Thermography

1st Process Control & Electrical Circle India 9.-12. August 2011

Cement Manufacturing Services
Electrical and Process Control Technology

Agenda

- Principle of operation
- Software and data handling
- Limitations, source of errors
- Equipment selection
- Implementation

Objective

 To familiarize with the application, use and limitation of thermography

Safety First

When doing thermal scanning

- Take all necessary precaution when scanning near high voltage panels, always be aware of your distance
- Wear PPE when scanning running machineries
- Only certified personnel are allowed to do thermography on electrical equipment
- Many electrical panels cannot be opened during operation

Why Thermography?

Making the invisible visible

Wavelength - electromagnetic energy spectrum

Principle of operation

- All visible objects reflect light
- We see objects because of the reflected visible wave from a light source
- Human eyes are sensitive only to visible lights
- All objects that are above absolute zero, -273 °C, emit energy in the region of the infrared wavelength
- Human eyes are not sensitive to infrared energy

Concept

- The temperature values are represented by a range of colors called pallet for easy visualization or interpretation
- A thermal imager does this in real-time (at least 15 times per second) and up to 320 x 240 grids (or elements) = 78'800 individual spots

Application in cement plant

Process optimization

302 2°C

| 302 2°C
| 300 2°C
| 250 |

Mechanical maintenance

Electrical maintenance

Thermal anomaly is almost always a sign of an impending equipment breakdown

Application: High voltage substation

Hot connections

Thermal images

Visual image

Application: Motor bearing

 Overheated motor bearing. Over 80 °C on bearing housing.

Application: Connection, Flow

Application: Low voltage indoor

Finding problems about hundreds of cables

Application: Contactors

New options – Mix of thermal and normal picture

Software: Data Acquisition & Interpretation

Color palette and data type Visual representation, rainbow palette Tengerakure Table Profile Histogram Location Number Image properties Location Name Hot connection Date: 15.07.2004 06:33:59 Enistivity 1.00 * 41.0 Reflected Temp OFF Target Temp 9110 0.0 Low Alam High Alam 0.2°C Pixel(154,40) Image Min Image Maii 1123°C Five(58,40). Comments Ned inage Cursor Options Invage Options Temperature god + @ Point Measurements (F) Thermal Image Return to Session View C Area Measurements C luithern # No. C Invage date/time stanio Restore original mage Pixel Coordinates Cuttor Options Temperature grid + Test Color @ Point Measurements C Yes C. Assa Measurements C Isofrem F No. C. Image date/time stamp Restore original imag Pixel Coordinates Test Color Visual representation, iron palette

Software: Reporting

Absolute Measurement

Severity criteria: How hot is "HOT"?

- A base or reference should be available to analyze the image
- Examples:
 - Cable operating temperature as indicated in the cable specification

Relative Measurement

Severity criteria: How hot is "HOT"?

 The temperature of the target is measured and compared to the other phases

- The temperature of the target equipment is compared to other targets having similar type and load
- Difference in temperature or ΔT is the basis of the corrective action to be taken

Temperature limits

Severity criteria: How hot is "HOT"?

Delta –T or Temperature increase	Action
10° C - 24 ° C	Advisory
25 ° C - 39 ° C	Intermediate
40 ° C - 69 ° C	Serious
>70 ° C	Immediate

US Navy

Delta –T or Temperature increase	Action
0.5° C - 8 ° C	Advisory
9 ° C - 28 ° C	Intermediate
29 ° C - 56 ° C	Serious
>56 ° C	Immediate

Nuclear maintenance application centre

Maintenance: Condition monitoring

Severity criteria: How hot is "HOT"?

Temperature difference,

25 °C | 12 °C

 $\Delta T = 13 \, ^{\circ}C$

Priority Iow

Limitations and source of errors

Emissivity

Black Electrical tape on Aluminum heatsink

- The black tape appear to be hotter than the aluminum
- The same effect can happen on 3-phase cables having different colors

Limitations and source of errors

Limitations and source of errors

Reflection

Reflected Light causing a false hotspot

Suppliers

Brand	Model / Family	FPGA Resolution	Price range, \$
Fluke (Formerly Raytek	TI 30	160 x 120	10'000
Fluke (Formerly InfraredSolutions)	TI40 and TI 50 Series (Formerly Flexcam & Insight	from 160 x 120 to 320 x 240	13'000-30'000
Irisys	IRI 4010	160 x 120	8'000
Flir	P Series	from 160 x 120 to 320 x 240	30'000
Flir	Thermacam E 320	320 x 240	20'000
Thermoteknix	TI200	320 x 240	25'000

Implementation: Training

- A thermal imager is a sophisticated piece of equipment and the person that will use it will need training
- A good thermographer ..
 - Will immediately know if the temperature reading is correct or not in order to redo it
 - Can immediately judge if equipment is showing abnormal conditions to take further images

Implementation

Define a schedule:

- Set the time for equipment scanning where the influence of interference can be avoided
 - On outdoor equipment such as transformer where there will be direct sunlight should be scanned where the influence is least (early morning)

- It is recommended to scan before a planned shutdown
 - Any abnormal finding can be corrected during the shutdown

Implementation

- Establish base
 - A visual picture as reference
 - Relevant data regarding the equipment
 - Equipment must be loaded
- Plan a route
 - Define a route where the thermographer can scan the equipment in one travel
 - Make sure that the equipment will be easily accessible by

Benefit of Thermography Inspections

- "...From a return on investment perspective, infrared inspection programs have proven that on average for every \$1 spent on infrared electrical inspections, there is a \$4 return on investment for materials and labor from fixing the problems before it fails..."
 "Cost/Benefits Analysis of Infrared Programs."
- MaintenanceTechnology Magazine

Summary

- Each plant should have its own camera
- Thermography should be used by the preventive maintenance team as a complimentary tool
- Perform thermography at least once a year

