Remark. Note that if $f \geq 0$,

$$F(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

is increasing. This implies F is a monotone function and so

$$\int_{a}^{b} F'(x) \, \mathrm{d}x \le F(b) - F(a).$$

Theorem (5.10). Let f be an integrable function on [a, b] and suppose that

$$F(x) = F(a) + \int_{a}^{x} f(t) dt.$$

Then F'(x) = f(x) for almost all $x \in [a, b]$.

Proof. Using the remark above, without loss of generality, suppose $f \geq 0$. To use the previous lemma (which supposes f is bounded), define

$$f_n(x) = \begin{cases} f(x) & f(x) \le n \\ n & \text{otherwise.} \end{cases}$$

Then $f - f_n \ge 0$ for all $n \in \mathbb{N}$. Now define

$$G_n(x) = \int_a^x f - f_n$$

which is an increasing function since $f - f_n$ is nonnegative. So $G'_n(x)$ exists almost everywhere and $G'_n(x) \ge 0$. By Lemma 5.9, since $f_n(x)$ is a bounded function,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{a}^{x} f(t) \, \mathrm{d}t \right) = f_{n}(x)$$

almost everywhere. Then

$$F'(x) = \frac{\mathrm{d}}{\mathrm{d}x} G_n + \frac{\mathrm{d}}{\mathrm{d}x} \int_a^x f_n$$

implies that $F'(x) \ge f_n(x)$ almost everywhere. From the beginning remark (so that F is monotonic), this gives that

$$\int_{a}^{b} F'(x) dx \le F(b) - F(a)$$
$$= \int_{a}^{b} f(x) dx$$

and so we get that

$$\int_{a}^{b} \left(\underbrace{F'(x) - f(x)}_{>0} \right) dx = 0$$

implying that F'(x) = f(x) almost everywhere.

Section 5.4 Absolute Continuity

Definition. A real-valued function f on [a, b] is said to be **absolutely continuous** on [a, b] if for all $\varepsilon > 0$, there exists $\delta > 0$ such that

$$\sum_{i=1}^{n} |f(x_i') - f(x_i')|$$

for every finite collections of $\{(x_i, x_i')\}$ of nonoverlapping intervals with

$$\sum_{i=1}^{n} |x_i' - x_i| < \delta.$$

Lemma (5.11). If f is absolutely continuous on [a, b], then it is of bounded variation on [a, b].

Proof. Let $\varepsilon=1$. Then there exists $\delta>0$ for the absolutely continuity property. Let $K=\left\lceil \frac{b-a}{\delta}+1\right\rceil$ For this partition of [a,b], we group the intervals into K sets of intervals each with total length less than δ .

Lemma (5.13). If f is absolutely continuous on [a, b] and f'(x) = 0 almost everywhere, then f is constant.

Theorem (5.14). A function F is an indefinite integral if and only F is absolutely continuous.

Remark. The above theorem tells us that there exists an integrable function f such that

$$F(x) = F(a) + \int_{a}^{x} f(t) dt.$$