|                                                                                              | Notes |
|----------------------------------------------------------------------------------------------|-------|
|                                                                                              |       |
|                                                                                              |       |
| Linear Time Invariant and Causal (LTIC) Systems                                              |       |
|                                                                                              |       |
| Digital Signal Processing                                                                    |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
| Contents                                                                                     | Notes |
|                                                                                              | Notes |
|                                                                                              |       |
| Describing Digital Signals Types of digital signal                                           |       |
| Digital LTI Processors                                                                       |       |
| Linear Time Invariant Systems Impulse Response                                               |       |
|                                                                                              |       |
| Digital Convolution                                                                          |       |
| Digital Cross-Correlation                                                                    |       |
| Difference Equations                                                                         |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
|                                                                                              |       |
| Unit Impulse Function                                                                        | Notes |
| Unit impulse function is a fundamental function in Digital                                   | Notes |
| Signal Processing (DSP)                                                                      |       |
| $\blacksquare$ Symbol of Unit impulse function is the <i>Greek</i> delta: $\delta$           |       |
| $lacksquare \delta(n)=1$ if $n=0$ , so that,                                                 |       |
| $\delta(n-v) = \begin{cases} 1 & \text{if } (n-v) = 0, \\ 0 & \text{otherwise.} \end{cases}$ |       |
| ■ Examples                                                                                   |       |
| * [                                                                                          |       |
| n lightly in the lightly                                                                     |       |
| ( <del>g</del> ∞)                                                                            |       |
| w <del>  0   0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</del>                                         |       |

### Unit Impulse Function cont'd.





| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Scaling Unit Impulse Function**

Can scale unit implulse with any value, i.e.

$$g \times \delta(n-v) = \begin{cases} g & \text{if} \quad n-v=0, \\ 0 & \text{otherwise.} \end{cases}$$

 $\blacksquare$  So if g is a function, such as g(n) then

$$g(n)\delta(n-v) = \begin{cases} g(n) & \text{if} \quad n-v=0, \\ 0 & \text{otherwise.} \end{cases}$$

- This is useful for something called *sifting*
- $\quad \blacksquare \ \, {\rm Given \ a \ signal} \ \, g(n) \colon$

| 15       |    |   |    |    | g(n) |   |   |   |   |   |
|----------|----|---|----|----|------|---|---|---|---|---|
| 10       | ·  |   | ·  | ·  |      |   | _ | _ | _ | , |
| os-      |    |   |    |    | 1    |   |   |   |   |   |
| € ∞<br>- | _  | / |    |    | T    |   |   |   |   |   |
| -10      |    |   |    |    |      |   |   |   |   |   |
| 15       | -1 | ä | -2 | -1 |      | + | 2 | 3 | 4 | 4 |

## Notes

### Sifting

lacksquare Calculate  $g(n)\delta(n-v)$  for all values of v, i.e.



### **Sifting** cont'd.



■ We can now add all these together...

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Sifting** cont'd.

Adding all the delta values together we get



lacksquare which is a discrete (sifted) representation of the original signal, g(n).

■ This process can be represented by

$$x[n] = \ldots + g(-5)\delta(n+5) + g(-4)\delta(n+4) + \ldots + g(4)\delta(n-4) + g(5)\delta(n-5) + \ldots$$

 $\bullet \text{ where } [\cdot] \text{ signifies a discrete formulation. This can be shortened to } x[n] = \sum_{k=-\infty}^\infty g(k)\delta(n-k). \text{ For our case } x[n] = \sum_{k=-5}^5 g(k)\delta(n-k).$ 

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Unit Step Function**

■ The unit step function:

$$u[n-v] = \left\{ \begin{array}{ll} 1 & \text{if} & n-v \geq 0, \\ 0 & & \text{otherwise.} \end{array} \right.$$

switches from zero to unit value.

■ Examples





| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Unit Step Function cont'd.





### Notes

### **Unit Step Function**

 $\blacksquare$  It can be defined using the unit impulse function (  $\delta[n-v]$  ):

$$u[n-v] = \sum_{m=v}^{\infty} \delta[n-m]$$

Also

$$\delta[n-v] = u[n-v] - u[n-1-v].$$

■ These are known as *recurrence* formula, where the current signal value is dependent on previous signal values:

Meaning: to repeat.

