neutralization, followed by washing with water. The plate was then subjected to electrolytic surface roughening treatment in a 1% aqueous nitric acid solution using alternating waveform current of sign wave under the condition of V_A of 12.7 V in an amount of electricity of 300 C/dm² at anode. The surface roughness of the plate measured was 0.45 μ m (Ra). Subsequently, the plate was immersed in a 30% aqueous sulfuric acid solution at 55°C for 2 minutes to conduct desmutting and then subjected to anodic oxidation in a 20% aqueous sulfuric acid solution at 33°C at a current density of 5 A/dm² for 50 seconds while an cathode was arranged on the roughened surface of the plate to form an anodic oxide layer having a thickness of 2.7 g/m².

On the aluminum support thus-obtained, high-sensitive photopolymerizable composition (1) shown below was coated so as to have a dry coating weight of 1.5 g/m², and dried at 100° C for one minute to form a photosensitive layer, whereby a photosensitive lithographic printing plate was prepared.

<Photopolymerizable Composition (1)>

Compound having ethylenically 1.5 parts by weight unsaturated bond (A1)

Linear organic polymer (B1) 2.0 parts by weight

Sensitizer (C1) 0.15 parts by weight

Photo-initiator (D1)	0.2 parts by weight
Dispersion of ϵ -phthalocyanine	0.02 parts by weight
(F1)	
Fluorine-containing nonionic	0.03 parts by weight
surface active agent (Megafac	
F-177 manufactured by Dai-	
Nippon Ink & Chemicals, Inc.)	
Methyl ethyl ketone	9.0 parts by weight
Propylene glycol monomethyl	7.5 parts by weight
ether acetate	
Toluene	11.0 parts by weight

<u>A1</u>

B1 Reaction product of

HO⁻(CH₂CH₂O)n⁻OH / OH / COOH

C1 CH₃

$$(C_2H_5)_2N$$
 O
 N
 S

<u>D1</u>

<u>F1</u>