### บทที่ 2

### ลำดับ (Sequence)

#### 2.1 ความหมายของลำดับ

คำว่า ลำดับ ในคณิตศาสตร์ ใช้อธิบายการเขียนจำนวนที่มีพจน์ ตามหลังสืบเนื่องกัน เช่น

1, 2, 3, 4, ... 2, 4, 6, 8, ... 1, 
$$\frac{1}{2}$$
,  $\frac{1}{3}$ ,  $\frac{1}{4}$ , ... 1, -1, 1, -1, ...

เรียกจำนวนในลำคับว่า พจน์ (term) ของลำคับ และในแต่ละ กรณี เราใช้จุค 3 จุด เพื่อแสดงว่าลำคับนั้นมีพจน์ต่อไปอีกอย่างไม่ สิ้นสุด

การเขียนลำคับ  $a_1,a_2,a_3,...,a_n,...$  สามารถเขียนในลักษณะ วงเล็บได้เป็น  $\{a_1,a_2,a_3,...,a_n,...\}$ 

เรียก  $a_1$  ว่าพจน์ ที่ 1 ของลำดับ เรียก  $a_2$  ว่าพจน์ ที่ 2 ของลำดับ

.....

เรียก  $a_n$  ว่าพจน์ ที่ n ของลำดับ

นอกจากนี้ยังสามารถเขียนได้ในรูป  $\{a_n\}_{n=1}^{\infty}$  หรือ  $\{a_n\}$  เรียกว่า Bracket notation เช่น ลำดับ 2,4,6,8,... เขียนได้โดยใช้ สัญลักษณ์  $\{2n\}_{n=1}^{+\infty}$  ซึ่งสัญลักษณ์นี้ แสดงให้เห็นว่าแต่ละพจน์เกิด จากการแทนจำนวนเต็ม n=1,2,3,... ลงในสูตร 2n

จะเห็นได้ว่าลำดับเป็นเซตของจำนวนที่เรียงลำดับกันภายใต้ กฎเกณฑ์ อย่างใดอย่างหนึ่งร่วมกัน ลำดับที่มีพจน์เป็นจำนวนจำกัด เรียกว่า ลำดับจำกัด (Finite Sequence) ลำดับที่มีจำนวนพจน์ไม่จำกัด เรียกว่า ลำดับอนันต์ (Infinite Sequence)

**ตัวอย่าง 1** จงเขียน 5 พจน์แรกของลำดับ  $\left\{2^n\right\}_{n=1}^{+\infty}$  วิธีทำ

ตัวอย่าง 2 จงเขียนลำดับต่อนี้ในรูป Bracket notation

(fi) 
$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \dots$$

$$(\mathfrak{V}) \quad \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \dots$$

$$(n)$$
 1, -1, 1, -1, ...

(4) 
$$\frac{1}{2}, -\frac{2}{3}, \frac{3}{4}, -\frac{4}{5}, \dots$$

**ข้อสังเกต** อักษร a และ n อาจจะใช้ตัวอักษร อื่นแทนได้ เช่น  $a_n$  อาจจะแทนด้วย  $b_k$  ก็ได้

จากข้างต้นจะเห็นว่าในการเขียนลำดับ

ดังนี้

$$2,4,8,16,32,...,2^n$$
 ,... หรือ  $\left\{2^n\right\}_{n=1}^{+\infty}$  (1) เป็นการกำหนดความเกี่ยวข้องระหว่าง  $2^n$  และจำนวนเต็มบวก  $n$  ซึ่งกล่าวได้ว่า  $\left\{2^n\right\}_{n=1}^{+\infty}$  เป็นสูตรสำหรับฟังก์ชันที่มีตัวแปรอิสระคือ  $n$  แปรค่าบนจำนวนเต็มบวก ดังนั้นอาจจะเขียน (1) ในรูปฟังก์ชัน เป็น  $f(n)=2^n$  ,  $n=1,2,3,...$  และ  $2,4,8,16,32,...,2^n$  ,... แทนฟังก์ชัน  $f(1),f(2),f(3),...,f(n),...$  จึงมีนิยามของลำดับ

