Department of Mathematics

Indian Institute of Technology Guwahati

MA 101: Mathematics I Solutions of Tutorial Sheet-5

July-December 2019

1. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ [x] & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$ Determine all the points of \mathbb{R} where f is continuous.

Solution. Let $x \in \mathbb{R} \setminus \mathbb{Q}$. Then there exists a sequence (r_n) in \mathbb{Q} such that $r_n \to x$. So $f(r_n) = r_n \to x \neq [x] = f(x)$. Hence f is not continuous at x. Again, let $y \in \mathbb{Q}$. Then there exists a sequence (t_n) in $\mathbb{R} \setminus \mathbb{Q}$ such that $t_n < y$ for all $n \in \mathbb{N}$ and $t_n \to y$. For each $n \in \mathbb{N}$, $f(t_n) = \begin{cases} [t_n] \leq y - 1 & \text{if } y \in \mathbb{Z}, \\ [t_n] \leq [y] < y & \text{if } y \notin \mathbb{Z}. \end{cases}$ In either case $f(t_n) \not\to f(y) = y$. Hence f is not continuous at g. Therefore g is not continuous at any point of g.

- 2. Let $f:[0,1]\to\mathbb{R}$ be continuous such that f(0)=f(1). Show that
 - (a) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{2}$.
 - (b) there exist $x_1, x_2 \in [0, 1]$ such that $f(x_1) = f(x_2)$ and $x_1 x_2 = \frac{1}{3}$.

Solution. (a) Let $g(x)=f(x+\frac{1}{2})-f(x)$ for all $x\in[0,\frac{1}{2}]$. Since f is continuous, $g:[0,\frac{1}{2}]\to\mathbb{R}$ is continuous. Also $g(0)=f(\frac{1}{2})-f(0)$ and $g(\frac{1}{2})=f(1)-f(\frac{1}{2})=-g(0)$, since f(0)=f(1). If g(0)=0, then we can take $x_1=\frac{1}{2}$ and $x_2=0$. Otherwise, $g(\frac{1}{2})$ and g(0) are of opposite signs and hence by the intermediate value property of continuous functions, there exists $c\in(0,\frac{1}{2})$ such that g(c)=0, i.e. $f(c+\frac{1}{2})=f(c)$. We take $x_1=c+\frac{1}{2}$ and $x_2=c$.

- (b) Let $g(x) = f(x + \frac{1}{3}) f(x)$ for all $x \in [0, \frac{2}{3}]$. Since f is continuous, $g : [0, \frac{2}{3}] \to \mathbb{R}$ is continuous. Also $g(0) + g(\frac{1}{3}) + g(\frac{2}{3}) = f(1) f(0) = 0$. If at least one of g(0), $g(\frac{1}{3})$ and $g(\frac{2}{3})$ is 0, then the result follows immediately. Otherwise, at least two of g(0), $g(\frac{1}{3})$ and $g(\frac{2}{3})$ are of opposite signs and hence by the intermediate value property of continuous functions, there exists $c \in (0, \frac{2}{3})$ such that g(c) = 0, i.e. $f(c + \frac{1}{3}) = f(c)$. We take $x_1 = c + \frac{1}{3}$ and $x_2 = c$.
- 3. Let p be an odd degree polynomial with real coefficients in one real variable. If $g: \mathbb{R} \to \mathbb{R}$ is a bounded continuous function, then show that there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = g(x_0)$.

In particular, this shows that

- (a) every odd degree polynomial with real coefficients in one real variable has at least one real zero.
- (b) the equation $x^9 4x^6 + x^5 + \frac{1}{1+x^2} = \sin 3x + 17$ has at least one real root.
- (c) the range of every odd degree polynomial with real coefficients in one real variable is \mathbb{R} .

