A Game Characterization for Contrasimilarity

Benjamin Bisping Luisa Montanari

Technische Universität Berlin Modelle und Theorie Verteilter Systeme

Workshop EXPRESS/SOS, August 2021

Introduction to Contrasimilarity

Contrasimilarity is a

- behavioral equivalence
- for systems with internal steps

Linear Time – Branching Time Spectrum

Linear Time – Branching Time Spectrum

Introduction

Contrasimilarity:

- behavioral equivalence
- internal behavior
- weakest abstraction of bisimulation

Our main contributions:

- present the first game characterization of the contrasimulation preorder
- prove its correctness with Isabelle/HOL

Definition (Labeled Transition System, LTS)

An LTS $(S, Act_{\tau}, \rightarrow)$ consists of

- a set of states S,
- ullet a set $Act_{ au} = Act \cup \{ au\}$ of
 - visible actions Act and
 - an internal action au, and
- a transition relation \rightarrow : $S \times Act_{\tau} \times S$.

Definition (Transitions)

Let $\alpha \in Act_{\tau}, \overrightarrow{w} \in Act^*$. Write

•
$$p \xrightarrow{\alpha} p'$$
 iff $(p, \alpha, p') \in \rightarrow$,

Definition (Transitions)

Let $\alpha \in Act_{\tau}, \vec{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$,

Definition (Transitions)

Let $\alpha \in Act_{\tau}, \vec{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$,
- $p \stackrel{\hat{\alpha}}{\Longrightarrow} p'$ iff $p \Rightarrow \stackrel{\alpha}{\Longrightarrow} p'$ for $\alpha \neq \tau$,

Definition (Transitions)

Let $\alpha \in Act_{\tau}$, $\vec{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$,
- $p \stackrel{\hat{\alpha}}{\Longrightarrow} p'$ iff $p \Rightarrow \stackrel{\alpha}{\Longrightarrow} p'$ for $\alpha \neq \tau$,
- $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$ iff

Definition (Transitions)

Let $\alpha \in Act_{\tau}, \overrightarrow{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$,
- $p \stackrel{\hat{\alpha}}{\Longrightarrow} p'$ iff $p \Rightarrow \stackrel{\alpha}{\Longrightarrow} p'$ for $\alpha \neq \tau$,
- $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$ iff
 - $\overrightarrow{w} = \varepsilon$ and $p \Rightarrow p'$ or

Definition (Transitions)

Let $\alpha \in Act_{\tau}$, $\overrightarrow{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$.
- $p \stackrel{\hat{\alpha}}{\Longrightarrow} p'$ iff $p \Rightarrow \stackrel{\alpha}{\Longrightarrow} p'$ for $\alpha \neq \tau$,
- $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p' \text{ iff}$

 - $\overrightarrow{w} = \varepsilon \text{ and } p \Rightarrow p' \text{ or }$ $\overrightarrow{w} = w_0 w_1 \dots w_n \text{ and } p \xrightarrow{\overrightarrow{w_0}} \xrightarrow{\overrightarrow{w_1}} \dots \xrightarrow{\overrightarrow{w_n}} p'.$

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\overrightarrow{w} \in Act^*$ and $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\overrightarrow{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\overrightarrow{w} \in Act^*$ and $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\overrightarrow{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\vec{w} \in Act^*$ and $p \stackrel{\vec{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\vec{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\vec{w} \in Act^*$ and $p \stackrel{\vec{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\vec{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\overrightarrow{w} \in Act^*$ and $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\overrightarrow{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

Definition (Contrasimulation)

A contrasimulation is a relation R where, for all $(p,q) \in R$ with $\vec{w} \in Act^*$ and $p \stackrel{\vec{w}}{\Longrightarrow} p'$, there is a q' with $q \stackrel{\vec{w}}{\Longrightarrow} q'$ and $(q',p') \in R$.

 $\text{Write } p \preceq_{\mathcal{C}} q \text{ if} \\ \text{there is a contrasimulation } R \text{ with } (p,q) \in R.$

Game characterizations

Behavioral equivalences can be characterized with games!

Two opposing players:

- attacker wants to **disprove** $p \leq_C q$,
- defender wants to **maintain** $p \leq_C q$.

Definition (Games)

A game $\mathcal{G}[g_0] = (G, G_d, \rightarrowtail, g_0)$ consists of

- game positions G, partitioned into
 - defender positions $G_d \subseteq G$
 - attacker positions $G_a := G \setminus G_d$,
- game moves $\rightarrowtail \subseteq G \times G$, and
- an initial position $g_0 \in G$.

Definition (Games)

A game $\mathcal{G}[g_0] = (G, G_d, \rightarrowtail, g_0)$ consists of

- game positions G, partitioned into
 - defender positions $G_d \subseteq G$
 - ▶ attacker positions $G_a := G \setminus G_d$,
- game moves $\longrightarrow \subseteq G \times G$, and
- an initial position $g_0 \in G$.

