Plan całości wykładu

- Wprowadzenie
- Warstwa aplikacji
- □ Warstwa transportu
- Warstwa sieci
- □ Warstwa łącza i sieci lokalne
- □ Podstawy ochrony informacji
- □ jeśli zostanie czasu...
 - o sieci radiowe
 - komunikacja audio/wideo
 - o zarządzanie sieciami

- (2 wykłady)
- (2 wykłady)
- (2-3 wykłady)
- (2-3 wykłady)
- (3 wykłady)
- (2-3 wykłady)

Plan czasowy wykładu i ćwiczeń

Literatura do warstwy łącza

Rozdział 5, Computer Networking: A Top-Down Approach Featuring the Internet, wydanie 2 lub 3, J. Kurose, K. Ross, Addison-Wesley, 2004

Rozdziały 2.3, 2.4, 5, Sieci komputerowe TCP/IP, D.E. Comer, WNT, 1997

Rozdziały 3.6, 3.8, *Sieci komputerowe – podejście systemowe*, L. Peterson, B. Davie, Wyd. Nakom, Poznań, 2000

Warstwa Łącza

Cele:

- zrozumienie zasad działania mechanizmów warstwy łącza:
 - o rozpoznawanie i naprawa błędów
 - o współdzielenie kanału rozgłaszającego: wielodostępowość
 - adresowanie w warstwie łącza
 - o niezawodna komunikacja, kontrola przepływu: już była o nich mowa!
- implementacja różnych technologii warstwy łącza

Mapa wykładu

- 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
 LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

Warstwa łącza: wprowadzenie

Trochę terminologii:

- hosty, rutery, mosty, switche to wezły
- węzły są połączone łączami
 - łącza stałe
 - łącza bezprzewodowe
 - o sieci lokalne
- jednostka informacji w warstwie łącza to ramka, która enkapsuluje pakiet

warstwa łącza jest odpowiedzialna za za komunikację ramek pomiędzy sąsiednimi węzłami przez łącze

Warstwa łącza: kontekst

- Pakiety są komunikowane przez różne protokoły warstwy łącza na kolejnych łączach:
 - n.p., Ethernet na pierwszym łączu, Frame Relay na kolejnych łączach, 802.11 na ostatnim łączu
- Każdy protokół w. łącza może oferować różne usługi
 - n.p., może (lub nie)
 oferować niezawodną
 komunikację na łączu

<u>analogia transportowa</u>

- wycieczka z Warszawy do Bordeaux
 - limuzyna: Warszawa do Okęcia
 - O Concorde: Okęcie do Paryża
 - o pociąg: Paryż do Bordeaux
- ☐ turysta = pakiet
- sposób transportu = protokół warstwy łącza
- biuro podróży = algorytm rutingu

Usługi warstwy łącza

- tworzenie ramek, dostęp do łącza:
 - o enkapsuluje pakiet w ramce, dodaje nagłówki i zakończenie
 - o uzyskuje dostęp do łącza, jeśli jest współdzielone
 - 'adresy fizyczne' używane w nagłówkach ramek do identyfikacji nadawcy i odbiorcy
 - · różne od adresów IP!
- Niezawodna komunikacja między sąsiednimi węzłami
 - w części trzeciej poznaliśmy mechanizmy niezawodnej komunikacji
 - rzadko używane na łączach, które mają małą stopę błędów (światłowód, jakiś rodzaj kabla)
 - łącza bezprzewodowe: wysokie stopy błędów
 - Pytanie: po co nam niezawodność na poziomie łącza i na poziomie koniec-koniec (w warstwie transportu)?

Usługi warstwy łącza (ciąg dalszy)

□ Kontrola przepływu:

 dopasowanie prędkości nadawania i odbierania przez dwa sąsiednie węzły

Rozpoznawanie błędów:

- o błędy powodowane przez tłumienie lub zakłócenia sygnału
- odbiorca rozpoznaje błąd:
 - sygnalizuje nadawcy konieczność retransmisji, wyrzuca ramkę

Korekcja błędów przez kody nadmiarowe:

odbiorca rozpoznaje *i naprawia* błędy bitowe bez potrzeby retransmisji

Komunikacja półdupleksowa i w pełni dupleksowa

 w komunikacji półdupleksowej (ang. half-duplex, także "nadawanie naprzemienne"), węzły na obu końcach łącza mogą transmitować, ale nie jednocześnie

Komunikacja "adapterów"

- warstwa łącza jest implementowana w "adapterach" (tzw. NIC, Network Interface Card)
 - karta Ethernet, karta PCMCI, karta 802.11
- nadający adapter:
 - o enkapsuluje pakiet w ramce
 - dodaje bity sum kontrolnych, niezawodność, kontrolę przepływu, itd.

