Exercises on LTL

Beau De Clercq

October 2019

Question

Give the traces on the set of atomic propositions $\{a,b\}$ of the following transition system:

$$\{a\}(\{\phi\} \vee \{a\})(\{a,b\}\{a\})^{\omega}$$

Question

On page 97, a transformation is described of a transition system TS with possible terminal states into an equivalent" transition system TS^* without terminal states. Questions:

- Give a formal definition of this transformation $TS \mapsto TS^*$.
- Prove that the transformation preserves trace-equivalence, i.e., show that if TS_1 , TS_2 are transition systems (possibly with terminal states) such that $Traces(TS_1) = Traces(TS_2)$, then $Traces(TS_1^*) = Traces(TS_2^*)$.

- $\forall s \in S$: if s is terminal add s_{stop} to S^* and update A^* and \rightarrow^* accordingly.
- If $Traces(T_1) = Traces(T_2)$ then their finite and infinite traces concide $\forall t \in Traces(T_1)$: either t is infinite or $t\{\}^{\omega} \in Traces(T_1^*)$

Question

Consider the set AP of atomic propositions defined by AP = $\{x = 0, x > 1\}$ and consider a nonterminating sequential computer program P that manipulates the variable x.

Formulate the following informally stated properties as LT properties:

- false
- initially x is equal to zero
- initially x differs from zero
- initially x is equal to zero, but at some point x exceeds one
- x exceeds one only finitely many times
- x exceeds one infinitely often
- the value of x alternates between zero and two
- true

- 1
- x=0
- $(x=0) \land \diamondsuit(x>1)$
- $\Diamond \Box (\neg x > 1)$
- $\Box \Diamond (x > 1)$
- $\Box \Diamond (x=0) \land \Box (x=0 \rightarrow \bigcirc (x=2)) \land x=0$
- \bullet \top

Question

Consider the set $AP = \{A, B\}$ of atomic propositions. Formulate the following properties as LT properties and characterize each of them as being either an invariance, safety property, or liveness property, or none of these.

- A should never occur,
- A should occur exactly once,
- A and B alternate infinitely often,
- A should eventually be followed by B.

- $\bullet \neg \Diamond A$
 - Safety (A should never happen)
- $BUA \bigcirc (\Box B)$
 - Invariant (purely state-based)
- $\bullet \ \Box (A\cap B)$
 - Invariant (purely state-based)
- $\bullet \ \diamondsuit(A \to B)$
 - Liveness (B will eventually happen)

Question

Consider the following sequential hardware circuit:

The circuit has input variable x, output variable y, and registers r_1 and r_2 with initial values $r_1 = 0$ and $r_2 = 1$. The set AP of atomic propositions equals $\{x, r_1, r_2, y\}$. Besides, consider the following informally formulated LT properties over AP:

P1: Whenever the input x is continuously high (i.e., x=1), then the output y is infinitely often high.

P2: Whenever currently $r_2 = 0$, then it will never be the case that after the next input, $r_1 = 1$.

P3: It is never the case that two successive outputs are high.

P4: The configuration with x = 1 and $r_1 = 0$ never occurs.

- Give for each of these properties an example of an infinite word that belongs to P_i . Do the same for the property $(2^{AP})^{\omega} \backslash P_i$, i.e., the complement of P_i .
- Determine which properties are satisfied by the hardware circuit that is given above.

- Determine which of the properties are safety properties. Indicate which properties are invariants.
 - For each safety property P_i , determine the (regular) language of bad prefixes.
 - For each invariant, provide the propositional logic formula that specifies the property that should be fulfilled by each state.

```
• P1: ((1|0)111)^{\omega}

P2: (0000)^{\omega}

P3: (1111\Box \rightarrow 0111)^{\omega}

P4: (((01)|(11)|(00))11)^{\omega}
```

- P1, P2 and P3 are satisfied, P4 is not.
- Safety properties:
 - P2
 - P3
- Invariants: P4

Question

Let LT properties P and P' be equivalent, notation $P \cong P'$, if and only if $\operatorname{pref}(P) = \operatorname{pref}(P')$. Prove or disprove: $P \cong P'$ if and only if $\operatorname{closure}(P) = \operatorname{closure}(P')$.

Answer

 $\operatorname{pref}(P)$ can be seen as the finite part of $\operatorname{closure}(P)$ and $\operatorname{pref}(P')$ can be seen as the finite part of $\operatorname{closure}(P')$.

Ex. 3.9

Question

Show that for any transition system TS, the set closure(Traces(TS)) is a safety property such that $TS \models \text{closure}(\text{Traces}(TS))$.

Question

Let P be an LT property. Prove: pref(closure(P)) = pref(P).

Answer

```
closure(P) = \{\sigma \in (2^{AP})^{\omega} | pref(\sigma) \subseteq pref(P) \}

pref(\sigma) = \{\hat{\sigma} \in (2^{AP})^* | \hat{\sigma} \text{ is a finite prefix of } \sigma) \}

\implies pref(P) \text{ is the finite part of pref(closure(P))}.
```

Ex. 3.11

Question

Let P and P' be liveness properties over AP. Prove or disprove the following claims:

- $P \cup P'$ is a liveness property,
- $P \cap P'$ is a liveness property.

Answer the same question for P and P' being safety properties.

- $P \cup P'$ is a liveness property: P and P' will both evnetually happen
- $P \cap P'$ is not a liveness property: only part of P and P' will eventually happen
- $P \cup P'$ is a safety property: neither P or P' will ever happen
- $\bullet\ P\cap P'$ is a safety property: parts of P and P' will eventually happen