પ્રશ્ન 1(અ) [3 ગુણ]

અમ્બેલા સેલ સમજાવો.

જવાબ:

અમ્બ્રેલા સેલ મોટા કવરેજ એરિયાનો સેલ છે જે નાના સેલ્સને ઢાંકીને સતત કવરેજ પૂરું પાડે છે.

ટેબલ: અમ્બ્રેલા સેલની લાક્ષણિકતાઓ

લક્ષણ	વર્ણન
કવરેજ	મોટો ભૌગોલિક વિસ્તાર
હેતુ	માઇક્રોસેલ્સમાંથી overflow traffic સંભાળવો
એન્ટેના	હાઇ-પાવર, ઊંચી જગ્યાએ મૂકેલ
યુઝર્સ	ઝડપથી ફરતા વાહનો, emergency calls

• મોટું કવરેજ: હાઇ-પાવર બેઝ સ્ટેશન સાથે વિશાળ ભૌગોલિક વિસ્તાર ઢાંકે છે

• Traffic management: નાના સેલ્સ ભરપૂર હોય ત્યારે calls સંભાળે છે

• ગતિશીલતા સપોર્ટ: બહુવિધ સેલ બાઉન્ડરી પાર કરતા ઝડપી યુઝર્સને સેવા આપે છે

મેમરી ટ્રીક: "Umbrella Covers Large Areas"

પ્રશ્ન 1(બ) [4 ગુણ]

સેલ અને ક્લસ્ટર વ્યાખ્યાયિત કરો.

જવાબ:

સેલ અને ક્લસ્ટર સેલ્યુલર કોમ્યુનિકેશન સિસ્ટમના મૂળભૂત ખ્યાલો છે.

ટેબલ: સેલ vs ક્લસ્ટર સરખામણી

પેરામીટર	સેલ	ક્લસ્ટર
વ્યાખ્યા	એક બેઝ સ્ટેશન દ્વારા સેવા આપવામાં આવતો એક કવરેજ વિસ્તાર	અલગ-અલગ frequencies વાપરતા સેલ્સનું જૂથ
સાઇઝ	એન્ટેના પાવર અને interference દ્વારા મર્યાદિત	N સેલ્સ ધરાવે છે (સામાન્ય રીતે 3, 4, 7, 12)
Frequency	ચોક્કસ frequency set વાપરે છે	બધી ઉપલબ્ધ frequencies એકવાર વાપરે છે
હેતુ	ચોક્કસ વિસ્તારને કવરેજ આપવું	Frequency reuse pattern શક્ય બનાવવું

• સેલ: એક બેઝ સ્ટેશન દ્વારા સેવા આપવામાં આવતો ભૌગોલિક વિસ્તાર

• **ક્લસ્ટર**: સંપૂર્ણ frequency spectrum વાપરતા પડોશી સેલ્સનું જૂથ

- Frequency reuse: અલગ-અલગ ક્લસ્ટર્સમાં સમાન frequencies ફરીથી વાપરી શકાય
- Pattern repetition: ક્લસ્ટર pattern સમગ્ર કવરેજમાં પુનરાવર્તિત થાય છે

મેમરી ટ્રીક: "Cells Cluster for Complete Coverage"

પ્રશ્ન 1(ક) [7 ગુણ]

સેલ્યુલર કોમ્યુનિકેશન સિસ્ટમ પાછળના મૂળભૂત ખ્યાલનું વર્ણન કરો.

જવાલ

સેલ્યુલર કોમ્યુનિકેશન સર્વિસ એરિયાને નાના સેલ્સમાં વહેંચીને spectrum efficiency અને capacity વધારે છે.

આકૃતિ:

+-		+	+
	A	В	C
	f1	f2	f3
			+
		•	F
•			f6 +
			I
			f2
+-		+	+

ટેબલ: સેલ્યુલર સિસ્ટમના ફાયદા

ખ્યાલ	ફાયદો
Frequency Reuse	સમાન frequencies બહુવાર વાપરી શકાય
Cell Division	નાના કવરેજ વિસ્તારો, વધુ capacity
Handoff	સેલ્સ વચ્ચે seamless call transfer
Power Control	ઓછી interference, લાંબુ battery life

