MPUM MINIPROJEKT III

MICHAŁ HOFFMANN

Abstract. Celem miniprojektu było wykorzystanie kilku nieliniowych algorytmów klasyfikacji do analizy danych z zadanego pliku. W projekcie zaimplementowałem: algorytm SVM, drzewo decyzyjne oraz algorytm K najbliższych sąsiadów. Użyłem też gotowych rozwiązań z bibliotek jako benchmarków.

1. Dane

Każdy algorytm był trenowany na tych samych danych. Plik phishing.data zawiera dane na temat stron internetowych. Dane to: 11055 rekordów zawierających 30 cech binarnych jak i ternarnych oraz zmienną objaśnianą $y \in \{-1,1\}$ - informację czy dana strona podszywała się pod inną.

Algorytmy (Poza SVM) testowałem zarówno na początkowym formacie danych, jak i na wersji, gdzie wszystkie cechy ternarne zastąpiłem dwoma cechami binarnymi. Nie spowodowało to żadnych istotnych zmian, poza tym, że drzewa decyzyjne musiały być głębsze dla uzyskania tych samych wyników, a trzy z czterech metryk, które stosowałem w algorytmie KNN stały się równoważne. Czwarta, (\mathscr{E}_{∞}) natomiast osiągała dużo gorsze wyniki niż na wyjściowych danych, nie dziwnego, widocznie pewna cecha ternarna najlepiej określała zmienną objaśnianą, co zostało utracone przy przekształceniu na zmienne binarne.

1.1. Rozkład danych.

Początkowe dane zawierają 6157 stron "czystych" i 4898 podszywających się. Do treningu będę wykorzystywał pełne dane, trenowanie na podzbiorze, w którym oba zdarzenia są równie prawdopodobne było odrobinę gorsze w wynikach.

1.2. Wykres korelacji.

Użyłem gotowej funkcji z biblioteki numpy, aby stworzyć wykres korelacji między cechami jak i zmienną objaśnianą. Można zauważyć istotną korelację między niektórymi cechami, a wartością y - zdecydowanie najlepiej jest opisywana przez cechy 22 i 25.

Rysunek 1. Wykres korelacji

Podobną analizę przeprowadziłem na zbiorze po przekształceniu cech na binarne. Tym razem osiągnąłem jednego faworyta jeśli chodzi o korelację z Y - cecha 25, która odpowiada na pytanie "Czy pierwotna cecha 25 ma wartość 1".

Rysunek 2. Wykres korelacji

2. Algorytm SVM

2.1. Porażka z SMO.

Dużo czasu spędziłem próbując napisać działającą wersję algorytmu SMO. Niestety, pomimo wspierania się oryginalną pracą, mój klasyfikator uczył się 10 minut i osiągał skuteczność 49%, dlatego w pewnym momencie porzuciłem to podejście pomimo jego istotnych zalet i skupiłem się na algorytmie wykorzystującym podejście gradientowe.

2.2. Gradientowy SVM.

Maszyna wektorów nośnych wykorzystująca algorytm gradientowy przyniósła mi naprawdę dobre wyniki przy całkiem krótkim czasie szkolenia i implementacji. Końcowo, był to najgorszy z trzech zaimplementowanych algorytmów, ale zdecydowanie konkurencyjny.

2.3. SMO - podejście drugie.

Po wielu niepowodzeniach postanowiłem spytać bardziej doświadczonych kolegów, czy może nie mieli tego samego problemu w implementacji algorytmu SMO. Okazało się to strzałem w dziesiątkę, bo już pierwsza osoba którą spytałem potwierdziła, że rzeczywiście problemem jest stała C, która musi zawierać się w konkretnym przedziale, żeby zwracać "rozsądne" wyniki, czyli cokolwiek istotnie powyżej 50%. Po wprowadzeniu koniecznych zmian, algorytm uczył się jeszcze dłużej, ale przynajmnie jakkolwiek działał. Z ciekawych wniosków, to uznałem za niepotrzebne wywoływanie pętli algorytmu po osiągnięciu changes=0. Wprowadziłem modyfikację, która sprawdzała wyniki dla zbioru walidacyjnego za każdym razem, gdy licznik nie znalazł żadnej zmiany, co pokazało, że w moim przypadku już za pierwszym/drugim razem algorytm na ogół znajdywał maksimum swoich możliwości, w celu przetestowania większej liczby stałych C, usunąłem ten warunek z pętli na czas szukania metaparametrów, jednak potem przywróciłem w celu testowania.

