

# **CLASSROOM CONTACT PROGRAMME**

(Academic Session: 2019 - 2020)

# **Enthusiast, Leader & Achiever Course**

PHASE : ALL PHASE TARGET : PRE-MEDICAL 2020

Test Type: MAJOR Test Pattern: NEET (UG)

**TEST DATE: 20-08-2020** 

| 1201 5/112 120 00 2020 |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |
|------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Q.                     | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  | 26  | 27  | 28  | 29  | 30  |
| A.                     | 3   | 2   | 2   | 3   | 1   | 2   | 2   | 2   | 3   | 2   | 3   | 3   | 1   | 1   | 3   | 1   | 4   | 4   | 4   | 2   | 1   | 3   | 1   | 1   | 3   | 3   | 1   | 2   | 2   | 3   |
| Q.                     | 31  | 32  | 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  | 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  | 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  | 57  | 58  | 59  | 60  |
| A.                     | 4   | 2   | 4   | 2   | 4   | 2   | 3   | 4   | 3   | 1   | 3   | 2   | 1   | 4   | 3   | 4   | 3   | 4   | 3   | 2   | 3   | 3   | 2   | 2   | 3   | 2   | 1   | 3   | 4   | 4   |
| Q.                     | 61  | 62  | 63  | 64  | 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  | 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  | 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  | 89  | 90  |
| A.                     | 3   | 2   | 2   | 3   | 2   | 4   | 3   | 3   | 3   | 2   | 1   | 3   | 4   | 2   | 1   | 1   | 4   | 2   | 3   | 2   | 1   | 4   | 1   | 2   | 4   | 4   | 2   | 4   | 3   | 1   |
| Q.                     | 91  | 92  | 93  | 94  | 95  | 96  | 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| A.                     | 1   | 3   | 2   | 3   | 3   | 1   | 4   | 2   | 2   | 2   | 3   | 2   | 4   | 2   | 2   | 1   | 2   | 4   | 1   | 1   | 4   | 2   | 1   | 3   | 1   | 3   | 2   | 1   | 4   | 3   |
| Q.                     | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 |
| A.                     | 2   | 3   | 4   | 2   | 1   | 2   | 4   | 1   | 2   | 1   | 4   | 1   | 4   | 4   | 3   | 4   | 3   | 4   | 4   | 2   | 1   | 3   | 3   | 3   | 1   | 1   | 1   | 2   | 3   | 4   |
| Q.                     | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 |
| A.                     | 2   | 3   | 4   | 4   | 1   | 1   | 2   | 3   | 2   | 2   | 4   | 4   | 3   | 4   | 3   | 4   | 1   | 3   | 4   | 4   | 1   | 3   | 4   | 3   | 3   | 1   | 4   | 3   | 2   | 3   |

## HINT - SHEET

## 1. Ans (3)

$$n_1\lambda_1 = n_2\lambda_2$$

$$n_1 \times 750 \times 10^{-9} = n_2 \times 900 \times 10^{-9}$$

$$\frac{n_1}{n_2} = \frac{6}{5} \quad n_1 = 6, \, n_2 = 5$$

$$x_1 = \frac{n_1 D \lambda_1}{d}$$

$$x_1 = \frac{6 \times 2 \times 750 \times 10^{-9}}{2 \times 10^{-3}}$$

$$x_1 = 4.5 \text{ mm}$$

#### 2. Ans (2)

$$\mathbf{\phi} = 0$$

$$I' = 4I_0$$

$$\phi = \pi/2$$

$$I'' = 2I_0$$

$$I = I_1 + I_2 + 2\sqrt{I_1I_2} \cos \phi$$

## 3. Ans (2)

$$(\mu - 1)A + (\mu' - 1)A' = 0$$

$$(1.52 - 1) \times 10 + (1.72 - 1)A' = 0$$

$$A' = -\frac{0.52 \times 10}{0.72} = -7.22$$

#### 4. Ans (3)

For no TIR 
$$45^{\circ} \le \theta_c \implies \sin 45^{\circ} \le \sin \theta_C$$

$$\Rightarrow \frac{1}{\sqrt{2}} \leqslant \frac{1}{\mu} \qquad \Rightarrow \mu \leq \sqrt{2}$$



