

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Publication number:

0 174 608
A1

⑬

EUROPEAN PATENT APPLICATION

㉑ Application number: 85111225.0

㉑ Int. Cl.4: C 12 N 15/00

㉒ Date of filing: 05.09.85

C 12 P 19/34, C 12 N 5/00
C 12 P 21/02, C 07 K 13/00
C 07 H 21/04

㉓ Priority: 13.09.84 US 650958

㉛ Applicant: THE BOARD OF TRUSTEES OF THE LEAND
STANFORD JUNIOR UNIVERSITY
Encina 105 Stanford University
Stanford, California 94305(US)

㉔ Date of publication of application:

18.03.86 Bulletin 86/12

㉕ Inventor: Leavitt, John C.
1028 Henryton Road
Marriottsville Maryland 21104(US)

㉖ Designated Contracting States:
AT BE CH DE FR GB IT LI LU NL SE

㉗ Inventor: Kedes, Laurence H.
856 Allardice
Stanford California 94305(US)

㉘ Inventor: Gunning, Peter W.
894 San Jude Avenue
Palo Alto California 94306(US)

㉙ Representative: Glawe, Delfs, Moll & Partner
Patentanwälte
Postfach 26 01 62 Liebherrstrasse 20
D-8000 München 26(DE)

㉚ Beta-actin gene and regulatory elements, preparation and use.

㉛ DNA sequences are provided for production of β-actin or untranslated regions of β-actin genes may be employed in conjunction with genes encoding for polypeptides for efficient expression in mammalian hosts. Particularly, the transcriptional and translational initiation and termination regions may be employed, by themselves or in combination with intron sequences for expression of various polypeptides in mammalian host cells.

A
174
608
A1
C
EP

/...

FIG. 2.

BETA-ACTIN GENE AND REGULATORY ELEMENTS,
PREPARATION AND USE

BACKGROUND OF THE INVENTION

5 Field of the Invention

Expression in mammalian hosts offers many opportunities for the production of mammalian proteins, not available to unicellular microorganism hosts. By employing mammalian hosts, one can produce polypeptides which are properly processed, so as to be identical in composition to the native or wild-type protein, including glycosylation, methylation, methionine removal, N-terminal acetylation or formylation, and the like. Furthermore, there may be substantial efficiencies in translation, with concomitant reduction in mutation.

There is also a significant interest in naturally occurring proteins or alleles or mutants thereof, not only for use in research and therapy, but also for commercial purposes, where such polypeptides or proteins may serve in a variety of applications, such as polymeric units, additives, modifiers, bulking agents, or the like. In many situations it will be desirable that a mature polypeptide or protein is obtained, so that the final product has physical and chemical characteristics associated with the natural product.

It is therefore of interest to develop a portfolio of regulatory sequences which can be used in the transcription and translation of naturally occurring polypeptides and proteins including alleles, as well as mutants thereof or totally synthetic polypeptides and proteins based on modifications of naturally occurring analogs.

Furthermore, the protein β -actin serves a variety of structural purposes in the cell. The protein is particularly interesting for its ability to provide

fibrous and film structures which can find commercial use as membranes, fibers, and the like.

Description of the Prior Art

5 Seed, Nuc. Acid Res. (1983) 11:2427-2446 de-
scribes a method for selecting genomic clones by homolo-
gous recombination. The nucleotide sequence for the
mRNA derived from a β -actin cDNA clone is reported by
Ponte et al., ibid (1984) 12:1687-1696. Vandekerckhove,
10 Cell (1980) 22:893-899, reports coexpression of a mutant
 β -actin with two normal β -actins in a stably transformed
human cell line. Ponte et al., Mol. Cell Biol. (1983)
15 3:1783-1791, report the presence of a large multi-pseudo-
gene subfamily for β -actin. Ponte et al., ibid. also
reports the 3'-untranslated regions of β -actin as iso-
type-specific. Nudel et al., Nucleic Acids Res. (1983)
20 11:1759-1771, predicted four intron sequences within
the coding region of β -actin.

SUMMARY OF THE INVENTION

20 β -actin gene alleles including flanking DNA
regulatory regions and introns are provided for expres-
sion of β -actin, as well as a source of regulatory DNA
sequences including introns for use with other genes
for expression in mammalian hosts. The 5'-untranslated
region can be used as a transcriptional and translational
25 region in combination with structural genes, where the
structural gene may be modified by insertion of one or
more introns for efficient processing of the initial
transcription product to produce a mature messenger
RNA. An homologous recombination technique is employed
30 for isolation of complete β -actin genes capable of ex-
pression of β -actin in a mammalian host.

BRIEF DESCRIPTION OF THE FIGURES

Fig. 1 is a diagrammatic depiction of plas-
mid π AN7 β 1; and
35 Fig. 2 is a restriction endonuclease map and
structure of the human β -actin gene M1(β 1)-2.

DESCRIPTION OF THE SPECIFIC EMBODIMENTS

Polynucleotide sequences, combinations of the polynucleotide sequences, self-replicating constructs, host cells containing the constructs and methods employing the various polynucleotide compositions are provided for the expression of β -actin or other polypeptides in mammalian, particularly primate, cells. The sequences include the chromosomal gene for one or more allelic β -actins, including the flanking regions for the structural gene having transcriptional regulatory and translational initiation and termination sequences, coding sequences, intron sequences and cDNA encoding for one or more β -actin polypeptides. The sequences can be employed for expression of β -actin or fragments thereof, particularly fragments involving individual or combined exons, either combined as to β -actin exons or exons expressing other polypeptides. Also, the sequences may find use as probes for the determination of the presence of exons, introns, or flanking regions associated with β -actin in a mammalian, particularly primate, cell or other genes having homologous or partially homologous sequences.

A β -actin chromosomal DNA sequence including 5'- and 3'-flanking regions, introns and exons from a particular fetal source is set forth in the Experimental section. β -actins from other human sources will generally have at least 93 number percent of the same amino acids, usually at least 98 number percent, demonstrating substantial homology between the different β -actins. The β -actin structural gene including exons and introns will generally be about 3500 to 3600, more usually about 3550 nucleotides, inclusive of intron I, which is upstream from the initiation codon and intermediate the initiation codon and the TATA box. The complete cDNA sequence coding for β -actin will generally be of from about 2025 to 2125 nucleotides. The TATA box will generally be about 920 to 960, more usually about 940 nucleo-

tides from the initiation codon. In the sequence in the Experimental section, the TATA box begins at -28 and terminates at -22, while the initiation codon begins at -916.

