Поверхностные интегралы первого рода

Определение массы поверхности

Основной задачей, приводящей к поверхностному интегралу первого рода, является задача о вычислении массы неоднородного тела, один размер которого (толщина) значительно меньше других его размеров. Такие тела называются оболочками. Это корпуса самолетов, ракет, подводных и надводных судов и т.д

Рассматривается неоднородная массивная поверхность S. Плотность поверхности $\rho = \rho(x, y, z)$. Требуется подсчитать массу этой поверхности.

Разобьем поверхность на *п* элементарных поверхностей, настолько маленьких по размерам, что плотность каждой элементарной поверхности можно считать постоянной, то есть пренебречь изменением плотности в границах элемента. Тогда приближенное значение массы всей поверхности выражается формулой

$$\rho(\xi_k,\eta_k,\zeta_k)\Delta s_k$$
,

где $(\xi_k$, η_k , $\zeta_k)$ – координаты точки k – ой элементарной поверхности S_k , Δs_k – площадь этого элемента. Данная сумма напоминает интегральную сумму Римана, ее предел, следовательно, равен некоторому интегралу, который обозначим

$$\iint\limits_{(S)} \rho(x,y,z) ds.$$

Назовем этот интеграл поверхностным интегралом первого рода. Ясно, что

$$\iint_{(S)} \rho(x, y, z) ds = \lim_{n \to \infty} \sum_{k=1}^{n} \rho(\xi_k, \eta_k, \zeta_k) \Delta s_k.$$

Этот интеграл является обобщением двойного интеграла, поскольку подынтегральная функция здесь зависит от трех переменных, а интегрирование происходит в отличие от двойного интеграла по "кривой" поверхности.

Интеграл в данной постановке существует, так как массивная поверхность имеет определенную массу.

Если абстрагироваться от реалий, можно аналогично ввести интеграл

$$\iint_{(S)} f(x, y, z) ds = \lim_{n \to \infty} \sum_{k=1}^{n} f(\xi_k, \eta_k, \zeta_k) \Delta s_k,$$

он уже не имеет отношения к массе тела, а, следовательно, может существовать и не существовать. Считается, что данный интеграл существует, если предел выражения, стоящего в правой части формулы существует и не зависит от способа разбиения поверхности S и выбора точек (ξ_k, η_k, ζ_k) .

Поскольку поверхностный интеграл определяется пределом интегральной суммы, его свойства практически не отличаются от свойств двойного интеграла и доказываются аналогично.

Свойства поверхностного интеграла І рода

1. Постоянный множитель можно выносить за знак поверхностного интеграла

$$\iint\limits_{S}c\cdot f(x;y;z)\,ds=c\cdot\iint\limits_{S}f(x;y;z)\,ds,$$
где c — число.

2. Поверхностный интеграл от суммы функций равен сумме соответствующих интегралов от слагаемых

$$\iint_{S} (f_{1}(x; y; z) \pm f_{2}(x; y; z)) ds = \iint_{S} f_{1}(x; y; z) ds \pm \iint_{S} f_{2}(x; y; z) ds.$$

3. Поверхностный интеграл I рода по всей поверхности $S = S_1 \cup S_2$ равен сумме интегралов по ее частям S_1 и S_2 (аддитивное свойство), если S_1 и S_2 пересекаются лишь по границе, их разделяющей

$$\iint\limits_{S} f(x;y;z) \, ds = \iint\limits_{S_1} f(x;y;z) \, ds + \iint\limits_{S_2} f(x;y;z) \, ds.$$

4. Если на всей поверхности S выполнено неравенство

$$f_1(x;y;z) \leq f_2(x;y;z)$$
,

TO

$$\iint\limits_{S} f_1(x;y;z) \, ds \leqslant \iint\limits_{S} f_2(x;y;z) \, ds.$$

5.

$$\iint\limits_{S}ds=S,$$

Где S площадь поверхности S.

