# Assignment 3: Data Exploration

#### Tasneem Ahsanullah

## Spring 2023

#### **OVERVIEW**

This exercise accompanies the lessons in Environmental Data Analytics on Data Exploration.

#### **Directions**

- 1. Rename this file <FirstLast>\_A03\_DataExploration.Rmd (replacing <FirstLast> with your first and last name).
- 2. Change "Student Name" on line 3 (above) with your name.
- 3. Work through the steps, **creating code and output** that fulfill each instruction.
- 4. Assign a useful name to each code chunk and include ample comments with your code.
- 5. Be sure to **answer the questions** in this assignment document.
- 6. When you have completed the assignment, **Knit** the text and code into a single PDF file.
- 7. After Knitting, submit the completed exercise (PDF file) to the dropbox in Sakai.

TIP: If your code extends past the page when knit, tidy your code by manually inserting line breaks.

TIP: If your code fails to knit, check that no install.packages() or View() commands exist in your code.

# Set up your R session

1. Check your working directory, load necessary packages (tidyverse, lubridate), and upload two datasets: the ECOTOX neonicotinoid dataset (ECOTOX\_Neonicotinoids\_Insects\_raw.csv) and the Niwot Ridge NEON dataset for litter and woody debris (NEON\_NIWO\_Litter\_massdata\_2018-08\_raw.csv). Name these datasets "Neonics" and "Litter", respectively. Be sure to include the subcommand to read strings in as factors.

```
library(tidyverse) #load tidyverse package
library(lubridate) #load lubridate package
Neonics <- read.csv("./Data/Raw/ECOTOX_Neonicotinoids_Insects_raw.csv",
    stringsAsFactors = TRUE)
#assigning the ECOTOX dataset to the variable "Neonics" and reading strings as factors
Litter <- read.csv("./Data/Raw/NEON_NIWO_Litter_massdata_2018-08_raw.csv",
    stringsAsFactors = TRUE)
#assigning the NEON_NIWO dataset to the variable "Litter" and reading strings as factors</pre>
```

#### Learn about your system

2. The neonicotinoid dataset was collected from the Environmental Protection Agency's ECOTOX Knowledgebase, a database for ecotoxicology research. Neonicotinoids are a class of insecticides used widely in agriculture. The dataset that has been pulled includes all studies published on insects. Why might we be interested in the ecotoxicology of neonicotinoids on insects? Feel free to do a brief internet search if you feel you need more background information.

Answer: It is important to research the exotoxicology of neonicotinoids on insects because some insects like bees are important for pollination of crops so we would want to make sure neonicotinoids don't harm them. The goal would be fore the neonicotinoids to only harm insects that are pests on crops and not other insects. Also, insecticides can lead to super resistance if some of the insects survive so it is important to know how effective the insectside is.

3. The Niwot Ridge litter and woody debris dataset was collected from the National Ecological Observatory Network, which collectively includes 81 aquatic and terrestrial sites across 20 ecoclimatic domains. 32 of these sites sample forest litter and woody debris, and we will focus on the Niwot Ridge long-term ecological research (LTER) station in Colorado. Why might we be interested in studying litter and woody debris that falls to the ground in forests? Feel free to do a brief internet search if you feel you need more background information.

Answer: It is important to study leaf litter and woody debris because they are important indicators of forest health. Many organisms live in leaf litter or use leaf litter so it it has a vital function in the forest. Leaf litter also provides nutrients for soil and makes it viable to grow plants so it can indicate the quality of a forests soil.

4. How is litter and woody debris sampled as part of the NEON network? Read the NEON\_Litterfall\_UserGuide.pdf document to learn more. List three pieces of salient information about the sampling methods here:

Answer: 1. Tower plots were used to sample litter and woody debris. 2. The tower plots were selected "within the 90% flux footprint of the primary and secondary airsheds" 3. Litterr was sampled in  $20~40\text{m} \times 40\text{m}$  plots for sites with forested tower airsheds.

