January 2023

1.

2.

Let X be a random variable with $X \ge 0$ a.s., and suppose $\mathbb{E}[X] \le 1$ and $\mathbb{E}[X^2] \le 10$. Given this information, for every $t \ge 0$ find the best possible upper bound for $\mathbb{P}[X > t]$.

Solution.

$$\begin{split} \mathbb{E}[X] &= \mathbb{E}[X\mathbf{1}_{X \leq t}] + \mathbb{E}[X\mathbf{1}_{X > t}] \geq \mathbb{E}[X\mathbf{1}_{X \leq t} + t\mathbb{P}[X > t] \\ &\Rightarrow \mathbb{P}[X > t] \leq \frac{\mathbb{E}[X]}{t} \leq \frac{1}{t} \\ \mathbb{E}[X^2] &= \mathbb{E}[X^2\mathbf{1}_{X \leq t}] + \mathbb{E}[X^2\mathbf{1}_{X > t}] \geq \mathbb{E}[X\mathbf{1}_{X \leq t}] + t^2\mathbb{P}[X > t] \\ &\Rightarrow \mathbb{P}[X > t] \leq \frac{\mathbb{E}[X^2]}{t^2} \leq \frac{10}{t^2} \end{split}$$

 $t = t^2$

For
$$0 \le t \le 10$$
, $\frac{1}{t} \le \frac{10}{t^2}$ and for $t > 10$, $\frac{10}{t^2} < \frac{1}{t}$, so

$$\mathbb{P}[X > t] \le f(t) = \begin{cases} \frac{1}{t} & 0 \le t \le 10\\ \frac{10}{t^2} & t > 10 \end{cases}.$$

3.

Let ξ_1, ξ_2, \ldots be independent coin flips and define $S_n \sum_{i=1}^n \xi_i$.

- (a) Compute $\mathbb{E}[S_{10}|\xi_1]$
- (b) Compute $\mathbb{E}[S_{10}^2|\xi_1]$
- (c) Compute $\mathbb{E}[\xi|S_{10}]$

Solution.

(a)
$$\mathbb{E}[S_{10}|\xi_1] = \sum_{i=1}^{10} \mathbb{E}[\xi_i|\xi_1] = \xi_1$$

(b)
$$\mathbb{E}[S_{10}^2|\xi_1] = \mathbb{E}\left[\sum_{i=1}^{10} \xi_i^2 + 2\sum_{i \neq j} \xi_i \xi_j |\xi_1\right] = 10$$

(c) Since ξ_i are iid, $\mathbb{E}[\xi_i|\S_{10}] = \mathbb{E}[\xi_j|S_{10}]$ for $1 \leq i, j \leq 10$. Thus,

$$\mathbb{E}[S_{10}|S_{10}] = \sum_{i=1}^{10} \mathbb{E}[\xi_i|S_{10}] = \sum_{i=1}^{10} \mathbb{E}[\xi_1|\S_{10} = 10\mathbb{E}[\xi_1|\S_{10}] = S_{10} \Rightarrow \mathbb{E}[\xi_1|S_{10}] = \frac{1}{10}S_{10}$$

August 2022

1.

1. Show for any random variable X, and any $s, t \geq 0$,

$$\mathbb{P}[X \ge t] \le e^{-st} \mathbb{E}[e^{sX}]$$

2. Let ξ_1, \ldots, ξ_n be independent coin flips and $X_n = \sum_{i=1}^n \xi_i$. Prove that for any $t \geq 0$,

$$\mathbb{P}[X_n \ge t\sqrt{n}] \le e^{-t^2/2}.$$

Solution.

1.

$$\mathbb{E}[e^{sX}] = \mathbb{E}[e^{sX}\mathbf{1}_{X < t}] + \mathbb{E}[e^{sX}\mathbf{1}_{X \ge t}] \ge e^{st}\mathbb{P}[X \ge t].$$

Since $e^{sX} \ge 0$, This implies $p[X \ge t] \le e^{-st} \mathbb{E}[e^{sX}]$.

