Sia $A_n \in \mathbb{R}^{n \times n}$, la matrice ottenuta estraendo la parte triangolare inferiore, inclusa la diagonale, dalla matrice di Hilbert H_n di ordine n.

Si calcoli (senza usare il comando Matlab det) il determinante d_n della matrice A_n , sfruttando la particolare struttura della matrice stessa e ricordando che

$$(H_n)_{i,j} = \frac{1}{(i+j-1)}, \ i,j=1,\ldots,n.$$

Si riporti il valore del determinante d_n .

Si calcoli (senza usare il comando Matlab inv) l'inversa della matrice A_n .

A tale scopo, essendo $A_nA_n^{-1}=I_n$, si implementi una procedura che consiste nella risoluzione di n sistemi lineari del tipo $A_n\mathbf{u}_i=\mathbf{e}_i,\,i=1,...,n$, dove \mathbf{u}_i è la i-esima colonna della matrice A_n^{-1} ed \mathbf{e}_i è l'i-esimo vettore della base canonica.

Si riportino gli elementi di A_n^{-1} .

Utilizzare n = 5.

