Homework1 (Probability and Linear Algebra Review)

1 Probability(47)

1.1 Expectation (10)

Suppose X, Y are two random variables.

- Show $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X]$.
- Show $Var(X) = \mathbb{E}[var(X|Y)] + var(\mathbb{E}[X|Y])$

1.2 Function of random variables (10)

Suppose $X_1, X_2, ..., X_n$ are iid random variables. find the probability density function of $Y_1 = max\{X_1, X_2, ..., X_n\}, Y_2 = min\{X_1, X_2, ..., X_n\}.$

1.3 Independence (10)

Assume X, Y are two independent random variables such that:

$$P(X = k) = P(Y = k) = pq^{k}, k = 0, 1, 2, ...$$

$$q = p - 1$$
(1)

Show that X - Y and min(X, Y) are independent random variables.

1.4 Nice Problem(17)

We had a coin that it's head probability is $\frac{1}{2}$. Can you design a procedure with this coin to make probability 0.55? what about $\frac{1}{3}$?

2 Linear Algebra (38)

2.1 Derivative(15)

Assume that x, a are vectors and A is a square matrix. show that:

- $\frac{d}{dx}aTx = aT$
- $\frac{d}{dx}xTAx = x^T(A + A^T)$
- $\frac{d}{dx}x^TA = A^T$

2.2 Eigenvalue and Eigenvectors(18)

- 1. (8) Prove below statements about eigenvalues:
 - Determinant of square matrix A is product of it's eigenvalues.
 - Trace of square matrix A is sum of it's eigenvalues.
 - Eigenvalues of A and A^T are same.
- 2. (10) Assume A is a linear transform which is defined on vector space V. Show if A is a diagonalizable matrix:

$$V = Null(A) \oplus Range(A) \tag{2}$$

$2.3 \quad SVD(5)$

Suppose A is a square matrix and we have A = QR. Q is orthonormal matrix. In this case SVD of matrix A will be look like SVD of matrix R. which one of these three matrix Σ , U, V will be different for A and R?

3 Estimation (15)

Let $x_1, x_2, ..., x_n$ be iid samples from $N(\mu, \sigma^2)$. Where σ^2 is known but μ is unknown.

- Find MLE of μ .
- Assume $\mu \sim \mathcal{N}(v, \beta^2)$. Find MAP estimation of μ .
- Compare the result when N goes to infinity.