Innlevering 3 INF1080

Endre Wullum endrewu@ulrik.uio.no

16. september 2013

Oppgave 4.13

Følgende grupper av formler er ekvivalente:

1.
$$\neg(\neg A \lor B), \neg(A \to B), (A \land \neg B)$$

2.
$$\neg(\neg A \lor \neg B), \neg(A \to \neg B), (A \land B)$$

3.
$$\neg(\neg A \to B), (\neg A \land \neg B), \neg(A \lor B)$$

4.
$$\neg(\neg A \rightarrow \neg B), (\neg A \land B), \neg(A \lor \neg B)$$

Oppgave 5.3

- (a) Er hverken tautologi eller kontradiksjon ettersom enhver valuasjon som gjør P sann vil gjøre formelen usann, men enhver valuasjon som gjør P usann vil gjøre formelen sann. Altså er den både oppfyllbar og falsifiserbar.
- (b) Er en tautologi ettersom det ikke finnes noen valuasjon som kan falsifisere den.
- (c) Er hverken en tautologi eller en kontradiksjon ettersom enhver valuasjon som gjør P usann vil gjøre formelen sann, men en valuasjon som gjør P sann og Q sann vil gjøre formelen usann. Altså er den både oppfyllbar og falsifiserbar.
- (d) Er en tautologi ettersom det ikke finnes noen valuasjon som kan falsifisere den.

- (e) Er hverken en tautologi eller en kontradiksjon ettersom en valuasjon som gjør P usann, Q usann og R usann vil gjøre formelen sann. En valuasjon som gjør P sann vil gjøre formelen usann.
- (f) Er en kontradiksjon, ettersom det ikke finnes en valuasjon som kan gjøre formelen oppfyllbar

Oppgave 5.8

En formel med konnektivene $\land, \lor, \neg og \rightarrow \text{som}$ er ekvivalent med den gitte sannhetsverditabellen for $(F \oplus G)$ kan for eksempel være $(F \land \neg G) \lor (\neg F \land G)$.

Vi kan se at denne formelen også får følgende sannhetsverditabell:

F	G	$(F \land \neg G) \lor (\neg F \land G)$
1	1	0
1	0	1
0	1	1
0	0	0