Correction: DS 8 - Concours Blanc

Exercice 1. 1. Enoncer le théorème des accroissements finis avec ses hypothéses.

2. A l'aide de ce théorème prouver que pour tout x > 0:

$$\frac{1}{x+1} < \ln(x+1) - \ln(x) < \frac{1}{x}$$

3. On note $S_n = \sum_{k=1}^n \frac{1}{k}$, déduire des deux inégalités précédentes que pour tout $n \in \mathbb{N}^*$:

$$\ln(n+1) < S_n < \ln(n) + 1$$

4. En déduire un équivalent de $(S_n)_{n\geq 1}$ quand n tend vers $+\infty$.

Exercice 2. On définit l'application :

$$g \mid \begin{array}{ccc} \mathbb{R}^3 & \rightarrow & \mathbb{R}^3 \\ (x, y, z) & \mapsto & (2y - 2z, -2x + 4y - 2z, -2x + 2y) \end{array}$$

1. Montrer que pour tout $(\lambda_1, \lambda_2) \in \mathbb{R}^2$, $u_1 \in \mathbb{R}^3$ et $u_2 \in \mathbb{R}^3$, montrer que

$$g(\lambda_1 u_1 + \lambda_2 u_2) = \lambda_1 g(u_1) + \lambda g(u_2)$$

(On dit alors que g est linéaire)

- 2. Soit u = (1, 1, 1), v = (2, 3, 1) et w = (0, 1, 1). Calculer g(u), g(v) et g(w) et les exprimer en fonction de u, v et w.
- 3. Soit $E_0 = \{(x, y, z) \in \mathbb{R}^3 \mid g(x, y, z) = (0, 0, 0)\}$. Montrer que E_0 est un sous-espace vectoriel de \mathbb{R}^3 et en donner une base.
- 4. On note Id_3 la fonction identité de \mathbb{R}^3 , à savoir,

$$\operatorname{Id}_3:(x,y,z)\mapsto(x,y,z)$$

Soit $E_2 = \{(x, y, z) \in \mathbb{R}^3 \mid (g - 2\operatorname{Id}_3)(x, y, z) = (0, 0, 0)\}$. On admet que E_2 est un sous-espace vectoriel de \mathbb{R}^3 de dimension 2. En donner une base.

- 5. Montrer que $E_0 \cap E_2 = \{(0,0,0)\}.$
- 6. On note toujours $u=(1,1,1),\,v=(2,3,1)$ et w=(0,1,1). Montrer que (u,v,w) est une base de \mathbb{R}^3
- 7. Soit A = (1, -1, -3). Donner les coordonées de A dans la base (u, v, w).
- 8. A l'aide de la question précédente et de la question 1, montrer que

$$q(A) = 2(v - 3w)$$

- 9. On note $g^2 = g \circ g$. Montrer que $g^2(A) = 4(v 3w)$.
- 10. On note $g^n = g \circ g \cdots \circ g$ où l'on a composé n fois. Pour tout $n \in \mathbb{N}^*$ déterminer $g^n(A)$ en fonction de n, v et w.

Correction 1.

- 1. Cette question peut se répondre avec ou sans sytème...
- 2. Autrement dit, exprimer A en fonction de (u, v, w)
- 3. On pourra utiliser les questions 1 et 8

1. Soit $u_1 = (x_1, y_1, z_1)$ et $u_2 = (x_2, y_2, z_2)$ et $\lambda \in \mathbb{R}$. On a donc

$$u_1 + \lambda u_2 = (x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

et donc

$$g(u_1 + \lambda u_2) = g(x_1 + \lambda x_2, y_1 + \lambda y_2, z_1 + \lambda z_2)$$

$$= (2(y_1 + \lambda y_2) - 2(z_1 + \lambda z_2), -2(x_1 + \lambda x_2) + 4(y_1 + \lambda y_2) - 2(z_1 + \lambda z_2), -2(x_1 + \lambda x_2) + 2(y_1 + \lambda z_2), -2(x_1 + \lambda z_2), -2(x_1 + \lambda z_2) + 2(y_1 + \lambda z_2), -2(x_1 + \lambda z_2) + 2(y_1 + \lambda z_2), -2(x_1 + \lambda z_2), -2(x_1 + \lambda z_2) + 2(y_1 + \lambda z_2), -2(x_1 + \lambda z_2), -2(x_1 + \lambda z_2) + 2(y_1 + \lambda z_2), -2(x_1 + \lambda$$

$$g(u_1 + \lambda u_2) = g(u_1) + \lambda g(u_2)$$

2.

