Stat 324 – Introduction to Statistics for Engineers

LECTURE 4: DEFINING RANDOM VARIABLES AND 2 COMMON DISTRIBUTIONS

Random Variable Big Ideas

A **Random Variable** (RV) associates a numerical value with each <u>ortione</u> of an <u>expirament</u>. It is customary to denote random variables with <u>vope cake</u> letters. The reason it is called "random" is because we don't know the value observed until the experiment is completed.

e.g X=weight of an ant chosen at random from Claire's Ant Farm
Y= N m be C of heads in 3 tosses of a coin

Once the random process that defines an RV is performed, we call the result a <u>result a and an analysis</u> of the RV. Realizations of RVs are usually denoted by lower-case letters, like x,y, etc

Think of an RV as representing a population and a sample as a collection of <u>realizations</u> of that RV

The **Probability Distribution** of a random variable consists of the RV's possible values along with the <u>probabilities</u> that each realization will occur. Depending on the type of RV (discrete vs continuous), the descriptions of the possible values and probabilities can take different forms.

Discrete RV Example

Discrete RVs only take a countable number of values. If the values are arranged in order, there is a between each value and the next. (The set of possible values may be infinite)

e.g. Number of Items (X) purchased by a customer, Number of pages (Y) in a book

probability mass functions (pmfs:p(x)), and consist of lists of the values that can be taken by the RV, together with the probabilities of each value.

Ex1: Define Y to be the number of heads obtained in three tosses of a coin. Create a pmf for X.

Outcome	P(Outcome)	Value of X	
ннн	.5^3=.125	3	
ннт	.5^3=.125	2	
HTH	.5^3=.125	2	
THH	,5 ¹ 3 = . 125	2	
TTH	.5^3=.125	1	
THT	.5^3=.125	1	
HTT	.5^3=.125	1	
TTT	.5^3=.125	0	

Value of X	Probability of X P(X=X			
0	P(x=0) = .115			
1	P(X=1)=3/8=0.375			
2	P(X=1) = 3/8 = .375			
3	P(X=3)=1/8=0.125			
Total	1			

probability that X realizes to 3

Probability Histograms of Discrete RVs

The area [and height in this case] of the rectangle centered at a value x is equal to P(X=x). We sum up the area of the rectangles to get the probability for a range of values.

Ex 1: Y=Number of Heads

b. use it to find P(0<\(<3)\). What does this value mean?

$$P(0 \le x \le 3)$$
= $P(x \ge 1) + P(x \ge 2)$
= $.375 + .375$
= $.75$

Numerical Properties of Discrete RVs

It represents the mean of an infinite number of _fanlizations_of X (infinite number of replications of experiment).

Consider the example of tossing 3 coins and and counting the number of heads. X=number of heads with a simulation

```
(samp1<-rbinom(100, 3, .5))
Here I tossed 3 coins
          and counted the number
          mean(samp1)
of heads 100 times.
          1] 1.4
          samp2<-rbinom(1000, 3, .5)
          samp2[1:100]
Here I tossed 3 coins
          Of heads 1000 times
          1] 1.449
          > samp4<-rbinom(1000000, 3, .5)
          > samp4[1:100]
Here I tossed 3 coins
           And counted the number
          Of heads 1000000 times
          [1] 1.498812
```

Numerical Properties of Discrete RVs

The **expectation** or **expected value** of a RV X, denoted E(X) or μ_X is like the mean of the population. It represents the mean of an infinite number of realizations of X (infinite number of replications of experiment). $\mu_X = E(X) = \sum_X x * P(X = X)$

$$\mu_X = E(X) = \sum_{x} x * P(X = x)$$

Ex 1: Consider the example of tossing 3 coins and and counting the number of heads. Y=number of heads

$$\mu_Y = E(Y) = O(.125) + 1(.375) + 2(.376) + 3(.125) = 1.5$$
 work get 1.5 heads in expression to any least term only large term.

Value of Y	Probability of Y P(Y=y)				
0	P(Y=0)=1/8=.5^3=0.125				
1	P(Y=1)=3/8=0.375				
2	P(Y=2)=3/8=0.375				
3	P(Y=3)=1/8=0.125				
Total	1				

Numerical Properties of Discrete RVs

The variance of a RV X, denoted VAR(X) or σ_X^2 is like the variance of a population. It represents the variance of an infinite number of realizations of X (infinite number of replications of experiment).

The **standard deviation** of a RV X, denoted SD(X) or σ_X is the ______of the population variance.