- **નાના સેલનો ખ્યાલ**: કાર્યક્ષમ કવરેજ માટે સર્વિસ એરિયાને hexagonal સેલ્સમાં વહેંચાય છે
- Frequency reuse: મર્યાદિત spectrum યોગ્ય separation સાથે બહુવાર વાપરાય છે
- **બેઝ સ્ટેશન કંટ્રોલ**: દરેક સેલને low-power બેઝ સ્ટેશન દ્વારા સેવા આપવામાં આવે છે
- Capacity improvement: એક મોટા કવરેજ વિસ્તાર કરતાં વધુ યુઝર્સને સપોર્ટ મળે છે
- Interference management: યોગ્ય સેલ પ્લાનિંગ દ્વારા co-channel interference નિયંત્રિત કરાય છે

મેમરી ટ્રીક: "Small Cells Support Spectrum Sharing Successfully"

પ્રશ્ન 1(ક OR) [7 ગુણ]

સેલ્યુલર કોમ્યુનિકેશનમાં કો-ચેનલ ઇન્ટર્ફીરન્સ સમજાવો.

જવાબ:

કો-ચેનલ ઇન્ટર્ફીરન્સ જ્યારે સમાન frequencies વાપરતા સેલ્સ ખૂબ નજીક હોય ત્યારે થાય છે.

ટેબલ: કો-ચેનલ ઇન્ટર્ફીરન્સ પેરામીટર્સ

પેરામીટર	વર્ણન	અસર
Reuse Distance	કો-ચેનલ સેલ્સ વચ્ચેનું અંતર	વધુ અંતર = ઓછી interference
C/I Ratio	Carrier to Interference ratio	સારી quality માટે ≥ 18 dB હોવું જોઈએ
Cluster Size	ક્લસ્ટરમાં સેલ્સની સંખ્યા	મોટું ક્લસ્ટર = વધુ separation

- **Signal overlap**: અલગ સેલ્સના સમાન frequency signals interfere કરે છે
- **Quality degradation**: call drops અને ખરાબ voice quality નું કારણ બને છે
- **Distance factor**: અંતરના વર્ગના પ્રમાણમાં interference ઘટે છે
- ઘટાડવાની પદ્ધતિઓ: યોગ્ય સેલ પ્લાનિંગ, power control, antenna design

મેમરી ટ્રીક: "Co-channel Causes Call Quality Concerns"

પ્રશ્ન 2(અ) [3 ગુણ]

સેલ સ્પ્લિટિંગ સમજાવો.

જવાબ:

સેલ સ્પ્લિટિંગ ભીડવાળા સેલ્સને નાના સેલ્સમાં વહેંચીને સિસ્ટમ capacity વધારે છે.

आहृति:

- Capacity વધારો: દરેક નવો સેલ ઓછા યુઝર્સને બેહતર સર્વિસ quality સાથે handle કરે છે
- **Power ઘટાડો**: નવા બેઝ સ્ટેશન્સ નાના વિસ્તારોને ઢાંકવા માટે ઓછી power વાપરે છે
- Frequency management: મૂળ frequencies નવા નાના સેલ્સમાં વહેંચાય છે

મેમરી ટ્રીક: "Split Cells Serve Subscribers Successfully"

પ્રશ્ન 2(બ) [4 ગુણ]

ચેનલ વહેંચણીની વ્યૂહરચના સમજાવો.

જવાબ:

ચેનલ assignment વ્યૂહરચનાઓ નક્કી કરે છે કે optimal performance માટે સેલ્સને frequencies કેવી રીતે ફાળવવી.

ટેબલ: ચેનલ Assignment વ્યૂહરચનાઓ

વ્યૂહરચના	વર્ણન	ફાયદા	નુકસાન
Fixed	સેલ્સને કાયમી ચેનલ્સ ફાળવવા	સરળ, અનુમાનિત	ઓછા traffic દરમિયાન બિનકાર્યક્ષમ
Dynamic	demand પર આધારિત ચેનલ assignment	કાર્યક્ષમ spectrum વપરાશ	જટિલ implementation
Hybrid	Fixed અને dynamic નું મિશ્રણ	સંતુલિત approach	મધ્યમ જટિલતા

- Fixed assignment: દરેક સેલને પૂર્વનિર્ધારિત ચેનલ્સનો સેટ હોય છે
- Dynamic assignment: traffic demand પર આધારિત real-time માં ચેનલ્સ ફાળવાય છે
- Load balancing: ઉપલબ્ધ ચેનલ્સમાં traffic સમાનરૂપે વહેંચાય છે
- Interference avoidance: assignment માં co-channel interference ધ્યાનમાં લેવાય છે

મેમરી ટ્રીક: "Dynamic Distribution Delivers Optimal Performance"

પ્રશ્ન 2(ક) [7 ગુણ]

33MHz bandwidth, 25KHz simplex channels, 7-cell reuse, 1MHz control માટે સેલ દીઠ voice અને control channels ની ગણતરી કરો.

