

6403089

FIGURE 1

FIGURE 2

	10	20	30	40	50	
MOUSE-X1.DNA	1 ATGAGGCTTC	CTGGTTGGTT	GTGGCTGAGT	TCTGCCGTCC	TCGCTGCCTG	50
HUMAN-X1.DNA	1 ATGAAGCTGG	CTAACTGGTA	CTGGCTGAGC	TCAGCTGTTC	TTGCCACTTA	50
	60	70	80	90	100	
MOUSE-X1.DNA	51 CCGAGC---G	GTGGAGGGAGC	ACAACCTGAC	TGAGGGGCTG	GAGGATGCCA	100
HUMAN-X1.DNA	51 CGGTTTTTG	GTTGTGGCAA	ACAATGAAAC	AGAGGAAATT	AAAGATGAAA	100
	110	120	130	140	150	
MOUSE-X1.DNA	101 GCGCCCAGGC	TGCCTGCC	GCGAGGCTGG	AGGGCAGCGG	GAGGTGCGAG	150
HUMAN-X1.DNA	101 GAGCAAAGGA	TGTCTGCCA	GTGAGACTAG	AAAGCAGAGG	GAAATGCGAA	150
	160	170	180	190	200	
MOUSE-X1.DNA	151 GGGA---GCC	AGTGCCTCTT	CCAGCTCACC	CTGCCACGC	TGACCATCCA	200
HUMAN-X1.DNA	151 GAGGCAGGGG	AGTGCCCCTA	CCAGGTAAGC	CTGCCCTCTT	TGACTATTCA	200
	210	220	230	240	250	
MOUSE-X1.DNA	201 GCTCCCGCGG	CAGCTTGCA	GCATGGAGGA	GGTGCTCAA	GAAGTGCAG	250
HUMAN-X1.DNA	201 GCTCCCGAAG	CAATTCAAGCA	GGATCGAGGA	GGTGTTCAAA	GAAGTCAAA	250
	260	270	280	290	300	
MOUSE-X1.DNA	251 CCCTCAAGGA	AGCAGTGGAC	AGTCTGAAGA	AATCTGCCA	GGACTGTAAG	300
HUMAN-X1.DNA	251 ACCTCAAGGA	AATCGTAAAT	AGTCTAAAGA	AATCTTGCCA	AGACTGCAAG	300
	310	320	330	340	350	
MOUSE-X1.DNA	301 TTGCAGGCTG	ACGACCATCG	AGATCCCAGG	GGGAATGGAG	GG-----	350
HUMAN-X1.DNA	301 CTGCAGGCTG	ATGACAACGG	AGACCCAGGC	AGAAACGGAC	TGTTGTTACC	350
	360	370	380	390	400	
MOUSE-X1.DNA	351 -AAT---GGA	GC---AGAGA	CAGCCGAGGA	CAGTAGAGTC	CAGGAACCTGG	400
HUMAN-X1.DNA	351 CAGTACAGGA	GCCCCGGGAG	AGGTTGGTGA	TAACAGAGTT	AGAGAATTAG	400
	410	420	430	440	450	
MOUSE-X1.DNA	401 AGAGTCAGGT	GAACAAGCTG	TCCTCAGAGC	TGAAAGAATGC	AAAGGACCAAG	450
HUMAN-X1.DNA	401 AGAGTGAGGT	TAACAAGCTG	TCCTCTGAGC	TAAAGAATGC	CAAAGAGGAG	450
	460	470	480	490	500	
MOUSE-X1.DNA	451 ATCCAGGGC	TGCAGGGCG	CCTGGAGAGC	CTCCATCTGG	TAAAATGAA	500
HUMAN-X1.DNA	451 ATCAAATGTAC	TTCATGGTCG	CCTGGAGAAAG	CTGAATCTTG	TAAAATGAA	500
	510	520	530	540	550	
MOUSE-X1.DNA	501 CAACATTGAG	AACTACGTGG	ACAACAAAGT	GGCAAATCTA	ACCGTTGTGG	550
HUMAN-X1.DNA	501 CAACATAGAA	AATTATGTG	ACAGCAAAGT	GGCAAATCTA	ACATTTGTG	550
	560	570	580	590	600	
MOUSE-X1.DNA	551 TCAACAGTTT	GGATGGCAAG	TGTTCCAAGT	GTCCCAGCCA	AGAACACATG	600
HUMAN-X1.DNA	551 TCAATAGTTT	GGATGGAAA	TGTTCAAAGT	GTCCCAGCCA	AGAACAAATA	600
	610	620	630	640	650	
MOUSE-X1.DNA	601 CAGTCACAGC	CGG.....	650
HUMAN-X1.DNA	601 CAGTCACGTC	CAG.....	650

