Multiple Sequence Alignment (MSA)

Multiple Sequence Alignment

Most important contribution of MB to evolutionary analysis is the discovery that DNA sequences of different organisms are often related.

i.e., genes are conserved across widely divergent species, often performing a <u>similar</u> or even identical function, and at other times, mutating or rearranging to perform an <u>altered</u> function.

Through simultaneous alignment of gene sequences, sequence patterns that have been subject to alteration may be analyzed.

Multiple Sequence Alignment

Aligning more than two sequences

In an MSA, homologous residues among a set of sequences are aligned together in columns.

'Homologous' is meant in both the structural and evolutionary sense.

Motivation for MSA

- MSA helps identify conserved regions and those allowed to vary - regions resistant to change are functionally most important to the molecule.
- Carries more information than mere pair-wise alignment
- Multiple sequence similarity suggests common structure for the protein, a common function or evolutionary origin
- MSA requirements are different in the various applications

Motivation for MSA

TFILGIGDRHNSNIMVKDDG-QLFHIDFGHFLDHKKKKFGYKRERVPFVLT--QDFLIVI 142

Multiple alignments can improve pairwise alignments:

(A) $p110\alpha$

```
CAMP-kinase QIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCGTPEYLAPE 179

(B) p110β SYVLGIG-----DRHSDNINVKKTGQLFHIDFGHILGNFKSKFGIKRERVPFILT 136
p110δ TYVLGIG-----DRHSDNIMIRESGQLFHIDFGHFLGNFKTKFGINRERVPFILT 136
p110α TFILGIG-----DRHNSNIMVKDDGQLFHIDFGHFLDHKKKKFGYKRERVPFVLT 135
p110γ TFVLGIG------DRHNDNIMITETGNLFHIDFGHILGNYKSFLGINKERVPFVLT 135
p110_dicti TYVLGIG-------DRHNDNLMVTKGGRLFHIDFGHFLGNYKKKFGFKRERAPFVFT 135
cAMP-kinase QIVLTFEYLHSLDLIYRDLKPENLLIDQQGYIQVTDFGFAKRVKGRTWXLCG--TPEYLA 177
```

Catalytic domains of 5 P13-kinases and cAMP-dependent protein kinase

MSA for DNA Sequences

In DNA sequences MSA is used in

- Genome sequence assembly shotgun sequencing
- Discovering new regulatory elements
- Inferring evolutionary relationships
- DNA barcoding
- SNP identification
- Develop primers & probes use conserved regions to develop
 - · Primers for PCR
 - Probes for DNA microarrays

In which of these applications do we look for similarity/differences?

MSA for Protein Sequences

In protein sequences, MSA is used in

- Homology modeling of proteins
- · Building phylogenetic tree
- Constructing scoring matrices PAM, BLOSUM
- Predicting secondary & tertiary structures of new sequences
- Identifying conserved patterns, motifs, blocks in protein sequences - to characterize protein families
- Identify related proteins in database searches,
 e.g., Profiles, PSI-BLAST, HMMs

MSA

Visual alignment of MSA tables use different colours for displaying AAs of different physico-chemical type - aids in identifying conserved patterns:

Colour	Residue Type	Amino acids
Yellow	Small nonpolar	Gly, Ala, Ser, Thr
Green	Hydrophobic	Cys, Val, Ile, Leu, Pro, Phe, Tyr, Met, Trp
Magenta	Polar	Asn, Gln, His
Red	Negatively charged	Asp, Glu
Blue	Positively charged	Lys, Arg

Structure prediction tools also give more reliable results when based on MSAs than on single sequences.

