

## OpenDaylight, OpenStack, and Kubernetes Integration for High Performance Applications

OpenStack Summit Boston | May 2017

Nir Yechiel Senior Product Manager, Red Hat OpenStack Platform

Francois Lemarchand Head of NFVi Product Strategy, Ericsson

## Agenda

- Why SDN?
  - Network Virtualization capabilities and use cases
  - Hybrid Container and Bare Metal evolution
- The OpenDaylight Project
  - OpenDaylight NetVirt
- Ericsson and Red Hat joint NFVi offering
- Further reading



## **WHY SDN?**



## Me & My First Router







## 30 Years Later – Same Old?





Then Now

## 30 Years Later - Cloud & SDN





Infrastructure VNF distribution for local termination





HSS

- Low uptake VNF services

Control plane, database,

- Enterprise IT hosting

**Default centralization** 





**P**3

**IMS** 



Enterprise

Onnectivity

Assured mission critical cloud access





Converged & Secured access

Public Cloud

Access

Core

Peering

**Optim** 

## Cloud Networking Evolution







#### > 20 year old technologies

- Subnets
- Networks
- Routers/static routes
- VLAN's
- VRRP

#### > Modern Platform

- Open and hybrid datapath
- Collaborative development
- API/Model driven control plane and state distribution
- Continuous Delivery

#### Modern IP Routing

- > Inter-Domain, Hierarchical
- > P2P, P2MP, MP2MP
- > Policy driven routing
- Traffic engineering
- Fast Reroute / Segment Routing

## Routing Capabilities Highlights







Intra-DC



Open Interconnect clouds







And seamlessly (zero touch)

# Policy-driven, Subscriber Aware Service Composition





## SFC & Routing Integration Distribution & Redundancy





## Virtual CPE: Site to Site Connectivity







New Sites: SMB 8 Retail



Existing IP/VPN Connected Site



SDWAN Controller Application





Datacenter / Cloud

## Open Data Plane Integration





NG-VNF & Storage













Routers & Blackbox SW

DC virtual switch, white boxes and smartNICs

New data plans options

# Complementary Technologies – Coexistence Required





- >Legacy Appliances
- >SRIOV VNF
- >Extreme performance
  - HW assisted
  - Specific HW/interfaces (e.g access equipment GPON/Radio)



- >Ease for legacy software (full stack bundling)
- Good performances
  - Multi-tenant VM optimized vs fragmented
  - DPDK enabled



- Scalable multi-tenancy model for non multi-tenant software
- Best fit for cloud native software / PaaS optimized code

## Duplication of Networking Layers





Spine

Spine

Spine

DC

Gateway









**Appliance** 





Performance overhead Cost impact



Heterogenous Catalogue dashboard



Loose service integration





No correlation **Troubleshooting** 





Interworking Connectivity burden



## Two Approaches





- Single controller instance that operates on all three layers
- Simpler approach to unify operations and provide uniform capabilities
- Harder validation / lifecycle management across multiple instances / version at each layers



- Decorrelated lifecycles & vendor / technology independence at each layer
- Needs to align northbound API and ensure east/west interworking of advanced capabilities
- Even when decoupled leveraging OpenDaylight at each layer simplifies this east/west and northbound integration

## SDN for Container/PaaS Infra





## Hybrid Bare Metal





## THE OPENDAYLIGHT PROJECT



#### What is OpenDaylight?

#### Overview

- OpenDaylight is a modular, extensible, and multi-protocol controller infrastructure built for SDN deployments on modern multi-vendor networks
- Provides a model-driven service abstraction platform that allows users to write applications that easily work across a wide variety of hardware and southbound protocols
- Composed of a number of different projects that can be combined as needed to meet the requirements of a given scenario





#### Core Architecture

**Network Applications, Services and Orchestration** 

**OpenDaylight API (REST)** 

**Controller Platform** 

**Model Driven Service Abstraction Layer (MD-SAL)** 

**Southbound Interfaces and Plugins** 

**Data Plane Elements** 



#### A Modular Platform





#### OpenDaylight with OpenStack

- OpenDaylight exposes a common OpenStack Service Northbound
  - API matches Neutron REST precisely
  - Multiple implementations of Neutron providers exist in OpenDaylight
    - We focus on NetVirt
- Key fundamental facts about our integration:
  - Neutron is where the OpenStack networking API is being defined
  - OpenDaylight consumes the Neutron API rather than replace or change it