Again, consider the example of tossing 3 coins and and counting the number of heads. X=number of heads with a simulation

```
> length(samp1);length(samp2);length(samp3);length(samp4)
> #remember, R calculates the sample variance
                                          [1] 100
> var(samp1); sd(samp1)
                                           [1] 1000
[1] 0.7272727
                                           [1] 10000
[1] 0.8528029
                                           [1] 1000000
> var(samp2); sd(samp2)
[1] 0.7341331
                             [1] 0.8568157
> var(samp3); sd(samp3)
                                               var_X = \widehat{\sigma_X^2} = 0-7507 And
[1] 0.7363815
[1] 0.8581267
> var(samp4); sd(samp4)
                                                       sd_X = \widehat{\sigma_X} = 0.866
[1] 0.7507133
```

But, lets use our pmf to calculate them <u>Ckactly</u>!

Numerical Properties of Discrete RVs

2 (x-x)

The **variance** of a RV X, denoted VAR(X) or σ_X^2 is like the variance of a population.

$$\sigma_X^2 = VAR(X) = \sum_{\substack{X \leq y \text{ betacle each} \\ Y \neq y \text{ of } y \text$$

$$\sigma_Y^2 = VAR(Y) = (0 - 15) * .125 + (1 - 15)^2 * .375 + (2 - 1.5)^2 * .375 + (3 - 1.5)^2 * .125 = .75$$
And $\sigma_Y = \sqrt{3} =$

And $\sigma_{\mathbf{k}} = \sqrt{.15} = .860$

[1] 0.8664372

Value of ✗	Probability of (Y P(Y=X)				
0	P(Y=0)=1/8=.5^3=0.125				
1	P(Y=1)=3/8=0.375				
2	P(Y=2)=3/8=0.375				
3	P(Y=3)=1/8=0.125				
Total	1				

Our Tossing Coin Example where we counted the number of Heads observed in the three flips is a special type of RV called a Binomial

individual coin flip called bernoulli total multiple make a Decinor

counts number

A Binomial Random Process has the following properties:

- 1. The random process consists of n identical sub-processes (Bernoulli trials)
 - · Each experiment had 3 identical flips

a. Each Bernoulli trial is a RV and results in one of two possible outcomes (1 \svas() or 0:"failure")

- b. The probability of a success on any single Bernoulli trial is the _____ Sant______ for every trial, and is denoted π .
 - $Y_i \sim Bern(\pi = 0.5)$ with pmf: P(Y = 1) = 0.5, P(Y = 0) = 0.5
- 2. The trials are __independent_. The outcome of any trial doesn't affect the outcome of any other

The **Binomial** RV **B,** is the total number <u>of Swesses</u> achieved in n trials of a binomial random process with probability π of success on any given trial. We denote such a RV as $B \sim Bin(n, \pi)$. The individual trial RVs:Y are Bernoulli.

In our coin tossing experiment $Y \sim Bern(\pi = 0.5)$ and $X \sim Bin(n = 3, \pi = 0.5)$. A Famous Discrete RV: Binomial

Ex2: Based on several years of testing, it is determined that 96% of circuit boards are fully operational. A warehouse contains a very large population of boards. If 4 are selected at random, the distribution of X=the number of operational boards in that sample of 4 would be described by a binomial RV.

Why? Check the 4 [5] assumptions of a binomial process and identify the Bernoulli RVs (Y).

n=4 fixeh number of trials (checking a circuit board is trial) bernoull: trinks that are identical? case o: not operational 24 se 1 : operational is probability the same for each trial? TT = 0.96 circuit board = 11 ~ Bern (0.96) are trials independent? OK binomial = total # of sucusses

Ex 2: Y=the number of operational boards in a sample of 1 would be described by a Bernoulli. Y ~ Bern(0.96)

Pmf:

Υ P(Y=y)0 0.04

1 0-16

Ex: What is the mean and variance for $Y \sim Bern(0.96)$?

$$E(Y) = [0 * .04] + (1* .16) = .96$$

$$VAR(Y) = \pi \text{ and } VAR(Y) = \pi (1-\pi) = .96(1-.96)$$

In general, when Y is Bern (π) : $E(Y) = \pi$ and $Var(Y) = \underline{\tau} (1 - \underline{\tau})$

A Famous Discrete RV: Binomial

Ex2: Based on several years of testing, it is determined that 96% of circuit boards are fully operational. X=the number of operational boards in that sample of 4 X=tt of operational boards would be described by a binomial.