2. By (1), $\mathbb{P}\left[\frac{X_n}{\sqrt{n}} \leq t\right] \leq e^{-t^2} \mathbb{E}[e^{tX_n/\sqrt{n}}]$, so we want to evaluate this expectation.

$$\begin{split} \mathbb{E}[e^{tX_n/\sqrt{n}}] &= \prod_{i=1}^n \mathbb{E}[e^{\frac{t}{\sqrt{n}\xi_i}}] = \prod_{i=1}^n \frac{1}{2} \left(e^{-\frac{t}{\sqrt{n}}} + e^{\frac{t}{\sqrt{n}}} \right) = \prod_{i=1}^n \cosh(\frac{t}{\sqrt{n}}) \\ &= (\cosh(\frac{t}{\sqrt{n}})^n \le ((e^{\frac{1}{2} \left(\frac{t}{\sqrt{n}}\right)^2})^n = e^{\frac{1}{2}t^2}. \end{split}$$

Thus, $\mathbb{P}[X_n \ge t\sqrt{n}] \le e^{-t^2} e^{t^2/2} = e^{-t^2/2}$.

2.

For random variables X and Y defined

$$d(X, Y) = \inf\{\epsilon \ge 0 : \mathbb{P}[|X - Y| > \epsilon] \le \epsilon.$$

Prove that d metrizes convergence in probability, in the sense that $X_n \to X$ in probability if and only if $d(X_n, X) \to 0$.

3.

Let ξ_1, ξ_2, \ldots be iid coin flips. Let $X_n = \sum_{i=1}^n \xi_i$, and let

$$T = \inf\{n \ge 4 : \xi_n = -1 \text{ and } \xi_{n-1} = \xi_{n-3} = 1\}.$$

- 1. Compute $\mathbb{E}[X_T]$
- 2. Compute $\mathbb{E}[X_{T+1}]$
- 3. Compute $\mathbb{E}[X_{T-1}]$

Solution.

1.
$$\mathbb{E}[X_T] = \sum_{i=1}^{T-4} \mathbb{E}[\xi_i] + \mathbb{E}[\xi_{T-3} + \xi_{T-2} + \xi_{T-1} + \xi_T] = \frac{1}{2}(0) + \frac{1}{2}(2) = 1$$

2.
$$\mathbb{E}[X_{T+1}] = \mathbb{E}[X_T] + \mathbb{E}[\xi_{t+1}] = 1$$

3.
$$\mathbb{E}[X_{T-1}] = \sum_{i=1}^{T-4} \mathbb{E}[\xi_i] = \mathbb{E}[\xi_{T-3} + \xi_{T-2} + \xi_{T-1}] = \frac{1}{2}(1) + \frac{1}{2}(3) = 2$$

2

Let μ be a probability measure on $\mathbb R$ and let φ is characteristic function. Show that μ has no atoms if

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) \ dt = 0 \text{ for all } a \in \mathbb{R}.$$

Solution. Let $a \in \mathbb{R}$.

$$\begin{split} \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \varphi(t) \ dt &= \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} e^{-ita} \int_{\mathbb{R}} e^{itx} \ \mu(dx) dt = \lim_{T \to \infty} \frac{1}{2T} \int_{\mathbb{R}} \int_{-T}^{T} e^{iT(x-a)} \ dt \mu(dx) \\ &= \lim_{T \to \infty} \frac{1}{2iT(x-a)} \int_{\mathbb{R}} \left(e^{iT(x-a)} - e^{-iT(x-a)} \right) \mu(dx) \\ &= \lim_{T \to \infty} \int_{R} \frac{\sin(T(x-a))}{T(x-a)} \ \mu(dx) = \int_{\mathbb{R}} \lim_{T \to \infty} \frac{\sin(T(x-a))}{T(x-a)} \ \mu(dx) = \mu(\{a\}) = 0 \end{split}$$

Since $a \in \mathbb{R}$ was chosen arbitarily, μ has no atoms.

January 2022

1.

Suppose that $\{X_n, n \geq 1\}$ is a sequence of iid nonnegative random variables. If $\mathbb{E}[X_1] = \infty$, show tht $\frac{1}{n} \sum_{k=1}^{n} X_k \to \infty$.