જવાબ:

સેલ્યુલર સિસ્ટમમાં **ચેનલ allocation** માટે ગણતરી.

આપેલ ડેટા:

- Total bandwidth = 33 MHz
- Channel bandwidth = 25 KHz (simplex)
- Full duplex માટે જરૂરી = 2 × 25 KHz = 50 KHz
- Control spectrum = 1 MHz
- Cluster size = 7 cells

ગણતરીઓ:

પગલું 1: કુલ ઉપલબ્ધ ચેનલ્સ

Total channels = 33 MHz ÷ 25 KHz = 1320 channels

પગલું 2: Control channels

Control channels = 1 MHz ÷ 25 KHz = 40 channels

પગલું 3: Voice channels

Voice channels = 1320 - 40 = 1280 channels

นาเตู่ 4: Duplex voice channels

Duplex voice channels = $1280 \div 2 = 640$ channels

પગલું 5: સેલ દીઠ ચેનલ્સ

Voice channels per cell = $640 \div 7 \approx 91$ channels Control channels per cell = $40 \div 7 \approx 6$ channels

અંતિમ જવાબ:

• સેલ દીઠ Voice channels: 91

• સੇલ દીઠ Control channels: 6

મેમરી ટ્રીક: "Calculate Carefully for Channel Count"

પ્રશ્ન 2(અ OR) [3 ગુણ]

GSM માં FCCH અને SCH ના કાર્યો લખો.

જવાબ

FCCH અને SCH synchronization માટે GSM સિસ્ટમમાં જરૂરી control channels છે.

ટેબલ: FCCH અને SCH કાર્યો

ચેનલ Full Form		ธเช้
FCCH	Frequency Correction Channel	Mobile ને frequency reference પૂરું પાડે છે
SCH	Synchronization Channel	Timing અને cell identity પૂરું પાડે છે

- FCCH કાર્ચ: Mobile ને બેઝ સ્ટેશન frequency સાથે synchronize કરવામાં મદદ કરે છે
- **SCH કાર્ય**: BSIC (Base Station Identity Code) અને frame number વહન કરે છે

• **Timing correction**: બંને ચેનલ્સ mobile ને યોગ્ય timing synchronization મેળવવામાં મદદ કરે છે

મેમરી ટ્રીક: "FCCH Fixes Frequency, SCH Synchronizes System"

પ્રશ્ન 2(બ OR) [4 ગુણ]

GSM 900 specifications લખો.

જવાબ:

GSM 900 900 MHz frequency band માં ચોક્કસ તકનીકી પેરામીટર્સ સાથે કાર્ય કરે છે.

ટેબલ: GSM 900 Specifications

પેરામીટર	Specification
Uplink Frequency	890-915 MHz
Downlink Frequency	935-960 MHz
Duplex Separation	45 MHz
Channel Spacing	200 KHz
Total Channels	124 channels
Access Method	TDMA/FDMA
Modulation	GMSK
Power Classes	2W, 8W, 20W

• **Frequency bands**: Full duplex operation માટે અલગ uplink અને downlink frequencies

• TDMA structure: ยริร carrier frequency นะ 8 time slots

મેમરી ટ્રીક: "GSM 900 Gives Great Global Coverage"

પ્રશ્ન 2(ક OR) [7 ગુણ]

GSM આર્કિટેક્ચર દોરો અને સમજાવો.

જવાભ

GSM આર્કિટેક્ચર mobile communication માટે સાથે કાર્ય કરતા ત્રણ મુખ્ય subsystems ધરાવે છે.