### 5. Ans (1)

Sun is very distant, v is very large and so  $\left(\frac{1}{v}\right)$  is practically zero.

$$\frac{1}{v} + \frac{1}{u} = -\frac{1}{f}$$

$$\frac{1}{v} + \frac{1}{\infty} = \frac{-1}{f}$$

$$\frac{1}{v} + 0 = -\frac{1}{f}$$

$$\frac{1}{V} = -\frac{1}{f}$$
 i.e. the image of sun will be formed at

the focus and will be roul, inverted and diminished now as the rays from the sun subtend an angle  $\theta$  radium at pole,

Hence according to figure,

$$\theta = \frac{A^1 B^1}{FP} = \frac{d}{f} \ (d = diameter \ of \ image \ of \ sun)$$

$$d = f \theta$$

#### 6. Ans (2)



$$v = w(R)$$

$$= 4(10) = 40 \text{ m/s}$$

#### 7. Ans (2)

As magnetic susceptibility  $X_m \propto \frac{1}{T}$ , therefore

$$\frac{X_2}{X_1} = \frac{T_1}{T_2} = \frac{X_2}{0.0060} = \frac{273 - 73}{273 - 173} = \frac{200}{100} = 2$$

$$X_2 = 2 \times 0.0060 = 0.0120$$

#### 8. Ans (2)

$$T = 2\pi \sqrt{\frac{I}{M_B}} \quad \ I = \frac{m\ell^2}{12}$$

$$\therefore T \propto \sqrt{m} \quad \frac{T_2}{T_1} = \sqrt{\frac{4m}{m}}$$

$$\Rightarrow T_2 = 2T_1$$

#### 9. Ans (3)

Smaller the angle between dipole moments, more will be the resultant dipole moment.

#### 10. Ans (2)

$$B = \frac{\mu_0 i}{2R}$$

$$M = \pi R^2 i$$

$$\Rightarrow$$
 M =  $\frac{2\pi BR^3}{\mu_0}$ 

#### 11. Ans (3)



$$Y = A \cdot B + \overline{A} \cdot B$$
 (XOR)

#### 12. Ans (3)

$$V_{\text{CC}} - I_{\text{C}} \; R_{\text{C}} - V_{\text{CE}} = 0$$

$$\Rightarrow 10 - I_C \times 10^3 - 5 = 0$$

$$\Rightarrow I_C \times 10^3 = 5$$

$$\Rightarrow I_C = 5 \times 10^{-3} \text{ A}$$

$$\Rightarrow I_C = \beta I_B$$

$$I_B = \frac{5 \times 10^{-3}}{100} = 5 \times 10^{-5} A$$

$$V_{CC} - I_B R_B - V_{BE} = 0$$

$$10 - 5 \times 10^{-5} \times R_{\rm B} - 0 = 0$$

$$R_B = \frac{10}{5 \times 10^{-5}} = 2 \times 10^5 = 200 k\Omega$$

#### 13. Ans (1)

$$I = \frac{18-6}{500\Omega} = 24\text{mA}$$

$$I_1 = \frac{6}{1 \text{ KO}} = 6 \text{ mA}$$

$$I_2 = (24 - 6) \text{ mA}$$

$$= 18 \text{ mA}$$



#### 14. Ans (1)

$$\begin{split} \left| \frac{dI}{dt} \right| &= q_0 \omega^2 \ \cos \omega t \\ \left| \frac{dI}{dt} \right|_{max} &= \frac{q_0}{LC} \end{split}$$

## 16. Ans (1)

Energy of a hydrogen atom like  $He^+$  in an nth orbit is given by

$$E_n = -\frac{13.6Z^2}{n^2} eV$$

For He<sup>+</sup> ion, 
$$Z = 2$$
,  $E_n = \frac{-4(13.6)}{n^2} \text{ eV}$ 

for first excited state, n = 2

$$E_2 = -\frac{4(13.6)}{(2^2)} \text{ eV} = -13.6 \text{ eV}$$

Hence the energy in He<sup>+</sup> ion in first excited state is same that of energy of the hydrogen atom in ground state i.e. – 13.6 eV

#### 17. Ans (4)



by momentum conservation

$$P_i = P_f$$

$$0 = P_1 + P_2$$

$$\mathbf{P}_1 = -\mathbf{P}_2$$

$$\lambda = \frac{h}{P}$$

If P same  $\lambda$  same

## 18. Ans (4)

$$\frac{1}{2}mv^{2} = E - \phi$$

$$= \left[\frac{12400}{3000} - 1\right] eV$$

$$v = 10^{6} \text{ m/s}$$

### 19. Ans (4)

When S is closed a clockwise current grows in loop P so an anticlockwise current is induced in loop Q.

