
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

217 3137 (COII IICC):

Reviewer: Durreshwar Anjum

Timestamp: Tue May 29 13:40:58 EDT 2007

Validated By CRFValidator v 1.0.2

Application No: Version No: 10575217 1.0

0

Input Set:

Output Set:

Started: 2007-05-25 20:45:16.715 Finished: 2007-05-25 20:45:18.930

Elapsed: 0 hr(s) 0 min(s) 2 sec(s) 215 ms

Total Warnings: 19 Total Errors:

No. of SeqIDs Defined: 32

> Actual SeqID Count: 32

Error code		Error Description	ì								
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(1)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(2)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(3)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(4)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(5)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(6)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(7)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(8)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(9)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(10)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(11)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(12)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(13)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(14)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(15)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(16)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(17)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(18)
W	213	Artificial o	r U	Jnknown	found	in	<213>	in	SEQ	ID	(19)

SEQUENCE LISTING

<110>	Niehrs, Christof Wu, Wei Glinka, Andrey Kazanskaya, Olga	
<120>	Compositions for Diagnosis and Therapy of Diseases associated with Aberrant Expression of Futrins (R-spondins)	
<130>	021069.2	
<140>	10575217	
<141>	2007-05-25	
<150>	10/575,217	
<151>	2006-04-10	
<150>	PCT/EP04/11269	
<151>	2004-10-08	
<160>	32	
<170>	PatentIn version 3.3	
<210>	1	
<211>	22	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic construct	
<400>	1	
gccgtco	caaa tgcagtttca ac	22
<210>	2	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	2	
tcccatt	tgc aagggttgt	19
<210>	3	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		

<223> Synthetic Construct

agctgad	ctgt gatacctgt	19								
<210>	4									
<211>	19									
<212>										
<213>	Artificial Sequence									
<220>										
<223>	Synthetic Construct									
<400>	4									
	gttg ttataggtg	19								
-										
<210>	5									
<211>	20									
	DNA									
	Artificial Sequence									
\213/	ATCTITCIAL Sequence									
<220>										
	Cunthotic construct									
\ 223>	Synthetic construct									
. 100>	-									
<400>	5	20								
gaatgco	ccag aaggatttgc	20								
.010										
<210>										
<211>	20									
<212>										
<213>	Artificial Sequence									
<220>										
<223>	Synthetic Construct									
<400>	6									
gggatg	gtgt cttttgctgg	20								
<210>	7									
<211>	21									
<212>	DNA									
<213>	Artificial Sequence									
<220>										
<223>	Synthetic Construct									
<400>	7									
	aatt ggagtetgte g	21								
_										
<210>	8									
<211>	22									
<212>	DNA									

<400> 3

<213> Artificial Sequence

<220>	
<223>	Synthetic Construct
<400>	Q
	tctc aaacccttca gg
9-19-	
<210>	9
<211>	21
<212>	
<213>	Artificial Sequence
<220>	
	Synthetic Construct
	Symmetric sometruce
<400>	9
acagac	acaa gacacacacg c
/21 As	1.0
<210> <211>	
<211>	
	Artificial Sequence
	-
<220>	
<223>	Synthetic Construct
<100>	10
<400>	ctgg tggcctcag
egeeee	ergy rygerreay
<210>	11
<211>	
<212>	
<213>	Artificial Sequence
<220>	
	Synthetic Construct
<400>	
ccgage	ecca gatatgaac
<210>	12
<211>	
<212>	
<213>	Artificial Sequence
<220>	
<223>	Synthetic Construct
<400>	12
	actt cacatccttc c

