Regression

ML: learn a Function that minimizes the cost

- Start with random function parameters
- Repeat intelligent guessing/approximation of the Function parameters such that the difference between the Predicted Output the Actual Output is reduced
 - i.e., minimize a Cost function a.k.a loss, or error function

Linear Regression with One Variable

Housing price prediction

Regression: Predict continuous output value (price)

Training	set of
housing	prices

Size in feet 2 (x)	Price (\$) in 1000's (<i>y</i>)
2104	460
1416	232
1534	315
852	178
•••	•••

Notation:

m = Number of training examples

$$x = "input" variable / features$$

$$(x^{(i)}, y^{(i)})$$
 – the i^{th} training example

$$x^{(1)} = 2104$$

$$x^{(2)} = 1416$$

$$y^{(1)} = 460$$

Training Set Learning Algorithm Y hat X Size of **Estimated** house price

How do we represent f?

$$f(x) = wx + b$$

w, b are parameters (coefficients)to learn from the training set

Linear regression with one variable Univariate linear regression

Given a training set, **learn a function** f so that f(x) is a "good" predictor for the corresponding value of y (i.e. minimize the error between predicted and actual values)

Univariate Linear Regression - Model Representation

$$f(x) = wx + b$$

- w is the slope of the line
- b is the y-intercept of the line

How to choose w and b?

Idea: Choose w and b so that f(x) is close to y for our training examples (x, y)

Find w, b: $\hat{y}^{(i)}$ is close to $y^{(i)}$ for all $(x^{(i)}, y^{(i)})$

Cost (mean squared error)

Function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Goal: minimize J(w, b)

With m = number of training examples

Function:

$$f(x) = wx + b$$

Parameters:

w, b

Cost Function:

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Goal: minimize J(w, b)

Simplified

$$f(x) = wx$$

W

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$

 $\underset{w}{\text{minimize }} J(w)$

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$
$$= \frac{1}{2m} (0^2 + 0^2 + 0^2) = 0$$

$$f(x) = wx$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$

$$= \frac{1}{2m} ((0.5 - 1)^{2} + (1-2)^{2} + (1.5-3)^{2})$$

$$= \frac{1}{2 \times 3} (3.5) = \frac{3.5}{6} = 0.58$$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^{2}$$
$$= \frac{1}{2m} (1^{2} + 2^{2} + 3^{2})$$
$$= \frac{1}{2 \times 3} (14) = \frac{14}{6} = 2.3$$

$$f(x) = wx + b$$

$$f(x) = 50 + 0.06x$$

J(w, b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w, b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

$$f(x) = wx + b$$

J(w,b)

Linear Regression - Gradient decent

Gradient decent

```
Have a cost function J(w, b)

Want to find w and be \min_{w,b} J(w, b)
```

Outline:

- Start with some w, b (say 0, 0)
- Keep changing w, b to reduce J(w, b) until we hopefully end up at a minimum

Gradient descent algorithm

- 1. Initialize the values of **w** and **b** to some arbitrary values
- 2. Calculate the predicted values of *y* using the current values of *w* and *b*
- 3. Calculate the gradients of the cost function with respect to \boldsymbol{w} and \boldsymbol{b}
- 4. Update the values of **w** and **b** using the gradients and a learning rate
- 5. Repeat steps 2-4 until convergence (i.e., until the cost function converges to a minimum)

Gradient descent algorithm

Repeat until convergence

$$W = w - \omega \frac{\partial}{\partial w} J(w,b)$$

Learning rate Derivative

Simultaneously update w and b

Correct: Simultaneous update

$$tmp_{w} = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$tmp_{b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$w = tmp_{w}$$

$$b = tmp_{b}$$

$$tmp_{_}w = w - \alpha \frac{\partial}{\partial w} J(w, b)$$

$$w = tmp_w$$

$$\underline{tmp_b} = b - \alpha \frac{\partial}{\partial b} J(w, b)$$

$$b = tmp_b$$

Derivative 101

- Source https://www.mathsisfun.com/calculus/derivatives-introduction.html
- Derivatives: it is all about slope!

We can find an **average** slope between two points

average slope =
$$\frac{24}{15}$$

But how do we find the slope at a point?

- There is nothing to measure!
 slope 0/0 = ????
- But with derivatives we use a small difference ...

... then have it shrink towards zero

- · Simplify it as best we can
- Then make **Ax** shrink towards zero.

