Método de Elementos Finitos

Pedro H A Konzen

20 de setembro de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/deed.pt_BR ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Nestas notas de aula são abordados temas introdutórios sobre o método de elementos finitos para a simulação de equações diferenciais. Como ferramenta computacional de apoio didático, faço uso de códigos em python com suporte da biblioteca FEniCS.

Agradeço aos(às) estudantes e colegas que assiduamente ou esporadicamente contribuem com correções, sugestões e críticas em prol do desenvolvimento deste material didático.

Pedro H A Konzen

Sumário

Capa Licença				j	
				ii	
Prefácio					
Sι	ımár	io		iv	
1	Método de elementos finitos em 1D			1	
	1.1	Interp	polação e projeção	1	
		1.1.1	Interpolação	2	
		1.1.2	Projeção L^2	10	
	1.2	Proble	ema modelo	15	
		1.2.1	Formulação fraca	15	
		1.2.2	Formulação de elementos finitos	16	
		1.2.3	Estimativa a priori	19	
	1.3	Condi	ições de contorno	23	
		1.3.1			
		1.3.2	Condições de Neumann	26	
		1.3.3	Condições de Robin	31	
\mathbf{R}	espo	stas do	os Exercícios	35	
\mathbf{R}	eferê	ncias 1	Bibliográficas	36	
Ín	dice	Remis	ssivo	37	

Capítulo 1

Método de elementos finitos em 1D

1.1 Interpolação e projeção

Seja dado um intervalo $I = [x_0, x_1] \subset \mathbb{R}, x_0 \neq x_1$. O espaço vetorial das funções lineares em I é definido por

$$P_1(I) := \{ v : \ v(x) = c_0 + c_1 x, \ x \in I, \ c_0, c_1 \in \mathbb{R} \}. \tag{1.1}$$

Observamos que dado $v \in P_1(I)$, temos que v é unicamente determinada pelos valores $\alpha_0 = v(x_0)$ e $\alpha_1 = v(x_1)$. Como consequência, existe exatamente uma única função $v \in P_1(I)$ para quaisquer dados valores α_0 e α_1 . Desta observação, introduzimos a chamada base nodal $\{\varphi_0, \varphi_1\}$ para $P_1(I)$, definida por

$$\varphi_j(x_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases} , \tag{1.2}$$

com i,j=0,1. Com esta base, toda função $v\in P_1(I)$ pode ser escrita como uma combinação linear das funções φ_0 e φ_1 com coeficientes α_0 e α_1 (graus de liberdade), i.e.

$$v(x) = \alpha_0 \varphi_0(x) + \alpha_1 \varphi_1(x_1). \tag{1.3}$$

Além disso, observamos que

$$\varphi_0(x) = \frac{x_1 - x}{x_1 - x_0}, \quad \varphi_1(x) = \frac{x - x_0}{x_1 - x_0}.$$
(1.4)

Uma extensão do espaço $P_1(I)$ é o espaço das funções lineares por partes. Dado $I = [l_0, l_1], l_0 \neq l_1$, consideremos uma partição (**malha**) de I com n+1 pontos $\mathcal{I} = \{l_0 = x_0, x_1, \dots, x_n = l_1\}$ e, portanto, com n subintervalos $I_i = [x_{i-1}, x_i]$ de comprimento $h_i = x_i - x_{i-1}, i = 1, 2, \dots, n$. Na malha \mathcal{I} definimos o seguinte espaço das funções lineares por partes

$$V_h := \{ v : v \in C^0(\mathcal{I}), v|_{I_i} \in P_1(I_i), i = 1, 2, \dots, n \}.$$

$$(1.5)$$

Observamos que toda função $v \in V_h$ é unicamente determinadas por seus valores nodais $\{\alpha_i = v(x_i)\}_{i=0}^n$. Reciprocamente, todo conjunto de valores nodas $\{\alpha_i\}_{i=0}^n$ determina unicamente uma função $v \in V_h$. Desta observação, temos que os valores nodais determinam os graus de liberdade com a base nodal $\{\varphi_j\}_{j=0}^n$ para V_h definida por

$$\varphi_j(x_i) = \begin{cases} 1 & , i = j, \\ 0 & , i \neq j \end{cases}, \tag{1.6}$$

com $i,j=0,1,\ldots,n$. Podemos verificar que

$$\varphi_i(x) = \begin{cases} (x - x_{i-1})/h_i & , x \in I_i, \\ (x_{i+1} - x)/h_{i+1} & , x \in I_{i+1}, \\ 0 & , \text{noutros casos} \end{cases}$$
(1.7)

veja, Figura 1.1. É notável que $\phi_i(x)$ tem suporte compacto $I_i \cup I_{i+1}$.

1.1.1 Interpolação

A interpolação é uma das técnicas de aproximação de funções. Dada uma função contínua f em $I=[x_0,x_1]$, definimos o **operador de interpolação linear** $\pi:C^0(I)\to P_1(I)$ por

$$\pi f(x) = f(x_0)\varphi_0(x) + f(x_1)\varphi_1(x). \tag{1.8}$$

Observamos que πf é igual a f nos nodos x_0 e x_1 .

