Package 'QCSimulator'

October 12, 2022

Type Package
Title A 5-Qubit Quantum Computing Simulator
Version 0.0.1
Author Tinniam V Ganesh
Maintainer Tinniam V Ganesh <tvganesh.85@gmail.com></tvganesh.85@gmail.com>
Description Simulates a 5 qubit Quantum Computer and evaluates quantum circuits with 1,2 qubit quantum gates.
LazyData TRUE
License MIT + file LICENSE
Depends R (>= $3.1.2$)
Imports ggplot2
<pre>URL https://github.com/tvganesh/QCSimulator</pre>
RoxygenNote 5.0.1
NeedsCompilation no
Repository CRAN
Date/Publication 2016-07-02 07:47:20
Date/1 ubilication 2010-07-02 07.47.20
R topics documented:
CHadamard 3 CNOT2_01 4 CNOT2_10 5 CNOT3_01 6 CNOT3_02 7 CNOT3_10 8 CNOT3_12 9 CNOT3_20 10 CNOT3_21 11 CNOT4_01 12 CNOT4_02 13
CNOT4 03

CNOT4_10	
CNOT4_12	
CNOT4_13	
CNOT4 20	
CNOT4 21	
CNOT4 23	
CNOT4 30	
CNOT4 31	
CNOT4 32	
CNOT5 01	
CNOT5 02	
CNOT5 03	
CNOT5 04	
CNOT5 10	
CNOT5 12	
CNOT5_13	
CNOT5 14	
CONTRACT AND	
GNOTE AL	
CONTOUR AS	
- TO	
CNOT5_43	
CPauliX	
CPauliY	
CPauliZ	
CSWAP	
DotProduct	
GateDagger	
Hadamard	
init	
innerProduct	
PauliX	
PauliY	
plotMeasurement	
RotationGate	
S1Gate	
SGate	
SWAPQ0Q1	
T1Gate	
11 Out	

CHadamard 3

	TGate Toffoli		65 66
	ToffoliState		67
Index			69
CHadamard		controlled Hadamard Gate	

Description

This function applies a controlled Hadamard gate om the input

Usage

CHadamard(q)

Arguments

q The input

Value

k

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

CNOT2_01 PauliX CNOT2_01

Examples

```
# Initialze global variables
init()
CHadamard(q00_)
CHadamard(I4)
```

CNOT2_01

2 qubit CNOT gate (control-0,target-1)

Description

This function applies a CNOT gate to 2 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 1

Usage

```
CNOT2_01(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT2_01 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT2_10 5

Examples

```
# Initialze global variables
init()
CNOT2_01(q11_)
CNOT2_01(I4)
```

CNOT2_10

2 qubit CNOT gate (control-1,target-0)

Description

This function applies a CNOT gate to 2 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 0

Usage

```
CNOT2_10(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT2_10 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

6 CNOT3_01

Examples

```
# Initialze global variables
init()
CNOT2_10(q10_)
CNOT2_10(I4)
```

CNOT3_01

3 qubit CNOT gate (control-0,target-1)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 1

Usage

```
CNOT3_01(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_01 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT3_02 7

Examples

```
# Initialze global variables
init()
CNOT3_01(q101_)
CNOT3_01(I8)
```

CNOT3_02

3 qubit CNOT gate (control-0,target-2)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 2

Usage

```
CNOT3_02(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_02 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

8 CNOT3_10

Examples

```
# Initialze global variables
init()
CNOT3_02(q111_)
CNOT3_02(I8)
```

CNOT3_10

3 qubit CNOT gate (control-1,target-0)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 0

Usage

```
CNOT3_10(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_10 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT3_12 9

Examples

```
# Initialze global variables
init()
CNOT3_10(q101_)
CNOT3_10(I8)
```

CNOT3_12

3 qubit CNOT gate (control-1,target-2)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 2

Usage

```
CNOT3_12(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_12 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

10 CNOT3_20

Examples

```
# Initialze global variables
init()
CNOT3_12(q101_)
CNOT3_12(I8)
```

CNOT3_20

3 qubit CNOT gate (control-2,target-0)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 0

Usage

```
CNOT3_20(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_20 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT3_21

Examples

```
# Initialze global variables
init()
CNOT3_20(q101_)
CNOT3_20(I8)
```

CNOT3_21

3 qubit CNOT gate (control-2,target-1)

Description

This function applies a CNOT gate to 3 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 1

Usage

```
CNOT3_21(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT3_12 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT3_21(I8)
CNOT3_21(q101_)
```

CNOT4_01

4 qubit CNOT gate (control-0,target-1)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 1

Usage