Definition (Plays)

Plays are (in)finite paths $g_0g_1\ldots\in G^\infty$ with $g_i\rightarrowtail g_{i+1}$ of $\mathcal{G}[g_0]$.

Definition (Play wins)

- The defender wins infinite plays.
- ② If a finite play $g_0 \dots g_n \not\rightarrow$ is stuck, the stuck player loses.

Definition (Defender strategies)

A defender strategy f is a mapping from initial play fragments to next moves:

$$f\subseteq\{(g_0\ldots g_n,g_{n+1})\mid g_n\in G_d\wedge g_n\rightarrowtail g_{n+1}\}.$$

Definition (Strategy consistency)

A play g is **consistent** with a defender strategy f iff, for each move $g_i \mapsto g_{i+1}$ with $g_i \in G_d$, we have $g_{i+1} = f(g_0 \dots g_i)$.

Definition (Game wins)

The defender wins game $\mathcal{G}[g_0]$ iff they win all plays consistent with a strategy f.

Attempt 1:

The Basic Contrasimulation Game

Problems of the Basic Game

Problems of the Basic Game

Induces infinitely many words:

- ε
- a
- aa
- aaa
- . . .

Problems of the Basic Game

Induces infinitely many words:

- \bullet ε
- a
- aa
- aaa
- . . .

 \Longrightarrow Infinitely many game positions!

How to eliminate words from the game moves?

Attempt 2: The Contrasimulation Set Game

Definition (Transitions)

Let $\alpha \in Act_{\tau}, \overrightarrow{w} \in Act^*$. Write

- $p \xrightarrow{\alpha} p'$ iff $(p, \alpha, p') \in \rightarrow$,
- $p \Rightarrow p'$ iff $p \xrightarrow{\tau}^* p'$,
- $p \xrightarrow{\hat{\alpha}} p'$ iff $p \Rightarrow \xrightarrow{\alpha} p'$ for $\alpha \neq \tau$,
- $p \stackrel{\overrightarrow{w}}{\Longrightarrow} p'$ iff
 - $\overrightarrow{w} = \varepsilon$ and $p \Rightarrow p'$ or
 - $\overrightarrow{w} = w_0 w_1 \dots w_n$ and $p \stackrel{\hat{w_0}}{\Longrightarrow} \stackrel{\hat{w_1}}{\Longrightarrow} \dots \stackrel{\hat{w_n}}{\Longrightarrow} p'$.
- NEW: $\mathbf{p} \stackrel{\alpha}{\Longrightarrow} \mathbf{p}' \text{ iff } \mathbf{p} \Rightarrow \stackrel{\alpha}{\to} \mathbf{p}'.$

Contrasimulation Set Game

Idea:

- Split words \vec{w} into single actions w_0, w_1, \ldots
- Split attacker word challenge into:
 - Simulation phase and
 - Swap request
- Let defender move over sets of states

Set Game — Model

Correctness

Theorem

The defender wins $\mathcal{G}_{C}[(p,\{q\})_{a}]$ if and only if $p \leq_{C} q$.

Soundness — Proof Sketch

Lemma

If the defender wins $\mathcal{G}_{\mathcal{C}}[(p,\{q\})_a]$, then $p \leq_{\mathcal{C}} q$.

Proof.

- Construct a relation R containing
 - the initial states (p, q) and
 - states of all possible $(...)_a$ -positions following a Swap $(...)_d$ -position.

Soundness — Proof Sketch

Soundness — Proof Sketch

Lemma

If the defender wins $\mathcal{G}_{C}[(p,\{q\})_{a}]$, then $p \leq_{C} q$.

Proof.

- Construct a relation R containing
 - the initial states (p, q) and
 - states of all possible $(...)_a$ -positions following a Swap $(...)_d$ -position.

Completeness — Proof Sketch

Lemma

If $p \leq_C q$, then the defender wins $\mathcal{G}_C[(p, \{q\})_a]$.

Proof.

- **①** Construct a defender strategy f_C from \leq_C .
- **3** The defender is never stuck using f_C .
- The defender wins every play using f_C .

Why Sets?

Subset construction induces an **exponential** game size!

Why Sets?

Subset construction induces an **exponential** game size!

Conclusion

Contributions:

- an overview of the bisimulation-like properties of contrasimilarity
- a game for the contrasimulation preorder
- a proof of its correctness in Isabelle/HOL

Perspective:

- use of the game in contrasimulation equivalence checking
- further use of Isabelle theory in verification contexts
 - available at https://github.com/luisamontanari/ContrasimGame

Thank you for your attention!

Schematic Definition Contrasimulation

Schematic Model Set Game

Relating the Set Game to the Contrasimulation

A contrasimilar process

Fooling One-Step Contrasimulation

Additional Equalities

Contrasimilarity satisfies

- all laws satisfied by weak bisimulation
- CS : τ . $(\tau . X + Y) = \tau . X + Y$ (shared with coupled similarity)
- **C** : $a.(\tau.X + \tau.Y) = a.X + a.Y$.