Solution. Let f(x) = p(x) - g(x) for all $x \in \mathbb{R}$. Since both p and g are continuous, $f: \mathbb{R} \to \mathbb{R}$ is continuous. Since g is bounded, there exists M > 0 such that $|g(x)| \leq M$ for all $x \in \mathbb{R}$. Let $p(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_{n-1} x + a_n$ for all $x \in \mathbb{R}$, where $a_i \in \mathbb{R}$ for $i = 0, 1, \ldots, n, n \in \mathbb{N}$ is odd and $a_0 \neq 0$. So $p(x) = a_0 x^n (1 + \frac{a_1}{a_0} \cdot \frac{1}{x} + \cdots + \frac{a_{n-1}}{a_0} \cdot \frac{1}{x^{n-1}} + \frac{a_n}{a_0} \cdot \frac{1}{x^n})$ for all $x \neq 0 \in \mathbb{R}$. We assume that $a_0 > 0$. (The case $a_0 < 0$ is almost similar.) Then $\lim_{x \to \infty} p(x) = \infty$ and $\lim_{x \to -\infty} p(x) = -\infty$ (since n is odd). So there exist $x_1 > 0$ and $x_2 < 0$ such that $p(x_1) > M$ and $p(x_2) < -M$. Hence $f(x_1) > 0$ and $f(x_2) < 0$. By the intermediate value property of continuous functions, there exists $x_0 \in (x_2, x_1)$ such that $f(x_0) = 0$, i.e. $p(x_0) = g(x_0)$.

For (a), we take g(x) = 0 for all $x \in \mathbb{R}$. For (b), we take $p(x) = x^9 - 4x^6 + x^5 - 17$ and $g(x) = \sin 3x - \frac{1}{1+x^2}$ for all $x \in \mathbb{R}$ and we note that $|g(x)| \le 2$ for all $x \in \mathbb{R}$. For (c), given $y \in \mathbb{R}$, we take g(x) = y for all $x \in \mathbb{R}$.

4. Does there exist a continuous function from (0,1] onto \mathbb{R} ? Justify.

Solution. If $f(x) = \frac{1}{x} \sin \frac{1}{x}$ for all $x \in (0,1]$, then $f:(0,1] \to \mathbb{R}$ is continuous and $f(\frac{2}{(4n+1)\pi}) = 2n\pi + \frac{\pi}{2}$, $f(\frac{2}{(4n+3)\pi}) = -2n\pi - \frac{3\pi}{2}$ for all $n \in \mathbb{N}$. For each $y \in \mathbb{R}$, we can find $n \in \mathbb{N}$ such that $-2n\pi - \frac{3\pi}{2} < y < 2n\pi + \frac{\pi}{2}$ and hence by the intermediate value property of continuous functions, there exists $x \in \mathbb{R}$ such that f(x) = y. Thus $f:(0,1] \to \mathbb{R}$ is onto. Therefore there exists such a function.

5. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable on $(-\delta, \delta)$ for some $\delta > 0$ and let f''(0) exist. If $f(\frac{1}{n}) = 0$ for all $n \in \mathbb{N}$, then find f'(0) and f''(0).

Solution. Since f is continuous at 0 and since $\frac{1}{n} \to 0$, we have $f(0) = \lim_{n \to \infty} f(\frac{1}{n}) = 0$. Also, since f'(0) exists (in \mathbb{R}) and since $\frac{1}{n} \to 0$, we have $f'(0) = \lim_{n \to \infty} \frac{f(\frac{1}{n}) - f(0)}{1/n} = 0$. Again, we can choose $n_0 \in \mathbb{N}$ such that $\frac{1}{n_0} < \delta$. By Rolle's theorem, for each $n \ge n_0$, there exists $x_n \in (\frac{1}{n+1}, \frac{1}{n})$ such that $f'(x_n) = 0$. By sandwich theorem, $x_n \to 0$. Since f''(0) exists, we have $f''(0) = \lim_{n \to \infty} \frac{f'(x_n) - f'(0)}{x_n} = 0$.

6. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable such that f(0) = f(1) = 0 and f'(0) > 0, f'(1) > 0. Show that there exist $c_1, c_2 \in (0, 1)$ with $c_1 \neq c_2$ such that $f'(c_1) = f'(c_2) = 0$.

Solution. Since f'(0) > 0, there exists $\delta_1 \in (0, \frac{1}{2})$ such that f(x) > f(0) = 0 for all $x \in (0, \delta_1)$. Also, since f'(1) > 0, there exists $\delta_2 \in (0, \frac{1}{2})$ such that f(x) < f(1) = 0 for all $x \in (1 - \delta_2, 1)$. By the intermediate value property of continuous functions, there exists $c \in (\frac{\delta_1}{2}, 1 - \frac{\delta_2}{2})$ such that f(c) = 0. Now, by Rolle's theorem, there exists $c_1 \in (0, c)$ and $c_2 \in (c, 1)$ such that $f'(c_1) = f'(c_2) = 0$.

