PANNON EGYETEM, Veszprém Villamosmérnöki és Információs Rendszerek Tanszék

Digitális Rendszerek és Számítógép Architektúrák

2. előadás: Számrendszerek,

Nem-numerikus információ ábrázolása

Előadó: Dr. Vörösházi Zsolt

voroshazi.zsolt@virt.uni-pannon.hu

Jegyzetek, segédanyagok:

- Könyvfejezetek:
 - □ http://www.virt.uni-pannon.hu → Oktatás → Tantárgyak → Digitális Rendszerek és Számítógép Architektúrák (nappali) (chapter02.pdf)
- Fóliák, óravázlatok .ppt (.pdf)
- Feltöltésük folyamatosan

Információ ábrázolás:

- A) Számrendszerek (numerikus információ):
 - □ I.) Egész típusú:
 - előjel nélküli,
 - 1-es komplemens,
 - előjeles 2-es komplemens számrendszerek
 - □ II.) Fixpontos,
 - □ III.) Lebegőpontos (IBM-32, DEC-32, IEEE-32),
 - Excess kód (exponens kódolására)
- B) Nem-numerikus információ kódolása
- C) Hiba-detektálás, és javítás (Hamming kód)
 - SEC-DED

A) Számrendszerek

Endianitás (endianness)

- A számítástechnikában, az endianitás (byte-sorrend a jó fordítás) az a tulajdonság, ami bizonyos adatok többnyire kisebb egységek egymást követő sorozata tárolási és/vagy továbbítási sorrendjéről ad leírást (pl. két protokoll, vagy busz kommunikációja). Ez a tulajdonság döntő fontosságú az integer értékeknek a számítógép memóriájában byte-onként való tárolása (egy memória címhez relatívan), továbbítása esetében
- Byte sorrend megkötés:
 - □ Big-Endian formátum
 - □ Little-Endian formátum

Háttér: Az eredeti angol kifejezés az endianness egy utalás arra a háborúra, amely a két szembenálló csoport között zajlik, akik közül az egyik szerint a lágytojás nagyobb/vastagabb végét (bigendian), míg a másik csoport szerint a lágytojás kisebb végét (little-endian) kell feltörni. Erről Swift ír a *Gulliver Kalandos Utazásai* című könyvében.

- Ekkor a 32-bites "4A 3B 2C 1D" értéket a következő módon tárolják
- 100 101 102 103..."1D 2C 3B 4A"... Így, a kevésbé jellemző ("legkisebb") byte (az angol least significant byte rövidítéséből LSB néven ismert) az első, és ez az 1D, tehát a kis vég kerül előre, legkisebb címen van tárolva (0x100):

0x103	0x102	0x101	0x100	[31:0]
4A	3B	2C	1D	
MSB			LSB	

 Hagyományos, általánosan használt formátum: ha nem kötik ki külön, ezt feltételezzük! (pl. Intel, AMD, illetve ARM stb.)

"Nagy a végén" - Big-endian

A 32 bites egész értéket, (ami legyen "4A 3B 2C 1D", a 0x100 címtől kezdve) tároljuk a memóriában, 1 byte-os elemi tárolókból, 1 byte-onként növekvő címekkel rendelkezik, ekkor a tárolást a következők szerint végzi:

0x103	0x102	0x101	0x100	[0:31]
1D	2C	3B	4A	
LSB			MSB	

- Ebben az esetben, a "legjellemzőbb" byte erre általában az ismert angolkifejezést "most significant byte" használják a számítástechnikában (rövidítve MSB, ami itt a "4A") a memóriában az legalacsonyabb címen van tárolva (0x100), míg a következő "jellemző byte" (3B) a következő, egyel nagyobb címen van tárolva, és így tovább.
- Bit/byte-reversed format!
- PI: mikrovezérlők, beágyazott processzorok FPGA-kon (MicroBlaze, PowerPC) stb.

I.) Egész típusú számrendszer:

- Bináris számrendszer: 1 / 0 (I / H, T / F)
- N biten 2^N lehetséges érték reprezentálható
- Összehasonlító táblázat:

Table 2.1. Number of Representable Values.

Number d Bits	Number of Representable Values	Machines. Uses
4 16		4004, control
8	256	8080, 6800 control, communication
16	65.536	PDP11, 8086, 32020
32	4.29×10^9	IBM 370, 68020. VAX11/780
48	1.41×10^{14}	Unisys
64	1.84 x 10 ¹⁹	Cray, IEEE (dp)

M

a.) előjel nélküli egész:

- Unsigned integer: $V_{\text{UNSIGNED INTEGER}} = \sum_{i=0}^{N-1} b_i \times 2^i$
- ahol b_i az i-edik pozícióban lévő '0' vagy '1'
- Reprezentálható értékek határa: 0-tól 2^N-1 -ig
- Helyiértékes rendszer
- Negatív számok ábrázolása nem lehetséges!
- PI: (Legyen N:=6, LE, unsigned int)

$$101101_2 \Rightarrow 1x2^5 + 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^0 = 45_{10}$$

M

b.) 1's komplemens rendszer:

- V értékű, N bites rendszer: 2^N-1-V.
- "0" lesz ott ahol "1"-es volt, "1"-es lesz ott ahol "0" volt (mivel egy szám negatív alakját, bitjeinek kiegészítésével kapjuk meg).
- csupán minden bitjét negálni, (gyors műveletet)
- Értékhatár: $2^{(N-1)}$ –1 től – $(2^{(N-1)}$ –1) ig terjed,
- Nem helyiértékes rendszer,
- kétféleképpen is lehet ábrázolni a zérust!! (-0 / +0 ellenőrzés szükséges)
- end-around carry: amelyben a részeredményhez kell hozzáadni a végrehajtás eredményét

1's komplemens

PI: N:=6, LE,
V(1's)= 10 11012 = ?

