FILTERS IN TOPOLOGY

1. Introduction

In these short notes we study filters of subsets with their applications to topological spaces. Filters were introduced in [Cartan, 1937] as an effective tool in studying general topological spaces. Here we recapitulate Cartan's approach. Our main goal is to give a concise proof of Tychonoff's theorem on compact spaces.

2. FILTERS

Definition 2.1. Let X be a set and let \mathcal{F} be a nonempty family of subsets of X. Assume that the following assertions hold.

- (1) \mathcal{F} is closed under finite intersections.
- **(2)** If F_1 and F_2 are subsets of X such that $F_1 \in \mathcal{F}$ and $F_1 \subseteq F_2$, then $F_2 \in \mathcal{F}$.

Then \mathcal{F} is a filter of subsets of X.

We note the following fact.

Fact 2.2. Let X be a set and let $\{\mathcal{F}_i\}_{i\in I}$ be a family of filters of subsets of X. Then

$$\bigcap_{i \in I} \mathcal{F}_i$$

is a filter of subsets of X.

Proof. Left for the reader as an exercise.

Definition 2.3. Let X be a set and let \mathcal{F} be a filter of subsets of X. If $\emptyset \notin \mathcal{F}$, then \mathcal{F} is a proper filter. Filters are functorial as it is displayed in the following notion.

Definition 2.4. Let \mathcal{F} be a filter of subsets of a set X and let $f: X \to Y$ be a map. Then a filter

$$f(\mathcal{F}) = \{G \subseteq Y \mid \text{ there exists } F \in \mathcal{F} \text{ such that } f(F) \subseteq G\}$$

of subsets of Y is the image of F under f.

Let us note the following results.

Fact 2.5. Let \mathcal{F} be a filter of subsets of a set X and let $f: X \to Y$ be a map. If \mathcal{F} is a proper filter, then $f(\mathcal{F})$ is a proper filter.

Proof. Left for the reader as an exercise.

Now we introduce the notion of ultrafilter and prove by invoking axiom of choice that they exist.

Definition 2.6. Let \mathcal{F} be a proper filter of subsets of a set X such that for every proper filter $\tilde{\mathcal{F}}$ if $\mathcal{F} \subseteq \tilde{\mathcal{F}}$, then $\mathcal{F} = \tilde{\mathcal{F}}$. Then \mathcal{F} is an ultrafilter of subsets of X.

Next we describe properties of ultrafilters and prove their existence.

Proposition 2.7. Let X be a set and let \mathcal{F} be a proper filter of subsets of X. The following assertions are equivalent.

1

- (i) \mathcal{F} is an ultrafilter of subsets of X.
- **(ii)** For each subset F of X either $F \in \mathcal{F}$ or $X \setminus F \in \mathcal{F}$.

Proof. Assume that \mathcal{F} is an ultrafilter and let F be a subset of X. Suppose that $F \notin \mathcal{F}$. Then the smallest filter (Fact 2.2) containing $\{F\} \cup \mathcal{F}$ is not a proper filter. This implies that there exists $F' \in \mathcal{F}$ such that $F \cap F' = \emptyset$. Since $F' \subseteq X \setminus F$ and \mathcal{F} is a filter, we derive that $X \setminus F \in \mathcal{F}$. This proves that $(i) \Rightarrow (ii)$.

Suppose that (ii) holds. Consider a filter $\tilde{\mathcal{F}}$ such that $\mathcal{F} \subsetneq \tilde{\mathcal{F}}$. If $F \in \tilde{\mathcal{F}} \setminus \mathcal{F}$, then $X \setminus F \in \mathcal{F}$ and hence $\emptyset = F \cap (X \setminus F) \in \tilde{\mathcal{F}}$. This implies that $\tilde{\mathcal{F}}$ is not a proper filter. Thus \mathcal{F} is an ultrafilter of subsets of X. This completes the proof of (ii) \Rightarrow (i).

Proposition 2.8. Let X be a set and let \mathcal{F} be a proper filter of subsets of X. Then there exists an ultrafilter $\tilde{\mathcal{F}}$ of subsets of X such that $\mathcal{F} \subseteq \tilde{\mathcal{F}}$.

Proof. Consider the family

$$F = \{ \mathcal{G} \mid \mathcal{G} \text{ is a proper filter of subsets of } X \text{ and } \mathcal{F} \subseteq \mathcal{G} \}$$

Note that F is nonempty because $\mathcal{F} \in F$. The inclusion introduces partial order on F and if $L \subseteq F$ is a linearly ordered subset, then

is a proper filter. Hence each chain in (F,\subseteq) admits an upper bound. Zorn's lemma implies that (F,\subseteq) has a maximal element $\tilde{\mathcal{F}}$. Clearly $\tilde{\mathcal{F}}$ is an ultrafilter of subsets of X which contains \mathcal{F} . \square

3. FILTERS AND CONVERGENCE IN TOPOLOGICAL SPACES

Definition 3.1. Let (X, τ) be a topological space and let \mathcal{F} be a proper filter of subsets of X. Consider a point x in X. Suppose that for every open neighborhood U of x we have $U \in \mathcal{F}$. Then filter \mathcal{F} converges to x with respect to τ .