### Notes

### **Ramp Function**

- Another interesting function type is the ramp function.
- Given by

$$r[n-v] = (n-v)u[n].$$

### Example To the second second

### **Digital Sinusoidal Functions**

Digital sine wave:

$$x[n] = a\sin(n\Omega + \theta)$$

Digital cosine wave:

$$x[n] = a\cos(n\Omega + \theta)$$

- $\begin{tabular}{ll} \blacksquare & \Omega & \text{is the $digital "frequency"} \\ & \text{measured in $radians} \\ \end{tabular}$
- $\blacksquare$  1 cycle every N samples. Also  $\Omega=2\pi/N$  so that  $N=2\pi/\Omega$

 $\begin{tabular}{ll} \hline & \textit{Example } a = 0.75, \, \theta = 0 \ \mbox{and} \\ \hline $\Omega = \pi/8$, therefore \\ $N = 2 \times 8 = 16$ \\ \it{i.e.} \ x[n] = 0.75 \sin(n\pi/8); \\ \hline \end{tabular}$ 



### Notes

| , |  |  |  |
|---|--|--|--|
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |
|   |  |  |  |

### Comparison with Analog Sine Function

■ Compare to a continuous analog sine wave:

$$x(t) = a\sin(t\omega + \theta)$$

where t could be time in seconds and  $\omega=2\pi f$  is the angular frequency, therefore in  $\it radians$   $\it per\ second.$ 

- $\blacksquare$  The interval between each sample n is  $T_s$  seconds, so there is a sample at every  $t=nT_s$  seconds
- The continuous sine wave can then be written as

$$x(n) = a\sin(nT_s 2\pi f + \theta)$$

■ If we equate the continuous and digital versions, then

$$x[n] = x(n)$$

$$a\sin(n\Omega + \theta) = a\sin(nT_s2\pi f + \theta)$$

 $\blacksquare$  Therefore  $\Omega=T_s2\pi f$  or if sampling frequency is  $f_s=1/T_s$  then  $\Omega=2\pi f/f_s.$ 

### Notes

### **Linear Time Invariant Systems**



- Time Invariance:
  - The same response to the same input at any time.

If 
$$q[n-v_1]=q[n-v_2]=x[n]$$
 for constants  $v_1$  and  $v_2$  then

$$F(q[n-v_1]) = F(q[n-v_2])$$

- Linear System:
  - Principle of Superposition:
    - If the input consists of a sum of signals then the output is the sum of the responses to those signals, *e.g.*

If the output of a system is  $y_1[n]$  and  $y_2[n]$  in response to two different inputs  $x_1[n]$  and  $x_2[n]$  respectively then the output of the same system for the two inputs weighted and combined *i.e.*  $ax_1[n] + bx_2[n]$  will be  $ay_1[n] + by_2[n]$  where a and b are constants.

### **Linear Time Invariant Systems**

For a linear system y[n] = F(x[n])

$$F(ax_1[n] + bx_2[n]) = aF(x_1[n]) + bF(x_2[n])$$



### Notes

### **Linear Time Invariant Systems**

- A Linear Time Invariant (LTI) system consists of:
  - Storage / Delay:

  - $\blacksquare$  Multiplication by Constants: e.g.  $y[n] = \frac{1}{3}x[n]$

### Notes

### Simple LTI System Example

 $\blacksquare$  Example Moving average filter,  $y[n] = \frac{x[n] + x[n-1] + x[n-2]}{3}$ 



| - |  |  |
|---|--|--|
|   |  |  |

### **Other System Properties**

An LTI system is

- Associative, where a system can be broken down into simpler subsystems for analysis or synthesis
- Commutative, where if a system is composed of a series of subsystems then the subsystems can be arranged in any order

LTI systems may also have

- Causality: output does not depend on future input values
- Stability: output is bounded for a bounded input (see Lecture 04)
- Invertibility: input can be uniquely found from the input (e.g. the square of a number is not invertible)
- Memory: output depends on past input values

| - |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |
|   |  |

Notes

### **Examples of Linear Mathematical Operations**

- Scaling (i.e. idealised gain or attenuation)
- Differentiation
- Integration
- The Laplace transform
- The Fourier transform
- The z-transform

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Impulse Response

An LTI system possesses an Impulse Response which characterizes the system's output if an impulse function is applied to the input.

