

Из цифр 1, 2, 3, 4, 5 выбраны наугад две цифры (повторы цифр возможны). С какой вероятностью составленное из этих цифр двухзначное число содержит только разные цифры? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение (способ 1): Обозначим событие А – составленное двузначное число содержит только

разные цифры

11 21 31 41 51

12 22 32 42 52

13 23 33 43 53 — всего их 25.

14 24 34 44 54

15 25 35 45 55

2) Одинаковые цифры содержат числа {11,22,33,44,55} – всего их 5.

Это значит, что разные цифры содержат: 25 – 5 = 20 чисел.

3) Рассчитываем вероятность по классическому определению вероятности:

$$P(A) = \frac{m}{n} = \frac{20}{25} = \frac{4}{5} = 0.8$$

1) Записываем все возможные числа:

Ответ: Р = 0,8.

Из цифр 1, 2, 3, 4, 5 выбраны наугад две цифры (повторы цифр возможны). С какой вероятностью составленное из этих цифр двухзначное число содержит только разные цифры? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение (способ 2):

1) На место первой цифры можно выбирать одну из 5 цифр. Так как допустимы повторы, то и на место второй цифры можно также выбирать одну из 5 цифр: <u>5*5</u> = 25 различных чисел.

Это называется числом размещений с повторениями из n (цифр) по k (знакомест): $\overline{A}_n^k = n \cdot n \cdot \ldots \cdot n = n^k$.

2) Количество чисел из одинаковых цифр равно количеству исходных цифр – всего их 5.

3) Рассчитываем вероятность:
$$P = 1 - \frac{5}{25} = 1 - \frac{1}{5} = 0,8$$

Ответ: Р = 0,8.

Имеются две урны. В первой находятся 2 синих и 6 красных шара. Во второй находятся 3 синих и 4 красных шара. Из каждой урны наугад вынимают по 1 шару. С какой вероятностью цвета вынутых шаров не совпадут? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение (способ 1): Обозначим событие А – цвета вынутых шаров не совпадают

- 1) Цвета не совпадут, если из 1 урны вынуть СИНИЙ, а из 2 КРАСНЫЙ (С,К) (или наоборот (К,С)).
- 2) Рассчитываем вероятность для каждого из вариантов:

(K,C):
$$P(K,C) = P1(C) * P2(K) = \frac{6}{2+6}C\frac{3}{3+4} = \frac{9}{28}$$

(C,K):
$$P(C,K) = P1(C) * P2(K) = \frac{2}{2+6} \frac{4}{3+4} = \frac{1}{7}$$

3) Рассчитываем итоговую вероятность P(A) по теореме сложения вероятностей несовместных событий:

$$P = P(C,K) + P(K,C) = \frac{1}{7} + \frac{9}{28} = \frac{13}{28} = 0,464 \approx 0,46$$

Ответ: Р = 0,46.

Имеются две урны. В первой находятся 2 синих и 6 красных шара. Во второй находятся 3 синих и 4 красных шара. Из каждой урны наугад вынимают по 1 шару. С какой вероятностью цвета вынутых шаров не совпадут? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение (способ 2):

- 1) Цвета совпадут, если из обоих урн вынуть СИНИЙ или КРАСНЫЙ.
- 2) Рассчитываем вероятность для каждого из вариантов:

(K,K):
$$P(K,K) = P1(K) * P2(K) = \frac{6}{2+6} \frac{4}{3+4} = \frac{12}{28}$$

(C,C):
$$P(C,C) = P1(C) * P2(C) = \frac{2}{2+6} \frac{3}{3+4} = \frac{3}{28}$$

3) Рассчитываем итоговую вероятность $P(A) = 1 - P(\overline{A})$:

$$P = 1 - (P(C,C) + P(K,K)) = 1 - (\frac{3}{28} + \frac{12}{28}) = \frac{13}{28} = 0,464 \approx 0,46$$

Ответ: Р = 0,46.

В коробке лежат 6 белых, 2 черных и 2 красных шара. Из коробки последовательно без возвращения вынимают 4 шара. С какой вероятностью шары будут вынуты в такой последовательности: белый, черный, красный, белый? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до трех знаков после запятой).

Решение (способ 1):

Обозначим событие А – шары вынуты в последовательности «белый, черный, красный, белый»

1) Рассчитаем вероятность вынуть шары в указанной последовательности:

$$P = P(51) \cdot P(42) \cdot P(K3) \cdot P(54) = \frac{6}{10} \cdot \frac{2}{9} \cdot \frac{2}{8} \cdot \frac{5}{7} = \frac{1}{42} = 0,0238 \approx 0,024$$

(при вычислении вероятности воспользовались теоремой умножения вероятностей зависимых событий).

