

RDA5981X应用指南-----硬件设计篇

RDA5981A/B/C 是集成了 MCU、PMU 和 IEEE802.11b/g/n MAC/PHY/radio 等模块的低功耗芯片,支持 2.4GHz IEEE802.11b/g/n,USB Host 和 Device 2.0 HS,Micro SD 卡(SDMMC 接口),UART,I2C,I2S,PMW,SPI 等接口,支持模拟按键(GPADC0)。

1 封装定义

2 管脚定义

表-1 管脚类型定义

Pin Type	Description
I/O	Digital input/output
I	Digital input
0	Digital output
A,I	Analog input
A,O	Analog output
A,I/O	Analog input/output
PWR	Power
GND	Ground

表-2 RDA5981X 管脚定义

PIN	NO.	TYPE	DESCRIPTION	
VBAT	1	PWR	buck power supply	
SW_GND	2	GND	buck ground	
SW_Buck	3	PWR	Switching node of buck	
VA18	4	PWR	1.8V power output	
LX_Buck	5	PWR	Switching output	
VD11	6	PWR	1.1V power output	
GPIO9	7	I/O	General purpose input/output	
V_CORE	8	PWR	digital core power in	
USB_DN	9	I/O	USB negative signal	
USB_DP	10	I/O	USB positive signal	
GPADC0	11	I/O	General purpose ADC	
GPIO7	12	I/O	General purpose input/output	
GPIO8	13	I/O	General purpose input/output	
GPIO5	14	I/O	General purpose input/output	
GPIO4	15	I/O	General purpose input/output	
UART_TX	16	I/O	UART_TX	
PDN	17	I	Power Down signal of the chip	
AVDD33 PAD	18	PWR	3.3V PA driver power in	
AVDD33 PA	19	PWR	3.3V PA power in	
RFIO	20	A,I/O	WIFI transmitter output/receiver input	
GPIO1	21	I/O	General purpose input/output	
GPIO2	22	I/O	General purpose input/output	
GPIO3	23	I/O	General purpose input/output	
UART RX	24	I/O	UART RX	
AVDD_RF	25	PWR	1.8V RF power in	
AVDD CLK	26	PWR	1.8V clock power in	
XIN	27	A,I	26M crystal input	
XTAL	28	A,O	26M crystal output	
GPIO13	29	I/O	General purpose input/output	
GPIO12	30	I/O	General purpose input/output	
GPIO25	31	I/O	General purpose input/output	
GPIO24	32	I/O	General purpose input/output	
GPIO23	33	I/O	General purpose input/output	
GPIO22	34	I/O	General purpose input/output	
GPIO21	35	I/O	General purpose input/output	
GPIO0	36	I/O	General purpose input/output	
VIO LDO	37	PWR	VIO LDO output	
VIO	38	PWR	I/O power supply	
LDO33	39	PWR	3.3V LDO output	
VBAT	40	PWR	power supply	

表_3	RDA59	21 X	管脚默认	功能和	值设定
/X -J	NDASS	DIA	ᆸᄱᄴᄿᄱ	、カルHBATH	א אין דון

PIN	Default Function	Default Type	Default Value	Inner Pull up/Pull down
GPIO0	GPIO0	Input	0	Pull down
GPIO1	NTRST	Input	1	Pull down
GPIO2	GPIO2	Output	0	Pull up
GPIO3	GPIO3	Output	0	Pull up
GPIO4	TMS	Input	0	Pull up
GPIO5	TCK	Input	0	Pull down
GPADC0	GPIO6	Output	0	Pull down
GPIO7	GPIO7	Output	0	Pull down
GPIO8	TDO	Output	0	Pull down
GPIO9	TDI	Input	0	Pull down
GPIO12	I2C_SCL	Input	1	Pull down
GPIO13	I2C_SDA	Input		Pull down
GPIO21	GPIO21	Input	0	Pull down
GPIO22	GPIO22	Input	0	Pull up
GPIO23	GPIO23	Input	0	Pull up
GPIO24	GPIO24	Input	0	Pull up
GPIO25	GPIO25	Input	0	Pull up

注意:

表-3 中内部上下拉只是针对 GPIO, 其他复用功能无效。 GPIO21 上电上拉: 开机在 UART1 上打印 boot rom 启动信息;

