COMPUTATIONAL INTELLIGENCE

(INTRODUCTION TO MACHINE LEARNING) SS17

Lecture 2:

- Linear Regression
- Gradient Descent
- Non-linear basis functions

LINEAR REGRESSION MOTIVATION

Why Linear Regression?

- Simplest machine learning algorithm for regression
 - Widely used in biological, behavioral and social sciences to describe and to extract relationships between variables from data
 - Prediction of real-valued outputs
 - Easy to implement, fast to execute
 - Benchmark algorithm for comparison with more complex algorithms
- Introduction to notation and concepts that we will need again later in the course
 - Data format, vector & matrix notation
 - Learning from data by minimizing a cost function
 - Gradient descent
 - Non-linear features and basis functions
 - Preparation for neural networks

Applications of (linear) regression

- Brain computer interfaces
 - https://www.youtube.com/watch?v=Ae6En8-eaww
- Neuroprosthetic control
 - https://www.youtube.com/watch?v=X_AI4MiY6L4

LINEAR REGRESSION WITH ONE INPUT

Linear regression with one input

A regression problem

- We want to learn to predict a person's height based on his/her knee height and/or arm span
- This is useful for patients who are bed bound or in a wheelchair and cannot stand to take an accurate measurement of their height

Knee Height [cm]	Arm span [cm]	Height [cm]
50	166	171
56	172	175
52	174	168

Example Data

Knee height [cm]	Arm span [cm]	Height [cm]
50	166	171
56	172	175
52	174	168

m=30 data points

Example Data

Knee Height [cm]	Arm span [cm]	Height [cm]
50	166	171
56	172	175
52	174	168

Linear regression with one input

Knee Height [cm]	Height [cm]
50	171
56	175
52	168

Hypothesis
$$h_{m{ heta}}(x) = heta_0 + heta_1 \cdot x$$

Parameters
$$\mathbf{?}$$
 $\boldsymbol{\theta} = (\theta_0, \theta_1)$

Formalization of problem

	Knee Height [cm]	Height [cm]	
	50	171	
	56	175	
$x^{(i)}$	52	168	$y^{(i)}$
			-

m=30 data points

Given m training examples

$$\langle x^{(1)}, y^{(1)} \rangle \dots \langle x^{(m)}, y^{(m)} \rangle$$

Goal: learn parameters

$$\boldsymbol{\theta} = (\theta_0, \theta_1)$$

such that

$$h_{\boldsymbol{\theta}}(x^{(i)}) = \theta_0 + \theta_1 \cdot x^{(i)} \approx y^{(i)}$$

for all training examples i=1...30.

Least Squares Objective

Minimize Error

ze Error
$$J(\theta_0,\theta_1) = \left(h_{\boldsymbol{\theta}}\left(x^{(i)}\right) - y^{(i)}\right)^2$$

$$h_{\boldsymbol{\theta}}\left(x^{(i)}\right)$$

$$y^{(i)}$$

$$y^{(i)}$$

$$knee height$$

$$x^{(i)}$$

 $\theta_0 = 150$ $\theta_1 = 0.6$

Least Squares Objective

• Minimize Error $J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$

cost function

mean squared error

Least Squares Objective

• Minimize Error $J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$

cost function

mean squared error

Cost function illustrated

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\boldsymbol{\theta}} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

Properties of cost function:

- "Bowl"-shaped
- Unique local and global minimum (under

"regular" conditions)

Minimizing the cost

- Two ways to find the parameters $oldsymbol{ heta}=(heta_0, heta_1)$ minimizing

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

- Gradient descent
- Direct analytical solution (setting derivatives = 0)

GRADIENT DESCENT

Descending in the steepest direction

Gradient descent on some arbitrary cost function $J(\theta_0, \theta_1)$...

