

# 面向纠错的知识蒸馏研究

Research on Error Correction-Oriented Knowledge Distillation

指导老师:宋雪萌

答辩人: 刘子鑫

答辩时间: 2022.05.22

### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

# 研究背景

▶ 复杂模型可以显著提升深度学习任务的最终效果,但却会带来高额的资源消耗问题,而知识蒸馏正是解决这一问题的方法之一;



### 研究背景

▶ 已有的知识蒸馏方法,对知识的挖掘并不充分,传递的知识中包含错误信息;



▶ 知识蒸馏技术广泛应用于CV领域,本研究以图像分类为任务需求展开。



### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

| 相关工作                                                                               | 方法分类     |  |
|------------------------------------------------------------------------------------|----------|--|
| Distilling the Knowledge in a Neural Network, In Computer Science 2015.            |          |  |
| Supervised contrastive learning, In NIPS 2020.                                     | 离线蒸馏     |  |
| Deep Mutual Learning, In CVPR 2018.                                                | 上心 共 kin |  |
| Feature fusion for online mutual knowledge distillation, In ICPR 2021.             | 在线蒸馏     |  |
| Revisit Knowledge Distillation: A Teacher-free Framework, In arXiv 2019.           | L ++ 1/2 |  |
| Regularizing class-wise predictions via self-knowledge distillation, In CVPR 2020. | 自蒸馏      |  |

#### 离线蒸馏



优点: 简单、有效 缺点: 蒸馏方式单一、资源消耗等

Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network[J]. arXiv preprint arXiv:1503.02531, 2015, 2(7).

#### > 在线蒸馏



Zhang等人提出了一种深度相互学习策略,在此策略中,一组学生网络在整个训练过程中相互学习、相互指导,而不是静态的预先定义好教师和学生之间的单向转换通路。

Zhang Y, Xiang T, Hospedales T M, et al. Deep mutual learning[C]//Proceedings of the IEEE conference on computer vision and pattern recognition. 2018: 4320-4328.

#### > 自蒸馏



教师模型与学生模型使用相同的网络, 可以被看作是一种特殊的在线蒸馏方法。

Yuan L, Tay F E H, Li G, et al. Revisit Knowledge Distillation: A Teacher-free Framework. arXiv 2019[J]. arXiv preprint arXiv:1909.11723.

#### 小结:

| 相关工作   | 是否使用层间知识  | 蒸馏方式 | 是否关注错误知识 |
|--------|-----------|------|----------|
| KD     | ×         | 离线   | ×        |
| FitNet | $\sqrt{}$ | 离线   | ×        |
| DML    | ×         | 在线   | ×        |
| Re-KD  | ×         | 自蒸馏  | ×        |

- 已有方法并未关注蒸馏过程中传递的错误知识, Re-KD虽指出此问题, 但却并没有给出相应的处理方案
- 以往的工作大多围绕教师模型如何指导学生,很少提出教师模型指导学生的同时很可能也需要学生的帮助

### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

### 研究思路

▶ 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?



模型出错不仅体现在最终的分类阶段,也体现在中间的特征学习阶段。

# 研究思路

▶ 挑战二:如何设计有效的纠错机制?



### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

▶ 基于响应的知识蒸馏



▶ 基于特征的知识蒸馏



- > 基于响应的知识蒸馏
- 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?
- 挑战二:如何设计有效的纠错机制,增强教师模型和学生模型之间的知识蒸馏效果?



中间层信息可以有效的帮助教师模型训练出性能更优异的学生模型

- ▶ 基于响应的知识蒸馏
- 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?
- 挑战二:如何设计有效的纠错机制,增强教师模型和学生模型之间的知识蒸馏效果?



### 研究思路

#### 掩码矩阵

输入: 学生模型的预测结果  $\hat{y}_i^s = \begin{bmatrix} 1\\0\\1\\...\\1 \end{bmatrix}_{hatchsize \times 1}$  , 教师模型的预测结果  $\hat{y}_i^t = \begin{bmatrix} 0\\1\\0\\...\\1 \end{bmatrix}_{l}$ 