น**ิยาม 1** ลำดับ (Sequence) หรือ ลำดับอนันต์ (Infinite sequence) คือ ฟังก์ชันที่มีโดเมนเป็นเซตของจำนวนเต็มบวก

เนื่องจากทุกลำดับมีโคเมน คือ เซตของจำนวนเต็มบวกเหมือนกัน ดังนั้น เขียน  $\{a_n\}$  แทน  $\{a_n\}_{n=1}^\infty$ หรือ  $\{f(n)\}$  แทน  $\{f(n)\}_{n=1}^\infty$ 

### 2.2 กราฟของถำดับ

เนื่องจากลำดับคือฟังก์ชัน เราสามารถเขียนกราฟได้ ดังตัวอย่างนี้

**ตัวอย่าง** 3.1 ลำคับ  $\left\{\frac{n-1}{n}\right\}$  มีกราฟดังนี้





ตัวอย่าง 3.2 ลำคับ  $\left\{ \frac{(-1)^{n+1}(n-1)}{n} \right\}$  มีกราฟคังนี้





**ตัวอย่าง** 3.3 ลำคับ  $\{3,3,3,...\}$  มีกราฟดังนี้





จากกราฟทั้งสามของลำดับ ซึ่งเป็น กราฟที่ไม่ต่อเนื่อง
(Discontinuous curve) จะได้ว่า กราฟของ (3.1) และ (3.3) นั้น จะมีค่าเข้าใกล้ หรือ ลู่เข้า 1 และ 3 ตามลำดับ ส่วน กราฟของ (3.2) จะมีการแกว่งไปมา ไม่เข้าสู่ค่าใดเลย

#### 2.3 ถิมิตของลำดับ

การที่ถิมิตมีค่าเข้าใกล้ค่าหนึ่งหรือไม่นั้น สามารถกำหนดเป็น นิยามถิมิตของลำดับได้ดังนี้

**นิยาม 2** ลำคับ  $\{a_n\}$  มีลิมิต L ถ้ากำหนค arepsilon>0 ใคๆ แล้วมีจำนวน เต็มบวก N โดยที่  $|a_n-L|<arepsilon$  เมื่อ  $n\geq N$ 

ถ้าลำดับ  $\{a_n\}$  มีลิมิต L แล้ว เรียกว่า **ลำดับคอนเวอร์จ** หรือ **ลู่เข้า** และ เขียน  $\lim_{n\to\infty}a_n=L$  และเรียกลำดับที่ไม่มีลิมิตว่า **ไดเวอร์จ** หรือ **ลู่ออก** 

จากการพิจารณากราฟของลำดับในตัวอย่าง 3.1 เราจึงได้ว่า

ลำคับ 
$$\left\{\frac{n-1}{n}\right\}$$
 ลู่เข้าสู่ 1 และเขียนใค้เป็น  $\lim_{n\to\infty}\frac{n-1}{n}=1$ 

นอกจากกราฟยังมีวิธีพิจารณาการลู่เข้าของลำดับดังทฤษฎี ต่อไปนี้

## การคำนวณค่าถิมิตของลำดับ (Calculating limit of Sequence)

**ทฤษฎีบท 1** กำหนดให้  $\{a_n\}$ และ  $\{b_n\}$  เป็นลำดับของจำนวนจริง และ A,B,k เป็นจำนวนจริง ถ้า  $\lim_{n\to\infty}a_n=A$  และ  $\lim_{n\to\infty}b_n=B$  แล้วจะได้ว่า

1. 
$$\lim_{n\to\infty} (a_n + b_n) = A + B$$
 (Sum Rule)

2. 
$$\lim_{n\to\infty} (a_n - b_n) = A - B$$
 (Difference Rule)

