

Population

- · Descriptive Stats: what is the average age of Student in your moths class?
- Inferential State: Are the ages of students in this maths classroom Similar to what you would except in a normal maths class of this university?

	Sample	dota	Inferences	Population	
			Slo	dota	

Population and Sample Data: Inferential Statistics

Ex:-

[AAP, Congress]

(Strotified + Random 5)

2) Eg - 2015 - Dota Scientist

Jackets - Size; lok, 40 K - Christmas

10.1. Small, 20.1. XL, 40.1. L, 2-3.1. XXL

only 1-2.1. - woste.

Population (N) Sample (n)

- · Sampling Techniques
- 1) Simple Rendom Sampling
- 3 Systemotic Sampling
- (Convenience Sampling

	Present ton.				
(A)	whole kind of variable IR is ?.				
	Continuous Variable				
The sale					
b.	Frequency Distribution				
	0				
in min	Sample Dataset: Green, Red. Yellow, Green, Red.				
1-2	Yellow, Green, Red				
	Colone Engage of				
	Green 3				
	Red 3				
	Yellow 2				
1					
0	BAR GRAPH Frequency				
-13-0					
	BAR				
(F) (F)	CHART				
25115					
4	The state of the s				
1					
-	Green Red Yelloce				
	· Variable Measurement Scales				
	1. h and of Mana 1 w 1 l l				
0	Naminal data (Categorical data)				
	4 types of Measured Variable (Nominal data (Cotegorical data) Eg: Colors Gender types of flowers				
	9 9 00 110000				
	the property and the same deliver				
	Striket brook February me				

1 Ordinal data:

		HJ . + A . D' . 41		
1	Student CM	1arks)	Rank	7.20
1	100		m = 1 - B	7
	96	Mark J. War	2	- H
	57	6 (18)	. 4	Ordinal
	85	and the same	3	Oota
	44		5 0	
	Magazine.		Jan 184	
	Degree		Solor	4
	Degree		U	
	РНР		1	
Ī	B.E.		§ 3	
Ī	Moster	hiblinis	3 2	
-	BCA	15-10,10-15	8-0-40	+0
	12	150	5	

3 Interval data:

· A variable measured on an interval scale gives information about more or betterness as ordina

· Temperature using celsius or Fahrenheit is
a good example.

1 Rotio dota: something measured on ratio scale has the same properties that an interval Scale has except, with a ratio Scaling, there is an absolute Zero point.

Temperature measured in Kelvin is an example.

2) Median 1.2,2,3,4,5,100 1,2,2,3,4,5 $\overline{x} = 1 + 2 + 2 + 3 + 4 + 5 = 17 = (2.83)$ $\bar{x} = 1 + 2 + 2 + 3 + 4 + 5 + 100$ = 117 = (16.71) Median 1, 2, 1, 3, 4, 5, (00) I = 16.71 median = 3 3) Mode: Highest frequency 1,2,2,3,3,4,4,5,6 in new python

[2,34] 1.2, 2, 3, 3, 4, 5, 6, 6, 7 Feature Engineering NANd volues => Continuous volues + outlier mediant Mean Categorical Variable mode

	Criminal is - Court Domain Expertise				
	P(H) = 100.1. P(T) = 0.1. Health Care Covid Vaccine Test				
	P(H)=1001. 1C.				
•	Hypothesis Testing				
0	Null Hypothesis - Coin is fair - (Ho) Alternate Hypothesis - Coin is not fair - (Hi) Experiments				
2	Alternate Hypothesis - Coin is not foir - (HI)				
3	Experiments				
(4)	Reject of Accept Null Hypothesis				
	They cold of the copy that high the sis				
	loo tosses - 50 times Houle 7 sin is fair				
	100 tosses -> 50 times Heads & Coin is fait				
	5 10 101 0				
	60 times Head ? Coin is faire				
lowanie	40 times Tail				
contract.					
all tallous	30 times Head ?				
	70 times Tail				
and so	Confidence Interval, Significance values				
ENTRE !					
	CI=1-0.025-0.025 Coin is fair				
	= 0.95 => 95 %				
Maria !	95.1. C.I. Accept				
	10.025				
70.00	0.025 - Coin is not foit				
	Reject 20, 30 40 50 60 70 80 Reject				
	Significance				
	Null Hypothesis U value = 0.05				
	x=0.45 U medical x11				
	0.45 = 0.225				
	2				
	55.1.				
	C.I.				
	0.25				

Lower fence = 520 - (1.96) × 100 =520-(1.96)×20 = 480.8 Higher Fence = 520+ (1.96) × 20 = 559.2 95% Accept the Null - Reject the 589.2 Null Hypothesis Za/2 = Z0.025 1-0.025 = 0.9750 1.96 1 488.64, 581.36 · On the quant test of CAT Exam, a sample of 25 test takes has a mean of 520 with a sample Standard deviation of 80. Construct 95%. CI about the mean? x = 520, S=80, x = 0.05, n = 25 Ans t-test -t-toble [Because Population sd is not given !

