Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

Институт информационных технологий, математики и механики

Отчёт по лабораторной работе: "Задача Штурма-Лиувилля"

Студенты: Петров Павел, Михайлова Екатерина

Группа: 381803-1

1 Задача Штурма-Лиувилля

Задача Штурма-Лиувилля является простейшей задачей о поиске ортонормированной системы: найти те значения параметра λ , при которых существует нетривиальные решения задачи:

$$X'' + \lambda X = 0$$

$$\alpha X(0) - \beta X'(0) = 0, \quad \alpha \ge 0, \beta \ge 0, \alpha + \beta > 0,$$

$$\gamma X(l) + \delta X'(l) = 0, \quad \gamma \ge 0, \delta \ge 0, \gamma + \delta > 0,$$

а также найти эти решения. Такие значения параметра λ называются **собственными значениями**, а соответствующие им нетривиальные решения - **собственными функциями**.

Из анализа ограничений на параметры были получены девять случаев значений параметров:

- 1. $\alpha > 0, \beta = 0, \gamma > 0, \delta = 0.$
- 2. $\alpha > 0, \beta = 0, \gamma = 0, \delta > 0.$
- 3. $\alpha = 0, \beta > 0, \gamma > 0, \delta = 0.$
- 4. $\alpha = 0, \beta > 0, \gamma = 0, \delta > 0$.
- 5. $\alpha > 0, \beta = 0, \gamma > 0, \delta > 0$.
- 6. $\alpha = 0, \beta > 0, \gamma > 0, \delta > 0$.
- 7. $\alpha > 0, \beta > 0, \gamma > 0, \delta = 0$.
- 8. $\alpha > 0, \beta > 0, \gamma = 0, \delta > 0.$
- 9. $\alpha > 0, \beta > 0, \gamma > 0, \delta > 0$.

2 Для всех возможных девяти случаев найти собственные числа и собственный функции задачи Штурма-Лиувилля (собственные функции отнормировать!)

Рассмотрим разные значения λ в задаче Штурма-Лиувилля.

2.1 $\lambda = 0$

В этом случае уравнение имеет вид:

$$X'' = 0$$
,

а его решение:

$$X(x) = C_1 x + C_2,$$

где C_1 и C_2 - произвольные постоянные. Подставим это решение в граничные условия и получим, что:

$$\alpha C_2 - \beta C_1 = 0, \quad \gamma (C_1 l + C_2) + \delta C_1 = 0.$$

2.1.1 $\alpha > 0, \beta = 0, \gamma > 0, \delta = 0.$

В этом случае:

$$\alpha C_2 = 0, \quad \gamma(C_1 l + C_2) = 0,$$

 $C_2 = 0, \quad \gamma C_1 l = 0.$

Так как по условию γ и l отличны от нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_1=0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.2 $\alpha > 0, \beta = 0, \gamma = 0, \delta > 0.$

В этом случае:

$$\alpha C_2 = 0, \quad \delta C_1 = 0.$$

Исходя из условий, получаем:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.3
$$\alpha = 0, \beta > 0, \gamma > 0, \delta = 0.$$

В этом случае:

$$-\beta C_1 = 0, \quad \gamma(C_1 l + C_2) = 0,$$

 $C_1 = 0, \quad \gamma C_2 = 0.$

Так как по условию γ отлична от нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_2=0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.4 $\alpha = 0, \beta > 0, \gamma = 0, \delta > 0.$

В этом случае:

$$-\beta C_1 = 0, \quad \delta C_1 = 0.$$

Исходя из условий, получаем, что $C_1=0$, а на C_2 ограничений нет. Значит, чтобы получить нетривиальное решение, надо взять C_2 произвольной константой, отличной от нуля. Итог:

$$C_1 = 0, C_2 = const \neq 0, X(x) = C_2.$$

Получили нетривиальное решение.

