VUV AND EUV IRRADIATION OF CH₄ + NH₃ ICE MIXTURES

Lily Leung

Contents

- Introduction
 - CN⁻ formation mechanisms by electron irradiation at 10-15 K
 - Different results from 2 groups
 - We perform 3:2 CH₄+NH₃ ice mixtures by VUV and EUV photons
 - What astrophysical environments are we demonstrating?
 - Charon
 - NH₃
 - Infra-red spectra shows ammonia on Organa Crater
 - CH₄
 - Deposition rate of methane on Charon
 - Surface temperatures at different latitudes
 - We perform 1:5,1:10 and 1:20 CH₄+NH₃ ice mixtures

Contents

- Methodology
 - Experimental setup
 - The spectrum of VUV (MDHL) energy source
 - Experimental Configurations
- Results
 - Production of CN⁻
 - The relations between CN^{-} and C_2H_6
 - CN⁻ formation efficiency of EUV (40.1 eV) and VUV (9.27 eV)
- Astrophysical Implications
 - Understand CN⁻ formation after winter on surface of Charon

Introduction

Production mechanism of CN⁻

Enthalpy of CH₃NH₂ formation

$$CH_3 + NH_2 \rightarrow CH_3NH_2 \Delta H = -3.64 \text{ eV}$$

Quoted from Kundu et al. (2017)

Quoted from Kim and Kaiser (2011)

Production mechanism of CN⁻

Attempts to detect CH₃NH₂:

- Different results from 2 e⁻ irradiating experiments
 - 5 keV e⁻ by Kim and Kaiser (2011):
 - The intermediate CH₃NH₂ was detected by TPD
 - 1- 90 eV e⁻ experiment by Kundu et al.(2017)
 - The intermediate CH₃NH₂ cannot be detected by TPD
- How about EUV and VUV photons?

What astrophysical environments are we demonstrating?

7

Ammonia on Organa Crater

Ammonia hydrate (2.21µm) was detected all over the surfaces, especially on Organa Crater

from Grundy et al. (2016)

Surface temperatures at different latitudes

- ► Thermal model from Grundy et al. (2016) shows the pole position is below 25 K for 130 years
- ► Methane can condense on those positions where the temperature is below 25 K.

Quoted from Grundy et al. (2016)

Deposition rate of methane on Charon

quoted from Hoey et al. (2017)

Motivation

- 1. To compare with previous studies
 - Kim and Kaiser (CH_4+NH_3 3:1) and Kundy et al. (2017) (CH_4+NH_3 3:2)
 - We perform experiment of $CH_4+NH_3=3:2$
 - Confirm the mechanism of CN-
- 2. To simulate the surface of Charon
 - Experiment: CH₄+NH₃ =1:5, 1:10, 1:20
 - Variation of photon sources: from VUV to EUV

Methodology

Experimental Protocol

The spectrum of VUV (MDHL) energy

source

H₂ 0.4 torr was adopted

• 19.1% is Ly-α

average photon energy is 9.27 eV

 EUV is 40.8 eV (30.4nm)

Quoted from Chen et al. (2014)

Experimental Configurations

Energetic Source	constituent	Column Density (x10 ¹⁵ molecules cm ⁻²)			
		3:2	1:5	1:10	1:20
VUV (MDHL)	CH₄	900	120	60	30
	NH ₃	600	600	600	600
EUV (30.4 nm)	CH₄	900	120		
	NH ₃	600	600		

Results

Beer's Law

Transmittance T(v) is defined by:

$$T(v) = \frac{I(v)}{I_o(v)}$$

Absorbance $\tau(v)$ is defined by:

$$\tau(v) = -lnT = -\ln\left(\frac{I(v)}{I_o(v)}\right) = nl\sigma(v)$$

- where n is number density (molecules cm⁻³), l is the path length (cm) and $\sigma(v)$ is the cross-section (cm² molecules ⁻¹)

Column density *N* is defined by:

$$N = \frac{\int \tau(v)dv}{A(v)}$$

 where N is column density (molecules cm⁻²), A(v) is the absorption strength (A-value) (cm molecule⁻¹) from literatures

Infra-red spectra before (black lines) and after (coloured lines) VUV irradiation where CN^{-} , C_2H_6 and C_3H_8 are formed after VUV irradiation.

