Where does the error come from?

Review

A more complex model does not always lead to better performance on *testing data*.

f^: 表示实际的函数,我们想无限逼近的那个函数 f*:每一次训练所得到的最佳函数 f-:进行多次训练,将所得到的函数取平均得到的函数

Estimator

Only Niantic knows \hat{f}

From training data, we find f^*

 f^* is an estimator of \hat{f}

量,估计函数/或者说可以通过

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of mean μ
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^n \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

unbiased

Bias and Variance of Estimator

- Estimate the mean of a variable x
 - assume the mean of x is μ
 - assume the variance of x is σ^2
- Estimator of variance σ^2
 - Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator

$$E[s] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Parallel Universes

• In all the universes, we are collecting (catching) 10 Pokémons as training data to find f^{\ast}

对于同样一个model ,用不同的数据训练会得到不同的f* ,也就是不一样的函数。

Parallel Universes

• In different universes, we use the same model, but obtain different f^{\ast}

Variance

Simpler model is less influenced by the sampled data

取极端一点,当只有一个变量b时,函数的输出 永远是一个常量,与任何的样本都无关。

Consider the extreme case f(x) = 5

Bias

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Black curve: the true function \hat{f}

Bias v.s. Variance

What to do with large bias?

- Diagnosis:
 - If your model cannot even fit the training examples, then you have large bias Underfitting
 - If you can fit the training data, but large error on testing data, then you probably have large variance

 Overfitting
- For bias, redesign your model:
 - Add more features as input
 - A more complex model

What to do with large variance?

Regularization I

May increase bias

Model Selection

- There is usually a trade-off between bias and variance.
- Select a model that balances two kinds of error to minimize total error
- What you should NOT do:

Homework

public

private

Training Set

Testing Set

Testing Set

Model 1 \longrightarrow Err = 0.9

Model 2 \longrightarrow Err = 0.7

Model 3 \longrightarrow Err = 0.5

Err > 0.5

I beat baseline!

No, you don't

What will happen?

http://www.chioka.in/howto-select-your-final-modelsin-a-kaggle-competitio/

Cross Validation

N-fold Cross Validation

Reference

• Bishop: Chapter 3.2

个人对于这个PPT的总结:

1 variance(方差)表示的是f*与f^的离散程度。越复杂的函数,f*可选区域更大,它出现的点更分散,也就是离散程度更大,方差也就更大。越简单的函数,f*的可选区域更小,它出现的点更集中,也就是方差更小。

当vari ance大时,这说明函数过于复杂,也就是说出现过拟合(oberfitting):增加数据量;正则化(正则化会使函数变平滑,可能会增大bias)

2 bi as (偏差)表示的是多次实验的f*的中心与f^的距离。bi as的大小取决于函数的复杂程度(函数的复杂度来自于特征的数量与特征的次数),函数的复杂程度越低,f*可选的范围就越小,很可能就没有包括f^,所以bi as小。

当bias大时,这说明函数欠拟合(underfitting); 重新设计函数:增加特征数,增加特征的次数。

简单的函数,曲线平滑,其bi as较大, vari ance较小;复杂的函数相反。