= ± ta/2 (5) - standard

· Degree of freedom = n-1 = 25-1 = 24

> Type I and Type 2 EEEOE
> One Tailed Vs 2 Tailed Test

1) Type I and Type 2 EEEOE Reality Check Ho => Coin is fair 1 Null Hypothesis is

Hi => Coin is not fair True or Null Hypothe
Null Hypothesis Sis is False

 $\overline{\chi} \pm 2.064 \left(\frac{80}{5}\right) \Rightarrow 486.976 \leftrightarrow 553.024$

Null Hypothesis

Sis 15 raise

Ho - The Criminal is not guilty Decision [Experiments]

Hi - 11- is guilty Null Hypothesis is True

Or False

Outcome 1:-We reject the Noll Hypothesis in reality if it is false - Yes

Outcome 2:-We reject the NUII Hypothesis when in reality it is true. -> No-Type I Freez >

Outcome 3:-We accept the Null Hypothesis when in reality it is folse -> Type 2 ETEOT X

Confusion mateix (stock morket is going to Crush) Outcome 4: - We accept the Null Hypothesis when in reality it is True. 2) 1 Tail and 2 Tail Test Eg: - Colleges in Karnataka has an 85%. Placement rate. A new College was recently Opened and it was found that a sample of 150 students had a placement tate of 88%. with standard deviation of 4%. Does this College has a different Placement Eater. 1-85.1. <=0.05 = 95.1. CI (Placement rate greather (Placement than 85 1.) rate less 95.1.CI 2 Tail Test han 85% 1 Tail Test 1) I test Hypothesis Testing
2) I test Hypothesis Testing
3) Significance Value and P Value ANOVA Test 1 CHI SQUARE Test 6 Practical

Day 3	PAGE No.
	DATE
0	Central limit Theorem
	Inferential Statistics
	7 test { 2 toble }
	t test { t table}
	2 test propotion population
- 0.0	chi square (Cotegorical Test)
	ANNOVA (F Test)
mildre.	Bhile and Mar Mill the standard of the
(1)	Centrol Limit Theorem
	□ 730
J Pop	oulation => may be Gaussian/
[do	normal Diste - x, x2, x3 x30]
	Somple 1 X1
444	χ_1 sample $2 \left[\chi_1, \chi_2, \chi_3, \chi_4 \dots \right]$
	$\chi_{30} \rightarrow \chi_{2}$
	=> It may not sample n \$\overline{\pi_3}\$
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
	~ n≥30 %i
	Somple mean
	distribution
	distribution
	A
	Gaussian Distribution
	A
	Gaussian Distribution
	Gaussian Distribution Normal Distribution
	Gaussian Distribution
	Gaussian Distribution Normal Distribution
	Gaussian Distribution Normal Distribution







2) In the population the average IQ is 100 with a standard deviation of 15. A team of Scientists wants to test new medication to see if it has a tree or -re effect, or no effect at all. A sample of 30 participants who have taken the medication has a mean of 140. Did the medication affect Intelligence? C.I = 95%.

Ans: 0 = 15, n = 30, 2 = 140

1 Ho=4=100

@ x =0.05 ; C.I = 95 /.

1-0.025=0,9+50

Acceptance

95:1.

Region If I is less than -1.96

0.025 or greater than 1.96,

Region -1.96 +1.96 Region Hypothesis.

(4) Z = \frac{7}{2} - 42 = 140-100 = 14.60

14.60 > 1.96, Reject the Null Hypothesis







5) A Company manufactures bike battries with an average life Span of 2 or more years. An Engineer believes this value to be less. Using lo samples, he measures the average life Span to be 1.8 years. With a standard deviation of 0.15.

1 State the Null and Alternate Hypothesis.

1 At a 99%. C.I, is there enough evidence to discard

the Hol.

Ans

1 Ho: 472, n=10 H1:4<2 < 30 t-test

2 <=0.01, <=1-C.I=1-0.99=0.01

Approval Degree of freedom = n-1

-2.821

(A) Calculate t-test statistics:

$$\frac{1}{6} = \overline{x} - 4 = 1.8 - 2 = -0.2 = -4.216$$
 $\frac{5}{\sqrt{0}} = 0.15/\sqrt{10} = 0.15/3.1622$ 

(5) Conclusion

-4.216 < -2.821; Reject the Null Hypothesis

I test with Proportions



6) A test Company believes that the percentage of residents in town xyz. That wons a cell phone is 70%. A marketing manager believes that this value to be different. He Conducts a survey of 200 individuals and found that 130 responded yes to owning a cell phone. @ State Null and Alternate Hypothesis ?. ( At a 95% CI, is there enough evidence to reject the Null Hypothesis 2. 1) Ho Po = 0.70, n= 200, x=130 Ans H1 Po \$ 0.70 P = x = 130 = 13 = 0.6590=1-Po <= 0.05, C.I = 95% Itest = P-Po (3) 0.025 0.075 = 0.65 - 0.70 ≈-1.54 Rejection - 1.96 +1.96 At 95% C. I there is -1.54 > -1.96, So we accept the Nall Hypothesis 0.06168 P Value 0.06 68 2×0.06160 > 0.05 +1.54 Accept Null Hypothesis -1.54 1-0.93872 = 0.06168







