1 Dynamické systémy

Definice 1.1 (Dynamický systém)

 $(\varphi,\Omega), \Omega \subset \mathbb{R}^n$ otevřená, $\varphi : \mathbb{R} \times \Omega \to \Omega \ \varphi(t,x)$.

- $\varphi(0,x)=x$;
- $\varphi(t,\varphi(s,x)) = \varphi(t+s,x)$
- φ je spojité.

Definice 1.2 (Orbit)

 $\gamma^+(x_0) = \{\varphi(t, x_0) | t \ge 0\}$ je pozitivní orbit.

 $\gamma^{-}(x_0) = \{\varphi(t, x_0) | t \leq 0\}$ je negativní orbit.

 $\gamma(x_0) = \{ \varphi(t, x_0) | t \in \mathbb{R} \}$ je plný orbit.

Definice 1.3 (Pozitivně, negativně a úplně invariantní)

 (φ, Ω) dynamický systém, $M \subset \Omega$.

M je pozitivně invariantní $\equiv \forall x \in M : \gamma^+(x) \subset M$.

M je negativně invariantní $\equiv \forall x \in M : \gamma^{-}(x) \subset M$.

M je úplně invariantní $\equiv \forall x \in M : \gamma(x) \subset M$.

Poznámka

 $\gamma^+(x_0)$ je pozitivně invariantní, $\gamma^-(x_0)$ je negativně invariantní a $\gamma(x_0)$ je úplně invariantní.

Definice 1.4

$$\omega(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to \infty : \varphi(t_k, x_0) \to y \},$$

$$\alpha(x_0) = \{ y \in \Omega | \exists \{t_k\}_{k=1}^{\infty}, t_k \to -\infty : \varphi(t_k, x_0) \to y \}.$$

Poznámka (To je ekvivalentní)

$$\omega(x_0) = \{ y \in \Omega | \forall \varepsilon > 0 \ \forall T > 0 \ \exists t \geqslant T : |\varphi(t_r, x_0) - y| < \varepsilon \}.$$

Lemma 1.1

$$\overline{\omega(x_0) = \bigcap_{\tau \geqslant 0} \overline{\gamma^+(\tau, x_0)}}.$$

 $D\mathring{u}kaz$ $,\subseteq ": y \in \omega(x_0): \forall \varepsilon > 0 \ \forall T \ \exists t \geqslant T: |\varphi(t,x_0) - y| < \varepsilon. \text{ Cheeme:}$ $\forall \tau \geqslant 0 \ \forall \varepsilon > 0 \ \exists z \in \gamma^+(\tau,x_0): |y - z| < \varepsilon \Leftrightarrow$ $\Leftrightarrow \forall \tau \geqslant 0 \ \forall \varepsilon > 0 \ \exists s \geqslant \tau, z = \varphi(s,x_0): |y - \varphi(s,x_0)| < \varepsilon.$ $,\supseteq ": \forall \tau \geqslant 0 \ y \in \overline{\gamma^+(\tau,x_0)} \implies$ $\Longrightarrow \forall \varepsilon \ \exists s \geqslant \tau: |\varphi(s,x_0) - y| < \varepsilon.$

Věta 1.2 (Vlastnosti ω -limitní množiny)

Nechť (φ, Ω) je dynamický systém, $x_0 \in \Omega$. Potom

- 1. $\omega(x_0)$ je uzavřená, úplně invariantní.
- 2. Pokud $\gamma^+(x_0)$ je relativně kompaktní v \mathbb{R}^n , pak $\omega(x_0) \neq \emptyset$, $\omega(x_0)$ je kompaktní, souvislá.

 $D\mathring{u}kaz$

1. $\omega(x_0)$ je průnik uzavřených množin, tedy uzavřená. $y \in \omega(x_0) \; \exists t_k \nearrow \infty \; \varphi(t_k, x_0) \rightarrow y$.

$$s_k = t_k + t$$
 $\varphi(s_k, x_0) = \varphi(t_k + t, x_0) = \varphi(t, \varphi(t_k, x_0))$
 $t_k \to \infty, \varphi \text{spojit\'a}$ $\varphi(s_k, x_0) = \varphi(t, \varphi(t_k, x_0)) \to \varphi(t, y)$