Ответ: P = 0,024.

В коробке лежат 6 белых, 2 черных и 2 красных шара. Из коробки последовательно без возвращения вынимают 4 шара. С какой вероятностью шары будут вынуты в такой последовательности: белый, черный, красный, белый? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до трех знаков после запятой).

Решение (способ 2):

- 1) Рассчитаем число возможностей вынуть шары в указанной последовательности:
- <u>6·2·2·5</u> = 120. На 1-е знакоместо 6 белых шаров, на 2-е 2 чёрных, на 3-е 2 красных, на 4-е 5 белых (так как один уже занял 1-е знакоместо).
- 2) Всего возможностей вынуть 4 шара из коробки с 10 шарами: $\underline{10} \cdot \underline{9} \cdot \underline{8} \cdot \underline{7} = 5040$
- 3) Рассчитываем вероятность по классическому определению вероятности:

$$P = \frac{120}{5040} = 0.0238 \approx 0.024$$

Ответ: Р = 0,024.

На лекцию пришли все студенты трех групп потока. В первой группе 28 человек, из них 75% девушки. В второй группе 32 человека, из них 50% девушки. В третьей группе 20 человек, из них 40% девушки. С какой вероятностью наугад выбранный студент окажется девушкой? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение: Обозначим событие А – наугад выбранный студент девушка.

Гипотезы H_i — студент из і-ой группы (і = 1;2;3)

1) Вероятности гипотез:
$$P(H_1) = \frac{28}{28+32+20} = \frac{28}{80} = 0.35$$
 $P(H_2) = \frac{32}{80} = 0.4$ $P(H_3) = \frac{20}{80} = 0.25$

$$P(H_1) + P(H_2) + P(H_3) = 1$$
 (верно).

2) Рассчитываем вероятность события А по формуле полной вероятности

$$P(A) = \sum_{i=1}^{n} P(H_i)P((A|H_i))$$

$$P(A) = 0.35 * 0.75 + 0.4 * 0.5 + 0.25 * 0.4 = 0.5625 \approx 0.56$$

Ответ: Р = 0,56.

30% студентов колледжа занимаются спортом. С какой вероятностью среди 5, взятых наугад студентов, 2 занимаются спортом? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до двух знаков после запятой).

Решение: Событие А – студент занимается спортом

- 1) Количество испытаний: n=5, число появления события A: k=2, $p=\mathrm{P}(\mathrm{A})=0$,3 q=1-p=1-0,3 =0,7
- 2) Так как число испытаний мало, то рассчитываем вероятность по формуле Бернулли:

$$P_n(k) = C_n^k p^k q^{n-k}$$

$$P_5(2) = C_5^2 0.3^2 0.7^{5-2} = \frac{5!}{2!(5-2)!} 0.3^2 0.7^3 = 0.3087 \approx 0.31$$

Ответ: P = 0.31.

Каждое из 25 предприятий отрасли выполняет годовой план с вероятностью 0,9. С какой вероятностью в конце года план выполнят от 14 до 22 предприятий? (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Предварительные вычисления делать до двух знаков после запятой Ответ округлить до четырех знаков после запятой).

Решение:

1) Воспользуемся интегральной теоремой Лапласа:
$$P(k_1 \leq X \leq k_2) pprox \Phi\left(rac{k_2-np}{\sqrt{npq}}
ight) - \Phi\left(rac{k_1-np}{\sqrt{npq}}
ight)$$

$$n = 25$$

$$p = 0.9$$

$$n = 25.$$
 $p = 0.9.$ $q = 1 - p = 1 - 0.9 = 0.1.$ $k1 = 14.$ $k2 = 22$

$$k1 = 14$$
.

$$k^2 = 22$$

- 2) Рассчитываем знаменатели: $\sqrt{npq} = \sqrt{2,25} = 1,5$ (2,25 и 1,5 условно округляем).
- 3) Рассчитываем числители: k2-np=-0.5. k1-np=-8.54) Рассчитываем выражения: $\frac{k2-np}{\sqrt{npq}}=-0.$ (3) ≈ -0.33 . $\frac{k1-np}{\sqrt{npq}}=-5.$ (6) ≈ -5.67 5) Найдём значения функции Лапласа и рассчитаем вероятность: $P=\Phi(-0.33)-\Phi(-5.67)=$
- $= -\Phi(0,33) + \Phi(5,67)$