V érték	V(Unsigned int)	V(1's comp)
01 1111	31	31
01 1110	30	30
•••	•••	•••
010 010	18	18
•••	•••	•••
00 0010	2	2
00 0001	1	1
00 0000	0	0
11 1111	63	-0
11 1110	62	-1
11 1101	61	-2
•••	•••	•••
10 1101	45	-18
•••	•••	•••
100001	33	-30
100000	32	-31

Example 2.3: One's complement arithmetic: Consider a 6-bit one's complement system. Represent 15. -15. 13. and -13 in this system. Then perform the following additions: 15 + 13, 15 + (-13), 13 + (-13), and 13 + (-15).

The numbers are derived in a simple fashion:

Decimal Value	One's Complement	Comment
15 - 15	001111 110000	Positive numbers same as two's complement. Complement bits to negate.
13 - 13	001101 110010	Positive numbers same as two's complement. Complement bits to negate.
Now for t	he additions:	
15 + 13 28	001111 + 001101 0 011100	This proceeds just like the two's complement version. No cany out: number is correct, and the result is as we expect.
15 + -13	001111 + 110010	The addition is done in the normal fashion, but
2	1 000001	the result of one is incorrect; however, the presence of a carry says we should add that as a 1 in the LSB
	000010	which gives the expected result.
13 +-13 0	001101 + 110010	This time we will add a positive number to its negative (which is just complement) and end up with all ones — a valid zero.
13 +-15	001101 + 110000	Here the positive number is smaller than the negative number, so result is negative; no cany — the value is correct.

end-around: cirkuláris carry, körkörös átvitel (átvitel az MSB-ről LSB-re)

c.) előjeles (2's komplemens) rendszer:

- $V_{2\text{'S COMPLEMENT}} = -b_{N-1} \times 2^{N-1} + \sum_{i=1}^{N-2} b_i \times 2^i$ 2's comp:
- reprezentálható értékek határa: -(2^{N(N-1)}) től 2^{N(N-1)}-1 ig
- Ha MSB='1', negatív szám, Fólia: 2.2 táblázat
- Pl. (Legyen N:=6, LE, signed int 2's complement)
- $101101_2 \Rightarrow -1x2^5 + 0x2^4 + 1x2^3 + 1x2^2 + 0x2^1 + 1x2^2 + 0x2^4 + 1x2^4 +$ $1x2^{0} = -19_{10}$
- x: azt jelöli, amikor az adott helyiértéken '1'-et kell kivonni még az Xi értékéből (borrow from Xi)

2.2 táblázat:

Table 2.2. 8-Bit Two's Complement Representations.

Bit Pattern	Value	Note
01 1111111	127	Largest representable value.
01111110	126	
01111101	125	

0000001 0	2	Note that leading zero indicates
00000001	1	positive number.
00000000	0	Unique representation of zero.
11111111	-1	Minus one is always all ones.
11111110	- 2	Note that leading one indicates
11111101	- 3	negative number.
	•••	
10000010	-126	
10000001	-127	
10000000	-128	Smallest (most negative) representable value

14

ŊΑ

PI: Körkörös számláló (circular nature):

4 bites 2's komplemens rendszer

Overflow:

0111 -> 1000

Underflow:

1000 -> 0111

De.

II.) Fixpontos számrendszer

- Műveletek:
 - +, -: ugyanaz, mint az egész szám rdsz. esetén
 - *, / : meg kell vizsgálni, hogy a tizedespont helyén maradt-e

$$V_{\text{FIXEDPOINT}} = -b_{N-1} \times 2^{N-p-1} + \sum_{i=0}^{N-2} b_i \times 2^{i-p}$$

- p: radix (tizedes) pont helye, tizedes jegyek száma
- differencia, $\Delta r = 2^{-p}$ (számrendszer finomsága)
 - \square Ha p=0 $\rightarrow \Delta r$ =1, egész rendszer, különben fixpontos
- Alkalmazás: fixpontos műveletvégző egységek
 - □ pl. jelfeldolgozás (Ti: DSP <u>Texas Instruments</u>),

M

Példa: fixpontos rendszer

Legyen egy N:=16 bites, LE, 2's comp. fixpontos rdsz. ahol p:=8.

Kérdés: V(smallest/largest absolute)=?, V(smallest/largest negative)=?, V(zero), $\Delta r = ?$ (ahol lehet, dec. értékben megadva)

Megoldás:

- **Differencia** $\Delta r = 2^{-8} = 0,390625*10^{-2}$
- V(smallest absolute) = $\mathbf{0}00000000.0000001 = 2^{-8} = 0,390625*10^{-2}$

- V(largest/"least" negative) = $\mathbf{1}$ 11111111111111 = $\frac{-2^{-8}}{-2^{-8}}$ = $-0,390625*10^{-2}$

III. Lebegőpontos rendszer: Excess-kód

- Lebegőpontos számok kitevőit (exponens-eit) tárolják / kódolják ezzel a módszerrel. Cél: a kitevő NE legyen negatív, ezért eltolással oldják meg.
 - □ S: a reprezentálni kívánt érték (kódolt eredmény), amit tárolunk
 - □ V: a szám (exponens) valódi értéke, E: az excess (offset/eltolás)
 - \square S = V + E.
- Két számot összeadunk, akkor a következő történik:

$$S1+S2 = (V1+E) + (V2+E) = (V1+V2) + 2 \times E$$

- pontos eredmény: [(V1+V2) + E] (ki kell vonnunk E-t!)
- Fólia: 2.4, 2.5, 2.6-os példák

Példa 2.4:

Example 2.4: Number representation in excess codes: What is the representation of +37₁₀ in an 8-bit excess 128 code? What is the representation of -23₁₀ in an 8-bit excess 128 code? What is the sum of the two numbers, in the 8-bit excess 128 code?

