Reti di calcolatori VR443470 ottobre 2022

Indice

1	Introduzione 2 ISP, TCP/IP, commutazione dei pacchetti e ritardi		3
2			4
	2.1	ISP	4
	2.2	TCP/IP	4
	2.3	Commutazione dei pacchetti	5
		Tipologie di ritardi	
	2.5	Sintesi	7

1 Introduzione

Internet è una rete di calcolatori che interconnette miliardi di dispositivi di calcolo in tutto il mondo. Gli strumenti in una rete, per esempio cellulari o computer, vengono chiamati host (ospiti) o sistemi periferici (end system). Essi sono connessi tra di loro tramite una rete di collegamenti (communication link) e commutatori di pacchetti (packet switch). I collegamenti possono essere di vario tipo: cavi coassiali, fili di rame, fibre ottiche e onde elettromagnetiche.

Ogni collegamento detiene una sua **velocità di trasmissione** (*transmission rate*), ovvero la velocità di trasmissione dei dati. L'**unità di misura** è il bit per secondo (bit/secondo, bps).

L'insieme delle informazioni, o dati, che vengono inviati o ricevuti prendono il nome di **pacchetto**. L'**obbiettivo** di un commutatore di pacchetti è quello di ricevere un pacchetto che arriva da un collegamento in ingresso e di ritrasmetterlo su un collegamento d'uscita. I due <u>principali commutatori</u> di internet sono: router e i commutatori a livello di collegamento (*link-layer switch*). La sequenza di collegamenti e di commutatori di pacchetto attraversata dal singolo pacchetto è nota come **percorso** o **cammino** (route o path).

Quindi, in sintesi, le definizioni più rilevanti sono:

- ▼ Internet. Rete di calcolatori che interconnette i dispositivi di calcolo di tutto il mondo.
- ➡ Host (o sistemi periferici). Strumenti in una rete, per esempio computer.
- Rete di collegamenti (communication link) e commutatori di pacchetto (packet switch). Collega vari host, per esempio cavi coassiali o fili di rame.
- ▼ Velocità di trasmissione (transmission rate). È la velocità di trasmissione dei dati e solitamente la sua unità di misura è il bit per secondo, cioè bps.
- **☞ Pacchetto.** Insieme delle informazioni che vengono inviate e ricevute.
- Obbiettivo commutatore di pacchetti. Ricevere un pacchetto proveniente da un collegamento in ingresso e ritrasmetterlo su un collegamento d'uscita. Per esempio i router.
- ▶ Percorso (route) o cammino (path). Sequenza di collegamenti e di commutatori di pacchetto attraversata dal singolo pacchetto.

2 ISP, TCP/IP, commutazione dei pacchetti e ritardi

2.1 ISP

I sistemi periferici accedono ad Internet tramite un servizio chiamato Internet Service Provider (ISP). Con provider si intende un insieme di commutatori di pacchetto e di collegamenti. Gli obbiettivi degli ISP è fornire ai sistemi periferici svariati tipi di accesso alla rete, come quello residenziale a larga banda (e.g. DSL), quello in rete locale ad alta velocità, quello senza fili (wireless) e in mobilità.

Esistono 3 tipi di livelli di ISP:

```
Livello 1. Internazionale (Telecom, TIM, ...);
```

Livello 2. *Nazionale* (Fastweb);

Livello 3. Locale (solitamente per professionisti).

Più è basso il livello, più gli ISP sono costituiti da *router* ad alta velocità interconnessi tipicamente tramite fibra ottica.

2.2 TCP/IP

I sistemi periferici, i commutatori di pacchetto e altre parti di Internet fanno uso di **protocolli** che controllano l'invio e la ricezione di informazioni all'interno della rete. Esistono **due principali protocolli** Internet: *Transmission Control Protocol* (TCP) e *Internet Protocol* (IP). In particolare, l'IP specifica il formato dei pacchetti scambiati tra router e sistemi periferici. Generalmente ci si riferisce a questi due protocolli tramite il nome collettivo TCP/IP.

2.3 Commutazione dei pacchetti

Esistono due diversi approcci per spostare quantità di dati all'interno di una rete: la commutazione di circuito e la commutazione di pacchetto.

Commutazione di circuito

Nella **commutazione di circuito** le risorse richieste lungo un percorso (buffer e velocità di trasmissione sui collegamenti) sono **riservate** per l'intera durata della sessione di comunicazione.

Vantaggi:

✓ Velocità costante durante il collegamento poiché le risorse sono riservate e non condivise. Questo si traduce in un ritardo contenuto.

Svantaggi:

- X Spreco di risorse poiché i circuiti sono inattivi durante i periodi di silenzio, ovvero nei periodi in cui non c'è comunicazione;
- X Complicazioni nello stabilire circuiti e nel riservare larghezza di banda end-to-end.

In questo contesto, i ritardi possono essere causati solamente per tre motivi: (1) a causa dell'instaurazione del circuito, (2) a causa della distanza tra sorgente e destinazione, (3) a causa della trasmissione vera e propria.

Commutazione di pacchetto

Nella **commutazione di pacchetto** la sorgente divide i messaggi in parti più piccole, ovvero in **pacchetti** assegnando a ciascuno un'intestazione. I pacchetti viaggiano attraverso collegamenti e commutatori di pacchetto dalla sorgente alla destinazione.

Vantaggi:

✓ Ottimizzazione delle risorse poiché c'è una condivisione di esse nei momenti di inattività.

