데이터 시각화 & 데이터 수집

- 0. Review
- 1. 데이터시각화
- 2. 데이터 수집
- code: https://github.com/zzhining/python_data_basic

Today...

today...

■ 데이터 시각화 + 데이터 수집

■ 데이터 시각화 + 데이터 수집

MLB 핀치히터 뉴욕 양키스 볼캡 네이.. 940 MLB PINCH HITTER 91 NEYYAN N..

33,000원

제고확인 ▼ Q

무지 에센셜 반팔 티셔츠 3팩 멀티 AP 3PACK ESSENTIAL T 92 MUL

89,000원

재고확인 ▼ Q

MLB 팀 클래식 뉴욕 양키스 게임 볼.. TEAM CLASSIC 3930 NEYYAN GM

36,000원

재고확인 ▼ ○

MLB 핀치히터 디트로이트 타이거즈.. 940 MLB PINCH HITTER TEAM LOGO D..

33,000원

재고확인 ▼ ○

MLB 어센틱 뉴욕 양키스 게임(홈/어.. ACPERF NEYYAN GM

49,000원

재고확인 ▼ ○

캡 이레이저 ACC CAP ERASER 3,500원

재고확인 ▼ ○

캡 리테이너 블랙 ACC CAP RETAINER83 BLACK

5,900원

재고확인 ▼ ○

캡 가드 ACC CAP GUARD

9,900원

재고확인 ▼ Q

MLB 팀 클래식 LA다저스 게임 볼캡 TEAM CLASSIC 3930 LOSDOD GM

36,000원

재고확인 ▼ Q

today...

■ 데이터 시각화

49,000원

5,900원

재고확인 ▼ Q

재고확인 ▼ Q

3,500원

재고확인 ▼ Q

재고확인 ▼ Q

재고확인 ▼ Q

8

재고확인 ▼ Q

■ 데이터 시각화

재고확인 ▼ ○

재고확인 ▼ Q

940 MLB PINCH HITTER 91 LOSDOD D RYL

MLB 핀치히터 LA다저스 볼캡 로얄 블루

재고확인 ▼ Q

					10					1.0
	제품명	제품코드	수입원	출시일	소재	챙 길이	높이	특징	특이사항	깊이
0	MLB 핀치히터 LA다저스 볼캡 로얄 블루	12024815	뉴에라 캡 코리아	2018/12/18	100%폴리 에스터	약 7cm	약 11c m	후면 사이 즈 조절 가능	NONESEASON	NaN
1	MLB 핀치히터 뉴욕 양키 스 볼캡 네이비	12024814	뉴에라 캡 코리아	2018/12/18	100%폴리에 스터	약 7cm	약 11c m	NaN	NONESEASON	NaN
2	에센셜 무지 사이즈캡 블 랙	12359641	뉴에라 캡 코리아	2018/09/12	100%울	약 7cm	NaN	NaN	18FW	약 11.5c m
3	MLB 핀치히터 디트로이 트 타이거즈 볼캡 네이비	12033046	뉴에라 캡 코리아	2019/01/17	100%폴리에 스터	약 7cm	약 11c m	NaN	NONESEASON	NaN
4	MLB 팀 클래식 뉴욕 양 키스 게임 볼캡 네이비	10975804	뉴에라 캡 코리아	2016/06/14	95%폴리에스 터, 5%스판덱 스	약 7cm	NaN	NaN	NaN	약 12cm
	MLB 어센틱 뉴욕 양키스 게임,,,,			87777 E	4	네이버페이 추가 정	덕립1%, 신용카드	무이자 7개월 등 결	레지수단별 혜택을 확인하세요. Υ	
	ACPERF NEYYAN GM	ACC CAP ERASER		ACC CAP RETAINER83		ACC CAP GUARD			SIC 3930 LOSDOD GM	
	49,000원	3,500원		5,900원	.9),900원		36,000원		

재고확인 ▼ Q

today... zhining@naver.com

■ 데이터 시각화 + 데이터 수집

- 데이터 시각화
 - 그래프 그리는 방법
- 데이터 수집
 - 웹 사이트의 데이터를 스크래핑(scraping)해서 데이터 프레임으로 만드는 방법

last time...