6.

$$\left| \iint\limits_{S} f(x;y;z) \, ds \right| \leqslant \iint\limits_{S} |f(x;y;z)| \, ds.$$

6. Теорема о среднем значении:

Если $f(x\,,\,y\,,\,z)$ непрерывна на всей поверхности S, то на этой поверхности существует такая точка $(x_c\,,\,y_c\,,\,z_c)_{,\,$ что

$$\iint\limits_{c} f(x;y;z)\,ds = f(x_c;y_c;z_c)\cdot S$$

Вычисление поверхностного интеграла 1 рода

Переходим к сведению данного интеграла к двойному.

1) Пусть поверхность
$$S$$
 задана параметрически $\begin{cases} x = x(u, v) \\ y = y(u, v) \\ z = z(u, v) \end{cases}$

Пусть поверхность S проектируется на плоскость XY без потерь. Воспользуемся вышеупомянутым разбиением поверхности S. Предполагаем, что проекция поверхности S на эту плоскость есть область D, тогда

$$\iint\limits_{(S)} f(x, y, z) ds =$$

$$= \iint\limits_{D} f\left(x(u,v),y(u,v),z(u,v)\right) \sqrt{\left(\frac{\partial(x,y)}{\partial(u,v)}\right)^{2} + \left(\frac{\partial(y,z)}{\partial(u,v)}\right)^{2} + \left(\frac{\partial(z,x)}{\partial(u,v)}\right)^{2}} du dv$$

•

Замечание. Если поверхность не проектируется на плоскость *XY*, или проектируется не полностью следует спроектировать ее на другую координатную плоскость, несколько видоизменив формулу перехода от поверхностного интеграла к двойному, затем повторному.

2) Пусть уравнение поверхности задано в явном виде, то есть z = g(x, y). Тогда

$$\iint_{(S)} f(x, y, z) ds = \iint_{D} f(x, y, g(x, y)) \sqrt{1 + g_{x}^{\prime 2} + g_{y}^{\prime 2}} dx dy ,$$

где D-проекция области S на плоскость XOY.

ПРИМЕР 1. Вычислить поверхностный интеграл I-го рода: $I = \iint_{\Omega} (x+y) d\Omega, \text{где } \Omega - \text{часть плоскости } 2x+5y+z=10, \text{ лежащая в первом октанте (рис. 3)}.$

Поверхность Ω задана уравнением: z=10-2x-5y, откуда $z_x'=-2$, $z_y'=-5$, и $\sqrt{\left(1+z_x'^2+z_y'^2\right)}=\sqrt{1+4+25}=\sqrt{30}$. Следовательно, по формуле (3) $I=\iint_{\Omega}(x+y)d\Omega=\iint_{D}(x+y)\cdot\sqrt{30}\cdot dxdy$, где D — треугольник с вершинами в точках (0,0), (5,0), (0,2) плоскости OXY. Вычисляя двойной интеграл, получаем:

 $I = \sqrt{30} \cdot \int_{0}^{5} dx \int_{0}^{2 - \frac{2x}{5}} (x + y) dy = \sqrt{30} \cdot \int_{0}^{5} \left(xy + \frac{y^{2}}{2} \right) \Big|_{0}^{2 - \frac{2x}{5}} \cdot dx =$ $= \sqrt{30} \cdot \int_{0}^{5} \left(2 + \frac{6x}{5} - \frac{8x^{2}}{25} \right) dx = \frac{35}{3} \cdot \sqrt{30}.$

ПРИМЕР 2. Найти поверхностный интеграл I-го рода: $I = \iint_{\Omega} xy \, d\Omega$, где Ω

– часть поверхности сферы $x^2 + y^2 + z^2 = 25$, расположенная внутри цилиндра $x^2 + y^2 = 9$ и в первом октанте (рис. 4).

