

VPC Connectivity Options

At the core of the lesson

You will learn how to differentiate the options for VPC connectivity.

VPC connectivity scenarios and solutions

If You Must:	Consider Using:	Solution Category
Connect a private subnet to the internet	 Network address translation (NAT) gateway 	 Amazon Elastic Compute Cloud (Amazon EC2) instance
	NAT instance	connectivity
Connect a VPC to another VPC	VPC peering	VPC to VPC
Connect a VPC to an external network	AWS Site-to-Site VPNAWS Direct Connect plus VPN	Network to VPCVirtual private network (VPN) connectivity
Connect a VPC to Amazon Web	 AWS PrivateLink 	 VPC to VPC
Services (AWS) services without leaving the AWS network	 VPC gateway endpoint 	 VPC gateway endpoint
Connect a VPC to multiple VPCs and external networks	AWS Transit Gateway	 Network to VPC
		 VPC to VPC

Connect a private subnet to the internet

Network address translation

Challenge

An EC2 instance in a private subnet must connect to the internet.

Solutions

- NAT gateway
- NAT instance

NAT gateway characteristics and creation steps

Characteristics

- Is an AWS managed service
- Is implemented with built-in redundancy within an Availability Zone
- Requires an Elastic IP address
- Supports the following protocols:
 - Transmission Control Protocol (TCP)
 - User Datagram Protocol (UDP)
 - Internet Control Message Protocol (ICMP)

Creation steps

- 1. Choose the public subnet where the gateway will reside.
- 2. Assign an Elastic IP address to the gateway.
- 3. Update the route tables of the private subnets that will use the gateway.

Architecture of a VPC with a NAT gateway

Custom route table

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	IGW-id

Main route table

Destination	Target
10.0.0.0/16	local
0.0.0.0/0	NGW-id

Connect a VPC to another VPC

VPC peering

VPC 1 route table

Destination	Target
10.0.0.0/16	local
192.168.20.0/24	PCX-id

VPC 2 route table

Destination	Target
192.168.20.0/24	local
10.0.0.0/16	PCX-id

VPC peering limitations

The VPC peering limitations include the following:

- No overlapping IP address ranges.
- No transitive peering, edge routing, or internet gateway access.
- No NAT routing between VPCs.
- No Domain Name System (DNS) lookup resolution of private IP addresses.
- No cross-referencing of peer security groups across Regions.

Creating a VPC peering connection

The following are the steps for creating a VPC peering connection:

- 1. The owner of the requester VPC sends a VPC connection request.
- 2. The owner of the accepter VPC accepts the VPC connection request.
- 3. Both owners add route table entries in both participating VPCs.
- 4. If necessary, owners adjust security group rules in both participating VPCs.
- 5. If necessary, owners turn on DNS hostname resolution for VPC connection.

Creating a VPC peering connection request

```
aws ec2 create-vpc-peering-connection \
   --vpc-id vpc-1a2b3c4d \
   --peer-vpc-id vpc-11122233
```

```
"VpcPeeringConnection": {
    "Status": {
        "Message": "Initiating Request to 444455556666",
        "Code": "initiating-request"
  },
"Tags": [],
    "RequesterVpcInfo": {
        "OwnerId": "444455556666",
        "VpcId": "vpc-1a2b3c4d",
        "CidrBlock": "10.0.0.0/28"
    "VpcPeeringConnectionId": "pcx-111aaa111",
    "ExpirationTime": "2023-04-02T16:13:36.000Z",
    "AccepterVpcInfo": {
        "OwnerId": "444455556666",
        "VpcId": "vpc-11122233"
```

Result

Connect a VPC to an external network

VPN connection options

AWS Site-to-Site VPN

AWS Direct Connect plus VPN

Connect a VPC to AWS services

VPC endpoints

AWS PrivateLink interface endpoints

Connect a VPC to multiple VPCs and external networks

AWS Transit Gateway

Checkpoint questions

- 1. A network administrator wants to connect instances in a VPC to on-premises resources over the internet. The data communication must be encrypted. Which VPC connectivity solution should the administrator use?
- 2. What is the difference between a VPC interface endpoint and a VPC gateway endpoint?
- 3. Why is Transit Gateway the preferred solution for connecting multiple VPCs and VPNs?

Key ideas

- A NAT device forwards traffic from an instance that is in a private subnet to the internet or other AWS services and then sends the response back to the instance.
- VPC peering connects two VPCs so that you route traffic between them using private addresses.
- A Site-to-Site VPN connection establishes a secure connection between your on-premises equipment and your VPCs.
- A VPC endpoint privately connects your VPC to supported AWS services and to services that are powered by PrivateLink without leaving the AWS network.
- Transit Gateway establishes a network transit hub that you can use to interconnect your VPCs and onpremises networks without using the public internet.

Thank you

Corrections, feedback, or other questions?
Contact us at https://support.aws.amazon.com/#/contacts/aws-training.
All trademarks are the property of their owners.