■ 데이터 분석을 위한 파이썬 패키지

- 데이터 분석을 위한 파이썬 패키지
 - NumPy, Pandas

- 데이터 분석을 위한 파이썬 패키지
 - NumPy, Pandas

1						데이터프	레임 주요 연산			
주요 문법(입력 인자는 생략)		설명				주요 문	법(입력 인자는 생략)		설명	
np.array()		초기화할 값을 지정하여 배열 생성				sort_va	alues()		값 기준 정렬	
np.zeros()		값을 0으로 초기화하여 배열 생성		H키지		I				
np.ones()		값을 1로 초기회하여 배열 생성		" ' '		Sort_in	_index()		인덱스 기준 정렬	
np.arange()		수의 순차적인 증감을 이용하여 배열 생성				iloc[n]			인덱스 번호로 선택(n번째 인덱스 로우 반환)	
np.rand()	np.rand() 랜덤한 숫자로 배열 생성					loc[nar			인덱스 이름으로 선택(인덱스 이름이 name인 로우 반환)	
reshape()	- "					drop()			삭제	
I	shape 배열의 형태 확인			_		moon())		평균값 반환	
	dtype() 배열의 데이터 타입 확인					mean()			당한 한 전환	
astype()	astype() 배열의 데이터 타입 변경					max()			최대값 반환	
square()		제곱			빠르게 역	min()			최소값 반환	
sqrt()		제곱근(루트)	<u>크</u> (루트)		□ □ · □ · □ · □ · □ · □ · □ · □ · □ · □					
exp()	HOLLIT	TIAA				sample	replace()		전체 데이터 중 일부를 추출하여 반환	
log()	데이터프리					replace			값 치환	
add()	주요 문	컵 	설명			apply()			함수 적용	
sum()	pd.Dat	aFrame(data, index, columns)	리스트, 딕셔너리	등의 데0	터를 데이터프레임 형	태				
cumsum()	pd.read	d_csv('csv파일명')	표 형태의 파일 일	심어오기		get_du	mmies()		원핫인코딩 적용	
mean()						isna()			결측치 여부 확인	
var()	데이터프레임 탐색									
std()	주요 문법(입력 인자는 생략) 설명		설명							
min()			처음 다섯 개의 로	90 충려						
max()	head()				주요 문법(입력	력 인자는 성	인자는 생략) 설명		3	
	1 20			70 51						

fillna()

dropna()

pd.merge()

pd.concat()

to_csv()

결측치 치환

결측치 삭제

저장

두 개의 데이터프레임 조인

두 개의 데이터프레임 이어 붙이기

마지막 다섯 개의 로우 출력

데이터프레임의 구조 반환

데이터프레임의 주요 통계

데이터프레임의 주요 정보

중복 제거된 유일 값 반환

유일 값의 개수

tail()

shape

info()

unique()

value_counts()

describe()

argmin()

argmax()

transpose()

np.save()

com

- 데이터 분석을 위한 파이썬 패키지
 - NumPy, Pandas

- 데이터 분석을 위한 파이썬 패키지
 - NumPy, Pandas

- 데이터 분석을 위한 파이썬 패키지
 - NumPy, Pandas

Ch4. 데이터 시각화

seaborn & matplotlib

seaborn & matplotlib

seaborn & matplotlib

seaborn & matplotlib

matplotlib

seaborn

- seaborn 사용법
 - ① 데이터를 선택한다
 - ② 그래프 종류를 선택한다
 - ③ 그래프를 그린다

■ seaborn 사용법

- ① 데이터를 선택한다
- ② 그래프 종류를 선택한다
- ③ 그래프를 그린다

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

- seaborn 사용법
 - import seaborn as sns

sns.scatterplot(x=df['total_bill'], y=df['tip'], hue=df['sex'], size=df['size'])

- seaborn 사용법
 - import seaborn as sns

sns.scatterplot(x=df['total_bill'], y=df['tip'], hue=df['sex'], size=df['size'])

■ total_bill과 tip의 상관관계?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ total_bill과 tip의 상관관계?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.scatterplot(x=df['total_bill'], y=df['tip'])

sns.regplot(x=df['total_bill'], y=df['tip'])

■ total_bill과 tip의 상관관계? & sex에 따른 분포!