2.1.5 $\alpha > 0, \beta = 0, \gamma > 0, \delta > 0.$

В этом случае:

$$\alpha C_2 = 0, \quad \gamma (C_1 l + C_2) + \delta C_1 = 0,$$

 $C_2 = 0, \quad (\gamma l + \delta) C_1 = 0.$

Так как по условию γ , l и δ строго больше нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_1 = 0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.6 $\alpha = 0, \beta > 0, \gamma > 0, \delta > 0.$

В этом случае:

$$-\beta C_1 = 0, \quad \gamma(C_1 l + C_2) + \delta C_1 = 0,$$

 $C_1 = 0, \quad \gamma C_2 = 0.$

Так как по условию γ отлична от нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_2=0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.7 $\alpha > 0, \beta > 0, \gamma > 0, \delta = 0.$

В этом случае:

$$\alpha C_2 - \beta C_1 = 0, \quad \gamma(C_1 l + C_2) = 0,$$

$$C_2 = \frac{\beta}{\alpha} C_1, \quad (\gamma l + \frac{\gamma \beta}{\alpha}) C_1 = 0.$$

Так как по условию все представленные параметры строго больше нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_1 = 0$, следовательно и $C_2 = 0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.8 $\alpha > 0, \beta > 0, \gamma = 0, \delta > 0.$

В этом случае:

$$\alpha C_2 - \beta C_1 = 0, \quad \delta C_1 = 0,$$

 $\alpha C_2 = 0, \quad C_1 = 0.$

Так как по условию α строго больше нуля, то равенство первого уравнения нулю возможно только в одном случае, когда $C_2 = 0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

2.1.9 $\alpha > 0, \beta > 0, \gamma > 0, \delta > 0.$

В этом случае:

$$\alpha C_2 - \beta C_1 = 0, \quad \gamma (C_1 l + C_2) + \delta C_1 = 0,$$

$$C_2 = \frac{\beta}{\alpha} C_1, \quad (\gamma l + \delta + \frac{\gamma \beta}{\alpha}) C_1 = 0.$$

Так как по условию все представленные параметры строго больше нуля, то равенство последнего уравнения нулю возможно только в одном случае, когда $C_1 = 0$, следовательно и $C_2 = 0$. Как итог:

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

Получили тривиальное решение, но оно нас не интересует.

$2.2 \quad \lambda < 0$

В этом случае решение уравнения имеет вид:

$$X(x) = C_1 e^{-\sqrt{-\lambda}x} + C_2 e^{\sqrt{-\lambda}x}.$$

Заменим $\sqrt{-\lambda}$ на μ и подставим решение в граничные условия. Получим:

$$\begin{cases} \alpha(C_1 + C_2) - \beta \mu(C_2 - C_1) = 0, \\ \gamma(C_1 e^{-\mu l} + C_2 e^{\mu l}) + \delta \mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0 \end{cases}$$
 (1)

2.2.1 $\alpha > 0, \beta = 0, \gamma > 0, \delta = 0.$

В этом случае:

$$\begin{cases} \alpha(C_1 + C_2) = 0, \\ \gamma(C_1 e^{-\mu l} + C_2 e^{\mu l}) = 0 \end{cases}$$
 (2)

$$\begin{cases}
C_1 = -C_2, \\
\gamma C_1 (e^{-\mu l} - e^{\mu l}) = 0
\end{cases}$$
(3)

Интересуемся нетривиальными решениями, поэтому приравняем $e^{-\mu l}-e^{\mu l}$ к нулю. Но здесь равенство нулю возможно только в случае равенства нулю μl , что невозможно, исходя из условий. Поэтому возможно только $C_1=0$ и, следовательно, $C_2=0$. Таким образом получаем тривиальное решение, что нам не подходит.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.2 $\alpha > 0, \beta = 0, \gamma = 0, \delta > 0.$

В этом случае:

$$\begin{cases} \alpha(C_1 + C_2) = 0, \\ \delta\mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0 \end{cases}$$
(4)

$$\begin{cases}
C_1 = -C_2, \\
-\delta \mu C_1 (e^{\mu l} + e^{-\mu l}) = 0
\end{cases}$$
(5)

Второе уравнения равно нулю только в одном случае, когда $C_1 = 0$, так как по условию параметры строго больше нуля, а $e^{\mu l} + e^{-\mu l}$ никогда не может быть равно нулю, так как представляет собой сумму положительных функций. Следовательно, $C_2 = 0$, и получаем тривиальное решение, что нам не подходит.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.3 $\alpha = 0, \beta > 0, \gamma > 0, \delta = 0.$

В этом случае:

$$\begin{cases}
-\beta\mu(C_2 - C_1) = 0, \\
\gamma(C_1e^{-\mu l} + C_2e^{\mu l}) = 0
\end{cases}$$
(6)

$$\begin{cases}
C_2 = C_1, \\
\gamma C_1 (e^{-\mu l} + e^{\mu l}) = 0
\end{cases}$$
(7)

