MAT237 definition and review kit

Blair Yang

August 2022

Contents

1	Save me!		
	1.1	Section A: Maps	1
	1.2	Section B: Topology	2
	1.3	Section C: Differential calculus	6
	1.4	Section D: Inverse and implicit functions:	8
	1.5	Section E: Approximation	9
	1.6	Section F: Integrals	1
	1.7	Section G: Integration methods	17
	1.8	Section H: Vector calculus	9
	1.9	Section I: Surface calculus	23

1 Save me!

1.1 Section A: Maps

Parametric curve: A continuous function $f : \mathbb{R} \to \mathbb{R}^n$.

Unit tangent vector The *normalized* vector of the derivative of a function γ , $T = \frac{\gamma'}{\|\gamma'\|}$

Curve: The image of a *continuous* parametric curve.

Real-valued function: A function $f: \mathbb{R}^{\geq 2} \to \mathbb{R}$ whose output is a real number.

Level set/contour: The *k*-level set of a function $f : \mathbb{R}^n \to \mathbb{R}$ is the set $\{x \in \mathbb{R}^n : f(x) = k\}$, or the set of points x where f(x) = k.

Slice of a graph: The x_i slice of a function $f: \mathbb{R}^n \to \mathbb{R}$ is a subset of the *graph* of the original function by fixing its i^{th} value.

The following contents are especially important in section G.

IMPORTANT!!! Vector field: A vector field is a function $F : \mathbb{R}^n \supset A \to \mathbb{R}^n$. Its input and output has the same dimension!

Polar coordinate: It is a coordinate transformation (we may consider it a vector field) in \mathbb{R}^2 where $T(r,\theta) = (r\cos\theta, r\sin\theta)$. **Pay attention to the interval for bijectivity!**

Cylindrical coordinate: It is a coordinate transformation (a vector field) in \mathbb{R}^3 where $T(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$. Pay attention to the interval for bijectivity!

Spherical coordinate: It is a coordinate transformation (a vector field) in \mathbb{R}^3 where $T(\rho, \theta, \phi) = (\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi)$. **Pay attention to the interval for bijectivity!**

Parametric surface A continuous function $f : \mathbb{R}^n \to \mathbb{R}^m$ where n < m.

Graph (generalized form): A graph for a $f: \mathbb{R}^n \to \mathbb{R}^m$ function is a set in \mathbb{R}^{m+n} where each element is (x, f(x)).

Explicit surface: Explicit surface is a set that can be expressed using the graph of a continuous function.

Implicit surface: A implicit surface is a c-level set of a function $\mathbb{R}^n \to \mathbb{R}^m$ where $c \in \mathbb{R}^m$ is a point.

1.2 Section B: Topology

Ball: $B_r(a) = \{x \in \mathbb{R}^n : ||x - a|| < r\}$

Rectangle: $\mathbb{R}^n \supset R = \sum_{i=1}^n [a_i, b_i]$, where $a_1 < b_i$

Interior point: Exists an *arbitrarily small* $\epsilon > 0$ s.t. $B_{\epsilon}(p) \subseteq A(A^{\circ})$.

Boundary point: For *any* $\epsilon > 0$ there must be non-empty $B_{\epsilon}(p) \cap A$ and $B_{\epsilon}(p) \cap A^{\epsilon}$ (∂A).

Boundary and interior are disjoint: $A^{\circ} \cap \partial A = \emptyset$.

Limit point: For *any* $\epsilon > 0$ there must be non-empty $(B_{\epsilon}(p) \setminus \{p\}) \cap A$ (A^*) .

Closure: $\overline{A} = A \cup A^* = A^o \cup \partial A$.

Sequence: A sequence is a function $k : \mathbb{Z} \cap [k_0, \infty) \to \mathbb{R}^n$ where $k_0 \in \mathbb{Z}$. A sequence is written: $\{x(k)\}_k$

Convergence of a sequence: Converges to *p* if

$$\forall \epsilon > 0, \exists K \in \mathbb{N}, s.t. \forall k \in \mathbb{N}, k \geq K \implies ||x(k) - p|| \leq \epsilon$$

(The sequence gets infinitely close to p as the we traverse through nature numbers) If the condition is not satisfied, or:

$$\exists \epsilon > 0, \forall K \in \mathbb{N}, \exists k \in \mathbb{N}, k \geq K \text{ and } ||x(k) - p|| > \epsilon$$

Then the sequence diverges.

Limits points can be approached using sequence in A**:** A point p is a limit point *iff* there is a sequence converge to p in $A \setminus \{p\}$.

Every sequence converging to a interior point's tail is contained A A point p is a interior point *iff every* sequence of points converging to p has a subsequence $\{x(k)\}_{k=K\in\mathbb{N}^+}^{\infty}\subseteq A$.

Boundary points can be approached using sequence in both A and A^c A point p is a boundary point *iff* there exists two sequences converges to p from both A only and A^c only.

Open set: A set is open *iff* $A^o = A \iff A \cap \partial A = \emptyset$.

Closed set A set is open iff $\overline{A} = A \iff \partial A \subseteq A$.

Interior is open: Interior of any set is open $\implies A^{\circ} = (A^{\circ})^{\circ}$.

Closure is closed: Closure of any set is closed $\Longrightarrow \overline{A} = \overline{(\overline{A})}$.

IMPORTANT!!! Open iff complement is closed A is open iff is complement A^c is closed.

Openness and closedness is preserved under following set operations:

- Finite intersection
- Finite/infinite union
- Finite Cartesian product

Subsequence: A *composition function* of a sequence $\{x(k)\}$ and a *strictly increasing function* $m: \mathbb{N}^+ \to \mathbb{N}^+$ in the form of $\{(m(k))\}$.

Bounded: A set is bounded if all of its points are contained in a ball with arbitrarily large but fixed radius.

Compact set: A set is compact *if* every sequence of *A* has a subsequence converging to a point in *A*.

Compact iff closed and bounded A set is compact iff it is closed and bounded.

Compactness is preserved under following set operations:

- Finite union
- Finite or infinite intersection
- Finite Cartesian product

Subset of compact sets are bounded: Closed subset of compact sets are compact (bounded and closed).

Limit: Limit of *f* at *a* equals to *b* if:

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A, 0 < ||x - a|| < \delta \implies ||f(x) - b|| < \epsilon$$

if it does not exist then the limit diverges.

Limit converges to *b* **iff every sequence converges** $\lim_{x \to a} f(x)$ converges to *b* **iff** for every sequence converging to *b*, $\lim_{k \to \infty} f(x(k)) = b$.

Limit converges iff every component function converges: $\lim_{x\to a} f(x) = b \iff \lim_{x\to a} f_i(x) = b_i$

Properties of limit: Limit has the following properties (see 2.6.12 for detailed demonstration):

- Constant
- Linearity
- Dot product
- Scalar product

Squeeze theorem: Let $f \leq g \leq h$ on the set $B_{\delta}(x)$ (f,g,h has to be real-valued), then

$$\lim_{x \to a} f(x) = \lim_{x \to a} f(x) = b \implies \lim_{x \to a} g(x) = b$$

Limit when approaching infinity: The limit $\lim_{\|x\|\to\infty} f(x) = b$ if

$$\forall \epsilon > 0, \exists M > 0 \text{ s.t. } \forall x \in A, ||x|| > M \implies ||f(x) - b|| < \epsilon$$

If the above does not hold, then the limit DNE.

