Лекция по динамике электромагнитного поля Yury Holubeu, December 31, 2023

Contents

1	Main Theory				
	1.1 Решение уравнений Максвелла			2	
		1.1.1	Свободные волны	2	
		1.1.2	Волны от источника	3	
2	Add	Additional Theory			
	2.1 О других способах решать уравнения Максвелла				

1 Main Theory

1.1 Решение уравнений Максвелла

(та самая типичная теория пропагаторов)

1.1.1 Свободные волны

В частности, если $j^m \equiv 0, \mathcal{A}_m^{\parallel} \equiv 0$, то

$$\begin{cases}
k^2 \neq 0 & \Rightarrow & \mathcal{A}_m = 0 \\
k^2 = 0 & \Rightarrow & \mathcal{A}_m \neq 0
\end{cases} \Rightarrow \mathcal{A}_m \sim \delta(k^2).$$

Поэтому для свободных волн

$$\mathcal{A}_m(x) = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} \mathfrak{a}_m(\mathbf{k}) 2\pi \delta\left(k^2\right) e^{\mathrm{i}k \cdot x} + \text{ h.c.}$$

Снимем интегрирование по нулевой компоненте 4 -вектора k

$$\int \frac{\mathrm{d}k_0}{2\pi} 2\pi\delta\left(k^2\right) = \int \frac{\mathrm{d}k_0}{2\pi} 2\pi\delta\left(k_0^2 - \mathbf{k}^2\right) = \frac{1}{2k_0(\mathbf{k})},$$

где

$$k_0(\mathbf{k}) = \sqrt{\mathbf{k}^2} \equiv \frac{\omega_{\mathbf{k}}}{c}.$$

Поэтому

$$\mathcal{A}_m(x) = \int \frac{c \, \mathrm{d}^3 \mathbf{k}}{2\omega_{\mathbf{k}}(2\pi)^3} \mathfrak{a}_m(\mathbf{k}) e^{\mathrm{i}k \cdot x} + \text{ h.c.}$$

Величина

$$\frac{\mathrm{d}^3 \boldsymbol{k}}{2\omega_{\boldsymbol{k}}(2\pi)^3}$$

представляет собой инвариантную меру интегрирования по импульсому пространству свободных волн.

Опуская метку импульса, запишем 4-вектор амплитуды

$$\mathfrak{a}_m = (\mathfrak{a}_0, -\mathfrak{a})$$

в калибровке

$$a_0 = 0$$
,

откуда следует, что зануление продольной компоненты поля, которая не влияет на описание физически измеряемых величин, дает

$$\mathcal{A}_m^{\parallel} \equiv 0 \quad \Leftrightarrow \quad k^m \mathcal{A}_m = 0 \quad \Leftrightarrow \quad \omega a_0 - \mathbf{k} \cdot \mathbf{\mathfrak{a}} = 0 \quad \Rightarrow$$

в заданной калибровке

$$\mathbf{k} \cdot \mathbf{a} = 0, \quad \Rightarrow \quad \mathbf{a} \equiv \mathbf{a}_{\perp},$$

т.е. амплитуда поля является поперечной. Значит, поле свободной волны имеет, как говорят, две поляризации. Например, линейными называют поляризации, построенные по ортонормальным базисным векторам. Так, если $e_{1,2,3}$ - тройка базисных единичных векторов и $\boldsymbol{k}\|\boldsymbol{e}_3$, то

$$\mathfrak{a}^{(1)}_{\perp} \sim e_1, \quad \mathfrak{a}^{(2)}_{\perp} \sim e_2.$$

Круговые (циркулярные, спиральные) поляризации являются комплексными амплитудами:

$$\mathfrak{a}_{\perp}^{*(+)} \sim e_1 + i\boldsymbol{e}_2, \quad \mathfrak{a}_{\perp}^{*(-)} \sim e_1 - i\boldsymbol{e}_2.$$

Найдем электрическое и магнитное поля в импульсном представлении 6 :

$$\mathcal{E}^{*}(\boldsymbol{k}) = \left\langle \partial_{0} \mathcal{A}_{\alpha} - \partial_{\alpha} \mathcal{A}_{0} \right\rangle = \mathrm{i} \frac{\omega_{\boldsymbol{k}}}{c} \mathfrak{a}_{\perp}^{*},$$
$$\mathcal{H}^{*}(\boldsymbol{k}) = \left\langle -\epsilon_{\alpha\beta\gamma} \partial_{\beta} \mathcal{A}_{\gamma} \right\rangle = \mathrm{i} \left[\boldsymbol{k}, \mathfrak{a}_{\perp}^{*} \right],$$

и набор векторов $(k, \mathcal{E}, \mathcal{H})$ образует правую тройку ортогональных векторов. В частности,

$$\mathcal{H} = [e_3, \mathcal{E}], \quad \mathcal{E} = -[e_3, \mathcal{H}]$$

Кроме того,

$$|\mathcal{E}| = |\mathcal{H}|,$$

т.е. в свободной волне электрическое и магнитное поля равны по модулю.

