电子科技大学信息与软件工程学院

实验报告 (一)

	学	号	2018091618008		
	姓	名	袁昊男		
(实验)	课程名称		计算机组成原理		
	理论	教师	刘辉		
	实验	教师	刘辉		

电子科技大学 实 验 报 告

学生姓名: 袁昊男 学号: 2018091618008 指导教师: 刘辉

实验地点: 三教 501 实验时间: 2019.11.23

一、 实验名称: 8位算术逻辑运算实验

二、 实验学时: 4学时

三、 实验目的:

1、掌握算术逻辑运算器单元 ALU (74LS181) 的工作原理;

2、掌握模型机运算器的数据传送通路组成原理;

3、验证 74LS181 的组合功能;

4、按给定数据,完成实验指导书中的算术/逻辑运算。

四、 实验原理:

1.

- (1) 通过二进制数码开关 KD7-KD0(低位)向输入三态门(74LS245 芯片, U51)输入数据;
- (2) 输入三态门通过 8 位数据总线将输入数据分送锁存器 DR1 和 DR2 (74LS273 芯片, U29, U30) 锁存信息:
- (3) 同时将 DR1 和 DR2 中的数据送运算器参与运算(由两片 74LS181 以并/串形式构成 8 位字长的 ALU, U31, U32);
- (4) 将运算结果送输出三态门(74LS245 芯片, U33);
- (5) 输出三态门通过8位数据总线将输出结果用数据显示灯LZD7-LZD0 (低位)显示。
- 2、运算器数据通路图

数据输入三态缓冲器门控信号 SWB,数据输出三态缓冲器门控信号 ALUB;数据锁存 DR1 打入脉冲信号 LDDR1,数据锁存 DR2 打入脉冲信号 LDDR2。

运算器数据通路图 (简化版):

3、74LS181 芯片外特性

4、74LS181 功能表

					$\mathbf{M} = 0$	M = 1	
	S_3	S_2	S_1	S_0	$C_n = 1$	$C_n = 0$	(逻辑
					(无进位)	(有进位)	运算)
	0	0	0	0	F = A	$\mathbf{F} = \mathbf{A}$ 加1	$F = \overline{A}$
	0	0	0	1	F = A + B	F=(A+B)加1	$F = \overline{A + B}$
	0	0	1	0	$F = A + \overline{B}$	$F = (A + \overline{B})$ 加1	$F = \overline{A} \cdot B$
	0	0	1	1	2 的补	F = 0	F = 0
4	0	1	0	0	$F = A$ 加 $(A \cdot \overline{B})$	$F = A$ 加 $(A \cdot \overline{B})$ 加1	$F = \overline{A \cdot B}$
位	0	1	0	1	$F = (A + B)$ 加 $A\overline{B}$	$F = (A + B)$ 加($A\overline{B}$)加1	$F = \overline{B}$
A	0	1	1	0	F = A减B减1	$F = A / \overline{k} B$	$F = A \oplus B$
L	0	1	1	1	$F = (A \cdot \overline{B})$ 減1	$F = A \cdot \overline{B}$	$F = A \cdot \overline{B}$
U	1	0	0	0	$F = A$ 加 $A \cdot B$	F = A加 AB 加1	$F = \overline{A} + B$
	1	0	0	1	$\mathbf{F} = \mathbf{A}$ ЛП \mathbf{B}	$\mathbf{F} = \mathbf{A}$ 加 \mathbf{B} 加1	$F = \overline{A \oplus B}$
	1	0	1	0	$F = (A + \overline{B})$ 加AB	$F = (A + \overline{B})$ 加AB加1	F = B
	1	0	1	1	$F = A \cdot B$ 减1	$F = A \cdot B$	$F = A \cdot B$
	1	1	0	0	$\mathbf{F} = \mathbf{A} \mathbf{J} \mathbf{I} \mathbf{A}$	F = AЛП A ЛП 1	F = 1
	1	1	0	1	$F = (A + B) \perp A$	F = (A + B)加A加1	$F = A + \overline{B}$
	1	1	1	0	$F = (A + \overline{B})$ 加A	$F = (A + \overline{B})$ 加A加1	F = A + B
	1	1	1	1	F = A减1	F = A	F = A

五、 实验内容:

- 1、连接线路,验证 74LS181 的组合功能;
- 2、按给定数据,完成实验指导书中的算术/逻辑运算。

六、 实验器材(设备、元器件):

DVCC 实验机一台、连接线若干根。

DVCC 实验机平面图:

七、 实验步骤:

