ЛЕКЦИЯ 6

ФУНКЦИОНАЛЬНЫЕ РЯДЫ. РАЗЛОЖЕНИЕ АНАЛИТИЧЕСКОЙ ФУНКЦИИ В СТЕПЕННОЙ РЯД.

§1. Понятие функциональных рядов. Равномерная сходимость рядов.

Пусть $\{u_k(z)\}$ -- последовательность комплексных функций $u_n(z)$, однозначных и аналитических в области G . Рассмотрим сумму

$$\sum_{k=1}^{\infty} u_k(z) \tag{1}$$

Эту сумму будем называть функциональным рядом. Если *z* фиксировано, то этот ряд будем числовым рядом.

Определение 1. Функциональный ряд (1) сходится в области G, если при любом фиксированном $z \in G$ соответствующий ему числовой ряд сходится.

Сходящийся ряд задает некоторую функцию f(z) в области G , которую называют суммой ряда, и пишут $f(z) = \sum_{k=1}^\infty u_k(z)$. Из определения 1 следует, что для любого $z \in G$ и любого $\varepsilon > 0$ сколь угодно малого существует число $N(\varepsilon,z)$ такое, что при всяком $n \ge N(\varepsilon,z)$ выполняется неравенство

$$\left| f(z) - \sum_{k=1}^{n} u_k(z) \right| < \varepsilon$$

Если обозначить частичную сумму $\sum_{k=1}^{n} u_k(z)$ ряда (1) через $S_n(z)$, то условие сходимости ряда в области G можно записать в виде

$$\lim_{n\to\infty} S_n(z) = f(z), z \in G.$$

Определение 2. Функциональный ряд (1) будем называть равномерно сходящимся κ функции f(z) в области G, если для любого $\varepsilon > 0$ существует $N(\varepsilon)$ такое, что при любом фиксированном $n \ge N(\varepsilon)$ неравенство

$$\left| f(z) - \sum_{k=1}^{n} u_k(z) \right| < \varepsilon \tag{2}$$

выполняется сразу для всех точек z из области G.

Определение 2 отличается от определения 1 тем, что число N не зависит от z, поэтому неравенство (2) выполняется сразу для всех точек z из области G.

Определение 3. Числовой ряд $\sum_{k=0}^{\infty} a_k$ называют мажорирующим функциональный ряд

$$\sum_{k=1}^{\infty}u_{k}(z)$$
, если при любом k выполняются неравенства $\left|u_{k}(z)\right|\leq\left|a_{k}\right|$ для всех $z\in G$

Теорема 1 (признак равномерной сходимости Вейерштрасса)

Если всюду в области G члены ряда (1) мажорируются членами абсолютно сходящегося числового ряда, то ряд (1) сходится равномерно.

Доказательство опускаем. Свойства равномерно сходящихся рядов.

1. Если члены $u_n(z)$ исследуемого ряда непрерывны в области G, а ряд $\sum_{k=1}^\infty u_k(z)$ сходится в G равномерно к f(z), то

$$f(z) = \sum_{k=1}^{\infty} u_k(z)$$

есть непрерывная функция своего аргумента.

2. Если ряд $\sum_{k=1}^{\infty} u_k(z)$ непрерывных функций $u_k(z)$ сходится к f(z) в области G, то интеграл от этой функции вдоль кривой L, целиком лежащей в G, можно получить путем почленного интегрирования самого ряда:

$$\int_{L} f(z)dz = \sum_{k=1}^{\infty} \int_{L} u_{k}(z)dz, L \subset G$$

§2. Разложение аналитической функции в степенной ряд

Ранее мы исследовали задачу о сходимости степенного комплексного ряда. Было показано, что степенной ряд в круге сходимости является аналитической функцией аргумента z, производная степенного ряда может быть получена путем почленного дифференцирования ряда. Показано, что степенной ряд бесконечно дифференцируем.

