RIOIEI 의한 RIFT 7 개의

9주차. k-인접기법과 판별분석

이혜선 교수

포항공과대학교 산업경영공학과

9주차. k-인접기법과 판별분석

1차시 k-인접기법

2차시 판별분석 I

3차시 판별분석 Ⅱ

● 판별분석

● 판별분석

- - 🔰 객체를 몇 개의 범주로 분류
 - 범주들을 가장 잘 구분하는 변수 파악 및 범주간 차이를 가장 잘 표현하는 함수 도출

● 판별분석

☑ 의사결정이론

범주 1, 2에 대한 확률밀도함수를 $f_1(x)$, $f_2(x)$

범주 1, 2에 속할 사전확률을 π_1 , π_2

오분류 총 확률 = $P\{ 범주 1로 오분류\} + P\{ 범주 2로 오분류\}$ $=\pi_2 \int_{-\infty}^{c} f_2(x) dx + \pi_1 \int_{c}^{\infty} f_1(x) dx$

 $\pi_2 \int_{-\infty}^c f_2(x) dx + \pi_1 \int_c^\infty f_1(x) dx$ 를 최소로 하는 c를 c^* 라 하면 다음 식이 성립

$$\pi_2 f_2(c^*) = \pi_1 f_1(c^*) \Leftrightarrow \frac{\pi_2}{\pi_1} = \frac{f_1(c^*)}{f_2(c^*)}$$

● 예제 데이터

☑ Iris 데이터 train/test 분할

```
# read csv file# read csv file
iris<-read.csv("iris.csv", stringsAsFactors = TRUE)
                                                 데이터 불러들이기
attach(iris)
# iris data n=150
set.seed(1000)
                                                 데이터분할(학습데이터 80%, 검증데이터 20%)
n <- nrow(iris)
# split : train set 100, test set 50
tr.idx < - sample.int(n, size = round(2/3* n))
                                                 iris.train(독립변수4개를 포함한 100개의 데이터)
                                                 iris.test(독립변수4개를 포함한 50개의 데이터)
# attributes in training and test
iris.train<-iris[tr.idx,-5]
                                                 trainLabels(학습데이터의 타겟변수)
iris.test<-iris[-tr.idx,-5]
                                                 testLabels(검증데이터의 타겟변수)
```

- **선형판별분석**(LDA)
- ☑ 패키지(MASS) 설치
- ☑ LDA 함수 : Ida(종속변수 ~ 독립변수 , data=학습 데이터 이름, prior= 사전 확률)

```
# install the MASS package for LDA install.packages("MASS") library(MASS)

# Linear Discriminant Analysis (LDA) with training data n=100 iris.lda <- lda Species ~ ., data=train, prior=c(1/3,1/3,1/3)) iris.lda

| Species ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width | 20 2과가 나타나기 전에 결정되어 있는 확률
```

○ 선형판별분석(LDA)

☑ 학습 데이터 LDA 결과

LD1

9905 0.0095

LD2

```
> iris.lda
Call:
Ida(Species - ., data = train, prior = c(1/3, 1/3, 1/3))
Prior probabilities of groups:
    setosa versicolor virginica
 0.3333333 0.3333333 0.3333333
Group means:
          Sepal.Length Sepal.Width Petal.Length Petal.Width
setosa
               5.051613
                          3.461290
                                       1.480645
                                                  0.2387097
versicolor
               5.935484
                          2.745161
                                       4.267742
                                                  1.3129032
virginica
              6.634211
                          2.965789
                                       5.597368
                                                  2.0289474
Coefficients of linear discriminants:
                              LD2
Sepal.Length 0.8907558 -0.1072740
Sepal.Width 1.7077575 -2.2338358
Petal.Length -2.1513701 0.7355423
Petal.Width -2.9073216 -2.3919728
Proportion of trace:
```

```
▶ 첫 번째 범주 판별 함수
```

LD1 = 0.89 Sepal.Length + 1.71 Sepal.Width - 2.15 Petal.Length - 2.91 Petal.Width

▶ 두 번째 범주 판별 함수

LD2 = - 0.11 Sepal.Length - 2.23 Sepal.Width + 0.74 Petal.Length - 2.39 Petal.Width

LD1이 between-group variance의 99%를 설명 LD2가 between-group variance의 1%를 설명

○ 선형판별분석(LDA)