FIGURE 3

	10	20	30	40	50	
MOUSE-X2.DNA	1 TTCAACATCT	AATATACAAA	GATTGTTCCG	ACCACTACGT	GCTAGGAAGG	50
HUMAN-X2.DNA	1 TTCAACATCT	AATATATAAA	GATTGCTCTG	ACTACTACGC	AATAGGCAAA	50
	60	70	80	90	100	
MOUSE-X2.DNA	51 AGAAGCAGTG	GGGCCTACAG	AGTTACCCCT	GATCACAGAA	ACAGCAGCTT	100
HUMAN-X2.DNA	51 AGAAGCAGTG	AGACCTACAG	AGTTACACCT	GATCCCAGAA	ATAGTAGCTT	100
	110	120	130	140	150	
MOUSE-X2.DNA	101 TGAGGTCTAC	TGTGACATGG	AGACCATGGG	TGGAGGCTGG	ACGGTGCTGC	150
HUMAN-X2.DNA	101 TGAAGTTTAC	TGTGACATGG	AGACCATGGG	GGGAGGCTGG	ACAGTGCTGC	150
	160	170	180	190	200	
MOUSE-X2.DNA	151 AGGCTCGCCT	TGATGGCAGC	ACCAACTTCA	CCAGAGAGTG	GAAAGACTAC	200
HUMAN-X2.DNA	151 AGGCACGTCT	CGATGGGAGC	ACCAACTTCA	CCAGAACATG	GCAAGACTAC	200
	210	220	230	240	250	
MOUSE-X2.DNA	201 AAAGCCGGCT	TTGGAAACCT	TGAACGAGAA	TTTTGGTTGG	GCAACGATAA	250
HUMAN-X2.DNA	201 AAAGCAGGCT	TTGGAAACCT	CAGAAGGGAA	TTTTGGCTGG	GGAACGATAA	250
	260	270	280	290	300	
MOUSE-X2.DNA	251 AATTCACTTT	CTGACCAAGA	GTAAGGAAAT	GATTTTGAGA	ATAGATCTTG	300
HUMAN-X2.DNA	251 AATTCACTTT	CTGACCAAGA	GTAAGGAAAT	GATTCTGAGA	ATAGATCTTG	300
	310	320	330	340	350	
MOUSE-X2.DNA	301 AAGACTTTAA	TGGTCTCACA	CTTTATGCCT	TGTATGATCA	GTTTTATGTG	350
HUMAN-X2.DNA	301 AAGACTTTAA	TGGTGTGAA	CTATATGCCT	TGTATGATCA	GTTTTATGTG	350
	360	370	380	390	400	
MOUSE-X2.DNA	351 GCTAATGAAT	TTCTCAAATA	CCGATTACAC	ATCGGTAACT	ACAATGGCAC	400
HUMAN-X2.DNA	351 GCTAATGAGT	TTCTCAAATA	TCGTTTACAC	GTGGGTAACT	ATAATGGCAC	400
	410	420	430	440	450	
MOUSE-X2.DNA	401 GGCAGGGGAT	GCCTTGCCTT	TCAGTCGACA	CTACAACCAT	GACCTGAGGT	450
HUMAN-X2.DNA	401 AGCTGGAGAT	GCATTACGTT	TCAACAAACA	TTACAACACCAC	GATCTGAAGT	450
	460	470	480	490	500	
MOUSE-X2.DNA	451 TTTTCACAAAC	CCCAGACAGA	GACAACGATC	GGTACCCCTC	TGGGAACCTGT	500
HUMAN-X2.DNA	451 TTTTCACCAAC	TCCAGATAAA	GACAATGATC	GATATCCTTC	TGGGAACCTGT	500
	510	520	530	540	550	
MOUSE-X2.DNA	501 GGGCTCTATT	ACAGCTCAGG	CTGGTGGTTT	GATTCATGTC	TCTCTGCCAA	550
HUMAN-X2.DNA	501 GGGCTGTACT	ACAGTCAGG	CTGGTGGTTT	GATGCATGTC	TTTCTGCAAA	550
	560	570	580	590	600	
MOUSE-X2.DNA	551 CTTAAATGGC	AAATATTACC	ACCAGAAATA	CAAAGGTGTC	CGTAATGGGA	600
HUMAN-X2.DNA	551 CTTAAATGGC	AAATATTATC	ACCAAAATA	CAGAGGTGTC	CGTAATGGGA	600
	610	620	630	640	650	
MOUSE-X2.DNA	601 TTTTCTGGGG	CACCTGGCCT	GGTATAAAC	AGGCACAGCC	AGGTGGCTAC	650
HUMAN-X2.DNA	601 TTTTCTGGGG	TACCTGGCCT	GGTGTAAAGTG	AGGCACACCC	TGGTGGCTAC	650
	660	670	680	690	700	
MOUSE-X2.DNA	651 AAGTCCTCCT	TCAAACAGGC	CAAGATGATG	ATTAGGCCCA	AGAATTCAA	700
HUMAN-X2.DNA	651 AAGTCCTCCT	TCAAAGAGGC	TAAGATGATG	ATCAGACCCA	AGCACTTTAA	700
	710	720	730	740	750	
MOUSE-X2.DNA	701 GCCATAA...	750
HUMAN-X2.DNA	701 GCCATAA...	750