Второе уравнения равно нулю только в одном случае, когда $C_1 = 0$, так как по условию параметр строго больше нуля, а $e^{\mu l} + e^{-\mu l}$ никогда не может быть равно нулю, так как представляет собой сумму положительных функций. Следовательно, $C_2 = 0$, и получаем тривиальное решение, что нам не подходит.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.4 $\alpha = 0, \beta > 0, \gamma = 0, \delta > 0.$

В этом случае:

$$\begin{cases}
-\beta\mu(C_2 - C_1) = 0, \\
\delta\mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0
\end{cases}$$
(8)

$$\begin{cases}
C_2 = C_1, \\
\delta \mu C_1 (e^{\mu l} - e^{-\mu l}) = 0
\end{cases}$$
(9)

Интересуемся нетривиальными решениями, поэтому приравняем $e^{\mu l}-e^{-\mu l}$ к нулю. Но здесь равенство нулю возможно только в случае равенства нулю μl , что невозможно, исходя из условий. Поэтому возможно только $C_1=0$ и, следовательно, $C_2=0$. Таким образом получаем тривиальное решение, что нам не подходит.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.5 $\alpha > 0, \beta = 0, \gamma > 0, \delta > 0.$

В этом случае:

$$\begin{cases} \alpha(C_1 + C_2) = 0, \\ \gamma(C_1 e^{-\mu l} + C_2 e^{\mu l}) + \delta \mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0 \end{cases}$$
 (10)

$$\begin{cases}
C_1 = -C_2, \\
C_1(\gamma(e^{-\mu l} - e^{\mu l}) - \delta\mu(e^{\mu l} + e^{-\mu l})) = 0
\end{cases}$$
(11)

Интересуемся нетривиальными решениями, поэтому во втором уравнении занулим скобку:

$$\gamma(e^{-\mu l} - e^{\mu l}) - \delta\mu(e^{\mu l} + e^{-\mu l}) = 0,$$

затем умножим на $e^{\mu l}$ и соберём слагаемые с экспонентами и без:

$$(\gamma - \delta\mu) - (\gamma + \delta\mu)e^{2\mu l} = 0.$$

Получаем уравнение, которое надо решить относительно μ :

$$e^{2\mu l} = \frac{\gamma - \delta \mu}{\gamma + \delta \mu}.$$

Слева в уравнении, очевидно, стоит монотонно возрастающая функция. Справа имеем гиперболу с вертикальной асимптотой $\mu=-\frac{\gamma}{\delta}<0$. Но $\mu=\sqrt{-\lambda}$, поэтому рассматриваем только положительные μ . Производная функции справа по μ равна: $\frac{-2\delta\gamma}{(\delta\mu+\gamma)^2}<0$, значит гипербола убывает на всей своей области определения. При $\mu=0$ функции совпадают, затем расходятся, поэтому при положительных μ обращение скобки в нуль невозможно. Значит возможно только $C_1=0$ и, следовательно, $C_2=0$, и решение тривиально.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.6 $\alpha = 0, \beta > 0, \gamma > 0, \delta > 0.$

В этом случае:

$$\begin{cases}
-\beta\mu(C_2 - C_1) = 0, \\
\gamma(C_1e^{-\mu l} + C_2e^{\mu l}) + \delta\mu(C_2e^{\mu l} - C_1e^{-\mu l}) = 0
\end{cases}$$
(12)

$$\begin{cases} C_2 = C_1, \\ C_1(\gamma(e^{-\mu l} + e^{\mu l}) + \delta\mu(e^{\mu l} - e^{-\mu l})) = 0 \end{cases}$$
(13)

Интересуемся нетривиальными решениями, поэтому во втором уравнении занулим скобку:

$$\gamma(e^{-\mu l} + e^{\mu l}) + \delta\mu(e^{\mu l} - e^{-\mu l}) = 0,$$

затем умножим на $e^{\mu l}$ и соберём слагаемые с экспонентами и без:

$$(\gamma - \delta\mu) + (\gamma + \delta\mu)e^{2\mu l} = 0.$$

Получаем уравнение, которое надо решить относительно μ :

$$e^{2\mu l} = \frac{\delta \mu - \gamma}{\delta \mu + \gamma}.$$

Слева в уравнении, очевидно, стоит монотонно возрастающая функция. Справа имеем гиперболу с вертикальной асимптотой $\mu=-\frac{\gamma}{\delta}<0$. Но $\mu=\sqrt{-\lambda}$, поэтому рассматриваем только положительные μ . Производная функции справа по μ равна: $\frac{2\delta\gamma}{(\delta\mu+\gamma)^2}<0$, значит гипербола возрастает на всей своей области определения. При $\mu=0$ функция слева равна 1, справа равна -1, при стремлении μ к бесконечности, гипербола стремится к 1, пока экспонента в это время уходит на бесконечность, поэтому нет такого значения μ , при котором скобка обращалась бы в нуль. Значит возможно только $C_1=0$ и, следовательно, $C_2=0$, и решение тривиально.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.7 $\alpha > 0, \beta > 0, \gamma > 0, \delta = 0.$