Gradient descent algorithm

Repeat until convergence

Gradient is orthogonal to contour lines

Potential issues with gradient descent

- May get stuck in local minima
- Learning rate too small: slow convergence
- Learning rate too large: oscillations, divergence

LINEAR REGRESSION WITH GRADIENT DESCENT

(ONE INPUT)

Application of gradient descent

Linear regression cost

$$J(\theta_0, \theta_1) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^2$$

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

$$\theta_j := \theta_j - \eta \cdot \frac{\partial}{\partial \theta_j} J(\theta_0, \theta_1)$$

(simultaneous update)

$$\theta_0 := \theta_0 - 2\underline{\eta} \cdot \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right)$$
 "learning rate"
$$\theta_1 := \theta_1 - 2\underline{\eta} \cdot \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - \boldsymbol{y}^{(i)} \right) \cdot \boldsymbol{x}^{(i)}$$
 "input" (simultaneous update)

Predicting height from knee height

Optimal fit to training data

LINEAR REGRESSION

MORE GENERAL FORMULATION: MULTIPLE FEATURES

Multiple inputs (features)

		Knee Height x ₁	Arm span X2	Age x ₃	Height y
		50	166	32	171
m -	_	56	172	17	175
,,,		52	174	62	168
			Y		
ioni			n = 3	3	

$$\boldsymbol{x}^{(2)} = \begin{pmatrix} 56\\172\\17 \end{pmatrix}$$

$$x_3^{(2)} = 17$$

Notation:

m ... number of training examples

 $n\,$... number of features

 $oldsymbol{x}^{(i)}$... input features of \emph{i} th training example (vector-valued)

 $x_i^{(i)}$... value of feature j in ith training example

Linear hypothesis

Hypothesis (one input):

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

Hypothesis (multiple input features):

$$h_{\boldsymbol{\theta}}(\boldsymbol{x}) = \theta_0 + \theta_1 \cdot x_1 + \dots + \theta_n \cdot x_n$$

Example: h(x) = 50 + 0.5*kneeheight + 0.3*armspan + 0.1*age

More compact notation:

$$h_{m{ heta}}(m{x}) = m{x}^Tm{ heta}$$
 $m{x} = egin{pmatrix} x_0 \ x_1 \ dots \ y_n \end{pmatrix}$ $m{ heta} = egin{pmatrix} heta_0 \ heta_1 \ dots \ x_n \end{pmatrix}$ Introduce $x_0 = 1$ Why? Notation convenience!

Multiple inputs (features) revisited

	X 0	Knee Height x1	Arm span X2	Age X3	Height y
	1	50	166	32	171
m \dashv	1	56	172	17	175
	1	52	174	62	168
	1				
			γ	J	
Nlatatia			n = 3		

$$\boldsymbol{x}^{(2)} = \begin{pmatrix} 1\\56\\172\\17 \end{pmatrix}$$

$$x_0^{(2)} = 1$$

$$x_3^{(2)} = 17$$

Notation:

m ... number of training examples

 $n\,$... number of features

 $m{x}^{(i)}_{\ldots}$ input features of \emph{i} th training example (vector-valued) ... value of feature \emph{j} in \emph{i} th training example $x^{(i)}_{\emph{j}}$

Matrix and vector notation

X 0	Knee Height x ₁	Arm span X2	Age X3	Height y
1	50	166	32	171
1	56	172	17	175
1	52	174	62	168

$$m{X} = egin{pmatrix} 1 & 50 & 166 & 32 \ 1 & 56 & 172 & 17 \ 1 & 52 & 174 & 62 \end{pmatrix} \ m{y} = egin{pmatrix} 171 \ 175 \ 168 \end{pmatrix}$$

$$m{x}^{(i)} = egin{pmatrix} x_0^{(i)} \ x_1^{(i)} \ dots \ x_n^{(i)} \end{pmatrix}$$

 $m{y} = egin{pmatrix} y^{(1)} \ y^{(2)} \ dots \ y^{(m)} \end{pmatrix}$

features of i'th training example $(n+1) \times 1$

design matrix $m \times (n+1)$

output/target vector *m* × 1

LINEAR REGRESSION WITH GRADIENT DESCENT

(GENERAL FORMULATION)