<211> 19

<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
<400>	13	
agggac	tgaa acacgggtc	19
<210>	14	
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic construct	
<400>	14	
tgtctt	ctgg tggcctcag	19
<210>	15	
<211>	19	
<212>	DNA	
<213>	Artificial	
<220>		
<223>	Synthetic Construct	
<400>		
aagctg	ggac acagcacag	19
.010	16	
<210>		
<211>	19	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Synthetic Construct	
\ 2232	synthetic construct	
<400>	16	
	ttgg agcettgte	19
gaagee	cegg agoocegeo	19
<210>	17	
<211>		
<211>		
	Artificial	
.110,		
<220>		
<223>	Synthetic Construct	
223,		
<400>	17	
	ttgc aagggttgt	19

```
<210> 18
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic Construct
<400> 18
                                                                      19
agctgactgt gatacctgt
<210> 19
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct
<400> 19
                                                                      19
actaccgttg ttataggtg
<210> 20
<211> 843
<212> DNA
<213> Homo sapiens
<400> 20
atgcggcttg ggctgtgtgt ggtggccctg gttctgagct ggacgcacct caccatcagc
                                                                      60
agccggggga tcaaggggaa aaggcagagg cggatcagtg ccgaggggag ccaggcctgt
                                                                     120
gccaaagget gtgagetetg etetgaagte aacggetgee teaagtgete acceaagetg
                                                                     180
                                                                     240
ttcatcctgc tggagaggaa cgacatccgc caggtgggcg tctgcttgcc gtcctgccca
cctggatact tcgacgcccg caaccccgac atgaacaagt gcatcaattc ctctgcagta
                                                                     300
cctgcagctc taggccaggg tcctgccctc catgtagaat gcaagatcga gcactgtgag
                                                                     360
                                                                     420
gcctgcttca gccataactt ctgcaccaag tgtaaggagg gcttgtacct gcacaagggc
cgctgctatc cagcttgtcc cgagggctcc tcagctgcca atggcaccat ggagtgcagt
                                                                     480
agtcctgcgc aatgtgaaat gagcgagtgg tctccgtggg ggccctgctc caagaagcag
                                                                     540
                                                                     600
cagctctgtg gtttccggag gggctccgag gagcggacac gcagggtgct acatgcccct
                                                                     660
gtgggggacc atgctgcctg ctctgacacc aaggagaccc ggaggtgcac agtgaggaga
                                                                     720
gtgccgtgtc ctgaggggca gaagaggagg aagggaggcc agggccggcg ggagaatgcc
                                                                     780
aacaggaacc tggccaggaa ggagagcaag gaggcgggtg ctggctctcg aagacgcaag
```

gggcagcaac	agcagcagca	gcaagggaca	gtggggccac	tcacatctgc	agggcctgcc	840
tag						843
<210> 21						
<211> 732						
<212> DNA <213> Homo	sapiens					
\213\/ 110111C	o sapiens					
<400> 21						
atgcagtttc	gccttttctc	ctttgccctc	atcattctga	actgcatgga	ttacagccac	60
tgccaaggca	accgatggag	acgcagtaag	cgagctagtt	atgtatcaaa	tcccatttgc	120
aagggttgtt	tgtcttgttc	aaaggacaat	gggtgtagcc	gatgtcaaca	gaagttgttc	180
ttcttccttc	gaagagaagg	gatgcgccag	tatggagagt	gcctgcattc	ctgcccatcc	240
gggtactatg	gacaccgagc	cccagatatg	aacagatgtg	caagatgcag	aatagaaaac	300
tgtgattctt	gctttagcaa	agacttttgt	accaagtgca	aagtaggctt	ttatttgcat	360
agaggccgtt	gctttgatga	atgtccagat	ggttttgcac	cattagaaga	aaccatggaa	420
tgtgtggaag	gatgtgaagt	tggtcattgg	agcgaatggg	gaacttgtag	cagaaataat	480
cgcacatgtg	gatttaaatg	gggtctggaa	accagaacac	ggcaaattgt	taaaaagcca	540
gtgaaagaca	caataccgtg	tccaaccatt	gctgaatcca	ggagatgcaa	gatgacaatg	600
aggcattgtc	caggagggaa	gagaacacca	aaggcgaagg	agaagaggaa	caagaaaaag	660
aaaaggaagc	tgatagaaag	ggcccaggag	caacacagcg	tcttcctagc	tacagacaga	720
gctaaccaat	aa					732
<210> 22						
<211> 819						
<212> DNA						
<213> Homo	sapiens					
<400> 22						
atgcacttgc	gactgatttc	ttggcttttt	atcattttga	actttatgga	atacatcggc	60
agccaaaacg	cctcccgggg	aaggcgccag	cgaagaatgc	atcctaacgt	tagtcaaggc	120
tgccaaggag	gctgtgcaac	atgctcagat	tacaatggat	gtttgtcatg	taagcccaga	180
ctattttttg	ctctggaaag	aattggcatg	aagcagattg	gagtatgtct	ctcttcatgt	240
ccaagtggat	attatggaac	tcgatatcca	gatataaata	agtgtacaaa	atgcaaagct	300
gactgtgata	cctgtttcaa	caaaaatttc	tgcacaaaat	gtaaaagtgg	attttactta	360
caccttggaa	agtgccttga	caattgccca	gaagggttgg	aagccaacaa	ccatactatg	420