5 Intron I is subject to polymorphisms associated with different β -actin alleles. Intron I is indicated as beginning at nucleotide 79 and terminating at nucleotide 909. The polymorphic region is in the region of about 103 to 118 as numbered in the sequence. This region may be varied widely, where the sequence indicated has 16 base pairs (bp), other sequences may have up to 34bp or higher. The 5'-flanking region of β -actin may begin with the nucleotide designated as -28 in the sequence or be extended farther upstream, so that the TATA₁₀ box, could be at a position 500, or even 3500 or more base pairs downstream from a restriction site in the chromosomal fragment, so as to provide for a greater non-transcribed region.
15

20 Alternatively, the TATA box may be only 25 to 50bp downstream from the initial nucleotide of the naturally occurring nucleotides present in the chromosomal sequence. Conveniently, all or a portion of intron I may be removed, desirably retaining the termini of intron I, where at least a portion of intron I is retained.
25 Thus, one would wish to retain the splicing donor and acceptor sequences of intron I as well as at least one, preferably at least two, of the nucleotides flanking the intron, in order to favor accurate splicing. In this manner, transcriptional initiation and processing
30 of the resulting messenger RNA may be efficiently achieved with DNA sequences coding for other than β -actin. Desirably, the DNA sequence from the terminus of intron I to the initiation codon can also be retained, so that any foreign DNA joined to that sequence would be joined
35 to all or substantially all of the DNA upstream from the initiation codon of β -actin. Also, the 5'- sequence may extend into the coding region, usually not past the

twelfth nucleotide, more usually not past the ninth nucleotide.

In some instances it may also be desirable to employ introns II, III, IV and/or V in a construction with
5 a structural gene other than β -actin. In these situations, it would be desirable that the nucleotides immediately adjacent to the termini of the introns, which are part of the structural gene coding for the foreign protein have the same nucleotides, at least to the extent
10 of one or two nucleotides, or be a transition, rather than a transversion, replacing a purine or pyrimidine with a purine or pyrimidine respectively. This may provide for enhanced accuracy in splicing. Any modification of the introns should preserve the AG and GT
15 donor and acceptor splicing signals of the intron.

Any structure involving a foreign protein and one or more β -actin introns would involve fragmenting the structural gene encoding for the foreign protein, desirably of fragments of at least about 20 nucleotides,
20 preferably of at least about 50 nucleotides, where the fragments can be conveniently ligated to the one or more introns. Conveniently, adapters may be used having appropriate termini, either cohesive or blunt, where the adapters may extend into the intron and/or exon.

25 The intron may be prepared by cloning the sequences, having derived them from β -actin genes, employing restriction enzyme digestion, exonuclease digestion, or the like, combinations of naturally occurring DNA sequences ligated to synthetic sequences, or combinations thereof. It may be desirable in some instances to mutagenize one or more nucleotides internal to an intron, so as to provide for a convenient restriction site, where relatively short adapters, generally from about 20 to 100 nucleotides may be prepared which can
30 be used to join the intron to the exon to provide for splicing of two exons in proper reading frame. Alternatively, portions of the intron may be removed, for exam-

ple, 10-90 percent of the base pairs, so long as the intron retains its capability of being excised in an appropriate host, e.g., mammalian, particularly mouse or primate.

5 Conveniently, the 3'- untranslated region of a β -actin gene may be employed for transcription and translational signals, particularly translational, since the structural gene will normally include one or more stop codons in reading frame with the mRNA coding 10 sequence. Usually, the 3'- region will be at least 100bp, more usually at least 200bp, and may be 650bp or more depending upon the particular construction.

15 Expression of β -actin or foreign protein involving one or more introns may be achieved in a variety of ways in mammalian host cells. The coding construction involving the β -actin transcriptional initiation region, introns as appropriate and the structural gene present as a contiguous entity or as exons separated by one or more of the β -actin introns may be joined to an 20 appropriate vector. By a vector is intended a replication system recognized by the intended host, where usually there is present one or more markers to ensure the stable maintenance of the DNA construct in the host.

25 Various replication systems include viral replication systems, such as retroviruses, simian virus, bovine papilloma virus, or the like. Alternatively, one may combine the DNA construct with a gene which allows for selection in a host. This gene can complement an auxotrophic host or provide protection from a biocide. 30 Illustrative genes include thymidine kinase, dihydrofolate reductase, which provides protection from methotrexate, or the like. For the most part, markers will provide resistance to a biocide, e.g., G418, methotrexate, etc.; resistance to a heavy metal, e.g., copper; prototrophy to an auxotroph; or the like. Genes which find use include thymidine kinase, dihydrofolate reductase, metallothionein, and the like. In addition, the subject 35

gene may be joined to an amplifiable gene, so that multiple copies of the structural gene of interest may be made. Depending upon the particular system, the gene may be maintained on an extrachromosomal element or be integrated into the host genome.

The foreign gene may come from a wide variety of sources, such as prokaryotes, eukaryotes, pathogens, fungi, plants, mammals, including primates, particularly humans, or the like. These proteins may include hormones, lymphokines, enzymes, capsid proteins, membrane proteins, structural proteins, growth factors and inhibitors, blood proteins, immunoglobulins, etc. The manner in which an individual DNA sequence coding for a protein of interest is obtained, divided into individual exons, and joined to the one or more introns and transcriptional and translational regulatory signals of β -actin will depend upon each individual polypeptide of interest, as well as the information available concerning the DNA sequence coding for such polypeptide.

The β -actin promoter or transcription system including the promoter may be used for the regulation of expression of other genes by regulating transcription of mRNA complementary to another mRNA or portion thereof. In effect, the β -actin promoter would regulate transcription of the nonsense strand or portion thereof of the gene whose expression is to be inhibited. Such inhibition may find use in making an auxotrophic host, inhibiting one pathway in favor of another metabolic pathway, reversing or enhancing oncogenic characteristics of a cell, or the like.

Introduction of the DNA into the host will vary depending upon the particular construction. Introduction can be achieved by transfection, transformation, transduction, or the like, as amply described in scientific literature. The host cells will normally be immortalized cells, that is, cells that can be continuously passaged in culture. For the most part, these cells

will be neoplastic and may be any convenient mammalian cell, which is able to express the desired polypeptide, and where necessary or desirable, process the polypeptide, so as to provide a mature polypeptide. By processing is intended glycosylation, methylation, terminal acylation, e.g., formylation or acetylation, cleavage, or the like. In some instances it may be desirable to provide a leader sequence providing for secretion or directing the product to a particular locus in the cell.

5 For secretion, the host should be able to recognize the leader sequence and the processing signal for peptidase cleavage and removal of the leader.

10 For secretion, the host should be able to recognize the leader sequence and the processing signal for peptidase

15 The isolation, cloning and verification of having a functional β -actin gene is complicated by the existence of numerous pseudogenes. Thus, strategies must be designed which ensure that the sequence obtained is a functional β -actin gene. Furthermore, by having a functional β -actin gene one can employ either untranslated or translated sequences as probes for determining

20 the presence of other β -actin genes in a mammalian cell. The subject strategy for isolating and verifying the cloning of a β -actin gene included selecting genomic clones by homologous recombination.

25 The method employs a miniplasmid into which is inserted a fragment of either the untranslated region or translated region of a β -actin gene. Such a fragment may be obtained by isolation of a portion of the messenger RNA for β -actin. In the subject strategy, the fragment employed was from the 3'-untranslated region. The

30 idea was that homologous recombination would occur with the greatest frequency with those sequences carrying the β -actin gene and having the highest degree of homology with the fragment present in the miniplasmid.