Solution. For the sake of contradiction, suppose $\frac{1}{n}\sum_{k=1}^{n}X_{k} \not\to \infty$. Thus, since $X_{n} \geq 0$ a.e., there exists a $C \geq 0$ such that $\frac{1}{n}\sum_{k=1}^{n}X_{k} < C \ \forall \ n$. Thus, $X_{1} < C$, so $\mathbb{E}[X_{1}] < C$, a contradiction since $\mathbb{E}[X_{1}] = \infty$.

January 2021

1.

Let μ be a probability measure on $\mathcal{B}([0,\infty))$ with the following property:

$$\mu([a, b]) = e^{-a} - e^{-b}$$
, for all $0 \le a < b$.

Show that μ is absolutely continuous with respect to the lebesgue measure from first principles.

Solution. Let $\tilde{\mu}$ be a measure defined by $\tilde{\mu}(A) = \int_A e^{-x} \lambda(dx) \, \forall A \in \mathcal{B}([0,\infty))$. $\tilde{\mu} << \lambda$ and $\tilde{\mu}([a,b]) = e^{-a} - e^{-b} = \mu([a,b]) \, \forall 0 \le a < b$. The set $\{[a,b]: 0 \le a < b\}$ is a π -system hat generates $\mathcal{B}([0,1])$. Since $\tilde{\mu}$ and μ agree on this π system, by the $\pi - \lambda$ theorem, $\mu = \tilde{\mu}$ on $\mathcal{B}([0,\infty))$. Thus, $\mu << \lambda$.

2.

Let Y be a standard normal random variable, and let X be a random variable such that both pairs (X,Y)and (X, X - Y) are independent. Show that X is constant with probability 1.

Solution. Since (X, X - Y) and (X, Y) are independent, Cov(X, X - Y) = Cov(X, Y) = 0. Thus,

$$\begin{aligned} \operatorname{Cov}(X, X - Y) &= \mathbb{E}[X(X - Y)] - \mathbb{E}[X]\mathbb{E}[X - Y] = \mathbb{E}[X^2 - XY] - \mathbb{E}[X]^2 + \mathbb{E}[X]\mathbb{E}[Y] \\ &= (\mathbb{E}[X^2] - \mathbb{E}[X]^2) - (\mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]) = \operatorname{Var}(X) - \operatorname{Cov}(X, Y) = \operatorname{Var}(X) = 0. \end{aligned}$$

Since Var(X) = 0. X is constant with probability 1.

3.

Let $\{X_n\}$ be a simple symmetric random walk and let |X| = M + A be the Doob-Meyer decomposition of the submartingale |X|, with respect to filtration generated by X, into martingale M with $M_0 = 0$ and a non-decreasing predictable process A. Show that M admits the representation

$$M = H \cdot X$$

for some predictable process H and find the explicit expression for H.

Solution. For
$$|X| = M + A$$
, $A = \sum_{k=1}^{n} \mathbb{E}[|X_k| - |X_{k-1}|| \mathcal{F}_{k-1}]$
For $X_{k-1} < 0$, $X_k \le 0 \Rightarrow |X_k| - |X_{k-1}| = -X_k + X_{k-1} = -\xi_k$
For $X_{k-1} > 0$, $X_k \ge 0 \Rightarrow |X_k| - |X_{k-1}| = X_k - X_{k-1} = \xi_k$
For $X_{k-1} = 0$ $|X_k| - |X_{k-1}| = |X_k| = 1$
So, $|X_k| - |X_{k-1}| = \xi_k (\mathbf{1}_{X_{k-1} > 0} - \mathbf{1}_{X_{k-1} < 0}) + \mathbf{1}_{X_{k-1} = 0}$

Thus,

$$M_{n} = |X|_{n} - A_{n} = |X_{n}| - \sum_{k=1}^{n} \mathbb{E}[\xi_{k}(\mathbf{1}_{X_{k-1}>0} - \mathbf{1}_{X_{k-1}<0}) + \mathbf{1}_{X_{k-1}=0}|\mathcal{F}_{k-1}] = |X_{n}| - \sum_{k=1}^{n} \mathbf{1}_{X_{k-1}=0}$$

$$= \sum_{k=1}^{n} (|X_{k}| - |X_{k-1}|) - \sum_{k=1}^{n} \mathbf{1}_{X_{k-1}=0} = \sum_{k=1}^{n} \xi_{k}(\mathbf{1}_{X_{k-1}>0} - \mathbf{1}_{X_{k-1}<0}) + \mathbf{1}_{X_{k-1}=0} - \mathbf{1}_{X_{k-1}=0}$$