10	20	30	40	50	60
ATCACTCTGT	TCATTCCTCC	AGGTATTCTGT	TATCTAATAG	GGCAATTAAAT	TCCTTCAGCA
70	80	90	100	110	120
CTTTAGAATA	TGCCTTGT	TTT	CATATTTTTC	ATAGCTAAAAA	AATGCCTTGT
130	140	150	160	170	180
TCATAGCTAA	AAAATGATGT	CTGACGGCTA	GGTTCTTATG	CTACACAGCA	TTTGAAATAA
190	200	210	220	230	240
AGCTGAAAAAA	CAATGCATTT	TAAAGGAGTC	CTTTGTGT	ATGCTGTTAT	CCAATGAACA
250	260	270	280	290	300
CTTGCAAGCA	ATTAGCAATA	TTGAGAATT	TACATTA	AGAT	TTAATTCT
310	320	330	340	350	360
ATTGAAAC	TTTCTATTGC	TTGTATTACT	TGCTGT	TTT	TTGCTGG
370	380	390	400	410	420
GTGTGGTAGC	TCACGCC	TGT	TTTGGAAATG	TCAAGGCAGG	CAGATCACTT
430	440	450	460	470	480
GAGGTCAGGA	TTTGAGACC	AGCCTGGCCA	AACATGTGAA	ACGCTGTNTN	TATTA
490	500	510	520	530	540
ACAAAAAATTA	GCCGGGCATG	GTGGNACATG	CCTGTAATCC	TAGNTACTTG	GGAGGCTGAG
550	560	570	580	590	600
GCAGGAGAAT	CGCTTGAAACC	TGAGAGGAAG	AGGTTGCAGT	GAGCCAAGAA	TGAGCCACTG
610	620	630	640	650	660
CACTCCAGCA	TGGGTGACAG	AGAAA	ACTCT	GTCTCAA	ACAA
670	680	690	700	710	720
CAGTAGGNTG	GATTCTACAC	AAAGTAATCT	GTATTTGGC	CATGATTAA	GCACATCTGA
730	740	750	760	770	780
AGGTATATCA	CTCTTTTCAG	GCTATAATT	TTTGGGT	AAAT	CTG
790	800	810	820	830	840
AATCTATATC	ATTTACTTTG	CAACAGAAC	ACCCTACAGC	ATTTGGTTC	CCAGACTAAG
850	860	870	880	890	900
GGAACTAATA	TCTATATAAT	TAAACTTGT	CATTTATCAT	TCATGAAATA	TAAAATCTT
910	920	930	940	950	960
GTCATTTAAA	CCGTTAAA	ATGTGGTAGC	ATAATGTCAC	CCCAAAAAGC	ATTCAGAAAG
970	980	990	1000	1010	1020
CAATGTA	ACTGTGAAAGACCA	GGGTTTAAAG	GTAATTCA	TATAGTTTAT	AACTCCTTAG
1030	1040	1050	1060	1070	1080
ATGTTTGATG	TTGAAA	ACTG	CTTTAACATG	AA.....

3'UTR of hfgl2. The A at position 1 corresponds to position 1354 on the cDNA.

