# **Clustering Aggregation**

Boston University CS 506 - Lance Galletti

### **Clustering Aggregation**

Some terminology:

**Clustering**: A group of clusters output by a clustering algorithm

**Cluster**: A group of points

### **Clustering Aggregation**

### Goals:

- 1. Compare clusterings
- 2. Combine the information from multiple clusterings to create a new clustering













Given 2 clusterings P and C

$$D(P,C) = \sum_{x,y} \mathbb{I}_{P,C}(x,y)$$

where

$$\mathbb{I}_{P,C}(x,y) = \left\{ \begin{array}{cc} 1 & \text{if $P \& C$ disagree on which clusters $x \& y$ belong to} \\ 0 & \text{Disagreement occurs when:} \end{array} \right.$$

One clustering groups two points together, while the other clustering separates them.

|                       | Р | С |
|-----------------------|---|---|
| <b>X</b> <sub>1</sub> | 1 | 1 |
| X <sub>2</sub>        | 1 | 2 |
| <b>X</b> <sub>3</sub> | 2 | 1 |
| X <sub>4</sub>        | 3 | 3 |
| <b>x</b> <sub>5</sub> | 3 | 4 |

What is the disagreement distance between P and C?

#### Now, check each pair:

| Pair       | P (Same Cluster?) | C (Same Cluster?) | Disagreement? |
|------------|-------------------|-------------------|---------------|
| $x_1, x_2$ | Yes               | No                | Yes           |
| $x_1, x_3$ | No                | Yes               | Yes           |
| $x_1, x_4$ | No                | No                | No            |
| $x_1, x_5$ | No                | No                | No            |
| $x_2,x_3$  | No                | No                | No            |
| $x_2,x_4$  | No                | No                | No            |
| $x_2, x_5$ | No                | No                | No            |
| $x_3,x_4$  | No                | No                | No            |
| $x_3, x_5$ | No                | No                | No            |
| $x_4,x_5$  | Yes               | No                | Yes           |

Total disagreements = 3 pairs

#### **Step 2: Compute Disagreement Distance**

Total unique pairs:

$$inom{5}{2}=rac{5(5-1)}{2}=10$$
 Disagreement Distance  $=rac{3}{10}=0.3$ 

|                       | Р | С |
|-----------------------|---|---|
| <b>X</b> <sub>1</sub> | 1 | а |
| X <sub>2</sub>        | 1 | b |
| <b>X</b> <sub>3</sub> | 2 | а |
| X <sub>4</sub>        | 3 | С |
| <b>X</b> <sub>5</sub> | 3 | d |

| X <sub>2</sub>        | <b>x</b> <sub>1</sub> | 1 |
|-----------------------|-----------------------|---|
| <b>x</b> <sub>3</sub> | <b>x</b> <sub>1</sub> | 1 |
| X <sub>4</sub>        | <b>x</b> <sub>1</sub> | 0 |
| <b>X</b> <sub>5</sub> | <b>x</b> <sub>1</sub> | 0 |
| <b>x</b> <sub>3</sub> | X <sub>2</sub>        | 0 |
| X <sub>4</sub>        | X <sub>2</sub>        | 0 |
| <b>X</b> <sub>5</sub> | X <sub>2</sub>        | 0 |
| X <sub>4</sub>        | X <sub>3</sub>        | 0 |
| <b>x</b> <sub>5</sub> | <b>x</b> <sub>3</sub> | 0 |
| X <sub>4</sub>        | <b>x</b> <sub>5</sub> | 1 |
|                       |                       |   |

Is D(P, C) a distance function?

- 1. D(C, P) = 0 iff C = P
- 2. D(C, P) = D(P, C)
- 3. Triangle Inequality:

$$\mathbb{I}_{C_1,C_3}(x,y) \le \mathbb{I}_{C_1,C_2}(x,y) + \mathbb{I}_{C_2,C_3}(x,y)$$

Since I<sub>C</sub> can only be 0 or 1, the above can only be violated if

$$I_{x,y}(C_1,C_3) = 1$$
,  $I_{x,y}(C_1,C_2) = 0$ ,  $I_{x,y}(C_2,C_3) = 0$  is this possible?

**Goal**: From a set of clusterings  $C_1$ , ...,  $C_m$ , generate a clustering  $C^*$  that minimizes:

$$\sum_{i=1}^{m} D(C^*, C_i)$$

The problem is equivalent to clustering categorical data

|                       | City   | Profession     | Nationality  |  |
|-----------------------|--------|----------------|--------------|--|
| <b>x</b> <sub>1</sub> | NY     | Doctor         | US           |  |
| X <sub>2</sub>        | NY     | Teacher French |              |  |
| <b>x</b> <sub>3</sub> | Boston | Lawyer         | Canada       |  |
| X <sub>4</sub>        | Boston | Doctor US      |              |  |
| <b>x</b> <sub>5</sub> | LA     | Lawyer         | Lawyer Canda |  |
| X <sub>6</sub>        | LA     | Actor          | French       |  |

#### **Step 2: Compute Disagreement Distance**

A disagreeing pair is one that is clustered together in one scheme but not in another.

| Pair         | City Clustering         | Profession Clustering   | Nationality Clustering | Disagreement Count |
|--------------|-------------------------|-------------------------|------------------------|--------------------|
| $(x_1, x_2)$ | $\overline{\checkmark}$ | ×                       | ×                      | 2                  |
| $(x_3, x_4)$ | $\overline{\checkmark}$ | ×                       | ×                      | 2                  |
| $(x_5, x_6)$ | $\overline{\checkmark}$ | ×                       | ×                      | 2                  |
| $(x_1, x_4)$ | ×                       | $\overline{\checkmark}$ | <b>▽</b>               | 1                  |
| $(x_3, x_5)$ | ×                       | $\overline{\checkmark}$ | <b>▽</b>               | 1                  |
| $(x_2, x_6)$ | ×                       | ×                       | <b>☑</b>               | 2                  |

#### **Step 3: Compute the Final Score**

Total possible pairs:

$$\binom{6}{2}=15$$

- Disagreeing pairs: 10
- Disagreement Distance:

$$rac{ ext{Disagreeing Pairs}}{ ext{Total Pe}} = rac{10}{15} = 0.67$$

### Benefits:

- 1. Can identify the best number of clusters (optimization function does not make any assumptions on the number of clusters)
- 2. Can handle / detect outliers (points where there is no consensus)
- 3. Improve robustness of the clustering algorithms combining clusterings can produce a better result
- 4. Privacy preserving clustering (can compute aggregate clustering without sharing the data, need only share the assignments)

But... The problem is NP-Hard.

Often use approximations and heuristics to solve this problem.

What about the majority rule?

This only works **if** it produces a clustering

Possible to have a majority saying:

- 1.  $x_1 \& x_2$  together
- 2.  $x_2 & x_3$  together
- 3.  $x_1 & x_3$  separate

### elongated



