

My proposal is based upon an *asymmetry* between **verifiability** and **falsifiability**; an asymmetry which results from the logical form of universal statements. For these are never derivable from singular statements, but can be contradicted by singular statements.

—Karl Popper, The Logic of Scientific Discovery

What is science?

a scientific theory must be falsifiable

Reproducibility

Reproducible research means:

the ability of a researcher to duplicate the results of a prior study using the same materials as were used by the original investigator. That is, a second researcher might use the same raw data to build the same analysis files and implement the same statistical analysis in an attempt to yield the same results

Reproducible research in practice:
all numbers in a data analysis
can be recalculated exactly
(down to stochastic variables!)
using the code and raw data provided by
the analyst.

- provide raw data and code to reduce it to all stages needed to get outputs
- provide code to reproduce all figures
- provide code to reproduce all number outcomes

https://acmedsci.ac.uk/viewFile/56314e40aac61.pdf

Probability

Frequentist interpretation

Bayesian interpretation

fraction of times something happens

probability of it happening

represents a level of certainty relating to a potential outcome or idea:

if I believe the coin is unfair (tricked) then even if I get a head and a tail I will still believe I am more likely to get heads than tails

Frequentist interpretation

fraction of times something happens

probability of it happening

Frequentist interpretation

fraction of times something happens

probability of it happening

$$P(E) = frequency of E$$

 $P(coin = head) = 6/11 = 0.55$
 $P(coin = head) = 49/100 = 0.49$

Summary of probabilities

Event	Probability
Α	$P(A) \in [0,1]$
not A	$P(A^\complement) = 1 - P(A)$
A or B	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $P(A \cup B) = P(A) + P(B)$ if A and B are mutually exclusive
A and B	$P(A\cap B)=P(A B)P(B)=P(B A)P(A)$ $P(A\cap B)=P(A)P(B)$ if A and B are independent
A given B	$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B A)P(A)}{P(B)}$

Statistics

Statistics

takes us from observing a limited number of samples to infer on the population

Taxonomy

Distribution: a formula (a model)

Population: all of the elements of a "family"

Sample: a finite subset of the population that you observe

Descriptive statistics - describing the central tendency

mean: (sum of all the terms)/(number of terms)

median: 50% of the distribution is to the left, 50% to the right

mode: most popular value in the distribution

20.06
20.0
ModeResult(mode=array([18]), count=array([12]))

Taxonomy

Central tendency: mean, median, mode

Spread: variance, interquartile range

Descriptive statistics - measuring the spread

Variance

$$\mathrm{Var}(X) = \mathrm{E} ig[(X - \mu)^2 ig]$$

Standard deviation

$$\sigma(X) = \sqrt{\mathrm{E}ig[(X - \mathrm{E}[X])^2ig]}$$

Gaussian distribution:

1σ contains 68% of the distribution 2σ contains 95% of the distribution 3σ contains 97.3% of the distribution

Descriptive statistics - measuring the spread

Interquartile range

Where are the limits within which X% of the distribution is contained

Binomial

Coin toss

Fair coin = p=0.5 n=1

HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

• p=0.5 and n=20 • p=0.7 and n=20 p=0.5 and n=40

Binomial distribution

Probability mass function

Cumulative distribution function

pmf

CDF

Mean

Mode

Median

B(n,p)each trial $k \in \{0,1,\ldots,n\}$ – number of successes

 $I_{1-p}(n-k,\overline{1+k})$

 $\lfloor (n+1)p
floor \lceil (n+1)p
ceil -1$

|np| or $\lceil np \rceil$

p=0.7 and N=20 Ex. kurtosis Entropy Notation $n \in \{0,1,2,\ldots\}$ – number of trials **Parameters** $p \in [0,1]$ – success probability for Support

 $\binom{n}{k} p^k (1-p)^{n-k}$ $I_{1-p}(n-k,1+k)$ CDF Mean $\lfloor np
floor$ or $\lceil np
ceil$ Median Mode

Notation

Support

pmf

MGF

CF

PGF

Fisher

Parameters

 $\lfloor (n+1)p
floor \lceil (n+1)p
ceil - 1$ |np(1-p)|Variance 1-2pSkewness

B(n,p)

each trial

successes

 $\sqrt{np(1-p)}$ 1 - 6p(1-p)np(1-p)

(for fixed n)

 $\left(rac{1}{2}\log_2(2\pi enp(1-p)) + O\left(rac{1}{n}
ight)$

 $|n\in\{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

in shannons. For nats, use the natural

log in the log.