$$g(u) = (2-2, -2+4-2, -2+2) = (0, 0, 0)$$

$$g(v) = (6-2, -4+12-2, -4+6) = (4, 6, 2) = 2v$$

$$g(w) = (2-2, 4-2, 2) = (0, 2, 2) = 2w$$

$$g(u) = 0, g(v) = 2v, g(w) = 2w$$

3. E_0 n'est pas vide, en effet g(0,0,0) = (0,0,0), donc $(0,0,0) \in E_0$. Montrons que E_0 est stable par combinaisons linéaires. Soit $u_1, u_2 \in E_0$ et $\lambda \in \mathbb{R}$, on a alors $g(u_1 + \lambda u_2) = g(u_1) + \lambda g(u_2)$ d'après la question 1. Or $g(u_1) = g(u_2) = (0,0,0)$ par définition de E_0 donc

$$q(u_1 + \lambda u_2) = (0, 0, 0)$$

Ainsi $u_1 + \lambda u_2 \in E_0$

 E_0 est un sous espace vectoriel de \mathbb{R}^3

Trouvons maintenant une base de E_0 , pour cela écrivons E_0 sous forme vectorielle. On a $(x, y, z) \in E_0 \iff g(x, y, z) = (0, 0, 0)$ ce qui équivaut au système suivant :

$$\begin{cases} 2y & -2z & = 0 \\ -2x & +4y & -2z & = 0 \\ -2x & +2y & = 0 \end{cases} \iff \begin{cases} -x & +y & = 0 \\ -x & +2y & -z & = 0 \\ y & -z & = 0 \end{cases}$$

$$\iff \left\{ \begin{array}{ccc} -x & +y & =0 \\ & y & -z & =0 \\ & y & -z & =0 \end{array} \right. \iff \left\{ \begin{array}{ccc} x & =z \\ & y & =z \end{array} \right.$$

Ainsi $E_0 = \{(z, z, z) | z \in \mathbb{R}\} = Vect((1, 1, 1))$

$$((1,1,1))$$
 est une base de E_0 , $\dim(E_0) = 1$

4. D'après la question 2 :

$$g(v) = 2v \text{ donc } (g - 2 \text{ Id})(v) = (0, 0, 0) \text{ donc } v \in E_2.$$

 $g(w) = 2w \text{ donc } (g - 2 \text{ Id})(w) = (0, 0, 0) \text{ donc } w \in E_2.$

On a donc $Vect(v, w) \subset E_2$ Or (v, w) est une famille libre car les deux vecteurs ne sont pas proportionnels, donc c'est une base de Vect(v, w). Donc Vect(v, w) est de dimension 2. Comme on d'après l'énoncé $Dim(E_2) = 2$ on a l'égalité :

$$Vect(v, w) = E_2$$

Finalement (v, w) est donc aussi une base de E_2

5. Soit $X \in E_0 \cap E_2$, comme $X \in E_0$ on a g(X) = (0,0,0) et comme $X \in E_2$ on a $(g-2 \operatorname{Id})(X) = (0,0,0)$ c'est-à-dire g(X) = 2X. Ainsi 2X = (0,0,0) on a bien

$$E_0 \cap E_2 = \{(0,0,0)\}$$

6. Soit $(a, b, c) \in \mathbb{R}^3$ tel que au + bv + cw = (0, 0, 0). On a donc au = -bv - cw. Or $au \in E_0$ et $-bv - cw \in E_2$ et comme au = -bv - cw