# Obtain basic summaries of your data (Neonics)

5. What are the dimensions of the dataset?

```
dim(Neonics) #dimensions of neonics dataset
```

## [1] 4623 30

6. Using the summary function on the "Effect" column, determine the most common effects that are studied. Why might these effects specifically be of interest?

summary (Neonics \$Effect) #summary of the effects of neonicotinoids on insects

| ## | Accumulation | Avoidance   | Behavior  | Biochemistry     |
|----|--------------|-------------|-----------|------------------|
| ## | 12           | 102         | 360       | 11               |
| ## | Cell(s)      | Development | Enzyme(s) | Feeding behavior |
| ## | 9            | 136         | 62        | 255              |

| Hormone(s | Histology    | Growth       | Genetics      | ## |
|-----------|--------------|--------------|---------------|----|
|           | 5            | 38           | 82            | ## |
| Mortalit  | Morphology   | Intoxication | Immunological | ## |
| 149       | 22           | 12           | 16            | ## |
|           | Reproduction | Population   | Physiology    | ## |
|           | 197          | 1803         | 7             | ## |

Answer: These effects are of interest because they show specifically how the neonicotinoids are affecting the insects. Particularly mortality and population are highest so it shows that the neonicotinoids have a high mortality rate.

7. Using the summary function, determine the six most commonly studied species in the dataset (common name). What do these species have in common, and why might they be of interest over other insects? Feel free to do a brief internet search for more information if needed.[TIP: The sort() command can sort the output of the summary command...]

## sort(summary(Neonics\$Species.Common.Name))

| ## | Ant Family               | Apple Maggot                       |
|----|--------------------------|------------------------------------|
| ## | 9                        | 9                                  |
| ## | Glasshouse Potato Wasp   | Lacewing                           |
| ## | 10                       | 10                                 |
| ## | Southern House Mosquito  | Two Spotted Lady Beetle            |
| ## | 10                       | 10                                 |
| ## | Spotless Ladybird Beetle | Braconid Parasitoid                |
| ## | 11                       | 12                                 |
| ## | Common Thrip             | Eastern Subterranean Termite       |
| ## | 12                       | 12                                 |
| ## | Jassid                   | Mite Order                         |
| ## | 12                       | 12                                 |
| ## | Pea Aphid                | Pond Wolf Spider                   |
| ## | 12                       | 12                                 |
| ## | Armoured Scale Family    | Diamondback Moth                   |
| ## | 13                       | 13                                 |
| ## | Eulophid Wasp            | Monarch Butterfly                  |
| ## | 13                       | 13                                 |
| ## | Predatory Bug            | Yellow Fever Mosquito              |
| ## | 13                       | 13                                 |
| ## | Corn Earworm             | Green Peach Aphid                  |
| ## | 14                       | 14                                 |
| ## | House Fly                | Ox Beetle                          |
| ## | 14                       | 14                                 |
| ## | Red Scale Parasite       | Spined Soldier Bug                 |
| ## | 14                       | 14                                 |
| ## | Western Flower Thrips    | Hemlock Woolly Adelgid Lady Beetle |
| ## | 15                       | 16                                 |
| ## | Hemlock Wooly Adelgid    | Mite                               |
| ## | 16                       | 16                                 |
| ## | Onion Thrip              | Araneoid Spider Order              |
| ## | 16                       | 17                                 |
| ## | Bee Order                | Egg Parasitoid                     |
| ## | 17                       | 17                                 |
| ## | Insect Class             | Moth And Butterfly Order           |