An 8-bit unsigned number can represent values between 0 and 255. The excess representation can then represent values from -128 to +127.

+ 128	10000000	This is the excess.
+ 37	00100101	The value to be represented.
165	10100101	The representation of 37 ₁₀ in excess 128 code.
+ 128	10000000	This is the excess.
<u> </u>	00010111	The value to be represented.
105	01101001	The representation of -23,0 in excess 128 code.
165	10100101	This is +37 in excess 128.
+ 105	+01101001	This is -23 in excess 128.
270	1 00001110	Note the carry out 'in this operation. 270 is too big to represent in 8 bits; to correct for the 2 x E that is in this sum, subtract 128.
<u>- 128</u>	- 10000000	In binary, is this add or subtract?
142	10001110	This is the representation of 14, the correct result. in excess 128.

Táblázat 2.3: BCD Table 2.3. Binary Coded Decimal (RCD) Representations.

(RCD) representations.				
Bit Pattern	Value			
0000	0			
0001	1			
0010	2			
001 1	3			
0100	4			
0101	5			
0110	6			
0111	7			
1000	8			
1001	9			
1010	Not valid			
1011	Not valid			
1100	Not valid			
1101	Not valid			
1110	Not valid			
1111	Not valid			

Példa 2.5:

Example 2.5: BCD excess 3 system: Consider a system that works with 3-digit decimal numbers, and it stores the digits in excess 3 format. What is the representation of 573? What is the representation of 142? Add the two numbers, and give the correct result in excess 3 format.

The numbers are handled on a digit-by-digit basis, with the excess being included with each digit:

Decimal	Binary	
+ 3 3 3 5 7 3 8 10 6 + 3 3 3 1 4 2 4 7 5 573 + 142	0011 0011 0011 0101 0111 0011 1000 1010 0110 0011 0011 0011 0001 0100 0010 0100 0111 0101 1000 1010 0110 0100 0111 0101	This is the excess. And the number to be represented. The excess 3 representation. This is the excess. This is the number to be represented. The excess 3 representation. Do the addition in decimal and in binary. Correct as needed to
715	(-3+1) (+3) (-3) -0010 + 0011 - 0011	Carry out of second set of 4 bits indicates that the most significant digit should be incremented by one. Also indicates that this value is correct as it stands (since 2 × E = 6 and the carry out indicates that the number overflowed into the next digit) so we need to add 3. Therefore, the MSD needs to be incremented by one and decremented by 3; the middle digit needs to have 3 added; and the LSD needs to be decremented by 3.
	1010 0100 1000 10 4 8	Which is the correct excess 3 representation for 715 ₁₀ .

MSD: Most significant digit

LSD: Least significant digit

Lebegőpontos rendszer (FPN):

- 7 különböző tényező: a számrendszer alapja, előjele és nagysága, a mantissza alapja, előjele és hosszúsága, ill. a kitevő alapja.
- matematikai jelölés:

(előjel) Mantissza × Alap^{Kitevő}

- Fixpontosnál nagyságrendekkel kisebb vagy nagyobb számok ábrázolására is mód van:
 - Pl: Avogadro-szám: 6.022*10^23
 - PI: proton tömege 1.673*10^-24 g
 - □ Normalizált rendszerek: pl. DEC-32, IEEE-32, IBM-32
 - 32-bites, vagy egyszeres pontosságú float (C)
 - 64-bites, vagy dupla pontosságú double (C) nem tárgyaljuk

M

IEEE 754-1985

- Szabvány a bináris lebegőpontos számok tárolására, amely tartalmazza még:
 - \square negatív zérust: -0 = 111...1 (két zérus: +0 is)
 - □ Normalizálatlan (denormal) számok
 - □ NaN: nem szám (pl. $\frac{\pm 0}{\pm 0}$ = NaN; vagy $\pm 0 \times \pm \infty$ = NaN) ± 0

Sign-magnitude format ("előjel-hossz" formátum): az előjel külön biten kerül tárolásra (MSB), exponens kódolt (Excess-el "eltolt"), majd a törtrész következik végül. Fontos a sorrendjük!

IEEE-754 szabvány

- Lebegőpontos szám tárolási formátumai:
 - 16-bites, (half) pontosságú,
 - 32-bites (single), vagy egyszeres pontosságú,
 - 64-bites (double), vagy dupla pontosságú,
 - 128-bites (quadruple), vagy négyszeres, pontosságú
 - Kibővített (extended).

re.

