# 2018 - GEMA Aula 06

# A. Sem tempo pra enunciado

2 seconds, 64 megabytes

Dado uma matriz com vários valores inteiros, responda "S" caso exista pelo menos um 0 em cada coluna, ou "N" caso contrario.

### Input

A primeira linha da entrada irá conter dois inteiros N e M ( $1 \le N, M \le 10^3$ ), as dimensões da matriz.

Nas próximas N linhas, cada uma terá M inteiros não negativos menores que 2^30

#### Output

Na saída imprima "S" caso todas as colunas da matriz possuam pelo menos um 0, ou não caso contrario

| input                          |  |
|--------------------------------|--|
| 2 3<br>0 1 1<br>10 100 20      |  |
| output                         |  |
| N                              |  |
| input                          |  |
| 3 3<br>1 2 3<br>4 0 5<br>0 2 0 |  |
| output                         |  |
| S                              |  |
|                                |  |

| input  |  |
|--------|--|
| 3 3    |  |
| 0 0 0  |  |
| 1 20 0 |  |
| 3 21 2 |  |
| output |  |
| S      |  |

# B. Recepção Calorosa

2 seconds, 64 megabytes

Para te dar as boas vindas ao ICMC, alguns membros do grupo de estudos para a maratona (GEMA) decidiram se divertir aprendendo a fazer problemas interativos. Obviamente a cobaia é você.

Esse é um problema interativo. Você deverá advinhar um número, n ( $1 \le n \le 10$ ), escolhido por nosso programa. Seu programa deverá imprimir um número que acredita ser esse número escolhido. Para cada chute, o programa corretor irá dizer se o chute é maior, menor que ou igual ao número escolhido. Você tem quatro tentativas.

### Interaction

Você deve seguir o seguinte protocolo de interação

- Imprimir um número (o chute do seu programa)
- Logo após o chute do seu programa, utilize o comando fflush(stdout);
- Após o fflush, ler a resposta do corretor: 1 se maior, 0 se menor e 2 se igual. Se o número estiver certo, seu programa não deverá fazer mais chutes e devera terminar a execução

# C. Ache o X

2 seconds, 64 megabytes

Dado um vetor V de tamanho N ordenado de maneira não decrescente e M queries, sendo cada query um valor  $X_j$ , diga o valor  $V_i$  do vetor que minimize  $\mid X_j - V_i \mid$  para cada query.

#### Input

A primeira linha da entrada é composta por dois inteiros N ( $1 \le N \le 10^5$ ) e M ( $1 \le M \le 10^5$ )

A segunda linha contém N inteiros  $V_i$  ( $1 \le V_i \le 10^9$ ), os valores do vetor. É garantido que  $V_i \le V_{i+1}$  para todo  $i \le N$ 

As próximas M linhas contém um inteiro  $X_j$   $(1 \le X_j \le 10^9)$  cada, o valor da query

## Output

Na saida imprima M números, a j-ésima linha deve conter o valor  $V_i$  que minimize o módulo  $\mid X_j - V_i \mid$   $(1 \leq i \leq N)$ . Caso haja mais de um  $V_i$  que minimize, imprima o de menor posição (Que tenha menor i)

```
input

6 3
1 5 5 6 8 9
7
12
5
output

6
9
5
```

## D. Cadeado

1 second, 64 megabytes

Um cadeado com segredo, é um cadeado composto por dígitos de 0 a 9 que pode ser aberto apenas com uma combinação numérica que seja igual a combinação previamente especificada. Nesse tipo de cadeado, quando uma pessoa gira um digito ela obtém o próximo. Esses dígitos podem ser girados tanto pra cima quanto pra baixo. Por exemplo se o 2 for girado para cima obtemos o 3 e se for girado pra baixo o 1. Vale notar que se o 0 for girado pra baixo temos o 9, e se o 9 for girado pra cima temos o 0. Nesse problema considere a seguinte operação: Em uma unidade de tempo, você pode girar um segmento continuo de K dígitos, tanto para cima quanto para baixo.



Por exemplo considere o seguinte cadeado de quatro números (1 5 3 4). Se K=2 em uma possível operação podemos obter (1 6 4 4).

Dado o K, a configuração inicial do cadeado e a configuração final, diga qual o número minimo de unidades de tempo para você abrir o cadeado.

#### Input

A primeira linha da entrada contém dois inteiros N ( $1 \le N \le 10^5$ ) e K ( $1 \le K \le N$ ), o número de dígitos do cadeado e o tamanho do segmento continuo que você pode mudar em um movimento, respectivamente.