35 The recombination screen is conveniently carried out with a phage library as described by Seed, supra. A host is selected which is recombinant proficient and in which the viral vector of the library is

- unable to propagate. Therefore, only those viruses which undergo recombination with the miniplasmid will survive and can be isolated. Where the miniplasmid has a unique restriction site, and the same recognition sequence exists in the β -actin gene, it is feasible to screen fragments resulting from digestion of the recombinant phage to detect the presence of a fragment having the correct size. In this manner, pseudogenes may be distinguished from true genes.
- Demonstration of β -actin alleles or mutants can be achieved by employing two different phage vectors, where each of the vectors have substantially different size packaging requirements, so that groups of fragments are separated by size. These hybrid phages are then combined with the miniplasmid containing the appropriate β -actin gene fragment for homologous recombination in an appropriate host. Those phage that propagate are then screened with an appropriate probe. It is found that the phage which includes fragments in the range of about 10 to 23kb provides a number of clones which include the complete β -actin gene, while the phage which includes fragments of 2 up to 13kb genomic DNA are found not to have clones with a complete β -actin gene, but rather appear to be pseudogenes.
- The recombinant DNA produced β -actin can be used in a variety of ways. The protein is fibrous and can be used to make fibers or other structures. Furthermore, based on the differences between β - and γ -actins, one can modify the β -actin to change its structural properties. Thus, a variety of β -actins having different chemical and physical properties can be produced which can be used by themselves or in combination with other polyamides for the production of a wide variety of articles, such as fibers, films, formed objects, or the like. These pure fiber subunits will be synthesized in pro- and eukaryotes.

The DNA sequences which are provided can be used as probes, being used to detect mutational defects in β -actin and relating the mutational defects to cytoskeletal dysfunction as well as altered cellular phenotype.

5 type.

The following examples are offered by way of illustration and not by way of limitation.

EXPERIMENTAL

Materials and Methods

10 General Methods.

Growth and transformation of E. coli, colony hybridization (Grunstein and Hogness, Proc. Natl. Acad. Sci. USA (1975) 72:3961-3965), and purification of plasmid DNA followed standard protocols as described previously (Childs et al., Dev. Biol. (1979) 73:153-173). Preparation of Charon 4A and λ gtWES phage recombinant DNA, agarose gels and hybridization blots, and the conditions used for hybridization were as described previously (Ponte et al., Mol. Cell Biol. (1983) 3:1783-1791).

15 20 Genomic DNA preparation from mammalian cells, DNA digestion with restriction enzymes, and hybridizations performed on nitrocellulose blots with dextran sulfate present were conducted as described by Ponte et al., Nature (1981) 291:594-596. The human cell strains were grown and maintained as previously described (Leavitt and Kakunaga, J. Biol. Chem. (1980) 255:1650-1661).

25

Construction of the KD, HuT-14, and HuT-14T Human Gene Libraries.

Purified λ Charon 4A (Blattner et al., Science 30 (1977) 196:161-169) vector DNA (EcoRI arms), λ gtWESAB (Leder et al., Science (1977) 196:175-178) vector DNA (full length phage genome) and packaging extracts prepared from E. coli strains BHB2688 and BHB2690 were purchased from Amersham (Arlington Heights, IL). Fully or partially EcoRI digested fragments from genomic DNA,

2kb to 14kb or 10kb to 23kb, were purified from 5.5% agarose gels [Seakem HGT(P)] by adsorption to glass powder (Vogelstein and Gillespie, Proc. Natl. Acad. Sci. USA (1979) 76:615-619). Two to 14kb EcoRI DNA fragments were ligated to λ gtWES DNA arms that were generated by EcoRI and SacI digestion of λ gtWES λ B DNA. Ten kb, or 12kb to 23kb, DNA EcoRI fragments (full or partial digests) were ligated into λ Charon 4A EcoRI arms. The ligation reaction consisted of 1 part human insert DNA and 3 parts vector DNA, 66mM Tris-HCl pH7.4, 5mM MgCl₂, 1mM ATP, 5mM dithiothreitol, 100 μ g bovine serum albumin (Fraction 5), and T4 ligase. Ligation reactions (13°C overnight) were always tested for completion by agarose gel analysis of reaction aliquots taken at the beginning and ends of the ligation reaction. Four μ l of the ligation reaction products were mixed with the two packaging extracts and phage assembly was allowed for two hours at room temperature. Packaging reactions were then diluted with 0.5ml of phage dilution buffer (10mM Tris-HCl pH 7.4, 10mM MgSO₄, and 0.01% gelatin) followed immediately by 10 μ l of chloroform and storage at 4°C. Packaging titers were determined by infection of E. coli LE392.

Construction of the π AN7 β 1 Miniplasmid.

A 600bp EcoRI to BamHI fragment of the cDNA (β -actin 3'UTR sequence) insert in pHF β A-3'UT (Ponte et al. (1983), supra) was purified by gel electrophoresis and adsorption to glass powder and then ligated to the EcoRI to BamHI large fragment (alkaline phosphatase treated) of plasmid π AN7. (A derivative of π VX (Seed (1983), supra, which contains the tyrosinyl suppressor tRNA gene (SupF) and a polylinker with eight restriction sites. Also, the colicin E1 replicon is present, see Fig. 1. The 600bp 3'-untranslated sequences (3'UTR) EcoRI-BamHI fragment is inserted into the restriction sites of the polylinker.) E. coli W3110(p3) (need cita-

tion) was transformed with the ligation mixture and plasmid DNA from individual ampicillin-resistant (Amp^R) and tetracycline-resistant (Tet^R) colonies was amplified. The structure of $\pi\text{AN7}\beta 1$ (the 3'-UTR sequence is oriented 5 so that the SalI site in the miniplasmid is placed near the junction between the 3'-terminus of the 3'-UTR and the miniplasmid) was confirmed by restriction analysis and DNA blotting experiments.

Selection of $\pi\text{AN7}\beta 1$ Recombinant λ Phage.

10 A recombination screen (Seed (1983), supra; DiMaio et al., Mol. Cell Biol. (1984) 4:340-350) to isolate phage containing DNA homologous to the 3'UTR sequence in $\pi\text{AN7}\beta 1$ from a highly amplified gene library (Maniatis et al., Cell (1978) 15:687-701) was performed. 15 The library was prepared by ligation of partial EcoRI digests of DNA derived from a human fetus to the Charon 4A vector. Phage stocks were prepared by infecting bacteria carrying $\pi\text{AN7}\beta 1$ with 10^6 PFU of the Charon 4A library. Phage able to form plaques on W3110(Su^-) bacteria were present in the lysate at frequencies between 20 10^{-7} and 10^{-9} . See Table 1.

The presence of actin coding sequences as well as the 3'UTR and plasmid vector sequence in these rare clones was confirmed by blotting experiments on 25 Southern transfers of restriction endonuclease-digested DNA isolated after propagation of phage from individual plaques.

Recombination screens were then performed as above on unamplified phage in packaging reactions that 30 were generated by ligation of EcoRI digested HuT-14 and HuT-14T DNA ligated to the λ gtWES vector arms (Leder et al. (1977), supra) and phage packaging reactions that were generated by ligation of EcoRI digested KD, HuT-14 and HuT-14T DNA (cell line sources) ligated to the Charon 35 4A vector arms. Frequencies of recovery of library phage clones by recombination selection that contain the β -actin gene are presented in Table 2.