Поверхность задается уравнением: $z = \sqrt{25 - x^2 - y^2}$. Тогда имеем част-

ные производные:
$$z_x' = \frac{-x}{\sqrt{25 - x^2 - y^2}}$$
, $z_y' = \frac{-y}{\sqrt{25 - x^2 - y^2}}$. Отсюда

$$\sqrt{\left(1+{z_x'}^2+{z_y'}^2\right)}=\sqrt{1+\frac{x^2}{25-x^2-y^2}+\frac{y^2}{25-x^2-y^2}}=\frac{5}{\sqrt{25-x^2-y^2}}.$$

Подставляя найденные значения в формулу (3), получаем:

$$I = \iint_{\Omega} xy \cdot d\Omega = \iint_{D} \frac{5xy}{\sqrt{25 - x^2 - y^2}} dxdy,$$

где область D в плоскости OXY- четверть окружности радиуса 3 с центром в начале координат.

Для вычисления двойного интеграла перейдем к полярным координатам:

$$I = 5 \cdot \int_{0}^{\pi/2} d\varphi \int_{0}^{3} \frac{r \cos \varphi \cdot r \sin \varphi}{\sqrt{25 - r^{2}}} \cdot r dr = 5 \cdot \int_{0}^{\pi/2} \frac{\sin 2\varphi}{2} d\varphi \cdot \int_{0}^{3} \frac{r^{3} dr}{\sqrt{25 - r^{2}}} =$$

$$= -\frac{5}{4} \cdot \cos 2\varphi \Big|_{0}^{\pi/2} \cdot \frac{1}{2} \cdot \int_{0}^{3} \frac{r^{2} dr^{2}}{\sqrt{25 - r^{2}}} =$$

$$= \frac{5}{4} \cdot \left(-50 \cdot \sqrt{25 - r^{2}} + \frac{2}{3} \cdot \left(25 - r^{2} \right)^{3/2} \right) \Big|_{0}^{3} = \frac{35}{3}. \bullet$$

ПРИМЕР 3. Вычислить площадь части параболоида $z = 5 - x^2 - y^2$, отсекаемой плоскостью z = 1 (рис. 5).

В этом примере
$$z_x' = -2x$$
, $z_y' = -2y$, и $\sqrt{\left(1 + z_x'^2 + z_y'^2\right)} = \sqrt{1 + 4x^2 + 4y^2}$.

Тогда по формуле (6) получаем:
$$|\Omega| = \iint_{\Omega} d\Omega = \iint_{D} \sqrt{1 + 4x^2 + 4y^2} \cdot dxdy$$
, где D —

круг в плоскости *ОХҮ* радиуса 2 с центром в начале координат. Переходя к полярным координатам, получаем:

$$\begin{aligned} |\Omega| &= \int_{0}^{2\pi} d\varphi \int_{0}^{2} \sqrt{1 + 4r^{2}} \cdot r dr = 2\pi \cdot \frac{1}{2} \cdot \int_{0}^{2} \sqrt{1 + 4r^{2}} \cdot dr^{2} = \\ &= \frac{\pi}{4} \cdot \left(\left(1 + 4r^{2} \right)^{3/2} \cdot \frac{2}{3} \right) \Big|_{0}^{2} = \frac{\pi}{6} \cdot \left(17\sqrt{17} - 1 \right) . \blacksquare \end{aligned}$$

Некоторые приложения поверхностного интеграла 1 рода

Площадь поверхности

Если поверхность S задана уравнением z=z(x;y), а ее проекция на плоскость Oxy есть область D, в которой z(x;y), $z_x{}'(x;y)$ и $z_y{}'(x;y)$ — непрерывные функции, то ее площадь S вычисляется по формуле

$$S = \iint_{S} ds,$$

Масса поверхности

Пусть плотность распределения массы материальной поверхности есть $\gamma = \gamma(x;y;z)$.

