

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO PARÁ PRÓ-REITORIA DE ENSINO COORDENADORIA DE TELEMÁTICA DO CAMPUS MARACANAÚ BACHARELADO EM AGRONOMIA

LUCAS PALHETA SAMPAIO

FERRAMENTA EM AMBIENTE WEB PARA O DIMENSIONAMENTO
DE SISTEMAS DE IRRIGAÇÃO

CASTANHAL 2016

FELIPE MARCEL DE QUEIROZ SANTOS

TITULO DO TRABALHO

Monografia submetida à Coordenadoria de Telemática e à Coordenadoria do Curso de Bacharelado em Ciência da Computação do Instituto Federal do Ceará - Campus Maracanaú, como requisito parcial para obtenção do grau de Bacharel em Ciência da Computação.

Área de pesquisa: Aprendizagem de Máquina

Orientador:D.r AMAURI HOLANDA SOUZA JUNIOR

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO CEARÁ COORDENAÇÃO DE PÓS-GRADUAÇÃO EM ENGENHARIA DE TELECOMUNICAÇÕES

FELIPE MARCEL DE QUEIROZ SANTOS

Esta Monografia foi julgada adequada para a obtenção do Grau de Bacharel em Ciência da Computação, sendo aprovada pela Coordenadoria de Telemática e pela Coordenadoria do curso de Bacharelado em Ciência da Computação do Campus Maracanaú do Instituto Federal de Educação, Ciência e Tecnologia do Ceará e pela banca examinadora:

Orientador: Prof. Dr. Amauri
Instituto Federal do Ceará - IFCE

Prof. Dr. Huguinho
Instituto Federal do Ceará - IFCE

Prof. Dr. Zezinho
Instituto Federal do Ceará - IFCE

Prof. Dr. Luizinho Instituto Federal do Ceará - IFCE

Fortaleza, 06 de Abril de 2013

Dedico este trabalho ...

Agradecimentos

"A mente que se abre a uma nova idéia jamais voltará ao seu tamanho original". Albert Einstein

Resumo

Este trabalho apresenta...

Abstract

This work presents...

Sumário

Lista de Figuras			
Lista de Tabelas			
Lista de Símbolos			
Lista de Abreviacoes			
1	Intro	odução	13
2	Panorama Geral de Irrigação		14
	2.1	Conjuntura Mundial	14
	2.2	Uso Indevido da Água na Irrigação	15
	2.3	Efeitos da Irrigação na Produção	15
3	Método Proposto		17
4	Resultados Experimentais		18
5	Conclusão e Trabalhos Futuros		19
Re	Referências Bibliográficas		
Αį	Apêndice A – Título do Apêndice		
Αį	Apêndice B – Exemplo do pacote Algorithm 2		

Lista de Figuras

Lista de Tabelas

Lista de Símbolos

Z variavel aleatoria

 ${\mathbb R}$ conjunto dos números reais

t tempo contínuo

n tempo discreto

f(z) função densidade de probabilidade

F(z) função de distribuição acumulada

 σ desvio padrão

 μ média ou esperança matemática

|·| operador magnitude

 ∇ operador gradiente

Lista de Abreviacoes

fdp Função densidade de probabilidade

fda Função de distribuição acumulada

EMQ Erro médio quadrático

CAPÍTULO 1

INTRODUÇÃO

Capitulo 2: descricao...

Capitulo 3: descricaoo...

Capitulo 4: descricao...

Capitulo 5: descricao...

PANORAMA GERAL DE IRRIGAÇÃO

2.1 Conjuntura Mundial

A irrigação, utilizada como técnica primordial para os cultivos em áreas com deficit hídrico elevado tem anualmente expandido sua área global, dados do FAOSTAT (2016) mostram que a área irrigada no mundo no ano de 2010 estava na casa dos 320 milhões de hectares, tendo um aumento de 5 milhões de hectares até o ano de 2013. A mesma instituição afirma que nos últimos 10 anos o país teve um crescimento de 800 mil hectares irrigados, com acréscimo média de 200 hectares por ano de 2006 até 2010, estabilizando em 5400 hectares até 2013.

A Agencia Nacional de Água (ANA), órgão que monitora os recursos hídricos do país, informou em 2015 que a demanda conjuntiva de água chegou a 2.275 m cubico/s, tendo como maior contribuinte desse índice o setor de irrigação, detentor da parcela de 55 (porcento) sendo que o segundo maior consumidor de água é o abastecimento humano urbano com apenas 22 (porcento), contudo.

A área brasileira irrigada no ano de 2014 foi estimada em 6,11 milhões de hectares ou 21 (porcento) do potencial nacional, que corresponde a 29,6 milhões de hectares, contudo, observa-se expressivo aumento da agricultura irrigada no Brasil, crescendo sempre a taxas superiores às do crescimento da área plantada total.

Investimentos em irrigação resultam em aumento substancial da produtividade e do valor da produção agrícola, diminuindo a necessidade de expansão em áreas ocupadas por outros usos e coberturas (pastagens ou matas nativas, por exemplo). Aplicando boas práticas de manejo do solo e da água, irrigantes alcançam efciências de uso dos recursos hídricos superiores a 90 (porcento). (Ana, 2015).

