TTT .	•	1	•	•	•
What	15	cla	1111	ed.	15.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

1

2

3

1

2

3

2

1

2

1.	A method of displaying states of a peripheral data storage system				
comprising a data storage device, a data storage system controller, a user-actuated					
signaling subsystem, a user display subsystem adapted to display the states, and a					
peripheral data storage controller host interface adapted for communication with a host					
system, the method comprising:					
	determining a state of the peripheral data storage system;				

displaying a first display state via the user display subsystem if the peripheral data storage system is in an idle state;

displaying a second display state via the user display subsystem if the peripheral data storage system is in a state corresponding to receiving a signal from the user-actuated signaling subsystem;

displaying a third display state via the user display subsystem if the peripheral data storage system is in a dynamically active state; and displaying a fourth display state via the user display subsystem if the

peripheral data storage system is in an off state.

- The method of claim 1, wherein the user display subsystem comprises an 2. electro-mechanical switch for at least one of a turning power on and off to the peripheral data storage system.
- 3. The method of claim 2, wherein the user display subsystem comprises a user-visible display device adapted to display the first, second and third display states in the form of a first, a second and a third displaying of emitted light.
- 4. The method of claim 3, wherein the user-visible display device comprises an alpha-numeric display adapted to display the first, second, and third display states in the form of a first, a second and a third displaying of alpha-numeric characters.
- The method of claim 3, wherein the first displaying of emitted light 5. comprises a continuous displaying of emitted light.
- 6. The method of claim 3, wherein the second displaying of emitted light comprises a first flashing pattern.
- 1 7. The method of claim 3, wherein the third displaying of emitted light 2 comprises a second flashing pattern.

1	8.	The method of claim 7, wherein the second flashing pattern comprises an				
2	aperiodic flash	ning pattern.				
1	9.	The method of claim 3, wherein the fourth display state comprises an				
2	absence of em	itted light.				
1	10.	The method of claim 1, wherein the received signal corresponds to a first				
2	user-inputted	request for at least one of a mounting and dismounting of the peripheral data				
3	storage system	1 .				
1	11.	The method of claim 1, wherein the received signal corresponds to a second				
2	user-inputted	request for performing a task corresponding to a host-scheduled backup				
3	operation for a	a scheduled backing up of data to the peripheral data storage system.				
1	12.	The method of claim 1, wherein the received signal corresponds to a third				
2	user-inputted	request for performing an on-demand backing up of pre-selected data to the				
3	peripheral data storage system.					
1	13.	The method of claim 1, wherein the off state corresponds to an off state of				
2	the data storage device.					
1	14.	The method of claim 1, wherein displaying a second display state further comprises:				
2		communicating the received signal to the host system via the host interface;				
3		receiving an acknowledgement signal from the host system in response to				
4	the cor	nmunicating;				
5		switching the user display subsystem from the first display state to the				
6	second display state in response to the received acknowledgement signal;					
7		receiving a first signal from the host system;				
8		switching the user display subsystem from the second display state to the				
9	third d	isplay state in response to the received first signal;				
0		receiving a second signal from the host system; and				
1		switching the user display subsystem from the third display state to at least				
2	one of	the first display state and the fourth display state in response to the received				
3	second	signal.				
1	15	The method of claim 10, wherein the user-actuated signaling subsystem				

comprises a first electro-mechanical switch adapted to receive the first user-inputted

2

PATENT ATTY. DOCKET K35A1500

request and wherein the user-actuated signaling subsystem is adapted to generate the received signal based on the first user-inputted request.

- 16. The method of claim 11, wherein the user-actuated signaling subsystem comprises a second electro-mechanical switch adapted to receive the second user-inputted request and wherein the user-actuated signaling subsystem is adapted to generate the received signal based on the second user-inputted request.
- 17. The method of claim 12, wherein the user-actuated signaling subsystem comprises a third electro-mechanical switch adapted to receive the third user-inputted request and wherein the user-actuated signaling subsystem is adapted to generate the received signal based on the third user-inputted request.
- 18. The method of claim 1, wherein the peripheral data storage controller host interface is adapted for communication with the host system via at least one of a universal serial bus (USB) cable and a FirewireTM cable.
- 1 19. The method of claim 1, wherein the peripheral data storage system 2 comprises a disk drive system and wherein the data storage device is a disk drive.