

随机试验

数据的统计分析

参数估计

假设检验

古典概率: 事件A发生的概率

$$P(A) = \frac{m}{n} = \frac{A$$
包含的样本点个数样本点总数

在100人的团体中,如果不考虑年龄的差异,研究是否有

两个以上的人生日相同。假设每人的生日在一年365天中的任意一天是等可能的,那么随机找n个人(<365)

问这些人生日各不相同的概率是多少?

至少有两个人生日相同的概率为多少?

```
for n=1:100
 p0(n)=prod(365:-1:365-n+1)/365^n;
 p1(n)=1-p0(n);
end
n=1:100;
plot(n,p0,n,p1,'--')
xlabel('人数'),ylabel('概率')
legend('生日各不相同的概率','至少两人相同的概率')
axis([0 100 -0.1 1.1]),grid on
```


重要的概率分布

表8-2 概率分布的命令字符

分布		离散型随机变量			连续型随机变量					
	均匀分布	二项分布	泊松 分布	几何 分布	均匀分布	指数 分布	正态分布	x ² 分布	t分布	F分布
字符	unid	bino	poiss	geo	unif	exp	norm	chi2	t	f

表8-3 运算功能的命令字符

功能	概率密度	分布函数	逆概率分布	均值与方差	随机数生成
字符	pdf	cdf	inv	stat	rnd

正态分布

$$X \sim N(\mu, \sigma^2)$$
 概率密度为 $f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{\frac{(x-\mu)^2}{2\sigma^2}} - \infty < x < +\infty$

y=normpdf(x, mu, sigma) μ=mu, σ=sigma 的正态分布的密度函数

y=normpdf(x) 标准正态分布的密度函数

$$\mathbf{F}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} \mathbf{f}(\mathbf{t}) d\mathbf{t}$$

y=normcdf(x, mu, sigma) μ=mu, σ=sigma 的正态分布的分布函数

y=normcdf(x) 标准正态分布的分布函数

 $N(0,2^2)$

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

例:某厂生产一种设备,其平均寿命为10年,标准差为2年.如该设备的寿命服从正态分布,求寿命不低于9年的设备占整批设备的比例?

解: 设随机变量 ξ 为设备寿命,由题意 $\xi \sim N(10,2^2)$

$$P(\xi \ge 9) = 1 - P(\xi < 9)$$

>>clear

>> p1=normcdf (9, 10, 2)

p1 =0.3085

>>1-p1

ans = 0.6915

在数据较小、较少的情况下输入 --- Matlab交互环境

境下输入

数据量较大,且不以计算机可读

形式存在 load *.M

M文件的形式输入 数据

load *.txt

--- 读数据文件的命令 读入

函数名称	功能简介
Max(x)	求最大值
Min(x)	求最小值
Median(x)	求中值
Range(x)	求极差
Mean(x)	求算术平均值
Std(x)	求样本标准差
Var(x)	求样本方差
Cov(x)	求协方差矩阵

例8-19 某班(共有120名学生)的高等数学成绩如下: 74 63 78 76 89 56 70 97 89 94 76 88 65 83 72 41 39 72 73 68 14 76 45 70 90 46 54 61 75 76 49 57 78 66 64 74 78 87 86 73 47 67 21 66 79 67 68 65 56 84 66 73 68 72 76 65 70 94 53 65 77 78 53 74 59 50 98 67 89 78 63 92 54 87 84 80 63 64 85 66 69 69 60 54 75 33 30 62 74 65 84 73 55 85 75 76 81 71 83 72 56 84 76 75 67 65 35 94 45 67 75 36 78 82 94 70 84 75 根据以上数据作出该门课程成绩的频数表和直方图。

-4--

解: (1) 数据输入:

❖ 方法1: 在Matlab的交互环境下直接输入;

❖ 方法2: 将以上数据以一列的形式存为A.txt文件,用 load A.txt 命令读入数据。

- (2) 用hist命令作频数表和直方图: (区间个数为5,可省略)

 - ≪hist(A,5) 120名学生高数成绩的直方图;

matleb命令:

load A.txt ✓

频数是如何计算的?

disp('高数成绩的频数表'),[N,X]=hist(A,5)%N为频数

[N,X]=hist(A,5)

N =

3 10 22 60 25

X =

22.4000 39.2000 56.0000 72.8000 89.6000

a1=min(A);a2=max(A);

disp(['成绩最小值',blanks(4),'最大值'])

disp([a1,a2])

成绩最小值 最大值

14

98

14+16.8=30.8

22.4从哪儿 来的?