$$m = \iint\limits_{S} \gamma(x; y; z) \, ds.$$

Моменты, центр тяжести поверхности

Статистические моменты, координаты центра тяжести, моменты инерции материальной поверхности S находятся по соответствующим формулам:

$$S_{xy} = \iint\limits_{S} z \cdot \gamma(x; y; z) \, ds, \quad M_x = \iint\limits_{S} (y^2 + z^2) \cdot \gamma(x; y; z) \, ds,$$

$$S_{yz} = \iint\limits_{S} x \cdot \gamma(x; y; z) \, ds, \quad M_y = \iint\limits_{S} (x^2 + z^2) \cdot \gamma(x; y; z) \, ds,$$

$$\begin{split} S_{xz} &= \iint\limits_{S} y \cdot \gamma(x;y;z) \, ds, \quad M_z = \iint\limits_{S} (x^2 + y^2) \cdot \gamma(x;y;z) \, ds, \\ x_c &= \frac{S_{yz}}{m}, \ y_c = \frac{S_{xz}}{m}, \ z_c = \frac{S_{xy}}{m}, \quad M_O = \iint\limits_{S} (x^2 + y^2 + z^2) \cdot \gamma(x;y;z) \, ds. \end{split}$$

Пример Найти массу полусферы радиуса R, если в каждой точке поверхности плотность численно равна расстоянию этой точки от радиуса, перпендикулярного основанию полусферы.

Решение: На рисунке изображена полусфера радиуса R. Ее уравнение $z = \sqrt{R^2 - x^2 - y^2}$; $\gamma = \sqrt{x^2 + y^2}$ — поверхностная плотность полусферы.

$$m = \iint_{S} \sqrt{x^{2} + y^{2}} ds = \iint_{D} \sqrt{x^{2} + y^{2}} \times \sqrt{1 + \frac{x^{2}}{R^{2} - x^{2} - y^{2}}} + \frac{y^{2}}{R^{2} - x^{2} - y^{2}} dx dy = R \iint_{D} \frac{\sqrt{x^{2} + y^{2}}}{\sqrt{R^{2} - (x^{2} + y^{2})}} dx dy.$$

Переходим к полярным координатам:

$$m = R \iint_{D} \frac{r}{\sqrt{R^2 - r^2}} \cdot r \, dr \, d\varphi = R \int_{0}^{2\pi} d\varphi \cdot \int_{0}^{R} \frac{r^2}{\sqrt{R^2 - r^2}} dr = \frac{\pi^2 R^3}{2}.$$

Внутренний интеграл вычислен с помощью подстановки $r = R \sin t$:

$$\int_{0}^{R} \frac{r^{2}}{\sqrt{R^{2} - r^{2}}} dr = \int_{0}^{\frac{\pi}{2}} \frac{R^{2} \sin^{2} t}{R \cos t} \cdot R \cos t \, dt = R^{2} \int_{0}^{\frac{\pi}{2}} \frac{1 - \cos 2t}{2} \, dt =$$

$$= R^{2} \left(\frac{1}{2} t \Big|_{0}^{\frac{\pi}{2}} - \frac{1}{2} \sin 2t \Big|_{0}^{\frac{\pi}{2}} \right) = R^{2} \left(\frac{\pi}{4} - 0 \right) = \frac{\pi R^{2}}{4}.$$

Поверхностные интегралы второго рода

Поверхностный интеграл II рода строится по образцу криволинейного интеграла II рода, где направленную кривую разлагали на элементы и проектировали их на координатные оси; знак брали в зависимости от того, совпадало ли ее направление с направлением оси или нет.

Пусть задана двусторонняя поверхность (таковой является плоскость, эллипсоид, любая поверхность, задаваемая уравнением z = f(x,y), где $f(x,y), f'_x, f'_y$ - функции, непрерывные в некоторой области D плоскости Oxy и т. д.). После обхода такой поверхности, не пересекая ее границы, направление нормали к ней не меняется. Примером односторонней, поверхности является так называемый *лист Мебиуса*, получающийся при склеивании сторон AB и CD прямоугольника ABCD так, что точка A совмещается с точкой C, а B - с D.