$$au \in E_0 \cap E_2$$
 et $-bv - cw \in E_0 \cap E_2$

D'après la question précédente on a donc au = (0,0,0) et comme $u \neq 0$, a = 0. De même on a -bv - cw = (0,0,0) et comme on a bvu que v,w était libre, cecie impique que b = c = 0Ainsi a = b = c = 0 donc la famille (u,v,w) est libre, comme elle est de cardinal 3 on a finalment

$$(u,v,w)$$
 est une base de \mathbb{R}^3

7. On cherche $a,b,c\in\mathbb{R}^3$ tel que au+bv+cw=(1,-1,3) c'est-à-dire (a,b,c) qui vérifie le système

$$\begin{cases} a+2b & = 1 \\ a+3b & +c & = -1 \\ a+b & +c & = -3 \end{cases}$$

Après calcul on obtient : a = -1, b = 1, c = -3

Dans la base (u, v, w) les coordonnées de A sont (-1, 1, -3)

8. D'après la question précédente g(A) = g(-u + v - 3w). Ce qui donne d'après la question 1,

$$g(A) = -g(u) + g(v) - 3g(w)$$

Or g(u) = 0, g(v) = 2v et g(w) = 2w donc $g(A) = 2v - 3 \times 2w$

$$g(A) = 2(v - 3w)$$

9.

$$\begin{split} g^2(A) &= g \circ g(A) \\ &= g(g(A)) \\ &= g(2(v-3w) & \text{D'après la question 8} \\ &= g(2v-2\times 3w) \\ &= 2g(v)-2\times 3g(w) & \text{D'après la question 1} \\ &= 2(2v-2\times 3\times 2w) & \text{D'après la question 2} \\ &= 4(v-3w) \end{split}$$

On a bien
$$g^{2}(A) = 4(v - 3w)$$

10. On montre par récurrence la propriété suivante P(n): " $g^n(A) = 2^n(v - 3w)$ " L'initialisation a été faite pour n = 1 et n = 2 dans les questions précédentes. Montrons que P est héréditaire. On suppose donc qu'il existe n tel que P(n) soit vrai. On a alors $g^n(A) = 2^n(v - 3w)$ En composant par g on obtient

$$\begin{split} g^{n+1}(A) &= g \circ g^n(A) \\ &= g(g^n(A)) \\ &= g(2^n(v-3w) & \text{Par hypothèse de récurrence} \\ &= g(2^nv-2^n\times 3w) \\ &= 2^ng(v)-2^n\times 3g(w) & \text{D'après la question 1} \\ &= 2^n(2v-2\times 3\times 2w) & \text{D'après la question 2} \\ &= 2^{n+1}(v-3w) \end{split}$$

Pour tout $n \in \mathbb{N}^*$, $g^n(A) = 2^n(v - 3w)$

Exercice 3. Une puce se déplace le long d'un axe. Au temps n = 0 la puce est en 0. Puis à chaque saut elle monte de 1 avec probabilité 1/2 et descend de 1 avec probabilité 1/2.

On s'intérresse à la probabilité que la puce revienne à l'origine. On note A_n l'événement

$$A_n = '$$
La puce est en 0 au saut n'

- 1. Quelle est la probabilité de l'événement A_1 ?
- 2. Quelle est la probabilité de l'événement A_2 ?
- 3. Soit E_n l'événement 'la puce est sur un nombre pair au rang n'. Justifier que pour tout $n \in \mathbb{N}$, $P(E_{2n+1}) = 0$ et $P(E_{2n}) = 1$. En déduire, pour tout $n \in \mathbb{N}$ la valeur de $P(A_{2n+1})$
- 4. On fixe un nombre entier pair que l'on note 2n. Soit M_k l'événement 'la puce est montée k fois durant les 2n sauts' et D_k l'événement 'la puce est descendue k fois durant les 2n sauts'.
 - (a) Calculer $P(M_k)$ en fonction de k er n.
 - (b) Exprimer l'événement A_{2n} à l'aide des événements M_n et D_n .
 - (c) En déduire la valeur de $P(A_{2n})$ en fonction de n.
- 5. On considère le programme suivant censé modéliser la position de la puce après n sauts :

```
1 def sauts(n):
2    puce=0
3    for i in range(n):
4         p=random()
5         if :
6         puce=puce+1
7         else:
8         puce=
9    return(puce)
```

Recopier et compléter sur votre copie le programme précedent pour qu'il fonctionne.