1. Production of CN⁻

- 2 steps/1 step?
- 2 steps rate equation:

$$[CN^-] = \left(1 + \frac{k_1 e^{-k_2 t}}{k_2 - k_1} - \frac{k_2 e^{-k_1 t}}{k_2 - k_1}\right) [A]_0$$

1 step rate equation:

Quoted from Kim and Kaiser (2011)

19

1. Production of CN⁻

■ 2 steps/1 step?

2 steps rate equation:

1. Production of CN-

2 steps/1 step?

2 steps rate equation:

$$[CN^{-}] = \left(1 + \frac{k_1 e^{-k_2 t}}{k_2 - k_1} - \frac{k_2 e^{-k_1 t}}{k_2 - k_1}\right) [A]_o$$
1 step rate equation:

$$[CN^{-}] = (1 + e^{-kt})[A]_o$$

1 step rate equation:

$$[CN^-] = (1 + e^{-kt})[A]_o$$

Table 2 t. The fitting regults of CN- by equation 2.10

	Table 3.5: The	ntting results of CN by	equation 2.10	
VUV experiments with CH ₄ +NH ₃ ice mixtures				
Ratio	A $(x10^{16} \text{ molecules cm}^{-2})$	$k_1 (x10^{-18} \text{ photon}^{-1})$	$k_2 \text{ (photon}^{-1})$	
1:20	4.75 ± 0.40	0.70 ± 0.09	>1	
1:10	4.51 ± 0.18	1.33 ± 0.13	>1	
1:5	4.61 ± 0.18	1.93 ± 0.19	>1	
3:2	2.24 ± 0.03	8.21 ± 0.70	>1	
Quotated from Kim and Kaiser[2]				
Ratio	$A(x10^{16} \text{ molecules cm}^{-2})$	$k_1 \; (\times \; 10^{-3} \; \mathrm{s}^{-1})$	$k_2 \ (\times \ 10^{-3} \ \mathrm{s}^{-1})$	
$0.1 \ \mu A e^-$ with CH_4+NH_3 ice mixtures				
3:1	1.3 ± 0.0	2.7 ± 0.3	8.9 ± 1.6	
1 μ A e ⁻ with C _n H _{2n+2} (n=1-6)+NH ₃ ice mixtures				
2:5	1.0 ± 0.0	8.7 ± 1.3	» 1	

A represents the amount of CN⁻ we may obtain when irradiated the ice for infinitely long.

1. Production of CN⁻

Methylamine (CH₃NH₂) with m/z=31 is detected by QMS after isothermal VUV irradiation during warm-up which is the intermediate of the CN⁻.

2. The scenario for NH₃ dominating ice mixtures

 Once CH₄ becomes CH₃ radical, it can easily forms methylamine and hence become CN⁻.

A diagram of $CH_4:NH_3 = 1:5$

2. The scenario for CH₄ dominating ice mixtures

- CH₂NH₃ (formed by CH₃ + NH₂) has a competing relationship with C₂H₆ (formed by 2 CH₃) and C₃H₈ (formed by CH₂ + C₂H₆ or C₂H₄ + CH₄)
- Once CH₄ becomes CH₃ radical, it reacts with either NH₂ or CH₃ radicals, forming CH₃NH₂ or C₂H₆ respectively

A diagram of $CH_4+NH_3 = 3:2$

2. The relations between CN⁻ and C₂H₆ during VUV irradiations

CH ₄ :NH ₃	C ₂ H ₆ (ML)	CN ⁻ (ML)	Ratio of CN ⁻ to C ₂ H ₆
3:2 (CH ₄ dominant)	19.1	23	1.2
1:5 (NH ₃ dominant)	4.3	49	11.3

Concentration of CN⁻ is not proportional to initial amount of CH₄ when CH₄ is in excess.