На практике часто приходится решать обратную задачу: задана функция f(z), ее надо разложить в степенной ряд.

Теорема 2. Пусть f(z) -- однозначная и аналитическая функция в области G. Если $z_0 \in G$ и r -- расстояние от z_0 до границы области G, тогда в круге $\left|z-z_0\right| < r$ функция f(z) разлагается в сходящийся ряд $\sum_{n=0}^{\infty} a_n (z-z_0)^n$, коэффициенты которого имеют вид

$$a_n = \frac{1}{2\pi i} \oint_{\gamma_c} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta,$$

где γ_r – окружность радиуса r с центром в z_0

Доказательство. Пусть z -- точка круга $|z-z_0| < r$. Рассмотрим концентрический круг радиуса ρ ($0 < \rho < r$), содержащий эту точку внутри (см. рис. 2). Пусть γ_{ρ} -- граница круга. Тогда, по формуле Коши имеем

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma_{\rho}} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Разложим $(\zeta - z)^{-1}$ в ряд по $(z - z_0)$:

$$\frac{1}{(\zeta - z)} = \frac{1}{\zeta - z_0 - (z - z_0)} = \frac{1}{\zeta - z_0} \cdot \frac{1}{1 - \frac{z - z_0}{\zeta - z_0}}$$

Воспользуемся известным рядом для функции $(1-q)^{-1}$

$$\frac{1}{1-q} = 1 + q + q^2 + q^3 + \cdots$$

Рис. 1

Ряд, стоящий в правой части этого равенства, сходится абсолютно при |q| < 1. Тогда можем записать, что

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{z - z_0}{\zeta - z_0} \right)^n \tag{4}$$

Здесь $\left| \frac{z - z_0}{\zeta - z_0} \right| < 1$, так как $\zeta \in \gamma_\rho$. Поэтому ряд (4) сходится абсолютно.

Представим теперь подынтегральную функцию в интеграле (3) в виде ряда:

$$\frac{f(\zeta)}{(\zeta - z)} = \sum_{n=0}^{\infty} f(\zeta) \frac{\left(z - z_0\right)^n}{\left(\zeta - z_0\right)^{n+1}} \tag{5}$$

Этот ряд сходится равномерно по ζ на окружности γ_{ρ} в силу признака Вейерштрасса, так как ряд мажорируется абсолютно сходящимся рядом, члены которого не зависят от ζ . Действительно, имеем

$$\left| f(\zeta) \frac{(z - z_0)^n}{(\zeta - z_0)^{n+1}} \right| \le \max_{\gamma_\rho} |f(\zeta)| \frac{|z - z_0|^n}{\rho^{n+1}} = b_n$$

Мажорирующий ряд $\sum_{n=1}^{\infty} b_n$ сходится абсолютно как геометрическая прогрессия со

знаменателем $q=\left|z-z_{0}\right|/\rho<1$, первый член которой есть $b_{1}=\max_{\gamma_{\rho}}\left|f(\zeta)\right|/\rho$, последующие вычисляются по формуле $b_{n+1}=b_{1}q^{n}$.

Итак, на основании признака равномерной сходимости Вейерштрасса, ряд (5) сходится равномерно по ζ . Подставляя ряд (5) в интегральную формулу Коши вместо подинтегральной функции и почленно интегрируя, имеем

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma_0} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \oint_{\gamma_n} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta (z - z_0)^n = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$
(6)

Здесь a_n вычисляются по формуле

$$a_n = \frac{1}{2\pi i} \oint_{\gamma_\rho} \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} d\zeta$$
 (7)

Заметим, что коэффициент a_n не зависит от радиуса ρ , что следует из теоремы о составном контуре, примененной к двусвязной области, ограниченной контурами γ_ρ и γ_r (интеграл по γ_ρ равен интегралу по γ_r , при этом контуры обходятся против часовой стрелки):

$$a_{n} = \frac{1}{2\pi i} \oint_{\gamma_{0}} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta = \frac{1}{2\pi i} \oint_{\gamma_{0}} \frac{f(\zeta)}{(\zeta - z_{0})^{n+1}} d\zeta$$

Итак, установлено, что для произвольной точки z круга $|z-z_0| < r$ справедливо разложение (6), (7) функции f(z) в ряд по $(z-z_0)$. **Теорема доказана**.