Example Impulse Response



| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Impulse Response Example

Remember the moving average filter:

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

If the input is the impulse function:  $x[n=0]=\delta(0)$ , then y[n] is the output in response to an impulse function, i.e. the **impulse response** hence h[n]=y[n]...

$$\begin{array}{lll} \dots & & & \\ n=-2: & x[n=-2] = & \delta[-2] = 0 \\ n=-1: & x[n=-1] = & \delta[-1] = 0 \\ n=0: & x[n=0] = & \delta[0] = 1 \\ n=+1: & x[n=+1] = & \delta[+1] = 0 \\ n=+2: & x[n=+2] = & \delta[+2] = 0 \end{array}$$



### Impulse Response Example

Remember the moving average filter:

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

If the input is the impulse function:  $x[n=0]=\delta(0)$ , then y[n] is the output in response to an impulse function, i.e. the **impulse response** hence h[n]=y[n]...



### Notes

Notes

### Impulse Response Example

Remember the moving average filter:

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

If the input is the impulse function:  $x[n=0]=\delta(0)$ , then y[n] is the output in response to an impulse function, i.e. the **impulse response** hence h[n]=y[n]...



### Impulse Response Example

Moving Average Filter:

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2])$$

 ${\sf Example, Input \, Signal = Impulse \, Function:}$ 

$$x[n] = \delta[n] = \begin{cases} 1 & \text{if } n = 0 \\ 0 & \text{elsewhere} \end{cases}$$

Therefore

- $\quad \blacksquare \ h[n<0] = y[n<0] = 0$
- $h[0] = y[0] = \frac{1}{3}(\delta[0] + \delta[-1] + \delta[-2]) = \frac{1}{3}$
- $h[2] = y[2] = \frac{1}{3}(\delta[+2] + \delta[+1] + \delta[0]) = \frac{1}{3}$
- $\quad \blacksquare \ h[n>2]=y[n>2]=0$

Response h[n] is known as the Impulse Response.



Notes

### Impulse Response

### Examples - shifting

The impulse response can also be determined for a shifted impulse function, i.e.  $\delta[n-n]$ 



What will the system output (y[n]) be if the input consists of more than one impulse function shifted by different amounts?

# Notes

### System Response to Multiple Shifted Impulse Responses

What will the system output (y[n]) be if the input consists of more than one impulse function shifted by different amounts? Remember that all LTI systems obey the "Principle of Superposition"...

So, for the inputs

$$x_1[n] = a\delta[n] \text{ and } x_2[n] = b\delta[n-1],$$

where  $\boldsymbol{a}$  and  $\boldsymbol{b}$  are constants, the corresponding outputs will be

$$y_1[n]=ah[n] \text{ and } y_2[n]=bh[n-1],$$

i.e. impulse responses. Therefore if

$$x[n] = x_1[n] + x_2[n] = a\delta[n] + b\delta[n-1]$$
 then

$$y[n] = ah[n] + bh[n-1].$$

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Other Signals: Step Function

- The discrete step function can be thought of as a series of impulse functions (remember sifting).
- Each impulse function creates an impulse response.
- The output is then the joint response of all the impulse responses scaled by the inputs.
- $\begin{tabular}{ll} \blacksquare & A & discretely sampled step input \\ & (starting at <math>n=0) & is & given & by: \\ \end{tabular}$

$$x[n] = \sum_{k=0}^{\infty} \delta(n-k).$$

■ Therefore, using the *Principle* of Superposition we get

$$y[n] = \sum_{k=0}^{\infty} h(n-k).$$



### **Step Function Moving Average**

Moving average (with k=3) has an impulse response:

$$\ \ \, \mathbf{n}[n<0]=y[n<0]=0$$

■ 
$$h[0] = y[0] = \frac{1}{3}(\delta[0] + \delta[-1] + \delta[-2]) = \frac{1}{3}$$

■ 
$$h[2] = y[2] = \frac{1}{3}(\delta[+2] + \delta[+1] + \delta[0]) = \frac{1}{3}$$

$$h[n > 2] = y[n > 2] = 0$$

Moving average of a step function is then:

$$y[n] = \sum_{k=0}^{\infty} h(n-k)$$

$$= \left\{ \begin{array}{ll} 0 & \text{if} & n \leq 0 \\ 1/3 & \text{if} & n = 0 \\ 2/3 & \text{if} & n = 1 \\ 1 & \text{if} & n \geq 2 \end{array} \right.$$



### Notes

Notes

### **Scaled Impulse Function Inputs**

What happens when the step function is given by:

$$u[n-v] = \left\{ \begin{array}{ll} a & \text{if} & n-v \geq 0, \\ 0 & \text{otherwise} \end{array} \right. ?$$