7. Let $f: \mathbb{R} \to \mathbb{R}$ be such that f''(c) exists, where $c \in \mathbb{R}$. Show that $\lim_{h \to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c)$. Give an example of an $f: \mathbb{R} \to \mathbb{R}$ and a point $c \in \mathbb{R}$ for which f''(c) does not exist but the above limit exists.

Solution. Since f''(c) exists, there exists $\delta > 0$ such that f'(x) exists for each $x \in (c - \delta, c + \delta)$. Hence by L'Hôpital's rule, $\lim_{h \to 0} \frac{f(c+h) - 2f(c) + f(c-h)}{h^2} = \lim_{h \to 0} \frac{f'(c+h) - f'(c-h)}{2h}$,

provided the second limit exists. Now

$$\lim_{h \to 0} \frac{f'(c+h) - f'(c-h)}{2h} = \frac{1}{2} \left[\lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h} + \lim_{h \to 0} \frac{f'(c-h) - f'(c)}{-h} \right]$$
$$= \frac{1}{2} [f''(c) + f''(c)] = f''(c).$$

Hence $\lim_{h\to 0} \frac{f(c+h)-2f(c)+f(c-h)}{h^2} = f''(c)$.

If $f(x) = \begin{cases} 1 & \text{if } x > 0, \\ 0 & \text{if } x = 0, \\ -1 & \text{if } x < 0, \end{cases}$ then $f : \mathbb{R} \to \mathbb{R}$ is not continuous at 0 and hence

f''(0) does not exist, but $\lim_{h\to 0} \frac{f(0+h)-2f(0)+f(0-h)}{h^2} = 0$, since f(h)+f(-h)=0 for all $h(\neq 0) \in \mathbb{R}$.

8. Prove that, for x > 0,

$$|\log(1+x) - \left(x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n}\right)| < \frac{x^{n+1}}{n+1}.$$

Proof. Easy. Show that the remainder term $R_n(x)$ satisfies $|R_n(x)| < \frac{x^{n+1}}{n+1}$.

9. Test the convergence of the power series: $\sum_{n=1}^{\infty} a_n x^n$, where $a_n = \begin{cases} 2^{-n} & \text{if } n \text{ is even,} \\ 3^{-n} & \text{if } n \text{ is odd.} \end{cases}$

Solution. Clearly $\beta = \limsup \sqrt[n]{|a_n|} = \frac{1}{2}$. Hence the power series converges (absolutely) for all $x \in (-2, 2)$. When $x = \pm 2$, the *n*-th term $a_n x^n$ does not converge to zero. Therefore, the series converges on (-2, 2) only.

10. Prove that the Maclaurin series for $\cos x$ converges to $\cos x$ for all $x \in \mathbb{R}$.

Proof. If $f(x) = \cos x$ for all $x \in \mathbb{R}$, then $f : \mathbb{R} \to \mathbb{R}$ is infinitely differentiable and $f^{(2n-1)}(x) = (-1)^n \sin x$, $f^{(2n)}(x) = (-1)^n \cos x$ for all $x \in \mathbb{R}$ and for all $n \in \mathbb{N}$. Hence the Maclaurin series for $\cos x$ is the series $1 + \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$, where $x \in \mathbb{R}$. For x = 0, the Maclaurin series of $\cos x$ becomes $1 - 0 + 0 - \cdots$, which clearly converges to $\cos 0 = 1$. Let $x \neq 0 \in \mathbb{R}$. The remainder term in the Taylor expansion of $\sin x$ about the point 0 is given by $R_n(x) = \frac{x^{n+1}}{(n+1)!} f^{(n+1)}(c_n)$, where c_n lies between 0 and x. Since $|\sin c_n| \le 1$ and $|\cos c_n| \le 1$, we get $|R_n(x)| \le \frac{|x|^{n+1}}{(n+1)!}$. Also, since $\lim_{n \to \infty} \frac{|x|^{n+2}}{(n+2)!} \cdot \frac{(n+1)!}{|x|^{n+1}} = \lim_{n \to \infty} \frac{|x|}{n+2} = 0 < 1$, we get $\lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0$ and hence it follows that $\lim_{n \to \infty} R_n(x) = 0$. Therefore the Maclaurin series of $\cos x$ converges to $\cos x$.