Exemplo 1.1.1. A Figura 1.2 ilustra a interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço $P_1([1/4, 3/4)]$. Neste caso

$$\pi f(x) = f\left(\frac{1}{4}\right) \frac{3/4 - x}{1/2} + f\left(\frac{3}{4}\right) \frac{x - 1/4}{1/2}.$$
 (1.9)

Com o FENiCS, podemos computar a função interpolada πf com o seguinte código:

Figura 1.1: Base nodal para o espaço das funções lineares por parte.

Figura 1.2: Interpolação linear de $f(x)=3\sin(2\pi x)$ no espaço $P_1([1/4,3/4])$.

from __future__ import print_function, division
from fenics import *
import numpy as np

```
import matplotlib.pyplot as plt
# malha
mesh = IntervalMesh(4,0.25,0.75)
# espaco
V = FunctionSpace(mesh, 'P', 1)
# funcao
f = Expression('3*sin(2*pi*x[0])',
                   degree=10)
# interpolacao
pif = interpolate(f,V)
# grafico
xx = IntervalMesh(100, 0.25, 0.75)
plot(f,mesh=xx,label="$f$")
plot(pif, mesh=mesh,
     marker='o',label="$\pi f$")
plt.legend(numpoints=1)
plt.grid('on')
plt.show()
```

Agora, vamos buscar medir o erro de interpolação, i.e. $f - \pi f$. Para tanto, podemos usar a norma L^2 definida por

$$||v||_{L^2(I)} = \left(\int_i v^2 \, dx\right)^{1/2}.\tag{1.10}$$

Lembramos que valem as desigualdades triangular

$$||v + w||_{L^2(I)} \le ||v||_{L^2(I)} + ||w||_{L^2(I)}$$
(1.11)

e a de Cauchy-Schwarz¹

$$\int_{I} vw \, dx \le ||v||_{L^{2}(I)} ||w||_{L^{2}(I)}, \tag{1.12}$$

 ¹Também conhecida como desigualdade de Cauchy–Bunyakovsky–Schwarz. Augustin-Louis Cauchy, 1789 - 1857, matemático francês. Viktor Yakovlevich Bunyakovsky, 1804
 - 1889, matemático Russo. Karl Hermann Amandus Schwarz, 1843 - 1921, matemático alemão.

para qualquer funções $v,w \in L^2(I)$.

Proposição 1.1.1. (Erro da interpolação linear) O interpolador πf satisfaz as estimativas

$$||f - \pi f||_{L^2(I)} \le Ch^2 ||f''||_{L^2(I)},$$
 (1.13)

$$||(f - \pi f)'||_{L^2(I)} \le Ch||f''||_{L^2(I)},\tag{1.14}$$

onde C é uma constante e $h = x_1 - x_0$.

Demonstração. Denotemos o erro de interpolação por $e=f-\pi f$. Do teorema fundamental do cálculo, temos

$$e(y) = e(x_0) + \int_{x_0}^{y} e'(x) dx,$$
 (1.15)

onde $e(x_0) = f(x_0) - \pi f(x_0) = 0$. Daí, usando a desigualdade de Cauchy-Schwarz (1.12), temos

$$e(y) = \int_{x_0}^{y} e' \, dx \tag{1.16}$$

$$\leq \int_{x_0}^y |e'| \, dx \tag{1.17}$$

$$\leq \int_{I} 1 \cdot |e'| \, dx \tag{1.18}$$

$$\leq \left(\int_{I} 1^{2} dx\right)^{1/2} \left(\int_{I} e^{2} dx\right)^{1/2} \tag{1.19}$$

$$=h^{1/2}\left(\int_{I}e^{\prime 2}\,dx\right)^{1/2},\tag{1.20}$$

donde

$$e(y)^2 \le h \int_I e'^2 dx = h \|e'\|_{L^2(I)}^2.$$
 (1.21)

Então, integrando em I obtemos

$$||e||_{L^{2}(I)}^{2} = \int_{I} e^{2}(y) \, dy \le \int_{I} h||e'||_{L^{2}(I)}^{2} \, dy = h^{2}||e'||_{L^{2}(I)}^{2}, \tag{1.22}$$

ou seja,

$$||e||_{L^2(I)} \le h||e'||_{L^2(I)}.$$
 (1.23)

Agora, observando que $e(x_0) = e(x_1) = 0$, o teorema de Rolle² garante a existência de um ponto $\tilde{x} \in I$ tal que $e'(\tilde{x}) = 0$, donde do teorema fundamental do cálculo e da desigualdade de Cauchy-Schwarz, segue

$$e'(y) = e'(\tilde{x}) + \int_{\tilde{x}}^{y} e'' dx$$
 (1.24)

$$= \int_{\tilde{x}}^{y} e^{\prime\prime} dx \tag{1.25}$$

$$\leq \int_{I} 1 \cdot |e''| \, dx \tag{1.26}$$

$$\leq h^{1/2} \left(\int_{I} e^{\prime \prime 2} \right)^{1/2}. \tag{1.27}$$

Então, integrando em I, obtemos

$$||e'||_{L^2(I)}^2 \le h^2 ||e''||_{L^2(I)}^2,$$
 (1.28)

a qual, observando que e'' = f'', equivale a segunda estimativa procurada, i.e.

$$||(f - \pi f)'||_{L^2(I)} \le Ch||f''||_{L^2(I)}. \tag{1.29}$$

Por fim, de (1.23) e de (1.23), obtemos a primeira estimativa desejada

$$||f - \pi f||_{L^2(I)} \le Ch^2 ||f''||_{L^2(I)}. \tag{1.30}$$

Exemplo 1.1.2. A Figura 1.3 mostra a evolução do erro na norma L^2 da interpolação de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço $P_1([0,h)]$ para $h = 10^{-5}, 10^{-4}, \cdots, 10^{-1}$. Com o FENiCS, podemos computar os erros de interpolação com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

funcao

²Michel Rolle, 1652 - 1719, matemático francês.