2.2.8 $\alpha > 0, \beta > 0, \gamma = 0, \delta > 0.$

В этом случае:

$$\begin{cases} \alpha(C_1 + C_2) - \beta \mu(C_2 - C_1) = 0, \\ \delta \mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0 \end{cases}$$
(14)

Выразим C_2 через C_1 в первом уравнении:

$$\begin{cases}
C_2 = -\frac{\beta\mu + \alpha}{\beta\mu - \alpha}C_1, \\
-\delta\mu C_1\left(\frac{\beta\mu + \alpha}{\beta\mu - \alpha}e^{\mu l} + e^{-\mu l}\right) = 0
\end{cases}$$
(15)

Домножим последнее уравнение на $e^{\mu l}$ и $\frac{\beta \mu - \alpha}{\beta \mu + \alpha}$ и занулим скобку:

$$e^{2\mu l} = -\frac{\beta\mu - \alpha}{\beta\mu + \alpha}$$

Слева в уравнении, очевидно, стоит монотонно возрастающая функция. Справа имеем гиперболу с вертикальной асимптотой $\mu=-\frac{\alpha}{\beta}<0$. Но $\mu=\sqrt{-\lambda}$, поэтому рассматриваем только положительные μ . Производная функции справа по μ равна: $\frac{-2\alpha\beta}{(\beta\mu+\alpha)^2}<0$, значит гипербола убывает на всей своей области определения. При $\mu=0$ функции совпадают, затем расходятся, поэтому при положительных μ обращение скобки в нуль невозможно. Значит возможно только $C_1=0$ и, следовательно, $C_2=0$, и решение тривиально.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

2.2.9 $\alpha > 0, \beta > 0, \gamma > 0, \delta > 0.$

В этом случае:

$$\begin{cases} \alpha(C_1 + C_2) - \beta \mu(C_2 - C_1) = 0, \\ \gamma(C_1 e^{-\mu l} + C_2 e^{\mu l}) + \delta \mu(C_2 e^{\mu l} - C_1 e^{-\mu l}) = 0 \end{cases}$$
(16)

Выразим C_2 через C_1 в первом уравнении:

$$\begin{cases}
C_2 = -\frac{\beta\mu + \alpha}{\beta\mu - \alpha}C_1, \\
\gamma(C_1 e^{-\mu l} - \frac{\beta\mu + \alpha}{\beta\mu - \alpha}C_1 e^{\mu l}) + \delta\mu(-\frac{\beta\mu + \alpha}{\beta\mu - \alpha}C_1 e^{\mu l} - C_1 e^{-\mu l}) = 0
\end{cases}$$
(17)

Умножим последнее уравнение на $e^{\mu l}C_1$:

$$\begin{cases}
C_2 = -\frac{\beta\mu + \alpha}{\beta\mu - \alpha}C_1, \\
\gamma C_1 \left(1 - \frac{\beta\mu + \alpha}{\beta\mu - \alpha}e^{2\mu l}\right) + \delta\mu C_1 \left(-\frac{\beta\mu + \alpha}{\beta\mu - \alpha}e^{2\mu l} - 1\right) = 0
\end{cases}$$
(18)

Преобразуем второй уравнение:

$$C_1(-\frac{\beta\mu + \alpha}{\beta\mu - \alpha}(\gamma + \delta\mu)e^{2\mu l} - (\delta\mu - \gamma)) = 0$$

Приравняем скобку к нулю и получим уравнение, которое нужно решить относительно μ :

$$e^{2\mu l} = -\frac{\beta\mu - \alpha}{\beta\mu + \alpha}\frac{\delta\mu - \gamma}{\delta\mu + \gamma}$$

