

Time to execute 100 times is 1432.7ms Time to execute once 14.32ms

Calibration Data

 .10
 3760
 100

 .40
 3746
 400

 .80
 3839
 800

 1.20
 3997
 1200

 1.40
 4061
 1400

Measured Position	Error
x _{mi}	x_{ti} - x_{mi}
0	0
.473	.024
	0

1	1.15	05
1.5	1.58	08
2	2	2

Average Error: .051

C:\Keil_v5\EE319KwareSpring2019\Lab8_EE319K\ADC.c

```
// ADC.c
     // Runs on LM4F120/TM4C123
    // Provide functions that initialize ADCO
    // Last Modified: 11/6/2018
    // Student names: change this to your names or look very silly
 6
     // Last modification date: change this to the last modification date or look very silly
 8
     #include <stdint.h>
 9
    #include "../inc/tm4c123gh6pm.h"
10
11
     // ADC initialization function
12
     // Input: none
13
     // Output: none
14
     // measures from PD2, analog channel 5
15
    void ADC Init(void) {
       SYSCTL RCGCGPIO R \mid = 0 \times 08;
16
                                        //turn on clock for Port D
17
       uint8 t k;
                                        //wait for clock to start
18
       k = 42;
19
       GPIO PORTD DIR R &= \sim 0 \times 04;
                                        //make PD2 input
20
       GPIO PORTD AFSEL R \mid = 0 \times 04;
                                       //enable alternate function on PD2
       GPIO_PORTD_DEN_R &= \sim 0 \times 04;
21
                                       //disable digital I/O on PD2
22
       GPIO PORTD AMSEL R \mid = 0 \times 04;
                                       //enable analog functionality on PD2
23
       SYSCTL RCGCADC R \mid = 0x0001;
                                        //activate ADC0
24
       k = 42;
25
       k = 42;
26
       k = 42;
27
       k = 42;
       k = 42;
28
       k = 42;
29
30
       k = 42;
       k = 42;
31
32
       k = 42;
33
      k = 42;
34
      k = 42;
35
                                        //configure for 125K
      ADC0 PC R = 0 \times 01;
36
      ADC0_SSPRI_R = 0x0123;
                                        //Seq 3 is highest priority
37
      ADC0 ACTSS R &= \sim 0 \times 00008;
                                        //disable sample sequencer 3
                                     //seq3 is software trigger
38
       ADC0_EMUX_R &= \sim 0 \times F000;
       ADCO_SSMUX3_R = (ADCO_SSMUX3_R&OxFFFFFFF0)+5; //Ain5 (PD2)
39
40
       ADC0 SSCTL3 R = 0 \times 0006;
                                       //no TSO DO, yes IEO ENDO
       ADC0 IM R &= ~0x0008;
41
                                        //disable SS3 interrupts
       ADC0 ACTSS R \mid = 0 \times 0008;
                                        //enable sample sequencer 3
42
     // ADCO SAC R = 0x0A;
43
44
45
47
     //-----ADC In-----
48
     // Busy-wait Analog to digital conversion
49
     // Input: none
50
     // Output: 12-bit result of ADC conversion
51
     // measures from PD2, analog channel 5
52
     uint32_t ADC_In(void){
       uint32_t data;
53
54
       ADC0 PSSI R = 0 \times 00008;
55
       while ((ADC0 RIS R&0x08) == 0) {};
       data = ADC0_SSFIF03 R&0xFFF;
56
       ADC0 ISC R = 0 \times 0008;
57
58
       return data;
59
60
61
62
```

```
// Lab8.c
    // Runs on LM4F120 or TM4C123
    // Student names: change this to your names or look very silly
    // Last modification date: change this to the last modification date or look very silly
    // Last Modified: 11/6/2018
 7
    // Specifications:
    // Measure distance using slide pot, sample at 60 Hz
 9
    // maximum distance can be any value from 1.5 to 2cm
10
    // minimum distance is 0 cm
11
     // Calculate distance in fixed point, 0.001cm
12
     // Analog Input connected to PD2=ADC5
13
    // displays distance on Sitronox ST7735
    // PF3, PF2, PF1 are heartbeats (use them in creative ways)
14
15
    //
16
17
    #include <stdint.h>
18
19
    #include "ST7735.h"
   #include "TExaS.h"
20
    #include "ADC.h"
21
    #include "print.h"
22
    #include "../inc/tm4c123gh6pm.h"
23
24
25
    //****the first three main programs are for debugging *****
26
     // main1 tests just the ADC and slide pot, use debugger to see data
27
     // main2 adds the LCD to the ADC and slide pot, ADC data is on ST7735
    // main3 adds your convert function, position data is no ST7735
28
29
30
    void DisableInterrupts(void); // Disable interrupts
    void EnableInterrupts(void); // Enable interrupts
31
32
33 #define PF1
                       (*((volatile uint32 t *)0x40025008))
                       (*((volatile uint32_t *)0x40025010))
34 #define PF2
3.5
    #define PF3
                       (*((volatile uint32 t *)0x40025020))
36
     uint32 t ADCMail;
37
      uint8 t ADCMail Flag = 0;
