Mining Frequent Patterns without Candidate Generation

Outline

- Frequent Pattern Mining: Problem statement and an example
- Review of Apriori-like Approaches
- FP-Growth:
 - Overview
 - FP-tree:
 - structure, construction and advantages
 - FP-growth:
 - FP-tree → conditional pattern bases → conditional FP-tree
 →frequent patterns
- Experiments
- Discussion:
 - Improvement of FP-growth
- Conclusion Remarks

Frequent Pattern Mining: An Example

Given a transaction database DB and a minimum support threshold ξ , find all frequent patterns (item sets) with support no less than ξ .

Input:	DB:	<i>TID</i> 100	<u>Items bought</u> {f, a, c, d, g, i, m, p}
		200	$\{a, b, c, f, l, m, o\}$
		300	$\{b, f, h, j, o\}$
		400	$\{b, c, k, s, p\}$
		500	$\{a, f, c, e, l, p, m, n\}$

Minimum support: $\xi = 3$

Output: all frequent patterns, i.e., f, a, ..., fa, fac, fam, fm, am...

Problem Statement: How to efficiently find all frequent patterns?

Apriori

Main Steps of Apriori Algorithm:

Candidate

Test

- Use frequent (k-1)-itemsets (L_{k-1}) to generate candidates of frequent k-itemsets C_k
- Scan database and count each pattern in C_k , get frequent k-itemsets (L_k) .
- E.g.,

<u>TID</u>	Items bought	<u>Apriori</u>	iteration
100	$\{f, a, c, d, g, i, m, p\}$	C1	f,a,c,d,g,i,m,p,l,o,h,j,k,s,b,e,n
200	$\{a, b, c, f, l, m, o\}$	L1	f, a, c, m, b, p
300	$\{b, f, h, j, o\}$	C2	fa, fc, fm, fp, ac, am,bp
400	$\{b, c, k, s, p\}$	L2	fa, fc, fm,
500	$\{a, f, c, e, l, p, m, n\}$	•••	

Performance Bottlenecks of Apriori

- Bottlenecks of Apriori: candidate generation
 - Generate huge candidate sets:
 - 10⁴ frequent 1-itemset will generate 10⁷ candidate 2-itemsets
 - To discover a frequent pattern of size 100, e.g., $\{a_1, a_2, ..., a_{100}\}$, one needs to generate $2^{100} \approx 10^{30}$ candidates.
 - Candidate Test incur multiple scans of database:
 each candidate

Overview of FP-Growth: Ideas

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
 - highly compacted, but complete for frequent pattern mining
 - avoid costly repeated database scans
- Develop an efficient, FP-tree-based frequent pattern mining method (FP-growth)
 - A divide-and-conquer methodology: decompose mining tasks into smaller ones
 - Avoid candidate generation: sub-database test only.

FP-Tree

FP-tree:

Construction and Design

Construct FP-tree

Two Steps:

 Scan the transaction DB for the first time, find frequent items (single item patterns) and order them into a list L in frequency descending order.

```
e.g., L={f:4, c:4, a:3, b:3, m:3, p:3}
In the format of (item-name, support)
```

2. For each transaction, order its frequent items according to the order in L; Scan DB the second time, construct FP-tree by putting each frequency ordered transaction onto it.

Step 1: Scan DB for the first time to generate L

<u>TID</u>	Items bought	
100	$\{f, a, c, d, g, i, m, p\}$	
200	$\{a, b, c, f, l, m, o\}$	
300	$\{b, f, h, j, o\}$	
400	$\{b, c, k, s, p\}$	
500	$\{a, f, c, e, l, p, m, n\}$	

 Item
 frequency

 f
 4

 c
 4

 a
 3

 b
 3

 m
 3

 p
 3

By-Product of First Scan

of Database

Step 2: scan the DB for the second time, order frequent items in each transaction

<u>TID</u>	Items bought	(ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, l, p, m, n\}$	$\{f, c, a, m, p\}$

Step 2: construct FP-tree

Step 2: construct FP-tree

Construction Example

Final FP-tree

FP-Tree Definition

- FP-tree is a frequent pattern tree. Formally, FP-tree is a tree structure defined below:
 - 1. One root labeled as "null", a set of *item prefix sub-trees* as the children of the root, and a *frequent-item header table*.
 - 2. Each node in *the item prefix sub-trees* has three fields:
 - item-name: register which item this node represents,
 - count, the number of transactions represented by the portion of the path reaching this node,
 - node-link that links to the next node in the FP-tree carrying the same item-name, or null if there is none.
 - 3. Each entry in the *frequent-item header table* has two fields,
 - item-name, and
 - head of node-link that points to the first node in the FP-tree carrying the item-name.