| ##       | 17                           | 17                           |
|----------|------------------------------|------------------------------|
| ##       | Oystershell Scale Parasitoid | Black-spotted Lady Beetle    |
| ##       | 17                           | 18                           |
| ##       | Calico Scale                 | Fairyfly Parasitoid          |
| ##       | 18                           | 18                           |
| ##       | Lady Beetle                  | Minute Parasitic Wasps       |
| ##       | 18                           | 18                           |
| ##       | Mirid Bug                    | Mulberry Pyralid             |
| ##       | 18                           | 18                           |
| ##       | Silkworm                     | Vedalia Beetle               |
| ##       | 18                           | 18                           |
| ##       | Codling Moth                 | Flatheaded Appletree Borer   |
| ##       | 19                           | 20                           |
| ##       | Horned Oak Gall Wasp         | Leaf Beetle Family           |
| ##       | 20                           | 20                           |
| ##       | Potato Leafhopper            | Tooth-necked Fungus Beetle   |
| ##<br>## | 20                           | 20<br>Beetle                 |
| ##<br>## | Argentine Ant<br>21          | Deetle 21                    |
| ##       | Mason Bee                    | Mosquito                     |
| ##       | 22                           | 22                           |
| ##       | Citrus Leafminer             | Ladybird Beetle              |
| ##       | 23                           | 23                           |
| ##       | Spider/Mite Class            | Tobacco Flea Beetle          |
| ##       | 24                           | 24                           |
| ##       | Chalcid Wasp                 | Convergent Lady Beetle       |
| ##       | 25                           | 25                           |
| ##       | Stingless Bee                | Ground Beetle Family         |
| ##       | 25                           | 27                           |
| ##       | Rove Beetle Family           | Tobacco Aphid                |
| ##       | 27                           | 27                           |
| ##       | Scarab Beetle                | Spring Tiphia                |
| ##       | Their Order                  | 29                           |
| ##<br>## | Thrip Order<br>29            | Ladybird Beetle Family<br>30 |
| ##       | Parasitoid                   | Braconid Wasp                |
| ##       | 30                           | 33                           |
| ##       | Cotton Aphid                 | Predatory Mite               |
| ##       | 33                           | 33                           |
| ##       | Sweetpotato Whitefly         | Aphid Family                 |
| ##       | 37                           | 38                           |
| ##       | Cabbage Looper               | Buff-tailed Bumblebee        |
| ##       | 38                           | 39                           |
| ##       | True Bug Order               | Sevenspotted Lady Beetle     |
| ##       | 45                           | 46                           |
| ##       | Beetle Order                 | Snout Beetle Family, Weevil  |
| ##       | 47                           | 47                           |
| ##       | Erythrina Gall Wasp          | Parasitoid Wasp              |
| ##       | Colorado Potato Poetlo       | Darratic Wagn                |
| ##<br>## | Colorado Potato Beetle<br>57 | Parastic Wasp<br>58          |
| ##<br>## | Asian Citrus Psyllid         | Minute Pirate Bug            |
| ##       | ASIAN CITTUS PSYTTIC         | finate Firate Bug<br>62      |
| ##       | European Dark Bee            | Wireworm                     |
|          | Laropoun Dark Doc            | WIICWOIM                     |

| ## | 66                    | 69                  |
|----|-----------------------|---------------------|
| ## | Euonymus Scale        | Asian Lady Beetle   |
| ## | 75                    | 76                  |
| ## | Japanese Beetle       | Italian Honeybee    |
| ## | 94                    | 113                 |
| ## | Bumble Bee            | Carniolan Honey Bee |
| ## | 140                   | 152                 |
| ## | Buff Tailed Bumblebee | Parasitic Wasp      |
| ## | 183                   | 285                 |
| ## | Honey Bee             | (Other)             |
| ## | 667                   | 670                 |

#summary of the most studied species in the dataset sorted by number of each species

Answer: The 6 most commonly studied insects in the dataset are honey bees, parasitic wasps, buff tailed bumblebees, carniolan honey bees, bumble bees and italian honeybees. The species are all hymenopterans and pollinators so they are important because they pollinate crops which allows the crops to reproduce.

8. Concentrations are always a numeric value. What is the class of Conc.1..Author. column in the dataset, and why is it not numeric?

```
class(Neonics$Conc.1..Author.)
## [1] "factor"
```

```
#determining the class of Conc.1..Author (concentration)
```

Answer: The Conc.1..Author column is a factor. It is not numeric because earlier we set all strings as factors so it is reading the column as a factor.