- 2. $\exists K \subset \mathbb{R}^n$ kompaktní $\gamma^+(x_0) \subset K$. a) pokud $t_n \geqslant 0, t_n \to \infty \{\varphi(t_n, x_0)\}_{n=1}^{\infty}$ omezená posloupnost $\Longrightarrow \exists \{t_{n_k}\}_{k=1}^{\infty} \subset \{t_n\}_{n=1}^{\infty}$, podposloupnost, $\exists y \in \Omega \varphi(t_{n_k}, x_0) \to y$. Pak $y \in \omega(x_0)$.
- b) $\omega(x_0)$ je tedy úplná a omezená, takže kompaktní. c) at $\omega(x_0)$ je nesouvislá, tedy $\omega(x_0)\subseteq U\cup V,\, U,V$ otevřené disjunktní neprázdné, $U,V\subseteq K$. Vezměme $y\in\omega(x_0)\cap U,$ $z\in\omega(x_0)\cap V$. Nechť t_n je posloupnost taková, že $\varphi(t_{2n}x_0)\to y,\, \varphi(t_{2n+1},x_0)\to z,$ $t_{2n}< t_{2n+1},\, \varphi(t_{2n},x_0)\in U,\, \varphi(t_{2n+1},x_0)\in V.\, F=K\backslash (U\cup V)$ uzavřená, tedy $\exists s_n\in (t_{2n},t_{2n+1}): \varphi(s_n,x_0)\in F.$ Tedy $\{\varphi(s_n,x_0)\}$ je omezená posloupnost $\Longrightarrow \exists$ podposloupnost konvergující k $w\in F$.

Definice 1.5 (Topologická konjugovanost)

 $(\varphi,\Omega),\ \psi,\Theta$ dynamické systémy. $\exists:\Omega\to\Theta$ homeomorfismus (bijekce, spojité, spojitá inverze):

$$\forall x \in \Omega \ \forall t \in \mathbb{R}$$
 $h(\varphi(t, x)) = \psi(t, h(x)).$

Poznámka

Dá se zobecnit ještě zobrazováním časů.

Věta 1.3 (O rektifikaci)

$$\dot{x} = f(x), f(x_0) \neq 0, \ (\varphi, \Omega) \ p \check{r} \acute{i} slu \check{s} n \acute{y} \ dynamick \acute{y} \ syst \acute{e} m. \ \dot{y} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \ y(0) = 0 \ a \ (\psi, \Theta) \ je$$

příslušný dynamický systém. Potom (φ, Ω) , (ψ, Θ) jsou lokálně topologicky konjugované $(\exists U \ okolí x_0 \in \Omega \ a \ V \ okolí \mathbf{o} \in \mathbb{R}^n \ taková, že \exists g : U \to V \ homeomorfismus g(\varphi(t, x)) = \psi(t, g(x)) \ \forall x \in U, \ \forall t : \varphi(t, x) \in U).$

Důkaz

BÚNO $f_1(x_0) = \alpha \neq 0$ (první souřadnice funkce f) a $x_0 = \mathbf{o}$. Buď \tilde{V} okolí $\mathbf{o} \in \mathbb{R}^n$ $G: \tilde{V} \to \mathbb{R}^n$, $G(y_1, \dots, y_n) = \varphi(y, (0, y_2, \dots, y_n))$. Chceme ukázat, že G je invertibilní na nějakém okolí.

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_1}|_{(0,\dots,0)} = \frac{\partial \varphi}{\partial t}(t = y_1, (0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n)))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_n = 0} = f(\varphi(y_1(0, y_2, \dots, y_n))|_{y_1 = 0,\dots,y_$$

$$\frac{\partial G(y_1, \dots, y_n)}{\partial y_j}|_{(0, \dots, 0)} = \lim_{h \to 0} \frac{G(0, \dots, h, \dots, 0) - G(0, \dots, 0)}{h} = \lim_{h \to 0} \frac{(0, \dots, h, \dots, 0)^T - (0, \dots, 0)^T}{h} = (0, \dots, 0)^T - (0, \dots, 0)^T$$

Tedy $\nabla G(0,\ldots,0)$ je "jednotková matice, až na to, že a_{11} je α ", tudíž podle věty o inverzi funkce $\exists V \subseteq \tilde{V}$ okolí $0, \exists U$ okolí bodu x_0 tak, že $G: V \to U$ je homeomorfismus. Položme $g = G^{-1}$.

Nyní už stačí
$$g(\varphi(t,x_0)) = \psi(t,g(x_0)) \ \forall x_0 \in U \ \forall t : \varphi(t,x_0) \in U. \ \varphi(t,x_0) = G(\psi(t,g(x_0)))$$