Data visualization

John M. Drake & Andrew W. Park

Introduction

This is the first in a series of five exercises that constitute *Training Module 1: Introduction to Scientific Programming*, taught through the IDEAS PhD program at the University of Georgia Odum School of Ecology in conjunction with the Center for the Ecology of Infectious Diseases. This module is based on the premise that computer coding is a basic scientific skill. This module introduces the principles and practice of scientific computing with special emphasis on analysis of infectious disease data. Programming will be done in R. Students will be taught how to create reproducible research documents using R and R Markdown and to use git/Github for collaborative and individual projects. An introduction to scientific programming will teach basic operations and classes of base R, installation and use of R packages, data import and transformation, flow control with loops, writing functions, calculating summary statistics, data visualization, and basic mapping.

Recommended reading for this module is the book R for Data Science by Hadley Wickham and Garret Grolemund (O'Reilly Media, 2017).

This exercise seeks to introduce the student to basic tasks and operations required to visualize data in R using ggplot2. Data visualization is a key component of exploratory data analysis. ggplot2 implements Leland Wilkinson's idea that there is a "grammar of graphics" – that is an organizational scheme based on the semantic replationships among different graphical elements. Data visualization theory, practice, and exploratory data analysis are not covered systematically, but rather by example, with the expectation that students will develop further skills by extending the provided examples.

Case study

As a running example in this exercise, we will study a data set on the spread of Middle East Respiratory Syndrome Corona Virus (MERS-CoV) compiled and made available by Andrew Rambaut on his Github site (https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv). Github is a development platform used by developers to host a wide range of coding projects and is very popular with data scientists and others interested in open science. We will return to Github on the final day of the module. For now, we will just use it to access Rambaut's data. MERS-CoV is a positive-sense single-stranded Betacoronavirus. Its closest relatives are the SARS coronavirus, common-cold coronavirus, and other human betacoronaviruses. MERS-CoV first emerged in Suudi Arabia in 2012. It causes a severe respiratory illness Transmission to humans may be direct (person-to-person), particularly in hospitals, or from contact with infected animals. Exposure to camels is associated with many cases, although bats, particularly the Egyptian Tomb bat (Taphozous perforatus), are suspected to be the maintenance reservoir. The case fatality rate is around 40%.

Getting the data into R

To load the MERS data into an R session, do the following:

- 1. Create a working directory called ${\tt mers}$
- 2. Download the file cases.csv and move it to mers
- 3. Open a session of R Studio
- 4. Set the working directory by typing setwd('~/./mers) where . is the file path to your working directory. (Alternatively, you can navigate by using the Session drop down menu and selecting Set Working Directory.)
- 5. Create an R dataframe by typing data <- read.csv('cases.csv') as shown below.

```
mers <- read.csv('cases.csv')</pre>
```

Formatting some dates

We can inspect the data using the base R function head. We see that some variables, such as onset and hospitalized are dates, but formatted as a factor.

