

Rapport Projet PAP

Courbes de Bézier et polices de caractères

XU KEVIN LI ZIHENG

13 janvier 2019

Sommaire

P	éambule	1
1	Les classes (Diagramme UML)	3
	1.1 Diagramme UML	3
	1.2 Question 1	3
2	Image	3
	2.1 Réalisation	3
	2.2 Solution	3
3	Point	3
	3.1 Solution	3
4	Courbes de Bézier	3
	4.1 Algorithme de de Casteljau	3
	4.2 Solution	4
5	Police 1	4
	5.1 Réalisation	4
	5.2 Solution	4
6	Police 2	4
	6.1 Solution	4
7	Police 3	4
	7.1 Solution	4

Préambule

L'objectif de ce projet est réalisé des polices de caractères en utilisant des courbes de Bézier.

- un actif sans risque : S_t^0 à l'instant t un actif risqué (une action) : S_t une variable aléatoire

On va utiliser une fonction $f:\mathbb{R}_+\to\mathbb{R}_+$ tout au long du problème. Cette fonction renvoie le montant d'argent gagné pour un certain montant de l'actif risqué en paramètre.

1 Les classes (Diagramme UML)

1.1 Diagramme UML

1.2 Question 1

On a
$$q_N = \mathbb{Q}(T_1^{(N)} = 1 + h_N)$$
 donc $1 - q_N = \mathbb{Q}(T_1^{(N)} = 1 + b_N)$ car $T_1^{(N)}$ ne

- 2 Image
- 2.1 Réalisation
- 2.2 Solution
- 3 Point
- 3.1 Solution
- 4 Courbes de Bézier

4.1 Algorithme de de Casteljau

points_ contient les points de contrôle de la courbe de Bézier et $ratio_{-} = 0.00001$ correspond à la valeur du paramètre lors du calcul du barycentre entre deux points.

```
Algorithm 1 getCasteljauPoint
```

```
Require: c \in \mathbb{N}, index \in \mathbb{N}, t \in \mathbb{R}^*
Ensure: Point
 1: function GETCASTELJAUPOINT(c, index, t)
         if c = 0 then
             return points_[index]
 3:
 4:
         Set a Point in P1 to getCasteljauPoint(c-1, index, t)
 5:
 6:
         Set a Point in P2 to getCasteljauPoint(c-1, index+1, t)
         Set a Point in P with x = (1-t) \times (x \text{ of } P1) + t \times (x \text{ of } P2) and y = (1-t) \times (x \text{ of } P1) + t \times (x \text{ of } P2)
     (y \ of \ P1) + t \times (y \ of \ P2)
         return P
 8:
 9: end function
```

Algorithm 2 getCurvePoints

Require:

Ensure: A vector *Res* of Points **function** GETCURVEPOINTS

- 2: Set an empty vector Res of Points Set S to the size of the vector points_
- 4: **for** t = 0 to 1 with a step of $ratio_$ **do**Add to the vector Res the Point : getCasteljauPoint(size-1, 0, t)
- 6: **end for return** *Res*
- 8: end function
- 4.2 Solution
- 5 Police 1
- 5.1 Réalisation
- 5.2 Solution
- 6 Police 2
- 6.1 Solution
- 7 Police 3
- 7.1 Solution