Advantages of the FP-tree Structure

- The most significant advantage of the FP-tree
 - Scan the DB only twice and twice only.
- Completeness:
 - the FP-tree contains all the information related to mining frequent patterns (given the min-support threshold). Why?
- Compactness:
 - The size of the tree is bounded by the occurrences of frequent items
 - The height of the tree is bounded by the maximum number of items in a transaction

Questions?

- Why descending order?
- Example 1:

<u>TID</u>	(unordered) frequent items
100	$\{f, a, c, m, p\}$
500	$\{a, f, c, p, m\}$

Questions?

Example 2:

<u>TID</u>	(ascended) frequent items	
100	$\{p, m, a, c, f\}$	
200	$\{m, b, a, c, f\}$	
300	$\{b,f\}$	
400	$\{p, b, c\}$	
500	$\{p, m, a, c, f\}$	

This tree is larger than FP-tree, because in FP-tree, more frequent items have a higher position, which makes branches less

Construct FP-tree from a Transaction Database

<u>TID</u>	Items bought ((ordered) frequent items
100	$\{f, a, c, d, g, i, m, p\}$	$\{f, c, a, m, p\}$
200	$\{a, b, c, f, l, m, o\}$	$\{f, c, a, b, m\}$
300	$\{b, f, h, j, o, w\}$	$\{f, b\}$
400	$\{b, c, k, s, p\}$	$\{c, b, p\}$
500	$\{a, f, c, e, \overline{l}, p, m, n\}$	$\{f, c, a, m, p\}$

- Scan DB once, find frequent 1-itemset (single item pattern)
- Sort frequent items in frequency descending order, f-list
- 3. Scan DB again, construct FP-tree

Partition Patterns and Databases

- Frequent patterns can be partitioned into subsets according to f-list
 - F-list = f-c-a-b-m-p
 - Patterns containing p
 - Patterns having m but no p
 - **—** ...
 - Patterns having c but no a nor b, m, p
 - Pattern f
- Completeness and non-redundency

Find Patterns Having P From P-conditional Database

- Starting at the frequent item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item p
- Accumulate all of transformed prefix paths of item p to form p's conditional pattern base

Conditional pattern bases

<u>item</u>	<u>cond. pattern base</u>
\boldsymbol{c}	<i>f</i> :3
a	fc:3
\boldsymbol{b}	fca:1, f:1, c:1
m	fca:2, fcab:1
p	fcam:2, cb:1

From Conditional Pattern-bases to Conditional FP-trees

- For each pattern-base
 - Accumulate the count for each item in the base
 - Construct the FP-tree for the frequent items of the pattern base

Recursion: Mining Each Conditional FP-tree

Cond. pattern base of "cam": (f:3)

cam-conditional FP-tree

f:3

A Special Case: Single Prefix Path in FP-tree

- Suppose a (conditional) FP-tree T has a shared single prefix-path P
- Mining can be decomposed into two parts

 a_2 : n_2

- Reduction of the single prefix path into one node
- $r_1 = -$ Concatenation of the mining results of the two parts

Benefits of the FP-tree Structure

Completeness

- Preserve complete information for frequent pattern mining
- Never break a long pattern of any transaction

Compactness

- Reduce irrelevant info—infrequent items are gone
- Items in frequency descending order: the more frequently occurring, the more likely to be shared
- Never be larger than the original database (not count nodelinks and the count field)

The Frequent Pattern Growth Mining Method

- Idea: Frequent pattern growth
 - Recursively grow frequent patterns by pattern and database partition
- Method
 - For each frequent item, construct its conditional patternbase, and then its conditional FP-tree
 - Repeat the process on each newly created conditional FPtree
 - Until the resulting FP-tree is empty, or it contains only one path—single path will generate all the combinations of its sub-paths, each of which is a frequent pattern

FP-Growth

FP-growth:

Mining Frequent Patterns Using FP-tree

Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
 - Recursively grow frequent patterns using the FP-tree: looking for shorter ones recursively and then concatenating the suffix:
 - For each frequent item, construct its conditional pattern base, and then its conditional FP-tree;
 - Repeat the process on each newly created conditional FPtree until the resulting FP-tree is empty, or it contains only one path (single path will generate all the combinations of its sub-paths, each of which is a frequent pattern)

3 Major Steps

Starting the processing from the end of list L:

Step 1:

Construct conditional pattern base for each item in the header table

Step 2

Construct conditional FP-tree from each conditional pattern base

Step 3

Recursively mine conditional FP-trees and grow frequent patterns obtained so far. If the conditional FP-tree contains a single path, simply enumerate all the patterns

Step 1: Construct Conditional Pattern Base

- Starting at the bottom of frequent-item header table in the FP-tree
- Traverse the FP-tree by following the link of each frequent item
- Accumulate all of transformed prefix paths of that item to form a conditional pattern base

Properties of FP-Tree

Node-link property

– For any frequent item a_i , all the possible frequent patterns that contain a_i can be obtained by following a_i 's node-links, starting from a_i 's head in the FP-tree header.