3. 
$$\lim_{n \to \infty} (a_n \cdot b_n) = A \cdot B$$
 (Product Rule)

4. 
$$\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{A}{B}$$
,  $B \neq 0$  (Quotient Rule)

5. 
$$\lim_{n \to \infty} kb_n = kB$$
 (Constant Multiple Rule)

**ทฤษฎีบท 2** ถ้าให้ f(x) เป็นฟังก์ชันที่นิยามสำหรับ  $x > n_0$  และ  $\{a_n\}$  เป็นลำคับของจำนวนจริง ซึ่งทำให้  $a_n = f(n)$  สำหรับ  $n > n_0$  แล้วจะได้ว่า ถ้า  $\lim_{x \to \infty} f(x) = L$  แล้ว  $\lim_{n \to \infty} a_n = L$ 

# ลิมิตที่ควรรู้จักมีดังนี้

1) 
$$\lim_{n \to \infty} \frac{\ln n}{n} = 0$$
 2) 
$$\lim_{n \to \infty} \sqrt[n]{n} = 1$$

3) 
$$\lim_{n\to\infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1$$
 4) 
$$\lim_{n\to\infty} c^{\frac{1}{n}} = 1$$
 ,  $c > 0$ 

5) 
$$\lim_{n \to \infty} c^n = 0$$
 ,  $|c| < 1$  6)  $\lim_{n \to \infty} \frac{c^n}{n!} = 0$ 
7)  $\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x$  กรณี 4-6  $c$  เป็นค่าคงที่

7) 
$$\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$$
 กรณี 4-6  $c$  เป็นค่าคงที่

ในการตรวจสอบการลู่เข้าหรือลู่ออกของลำคับที่มีความซับซ้อน นั้น จำเป็นต้องหาลิมิตในรูปแบบไม่กำหนดลักษณะต่างๆ  $(\pm \frac{\infty}{\infty}, \frac{0}{0}, 0 \cdot \pm \infty, 0^0, \pm \infty^0, 1^{\pm \infty}, \pm \infty \pm \infty)$  โดยใช้กฎของโลปิตาล แยกตัวประกอบหรือสังยุค ช่วยในการหาลิมิตๆได้

**ตัวอย่าง 4** ลำดับต่อไปนี้เป็นลำดับลู่เข้าหรือไม่

$$4.1 \left\{ \frac{1 - 6n^4}{n^4 + 8n^3} \right\}$$

$$4.2 \left\{ \frac{n^2 - 2n + 1}{n - 1} \right\}$$

$$4.3 \left\{ \frac{2^{1000} + 2^{n-1} + 3^{n-2}}{2^n + 3^n + 5} \right\}$$

$$4.4 \left\{ n - \sqrt{n^2 - n} \right\}$$

$$4.5 \left\{ \ln n - \ln(2n^3 + 1) \right\}$$

ตัวอย่าง 5 จงทคสอบลำคับอนันต์ 
$$\left\{\left(\frac{1+n}{n-1}\right)^n\right\}$$
 ว่าลู่เข้าหรือลู่ออก วิธีทำ ให้  $K=\left(\frac{1+x}{x-1}\right)^x$  จะได้  $\ln K=x\ln\left(\frac{1+x}{x-1}\right)$ 

พิจารณาลิมิต 
$$\lim_{x \to \infty} \ln K = \lim_{x \to \infty} x \ln \left( \frac{1+x}{x-1} \right)$$

$$\ln \lim_{x \to \infty} K = \lim_{x \to \infty} \frac{\ln \left(\frac{1+x}{x-1}\right)}{\frac{1}{x}}$$

$$= \lim_{x \to \infty} \frac{\frac{x-1}{1+x} \left(\frac{1 \cdot (x-1)-1 \cdot (1+x)}{(x-1)^2}\right)}{-\frac{1}{x^2}}$$

$$= \lim_{x \to \infty} \frac{2x^2}{(1+x)(x-1)}$$

จะได้ 
$$\ln \lim_{x \to \infty} K = 2$$
 ดังนั้น  $\lim_{x \to \infty} K = e^2$ 

$$\therefore \lim_{x \to \infty} \left( \frac{1+x}{x-1} \right)^x = e^2 \text{ ดังนั้น } \left\{ \left( \frac{1+n}{n-1} \right)^n \right\} \text{ ลู่เข้าและลู่เข้าสู่ค่า } e^2$$