- odbierający adapter
 - szuka błędów, realizuje niezawodność, kontrolę przepływu, itd
 - dekapsuluje pakiet, przekazuje warstwie odbierającemu węzłowi
- adapter jest częściowo autonomiczny
- działa w w. łącza i fizycznej

5a-10

Mapa wykładu

- 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
 LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

Rozpoznawanie i korekcja błędów

EDC= bity rozpoznania i korekcji błędów (nadmiarowe)

- D = Informacje chronione przez kontrolę błędów, mogą zawierać pola nagłówka
- Korekcja błędów nie jest w 100% niezawodna!
 - · protokół może przepuścić błąd, ale nieczęsto
 - · większe pole EDC pozwala na lepsze rozpoznawanie i korekcję

Kontrola parzystości

<u>Jeden bit</u> <u>parzystości:</u>

Rozpoznaje pojedynczy błąd bitowy

Dwuwymiarowe bity parzystości:

Rozpoznaje i poprawia pojedyncze błędy bitowe

Internetowa suma kontrolna

<u>Cel:</u> rozpoznawanie błędów (n.p., bitowych) w komunikowanym segmencie (uwaga: używana *tylko* w warstwie transportu)

Nadawca:

- traktuje zawartość segmentu jako ciąg 16-bitowych liczb całkowitych
- suma kontrolna: suma (negacja sumy bitowej) zawartości segmentu
- nadawca wstawia wartość sumy kontrolnej w polu sumy kontrolnej nagłówka UDP

Odbiorca:

- oblicza sumę kontrolną otrzymanego segmentu
- sprawdza, czy obliczona suma kontrolna jest równa wartości w polu sumy kontrolnej:
 - NIE wykryto błąd
 - TAK nie wykryto błędu.

<u>Sumy kontrolne: Kontrola redundancji</u> <u>cyklicznej (Cyclic Redundancy Check, CRC)</u>

- bity informacji, D, są traktowane jako liczba w systemie dwójkowym
- wybierz wzorzec r+1 bitów (generator), 6
- cel: wybierz r bitów CRC, R, tak że
 - O,R> dokładnie podzielne przez G (modulo 2)
 - odbiorca zna G, dzieli <D,R> prze G. Jeśli reszta jest niezerowa: rozpoznano błąd!
 - rozpoznaje grupy błędów krótsze niż r+1 bitów
- szeroko używane w praktyce (ATM, HDCL)

Przykład CRC

Chcemy obliczyć:

 $D.2^r$ XOR R = nG

lub równoważnie:

 $D.2^r = nG XOR R$

lub równoważnie:

jeśli podzielimy D[.]2^r przez G, chcemy resztę R

$$R = reszta[\frac{D \cdot 2^r}{G}]$$

Mapa wykładu

- 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach
 LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay

Łacza współdzielone i protokoły wielodostępowe

Dwa rodzaje "łącz":

- punkt-punkt
 - PPP dla dostępu modemowego
 - łącze punkt-punkt pomiędzy switchem Ethernet i hostem
- punkt-wielopunkt, rozgłaszające (wspólny kabel lub medium)
 - tradycyjny Ethernet
 - łącze zwrotne HFC
 - bezprzewodowa sieć lokalna 802.11

Protokoły wielodostępowe

- □ wspólne łącze rozgłaszające
- dwie lub więcej jednoczesnych transmisji: zakłócenia
 - o tylko jeden węzeł może poprawnie nadawać w chwili czasu

protokół wielodostępowy

- rozproszony algorytm, który określa jak węzły dzielą się łączem, czyli jak węzeł określa, kiedy może nadawać
- komunikacja sygnalizacyjna o podziale łącza musi sama używać tego łącza!
- czego wymagać od protokołów wielodostępowych:

Idealny Protokół Wielodostępowy

Łacze rozgłaszające o przepustowości R b/s

- 1. Jeśli jeden węzeł chce nadawać, może nadawać z szybkością R.
- 2. Jeśli M węzłów chce nadawać, każdy może nadawać z średnią przepustowością R/M
- 3. W pełni rozproszony:
 - nie potrzeba specjalnego węzła do koordynacji podziału łącza
 - o nie potrzeba synchronizacji zegarów, szczelin czasowych

4. Prosty

Protokoły MAC: taksonomia

Medium Access Control (MAC): warstwa protokołów wielodostępowych

Trzy szerokie klasy protokołów:

