Branch: master 2023-01-11 10:55:07+01:00

CONTINUOUS LOGIC FOR THE CLASSICAL LOGICIAN

C. L. C. L. POLYMATH

1. A CLASS OF STRUCTURES

As a motivating example, consider real vector spaces. These are among the most simple strucures considered in model theory. Now expand them with a norm. The norm is a function that, given vector, outputs a real number. We may formalize this in a natural way by using a two sorted struture. Ideally, we would like that elementary extensions of normed spaces mantain the usal notion of real numbers¹. Unfortunately, this is not possible if we insist to mantain the classical notion of elementary extension. A way out has been proposed by Henson and Iovino: restrict the notion of elementarity to a smaller class of formulas (which they call positive bounded formulas). We elaborate on this idea generalizing it to arbitrary structures and a wider class of formulas.

1 Definition. Let L be a one-sorted (first-order) language. Let $\mathcal{L} \supseteq L$ be a two-sorted language. We consider the class of \mathcal{L} -structures of the form $\mathcal{M} = \langle M, R \rangle$, where M ranges over L-structures, while R is fixed.

We assume that R is endowed with a locally compact Hausdorff topology.

We require that function symbols only have one of these sorts

- i. $R^n \rightarrow R$;
- ii. $M^n \rightarrow M$;
- iii. $M^n \to R$.

The interpretation of symbols of sort $R^n \to R$ is required to be continuous and bounded, the interpretation of symbols of sort $M^n \to R$ is required to be bounded, i.e. the range is contained in a compact set.

We only allow relation symbols of sorts M^n and R^n .

There might be models in the class described in Definition 1 that do not have a saturated elementary extension in the same class. As a remedy, below we carve out a set \mathbb{L} of formulas, $L \subseteq \mathbb{L} \subseteq \mathcal{L}$, such that every model as in Definition 1 has an \mathbb{L} -elementary extension that is \mathbb{L} -saturated in the same class.

¹Non standard standard analists have no problem in expanding \mathbb{R} . In these notes, for a change, we insist as \mathbb{R} (or, in general R) should remain \mathbb{R} throughout.

For convenience we assume that the functions of sort $M^n \to M$ and the relations of sort M^n are all in L. It is also convenient to assume that \mathcal{L} contains names for all continuous bounded functions $R^n \to R$.

- **2 Definition.** Formulas in **L** are constructed inductively from the following two sets of formulas
 - i. formulas of the form $t(x; y) \in C$, where $C \subseteq R^n$ is compact² and t(x, y) is a *n*-tuple of terms of sort $M^{|x|} \times R^{|y|} \to R$;
 - ii. all formulas in L.

We require that \mathbb{L} is closed under the Boolean connectives \land , \lor ; the quantifiers \forall , \exists of sort M; and the quantifiers \forall^C , \exists^C , by which we mean the quantifiers of sort R restricted to some (any) compact set $C \subseteq R^m$.

For later reference we remark the following which is an immediate consequence of the restrictions we imposed on the sorts of the function symbols.

3 Remark. Each component of the tuple t(x; y) in the definition above is either of sort $M^{|x|} \to R$ or of sort $R^{|y|} \to R$.

2. HENSON-IOVINO APPROXIMATIONS

For $\varphi, \varphi' \in \mathbb{L}(M)$ (free variables are hidden) we write $\varphi' > \varphi$ if φ' is obtained replacing each atomic formula $t \in C$ occurring in φ with $t \in C'$ where C' is some compact neighborhood of C. If no such atomic formulas occurs in φ , then $\varphi > \varphi$. By the normality of R we also have $\varphi > \varphi$ when $\varphi = (t \in C)$ for some clopen set C.

Note that > is a dense (pre)order of $\mathbb{L}(M)$.

Formulas in as in (i) of Definition 2 do not occur under the scope of a negation, therefore we always have that $\varphi \to \varphi'$.