25

3. Energy needed for forming radicals by EUV (40.1 eV) and VUV (9.27 eV)

Radicals species	CH ₄	NH ₃
- 1 H	4.55 eV	4.67 eV
-2 H	4.78 eV	4.38 eV
-3 H	9.19 eV	7.63 eV

(quoted from Kundu et al. (2017))

3. Destruction cross-section of EUV (40.1 eV) and VUV (9.27 eV)

■ Fitting with $y = Ae^{-kx} + C$ (pseudo first order kinetics)

3. CN⁻ formation efficiency of EUV (40.1 eV) and VUV (9.27 eV)

k (photons ⁻¹ cm ²)	CH ₄ (x 10 ⁻¹⁸)	NH ₃ (x10 ⁻¹⁸)
VUV (MDHL)	3.70±0.18	2.89±0.10
EUV (30.4nm)	0.61±0.03	0.91±0.11
Destruction cross-section ratio	6.06±0.07	3.18±0.12
k (photon ⁻¹ cm ²)	CH ₄ to NH ₃ 3:2 (x 10 ⁻¹⁸)	CH ₄ to NH ₃ 1:5 (x10 ⁻¹⁸)
VUV (MDHL)	8.21±0.70	1.93±0.19
EUV (30.4nm)	1.92±1.99	0.63±0.37
CN ⁻ production ratio	4.28	3.06

Astrophysical implications

Understand CN⁻ formation after winter on surface of Charon

Surface composition after 1 Pluto winter:

Ly α exposure: 1.9 x 10^9 eV cm⁻² s⁻¹ (Grundy et al. 2016)

 \rightarrow photon dose: 7.64 x 10 ¹⁷ photons cm⁻²

■ CH₄ deposition rate: $2-6 \times 10^7 \text{ cm}^{-2} \text{ s}^{-1}$ (Hoey et al. 2017)

 \rightarrow 82-246 ML in 130 earth years

CH ₄ +NH	CH ₄ (ML)	CN ⁻
1:5	110	36.6
1:10	60	29.5
1:20	30	18.9
3:2	900	22.5

Astrophysical implications

- Ly-α is the main energy source to produce CN⁻ on Charon
 - VUV is 3.06 to 4.28 times more efficient than EUV
 - VUV flux is 1 order of magnitude more intense than EUV irradiations (Grundy et al. 2016)
 - Ly-a exposure: 1.9 x 109 eV cm⁻² s⁻¹
 - EUV exposure: 8.7 x 10⁷ eV cm⁻² s⁻¹

Conclusion

- 1. Detection of methylamine implies that CN⁻ is formed via a 2 step mechanism.
- 2. Concentration of CN^{-} is not proportional to the initial amount of CH_4 when CH_4 is in excess.
 - This implies that we have to experimentally simulate the amount of CN⁻ after Charon winter for further investigations.
- 3. The reduced destruction cross-section of EUV 30.4nm irradiation is the main factor of slowing the rate of formations.
 - This implies that Ly-a is the main energy source to produce CN⁻ on Charon.

Q&A

Reason of changing from Sgr B2 to Charon

- Temperatures of Sgr B2 is not 15 K
- There exists 3 hot cores with very high temperatures
- Hence, we prefer to refer our study to Charon rather than Sgr B2.

Ammonia concentrations

- From a recent manuscript (Morea Dalle Ore et al. (2018))
 - ammonia hydrate with band 2.21 µm is mainly presents at the northern parts of Charon, associated with crater positions.

Production yield and production rates

- The yields should be correlated with initial limiting substances
- Fitting rates are the same