Limit diverge to infinity: THe limit $\lim_{x\to a} f(x) = \infty$ if

$$\forall M > 0, \exists \delta > 0 \text{ s.t. } \forall x \in A, 0 < ||x - 1|| < \delta \implies f(x) > M$$

Continuity!: A function is continuous if the following holds

$$\forall \epsilon > 0, \exists \delta > 0, \text{ s.t. } \forall x \in A, ||x - a|| < \delta \implies ||f(x) - f(a)|| < \epsilon$$

Comment: A function f is vacuously continuous on any isolated point.

Every linear transformation and polynomial is continuous.

Continuity is preserved under addition, multiplication, and dot product: Continuity is preserved under some operations and and has following properties

- Linearity
- Dot product
- Scalar multiplication (function works too)
- Composition

Equivalence condition of continuity: Let $f : \mathbb{R}^n \to \mathbb{R}^m$, the following conditions are equivalent:

- f is continuous on \mathbb{R}^n
- the preimage $f^{-1}(U)$ is open for every $U \subseteq \mathbb{R}^m$ open
- the preimage $f^{-1}(U)$ is closed for every $U \subseteq \mathbb{R}^m$ closed

IMPORTANT!!! Compactness and path-connectedness is preserved under continuous function.

IMPORTANT!!! Convex: A set is convex if the line segment between *any two points* lies inside *S*.

Intermediate value theorem: If $f : \mathbb{R} \supset [a, b] \to \mathbb{R}$ is continuous, then f([a, b]) is path-connected.

IMPORTANT!!! Extreme value theorem: If $f : \mathbb{R}^n \subseteq A \to \mathbb{R}$ is continuous and A is non-empty and compact, then f attains maximum and minimum.

Comment: Essentially, continuity + bounded + closed \implies extremums.

IMPORTANT!!! Approaches negative infinity implies maximum: If $f : \mathbb{R}^n \supseteq A \to \mathbb{R}$ is a continuous function where A is closed and unbounded, then

$$\lim_{\|x\| \to \infty} f(x) \to -\infty \implies f \text{ attains a maximum}$$

1.3 Section C: Differential calculus

Derivative of $\mathbb{R} \to \mathbb{R}^m$ **functions:** The derivative of $f : \mathbb{R} \to \mathbb{R}^m$ is defined as following, if the limit exists then f is differentiable at a. The function is differentiable **if and only if** there exists a linear map $L : \mathbb{R} \to \mathbb{R}^m s.t$.

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 $\lim_{h \to 0} \frac{f(a+h) - f(a) - L(h)}{h} = 0$ where $L(h) = f'(a)h$

Comment: The derivative is a vector-valued function regarding a!

Partial derivative: The j^{th} partial derivative of a function $\mathbb{R}^n \to \mathbb{R}^m$ is defined as:

$$\partial_j f(a) := \lim_{h \to 0} \frac{f(a + he_j) - f(a)}{h}$$

Comment: The derivative is a vector-valued function regarding a!

Directional derivative (partial derivative under some other basis): The directional direvative of $f: \mathbb{R}^n \to \mathbb{R}^m$ at a in the direction of $v \in \text{dom}(f)$ is given by:

$$D_{\nu}f(a) = \lim_{h \to 0} \frac{f(a+h\nu) - f(a)}{h}$$

Comment: The derivative is a vector-valued function regarding a!

Linearity of directional derivative: Let $v = \sum_{j=1}^{n} a_j e_j$, then we have:

$$D_{\nu}f(a) = \sum_{j=1}^{n} a_{j}\partial_{j}f(a)$$

Gradient (derivative of real-valued function): The gradient of $f: \mathbb{R}^n \to \mathbb{R}$ is defined as:

$$\nabla f(a) = (\partial_1 f(a), \cdots, \partial_n f(a))$$

Comment: This derivative is a vector-valued function regarding a!

Calculate directional derivative of real-valued function from gradient:

$$D_{\nu}f(a) = \nabla f(a) \cdot \nu = (\nabla f(a))^{T} \nu$$

Differential of $\mathbb{R}^n \to \mathbb{R}^m$: The differential $df_a = L \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ of a function $f : \mathbb{R}^n \to \mathbb{R}^m$ is defined as (*Note* $h \in \mathbb{R}^n$):

$$\lim_{h \to 0} \frac{f(a+h) - f(a) - L(h)}{\|h\|} = 0 \qquad \mathcal{M}(L) = df_a$$

The function is differentiable if such linear map *L* exists.

Comment: This derivative is a *matrix-valued* function regarding a!

Calculate directional derivative of $\mathbb{R}^n \to \mathbb{R}^m$ function from differential:

$$df_a(v) = D_v f(a)$$

Jacobian: The Jacobian of $f: \mathbb{R}^n \to \mathbb{R}^m$ is a $m \times n$ matrix Df(a) given by:

$$Df(a) \left[\partial_j f_i(a) \right]_{i,j} = \begin{pmatrix} \partial_1 f_1(a) & \cdots & \partial_n f_1(a) \\ \vdots & \ddots & \vdots \\ \partial_1 f_m(a) & \cdots & \partial_n f_m(a) \end{pmatrix}$$

Equivalence between differential and Jacobian:

$$df_a(v) = Df(a)v$$

Continuously differentiable: A function is (first-order) continuously differentiable if all of its partial derivative is continuous.

Chain rule:

$$h: g \circ f$$
, $dh_a = d(g \circ f)_a = dg_{f(a)} \circ df_a$
 $Dh(a) = D(g \circ f)(a) = Dg(f(a))Df(a)$

Transitivity of continuous differentiablility: If f, g are both C^1 , then $g \circ f$ is C^1 .

Local maximum: The maximum value near an *a*-centered over a open ball $B_{\delta}(a) \cap \text{dom}(f)$.

Local EVT: If *a* is a local extremum of a differentiable *real-valued function* function *f* , then $\nabla f(a) = 0$.

Critical point: A point is a critical point of a real-valued function if $\nabla(a) = 0$ or $\nabla(a)$ *DNE*, *the converse isn't true*.

Local extremum are boundaries or critical points: If a is a extremum of a real-valued function f, then a is either a boundary point or a critical point.

Tangent vector: A tangent vector of a set $S \subseteq \mathbb{R}^n$ is a vector $v \subseteq \mathbb{R}^n$ such that there is an open interval $I \subseteq \mathbb{R}$ *containing* 0 and a differentiable parametric curve γ with $\gamma(I) \subseteq S$, $\gamma(0) = p$, and $\gamma'(0) = v$.

Tangent space: The set of all tangent vectors.

Regular surface: A set $S \subseteq \mathbb{R}^n$ is a k-dimensional regular surface $at \ p$ if the set $B_{\epsilon}(p) \cap S$ is a *graph of a* C^1 *function* f where dom(f) is open.

Regular surface cont.: A set S is a regular surface if it is $\forall p \in S$, S is a regular surface at p

k-dimensional regular surface has k-dimensional tangent space.

