Nei and Kumar. 2000. pp. 33-50

Evolution of model complexity

Observations

Count the number of different bases p-distance

All rates are equal One parameter

Kimura 2-parameter

Ts/Tv rate bias 2 parameters

Jukes-Cantor

Ts/Tv rate bias Base composition bias

Hasegawa-Kishino-Yano

Tamura-Nei

 Purine/Pyrimidine rates Ts/Tv rate bias 6 parameters

Time reversible Different rates 9 parameters

General-time-reversible

Unrestricted model

All different rates Not time reversible

Slide courtesy of Dr. Qiqing Tao

Observations

- Count the number of different bases
- p-distance

Jukes-Cantor

- All rates are equal
- One parameter

	A	Т	С	G
A	-	α	α	α
Т	α	ı	α	α
C	α	α	ı	α
G	α	α	α	-

Evolution of model complexity

Kimura 2-parameter

- Ts/Tv rate bias
- 2 parameters

	Α	Т	С	G
Α	_	β	β	α
Τ	β	1	α	β
С	β	α	1	β
G	α	β	β	1

1985

Tamura-Nei

- Purine/Pyrimidine rates
- Ts/Tv rate bias
- 6 parameters

	A	Т	С	G
A	-	$oldsymbol{eta}oldsymbol{g}_{ au}$	βg _C	a_1g_G
Т	βg_A	-	α ₂ g _C	βg_G
С	βg_A	$\alpha_2 \mathbf{g}_T$	-	βg_G
G	α ₁ 9 _A	βg_{T}	βg_C	-

1986

1994

Unrestricted model

- All different rates
- Not time reversible

	A	Т	С	G
A	_	a ₁₂	a ₁₃	a ₁₄
Т	a ₂₁	1	a ₂₃	a ₂₄
С	a ₃₁	a ₃₂	1	a ₃₄
G	a ₄₁	a ₄₂	a ₄₃	-

Hasegawa-Kishino-Yano

Ts/Tv rate bias

1980

Base composition bias

	A	Т	С	G
A	-	βg_T	βg_{C}	αg_G
Т	βg_A	1	ag_C	βg_G
С	βg_A	ag_T	1	βg_G
G	αg_A	βg_T	βg _C	-

General-time-reversible

1993

- Time reversible
- Different rates
- 9 parameters

	Α	Т	С	G
A	-	ag _⊤	bg _C	dg _G
Т	ag_A	-	cg _C	eg _G
C	bg_A	dg _T	-	fg _G
G	cg _A	eg⊤	fg_C	-

Quantifying selection in coding sequences

1.) selectively constrained:

 $d_N/d_S < 1$

2.) strictly neutral:

$$d_{\rm N}/d_{\rm S}=1$$

3.) adaptive evolution:

$$d_N/d_S > 1$$