It is clear that $\tilde{\varphi} \to \neg \varphi$ and that $\tilde{\varphi} \leftrightarrow \neg \varphi$ when $\varphi \in L$. Therefore we call $\tilde{\varphi}$ a strong negation of φ

4 Lemma. For every $\varphi' > \varphi$ there is a formula $\tilde{\varphi} \perp \varphi$ such that $\varphi \rightarrow \neg \tilde{\varphi} \rightarrow \varphi'$.

²We confuse the relation symbols in \mathcal{L} of sort \mathbb{R}^m with their interpretation and write $t \in \mathbb{C}$ for $\mathbb{C}(t)$

Proof. If $\varphi \in L$ the claim is obvious. Suppose φ is of the form $t \in C$. Then φ' is $t \in C'$ for some compact neighborhood of C. Let O be an open set such that $C \subseteq O \subseteq C'$. Then $\psi = (t \in C' \setminus O)$ is as required.

The lemma follows easily by induction.

We recall the standard definition of F-limits. Let I be a non-empty set. Let F be a filter on I. Let Y be a topological space. If $f: I \to Y$ and $\lambda \in Y$ we write

$$F\text{-}\lim_{i} f(i) = \lambda$$

if $f^{-1}[A] \in F$ for every $A \subseteq Y$ that is a neighborhood of λ . Such a λ is unique if Y is Hausdorff. When F is an ultrafilter and, in addition, Y is compact the limit always exists.

The following ia technical lemma that is required in the proof of Łŏś Theorem in the next section.

5 Lemma. Assume the following data

- $\varphi(x; y) \in \mathbb{L};$
- $\langle a_i : i \in I \rangle$, a sequence of elements of $M^{|x|}$;
- · $\langle \alpha_i : i \in I \rangle$, a sequence of elements of $C \subseteq R^{|y|}$, a compact set;
- $\alpha = F \lim_{i} \alpha_{i}$, for some ultrafilter F on I.

Then the following implications hold

i.
$$\left\{i \in I : \mathcal{M} \models \varphi(a_i;\alpha)\right\} \in F \ \Rightarrow \ \left\{i \in I : \mathcal{M} \models \varphi'(a_i;\alpha_i)\right\} \in F \text{ for every } \varphi' > \varphi;$$
 ii.
$$\left\{i \in I : \mathcal{M} \models \varphi(a_i;\alpha_i)\right\} \in F \ \Rightarrow \ \left\{i \in I : \mathcal{M} \models \varphi(a_i;\alpha)\right\} \in F.$$

Proof. By induction on the syntax. When $\varphi(x; y)$ is in L, it does not depend on α , and the lemma is trivial. Suppose that $\varphi(x; y)$ is as in (i) of Definition 2, say it is the formula $t(x; y) \in C$. First, note that by Remark 3 we trivially have that

$$F-\lim_{i}t^{\mathcal{M}}(a_{i};\alpha) = F-\lim_{i}t^{\mathcal{M}}(a_{i};\alpha_{i}).$$

- (i) Assume $\{i: t(a_i; \alpha) \in C\} \in F$. Let $O \supseteq C$ be open. Then F- $\lim_i t(a_i; \alpha) \in O$. By what noted above, F- $\lim_i t(a_i; \alpha_i) \in O$. As O is arbitrary, $\{i: t(a_i; \alpha_i) \in C'\} \in F$ for every compact neghborhood of C.
- (ii) Assume $\{i: t(a_i; \alpha) \notin C\} \in F$. Then F- $\lim_i t(a_i; \alpha) \notin C$. Hence F- $\lim_i t(a_i; \alpha_i) \notin C$ and $\{i: t(a_i; \alpha) \notin C\} \in F$ follows.

This proves the basis case of the induction.