The discrete impulse function version is

$$x[n] = \sum_{k=0}^{\infty} a\delta[n-k].$$

Using the Principle of Superposition:

$$y[n] = \sum_{k=0}^{\infty} ah[n-k].$$

$$y[n] = \left\{ \begin{array}{lll} 0 & \text{if} & n \leq 0 \\ a/3 & \text{if} & n = 0 \\ 2a/3 & \text{if} & n = 1 \\ a & \text{if} & n \geq 2 \end{array} \right.$$

Example Moving Average and  $a=0.7\,$ 



### **Digital Convolution**

What happens if the scale of the input impulse functions (a) varies with n? i.e.

$$x[n] = a[n]\delta[n-k].$$

Using the Principle of Superposition we get

$$y[n] = \sum_{k=-\infty}^{\infty} a[k]h[n-k].$$

This is known as the **Convolution Sum**. *Example* 

$$x[n] = \left\{ \begin{array}{ll} 0 & \text{if} \quad n < 0 \\ a[0] & \text{if} \quad n = 0 \\ a[1] & \text{if} \quad n = 1 \\ 0 & \text{if} \quad n \geq 2 \end{array} \right. ,$$

which is the same as  $x[n] = a[0]\delta[n] + a[1]\delta[n-1].$  Then

$$y[n] = a[0]h[n] + a[1]h[n-1].$$

Notes

### **Digital Convolution** Example

Q. Find y[n] if a[0]=1 and a[1]=2 using the impulse response of the moving average filter, k=3.

Α.

$$\begin{split} y[n] &= a[0]h[n] + a[1]h[n-1] = h[n] + 2h[n-1] \\ y[-1] &= h[-1] + 2h[-2] = 0 + 0 = 0 \\ y[0] &= h[0] + 2h[-1] = 1/3 + 0 = 1/3 \\ y[1] &= h[1] + 2h[0] = 1/3 + 2/3 = 1 \\ y[2] &= h[2] + 2h[1] = 1/3 + 2/3 = 1 \\ y[3] &= h[3] + 2h[2] = 0 + 2/3 = 2/3 \\ y[4] &= h[4] + 2h[3] = 0 + 0 = 0 \end{split}$$

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Digital Convolution Trivia**

Convolution is often represented by an asterik:

$$y[n] = \sum_{k=-\infty}^{\infty} a[k]h[n-k] = a[n]*h[n]$$

Convolution is commutative:

$$\begin{split} y[n] &= a[n] * h[n] = h[n] * a[n] \\ &= \sum_{k=-\infty}^{\infty} h[k] a[n-k]. \end{split}$$

Convolution is associative: cascaded systems

$$\{x[n]*h_1[n]\}*h_2[n] = x[n]*\{h_1[n]*h_2[n]\}$$

Convolution is distributive: systems in parallel

$$x[n] * \{h_1[n] + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### **Digital Convolution** Example

Original signal: (1 cycle every 104 samples)

Noise signal: (1 cycle every 4 samples)  $x_2[n] = \sin(n\pi/2).$ 

 $x_1[n] = \sin(n\pi/52)$ 

Moving average filter, k=20:

Input signal:

$$x[n] = x_1[n] + x_2[n].$$





Notes

### **Digital Cross-Correlation**

Cross-correlation can be used to compare 2 signals.

 $\blacksquare$  If  $x_1[n]$  and  $x_2[n]$  are two signals then digital cross-correlation is defined:

$$y[n] = \sum_{m=-\infty}^{\infty} x_1^*[m] x_2[n+m]$$

where  $x_1^*[n]$  is the complex conjugate of  $x_1[n]$ .

- lacksquare For a real signal  $x_1^*[n] = x_1[n]$ .
- *l* is the *lag*.
- lacksquare If  $x_1[n]$  and  $x_2[n]$  are the same signal but with a delay between them, then y[l] is at a maximum when l is equal to this delay.