	19	
	<u></u>	
Synechocystis_spPCC_6803/1-40	MDGLKSFLSTAPVM MALLTFTAGILIEFNRFYP	DLLFHP
Halothece_spPCC_7418/1-42	MDGLKTFFSSAPVL MALLTFTAGILIEFNRFFP	
Cyanothece_spPCC_8802/1-42	MEGLTKFLSTAPVL MALLTFTAGLLIEFNRFYP	
Microcystis_aeruginosa_DIANCHI905/1-42	MEGLTKFLSSAPVL MALLTFTAGILIEFNRFYP	
Microcystis_aeruginosa_NIES-843/1-56	MCQTLDFLFPRRTQMEGLTKFLSSAPVL MALLTFTAGILIEFNRFYP	DLLFHPLG
Cyanothece_spATCC_51472/1-42	M <mark>EGLTK</mark> FL <mark>ST</mark> APVL MALLTVTAGILI E FNRFYP	DLLFHPLG
cyanobacterium_UCYN-A/1-42	M <mark>E</mark> NLTKFLSTAPILIMYLLTFTAGLLIEFNRFFP	
Crocosphaera_watsonii_WH_8501/1-42	MADFTKFLSTAPVL MALLTFTAGILIEFNRFFP	DLLFHPLG
Microcoleus_spPCC_7113/1-42	MDGLPRFLSSAPVL MLLLSVTAGILIEFNRFFP	DLLFHPMS
Cyanothece_spPCC_7822/1-39	MA <mark>K</mark> FL <mark>SS</mark> APVLUMÅL <u>L</u> TFTA <mark>G</mark> LLI <mark>E</mark> INRFYP	
Chamaesiphon_minutus_PCC_6605/1-41	M <mark>SH</mark> LL <mark>RFLSTAP</mark> VLAAVV <mark>MTFTAG</mark> ILI <mark>EFNR</mark> FFP	DLLFHPL -
Thermosynechococcus_elongatus_BP-1/1-41	M <mark>KH</mark> FL <mark>TYLSTAP</mark> VLAA IV <mark>M</mark> T I <mark>TAG</mark> IL I <mark>EFNRFYP</mark>	DLLFHPL -
Moorea_producens_3L/1-41	MQDLLKYLSLAPVLLAVVMTITAGILIEFNRFFP	DLLFHPL -
Synechococcus_spPCC_6312/1-43	MQVKYLLTYL <mark>ST</mark> APVLAAVVMAFTAGLLIEFNRFFP	DLLFHPL -
Oscillatoria_nigro-viridis_PCC_7112/1-42	<mark>MQYFLKYLSTAP</mark> VLAAAV <mark>MVITAG</mark> ILI <mark>EFNRFFP</mark>	DLLF HPMP
Synechococcus_spPCC_7002/1-37	MDKFL <mark>SS</mark> APVLLTANMVFTAGLLIEFNRFFP	
Leptolyngbya_spPCC_7376/1-39	TANMVFTAGLLIEFNRFFP	
Trichodesmium_erythraeum_IMS101/1-41	MQDLLKYLSTAPVLATVVMIITAGILIEFNRFFP	
Leptolyngbya_spPCC_7375/1-41	MPEGLVKYLSTAPVLATIVMLITAGILIEFNRFFP	
Synechococcus_spPCC_7335/1-41	MSSNLLKYLSTAPVIATVVMVITAGILIEFNRFFP	
Pseudanabaena_spPCC_7367/1-42	TINDNLLKYLSTAPVLATVVMLITAGILIEFNRFVP	
Cyanobacterium_stanieri_PCC_7202/1-42	MKGLPAFLSTAPVLITALLVFTAGLLIEFNRFFP	