FIGURE 4

FIGURE 5

	10	20	30	40	50	
MOUSEPRO.AMI	1 RRPGLWLS	SAVLAACR-A	EEHHNLIEGL	EIASQAAE	ARLEGS	REF
HUMANPRO.AMI	1 RKLANFYLNS	SAVLAATYGL	IVANNEETEI	KERAKDV	VERLESR	KCF
	60	70	80	90	100	
MOUSEPRO.AMI	51 -GSQLEF-LT	LFTLTIQLER	LGSMEEVL	EVRLKAEVD	SLKRS	CQDCE
HUMANPRO.AMI	51 EAGEELY-VS	LEPLTIQLIK	FSRIEEVFT	EVQNLKEION	SLKRS	CQDCE
	110	120	130	140	150	
MOUSEPRO.AMI	101 LOADLHRDPG	GN-----GN	GAETAELSR	QELESVNKL	SSELKNAE	DQ
HUMANPRO.AMI	101 LOADINGDPG	RNGLLLPSSTG	APGEVGDNRV	RELEASEVNKL	SSELKNAE	EE
	160	170	180	190	200	
MOUSEPRO.AMI	151 IQLQERLET	ELNVNMNNIE	NYVDENKVANI	EVVNSLDGF	ESKCP	SOFHM
HUMANPRO.AMI	151 INVLRERLEK	ELNVNMNNIE	NYVDSKVANI	EVVNSLDGF	ESKCP	SQEIQI
	210	220	230	240	250	
MOUSEPRO.AMI	201 DSQPVQHLY	KDCSDHIVL	RRSSGAIRVT	PDHRNSSFEV	CDMETMGGG	
HUMANPRO.AMI	201 DSRPVQHLY	KDCSIVYIAI	KRSSETYRV	PDPKNSSSFEV	CDMETMGGG	
	260	270	280	290	300	
MOUSEPRO.AMI	251 ATVLQARLDG	STNFTEEK	YKAGFGNIE	EFWLGNDKIR	LLTKSKEMII	
HUMANPRO.AMI	251 ATVLQARLDG	STNFTPTQI	YKAGFGNIR	EFWLGNDKIR	LLTKSKEMIL	
	310	320	330	340	350	
MOUSEPRO.AMI	301 RIDLEDFNGL	TLYALYDQF	VANEFLKYRI	EIGNYNGTAG	DALRFSRHYE	
HUMANPRO.AMI	301 RIDLEDFNGV	EELYALYDQF	VANEFLKYRL	EVGHYNGTAG	DALRENKHYE	
	360	370	380	390	400	
MOUSEPRO.AMI	351 HDIKEFTTPI	RDNDRYPSGN	EGLYYSSGWR	FISCLSANLN	EKYHQKTK	
HUMANPRO.AMI	351 HDIKEFTTPI	RDNDRYPSGN	EGLYYSSGWR	FIACLSANLN	EKYHQKTR	
	410	420	430	440	450	
MOUSEPRO.AMI	401 VRNGIFWGTR	PGINQHOPGG	YKSSFEKAKE	HIRPKHFKI*	450
HUMANPRO.AMI	401 VRNGIFWGTR	PGVSEHPPGG	YKSSFEKAKE	HIRPKHFKI*	450

FIGURE 6

	10	20	30	40	50	
MOUSEPRO.AMI	1 MRLPGWLWLS	SAVLAACR-A	VEEHNLTEGL	EDASAQAACP	ARLEGSGRCE	50
HUMANPRO.AMI	1 MKLANWYWLS	SAVLATYGFGL	VVANNETEEI	KDERAKDVCP	VRLESRGKCE	50
	60	70	80	90	100	
MOUSEPRO.AMI	51 -GSQCPFQLT	LPTLTIQQLPR	QLGSMEEVLK	EVRTLKEAVD	SLKKSCQDCK	100
HUMANPRO.AMI	51 EAGECPYQVS	LPPLTIQQLPK	QFSRIEEVFK	EVQNLKEIVN	SLKKSCQDCK	100
	110	120	130	140	150	
MOUSEPRO.AMI	101 LQADDHRDPG	GNG-----GN	GAETAEDSRV	QELESQVNKL	SSELKNAKDQ	150
HUMANPRO.AMI	101 LQADDNGDPG	RNGLLLPSTG	APGEVGDNRV	RELESEVNKL	SSELKNAKEE	150
	160	170	180	190	200	
MOUSEPRO.AMI	151 IQGLQGRLET	LHLVNMNNIE	NYVDNKVANL	TVVVNSLDGK	CSKCPSQEHM	200
HUMANPRO.AMI	151 INVLRGRLK	LNLVNMNNIE	NYVDSKVANL	TFVVNSLDGK	CSKCPSQEQI	200
	210	220	230	240	250	
MOUSEPRO.AMI	201 QSQPVQHЛИ	KDCSDHYVLG	RRSSGAYRVT	PDHRNSSFEV	YCDMETMGGG	250
HUMANPRO.AMI	201 QSRPVQHЛИ	KDCSDYYAIG	KRSSETYRVT	PDPKNSSFEV	YCDMETMGGG	250
	260	270	280	290	300	
MOUSEPRO.AMI	251 WTVLQARLDG	STNFTREWKD	YKAGFGNLER	EFWLGNDKIH	LLTKSKEMIL	300
HUMANPRO.AMI	251 WTVLQARLDG	<u>STNFTRTWQD</u>	YKAGFGNLRR	EFWLGNDKIH	LLTKSKEMIL	300
	310	320	330	340	350	
MOUSEPRO.AMI	301 RIDLEDFNGL	TLYALYDQFY	VANEFLKYRL	HIGNYNGTAG	DALRFSRHYN	350
HUMANPRO.AMI	301 RIDLEDFNGV	ELYALYDQFY	VANEFLKYRL	HVGNYNGTAG	DALRFNKHYN	350
	360	370	380	390	400	
MOUSEPRO.AMI	351 HDLRFFTTPD	RDNDRYPSGN	CGLYYSSGWW	FDSCLSANLN	GKYYHQKYKG	400
HUMANPRO.AMI	351 HDLKFFTTPD	KDNDRYPSGN	CGLYYSSGWW	FDACLSANLN	GKYYHQKYRG	400
	410	420	430	440	450	
MOUSEPRO.AMI	401 VRNGIFWGTW	'PGINQAQPGG	YKSSFKQAKM	MIRPKNFKP*	450
HUMANPRO.AMI	401 VRNGIFWGTW	PGVSEAHPGG	YKSSFKEAKM	MIRPKHFKP*	450

