NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

A Computer Code for Estimating Installed Performance of Aircraft Gas Turbine Engines

Vol. II - Users Manual

By Edward J. Kowalski and Robert A. Atkins Jr.

December 1979

Advanced Airplane Branch Boeing Military Airplane Company Seattle, Washington 98124

Prepared for

National Aeronautics and Space Administration NASA-Lewis Research Center

Contract NAS3-21238

(NASA-CR-159692) COMPUTER CODE FOR
ESTIMATING INSTALLED PERFORMANCE OF AIRCRAFT
GAS TURBINE ENGINES. VOLUME 2: USERS
MANUAL (Boeing Co., Seattle, Wash.) 444 p
Unclas
HC A19/MF A01
CSCL 21E G3/07 46244

FOREWORD

This report documents the work accomplished during NASA LeRC Contract No. NAS3-21238. It was the purpose of this contract to develop a supervisory computer program which would tie together routines (either presently existing or to be developed) which would access the installation of a propulsion system. The contract was divided into seven tasks:

- o Task A Data Base
- o Task B Supervisory Program
- o Task C Nacelle Weight and Drag
- o Task D Nozzle Boattail Drag
- o Task E Pitot Inlets
- o Task F Two-Dimensional Inlets
- o Task G Axisymmetric Inlets

In TASK A, standardized formats for:

- Inlet performance and drag
- were compiled for the data base described in this contract. In TASK B, a supervisory computer program was developed which evaluates the installation penalties associated with the inlets and nozzles of TASK A. The NASA NAVY Engine Program (NNEP), modified through the contract NAS3-21205 to predict bare engine weight, was used as this computer program's driver routine. The supervisory computer program also has the capability to determine the changes in inlet performance due to perturbations in engine cycle characteristics and/or inlet design parameters. In TASK C, computer procedures were developed for estimating nacelle weight and drag. In TASK D, a computer procedure was developed for estimating boattail drag for the nozzle data base of TASK A. In TASKS £, F, and G, a theoretically-based computer procedure was supplied to

estimate conceptual design, performance and weight for pitot inlets, mixed

and external compression axisymmetric and two-dimensional inlets.

Mr. L. J. Winslow was Program Manager for the Boeing Company. E. J. Kowalski was principal investigator. The following individuals contributed to the work accomplished during this contract: G. W. Klees, general consulting; R. A. Atkins, Jr., computer programming; S. G. Kyle and R. J. Pera, inlet performance; R. W. Rankin, inlet and nacelle weight; A. Hagen, A. Killinger, J. Welti, document preparation.

TABLE OF CONTENTS

				PAGE
	FOR	NARD		111
	LIST	OF ILI	LUSTRATIONS	ix
	LIST	OF TAI	BLES	хi
	NOME	ENCLATUR	RE AND SYMBOLS	xifi
1.0	INTR	ODUCTIO	ON .	1
2.0	PROGRAM DESCRIPTION			
3.0	PROG	GRAM USA	AGE	. 5
	3.1	Deck S	Setup	5
		3.1.1	JCL	5
		3.1.2	Data Structure	6
	3.2	Nameli	st Inputs	7
		3.2.1	NNEP Inputs (NAMELIST D)	9
		3.2.2	WATE-2 Input Variable definitions (NAMELIST	W) 24
			3.2.2.1 Length Indicators	24
			3.2.2.2 Mechanical Design Indicators	24
			3.2.2.3 Design Values	30
			3.2.2.4 Miscellaneous	39
		3.2.3	Installation Inputs (NAMELIST I)	41
		3.2.4	Inlet Design and Analysis Programs Input Definitions	45
			3.2.4.1 Two-Dimensional Design Program Input Variable Definitions (NAMELIST TD10)	47
			3.2.4.2 Axisymmetric Design Program Input	66

TABLE OF CONTENTS (Continued)

					PAGE
				Definitions (NAMELIST AXIIO)	
		3.2	.4.3	Isentropic Spike Design Input Variable	81
				Definitions (NAMELIST SPK00)	
		3.2	.4.4	Pitot Design Input Variable Definitions (NAMELIST PITOT)	90
		3.2.5 Der	ivativ	ve Parameter Input Variable Definitions	91
		(NAI	MELIS1	r der)	
		3.2	.5.1	Inlet Derivative Parameters	91
		3.2	.5.2	Afterbody Derivative Parameters	91
		3.2	.5.3	CFG Derivative Parameters	93
		3.2.6 Inle	et and	d Nacelle Weight Specifications	93
				(NAMELIST INWT)	
		3.2.7 Nac	elle V	Wetted Area Calculation	94
				(NAMELIST WET)	
4.0	PROG	RAM OUTPUT	DESCR	IPTION	95
	4.1	NNEP			95
	4.2	WATE-2			98
	4.3	Installati	on Pro	ogram (INSTAL)	98
	4.4	Derivative Processor			112
	4.5	Inlet Desi	gn and	d Analysis Programs	112
		4.5.1 Two	Dime	nsional Inlets	112
		4.5.2 Axi	symme	tric Inlets	118
		4.5.3 Ise	ntrop	ic Spike Inlets	122
		4.5.4 Pit	ot In	lets	125
	4.6	Inlet and	Nace1	le Weight	128
	4.7	Nacelle Dr	aq		128

			TABLE OF CONTENTS (continued)	PAGE
5.0	INPL	IT EXAMP	PLES	129
	5.1	Subsor	nic Engine Application	129
	5.2	Supers	sonic Engine Application	129
	5.3	Deriva	ative Procedure Application	, 129
6.0	OVER	ALL PRO	DGRAM FLOW .	158
	6.1	Deriva	ative Processor Program Logic	158
7.0	PROG	RAMS AN	ND SUBROUTINE DESCRIPTIONS	193
	7.1	NNEP L	ibrary	193
	7.2	WATE-2	2 Library	195
	7.3		llation Library	196
	7.4	Deriva	ative Processor Library	198
	7.5	Pitct	Library	201
	7.6	Two-Di	imensional Library	202
	7.7	Axisyn	mmetric Library	209
8.0	APPE	NDIX -	TEST CASES	215
	8.1	Subsor	nic Short Duct Turbofan	217
		8.1.1	Database Inlet 'M9SUB'	218
		8.1.2	Analytical Inlet	258
	8.2	Supers	sonic Mixed Flow Afterburning Turbofan	273
		8.2.1	Database Inlet 'ASF', Database Nozzle 'ADENAB'	274
		8.2.2	Database Inlet 'TM1B3', Database Nozzle 'DRP1'	331
		8.2.3	Database Inlet 'FB', Database Nozzle 'ADENAB'	363
		8.2.4	Database Inlet 'AST', Database Nozzle 'DRP1'	394
REFE	RENCE	:s		425

LIST OF ILLUSTRATIONS

NUMBER	DESCRIPTION	PAGE
1	Macro Flow of Data Paths	2
2	Typical JCL Example	8
3	WATE-2 - Typical Flowspath Input for Engine Length	25
	Calculation	
4	Matrix of Inlet Maps	42
5	Matrix of Nozzle/Aftbody Maps	43
6	Two-Dimensional Inlet Input Schematic	58 - 65
7	Axisymmetric Inlet Input Schematic	73-80
8	Spike Inlet Input Schematic	86-89
9	WATE-2 Short Form Output	99
. 10	WATE-2 Long Form Output	99
11	WATE-2 Debug Output	100 - 106
12	WATE-2 Output Units	. 107
13	WATE-2 Engine Plot	108
14	INSTAL Output	109
15	Derivative Processor Output	113
16	PITOT Inlet Design Output	126 - 127
17	NNEP Connectivity Flow	159
18	WATE-2 Connectivity Flow	160
19	Installation Connectivity Flow	161
20	PITOT Connectivity Flow	162
21	Derivative Processor Connectivity Flow	163
22	TD00 Connectivity Flow	164
23	AXIOO Connectivity Flow	165
24	SPK00 Connectivity Flow	166
25	Flow Chart for Inlet Derivative Procedure - Step 1	167-171
26	Flow Chart for Inlet Derivative Procedure - Step 2	172-174
27	Flow Chart for Inlet Derivative Procedure - Step 3	175
28	Flow Chart for Inlet Derivative Procedure - Step 4	176-177
29	Flow Chart for Inlet Derivative Procedure - Step 5	178-180

LIST OF ILLUSTRATIONS (Continued)

		PAGE
30	Flow Chart for Inlet Derivative Procedure - Step 6	181
31	Flow Chart for Inlet Derivative Procedure - Step 7	182
32	Flow Chart for Nozzle/Aftbody Derivative Procedure	183-185
33	Flow Chart for CFG Derivative Procedure for Round C-D Nozzle	186
34	Flow Chart for CFG Derivative Procedure for Round Plug Nozzle	187
35	Flow Chart for CFG Derivative Procedure for 2-D, C-D Nozzle	188
36	Flow Chart for CFG Derivative Procedure for 2-D, C-D Nozzle	189-190
37	Fiow Chart for CFG Derivative Procedure for 2-D	191-192

LIST OF TABLES

TABLE		PAGE
I	Wate-2 DESVAL/DEFAUL Array	31
II	WATE-2 DEFAUL Array	32
III	WATE-2 Typical Range of Input Values for DESAUL/DEFAUL	32
IV	WATE-2 DESLIM Array, DEFAUL Type and Values	33
٧	INOZ Array Values	46
VI	Input Example - Subsonic Pitot Inlet (Database)	130-131
VII	Input Example - Subsonic Pitot Inlet (Analytical)	132-133
IIIV	Input Example - Supersonic Pitot Inlet (Database)	134 - 135
IX	Input Example - Two-Dimensional Inlet (Database)	136 - 137
X	Input Example - Two-Dimensional Inlet (Analytical)	138-140
XI	Input Example - Axisymmetric Inlet (Database)	141 - 142
XII	Input Example - Axisymmetric Inlet (Analytical)	143 - 145
XIII	Input Example - Inlet Derivative	146 -147
	Procedure Application - Design Mach Number	
XIV	Input Example - Inlet Derivative Procedure	148 - 149
	Application : Cow! Bluntness	
XV	Input Example - Nozzle/Aftbody	150 - 151
	Derivative Procedure Application - Tail Fin For and	
	Aft Location Ratio	
IVX	Input Example - Nozzle/Aftbody	152 - 153
	Derivative Procedure Application - Cross-Sectional	
	Area vs. Station	
XVII	Input Example - Nozzle C _F Derivative Procedure	154 - 155
	Application - Plug Half Angle	
XVIII	Input Example - Nozzle C _F Derivative Procedure	156 – 157
	Application - Aspect Ratio	
XIX	Test Cases - Inlet/Fngine/Nozzle Combinations	216

SYMBOLS AND NOMENCLATURE

A

Area, $ft^2 (m^2)$

Ac

Inlet capture area, ft²(m²)

ALT

Altitude, ft(m)

A_o

AoTAoBLD

A_{OBLD}

Freestream tube area of bleed air entering the inlet, ft $^2(m^2)$

 $\mathsf{A}_{\mathsf{O}_{\mathsf{BYP}}}$

Free stream tube area of bypass air entering the inlet, $ft^2(m^2)$

A_oE

Free stream tube area of engine demanded air entering the inlet, $ft^2(m^2)$

 $^{A_{o_{\underline{1}}}}$

THE CONTRACTOR

Free stream tube of air entering inlet, $\operatorname{ft}^2(\operatorname{m}^2)$

A_OSPL

Free stream tube of air entering inlet, $ft^2(m^2)$

AR

Aspect ratio

A	Wetted area, $ft^2(m^2)$
A ₁₀	Maximum cross sectional area, $ft^2(m^2)$
c _D	Drag coefficient
c _{FG}	Nozzle gross thrust coefficient
C _P	Pressure coefficient
c ₀	Angularity loss coefficient
C _{DPAP}	Incremental drag coefficient due to tail fore-and-aft location
C _{DR}	Incremental drag coefficient due to radial tail orientation
D	Drag, 16 _f (Nt)
	Diameter, ft(m)
9 0	Acceleration of gravity, 32.174 ft/sec ² (9.806 m/sec ²)

h Height, ft(m)

 ${\sf IMS}_{\sf T}$ Integral mean slope parameter, truncated

$$IMS_{T} = -\frac{1}{(1 - A_{9}/A_{10})} \int_{A_{9}/A_{10}}^{1.0} \frac{d(A/A_{10})}{d(L/D_{eq})} d(A/A_{10})$$

L Length, ft(m)

M Mach number

M_s Started Mach number

P Pressure, $1b_f/ft^2(Nt/m^2)$

PS Power setting

q Dynamic pressure, $1b_f/ft^2(Nt/m^2)$

r/D Ratio of inlet 1/p radius to inlet

highlite diameter

R_e Reynolds number

T Temperature, OR(OK)

ec)

$$W_{COR}$$
 Corrected airflow $-\frac{w\sqrt{\theta}}{8}$, $1b_{m}/sec(kg/sec)$

$$\Theta_{N}$$
 Wedge half angle (2D nozzle)

Plug half angle (round nozzle)

Θ_R Radial tail orientation

Subscripts

AB Aftbody

AC Capture area

ADD Additive

AMB Ambient

BASE, B Base flow region

BD Bypass door

BLC Bleed

BYP Bypass

CD Convergent-Divergent

CON Convergent

D Design

E Exit

EFF Effective

. ENG Engine

f Flap

GEO Geometric

HI Hilite

lip Inlet lip

MAX Maximum

MIN Minimum

MOM · Momentum

PRI Primary

xviii

REF Reference SEC Secondary SPILL Spill T **Throat** Total 0 Local conditions for inlet, ambient conditions for nozzle 1 Inlet entrance 2 Compressor face 8 Nozzle throat 9 Nozzle exit

1.0 INTRODUCTION

Under NASA LeRC Contract NAS3-21238, a computer program has been written which ties together existing methods and methods developed under this contract which calculate:

- o aircraft gas turbine engine performance
- o aircraft gas turbine engine weight and dimensions
- o inlet internal performance, drag and weight
- o nozzle internal performance and drag
- o nacelle drag and weight

The purpose of this Manual is to provide a user oriented description of the program input requirements, program ouput, deck setup, and operating instructions. It also provides examples of tabular input tables that can be used as a test case to exercise the major calculation paths of the installation program. An example of an output from a typical calculation session is also included.

The computer code has been written in USASI FORTRAN VI to be compiled with the FORTRAN G compiler on the IBM 360/67 Full Duplex System located at the NASA LeRC.

Figure 1 shows the data flow for the installation program.

Figure 1 Macro Flow of Data Paths

2.0 PROGRAM SPECIFICATIONS

The computer code is essentially comprised of separate programs which are executable within the NNEP structure. These separate programs (or subprograms) are the following:

- a. The NNEP code
- b. The WATE-2 code
- c. The inlet and nozzle/aftbody installation code
- d. The automated procedures for the design and analysis of 2-D and axisymmetric inlets
- e. The automated procedure for the design and analysis of pitot inlets
- f. Inlet and nacelle weight code
- g. Nacelle drag code

All of the case inputs to the code are in NAMELIST input format for ease of user input. There are two data bases which may be used to select an appropriate engine/inlet/nozzle/aftbody configuration. The engine data base is read from an externally attached dataset into local core storage when the code is being executed. The inlet and nozzle/aftbody data base, on the other hand, is an externally attached data set and is read sequentially to find the appropriate inlet nozzle and aftbody desired for a particular problem.

The program occupies approximately 180CK bytes storage on the IBM 370 MVS computer system. The source code is compiled using the FTG1C compiler. This compiler was selected due to the difficulty of compiling the TD42 2D analysis program.

3.0 PROGRAM USAGE

The computer code has been written to utilize NAMELIST input except for the title card, label cards and all performance maps. The following sections show the JCL, data input logic, and the input required.

The computer code accepts all case input from Unit 9 and transfers single contiguous groups of NAMELIST inputs to Unit 8 for re-reading by the input routines. The output from the program is on Unit 10. Units 12 and 51 are used for the NNEP engine and the installation map data bases, respectively.

3.1 DECK SETUP

The inputs required to run the program along with the necessary JCL are included in the next two sections. A job setup consists of the necessary JCL followed by the data bases to be run with the data residing on FT09F001.

3.1.1 JCL

The IBM 370 JCL required to run the program is shown in Figure 2. In this typical example, the program load module is named INT2 and is a member of the partitioned data set XBP001.LOAD.

Aside from scratch files and dummy files, the required DD names to run the code for Estimating the Installed Engine Performance are as follows:

FT08F001 a temporary file which has a single NAMELIST grouping on it an any one time

FT09F001 all the NAMELIST inputs are included on this file.
NOTE: the logical record length for this file is 80.

FT07F001 Dummy file for intermediate output

FT10F001 this file contains the listed output from a program execution

FT12F001 this file contains the NNEP engine component maps

FT18F001 this scratch file will contain a CFG table in the format

required by the NNEP engine data base

FT51F001 this file is the inlet, aftbody, CFG and Delta CD map configurations

The user should use the JCL shown in Figure 2 as the basis for program execution. Aside from data set name differences, the logical record lengths and block sizes should remain the same.

3.1.2 DATA STRUCTURE

This section includes a macro flow chart (Figure 1) of the data flow to run the code. The major decision paths as well as the NAMELIST data blocks required at each path are shown. All data described is on Unit 9.

3.2 NAMELIST INPUTS

The first card read from the input file (Unit 9) is a title (or label) card and can be 60 characters in length.

All further input is entered via NAMELIST statements. Data is read in on Unit 9 and transferred to Unit 8 until a &END card is encountered. The program then reads from Unit 8 using NAMELIST read statements.

```
00210 // EXEC PGM=INT2.REGION=900K
00220 //STEPLIB DD DSN=XBPOO1.LOAD, DISP=SHR
00230 //FT01F001 DD DCB=(RECFM=VS,BLKSIZE=10000),
00240 //
           SPACE=(20000,(2,1)),UNIT=SYSDA,DISP=(NEW,DELETE)
00250 //FT02F001 DD DCB=(RECFM=VS,BLKSIZE=10000),
00260 //
           SPACE=(20000,(2,1)),UNIT=SYSDA,DISP=(NEW,DELETE)
00270 //FT03F001 DD DCE=(RECFM=VS, 6LKSIZE=10000),
00280 //
           SPACE=(20000,(2,1)),UNIT=SYSDA,DISP=(NEW.DELETE)
00290 //FT04F001 DD DUMMY
00300 //FT05F001 DD DUMMY
00310 //FT06F001 DD SYSOUT=A
00320 //FT07F001 DD SYSOUT=A.DCB=(LRECL=133.BLKS1ZE=1729.RECFM=FB)
00330 //FT08F001 DD DCB=(LRECL=80, BLKSIZE=1200, RECFM=FB),
00340 // SPACE=(2400,(2,2)),UNIT=SYSDA,DISP=(NEW,DELETE)
00350 //FT09F001 DD DSN=XBP001.N10.DATA, DISP=OLD,
00360 //
           DCB=(LRECL=80.BLKSIZE=1200.RECFM=FB)
00370 //FT10F001 DD SYSOUT=A,DCB=(LRECL=133,BLKSIZE=1729,RECFM=FBA)
00380 //FT11F001 DD DLB=(LRECL=7300,RECFM=VBS,BLKSIZE=7300),
00390 //
           SPACE=(7300,(2,1)),UNIT=SYSDA,DISP=(NEW,DELETE)
00400 //FT12F001 DD DSN=XBP001.FT12.MAPDAT,DISP=MOD
00410 //FT13F001 DD DCB=(LRECL=133,BLKSIZE=1596,RECFM=FBA),
00420 //
          SPACE=(1596,(50,50),UNIT=SYSDA,DISP=(NEW,DELETE)
00430 //FT14F001 DD DUMMY
00440 //FT15F001 DD DCB=(LRECL=133,BLKSIZE=1596,RECFM=FBA).
          SPACE=(1596,(50,50)),UNIT=SYSDA,DISP=(NEW,DELETE)
00451 //FT18F001 DD UNIT=SYSDA, SPACE=(CYL, (2,2)).
00452 //
          DCB=(LRECL=80,BLKSIZE=80,RECFM=FB),
00453 // DISP=(NEW, DELETE)
00460 //FT51F001 DD DSN=XBP001.MAPX1.DATA.DISP=OLD.
00470 // DCB=(LRECL=80,BLKSIZE=80,RECFM=FB)
```

Figure 2 Typical JCL Example

3.2.1 NNEP INPUTS (NAMELIST D)

This section provides a user $\ensuremath{\mathsf{manual}}$ for execution of the NNEP engine cycle analysis code.

VARIABLE	DEFINITION
NCOMP	the total number of components including controls that will be configured through all the modes. Note that it is not necessary that any one mode use all of the components. Note also that if a component is used in more than one mode, its number must not change from mode to mode and that the same number may not be used for more than one component.
NOSTAT	the number of stations configured through all of the modes. It is NOT necessary that these remain the same through all modes, but it is advisable to keep as many the same as possible for clarity.
NMODES	the total number of modes to be configured. (Default value is 1)
MODESN	designates the design mode. (Default is 1)
IMAY	<pre>input IWAY=1 if design point (Default is 1 for first point, and 0 for all other points)</pre>
TABLES	TRUE if maps are used, FALSE if not. (Default:T)
ITPRT	<pre>if = 0 do not print tables (maps) on output if = 1 print tables on output (Default is 0)</pre>
ACODE	<pre>if = 1 normal running if = 2 debug running (output after each pass) if = -1 or -2, same as +1 & +2 BUT FULL PASS thru cycle is made on each pass if = 3 indicates that a sequence of design points follows (shortens output) and obviates need to supply a &D IWAY=1 &END for each case.</pre>
LABEL	a control for printing a label at the top of a page to identify the point being run. Set LABEL=F until off-design points are run. Then if labels are desired, set LABEL=T and follow the NAMELIST data with the label card (similar to the title card). See also PINPUT. (Default is F)

VARIABLE	DEFINITION
PUNT	set PUNT=T to use last good point as set of first guesses for next point. It is advisable to always have PUNT=T. (Default:T)
LONG	control for printing of history of the convergence process. It is advisable to have LONG=T for new problems. (Default:T)
PINPUT	a control for causing the NAMELIST input for a case to be printed on the output sheets prior to the results for that case. PINPUT causes a write on Unit 8 which must therefore be DDEF'd. If PINPUT is FALSE, no NAMELIST output will occur. (Default:T)
NCASE	set = to 1 for new design case with NEW KONFIG (Default initially =1, then set to 0)
DRAW	set = T for figure to be drawn (Default:F)

Approximate NAMELIST installation effects are included in the orginal NNEP program. The following inputs must appear on the first set of data cards if approximate installation effects are desired. These NAMELIST inputs are defaulted so that the approximate installation calculations must be requested. These simplified installation effects are independent of the INSTAL computer code.

set = T to punch data cards for AMAC (Default:F)

AMAC

€

.1

J

VARIABLE	DEFINITION
BOAT	set BOAT=T for boattail drag calculations
SPILL	set SPILL=T for spillage & lip drag for inlet
INLTDS	set=T at operating condition for sizing the inlet (i.e. may or may not be set T of first set of cards)
SPLDES	amount of design spillage when INLTDS=T (fraction)
AMINDS	FLIGHT Mach number at point where INLTDS is TRUE

DEFINITION BLMAX no longer an input. The inlet bleed is now set equal to .016 * am**1.5 BPMAX maximum inlet bypass flow fraction (usually at a Mach number of 1.6) not currently used.

The following NAMELIST D inputs are required to access the INSTAL and WATE-2 codes:

	DEFINITION
=0 =1	Do not turn on installation calculation Turn on installation calculation
=0 =1	Run NNEP with the &D inputed inlet recovery Run NNEP with the inlet recovery determined by the installation routine
	Maximum, minimum, nozzle throat area to be experienced in the Mach number/altitude flight regime (XNOZFG=0, for a turbojet, mixed flow turbofan, or coplanor nozzle turbofan only).
=0 =1 =2 =3 =4	Do not do weight calculation Turn on the thermodynamic parapeter maximization of the WATE code. Do not do weight calculation Do weight calculation using maximum thermodynamic parameters Do weight calculation but do not write maximum conditions for the components Do weight calculation with airflow scaling
	=0 =1 =0 =1 =2 =3

If TABLES=T, the code will now go to Unit 12 and read in the NNEP cycle component performance maps. At this point we have told the code how many modes are to be read in. We will now read in the configuration data and specifications for these modes. This is accomplished in NNEP through a DO LOOP. After NMODES of data have been read in, the program will run MODESN as the design point.

Thus we now input &D MODE=1, and read in the data for mode 1. We end this read with &END, then input &D MODE=2, etc.

C

Each of the component types has a different set of input variables. The form, however, is invariate except for controls. Each of these types will be discussed in sections 3.2.1.1 through 3.2.1.14.

For all types except controls and optimization variables, data is read in the following form.

KONFIG(1,N)='NAME',JM1,JM2,JP1,JP2,
SPEC(1,N) or SPECS(1,N)=V1,V2,.....V15 (both names work)

where N is the component number

JM1 is the primary upstream airflow station number for flow components or the first component hooked onto a shaft.

is the secondary upstream station number, or the second component hooked onto a shaft.

ن

JP1 is the primary downstream station number, or the third component hooked onto a shaft

JP2 is the secondary downstream station number, or fourth component hooked onto a shaft.

NAME identifies the type of component and is entered in single quotes as follows:

'INLT' = inlet

'DUCT' = duct or burner

'COMP' = compressor

'TURE' = turbine

'HTEX' = heat exchanger

'SPLT' = splitter

'MIXR' = mixer

'NOZZ' = nozzle

'WINJ' = water injector

'LOAD' = load

'SHFT' = shaft

'CNTL' = control

'OPTV' = optimization variable

'LIMV' = limit variable

SPECS are now used to fill an array DATINP inside NMEP. Some DATINP are not required as inputs or have their values changed internally.

By setting the variable ENDIT=1 any place in an input dataset, execution will terminate at the PREVIOUS case.

3.2.1.1 'INLT' - JTYPE=1

VARIABLE

DEFINITION

(a) If Del T is to be added to Tos, Altitude (SPEC(9)) cannot be zero, thus for SLS, set SPEC(9) = .00001

NOTE: MACH, ALTP, and ETAR can replace SPECS 5, 9, and 6

3.2.1.2 <u>'DUCT' - JTYPE=2</u>

Component type 'DUCT' is used for ducts, burners, and afterburners

VARIABLE

DEFINITION

```
SPEC( 1) = del P/P pressure drop or Table ref number
SPEC( 2) = optional, design duct Mach number. see (a)
SPEC( 3) = BLANK
SPEC( 4) = burner outlet temp -R if DUCT-BLANK
SPEC( 5) = burner efficiency or Table reference number if
duct blank
SPEC( 6) = fuel heating value or Table ref. number - usually
18,300 if DUCT-BLANK
SPEC( 7) = cross sectional area of duct or burner (see a)
SPEC( 8) = ratio of inlet entrance bleed flow/total bleed
available -DUCT only
SPEC( 9) = exit bleed/total flow
SPEC(10)
SPEC(11)
through

BLANK
SPEC(15)
```

(a) If SPEC(2) is input, then cross sectional area will be calculated at the design point. This area is then used to calculate momentum pressure drop.

3.2.1.3 'COMP' - JTYPE=4

VARIABLE	DEFINITION
SPEC(1) = SPEC(2) =	R value used to read Tables comp. bleed flow/total flow
	scale factor on N/18 ≠ O (usually=1) N/18 from map* scale f
SPEC(4) =	Ways or Table ref. no. # 0
	Scale f on WIE/5 # 0 (usually = 1) WIE/5 actual scale factor = Wcomp/Wmap
SPEC(6) = 1	ncomp. adia. eff or Tab. #
SPEC(7) = (ncomp. adia. eff at design scale f on n for maps
SPEC(0) =	comp PR or table ref. no. scale f on pressure ratio if SPEC(13) is input, *9
	is calculated scale f
SPEC(10) =	3rd dim. arg value on map
	fractional bleed horsepower loss due to interstage bleed = 0 means all bleed after full compression
SPEC(12) =	desired adia. eff. at des.pt.
SPEC(13) =	*desired PR at R and N/10
SPEC(14) =	N/TE for design pt. on maps BLANK

overrides SPEC(9) if nonzero. If Tables are not used leave SPEC(9)=0.

3.2.1.4 'TURB' - JTYPE=5

VARIABLE	DEFINITION
SPEC(2) = SPEC(3) =	pressure ratio at design point on maps total bleed into turbine/total bleed available scale f on N/10 (usu. =1) calculated scale f to
SPEC(4) = SPEC(5) =	match speeds at des.pt. WJT/P or Table ref. no. scale f on WJT/P (usu. =1) calculated scale f to match airflow at des.pt.
SPEC(7) =	turb adia. eff or Tab. no. design turb. adia. eff. scale f to get design eff at design point on maps
SPEC(9) =	scale f on PR (usually=1) scale f calculated to get desired PR on map turb. bleed flow at ent./total bleed flow
SPEC(11) =	3rd dim. arg value on map desired n at design pt. N/16 at design pt. on map
SPEC(13) = SPEC(14) =	turbine horsepower split (usually=1) **factor for cooling type **number of turbine stages

**COOLING CALCULATIONS

In order to calculate bleed requirements, the following procedures are to be followed:

CALBLD is set TRUE where bleed requirement is to be determined.

A control must be set to vary SPEC(2) of the compressor where bleed is being removed to drive 'PERF' 15 to zero.

Your other controls may or may not be turned on - make sure you set them to operate the way you want them to! For example, do you want BPR to be changing at the design point?

SPEC(14) is set to indicate type of cooling:

SPEC(14) = 1.000 = Full coverage film cooling (Default value)

= 0.885 = Transpiration cooling

= 1.173 = Convection + film cooling

= 1.886 = Convection cooling

SPEC(15) = number of turbine stages and is only used in sizing bleed requirements. (Default is 1 stage)

ELIFE = desired engine life (Default 10000 hrs.)
YEAR = year of first service (Default 1985)

For all other cases after sizing the bleed, you MUST set SPEC(9) of the bleed control to ZERO and CALBLD=.FALSE.

3.2.1.5 'HTEX' - JTYPE=6

VARIABLE

DEFINITION

SPEC(1) = del P/P or Tab. ref # Main SPEC(2) = del P/P or Table # Sec'd SPEC(3) = del T rise (guess value) SPEC(4) = effectiveness or Tab ref # SPEC(5) = scale f of effectiveness SPEC(6) through SPEC(15)

3.2.1.6 'SPLT' - JTYPE=7

VARIABLE

DEFINITON

SPEC(1) = bypass ratio (W bypass/W main)
SPEC(2) = del P/P main stream
SPEC(3) = del P/P 2nd. stream
ALL REST BLANK

WARNING: The program expects each splitter to result in an extra nozzle or a mixer. If such is not the case, use a DUCT with: SPEC(1,)=8*0, BPR, where BPR is the desired bypass flow/total flow.

3.2.1.7 'MIXR'-JTYPE=8

VARIABLE

DEFINITION

Ù

1)

- SPEC(1) = inlet area of main flow not needed if SPEC(3) is specified inlet area of main flow
- SPEC(2) = inlet area of secondary not needed if SPEC(3) is specified
- SPEC(3) = inlet area of secondary total to static pressure ratio at main flow inlet if > 1, if < 1 = Mach # (at design point)total to static pressure ratio (calculated if both SPEC(1) & SPEC(7) given
- SPEC(4) = velocity coefficient on mixed flow velocity 1=ideal, <1=less than id.
- SPEC(5) = if=1 total inlet area is held fixed as 2nd area varies. (see Note). If=0 runs as before.
- SPEC(6)] through }= BLANK SPEC(15)

NOTE: To simulate a VABI set SPEC(5)=1. Then as you change the secondary inlet area either through a control or OPTV, the primary area will adjust to maintain fixed total. The primary area may NOT be varied - it will be over-ridden.

'NOZZ' - JTYPE=9 3.2.1.8

VARIABLE

DEFINITION

- SPEC(1) = flow area (in2), exit for conv., throat for C-D nozz calc. flow area at des.pt.
- SPEC(2) = flow coeff. or Tab. ref. # SPEC(3) = BLANK
- SPEC(4) = nozz exit static pressure 1b/in2 (if 0 see SPEC(9)) nozz exit static pressure or component no. (see 9)
- SPEC(5) = Cv,vel. coeff or Tab #
 SPEC(6) = switch,=0=conv,=1=C-D
- SPEC(7) = area switch,=0 fix area to input value, =1 vary area to mach flow required (see a)
- SPEC(8) = BLANK
- SPEC(9) = if SPEC(4)=0, set SPEC(9) to component # of inlet
- SPEC (10)
- through = BLANK
- SPEC(15)
- (a) When running duct or afterburning cases, SPEC(7) is usually set = to 1 after a dry case has been run. Be sure to reset to 0 before a new dry case is attempted.

3.2.1.9 'WINJ' - JTYPE=3

A reasonable approximation to water injector results is now available. Cp. R, and gamma are changed as if the water was fuel. No map changes are built in.

VARIABLE DEFINITION SPEC(1) = water/airflow ratio SPEC(2) = fraction vaporized SPEC(3) = pressure drop SPEC(4) = saturation switch, O=use SPEC(1),1=saturate SPEC(5) through SPEC(15) BLANK

NOTE: To turn ON the water injector, SPEC(1) MUST be non-zero. The input value of SPEC(1) will be used unless SPEC(4) is equal to 1 in which case SPEC(1) will be over-ridden by the saturation value.

To turn OFF the water injector, set SPEC(1) to ZERO. Even though SPEC(4) may be equal to 1 (saturation) NO water will be injected.

DEFINITION

3.2.1.10 'SHFT' - JTYPE=11

VADTARIE

VARIABLE	DEFINITION	
SPEC(1) =	actual shaft rpm	
	gear ratio JM1 component	comp. rpm/shaft rpm
SPEC(3) =	gear ratio JM2 component	comp. rpm/shaft rpm
	gear ratio JP1 component	comp. rpm/shaft rpm
	gear ratio JP2 component	comp. rpm/shaft rpm
SPEC(6) =	meent cirt one component	actual HP/ideal HP
	mech. eff. JM2 component	actual HP/ideal HP
	mech. eff. JP1 component	actual HP/ideal HP
SPEC(9) =	mech. eff. JP2 component	actual HP/ideal HP
SPEC(10)	2. 2. 	
	BLANK	
SPEC(15)		

NOTE: If one shaft is to be connected to another shaft in order to have more than 4 components on the same shaft, then: the LOWER component number shaft must be the FIRST component of the HIGHER number shaft. At least one TURBINE must be on the HIGHER number shaft. The control on horsepower balance must vary the SHAFT SPEED of the LOWER number shaft to drive DATOUT(8) of the HIGHER number shaft to ZERO!

3.2.1.11 'LOAD'-JTYPE=10

VARIABLE

DEFINITION

SPEC(1) = load HP (negative) or Table reference number SPEC(2) = propeller effic. or 0. SPEC(3) = thrust/SHP at SLS ALL THE REST ARE BLANK

NOTE: there are no JM1, JM2, JP1, JP2 numbers on the KONFIG card, thus: KONFIG(1,N)='LOAD',

3.2.1.12 'CNTL' - JTYPE=12

As previously mentioned, the SPECIFICATION and KONFIG cards for controls differ from those of the other "components"

The configuration card reads:

KONFIG(1,N)='CNTL',

The specifications are read in as follows: SPCNTL(1,N)=N1,N2,NAME,N3,N4,VALUE,TOL,MINV,MAXV

Where:

N1 = the DATINP(N1) of N2 which is to be varied

N2 = the component number of the component being varied

NAME = 'STAP' if station property (STATP)

= 'DOUT' if DATOUT

= 'PERF' if performance property

N3 = number of staton property or DATOUT(N3)

or PERFOR(N3)

N4 = flow station number if 'STAP'

= component number if 'DOUT'

= 0 if 'PERF'

VALUE = value to be achieved

TOL = tolerance as fraction of value, if =1, default value of .001 will be used, (0.0005 if Optimizing) if = zero, control is turned off

MINV = minimum allowable value - if zero ignored MAXV = maximum allowable value - if zero ignored

,)

For PERFOR or STATP, the following Table applies:

N3	PERFOR	STATP
1	total engine airflow	weight flow
2	gross jet thrust	total pressure
3	fuel flow	total temperature
4	net jet thrust	fuel to air ratio
5	TSFC	corrected flow W ଏ T/P=1.54972555 + Wଦି/ଧ
6	net thrust/airflow	Mach number
7	total inlet drag	static pressure
8 9	total brake shaft HP	interface corrected flow error
9	net thrust with installation drags	
10	net SFC	
11	<pre>inlet drag (lip + spillage)</pre>	
12	boattail drag	

You would read the SPCNTL card as follows:

Vary DATINP(N1) of component N2 to make either

a) station property (N3) at flow station(N4) equal to VALUE with tolerance TOL; or

b) DATOUT(N3) of component(N4) equal to VALUE with tolerance TOL; or

c) performance property(N3) equal to VALUE with tolerance TOL

NOTE: in the case of 'STAP' and 'DOUT' controls, N3 will usually equal 8
(flow interface error for STAP, static pressure difference in mixers, delta T error in HX's and net HP error in shafts)

if TOL=O. the control is turned off, to turn it back on see below. SPCNTL input can ONLY be used at the DESIGN POINT. Off-design point data is read in with SPEC data as below.

SPEC(1) = fraction of VALUE used for marching (see MARCHING)
SPEC(2) = minimum allowable value
SPEC(3) = maximum allowable value
SPEC(4) = N1
SPEC(5) = VALUE
SPEC(6) = N3 if 'STAP', otherwise BLANK
SPEC(7) = N3 if 'DOUT', otherwise BLANK
SPEC(8) = N3 if 'PERF', otherwise BLANK
SPEC(9) = TOL, if = 0, control inactive
if value given for TOL, then
control is activated

3.2.1.13 'OPTV' - JTYPE=13

The ability to optimize variables is now possible in NNEP. The form of the KONFIG card for an 'OPTV' is as follows:

KONFIG(1,N)='OPTV',0,0,NC,0,

where NC is the number of the component having the independent variable

The specifications are read in as for normal components

There are additional inputs to NNEP when 'OPTV' components are present. These are:

TOLOPT - Criteria of convergence on DEPENDENT variable.
Default value is 0.0002

NJOPT - Component number which indicates the location of the dependent variable (if 0, the dependent variable is not a DATOUT parameter)

NVOPT - 0 for minimizing, 0 for maximizing if NJOPT = 0, then NVOPT is a value of 1 to 12 indicating which performance property is the dependent variable

if NJOPT = 0, then NVOPT has a value of 1 to 9 indicating which DATOUT of component NJOPT is the dependent variable

To turn off the optimization, NVOPT must be set to 0

As an example of the use of an 'OPTV', let us assume that we have MARCHED to Mach 1.4 at 40000 feet and then throttled back to 50 percent F/Wa.

٠,٠

J

We can now set SPEC(1,20)=1 to hold the F/Wa at the present value. If we want to minimize the SFC holding F/Wa constant and optimizing TIT, we would do the following.

Assume that component 5 was the main burner, and that we have used only 20 components. We would have created at the beginning another component as follows.

KONFIG(1,21)='OPTV',0,0,5,0,SPEC(1,21)=0,0,0,4,0,0,0,0,0,

which says that DATINP(4) (burner outlet T) of component 5 (the main burner) is the independent variable. There is no minimum value or maximum and since SPEC(9)=0, it is OFF

Now we set SPEC(9,21)=1 and NVOPT=5 to minimize SFC
The max increment in TIT would be = 50 degrees in 1 step

Limit Variables

It is now possible to specify minimum and maximum allowable values for any DATOUT, STATION PROPERTY, or PERFORMANCE PROPERTY.

This ability already exists for CONTROL and OPTIMIZATION variables (see 'CNTL' and 'OPTV')

Now, when a limit has been exceeded, a WARNING will be printed on the output sheet.

If optimization is in effect, the criteria of merit will be penalized by a penalty function to drive you away from the boundary.

The form of a 'LIMV' is as follows:

KONFIG(1,N)='LIMV'

The inputs at the DESIGN POINT are:

SPLIMV(1) = BLANK

SPLIMV(2) = minimum allowable value

SPLIMV(3) = maximum allowable value

SPLIMV(4) = 'DOUT', or 'STAP', or 'PERF'

SPLIMV(5) = DATOUT No., or Station Prop. No. or Perfor. No.

SPLIMV(6) = Component No. or Station No. or BLANK

SPLIMV(7) = BLANK

SPLIMV(8) = BLANK

SPLIMV(9) = On/Off switch, 1=on, 0=off

Off-design use SPEC(2) to change minimum value

SPEC(3) to change maximum value

SPEC(9) to turn On and Off

3.2.1.15 MARCHING

A new feature has been added to NNEP. The best way to tell the user about it is to demonstrate its use.

Let us suppose you wish to mak a plot of F/Wa versus nozzle area at Mach 1.4, 40000 feet. You could run the engine at 1.4, 40000, note what F/Wa is, and then use a control on nozzle area to drive F/Wa to various values. The dogwork of doing this has been eliminated as follows.

When you configure the engine, build in a control on nozzle area and F/Wa as follows - suppose component 10 is the nozzle, and if component 20 is the new control,

which says - vary DATINP(1) (nozzle area) of component(10) (nozzle) so that performance property(6) (F/Wa) has a value of (doesn't matter) with a tolerance of zero (turns OFF the control)

Then run the engine up to 1.4,40000 feet. Now input the following

SPEC(1,20)=f1,SPEC(9,20)=TOL followed by &D &END ...

What this will do is detect from SPEC(1,20) not equal to 0, that you want to store the last value of PERF(6) in VALUE (the target answer) and will then set

TARGET VALUE=f1 * the present VALUE

Thus, the present value of (F/Wa) is calculated by the program, and DATINP(1) of component(10) will now be used to drive PERF(6) (F/Wa) to the TARGET VALUE. We could at the same time for instance have held thrust constant by putting a control on TIT to make thrust anything and when we came to 1.4,40000 set f1 for this control=1.3.

3.2.2 WATE-2 INPUT VARIABLE DEFINITIONS (NAMELIST W)

VARIABLE	DEFINITION
1311	= T - SI units input
	= F - English units input
ISIO	= T - SI units output
	= F - English units
IGUTCD	= 0 - Short form-engine weight, length, and maximum radius
	= 1 - Long form-component weights and dimensions and short form
	= 2 - Debug option and long and short form

3.2.2.1 LENGTH INDICATORS

The ILENG input specifies only those components that contribute to the total additive engine length. The NNEP component number is specified in ILENG in the order that the components would add in length to achieve the total length. This must start with the first compressor and end with the furthest downstream nozzle. Figure 3 shows a typical engine and the ILENG inputs for that engine. The ILENG input does not include duct (4), nozzle (5) or shafts (13) and (14) because these components do not contribute to the total engine length.

3.2.2.2 MECHANICAL DESIGN INDICATORS

The mechanical design indicators (TWMEC) must be specified for each component of the NNEP simulation, with the exception of the NNEP Controls, Inlet, and Water Injection or any other component not represented in WATE-2.

A number of shaft components may be required to simulate an engine in NNEP. WATE-2 will determine the weight only for connecting shafts of major components, such as the typical HP or LP shaft. The smaller component number must always be used on the inner shaft, with increasing component numbers as concentric shafts are added around the inner shaft.

ENGINE LAYOUT

FLOW PATH AND COMPONENT NUMBERS

Figure 3 WATE-2 Typical Flowpath Input for Engine Length Calculation

IWMEC is a two-dimensional integer array that contains all of the mechanical design indicators. It is of the form IWMEC (N, M), where M is the component number used in NNEP, and N is the variable number as defined below for each component.

3.2.2.2.1 COMPRESSORS

'FI' - Inner portion of non-rotating splitter fan 'RSFO' - Outer portion of rotating splitter fan 'RSFI' - Inner portion of rotating splitter fan 'LPC' - Low pressure compressor 'HPC' - High pressure compressor 'HPC' - High pressure compressor 2 This indicates if the fan or compressor has stators or if the compressor is a centrifugal compressor. 1 - Stator weight is calculated 0 - Stator weight is not calculated 2 - Centrifugal compressor 3 This is the indicator for 'front' frames in compressors. This input may be: 0 - No frame 1 - Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) 2 - Single bearing frame with PTO 4 - Two bearing frame, such as the frame in front of the HPC in the JTBD or JT9D which extends outward to the fan outer case and holds two bearings with PTO 4 This is the indicator for the 'rear' frame in a compressor 0 - No frame 1 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 2 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 5 Single bearing frame with POT	IWMEC Array Location		Description
'FO' - Outer portion of non-rotating splitter fan 'FI' - Inner portion of non-rotating splitter fan 'RSFO' - Outer portion of rotating splitter fan 'RSFI' - Inner portion of rotating splitter fan 'RSFI' - Low pressure compressor 'LPC' - Low pressure compressor 'HPC' - High pressure compressor 2 This indicates if the fan or compressor has stators or if the compressor is a centrifugal compressor. 1 - Stator weight is calculated 0 - Stator weight is not calculated 2 - Centrifugal compressor 3 This is the indicator for 'front' frames in compressors. This input may be: 0 - No frame 1 - Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) 2 - Single bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which extends outward to the fan outer case and holds two bearings with PTO 4 This is the indicator for the 'rear' frame in a compressor 0 - No frame 1 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 2 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 5 Single bearing frame with POT	1	Type of compre	essor being weighed.
the compressor is a centrifugal compressor. 1		'F0' 'F1' 'RSF0' 'RSF1' 'LPC'	 Outer portion of non-rotating splitter fan Inner portion of non-rotating splitter fan Outer portion of rotating splitter fan Inner portion of rotating splitter fan Low pressure compressor
O - Stator weight is not calculated Centrifugal compressor This is the indicator for 'front' frames in compressors. This input may be: O - No frame 1 - Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) 2 - Single bearing frame with PTO 4 - Two bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which extends outward to the fan outer case and holds two bearings with PTO This is the indicator for the 'rear' frame in a compressor O - No frame 1 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 2 - Single bearing frame with POT	2	This indicates the compressor	if the fan or compressor has stators or if is a centrifugal compressor.
This input may be: O - No frame 1 - Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) 2 - Single bearing frame with PTO 4 - Two bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which extends outward to the fan outer case and holds two bearings with PTO 4 This is the indicator for the 'rear' frame in a compressor O - No frame 1 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 2 - Single bearing frame with POT		0	- Stator weight is not calculated
- Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) - Single bearing frame with PTO - Two bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which extends outward to the fan outer case and holds two bearings with PTO This is the indicator for the 'rear' frame in a compressor - No frame - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) - Single bearing frame with POT	3	This is the in This input may	dicator for 'front' frames in compressors. be:
O - No frame 1 - Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) 2 - Single bearing frame with POT		1 2	 Single bearing frame for turbofans and turbojets with Power Takeoff (PTO) Single bearing frame with PTO Two bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which extends outward to the fan outer case and
 Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) Single bearing frame with POT 	4	This is the in	dicator for the 'rear' frame in a compressor
ind add, the industry and the interpretation		2	 Single bearing frame for turbofans and turbojet without Power Takeoff (PTO) Single bearing frame with POT Two bearing frame, such as the frame in front of the HPC in the JT8D or JT9D which

This is the component number connecting to this component for split flow compressors only. If this is the Fan Outer, the Fan Inner must be specified. If this is the Rotating Splitter Outer, the inner splitter must be specified, and vice versa. 6 Gear box indicator - 0 - No gear or component number of shaft 7 Number of stages 3.2.2.2.2 **TURBINES** IWMEC Array Location Description 1 This is the type of turbine 'HPT' - High pressure turbine 'LPT' - Low pressure turbine 2 Indicator for turbine exit frame 0 - No frame - Frame 3 Compressor number from which the RPM is determined 4 Component number from which the outer radius limit for the turbine is determined. If the component number is positive, the outlet dimension is used. If negative, the inlet dimension is used. If O, it will use the outlet of the feeding component. 5 Number of stages 6 Indicator for axial or radial turbine - Axial turbine 2 - Radial turbine 3.2.2.2.3 BURNERS IWMEC Array Location Description

5

1

27

This is the type of burner being weighed. The input is

- Augmentor (no inner wall)

- Primary burner (airframe will be included)

- Duct burner (a mean radius is specified)

the burner name in four spaces.

'PBUR' 'DBUR'

'AUG'

IWMEC Array Location		Description
2		ndicator for frame weight, normally only for ers. This frame includes a bearing.
	0 1	- No frame - Frame
3.2.2.2.4	DUCTS	
IWMEC Array Location		Description
1	Indicator as	to type of duct
	1 2 3	- Dummy - i.e., no weight or length - Length input - Length derived as in a duct connecting a
	4 5	splitter and a mixer - Cross over duct for centrifugal compressors - Diffuser for centrifugal compressors
3.2.2.5	SHAFTS	
IWMEC Array Location		Description
1	'SHAF'	- Standard shaft
2	Shaft number	from inner to outer, i.e., 1, 2, 3, 4, or 5
3-6		rs connected to this shaft. The last entry st downstream turbine. This is used for on.
7	First upstrea	m compressor connected to the shaft
3.2.2.5	MIXERS	
IWMEC Array Location		Description
1	Type of mixer	
	MIX	- The coannular emergence of two streams without mechanical mixer
	'FMIX'	- Forced mixer, mechanical, i.e., Daisy lobed mixer

IWMEC Array Location		Description
2	Indicator for	primary input node
	0 1	- Primary is inner - Primary is outer
3.2.2.2.7 <u>N</u>	<u>OZZLES</u>	
IWMEC Array Location		Description
1	'NOZ'	- Input
2	Nozzle type	
	1 2	- Convergent - C-D variable area
3	be determined, of the compone entered. If	per from which the nozzle inlet diameter can. If this diameter is taken from the inlet ent, the (-) component number must be (+), the exit node will be used. If the onent determines the diameter, this location
4	Thrust reverse	er type
	0 1 2	- None - Fan - Primary

The calculated component weight can be adjusted by an input scaler, DESVAL (15, M), which is a factor applied to the calculated weight. A zero value, however, denotes that no scaling is used. If it is desired to zero-out the weight of a component, the scaler can be set to a trivial quantity such as .0001.

3.2.2.2.8 SPLITTERS

IWMEC Array Location		Description
1	'SPLT'	- Input
2	1	- If inner stream is not primary

3.2.2.2.9 ANNULUS INVERTING VALVE

IWMEC Array Location	Description
1	Input 'VALV'
2	Location of Valve
	1 - Inner 2 - Outer
3	Component Number of Opposite Duct
4	O if Fixed, 1 if Movable

3.2.2.2.10 HEAT EXCHANGERS

IWMEC Array Location		Description
1	Input 'HTEX'	
2	Type	
	1 2	- Fixed tube - Rotary
3	Flow Direction	on
	1 2	- Parallel flow - Counter flow

3.2.2.3 DESIGN VALUES

This section contains the mechanical and aerodynamic design data necessary to determine the weight and dimensions of each component. A summary of this array is shown in Table I. If desired, the default values, Table II, can be used for any component by not specifying the inputs for that component. The data required is in the floating-point two-dimensional array DESVAL (N, M), where M is the component number from NNEP and N is as defined below. A typical range of values is shown in Table III.

Design limits are built into the program, as shown in Table IV, and cannot be altered by inputs. If these limits are exceeded, the calculation continues and a warning is printed out.