Центр дистанционного обучения

образование в стиле hi tech

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x e^{-t^2/2t} dt$$

Φ(5,67)=Φ(5,00)= =0,49999997≈0,5

x	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0040	0080	0120	0159	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0.2	0793	0832	0871	0909	0948	0987	1026	1103	1064	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2257	2291	2324	2356	2389	2421	2454	2486	2517	2549
0,7	2580	2611	2642	2673	2703	2734	2764	2793	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1,0	3413	3437	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3728	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3906	3925	3943	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4648	4656	4664	4671	4678	4686	4692	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2,0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2,2	4861	4864	4868	4871	4874	4878	4881	4884	4887	4890
2,3	4893	4896	4998	4901	4904	4906	4909	4911	4913	4916
2,4	4918	4920	4922	4924	4927	4929	4930	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2,6	4953	4955	4956	4957	4958	4960	4961	4962	4963	4964
2,7	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986
3,0	0,4986		3,1	4990	3,2	49931	3,3	49952	3,4	49966
3,5	4998		3,6	4998	3,7	49989	3,8	49993	3,9	49995
4,0	499968				1,112					
4.5	49999									
5,0	499999	997								

$$P = -\Phi(0,33) + \Phi(5,67) = -0,1293 + 0,5 =$$

= 0,3707

Ответ: 0,3707

Случайная величина Х задана плотностью вероятности вида:

$$f(x) = \begin{cases} 0, & -\infty < x \le 0 \\ \frac{3}{64}x^2, & 0 < x \le 4 \\ 0, & 4 < x < +\infty \end{cases}$$

Найти сумму величин $M(X)+P(\frac{1}{2}\leq X<\frac{5}{2})$ (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до **двух** знаков после запятой).

Решение:

1) Найдём мат. ожидание: $M(x) = \int_{-\infty}^{\infty} x \cdot f(x) dx = \int_{0}^{4} x \cdot \frac{3}{64} x^2 dx = \frac{3}{64} \int_{0}^{4} x^3 dx = \frac{3}{64} \frac{x^4}{4} \Big|_{0}^{4} = 3$

2) Найдём вероятность попадания в интервал: $P\left(\frac{1}{2} \le X < \frac{5}{2}\right) = \int_{\frac{1}{2}}^{\frac{5}{2}} f(x) dx = \frac{3}{64} \left. \frac{x^3}{3} \right|_{\frac{1}{2}}^{\frac{5}{2}} = 0,242$

3) Вычисляем
$$M(X) + P\left(\frac{1}{2} \le X < \frac{5}{2}\right) = 3 + 0.242 = 3.242 \approx 3.24$$

Ответ: 3,24.

Даны две независимые случайные величины X и Y. Случайная величина X распределена по **показательному** закону с параметром $\lambda = 1/2$, случайная величина Y распределена **равномерно** на отрезке [2,8]. Найти величину M(5X-3Y-5)+D(5X-3Y-5).(Ответ записать в виде целого числа).

Решение:

1) Найдём мат. ожидания:
$$M(X) = \frac{1}{\lambda} = \frac{1}{0.5} = 2$$
. $M(Y) = \frac{a+b}{2} = \frac{2+8}{2} = 5$
2) Найдём дисперсии: $D(X) = \frac{1}{\lambda^2} = \frac{1}{0.5^2} = 4$. $D(Y) = \frac{(b-a)^2}{12} = \frac{(8-2)^2}{12} = 3$

2) Найдём дисперсии:
$$D(X) = \frac{1}{\lambda^2} = \frac{1}{0.5^2} = 4$$
.

$$M(Y) = \frac{a+b}{2} = \frac{2+8}{2} = 5$$

$$D(Y) = \frac{(b-a)^2 - (8-2)^2}{2} = 3$$

3) Вычисляем
$$M(5X - 3Y - 5) = 5M(X) - 3M(Y) - 5 = -10$$

4) Вычисляем
$$D(5X - 3Y - 5) = 5^2D(X) + (-3)^2D(Y) + 0 = 127$$

5) Вычисляем
$$M(5X - 3Y - 5) + D(5X - 3Y - 5) = -10 + 127 = 117$$

Ответ: 117.

образование в стиле hi tech

Плотность распределения вероятности случайной величины X имеет вид: $f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x+4)^2}{8}}$, при хє(-∞;+∞). Найти вероятность того, что данная случайная величина в результате испытания попадет в интервал (-6,1). (Ответ записать в виде десятичной дроби. Целая часть отделяется от дробной части запятой. Округлить до четырех знаков после запятой).