ટેબલ: GSM આર્કિટેક્ચર Components

Subsystem	Components	รเช้
Mobile Station	Mobile Equipment + SIM	User interface અને identity
BSS	BTS + BSC	Radio interface અને control
NSS	MSC, HLR, VLR, AuC	Switching અને database management

- Mobile Station: યુઝર identification માટે mobile equipment અને SIM card ધરાવે છે
- Base Station Subsystem: Radio communication અને resource management handle કરે છે
- **Network Switching Subsystem**: Call switching, routing, અને subscriber databases manage કરે છે
- Interfaces: A-bis (BTS-BSC), A (BSC-MSC) interfaces subsystems ને connect કરે છે

મેમરી ટ્રીક: "Mobile Base Network - Complete Communication Chain"

પ્રશ્ન 3(અ) [3 ગુણ]

GSM માં signal processing નો block diagram દોરો.

જવાબ:

GSM માં **signal processing** voice અને data transmission માટે અનેક stages ધરાવે છે.

आड्रति:

```
Speech → Speech → Channel → Interleaving → Burst → RF
Input Coding Coding Formatting Processing
↓ ↓ ↓ ↓ ↓ ↓
13kbps → 22.8kbps → Error → Reordering → Time → Modulation
Protection Slot & Transmission
```

- Speech coding: RPE-LTP વાપરીને analog speech ને 13 kbps digital data માં convert કરે છે
- Channel coding: Error correction bits ઉમેરીને rate 22.8 kbps સુધી વધારે છે
- Interleaving: Fading થી burst errors સામે લડવા માટે data ફરીથી order કરે છે

મેમરી ટ્રીક: "Speech Signals Systematically Processed Successfully"

પ્રશ્ન 3(બ) [4 ગુણ]

GSM માં Common Control Channels ના કાર્યો લખો.

જવાબ:

Common Control Channels GSM માં system information અને access procedures manage કરે છે.

วัผผ: Common Control Channels รเข้

ચેનલ	รเช็
FCCH	Frequency correction અને synchronization
SCH	Frame synchronization અને cell identification
ВССН	System information અને cell parameters broadcast કરે છે
RACH	Mobile દ્વારા call initiation માટે random access
AGCH	Mobiles ને dedicated channels assign કરે છે
PCH	Incoming calls માટે mobiles ને page કરે છે

- **Broadcast કાર્ય**: BCCH સતત system information transmit કરે છે
- Access management: RACH mobiles ને service request કરવાની મંજૂરી આપે છે
- Channel assignment: AGCH active calls માટે resources allocate કરે છે
- Paging service: PCH mobiles ને incoming calls ની જાણ કરે છે

મેમરી ટ્રીક: "Common Channels Control Communication Completely"

પ્રશ્ન 3(ક) [7 ગુણ]

GSM આઇડેન્ટિફાયર્સ સમજાવો.

જવાબ:

GSM identifiers subscribers, equipment, અને network elements ને uniquely identify કરે છે.

วัผผ: GSM Identifiers

Identifier	Full Form	હેતુ	Format
IMSI	International Mobile Subscriber Identity	Unique subscriber ID	15 digits
IMEI	International Mobile Equipment Identity	Unique equipment ID	15 digits
MSISDN	Mobile Station ISDN Number	Phone number	Variable length
TMSI	Temporary Mobile Subscriber Identity	Security માટે temporary ID	32 bits
LAI	Location Area Identity	Geographic area identification	MCC+MNC+LAC
BSIC	Base Station Identity Code	Cell identification	6 bits

• IMSI structure: MCC (3) + MNC (2-3) + MSIN (9-10 digits)

• Security હેતુ: TMSI radio interface પર subscriber identity ની સુરક્ષા કરે છે

• Location management: LAI કાર્યક્ષમ paging અને location updates માં મદદ કરે છે

• Network planning: BSIC પડોશી સેલ્સ વચ્ચે confusion અટકાવે છે

મેમરી ટ્રીક: "Important Mobile System Identifiers Ensure Security"

પ્રશ્ન 3(અ OR) [3 ગુણ]

ઝડપી અને ધીમી frequency hopping ની તુલના કરો.

જવાબ:

Frequency hopping techniques symbol rate ના સંબંધમાં hopping rate માં અલગ પડે છે.

રેબલ: Fast vs Slow Frequency Hopping

પેરામીટર	Fast Hopping	Slow Hopping
Hopping Rate	> Symbol rate	< Symbol rate
Symbols per Hop	< 1	> 1
જટિલતા	ઊંચી	નીચી
Applications	Military, Bluetooth	GSM, CDMA

• Fast hopping: પ્રતિ symbol બહુવિધ hops, બેહતર security પણ વધુ જટિલ

• **Slow hopping**: પ્રતિ hop બહુવિધ symbols, સરળ implementation

મેમરી ટ્રીક: "Fast Frequently Flips, Slow Stays Stable"

પ્રશ્ન 3(બ OR) [4 ગુણ]

Frequency reuse નો ઉપયોગ કર્યા વિના GSM 900 band માં એકસાથે વાત કરી શકે તેવા વપરાશકર્તાઓની સંખ્યાની ગણતરી કરો.