Lebegőpontos rendszer jellemzői

- Számrendszer / kitevő alapja: f_b 1
- Mantissza értéke: $V_M = \sum_{i=0}^{N-1} d_i \times r_b^{i-p}$
 - □ Maximális: $V_{M_{max}} = 0.d_{m}d_{m}d_{m}^{t=0}... = (1 r_{b}^{-m})$
 - □ Minimális: $V_{M_{min}} = 0.100 .. = 1/r_{b}$
 - \square Radix pont helye:
 - (a *p* helye az exponens értékével van összefüggésben!)
 - □ Mantissza bitjeinek száma:
- Exponens értéke (max / min): V_E $V_{E_{max}}$ $V_{E_{min}}$
- Lebegőpontos szám értéke:

$$V_{\text{FPN}} = (-1)^{SIGN} V_M \times r_b^{V_E}$$

М

Normalizált lebegőpontos rendszer jellemző paraméterei:

- Ábrázolható maximális érték: $V_{FPN(MAX)} = V_{M(MAX)} \times r_b^{V_{E(MAX)}}$
- Ábrázolható minimális érték: $V_{FPN(MIN)} = V_{M(MIN)} \times r_b^{V_{E(MIN)}}$
- Legális mantisszák száma: $NLM_{FPN} = (r_b 1) \times r_b^{m-1}$
- Legális exponensek száma: $NLE_{FPN} = V_{E(MAX)} + |V_{E(MIN)}| + 1_{ZERO}$
- Ábrázolható értékek száma: $NRV_{FPN} = NLM_{FPN} \times NLE_{FPN}$

- Normalizálás: mantissza értékét általában [0...~1] közé
- PI: $32.768_{10} = 0.32768^*10^5 = 3.2768^*10^4 = 32.768^*10^3 = 327.68^*10^2 = 3267.8^*10^1$ (érvényes alakok)

Példa: normalizált lebegőpontos rendszer

- Adott: Legyen $r_b = 10$, $r_e = 10$, m = 3, e = 2
 - □ Tfh. p=m, ill. a legbaloldalibb jegye a mantisszának '1'
- Kérdés: jellemző paraméterek?

■ Megoldás:
$$V_{M(MAX)} = 0.999 = 1.000 - 10^{-3}$$

$$V_{M(MIN)} = 0.100$$

$$V_{E(MAX)} = (r_e \land e - 1) = 99$$

$$V_{E(MIN)} = -(r_e \land e - 1) = -99$$

$$V_{FPN(MAX)} = 0.999 \times 10^{99}$$

$$V_{FPN(MIN)} = 0.100 \times 10^{-99}$$

Egyszerűsítésként,
itt még nincs
hasznél Excess kódolás!

$$NLM_{FPN} = 9 \times 10 \times 10 = 900 = 9 \times 10^{2}$$

 $NLE_{FPN} = 99 + |-99| + 1_{ZERO} = 199$
 $NRV_{FPN} = 2 \times 900 \times 199 = 358,200$

Normalizált lebegőpontos rdsz.

Table 2.4. 6-Bit Normalized Floating Point System, Base 2.

 $r_b = 2$, $r_c = 2$, m = 4, e = 2

	$r_b = 2, \ r_e = 2, m = 4, \ e = 2$							
				$V_{\mathcal{E}} \rightarrow$	00	01	10	11
				$2^{V_{\epsilon}} \rightarrow$	1	2	4	8
	V _M b	ase 2		V_M		V _M :	× 2 ^{V_E}	
1	0	0	0	1 2	1/2	1	2	4
1	0	0	1	9 16	9 16	1:1	$2\frac{1}{4}$	4 1/2
1	0	1	0	5 8	5 8	$1\frac{1}{4}$	$2\frac{1}{2}$	5
1	0	1	1	11	11.	13	$2\frac{3}{4}$	$5\frac{1}{2}$
1	1	0	0	3 4	34	$1\frac{1}{2}$	3	6
i	1	0	1	13	13	1 5 8	$3\frac{1}{4}$	$6\frac{1}{2}$
1	1	1	0	7 8	7 8	$1\frac{3}{4}$	$3\frac{1}{2}$	7
1	1	1	1	15	15	1 7 8	$3\frac{3}{4}$	$7\frac{1}{2}$

Smallest fraction = 0.1000 ₂	=	1 2
Largest fraction = 0.1111,	=	15 16
Smallest number = $0.1000_2 \times 2^0$	=	1/2
Largest number = $0.1111_2 \times 2^3$	=	$7\frac{1}{2}$
Number of fractions = $1 \times 2 \times 2 \times 2$! =	8
Number of values = 8×4	=	32

Normalizált lebegőpontos ábrázolás: Rejtett (hidden bit) technika

- "Vezető" '1'-sek számát a legtöbb rendszer tervezésekor konstans értékként definiálják (HB=1), DE nem tárolják!
 - □ Ilyen a mantissza legmagasabb helyiértékű bitje, rejtett (hidden/implicit: HB) bitnek hívunk, közvetlenül az exponensbitek mögött helyezkedik el.
 - □ Ez, ha HB=1 van beállítva (bizonyos rendszerek esetén, pl. IEEE, rögzített),
 duplájára nő a legális mantisszák, így az ábrázolható értékek száma is.
 - □ Viszont a nullát nem könnyen tudnánk reprezentálni, mivel a legkisebb ábrázolható formátum a "0 00 000", ami a HB '1'-es konstansként való definiálása miatt $1.000_2 \times 2^{-1} = 0.1000_2 \times 2^0 = \frac{1}{2}$ -nek felel meg (m=4, p=3, e=2, $r_b = r_e = 2$ esetén)! Storage Location (register or memory)

29

Reitett bit / Zérus érték

- Probléma: a zérus (közelítő) ábrázolása
- Hogy tárolható mégis a zérus? \rightarrow Excess 2^{e-1} kódolás esetén, ha r_e =2!
 - □ Bias tartománya: -(2e-1-1) (2e-1-1) ig terjed, ha r_e:=2!
 - □ Ha az **exponens bitek mindegyike zérus (V_E=0)** → az ábrázolt lebegőpontos számot ($V_{EPN}=0$) is **zérusnak** tekintjük!
- Rendszer tervezése során definiálják a használatát
 - □ No hidden bit: Intel Pentium, Motorola 68000 (CISC)
 - ☐ Hidden bit: IEEE-32 számrendszer (754-es formátum)
 - DEC (VAX, PDP gépei)