上电下拉: 开机在 UART1 上没有打印信息输出。

表-4 RDA5981X 管脚复用定义

PIN	Func0	Func1	Func2	Func3	Func4	Func5	Func6	Func7
Uart_rx	uart_rx	gpio26		spi_cs_ex2	pw_pwl0			
Uart_tx	uart_tx	gpio27		spi_cs_ex3	pwm3			
GPIO0	gpio0			sdmmc_cmd	pwm2			
GPIO1	gpio1	ntrst		i2s_out_sd	pw_pwl1	uart2_rx		
GPIO2	gpio2	i2c_sda		i2s_out_ws	pw_lpg	uart2_tx		
GPIO3	gpio3	i2c_scl		i2s_out_bclk	pw_pwt	sdmmc_d0	1	
GPIO4	gpio4	tms		i2s_in_sd	spi_clk_ex	4		
GPIO5	gpio5	tck		i2s_in_ws	spi_cs_ex1			
GPADC0	gpio6			spi_mosi_ex		spi_data_ex		sdmmc_d0
GPIO7	gpio7			spi_miso_ex		sdmmc_d1		
GPIO8	gpio8	tdo		i2s_in_bclk	pwm0			
GPIO9	gpio9	tdi		sdmmc_clk				
GPIO12		gpio12		sdmmc_d2			spi_mosi_ex	
GPIO13		gpio13		sdmmc_d3		pwm1	spi_miso_ex	
GPIO21	gpio21							
GPIO22	gpio22	spi_clk_ex	uart2_ctsn	i2c_sda	pwm0			
GPIO23	gpio23	spi_cs_ex0	uart2_rtsn	i2c_scl	pwm1			
GPIO24	gpio24	spi_mosi_ex	uart2_rx	spi_data_ex	pwm2			
GPIO25	gpio25	spi_miso_ex	uart2_tx	37	pwm3			

电路图和 PCB 设计

RDA5981X 的核心电路图如图 1 所示:

图 1 RDA5981X 原理图

RDA598AX 典型的应用电路图,包括电源、复位电路、晶体、射频、模拟 ADC 按键、内置 flash 下载、 USB 和其他一些典型的数字接口电路。

3.1 电源

RDA5981X 内置了 2 路 DC-DC BUCK 输出和 2 路 LDO 输出,整个芯片只需要 VBAT 输入单电源就可以 工作。

PIN1 和 PIN40 是 VBAT 输入,建议输入电压范围在 3.3V-5V 之间,其中 PIN1 给开关电源 VA18 和 VD11 供电, PIN40 给线性模拟电源 LD033, VIO LD0 供电。

2 路 DC-DC 共享一个电感,这颗电感推荐 2.2uH,额定电流大于 350mA,直流内阻要尽量小,否则 会影响开关电源的效率下降,增加功耗。开关电源的 VA18 主要给模拟的时钟和射频供电,供电电压在 1.9V-2V 之间; VD11 主要给 ARM 内核、片内 RAM 和其他数字电路供电,供电电压在 1.05V-1.15V 之间。 开关电源的每个输出管脚要并一个 4.7uF 电容到地,如果并 10uF 效果更好,但是模块设计中最小电容 要求 2. 2uF/0402。V CORE 是数字电路电源输入,和 VD11 在 PCB 上连在一起,共享一个 4. 7uF 电容,如 果空间富裕可以增加一个 100nF 效果更好; AVDD CLK 和 AVDD RF 是模拟电路电源输入, 和 VA18 在 PCB 上连在一起, 需要靠近输入管脚并 1uF 和 100nF 电容到地。

已经验证过 Sample 的电感有:

表-5 RDA5981X 开关电源电感支持型号

品牌	型号	规格
Sunlord	MPH160809S2R2MT	2.2uH;+/-20%;0603;Rdc=0.3,Isat=300mA,Irms=850mA
Sunlord	MPH201210S2R2MT	2. 2uH;+/-20%;0805;Rdc=0.2,Isat=500mA,Irms=900mA

注意:

对于有 PCB 尺寸要求的模块应用,可以选择 0603 的电感,其他对 PCB 尺寸无要求的应用,尽量使用 0805 的电感。

PIN18 和 PIN19 是给内置的 PA 供电管脚,最大供电电压不超过 3.5V。推荐在靠近管脚附近并 1uF和 100nF 电容对地。

PIN39 (LD033) 是内置 LD0 的 3. 3V 电压输出管脚,推荐在靠近管脚附近并 2. 2uF 电容对地。如果不需要用这个输出给 PA 供电,电容可以减小为 1uF。

PIN37 (VIO_LDO) 是内置 LDO 的 VIO 电压输出管脚,可以输出 1.8V 到 3.3V 电压。可以根据 VIO 电压域软件设置这个输出电压,PIN38 (VIO) 是芯片 I/O 电压输入管脚,可以直接用 VIO_LDO 供电。推荐在靠近管脚附近并 1 uF 电容对地。