1.4 Section D: Inverse and implicit functions:

Diffeomorphism: A function $F\mathbb{R}^n \supset U \to V \subset \mathbb{R}^n$, where U, V open, is a *global* diffeomorphism if:

- *F* is bijective
- F is C^1
- F has a unique inverse function F^{-1}
- F^{-1} is C^1

Comment: Furthermore, if F is a diffeomorphism iff its inverse is diffeomorphism.

Diffeomorphism is preserved under composition.

Topological properties are preserved under diffeomorphism: Following topological properties of sets are preserved under diffeomorphism (*if and only if*):

- open
- closed
- compact
- path-connected

Local diffeomorphism: A function F is a diffeomorphism locally in a open subset $U \subseteq \text{dom}(F)$ where:

$$F|_{U}:U\to F(U)$$

is a diffeomorphism.

Global diffeomorphism implies local diffeomorphism everywhere.

Jacobian of inverse function: If F is a diffeomorphism, then its Jacobian is an *invertible* $n \times n$ *matrix* and

$$DF^{-1}(F(x)) = [DF(x)]^{-1}$$

Local diffeomorphism iff invertible Jacobian.

Inverse function theorem: If The Jacobian of a function F at a i an invertible $n \times n$ matrix, then F is a local diffeomorphism at a.

Locally defines y as a C^1 function: too long, see originl.

Implicit function theorem: Let $f: \mathbb{R}^n \times R \supseteq U \to \mathbb{R}$ where U open. Let $(a,b) \in U, a \in \mathbb{R}^n, b \in \mathbb{R}$. If f(a,b) = 0 and $\partial_y f(a,b) \neq 0$, then the equation f(x,y) locally defined y as a C^1 function near (a,b).

Implicit function theorem, generalization: Let $F : \mathbb{R}^n \times \mathbb{R}^k \supseteq U \to \mathbb{R}^k$ be C^1 where U open. Let $(a,b) \in U, a \in \mathbb{R}^n, b \in \mathbb{R}^k$. If F(a,b) = 0 and the matrix:

$$\partial_{y}F(a,b) = \frac{\partial (F_{1}, \dots, F_{k})}{\partial (y_{1}, \dots, y_{k})}(a,b) := \left(\frac{\partial F_{i}}{\partial y_{j}}(a,b)\right)_{i,j} \text{ is invertible (non-zero det)}$$

then, the equation F(x, y) = 0 locally defines y as a C^1 function of x near (a, b).

Tangent space of a regular surface is the kernel of the differential:

$$T_p S = \ker(dF_p)$$

Regular surface has empty interior.

Lagrange multiplier:

$$\nabla f(a) = \lambda \nabla g(a)$$

Lagrange with multiple constraints: If there are multiple constraints g_1, \dots, g_k , then there exists $\lambda_1, \dots, \lambda_k \in \mathbb{R}$ such that:

$$\nabla f(a) = \sum_{i=1}^{k} \lambda_i \nabla g_i(a) \tag{1}$$

1.5 Section E: Approximation

Mean value theorem: For any $a, b \in U \subseteq \mathbb{R}^n$, if U contains the line ab = L, then there *exists!!!!* $c \in L$ s.t.

$$f(b)-f(a) = \nabla f(c)\cdots(b-a)$$

Jacobian is zero iff constant map.

Same Jacobian implies adding a constant: If DF = DG everywhere, there, then F = G + C

where $C \in \text{range}(F)$.

Second order derivative: A second order derivartive is $\partial_i \partial_i f$.

Clairaut theorem (commutativity of partial derivative): If $f : \mathbb{R}^n \to \mathbb{R}^m$ is C^1 , then $\partial_i \partial_j f = \partial_i \partial_i f$.

Hessian matrix: The hessian matrix of a C^2 function $f: \mathbb{R}^n \to \mathbb{R}$ is defined by:

$$Hf(a) = \left[\partial_i \partial_j f(a) \right]_{i,j} = \begin{pmatrix} \partial_1 \partial_1 f & \cdots & \partial_1 \partial_n f \\ \vdots & \ddots & \vdots \\ \partial_n \partial_1 f & \cdots & \partial_n \partial_n f \end{pmatrix} \text{ which is symmetric (self-adjoint)}$$

Every polynomial is C^{∞}

Generalized Caliraut: If $f: \mathbb{R}^n \to \mathbb{R}^m$ is C^k , then

$$\partial_{i_1}\cdots\partial_{i_k}f=\partial_{j_1}\cdots\partial_{j_k}f$$

where $(j_1, \dots, j_k) \in \text{Per}\{i_1, \dots, i_k\}$.

Multi-index: A vector $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ is a multi-index, and:

$$|lpha|:=\sum_{i=1}^nlpha_i \qquad lpha!:=\prod_{i=1}^nlpha_i! \qquad \partial^{\,lpha}f=\partial_1^{\,lpha_1}\cdots\partial_n^{\,lpha_n}f$$

Multivariable Taylor polynomial: The n^{th} polynomial of $f: \mathbb{R}^n \to \mathbb{R}$ near a point $a \in \mathbb{R}^n$ is:

$$P_{N} = \sum_{\substack{\alpha \in \mathbb{N}^{n} \\ |\alpha| < N}} \frac{\partial^{\alpha} f(a)}{\alpha!} (x - a)^{\alpha}$$

Comment: Taylor approximation only works locally near a.

Taylor polynomial (up to 2nd):

- $P_0(x) = f(a)$
- $P_1(x) = f(a) = \nabla(a) \cdot (x a)$
- $P_2(x) = f(a) + \nabla(a) \cdot (x-a) + \frac{1}{2} ((x-a)^T H f(a)) \cdot (x-a)$

Taylor polynomial has the same derivative: With any $|\alpha| \le N$:

$$\partial^{\alpha} f(a) = \partial^{\alpha} P_{N}(a) \tag{2}$$

Determining the order of approximation: A function g is an N^{th} approximation of f at a if:

$$\lim_{x \to a} \frac{f(x) - g(x)}{\|x - a\|^N} = 0 \tag{3}$$

Taylor polynomial is unique: The taylor polynomial P_N is the unique degree $\leq N$ polynomial which is an N^{th} order approximation of f.

Quadratic form: A quadratic form of $f: \mathbb{R}^n \to \mathbb{R}$ is *another function* $q: \mathbb{R}^n \to \mathbb{R}$ defined by:

$$q(v) = v^{t}Hf(a)v$$
 if v is a eigenvalue $q(v) = \lambda ||v||^{2}$

IMPORTANT!!! Second derivative test: If a is a critical point of $f : \mathbb{R}^n \to \mathbb{R}$ is C^3 with Hessian matrix Hf(a):

- 1. If *all* of the eigenvalue of Hf(a) is *positive*, then a is a local *minimum*
- 2. If all of the eigenvalue of Hf(a) is negative, then a is a local maximum
- 3. If the eigenvalues has **both** negative and positive, then a is a **saddle point**.

