CS 346 Class Notes

Mark Lindberg

Feb 22, 2016

Last Time:

 Π' is an authentication scheme if it is

- 1. Unforgeable.
- 2. CCA-secure.

We built one last time from a CPA-secure encryption scheme Π_E , and a strongly secure MAC Π_M , using the "Encrypt, then authenticate" mentality.

The key claim was that Pr[valid query] is negligible.

Then \mathcal{A} passes some (c,t) to Dec'_k oracle such that

- 1. $\operatorname{Dec}'_k((c,t)) \neq \perp$
- 2. (c,t) is not the output of a prior Enc'_k query.

This Time:

It remains to show that Π' is a CCA-secure.

Fix an adversary \mathcal{A} in the experiment. Let $\mathsf{PrivK}^{\mathsf{CCA}}_{\mathcal{A},\Pi'}(n) = 1$ be the event " \mathcal{A} succeeds". We need $\Pr[\mathcal{A} \text{ succeeds}] \leq \frac{1}{2} + \mathsf{negl}(n)$.

Proof idea: Create an adversary \mathcal{A}_E for the experiment $\mathsf{PrivK}_{\mathcal{A}_E,\Pi_E}^{\mathsf{CPA}}(n)$ that simulates \mathcal{A} . \mathcal{A}_E need to simulate oracle queries of \mathcal{A} . A key k_M is chosen at uniform.

Case 1: \mathcal{A}_E calls Enc_{k_E} oracle on m, gets c. \mathcal{A}_E computes $t = \mathsf{Mac}_{k_M}(c)$. \mathcal{A}_E gives (c,t) to \mathcal{A} .

Case 2: \mathcal{A} calls Dec'_k oracle on (c,t). If (c,t) output of a previous Enc'_k call, output corresponding m. Otherwise, return \bot .

$$\begin{aligned} \Pr[\mathcal{A} \text{ succeeds}] &= \Pr[\mathcal{A} \text{ succeeds} \land \text{valid query}] + \Pr[\mathcal{A} \text{ succeeds} \land \overline{\text{valid query}}] \\ &\leq \Pr[\text{valid query}] + \Pr[\mathcal{A} \text{ succeeds} \land \overline{\text{valid query}}] \end{aligned}$$

 \mathring{A} decides on m_1, m_2 . \mathcal{A}_E picks the same m_1, m_2 . Gets back the ciphertext $\mathsf{Enc}_{k_E}(m_b)$. \mathcal{A}_E computes $t = \mathsf{Mac}_{k_M}(c)$. It return (c,t) to \mathcal{A} .

The simulation of \mathcal{A} by \mathcal{A}_E is faithful as long as "valid query" does not occur.

$$\Pr[\mathcal{A} \text{ succeeds} \land \overline{\text{valid query}}] = \Pr[\mathcal{A}_E \text{ succeeds} \land \overline{\text{valid query}}]$$

$$\leq \Pr[\mathcal{A}_E \text{ succeeds}]$$

$$\leq \frac{1}{2} + \text{negl}(n)$$

There's a nice example showing that it is crucial that k_E, k_M are chosen independently. Suppose both were set to the same k, F is a strong PRP. This implies that F^{-1} is also a strong PRP. (Pseudo-random permutation)

The CCA-scheme for $\frac{n}{2}$ bit messages is $c = F_k(r||m)$, where both are $\frac{n}{2}$ -bit blocks. For the strongly secure MAC, it is possible to use $t = F_k^{-1}(m)$. Yeah, uh...

If we compose them, the tag is the unencrypted message.

Section 4.7: Information-theoretic MACs.

Experiment: Mac-forge $_{\mathcal{A},\Pi}^{1-\mathrm{time}}$. \mathcal{M} is the message space. \mathcal{T} is the tag space. \mathcal{K} is the key space. \mathcal{A} picks a message $m' \in \mathcal{M}$, calls Mac_k oracle to get t'. \mathcal{A} outputs a pair (m,t). \mathcal{A} succeeds if $Vrfy_k(m,t) = 1$ AND $m \neq m'$.

Is there a MAC Π such that $\Pr[\mathsf{Mac\text{-}forge}_{\mathcal{A},\Pi}^{1\text{-}time} = 1] \leq \frac{1}{|\mathcal{T}|}$ for ALL \mathcal{A} ? (Not restricted to PPT.)

Yes. If we use a "strong universal function," also called a pairwise-independent family of functions or strongly uniform family of hash functions.

f is strongly universal if $\forall m, m'$ such that $m \neq m'$ and $t, t' \in \mathcal{T}$, $\Pr[f_k(m) = t \land f_k(m') =$ t'] = $\frac{1}{|\mathcal{T}|^2}$.

Theorem: A strongly universal f gives a MAC Π which satisfies spiderweb.

Define $\mathsf{Mac}_k(m)$ is $f_k(m)$, with canonical verification.

Claim 1: $\forall m \in \mathcal{M}, t\mathcal{T} = \mathsf{Mac}_k(m), \Pr[f_k(m) = t] = \frac{1}{|\mathcal{T}|}$

Let $m' \in \mathcal{M}$, $m' \neq m$ (assuming $|\mathcal{M}| \geq 2$). Then

$$\Pr[f_k(m) = t] = \sum_{t \in \mathcal{T}} \Pr[f_k(m) = t \land f_k(m') = t']$$

$$= \sum_{t \in \mathcal{T}} \frac{1}{|T|^2}$$

$$= \frac{|\mathcal{T}|}{|\mathcal{T}|^2}$$

$$= \frac{1}{|\mathcal{T}|}$$

Then by conditional probability,

$$\Pr[f_k(m) = t \mid f_k(m') = t']$$

$$= \frac{\Pr[f_k(m) = t \land f_k(m') = t']}{\Pr[f_k(m') = t']}$$

$$= \frac{\frac{1}{|\mathcal{T}|^2}}{\frac{1}{|\mathcal{T}|}}$$

$$= \frac{1}{|\mathcal{T}|}$$

The classic strong universal function. Pick a prime p. Let $\mathcal{K} = \mathbb{Z}_p \times \mathbb{Z}_p$, $\mathcal{M} = \mathbb{Z}_p$, and $\mathcal{T} = \mathbb{Z}_p$.

 $f_{a,b}(m) = (a \times m + b) \mod p.$

EXAM:

Study problem sets 1 and 2 solutions! Remember and learn the basic definitions and concepts.

PRG, PRF, PRP, weak PRF.

Notesheet, writing on both sides. Can be printed. YESSSSSS.