Announcements

Reminder: self-grading forms for ps1 and ps2 due 10/5 at midnight (Boston)

Assignment Project Exam Help

- ps3 out on Thursday, due 10/8 (1 week) https://powcoder.com
- LAB this week: go over solutions for the first two homeworks Add WeChat powcoder

Agglomerative Clustering Example

(bottom-up clustering)

Image source: https://en.wikipedia.org/wiki/Hierarchical clustering

K-Means for Image Compression

Figure 9.3 Two examples of the application of the K-means clustering algorithm to image segmentation showing the initial images together with their K-means segmentations obtained using various values of K. This also illustrates of the use of vector quantization for data compression, in which smaller values of K give higher compression at the expense of poorer image quality.

Choose subspace with minimal "information loss"

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)}$) onto which to project the data, so as to minimize the projection error.

Reduce from n-dimension to K-dimension: Find K vectors $u^{(1)}, u^{(2)}, \dots, u^{(K)}$ onto which to project the data so as to minimize the projection error.

PCA Solution

- The solution turns out to be the first K eigenvectors of the data covariance matrix (see Bishop 12.1 for details)
 Assignment Project Exam Help
- Closed-form, use Singular Value Decomposition (SVD) on covariance weathix powcoder

What features to use?

Today: Outline

- Feed-forward And two powcoder

Intro to Neural Networks

Motivation

Recall: Logistic Regression

$$0 \leq h_{\theta}(x) \leq 1$$
 sigmoid/logistic function
$$h_{\theta}(x) = g(\theta^T x) = \frac{1}{1 + e^{-\theta^T x}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$
 Assignment Project Exam Helpost
$$f(x) = \frac{1}{1 + e^{-z}}$$
 Output is probability of label 1 given input
$$f(y) = \frac{1}{1 + e^{-\theta^T x}}$$
 or
$$f(y) = 1|x| = \frac{1}{1 + e^{-\theta^T x}}$$

predict "
$$y = 1$$
" if $h_{\theta}(x) \geq 0.5$

predict "
$$y = 0$$
" if $h_{\theta}(x) < 0.5$

Recall: Logistic Regression Cost

Logistic Regression Hypothesis:

$$h_{ heta}(x) = g(heta^T x) = rac{1}{1 + e^{- heta^T x}}$$
Assignment Project Exam Help
e: parameters

$$D = \{x^i, y^i\}$$
: data https://powcoder.com

Logistic Regression Cost Function at powcoder

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}), y^{(i)})$$
$$= -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log (1 - h_{\theta}(x^{(i)})) \right]$$

 $\min_{\theta} J(\theta)$ Goal: minimize cost

Cost: Intuition

Logistic regression cost function

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

$$\operatorname{Assignment Project Exam Help}$$

Cost: Intuition

Logistic regression cost function

Decision boundary

Non-linear decision boundaries powcoder

Replace features with non-linear functions e.g. log, cosine, or polynomial

$$h_{\theta}(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2)$$

Predict "y = 1" if
$$-1 + x_1^2 + x_2^2 \ge 0$$

Limitations of linear models

- Logistic regression and other linear models cannot handle nonlinear decision boundaries
 - Must use non-linear feature transformations
 - Up to de Agasi garante Microset Exam Help

- https://powcoder.comCan we instead learn the transformation?
 - Yes, this is what And drawet works to obwooder
- A Neural network chains together many layers of "neurons" such as logistic units (logistic regression functions)

Neural Networks learn features

Neurons in the Brain

Neurons are cells that process chemical and electrical signals and transmit these signals to neurons and other types of cells

Neuron in the brain

Neural network in the brain

- Add WeChat powcoder
 Micro networks: several connected neurons perform sophisticated tasks: mediate reflexes, process sensory information, generate locomotion and mediate learning and memory.
- Macro networks: perform higher brain functions such as object recognition and cognition.

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Logistic Unit as Artificial Neuron

Artificial Neuron Learns Patterns

Example

Neural Networks: Learning

Intuition

Artificial Neuron: Learning

Artificial Neuron: Learning

Artificial Neuron: Learning

Neural Networks: Learning

Multi-layer network

Artificial Neuron: simplify

Artificial Neuron: simplify

Artificial Neural Network

Deep Network: many hidden layers

Multi-layer perceptron (MLP)

- Just another name for a feed-forward neural network
- Logistic regressioneistapspecial case of the MLP with no hidden layer and sigmoid output https://powcoder.com

Neural Networks Learn Features

logistic regression unit == artificial neuron chain several units together == neural network

"earlier" units learn non-linear feature transformation Assignment Project Exam Help

Example

Training a neural net: Demo

Tensorflow playground

Artificial Neural Network:

general notation

Cost function

Neural network: $h_{\Theta}(x) \in \mathbb{R}^K$ $(h_{\Theta}(x))_i = i^{th}$ output

 $J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} \frac{\sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \frac{\sum_{k=1}^{m} \sum_{i=1}^{m} \sum_{k=1}^{m} \sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} \frac{\sum_{i=1}^{m} \sum_{j=1}^{m} \frac{\sum_{i=1}^{m} \frac{\sum_{$

regularization

Gradient computation

$$J(\Theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} \sum_{k=1}^{K} y_k^{(i)} \log h_{\theta}(x^{(i)})_k + (1 - y_k^{(i)}) \log(1 - h_{\theta}(x^{(i)})_k) \right]$$

$$+\frac{\lambda}{2m}\sum_{l=1}^{L-1}\sum_{i=1}^{s_l}\sum_{j=1}^{s_{l+1}} \text{ Project Exam Help} \\ \text{https://powcoder.com}$$

 $\min_{\Theta} J(\Theta)$

Cover next time!

Add WeChat powcoder "Backpropagation algorithm"

Need code to compute:

eed code to compute:
$$-$$
 Efficient way to compute $rac{\partial}{\partial \Theta_{ij}^{(l)}} J(\Theta)$

$$-\frac{J(\Theta)}{\partial \Theta_{ij}^{(l)}}J(\Theta)$$

Computes gradient incrementally by "propagating" backwards through the network

Network architectures

Feed-forward

Recurrent

Representing images

Convolutional Neural Network

A better architecture for 2d signals

LeNet

Why Deep Learning? The Unreasonable Effectiveness of Deep Features

Rich visual structure of features deep in hierarchy.

conv₅ DeConv visualization [Zeiler-Fergus]

Summary so far

- Neural network chains together many layers of "neurons" such as logistic units Assignment Project Exam Help
- Hidden neurons heten: mprevaradas recubstract non-linear features

 Add WeChat powcoder

Next Class

Neural Networks I: Learning:

Learning via gradient descent; computation graphs, backpropagational gradient descent; Exam Help

https://powcoder.com

Reading: Bishop Ch 5.1-5.3

Add WeChat powcoder