 $(1-p+pe^t)^n$

 $(1-p+pe^{it})^n$

 $|G(z) = [(1-p) + pz]^n$

 $g_n(p)=rac{n}{p(1-p)}$ information

Probability distributions

Binomial

Coin toss

Fair coin = p=0.5 n=1

Notation

Support

pmf

CDF

Mean

Mode

Median

Parameters

B(n,p)

each trial

successes

 $I_{1-p}(n-k,\overline{1+k})$

|np| or $\lceil np \rceil$

 $n \in \{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

 $\lfloor (n+1)p
floor \lceil (n+1)p
ceil -1$

Binomial distribution

nd n=20 nd n=20 nd n=40	
	Support
	pmf
40	CDF
	Mean
••••	Median
	Mode
	Variance
	Skewnes
_	

PGF

Fisher

information

Notation

Parameters

B(n,p)

each trial

successes

 $\lfloor np
floor$ or $\lceil np
ceil$

 $n \in \{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

a shannons. For nats, use the nate of the log
$$(1-p+pe^t)^n$$

log in the log.
$$(1-p+pe^t)^n$$

GF
$$(1-p+pe^t)^n$$

(for fixed n)

MGF
$$(1-p+pe^t)^n$$
CF $(1-p+pe^{it})^n$

$$rac{(1-p+pe^t)^n}{(1-p+pe^{it})^n}$$

$$(1-p+pe^{it})^n$$

$$(1-p+pe^{it})^n$$

$$(1-p+pe^{it})^n \ G(z)=\lceil (1-p)+pz
ceil^n$$

$$(1-p+pe^{it})^n$$
 $G(z)=[(1-p)+pz]^n$ or $g_n(p)=rac{n}{p(1-p)}$

Binomial

Coin toss

Fair coin = p=0.5 n=1

Median

Mode

• p=0.5 and n=20 • p=0.7 and n=20 p=0.5 and n=40 Cumulative distribution function p=0.7 and N=20 Notation B(n,p) $n \in \{0,1,2,\ldots\}$ – number of trials **Parameters** $p \in [0,1]$ – success probability for each trial $k \in \{0,1,\ldots,n\}$ – number of Support successes pmf $I_{1-p}(n-k,\overline{1+k})$ CDF Mean

 $\lfloor np
floor$ or $\lceil np
ceil$

 $\lfloor (n+1)p
floor \lceil (n+1)p
ceil -1$

Binomial distribution

Probability mass function

	Support
	pmf
	CDF
	Mean
	Median
	Mode
	Variance
	Skewness
	Ex. kurtosis
	Entropy
_	

MGF

CF

PGF

Fisher

information

Notation

Parameters

$$\begin{split} &\lfloor (n+1)p\rfloor \text{ or } \lceil (n+1)p\rceil -1 \\ &np(1-p) \\ &\frac{1-2p}{\sqrt{np(1-p)}} \\ &\frac{1-6p(1-p)}{np(1-p)} \\ &\frac{1}{2}\log_2(2\pi enp(1-p)) + O\left(\frac{1}{n}\right) \\ &\text{in shannons. For nats, use the natural log in the log.} \end{split}$$

 $|n\in\{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

B(n,p)

each trial

successes

 $\binom{n}{k} p^k (1-p)^{n-k}$

 $|I_{1-p}(n-k,\overline{1+k})|$

 $\lfloor np
floor$ or $\lceil np
ceil$

 $[(1-p+pe^t)^n]$

 $(1-p+pe^{it})^n$

 $g_n(p)=rac{n}{p(1-p)}$

(for fixed n)