=2

### ทฤษฎีบท 3 (The Sandwich Theorem of Sequence)

ให้ 
$$\{a_n\},\{b_n\}$$
 และ  $\{c_n\}$  เป็นลำคับของจำนวนจริง โดย 
$$a_n \leq b_n \leq c_n$$
 ทุกๆค่า  $n$  ถ้า  $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$  แล้วจะได้ ว่า  $\lim_{n \to \infty} b_n = L$ 

ตัวอย่าง 6 จงแสดงว่าลำดับ 
$$\left\{\frac{\sin n}{n}\right\}$$
 สู่เข้า 
$$-1 \leq \sin n \leq 1$$
 
$$-\frac{1}{n} \leq \frac{\sin n}{n} \leq \frac{1}{n}$$
 
$$0 = \lim_{n \to \infty} -\frac{1}{n} \leq \lim_{n \to \infty} \frac{\sin n}{n} \leq \lim_{n \to \infty} \frac{1}{n} = 0$$
 จะใต้  $\lim_{n \to \infty} \frac{\sin n}{n} = 0$  ดังนั้น  $\left\{\frac{\sin n}{n}\right\}$  สู่เข้า

### ทฤษฎีบท 4 (The Continuous Function Theorem for sequence)

ให้  $\{a_n\}$  เป็นลำดับของจำนวนจริง ซึ่ง  $\lim_{n\to\infty}a_n=L$  และ f เป็นฟังก์ชันที่ต่อเนื่องที่นิยามที่  $a_n$  ทุกค่า n แล้ว  $\lim_{n\to\infty}f(a_n)=f(L)$ 

หมายเหตุ อาจเขียนได้ว่า  $a_n o L$  แล้ว  $f(a_n) o f(L)$ 

ตัวอย่าง 7 ลำดับ 
$$\left\{\sin\left(\frac{n\pi+2}{2n}\right)\right\}$$
 เป็นลำดับลู่เข้าหรือไม่ วิธีทำ จาก  $\lim_{n\to\infty}\left(\frac{n\pi+2}{2n}\right)=\frac{\pi}{2}$  ดังนั้น  $\lim_{n\to\infty}\sin\left(\frac{n\pi+2}{2n}\right)=\sin\left(\frac{\pi}{2}\right)=1$ 

# 2.4 ลำดับทางเดียว (Monotone Sequence)

**นิยาม 3** จะเรียกลำดับ 
$$\{a_n\}$$
 ว่า เป็นลำดับเพิ่ม ถ้า  $a_1 < a_2 < a_3 < ... < a_n < ...$  เป็นลำดับไม่ลด ถ้า  $a_1 \le a_2 \le a_3 \le ... \le a_n \le ...$  เป็นลำดับลด ถ้า  $a_1 > a_2 > a_3 > ... > a_n > ...$  เป็นลำดับไม่เพิ่ม ถ้า  $a_1 \ge a_2 \ge a_3 \ge ... \ge a_n \ge ...$ 

เรียกลำดับที่เป็นลำดับไม่ลด หรือเป็นลำดับไม่เพิ่มว่า **ลำดับทางเดียว** (monotone) และ เรียก ลำดับที่เป็นลำดับเพิ่ม หรือเป็นลำดับลดว่า **ลำดับทางเดียวโดยแท้ (strictly monotone)** นั่นคือ ลำดับทางเดียวโดยแท้ (strictly monotone) นั่นคือ ลำดับทางเดียวโดยแท้ จะเป็นลำดับทางเดียวด้วย (แต่บทกลับไม่จริง)