$$= \sum_{k=1}^{n} \xi_{k}(\mathbf{1}_{X_{k-1}>0} - \mathbf{1}_{X_{k-1}<0}) = \sum_{k=1}^{n} (\mathbf{1}_{X_{k-1}>0} - \mathbf{1}_{X_{k-1}<0})(X_{k} - X_{k-1}) = (H \cdot X)_{n}$$

where $H_k = \mathbf{1}_{X_{k-1}>0} - \mathbf{1}_{X_{k-1}<0}$ is a predictable process.

August 2021

Let X_n be a sequence of random variables taking values in N. Is it true that X_n converges a.s. if and only if X_n converges in probability? If it is, give a proof. Otherwise, give a counterexample.

Solution. In general, it true that $X_n \to X$ a.s. implies convergence in probability. It remains to show the other direction for X_n taking values in \mathbb{N} . Suppose X_n converges to X in probability. Then there exists a subsequence $\{X_{n_k}\}$ which converges to X a.s. Since $\{X_{n_k}\}$ is integer-valued, it only converges if it stabilizes. Thus, $X \in \mathbb{N}$. Since X_n, X are integer-valued, if $X_n \neq X$, $|X_n - X| \geq 1$. Let $\epsilon > 0$ be given. Thus, there exists an N such that for all $n \geq N$ since $\mathbb{P}[|X_n - X| \geq \frac{1}{2}] \leq \epsilon$ which implies $|X_n - X| = 0$ except on a set of measure at most ϵ . Taking, $\epsilon \to 0$, $X_n \to X$ a.s.

2.

Let X_1, X_2, \ldots be i.i.d random variables with values in \mathbb{Z}^2 , where X_1 is uniformly distributed in $\{(k, m) : (k, m) :$ $k \in \{-1,0,1\}, m \in \{-1,0,1\}\}$. Let $S_n = \sum_{i=1}^n X_i \in \mathbb{Z}^2$. Show that $\frac{S_n}{\sqrt{n}} \stackrel{d}{\to} S^*$, and find the distribution of S^* . Solution. $\operatorname{Var}(X_1) = \mathbb{E}[X_1^2] - \mathbb{E}[X_1]^2 = \mathbb{E}[X_1^2] = \left(\frac{2}{3}, \frac{2}{3}\right)$. Then, by the CLT,

$$\frac{S_n}{\sqrt{n}} \xrightarrow{d} \chi \sim N((0,0), (\frac{2}{3}, \frac{2}{3})).$$

3.

Give an example of a submartingale $\{X_n\}$ with the property that $X_n \to -\infty$ and $\mathbb{E}[X_n] \to +\infty$, as $n \to \infty$.

August 2020

0.1 1.

Let X be a nonnegative random variable. Show that

$$\mathbb{E}[X\log^+(X)] < \infty \Leftrightarrow \int_1^\infty \int_1^\infty \mathbb{P}[X > uv] du dv < \infty,$$

where $\log^+(x) = \max(\log(x), 0)$.

Solution

$$\begin{split} \int_1^\infty \int_1^\infty \mathbb{P}[X>uv] du dv &= \int_1^\infty \int_1^\infty \frac{1}{v} \mathbb{P}[X>w] \mathbf{1}_{w \geq v} dw dv = \int_1^\infty \mathbb{P}[X>w] \int_1^w \frac{1}{v} dv dw \\ &= \int_1^\infty \mathbb{P}[X>w] \log(w) dw = \int_1^\infty \int_0^\infty \mathbf{1}_{X>w}(x) \log(w) \mathbb{P}(dx) dw \\ &= \int_1^\infty \int_1^x \log(w) \ dw \mathbb{P}(dx) = \int_1^\infty x \log(x) - x + 1 d\mathbb{P}(x) = \mathbb{E}[(X \log(X) - X + 1) \mathbf{1}_{X>1}] \\ &= \mathbb{E}[X \log^+(X) - X + 1]. \end{split}$$

Since $x \log(x)$ grows faster than x, $\mathbb{E}[X \log^+(X) - X + 1] < \infty \Leftrightarrow \mathbb{E}[X \log^+(X)] < \infty$.