 $|G(z) = [(1-p) + pz]^n$

Probability distributions

Binomial

Coin toss

Fair coin = p=0.5 n=1

HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

Notation

Support

pmf

CDF

Mean

Mode

Median

$$k \in \{0,1,\ldots,n\}$$
 – nur successes $egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{n-k}$

Binomial distribution

Probability mass function

Cumulative distribution function

• p=0.5 and n=20 • p=0.7 and n=20

p=0.5 and n=40

$$egin{pmatrix} n \ k \end{pmatrix} p^k (1-p)^{n-k} \ I_{1-p}(n-k,1+k)$$

 $\lfloor np \rfloor$ or $\lceil np \rceil$

$$B(n,p)$$
 rs $n\in\{0,1,2,\ldots\}$ – number of trials $p\in[0,1]$ – success probability for each trial $k\in\{0,1,\ldots,n\}$ – number of successes

 $\lceil (n+1)p
ceil$ or $\lceil (n+1)p
ceil - 1$

p=0.7 and N=20

Ex. kurtosis
$$\frac{1}{2}$$

$$\sqrt{np}$$
 s $\frac{1-0}{np}$

np

$$\frac{\sqrt{np}}{1-6}$$

B(n,p)

each trial

successes

 $\binom{n}{k} p^k (1-p)^{n-k}$

 $I_{1-p}(n-k,1+k)$

 $\lfloor np
floor$ or $\lceil np
ceil$

np(1-p)

Notation

Support

pmf

CDF

Mean

Mode

Median

Variance

Skewness

Entropy

MGF

CF

PGF

Fisher

information

Parameters

$$rac{1-2p}{\sqrt{np(1-p)}} \ -6p(1-p)$$

$$\frac{\sqrt{np(1-p)}}{1-6p(1-p)}$$

$$\frac{1-6p(1-p)}{np(1-p)}$$

$$\frac{1 - 6p(1 - p)}{np(1 - p)}$$

$$\frac{np(1-p)}{1}$$

$$rac{1}{2}\log_2(2\pi enp(1-p)) + O\left(
ight.$$

 $\lfloor (n+1)p
floor \lceil (n+1)p
ceil - 1$

 $|n\in\{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

$$\left|rac{1}{2}\log_2(2\pi enp(1-p)) + O\left(rac{1}{n}
ight)
ight|$$

$$\frac{1}{2}\log_2(2\pi enp(1-p)) + O\left(\frac{1}{n}\right)$$
 in shannons. For nats, use the natural

log in the log.
$$(1 - n + ne^t)^n$$

log in the log.
$$(1-p+pe^t)^n$$

$$(1-p+pe^t)^n \ (1-p+pe^{it})^n$$

 $|G(z) = [(1-p) + pz]^n$

 $g_n(p)=rac{n}{p(1-p)}$

(for fixed n)

Coin toss

Binomial

Fair coin = p=0.5 n=1

Support

pmf

CDF

Mean

Mode

Median

		-
-		
÷.	-	p=0.5 a
		→ p=0.5 a
		30
	B(n, v	B(n,p)

each trial

successes

Binomial distribution

Probability mass function

mulative distribution function
$$\frac{-p=0.5 \text{ and N}=20}{-p=0.7 \text{ and N}=20}$$

$$p=0.5 \text{ and N}=20$$

$$p=0.5 \text{ and N}=40$$

$$10 \qquad 20 \qquad 30 \qquad 40$$

$$B(n,p)$$

$$n\in\{0,1,2,\ldots\}-\text{number of trials}$$
 $p\in[0,1]-\text{success probability for each trial}$ $k\in\{0,1,\ldots,n\}-\text{number of}$

• p=0.5 and n=20 • p=0.7 and n=20

p=0.5 and n=40

	Mod
	Var
	Ske
	Ex.
	Ent
ials or	

successes
$$egin{pmatrix} n \ k \end{pmatrix} p^k (1) \ I_{1-p}(n-p) \ \lfloor np \rfloor \ ext{or} \ \lceil n \ \lfloor (n+1)p
vert \end{bmatrix}$$