જવાબ:

Frequency reuse વિના GSM 900 માં મહત્તમ યુઝર્સ માટે **ગણતરી**.

આપેલ GSM 900 પેરામીટર્સ:

• Uplink: 890-915 MHz (25 MHz)

• Downlink: 935-960 MHz (25 MHz)

• Channel spacing: 200 KHz

• પ્રતિ ચેનલ time slots: 8

ગણતરીઓ:

પગલું 1: ઉપલબ્ધ ચેનલ્સ

Total channels = 25 MHz ÷ 200 KHz = 125 channels

પગલું 2: વાપરી શકાય તેવા ચેનલ્સ

Guard channels કાઢ્યા પછી ≈ 124 channels

પગલું 3: એકસાથે યુઝર્સ

પ્રતિ ચેનલ યુઝર્સ = 8 time slots કુલ યુઝર્સ = 124 × 8 = 992 યુઝર્સ

જવાબ: 992 યુઝર્સ એકસાથે વાત કરી શકે છે

મેમરી ટ્રીક: "Calculate Channels Times Time-slots"

પ્રશ્ન 3(ક OR) [7 ગુણ]

મોબાઇલ હેન્ડસેટનો સામાન્ય block diagram દોરો અને સમજાવો.

જવાબ:

મોબાઇલ હેન્ડસેટ સાથે કાર્ય કરતા અનેક functional blocks ધરાવે છે.

ટેબલ: મોબાઇલ હેન્ડસેટ બ્લોક્સ

બ્લોક	รเช็
RF Section	Signal transmission અને reception
Baseband	Digital signal processing
Audio	Voice input/output processing
Power Management	Battery અને power control
User Interface	Display, keypad, speaker, microphone

- **RF processing**: Radio frequency transmission અને reception handle કરે છે
- **Digital processing**: Baseband channel coding, speech processing ອ ຂ છે
- **User interface**: Display, keypad, audio દ્વારા interaction પૂરું પાડે છે
- **Power control**: Battery usage અને charging functions manage કરે છે

મેમરી ટ્રીક: "Mobile Manages Multiple Modules Simultaneously"

પ્રશ્ન 4(અ) [3 ગુણ]

મોબાઈલના કારણે રેડિયેશનના જોખમો લખો.

જવાબ:

મોબાઇલ ફોનમાંથી **રેડિયેશન જોખમો** RF energy exposure ને કારણે આરોગ્યની ચિંતા છે.

ટેબલ: મોબાઇલ રેડિયેશન જોખમો

જોખમ	અસર	રોકથામ
SAR Exposure	Tissue heating	Hands-free devices વાપરો
મગજ પર અસર	Memory, sleep ની સમસ્યાઓ	Call duration મર્યાદિત રાખો
કેન્સરનું જોખમ	સંભવિત tumor નું જોખમ	ફોન શરીરથી દૂર રાખો

• SAR (Specific Absorption Rate): શરીરના tissue દ્વારા absorbed RF energy માપે છે

• Thermal effects: RF energy tissue ના localized heating નું કારણ બની શકે છે

• Non-thermal effects: Cellular functions અને DNA પર સંભવિત અસરો

મેમરી ટ્રીક: "Safety Awareness Reduces Radiation Risk"

પ્રશ્ન 4(બ) [4 ગુણ]

મોબાઈલ હેન્ડસેટમાં બેઝબેન્ડ વિભાગની કામગીરી સમજાવો.

જવાબ:

બેઝબેન્ડ વિભાગ મોબાઇલ હેન્ડસેટમાં digital signal processing કાર્યો કરે છે.