Table I DESVAL/DEFAUL Array

POSITION								
TYPE	1	2	3	4	5	6	7	8
COMP	MNI	PRM	H/T	SOLID	ARI	ARO	MNO	TMAXI
TURB	MNI	TLP*	SOLID	ARI	ARO	MNO	REFSTR .2% YIELD STRESS FOR DISK	MODE
BURN	VR	TR	DIA MEAN	REFLOC				
DUCTS	MACH	L∕H	DIA MEAN	REFLOC				
TRAN/								
SHAFTS	STRESS	RHO	H/T					
MIXERS	L/H	NO. PASS						
AIV	L/H	NO. PASS	MNI	MNØ	RH	WTIC	WTOC	wtw
HEATEX	#TUBE	MNIP	MNIS	BPR				*****
NOZ	L/D							
SPLT	MNI	н/т						

*TLP=
$$\mu_T^2$$

2gJ_{\Delta}h/NSTAGES

POSITION	9	10	11	12	13	14	15
COMP TURB BURN DUCTS SHAFTS MIXERS AIV HEATEX NOZ	TMAXO RPMR	RPMR	RHO BLADE	MODE	RPMSC	TMET	WEIGHT SCALER

Table II DEFAUL Array

TYPE	1	2	3	4	5	6	7	ь	9	10	11	12	13	14	15
FAN	.55	1.7	.45	1.5	4.	3.	.45	0.	Q.	1.	2.	1.	0.	0.	0.
LPC	.5	1.5	.4	1.5	4.	3.	.45	0.	0.	1.	0.	2.	1.	0.	0.
HPC	.4	1.4	.7	1.5	3.	1.5	.3	0.	0.	1.0	0.	2.	1,	σ	0.
нет	.3	.28	1.5	1.5	1.5	.45	125000.	2.	1.	6 * 0.	}				
LPT	.45	.28	1.5	2.	4.	.55	125000.	2.	1.	6*0.		1			
PBUR	100.	.015	13*0.				}			į					
DBUR	150.	.015	13*0.					1							
AUG	300.	.015	13*0.												
DUCT	.4	1.	0.	-1.	11°U.		1								
SHAFT	50000.	.286	13 ° 0.							1					
MIXERS	1.	8.	13*0.												
NOZ	١.	14°0.					1	l				1	{		
AIV HTEX	1. 5000.	8. .5	.5 .5	.5	1.1	1,1	1.1								

Table III Typical Range of Input Values for DESVAL/DEFAUL

TYPE	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
FAN	.56	1.5-1.8	.45	11.5	35.	23.	.4555	0.	0.	1.	0.	•	1.	0.	
LPC	.456	1.5-1.8	.45	11.5	3.∙5.	23.	.4555	0.	0.	1.	0.	•	1.	0.	•
HPC	.45	1.4-1.7	.68	11.5	25.	12.	.23	0.	0.	1.	0.	•	1.	0.	
HPT	.34	.23	1,-1.5	1,-2.	12.	.455	100 KSI 150 KSI	•	1.	0.	0.	0.	0.	0.	
LPT	.4.5	2 3	11.5	23.	46.	.556	100 KSI	•	1.			ļ			
PBUR	100-150	.0102	•	•			150 KSI		į	-					
DBUR	150-200	.0102	•	\ •									1		
AUG	200-300	.0102	0 .	•											
DUCB	.45	•	•	•									İ		
SHAFB	40-50 KSI	.2831	085			1									
MIXERS	12.	79.		{		}									}
NOZ	1. 2.			}					-			}			1
AIV HTEX	.8-1.2 5000,	610. .35	.4·.6 .3·.5	.46	•	•			Ì						

^{*}NOT APPLICABLE - SEE TEXT

TABLE IV DESLIM ARRAY DEFAUL TYPE AND VALUES

POSITION	TYPE									
	BLADE PULL STRESS CAN NOT EXCEED:									
1 .	FAN AND COMPRESSOR: 80000 PSI									
2	HP TURBINE: 50000 PSI									
3	LP TURBINE: 60000 PSI									
4	HUB/TIP FOR ALL COMPRESSORS CAN NOT EXCEED: 0.93									
	HUB/TIP CAN NOT BE LESS THAN:									
5	FAN AND COMPRESSOR: 0.32									
6	TURBINE: 0.50									
	TURBINE STAGE LOADING INPUT CAN NOT BE LESS THAM:									
7	TURBINE: 0.28									
	FIRST STAGE ALLOWABLE PRESSURE RATIO CAN NOT EXCEED:									
8	FAN: 1.8									
9	COMPRESSOR: 1.4									
	LAST STAGE EXIT MACH NUMBER CAN NOT EXCEED:									
10	FAN AND COMPRESSOR: 0.6									
	BLADE HEIGHT CAN NOT BE LESS THAN:									
11	COMPRESSOR: 0.4 INCH									
12-13	NOT USED									

3.2.2.3.1 COMPRESSOR

DESVAL Array Location	Description			
1	Compressor face inlet Mach number			
2	Maximum first stage pressure ratio			
3	Compressor face hub-tip ratio, R _h /R _t			
4	Blade solidity, ratio of blade cord to blade spacing			
5	Blade aspect ratio at first stage			
6	Blade aspect ratio at last stage			
7	Compressor exit Mach number			
8	Maximum compressor inlet temperature. ZERO if design point temperature is to be used for material selection OR, OK.			
9	Maximum compressor outlet temperature. ZERO if desired point temperature is to be used for material selection OR, OK.			
10	Maximum speed ratio - RPM _{max} /RPM _{design}			
11	Blade material density. ZERO if WATE-2 is to select material. lb/in3, Kg/cc			
12	Compressor design type 1. Constant hub radius design 2. Constant mean radius design 3. Constant tip radius design			
13	RPM, scaler, normal input is 1 use to match known RPM of engine			
14	Temperature at which a change of material is required. If ZERO 1160oR will be used, oR, oK.			
15	Compressor weight scaler, input ZERO if no scaling is desired			
16	Stator blade taper ratio. ZERO input sets 1.8 for fans; 1.2 for compressors			
17	Blade volume ratio. ZERO input sets 0.055 for fans; 0.12 for compressors			

Centrifugal Compressors

DESVAL Array Location	Description
1	Compressor inlet face Mach number
2	Maximum first stage pressure ratio
3	Compressor hub tip ratio
4	RPM ratio
5	Compressor exit Mach number
6	Gear ratio of the power shaft
7	Horse power of power shaft
8-17	Not used

3.2.2.3.2 <u>TURBINES</u>

DESVAL Array Location	Description				
1	Turbine face inlet Mach number				
2	Turbine loading parameter				
	U _T /2g ^j Δh/N stages				
3	Blade solidity, blade cord/blade spacing				
4	Blade aspect ratio of first stage				
5	Blade aspect ratio of last stage				
6	Turbine exit Mach number				
7	Disk reference stress2% yield, lb/in2, Newton's/cm2				
8	Turbine design type				
	 Constant tip radius design Constant mean radius design Constant hub radius design 				
9	Maximum speed ratio - RPM _{max} /RPMdesign				
10	Turbine control radius inches/cm - blank if transferred from a component				

11	Density of material in turbine blades - 1b/in3/Kg/cc		
12	Blade volume factor. ZERO input sets 0.155 for high and intermediate turbines; 0.195 for low turbines		
13-14	Not used		
15	Turbine weight scaler, input ZERO. If no scaling is desired		
16	Turbine blade taper ratio. ZERO input sets 1.0 for all turbines		
17	Stator blade volume factor. ZERO input sets 0.155 for high and intermediate turbines; 0.195 for low turbines		
Centrifu	gal Turbines		
DESVAL Array Location	Description		
1	Turbine face inlet Mach number		
2-5	Not used		
6	Turbine exit Mach number		
7-17	Not used		
3.2.2.3.3 <u>BU</u>	RNERS		
DESVAL Array Location	Description		
1	Burner through-flow velocity. ft/sec, m/sec.		
2	Burner airflow residency time, sec.		
3	Burner mean diameter, in. or cm. If zero, diameter is calculated to match connecting component		
4	Component number for calculating mean burner diameter. Enter zero if diameter is specified		
5	Number of cans for can burners		
o-14	Not used		
15	Burner weight scaler, enter ZERO. If no scaling is desired		
16-17	Not used		

3.2.2.3.4 <u>DUCTS</u>

DESVAL Array Location	Description				
1	Duct Mach number				
2	Length to height ratio of duct, required if mode 2 is used in IWMEC				
3	Duct mean diameter, in. or cm. If O., duct diameter is calculated based on node specified below				
4	Node number to calculate mean diameter. Enter 0, if mean diameter is specified. Enter -1, if connecting component is to be used				
5-14	Not used				
15	Weight scaler, ZERO. If no scaling is desired				
16-17	Not used				
3.2.2.3.5 <u>St</u>	MAFTS				
DESVAL Array Location	Description				
1	Shaft allowable stress. lb/in2, Newton's/cm2				
2	Shaft material density. 1b/in3, Kg/cc				
3	Diameter ratio of shaft Dinner/Douter				
4-7	Component numbers for total spool inertia				
8-14	Not used				
15	Shaft weight scaler. ZERO if no scaling desired				
16-17	Not used				

3.2.2.3.6 MIXERS

DESVAL Array Location	Description
1	Effective length to diameter ratio of mechanical mixer, $L\sqrt{2A/\pi}$, where L is the mixer length inlet to exit, A is the total flow area. Enter O. if not a mechanical (forced) mixer
2	Number of passages (or lobes) in mixer of either hot or cold stream.
3-14	Not used
15	Weight scaler. Enter ZERO. If no scaling is used
16-17	Not used
3.2.2.3.7 <u>N</u>	OZZLES
DESVAL Array Location	Description
1	Length to diameter ratio of nozzle
2	Bypass ratio for mixed flow nozzle for T/R weight
3-14	Not used
15	Weight scaler. ZERO. If no scaling desired
16-17	Not used
3.2.2.3.8 <u>S</u>	PLITTERS
DESVAL Array Location	Description
1	Only input if first calculated component in flow path Mach number in.
2	H/T ratio in.
3-14	Blank
15	Weight scaler
16-17	Not used

3.2.2.3.9 ANNULUS INVERTING VALVE

DESVAL Arra Location	Description		
1	Specific length - $L = \sqrt{4A/\pi}$		
2	Number of passages.		
3	Mach number of inner passage.		
4	Mach number of outer passage.		
5	Hub radius in inches/cm or - component number from which hub radius is taken or blank if feeding component determines the hub radius.		
6	Inner cylinder weight - 1b/ft2, Kg/M2.		
7	Outer cylinder weight - 1b/ft2, Kg/m2.		
8	Wall weight - 1b/ft3, Kg/M2.		
9-14	Blank.		
15	Weight scaler.		
16-17	Not used.		
3.2.2.3.10	HEAT EXCHANGERS		
DESVAL Array Location	Definition		
1	Number of tubes if "Fixed" type.		
2	Mach number in primary stream.		
3	Mach number in secondary stream.		
4	Engine Bypass ratio if "Rotary" type.		
5-17	Not used.		
3.2.2.4 <u>h</u>	1I SCELLANEOUS		
ACCS	One-dimensional namelist array that contains the value of the accessory weight scaler. Default value is 0.1.		
DESLIM	One-dimensional namelist array that contains the mechanical design limit values for the components. It can have 15 values. First 13 values are defaulted.		

DESVAL Array Location	Definition		
TSCALE	One-dimensional namelist integer array which controls engine scaling logic of the program.		
	ISCALE(1) 1	Output indicator Debug option and long and short form for every scaled engine point.	
	2	Debug option and long and short form for unscaled engine. Long form for each of the scaled engines.	
	ISCALE(2)	Number of scaling points default is three.	
	ISCALE(3)	Not used.	
SCALE	One-dimensional namelist array that contains values of scaling factors. It can have six values. First three values are defaulted to 1., .8, 1.2.		
ACCARM	distance for the accessorie	is input, accessories are not	
DISKWI	Namelist array that is used disk weight method.	Do disk weight calculations using the old method.	
	1	Do disk weight calculations using the new method.	

3.2.3 <u>INSTALLATION PROGRAM (INSTAL) INPUTS (NAMELIST I)</u>

VARIABLE		DEFINITION
INMAP	Inlet map control variable	
	= 0 = 'name'	no inlet map to be used name of inlet map to be used (see figure 4)
NOZMAP	Nozzle map c	ontrol variable
	= 0 = 'name'	no nozzle map to be used name of nozzle map to be used (see figure 5)
CFGMAP	CFG map conti	rol variab!e
	= 0 = 'name'	no CFG map to be used name of CF _G map to be used (see figure 5)
DCDMAP	Delta CD map	control variable
	= 0 = 'name'	no CD map to be used name of CD map to be used
DERP	Derivative p	rocedure control variable
	= 0 = 1	do not use derivative procedure use the derivative procedure
MODE	Capture area	indicator
	=0 =1	Capture area input (ACI) Program sizes capture area at the designated flight condition
ICFCN	Component num	mber of component directly after inlet (used corrected airflow demanded by engine)
ACI	Inlet capture area (MODE=O only, ft.2, m2)	
INLWT	Inlet weight calculation parameter	
	= 0 = 1	do not calculate inlet weight calculate inlet weight
NWC	Nacelle weigh	at calculation parameter
	= 0 = 1	do not calculate nacelle weight calculate nacelle weight
NWD	Nacelle drag	calculation parameter
	= 0 = 1	do not calculate nacelle drag calculate nacelle drag
ENGNO	Number of eng	ines for this aircraft configuration

Figure 4 Matrix of Inlet Maps

	DRAG	AXISYMMETRIC		2-DIMENSIONAL		DRAC
CV1	208N-		CONVERGENT		CV 2D-	DCD2 D1
CV1	CD2R		DIVERGENT		CV2D*	DCD2 D2
CVRP	DRP1				CV2D	SING. 2D
CVRP	DRP2		PLUG (WEDGE)		CV2D	ATS 2DM3
			` SINGLE RAMP		ADEN AB	ADEN CFG

Figure 5 . Matrix of Nozzle/Aftbody Maps

VARIABLE		DEFINITION	
OPTB	Bypass spillage option parameter		
	= 1 = 2 = 3	all excess inlet airflow spilled externally all excess inlet airflow bypassed above an input Mach number (XMOSBP) use scheduled bypass (Table 7 of Figure 11 in Vol. I) with remainder of inlet airflow	
	= 4 = 5	spilled determine the optimum combination of bypass and spillage air for a minimum inlet drag determine the optimum combination of bypass and spillage air for a minimum installed specific fuel consumption	
XMOSBP	Mach number a (OPTB=2 only)	Mach number above which all excess airflow is bypassed (OPTB=2 only)	
TABRF	Recovery and	drag maps parameter	
	= 0 = 1	use the standard 14 inlet maps use only 2 maps for the inlet	
REFMFR	Reference mas	s flow ratio index	
	= 0 = 1	use Tables 3A and 3B for MFR=1.0	
ОРТВР	Bypass spilla	ge option print flag for options 4 and 5	
	= 0 = 1	no intermediate output for options 4 and 5 print intermediate output for options 4 and 5	
A10A9R	AlO over A9 ratio, aftbody drag reference condition		
A10	Maximum cross-sectional reference area, ft^2 , m^2 (Inputed only for body buried engine installations)		
PRINT	Installation	print indicator	
	= 0 = 1	short form output long form output	
UNITI	English or St	andard international units option	
	= 0 = 1	input variables are in SI units input variables are in English units	
UNITO	English or St	andard international units option	
	= 0 = 1	output variables are in SI units output variables are in English units	

VARIABLE	DEFINITION		
INLTYP	Inlet design and analysis option		
	= 0	Using the inlet map library, execute the installation procedure only	
		design and analyze a pitot inlet	
		design and analyze a two-dimensional inlet	
	= 3	design and analyze an axisymmetric inlet	
		design and analyze an axisymmetric spike inlet	
STOP	Parametric installation option		
	=] {	Normal installation Engine is installed at the same flight condition using different inlet and nozzle aftbody maps	
SCALE	Factor for scaling airflow-related engine performance data		
KVALUE	Surface roughness height (see Table VIII of Final Report, NWD = 1, only)		
INOZ	Array of component numbers of nozzles in engine simulation (see Table V)		

3.2.4 INLET DESIGN AND ANALYSIS PROGRAMS INPUT DEFINITIONS

The design and analysis procedures available for the two-dimensional, axisymmetric and isentropic spike inlets are basically modifications of the Naval Weapon Center Inlet Design and Analysis program (see Reference 1). These modifications include program conversion to the IBM370 VMS computer system as well as a modification to utilize NAMELIST format for input. The two-dimensional inlet inputs are described in 3.2.4.1 (see figure 6), the axisymmetric inlet inputs are described in 3.2.4.2 (see figure 7), and the isentropic spike inlets are described in 3.2.4.3 (see figure 8).

The design and analysis procedure for PITOT inlets is described in 3.2.3.4.

Type of Turbine Engine	IN0Z(1)	INQZ(2)	INOZ(3)	VALCONT
			(0)	(t) 70NT
Turbojet	Nozzle Component Number	0	0	0
Mixed Flow Turbofan	Nozzle Component Number	0	0	0
Split Stream Turbofan Coplanar Nozzles	Primary Nozzle Component Number	Secondary Nozzle Component Number	0	0
Split Stream Turbofan Non-Coplanar Nozzles	0	0	Primary Nozzle Component Number	Secondary Nozzle
			מייילים מייילים מייילים	Component Number

Table V INOZ Array Values

3.2.4.1 TWO-DIMENSIONAL DESIGN PROGRAM INPUT VARIABLE DEFINITIONS (NAMELIST TD10)

VARIABLE	DEFINITION
KETYPE	Control on type of external compression surface
	<pre>= 1 single ramp = 2 double ramp = 3 triple ramp = 4 isentropic wedge</pre>
KANAT	Control on type of inlet configuration
	 = 1 external compression surface only - no duct specified = 2 external compression surface followed by diverging duct = 3 external compression surface followed by converging-diverging duct
KDAB	Control on type of computation desired
	 = 1 analysis over a range of M_O and = 2 design at a specified value of M_O = 3 design followed by analysis over a range of M_O and
KSTØP	Control on query - Last case? = 0 yes # 0 no
KSWC	Control on query - Sidewall contraction computation? = 0 no ≠ 0 yes
KCLR	Control on query - Estimate cowl lip radius? = 0 no ≠ 0 yes
KSPR	Control on query - Estimate sideplate lip radius? = 0 no # 0 yes
KCTH*	Control on query - Estimate necessary cowl thickness?
KSTH*	Control on query - Estimate necessary sideplate thickness?
	 = 0 no = 1 yes - Consider structure made of aluminum = 2 yes - Consider structure made of titanium = 3 yes - Consider structure made of stainless steel = 4 yes - Consider structure made of Inconel
KFAL**	Control on query - Empirical forebody correction? = 0 no ≠ 0 yes
KYAW***	Control on query - Empirical yaw correction? = 0 no # 0 yes
* For a gi	ven case these two variables must be identical

If KFAL = 0, Subroutine FOREB must be written and inserted If KYAW = 0, Subroutine YAW must be written and inserted

VARIABLE	DEFINITION
KCLD	Control on query - Compute cowl lip drag?
	= 0 no ≠ 0 yes
KCWD	Control on query - Compute cowl wave drag?
	= 0 no ≠ 0 yes
KSLD	Control on query - Compute sideplate lip drag?
	= 0 no ≠ 0 yes
K SWD	Control on query - Compute sideplate wave drag?
	= 0 no ≠ 0 yes
KSSP	Control on query - Compute sidespill airflow and drag?
	= 0 no ≠ 0 yes
KSP	Control on sideplate geometry = 0 no sideplate
	<pre>= 1 one straight line sideplate = 2 two straight line sideplate</pre>
KBLD	Control on query - Estimate boundary layer diverter drag?
	= 0 no ≠ 0 yes
KNSM	Control on query - Terminal normal shock at throat or down- stream of converging-diverging duct?
	= 0 at throat ≠ 0 downstream
KB(1)	Control on query - Bleed on 2nd ramp?
	= 0 no + 0 yes
KB(2)	Control on query - Bleed on 3rd ramp?
	= 0 no = 0 yes

VARIABLE	DEFINITION
KB(3)	Control on query - Bleed on isentropic compression surface?
	= 0 no + 0 yes
KB(4)	Control on query - Bleed/Bypass at cowl lip plane? = 0 no + 0 yes
KB(5)	Control on query - Bleed/Bypass at throat of C-D duct? = 0 no + 0 yes
SWANG	Sidewall contraction angle - degrees
CLRMD	Design Mach number for use with cowl lip radius estimate
RCHIN	Inlet capture height in inches
CLRAD	Cowl lip radius
SLRMD	Design Mach number for use with sideplate lip radius estimate
RWIN	Inlet width in inches
SLRAD	Sideplate lip radius
SPANG	Sideplate bevel angle - degrees
DEFLIM	Maximum allowable structural deflection of duct walls
SPTH	Sideplate thickness
XP1, YP1	Coords of the origin of a 1 straight line sideplate or coords of the origin of the 1st straight line of a 2 straight line sideplate
XP2, YP2	Coords of the termination of the 1st straight line of a 2 straight line sideplate - the 2nd straight line will terminate at the cowl lip
NECP	Number of coord points in the external cowl array, _ 25
XEC, YEC	Array of coord points defining the external cowl, the array must begin at the cowl lip
XBSDE, YBSDE	Coords of the innerbody at the end of the subsonic diffuser for a diverging duct (KANAT = 2) case
XCSDE, YCSDE	Coords of the inner cowl at the end of the subsonic diffuser for a diverging duct (KANAT = 2) case

VARIABLE	DEFINITION
NICP	Number of coord points in the internal cowl array, <u>4</u> 25
XIC*, YIC	Array of coord points defining the internal cowl, the array must begin at the cowl lip and terminate at the duct throat
NIBP	Number of coord points in the innerbody array, ∠ 25
XIB*, YIB	Array of coord points defining the innerbody, the array must begin at the point at which a normal through the cowl lip strikes the innerbody and terminate at the duct throat
XBSDM, YBSDM	Coords of the innerbody at the end of the subsonic diffuser for a C-D duct (KANAT = 3) case
BLDTR	Innerbody boundary layer displacement thickness at the terminal normal shock position for supercritical operation, may be input as 0.0 if unknown
BLMTR	As directly preceding for momentum thickness
BLDTC	Inner cowl boundary layer displacement thickness at the terminal normal shock position for supercritical operation, may be input as 0.0 if unknown
BLMTC	As directly preceding for momentum thickness
XBNSM, YBNSM	Innerbody coords of terminal shock position if shock is located in the diverging portion of a C-D duct
XCNSM, YCNSM	Inner cowl coords of terminal normal shock position of shock is located in the diverging portion of a C-D duct
DIVHT	Boundary layer diverter height (perpendicular to fuselage)
DIVWT	Boundary layer diverter width (parallel to fuselage)
DIVHA	Boundary layer diverter half angle - degrees
DIVDS	Fuselage boundary layer thickness at the boundary layer diverter station
AENB(i)	Entrance area for the i th bleed
FLUSH(i)	Control on query - Does the ith bleed have a flush or protruding exit? = 0.0 flush = 1.0 protruding

^{*} It is necessary that XIC(NICP) = XIB(NIBP), for most cases they differ by a small increment only

VARIABLE	DEFINITION
NV(i)	Control on query - For the i th bleed, do you want to compute the bleed geometry given the mass flow or do you want to compute the mass flow given the geometry?
	<pre># O given geometry, compute the mass flow # l given mass flow, compute geometry</pre>
AEXB(1)	Exit area for the i th bleed
THELV(i)	Exit angle for the i th bleed - degrees
AEXBMX(i)	Maximum exit area for the i th bleed
AEXBMN(i)	Minimum exit area for the i th bleed
THELMX(i)	Maximum exit angle for the i th bleed - degrees
XCSDM, YCSDM	Coords of the inner cowl at the end of the subsonic diffuser for a C-D duct (KANAT = 3) case
THELMN(i)	Minimum exit angle for the i th bleed - degrees
AOACB(i)	Bleed i mass flow (free stream projection/AC)
KCCATS*	Control on query - Estimate the terminal normal shock - boundary layer viscous losses for an inlet operating with the normal shock train in a constant area throat section initiated at the cowl lip plane?
	= 0 no = 0 yes - If = 0 KDAB must equal KANAT = 1
XBETU,** YBETU	Innerbody coords at the end of a constant area throat section initiated at the cowl lip plane
XCETU,** YCETU	Inner cowl coords at the end of a constant area throat section initiated at the cowl lip plane
XBSDU,** YBSDU	Innerbody coords at the end of the subsonic diffuser for an inlet with a constant area throat section initiated at the cowl lip plane
XCSDU,** YCSDU	Inner cowl coords at the end of the subsonic diffuser for an inlet with a constant area throat section initiated at the cowl lip plane

^{*} If this option is exercised the inlet geometry must be input in inches. ** Input only if KCCATS =

3.2.4.1.1 SINGLE RAMP VARIABLE DEFINITIONS (NAMELIST TD20)

VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edge of external compression surface, this point will be translated to the origin of the coordinate system internal to the program
D(1)	First ramp deflection angle - degrees
XCL, YCL	Cowl lip coords
W	Inlet width
PO	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
то	Free stroam static temperature - degrees Rankine
GAM	Gamma
AMOI AMOSS, AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
ALPI, ALPSS, ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned
3.2.4.1.2 <u>D</u>	OUBLE RAMP VARIABLE DEFINITIONS - KDAB = 1 (NAMELIST TD30)
VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edge of external compression surface, this point will be translated to the origin of the coordinate system internal to the program.
XS(2)	Abscissa of 2nd ramp origin
D(1)	First ramp deflection angle - degrees
D(2)	Second ramp deflection angle - degrees
XFOC, YFOC	Wave focal point coords for a design case
XCL, YCL	Cowl lip coords
W	Inlet width
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry

VARIABLE	DEFINITION
TO	Free stream static temperature - degrees Rankine
GAM	Gamma
AMOI AMOSS AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
ALPI, ALPSS, ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned
	DOUBLE RAMP DESIGN VARIABLE DEFINITIONS - KDAB = 2,3 (NAMELIST TD31)
VARIABLE	DEFINITION
XCL, YCL	Cowl lip coordinates
XFOC, YFOC	Wave focal point coordinates for a design case
YLE	External compression surface leading edge coordinate
D(1)	First ramp deflection angle (deg)
D(2)	Second ramp deflection angle (deg)
W	Inlet width
AMDES	Design Mach number
PO	Free stream static pressure – F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
TO	Free stream static *emperature - degrees Rankine
GAM	Gamma
AMOI, AMOSS.}*	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
ALPI, ALPSS, ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned.

^{*}Input only if KDAB = 3

3.2.4.1.4 <u>T</u>	RIPLE RAMP VARIABLE DEFINITION - KDAB = 1 (NAMELIST TD40)
VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edges of external compression surface, this point will be translated to the origin of the coordinate system internal to the program
XS(2)	Abscissa of 2nd ramp origin
XS(3)	Abscissa of 3rd ramp origin
D(1)	first ramp deflection angle (deg)
D(2)	Second ramp deflection angle (deg)
D(3)	Third ramp deflectin angle (deg)
XCL, YCL	Cowl lip coords
W	Inlet width
P0	Free stream static pressure – F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
TO	Free stream static temperature - degrees Rankine
GAM	Gamma
AMOI AMOSS, AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
ALPI, ALPSS, ALPF	Initial, Stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned

3.2.4.1.5 TRIPLE RAMP DESIGN VARIABLE DEFINITIONS - KDAB = 1, 2, 3 (NAMELIST TD41)

VARIABLE	DEFINITION	
0(1)	First ramp deflection angle (deg)	
D(2)	Second ramp deflection angle (deg)	
D(3)	Third ramp deflection angle - degrees	
XCL, YCL	Cowl lip coords	
W	Inlet width	
PO	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry	
TO	Free stream static temperature - degrees Rankine	
GAM	Gamma	
XFOC, YFOC	Wave focal point coordinates for design case	
YLE	External compression surface leading edge coordinate for design case	
AMDES	Design Mach number	
AMOI, AMOSS, AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned	
ALPI ALPSS,}* ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned.	

^{*}Input only if KDAB = 3

3.2.4.1.6 <u>F</u>	OUR RAMP VARIABLE DEFINITIONS -KDAB = 1 (NAMELIST TD50)	
VARIABLE	DEFINITION	
XS(1), YS(1)	Coords of leading edges of external compression surface, this point will be translated to the origin of the coordinate system internal to the program	
XS(2)	Abscissa of second ramp origin	
XS(3)	Abscissa of third ramp origin	
XS(4)	Abscissa of fourth ramp origin	
D(1)	First ramp deflection angle (deg)	
D(2)	Second ramp deflection angle (deg)	
D(3)	Third ramp deflection angle (deg)	
D(4)	Fourth ramp deflection angle (deg)	
XCL, YCL	Cowl lip coords	
W	Inlet width	
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry	
TO	Free stream static temperature - degrees Rankine	
GAM	Gamma	
AMOI AMOSS, AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned	
ALPI, ALPSS, ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles of attack of -10, -5, 0, 5, 10 would be automatically scanned	
3.2.4.1.7 <u>F</u>	OUR RAMP DESIGN VARIABLE DEFINITION- KDAB = 2, 3 (NAMELIST D51)	

VARIABLE	DEFINITION

XCL, YCL Cowl lip coords

W Inlet width

VARIABLE	DEFINITION
PO	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
TO	Free stream static temperature - degrees Rankine
GAM	Gamma
XFØC, YFØC	Wave focal point coords for a design case
YLE	External compression surface leading edge ordinate for a design case
AMDES	Design Mach number
DEL1	External compression surface leading edge deflection for a design case - degrees
DEL I SØ	Total isentropic turning for a design case - degrees
AMOI, AMOSS, AMOF	Initial, stepsize, final values of free stream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned.
ALPI, ALPSS, ALPF	Initial, stepsize, final values of angle of attack; for an input of -10, 5, 10 angles attack of -10, -5, 0, 5, 10 would be automtically scanned.

^{*}Input for KDAB = 3 only

KET	YPE	KANAT		KDAB		KSTOP									
KSWC	KCLR	KSPR	кстн	KSTH	KFAL	KYAW	KCLD	KCWD	KSUD	KSWD	KSSP	KSP	KBLD	KNSM	
KB(1) KB(2)		KB(3) KB(4)		КВ	(5)										

Figure 6. Two-Dimensional Inlet Input Schematic.

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

;

Single Ramp Inlets

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

Double Ramp Inlets

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

Triple Ramp Inlets

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

Isentropic Ramp Inlet

Figure 6. (Contd.) Two-Dimensional Inlet Input Schematic.

ASISYMMETRIC DESIGN PROGRAM INPUT VARIABLE DEFINITIONS (NAMELIST AXIIO) 3.2.4.2

	(NAMELIST AXIIO)
VARIABLE	DEFINITION
KETYPE	Control on type of external compression surface
	<pre>= 1 single cone = 2 double cone = 3 triple cone</pre>
KANAT	Control on type of inlet configuration
	 = 1 external compression surface only - no duct specified = 2 external compression surface followed by diverging duct = 3 external compression surface followed by converging-diverging duct
KDAB	Control on type of computation desired
	 = 1 analysis over a range of M_O = 2 design at a specified value of M_O = 3 design followed by analysis over a range of M_O
K STOP	Control on query - Last case?
KCLWD	<pre>= 0 yes</pre>
	= 0 no + 0 yes
KBLD	Control on query - Estimate boundary layer diverter drag?
	= 0 no ≠ 0 yes
KPOL	Control on query - Estimate shock/boundary layer interaction losses at the normal shock when KANAT = 3?
	= 0 no = 1 yes
KNSM	Control on query - Terminal normal shock at throat or downstream of converging-diverging duct?

= 0 at throat = 0 downstream

VARIABLE	DEFINITION
KB(1)	Control on query - Bleed on 2nd cone?
	= 0 no + 0 yes
KB(2)	Control on query - Bleed on 3rd cone? = 0 no + 0 yes
KB(3)	Not used - always set equal to 0
KB(4)	Control on query - Bleed/Bypass at cowl lip plane
	= 0 no + 0 yes
KB(5)	Control on query - Bleed/Bypass at throat of C-D duct?
	= 0 no + 0 yes
DLIP	Cowl lip diameter
NCP	Number of coord points in the external cowl array, \angle 25
XEC, YEC	Array of coord points defining the external cowl, the array must begin at the cowl lip
NICP XIC*, YIC	Number of coord points in the internal cowl array, $\underline{\angle}$ 25 Array of coord points defining the internal cowl, the array must begin at the cowl lip and terminate at the duct throat
IBP	Number of coord points in the innerbody array, \leq 25
XIB*, YIB	Array of coord points defining the innerbody, the array must begin at the point at which a normal through the cowl lip strikes the innerbody and terminate at the duct throat
ROSDM RISDM XSDM	Coords at the end of the subsonic diffuser for a C-D duct (KANAT = 3) case
BLDTR	Innerbody boundary layer displacement thickness at the terminal normal shock position for supercritical operation, may be input as 0.0 if urknown

^{*} It is necessary that XIC(NICP) = XIB(NIBP), for most cases they differ by a small increment only.

VARIABLE	DEFINITION
BLMTR	As directly preceding for momentum thickness
BLDTC	Inher cowl boundary layer displacement thickness at the terminal normal shock position for supercritical operation, may be input as 0.0 if unknown
BLMTC	Inner cowl boundary layer displacement thickness at the terminal normal shock position for supercritical operation, may be input as 0.0 if unknown
XNSM RINSM RØNSM	Coords of terminal shock position if shock is located in the diverging portion of a C-D duct
XSDE RISDE RØSDE	Coords of subsonic diffuser exit for diverging ducts (KANAT = 2) case
DIVHT	Boundary layer diverter height (perpendicular to fuselage)
DIVWT	Boundary layer diverter width (parallel to fuselage)
DIVHA	Boundary layer diverter half angle - degrees
DIVDS	Fuselage boundary layer thickness at the boundary layer diverter station
AENB(i)	Entrance area for the i th bleed
FLUSH(i)	Control on query - Does the i th bleed have a flush or protruding exit? = 0.0 flush = 1.0 protruding
NV(i)	Control on query - For the i th bleed do we wish to compute the bleed geometry given the mass flow or do we wish to compute the mass flow given the geometry? = 0 given geometry, compute the mass flow = 1 given mass flow, compute geometry
AEXB(i)	Exit area for the i th bleed
THELV(i)	Exit angle for the i th bleed
AEXBMX(i)	Maximum exit area for the i th bleed
AEXBMN(i)	Minimum exit area for the i th bleed
THELMX(i)	Maximum exit angle for the i th bleed - degrees

VARIABLE	DEFINITION
THELMN(i)	Minimum exit angle for the i th bleed - degrees
AOACB(i)	Bleed i mass flow (free stream projection/AC)
KCCATS*	Control on query - Estimate the terminal normal shock - boundary layer viscous losses for an inlet operating with the normal shock train in a constant area throat section initiated at the cowl lip plane? = 0 no # 0 yes - If # 0 KDAB must equal KANAT = 1
XBETU, YBETU	Innerbody coords at the end of a constant area throat section initiated at the cowl lip plane
XCETU, YCETU	Inner cowl coords at the end of a constant area throat section initiated at the cowl lip plane
XBSDU, YBSDU	Innerbody coords at the end of the subsonic diffuser for an inlet with a constant area throat section initiated at the cowl !ip plane
XCSDU, YCSDU	Inner cowl coords at the end of the subsonic diffuser for ar inlet with a constant area throat section initiated at the cowl ip plane
3.2.4.2.1 <u>S</u>	INGLE CONE VARIABLE DEFINITIONS (NAMELIST AXI20)
VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edge of external compression surface NOTE: YS(1) always = 0.0
D(1)	First ramp deflection angle - degrees
YLIP, YLIP	Cowl lip coords
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
ТО	Free stream static temperature - degreus Rankine
GAM	Gamma
AMOI AMOSS AMOF	Initial, stepsize, final values of freestream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned

^{*} If this option is exercised, the inlet geometry must be input in inches.

3.2.4.2.2 <u>D</u>	OUBLE CONE VARIABLE DEFINITIONS -KDAB = 1 (NAMELIST AXI30)
VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edge of external compression surface NOTE: $YS(1)$ always = 0.0
XS(2)	Abscissa of 2nd ramp origin
D(1)	First ramp deflection angle - degrees
D(2)	Second ramp deflection angle - degrees
XLIP, YLIP	Cowl lip coords
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
TO	Free stream static temperature - degrees Rankine
GAM	Gamma
AMOI AMOSS AMOF	Initial, stepsize, final values of freestream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
3.2.4.2.3 D	OUBLE CONE DESIGN INPUT VARIABLE DEFINITIONS -KDAB =2, 3 AMELIST AXI31)
VARIABLE	DEFINITION
YS(1),	Abscissa of leading edge of external compression surface
D(1)	First ramp deflection angle - degrees
D(2)	Second ramp deflection angle - degrees
XLIP, YLIP	Cowl lip coords
Р0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
10	Free stream static temperature - degrees Rankine
GAM	Gamma

VARIABLE	DEFINITION
AMO1 AMOSS}* AMOF	Initial, stepsize, final values of freestream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
XFOC, YFOE	Wave focal point coords for a design case
AMDES	Design Mach number
	RIPLE CONE INPUT VARIABLE DEFINITIONS -KDAB = 1 (NAMELIST X140)
VARIABLE	DEFINITION
XS(1), YS(1)	Coords of leading edge of external compression surface NOTE: YS(1) always = 0.0
XS(2)	Abscissa of 2nd ramp origin
XS(3)	Abscissa of 3rd ramp origin
D(1)	First ramp deflection angle - degrees
D(2)	Second ramp deflection angle - degrees
D(3)	Third ramp deflection angle - degrees
XLIP, YLIP	Cowl lip coords
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
то	Free stream static temperature - degrees Rankine
GAM	Gamma
AMOI, AMOSS, * AMO,F	Initial, stepsize, final values of freestream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned

^{*} Input only if KDAB = 3

3.2.4.2.5 TRIPLE CONE DESIGN INPUT VARIABLE DEFINITIONS -KDAB = 2, 3 (NAMELIST AXI41)

VARIABLE	DEFINITION
YS(1)	Abscissa of leading edge of external compression surface
VARIABLE	DEFINITION
D(1)	First ramp deflection angle - degrees
D(2)	Second ramp deflection angle - degrees
D(3)	Third ramp deflection angle - degrees
XLIP, YLIP	Cowl lip coords
P0	Free stream static pressure - F/L^2 , the L in this input variable must correspond to the units used to input the inlet geometry
ТО	Free stream static temperature - degrees Rankine
GAM	Gamma
AMOI AMOSS AMOF	Initial, stepsize, final values of freestream Mach number; for an input of 1.5, 1.0, 3.5 Mach numbers of 1.5, 2.5, 3.5 would be automatically scanned
XFOC, YFOC	Wave focal point coords for a design case
AMDES	Design mach number

^{*} Input only if KDAB = 3

Figure 7. Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

Ì

Figure 7. (Contd.) Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

Figure 7. (Contd.) Program AXI Input Schematic.

3.2.4.3 ISENTROPIC SPIKE DESIGN INPUT VARIABLE DEFINITIONS (NAMELIST SPKOO)

VARIABLE	DEFINITION
KANAT	Control on type of inlet configuration
	 1 external compression surface only - no duct specified 2 external compression surface followed by diverging duct 3 external compression surface followed by converging-diverging duct
KDAB	Control on type of computation desired
	= 1 analysis of a given inlet geometry over a range of M_0 = 2 design of the eternal compression surface at a specified value of M_0 followed, if desired by analysis over a range of M_0
K STØP	Control on query - Last case?
	≠ 0 yes ≠ 0 no
KCLWD	Control on query - Compute cowl lip and wave drag?
	= 0 no ≠ 0 yes
KBLD	Control on query - Estimate boundary layer diverter drag?
	= C nc ≠ O yes
KNSM	Control on query - Terminal normal shock at throat or downstream of converging-diverging duct?
	= 0 at throat ≠ 0 downstream
KPOL	Control on query - Estimate supersonic diffuser and normal shock - boundary layer viscous losses for a C-D duct case?
	= 0 no ≠ 0 yes
KB(1)	Control on query - Bleed on isentropic compression surface?
	= 0 no ≠ 0 yes
KB(2)	Control on query - Bleed/Bypass at cowl lip plane?
	≠ 0 no ≠ 0 yes

VARIABLE	DEFINITION
KB(3)	Control on query - Bleed/Bypass at throat of C-D duct?
	= 0 no ≠ 0 ves
NCP	Number of coord points in the external cowl array, $\underline{\epsilon}$ 25
DLIP	Cowl lip diameter
XEC, YEC	Array of coord points defining the external cowl, the array must begin at the cowl lip
XBSDE, RISDE	Coords of the innerbody at the end of the subsonic diffuser for a diverging duct (KANAT = 2) case
XCSDE, ROSDE	Coords of the inner cowl at the end of the subsonic diffuser for a diverging duct (KANAT = 2) case
NICP	Number of coord points in the internal cowl array, \leq 25
XIC*, YIC	Array of coord points defining the internal cowl, the array must begin at the cowl lip and terminate at the duct throat
NIBP	Number of coord points in he innerbody array, \succeq 25
XIB*, YIB	Array of coord points defining the innerbody, the array must begin at the point at which a normal through the cowl lip strikes the innerbody and terminate at the duct throat
XBSDM, RISDM	Coords of the innerbody at the end of the subsonic diffuser for a $C-D$ duct (KANAT = 3) case
XCSDM, ROSDM	Coords of the inner cowl at the end of the subsonic diffuser for a C-D duct (KANAT = 3) case
XBNSM, RINSM	Innerbody coords of terminal shock position if shock is located in the diverging portion of a C-D duct
XCNSM, RONSM	Inner cowl coords of terminal normal shock position if shock is located in the diverging portion of a C-D duct
BLOTR	Innerbody boundary layer displacement thickness at the terminal normal shock position in a C-D duct
BLMTR	As directly preceding for momentum thickness
BLDTC	Inner cowl boundary layer displacement thickness at the terminal normal shock position in a C-D duct

It is necessary that XIC(NICP) = XIB(NIBP), for most cases they differ by a small increment only

WARIABLE	<u>DEFINITION</u>
BLMTC	As directly preceding for momentum thickness
DIVHT	Boundary layer diverter height (perpendicular to fuselage)
DIWIT	Boundary layer diverter width (parallel to fuselage)
AHVIO	Boundary layer diverter half angle - degrees
DIVDS	Fuselage boundary layer thickness at the boundary layer diverter station
AEMB(i)	Entrance area for the i th bleed
FLUSH(i)	Control on query - Does the i th bleed have a flush or protruding exit?
	= 0.0 flush = 1.0 protruding
NV(i)	Control on query - For the i th bleed do we wish to compute the bleed geometry given the mass flow or do we wish to compute the mass flow given the geometry?
	= 0 given geometry, compute the mass flow = 1 given mass flow, compute geometry
AEXB(i)	Exit area for the ith bleed
THELV(i)	Exit angle for the i th bleed - degrees
AEXBMX(i)	Maximum exit area for the ith bleed
AEXBMN(i)	Minimum exit area for the ith bleed
THELMX(i)	Maximum exit angle fo the ith bleed - degrees
THELMN(i)	Minimum exit angle for the i th bleed - degrees
AOACB(i)	Bleed i mass flow (free stream projection/AC)
KCCATS*	Control on query - Estimate the terminal normal shock - boundary layer viscous losses for an inlet operating with the normal sock train in a constant area throat section initiated at the cowl lip plane?
	= 0 no ≠ 0 yes - If ≠ 0 KDAB must equal KANAT = 1

lo.

^{*} If this option is exercised the inlet geometry must be input in inches

VARIABLE	DEFINITION
XBETU, YBETU	Innerbody coords at the end of a constant area throat section initiated at the cowl lip plane
XCETU, YCETU	Inner cowl coords at the end of a constant area throat section initiated at the cowl lip plane
XBSDU, YBSDU	Innerbody coords at the end of the subsonic diffuser for an inlet with a constant area throat section initiated at the cowl lip plane
XCSDU, YCSDU	Inner cowl coords at the end of the subsonic diffuser for an inlet with a constant area throat section initiated at the cowl lip plane
XLIP, YLIP	Cowl lip coords
DY	Vertical distance for which leading edge shock properties are assumed constant (set equal to $0.012 \times XLIP$ if input as 0.0)
DXMAX	Maximum allowable horizontal displacement between either
	o two adjacent shock points o a generating field point and its associated body point (set equal to 0.02 x XLIP if input as 0.0)
DYMAX	As directly preceding for vertical displacement
TOLD	For a shock-on-lip design case, tolerance within which the shock is assumed to have struck the cowl lip (set equal to 0.001 if input as 0.0)

NPR Control on query - Print out points of characteristics mesh?

= 0 no ≠ 0 yes

XMDES Design Mach number

THETAS Leading edge cone half angle (degrees)

GAMM Gamma

DELISO Desired amount of isentropic turning for a design case (degrees)

XFOC, YFOC Wave focal point coords for a design case

NINP Number of coord points defining the external compression surface isentropic contour (must be input equal to 23)

XIN, YIN Array of coord points defining the external compression surface isentropic contour

VARIABLE	<u>DEFINITION</u>
XLE, YLE	Coords of the inlet leading edge (must be input as 0.0, 0.0)
SLE	Slope of the straight line defining the external compression surface forward of the isentropic contour
XE, YE	Coords of the point at which a normal through the cowl lip strikes the innerbody
2E	Slope of the straight line defining the external compression surface aft of the isentropic contour
NAMO	Number of free stream Mach numbers for which the inlet is to be analyzed - If a design case (KDAB = 2), the first free stream Mach number input must be equal to the design Mach number
EM1	Free stream Mach number
77	Free stream static temperature - degrees Rankine
PC .	Free stream static pressure - F/L2, the L in this input variable must correspond to he units used to input the inlet geometry
ТНТО	Leading edge cone half angle (degrees)
GAM	Gamma

C

Figure 8. Program AXISPK Input Schematic.

Figure 8. (Contd.) Program AXISPK Input Schematic.

Figure 8. (Contd.) Program AXISPK Input Schematic.

*Repeat This Card for Each Mach Number Desired

Figure 8. (Contd.) Program AXISPK Input Schematic.

3.2.4.4 PITOT DESIGN INPUT VARIABLE DEFINITIONS (NAMELIST PITOT)

The following section describes the namelist inputs required for the pitot inlet design routine. The bracketed numbers are the default values of the inputs.

VARIABLE	DEFINITION
XMTEFM	Maximum effective throat Mach number (.75)
ATO	Takeoff door area (sq. ft.) (10.)
RBYD	Lip bluntness parameter - ratio of lip radius to inlet lip hydraulic diameter (.02)
DESMN	Inlet design Mach number (.85)
NTYPE	Bypass nozzle type (-1)
	=+1 convergent divergent =-1 convergent
INTYPE	Pitot inlet type - used for design (0)
	= 0 subsonic CTOL = 1 VSTOL = 2 transonic supersonic
WIDTH	Bypass door width (in) (10.)
HE IGHT	Bypass door height (in) (5.)
NDOOR	Number of bypass doors (5.)
RHITH	Ratio of hilite radius to throat radius (1.25)
RMMIT	Ratio of major axis to minor axis for elliptical contour between hilite and throat (2.5)
RMMITU	Ratio of major axis to minor axis for elliptical contour between hilite and throat (upper surface of VSTOL type inlet) (2.67)
RMMITL	Ratio of major axis to minor axis for elliptical contour between hilite and throat (lower surface of VSTOL type inlet) (1.85)

3.2.5 DERIVATIVE PROCEDURE INPUT SPECIFICATION (NAMELIST DER)

The Derivative Procedure can be used to perturb three basic types of maps; the inlet, afterbody, or CFG map. The parameters associated with each of these options are modified by utilizing a NAMELIST input with the name DER. Section 3.2.4.1 describes the inlet parameters, Section 3.2.4.2 describes the afterbody parameters, and Section 3.2.4.3 describes the CFG parameters.

3.2.5.1 INLET DERIVATIVE PARAMETERS

The inlet derivative parameters provide the basic information describing the configuration in terms of its important parameters. These data are used by the derivative option as a starting point from which a new configuration performance is derived.

VARIABLE	DEFINITION
DER IVN(1,1) DER IVN(2,1) DER IVN(2,1) DER IVN(3,1) DER IVN(4,1) DER IVN(5,1) DER IVN(6,1) DER IVN(7,1) DER IVN(8,1) DER IVN(9,1) DER IVN(10,1) DER IVN(11,1) DER IVN(12,1) DER IVN(13,1) DER IVN(14,1) DER IVN(15,1) DER IVN(16,1) DER IVN(16,1) DER IVN(17,1)	Aspect Ratio (2D) Sideplate Cutback (2D) First Ramp (cone) angle (deg) Mach Number Cowl Lip Bluntness Takeoff Door Area External Cowl Angle (deg) Exit Nozzle Type for Bleed Exit Nozzle Angle for Bleed (deg) Exit Flap Aspect Ratio for Bleed Exit Flap Area for Bleed Exit Nozzle Type for Bypass Exit Nozzle Angle for Bypass Exit Nozzle Angle for Bypass Exit Flap Aspect Ratio for Bypass Exit Flap Area for Bypass Subsonic Diffuser Area Ratio Subsonic Diffuser Total Wall Angle (deg)
DERIVN(18,1) DERIVN(19,1)	Subsonic Diffuser Loss Coefficient Throat to Capture Area Ratio (PITOT)

3.2.5.2 AFTBODY DERIVATIVE PARAMETER

The aftbody derivative parameters provide the basic information describing the configuration in terms of its important parameters. These data are used by the derivative program as a starting point from which a new configuration performance is derived.

VARIABLE	DEFINITION
DERIVN(1,2)	Nozzle Static Pressure Ratio
DERIVN(2,2)	Tail Fin Configurations (0., 1. or 2)
DERIVN(3,2)	Tail Fin Angle (deg)
DERIVN(4,2)	Tail Fin Fore-and-Aft Location Ratio
DERIVN(5,2)	Base Area Ratio

Aftbody Station Versus Area Curves

The area curves are used to calculate the IMS_T parameter which is the basic aftbody drag correlation parameters. There corresponds a nozzle aftbody area versus station curve for each value of A10/A9 in the nozzle aftbody drag table.

VARIABLE	DEFINITION									
STATN(1,1)	x ₁	loca	tion	for	aftt	oody	area	distrib	ut	ion 1
			•							Marie Control
	•		•	•	-		•	74. 9		•
STATN(N1,1)	v					Ser A	Υ.			
317111(11,1)	N ₁	ocat	ion	for	aftbo	ody	area	distribu	tic	on I
				. 0.	, 1960 1960	9	131	1707 %-		
	175									
STATN(1,N)	X ₁	loca	tion	for	afth	oody	area	distrib	ut	ion N
1444			•	•	,					•
	•		•	•		(a. 6		Politica 1		
CTATN/N	•		•	•		5	•			•
STATN(NN,N)	XNN.	locat	ion	for	aftbo	ody	area	distribu	ti	on N
AREAN(1,1)	Area	at	X ₁	1oc	ation	for	r are	a distri	bu'	tion 1
				1177	127		6.047		•	•
	•	•	•		• I •	H. *	10		•	
AREAN(N1,1)			· ·	To Fair	• 11	POR	•	M. Park	•	
DUCHU(11,1)	Area	at	×N1	loca	tion	for	area	distrib	ut	ion 1
				196	100		100		:	
	2.5									
AREAN(1,N)	Area	at	X ₁	1oc	ation	n fo	r are	a distri	bu 1	tion N
			7		•			51 - 1 -	•	•
A Tree .	•	•	•		•	•	•		•	•
ADEAN(N		:	•		•	•	•		•	•
AREAN(N _N ,N)	Area	a at	NNN	loca	tion	for	area	distrib	ut	ion N
NSTATN(1)	Numb	er o	f po	ints	in a	area	dist	ribution	1	table
e •	10.3	gg. d		•	•	•			•	•
Self schille	100			•	i Tre		un i	NI -		•
NSTATN(NN)	Numb	er o	f po	ints	in a	area	dist	ribution	N	table

3.2.5.3 CFG DERIVATIVE PARAMETERS

The nozzle/aftbody derivative parametes provide the basic information describing the configuration in terms of its important parameters. These data are used by the derivative program as a starting point from which a new configuration performance is derived.

VARIABLE	DEFINITION
DERIVN(1,3)	Plug Half Angle (deg)
DERIVN(2,3)	Wedge Half Angle (deg)
DERIVN(3,3)	Aspect Ratio
DERIVN(4,3)	Divergence Half Angle (deg)

3.2.6 INLET AND NACELLE WEIGHT SPECIFICATION (NAMELIST INWT)

The following section describes the namelist inputs required for the inlet and nacelle weight routine. The bracketed numbers are the default values of the inputs.

VARIABLE	DEFINITION
SLST	Total sea level static thrust per engine (LBF)
QMAX	Maximum airplane dynamic pressure (PSF) Inlet type (2)
INLET	<pre>= 1 2-D Mixed Compression = 2 2-D External Compression = 3 2-D Fixed Ramp = 4 Axisymmetric Fixed Center Body = 5 Axisymmetric External Compression Expandable Center Body = 6 Axisymmetric External Compression Translating Center Body = 7 Axisymmetric Mixed Compression Translating Spike = 8 Axisymmetric Mixed Compression Expandable Centerbody</pre>
LTOTAL	Length of inlet from most forward point on inlet to engine front face (ft) (body buried engine installation only)
NINLET	Number of engines per inlet (1.)
LDUCTS	Length of split inlet duct (0.)

VARIABLE DEFINITION **BDOOR** Bypass door weight calculation option (0.) No bypass door weight calculated =1 Bypass door weight calculated for a 2D mixed compressor inlet (INLET = 1) Bypass door weight calculated for an axisymmetric mixed compression inlet with translating centerbody (INLET = 7)TDOOR Takeoff door weight calculation option (0.) No takeoff door weight calculated Takeoff door weight calculated for an axisymmetric mixed compression inlet with translating centerbody (INLET = 7)**KSHAPE** Shape correction factor for inlets other than 2-D or axisymmetric inlets applied to inlet weight prediction (1.) 3.2.7 NACELLE WETTED AREA CALCULATION (NAMELIST WET)

The following section describes the namelist inputs required by the nacelle wetted area calculation routine. The bracketed numbers are the

default values of the inputs.

VARIABLE	DEFINITION								
ITERFP(40)	Array of component numbers of those components in the secondary stream flow path								
ISECFF(40)	Array of component numbers of those components in the primary stream flow path								
ICCOMP	Component number of the component which defines the engines aft customer connect								
IFCOMP	Component number of the fan nozzle								
RLFDC	Ratio of the length from the inlet hilite to the maximum nacelle diameter to the maximum nacelle diameter. (.54)								
CLMIN	Minimum allowable clearance between engine and cowl radius - inches $(3.)$								

4.0 PROGRAM GUTPUT DESCRIPTION

In this section a description of variables which appear on the printed output is given.

4.1 MNEP

The following sections will describe the output of this engine performance code for each engine component.

