UNIVERSIDADE FEDERAL DE SERGIPE PRÓ-REITORIA DE PÓS-GRADUAÇÃO E PESQUISA CENTRO DE INOVAÇÃO E TRANSFERÊNCIA DE TECNOLOGIA

Programa Institucional de Iniciação Científica (PIBIC)

Captura e análise de sinais de miografia para controle de próteses

Área do conhecimento: Engenharia e Computação

Voluntário: Elder Cleiton Barreto Francisco dos Santos /
Departamento de Engenharia Elétrica
(eldercleiton@dcomp.ufs.br)

Orientador(a): Daniel Oliveira Dantas /
Departamento de Computação
(ddantas@ufs.br)

Relatório Parcial 2016/2017

1. Atividades realizadas

O diagrama de blocos (figura 1.1) dá uma visão geral do projeto proposto neste trabalho de iniciação científica, desde a aquisição do sinal eletromiográfico (EMG) com eletrodos de superfície até a filtragem e amplificação para prosteriomente ser enviado ao conversor analógico-digital. Os blocos em verde representam as atividades realizadas até o presente momento e os blocos em branco serão trabalhados no decorrer do projeto.

Figura 1.1 – Diagrama de blocos geral do projeto.

Inicialmente foi feita a revisão bibliográfica para ter uma fundamentação teórica sobre os conceitos e as características dos sinais eletromiográficos (EMG). Também foram estudados os diversos métodos e configurações para aquisição, amplificação e filtragem deste sinal.

Eletromiografía é um área que lida com a detecção, análise e o uso do sinal elétrico que emana das contrações musculares. Este sinal é referido como sinal EMG e pode ser afetado por propriedade musculares, anatômicas e fisiologicas, bem como pela instrumentação eletrônica utilizada para aquisição e análise dos sinais (De Luca, 2006).

A amplitude do sinal EMG pode variar de 0 - 10mV (pico a pico). A energia útil está limitada na faixa de frequência de 0 - 500Hz (De Luca, 2002). O tipo de registro de interesse neste trabalho será o sinal EMG de superfície que, geralmente, encontra-se na faixa de largura de banda citada.

Sabendo que o sinal EMG é de baixa amplitude e susceptível ao ruído devido aos problemas citados anteriormente. Foram estudados, simulados e testados quais os filtros e amplificadores resultariam em um sinal de saída de alto ganho e com baixo ruído.

A aquisição do sinal EMG é feita através de eletrodos, onde a escolha do tipo de eletrodo a ser utilizado dependerá das características do músculo a ser estudado. Para

músculos grandes e superficiais, geralmente usam-se os eletrodos de superficie, e para músculos pequenos e profundos, ou localizados entre ou abaixo de outros músculos, podem ser utilizados eletrodos invasivos (Caparelli, 2007). Neste trabalho serão utilizados os eletrodos de superficie.

Após a escolha dos tipos de amplificadores e filtros foi montado e testado, em uma matriz de contato (*protoboard*), o circuito de aquisição, que foi dividido em três etapas essenciais: pré-amplificação, condicionamento e amplificação. Os testes foram feitos no laborátorio de hardware I do departamento de computação – UFS, onde foram obtidos bons resultados.

O circuito de pré-amplificação é composto por um amplificador de instrumentação que é usado geralmente em configurações bipolares e multipolares de eletrodos. Ele possui a habilidade de amplificação diferencial subtraindo o sinal comum de duas entradas e amplificando a diferença.

Segundo Wang et al. (2013), o ganho no estágio de pré-amplificação não deve ser muito alto, pois pode comprometer o sinal de saída por amplificar também o ruído. Este ganho geralmente não deve ser ultrapassar 10V/V. Neste trabalho o ganho máximo obtido foi de 7,26 V/V.

Em seguida, tem-se o circuito de condicionamento que é responsável por selecionar a parte do sinal de interesse, para isto são utilizados filtros. Neste trabalho foi utilizado o filtro passa-alta, que permite a passagem de altas frequências sem dificuldade reduzindo a amplitude de frequência maiores que a frequência de corte (f_c), em série com os filtro passa-baixa, que atenua as frequências maiores que f_c .