Далее, пусть в точках рассматриваемой двусторонней поверхности S в пространстве Охуz определена непрерывная функция f(x,y,z). Выбранную сторону поверхности (в таком случае говорят, что поверхность ориентирована) разбиваем на части S_i , где i=1,2,... n, и проектируем их на координатные плоскости. При этом площадь проекции $\Delta \sigma_i$ берем со знаком:

- «плюс», если выбрана верхняя сторона поверхности, или, что то же самое, если нормаль \vec{n} к выбранной стороне поверхности составляет с осью Oz острый угол;
- со знаком «минус», если выбрана нижняя сторона поверхности.

В этом случае интегральная сумма имеет вид

$$I_n = \sum_{i=1}^n f(x_i, y_i, z_i) \Delta \sigma_i,$$

где $\Delta \sigma_i = (S_i)_{OXY}$ - площадь проекции S_i на плоскость Oxy.

Определение: Поверхностным интегралом II рода (по координатам) от функции f(x,y,z) по переменным x и y по выбранной стороне поверхности называется предел интегральной суммы I_n при $n \to \infty, d \to 0$ (где $d = \max_{1 \le i \le n} d_i$ - максимальный характерный размер областей S_i), если он существует и не зависит от способа разбиения поверхности S на части S_i и от выбора точек $M_i(x_i, y_i, z_i) \in S_i$, и обозначается

$$\iint_{(S)} f(x, y, z) dxdy = \lim_{\substack{d \to 0 \\ (n \to \infty)}} \sum_{i=1}^{n} f(x_i, y_i, z_i) \Delta \sigma_i.$$

Аналогично,

$$\iint_{(S)} f(x, y, z) dydz = \lim_{\substack{d \to 0 \\ (n \to \infty)}} \sum_{i=1}^{n} f(x_i, y_i, z_i) (\Delta S_i)_{OYZ},$$

$$\iint_{(S)} f(x, y, z) dxdz = \lim_{\substack{d \to 0 \\ (n \to \infty)}} \sum_{i=1}^{n} f(x_i, y_i, z_i) (\Delta S_i)_{OXZ}.$$

Общим видом поверхностного интеграла II рода служит интеграл

$$\iint_{(S)} P(x, y, z) dydz + Q(x, y, z) dxdz + R(x, y, z) dxdy,$$

где P(x, y, z), Q(x, y, z), R(x, y, z)- непрерывные функции, определенные в точках двусторонней поверхности S.

Замечание. Если рассматривать P(x,y,z), Q(x,y,z), R(x,y,z) как проекции вектора $\vec{V} = (P(x,y,z), Q(x,y,z), R(x,y,z))$, то поверхностный интеграл II рода определяет поток вектора \vec{V} через поверхность S.

Из определения поверхностного интеграла II рода вытекают следующие *его свойства*:

- 1. Поверхностный интеграл II рода изменяет знак при перемене стороны поверхности.
- 2. Постоянный множитель можно выносить за знак поверхностного интеграла.
- 3. Поверхностный интеграл от суммы функций равен сумме соответствующих интегралов от слагаемых.
- 4. Поверхностный интеграл II рода по всей поверхности $S = S_1 \cup S_2$ равен сумме интегралов по ее частям S_1 и S_2 (аддитивное свойство), если S_1 и S_2 пересекаются лишь по границе, их разделяющей.

Вычисление поверхностного интеграла второго рода

Вычисляем интеграл приведением к двойному, то есть к интегралу по части плоскости.

Пусть поверхность S задана параметрическим уравнением

$$\begin{cases} x = x(u, v) \\ y = y(u, v), \quad (u, v) \in \Omega \\ z = z(u, v) \end{cases}$$

$$\iint_{(S)} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \pm \iint_{\Omega} \left[\tilde{P}(u, v) \frac{\partial(y, z)}{\partial(u, v)} + \tilde{Q}(u, v) \frac{\partial(z, x)}{\partial(u, v)} + \tilde{R}(u, v) \frac{\partial(x, y)}{\partial(u, v)} \right] du dv.$$

Здесь выбор знака (+) или(-) определяется ориентацией области S (выбором стороны поверхности).

