Discussion 7: VC Dimension Probabilistic Machine Learning, Spring 2018

1 Hoeffding's Inequality

a) Chernoff Bounds: Let X be a random variable, prove that, for any $t \geq 0$

$$\Pr(X \ge \mu_X + t) \le \min_{\lambda > 0} \mathbb{E}[e^{\lambda(X - \mu_X)}]e^{-\lambda t},$$

where $\mu_X = \mathbb{E}[X]$ is the mean of X.

b) Hoeffding's Lemma: Let X be a bounded random variable with $X \in [a, b]$. Then

$$\mathbb{E}[e^{\lambda(X-\mu_X)}] \le \exp(\frac{\lambda^2(b-a)^2}{8}), \text{ for all } \lambda \in \mathbb{R}.$$

Use Chernoff bounds and Hoeffding's lemma to prove Hoeffding's inequality

$$Pr(\frac{1}{n}\sum_{i=1}^{n}(X_i - \mu_{X_i}) \ge t) \le \exp(-\frac{2nt^2}{(b-a)^2}), \text{ for all } t \ge 0.$$

where $X_1, ..., X_n$ are independent random variables with $X_i \in [a, b]$ for all i.

c) Hoeffding's inequality is very loose in certain cases. Please give a simple distribution of X_i where the bound can be much sharper than Hoeffding's bound.

2 Vapnik-Chervonenkis (VC) Dimension

For each one of the following function classes find the VC dimension. State your reasoning.

1. Closed intervals in \mathbb{R} : $f : \mathbb{R} - > \{0,1\}$, where an example is labeled positive if it lies within the interval, and negative otherwise:

$$H = \{ f(x) = I_{x \in [a,b]} \}$$

2. Union of 2 intervals in \mathbb{R} : $f:\mathbb{R}->\{0,1\}$, where an example is labeled positive if it lies inside one of the intervals, and negative otherwise.

$$H = \{ f(x) = I_{x \in [a,b] \cup [c,d]} \}$$

3. Origin centred circle binary classifiers: $f: \mathbb{R}^2 - > \{0,1\}, b > 0$, where example is labeled positive if it lies inside the circle, and negative otherwise.

$$H = \{ f(x) = I_{wx^T x < b} \}$$

- 4. Origin centred circle binary classifiers given in 3 and the functions that flip the outputs of the functions in 3.
- 5. A set of 3-node decision trees in one dimension \mathbb{R} .
- 6. A set of axis-parallel squares in \mathbb{R}^2 . Point is labeled positive if it lies inside the square, and negative otherwise.

$$H = \{ f(x) = I_{\max(|x_1|,|x_2|)=c} \}$$

7. A system of all convex polygons in \mathbb{R}^2 . Point is labeled positive if it lies inside or on the edge of the convex polygon, and negative otherwise.

$$H = \{ f(x) = I_{x \in C} \mid C \text{ convex in } \mathbb{R}^2 \}$$

8. Finite hypothesis space H. Prove that VC dimension of a finite hypothesis space H is upper bounded by $\log_2 |H|$.

3 Assorted Questions – SVM, Kernels, Convexity, Logistic regression

1. A ML lover student trains an SVM on a particular set of training data. If student then adds a new training point to the dataset and retrains the SVM, the number of support vectors may.

Increase	Decrease
Stay the same	All of them

2. We would expect the support vectors to remain the same in general as we move from a linear kernel to higher order polynomial kernels.

m	T 1	
True	Halse	
IIuc	1 alse	

3. VC Dimension depends on the dataset we use for shattering.

True	False
------	-------

4. The maximum margin decision boundaries that support vector machines construct have the lowest generalization error among all linear classifiers.

True	False

5. Following constrained optimization problem is equivalent to optimization problem solved by SVM

$$\max_{\lambda,\lambda_0,\gamma} \gamma \text{ s.t. } y_i \frac{\lambda^T x_i + \lambda_0}{||\lambda||} \geq \gamma, \quad i = 1,...,n$$

True	False

6. If the VC Dimension of a set of classification hypotheses is ∞ , then the set of classifiers can achieve 100% training accuracy on any dataset.

