Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Let $\mathcal{F}=\{\varphi_1,\varphi_2,\ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- Semantic Entailment: $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$

Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
 - $\{\forall x ((x = a) \lor R(x, y)), R(a, y)\} \models \forall z R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x \, R(x, f(y, a)) \rightarrow \exists z \, (\neg(z = a) \land R(z, y))$ is satisfiable

Let $\mathcal{F} = \{\varphi_1, \varphi_2, \ldots\}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
 - $\{ \forall x ((x = a) \lor R(x, y)), R(a, y) \} \models \forall z R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \land R(z, y))$ is satisfiable
- Validity: A V-formula ψ is valid iff $M, \alpha \models \psi$ for all V-structures M and all bindings α that assign values from U^M to free (ψ) .
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid

Let $\mathcal{F} = \{ \varphi_1, \varphi_2, \ldots \}$ be a (possibly infinite) set of formulas, and ψ be a formula

- **Semantic Entailment:** $\mathcal{F} \models \psi$ holds iff whenever $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$, then $M, \alpha \models \psi$ as well.
 - $\{ \forall x ((x = a) \lor R(x, y)), R(a, y) \} \models \forall z R(z, y)$
- Satisfiability: ψ is satisfiable iff there is some M and α such that $M, \alpha \models \psi$
 - $\exists x R(x, f(y, a)) \rightarrow \exists z (\neg(z = a) \land R(z, y))$ is satisfiable
- Validity: A V-formula ψ is valid iff $M, \alpha \models \psi$ for all \mathcal{V} -structures M and all bindings α that assign values from U^M to free(ψ).
 - $\forall x P(x, y) \rightarrow \exists x P(x, y)$ is valid
- Consistency: \mathcal{F} is consistent iff there is at least one M and α such that $M, \alpha \models \varphi_i$ for all $\varphi_i \in \mathcal{F}$.
 - $\{\exists x R(x,y), \exists x R(f(x),y), \exists x R(f(f(x)),y),\ldots\}$ is consistent

Sematic Equivalence in FOL

 $\varphi \equiv \psi \text{ iff } \{\varphi\} \models \psi \text{ and } \{\psi\} \models \varphi.$

Quantifier Equivalences

- $\bullet \ \forall x \forall y \varphi \equiv \ \forall y \forall x \varphi, \quad \exists x \exists y \varphi \equiv \ \exists y \exists x \varphi$
- $\bullet \ \forall x (\varphi_1 \land \varphi_2) \equiv (\forall x \varphi_1) \land (\forall x \varphi_2)$
- $\bullet \ \exists x (\varphi_1 \vee \varphi_2) \ \equiv \ (\exists x \varphi_1) \vee (\exists x \varphi_2)$
- If $x \notin \text{free}(\varphi_2)$, then $Qx(\varphi_1 \text{ op } \varphi_2) \equiv (Qx \varphi_1) \text{ op } \varphi_2$, where $Q \in \{\exists, \forall\} \text{ and op } \in \{\lor, \land\}.$

Renaming Quantified Variables

Let $z \notin \text{free}(\varphi) \cup \text{bnd}(\varphi)$.

Then
$$Qx \varphi \equiv Qz \varphi[z/x]$$
 for $Q \in \{\exists, \forall\}$.

Enabler for substitution, e.g., $\exists x R(f(x,y), w) \equiv \exists z R(f(z,y), w)$

f(x,y) not free for y in $\exists x R(f(x,y),w)$, but is free for y in

$$\exists z R(f(z,y),w).$$

Supratik Chakraborty IIT Bombay First Order Logic: A Brief Introduction

work Jx R(

hold & a is bounded

be free

Semantically Equivalent Transformations of FOL Formulae

Negation Normal Form

Push negations down to atomic predicates using

- DeMorgan's Laws
- $\neg \exists x \varphi(x) \equiv \forall x \neg \varphi(x)$ and $\neg \forall x \varphi(x) \equiv \exists x \neg \varphi(x)$ and

Pull quantifiers out to the left

- Rename every quantified variable to a fresh variable name
- Use rules for scoping of quantifiers in previous slide to pull all quantifiers out to the left work with 1

 - $\exists x \, \varphi(x) \, \lor \, \exists x \, \psi(x) \equiv \exists x \, (\varphi(x) \lor \psi(x))$ $\exists x \, \varphi(x) \, \land \, \exists z \, \psi(z) \equiv \exists x \exists z \, (\varphi(x) \land \psi(z))$ will work with $\forall x \, \varphi(x) \, \land \, \forall x \, \psi(x) \equiv \forall x \, (\varphi(x) \land \psi(x))$ with with of $\forall x \, \varphi(x) \, \lor \, \forall z \, \psi(z) \equiv \forall x \forall z \, (\varphi(x) \lor \psi(z))$ with with

Prenex Normal Form (PNF)

First order logic formula of the form:

$$Q_1 x_1 Q_2 x_2 \dots Q_k x_k \varphi(x_1, x_2, \dots x_k, y_1, \dots y_n)$$

 $Q_i \in \{\exists, \forall\}$ for all $i \in \{1, \dots k\}$ and $\varphi(\dots)$ quantifier-free

- All quantifiers pulled out to the left: quantifier prefix of formula
 - Exact sequencing of ∀ and ∃ important
- $y_1, \ldots y_n$ are free variables
- $\varphi(x_1, x_2, \dots x_k, y_1, \dots y_n)$ is quantifier free: matrix of formula

Every FOL formula has a semantically equivalent PNF

Special prenex normal forms

- Prenex conjunctive normal form (PCNF): matrix in CNF w.r.t. atomic predicates
- Prenex disjunctive normal form (PDNF): matrix in DNF w.r.t. atomic predicates

Every FOL formula has a sem. equivalent PCNF and PDNF.

