Name: William Giffin

Q1. I Started by calculating the Transform matrix to get the point V4 from (-.5,-.5,-.5) to (0,0,0). The result was

1	0	0	.5
0	1	0	.5
0	0	1	.5
0	0	0	1

Then I multiplied it by the scaling Matrix

4.5	0	0	0
0	4	0	0
0	0	4.5	0
0	0	0	0

To get:

4.5	0	0	.5
0	4	0	.5
0	0	4.5	.5
0	0	0	1

I Then checked my work by multiplying the Transformation Matrix T by the 4x8 matrix mentioned in Piazza (the combination of all the point locations in Homogeneous form)

0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1
1	1	1	1	0	0	0	0
0	0	0	0	0	0	0	0

This produced:

0	4.5	0	4.5	0	4.5	0	4.5
0	0	4	4	0	0	4	4
4.5	4.5	4.5	4.5	0	0	0	0
0	0	0	0	0	0	0	0

Which is the matrix where every column corresponds to a 3D point of the cube, scaled, and translated.

Therefore, the answer Matrix is:

4.5	0	0	.5
0	4	0	.5
0	0	4.5	.5
0	0	0	1

 $\{V0,V1,V2\} = \{[0,0,4.5],[4.5,0,4.5],[0,4,4.5]\}$

 $\{V1,V3,V2\} = \{[4.5,0,4.5],[4.5,4,4.5],[0,4,4.5]\}$

 $\{V2,V3,V7\} = \{[0,4,4.5],[4.5,4,4.5],[4.5,4,0]\}$

 $\{V2,V7,V6\} = \{[0,4,4.5],[4.5,4,0],[0,4,0]\}$

 $\{V3,V1,V7\} = \{[4.5,4,4.5],[4.5,0,4.5],[4.5,4,0]\}$

 $\{V1,V5,V7\} = \{[4.5,0,4.5],[4.5,0,0],[4.5,4,0]\}$

 $\{ V5, V4, V7 \} = \{ [4.5,0,0], [0,0,0], [4.5,4,0] \}$

 $\{V4,V7,V6\} = \{[0,0,0],[4.5,4,0],[0,4,0]\}$

 $\{V4,V6,V5\} = \{[0,0,0],[0,4,0],[0,4,4.5]\}$

 $\{V4,V2,V6\} = \{[0,0,0],[0,4,4.5],[0,4,0]\}$

 $\{V4,V1,V0\} = \{[0,0,0],[4.5,0,4.5],[0,0,4.5]\}$

 $\{ V4, V5, V1 \} = \{ [0,0,0], [4.5,0,0], [4.5,0,4.5] \}$