Induction clear for the connectives \vee , \wedge . To deal with the universal quantifier of sort M we assume inductively that

$$\text{ih.} \qquad \left\{ i \in I \, : \, \mathcal{M} \models \varphi(a_i,b_i\,;\alpha) \right\} \in F \ \Rightarrow \ \left\{ i \in I \, : \, \mathcal{M} \models \varphi'(a_i,b_i\,;\alpha_i) \right\} \in F;$$

$$\text{iih.} \quad \left\{ i \in I \, : \, \mathfrak{M} \models \varphi(a_i,b_i\,;\alpha_i) \right\} \in F \ \Rightarrow \ \left\{ i \in I \, : \, \mathfrak{M} \models \varphi(a_i,b_i\,;\alpha) \right\} \in F;$$

We prove

$$\mathsf{i} \forall. \quad \left\{ i \in I \, : \, \mathcal{M} \models \forall y \, \varphi(a_i,y\,;\alpha) \right\} \in F \ \Rightarrow \ \left\{ i \in I \, : \, \mathcal{M} \models \forall y \, \varphi'(a_i,y\,;\alpha_i) \right\} \in F.$$

$$\mathrm{ii}\forall.\ \left\{i\in I\,:\, \mathcal{M}\models \forall y\, \varphi(a_i,y\,;\alpha_i)\right\}\in F\ \Rightarrow\ \left\{i\in I\,:\, \mathcal{M}\models \forall y\, \varphi(a_i,y\,;\alpha)\right\}\in F.$$

- (i \forall) Negate the consequent and pick a sequence $\langle b_i : i \in I \rangle$ such that $\{i : \neg \varphi'(a_i, b_i; \alpha_i)\} \in F$. If for a contradiction the antecedent of (i \forall) holds, from (ih) we would obtain $\{i : \varphi(a_i, b_i; \alpha)_i\} \in F$. A forriori $\{i : \varphi'(a_i, b_i; \alpha_i)\} \in F$, which is a contradiction that proves (i \forall).
- (ii \forall) Negate the consequent and pick a sequence $\langle b_i : i \in I \rangle$ such that $\{i : \neg \varphi(a_i, b_i; \alpha)\} \in F$. If for a contradiction the antecedent of (ii \forall) holds, from (iih) we would obtain $\{i : \varphi(a_i, b_i; \alpha)\} \in F$, a contradiction that proves (ii \forall).

To deal with the existential quantifier of sort M we prove

$$\mathsf{i}\exists. \quad \left\{i \in I : \mathcal{M} \models \exists y \, \varphi(a_i, y; \alpha)\right\} \in F \ \Rightarrow \ \left\{i \in I : \mathcal{M} \models \exists y \, \varphi'(a_i, y; \alpha_i)\right\} \in F.$$

$$\text{ii}\exists.\ \left\{i\in I\,:\, \mathcal{M}\models\exists y\,\varphi(a_i,y\,;\alpha_i)\right\}\in F\ \Rightarrow\ \left\{i\in I\,:\, \mathcal{M}\models\exists y\,\varphi(a_i,y\,;\alpha)\right\}\in F.$$

- (i \exists) Assume the antecedent. Pick φ'' such that $\varphi' > \varphi'' > \varphi$. Then there is a sequence $\langle b_i : i \in I \rangle$ such that $\{i : \varphi''(a_i, b_i; \alpha)\} \in F$. By (ih) we obtain $\{i : \exists y \, \varphi'(a_i, y; \alpha_i)\} \in F$.
- (ii∃) Assume the antecedent. Then there is a sequence $\langle b_i : i \in I \rangle$ such that $\{i : \varphi(a_i, b_i; \alpha_i)\} \in F$. By (iih) we obtain $\{i : \exists y \, \varphi(a_i, y; \alpha)\} \in F$.

Induction for the quantifiers \forall^C and \exists^C is virtually identical.

3. Ultraproducts

Below we introduce a suitable notion of ultraproducts of some structures $(\mathcal{M}_i : i \in I)$. We require that for each function symbol f of sort $M^n \to R$

there is a compact $C \subseteq R$ that contains the range of all the functions $f^{\mathcal{M}_i}$.