1:学生模型预测正确的样本

0:学生模型预测错误的样本

1:教师模型预测正确的样本

0:教师模型预测错误的样本

$$\mathbf{v}_{mask,i}^{s} = \overline{\hat{y}_{i}^{s}} \wedge \hat{y}_{i}^{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{bmatrix} \wedge \begin{bmatrix} 0 \\ 1 \\ 0 \\ \dots \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ \dots \\ 0 \end{bmatrix}_{batchsize \times 1}$$

$$\mathbf{M}_{res,i}^{s} = [\mathbf{v}_{mask,i}^{s}, \mathbf{v}_{mask,i}^{s}, \mathbf{v}_{mask,i}^{s}, \dots, \mathbf{v}_{mask,i}^{s}] = \begin{bmatrix} 0 & \dots & 0 \\ 1 & \dots & 1 \\ 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{bmatrix}_{batchsize \times 1}$$

$$\mathbf{M}_{res,i}^{s} = [\mathbf{v}_{mask,i}^{s}, \mathbf{v}_{mask,i}^{s}, \dots, \mathbf{v}_{mask,i}^{s}] = \begin{bmatrix} 0 & \cdots & 0 \\ 1 & \cdots & 1 \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{batchsize \times N}$$

$$\widehat{\mathbf{p}}_{i,\tau}^{s} = \mathbf{M}_{res,i}^{s} \circ \mathbf{P}_{i,\tau}^{s}(x) = \begin{bmatrix} 0 & \cdots & 0 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \circ \begin{bmatrix} 0.6543 & \cdots & 0.2532 \\ 0.0562 & \cdots & 0.7587 \\ \vdots & \ddots & \vdots \\ 0.1536 & \cdots & 0.1124 \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ 0.0562 & \cdots & 0.7587 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{batchsize \times N}$$

$$\widetilde{\mathbf{p}}_{i,\tau}^{s} = \mathbf{M}_{res,i}^{s} \circ \mathbf{P}_{i,\tau}^{t}(x) = \begin{bmatrix} 0 & \cdots & 0 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix} \circ \begin{bmatrix} 0.0403 & \cdots & 0.5245 \\ 0.8192 & \cdots & 0.1087 \\ \vdots & \ddots & \vdots \\ 0.1016 & \cdots & 0.0143 \end{bmatrix} = \begin{bmatrix} 0 & \cdots & 0 \\ 0.8192 & \cdots & 0.1087 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{h}$$

- > 基于响应的知识蒸馏
- 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?
- ▶ 挑战二:如何设计有效的纠错机制,增强教师模型和学生模型之间的知识蒸馏效果?



- > 基于响应的知识蒸馏
- 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?
- 挑战二:如何设计有效的纠错机制,增强教师模型和学生模型之间的知识蒸馏效果?



- > 基于特征的知识蒸馏
- 挑战一:如何捕捉模型在整个学习过程中的待纠正信息?
- ▶ 挑战二:如何设计有效的纠错机制,增强教师模型和学生模型之间的知识蒸馏效果?



### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

## 实验设置

#### ▶ 数据集: CIFAR100



CIFAR100 数据集示例

#### > 评价指标

 $Accuracy = \frac{TrueSamples}{TotalSamples}$ 

图片数量: 60000 类别数目: 100

图片格式: 32x32 RGB

| 超类       | 类别                 | 超类         | 类别                  |
|----------|--------------------|------------|---------------------|
| 水生哺乳动物   | 海狸,海豚,水獭,海豹,鲸鱼     | 大自然的户外场景   | 云,森林,山,平原,海         |
| <u>鱼</u> | 水族馆的鱼,比目鱼,射线,鲨鱼,鳟鱼 | 大杂食动物和食草动物 | 骆驼,牛,黑猩猩,大象,袋鼠      |
| 花卉       | 兰花,罂粟花,玫瑰,向日葵,郁金香  | 中型哺乳动物     | 狐狸,豪猪,负鼠,浣熊,臭鼬      |
| 食品容器     | 瓶子,碗,罐子,杯子,盘子      | 非昆虫无脊椎动物   | 螃蟹,龙虾,蜗牛,蜘蛛,蠕虫      |
| 水果和蔬菜    | 苹果,蘑菇,橘子,梨,甜椒      | 人          | 宝贝, 男孩, 女孩, 男人, 女人  |
| 家用电器     | 时钟,电脑键盘,台灯,电话机,电视机 | 爬行动物       | 鳄鱼, 恐龙, 蜥蜴, 蛇, 乌龟   |
| 家用家具     | 床,椅子,沙发,桌子,衣柜      | 小型哺乳动物     | 仓鼠, 老鼠, 兔子, 母老虎, 松鼠 |
| 昆虫       | 蜜蜂, 甲虫, 蝴蝶, 毛虫, 蟑螂 | 树木         | 枫树,橡树,棕榈,松树,柳树      |
| 大型食肉动物   | 能, 豹, 狮子, 老虎, 狼    | 车辆1        | 自行车,公共汽车,摩托车,皮卡车,火车 |
| 大型人造户外用品 | 桥,城堡,房子,路,摩天大楼     | 车辆2        | 割草机,火箭,有轨电车,坦克,拖拉机  |