所以,成绩在 14~30.8 之间有3人。

hist(A,5)%直方图

例8-20 求例8-19中A的均值、中位数、极差、方差和标准差。

解: 在命令窗口输入:

M=[mean(A),median(A),range(A),var(A),std(A)]

 $M = 68.9583 \quad 71.5000 \quad 84.0000 \quad 249.5697 \quad 15.7978$

参数估计

参数估计的Matlab函数

函数	功能
[mu,sigma,muci,sigmaci] =normfit(x,alpha)	正态总体的均值、标准差的极大似然估计mu和sigma, 返回在显著性水平alpha下的均值、标准差的置信区间 muci和sigmaci, x是样本(数组或矩阵),当alpha缺 省时设定为0.05.
[mu,muci] =expfit(x,alpha)	指数分布的极大似然估计,返回显著性水平alpha下的置信区间muci,x是样本(数组或矩阵),当alpha缺省时设定为0.05.
[a,b,aci,bci]=unifit(x,alpha)	均匀分布的极大似然估计,返回显著性水平alpha下的置信区间aci,bci, x是样本(数组或矩阵), 当alpha缺省时设定为0.05.
[p,pci] =binofit(x,n,alpha)	二项分布的极大似然估计,返回在显著性水平alpha下的置信区间pci,x是样本(数组或矩阵),当alpha缺省时设定为0.05.
[lambda, lambdaci] =poissfit(x,alpha)	泊松分布的极大似然估计,返回显著性水平alpha下的置信区间lambdaci, x是样本(数组或矩阵),当alpha 缺省时设定为0.05.

例8-22 某厂生产的瓶装运动饮料的体积假定服从正态分布,抽取10瓶,测得体积(毫升)为

595,**602**,**610**,**585**,**618**,**615**,**605**,**620**,**600**,**606**, 求均值 μ 、标准差 σ 的极大似然估计值及置信水平为**0.90**的 置信区间。

x=[595 602 610 585 618 615 605 620 600 606]; [mu,sigma,muci,sigmaci]=normfit(x,0.90)

mu = 605.6000 sigma =

10.8033

muci =

605.1584

606.0416

sigmaci =

10.8864

11.5724

假设检验

正态总体的均值和方差假设检验

原假设↩	检验统计量及其分布₽	备择假设 <i>H</i> ₁₽	否定域 ₩→
	$Z = \frac{\overline{x} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0,1)_{\varphi}$	$\mu > \mu_0 + \sigma$	$Z \geq z_{\alpha}$
$\mu = \mu_0$		$\mu < \mu_0 \Leftrightarrow$	$Z \leq -z_{\alpha}$
(σ²已知)√		$\mu \neq \mu_0 \varphi$	$ Z \ge Z_{\alpha/2}$
	$t = \frac{\bar{x} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t(n-1)_{\varphi}$	$\mu > \mu_0 \varphi$	$t \ge t_{\alpha}(n-1) \varphi$
$\mu = \mu_{0+}$		$\mu < \mu_0 \varphi$	$t \leq -t_{\alpha}(n-1) \varphi$
(σ²未知)↓		$\mu \neq \mu_0 \varphi$	$ t \ge t_{\alpha/2}(n-1) e^{-t}$
		$\sigma^2 > {\sigma_0}^2 \varphi$	$\chi^2 \geq \chi_{\alpha}^2(n-1) \circ$
$\sigma^2 = \sigma_0^2$	$\chi^{2} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \sim \chi^{2}(n-1) \varphi$	$\sigma^2 < \sigma_0^2 \varphi$	$\chi^2 \leq \chi_{1-\alpha}^2 (n-1) +$
(µ未知) ↩	$(\mu 未知)$ e	$\sigma^2 \neq \sigma_0^2 \neq$	$\chi^2 \ge \chi_{\alpha/2}^2(n-1) \vec{\otimes} +$
		Ω ≠ Ω ₀ ₽	$\chi^2 \leq \chi_{1-\alpha/2}^2(n-1) \varphi$

单个正态总体 N(μ,σ²) 均值 μ 的假设检验

1. σ^2 已知,关于 μ 的检验 (U检验法)

[h, p, ci]=ztest(x, mu, sigma, alpha, tail)

x ------ 样本(数组或矩阵)

sigma ------ 总体标准差 σ

alpha ----- 显著性水平 α ,缺省时0.05

tail $------ 对备择假设<math>H_1$ 的选择

tail=0时,备择假设 $H_1: \mu \neq \mu_0$, (默认)

tail=1时,备择假设 $H_1: \mu > \mu_0$

tail=-1时,备择假设 $H_1: \mu < \mu_0$

[h, p, ci]=ztest(x, mu, sigma, alpha, tail)

h=0表示"在显著性水平alpha的情况下,接受 H_0 "

h=1表示"在显著性水平alpha的情况下,拒绝 H_0 "

 \mathbf{p} ------ 假设 H_0 下样本均值出现的概率

ci 均值的置信区间

例8-23 在某粮店的一批大米中,随机地抽测6袋, 其重量为26.1,23.6,25.1,25.4,23.7,24.5(单位: 千克)。设每袋大米的重量 $X \sim N(\mu, 0.1)$,问能否认为 这批大米的袋重是25千克($\alpha = 0.01$)?