Values of X P(X=x)

Create a pmf for X

P(X=X)

$$Y = X = X$$
 $Y = X = X$
 $Y = X =$

$$\binom{4}{4} = \frac{4!}{1!(4-1)!} = \frac{4-3\cdot24}{1\cdot3\cdot27!} = 4$$

The **Binomial** RV **B**, is the total number of successes achieved in n trials of a binomial random process with probability π of success on any given trial. We denote such a RV as $B \sim Bin(n, \pi)$.

The probability of observing b successes is:

$$p(b) = {n \choose b} \pi^b (1 - \pi)^{n-b} = \frac{n!}{b!(n-b)!} \pi^b (1 - \pi)^{n-b}$$

Where

 $\binom{n}{b} = \frac{n!}{b!(n-b)!}$ calculates the number of outcomes with b S's and n! is the product of all numbers from n to 1. (By definition 0!=1).

A Famous Discrete RV: Binomial

Ex2 cont. X=the number of operational boards in that sample of 4 would be described by a binomial

$$P(X = 2) = {\binom{1}{2}} (.96)^2 * (0.04)^2 =$$

$$\frac{4!}{2! \, 2!} (.96)^2 * (0.04)^2 =$$

$$\frac{(4.3 \times 1.8)}{2 \times 1 \times 2 \times 1} (.96)^2 \times (.04)^2 =$$

> dbinom(2,4, .96) ##This calculates P(X=2)
[1] 0.00884736

Ex 2: X=the number of operational boards in that sample of 4 would be described by a binomial. $X \sim Bin(4, 0.96)$

Pmf:

4

0.1415578

0.8493466

Ex: What is the mean and variance for $X \sim B(4, 0.96)$?

Binomial Ex 3 X = # invoices reciere discount

A large industrial firm allows a discount on any invoice that is paid within 30 days. Of all invoices,

independent 1 invoice doesent effect others b. What is the probability that fewer than three of them receive the discount? $\frac{1}{495}$

$$P(x=2) + P(x=1) + P(x=0)$$

1-getting none
$$P(X \ge 1) = 1 - P(X = 0) \qquad 1 - {\binom{12}{0}} (.10)^0 (.90)^{12} = 1 - (*(*(.90)^{12} = .7176)^{12})^{12} = 1 - (*(*(.90)^{12} = .7176)^{12})^{12} = .7176$$

Binomial Ex 3 Continued:

a. Find the expected number that receive the discount in 12 invoices.

$$E(X) = 12(.10) = 1.2$$

b. Find the standard deviation of the number that receive the discount.

SD
$$\sigma^{2} = n\pi(1-\pi) = 12(.10)(.90)$$

$$\sigma_{x} = \sqrt{12(.10)(.10)} = 1.04$$

Binomial Probability Histograms for different n and p

Continuous RVs Example

<u>Probability</u> distributions for continuous RVs are called **probability density functions (pdfs:f(x))**, and consist of ranges of values the RV can take, together with a function that lives on those ranges.

The <u>Qrual</u> under the function between any two possible realizations of the RV determines the probability that the RV will realize to a value in that range.

The probability of a truly continuous RV being a distinct value is zero. P(X=x)=0, however X = CAN + CAN

ex: P(X=27.3 g of emissions)=0, but 27.3 _ cold_____a measured emission value.

Continuous RVs Example

Ex: Elongation (in %) of steel plates treated with aluminum are random with probability density function:

$$f(x) = \begin{cases} \frac{x}{250}, & 20 < x < 30\\ 0, & otherwise \end{cases}$$

*note: $\frac{1}{2} \left(\frac{30}{250} + \frac{20}{250} \right) (10) = 1$

What proportion of steel plates have elongations less than 25%?

le, what is the probability of a randomly chosen steel plate treated with aluminum having an elongation less than 25%?

 $\frac{1}{2} \left(\frac{20}{150} + \frac{25}{250} \right) 5$ $\frac{1}{2} \left(\frac{45}{250} \right) 5 = 0.45$ $\frac{1}{500} \left(225 \right) = 0.45$

20

Most commonly used continuous RVs: Gaussian (Normal)

If X is Normal or "Gaussian", it has a pdf of: $f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$

where $E(X) = \mu$ and $VAR(X) = \sigma^2$

The Normal distribution:

- Is a good approximation for many real-life random processes
- Can realize any value between <u>¬♥</u>, <u>∞</u>.
- Is symmetric around μ
- The inflection points are at $\mu \pm 1\sigma$
- The total area under the curve is <u>1</u>
- The area under the curve between
 - $(\mu \sigma, \mu + \sigma)$ is about <u>...</u>
 - $(\mu 2\sigma, \mu + 2\sigma)$ is about .95 • $(\mu - 3\sigma, \mu + 3\sigma)$ is about <u>.997</u>

(For all normal populations)

Most commonly used continuous RVs: Gaussian (Normal) cont.

