SI211 Homework 7

Prof. Boris Houska

Spring 2022

1. Newton's Method. Consider the function $f: \mathbb{R} \to \mathbb{R}$

$$f(x) = x^3 - 5x^2 + 7x - 3.$$

Use Newton's method to find the zeros of f from two different initial guess: $x_0 \in \{0, 4\}$. Write out the first 5 iterations.

2. Nonlinear Least Squares. Consider the nonlinear function

$$f(x,y) = \frac{1}{2}(x-3)^2 + \frac{1}{2}(5(y-x^2))^2 + \frac{1}{2}y^2$$

- (a) Write out the gradient vector and the Hessian matrix.
- (b) Rewrite the function as $f(x,y) = \frac{1}{2} ||R(x,y)||, R: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}^3$.
- (c) Derive the Gauss-Newton Hessian approximation. Compare the approximation to the exact Hessian. Under which condition will these two coincide?
- (d) Write a computer program to minimize f(x), first using Newton's method, and then use Gauss-Newton method. The termination condition is $\|\nabla f\|_2 \leq 10^{-3}$. Plot:
 - i. the solution trajectories in the 2-D plane.
 - ii. the difference of exact Hessian and its Gauss-Newton approximation versus iteration number.
- 3. Elimination of Variables. Consider the given equality constraints

$$8x_1 - 6x_2 + x_3 + 9x_4 + 4x_5 = 6$$
$$3x_1 - 2x_2 - x_4 + 6x_5 + 4x_6 = -4$$

- (a) Write out A and b needed to represent the constraints as Ax = b.
- (b) Eliminate x_3 and x_6 explicitly using the notation $y = (x_3, x_6)^{\mathsf{T}}$ and $z = (x_1, x_2, x_4, x_5)^{\mathsf{T}}$ (same notation as on Slide 10-11). Hint: what permutation matrix P can you use to reach $AP(P^{\mathsf{T}}x) = b$?
- (c) Write out $\tilde{F}(z)$ as on Slide 10-11. Is $\min_z \tilde{F}(z)$ still a constrained optimization problem?
- 4. Equality-Constrained Optimization. Consider the optimization problem

1

$$\min f(x_1, x_2) = 2(x_1^2 + x_2^2 - 1) - x_1 \qquad \text{subject to } x_1^2 + x_2^2 - 1 = 0.$$

Please write a computer program according to Slide 10-50. You may use a fixed step size of $\alpha=0.9.$