FIGURE 7

10	20	30	40	50	60	70
MELANWYWLSSAVLATYGFLLVANNETEIKDERAKDVCVRLESRGKCEAGECPYQVSLPPLTIQLPK						
HELIX	h	h	h	h	h	h
SHEET	ssssssssssssssssss			ssssss		ssssssssssssss
TURN	TTTT	TTTT		TTTTTTT	TTTT	TTTT
COIL			C	CCCC		
80	90	100	110	120	130	140
QPSRIEEVFKEVQLKEIVNLSKKSCQDCKLQADDNGDPGRNGLLLPSTGAPGEVGDWVRELESEVNL						
HELIX	h	h	h	h	h	h
SHEET	ssssssssssssssssss		ss	ss		
TURN	T	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	TTTTTTTTT	
COIL					CCC	
150	160	170	180	190	200	210
SSEELKAKEEINVLHGRLEKLNLVRLMNNIENYVDSKVNANLTFFVNSLDGKCSKCPSEQIQSRPVQHLY						
HELIX	h	h	h	h	h	h
SHEET	ssss	ssssssssssss	ssssssssss	ssssssssss	ssssssssssssss	
TURN	TTTT	TTTT	TTTT	TTTTTTTTT	TTTTTTTTT	T
COIL	CC					
220	230	240	250	260	270	280
KDCSDYYAIGKRSSETYRVTDPKNSSEFYCDMETMGGGTVLQARLDGSTNFTRTWQDYKAGFGNLRR						
HELIX	h		h	h	h	h
SHEET	ss	ssss	ssssssss	ssssssss	ssss	
TURN	TTTTTTT	TTTTTTT	TTTTTTT	TTTTT	TTTTT	TTTT
COIL					CCCC	
290	300	310	320	330	340	350
EFWLGNDKIHLITKSKEMLRIDLDFNGVELYDQFYVANEFLKYRLHVGNHYNTAGDALRFNKHYN						
HELIX	h	h	h	h	h	h
SHEET	ssss	ssss	ssssss	ssssssssssssssssss	ssssssssssssssssss	
TURN	TTTT	TTTT	TTTT		TTTTTTTTT	TTTT
COIL					CCCC	
360	370	380	390	400	410	420
HDLKPFITTPDKNDRYPGNCGLYSSGNWFDACLSANLNGKYHQKYRGVRNGIFWGTWPGVSEAHPGG						
HELIX	h	h	h	h	h	h
SHEET	ssssss		ss	ssssss	ssssssssssssssss	
TURN	TTT	TTTTTTTTTTTTT	TTTTT	TTTTTTTT	TTTT	TTTT
COIL						
430	440					
YKSSFKEAKM2IRPKHFKP*						
HELIX	h	h	h	h	h	h
SHEET	ssss					
TURN	TTTTT	TTTT				
COIL			CCC			