ตัวอย่าง 8 
$$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, ..., \frac{n}{n+1}, ...$$
 เป็นลำดับเพิ่ม (1)  $1, \frac{1}{2}, \frac{1}{3}, ..., \frac{1}{n}, ...$  เป็นลำดับลด (2)  $1, 1, 2, 2, 3, 3, ...$  เป็นลำดับไม่ลด (3)  $1, 1, \frac{1}{2}, \frac{1}{2}, \frac{1}{3}, \frac{1}{3}, ...$  เป็นลำดับไม่เพิ่ม (4)

ลำดับทั้งสี่เป็นลำดับทางเดียว และลำดับ (3) ,(4) เป็นลำดับทางเดียว โดยแท้ และลำดับที่ไม่เป็นลำดับทางเดียว เช่น

$$1, \frac{-1}{2}, \frac{1}{3}, \frac{-1}{4}, \dots, (-1)^{n+1}, \frac{1}{n}, \dots$$

### การทดสอบการเป็นลำดับทางเดียว

การตรวจสอบลำดับว่า เป็นลำดับเพิ่ม หรือลำดับลด อาจทำได้ดังนี้  $\mathbf{\underline{\hat{D}}}\mathbf{\overline{K}}\mathbf{\overline{N}}\mathbf{\underline{1}}$  พิจารณา  $a_{n+1}-a_n$ 

ถ้าพบว่า 
$$a_{n+1} - a_n < 0$$
 แล้ว แสดงว่า  $\{a_n\}$  เป็นลำคับลด (5)

และถ้า 
$$a_{n+1} - a_n > 0$$
 แล้ว แสดงว่า  $\{a_n\}$  เป็นลำดับเพิ่ม (6)

<u>วิธีที่ 2</u> ถ้า  $\{a_n\}$  เป็นลำคับที่  $a_n>0$  ทุกๆ n=1,2,3,... แล้ว จะพิจารณาอัตราส่วน  $\frac{a_{n+1}}{a_n}$ 

จ้า 
$$\frac{a_{n+1}}{a_n} < 1$$
 ทุกๆ  $n = 1, 2, 3, \dots$  แล้ว $\{a_n\}$  เป็นลำคับลด (7)

และถ้า 
$$\frac{a_{n+1}}{a_n} > 1$$
 ทุกๆ  $n = 1, 2, 3, \dots$  แล้ว $\left\{a_n\right\}$  เป็นลำดับเพิ่ม (8)

วิธีที่ 3 กรณีมีฟังก์ชันต่อเนื่อง y = f(x) ซึ่งหาอนุพันธ์ได้ทุกจุดใน โดเมนและ  $f(n) = a_n$  ทุกๆ n จะได้ว่า ทุก ๆ  $x \in (1, \infty)$ 

ถ้า 
$$f'(x) < 0$$
 แล้ว  $\{a_n\}$  เป็นลำคับลค (9)

$$f'(x) > 0$$
 แล้ว  $\{a_n\}$  เป็นลำดับเพิ่ม (10)

#### หมายเหตุ

- ถ้าเครื่องหมายน (5), (7) หรือ (9) เป็น ≤ จะเป็นลำดับไม่เพิ่ม
- ถ้าเครื่องหมายใน (6), (8) หรือ (10) เป็น  $\geq$  จะเป็นลำดับไม่ลด

**ตัวอย่าง 9** จงพิจารณาลำดับต่อไปนี้ว่าเป็นลำดับทางเดียวหรือไม่ ถ้าเป็น เป็นลำดับเพิ่ม หรือลำดับลด

$$9.1 \left\{ rac{n}{2n-1} 
ight\}$$
วิธีทำ พิจารณา  $a_{n+1} - a_n = rac{n+1}{2(n+1)-1} - rac{n}{2n-1}$ 
 $= rac{(n+1)(2n-1) - n(2n+1)}{(2n+1)(2n-1)}$ 
 $= rac{-1}{(2n+1)(2n-1)} < 0$ 
คังนั้น  $\left\{ rac{n}{2n-1} 
ight\}$  เป็นลำคับลด