TrueSamples 表示被正确分类的样本的总数 TotalSamples 表示所有样本的总数

# 实验设置

#### > 模型选择

表4-1 教师模型和学生模型的搭配

| 教师网络       | 输出选择(M/FC)         | 学生网络         | 输出选择(N/FC)         |
|------------|--------------------|--------------|--------------------|
| WRN-40-2   | M=1/M=2/M=3/FC     | WRN-16-2     | N=1/N=2/N=3/FC     |
| WRN-40-2   | M=1/M=2/M=3/FC     | WRN-40-1     | N=1/N=2/N=3/FC     |
| ResNet56   | M=1/M=2/M=3/FC     | ResNet20     | N=1/N=2/N=3/FC     |
| ResNet32x4 | M=1/M=2/M=3/FC     | ResNet8x4    | N=1/N=2/N=3/FC     |
| VGG13      | M=1/M=2/M=3/M=4    | MobileNetV2  | N=2/N=3/N=5/N=7    |
| ResNet50   | M=1/M=2/M=3/M=4/FC | MobileNetV2  | N=2/N=3/N=5/N=7/FC |
| WRN-40-2   | M=1/M=2/M=3/FC     | ShuffleNetV1 | N=1/N=2/N=3/FC     |
| ResNet32x4 | M=1/M=2/M=3/FC     | ShuffleNetV2 | M=1/M=2/M=3/FC     |

#### ▶ 模型对比

表4-2 在CIFAR100数据集上的模型对比结果

| <b></b> 教师网络 | WRN-40-2 | WRN-40-2 | ResNet56 | ResNet32x4 | VGG13       | ResNet50    | WRN-40-2     | ResNet32x4   |
|--------------|----------|----------|----------|------------|-------------|-------------|--------------|--------------|
| 学生网络         | WRN-16-2 | WRN-40-1 | ResNet20 | ResNet8x4  | MobileNetV2 | MobileNetV2 | ShuffleNetV1 | ShuffleNetV2 |
| KD           | 74.31%   | 73.90%   | 70.97%   | 73.49%     | 75.19%      | 74.87%      | 75.83%       | 75.43%       |
| FitNet       | 75.30%   | 74.30%   | 71.21%   | 75.37%     | 75.42%      | 75.41%      | 76.27%       | 76.91%       |
| AT           | 75.64%   | 74.32%   | 71.35%   | 75.06%     | 74.08%      | 76.57%      | 76.51%       | 76.32%       |
| AB           | 71.26%   | 74.55%   | 71.56%   | 74.31%     | 74.98%      | 75.87%      | 76.43%       | 76.40%       |
| VID          | 75.31%   | 74.23%   | 71.35%   | 75.07%     | 75.67%      | 75.97%      | 76.24%       | 75.98%       |
| RKD          | 75.33%   | 73.90%   | 71.67%   | 74.17%     | 75.54%      | 76.20%      | 75.74%       | 75.42%       |
| SP           | 74.35%   | 72.91%   | 71.45%   | 75.44%     | 75.68%      | 76.35%      | 76.40%       | 76.43%       |
| CC           | 75.30%   | 74.46%   | 71.44%   | 74.40%     | 75.66%      | 76.05%      | 75.63%       | 75.74%       |
| CRD          | 75.81%   | 74.76%   | 71.83%   | 75.77%     | 76.13%      | 76.89%      | 76.37%       | 76.51%       |
| SSKD         | 76.16%   | 75.84%   | 70.80%   | 75.83%     | 76.21%      | 78.21%      | 76.71%       | 77.64%       |
| ECKD-R       | 76.94%   | 76.76%   | 72.17%   | 76.89%     | 76.81%      | 78.91%      | 77.23%       | 78.37%       |
| ECKD-F       | 76.00%   | 75.79%   | 71.23%   | 76.01%     | 75.47%      | 76.12%      | 76.58%       | 77.02%       |

#### > 消融实验

表4-3 ECKD-R在CIFAR100数据集中的消融研究结果

| 消融方法           | 正确率(Acc) |   |
|----------------|----------|---|
| w/o EC-R       | 76.56%   | _ |
| w/o Bi-R       | 76.17%   |   |
| w/o Layer-R    | 76.23%   | 乡 |
| w/o Data-Aug-R | 76.42%   | 同 |
| ECKD-R         | 76.94%   | 位 |