3.

Let X be a bounded random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, let \mathcal{G} be a sub- σ -algebra of \mathcal{F} , and let \mathbb{Q} be a measure on \mathcal{F} , absolutely continuous with respect to \mathbb{P} . Is the following

$$\mathbb{E}^{\mathbb{Q}}[X|\mathcal{G}] = \mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}X|\mathcal{G}]$$
 a.s.

always true? If so, prove it. If not, fix the right-hand side without using any (conditional) expectations under \mathbb{O} .

Solution. This is not true. Take $\mathcal{G} = \mathcal{F}$. Then $\mathbb{E}^{\mathbb{Q}}[X|\mathcal{F}] = X$ and $\mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}X|\mathcal{F}] = \frac{d\mathbb{Q}}{d\mathbb{P}}X$. Let $\xi = \mathbb{E}^{\mathbb{Q}}[X|\mathcal{G}]$ and $\eta = \mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}]$. We want to show $\xi \eta = \mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}x|\mathcal{G}]$. Since ξ, η are \mathcal{G} measurable, $\xi \eta$ are \mathcal{G} measurable. Let $A \in \mathcal{G}$. We want to show $\mathbb{E}[\xi \eta \mathbf{1}_A] = \mathbb{E}[x\frac{d\mathbb{Q}}{d\mathbb{P}}\mathbf{1}_A]$.

$$\mathbb{E}[\xi \frac{d\mathbb{Q}}{d\mathbb{P}} \mathbf{1}_A] = \int_A \xi \frac{d\mathbb{Q}}{d\mathbb{P}} d\mathbb{P} = \int_A \xi d\mathbb{Q} = \int_A x d\mathbb{Q} = \int_A x \frac{d\mathbb{Q}}{d\mathbb{P}} d\mathbb{P} = \mathbb{E}[X \frac{d\mathbb{Q}}{d\mathbb{P}} \mathbf{1}_A].$$

Thus, it is sufficent to show $\mathbb{E}[\xi \eta \mathbf{1}_A] = \mathbb{E}[\xi \frac{d\mathbb{Q}}{d\mathbb{P}} \mathbf{1}_A]$.

$$\mathbb{E}[\xi\eta\mathbf{1}_A] = \int_A \xi\eta d\mathbb{P} = \int_A \xi\mathbb{E}[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}]d\mathbb{P} = \int_A \mathbb{E}[\xi\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}]d\mathbb{P} = \int_A \xi\frac{d\mathbb{Q}}{d\mathbb{P}}d\mathbb{P} = \mathbb{E}[\xi\frac{d\mathbb{Q}}{d\mathbb{P}}\mathbf{1}_A].$$

So, by the definition of conditional expectation,

$$\mathbb{E}^{\mathbb{Q}}[X|\mathcal{G}] = \frac{\mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}X|\mathcal{G}\right]}{\mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}|\mathcal{G}\right]}.$$

January 2019

3.

Let Z_1 and Z_2 be independent standard normals. Find the conditional density of $e^{3Z_1+Z_2}$ given $\sigma(e^{Z_1+2Z_2})$. Solution. Let $X=3Z_1+Z_2$, $Y=Z_1+2Z_2$, $Z=2Z_1-Z_2$. Since Z_1 and Z_2 are independent standard normals, X,Y, and Z are normal random variables. Since normal random variables are independent if and only if they are uncorrelated, and

$$Cov(Y, Z) = \mathbb{E}[YZ] = \mathbb{E}[2Z_1^2 - Z_1Z_2 + 4Z_1Z_2 - 2Z_2^2] = 0,$$

Y and Z are independent. Further, we can write X = Y + Z. Thus, when we condition X on Y, as this would be equivalent to conditioning on e^Y , X conditioned on Y is a normal random variable with mean Y and variance Var(X|Y) = Var(Z) = 5. Since the normal distribution for a random variable with mean μ and variance σ^2 is given by

$$\frac{1}{\sqrt{2\pi\sigma^2}}\exp(-\frac{(x-\mu)^2}{2\sigma^2}).$$

Thus, the distribution its exponential function is

$$\frac{1}{x\sqrt{2\pi\sigma^2}}\exp(-\frac{(\log(x)-\mu)^2}{2\sigma^2}).$$

So, the conditional density of e^X given Y is

$$\frac{1}{x\sqrt{10\pi}} \exp(-\frac{(\log(x) - Y)^2}{10}).$$

January 2018

3.