To keep notation tidy, we make two semplifications: (1) we only consider ultratpowers; (2) we ignore formulas in L containing equality, so we can work with M^I in place of M^I/F . The generalization is straightforward and is left to the reader.

Let I be an infinite set. Let F be an ultrafilter on I. Let $\mathcal{M} = \langle M, R \rangle$ be an L-structure.

- **6 Definition.** We define a structure $\mathcal{N} = \langle N, R \rangle$ that we call the ultrapower of \mathcal{M} .
 - 1. $N = M^I$ that is, it is the set of sequences $\hat{a}: I \to M$.
 - 2. If f is a function of sort $M^n \to M$ then $f^{\mathbb{N}}(\hat{a})$ is the sequence $\langle f^{\mathbb{M}}(\hat{a}i) : i \in I \rangle$.

- 3. The interpretation of functions of sort $\mathbb{R}^n \to \mathbb{R}$ remains unchanged.
- 4. If f is a function of sort $M^n \to R$ then

$$f^{\mathcal{N}}(\hat{a}) = F - \lim_{i} f^{\mathcal{M}}(\hat{a}i).$$

5. If r is a relation symbol of sort M^n then

$$\mathcal{N} \models (\hat{a}) \Leftrightarrow \{i \in I : \mathcal{M} \models r(\hat{a}i)\} \in F.$$

6. The interpretation of relations of sort \mathbb{R}^n remains unchanged.

The following is immediate but it needs to be noted. In fact, in the more general setting of ultraproducts, it would not hold without the uniformity requirement (#) above.

7 Fact. The structure \mathbb{N} satisfies Definition 1.

The following is easily proved by induction on the syntax as in the classical case

8 Fact. If t(x) is a term of type $M^{|x|} \to M$ then

$$t^{\mathcal{N}}(\hat{a}) = \langle t^{\mathcal{M}}(\hat{a}i) : i \in I \rangle.$$

By Remark 3 we also have that

9 Fact. For every tuple t(x; y) of sort $M^{|x|} \times R^{|y|} \to R$

$$t^{\mathcal{N}}(\hat{a};\alpha) = F - \lim_{i} t^{\mathcal{M}}(\hat{a}i;\alpha).$$

Finally, we prove an asymmetric version of Łŏś Theorem.

10 Proposition (Łŏś Theorem). Let \mathcal{N} be as above and let $\varphi(x) \in \mathbb{L}$. Then for every $\hat{a} \in N^{|x|}$ and every $\varphi' > \varphi$

i.
$$\left\{i: \mathcal{M} \models \varphi(\hat{a}i)\right\} \in F \ \Rightarrow \ \mathcal{N} \models \varphi(\hat{a});$$

ii.
$$\mathcal{N} \models \varphi(\hat{a}) \Rightarrow \{i : \mathcal{M} \models \varphi'(\hat{a}i)\} \in F.$$

Proof. The claim is proved by induction on the syntax. If $\varphi(x) \in L$ then the theorem reduces to the classical Łŏś Theorem. Now, suppose instead that $\varphi(x)$ is as in (i) of Definition 2, say it is the formula $t(x) \in C$.

- (i) Assume $\{i: \mathfrak{M} \models t(\hat{a}i) \in C\} \in F$. Then F- $\lim_i t(\hat{a}i) \in C'$ for every neighborhood of C. By regularity, $\mathfrak{N} \models t(\hat{a}) \in C$.
- (ii) Assume $\mathbb{N} \models t(\hat{a}) \in C$. By the definition of F-limit, $\{i : \mathbb{M} \models t(\hat{a}i) \in C'\} \in F$ where C' is any neighborhood of C.

This completes the proof of the base case of the induction.