4.1.1 'INLET' - JTYPE = 1

VARIABLE	DEFINITION
DATOUT(1) DATOUT(2)	-inlet drag from Table or computed
DATOUT(3)	-velocity - ft/sec -velocity - knots
DATOUT(4) DATOUT(5)	-ram temperature ratio -ram pressure ratio
DATOUT(5)	Mack number
DATOUT(7) DATOUT(8)	-inlet recovery -exit total pressure/ram pressure -exit temperature/518.67
DATOUT(9)	-altitude - feet

4.1.2 'DUCT' - JTYPE = 2

VARIABLE	DEFINITION
DATOUT(1)	-del P/P from momentum pressure drop
To the second	(SPEC(2) or SPEC(7) was specified)
DATOUT(2)	-del P/P from DATINP(1) = SPEC(1)
DATOUT(3)	-pressure ratio at duct inlet used to compute inlet Mach number (Total/Static)
DATOUT(4)	-fuel flow/duct inlet weight flow
DATOUT(5)	-cross sectional area - in ²
DATOUT(6)	-fuel flow - 1b/hr
DATOUT(7)	-inlet Mach number (if SPEC(2) or (7) was specified at the
1	design point)
(3)TUOTAG	-burner efficiency
DATOUT(9)	-burner outlet temperature (before bypass added)

4.1.3 'WINJ' - JTYPE = 3

```
VARIABLE
                             DEFINITION
DATOUT(1)
               -actual water/air ratio
DATOUT(2)
               -input value of fraction vaporized
DATOUT(3)
               -saturation value of water/air
DATOUT(4)
               -actual fraction vaporized
DATOUT(5)
               -delta T
DATOUT(6)
               -water flow rate in lbs/hr
DATOUT (7)
               -pressure drop
DATOUT(8)
               -BLANK
DATOUT(9)
               -BLANK
```

4.1.4 'COMP' - JTYPE = 4

VARIABLE	DEFINITION
DATOUT(1) DATOUT(2) DATOUT(3) DATOUT(4) DATOUT(5) DATOUT(6) DATOUT(7) DATOUT(8) DATOUT(9)	-horsepower required (negative) -physical rpm -3rd. Dim. argument on compressor maps -R value used on maps -surge margin in percent -N/VO used to read maps -scale factor on W VO /s -compressor efficiency -compressor pressure ratio

4.1.5 'TURB' - JTYPE = 5

VARIABLE	DEFINITION
DATOUT(1)	-horsepower produced by turbine (positive)
DATOUT(2)	-physical rpm
DATOUT(3)	-3rd dimension argument value on turbine maps
DATOUT(4)	-pressure ratio used in Table lookup
DATOUT(5)	-scale factor on N/√€
DATOUT(6)	—N√Oused in Table lookup
DATGUT(7)	-scale factor on W VT /P
DATOUT(8)	-turbine efficiency
DATOUT(9)	-turbine overall pressure ratio

4.1.6 'HTEX' - JTYPE = 6

VARIABLE	DEFINITION
DATOUT(1)	-delta P/P main flow
DATOUT(2)	-delta P/P secondary flow
DATOUT(3)	-BLANK
DATOUT(4)	-effectiveness
DATOUT(5)	-scale factor on effectiveness
DATOUT(6)	-delta T calculated
DATOUT(7)	
DATOUT(8)	
DATOUT(9)	BLANK
DATOUT(5) DATOUT(6) DATOUT(7)	-scale factor on effectiveness -delta T calculated -delta T/ (T hot- T cold) -temperature rise difference ((guess value/calc'd)-

4.1.7 'SPLT' - JTYPE = 7

VARIABLE **DEFINITION** DATOUT(1) -bypass ratio DATOUT(2) -delta P/P in the primary flow stream DATOUT(3) -delta P/P in the secondary flow stream ALL REST BLANK 4.1.8 'MIXER' - JTYPE = 8 VARIABLE DEFINITION -main flow area in2 DATOUT(1) DATOUT(2) -secondary flow area - in2 DATOUT(3) -total to static pressure ratio at main flow inlet DATOUT(4) -total to static pressure ratio at secondary flow DATOUT(5) -velocity at main flow inlet DATOUT(6) -velocity at secondary follow inlet -exit mixed flow velocity DATOUT(7) DATOUT(8) -static pressure difference between streams DATOUT(9) -total mixed to average static pressure ratio inlet 4.1.9 'NOZZ' - JTYPE = 9 VARIABLE DEFINITION DATOUT(1) -gross jet thrust -lb DATOUT(2) -actual jet velocity -ft/sec DATOUT(3) -total to static pressure ratio at throat DATOUT(4) -nozzle exit area in**w -nozzle throat area -in**2 DATOUT(5) DATOUT(6) --Cd - flow coefficient DATOUT (7) -Cv - velocity coefficient DATOUT(8) -critical pressure ratio at throat DATOUT(9) -overall pressure ratio, inlet total to exit static

4.1.10 'LOAD' - JTYPE = 10

VAKTABLE	DEFINITION					
DATOUT(1)	-load horsepower (negative) -actual shaft rpm					
DATOUT(2) DATOUT(3) ALL THE REST	-propeller thrust **					

**WARNING: When the flight velocity is zero, the equation for propeller thrust becomes indeterminate and the thrust is set to zero.

4.1.11 'SHFT' - JTYPE = 11

VARIABLE	<u>DEFINITION</u>
DATOUT(1) DATOUT(2) DATOUT(3) DATOUT(4) DATOUT(5) DATOUT(6)	-net shaft horsepower (required-delivered) -actual shaft rpm -actual shaft rpm of JM1 -actual shaft rpm of JM2 -actual shaft rpm of JP1 -actual shaft rpm JP2
DATOUT(7) DATOUT(8) DATOUT(9)	-BLANK -net shaft horsepower/total horsepower -BLANK

4.2 WAT _- 2

The output from WATE-2 may be selected in any of three output formats. There english or SI units can be selected. Examples of the output are shown for the short output in Figure 9, the long form, Figure 10, and the debug output, Figure 11. This output shows the mechanical design and weight breakdown within the individual component. The units in the output section are shown in Figure 12 for English and SI units. The type of units used are noted in the units section of the output.

A flow path layout is also available for conventional type engines. A typical layout is shown in Figure 13. The layout is scaled such that it will fit on one page of the output.

Total engine and accessory weights are displayed on the installation output in Figure 14.

4.3 INSTALLATION PROGRAM (INSTALL)

The installation program output is shown in Figure 14. The following describes that output.

VARIABLE	DEFINITION
FN	Net thrust outputed from NNEP based upon the user inputed inlet recovery and nozzle CF_G
WFT	Fuel flow outputed from NNEP based upon the user inputed inlet recovery

TOTAL BARE ENGINE WEIGHT : 5466. ACCESSORIES ... SE ESTINATED TOTAL LENGTH : 125.

Figure 9 WATE-2 Short Form Output

WEIGHT INPUT DATA IN ENGL UNITS WEIGHT OUTPUT DATA IN ENGL UNITS

0

COME		COMP	ACCU	UP	STREAM		IUS	DOM	INSTRE	AM RA		
ИО	EST	LEN	LEN	RI	RO	RI	RO	RI	RO	RI	RO	NSTAGE
1	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0
2	1559.	17.	17.	16.	39.	0.	0.	19.	38.	0.	0.	1
3	0.	0.	17.	0.	0.	0.	0.	19.	23.	23.	38.	0
4	817.	14.	32.	12.	17.	0.	0.	17.	17.	0.	0.	12
5	504.	19.	51.	15.	19.	0 .	0.	15.	19.	0.	0.	0
6	256.	5.	56.	17.	18.	0.	0.	17.	19.	0.	0.	2
7	1469.	20.	77.	16.	18.	0.	0.	16.	20.	0.	0.	5
8	0.	0.	17.	23.	38.	0.	0.	23.	38.	0.	0.	0
9	0.	0.	77.	16.	20.	0.	0.	16.	20.	0.	0.	0
11	39.	0.	0.	12.	17.	15.	19.	0.	0.	0.	0.	0
12	211.	0.	0.	16.	39.	0.	0.	0.	0.	0.	0.	0
13	463.	48.	125.	0.	20.	0.	0.	0.	18.	0.	0.	O .
14	149.	38.	55.	0.	38.	0.	0.	0.	36.	0.	0.	0

TOTAL BARE ENGINE WEIGHT = 5466. ACCESSORIES = 0.00 ESTIMATED TOTAL LENGTH = 125. ESTIMATED MAXIMUM RADIUS = 39.

Figure 10 WATE-2 Long Form Output

```
MAX CONDITIONS OCCUR AT
ALT MN VALUE
PTOT 0. 0.0 14.3 LB/SQIN
TTOT 0. 0.0 518.7 DEG R
CHIN 36000. 0.850 1116.5 LB/SEC
***********************************
DUCT
M NO VEL T TOT P TOT
0.500 545. 519. 2053.
                                    P STAT AREA GAM
1730. 27.9480 1.4005
                                  1730.
 UTIPMAX STRESS DEN W/AREA TR
1215.6 26135.0 0.168 4.986 1.8
                                           1.800 0.400
 COMPRESSOR 2 MECHANICAL DESIGN
                        DIAM U TIP C RPM C RPM MAX RPI
78.10 1157.1 3395.4 3395.4 3566.8
 LOADING
             N STG
                                                               MAX RPM
             1.00
    0.957
FRAME WT = 468.14
STAGE 1

ND NB WS WN WC CL RHOB RHOD AR

223. 393. 393. 0. 82. 11.7 0.168 0.168 4.70

PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR WEIGHT TIN

1.3990 14.7 0.500 27.948 15.62 39.05 73 1215.6 26135. 1090. 519.
 N STG WEIGHT LENGTH CENGRA INERTIA
1 1558.59 17.50 9.9 194937.1
DUCT
M NO VEL T TOT P TOT P STAT AREA GAM
0.500 576. 580. 2874. 2423. 21.1190 1.3
                                                         1.3995
 PR AD EF PO TO HP
1.4000 0.8500 2873.8 580.1 20858.
HI HO WI CWI
 123.95 138.70 1000.00 1030.93
**********
   HPC
               ×
MAX CONDITIONS OCCUR AT
    ALT MN VALUE
0. 0.0 19.6
*****************************
                             19.6 LB/SQIN
580.1 DEG R
113.5 LB/SEC
            0.
TOTT
CHIN
                     0.0
****************************
DUCT
                         P TOT
M NO VEL T TOT
                                   P STAT AREA
0.450 521. 580.
                         2816.
                                   2451.
                                               3.3286
                                                        1.3995
 UTIPMAX STRESS
                         DEN WYAREA
                                           TR
 1258.9 22391.1
                                           1.200
                                                     0.700
                       0.168
                                0.930
```

٥

TMAX 519.

Figure 11 WATE-2 Debug Output

COMPRESSOR 4 MECHANICAL DESIGN N STG 12.00 DIAM U TIP C RPM C RPM MAX RP 34.59 1190.4 8340.6 7886.6 8340.6 LOADING MAX RPM STAGE WB WS NN WC CL RHOB RHOD AR 14. 14. 36. 8. 2.4 0.168 0.168 5.00 DEL H MACH AREA R HUB R TIP NB UTIPMAX STR WD WB WEIGHT TIN TMAX **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED **** 6773. STAGE WD WB WS WN WC CL RHOB RHOD AR 63. 8. 8. 27. 6. 1.9 0.168 0.168 4.68 PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR WEIGHT TIN 1.3913 17.2 0.437 2.495 13.59 17.30 164 1258.9 16815. 111. 652. XAMT STAGE I 7250. 652. STAGE MD WB WS WN WC CL RHOB RHOD AR 53. 5. 5. 22. 5. 1.5 0.168 0.168 4.36 PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR 1.3489 17.2 0.425 1.934 14.51 17.30 204 1258.9 13045. WS WEIGHT TIN XAMT STAGE I 91. 723. 6749. STAGE WD WB WS WN WC CL RHOB RHOD AR
43. 4. 4. 19. 4. 1.3 0.168 0.168 4.05
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR WEIGHT TIN
1.3148 17.2 0.412 1.540 15.12 17.30 242 1258.9 10395. 74. 794. TMAX STAGE I 5829. STAGE MD WB WS WN WC CL RHOB RHOD AR 35. 3. 3. 16. 3. 1.1 0.168 0.168 3.73 PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR .2871 17.2 0.400 1.254 15.55 17.30 277 1258.9 8470. WEIGHT TIN 4936. 61. 864. STAGE WD WB WS WN WC CL RHOB RHOD AR
29. 2. 2. 15. 3. 1.0 0.168 0.168 3.41
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR W
1.2639 17.2 0.387 1.041 15.86 17.30 308 1258.9 7034. WD WB STR WEIGHT TIN XAMT STAGE I 51. 4240. STAGE 2. 14. 3. 0.9 0.168 0.168 MACH AREA R HUB R TIP WB ND WS AR R TIP NB UTIPHAX STR WEIGHT TIN XAMT **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED ***** STAGE HUBTIP RATIO IS0.93 DES LIMIT IS0.93 **HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT 1.2443 17.2 0.375 0.879 16.09 17.30 334 1258.9 5938. 45. 1004. 1004. 3755. STAGE WS WB WS WN WC CL RHOB RHOD AR
1. 1. 13. 3. 0.9 0.168 0.168 2.77
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR MD 23. WEIGHT TIN XAMT **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED **** STAGE HUBTIP RATIO ISO.94 DES LIMIT ISO.93 **HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT _1.2275 17.2 0.362 0.752 16.27 17.30 351 1258.9 5084. 42. 1072. 1072. 3442. STAGE CL RHOB RHOD 0.8 0.168 0.168

Figure 11 (cont.) WATE-2 Debug Output

WEIGHT TIN

XAMT

STAGE I

WB

WD

WS

WN WC

CL

1. 1. 13. 3. 0.8 0.168 0.168 2.45 DEL H MACH AREA R HUB R TIP NB UTIPMAX STR

```
STAGE HUBTIP RATIO ISO.95 DES LIMIT ISO.93

STAGE HUBTIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT

1.2130 17.2 0.350 0.652 16.41 17.30 360 1258.9 4408.
  STAGE
                                            CL RHOB RHOD AR
0.8 0.286 0.286 2.1
    MD
            WB
                            WN
                                    WC
                    WS
          2. 2. 13. 3. 0.8 0.286 0.286 2.14
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
                                                                                            WEIGHT TIN
                                                                                                                 XAMT
                                                                                                                             STAGE I
 **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED *****
STAGE HUBTIP RATIO IS0.96 DES LIMIT IS0.93
**HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT
1.2004 17.2 0.337 0.572 16.52 17.30 359 1258.9 6581.
                                                                                               57. 1208. 1208.
                                                                                                                                  5654.
 STAGE
            11
          MB
          WB WS WN WC CL RHOB RHOD AR
2. 2. 13. 3. 0.9 0.286 0.286 1.32
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
    MD
   37.
                                                                                            WEIGHT TIN
                                                                                                                 TMAX
                                                                                                                             STAGE I
 **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED **** STAGE HUBTIP RATIO ISO.96 DES LIMIT ISO.93 **HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT 1.1892 17.2 0.325 0.507 16.61 17.30 346 1258.9 5830.
                                                                                               56. 1275. 1275.
                                                                                                                                 5532.
 STAGE 12
                                        CL RHOB RHOD AR
1.0 0.286 0.286 1.50
R HUB R TIP NB UTIPMAX
    MD MB MS MN
                                   3. R HUB
                          14.
   36.
          DEL H MACH AREA
                                                               NB UTIPMAX STR
                                                                                            WEIGHT TIN
                                                                                                                 TMAX
                                                                                                                             STAGE I
 **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED *****
STAGE HUBTIP RATIO ISO.96 DES LIMIT ISO.93
**HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT
1.1793 17.2 0.312 0.453 16.69 17.30 320 1258.9 5213.
                                                                                               57. 1342.
                                                                                                                1342.
                                                                                                                                 5521.
  N STG WEIGHT LENGTH CENGRA INERTIA
12 817.32 14.43 7.9 62942.0
 DUCT
  M NO VEL
                    T TOT
                                 P TOT
                                             P STAT
                                                         AREA
 0.312 561. 1408.
                               50694.
                                            47475.
                                                           0.3962 1.3555
                              PO
 18.0000
                0.8600 50694.4
                                         1408.1
                                                     41704.
                 HO
               345.03
                          142.86
 ************** TOTAL COMP WEIGHT IS
      PBUR 5
 XXXXXXXXXXXX2
 MAX CONDITIONS OCCUR AT
 ************************************
                            M
                                           VALUE
 PTOT
                 0.
                            0.0
                                            352.0 LB/SQIN
                                          1408.1 DEG R
9.5 LB/SEC
 TTOT
                            0.0
 CWIN 36000.
                            0.850
  *************
BURNER HUMBER 5
    RIN ROUT L
15.236 18.636
                            LENGTH
                                               MACH
                                                             WSPEC
                                19.200
                                                 0.044
                                                               3.715
                  LIN WT
                                NOZ WT
                                               INC WT
    CAS WT
                                                               FRAME
                                                                             WTOT
```

0

O

Figure 11 (cont.) WATE-2 Debug Output

HPT MAX CONDITIONS OCCUR AT ********************************** MN VALUE 0. 0.0 0. 0.0 0.0 308.2 LB/SQIN 2929.3 DEG R PTOT TOTT 53.7 LB/SEC CHOUT ***************************** DUCT M NO VEL T TOT 0.500 1250. 2929. P TOT P STAT AREA GAM 44387. 37894. 0.4434 1.2878 DEN WAREA

0

0

0

0

UTIPMAX STRESS 1278.6 5743.4 1.000 0.286 0.168

TURBINE 6 MECHANICAL DESIGN N STG LOADING H/T AREA 0.310 RHUB 0.443 DEL H 210.7 0.967 2.000 UT RTIP RPM MAXRPM TORQ 1278.6 17.6 17.0 8340.6 8340.6 313594.

STAGE DISK BLADE VANE HWD CASE AR 17.6 2.5 19.1 62.3 6.5 1.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I 1.8785 105.3 0.500 0.443 16.98 17.57 281 1278.6 5743. 99.07 2.06 3269

STAGE DISK BLADE VANE HWD CASE AR
29.9 6.1 24.4 87.2 9.3 1.20
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR
2.0592 105.3 0.525 0.754 16.98 17.97 205 1307.7 9765 WEIGHT LENGTH STAGE I 9765. 157.00 2.89 6076.

CENGRA INERTIA N STG LENGTH WEIGHT 2 4.96 256.07 3.8 9345.

DUCT M NO VEL T TOT 0.550 1202. 2232. P STAT AREA 9451. 1.3 P TOT 11460. 1.3955 1.3035

AD EF PO 0.9000 11460.3 TO PR 1.3137 2229.8 3.8731 AREA 5.75 H IN H OUT FLOW HP 797.42 586.75 139.23 41501.

****** WEIGHT IS

LPT

MAX CONDITIONS OCCUR AT ****************************** VALUE MN 81.5 LB/SQIN 2199.0 DEG R 113.7 LB/SEC TTOT 0.0 0. 0. 0.850 CWOUT 36000.

M NO VEL T TOT P TOT 0.550 1193. 2199. 11733. P TOT P STAT APEA 11733. 9675. 1.4 1.4045 1.3045 WAREA UTIPMAX STRESS 561.7 3327.4 DEN HIT 1.000 0.896 0.286 0.538 TURBINE 7 MECHANICAL DESIGN N STG LOADING 5.000 0.280 H/T AREA 1.405 0.896 DEL H 102.0 RTIP UT RHUB RPM MAXRPM TORQ 534.7 18.0 16.2 3395.4 3566.8 368594. STAGE 1
DISK BLADE VANE HWD CASE AR
8.8 16.7 66.9 90.3 10.7 2.00
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I
1.1669 20.4 0.550 1.405 16.16 18.04 180 561.7 3327. 193.42 3.30 5539. STAGE DISK BLADE VANE HWD CASE AR 10.0 19.1 76.3 90.4 10.9 2.25 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I 1.1729 20.4 0.560 1.593 16.16 18.28 182 569.1 3773. 206.61 3.31 6318 STAGE DISK BLADE VANE HWD CASE AR
11.4 22.3 89.3 91.9 11.2 2.50
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I
1.1794 20.4 0.570 1.815 16.16 18.56 182 577.7 4299. 226.15 3.36 736 7361. STAGE DISK BLADE VANE HWD CASE AR
13.0 26.7 106.7 94.8 11.8 2.75
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I
1.1865 20.4 0.580 2.079 16.16 18.88 180 587.7 4924. 253.00 3.47 873 STAGE DISK BLADE VANE HWD CASE AR 15.0 32.2 129.0 99.1 12.5 3.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT LENGTH STAGE I 1.1942 20.4 0.590 2.394 16.16 19.26 175 599.5 5672. 287.82 3.62 10486. FRAME WT = 301.69 N STG LENGTH WEIGHT 5 20.48 1468.69 CENGRA INERTIA 12.8 DUCT

0

Figure 11 (cont.) WATE-2 Debug Output

```
MAX CONDITIONS OCCUR AT
      ALT
                 MN
PTOT
NOZZLE 13
WEIGHT= 168.51 LENGTH=
                            48.087 TR WT= 294.34
MAX CONDITIONS OCCUR AT
                 MM
                 0.0
TTOT
MAX CONDITIONS OCCUR AT
                 MN
0.0
PTOT
TTOT 0.
NAMES NAMES NO. 14
WEIGHT=
          148.65 LENGTH=
                            37.526 TR WT=
   SHAF 12
MAX TORQUE CONDITION
 TORQUE
3.5
SHAFT 12
DO
         DI
               LENG
  4.81
         0.0
                        0.44 210.72
TOTAL INERTIA OF THIS SPOOL IS
                                   38443.
   SHAF 11
```

0

Figure 11 (cont.) WATE-2 Debug Output

TOTAL INERTIA OF THIS SPOOL IS 72290.

* ACCS WT * ACCS

WEIGHT INPUT DATA IN ENGL UNITS WEIGHT OUTPUT DATA IN ENGL UNITS

COMP	WT	COMP	ACCU	UP	STREAM	RAD	IUS	DOW	INSTRE	AM RA	DIUS	
NO	EST	LEN	LEN	RI	RO	RI	RO	RI	RO	RI	RO	NSTAGE
1	0.	0.	G.	0.	0.	0.	0.	0.	0.	0.	0.	0
2	1559.	17.	17.	16.	39.	0.	0.	19.	38.	0.	0.	1
3	0.	0.	17.	0.	0.	0.	0.	19.	23.	23.	38.	0
4	817.	14.	32.	12.	17.	0.	0.	17.	. 17.	0.	0.	12
5	504.	19.	51.	15.	19.	0.	0.	15.	19.	0.	0.	0
6	256.	5.	56.	17.	18.	0.	0.	17.	19.	0.	0.	2
7	1469.	20.	77.	16.	18.	0.	0.	16.	20.	0.	0.	5
8	0.	0.	17.	23.	38.	0.	0.	23.	38.	0.	0.	0
9	0.	0.	77.	16.	20.	0.	0.	16.	20.	0.	0.	0
11	39.	0.	0.	12.	17.	15.	19.	0.	0.	0.	0.	0
12	211.	0.	Ŏ.	16.	39.	0.	0.	0.	0.	0.	0.	0
13	463.	48.	125.	0.	20.	0.	Ô.	0.	18.	0.	0.	0
14	149.	38.	55.	õ.	38.	0.	Ó.	Ö.	36.	0.	0.	Ö

TOTAL BARE ENGINE WEIGHT= 5466. ACCESSORIES= 0.00 ESTIMATED TOTAL LENGTH= 125. ESTIMATED CENTER OF GRAVITY= 41. ESTIMATED MAXIMUM RADIUS= 39.

Figure 11 (cont.) WATE-2 Debug Output

VARIABLE	SI UNITS	ENGLISH UNITS	1. 11.
Velocity	m/sec	ft/sec	
Temperature	o _K	o _R	
Pressure	n/m ²	1b/ft ²	
Area	m ²	ft ²	
Stress	N/cm ²	lb/in ²	
Density	kg/cm ³	.lb/in ³	
Weight	kg	16	
Length	cm	in	
Enthalpy	kwatts	btu/sec	
Horsepower	kwatts	hp	
Weight flow	kg/sec	lb/sec	
Weight flow/unit area	kg/m ² sec	lb/ft ² sec	
Radius	cm	in	

Ò

O

Ü

Ü

0

Figure 12 WATE-2 Ouput Units

Figure 13 WATE-2 Engine Plot

Ö

Ū

1

11

CCCCCC

DATE RUN 79		DYNAMIC PRESSURE 1338.18 LBS/FTRK2	FERENCE NOZZLE IT AREA (A9R) 11.34 FTRR2	DRAG 18.089 18.877 19.089 19.877 10.000 10.000 17.86.791 17.86.791 17.86.791 17.86.791 17.86.791 17.86.791 17.86.791 17.86.791 17.86.791 18.882 18.882 18.882 18.883 18.88
444			EXIT ARENGE	DAAG LBF) 17 38 208 LBF) 17 38 208 LBF) 17 38 208 LBF) 8 18 27 98 BARE ENGINE ACCESSORIES TOTAL (LBF)
CYRPAP		TEMPERATURE 22.73 DEG R	.	
SEL AVB MAP	NUMBER		OR NACELLE AREA (ALOR)	00 0 40 40 40 40 40 40 40 40 40 40 40 40
	MACH NUMBER	TEMPERATURE 447.37 DEG R	OR NACER	הוו ב וווווו כל המספרה מססס
H H	, E			(LBF) 102 (LBF) 102 (LBF) 25 (LBF) 25 (LBF) 25 (LBF) 25 (LBM) 25 (
THIBS MAP NOZZLE MAP	ALTITUDE 20000.0 F	PRESSURE 89.92 LBS/FTHY2	A10/A9 (A10/A9 R)	AC (FTME) CD SPL (TAB 3A) CD SPL (TAB 3A) CD BLD CD BLD CD INL TOT (LBF) 1029 CD INL PS (LBF) 773 CD INL PS (LBF) 255 CD INL FS (LBF) 1074 CLBF) TOTAL (LBF) 1077 F19UTE 14. INSTAL
ž‡		808		80 00000
	· ,	PRESSURE 98 LB3/FTMM2	INCET CAPTURE AREA (AC) 7.00 FTHM2	A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		PRES 970.95 L		ACELLE WET S WITH S WITH S WALL (LBM) LEG CFG S WITH RFLOW C LBM)
				EFERENCE INLET MASSECS OF CARS CLBM/HR) C (LBM/HR) C (
ĝ.				THE CORPORATION OF THE PROPERTY OF THE PROPERT

Q

VARIABLE.

DEFINITION

SFC

WFT/FN

W2COR

Corrected airflow at the inlet exit

WZABS

Absolute airflow at the inlet exit

RF

The recovery that the desired inlet must operate at in

order to supply engine demand

CFG(PRI)

Primary stream gross thrust coefficient

CFG(SEC)

Secondary stream gross thrust coefficient

AOSPL/AC

Ratio of the free stream tube area of spilled air to the

inlet capture area

AOI/AC

Ratio of the free stream tube area of the air entering the

inlet to the inlet capture area

AOBLD/AC

Ratio of the free stream tube area of bleed air to the

inlet capture area.

AO/AC

AOI/AC - AOBLD/AC

AOBYP/AC

Ratio of the free stream tube area of bypassed air to the

inlet capture area.

AOE/AC

Ratio of the free stream tube area of engine demand air to

the inlet capture area.

AC

inlet capture area

CD SPL(TAB 3)

Spillage drag coefficient

CD SPL(TAB 3A)

Reference spillage drag coefficient

CD BLD

Boundary layer bleed drag coefficient

CD BYP

Bypass drag coefficient

CD INL TOT

Total inlet drag coefficient

CD BYP + CD BLD + CD SPL (TAB 3) Total inlet drag

DRAG INL TOT

Total inlet drag

CD INL REF

Reference inlet drag coefficient

DRAG INL REF

Reference inlet drag

CD INL PS

Throttle dependent inlet drag coefficient

CD INL TOT - CD INL REF

VARIABLE

DEFINITION

DRAG INL PS

Throttle dependent inlet drag

A10

Maximum cross-sectional area (body buried engine

installation only)

A9

Nozzle exit area

A10/A9

A10/A9

P9S/PAMB

Ratio of nozzle static pressure to ambient pressure

CD A/B

Aftbody drag coefficient

DRAG A/B

Aftbody drag

CD A/B SPR

Aftbody drag coefficient due to the under or over expansion of the nozzle

DRAG A/B SPR

0

Aftbody drag due to the under or over expansion of the

nozzle

CD A/B TOT

Total aftbody drag coefficient

CD A/B + CD A/B SPR

DRAG A/B TOT

Total aftbody drag

CD A/B REF

Reference aftbody drag coefficient

DRAG A/B REF

Reference aftbody drag

CD A/B PS

Throttle dependent aftbody drag coefficient

CD A/B TOT - CD A/B REF

DRAG A/B PS

Throttle dependent drag

FN INST

Installed net thrust

WFT INST

Installed fuel flow

SFC INST

Installed specific fuel consumption

FN COR

Corrected installed net thrust - FN/6

WFT COR

Corrected installed fuel flow - WFT 50/8

SFC COR

Corrected installed SFC - SFC (0)

Whenever an inlet and/or nozzle/aftbody is selected from the library of maps it will be outputed.

4.4 DERIVATIVE PROCESSOR

The Derivative Processor outputs (Figure 15) a summary of the inlet's and/or nozzle/aftbody's baseline and altered derivative parameters. The effects of the altered derivative parameters on the inlet and/or nozzle/aftbody performance are reflected in the new performance maps.

4.5 INLET DESIGN AND ANALYSIS PROGRAMS

The following sections will describe the output from the NWC and Pitot, inlet design and analysis programs.

4.5.1 TDOO PROGRAM OUTPUT DEFINITIONS

VARIABLE*	DEFINITION
AOACB(i)	Bleed ith mass flow
AOACC	Critical-supercritical mass flow
AOACM	Maximum mass flow (choke at throat) for cases in which an external compression surface shock is detached
AOACSC	Spilled mass flow attributable to sidewall contraction
AOACSS	Sidespill mass flow
ALPW	Angle of attack for the case in question
AMDES	Design Mach number
AMOW	Free stream Mach number for the case in question
ANGNS	Terminal normal shock angle for subcritical operation
ATHROT	inlet throat area
CDB(i)	Bleed i drag
CDBLD	Boundary layer diverter drag
CDLCL	Cowl lip drag

 $^{^\}star$ All mass flows are expressed as their projection in the free stream divided by the $\,$ =0 inlet projection (AC), and all drags are referenced to q_0AC

-4-4	PARAMETER NUMBER	ASPECT RATIO SIDEPLATE-CUTBACK FIRST RARP ANGLECTEG) DESIGN MACH NUMBER	1.0060 1.0060 7.5000 2.0000
:~===	221 ligs	EXIGNAL COUL AREA RATIO EXIGNAL COUL ANGLE(DEG) EXIT NUZZLE TYPE FOR BLEED(CN=0-GDN=1) EXIT NOZZLE ANGLE FOR BLEED(DEG) EXIT FLAP ASPECT HATIO FOR BLEED	20.0000 17.5000 0.0 15.0000 2.0000
2245243			15.000

O

0

O

0

Figure 15. Derivative Processor Output

113

Entration in the twenty about them.

VARIABLE	DEFINITION
CDSPL	Sideplate lip drag
COSPW	Sideplate wave drag
CDSS	Drag attributable to sidespill mass flow
CDSWC	Drag attributable to sidewall contraction mass flow
CDWCL	Cowl wave drag
D(i)	Ramp i deflection at $\alpha = 0$
DEL1	Inlet leading edge deflection for an isentropic wedge design case
DEL3	Angle of vortex sheet generated by a same family shock-shock intercept referenced to local upstream velocity vector
DELISO	Total isentropic compression turning for an isentropic wedge design case
DFA	Flow angle at a duct position referenced to free stream velocity vector
DM	Mach number at a duct position
DP	Static pressure at a duct position
DP/PO	Local static pressure/free stream static pressure at a duct position
DPT	Total pressure at a duct position
DPT/PTO	Local total pressure/free stream total pressure at a duct position
DR(i)	Ramp i deflection referenced to free stream velocity vector
LEG	Duct wall which determines necessary structural thickness for given maximum deflection; LEG=1 implies sidewall limits, LEG=2 implies cowl limits

VARIABLE DEFINITION Mach number NMAVG Number of subcritical normal shock positions for which the recovery will be computed Duct flow field position indicator NR Duct flow field "lumped" expansion position indicator NE Duct flow field shock position indicator NS NW Duct flow field shock position indicator P Local static pressure PO Free stream static pressure P/PO Local static pressure/free stream static pressure P/PZ Local static pressure in a region downstream of a same family shock-shock intercept referenced to the local upstream static pressure PT Local total pressure PTO Free stream total pressure PT21DC Subsonic diffuser exit total pressure/subsonic diffuser entrance total pressure for critical operation PT21SP As directly preceding for supercritical operation PT/PTO Local total pressure/free stream total pressure PT/PTZ Local total pressure in a region downstream of a same family shock-shock intercept referenced to the local upstream total pressure **PTRNS** Total pressure ratio over supercritical terminal normal

Free stream dynamic pressure

For supercritical operation, total pressure directly

Q0

RECMD2

shock accounting for shock-boundary layer losses

upstream of the terminal normal shock including supersonic diffuser viscous losses/local inviscid total pressure

VARIABLE	DEFINITION
STATION	Position indicator for necessary structural thickness computations; inlet is assumed to be operating critically and positions considered correspond to: o behind each external compression surface shock o cowl lip plane o duct throat o end of subsonic diffuser
τ -	Local static temperature
то	Free stream static temperature
Т3	Angle of coalesced shock generated by a same family shock-shock intercept referenced to local upstream velocity vector
TBEE	Body angle, referenced to free stream velocity vector, at the end of a "lumped" expanison in the duct; non-pertinent values are output at 0.0
TBES	As directly preceding for the origin of a "lumped" expansion
TBOE	As directly preceding for the end of a shock
TBOS	As directly preceding for the origin of a shock
TEX	Duct flow field "lumped" expansion angle referenced to local upstream velocity vector
TEXP	As directly preceding referenced to free stream velocity vector
THTW	External compression surface shock wave angle referenced to local upstream velocity vector
THTWP	As directly preceding referenced to free stream velocity vector
TSH	Duct flow field shock angle referenced to local upstream velocity vector
TSHP	As directly preceding referenced to free stream velocity vector
TTO	Free stream total temperature
T/T0	Local static temperature/free stream static temperature
TW	Angle of compensating (reflected) wave generated by a same family shock-shock intercept referenced to local upstream velocity vector

O

D

VARIABLE	DEFINITION
W	Inlet width
XCL, YCL	Cowl lip coords at =0
XCLR, YCLR	Cowl lip coords after inlet translation and rotation
XFOC, YFOC	Wave focal point for a design case
XNE, YNE XUP, YUP	Coords of the termination of a subcritical normal shock
XNS, YNS	Coords of the origin (surface) of a subcritical normal shock&*LW, YLW
XEE, YEE	Coords of the termination of a "lumped" expansion in the duct flow field
XES, YES	As directly preceding for the origin of a "lumped" expansion
XS(i). YS(i)	Coords of the origin of ramp i at $\alpha = 0$
XSR(i), YSR(i)	Coords of the origin of ramp i after translation and rotation
XSE, YSE	Coords of the termination of a shock in the duct flow field
XSS, YSS	As directly preceding for the origin of a shock
XSSI, YSSI	External compression surface shock-shock intercept point for a double ramp inlet
XSSI12, YSSI12	Intercept point of the 1 and 2 external compression surface shocks
XSS123, YSS123	As directly preceding for the 2 and 3 shocks
XSSI34, YSSI34	As directly preceding for the 3 and 4 shocks

4.5.2 PROGRAM AXIOO OUTPUT DEFINITIONS

VARIABLE*	DEFINITION
AOACB(i)	Bloed i mass flow
AOACC	Critical-supercritical mass flow
AOACM	Maximum mass flow (choke at throat) for cases in which an external compression surface shock is detached
AMDES	Design Mach number
AMI	Inlet plane Mach number
AMO	Free stream mach number for the case in question
ATHROT	Inlet throat area
CDADD	Inlet additive drag at critical mass flow
CDB(i)	Bleed i drag
CDBLD	Boundary layer diverter drag
CDL	Cowl lip drag
CDWCL	Cowl wave drag
D(1)	Ramp i deflection at $\alpha = 0$
DA	Compression angle at cowl lip
DEL3	Angle of vortex sheet generated by a same family shock-shock intercept referenced to local upstream velocity vector
DFA	Flow angle at a duct position referenced to a free stream velocity vector
DM	Mach number at a duct position
DP	Static pressure at a duct position
DP/PO	Local static pressure/free stream static pressure at a duct position

^{*} All mass flows are expressed as their projection in the freestream divided by the $\,=0$ inlet projection (AC), and all drags are referenced to q_0AC

Ð

0

VARIABLE DEFINITION

DPT Total pressure at a duct position

DPT/PTO Local total pressure/free stream total pressure at a duct

position

LOC REC Total pressure ratio across cowl lip shock

M Mach number

MACH Mach number behind cowl lip shock

NR Duct flow field position indicator

NE Duct flow field "lumped" expansion position indicator

NS Duct flow field shock position indicator

NW Duct flow field shock poisiton indicator

P Local static pressure

PAPO Average static pressure ratio on conical section of cowl

PLOC/PTO Ratio of local static to freestream total pressure

PO Free stream static pressure

POPTO Freestream static to total pressure ratio

P/PO Local static pressure/free stream static pressure

P/PZ Local static pressure in a region downstream of a same family shock-shock intercept referenced to the local upstream static pressure

PLPTL Static to total pressure ratio of flow approaching cowl lip

PSRLOC Static pressure ratio across cowl lip shock

PRT Cumulative recovery on cowl surface (does not include effect of the local normal shock at the lip used in lip drag calculation).

PT Local total pressure

PTLPTO Total pressure ratio of flow approaching cow! lip

VARIABLE	<u>Definition</u>
PTO	Free stream total pressure
PTOQO	Freestream total to dynamic pressure ratio
PTPPTL	Total pressure ratio across normal shock at cowl lip
PTRSD	Subsonic diffuser exit total pressure/subsonic diffuser entrance total pressure for critical operation
PT21SP	As directly preceding for supercritical operation
PT/PTO	Local total pressure/free stream total pressure
PT/PTZ	Local total pressure in a region downstream of a same family shock-shock intercept referenced to the local upstream total pressure
PTRNS	Total pressure ratio over supercritical terminal normal shock accounting for shock-boundary layer losses
QO	Free stream dynamic pressure
RAY	The number of the ray in the first cone field
RECMD2	For supercruitical operation, total pressure directly upstream of the terminal normal shock including supersonic diffuser viscous losses/local inviscid total pressure
SFC ANGLE	Surface angle
T	Local static temperature
то	Free stream static temperature
Т3	Angle of coalesced shock generated by a same family shock-shock intercept referenced to local upstream velocity vector
TBEE	Body angle, referenced to free stream velocity vector, at the end of a "lumped" expansion in the duct; non-pertinent values are output as 0.0.
TBES	As directly preceding for the origin of a "lumped" expansion
TBOE	As directly preceding for the end of a shock
TBOS	As directly preceding for the origin of a shock

	VARIABLE	DEFINITION
	TEX	Duct flow field "lumped" expansion angle referenced to local upstream velocity vector
	TEXP	As directly preceding referenced to free stream velocity vector
	THAP	Flow angle approaching cowl lip
	TSH	Duct flow field shock angle referenced to local upstream velocity vector
	TSHP	As directly preceding referenced to free stream velocity vector
e -	TSLOC	local shock angle at cowl lip
	TTO	Free stream total temperature
	T/T0	Local static temperature/free stream static temperature
	TW	Angle of compensating (reflected) wave generated by a same family shock-shock intercept referenced to local upstream velocity vector
	XCL, YCL	Cowl lip coords
C	X COORD, Y COORD	External cowl coordinates used in computation
	XFOC, YFOC	Wave focal point for a design case
C C	XEE, YEE	Coords of the termination of a "lumped" expansion in the duct flow field \ensuremath{I}
	XES, YES	As directly preceding for the origin of a "lumped" exapnsion
	XMAP	Cowl lip approach Mach number
O	XMFS	Free stream Mach number
	XS(i) YS(i)	Coords of the origin of ramp i
	XSE, YSE	Coords of the termination of a shock in the duct flow field
	XSS, YSS	As directly preceding for the origin of a shock
	ISSY, ISSX	External compression surface shock-shock intercept point for a double ramp inlet

4.5.3	PROGRAM SPKOO OUTPUT DEFINITIONS
VARIABLE*	DEFINITION
AOACB(i)	Bleed i mass flow
AOAC	Critical - supercritical mass flow
ATHROAT	Inlet throat area
В	Denotes a body point in the characteristics print
C1, C2, C3	Splyne curve fit coefficients
CD1	Drag coefficient on external surface segment
CD ADD	Additive drag coefficient
CDB(i)	Bleed i drag coefficient
CDBLD	Boundary layer diverter drag coefficient
CD EXT. SURFACE	External compression surface drag coefficient
CDL	Cowl lip drag coefficient
CDWCL	Cowl wave drag coefficient
DFA	Flow angle at a duct position referenced to free stream velocity vector
DM	Mach number at a duct position
DP	Static pressure at a duct position
DP/PO	Local static pressure/free stream static pressure at a duct position
D00Q0	Local static pressure minus free stream static pressure/free stream dynamic pressure
DPT	Total pressure at a duct position
DPT/PTO	Local total pressure/free stream total pressure at a duct position

^{*} All mass flows are expressed as their projection in the free stream divided by the =0 inlet projection (AC), and all drags are referenced to q_0AC

VARIABLE DEFINITION ENTROPY Entropy, referenced to free stream value of 0.0 **EPSILON** Shock angle, degrees FLOWI Normalized mass flow from the wave flocal point to an arbitrary field point along a left characterisite for a design case G Denotes a general or field point in the characteristics print GA Local ratio of specific heats Ħ Enthalpy based on free stream static temper are H2 Local enthalov H271 Total enthalpy based on free stream conditions I Denotes an interpolated point in the characteristics print also used as number of a right characteristic KP Internal counter in design option routine Local Mach number Free stream Mach number MU Local Mach angle Internal counter in design option routine As directly preceding As directly preceding MER As directly preceding MPTS Number of points defining the external compression surface Duct flow field position indicator Duct flow field shock position indicator

123

Local static pressure/free stream static pressure

Local static pressure/local total pressure

P/P0

P/PT

Local static pressure

VARIABLE	DEFINITION
PM ANGLE	Prandtl-Meyer angle, degrees
POQ	Local static pressure/free stream dynamic pressure
PT	Local total pressure
PT/PTO, PTP/PT, PTR	Local total pressure/free stream total pressure
PTRNS	Total pressure ratio over supercritical terminal normal shock accounting for shock-boundary layer losses
PT21DC	Subsonic diffuser exit total pressure/subsonic diffuser entrance total pressure for critical operation
PT21SP	As directly preceding for supercritical operation
PSR	Local static pressure/free stream static pressure
Q/P0	Local dynamic pressure/free stream static pressure
QOP	As directly preceding
RECMD2	For supercritical operation, total pressure directly upstream of the terminal normal shock including supersonic diffuser viscous losses/local inviscid total pressure
S	Denotes a shock in the characteristics print, also entropy
1	Local static temperature, degrees Rankine
T/T0	Local static temperature/free stream static temperature
TBOE	Body angle, referenced to free stream velocity vector, at the end of a shock in the duct; non-pertinent values are output on 0.0
TBOS	As directly preceding for the origin of a shock
TEMP	Static temperature, degrees Rankine
THT	Local flow angle, degrees
ТНТО	Deflection (degrees) through leading edge shock
THETA	Local flow angle, degrees

а

VARIABLE	DEFINITION
TSH	Duct flow field shock angle referenced to local upstream velocity vector
1 SHP	As directly preceding referenced to free stream velocity vector
V/VMAX	Local velocity/maximum velocity
VEL	Velocity, ft/sec
VZ	Free stream velocity, ft/sec
W	Local veloctiy, ft/sec
X,Y	Cartesian coordinates
X(1,1), Y(1,1)	Inlet leading edge coordinates
XSE, YSE	Coordintes of the termination of a shock in the duct flow field
XSS, YSS	As directly preceding for the origin of a shock
YREF	Y coordinate used to compute reference area for drag coefficients

4.5.4 PITOT INLETS

The output from the pitot inlet design routine is shown in figure 16. The inlet internal coordinates are shown from the inlet hilite to the engine face with the inlet throat being called out. The inlet external coordinates are shown from the inlet hilite to the maximum nacelle diameter. Also included in an inlet dimension summary are: hilite area, throat area, engine compressor hub to tip ratio, engine face area, length from the inlet hilite to the maximum nacelle diameter, subsonic diffuser length, lip contraction ratio, engine to throat area ratio and inlet wetted area.

The output from the pitot inlet analysis routine is shown in Figure 14; its description is found in Section 4.3

					ENGINE	39.052		٠				
	0	THROAT	20.591			39.450			12.647	MAX NACELLE DIAMETER 46.496		AREA
******			14.414 2 33.325 3			42.991			9.067 1	MAX DI 41.846 43.044		ENGINE FACE AREA
CINCHES)						40.867						ENG]
COORDINATES HILLITE CINCHES INE CENTERLINE	* * * * * * * * * * * * * * * * * * *	A1	8 8.236	FACE		38.711	* * * * * * * * * * * * * * * * * * *	DIAMETER	6.254	7 37.197 6 43.028	* * * * * * * * * * * * * * * * * * *	HUB/TIP RATIO
INLET COORD FROM HILLT HE ENGINE C	* C X X X X X X X X X X X X X X X X X X	HILITE IN THROAT		TO ENGINE		35.417	######################################	TO MAX NACELLE DIAMETER	4.022	32.547	**************************************	HUB/T
AXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	HILITE	37.592	THROAT		35.062 35	**************************************	TE TO MA	41.743	27.898	**************************************	AREA
	* # * *		38.610				* û î * * *	HILITE	1.116	23.248	* * * * * * * *	THROAT AREA
* * * * * * * * * * * * * * * * * * *	Alaba Balan Sa		39.543			213 28.656 337 34.223			41.369	18.598		AREA
		HILITE	41.162			905 25.2 055 33.3			0.0 41.132	13.949		HILITE AR
						33.05						
	\$ 100 m	e	פ		THROAT	32.946			Χœ	× œ		

Pitot Inlet Design Output

Figure 16.

O

126

5327.977 IN**2

3409.904 IN**2

CHILITE TO MAX NACELLE DIAMETER)

46.496 IN

4024.512 IN**2

SUBSONIC DIFFUSER LENGTH

25.905 IN

(ENGINE TO THROAT)

LIP CONTRACTION RATIO (HILITE TO THROAT)

1.563

1.180

WETTED AREA

12496.109 IN**2

Figure 16. (cont.) Pitot Inlet Design Output

127

4.6 INLET AND NACELLE WEIGHT

A breakdown of inlet and nacelle weight is summarized on the installation output in Figure 14. Nacelle weight includes the following:

- o engine mounts
- o firewall
- o cow1

The air induction system weight includes the following:

- o inlet
- o duct
- o bypass doors (INLET = 1, 7 only)
- o takeoff doors (INLETY = 7 only)

4.7 NACELLE DRAG

A nacelle drag buildup is shown on the installation output in Figure 14. For subsonic flight conditions skin friction and form drag are displayed. For supersonic flight conditions skin friction and wave drag are displayed.

Ö

5.0 INPUT EXAMPLES

The succeeding sections will describe the inputs required to run the following installation methods:

- o engine performance and weight
- o database and analytical inlet performance
- o database nozzle performance
- o nacelle drag and weight
- o inlet weight

0

O

0

0

0

0

o derivative procedure

5.1 SUBSONIC ENGINE APPLICATION

The following section shows the inputs necessary to install a subsonic engine utilizing a database inlet and an analytically determined inlet (TABLE VI through TABLE VII).

5.2 SUPERSONIC ENGINE APPLICATION

The following section shows the inputs necessary to install a supersonic engine utilizing database inlets and analytically determined inlets (TABLE VIII through TABLE XII).

5.3 DERIVATIVE PROCEDURE APPLICATION

The following section describes the input necessary to utilize the derivative procedure for changes in inlet, nozzle aftbody and nozzle ${^C}F_{\text{C}}$ parameters (TABLE XIII through TABLE XVIII).

Ø3

2

```
INSTAL & WATE-2: TYPICAL SUBSONIC SEPERATE FLOW SHORT DUCTED TURBOFAN &D NMODES=1,NCOMP=29,NOSTAT=14,MODESN=1,TABLES=T,ITPRT=0,NCODE=1,IWAY=1,LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
   INST=0, IFLGRF=0, IWT=1,
   & END
  &D MODE=1,INST=0,IFLGRF=0,
KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=1000,4*0,.97,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,1.4,1
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=6.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
 18.1.

KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0,.05,

KONFIG(1,6)='TURB',8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,

KONFIG(1,7)='TURB',9,7,10,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,

KONFIG(1,7)='DUCT',10,0,12,0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,

KONFIG(1,13)='NOZZ',12,0,13.0,SPEC(1,8)=.04,

KONFIG(1,13)='NOZZ',11,0,14,0,SPEC(1,13)=0,.98,0,0,.975,1,0,0,1,

KONFIG(1,14)='NOZZ',11,0,14,0,SPEC(1,14)=0,.98,0,0,.975,1,0,0,1,

KONFIG(1,11)='SHFT',4,6,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,

KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,

KONFIG(1,16)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,12,0,1,

KONFIG(1,16)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,9,0,1,

KONFIG(1,17)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,8,0,1,1.1,1.75,

KONFIG(1,19)='CNTL',SPCNTL(1,18)=1,3,'STAP',8,8,0,1,1.1,1.75,

KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1,'STAP',8,4,0,1,1.1,2.1,

KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1,'STAP',8,2,0,1,

KONFIG(1,21)='CNTL',SPCNTL(1,21)=4,5,'DOUT',6,2,1.0,0,0,3000,

KONFIG(1,24)='LIMV',SPLIMV(1,24)=0,.6,1.05,'DOUT',6,4,0,0,1,

KONFIG(1,28)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,

KONFIG(1,29)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,

KONFIG(1,29)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,

KONFIG(1,29)='CNTL',SPCNTL(1,29)=1,12,'DOUT',8,12,0,1,

KONFIG(1,29)='CNTL',SPCNTL(1,29)=1,12,'DOUT',8,12,0,1,
   18,1,
   & END
   &D ALTP=5000, MACH=.4, ETAR=.97, LABEL=T
   SUBSONIC INLET
   &D ALTP=15000, MACH=.6, ETAR=.97 & END
   CLIMB
   &D SPEC(4,5)=2460, ALTP=36000, MACH=.85, ETAR=.97, &END
   CRUISE
   &D IWT=2, NVOPT=0, DEBUG=0
                                                                                                 & END
   NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVDPT NON ZERD
   IPLT=T, ISII=F, ISIO=F, IOUTCD=0, ILENG(1)=2,3,4,5,6,7,9,13,
   IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC',1,0,4*0,
  IWMEC(1,4)='HPC ',1,0,4*0,
IWMEC(1,5)='PBUR',1,5*0,
IWMEC(1,6)='HPT ',0,4,4*0,
IWMEC(1,7)='LPT ',1,2,0,3*0,
IWMEC(1,9)='DUCT',1,4*0,
IWMEC(1,13)='NOZ ',1,-9,2,3*0,
IWMEC(1,8)='DUCT',1,4*0,
IWMEC(1,14)='NOZ ',1,-8,4*0,
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=-5,1,7,40,1,5,4,7
DESVAL(1,2)=.5,1.7,.40,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
   DESVAL(1,3)=15*0.,
   DESVAL(1,4)=.45,1.44,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
   DESVAL(1,5)=80.,.020,0.,4,11*0.,
```

Table VI Input Example - Subsonic Pitot Inlet (Database) (continued)

```
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,
DESVAL(1,9)=.50,0,0,-1,
DESVAL(1,13)=1.22,14*0.,
DESVAL(1,14)=.50,0,0,-1,
DESVAL(1,14)=.50,14*0.,
DESVAL(1,11)=50000.,.3,.85,4,6,
DESVAL(1,11)=50000.,.3,.85,4,6,
 END
 IWT=0, INST=1, IFLGRF=0, ALTP=5000, MACH=.4, LABEL=F,
 LEND
 &I
IMMAP='M9SUB',NOZMAP=0,CFGMAP=0,DCDMAP=0,
DERP=0,ACI=37.,NWC=1,NWD=1,INLTWT=1,INOZ(1)=0,0,13,14,KVALUE=.00025,
ENGNO=1,TABRF=0.,ICFCN=2,
REFMFR=0.,OPTB=3.,A10A9R=2.1,SCALE=1.,
PRINT=1.,UNITI=1.,UNITO=1.,MODE=0,STOP=0,
 & END
 &WET
 TTERFP(1)=1,2,3,8,14,0,
ISECFP(1)=1,2,3,4,5,6,7,9,13,0,
RLFDC=.54,ICCOMP=7,IFCOMP=14,CLMIN=4.,
 & END
 & INLWT
 SLST=28500., INLET=4, QMAX=300., NINLET=1, KSHAPE=1., LDUCTS=0., BDOOR=0., TDOOR=0.,
 & END
 & D
 INST=2, ALTP=15000, MACH=.6
 & END
 &D
 ALTP=36000, MACH=.85, SPEC(4,5)=2460
 & END
 &D
 ENDIT=1
 & END
```


,,

Table VII Input Example - Subsonic Pitot Inlet (Analytical)

0

0

٥

Ü

```
INSTAL & WATE-2: TYPICAL SUBSONIC SEPERATE FLOW SHORT DUCTED TURBOFAN &D NMODES=1,NCOMP=29,NOSTAT=14,MODESN=1,TABLES=T,ITPRT=0,NCODE=1,IWAY=1,LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
  INST=0.IFLGRF=0.IWT=1,
  & END
  &D MODE=1, INST=0, IFLGRF=0,
  KONFIG(1,1)='INLT',1.0,2,0,SPEC(1,1)=1000,4*0,.97,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,1.4,1
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=6.0,.02,.02,
  KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
 18.1,
KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0,0.05,
KONFIG(1,6)='TURB',8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,7)='TURB',9,7,10,0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,
KONFIG(1,9)='DUCT',10,0,12,0,SPEC(1,8)=.04,
KONFIG(1,13)='NOZZ',12,0,13,0,SPEC(1,13)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,13)='NOZZ',11,0,14,0,SPEC(1,14)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,14)='NOZZ',11,0,14,0,SPEC(1,14)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,15)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,12,0,1,
KONFIG(1,16)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,9,0,1,
KONFIG(1,17)='CNTL',SPCNTL(1,17)=1,4,'STAP',8,9,0,1,
KONFIG(1,19)='CNTL',SPCNTL(1,19)=1,2,'STAP',8,11,0,1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1,'STAP',8,2,0,1,
KONFIG(1,20)='CNTL',SPCNTL(1,21)=4,5,'DOUT',6,2,1,0,0,0,3000,
KONFIG(1,28)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,
KONFIG(1,28)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,
KONFIG(1,29)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,
  18.1.
  KONFIG(1,29)='CNTL', SPCNTL(1,29)=1,12, 'DOUT',8,12,0,1,
  $ FND
  &D ALTP=5000, MACH=.4, ETAR=.97, LABEL=T
  SUBSONIC INLET
  &D ALTP=15000, MACH=.6, ETAR=.97 & END
  CLIMB
  &D SPEC(4,5)=2460, ALTP=36000, MACH=.85, ETAR=.97, & END
  CRUISE
  &D INT=2, NVOPT=0, DEBUG=0
                                                                      & END
  NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
  214
  IPLT=T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2,3,4,5,6,7,9,13,
IMMEC(1,2)='FAN_',1,1,0,3*0,
  IWMEC(1,4)='HPC ',1,0,
  IWMEC(1,4)='HPC',1,0,'40,
IWMEC(1,5)='PBUR',1,5*U,
IWMEC(1,6)='HPT',0,4,4*0,
IWMEC(1,7)='LPT',1,2,0,3*0,
IWMEC(1,9)='DUCT',1,4*0,
IWMEC(1,13)='NOZ',1,-9,2,3*0,
IWMEC(1,3)='NOZ',1,-9,2,3*0,
  IWMEC(1,13)='NOZ',1,-4,2,3*0
IWMEC(1,8)='DUCT',1,4*0,
IWMEC(1,14)='NOZ',1,-8,4*0,
IWMEC(1,11)='SHAF',2,6,3*0,4,
IUMEC(1,12)='SHAF',1,7,3*0,2,
-DESVAL(1,2)=.5,1.7,.40,1.5,4.7,4.6,.45,0.,0.,1..0.,2.,1.,
  DESVAL(1,3)=15*0
  DESVAL(1,4)=.45,1.44,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
  DESVAL(1,5)=80...020,0.,4,11*0.,
```

Table VII Input Example - Subsonic Pitot Inlet (Analytical) (continued)

```
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,
DESVAL(1,9)=.50,0,0,-1,
DESVAL(1,13)=1.22,14*0.,
DESVAL(1,8)=.50,0,0,-1,
DESVAL(1,14)=.50,14*0.,
DESVAL(1,11)=50000.,.3,.85,4,6,
DESVAL(1,12)=50000.,.3,.85,4,6,
LEND
&D
IWT=0,ALTP=5000,MACH=.4,INST=1,IFLGRF=0,LABEL=F,
& END
INMAP=0, NOZMAP=0, CFGMAP=0, DCDMAP=0,
DERP=0, ACI=37., NWC=1, INLTWT=1, NWD=1, INOZ(1)=0,0,13,14, KVALUE=.00025,
ENGNO=1, ICFCN=2,
REFMFR=0.,A10A9R=2.1,SCALE=1.,
PRINT=1.,UNITI=1.,UNITO=1.,INLTYP=1,MODE=0,STOP=0.,
& END
&PITOT
XMTEFM=.75,ATO=10.,RBYD=.02,DESMN=.85,
NTYPE=-1,INTYPE=0,WIDTH=10.,HEIGHT=5.,XNDOOR=10.,
RHITH=1.25,HT=.4,RMMIT=2.5,
&END
&WET
TTERFP(1)=1,2,3,8,14,0,
ISECFP(1)=1,2,3,4,5,6,7,9,13,0,
RLFDC=.54,ICCOMP=7,IFCOMP=14,CLMIN=4.,
& END
#INLWT
SLST=28500.,INLET=4,QMAX=300.,NINLET=1,KSHAPE=1.,
LDUCTS=0.,BDOOR=0.,TDOOR=0.,
& END
& D
INST=2, ALTP=15000, MACH=.6
& END
& D
ALTP=36000, MACH= . 85, SPEC(4,5)=2460
& END
& D
ENDIT=1
& END
```

0

0

O.