- 6. Ecrire une fonction python A qui prend en argument le nombre de sauts n et retourne True si la puce est en 0 au temps n et False sinon.
- 7. Ecrire une fonction Python qui permet de donner une valeur approchée de $P(A_{2n})$ en itérant un grand nombre de fois l'expérience. (A l'aide de la fonction A et sans utiliser la formule obtenue en 5c)
- 8. Ecrire une fonction Python qui permet de modéliser les sauts de puce jusqu'à la première fois où la puce revient en 0 et retourne le nombre de sauts effectués.

Correction 2.

- 1. Au saut 1 la puce est soit en 1 soit en -1 donc $P(A_1) = 0$
- 2. Soit T_1 l'événement la puce est en 1 au saut 1 et T_{-1} la puce est en -1 au saut 1. (T_1, T_{-1}) st un SCE et on peut appliquer la fomrule des probabilités totales, on obtient :

$$P(A_2) = P(A_2|T_1)P(T_1) + P(A_2|T_{-1})P(T_{-1})$$

On a $P(A_2|T_1) = P(A_2|T_{-1}) = 1/2$ et $P(T_1) = P(T_{-1}) = 1/2$ donc

$$P(A_2) = \frac{1}{2}$$

3. Soit Q(n) la proposition " $P(E_{2n}) = 1$ et $P(E_{2n+1}) = 0$ " Initialisation : En 0 la puce est en 0 donc $P(E_0) = 1$

Au saut 1 la puce est soit en 1 soit en -1, en particulier elle n'est pas sur un nombre pair. Donc $P(E_1) = 0$ et la propriété Q(0) est vérifiée.

Hérédité : On suppose que la proposition Q est vraie pour un entier $n \in \mathbb{N}$ on a donc $P(E_{2n}) = 1$ et $P(E_{2n+1}) = 0$. Calculons maintenant $P(E_{2(n+1)}) = P(E_{2n+2})$.

On utilise le SCE E_{2n+1} , $\overline{E_{2n+1}}$

$$P(E_{2(n+1)}) = P(E_{2n+2}|E_{2n+1})P(E_{2n+1}) + P(E_{2n+2}|\overline{E_{2n+1}})P(\overline{E_{2n+1}})$$

$$= 0 + 1$$

$$= 1$$

4. $A_{2n+1} \subset E_{2n+1}$ donc $P(A_{2n+1}) \leq P(E_{2n+1}) = 0$. Ainsi

$$P(A_{2n+1}) = 0$$

5. (a) Pour monter k fois il faut choisir les k fois où parmi les 2n sauts où la puce monte. On obtient donc $P(M_k) = {2n \choose k} (\frac{1}{2})^k \frac{1}{2}^{2n-k}$

$$P(M_k) = \binom{2n}{k} \frac{1}{2^{2n}}$$

- (b) $A_{2n} = M_n \cap D_n$
- (c) Remarquons que si M_n est vérifiée alors nécessaire D_n est vérifié. Ainsi $P_{M_n}(D_n) = 1$, donc

$$P(A_{2n}) = P(M_n)P_{M_n}(D_n) = P(M_n)$$

Finalement

 $6_1 \text{ def sauts}(n)$:

$$P(A_{2n}) = {2n \choose n} \frac{1}{2^{2n}} = {2n \choose n} \frac{1}{4^n}$$

```
puce=0
       for i in range(n):
 3
            p=random()
 4
                 p > 1/2 :
 5
                 puce=puce+1
 6
            else:
                 puce=puce-1
       return (puce)
 9
 _1 def A(n):
       x=sauts(n)
 2
       if x==0:
 3
            return (True)
       else:
 5
            return (False)
 6
8_1 \text{ def approx}(n):
 2
            for i in range (10000):
 3
                      if A(n):
 4
                               c=c+1
 5
            return(c/10000)
91 def tempsdarret():
            puce=0
 2
            n=0
 3
            while puce!=0 and n!=0:
 4
                      p=random()
 5
```