TABLE I: Selection of Phage Clones Containing Actin Sequences by $\pi\text{AN7}\beta 1$ Recombination

Recombination Trial	Clone	Frequency of Recovery	Genomic EcoRI Fragment with Coding ^{a,b}			Addition EcoRI Fragments with only 3'UTR seq.
			5' coding sequence	3' coding sequence	3'UTR sequence	
I	M1(β1)-1	1.3×10^{-7}	5.0kb	-	+	+
	M1(β1)-2	3.3×10^{-9}	6.6kb	+	+	1.4kb, 1.5kb
10	M4(β9)-1	3.8×10^{-8}	2.2kb	-	+	7.1kb, 1.5kb
	M4(β9)-2	7.4×10^{-8}	5.8kb	-	+	1.0kb
	M4(β9)-3	1.8×10^{-8}	2.0kb	-	+	1.1kb

^a the 5' coding probe was an Avai restriction fragment for amino acids 1 through 98 of human skeletal actin (Gunning, et al., Mol. Cell. Bio. (1983) 3:787-795);

^b the 3' coding probe was a KpnI restriction fragment for amino acids 301 through 374 and part of the 3'UTR sequence of a chick β-actin cDNA (Engel, et al., Proc. Natl. Acad. Sci. USA (1981) 78:4674-4678).

TABLE 2: Components of the Human HuT-14/HuT-14T Gene Libraries

5	Source of Human DNA	Vector	Sizes of EcoRI Fragments Cloned	Human Haploid Genome Equivalents		Frequency of Clones with β -Actin Sequence per 10^5 Phage Recombinants
				Cloned	Recombinant	
HuT-14	λ gtWES		2kb to 14kb	3.8		8.3 b
HuT-14T	λ gtWES		2kb to 14kb	9.0		7.1 b
10	HuT-14	Charon 4A	12kb to 23kb	30.0 ^a		4.0 b
HuT-14T	Charon 4A		10kb to 23kb	30.0 ^a		5.0 b
HuT-14T	Charon 4A	10kb to 23kb (partial digest fragments)		0.6		5.9 c
15						

^a calculated from the frequency of recovery of the β -actin gene^b the frequency of recovery of library phage clones containing β -actin sequences selected by $\pi\text{AN7}\beta 1$ recombination^c the frequency of recovery of library phage clones containing β -actin sequences selected by in situ plaque hybridization with the 3'UTR probe

A recombination was performed in which 10^6 PFU of library phage were amplified by infection in the recombinant proficient E. coli strain WoP3 π AN7 β 1. Lytic progeny phage from the amplification were used to infect 5 a host strain (WoP3Sup0) in which Charon 4A phage do not propagate, so that no lytic plaques are produced in the absence of recombination. Infection of the host produced plaques at a consistent frequency between 10^7 - 10^9 of its true titer. All phage that were isolated 10 contained actin coding sequences and had undergone recombination with the π AN7 β 1 plasmid.

Five distinct phage clones were selected as set forth in Table 1, with the sizes of the EcoRI fragments containing coding or non-coding 3'-UTR sequences 15 indicated. In the recombination trial, 50 of the 51 plaques isolated were identical and designated M1(β 1)-1. In addition to three EcoRI fragments that contained actin coding sequences (5.0kb, 1.4kb, 1.5kb), one additional EcoRI fragment (3.5kb) which lacked an actin 20 coding sequence was common to all 50 isolates. A single additional plaque (M1(β 1)-2) contained a different phage with a different set of EcoRI fragments: three fragments contained actin sequences (6.6kb, 7.1kb and 1.5kb) and two fragments lacked actin sequences (2.0kb and 1.2kb).

25 A second recombination trial produced three additional and still different recombinant clones (Table 1). The recovery of different plaque types during independent trials was interpreted as being a result of the skewed nature of the human lambda library as well as 30 the degree of sequence similarity between the π AN7 β -actin insert and the various genomic β -actin sequences.

M1(β 1)-2 was distinguished from the other isolates in that it hybridized to a probe that contained the 5'-actin coding sequence (codons 1-98). SalI digestion of M1(β 1)-2 generates a 2500bp fragment that contains most of the coding sequences for β -actin plus the 3'UTR sequence. The nucleotide sequence of the fragment 35

- was determined, which confirmed the position of the SalI site at codon 10 and the existence of four intron regions, the sum of whose lengths is 731bp. Furthermore, the nucleotide sequences of the coding regions of
- 5 M1(β 1)-2 was shown to be identical to the β -actin cDNA sequence. Restriction mapping of lambda clone M1(β 1)-2 demonstrated the presence of the β -actin sequence on a 12.2kb genomic fragment which divided into two EcoRI fragments of 6.6 and 7.1kb by π AN7 β 1 recombination.
- 10 Size fractionated EcoRI fragments ranging from 10 to 12kb and larger from HuT-14 and HuT-14T DNA were used to prepare recombinant phage. See Table 2. Amplification aliquots (10^4 packaging events) were first screened by π AN7 β 1 recombinant selection to determine
- 15 which library aliquots contained any β -actin genes or pseudogenes. Those library aliquots that contained β -actin 3'UTR sequences were rescreened by conventional in situ plaque hybridization to select clones that hybridized to the 3'UTR probe. Following purification,
- 20 each β -actin clone was recombined with π AN7 β 1 and the recombinant forms examined by EcoRI and SalI restriction endonuclease digestion and the resulting DNA fragments hybridized with intron I, 3'UTR and coding probes to fully assess their identity and relatedness. Table 3
- 25 summarizes the characteristics of each clone that was isolated in this way.

0174608

17

TABLE 3: Clones of β -Actin Sequences Isolated from Libraries of 10kb to 23kb EcoRI Fragments

Library Source	Clone	Distance from the 5'EcoRI site to 3'end of the 3'UTR (Sall site) (kb)		2.5kb Sall Fragment	Hybridization to the Intron I Probe
		Genomic EcoRI Fragment size (kb)	^a		
HuT-14T	14T β -15	13.8	6.6	+	+
fully digested	14T β -16	13.8	6.6	+	+
10 to 23kb	14T β -17	13.8	6.6	+	+
EcoRI fragments in Charon 4A	14T β -18	11.0	4.3	-	+
	14T β -19	13.8	6.6	+	+
	14T β -20	13.8	6.6	+	+
	14T β -21	13.8	6.6	+	+
	14T β -22	14.2	8.5	-	+
	14T β -23	13.8	6.6	+	+
	14T β -24	13.8	6.6	+	+
HuT-14	14 β -25	18.5	14.6	-	-
fully digested	14 β -26	14.4	6.0	+	+
10 to 23kb	14 β -27	13.8	6.6	+	+
EcoRI fragments in Charon 4A	14 β -28	nd	14.1	-	-
	14 β -29	13.8	6.6	+	+
	14 β -30	13.8	6.6	+	+
	14 β -31	13.8	6.6	+	+
	14 β -32	13.8	6.6	+	+

CONTINUED ON NEXT PAGE

TABLE 3: Clones of β -Actin Sequences Isolated from Libraries of 10kb to 23kb EcoRI Fragments
(CONTINUED FROM PREVIOUS PAGE)

5	Library Source	Clone	Genomic <u>EcoRI</u> Fragment size (kb)	Distance from ^a the 5' <u>EcoRI</u> site to 3' end of the 3'UTR (Sall site) (kb)	2.5kb ^b <u>Sall</u> Fragment	Hybridization to the <u>Intron I Probe</u>
10	KD	KD β -1	13.8	6.6	+	+
	fully digested 10 to 23kb <u>EcoRI</u> fragments in Charon 4A					
15	HuT-14T partially digested 10 to 23kb <u>EcoRI</u> fragments in Charon 4A	14T β -1 14T β -2 14T β -4 14T β -5 14T β -12	5.3 10.5 4.3 8.1 2.9	4.3 7.9 3.8 nd nd	- - - -	- - - -
20						

