Example 4

As shown in the figure below, in $\triangle ABC$, $\angle CAB = 2\angle ABC$. CD is the angle bisector of $\angle ACB$. Show that BC = AC + AD.

Solution: Method 1:

Draw DE so that CE = AC. Since $\angle 1 = \angle 2$, and CD = CD, we have $\triangle ACD \cong \triangle ECD$. Therefore $\angle CED = \angle CAB$, and AD = DE. Since $\angle CAB = 2\angle ABC$, $\angle CED = 2\angle ABC$, and $\angle CED = 2ABC$.

 $\angle DBE + \angle EDB.$ Hence $\angle EDB = \angle EBD \Rightarrow DE = EB.$ Therefore BC = CE + EB = AC + DE = AC + AD. Method 2: Extend CA to E such that AE = AD. Therefore $\angle E = \angle ADE$, and $\angle CAB = 2\angle E.$ Since $\angle CAB = 2\angle ABC, \angle E = \angle ABC.$ Since $\angle 1 = 2$ and ABC = 2 and ABC = 2 since ABC = 2.

Therefore CE = CB.BC = CE = CA + AE = CA + AD. Method 3: Extend CA to E so that CE = CB. Then $\triangle CDE \cong \triangle CDB, \angle E = \angle B$. Since $\angle A = 2\angle B$, and $\angle A = \angle E + \angle ADE$, so $2\angle B = \angle E$

 $+\angle ADE$ or $2\angle E=\angle E+\angle ADE$, or $\angle E=\angle ADE$, i.e, triangle ADE is an isosceles triangle with AD=AE. Therefore BC=CA+AE=AC+AD.