Comment: For two-variable functions, we only need to check the determinant, and from the symmetrical property we only need f_{xx} , f_{yy} , f_{xy} to determine!

 k^{th} iterated directional derivative:

$$D_h^k = \overbrace{D_h(D_h \cdots (D_h f))}^{k \text{ times}} \qquad \overbrace{\frac{D_h^k f(a)}{k!}}^{\text{Equivalence to single variable Taylor!}}^{\text{Equivalence to single variable Taylor!}} h^{\alpha}$$

Lagrange's remainder theorem: If $f : \mathbb{R}^n \to \mathbb{R}$ is C^{n+1} , then

$$R_N(a+h) := f(a+h) - P_N(a+h) = \frac{D_h^{N+1} f(\xi)}{(N+1)!}$$
(4)

Zero polynomial: Q is the zero polynomial with degree $\leq N$ iff

$$\lim_{x \to 0} \frac{Q(x)}{\|x\|^N} = 0$$

1.6 Section F: Integrals

Partition: A partition P of a 1-D rectangle $[a, b] \subset \mathbb{R}$ is a **SET** that contains a, b, explicitly

$$P \in \wp([a, b]), \{a, b\} \subseteq P \subseteq [a, b]$$

Partition in higher dimension: A partition P of a rectangle $R = X_{i=1}^n[a_i, b_i] \subset \mathbb{R}^n$ is a *collection (set)* of sub-rectangles:

$$R_{i_1,\dots,i_n} = \sum_{j=1}^n \left[x_{j,i_j-1}, x_{j,i_j} \right]$$

Where for any $k \in \{1, \dots, n\}$, the *finite set* $\{x_{k,0}, x_{k,1}, \dots, x_{k,k_j}\}$ is a partition of the interval $[a_k, b_k]$.

Regular partition: A partition is regular if it is constructed from regular partitions, implies every subinterval has the same length for every partition.

Refinement: P' is a refinement of P is for *every* subrectangle R'_j of P', there is a *unique* subrectangle R_i of P s.t. $R'_i \in R_i$.

Comment: Refinement is transitive.

Norm of partition: THe norm of a partition P, denoted as ||P||, is the *maximum diameter* of all of its subrectangles.

Lower and upper sum: Let $P = \{R_i\}_{i \in I}$ be a partition of R and $f: R \to \mathbb{R}$, and I a finite set of multi-indices then:

$$L_p(f) = \sum_{i \in I} m_i \text{vol}(R_i) = \sum_{i \in I} \inf_{x \in R_i} f(x) \text{vol}(R_i)$$
 (5)

$$U_{P}(f) = \sum_{i \in I} M_{i} \operatorname{vol}(R_{i}) = \sum_{i \in I} \sup_{x \in R_{i}} f(x) \operatorname{vol}(R_{i})$$
(6)

Upper sum is always greater for a same partition: For any fixed partition *P* of *R*, we have:

$$L_p(f) \leq U_p(f)$$

Finer partition gives more precise sums If P' is a refinement of P', then

$$L_P(f) \le L_{P'}(f) \le U_{P'}(f) \le U_P(f)$$

Upper sum is always greater, regardless of partition: Let P,S be two partitions of a rectangle, then $L_P(f) \le U_S(f)$.

Properties of sums: The upper and lower sum of a function f over a rectangle R with partition P has the following properties:

- Linearity
- Additive identity $(U_p(-f) = -L_p(f))$
- Monotonicity $(f \le g \implies U_P(f) \le U_P(g))$

Reimann sums: Let there be a partition $P = \{R_i\}_{i \in I}$ of R and a function $f : \mathbb{R}^n \supset R \to \mathbb{R}$, then with teh sample points $x_i^* \in R_i$, we have

$$S_p^*(f) = \sum_{i \in I} f(x_i^*) \operatorname{vol}(R_i)$$
(7)

Properties of Riemann sums: The Riemann sum of a function f over a rectangle R with partition P has the following properties:

- Linearity
- Monotonicity

Lower and upper integral: The lower and upper integral is deinfed by:

$$\underbrace{I_{R}(f) = \sup_{P} L_{P}(f)}_{\text{lower integral}} \quad \underbrace{I_{R}(f) = \inf_{P} U_{P}(f)}_{\text{upperintegral}}$$
we note $I_{R}(f) \leq \overline{I_{R}}(f)$

Comment: This is the supremum and infinum over *ALL* partitions, and such partition does not necessarily exist as a concrete partition, but rather a limit.

Existence of upper and lower integral: If f is bounded over a rectangle R, then both $\underline{I_R}(f)$ and $\overline{I_R}(f)$ exists.

Integrability from Riemann sum: A bounded *f* is integrable on a rectangle *R* if:

$$\int_{R} f \ dV := \underline{I_{R}}(f) = \overline{I_{R}}(f).$$

Integrability from limit: A bounded functino *f* is integrable on a rectangle *R* **if and only if**:

$$\forall \epsilon > 0, \exists$$
 a *concrete* partition *P* s.t. $U_P(f) - L_P(f) < \epsilon$

Properties of integrals over rectangle:

- Linearity
- Monotonicity
- Triangle inequality
- · Cauchy-Schwarz
- Additivity over sets

Integral as Riemman sum:

$$\int_{R} f \ dV = \lim_{N \to \infty} S_{p_{N}}^{*}(f)$$

IMPORTANT!!! Uniformly continuous: A function is uniformly continuous on set A if

$$\forall \epsilon > 0, \exists \delta > 0 \text{ s.t.} \forall x, y \in A, ||x - y|| < \delta \implies ||f(x) - f(y)|| < \epsilon$$

Uniformly continuous implies continuous.

Continuous on compact set implies uniformly continuous.

IMPORTANT!!! Continuity on rectangle implies integrability.

Zero Jordan measure: A set *S* has zero Jordan measure if there exists a natural numeber *N* where:

$$S \subseteq \bigcup_{i=1}^{N} R_i \quad \text{and} \quad \sum_{i=1}^{N} \operatorname{vol}(R_i) < \epsilon$$

Any unbounded set does not have zero Jordan measure.

Comment: Its contrapositive is important!!! Any set with zero Jordan measure is bounded.

Any set *S* where $S^o \neq \emptyset$ does not have zero Jordan measure.

Zero Jordan measure is preserved: Zero Jordan measure is preserved under following set operations

- subset
- finite union and intersection
- closure

Image of lower dimension rectangles has zero Jordan measure.

Indicator function: χ_S is defined as:

$$\chi_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{otherwise} \end{cases}$$

VERY IMPORTANT!!!!! Jordan measurable: A set *S* is Jordan measurable if it is

- 1. bounded
- 2. Its boundary ∂S has zero Jordan measure

Comment: A set with zero Jordan measure is Jordan measurable since its boundary must have zero Jordan measure.

Jordan measurable is preserved: Jordan measurbility is preserved under the following set operations:

- Finite union and intersection
- Topological operations (closure, interior, boundary)

Jordan measurble implies integrability of indicator function on a bigger rectangle.

Jordan measure: The Jordan measure (or volume) of a set is difined as:

$$vol(S) = \int_{R \supseteq S} \chi_S \ dV = \int_S 1 \ dV$$

Invariance of Jordan measure: Jordan measure does not depend on the rectangle chose.

Stoicheia: For Jordan measurble sets $S, T \subseteq \mathbb{R}^n$, both of the following hold

- $S \subseteq T \implies \operatorname{vol}(S) \le \operatorname{vol}(T)$
- $\operatorname{vol}(S \cup T) = \operatorname{vol}(S) + \operatorname{vol}(T) \operatorname{vol}(S \cap T)$

Zero Jordan measure: If a set has zero Jordan measure then its volume is zero.

