TRIGONOMETRY

Chapter 01

2nd secondary

SISTEMAS DE MEDICIÓN ANGULAR I

HELICO | MOTIVATION

Fuente: YT El Show de aprender

TRIGONOMETRÍA SACO OLIVEROS

ÁNGULO TRIGONOMÉTRICO

Es aquel ángulo que se genera por la rotación de un rayo alrededor de un punto fijo llamado vértice, desde una posición inicial hasta otra final.

- Al punto O se le denomina vértice.
- Al rayo en posición inicial se le denomina lado inicial.
- Al rayo en posición final se le denomina lado final.

TRIGONOMETRÍA SACO OLIVEROS

CARACTERÍSTICAS DEL ÁNGULO TRIGONOMÉTRICO

Su medida es positiva si el giro se efectúa en sentido anti horario ($\alpha > 0$)

Su medida es negativa si el giro se efectúa en sentido horario (β < 0)

SISTEMAS DE MEDICIÓN ANGULAR

· <u>SISTEMA SEXAGESIMAL (INGLÉS)</u>

Unidades de medida:

GRADO:

MINUTO:

SEGUNDO:

Equivalencias:

$$1^{\circ} = 60'$$

$$1' = 60''$$

$$1^{\circ} = 3600''$$

Nota:

$$\mathbf{a}^{\circ} \mathbf{b}' \mathbf{c}'' = \mathbf{a}^{\circ} + \mathbf{b}' + \mathbf{c}''$$

Donde: b, c < 60

$$180^{\circ} = 179^{\circ} + 59' + 60''$$

$$180^{\circ} = 179^{\circ} 59' 60''$$

REGLAS DE CONVERSIÓN

Para convertir medidas angulares sexagesimales de una unidad a otra, se utiliza :

TRIGONOMETRÍA SACO OLIVEROS

- 1 Convierte los siguientes ángulos a minutos sexagesimales :
 - I) 12°
- II) 25°

III) 31°

RESOLUCIÓN

Recordar:

Multiplicamos por 60 a cada ángulo:

I)
$$12^{\circ} = 12(60') = 720'$$

II)
$$25^{\circ} = 25(60') = 1500'$$

III)
$$31^{\circ} = 31(60') = 1860'$$

- Convierte los siguientes ángulos a grados sexagesimales:

I) 480' II) 540' III) 720'

RESOLUCIÓN

Recordar:

Dividimos cada ángulo entre 60:

I)
$$480' = \left(\frac{480}{60}\right)^0 = 8^\circ$$

II)
$$540' = \left(\frac{540}{60}\right)^0 = 9^\circ$$

III)
$$720' = \left(\frac{720}{60}\right)^0 = 12^\circ$$

Convierte los siguientes ángulos a minutos sexagesimales:

$$\alpha = 5^{\circ} 20' \qquad \beta = 12^{\circ} 15'$$

RESOLUCIÓN

$$\alpha = 5^{\circ} 20' = 5^{\circ} + 20'$$

$$= 5(60') + 20'$$

$$= 300' + 20'$$

$$\alpha = 320'$$

$$eta = 12^{\circ} 15' = 12^{\circ} + 15'$$

$$= 12(60') + 15'$$

$$= 720' + 15'$$
 $\beta = 735'$

Calcule α + β , si: $\alpha = 32^{\circ} 23' 46''$

$$\beta = 13^{\circ} \, 45' \, 22''$$

Importante: Primero operamos por separado los grados, minutos y segundos sexagesimales.

Recordar:
$$60'' = 1'$$

$$60' = 1^{\circ}$$

RESOLUCIÓN

$$\alpha = 32^{\circ} 23' 46''$$
 $\beta = 13^{\circ} 45' 22''$

$$\alpha + \beta = 45^{\circ} 68' 68'' + 1' - 60'' + 1^{\circ} - 60'$$

$$\alpha + \beta = 46^{\circ} 9' 8''$$

Efectúe:

$$\mathbf{E} = \frac{\mathbf{1}^{\circ} \, \mathbf{2}'}{\mathbf{2}'} + \frac{\mathbf{2}^{\circ} \, \mathbf{3}'}{\mathbf{3}'} + \frac{\mathbf{3}^{\circ} \, \mathbf{4}'}{\mathbf{4}'}$$

Recordar:

En el sistema sexagesimal:

x 60

GRADOS

MINUTOS

RESOLUCIÓN

Convertimos todo a minutos sexagesimales:

$$E = \frac{1(60') + 2'}{2'} + \frac{2(60') + 3'}{3'} + \frac{3(60') + 4'}{4'}$$

$$E = \frac{60' + 2'}{2'} + \frac{120' + 3'}{3'} + \frac{180' + 4'}{4'}$$

$$E = \frac{62}{2} + \frac{123}{3} + \frac{184}{4}$$

$$E = 31 + 41 + 46$$

Luis tiene dos relojes de pared, los cuales se han detenido a diferentes horas del día, tal como muestra la figura.

$$\alpha = 62^{\circ}36'$$

$$\beta = 84^{\circ}24'$$

¿ Cuál es la suma de dichos ángulos ? I

RESOLUCIÓN

Recordar:

En el Sistema Sexagesimal:

Sumamos α con β :

$$\alpha = 62^{\circ} 36' \\ \beta = 84^{\circ} 24' +$$

$$\alpha + \beta = 146^{\circ} 60'$$

$$\alpha + \beta = 146^{\circ} + 1^{\circ}$$

$$\therefore \alpha + \beta = 147^{\circ}$$

7

Un profesor ha planteado un reto a cuatro alumnos : Jesús, Daniel, Ana y Elizabeth.

El reto consiste en calcular m-2n+p, si a partir del gráfico la medida del ángulo α equivale a m° $n^{'}$ $p^{''}$

Los alumnos contestaron:

> Jesús: 31

➤ Daniel : -11

> Ana: 32

> Elizabeth: -10

¿ Quién contestó correctamente?

RESOLUCIÓN

Según la figura:

$$\alpha$$
 + 45° 30′ 30″ + 56° 40′ 40″ = 180° α + 101° 70′ 70″ = 180° $+$ 1′ - 60″ $+$ 1° - 60′

$$\alpha + 102^{\circ} 11' 10'' = 180^{\circ}$$

$$\alpha = 180^{\circ} - 102^{\circ} 11' 10''$$

Recordar:

$$180^{\circ} = 179^{\circ} \, 59' \, 60''$$

$$\alpha = 179^{\circ} 59' 60'' - 102^{\circ} 11' 10''$$
 $\alpha = 77^{\circ} 48' 50'' = m^{\circ} n' p''$

Luego:

$$m - 2n + p = 77 - 2 (48) + 50$$

= 77 - 96 + 50
= 31

Jesús contestó correctamente.