Cyanobacterium_aponinum_PCC_10605/1-42	MKGLTTFLSTAPVLITALLVFTAGLLIEFNRFYP	
Dactylococcopsis_salina_PCC_830/1-42	TONDNEKTELSSAPVLLTALLTETAGLLIEINREEP	
Gloeocapsa_spPCC_73106/1-42	MKOFTAFLSTAPVLIAALLTFTAGMLIEFNRFYP	
Nodularia_spumigena_CCY9414/1-50	MAEEKGAQSSYFMTFLSTAPVAATIWLTITAGILIEFNRFFP	
Oscillatoriales_cyanobacterium_JSC-12/1-43	MQYFMKYLSTAPVIAAIWLTITAGILIEFNRFFP	
Anabaena_sp90/1-48	MAEKGNETNYLITFISTAPVAATIWLTITAGILIEFNRFFP	
Coleofasciculus_chthonoplastes_PCC_7420/1-42		
Calothrix_spPCC_7507/1-49	MADKGDSKSYFVTFLTTAPVITTIWLTITAGILIEFNRFFP	
Synechococcus_spCB0101/1-38	MKKFLTTAPVFAAIWFTVTAGILIEFNRFYP	
Calothrix_spPCC_6303/1-52	MNIILGDLNMDANFLRFLSTAPVMIFALLSFTAGLLIEFNRFFP	
Synechococcus_elongatus_PCC_7942/1-44	MLAMDGLKRYLSSAPILATIWFAITAGILIEFNRFFP	
Leptolyngbya_spPCC_6406/1-40		
Synechococcus_spCB0205/1-38	MKKFLTTAPVFAAIWFTVTAGILIEFNRFFP	
Synechococcus_spCC9311/1-39	MKKFLTTAPVVAAIWFTLTAGILIEWNRFFP	
Nostoc_spPCC_7107/1-49	MAEKSDQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFP	
Nostoc_spFCC_/10//1-49 Nostoc_spPCC_7120/1-49	MADKADQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFP	
/Nostoc_azollae [,] _0708/1-49	MADKSDQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFP	
Nostoc_spPCC_7524/1-49	MADKTDQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFP	
•	MADKGDQSSYLIKFISTAPVAATIWLTITAGILIEFNRFFP	
Nostoc_punctiforme_PCC_73102/1-49	MADKSDQSSYLIKFISTAPVAATLWLTITAGILIEFNRFFP	
Cylindrospermum_stagnale_PCC_7417/1-49		
Synechococcus_spBL107/1-38	MKKFLTTAPVVAAIWFTATAGILIEWNRFFP	
Lyngbya_spPCC_8106/1-41	MQYFLKYLSTAPVLAAAWEVITAGILIEFNRFFP	
Synechococcus_spRCC307/1-38	MKKFLTTAPVFAA IWFTVTAG IMI FNRFFP	
Synechococcus_spWH_7805/1-39	MQKFLTTAPVVAA IWFTLTAG I L I WNRFFP	
Synechococcus_spRS9917/1-39	MQKFLTTAPVVAA IWFTLTAG I L I WNRFFP	
Synechococcus_spWH_7803/1-37	MQKFLTTAPVVAAIWFTLTAGILIWNRFFP	
Synechococcus_spRS9916/1-38	INQKFLTTAPVVAA IWFTLTAG IL I <mark>EWNR</mark> FFP	LLF HPM -