Példa: 2-es alapú **DEC 32**-bites, normalizált lebegőpontos rendszer

Adott: r_b=2, r_e=2, m=24 (HB nélkül), /p=24 (m=p!)/, e=8, az exponenst tároljuk Excess-128 kódolással, és a számokat tároljuk "előjel-hossz" formátumban (~tekintsük a mantisszát pozitívnak).

$$\begin{split} V_{M(MIN)} &= 0.1000..._2 \\ V_{M(MAX)} &= 0.1111..._2 = 0.999999940395 = 1.0 - 2^{-24} \\ V_{E(MIN)} &= -(r_e^{e-1} - 1) = -(2^{8-1} - 1) = -127 \\ V_{E(MAX)} &= r_e^{e-1} - 1 = 2^{8-1} - 1 = 127 \\ V_{FPN(MIN)} &= 0.1000..._2 \times 2^{-127} = 2.9387 \times 10^{-39} \\ V_{FPN(MAX)} &= 0.1111..._2 \times 2^{+127} = 1.7014 \times 10^{38} \\ NLM_{FPN} &= 2^{23} = 8,388,608 \\ NLE_{FPN} &= 127 + \left| -127 \right| + 1_{ZERO} = 255 = (r_e^e - 1) = 2^8 - 1 \\ NRV_{FPN} &= 2^{23} \times (2^8 - 1) = 2.139 \times 10^9 \end{split}$$

Példa: 2-es alapú **IEEE-32** bites normalizált lebegőpontos rendszer

Adott: r_b=2, r_e=2, m=24, de p=23! (+HB='1'!), Tehát a rejtett bitnek itt lesz szerepe! e=8, az exponenst tároljuk Excess-127 kódolással, és a számokat tároljuk "előjel-hossz" formátumban (~tekintsük a mantisszát pozitívnak).

Példa: 16-os alapú IBM-32 bites normalizált lebegőpontos rendszer

Adott: r_b=16, r_e=2, m=6 (HB nélkül), /p=m=6!/, e=7, az exponenst tároljuk Excess-64 kódolással, és a számokat tároljuk "előjel-hossz" formátumban (~tekintsük a mantisszát pozitívnak).

Lebegőpontos számrendszerek összehasonlítása (ha FPN előjele pozitív):

- DEC: zérushoz közelítve szakadás (az első érték aránytalanul messze van)
- Ezt küszöböli ki az IEEE rendszer (Normalizálatlan tartományban lineárisan tart a zérushoz): ezért használja a V_E= 126 (tehát egyel kevesebb érték)

Figure 2.3. Values of the DEC Normalized Floating Point System Near Zero.

Példa: **IEEE-32** bites normalizált lebegőpontos rendszer (folyt.)

- V_E = [-126, 127] → [1, 254] az Excess127-el eltolt exponens tartomány
- Speciális jelentőség:
 - □ V_E = 0 értékénél (zérus ábrázolása)
 - □ V_E = [255] értékénél lehetőség van bizonyos információk tárolására: □ V □ S □ Á brégolás

$$(+\infty) + (+7) = (+\infty)$$

 $(+\infty) \times (-2) = (-\infty)$
 $(+\infty) \times 0 = \text{NaN}$
 $0 / 0 = \text{NaN}$
 $\text{Sqrt}(-1) = \text{NaN}$

V _E [255]	S (előjel)	Ábrázolás jelentése
≠ 0	X	Nem egy szám (NaN)
0	0	+∞
0	1	-∞

Különböző pontosságú IEEE lebegőpontos rendszerek

Típus	Sign (s)	Exponens (e)	Excess- kód (Exc)	Mantissza (p < m)	Teljes szóhossz
Half (IEEE 754r)	1	5	15	10	16
Single	1	8	127	23	32
Double	1	11	1023	52	64
Quad	1	15	16383	112	128

Példák:

Adja meg a következő szám (decimális '12') bináris bitmintázatát a különböző 32-bites DEC, IEEE és IBM lebegőpontos formátumokban.

Példa (folyt) **DEC-32**

- DEC-32 lebegőpontos számrendszerben: r_e= r_b=2, p=m=24 (vagyis a mantissza hossza p=24, a rejtett bit helyén is tárolunk, a mantisszák tartománya 1/2-től 1-ig terjedhet, HB=0), e=8 az exponens bitek száma Excess-128 kódban tárolva.
- $12_{10} = 1100_2 = 0.1100 * 2^4 \Rightarrow$ a kitevő $4_{10} = 100_2$ Excess-128 kódja: 10000000+100=10000100.
- Tehát a fenti formának megfelelően:

Példa (folyt) IBM-32

- IBM-32 lebegőpontos rendszerben: r_e=2, r_b=16 (a rdsz. alapja hexadecimális), p=m=6 a rejtett bittel együtt, HB=0 (vagyis a mantissza hossza ugyan 6 számjegynyi, de egy hexadecimális érték tárolásához 4 bit szükséges, tehát 4*6=24), e=7 (az exponens bitek száma egyel kevesebb!)
 Excess-64 kódban tárolva.
- $12_{10} = C_{16} = 0.C * 16^1 \Rightarrow \text{a kitevő } 1_{10} = 1_2$ Excess-64 kódja: 1000000+1=1000001.
- Tehát a fenti formának megfelelően: (C₁₆ = 1100₂)

- IEEE-32 lebegőpontos számrendszerben: r_e= r_b=2, m=24, p=23 (p<m) (és a rejtett bit beállítva, HB='1', de nem tároljuk el), (ekkor a mantisszák tartománya 1-től majdnem 2-ig terjedhet), e=8 az exponens bitek száma Excess-127 kódban tárolva.</p>
- $12_{10} = 1100_2 = 1.100 * 2^3 \Rightarrow$ a kitevő $3_{10} = 11_2$ Excess-127 kódja: 11111111 + 11 = 10000010.