Let X and Y be random variables in $\mathbb{L}^2(\Omega, \mathcal{F}, \mathbb{P})$ such that either

1.
$$(X(\omega') - X(\omega))(Y(\omega') - Y(\omega)) \ge 0 \ \forall \ \omega, \omega' \in \omega$$

2. the function $y \mapsto \mathbb{E}[X|Y=y]$ is nondecreasing.

Show $Cov(X, Y) \ge 0$.

Solution.

1. Suppose $(X(\omega') - X(\omega))(Y(\omega') - Y(\omega)) \ge 0 \ \forall \ \omega, \omega' \in \Omega$.

$$Cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \int_{\Omega} (X - \mathbb{E}[X])(Y - \mathbb{E}[Y])d\mathbb{P}$$
$$= \int_{\Omega} \int_{\Omega} (X(\omega) - X(\omega'))(Y(\omega) - Y(\omega'))d\mathbb{P}(\omega')d\mathbb{P}(\omega) \ge 0$$

2. Suppose $y \mapsto \mathbb{E}[X|Y=y]$ is nondecreasing.

August 2018

3.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, \mathcal{G} a sub- σ -algebra of \mathcal{F} and $\{A_n\}$ a sequence of \mathcal{G} independent random variables. Show that

$$\left\{\sum_{i=1}^{\infty} \mathbb{P}[A_i|\mathcal{G}] = \infty\right\} = \left\{\mathbb{P}[\lim \sup_{i \to \infty} A_i|\mathcal{G}] = 1\right\}, \text{ a.s.,}$$

where, as usual two events are equal a.s., if their indications are a.s.-equal random variables.

Solution. We are given the following equivalent definition of conditional independence: $\{A_i\}$ is an independent sequence under the probability measure $\mathbb{P}_B := \mathbb{P}[\cdot \cap B]/\mathbb{P}[B]$ for each $B \in \mathcal{G}$ with $\mathbb{P}[B] > 0$.

Call the left and right sides of the equation L and R respectively. Then $L, R \in \mathcal{G}$. For $B \in \mathcal{G}$ with $\mathbb{P}[B \cap L] > 0$, Fubini's theorem and the definition of conditional expectation imply

$$\infty = \mathbb{E}_{B \cap L} \left[\sum_{i} \mathbb{P}[A_{i} | \mathcal{G}] \right] = \int \sum_{i} \mathbb{P}[A_{i} | \mathcal{G}] d\mathbb{P}_{L \cap B} = \frac{1}{\mathbb{P}(B \cap L)} \int \sum_{i} \mathbb{P}[A_{i} | \mathcal{G}] \mathbf{1}_{B \cap L} d\mathbb{P}$$
$$= \frac{1}{\mathbb{P}[B \cap L]} \sum_{i} \mathbb{E}\left[\mathbb{P}[A_{i} | \mathcal{G}] \mathbf{1}_{B \cap L}\right] = \frac{1}{\mathbb{P}[L \cap B]} \sum_{i} \mathbb{P}[A_{i} \cap (L \cap B)] = \sum_{i} \mathbb{P}_{L \cap B}[A_{i}]$$

By the given equivalent definition of conditional independence, $\{A_i\}$ are independent under $\mathbb{P}_{L\cap B}$. Thus, by the second Borel-Cantelli Lemma,

$$\mathbb{P}_{B \cap L}[\limsup_{i} A_{i}] = \frac{\mathbb{E}[\mathbf{1}_{B}\mathbf{1}_{L}\mathbf{1}_{\lim\sup_{i} A_{i}}]}{\mathbb{E}[\mathbf{1}_{B}\mathbf{1}_{L}]} = 1 \rightarrow \mathbb{E}[\mathbf{1}_{B}\mathbf{1}_{L}\mathbf{1}_{\lim\sup_{i} A_{i}}] = \mathbb{E}[\mathbf{1}_{B}\mathbf{1}_{L}] \ \forall \ B \in \mathcal{G}.$$

This equality is satisfied trivially if $\mathbb{P}[B \cap L] = 0$.