^a π AN7 β 1 recombinant phage clones were constructed with plaque pure clones selected by in situ plaque hybridization with the 3'UTR probe; prior to recombination each clone contained a single human EcoRI fragment; following recombination two EcoRI fragments were generated by insertion of π AN7 β 1 into the genomic EcoRI fragment; the sizes of the two EcoRI fragments generated and identification of the fragment containing coding and intron I sequences revealed the position of the β -actin sequence within the genomic EcoRI fragment

^b the 2.5kb Sall fragment is generated as a result of π AN7 β 1 insertion during recombination and is characteristic of the β -actin gene (Fig. 1)

In total, eight of ten isolates from HuT-14T DNA and five of eight isolates from HuT-14 DNA contained a β -actin gene similar to the that found in M1(β 1)-2, each of these separate clones hybridizing strongly to
5 the intron probe. In addition, the π AN7 β 1 recombinants contained the characteristic 2.5kb SalI restriction endonuclease fragment carrying the β -actin coding, intron and 3'UTR sequences. The size of the uninterrupted genomic fragment for these clones was about 13.8kb.

10 The EcoRI restriction endonuclease fragment carrying the β -actin gene, including its introns, in the π AN7 β 1 KD, HuT-14 and HuT-14T recombinants is 8.2kb long (Table 3). By contrast, EcoRI fragments bearing the β -actin gene in M1(β 1)-2, derived from the human
15 fetal DNA library, appear to be only 6.6kb long.

To determine whether the differences in fragment lengths was due to a restriction site polymorphism or represented paralogous alleles, EcoRI digestion fragments of the three of the π AN7 β 1 recombinant β -actin
20 clones from HuT-14 DNA (14 β -27(β 1), 14 β -29(β 1), and 14 β -30(β 1)) and the fetal gene clone M1(β 1)-2 were subcloned into pBR322. These subclones were digested with EcoRI and the resulting fragments separated by agarose gel electrophoresis. The blots were first hybridized
25 to the β -actin intron I probe and then the same blot hybridized with the β -actin 3'UTR probe. The intron probe hybridized to the 8.2kb EcoRI fragment of 14 β -27(β 1), 14 β -29(β 1), and 14 β -30(β 1) and the 6.6kb EcoRI fragment of M1(β 1)-2. By contrast, the 3'UTR probe
30 hybridized at the 7.1kb EcoRI DNA fragment, common to all four clones, as well as to the 8.2kb or 6.6kb EcoRI fragments containing the intron I sequences. This result indicates that the genes isolated from HuT-14 and HuT-14T DNA differ from the fetus-derived gene in
35 M1(β 1)-2 in the location of an EcoRI site in the genomic DNA flanking the 5' region of the β -actin gene. All 13 independent π AN7 β 1 recombinant clones derived from both

HuT libraries and one additional clone derived from the KD cell DNA library have an identical arrangement with regard to the positions of flanking EcoRI sites. The uninterrupted EcoRI fragment and the corresponding 5 non- π AN7 recombinant clones is 13.8kb, from which it is concluded that the β -actin gene probably resides on a 13.8kb genomic EcoRI fragment.

The sequences derived from the gene in M1(β 1)-2 and from a cDNA clone (Ponte et al., Nuc. Acids Res. 10 (1984) 12:1687-1696) show that codons 243, 244, and 245 (-Asp-Gly-Gln-) were encoded by GAC GGC CAA. Since the first β -actin mutation of HuT-14 resulted in an exchange of the glycine (codon 244) for an aspartic acid residue, the predicted sequence for codon 244 after the mutation 15 is GAC. The unmutated sequence GGCC (codons 244 and 245) is a restriction site for the endonuclease HaeIII, a site which should be absent in mutant copies of the gene from HuT-14 and HuT-14T. BstEII sites flank the mutation site and cleave between the codon 158 and 159 20 and at a site 38bp into intron IV respectively. This BstEII fragment (366bp) was isolated from the DNA of three plasmid subclones of the HuT-14 π AN7 β 1 derived β -actin genes (the 8.2kb EcoRI fragment from 14 β -27(β 1), 14 β -29(β 1), and 14 β -30(β 1) and three additional plasmid 25 subclones from non- π AN7 derived HuT-14T β -actin genes (the 13.8kb EcoRI fragment from 14T β -17, 14T β -21 and 14T β -24). Within this BstEII fragment there are HaeIII sites at codons 182, 203, 204, 228 and 244, the site of the mutation (Fig. 2). Digestion of the BstEII fragment 30 from the wild-type β -actin gene with HaeIII generates five restriction fragments of 71, 65, 72, 52 and 106bp, respectively, whereas the mutated gene missing the HaeIII site at codon 244 should produce four restriction fragments of 71, 65, 72 and 158bp. Four of six clones 35 from HuT-14 (clones 14 β -27(β 1) and 14 β -29(β 1)) and HuT-14T (clones 14T β -21 and 14T β -24) exhibited the 158bp HaeIII-BstEII fragment indicative of copies of the gene

- mutated at codon 244. The two remaining clones 14 β -30(β 1) and 14T β -17 exhibited the wild-type digestion pattern indicative of the normal unmutated gene. Thus, the β -actin genes cloned from the HuT-14 and HuT-14T DNA 5 libraries represent both the wild-type and mutant alleles. Furthermore, the presence of the predicted mutation in one of the alleles formally proves that these genes, and not the other EcoRI β -actin coding fragments, are the expressed β -actin genes in these human fibroblast strains.
- 10 The sequences of the genes carrying the mutations confirms that these genes are expressed.

A β -actin expression vector providing the β -actin promoter region, a polylinker and a polyadenylation signal was constructed where the expression construct was 15 present on a vector having a bacterial origin of replication, as well as a marker for selection in a mammalian host.

A 4.3kb EcoRI-AluI fragment containing 3.4kb of the DNA upstream of the CAP site plus 5'-untranslated 20 region plus IVSI terminating at the splice junction was isolated such that the sequence terminates 6bp from the initiation codon; this fragment was obtained from clone 14T β 17. Plasmid pSP64 (Melton, et al., Nucl. Acids Res. (1984) 12:7035-7056) was digested with BamHI, the 25 overhang filled in with the Klenow fragment, followed by digestion with EcoRI and ligation to the EcoRI-AluI β -actin fragment. The resulting plasmid was first digested with HindIII, the HindIII site filled in with the Klenow fragment, followed by digestion with EcoRI 30 to provide an EcoRI-flush HindIII fragment containing the β -actin sequence.