MSA

To be informative a MSA should

- contain a distribution of closely- and distantly-related sequences.

If all closely-related - information contained is largely redundant

⇒ few inferences can be drawn.

If all very distantly-related - difficult to construct an accurate alignment

⇒ quality of results & inferences might be questionable

Ideally, one should have a complete range of similarities, including distantly-related examples linked through chains of close relationships

Inferences from MSA

Some examples:

- Identify highly conserved regions likely to be essential sites for structure/function, e.g. active site
- Regions rich in insertions/deletions may correspond to loops/turns in proteins
- Build gene/protein families use conserved regions to guide search
- Basis for phylogenetic analysis infer evolutionary relationships between genes

Inferences from MSA

Some examples:

- Secondary structure prediction:
- Conserved pattern of hydrophobicity with spacing 2 with intervening residues more variable and including hydrophilic residues suggests β -strand
- Conserved pattern of hydrophobicity with spacing
- 4 suggests a helix

Relationship between MSA & Phylogenetic Analysis

SeqA N-FLS SeqB N-F-S

SeqC N KY L S

SeqD N-YLS

NYLS NKYLS NFS NFLS

ary tree d these

Y or F

A hypothetical evolutionary tree that could have generated these sequence changes.

MSA of 8 fragments of immunoglobin sequences

```
VTISCTGSSSNIGAG-NHVKWYQQLPG
  ISCTGTSSNIGS--ITVNWYQQLPG
RLSCSSSGFIFSS--YAMYWVROAPG
SLTCTVSGTSFDD--YYSTWVRQPPG
PEVTCVVVDVSHEDPQVKFNWYVDG--
ATLVCLISDFYPGA--VTVAWKADS--
AALGCLVKDYFPEP--VTVSWNSG-
VSLTCLVKGFYPSD--IAVEWESNG--
```

Conserved residues, regions, patterns

alternating hydrophobicity pattern, conserved Cys, W

Multiple Alignment: Evaluation

VTISCTGSSSNIGAG-NHVKWYQQLPG VTISCTGSSSNIG-AGNHVKWYQQLPG VTISCTGTSSNIG--SITVNWYQQLPG VTISCTGTSSNIGS--ITVNWYQQLPG LRLSCSSSGFIFS--SYAMYWVRQAPG LRLSCS-SSGFIFSS-YAMYWVRQAPG LSLTCT-VSGTSFDD-YYSTWVRQPPG LSLTCTVSGTSFD--DYYSTWVRQPPG PEVTCVVVDVSHEDPQVKFNW--YVDG PEVTCVVVDVSHEDPQVKFNWYVDG--ATLVCLISDFYPG--AVTVAW--KADS ATLVCLISDFYPGA--VTVAWKADS--AALGCLVKDYFPEP--VTVSWNSG-AALGCLVKDYFPE--PVTVSW--NS-G VSLTCLVKGFYPS--DIAVEW--ESNG VSLTCLVKGFYPSD--IAVEWESNG--

It is not enough to just get a multiple alignment; we need to score the alignment

Multiple Alignment: Evaluation

A simple way to evaluate a multiple alignment is to evaluate the cost column by column

Sum of Pairs (SP)
$$= \sum_{i < j} D(S_i, S_j)$$

Using unit cost: mismatch costs 1, match 0, and indel costs 1

Summing the scores of all possible combinations of AA pairs in a column of MSA

Multiple Alignment: Evaluation

Assumes a model for evolutionary change in which any of the sequence could be the ancestor of others

SP Scoring Method

There are problems with SP scoring system as illustrated in the example:

Sequence	Col. A	Col. B	Col. C
1	N	N	N
2	N	N	N
3	N	N	N
4	N	N	C
5	N	C	C
Score	60	24	9

(Using Blosum62):

N-N: 6, N-C: - 3, C-C: 9

What's the problem? Score for N = 10 seq

Multiple Alignment: DP

- Pair-wise alignment: DP involves a L x L (L²) matrix
- Multiple alignment: DP involves an L^N matrix, an N-dimensional hyper-lattice, N no. of sequences of length L each, to align simultaneously
- Computationally not feasible: for 5 sequences, each ~100 bp long, 10¹⁰ matrix elements need to be computed
 - equivalent to a pairwise alignment of two 100,000 bp sequences

The Recursive Relation

For 3 sequences, to assign a value to a node (i,j,k), we need to consider 7 values; for 2 seqs, we needed only 3!

Multiple Sequence Alignment

 $\alpha_{i_1,i_2,...,i_N}$ - maximum score of an alignment up to the subsequences ending with $x_{i_1}^1, x_{i_2}^2, ..., x_{i_N}^N$ Recursive relation for multiple sequences:

Multiple Sequence Alignment

To calculate each entry, need to maximize over all $2^N - 1$ combinations of gaps in a column, excluding the case where all Δ_k are zero.