```
CNOT4_01(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_01 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_01(q1001_)
CNOT4_01(I16)
```

CNOT4_02

4 qubit CNOT gate (control-0,target-2)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 2

Usage

```
CNOT4_02(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_02 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_02(q1001_)
CNOT4_02(I16)
```

CNOT4_03

4 qubit CNOT gate (control-0,target-3)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 3

Usage

```
CNOT4_03(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_03 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT4_10 15

Examples

```
# Initialze global variables
init()
CNOT4_03(q1001_)
CNOT4_03(I16)
```

CNOT4_10

4 qubit CNOT gate (control-1,target-0)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 0

Usage

```
CNOT4_10(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_10 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_10(q1001_)
CNOT4_10(I16)
```

CNOT4_12

4 qubit CNOT gate (control-1,target-2)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 2

Usage

```
CNOT4_12(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_12 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_12(q1001_)
CNOT4_12(I16)
```

CNOT4_13

4 qubit CNOT gate (control-1,target-3)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 3

Usage

```
CNOT4_13(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_13 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_13(q1001_)
CNOT4_13(I16)
```

CNOT4_20

4 qubit CNOT gate (control-2,target-0)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 0

Usage

```
CNOT4_20(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_20 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT4_21 19

Examples

```
# Initialze global variables
init()
CNOT4_20(q1001_)
CNOT4_13(I16)
```

CNOT4_21

4 qubit CNOT gate (control-2,target-1)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 1

Usage

```
CNOT4_21(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_21 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_21(q1001_)
CNOT4_21(I16)
```

CNOT4_23

4 qubit CNOT gate (control-2,target-3)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 3

Usage

```
CNOT4_23(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_23 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT4_30 21

Examples

```
# Initialze global variables
init()
CNOT4_23(q1001_)
CNOT4_23(I16)
```

CNOT4_30

4 qubit CNOT gate (control-3,target-0)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 0

Usage

```
CNOT4_30(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_23 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_30(q1001_)
CNOT4_30(I16)
```

CNOT4_31

4 qubit CNOT gate (control-3,target-1)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 1

Usage

```
CNOT4_31(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_31 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT4_32 23

Examples

```
# Initialze global variables
init()
CNOT4_31(q1001_)
CNOT4_31(I16)
```

CNOT4_32

4 qubit CNOT gate (control-3,target-2)

Description

This function applies a CNOT gate to 4 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 2

Usage

```
CNOT4_32(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT4_32 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT4_32(q1001_)
CNOT4_32(I16)
```

CNOT5_01

5 qubit CNOT gate (control-0,target-1)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 1

Usage

```
CNOT5_01(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_01 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT5_02 25

Examples

```
# Initialze global variables
init()
CNOT5_01(q10010_)
CNOT5_01(I32)
```

CNOT5_02

5 qubit CNOT gate (control-0,target-2)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 2

Usage

```
CNOT5_02(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_02 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT5_02(q10010_)
CNOT5_02(I32)
```

CNOT5_03

5 qubit CNOT gate (control-0,target-3)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 3

Usage

```
CNOT5_03(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_03 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT5_04 27

Examples

```
# Initialze global variables
init()
CNOT5_03(q10010_)
CNOT5_03(I32)
```

CNOT5_04

5 qubit CNOT gate (control-0,target-4)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 0 and target is qubit 3

Usage

```
CNOT5_04(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_04 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT5_04(q10010_)
CNOT5_04(I32)
```

CNOT5_10

5 qubit CNOT gate (control-1,target-0)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 0

Usage

```
CNOT5_10(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_10 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT5_12 29

Examples

```
# Initialze global variables
init()
CNOT5_10(q10010_)
CNOT5_10(I32)
```

CNOT5_12

5 qubit CNOT gate (control-1,target-2)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 2

Usage

```
CNOT5_12(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_12 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

Examples

```
# Initialze global variables
init()
CNOT5_12(q10010_)
CNOT5_12(I32)
```

CNOT5_13

5 qubit CNOT gate (control-1,target-3)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 3

Usage

```
CNOT5_13(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_13 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

CNOT5_14 31

Examples

```
# Initialze global variables
init()
CNOT5_13(q10010_)
CNOT5_13(I32)
```

CNOT5_14

5 qubit CNOT gate (control-1,target-4)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 1 and target is qubit 4

Usage

```
CNOT5_14(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_14 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
CNOT5_14(q10010_)
CNOT5_14(I32)
```

CNOT5_20

5 qubit CNOT gate (control-2,target-0)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 0

Usage

```
CNOT5_20(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_20 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

CNOT5_21 33

Examples