Figura 1.3: Erro de interpolação de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço $P_1([0,h])$.

```
n=5
for k in np.arange(1,n+1):
    h = 10**-k
    mesh = IntervalMesh(1,0,h)
    V = FunctionSpace(mesh, 'P', 1)
    pif = interpolate(f,V)
    e = errornorm(f,pif,'L2')
    print("%d %1.0E %1.1E" % (k,h,e))
```

Vamos, agora, generalizar o resultado da Proposição 1.1.1 para a interpolação no espaço V_h das funções lineares por parte. Dada uma função contínua f em $I = [l_0, l_1]$, definimos o operador interpolador $\pi : C^0(I) \to V_h$ na malha \mathcal{I} de I por

$$\pi f(x) = \sum_{i=0}^{n} f(x_i)\varphi_i(x). \tag{1.31}$$

Exemplo 1.1.3. A Figura 1.4 ilustra a interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes em uma malha uniforme do intervalo I = [1/4, 3/4] com n = 4 subintervalos (5 pontos).

Figura 1.4: Interpolação linear de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes sobre uma malha com 5 pontos.

Com o FENiCS, podemos computar a função interpolada πf com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

# malha
mesh = IntervalMesh(4,0.25,0.75)

# espaco
V = FunctionSpace(mesh, 'P', 1)
```

O seguinte resultado fornece uma estimativa do erro de interpolação em relação ao tamanho h_i de cada elemento da malha.

Proposição 1.1.2. O interpolador πf satisfaz as estimativas

$$||f - \pi f||_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^4 ||f''||_{L^2(I)}^2,$$
 (1.32)

$$\|(f - \pi f)'\|_{L^{2}(I)}^{2} \le C \sum_{i=1}^{n} h_{i}^{2} \|f''\|_{L^{2}(I)}^{2}.$$
(1.33)

(1.34)

Demonstração. Ambas desigualdades seguem da desigualdade triangular e da Proposição 1.1.1. Por exemplo, para a primeira desigualdade, temos

$$||f - \pi f||_{L^{2}(I)}^{2} \le \sum_{i=1}^{n} ||f - \pi f||_{L^{2}(I_{i})}^{2}$$
(1.35)

$$\leq \sum_{i=1}^{n} Ch_i^4 ||f''||_{L^2(I_i)}^2. \tag{1.36}$$

1.1.2 Projeção L^2

Dada uma função $f \in L^2(I)$, definimos o **operador de projeção** L^2 $P_h: L^2(I) \to V_h$ por

$$\int_{I} (f - P_h f) v \, dx = 0, \quad \forall v \in V_h. \tag{1.37}$$

Como V_h é um espaço de dimensão finita, a condição (1.38) é equivalente a

$$\int_{I} (f - P_h f) \varphi_i \, dx = 0, \quad i = 0, 1, \dots, n,$$
(1.38)

onde φ_i é a i-ésima função base de V_h . Além disso, como $P_h f \in V_h$, temos

$$P_h f = \sum_{j=0}^n \xi_j \varphi_j, \tag{1.39}$$

onde $\xi_j, j=0,1,\ldots,n$, são n+1 incógnitas a determinar. Logo,

$$\int_{I} (f - P_{h}f)\varphi_{i} dx = 0 \Leftrightarrow \int_{I} f\varphi_{i} dx = \int_{I} P_{h}f\varphi_{i} dx$$
 (1.40)

$$\Leftrightarrow \int_{I} f \varphi_{i} dx = \int_{I} \left(\sum_{j=0}^{n} \xi_{j} \varphi_{j} \right) \varphi_{i} dx \qquad (1.41)$$

$$\Leftrightarrow \sum_{j=0}^{n} \xi_j \int_I \varphi_j \varphi_i \, dx = \int_I f \varphi_i \, dx, \tag{1.42}$$

para i = 0, 1, ..., n.

Observemos, agora, que (1.42) consiste em um sistema de n+1 equações lineares para as n+1 incógnitas ξ_j , $j=0,1,\ldots,n$. Este, por sua vez, pode ser escrito na seguinte forma matricial

$$M\xi = b, (1.43)$$

onde $M = [m_{i,j}]_{i,j=0}^{n+1}$ é chamada de matriz de massa

$$m_{i,j} = \int_{I} \varphi_{j} \varphi_{i} \, dx \tag{1.44}$$

e $b = (b_0, b_1, \dots, b_n)$ é chamado de vetor de carregamento

$$b_i = \int_I f\varphi_i \, dx. \tag{1.45}$$

Ou seja, a projeção L^2 de f no espaço V_h é

$$P_h f = \sum_{j=0}^n \xi_j \varphi_j, \tag{1.46}$$

onde $\xi = (\xi_0, \xi_1, \dots, \xi_n)$ é solução do sistema (1.43).

Exemplo 1.1.4. A Figura 1.5 ilustra a projeção L^2 da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes em uma malha uniforme do intervalo I = [1/4, 3/4] com n = 4 subintervalos (5 pontos).

Figura 1.5: Projeção L^2 de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes sobre uma malha com 5 pontos.

Com o FENiCS, podemos computar $P_h f$ com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

malha