ટેબલ: બેઝબેન્ડ વિભાગના કાર્યો

รเช่	વર્ણન
Speech Processing	Vocoder વાપરીને voice encode/decode કરે છે
Channel Coding	Error correction અને detection ઉમેરે છે
Modulation	Digital data ને analog signals માં convert કરે છે
Protocol Processing	Signaling અને call control handle કરે છે

• **Digital signal processor**: Speech coding algorithms execute ອ**રે** છે (GSM: RPE-LTP)

• Error correction: વિશ્વસનીય transmission માટે convolutional coding implement કરે છે

• **Control functions**: Call setup, handoff, અને power control manage કરે છે

• **Interface**: RF section ને user interface components સાથે connect કરે છે

મેમરી ટ્રીક: "Baseband Brings Better Communication Control"

પ્રશ્ન 4(ક) [7 ગુણ]

DSSS ટ્રાન્સમીટર અને રીસીવરની કામગીરી સમજાવો.

જવાબ:

DSSS (Direct Sequence Spread Spectrum) pseudorandom codes વાપરીને signal bandwidth spread કરે છે.

ટ્રાન્સમીટર આકૃતિ:

રીસીવર આકૃતિ:

ટેબલ: DSSS પ્રક્રિયા

સ્ટેજ	ટ્રાન્સમીટર	રીસીવર
Spreading	Data XOR with PN code	Received signal XOR with PN
Modulation	Spread signal modulated	Demodulate received signal
Processing	Bandwidth વધારાય છે	Original data recover થાય છે

- Spreading પ્રક્રિયા: Original data ને high-rate pseudorandom sequence સાથે XOR કરવામાં આવે છે
- Bandwidth expansion: Processing gain factor દ્વારા signal bandwidth વધે છે
- **Despreading**: Receiver સમાન PN code વાપરીને original data recover કરે છે
- Interference rejection: Spread spectrum jamming સામે પ્રતિકાર પૂરો પાડે છે

મેમરી ટ્રીક: "Direct Sequence Spreads Signals Successfully"

પ્રશ્ન 4(અ OR) [3 ગુણ]

10 Mcps chip rate અને 1 Mbps data rate સાથે DSSS સિસ્ટમ માટે processing gain ની ગણતરી કરો.

જવાબ:

Processing gain spread spectrum સિસ્ટમના performance improvement નક્કી કરે છે.

આપેલ:

- Chip rate (Rc) = 10 million chips per second = 10×10^6 cps
- Data rate (Rd) = 1 Mbps = 1×10^6 bps

ગણતરી:

Processing Gain (Gp) = Chip rate \div Data rate Gp = Rc \div Rd = (10 × 10⁶) \div (1 × 10⁶) = 10

dB ні:

Gp (dB) = $10 \log_{10}(10) = 10 \times 1 = 10 \text{ dB}$

જવાબ: Processing Gain = 10 અથવા 10 dB

મેમરી ટ્રીક: "Processing Power Provides Protection"

પ્રશ્ન 4(બ OR) [4 ગુણ]

EDGE માં data rate કેવી રીતે વધારાયેલ છે તે સમજાવો.

જવાબ:

EDGE (Enhanced Data rates for GSM Evolution) advanced modulation દ્વારા data rates સુધારે છે.

ટેબલ: EDGE સુધારાઓ

પેરામીટર	GSM	EDGE	સુધારો
Modulation	GMSK	8-PSK	3 bits per symbol vs 1 bit
Data Rate	9.6 kbps	43.2 kbps per slot	~4.5x વધારો
Coding	Fixed	Adaptive	Link adaptation
Applications	Voice, SMS	Multimedia, Internet	Enhanced services

- **8-PSK modulation**: GMSK ના 1 bit નાં બદલે પ્રતિ symbol 3 bits transmit કરે છે
- Link adaptation: Channel quality પર આધારિત coding scheme dynamically select કરે છે
- Backward compatibility: હાલની GSM infrastructure સાથે કાર્ય કરે છે
- **Enhanced applications**: Multimedia અને higher data rate services support કરે છે

મેમરી ટ્રીક: "EDGE Enhances Exchange Efficiently"

પ્રશ્ન 4(ક OR) [7 ગુણ]

CDMA માં કોલ પ્રોસેસિંગ સમજાવો.

જવાબ:

CDMA call processing code-based multiple access માટે unique procedures ધરાવે છે.