9.2 
$$\left\{ \frac{1.2.3...n}{1.3.5...(2n-1)} \right\}$$

**ตัวอย่าง 10** จงพิจารณาว่าลำคับ  $\left\{ne^{-n}
ight\}$ เป็นลำคับเพิ่มหรือลำคับลด

วิธีทำ จากโจทย์ 
$$a_n = ne^{-n}$$
 ทุกจำนวนนับ  $n$ 
ให้  $f(x) = xe^{-x}$  ทุก  $x \in [1,\infty)$ 

$$f'(x) = -xe^{-x} + e^{-x}$$

$$= \frac{-x+1}{e^x} < 0 \quad \eta_n \quad x \in (1,\infty)$$
ดังนั้น  $\left\{ne^{-n}\right\}$  เป็นลำดับลด

ตัวอย่าง 11 จงแสดงว่า 
$$\frac{e}{2!}$$
 ,  $\frac{e^2}{3!}$  ,  $\frac{e^3}{4!}$  , ... ,  $\frac{e^n}{(n+1)!}$  , ...

เป็นลำคับลค

# 1.5 ลำดับที่มีขอบเขต ( Bounded Sequences )

นิยาม 4 ให้  $\{a_n\}$  เป็นลำดับของจำนวนจริง เรียกจำนวนจริง A ว่าขอบเขตบน (Upper Bound) ของ $\{a_n\}$  ก็ต่อเมื่อ  $A \geq a_n$  สำหรับทุก ๆ n=1,2,3,... และเรียก A ว่าขอบเขตบนค่าน้อยสุด (Least Upper Bound) ของ  $\{a_n\}$  ก็ต่อเมื่อ A เป็นขอบเขตบนของ  $\{a_n\}$  และ A มีค่าน้อยกว่า หรือเท่ากับขอบเขตบนทุกตัวของ  $\{a_n\}$ 

นิยาม 5 ให้  $\{a_n\}$  เป็นลำดับของจำนวนจริง เรียกจำนวนจริง B ว่าขอบเขตล่าง (Lower Bound) ของ $\{a_n\}$  ก็ต่อเมื่อ  $B \leq a_n$  สำหรับทุก ๆ n=1,2,3,... และเรียก B ว่าขอบเขตล่างค่ามากสุด (Greatest Lower Bound) ของ  $\{a_n\}$  ก็ต่อเมื่อ B เป็นขอบเขตล่างของ  $\{a_n\}$  และ B มีค่ามากกว่า หรือเท่ากับขอบเขตล่างทุกตัวของ  $\{a_n\}$ 

นิยาม 6 ถ้าดับ  $\{a_n\}$  เป็นถ้าดับที่มีขอบเขต ก็ต่อเมื่อ  $\{a_n\}$  มีทั้ง ขอบเขตบน A และขอบเขตถ่าง B ซึ่งทำให้  $A \geq a_n \geq B$  ทุก ๆ จำนวนนับ n

### ตัวอย่าง 12

**12.1** ลำคับ  $\{2n\} = 2,4,6,8,...$  มี 2 เป็นขอบเขตล่างค่ามากสุด แต่ ไม่มีขอบเขตบน

ดังนั้นลำดับนี้จึงไม่มีขอบเขต และเป็นลำดับเพิ่ม

- 12.2 ลำคับ  $\{(-1)^n\} = -1,1,-1,1,...$  มี 1 เป็นขอบเขตบนค่าน้อย สุด และมี -1 เป็นขอบเขตล่างค่ามากสุด คังนั้นลำคับนี้มีขอบเขต แต่ลู่ออก
- 12.3 ลำคับ  $\left\{\frac{(-1)^n}{n}\right\} = -1, \frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{5}, ...$  มี -1 เป็นขอบเขตล่างค่ามากสุด และ  $\frac{1}{2}$  เป็นขอบเขตบนค่าน้อยสุด คังนั้น  $\left\{\frac{(-1)^n}{n}\right\}$  เป็นลำคับที่มีขอบเขตแต่ ไม่เป็นลำคับทางเดียว