```
mesh = IntervalMesh(4,0.25,0.75)
# espaco
V = FunctionSpace(mesh, 'P', 1)
# funcao
f = Expression('3*sin(2*pi*x[0])',
                   degree=10)
# projecao
Phf = project(f, V)
# grafico
xx = IntervalMesh(100, 0.25, 0.75)
plot(f,mesh=xx,label="$f$")
plot(Phf, mesh=mesh,
     marker='o',label="$P h f$")
plt.legend(numpoints=1)
plt.grid('on')
plt.show()
```

O próximo teorema mostra que $P_h f$ é a função que melhor aproxima f dentre todas as funções do espaço V_h .

Teorema 1.1.1. (A melhor aproximação.) A projeção L^2 satisfaz

$$||f - P_h f||_{L^2(I)} \le ||f - v||_{L^2(I)}, \quad \forall v \in V_h.$$
 (1.47)

Demonstração. Dado $v \in V_h$, temos

$$||f - P_h f||_{L^2(I)}^2 = \int_I |f - P_h f|^2 dx$$
 (1.48)

$$= \int_{I} (f - P_h f)(f - v + v - P_h f) dx$$
 (1.49)

$$= \int_{I} (f - P_h f)(f - v) dx + \int_{I} (f - P_h f)(v - P_h f) dx \quad (1.50)$$

$$= \int_{I} (f - P_h f)(f - v) dx \tag{1.51}$$

$$\leq \|f - P_h f\|_{L^2(I)} \|f - v\|_{L^2(I)}, \tag{1.52}$$

donde segue o resultado.

O próximo teorema fornece uma estimativa a-priori do erro $||f - P_h f||_{L^2(I)}$ em relação ao tamanho da malha.

Teorema 1.1.2. A projeção L^2 satisfaz

$$||f - P_h f||_{L^2(I)} \le C \sum_{i=1}^n h_i^4 ||f''||_{L^2(I_i)}^2.$$
 (1.53)

Demonstração. Tomando a interpolação $\pi f \in V_h$, temos do Teorema da melhor aproximação (Teorema 1.1.1) e da estimativa do erro de interpolação (Proposição 1.1.2) que

$$||f - P_h f||_{L^2(I)}^2 \le ||f - \pi f||_{L^2(I)}^2 \tag{1.54}$$

$$\leq C \sum_{i=1}^{n} h_i^4 ||f''||_{L^2(I_i)}^2. \tag{1.55}$$

Exemplo 1.1.5. A Figura 1.6 mostra a evolução do erro na norma L^2 da projeção de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h em malhas uniformes de $h = 10^{-5}, 10^{-4}, \dots, 10^{-1}$ no intervalo [1/4, 3/4].

Com o FENiCS, podemos computar os erros de projeção com o seguinte código:

Figura 1.6: Erro de interpolação de $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h .

Exercícios

- **E 1.1.1.** Faça um código para verificar a segunda estimativa da Proposição 1.1.1 no caso da interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço P_1 das funções lineares.
- **E 1.1.2.** Faça um código para verificar as estimativas da Proposição 1.1.2 no caso da interpolação da função $f(x) = 3 \operatorname{sen}(2\pi x)$ no espaço V_h das funções lineares por partes.
- **E 1.1.3.** Faça um código para computar a projeção L^2 $P_h f$ da função $f(x) = x \cos(x)$ no espaço V_h das funções lineares por partes em uma malha com 10 células no intervalo $[0,\pi]$. Faça o esboço dos gráficos de f e $P_h f$ e compute o erro $||f P_h f||_{L^2}$.

1.2 Problema modelo

Nesta seção, discutiremos sobre a aplicação do método de elementos finitos para o seguinte problema de valor de contorno: encontrar u tal que

$$-u'' = f, \quad x \in I = [0, L], \tag{1.56}$$

$$u(0) = u(L) = 0, (1.57)$$

onde f é uma função dada.

1.2.1 Formulação fraca

A derivação de um método de elementos finitos inicia-se da formulação fraca do problema em um espaço de funções apropriado. No caso do problema (1.56)-(1.57), tomamos o espaço

$$V_0 = \{ v \in H^1(I) : \ v(0) = v(1) = 0 \}. \tag{1.58}$$

Ou seja, se $v \in H^1(I)$, então $||v||_{L^2(I)} < \infty$, $||v'||_{L^2(I)} < \infty$, bem como v satisfaz as condições de contorno do problema.

A formulação fraca é, então, obtida multiplicando-se a equação (1.56) por uma função teste $v \in V_0$ (arbitrária) e integrando-se por partes, i.e.

$$\int_{I} f v \, dx = -\int_{I} u'' v \, dx \tag{1.59}$$

