## Méthode de Classification de Mail et de Spam

### APPRENTISSAGE AUTOMATIQUE

Institut Francophone International

Master 2, Promotion 23

Option: Systèmes Intelligents et Multimédia (SIM)

Présenté par le groupe : 11 LAMAH Henry Kpakilé OLEMBO Réel Devin Richmond Encadrant : Lê Hong Phuong

Hanoi, le 12 novembre 2019



- INTRODUCTION
- 2 PRESENTATION DES DIFFÉRENTS RÉSULTATS
- 3 CONCLUSION

### Objectifs visés

Compréhension et implémentation de différentes méthodes d'apprentissage supervisé :

- Machine à vecteurs de support (SVM);
- Naïve bayésienne;
- Forêts d'arbres décisionnels ou Forêts aléatoires (Random forest).

## DataSet

```
Total = 962
Test = 260 soit 27%
Entrainement = 702 soit 73%
```



FIGURE - Structure du dataset

## DataSet

#### Nomenclature des fichiers

SPAM = spmsgc80MAIL = 9-612msg2



FIGURE - Structure du dataset

- INTRODUCTION
- 2 PRESENTATION DES DIFFÉRENTS RÉSULTATS
- 3 CONCLUSION

# Machine à vecteurs de support (SVM)

#### Matrix de confusion

Confusion matrix:



FIGURE - Matrice de confusion

# Machine à vecteurs de support (SVM) 2

#### Rapport de classification

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.98      | 0.96   | 0.97     | 130     |
| 1.0          | 0.96      | 0.98   | 0.97     | 130     |
| accuracy     |           |        | 0.97     | 260     |
| macro avg    | 0.97      | 0.97   | 0.97     | 260     |
| weighted avg | 0.97      | 0.97   | 0.97     | 260     |

 $\mathrm{Figure} - \mathsf{Rapport} \ \mathsf{SVM}$ 

Méthode de Classification de Mail et de Spam

## Naïve bayésienne

#### Matrice de confusion



FIGURE - Matrice de confusion

## Naïve bayésienne 2

### Rapport de classification

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0.0          | 0.93      | 0.99   | 0.96     | 130     |
| 1.0          | 0.99      | 0.93   | 0.96     | 130     |
| accuracy     |           |        | 0.96     | 260     |
| macro avg    | 0.96      | 0.96   | 0.96     | 260     |
| weighted avg | 0.96      | 0.96   | 0.96     | 260     |
|              |           |        |          |         |

FIGURE - Rapport NB

### Forêts d'arbres décisionnels

#### Matrice de confusion

Confusion matrix:



FIGURE - Matrice de confusion

## Forêts d'arbres décisionnels

### Rapport de classification

| support | f1-score | recall | precision |              |
|---------|----------|--------|-----------|--------------|
| 130     | 0.97     | 0.95   | 0.99      | 0.0          |
| 130     | 0.97     | 0.99   | 0.95      | 1.0          |
| 260     | 0.97     |        |           | accuracy     |
| 260     | 0.97     | 0.97   | 0.97      | macro avg    |
| 260     | 0.97     | 0.97   | 0.97      | weighted avg |

FIGURE – Rapport RF

- INTRODUCTION
- 2 PRESENTATION DES DIFFÉRENTS RÉSULTATS
- 3 CONCLUSION

- Il n'existe pas de méthode d'apprentissage parfaite;
- Les paramètres d'entrée peuvent influencer la qualité des modèles obtenus ;
- Existences de structures de données capable d'améliorer considérablement les résultats.

### Comparaison

| Algorithmes | SVM    | Ramdom Forest | Naive Bayes |
|-------------|--------|---------------|-------------|
| Accuracy    | 97,30% | 95,76%        | 96,15%      |

# Référence & Note du groupe

Click on the link below for the dataset

https://drive.google.com/open?id = 1 atnQB4 whzj8 SaUrce7 AVXINgjFqahrUorline SaUrce7 AVXING AVXIN

Note 1 : 8 / 10 (LAMAH Henry Kpakilé)

Note 2:8,5 / 10 (OLEMBO Réel Devin Richmond)