When S is opened the clockwise current in P decreases to oppose the change in flux a clockwise current is induced in loop Q.

#### 21. Ans (1)

$$\phi = \vec{B} \cdot \vec{A} = 5\hat{k} \cdot (10 \times 6 \times 10^{-4} \hat{k})$$
  
= 300 × 10<sup>-4</sup> = 30 mWb

#### 22. Ans (3)

From Brewster's law  $\mu = \tan i_P$ 

$$\Rightarrow \frac{c}{v} = \tan 60^{\circ} = \sqrt{3}$$

$$\Rightarrow v = \frac{c}{\sqrt{3}} = \frac{3 \times 10^8}{\sqrt{3}} = \sqrt{3} \times 10^8 \text{ m/s}$$

#### 23. Ans (1)

$$x = \frac{n\lambda D}{d} \quad \text{for first minima, } n = 1$$

$$\Rightarrow d = \frac{\lambda D}{x} = \frac{5 \times 10^{-7} \times 2}{5 \times 10^{-3}}$$

$$\Rightarrow$$
 d = 0.2 mm

#### 24. Ans (1)

- : Central fringe at same position.
- $\therefore$  Path difference  $(\Delta x) = 0$

Now 
$$(\mu_1 - 1)t_1 = (\mu_2 - 1)t_2$$

$$(1.5-1) \times 1.2 = (2.5-1)t_2$$

$$t_2 = \frac{0.5 \times 1.2}{1.5} = 0.4 \mu \text{m}$$

#### 25. Ans (3)

$$\vec{F} = i(\vec{\ell} \times \vec{B})$$

$$\vec{F} = (i)(2\vec{\ell}\,\hat{i} \times Bt\hat{k})$$

$$\vec{F} = 2Bi\ell\hat{j}$$



#### 26. Ans (3)

for crossing limited mag. field

R > depth of mag. field

$$R > (b-a)$$

$$\frac{mV}{aB} > b - a$$

$$V > \frac{q B (b-a)}{m}$$

$$\vec{M} = \sqrt{M_1^2 + M_2^2 + 2M_1M_2\cos\theta}$$
$$= 2M\cos\frac{\theta}{2}$$
$$\theta M' \downarrow$$

#### 28. Ans (2)



B due to (1) and (4) will be 0

(2) and (3) are semi infinite

$$B = \frac{\mu_0 i}{4\pi a} \odot + \frac{\mu_0 i}{4\pi a} \odot$$
$$= \frac{\mu_0 i}{2\pi a} \odot$$

#### 29. Ans (2)

$$P = \frac{100}{f}$$

$$f = \frac{100}{0.66} = 151.5$$
cm concave lens.

#### 31. Ans (4)

$$\frac{W_1}{W_2} = \frac{4}{3} = \frac{-f_1}{f_2}$$

$$f_1 = -\frac{4}{3} f_2$$

$$\frac{1}{60} = \frac{1}{(-\frac{4}{3}f_2)} + \frac{1}{f_2}$$

#### 32. Ans (2)



$$\frac{\mathbf{d}_{\mathbf{I}}}{\mathbf{f}} = \mathbf{\theta}$$

$$d_I=f\theta=100\times 10^{-2}\times 1/2\times \frac{\pi}{180}$$

$$= 0.87 \text{ cm} = 8.7 \text{ mm} \approx 9 \text{ mm}$$

Concave mirror can form both inverted and erect image which is enlarged.