$$= \int_{L} u'v' dx - u'(L)v(L) + u'(0)v(0)$$
 (1.60)

(1.61)

15

Donde, das condições de contorno, temos

$$\int_{I} u'v' dx = \int_{I} fv dx. \tag{1.62}$$

Desta forma, o problema fraco associado a (1.56)-(1.57) lê-se: encontrar $u \in V_0$ tal que

$$a(u,v) = L(v), \quad \forall v \in V_0,$$
 (1.63)

onde

$$a(u,v) = \int_{I} u'v' dx \tag{1.64}$$

$$L(v) = \int_{L} fv \, dx,\tag{1.65}$$

são chamadas de forma bilinear e forma linear, respectivamente.

1.2.2 Formulação de elementos finitos

Uma formulação de elementos finitos é um aproximação do problema fraco (1.63) em um espaço de dimensão finita. Aqui, vamos usar o espaço $V_{h,0}$ das funções lineares por partes em I que satisfazem as condições de contorno, i.e.

$$V_{h,0} = \{ v \in V_h : \ v(0) = v(L) = 0 \}. \tag{1.66}$$

Então, substituindo o espaço V_0 pelo subespaço $V_{h,0} \subset V_0$ em (1.63), obtemos o seguinte problema de elementos finitos: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, v) = L(v), \quad \forall v \in V_{h,0}. \tag{1.67}$$

Observação 1.2.1. A formulação de elementos finitos não é única, podendose trabalhar com outros espaços de funções. No caso em que o espaço da solução é igual ao espaço das funções testes, a abordagem é chamada de método de Galerkin³.

Observemos que o problema (1.67) é equivalente a: encontrar $u_h \in V_{h,0}$ tal que

$$a(u_h, \varphi_i) = L(\varphi_i), \quad i = 1, \dots, n - 1,$$
 (1.68)

onde φ_i , i = 1, ..., n-1, são as funções base de $V_{h,0}$. Então, como $u_h \in V_{h,0}$, temos

$$u_h = \sum_{j=1}^{n-1} \xi_j \varphi_j, \tag{1.69}$$

onde ξ_j , $j=1,2,\ldots,n-1$, são incógnitas a determinar. I.e., ao computarmos ξ_j , $j=1,2,\ldots,n-1$, temos obtido a solução u_h do problema de elementos finitos 1.67.

Agora, da forma bilinear (1.64), temos

$$a(u_h, \varphi_i) = a\left(\sum_{j=1}^{n-1} \xi_j \varphi_j, \varphi_i\right)$$
(1.70)

$$= \sum_{j=1}^{n-1} \xi_j a(\varphi_j, \varphi_i). \tag{1.71}$$

Daí, o problema (1.67) é equivalente a resolvermos o seguinte sistema de equações lineares

$$A\xi = b, \tag{1.72}$$

³Boris Grigoryevich Galerkin, matemático e engenheiro soviético. Fonte: Wikipédia.

onde $A = [a_{i,j}]_{i,j=1}^{n-1}$ é a matriz de rigidez com

$$a_{i,j} = a(\varphi_j, \varphi_i) = \int_I \varphi_j' \varphi_i' \, dx, \qquad (1.73)$$

 $\xi = (\xi_1, \xi_2, \dots, \xi_{n-1})$ é o vetor das incógnitas e $b = (b_i)_{i=1}^{n-1}$ é o vetor de carregamento com

$$b_i = L(\varphi_i) = \int_I \varphi_i \, dx. \tag{1.74}$$

Exemplo 1.2.1. Consideremos o problema (1.56)-(1.57) com $f \equiv 1$ e L = 1, i.e.

$$-u'' = 1, \quad x \in I = [0,1], \tag{1.75}$$

$$u(0) = u(1) = 0. (1.76)$$

Neste caso, a solução analítica $u(x) = -x^2/2 + x/2$ pode ser facilmente obtida por integração. Agora, vamos computar uma aproximação de elementos finitos no espaço das funções contínuas por partes $V_{h,0}$ construído numa malha uniforme de 5 células no intervalo I = [0, 1]. Para tanto, montamos o sistema de elementos finitos (1.72), resolvemo-lo e computamos a solução com

$$u_h = \sum_{j=1}^n \xi_j \varphi_j, \tag{1.77}$$

onde a j-ésima função de base é

$$\varphi_j = \begin{cases} (x - x_{j-1})/(x_j - x_{j-1}) &, x_{j-1} \le x < x_j, \\ (x_j - x)/(x_j - x_{j+1}) &, x_j \le x \le x_{j+1} \end{cases}$$
(1.78)

A Figura 1.7 apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h .

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

malha

Figura 1.7: Esboço dos gráficos das soluções referentes ao Exemplo 1.2.1.