gagtgtgtca gtattgtgca	ctgtgaggtc	agtgaatgga	atccttggag	tccatgcacg	480
aagaagggaa aaacatgtgg	cttcaaaaga	gggactgaaa	cacgggtccg	agaaataata	540
cagcatectt cagcaaaggg	taacctgtgt	cccccaacaa	atgagacaag	aaagtgtaca	600
gtgcaaagga agaagtgtca	gaagggagaa	cgaggaaaaa	aaggaaggga	gaggaaaaga	660
aaaaaaccta ataaaggaga	. aagtaaagaa	gcaatacctg	acagcaaaag	tctggaatcc	720
agcaaagaaa tcccagagca	acgagaaaac	aaacagcagc	agaagaagcg	aaaagtccaa	780
gataaacaga aatcggtatc	agtcagcact	gtacactag			819
<210> 23					
<211> 672					
<212> DNA					
<213> Homo sapiens					
<400> 23					
atgegggege caetetgeet	gctcctgctc	gtcgcccacg	ccgtggacat	gctcgccctg	60
aaccgaagga agaagcaagt	gggcactggc	ctggggggca	actgcacagg	ctgtatcatc	120
tgctcagagg agaacggctg	ttccacctgc	cagcagaggc	tcttcctgtt	catccgccgg	180
					0.40
gaaggcatcc gccagtacgg	caagtgeetg	cacgactgtc	cccctgggta	cttcggcatc	240
cgcggccagg aggtcaacag	atacaaaaa	tatagaaaa	attatasasa	ctacttcacc	300
egeggeeagg aggreaaeag	gegeadadaa	egegggeea	cccgcgagag	ergerreage	300
caggacttct gcatccggtg	caagaggcag	ttttacttgt	acaaqqqqaa	atatctaccc	360
		,	3333	3 3 3	
acctgcccgc cgggcacttt	ggcccaccag	aacacacggg	agtgccaggg	ggagtgtgaa	420
ctgggtccct ggggcggctg	gagcccctgc	acacacaatg	gaaagacctg	cggctcggct	480
tggggcctgg agagccgggt	acgagaggct	ggccgggctg	ggcatgagga	ggcagccacc	540
tgccaggtgc tttctgagtc	aaggaaatgt	cccatccaga	ggccctgccc	aggagagagg	600
agccccggcc agaagaaggg	caggaaggac	cggcgcccac	gcaaggacag	gaagctggac	660
agaaggatag ag					672
cgcaggctgg ac					072
<210> 24					
<211> 732					
<212> DNA					
<213> Homo sapiens					
<400> 24					
atgcagtttc aactcttttc	attcgccctg	atcatcctga	actgtgtgga	ttacagtcac	60

tgccaagcct cccgctggag acggagcaag agagccagct atgggaccaa cccgatatgc 120

aaaggttgcc	tgtcctgctc	aaaagataat	gggtgcctcc	gctgccagcc	aaaactgttt	180
ttctttctgc	gaagagaagg	tatgaggcag	tatggagagt	gtctgcagtc	ctgccctccg	240
ggatactatg	gagtcagagg	acctgatatg	aacaggtgtt	ccagatgcag	aattgaaaat	300
tgcgactctt	gttttagtag	agatttttgc	ataaagtgca	aatcgggctt	ttactccctc	360
aaggggcaat	gctttgaaga	atgcccagaa	ggatttgcac	cactggatga	taccatggtg	420
tgtgtggatg	gctgcgaagt	agggccatgg	agtgaatggg	gcacatgcag	ccgaaataac	480
agaacgtgcg	gtttcaaatg	gggcctggag	accagaacgc	gacaaattgt	gaagaaacca	540
gcaaaagaca	ccatcccctg	cccaactatt	gctgaatcca	gaagatgtaa	gatggcaata	600
agacactgcc	ctggaggaaa	gagaactaca	aagaagaagg	acaagaggaa	caagaagaag	660
aaaaagaagt	tactggagag	ggcccaagag	cagcacagcg	tegteettge	tacagaccgg	720
tctagccaat	ag					732