- □ Podział łącza
 - dzielą łącze na mniejsze "kawałki" (szczeliny czasowe, kawałki pasma, według kodu)
 - o przydziela kawałki węzłom do wyłącznego użytku
- Dostęp bezpośredni
 - o łącze nie jest dzielone, kolizje są możliwe
 - o "poprawianie" po kolizji
- □ "Z kolejnością"
 - ścisła koordynacja wielodostępu w celu uniknięcia kolizji

Protokoły MAC dzielace łacze: TDMA

TDMA: time division multiple access

- dostęp do łącza w "turach"
- każda stacja otrzymuje szczelinę czasową stałej długości (długość = czas transmisji ramki) w każdej turze
- nieużywane szczeliny są puste
- przykład: sieć lokalna 6 stacji, 1,3,4 mają ramkę, szczeliny 2,5,6 są puste

Protokoły MAC dzielace łacze: FDMA

FDMA: frequency division multiple access

- 🗖 pasmo łącza jest dzielone na mniejsze pasma
- □ każda stacja otrzymuje stałe pasmo częstotliwości
- niewykorzystany czas transmisji w nieużywanych pasmach
- przykład: sieć lokalna 6 stacji, 1,3,4 mają ramkę, pasma częstotliwości 2,5,6 są niewykorzystane

Protokoły MAC dzielace łacze: CDMA

CDMA (Code Division Multiple Access)

- każdemu użytkownikowi przypisany jest jednoznaczny "kod";
 czyli dzielimy zbiór kodów między użytkowników
- używany najczęściej w bezprzewodowych łączach rozgłaszających (komórkowych, satelitarnych, itd)
- wszyscy użytkownicy mają tę samą częstotliwość, ale każdy ma ciąg dzielący dane (kod), które są wysyłane nadmiarowo
- kodowany sygnał = (oryginalna informacja) X (wartość w ciągu kodu)
- dekodowanie: suma iloczynów zakodowanego sygnału i wartości w ciągu kodu (wartości w ciągu kodu dodają się do 0)
- jeśli kody są odpowiednio dobrane, wielu użytkowników może nadawać na tej samej częstotliwości

Kodowanie i dekodowanie CDMA

CDMA: dwóch zakłócających nadawców

Protokoły dostępu bezpośredniego

- □ Kiedy węzeł ma ramkę do wysłania
 - o transmituje z pełną przepustowością łącza, R.
 - o nie ma koordynacji a priori pomiędzy węzłami
- dwa lub więcej transmitujących węzłów -> "kolizja"
- protokół MAC dostępu bezpośredniego określa:
 - o jak wykrywać kolizje
 - o jak naprawiać kolizje (n.p., przez opóźnione retransmisje)
- Przykłady protokołów MAC dostępu bezpośredniego:
 - szczelinowe ALOHA
 - ALOHA
 - O CSMA, CSMA/CD, CSMA/CA

Szczelinowe ALOHA

Założenia

- wszystkie ramki mają ten sam rozmiar
- czas jest podzielony na jednakowe szczeliny (okres czasu na transmitowanie 1 ramki)
- węzły zaczynają transmitować tylko na początku szczelin
- węzły są zsynchronizowane
- □ jeśli 2 lub więcej węzłów transmituje w tym samym czasie, wszystkie węzły wykryją kolizję

<u>Działanie</u>

- kiedy węzeł ma nową ramkę, transmituje w następnej szczelinie
- jeśli nie ma kolizji, węzeł może wysłać nową ramkę w następnej szczelinie
- jeśli jest kolizja, węzeł retransmituje ramkę w następnych szczelinach z prawdopodobieństwem p, aż odniesie sukces

Szczelinowe ALOHA

- jeden aktywny węzeł może transmitować bez przerwy z pełną przepustowością kanału
- wysoce zdecentralizowane: trzeba tylko zsynchronizować szczeliny w węzłach
- proste

Za

- kolizje, marnowanie szczelin
- puste szczeliny
- węzły mogą rozpoznawać kolizje szybciej, niż wynosi czas transmisji ramki

Wydajność szczelinowego ALOHA

Wydajność jest to stosunek ilości udanych transmisji gdy jest wiele węzłów, z których każdy wysyła wiele ramek, w długim okresie

- Załóżmy, że N węzłów wysyła wiele ramek, każdy wysyła w szczelinie z prawdopod. p
- \square prawd. że 1szy węzeł ma udaną transmisję = $p(1-p)^{N-1}$
- \square prawd. że jakiś węzeł ma udaną transmisję = $Np(1-p)^{N-1}$

- Dla największej wydajności N węzłów, znajdź p* maksymalizujące Np(1-p)^{N-1}
- □ Dla wielu węzłów, oblicz granicę Np*(1-p*)^{N-1} przy N dążącym do niesk., wynik: 1/e = .37

W najlepszym razie: wydajność 37%!

