Buying wine

A wine seller has two wine jugs, o small one of 4 liters capacity, and a larger one of 9 liters. There is no measuring label mentioned on either of these two jugs i.e. he cannot know the exact amount filled in the jug. Can we measure all values from 1 to 9 using these unmarked jugs? (a generalisation of classical water jugs problem)

- Let $j_1 = 4$ be the capacity of the small jug and $j_2 = 9$ the capacity of the large jug.
- We use a *state space search*, where each state is represented with J(x, y): x is the current amount of wine in jug j_1 and y the amount in jug j_2 .
- The initial state is J(0,0).
- We use production rules to change the states of the system (set(production))

For the current state J(x, y), the following eight actions are possible:

- Fill-in the small jug:
- 2. Empty the small jug:
- 3. Fill-in the large jug:
- Empty the large jug: 4.
- Empty the small jug into the large $J(x, y) \wedge x + y < j_2 \rightarrow J(0, y + x)$ 5. iug, if capacity allows this:
- If *j*₂ does not suffice to empty *j*₁ then 6. move some amount from the small jug to the larger jug, until i_2 is full:
- 7. If capacity of j_2 allows, empty the $J(x,y) \wedge x + y < j_1 \rightarrow J(x+y,0)$ large jug into the small jug:
- 8. empty i_2 then move some amount from j_2 , until the j_1 is full:

$$J(x,y) \rightarrow J(j_1,y)$$

- $J(x,y) \rightarrow J(0,y)$
- $J(x, y) \rightarrow J(x, i_2)$
- $J(x,y) \rightarrow J(x,0)$

$$J(x,y) \land x + y \leq J_2 \rightarrow J(0,y + x)$$

$$J(x,y) \wedge x + y > j_2 \rightarrow J(x - (j_2 - y), j_2)$$

$$J(x,y) \wedge x + y \leq j_1 \rightarrow J(x+y,0)$$

If capacity of
$$j_1$$
 does not suffice to $J(x,y) \wedge x + y > j_1 \rightarrow J(j_1,y-(j_1-x))$

Planning with Prover9

- Rules are written in clausal form, in order to allow variables in the #answer directive
- The#answer directive is useful to print the steps for reaching the goal.

```
set (production).
formulas (demodulators).
 i1 = 4, i2 = 9
                                       %small jug and large jug
 i = 2.
                                          % value to measure i = [1..9]
end_of_list.
formulas (usable).
 -J(x,y) \mid J(j1,y) \text{ #answer}("fill the small jug") \text{ #answer}(J(\$j1,y)).
 -J(x,y) \mid J(0,y) #answer("empty the small jug") #answer(J(0,y)).
 -J(x,y) \mid J(x,j2) #answer("fill the big jug") #answer(J(x,\$j2)).
 -J(x,y) \mid J(x,0) #answer("empty the big jug") #answer(J(x,0)).
 -J(x,y) \mid -(x+y \le i2) \mid J(0,y+x)
  #answer("empty the small jug into the big jug") #answer(J(0,x+y)).
 -J(x,y) \mid -(x+y > j2) \mid J(x+-(j2+-y),j2)
  #answer("small into big, until full") #answer(J(x+-(j2+-y), j2)).
 -J(x,y) \mid -(x+y \le j1) \mid J(x+y,0)
    #answer("empty the big jug into the small jug") #answer(J(x+y, 0)).
 -J(x,y) \mid -(x+y > j1) \mid J(j1,y + -(j1+-x))
   #answer("big into small, until full") #answer(J(\$i1,y+-(\$i1+-x))).
end_of_list.
formulas (assumptions).
 J(0,0)
                                        #answer("Init state: J(0,0)").
end_of_list.
formulas (goals).
  exists x J(x,i) | exists y J(i,y).
end_of_list.
```

7

10 11

12

13

14

15

16 17

18

19 20

21

22

26 27

28

29

23 24

Measuring 1 liter of wine $\exists x \ J(x, 1) \lor \exists y \ J(1, y)$

$Proof_1$	#answer(Action)	#answer(State)
1	"init state"	J(0,0)
2	"fill the big jug"	$J(0,j_2)$
3	"big into small, until full"	$J(j_1, 9 - (j_1 - 0))$
4	"empty the small jug"	J(0,5)
5	"big into small, until full"	$J(j_1,5-(j_1-0))$

Measuring 2 liters of wine

 $\exists x \ J(x,2) \lor \exists y \ J(2,y)$

$Proof_2$	#answer(Action)	#answer(State)
1	"init state"	J(0,0)
2	"fill the big jug"	$J(0,j_2)$
3	"big into small, until full"	$J(j_1, 9 - (j_1 - 0))$
4	"empty the small jug"	J(0,5)
5	"big into small, until full"	$J(j_1, 5-(j_1-0))$
6	"empty the small jug"	J(0,1)
7	"empty the big jug into the small jug"	J(0+1,0)
8	"fill the big jug"	$J(1,j_2)$
9	"big into small, until full"	$J(j_1, 9 - (j_1 - 1))$
10	"empty the small jug"	J(0,6)
11	"big into small, until full"	$J(j_1, 6-(j_1-0)))$