Introducing the notation Δ_i which is 0 or 1 and define the 'product'

$$\Delta_i \cdot x = \begin{cases} x & if \quad \Delta_i = 1, \\ - & if \quad \Delta_i = 0. \end{cases}$$

Recursion relation can now be written as

$$\alpha_{i_1,i_2,...,i_N} = \max_{\Delta_1 + ... + \Delta_N > 0} \left\{ \alpha_{i_1 - \Delta_1,i_2, -\Delta_2,...,i_N - \Delta_N} + S(\Delta_1 \cdot x_{i_1}^1, \Delta_2 \cdot x_{i_2}^2,...,\Delta_N \cdot x_{i_N}^N \right\}$$

For N = 3, 4, 5, and 10, $2^N - 1 = ?$

DP Hyperlattice: Example

Overall score S(m) for an alignment is defined as a sum of scores $S(m_i)$ for each column i: $S(m) = \Sigma_i S(m_i)$

Time and Space complexity

Assuming all sequences of roughly same length L, memory complexity of the multi-dimensional DP algorithm is $O(L^N)$ and time complexity is $O(2^NL^N)$

- impractical for more than a few sequences.

For 6 sequences, each 100bp long, time taken will be $2^6 \times 100^6 \times 10^{-9} = 64000$ seconds (~ 18 hrs)

Add 2 more sequences of same length and the no. is 2.56x10⁹ seconds (over 81 yrs)

Even worse is memory space requirement - 10^{12} for 6 sequences!

Carrilo-Lipman/MSA Algorithm

- Carrillo and Lipman proposed a heuristic method for accelerating the search, implemented in the program called MSA.
- It is based on the property that if the strings are relatively similar, the alignment path would be close to the main diagonal.
- ⇒ not all values in the multi-dimensional cube need to be calculated.
- Their central idea is every multiple alignment imposes a pw-alignment on each pair of sequences
- For each pair, it sets the upper bound equal to the cost of the imposed alignment.

Multiple alignment DP: Heuristics

 Optimal alignment path will lie around the main diagonal (MSA, by Carillo-Lipman, 1988)

While visiting a node and looking for the minimum along all the incoming edges - ignore the edges "coming from outside polyhedron". Edges 1, 2, 3, 6, 7 are coming from inside and edges 4 and 5 (not shown) can be ignored

Multiple alignment DP: Heuristics

- Optimal alignment path will lie around the main diagonal (MSA, by Carillo-Lipman, 1988)
- It uses a heuristic approach to choose upper bounds for the pairs.
- Works for very similar sequences
- MSA can find optimal multiple alignments for ~ 6-8 sequences, 200-300 length

Alignment by Consensus

- Aim of alignment by Consensus: to minimize the consensus error
- Align sequence 1 & 2 and obtain a consensus sequence
- Building consensus: an example

 As is clear from above, the consensus need not be similar to any of the aligned sequences

Consecutive consensus

- Align sequence 3 to the consensus of first two sequences to obtain a new consensus
- Continue until the consensus alignment converges to a global consensus
- Problem Depends on the order in which the sequences are introduced

Solution?

Consecutive consensus

- Align sequence 3 to the consensus of first two sequences to obtain a new consensus
- Continue until the consensus alignment converges to a global consensus
- Problem Depends on the order in which the sequences are introduced
- Solution one may use a guide tree obtained by p-w alignment scores to build the consensus

Progressive approach

- Align each sequence to every other pair-wise
- Compute distances between each aligned pair (e.g. no. of mismatches)
- Construct a phylogenetic tree
- Cluster closely related sequences
- Align closely related sequences first
- Gaps inserted in closely related sequences are propagated throughout

Progressive alignment - involves constructing a succession of pairwise alignments.

