深度學習與產業應用 HW2

113034560 林宥嫺

Q1. 我調整了 learning rate 和 epoch

原始的 lr=0.001, epoch=100, 得出的結果為

實驗	lr	epoch	Train	Valid	Train	Valid	Test
			Acc	Acc	Loss	Loss	Acc
原始	0.001	100	84.66%	72.84%	0.3875	0.5437	67.74%

所以我做了以下調整

實驗	lr	epoch	Train	Valid	Train	Valid	Test
			Acc	Acc	Loss	Loss	Acc
1	0.003	200	92.06%	77.78%	0.2251	0.6609	61.29%
2	0.002	150	87.83%	81.48%	0.2667	0.5621	70.97%
3	0.0025	180	89.42%	79.01%	0.2669	0.5330	77.42%

Q2.

從 Loss 的柱狀圖來看,三組實驗的 train loss 和 val loss 都有明顯差距,顯示有一定程度的過擬合,我透過參數的調整來讓過擬合現象能夠趨緩。而若從 test accuracy 和 val accuracy 的差距來看泛化能力,第三組之間的落差最小,且 test accuracy 也是三組中最高的,代表它在學習和泛化之間取得了較理想的平衡。

Q3.

Training accuracy 和 test accuracy 之間存在落差可能是因為模型發生了過擬合,過度學習訓練資料中的特定模式,導致泛化能力下降。另外,也可能是因為訓練資料量不足、資料中存在雜訊或類別不平衡等問題。為了縮小這個落差,可以加入 Dropout、使用正則化,或增加更多樣的訓練資料來提升模型的泛化能力。

Q4.

輸入模型的資料量太大或太小都會影響到模型的運算效能,模型可能無法準確 解釋資料間的關係,導致預測效果不佳。抽取特徵的方法有過濾法、嵌入法以 及包裝法三種。過濾法是根據統計指標篩選與目標變數最相關的特徵;包裝法 是用不同特徵組合訓練模型並評估表現,挑出效果最佳的特徵子集;嵌入法是 在模型訓練過程中直接學出特徵的重要性,並用來選擇關鍵特徵。

Reference: https://reurl.cc/4La4DY

Q5.

XGBoost 是基於梯度提升的集成學習方法,被廣泛認為是處理表格資料最有效的模型之一。XGBoost 的設計理念是透過多棵弱決策樹逐步疊加,每一步修正前一輪的預測誤差,達到高準確率與穩定表現。其主要特點包括:處理異質特徵與缺失值能力強;內建正則化機制,有助於防止過擬合;運算效率高,適合大規模資料;模型解釋性佳,可輸出特徵重要性排序。

Reference: https://vocus.cc/article/66dac239fd8978000136064c