Svantaggi:

- X Possibile perdita di pacchetti nel caso in cui un buffer di un nodo sia saturo. Questo comporta un buffer overflow e una conseguente perdita;
- X Ritardo dovuto a store and forward e numero di nodi intermedi. A causa dello store and forward, ogni nodo deve attendere di ricevere l'intero pacchetto prima di ritrasmetterlo. Inoltre, con l'aumentare dei nodi intermedi, il ritardo aumenta. (approfondimento store and forward)

2.4 Tipologie di ritardi

Esistono diverse tipologie di ritardo perché quando un pacchetto parte da un host (sorgente), passa attraverso una serie di router e conclude il viaggio in un altro host (destinazione). Questo comporta un ritardo in ciascun nodo (host o router). I principali ritardi sono: ritardo di elaborazione, ritardo di accodamento, ritardo di trasmissione e ritardo di propagazione. L'insieme di questi ritardi è chiamato ritardo totale di nodo (nodal delay).

Ritardo di elaborazione

Il tempo richiesto per esaminare l'intestazione del pacchetto e per determinare dove dirigerlo fa parte del **ritardo di elaborazione** (processing delay). Per dirigere si intende il tempo che impiega il router a determinare la sua parte di uscita.

Ritardo di accodamento

Una volta in coda, il pacchetto subisce un **ritardo di accodamento** (queuing delay) mentre attende la trasmissione sul collegamento. La lunghezza di tale ritardo dipenderà dal numero di pacchetto precedentemente arrivati, accodati e in attesa di trasmissione sullo stesso collegamento. In altre parole, è il tempo speso nel buffer prima che il pacchetto venga ritrasmesso.

Ritardo di trasmissione

Data L la lunghezza del pacchetto, in bit, e R bps la velocità di trasmissione del collegamento dal router A al router B, il **ritardo di trasmissione** (transmission delay) sarà $L \div R$. Questo è il tempo richiesto per trasmettere tutti i bit del pacchetto sul collegamento.

Più semplicemente, dipende dalla velocità di trasmissione e dalla dimensione del pacchetto ed è possibile sintetizzarlo con la formula:

$$t_{\rm trasm} = \frac{{\rm dim_pacchetto}}{{\rm velocit\`a_trasmissione}}$$

Ritardo di propagazione

Una volta immesso sul collegamento, un bit deve propagarsi fino al *router* B. Il tempo impiegato è il **ritardo di propagazione** (*propagation delay*). In altre parole è il tempo impiegato per percorrere la distanza verso il *router* successivo.

Strumenti di misurazione

Esistono diversi strumenti per misurare il ritardo:

- **PING.** Dato un indirizzo di destinazione, il calcolatore manda una serie di messaggi e misura il tempo che intercorre tra l'invio e la ricezione della risposta, chiamato anche *Rount Trip Time* (RTT).
- TRACEROUTE. Misura il Round Trip Time tra la sorgente e tutti gli apparati di rete intermedi.

2.5 Sintesi

- **☞** Internet Service Provider (ISP). Strumento utilizzato dai sistemi periferici per accedere ad Internet.
- Obbiettivi ISP. Fornire vari tipi di accesso alla rete ai dispositivi che si collegano (e.g. DSL, wireless, ecc.).
- Tipi di ISP:
 - **Livello 1.** Internazionale (Telecom, TIM, ...);
 - Livello 2. Nazionale (Fastweb);
 - Livello 3. Locale (solitamente per professionisti).
- Definizione TCP/IP. Protocolli più famosi utilizzati dai sistemi periferici, i commutatori di pacchetto e altre parti di Internet. N.B. il protocollo IP specifica il formato dei pacchetti scambiati tra router e sistemi periferici.
- - Vantaggio commutazione di circuito. Velocità costante grazie ad un canale dedicato e quindi ritardo contenuto.
 - Svantaggio commutazione di circuito. Spreco di risorse in caso di silenzi durante la comunicazione.
 - Causa dei ritardi nella commutazione di circuito. I motivi possono essere tre:
 - I Instaurazione del circuito:
 - II Distanza tra sorgente e destinazione;
 - III Trasmissione vera e propria della comunicazione.
- **▼ Definizione commutazione di pacchetto.** La sorgente divide i messaggi in parti più piccole chiamate pacchetti.
 - Vantaggio commutazione di pacchetto. Ottimizzazione delle risorse poiché c'è una condivisione durante l'inattività.
 - Svantaggi commutazione di circuito. Eventuale perdita di pacchetti nel caso in cui un nodo intermedio abbia il buffer saturo (generazione di buffer overflow); ritardo causato da store and forward poiché ogni pacchetto per essere inoltrato deve essere completamente trasmesso; all'aumentare dei nodi intermedi, il ritardo aumenta.
- Ritardo di elaborazione (processing delay). Tempo impiegato dal router per esaminare l'intestazione del pacchetto e determinare l'uscita.
- ➡ Ritardo di accodamento (queuing delay). Tempo impiegato dal pacchetto all'interno della coda del buffer del router.

- **☞** Ritardo di trasmissione (*transmission delay*). Tempo che dipende dal rapporto tra la dimensione del pacchetto e la velocità di trasmissione.
- Ritardo di propagazione (propagation delay). Tempo impiegato per percorrere la distanza verso il router successivo.
- ▼ Strumenti per la misurazione del ritardo. I due strumenti sono "PING" e "TRACEROUTE". La differenza è che PING misura il RTT tra sorgente e destinazione, mentre il TRACEROUTE misura il RTT tra sorgente e ogni nodo intermedio.