Федеральное государственное автономное образовательное учреждение высшего образования «Национальный Исследовательский Университет ИТМО»

VITMO

ЛАБОРАТОРНАЯ РАБОТА №1 ПРЕДМЕТ «ЭЛЕКТРОННЫЕ УСТРОЙСТВА СИСТЕМ УПРАВЛЕНИЯ» ТЕМА «ИССЛЕДОВАНИЕ РЕГУЛИРУЕМЫХ СХЕМ НА ТИРИСТОРАХ»

Вариант №1

Преподаватель: Жданов В. А.

Выполнил: Румянцев А. А.

Факультет: СУиР Группа: R3341

Поток: ЭлУСУ R22 бак 1.2

Содержание

1	Цел	ть работы	2				
2	Задание 1						
	2.1	Схема выпрямителя напряжения	2				
	2.2	Регулировочная хар-ка выпрямителя напряжения при активной нагрузке	2				
	2.3	Осцилограммы работы выпрямителя напряжения при активной нагрузке					
	2.4	Схема выпрямителя напряжения с катушкой индуктивности	4				
	2.5	Осцилограммы работы выпрямителя напряжения при активно-индуктивно	ой				
		нагрузке	4				
	2.6	Схема выпрямителя напряжения с катушкой индуктивности и диодом.	6				
	2.7	Осцилограммы работы выпрямителя напряжения при активно-индуктивно	ой				
		нагрузке, шунтированной диодом	6				
3	Зад	Задание 2					
	3.1	Схема регулятора напряжения переменного тока	8				
	3.2	Регулировочная характеристика регулятора напряжения при активной					
		нагрузке	8				
	3.3	Осцилограммы работы регулятора напряжения при активной нагрузке	8				
	3.4	Схема регулятора напряжения с катушкой индуктивности	11				
	3.5	Осцилограммы работы регулятора напряжения при активно-индуктивной					
		нагрузке	11				
	3.6	Схема регулятора напряжения с конденсатором	13				
	3.7	Осцилограммы работы регулятора напряжения при активно-емкостной					
		нагрузке	14				
4	Вы	вод	16				

Цель работы

Цель работы — исследование двухполупериодных регулируемых выпрямителей и регулятора напряжения переменного тока на управляемых полупроводниковых приборах, работающих на активную, активно-индуктивную и активно-емкостные нагрузки.

Задание 1

Схема выпрямителя напряжения

Схема регулируемого выпрямителя с СИФУ

Рис. 1: Двухполупериодный управляемый выпрямитель с выводом от средней точки

Регулировочная хар-ка выпрямителя напряжения при активной нагрузке

Снимем регулировочную характеристику выпрямителя $U_{\text{вых}} = f\left(\alpha\right)$ при активной нагрузке. В таблице представлены средние значения. Угол варьируем в диапазоне [30...150]

Угол α , (°)	30	60	90	120	150
$U_{\text{вых}}$, В	55.1380	44.3180	29.4850	14.6660	3.8619

Осцилограммы работы выпрямителя напряжения при активной нагрузке

Снимем осцилограммы работы выпрямителя при активной нагрузке для различных значений угла включения тиристора. Результаты представлены на рис. 2–6

Рис. 2: Активная нагрузка, $\alpha = 30^{\circ}$

Рис. 3: Активная нагрузка, $\alpha=60^\circ$

Рис. 4: Активная нагрузка, $\alpha=90^\circ$

Рис. 5: Активная нагрузка, $\alpha=120^\circ$

Рис. 6: Активная нагрузка, $\alpha=150^\circ$

Схема выпрямителя напряжения с катушкой индуктивности

Добавим в схему перед резистором RH катушку индуктивности L1 с величиной индуктивности 20 м Γ н

Рис. 7: Двухполупериодный управляемый выпрямитель с выводом от средней точки

Осцилограммы работы выпрямителя напряжения при активно-индуктивной нагрузке

Снимем осцилограммы работы выпрямителя напряжения при активно-индуктивной нагрузке для различных значений угла включения тиристора. Результаты представлены на рис. 8-12

Рис. 8: Активно-индуктивная нагрузка, $\alpha=30^\circ,\,L=20$ мГн

Рис. 9: Активно-индуктивная нагрузка, $\alpha=60^\circ$, L=20 мГн

Схема выпрямителя напряжения с катушкой индуктивности и диодом

Добавим в схему диод D1 параллельно RH и L1. Катод подключим перед катушкой индуктивности, анод к земле

Рис. 13: Двухполупериодный управляемый выпрямитель с выводом от средней точки

Осцилограммы работы выпрямителя напряжения при активно-индуктивной нагрузке, шунтированной диодом

Снимем осцилограммы работы выпрямителя при активно-индуктивной нагрузке, шунтированной диодом, для различных значений угла включения тиристора. Результаты представлены на рис. 14-18

