## Centro delle velocità dei moi relativi

giovedì 28 novembre 2024 16:47

CV = Ncv =0 per t-I

=) TEO CHASLES



MOTO RELATIVO (1) e(2) =) MOTO ROTAT.

CV12 = CV21 B

 $\exists$  on punto  $c_v$  t.c.  $\underline{Ncv@} = \underline{Ncv@}$  per  $t = \overline{t}$   $\underline{Vc_v} = \underline{O}$   $\underline{fe} \quad \underline{w} \neq \underline{O}$ 

MOTO RELATIVO (2) =) MOTO ROTAT.

 $Cv_{12} = Cv_{21}B \qquad \Rightarrow \qquad Cv_{3j} = Cv_{j}i$   $v_{10} = Cv_{10} = Cv_{10}$   $c_{10} = Cv_{10}$ 

MOTO RELATIVO (2 e(B) =) MOTO ROTAT  $CV_{23} = CV_{13} = C$ 



CV13 ?

1) TEO CHASUES  $\Rightarrow$  RD RO PO FOR  $\sum_{\mathcal{O}}$  VAO ,  $\mathcal{O}_{\mathcal{B}}$ 



es.





•) 
$$\Sigma_0$$
  $V_0$   $S_0$   $S$ 

$$R_1$$
,  $R_2$ ,  $R_3$  =

Jono allineati.



## Applicazione:



EJEMPIO : MDS



- MOTO ASSOUTO:
- Cui CV2
- Cv3
- REVATIVO: MOTO
- CV12 CV23
- (CV13) ?

- MOTO PERLAT. (3) VS (3) CHASUES TEO Cv13



- Σ3 = bloccato pistone suincolato U telab

$$\frac{1}{\sqrt{3}} \underbrace{\overset{\text{rel}}{\text{va}}}_{\text{A}} = \underbrace{\overset{\text{av}}{\text{va}}}_{\text{A}} - \underbrace{\overset{\text{h}}{\text{va}}}_{\text{A}} = \underbrace{\overset{\text{e}}{\text{s}}}_{\text{L}}$$



1, 3, 0 => (CM, CV3), CV13 CV13 - (1, 3, 2 =) (CV12, CV23), CV13

OSCILLANTE



TEO CHASUES

•) 
$$\frac{\sqrt{8}}{\sqrt{6}}$$
 =  $\frac{\sqrt{6}}{\sqrt{6}}$  =  $\frac{6}$ 

 $(1, 3, 0 \Rightarrow Cv_{1}, Cv_{3}), Cv_{13}$   $(1, 3, 2 \Rightarrow Cv_{12}, Cv_{23}, Cv_{13})$ 