			PROSE No.				
( <del> </del> ) •	The Chi Square test claims about population						
	The Chi Square	test claims	about Population				
1-1-11	FIDEOLKIONS						
4-14	It is a non porc	metric test	that is performed				
	It is a non parametric test that is performed on Categorical (nominal or ordinal) data.						
1)	· In the 2000 U.S (	· In the 2000 U.S Census, the ages of individuals in a Small town where found to be the following					
	in a Small town a	here found to	be the following				
L 5 A	< 18	18-35	>35				
	20./.	30 %	50 ·/.				
	In 2010, ages of	n=500 indivi	duals where samp-				
50 -	led. Below are the	results	uJ - UT				
		18-35					
-	121						
-	distribution of age	ould you Conci	ude the population				
1	distribution of age	5 hos chonged	In the 19st 10				
0-6	years ?. < 18	18-35	776				
Ans	Expected 20%.	30 %	735 50·/.				
n=500	Expected 20 7.	50 /-	50 7.				
95 C.I	Observed 121	288	10				
	Expected 100	150	250				
	Lajooboo		200				
C	Ho = the data n	peets the exp	pected distribution				
	Hi = the data d	o not meet	the expected dis				
	Hi = the data meets the expected distribution Hi = the data do not meet the expected dis						
2	Stots Alpha: - <= 0.05						
3	Calculate the de	gree of freedo	m				
	df=n-1=3-	1-1 => 3 Cot	egories				
	01-17-1-5	1 - 2 / 0 0 0	Jenes				





- 1 ANOVA (F-Test)
- (2) EDA (Solve Some Example)

ANOVA: - Analysis of Vorionce ANOVA is a statistical method used to compore the means of 2 or more group.

## ANOVA :-

1 Foctors	2 Levels	Anxiety reducing
(Variables)	{ Dosoge}	1
Medicine	0	

	0 mg	50 mg	100 mg
foctor: - Dosage	9 0	7 0	40
Levels: - Omg, 50mg,	8	6	3
loo mg	7	6	2
d	8	7	3
	8	8	

- · Types of ANOVA: One factor with atleast 2 levels, levels are independent
- @ Repeated Measures ANOVA: One factor with afleast 2 levels, but levels are dependent.

Running Kms

Day 1 Day 2 Day 3

18 Factor Levels



· Factorial ANOVA:-

Two or more factor each of which with otleast 2 levels, levels can be either independent, or both Crixed)

	Day 1	Day 2	Day 3
Mean	90	7	14
	8	6	3
Januari,	7	5	2
Women	8	7	3
	8	8 34 313	4
garrand .	9 0	7	3

One way ANOVA (F-test) => Inferential states

Comparing means of 2 or more groups.

· Researchers want to test a new anxiety medication. They split participants into 3 Conditions Comp. Somy, loomy), then ask them to rate their anxiety level on scale of 1-10. Are there any

difference between the 3 Conditions using &					
distant	Omg	50 mg	looma	1	
	9 0	7 0	40		
	8	6	3	100	
2 (20)	7	6	2	9,721	
19	8	7	3		
	8	8	4		
	9	7	3		
	8	6	2		



- 1) Ho = 40mg = 450mg = 4100mg
- 1) state < and C.I. <= 0.05; C.I = 95%.
- 3 Calculate degree of freedom

4 State Decision Rule

dfaetween = 9 - 1 = 3 - 1 = 2dfaithin = N - 9 = 21 - 3 = 18

If F test is greater than 3.5546, Reject the Null Hypothesis.

If F test is less than - 3.5546 -11-

1 Colculate F Test Statistics

= 49.34 Frest = MSbetween 0.57 Mswithin df Ftest MS 55 Bet" 2 49.34 86.56 98.67 0.57 18 10.29 within Total 108.96 20

$$55 \text{ between} = \sum_{n=21, n=7}^{\infty} N^{21, n=7}$$

$$\Sigma(\Sigma_{0i})^{2} = (9+8+7+8+8+9+8)^{2} + (7+6+6+7+8+7+6)^{2} + (4+3+2+3+4+3+2)^{2}$$

$$= 57^{2} + 47^{2} + 21^{2}$$

1) 
$$55$$
Between =  $57^2 + 47^2 + 21^2 = 125^2 = 98.67$   
7 21

2) SSwithin = 
$$\{y^2 - \{(\xi_0)^2\}\}$$
  
n  
 $\{y^2 - \{(\xi_0)^2\}\}$   
 $\{y^2 - \{(\xi_$