Homework assignment 2:

Due date: Saturday, September 12, 2020 at 11:59pm

- 1. Prove that $f(n) = 10n^4 + 2n^2 + 3$ is $O(n^4)$, provide the appropriate C and k constants.
- 2. Prove that $f(n) = 2n^2 n \log n + 3\log n$ is $O(n^2)$, provide the appropriate C and k constants.
- 3. Prove that $f(n) = 2n^4 \log n^4 n^2 + 3\log n$ is $O(n^4 \log n)$, provide the appropriate C and k constants.
- 4. Prove or disprove

$$f(n) = 5n^3 - n + 3$$

:

- a. $f(n) = O(n^2)$
- b. $f(n) = \Omega(n)$
- c. $f(n) = \Theta(n^3)$
- d. $f(n) = \omega(n)$
- e. $f(n) = o(n^2)$

Provide the appropriate C and k constants if possible (for parts a,b,c).

- 5. Prove that $(n+5)^{100} = \Theta(n^{100})$.
- 6. Prove transitivity of big-O: if f(n) = O(g(n)), and g(n) = O(h(n)), then f(n) = O(h(n)).
- 7. Prove that f(n)=O(g(n)) iff $g(n)=\Omega(f(n))$.
- 8. Compare the growth of:
 - a. f(n) = n and $g(n) = n^{1+\sin n}$.
 - b. $f(n) = \sqrt{n}$ and $g(n) = n + \sin(n)$
 - c. f(n) = n and $g(n) = n * |\sin(n)|$
- 9. Prove or disprove: $2^{n+1}=O(2^n)$.
- 10. Prove or disprove: $2^{2n}=o(2^n)$.
- 11. Prove that if $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C$, for some constant C>0, then $f(n) = \Theta(g(n))$.

Hint: $\lim_{n\to\infty} \frac{f(n)}{g(n)} = C$ means that for every $\epsilon > 0$, there exists k > 0 such that, for all n > k,

$$\left|\frac{f(n)}{g(n)} - C\right| < \varepsilon$$