Derivative Example - $f(x) = x^2$

The slope formula is:
$$\frac{f(x+\Delta x)-f(x)}{\Delta x}$$
Use $f(x)=x^2$:
$$\frac{(x+\Delta x)^2-x^2}{\Delta x}$$

$$\frac{Expand}{\Delta x}(x+\Delta x)^2 \text{ to } x^2+2x \ \Delta x+(\Delta x)^2$$
:
$$\frac{x^2+2x \ \Delta x+(\Delta x)^2-x^2}{\Delta x}$$
Simplify $(x^2 \text{ and } -x^2 \text{ cancel})$:
$$\frac{2x \ \Delta x+(\Delta x)^2}{\Delta x}$$
Simplify more (divide through by Δx): $2x + \Delta x$
Then, **as Δx heads towards 0** we get: $2x$

Result: the derivative of $\mathbf{x^2}$ is $\mathbf{2x}$

In other words, the slope at x is 2x

Interpretation of Derivative

• So what does $\frac{d}{dx}x^2 = 2x$ mean?

$$\frac{d}{dx}x^2 = 2x$$

- It means that, for the function x^2 , the slope or "rate of change" at any point is 2x
- So when x=2 the slope is 2x = 4
- Or when x=5 the slope is 2x = 10, and so on

Simplified

Gradient descent algorithm

$$w = w - \alpha \frac{d}{dw} J(w)$$

repeat until convergence {
$$w = w - \alpha \frac{d}{dw} J(w)$$
}

unsplash.com/photos/3m6vbzY69s4

$$w = w - \alpha \frac{d}{dw} J(w)$$

If α is too small, gradient descent can be slow

If α is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge

Gradient descent can converge to a local minimum, even with the learning rate α fixed

$$w = w - \alpha \frac{d}{dw} J(w)$$

As we approach a local minimum, gradient descent will automatically take smaller steps (the slope gets smaller). So, no need to decrease α over time

Linear Regression with One Variable

Linear regression model Cost function

$$f_{w,b}(x) = wx + b$$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$$

Gradient descent algorithm

repeat until convergence {

$$w = w - \alpha \frac{\partial}{\partial w} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)}) x^{(i)}$$

$$b = b - \alpha \frac{\partial}{\partial b} J(w, b) \longrightarrow \frac{1}{m} \sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})$$

"Batch" Gradient Descent

"Batch": Each step of gradient descent uses all the training examples, m

	$oldsymbol{\mathcal{X}}$ size in feet 2	y price in \$10	000's	$\sum_{i=1}^{m} (f_{w,b}(x^{(i)}) - y^{(i)})^2$
(1)	2104	400		$\sum_{i=1}^{\infty} (j, w, b)$
(2)	1416	232		$\mathcal{L} - \mathbf{I}$
(3)	1534	315	800	
(4)	852	178	600 500 400 300 200 100	
			20 15 10	
(47)	3210	870	b 0 -5	0 15 15 10 15 10 15 20 0 15 10 15

Linear Regression with multiple variables

Multiple features (variables)

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••		•••

Notation:

n = number of features

 $x_i = j^{th}$ feature

 $\vec{\mathbf{x}}^{(i)}$ = features of i^{th} training example

 $x_{j}^{(i)}$ = value of feature j in i^{th} training example

Hypothesis:

Previously: f(x) = wx + b

Now: Multivariate linear regression.

$$f(x) = w_1x_1 + w_2x_2 + \dots + w_nx_n + b$$

Example
$$f(x) = 0.1 \chi_1 + 4 \chi_2 + 10 \chi_3 + -2 \chi_4 + 80$$

size # bedrooms #floors Years price

Parameters: $W_0, W_1, ..., W_n$

Cost function:

$$J(w_0, w_1, ..., w_n) = \frac{1}{2m} \sum_{i=1}^{m} (f(x^{(i)}) - y^{(i)})^2$$

Gradient descent:

repeat {

$$w_j = w_j - \alpha \frac{\partial}{\partial w_j} J(w_0, \dots, w_n)$$

(simultaneously update for every j = 0, ..., n)

Gradient Descent

Previously (n=1):

Repeat {
$$w = w - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})$$

$$\frac{\partial}{\partial w} J(w)$$

$$b = b - \alpha \frac{1}{m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)}) \cdot x^{(i)}$$

$$\frac{\partial}{\partial b} J(w)$$

(simultaneously update w_0 and w_1)

New algorithm $(n \ge 1)$:

Repeat {
$$w_j = w_j - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_j^{(i)} \frac{\partial}{\partial w_j} J(w)$$
 (simultaneously update w_j for $j = 0, \dots, n$) }

$$w_0 = w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_1 = w_1 - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$w_2 = w_2 - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

....