```
mesh = IntervalMesh(5,0,1)

# espaco
V = FunctionSpace(mesh, 'P', 1)

# condicoes de contorno
def boundary(x,on_boundary):
    return on_boundary

bc = DirichletBC(V,Constant(0.0),boundary)

#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = dot(grad(u), grad(v))*dx
L = f*v*dx
```

1.2.3 Estimativa a priori

Existem dois tipos de estimativas do erro $e := u - u_h$. Estimativas a priori, são aqueles em que o erro é dado em relação da solução u, enquanto que nas estimativas a posteriori o erro é expresso em relação a solução de elementos finitos u_h .

Teorema 1.2.1. (Ortogonalidade de Galerkin) A solução de elementos finitos u_h de (1.67) satisfaz a seguinte propriedade de ortogonalidade

$$a(u - u_h, v) := \int_I (u - u_h)' v' \, dx = 0, \quad v \in V_{h,0}, \tag{1.79}$$

onde u é a solução de (1.63).

Demonstração. De (1.67), (1.63) e lembrando que $V_{h,0} \subset V_0$, temos

$$a(u,v) = L(v) = a(u_h,v) \Rightarrow a(u - u_h,v) = 0,$$
 (1.80)

para todo $v \in V_{h,0}$.

Teorema 1.2.2. (A melhor aproximação) A solução de elementos finitos u_h dada por (1.67) satisfaz a seguinte propriedade de melhor aproximação

$$\|(u-u_h)'\|_{L^2(I)} \le \|(u-v)'\|_{L^2(I)}, \quad v \in V_{h,0},$$
 (1.81)

onde u é a solução de (1.63).

Demonstração. Escrevendo $u - u_h = u - v + v - u_h$ para qualquer $v \in V_{h,0}$ e usando a ortogonalidade de Galerkin (Teorema 1.2.1), temos

$$\|(u - u_h)'\|^2 = \int_I (u - u_h)'(u - u_h)' dx$$
(1.82)

$$= \int_{I} (u - u_h)' (u - v + v - u_h)' dx$$
 (1.83)

$$= \int_{I} (u - u_h)'(u - v)' dx + \int_{I} (u - u_h)'(v - u_h)' dx \qquad (1.84)$$

$$= \int_{I} (u - u_h)'(u - v)' dx \tag{1.85}$$

$$\leq \|(u - u_h)'\|_{L^2(I)} \|(u - v)'\|_{L^2(I)}. \tag{1.86}$$

20

Teorema 1.2.3. (Estimativa *a priori*) O erro em se aproximar a solução u de (1.63) pela solução de elementos finitos u_h dada por (1.67) satisfaz a seguinte estimativa *a priori*

$$\|(u - u_h)'\|_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^2 \|u''\|_{L^2(I)}^2.$$
(1.87)

Demonstração. Tomando $v=\pi u$ no teorema da melhor aproximação (Teorema 1.2.2), obtemos

$$\|(u-u_h)'\|_{L^2(I)} \le \|(u-\pi u)'\|_{L^2(I)}. \tag{1.88}$$

Daí, da estimativa do erro de interpolação (Proposição 1.1.2), temos

$$\|(u - u_h)'\|_{L^2(I)}^2 \le C \sum_{i=1}^n h_i^2 \|u''\|_{L^2(I)}^2.$$
(1.89)

Exemplo 1.2.2. A Figura 1.8 apresenta o esboço da evolução do erro $||(u - u_h)'||_{L^2(I)}$ da solução de elementos finitos do problema (1.75)-(1.76) para malhas uniformes com $n = 2, 4, 8, \ldots, 128$ células.

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

Figura 1.8: Esboço dos gráficos das soluções referentes ao Exemplo 1.2.2.

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

def boundary(x,on_boundary):
    return on_boundary

def solver(n):
    # malha
    mesh = IntervalMesh(n,0,1)

# espaco
    V = FunctionSpace(mesh, 'P', 1)

bc = DirichletBC(V,Constant(0.0),boundary)

#MEF problem
```

```
u = TrialFunction(V)
    v = TestFunction(V)
    f = Constant(1.0)
    a = dot(grad(u), grad(v))*dx
    L = f*v*dx
    #computa a sol
    u = Function(V)
    solve(a == L, u, bc)
    return u
#sol analitica
ua = Expression('-x[0]*x[0]/2+x[0]/2',
                degree=2)
lerrors=[]
for n in [2,4,8,16,32,64,128]:
    u = solver(n)
    e = errornorm(u,ua,norm_type='H10')
    lerrors.append(e)
plt.plot([2,4,8,16,32,64,128],lerrors)
plt.xscale('log',base=2)
#plt.yscale('log',base=2)
plt.xlabel(r"$n$")
plt.ylabel(r"$\|(u-u_h)'\|_{L^2(I)}$")
plt.xlim((2,128))
plt.xticks([2,4,8,16,32,64,128],[2,4,8,16,32,64,128])
plt.grid('on')
plt.show()
```

Exercícios

Em construção \dots

1.3 Condições de contorno

Nesta seção, vamos discutir sobre soluções de elementos finitos para a equações diferencial

$$-u'' = f, \quad x \in I = [0, L], \tag{1.90}$$

com diferentes condições de contorno.

1.3.1 Condições de Dirichlet

Consideremos o seguinte problema com condições de contorno de Dirichlet 4 : encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.91)

$$u(0) = u_0, \quad u(L) = u_L,$$
 (1.92)

com u_0 , u_L e f dados.

Tomando uma função teste $v \in V_0 = H_0^1(I) := \{v \in H^1(I); v(0) = v(L) = 0\}$ e multiplicando-a em (1.91), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.93}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx = \int_{I} fc dx. \tag{1.94}$$

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in V := \{v \in H^1(I); \ v(0) = u_0, \ v(L) = v_L\}$ tal que

$$a(u,v) = L(v), \quad \forall v \in V_0, \tag{1.95}$$

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx \tag{1.96}$$

e L(v) é a forma linear

$$L(v) = \int_{I} fv \, dx. \tag{1.97}$$

⁴Johann Peter Gustav Lejeune Dirichlet, 1805 - 1859, matemático alemão. Fonte: Wikipedia.