0

..

Table VIII Input Example - Supersonic Pitot Inlet (Database)

Ð

0

```
INSTAL & WATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D NMODES=1, NCOMP=29, NOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, NCODE=1, IWAY=1
   LABEL = F, PUNT = T, PINPUT = T, DRAW = T, BOAT = F, SPILL = F, INLTDS = F, SPLDES = . 02, NVOPT = 0,
   IWT=1, INST=0, IFLGRF=0.
   & END
   &D MODE=1
   KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1.1006,1,0,.1,.86,
 KONFIG(1,5)='DUCT',6,0.8,0.SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0.05,
KONFIG(1,6)='TURB',8,7,9,0.SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,7)='TURB',9,7,10.0.SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,8)='MIXR',10,5,11.0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,
KONFIG(1,8)='DUCT',11,0,12,0.SPEC(1,9)=.06,.3,0,0.98,18300,
KONFIG(1,10)='NOZZ',12,0,13,0.SPEC(1,10)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,11)='SHFT',4,6,0.0.SPEC(1,10)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,12)='SHFT',2,7,0.0.SPEC(1,12)=6000,2×1,0.0,2×1,0,0,
KONFIG(1,15)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,12,0,1,
KONFIG(1,16)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,2,0,1,
KONFIG(1,18)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,2,0,1,
KONFIG(1,18)='CNTL',SPCNTL(1,19)=1,2,'STAP',8,4,0,1,1.1,2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1,'STAP',8,2,0,1,
KONFIG(1,21)='CNTL',SPCNTL(1,21)=4,5,'DOUT',6,2,1.0,0,0,3000,
KONFIG(1,23)='OPTV',0,0,10,0,SPEC(1,23)=0,-5,10,10,0,0,0,0,0,
KONFIG(1,23)='OPTV',0,0,2,0,SPEC(1,23)=0,-5,10,10,0,0,0,0,0,
KONFIG(1,23)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,6,1,
KONFIG(1,28)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,6,1,
KONFIG(1,29)='CNTL',SPCNTL(1,29)=1,12,'DOUT',8,12,0,1,
   KONFIG(1,29)='CNTL', SPCNTL(1,29)=1,12, 'DOUT',8,12,0,1,
   $ END
   &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T &END
  MIL SPEC INLET &D ALTP=15000.MACH=1.0,ETAR=0 &END
    TRANSONIC CLIMB - DRY
   &D ALTP=20000, MACH=1.4, ETAR=0 &END
   SET UP FOR AFTERBURNING
   &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
   AFTERBURN
   &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END
   SET UP FOR AFTERBURNING
   &D SPEC(7,10)=1, SPEC(4,9)=3000 &END
   AFTERBURN
   &D IWT=2, NVOPT=0, DEBUG=0 &END
   NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
   IPLT=T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2,3,4,5,6,7,8,9,10,
  IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC',1,0,4*0,
   IWMEC(1,4)='HPC
IMMEC(1,5)='PBUR',1,5*0,
IMMEC(1,6)='HPT',0,4,4*0,
IMMEC(1,7)='LPT',1,2,0,3*0,
   IMMEC(1,8)='FMIX',6*0,
IMMEC(1,9)='AUG',6*0,
   INMEC(1,10)='NOZ ',2,-9,4x0,
```

Table VIII Input Example - Supersonic Pitot Inlet (Database) (continued)

```
IWMEC(1,11)='5HAF',2,6,3*0,4,
IWMEC(1,12)='5HAF',1,7,3*0,2,
  DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
  DESVAL(1,3)=15*0.,
 DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
DESVAL(1,5)=80.,.020,0.,4,11*0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,
  DESVAL(1,8)=1.,12.,13×0.,
  DESVAL(1,9)=250.,.018,0,8,11×0.,
  DESVAL(1,10)=1.46,14×0.,
  DESVAL(1,11)=50000.,.3,.85,2,7,
  DESVAL(1,12)=50000...3.0,4,6,
  & END
  1D
  IWT=0,INST=1,IFLGRF=0,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,
  SPEC(7,10)=0, SPEC(4,9)=0,
  # END
 INMAP='NS2', HOZMAP='208HTTY', CFGMAP='CV1', DCDMAP=0, DERP=0, ACI=4.2, NWC=1, NWD=1, INLTWT=1, MODE=0, INOZ(1)=10,0,0,0, KVALUE=.00025.REFMFR=0,OPTB=3., A10A9R=1.4, ENGNO=1.7ABRF=0.1LFCN=2,
  SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0.,
  # END
  #D
  SPEC(5,10)=5556,
  # END
  SWET
  TTERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
  RLFDC=3.44,ICCOMP=9,IFCGMP=10,CLMIN=3.,
  & END
  & INLWT
  SLST=16200., INLET=4. QMAX=1800., NINLET=1, KSHAPE=1.,
  LDUCTS=0.,BDOOR=0.,TDOOR=0.,
  & END
  10
  INST=2, ALTP=15000, MACH=1.0, ETAR=0,
  1 END
  2 D
  ALTP=20000, MACH=1.4, ETAR=0,
  & END
_$PEC(7,10)=1,5PEC(4,9)=3000,
$END
  2 D
  1 D
  SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,
  & EHD
  4 D
  SPEC(7,10)=1,5PEC(4,9)=3000,
  4 END
  t D
TENDIT=1,
  LEND
```

Table IX Input Example - Two-Dimensional Inlet (Database)

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D HMODES=1, HCOMP=29, HOSTAT=14, MODESH=1, TABLES=T, ITPRT=0, HCODE=1, IWAY=1
 LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
 IWT=1, INST=0, IFLGRF=0,
 & END
 &D MODE=1
 KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
 KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
 KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
& END
 &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T &END
 MIL SPEC INLET
 &D ALTP=15000, MACH=1.0, ETAR=0 &END
 TRANSONIC CLIMB - DRY
 &D ALTP=20000, MACH=1.4, ETAR=0 & END
 SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END
 SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 &D IWT=2,NVOPT=0,DEBUG=0 &END
NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
 8 W
 IPLT=T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2,3,4,5,6,7,8,9,10,
 IWMEC(1,2)='FAN ',1,1,0,3*0,
 ILIMEC(1,3)='SPLT',6*0,
 IWMEC(1,4)='HPC ',1,0,4*0
 IMMEC(1,5)='PBUR',1,5*0,
IMMEC(1,6)='HPT',0,4,4*0,
IMMEC(1,7)='LPT',1,2,0,3*0,
-IMMEC(1,8)='FMIX',6*0,

IMMEC(1,9)= AUG ',6*0,

IMMEC(1,10)='NOZ ',2,-9,4*0,
```

11

::

Table IX Input Example - Two-Dimensional Inlet (Database) (continued)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1
DESVAL(1,3)=15*0.
  DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
 DESVAL(1,5)=80.,.020.0.,4,11*0.,
DESVAL(1,6)=.5,.310.1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,
DESVAL(1,7)=.55..280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,
DESVAL(1,8)=1.,12.,13*0.,
 DESVAL(1,9)=250...018,0,8,11x0.,
 DESVAL(1,10)=1.46,14*0.,
DESVAL(1,11)=50000.,.3,.85,2,7,
 DESVAL(1,12)=50000.,.3,0,4,6,
 & END
 &D
 INT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F.
 SPEC(7,10)=0,SPEC(4,9)=0,
 & END
 INMAP='FB', NOZMAP='ADENAB', CFGMAP='ADENCFG', DCD!AP=0,
DERP=0, ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0,
INOZ(1)=10,0,0,0, KVALUE=.00025, REFMFR=0, OPTB=3.,
A10A9R=1.4, ENGNO=1., TABRF=0., ICFCN=2,
 SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0.,
 & END
 &D
 SPEC(5,10)=5556,
 & END
 &WET
 TTERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
 RLFDC=3.44,ICCOMP=9,IFCOMP=10,CLMIN=3.,
 & END
 RINLWT
 SLST=16200.,INLET=1,QMAX=1800.,NINLET=1,KSHAPE=1.,
LDUCTS=0.,BDOOR=1.,TDOOR=0.,
 & END
 &D
 INST=2,ALTP=15000,MACH=1.0,ETAR=0,
 & END
 &D
 ALTP=20000, MACH=1.4, ETAR=0,
 & END
 &D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
 & END
 &D
 SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0.,
 & END
 2D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
-LEND
 Q3
 ENDIT=1,
```

LEND

```
INSTAL & MATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN
  AD NMODES=1, NCOMP=29. NOSTAT=14. MODESN=1, TABLES=T. ITPRT=0. NCODE=1. IWAY=1. LABEL=F. PUNT=T. PINPUT=T. DRAW=T. BOAT=F. SPILL=F. INLTDS=F. SPLDES=.02. NVOPT=6,
  IWT=1, INST=0, IFLGRF=0,
  SEND
  AD MODE=1.
  KONFIG(1.1)='INLT'.1.0.2.0.SPEG(1.1)=250.4#0.1.
KONFIG(1.2)='COMP'.2.0.3.0.SPEG(1.2)=1.5.0.1.1001.1.1002.1.1003.1.0.0..86.3.1.
KONFIG(1.3)='SPLT'.3.0.4.5.SPEC(1.3)=1.0..02..02.
KONFIG(1.4)='COMP'.4.0.6.7.SPEC(1.4)=1.3..03.1.1004.1.1005.1.1006.1.0..1..86.
 6,1,
KONFIG(1.5)='DUCT'.6.0.8.0.SPEC(1.5)=.05..3.0.3000..99.18300.0.0.0.0.0.0.5,
KONFIG(1.6)='TURB'.8.7.9.0.SPEC(1.6)=3.5,.75.1.1007.1.1008..9.1..8.1..9.5000.1,
KONFIG(1.7)='TURB'.9.7.10.0.SPEC(1.7)=2.5,.25.1.1009.1.1010..9.1.11...9.3000.1,
KONFIG(1.8)='MIXR'.10.5.11.0.SPEC(1.8)=0.0.4.1,
KONFIG(1.9)='DUCT'.11.0.12.0.SPEC(1.8)=0.0.4.1,
KONFIG(1.10)='NOZZ'.12.0.13.0.SPEC(1.10)=0..98.0.0..98.18300,
KONFIG(1.10)='NOZZ'.12.0.13.0.SPEC(1.10)=0..98.0.0..975.1.0.0.1,
KONFIG(1.11)='SHFT'.4.6.0.0.SPEC(1.11)=8000.2*1.0.0.2*1.0.0,
KONFIG(1.12)='SHFT'.2.7.0.0.SPEC(1.12)=6000.2*1.0.0.2*1.0.0,
KONFIG(1.15)='CNIL'.SPCNIL(1.15)=1.7.'STAP'.8.12.0.1,
KONFIG(1.15)='CNIL'.SPCNIL(1.15)=1.7.'STAP'.8.12.0.1,
  KONFIG(1,13)="CNTL", SPCHTL(1,13)=1,7, "31AT", 0,12,0,1,

KONFIG(1,16)="CNTL", SPCHTL(1,16)=1,6, "STAP", 8,8,0,1,1,1,1,73,

KONFIG(1,18)="CNTL", SPCHTL(1,18)=1,3, "DOUT", 8,8,0,1,

KONFIG(1,19)="CNTL", SPCHTL(1,18)=1,3, "DOUT", 8,8,0,1,

KONFIG(1,19)="CNTL", SPCHTL(1,19)=1,2, "STAP", 8,4,0,1,1,1,2,1,
 & END
  AD ALTP=10000.MACH=.6,ETAR=0,LABEL=T &END
  MIL SPEC INLET AD ALTP=15000, MACH=1.0, ETAR=0 & END
  TRANSONIC CLIMB - DRY
  &D ALTP=20000, MACH=1.4, ETAR=0 &END
  SET UP FOR AFTERBURNING
  &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
  AFTERBURN
  ED SPEC(7,10)=0.SPEC(4,9)=0.ALTP=30000.MACH=2.0.ETAR=0 &END SET UP FOR AFTERBURNING
  &D SPEC(7.10)=1,SPEC(4,9)=3000 &END
  AFTERBURN
   AD INT=2.NVOPT=0.DEBUG=0 &END
  NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
  IPLT=T.ISII=F.ISIO=F.IOUTCD=2.ILENG(1)=2,3,4,5,6,7,8,9,10, IMMEC(1,2)='FAN ',1,1,0,3x0, IMMEC(1,3)='SPLT',6x0,
IMMEC(1,4)='HPC ',1,0,4*0,
IMMEC(1,5)='PBUR',1,5*0,
IMMEC(1,6)='HPT ',0,4,4*0,
IMMEC(1,7)='LPT ',1,2,0,3*0,
  IUMEC(1.8)='FMIX'.6x0,
IUMEC(1.9)='AUG'.6x0,
IUMEC(1.10)='NOZ'.2,-9,4x0,
```

11

Ü

Table X Input Example - Two-Dimensional Inlet (Analytical) (continued)

```
IWMEC(1,11)='SHAF',2,6,3×0,4,
IWMEC(1,12)='SHAF',1,7,3×0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
DESVAL(1,3)=15×0.
 DESVAL(1,3)=1580.,

DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,

DESVAL(1,5)=80.,.020,0.,4,11*0.,

DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,

DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,

DESVAL(1,8)=1.,12.,13*0.,

DESVAL(1,9)=250.,.018,0,8,11*0.,
  DESVAL(1,10)=1.46,14*0.,
  DESVAL(1,11)=50000...3,.85,2,7,
  DESVAL(1,12)=50000.,.3,0,4,6,
  & END
  1 n
  TWT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,SPEC(7,10)=0,SPEC(4,9)=0,
  & END
  INMAP=0, NOZMAP='ADENAB', CFGMAP='ADENCFG', DCDMAP=0,
  DERP=0, NWC=1, NWD=1, INLTWT=1,
  INOZ(1)=10,0,0,0,0,KVALUE=.00025,
A10A9R=1.4,ENGNO=1.,ICFCN=2,
SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0.,
  1 END
  #TD10 KETYPE=3,KANAT=3,KDAB=1,KSTOP=1,
KSWC=1,KCLR=1,KSPR=1,KCTH=3,KSTH=3,KFAL=0,
KYAW=0,KCLD=1,KCWD=1,KSLD=1,KSWD=1,KSSP=1,
KSP=2,KBLD=1,KSM=1,KB=1,1,0,1,1,
 SWANG=3.,CLRMD=2.2,RCHIN=7.0,SLRMD=2.7,
RMIN=7.0,SPANG=15.0,DEFLIM=.02,
XP1=0.,YP1=0.,XP2=20.,YP2=6.0,NECP=16,
XEC=21.49,22.0,22.5,23.0,23.5,24.0,24.5,25.0,
25.5,26.,26.5,27.,27.5,28.,28.5,29.,9*0.,
YEC=7.24,7.36,7.47,7.56,7.64,7.73,7.82,7.91,
7.99,8.07,8.12,8.17,8.20,8.20,8.20,8.20,9*0.,NICP=16,
XIC=21.49,22.0,22.5,23.,23.5,24.0,24.5,25.,
25.5,26.,26.5,27.,27.5,28.,28.5,29.1,9*0.,
YIC=7.24,7.33,7.42,7.50,7.58,7.65,7.72,7.79,
7.87,7.91,7.97,7.99,8.,8.,8.,8.,9*0.,NIBP=15,
XIB=22.2,22.5,23.,23.5,24.,24.5,25.,25.5,
26..26.5,27.,27.5,28.,28.5,29.,10*0.,
YIB=5.64,5.75,5.92,6.08,6.21,6.34,6.46,6.56,6.66,6.74,6.81,6.87,6.9,6.9,6.9,10*0.,
  SWANG=3.,CLRMD=2.2,RCHIN=7.0,SLRMD=2.7,
  6.66,6.74,6.81,6.87,6.9,6.9,6.9,10×0.,
XBSDM=37.0,YBSDM=5.9,XCSDM=37.,YCSDM=8
  BLDTR=.02,BLMTR=.01,BLDTC=.02,BLMTC=.01,
XBNSM=34.,YBNSM=6.44,XCNSM=34.,YCNSM=8.,
DIVHT=1.,DIVWT=10.,DIVHA=12.,DIVDS=1.2,
  AENB=5.,5.,0.,2.,3.,
  FLUSH=5×0.,NV=5×0,
  THELV=40.,40.,0.,25.,60.,
AEXB=4.,4.,0.,1.5,2.0,
  KCCATS=0, &END
LETD40
 XS=0.,11.17,16.36,2×0.,
YS=0.,1.56984,3.05805,2×0.,
  D=8.,16.,24.,2×0.,
```

Table X Input Example - Two-Dimensional Inlet (Analytical) (continued)

```
XCL=21.49,YCL=7.24,W=10.,
PO=10.,TO=500.,GAM=1.4,
AMDI=2.0,AMOSS=1.0,AMOF=5.0,
ALPI=-5.,ALPSS=5.,ALPF=5., &END
SPEC(5,10)=5556,
& END
& WET
ITERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10.6,
RLFDC=3,44,ICCOMP=9,IFCOMP=10,CLMIN=3.,
& END
&INLWT
SLST=16200.,INLET=3,QMAX=1800.,NINLET=1,KSHAPE=1.,
LDUC1S=0.,BDOOR=0.,TDOOR=0.,
& END
&D
INST=2, ALTP=15000, MACH=1.0, ETAR=0,
& END
&D
ALTP=20000, MACH=1.4, ETAR=0,
& END
&D
SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
& END
2D
SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0.,
& END
2D
SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
& END
&D
ENDIT=1.
& END
```

)

Table XI _ Input Example - Axisymmetric Inlet (Database).

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D NMODES=1, NCOMP=29, NOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, NCODE=1, IWAY=1
LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
IWT=1, INST=0, IFLGRF=0,
LEND
&D MODE=1,
 KONFIG(1,1)='INLT',1.0,2.0,SPEC(1,1)=250,4×0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
& END
&D ALTP=10000, MACH=.6, ETAR=0, LABEL=T &END
MIL SPEC INLET
&D ALTP=15000,MACH=1.0,ETAR=0 &END
 TRANSONIC CLIMB - DRY
 &D ALTP=20000, MACH=1.4, ETAR=0 & END
SET UP FOR AFTERBURNING
&D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
&D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1.SPEC(4,9)=3000 &END
 AFTERBURN
 &D IWT=2,NVOPT=0,DEBUG=0 &END
NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
IPLT=T,ISII=F,ISIO=F,IOUTCD=2,ILENG(1)=2,3,4,5,6,7,8,9,10,
IWMEC(1,2)='FAN ',1,1,0,3×0,
IWMEC(1,3)='SPLT',6×0,
IWMEC(1,4)='HPC ',1,0,4×0,
IWMEC(1,5)='PBUR',1,5×0,
IWMEC(1,6)='HPT ',0,4,4*0,
IWMEC(1,7)='LPT ',1,2,0,3*0,
IMMEC(1,8)='FMIX',6×0,
IMMEC(1,9)='AUG',6×0,
IMMEC(1,10)='NGZ',2,-9,4×0,
```

"

Table XI Input Example - Axisymmetric Inlet (Database) (continued)

Ü

0

Ö

```
IWMEC(1,11)='SHAF',2,6,3x0,4,
IWMEC(1,12)='SHAF',1,7,3x0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
  DESVAL(1,3)=15*0.,
  DESVAL(1,3)=15×0.,
DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
DESVAL(1,5)=80.,.020,0.,4,11×0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6×0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6×0.,
DESVAL(1,8)=1.,12.,13×0.,
DESVAL(1,9)=250.,.018,0.8,11×0.,
DESVAL(1,10)=1.46,14×0.,
DESVAL(1,11)=50000...3,.85,2.,7,
DESVAL(1,11)=50000...3,.85,2.,7,
  DESVAL(1,12)=50000.,.3,0,4,6,
  LEND
  2D
   IWT=0, INST=1, IFLGRF=0, ALTP=10000, MACH=.6, ETAR=0, LABEL=F,
   SPEC(7,10)=0,SPEC(4,9)=0,
  & END
  #I
   INMAP='TM1B3', NOZMAP='DRP1', CFGMAP='CVRP', DCDMAP=0,
   DERP=0.ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0.
  INOZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2,
   SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0.,
  &END
  &D
  _$PEC(5,10)=5556,
  # END
  2WFT
  TTERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=10,CLMIN=3.,
  2 END
   & INLWT
   SLST=16200., INLET=5, QMAX=1800., NINLET=1, KSHAPE=1.,
  LDUCTS=0.,BDOOR=0.,TDOOR=0.,
  & END
  &D
   INST=2, ALTP=15000, MACH=1.0, ETAR=0,
   & END
  $D
   ALTP=20000, MACH=1.4, ETAR=0,
  & END
  #D
  SPEC(7,10)=1,SPEC(4,9)=3000,
  & END
  4D
   SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,
  LEND
   ŁD
  SPEC(7,10)=1,SPEC(4,9)=3000,
  & END
__ENDIT=1,
  2 END
```

<u> Table XII _ Input Example - Axisymmetric Inlet (Analytical)</u>

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D NMODES=1.NCOMP=29.NOSTAT=14.MODESN=1.TABLES=T.ITPRT=0.NCODE=1.IWAY=1
 LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0.
 IWT=1.INST=0.IFLGRF=0.
 2 END
 &D MODE=1.
 KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4%0,1
 KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
 KONFIG(1,4)='COMP',4.0,6.7,SPEC(1,4)=1.3,.05.1,1004,1,1005,1,1006,1,0,.1,.86,
 KONFIG(1.5)='DUCT'.6.0.8.0.SPEC(1.5)=.05..3.0.3000..99.18300.0.0.0.05.
KONFIG(1.6)='TURB'.8.7.9.0.SPEC(1.6)=3.5..75.1.1007.1.1008..9.1..8.1..9.5000.1.
KONFIG(1.7)='TURB'.9.7.10.0.SPEC(1.7)=2.5..25.1.1009.1.1010..9.1.1.1..9.5000.1.
KONFIG(1,24)='LIMV',SPLIMV(1,24)=0,.6,1.05,'DOUT',6,4,0,0,1,
KONFIG(1,28)='CNTL',SPCNTL(1,28)=1,11,'DOUT',8,11,0,1,
 KONFIG(1,29)='CNTL',SPCHTL(1,29)=1,12,'DOUT',8,12,0,1,
 # END
 &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T &END
 MIL SPEC INLET
&D ALTP=15000,MACH=1.0,ETAR=0 &END
 TRANSONIC CLIMB - DRY
 &D ALTP=20000,MACH=1.4,ETAR=0 &END
SET UP FOR AFTERBURNING
&D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 #D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 #END
 SET UP FOR AFTERBURNING
 &D SPEC(7,18)=1,SPEC(4,9)=3000 &END
AFTERBURN
  AD INT=2.NVOPT=0.DEBUG=0 &END
 NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
 IPLT=T.ISII=F.ISIO=F.IOUTCD=2,ILENG(1)=2,3,4,5,6,7,8,9,10,
IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT'.6*0,
IMMEC(1,4)='HPC',1,0,4*0,
IMMEC(1,5)='PBUR',1,5*0,
IMMEC(1,6)='HPT',0,4,4*0,
IMMEC(1,7)='LPT',1,2,0,3*0,
 IWMEC(1,8)='FMIX',6*0,
IWMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

Table XII Input Example - Axisymmetric Inlet (Analytical) (continued)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
 DESVAL(1,3)=15*0.,
 DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
 DESVAL(1,5)=80., 020,0.,4,11*0.,

DESVAL(1,6)=.5.,310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,

DESVAL(1,7)=.55,.280,1.5,2.,3.,6,150000.,3.,1.,6*0.,

DESVAL(1,8)=1.,12.,13*0.,
 DESVAL(1,9)=250.,.018,0,8,11*0..
 DESVAL(1,10)=1.46,14*0.,
 DESVAL(1,11)=50000...3,.85,2,7,
 DESVAL(1,12)=50000...3,0,4,6,
 SEND
 &D
 IWT=0, INST=1, IFLGRF=0, ALTP=10000, MACH=.6, ETAR=0, LABEL=F.
 SPEC(7,10)=0, SPEC(4,9)=0,
 &END
 8 I
 INMAP=0.NOZMAP='DRP1', CFGMAP='CVRP', DCDMAP=0,
 NWC=1, NWD=1, INLTWT=1,
 INOZ(1)=10.0,0,0,KVALUE=.00025,
 A10A9R=1.4, ENGNO=1., ICFCN=2,
 SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
 SEND
 SAXIIO
 KETYPE=3, KANAT=2, KDAB=3, KSTOP=0.
 KCLWD=1, KBLD=1, KPOL=0, KNSM=0, KB=1,1,0,1,0,
 NCP=5.
 XEC=1.5024,1.604,1.7024,1.8024,1.9024,20*0.,
 YEC=1.,1.05774,1.075,1.08,1.08,20*0.,
XSDE=3.5,RISDE=.05,ROSDE=.95,
 DIVHT = 05, DIVWT=1., DIVHA=10., DIVDS=.075,
 NV=0,1,3*0,
 AENB=.05,.1,0.,.2,0.,
 FLUSH=5×0.,
 AEXB=.2,0.,0.,.5,0.,
 THELV=15.,0.,0.,25.,0.,
 AEXBMX=0.,.4,3*0.,
 ADACB=0.,.01,3*0.,
 AEXBMN=0.,.1,3*0.,
 THELMX=0.,25.,3%0.
 THELMN=5 x D. , KCCATS=0, & END
 EAXI40
 AMOI=2., AMOSS=.5, AMOF=4.5,
D=15.,20.,25.,
 PD=1., TD=10., GAM=1.4,
XLIP=1.5024, YLIP=1.0, YS=3*0., XS=3*0., &END
 SAXI41
 XLIP=1.5024, YLIP=1.0.XFOC=1.5024, YFOC=1.0, YS=3*0..
 D=15.,20.,25.,
 AMDES=3., PO=1., TO=10., GAM=1.4. & END
DLIP=0.,
 SPEC(5,10)=5556,
 & END
```

1 2

Table XII Input Example - Axisymmetric Inlet (Analytical) (continued)

```
&WET
ITERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3,44,ICCOMP=9,IFCOMP=10,CLMIN=3.,
& END
& INLWT
SLST=16200., INLET=4, QMAX=1800., NINLET=1, KSHAPE=1., LDUCTS=G., BDOOR=0., TDOOR=0.,
& END
&D
INST=2,ALTP=15000,MACH=1.0,ETAR=0,
& END
& D
ALTP=20000, MACH=1.4, ETAR=0,
&END
& D
SPEC(7,10)=1,SPEC(4,9)=3000,
&END
& D
SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,
& END
8 D
SPEC(7,10)=1,SPEC(4,9)=3000,
&END
& D
ENDIT=1,
LEND
```

Table XIII Input Example - Inlet Derivative Procedure Application:
Design Mach Number

```
INSTAL & WATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN
  &D NMODES=1, NCOMP=29, NOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, NCODE=1, IWAY=1,
  LABEL = F. PUNT = T. PINPUT = T. DRAW = T. BCAT = F. SPILL = F. INLTDS = F. SPLDES = . 02, NVOPT = 0,
  IWT=1, INST=0, IFLGRF=0,
  &END
  &D MODE=1,
  KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
  6.1
 KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,13300,0,0,0,0,05,
KONFIG(1,6)='TURB',8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,7)='TURB',9,7,10,0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,
KONFIG(1,8)='MIXR',10,5,11,0,SPEC(1,8)=0,0,.4,1,
KONFIG(1,9)='DUCT',11,0,12,0,SPEC(1,9)=.06,.3,0,0,.98,18300,
KONFIG(1,10)='NOZZ',12,0,13,0,SPEC(1,10)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,11)='SHFT',4,6,0,0,SPEC(1,11)=8000,2*1,0,0,2*1,0,0,
KONFIG(1,11)='SHFT',4,6,0,0,SPEC(1,11)=60000,2*1,0,0,2*1,0,0,
 KONFIG(1,11)='SHF1',4,6,0,0,SPEC(1,11)=8000,2*1,0,0,2*1,0,0,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0.2*1,0,0,
KONFIG(1,15)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,12,0,1,
KONFIG(1,16)='CNTL',SPCNTL(1,16)=1,6,'STAP',8,9,0,1,
KONFIG(1,17)='CNTL',SPCNTL(1,17)=1,4,'STAP',8,8,0,1,1.1,1.75,
KONFIG(1,18)='CNTL',SPCNTL(1,18)=1,3,'DOUT',8,8,0,1,
 & END
  &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T & END
  MIL SPEC INLET
  &D ALTP=15000, MACH=1.0, ETAR=0 &END
  TRANSONIC CLIMB - DRY
  &D ALTP=20000, MACH=1.4, ETAR=0 &END
  SET UP FOR AFTERBURNING
  &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
  AFTERBURN
  &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END
  SET UP FOR AFTERBURNING
  3D SPEC(7,10)=1,SPEC(4,9)=3000 &END
  AFTERBURN
  &D IMT=2, NVOPT=0, DEBUG=0 &END
  NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NUOPT NON ZERO
  IPLT=T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2, 3, 4, 5, 6, 7, 8, 9, 10,
  IWMEC(1,2)='FAN ',1,1,0,3x0,
IWMEC(1,3)='FAN',,1,0,3%0,
IWMEC(1,3)='SPLT',6%0,
IWMEC(1,4)='HPC',1,0,4%0,
IWMEC(1,5)='PBUR',1,5%0,
IWMEC(1,6)='HPT',0,4,4%0,
IWMEC(1,7)='LPT',1,2,0,3%0,
  IMMEC(1,8)='FMIX',6*0,
IMMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

Table XIII Input Example - Inlet Derivative Procedure Application: Design Mach Number (continued)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
 DESVAL(1,3)=15*0.,
 DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
 DESVAL(1,4)-.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1
DESVAL(1,5)=80.,.020,0.,4,11*0.,

DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,

DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,

DESVAL(1,8)=1.,12.,13*0.,

DESVAL(1,9)=250.,.018,0,8,11*0.,
 DESVAL(1,10)=1.46,14×0.,
 DESVAL(1,11)=50000...3,.85,2,7,
DESVAL(1,12)=50000...3,0,4,6,
 & END
 & D
 IWT=0,INST=1,IFLGRF=0,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,
SPEC(7,10)=0,SPEC(4,9)=0,
 & END
 &I
 INMAP='ATS2', NOZMAP='208NTTY', CFGMAP='CV1', DCDMAP=0, DERP=1, ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0,
 INOZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2,
SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0.,
 & END
 & D
 SPEC(5,10)=5556,
 & END
 &DER
 DERIVN(4,1)=2.1,
 &END
 &WET
  ITERFP(1)=1,2,3,8,9,10,0
 ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
 &END
 &INLWT
 SLST=16200., INLET=2, QMAX=1800., NINLET=1, KSHAPE=1.,
 LDUCTS=0.,BDOOR=0.,TDOOR=0.,
 & END
 1D
 INST=2, ALTP=15000, MACH=1.0, ETAR=0,
 &END
 &D
 ALTP=20000, MACH=1.4, ETAR=0.
 &END
 &D
 SPEC(7,10)=1,SPEC(4,9)=3000,
 &END
 8 D
 SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000.MACH=2..ETAR=0.
 & END
 &D
 SPEC(7,10)=1, SPEC(4,9)=3000,
-&END
 & D
 ENDIT=1,
 &END
```

0

U

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D HMODES=1, HCOMP=29, HOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, HCODE=1, IWAY=1, LABEL=F, PUNT=T, PINPUT=T, DRAW=T, BOAT=F, SPILL=F, INLTDS=F, SPLDES=.02, NVOPT=0,
 INT=1, INST=0, IFLGRF=0,
 & END
 &D MODE=1,
 KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
&D ALTP=10000, MACH=.6, ETAR=0, LABEL=T & END MIL SPEC INLET
 &D ALTP=15000, MACH=1.0, ETAR=0 & END
 TRANSONIC CLIMB - DRY
 &D ALTP=20000, MACH=1.4, ETAR=0 & END
SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1, SPEC(4,9)=3000 &END
 AFTERBURN
 &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END SET UP FOR AFTERBURNING &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 &D IWT=2, NVOPT=0, DEBUG=0 &END
 NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
 IPLT-T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2,3,4,5,6,7,8,9,10,
 IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC ',1,0,4*0,
IWMEC(1,5)='PBUR',1,5*0,
INMEC(1,6)='HPT ',0,4,4*0,
INMEC(1,7)='LPT ',1,2,0,3*0,
 IWMEC(1,8)='FMIX',6*0,
IWMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

: 1

Table XIV Input Example - Inlet Derivative Procedure Application : Cowl Lip Bluntness. (cont.)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
   DESVAL(1,3)=15×0.,
DESVAL(1,4)=.45,1.40,.70,1.2.5.,1.5,.3,0.,0.,1.,0.,3.,1.,
   DESVAL(1,5)=80.,.020,0.,4,11×0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6×0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6×0 ,
DESVAL(1,8)=1.,12.,13×0.,
   DESVAL(1,9)=250.,.018,0,8,11*0.,
DESVAL(1,10)=1.46,14*0.,
   DESVAL(1,11)=50000.,.3,.85,2,7,
   DESVAL(1,12)=50000.,.3,0,4,6,
   SEND
   2 D
   IWT=0,INST=1,IFLGRF=0,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,
SPEC(7,10)=0,SPEC(4,9)=0,
   &END
   INMAP='ATS2',NOZMAP='208NTTY',CFGMAP='CV1',DCDMAP=0,
DERP=1,ACI=7.,NWC=1,NWD=1,INLTWT=1,MODE=0,
   INOZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2,
   SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
   & END
   & D
   SPEC(5,10)=5556,
-SEND
   &DER
   DERIVN(5,1)=.03,
   &END
   &WET
   ITERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
   & END
   & INLWT
   SLST=16200., INLET=2, QMAX=1800., NINLET=1, KSHAPE=1., LDUCTS=0., BDOOR=0., TDOOR=0.,
   & END
   &D
   INST=2, ALTP=15000, MACH=1.0, ETAR=0,
   8 END
   & D
   ALTP=20000, MACH=1.4, ETAR=0,
   & END
   &D
   SPEC(7,10)=1,SPEC(4,9)=3000,
   & END
   2 D
   SPEC(7,10)=0, SPEC(4,9)=0, ALTP=30000, MACH=2., ETAR=0,
   & END
   & D
   SPEC(7,10)=1, SPEC(4,9)=3000,
 -&END
   & D
   ENDIT=1,
   & END
```

. 1

0

Table XV Input Example - Nozzle/Aftbody Derivative Procedure Application : Tail Fin Fore and Aft Location Ratio

0

```
INSTAL & WATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN
 &D MMODES=1, MCOMP=29, MOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, MCODE=1, IWAY=1
 LABEL=F, PUNT=T, PINPUT=T, DRAW=T, BOAT=F, SPILL=F, INLTDS=F, SPLDES=.02, NVOPT=0,
 IWT=1, INST=0, IFLGRF=0,
 & END
 &D MODE=1
 KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
6.1
 KONFIG(1,29)='CNTL', SPCNTL(1,29)=1,12, 'DOUT',8,12,0,1,
 & END
 &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T &END
 MIL SPEC INLET
 &D ALTP=15000, MACH=1.0, ETAR=0 & END
 TRANSONIC CLIMB - DRY
 &D ALTP=20000, MACH=1.4, ETAR=0 & END
 SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END
 SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
 &D IWT=2, NVOPT=0, DEBUG=0 &END
 NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
 IPLT=T,ISII=F,ISIO=F,IOUTCD=2,ILENG(1)=2,3,4,5,6,7,8,9,10,
IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC ',1,0,4*0,
IWMEC(1,5)='PBUR',1,5*0,

IWMEC(1,6)='HPT',0,4,4*0,

-IWMEC(1,7)='LPT',1,2,0,3*0,
 IWMEC(1,8)='FMIX',6x0,
 IWMEC(1,9)='AUG '
 IWMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

Table XV Input Example - Nozzle/Aftbody Derivative Procedure Application : Tail Fin Fore and Aft Location Ratio (continued)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
DESVAL(1,3)=15*0.,
DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
DESVAL(1,5)=80.,.020,0.,4,11*0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000...,1.,6*0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3., ,6*0.,
DESVAL(1,8)=1.,12.,13*0.,
 DESVAL(1,9)=250.,.018,0,8,11*0.,
DESVAL(1,10)=1.46,14*0.,
DESVAL(1,11)=50000.,.3,.85,2,7,
 DESVAL(1,12)=50000.,.3,0,4,6,
 & END
 & D
IWT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABE{=F.
SPEC(7,10)=0,SPEC(4,9)=0,
 & END
INMAP='ATS2', NOZMAP='SING2D', CFGMAP='CV2D', DCDMAP=0, DERP=1, ACI=7., NWC=1, NWD=1, INLTWT=1, MQDE=0, INOZ(1)=10,0,0,0,KVALUE=.00025, REFMFR=0, OPTB=3., A10A9R=1.4, ENGNO=1., TABRF=0., ICFCN=2, SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
 & END
 &D
 SPEC(5,10)=5556,
 8 END
 & DER
 DERIVN(4,2)=.5,
 & END
 &UFT
 ITERFP(1)=1,2,3,8,9,10,0
 ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
 & END
 & INLWT
 SLST=16200., INLET=2, QMAX=1800., NIMLET=1, KSHAPE=1.,
 LDUCTS=0.,BDOOR=0.,TDOOR=0.,
 & END
 &D
 INST=2, ALTP=15000, MACH=1.0, ETAR=0,
 & END
 & D
 ALTP=20000, MACH=1.4, ETAR=0,
 & END
 & D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
 & END
 & D
 SPEC(7,10)=0,SFEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0.,
 & END
 &D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
-aEND
 &D
 ENDIT=1,
 & END
```

Table XVI Input Example - Nozzle/Aftbody Derivative Procedure Application : Cross-sectional Area vs. Station

```
INSTAL & WATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN
&D MMODES=1,NCOMP=29,NOSTAT=14,MODESN=1,TABLES=T,ITPRT=0,NCODE=1,IWAY=1,LABEL=F,PUNT=T,PINPUT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
IWT=1, INST=0, IFLGRF=0,
8 END
&D MODE=1,
KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1303,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT'.3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
6.1
KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0,0,05,
KONFIG(1,29)='CNTL',SPCNTL(1,29)=1,12,'DOUT',8,12,0,1,
& END
&D ALTP=10000, MACH=.6, ETAR=0, LABEL=T & END
MIL SPEC INLET
&D ALTP=15000, MACH=1.0, ETAR=0 & END
TRANSONIC CLIMB - DRY
&D ALTP=20000, MACH=1.4, ETAR=0 & END
 SET UP FOR AFTERBURNING
 &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
&D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END SET UP FOR AFTERBURNING
 8D SPEC(7,10)=1,SPEC(4,9)=3000 &END
 AFTERBURN
&D IWT=2,NVOPT=0,DEBUG=0 &END
NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO 1T WITH NVOPT NON ZERO
 8 11
 IPL .=T, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2, 3,4,5,6,7,8,9,10,
 IWMEC(1,2)='FAN ',1,1,0,3x0,
 IMMEC(1,3)='SPLT',6%0,

IMMEC(1,4)='HPC',1,0,4%0,

IMMEC(1,5)='PBUR',1,5%0,

IMMEC(1,5)='PBUR',1,5%0,

IMMEC(1,5)='HPT',0,4,4%0,
IWMEC(1,7)='LPT ',1,2,0,3x0,
 IWMEC(1,8)='FMIX',6*0,
 IWMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

. .

Table XVI Input Example - Nozzle/Aftbody Derivative Procedure Application : Cross-sectional Area vs. Station (continued)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
 DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,3.,2.,1
DESVAL(1,3)=15×0.,
DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1..0.,3.,1.,
DESVAL(1,5)=80.,.020,0.,4,11×0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6×0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6×0.,
DESVAL(1,8)=1.,12.,13×0.,
DESVAL(1,8)=1.,12.,13×0.,
DESVAL(1,9)=250.,.018,0,8,11×0.,
DESVAL(1,10)=1.46,14×0.,
DESVAL(1,11)=50000.,.3,.85,2,7,
DESVAL(1,12)=50000.,.3,0,4,6,
  DESVAL(1,12)=50000.,.3,0,4,6,
 &END
 & D
 IWT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,
SFEC(7,10)=0,SPEC(4,9)=0,
 &END
 8 I
 INMAP='AT52', NOZMAP='SING2D', CFGMAP='CV2D', DCDMAP=0, 

UERP=1, ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0, 

INOZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
  Aloa9R=1.4, ENGNO=1., TABRF=0., ICFCN=2,
  SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
 & END
 8 D
  SPEC(5,10)=5556,
 & DER
 AREAN(1,8)=10.4, AREAN(2,8)=10.2, AREAN(3,8)=9.45,
  AREAN(4,8)=8.3, AREAN(5,8)=1.04,
 & END
 &WET
 TTERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
 &END
 & INLWT
 SLST=16200.,INLET=2,QMAX=1800.,NINLET=1,KSHAPE=1.,
LDUCTS=0.,BDOOR=0.,TDOOR=0.,
 & END
 2 D
 INST=2, ALTP=15000, MACH=1.0, ETAR=0,
 & END
 & D
 ALTP=20000, MACH=1.4, ETAR=0,
 & END
 & D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
 & END
 & D
 SPEC(7,10)=0, SPEC(4,9)=0, ALTP=30000, MACH=2., ETAR=0, AJMAX=0., AJMIN=0.,
 & END
 2 D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
-& END
 & D
 ENDIT=1,
 & END
```

Table XVII Input Example - Nozzle C_F Derivative Procedure Application :
Plug Half Angle

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D NMODES=1, NCOMP=29, NOSTAT=14, MODES=1, TABLES=T, ITPRT=0, NCODE=1, IWAY=1
  LABEL = F, PUNT = T, PINPUT = T, DRAW = T, BOAT = F, SPILL = F, INLTDS = F, SPLDES = . 02, NVOPT = 0,
   IWT=1, INST=0, IFLGRF=0,
  &END
  &D MODE=1,
  KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1,
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
  6.1.
  KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0.05,
KONFIG(1,6)='TURB',8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,7)='TURB',9,7,10,0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,
KONFIG(1,8)='MIXR',10,5,11,0,SPEC(1,8)=0,0,.4,1,
KONFIG(1,9)='DUCT',11,0,12,0,SPEC(1,9)=.06,.3,0,0,.98,18300,
KONFIG(1,10)='NOZZ',12,0,13,0,SPEC(1,10)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,11)='SHFT',4,6,0,0,SPEC(1,11)=8000,2*1,0,0,2*1,0,0,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,15)='CNTL',SPCNTL(1,15)=1.7,'STAP',8,12,0,1,
 & END
  &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T & END
  MIL SPEC INLET
       ALTP=15000, MACH=1.0, ETAR=0 & END
   TRANSONIC CLIMB - DRY
       ALTP=20000, MACH=1.4, ETAR=0 & END
  SET UP FOR AFTERBURNING
       SPEC(7,10)=1, SPEC(4,9)=3000 &END
  AFTERBURN
  &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END SET UP FOR AFTERBURNING
        SPEC(7,10)=1,5PEC(4,9)=3000 &END
  AFTERBURN
  &D IWT=2, NVOPT=0, DEBUG=0 & END
  HOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NON ZERO
  8 W
  IPLT=1, ISII=F, ISIO=F, IOUTCD=2, ILENG(1)=2,3,4,5,6,7,8,9,10,
IPLI=1,1511=F,1510=F,10010D=
IWMEC(1,2)='FAN ',1,1,0,3*0,
IWMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC ',1,0,4*0,
IWMEC(1,5)='PBUR',1,5*0,
IWMEC(1,6)='HPT ',0,4.4*0,
-IWMEC(1,7)='LPT ',1,2,0,3*0,
  IWMEC(1,8)='FMIX',6*0,
IWMEC(1,9)='AUG',6*0,
IWMEC(1,10)='NOZ',2,-9,4*0,
```

1.8

Table XVII Input Example - Nozzle C_F Derivative Procedure Application : Plug Half Angle (cont)

```
IWMEC(1,11)='SHAF',2,6,3*0,4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
 DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
 DESVAL(1,3)=15*0.,
 DESYAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1
DEDVAL(1,5)=80.,.020,0.,4,11*0.,

DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,

DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6*0.,

DESVAL(1,8)=1.,12.,13*0.,

DESVAL(1,9)=250.,.018,0,8,11*0.,

DESVAL(1,10)=1.46,14*0.,

DESVAL(1,11)=500000...3,.85,2,7,

DESVAL(1,11)=500000...3,.85,2,7,
 DESVAL(1,12)=50000.,.3,0,4,6,
 $ END
 & D
 INT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F,SPEC(7,10)=0,SPEC(4,9)=0,
 & END
 INMAP='ATS2', NOZMAP='DRP1', CFGMAP='CVRP', DCDMAP=0,
 DERP=1,ACI=7.,NWC=1,NWD=1,INLTWT=1,MODE=0,
 INDZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2,
 SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
 &END
 & D
 SPEC(5,10)=5556,
 & END
 & DER
 DERIVN(1,3)=12.,
 & END
 &WET
 ITERFP(1)=1,2,3,8,9,10,0
 ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
 & END
 & INLWT
 SLST=16200., INLET=2, QMAX=1800., NINLET=1, KSHAPE=1..
 LDUCTS=0.,BDOOR=0.,TDOOR=0.,
 & END
 & D
 INST=2, ALTP=15000, MACH=1.0, ETAR=0,
 &END
 & D
 ALTP=20000, MACH=1.4, ETAR=0,
 & END
 C 3
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
 & END
 & D
 SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0.,
 & END
 & D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
-& END
 & D
 ENDIT=1,
 & END
```

Table XVIII Input Example - Nozzle C_F Derivative Procedure Application : Aspect Ratio

```
INSTAL & WATE-2: TYPICAL SUPERSONIC AUGMENTED MIXED FLOW TURBOFAN &D NMODES=1, NCOMP=29, NOSTAT=14, MODESN=1, TABLES=T, ITPRT=0, NCODE=1, IWAY=1, LABEL=F, PUNT=T, PINPUT=T, DRAW=T, BOAT=F, SPILL=F, INLTDS=F, SPLDES=.02, NVOPT=0,
    IWT=1, INST=0, IFLGRF=0,
    & END
    &D MODE=1,
    KONFIG(1,1)='INLT',1,0,2,0,SPEC(1,1)=250,4*0,1;
KONFIG(1,2)='COMP',2,0,3,0,SPEC(1,2)=1.5,0,1,1001,1,1002,1,1003,1,0,0,.85,3,1,
KONFIG(1,3)='SPLT',3,0,4,5,SPEC(1,3)=1.0,.02,.02,
KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,
  KONFIG(1,4)='COMP',4,0,6,7,SPEC(1,4)=1.3,.05,1,1004,1,1005,1,1006,1,0,.1,.86,6,1,
KONFIG(1,5)='DUCT',6,0,8,0,SPEC(1,5)=.05,.3,0,3000,.99,18300,0,0,0.05,
KONFIG(1,6)='TURB',8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,
KONFIG(1,7)='TURB',9,7,10.0,SPEC(1,7)=2.5,.25,1,1009,1,1010,.9,1,1,1,.9,5000,1,
KONFIG(1,9)='DUCT',11,0,12,0,SPEC(1,8)=0,0,.4,1,
KONFIG(1,9)='DUCT',11,0,12,0,SPEC(1,9)=.06,.3,0,0,.98,18300,
KONFIG(1,10)='NOZZ',12,0,13,0,SPEC(1,10)=0,.98,0,0,.975,1,0,0,1,
KONFIG(1,10)='SHFT',4,6,0,0,SPEC(1,11)=8000,2*1,0,0,2*1,0,0,
KONFIG(1,11)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,12)='SHFT',2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,
KONFIG(1,10)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,12,0,1,
KONFIG(1,10)='CNTL',SPCNTL(1,15)=1,7,'STAP',8,8,0,1,1.1,1.75,
KONFIG(1,10)='CNTL',SPCNTL(1,10)=1,4,'STAP',8,8,0,1,1.1,1.75,
KONFIG(1,10)='CNTL',SPCNTL(1,10)=1,2,'STAP',8,4,0,1,1.1,1.75,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1,1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,4,0,1,1.1.1.1.2.1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,1.'STAP',8,11,0,1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,11.'DOUT',8,11,0,1,
KONFIG(1,20)='CNTL',SPCNTL(1,20)=1,12,'DOUT',8,12,0,1,

KEND
    & END
    &D ALTP=10000, MACH=.6, ETAR=0, LABEL=T & END
    MIL SPEC INLET
&D ALTP=15000,MACH=1.0,ETAR=0 &END
    TPANSONIC CLIMB - DRY
&D ALTP=20000.MACH=1.4,ETAR=0 &END
SET UP FOR AFTERBURNING
    &D SPEC(7,10)=1, SPEC(4,9)=3000 &END
     AFTERBURN
    &D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.0,ETAR=0 &END SET UP FOR AFTERBURNING
    &D SPEC(7,10)=1,SPEC(4,9)=3000 &END
    AFTERBURN
    &D IWT=2, NVOPT=0, DEBUG=0 &END
    NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DU IT WITH NVOPT NON ZERO
     IPLT=T, ISII=F, ISIO=F, IDUTCD=2, ILENG(1)=2,3,4,5,6,7,8,9,10,
IMMEC(1,2)='FAN',1,1,0,3*0,
IMMEC(1,3)='SPLT',6*0,
IWMEC(1,4)='HPC',1,0,4*0,
IWMEC(1,5)='PBUR',1,5*0,
IWMEC(1,6)='HPT',0,4,4*0,
IWMEC(1,7)='LPT',1,2,0,3*0,
    IMMEC(1,8)='FMIX',6*0,

1MMEC(1,9)='AUG',6*0,

IMMEC(1,10)='NOZ',2,-0,4*0,
```

Table XVIII Input Example - Nozzle C_F Derivative Procedure Application :
Aspect Ratio (cont)

```
IWMEC(1,11)='SHAF',2,6,3*0.4,
IWMEC(1,12)='SHAF',1,7,3*0,2,
DESVAL(1,2)=.524,1.7,.45,1.5,4.7,4.6,.45,0.,0.,1.,0.,2.,1.,
 DESVAL(1,3)=15*0.,
 DESVAL(1,4)=.45,1.40,.70,1.2,5.,1.5,.3,0.,0.,1.,0.,3.,1.,
 DESVAL(1,5)=80.,.020,0.,4,11×0.,
DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6×0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,.6,150000.,3.,1.,6×0.,
 DESVAL(1,8)=1.,12.,13*0.,
DESVAL(1,9)=250.,.018,0,8,11*0.,
 DESVAL(1,10)=1.46,14×0.,
 DESVAL(1,11)=50000.,.3,.85,2,7,
 DESVAL(1,12)=50000...3,0,4,6,
 & END
 & D
 IWT=0, INST=1, IFLGRF=0, AJMAX=0., AJMIN=0., ALTP=10000, MACH=.6, ETAR=0, LABEL=F,
 SPEC(7,10)=0, SPEC(4,9)=0,
 & END
 INMAP='ATS2', NOZMAP='SING2D', CFGMAP='CV2D', DCDMAP=0, DERP=1, ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0,
 INOZ(1)=10,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3.,
A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2,
 SCALE=1., PRINT=1., UNITI=1., UNITO=1., STOP=0.,
 END 3
 & D
 SPEC(5,10)=5556,
 & END
 & DER
 DERIVN(3,3)=2.,
 & END
 EWET
 ITERFP(1)=1,2,3,8,9,10,0
 ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=9,CLMIN=3.,
 & END
 & INLWT
 SLST=16200., INLET=2, QMAX=1800., NINLET=1, KSHAPE=1., LDUCTS=0., BDOOR=0., TDOOR=0.,
 8 END
 &D
 INST=2, ALTP=15000, MACH=1.0, ETAR=0,
 & END
 &D
 ALTP=20000, MACH=1.4, ETAR=0,
 & END
 & D
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
 & END
 & D
 SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0.,
 & END
 C S
 SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456.,
-& END
 & D
 ENDIT=1.
 & END
```

6.0 OVERALL PROGRAM FLOW

The present NNEP program essentially consists of a collection of 6 separate programs contained under one structure. These programs include:

- a. The original NNEP program
- b. WATE-2 program
- c. Installation program
- d. Derivative Procedure program
- China Lake programs for 2 dimensional, axisymmetric and spike inlet
- f. Pitot design program
- g. Nacelle drag
- h. Inlet and nacelle weight

See Figures 17 through 24 for their connectivity diagrams.

