

64K × 8 HIGH SPEED CMOS STATIC RAM

GENERAL DESCRIPTION

The W24512A is a high speed, low power CMOS static RAM organized as 65536×8 bits that operates on a single 5-volt power supply. This device is manufactured using Winbond's high performance CMOS technology.

FEATURES

• High speed access time: 25 nS (max.)

• Low power consumption:

- Active: 800 mW (max.)

Single +5V power supply

• Fully static operation

- · All inputs and outputs directly TTL compatible
- Three-state outputs
- Available packages: 32-pin 300 mil SOJ, 450 mil SOP, and standard type one TSOP (8 mm × 20 mm)

PIN CONFIGURATIONS

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION
A0-A15	Address Inputs
I/O1-I/O8	Data Inputs/Outputs
CS1, CS2	Chip Select Inputs
WE	Write Enable Input
ŌĒ	Output Enable Input
Vdd	Power Supply
Vss	Ground
NC	No Connection

TRUTH TABLE

CS1	CS2	ŌĒ	WE	MODE	I/O1–I/O8	VDD CURRENT		
Н	Χ	Χ	Χ	Not Selected High Z		ISB, ISB1		
Х	L	Χ	X	Not Selected High Z		Not Selected High Z ISB, ISB1		ISB, ISB1
L	Н	Η	Н	Output Disable	High Z	IDD		
L	Н	L	Н	Read	Data Out	IDD		
L	Н	Х	L	Write	Data In	IDD		

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Supply Voltage to Vss Potential	-0.5 to +7.0	V
Input/Output to Vss Potential	-0.5 to VDD +0.5	V
Allowable Power Dissipation	1.0	W
Storage Temperature	-65 to +150	°C
Operating Temperature	0 to +70	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Operating Characteristics

(VDD = 5V $\pm 10\%$, Vss = 0V, Ta = 0 to 70° C)

PARAMETER	SYM.	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input Low Voltage	VIL	-	-0.5	-	+0.8	V
Input High Voltage	ViH	-	+2.2	-	VDD +0.5	V
Input Leakage Current	ILI	VIN = VSS to VDD	-10	-	+10	μΑ
Output Leakage	ILO	VI/O = VSS to VDD	-10	-	+10	μΑ
Current		$\overline{\text{CS1}} = \text{VIH (min.) or}$				
		CS2 = VIL (max.) or				
		$\overline{OE} = VIH (min.) or$				
		WE = VIL (max.)				
Output Low Voltage	Vol	IOL = +8.0 mA	-	-	0.4	V
Output High Voltage	Voн	Iон = -4.0 mA	2.4	-	-	V
Operating Power Supply Current	IDD	CS1 = VIL (max.), CS2 = VIH (min.) I/O = 0mA, Cycle = min Duty = 100%	-	-	160	mA
Standby Power ISB Supply Current		CS1 = VIH (min.) or CS2 = VIL (max.) Cycle = min, Duty = 100%	-	-	30	mA
	ISB1	$\overline{\text{CS1}} \ge \text{VDD -0.2V} \text{ or } \\ \text{CS2} \le 0.2\text{V}$	-	-	10	mA

Note: Typical characteristics are at VDD = 5V, TA = 25° C.

CAPACITANCE

 $(VDD = 5V, TA = 25^{\circ} C, f = 1 MHz)$

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	8	pF
Input/Output Capacitance	CI/O	Vout = 0V	10	pF

Note: These parameters are sampled but not 100% tested.

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0V to 3V
Input Rise and Fall Times	5 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 30 pF, IOH/IOL = -4 mA/8 mA

AC Test Loads and Waveform

AC Characteristics,continued (VDD = 5V $\pm 10\%$, Vss = 0V, Ta = 0 to 70° C)

Read Cycle

PARAMETER		SYM.	W24512A-25		UNIT
			MIN.	MAX.	
Read Cycle Time	Trc	25	-	nS	
Address Access Time		Таа	-	25	nS
Chip Select Access Time	CS1	TACS1	-	25	nS
	CS2	TACS2	-	25	nS
Output Enable to Output Valid		TAOE	-	12	nS
Chip Selection to Output in Low Z	CS1	TCLZ1*	3	-	nS
	CS2	TCLZ2*	3	-	nS
Output Enable to Output in Low Z		Tolz*	0	-	nS
Chip Deselection to Output in High Z	CS1	TcHZ1*	-	12	nS
	CS2	TCHZ2*	-	12	nS
Output Disable to Output in High Z		Тонz*	-	12	nS
Output Hold from Address Change		Тон	3	-	nS

^{*} These parameters are sampled but not 100% tested.

Write Cycle

PARAMETER		SYM.	W24512A-25		UNIT
			MIN.	MAX.	
Write Cycle Time	Twc	25	-	nS	
Chip Selection to End of Write	CS1	Tcw1	18	-	nS
	CS2	Tcw2	18	-	nS
Address Valid to End of Write		Taw	18	-	nS
Address Setup Time	Tas	0	-	nS	
Write Pulse Width		TWP	15	-	nS
Write Recovery Time $\overline{\text{CS1}}$, $\overline{\text{WE}}$		Twr1	0	-	nS
	CS2	TWR2	0	-	nS
Data Valid to End of Write		Tow	12	-	nS
Data Hold from End of Write	TDH	0	-	nS	
Write to Output in High Z	Twhz*	-	12	nS	
Output Disable to Output in High Z		Тонz*	-	12	nS
Output Active from End of Write		Tow	0	-	nS

^{*} These parameters are sampled but not 100% tested.

TIMING WAVEFORMS

Read Cycle 1

(Address Controlled)

Read Cycle 2

(Chip Select Controlled)

Read Cycle 3

(Output Enable Controlled)

Timing Waveforms, continued

Write Cycle 1

(OE Clock)

Write Cycle 2 (OE = V_IL Fixed)

Notes:

- 1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.
- 2. The data output from Dout are the same as the data written to DIN during the write cycle.
- 3. Dout provides the read data for the next address.
- 4. Transition is measured ± 500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (mA)	PACKAGE
W24512AS-25	25	160	10	450 mil SOP
W24512AT-25	25	160	10	Standard type one TSOP
W24512AJ-25	25	160	10	300 mil SOJ

Notes:

- 1. Winbond reserves the right to make changes to its products without prior notice.
- 2. Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

PACKAGE DIMENSIONS

32-pin SO Wide Body

32-pin SOJ

Package Dimensions, continued

32-pin Standard Type One TSOP

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647

http://www.winbond.com.tw/ Voice & Fax-on-demand: 886-2-7197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505 FAX: 886-2-7197502

Note: All data and specifications are subject to change without notice.

Rm. 803, World Trade Square, Tower II, Winbond Memory Lab. 123 Hoi Bun Rd., Kwun Tong, Kowloon, Hong Kong

TEL: 852-27513100 FAX: 852-27552064

Winbond Electronics (H.K.) Ltd. Winbond Electronics North America Corp.

Winbond Microelectronics Corp.

Winbond Systems Lab.

2727 N. First Street, San Jose,

CA 95134, U.S.A. TEL: 1-408-9436666 FAX: 1-408-5441798