Induction for the connectives \vee and \wedge is clear. To deal with the quantifiers of sort M we assume inductively that

$$\begin{split} \text{ih.} & \quad \left\{i: \mathcal{M} \models \varphi(\hat{a}i, \hat{b}i)\right\} \in F \; \Rightarrow \; \mathcal{N} \models \varphi(\hat{a}, \hat{b}); \\ \text{iih.} & \quad \mathcal{N} \models \varphi(\hat{a}\,; \hat{b}) \; \Rightarrow \; \left\{i: \mathcal{M} \models \varphi'(\hat{a}i\,; \hat{b}i)\right\} \in F. \end{split}$$

First we prove

$$\forall \cdot \quad \left\{ i: \mathcal{M} \models \forall y \, \varphi(\hat{a}i, y) \right\} \in F \ \Rightarrow \ \mathcal{N} \models \forall y \, \varphi(\hat{a}, y);$$

ii
$$\forall$$
. $\mathbb{N} \models \forall y \varphi(\hat{a}, y) \Rightarrow \{i : \mathbb{M} \models \forall y \varphi'(\hat{a}i, y)\} \in F$.

- (i \forall) Assume $\mathbb{N} \not\models \varphi(\hat{a}, \hat{b})$ for some \hat{b} . By induction hypothesis, $\{i : \mathbb{M} \not\models \varphi(\hat{a}i, \hat{b}i)\} \in F$. A fortiori $\{i : \mathbb{M} \not\models \forall y \varphi(\hat{a}i, y)\} \in F$ as required.
- (ii \forall) Assume $\{i: \mathcal{M} \not\models \forall y \varphi'(\hat{a}i, y)\} \in F$. Pick \hat{b} such that $\{i: \mathcal{M} \not\models \varphi'(\hat{a}i, \hat{b}i)\} \in F$. If for a contradiction $\mathcal{N} \models \forall y \varphi(\hat{a}, y)$. Then in particular $\mathcal{N} \models \varphi(\hat{a}, \hat{b})$. By induction hypothesis $\{i: \mathcal{M} \models \varphi'(\hat{a}i, \hat{b}i)\} \in F$, a contradiction.

Now we prove

$$\mathsf{i}\exists. \quad \left\{i: \mathcal{M} \models \exists y\, \varphi(\hat{a}i,y)\right\} \in F \ \Rightarrow \ \mathcal{N} \models \exists y\, \varphi(\hat{a},y);$$

ii
$$\exists$$
. $\mathbb{N} \models \exists y \, \varphi(\hat{a}, y) \Rightarrow \{i : \mathbb{M} \models \exists y \, \varphi'(\hat{a}i, y)\} \in F$.

- (i \exists) Assume $\{i: \mathcal{M} \models \exists y \, \varphi(\hat{a}i, y)\} \in F$. Choose some \hat{b} such that $\{i: \mathcal{M} \models \varphi(\hat{a}i, \hat{b}i)\} \in F$. By induction hypothesis $\mathcal{N} \models \varphi(\hat{a}, \hat{b})$. Therefore $\mathcal{N} \models \exists y \, \varphi(\hat{a}, y)$ as required.
- (ii∃) Assume $\mathbb{N} \models \varphi(\hat{a}, \hat{b})$ for some \hat{b} . By induction hypothesis, $\{i : \mathbb{M} \models \varphi'(\hat{a}i, \hat{b}i)\} \in F$. A fortiori $\{i : \mathbb{M} \models \exists y \varphi'(\hat{a}i, y)\} \in F$.

