Exercise sheet 4

- 1. Design a non-deterministic finite state automaton over the alphabet $\Sigma = \{0,1\}$ that will recognize the following languages (try to design a deterministic one too to get a feel for how much easier it is to design a non-deterministic one).
 - a) Strings with the nth last character 0, for any natural number n.
 - b) Strings that begin with 01.
 - c) ... to be completed
- 2. If L_1 and L_2 are regular languages, design a non-deterministic finite state automaton that recognizes:
 - a) $L_1 \cup L_2$
 - b) $L_1 \circ L_2 := \{xy \mid x \in L_1, y \in L_2\}$ (i.e. the concatentation of a string from L_1 with a string from L_2)
 - c) $L_1^* := \{x_1 x_2 \dots x_n \mid x_i \in L_1\}$ (i.e. concatenation of finitely many strings from the language)
- 3. Prove that any language that can be recognized by a non-deterministic finite state automaton can also be recognized by a deterministic one. Therefore, a language is regular if and only if it can be recognized by a non-deterministic finite state automaton.

to be completed