Proposition 3.2. Let (X, τ) , (Y, θ) be topological spaces and let $f: X \to Y$ be a map. Then the following assertions are equivalent.

- (i) f is a continuous map $(X, \tau) \rightarrow (Y, \theta)$.
- (ii) If \mathcal{F} is a proper filter of subsets of X convergent to some point x with respect to τ , then $f(\mathcal{F})$ converges to f(x) with respect to θ .

Proof. Suppose that f is a continuous map $(X,\tau) \to (Y,\theta)$. Fix a proper filter \mathcal{F} of subsets of X convergent to x with respect to τ . Fix an open neighborhood Y of f(x) with respect to θ . By continuity of f we have $f^{-1}(V) \in \tau$. Thus $f^{-1}(V)$ is an open neighborhood of x with respect to τ . Hence $f^{-1}(V) \in \mathcal{F}$ and we infer that $V \in f(\mathcal{F})$. Since V is arbitrary open neighborhood of f(x) with respect to θ , we derive that $f(\mathcal{F})$ converges to f(x) with respect to θ . This proves the implication (i) \Rightarrow (ii).

Suppose now that (ii) holds. Fix a point x in X and consider an open neighborhood V of f(x) with respect to θ . Define

$$\mathcal{F} = \{ F \subseteq X \mid U \setminus f^{-1}(V) \subseteq F \text{ for some open neighborhood } U \text{ of } x \text{ with respect to } \tau \}$$

Then \mathcal{F} is a filter of subsets of X. Note that

$$Y \setminus V = f(X \setminus f^{-1}(V)) \in f(\mathcal{F})$$

This implies that $V \notin f(\mathcal{F})$. If \mathcal{F} is a proper filter, then it converges to x with respect τ and thus $f(\mathcal{F})$ converges to f(x) with respect to θ . Since $V \notin f(\mathcal{F})$, the filter $f(\mathcal{F})$ cannot converge to f(x) with respect to θ . Therefore, \mathcal{F} is not a proper filter. This means that there exists an open neighborhood U of x with respect to τ such that $U \subseteq f^{-1}(V)$. This proves that f is continuous at x as a map $(X, \tau) \to (Y, \theta)$. Since $x \in X$ is arbitrary, we derive the implication (ii) \Rightarrow (i).

Theorem 3.3. Let (X, τ) be a topological space. Then the following assertions are equivalent.

- (i) Each ultrafilter of subsets of X is convergent to some point of X with respect to τ .
- (ii) (X, τ) is a quasi-compact topological space.

Proof. Suppose that (i) holds. Pick a family $\{F_i\}_{i\in I}$ of closed and nonempty subsets of (X,τ) which is closed under finite intersections. Then the family

$$\{F \subseteq X \mid F_i \subseteq F \text{ for some } i \in I\}$$

is a proper filter of subsets of X. By Proposition 2.8 there exists an ultrafilter \mathcal{F} of subsets of X which contains the filter defined above. According to (i) ultrafilter \mathcal{F} is convergent to some point x in X with respect to τ . Then for every open neighborhood U of x with respect to τ we have $U \in \mathcal{F}$. In particular, $U \cap F_i \neq \emptyset$ for every $i \in I$ and for every open neighborhood U of x with respect to τ . Since F_i is closed for each $i \in I$, this implies that $x \in F_i$ for every $i \in I$. Thus

$$x\in \bigcap_{i\in I} F_i$$

and this concludes that (X, τ) is quasi-compact.

Assume that (X, τ) is quasi-compact and suppose that \mathcal{F} is an ultrafilter of subsets of X. Suppose that \mathcal{F} is not convergent. Then for every $x \in X$ there exists open neighborhood U_x of x with respect to τ such that $U_x \notin \mathcal{F}$. Since (X, τ) is quasi-compact, we deduce that there exist finite subset $\{x_1, ..., x_n\} \in X$ such that

$$X = \bigcup_{i=1}^n U_{x_i}$$

According to Proposition 2.7 we derive that $X \setminus U_x \in \mathcal{F}$ for every $x \in X$. Hence

$$\bigcap_{i=1}^n \left(X \setminus U_{x_i}\right) \in \mathcal{F}$$

On the other hand we have

$$\bigcap_{i=1}^n \left(X \smallsetminus U_{x_i}\right) = X \smallsetminus \bigcup_{i=1}^n U_{x_i} = \varnothing$$

This is contradiction. Thus the implication (ii) \Rightarrow (i) holds.

4. Tychonoff's theorem

Theorem 4.1. Let $\{(X_i, \tau_i)\}_{i \in I}$ be a family of nonempty topological spaces. Then

$$\prod_{i \in I} (X_i, \tau_i)$$

is quasi-compact if and only if (X_i, τ_i) is quasi-compact for each $i \in I$.

REFERENCES

[Cartan, 1937] Cartan, H. (1937). Théorie des filtres. CR Acad. Sci. Paris, 205:595-598.