A segunda linha contém N inteiros, cada um de 0 a 9, os números inicialmente no cadeado.

A terceira linha contém N inteiros, cada um de 0 a 9, os números da configuração final do cadeado

### Output

Imprima em uma unica linha o número minimo de operações necessárias para transformar o cadeado da configuração inicial na configuração final.

Caso seja impossível obter a configuração final, imprima apenas -1

| caso se | ja impossivei obter a conliguração linal, imprima apenas - i |
|---------|--------------------------------------------------------------|
| input   |                                                              |
| 6 2     |                                                              |
| 0 0 9 9 |                                                              |
| 1 1 8 8 | 8 0 0                                                        |
| outpu   | t                                                            |
| 5       |                                                              |
| input   |                                                              |
| 6 1     |                                                              |
| 0000    |                                                              |
| 1919    | 1 9                                                          |
| outpu   | t                                                            |
| 6       |                                                              |
|         |                                                              |
| input   |                                                              |
| 3 2     |                                                              |
| 000     |                                                              |
| 1 2 2   |                                                              |

```
output
-1
```

# E. Cartas Numeradas

2 seconds, 256 megabytes

Roberterson está jogando seu mais novo jogo de cartas que ele comprou la na loja do seu Gerso. O jogo é composto por dois baralhos, um vermelho e um azul. No baralho vermelho, cada carta possuí em sua face ou o número 1 ou o número -1. Já no azul, cada carta tem em sua face dois números l e r. O jogo funciona da seguinte maneira:

Primeiro Roberterson coloca todas as cartas vermelhas com as faces viradas pra cima em sua mesa, dispostas em uma fileira horizontal. Dizemos então, que a carta mais a esquerda é a carta de número 1 e a mais a direita a de número N. Depois Roberterson retira do baralho azul a carta do topo e, para o l e r mostrados nela, ele conta o número de subsegmentos diferentes  $[l_i, r_i]$ , tal que a soma dos números escritos nas faces das cartas vermelhas da posição  $l_i$  até a  $r_i$  tenha soma 0. Para cada uma dessas cartas azuis, ele anota em um papel o resultado.

O Problema é que Roberterson estava distraído e acabou derrubando água em cima do papel que ele mantinha as anotações, só que ele não quer mais jogar tudo desde o inicio! Ele precisa da sua ajuda pra recalcular os valores anotados no papel. Dado os valores das cartas vermelhas na ordem em que elas estão na mesa e, dado os l e r na ordem em que Roberterson tirou do monte azul, seu trabalho é recalcular a folha de resultados.

Um subsegmento  $[l_i,r_i]$  de um segmento [l,r] é todo  $l_i,r_i$  tal que  $l \! \leq \! l_i \! \leq \! r_i \! \leq \! r$ 

Dois subsegmentos  $[l_i,r_i]$  e  $[l_j,r_j]$  são diferentes se  $l_i\neq l_j$  ou se  $r_i\neq r_j$  ou se  $l_i\neq l_j$  e  $r_i\neq r_j$ .

#### Input

A primeira linha da entrada é composta por dois inteiros N ( $1 \le N \le 5 \times 10^3$ ) e Q ( $1 \le Q \le 2 \times 10^5$ ), que representam o número de cartas vermelhas na mesa e o número de cartas retiradas do monte azul.

A próxima linha irá possuir N inteiros, as cartas vermelhas. Elas serão dadas na ordem em que estão na mesa, sendo o primeiro número da linha referente a carta mais a esquerda e o ultimo número da linha a carta mais a direita.

Seguem então Q linhas cada uma contendo dois inteiros l e r  $(1 \le l \le r \le N)$ , a descrição das cartas azuis retiradas do monte.

### Output

Para cada uma das cartas azuis, imprima em uma única linha a quantidade de subsegmentos  $[l_i,r_i]$  contidos em [l,r] que tenham soma 0

```
input

6 2
1 1 -1 -1 1 1
1 6
3 5

output

5
1
```

Para a primeira carta azul do caso de teste (1, 6), os subsegmentos são:

Problems - Codeforces

[1, 4] = 1 + 1 - 1 - 1 = 0 [3, 6] = -1 - 1 + 1 + 1 = 0

[2, 3] = 1 - 1 = 0 [4, 5] = -1 + 1 = 0

[2, 5] = 1 - 1 - 1 + 1 = 0 Portanto a resposta para a primeira carta azul é 5

Codeforces (c) Copyright 2010-2018 Mike Mirzayanov The only programming contests Web 2.0 platform