04/09/2025 - Matematicas Discretas 1 (Ude@)

1. Proximos eventos

Sem	Clase	Fecha		Tema	Slides
1		Martes	12/8	Introducción al curso	
1	2	Jueves	14/8	Logica proposisional - Parte 1	<i></i>
2	3	Martes	19/8	Logica proposisional - Parte 2	
	4	Jueves	21/8	Tablas de verdad	V
3	5	Martes	26/8	Enfoque Axiomatico	V
	6	Jueves	28/8	Metodos de demostración - Parte 1 (0 3 / 0 3 / 202 5)	×
4	7	Martes	249	Metodos de demostración - Parte 2 (11/11/2025)	×
*	8	Jueves	4/9	Logica cuantificacional (1)	
5	9	Martes	949	Parcial 1 - Logica proposicional & Definiv Fech	<u>-</u>
3	10	Jueves	11/9	Alcance y precedencia de operaciones lógicas	

1) La semana entrante acabariamos el tema del primer parcial

2	Semana	Fecha	Plan
	5	sep g	Clase LP4
		Sep 11	Clase LP2
	6	Sep 116	Clase LC1
		Sep 18	Clase Lc2
	7	sep 23	Parcial 1
		sep 23 sep 25	Clase LC3
		1	7

2. Que hemos visto hasta el momento.

Logica proposicional

1. Que son las papasiciones (Enunciadas F/V) 2. Clasificación de las proposiciones

3. Operadores lagicos y sus tables de verdad

4. Evaluación de expresiones logicas - Reglas de prioridad y asociatividad

4. Ejemples de repase:

Ejemplo 1: Demostrar la ky de la absorcion para la conjuncion:

Use:

a. Enfoque basado en madelos (Tabla de verdad) b. Enfoque axiomatico (Tabla de identidades Logicas)

Solución:

a. Enfoque basada en madelos: P = Q es una tantología

i. Variables: P. Q

ii. Filas: n=2 - filas=2=4

PA(PVQ) AP

Mii. Tabla de verdad

Negación	Conjunción	Disyunción inclusiv
p ¬p F V V F	$\begin{array}{c cccc} p & q & p \wedge q \\ F & F & F \\ \hline F & V & F \\ \hline V & V & V \\ \end{array}$	$\begin{array}{c cccc} p & q & p \lor q \\ F & F & F \\ F & V & V \\ \hline V & F & V \\ \hline V & V & V \\ \end{array}$
Disyunción exclusiva	Condicional	Bicondicional
$\begin{array}{c cccc} p & q & p \oplus q \\ F & F & F \\ F & V & V \\ V & F & V \\ V & V & F \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	P Q (P)

		سر ر	_3	_ ~ ~	\
,			(A)	10 = PAQ	- (3 = 2 esp
	P	Q	P~ @	PA(PVQ)	(By (bra) to
	Q é	Ď	Ò	O ®	1 -
~	Ō.	1	1	0.	1
~	<i>j</i> .	0	j	1	1.

Es una tantología PV(bAB)=b

b. Entoque axionatico

$$P_A(P_VQ) = P$$

$$A = B$$

quivalencias lógicas	$\Lambda \equiv \sqrt{V=A}$	√ ≦ →		
Nombre	Equivalencia lógica			
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$		
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \lor (Q \lor R) \equiv (P \lor Q) \lor R$		
Distributividad	$(P \land (Q \lor R) \equiv (P \land Q) \lor (P \land R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$		
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$		
Doble negación	$\neg(\neg P$	P) ≡ P		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$		
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$		
Dominación	$P \wedge F \equiv F$	$P \vee V \equiv V$		
Absorción	$P \wedge (P \vee Q) \equiv P$	$P \lor (P \land Q) \equiv P$		
Complemento	$P \wedge \neg P \equiv F$	$P \vee \neg P \equiv V$		
Implicación	$P \rightarrow Q \equiv \neg P \lor Q$			
Contrarrecíproco	$P \rightarrow Q \equiv \neg Q \rightarrow \neg P$			
Equivalencia	$P \leftrightarrow Q \equiv (P \rightarrow Q) \land (Q \rightarrow P)$			

Pr(ax R) = (Pra) y (PrR)

Procedimiento

PN (PQQ) = (PAP) ~ (PAQ)

Distributividad para el y (1)

Distributividad de I = D para el y (1)

2

(1)

≡ P v (bve)

I dempotencia para el

3

= (bvn) ^ (bvB)

Identidad para el y (1)

4

= PA (VVQ)

Dominación para el p(v)

(6)

Identidad para el y(1)

Hemos demostrado: P1(PVQ)=P

Ejempla 2: Demostrar que:

$$P \rightarrow (q \vee r) \equiv (p \wedge \neg q) \rightarrow r$$

Solución:

$$\frac{P \rightarrow (q \vee r)}{A} \equiv (P \wedge \neg q) \rightarrow r$$

Equivalencias lógicas

Nombre	Equivaler	icia lógica	
Conmutatividad	$P \wedge Q \equiv Q \wedge P$	$P \lor Q \equiv Q \lor P$	
Asociatividad	$P \wedge (Q \wedge R) \equiv (P \wedge Q) \wedge R$	$P \vee (Q \vee R) \equiv (P \vee Q) \vee R$	
Distributividad	$P \wedge (Q \vee R) \equiv (P \wedge Q) \vee (P \wedge R)$	$P \lor (Q \land R) \equiv (P \lor Q) \land (P \lor R)$	
Idempotencia	$P \wedge P \equiv P$	$P \lor P \equiv P$	
Doble negación	$\neg(\neg P) \equiv P$		
Leyes de Morgan	$\neg (P \land Q) \equiv \neg P \lor \neg Q$	$\neg (P \lor Q) \equiv \neg P \land \neg Q$	
Identidad	$P \wedge V \equiv P$	$P \vee F \equiv P$	
Dominación	$P \wedge F \equiv F$	$P \lor V \equiv V$	
Absorción	$P \land (P \lor Q) \equiv P$	$P \lor (P \land Q) \equiv P$	
Complemento	$P \land \neg P \equiv F$	$P \vee \neg P \equiv V$	
Implicación	$P \rightarrow Q \equiv \neg P \lor Q$		
Contrarrecíproco	$P \to Q \equiv \neg Q \to \neg P$		
Equivalencia	$P \leftrightarrow O = (P \rightarrow O) \land (O \rightarrow P)$		

luego: $p \rightarrow (q \vee r) \equiv (p \wedge \neg q) \rightarrow r$

Tarea: 1. Demostrar $p \rightarrow (q \rightarrow r) \equiv (p \land q) \rightarrow r$

2. Mivar los ejemplos resueltos en las diapositivas y entendevlos