Czyste ALOHA (bez szczelin)

- czyste Aloha: prostsze, bez synchronizacji
- □ gdy otrzyma się ramkę
 - o transmitować natychmiast
- prawdopodobieństwo kolizji rośnie:
 - \circ ramka wysłana w czasie t_0 koliduje z ramkami wysłanymi w

Wydajność czystego ALOHA

P(udana transmisja węzła) = P(węzeł transmituje) · $P(\dot{z}aden inny węzeł nie transmituje [t_0-1,t_0] \cdot$

P(no other node transmits in $[t_0, t_0+1]$

=
$$p \cdot (1-p)^{N-1} \cdot (1-p)^{N-1}$$

$$= p \cdot (1-p)^{2(N-1)}$$

... wybrać najlepsze p i dążąc z n -> nieskończoności...

CSMA (Carrier Sense Multiple Access)

- <u>CSMA:</u> bez synchronizacji, nasłuchiwać przed transmisją:
- Jeśli kanał jest wolny: wysyłać całą ramkę
- Jeśli kanał jest zajęty, opóźnić transmisję

Ludzka analogia: nie przerywać innym!

Kolizje CSMA

kolizje *mogą* się dalej zdarzać:

opóźnienie propagacji powoduje, że dwa węzły mogą nie słyszeć swojej transmisji na czas

kolizja:

cały czas transmisji ramki jest zmarnowany

uwaga:

odległość i opóźnienie propagacji mają wpływ na prawdopodobieństwo kolizji

CSMA/CD (Collision Detection)

CSMA/CD: nasłuchiwanie, opóźnianie jak w CSMA

- o kolizje wykrywane w krótkim czasie
- kolidujące transmisje są przerywane, co zmniejsza marnowanie kanału
- wykrywanie kolizji:
 - proste w przewodowych sieciach LAN: mierz siłę sygnału, porównaj wysłany, odebrany sygnał
 - trudne w bezprzewodowych sieciach LAN: odbiorca odłączony podczas transmisji
- analogia ludzka: grzeczny rozmówca

Wykrywanie kolizji w CSMA/CD

Protokoły MAC "z kolejnością"

protokoły MAC z podziałem łącza:

- przy dużym obciążeniu, dzielą kanał wydajnie i sprawiedliwie
- niewydajne przy małym obciążeniu: opóźnienie w dostępie, 1/N przepustowości dostępna nawet, gdy tylko 1 węzeł jest aktywny!

protokoły MAC z dostępem bezpośrednim:

- wydajne przy małym obciążeniu: pojedynczy węzeł może w pełni wykorzystać kanał
- o wysokie obciążenie: narzut na kolizje

protokoły MAC "z kolejnością":

próbują połączyć zalety obu typów!

Protokoły MAC "z kolejnością"

Odpytywanie:

- węzeł nadrzędny kolejno "zaprasza" węzły podrzędne do transmisji
- problemy:
 - narzut na odpytywanie
 - opóźnienie
 - mała odporność na awarie (węzła nadrzędnego)

Przekazywanie żetonu:

- □ **żeton** kontrolny przekazywany od jednego węzła do drugiego.
- □ komunikat żetonu
- problemy:
 - o narzut na żeton
 - opóźnienie
 - mała odporność na awarie (żetonu)

Podsumowanie protokołów MAC

- Co można zrobić z współdzielonym kanałem?
 - Podział kanału, za pomocą czasu, częstotliwości, kodu
 - · Time Division, Code Division, Frequency Division
 - Dostęp bezpośredni (dynamiczny),
 - · ALOHA, S-ALOHA, CSMA, CSMA/CD
 - nasłuchiwanie: łatwe w niektórych mediach (przewody), trudne w innych (radio)
 - · CSMA/CD używane w Ethernecie
 - W kolejności
 - · odpytywanie z centralnego punktu
 - przekazywanie żetonu

Mapa wykładu

- □ 5.1 Wprowadzenie i usługi warstwy łącza
- 5.2 Rozpoznawanie i naprawa błędów
- □ 5.3 Protokoły wielodostępowe
- 5.4 Adresy w sieciach LAN oraz protokół ARP
- □ 5.5 Ethernet

- □ 5.6 Koncentratory, mosty, i switche
- □ 5.7 Bezprzewodowe łącza i sieci lokalne
- □ 5.8 PPP
- □ 5.9 ATM
- □ 5.10 Frame Relay