38
    // Initialize Port F so PF1, PF2 and PF3 are heartbeats
39
    void PortF_Init(void) {
40
      SYSCTL RCGCGPIO R \mid = 0 \times 20;
                                          //turn on clock for Port F
41
      uint8 t k = 0;
                                          //wait for clock to start
42
       k = 42;
43
      GPIO PORTF DIR R \mid = 0 \times 0 E;
                                          //PF1,2,3 are outputs
44
       GPIO PORTF DEN R \mid = 0 \times 0 E;
                                          //enable digital I/O for PF1,2,3
4.5
47
    // Initialize SysTick with busy wait running at bus clock.
48
    void SysTick Init(void) {
     NVIC_ST_CTRL R = 0;
49
50
     NVIC ST RELOAD R = 0 \times A2038;
51
      NVIC_ST_CURRENT_R = 0;
      NVIC_SYS_PRI3_R = (NVIC_SYS_PRI3_R & 0x00FFFFFF) | 0x40000000; //priority 2
52
53
       NVIC ST CTRL R = 0 \times 07;
54
55
56
    void SysTick Handler(void) {
57
     PF1 ^{=} 0x02;
      PF2 ^{=} 0x04;
58
59
     ADCMail = ADC In();
     ADCMail Flag = 1;
60
61
      //PF3 ^= 0x08;
62
   }
                           // 12-bit ADC
63 uint32 t Data;
64
                           // 32-bit fixed-point 0.001 cm
   uint32 t Position;
65
    /*int main(void){
                            // single step this program and look at Data
66
                           // Bus clock is 80 MHz
      TExaS_Init();
67
      ADC_Init();
                           // turn on ADC, set channel to 5
68
       while(1){
69
         Data = ADC In(); // sample 12-bit channel 5
70
71
     } * /
72
```

```
/*int main(void){
        uint32 t count = 0;
 75
        TExaS Init();
                            // Bus clock is 80 MHz
 76
        ADC Init();
                            // turn on ADC, set channel to 5
 77
        ST7735 InitR(INITR REDTAB);
 78
       PortF Init();
 79
      while(1){}
                            // use scope to measure execution time for ADC In and LCD OutDec
 80
        if (count >= 100) {
 81
         count = 0;
 82
         PF2 ^{=} 0x04;
                             // Profile ADC
 83
 84
         Data = ADC In(); // sample 12-bit channel 5
         //PF2 = 0x00;
                            // end of ADC Profile
 8.5
         ST7735 SetCursor(0,0);
 86
 87
         PF1 = 0x02;
                            // Profile LCD
         LCD OutDec(Data);
         ST7735 OutString("
                              "); // spaces cover up characters from last output
 90
         PF1 = 0;
                           // end of LCD Profile
 91
          count++;
 92
 93
     } * /
 94
 95
      // your function to convert ADC sample to distance (0.001cm)
 96
      uint32 t Convert(uint32 t input){
 97
        //input = ((input*5.479452055)-20438.35616);
 98
        if (input == 4095) return 2000;
 99
        input = ((input*4.471787401)-16554.70338);
        if (input <= 230) return 0;</pre>
100
101
        return input;
102
103
     /*int main3(void){
104
                              // Bus clock is 80 MHz
      TExaS Init();
105
      ST7735 InitR(INITR REDTAB);
106
      PortF Init();
107
      ADC Init();
                            // turn on ADC, set channel to 5
108
      while(1){}
        PF2 ^{=} 0x04;
                            // Heartbeat
109
110
         Data = ADC_In(); // sample 12-bit channel 5
         PF3 = 0x08;
                            // Profile Convert
111
112
         Position = Convert(Data);
        PF3 = 0;
113
                            // end of Convert Profile
        PF1 = 0x02;
                            // Profile LCD
114
115
        ST7735 SetCursor(0,0);
116
        LCD OutDec(Data); ST7735 OutString("
117
         ST7735 SetCursor(6,0);
118
         LCD OutFix (Position);
119
         PF1 = 0;
                            // end of LCD Profile
120
    } */
121
122
    int main(void) {
123
     TExaS_Init();
124
        ST7735_InitR(INITR_REDTAB);
        PortF_Init();
125
126
        ADC Init();
127
        SysTick Init();
128
        EnableInterrupts();
129
        while(1){
130
         PF2 ^{=} 0x04;
131
         //PF3 = 0x08;
132
133
         if (ADCMail Flag == 1) {
134
           ST7735 SetCursor(0,0);
135
            PF1 = 0x02;
136
           LCD OutFix(Convert(ADCMail));
137
            //PF3 = 0;
138
            PF1 = 0x02;
139
            ST7735 OutString("
                                  ");
            ADCMail Flag = 0;
140
141
            PF1 = 0;
142
143
          else {
            for (uint32 t k = 0; k < 1000000; k++) {
144
```

C:\Keil_v5\EE319KwareSpring2019\Lab8_EE319K\Lab8.c

```
145 PF1 = 0;

146 PF2 = 0;

147 //PF3 = 0;

148 }

149 }

150 }

151 }

152 153
```