COMP9414: Artificial Intelligence

Lecture 6b: Text Classification

Wayne Wobcke

e-mail:w.wobcke@unsw.edu.au

UNSW © W. Wobcke et al. 2019

COMP9414 Text Classification

This Lecture

- Probabilistic Formulation of Text Classification
- Rule-Based Text Classification
- Bayesian Text Classification
 - ▶ Bernoulli Model
 - ► Multinomial Naive Bayes
- Evaluating Classifiers

COMP9414 Text Classification 2

Text Classification Applications

- Spam Detection
- Authorship Analysis
- E-Mail Classification/Prioritization
- News/Scientific Article Topic Classification
- Event Extraction (Event Type Classification)
- Sentiment Analysis
- Recommender Systems (using Product Reviews)

UNSW © W. Wobcke et al. 2019

COMP9414 Text Classification 3

Example Movie Reviews/Ratings

... unbelievably disappointing ...

滑稽的

讽刺

Full of zany characters and richly applied satire, and some great plot twists.

The greatest screwball comedy ever filmed.

怪人、怪癖的

It was pathetic. The worst part about it was the boxing scenes.

可悲的

COMP9414 Text Classification 4 COMP9414 Text Classification

Rule-Based Method

COMP9414 Text Classification 5 COMP9414

Help User Define Rules

Suggest Features using Naive Bayes

UNSW ©W. Wobcke et al. 2019

COMP9414 Text Classification

Supervised Learning

- Input: A document (e-mail, news article, review, **tweet**)
- Output: One class drawn from a fixed set of classes
 - ▶ So text classification is a multi-class classification problem
 - ▶ ... and sometimes a multi-label classification problem
- Learning Problem

UNSW

- ▶ Input: Training set of labelled documents $\{(d_1, c_1), \cdots\}$
- ightharpoonup Output: Learned classifier that maps d to predicted class c

Events: Occurrence of features x, occurrence of document of class c

- Given document x_1, \dots, x_n , choose c so that $P(c|x_1, \dots, x_n)$ is maximized
- Apply Bayes' Rule
 - $P(c|x_1,\dots,x_n) = \frac{P(x_1,\dots,x_n|c).P(c)}{P(x_1,\dots,x_n)}$
 - ► Therefore maximize $P(x_1, \dots, x_n | c).P(c)$

UNSW

© W. Wobcke et al. 2019

COMP9414

Text Classification

Text Classification

Feature Engineering

Example SpamAssassin (Spam E-Mail)

- Mentions Generic Viagra
- Online Pharmacy
- Mentions millions of (dollar) ((dollar) NN,NNN,NNN.NN)
- Phrase: impress ... girl
- From: starts with many numbers
- Subject is all capitals
- HTML has a low ratio of text to image area
- One hundred percent guaranteed
- Claims you can be removed from the list

http://spamassassin.apache.org/old/tests_3_3_x.html

Bernoulli Model

Maximize $P(x_1, \dots, x_n | c).P(c)$

- Features are presence or absence of word w_i in document
- Apply independence assumptions
 - $P(x_1, \dots, x_n | c) = P(x_1 | c) \dots P(x_n | c)$
 - ▶ Probability of word w (not) in class c independent of context
- Estimate probabilities
 - ightharpoonup P(w|c) = #(w in document in class c)/#(documents in class c)
 - $P(\neg w|c) = 1 P(w|c)$
 - ightharpoonup P(c) = #(documents in class c) / #(documents)

UNSW

© W. Wobcke et al. 2019

11

COMP9414

UNSW

Text Classification

Naive Bayes Classification

w_1	w_2	w ₃	<i>w</i> ₄	Class
1	0	0	1	1
0	0	0	1	0
1	1	0	1	0
1	0	1	1	1
0	1	1	0	0
1	0	0	0	0
1	0	1	0	1
0	1	0	0	1
0	1	0	1	0
1	1	1	0	0

	Class = 1	Class = 0
P(Class)	0.40	0.60
$P(w_1 Class)$	0.75	0.50
$P(w_2 Class)$	0.25	0.67
$P(w_3 Class)$	0.50	0.33
$P(w_4 Class)$	0.50	0.50

To classify document with w_2 , w_3 , w_4

- $P(Class = 1 | \neg w_1, w_2, w_3, w_4)$ = ((1 - 0.75) * 0.25 * 0.5 * 0.5) * 0.4= 0.00625
- $P(Class = 0 | \neg w_1, w_2, w_3, w_4)$ = ((1 - 0.5) * 0.5 * 0.67 * 0.33) * 0.6= 0.03333

Bag of Words Model

I love this movie! It's sweet, but with satirical humor. The dialogue is great and the adventure scenes are fun... It manages to be whimsical and romantic while laughing at the conventions of the fairy tale genre. I would recommend it to just about anyone. I've seen it several times, and I'm always happy to see it again whenever I have a friend who hasn't seen it yet!

it	6
I	5
the	4
to	3
and	3
seen	2
yet	1
would	1
whimsical	1
times	1
sweet	1
satirical	1
adventure	1
genre	1
fairy	1
humor	1
have	1
great	1