Exemplo 1.3.1. Consideremos o problema

$$-u'' = 1, \quad x \in I = [0,1], \tag{1.98}$$

$$u(0) = 1/2, \quad u(1) = 1.$$
 (1.99)

Sua solução analítica é $u(x) = -x^2/2 + x + 1/2$. A Figura 1.9 apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h , esta construída no espaço dos polinômios lineares por partes sobre uma malha uniforme de 5 células.

Figura 1.9: Esboço dos gráficos das soluções referentes ao Exemplo 1.3.1.

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

#tolerance
tol=1e-14

```
# malha
mesh = IntervalMesh(5,0,1)
# espaco
V = FunctionSpace(mesh, 'P', 1)
u_D = Expression('x[0]<0.5 ? 0.5 : 1',degree=1)
def boundary(x,on_boundary):
    return on_boundary
bc = DirichletBC(V,u_D,boundary)
#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = u.dx(0)*v.dx(0)*dx
L = f*v*dx
#computa a sol
u = Function(V)
solve(a == L, u, bc)
#sol analitica
ua = Expression('-x[0]*x[0]/2+x[0]+0.5',
                degree=2)
#erro L2
print("Erro L2: %1.2E\n" % errornorm(u,ua,norm_type="L2"))
plot(u,mesh=mesh,marker='o',label=r"$u h$")
mesh = IntervalMesh(100,0,1)
plot(ua,mesh=mesh,label=r"$u$")
plt.legend(numpoints=1)
plt.show()
```

1.3.2 Condições de Neumann

Consideremos o seguinte problema com condições de contorno de Neumann⁵ homogênea em x = L: encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.100)

$$u(0) = u_0, \quad u'(L) = 0,$$
 (1.101)

com u_0 e f dados.

Tomando uma função teste $v \in V := \{v \in H^1(I); v(0) = 0\}$ e multiplicandoa em (1.100), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.102}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \underbrace{u'(L)v(L)}_{u'(L)=0} + \underbrace{u'(0)v(0)}_{v(0)=0} = \int_{I} fc dx.$$
 (1.103)

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in \tilde{V} := \{v \in H^1(I); \ v(0) = u_0\}$ tal que

$$a(u,v) = L(v), \quad \forall v \in V, \tag{1.104}$$

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx \tag{1.105}$$

e L(v) é a forma linear

$$L(v) = \int_{I} f v \, dx. \tag{1.106}$$

Exemplo 1.3.2. Consideremos o problema

$$-u'' = 1, \quad x \in I = [0,1], \tag{1.107}$$

$$u(0) = 0, \quad u'(1) = 0.$$
 (1.108)

Sua solução analítica é $u(x) = -x^2/2 + x$. A Figura 1.10 apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h , esta construída no espaço dos polinômios lineares por partes sobre uma malha uniforme de 5 células.

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

⁵Carl Gottfried Neumann, 1832 - 1925, matemático alemão. Fonte: Wikipedia.

Figura 1.10: Esboço dos gráficos das soluções referentes ao Exemplo 1.3.4.

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

#tolerance
tol=1e-14

# malha
mesh = IntervalMesh(5,0,1)

# espaco
V = FunctionSpace(mesh, 'P', 1)

u_D = Constant(0.0)

def boundary(x,on_boundary):
    return near(x[0],0,tol)
```

```
bc = DirichletBC(V,u D,boundary)
#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = u.dx(0)*v.dx(0)*dx
L = f*v*dx
#computa a sol
u = Function(V)
solve(a == L, u, bc)
#sol analitica
ua = Expression(-x[0]*x[0]/2+x[0]',
                degree=2)
#erro L2
print("Erro L2: %1.2E\n" % errornorm(u,ua,norm type="L2"))
plot(u,mesh=mesh,marker='o',label=r"$u_h$")
mesh = IntervalMesh(100,0,1)
plot(ua,mesh=mesh,label=r"$u$")
plt.legend(numpoints=1,loc='upper left')
plt.show()
```

Agora, consideremos o seguinte problema com condições de Neumann nãohomogênea em x=L: encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.109)

$$u(0) = u_0, \quad u'(L) = \alpha,$$
 (1.110)

com u_0 , α e f dados.

Tomando uma função teste $v \in V := \{v \in H^1(I); \ v(0) = 0\}$ e multiplicandoa em (1.109), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.111}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \alpha v(L) = \int_{I} f c dx. \tag{1.112}$$

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in \tilde{V} := \{v \in H^1(I); \ v(0) = u_0\}$ tal que

$$a(u,v) - b(= L(v), \quad \forall v \in V, \tag{1.113}$$

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx \tag{1.114}$$

e L(v) é a forma linear

$$L(v) = \int_{I} fv \, dx + \alpha v(L). \tag{1.115}$$

Exemplo 1.3.3. Consideremos o problema

$$-u'' = 1, \quad x \in I = [0,1], \tag{1.116}$$

$$u(0) = 0, \quad u'(1) = 1.$$
 (1.117)

Sua solução analítica é $u(x) = -x^2/2 + 2x$. A Figura 1.11 apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h , esta construída no espaço dos polinômios lineares por partes sobre uma malha uniforme de 5 células.

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt
```

