

CHAPTER

11

Respiration in Plants

Introduction

- All the energy required for 'life' processes is obtained by oxidation of food.
- Cellular respiration is the mechanism of breakdown of food materials within the cell to release energy, and the trapping of this energy for synthesis of ATP.
- The compounds that are oxidized during this process are known as respiratory substrates.
- Usually carbohydrates are oxidised to release energy, but proteins, fats and even organic acids can be used as respiratory substances.
- Plants need oxygen for respiration, which is released during light reaction of photosynthesis in green parts. Other parts receive it by gaseous exchange through lenticels.

Glycolysis

- * Also called EMP pathway.
- Breakdown of glucose in cytoplasm into two molecules of 3-C Pyruvate (partial oxidation).
- Present in all living organisms (aerobic as well as anaerobic).
- * Two phases: Preparatory and Pay-off.
- ❖ Net end-products: 2 ATP, 2 NADH + H⁺, 2 Pyruvate

Fate of Pyruvic acid

- If oxygen is not available, it undergoes fermentation (incomplete oxidation of glucose), which may be of two types:
 - + Alcoholic fermentation: In yeast, pyruvate is converted to ethanol and CO₂ catalysed by pyruvic acid decarboxylase and alcohol dehydrogenase.
 - + Lactic acid fermentation: In some bacteria and animal cells, pyruvate is converted to lactic acid, catalyzed by lactate dehydrogenase.
- In fermentation there is a net gain of only two molecules of ATP for each molecule of glucose degraded to pyruvic acid.
- If oxygen is available, pyruvate is transported to mitochondria for aerobic respiration.

Aerobic respiration

- * Occurs in mitochondria
- * The crucial events in aerobic respiration are:

- + The complete oxidation of pyruvate by the stepwise removal of all the hydrogen atoms, leaving three molecules of CO₂.
- + The passing on of the electrons removed as part of the hydrogen atoms to molecular O₂ with simultaneous synthesis of ATP.
- ❖ Pyruvate is oxidatively decarboxylated in mitochondrial matrix to form Acetyl Co. A, catalysed by pyruvic dehydrogenase, require the participation of several coenzymes, including NAD⁺ and Coenzyme A. Two molecules of NADH + H⁺ are produced from 2 molecules of pyruvate by this step.
- * Acetyl Co. A enters the TCA cycle.

Tricarboxylic Acid Cycle

- * Also called Krebs' Cycle.
- Citrate synthase catalyses the condensation of Acetyl Co. A with OAA to form Citrate.
- Two steps of decarboxylation, formation of several intermediates lead to release of CO₂, and regeneration of OAA.
- ❖ Net end-products from two molecules of Acetyl Co. A: 2 GTP, 6 NADH + H⁺, 2 FADH₂.

Electron Transport System (ETS) and Oxidative Phosphorylation

- ❖ NADH + H⁺ and FADH₂ are oxidised through the electron transport system and the electrons are passed on to O₂ resulting in the formation of H₂O, thus producing ATP (Oxidative Phosphorylation).
- ETS is present in the inner mitochondrial membrane and consists of 5 complexes:
 - + Complex I: NADH dehydrogenase: takes e⁻ from NADH and transfer to Ubiquinone. 4 H⁺ transported to inter-membranal space of mitochondria.
 - + Complex II: Succinate dehydrogenase: takes e⁻ from FADH, and transfer to Ubiquinone.
 - + Ubiquinone transports the e⁻ from complex I and II, and donate them to complex III.
 - + Complex III: Cytochrome b-c₁ complex: takes e⁻ from Ubiquinone. 4 H⁺ transported to inter-membranal space of mitochondria.

- + Complex IV: Cytochrome c oxidase complex: cytochrome c transports e⁻ from complex III to complex IV. Complex IV finally donates the e⁻ to O₂ thus producing water. 2 H⁺ transported to inter-membranal space of mitochondria.
- + Complex V: ATP synthase: A trans-membrane enzyme which synthesizes ATP due the breakdown of proton gradient during the movement of H⁺ from the intermembranal space to the matrix of mitochondria.

The respiratory balance sheet

Table. 1: ATP yield in complete oxidation of one molecule of glucose by aerobic respiration

Source	FADH ₂ Produced	NADH Produced	ATP Yield
Glycolysis			2 ATP
Glycolysis		2 NADH	6 ATP
Pyruvate to		2 NADH	6 ATP
acetyl CoA			

Krebs cycle			2 ATP
Krebs cycle		6 NADH	18 ATP
Krebs cycle	2 FADH,		4 ATP
Total			38 ATP

A balance sheet accounting for ATP production from glucose by aerobic respiration. Total ATP production can vary between 36 to 38 ATP for each glucose processed.

Amphibolic pathway

Apart from catabolism of glucose, respiration is also involved in the synthesis of sevral compounds from the intermediates of aerobic respiration.

Respiratory quotient

- The ratio of the volume of CO₂ evolved to the volume of O₂ consumed in respiration is called the respiratory quotient (RQ) or respiratory ratio.
- * RQ of glucose is 1, tripalmitin is 0.7, for proteins is approximately 0.9, and more than 1 for organic acids.