To deal with the quantifiers \forall^C and \exists^C we assume inductively

ih.
$$\{i: \mathcal{M} \models \varphi(\hat{a}i; \alpha)\} \in F \Rightarrow \mathcal{N} \models \varphi(\hat{a}; \alpha);$$

First we prove

$$\mathsf{i} \forall^C_{\cdot} \ \left\{ i : \mathcal{M} \models \forall^C y \, \varphi(\hat{a}i\,;y) \right\} \in F \ \Rightarrow \ \mathcal{N} \models \forall^C y \, \varphi(\hat{a}\,;y);$$

$$\exists \forall^C \qquad \qquad \mathbb{N} \models \forall y^C \varphi(\hat{a}, y) \ \Rightarrow \ \left\{i : \mathbb{M} \models \forall^C y \, \varphi'(\hat{a}i, y)\right\} \in F.$$

- (i \forall^C) Assume $\mathbb{N} \not\models \varphi(\hat{a}; \beta)$ for some β . By induction hypothesis, $\{i : \mathbb{M} \not\models \varphi(\hat{a}i; \beta)\} \in F$. A fortiori $\{i : \mathbb{M} \not\models \forall^C y \varphi(\hat{a}i; y)\} \in F$ as required.
- (ii \forall^C) Assume $\{i: \mathcal{M} \not\models \forall^C y \, \varphi'(\hat{a}i; y)\} \in F$. Pick $\beta_i \in C$ such that $\{i: \mathcal{M} \not\models \varphi'(\hat{a}i; \beta_i)\} \in F$ and let $\beta = F \lim_i \beta_i$. Then from Lemma 5 we obtain $\{i: \mathcal{M} \not\models \varphi(\hat{a}i; \beta)\} \in F$. Finally, by (iih), we conclude $\mathcal{N} \not\models \forall y^C \varphi(\hat{a}, y)$.

Finally, we prove

$$\mathsf{i} \exists^{C}. \ \left\{i: \mathcal{M} \models \exists^{C} y\, \varphi(\hat{a}i\,;y)\right\} \in F \ \Rightarrow \ \mathcal{N} \models \exists^{C} y\, \varphi(\hat{a}\,;y);$$

$$\text{ii}\exists^{C} \qquad \qquad \mathcal{N} \models \exists y^{C} \varphi(\hat{a}, y) \ \Rightarrow \ \left\{i : \mathcal{M} \models \exists^{C} y \, \varphi'(\hat{a}i, y)\right\} \in F.$$

- $(i\exists^C)$ Assume $\{i: \mathcal{M} \models \exists^C y \, \varphi(\hat{a}i; y)\} \in F$. Choose $\beta_i \in C$ such that $\{i: \mathcal{M} \models \varphi(\hat{a}i; \beta_i)\} \in F$ and let $\beta = F \lim_i \beta_i$. By Lemma 5, $\{i: \mathcal{M} \models \varphi(\hat{a}i; \beta)\} \in F$.
- (ii \exists^C) Assume $\mathbb{N} \models \varphi(\hat{a}; \beta)$ for some β . By induction hypothesis, $\{i : \mathbb{M} \models \varphi'(\hat{a}i; \beta)\} \in F$. Therefore $\{i : \mathbb{M} \models \exists^C y \varphi'(\hat{a}i; y)\} \in F$.

4. L-ELEMENTRARITY

Let $\mathcal{M} = \langle M, R \rangle$ and $\mathcal{N} = \langle N, R \rangle$ be two structures. We say that $f : M \to N$, a partial map, is an \mathbb{L} -(elementary) map if for every $\varphi(x) \in \mathbb{L}$

$$\mathcal{M} \models \varphi(a) \Rightarrow \mathcal{N} \models \varphi(fa)$$
 for every $a \in (\text{dom } f)^{|x|}$.

A total \mathbb{L} -map is called an \mathbb{L} -(elementary) embedding. If natural immersion $\mathrm{id}_M: M \hookrightarrow N$ is an \mathbb{L} -embedding, that is, if for every $\varphi(x) \in \mathbb{L}$

$$\mathcal{M} \models \varphi(a) \Rightarrow \mathcal{N} \models \varphi(a)$$
 for every $a \in M^{|x|}$,

we write $\mathbb{M} \leq^{\mathbb{L}} \mathbb{N}$ and say that \mathbb{M} is an \mathbb{L} -(elementary) substructure of \mathbb{N} . The following fact follows from Łŏś Theorem just as in the classical case.