☑ 검증 데이터에 LDA 결과를 적용하여 범주 추정

```
# predict test data set n=50
testpred <- predict(iris.lda, test)
> testpred <- predict(iris.lda, test)
> testpred
                                                                          추정 범주
Sclass
 [1] setosa
               setosa
                         setosa
                                   setosa
                                              setosa
                                                        setosa
 [7] setosa
               setosa
                         setosa
                                   setosa
                                                        setosa
                                              setosa
[13] setosa
               setosa
                         setosa
                                   setosa
                                              setosa
                                                        setosa
[19] setosa
               versicolor versicolor versicolor versicolor versicolor
[25] virginica versicolor versicolor versicolor versicolor versicolor
[31] versicolor versicolor versicolor versicolor versicolor versicolor
[37] versicolor versicolor virginica virginica virginica virginica
[43] virginica virginica virginica virginica virginica virginica
[49] virginica virginica
Levels: setosa versicolor virginica
Sposterior
                                                                         세 개 범주의 사후 확률(posterior
                              virginica
                 versicolor
         setosa
   1.000000e+00 1.173765e-17 9.991990e-37
                                                                          probability)을 구한 후 max값의
   1.000000e+00 2.526721e-20 7.057281e-40
   1.000000e+00 2.742945e-19 4.300404e-39
                                                                          범주로 할당
   1.000000e+00 8.883431e-29 9.438773e-50
   1.000000e+00 3.299737e-23 3.645303e-43
```

선형판별분석(LDA)

☑ 산정된 사후확률결과

1	class	posterior.s	posterior.v	posterior.v	x.LD1	x.LD2
2	setosa	1	1,17E-17	9.99E-37	7.047432	0.857184
3	setosa	1	2.53E-20	7.06E-40	7.604473	0.026477
4	setosa	31.	2.74E-19	4.30E-39	7.449121	0.940083
5	setosa	1	8.88E-29	9.44E-50	9.354295	-2.76085
6	setosa	1	3.30E-23	3.65E-43	8.190099	-1.03424
7	setosa	1	8.23E-23	1.53E-42	8.08592	-1.11698
8	setosa	1	4.68E-25	5.44E-46	8.665407	-0.74515
9	setosa	1	9.84E-15	1.03E-31	6.220302	-0.33135
10	setosa	1	7.04E-16	7.84E-34	6.565774	0.342148
11	setosa	1	5.37E-22	3.60E-42	7.997761	-0.06853
12	setosa	1	1.14E-16	4.00E-35	6.780558	0.57898
13	setosa	1	1,30E-19	1.74E-38	7.379311	-0.49483
14	setosa	1	1.49E-29	1,70E-51	9.631194	-1.88778
15	setosa	1	1.04E-16	2.25E-35	6.817191	0.83726
16	setosa	1	7.14E-22	1.30E-41	7.914791	-0,58321
17	setosa	1	2.38E-10	2.30E-27	5.420104	2.15/1027
18	setosa	1	2.56E-18	2.58E-37	7.158742	0.3905
19	setosa	1	3.53E-16	1.81E-34	6.667624	0.628714
20	setosa	1	3.83E-18	4.18E-37	7.12175	0.442599
21	versicolor	3.29E-22	0.996817	0.003183	-2.30959	-0.11591
22	versicolor	2.35E-23	0.999526	0.000474	-2.40516	1.637745
23	versicolor	2.40E-23	0.995962	0.004038	-2/53281	0.376484
24	versicolor	5.87E-20	0.999893	0.000107	-1.6915	0.620767
25	versicolor	2.77E-20	0.999297	0.000703	-1.86517	-0.30014
26	virginica	4.62E-28	0.296337	0.703663	-3.68663	-1.02317
27	versicolor	4.35E-17	0.999991	9.26E-06	-1.01683	0.456462
28	versicolor	5.02E-27	0.735249	0.264751	-3,45512	-0.27592
29	versicolor	1.72E-23	0.993012	0.006988	-2,59228	0.133183
30	versicolor	2,93E-12	1	2.24E-08	0.233199	1,29596

▶ 실제는 versicolor인데 → virginica로 분류됨

- **선형판별분석**(LDA)
- ☑ 정확도 산정 : 오분류율(검증데이터)