સ્ટેજ	પ્રક્રિયા	รเช้
Initialization	Pilot acquisition	સૌથી મજબૂત બેઝ સ્ટેશન શોધવું
Idle State	Monitor paging	Incoming calls માટે સાંભળવું
Access	Random access	Network પાસેથી service request કરવી
Traffic	Dedicated channel	Active communication
Handoff	Soft handoff	Seamless cell transition

- **Pilot channel**: Timing reference અને system identification પૂરું પાડે છે
- Rake receiver: Improved performance માટે multipath signals combine કરે છે
- **Power control**: બધા યુઝર્સ માટે optimal signal levels maintain કરે છે
- **Soft handoff**: Mobile બહુવિધ બેઝ સ્ટેશન્સ સાથે એકસાથે communicate કરે છે
- Code assignment: દરેક યુઝરને unique spreading code assign કરવામાં આવે છે

મેમરી ટ્રીક: "CDMA Calls Connect Carefully and Clearly"

પ્રશ્ન 5(અ) [3 ગુણ]

CDMA અને GSM ની સરખામણી કરો.

જવાબ:

CDMA અને GSM cellular communication માટે અલગ અલગ approaches રજૂ કરે છે.

ટેબલ: CDMA vs GSM સરખામણી

પેરામીટર	CDMA	GSM
Access Method	Code Division	Time/Frequency Division
Capacity	વધુ	ઓછી
Handoff	Soft handoff	Hard handoff
Security	બેહતર (spreading codes)	સારી (encryption)
Global Usage	મર્યાદિત	વ્યાપક
Power Control	Continuous	Periodic

• Multiple access: CDMA unique codes વાયરે છે, GSM time slots વાયરે છે

• Call quality: CDMA soft handoff પૂરું પાડે છે, GSM hard handoff કરે છે

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Choose CDMA or GSM Carefully"

પ્રશ્ન 5(બ) [4 ગુણ]

CDMA ના લાલો લખો.

જવાબ:

CDMA લાલો તેને high-capacity cellular systems માટે યોગ્ય બનાવે છે.

ટેબલ: CDMA લાલો

сис	ફાયદો
High Capacity	પ્રતિ spectrum વધુ યુઝર્સ
Soft Handoff	Seamless call transfer
Variable Rate	Speech patterns ને અનુકૂળ
Privacy	Spreading દ્વારા inherent security
Multipath Resistance	Rake receiver વાપરે છે
Power Control	Battery life optimize કરે છે
Frequency Planning	બધા સેલ્સમાં સમાન frequency

- Spectrum efficiency: FDMA/TDMA systems કરતાં વધુ capacity
- Quality લાલ: Soft handoff cell transitions દરમિયાન call drops દૂર કરે છે
- Security ફાયદો: Spread spectrum inherent privacy protection પૂરું પાડે છે
- Simplified planning: Frequency reuse planning ની જરૂર નથી

મેમરી ટ્રીક: "CDMA Creates Considerable Communication Capacity"

પ્રશ્ન 5(ક) [7 ગુણ]

MANET ને સંક્ષિપ્તમાં સમજાવો અને તેની ઉપયોગો લખો.

જવાબ:

MANET (Mobile Ad Hoc Network) મોબાઇલ ડિવાઇસેસનું infrastructure-less network છે.

ટેબલ: MANET લાક્ષણિકતાઓ vs ઉપયોગો

લાક્ષણિકતા	વિશેષતા	ઉપયોગો
Self-organizing	કોઈ fixed infrastructure નથી	લશ્કરી સંદેશાવ્યવહાર
Dynamic topology	Nodes મુક્તપણે ફરે છે	Emergency response
Multi-hop routing	Intermediate node relay	Disaster recovery
Distributed control	કોઈ central authority નથી	Sensor networks
Resource constraints	મર્યાદિત battery, bandwidth	Vehicular networks

ઉપયોગો:

- લશ્કરી ઓપરેશન્સ: Infrastructure વિના battlefield communications
- **Emergency services**: Disaster response અને rescue operations
- **Sensor networks**: Environmental monitoring અને data collection
- Vehicular networks: Traffic management หเว้ car-to-car communication
- **Personal area networks**: Device-to-device communication
- Academic research: Collaborative computing environments

ફાયદા:

- Rapid deployment: Infrastructure setup ની જરૂર નથી
- **Self-healing**: Nodes fail થાય ત્યારે automatic route reconfiguration
- Cost effective: Base station installation costs નથી

નુકસાન:

- Limited bandwidth: Shared wireless medium
- Security challenges: Attacks หเว้ vulnerable
- Power constraints: Battery-dependent operation

મેમરી ટ્રીક: "Mobile Ad Hoc Networks Enable Everywhere"

પ્રશ્ન 5(અ OR) [3 ગુણ]

WCDMA ના મુખ્ય લક્ષણો લખો.