head(mers)

```
number FT KSA_case code gender age country province city district
                                      25
                                                           Zarqa
## 1
          1
                          25M
                                   М
                                          Jordan
## 2
                                           Jordan
          2
                          30M
                                   М
                                      30
                                                           Zarqa
## 3
          3
             1
                          40F
                                      40
                                          Jordan
                                                           Zarqa
## 4
                          60M
                                      60
          4
                                   М
                                          Jordan
                                                           Zarqa
## 5
          5
                          29M
                                   М
                                      29
                                           Jordan
                                                           Zarqa
## 6
                                   М
          6
                          33M
                                      33
                                          Jordan
                                                           Zarqa
                                           onset hospitalized sampled reported
     prior_travel hospital exposure
## 1
                                      2012-03-21
                                                   2012-04-04
## 2
                                     2012-03-30
                                                   2012-04-08
## 3
                                      2012-04-02
                                                   2012-04-09
## 4
                                     2012-04-02
## 5
                                      2012-04-11
                                                   2012-04-15
## 6
                                     2012-04-12
                                                   2012-04-14
          death discharged comorbidity severity outcome
                                                              clinical
## 1 2012-04-25
                                            fatal
                                                    fatal
                                                                 fatal
## 2
                                              CCU
                                                              clinical
## 3 2012-04-19
                                            fatal
                                                    fatal
                                                                 fatal
                                                          subclinical
## 5
                                              CCU
                                                              clinical
## 6
                                              CCU
                                                              clinical
##
     old_cluster cluster Cauchemez.cluster animal_contact camel_contact
                                                                             HCW
## 1
               Α
                        Α
                                           4
                                                      FALSE
                                                                           FALSE
## 2
               Α
                        Α
                                           4
                                                      FALSE
                                                                            TRUE
## 3
               Α
                        Α
                                           4
                                                      FALSE.
                                                                            TRUE.
## 4
               Α
                        Α
                                           4
                                                      FALSE
                                                                            TRUE
                                           4
                                                                            TRUE
## 5
               Α
                        Α
## 6
                                           4
                                                                            TRUE
               Α
                        Α
##
                              contact secondary suspected inferred
     contact_with
                                                                        notes
## 1
## 2
                1 health care worker
                                            TRUE
                                                      TRUE
                                                                  NA probable
## 3
                1 health care worker
                                            TRUE
                                                                  NA
## 4
                1 health care worker
                                            TRUE
                                                      TRUE
                                                                  NA probable
## 5
                                            TRUE
                  health care worker
                                                      TRUE
                                                                  NA probable
## 6
                                                                  NA probable
                1 health care worker
                                            TRUE
                                                      TRUE
                                                                               citation
## 1 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ_2013_19_Supp1_S12_S18.pdf
## 2 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ_2013_19_Supp1_S12_S18.pdf
## 3 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ_2013_19_Supp1_S12_S18.pdf
## 4 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ_2013_19_Supp1_S12_S18.pdf
## 5 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ 2013 19 Supp1 S12 S18.pdf
## 6 http://applications.emro.who.int/emhj/v19/Supp1/EMHJ_2013_19_Supp1_S12_S18.pdf
     citation2 citation3 citation4 citation5
                                                     sequence accession patient
## 1
```

```
## 2
                                                                                  2
## 3
                                                Jordan-N3_2012 KC776174
                                                                                  3
## 4
                                                                                  4
                                                                                  5
## 5
## 6
                                                                                  6
##
     speculation
                                                                X.1
                  NA http://promedmail.org/direct.php?id=3587349
## 1
## 2
                  NA
## 3
                  NA
## 4
                  NA
## 5
                  NA
## 6
                  NA
class(mers$onset)
```

[1] "factor"

These dates can be reformatted using the lubridate package. Here we create new variables using the Date class. But, first we correct a few errors.

```
mers$hospitalized[890] <- c('2015-02-20')
mers <- mers[-471,]

library(lubridate)
mers$onset2 <- ymd(mers$onset)
mers$hospitalized2 <- ymd(mers$hospitalized)
class(mers$onset2)</pre>
```

[1] "Date"

We may also find it useful to have a simple numerical value for the days elapsed since the start of the epidemic. We use the following code to search for the earliest onset date.

```
day0 <- min(na.omit(mers$onset2))</pre>
```

Question. Why do we use the function na.omit? What happens if we neglect this command?

Now we can create a new, numeric value for the "epidemic day" for each case.

```
mers$epi.day <- as.numeric(mers$onset2 - day0)</pre>
```

Question. What purpose does the command as.numeric serve?