Exercice 4. Soit $a \in]-1,1[$. On suppose l'existence d'une application f, continue sur \mathbb{R} , telle que :

$$\forall x \in \mathbb{R}, \quad f(x) = \int_0^{ax} f(t)dt.$$

- 1. Calcul des dérivées successives de f.
 - (a) Justifier l'existence d'une primitive F de f sur \mathbb{R} et écrire alors, pour tout nombre réel x, f(x) en fonction de x, a et F.
 - (b) Justifier la dérivabilité de f sur \mathbb{R} et exprimer, pour tout nombre réel x, f'(x) en fonction de x, a et f.
 - (c) Démontrer que f est de classe \mathcal{C}^{∞} sur \mathbb{R} et que pour tout nombre entier naturel n, on a

$$\forall x \in \mathbb{R} \quad f^{(n)}(x) = a^{n(n+1)/2} f(a^n x).$$

- (d) En déduire, pour tout nombre entier naturel n la valeur de $f^{(n)}(0)$.
- 2. Démontrer que, pour tout nombre réel x et tout nombre entier n, on a :

$$f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt.$$

On pourra faire une récurrence et utiliser une intégration par parties

- 3. Soit A un nombre réel strictement positif.
 - (a) Justifier l'existence d'un nombre réel positif ou nul M tel que :

$$\forall x \in [-A, A], \quad |f(x)| \le M$$

et en déduire que pour tout nombre entier naturel n, on a :

$$\forall x \in [-A, A], \quad |f^{(n)}(x)| \le M$$

(b) Soit x un nombre réel apartenant à [-A, A]. Démontrer que, pour tout nombre entier naturel n, on a

$$|f(x)| \le M \frac{A^{n+1}}{(n+1)!}.$$

- (c) En déduire que f(x) = 0 pour tout $x \in [-A, A]$
- (d) Que peut-on en déduire sur la fonction f?

Correction 3.

- 1. (a) f est continue sur \mathbb{R} donc admet une primitive, notée F. On a par définition de l'intégrale f(x) = F(ax) F(0).
 - (b) Une primitive est par définiton une fonction de classe \mathcal{C}^1 donc F est de classe \mathcal{C}^1 et finalemtn f est de classe \mathcal{C}^1 . On a

$$f'(x) = aF'(ax) = af(ax).$$

(c) On pose P(n): " f est de classe C^n et $\forall x \in \mathbb{R}$ $f^{(n)}(x) = a^{n(n+1)/2} f(a^n x)$ ".

- -P(0) est vraie par hypothèse.
- Supposons qu'il existe $n \in \mathbb{N}$ tel que P(n) soit vraie. On a alors f de classe \mathcal{C}^n , et $\forall x \in \mathbb{R}$ $f^{(n)}(x) = a^{n(n+1)/2}f(a^nx)$. Or comme f est de classe \mathcal{C}^1 d'après la question précédente, on a alors que $f^{(n)}$ est de classe \mathcal{C}^1 c'est à dire f de classe \mathcal{C}^{n+1} . Enfin $\forall x \in \mathbb{R}$,

$$\begin{split} f^{(n+1)}(x) &= a^{n(n+1)/2} f'(a^n x) \\ &= a^{n(n+1)/2+n} a f(aa^n x) \quad \text{d'après la question précédente} \\ &= a^{n(n+1)/2+n+1} f(a^{n+1} x) \\ &= a^{(n+1)(n+2)/2} f(a^{n+1} x) \end{split}$$