2.4. Wyniki.

2.4.1. SVM.

SVM za każdym przebiegiem znajdywał bardzo podobny wektor, którego średnia dokładność wynosiła około 93.1%.

2.4.2. SMO.

Początkowa wersja, ze stałą C w przedziale [0,1] osiągała wyniki poniżej 50%, co nie do końca było dla mnie akceptowalne.

Końcowo, w zależności od kernela i parametru C, algorytm osiągał od 55 do 70% skuteczności, gdzie najlepsze wyniki dawał kernel wielomianowy, dla stałej C=75. Czasem, w trakcie szkolenia, algorytm osiągał trochę wyższe dokładności, ale w kolejnych iteracjach wracał on do gorszych wyników.

Zdarzały się też takie wyniki:

```
✓ 31m 23.5s

10
43.23835368611488
20
43.23835368611488
43.23835368611488
Accuracy on test set: 43.23835368611488
```

Rysunek 3. Bywa i tak.

3. Drzewo decyzyjne

Drzewo decyzyjne tworzyłem zarówno dla danych binarnych, jak i początkowego zbioru. Osiągało dokładnie takie same wyniki, ale binarne dane potrzebowały troche głębszego drzewa, by mieć taka sama skuteczność - ma to intuicyjnie sens.

3.1. Najważniejsza cecha.

Ze względu na strukturę algorytmu tworzenia drzewa, w korzeniu powinna znaleźć się ta cecha, która najlepiej objaśnia Y. W każdym przypadku była to cecha 25, która była najlepszym kandydatem już na etapie tworzenia macierzy korelacji. Drzewa decyzyjne potwierdziły te hipoteze.

3.2. Kwestia głębokości.

Na wykresach poniżej bardzo dobrze będzie widać, że już dla niewielkich głębokości, drzewo osiąga bardzo dobre wyniki.

Tworzyłem drzewa o głębokości od 2 do 128, bo wyczytałem gdzieś, że najlepiej gdy max $d \leq \sqrt{n}$, jednak nawet mniejsze wartości zupełnie wystarczały, głębokość 16 (32 dla binarnych klas) wysycała możliwości drzewa decyzyjnego.

3.3. Funkcje nieczystości.

Użyłem trzech prostych funkcji nieczystości.

- funkcji giniego
- entropii
- funkcji, która po prostu liczy prawdopodobieństwo błędnej predykcji

Dla danych z cechami ternarnymi, najlepiej sprawowała się funkcja giniego, a w przypadku binarnym - entropia. Funkcja błędu była w obu przypadkach najgorsza, a po konwersji na dane binarne, traciła jeszcze ok. dwóch punktów procentowych.

3.4. Końcowe wyniki.

Poniższe wykresy przedstawiają dokładność drzew w zależności od maksymalnej głębokości i funkcji nieczystości. Jeden wykres przedstawia dane binarne, drugi zbiór z ternarnymi (różnica w skali wynikła z tego, że dane binarne chciałem przetestować na znacznie głębszych drzewach, okazało się to zupełnie niepotrzebne).

Rysunek 4. Dokładność drzewa decyzyjnego dla początkowych danych

Rysunek 5. Dokładność drzewa decyzyjnego dla danych binarnych

4. Algorytm KNN

W zasadzie algorytm nie wymaga żadnego preprocessingu, o ile nie używa siębardziej zaawansowanych struktur do trzymania danych. Pozwala to na więcej

bawienia się metaparametrami. W moim przypadku były to metryki, jak i początkowe zmienianie danych wykorzystując współczynnik korelacji.

4.1. Metryki odległości.

Poza podstawową metryką euklidesową, postanowiłem przetestować kilka innych rozwiązań. Koniec końców użyłem następujących metryk:

- Odległość euklidesowa ℓ_2
- Metryka manhattańska \mathcal{E}_1
- Metryka maximum ℓ_{∞} (z góry skazana na niską skuteczność, ze względu na małą liczbę klas cech)
- Metryka Adam* (nazwa pochodzi od pomysłodawcy), w której odległość
 to liczba różnych cech. Dowód nierówności trójkąta dla tej metryki pozostawiam jako proste ćwiczenie.