Suppose the weights of ants in a large population Y is well approximated by a Normal distribution with mean 3 and standard deviation 0.25. $Y \sim N(3, 0.25^2)$.

P(YL2.75)=16%

b. Outside what values are the most extreme 5% of

thts? 73-5 5%.

Y 1.5 and Y 73-5 5%.

3-2(.25) 2.5

Most commonly used continuous RVs: Gaussian (Normal) cont.

4=3

Standardized Units (z-scores):

 $z = \frac{x - \mu}{\sigma}$. (*Z score calculation can be applied to

non-normal X)

Translate back to population units:

$$\mathbf{x} = \mathbf{z} + \mathbf{k}$$

- Z scores tell use how many Standar deviations an observation is above/below the population mean
- Can compare standardized scores <u>QC r055</u> distributions to compare scores within their relative distributions

e.g. Scores on the SAT are well approximated by N(1500, 300^2) and scores on the ACT are well approximated by N(21, 5^2). Ann scored an 1800 and Tom scored 24 on the ACT. Who performed better relative to their fellow test takers?

$$z_A = \frac{1800 - 1500}{300} = 1$$
 $z_T = \frac{24 - 21}{5} = 0.6$

Most commonly used continuous RVs: Gaussian (Normal) cont.

The **Standard Normal** distribution:

$$Z = \frac{X - \mu}{\sigma} \sim N(\underline{\quad 0 \quad},\underline{\quad 1 \quad})$$

- Can realize any value between <u>- ←</u> , <u></u>
- Is symmetric around F(Z) = 0
- Has standard deviation of 1
- The total area under the curve is 1
- · The area under the curve between
 - (−1,1) is about <u>. 6 \$</u>
 - (-2,2) is about . 95
 (-3,3) is about . 997
- Can be used with tables to compute probability For ranges where endpoints are not multiples of

1,2,3 sd when data is normally distributed.

Standardized Units (z-scores)

$$Z = \frac{\chi - \lambda L}{\sigma}$$

Someone did a bunch of integration for us and calculated the probability below many standardized values. (Full table on Canvas)

How to read table:

- Values on Top Row and left column combine to be a zscore.
- Value in table where column and row intersect is the percent or values below that zscore.

Ex1: Percent of scores below a zscore of 1 is $P(z \le 1) = .8413$

Ex2: Percent of scores below a zscore of 1.24 is P(= 51.24) = .8925

Table of Standard Normal Probabilities for Positive Z-scores

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857

Suppose the weights of ants in a large population Y is well approximated by a Normal distribution with mean 3 and standard deviation 0.25. $Y \sim N(3, 0.25^2)$. DRAW THE PICTURE!

b. What percent of ant weights are above 3.45 mg?
$$P(\chi > 3.45) = P(Z > \frac{3.45 - 3}{.25}) = P(Z > 1.6) = \frac{1 - P(Z < 1.8)}{25}$$
c. What percent of ants have weights between 2.8 and 3.45 mg?

- .9641 - . 2119 = (D. 7522

Percentile and and z Critical Value

 k^{th} percentile/quantile (e.g. 80^{th}), K% of data at or below, (100-k)% above

Z-critical value z_a : for given a, find z_a such that the **right** tail area $P(Z \ge z_a) = a$

Suppose the weights of ants in a large population Y is well approximated by a Normal distribution with mean 3 and standard deviation 0.25. $Y \sim N(3, 0.25^2)$.

a. What is the critical value z value above which 20% of Z scores fall?

hat is the critical value z value above which 20% of Z scores fall?
$$Z_{13} = 0.84$$

Above what ant weight is the most extreme 10% of weights?

c. What weight is at the first quartile of ant weights? (-) VA(VE because left of minn)

More Continuous Distributions to Come:

Student's t-distribution

 \emph{F} -distribution

 χ^2 -distribution

For Tomorrow

- Homework 2 will be posted today (Thursday). Take a look and get started and post any questions you have on Pizza.
- Continue working on Quiz 1 due Friday 11:59pm.