- 1、连接线路,仔细检查核对后接通电源:
 - (1) ALUBUS 连 EXJ3、ALU01 连 BUS1、SJ2 连 UJ2;
 - (2) 跳线器 J23 上 T4 连 SD;
 - (3) LDDR1, LDDR2, ALUB, SWB 四个跳线器拨在左边;
 - (4) AR 跳线器拨在左边,同时开关 AR 拨在"1" 电平。
- 2、用二进制数据开关 KD7-KD0 (低位) 向 DR1 和 DR2 寄存器置入 8 位运算数据:
 - (1) 开始实验时, 右下方的"停止运行控制"开关向上设置为运行状态;
 - (2) 调拨 8 位数据开关 KD7-KD0 (地位) 为 00110101 (35H), 准备向 DR1 送二进制数据;
 - (3) 数据输出三态缓冲器门控开关 ALUB = 1 (关闭);
 - (4) 数据输入三态缓冲器门控开关SWB=0 (打开);
 - (5) 数据锁存 DRi 控制开关 LDDR1=1 (打开),同时 LDDR2=0 (关闭);打入脉冲信号 T4 (手动脉冲),将数据 35H 置入 DR1;
 - (6) 重复步骤(2)~(6), 其中的步骤(5)将 LDDR1 与 LDDR2 互换, 即可将数据 48H 置入 DR2。
- 3、 检验 DR1 和 DR2 置入的数据:
 - (1) 数据输出三态缓冲器门控开关ALUB=0 (打开);
 - (2) 数据输入三态缓冲器门控开关SWB=1(关闭);
 - (3) 数据锁存 DRi 控制开关 LDDR1、LDDR2=0 (关闭);
 - (4) 设置开关 M、开关 S₃、S₂、S₁、S₀相应值:

如 M = 1, S_3 、 S_2 、 S_1 、 $S_0 = 1111$,验证 8 位数据 DR1; S_3 、 S_2 、 S_1 、 $S_0 = 1010$,验证 8 位数据 DR2。

4、验证 74LS181 的算术和逻辑运算功能:

在给定 DR1=35H、 DR2=48H 的情况下,改变算术逻辑运算功能 发生器的功能设置,观察运算器的输出。

5、填写实验报告表。

将输出结果填入实验报告表中,并和理论分析进行比较、验证。

八、 实验结果与分析(含重要数据结果分析或核心代码流程分析)

1、DVCC 实验机连线结果

2、DR1 验证结果

3、DR2 验证结果

4、实验数据输出表

大型双加制山 农						M = 0 (§		
S_3	S_2	S_1	S_0	DR1	DR2	C _n =1 (无进 位)	C _n = 0 (有进 位)	M=1 (逻辑 运算)
0	0	0	0	35H	48H	00110101	00110110	11001010
0	0	0	1	35H	48H	01111101	01111110	10000010
0	0	1	0	35H	48H	10110111	10111000	01001000
0	0	1	1	35H	48H	11111111	00000000	00000000
0	1	0	0	35H	48H	01101010	01101011	11111111
0	1	0	1	35H	48H	10110010	10110011	10110111
0	1	1	0	35H	48H	11101100	11101101	01111101
0	1	1	1	35H	48H	00110100	00110101	00110101
1	0	0	0	35H	48H	00110101	00110110	11001010
1	0	0	1	35H	48H	01111101	01111110	10000010
1	0	1	0	35H	48H	10110111	10111000	01001000
1	0	1	1	35H	48H	11111111	00000000	00000000
1	1	0	0	35H	48H	01101010	01101011	11111111

1	1	0	1	35H	48H	10110010	10110011	10110111
1	1	1	0	35H	48H	11101100	11101101	01111101
1	1	1	1	35H	48H	00110100	00110101	00110101

结论: 与理论计算验证一致。

5、思考题

- (1) 根据 74LS181 功能表中 M=0 (算术运算): $C_n=1$ (无进位)与 $C_n=0$ (有进位)这两列的运算规则,比较该两列之间结果有何异同? 答: 因为有来自低位的进位,所以 $C_n=0$ (有进位)的结果是 $C_n=1$ (无进位)的"算术加"1。
- (2) 根据 74LS181 功能表中 M=0 (算术运算): $C_n=1$ (无进位)与 $C_n=0$ (有进位),且 $S_3S_2S_1S_0=1001$ 时。根据运算规则,当 DR1=35H, DR2=48H 时:
 - a) 其结果与手工运算的结果比较; 答: $C_n = 1$ (无进位)时,进行的运算是 35H + 48H,应该等于 7DH = 01111101B,与手工计算结果一致; $C_n = 0$ (有进位)时,进行的运算是 35H + 48H + 1 = 7FH = 01111110B,与手工计算结果一致。
 - b) 比较在实验平台上实现两数相加与课程内模型机中加法指令 ADD Ro, R₁ 的执行过程时序控制的差异。

答:课程内模型机加法 ADD 指令执行过程是:

FT₀: $M \rightarrow IR$, $PC+1 \rightarrow PC$;

ST: 无

DT: 无

ET₀: $R_0 \text{ ADD } R_1 \rightarrow R_1$;

ET₁: $PC \rightarrow MAR$:

实验平台上的执行过程是:分别先后将操作数通过脉冲置入对应寄存器中,然后设置 ALU 的算术运算对应的操作码 $S_3S_2S_1S_0$ 为 1001 (算术加),可在运算器输出指示上观察到算术运算后的结果。

九、 总结及心得体会:

此实验主要是对算术逻辑运算器单元 ALU (74LS181) 的工作原理的了解与掌握、对模型机运算器的数据传送通路组成原理的了解以及验证 74LS181 的组合功能并根据按给定数据,完成实验指导书中的算术/逻辑运算。

通过这个实验,我查阅了书籍和网络资源,较清楚地掌握了74LS181芯片的功能和内部运算过程,掌握了74LS181芯片对应的不同控制信号状态,这对于学习《计算机组成原理》中的CPU内部运算逻辑部分有很大的帮助。

十、 对本实验过程及方法、手段的改进建议:

此实验内容较简单,可以组合安排更具挑战性的实验内容激发学生的研究兴趣,供学生实践、提升实验能力。

报告评分:

指导教师签字: