HW1 - Report

1 METHOD

1.1 intersect_ray_triangle

Ray: $\dot{p} = \dot{o} + t\vec{d}$

Triangle: $\dot{p} = (1 - u - v)\dot{V_0} + u\dot{V_1} + v\dot{V_2} (u, v \ge 0, u + v \le 1)$

Calculate intersection point:

Let $E_1 = V_1 - V_0$, $E_2 = V_2 - V_0$, $T = V_1 - V_0$, $P = \vec{d} \times E_2$, $Q = T \times E_1$, then

$$\begin{bmatrix} t \\ u \\ v \end{bmatrix} = \frac{1}{|P \cdot E_1|} \begin{vmatrix} Q \cdot E_2 \\ P \cdot T \\ Q \cdot \vec{d} \end{vmatrix}, \qquad \mathbf{t} = \frac{|Q \cdot E_2|}{|P \cdot E_1|}$$

Finally, calculate intersect point by $\dot{p} = \dot{o} + t\vec{d}$.

1.2 intersect_ray_sphere

 $\mathbf{Ray}: \ \dot{p} = \dot{o} + t\vec{d}$

Sphere: $|\dot{p} - \dot{p_c}|^2 - r^2 = 0$, where $\dot{p_c}$ is the center of the circle, r is the radius

Calculate intersection point:

Let
$$\Delta \mathbf{p} = \dot{\mathbf{p}}_c - \dot{\mathbf{o}}$$
, then $\mathbf{t} = \vec{\mathbf{d}} \cdot \Delta \mathbf{p} \pm \sqrt{r^2 - \left| \Delta \mathbf{p} - (\vec{\mathbf{d}} \cdot \Delta \mathbf{p}) \vec{\mathbf{d}} \right|^2}$

Similarly, we can calculate intersect point by $\dot{p} = \dot{o} + t\vec{d}$.

1.3 CALCULATE PIXEL VALUE

Record t value for each pixel and normalize to [0,1].

Minimum t value will be normalized to 0 and background to 1.

2 RESULT

2.1 TEST SCENE: test.scene

Figure 1: Depth Image (depth range from 0 to 1)

Figure 2: Colorful Image

2.2 TEST SCENE: sphere.scene

Figure 1: Depth Image (depth range from 0 to 1) Figure 2: Colorful Image

3 SUMMARY

For code changes please refer to https://github.com/ReeLiu/ray/pull/2 .