	True	False
	nce the true risk is bounded by the empirical risk uch as possible.	k, it is a good idea to minimize the training error as
	True	False
	C Dimensions of the sets of classification hypothearnt on the same set of features) are different.	neses induced by logistic regression and linear SVM
	True	False
9. Th	ne Gram matrix $G = 11^{\top}$ where 1 is the all-1 ve	ector is positive semi-definite.
	True	False
10. W	e can use the kernel trick to Logistic regressions	
	True	False
po		$(xi, xj) = exp(-\frac{- x_i - x_j ^2}{2\sigma})$. Suppose we have three to x, and z2 is geometrically far away from x. What
15		
15	$k(z_1, x)$ will be close to 1	$k(z_1,x)$ will be close to 0
	$k(z_1,x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$	$k(z_1, x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$
12. Co po	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k	$k(z_1, x)$ will be close to 0 $k(z_1, x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi, xj) = exp(-\frac{- x_i - x_j ^2}{2\sigma})$. Suppose we have three to x, and z2 is geometrically far away from x. What
12. Co po	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z1, z2, and x. z1 is geometrically very close the value of $k(z_2, x)$? $k(z_2, x)$ will be close to 1	$k(z_1, x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi, xj) = exp(-\frac{- x_i - x_j ^2}{2\sigma})$. Suppose we have three to x, and z2 is geometrically far away from x. What $k(z_2, x)$ will be close to 0
12. Co po	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z1, z2, and x. z1 is geometrically very close the value of $k(z2, x)$?	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. Wha
12. Copo is	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z1, z2, and x. z1 is geometrically very close the value of $k(z_2, x)$? $k(z_2, x)$ will be close to 1	$k(z_1, x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi, xj) = exp(-\frac{- x_i - x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2, x)$ will be close to 0 $k(z_2, x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$
12. Copo is	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z1, z2, and x. z1 is geometrically very close the value of $k(z_2, x)$? $k(z_2, x) \text{ will be close to } 1$ $k(z_2, x) \text{ will be close to } c_2, c_2 >> 1, c_1 \in \mathbb{R}$	$k(z_1, x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi, xj) = exp(-\frac{- x_i - x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2, x)$ will be close to 0 $k(z_2, x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$
12. Co po is	$k(z_1, x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z1, z2, and x. z1 is geometrically very close the value of $k(z_2, x)$? $k(z_2, x) \text{ will be close to 1}$ $k(z_2, x) \text{ will be close to } c_2, c_2 >> 1, c_1 \in \mathbb{R}$ sume that $k_1(x, x')$ and $k_2(x, x')$ are valid kernel.	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2,x)$ will be close to 0 $k(z_2,x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$ el, them kernel $k_1(x,x') - k_2(x,x')$ is also valid.
12. Co po is	$k(z_1,x)$ will be close to $c_1, c_1 >> 1, c_1 \in \mathbb{R}$ onsider a SVM with the Gaussian RBF kernel: k ints, z_1, z_2, z_3 and z_4, z_4 is geometrically very close the value of $k(z_2,x)$? $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2,x)$ will be close to 0 $k(z_2,x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$ el, them kernel $k_1(x,x') - k_2(x,x')$ is also valid.