First-order Definable Structures

- If φ is a \mathcal{V} -sentence (no free vars), no binding α necessary for evaluating truth of φ
 - Given \mathcal{V} -structure M, we can ask if $M \models \varphi$
 - Class of \mathcal{V} -structures defined by φ is $\{M \models \varphi\}$
- Some examples of structures: graphs, databases, number systems

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- ullet Interpretation: For $a,b\in U^{G}$, $E^{G}(a,b)={f true}$ iff there is an edge from vertex a to vertex b in G

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- ullet Interpretation: For $a,b\in U^{G}$, $E^{G}(a,b)={f true}$ iff there is an edge from vertex a to vertex b in G

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) =$ true iff there is an edge from vertex a to vertex b in G

- $\forall x \forall y (\neg(x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) =$ true iff there is an edge from vertex a to vertex b in G

- $\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg(x=y) \land \neg(y=z) \land \neg(z=x)) \rightarrow \neg(E(x,y) \land E(y,z) \land E(z,x))$
 - (Infinite) class of all graphs with no cycles of length 3

A graph G

- U^G : set of vertices
- Vocabulary \mathcal{V} : $\{E, =\}$, where E is a binary (edge) relation
- Interpretation: For $a, b \in U^G$, $E^G(a, b) =$ true iff there is an edge from vertex a to vertex b in G

- $\forall x \forall y (\neg (x = y) \rightarrow E(x, y))$
 - (Infinite) class of all cliques
- $\exists x \forall y (\neg(x = y) \rightarrow \neg E(x, y))$
 - (Infinite) class of all graphs with at least one vertex from which there is no edge to any other vertex
- $\forall x \forall y \forall z (\neg(x=y) \land \neg(y=z) \land \neg(z=x)) \rightarrow \neg(E(x,y) \land E(y,z) \land E(z,x))$
 - (Infinite) class of all graphs with no cycles of length 3
- $\exists x \exists y (\neg(x = y) \land E(x, y) \land \forall z ((x = z) \lor (y = z)))$
 - (Finite) class of graphs with exactly two connected vertices.

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary $V: \{P_1, \dots P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary $V: \{P_1, \dots P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

A relational database D

- U^D : set of (possibly differently typed) data items
- Vocabulary \mathcal{V} : $\{P_1, \dots P_k, =\}$, where P_i is a k_i -ary predicate corr. to the i^{th} table in database with k_i columns
- Interpretation: For $a_1, \ldots a_{k_i} \in U^D$, $P_i(a_1, \ldots a_{k_i}) =$ true iff $(a_1, \ldots a_{k_1})$ is a row of the i^{th} table

Examples of classes of databases definable in FOL:

- $\forall x \forall y \forall z \operatorname{StRec}(x, y, z) \leftrightarrow \operatorname{Dob}(x, y) \wedge \operatorname{Class}(x, z)$
 - Table StRec is the natural join of Tables Dob and Class
- $\forall x \forall y \operatorname{Dob}(x, y) \rightarrow \exists z \operatorname{StRec}(x, y, z)$
 - Table Dob is a projection of Table StRec

Example database query:

• $\varphi(x) \triangleq \exists y \exists z \, (\mathsf{Dob}(x, y) \land \mathsf{After}(y, "01/01/1990") \land$ $Class(x, z) \wedge Primary(z)$

Defines set of students born after "01/01/1990" and studying in a primary class.

Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Natural/real numbers with addition, multiplication, linear ordering and constants 0 and 1 (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\Re \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\mathfrak{R} = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\Re \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$ $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers

Natural/real numbers with addition, multiplication, linear ordering and constants **0** and **1** (fixed interpretation)

- $\mathfrak{N} = (\mathbb{N}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$
- $\Re = (\mathbb{R}, \mathbf{0}, \mathbf{1}, \times, +, <, =)$

Examples of properties expressible in FOL:

- $\Re \models \forall x \exists y (x = ((y \times y) \times y))$
 - Every real number has a real cube root
- $\mathfrak{N} \not\models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$ $\mathfrak{R} \models \forall x \exists y \exists z (x = (y \times y) + (z \times z))$
 - Not every natural number can be expressed as the sum of squares of two natural numbers. This can be done for real numbers
- $\mathfrak{N} \models \forall x \exists y ((x < y) \land$ $(\forall z \forall w (y = z \times w) \rightarrow ((z = y) \lor (w = y)))$
 - There are infinitely many prime natural numbers