### **Digital Cross-Correlation** Example **Q.** Given $x_1 = (0\ 0.5\ 0.7\ 0)^T$ and $x_2 = (0\ 0.5\ 0.7\ 0\ 0)^T$ . Calculate the cross-correlation for these two real signals. **A.** Cross correlation for a real signal is:

$$y[n] = \sum_{m=-\infty}^{\infty} x_1[m]x_2[n+m].$$

There are 5 elements in these vectors so (changing the limits):

$$y[n] = \sum_{m=0}^{4} x_1[m]x_2[n+m]$$

We can then calculate the results. Some example calculations:

$$y[l=0] = \overbrace{x_1[0] \times x_2[0]}^{l=0,m=0} + \overbrace{x_1[1] \times x_2[1]}^{l=0,m=1} + x_1[2] \times x_2[2] + x_1[3] \times x_2[3] + \overbrace{x_1[4] \times x_2[4]}^{l=0,m=4}$$
 
$$= 0 \times 0 + 0 \times 0.5 + \underbrace{0.5 \times 0.7}_{l=1,m=0} + 0.7 \times 0 + 0 \times 0 = \underbrace{0.5 \times 0.7}_{l=1,m=1} = 0.35$$
 
$$\underbrace{l=1,m=0}_{l=1,m=1} + \underbrace{1,m=1}_{l=1,m=1} + x_1[0] \times x_2[0+1] + \underbrace{x_1[1] \times x_2[1+1]}_{l=1,m=4} + x_1[3] \times x_2[3+1] + \underbrace{x_1[4] \times x_2[4+1]}_{l=0 \times 0.5 + 0 \times 0.7 + 0 \times 0 + 0 \times 0 + 0 \times 0 = 0}$$

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| _     |  |  |  |
|       |  |  |  |

### **Digital Cross-Correlation** cont'd.

Here are the results for each combination of l and m values:

| nere are the results for each combination of t and m values. |   |   |      |      |   |      |  |  |
|--------------------------------------------------------------|---|---|------|------|---|------|--|--|
|                                                              | m |   |      |      |   |      |  |  |
| l                                                            | 0 | 1 | 2    | 3    | 4 | y[l] |  |  |
| -5                                                           | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| -4                                                           | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| -3<br>-2                                                     | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| -2                                                           | 0 | 0 | 0    | 0.35 | 0 | 0.35 |  |  |
| -1                                                           | 0 | 0 | 0.25 | 0.49 | 0 | 0.74 |  |  |
|                                                              |   |   |      |      |   | PEAK |  |  |
| 0                                                            | 0 | 0 | 0.35 | 0    | 0 | 0.35 |  |  |
| 1                                                            | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| 2                                                            | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| 3                                                            | 0 | 0 | 0    | 0    | 0 | 0    |  |  |
| 4                                                            | 0 | 0 | 0    | 0    | 0 | 0    |  |  |

- lacksquare A peak at l=-1.
- $\blacksquare$  l is the lag, so there is a lag of -1.
- $\blacksquare$  This means  $x_1$  has some similar signal as  $x_2$  but lagged by 1 step.
- lacksquare We can also see from the signal definitions  $x_1 = (0\ 0\ 0.5\ 0.7\ 0)^{\mathrm{T}}$  and  $x_2 = (0\ 0.5\ 0.7\ 0\ 0)^{\mathrm{T}} \text{ that } x_1[n-1] = x_2[n].$

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Digital Cross-Correlation cont'd.





### **Difference Equations**

Difference equations are the name given to the equations that describe the digital signals and systems. For example the equation for the moving average filter with k = 3:

$$y[n] = \frac{x[n] + x[n-1] + x[n-2]}{3}$$

is known as a difference equation. Difference equations for LTI systems can always be put in the form:

$$\sum_{m=0}^N a[m]y[n-m] = \sum_{m=0}^M b[m]x[n-m].$$

So for our moving average filter:

- $\quad \blacksquare \ M=2 \ {\rm and} \ N=0.$
- $\ \blacksquare \ a[m]$  and b[m] are known as coefficients.
- $\blacksquare$  For the moving average output y there is only one coefficient, a[0]=1.
- lacksquare For the moving average input x, there are three coefficients  $b[0] = b[1] = b[2] = \frac{1}{3}$ .

| Notes |  |  |  |
|-------|--|--|--|
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |
| -     |  |  |  |
|       |  |  |  |
|       |  |  |  |
|       |  |  |  |

### Summary

Today we have covered

- $\blacksquare$  Types of digital signal, e.g. unit impulse function
- Sifting
- Digital sine and cosine functions
- Linear time invariant (LTI) systems
- Impulse response
- Moving average of a step function
- Digital convolution
- Digital cross-correlation
- Generalized difference equation for LTI systems

| Notes |      |      |   |
|-------|------|------|---|
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
| Notes |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       | <br> | <br> |   |
|       | <br> | <br> | _ |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |
|       |      |      |   |