```
# Initialze global variables
init()
CNOT5_20(q10010_)
CNOT5_20(I32)
```

CNOT5_21

5 qubit CNOT gate (control-2,target-1)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 1

Usage

```
CNOT5_21(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_21 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

Examples

```
# Initialze global variables
init()
CNOT5_21(q10010_)
CNOT5_21(I32)
```

CNOT5_23

5 qubit CNOT gate (control-2,target-3)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 3

Usage

```
CNOT5_23(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_23 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CNOT5_24 35

Examples

```
# Initialze global variables
init()
CNOT5_23(q10010_)
CNOT5_23(I32)
```

CNOT5_24

5 qubit CNOT gate (control-2,target-4)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 2 and target is qubit 4

Usage

```
CNOT5_24(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_24 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

Examples

```
# Initialze global variables
init()
CNOT5_24(q10010_)
CNOT5_24(I32)
```

CNOT5_30

5 qubit CNOT gate (control-3,target-0)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 0

Usage

```
CNOT5_30(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_30 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CNOT5_31 37

Examples

```
# Initialze global variables
init()
CNOT5_30(q10010_)
CNOT5_30(I32)
```

CNOT5_31

5 qubit CNOT gate (control-3,target-1)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 1

Usage

```
CNOT5_31(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_31 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

38 CNOT5_32

Examples

```
# Initialze global variables
init()
CNOT5_31(q10010_)
CNOT5_31(I32)
```

CNOT5_32

5 qubit CNOT gate (control-3,target-2)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 2

Usage

```
CNOT5_32(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_32 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CNOT5_34 39

Examples

```
# Initialze global variables
init()
CNOT5_32(q10010_)
CNOT5_32(I32)
```

CNOT5_34

5 qubit CNOT gate (control-3,target-4)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 3 and target is qubit 4

Usage

```
CNOT5_34(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_34 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

40 CNOT5_40

Examples

```
# Initialze global variables
init()
CNOT5_34(q10010_)
CNOT5_34(I32)
```

CNOT5_40

5 qubit CNOT gate (control-4,target-0)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 4 and target is qubit 0

Usage

```
CNOT5_40(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_40 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CNOT5_41 41

Examples

```
# Initialze global variables
init()
CNOT5_40(q10010_)
CNOT5_40(I32)
```

CNOT5_41

5 qubit CNOT gate (control-4,target-1)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 4 and target is qubit 1

Usage

```
CNOT5_41(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_41 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

42 CNOT5_42

Examples

```
# Initialze global variables
init()
CNOT5_41(q10010_)
CNOT5_41(I32)
```

CNOT5_42

5 qubit CNOT gate (control-4,target-2)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 4 and target is qubit 2

Usage

```
CNOT5_42(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_42 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CNOT5_43 43

Examples

```
# Initialze global variables
init()
CNOT5_42(q10010_)
CNOT5_42(I32)
```

CNOT5_43

5 qubit CNOT gate (control-4,target-3)

Description

This function applies a CNOT gate to 5 qubits. The qubits start from 0,1,2,3,4. Here control is qubit 4 and target is qubit 3

Usage

```
CNOT5_43(a)
```

Arguments

а

The input

Value

result The result of applying the CNOT5_43 gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

44 CPauliX

Examples

```
# Initialze global variables
init()
CNOT5_43(q10010_)
CNOT5_43(I32)
```

CPauliX

Controlled Pauli X gate

Description

This function applies a controlled Pauli X gate on its input

Usage

```
CPauliX(q)
```

Arguments

q

The input

Value

2 The result of applying the CPauliX gate

Note

Maintainer: Tinniam V Ganesh < tvganesh . 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

CPauliY 45

Examples

```
# Initialze global variables
init()
CPauliX(q11_)
CPauliX(I4)
```

CPauliY

Controlled Pauli Y gate

Description

This function applies a controlled Pauli Y gate on its input

Usage

```
CPauliY(q)
```

Arguments

q The input

Value

2 The result of applying the CPauliY gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

46 CPauliZ

Examples

```
# Initialze global variables
init()
CPauliY(q11_)
CPauliY(I4)
```

CPauliZ

Controlled Pauli Z gate

Description

This function applies a controlled Pauli Z gate on its input

Usage

```
CPauliZ(q)
```

Arguments

q

The input

Value

2 The result of applying the CPauliZ gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

CSWAP 47

Examples

```
# Initialze global variables
init()
CPauliZ(q11_)
CPauliZ(I4)
```

CSWAP

Controlled SWAP gate

Description

This function applies a controlled swap of qubits gate on its input

Usage

CSWAP(a)

Arguments

а

The input

Value

result The result of applying the CSWAP gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

DotProduct

Examples