- On a montré par récurrence que pour tout $n \in \mathbb{N}$, f est de classe \mathcal{C}^n . Elle est donc de classe \mathcal{C}^{∞} et $\forall x \in \mathbb{R}$ $f^{(n)}(x) = a^{n(n+1)/2} f(a^n x)$.
- (d) On a donc $f^{(n)}(0) = a^{n(n+1)/2} f(0)$. Or $f(0) = \int_0^0 f(t) dt = 0$ Donc pour tout $n \in \mathbb{N}$ $f^{(n)}(0) = 0$
- 2. On montre le résultat par récurrence. On pose pour tout nombre réel x et tout nombre entier n, la proposition P(n): " $f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$."
 - Réécrivons P(0). On a P(0): " $f(x) = \int_0^x \frac{(x-t)^0}{0!} f^{(0+1)}(t) dt$.", c'est à dire : $f(x) = \int_0^x f'(t) dt$. Ce qui est vrai par définition de l'intégrale.
 - Supposons qu'il existe $n \in \mathbb{N}$ tel que P(n) soit vraie. On a alors pour tout nombre réel $x, \ f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$. Comme suggérer par l'énoncé on fait une IPP. On pose $u(t) = f^{(n+1)}(t)$ $u'(t) = f^{(n+2)}(t)$ $v(t) = -\frac{(x-t)^{n+1}}{(n+1)!}$ On a donc

$$f(x) = \left[\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+1)}(t) \right]_0^x - \int_0^x -\frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

Le crochet vaut $\frac{(x-x)^{n+1}}{(n+1)!}f^{(n+1)}(x) - \frac{(x-0)^{n+1}}{(n+1)!}f^{(n+1)}(0)$ les deux termes valent 0 (le second à l'aide de la question précédente). On obtient bien

$$f(x) = \int_0^x \frac{(x-t)^{n+1}}{(n+1)!} f^{(n+2)}(t) dt$$

- Par récurrence la propriété est vraie pour tout $n \in \mathbb{N}$.
- 3. (a) Soit A > 0. Comme f est continue et [-A, A] est un segment, le théorème de continuité sur un segment assure que f est bornée et atteint ses bornes. Donc il existe M > 0 tel que pour tout $x \in [-A, A]$, $|f(x)| \leq M$.

D'après 1c) on sait que pour tout $x \in \mathbb{R}$, $f^{(n)}(x) = a^{n(n+1)/2} f(a^n x)$ En particulier $|f^{(n)}(x)| = |a^{n(n+1)/2}||f(a^n x)||$ Or comme |a| < 1, $|a^{n(n+1)/2}|| \le 1$ et pour tout $x \in [-A,A]$, on a $a^n x \in [-A,A]$ et ainsi $|f(a^n x)| \le M$. Au final pour tout $x \in [-A,A]$:

$$|f^{(n)}(x)| \le M.$$

(b) D'après la question 2 on a : $f(x) = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$, donc $|f(x)| \le \int_0^x \left| \frac{(x-t)^n}{n!} f^{(n+1)}(t) \right| dt$ c'est l'inégatilité triangulaire sur les intégrales. On majore maintenant $|f^{(n+1)}(t)|$ à l'aide de la question précédente, on obtient pour tout $x \in [-A, A]$:

$$f(x) \le M \int_0^x \left| \frac{(x-t)^n}{n!} \right| dt.$$

Donc $f(x) \le M \left[\frac{|(x-t)|^{n+1}}{(n+1)!} \right]_0^x \le M \frac{|x|^{n+1}}{(n+1)!}$ Or comme $x \in [-A, A]$ on a bien :

$$|f(x)| \le M \frac{A^{n+1}}{(n+1)!}$$

(c) Par croissance comparée, en passant à la limite on a

$$\lim_{n \to \infty} \frac{A^{n+1}}{(n+1)!} = 0$$

Ainsi le théorème des gendarmes assure que pour tout $x \in [-A, A]$ on a

$$\lim_{n \to \infty} f(x) = 0.$$

Evidemment f(x) ne dépend pas de n donc par unicité de la limite f(x) = 0Ceci étant vrai pour tout $x \in [-A, A]$ et comme A est arbitraire, ceci est vrai pour tout $x \in \mathbb{R}$.

$$f \equiv 0$$