9 – Robot's Sensory Equipment

Robotics and Computer Vision (BPC-PRP)

Course supervisor: Ing. Adam Ligocki, Ph.D.

Ing. Adam Ligocki, Ph.D.

Brno University of Technology 2025

Profile

Ing. Adam Ligocki, Ph.D.

Position: Assistant Professor

Research: Data Fusion

Room: SE1.102

Background:

- Artificial Intelligence
- Neural Networks
- Software Development

Web: https://www.vut.cz/lide/adam-ligocki-154791

Robot Big Picture

"Fenrir" Project

All hardware and software are fully documented

Open-source GitHub repository:

github.com/Robotics-BUT/fenrir-project

Includes:

- Full hardware design
- 3D printed parts
- Robot software and setup scripts
- Tutorials for building and running the robot

Everything you need to assemble and bring the robot to life!

Robot – Component Scheme

Details: https://github.com/Robotics-BUT/fenrir-project

Robot – Electrical Schema

Details: https://github.com/Robotics-BUT/fenrir-project

Robot - Wiring

Details: https://github.com/Robotics-BUT/fenrir-project

UART Bus

UART is a hardware communication protocol used for **asynchronous**, **full-duplex serial communication** between two devices. It is commonly found in embedded systems for interfacing with peripherals or debugging.

Each UART transmission is framed to enable synchronization:

- Start Bit (1 bit) pulls the line low to signal the start of transmission
- Data Bits (5 to 9 bits) actual payload
- Optional Parity Bit (1 bit) basic error detection (even/odd)
- Stop Bit(s) (1 or 2 bits) idle high, indicates end of frame

All bits are transmitted LSB first. Line is idle (logic high) between frames.

Use Cases

- Embedded debugging (serial console)
- Communication with modules (GPS, Bluetooth, Wi-Fi)
- Firmware flashing (bootloader interface)
- Inter-MCU communication (point-to-point)

UART Bus

https://vanhunteradams.com/Protocols/UART/UART.html

I2C Bus

I²C is a **synchronous, master-slave serial communication protocol**, commonly used to connect low-speed peripherals to microcontrollers in embedded systems.

It operates over **two bidirectional lines**:

- SCL Serial Clock Line (driven by master)
- SDA Serial Data Line (shared by all devices)

Both lines are **open-drain** and require **pull-up resistors**.

Speeds: 100kHz, 400kHz, 1MHz, 3.4MHz

Bus length and speed are limited by capacitance and line resistance

Use Cases

- Connecting EEPROMs, RTCs, sensors, displays, ADCs/DACs
- Short-range communication on PCB or between closely located boards
- Preferred when multiple peripherals share a common bus

SPI Bus

SPI is a **synchronous, full-duplex serial communication protocol** used primarily for high-speed communication between a single master and one or more slave devices. It is widely used in embedded systems for sensors, memory, and display interfaces.

SPI operates using **4 primary lines**:

- MOSI Master Out, Slave In
- MISO Master In, Slave Out
- SCLK Serial Clock (generated by master)
- **SS/CS** Slave Select / Chip Select (one per slave device)

Communication Model

- Master generates the clock and selects the target slave
- Communication is **full-duplex** both parties transmit and receive simultaneously

Each transfer is synchronized by **SCLK**, with data shifted on clock edges

Use Cases

- High-speed peripherals: flash memory, LCDs, ADCs/DACs, SD cards
- Short-distance communication on PCBs
- Often used in sensor modules, embedded storage, or streaming data

SPI Bus

Sensory Equipment

Analog Digital Converter (ADC)

An ADC converts a continuous analog voltage signal into a discrete digital value.

Key Parameters

- Resolution: Number of bits in output (e.g., 8-bit, 12-bit, 16-bit)
 - Determines number of quantization levels: e.g., 8-bit = 256 levels, 12-bit = 4096 levels
- Sampling Rate: How often the analog signal is sampled (samples per second)
- Input Voltage Range: Minimum and maximum voltage that can be measured

Conversion Process

- 1. Sampling: ADC periodically captures the analog input voltage
- 2. Quantization: Maps the voltage to the nearest digital level
- 3. Encoding: Produces a binary representation of the level

Types of ADCs

- Successive Approximation (SAR) common in microcontrollers
- **Delta-Sigma** high resolution, slower, used in audio and precision sensors
- Flash ADC ultra-fast, low resolution, used in high-speed applications

Encoder

Quadrature Encoder

Relative vs Absolute

Magnetic Encoder

Line Sensor

Ultrasound Proximity Sensor

Trigger: 10 uS digital pulse

• Frequency: 40 kHz

Measurement Resolution: 0.3cm

• Measurement Angle: up to 15 deg

Detection distance: 2cm-450cm

Light Detection And Ranging (LiDAR)

Triangulation based laser distance scanner

Distance range: 0.15-12m

Angular range: 360 deg

Scan rate: ~6Hz (up to 10)

ROS 2 message definition:

https://docs.ros2.org/foxy/api/sensor_msgs/msg/LaserScan.html

Inertial Measurement Unit (IMU)

MPU6050 is a 6-axis motion tracking device.

Combines a 3-axis gyroscope and 3-axis accelerometer on a single chip.

Chip price ~1USD

Selectable range: ±2g, ±4g, ±8g, ±16g

3-Axis Gyroscope

Selectable range: ±250, ±500, ±1000, ±2000 °/s

Digital Motion Processor (DMP)

- Built-in processor that can compute orientation (pitch, roll, yaw) internally
- Reduces load on host microcontroller

I²C Communication

Default address: 0x68

Interrupt Support

Configurable interrupt pins for motion detection, data ready, FIFO overflow

Exam Step by Step

Corridor Following

Cell Crossing Detection

Robot On Place Rotation

Following Optimal Way (Aruco Markers)

Software Encapsulation

Adam Ligocki

ligocki@vutbr.cz

https://www.linkedin.com/in/adamligocki/

https://github.com/adamek727

Robotics and Al Research Group

https://github.com/Robotics-BUT

Brno University of Technology
Faculty of Electrical Engineering and Communication
Department of Control and Instrumentation