Integral over a set: A function f is integrable on S if the function $\chi_S f$ is integrable on $R \supset S$, and:

$$\int_{S} f \ dV = \int_{R} \chi_{S} f \ dV$$

Finite discontinuities implies integrable: If a bounded function $f: S \to \mathbb{R}$'s discontinuity has zero Jordan measure, then f is integrable on S.

Special cases where a function is integrable: If $f: S \to \mathbb{R}$ is a bounded function, and

- If F has zero volume
- If f = 0 on S except on a set of zero volume

then f is integrable on S and $\int_{S} f \ dV = 0$.

Properties of integral over Jordan measurable sets: Bounded real-valued functions on a Jordan measurable set has the following properties:

- Linearity
- Monotonicity
- Triangle inequality
- Cauchy-Schwarz
- Additivity over sets

Integral mean value theorem: If f is integrable on a *compact, path-connected* set S, then:

$$\exists p \in S \quad s.t. \quad \int_{S} f \ dV = f(p) \text{vol}(S)$$

Average value:

$$average(f) = \frac{1}{vol(S)} \int_{S} f \ dV$$

Mass and density: $\delta: S \to [0, \infty)$ is athe density function of a bounded set $S \subseteq \mathbb{R}^n$, where:

$$mass = m = \int_{S} \delta \ dV$$
 $density = \rho = \frac{1}{\text{vol}(S)} m = \frac{1}{\text{vol}(S)} \int_{S} \delta \ dV$

Center of mass: The center of mass $\overline{x} = (\overline{x_1}, \dots, \overline{x_n})$ is defined as a vector, where:

$$\overline{x} = \frac{1}{m} \int_{S} x \delta(x) \ dV = \left(\int_{S} x_1 \delta_1(x) \ dV, \cdots, \int_{S} x_n \delta_n(x) \ dV \right)$$

Event space: A event space Σ is a subset of the *power set* of Ω whose element are all *Jordan measurble sets*. Axioms of probability:

- $\Omega \in \Sigma$
- $A \in \Sigma \implies \Omega \setminus A \in \Sigma$
- $A_1, \dots, A_N \in \Sigma \implies \bigcup_{i=1}^N A_i \in \Sigma$

Probability density function: A probability density function $\phi : \Omega \to [0, \infty)$ is a function that is integrable on Ω , and:

$$\int_{\Omega} \phi \ dV = 1 \quad \forall A \in \Sigma, \ \mathbb{P}(A) = \int_{A} \phi \ dV$$

The following conditinos hold:

- $\mathbb{P}(\Omega) = 1$
- $\mathbb{P}(A)$ exists and $0 \leq \mathbb{P}(A) \leq 1$
- If A_1, \dots, A_n are pariwise disjoint, then $\mathbb{P}(\bigcup_{i=1}^N A_i) = \sum_{i=1}^N \mathbb{P}(A_i)$

Uniform probability density:

$$\forall x \in \Sigma, \phi(x) = \frac{1}{\text{vol}(\Omega)}$$

1.7 Section G: Integration methods

Slice of a function: A ν -slice of a function f is a new function f^{ν} by fixing some of its variables as ν .

Transitivity over slices: For any f and any of its slice f^{ν} ,

- If f is continuous, then every f^{ν} is continuous
- if f is bounded, then every f^{ν} is bounded

Iterated integral: This is an iterated integral

$$\int \left(\int \cdots \left(\int f(x_1, \cdots, x_n) dx_n \right) \cdots dx_2 \right) dx_1$$

 ${\it VERY\ IMPORTANT!!!!!}$ Fubini: For a bounded real-valued function f, if:

- For every $\alpha = x, y, z \cdots$, the α -slice f^{α} is integrable :
- For every x, the x-slice f^x is integrable
- *f* is integrable

Then the iterated integral which is in the order of $\cdots dzdydx$ is integrable and equal to the integral $\int \cdots \int_{\mathbb{R}} f \ dV$.

Fubini, with continuous functions: If a function f is continuous on its domain, then *every* iterated integral of f exists and all equal to $\int \cdots \int_{R} f \ dV$.

Simple sets: A set is x - simple (alternatively, yz-simple..,.) if:

$$S = \{(x, y) \in \mathbb{R}^2 : a \le x \le b, f(x) \le y \le g(x)\}$$
 where f, g continuous

The change-of variable transformations are provided on the aid sheet.

Locally integrable: A real-valued function is locally integrable on Ω if it is integrable on *every compact Jordan measurable subset*.

Continuity implies locally integrability.

Integrable on Ω implies locally integrable.

Exhaustion: An exhaustion of a set Ω is a *sequence of COMPACT JORDAN MEASURABLE* sets $\{\Omega_k\}_{k=1}^{\infty}$ if $\Omega = \bigcup_{k=1}^{\infty} \Omega_k$ and $\forall k \geq 1, \Omega_k \subseteq \Omega_{k+1}^o$.

Existence of exhaustion implies open: If a set Ω has an exhaustion, then Ω is oppen.

Improper integral: If $f: \Omega \to \mathbb{R}$ is locally integrable on Ω , then the improper integral of f is defined by:

$$\int_{\Omega} f \ dV = \lim_{k \to \infty} \int_{\Omega_k} f \ dV$$

If the limit does not dpeend on the choice of exhaustion, then

- The improper integral converges when the limit exists
- the improper integral diverges when the limit DNE
- the improper integral diverges to ∞ or $-\infty$ i if the limit is ∞ or $-\infty$, resp.

If the limit *does depend on the choice of exhaustion*, then the improper integral diverges. *IMPORTANT!!!* Monotone convergence: If $f \ge 0$ on Ω is locally integrable, then the improper integral

$$\int_{\Omega} f \ dV = c, \text{ where } c \in \mathbb{R}, \text{ or diverges to } \infty$$

Properly integrable implies convergence of improper integral.

Linearity of improper integral. The addition and scalar multiplication of improper integrals is linear.

p-test for higher dimension: Let $p \in \mathbb{R}$, for the given improper integral, one has

$$\int_{\|x\|>1} \frac{1}{\|x\|^p} dV \quad \begin{cases} \text{converges if } p > n \\ \text{diverges to } \infty \text{ if } p \le n \end{cases}$$

$$\int_{\|x\|\le 1} \frac{1}{\|x\|^p} dV \quad \begin{cases} \text{diverges to } \infty \text{ if } p \ge n \\ \text{converges if } p < n \end{cases}$$

Comparision test for higher dimension:

• If
$$0 \le f \le g$$
 and $\int_{\Omega} g \ dV$ converges $\Longrightarrow \int_{\Omega} f \ dV$ converges

• If
$$0 \le f \le g$$
 and $\int_{\Omega} f \ dV$ diverges $\Longrightarrow \int_{\Omega} g \ dV$ diverge

Absolute value of a locally integrable function is integrable.

Absolutely converges: A improper integral $\int_{\Omega} f \ dV$ absolutely converges if $\int_{\Omega} |f| \ dV$ converges.

Absolute convergence implies convergence.

1.8 Section H: Vector calculus

Comment: Note that we can only integrate scalars $r \in \mathbb{R}!!!$ It is always important to check what's inside the integral.