11 Fact. If \mathbb{N} is an ultrapower of \mathbb{M} then there is an \mathbb{L} -embedding $\mathbb{M} \hookrightarrow \mathbb{N}$.

We prove a version of Tarski-Vaught Test. A second equivalent version of this test will be proved in the sections below.

- **12 Proposition** (Tarski-Vaught \mathbb{L} -Test). Let M be a subset of N. Then the following are equivalent
 - 1. M is the domain of a structure $\mathcal{M} \leq^{\mathbb{L}} \mathcal{N}$;
 - 2. for every formula $\varphi(x) \in \mathbb{L}(M)$

$$\mathbb{N} \models \exists x \neg \varphi(x) \Rightarrow \text{ there is an } a \in M \text{ such that } \mathbb{N} \models \neg \varphi(a);$$

Proof. $(1\Rightarrow 2)$ Clear.

 $(2\Rightarrow 1)$ Assume (2). Then, by the classical Tarski-Vaught test $M \leq N$. We also have that \mathcal{M} is an \mathcal{L} -substructure of \mathcal{N} . Therefore, form every formula $\varphi(x)$ as in (i) and (ii) of Definition 2 we have that $\mathcal{M} \models \varphi(a) \Leftrightarrow \mathcal{N} \models \varphi(a)$ for every $a \in M^{|x|}$

Now, assume inductively

$$\mathcal{M} \models \varphi(a,b) \Rightarrow \mathcal{N} \models \varphi(a,b)$$

Using (2) and the induction hypothesis we prove by contrapposition that

$$\mathcal{M} \models \forall y \, \varphi(a, y) \Rightarrow \mathcal{N} \models \forall y \, \varphi(a, y).$$

Indeed,

$$\mathcal{N} \not\models \forall y \, \varphi(a, y) \implies \mathcal{N} \models \exists y \, \neg \varphi(a, y)$$

$$\Rightarrow \mathcal{N} \models \neg \varphi(a, b) \quad \text{for some } b \in M^{|y|}$$

$$\Rightarrow \mathcal{M} \models \neg \varphi(a, b) \quad \text{for some } b \in M^{|y|}$$

$$\Rightarrow \mathcal{M} \not\models \forall y \, \varphi(a, y)$$

Induction for the connectives \lor , \land , \exists , \exists ^C and \forall ^C is straightforward.

5. L-COMPACTNESS

A theory $T \subseteq \mathbb{L}$ be a weakly finitely consistent if for every φ , conjunction of sentences in T, any $\varphi' > \varphi$ is consistent. The following proposition follows from Łŏś Theorem by the usual argument.

13 Proposition (Compactness Theorem). Let $T \subseteq \mathbb{L}$ be an weakly finitely consistent theory. Then T is consistent.

Let $p(x) \subseteq \mathbb{L}(M)$. We say that p(x) is weakly finitely satisfied in \mathbb{M} if $\mathbb{M} \models \exists x \varphi'(x)$ for every $\varphi' > \varphi$ where $\varphi(x)$ is some conjunction of formulas in p(x).

- **14 Definition.** We say that \mathcal{M} is \mathbb{L} -saturated if for every p(x) as in 1 and 2 below, $\mathcal{M} \models \exists x \ p(a)$.
 - 1. $p(x) \subseteq \mathbb{L}(A)$ for some $A \subseteq M$ of cardinality $\langle |M|$ and |x| = 1;
 - 2. p(x) is weakly finitely satisfied in M.

The existence of \mathbb{L} -saturated models is proved as in the classical case.

15 Proposition. Every model has an \mathbb{L} -elementary extension to a saturated model (possibly of inaccessible cardinality).

