<u>Interrogation écrite</u> <u>Durée 1 heure</u>

Tout document interdit

Exercice 1 (3 points)

Lesquelles des propositions suivantes sont valides et lesquelles ne le sont pas ?

- a. $(\forall x\alpha) \land \forall x\beta \equiv \forall x(\alpha \land \beta)$
- b. $(\forall x\alpha) \lor \forall x\beta \equiv \forall x(\alpha \lor \beta)$
- c. $(\exists x\alpha) \lor \exists x\beta \equiv \exists x(\alpha \lor \beta)$
- d. $\forall x \exists y (P(x) \rightarrow Q(y)) \equiv \exists u P(u) \rightarrow \exists z Q(z)$
- e. $\forall x \exists y (P(x) \rightarrow Q(y)) \equiv \forall x (P(x) \rightarrow Q(f(x)))$

Illustrer toute proposition non valide par un contre-exemple.

Exercice 2 (2 points)

Donner un modèle de l'ensemble Γ de formules tel que :

$$\Gamma: \{ \forall x P(x, f(x)), \forall y \mid P(y, y), \forall u \forall v \forall w ((P(u, v) \land P(v, w)) \rightarrow P(u, w)) \}$$

Exercice 3 (1, 1.5, 0.5, 1, 0.5, 0.5)

On considère β la formule telle que :

$$\beta$$
: $\forall y \exists z \forall x ((P(z, x) \lor P(x, z)) \land P(x, y))$

- 3.1. Mettre β sous forme clausale. On désignera par S l'ensemble des clauses issu de β .
- **3.2.** Laquelle des propositions suivantes est valide :
 - a. S est satisfiable ssiβ est satisfiable.
 - b. La conjonction des clauses de S est satisfiable ssi β est satisfiable.
 - c. La conjonction des clauses de S est valide ssiβ est valide.
- **3.3.**Quel est le domaine de Herbrand de S ?
- **3.4.** Montrer à l'aide d'un arbre sémantique que S est non satisfiable.
- **3.5.** Donner un sous-ensemble non satisfiable de clauses de S. On appellera S' cet ensemble.
- **3.6.** Montrer que l'ensemble de clauses obtenu en substituant une variable propositionnelle à chaque littéral de S' estnon satisfiable.
- **N. B.** Remettre une seule double feuille.

CORRECTION

Exercice 1 (3 points)

Lesquelles des propositions suivantes sont valides et lesquelles ne le sont pas ?

- a) $(\forall x\alpha) \land \forall x\beta \equiv \forall x(\alpha \land \beta)$
- Valide(**0.5**)
- b) $(\forall x\alpha) \lor \forall x\beta \equiv \forall x(\alpha \lor \beta)$
- Non valide (1pt)

Contre-exemple : l'interprétation I de domaine D : $\{2, 3, 4\}$ telle que I(P) : « pair », est un modèle de $\forall x (P(x) \lor P(x))$ mais pas de $(\forall x P(x)) \lor \forall x P(x)$

- c) $(\exists x\alpha) \lor \exists x\beta \equiv \exists x(\alpha \lor \beta)$
- Valide(**0.5**)
- d) $\forall x \exists y (P(x) \rightarrow Q(y)) \equiv \exists u P(u) \rightarrow \exists z Q(z)$
-) Valide(**0.5**)
- e) $\forall x \exists y (P(x) \rightarrow Q(y)) \equiv \forall x (P(x) \rightarrow Q(f(x)))$
- Non Valide (0.5)

Illustrer toute proposition non valide par un contre-exemple.

Exercice 2 (2 points)

Donner un modèle de l'ensemble Γ de formules tel que :

$$\Gamma : \{ \forall x P(x, f(x)), \forall y \ P(y, y), \forall u \forall v \forall w ((P(u, v) \land P(v, w)) \rightarrow P(u, w)) \}$$

I de domaine N telle que :

$$I(P)$$
: '<' $I(f)$: 'successeur'

Exercice 3 (1, 1.5, 0.5, 1, 0.5, 0.5)

On considère \(\beta \) la formule telle que :

$$\beta$$
: $\forall y \exists z \forall x ((P(z, x) \lor P(x, z)) \land P(x, y))$

3.1. Mettre β sous forme clausale. On désignera par S l'ensemble des clauses issu de β.

$$\beta_{S}$$
: $\forall y \forall x ((P(f(y), x) \lor P(x, f(y)) \land P(x, y))$

0.5 point

 \equiv

$$\forall y \forall x (P(f(y), x) \lor P(x, f(y)) \land \forall y \forall x P(x, y)$$

On renomme les variables :

$$\forall y \forall x (P(f(y), x) \lor P(x, f(y)) \land \forall u \forall v P(v, u)$$

- $\mathbf{S}: \{ \mathbb{P}(f(y), x) \vee \mathbb{P}(x, f(y)), \mathbb{P}(u, y) \}$
- 0.5 point
- **3.2.** Laquelle des propositions suivantes est valide **0.5**, **0.5**, **0.5**:
 - d. S est satisfiable ssiβ est satisfiable.

- Valide
- e. La conjonction des clauses de S est satisfiable ssiß est satisfiable. Valide
- f. La conjonction des clauses de S est valide ssiβ est valide.

Non valide

3.3. Ouel est le domaine de Herbrand de S ?0.5 pt

$$H: \{a, f(a), \ldots, f(a), \ldots \}$$

3.4. Montrer à l'aide d'un arbre sémantique que S est non satisfiable. **1 point**

- -0,5 si l'étudiant ne précise pas les substitutions qu'il fait pour avoir ses instances de base.
- **3.5.** Donner un sous-ensemble non satisfiable de clauses de S. On appellera S' cet ensemble.

S': {
$$P(f(a), a) \lor P(a, f(a)), P(f(a), a), P(a, f(a))$$
} **0,5 pt**

Ici, on falsifie une instance de C1 et deux instances de C2.

3.6. Montrer que l'ensemble de clauses obtenu en substituant une variable propositionnelle à chaque littéral de S' est non satisfiable.0,5 point

Je substitue **R** à P(f(a), a), **Q** à P(a,f(a)) dans S'

On obtient l'ensemble de clauses : $\{ R \lor Q, R, Q \}$

 $R \vee Q$

R

Q Q