By the definition of conditional expectation,

$$\mathbb{E}[\mathbf{1}_B\mathbf{1}_L\mathbf{1}_{\limsup_i A_i}] = \mathbb{E}[(\mathbf{1}_{\limsup_i A_i}\mathbf{1}_L)\mathbf{1}_B] = \mathbb{E}[\mathbf{1}_L\mathbf{1}_B]$$

so by the definition of conditional expectation,

$$\mathbb{E}[\mathbf{1}_{\limsup_i A_i} \mathbf{1}_L | \mathcal{G}] = \mathbf{1}_L \mathbb{P}[\lim \sup_i A_i | \mathcal{G}] = \mathbf{1}_L \text{ a.s.}$$

So $\mathbb{P}[\limsup_i A_i] = 1$ a.s. which implies $L \subset \mathbb{R}$ a.s. For the other inclusion, define $L_n^c = \{\sum_i \mathbb{P}[A_i | \mathcal{G}] \leq n\} \in \mathcal{G}$. For $\mathbb{P}[L_n^x \cap B] > 0$, we have

$$\infty > \frac{n}{\mathbb{P}[L_n^c \cap B]} \ge \mathbb{E}_{B \cap L_n^c} \left[\sum_i \mathbb{P}[A_i | \mathcal{G}] \right] = \sum_i \mathbb{P}_{B \cap L_n^c}[A_i].$$

Thus, by the first Borel-Cantelli Lemma, $\mathbb{P}_{B \cap L_n^c}[\limsup_i A_i] \Rightarrow \mathbb{E}[\mathbf{1}_B \mathbf{1}_{L_n^c} \mathbf{1}_{\limsup_i A_i}] = 0$. So, by the definition of conditional expectation, $\mathbf{1}_{L_n^c} \mathbb{P}[\limsup_i A_i | \mathcal{G}] = 0$ a.s. That is $L_n^c \subset R^c$, a.s. It is clear that $L_n^c \subset L^c$. Let $\omega \in L^c$, then since $\mathbb{P}[A_i | \mathcal{G}](\omega) \geq 0 \ \forall \ i$ and $\sum_i \mathbb{P}[A_i | \mathcal{G}] \neq \infty$, there exists an N such that $\sum_i \mathbb{P}[A_i | \mathcal{G}](\omega) < N$, so $\omega \in L_N^c \subset \bigcup_n L_n^c$, so $L^c = \bigcup_n L_n^c$. Thus, $R^c = L^c$, so R = L.

January 2016

1.

Let $X_1, \ldots, X_n, n \ge 2$ be iid absolutely continuous random variables, with density f. Consider the random vector $X = (X^{(1)}, X^{(n)})$, where

$$X^{(1)} = \min(X_1, \dots, X_n)$$
 and $X^{(n)} = \max(X_1, \dots, X_n)$.

- 1. Derive the joint density f_X of X and the density of the range $X^{(n)} X^{(1)}$.
- 2. n iid points are chosen uniformly in the square $[0,1]^2$. Let A be the area of the smallest rectangle with sides parallel to the sides of the square $[0,1]^2$, which contains all n points. Compute the moments $\mathbb{E}[A^k]$, $k \in \mathbb{N}$, of A.

Solution.

1. First, we want to derive the joint density f_X .

$$\mathbb{P}[X^{(1)} \le x, X^{(n)} \le y] = \mathbb{P}[(\bigcup_{i=1}^{n} \{X_i \le x\}) \cap (\bigcap_{i=1}^{n} \{X_i \le y\})] = \mathbb{P}[(\bigcap_{i=1}^{n} \{X_i \le y\}) \setminus (\bigcap_{i=1}^{n} \{x < X_i \le y\})] \\
= \mathbb{P}[\bigcap_{i=1}^{n} \{X_i \le y\}] - \mathbb{P}[\bigcap_{i=1}^{n} \{x < X_i \le y\}] = \mathbb{P}[X_1 \le y]^n - \mathbb{P}[x < X_1 \le y]^n \\
= \left(\int_{-\infty}^{y} f(x) dx\right)^n - \left(\int_{x}^{y} f(x) dx\right)^n \\
\Rightarrow f_X(x, y) = n(n-1) f(x) f(y) \mathbb{P}[x < X_1 \le y]^{n-2}$$

2.