We denote by $\mathcal{U} = \langle U, R \rangle$ some large \mathbb{L} -saturated structure which we call the monster model. The cardinality of \mathcal{U} is an inaccessible cardinal that we denote by κ . Below we say model for \mathbb{L} -elementarity substructure of \mathcal{U} .

16 Fact. For every $\varphi(x)$, $\psi(x) \in \mathbb{L}(U)$ such that $\neg \exists x [\varphi(x) \land \psi(x)]$ there are $\varphi' > \varphi$ and $\psi' > \psi$ such that $\neg \exists x [\varphi'(x) \land \psi'(x)]$.

Proof. By Proposition ?? and saturation.

6. Completeness

Needs full rewriting

For $a, b \in U$ we write $a \sim b$ if t(a) = t(b) for every term t(x) with parameters in U of sort $M \to R$.

17 Fact. If $\bar{a} = \langle a_i : i < \lambda \rangle$ and $\bar{b} = \langle b_i : i < \lambda \rangle$ are such that $a_i \sim b_i$ for every $i < \lambda$ then $t(\bar{a}) = t(\bar{b})$ for every term t(x) with parameters in U of sort $M^{\lambda} \to R$.

Proof. By induction on λ . Assume the fact and let $a_{\lambda} \sim b_{\lambda}$. Then $t(\bar{a}, a_{\lambda}) = t(\bar{a}, b_{\lambda}) = t(\bar{b}, b_{\lambda})$. Then the fact holds with $\lambda + 1$ for λ . For limit ordinals induction is immediate.

18 Example (???). Let L be the language of \mathbb{R} -algebras expanded with two lattice operators \wedge , \vee . Let $\langle \Omega, \mathcal{B}, \Pr \rangle$ be a probability space. Let M be the set the simple real valued random variables with the natural interpretation of the symbols in L. Let $R = \mathbb{R}$. Assume \mathcal{L} estends L with all the continuous functions $\mathbb{R}^n \to \mathbb{R}$ and for every $n \in \mathbb{N}$ the functions \mathbb{E}_n that gives the expected value of $(X \wedge n) \vee -n$ for $n \in \mathbb{N}$. Note that the cut-off enures that the range of these functions is bounded.

The relation $a \sim b$ holds in these there cases

We say that $a \in U$ is definable in the limit over M if $a \equiv_M^{\mathbb{L}} x \to a \sim x$

- **19 Example.** Assume that $R = \mathbb{R}$ and that \mathcal{L} contains a function of sort $M^2 \to R$ that that is interpreted in a pseudometric. Assume that all terms of sort $M^n \to R$ are continuous with rispect to this pseudometric. It is easy to see that $a \sim b$ if and only if d(a, b) = 0. We claim that the following are equivalent
 - 1. $a \in U$ is definable in the limit over M, a model;
 - 2. there is a sequence $\langle a_i : i \in \omega \rangle$ of elements of M that converges to a.

Proof. $(2 \Rightarrow 1)$ Let $\langle \varepsilon_i : i \in \omega \rangle$ be a sequence of reals that converges to 0 and such that $d(a_i, a) \leq \varepsilon_i$ for every $i \in \omega$. Then $d(a_i, b) \leq \varepsilon_i$ for every $b \equiv_M a$. By the uniqueness of the limit d(a, b) = 0.

 $(1 \Rightarrow 2)$ Assume that $a \equiv_M x \to a \sim x$. Then $a \equiv_M^{\mathbb{L}} x \to d(a,x) < 1/n$ for every n > 0. By compactness there is a formula $\varphi_n(x) \in \operatorname{tp}_{\mathbb{L}}(a/M)$ such that $\varphi_n(x) \to d(a,x) < 1/n$. By \mathbb{L} -elementarity there is an $a_n \in M$ such that $\varphi(a_n)$. As $d(a,a_n) < 1/n$, the sequence $\langle a_n : n \in \omega \rangle$ converges to a.