#tolerance
tol=1e-14

malha

mesh = IntervalMesh(5,0,1)

Figura 1.11: Esboço dos gráficos das soluções referentes ao Exemplo 1.3.3.

```
# espaco
V = FunctionSpace(mesh, 'P', 1)

u_D = Constant(0.0)

def boundary_D(x,on_boundary):
    return near(x[0],0,tol)

bc = DirichletBC(V,u_D,boundary_D)

#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = u.dx(0)*v.dx(0)*dx
L = f*v*dx + 1*v*ds
```

1.3.3 Condições de Robin

Consideremos o seguinte problema com condições de contorno de Robin 6 : encontrar u tal que

$$-u'' = f, \quad \forall x \in I = [0, L],$$
 (1.118)

$$u'(0) = r_0(u(0) - s_0), -u'(L) = r_L(u(L) - s_L),$$
 (1.119)

com r_0 , r_L , s_0 , s_L e f dados.

Tomando uma função teste $v \in V = H^1(I)$ e multiplicando-a em (1.118), obtemos

$$-\int_{I} u''v \, dx = \int_{I} fv \, dx. \tag{1.120}$$

Aplicando a integração por partes, temos

$$\int_{I} u'v' dx - \underbrace{u'(L)v(L)}_{-u'(L)=r_{L}(u(L)-s_{L})} + \underbrace{u'(0)v(0)}_{u'(0)=r_{0}(u(0)-s_{0})} = \int_{I} fc dx.$$
 (1.121)

ou, mais adequadamente,

$$\int_{I} u'v' dx + r_{L}u(L)v(L) + r_{0}u(0)v(0) = \int_{I} fc dx + r_{L}s_{L}v(L) + r_{0}s_{0}v(0).$$
 (1.122)

⁶Victor Gustave Robin, 1855 - 1897, matemático francês. Fonte: Wikipedia.

Desta forma, definimos o seguinte problema fraco associado: encontrar $u \in H^1(I)$ tal que

$$a(u,v) = L(v), \quad \forall v \in V, \tag{1.123}$$

onde a(u,v) é a forma bilinear

$$a(u,v) = \int_{I} u'v' dx + r_{L}u(L)v(L) + r_{0}u(0)v(0)$$
 (1.124)

e L(v) é a forma linear

$$L(v) = \int_{L} fv \, dx + r_{L} s_{L} v(L) + r_{0} s_{0} v(0). \tag{1.125}$$

Exemplo 1.3.4. Consideremos o problema

$$-u'' = 1, \quad x \in I = [0,1], \tag{1.126}$$

$$u'(0) = u(0), -u'(1) = u(1) - 1.$$
 (1.127)

Sua solução analítica é $u(x) = -x^2/2 + 5x/6 + 5/6$. A Figura 1.12 apresenta o esboço dos gráficos da solução analítica u e da sua aproximação de elementos finitos u_h , esta construída no espaço dos polinômios lineares por partes sobre uma malha uniforme de 5 células.

Com o FENiCS, a computação do problema de elementos finitos pode ser feita com o seguinte código:

```
from __future__ import print_function, division
from fenics import *
import numpy as np
import matplotlib.pyplot as plt

#tolerance
tol=1e-14

# malha
mesh = IntervalMesh(5,0,1)

# espaco
V = FunctionSpace(mesh, 'P', 1)
```


Figura 1.12: Esboço dos gráficos das soluções referentes ao Exemplo ??.

```
#MEF problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(1.0)
a = u.dx(0)*v.dx(0)*dx + u*v*ds(1) + u*v*ds(0)
L = f*v*dx + 1*v*ds(1)
#computa a sol
u = Function(V)
solve(a == L, u)
#sol analitica
ua = Expression('-x[0]*x[0]/2+5*x[0]/6+5./6',
                degree=2)
#erro L2
print("Erro L2: %1.2E\n" % errornorm(u,ua,norm type="L2"))
plot(u,mesh=mesh,marker='o',label=r"$u h$")
mesh = IntervalMesh(100,0,1)
plot(ua,mesh=mesh,label=r"$u$")
plt.legend(numpoints=1,loc='upper left')
plt.show()
```

Exercícios

E 1.3.1. Considere o problema

$$-u'' + u' + 2u = -\cos(x), \quad x \in (0, \pi/2), \tag{1.128}$$

$$u(0) = -0.3, \quad u(\pi/2) = -0.1.$$
 (1.129)

Obtenha uma aproximação por elementos finitos para a solução deste problema, empregando o espaço de elementos finitos linear sobre uma malha uniforme com 10 células. Então, compare a aproximação computada com sua solução analítica $u(x) = 0.1(\text{sen}(x) + 3\cos(x))$, bem como, compute o erro $||u - u_h||_{L^2}$.

Em construção ...

Resposta dos Exercícios

E 1.3.1. Código.

Referências Bibliográficas

- [1] Hans Petter Langtangen and Anders Logg. Solving PDEs in Python. Springer, 2017.
- [2] M.G. Larson and F. Bengson. The Finite Element Method: Theory, Implementation, and Applications. Springer, 2013.

Índice Remissivo