[4장. 딥러닝 시작]

- 4.1. 인공 신경망의 한계와 딥러닝 출현
- 4.2. 딥러닝 구조
- 4.3. 딥러닝 알고리즘
- 4.4. 우리는 무엇을 배워야 할까?
- 4.1. 인공 신경망의 한계와 딥러닝 출현
- 오늘날 인공 신경망에서 이용하는 구조는 프랭크 ㅗ젠블라트가 고안한 퍼셉트론이라는 선형 분류기 (딥러닝의 기원이 되는 알고리즘)
- 흐른다 1 / 안흐른다 0
 - 1) And 게이트는 모든 입력이 1일 때 작동
 - 2) OR 게이트는 둘 중 하나라도 1이면 작동
 - 3) XOR 게이트는 배타적 논리합 (하나만 1이어야 함) → 비선형적 데이터, 분류 어렵
 - 해결책: 입력층과 출력층 사이에 하나 이상의 중간층을 두어 다층 퍼셉트론 고안
 - 딥러닝 = 심층신경망 : 입력층과 출력층 사이에 은닉층이 여러 개 있는 신경 망

4.2. 딥러닝 구조

1) 용어

구분	구성 요소	설명
층	입력층(input layer)	데이터를 받아들이는 층
	은닉층(hidden layer)	모든 입력 노드부터 입력 값을 받아 가중합을 계산하고, 이 값을 활성화 함수에 적용하여 출력층에 전달하는 층
	출력층(output layer)	신경망의 최종 결괏값이 포함된 층

구분	구성 요소	설명
기중치(weight)		노드와 노드 간 연결 강도
바이어스(bias)		가중합에 더해 주는 상수로, 하나의 뉴런에서 활성화 함수를 거쳐 최종적 으로 출력되는 값을 조절하는 역할을 함
가중합(weighted sum), 전달 함수		가중치와 신호의 곱을 합한 것
함수	활성화 함수(activation function)	신호를 입력받아 이를 적절히 처리하여 출력해 주는 함수
	손실 함수(loss function)	가중치 학습을 위해 출력 함수의 결과와 실제 값 간의 오차를 측정하는 함수

- (1) 가중치: 입력 값이 연산 결과에 미치는 영향력을 조절하는 요소
- (2) 가중합=전달 함수: 각 노드에서 들어오는 신호에 가중치를 곱해서 다음 노드로 전달, 이 값들 모두 더한 합계를 의미

$$\sum_{i} w_i x_i + b$$

(w: 가중치, b: 바이어스)

- (3) 활성화 함수: 전달 함수에서 전달받은 값을 출력할 때 일정 기준에 따라 출력 값을 변화시키는 비선형 함수
 - Ex) 시그모이드, 하이퍼볼릭 탄젠트, 렐루 함수 등
 - ① 시그모이드 함수

선형 함수의 결과를 0~1 사이에서 비선형 형태로 변형해줌 주로 로지스틱 회귀 같은 분류 문제를 확률적으로 표현하는데 use 기울기 소멸 문제 발생

