Code: 13BS1002

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.TECH I SEMESTER REGULAR EXAMINATIONS, FEBRUARY-2014

ENGINEERING MATHEMATICS-II (Common to CE, ME, CSE & IT branches)

Time: 3 hours Max.Marks:70

PART-A

Answer all Questions

[10X1=10M]

- 1. a) Find a root x_2 lies between 2 and 3 for $x^3 2x 5 = 0$
 - b) Form Normal equations for each constant to fit the parabola $y = a + bx + cx^2$
 - c) With usual notations, Show that $\Delta^3 y_2 = \nabla^3 y_5$
 - d) Sate Newton-Cotes quadrature formula
 - e) Write Newton's Backward Interpolation formula
 - f) The Third approximation in Picards Method
 - g) Write Change of Scale Property
 - h) Find $L^{-1} \left[\frac{s+2}{s^2 4s + 13} \right] 2$
 - i) Form the Partial Differential Equation from $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
 - j) Write one dimensional heat flow equation

PART-B

Unit-I

- 2. a) Find a real root of the equation $x \log_{10}^{x} = 1.2$ by Regula Falsi method correct to 4 decimal Places
 - b) Fit a second degree parabola to the following data

X	0	1	2	3	4
Y	1	1.8	1.3	2.5	6.3

[6M+6M]

(OR)

- 3. a) Find by Newtons method, the real root of 3x = Cosx + 1
 - b) Predict the mean radiation dose at an altitude of 3000 feet by fitting an exponential curve $y = ab^x$ to the given data

Altitude (x)	50	450	780	1200	4400	4800	5300
Dose of	28	30	32	36	51	58	69
radiation(y)							

[6M+6M]

Unit-II

4. a) Prove with usual notations, that

i)
$$hD = \log(1 + \Delta) = -\log(1 - \nabla) = Sinh^{-1}(\mu\delta)$$

ii)
$$\left(E^{1/2} + E^{-1/2}\right) \left(1 + \Delta\right)^{1/2} = 2 + \Delta$$

iii)
$$\Delta = \frac{1}{2}\delta^2 + \delta \sqrt{\left(1 + \frac{\delta^2}{4}\right)}$$

b) From the following table, estimate the number of students who obtained marks between 40 and 45

Marks		30-40	40-50	50-60	60-70	70-80
Number	of	31	42	51	35	31
Students						

[6M+6M]

AR 13

SET-01

5. a) Given that

X	1.0	1.1	1.2	1.3	1.4	1.5	1.6
Y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=1.1 and x=1.6

b) Use Simpsons $\frac{1}{3}$ rd Rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking 7 ordinates

[6M+6M]

Unit-III

- 6. a) Find by Taylors series method the value of y at x=0.1 and x=0.2 to five places of decimals from $\frac{dy}{dx} = x^2y 1$, y(0) = 1
 - b) Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with initial condition y=1 at x=0, find y for x=0.1 by using Eulers method with h=0.02

[6M+6M]

(OR)

- 7. a) Using Runge Kutta method of Fourth order, Solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2, 0.4
 - b) Apply Milnes method to find a solution opf $y^{II} = x y^2$ in the range

 $0 \le x \le 1$ for the boundary condition y = 0 at x = 0

[6M+6M]

Unit-IV

- 8. a) Evaluate i) $L\left[e^{-t} \int_0^t \frac{Sint}{t} dt\right]$
 - ii) $L[t^2Sinat]$
 - b) Evaluate $\int_0^\infty t \ e^{-3t} Sint \ dt$ by using Laplace transform [6M+6M]

(OR)

AR 13

SET-01

- 9. a) Find the inverse Laplace transform of $\frac{2s^2-6s+5}{s^3-6s^2+11s-6}$
 - b) Find the Inverse Laplace transform of $\frac{s^2}{(s^2+a^2)(s^2+b^2)}$ using Convolution theorem

[6M+6M]

Unit-V

- 10. a) Form the partial differential equation by eliminating atibitrary function from z = f(x + at) + g(x at)
 - b) Solve $(x^2 yz)p + (y^2 zx)q = z^2 xy$ [6M+6M]
- 11. a) Solve $(mz ny)\frac{\partial z}{\partial x} + (nx lz)\frac{\partial z}{\partial y} = ly mx$
 - b) Solve $x^2p^2 + y^2q^2 = z^2$ [6M+6M]

AR13

SET-01

Code: 13HS1003

ADITYA INSTITUTE OF TECHNOLOGY AND MANAGEMENT, TEKKALI (AUTONOMOUS)

I B.Tech. I Semester Regular Examinations, February-2014 ENVIRONMENTAL STUDIES (Common to ECE, EEE)

Time: 3 hours Max Marks: 70

PART - A

Answer all questions [10X1 = 10M]

- 1. a) MOEF
 - b) Environmental Day
 - c) WHO stands for?
 - d) Ecology
 - e) A Renewable Resource is
 - f) Earth's lungs
 - g) Mycorrhizae
 - h) Red data book
 - i) Units of ozone layer
 - j) Primary Air Pollutant

PART - B

Answer one question from each unit

[5X12 = 60M]

Unit - I

- 2. a) Explain the scope of Research and Development in Environmental Studies.
 - b) What are the possible ways that we can create environmental awareness?[6M+6M]

(OR)

- 3. a) Write the causes and effects for floods? Define drought? Explain meteorological, agricultural and hydrological, socio economic effects of droughts?
 - b) Explain the Sustainable Water Management?

[6M+6M]

Unit - II

4. a) Explain the structural and functional components that play a vital role in an ecosystem.

b) Define Biodiversity? Explain the concept of Hotspots of Biodiversity [6M+6M]

(OR)

5. a) Describe the concept of Ecological succession? Briefly explain the concept on food chains, food webs and ecological pyramids.

b) Explain the concept of Endangered and endemic species of India

[6M+6M]

Unit - III

6. a) Explain the causes, effects and control measures for soil pollution

b) Write the causes, effects and control of the global warming.

[6M+6M]

(OR)

7. a) Explain the causes, effects and control measures for Air pollution

b) Write the causes, effects and control of ozone layer depletion.

[6M+6M]

Unit - IV

8. a) Explain the rain water harvesting and cloud seeding

[6M+6M]

b) Analyze various environmental and socio-economical impacts of mining activity.

(OR)

9. a) Wildlife protection Act.

b) Describe the role of an individual in prevention of pollution.

[6M+6M]

Unit – V

10. a) Define Population. How is it regulated?

b) Role of IT in Environment and Human Health.

[6M+6M]

(OR)

11. a) Explain the Environmental Documentation

[6M+6M]

b) Write the causes, effect and control of Occupational health problems in slum areas.