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ total_bill과 tip의 상관관계? & sex에 따른 분포!

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.scatterplot(x=df['total_bill'], y=df['tip'], hue=df['sex'])

■ total_bill과 tip의 상관관계? & sex에 따른 분포 & size에 따른 분포!

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.scatterplot(x=df['total_bill'], y=df['tip'], hue=df['sex'], size=df['size'])

■ size가 클수록 tip도 많나?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ size가 클수록 tip도 많나?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.lineplot(x=df['size'], y=df['tip'])

sns.barplot(x=df['size'], y=df['tip'])

데이터시

sns.lineplot(x=df['size'], y=df['tip'])

sns.lineplot(x=df['size'], y=df['tip'], ci=None)

sns.barplot(x=df['size'], y=df['tip'])

sns.barplot(x=df['size'], y=df['tip'], ci=None)

aver.com

■ size가 클수록 tip도 많나?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.boxplot(x=df['size'], y=df['tip'])

sns.violinplot(x=df['size'], y=df['tip'])

zhining@naver.com

■ 요일별 팁의 분포?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ 요일별 팁의 분포?

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.barplot(x=df['day'], y=df['tip'])

sns.barplot(x=df['day'], y=df['tip'])

■ 요일별 방문자수

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ 요일별 방문자수

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.countplot(x=df['day'])

sns.histplot(data=df['day'])

■ total_bill의 분포

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

■ total_bill의 분포

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.histplot(data=df['total_bill'])

sns.histplot(data=df['total_bill'], kde =True)

■ total_bill의 분포

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

sns.kdeplot(data=df['total_bill'])

sns.rugplot(data=df['total_bill'])

■ 요일(day)별 size에 따른 tip 평균

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

	요일(day)	별 size	에 따른	tip 평균
--	---------	--------	------	--------

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	38	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

pivot_df = df.pivot_table("tip", "day", "size")
pivot_df

size	1	2	3	4	5	6
day						
Thur	1.83	2.442500	2.692500	4.218000	5.000000	5.3
Fri	1.92	2.644375	3.000000	4.730000	NaN	NaN
Sat	1.00	2.517547	3.797778	4.123846	3.000000	NaN
Sun	NaN	2.816923	3.120667	4.087778	4.046667	5.0

■ 요일(day)별 size에 따른 tip 평균

sns.heatmap(pivot_df, annot=True)

	total_	_bill	tip se	ex smoker	day t	ime size	
O	size	1	2	3	4	5	6
1	day						
2	Thur	1.83	2.442500	2.692500	4.218000	5.000000	5.3
3	Fri	1.92	2.644375	3.000000	4.730000	NaN	NaN
4	Sat	1.00	2.517547	3.797778	4.123846	3.000000	NaN
	Sun	NaN	2.816923	3.120667	4.087778	4.046667	5.0

seaborn & matplotlib

matplotlib

seaborn

- matplotlib
 - 도화지 사이즈

- matplotlib
 - 여러 개의 그래프

- matplotlib
 - 여러 개의 그래프

fig, ((ax1,ax2,ax3), (ax4,ax5,ax6)) = plt.subplots(nrows=2, ncols=3)

- matplotlib
 - 여러 개의 그래프

fig, axs = plt.subplots(nrows=2, ncols=3)

matplotlib

```
import seaborn as sns
import pandas as pd
import matplotlib.pyplot as plt

df = sns.load_dataset("tips")

fig, ax = plt.subplots(nrows=2, ncols=2)
fig.set_size_inches(16,8)

sns.scatterplot(x=df["total_bill"], y=df["tip"], ax=ax[0][0])
sns.barplot(x=df['size'], y=df['tip'], ax=ax[0][1])
sns.regplot(x=df["total_bill"], y=df["tip"], ax=ax[1][0])
sns.violinplot(x=df['size'], y=df['tip'], ax=ax[1][1])
```


Ch5. 데이터 수집

■ 데이터 수집

94

GET

https://wikidocs.net > ... ▼

1 파이썬 시작하기 - 왕초보를 위한 Python - WikiDocs

우리가 앞으로 배울 **파이썬** 언어는, 배우기 쉬우면서도 프로그램을 빨리 개발할 수 있고, 기능 뛰어나답니다. 이 강좌는 프로그래밍을 처음 하는 분들을 위해서 **파이썬** ...