Making a plot

Next, we load ggplot2.

```
library(ggplot2)
```

We can explore some of the MERS data using the function ggplot. One plot we might wish to produce is the *epidemic curve* which is basically a bar plot. An empty plot can be produced using the command ggplot(data=mers). The epidemic curve is then produced by adding a bar plot using the geom function geom_bar. The last line of our code adds some labels.

```
ggplot(data=mers) +
   geom_bar(mapping=aes(x=epi.day)) +
   labs(x='Epidemic day', y='Case count', title='Global count of MERS cases by date of symptom onset',
        caption="Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv")
```

Global count of MERS cases by date of symptom onset

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

Exercise. To produce this plot, type all the commands up to this point *exactly* as they appear. Particularly, note that as we "build" the plot in the last code snippet, we end each line with the addition symbol "+". What happens if we don't use this convention?

Of course, all these cases are distributed among a number of different countries. We can modify the plot to show this using the using the aesthetic fill.

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

In this example, we've shown how to make a basic bar plot with ggplot and the geom function geom_bar. Our mapping of data objects to plot objects was performed using aes and we used the fill aesthetic to examing the distribution of cases among countries. There are lots of variations on the bar plot that we can examine. For instance, we can modify the position, which is another argument to geom_bar.

Exercise. Modify the epidemic curve using the argument position=fill. What does this plot show?

Exercise. Another way to modify a bar plot is to change the coordinates. This can be done by "adding" coord_flip() and coord_polar() to the plot. Modify the epidemic curve using the argument position=fill. What does this plot show?

Univariate plots

Of course, there are lots of plot types other than bar plots. A quick reference for some of the more common plot types is the *ggplot2 Cheat Sheet*, available online at https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf. To explore some of these plot types, we will first construct a continuous quantity that is often of interest, the *infectious period*. From the standpoint of disease transmission, the infectious period is best defined as the duration of infectiousness for a patient. From an epidemiological point of view, this may often be approximated as the time between the onset of symptoms and the time of death, hospitalization, or isolation. Here we caculate the infectious period and plot a histogram.

```
mers$infectious.period <- mers$hospitalized2-mers$onset2  # calculate "raw" infectious period class(mers$infectious.period)  # these data are class "difftime"
```

[1] "difftime"

```
mers$infectious.period <- as.numeric(mers$infectious.period, units = "days") # convert to days
ggplot(data=mers) +
   geom_histogram(aes(x=infectious.period)) +
   labs(x='Infectious period', y='Frequency', title='Distribution of calculated MERS infectious period',
        caption="Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv")</pre>
```

Distribution of calculated MERS infectious period

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

Wait a minute! What is a negative infectious period?

In the case of MERS, this epidemiological definition of infectious period is misleading, because in some cases the main source of transmission has been nosocomial (infections in a health care setting). This appears in our data as a negative time interval between onset and hospitalization. Perhaps we would wish to calculate a *new* value, which is the calculated infectious period in the case where it is positive and zero otherwise. To do this, we rely on the handy function ifelse.

```
mers$infectious.period2 <- ifelse(mers$infectious.period<0,0,mers$infectious.period)
ggplot(data=mers) +
   geom_histogram(aes(x=infectious.period2)) +
   labs(x='Infectious period', y='Frequency',
        title='Distribution of calculated MERS infectious period (positive values only)', caption="Data"</pre>
```

Distribution of calculated MERS infectious period (positive values only)

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

Exercise. Investigate the frequency of hospital-acquired infections of MERS

There are lots of different plot types that one can use to inspect continuously valued or integer-valued data like these. For instance, the density plot

```
ggplot(data=mers) +
  geom_density(mapping=aes(x=infectious.period2)) +
  labs(x='Infectious period', y='Frequency',
     title='Probability density for MERS infectious period (positive values only)', caption="Data from the content of the co
```

Probability density for MERS infectious period (positive values only)

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

Ot the dot plot

Area plot for MERS infectious period (positive values only)

Data from: https://github.com/rambaut/MERS-Cases/blob/gh-pages/data/cases.csv

Exercise. Use the infectious period data calculated in mersinfectious.period2 to experiment with other univariate plot types like $geom_dotplot$ and $geom_bar$