As frequências do ruído contaminam o sinal bruto EMG podendo ser tanto altas quanto baixas. Ruídos de baixa frequência podem ser causados pelo contato pele-eletrodo por variações de temperatura e podem ser removidos usando o filtro passa-alta. Ruídos de altas frequências podem ser causadas por condução e pela interferência de ondas eletromagnéticas de diversos aparelhos como computadores, telefones celulares, entre outros, e podem ser eliminados usando o filtro passa-baixa (Jamal, 2012).

E por fim, o sinal selecionado é amplificado novamente por um amplificador inversor. Neste trabalho o ganho máximo obtido foi de 56 V/V no estágio citado.

Após montado e testado o circuito na *protoboard* foi feita a confecção de uma placa de circuito impresso (PCI). As etapas apresentadas até o presente momento estão

todos interligadas resultando em um único circuito de aquisição de sinais EMG com apenas um canal. Na figura 1.2 é apresentado o *layout* da PCI em 2D e 3D.

Figura 1.2 – Layout da placa de aquisição de sinais EMG.

A placa de aquisição foi montada com um canal para que possa ser utilizada pelo aluno que realizará a conversão A/D e tratamento do sinal e em paralelo será montado outra placa com oito canais nas próximas etapas do projeto.

2. Justificativa de alteração no plano de trabalho

Apesar de estar cadastrado no segundo plano de trabalho da iniciação científica realizei tarefas referente ao primeiro plano, devido a dois motivos:

- Fui cadastrado no andamento do projeto, mais especificamente em 10 de novembro de 2016;
- Para executar o segundo plano é necessário ter um prototipo da placa de aquisição de sinais EMG, que até recentemente não estava concluída.

3. Outras atividades

Não foram realizadas outras atividades.

4. Resultado preliminares

Foram feitas aquisições de alguns sinais EMG inserindo dois eletrodos na configuração bipolar, com distância entre si de no máximo 2 cm, no centro do antebraço, e o eletrodo de referência colocado na região do processo espinhal C7.

Os seguintes resultados (figuras 4.1-4.3) foram obtidos para alguns movimentos específicos repetitivos dos dedos com capturas feitas a partir do osciloscópio. Apesar de ser o sinal EMG bruto, sem tratamento digital, nota-se nitidamente distinção para cada tipo de movimento.

Figura 4.1 – Sinal EMG (fechando e abrindo todos os dedos).

Figura 4.2 – Sinal EMG (fechando e abrindo os dedos anular e mínimo).

Figura 4.3 – Sinal EMG (fechando e abrindo os dedos indicador e médio).

Para encontrar a amplitude de entrada utilizamos a fórmula (1), onde G1 = 7.26 V/V é o ganho do amplificador de instrumentação e G2 = 56 V/V é o ganho do circuito condicionador.

$$V_{in} = \frac{V_{out}}{G_1 G_2} \tag{1}$$

Abaixo nas equações (2), (3) e (4) são apresentados os valores das amplitudes de entrada do sinal EMG, respectivamente, para os valores de saída mostrados nas figuras (4.1-4.3).

$$V_{in} = \frac{1,22}{7,26.56} = 3\text{mV}_{PP}$$
 (2)

$$V_{in} = \frac{1,20}{7,26.56} = 2,95 \text{mV}_{PP}$$
 (3)

$$V_{in} = \frac{0.960}{7.26 \cdot 56} = 2.36 \text{mV}_{PP} \tag{4}$$

Como já citado, o sinal EMG tem amplitude na faixa de 0 - 10mV de pico a pico (De Luca, 2002). Os valores de amplitude de entrada ficaram na faixa de 2 - 3mVpp. Portanto, verifica-se que os resultados obtidos foram satisfatórios, pois estão dentro da faixa especificada.

REFERÊNCIAS BIBLIOGRÁFICAS

DE LUCA, C. J. Eletromyography. Boston, Massachusetts, 2006.

DE LUCA, C. J. C. J. – Surface electromyography: Detection and recording. Delsys incorporated. 2002.

CAPARELLI T. B. Projeto e desenvolvimento de um sistema multicanal de biotelemetria para detecção de sinais ECG, EEG e EMG. 2007.

JAMAL M. Z. – Signal acquisition using surface EMG and circuit design considerations for robotic prosthesis. 2012

WANG J., TANG L., BRONLUND J. B. – Surface EMG signal amplification and filtering. 2013.