Plasmid pcDV1 (Okayama and Berg, Mol. Cell. Biol. (1983) 3:280-289) was employed for the SV40 polyadenylation signal corresponding to a BamHI-BclI (map 35 positions 0.145 to 0.19) fragment. The SalI and AccI sites were destroyed by sequentially digesting the plasmid with the appropriate restriction enzyme, removing

the overhang with S1 nuclease and ligating the resulting flush ends. The resulting plasmid was then digested with XhoI, which is present proximal to the 5'-terminus of the SV40 polyadenylation signal containing fragment, 5 the XhoI site filled in, followed by digestion of linear fragments with EcoRI to provide an EcoRI-flush XhoI fragment. This fragment was then ligated with the EcoRI-flush HindIII fragment containing the β -actin sequences. The resulting plasmid was digested with EcoRI and ClaI 10 to provide a linear fragment containing the promoter region from β -actin, a polylinker sequence, and the SV40 polyadenylation site.

Plasmids pSV2-neo (Southern and Berg, J. Mol. Appl. Genet. (1982) 1:327-341) and pSV2-gpt (Mulligan and Berg, Proc. Natl. Acad. Sci. USA (1981) 78:2072-2076) 15 were each sequentially digested with HindIII and BamHI, followed by filling in the overhang with the Klenow fragment and recircularizing. The resulting modified plasmids were then digested with PvuII and EcoRI to 20 provide new fragments having the SV40 origin and SV40 promoter, and either the neomycin phosphoryl transferase gene or xanthine guanine phosphoribosyl transferase gene, followed by the SV40 polyadenylation site.

The neo fragment and gpt fragments were inserted into the ClaI-EcoRI fragment to provide expression vectors which could be selected by G418 resistance or resistance to aminopterin and mycophenolic acid, respectively. The vectors were then ready for use for insertion of a gene for expression in a mammalian host 30 under the regulatory control of the β -actin promoter and for selection of recipient mammalian cells.

The following represents the complete sequence for the β -actin gene, including flanking regions, which include the promoter region and the termination 35 region, as well as the introns, indicating the splicing sites for the introns.