Tehát a fenti formának megfelelően:

B) Nem-numerikus információ kódolása

Nem-numerikus információk

- Szöveges,
- Logikai (Boolean) információt,
- Grafikus szimbólumokat,
- és a címeket, vezérlési karaktereket értjük alattuk

Szöveges információ

- Minimális: 14 karakterből álló halmazban: számjegy (0-9), tizedes pont, pozitív ill. negatív jel, és üres karakter.
- + ábécé (A-Z), a központozás, címkék és a formátumvezérlő karakterek (mint pl. vessző, tabulátor, (CR: Carriage Return) kocsi-vissza, soremelés (LF:Line Feed), lapemelés (FF: From Feed), zárójel)
- Így elemek száma 46: 6 biten ábrázolható $\lceil \log_2 46 \rceil = 6$ bit
- De 7 biten tárolva már kisbetűs, mind pedig a nagybetűs karaktereket is magába foglalja

De.

Szöveges információ kódolás

- BCD (Binary Coded Decimal): 6-biten
 - nagybetűk, számok, és speciális karakterek
- EBCDIC (Extended Binary Coded Decimal Interchange Code): 8-biten (A. Függelék)
 - + kisbetűs karaktereket és kiegészítő-információkat
 - 256 értékből nincs mindegyik kihasználva
 - Továbbá I és R betűknél szakadás van!
- ASCII (American Standard Code for Information Interchange): (A függelék) alap 7-biten / extended 8-biten
- UTF-n (Universal Transformation Format): váltózó hosszúságú karakterkészlet (többnyelvűség támogatása)

EBCDIC

HEX														
157 → 2NO ¥	4-	5-	6-	7-	8-	9-	A-	B-	C-	D-	E-	F-		
-0	(SP) SP010000	& smosoooo	SP100000	Ø LO610000	Ø L0620000	0 SM190000	μ sм170000	¢ 50040000	{ SM110000	} SM140000	SM070000	0 ND100000		
-1	(RSIP) SP300000	É LE110000	SP120000	É	a LA810000	j LJ010000	~	~ £		J	÷ \$A000000	1 N0010000		
-2	â LA150000	ê LE150000	Â	Ê	b LB010000	k UK210000				•••		K LX0000000	S L5020000	2 ND000000
-3	ä (A170000	Ē LE170000	Ä	Ë	C LC010000	1		Α	000	L LL.020000	T.	3 N0000000		
-4	à	Č LE130000	À	È	d L0010000	m LM010000	L	LA020000		M LM020000	n U	4 N0040000		
-5	á (A110000	í L/110000	Á LA120000	Í U120000	C LE010000	n LN010000	E/4010000	% SM240000	LE020000	N LN000000	V LV020000	5 N0000000		
-6	ã LA190000	Î L/150000	Ã LA200000	Î	f LF010000	O LO010000	W LW010000	¶ 5M250000	F UF020000	O FO0530000	W LW020000	6 ND060000		
-7	å (A270000	Ï U170000	Â LA200000	Ĭ U180000	g LG010000	p LP010000	X D/010000	Œ	G LG029000	P LF020000	X DX000000	7 ND070000		
-8	Ç LC410000	Ì	Ç	Ì U140000	h UH010000	q LQ010000	y LY010000	œ LO\$10000	H UH020000	Q LQ0220000	Y LYE20000	8 ND000000		
-9	ñ LN190000	B L5610000	Ñ LN200000	SD130000	i LI010000	r LR010000	Z L2010000	Ÿ LY180000	I LI020000	R LR020000	Z L2000000	9 N0000000		
-A	Ý LY120000	! see20000	Š L5220000	: 5P130000	≪ s₽170000	Ø SM210000	i s#030000	¬ smeeccco	(SHY) SP320000	1 N0011000	2 N0021000	3 N0091000		
-В	SP110000	\$ scosoooo	, sP000000	# sm010000	>> SP180000	Ω 5M200000	¿ SP160000	\$ LS210000	Ô LO150000	û LU150000	Ô	Û		
-c	< \$A230000	* SM040000	% SM020000	@ SM050000	ð	æ (A\$10000	Đ	- SO010000	Ö LO170000	ű (U170000	Ö LO180000	Ü		
-D	(seosooo) seorocco	SP090000	\$P050000	ý LV110000	Ž L2210000	[SM000000] smosoooo	Ò	ù LU130000	Ò	Ù		
-E	+ 5A210000	\$P140000	> sassoss	= 5A040000	р стезоооо	Æ	Þ	Ž L2220000	Ó LO110000	Ú LU110000	Ó LO120000	Ú LU120000		
-F	SM130000	A \$D150000	? sP150000	# SP040000	± saccooco	€	(8) SMS30000	X 5A870000	Õ LO190000	ÿ (¥170000	Õ	œ		

Extended **ASCII** (1 byte)

Legend

control character.

reserved for future use.

Unicode

Nyelvkészletek: Alap, - Latin 1/2, görög, cirill, héber, arab stb.

Általános írásjelek, matematikai, pénzügyi, mértani szimbólumok stb.