根据 VBAT 供电电压区别, RDA5981X 有两种供电方式推荐:

方式 1, 外供 VBAT 在 3.5V 到 5V 之间, 请根据图 2设计电源供电电路。

图 2 RDA5981X 供电方式一

方式 2, 外供 VBAT 在 3.3V 到 V3.5V 之间,请根据图 3设计电源供电电路。

图 3 RDA5981X 供电方式二

注意:

图 2 和图 3 中外供电源提供不小于 1.5W 功率, <u>推荐 5V@300mA, 3.3V@500mA</u>。 RDA5981X 的 VIO 输入范围为 2.7V-3.6V, I/O 上拉尽量使用 VIO 电源。

表-6 RDA5981X - Power absolute maximum ratings

PIN	NOTE	RATING	UNIT
VBAT	Power supply	0 to 5.5	V
LX_BUCK	Switching output	0 to 3.6	V
SW_BUCK	Switching node of buck	0 to 5.5	V
VA18	1.8V power output	0 to 2.5	V
VD11	1.1V power output	0 to 2.5	V
LDO33	3.3V LDO output	0 to 3.6	V
VIO	I/O power supply	0 to 3.6	V

PIN	NOTE	MIN	TYP	MAX	UNIT
VBAT	Power supply	3.3	4.0	5.0	V
LX_BUCK	Switching output			3.6	V
SW_BUCK	Switching node of buck	0		5.0	V
VA18	1.8V power output		1.75		V
VD11	1.1V power output		1.1		V
LDO33	3.3V LDO output		3.3		V
VIO	I/O power supply		3.3	1	V

表-7 RDA5981X - Power operating parameters

3.2 复位

RDA5981x 的上电复位电路和上电时序都集成到了芯片内部,要求 PDN 悬空,直接在 VBAT 上正常加载电压即可。

图 4 RDA5981A 上电时序图

注意:

图 4 所示, VBAT 电源要在 10ms 内上升到 3.3V 以上, 内部 Power RST 电路才能正常 reset, 如果 VBAT 上升比较缓慢,建议在 PDN 上增加 100nF 到 1uF 电容对地,延迟复位时间。

3.3 晶体

如果选用特殊晶体,请提供sample给RDA,实验室验证后方可使用,所以在没有调试验证之前Crystal 对地电容C17.C18的容值无法确定,需要针对具体晶体优化。

已经验证过Sample的晶体有:

表-6 RDA5981X	晶体支持型号
AC-0 IND/NS/01/N	四件人小土了

品牌	晶体负载电容	型号		
TXC	15pF	7M26000412 (C17=12pF,18=12pF)		
HOSONIC	12.5pF	E3SB26E004201E (C17=10pF,C18=10pF)		
湖北东光电子	12.5pF	CXD3-026000000-B125HA38 (C17=10pF,C18=10pF)		

3.4 射频

设计时需要添加 T 型和 π 型匹配网络对天线进行匹配。

图 5 RDA5981X 射频匹配图

注意:

匹配网络的器件参数值以实际天线和 PCB 布局为准。

3.5 模拟 ADC 按键

RDA5981X 支持 2 路 GPADC 输入,其中 PIN11(GPADC0)用做按键输入检测; PIN13(GPIO8)复用 GPADC1, 功能同 GPADC0 相同,用做按键输入或电压检测。如图 6 所示,根据 GPADC 上并联电阻 和上拉电阻 R19 分压不同得到不同的按键值。GPADC 正常的 AD 采样电压范围为 0-2V,但在做按键检测时采用中断方式,支持按键按下电压最大为 1.4V,高于 1.4V 时没办法中断,只能用查询方式采样按键。

GPADC0 在内部可以通过设置寄存器测试 VBAT 上的电压,实际应用中可以用作检测电池电量。

图 6 RDA5981X 按键接口电路

表-8 RDA5981X 参考 7 按键输入推荐电阻

KEY Number	Expected Voltage Value (3150mV)	Expected Resistor Value (Ohm)	Real Resistor Value (Ohm / 1%)	Real Voltage Value (mV)
KEY1	0	0	0	0
KEY2	200	0.678K	0.68K	201
KEY3	400	1.455K	1.5K	411
KEY4	600	2.353K	2.4K	610
KEY5	800	3.404K	3.4K	799
KEY6	1000	4.651K	4.64K	998
KEY7	1200	6.154K	6.19K	1204