При $\mu=0$ экспонента равна 1, а функция справа -1, на бесконечности экспонента устремляется к бесконечности, монотонно возрастая, а функция справа стремится к -1, причём скорость роста экспоненты выше, чем скорость функции справа, поэтому пересечения графиков быть не может. Следовательно, скобка не может обратиться к нуль, а значит равенство нулю второго уравнения системы возможно только лишь в случае $C_1=0$. Из этого следует, что $C_2=0$ и решение тривиально.

$$C_1 = 0, C_2 = 0, X(x) = 0.$$

$2.3 \quad \lambda > 0$

В этом случае решение уравнения имеет вид:

$$X(x) = C_1 \cos \sqrt{\lambda}x + C_2 \sin \sqrt{\lambda}x.$$

Заменим $\sqrt{\lambda}$ на μ и подставим решение в граничные условия. Получим:

$$\begin{cases} \alpha C_1 - \beta \mu C_2 = 0, \\ \gamma (C_1 \cos \mu l + C_2 \sin \mu l) + \delta \mu (-C_1 \sin \mu l + C_2 \cos \mu l) = 0 \end{cases}$$
 (19)

2.3.1
$$\alpha > 0, \beta = 0, \gamma > 0, \delta = 0.$$

2.3.2
$$\alpha > 0, \beta = 0, \gamma = 0, \delta > 0.$$

2.3.3
$$\alpha = 0, \beta > 0, \gamma > 0, \delta = 0.$$

2.3.4
$$\alpha = 0, \beta > 0, \gamma = 0, \delta > 0.$$

2.3.5
$$\alpha > 0, \beta = 0, \gamma > 0, \delta > 0.$$

2.3.6
$$\alpha = 0, \beta > 0, \gamma > 0, \delta > 0.$$

В этом случае:

$$\begin{cases}
C_2 = 0, \\
C_1(\gamma \cos \mu l - \delta \mu \sin \mu l) = 0
\end{cases}$$
(20)

Ищем нетривиальные решения, поэтому занулим во втором уравнении скобку и сделаем некоторое преобразование:

$$\sqrt{\gamma^2 + (\delta\mu)^2} \left(\frac{\gamma}{\sqrt{\gamma^2 + (\delta\mu)^2}} \cos\mu l - \frac{\delta\mu}{\sqrt{\gamma^2 + (\delta\mu)^2}} \sin\mu l\right) = 0$$

Обозначим $\operatorname{tg}\Omega=\frac{\delta\mu}{\gamma}$ и свернём получившееся выражение в скобке по формуле косинуса суммы:

$$\sqrt{\gamma^2 + (\delta\mu)^2} cos(\mu l + arctg \frac{\delta\mu}{\gamma}) = 0$$

Из условий на параметры и на собственное число получим, что:

$$\mu l + \operatorname{arctg} \frac{\delta \mu}{\gamma} = \frac{\pi}{2} + \pi k, \ k \in \mathbb{N}.$$

Слева получили, очевидно, монотонно возрастающую функцию, справа уравнение горизонтальной прямой. Понятно, что, в силу свойств функций, обязательно найдётся при каждом k такое μ_k^* , которое будет удовлетворять полученному уравнению. Значит $C_1 \neq 0$ и получено нетривиальное решение (или собственная функция), соответствующая собственному числу μ_k^* .

$$C_1 = const \neq 0, C_2 = 0, X(x) = C_1 \cos \sqrt{\lambda_k} x, \sqrt{\lambda_k} \in \{\sqrt{\lambda} | \sqrt{\lambda}l + arctg \frac{\delta\sqrt{\lambda}}{\gamma} = \frac{\pi}{2} + \pi k, k \in \mathbb{N}\}.$$

Отнормируем собственную функцию:

$$1 = (C_k \cos \sqrt{\lambda_k} x, C_k \cos \sqrt{\lambda_k} x) = C_k^2 \int_0^l \cos^2 \sqrt{\lambda_k} x dx = C_k^2 (\frac{x}{2} + \frac{1}{2\lambda_k} \sin 2\lambda_k x)_0^l = C_k^2 (\frac{l}{2} + \frac{1}{2\lambda_k} \sin 2\lambda_k l)$$

Отсюда:

$$C_k = \sqrt{\frac{1}{\frac{l}{2} + \frac{1}{2\lambda_k}\sin 2\lambda_k l}}.$$

2.3.7
$$\alpha > 0, \beta > 0, \gamma > 0, \delta = 0.$$

2.3.8
$$\alpha > 0, \beta > 0, \gamma = 0, \delta > 0.$$

2.3.9
$$\alpha > 0, \beta > 0, \gamma > 0, \delta > 0.$$