12. Copo is 13. As 14. As two lab	onsider a SVM with the Gaussian RBF kernel: k ints, $z1$, $z2$, and x . $z1$ is geometrically very close the value of $k(z2,x)$? $k(z_2,x) \text{ will be close to } 1$ $k(z_2,x) \text{ will be close to } c_2, c_2 >> 1, c_1 \in \mathbb{R}$ esume that $k_1(x,x')$ and $k_2(x,x')$ are valid kernel sume that $k(x,x')$ is a valid kernels, then it is to the Cobb-Douglas production function is widely een inputs and outputs of a firm. It takes the cor, and K capital. The parameters α and β are the Cobb-Douglas function can also be applied to $k(x,x')$ in $k(x,x')$ in $k(x,x')$ is a valid kernels, then it is the cor, and $k(x,x')$ is a valid kernels, then it is the cordinary considerable for $k(x,x')$ is a valid kernels, then it is the cordinary considerable for $k(x,x')$ in $k(x,x')$ in $k(x,x')$ is a valid kernels, then it is the cobb-Douglas production function is widely een inputs and outputs of a firm. It takes the cordinary considerable for $k(x,x')$ in $k(x,x')$ is a valid kernels, then it is the cobb-Douglas production function is widely entry that $k(x,x')$ is a valid kernels, then it is the cobb-Douglas production function is widely entry that $k(x,x')$ is a valid kernels, then it is the cobb-Douglas production function is widely entry that $k(x,x')$ is a valid kernels, then it is the cobb-Douglas production function is widely entry that $k(x,x')$ is a valid kernels, then it is the cobb-Douglas function can also be applied to $k(x,x')$ in k	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2,x)$ will be close to 0 $k(z_2,x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$ when kernel $k_1(x,x')-k_2(x,x')$ is also valid. False $k(x,y) \leq k(x,x)k(y,y)$ False $k(x,y) \leq k(x,x)k(y,y)$ $k(x,x)k(y,y)$
12. Copo is 13. As 14. As two lab	onsider a SVM with the Gaussian RBF kernel: k ints, $z1$, $z2$, and x . $z1$ is geometrically very close the value of $k(z2,x)$? $\begin{array}{c} k(z_2,x) \text{ will be close to 1} \\ k(z_2,x) \text{ will be close to } c_2,c_2 >> 1,c_1 \in \mathbb{R} \\ \end{array}$ sume that $k_1(x,x')$ and $k_2(x,x')$ are valid kernels. True True True True True True The Cobb-Douglas production function is widely een inputs and outputs of a firm. It takes the for, and K capital. The parameters α and β are not cobb-Douglas function can also be applied to $\sum_{i=1}^{N} x_i^{\alpha_i}$. Consider the following utility maximization $\max_{x} u(x) = \max_{x} u(x) = \max_{x} u(x)$	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2,x)$ will be close to 0 $k(z_2,x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$ with them kernel $k_1(x,x')-k_2(x,x')$ is also valid. False rue that $k(x,y) \leq k(x,x)k(y,y)$ False used in economics to represent the relationship beform $Y = AL^{\alpha}K^{\beta}$ where Y represents output, K^{α} constants that determine how production is scaled to utility maximization and takes the general form tion problem:
12. Copo is 13. As 14. As 15. The two lab	onsider a SVM with the Gaussian RBF kernel: k ints, $z1$, $z2$, and x . $z1$ is geometrically very close the value of $k(z2,x)$? $\begin{array}{c} k(z_2,x) \text{ will be close to 1} \\ k(z_2,x) \text{ will be close to } c_2,c_2 >> 1,c_1 \in \mathbb{R} \\ \end{array}$ sume that $k_1(x,x')$ and $k_2(x,x')$ are valid kernels. True True True True True True The Cobb-Douglas production function is widely een inputs and outputs of a firm. It takes the for, and K capital. The parameters α and β are not cobb-Douglas function can also be applied to $\sum_{i=1}^{N} x_i^{\alpha_i}$. Consider the following utility maximization $\max_{x} u(x) = \max_{x} u(x) = \max_{x} u(x)$	$k(z_1,x)$ will be close to $c_1, c_1 << 0, c_1 \in \mathbb{R}$ $(xi,xj) = exp(-\frac{- x_i-x_j ^2}{2\sigma})$. Suppose we have thre to x, and z2 is geometrically far away from x. What $k(z_2,x)$ will be close to 0 and $k(z_2,x)$ will be close to $c_2, c_2 << 0, c_2 \in \mathbb{R}$ with them kernel $k_1(x,x') - k_2(x,x')$ is also valid. False The rue that $k(x,y) \leq k(x,x)k(y,y)$ False The rue that $k(x,y) \leq k(x,x)k(y,y)$ False The representation the relationship be a form $Y = AL^{\alpha}K^{\beta}$ where Y represents output, K is constants that determine how production is scaled to utility maximization and takes the general form the representation problem: Expanding $x_1 = x_1 + x_2 = 0$