Let μ be a probability measure on \mathbb{R} . Show that the following are equivalent, where φ_{μ} denotes the characteristic function of μ :

- 1. μ is supported by a set of the form $\{an + b : n \in \mathbb{Z}\}$ for a pair of rational numbers a, b.
- 2. $\varphi_{\mu}(2\pi t_0) = 1$ for some rational $t_0 \neq 0$.

Solution. (1) \to (2). Suppose μ is supported on $\{\frac{a}{b}n+\frac{c}{d}:n\in\mathbb{N}\}$ for $a,b,c,d\in\mathbb{Z}$ and $b,d\neq0$. Then

$$\varphi_{\mu}(t) = \int_{\infty}^{\infty} e^{itx} \mu(dx) = \sum_{n \in \mathbb{N}} e^{it(\frac{a}{b}n + \frac{c}{d})} \mu(\{\frac{a}{b}n + \frac{c}{d}\}) = \sum_{n \in \mathbb{N}} (\cos(t(\frac{a}{b}n + \frac{c}{d})) + i\sin(t(\frac{a}{b}n + \frac{c}{d}))) \mu(\{an + b\}).$$

Thus, it is sufficient to find t_0 such that $\cos(2\pi t_0(\frac{a}{b}n+\frac{c}{d}))=\cos(2\pi\frac{t_0}{bd}(adn+cb))=1 \ \forall \ n$. Since $abn+cd\in\mathbb{Z}$, for $t_0=bd$, $\cos(2\pi\frac{t_0}{bd}(adn+bc))=0$.

(2) \rightarrow (1). Suppose $\phi_{\mu}(2\pi t_0) = 1$ for some rational $t_0 \neq 0$.

$$1 = \phi_{\mu}(2\pi t_0) = \int_{-\infty}^{\infty} e^{i(2\pi t_0)x} \mu(dx) \le \int_{-\infty}^{\infty} \mu(dx) = 1,$$

 $e^{i(2\pi t_0)x}=1$ on the support of μ . Thus, μ is supported of x such that $\cos(2\pi t_0x)=1$, that is when $t_0x\in\mathbb{Z}$. Since t_0 is rational, we can express $t_0=\frac{a}{b}$. Then $\frac{a}{b}x=n\in\mathbb{Z}$, so $x=\frac{b}{a}n$. So, μ is supported on the set $\{\frac{1}{t_0}n:n\in\mathbb{Z}\}$.

3.

Consider a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a random variable $X \in \mathbb{L}^2(\mathcal{F})$ and a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$. Find the projection of X on the space $\mathbb{L}^2(\mathcal{G})$ of square-integrable random variables measurable with respect to \mathcal{G} . In other words, find the random variable \hat{Y} that attains

$$\min_{Y \in \mathbb{L}^2} \mathbb{E}[|X - Y|^2].$$

Justify your answers.

Solution. Since $\mathbb{L}^2(\mathcal{F})$ is a Hilbert space and $\mathbb{L}^2(\mathcal{G})$ is a closed subset of $\mathbb{L}^2(\mathcal{F})$, there exists a unique $\hat{Y} \in \mathbb{L}^2(\mathcal{G})$ such that $\mathbb{E}[|X - \hat{Y}|^2] = \min_{Y \in \mathbb{L}^2(\mathcal{G})} \mathbb{E}[|X - Y|^2]$. Thus, we know \hat{Y} is \mathcal{G} -measurable. Further, since \hat{Y} minimizes, we have $\mathbb{E}[(X - \hat{Y})(Z - \hat{Y})] = 0 \ \forall \ Z \in \mathbb{L}^2(\mathcal{G})$. Choose $Z = \hat{Y} - \mathbf{1}_A$ for $A \in \mathcal{G}$. Then $\mathbb{E}[(X - \hat{Y})\mathbf{1}_A] = 0 \Rightarrow \mathbb{E}[X\mathbf{1}_A] = \mathbb{E}[\hat{Y}\mathbf{1}_A]$. So $\hat{Y} = \mathbb{E}[X|\mathcal{G}]$.