RainBench: Enabling Data-Driven **Precipitation Forecasting on a Global Scale**

Catherine Tong – Christian Schroeder de Witt

Valentina Zantedeschi – Daniele De Martini – Freddie Kalaitzis – Matthew Chantry Duncan Watson-Parris – Piotr Biliński

Global Precipitation Forecasting

Motivation

Climate change: rising extreme precipitation events

Myhre, Gunnar, et al. "Frequency of extreme precipitation increases extensively with event rareness under global warming." Scientific reports 9.1 (2019): 1-10.

Global Precipitation Forecasting

Motivation

Numerical models: heavy data and resource requirements

Recent Machine Learning models: regional nowcasting (<8 hours)

This work: introduce a multi-modal benchmark dataset to advance global precipitation forecasting in the **medium-range** (3-5 days)

Rainbench

SimSat 2016-present

IMERG 2000 - present

ERA5 1979-present

- Generated from ECMWF
- Emulates 3 spectral channels from the Meteosat-10 SEVIRI satellite
- Native resolution 0.1°

- Global precipitation estimation product provided by NASA
- Native resolution 0.1°

- **ERA5** Reanalysis Product
- Broad spectrum of physical and atmospheric variables at different heights (e.g. humidity, temperature)
- Includes precipitation
- Native resolution 0.25°

PyRain

Efficient data loading pipeline

Performance Analysis

Benchmark Tasks

3 input data settings: (a) SimSat only, (b) ERA only, (c) Simsat + ERA

Forecasting precipitation values from: ERA5, or, IMERG

Model: ConvLSTM conditioned on lead-time¹

		ERA5		IMERG			
	1-day	3-day	5-day	1-day	3-day	5-day	
Persistence	0.6249	0.6460	0.6492	1.1321	1.1497	1.1518	
Climatology	0.4798	0.4802	0.4803	0.8244	0.8249	0.8246	
SimSat	0.4610	0.4678	0.4691	0.8166	0.8201	0.8198	
ERA	0.4562	0.4655	0.4677	0.8182	0.8224	0.8215	
SimSat + ERA	0.4557	0.4655	0.4675	0.8134	0.8185	0.8185	

¹ Sønderby, Casper Kaae, et al. "MetNet: A Neural Weather Model for Precipitation Forecasting." arXiv:2003.12140 (2020).

Performance Analysis

Class Imbalance

Slight Rain

Violent Rain

		Slight	Moderate	Heavy	Violent	Micro Avg.	Macro Avg.
Unbalanced	ERA	0.20	4.08	16.2	63.1	0.65	20.9
	SimSat	0.20	4.38	16.8	54.1	0.65	18.9
	SimSat + ERA	0.20	4.03	16.5	53.0	0.65	18.4
Balanced	ERA	1.05	2.75	12.4	58.0	1.40	18.6
	SimSat	1.17	3.10	13.3	50.1	1.26	16.9
	SimSat + ERA	1.30	3.15	11.8	44.3	1.38	15.1

Model: LightGBM

RainBench

Future Work

- Limited extreme precipitation events class-balanced sampling
- Modelling earth topology neural network architectures for spherical data
- Using high-resolution data multi-fidelity approach
- Making use of atmospheric state variables physics-informed ML approach

RainBench: Enabling Data-Driven Precipitation Forecasting on a Global Scale

Release expected by Dec 2020.

Thank you for listening.

Link to code:

https://github.com/FrontierDevelopmentLab/PyRain

FRONTIER DEVELOPMENT LAB 2020 **FOR ALL HUMANKIND**

INVIDIA - SCAN®

AIRBUS