Prefix path property

— To calculate the frequent patterns for a node a_i in a path P, only the prefix sub-path of a_i in P need to be accumulated, and its frequency count should carry the same count as node a_i .

Step 2: Construct Conditional FP-tree

- For each pattern base
 - Accumulate the count for each item in the base
 - Construct the conditional FP-tree for the frequent items of the pattern base

FP-Growth

Step 3: Recursively mine the conditional FPtree

Principles of FP-Growth

- Pattern growth property
 - Let α be a frequent itemset in DB, B be α 's conditional pattern base, and β be an itemset in B. Then $\alpha \cup \beta$ is a frequent itemset in DB iff β is frequent in B.
- Is "fcabm" a frequent pattern?
 - "fcab" is a branch of m's conditional pattern base
 - "b" is NOT frequent in transactions containing "fcab"
 - "bm" is **NOT** a frequent itemset.

FP-Growth

Conditional Pattern Bases and Conditional FP-Tree

Item	Conditional pattern base	Conditional FP-tree
р	{(fcam:2), (cb:1)}	{(c:3)} p
m	{(fca:2), (fcab:1)}	{(f:3, c:3, a:3)} m
b	{(fca:1), (f:1), (c:1)}	Empty
а	{(fc:3)}	{(f:3, c:3)} a
С	{(f:3)}	{(f:3)} c
f	Empty	Empty

order of L

Single FP-tree Path Generation

 Suppose an FP-tree T has a single path P. The complete set of frequent pattern of T can be generated by enumeration of all the combinations of the sub-paths of P

m-conditional FP-tree

Summary of FP-Growth Algorithm

 Mining frequent patterns can be viewed as first mining 1-itemset and progressively growing each 1-itemset by mining on its conditional pattern base recursively

 Transform a frequent k-itemset mining problem into a sequence of k frequent 1-itemset mining problems via a set of conditional pattern bases

Efficiency Analysis

Facts: usually

- 1. FP-tree is much smaller than the size of the DB
- 2. Pattern base is smaller than original FP-tree
- 3. Conditional FP-tree is smaller than pattern base
- mining process works on a set of usually much smaller pattern bases and conditional FP-trees
- → Divide-and-conquer and dramatic scale of shrinking

Experiments:

Performance Evaluation

Experiment Setup

- Compare the runtime of FP-growth with classical Apriori and recent TreeProjection
 - Runtime vs. min_sup
 - Runtime per itemset vs. min_sup
 - Runtime vs. size of the DB (# of transactions)
- Synthetic data sets: frequent itemsets grows exponentially as minisup goes down
 - D1: T25.I10.D10K
 - 1K items
 - avg(transaction size)=25
 - avg(max/potential frequent item size)=10
 - 10K transactions
 - D2: T25.I20.D100K
 - 10k items

Scalability: runtime vs. min_sup (w/ Apriori)

Runtime/itemset vs. min_sup

Experiments

Scalability: runtime vs. # of Trans. (w/ Apriori)

* Using D2 and min_support=1.5%

Scalability: runtime vs. min_support (w/ TreeProjection)

Experiments

Scalability: runtime vs. # of Trans. (w/ TreeProjection)

Discussions:

Improve the performance and scalability of FP-growth

Performance Improvement

Conclusion Remarks

 FP-tree: a novel data structure storing compressed, crucial information about frequent patterns, compact yet complete for frequent pattern mining.

 FP-growth: an efficient mining method of frequent patterns in large Database: using a highly compact FP-tree, divide-and-conquer method in nature.

Some Notes

 In association analysis, there are two main steps, find complete frequent patterns is the first step, though more important step;

- Both Apriori and FP-Growth are aiming to find out complete set of patterns;
- FP-Growth is more efficient and scalable than Apriori in respect to prolific and long patterns.

Related info.

- FP_growth method is (year 2000) available in DBMiner.
- Original paper appeared in SIGMOD 2000. The extended version was just published: "Mining Frequent Patterns without Candidate Generation: A Frequent-Pattern Tree Approach" Data Mining and Knowledge Discovery, 8, 53–87, 2004. Kluwer Academic Publishers.
- Textbook: "Data Ming: Concepts and Techniques" Jiawei Han, Jian Pei and Yiwen Yin, Chapter 6.2.4 (Page 239~243)

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is

Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,B,C,D\}$
4	$\{A,B,D\}$
5	$\{A,B,C,D\}$

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
{A,B,C}	2
{A,B,D}	3
$\{A,C,D\}$	2
$\{B,C,D\}$	3
{A,B,C,D}	2

Maximal vs Closed Itemsets

TID	Items
1	ABC
2	ABCD
3	BCE
4	ACDE
5	DE

Maximal vs Closed Frequent

Maximal vs Closed Itemsets