表-9 RDA5981X 参考 5 按键输入推荐电阻

KEY Number	Expected Voltage Value (3150mV)	Expected Resistor Value (Ohm)	Real Resistor Value (Ohm / 1%)	Real Voltage Value (mV)
KÉY1	0	0	0	0
KEY2	300	1.053K	1.05K	299
KEY3	600	2.353K	2.4K	610
KEY4	900	4.000K	4.02K	903
KEY5	1200	6.154K	6.19K	1204

3.6 内置 Flash 下载

RDA5981X 内置了 SPI Nor Flash, 共分 3 个型号:

RDA5981A: 8Mb RDA5981B: 16Mb RDA5981C: 32Mb

芯片通过 UART 下载 bin code 到内置 Flash 中,具体操作请参考"RDA5981 下载命令.pdf"。

3.7 USB 及其他数字接口

RDA5981X 的 USB 接口支持 USB2.0 的 Device 和 Host 两种模式,具体使用说明请参考 SDK 中相关 USB 的描述。

图 7 RDA5981X USB 接口电路图

图 8 RDA5981X 扩展 PSRAM 参考电路图

图 9 RDA5981X 扩展 SPI Flash 参考电路图

图 10 RDA5981X 扩展 SD 卡接口电路图

图 11 RDA5981X 扩展音频接口电路图

图 12 RDA5981X 扩展 I2S 设备电路图

图 13 RDA5981X 参考充电电路图-

图 14 RDA5981X 参考充电电路图二

4 PCB Layout 注意事项

4.1 PCB 叠层结构

如图 15 所示, RDA5981X 的 PCB 建议采用 4 层板设计。

图 15 PCB 叠层结构

表-10 RDA5981X 的 PCB 层介绍

序号	名称	描述	
第一层	信号层	主要摆放元件和走信号线	
第二层	GND 层	禁止走线,要保证一张完整的 GND 平面	
第三层	GND 层	晶体和射频元件下面不要走线,保证完整的 GND 平面,其他	
		地方可以走信号线和电源线	
第四层	信号层	不建议摆放元器件,可以走信号线和电源线	

4.2 PCB 中电源的处理

VBAT 电源的 C3(4.7uF/0402)要靠近 PIN1 和 PIN40 放置,走线宽度尽量宽,不小于 15mil。

图 16 VBAT 电源走线图

LDO33 电源的 C11(1uF/0402)要靠近 PIN39 放置,打孔到 L3 走不小于 15mil 线连到 C12 和 C13 附近, PA 和 PAD 的电源线不要在 PIN 上直接短接后走线出来,要单独走线到电容上,在电容上短接在一起。

图 17 PA 和 PAD 电源走线图

开关电源的电感要尽量靠近芯片放置,走线不小于15mil。

图 18 开关电源电感走线图

VA18 和 VD11 的推荐走线方式, 其中 VA11 走线穿 L3 层到 RF 和 CLK 上, PIN25 和 26 不要在那 PIN 上直接短接, 拉到电容上再短接。VA11 走线不小于 15mil, VD11 走线不小于 10mil。

图 19 VA18 和 VD11 走线图

在过孔处理上,钻孔直径需不小于电源走线的宽度,钻孔焊盘的直径建议是钻孔直径的 1.5 倍。

4.3 PCB 中射频的处理

在 PCB 中射频走线如图 20 所示,必须要注意下列事项:

- 1) 射频线走在 top 层,不可穿层走线,传输线要求做 50 欧姆特征阻抗处理。
- 2) 射频线两旁的屏蔽地要尽量完整,第2层的GND要完整,天线和射频线周围尽量多的地过孔。
- 3) 射频线不可以有 90 度直角和锐角走线,尽量使用 135° 角走线或是圆弧走线。
- 4) 射频线的匹配网络器件尽量靠近芯片放置。
- 5) 射频线附近不能有高频信号线。射频上的天线必须远离所有传输高频信号的器件,比如晶体、UART、PWM、SDIO和USB信号等。
- 6) RF走线在4.1的PCB叠层结构下,推荐18mil线宽,14mil间距,传输线特征阻抗为50欧姆。