<210> 25

<211> 262

<212> PRT

<213> Homo sapiens

<400> 25

Met Arg Leu Gly Leu Cys Val Val Ala Leu Val Leu Ser Trp Thr His 1 5 10 15

Leu Thr Ile Ser Ser Arg Gly Ile Lys Gly Lys Arg Gln Arg Arg Ile
20 25 30

Ser Ala Glu Gly Ser Gln Ala Cys Ala Lys Gly Cys Glu Leu Cys Ser 35 40 45

Glu Val Asn Gly Cys Leu Lys Cys Ser Pro Lys Leu Phe Ile Leu Leu 50 55 60

Glu Arg Asn Asp Ile Arg Gln Val Gly Val Cys Leu Pro Ser Cys Pro 65 70 75 80

Pro Gly Tyr Phe Asp Ala Arg Asn Pro Asp Met Asn Lys Cys Ile Cys 85 90 95

Lys Ile Glu His Cys Glu Ala Cys Phe Ser His Asn Phe Cys Thr Lys 100 105 110

Cys Lys Glu Gly Leu Tyr Leu His Lys Gly Arg Cys Tyr Pro Ala Cys 120 125 Pro Glu Gly Ser Ser Ala Ala Asn Gly Thr Met Glu Cys Ser Ser Pro 130 135 140 Ala Gln Cys Glu Met Ser Glu Trp Ser Pro Trp Gly Pro Cys Ser Lys 145 150 155 160 Lys Gln Gln Leu Cys Gly Phe Arg Arg Gly Ser Glu Glu Arg Thr Arg 165 170 Arg Val Leu His Ala Pro Val Gly Asp His Ala Ala Cys Ser Asp Thr 180 185 Lys Glu Thr Arg Arg Cys Thr Val Arg Arg Val Pro Cys Pro Glu Gly 195 200 205 Gln Lys Arg Arg Lys Gly Gly Gln Gly Arg Arg Glu Asn Ala Asn Arg 215 220 210 Asn Leu Ala Arg Lys Glu Ser Lys Glu Ala Gly Ala Gly Ser Arg Arg 225 230 235 240 Arg Lys Gly Gln Gln Gln Gln Gln Gln Gly Thr Val Gly Pro Leu 245 250 Thr Ser Ala Gly Pro Ala 260 <210> 26 <211> 243 <212> PRT <213> Homo sapiens <400> 26

