# Examination of Data Mining, AV 2015

Time: 2015-04-24

**Total: 100** 

A: 90

B: 80

C: 70

D: 60

E: 50

Fail < 50

The use of dictionaries and calculators are permitted.

**Good Luck** 

- 1. (10 p) What is supervised data mining? List out four kinds data mining that can be used in supervised learning
- 2. (5 p) How to divided test and training data in holdout method, so that the error rate can be correctly estimated.
- 3. (5 p) Name two main attribute selection methods.
- 4. (5 p) Given the following table suppose after learning concludes that the probability of true is 5%.
  - a. What is lift fact of top 10% instance with 20% true?
  - b. What is lift fact 20% sample with 10% true?
- 5. (5 p) Name two methods of evaluate numeric prediction learning result.
- 6. (5 p) How to select a learning scheme?
- 7. (5 p) Describe one method of data discretization of one nominal attribute color with 3 values.

# 8. (25 p) Classification

a. Build a decision tree for the following data set using gain to decide the split attribute. Stop condition: when number of instance less than 3.

| Attribute variab | Target variable |            |              |
|------------------|-----------------|------------|--------------|
| number of O-     | Launch          | Leak-Check | Number of O- |
| rings            | temperature     | Pressure   | rings with   |
|                  |                 |            | Stress       |
| 1                | low             | 50         | 0            |
| 2                | low             | 50         | 0            |
| 3                | low             | 50         | 0            |
| 4                | low             | 50         | 0            |
| 5                | low             | 50         | 0            |
| 6                | high            | 50         | 1            |
| 7                | high            | 100        | 0            |
| 8                | high            | 100        | 0            |
| 9                | high            | 100        | 0            |
| 10               | low             | 150        | 1            |
| 11               | low             | 150        | 1            |
| 12               | low             | 150        | 1            |
| . 13             | low             | 150        | 1            |
| 14               | low             | 150        | 0            |
| 15               | low             | 200        | 1            |
| 16               | high            | 200        | 2            |
| 17               | high            | 200        | 2            |
| 18               | high            | 200        | 2            |
| 19               | high            | 200        | 2            |
| 20               | high            | 200        | 1            |
| 21               | high            | 200        | 2            |

- b. What is the problem of using gain to decide the splitting attribute?
- c. Generate classification rules from the decision tree.
- d. Use the same dataset to evaluate confidence interval of the error rate of the classification, given confidence limit (z) is 10%

- 9. (20 p) Instance based learning method
  - a) Briefly describe instance based learning.
  - b) Give three distance functions that used in instance based learning.
  - c) What are main challenges of instance based learning? How to deal the challenge(s)?

## 10. (15 p) Linear model

a) Consider perceptron learning rule in the training data set for the following table. Assign 1 to initial weights and bias. Use the learning method to update weight  $w_0$  (for bias),  $w_1$  for x and  $w_2$  for y in one round.

| X | у | Target |  |
|---|---|--------|--|
| 0 | 0 | no ·   |  |
| 0 | 1 | yes    |  |
| 1 | 1 | yes    |  |
| 1 | 0 | Yes    |  |

b) Consider the following multilayer receptron. Suppose we know the difference between f(x) and real value is  $\delta$  ( f(x) – ReavlValue) =  $\delta$ ), and learning rate is  $\alpha$ , how to change the weight  $w_0$ , and  $w_{00}$ 



Index: distributions and formulas

$$\frac{1}{\sqrt{2\pi}\sigma}e^{\frac{(x-\mu)^2}{2\sigma^2}}$$

$$\Pr(E \mid H) = \prod_{i=1}^{i=k} \left[ \binom{N - \sum_{1}^{i-1} n_j}{n_i} p_i^{n_i} \right] = N! \prod_{i=1}^{i=k} \frac{p_i^{n_i}}{n_i!}$$

$$p\left(\log\left(\frac{p}{t}\right) - \log\left(\frac{P}{T}\right)\right)$$

$$entropy(a) = \sum_{i} p_{i} \log(\frac{1}{p_{i}}) = -\sum_{i} p_{i} \log(p_{i})$$

$$\inf(node) - \sum_{i} \frac{|subnode_{i}|}{|node|} \inf(subnode_{i})$$

$$d([x_1,...,x_n],[y_1,...,y_n]) = \frac{\sum_{i} x_i y_i}{\sqrt{\sum_{i} x_i^2} \sqrt{\sum_{i} y_i^2}}$$

$$p = \left( f + \frac{z^2}{2N} \pm z \sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}} \right) / \left( 1 + \frac{z^2}{N} \right)$$

$$\left(1 - \frac{1}{n}\right)^n = e^{-1} = 0.368$$

Let f(x) is the logistic function, then f(x)' = f(x) (1-f(x))

$$\frac{mean_{x} - \mu}{\sqrt{\sigma_{x}^{2}/k}}$$

$$\frac{mean_d}{\sqrt{\sigma_d^2/k}}$$

| Table 5.2 Confiden with 9 Degrees of Fr | ce Limits for Student's Distribution<br>eedom |   |
|-----------------------------------------|-----------------------------------------------|---|
| $Pr[X \ge z]$                           | Z                                             |   |
| 0.1%                                    | 4.30                                          |   |
| 0.5%                                    | 3.25                                          |   |
| 1%                                      | 2.82                                          |   |
| 5%                                      | 1.83                                          | Ē |
| 10%                                     | 1.38                                          |   |
| 20%                                     | 0.88                                          |   |

| Table 5.1      | Confidence Limits for the Normal Distribution |
|----------------|-----------------------------------------------|
| $\Pr[X \ge z]$ | z                                             |
| 0.1%           | 3.09                                          |
| 0.5%           | 2.58                                          |
| 1%             | 2.33                                          |
| 5%             | 1.65                                          |
| 10%            | 1.28                                          |
| 20%            | 0.84                                          |
| 40%            | 0.25                                          |