4

*részlet

C) Hamming hibakódolás – Hiba-detektálás, és javítás

Hibakódolás - Hibadetektálás és Javítás

- N bit segítségével 2^N különböző érték, cím, vagy utasítás ábrázolható
- 1 bittel növelve (N+1) bit esetén: 2^N -ről 2^{N+1} –re: tehát megduplázódik az ábrázolható értékek tartománya
- Redundancia: többlet bitek segítségével lehet a hibákat detektálni, ill. akár javítani is

Ŋ0

Paritás bit

Legegyszerűbb hibafelismerési eljárás, a paritásbit átvitele. Két lehetőség:

```
Kód Paritásbit

páros paritás 1 1 0 1 1

páratlan paritás 1 1 0 1 0
```

- Páros paritás: az '1'-esek száma páros.
 - A kódszóban lévő '1'-esek számát '1' vagy '0' hozzáadásával párossá egészítjük ki. '0' a paritásbit, ha az '1'-esek száma páros volt.
- Páratlan paritás: az '1'-esek száma páratlan.
 - A kódszóban lévő '1'-esek számát '1' vagy '0' hozzáadásával páratlanná egészítjük ki. '1' a paritásbit, ha az '1'-esek száma páros volt.

re.

Paritás bit generáló áramkör

- Paritásbit képzése:
 - ANTIVALENCIA (XOR) művelet alkalmazása a kódszó bitjeire, pl. 'n' adatbit esetén "n-1"-szer!
- Példa:

Kódszó

Paritásbit(P)


```
0\ 0\ 0\ 1\ ?\longrightarrow 0\ \oplus 0\ \oplus 0\ \oplus 1\ =\ 1
0\ 1\ 1\ 0\ ?\longrightarrow 0\ \oplus 1\ \oplus 1\ \oplus 0\ =\ 0
1\ 1\ 1\ 0\ ?\longrightarrow 1\ \oplus 1\ \oplus 1\ \oplus 0\ =\ 1
```

Páros paritás!

м

Paritás bit ellenőrzés

- Páros v. páratlan paritás: N bites információ egy kiegészítő bittel bővül → egyszeres hiba felismerése
- Hibák lehetséges okai:
 - leragadásból: '0'-ból '1'-es lesz, vagy fordítva
 - ideiglenes, tranziens jellegű hiba
 - áthallás (crosstalk)
 - 8-adatbithez páros paritásbit generálás
 (IC 74'180. http://alldatasheet.com 9 bites paritás ellenőrző)
 (XOR gate IC 74'86)

XOR

XOR

XOR

XOR

8 bites adatút kétirányú paritásbit ellenőrzéssel

- Paritásbit dekódoló és generáló képesség
 (Megj: L/H jelöli, hogy adott vezérlő jel mely feszültségszinten aktív)
- IN-H=1 →
 - □ bemeneten PARITY-H=1 paritás ellenőrzés (engedélyezés)
 - □ kimeneten PARITY-H a generált paritás bit
- Ha ODD-H=1 páratlan paritást van beállítva (ODD-H=0 páros)
- Hiba esetén: ERROR-L=1 ! (ERROR_L=0 nincs hiba)

Hamming kód

- Háttér: több redundáns bittel nemcsak a hiba meglétét, és helyét tudjuk detektálni, hanem akár a hibás bitet javítani is tudjuk
- Hamming kód: egy biten tároljuk a bitmintázatok azonos helyiértékű bitjeinek különbségét, tehát egybites hibát lehet vele javítani.
 - SEC-DED: Single Error Correction / Double Error Detection
 - Bitcsoportokon történő paritás ellenőrzésen alapul

- 2^N-1 bites Hamming kód: N kódbit, 2^N-N-1 adatbit
- Összesen pl. 7 biten 4 adatbitet (D0,D1,D2,D3), 3 kódbittel (C0,C1,C2) kódolunk
- C_i kódbitek a bináris súlyuknak megfelelő bitpozíciókban
- A maradék pozíciókat rendre adatbitekkel töltjük fel (D_i) .

Paritás- csoportok	Bit pozíciók	Bitek jelölései
0	1, 3, 5, 7	C0, D0, D1, D3
1	2, 3, 6, 7	C1, D0, D2, D3
2	4, 5, 6, 7	C2, D1, D2, D3

Pl. 1/a) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- 3 kódbitünk van, így írásnál 3 paritásbit generáló-, míg olvasásnál 3 paritás-ellenőrző áramkör kell.
- Példa: bemeneti adatbit-mintázatunk 0101 (D₃-D₀). LE!
 - Mivel <u>páratlan paritást</u> alkalmazunk, a megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 010**0**1**10**. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és az azonosított Ci-minták bitenkénti XOR kapcsolata).
 - Error syndrome: Hiba esetén például, tfh. az input mintázat 010**0010** ra változik, ekkor a vevő oldali paritásellenőrző hibát észlel. Ugyan C2. paritásbitcsoport rendben ('0'), DE a C1 ('0') és C0 ('1') változott, tehát hiba van:
 - Ekkor 011 = 3 az azonosított minta, ami a 3. oszlopot jelenti (→ D0 helyén).
 - Javításként invertálni kell a 3. bitpozícióban lévő bitet. 0100010 ⇒ 0100110. Ekkor a kódbitek a következőképpen módosulnak a páratlan paritásnak megfelelően: C2=0, C1=1 és C0=0.