B(n,p)

each trial

Notation

Support

pmf

CDF

Parameters

$$egin{aligned} inom{n}{k}p^k(1-p)^{n-k} \ &I_{1-p}(n-k,1+k) \ &np \ &\lfloor np
floor \lceil np
ceil \ &\lfloor (n+1)p
floor \lceil (n+1)p
ceil -1 \end{aligned}$$

 $|n\in\{0,1,2,\ldots\}$ – number of trials

 $p \in [0,1]$ – success probability for

 $k \in \{0,1,\ldots,n\}$ – number of

$$\cfrac{np(1-p)}{rac{1}{2}\log_2(2\pi enp(1-p)) + O\left(rac{1}{n}
ight)}$$

$$rac{1}{2}\log_2(2\pi enp(1-p)) + O\left(rac{1}{2}
ight)$$
n shannons. For nats, use the na

$$\frac{1}{2} \log_2(2\pi enp(1-p)) + O$$
In shannons. For nats, use the nation in the log

og in the log.

$$t > n$$

og in the log.

1.
$$t = t \cdot n$$

og in the log.
$$1 - n + ne^t)^n$$

- $(1-p+pe^t)^n$
- $(1-p+pe^{it})^n$

- $|G(z) = [(1-p) + pz]^n$

- HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

- - |np| or $\lceil np \rceil$ $\lfloor (n+1)p
 floor \lceil (n+1)p
 ceil -1$

 $I_{1-p}(n-k,\overline{1+k})$

- PGF Fisher information
- $g_n(p)=rac{n}{p(1-p)}$ (for fixed n)

Probability distributions

Poisson

Shut noise/count noise

The innate noise in natural steady state processes (star flux, rain drops, radioactive decay...)

Poisson

Probability mass function

20

Parameters	$\lambda > 0$, (real) — rate
Support	$k \in \{0,1,2,\ldots\}$
pmf	$\frac{\lambda^k e^{-\lambda}}{k!}$
CDF	$\frac{\Gamma(\lfloor k+1\rfloor,\lambda)}{\lfloor k\rfloor!}, \text{ or } e^{-\lambda} \sum_{i=0}^{\lfloor k\rfloor} \frac{\lambda^i}{i!} \text{ , or } \\ Q(\lfloor k+1\rfloor,\lambda) \text{ (for } k\geq 0, \text{ where } \\ \Gamma(x,y) \text{ is the upper incomplete gamma function, } \lfloor k\rfloor \text{ is the floor function, and Q is the regularized gamma function)}$
Mean	λ
Median	$pprox \left\lfloor \lambda + 1/3 - 0.02/\lambda ight floor$
Mode	$\lceil \lambda ceil - 1, \lfloor \lambda floor$
Variance	λ
Skewness	$\lambda^{-1/2}$
Ex. kurtosis	λ^{-1}
Entropy	$egin{align} \lambda[1-\log(\lambda)] + e^{-\lambda} \sum_{k=0}^\infty rac{\lambda^k \log(k!)}{k!} \ & ext{(for large λ)} \ & rac{1}{2} \log(2\pi e \lambda) - rac{1}{12\lambda} - rac{1}{24\lambda^2} - & \ & rac{19}{360\lambda^3} + O\left(rac{1}{\lambda^4} ight) \ & ext{} \end{aligned}$
MGF	$\exp(\lambda(e^t-1))$
CF	$\exp(\lambda(e^{it}-1))$
PGF	$\exp(\lambda(z-1))$
Fisher	1
information	$\overline{\lambda}$

Notation

 $Pois(\lambda)$

Parameters $\lambda > 0$, (real) — rate

Probability distributions

Gaussian

most common noise:

well behaved
mathematically,
symmetric, when we
can we will assume our
uncertainties are
Gaussian distributed

