Visulization

```
In [47]: import numpy as np import matplotlib.pyplot as plt
```

```
In [48]: years = [1960, 1970, 1980, 1990, 2000, 2010, 2016]
iran_pop = [21.91, 28.51, 38.67, 56.23, 66.13, 74.57, 80.28]
```

Matplotlib

Line Plot

```
In [49]: plt.plot(years, iran_pop)
   plt.show()
```


Scatter Plot

Histogram Plot

Histogram Help to Get Idea About Distribution

```
In [51]: city_name = ['Tehran', 'Mashhad', 'Isfahan', 'Karaj', 'Tabriz', 'Shiraz']
city_pop = [7153309, 2307177, 1547164, 1448075, 1424641, 1249942]
```

Histogram Plot

In [70]: plt.hist(city_pop)
 plt.show()

The "square root rule" is a commonly-used rule of thumb for choosing number of bins

The bins parameter tells you the number of bins that your data will be divided into. set bins=1 to understand it

Pie Chart

In [31]: plt.pie(city_pop,labels=['Tehran', 'Mashhad', 'Isfahan', 'Karaj', 'Tabriz', 'Shiraz'])
 plt.show()

Customization plots

Customize Line Plot

```
In [67]: plt.figure(figsize=(11, 8), dpi=100)
    plt.plot(years, iran_pop, color='green')
    plt.xlabel('Year')
    plt.ylabel('Population')

plt.title('Iran\'s Population')
    plt.yticks([21.91, 28.51, 38.67, 56.23, 66.13, 74.57, 80.28],['21M','28M','38M','56M', '66M','74M','80M'])
    plt.xticks([1960, 1970, 1980, 1990, 2000, 2010, 2016])
    plt.show()
```


Customize Scatter plot

```
In [38]: popsize = np.array(iran_pop)*3
plt.scatter(years, iran_pop, s=popsize)

plt.xlabel('Year')
plt.ylabel('Population')

plt.title('Iran\'s Population')
plt.yticks([21.91, 28.51, 38.67, 56.23, 66.13, 74.57, 80.28],['21M','28M','38M','56M', '66M','74M','80M'])
plt.xticks([1960, 1970, 1980, 1990, 2000, 2010, 2016])

plt.show()
```



```
In [39]: pop_size = np.array([7153309, 2307177, 1547164, 1448075, 1424641, 1249942])/30000
Colors = ['violet', 'green', 'orange', 'tomato', 'blue', 'pink']

plt.scatter(np.arange(6),city_pop, s=pop_size,c=Colors, alpha=1)
    plt.xticks([0, 1, 2, 3, 4, 5],['Tehran', 'Mashhad', 'Isfahan', 'Karaj', 'Tabriz', 'Shir az'],rotation=60,fontsize='large')
    plt.yticks([1000000, 2000000, 7000000],['1M','2M','7M'])
    plt.title('Iran\'s most populated city')

plt.text(0,7153309,'iran Capital',fontsize=15)
    plt.ylim([0,8000000])
```


Multiple Plot


```
In [94]: plt.subplot(1,2,1)
plt.plot(years, iran_pop)
plt.title('Iran Population')

plt.subplot(1,2,2)
plt.plot(years,turkey_pop)
plt.title('Turkey Population')

plt.show()
```


Saving a plot

In [95]: plt.savefig('myplot.jpg')
%pwd

Out[95]: 'C:\\Users\\rad'

Seaborn

what is seaborn

based top of matplotlib

work with Pandas Data Structures

Install Seaborn

```
In [75]: ! pip install seaborn
```

Requirement already satisfied: seaborn in c:\users\rad\anaconda3\lib\site-packages

```
In [1]: import pandas as pd import matplotlib.pyplot as plt import seaborn as sb
```

```
In [4]: import pandas as pd
smartphones = pd.read_csv('c://smartphones.csv')
smartphones
```

Out[4]:

	Name	os	Capacity	Ram	Weight	Company	inch
0	Galaxy S8	Android	64	4	149.0	Samsung	5.8
1	Lumia 950	windows	32	3	150.0	Microsoft	5.2
2	Xpreia L1	Android	16	2	180.0	Sony	5.5
3	iphone 7	ios	128	2	138.0	Apple	4.7
4	U Ultra	Android	64	4	170.0	нтс	5.7
5	Galaxy S5	Android	16	2	145.0	Samsung	5.1
6	iphone 5s	ios	32	1	112.0	Apple	4.0
7	Moto G5	Android	16	3	144.5	Motorola	5.0
8	Pixel	Android	128	4	143.0	Google	5.0

Strip Plot

plots the distribution of variables for each category as individual datapoints

```
In [14]: print(smartphones)
    sb.stripplot(x='OS', y='Capacity', data=smartphones, size=10, jitter=True)
    #sb.swarmplot(x='OS', y='Capacity', data=smartphones)

plt.show()
```

	Name	OS	Capacity	Ram	Weight	Company	inch
0	Galaxy S8	Android	64	4	149.0	Samsung	5.8
1	Lumia 950	windows	32	3	150.0	Microsoft	5.2
2	Xpreia L1	Android	16	2	180.0	Sony	5.5
3	iphone 7	ios	128	2	138.0	Apple	4.7
4	U Ultra	Android	64	4	170.0	HTC	5.7
5	Galaxy S5	Android	16	2	145.0	Samsung	5.1
6	iphone 5s	ios	32	1	112.0	Apple	4.0
7	Moto G5	Android	16	3	144.5	Motorola	5.0
8	Pixel	Android	128	4	143.0	Google	5.0

Swarm Plot

This function is similar to stripplot(), but the points are adjusted (only along the categorical axis) so that they don't overlap

In [45]: plt.figure(figsize=(13,8))
 sb.swarmplot(x='OS', y='Capacity', data=smartphones, hue='OS', size=10)
 plt.show()

Box Plot

boxplot.png

In [28]: sb.boxplot(x='Company', y='Ram', data=smartphones)
 plt.show()

Joint Plot

visualize a bivariate distribution

In [175]: sb.jointplot(x='Capacity', y='Ram', data=smartphones,kind='scatter')
plt.show()

Pair Plot

In [13]: import seaborn as sb
sb.set_style('darkgrid')

smartphones = pd.read_csv('c://smartphones.csv')
sb.pairplot(smartphones, hue='Name', plot_kws={'s':90})

plt.show()

 $\underline{http://seaborn.pydata.org/tutorial.html\#\ (http://seaborn.pydata.org/tutorial.html\#)}$