Comment: Curl and divergence are real-valued functions defined on single points in 2D; however, flux can only be calculated *over a surface using integral*.

Furthermore, the circulation can only be calculated over a curve using integral.

Parametrization: A continuous function $\gamma : \mathbb{R} \supset [a,b] \to \mathbb{R}^n$ is a parametrization of a set $C \subset \mathbb{R}^n$ if $C = \gamma([a,b])$ where C is the image of [a,b] under γ .

Regular parametrization: A parametrization is regular if it is C^1 and $\gamma' \neq 0$ *everywhere*.

Simple parametrization: A parametrization is simple if it is injective except possibly $\gamma(a) = \gamma(b)$.

Simple regular parametrization: A parametrization is simple regular if it is both smiple and regular. Furthermore if $\gamma(a) = \gamma(b)$, it is *closed*.

Simple regular parametrization is a regular surface: A simple regular parametrization of a set $C \subseteq \mathbb{R}^n$ is a 1-dimensional regular surface *except possible the two endpoints*.

Piecewise curve: A piecewise curve $C \subseteq \mathbb{R}^n$ is a finite union of parametrized simple regular curve C_1, \dots, C_k such that the intersection $C_i \cap C_i$ is finite for any $i \neq j \in \{1, \dots, k\}$.

Reparametrization: γ_1 is a reparametrization of γ_2 if they:

- are both valid parametrizations of a set $C \subseteq \mathbb{R}^2$
- There exists an C^1 invertible map $\varphi : \text{dom}(\gamma_1) \to \text{dom}(\gamma_2)$ whose derivative is never zero, making $\gamma_1 = \gamma_2 \circ \varphi$.
- The parametrizations γ_1, γ_2 has the same endpoint !!!

Orientation of reparametrization: If $\varphi' > 0$ on (a, b), the reparametrization has the same orientation, and vice versa.

Properties of reparametrization: Reparametrization can be viewed as a binary equivalence relation, and has the following properties:

- Reflexive
- Symmetrical
- Transitive

Arc length: Let γ be a parametrization of a curve C, its arc length is defined as:

$$\ell(C) = \int_a^b \left\| \gamma'(t) \right\| dt$$

Invariance of arc length: Let γ_1, γ_2 be reparametrizations of each other of a curve C, then:

$$\ell(C) = \int_{a}^{b} \|\gamma_{1}'(t)\| dt = \int_{c}^{d} \|\gamma_{2}'(t)\| dt \text{ where dom}(\gamma_{1}) = [a, b], \text{ dom}(\gamma_{2}) = [c, d]$$

Arc length parameter: Arc length parameter for a curve *C* parametrized by $\gamma : [a, b] \to \mathbb{R}^n$ is defined:

$$s(t) = \int_{a}^{t} \|\gamma'(u)\| \ du \implies ds = \|\gamma'(t)\| \ dt \implies \frac{ds}{dt} = \|\gamma'(t)\|$$

Parametrized by arc length: A parametrization of C, γ is parametrized by arclength if $||\gamma'(t)|| = 1$ for all $t \in (a, b)$.

Arc length as a supermum: For a function γ as a parametrization of C.

$$\ell(C) = \int_{a}^{b} \|\gamma'(t)\| dt = \sup_{p} \left\{ \sum_{i=1}^{N} \|\gamma(t_{i}) - \gamma(t_{i-1})\| \right\}$$

IMPORTANT!!! Line integral of a real-valued function: The line integral of a real-valued function f over a piecewise curve C parametrized by a function γ with dom(γ) = [a, b] is

$$\int_C f \ ds := \int_a^b f(\gamma(t)) \| \gamma'(t) \| \ dt$$

If the above integral exists, then f is integrable on C.

Invariance of line integrals: Let γ_1, γ_2 be reparametrizations of each other of a piecewise curve C, then *each of the* following integrals *exists if and only if the other one exist*

$$\int_{a}^{b} f(\gamma_{1}(t)) \|\gamma_{1}'(t)\| dt = \int_{c}^{d} f(\gamma_{2}(t)) \|\gamma_{1}'(t)\| dt$$

Oriented curve: An oriented curve *C* is a *set of parametrizations* that are reparametrizations of each other with *the same orientation*.

Concatenation of curves: A concatenation of two curves C_1 , C_2 is a set of *continuous maps* $\gamma : [a,b] \to C$ where $\gamma|_{[a,c]}$ is a parametrization of C_1 and $\gamma|_{[c,b]}$ is a parametrization of C_2 .

Piecewise oriented curve: A piecewise oriented curve is the concatenation of finitely many

oriented curves.

IMPORTANT!!! Line integral of a vector field: The line integral of a vector-field F over a piecewise curve C with parametrization γ is

$$\int_{C} F \cdot \overbrace{T}^{\frac{\gamma'(t)}{\|\gamma'(t)\|}} ds = \int_{a}^{b} \langle F(\gamma(t)), T(t) \rangle \|\gamma'(t)\| dt = \int_{a}^{b} F(\gamma(t)) \cdot \frac{\gamma'(t)}{\|\gamma'(t)\|} \|\gamma'(t)\| dt$$
$$= \int_{a}^{b} F(\gamma(t)) \cdot \gamma'(t) dt$$

Properties of line integrals: Let C, C^1, C^2 be oriented curves, let F, G be *continuous* vector fields, all of the followings hold:

$$\bullet \int_{-C} F \cdot T \ ds = -\int_{C} F \cdot T \ ds$$

•
$$\int_C (F + \lambda G) \cdot T \, ds = \int_C F \cdot T \, ds + \lambda \int_C G \cdot T \, ds$$

•
$$\int_{C_1+C_2} F \cdot T \ ds = \int_{C_1} F \cdot T \ ds + \int_{C_2} F \cdot T \ ds$$

IMPORTANT!!! Fundemental theorem of line integral: Let C be an oriented piecewise curve parametrized by γ , for a C^1 function f, we have:

$$\int_{C} \nabla f \cdot d\gamma = f(\gamma(b)) - f(\gamma(a))$$

Conservative vector field: The vector field F it can be expressed using the gradient of a real-valued function f, or $\exists f \in \mathbb{R}^{n\mathbb{R}^n}$, $F = \nabla f$. If so, f is the potential function of F.

Irrotational vector field: The vector field $F = (F_1, \dots, F_n)$ is irrotational if $\partial_i F_i = \partial_i F_i$.

Conservative implies irrotational: Any conservative vector field is irrotational.

Equivalence condition for conservative: A continuous vector field *F* have the following equivalence conditions:

- *F* is conservative
- Line integral of *F* is independent of path (*only depend on endpoint*)
- Line integral of *f* equals zero if the curve is closed.

Jordan Curve theorem: A simple *closed* curve in \mathbb{R}^2 divides \mathbb{R}^2 into two regions, an *open bounded region* Ω and an unbounded region $\mathbb{R}^2 \setminus \Omega$. Furthermore, Ω is Jordan measurable and $\partial \Omega = C$.

Simply connected domain: A set $D \subseteq \mathbb{R}^2$ is a simply connected domain if D is open, path connected, and for every simple closed curve lying in D, it is a subset of D.

Irrotational on convex set implies conservative: A irrotational vector field on a convex set is conservative.