## 33. Ans (4)



Angle of refraction at A =angle of incident at BAngle of incidence at A =Angle of refraction at B which is  $90^{\circ}$  for grazing emergence

## 34. Ans (2)

$$X_L = 20\Omega$$
 at 50Hz

Thus at 100Hz  $X_L$  becomes =  $40\Omega$ 

$$Z = \sqrt{R^2 + X_L^2} = \sqrt{30^2 + 40^2} = 50\Omega$$

$$I_{rms} = \frac{V_{rms}}{Z} = \frac{200}{50} = 4A$$

A.C. meters are based on heating effect of current.

so their scale  $\propto I^2$  (Non linear)

they can measure D.C. also

D.C. meter are charge based

so they cannot measure A.C. as net charge is zero



#### 36. Ans (2)

$$D_1 \rightarrow R.B., D_2 \rightarrow F.B.$$

So,  $2k\Omega$  &  $2k\Omega$  is in series

#### 40. Ans (1)

$$B_{\text{net}} = \sqrt{B_1^2 + B_2^2} = \frac{\mu_0}{4\pi} \cdot \frac{2\pi}{r} \sqrt{i_1^2 + i_2^2}$$
$$= 10^{-7} \times \frac{2\pi}{2\pi \times 10^{-2}} \sqrt{(3)^2 + (4)^2}$$
$$= 5 \times 10^{-5} \text{wb/m}^2$$

#### 41. Ans (3)

At 
$$t = 0$$
  $R_{eq} = 10$ 

At 
$$t \to \infty$$
  $R_{eq} = 5$ 

$$i_{max} - i_{min} = 1A$$

$$i_{min} = \frac{10}{10} = 1A$$

$$i_{\text{max}} = \frac{10}{5} = 2A$$

#### 42. Ans (2)

If the radius is r at a time t, then the instantaneous magnetic flux  $\phi$  is given by:

$$\phi = \pi r^2 B$$

Now, induced emf e is given by:

$$e = -\frac{d\phi}{dt} = -\frac{d}{dt}(\pi r^2 B)$$
$$= -\pi B \left(2r\frac{dr}{dt}\right) = -2\pi Br\left(\frac{dr}{dt}\right)$$

Induced emf = $2\pi Br\left(\frac{dr}{dt}\right)$  numerically as (dr/dt) is negative.

# 43. Ans (1)

$$\begin{split} &\lambda_{A}=8\;\lambda,\,\lambda_{B}=\lambda\\ &\Rightarrow\quad N_{B}=\frac{N_{A}}{e}\;\Rightarrow N_{0}\;e^{-\lambda t}=\frac{N_{0}\;e^{-8\lambda t}}{e}\\ &\Rightarrow\quad -\lambda t=-8\lambda t-1\Rightarrow 7\lambda t=-1\Rightarrow t=-\frac{1}{7\;\lambda}\\ &\text{Best answer is }t=\frac{1}{7\;\lambda} \end{split}$$

$$CH_{3} \xrightarrow{C} CH_{3} \xrightarrow{Cu} CH_{3} \xrightarrow{CH_{3}} CH_{2} \xrightarrow{CH_{2}} H \xrightarrow{CU} CH_{2}$$

2-Methyl propene

## 48. Ans (4)

Rate of  $S_N^1 \propto$  stability of carbocation.

#### 52. Ans (3)

#### 54. Ans (2)

Only primary amines are product in gabriele reaction

#### 60. Ans (4)

$$Ph - COOH + NaHCO_3 \rightarrow CO_2$$

#### 62. Ans (2)

Rate of  $ArS_N 2 \alpha -I/-M$  group

#### 64. Ans (3)

$$\bigcirc \longrightarrow \stackrel{\oplus}{\text{CH}_2\text{O}} - \text{CH}_2 - \text{CH}_3 \xrightarrow{\stackrel{+}{\text{H I}}} \bigcirc \bigcirc \longrightarrow \text{CH}_2 - \text{I} + \text{CH}_3\text{CH}_2\text{OH}$$

#### 70. Ans (2)



maximum electrophilicity

#### 71. Ans (1)

Cross Aldol reaction

#### 72. Ans (3)



88. Ans (4)

$$HgS + O_2 \rightarrow HgO + SO_2$$
(limited)

$$HgS + HgO \rightarrow Hg + SO_2$$

93. Ans (2)

Module-3, page No. 182

94. Ans (3)

Module-3, page No. 180

96. Ans (1)

NCERT Pg # 167, Para-9.12, Fig. 9.1(a)