结论:证明了ECKD的双向蒸馏模块设计的合理性。

同时, 纠错机制对相互学习策略和层间知识有较强的

依赖。

1. w/o EC-R: 移除纠错机制

2. w/o Bi-R: 移除双向蒸馏

3. w/o Layer-R: 移除层间知识

4. w/o Data-Aug-R: 移除数据增强

#### > 消融实验

表4-4 KD与纠错机制结合前后结果对比

| 教师模型-学生模型 | 相同卷      | 积结构      | 不同卷积结构   |             |  |
|-----------|----------|----------|----------|-------------|--|
|           | WRN-40-2 | WRN-16-2 | ResNet50 | MobileNetV2 |  |
| KD        | 75.44%   | 74.31%   | 77.82%   | 74.87%      |  |
| KD+纠错     | 76.68%   | 75.64%   | 78.43%   | 74.97%      |  |

可以看出,无论教师模型与学生模型的卷积结构是否相同,在经过纠错 导向机制后,教师模型与学生模型的Acc均有不同程度的提升。

#### > 消融实验

表4-5 纠错前后KD预测样本分布变化

|              | WRN-40-2 |                   |        | 不同卷积结构<br>ResNet50<br>MobileNetV2 |           |        |
|--------------|----------|-------------------|--------|-----------------------------------|-----------|--------|
| 教师模型<br>学生模型 |          |                   |        |                                   |           |        |
| 字生模型         |          |                   |        |                                   |           |        |
| 方法           | KD       | KD+纠错             | Δ      | KD                                | KD+纠错     | Δ      |
| TRSR         | 67.27%   | <b>68.87%</b> (↑) | +1.60% | 69.23%                            | 69.93%(↑) | +0.70% |
| TWSW         | 17.52%   | 16.55%(↓)         | -0.97% | 16.54%                            | 16.53%(↓) | -0.01% |
| TRSW         | 8.17%    | <b>7.81%(</b> ↓)  | -0.36% | 8.59%                             | 8.5%(\)   | -0.09% |
| TWSR         | 7.04%    | 6.77%(↓)          | -0.27% | 5.64%                             | 5.04%(↓)  | -0.60% |

TRSR: 教师预测正确且学生预测正确的样本

TRSW: 教师预测正确且学生预测错误的样本

TWSR: 教师预测错误且学生预测正确的样本

TWSW: 教师预测错误且学生预测错误的样本

#### 结论:

- 1) 教师模型和学生模型受益于它们可以通过相互学习纠正自身错误,这也进一步的验证了我们的方法可行性及先进性。
- 2) 纠错机制会受制于教师模型和学生模型之间的差异化程度, 其差异性越大纠错效果越弱。

#### > 消融实验



图4-1 纠错前后模型收敛对比

结论: 在添加纠错机制后, 学生模型的收敛效果明显提升。这表明, 纠错机制可以帮助模型更好地收敛, 从而提升蒸馏的效果。

### 目录

- > 研究背景
- ▶ 相关工作
- > 研究思路
- > 模型框架
- > 实验结果
- > 总结与展望

#### 总结

- 1. 提出了以纠错为导向的知识蒸馏方法,有效缓解了蒸馏过程中传递错误知识的问题。
- 2. 从基于响应和基于特征两个角度出发,设计了两种以纠错为导向的知识蒸馏正则项, 有效提升了知识蒸馏的效果。
- 3. 在基准数据集上的实验证明了方法的可行性与有效性。

### 未来工作

- 1. 提升模型的鲁棒性。目前本文所提的方法使用了与以往工作相同的数据增强技术,但并未对此进行 过多的研究。为了进一步提升模型的鲁棒性,我们将探索适用于知识蒸馏领域的数据增强技术。
- 2. 拓展模型的纠错方式。本文所提方法的纠错方式依赖于计算得到的掩码矩阵,该矩阵是由独热编码变换而来,被用于提取模型的待纠正信息。然而,这种只用0和1提取知识的方式存在丢失信息的情况。为此,我们将拓展模型的纠错方式,探索一种自适应生成的解决方案,以取代只包含1和0的掩码矩阵。
- 3. 增强模型的通用性。本文仅探讨了图像分类领域的知识蒸馏技术,事实上目前很多领域都会涉及知识蒸馏技术,如自动驾驶领域[4]、目标检测领域[3]等,未来我们将拓展我们模型的其他适用领域。
- 4. 提升模型的效率。本文设计的以纠错为导向的知识蒸馏模型,在未增加模型体量的前提下,进一步提升了知识蒸馏效果。未来我们将设计更优的方案,进一步减少参数量,以提升模型的计算效率,加速其在嵌入式端和移动端的落地应用。

### 问答





感谢各位老师 指导!