1.1 파이썬 준비 · 1.2 정수를 계산하기 · 1.3 변수 · 1.4 리스트(list)

https://namu.wiki→ Python ▼

Capture node screenshot beyond viewport

Capture node screenshot for a full node including content below the fold.

Google

① 기능 활성화

파이썬 🗙

Q 전체 □ 이미지 □ 동영상 □ 도서 □ 뉴스 : 더보기

검색결과 약 5,250,000개 (0.46초)

https://ko.wikipedia.org→wiki→파이썬 ▼

파이썬 - 위키백과, 우리 모두의 백과사전

파이썬(영어: Python)은 1991년 프로그래머인 귀도 반 로섬이 발표한 고급 프로그래를 플랫폼에 독립적이며 인터프리터식, 객체지향적, 동적 ...

파일 확장자: py,.pyc,.pyd,.pyo

설계자: 귀도 반 로섬

발표일: 1991년 2월 20일

패러다임: 프로그래밍 패러다임: 7

개요 · 역사 · 문법 · 자료형

https://docs.python.org > tutorial 💌

파이썬 자습서 — Python 3.9.4 문서

파이썬은 배우기 쉽고, 강력한 프로그래밍 언어입니다. 효율적인 자료 구조들과 객체 래밍에 대해 간단하고도 효과적인 접근법을 제공합니다. 우아한 문법 ...

3. 파이썬의 간략한 소개 · 2. 파이썬 인터프리터 사용하기 · 1. 입맛 돋우기 · 9. 클래스

https://wikidocs.net > ... ▼

1 파이썬 시작하기 - 왕초보를 위한 Python - WikiDocs

우리가 앞으로 배울 **파이썬** 언어는, 배우기 쉬우면서도 프로그램을 빨리 개발할 수 있. 뛰어나답니다. 이 강좌는 프로그래밍을 처음 하는 분들을 위해서 **파이썬** ...

1.1 파이썬 준비 · 1.2 정수를 계산하기 · 1.3 변수 · 1.4 리스트(list)

①URL정보	<div class="TbwUpd NJjxre"></div>
②제목	<h3 class="LC20lb DKV0Md"></h3>
③본문 일부	
④부가정보	<div class="FyYA1e IThcWe"></div>

zhining@naver.com

- request
 - html 받아오기
- beautifulsoup
 - html 태그 기반 데이터 파싱
- selenium
 - 동적으로 브라우저 제어

request

```
from bs4 import BeautifulSoup import requests import pandas as pd response = requests.get('http://www.neweracapkorea.com/shop/shopbrand.html?xcode=031&.. 생략...') response.content
```

```
b'\n<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">\n<html>\n<head>\n<meta http-equiv="CONTENT-TYPE"
content="text/html;charset=EUC-KR">\n<meta http-equiv="X-UA-Compatible" content="IE=edge"
/>\n<meta name="naver-site-verification"
content="a3e4e840fe9e419b8e34b1064f4d0c9a46c54efd"/>\n<meta name="google-site-verification"
content="6Nl8EyimZc-dfQImXCJKEsojYPUxowwcTvw1kQufiG8" />\n<meta name="naver-site-verification"
content="a3e4e840fe9e419b8e34b1064f4d0c9a46c54efd"/>\n
... 생략...
```

```
soup = BeautifulSoup(response.content, "lxml")
 soup
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
<meta content="text/html;charset=utf-8" http-equiv="CONTENT-TYPE"/>
<meta content="IE=edge" http-equiv="X-UA-Compatible"/>
<meta content="a3e4e840fe9e419b8e34b1064f4d0c9a46c54efd" name="naver-site-verification"/>
<meta content="6N18EyimZc-dfQImXCJKEsojYPUxowwcTvw1kQufiG8" name="google-site-verification"/>
<meta content="a3e4e840fe9e419b8e34b1064f4d0c9a46c54efd" name="naver-site-verification"/>
<meta content="website" property="og:type"/> <meta content="뉴에라 공식 온라인 스토어"</pre>
property="og:title"/>
<meta content="MLB, NBA, NFL 미국 3대 스포츠 리그의 공식 선수용 모자 및 다양한 라이프 스타일
아이템" property="og:description"/>
... 생략 ...
```