6.1 DERIVATIVE PROCEDURE PROGRAM LOGIC

This section presents the engineering flow charts used to develop the derivative procedure computer program:

- Inlet Derivative Procedure Figures 25 through 31
- o Nozzle/Afbody Derivative Procedure Figure 32
- o Nozzle/C $_{\mathsf{F}_{\mathsf{G}}}$ Derivative Procedure Figures 33 through 37

Figure 17 NNEP Connectivity Flow

Figure 18 WATE2 Connectivity

Ç

Figure 19 Installation Connectivity Diagram

Figure 20 PITOT Connectivity Diagram

Figure 21 Derivative Procedure Connectivity Diagram

Function

TD00 Controls t	transfers to	Level 2	of structure	e
-----------------	--------------	---------	--------------	---

- TD10 Takes in general input information
- TD20 Sets up M_O and α loops for single ramp cases, cuntrols transfers to TD 21 and 22
- TD21 Analyze; critical and subcritical operation of a single ramp inlet
- TD22 Analyzes supercritical operation of a single ramp inlet which has an external compression surface followed by a converging-diverging duct.
- TD30 Sets up M_0 and α loops for double ramp cases, controls transfers to TD 31, 32, and 33
- TD31 Designs a double ramp external compression surface inlet and analyzes critical and subcritical operation of same
- TD32 Analyzes critical and subcritical operation of a double ramp inlet
- TD33 Analyzes supercritical operation of a double ramp inlet which has an external compression surface followed by a converging-diverging duct.
- TD40 Sets up M_O and α loops for triple ramp cases, controls transfers to TD 41, 42, and 43
- TD41 Designs a triple ramp external compression surface inlet and analyzes critical and subcritical operation of same
- TD42 Analyzes critical and subcritical operation of a triple ramp inlet
- TD43 Analyzes supercritical operation of a triple ramp inlet which has an external compression surface followed by a converging-diverging duct.
- TD50 Sets up M_O and α loops for isentropic wedge (4 ramp) cases, controls transfers to TDs 51, 52, and 53
- TD51 Designs an isentropic wedge external compression surface inlet, approximates this inlet as a 4 ramp inlet and analyzes critical and subcritical operation of same
- TD52 Analyzes critical and subcritical operation of a 4 ramp inlet
- TD53 Analyzes supercritical operation of a four ramp inlet which has an external compression surface followed by a converging-diverging duct.

Figure 22 Two-Dimensional Design Program Connectivity Diagram

Cunction

Function		
AX100	Controls transfers to Level 2 of structure	
AXI10	Takes in general input information	
AXI2	Sets up M _Q loops for single cone cases, controls transfers to AXIs 21 and 22	
AX12	Analyzes critical operation of single cone inlet	
AXI2	Analyzes supercritical operation of a single cone inlet which has an external compression surface followed by a converging-diverging duct.	
AXI30	Sets up M_0 loops for double cone cases, controls transfers to AXIs 31, 32, and 33	
AXI3	Designs a double cone external compression surface inlet and analyzes critical operation of same	
AXI3	Analyzes critical operation of a double cone inlet	
AXI3	Analyzes supercritical operation of a double cone inlet which has an external compression surface followed by a converging-diverging duct.	
AXI4	Set up Mo Icops for triple cone cases, controls transfers to AXIs 41, 42, and 43	
AXI4	Designs a triple cone external compression surface inlet and analyzes critical operation of same	
AXI4	Analyzes critical operation of a triple cone inlet	
AXI4	Analyzes supercritical operation of a triple cone inlet which has an external compression surface followed by a converging-diverging duct.	

Figure 23 Axisymmetric Design Subroutine Connectivity Structure

	Function
SPK00	Takes in general input information, controls transfers to Level 2 of structure
SPLYN	Takes the coordinate arrays defining the external compression surface and fits them to a curve fit
ISOSPK	Uses conical flow theory and method of characteristics computations to design an isentropic spike contour given focal point, free stream Mach number and flow deflections.
AXIMOC	Uses method of characteristics computations to determine the flow field adjacent to the external compression surface of an axisymmetric spike inlet and analyzes critical operation of same
DUCT	Analyzes supercritical operation of a axisymmetric spike inlet which has an external compression surface followed by a converging-diverging duct.

Figure 24 Axisymmetric Spike Design Connectivity Structure

Figure 25. Flow Chart for Step 1

Figure 25. Flow Chart for Step 1 (cont'd)

Figure 25. Flow Chart for Step 1 (cont'd)

Figure 25. Flow Chart for Step 1 (cont'd)

Figure 25. Flow Chart for Step 1 (concluded)

Figure 26. Flow Chart for Step 2

Figure 26. Flow Chart for Step 2 (cont'd)

Figure 26. Flow Chart for Step 2 (concluded)

STEP 3 INLET SUPPLY (AO/Ac)

Figure 27. Flow Chart for Step 3

STEP 4 INLET RECOVERY (PTZ/PTO)

Figure 28. Flow Chart for Step 4

Figure 28. Flow Chart for Step 4 (concluded)

Figure 29. Flow Chart for Step 5

Figure 29. Flow Chart for Step 5 (cont'd)

Figure 29. Flow Chart for Step 5 (concluded)

Figure 30. Flow Chart for Step 6

Figure 31. Flow Chart for Step 7

Figure 32. Nozzle/Aftbody Drag Derivative Procedure

Figure 32. Flow Chart for Nozzle/Aftbody /Drag Procedure (Cont,d)

*ACCOMPLISHED EXTERNALLY TO NORMAL PROGRAM CALCULATION STEPS. SHOWN HERE FOR INFORMATION ONLY.

Figure 32. Flow Chart for Nozzle/Aftbody Drag Procedure (Concluded)

Figure 33. Flow Chart for CFG Derivative Procedure for a Round C-D Nozzle 186

 $c_{\mbox{\scriptsize F}_{\mbox{\scriptsize G}}}$ FOR ROUND PLUG NOZZLES

Figure 34. Flow Chart for CFG Derivative Procedure for a Round Plug Nozzle

Q.

0

Ö

Figure 35. Flow Chart for CFG Derivative Procedure for a 2-D C-D Nozzle

Figure 36. Flow Chart for C_F Derivative Procedure for a 2-D C-D Nozzle (Cont,d)

Figure 36. Flow Chart for $C_{\mbox{FG}}$ Derivative Procedure for a 2-D C-D Nozzle (Concluded)

*BUILT INTO BASIC PROGRAM. SHOWN FOR INFORMATION ONLY.

Figure 37. Flow Chart for CFG Derivative Procedure for a 2-D Plug Nozzle

Figure 37. Flow Chart for C_{FG} Derivative Procedure for a 2-D Plug Nozzle (Concluded)

7.0 PROGRAM AND SUBROUTINE DESCRIPTIONS

7.1 NNEP PROGRAM LIBRARY CATALOG

Subroutine Name	Subroutine Description
BOTM	is the optimization subroutine which uses Powell's Principal Axis method to find the optimum. Once BOTM has been called, it takes over as the supervisory routine until an optimum has been found at which time control is returned to VCENG.
CALCFX	Evaluates the value of the function being minimized or maximized for ${\tt BOTM}$.
COMPRS	Performs compressor calculations.
CONFIG	Processes the engine configuration for each mode. The flow components are assembled from inlets to nozzles as they would appear in the flow stream. The logic to be followed in calculating performance is set by CONFIG.
COOLIT	Turbine cooling routine.
DBURNR	Performs duct, burner, and afterburner calculations.
FIGURE	When the configuraton data is read in at the design point for all of the modes, FIGURE schematically represents the flowpath on the output sheets.
FLOCAL	Sequentially calls the components in the correct order to do cycle calculations based on the flowpath generated by CONFIG.
HEATXC	Performs heat exchanger calculations.
INLET	Performs inlet calculations.
INPRT	Subroutine controlling printing. The user has the option of printing each try at balancing of the engine or only the final converged case.
LSTOPT	Outputs station property data every 10th optimization step.
MIN4PT	Performs 4 point least squares search.
DMINV	The IBM 360 double precision matrix inversion routine used to invert the matrix of partial derivatives used in the balancing of the engine.

Subroutine Name	Description
MIXER	Performs mixer calculations.
NAMEPR	Transfers one group of NAMELIST input data from unit 9 to unit 8.
NOZZLE	Performs nozzle calculations.
SPLTR	Performs splitter calculations (bypass engines).
SPLNQ1	Function used to fit cubic splines through the tabular data being interrogated by TREAD. It is used to calculate interpolated or extrapolated values from the tables.
SPSET	Sets up Array of Data for SPLNQ1 interpolation
THERM	Uses built-in cubic spline curve fits for air, stokchiometric combustion products, and water vapor to calculate gas perperties such as: temperature, relative pressure, enthalpy, specific heats, and the Universal gas constant.
TREAD	First is called by INPUT to read in all of the maps in tabular form which are to be used by any of the components. Then, it is called by each of the component subroutines to interrogate the tabular data previously read in.
TURBIN	Performs turbine calculations.
WINJEK	Water injection routine.
CONVERT	Reads column form engine data tables and puts them out in AMAC format.
SUMERY	Prepares a column form summary of engine data for record and later AMAC use
NEPCAL	Determines the values of the error matrix used to balance the enine, determines the new guesses for the independent variables, calls INPUT when directed to by VCENG, and calls FLOCAL to perform the engine cycle calculations.
INPUT	Reads in all of the input data, and writes out the configuration information as determined by CONFIG for the various modes onto scratch units. It also calls the appropriate data back in when modes are switched. At the design point, INPUT calls FIGURE.

7.2 WATE 2 PROGRAM LIBRARY CATALOG

Subroutine Name	Subroutine Description
COMP	Performs calculations for compressors and fans.
CENCOM	Calculates the mechanical design of centrifugal compressors.
CMECH	Calculates the mechanical design parameters of the axial compressors and fans.
CWT	Calculates the weight and length of fans and compressors.
COMWT	Calculates the weight and length of primary burners, duct burners, and augmentors.
DUCTW	Calculates the weight and length of the ducts.
DUCT	Calculates inlet and exit areas and Mach numbers for various components and their stages.
DUCT1	Calculates the inlet and exit areas for the stage by stage analysis.
EFFD	Converts adiabatic efficiencies to polytropic efficiencies.
FRAME	Calculates the weight of front, intermediate, primary burner frames and turbine exit frames.
STRESS	Calculates blade root stress for the compressors and the turbines.
SHAFT	Calculates the weight of the shafts.
TURB	Performs the turbine calculations and the bookkeeping for the mechanical design.
TMECH	Performs the turbine mechanical design.
CENTUR	Calculates the mechanical design of centrifugal turbines.
TURWTC	Calculates the weight and length of turbine stages.
WMIXR	Calculates the weight and dimension of forced mixers.
WSPLT	Calculates dimensions for non-rotating splitters.
ZG.ªTW	Calculates dimensions and weight of convergent and divergent nozzles.

Subroutine Name	Description
STHERM	Communicates single precision calls of weight estimating routines for fluid properties with the NNEP routine-THERM
WTEST	Controls the calling of subroutines which will estimate the weight and length of individual components.
NPPNT	Given X ayd Y scales, two points and a character, plot that character in an array.
DTRAP	Draw a trapazoid given start, end, scales, radii, and plot character.
ENGPLT	Makes a printer/plot of the engine components.
DUMMY	Transfers dimensions of arrays.
HMEC	Calculates the weight and length of fixed or rotary heat exchangers.
VALVWT	Calculates the weight and length of AIV.
DWT	Main routine for disk weight calculations.
SIZE	Disk sizing routine.
TVOL	Disk volume calculation routine.
STRES	Calculates disk stress.
DISK	Calculate disk weight.
7 0 ********	

, Ø

7.3 INSTALLATION PROGRAM LIBRARY CATALOG

Subroutine Name	Subroutine Description
INSTAL	Installation program's control routine calling all other routines.
INSTLI	Calls the proper installation routines for the inlets bypass vs spillage modes.
AIRBYP	Computes inlet recovery and mass flow ratios for the inlet external compression mode.
AIRSPL	Computes inlet recovery and mass flow ratios for the inlet mixed compression mode.
ATMOS	Determines pressure and temperature as a function of altitude.

Subroutine Name	Subroutine Description
AREAF	An intermediate calculation used by SIZINL.
BYSPL	For OPTB=4, determines the optimum combination of spilled and bypassed air for minimum inlet drag. For OPTB=5, determines the optimum combination of spilled and bypassed air for minimum installed SFC.
BYPM5	For OPTB=4,5 it determines each iteration's split between spilled and bypassed air.
COMIPI	Determines nozzle drag.
FACINT	Calculates the fractional change of a new point from an input table point.
INDRAG	Determines inlet drag.
PLACIN	Reads a card from unit ITEMP=10.
SIZINL	Sizes the inlet capture area.
TBLU1	One-dimensional table lookup routine.
TBLU2	Two-dimensional table lookup routine.
TBLU3	Three-dimensional table lookup routine.
TERP1 TERP2	Performs one-dimensional interpolation. Performs two-dimensional interpolation.
TERP3	Performs three-dimensional interpolation.
TABL1	Inputs one-dimensional tables.
TABL2	Inputs two-dimensional tables.
TABL3	Inputs three-dimensional tables.
SEARCH	Binary search routine.
TABL22	Inputs skew symmetric two-dimensional tables.
TABLU22	Two-dimensional skew symmetric table lookup routine.
WARN	Outputs warning messages when installtion program limits are encountered. $% \left(1\right) =\left(1\right) \left(1\right) $

Subroutine	Subvention Description
Name	Subroutine Description
TABIN	Inputs all inlet, aftbody and CFG tables.
MAPOUT	Calls routines which output old and new installation maps.
MAP1	Outputs one-dimensional maps.
MAP2	Outputs two-dimensional maps.
MAP2N	Outputs aftbody maps.
MPA2C	Outputs CFG maps.
MAP22	Outputs skew-symmetric two-dimensional maps.
MAP3	Output three-dimensional maps.
LDATA	Prints out installed data in long format.
SDATA	Prints out installed data in short form.
DEMAND	Calculates engine demand as a function of inlet recovery.
NDRAG	Determines nacelle drag.
SWITCH	Transfers old maps to new map storage locations.
ADD12	Generates a CFG table in NNEP format for addition to the NNEP data base.
NACWET	Determines nacelle wetted area.
INLWT	Determines inlet and/or nacelle weight.
7.4. 0007	TYPE PROCESSOR PROCESS AND A TRANSPARIA CATOMA OF
7.4 DERIVAT	IVE PROCESSOR PROGRAM LIBRARY CATQALOG
DERIVT	This is the derivative procedure main control routine. It

DERIVT	This is the derivative procedure main control routine. It calls the derivative procedure input routine and the calculation routine.
DERIN	Calls the routines which input the derivative parameters.
INLETI	Inputs and converts the inlet derivative parameters.
NAFTI	Inputs and converts the nozzle/aftbody derivative parameters.

<u>Name</u>	Subroutine Description
CVI	Inputs and converts the CFG derivative parameters.
DERCL	Calls the three routines which calculate the new derivative parameters.
COT	Cotangent function subprogram.
ADJUST	Adjust tables 3 and 7 to contain zero end points for each curve.
TAMP2D	Calculates AOI/AC and CD for a 2D-inlet.
IDDEF	Calculates 2D inlet shock properties.
SPILL	Calculates AO/AC sidaplate.
CUBIC	Solves for the roots of a cubic equation.
CURT	Calculates /A/ sign (A)
SHOCK	Calculates shock properties.
ERROR	Error return subroutine (not currently fully implemented).
EQUIV	Performs Mach number equivalence.
CALM	Calculates the number and value of Mach numbers above and below Mach=1 for Pitot inlet calculations.
CALN	Extends and modifies Mach numbers used in tables when Modes _{new} Modes _{old} for Pitot inlets.
CONEFL	Determines AOI/AC and CD for an axisymmetric inlet.
THETA	Calculates airflow angle.
MINT	An iteration routine which finds the root of a given function over a given range.
INLETC	Accessses routines STEP1 through STEP1.
STEP1	Determines new inlet capture.
STEP2	Determines new inlet bleed.

 ${\mathbb G}$

Subroutine Name	Subroutine Description
	1 - National Process of the Control
STEP3	Determines new inlet supply.
STEP4	Determines new inlet recovery.
SUBDIF	Determines ratio of inlet airflows versus Mach number ratio given modes, aspect ratio, A2/A1 ratio, D _{2 wall} and subsonic diffuser coefficient.
ATEFF	Determines the ratio of effective throat areas.
TABP	Determines recovery given subsonic diffuser coefficient.
STEP5	Determines new spillage drag.
STEP6	Determines new bleed drag.
STEP7	Determines new bypass drag.
DRAGP	Determines AOI/AC and CD for Pitot inlets.
DRAGA	Determines AOI/AC and CD for axisymmetric iniets.
CRCALC	Determines ratios of gemoetric parameters.
MOMDRG CNIMD	Calculates momentum drag for an inlet bypass system. Calculates drag for a convergent nozzle.
CONVMD	Calculates drag for a convergent-divergent nozzle.
FLAPD	Calculates flap drag for an inlet bypass system.
AFTBC	Determines new aftbody drag tables as well as delta CD table.
AREA	Sets up the area versus station distribution used by \ensuremath{IMST} routine.
CDCALC	Calculates theoretical afthody CD.
IMST	Calculates the integrated mean square area for an area versus station distribution.
PARBL	Evaluates the integral of tabular data using equally spaced abscissa.
COMCUB	Finds the slope at a set of data points of the cubic spline passing through the points for specified end conditions.

Subroutine Name

Subroutine Description

CVC

Calculates new CFG table.

DCDC

Calculates drags due to base area, tail fin location, and tail fin rotation.

ANALYTICAL DESIGN AND PERFORMANCE METHOD FOR PITOT INLETS 7.5

Subroutine Name	Subroutine Description
PITOTD	Main program.
ENGSZE	Calculates inlet capture area.
LOWSPD	Determines inlet recovery for Mach No. < .4
SUBTRA	Determines inlet recovery for .4 ≤ Mach No. ≤ 1.0
SUPER	Determines inlet recovery for Mach No. > 1.0
FMEFF	Determines effective throat Mach number as a function of geometric throat Mach number and r/D .
XFMEFF	Determines geometric throat Mach number as a function of effective throat Mach number and r/D .
MMDRG	Determines momentum drag for an inlet bypass system.
CDMDP	Determines performance for a CD bypass nozzle system.
CMDP	Determines performance for a convergent bypass nozzle system.
FLPDG	Determines flap drag for an inlet bypass system.
BYPPIT	Determines optimum combination of spilled and bypassed air for minimum inlet drag.

Subroutine Name	Subroutine Description
DESPIT	Determines inlet contours of subsonic and supersonic pitot inlets.
SPILIT	Determines additive drag.
XKADD	Determines KADD factors for pitot inlets.

7.6 "NWC" INLET DESIGN AND ANALYSIS PROGRAM FOR TWO-DIMENSIONAL INLETS

Subroutine Name	Subroutine Description
ADD	Computes supersonic additive drag portion of total inlet additive drag for subcritical operation
AOTRIA	Computes internal angles of α triangle given the length of the three sides
ATH	Computes the cowl lip plane area of a two-dimensional inlet
BLDDR	Uses empirical data to estimate boundary layer diverter drag
BLEED	Computes bleed/bypass airflow and drag
CALSIS	Obtains a same family shock-shock intercept solution referred to arbitrary reference conditions
CLREST	Estimates a typical cowl lip radius for given design Mach number
CONVG	Iteratively solves for the intercept of a shock polar and the straign line representing an isentropic wave
COORD	Gives the intercept of two straight lines each defined by a point an slope $% \left\{ \left(1\right) \right\} =\left\{ \left(1$
CWLDRG	Computes cowl lip and wave drags
DEFMAX	Computes shock detachment deflection for a given Mach number

Subroutine Name	Subroutine Description
-	PAR O PROPERTY AND THE PARTY A
DUCFLO	Computes approximate two-dimensional supersonic duct flow for (a) single shock train (b) double shock train (c) shock-expansion train in the duct - On the UNIVAC 1108 subprogram DUCFLO computes flows (a) and (b) and subprogram DUCSHX computes flow (c)
DGEOM	Computes cowl lip plane area, throat area, subsonic diffuser area ratio and divergence angle and area ratios from the duct throat to the cowl lip plane and from the normal shock position to the duct throat
FAREAT	Computes area of a triangle given 3 coord points defining same
FASTAR	Computes $A*/A$ for given Mach number for $Y = 1.4$
FDEL	Computes deflection angle through weak oblique shock given Mach number and sin for shock angle for $\Upsilon=1.4$
FLENGT	Computes distance between two given coord points
FMDOT	Computes mass flow function, m, for given Mach number for $\gamma = 1.4$
FOREB	Dummy routine which may be used to input empirical forebody effects
FPNS	Computes static pressure ratio across normal shock for given Mach numer for $\chi=1.4$
FPTNS	Computes total pressure ratio across normal shock for given Mach number for $\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}$
FPTOP	Computes ratio of total to static pressure for given Mach number for $\aleph \approx 1.4$
FPYTHG	Computes distance between two given coord points
FQOP	Computes ratio of dynamic to static pressure for given Mach number for $\%$ = 1.4
FREST	Determines typical lip radius for given design Mach number
FST	Computes tan O given sin O
FTCTT	Computes ratio of static to total temperature for given Mach number for $\mbox{\em X}$ = 1.4

Subroutine Name	Subroutine Description
FUBOVO	Computes average lateral velocity ratio along a vertical line in a conical field
FUOVO	Computes lateral velocity ratio at a point in a conical vield
FXTAR	Given two points and an angle, translates point 1 to the origin, translates the x coord of point 2 to its corresponding position, and rotates same through the given angle
FYTAR	Same as FXTAR for the y coord of point 2
GAOAS	Computes A/A* for given Mach number and ¥
GASTAR	Computes A*/A for given Mach number and χ
GDEL	Computes deflection angle through weak oblique shock given Mach number, $\boldsymbol{\delta}$, and sin of the shock angle
GEXTH	Computes stream thrust/unit area given total pressure, Mach number and $\boldsymbol{\xi}$
GM2NS	Computes Mach number downstream of normal shock given upstreamMach number and $\boldsymbol{\gamma}$
GM20S	Computes Mach number downstream of weak oblique shock given upstream Mach number, shock angle and $\ensuremath{\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\e$
GMDOT	Computes mass flow function, $\dot{m},$ for given Mach number and χ
GMP	Computes Mach number for given ratio of static to total pressure and $\boldsymbol{\xi}$
GMR	Computes Mach number for given ratio of static to total density and χ
GMT	Computes Mach number for given ratio f static to total temperature and $\boldsymbol{\xi}$
GPM	Computes Prandtl-Meyer angle for given Mach number and χ
GPNS	Computes static pressure ratio across normal shock for given Mach number and $\boldsymbol{\chi}$
GPOPT	Computes ratio of static to total pressure for given ${\tt Mac}\alpha$ number and ${\tt X}$

w.w.	
Subroutine Name	Subroutine Description
GPOS	Computes static pressure ratio across weak oblique shock given Mach number, shock angle, and $\ensuremath{\delta}$
GPPTMC	Computes product of mass flow function and static to toal pressure ratio, m P/P_{t} , for given Mach number and χ
GPTNS	Computes total pressure ratio across a normal shock for given Mach number and χ
GPTOP	Computes ratio of total to static pressure for given Mach number and $\boldsymbol{\xi}$
GPTOS	Computes total pressure ratio across weak oblique shock given Mach number, shock angle, and χ
GQOP	Computes ratio of dynamic to static pressure for given Mach number and χ
GQOPT	Computes ratio f dynamic to total pressure for given Mach number and $\ensuremath{\mbox{\ensuremath{\upsigma}}}$
GRNS	Computes static density ratio across a normal shock for given Mach number and $\ensuremath{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ensuremath}\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\ambox{\ensuremath}\$
GRORT	Computes ratio of static to total density for given Mach number and χ
GROS	Computes static density ratio across a weak oblique shock given Mach number and $\ensuremath{\mathbb{X}}$
GSPSND	Computes speed of sound given static temperature and X
GTNS	Computes static temperature ratio across a normal shock given Mach number and \updelta
GTOS	Computes static temperature ratio across a weak oblique shock given Mach number, shock angle, and \upred
GTOTT	Computes ratio of static to total temperature given Mach number and $\boldsymbol{\delta}$
INDRAG	Computes subcritical mass flow and drag as a function of shock position for a multiple ramp two-dimensional inlet
ILEARS	Solves the flow field resulting from the intercept of a "lumped" left running expansion and a right running shock
IREALS	Solves the flow field resulting from the intercept of a "lumped" right running expansion and a left running shock

Subroutine Name	Subroutine Description
ISODES	Computes the isentropic wedge contour, critical additive drag and performance of an isentropic wedge inlet given the design Mach number, leading edge and isentropic deflections, and the cowl and wave focus coordinates
KAY	Computes slope of line defining locus of intercepts of subcritical normal shock and capture streamline
LAGINT	Interpolation routine
LLT	Computes distance between two coord points
LIRINT	Computes the intercept of two straight lines each defined by 2 sets of coord points
MAAG2	Mass averages the fluid properties in a 2 region flow
MAAG3	Mass averages the fluid properties in a 3 region flow
MAAG4	Mass averages the fluid properties in a 4 region flow
MASAVG MAS100 MAS200 MAS300	Given an arbitrary 4 ramp configuration with a straight line perpendicular to one of the ramps, this series of subprograms solves the supersonic flow field, mass averages the supersonic properties at the station defined by the given straight line, and computes the flow properties downstream of a normal shock positioned at the given straight line
MCIRCL	Computes the Mach number corresponding to a given value of mass flow function, $\acute{\text{m}}$ and $\emph{\emph{Y}}$
MCPPT	Computes the supersonic Mach number corresponding to a given value of $\mathring{\text{m}}$ P/Pt and $\mathring{\text{V}}$
MCPPTS	Computes the subsonic Mach number corresponding to a given value of $\dot{\text{m}}$ P/Pt and $\dot{\text{X}}$
NUMACH	Computes the supersonic Mach number corresponding to a given value of Prandtl-Meyer angle and $\ensuremath{\mathbb{Y}}$
OBSHOP	Computes static and total pressure ratios, static temperatue ratio, downstream Mach number and shock angle for both strong and weak oblique shocks for a given Mach number, deflection, and $\upoline{$
OSSIE	Solves the flow field resulting from an opposite family shock-shock intercept

Subroutine Name	Subroutine Description
POLACK	Uses empirical and semi-empirical data to estimate the viscous losses in the supersonic diffuser and those associated with the terminal normal shock - boundary layer interaction
SDLOSS	Uses empirical data to estimate subsonic diffuser viscous losses
SHOPOL	Computes static and total pressure ratios, downstream Mach number and shock angle for both strong and weak oblique shocks for a given Mach number, deflection, and
SIDSPL	Computes the airflow and drag associated with lateral spillage of a two-dimensional supersonic inlet
SIPDRG	Computes sideplate lip and wave drag values
SLREST	Estimates a typical sideplate lip radius for a given design Mach number
SLVLI	Computes the intercept of a straight line defined by point-slope and a vertical line defined by its abscissa
SONOSH	Computes, for a given Mach number and , the shock angle and deflection corresponding to sonic flow downstream of a weak oblique shock
SPNS	Computes static and total pressure ratios, static temperature ratio, and downstream Mach number across a normal shock given upstream Mach number and
SSAS0C	Answers questions (a) is supercritical operation theoretically possible and (b) will the inlet theoretically self-start
SSIS	Solves the flow field resulting from a same family shock-shock intercept
STORE	Stores values and "sets-up" arrays for subprogram INDRAG
STRACE	Computes the critical-supercritical airflow for a two-dimensional multi-ramp inlet below design Mach number
SWCONT	Computes the approximate airflow and drag attributable to small sidewall contractions for a two-dimensional supersonic multi-ramp inlet

Subroutine Name	Subroutine Description
TAR	Given a point, an angle, and a coord array, translates the point to the origin, translates the coord array to its corresponding position, and rotates same throught the given angle
THETAS	For given Mach number and δ = 1.4, computes the sin of the weak oblique shock wave angle for either sonic downstream conditions or detachment deflection
THICK	Computes necessary structural thickness for a maximum structural deflection at a single duct cross section
THRESH	Solves the flow field resulting from a three shock intersection composed of one strong oblique, one weak oblique, and a normal shock
TRACE	Computes airflow and critical additive drag for a supersonic, multi-ramp, two-dimensional inlet
TWOINT	Double interpolation routine
WDWT	Writes DUCFLO output for a shock-"lumped" expansion wave train computation
WSST	Writes DUCFLO output for a shock train computation
XBALL	Computes necessary structural thicknesses at a number of points along the sideplate and duct for a given maximum deflection for aluminum, titanium, Inconel, and stainless steel
XLAG	Given a straight line defined by a point-slope and a contour defined by a series of coord points, computes the intercept of the straight line with the contour and the contour slope at the intersection point
XSONDR	Uses empirical data to estimateinlet transonic drag
YAW	Dummy subroutine whic may be used to input empirical yaw performance corrections
ZZZZIP	Given an arbitrary 1, 2, or 3 ramp inlet with a straight line perpendicular to one of the ramps, this routine solves the supersonic flow field, mass averages the supersonic properties at the station defined by the given straight line, and computes the flow properties downstream of a normal shock positioned at the given straight line

7.7 "NWC" INLET DESIGN AND ANALYSIS PROGRAM FOR AXISYMMETRIC INLETS

Subroutine Name	Subroutine Description
ADG	Computes pertinent duct geometry parameters
AOTRIA	Computes internal angle of a triangle given the length of the three sides
ARCSIN	Given x, solves for the arc sin of same
ATHAXI	Computes the cowl lip plane area of an axisymmetric inlet
AXIGEO	Computes cowl lip plane area, throat area, subsonic diffuser area ratio and divergence angle and area ratios from the duct throat to the cowl lip plane and from the normal shock position to the duct throat
BLDDR	Uses empirical data to estimate boundary layer diverter drag
BLEED	Computes bleed/bypass airflow and drag
ВМАСН	Given Prandtl-Meyer angle, routine iteratively solves for corresponding supersonic Mach number
BODY	Solves for a body point using method of characteristics
CALC	Computes the mass averaged inlet plane properties and the inlet airflow and additive drag for 1, 2, or 3 cone inlets
CALSIS	Obtains a same-family shock-shock intercept solution referred to arbitrary reference conditions
CASMAX	Given a cone half angle, computes the free stream Mach numbers corresponding to sonic surface flow and shock detachment
CFLOW	Uses method of Taylor and Maccoll to solve conical supersonic flow field
CONFLW	For a given free stream Mach number and conical half angle, routine solves for the flow deflection over an attached weak oblique shock
COORDR	Gives the intercept of two straight lines each defined by a point and its slope in radians
CLWDAX	Computes cowl lip and wave drags for axisymmetric inlets
CNTRL1	Contains the driver logic for solution of the flow field on the external compression surface of an isentropic spike inlet using method of characteristics

Subroutine Name	Subroutine Description
CONFLO	Computes the conical field on the first cone of a 1, 2, or 3 cone inlet $\ \ \ \ \ \ \ \ \ \ \ \ \ $
CONVG	Iteratively solves for the intercept of a shock polar and the straight line representing an isentropic wave
COORD	Gives the intercept of two straight lines each defined by a point and slope $% \left\{ 1,2,\ldots,n\right\} =\left\{ 1,2,\ldots,n\right\}$
CWLCHK	Checks for the cowl forward of a two dimensional shock
DEFMAX	Computes shock detachment deflection for a given Mach number
DSXFLW	Computes approximate two-dimensional supersonic duct flow for shock-expansion train in the duct
DUCFLW	Computes approximate two-dimensional supersonic duct flow for (a) single shock train (b) double shock train
FACTOR	Calculates the interpolation factor for the field properties
FLENGT	Computes distance between two given coord points
FPS	Method of characteristics field point solution
GAOAS	Computes A/A* for given Mach number and $\updelow{1}{\up$
GASTAR	Computes A*/A for given Mach number and χ
GAMF	Given static temperature, computes corresponding $\%$ (as presently written sets $\%$ = 1.4)
GDEL	Computes deflection angle through weak oblique shock given Mach number, χ , and sin of the shock angle
GENRL	Solves for a field point using method of characteristics
GEXTH	Computes stream thrust/unit area given total pressure, Mach number and $\boldsymbol{\upomega}$
GM2NS	Computes Mach number downstream of normal shock given upstream Mach number and $\ensuremath{\mathcal{X}}$
GM2OS	Computes Mach number downstream of weak oblique shock given upstream Mach number, shock angle and $\boldsymbol{\chi}$
GMDOT	Computes mass flow function, \dot{m} , for given Mach number and $\ddot{\delta}$

<u>Name</u>	Subroutine Description
GMP	Computes Mach number for given ratio of static to total pressure and $\boldsymbol{\xi}$
GMR	Computes Mach number for given ratio of static to total density and $\boldsymbol{\delta}$
GMT	Computes Mach number for given ratio of static to total temperature and χ
GPM	Computes Prandtl-Meyer angle for given Mach number and δ
GPNS	Computes static pressure ratio across normal shock for given Mach number and $\boldsymbol{\chi}$
GPOPT	Computes ratio of static to total pressure for given Mach number and $\ensuremath{\chi}$
GPOS	Computes static pressure ratio across weak oblique shock given Mach number, shock angle, and $\mbox{\ensuremath{\upedge}{X}}$
GPPTMC	Computes product of mass flow function and static to total pressure ratio, \dot{m} P/Pt, for given Mach number and δ
GPTNS	Computes total pressure ratio across a normal shock for given Mach number and $\ensuremath{\mbox{\emptyset}}$
GPTOP	Computes ratio of total to static pressure for given Mach number and $\ensuremath{\mathtt{X}}$
GPTOS	Computes total pressure ratio across weak oblique shock given Mach number, shock angle, and \updelta
GQOP	Computes ratio of dynamic to static pressure for given Mach number and $\boldsymbol{\xi}$
GQOPT	Computes ratio of dynamic to total pressure for given Mach number and $\mbox{\ensuremath{\mbox{\ensuremath}\ensuremath{\mbox{\ensuremath}\ensur$
GRNS	Computes static density ratio across a normal shock for given Mach number and $\ensuremath{\mbox{\ensuremath{\upselect}{\vee}}}$
GRORT	Computes ratio of static to total density for given Mach number and $\boldsymbol{\chi}$
GROS	Computes static density ratio across a weak oblique shock given Mach number and $\boldsymbol{\chi}$

Subroutine Name	Subroutine Description
GSPSND	Computes speed of sound given static temperature and \updelta
GTNS	Computes static temperatue ratio across a normal shock given Mach number and $\boldsymbol{\chi}$
GTOS	Computes static temperatue ratio across a weak oblique shock given Mach number, shock angle, and $\ensuremath{\langle}$
GTOTT	Computes ratio of static to total temperature given Mach number and $\boldsymbol{\gamma}$
HEATF	Given static temperature, computes corresponding enthalpy
ILEARS	Solves the flow field resulting from the intercept of a "lumped" left running expansion and a right running shock
INTERI	Interpolation routine
INTERJ	Interpolation routine
IREALS	Solves the flow field resulting from the intercept of a "lumped" right running expansion and left running shock
LAGINT	Interpolation routine
LININT	Computes the intercept of two straight lines each defined by 2 sets of coord points
LLT	Computes distance between two coord points
MAAG2	Mass averages the fluid properties in a 2 region flow
MAAG3	Mass averages the fluid properties in a 3 region flow
MCIRCL	Computes the Mach number corresponding to a given value of mass flow function, $\dot{\text{m}},$ and χ
MCPPT	Computes the supersonic Mach number corresponding to a given value of $\dot{\text{m}}$ P/P $_t$ and $\mbox{\em X}$
MCPPTS	Computes the subsonic Mach number corresponding to a given value of m $\mbox{P/P}_t$ and $\mbox{\ensuremath{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\mbox{\ensuremath{\ensuremath}\ensu$
NUMACH	Computes the supersonic Mach number corresponding to a given value of Prandtl-Meyer angle and $\mbox{\ensuremath{\upedskip}{\opdate}}$
OBSHOP	Computes static and total pressure ratios, static temperature ratio, downstream Mach number and shock angle for both strong and weak oblique shocks for a given Mach number, deflection, and \forall

Ð

Subroutine Name	Subroutine Description
OSSIE	Solves the flow field resulting from an opposite family shock-shock intercept
OSHAAD	Given an upstream Mach number, upstream total pressure, and downstrean total pressure the routine solves for the corresponding weak oblique shock wave angle and flow deflection
OUT	Computes mass averaged properties at the inlet plane, critical additive drag and capture
POLACK	Uses empirical and semi-empirical data to estimate the viscous losses in the supersonic diffuser and those associated with the terminal normal shock-boundar layer interaction
SDLOSS	Uses empirical data to estimate subsonic diffuser viscous losses
SHOPOL	Computes static and total pressure ratios, downstream Mach number and shock angle for both strong and weak oblique shocks for a given Mach number, deflection, and \aleph
SHOCK	Solves for a shock point using method of characteristics
SHXCHK	Check for shock ingestion
SIMQ	Solves a set of simultaneous linear algebraic equations
SLVI	Computes the intercept of a straight line defined by point-slope and a vertical line defined by its abscissa
SONOSH	Computes, for a given Mach number and δ , the shock angle and deflection corresponding to sonic flow downstream of a weak oblique shock
SPNS	Computes static and total pressure ratios, static temperatue ratio, and downstream Mach number across a normal shock given upstream Mach number and
SSASOC	Answers questions (a) is supercritical operation theoretically possible and (b) will the inlet theoretically self-start
SSIS	Solves the flow field resulting from a same family shock-shock intercept
TEMPF	Given enthalpy, computes corresponding static temperature

Subroutine Name	Subroutine Description
THETAS	For given Mach number and δ = 1.4, computes the sin of the weak oblique shock wave angle for either sonic downstream conditions or detachment deflection
TWOINT	Double interpolation routine
WDWT	Writes DSXFLW output for a shock-"lumped" expansion wave train computation
WRITE1	Handles output from method of characteristics computations
WSST	Writes DUCFLW output for a shock train computation
XLAG	Given a straight line defined by a point-slope and a contour defined by a series of coord points, computes the intercept of the straight line with the contour and the contour slope at the intersection point.

8.0 APPENDIX - TEST CASES

This section describes the inputs required to access the installation of the following propulsion systems:

- o a typical subsonic turbofan
- o a typical supersonic mixed-flow afterburning turbofan

The installation will include an engine weight breakdown and inlet and nozzle performance and drag. A podded nacelle configuration is assumed, therefore, inlet weight and nacelle weight and drag are included. Table XIX describes the inlet/engine/nozzle combinations of each test case.

Partial output will be included for all test cases; a full output will be included for the supersonic engine installed with the 'ASF' inlet, and the subsonic engine installed with the 'M9SUB' inlet.

Table XIX. Test Cases - Inlet/Engine/Nozzle Combinations

Engine Type	Inlet	Nozzle	c _{FG}
Subsonic	M9SUB*		
Subsunic	Analytical		
Supersonic	ASF*	ADENAB*	ADENCFG*
Supersonic	FB*	ADENAB*	ADENCFG*
Supersonic	TM1B3*	DRP1*	CVRP*
Supersonic	AST*	DRP1*	CVRP*

*Database

8.1 SUBSONIC SHORT DUCT TURBOFAN

8.1.1 DATABASE INLET 'M9SUB'

INSTAL & WATE-2 : TYPICAL SUBSONIC SEPERATE FLOW SHORT DUCT
&D NMODES=1,NCOMP=29,NOSTAT=14,MODESN=1,TABLES=T,ITPRT=0,NCODE=1,IWAY=1,
INST=0,IFLGRF=0,IWT=T,DRAW=T,BOAT=F,SPILL=F,INLTDS=F,SPLDES=.02,NVOPT=0,
&END
NEP - INPUT

TABLE DATA INPUT SUMMARY 10 TABLES

Y LOCATION		07	14	22	45	69	93	30	67	8431
ARRA										
NUMBER										
NC	00	00	00	00	00	00	00	00	00	
TABLE NUMBER	1	2	2	4	5	9	7	00	6	10

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10828

AL MODE=1, INST=0, IFLGRF=0,	KONFIG(1,1)="INLT",1,0,2,0,SPEC(1,1)=1000,4*0,.97; KONFIG(1,2)="COMP",2,0,3,0,3,0,3,0,3,1,1,1,1,1,1,1,1,1,1,1,1	KONFIGGI,4)="COMP',4,6,6,7,SPECCI,4)=1.3,.05,1,1004,1,1605,1,1006,1,0,.1,.86,	KONFIG(1,6)="TURB",8,7,9,0,SPEC(1,6)=3.5,.75,1,1007,1,1008,.9,1,.8,1,.9,5000,1,	KONFIG(1,9)='DUCT',10,0',12,0',5FEC(1,8)='0,0',5',1,100',1,101',',',1,101',',',500',1,',',1,10',1,',',500',1,', KONFIG(1,9)='DUCT',10,0',12,0',5FEC(1,8)='0,0',0',0',0',0',0',0',0',0',0',0',0',0	KONFIG(1,8)='DUCT',5,0,11,0,SPEC(1,8)=.02, KONFIG(1,14)='NOZZ',11,0,14,0,SPEC(1,14)=0,.98,0,0,.975,1,0,0,1,	KONFIG(1,11)="SHFT",4,6,0,0,SPEC(1,11)=8000,2*1,0,0,2*1,0,0,2*1,0,0,8KONFIG(1,12)="SHFT",2,7,0,0,SPEC(1,12)=6000,2*1,0,0,2*1,0,0,2*1,0,0	KONFIG(1,15)="CNTL",SPCNTL(1,15)=1,7,"STAP",8,12,0,1, KONFIG(1,16)="CNTL",SPCNTL(1,16)=1,6,"STAP",8,9,0,1,	KONFIG(1,17)="CNTL",SPCNTL(1,17)=1,4,"STAP",8,8,0,1,1.1,1.75, KONFIG(1,18)="CNTL",SPCNTL(1,18)=1,3,"STAP",8,11,0,1.	KONFIG(1,19)="CNTL",SPCNTL(1,19)=1,2,"STAP",8,4,0,1,1.1,2.1, KONFIG(1,20)="CNTL",SPCNTL(1,20)=1,1,"STAP",8,2.0,1,	KONFIG(1,21)="CNTL", SPCNTL(1,21)=4,5, "DOUT",6,2,1.0,0,0,3000, KONFIG(1,24)="LIMV", SPLIMV(1,24)=0,.6,1.05, "BOUT",6,4,0,0,1,	KONFIG(1,28)="CNT", SPCNTL(1,28)=1,11, DOUT',8,11,0,1, % ONFIG(1,29)="CNTL", SPCNTL(1,29)=1,12, "DOUT',8,12,0,1,	NEP - INPUT

		8	A 80	14>				
		<splt< th=""><th><pre>conci</pre></th><th>ZZON></th><th>†</th><th></th><th></th><th></th></splt<>	<pre>conci</pre>	ZZON>	†			
1	5>	3>	< 5	5>	^9	1>	<6	13>
<inl1< td=""><td>< COMP</td><td><splt< td=""><td>< COMP</td><td><duct< td=""><td><turb< td=""><td><turb< td=""><td>< DUCT</td><td>12 <ndzz 13</ndzz </td></turb<></td></turb<></td></duct<></td></splt<></td></inl1<>	< COMP	<splt< td=""><td>< COMP</td><td><duct< td=""><td><turb< td=""><td><turb< td=""><td>< DUCT</td><td>12 <ndzz 13</ndzz </td></turb<></td></turb<></td></duct<></td></splt<>	< COMP	<duct< td=""><td><turb< td=""><td><turb< td=""><td>< DUCT</td><td>12 <ndzz 13</ndzz </td></turb<></td></turb<></td></duct<>	<turb< td=""><td><turb< td=""><td>< DUCT</td><td>12 <ndzz 13</ndzz </td></turb<></td></turb<>	<turb< td=""><td>< DUCT</td><td>12 <ndzz 13</ndzz </td></turb<>	< DUCT	12 <ndzz 13</ndzz
			4 >	< 9	1>			

<COMP 7 <TURB

<TURB

SHAFT (12) IS CONNECTED TO COMP(2) AND TURB(7) AND SHAFT (11) IS CONNECTED TO COMP(4) AND TURB(6) AND

THE FOLLOWING REPRESENTS THE CONFIGURATION FOR MODE= 1
INSTAL & WATE-2 : TYPICAL SUBSONIC SEPERATE FLOW SHORT DUCT
CONFIGURATION DATA 14 STATIONS 29 COMPONENTS

DOWNSTREAM
UPSTREAM
NKIND COMPONENT TYPE
COMPONENT

CNO	۵	0	70	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SIALION	2	M	4	9	00	6		11			0		14		9	4	М	2	7	Ŋ	4	11	
250	0	0	0	0	0	7	7	0	0	9	1	0	0	0	0	0	0	0	0	0	0	0	0
MOTIFIC	1	2	23	4	9	90	6	rC:	10	5	€.			12		00	11	4	2	2	0	11	
111	NLE	OMPRES	ITT	OMPRES	UCT B	URBIN	URBI	UCT B	UCT	SHAF	SHAF	1220	1ZZ0	ONTRO	IMITE	CONTROL	ONTRO						
	p-1	\$	7	4	2	Ŋ	IJ	2			11											12	
NOLIBER	1		m 27		Ŋ	9	7	00														28	
			-1	- 4											1							1	

FORMATION
FORMATION
FORMATION
FORMATION
FORMATIO
FORM
FORM
FORM
FORM
F
F
Ц.
-
Z
\vdash
_
0
00
-
Z
0
5.3

0.0				1000001	0	0	
12 EQUALS	8 EQUAL	FOUAL	UAL	UALS	UALS	UAL	HORT DUCT
LOW STATION	LOW STATE	STATI	STA	DNENT	DNENT 1	COMPONENT 12	ERATE FLOW S
8 OF F	8 OF	8 8 0 0 T T	8 0 F	T 6 0F	7 8 OF	8 0F	SONIC SEP
THAT STATP	T ST	50	1 51	I DA	T DA	I DA	IL SUB
7 50 7	20		20	5 50	1 50	20	-2 : TYPICA
F COMPONENT	COMPON	00	CUMPON	COMPONEN	COMPONEN	COMPON	STAL & WATE-
1 0F							INS
DATINP	ATI	ATIN	I	ATIN	ATI	DATINP	ATION
VARY	VARY	< A A A A A A A A A A A A A A A A A A A	VARY	VARY	VARY	VARY	IDENTIFIC/
15	17	0 6 7	20	21	28	53	CASE

INPUT DATA

DATINP9 0.0 0.10000D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
DATINP8 0.0 0.10030D+04 0.0 0.10060D+01 0.10000D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
DATINP7 0.0 1.00000+01 0.900000+01 0.900000+01 0.0000000000000000000000000000
DATINP6 0.97000D+00 0.10020D+04 0.10020D+04 0.10020D+04 0.10020D+05 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.20000D+01 0.20000D+01 0.20000D+01 0.20000D+01 0.20000D+01 0.20000D+01 0.20000D+01
DATINP5 0.0 0.10000000000000000000000000000000
DATINP4 0.0 0.10010D+04 0.10070D+04 0.10070D+04 0.10070D+04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
DATINP3 0.0 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
DATINP2 0.0 0.0 0.200000-01 0.500000-01 0.750000+00 0.750000+00 0.0 0.100000+01 0.980000+01 0.980000+01 0.980000+01 0.000000000000000000000000000000
DATINP1 0.150000+01 0.150000+01 0.1500000+01 0.2500000+01 0.2500000+01 0.2500000+01 0.06000000000000000000000000000000000
COMPONENT NO. TYPE 1 INLET 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 11 SHAFT 12 SHAFT 12 SHAFT 12 SHAFT 13 NOZZLE 14 CONTROL 16 CONTROL 16 CONTROL 17 CONTROL 18 CONTROL 18 CONTROL 18 CONTROL 20 CONTROL 21 CONTROL 22 CONTROL 23 CONTROL 24 LIMITER 25 CONTROL 27 CONTROL 28 CONTROL 29 CONTROL 20 CONTROL 20 CONTROL 20 CONTROL 20 CONTROL 21 CONTROL 22 CONTROL 23 CONTROL 24 LIMITER 25 CONTROL 26 CONTROL 27 CONTROL 27 CONTROL 27 CONTROL 28 CONTROL 29 CONTROL 20 CON

ORIGINAL PAGE IS

THE MAXIMUM COMPONENT NUMBER USED 29 DOES NOT EQUAL 23 THE NUMBER OF COMPONENTS CONFIGURED IN ANY ONE MODE - WARNING ONLY MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.0

	DATINP9	0 0	0 201210+00	0.0	0.261680+01					,			10000010	0.10000D+01
	DATINP8	0 0	0 100300+04	0.0	0.100600+04	0.0								0.0
														0.0
	DATINP6	0.97000D+00	0.10020D+04	0.0	0.10050D+04	0.18300D+05	0.10080D+04	0.101000+04	0.0	0.0	0.100000+01	0.100000+01	0.10000D+01	0.10000D+01
	DATINPS	0.0	0.10466D+04	0.0	0.11076D+03	0.99000D+00	0.80078D+00	0.84282D+00	0.0	0.0	0.0	0.0	0.97500D+00	0.97500D+00
	DATINP	0.0	0.10010D+04	0.0	0.10040D+04	0.3000D+04	0.10070D+04	0.10090D+04	0.0	0.0	0.0	0.0	0.0	0.0
ED INPUT	DATINP3	0.14696D+02	0	0	0	0.0	0		0			0.10000D+01	0.0	0.0
UPDATED INPUT DATA TO REFLECT CALCULATED INPUT COMPONENT	DATINP2	0.0	0.0	0.20000D-01	0.50000D-01	0.30000D+00	0.75000D+00	0.25000D+00	0.0	0.0	0.10000D+01	0.10000D+01	0.98000D+00	0.98000D+00
T DATA TO REF	DATINPI	0.10000D+04	0.15000D+01	0.60000D+01	0.13000D+01	0.50000D-01	0.35000D+01	0.25000D+01	0.20000D-01	0.0	0.80000D+04	0.60000D+04	0.34259D+03	0.23942D+04
UPDATED INPU	NO, TYPE					5 DUCT B					П	N	13 NOZZLE	4