Linear regression problem statement

- Hypothesis:
$$h_{oldsymbol{ heta}}(oldsymbol{x}) = oldsymbol{x}^T oldsymbol{ heta}$$

$$\text{- Cost function: } J(\pmb{\theta}) = \frac{1}{m} \sum_{i=1}^m \left(h_{\pmb{\theta}} \left(\pmb{x}^{(i)} \right) - y^{(i)} \right)^2$$

high-dimensional quadratic ("bowl"-shaped) function

Goal is to find parameters which minimize the cost

Gradient descent (multiple features)

with one input feature:

$$\theta_0 := \theta_0 - 2\underline{\eta} \cdot \frac{1}{m} \sum_{i=1}^m \underbrace{\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right) - \boldsymbol{y}^{(i)}\right)}_{\text{"learning rate"}} \\ \theta_1 := \theta_1 - 2\underline{\eta} \cdot \frac{1}{m} \sum_{i=1}^m \underbrace{\left(h_{\boldsymbol{\theta}}\left(\boldsymbol{x}^{(i)}\right) - \boldsymbol{y}^{(i)}\right) \cdot \boldsymbol{x}^{(i)}}_{\text{"error"}} \\ \text{"input"}$$

with *n* input features:

$$\theta_j := \theta_j - 2 \underline{\eta} \cdot \frac{1}{m} \sum_{i=1}^m \left(h_{\boldsymbol{\theta}} \left(\boldsymbol{x}^{(i)} \right) - y^{(i)} \right) \cdot \underline{x}_j^{(i)} \qquad \text{(simultaneous update for j=0...n)}$$

For j = 0: define for convenience
$$x_0^{(i)}=1$$

LINEAR REGRESSION ANALYTICAL SOLUTION

Analytical solution

• Set all partial derivatives of cost function $J(\theta)$ = 0

Solving system of linear equations yields:

$$\left[\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}\right]$$

Moore-Penrose Pseudoinverse of $oldsymbol{X}$

 $oldsymbol{X}$... design matrix $oldsymbol{y}$... output/target vector

• Note: This analytical solution requires that columns of $m{X}$ are linearly independent ("regular" conditions)

Example: analytical solution applied to problem with one input

Knee Height [cm]	Height
50	171
56	175
52	168

Example: analytical solution applied to problem with one input

Knee Height [cm]	Height [cm]
50	171
56	175
52	168

$$X = \begin{pmatrix} 1 & 50 \\ 1 & 56 \\ 1 & 52 \end{pmatrix} \quad y = \begin{pmatrix} 171 \\ 175 \\ 168 \\ \vdots \end{pmatrix}$$

$$30 \times 2 \quad 30 \times 1$$

$$\boldsymbol{\theta}^* = \left(\boldsymbol{X}^T \boldsymbol{X}\right)^{-1} \boldsymbol{X}^T \boldsymbol{y}$$
$$= \begin{pmatrix} 137.4 \\ 0.8 \end{pmatrix}$$

$$\boldsymbol{X}^{T}\boldsymbol{X} = \begin{pmatrix} 30 & 1577 \\ 1577 & 83222 \end{pmatrix} \qquad 2 \times 2$$
$$(\boldsymbol{X}^{T}\boldsymbol{X})^{-1} = \begin{pmatrix} 7.994 & -0.152 \\ -0.152 & 0.003 \end{pmatrix} \qquad 2 \times 2$$
$$\boldsymbol{X}^{T}\boldsymbol{y} = \begin{pmatrix} 5383 \\ 283210 \end{pmatrix} \qquad 2 \times 1$$

Predicting height from knee height

$$oldsymbol{ heta}^* = \left(oldsymbol{X}^T oldsymbol{X} \right)^{-1} oldsymbol{X}^T oldsymbol{y}$$

$$= \begin{pmatrix} 137.4 \\ 0.8 \end{pmatrix}$$

Gradient descent

Analytical solution

- Need to choose learning rate η
- Iterative algorithm (needs many iterations to converge)
- Works well even when number of input features is large n

 \cdot No need to choose η

Direct solution (no iteration)

• Slow if n is too large (inverting $n \times n$ matrix)

NON-LINEAR FEATURES

(NON-LINEAR BASIS FUNCTIONS)

Non-linear trends in data

How can we learn non-linear hypotheses?