ตัวอย่าง 13 จงหาขอบเขตของลำดับ 
$$\left\{\frac{n}{2n+1}\right\} = \frac{1}{3}, \frac{2}{5}, \frac{3}{7}, \frac{4}{9}, \dots$$

วิธีทำ กำหนดให้ 
$$a_n = \frac{n}{2n+1}$$
 ,  $a_{n+1} = \frac{n+1}{2n+3}$ 

ดังนั้น 
$$a_{n+1} - a_n = \frac{n+1}{2n+3} - \frac{n}{2n+1} = \frac{1}{(2n+3)(2n+1)} > 0$$

จึงใค้ว่า  $a_{n+1} > a_n$  ทุกๆ n = 1, 2, 3, ...

นั่นคือ 
$$a_1 < a_2 < a_3 < \dots$$
 หรือเขียนเป็น  $\frac{1}{3} < \frac{2}{5} < \frac{3}{7} < \frac{4}{9} < \dots$ 

และใค้ว่า 
$$a_n \ge \frac{1}{3}$$
 ทุก ๆ  $n = 1, 2, 3, ...$ 

ดังนั้น  $\frac{1}{2}$  เป็นขอบเขตล่างของ  $\{a_n\}$ 

นอกจากนี้แล้วยังมีจำนวนจริงอีกมากมายที่เป็นขอบเขตล่าง ของ  $\{a_n\}$  เช่น 0 , -1 ,-3/2 เป็นต้น แต่ทุกจำนวนที่เป็นขอบเขตล่าง ของ  $\{a_n\}$ จะมีค่าไม่เกิน 1/3 คังนั้น 1/3 เป็นขอบเขตล่างที่มีค่ามาก ที่สุด

สำหรับขอบเขตบนของ $\{a_n\}$  พิจารณาจาก

$$a_n = \frac{n}{2n+1} < \frac{n}{2n} = \frac{1}{2}$$
 ฟุกๆ  $n = 1, 2, 3, ...$ 

ดังนั้น 1/2 เป็นขอบเขตบนค่าหนึ่งของ  $\{a_n\}$  และทุกจำนวนที่ มากกว่าหรือเท่ากับ 1/2 เป็นขอบเขตบนทั้งหมด

การที่จะแสดงว่า 1/2 เป็นขอบเขตบนค่าน้อยสุดทำได้ดังนี้

สมมติว่ามีจำนวนจริง y โดยที่ 0 < y < 1/2 และ y เป็นขอบเขตบนของ  $\{a_n\}$  แล้ว จะมีจำนวนเต็มบวก m ตัว หนึ่งซึ่ง  $m > \frac{y}{1-2y}$  หรือ ได้  $y < \frac{m}{2m+1} = a_m$ 

ซึ่งขัดแย้งกับที่ y เป็นขอบเขตบน

ดังนั้น จึงไม่มีจำนวนจริง 0 < y < 1/2 และ y เป็นขอบเขต บนของ  $\{a_n\}$  นั่นคือ 1/2 เป็นขอบเขตบนค่าน้อยสุดของ  $\{a_n\}$ 

**ทฤษฎีบท 5** ถ้า  $\{a_n\}$ เป็นลำดับที่ลู่เข้าแล้ว $\{a_n\}$ เป็นลำดับมีขอบเขต

#### หมายเหตุ

- บทกลับของทฤษฎีบท 5: ถ้า  $\{a_n\}$  ใม่มีขอบเขต จะเป็นลำคับลู่ออก
- -ลำคับทางเคียวที่มีค่าขอบเขต จะเป็นลำคับที่ลู่เข้าเสมอ แต่ลำคับที่มี ขอบเขต ไม่จำเป็นต้องลู่เข้า คังเช่นตัวอย่าง 12.2