Pl. 1/b) Hamming kódú hibajavító áramkör tervezése (Big Endian)

- 3 kódbitünk van, így írásnál 3 paritásbit generáló-, míg olvasásnál 3 paritás-ellenőrző áramkör kell.
- Példa: bemeneti adatbit-mintázatunk 0101 (D₀-D₃). BE!
 - Mivel <u>páratlan paritást</u> alkalmazunk, a megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: <u>10</u>0<u>1</u>101. Ha nincs hiba, a paritásellenőrzők (C0, C1, C2) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és az azonosított Ci-minták bitenkénti XOR kapcsolata).
 - □ Error syndrome: Hiba esetén például, tfh. az input mintázat 1011101 ra változik, ekkor a vevő oldali paritásellenőrző hibát észlel. Ugyan C2. paritásbitcsoport rendben ('1'), DE a C1 ('1') és C0 ('0') változott, tehát hiba van:
 - Ekkor (110) azaz 011 = 3 az azonosított minta, ami a 3. oszlopot jelenti (→ D0 helyén).
 - Javításként invertálni kell a 3. bitpozícióban lévő bitet. 1011101 ⇒ 1001101. Ekkor a kódbitek következőképpen módosulnak₅ a páratlan paritásnak megfelelően: C0=1, C1=0 és C2=1.

PI 2.) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- 3 kódbitünk van, így írásnál 3 paritásbit generáló-, míg olvasásnál 3 paritás-ellenőrző áramkör kell.
- Változatlan a bemeneti adatbit-mintázatunk 0101 (D₃-D₀).
 - Mivel páratlan paritást alkalmazunk, a megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 0100110. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és vett Ci-k bitenkénti XOR kapcsolata).
 - □ Hiba esetén például, ha az input mintázat 0110110 -ra változik, ekkor a paritásellenőrző hibát észlel. Mindhárom paritásbit ellenőrző megváltozott, C2 ('1'), a C1 ('1') és C0 ('1') hibát észlel, tehát:
 - Ekkor 101 = 5 az azonosított minta, ami a 5. oszlopot jelenti (→ D1 helyén).
 - Javításként invertálni kell a 5. bitpozícióban lévő bitet. 0110110 ⇒ 0100110. Ekkor a kódbitek a következőképpen módosulnak a páratlan paritásnak megfelelően: C2=0, C1=1 és C0=0.

PI 3.) Hamming kódú hibajavító áramkör tervezése (Little Endian)

- 3 kódbitünk van, így írásnál 3 paritásbit generáló-, míg olvasásnál 3 paritás-ellenőrző áramkör kell.
- Változatlan a bemeneti adatbit-mintázatunk 0101 (D₃-D₀).
 - □ Mivel páratlan paritást alkalmazunk, a megfelelő helyen szereplő kódbitekkel kiegészítve a következő szót kapjuk: 010010. Ha nincs hiba, a paritásellenőrzők (C2, C1, C0) kimenete '000' (nem-létező bitpozíciót azonosít, azaz nincs hiba), így megegyezik a kódolt mintázat paritásbitjeinek értékével, minden egyes paritáscsoportra (küldött és vett Ci-k bitenkénti XOR kapcsolata).
 - □ Hiba esetén például, tfh. az input mintázat 0100100 -ra változik, akkor a paritásellenőrző hibát észlel. C2. paritásbit ellenőrző változatlan ('0'), és a C0 is ('0'), DE a C1 ('0') hibát észlel, tehát:
 - Ekkor 010 = 2 az azonosított minta önmaga, ami a 2. oszlopot jelenti (→
 C1 paritásbit! helyén).
 - Javításként itt már a dupla hibaellenőrzést (DEB / vagy SECDEC) kell alkalmazni, amely a paritásbiteket is kódolja.

60

7-bites Hamming kódú hibajavító áramkör felépítése

Példa: SEC-DED-dupla paritáshiba ellenőrzés (Little Endian) DEB: extra bit, a teljes kódszóra vonatkozóan (Ci-ket is kódolja)

Hamming kód (DEB-el) 8 adatbitre: mi a helyes ábrázolása 8 biten a 01011100 adatbit mintázatnak. Szükséges 8 adatbit (D0-D7), 4 kódbit (C0-C3) és egy kettős hibajelző bit (DEB). Páratlan paritást alkalmazunk. (BW-binary weight jelenti az egyes oszlopok bináris súlyát, 1,2, 4 ill 8 biten).

13	12	11	10	9	8	7	6	5	4	3	2	1	Oszlopszám
DEB	D7	D6	D5	D4	C 3	D3	D2	D1	C2	D0	C 1	C 0	
	1	1	1	1	1	0	0	0	0	0	0	0	BW, 8bit
	1	0	0	0	0	1	1	1	1	0	0	0	BW, 4 bit
	0	1	1	0	0	1	1	0	0	1	1	0	BW, 2 bit
	0	1	0	1	0	1	0	1	0	1	0	1	BW, 1 bit

Paritáscsoportok	Bit pozíciók	Bitek jelölései
0	1, 3, 5, 7, 9, 11	C0, D0, D1, D3, D4, D6
1	2, 3, 6, 7, 10, 11	C1, D0, D2, D3, D5, D6
2	4, 5, 6, 7, 12	C2, D1, D2, D3, D7
3	8, 9, 10, 11, 12	C3, D4, D5, D6, D7

													Oszlopszám
DEB	D7	D6	D5	D4	C 3	D3	D2	D1	C 2	D0	C 1	C 0	
_	0	1	0	1	_	1	1	0	_	0	_	_	Adatbitek
1	0	1	0	1	1	1	1	0	1	0	0	0	Hozzáadott

kódbitek. Tehát a helyes ábrázolása 01011100-nek a következő: 1010111101000.