Formula to update **b** remains the same

Gradient descent in practice:

- Feature Scaling
- Regularization
- Regression Evaluation

Feature Scaling: divide the input values by the range (i.e. the maximum value minus the minimum value) of the input variable, resulting in a new range of just 1.

The idea: Make sure features are on a similar scale. So that the gradient descent converges faster.

$$x_1 = \frac{\text{size (feet}^2)}{2000}$$

$$x_2 = \frac{\text{number of bedrooms}}{5}$$

Rule-of-thumb: Get every feature into approximately a $-1 \le x_i \le 1$ range, $-0.5 \le x_i \le 0.5$, or other similar small ranges.

Mean normalization

• Replace x_i to make features have approximately zero mean (Do not apply to $x_0 = 1$):

$$x_i \coloneqq \frac{x_i - \mu_i}{s_i}$$

Where μ_i is the **average** of all the values for feature (i) (<u>in the training set</u>) and s_i is the range of values (max - min), or s_i is the standard deviation.

$$x_1 = \frac{size - 1000}{2000}$$
 (average size of the houses is 1000, and ranges from 0 to 2000)

$$x_2 = \frac{\text{\#bedrooms}-2}{4}$$
 (average # of bedrooms is 2, and the range is from 1 to 5)

$$-0.5 \le x_1 \ge 0.5, -0.5 \le x_2 \ge 0.5,$$

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $\int_{i=1}^{\infty} \int_{i=1}^{\infty} (h_w(x^{(i)}) - y^{(i)})^2 \approx 0$) but fail to generalize to new examples (predict prices on new examples).

Addressing overfitting:

```
x_1 =  size of house x_2 =  no. of bedrooms x_3 =  no. of floors x_4 =  age of house x_5 =  average income in neighborhood x_6 =  kitchen size \vdots
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
 - Manually select which features to keep.
 - Use feature selection algorithm.
- 2. Regularization.
 - Keep all the features, but reduce magnitude/values of parameters w_j
 - Works well when we have a lot of features, each of which contributes a bit to predicting \boldsymbol{y} .

Regularization

Cost function

Intuition

Suppose we penalize and make w_3 , w_4 really small

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + 1000 w_3^2 + 1000 w_4^2$$
$$w_3 \approx 0, \quad w_4 \approx 0$$

Regularization

Small values for parameters $w_0, w_1, ..., w_n$

- "Simpler/smoother" hypothesis
- Less prone to overfitting

Housing:

- Features: $x_1, x_2, ..., x_{100}$
- Parameters: $w_0, w_1, w_2, ..., w_{100}$

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2$$

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

In regularized linear regression, we choose w to minimize

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

$$w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$

$$w_1 \approx 0$$
, $w_2 \approx 0$, $w_3 \approx 0$, $w_4 \approx 0$

Regularized linear regression

$$J(w) = \frac{1}{2m} \left[\sum_{i=1}^{m} (f_w(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} w_j^2 \right]$$

$$\min_{w} J(w)$$

 $1 - \alpha \frac{\lambda}{m} < 1$

Gradient descent

Repeat {
$$w_0 = w_0 - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$w_j = w_j - \alpha \left[\frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_j^{(i)} - \frac{\lambda}{m} w_j \right]$$

$$(j = \mathbf{x}, 1, 2, 3, \dots, n)$$

$$w_j \coloneqq w_j \left(1 - \alpha \frac{\lambda}{m} \right) - \alpha \frac{1}{m} \sum_{i=1}^m (f_w(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Regression Evaluation

- Performance measured by
 - Mean Squared Error (MSE)

$$MSE = \frac{1}{n}\sum (y - \hat{y})^2$$

Root-Mean-Squared-Error (RMSE)

$$RMSE = \sqrt{\frac{(y - \hat{y})^2}{n}}$$

Mean-Absolute-Error (MAE)

$$MAE = \frac{1}{n} \sum |y - \widehat{y}|$$

— ...others