Conjuntes finitos

Si on conjunt es equipotente q $I_n = \{1, \dots, n\}$

Def: Conjunto finito

Schice que un conjunto A es finito Si es vaco o si existe una fonción

f: A H7 In bigestives para algún nEN.

Scasin la conterior si $A = \emptyset$ escribiremod |A| = #(A) = 0 & $A \neq \emptyset$ g $f \longrightarrow f$ es una biyección |A| = #(A) = 0Peru denotar el (ardinal de A.

ej: Sea += > Vocalos }

Joe Jano

entonces Consideranos Rostringita IK: IK - X \ & f (K+1)} este función es injectiva y aderes x/{f(KH)} & IK (e) (-) la cuid es absorba por hipotesis (aso 2: K+1 E X (aso 2.1: K+1 & rango (f) Enforces consideranos FI: Ix -> X \{ K+1, } co Subconjuto propio de IX, la que contradice la H.I. caso 2.2: Kt E ran (f) Definenos una avera función ψ: Ix - x / Ekn}

Cuso1: K+1 &X

Así for apartudo a) le teorena n=n.
Suponyanos que IN es frito rationardo por contradicción antores existe
ren y une bijección
$y: \mathbb{N} \longrightarrow \mathbb{I}_{r}$ $y: \mathbb{I}_{r} \longrightarrow \mathcal{P}(\mathbb{I}_{r})$
es une forcés enjectiva de Ir en un subset propio. Absurdo.