Tools: ClustalW,T-Coffee, MUSCLE

Pairwise alignments

Shoop STCVLSAYWKDLNNYH
Cattle STCVLSAYWKDLNNYH

Pig Rat STCVLSAYWRNELNNFH STCMLGTY-OD-LNKFH

Sheep STC

STCVLSAYWK-DINNYX STCVLSAYWRNEINNFX Piq Salmon STCVLSAYWRNELNNFH STCVLGKL-SQELKKLQ

Sheep Bunan

STOVLSAYWKDINNYH STONIGTY-QDFNKFH Bunan Rat STOMLGTY OD ENKFH STOMLGTY OD LINKTH

Sheep Rat

STOVLSAÝWKOLNNYH STOYLGTY-ODLNKFX Human Salmon STONLGTY - QUPNKTH STOVLGKLEQELHKLQ

Sheep Salmon

STCVLSAYWKD-LNNYK STCVLGKL-SOELHKLO

Rat Salmon STONLGTY-ODLNKTH STOVLGKLSQELHKLO

Pig Human

STOYLGAYWRNEINNEX STOYLGTY-QD-FNKEH

Hierarchy of Addition

Sheep-Cattle	0	Pig-Rat 8
Sheep-Pig	4	Pig-Salmon 10
Sheep-Human	8	Human-Rat 1
Sheep-Rat	7	Human-Salmon 9
Sheep-Salmon	11	Rat-Salmon 8
Pig-Human	9	

- Align Sheep and Cattle first
- Align Human and Rat
- Align Pig to Sheep and Cattle
- Align these two clusters to each other
- •••
- Align Salmon to large alignment last

Progressive alignment

step 1	Sheep	STCVLSAYWKDLNNYH
	Cattle	STCVLSAYWKDLNNYH

step 2	Human	STCMLGTYQDFNKFH
	Rat	STCMLGTYQDLNKFH

step 3	Sheep	STCVLSAYWK-DLNNYH
	Cattle	STCVLSAYWK-DLNNYH
	Pig	STCVLSAYWRNELNNFH

... Salmon STCVLGKLSQE-LHKLQ

All possible cases that arise in progressive alignment approach:

- Align two sequences to each other
- Align a sequence to an existing alignment
- Align two alignments to each other

Note - computationally this is always a PW

 Pairwise alignment of alignments is also called profile alignment

Again, we can use DP

$$S(i,j) = \max[S(i-1,j-1)+m(i,j), S(i-1,j)+g, S(i,j-1)+g]$$

m(i,j) - similarity score averaged over characters at that position, here i and j no longer stands for single sequences, but an average of several, when aligning alignments

g - gap penalty

	Ş	Т	Ç	٧	L	Ş	Α	YWKD-LNNYH	Sheep
	Ş	T	Ç	٧	L	Ş	A	YWKD-LNNYH	Cattle
_	Ş	T	C	٧	L	Ş	Α	YWRNELNNFH	Pig
,									
ss									
TT									
cc									
мм									
LL									
GG									
TT									
YY									
QQ									
DD									
FL									
NN									

```
Alignment 1: ATA

CCA

Alignment 2: TCAFE

TAT-E

TATF-

AGTFD
```

Score 1st column of 1st alignment against 2nd column in the other alignments using:

```
= 1/8 (score(A,C) + score(A,A) + score(A,A) + score(A,G) + score(C,C) + score(C,A) + score(C,A) + score(C,G))
```

- Once sequences are aligned & gaps introduced, these are not altered - the alignment method is <u>hierarchical</u>
- ClustalW finds a local optimum as early alignment decisions are "locked in" by the "greedy" algorithm
- Early errors will be propagated and cause the final alignment to be worse

```
Sheep STCVLSAYWK-DLNNYH
Cattle STCVLSAYWRNELNNFH
Pig STCVLSAYWRNELNNFH
Sheep STCVLSA--YWK-DLNNYH
Cattle STCVLSA--YWK-DLNNYH
Pig STCVLSA--YWRNELNNFH
```

ClustalX/ClustalW

- Performs pair-wise alignments of all the sequences
 - k-tuple based alignment (fast/approx.), full DP (slow/accurate)
- Uses alignment scores to produce a phylogenetic tree
 - Genetic distance: no. of mismatches/no. of matches (positions against gaps not considered)
- Aligns sequences sequentially, guided by the phylogenetic relationships indicated by tree.
 - Sequence contributions are 'weighted' by their relationship on the predicted tree, weights based on the distance of each sequence from root

Alignment scores between two positions in msa calculated using resulting weights as multiplication factors

Weights are normalized so that largest weight is 1

A. Calculation of sequence weights

B. Use of sequence weights

[a x c x score (K,L) + a x d x score (K,V) + b x c x score (I,L) + b x d x score (I,V)]/4

Colu	umn in alignment 1			
Sequence A (weight a)	K			
Sequence B (weight b)				
Colum	nn in alignment 2			
Sequence C (weight c)	L			
Sequence D (weight d)	V			
Score for matching these	two column in an msa =			

Basic idea in Progressive Heuristic Approach:

- compute pairwise alignments and merge alignments consistently

Consider alignment of 3 sequecens:

Get optimal pairwise alignments:

Order of merging matters!
Note once a gap, always a gap ...