X	У
0.01	-0.27
-1.22	2.63
0.17	-0.13

$$h_{\boldsymbol{\theta}}(x) = \theta_0 + \theta_1 \cdot x + \theta_2 \cdot x^2$$

Linear fit to this "non-linear" data

X	У
0.01	-0.27
-1.22	2.63
0.17	-0.13

$$m{X} = egin{pmatrix} 1 & 0.01 \\ 1 & -1.22 \\ 1 & 0.17 \\ \vdots \end{pmatrix} \quad m{y} = egin{pmatrix} -0.27 \\ 2.63 \\ -0.13 \\ \vdots \end{pmatrix}$$
 standard design matrix

$$\mathbf{y} = \begin{pmatrix} -0.27 \\ 2.63 \\ -0.13 \\ \vdots \end{pmatrix}$$

Hypothesis:
$$h_{\boldsymbol{\theta}}(x) = \theta_0 + \theta_1 \cdot x$$

Optimal parameters:
$$oldsymbol{ heta}^* = \left(oldsymbol{X}^Toldsymbol{X}
ight)^{-1}oldsymbol{X}^Toldsymbol{y}$$

Linear fit to this "non-linear" data

Non-linear (quadratic) fit

X	у
0.01	-0.27
-1.22	2.63
0.17	-0.13

$$\boldsymbol{\Phi} = \begin{pmatrix} 1 & \phi_1 = x & \phi_2 = x^2 \\ 1 & 0.01 & 0.01^2 \\ 1 & -1.22 & (-1.22)^2 \\ 1 & 0.17 & (0.17)^2 \end{pmatrix} \quad \boldsymbol{y} = \begin{pmatrix} -0.27 \\ 2.63 \\ -0.13 \\ \vdots \end{pmatrix}$$

design matrix with non-linear features

Hypothesis:
$$h_{\boldsymbol{\theta}}(\boldsymbol{\phi}) = \theta_0 + \theta_1 \cdot \phi_1 + \theta_2 \cdot \phi_2$$

Optimal parameters:
$$oldsymbol{ heta}^* = \left(oldsymbol{\Phi}^Toldsymbol{\Phi}
ight)^{-1}oldsymbol{\Phi}^Toldsymbol{y}$$

Non-linear (quadratic) fit

Non-linear (sinusoid) fit

X	У
0.01	-0.27
-1.22	2.63
0.17	-0.13

$$\Phi = \begin{pmatrix}
1 & \phi_1 = x & \phi_2 = \cos(x) \\
1 & 0.01 & \cos(0.01) \\
1 & -1.22 & \cos(-1.22) \\
1 & 0.17 & \cos(0.17) \\
\vdots & \vdots
\end{pmatrix} \mathbf{y} = \begin{pmatrix}
-0.27 \\
2.63 \\
-0.13 \\
\vdots
\end{pmatrix}$$

design matrix with non-linear features

Hypothesis:
$$h_{\boldsymbol{\theta}}(\boldsymbol{\phi}) = \theta_0 + \theta_1 \cdot \phi_1 + \theta_2 \cdot \phi_2$$

Optimal parameters:
$$oldsymbol{ heta}^* = \left(oldsymbol{\Phi}^Toldsymbol{\Phi}
ight)^{-1}oldsymbol{\Phi}^Toldsymbol{y}$$