Notation	$\mathcal{N}(\mu,\sigma^2)$
Parameters	$\mu \in \mathbb{R}$ = mean (location)
	$\sigma^2>0$ = variance (squared scale)
Support	$x\in\mathbb{R}$
PDF	$rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$
CDF	$rac{1}{2}\left[1+ ext{erf}igg(rac{x-\mu}{\sigma\sqrt{2}}igg) ight]$
Quantile	$\mu + \sigma\sqrt{2}\operatorname{erf}^{-1}(2F-1)$
Mean	μ
Median	μ
Mode	μ
Variance	σ^2
Skewness	0
Ex.	0
kurtosis	
Entropy	$rac{1}{2}\log(2\pi e\sigma^2)$
MGF	$\exp(\mu t + \sigma^2 t^2/2)$
CF	$\exp(i\mu t - \sigma^2 t^2/2)$
Fisher information	$egin{aligned} \mathcal{I}(\mu,\sigma) &= \left(egin{array}{cc} 1/\sigma^2 & 0 \ 0 & 2/\sigma^2 \end{array} ight) \mathcal{I}(\mu,\sigma^2) &= \left(egin{array}{cc} 1/\sigma^2 & 0 \ 0 & 1/(2\sigma^4) \end{array} ight) \ D_{ ext{KL}}(\mathcal{N}_0 \ \mathcal{N}_1) &= rac{1}{2} \{ (\sigma_0/\sigma_1)^2 + rac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + 2 \ln rac{\sigma_1}{\sigma_0} \} \end{aligned}$
Kullback- Leibler divergence	$D_{ ext{KL}}(\mathcal{N}_0 \ \mathcal{N}_1) = rac{1}{2} \{ (\sigma_0/\sigma_1)^2 + rac{(\mu_1 - \mu_0)^2}{\sigma_1^2} - 1 + 2 \ln rac{\sigma_1}{\sigma_0} \}$

Probability distributions

Chi-square (X2)

turns out its extremely common

many pivotal quantities follow this distribution and thus many tests are based on this

Notation	$\chi^2(k)$ or χ^2_k
Parameters	$k \in \mathbb{N}_{>0}$ (known as "degrees of
	freedom")
Support	$x \in (0,+\infty)$ if $k=1$, otherwise
	$x\in [0,+\infty)$
PDF	$1 \frac{1}{e^{k/2-1}e^{-x/2}}$
	$rac{1}{2^{k/2}\Gamma(k/2)} \ x^{k/2-1} e^{-x/2}$
CDF	$1 \qquad (k x)$
	$rac{1}{\Gamma(k/2)} \; \gamma\left(rac{k}{2}, rac{x}{2} ight)$
Mean	k
Median	$pprox kigg(1-rac{2}{9k}igg)^3$
Mode	$\max(k-2,0)$
Variance	2k
Skewness	$\sqrt{8/k}$
Ex.	12
kurtosis	\overline{k}
Entropy	$\dfrac{12}{k} \\ \dfrac{k}{2} + \ln(2\Gamma(\dfrac{k}{2}))$
	$+(1-rac{k}{2})\psi(rac{k}{2})$
MGF	$(1-2t)^{-k/2} ext{ for } t < rac{1}{2}$
CF	$(1-2it)^{-k/2}$ [1]
PGF	$(1-2\ln t)^{-k/2} ext{ for } 0 < t < \sqrt{e}$

Simulation of the different distributions in Colab

Law of large numbers

According to the law, the average of the results obtained from a large number of trials should be close to the expected value and will tend to become closer to the expected value as more trials are performed.

In the limit of N -> infinity
the mean of a sample of size
N approaches the mean of the
population µ

Central limit theorem

In the limit of N -> infinity

the sample mean x approaches a Normal (Gaussian) distribution with mean μ and standard deviation σ

regardless of the distribution of X

Central limit theorem in Colab

Inference

"Body weight was higher in mice fed the high-fat diet already after the first week, due to higher dietary intake in combination with lower metabolic efficiency."

"Already during the first week after introduction of high-fat diet, body weight increased significantly more in the high-fat diet-fed mice (\pm 1.6 \pm 0.1 g) than in the normal diet-fed mice (\pm 0.2 \pm 0.1 g; P < 0.001)."