Example

- D AADKTNVKAAWSKVGGHAGEYGA
- A PEEKSAVTALWGKVNVDEYGG
- B GEEKAAVLALWDKVNEEEYGG
- C PADKTNVKAAWG KVGAHAGEYGA
- D AADKTNVKAAWS KVGGHAGEYGA
- E AA TNVKTAWSSKVGGHAPA A
- A PEEKSAV TALWG KVN VDEYGG
- B GEEKAAV LALWD KVN EEEYGG
- C PADKTNVKAA WG KVGAHAGEYGA
- D AADKTNVKAA WS KVGGHAGEYGA
- E AA TNVKTA WSSKVGGHAPA A

Once a gap, always a gap

Steps in Progressive Alignment

(B) Multiple alignment following the tree from A

align most similar pair

align next most similar pair

align alignments - preserve gaps

ClustalW: Refinements

- Different BLOSUM matrices used based on similarity of sequences - to reflect evolutionary changes better
- Recall: BLOSUM80/ BLOSUM62 are based on sequences that are 80% / 62% identical, i.e. lower numbers for more distant sequences
- ClustalW calculates gaps in a way to place them between conserved domains, based on observation that structurally related proteins align in a way to have gaps between secondary structural elements
- Frequency of gaps next to each amino acid computed in these regions is used (Pascarella and Argos)

Hbb_Human	1	-					
Hbb_Horse	2	.17	-				
Hba_Human	3	.59	.60	_			
Hba_Horse	4	.59	.59	.13	-		
Myg_Phyca	5	.77	.77	.75	.75	_	
Glb5_Petma	6	.81	.82	.73	.74	.80	- 1
Lgb2_Luplu	7	.87	.86	.86	.88	.93	.90
		1	2	3	4	5	6

MSA of 7 globins by CLUSTALW

-----VHLTPEEKSAVTALWGKVN--VDEVGGEALGRLLVVYFWTQRFFESFGDLST
-----VQLSGEEKAAVLALWDKVN--EEEVGGEALGRLLVVYFWTQRFFDSFGDLSN
------VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFFTTKTYFPHFDLS------VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFFTTKTYFPHFDLS------VLSEGEWQLVLHVWAKVEADVAGHGQDILIRLFKSHFETLEKFDRFKHLKT
PIVDTGSVAPLSAAEKTKIRSAWAPVYSTYETSGVDILVKFFTSTFAAQEFFPKFKGLTT
------GALTESQAALVKSSWEEFNANIPKHTHRFFILVLEIAFAAKDLFSFLKGTSE

Progressive alignment: Align following the guide tree

PDAVMGNPKVKAHGKKVLGAFSDGLAHLD----NLKGTFATLSELHCDKLHVDPENFRL
PGAVMGNPKVKAHGKKVLHSFGEGVHHLD----NLKGTFAALSELHCDKLHVDPENFRL
---HGSAQVKGHGKKVADALTNAVAHVD----DMPNALSALSDLHAHKLRVDPVNFKL
---HGSAQVKAHGKKVGDALTLAVGHLD----DLPGALSNLSDLHAHKLRVDPVNFKL
EAEMKASEDLKKHGVTVLTALGAILKKKG----HHEAELKPLAQSHATKHKIPIKYLEF
ADQLKKSADVRWHAERIINAVNDAVASMDDT--EKMSMKLRDLSGKHAKSFQVDPQYFKV
VP--QNNPELOAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-VADAHFPV

LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH----LGNVLVVVLARHFGKDFTPELQASYQKVVAGVANALAHKYH----LSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR----ISEAIIHVLHSRHPGDFGADAQGAMNKALELFRKDIAAKYKELGYQG
LAAVIADTVAAG-------DAGFEKLMSMICILLRSAY----VKEAILKTIKEVVGAKWSEELNSAWTIAYDELAIVIKKEMNDAA---

Known locations of 7α -helices in the structure of this group shown in boxes

Problems with Progressive Alignment

Gaps at the ends are penalized less, so CAT is aligned with FAT in sequence 2

The greedy approach results in efficiency of the algorithm at the cost of accuracy

Problems with Progressive Alignment

- Depends on the very first closely related sequences used for constructing the multiple alignment
- If these sequences align well, there will be few errors
- More distantly related these sequences are, more errors will get propagated through the alignment
- Using Bayesian methods such as Hidden Markov models (HMMs) may be useful for aligning more distantly related sequences.

Solution: Stochastic or Iterative Methods

ClustalW Misapplied

ClustalW and other algorithms that include an initial pair-wise comparison step should not be used to align sequences that do not all share a common block.

Not suitable for sequence assembly!

ClustalW / ClustalΩ online

EBI: https://www.ebi.ac.uk/Tools/msa/

The latest version is called Clustal Omega – uses seeded guide trees and HMM profile-profile techniques to generate alignments

- one of the fastest multiple sequence alignment tools
- DDBJ: http://clustalw.ddbj.nig.ac.jp/

Iterative Methods of MSA

- To correct for errors introduced by initial alignment, use <u>iterative</u> methods: re-align subgroups of sequences and then align these subgroups into a global alignment
- Objective to improve overall alignment score
- Selection of groups may be based on phylogenetic tree, separation of one or two sequences from the rest, or a random selection of the groups.
- Programs using iterative methods MultiAlin, PRRP and DIALIGN

Other Methods

Genetic Algorithm: It is a machine learning approach, implemented in the program SAGA, and produces alignments by attempted simulation of the evolutionary changes in sequences.

Basic idea behind this method is to try to generate many different MSAs by rearrangements that simulate gap insertion & recombination events during replication in order to generate a higher and higher score for the MSA.

Hidden Markov Models (HMM): HMMs are trained to recognize a specific family of proteins; require different HMM for each protein family

Examine alignments by eye

Some artifacts observed in the output of algorithms:

Always examine your alignment manually to see if it can be improved.

Edit alignments manually

Multiple sequence alignment tools

- Viewers
 - ClustalX, Jalview, Cinema, Sequence logos
- Editors / annotation
 - SeqVu, MACAW, BioEdit
- BioEdit available at: https://bioedit.software.informer.com/7.2/

Work with proteins

- Twenty symbols to match as against four for DNA
- No noise resulting from the degeneracy of genetic code
- More sensitive scoring matrices
- Requires less of manual editing

Choose genes judiciously

- When inferring phylogeny choose genes carefully
- For closely related organisms choose genes which mutate fast
- For distantly related species choose slowly mutating genes
- Compare orthologous genes between species and paralogous ones within an organism

Summary

- Treat the output of multiple alignment programs as a first alignment
- Examine it by eye and edit it manually to improve it
- Get rid of low confidence or highly divergent regions
- Ensure you have started with a sensible evolutionary hypothesis

Summary

How does one perform an MSA?

- · By hand: too hard!
- Automated alignment: Fast, but doesn't necessarily produce the "correct" alignment

Best approach = Automated alignment with manual editing

References

- David W. Mount, Bioinformatics: Sequence and Genome Analysis, CBS Publishers & distributors, New Delhi, and references therein.
- Thompson, J.D., Higgins, D.G. and Gibson. T.J. "CLUSTALW: improving the sensitivity of multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice" Nuc. Acids Res. 22, 4673-80 (1994).
- Carrillo, H. and Lipman, D. "The multiple sequence alignment problem in biology" SIAM J. Appl. Math. 48, 1073-82 (1988).