Рис. 14: Активно-индуктивная нагрузка с диодом, $\alpha = 30^{\circ}$

Рис. 15: Активно-индуктивная нагрузка с диодом, $\alpha = 60^{\circ}$

Рис. 16: Активно-индуктивная нагрузка с диодом, $\alpha = 90^\circ$

Рис. 17: Активно-индуктивная нагрузка с диодом, $\alpha=120^\circ$

Рис. 18: Активно-индуктивная нагрузка с диодом, $\alpha=150^\circ$

Задание 2

Схема регулятора напряжения переменного тока

Построим схему регулятора переменного напряжения. Используем симметричный динистор U1 (DIAC) и симистор U2 (двунаправленные тиристоры – триаки)

Рис. 19: Регулятор напряжения переменного тока

Регулировочная характеристика регулятора напряжения при активной нагрузке

Снимем регулировочную характеристику регулятора напряжения $U_{\text{вых}} = f(R)$ при активной нагрузке. В таблице представлены средние значения. Сопротивление R1 варьируем от $10 \cdot 10^3$ до $300 \cdot 10^3$ с шагом $50 \cdot 10^3$

R, Om	$10 \cdot 10^{3}$	$60 \cdot 10^{3}$	$110 \cdot 10^{3}$	$160 \cdot 10^3$	$210 \cdot 10^3$	$260 \cdot 10^3$	$300 \cdot 10^{3}$
$U_{\text{вых}}, B$	0.0263	0.3374	1.2721	2.731	4.6158	7.8872	3.2499

Осцилограммы работы регулятора напряжения при активной нагрузке

Снимем осцилограммы работы регулятора при активной нагрузке для различных значений сопротивления R1. Результаты представлены на рис. 20-27

Рис. 20: Активная нагрузка, $R \in 10^3 \cdot [10...300]$ Ом, шаг $50 \cdot 10^3$ Ом

 $_{
m Ams}^{
m 4ms}$ Рис. 21: Активная нагрузка, $R=10\cdot 10^3$ Ом

 $^{\frac{1}{4}}$ Рис. 22: Активная нагрузка, $R=60\cdot 10^3~{
m Om}$

 $^{4\text{ms}}$ Рис. 26: Активная нагрузка, $R=260\cdot 10^3$ Ом

Схема регулятора напряжения с катушкой индуктивности

Добавим в схему перед R2 катушку индуктивности с величиной индуктивности $20~\mathrm{m\Gamma h}$

Рис. 28: Регулятор напряжения переменного тока

Осцилограммы работы регулятора напряжения при активно-индуктивной нагрузке

Снимем осцилограммы работы регулятора при активно-индуктивной нагрузке для различных значений сопротивления R1. Рез-ы представлены на рис. 29-36

Рис. 29: Активно-индукт. нагр., $R \in 10^3 \cdot [10...300]$ Ом, шаг $50 \cdot 10^3$ Ом, L = 20 мГн

Рис. 30: Активно-индуктивная нагрузка, $R=10\cdot 10^3~{
m Om},~L=20~{
m m}\Gamma$ н

Рис. 31: Активно-индуктивная нагрузка, $R=60\cdot 10^3~{
m Om},~L=20~{
m m}\Gamma$ н

Рис. 32: Активно-индуктивная нагрузка, $R=110\cdot 10^3~{
m Om},\, L=20~{
m m}\Gamma$ н

Рис. 34: Активно-индуктивная нагрузка, $R=210\cdot 10^3~{
m Om},~L=20~{
m m}\Gamma{
m H}$

Рис. 35: Активно-индуктивная нагрузка, $R = 260 \cdot 10^3 \; {\rm Om}, \; L = 20 \; {\rm M}\Gamma{\rm H}$

Рис. 36: Активно-индуктивная нагрузка, $R = 300 \cdot 10^3 \text{ Ом}, L = 20 \text{ м}$ Гн

Наблюдаем явление самоиндукции. В подобные схемы катушки индуктивности ставить не нужно.

Схема регулятора напряжения с конденсатором

Уберем из схемы катушку индуктивности L1 и добавим конденсатор C2 с емкостью 10 мк Φ

Рис. 37: Регулятор напряжения переменного тока

Осцилограммы работы регулятора напряжения при активно-емкостной нагрузке

Снимем осцилограммы работы регулятора при активно-емкостной нагрузке для различных значений сопротивления R1. Результаты представлены на рис. 38-45

Рис. 38: Активно-емкостная нагрузка, $R \in 10^3 \cdot [10...300]$ Ом, шаг $50 \cdot 10^3$ Ом, C = 10 $_{\rm MK}\Phi$

Рис. 39: Активно-емкостная нагрузка, $R = 10 \cdot 10^3 \; \text{Ом}, \; C = 10 \; \text{мк} \Phi$

Рис. 41: Активно-емкостная нагрузка, $R=110\cdot 10^3~{
m Om},~C=10~{
m mk}\Phi$

Рис. 42: Активно-емкостная нагрузка, $R=160\cdot 10^3~{\rm Om},~C=10~{\rm mk}\Phi$

Вывод

В данной лабораторной работе были найдены регулировочные характеристики выпрямителя и регулятора напряжения. Были построены и смоделированы схемы, представлены результаты работы выпрямителя и регулятора напряжения в виде осцилограмм при различных типах нагрузки.