UNSW

© W. Wobcke et al. 2019

COMP9414 Text Classification 13

Naive Bayes Classification

Maximize $P(x_1, \dots, x_n | c).P(c)$

- Features are occurrence of word in positions in document
- Apply independence assumptions
 - $P(w_1, \dots, w_n | c) = P(w_1 | c) \dots P(w_n | c)$
 - ▶ Position of word w in document doesn't matter
- Estimate probabilities
 - ▶ Let *V* be the vocabulary
 - Let "document" c = concatenation of documents in class c
 - ► $P(w|c) = \#(w \text{ in document } c)/\sum_{w \in V} \#(w \text{ in document } c)$
 - P(c) = #(documents in class c) / #(documents)

Laplace Smoothing

COMP9414

- What if word in test document has not occurred in training?
- Then P(w|c) = 0 and so estimate for class c is 0
- Laplace smoothing
 - ► Assign small probablity to unseen words
 - $P(w|c) = (\#(w \text{ in document } c)+1)/(\sum_{w \in V} \#(w \text{ in document } c)+|V|)$
 - \triangleright Don't have to add 1, can be 0.05 or some parameter α

UNSW © W. Wobcke et al. 2019

COMP9414 Text Classification 15

MNB Example

	Words	Class
d_1	Chinese Beijing Chinese	с
d_2	Chinese Chinese Shanghai	с
d_3	Chinese Macao	с
d_4	Tokyo Japan Chinese	j
d_5	Chinese Chinese Tokyo Japan	?

P(Chinese|c) = (5+1)/(8+6) = 3/7 P(Tokyo|c) = (0+1)/(8+6) = 1/14 P(Japan|c) = (0+1)/(8+6) = 1/14 P(Chinese|j) = (1+1)/(3+6) = 2/9 P(Tokyo|j) = (1+1)/(3+6) = 2/9P(Japan|j) = (1+1)/(3+6) = 2/9

UNSW

To classify document d_5

- $P(c|d_5) \propto [(3/7)^3 \cdot 1/14 \cdot 1/14] \cdot 3/4$ ≈ 0.0003
- $P(j|d_5) \propto [(2/9)^3 \cdot 2/9 \cdot 2/9] \cdot 1/4$ ≈ 0.0001
- Choose Class c

Graphical Model for Example

Text Classification

UNSW ©.W. Wobcke et al. 2019

COMP9414 Text Classification 17

Evaluating Classifiers

 2×2 Contingency Table (single class c)

	Class c	not Class c
Predicted c	True Positive	False Positive
Predicted not c	False Negative	True Negative

- Precision (P) = TP/(TP+FP) you want what you get
 - ▶ · · · but may not get much
- Recall (R) = TP/(TP+FN) you get what you want
 - ▶ · · · but you might get a lot more (junk)
- F1 = 2PR/(P+R) harmonic mean of precision and recall

Multiple Classes: Per-Class Metrics

 $n \times n$ Confusion Matrix (each instance in one class)

	Predicted c_1	Predicted c ₂	
Class c_1	c_{11}	c_{12}	c_{13}
Class c_2	c ₂₁	c_{22}	c_{23}
	c ₃₁	c ₃₂	c ₃₃

- Precision (class c_i) = $c_{ii}/\Sigma_i c_{ii}$
 - \triangleright Proportion of items predicted as c_i correctly classified (as c_i)
- Recall (class c_i) = $c_{ii}/\Sigma_i c_{ij}$
 - \triangleright Proportion of items in class c_i predicted correctly (as c_i)
- Accuracy = $\sum_{i} c_{ii} / \sum_{i} \sum_{j} c_{ij}$

UNSW

©W. Wobcke et al. 2019

COMP9414 Text Classification 19

Multiple Classes: Micro/Macro-Averaging

n (one per class) 2×2 Contingency Tables

- Micro-average = Aggregated measure over all classes
 - ightharpoonup micro-precision = $\Sigma_c TP_c / \Sigma_c (TP_c + FP_c)$

 - ▶ Same when each instance has and is given one and only one label
 - ▶ Dominated by larger classes
- Macro-average = Average of per-class measures
 - ► macro-precision = $\frac{1}{n}\Sigma_c TP_c/(TP_c + FP_c)$
 - ightharpoonup macro-recall = $\frac{1}{n}\Sigma_c TP_c/(TP_c + FN_c)$
 - Dominated by smaller classes
 - ► Fairer for imbalanced data, e.g. sentiment analysis

COMP9414 Text Classification 20

Summary: Naive Bayes

- Very fast, low storage requirements
- Robust to irrelevant features
- Irrelevant features cancel each other without affecting results
- Very good in domains with many equally important features
 - ► Decision Trees suffer from fragmentation in such cases especially if little data
- Optimal if the independence assumptions hold
 - ► If assumed independence is correct, then it is the Bayes Optimal Classifier for problem
- Good dependable baseline for text classification

UNSW © W. Wobcke et al. 2019