```
# Initialze global variables
init()
CSWAP(q11_)
CSWAP(I4)
```

DotProduct

Dot product of 2 vectors

Description

This function performs a dot product of 2 vectors

Usage

```
DotProduct(a,b)
```

Arguments

a Vector 1
b Vector 2

Value

result The result of dot product

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

GateDagger 49

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
DotProduct(Hadamard(I2),q1_)
DotProduct(CNOT2_01(I4),q01_)
```

GateDagger

Gate dagger of a vector

Description

This function performs a gate dagger transformation. It performs the transpose of the complex conjugate of the unitary matrix

Usage

```
GateDagger(a)
```

Arguments

а

Matrix a

Value

gateDagger The result of performing gate dagger function

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

50 Hadamard

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
GateDagger(TGate(I2))
```

Hadamard

Hadamard gate

Description

This function applies a Hadamard gate on its input

Usage

```
Hadamard(a)
```

Arguments

а

The input

Value

2 The result of applying the Hadamard gate

Note

```
Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>
```

Author(s)

Tinniam V Ganesh

init 51

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
Hadamard(Hadamard(I2))
Hadamard(I2)
```

init

Initialization

Description

This function performs an initialization and sets variables in the global environment

Usage

```
init()
```

Note

Maintainer: Tinniam V Ganesh < tvganesh . 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

52 innerProduct

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

Examples

```
# Initialze global variables
init()
# Display variables
ls()
q001_
I16
```

innerProduct

Inner product of 2 vectors and computes the angle between vectors

Description

This function performs a inner product of 2 vectors and outputs the angle between vectors

Usage

```
innerProduct(a,b)
```

Arguments

a Vector 1 b Vector 2

Value

theta The angle between the vectors

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

measurement 53

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

Examples

```
# Initialze global variables
init()
phi = matrix(c(1/2,sqrt(3)/2),nrow=2,ncol=1)
si = matrix(c(1/sqrt(2),1/sqrt(2)),nrow=2,ncol=1)
innerProduct(phi,si)
```

measurement

Computes the square of the modulus

Description

This function computes the square of the amplitude of the vectors

Usage

```
measurement(a)
```

Arguments

а

The vector

Value

x The square of the modulus of the vector

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

54 PauliX

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT5_13
```

Examples

```
# Initialze global variables
init()
measurement(TGate(PauliX(I2)))
```

PauliX

Controlled Pauli X gate

Description

This function applies a Pauli X gate on its input

Usage

```
PauliX(a)
```

Arguments

а

The input

Value

result The result of applying the PauliX gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

PauliY 55

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
PauliX(q1_)
Hadamard(PauliX(I2))
```

PauliY

Controlled Pauli Y gate

Description

This function applies a Pauli Y gate on its input

Usage

PauliY(a)

Arguments

а

The input

Value

result The result of applying the PauliY gate

56 PauliZ

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
PauliY(q1_)
Hadamard(PauliY(I2))
```

PauliZ

Controlled Pauli Z gate

Description

This function applies a Pauli Z gate on its input

Usage

```
PauliZ(a)
```

Arguments

а

The input

plotMeasurement 57

Value

result The result of applying the PauliZ gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
PauliZ(q1_)
Hadamard(PauliZ(I2))
```

plotMeasurement

This function plots the result of a measurement

Description

This function plots the output of a quantum circuit

Usage

```
plotMeasurement(a)
```

58 RotationGate

Arguments

a The vector

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
plotMeasurement(measurement(TensorProd(Hadamard(I2), Hadamard(I2))))
```

RotationGate

This fucntion applies the rotation gate

Description

This function applies the rotation gate on its input through an angle 't'

Usage

```
RotationGate(t,a)
```

RotationGate 59

Arguments

t The angle to rotate

a The vector

Value

result The result of applying the Rotation gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
RotationGate(30,q0_)
```

60 S1Gate

S1Gate

Controlled S1Gate

Description

This function applies a S1Gate on its input

Usage

```
S1Gate(a)
```

Arguments

а

The input

Value

result The result of applying the S1Gate

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

SGate 61

Examples

```
# Initialze global variables
init()
S1Gate(q1_)
S1Gate(PauliX(I2))
```

SGate

Apply a SGate

Description

This function applies a SGate on its input

Usage

SGate(a)

Arguments

а

The input

Value

result The result of applying the SGate gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

62 SWAPQ0Q1

Examples

```
# Initialze global variables
init()
SGate(q1_)
SGate(Hadamard(I2))
```

SWAPQ0Q1

SWAP Q0 Q1

Description

This function swaps q0 and q1

Usage

SWAPQ0Q1(q)