解: 按题意: H_0 : $\mu = 25$, H_1 : $\mu \neq 25$ 已知 $\sigma = 0.316$, $\alpha = 0.01$,程序如下:

x=[26.1 23.6 25.1 25.4 23.7 24.5]; [h,p,ci]=ztest(x,25,0.316,0.01,0)

结果: h = 0 --- 接受H₀ p = 0.0387 ci = 24.4010 25.0656

```
当\alpha = 0.1 时,命令为:
 x=[26.1 23.6 25.1 25.4 23.7 24.5];
 [h,p,ci]=ztest(x,25,0.316,0.1,0)
  结果:
     h =
                         拒绝H<sub>0</sub>
        0.0387
      ci =
       24.5211 24.9455
```

单个正态总体 N(μ,σ²) 均值 μ 的假设检验

2. σ^2 未知, 关于 μ 的检验 (t检验法)

[h, p, ci]=ttest(x, mu, alpha, tail)

例 某种原件的寿命X(以小时计)服从正态分布 $N(\mu,\sigma^2)$

其中 μ , σ^2 均未知, 现测得16只元件的寿命如下:

159 280 101 212 224 379 179 264

222 362 168 250 149 260 485 170

问是否有理由认为元件的平均寿命大于225(小时)?

 $H_0: \mu \leq \mu_0 = 225, H_1: \mu > 225$

解:按题意需检验: H_0 : $\mu \le \mu_0 = 225$, H_1 : $\mu > 225$

取 $\alpha = 0.05$,程序如下:

x=[159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170];

[h,p,ci]=ttest(x,225,0.05,1)

h = 0

p = 0.2570

ci = 198.2321 Inf

h=0,p=0.2570,说明在显著水平为0.05的情况下,不能拒绝原假设,认为元件的平均寿命不大于225小时。

单个正态总体 $N(\mu,\sigma^2)$ 方差 σ^2 的假设检验

检验假设 $H_0: \sigma^2 = \sigma_0^2, H_1: \sigma^2 \neq \sigma_0^2$

(µ未知)₽

x=[x1,x2,...,xn]; chi2=(n-/1)*var(x)/sigma^2; u1=chi2inv(alpha/2,n-1) u2=chi2inv(1-alpha/2,n-1)

h=1 elseif chi2>u2 h=1 else h=0

if chi2<u1

end

$\sigma^2 = \sigma_0^2 \varphi$	$\chi^2 = \frac{(n-1)s^2}{2} \sim \chi^2(n-1) =$

$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2} \sim \chi^2(n-1) \varphi$
--

自总体的样本。)
---------	---

$$P(X \ge \chi_{\alpha/2}^{2}(n-1)) = \frac{\alpha}{2}$$

$$\Rightarrow P(X \le \chi_{\alpha/2}^{2}(n-1)) = 1 - \frac{\alpha}{2}$$

	$\sigma^2 > \sigma_0^2 \varphi$	$\chi^2 \geq {\chi_{\alpha}}^2 (n-1) \varphi$
	$\sigma^2 < {\sigma_0}^2 \varphi$	$\chi^2 \le \chi_{1-\alpha}^2 (n-1) \neq$
) 4	_2 2 .	$ \chi^2 \ge \chi_{\alpha/2}^2 (n-1) \vec{\otimes}_+ $
	$\sigma^2 \neq \sigma_0^2 \varphi$	$\chi^2 \leq \chi_{1-\alpha/2}^2(n-1) \varphi$

例8-24 例8-23中能否认为每袋大米质量的标准差 $\sigma = 0.316(kg)$?

```
x=[26.1 23.6 25.1 25.4 23.7 24.5];

chi2=5*var(x)/0.1

u1=chi2inv(0.01/2,5)

u2=chi2inv(1-0.01/2,5)

if chi2<u1

h=1 chi2 =

48.5333

h=1 u1 =
```

例8-23 在某粮店的一批大米中,随机地抽测6袋,其重量为26.1,23.6,25.1,25.4,23.7,24.5(单位:千克)。设每袋大米的重量 $X \sim N(\mu, 0.1)$,问能否认为这批大米的袋重是25千克($\alpha = 0.01$)?

15 16 18 22 24

考试安排

- ❖考试时间: 40分钟。每人2题。
- ❖ 开卷考试,只能带书本,不可拷贝.

注意事项:

- ▶ 1、在E盘建立word文档(程序以及运行结果),文件名为"考试+姓名+学号";
- > 2、随时保存;
- > 3、提交以后到教室机确认是否提交成功