11

DATA DUTPUT PROPERTY STATION

DATOUT9 140000+01 180000+02 3783000404 378300010404 227210+01 00 244020+01 130420+01 INTERFACE CORRECTED FLOW ERROR STATP8 000000000000 00000000000000 00000000000000 FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG 000000000000000 00000000000000 DATOUT6 100000+01 100000+01 126680+05 500000+04 500000+04 980000+00 .62707D+00 .10000D+01 .11926D+01 .61140D+00 MACH NUMBER STATP6 STATP6 0.0 PASSES 00000000000000 000000000000 2 REFERRED FLOW STATP5 .99998D+03 .10309D+04 .77876D+03 .11352D+03 .11352D+03 .68113D+03 . 15775D+02 . 53697D+02 . 11301D+03 . 69503D+03 . 11301D+03 . 69503D+03 28504.76 0.4444 0.0 DATA ITERATIONS DUTPUT 0000000000000 FUEL/AIR RATIO 5 TATP4 0.0 0.0 0.0 0.0 0.0 0.25928D-01 0.25944D-01 0.24632D-01 0.24632D-01 0.24632D-01 DATOUT4 0.10000D+01 0.15000D+01 0.13000D+01 0.25000D+01 0.25000D+01 0.0000D+04 0.6000D+04 0.525000D+04 0.525000D+04 0 COMPONENT GROSS THRUST TSFC TOTAL BRAKE SHAFT H INSTALLED TSFC 0.9700 TOTAL TEMPERATURE 5 TATP3 0.5186/70+03 0.580120+03 0.580120+03 0.140810+04 0.140810+04 0.140810+04 0.292930+04 0.292930+04 0.219900+04 0.219900+04 0.284080+04 0.580120+03 DATOUT3 .0 .0 .20000D-01 .30000D+00 .10000D+01 .80000D+04 .60000D+04 .24402D+01 .13042D+01 RECOVERY= 0000000000000 TOTAL PRESSURE SIATP2 0.14696D+02 0.19957D+02 0.19558D+02 0.19558D+02 0.19558D+02 0.19558D+03 0.3586D+03 0.3586D+02 0.35861D+02 0.35861D+02 0.35861D+02 0.35861D+02 .60000b+0 .20000b-0 .50000b+0 .50000b+0 .60000b+0 .20000b+0 .20000b+0 .20000b+0 .20000b+0 .60000b+0 .60000b+0 .21940b+0 .69530b+03 1000.00 28504.76 0.0 28504.76 DATOUT2 0 000000000000000 00000000000000 ALTITUDE= DATOUTI -0.20860D+05 0.60000+01 0.61501D+05 0.783501D+05 0.783501D+05 0.20860D+05 0.00 0.00 0.00 0.18523D+05 AIRFLOW (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST COMPONENT NO. TYPE I INLET S COMPRESR S SPLITTER G COMPRESR TURBINE NOUCT B DUCT B DUCT B S DUCT B S DUCT B NOZZLE IS NOZZLE 0 111110987654601 MACH=

THRUST

28.5048 0.0

DRAG

HP

USE	0.31810D-0	0.21435D-0	W BEING USE	= 0.98654D-02	0.17421D-0	0.12672D-0	M BEING USE	0.47105D-0	0.424590-0	0.23599D-0	0.114250-0	1
Z	-	-	2	-	-	-	Z	-	-	-	-	
-	2	2		N	N	N		N	N	N	N	
ш	ж	ж		ж	*	ж	0	ж	340	ж.	ж	
Ω	ж	ж	0	ж	*	ж	0	*	ж	ж	ж	
	S	S	I	S	S	S	T	5	S	S	S	
3	α	DC.	-	04	α	DC.	-	02	CK.	DY.	04	
2	0	0	ш	0	0	0	ш	0	0			
z	O.	000	Σ.	04	2	04	Σ	200	C/	04	2	
	DE.	E		ER	œ	DX.		DZ.	DZ.	DK.	DK.	
				3								
	_	_	-	_	$\overline{}$	_	=	\sim	~	_	_	
	ti.	Li.	iii	ш	Li.	11	iii	Ti.	ri-	H.	Tr.	
	5	0	0	0	0	0	õ	0	0	0	0	
u	_	-	$\overline{}$		-	_	=	_	_	_	_	
7	Σ	Σ	o	Σ	Σ	Ξ	Ö	Ξ	Σ	Σ	Σ	
0	\supset	\supset	04	5	\supset	\supset	04	\supset	\supset	1	3	
E	S	S	2	S	S	S	m	S	Ş	S	S	

STATION PROPERTY OUTPUT DATA

ECTED	DATOUT9 0.500000000000000000000000000000000000	
FLOW ERROR 51ATP8 0.0 31520D-06 0.3 1520D-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.99657D+00 0.82552D+00 0.99662D+00 0.89996D500 0.89972D+00 0.0 0.0 0.18935D+01	11605.39 17.4449 0.0
STATIC II STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT7 0.970000+00 0.10466D+04 0.0 0.11076D+03 0.29921D+00 0.8078D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.4000D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.400000+00 0.103040+01 0.0 0.100330+01 0.116050+05 0.499420+04 0.514230+04 0.0 0.0 0.0 0.980000+00 0.980000+00 0.980000+00	FUEL FLOW NET THRUS BOATTAIL SPILLAGE
REFERED FLOW STATP5 0.11440D+04 0.8293D+05 0.1359D+03 0.93126D+01 0.93126D+01 0.93126D+01 0.05776D+02 0.15776D+02 0.15776D+02 0.15776D+02 0.15776D+02 0.15776D+02 0.15776D+03	OUTPUT DATA OUTPUT DATOUT5 OU 0.11168D+01 OU 0.10052D+02 OU 0.30881D+02 OU 0.58081D+02 OU 0.58279D+00 OU 0.58279D+00 OU 0.58279D+00 OU 0.00 OU 0.0	30111.19 0.6368 -1.54 0.6868
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.26018D-01 0.25030D-01 0.24717D-01 0.24717D-01	COMPONENT O 1032014 0.20519D+0 0.20519D+0 0.27387D-0 0.34928D+0 0.34928D+0 0.25054D+0 0.00 0.00 0.00 0.25054D+0 0.00 0.25054D+0 0.00 0.	SHAFT HP
TOTAL TEMPERATURE STATP3 0.50840+03 0.516890+03 0.574950+03 0.574950+03 0.140230+04 0.132300+04 0.132300+04 0.134970+04 0.219980+04 0.219980+04 0.219980+04 0.219980+04	DATOUT3 0.25999D+03 0.2000D-01 0.3000D+00 0.1000D+01 0.1000D+01 0.00 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
TOTAL STATP2 0.12228D+02 0.13247D+02 0.13247D+02 0.13247D+02 0.17717D+02 0.17717D+02 0.17717D+02 0.17717D+02 0.17717D+02 0.26184D+03 0.26184D+03 0.26184D+03 0.26184D+03 0.2744D+02 0.32743D+02 0.32743D+02 0.32743D+02	DATOUT2 0.43884p+03 0.61718D+04 0.20000D-01 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04 0.79904D+04	968.69 16898.72 13212.47 16898.72
WEIGHT FLOW STATP1 0.96869D+03 0.96866D+03 0.9686D+03 0.13362D+03 0.12390D+03 0.12390D+03 0.12390D+03 0.13365D+03 0.13365D+03 0.13365D+03 0.13365D+03 0.13365D+03	DATOUTI 0.13212D+05 -0.19091D+05 0.64263D+01 0.78577D-01 0.37836D+05 0.37836D+05 0.19089D+05 0.0 0.0 0.0 0.26223D-01 0.26223D+01 0.95235D+01 0.95233D+04	'SEC) DRAG IRUST
FLOW STATION 1 2 3 4 4 5 5 6 6 7 7 8 8 110 111 122 133	COMPONENT NO. TYPE 1 INLET 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 DUCT B 9 DUCT B 11 SHAFT 12 SHAFT 13 NOZZLE 14 NOZZLE 14 NOZZLE	AIRFLOW (LB/ HET THRUST TOTAL INLET INSTALLED TH

11

STATION PROPERTY OUTPUT DATA

0.0 0.31051D+01 0.15968D+01	0.12710D-03 0.18500D+01 0.18936D+01	0.0 0.97500D+00 0.97500D+00	0.0 0.98000D+00 0.98000D+00	0.0 0.34259D+03 0.23942D+04 ERATIONS	0.64045D+04 0.376845+03 0.23942D+04 00 8 IT	4 0.64045D+04 4 0.31051D+01 3 0.15968D+01 RECOVERY= 0.97	0.64045D+0 0.24373D+0 0.88997D+0 15000.	.19145D+01 .79667D+04 .18972D+05 ALTITUDE	S NOZZLE 0 4 NOZZLE 0 7 MACH= 0.6000	1 t 2 E
0.0	0.12710D-03	0.0	0.0	0.0	0.64045D+04	0.64045D+04	0.64045D+04	79667D+01	SHAFT	H H
_	0.18789D-04		0.0		0.79522D+04	0.79522D+04	0.79522D+04	.55792D+00	SHAFT	1
_	0.0		0.0		0.0	0.0	0.0	0.	DUCT B	Or.
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.20000D-01	0.	DUCT B	WC.
0.22832D+	0.89924D+00	0.84282D+	0.53353D+04	0.58279D+0	0.25130D+01	0.10000D+01	0.64045D+04	.15064D+05	TURBINE	10
0.37629D+	0.89982D+00	0.80078D+	0.49710D+04	0.67327D+0	0.34819D+01	0.10000D+01	0.79522D+04	.29694D+05	TURBINE	9
_	0.99000D+00		0.92363D+04		0.27708D-01	0.30000D+00	0.50000D-01	.79430D-01	DUCT B	M)
0.18722D+	0.84329D+00	0.11076D+	0.10162D+01	0.27778D+0	0.12827D+01	0.0	0.79522D+04	.29693D+05	COMPRESR -	5
-	0.0	0.0	0.0	0.0	0.0	0.20000D-01	0.20000D-01	.66848D+01	SPLITTER	(4)

MAXIMUM ALLOWABLE VALUE IS 0.21000D+01 "LIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.24611D+01

9236.30 14.4573 0.0

FUEL FLOW (LB/HR)
NET THRUST/AIRFLOW
BOATTAIL DRAG
SPILLAGE + LIP DRAG

26938.81 0.8105 2.47 0.8105

GROSS THRUST TSFC TOTAL BRAKE SHAFT HP INSTALLED TSFC

788.25 11395.95 15542.86 11395.95

AIRFLOW (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST

SUM OF (ERRORS**2)= 0.42915D+00 SUM OF (ERRORS**2)= 0.30523D+00 BROYDEN'S METHOD NOW BEING USED SUM OF (ERRORS**2)= 0.19910D+00 SUM OF (ERRORS**2)= 0.11338D+00 SUM OF (ERRORS**2)= 0.11338D+01 SUM OF (ERRORS**2)= 0.11339D+01 SUM OF (ERRORS**2)= 0.11633D+01 SUM OF (ERRORS**2)= 0.11633D+02														
UM OF (ERRORS**2)= 0.5 ROYDEN (S METHOD NOW BE UM OF (SRRORS**2)= 0.1 UM OF (ERRORS**2)= 0.1 ROYDEN'S METHOD NOW BE UM OF (ERRORS**2)= 0.1		915D+0	523D+0	NG USE	9100+0	NG USE	338D+0	334D-0	9090-0	6330-0	234D-0	NG USE	399D-0	3577-0
UM OF (ERRORS##2)= 0 ROYDEN S METHOD NOW NO OF (ERRORS##2)= 0 ROYDEN S METHOD NOW UM OF (ERRORS##2)= 0 ROYDEN'S METHOD NOW	ı	5	M	ш	-	ш	-	5	-	-	-	ш	-	u
UM OF (ERRORS#2)= ROYDEN'S METHOD NOW NO OF (ERRORS#2)= ROYDEN'S METHOD NOW UM OF (ERRORS#2)=														
UM OF (ERRORS#2)= ROYDEN'S METHOD NOW NO OF (ERRORS#2)= ROYDEN'S METHOD NOW UM OF (ERRORS#2)=	,	0	0		0		0	0	0	0	0		0	C
UM OF (ERRORS##2) ROYDEN'S METHOD N NOYDEN'S METHOD N NOYDEN'S METHOD N UM OF (ERRORS##2)				3		3						3		
UM OF (ERRORS**2 VM OF (ERRORS**2														
UM OF (ERRORS**2 VM OF (ERRORS**2	-	-	-	Z	-	Z	-	-	-	-	-	Z	-	-
UM OF CERRORSH ROYDEN'S METHO ROYDEN'S METHO ROYDEN'S METHO UM OF CERRORSH UM OF CERRORSH UM OF CERRORSH UM OF CERRORSH ROYDEN'S METHO UM OF CERRORSH ROYDEN'S METHO	4	2	2		2		2	2	2	CV	N		2	0
UM OF CERRORSH ROYDEN'S METHO ROYDEN'S METHO ROYDEN'S METHO UM OF CERRORSH UM OF CERRORSH UM OF CERRORSH UM OF CERRORSH ROYDEN'S METHO UM OF CERRORSH ROYDEN'S METHO														
UM OF CERRORS VOY DEN CERRORS VOY DEN CERRORS VOY OF CERRORS VOY O														
UM OF CERROR														
UM OF CERRO UM OF														
WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW														
MA OF CER NO OF														
MAN OF THE COLUMN OF THE COLUM	4	W	111	S	w	S	w	112	W	LL	H	S	ш	u
20000000000000000000000000000000000000														
				Z		Z						Z		
		14.	U.	ш	LL.	ш	LL.	L	L	L	LL.	W	U.	L
		0	0	0	0	a	0	0	0	0	0	0	0	C
	j			>		>						>		
12242422222242:	à	Σ	Σ	0	Σ.	0	Σ	Σ	Σ	Σ	Σ	0	Σ	Σ
	2	3	\Rightarrow	20	3	20	\supset	5	=	1	2	OC.	0	-
		S	S	m	w	£	S	S	w	S	S	£	5	U

ľ

INTERFACE CORRECTED FLOW ERROR STATP3 0.0 -0.52887D-03 -0.10252D-03 0.0 0.0 0.10183D-04 0.36974D-06 1.0.0 1.0.0 1.0.0 1.0.0	
STATIC STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
MACH NUMBER STATP6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	
REFERRED FLOM STATP5 0.16234D+04 0.11165D+04 0.88063D+03 0.78899D+03 0.78899D+03 0.94651D+01 0.94651D+02 0.15797D+02 0.1371D+03 0.80509D+03 0.11371D+03	
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.1986DD-01 0.19867D-01 0.18867D-01 0.18867D-01	
TOTAL STATP3 0.39051D+03 0.44707D+03 0.44707D+03 0.49029D+03 0.49029D+03 0.11688D+04 0.11688D+04 0.11682D+04 0.17862D+04 0.14762D+04 0.14762D+03 0.14762D+03 0.14762D+03	
PRESSURE STATP2 0.33065D+01 0.51440D+01 0.66967D+01 0.66967D+01 0.1377D+03 0.9660D+02 0.9660D+02 0.9660D+02 0.9660D+02 0.9660D+02 0.9660D+02 0.1414D+02 0.1414D+02 0.1414D+02 0.65627D+01	
TOTAL STATP2 33065D+0 51440D+0 66967D+0 66967D+0 11377D+0 11377D+0 11414D+0 65627D+0 11414D+0	

		DATOUT9	0.36000D+05	0.13284D+01	0.0	9.16989D+02	0.24600D+04	0.37526D+01	0.23268D+01	0.0	0.0	0.0	0.0	0.34520D+01	0.19848D+01
		DATOUTS	0.86196D+00	0.87575D+00	0.0	0.87925D+00	0.99000D+00	0.89944D+00	0.89707D+00	0.0	0.0	-0.40353D-05	0.46964D-03	0.18638D+01	0.18938D+01
		DATOUT7	0.97000D+00	0.10466D+04	0.0	0.11076D+03	0.30041D+00	0.80078D+00	0.84282D+00	0.0	0.0	0.0	0.0	0.97500D+00	0.97500D+00
						0.96763D+00					0.0	0.0	0.0	0.98000D+00	0.98000D+00
PUT DATA		DATOUTS	0.16039D+01	0.17321D+02	0.0	0.35569D+02	0.58081D+02	0.67327D+00	0.582790+00	0.0	0.0	0.0	0.0	0.34259D+03	0.23942D+04
COMPONENT DUTPUT DATA		FOUT4	.11448D+01	.36821D+01	0.	0.13074D+01	.20905D-01	.34726D+01	.25644D+01	0.	0.	.71165D+04	.63029D+04	.38898D+03	.23946D+04
		AT		0.		0	.30000D+0	*	1000001.	0.	0.	.71165D+0	.6302	.34520D+0	.19848D+0
		DATOUT2	٠,	٠,		0.71165D+04			٠,		٦,		٦.	٠,	
		DATOUT1	0.10773D+05		0.71978D+01		0.77903D-01	0.12026D+05	0.61704D+04	0.0	0.0	-0.48528D-01	0.28972D+01	0.36779D+04	0.11468D+05
	MPONEN	NO. TYPE	INLE	COMPRE	SPLITT	4 COMPRESR	DUCT	TURBI	TURBI	DUCT	9 DUCT	1 SHAF	SHAF	3 NOZZL	4 NOZZL

0.19		
0.18638D+01		3489.91 10.3876 0.0
0.97500D+00		(LB/HR) [/AIRFLOW)RAG - LIP DRAG
0.98000D+00	26 PASSES	FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
0.23942D+04	9 ITERATIONS 26	15145.99 0.7981 2.85 0.7981
0.23946D+05		SHAFT HP
0.19848D+01 0.23946D+04 0.23942D+04 0.98000D+00 0.97500D+00 0.18938D+01 0.19	RECOVERY= 0.9700	GROSS THRUST TSFC TOTAL BRAKE SHAFT HP INSTALLED TSFC
0.997730+03	36000.	420.95 4372.62 10773.37 4372.62
0.11468D+05	ALTITUDE=	C 91
14 NOZZLE 0.	MACH= 0.8500	AIRFLOW (1B/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST

TIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.36821D+01 MAXIMUM ALLOWABLE VALUE IS 0.21000D+01

Ö

3

ľ

MAX RPM 3566.8 DESVAL(1,6)=.5,.310,1.5,1.0,1.2,.55,150000.,3.,1.,6*0.,
DESVAL(1,7)=.55,.280,1.5,2.,3.,6,150000.,3.,1.,6*0.,
DESVAL(1,9)=.50,0,-1,
DESVAL(1,13)=1.22,14*0.,
DESVAL(1,14)=.50,0,0-1,
DESVAL(1,14)=.50,14*0.,
DESVAL(1,11)=50000.,3,0,2,7, P TOT P STAT AREA GAM 2053. 1730. 27.9480 1.4005 DIAM U TIP C RPM C RPM 78.10 1157.1 3395.4 3395.4 0.400 1.800 COMPRESSOR 2 MECHANICAL DESIGN S LOADING N STG DIAM U TIP C DEN W/AREA 0.168 4.986 N STG 1.00 M NO VEL T TOT 0.500 545. 519. UTIPMAX STRESS 1215.6 26135.0 ******* - WTEST FAN ZEND ATE2 DUCT

TMAX 519. STAGE 1 WS WN WC CL RHOB RHOD AR
WD WB WS WN WC 11.7 0.168 0.168 4.70
223. 393. 393. 0.82. 11.7 0.168 0.168 0.168 4.70
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR WEIGHT TIN
1.3990 14.7 0.500 27.948 15.62 39.05 73 1215.6 26135. 1090. 519.

= 468.14

FRAME WT

STAGE I 194937.

> N STG WEIGHT LENGTH CENGRA INERTIA 1 1558.59 17.50 9.9 194937.1

DUCT M NO VEL T TOT P TOT P STAT AREA GAM 0.500 576. 580. 2874. 2423. 21.1190 1.3995

TO HP TO HP 2858.1 20858.1 1.400 0.8500 2873.8 580.1 20858.1 HI HO WI WI CMI 123.95 138.70 1000.00 1030.93

=

STAG I 7250. STAGE I 6749. STAGE I 5829. TMAX 652. WEIGHT TIN MEIGHT TIN 111. 652 WEIGHT TIN 91, 723 MEIGHT 11N 74. 794 WEIGHT TIN MAX RPM 8340.6 STAGE 2

WD WB WS WN WC CL RHOB RHOD AR
63. 8. 8. 27. 6. 1.9 0.168 0.168 4.68

PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR W
1.3913 17.2 0.437 2.495 13.59 17.30 164 1258.9 16815. MD WB WS WN WC CL RHOB RHOD AR 53. 5. 22. 5. 1.5 0.168 0.168 4.36 PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR 1.3489 17.2 0.425 1.934 14.51 17.30 204 1258.9 13045. WD WB WS WN WC CL RHOB RHOD AR 43. 4. 4. 19. 4. 1.3 0.168 0.168 4.05 PR DELH MACH AREA R HUB R TIP NB UTIPMAX STR 1.3148 17.2 0.412 1.540 15.12 17.30 242 1258.9 10395. WD WB WS VN WC CL RHOB RHOD AR 263. 14. 14. 36. 8. 2.4 0.168 0.168 5.00 SPR DEL H MACH AREA R HUB R TIP NE UTIPMAX STR STR 1558.589 IN WC CL RHOB RHOD AR 3. 1.1 0.168 0.168 3.73 AREA R HUB R TIP NB UTIPMAX 8340.6 7886.6 GAM 2451. 3.33 *********************** 1.200 34.59 1190.4 W.AREA 4 MECHANICAL DESIGN P TOT 2816. DEN 4 MAX CONDITIONS OCCUR AT MB WS WN 3. 3. 16. DEL H MACH A N STG 12.00 VEL T TOT 521. 580. UTIPMAX STRESS 1258.9 22391.1 ********* ********** COMPRESSOR LOADING 0.647 M NO 0.450 STAGE STAGE STAGE

ORIGINAL PAGE IS OF POOR QUALITY

4936.	STAGE I	STAGE I	3755.	STAGE I	3442.	STAGE I	3261.	STAGE I	5654.	STAGE I	5532.	
864	TMAX 934.	TMAX	**	TMAX	** 1072.	TMAX	**	TMAX	**	TMAX	** 1275.	
61. 864.	WEIGHT TIN 51. 934.	WEIGHT TIN	45. 1004.	WEIGHT TIN	42. 1072.	WEIGHT TIN	39. 1141.	WEIGHT TIN	57. 1208.	WEIGHT TIN	56. 1275.	
17.30 277 1258.9 8470	RHOB RHOD AR 1.168 0.168 3.41 R TIP NB UTIPMAX STR 17.30 308 1258.9 7034	RHOB RHOD AR 0.168 0.168 3.09 R TIP NB UTIPMAX STR	DESIGN LIMIT EXCEEDED ****) S LIMIT ISO.93 REDUCE HUB IIP RATIO INPUT .09 17.30 334 1258.9 5938.	RHOB RHOD AR 1.168 0.168 2.77 R TIP NB UTIPMAX STR	DESIGN LIMIT EXCEEDED **** S LIMIT ISO.93 REDUCE HUB TIP RATIO INPUT .27 17.30 351 1258.9 5084	RHOB RHOD AR 1.168 0.168 2.45 R TIP NB UTIPMAX STR	IGN LIMIT EXCEEDED **** MIT IS0.93 ICE HUB TIP RATIO INPUT 17.30 360 1258.9 4408	RHOB RHOD AR 3.286 0.286 2.14 R TIP NB UTIPMAX STR	TAGE DESIGN LIMIT EXCEEDED **** 6 DES LIMIT IS0.93 IGH REDUCE HUB TIP RATIO INPUT 2 16.52 17.30 359 1258.9 6581	RHOB RHOD AR 0.286 0.286 1.82 R TIP NB UTIPMAX STR	TAGE DESIGN LIMIT EXCEEDED **** 6 DES LIMIT IS0.93 IGH REDUCE HUB TIP RATIO INPUT 7 16.61 17.30 346 1258.9 5830	RHOB RHOD AR
1.2871 17.2 0.400 1.254 15.55	MB WS WN 4C CL 2. 2. 15. 3. 1.0 (DEL H MACH AREA R HUB 9 17.2 0.387 1.041 15.86	AGE 7 WN WC CL WD WB WS WN WC CL 5. 2. 14. 3. 0.9 PR DEL H MACH AREA R HUB	**** WARNING FOLLOWING STAGE DES: STAGE HUBTIP RATIO ISO.93 DES LIP **HUB TIP RATIO IS TOO HIGH REDUC 1.2443 17.2 0.375 0.879 16.09	STAGE 8 WS WN WC CL 8 23. 1. 1. 13. 3. 0.9 0 PR DEL H MACH AREA R HUB 8	**** WARNING FOLLOWING STAGE DES STAGE HUBTIP RATIO ISO.94 DES LIT **HUB TIP RATIO IS TOO HIGH REDU(1.2275 17.2 0.362 0.752 16.27	AGE 9 WN WC CL WD WB WS WN WC CL 2. 1. 1 13. 3. 0.8 C PR DEL H MACH AREA R HUB	**** WARNING FOLLOWING STAGE DESIGN LINSTAGE HUBTIP RATIO IS0.95 DES LIMIT IS1 **HUB TIP RATIO IS TOO HIGH REDUCE HUB 1.2130 17.2 0.350 0.652 16.41 17.30	AGE 10 WN WC CL WD WB WS WN WC CL 8. 2. 13. 3. 0.8 (PR DEL H MACH AREA R HUB	* WARNING FOLLOWING S GE HUBTIP RATIO IS0.9 UB TIP RATIO IS TOO H 004 17.2 0.337 0.57	STAGE 11 WS WN WC CL 137. 2. 2. 13. 3. 0.9 0	**** WARNING FOLLOWING STAGE DES STAGE HUBTIP RATIO ISO.96 DES LIN **HUB TIP RATIO IS TOO HIGH REDUC -1.1892 17.2 0.325 0.507 16.61	AGE 12 WD WB WS WN WC CL

```
STAGE
                      TMAX
                                                                           57. 1342. 1342
                  WEIGHT TIN
                              **** WARNING FOLLOWING STAGE DESIGN LIMIT EXCEEDED *****
STAGE HUBTIP RATIO ISO.96 DES LIMIT ISO.93
**HUB TIP RATIO IS TOO HIGH REDUCE HUB TIP RATIO INPUT
1.1793 17.2 0.312 0.453 16.69 17.30 320 1258.9 5213.
2. 2. 14. 3. 1.0 0.286 0.286 1.50
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
                                                                                                                                                                                                                                                                                                                                                                                                                                   WT07
504.2
                                                                                                                                 M NO VEL T TOT P TOT P STAT AREA GAM
0.312 561. 1408. 50694. 47475. 0.3962 1.3555
                                                                                                                                                                                                                                817.321
                                                                                                                                                                                                                                                                                                                                                                                                            WSPEC
3.715
FRAME
315.4
                                                                                                                                                                                                                                                                                                                                 *************** TOTAL COMP WEIGHT IS
                                                                                                                                                                                                                                                                                                               CENGRA INERTIA
7.9 62942.0
                                                                                                                                                                  PR AD EF P0 T0 HP 18.0000 0.8600 50694.4 1408.1 41704. HI H0 WI CWI 138.70 345.03 142.86 113.52
                                                                                                                                                                                                                                                                                                                                                                                                          MACH
0.044
INC WT
43.6
                                                                                                                                                                                                                                                                                                                                                                                                         LENGTH
19.200
NOZ WT
24.5
                                                                                       WEIGHT LENGTH
817.32 14.43
                                                                                                                                                                                                                                                                                                                                                                                                                 18.636
LIN WT
67.4
                                                                                                                                                                                                                                                *********
                                                                                                                                                                                                                                                                                           Cxxxxxxxxxxxx
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RIN
15.236
CAS WT
53.3
                                                                                      N 57G
12
                                                                                                                         DUCT
                                                                                                                                                                                                                                                                                                                                                                                                                                  235
```

1.2878

GAM

AREA 0.4434

37894.

P TOT 44387.

M NO VEL T TOT 0.500 1250. 2929.

PTOT 0.0 308.2 LB/Sqin TTOT 0.0 2929.3 DEG R CWOUT 0.0 53.7 LB/SEC

HPT

WEIGHT LENGTH STAGE I 99.07 2.06 3269. WEIGHT LENGTH STAGE I 157.00 2.89 6076 STAGE 2
DISK BLADE VANE HWD CASE AR .
29.9 6.1 24.4 87.2 9.3 1.20
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR 2.0592 105.3 0.525 0.754 16.98 17.97 205 1307.7 9765. 5743. 8340.6 8340.6 313594 MAXRPM TORO DUCT M NO VEL T TOT P TOT P STAT AREA GAM 0.550 1202, 2232, 11460, 9451, 1.3955 1.3035 STAGE 1 DISK BLADE VANE HWD CASE AR 17.6 2.5 10.1 62.3 6.5 1.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.8785 105.3 0.500 0.443 16.98 17.57 281 1278.6 256.070 1.000 H/T 0.896 P STAT AREA 0 N STG LENGTH WEIGHT CENGRA INERTIA 2 4.96 256.07 3.8 9345. PTOT 0.0 81.5 LB/SQIN TTOT 0.0 2199.0 DEG R CWOUT 36000. 0.850 113.7 LB/SEC ************** TOTAL TURB WEIGHT IS D3.8731 1.3137 0.9006 11460.3 2229.8 CH IN H OUT AREA FLOW HP O797.42 586.75 5.75 139.23 41501. 1.000 RPM 6 MECHANICAL DESIGN N STG LOADING AREA 2.000 0.310 0.443 RTIP RHUB DEL H 17.6 17.0 210.7 W/AREA 0.168 7 MECHANICAL DESIGN
N STG LOADING AREA
5.000 0.280 1.405
RTIP RHUB DEL H DEN W/AREA 0.286 0.538 DUCT M HO VEL T TOT P TOT 0.550 1193. 2199. 11733. DEN 0.286 5743.4 UTIPMAX STRESS 561.7 3327.4 XXXXXXXXXXXXXX TURBINE H/T 0.896 UT UTIPMAX 1278.6 TURBINE H/T 0.967 UT 1278.6 LPT

STAGE I 6318. STAGE I 10486. WEIGHT LENGTH STAGE I 193.42 3.30 5539 MEIGHT LENGTH STAGE I 226.15 3.36 7361 WEIGHT LENGTH STAGE I 253.00 3.47 8735 LENGTH 3.62 WEIGHT LENGTH 206.61 3.31 WEIGHT 287.82 STR 1 STR 4 STR 3773. STR 4299. 5672. 102.0 3395.4 3566.8 368594 P STAT AREA GAM 4072. 2.7759 1.3171 STAGE 3 DISK BLADE VANE HWD CASE AR 11.4 22.3 89.3 91.9 11.2 2.50 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.1794 20.4 0.570 1.815 16.16 18.56 182 577.7 STAGE 2 DISK BLADE VANE HWD CASE AR 10.0 19.1 76.3 90.4 10.9 2.25 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.1729 20.4 0.560 1.593 16.16 18.28 182 569.1 DISK BLADE VANE HWD CASE AR 13.0 26.7 106.7 94.8 11.8 2.75 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.1865 20.4 0.580 2.079 16.16 18.88 180 587.7 STAGE 5 DISK BLADE VANE HWD CASE AR 15.0 32.2 129.0 99.1 12.5 3.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.1942 20.4 0.590 2.394 16.16 19.26 175 599.5 ********************* TOTAL TURB WEIGHT IS 1468.689 DISK BLADE VANE HWD CASE AR 8.8 16.7 66.9 90.3 10.7 2.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP 1.1669 20.4 0.550 1.405 16.16 18.04 180 561.7 CENGRA INERTIA 12.8 38439. AD EF PO TO 0.9000 5127.2 1846.7 AREA FLOW HP 19.52 144.59 20860. P TOT 5127. 16.2 N STG LENGTH WEIGHT 5 20.48 1468.69 = 301.69 DUCT M NO VEL T TOT 0.600 1192. 1847. PR TR 2.2884 1.1908 H IN H OUT 577.05 475.08 18.0 FRAME WT STAGE 237

€

...

-

MAX CONDITIONS OCCUR AT

```
48.087 TR WT= 294.34
                                                                                                                                                                      37.526 TR WT=
                                           MAX CONDITIONS OCCUR AT
                                                                                            MAX CONDITIONS OCCUR AT
                          * ********
               *********
                                                                        *********
                                                                                   * *********
                                                                                                                                     Z**********
                      NOZ 13
                                                                               DUCT 8
```

Cxxxxxxxxxxxx

DN WT 0.44 210.72 LENG 38.59 SHAFT 12 D0 4.81 0 38443. TOTAL INERTIA OF THIS SPOOL IS

********* * SHAF 11

LENG DN WT 19.20 1.27 38.34 72290. TOTAL INERTIA OF THIS SPOOL IS

******* ********* * ACCS WT

0.000 ACCS WT=

[1

WEIGHT INPUT DATA IN ENGL UNITS WEIGHT OUTPUT DATA IN ENGL UNITS

A POLICE	201000
FSTIMATED MAXIMIM RADIUS=	C3 TIIN C5 110
r	
DOWNSTREAM RADIUS NSTAGE RI RO 0.00.00.00.00.00.00.00.00.00.00.00.00.0	
105 0.38.00 0.00 0.00 0.00 0.00 0.00 0.00	0.0
RI RO RI RO 9. 38. 0. 0. 9. 23. 23. 38. 7. 17. 0. 0. 6. 20. 0. 0. 6. 20. 0. 0. 6. 20. 0. 0. 6. 20. 0. 0. 7. 19. 0. 0. 6. 20. 0. 0. 7. 19. 0. 0. 8. 20. 0. 0. 9. 38. 0. 0. 18. 0. 0. 18. 0. 0.	1
457 KB A 30 C C C C C C C C C C C C C C C C C C	3
DDMI RI 119. 119. 116. 123. 123. 16. 00.	
105 R0 00. 00. 00. 109.	
EAM RADIUS 0 RI RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
8097038888888888888888888888888888888888	.41
1 11110111 1	ITY=
ACCU 17. 17. 17. 17. 17. 17. 17. 17. 12. 12. 12. 12.	GRAV
COMP LEN 17. 17. 19. 20. 20. 00. 648. 38.	CENTER OF
EST 1559. 1559. 1669. 1469. 1699. 1469. 14	ED C
0	ESTIMA

H

NNNNNNNNNNNNNNNNNNNNNNN CCCCCCC

241

Principle.

11

ı

STATION PROPERTY OUTPUT DATA

CTED	DATOUT9 0.3600000000000000000000000000000000000	
PLOW ERROR 51ATP8 0.0 52ATP8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT8 0.86196D+00 0.87575D+00 0.87925D+00 0.99000D+00 0.89944D+00 0.89707D+00 0.89707D+00 0.89707D+00 0.18938D+01	3489.91 10.3876 0.0 0.0
PRESSURE STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT7 0.970000+00 0.10466D+04 0.0 0.11076D+03 0.30041D+00 0.80078D+00 0.84282D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	OW (LB/HR) UST/AIRFLOW L DRAG E + LIP DRAG
MACH NUMBER STATP6 0.00000000000000000000000000000000000	DATOUT6 0.85000D+00 0.11315D+01 0.96763D+00 0.36899D+04 0.49119D+04 0.58280D+04 0.0	I PASSES FUEL FLOW NET THRUST BOATTAIL D SPILLAGE 4
REFF.RED FLOW STATP5 0.16234D+04 0.11165D+04 0.88043D+03 0.78899D+03 0.78899D+03 0.78899D+03 0.78899D+03 0.78899D+03 0.15797D+02 0.15797D+02 0.11371D+03 0.11371D+03 0.11371D+03	0UTPUT DATA DATOUT5 01 0.16039D+01 01 0.17321D+02 01 0.35569D+02 01 0.58081D+02 01 0.58279D+00 01 0.58279D+00 01 0.58279D+00 01 0.00 04 0.0 04 0.0 05 0.0 05 0.0 06 0.0 06 0.0 07 0.0 07 0.0 07 0.0 07 0.0 08 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0 09 0.0	15145.99 15145.99 0.7981 0.7981 ALLOWABLE VAL
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.19860D-01 0.19867D-01 0.18867D-01 0.18867D-01	DATOUT4 0.11448D+01 0.36821D+01 0.36821D+01 0.20905D-01 0.34726D+01 0.34726D+01 0.25644D+01 0.0 0.1165D+04 0.38898D+03 0.38898D+03	T SHAFT HP SFC +01 MAXIMUM
TOTAL TEMPERATURE 5TATP3 0.39051D+03 0.44707D+03 0.49029D+03 0.49029D+03 0.11688D+04 0.11688D+04 0.11688D+04 0.11688D+04 0.11688D+04 0.14762D+04 0.14762D+03 0.14762D+03	DATOUT3 0.48783D+03 0.0 0.200.000000000000000000000000000	RECOVERY= 0.97 GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
TOTAL STATP2 0.33065D+01 0.51440D+01 0.68967D+01 0.68967D+01 0.11377D+03 0.98660D+02 0.9660D+02 0.2655BD+02 0.2652D+02 0.11414D+02 0.11414D+02 0.11414D+02	DATOUT2 0.82343D+03 0.63029D+04 0.20000D-01 0.71165D+04 0.71165D+04 0.71165D+04 0.20000D-01 0.71165D+04 0.20000D-01 0.71165D+04 0.22604D+04 0.22604D+04	= 36000. 420.95 4372.62 10773.37 4372.62 VARIABLE VAL
WEIGHT FLOW 5 TATP1 0.42095D+03 0.42117D+03 0.42117D+03 0.42117D+03 0.48813D+02 0.5691D+01 0.49781D+02 0.5780D+02 0.5780D+02 0.52350D+03 0.52350D+03 0.52350D+03	1 1 1	SEC) SEC) DRAG RUST VIOLATED ***
FLOW STATION 1 1 2 2 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ONENT INLET INLET INLET INTESR UNCI B UCT B UCT B UCT B OCZLE	MACH= 0.85 AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

IHMAP="M9SUB', NOZMAP=0, CFGMAP=0, DCDMAP=0,

DERP=0, ACI=37., NWC=1, NWD=1, INLTWT=1, INOZ(1)=0,0,13,14, KVALUE=.00025,

ENGNO=1, TABRF=0., ICFCN=2,

REFMFR=0., OPTB=3., A10A9R=2.1, SCALE=1.,

REIMT=1., UNITI=1., UNITO=1., M0DE=0, STOP=0, &D IMT=0,INST=1,IFLGRF=0,ALTP=5000,MACH=.4,LABEL=F, &END DUM OF (ERRORS**2)= 0.27817D+01
SUM OF (ERRORS**2)= 0.15598D+01
SUM OF (ERRORS**2)= 0.15598D+01
SUM OF (ERRORS**2)= 0.77817D+01
SUM OF (ERRORS**2)= 0.21625D+00
SUM OF (ERRORS**2)= 0.21625D+00
BROYDEN'S METHOD NOW BEING USED
SUM OF (ERRORS**2)= 0.1829D-01
SUM OF (ERRORS**2)= 0.16241D+00
BROYDEN'S METHOD NOW BEING USED
SUM OF (ERRORS**2)= 0.21985D-01
SUM OF (ERRORS**2)= 0.21985D-01
SUM OF (ERRORS**2)= 0.21985D-01
SUM OF (ERRORS**2)= 0.21985D-02
SUM OF (ERRORS**2)= 0.21985D-02
SUM OF (ERRORS**2)= 0.21985D-03
SUM OF (ERRORS**2)= 0.21596D-03
SUM OF (ERRORS**2)= 0.21596D-03
SUM OF (ERRORS**2)= 0.21596D-03
SUM OF (ERRORS**2)= 0.21596D-04
SUM OF (ERRORS**2)= 0.21596D-04
SUM OF (ERRORS**2)= 0.21596D-04
SUM OF (ERRORS**2)= 0.2295D-04
SUM OF (ERRORS**2)= 0.20545D-05
SUM OF (ERRORS**2)= 0.2455D-05
- INPUT NEP

243

(ERRORS**2)= 0.80212D-06

OF INSTAL

E

- INSTLL

OLD INSTALLATION MAPS

MNFS)		LOCAL MACH NUMBER (MND)									
UMBER (AND									(MND)
STREAM MACH NUMBER (MNFS)		10/AC)			A0/AC PT2/PT0	AO/AC PT2/PT0	AUZAC PTZZPTO				LOCAL MACH NUMBER (MND)
FREE		FLOW RATIO (AO/AC)			1.200	1.000	0.900	AOZAC PTZZPTO	AOZAC PTZZPT0	AO'AC PT2/PT0	LOCAL
NS.		MASS FLO	AO/AC PT2/PT0		1.100	0.960	0.880	0.850	0.850	0.850	۸۶
		\$ ^	2.200	AO/AC PT2/PT0	0.950	0.900	0.800	0.800	0.800	0.800	T0 0PT)
BER (MNO)	MNO	(PT2/PT0)	2.100	1.600	0.890	0.800	0.700	0.700	0.700	0.700	ERY (PT2/P
MACH NUMBER (MND)	1.000	RECOVERY (PT2/	2.000	1.400	0.800	0.700	0.600	0.570	0.570	0.570	NLET RECOVERY
LOCAL	0.200	PRESSURE RECO	1.800	1.200	1.000	1.000	0.570	0.500	0.500	0.500	OPTIMUM INLET
	0.0	INLET PR	1.500	1.000	1.000	1.000	1.000	1.000	0.400	0.400	
***************************************		**************************************	MN0≈0.200	MNO=0.300	00+.0=0.400 244	MND=0.500	MN0=0.600	MNO=0.700	MN0=0.800	MK9=0.900	**************************************

							(MND)					
MNO PT2/PT0							LOCAL MACH NUMBER					
0.900							LOCAL M					
0.700	R (MND)	MNO AO/AC	CMN0)		CMN0)		AND					
0.600	MACH NUMBER	0.900	LOGA. MACH NUMBER (MND)		LOCAL MACH NUMBER	MNO AD/AC	FLOW KATIG (ADI/AC)			A01/AC CDSPL	A01/AC CDSPL	AOIZAC
0.500	LOCAL	0.800	LOCA		LOCAL	006.0	MASS FLOW RA			2.500	2.500	2.500
0.400	۸۶	0.700	۸		SA O	0.700	INLET M		A01/AC CDSPL	0.785	0.785	0.785
0.300	AOZAC GPT)	0.600	(AD/AC)		RATIO (AO/AC)	0.600	8 /		2.500	0.770	0.750	0.750
0.200	FLOW RATIO CAO	0.500	FLOW RATIO	MNO AO/AC	MASS FLOW	1.050	(CDSPL)		0.655	0.700	0.700	0.700
0.100		0.400	MASS	1.000	LIMIT	1.200	COEFFICIENT (C	A01/AC CDSPL	0.600	0.600	0.600	0.600
0.025	OPTIMUM MASS	0.300	BUZZ LIMIT	0.500	DISTORTION	0.300	DRAG COEFF	2.500	0.500	0.500	0.500	0.500
0.0		2.070		0.0		0.200	SPILLAGE	0.0	0.400	0.400	0.400	0.400
	**************************************		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		**************************************	245	***************************************	MNO=0.0	MN0=0.700	MN0=0.800	MN0=0.850	MN0=0.900

Ü

				LOCAL MACH NUMBER (MNO)					LOCAL MACH NUMBER (MNO)				LOCAL MACH NUMBER (MND)
(MNO)		(MNO)		AND					AND				AND
LOCAL MACH NUMBER (MNO)		LOCAL MACH NUMBER		BLEED MASS FLOW RATIO (AOBLD/AC)					S FLOW RATIO (AOBYP/AC)				MASS FLOW RATIO (A0/AC)
8 >		C3 VS		BLEED MA					BYPASS MASS				MASS
CDSPL)		EF AUI/AC3		۸۶					۸۶				۸۶
SPILLAGE DRAG COEFF (REF	MNO REF CDSPL	ET MASS FLOW RATIO (REF	MHO REF AOL/AC	DRAG COEFFICIENT (CD BLD)	ONE	AOBLD/AC CDBLD	AUBLD/AC CDBLD		COEFFICIENT (CDBYP)	MNO	AOBYP/AC CDBYP	AOBYP/AC CDBYP	BLEED MASS FLOW RATIO (AOBLD/AC)
REF SPIL	1.000	REF INLET	1.000		9.000	4.000	4.000		BYPASS DRAG	9.000	4.000	4.000	ED MASS FL
	0.0		0.0	BLEED	0.0	0.0	0.0		B	0.0	0.0	0.0	BLE
* * * * * * * * * * * * * * * * * * *		**************************************		***********		MN0=0.0	MN0=9.000	246	**************************************		MN0=0.0	MN0=9.000	**************************************

Ü

				LOCAL MACH NUMBER (MNO)				
				NUMB				
				MACH				
				DCAL				
				_				
		LOCAL MACH NUMBER (MNO)		AND				
		MBER		AC)				
		CH NC		ENGINE MASS FLOW RATIO (ADE/AC)				
		L MA		110				
		LOCA		DW RA				
				S FL				
		8>		E MAS				
				NGIN				
		D/AC)		ш				
		(AOBLD/AC)		V S				
		W RA		AC)				
AC	AC	S FLC	AC	0BYP/	V C	O A		
A07AC A0BLD/AC	AOZAC AOBLD/AC	MAS	MNO AOBLD/AC	0 (AI	AOE/AC AOBYP/AC	AUE/AC AOBYP/AC		
AO	AOA	OPTIMUM BLEED MASS FLOW RATIO	A A	MASS FLOW RATIO (ADBYP/AC)	AAO	AO		
000	00	MOM	000	FLOW	00	0.0		00
1.000	1.000	1140	1.000	MASS	1.300	1.000		3.0
				BYPASS				UMBE
0.0	0.0		0.0	BY	0.0	0.0		ACH N
	6	* * * * * * * * * * * * * * * * * * *		* * * * * * *				INLET START MACH NUMBER 3.000
MN0=0.0	MN0=1.000	**************************************		***************************************	0.0	MN0=1.000		T ST
MNO	MNO	* * *		* * *	MN0=0.0	MNO	247	INLE

MINIMUM MACH NUMBER FOR INLET DRAG CALCULATIONS 0.200

DATE RUN 21 NOV 79			DYNAMIC PRESSURE	197.14 LBS/FT**2	REFERENCE HOZZLE EXIT AREA (A9R)	19.26 FT**2	INSTALLED ENGINE PERFORMANCE DATA	40.436 WFT (LBF) 11411.543 40.436 WFT (LBM/HR/LBF) 6966.335 0.0 SFC (LBF) 0.610 0.0 FN COR (LBF) 13720.082 0.0 WFT COR (LBM/HR) 8523.402 0.0 SFC COR (LBM/HR/LBF) 0.621				INE WEIGHT BREAKDOWN	ENGINE (LBM) = 5466. SORIES (LBM) = 0. (LBM) = 5466.		
AP CFG MAP			TOTAL TEMPERATURE	516.89 DEG R	TBODY REF A (A10R) EXI	*2	AFTBODY DRAG	(LBF)	AZE REF (LBF) AZE REF (LBF) AZE PS (IRF)	2		ENG	BARE ACCES TOTAL		
P DEL A/B MA	MACH NUMBER	0.40	AMBIENT TEMPERATURE	00.86 DEG R	REFERENCE AFT	40 44 FT*		37.000 A10/A9 0.0 A10 (FT** 0.0 P95/FT**2 0.0 CD A/B 0.0 DRAG A/B 0.0 CD A/B SP 0.0 CD A/B SP	30			CTION SYSTEM BREAKDOWN	(LBM) = 273. BM) = 0.	DRAG BUILDUP	(LBF) = 91.4 = 7.8 = 99.2
T MAP NOZZLE MA UB	ALTITUDE	5000.0 FT	TOTAL PRESSURE	.29 LBS/FT**2 5	REFERENCE 0/49 (A10/49 R)	2.10	INLET DRAG	AC (F1**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD SPL (TAB 3A) CD BYP CD INL TOT CD INL TOT CD INL REF DRAG INL REF CD INL REF	RAG INL			AIR INDUC WEIGHT	INLET (LBM) DUCT (LBM) BYPASS DOORS I/O DOORS (LE	MACELLE I	SKIH FRICTION FORM (LBF) TOTAL (LBF)
INLET			AMBIENT PRESSURE P	1760.15 LBS/FT**2 1965.	INLET CAPTURE AREA (AC) A10	37.00 FT**2	PERFORMANCE DATA ATING INLET RECOVERY INLET MASS ND NOZZLE CFG FLOW RATIOS	/HR) 6966.336 ADSPLAC 0.180 /HR/LBF) 6966.336 ADIAC 0.820 LBM/SEC) 943.945 ADAC LBM/SEC) 888.912 ADBV7AC 0.0 0.999 ADE. AC 0.820 0.999 ADE. AC 0.820		CE INLET MASS FLOW RATIO = 0.0	SS VS SPILLAGE PTION NUMBER 3. ULED BYPASS WITH S INLET AIRFLOW	NACELLE WEIGHT BREAKDOWN	ENGINE MOUNTS (LBM) = 85. FIREWALL (LBM) = 130. COWL (LBM) = 618. TOTAL (LBM) = 834.		
							ENGINE	WET (LBM) SFC (LBM) WE COR C WE ABS (CFC (PRI	240	REFEREN	SCHED EXCES	ı	11	i	,

STATION PROPERTY OUTPUT DATA

CTED		DATOUT9 0.50000D+09 0.12630D+01 0.01 0.24600D+01 0.22980D+01 0.0 0.0 0.0 0.0 0.0 0.13529D+01	
PLOW ERROR ESTATE STATE OF 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		DATOUT8 0.99657D+00 0.83760D+00 0.90103D+00 0.9927D+00 0.9005D+00 0.00 0.9005D+00 0.00 0.18641D+01 0.18936D+01	6
PRESSURE STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		DATOUT7 0.99870D+00 0.10466D+04 0.31219D+00 0.80078D+00 0.84282D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
MACH NUMBER STATP6 STATP6 0.4000D+00 03 0.0 01 0.0 01 0.0 02 0.0 02 0.0 02 0.0 03 0.67047D+00 03 0.10000D+01 03 0.1077D+01		DATOUT6 DATO 0.4000D+00 0.9987 0.90413D+00 0.1046 0.00000000000000000000000000000000000	
REFERREI 5TATP5 0.10498D+ 0.95617D+ 0.97700D+ 0.9739D+ 0.9739D+ 0.15810D+ 0.15810D+ 0.1373D+ 0.11373D+ 0.11373D+ 0.11373D+ 0.11373D+ 0.11373D+ 0.11373D+ 0.11373D+	TPUT DATA	DATOUT5 1 0.11168D+01 1 0.39939D+02 1 0.58279D+00 1 0.67327D+00 1 0.67327D+00 0.0 0.0 4 0.0 4 0.0 5 0.0 4 0.0 7 0.0 8 0.34259D+03 4 0.23942D+04 1 TERATIONS 1 2.3535.90 0.6105	
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1	COMPONENT OUTPUT	DATOUT4 0.10320D+0 0.19899D+0 0.13256D+0 0.19860D-0 0.35115D+0 0.25305D+0 0.0 0.70742D+0 0.54155D+0 0.54155D+0 0.54155D+0 0.23942D+0 0.23942D+0	
TEMPERATURE STATP3 0.50084D+03 0.51689D+03 0.55938D+03 0.55938D+03 0.12390D+04 0.1735D+04 0.1735D+04 0.1785D+04 0.1785D+04 0.1785D+04 0.1785D+04 0.14787D+04 0.14787D+04		DATOUTS 0.25999D+0 0.2000D-0 0.3000D+0 0.1000D+0 0.1000D	
TOTAL STATP2 0.12228D+02 0.13639U+02 0.16882D+02 0.16882D+02 0.16882D+02 0.26810D+03 0.29637D+03 0.29637D+03 0.29637D+03 0.2964D+02 0.264010+02 0.264010+02		DATOU12 0.43884D+03 0.54155D+04 0.20000D-01 0.70742D+04 0.54155D+04 0.54155D+04 0.70742D+	
WEIGHT FLOW STATP1 0.88891D+03 0.88898D+03 0.88898D+03 0.10807D+03 0.10267D+03 0.10267D+03 0.1026D+03 0.1046D+03 0.1066D+03 0.1066D+03 0.1001D+03 0.11001D+03		DATOUT1 0.12124D+05 -0.12820D+05 0.72259D+01 0.25495D+05 0.12833D+05 0.000000000000000000000000000000000	
FLOW STATION 12 10 113 14	NENCOMO	MYET MYET MYET PRESR PRESR PRESR CCT B CCT B C CT B CCT B CCT B C CT B C CT B CT B	

DATE RUN 21 NOV 79			DYNAMIC PRESSURE	300.61 LBS/FT**2	ERENCE NOZZLE IT AREA (A9R)	.9.26 FT**2	INSTALLED ENGINE PERFORMANCE DATA	(LBM/HR) 7780.5 (LBM/HR/LBF) 5724.5 (LBM/HR/LBF) 0.7	SFC COR (LBM/HR/LBF) 0.					ENGINE WEIGHT BREAKDOWN	ENGINE (LBM) = 5466. SSORIES (LBM) = 0. L (LBM) = 5466.		
MAP CFG MAP			TOTAL TEMPERATURE	498.69 DEG R	FTBODY REFEI	1**2	AFTBODY DRAG	A10/A9 A10 (FT**2) A9 (FT**2) P9S/PAMB CD A/B	G A/B (LBF) A/B SPR (LBF) G A/B SPR (LBF) A/B TOT (LBF) G A/B TOT (LBF)	(LB	LBT			ENG	3. BARE 0. TOTA 3.		80 P.P.
MAP DEL A/B I	MACH NUMBER	09.0	AMBIENT TEMPERATURE	465.20 DEG R	REFERENCE A OR NACELLE AR	40.44 FT	91	00 0	0000	.001	UKA			R INDUCTION SYSTEM WEIGHT BREAKDOWN	25 (LBM) = 27 (LBM) = 27	E DRAG BUILDUP	(LBF) = 135 = 11 = 147
MAP NOZZLE B	ALTITUDE	15000.0 FT	TOTAL PRESSURE	.55 LBS/FT**2	REFERENCE 0/A9 (A10/A9 R)	2.10	INLET DRA	CD SPL (TAB 3) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD CD BLP	D INC TOT (LB RAG INC TOT (LB D INC REF RAG INC REF (LB D INC PS	RAG INL				AIR INI WEIGH	INLET (LBM) DUCT (LBM) BYPASS DOORS T/O DOORS (LB	MACELLE	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET M9SU			ENT	S/FT**2 1521	ET CAPTURE REA (AC) A1	7.00 FT**2	INLET MASS FLOW RATIOS		UE/AC U.		RATIO = 0.0			IGHT BREAKDOWN	(LBM) = 85. = 130. = 618. = 834.		
			AMBIE	1192.90 LB	INL	37	ORMANCE DATA 1 INLET RECOVERY 122LE CFG	7780.562 5724.551 0.736 EC) 1009.099 EC) 745.088	0.979		LET MASS FLOW	SPILLAGE NUMBER	BYPASS WITH ET AIRFLOW LED	NACELLE WEIG	ENGINE MOUNTS (FIREWALL (LBM) COWL (LBM) TOTAL (LBM)		
							ENGINE PERF INCORPORATING AND NO	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LE WZ COR (LBM/SE WZ ABS (LBM/SE	CFG (PRI) CGF (SEC)	252	REFERENCE IN	BYPASS VS OPTION	SCHEDULED EXCESS INL SPIL				