$$f(x) = \frac{1}{1 + e^{-x}}$$

② 하이퍼볼릭 탄젠트 함수

선형 함수의 결과를 -1~1 사이에서 비선형 형태로 변형해줌 시그모이드에서 결괏값의 평균이 0이 아닌 양수로 편향된 문제 해결하는 데 사용

기울기 소멸 문제 여전

③ 렐루 함수

최근 활발히 사용

입력이 음수면 0, 양수면 x 출력

경사 하강법에 영향 노노 → 학습 속도 빠름 → 기울기 소멸 문제 발생 X 일반적으로 은닉층에서 사용

하이퍼볼릭 탄젠트 함수 대비 학습 속도 6배 빠름

음수값 입력받으면 항상 0 출력 → 학습 능력 감소

해결책: 리키 렐루

④ 소프트맥스 함수

입력값을 0~1 사이에 출력되도록 정규화

총합은 항상 1

보통 딥러닝에서 출력 노드의 활성화 함수로 많이 사용

$$y_k = \frac{\exp(a_k)}{\sum_{i=1}^n \exp(a_i)}$$

(4) 손실 함수

학습을 통해 얻은 데이터의 추정치가 실제 데이터와 얼마나 차이가 나는지 평가 하는 지표

값이 틀수록 많이 틀린 것임

① 평균 제곱 오차

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

 \hat{y}_i : 신경망의 출력(신경망이 추정한 값) \ y_i : 정답 레이블

i: 데이터의 차원 개수

② 크로스 엔트로피 오차

분류 문제에서 원-핫 인코딩 했을 때만 사용 가능한 오차 계산법 $CrossEntropy = -\sum\limits_{i=1}^{n} y_i \log \hat{y}_i$

 $\left(egin{array}{c} \hat{y}_i \colon \mbox{신경망의 출력(신경망이 추정한 값)} \\ y_i \colon \mbox{정답 레이블} \\ i \colon \mbox{데이터의 차원 개수} \end{array}
ight)$

2) 딥러닝 학습

Step 1: 순전파(네트워크에 훈련 데이터가 들어올 때 발생, 데이터 기반 예측 값 계산하기 위해 은닉층으로 전송

Step2: 손실 함수로 네트워크의 예측 값과 실제 값의 차이(손실, 오차) 추정 손실 함수 비용은 0이 이상적

손실이 계산되면 그 정보는 역으로 전파되므로 역전파라 부름

은닉층의 뉴런은 각 뉴런이 원래 출력에 기여한 상대적 기여도에다라 값이 달라짐 예측 값과 실제 값 차이를 각 뉴런의 가중치로 미분 후 ㄱ기존 가중치 값에서 뺌

모든 뉴런에 동일하게 진행

4) 딥러닝의 문제점과 해결방안

포인트는 여러 은닉층을 결합해서 비선형 영역을 표현하는 것

- 은닉층이 많을 때 문제점

과적합(훈련 데이터에 대해 과하게 학습하여 실제 데이터에 대한 오차 증가 하는 현상) → 해결책: 드롭아웃

기울기 소멸 문제(출력층에서 은닉층으로 전달되는 오차가 크게 줄어들어 학습이 되지 않는 현상) > 렐루 활성화 함수 사용

성능이 나빠지는 문제 → 확률적 경사 하강법과 미니 배치 경사 하강법 사용 배치 경사 하강법: 전체 데이터셋에 대한 오류 구한 후 기울기를 한번만 계산 해서 모델의 파라미터 업데이트

확률적 경사 하강법: 임의로 선택한 데이터에 대해 기울기를 계산하는 방법으로 적은 데이터 사용해서 속도 높임

미니 배치 경사 하강법: 전체 데이터셋을 미니 배치 여러 개로 나눈 후 한 개한개 기울기 구하고 그것의 평균 기울기를 이용하여 모델 업데이트에서 학습하는 방법 (다소 안정적)

5) 딥러닝의 이점 특성 추출, 빅데이터의 효율적 활용

3. 딥러닝 알고리즘

CNN, RNN, RBM, DBN 으로 분류됨

1) 심층 신경망

입력층과 출력층 사이에 다수의 은닉층을 포함하는 인공 신경망 연산량 많음, 기울기 소멸 문제 등 → 드롭아웃, 렐루 함수, 배치 정규화 등 적용 해야 함

2) 합성곱 신경망

합성곱층, 풀링픙을 포함하는 이미지 처리 성능이 좋은 인공 신경망 알고리즘 영상 및 사진이 포함된 이미지 데이터에서 객체 탐색 or 객체 위치 찾아내기 유 용

3) 순환 신경망

시계열 데이터 같은 시간 흐름에 따라 변화하는 데이터를 학습하기 위한 인공 신경망

순환: 자기 자신을 참조한다 기울기 소멸 문제 → LSTM 사용

- 4) 제한된 볼츠만 머신 가시층, 은닉층으로 구성됨 둘이만 연결됨 DBN 의 요소로 많이 use
- 5) 심층 신뢰 신경망 제한된 볼츠만 머신을 블록처럼 여러 층으로 쌓아 올린 구조 레이블이 없는 데이터에 대한 비지도 학습이 가능