## NetVirt and VPNService Integration

Upstream Boron release

- It became apparent that the VPNService\* had it's own version of NetVirt
- During the Boron cycle the two projects joined efforts so that:
  - NetVirt became the main Network Virtualization engine of OpenDaylight
  - NetVirt is more feature rich
  - The two projects are now using the same common service pipeline defined in NetVirt
  - The two projects leverage code, test, and developer resources
- This shows strong upstream convergence around NetVirt

\*https://wiki.opendaylight.org/view/VPNService:Main



## OpenDaylight NetVirt

#### Overview

- Network Virtualization application developed on OpenDaylight consisting of modular sub-services such as L2, L3, ACL, NAT, DHCP, IPv6 control, and more
- Configure and manage the:
  - Overlay networks and virtual switches
  - ToR switches
  - OpenStack tenant networks
- Uses NETCONF and YANG to model the topology
- Modular and extensible, both southbound and northbound





## OpenDaylight NetVirt

Overview (cont.)

- Supports the Neutron API via the networking-odl Neutron plugin/drivers
- Currently controls OVS virtual switches and Layer 2 gateways
- On-going work to enable support for:
  - VPP (fd.io) virtual switches
  - CNI plugin for Kubernetes





### OpenStack Neutron

#### **REST API**

#### **Orchestration layer**

(Translate Neutron calls into configuration of a network across a deployment)

#### Per-host programmable vSwitch

(Controlled by the orchestration layer)



#### OpenStack Neutron

Upstream "Reference Architecture"

#### **REST API**

#### **Orchestration layer**

(Translate Neutron calls into configuration of a network across a deployment)

Per-host programmable vSwitch

(Controlled by the orchestration layer)

neutron-server

ML2/OVS driver

Neutron agents (OVS, L3, DHCP, Metadata)

Open vSwitch



## OpenDaylight with OpenStack Using NetVirt

#### **REST API**

#### **Orchestration layer**

(Translate Neutron calls into configuration of a network across a deployment)

Per-host programmable vSwitch

(Controlled by the orchestration layer)

neutron-server

ML2/ODL driver (networking-odl)

OpenDaylight (NetVirt)

Open vSwitch (OVS)
OVS-DPDK
L2GW
VPP



## **ERICSSON AND RED HAT**



#### Joint Strategic Vision

Red Hat and Ericsson envision, through collaboration, the ability to provide scalable transformation with open, modern, efficient and agile solutions for the communications industry.

The infrastructure is software defined and compassable into new services, that allow both service providers and enterprises to deliver business value to their end customers.



#### What Was Announced?

 On October 19th, 2016, Red Hat and Ericsson announced a broad partnership that covers many areas

#### **Upstream and Product Collaboration**

- Network Function Virtualization
- Software Defined Networking
- Software Defined Infrastructure
- Container Platforms
- Certified Solutions

#### **Customer and Business Collaboration**

- Joint customer engagement
- Proof-of-Concepts
- Customer Support
- Professional and managed services
- Co-marketing



### Solution Offering



#### **NFVi**

100% open and upstreamfirst solution with Red Hat OpenStack Platform support



#### SDN

Enhanced networking to support telco NFV and critical IT workloads



#### **SDI**

Red Hat OpenStack
Platform on state-of-the-art
Rack Scale hardware



#### **Containers**

Collaboration with industry initiatives, and OpenShift Container Platform integration



#### SDN Enabled Infrastructure





### Further Reading

- OpenDaylight NetVirt
  - Upstream Wiki
- Red Hat OpenStack Platform
  - Product Documentation
- Ericsson's alliance with Red Hat
- Red Hat NFV, SR-IOV and OVS-DPDK Guides
  - Product Guide
  - Planning Guide
  - Configuration Guide





## **THANK YOU**



f facebook.com/redhatinc