STATION PROPERTY OUTPUT DATA

CTED	DATOUT9 0.15000D+05 0.12506D+01 0.00 14898D+02 0.24600D+04 0.37892D+01 0.23020D+01 0.00 0.00 0.23428D+01 0.23428D+01	
INTERFACE CORRECTED FLOW ERROR 0.0 0.32835D-03 0.0 0.96714D-05 0.0 0.0 0.0 0.44951D-05 -0.20132D-06 0.0 0.0 1 0.20969D-03 2.0.70226D-06 1 0.0	DATOUT8 0.96163D+00 0.79787D+00 0.89714D+00 0.89924D+00 0.89926D+00 0.89985D+00 0.00 0.00 0.18936D+01	5724.55 10.4425 0.0
STATIC IN PRESSURE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT7 0.99891D+00 0.10466D+04 0.0 0.11076D+03 0.30907D+00 0.84282D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	ASSES FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
MACH NUMBER STATP6 0.600000+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	100 100 100 155 155 133 133	4
REFERRED FLOW STATP5 0.12498D+04 0.10156D+03 0.10128D+03 0.7662D+03 0.97070D+01 0.977070D+01 0.1581D+02 0.15823D+02 0.15323D+02 0.11372D+03 0.11372D+03 0.11372D+03	DATOUT5 0.12757D+01 0.17083D+02 0.39554D+02 0.58081D+02 0.67327D+00 0.67327D+00 0.00 0.00 0.00 0.00 0.394259D+03	ITERATIONS 22472.35 0.7358 3.90 0.7358
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.19125D-01 0.18388D-01 0.18168D-01 0.18168D-01	DATOUT4 DATOUT4 0.10721D+01 0.23103D+01 0.13219D+01 0.20131D-01 0.35055D+01 0.25352D+01 0.25352D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0	9 3 SHAFT HP FC
TOTAL STATP3 0.4652D+03 0.49877D+03 0.53996D+03 0.53996D+03 0.53996D+03 0.53996D+03 0.53996D+03 0.53996D+03 0.53996D+03 0.1541D+04 0.17849D+04 0.17849D+04 0.1779D+04	DATOUT3 0.37585D+03 0.0 0.20000D-01 0.0 0.36000D+00 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01 0.0 0.10000D+01	RECOVERY= 0.998 GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
PRESSURE STATP2 0.82972D+01 0.10573D+02 0.1252D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+02 0.12958D+03 0.12958D+03 0.12958D+03 0.1299D+02	DATOUT2 0.55491D+03 0.55494D+04 0.70662D+04 0.5000D-01 0.70662D+04 0.55494D+04 0.55494D+04 0.2000D-01 0.2000D-01 0.2000D-01	745.09 7780.56 14691.79 7780.56
MEIGHT FLOW STATPI 0.74509D+03 0.74484D+03 0.87524D+03 0.87524D+03 0.83147D+02 0.83147D+02 0.84737D+02 0.84737D+02 0.89113D+02 0.89113D+02 0.89113D+02	DATOUT1 0.14692D+05 0.10407D+05 0.75434D-01 0.20620D+05 0.10411D+05 0.0 0.0 0.3958D+01 0.3958D+01 0.3958D+01	00 ALTITUDE SEC) DRAG RUST
FLOW 1 1 2 3 4 4 6 6 7 7 7 10 11 11 11	COMPONENT NO. TYPE 1 COMPRESR 3 SPLITER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 DUCT B 9 DUCT B 11 SHAFT 12 SHAFT 13 NOZZLE 14 NOZZLE	MACH= 0.60 AIRFLOW (LBZ) AET THRUST TOTAL INLET INSTALLED TH

"LIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.23103D+01 MAXIMUM ALLOWABLE VALUE IS 0.21000D+01

DATE RUN 21 NOV 79			ш	FT**2			
			DYNAMIC PRESSURE	239.37 LBS/FT**2	REFERENCE NOZZLE EXIT AREA (A9R)	19.26 FT**2	
MAP CFG MAP			TOTAL TEMPERATURE	446.71 DEG R			
AP DEL AZB MAP	MACH NUMBER	0.85	AMBIENT TEMPERATURE	390.31 DEG R	REFERENCE AFTBODY OR NACELLE AREA (A10R)	40.44 FT**2	
INLET MAP NOZZLE MAP M9SUB	ALTITUDE	36000.0 FT	TOTAL	759.08 LBS/FT**2	REFERENCE Aloza9 (Aloza9 R)	2.10	
NI M			AMBIENT PRESSURE	473.29 LBS/FT**2 75	INLET CAPTURE AREA (AC)	37.00 FT**2	ENGINE PERFORMANCE DATA

8

\$

0.0 FN (LBF) 4255.059 0.436 WFT (LBM/HR) 3481.240 0.0 SFC (LBM/HR/LBF) 0.818	WFT COR (LBM/HR)).0 0.0 0.0	000	0.1
		DRAG A/B SPR (LBF)	CD A/B REF CD A/B REF CD A/B PS	DRAG A/B PS (LBF)
AC (FT**2) 37.000 CD SPL (TAB 3A) 0.007 CD SPL (TAB 3A) 0.0 CD SPL (TAB 3A) 0.0	CD BYP CD INL TOT 0.007 DRAG INL TOT (LBF) 58.334	REF (LBF) 0.0	PS (LBF) 58.334	
A01/AC 0.398 A01/AC 0.602 A08LD/AC 0.0	AUBYPYAC 0.0 AOE/AC 0.603			TIO = 0.0
(LBF) 4313.395 T (LBM/HR) 3481.240 C (LBM/HR/LBF) 0.807 COR (LBM/SEC) 1080.494	419.349	(PRI) (SEC)	255	REFERENCE INLET MASS FLOW RATIO = 0.0
	(LBM/HR) 4313.395 A0SPL/AC 0.398 AC (FT**2) 37.000 A10/49 0.0 FN (LBF) (LBM/HR) 3481.240 A01/AC 0.602 CD SPL (TAB 3) 0.007 A10 (FT**2) 40.436 WFT (LBM/HR) (LBM/HR/LBF) 0.807 A0BLD/AC 0.0 CD SPL (TAB 3A) 0.0 A9 (FT**2) 0.0 SFC (LBM/HR/LBF) 0.0 SFC (LBM/HR/LBF) 0.0 SFC (LBM/HR/LBF)	(LBM/HR) 4313.395 AOSPL/AC 0.398 AC (FT**2) 37.000 A10/k9 0.0 FN (LBF) (LBM/HR) 3481.240 AOI/AC 0.602 CD SPL (TAB 3) 0.007 A10 (FT**2) 40.436 WFT (LBM/HR) (LBM/HR) 0.0 CD SPL (TAB 3A) 0.0 A9 (FT**2) 0.0 SFC (LBM/HR/LBF) (LBM/HR/LBF) 0.0 SFC (LBM/HR/LBF) 0.0 PSS/PAMB 0.0 FN COR (LBF) (LBM/SEC) 1080.494 AOAAC 0.0 CD BLD 0.0 CD A/B 0.0 FN COR (LBF) (LBM/SEC) 419.349 AOBYP/AC 0.0 CD INL TOT 0.007 DRAG A/B (LBF) 0.0 WFT COR (LBF) 1.0 CD A/B CD CD	(LBM/HR) 4313.395 A0SPL/AC 0.398 AC (FT**2) 37.000 A10/£9 0.00 FN (LBF) (LBM/HR) 3481.240 A01/AC 0.602 CD SPL (TAB 3) 0.007 A10 (FT**2) 40.436 WFT (LBM/HR) (LBM/HR/LBF) 0.00 A9 (FT**2) 0.00 SFC (LBM/HR/LBF) 0.00 CD A/MB 0.00 SFC (LBM/HR/LBF) 0.00 CD A/MB 0.00 FN COR (LBF) 0.00 CD A/MB 0.00 FN COR (LBF) 0.00 CD A/MB SPR 0.00 WFT COR (LBM/HR/LBF) 0.00 CD A/MB SPR 0.00 SFC COR (LBM/HR/LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/MB SPR (LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/MB SPR (LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/MB SPR (LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/MB SPR (LBF) 0.00 CD A/M	(LBM/HR) 4313.395 A0SPL/AC 0.398 AC (FT**2) 37.000 A10/k9 0.00 FN (LBF) (LBM/HR) 3481.240 A01/AC 0.602 CD SPL (TAB 3) 0.007 A10 (FT**2) 40.436 WFT (LBM/HR) (LBM/HR/LBF) 0.00 CD SPL (TAB 3A) 0.00 A9 (FT**2) 0.00 SFC (LBM/HR/LBF) 0.00 PSS/PAMB 0.00 PSS/PAMB 0.00 PSS/PAMB 0.00 FN COR (LBM/HR/LBF) 0.00 FN COR (LBM/HR/LBF) 0.00 FN COR (LBM/HR/LBF) 0.00 FN COR (LBM/HR/LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/B SPR (LBF) 0.00 SFC COR (LBM/HR/LBF) 0.00 CD A/B TOT (LBF) 0.00 CD A/B TOT (LBF) 0.00 CD A/B FFF CO A/B FFF C

GINE WEIGHT BREAKDOWN

5466. E ENGINE (LBM) = ESSORIES (LBM) = AL (LBM) =

NACELLE DRAG BUILDUP

110.7 9.4 120.1 SKIN FRICTION (LBF) = FORM (LBF) = 101AL (LBF) =

DUTPUT DATA STATION PROPERTY

02

WITH NVOPT

II

INTERFACE CORRECTED FLOW ERROR 57ATP8 0.0 0.13464D-03 -0.10246D-03 0.0 0.0 0.0 0.0 0.19661D-04 -0.19645D-05 101 -0.19943D-05 101 0.36003D-05 101 0.36003D-05 REFERRED FLOW STATP5 0.16172D+04 0.10802D+04 0.88115D+03 0.11017D+03 0.94799D+01 0.0 0.94799D+01 0.0 0.15794D+02 0.53480D+02 0.15794D+03 0.11371D+03 0.80506D+03 DATA DUTPUT COMPONENT 00000000000000 TOTAL TEMPERATURE STATP3 0.39051D+03 0.49016D+03 0.49016D+03 0.49016D+03 0.11723D+04 0.11723D+04 0.11723D+04 0.17831D+04 0.17831D+04 0.17831D+04 0.17831D+04 0.14754D+04 TOTAL PRESSURE 3147P2 0.33065D+01 0.672980D+01 0.66620D+01 0.66620D+01 0.11376D+03 0.92676D+02 0.92676D+02 0.926344D+02 0.1410D+02 0.65288D+01 MEIGHT FLOW STATP1 41935D+03 41929D+03 41929D+03 51383D+02 51383D+02 36792D+03 51706D+02 51706D+02 52349D+02 36795D+03 0000000000000 FLOW

DATOUT7 0.99879D+0C 0.86196D+0C 0.10466D+0C 0.76805D+0C 0.1076D+0S 0.87653D+0C 0.1076D+0S 0.8078D+0O 0.89959D+0C 0.25089D+0I 0.00	
DATOUT7 1.99879D+00 1.10466D+04 1.11076D+03 1.30094D+00 1.80078D+00 1.84282D+00 1.94282D+00 1.94282D+00 1.94282D+00 1.94282D+00 1.94282D+00	
DATOUT6 0.850000+00 0.103450+01 0.971970+00 0.978120+04 0.933280+04 0.00 0.00 0.00 0.980000+00 0.980000+00	
DATOUT5 0.16039D+01 0.17794D+02 0.0 0.3556DD+02 0.1 0.58081D+02 0.1 0.58279D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0	
DATOUT4 0.11448D+01 0.24928D+01 0.0 0.13098D+01 0.25433D+01 0.0 0.0 0.7475D+04 0.7475D+04 0.78892D+03	
DATOUT3 0.48783D+03 0.02000D-01 0.2000D+01 0.3000D+01 0.1000f2+01 0.00 0.7455D+04 0.57625D+04 0.57625D+04 0.57625D+04	
DATOUT2 0.82343D+03 0.57625D+04 0.20000D-01 0.71475D+04 0.5000D-01 0.71475D+04 0.5762D+04 0.5762D+04 0.71475D+04 0.5762D+04 0.71475D+04 0.71475D+04 0.71475D+04 0.71475D+04	
DATOUT1 0.10732D+05 0.61215D+06 0.7761D+01 0.12092D+05 0.77701D-01 0.12092D+05 0.61248D+06 0.0 0.0 0.32748D+01 0.32748D+01 0.32748D+01 0.35765D+01	
COMPONENT NO. TYPE I INLET COMPRESR COMPRESR COMPRESR COMPRESR TURBINE TURBINE NOUCT B SHAFT SHAFT SHAFT NOZZLE	

	3481,24 10.2859 0.0	
2 PASSES	FUEL FLOM (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG	E IS 0.21000D+01
1 ITERATIONS 2	15045.84 0.8071 3.21 0.8071	.24928D+01 MAXIMUM ALLOWABLE VALUE IS 0.21000D+01
RECOVERY= 0.9988	GROSS THRUST TSFC 44 TOTAL BRAKE SHAFT HP 40 INSTALLED TSFC	VALUE IS 0.24928D+01 MAX1
ALTITUDE= 36000.	419.35 4313.40 10732.44 4313.40	D *** VARIABLE
MACH= 0.8500 AL	AIRFLOW (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST	'LIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.

&D ENDIT=1 &END NEP - INPUT

8.1.2 ANALYTICAL INLET

8D IWT=0,ALTP=5000,MACH=.4,INST=1,IFLGRF=0,LABEL=F, 8END NEP - INPUT

É

6

0

INMAP=0,NOZMAP=0,CFGMAP=0,DCDMAP=0,

DERP=0,ACI=37.,NWC=1,INLTWI=1,NWD=1,INOZ(1)=0,0,13,14,KVALUE=.00025,

ENGNO=1.ICFCN=2,

REFNRR=0.,A10A9R=2.1,SCALE=1.,

RRINT=1.,UNIII=1.,UNII0=1.,INLTYP=1,MODE=0,STOP=0.,

INSTAL - INSTLL

SUM OF (ERRORS**2)= 0.80212D-06

SUM OF (ERRORS**2)= 0.80212D-06

&PITOT

XMTEFM=.75,ATO=10.,RBYD=.02,DESMN=.85,

NTYPE=-1,INTYPE=0,WIDTH=10.,HEIGHT=5.,XNDOOR=10.,

&END
ITOTD

IMET
ITERFP(1)=1,2,3,4,5,6,7,9,13,0,
ISECFP(1)=1,2,3,4,5,6,7,9,13,0,
RLFDC=.54,ICCOMP=7,IFCOMP=14,CLMIN=4.,
REND
ETTED AREA -- NACWET
SINLWIT
SLST=28500,INLET=4,QMAX=300,NIMLET=1,KSHAPE=1.,
LDUCTS=0,BDOOR=0,TDOOR=0.,
REND
REND
NLET WEIGHT -- INLWT

11

261

Ü

O

€

0

Ü

					ENGINE	39.052								
* * * * * * * * * * * * * * * * * * *			THROAT 14.414 20.591	3.325 32.94		867 42.991 44.930 828 39.272 39.450				9.067 12.647 42.304 42.491	MAX NACELLE DIAMETER	41.846 46.496 43.044 43.052		ENGINE FACE AREA
**************************************	**************************************	HILITE TO THROAT	4.118	.592 36.240 34.59 0AT TO ENGINE FACE		062 35.417 38.711 40. 455 36.872 38.160 38.	**************************************	ITE TO MAX NACELLE DIAMETER		2.325 4.022 6.254 41.743 41.930 42.117		27.898 32.547 37.197 42.934 42.996 43.028	**************************************	AREA HUB/TIP RATIO
**************************************	* X X X X X X X X X X X X X X X X X X X		0.412	2 39.543 38.61		22.905 25.213 28.656 32. 33.055 33.337 34.223 35.	*** ** ** ** ** ** ** ** ** ** ** ** **	нггт	HILITE	0.0 0.349 1.116 41.182 41.369 41.556		13.949 18.598 23.248 42.549 42.719 42.842	**************************************	HILITE AREA THROAT
			 <		THROAT	52.946				 × ¤		 × œ		

×cr

11

born F W

5327.977 IH**2

3409.904 IN**2

OVERALL LENGTH (HILITE TO MAX NACELLE DIAMETER)

46.496 IN

0.400

4024.512 IN**2

SUBSONIC DIFFUSER LENGTH

25.905 IN

(ENGINE TO THROAT)

LIP CONTRACTION RATIO

1.563

1.180

WETTED AREA

12496.109 IN**2

263

ľ

DATE RUN 21 HOV 79			DYNAMIC PRESSURE	197.14 LBS/FT**2	ERENCE NOZZLE T AREA (A9R)	9.26 FT**2	INSTALLED ENGINE PERFORMANCE DATA	H (LBF) 10952.8 FFT (LBM/HR) 6895.5 FC (LBM/HR/LBF) 0.6	SFC COR					GINE WEIGHT BREAKDOWN	ENGINE (LBM) = 5466. SORIES (LBM) = 0. (LBM) = 5466.	
MAP CFG MAP			TOTAL	516.89 DEG R	FTBODY REFI	**2	AFTBODY DRAG	A10/A9 A10 (FT**2) A9 (FT**2) P9S/PAMB CD A/B	LBF) PR (LBF	A78 TOT (LBF) 78 REF (LBF) 78 PS	AZB PS (LBF)			ENG	BARE ACCES TOTAL	700
MAP DEL A/B !	MACH NUMBER	0.40	AMBIENT TEMPERATURE	500.86 DEG R	REFERENCE AF	40.44 FT	v	170	0.008 0.001 0.001	. 000	DRAG			UCTION SYSTEM T BREAKDOWN	= 273 (LBM) = 0 (BM) = 273	ORAG BUILDUP (LBF) = 91. 77.
MAP HOZZLE !	ALTITUDE	5000.0 FT	TOTAL RESSURE	29 LBS/FT**2	REFERENCE I/A9 (A10/A9 R)	2.10	INLET DRA	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD CD BYP	PRAG INL D INL R RAG INL	RAG I				AIR INDUC WEIGHT	INLET (LBM) DUCT (LBM) BYPASS DOORS T/O DOORS (L	NACELLE I SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET			SURE	SZET**2 1965.	ET CAPTURE REA (AC) Alo	.00 FT**2	INLET MASS FLOW RATIOS	A01/AC 0.191 A01/AC 0.809 A08LD/AC 0.0 A0/AC 0.809	0.809		TIO = 0.0			HT BREAKDOWN	.BM) = 85. = 130. = 618. = 834.	
			AMBIE	1760.15 LB	INL	37	FORMANCE DATA G INLET RECOVERY OZZLE CFG	10952.867 6895.574 BF) 0.630 SEC) 943.945 SEC) 874.314	0.987		LET MASS FLOW RA	SPILLAGE NUMBER	MBINATION OF D SPILLED AIR M SPECIFIC FUEL PTION	NACELLE WEIGH	ENGINE MOUNTS (L FIREWALL (LBM) COWL (LBM) TOTAL (LBM)	
							ENGINE PERE INCORPORATING AND NO	FH (LBF) WFT (LBM/HR) SFC (LBM/HR/L WZ COR (LBM/S	CFG (PRI)	264	REFERENCE IN	BYPASS VS OPTION	DPTIMUM COL BYPASSED AN FOR MINIMUM		P	_

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY OUTPUT DATA

	CTED		DATOUT9 0.50000b+04 0.12664b+01 0.0 0.14093b+02 0.24600b+04 0.37963b+01 0.22977b+01 0.0 0.0 0.19433b+01 0.13405b+01		
	INTERFACE CORRE STATP8 0.0 1.94816D-04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		DATOUT8 0.99657D+00 0.84151D+00 0.90107D+00 0.990007D+00 0.9007D+00 0.9007D+00 0.9007D+00 0.1899806D-03		6895.58 12.5274 0.0
	PRESSURE STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		DATOUT7 0.98691D+00 0.10466D+04 0.11076D+03 0.31225D+00 0.86078D+00 0.84282D+00 0.0		(LB/HR) T/AIRFLOW DRAG + LIP DRAG
-	MACH NUMBER STATP6 0.4000D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		DATOUT6 0.4000D+00 0.90271D+00 0.9032D+00 0.68956D+04 0.50010D+04 0.50010D+04 0.00 0.00	5 PASSES	FUEL FLOW (LB NET THRUST/AI BOATTAIL DRAG SPILLAGE + LI
TATION PROPERTY OUTPUT DATA	REFERRED FLOW STATP5 0.10325D+04 0.95170D+03 0.70022D+03 0.70022D+03 0.97955D+01 0.07955D+01 0.07955D+01 0.07955D+01 0.07955D+03 0.1373D+03 0.11373D+03 0.11373D+03 0.11373D+03	OUTPUT DATA	DATOUT5 0.11168D+01 0.11742D+02 0.0 0.39946D+02 0.5803P+02 0.67327D+00 0.58279D+00 0.0 0.0 0.0 0.0 0.34259D+03 0.34259D+03	ITERATIONS	22878.11 0.6296 5.77 0.6296
ATION PROPERI	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.1 0.18843D-01 0.18128D-01 0.17901D-01 0.17901D-01	COMPONENT OUT	DATOUT4 0.10320D+01 0.19464D+01 0.0351357D+01 0.13835D-01 0.35119D+01 0.25302D+01 0.07746D+04 0.70746D+04 0.70746D+04 0.70746D+04 0.70746D+04 0.54069D+04	5 69	SHAFT HP
S	TOTAL STATP3 0.50084D+03 0.51689D+03 0.55969D+03 0.55969D+03 0.12393D+04 0.12393D+04 0.12393D+04 0.1736D+04 0.1778D+04 0.1478D+04 0.14787D+04 0.14787D+04		DATOUT3 0.2599D+03 0.2000D-01 0.2000D+00 0.1000D+01 0.1000D+01 0.0000D+01 0.1000D+01 0.1000D+01 0.1000D+01 0.1000D+01	RECOVERY= 0.98	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
	PRESSURE STATP2 0.12228D+02 0.13478D+02 0.16727D+02 0.16727D+02 0.23573D+03 0.23573D+03 0.23763D+03 0.23763D+03 0.23763D+02 0.23763D+02 0.23763D+02 0.23763D+02		DATOUT2 0.43884D+03 0.54069D+04 0.20000D-01 0.70746D+04 0.70746D+04 0.54069D+04 0.20000D-01 0.07746D+04 0.20000D-01 0.07746D+04 0.20000D-01 0.07746D+04 0.17176D+04 0.17176D+04	= 5000. R	874.31 10952.87 11925.24 10952.87
	WEIGHT FLOM STATP1 0.87431D+03 0.87423D+03 0.87423D+03 0.10720D+03 0.10165D+03 0.10165D+03 0.10165D+03 0.10165D+03 0.10165D+03 0.10165D+03 0.10165D+03 0.101691D+03 0.101691D+03 0.101691D+03 0.101691D+03		DATOUT1 0.11925D+05 -0.12698D+05 0.71713D+01 -0.25244D+05 0.25244D+05 0.12704D+05 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	00 ALTITUDE	SEC) DRAG RUST
	FLOW STATION 1 2 3 4 4 5 5 6 6 1 10 11 12 13	200000000000000000000000000000000000000	NO. TYPE 1 INLET 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DOMPRESR 6 TURBINE 7 TURBINE 8 DUCT B 9 DUCT B 11 SHAFT 12 SHAFT 13 NOZZLE 14 NOZZLE	MACH= 0.40	AIRFLOM (LB/ NET THRUST TOTAL INLET INSTALLED TH

THET MAP MOZELE MAP MOZELE MAP MOZELE MAP MOZELE MAP GFG MAP	DATE RUN 21 HOV 79			DYNAMIC PRESSURE	300.61 LBS/FT**2	REFERENCE NOZZLE EXIT AREA (A9R)	19.26 FT**2	INSTALLED ENGINE AG PERFORMANCE DATA	MZHR) MZHRZEBF (LBF)	SFC COR (LBM/HR/LBF) 0.8					ENGINE WEIGHT BREAKDOWN	E ENGINE (LBM) = 5466. ESSORIES (LBM) = 0. AL (LBM) = 5466.	
TOTAL TEMPERATURE 1192.90 LBS/FTW#2 1521.55 LBS/FTW#2 465.20 DEG 1102.90 LBS/FTW#2 1321.55 LBS/FTW#2 465.20 DEG 1102.90 LBS/FTW#2 1321.55 LBS/FTW#2 465.20 DEG 1200.00 FT 40.00 PT 40	CFG			DC	98.69 DEG	TBODY A CAIOR)	*	FIBODY DR		(LBF	(LBF	3			E	BAR TOT	80 0 W
AMBIENT PRESSURE 1192.90 LBS/FT%#2 1521.55 LBS/FT%#2 15000.0	DEL A/B	MACH NUMBER	9.	AMBIENT EMPERATUR	5.20 DEG	REFERENCE AP R NACELLE ARE	94.0		000	777					CTION SYSTEM BREAKDOWN	= 27 (LBM) = 27	(LBF) = 135 (LBF) = 135 = 147
HABIENT PRESSURE 1192.90 LBS/FT**2 1521 INLET CAPTURE AREA (AC) AREA (AC	MAP NOZZLE	ALTITUDE	5000.0	TOTAL RESSURE	55 LBS/FT**2 4	REFERENCE 7A9 (A10/A9 R	7	ET DRA	(FT**2) SPL (TAB 3) SPL (TAB 3A BLD BYD	INC. TOT (LBF INC. REF OG INC. REF (LBF INC. PS	AG INL PS (LBF				EA	INLET (LBM) DUCT (LBM) BYPASS DOORS T/O DOORS (L	NACELLE KIN FRICTIO ORM (LBF) OTAL (LBF)
ENGINE PERFORMANCE DATA AND HOZZLE CFG AND SPILL GF BYPASS VS SPILL GF OPTION NUMSER OPTION COMBINATION OF BYPASSED AND SPILLED AIR FOR MINIMUM SPECIFIC FUE CONSUMPTION HACELLE WE FIREMALL (LBM) TOTAL (LBM) TOTAL (LBM)	INLE			ENT	BS/FT**2 152	(AC) A1	7.00 FT**	JNLET MASS FLOW RATIO	05PL/AC 0.36 01/AC 0.63 08LD/AC 0.0	UEZAC U.63		ATIO = 0.		-	BREAKDOW	= 855 = 618 = 834	
				E M	192.90	41		ENGINE PERFOPMANCE DATA NCORPORATING INLET RECOVER AND NOZZLE CFG	FT (LBM/HR) 5585.81 FC (LBM/HR/LBF) 0.79 COR (LBM/SEC) 1008.61 2 ABS (LBM/SEC) 720.57	FG (PRI) 0.97 GF (SEC) 0.97	267	EFERENCE INLET MAS:OW	YPASS VS SPILL GOPTION NUMBER	OPTIMUM COMBINATION OF YPASSED AND SPILLED AIR FOR MINIMUM SPECIFIC FU CONSUMPTION	NACELLE	SINE MOUNTS REWALL (LBN WL (LBM) TAL (LBM)	

Ž.

STATION PROPERTY GUTPUT DATA

INTERFACE CORRECTED FLOW ERROR STATES	1277	-0.22656D-03	0.0 -0.81222D-05 -0.17379D-06 0.0	0000
STATIC PRESSURE STATP7		000	0000	0.82972D+01 0.10180D+02 0.82972D+01 0.82972D+01
MACH NUMBER STATP6	0.60000D+00	000	0000	0000
REFERRED FLOW STATP5	NOM	0.10121D+03 0.75269D+03 0.97092D+01	0.0 0.15810D+02 0.53639D+02 0.11372D+03	0.76805D+03 0.11372D+03 0.11372D+03 0.76839D+03
FUEL/AIR RATIO STATP4		0.00	0.0 0.19117D-01 0.18391D-01 0.18161D-01	
P 0 P	.46522D+0 .49877D+0 .54034D+0	.54	0.11546D+04 0.24039D+04 0.17848D+04 0.14779D+04	.5403 .1477 .1477 .5403
TOTA ESSU TATP	.82972D+0 .10289D+0 .12917D+0	.12659D+0 .12659D+0 .18844D+0	0.15500D+03 0.16552D+03 0.43667D+02 0.18975D+02	.12406D+0 .18975D+0 .18975D+0
WEIGHT FLOW STATP1	.72057D+0 .72066D+0	.85435D+0 .63524D+0 .81164D+0	0.42718D+01 0.82716D+02 0.85920D+02 0.86988D+02	.63552D+0 .86988D+0 .86988D+0
FLOW	322	ቀጥው	10 98 7	11 12 14

		DATOUT9	0.150000+05	0.125540+01	0.0	0.14886D+02	0.24600D+04	0.37904D+01	0.230130+01	0.0	0.0	0.0	0.0	0.22869D+01	0.14952D+01
								0.89925D+00		0.0	0.0	0.552690-05	-0.44483D-03	0.186400+01	0.18936D+01
										0.0	0.0	0.0	0.0	0.975000+00	0.97500D+00
															0.98000D+00
FUI DAIA		JATOUTS													
COMPONENT DOLLY OF DATA		DATOUT4	0.10721D+01	0.22599D+01	0.0	0.13220D+01	0.20123D-01	0.35066D+01	0.25344D+01	0.0	0.0	0.70670D+04	0.55250D+04	0.34778D+03	0.23942D+04
		DATO	.37585D	0,	0.20000D-01	0.	.30000D+0	0.10000D+01	.10000D+0	0.	0.	.70670D+0	0.55250D+04	.22869D+0	.14952D+0
		DATOUT2	.63441D+	.55250D+	.20000D-	.70670D+	-00000g.	C.70670D+04	.55250D+	.20000D-	0.	.70670D+	ui.	.18965D+	.81788D+
		DATOUT1	.14208D+0	.10164D+0	.74370D+0	.20132D+0	.75405D-0	0.20132D+05	.10159D+0	0.	0.	.11127D+	-0.45201D+01	.51275D+	.16155D+
	COMPONENT	HO. TYPE	INLET	COMPRES		COMPRES	DUCT B	6 TURBINE	TURBIN		6			m	4

	5585.82 9.8177 0.0
5 PASSES	FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
4 ITERATIONS	21282.82 0.7896 -4.41 0.7896
RECOVERY= 0.9721	GROSS THRUST TSFC TOTAL BRAKE SHAFT HP INSTALLED TSFC
15000.	720.57 7074.41 14208.41 7074.41
ALTITUDE=	
MACH= 0.6900	AIRFLOW (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST

TIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.22599D+01 MAXIMUM ALLOWABLE VALUE IS 0.21000D+01

DATE RUN 21 NOV 79			DYNAMIC PRESSURE	239.37 LBS/FT**2	REFERENCE MOZZLE EXIT AREA (49R)	19.26 FT**2	INSTALLED ENGINE PERFORMANCE DATA	0 FN (LBF) 3616 95 436 WFT (LBM/HR) 3296.64 0 SFC (LBM/HR/LBF) 0.91 0 FN COR (LBF) 16172.35	0.0 SFC COR (LBM/HR/LBF)	0000			ENGINE WEIGHT BREAKDOWN	CCESSORIES (LBM) = 5466. CCESSORIES (LBM) = 0. OTAL (LBM) = 5466.	
AZB MAP CFG MAP	ER		TOTAL TEMPERATURE	446.71 DEG R	E AFTBODY AREA (A16R)	4 FT**2	AFTBODY DRAG		DRAG A/B (LBF) CD A/B SPR DRAG A/B SPR (LBF) CD A/B TOT	(LBF	DRAG A/B PS (LBF)			273. BAR 0. ACC 0. TOT 273.	P 110.7 9.4 120.1
MAP DEL	MACH NUMBER	8.85	AMBIENT TEMPERATURE	390.31 DEG R	REFERENCE OR NACELLE	40.4	AG	37,000 0.057 0.053 0.0	985.953 0.053 470.517	0.0			R INDUCTION SYSTEM WEIGHT BREAKDOWN	S (LBM) = LBM)	DRAG BUILDUP N (LBF) = 1 = 1
ET MAP HOZZLE M	ALTITUDE	36000.0 FT	TOTAL PRESSURF:	9.08 LBS/FT×*2	REFERENCE 10/A9 (A10/A9 R)	2.10	INLET DRA	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 34) CD BLD CD BYP	ADAG	200		,	AIR IND WEIGH	INLET (LBM) DUCT (LBM) BYPASS DOORS (LBM) T/O DOORS (LBM) TOTAL (LBM)	NACELLE D SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLE			ENT	S/FT**2 755	ET CAPTURE REA (AC) A]	.00 FT#*2	INLET MASS FLOW RATIOS	A01/AC 0.419 A01/AC 0.581 A08LD/AC 0.0 A0/AC 0.581 A0/AC 0.581	UEZAC U.SZ		TIO = 0.0		IT BREAKDOWN	.BM) = 85. = 130. = 618. = 834.	
			AMBIE	473.29 LBS	INLE	37.	RMANCE DATA INLET RECOVERY ZLE CFG	3616.959 3296.640 0.911 1081.170 397.148	0.946 0.975 0.975		MASS FLOW RA	TILLAGE MBER NATION OF PILLED AIR PECIFIC FUEL	NACELLE WEIGH	GINE MOUNTS (L) REWALL (LBM) WL (LBM) TAL (LBM)	
							ENGINE PERFORM INCORPORATING IN AND HOZZL	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC) WZ ABS (LBM/SEC)	CFG (PRI)	270	REFERENCE INLET	BYPASS VS SP OPTIMUM COMBI BYPASSED AND S FOR MINIMUM S CONSUMPTI		FI	

STATION PROPERTY OUTPUT DATA

	CTED	DATOUT9 0.360000+05 0.12835D+01 0.0 0.7075D+02 0.24600D+04 0.37835D+01 0.0 0.0 0.0 0.32680D+01 0.32680D+01	
	PLOW ERROR 51ATP8 0.0 14715D-03 0.84202D-05 0.0 0.0 0.0 0.1315D-07 0.1315D-07 0.132266D-06 0.32266D-06	DATOUT8 0.86196D+00 6.76796D+00 0.87654D+00 0.89959D+00 0.89940D+00 0.89940D+00 0.89940D+00 0.889940D+00	
	STATIC I STATP7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT7 0.94581D+00 0.10466D+04 0.11076D+03 0.3094D+00 0.8078D+00 0.84282D+00 0.0	
	MACH NUMBER STATP6 0.850000+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.850000+00 0.10346D+01 0.97195D+03 0.32966D+04 0.49332D+04 0.0 0.0 0.0	
STALLON PROPERTY DUTPUT DATA	REFERRED FLOW STATP5 0.15316D+04 0.88118D+03 0.88118D+03 0.78898D+03 0.94799D+01 0.94799D+01 0.15794D+02 0.1371D+03 0.80508D+03 0.80508D+03	OUTPUT DATA DATOUT5 01 0.16039D+01 01 0.35562D+02 01 0.58081D+02 01 0.58279D+00 01 0.58279D+00 01 0.58279D+00 01 0.58279D+03 04 0.0 04 0.0 05 0.34259D+03	
ALIUN PROPERI	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.19810D-01 0.19820D-01 0.18820D-01 0.18820D-01	DATOUT4 0.11448D+01 0.24927D+01 0.13098D+01 0.20853D-01 0.35004D+01 0.3504D+01 0.3514D+04 0.00 0.71474D+04 0.71474D+04 0.71474D+04 0.71474D+04 0.71474D+04 0.71474D+04	
5	TOTAL STATP3 0.39051D+03 0.44707D+03 0.49017D+03 0.49017D+03 0.1723D+04 0.1723D+04 0.1723D+04 0.1723D+04 0.1723D+04 0.14754D+04 0.14754D+03 0.14754D+03 0.14754D+03	DATOUT3 0.48783D+03 0.0 0.2000D-01 0.3000D+00 0.1000D+01 0.1000D+01 0.0 0.17474D+04 0.71474D+04 0.3268D+01 0.3268D+01	
	PRESSURE STATP2 0.330650+01 0.601570+01 0.630910+01 0.630910+01 0.630910+01 0.630910+01 0.10730+02 0.249490-02 0.249490-02 0.249490-02 0.108050+02 0.108050+02	DATOUT? 0.8234:E.03 0.57633.404 0.20000D-01 0.50000D-01 0.71474D+04 0.57633D+04 0.20000D-01 0.71474D+04 0.57633D+04 0.2168D+04	
	WEIGHT FLOW STATF1 0.39715D+03 0.39709D+03 0.48659D+03 0.46226D+03 0.46226D+03 0.46329D+01 0.47141D+02 0.49574D+03 0.49574D+03 0.49574D+03 0.49574D+03 0.49574D+03	DATOUTI 0.10164D+05 -0.58000D+04 0.7165DD+01 0.77697D-01 0.11451D+05 0.5803D+04 0.0 0.25456D-01 0.25456D-01 0.26781D+00	
	FLOW 1 2 3 4 4 5 6 7 7 7 10 11 12 13	COMPONENT NO. TYPE 1 COMPRESR 2 COMPRESR 5 COMPRESR 5 COMPRESR 6 TURBINE 7 TURBINE 7 TURBINE 8 DUCT B 9 DUCT B 1 SHAFT 5 HAFT 5 HAZZLE	

MAXIMUM ALLOWABLE VALUE IS 0.21000D+01 LIMITER 19 VIOLATED *** VARIABLE VALUE IS 0.24927D+01

3296.64 9.1073 0.0

FUEL FLOW (LB/HR)
NET THRUST/AIRFLOW
BOATTAIL DRAG
SPILLAGE + LIP DRAG

13781.23 0.9114 0.24 0.9114

GROSS THRUST TSFC TOTAL BRAKE SHAFT HP INSTALLED TSFC

397.15 3616.96 10164.27 3616.96

AIRFLOW (LB/SEC) HET THRUST TOTAL INLET DRAG INSTALLED THRUST

2 PASSES

1 ITERATIONS

RECOVERY= 0.9458

36030.

ALTITUDE=

0.8500

MACH=

&D ENDIT=1 &END NEP - INPUT

. 272

8.2 SUPERSONIC MIXED FLOW AFTERBURNING TURBOFAN

8.2.1 DATABASE INLET 'ASF', DATABASE NOZZLE 'ADENAB'

INSTAL & WATE-2: TYPICAL SUPERSCNIC AUGMENTED MIXED FLOW & D. NMODES=1,NCOMP=29,NOSTAT=14,MODESN=1,TABLES=T,ITPRT=0,NCODE=1,IWAY=1,IWT=1,INST=0,IFLGRF=0,NVOPT=0,REND

8

Ç

¢

G

! '

TABLE DATA INPUT SUMMARY 10 TABLES

ARRAY LOCATION	1075	22	45	69	93	38	97	43
EFERENCE NUMBER 1001	000	000	00	00	00	00	00	0.1
TABLE NUMBER RE	2	7 4	5	9	7	ø	6	10

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10828

&D MODE=1, KONFIGG(1,1)=INLT',1,0.2,0.5PEC(1,1)=250,4*0,1, KONFIGG(1,5)=*COMP',2.0.3,0.5PEC(1,2)=1.5,0.1001,1,1002,1,1003,1,0.0,.85,3,1, KONFIGG(1,5)=*SPLT',3.0.4,5.5PEC(1,3)=1.0.02',02', KONFIGG(1,5)=*SPLT',3.0.4,5.5PEC(1,5)=1.5,0.1,1004,1,1005,1,1006,1,0.1,.86, KONFIGG(1,5)=*DUCT',6.0.8,0.5PEC(1,6)=1.3,0.5,1,1004,1,1010,9,1,1010,0.1,.86, KONFIGG(1,5)=*DUCT',10.0.8,0.5PEC(1,6)=2.5,75,1,1007,1,1010,9,1,111,19,5000,1, KONFIGG(1,5)=*DUCT',110,120,0.5PEC(1,8)=0.00',4,1,1007,1,1010,9,1,111,1,1,1,1,1,1,1,1,1,1,1,1,
--

276

I

ŗ.

		<splt< th=""><th><mixr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></mixr<></th></splt<>	<mixr< th=""><th></th><th></th><th></th><th></th><th></th><th></th></mixr<>						
1>	5>	32	4	2>	<9	42	%	6	10>
<inlt< th=""><th>< COMP</th><th><splt< th=""><th><comp< th=""><th><duct< th=""><th><turb< th=""><th><turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<></th></turb<></th></duct<></th></comp<></th></splt<></th></inlt<>	< COMP	<splt< th=""><th><comp< th=""><th><duct< th=""><th><turb< th=""><th><turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<></th></turb<></th></duct<></th></comp<></th></splt<>	<comp< th=""><th><duct< th=""><th><turb< th=""><th><turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<></th></turb<></th></duct<></th></comp<>	<duct< th=""><th><turb< th=""><th><turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<></th></turb<></th></duct<>	<turb< th=""><th><turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<></th></turb<>	<turb< th=""><th><mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<></th></turb<>	<mixr< th=""><th><duct< th=""><th><n022 13</n022 </th></duct<></th></mixr<>	<duct< th=""><th><n022 13</n022 </th></duct<>	<n022 13</n022
			٨	٨	٨				

<COMP 7 <TURB <TURB

â â

6

Ø

0

SHAFT (11) IS CONNECTED TO COMP(4) AND TURB(6) AND SHAFT (12) IS CONNECTED TO COMP(2) AND TURB(7) AND

THE FOLLOWING REPRESENTS THE CONFIGURATION FOR MODE= 1 INSTAL & WATE-2 : TYPICAL SUPERSONIC AUGMENTED MIXED FLOW CONFIGURATION DATA 13 STATIONS 29 COMPONENTS

TREAM	0007700000	00000000	00000
DOWNST	10 10 11 13 13	00/048011	10 11 12
EAM	00000775007	ØN000000	00000
UPSTR	111098643321	±いご♥∞∞400	0 0 11 12
COMPONENT TYPE	INLET COMPRESR SPLITTER COMPRESR DUC, E TURBINE MIXER MIXER NOCZLE	74777777777777777	PTVAR PTVAR IMITE UNTRO
NKIND	こみてみるちのもの	12222222	13 113 12 12
COMPONENT	110087654371	220 220 210 210 210	228432
0	277	ı	į i

2	~
C	5
	4
٠	-
4	ď
2	Ε
C	ĸ
C	\supset
L	L
2	Ζ
۰	4
į,	×
ē	5
ò	V
F	-
2	2
C	2
*	1

INPUT DATA

DATINP9 0.0 0.10000D+01 0.0 0.0000D+01 0.0000D+01 0.0000D+01 0.0000D+01 0.0000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01	0.10000D+01 0.10000D+01 0.10000D+01
DATINP8 0.0 0.10030D+04 0.0 0.10060D+01 0.10000D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0000
	0.60000D+01 0.80000D+01 0.80000D+01
DATINP6 0.100000+01 0.100200+04 0.100500+04 0.1010000+04 0.1010000+01 0.100000+01 0.100000+01 0.800000+01 0.800000+01 0.800000+01 0.800000+01	0000
DATINP5 0.0 0.10000000000000000000000000000000	0000
DATINP4 0.0 0.10010D+04 0.10070D+04 0.10070D+04 0.10090D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
DATINP3 0.0 0.10000D+01 0.0 0.10000D+01 0.10000D+01 0.0 0.0 0.0 0.10000D+01 0.17500D+01 0.0 0.17500D+01 0.0 0.17500D+01	0.10500D+01 0.0
DATINP2 0.0 0.0 0.20000D-01 0.50000D+00 0.75000D+00 0.75000D+00 0.98000D+00 0.10000D+01 0.1000D+01 0.0 0.1000D+01 0.0 0.1000D+01	0.600000+00
DATINP1 0.250000+03 0.150000+01 0.100000+01 0.500000+01 0.500000+01 0.600000+01 0.600000+01 0.600000+04 0.600000+04 0.600000+04 0.600000+04 0.600000+04 0.600000+04	
COMPONENT NO. TYPE 1 INLET 2 COMPRESR 4 COMPRESR 5 FUTTER 6 DUCT B 10 NOZZLE 11 SHAFT 12 SHAFT 15 CONTROL 16 CONTROL 17 CONTROL 18 CONTROL 19 CONTROL 22 CONTROL 23 OPTVAR	4 LIMIT 8 CONTR 9 CONTR

THE MAXIMUM COMPONENT NUMBER USED 29 DOES NOT EQUAL 24 THE NUMBER OF COMPONENTS CONFIGURED IN ANY ONE MODE - WARNING ONLY MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.78997D-32

Ö

G

0

	DATINP9 0.0 0.10060D+01 0.76966D+00 0.8000D+00 0.10000D+01 0.0
	DATINP8 0 0.0 0 0.10030D+04 0 0.10060D+04 2 0.0 1 0.52764D+00 0 0.77880D+00 0 0.0 0 0.0 0 0.0
	DATINP7 0.0 0.98277D+00 0.0 1142D+00 0.6156D+02 0.10204D+01 0.98318D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
	DATINP6 DATINP7 0.10020D+04 0.98277D+00 0.00 0.18300D+05 0.98277D+00 0.18300D+05 0.98378D+01 0.1010UD+04 0.98318D+01 0.18300D+05 0.0 0.18300D+05 0.0 0.1800D+01 0.10000D+01 0.1000D+01 0.10000D+01
	DATINP5 0.0 0.25381D+03 0.0 96971D+00 0.65713D+00 0.0 98000D+00 0.98000D+00 0.98000D+00
	DATINP4 0.0 0.100105+04 0.100405+04 0.100705+04 0.100905+04 0.100905+01 0.00006+01 0.00006+01
ED INPUT	D+00
UPDATED INPUT DATA TO REFLECT CALCULATED INPUT COMPONENT	DATINP2 0.0 0.0 0.0 0.20000D-01 0.30000D+00 0.75000D+00 0.27387D+03 0.27387D+03 0.27387D+03 0.27387D+03 0.27387D+03 0.27387D+03
T DATA TO REF	DATINP1 0.25000+03 0.150000+01 0.130000+01 0.50000-01 0.550000+01 0.403890+03 0.403890+03 0.456270+03 0.800000+04
UPDATED INPU	NO. TYPE 1 COMPRESR 3 SPLITER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 MIXER 9 DUCT B 10 MOZZLE 11 SHAFT

i

STATION PROPERTY OUTPUT DATA

ECTED	DATOUT9 0.0 0.30000D+01 0.60000D+01 0.23191D+01 0.23192D+01 0.0027857D+01 0.0000000000000000000000000000000000	
NTERFACE CORRE FLOW ERROR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT8 0.10000D+00 0.85000D+00 0.8600D+00 0.99000D+00 0.9000D+00 0.98880D-16 0.00000000000000000000000000000000000	11816.87 64.8225 0.0 0.0
STATIC IP PRESSURE STATP7 0.0 0.0 0.39972D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.10000+01 0.25381D+03 0.0 0.49649D+02 0.3600D+00 0.96971D+00 0.64835D+03 0.0 0.97500D+00	I (LB/HR) I/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.0 0.0 0.33560D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATO 0.0 0.1000 0.1000 0.1181 0.5000 0.5000 0.4427 0.9800	2 PASSES FUEL FLOW NET THRUST BOATTAIL D SPILLAGE +
REFE REFE SSTATION SSTA	DATOUT5 0.1000000010 0.539280+01 0.281300+02 0.673760+02 0.673760+03 0.848730+03 0.0	11EKA110NS 16265.61 0.7292 0.0
	DATOUT4 0.100000+0 0.150000+0 0.250000+0 0.250000+0 0.250000+0 0.108090+0 0.600000+0	UU U III I SHAFT HP SFC
TOTAL STATF3 0.51867D+03 0.51867D+03 0.74297D+03 0.74297D+03 0.74297D+03 0.74297D+03 0.74297D+03 0.74297D+03 0.74297D+03 0.74297D+04 0.12411D+04 0.29249D+04 0.29249D+04 0.29249D+04 0.29249D+04 0.29249D+04	DATOUT3 0.0 0.0 0.2 0.20000D-01 0.30000D+01 0.10000D+01 0.11092D+01 0.3000D+01 0.27857D+01 0.80000D+04	GROSS THRUS TSFC TOTAL BRAKE
TOTAL STATURE STATURE 0.14696D+02 0.4506D+02 0.45206D+02 0.45206D+02 0.2294D+03 0.2294D+03 0.2294D+03 0.2294D+03 0.4553D+02 0.40938D+02	DATOUT2 0.600000+04 0.2000000-01 0.5000000-01 0.6000000+04 0.6000000-01 0.273870+03 0.600000-01 0.205860+04 0.600000-01	250.00 16205.61 16205.61
WEIGHT FLOW STATU 0.250000+03 0.250000+03 0.250000+03 0.125000+03 0.125000+03 0.125000+03 0.126720+03 0.126720+03 0.253280+03 0.253280+03	UT1 75+05 00+01 00+01 35-01 90+05 70+05 90+03 60+05	ALILIUDE: SEC) DRAG RUST
FLOW 1 2 3 4 5 5 6 6 7 7 11 12 13	OMPONENT O. TYPE INLET SCOMPRESR COMPRESR COMPRESR COMPRESR TURBINE TURBINE MIXER DUCT B NOZZLE SHAFT	OW CLB/ HRUST INLET LLED TH

ij,

Ø

ı

j i

STATION PROPERTY GUTPUT DATA

CTED	DATOUT9 0.10000D+05 0.30069D+01 0.60041D+01 0.23190D+01 0.21952D+01 0.10895D+01 0.35631D+01	
PLOW ERROR 51ATP8 0.0 42553D-03 0.0 0.0 0.0 0.0 0.0 0.18094D-08 0.25130D-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.99842D+00 0.84986D+00 0.85982D+00 0.99000D+00 0.90000D+00 0.30420D-08 0.18672D+01	10404.86 50.9521 0.0
STATIC IP PRESSURE STATP7 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT7 0.100000+01 0.25381D+03 0.0 49649D+02 0.29991D+00 0.9671D+00 0.64832D+03 0.0 0.97500D+00	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.6000D+00 0.0 0.33530D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.600000+00 0.10016D+01 0.0 0.10003D+01 0.10405D+05 0.4934D+05 0.44216D+03 0.0	2 PASSES FUEL FLOW NET THRUS BOATTAIL SPILLAGE
REFERRED FLOW STATP5 0.30871D+03 0.25053D+03 0.99714-02 0.50899D+02 0.50899D+02 0.10633D+02 0.10633D+02 0.19103D+02 0.19104D+02 0.19164D+02 0.19258D+03 0.15168D+03	DATOUT5 U1 0.12759D+01 01 0.54534D+01 0.06156D+02 01 0.66156D+02 01 0.5576D+02 01 0.5576D+03 01 0.84902D+03 01 0.84902D+03 01 0.84902D+03	ITERATIONS 1 15632.75 0.9280 0.9280
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.27651D-01 0.26601D-01 0.2668D-01 0.26268D-01 0.3140D-01 0.13140D-01	DATUT4 0.10721D+0 0.15047D+0 0.29106D-0 0.29106D-0 0.34998D+0 0.34998D+0 0.25105D+0 0.25105D+0 0.25105D+0 0.25105D+0 0.25105D+0	OO 3 T SHAFT HP SFC
TOTAL TEMPERATURE 0.48303D+03 0.51785D+03 0.74239D+03 0.74239D+03 0.74239D+03 0.74239D+03 0.74239D+03 0.74225D+04 0.20522D+04 0.20522D+04 0.20522D+04 0.20522D+04	DATOUT3 0.38298D+03 0.0 0.2000D-01 0.3000D+01 0.11093D+01 0.3000D+01 0.35631D+01 0.79990D+04	RECOVERY= 1.00 GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
PRESSURE 51ATP2 0.10108D+02 0.12897D+02 0.38782D+02 0.38006D+02 0.38006D+02 0.38006D+03 0.1975DD+03 0.19623D+03 0.19623D+03 0.39910D+02 0.38116D+02 0.36017D+02	DATOUT2 0.64640H03 0.60050D+04 0.20000D-01 0.50000D-01 0.50000D-04 0.60050D+04 0.6000D-01 0.22571D+04 0.60050D+04	220.04 11211.64 4421.12 11211.64
MEIGHT FLOW STATP10 0.22095D+03 0.21995D+03 0.11003D+03 0.10992D+03 0.10992D+03 0.10992D+03 0.11592D+03 0.11592D+03 0.11292D+03 0.22284D+03	DATOU 0.442111 0.99902 0.99802 0.94802 0.21317 0.16317 0.15633	000 ALTITUDE SEC) DRAG RUST
FLOW STATION 12 10 11 13	OMPONENT O. TYPE COMPRESR SPLITTER COMPRESR COMPRESR TURBINE TURBINE MIXER MIXER DUCT B MIXER SHAFT	MACH= 0.60 AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