Jako dodatek, spróbowałem przeskalować dane o stałe (a bardziej ich dopełnienia do wartości większej od liczby cech dla odwrócenia porządku) pochodzące z analizy korelacji z pierwszego akapitu, co miało znaczenie w przypadku metryk innych niż maksimum i \mathcal{Adam} . Próbowałem też użyć odwrotności, ale sprawowały się dużo gorzej. Co to znaczy w praktyce? Chciałem przeskalować przestrzeń cech w taki sposób, żeby odległości cech bardziej znaczących zmieniały więcej w końcowym wyniku. Delikatnie poprawiło to wynik dla tych dwóch metryk, ale jedynie do poziomu wyników z metryki \mathcal{Adam} .

4.2. Jak znaleźć K?.

Zamiast skupiać się na jednej wartości K, postanowiłem sprawdzić ich wiele i porównać wyniki. Testowałem $k \in \{1, 9, ..., 129\}$, a dla konkretnych metryk także i większe (gdyż wykresy sugerowały tendencję, że może być dla takich wartości lepszy wynik) - bezskutecznie, gdyż najlepszym k okazało się k=1.

4.3. Wyniki.

Poniższy wykres przedstawia dokładność, jaką osiągnął algorytm kNN dla różnych wartości k i czterech różnych metryk. Wymiana danych na binarne odrobinę podniosła wyniki, sprawiając dodatkowo, że trzy z metryk stały się izomorficzne, a dodanie ważonych współczynników, polepszyło wyniki metryk euklidesowej i manhattańskiej, przy czym ta druga nawet osiągnęła lepsze wyniki niż \mathcal{Adam} . Pomimo próbowania wielu możliwych $K,\ K=1$ wciąż pozostawało najlepszym współczynnikiem.

Rysunek 6. wyniki algorytmu kNN

5. Czasy szkolenia

Z racji na konieczność szkolenia bardziej czasochłonnych algorytmów, do szkolenia używałem równolegle mojego komputera i platformy Google Colab.

Algorytm SVM okazał się naprawdę wymagającym czasowo. Jego wersja gradientowa potrzebowała średnio 4-5 minut, a SMO, które miało być opytmalizacją, potrzebowało 6, do nawet 30 minut (w zależności od parametrów) na wyszkolenie lokalnie, a na Colabie ponad godzine.

Drzewa decyzyjne tworzyły się niemalże natychmiastowo. Nawet w przypadku największej używanej przeze mnie głębokości - 128, czas powstawania drzewa był niemalże znikomy, szczególnie w porównaniu do pozostałych algorytmów.

W przypadku algorytmu kNN zdecydowałem się nie stosować żadnego preprocessingu, choć po rozmowie z moim współlokatorem, trochę żałuję, gdyż te algorytmy wydają się naprawdę ciekawe. Czas tworzenia predykcji dla zbioru walidacyjnego to średnio półtorej do dwóch minut, a dla zbioru testowego - 20% całości, to równe dwie minuty).

Podsumowując, najbardziej optymalnym czasowo algorytmem były drzewa decyzyjne, a najmniej SVM. Co ciekawe, uzyskana precyzja także jest w tej kolejności, więc mam niekwestionowanego zwycięzcę mojego projektu.

6. Benchmarki

Wyniki algorytmów z biblioteki sklearn:

SVM, linear kernel: 93.61221028829847 SVM, rbf kernel: 95.53420011305822

SVM, polynomial kernel: 95.76031656302996

Decision Tree: 95.70330167345092 random forest: 96.8340117593849

kNN: 96.15558570782451

Rysunek 7. wyniki modeli benchmarkowych

Oznacza to, że moje algorytmy (poza SMO) nie poradziły sobie dużo gorzej niż gotowe rozwiązania biblioteczne, jednak w szczególności SVM i KNN, było tutaj dużo szybsze.

7. Adnotacje

 \ast Jestem świadom, że owa metryka ma też nazwę z innym nazwiskiem, jednak w ramach wdzięczności osobie, która mi ją podsunęła, zostawię ją w taki sposób w raporcie.

References

Theoretical Computer Science, Jagiellonian University, Kraków $Email\ address: {\tt michal.hoffmann@student.uj.edu.pl}$