FIGURE 8A

	10	20	30	40	50	
MOUSEPRO. DNA	1 TCGGTTTGGGA	TATCATGGGA	TG-GAATGAG	AAGGGA-AAG	TAGGAGCCG	50
HUMANPRO. DNA	1 TAGGGTTGGGA	AGCCAGGTCT	CCTGAGTATG	CGAGAATAAA	TACAGTCATG	50
	60	70	80	90	100	
MOUSEPRO. DNA	51 AGAGTGCGGT	AAGACAA--G	GCATAAGGCC	TGTCTGACAA	ATTCTTCATA	100
HUMANPRO. DNA	51 GAA GTGTAAA	GAGTCTGCCA	ACATTTGAG	AATGTGAATA	GGATTTGGC-	100
	110	120	130	140	150	
MOUSEPRO. DNA	101 CACACATTTC	CCCTTTGCAC	ATTCAGTCTG	TATAGGTTAT	TTCTATAGGA	150
HUMANPRO. DNA	101 TA-AAATTAA	GGGGATATAC	AGAAAAGTC	TAGGAAATCA	GGTTAAAGAC	150
	160	170	180	190	200	
MOUSEPRO. DNA	151 GAAAAAAAAT	ATTCAAATTC	CTTGTGCACT	G-GTAACAGG	CATGAAGGCT	200
HUMANPRO. DNA	151 ATAAATATGA	GATAGGCTAC	AGAGTGTTTT	AAGTAATACA	ATAAAACATT	200
	210	220	230	240	250	
MOUSEPRO. DNA	201 CAGCAAAGCC	AATACGTGTT	ATGTCCAGTT	GGAGACAGTG	CCAGGGCCAA	250
HUMANPRO. DNA	201 TAG--ATTT	TGCCCATGTC	A-GTCATTTT	GAAATTATTT	TTAAAGCAAA	250
	260	270	280	290	300	
MOUSEPRO. DNA	251 CATTCCAGAC	TTCTCAGATA	GAAAGTGC	CTGCCTGCC	-TGCTCTGAG	300
HUMANPRO. DNA	251 AAAACC--C	TTTTAAACA	AGAAATCTTA	TGAGATGTCA	ATATGCAAA	300
	310	320	330	340	350	
MOUSEPRO. DNA	301 --AATTGAA	GAGAGTAGTT	C---AGTTA	GAATTAAGAG	GCAGTAGAGA	350
HUMANPRO. DNA	301 CAAATTAAAA	GGAGGTGGTT	TCTCTAACTG	AAGCTGTTCC	TCTTCCTGC	350
	360	370	380	390	400	
MOUSEPRO. DNA	351 AA--AGTCTT	GGGAAATCTG	GTTAGAGA--	TATAAATATG	AGAACTGGAC	400
HUMANPRO. DNA	351 CTTCAGCCTC	TGAAGAGAAA	GTTAGAAAAC	TATTATCATT	AATGCTACAT	400
	410	420	430	440	450	
MOUSEPRO. DNA	401 ATGGTGGTAC	ACACCTGTGA	TCTCTGTGTT	TAGGAGGGAG	AGGCAGAGAG	450
HUMANPRO. DNA	401 GTTTGA-AC	AAGCTGATAT	ACCAAGTGGC	CCAGAGAGC-	AGGTAGAAGA	450
	460	470	480	490	500	
MOUSEPRO. DNA	451 ATCAGGAGTT	CAAGGCCAGC	CTGAGCTACT	TGAGACCCAG	TCTAAATAAA	500
HUMANPRO. DNA	451 ACCAGCG--	TGGAGACAGA	--AAGCAA--	-GAGGCC-G	CCTGCCAGGG	500
	510	520	530	540	550	
MOUSEPRO. DNA	501 TAAGAGATAG	ATTACAGAGT	GCCTTTAACT	AGTACAGAGA	AAGAATTGG	550
HUMANPRO. DNA	501 CTACCTGCAG	AA-AGAAAGG	GCAAAGATGC	TGTAGGCAAG	AGAAGTTCA	550
	560	570	580	590	600	
MOUSEPRO. DNA	551 GTTATCTGT	GTCAGTTACG	CTGAAATAAT	TTTTAAGTAA	AAAAATCCCT	600
HUMANPRO. DNA	551 GACAGACACT	GGCA--TA-G	CTCAAA-GAT	TCACATTG	GCAG----C	600
	610	620	630	640	650	
MOUSEPRO. DNA	601 TTTAATAAGA	AACCTTATGA	G-GTCAGTAT	GCACAATGAA	CTTAAGAGAG	650
HUMANPRO. DNA	601 TGTGGAAGAT	GACAGTACAA	TTACCAAAAT	GT-CGAAGGG	C--AAAGGAG	650
	660	670	680	690	700	
MOUSEPRO. DNA	651 ACCCCCAGCT	CCTGAGCTGA	GTGATGGGG	AGGACAGCCA	CTGCCGTG	700
HUMANPRO. DNA	651 GC---AGCT	ACTGGTTT--	-TGATG---A	AAGACAATT	TGTCCCTT--	700
	710	720	730	740	750	
MOUSEPRO. DNA	701 TGTGTGAGTG	ACGTGCTTCC	AACTGTTTA	ACCACTGACG	ATTACATAGC	750
HUMANPRO. DNA	701 TAAATGGGTC	TTAGACATT	AGACATTAT	AT-AC--ACT	ATGCTACGGA	750
	760	770	780	790	800	
MOUSEPRO. DNA	751 CTGCACAGTC	AGGAGAAAAC	AGCCGTATT	TCTGCCAGTT	CTCTTCCCTT	800
HUMANPRO. DNA	751 CAAAGGAAT-	AGAAAAGTAGC	A-CTTTTTC	TCCACTAGTT	TTCTTCTCTT	800
	810	820	830	840	850	
MOUSEPRO. DNA	801 TTACAAACAG	ATGAGAGACA	CACACAGAGA	ATCCATTAA	AGAGCGGACC	850
HUMANPRO. DNA	801 TTTCAAGTAG	ATGAAGCAA	AGT-CAACTG	CAATAGTCAG	AAAGCTGTAC	850
	860	870	880	890	900	