Non-linear (sinusoidal) fit

$$h_{\theta}(x) = 3.12 \cdot 1 - 1.07 \cdot x - 3.5 \cdot \cos(x)$$

Image: JPEG = cosine-basis

Each block of 8x8 pixels is represented in a Fourier basis of cosine filters

Better representation of edges and corners Allows for compression

Non-linear input features (in general)

feature 2 of all training examples

$$\mathbf{\Phi} = \begin{pmatrix} 1 & \phi_1^{(1)} & \phi_2^{(1)} & \dots & \phi_n^{(1)} \\ 1 & \phi_1^{(2)} & \phi_2^{(2)} & \dots & \phi_n^{(2)} \\ \vdots & & & & \\ 1 & \phi_1^{(m)} & \phi_2^{(m)} & \dots & \phi_n^{(m)} \end{pmatrix}$$

all features of 1st training example

- Feature 2 for each training example i is computed by applying a non-linear basis function: $\phi_2^{(i)} = \phi_2(\boldsymbol{x}^{(i)})$
- Allows to learn a variety of non-linear functions with the same technique(s):
 - Analytical $m{ heta}^* = \left(m{\Phi}^Tm{\Phi}
 ight)^{-1}m{\Phi}^Tm{y}$ or gradient descent

Polynomial regression

Features are powers of x

$$\phi_0 = x^0, \phi_1 = x^1, \phi_2 = x^2, \dots, \phi_n = x^n$$

n = degree of polynome to be learned

Radial basis functions

- "Gaussian"-shaped RBFs:
 - Each basis function j has a **center** c_j in the input space
 - The width of the basis functions is determined by σ

$$\phi_j(\boldsymbol{x}) = \exp\left(-\frac{1}{2\sigma^2} \cdot \|\boldsymbol{x} - \boldsymbol{c}_j\|^2\right)$$

$$\phi_1(x) \quad \phi_2(x) \quad \phi_3(x)$$

$$\sigma = 1$$

$$\sigma = 1$$
 $\sigma = 1$
 $\sigma =$

Radial basis functions

- "Gaussian"-shaped RBFs:
 - Each basis function j has a **center** c_j in the input space
 - The width of the basis functions is determined by σ

$$\phi_j(\boldsymbol{x}) = \exp\left(-\frac{1}{2\sigma^2} \cdot \|\boldsymbol{x} - \boldsymbol{c}_j\|^2\right)$$

Radial basis functions

- "Gaussian"-shaped RBFs:
 - Each basis function j has a **center** c_j in the input space
 - The **width** of the basis functions is determined by σ

$$\phi_j(\boldsymbol{x}) = \exp\left(-\frac{1}{2\sigma^2} \cdot \|\boldsymbol{x} - \boldsymbol{c}_j\|^2\right)$$

Fitting a single RBF to data

Fitting RBFs to data

$$h_{\pmb{\theta}}(x) = \theta_0 + \theta_1 \cdot \phi_1(x) + \theta_2 \cdot \phi_2(x) + \theta_3 \cdot \phi_3(x)$$

$$h_{\theta}(x) = 21.7 - 11.4 \cdot \phi_1(x) - 10.6 \cdot \phi_2(x) - 14.9 \cdot \phi_3(x)$$

SUMMARY (QUESTIONS)

Some questions...

- Hypothesis for linear regression = ?
- Cost function for linear regression = ?
- How many local minima may the cost function for lin. reg. have (under regular conditions)?
- Name two ways to minimize the cost function?
- General gradient descent formula?
- Linear regression with gradient descent formula?
- What issues can arise during gradient descent?
- What is the design matrix? What are its dimensions?
- Analytical solution for linear regression = ?
 - What are the components of the solution?
- Pros and Cons of gradient descent vs. analytical solution?
- How can one learn non-linear hypotheses with linear regression?
- What is polynomial regression?
- What are radial basis functions?

What is next?

- Classification with Logistic Regression
- Gradient descent tricks & more advanced optimization techniques
- Underfitting & Overfitting
- Model selection (Training, Validation and test set)