Simply path connected and irrotational implies conservative: If F is irrotational on a simply connected set D, then F is conservative on D.

IMPORTANT!!! Circulation in 2D: The circulation of a vector field F on a *simple closed oriented curve* $C \subseteq \mathbb{R}^2$ is the *line integral*

$$\int_C F \cdot T \ ds$$

IMPORTANT!!! Curl in 2D: The curl of a C^1 vector field $F = (F_1, F_2)$ in \mathbb{R}^2 is the *continuous real-valued function*

$$\operatorname{curl} F = \partial_1 F_2 - \partial_2 F_1 = \partial_x F_2 - \partial_y F_1$$

Comment: curl(F) = 0 iff F irrotational.

Unit normal: A unit normal of an *oriented curve* $C \subseteq \mathbb{R}^2$ parametrized by γ with the unit tangent vector T is *a continuous function* $n : \text{dom}(\gamma) \to \mathbb{R}^2$ such that n is orthogonal to T and $\{n(t), T(t)\}$ is a positively oriented basis.

IMPORTANT!!! Flux in 2D: The flux of a vector field F in \mathbb{R}^2 across an *oriented simple closed* curve C is:

$$\int_C F \cdot n \ ds$$

IMPORTANT!!! Divergence in 2D: The divergence of a C^1 vector field $F = (F_1, F_2)$ in \mathbb{R}^2 is a *continuous real-valued function*

$$\operatorname{div}(F) = \partial_1 F_1 + \partial_2 F_2$$

Regular region: A *compact Jordan measurable set* $R \subseteq \mathbb{R}^n$ is a regular region if $R = \overline{R^o}$.

Positively oriented boundary: A regular region R whose boundary ∂R is a piecewise curve has its boundary ∂R positively oriented if the region always stays to the left as you traverse the boundary.

IMPORTANT!!! Green's theorem: A C^1 vector field in \mathbb{R}^2 on a regular region R with positively oriented boundary ∂ has:

$$\oint_{\partial R} (F \cdot T) \ ds = \iint_{R} \operatorname{curl}(F) \ dA$$
and
$$\oint_{\partial R} (F \cdot n) \ ds = \iint_{R} \operatorname{div}(F) \ dA$$

1.9 Section I: Surface calculus

2-variable parametrization in 3D: A continuous map $G: \mathbb{R}^2 \supset U \to \mathbb{R}^3$ is a 2-variable parametrization of a set $S \subseteq \mathbb{R}^3$ if $\operatorname{img}(G) = S$ or G(U) = S.

Regular 2-variable parametrization: A 2-variable parametrization G of S is regular if G is C^1 and $\{\partial_1 G, \partial_2 G\}$ is linearly independent except for a set of zero Jordan measure in \mathbb{R}^2 .

Simple 2-variable parametrization: A parametrization *G* is simple if *G* is injective except possible along the boundary.

Simple regular parametrization is a regular surface locally: If a simple regular parametrization G parametrizes $S \subseteq \mathbb{R}^3$, then S is a 2-D regular surface at G(c) for every interior point c.

Parametrized simple regular surface: A set is a parametrized simple regular surface in \mathbb{R}^3 if it can be parametrized using a 2-variable parametrization.

Piecewise parametrized simple regular surface: Glueing together finitely many parametrized simple regular surfaces *along their boundaries*.

Reparametrization G is a reparametrization of H if they:

- are both valid parametrizations of a set $S \subseteq \mathbb{R}^3$
- there exists a *continuous invertible* C^1 *map* $\varphi:U\to V$ whose $\det D\varphi$ never zero. and $G=H\circ\varphi$.
- The parametrizations has the same endpoint!!!

Orientation of parametrization: If $\det D\varphi > 0$ in U^o , then G has the same orientation, and vice versa.

Properties of reparametrization: Reparametrization can be viewed as a binary equivalence relation, and has the following properties:

Reflexive

- Symmetrical
- Transitive

IMPORTANT!!! Surface area: The surface area of a parametrized surface $\mathbb{R}^3 \supset S = G(U)$ is defined as

$$A(S) = \iint_{U} \|\partial_{1}G \times \partial_{2}G\| \ dA$$

Comment: Note that $\partial_1 G \times \partial_2 G$ is a cross product and outputs a 3-D vector! We calculate it using the following:

$$\partial_1 G \times \partial_2 G = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ \partial_1 G_1 & \partial_1 G_2 & \partial_1 G_3 \\ \partial_2 G_1 & \partial_2 G_2 & \partial_2 G3 \end{pmatrix}$$

Invariance of surface area: Surface area is invariant regardless of parametrization, and exists *iff* the other exists.

IMPORTANT!!! Surface integral of a real-valued function: The surface integral o a function f over a set $S \subseteq \mathbb{R}^3$ parametrized by G(U) is given by:

$$\iint_{S} f \ dS = \iint_{U} (f \circ G) \|\partial_{1}G \times \partial_{2}G\| \ dA$$

Invariance of surface integrals: Surface integral is invariant regardless of parametrization, and exists *iff* the other exists.

Unit normal in 3D: The unit normal of the parametrization *G* is

$$\frac{\partial_1 G \times \partial_2 G}{\|\partial_1 G \times \partial_2 G\|}$$

which is a C^1 function (vector field!) defined on domG except for a set of zero Jordan measure.

Oriented surface: An oriented surface *S* is a set of two-variable regular simple parametrization that are same-orientation reparametrization of each other.

Unit normal in 3D, as a function: A unit normal of an oriented surface $S \subset \mathbb{R}^3$ parametrized by G(U) is a *continuous function* $n: S \to S^2$ (S^2 is the set of *two unit vectors, one pointing outward one pointing in*), it is defined by:

$$n = n(u, v) \equiv n(G(u, v)) = \frac{(\partial_1 G \times \partial_2 G)(u, v)}{\|(\partial_1 G \times \partial_2 G)(u, v)\|} = \frac{(\partial_1 G(u, v) \times \partial_2 G(u, v))}{\|(\partial_1 G(u, v) \times \partial_2 G(u, v))\|}$$

Relative boundary: p is a relative boundary point of S if there exists an open $\mathbb{R}^3 \supset V \ni p$, an open set $U \subseteq \mathbb{R}^2$ and a continuous invertible map φ , where

$$\varphi: U \cap \{(x,y) \in \mathbb{R}^2 : y \ge 0\} \to V \cap S$$

such that the inverse φ^{-1} is continuous and $\varphi^{-1}(p)$ *lies on the x-axis*.

IMPORTANT!!! (Flux in 3D) Surface integral of a vector field: The (Flux) surface integral of a vector field F in \mathbb{R}^3 over a oriented surface S parametrized by G with a unit normal n is given by:

$$\iint_{S} F \cdot n \ dS := \iint_{U} (F \circ G) \cdot (\partial_{1}G \times \partial_{2}G) \ dA$$

Invariance of flux: Surface integral (Flux) is invariant regardless of parametrization, and exists *iff* the other exists.

Oppositely oriented surface: The opposite oriented surface (-S) is the reparametrization of a oriented surface $S \subseteq \mathbb{R}^3$ with the opposite orientation.