જવાબ:

WCDMA (Wideband CDMA) enhanced capabilities પૂરી પાડતો 3G standard છે.

ટેબલ: WCDMA મુખ્ય લક્ષણો

લક્ષણ	Specification
Chip Rate	3.84 Mcps
Bandwidth	5 MHz
Data Rates	2 Mbps સુધી
Spreading	Variable spreading factor
Power Control	Fast closed-loop
Handoff	Soft ਅਜੇ softer handoff

- **Wideband operation**: 5 MHz bandwidth high data rates પૂરી પાડે છે
- Variable spreading: અલગ-અલગ service requirements ને અનુકૂળ થાય છે

મેમરી ટ્રીક: "WCDMA Widens Communication Data Magnificently"

પ્રશ્ન 5(બ OR) [4 ગુણ]

5G ના લાલો લખો.

જવાબ:

5G લાલો અગાઉની generations કરતાં નોંધપાત્ર સુધારાઓ રજૂ કરે છે.

ટેબલ: 5G લાલો

લાભ	ફાયદો
Ultra-high Speed	20 Gbps સુધી peak data rate
Low Latency	Critical applications
Massive IoT	มดิ km² 1 million devices
Network Slicing	Customized virtual networks
Enhanced Coverage	બેહતર indoor અને edge coverage
Energy Efficiency	4G કરતાં 100x વધુ કાર્યક્ષમ
High Reliability	99.999% availability

• Enhanced mobile broadband: AR/VR અને 4K/8K video streaming support કરે છે

- **Ultra-reliable communications**: Autonomous vehicles અને remote surgery શક્ય બનાવે છે
- **Massive machine communications**: Smart cities અને Industry 4.0 support કરે છે
- Flexible network architecture: Software-defined networking capabilities

મેમરી ટ્રીક: "5G Generates Great Gigabit Growth"

પ્રશ્ન 5(ક OR) [7 ગુણ]

બ્લોક ડાયાગ્રામ સાથે OFDM ની કામગીરી સમજાવો.

જવાબ:

OFDM (Orthogonal Frequency Division Multiplexing) high-speed data transmission માટે બહુવિદ્ય subcarriers વાપરે છે.

OFDM ટ્રાન્સમીટર:

OFDM રીસીવર:

ટેબલ: OFDM પ્રક્રિયાના પગલાં

સ્ટેજ	ટ્રાન્સમીટર કાર્ય	રીસીવર કાર્ય
Data Conversion	Serial to parallel conversion	Parallel to serial reconstruction
Modulation	Subcarriers પર QAM mapping	QAM demapping
Transform	IFFT time domain signal બનાવે છે	FFT frequency domain recover કરે છે
Guard Period	Cyclic prefix ISI અટકાવે છે	Cyclic prefix removal

મુખ્ય લક્ષણો:

- Orthogonal subcarriers: બહુવિધ parallel low-rate data streams interference અટકાવે છે
- FFT/IFFT processing: Fast transforms વાપરીને કાર્યક્ષમ digital implementation
- Cyclic prefix: Multipath થી inter-symbol interference અટકાવતો guard interval
- Spectral efficiency: મર્યાદિત bandwidth માં high data rates હાંસલ કરાય છે
- Multipath resistance: વ્યક્તિગત subcarriers flat fading અનુભવે છે

ઉપયોગો:

- WiFi (802.11): Wireless LAN communications
- LTE/4G: Mobile broadband networks

• **Digital TV**: DVB-T terrestrial broadcasting

• WiMAX: Broadband wireless access

ફાયદા:

• High spectral efficiency: Optimal bandwidth utilization

• મજબૂતાઈ: Frequency selective fading સામે પ્રતિકારક

• **ผนขโรสเ**: หโส subcarrier adaptive modulation

• Implementation: Digital signal processing hardware સરળ બનાવે છે

ટેબલ: OFDM પેરામીટર્સ

પેરામીટર	સામાન્ય મૂલ્યો
Subcarriers	64, 128, 256, 512, 1024
Modulation	BPSK, QPSK, 16-QAM, 64-QAM
Cyclic Prefix	Symbol duration નો 1/4, 1/8, 1/16
Applications	WiFi, LTE, DVB, WiMAX

મેમરી ટ્રીક: "OFDM Offers Outstanding Data Multiplexing"