0174608

24

AAC CCG TGC TAC GTC CCC CTC GAC TTC GAG CAA GAG ACG ATG GCC ACC TCC AGC TCC CTC GAG AAG AGC TAC GAG CTC CCT GAC GCC CAC GTC
 222
 Lys Leu Cys Tyr Val Ala Leu Asp Phe Glu Glu Met Ala Thr A18 A14 Ser Ser Ser Leu Glu Lys Ser Tyr Glu Leu Pro Asp Glu Gin Val
 240
 230
 250
 270
 290
 310
 330
 350
 370
 390
 410
 430
 450
 470
 490
 510
 530
 550
 570
 590
 610
 630
 650
 670
 690
 710
 730
 750
 770
 790
 810
 830
 850
 870
 890
 910
 930
 950
 970
 990
 1010
 1030
 1050
 1070
 1090
 1110
 1130
 1150
 1170
 1190
 1210
 1230
 1250
 1270
 1290
 1310
 1330
 1350
 1370
 1390
 1410
 1430
 1450
 1470
 1490
 1510
 1530
 1550
 1570
 1590
 1610
 1630
 1650
 1670
 1690
 1710
 1730
 1750
 1770
 1790
 1810
 1830
 1850
 1870
 1890
 1910
 1930
 1950
 1970
 1990
 2010
 2030
 2050
 2070
 2090
 2110
 2130
 2150
 2170
 2190
 2210
 2230
 2250
 2270
 2290
 2310
 2330
 2350
 2370
 2390
 2410
 2430
 2450
 2470
 2490
 2510
 2530
 2550
 2570
 2590
 2610
 2630
 2650
 2670
 2690
 2710
 2730
 2750
 2770
 2790
 2810
 2830
 2850
 2870
 2890
 2910
 2930
 2950
 2970
 2990
 3010
 3030
 3050
 3070
 3090
 3110
 3130
 3150
 3170
 3190
 3210
 3230
 3250
 3270
 3290
 3310
 3330
 3350
 3370
 3390
 3410
 3430
 3450
 3470
 3490
 3510
 3530
 3550
 3570
 3590
 3610
 3630
 3650
 3670
 3690
 3710
 3730
 3750
 3770
 3790
 3810
 3830
 3850
 3870
 3890
 3910
 3930
 3950
 3970
 3990
 4010
 4030
 4050
 4070
 4090
 4110
 4130
 4150
 4170
 4190
 4210
 4230
 4250
 4270
 4290
 4310
 4330
 4350
 4370
 4390
 4410
 4430
 4450
 4470
 4490
 4510
 4530
 4550
 4570
 4590
 4610
 4630
 4650
 4670
 4690
 4710
 4730
 4750
 4770
 4790
 4810
 4830
 4850
 4870
 4890
 4910
 4930
 4950
 4970
 4990
 5010
 5030
 5050
 5070
 5090
 5110
 5130
 5150
 5170
 5190
 5210
 5230
 5250
 5270
 5290
 5310
 5330
 5350
 5370
 5390
 5410
 5430
 5450
 5470
 5490
 5510
 5530
 5550
 5570
 5590
 5610
 5630
 5650
 5670
 5690
 5710
 5730
 5750
 5770
 5790
 5810
 5830
 5850
 5870
 5890
 5910
 5930
 5950
 5970
 5990
 6010
 6030
 6050
 6070
 6090
 6110
 6130
 6150
 6170
 6190
 6210
 6230
 6250
 6270
 6290
 6310
 6330
 6350
 6370
 6390
 6410
 6430
 6450
 6470
 6490
 6510
 6530
 6550
 6570
 6590
 6610
 6630
 6650
 6670
 6690
 6710
 6730
 6750
 6770
 6790
 6810
 6830
 6850
 6870
 6890
 6910
 6930
 6950
 6970
 6990
 7010
 7030
 7050
 7070
 7090
 7110
 7130
 7150
 7170
 7190
 7210
 7230
 7250
 7270
 7290
 7310
 7330
 7350
 7370
 7390
 7410
 7430
 7450
 7470
 7490
 7510
 7530
 7550
 7570
 7590
 7610
 7630
 7650
 7670
 7690
 7710
 7730
 7750
 7770
 7790
 7810
 7830
 7850
 7870
 7890
 7910
 7930
 7950
 7970
 7990
 8010
 8030
 8050
 8070
 8090
 8110
 8130
 8150
 8170
 8190
 8210
 8230
 8250
 8270
 8290
 8310
 8330
 8350
 8370
 8390
 8410
 8430
 8450
 8470
 8490
 8510
 8530
 8550
 8570
 8590
 8610
 8630
 8650
 8670
 8690
 8710
 8730
 8750
 8770
 8790
 8810
 8830
 8850
 8870
 8890
 8910
 8930
 8950
 8970
 8990
 9010
 9030
 9050
 9070
 9090
 9110
 9130
 9150
 9170
 9190
 9210
 9230
 9250
 9270
 9290
 9310
 9330
 9350
 9370
 9390
 9410
 9430
 9450
 9470
 9490
 9510
 9530
 9550
 9570
 9590
 9610
 9630
 9650
 9670
 9690
 9710
 9730
 9750
 9770
 9790
 9810
 9830
 9850
 9870
 9890
 9910
 9930
 9950
 9970
 9990
 10010
 10030
 10050
 10070
 10090
 10110
 10130
 10150
 10170
 10190
 10210
 10230
 10250
 10270
 10290
 10310
 10330
 10350
 10370
 10390
 10410
 10430
 10450
 10470
 10490
 10510
 10530
 10550
 10570
 10590
 10610
 10630
 10650
 10670
 10690
 10710
 10730
 10750
 10770
 10790
 10810
 10830
 10850
 10870
 10890
 10910
 10930
 10950
 10970
 10990
 11010
 11030
 11050
 11070
 11090
 11110
 11130
 11150
 11170
 11190
 11210
 11230
 11250
 11270
 11290
 11310
 11330
 11350
 11370
 11390
 11410
 11430
 11450
 11470
 11490
 11510
 11530
 11550
 11570
 11590
 11610
 11630
 11650
 11670
 11690
 11710
 11730
 11750
 11770
 11790
 11810
 11830
 11850
 11870
 11890
 11910
 11930
 11950
 11970
 11990
 12010
 12030
 12050
 12070
 12090
 12110
 12130
 12150
 12170
 12190
 12210
 12230
 12250
 12270
 12290
 12310
 12330
 12350
 12370
 12390
 12410
 12430
 12450
 12470
 12490
 12510
 12530
 12550
 12570
 12590
 12610
 12630
 12650
 12670
 12690
 12710
 12730
 12750
 12770
 12790
 12810
 12830
 12850
 12870
 12890
 12910
 12930
 12950
 12970
 12990
 13010
 13030
 13050
 13070
 13090
 13110
 13130
 13150
 13170
 13190
 13210
 13230
 13250
 13270
 13290
 13310
 13330
 13350
 13370
 13390
 13410
 13430
 13450
 13470
 13490
 13510
 13530
 13550
 13570
 13590
 13610
 13630
 13650
 13670
 13690
 13710
 13730
 13750
 13770
 13790
 13810
 13830
 13850
 13870
 13890
 13910
 13930
 13950
 13970
 13990
 14010
 14030
 14050
 14070
 14090
 14110
 14130
 14150
 14170
 14190
 14210
 14230
 14250
 14270
 14290
 14310
 14330
 14350
 14370
 14390
 14410
 14430
 14450
 14470
 14490
 14510
 14530
 14550
 14570
 14590
 14610
 14630
 14650
 14670
 14690
 14710
 14730
 14750
 14770
 14790
 14810
 14830
 14850
 14870
 14890
 14910
 14930
 14950
 14970
 14990
 15010
 15030
 15050
 15070
 15090
 15110
 15130
 15150
 15170
 15190
 15210
 15230
 15250
 15270
 15290
 15310
 15330
 15350
 15370
 15390
 15410
 15430
 15450
 15470
 15490
 15510
 15530
 15550
 15570
 15590
 15610
 15630
 15650
 15670
 15690
 15710
 15730
 15750
 15770
 15790
 15810
 15830
 15850
 15870
 15890
 15910
 15930
 15950
 15970
 15990
 16010
 16030
 16050
 16070
 16090
 16110
 16130
 16150
 16170
 16190
 16210
 16230
 16250
 16270
 16290
 16310
 16330
 16350
 16370
 16390
 16410
 16430
 16450
 16470
 16490
 16510
 16530
 16550
 16570
 16590
 16610
 16630
 16650
 16670
 16690
 16710
 16730
 16750
 16770
 16790
 16810
 16830
 16850
 16870
 16890
 16910
 16930
 16950
 16970
 16990
 17010
 17030
 17050
 17070
 17090
 17110
 17130
 17150
 17170
 17190
 17210
 17230
 17250
 17270
 17290
 17310
 17330
 17350
 17370
 17390
 17410
 17430
 17450
 17470
 17490
 17510
 17530
 17550
 17570
 17590
 17610
 17630
 17650
 17670
 17690
 17710
 17730
 17750
 17770
 17790
 17810
 17830
 17850
 17870
 17890
 17910
 17930
 17950
 17970
 17990
 18010
 18030
 18050
 18070
 18090
 18110
 18130
 18150
 18170
 18190
 18210
 18230
 18250
 18270
 18290
 18310
 18330
 18350
 18370
 18390
 18410
 18430
 18450
 18470
 18490
 18510
 18530
 18550
 18570
 18590
 18610
 18630
 18650
 18670
 18690
 18710
 18730
 18750
 18770
 18790
 18810
 18830
 18850
 18870
 18890
 18910
 18930
 18950
 18970
 18990
 19010
 19030
 19050
 19070
 19090
 19110
 19130
 19150
 19170
 19190
 19210
 19230
 19250
 19270
 19290
 19310
 19330
 19350
 19370
 19390
 19410
 19430
 19450
 19470
 19490
 19510
 19530
 19550
 19570
 19590
 19610
 19630
 19650
 19670
 19690
 19710
 19730
 19750
 19770
 19790
 19810
 19830
 19850
 19870
 19890
 19910
 19930
 19950
 19970
 19990
 20010
 20030
 20050
 20070
 20090
 20110
 20130
 20150
 20170
 20190
 20210
 20230
 20250
 20270
 20290
 20310
 20330
 20350
 20370
 20390
 20410
 20430
 20450
 20470
 20490
 20510
 20530
 20550
 20570
 20590
 20610
 20630
 20650
 20670
 20690
 20710
 20730
 20750
 20770
 20790
 20810
 20830
 20850
 20870
 20890
 20910
 20930
 20950
 20970
 20990
 21010
 21030
 21050
 21070
 21090
 21110
 21130
 21150
 21170
 21190
 21210
 21230
 21250
 21270
 21290
 21310
 21330
 21350
 21370
 21390
 21410
 21430
 21450
 21470
 21490
 21510
 21530
 21550
 21570
 21590
 21610
 21630
 21650
 21670
 21690
 21710
 21730
 21750
 21770
 21790
 21810
 21830
 21850
 21870
 21890
 21910
 21930
 21950
 21970
 21990
 22010
 22030
 22050
 22070
 22090
 22110
 22130
 22150
 22170
 22190
 22210
 22230
 22250
 22270
 22290
 22310
 22330
 22350
 22370
 22390
 22410
 22430
 22450
 22470
 22490
 22510
 22530
 22550
 22570
 22590
 22610
 22630
 22650
 22670
 22690
 22710
 22730
 22750
 22770
 22790
 22810
 22830
 22850
 22870
 22890
 22910
 22930
 22950
 22970
 22990
 23010
 23030
 23050
 23070
 23090
 23110
 23130
 23150
 23170
 23190
 23210
 23230
 23250
 23270
 23290
 23310
 23330
 23350
 23370
 23390
 23410
 23430
 23450
 23470
 23490
 23510
 23530
 23550
 23570
 23590
 23610
 23630
 23650
 23670
 23690
 23710
 23730
 23750
 23770
 23790
 23810
 23830
 23850
 23870
 23890
 23910
 23930
 23950
 23970
 23990
 24010
 24030
 24050
 24070
 24090
 24110
 24130
 24150
 24170
 24190
 24210
 24230
 24250
 24270
 24290
 24310
 24330
 24350
 24370
 24390
 24410
 24430
 24450
 24470
 24490
 24510
 24530
 24550
 24570
 24590
 24610
 24630
 24650
 24670
 24690
 24710
 24730
 24750
 24770
 24790
 24810
 24830
 24850
 24870
 24890
 24910
 24930
 24950
 24970
 24990
 25010
 25030
 25050
 25070
 25090
 25110
 25130
 25150
 25170
 25190
 25210
 25230
 25250
 25270
 25290
 25310
 25330
 25350
 25370
 25390
 25410
 25430
 25450
 25470
 25490
 25510
 25530
 25550
 25570
 25590
 25610
 25630
 25650
 25670
 25690
 25710
 25730
 25750
 25770
 25790
 25810
 25830
 25850
 25870
 25890
 25910
 25930
 25950
 25970
 25990
 26010
 26030
 26050
 26070
 26090
 26110
 26130
 26150
 26170
 26190
 26210
 26230
 26250
 26270
 26290
 26310
 26330
 26350
 26370
 26390
 26410
 26430
 26450
 26470
 26490
 26510
 26530
 26550
 26570
 26590
 26610
 26630
 26650
 26670
 26690
 26710
 26730
 26750
 26770
 26790
 26810
 26830
 26850
 26870
 26890
 26910
 26930
 26950
 26970
 26990
 27010
 27030
 27050
 27070
 27090
 27110
 27130
 27150
 27170
 27190
 27210
 27230
 27250
 27270
 27290
 27310
 27330
 27350
 27370
 27390
 27410
 27430
 27450
 27470
 27490
 27510
 27530
 27550
 27570
 27590
 27610
 27630
 27650
 27670
 27690
 27710
 27730
 27750
 27770
 27790
 27810
 27830
 27850
 27870
 27890
 27910
 27930
 27950
 27970
 27990
 28010
 28030
 28050
 28070
 28090
 28110
 28130
 28150
 28170
 28190
 28210
 28230
 28250
 28270
 28290
 28310
 28330
 28350
 28370
 28390
 28410
 28430
 28450
 28470
 28490
 28510
 28530
 28550
 285