데이터 수집

```
cap_info = soup.findAll('div', {'class':'tb-center'})
cap_info[0]
```

```
<div class="tb-center">
<div class="thumb">
<a
href="/shop/shopdetail.html?branduid=3353566&xcode=031&mcode=002&scode=001&type=Y&so
rt=sellcnt&cur code=031002&GfDT=Z2Z3UQ%3D%3D"><img alt="상품 섬네일" class="MS prod img s"
rollover onimg="http://cdn3-aka.makeshop.co.kr/shopimages/newerashop/0600060002667.jpg"
src="http://cdn3-aka.makeshop.co.kr/shopimages/newerashop/0600060002663.jpg?1562321342"/></a>
</div>
MLB 핀치히터 LA다저스 볼캡 로얄 블..
940 MLB PINCH HITTER 91 LOSDOD D..
33,000원
<span id="btn opt01"><img onclick="javascript:mk prd option preview('3353566',event);" src="http://cdn3-</pre>
aka.makeshop.co.kr/shopimages/newerashop/bt opt preview.gif"/></span><span id="btn opt02"><a class="btn-
overlay-show" href="javascript:viewdetail('060006000266', '1', '');"><img src="http://cdn3-
aka.makeshop.co.kr/design/newerashop/0751decode/btn opt02.gif"/></a></span>
<span class="MK-product-icons"></span>
</div>
```

```
#url
cap_url = cap_info[0].find('a').get('href')
print(cap_url)

#상품명
name = cap_info[0].find('li', {'class':'dsc'}).text
print(name)

#가격
price = cap_info[0].find('li', {'class':'price'}).text
print(price)
```

```
/shop/shopdetail.html?branduid=3353566&xcode=031&mcode=002&scode=001&type=Y&sort=sellcnt&cur_code=031002&GfDT=Z2Z3UQ%3D%3D
MLB 핀치히터 LA다저스 볼캡 로얄 블..
33,000원
```

```
name_list = []
price_list = []
url_list = []

for cap in cap_info:
    name = cap.find('li', {'class':'dsc'}).text
    price = cap.find('li', {'class':'price'}).text
    url = cap.find('a').get('href')
    print("이름: {}, 가격: {}".format(name, price))
    name_list.append(name)
    price_list.append(price)
    url_list.append(url)
```

```
이름: MLB 핀치히터 LA다저스 볼캡 로얄 블.., 가격: 33,000원이름: MLB 핀치히터 뉴욕 양키스 볼캡 네이.., 가격: 33,000원이름: MLB 팀 클래식 뉴욕 양키스 게임 볼.., 가격: 36,000원이름: 에센셜 무지 사이즈캡 블랙, 가격: 49,000원이름: MLB 핀치히터 디트로이트 타이거즈.., 가격: 33,000원
```

```
df = pd.DataFrame({"이름": name_list, "가격": price_list, "url": url_list}) df.head()
```

	이름	가격	url
0	MLB 핀치히터 LA다저스 볼캡 로얄 블	33,000원	/shop/shopdetail.html?branduid=3353566&xcode=0
1	MLB 핀치히터 뉴욕 양키스 볼캡 네이	33,000원	/shop/shopdetail.html?branduid=3353567&xcode=0
2	MLB 팀 클래식 뉴욕 양키스 게임 볼	36,000원	/shop/shopdetail.html?branduid=4633&xcode=031&
3	에센셜 무지 사이즈캡 블랙	49,000원	/shop/shopdetail.html?branduid=3353027&xcode=0
4	MLB 핀치히터 디트로이트 타이거즈	33,000원	/shop/shopdetail.html?branduid=3353722&xcode=0

selenium

• 동적으로 브라우저 제어

request로 HTML을 요청	Javascript 실행 전 HTML
Selenium으로 HTML을 요청	Javascript 실행 완료한 HTML

zhining@naver.com

Q&A

THANK YOU