图 20 RF 走线图

4.4 PCB 中晶体的处理

晶体的时钟要在 top 层走线,不可以穿层,不可以交叉,并且周围要用 GND 屏蔽。晶体的下面不可以走高速信号线,第 2 层要求完整的 GND。

晶体的负载电容尽量放置到时钟线末端。

晶体的周围不要放置磁性元件,如电感,磁珠等。

图 21 晶体走线图

4.5 PCB 中 USB 走线

USB 走线要求差分 90 欧姆特征阻抗;走线要尽量短;差分线上尽量不要超过 2 对过孔;对称平行走线,避免 90°走线,弧形或 45°是较好的走线方式。

5 开发硬件介绍

5.1 UNO_91H 开发板

RDA 提供 UNO_91H 开发板,支持 Wi-Fi、BT、FM、USB、SD 卡、DAP、AUX 音频输入、耳机音频输出、MIC 音频、模拟按键和 Arduino 标准接口。

图 22 UNO 91H 开发板

图 23 UNO_91H 开发板 Arduino 接口定义

5.1.1 UNO_91H 开发板的供电介绍

UNO_91H 开发板支持多种供电方式,外接 5V-9V 的 DC Adapter, DAP USB 接口,5981X USB device 接口和 Arduino 接口 VIN 供电。

注意:

多个接口请不要同时供电。

5.1.2 UNO_91H 开发板的程序下载

UNO 91H 开发板提供往 RDA5981X 和 RDA5856EQ32 中下载程序的接口。

如图 24 所示, RDA5981X 支持 DAP 拖拽下载 BIN 文件,下载的时候需要把 TCK 和 TMS 两个跳线帽插入,具体操作请参考 "UNO_91H 开发板程序下载说明"。

图 24 RDA5981X DAP 下载图

如图 25 所示, RDA5981X 支持 UART 下载 BIN 文件, 请参考 "UNO_91H 开发板程序下载说明"。

图 25 RDA5981X UART 下载图

如图 26 所示, RDA5856EQ32 支持 Host 接口下载,请参考"UNO_91H 开发板程序下载说明"。

图 26 RDA5856EQ32 下载图

5.1.3 UNO_91H 开发板的跳线说明

如图 27 所示: J9 到 J14, J33, J35 和 J36 是跳线; J4, J6 和 J34 是测试针。

图 27 UNO_91H 开发板跳线分布图

表-11 UNO_91H 开发板跳线功能描述

位号	功能描述				
J9	TCK,插上跳线帽,DAP芯片可以访问RDA5981X的JTAG接口。				
J10	TMS,插上跳线帽,DAP芯片可以访问RDA5981X的JTAG接口。				
J12	TXD,插上跳线帽,DAP芯片可以访问RDA5981X的UART接口。				
	靠近 RDA5981X 芯片端是连接到 RDA5981X 的信号,拔掉跳线帽,可以外接 UART				
	的 RXD 信号和 RDA5981X 实现下载或通讯功能。				
J13	RXD,插上跳线帽,DAP芯片可以访问RDA5981X的UART接口。				
	靠近 RDA5981X 芯片端是连接到 RDA5981X 的信号,拔掉跳线帽,可以外接 UART				
	的 TXD 信号和 RDA5981X 实现下载或通讯功能。				
J14	GND				
J34	PIN1 是 GPIO1, PIN2 是 GPIO2, 不能插入跳线帽, 这两个 PIN 是 RDA5981X 利				
	RDA5856EQ32 的 UART 通讯的测试点。				
J33	RDA5856EQ32 的 VBAT 供电跳线帽, RDA5856EQ32 需要工作时, 请插入跳线帽。				
J4	SIP-3PIN 针, HTX, HRX 和 GND 信号,是 RDA5856EQ32 的下载程序接口。				
	不能插入跳线帽。				
J6	SIP-3PIN 针, SCL, SDA 和 GND 信号,是 RDA5856EQ32 预留 I2C Slave 接口。				
	不能插入跳线帽。				
J35	RDA5981X 的 device USB 供电跳线,当 RDA5981X 的 USB 工作在 device 时,插入跳				
	线帽,UNO_91H 开发板可以通过 USB 给板子供电。				
J36	RDA5981X 的 host USB 供电跳线,当 RDA5981X 的 USB 工作在 host 时,插入跳线帽				
	UNO_91H 开发板可以给 USB 外设供电。				

5.2 RDA5981X_HDK 开发板

RDA 提供 RDA5981X_HDK 开发板,支持 WI_FI 数传应用。

图 28 RDA5981X_HDK 开发板

图 29 RDA5981X_HDK 开发板子板

图 30 RDA5981X HDK 开发板整套

图 31 RDA5981X_HDK 开发板 I/O 信号定义

6 FAQ

TBD

7 版本历史

版本	发布日期	作者	说明
1.0	2017/06/16	Li Yongze	Initial draft