What is $\pm 1.6 \pm 0.1$ g and ± 0.1 g and what is P < 0.001? And why are these numbers important?

Data has variability

We need p-values and confidence intervals because the data has variability.

We do not have access to the **population**, we are just sampling it and inferring the characteristics of the population based on the values of its sample.

Every time we resample the population, we get different descriptive statistics (mean, standard deviation, etc).

In particular, the means is a random variable.

Random variables when sampling a population

mean males: 28.065288965238878 mean females: 26.76744359319031

mean males: 27.9795995248824 mean females: 26.92432748169731 mean males: 28.379904688459526 mean females: 27.187517814945377

The Null Hypothesis

How do we know that males and females have really different BMI, and that is not due to a random effect of the sampling?

Null Hypothesis Rejection Testing

Null Hypothesis Rejection Testing

formulate the Null as the comprehensive opposite of your theory prediction model

Example

Earth is flat is Null

not flat
Earth is round is Alternative

We reject the Null hypothesis that the Earth is flat (p=0.05)

HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

Null Hypothesis Rejection Testing

- 1. Formulate your prediction (Null Hypothesis)
- 2. Identify all alternative outcomes (Alternative hypothesis):
 - a. If all alternatives to our model are ruled out, then our model must hold
- 3. Set confidence threshold (2sigma, 0.05 p-value, 95% alpha threshold)
- 4. Find a measurable quantity which under the Null has a known distribution:
 - a. If a quantity follows a known distribution, once I measure its value I can know what the probability of getting that value actually is.
 - b. Different statistics:
 - X2 statistics: difference between expectation and reality squared
 - ii. Z statistics: difference between means
 - iii. K-S statistics: maximum distance of cumulative distributions
- 5. Calculate the pivotal quantities
- 6. Calculate the probability of value obtained for the pivotal quantity under the Null

If probability < p-value: reject Null

Common tests and pivotal quantities

Z-test

Is the mean of a sample with known variance the same as that of a known population?

Pivotal quantity

$$Z \sim N(\mu=0, \sigma=1)$$

HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

Z-test

Is the mean of a sample with known variance the same as that of a known population?

Pivotal quantity

Population mean

 $Z \sim N(\mu=0, \sigma=1)$

why do we need a test? why not just measuring the means and seeing it they are the same?

Sample mean

Z-test

Is the mean of a sample with known variance the same as that of a known population?

Pivotal quantity

$$Z \sim N(\mu=0, \sigma=1)$$

The Z test provides a trivial interpretation of the measured quantity: the Z value is exactly the distance for the mean of the standard distribution of possible outcomes in units of standard deviation

so a result of 0.13 means we are 0.13 standard deviations to the mean (p>0.05)

t-test

Are the means of 2 samples significantly different?

Pivotal quantity

$$t=rac{ar{X}_1-ar{X}_2}{s_{ar{\Delta}}}$$
 unbiased variance estimator $s_{ar{\Delta}}=\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$ size of sample

t ~ Student's t $d. \, f. = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}$

HS2022 Big Data Analysis in Biomedical Research (376-1723-00L)

ETH zürich

t-test

Are the means of 2 samples significantly different?

Pivotal quantity

 $\sqrt{\pi\nu} \Gamma\left(\frac{\nu}{2}\right)$

where ₂F₁ is the hypergeometric function

0 for $\nu > 1$, otherwise undefined

sample

Mean

Student's t

Probability density function

Parameters	$ \mathbf{s} \mid u > 0 \text{ degrees of freedom (real)} $
Support	$x\in (-\infty,\infty)$
PDF	$rac{\Gamma\left(rac{ u+1}{2} ight)}{\sqrt{ u\pi}\Gamma\left(rac{ u}{2} ight)}\Big(1+rac{x^2}{ u}\Big)^{-rac{ u+1}{2}}$
CDF	$rac{1}{2} + x\Gamma\left(rac{ u+1}{2} ight) imes$
	$\frac{{}_2F_1\left(\frac{1}{2},\frac{\nu+1}{2};\frac{3}{2};-\frac{x^2}{\nu}\right)}{\sqrt{\pi\nu}\Gamma\left(\frac{\nu}{2}\right)}$
	where $_2F_1$ is the hypergeometric function
Mean	0 for $ u>1$, otherwise undefined
Median	0
Mode	0
Variance	$\frac{\nu}{\nu-2}$ for $\nu>2$, ∞ for $1< u\leq 2$, otherwise
	undefined

t-test

Are the means of 2 samples significantly different?