FIGURE 8B

MOUSEPRO.DNA	851	TTTGTCTGA	TTAGGGGCAA	TTTAAAGTAC	TTAAGAGTTC	ACACAAAGTC	900
HUMANPRO.DNA	851	TTTGTACAC	TTAGAAACTT	CTAAAAGTGC	TTAAGATTTC	ACCTGAAAGT	900
	910	920	930	940	950		
MOUSEPRO.DNA	901	TAGCCTTCAA	AAAGAAAACA	GGTTCCCAA	----CTA---	-GGGAGGAAA	950
HUMANPRO.DNA	901	CCAACAT-GA	AGAAAATACA	GGCTCCCAA	TGCCCCATTC	TAAGAAGAAA	950
	960	970	980	990	1000		
MOUSEPRO.DNA	951	CAGAACATCATT	TCCATTGG	TGACATTTA-	GTTGGGAAGAA	GCTCACAGAC	1000
HUMANPRO.DNA	951	AAGGACCATT	TTCACTTTAG	TAACGTTCT	GTTCTATAGA	CAGTTGGAT	1000
	1010	1020	1030	1040	1050		
MOUSEPRO.DNA	1001	ATTTAGACGT	TCCAACTCTT	TCCCCACTAG	TG-----G	ACCAAGT-AT	1050
HUMANPRO.DNA	1001	AACTAGCTCT	TACTTTTAT	CTTTAAAAC	TGTTTTCCA	GTGAAGTTAC	1050
	1060	1070	1080	1090	1100		
MOUSEPRO.DNA	1051	ATAATATGGT	ATCTTTGGG	CACTGGTATT	ACAA-CTGTT	TTTTAAACAA	1100
HUMANPRO.DNA	1051	GTATAATTAT	TTACTTCAAG	CG-TAGTATA	CCAAATTACT	TTAGAAATGC	1100
	1110	1120	1130	1140	1150		
MOUSEPRO.DNA	1101	AAGACTTTCC	TTGTGCTTTA	CTAAAAAC-C	CA-GACGGTG	AATCTTGAAT	1150
HUMANPRO.DNA	1101	AAGACTTTTC	TTATACTTCA	AAAAATACAT	TATGAAAGTG	AATCTTG-T	1150
	1160	1170	1180	1190	1200		
MOUSEPRO.DNA	1151	ACAATGCGTG	GCACCCACGG	CAGGCATTCT	ATTGTGCATA	GTTTGACTG	1200
HUMANPRO.DNA	1151	TGGCTGTGTA	CATTTGACTA	TAATAATTTC	AATGCATATT	ATTTCTATG	1200
	1210	1220	1230	1240	1250		
MOUSEPRO.DNA	1201	ACAGGAGATG	ACAGCATTG	GCTGGCTGCG	CTTGTGAGG	ACCCCTCTCCT	1250
HUMANPRO.DNA	1201	AGAGTAAGTT	ACAGTTTTG	GCAAACGTGCG	TTTGATGAGG	GCTATCTCCT	1250
	1260	1270	1280	1290	1300		
MOUSEPRO.DNA	1251	CCTG-TGTG-	GCGTCTGAGA	CT-GTGATGC	AAATGCGCCC	GCCCTTTCT	1300
HUMANPRO.DNA	1251	CTTCCTGTGC	GTTCCTAAA	CTTGTGATGC	AAACGCTCCC	ACCCCTTCCT	1300
	1310	1320	1330	1340	1350		
MOUSEPRO.DNA	1301	GGGAACTCAG	AACGCCTGAG	TCAGGGCGCG	GTGGCTATTAA	AAGCG-----	1350
HUMANPRO.DNA	1301	GGGAACACAG	AAAGCCTGAC	TCAGGCCATG	GCCGCTATTAA	AAGCAGCTCC	1350
	1360	1370	1380	1390	1400		
MOUSEPRO.DNA	1351	---CCTGGTC	AG-----GCT	GGGCT-GCCG	CACTGCAAGG	ATG.....	1400
HUMANPRO.DNA	1351	AGCCCTGCGC	ACTCCCTGCT	GGGTGAGCAG	CACTGTAAAG	ATG.....	1400