Arguments

q

The input

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

T1Gate 63

Examples

```
# Initialze global variables
init()
SWAPQ0Q1(q110_)
SWAPQ0Q1(q010_)
```

T1Gate

Apply a T1Gate

Description

This function applies a T1Gate on its input

Usage

T1Gate(a)

Arguments

а

The input

Value

result The result of applying the T1Gate gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT3_12
```

64 TensorProd

Examples

```
# Initialze global variables
init()
T1Gate(q1_)
T1Gate(SGate(Hadamard(I2)))
```

TensorProd

Tensor product of 2 vectors

Description

This function performs a tensor product of 2 vectors

Usage

TensorProd(a,b)

Arguments

a Vector 1
b Vector 2

Value

result The tensor product of the vectors

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

TGate 65

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
TensorProd(Hadamard(I2), Hadamard(I2))
```

TGate

Apply a TGate

Description

This function applies a TGate on its input

Usage

TGate(a)

Arguments

а

The input

Value

result The result of applying the TGate gate

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

Toffoli Toffoli

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
TGate(q1_)
TGate(S1Gate(Hadamard(I2)))
```

Toffoli

Apply a Toffoli gate

Description

This function applies a Toffoli on its input

Usage

```
Toffoli(q)
```

Arguments

q

The input

Value

c The result of applying the TGate gate

Note

Maintainer: Tinniam V Ganesh <tvganesh.85@gmail.com>

Author(s)

Tinniam V Ganesh

ToffoliState 67

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
Toffoli(q100_)
Toffoli(q101_)
```

ToffoliState

Apply a Toffoli state

Description

This function applies a Toffoli state on its input

Usage

```
ToffoliState(a)
```

Arguments

а

The input

Note

Maintainer: Tinniam V Ganesh < tvganesh. 85@gmail.com>

Author(s)

Tinniam V Ganesh

ToffoliState

References

```
https://quantumexperience.ng.bluemix.net/
https://gigadom.wordpress.com/2016/06/23/introducing-qcsimulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a-5-qubit-quantum-computing-simulator-a
```

See Also

```
CNOT2_10
PauliX
measurement
plotMeasurement
CNOT5_03
CNOT4_13
```

Examples

```
# Initialze global variables
init()
ToffoliState(q100_)
```

Index

```
CHadamard, 3
                                                   CNOT5_41, 41
CNOT2_01, 3, 4
                                                   CNOT5_42, 42
CNOT2_10, 4, 5, 5, 6-47, 49-63, 65-68
                                                   CNOT5_43, 43
                                                   CPauliX, 44
CNOT3_01, 6
                                                   CPauliy, 45
CNOT3_02, 7
                                                   CPauliZ, 46
CNOT3_10, 8
CNOT3_12, 4-9, 9, 10-30, 63
                                                   CSWAP, 47
CNOT3_20, 10
                                                   DotProduct, 48
CNOT3_21, 11
CNOT4_01, 12
                                                   GateDagger, 49
CNOT4_02, 13
CNOT4_03, 14
                                                   Hadamard, 50
CNOT4_10, 15
                                                   init, 51
CNOT4_12, 16
                                                   {\tt innerProduct}, {\tt 52}
CNOT4_13, 17, 31, 32, 43, 45–47, 49–51,
         55–62, 65–68
                                                   measurement, 4-47, 49-53, 53, 54-63, 65-68
CNOT4_20, 18
CNOT4_21, 19
                                                   PauliX, 3-47, 49-54, 54, 55-63, 65-68
CNOT4_23, 20
                                                   PauliY, 55
CNOT4_30, 21
                                                   PauliZ, 56
CNOT4_31, 22
                                                   plotMeasurement, 4-47, 49-57, 57, 58-63,
CNOT4_32, 23
CNOT5_01, 24
CNOT5_02, 25
                                                   RotationGate, 58
CNOT5_03, 4-26, 26, 27-47, 49-63, 65-68
CNOT5_04, 27
                                                   S1Gate, 60
CNOT5_10, 28
                                                   SGate, 61
CNOT5_12, 29
                                                   SWAPQ0Q1, 62
CNOT5_13, 30, 33-42, 44, 52-54
                                                   T1Gate, 63
CNOT5_14, 31
                                                   TensorProd, 64
CNOT5_20, 32
                                                   TGate, 65
CNOT5_21, 33
                                                   Toffoli, 66
CNOT5_23, 34
                                                   ToffoliState, 67
CNOT5_24, 35
CNOT5_30, 36
CNOT5_31, 37
CNOT5_32, 38
CNOT5_34, 39
CNOT5_40, 40
```