Решение:

1) Используя функцию плотности распределения для нормального закона $f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$, вычислим СКО σ и мат. ожидание a: $\sigma = 2$. a = -4

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-a)^2}{2\sigma^2}\right),\,$$

2) Воспользуемся формулой вероятности попадания в интервал: $P(\alpha < X < \beta) = \Phi\left(\frac{\beta - a}{\sigma}\right) - \Phi\left(\frac{\alpha - a}{\sigma}\right)$

3) Вычисляем вероятность:
$$P(-6 < x < 1) = \Phi\left(\frac{1-(-4)}{2}\right) - \Phi\left(\frac{-6-(-4)}{2}\right) = \Phi(2,5) + \Phi(1)$$

Находим Ф(2,5) и Ф(1) по таблице распределения Лапласа и строим график плотности распределения

$$\Phi(x) = \frac{2}{\sqrt{2\pi}} \int_0^x e^{-t^2/2t} dt$$

x	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0040	0080	0120	0159	0199	0239	0279	0319	0359
0,1	0398	0438	0478	0517	0557	0596	0636	0675	0714	0753
0,2	0793	0832	0871	0909	0948	0987	1026	1103	1064	1141
0,3	1179	1217	1255	1293	1331	1368	1406	1443	1480	1517
0,4	1554	1591	1628	1664	1700	1736	1772	1808	1844	1879
0,5	1915	1950	1985	2019	2054	2088	2123	2157	2190	2224
0,6	2257	2291	2324	2356	2389	2421	2454	2486	2517	2549
0,7	2580	2611	2642	2673	2703	2734	2764	2793	2823	2852
0,8	2881	2910	2939	2967	2995	3023	3051	3078	3106	3133
0,9	3159	3186	3212	3238	3264	3289	3315	3340	3365	3389
1.0	3413	3437	3461	3485	3508	3531	3554	3577	3599	3621
1,1	3643	3665	3686	3708	3728	3749	3770	3790	3810	3830
1,2	3849	3869	3888	3906	3925	3943	3962	3980	3997	4015
1,3	4032	4049	4066	4082	4099	4115	4131	4147	4162	4177
1,4	4192	4207	4222	4236	4251	4265	4279	4292	4306	4319
1,5	4332	4345	4357	4370	4382	4394	4406	4418	4429	4441
1,6	4452	4463	4474	4484	4495	4505	4515	4525	4535	4545
1,7	4554	4564	4573	4582	4591	4599	4608	4616	4625	4633
1,8	4641	4648	4656	4664	4671	4678	4686	4692	4699	4706
1,9	4713	4719	4726	4732	4738	4744	4750	4756	4761	4767
2,0	4772	4778	4783	4788	4793	4798	4803	4808	4812	4817
2,1	4821	4826	4830	4834	4838	4842	4846	4850	4854	4857
2,2	4861	4864	4868	4871	4874	4878	4881	4884	4887	4890
2,3	4893	4896	4998	4901	4904	4906	4909	4911	4913	4916
2,4	4918	4920	4922	4924	4927	4929	4930	4932	4934	4936
2,5	4938	4940	4941	4943	4945	4946	4948	4949	4951	4952
2,6	4953	4955	4956	4957	4958	4960	4961	4962	4963	4964
2,7	4965	4966	4967	4968	4969	4970	4971	4972	4973	4974
2,8	4974	4975	4976	4977	4977	4978	4979	4979	4980	4981
2,9	4981	4982	4982	4983	4984	4984	4985	4985	4986	4986
3,0	0,4986		3,1	4990	3,2	49931	3,3	49952	3,4	49966
3,5	4998		3,6	4998	3,7	49989	3,8	49993	3,9	49995
4,0	49996				1,112					
4,5	499997									
5,0	49999997									

$$\Phi(2,5) + \Phi(1) = 0,4938 + 0,3413 = 0,8351$$

График плотности вероятности

Ответ: 0,8351

(Целая часть отделяется от дробной части запятой. Предварительные вычисления делать до трех знаков после запятой. Ответ округлить до двух знаков после запятой).

Решение: Объем выборки $n = \sum n_i = 4 + 5 + 8 + 3 = 20$

- 1) Вычислим выборочное среднее: $\bar{x} = \frac{1}{n} \sum x_i n_i = \frac{1}{20} (40 + 60 + 120 + 60) = \frac{280}{20} = 14$
- 2) Вычислим исправленную дисперсию:

$$s^{2} = \frac{n}{n-1}D_{B} = \frac{1}{n-1}\sum(x_{i} - \bar{x}_{i})^{2}n_{i} = \frac{1}{19}(4^{2} \cdot 4 + 2^{2} \cdot 5 + (-1)^{2} \cdot 8 + (-6)^{2} \cdot 3) = \frac{200}{19} = 10,526 \approx 10,53$$

Ответ: 10,53.

Спасибо за внимание!