FIGURE 9A

10 20 30 40 50
TAGGGTTGGAAGCCAGGTCTCCTGAGTATGCGAGAATAAATACAGTCATG
60 70 80 90 100
GAACTGTAAAGAGTCTGCCAACATTGAGAATGTGAATAGGATTTGGCT
110 120 130 140 150
AAAATTAAGGGATATACAGAAAAGTCATAGGAAATCAGGTTAAAGACAT
TCF1 PEA3
160 170 180 190 200
AAATATGAGATAGGCTACAGAGTGTAAAGTAATACAATAAAACATTTA
GATA1 NF IL6
210 220 230 240 250
GATTTTGCCCCATGTCAGTCATTTGAAATTATTTTAAAGCAAAAAAAC
NF IL6
260 270 280 290 300
CCTTTTAAACAAGAAATCTTATGAGATGTCATATGCAAAACAAATTAA
310 320 330 340 350
AAGGAGGTGGTTCTCTAACTGAAGCTGTTCTCTTCCTGCCTTCAGCC
TCF1
360 370 380 390 400
TCTGAAGAGAAAGTTAGAAAACTATTATCATTAAATGCTACATGTTTGAA
NF_E1
410 420 430 440 450
CAAGCTGATATACCAAGTGGCCCAGAGAGCAGGTAGAAGAACCGCGTGG
bHLH
460 470 480 490 500
AGACAGAAAGCAAGAGGCCGCCTGCCAGGGCTACCTGCAGAAAGAAAGG
NF IL6
510 520 530 540 550
GCAAAGATGCTGTAGGCAAGAGAAAGTTCAAGACAGACACTGGCATAGCTC
TCF1
560 570 580 590 600
AAAGATTCACTTGAGCAGCTGTGGAAGATGACAGTACAATTACCAAAA
TCF1 bHLH bHLH
E2A
610 620 630 640 650
TGTCGAAGGGCAAAGGAGGCAGCTACTGGTTTGATGAAAGACAATTATG
TCF1 NF IL6
660 670 680 690 700
TCCTTTAAATGGGTCTTAGACATTTAGACATTATACACTATGCTAC
710 720 730 740 750
GGACAAAGGAATAGAAAGTAGCACTTTCTCCACTAGTTTCTCTCT
TCF1
760 770 780 790 800
TTTCAAGTAGATGAAGCAAAAGTCACACTGCAATAGTCAGAAAGCTGTAC
TCF1 bHLH

FIGURE 9B

810 820 830 840 850
TTTGTACACTAGAAACTCTAAAGTGCCTAAGATTTCACCTGAAACG
TCF1 bHLH
860 870 880 890 900
CCAACATGAAGAAAAATACAGGCTCCCCAATGCCCTATTCTAAGAAGAAAA
910 920 930 940 950
AGGACCATTTCATTTAGTAACGTTCTGTTCTATAGACAGTTGGATA
960 970 980 990 1000
ACTAGCTCTTACTTTTATCTTAAAAACTGTTTCCAGTGAAGTTACG
1010 1020 1030 1040 1050
TATAATTATTTACTTCAAGCGTAGTATACCAAATTACITTAAGAAAATGCAA
NF IL6
1060 1070 1080 1090 1100
GACTTTCTTATACCTCATAAAATACATTATGAAAGTGAATCTTGTGTC
NF IL6
1110 1120 1130 1140 1150
TGTGTACATTGACTATAATAATTCAATGCATATTATTCTATTGAGAG
bHLH
1160 1170 1180 1190 1200
TAAGTTACAGTTTGGCAAACACTGCCTTGATGAGGGCTATCTCCTCTTC
1210 1220 1230 1240 1250
CTGTGCGTTCTAAAACCTTGATGCAAACGCTCCCACCCCTTCCTGGGA
AABS
1260 1270 1280 1290 1300
ACACAGAAACGCTGACTCAGGCACGTGCCGTATTAAAGCAGCTCCAGCC
+1 AP 1 bHLH TATA box
1310 1320 1330
CTGCGCACTCCCTGCTGGGTGAGCAGCACTGTAAAGATG

FIGURE 10A

FIGURE 10B

FIGURE 11

FIGURE 12

Prevention of CsA Graft Rejection by CsA
Alone or in Combination with Antibodies
to Immune Coagulants

FIGURE 13

FIGURE 14

FIGURE 15

Figure 16

FIGURE 17

5'-- CCAAGTATAT AATATGGTAT CTTTGGGCA CTGGTATTAC AACTGTTTT -270
TAAACAAAAG ACTTTCTTG TGCTTTACTA AAAACCCAGA CGGTGAATCT -220
TGAATACAAT GCGTGGCACC CACGGCAGGC ATTCTATTGT GCATAGTTT -170
GACTGACAGG AGATGACAGC ATTTGGCTGC GTGCGCTTGC TGAGGACCT -120
CTCCTCTGT GTGGCGTCTG AGACTGTGAT GCAAATGCGC CCGCCCTTT -70

CTGGGAACTC AGAANGCCTG AGTCAGGCGG CGGTGGCTAT TAAAGCGCCT -20

GGTCAGGCTG GGCTGCCGCA CTCCAAGG--3'

 L
 →
 +1

FIGURE 18
Prevention of Fetal Loss by Monoclonal Antibody 3D4.3

Antibody (10 μ g/day I.V. given for 14 days

FIGURE 19

FIGURE 20

The lanes are:
1. H5 cells
2. H5 + wild type virus
3. H5 + recombinant virus

FIGURE 21

97.6 kDa →
60 kDa →
46 kDa →
30 kDa →

The lanes are:
1. H5cells
2. H5 + wild type virus
3. H5 + recombinant
virus

FIGURE 22

97.6 kDa →
60 kDa →
46 kDa →
30 kDa →

The lanes are:

1. 125I-Prothrombin (PT)
2. PT + RVV + Factor X
3. PT + H5
4. PT + H5-RV
5. PT + purified protein (3 µg)

1 2 3 4 5