2.2 Uso Indevido da Água na Irrigação

O crescimento populacional tem gerado demanda a cada ano por água, em consequência, a disponibilidade desse recurso vem tornando-se menor gradativamente, e o reflexo vem sendo observado não só no na escassez do elemento em si como na expansão das fronteiras agrícolas e à degradação do meio ambiente. Sendo a água um recurso indispensável à vida, é de fundamental importância a discussão das relações entre o homem e a água, uma vez que a sobrevivência das gerações futuras depende diretamente das decisões que hoje estão sendo tomadas (Lima; Ferreira; Christofidis, 1999).

A escolha do sistema mais adequado depende de diversos fatores, (Souza *et al.*, 2006) enumera a topografia e o tipo de solo, a fonte de água (localização, vazão, qualidade), o sistema de plantio e o custo do equipamento e de operação. Contudo, no mesmo trabalho afirma que os sistemas que inicialmente tiveram um inadequado dimensionamento hidráulico, tiveram sua uniformidade de aplicação deficitária, causando decréscimo na produtividade devido ao uso irracional da água.

2.3 Efeitos da Irrigação na Produção

Em comparação com áreas não irrigadas a produção por hectare de culturas sob regime de irrigação, demonstra acrécimos em diversas áreas de cultivo. (Sanches *et al.*, 2013b) desenvolvendo trabalhos com girassol, obteve altas significativas em áreas irrigadas, alcançado taxas de 62 (porcento) a mais que em áreas sem regime de irrigação.

No cenário da pecuária, os estudos de (Sanches *et al.*, 2013a) com capim tifton 85 sobresemeado com aveia, demonstraram índices mais elevados de matéria seca em kg/ha a partir do segundo siclo de pastejo. Os valores alcançaram a faixa de 82 (porcento) a mais de matéria seca nas parcelas irrigadas. O nível de proteína bruta também verificado apresentou acréscimos significativos.

Mesmo sendo a técnica de produção agrícola com utilização de um volume de água demasiadamente grande, essa é uma ação necessária, pois a aplicação de água nas culturas aumenta a eficiência de uso de outros insumos, como fertilizantes, por exemplo, garante a produção na entressafra em regiões áridas ou de regime

pluviométrico inconstante, além de oferecer segurança durante os veranicos (Queiroz; Botrel; Frizzone, 2008).

CAPÍTULO 3

MÉTODO PROPOSTO

CAPÍTULO 4

RESULTADOS EXPERIMENTAIS

CONCLUSÃO E TRABALHOS FUTUROS

Referências Bibliográficas

ANA, Agencia Nacional de Água. **Conjuntura de Recursos Hidricos no Brasil**. 2015.

LIMA, JEFW; FERREIRA, Raquel Scalia Alves; CHRISTOFIDIS, Demetrios. O uso da irrigação no brasil. O estado das águas no Brasil. Agência Nacional de Energia Elétrica. CD-ROM, 1999.

QUEIROZ, TADEU M De; BOTREL, Tarlei A; FRIZZONE, José A. Desenvolvimento de software e hardware para irrigação de precisão usando pivô central. **Revista Brasileira de Engenharia Agrícola e Ambiental**, SciELO Brasil, v. 28, n. 1, p. 44–54, 2008.

SANCHES, A.C.; GOMES, E.P.; FASOLIN, J.P.; SOARES, M.; FRISKE, E.; SAPIA, J.G.; RICKLI, M.E.; DIAS, D.K.U. Produção de capim tifton 85 com e sem irrigação com sobressemeadura de aveia. **CONIRD - Congresso Nacional de Irrigação e Drenagem**, XXIII, 2013.

SANCHES, A.C.; GOMES, E.P.; JORDAN, R.A.; BISCARO, G. A.; GEISENHOFF, L. O.; SANTOS, S; OLIVEIRA, F. C.; TENFEN, J. R. Balanço energético do girassol safra verão irrigado. **CONIRD - Congresso Nacional de Irrigação e Drenagem**, XXIII, 2013.

SOUZA, Luís OC de; MANTOVANI, Everardo C; SOARES, Antonio A; RAMOS, Márcio M; FREITAS, Paulo SL de. Avaliação de sistemas de irrigação por gotejamento, utilizados na cafeicultura1. **R. Bras. Eng. Agríc. Ambiental**, SciELO Brasil, v. 10, n. 3, p. 541–548, 2006.

APÊNDICE A - Título do Apêndice

APÊNDICE B – Exemplo do pacote Algorithm

Algoritmo 1 Estimador ML otimizado.

```
1: Inicializar o contador: j \leftarrow 1;
```

- 2: Fixar o limiar de variação das estimativas: $e_{\mathrm{out}} \leftarrow 10^{-4}$;
- 3: Fixar o número máximo de iterações: $N \leftarrow 1000$;
- 4: Computar o ponto inicial: $\hat{\gamma}(0)$;
- 5: Determinar o limiar inicial: $e_1 \leftarrow 1000$;
- 6: Estabelecer o valor inicial de α : $\hat{\alpha}(0) \leftarrow -10^{-6}$;
- 7: enquanto $e_j \ge e_{\mathrm{out}}$ e $j \le M$ fazer
- Solucionar $\hat{\alpha}_j \leftarrow \arg\max_{\alpha} l_1(\alpha; \gamma_{j-1}, \mathbf{z}, n);$
- Solucionar $\hat{\gamma}_j \leftarrow \arg \max_{\gamma} l_2(\gamma; \alpha_j, \mathbf{z}, n);$
- 10: $j \leftarrow j + 1$
- Computar o critério de convergência: e_i ;
- 12: fim enquanto