2) Пусть поверхность S задана явно z = z(x, y)

$$\iint_{(s)} P(x, y, z) dydz + Q(x, y, z) dzdx + R(x, y, z) dxdy =$$

$$= \pm \iint_{D_{yz}} P(x(y, z), y, z) dydz \pm \iint_{D_{yz}} Q(x, y(x, z), z) dzdx \pm \iint_{D_{yy}} P(x, y, z(x, y)) dxdy$$

Здесь выбор знака (+) или(-) определяется ориентацией области S (выбором стороны поверхности), D_{xy} - проекция поверхности S на OXY, D_{xz} проекция поверхности S на $O\!X\!Z$, $D_{_{\!y\!z}}$ - проекция поверхности S на $O\!Y\!Z$.

Замечание. Можно показать, что

$$dxdy = \cos \gamma ds$$
, $dxdz = \cos \beta ds$, $dydz = \cos \alpha ds$,

где ds - элемент площади поверхности, $\cos \alpha$, $\cos \beta$, $\cos \gamma$ - направляющие косинусы нормали \vec{n} к выбранной стороне поверхности S . Значит интегралы первого и второго рода связаны соотношением:

$$\iint_{(S)} P(x, y, z) dy dz + Q(x, y, z) dz dx + R(x, y, z) dx dy =$$

$$= \iint_{(S)} \left[P(x, y, z) \cos \alpha + Q(x, y, z) \cos \beta + R(x, y, z) \cos \gamma \right] ds$$

Пример 1. Вычислить интеграл $\iint_S x \, dy dz + y \, dx dz + z \, dx dy$, где S — нижняя сторона верхней полусферы $x^2 + y^2 + z^2 = R^2$. Используем параметрическое задание поверхности

$$\begin{cases} x = R \sin \alpha \cos \beta \\ y = R \sin \alpha \sin \beta \\ z = R \cos \alpha \end{cases}$$

Определим

 $x_{lpha}'=R\coslpha\coseta$, $x_{eta}'=-R\sinlpha\sineta$, $y_{lpha}'=R\coslpha\sineta$, $y_{eta}'=R\sinlpha\coseta$, $z_{eta}'=-R\sinlpha$, $z_{eta}'=0$, тогда

$$A = \frac{\partial(y,z)}{\partial(\alpha,\beta)} = \begin{vmatrix} y'_{\alpha} & z'_{\alpha} \\ y'_{\beta} & z'_{\beta} \end{vmatrix} = \begin{vmatrix} R\cos\alpha\sin\beta & -R\sin\alpha \\ R\sin\alpha\cos\beta & 0 \end{vmatrix} = R^{2}\sin^{2}\alpha\cos\beta,$$

$$B = \frac{\partial(z,x)}{\partial(\alpha,\beta)} = \begin{vmatrix} z'_{\alpha} & x'_{\alpha} \\ z'_{\beta} & x'_{\beta} \end{vmatrix} = \begin{vmatrix} -R\sin\alpha & R\cos\alpha\cos\beta \\ 0 & -R\sin\alpha\sin\beta \end{vmatrix} = -R^{2}\sin^{2}\alpha\sin\beta,$$

$$C = \frac{\partial(x,y)}{\partial(\alpha,\beta)} = \begin{vmatrix} x'_{\alpha} & y'_{\alpha} \\ x'_{\beta} & y'_{\beta} \end{vmatrix} = \begin{vmatrix} R\cos\alpha\cos\beta & R\cos\alpha\sin\beta \\ -R\sin\alpha\cos\beta & R\sin\alpha\cos\beta \end{vmatrix} = R^{2}\sin\alpha\cos\alpha,$$

$$\sqrt{A^{2} + B^{2} + C^{2}} = R^{2}\sin\alpha.$$

Поскольку $0 \le \alpha \le \frac{\pi}{2}$, $0 \le \beta \le 2\pi$, имеем C > 0. Нормаль нижней стороны верхней полусферы направлена вниз, следовательно, в формуле перехода к двойному интегралу нужно взять знак (-). Итак,