Замечание 1 (неравенство Коши). Положим $M(\rho) = \max_{\zeta \in \gamma_{\rho}} \left| f(\zeta) \right|$. Из полученных формул для коэффициентов a_n следует неравенство

$$|a_n| \le \frac{1}{2\pi} \int_{\gamma_0} \left| \frac{f(\zeta)}{(\zeta - z_0)^{n+1}} \right| d\zeta \le \frac{1}{2\pi} \frac{M(\rho)}{\rho^{n+1}} 2\pi \rho = \frac{M(\rho)}{\rho^n}$$

Это неравенство позволяет оценивать сверху модуль коэффициентов степенного ряда.

Замечание 2. Согласно доказанной теореме, радиус сходимости ряда Тейлора, т.е. число r, есть кратчайшее расстояние от точки z_0 до границы области G. Границу можно отодвигать, увеличивая область G и увеличивая радиус сходимости r до тех пор, пока f(z) остается аналитической в области G. Как только появится особая точка (точка неаналитичности) функции f(z) на границе области G, процесс «расширения» области G следует прекратить. Дело в том, что в особой точке ряд Тейлора расходится: либо он

принимает бесконечно большие значения, либо его сумма не определена вовсе. Итак, радиус сходимости ряда Тейлора — кратчайшее расстояние от z_0 до ближайшей особой точки! Это правило позволяет вам вычислить радиус сходимости ряда Тейлора чисто геометрически, не используя формулу Коши-Адамара.

Пример. Рассмотрим функцию $f(z) = \frac{1}{1+z^2}$. Эта функция аналитична на всей комплексной плоскости, за исключением точек $z_{1,2} = \pm i$. Эта функция представима, в силу доказанной теоремы, рядом Тейлора. Чтобы его построить, воспользуемся формулой, описывающей сумму бесконечно убывающей геометрической прогрессии:

$$\frac{1}{1+z^2} = \sum_{n=0}^{\infty} (-1)^n z^{2n}$$

Это и есть ряд Тейлора в окрестности точки $z_0=0$. Круг его сходимости есть |z|<1, радиус сходимости -- R=1 . Как видим, радиус сходимости ряда есть расстояние от точки $z_0=0$ до особых точек $\pm i$.

§3. Бесконечная дифференцируемость аналитических функций

Теорема 3. Любая функция f(z), аналитическая в области G, имеет производные всех порядков, т.е. бесконечно дифференцируема. Более того, если L -- замкнутая жорданова кривая, принадлежащая области G вместе со своей внутренностью D, то в каждой точке $z \in D$ для любого натурального n справедливо равенство

$$\left| \frac{d^n f(z)}{dz^n} = \frac{n!}{2\pi i} \oint_L \frac{f(\zeta)}{(\zeta - z)^{n+1}} d\zeta \right| \tag{8}$$

Доказательство. В силу доказанной теоремы 2, аналитическая функция f(z) разлагается в сходящийся степенной ряд в окрестности точки $z_0 \in D$:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n ,$$

поэтому бесконечно дифференцируема в соответствующей окрестности на основании теоремы 1 лекции 4. Более того, в теореме 1 лекции 4 была доказана формула

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$
,

где a_n -- коэффициенты степенного ряда. Отсюда, учитывая формулу (7), следует равенство (8) (интегрирование в (7) по кривой γ_ρ можно заменить на интегрирование по L в силу теоремы о составном контуре; z_0 следует заменить на z). **Теорема доказана**