1.1.2 Волны от источника

Внешний ток \equiv источник j(k) создает поле

$$\mathcal{A}_{m}^{\text{ext}}(k) = \frac{1}{k^{2}} \mathcal{P}_{mn}(k) \frac{4\pi}{c} j^{n}(k),$$

где важно задать способ интегрирования сингулярной функции

$$\frac{1}{k^2}$$

Прескрипция Фейнмана гласит, что

$$\frac{1}{k^2} \to \frac{1}{k^2 + i0}$$

и мы имеем дело с интегрированием комплексной функции, в формализм которого мы здесь не будем углубляться 7 . Отметим лишь, что такой подход дает расходящиеся в будущем волны излучаемого электромагнитного поля и поглощение волн, пришедших из прошлого. Величина же

$$G^{mn}(k) = \frac{1}{k^2 + i0} \mathcal{P}^{mn}(k)$$

называется причинным пропагатором фотона. В частности, пусть внешний ток - статический точечный заряд

$$j^m = (j_0, \mathbf{0}), \quad j_0 = ce\delta^{(3)}(\mathbf{r}).$$

Тогда в импульсном представлении (см. (7.10))

$$j_0(k) = \frac{1}{2} \int d^4x e^{-i(k_0x_0 - \mathbf{k} \cdot \mathbf{r})} \operatorname{ce} \delta^{(3)}(\mathbf{r}) = \pi ce \delta(k_0).$$

Подставляя в формулу для поля внешнего источника (7.17), находим, что отличная от нуля временн**а́**я компонента -

$$\mathcal{A}_{0}^{\mathrm{ext}}\left(k\right) = \frac{1}{-\boldsymbol{k}^{2}} \mathcal{P}_{00}(k) 4\pi\pi e\delta\left(k_{0}\right) = \frac{1}{\boldsymbol{k}^{2}} 4\pi^{2} e\delta\left(k_{0}\right),$$

где мы подставили в пропагатор нулевое значение k_0 и $\mathcal{P}_{00}(k) = -g_{00} = -1$. Поэтому

$$\mathcal{A}_0^{\text{ext}}(x) = \int \frac{\mathrm{d}^4 k}{(2\pi)^4} 2\mathcal{A}_0^{\text{ext}}(k) e^{\mathrm{i}k \cdot x} = 4\pi e \int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{\mathbf{k}^2} e^{-\mathrm{i}\mathbf{k} \cdot \mathbf{r}},$$

и последний интеграл можно вычислить явно. Действительно, полагая

$$\mathbf{k} \cdot \mathbf{r} = kr \cos \theta, \quad \cos \theta = \varkappa, \quad d^3k = 2\pi k^2 dk d\varkappa,$$

находим

$$\int \frac{\mathrm{d}^3 k}{(2\pi)^3} \frac{1}{\mathbf{k}^2} e^{-\mathrm{i}\mathbf{k}\cdot\mathbf{r}} = \int \frac{\mathrm{d}k}{(2\pi)^2} e^{-\mathrm{i}kr\varkappa} =$$

$$\frac{1}{-\mathrm{i}4\pi^2 r} \int_0^\infty \frac{\mathrm{d}k}{k} \int_{-1}^{+1} d\varkappa (-\mathrm{i}kr) e^{-\mathrm{i}kr\varkappa} =$$

$$\frac{1}{-\mathrm{i}4\pi^2 r} \int_0^\infty \frac{\mathrm{d}k}{k} \left[e^{-\mathrm{i}kr} - e^{\mathrm{i}kr} \right] = \frac{1}{2\pi^2 r} \int_0^\infty \frac{\mathrm{d}k}{k} \sin kr.$$

Интеграл

$$\int_0^\infty \frac{\mathrm{d}k}{k} \sin kr = \frac{\pi}{2}$$

В самом деле,

$$\int_0^\infty \frac{\mathrm{d}k}{k} \sin kr = \frac{1}{2} \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{z} \sin z = \frac{1}{2} \operatorname{Im} m \int_{-\infty}^{+\infty} \frac{\mathrm{d}z}{z} e^{\mathrm{i}z},$$

так что, вводя вспомогательный параметр χ , получаем

$$\frac{1}{2} \operatorname{Im} m \int_{-\infty}^{+\infty} dz \frac{i}{2} \int_{-1}^{1} e^{i\chi z} d\chi = \frac{1}{4} \operatorname{Im} m i \int_{-1}^{1} d\chi \int_{-\infty}^{+\infty} e^{i\chi z} dz = \frac{1}{4} \operatorname{Im} m i \int_{-1}^{1} 2\pi \delta(\chi) d\chi = \frac{\pi}{2}.$$

В итоге, поле статического точечного заряда равно

$$\mathcal{A}_0^{\text{ext}}\left(x\right) = \frac{e}{r}$$

2 Additional Theory

2.1 О других способах решать уравнения Максвелла

(пока не до этого, но по идее коротко тут и про вектор Римана-Сильберштейна, и про что-то еще добавлю.)