 $\iint_{S} x \, dy dz + y \, dx dz + z \, dx dy = -\iint_{D} \left[R \sin \alpha \cos \beta R^{2} \sin^{2} \alpha \cos \beta - R \sin \alpha \sin \beta R^{2} \sin^{2} \alpha \sin \beta + R \cos \alpha R^{2} \sin \alpha \cos \alpha \right] d\alpha \, d\beta =$ $= -R^{3} \iint_{D} \left[\sin^{3} \alpha \cos 2\beta + \sin \alpha \cos^{2} \alpha \right] d\alpha \, d\beta =$ $= -R^{3} \left\{ \int_{0}^{\pi/2} \sin^{3} \alpha \, d\alpha \int_{0}^{2\pi} \cos 2\beta \, d\beta + \int_{0}^{\pi/2} \sin \alpha \cos^{2} \alpha \, d\alpha \int_{0}^{2\pi} d\beta \right\} =$ $= \frac{2}{3} \pi R^{3} \cos^{3} \alpha \Big|_{0}^{\pi/2} = -\frac{2}{3} \pi R^{3}.$

Формула Гаусса – Остроградского

Великим русским математиком Остроградским была установлена связь между тройным и поверхностным интегралами. Несколько позднее независимо от Остроградского аналогичная формула была получена Гауссом.

Теорема. Если функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны вместе со своими частными производными первого порядка в пространственной области V, то имеет место формула

$$\iiint_{V} \left(\frac{\partial P(x, y, z)}{\partial x} + \frac{\partial Q(x, y, z)}{\partial y} + \frac{\partial R(x, y, z)}{\partial z} \right) dxdydz =$$

$$= \iint_{(S)} P(x, y, z) dydz + Q(x, y, z) dxdz + R(x, y, z) dxdy.$$

3десь S — замкнутая поверхность, ограничивающая тело V . Поверхностный интеграл вычисляется по внешней стороне поверхности.

Доказательство. Вычисляем интеграл, приводя его к повторному

$$\iiint\limits_{V} \frac{\partial R(x,y,z)}{\partial z} dx dy dz = \iint\limits_{D} dx dy \int\limits_{Z_{1}(x,y)}^{Z_{2}(x,y)} \frac{\partial R(x,y,z)}{\partial z} dz,$$

здесь D- проекция тела V на плоскость XY, $z=Z_2(x,y)$ и $z=Z_1(x,y)$ - поверхности, ограничивающие тело сверху и снизу. Ясно, что

$$\iiint_{V} \frac{\partial R(x, y, z)}{\partial z} dx dy dz = \iint_{D} dx dy \int_{Z_{1}(x, y)}^{Z_{2}(x, y)} \frac{\partial R(x, y, z)}{\partial z} dz =$$

$$= \iint_{D} R(x, y, Z_{2}(x, y)) dx dy - \iint_{D} R(x, y, Z_{1}(x, y)) dx dy =$$

$$= \iint_{S_{2}} R(x, y, z) dx dy - \iint_{S_{1}} R(x, y, z) dx dy,$$

причем S_2^+ — верхняя сторон поверхности, ограничивающей тело сверху, она совпадает с внешней частью этой поверхности, S_1^+ — также верхняя сторона нижней части поверхности, ограничивающей тело снизу, она совпадает с внутренней частью этой поверхности. Переходя во втором интеграле к внешней части поверхности, получаем

$$\iiint\limits_{V} \frac{\partial R(x,y,z)}{\partial z} dx dy dz = \iint\limits_{S_{2}^{+}} R(x,y,z) dx dy + \iint\limits_{S_{1}^{-}} R(x,y,z) dx dy = \iint\limits_{S} R(x,y,z) dx dy,$$