# Explore your data graphically (Neonics)

9. Using geom\_freqpoly, generate a plot of the number of studies conducted by publication year.

```
ggplot(Neonics) +
  geom_freqpoly(aes(x = Publication.Year), bins = 50)
```



#plot of the number of studies conducted by publication year in Neonics

10. Reproduce the same graph but now add a color aesthetic so that different Test.Location are displayed as different colors.

```
ggplot(Neonics) +
  geom_freqpoly(aes(x = Publication.Year, color = Test.Location), bins = 50) +
  theme(legend.position = "top")
```



#plot of the number of studies conducted by publication year for each Test location.

Interpret this graph. What are the most common test locations, and do they differ over time?

Answer: The most common test locations are Lab and Field Natural. Lab starts low in the 1980s-2000 and then increases in the 2000s and spikes around 2015. Field Nautural follows a similar pattern but spikes at 2010.

11. Create a bar graph of Endpoint counts. What are the two most common end points, and how are they defined? Consult the ECOTOX\_CodeAppendix for more information.

[TIP: Add theme(axis.text.x = element\_text(angle = 90, vjust = 0.5, hjust=1)) to the end of your plot command to rotate and align the X-axis labels...]

```
ggplot(Neonics, aes(x = Endpoint))+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
  geom_bar() #plot of the endpoints and their frequencies
```



Answer: The two most common endpoints are NOEL ("No-observable-effect-level: highest dose (concentration) producing effects not significantly different from responses of controls according to author's reported statistical test") and LOEL ("Lowest-observable-effect-level: lowest dose (concentration) producing effects that were significantly different").

## Explore your data (Litter)

12. Determine the class of collectDate. Is it a date? If not, change to a date and confirm the new class of the variable. Using the unique function, determine which dates litter was sampled in August 2018.

class(Litter\$collectDate) #checking class of collectDate

## [1] "factor"

 $\hbox{collection.date} \gets \hbox{ymd(Litter\$collectDate)} \ \, \textit{\#formating collectDate to be a date instead of factor } \\ \hbox{class(Litter\$collectDate)} \ \, \textit{\#checking class of collectDate} \\$ 

## [1] "factor"

unique(Litter\$collectDate) #finding all the dates litter was sampled in August 2018

## [1] 2018-08-02 2018-08-30 ## Levels: 2018-08-02 2018-08-30 13. Using the unique function, determine how many plots were sampled at Niwot Ridge. How is the information obtained from unique different from that obtained from summary?

unique(Litter\$namedLocation) #retrieving the number of plots that were sampled from Niwot Ridge

```
## [1] NIWO_061.basePlot.ltr NIWO_064.basePlot.ltr NIWO_067.basePlot.ltr
## [4] NIWO_040.basePlot.ltr NIWO_041.basePlot.ltr NIWO_063.basePlot.ltr
## [7] NIWO_047.basePlot.ltr NIWO_051.basePlot.ltr NIWO_058.basePlot.ltr
## [10] NIWO_046.basePlot.ltr NIWO_062.basePlot.ltr NIWO_057.basePlot.ltr
## 12 Levels: NIWO_040.basePlot.ltr ... NIWO_067.basePlot.ltr
```

Answer: 12 plots. This information is different from summary because it is just showing the number of plots at Niwot Ridge not all of the different locations.

14. Create a bar graph of functional Group counts. This shows you what type of litter is collected at the Niwot Ridge sites. Notice that litter types are fairly equally distributed across the Niwot Ridge sites.

```
ggplot(Litter, aes(x = functionalGroup))+
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
  geom_bar()
```



#bar graph of functionalGroup counts showing what type of litter is collected at the Niwot Ridge sites

15. Using geom\_boxplot and geom\_violin, create a boxplot and a violin plot of dryMass by functional-Group.

```
#boxplot of dryMass by functionalGroup
ggplot(Litter) +
geom_boxplot(aes(x = functionalGroup, y = dryMass))
```





Why is the boxplot a more effective visualization option than the violin plot in this case?

Answer: The boxplot was a better visualization option than the violin plot because the violin plot shows density as well and the density of all the litter types was very similar across sites.

What type(s) of litter tend to have the highest biomass at these sites?

Answer: Needles and Twigs/branches