To interpret the outcome of a t-test I have to figure out the probability of a given p

Quartiles of the t Distribution

The table gives the value if $t_{n:q}$ - the qth quantile of the t distribution for n degrees of freedom

Pivotal quantity

	q = 0.6	0.75	0.9	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
n = 1	0.3249	1.0000	3.078	6.314	12.706	31.821	63.657	127.321	318.309	636.619
2	0.2887	0.8165	1.886	2.920	4.303	6.965	9.925	14.089	22.327	31.599
3	0.2767	0.7649	1.638	2.353	3.182	4.541	5.841	7.453	10.215	12.924
4	0.2707	0.7407	1.533	2.132	2.776	3.747	4.604	5.598	7.173	8.610
5	0.2672	0.7267	1.476	2.015	2.571	3.365	4.032	4.773	5.893	6.869
6	0.2648	0.7176	1.440	1.943	2.447	3.143	3.707	4.317	5.208	5.959
7	0.2632	0.7111	1.415	1.895	2.365	2.998	3.499	4.029	4.785	5.408
8	0.2619	0.7064	1.397	1.860	2.306	2.896	3.355	3.833	4.501	5.041
9	0.2610	0.7027	1.383	1.833	2.262	2.821	3.250	3.690	4.297	4.781
10	0.2602	0.6998	1.372	1.812	2.228	2.764	3.169	3.581	4.144	4.587
11	0.2596	0.6974	1.363	1.796	2.201	2.718	3.106	3.497	4.025	4.437
12	0.2590	0.6955	1.356	1.782	2.179	2.681	3.055	3.428	3.930	4.318
13	0.2586	0.6938	1.350	1.771	2.160	2.650	3.012	3.372	3.852	4.221
14	0.2582	0.6924	1.345	1.761	2.145	2.624	2.977	3.326	3.787	4.140

χ2 test

are the data what is expected from the model - there are a few $\chi 2$ tests. The one here is the "Pearson's $\chi 2$ tests"

Pivotal quantity

The table below gives the value x_0^2 for which $P[x^2 < x_0^2] = P$ for a given number of degrees of freedom and a given value of P.

Degrees of	Values of P											
Freedom	0.005	0.010	0.025	0.050	0.100	0.900	0.950	0.975	0.990	0.995		
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879		
2	0.01	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597		
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.83		
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860		
5	0.412	0.554	0.831	1.145	1.610	9.236	11.070	12.833	15.086	16.75		
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548		
7	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	20.278		
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.95		
9	1 735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	23.58		
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	23.209	25.18		
11	2.603	3.053	3.816	4 575	5.578	17.275	19.675	21.920	24.725	26.75		
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	23.337	26.217	28.300		
13	3.565	4.107	5.009	5.892	7.042	19.812	22.362	24.736	27.688	29.819		
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319		
15	4.601	5.229	6.262	7.261	8.547	22.307	24.996	27.488	30.578	32.80		
16	5.142	5.812	6.908	7 962	9.312	23.542	26.296	28.845	32.000	34 267		
17	5.697	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	35.718		
18	6.265	7.015	8.231	9.390	10.865	25.989	28 869	31.526	34.805	37.156		
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32.852	36.191	38.582		
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34.170	37.566	39.997		

Kolmogorov–Smirnov test

Kolmogorov-Smirnov test:

do two samples come from the same parent distribution?

Pivotal quantity

$$D_n = \sup_x |F_n(x) - F(x)|$$
Cumulative Cumulative

distribution 1

distribution 2