Properties of surface integrals: Let S, T be oriented surfaces, let F, G be *continuous vector fields*, all of the following hold:

•
$$\iint_{-S} F \cdot n \, dS = \iint_{S} F \cdot n \dot{S}$$

•
$$\int_{S} (F + \lambda G) \cdot n \, dS = \iiint_{S} F \cdot n \, dS + \lambda \iiint_{S} G \cdot n \, dS$$

• If
$$S + T$$
 is oriented, then
$$\iint_{S+T} F \cdot n \ dS = \iint_{S} F \cdot n \ dS + \iint_{T} F \cdot n \ dS$$

Closed surface: A piecewise surface S is closed if its *relative boundary* ∂S is empty.

Gradient operator: The gradient operator ∇ is the gradient for a vector field F.

Divergence in 3D: The divergence of a C^1 vector field $F = (F_1, F_2, F_3)$ is the *continuous real-valued function*

$$\nabla \cdot F \equiv \operatorname{div}(F) = \partial_1 F_1 + \partial_2 F_2 + \partial_3 F_3$$

Source of vector fields: A point $p \in \mathbb{R}^3$ is a source of a C^1 vector field F if (divF)(p) > 0 and a sink if (divF)(p) < 0. A vector field F is sourceless if divF = 0 *everywhere on its domain*.

Properties of divergence: Let F, G be C^1 vector fields, and f be a C^1 real-valued function , all of the following holds everywhere on dom(F):

- $\operatorname{div}(F + \lambda G) = \operatorname{div}(F) + \lambda \operatorname{div}(G)$
- $\operatorname{div}(fF) = (\nabla f) \cdot F + f \operatorname{div}(F)$
- $\operatorname{div}(\nabla f) = \partial_1^2 f + \partial_2^2 f + \partial_e^2 f$ if f is C^2

Positively oriented boundary: The regular region R whose boundary ∂R is a closed piecewise surface. The boundary ∂R is positively oriented if the unit normal along the surface points outward with respect to R.

IMPORTANT!!! Circulation in 3D: The circulation of a vector field. F in \mathbb{R}^3 over a simple closed oriented curve C is the line integral

$$\oint_C F \cdot T \ ds$$

Curl in 3D: The curl of a C^1 vector field F in \mathbb{R}^3 is a continuous \mathbb{R}^3 -valued function given by

$$\nabla \times F \equiv \text{curl}(F) = (\partial_2 F_3 - \partial_3 F_2, \partial_3 F_1 - \partial_1 F_3, \partial_1 F_2 - \partial_2 F_1)$$

Comment: Again, it can be expressed using the cross product, as (this has no mathematical implication, just a way to memorize):

$$\operatorname{curl}(F) = \nabla \times F = (\partial_1, \partial_2, \partial_3) \times (F_1, F_2, F_3) = \det \begin{pmatrix} e_1 & e_2 & e_3 \\ \partial_1 & \partial_2 & \partial_3 \\ F_1 & F_2 & F_3 \end{pmatrix}$$

Irrotational iff curl is zero: A C^1 vector field is irrotational **iff** curl(F) = 0 everywhere.

Properties of curl: Let F, G be C^1 vector fields in \mathbb{R}^3 , and f be a C^2 real-valued function, all the following hold everywhere on dom(F):

- $\operatorname{curl}(F + \lambda G) = \operatorname{curl}(F) + \lambda \operatorname{curl}(G)$
- $\operatorname{curl}(fF) = f \operatorname{curl}(F) + (\nabla f) \times G$
- $\operatorname{curl}(F \times G) = (G \cdot \nabla) F + (\operatorname{div}(G)) F + (F \cdot \nabla) G + (\operatorname{div}(F)) G$

Special properties of curl and divergence: If F is a C^2 vector field and f is a C^2 real valued function in \mathbb{R}^3 , then:

$$\operatorname{curl}(\nabla f) = (0,0,0) \in \mathbb{R}^3 \quad \operatorname{div}(\operatorname{curl}(F)) = 0 \in \mathbb{R}$$

Stokes orientation: Given an oriented surface S, its relative boundary ∂S has the **Stokes orientation** if S is always on the left as you traverse the boundary ∂S with your head pointing in the unit normal direction.

Stokes theorem: Let *S* be an oriented surface with unit normal *n* whose boundary ∂S is a closed piecewise curve, let *F* be a C^1 vector field, if ∂S has the Stokes orientation, then:

$$\oint_{\partial S} (F \cdot T) \ ds = \iint_{S} (\operatorname{curl} F) \cdot n \ dS$$

IMPORTANT!!!!! Divergence, gradient, and curl of vector fields:

• Gradient: If $f: \mathbb{R}^3 \to \mathbb{R}$ is a C^1 real-valued function and C is an *oriented curve* from p to q, then

$$\int_{C} \overbrace{\operatorname{grad}(f)}^{\equiv \nabla f} \cdot T \ ds = f(q) - f(p)$$

• Curl If $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a C^1 vector field and S is an *oriented surface* whose boundary ∂S is a closed curve with Stokes orientation, then

$$\iint_{S} \operatorname{curl}(G) \cdot n \ dS = \oint_{\partial S} G \cdot T \ ds$$

• **Divergence** If $F : \mathbb{R}^3 \to \mathbb{R}^3$ is a C^1 vector field and R is a *regular region* whose boundary ∂R is a closed surface with outward unit normal, then

$$\iiint_{R} \operatorname{div}(F) \ dV = \bigoplus_{\partial R} F \cdot n \ dS$$

Curl-free vector fields on a convex set is a gradient field: A C^1 vector field F in \mathbb{R}^3 that is curl-free on an open convex set U is a gradient vector field, or there exists $f: \mathbb{R}^3 \to \mathbb{R}$ who is C^2 and $F = \operatorname{grad}(f)$.

Divergence-free on a convex set is a curl field: A C^1 vector field F in \mathbb{R}^3 that is divergence-free on an open convex set U is a curl vector field, or there exists a vector field G who is C^2 such that F = curl(G).

TO SUM UP:

• Curl:

In
$$\mathbb{R}^2$$
, Circulation $= \iint_R \operatorname{curl} F \, dA = \oint_{\partial R} F \cdot T \, ds$ where R is a regular region In \mathbb{R}^3 , Circulation $= \iint_S \operatorname{curl} F \cdot n \, dS = \oint_{\partial S} F \cdot T \, ds$ where S is a oriented surface

• Divergence:

In
$$\mathbb{R}^2$$
, Flux $= \iint_R \operatorname{div} F \ dA = \oint_{\partial R} \mathbf{F} \cdot \mathbf{n} \ ds$ where R is a regular region In \mathbb{R}^3 , Flux $= \iiint_R \operatorname{div} F \ dV = \oint_{\partial R} \mathbf{F} \cdot \mathbf{n} \ ds$ where R is a regular region

• Flux (direct calculation):

In
$$\mathbb{R}^2$$
, Flux $= \int_C F \cdot n \, ds = \oint_a^b F \circ \gamma \cdot n \, dt$ where dom $(\gamma) = [a, b]$
In \mathbb{R}^3 , Flux $= \oint_C F \cdot n \, ds = \iiint_U F \circ G \cdot n \, dt = \iiint_U F \circ G \cdot (\partial_1 G \times \partial_2 G)$ where dom $(G) = U$

END!!!