Asp Tyr Ser His Cys Gln Gly Asn Arg Trp Arg Arg Ser Lys Arg Ala
20 25 30

Met Gln Phe Arg Leu Phe Ser Phe Ala Leu Ile Ile Leu Asn Cys Met

10 15

Ser Tyr Val Ser Asn Pro Ile Cys Lys Gly Cys Leu Ser Cys Ser Lys

35 40 45

Asp Asn Gly Cys Ser Arg Cys Gln Gln Lys Leu Phe Phe Leu Arg 50 55 60

Arg Glu Gly Met Arg Gln Tyr Gly Glu Cys Leu His Ser Cys Pro Ser 65 70 75 80

Gly Tyr Tyr Gly His Arg Ala Pro Asp Met Asn Arg Cys Ala Arg Cys 85 90 95

Arg Ile Glu Asn Cys Asp Ser Cys Phe Ser Lys Asp Phe Cys Thr Lys 100 105 110

Cys Lys Val Gly Phe Tyr Leu His Arg Gly Arg Ser Phe Asp Glu Cys 115 120 125

Pro Asp Gly Phe Ala Pro Leu Glu Glu Thr Met Glu Cys Val Glu Gly
130 135 140

Arg Thr Cys Gly Phe Lys Trp Gly Leu Glu Thr Arg Thr Arg Gln Ile 165 170 175

Val Lys Lys Pro Val Lys Asp Thr Ile Pro Cys Pro Thr Ile Ala Glu 180 185 190

Ser Arg Arg Cys Lys Met Thr Met Arg His Cys Pro Gly Gly Lys Arg 195 200 205

Thr Pro Lys Ala Lys Glu Lys Arg Asn Lys Lys Lys Lys Arg Lys Leu 210 215 220

Ile Glu Arg Ala Gln Glu Gly His Ser Val Phe Leu Ala Thr Asp Arg 225 230 235 240

Ala Asn Gln

<210> 27 <211> 272 <212> PRT

<213> Homo sapiens

<400> 27

Met His Leu Arg Leu Ile Ser Trp Leu Phe Ile Ile Leu Asn Phe Met 1 5 10 15

Glu Tyr Ile Gly Ser Gln Asn Ala Ser Arg Gly Arg Arg Gln Arg Arg 20 25 30

Met His Pro Asn Val Ser Gln Gly Cys Gln Gly Gly Cys Ala Thr Cys 35 40 45

Ser Asp Tyr Asn Gly Cys Leu Ser Cys Lys Pro Arg Leu Phe Phe Ala 50 55 60

Leu Glu Arg Ile Gly Met Lys Gln Ile Gly Val Cys Leu Ser Ser Cys 65 70 75 80

Pro Ser Gly Tyr Tyr Gly Thr Arg Tyr Pro Asp Ile Asn Lys Cys Thr 85 90 95

Lys Cys Lys Ala Asp Cys Asp Thr Cys Phe Asn Lys Asn Phe Cys Thr 100 105 110

Lys Cys Lys Ser Gly Phe Tyr Leu His Leu Gly Lys Cys Leu Asp Asn 115 120 125

Cys Pro Glu Gly Leu Glu Ala Asn Asn His Thr Met Glu Cys Val Ser 130 135 140

Ile Val His Cys Glu Val Ser Glu Trp Asn Pro Trp Ser Pro Cys Thr
145 150 155 160

Lys Lys Gly Lys Thr Cys Gly Phe Lys Arg Gly Thr Glu Thr Arg Val $165 \hspace{1.5cm} 170 \hspace{1.5cm} 175$

Arg Glu Ile Ile Gln His Pro Ser Ala Lys Gly Asn Leu Cys Pro Pro 180 185 190

Thr Asn Glu Thr Arg Lys Cys Thr Val Gln Arg Lys Lys Cys Gln Lys 195 200 205

Gly	Glu 210	Arg	Gly	Lys	Lys	Gly 215	Arg	Glu	Arg	Lys	Arg 220	Lys	Lys	Pro	Asn
Lys 225	Gly	Glu	Ser	Lys	Glu 230	Ala	Ile	Pro	Asp	Ser 235	Lys	Ser	Leu	Glu	Ser 240
Ser	Lys	Glu	Ile	Pro 245	Glu	Gln	Arg	Glu	Asn 250	Lys	Gln	Gln	Gln	Lys 255	Lys
Arg	Lys	Val	Gln 260	Asp	Lys	Gln	Lys	Ser 265	Val	Ser	Val	Ser	Thr 270	Val	His
<210 <211 <212 <213	L> 2 2> E 3> F	28 224 PRT Homo	sap:	iens											
			Pro	Leu	Cys	Leu	Leu	Leu	Leu	Val	Ala	His	Ala	Val	Asp
1				5					10					15	
Met	Leu	Ala	Leu 20	Asn	Arg	Arg	Lys	Lys 25	Gln	Val	Gly	Thr	Gly 30	Leu	Gly
Gly	Asn	Суз 35	Thr	Gly	Cys	Ile	Ile 40	Суз	Ser	Glu	Glu	Asn 45	Gly	Суз	Ser
Thr	Cys 50	Gln	Gln	Arg	Leu	Phe 55	Leu	Phe	Ile	Arg	Arg 60	Glu	Gly	Ile	Arg
Gln 65	Tyr	Gly	Lys	Суз	Leu 70	His	Asp	Суз	Pro	Pro 75	Gly	Tyr	Phe	Gly	Ile 80
Arg	Gly	Gln	Glu	Val 85	Asn	Arg	Суз	Lys	Lys 90	Суз	Gly	Ala	Thr	Cys 95	Glu
Ser	Суз	Phe	Ser 100	Gln	Asp	Phe	Суз	Ile 105	Arg	Суз	Lys	Arg	Gln 110	Phe	Tyr
Leu	Tyr	Lys 115	Gly	Lys	Cys	Leu	Pro 120	Thr	Cys	Pro	Pro	Gly 125	Thr	Leu	Ala
His	Gln	Asn	Thr	Arg	Glu	Cys	Gln	Gly	Glu	Cys	Glu	Leu	Gly	Pro	Trp

Trp Gly Leu Glu Ser Arg Val Arg Glu Ala Gly Arg Ala Gly His Glu 165 170 175