### แบบฝึกหัด 1

1. จงแสดงว่าลำดับต่อไปนี้เป็นลำดับลู่เข้าหรือลู่ออก กรณีที่เป็น ลำดับลู่เข้าให้หาลิมิตของลำดับด้วย

1.1 
$$\left\{ \frac{4n-1}{8n+3} \right\}$$

1.2 
$$\left\{5(-1)^{n+1}\right\}$$

1.1 
$$\left\{\frac{4n-1}{8n+3}\right\}$$
 1.2  $\left\{5(-1)^{n+1}\right\}$  1.3  $\left\{\frac{n^3-1}{2n}\right\}$ 

1.4 
$$\left\{\frac{\sqrt{2n+1}}{n}\right\}$$

1.5 
$$\left\{\frac{\ln n}{n}\right\}$$

1.4 
$$\left\{ \frac{\sqrt{2n+1}}{n} \right\}$$
 1.5  $\left\{ \frac{\ln n}{n} \right\}$  1.6  $\left\{ \frac{6-2^{-n}}{3+4^{-n}} \right\}$ 

$$1.7 \quad \left\{ n^{\frac{2}{n+1}} \right\}$$

$$1.7 \quad \left\{n^{\frac{2}{n+1}}\right\} \qquad \qquad 1.8 \quad \left\{\ln\left(\frac{4n+1}{5n-1}\right)\right\} \qquad \qquad 1.9 \quad \left\{\frac{\sin^2 n}{4^n}\right\}$$

$$1.9 \quad \left\{ \frac{\sin^2 n}{4^n} \right\}$$

1.10 
$$\left\{ (-1)^n \frac{5n^3}{n^3 + 1} \right\}$$
 1.11  $\left\{ n \sin \frac{\pi}{n} \right\}$  1.12  $\left\{ \frac{(-1)^{n+1}}{n^2} \right\}$ 

1.11 
$$\left\{n\sin\frac{\pi}{n}\right\}$$

1.12 
$$\left\{ \frac{(-1)^{n+1}}{n^2} \right\}$$

$$1.13 \left\{ \frac{e^n}{4^n} \right\}$$

$$1.14 \left\{ \sqrt{n^2 + 3n} - n \right\}$$

$$1.14 \left\{ \sqrt{n^2 + 3n} - n \right\} \qquad 1.15 \left\{ \left( \frac{n+3}{n+1} \right)^n \right\}$$

2. จงแสดงว่าลำดับต่อไปนี้เป็นลำดับเพิ่มหรือลำดับลด หรือไม่ เป็นลำดับทางเดียว

$$2.1 \quad \left\{ \frac{n}{2n+1} \right\}$$

2.2 
$$\{n-2^n\}$$

$$2.3 \quad \left\{\frac{n!}{3^n}\right\}$$

### คำตอบแบบฝึกหัด 1

$$1.1$$
 ลู่เข้า  $\frac{1}{2}$ 

1.2 ลู่ออก

1.3 สู่ออก

1.5 ลู่เข้า 0

1.6 ลู่เข้า 2

$$1.8$$
 ลู่เข้า  $\ln \frac{4}{5}$ 

1.9 ลู่เข้า 0

$$1.11$$
 ลู่เข้า  $\pi$ 

1.12 ลู่เข้า 0

$$1.14 \, \hat{a}_{1} \, \hat{b}_{1} \, \frac{3}{2}$$

1.15 ลู่เข้า  $e^2$ 

- 2. 2.1 ลำคับเพิ่ม
  - 2.2 ถ้าคับถค
  - 2.3 ไม่เป็นลำดับทางเดียว