здесь $S = S_1^- + S_2^+$ - внешняя часть поверхности, ограничивающей тело V . Аналогично доказываются формулы

$$\iiint_{V} \frac{\partial P(x, y, z)}{\partial x} dy dz = \iint_{S} P(x, y, z) dy dz,$$

$$\iiint_{V} \frac{\partial Q(x, y, z)}{\partial y} dy dz = \iint_{S} Q(x, y, z) dx dz,$$

а, следовательно, и вся формула.

Формула Стокса

Теорема. Если функции P(x, y, z), Q(x, y, z), R(x, y, z) непрерывны вместе со своими частными производными первого порядка в точках ориентированной поверхности S, то имеет место формула

$$\iint_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz =$$

$$= \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy + \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dz dy + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) dx dz,$$

где L - граница поверхности S и интегрирование вдоль кривой L производится в положительном направлении (т. е. при обходе границы L поверхность S должна оставаться все время слева).

$$\iint_{L} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz = \iint_{(s)} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} ds,$$

Пример . Вычислить $I=\oint\limits_L x^2y^3\,dx+dy+z\,dz$, где контур L — окружность $x^2+y^2=R^2$; z=0: а) непосредственно, б) используя формулу Стокса, взяв в качестве поверхности полусферу $z=+\sqrt{R^2-x^2-y^2}$.

Решение:

 а) Запишем уравнение окружности в параметрической форме:

$$x = R\cos t$$
, $y = R\sin t$, $z \equiv 0$, $t \in [0; 2\pi]$.

$$I = \int_{0}^{2\pi} R^2 \cos^2 t \cdot R^3 \sin^3 t (-R \sin t) \cdot dt +$$

$$+\int\limits_0^{2\pi}R\cos t\,dt=-R^6\int\limits_0^{2\pi}\sin^4t\cos^2t\,dt+0=$$

$$=-R^6\int\limits_0^{2\pi}\left(\frac{1}{2}\sin 2t\right)^2\cdot\frac{1}{2}\cdot(1-\cos 2t)dt=-\frac{R^6}{8}\cdot\int\limits_0^{2\pi}\sin^22t\,dt+$$

$$+\frac{R^6}{8}\int\limits_0^{2\pi}\sin^22t\cos 2t\,dt=-\frac{R^6}{16}\int\limits_0^{2\pi}(1-\cos 4t)\,dt+0=-\frac{R^6}{16}2\pi=-\frac{\pi R^6}{8}.$$
 6) По формуле Стокса (58.13) находим:

$$I = \iint_{S} (0 - 0) \, dy \, dz + (0 - 0) \, dx \, dz + (0 - 3x^{2}y^{2}) \, dx \, dy =$$

$$= -3 \iint_{S} x^{2}y^{2} \, dx \, dy = -3 \iint_{D} x^{2}y^{2} \, dx \, dy.$$

Переходя к полярным координатам, получаем:

$$\begin{split} I &= -3 \iint_D r^5 \sin^2 \varphi \cdot \cos^2 \varphi \, dr \, d\varphi = -3 \int_0^{2\pi} \sin^2 \varphi \cos^2 \varphi \, d\varphi \cdot \int_0^R r^5 \, dr = \\ &= -\frac{3}{6} R^6 \int_0^{2\pi} \frac{1}{4} \cdot \sin^2 2\varphi \, d\varphi = -\frac{1}{8} R^6 \cdot \frac{1}{2} \int_0^{2\pi} (1 - \cos 4\varphi) \, d\varphi = \\ &= -\frac{R^6}{16} \cdot \varphi \Big|_0^{2\pi} + 0 = -\frac{\pi R^6}{8}. \end{split}$$