method = 'ward.D2')

Modified Rogers' distance

plot(Tree, labels = FALSE)

3/11/2019 Mixed models applied to breeding 3/11/2019

Single marker analysis

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

GLM (1) - No structure

147/170 148/170

GLM (2) - Principal Components

```
reduced_model = lm( y ~ PCs )
full_model = lm( y ~ PCs + Marker )
anova( reduced_model, full_model )

## Analysis of Variance Table
##
## Model 1: y ~ PCs
## Model 2: y ~ PCs + Marker
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 235 4060362
## 2 234 3562067 1 498295 32.734 3.215e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

-log((anova( reduced_model, full_model ))$`Pr(>F)`[2],base = 10)

## [1] 7.492813
```

149/170 150/170
file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.htmi#1 149/170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.htmi#1 149/170

[1] 9.026884

3/11/2019 Mixed models applied to breeding 3/11/2019 Mixed models applied to breeding

MLM - K+Q model

```
Q = model.matrix(~Clst)
reduced_model = reml( y=y, X=Q, K=G)
full_model = reml( y=y, X=cbind(Q, Marker), K=G)
LRT = -2*(full_model$loglik - reduced_model$loglik)
-log(pchisq(LRT,1,lower.tail=FALSE),base=10)
### [1] 10.80903
```

GLM (3) - Population Clusters

```
reduced_model = lm( y ~ Clst )
full_model = lm( y ~ Clst + Marker )
anova( reduced_model, full_model )

## Analysis of Variance Table
##
## Model 1: y ~ Clst
## Model 2: y ~ Clst + Marker
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 239 4275698
## 2 238 3652041 1 623657 40.643 9.4e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

-log( anova(reduced_model,full_model)$`Pr(>F)`[2],base = 10)
```

Whole genome screening

151/170 152/170

DIY (example with GLM)

```
reduced_model = lm( y ~ Clst )
glm_pval = apply(M,2,function(Marker){
  pval = anova(reduced_model, lm(y~Clst+Marker) )$`Pr(>F)`[2]
  return(-log(pval,base = 10))})
plot(glm_pval,pch=20,xlab='SNP',main='My first GLM GWAS')
```

My first GLM GWAS

153/170

153/1

Using CRAN implementations

NAM random model: $y = \mu + Marker \times Pop + Zu + e$

```
fit_gwa = gwas3(y=y, gen=M, fam=c(Clst), chr=Data$Chrom)
```

154/170

4%

3/11/2019 Mixed models applied to breeding

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

Manhattan plot

plot(fit_gwa, pch=20, main = "My first MLM GWAS")

Yet another R implementations

 $\label{eq:continuous_series} $$ \text{require(rrBLUP, quietly = TRUE); COL = fit_gwa$MAP[,1]$\%2+1 $$ \# Color chromosomes $$ \text{geno=data.frame(colnames(M),fit_gwa$MAP[,1:2],t(M-1),row.names=NULL)} $$ pheno=data.frame(line=colnames(geno)[-c(1:3)],Pheno=y,Clst,row.names=NULL) $$ fit_another_gwa=GWAS(pheno,geno,fixed='Clst',plot=FALSE) $$$

[1] "GWAS for trait: Pheno"

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

[1] "Variance components estimated. Testing markers."

155/170 156/170

Comparing results

 $\label{lem:mlm_pval=0} $$ $\min_pval_fit_another_gwa$Pheno; $\min_pval_fit_pval_=0]=NA $$ $plot(glm_pval,mlm_pval,xlab='GLM',ylab='MLM',main='Compare') $$ $$$

Power analysis - QQ plot

nam_pval = fit_gwa\$PolyTest\$pval
par(mfrow=c(1,3))
qqman::qq(glm_pval,main='GLM')
qqman::qq(mlm_pval,main='MLM')
qqman::qq(nam pval,main='RLM')

157/170 158/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

157/170 file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

Mixed models applied to breeding

Multiple testing

Multiple testing

Wikipedia: In statistics, the multiple comparisons, multiplicity or multiple testing problem occurs when one considers a set of statistical inferences simultaneously or infers a subset of parameters selected based on the observed values. In certain fields it is known as the look-elsewhere effect: The more inferences are made, the more likely erroneous inferences are to occur. Several statistical techniques have been developed to prevent this from happening, allowing significance levels for single and multiple comparisons to be directly compared. These techniques generally require a stricter significance threshold for individual comparisons, so as to compensate for the number of inferences being made.

159/170 160/170

Baseline - No correction

Base significance threshold: $\alpha = 0.05/m$

plot(fit_gwa, alpha=0.05, main = "No correction")

Multiple testing correction

Bonferroni: lpha=0.05/m

plot(fit_gwa, alpha=0.05/ncol(M), main = "Bonferroni correction")

161/170 162/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

Mixed models applied to breeding

3/11/2019

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019 Mixed models applied to breeding

False-Discovery Rate

Benjamini-Hochberg FDR: $lpha = \frac{0.05}{m imes (1-FDR)}$

plot(fit_gwa, alpha=0.05/(ncol(M)*.75), main = "FDR 25%")

False-Discovery Rate

Unique segments based on Eigenvalues: $m^* = D > 1$

m_star = sum(Spectral\$values>1) plot(fit_gwa, alpha=0.05/m_star, main="Bonferroni on unique segments")

163/170 164/170

Multi-loci analysis

Whole genome regression

fit_wgr = bWGR::BayesDpi(y=y,X=M,it=3000); par(mfrow=c(1,2));
plot(fit_wgr\$PVAL,col=COL,pch=20,ylab='-log(p)',main='GWA')
plot(fit_wgr\$b,col=COL,pch=20,ylab='Marker effect',main='GWP')

plot(fit_wgr\$hat,y,pch=20)

165/170 166/170

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

100/1/0

file:///C:/Users/u787935/Desktop/aaa/Purdue_MLM.html#1

3/11/2019

3/11/2019

Mixed models applied to breeding

WGR - No need for multiple testing

thr_none = -log(pchisq(qchisq(1-0.05/ncol(M),1),1,lower.tail=FALSE),base=10)
thr_bonf = -log(pchisq(qchisq(1-0.05,1),1,lower.tail=FALSE),base=10)
par(mfrow=c(1,2)); plot(fit_gwa,alpha=NULL,main="MLM",pch=20); abline(h=thr_none,col=3)
plot(fit_wgr\$PVAL,col=COL,ylab='-log(p)',main="WGR",pch=20); abline(h=thr_bonf,col=3)

Mixed models applied to breeding

Approaches are complementary

168/170

Random forest

fit_rf = ranger::ranger(y~.,data= data.frame(y=y,M),importance='impurity')
plot(fit_rf\$variable.importance,ylab='Importance',main='Random Forest',col=COL+7,pch=20)

Break

169/170

file:///C/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 169/170 file:///C/Users/u787935/Desktop/aaa/Purdue_MLM.html#1 170/170