The sequence that codes for mRNA begins at nucleotide position 1, the nucleotides being numbered relative to the A of the cap site. The first intron begins at about nucleotide 79 and ends at position 910,

5 and is followed by a six member nucleotide sequence that codes for further 5' untranslated mRNA before translation commences at nucleotide 917. Nucleotides 103 to 118 in intron I include a polymorphic region.

In the human fibroblast gene derived from clones 14 β 27

10 and 14T β 24, this polymorphic region is replaced by the sequence CAGGCGGCTCACGPCCCPCCGGCAGGCPCCGGAC. For the human fibroblast gene derived from clone 14T β 21, the polymorphic sequence is replaced by

CAGCGGCCAGCGCCGCAGGCCGGCGGCC. Also, a 30 base-pair

15 highly conserved, intervening sequence exists at bases 752 to 781. Where the exact identity of a base has not been verified, P indicates a purine, Q refers to a pyrimidine, and N refers to any nucleotide. The amino acid sequence is numbered according to Lu and Elzinga,

20 Biochemistry (1977) 5801-5806.

It is evident from the above results, that DNA sequences are provided which can be used for detecting polymorphisms, alleles and mutants of β -actin. In addition, the fragments of the sequences can be obtained 5 by appropriately restricting the DNA, isolating individual fragments, and using the fragments as regulatory signals or introns. As indicated, DNA sequences from various structural genes may be joined to one or more introns, as well as the transcriptional regulatory sequence 10 for β -actin to provide for constitutive efficient production of polypeptides of interest in appropriate mammalian hosts.

Although the foregoing invention has been described in some detail by way of illustration and 15 example for purposes of clarity of understanding, it will be obvious that certain changes and modifications may be practiced within the scope of the appended claims.

WHAT IS CLAIMED IS:

1. A genomic DNA sequence of less than 15kb encoding for a human β -actin.
2. A DNA sequence according to Claim 1,
5 which is chromosomal and includes at least one intron.
3. A DNA sequence of less than about 1000kb including the β -actin transcriptional initiation region.
4. A DNA sequence according to Claim 3 ex-
tending downstream not farther than the twelfth nucleo-
10 tide in the coding region.
5. A DNA sequence according to Claim 4,
having downstream from said transcriptional initiation,
intron I.
6. A DNA construct comprising a bacterial
15 replication system and a sequence coding for at least
one exon of a human β -actin.
7. A construct according to Claim 6, includ-
ing all of the exons of β -actin.
8. A construct according to Claim 6, wherein
20 said exons are separated by β -actin introns.
9. A DNA sequence coding for at least a
substantial proportion of intron I having a flanking
region adjacent a terminus of said intron I DNA sequence
in the downstream order of transcription coding for
25 other than β -actin.
10. A DNA sequence including introns I, II,
III, IV or V of β -actin or fragments thereof retaining

the splicing donor and acceptor terminal sequences,
each of said introns or fragments substantially free of
coding sequences of β -actin.

11. A DNA intron sequence according to Claim
5 10 flanked by expression sequences, which upon excision
of said DNA intron sequence have an open reading frame.

12. A DNA construct comprising a human β -actin
transcriptional and translational sequence joined at
its 3'-terminus to a DNA sequence coding for a polypep-
10 tide other than β -actin either directly or through the
intermediary of β -actin intron I, wherein said coding
DNA sequence is joined at its 3'-terminus to a trans-
criptional termination region, with the proviso that
said coding sequence may be interrupted by 0 to 4 β -actin
15 introns other than intron I, or fragments thereof capable
of excision in a mammalian host.

13. A mammalian cellular host including a
DNA construct according to Claim 12.

14. A host according to Claim 13, wherein
20 said host is a primate.

15. A method for obtaining a polypeptide
expression product which comprises:
growing a host according to Claim 13; and
isолating said polypeptide encoded for by
25 said coding sequence.

0174608

FIG.—1.

- coding region
- ▨ 5' UTR
- ▨ 3' UTR
- ▨ mAN7
- introns and flanking region

FIG.—2.

European Patent
Office

EUROPEAN SEARCH REPORT

0174608
Application number

DOCUMENTS CONSIDERED TO BE RELEVANT			EP 85111225.0
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.4)
X,D	NUCLEIC ACIDS RESEARCH, vol. 12, no. 3, February 10, 1984, Oxford, GB) P. PONTE et al. "Evolutionary conservation in the untranslated regions of actin mRNAs: DNA sequence of human beta-actin cDNA" pages 1687-1696 * Abstract; Fig. 2 * --	1	C 12 N 15/00 C 12 P 19/34 C 12 N 5/00 C 12 P 21/02 C 07 K 13/00 C 07 H 21/04
D,A	NUCLEIC ACIDS RESEARCH, vol. 11, no. 6, March 25, 1983, (Oxford, GB) U. NUDEL et al. "The nucleotide sequence of the rat cytoplasmic beta-actin gene" pages 1759-1771 * Abstract; Fig. 2 * ----	1,6, 12	
The present search report has been drawn up for all claims			TECHNICAL FIELDS SEARCHED (Int. Cl.4)
			C 12 N C 12 P C 07 K C 07 H
Place of search		Date of completion of the search	Examiner
VIENNA		10-12-1985	WOLF
CATEGORY OF CITED DOCUMENTS			
X : particularly relevant if taken alone Y : particularly relevant if combined with another document of the same category A : technological background O : non-written disclosure P : intermediate document			
T : theory or principle underlying the invention E : earlier patent document, but published on, or after the filing date D : document cited in the application L : document cited for other reasons & : member of the same patent family, corresponding document			

8
B
E
S
E
O