&D ALTP=15000,MACH=1.0,ETAR=0 &END WEP - INPUT

MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.19012D-01 SUM OF (ERRORS**2)= 0.44139D-04 SUM OF (ERRORS**2)= 0.12514D-05

ļ,

į

U

&D ALTP=20000,MACH=1.4,ETAR=0 &END NEP - INPUT

P

MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.34607D-01 SUM OF (ERRORS**2)= 0.80380D-03 SUM OF (ERRORS**2)= 0.36452D-05 SUM OF (ERRORS**2)= 0.78561D-07

STATION PROPERTY OUTPUT DATA

DATOUT9 0.22639D+05 0.25539D+01 0.54399D+01 0.55208D+01 0.25208D+01 0.10904D+01 0.0064245D+01		
PLOW ERROR 5 TATP8		11201.26 37.7103 0.0
PRESSURE STATP7 0.0 0.0 0.42364D+02 0.0 0.42365D+02 0.0 0.23248D+02 0.0 0.23248D+02 0.0 0.23248D+02 0.0 0.23248D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		(LBZHR) TZAIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.14000D+01 0.0 0.37720D+00 0.0 0.10000D+01 0.18241D+01	12 PASSES	FUEL FLOW NET THRUS BOATTAIL SPILLAGE
REFERRED FLOW STATUS 10.235010103 0.203000103 0.102550103	1ERATIONS 1	21986.25 1.1190 -0.04
FUEL/AIR RATIO 5 TATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	82 3 11	T SHAFT HP SFC
TOTAL TEMPERATURE 547410+03 0.622850+03 0.814310+03 0.814310+03 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.292750+04 0.292750+04 0.292750+04 0.202000+004 0.100000+011 0.100000+011 0.100000+011 0.100000+011 0.100000+011 0.100000+011 0.100000+011 0.100000+011 0.100000+011	ECOVERY= 0.97	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
PRESSURE 51A1P2 0.67589D+02 0.7672D+02 0.46719D+02 0.46719D+02 0.25415D+03 0.25415D+03 0.2135D+03 0.2135D+03 0.486D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.46194D+02 0.20000D-01 0.20000D-01 0.27387D+04 0.20000D-01 0.27387D+03 0.6000D-01	= 20000. R	265.44 10009.69 11976.56 10009.69
MEIGHT FLOW 5 FA TO H 0 26551D+03 0 26551D+03 0 12302D+03 0 11687D+03 0 11687D+03 0 12659D+03 0 12659D+03 0 12659D+03 0 12659D+03 0 12659D+03 0 12659D+03 0 12665D+03 0 12665D+03 0 12665D+03 0 26862D+03 0 26862D+03 0 26862D+03 0 26862D+03 0 26862D+03 0 26862D+03 0 119774D+05 0 11582D+05 0 1269D+05 0 1269D+05 0 1269D+05 0 1260D+05 0 1260D+05	00 ALTITUDE	SEC) DRAG RUST
STATION STATION STATION COMPONENT NO. TYPE 11 Z COMPREST S SPLITTER COMPREST S SPLITTER TURBINE MIXER MIXER S MIXER	MACH= 1.40	AIRFLOW (LB/S) HET THRUST TOTAL INLET I

&D SPEC(7,10)=1,SPEC(4,9)=3000 &END NEP - INPUT

MODE 1 NOW BEING USED SUM OF (ERRORS##2)= 0.78013D-07

STATION PROPERTY OUTPUT DAIA

ļ

STATION PROPERTY OUTPUT DATA

DATOUT9 0.300000000000000000000000000000000000	
PLOW ERROR 5 TATPS	11436.84 29.9310 0.0
PRESSURE STATP7 0.0 0.0 0.49484D+02 0.0 0.49474D+02 0.0 0.7280D+02 0.49474D+02 0.0 0.49474D+02 0.27280D+02 0.27280D+02 0.27280D+02 0.27280D+02 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.32125D+03 0.	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.2000D+01 0.0 0.42758D+00 0.0 0.34541D+00 0.21889D+01 0.21889D+01 0.21889D+01 0.218354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00 0.91354D+00	13 PASSES FUEL FLOW NET THRUST BOATTAIL SPILLAGE
REFERRED FLOW STATP5 0.93270D+03 0.17287D+03 0.10525D+03 0.10525D+03 0.11299D+03 0.11299D+02 0.11299D+02 0.11299D+03	28582.40 1.2269 1.2269 1.2269
FUEL/AIR STATP4 0.0 0.0 0.0 0.0 0.25471D-01 0.25471D-01 0.10200D-01	50 4 T SHAFT HP SFC
TEMPERATURE 0.411840+03 0.74072D+03 0.89736D+03 0.89736D+03 0.89736D+03 0.15857D+04 0.29304D+04 0.24308D+04 0.24308D+04 0.14512D+04 0.14512D+04 0.14512D+04 0.1788D+04 0.1788D+04 0.1788D+04 0.1000D+01 0.1080D+01 0.1080D+01	RECOVERY= 0.92 GROSS THRUS TSFC TOTAL BRAKE INSTALLED
PRESSURE 5TATP2 0.43727D+01 0.51640D+02 0.56154D+02 0.56154D+02 0.56154D+02 0.56154D+02 0.2713D+03 0.2713D+03 0.2713D+03 0.2713D+03 0.2713D+03 0.2713D+03 0.2713D+03 0.2713D+03 0.5964D+02 0.5964D+02 0.5964D+02 0.5030D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04 0.50319D+04	= 30000. 311.45 9321.94 19260.46
MEIGHT FLGHT 51747P1 0.31145D+03 0.31145D+03 0.13129D+03 0.126475D+03 0.12645D+03 0.12645D+03 0.137282D+03 0.137282D+03 0.137282D+03 0.31461D+03 0.314	00 ALTITUDE SEC) DRAG RUST
STATION STATION STATION 1 2 3 4 5 10 11 2 COMPONENT NO. INPER 1 COMPRES 2 SPLITRES 4 COMPRES 5 DUCT 8 DUCT 8 DUCT 8 DUCT 8 11 SHAFT 12 SHAFT	MACH= 2.000 AIRFLOW (LB/S) NET THRUST TOTAL INLET INSTALLED THE

&D SPEC(7,10)=1,SPEC(4,9)=3000 &END NEP - IMPUT

MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.28753D-06

STATION PROPERTY OUTPUT DATA

ECTED		DATOUT9 0.300000+05 0.180780+01 0.0 0.48191D+01 0.23121D+01 0.10958D+01 0.10958D+01 0.11655D+02 0.0	
PLOW ERROR 51ATP8 0.0 6.53568D-04 0.0 0.388452D-04 0.0 0.0 0.10300D-03 0.10300D-03 0.0 0.0 0.0		UT8 20 + 00 20 + 00 20 + 00 30 + 00	76.8389
STATIC I PRESSURE STATP7 0.0 0.0 0.0 0.49484D+02 0.0 0.0 0.0 0.0 0.0 0.49474D+02 0.27944D+02 0.27944D+02 0.43727D+01		DATOUT7 0.92500D+03 0.25331D+03 0.49649D+02 0.49649D+02 0.452125D+00 0.67095D+03 0.07500D+00 0.0	T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.2000D+01 0.0 0.42758D+00 0.0 0.0 0.34541D+00 0.34541D+00		DATOUT6 0.2000D+01 0.73533D+00 0.0 0.91354D+00 0.91354D+04 0.50152D+04 0.61451D+03 0.31021D+03 0.98000D+00 0.0 0.98000D+00	NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
REFERRED 51ATP5 0.93270D+03 0.10287D+03 0.10287D+03 0.10297D+02 0.11299D+02 0.11299D+02 0.41761D+03 0.22415D+03 0.22415D+03 0.22415D+03 0.22415D+03	PUT DATA	DATOUTS 1 0.78225D+01 1 0.18872D+02 0.0 0.61623D+02 1 0.6156D+02 1 0.67376D+00 1 0.55526D+00 1 0.74657D+03 4 0.0 4 0.0 TTERATIONS 1 TERATIONS	1.7742 5.08
FUEL/AIR RATIO 5 TATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	COMPONENT OUTPUT DATA	DATOUT4 0.17936D+0 0.15423D+0 0.0 0.13776D+0 0.34863D+0 0.21463D+0 0.21463D+0 0.2739D+0 0.1323D*0 0.2739D+0 0.8019D+0 0.8019D+0 0.52725D+0	AKE SHAFT HP
TEMPERATURE 5TATP3 0.41184D+03 0.74072D+03 0.89736D+03 0.89736D+03 0.89736D+04 0.15857D+04 0.29308D+04 0.29308D+04 0.29308D+04 0.29308D+04 0.29308D+04 0.29308D+04		DATQUT3 11788D+04 0 220000D+01 10000D+01 10000D+01 10805D+01 30000D+02 11655D+04 52725D+04 52725D+04 KOSS THRUS	TSFC TOTAL BRAKE INSTALLED T
PRESSURE 5TATP2 0.43727D+01 0.31640D+02 0.56054D+02 0.56054D+02 0.57013D+03 0.23713D+03 0.23395D+03 0.53457D+02 0.53457D+02 0.53457D+02 0.53457D+02		ATOUT2 98970H04 2725D+04 00000D-01 0319D+04 0319D+04 2725D+04 2725D+04 2725D+04 2725D+04 2725D+04 2725D+04 2725D+04	23931.25 19260.46 23931.25
WEIGHT FLOW STATP1 0.311450+03 0.311450+03 0.131290+03 0.124730+03 0.124730+03 0.127890+03 0.127890+03 0.137460+03 0.137460+03 0.313720+03		DATUUTI 0.19260D+05 0.15637D+05 0.13722D+01 0.25376D+05 0.25374D+05 0.25374D+05 0.25374D+05 0.26845D+05 0.43192D+05 0.43192D+05 0.77646D+01	RAGUST
STATION 255 10 20 11 11 10 10 10 10 10 10 10 10 10 10 10	NANDAMO	NO. INTENTORES SOUTH TO THE STATE OF THE STA	NET THRUST TOTAL INLET D INSTALLED THR

```
IWMEC(1,12)="SHAF",2,6,3*0,4,

IWMEC(1,12)="SHAF",1,7,3*0,2,

DESVAL(1,2)==524,1.7,.45,1.5,4.7,4.6,.45,0.0.,1.,0.,2.,1.,

DESVAL(1,3)==1540,

DESVAL(1,5)=80.0.0,4,11*0.,

DESVAL(1,5)=80.0.0,4,11*0.,

DESVAL(1,5)=5,310,1.5,1.0,1.2,55,150000.,3.,1.,6*0.,

DESVAL(1,7)==55,280,1.5,1.0,1.2.,55,150000.,3.,1.,6*0.,

DESVAL(1,9)=250.0.018,0,8,11*0.,

DESVAL(1,10)=1.46,14*0.,8,11*0.,

DESVAL(1,11)=50000.,3,20,4,6,
                                                                                                                                                                                                                                                                                                                                                                                                          MAX RPM
7663.1
                                                                                                                                                                                                                                                                                                                                    1.4005
                                                                                                                                                                                                                                                                                                                                                                                                          C RPM
7663.1
                                                                                                                                                                                                                                                                                                                          GAM
                                                                                                                                                                                                                                                                                                                                                                0.450
                                                                                                                                                                                                                                                                                                                      P STAT AREA
1755. 6.5582
                                                                                                                                                                                                                                                                                                                                                                                                        RPM
7663.1
                                                                                                                                                                                                                              TR
1.800
                                                                                                                                                                                                                                                                                                                                                                                                     U TIP C
3 1298.3
                                                                                                                                                                                                                                                                                                                                                                               2 MECHANICAL DESIGN
                                                                                                                                                                                                                                                                                                                                                   DEN W/AREA
0.168 2.272
                                                                                                                                                                                                                                                                                                                    P TOT 2116.
                                                                                                                                                                                                                                                                                                                                                                                                     38.83
                                                                                                                                                                                                                                                                                                                  T TOT . 519.
                                                                                                                                                                                                                                                                                                                                                                                                   3.00
                                                                                                                                                                                                                                                                                                                                             WUIPMAX STRESS
101298.3 28461.3
                                                                                                                                                                   ********
                                                                                                                                                                                                             C*********
                                                                                                                                                                                                                                                                                                               M NO VEL
                                                                                                                                                                                                                                                                                                                                                                            COMPRESSOR
                                                                                                                                                                                                                                                                                                                                                                                                  LOADING
0.865
                                                                                                                                                                                                                                                                                                                                                                                                                                 7
                                                                                                                                                                                        FAN
                                                                                                                                                                                                                                                                                                                                                                                                                               FRAME
```

STAGE I 7004. STAGE I 7828. TMAX 519. MEIGHT TIN 170. 594. TIN 519. WEIGHT 161. STR 1 MB WS WN WC CL RHOB RHOD AR 20. 20. 29. 13. 3.8 0.162 0.168 4.65 DEL H MACH AREA R HUB R TIP NB UTIPMAX STR 75 18.0 0.499 4.809 10.79 18.35 106 1227.4 21145. WD WB WS WN WC CL RHOB RHOD AR 61, 41, 41, 0 19, 5.3 0.168 0.168 4.70 PR DEL H MACH AREA R HUB R TIP NB UTIPMAX 1.5098 18.0 0.524 6.558 8.74 19.41 80 1298.3 PR D STAGE 89. 11

```
STAGE I
8347.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            STAGE I
931.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              STAGE
                               TMAX
668.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            TMAX
824.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           TMAX
743.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WEIGHT TIN
42. 743.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          MEIGHT TIN
37. 824.
                             MEIGHT TIN
147. 668
WD WB WS WN WC CL RHOB RHOD AR
94. 11. 11. 22. 9. 2.9 0.168 0.168 4.60
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
1.3833 18.0 0.475 3.686 11.92 17.64 133 1179.5 16322.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           WD WB WS WN WC CL RHOB RHOD AR
19. 4. 4. 11. 3. 1.6 0.168 0.158 5.00
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR 1.3854 19.7 0.450 1.494 8.11 11.59 125 1346.0 25595.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   DIAM U TIP C RPM C RPM MAX RPM 23.18 1120.2 13256.2 11075.9 13309.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          STR
20260.
                                                                                                    P STAT AREA GAM
5444. 2.8134 1.3944
                                                                                                                                                                                                                                                                                                                                                                                           1.3944
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         WD Wb WS WN WC CL RHOB RHOD AR
19. 3. 3. 9. 3. 1.4 0.168 0.168 4.42
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX
1.3439 19.7 0.429 1.181 8.95 11.59 146 1346.0
                                                                                                                                                                                                                                                                                                                                                                               GAM
                                                                                                                                                                                                                                                                                                                                                                                                                         0.700
                                                                                                                                                                                                                                                                                                                                                                           P STAT AREA G
5417. 1.4944
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    CL RHOB RHOD
1.3 0.168 0.168
                                                                                                                                                                                                                                                                                               PTOT 30000. 2.000 S97.4 DEG R CWIN 0.0 50.9 LB/SQIN DUCT
                                                                                                                                                                                         INERTIA
23178.5
                                                                                                                                                                                                                                                                                                                                                                                                                1.200
                                                                                                                                       T0 HP 743.0 19104.
                                                                                                                                   3.0000 0.8500 6348.7 743.0
HI HO WI CWI
123.95 177.97 250.00 250.00
                                                                                                                                                                                                                                                                                                                                                                                                                                           4 MECHANICAL DESIGN
                                                         CENGRA
7.7
                                                                                                                                                                                                                                                                                                                                                                                                            DEN W/AREA
0.168 0.623
                                                                                                     P TOT 6349.
                                                                                                                                                                                                                                                                                                                                                                            P TOT 6222.
                                                         LENGTH
14.04
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   ME.
                                                                                                  M NO VEL T TOT
0.475 619. 743.
                                                                                                                                                                                                                                                                                                                                                                         M NO VEL T TOT
1.450 588, 743.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 N 57G
                                                                                                                                                                                                                                                                                                                                                                                                       CUTIPMAX STRESS
501346.0 25595.5
                                                        WEIGHT
569.14
                                                                                                                                                                                                                                                             **********
                                                                                                                                                                                                                                                                                                                                                                                                                                           COMPRESSOR
                                                                                                                                                                                                                                                                                                                                                                                                                                                                 LOADING
0.652
                                                       N STG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAGE
                                                                                                                                                                                                                                                                                                                                                                                     0.450
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAGE
                                                                                         DUCT
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     STAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WD
17.
```

```
STAGE I
                                                                                                                                                                                                                                                                                                                                                                           STAGE I
847.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              STAGE I
806.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       STAGE I
     STAGE
                                                                                                                                                                                                                                                                                                                                                                           1063.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 1141.
                                                                                                                                                                                        TMAX
984.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       1218.
  MEIGHT TIN
32. 904.
                                                                                                                                                                                                                                                                                                                                                                           WEIGHT TIN
27. 1063.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              WEIGHT TIN
27. 1141.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    WEIGHT TIN
42. 1218.
                                                                                                                                                                                   MEIGHT TIN
29. 984.
                                                                                                                                                                                                                                                                        STAGE 5

WD WB WS WN WC CL RHOB RHOD AR

13. 2. 2. 8. 3. 1.3 0.168 0.168 2.67

PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR

1.2608 19.7 0.364 0.681 10.15 11.59 162 1346.0 11703.
R HUB R TIP NB UTIPMAX STR
1 9.50 11.59 160 1346.0 16491.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               WB WS WN WC CL RHOB RHOD AR
2. 2. 9. 3. 1.4 0.168 0.168 2.08
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
7 19.7 0.343 0.590 10.36 11.59 147 1346.0 10149.
                                                                                                                   MD WB WS WN WC CL RHOB RHOD AR
15. 2. 2. 8. 3. 1.2 0.168 0.168 3.25
PR DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
1.2834 19.7 0.386 0.800 9.88 11.59 166 1346.0 13748.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     WB WS WM WC CL RHOB RHOD AR
3. 3. 11. 4. 1.7 0.286 0.286 1.50
DEL H MACH AREA R HUB R TIP NB UTIPMAX STR
3. 19.7 0.321 0.521 10.51 11.59 121 1346.0 15239.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            273.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           GAM
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          WSPEC
3.874
FRAME
169.2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           PTOT 30000. 2.000 270.1 LB/SQIN TTOT 30000. 2.000 1438.2 DEG R CWIN 30000. 2.000 1438.2 DEG R REMEMBER SHOWN SHOW SHOWN 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     VEL T TOT P TOT P STAT AREA (554, 1295, 37330, 34816, 0.4393
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ***************** TOTAL COMP WEIGHT IS
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          LENGTH CENGRA INERTIA
9.86 5.5 6945.0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   HP
24338.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              AD EF PO TO 0.8600 37330.2 1294.7 HO WI CWI 315.58 125.00 50.89
AREA R
0.961
1.3107 19.7 0.407
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            WEIGHT
236.89
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          XXXXXXXXXXX
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      96.0000
H HI
177.97
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               MD
12.
PR D
1.2417
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     MD
21.
PR D
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            N STG
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   M NO
0.321
                                                                                        STAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                   STAGE
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         STAGE
```

LENGTH STAGE I DISK BLADE VANE HWD CASE AR 18.0 5.3 21.4 50.9 8.1 1.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR WEIGHT 2.3492 140.3 0.500 0.537 11.75 12.75 119 1481.3 17715. 103.76 6 MECHANICAL DESIGN N STG LOADING AREA 1.000 0.310 0.537 RTIP RHUB DEL H RPM MAXRPM TORQ 12.8 11.7 140.3 13256.2 13309.0 114690. 0.5371 1.2867 M NO VEL T TOT P TOT P STAT AREA GAM 0.550 1260. 2466. 13657. 11273. 1.0814 1.2964 103.760 GAM T0.1 2466.4 0.521 M NO VEL T TOT P TOT F STAT AREA 0.500 1249. 2925. 32103. 27410. 0.53 CENGRA INERTIA 3.5 1983. 1.000 C2.3507 1.1872 0.9000 13656.8 2463.6 CH IN H OUT AREA FLOW HP 797.85 657.58 6.97 122.03 24219. W/AREA 0.287 DEN 0.286 MEIGHT 103.76 UTIPMAX STRESS 1481.3 17715.1 N STG LENGTH TURBINE 0.921 UT 1475.5 STAGE DUCT DUCT

€

HPT

-

STAGE I 2966. STAGE I 2344 LENGTH 3.27 MEIGHT LENGTH 139.32 3.72 MEIGHT 153.65 DISK BLADE VANE HWD CASE AR 9.5 15.2 60.6 45.4 8.6 2.00 PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR 1.4534 53.3 0.550 1.098 10.80 12.92 114 864.3 12002. STAGE 2
DISK BLADE VANE HWD CASE AR
12.9 18.6 74.3 40.0 8.0 3.00
PR DEL H MACH AREA R HUB R TIP NB MAXUTIP STR
1.4998 53.3 0.575 1.489 10.80 13.60 137 909.5 16282. 7663.1 157143 1.2974 P STAT AREA GAM 5048. 2.0822 1.3080 H/T 0.836 GAM P TOT P STAT AREA (13843. 11425. 1.0976 RPM 7663.1 CENGRA INERTIA 1.000 **************** TOTAL TURB WEIGHT IS AD EF PO TO 0.9000 6347.6 2061.5 AREA FLOW HP 15.24 126.72 19107. 7 MECHANICAL DESIGN H STG LOADING AREA 2.000 0.280 1.098 RIIP RHUB DEL H 12.9 10.8 106.6 7 DEN W/AREA 0.286 0.606 P TOT 6348. WEIGHT 485.58 = 192.61 0.600 1257, 2062. 1.1751 H DUT 537.86 UTIPMAX STRESS 864.3 12002.3 N STG LENGTH 2 10.49 ********** TURBINE H/T 0.836 FRAME WT 2.1808 H IM UT 864.3 644.43 STAGE

7,

0

0

LENGTH= 20.77 WEIGHT =

MAX CONDITIONS OCCUR AT

0.0 MSPEC 11.369 WTOT 501.6 70.011 TR WT= MACH 0.137 INC WT 0.0 LENGTH 54.000 NOZ WT 329.1 MAX CONDITIONS OCCUR AT ROUT 23.977 LIN WT PURNER NUMBER RIN ROUT ********** Z********** ********* NOZ 10 0.0 CAS WT 38.2

O

Ü

********** ********** SHAF 12

TM NC 0.69 97.74 3.2 1ENG 32.58 0.0 0.0 SHAFT 12 299 TOTAL INERTIA OF THIS SPOOL IS

****** XXXXXXXXXXXXXXX SHAF 11

TOTAL INERTIA OF THIS SPOOL IS 28489.

ACCS WT= 0.000

300

11

ı

WEIGHT INPUT DATA IN ENGL UNITS WEIGHT OUTPUT DATA IN ENGL UNITS

NSTAGE	0m0r0n0000
DIUS	000000000000000000000000000000000000000
TREAM RADIUS RO RI RO	1200
	125. 177. 178. 178. 178. 178.
DOWN	113.
RO	14.
RI RC	150000000000000000000000000000000000000
UPSTREAM RI RO	19. 10. 10. 10. 10. 10.
RI	11128890.00
ACCU	2002 2002 2002 000
COMP	14.
EST	569. 2237. 2273. 2273. 821. 821.
COMP	1110000001011

24.

0.00 ESTIMATED TOTAL LENGTH= 232. ESTIMATED MAXIMUM RADIUS=

TOTAL BARE ENGINE WEIGHT= 3210. ACCESSORIES= ESTIMATED CENTER OF GRAVITY= 77.

Ī

Ö

STATION PROPERTY DUTPUT DATA

ECTED	DATOUT9 0.300000+05 0.180780+01 0.481910+01 0.231210+01 0.18520+01 0.16550+02 0.0	20
NTERFACE CORR FLOW ERROR 51ATP8 0.0 6.3568D-04 0.0 0.0 0.10300D-03 0.0 0.0 0.0 0.0 0.0 0.0	DATDUT8 0.15281D+01 0.85528D+00 0.88147D+00 0.9900D+00 0.9009D+00 0.98000D+00 0.98000D+00 0.98000D+00 0.98000D+00 0.98000D+00 0.98000D+00 0.98000D+00 0.98000D+00	42457.93 76.838 0.0
STATIC I PRESSURE STATP7 0.0 0.0 0.49484D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.92530D+00 0.25381D+03 0.049649D+02 0.32125D+00 0.96971D+00 0.67095D+03 0.07500D+00	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.0 0.0 0.42758D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.20100D+01 0.73533D+00 0.0 0.91354D+05 0.11437D+05 0.50152D+04 0.5152D+04 0.5152D+03 0.31021D+03 0.31021D+03 0.98000D+00	FUEL FLOW NET THRUST BOATTAIL I SPILLAGE
REFERED FLOW STATP5 0.93270D+03 0.17287b+03 0.17287b+03 0.62122b+02 0.62122b+02 0.11299b+02 0.11299b+02 0.19098b+02 0.19098b+03 0.19098b+03 0.19098b+03	DUTPUT DATA DATOUT5 10.78225D+02 01.0.41623D+02 01.0.41623D+02 01.0.6156D+02 01.0.67376D+02 01.0.74657D+03 01.0.74657D+03 01.0.74657D+03 01.0.74657D+03 01.0.74657D+03 01.0.74657D+03 01.0.74657D+03	43191.71 1.7742 5.08 1.7742
FUEL/AIR RATIO 5 TATP4 0.0 0.0 0.0 0.0 0.0 0.25471D-01 0.25471D-01 0.25470D-01 0.27869D-01 0.37869D-01	OMPONENT OU DATOUT4 0.154230+01 0.154230+01 0.137760+01 0.268110-01 0.348680+01 0.348680+01 0.273900-01 0.113280+01 0.113280+01 0.113280+01 0.113280+01 0.113280+01 0.113280+01 0.113280+01 0.113280+01 0.127840+04	T SHAFT HP SFC
TEMPERATURE 51A1P3 0.41184D403 0.74072D403 0.89736D403 0.29736D404 0.13857D404 0.29136D404 0.29136D404 0.30000D404 0.3000D404 0.30000D404 0.3000D404 0.30000D404 0.30000D404 0.30000D404 0.30000D404 0	DATOUT3 0.11788D+04 0.20 00 0D+04 0.30 00 0D+01 0.100 0D+01 0.10805D+01 0.10805D+01 0.10805D+01 0.10805D+02 0.80319D+04 0.52725D+04	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
TOTAL STATP2 0.43727D+01 0.31640D+02 0.56054D+02 0.56054D+02 0.56054D+02 0.25013D+03 0.23713D+03 0.23713D+03 0.23713D+03 0.23713D+03 0.23713D+03 0.23713D+03 0.23713D+03 0.50964D+02	DATOUT2 0.19897D+04 0.52725D+04 0.20313D+04 0.80319D+04 0.80319D+04 0.57387D+03 0.6000D-01 0.6000D-01 0.6000D-01 0.527387D+03 0.6000D-01 0.527387D+03 0.6000D-01	311.45 23931.25 19260.46 23931.25
WEIGHT FLOW STATP1 0.31145D+03 0.31145D+03 0.31145D+03 0.12745D+03 0.12745D+03 0.12745D+03 0.12745D+03 0.12745D+03 0.12745D+03 0.13746D+03 0.13746D+03 0.13746D+03	DATOUTI 0 19260D+05 10837D+05 0 16837D+05 0 25376D+05 0 25374D+05 0 1689D+05 0 16389D+05 0 16389D+05 0 16389D+05 0 17646D+01	SEC) DRAG RUST
STATION STATION 10 10 12 13	COMPONENT TO THEET COMPONENT SOUTHESS COMPRESS COMPRESS COMPRESS TURBINE MIXER MIXER MIXER MIXER MACH SHAFT SHAFT COMPONENT SHAFT SHAFT COMPONENT SHAFT COMPONENT COMP	AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

&D IMT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F, SPEC(7,10)=0,SPEC(4,9)=0, &END NEP - INPUT USED 0.33382D+00 0.17460D+00 0.72644D-01 0.72217D-03 0.32871D-03 0.31478D-04 0.21682D-05 0.24682D-05 1 NOW BEING U (ERRORS**2) = 0 SUM 0

INMAP="ASF", NOZMAP="ADENAB", CFGMAP="ADENCFG", DCDMAP=0, DERP=0, ACI=7., NWC=1, NWD=1, INLTWT=1, MODE=0, INOZ(1)=10,0,0,0,0,0,KVALUE=.00025,REFMFR=0,OPTB=3., A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2, SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0., INSTAL

SUM OF (ERRORS**2)= 0.58038D-06

&D SPEC(5,10)=5556, &END REP - INPUT MODE

1 NOW BEING USED

į ı

		ER (MNO)									
		LOCAL MACH NUMBER (MNO)								MNO PT2/PT0	
MNFS)		LOCAL								0.820	
I NUMBER C		AND							ER (MNO)	2.300	ER (MNO)
STREAM MACH NUMBER (MNFS)		0/AC)					AOZAC PTZZPTO	A0/AC PT2/PT0	MACH NUMBER	2.000	LOCAL MACH NUMBER (MND)
FREE		MASS FLOW RATIO (AO/AC)			AOZAC PTZZPTO	AOZAC PTZZPTO	0.835	0.950	LOCAL	1.700	LOCAL
87		MASS FLO	AO/AC PT2/PT0	AOZAC PT2ZPT0	0.665	0.745	0.825	0.937	٧.5	1.400	\$ ^
	MNO MNFS	\$>	0.750	0.668	0.650	0.735	0.805	0.925	2/PT0 0PT)	1.200	OZAC OPT)
BER (MNC)	3.000	(PT2/PT0)	0.700	0.600	0.969	0.938	0.790	0.900	RECOVERY (PT2/	0.800	RATIO (AO/
L MACH NUMBER	2.000	RECOVERY (PT2	0.600	0.575	0.600	0.700	0.775	0.875	INLET RECO	0.400	FLOW
LOCAL	1.000	PRESSURE REC	0.500	0.500	0.575	0.625	0.750	0.850	OPTIMUM	0.200	OPTIMUM MASS
	0.0	INLET	0.490	0.490	0.550	0.600	0.720	0.825		0.0	
* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *	MHO=0.600	MN0=0.850	MN0=1.200	MH0=1.700	MN0=2.200	MN0=2.500	* * * * * * * * * * * * * * * * * * *		** ** ** ** ** ** ** ** ** **

	0.0	0.600	0.800	1.000	1.200	1.400	1.600	2.000	2.000	2.500	MNO AO/AC	
**************************************		BUZZ LIMIT	MASS FLOW	RATIO (AD/AC)	8/	LOCAL	MACH NUMBER	R (MNG)			
	0.0	1.400	1.500	1.600	1.800	2.000	2.200	2.500	MNO			
**************************************		DISTORTION	LIMIT	MASS FLOW R	(ATIO (AOZAC)	۸۶	LOCAL	MACH NUMBER	R (MNO)			
	0.0	0.600	0.800	1.000	1.200	1.400	1.700	2.000	2.200	2.500	MND AO/AC	
* * * * * * * * * * * * * * * * * * *	SPILLAGE	DRAG COEFFICIENT		(CDSPL)	\$ >	INLET M.	MASS FLOW RA'	RATIO (A01/AC)	CO AND	LOCAL	MACH NUMBER (MND)	â
0.0=0.030	0.300	0.400	0.500	0.600	0.700	0.705	0.710	0.755	0.850	0.955	A01/AC CDSPL	
065.0=0NM	0.300	0.400	0.500	0.600	0.700	0.705	0.710	0.755	0.850	0.955	A01/AC CDSPL	
MH0=0.600	0.300	0.400	0.500	0.600	0.700	1.000	ADI/AC CDSPL					
MN0=0.850	0.300	0.400	0.500	0.600	0.700	1.000	ADI/AC CDSPL					
MN0=1.200	0.300	0.400	0.500	0.600	0.700	0.705	1.000	A01/AC CDSPL				
MM0=1.300	0.300	0.400	0.500	0.600	0.700	0.705	0.710	1.000	ADIZAC CDSPL			
MN0=1.700	0.300	0.400	0.500	0.600	0.700	0.705	0.710	0.755	1.000	ADI/AC CDSPL		
MN0=2.200	0.300	0.400	0.500	0.600	0.700	0.705	0.710	0.755	0.850	1.000	ADI/AC	

Ü

O

Ö

	()					BER (MNO)								
CDSPL	ADI/AC CDSPL					LOCAL MACH NUMBER								
0.0	1.000													
0:0	0.955	CMND)		(CMND)		AND	MNO							
0.190	0.850	MACH NUMBER (MND)	MNO REF CDSPL	LOCAL MACH NUMBER	MNO REF AOI/AC	(AOBLD/AC)	2.500							
0.280	0.710	LOCAL	2.500	LOCAL	2.500	FLOW RATIO	2.200	AOBLD/AC CDBLD	AOBLD/AC CDBLD	AGBLD/AC CDBLD	AOBLD/AC CDBLD	AOBLD/AC CDBLD	AUBLD/AC CDBLD	AOBLD/AC
0.291	0.705	٧s	2.000	٧٥	2.200	BLEED MASS	1.700	0.050	0.050	0.050	0.050	0.050	0.050	0.050
0.298	0.575	CDSPL)	1.600	EF AOI/AC)	2.000	S A	1.200	0.040	0.040	0.040	0.040	0.040	0.040	0.040
0.497	0.600	COEFF (REF	1.200	FLOW RATIO (RE	1.600	(CD BLD)	0.850	0.030	0.030	0.030	0.030	0.030	0.030	0.030
969.0	0.500	SPILLAGE DRAG	0.800	MASS	1.200	COEFFICIENT	0.800	0.020	0.020	0.020	0.020	0.020	0.020	0.020
0.887	0.400	REF SPIL	0.500	REF INLET	0.800	DRAG	0.700	0.010	0.010	0.010	0.010	0.010	0.010	0.010
1.100	0.300		0.0		0.0	BLEED	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	MN0=2.500	* * * * * * * * * * * * * * * * * * *		* * * * * * * * * * * * * * * * * * *	308	* * * * * * * * * * * * * * * * * * *		MN0=0.0	MN0=0.700	MND=0.800	_MND=0.850	MNO=1.200	MNO=1,700	MNG=2.200

		LOCAL MACH NUMBER (MND)		AOBYP/AC CDBYP		LOCAL MACH NUMBER (MNO)									
		AND	ONW	0.280	0.280	0.280	0.280	0.280	0.280	0.280	0.280		AND		
	υ	(AOBYPZAC)	2.500	0.240	0.240	0.240	0.240	0.240	0.240	0.240	0.240		(ADZAC)		AOZAC AOBLDZAC
CDBLD	AOBLD/AC CDBLD	FLOW RATIO	2.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200	0.200		FLOW RATIO C		0.0
0.071	0.050	BYPASS MASS	1.700	0.160	0.160	0.160	0.160	0.160	0.160	0.160	0.160		MASS FL		0.850
0.057	0.040	VS BYE	1.200	0.120	0.120	0.120	0.120	0.120	0.120	0.120	0.120		s,		0.0
0.043	0.030	(CDBYP)	1.010	0.080	0.080	0.080	0.080	0.080	0.080	0.080	0.080		(AOBLD/AC)		0.680
0.028	0.034	COEFFICIENT	1.000	0.00	0.00	0.060	0.060	0.060	0.060	0.060	0.060		RATIO		0.600
0.014	0.010	BYPASS DRAG CO	0.700	0.040	0.040	0.040	0.040	0.040	0.040	0.040	0.040		EED MASS FLOW		0.500
0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		BL		0.0
	MN0=2.500	**************************************		MN0 = 0.0	MH0=0.700	000.1≈00M 309	MN0=1.010	MNO=1.200	MH0=1.700	MH0=2.200	MN0=2.500	ı	** X X X X X X X X X X X X X X X X X X	11	MN0=0.0

										LOCAL MACH NUMBER (MNO)			
AOZAC AOBLDZAC						AO/AC AOBLD/AC		LOCAL MACH NUMBER (MND)	MNO AOBLD/AC	ADEZAC) AND			
0.955 AC					AOZAC AOBLD/AC	0.955 AC		LOCAL MAC	2.500 Mh 0.030 AG	S FLOW RATIO (ADE/AC)			
0.850			ADZAC AOBLDZAC	AOZAC AOBLDZAC	0.850	0.850		8 /	0.000	ENGINE MASS			
0.755	ADZAC AOBLDZAC	AOZAC AOBLDZAC	0.755	0.755	0.755	0.755		(AUBLD/AC)	1.600	VS E			
0.680	0.680	0.680	0.680	0.680	0.680	0.680		FLOW RATIO	1.200	(AOBYP/AC)			ADE/AC AOBYP/AC
0.600	0.600	0.600	0.600	0.600	0.600	0.600		BLEED MASS	0.800	RATIO	ADE/AC AOBYP/AC	ADE/AC ADBYP/AC	0.595
0.500	0.500	0.500	0.500	0.500	1.278	0.500		OPTIMUM B	0.00	MASS FLOW	1.990	1.000	0.500
0.400	0.400	0.400	0.400	1.130	1.630	0.400			0.0	BYPASS	0.0	0.0	0.400
MN0=0.700	TNO=0.800	MN0=0.850	MN0=1.200	MH0=1.700	MN0=2.200	MH0=2,500	310	* * * * * * * * * * * * * * * * * * *		**************************************	_MN0=0.0	MN0=1.190	_MN0=1.200

AOBYP/AC	AOBYP/AC	ADE/AC AOBYP/AC	AOE/AC AOBYP/AC
0.670	0.720	0.770	0.920
0.500	0.550	0.550	0.600
0.400	0.400	0.400	0.520
MN0=1.700	MN0=2.000	MN9=2.200	MH0=2.500

INLET START MACH NUMBER 3.000 MINIMUM MACH NUMBER FOR INLET DRAG CALCULATIONS 0.600

(A10/A9					
AREA RATIO (A10/A		MNFS CD A/B	MNFS CD A/B	MNFS CD A/B	MNFS CD A/B
AFT-BODY		2.200	2.200	2.200	2.200
AND		2.000	2.000	2.000	2.000
BER (MNFS)		1.500	1.500	1.500	1.500
STREAM MACH NUMBER (MNFS)		1.200	1.200	1.200	1.200
FREE STREA		1.100	1.100	1.100	1.100
8.0	A10/A9	1.000	1.000	1.000	1.000
(CD A/B)	5.000	0.950	0.950	0.950	0.950
AFT-BODY DRAG COEFFICIENT (CD A/B)	3.330	0.900	0.900	0.900	0.900
DRAG CO	2.500	0.800	0.800	0.800	0.800
AFT-BODY	2.273	0.600	0.600	0.600	0.600
* TABLE AB * * * * * * * * * * * * * * * * * *		A10/A9= 2.273 0.600	A10/A9= 2.500	A10/A9= 3.330	A10/A9= 5.000

(PS)				
POWER SETTING (PS)				
POWER				
AND				
(PT9/PAMB)				
NOZZLE PRESSURE RATIO (PT9/PAMB)		PT9/PAMB CFG	PT9/PAMB CFG	PT9/PAMB
NOZZLE PR		12.000	12.000	12.000
٧S		10.000	10.000	10.000
(CFG)	PS	8.000	8.000	8.000
GROSS THRUST COEFFICIENT	2.000	0.988	0.66.0	6.000
THRUST	1.500	4.000	4.000	4.000
GROSS	1.000	1.000 2.000	1.500 2.000	2.000 2.000
* TABLE CFG*		1.000	1.500	2.000
* * *		PS	PS	PS

	0.12000D+02	0.98400D+00		0.12000D+02	0.98000D+00		0.12000D+02	0010007000
	0.10000D+02	0.98500D+00		0.10000D+02			0.10000D+02	01000000
	0.80000D+01	0.99000D+00		0.80000D+01	0.98500D+00		0.80000D+01	001000000
	0.60000D+01	0.98750D+00		0.60000D+01			0.60000D+01	0 082500
	0.400000+01	0.97000D+00		0.40000D+01	0.98500D+00		0.40000D+01	0 977500+00
0.10000D+01	0.20000D+01	0.94500D+00	0.15000D+01	0.20000D+01	0.92500D+00	0.20000D+01	0.20000D+01	0 950000+00
							PTP0	
0.0			0.0			0.0		
11			31			11		

D

TABLE DATA INPUT SUMMARY 11 TABLES

RAY LOCATION	14	2000	300	7978 8431 9172
NUMBER ARR				
REFERENC	000	000	00	1009
TABLE NUMBER	1 CM PS	\$ N ≪	1 00	10

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10747

SUM OF (ERRORS**2)= 0.58038D-06

ASF

BMET

ITERF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,6,7,8,9,10,0,
ISECF(1)=1,2,3,4,5,5,6,7,8,10,0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,TDOR=0,
DOR=0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,TDOR=0,TDOR=0,TDOR=0,
INCTS=0,8DOR=0,T

315

J

20 NOV 79		DYNAMIC PRESSURE	366.47 LBS/FT**2	CE NOZZLE EA (A9R)	FTXX2	INSTALLED ENGINE PERFORMANCE DATA	(LBM/HR) 19506. (LBM/HR/LBF) 195061. (LBM/HR/LBF) 0.	WFT COR (LBM/HR/LBF) SFC COR (LBM/HR/LBF)	143 061 071	678			WEIGHT BREAKDOWN	NE (LBM) = 3210. ES (LBM) = 0. M) = 3210.		
MAP CFG MAP ADENCFG		TOTAL	517.81 DEG R	TBODY REFERENCY A (AIOR) EXIT ARE	**2 11.34	AFTBODY DRAG	485510) 176 (LBF) 0	(LBF) 179 (LBF) 179	LBF) -3			ENGINE	BARE ENGINACESSORII TOTAL (LBI		200
P DEL A/B	MACH NUMBER 0.60	AMBIENT TEMPERATURE	483.03 DEG R	REFERENCE AFTI OR NACELLE AREA	15.88 FT	o	0 0 0 0 0	00000		DRAG			R INDUCTION SYSTEM WEIGHT BREAKDOWN	597 = 0 0 = 0 0 = 0 597	DRAG BUILDUP	N (LBF) = 191.3 = 13.5 = 204.8
MAP NOZZLE MA ADENAB	ALTITUDE 10000.0 FT	OT:L ESSURE	9 LBS/FT**2	REFERENCE A9 (A10/A9 R)	1.40	INLET DRA	C (FT**2) D SPL (TAB 3) D SPL (TAB 3A) D BLD	RAGIN	SAG.				AIR IND WEIGH	INLET (LBM) DUCT (LBM) BYPASS DOORS (LB T/O DOORS (LBM) TOTAL (LBM)	NACELLE	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET		ENT T	S/FT**2 1854.8	INLET CAPTURE AREA (AC) A10/	.00 FT**2	INLET MASS FLOW RATIGS		UE/AC 0.833	0	RATIO = 0.0			HT BREAKDOWN	LBM) = 49. 138. = 360. = 546.		
		AMBIE	1454.24 LB	INL	7	ERFORMANCE DATA ING INLET RECOVERY NOZZLE CFG	10562.590 R/LBF) 10061.496 M/SEC) 250.614 M/SEC) 212.557	0.967 0.00 0.0		INLET MASS FLOW	VS SPILLAGE IOM HUMBER	SYPASS WITH INLET AIRFLOW PILLED	NACELLE WEIGHT	ENGINE MOUNTS (FIREMALL (LBM) COWL (LBM) TOTAL (LBM)		
						ENGINE P INCORPORAT AND	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LB WZ COR (LBM/SE UZ ABS (LBM/SE	CFG (PRI)	316	REFERENCE	BYPASS	SCHEDUL		,	,	

STATION PROPERTY SUTPUT DATA

Q:						10000D+0			23190D+0 21692D+0		34455D+0]	5		
	STATP8 0.62836D-0	0.26906D-07 0.0 0.0 0.0	0.23863D-08 0.16533D-07 0.0	0.37504D-07 0.0		DATOUT8 .99842D+00	.84986D+00	.85982D+00	. 9000000+00	.33224D-07	0.18672D+01 0. 0.57085D-07 0.	/n_noraca.		10061.50
ATIC	STATP7	0.34007D+02 0.0 0.0	0.0 0.0 0.34007D+02	0.18653D+02 0.10108D+02		DATOUT7 0.96700D+00	.25381D+0	.49649D+0 .29991D+0	0.96971D+00 0.65713D+00	.64832D+0	0.96364D+00			(LB/HR) //AIRFLOW)RAG
MACH	STATP6 0.600000+00 0.0		0.0 0.0 0.40016D+00			DATOUT6 0.60000D+00	.10016D+0	.10003D+0	0.49994D+04 0.50042D+04	0.0	0.0		O PASSES	FUEL FLOW (LB NET THRUSTZAI BOATTAIL DRAG SPILLAGF + LI
REFERRED	57ATP5 0.29821D+03 0.25026D+03 0.99714D+02	.50849D+0 .50849D+0 .10633D+0	0.19103D+02 0.41864D+02 0.34614D+02 0.14258D+03	.15168D+0	PUT DATA	DATOUT5 0.12759D+01	.54534D+0	.28061D+0 .66156D+0	0.55526D+00	0+02040	0.0		ITERATIONS 1	14773.30 0.9580 0.00 0.00
FUEL/AIR RATIO	STATE		0.27651D-01 0.26601D-01 0.26268D-01 0.13140D-01	.13140D-0	COMPONENT OUTPUT	DATOUT4 0.10721D+01	.15047D+0	.12996D+0 .29106D-0	0.25013D+01	0.0001010	0.79990D+04		0	ST E SHAFT HP ISFC
TOTA	.48303D+0 .51785D+0	.74239D+0 .12941D+0 .12405D+0	9249 4225 0522 4436	.14436D+0				.3000D+0	100000+0	30000D+0	0.799900+04		ECOVERY= 0.967	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
TOTA	STATP2 .10108D+9 .12472D+0 .37502D+0	.36752D+0 .22066D+0 .19100D+0	8976 1828 7723 7052	.34829D+0		DATOUT2 .64644D+0	.60050D+0	.500000-0	.60050D+0	0-000009.	0.799900+04		= 10000. R	212.56 10502.59 4270.71 10502.59
EIG	.21549D+0 .21269D+0	.53199D+0	0387 0786 0919 1549	.21549D+0		DATOUT1 0.42707D+0	0.16272D+0 0.99902D+0	.20613D+0 .94802D-0	.16272D	0.0000000000000000000000000000000000000	0.11767D-02 0.10677D-02		OV ALTITUDE	SEC) DRAG RUST
FLOW	1000	100-	10 4:8		OMPONEN	TYPE	SPLITT	DUCT B	7 10881	9 DUCT	SHAF		MACH= 0.60	AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

0.6369 AOZAC EXCEEDS DISTORTION LIMIT. AOZAC: SUM OF (ERRORS**2)= 0.16563D-02 SUM OF (ERRORS**2)= 0.10904D-04 SUM OF (ERRORS**2)= 0.42140D-07

*** WARNING MESSAGES ***

G

ŧ

8

ķ

DISTORTION LIMIT= 0.6350

DATE RUN 20 NOV 79			DYNAMIC PRESSURE	835.03 LBS/FT**2	ENCE NOZZLE AREA (A9R)	34 FT**2	INSTALLED ENGINE PERFORMANCE DATA	3.986 FN (LBF) 9685.19 15.877 WFT (LBM/HR) 10303.88 3.983 SFC (LBM/HR/LBF) 1.06	0.206 FN COR (LBF) 17181.65 4.729 WFT COR (LBM/HR) 1931.57	סוכ כסע גרפון ווא רפון זיין	0.215 1.094 0.009	5.364			E WEIGHT BREAKDOWN	SINE (LBM) = 3210. RIES (LBM) = 0. LBM) = 3210.		
CFG MAP ADENCFG			TOTAL TEMPEKATURE	58.24 DEG R	ODY REFER	2 11	AFTBODY DRAG		^	(LBF)	(LBF)	LBFJ			ENGINE	BARE ENGINE ACCESSORIES TOTAL (LBM)		
DEL A/B MAP	MACH NUMBER	1.00	AMBIENT TEMPERATURE	5.20 DEG R 55	REFERENCE AFTBOOR NACELLE AREA	15.88 FT**2		7.000 A10/A9 0.040 A10 (FT**2) 0.035 A9 (FT**2) 0.004 P95/PAMB	079	582	670	DRAG A			IR INDUCTION SYSTEM WEIGHT BREAKDOWN	= 597. (LBM) = 0. BM) = 0.	DRAG BUILDUP	(LBF) = 395.8 = 27.9 = 423.7
MAP NOZZLE MAP ADENAB	ALTITUDE	15000.0 FT	TOTAL PRESSURE T	08 LBS/FT**2 46	REFERENCE 0/A9 (A10/A9 R)	1.40	INLET DRAG	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD SPL (TAB 3A)		INL REF					AIR INDUC WEIGHT	INLET (LBM) DUCT (LBM) BYPASS DOORS T/O DOORS (LB) TOTAL (LBM)	NACELLE D	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET			BIENT ESSURE	LBS/FT**2 2258.	NLET CAPTURE AREA (AC) A1	7.00 FT**2	Y INLET MASS FLOW RATIOS	AOSPL/ AOI/AC AOBLD/ AO/AC	AOBYPZAC 0.0 AOEZAC 0.63			RATIO = 0.0			IGHT BREAKDOWN	S (LBM) = 49.		
			AMB	1192.90	H		ENGINE PERFORMANCE DATA CORPORATING INLET RECOVERY AND NOZZLE CFG	(LBF) 9 (LBM/HR) 10 (LBM/HR/LBF) COR (LBM/SEC)	ABS (LBM/SEC) 227.26	(SEC) 0.975		FERENCE INLET MASS FLOW	BYPASS VS SPILLAGE OPTION NUMBER	SCHEDULED SYPASS WITH EXCESS INLET AIRFLOW SPILLED	NACELLE WEI	ENGINE MOUNTS FIREWALL (LBM COWL (LBM) TOTAL (LBM)		
							INC	NE SEC	E 22	050	320	ω. Ш				1	ı.	

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY OUTPUT DATA

CORRECTED 8 8 0-03 0-03 0-08	DATOUT9 0.15000D+05 0.26733D+01 0.57945D+01 0.30000D+04 0.23227D+01 0.10895D+01 0.0	
INTERFACE CORRE FLOW ERROR 51ATP8 0.0 0.20528D-03 0.0 12 0.0 13689D-08 -0.13689D-08 -0.14865D-08 12 0.0	DATOUT8 0.10765D+01 0.85079D+00 0.86757D+00 0.99009D+10 0.89994D+00 0.15361D-07 0.13674D+01	10303.89 43.2432 0.0 0.0
PRESSURE STATP7 0.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT7 0.95986D+00 0.25381D+03 0.0 49649D+02 0.30392D+00 0.96971D+00 0.64842D+03 0.0 64842D+03 0.0 97525D+00	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.1000D+01 0.0 0.35068D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.1000000+01 0.931380+00 0.0 0.985090+00 0.103040+05 0.501440+05 0.470420+05 0.980000+00 0.980000+00	FUEL FLOW NET THRUST BOATTAIL I SPILLAGE
REFERED FLOW STATP5 0.28121D+03 0.22045D+03 0.50108D+02 0.52832D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+03 0.15170D+03	OUTPUT DATA DATOUT5 01 0.18946D+01 01 0.42210D+01 01 0.31445D+02 01 0.6156D+02 01 0.65526D+03 01 0.83137D+03 01 0.85526D+03 17296.15 1.0485 -0.00 1.0485	
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.27241D-01 0.26206D-01 0.25879D-01 0.25879D-01 0.12597D-01	DMPONENT 0 12010174 0.13813D+0 0.13177D+0 0.28674D-0 0.35068D+0 0.24360D+0 0.24360D+0 0.24360D+0 0.27355D+0 0.57355D+0 0.5735D+0	SHAFT HP
TEMPERATURE STATP3 0.46522D+03 0.55835D+03 0.77032D+03 0.77032D+03 0.77032D+03 0.15214D+04 0.20259D+04 0.20259D+04 0.24229D+04 0.24229D+04 0.2422D+04 0.2422D+04	DATOUT3 0.62642D+03 0.0 0.20000D-01 0.30000D+01 0.11039D+01 0.3000D+01 0.3000D+01 0.44825D+01 0.44825D+01 0.57981D+04	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
TOTAL PRESSURE STATP2 0.82972D+01 0.15089D+02 0.40337D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+03 0.39531D+03 0.39531D+03 0.39531D+02 0.39531D+02 0.39531D+02 0.39531D+02	DATOUT2 0.10574D+04 0.57981D+04 0.2000D-01 0.80245D+04 0.5000D-01 0.57387D+03 0.6000D-01 0.24187D+04 0.24187D+04 0.24187D+04	227.26 9827.51 7468.64 9827.51
WEIGHT FLOW 57ATP1 0.22708D+03 0.22721D+03 0.1060D+03 0.11661D+03 0.1050D+03 0.1050D+01 0.1079D+03 0.11268D+03 0.11368D+03 0.23008D+03	DATOUTI 0.74686D+04 -0.16543D+05 0.10544D+01 0.21469D+05 0.21469D+05 0.21469D+05 0.21469D+05 0.21469D+05 0.21469D+05 0.22316D-03	SEC) DRAG RUST
FLOW STATION 1 2 3 4 4 5 5 6 7 7 8 8 10 11 12	COMPONENT NO. ITYPE 1 INLET 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 DUCT B 10 NOZZLE 11 SHAFT 12 SHAFT 12 SHAFT	AIRFLOW (LB/ HET THRUST TOTAL INLET INSTALLED TH

ALTP=20000,MACH=1.4,ETAR=0, AEND NEP - INPUT MODE I NOW BEING USED SUM OF (ERRORS**2) = 0.42102D-01 SUM OF (ERRORS**2) = 0.4134D-05 SUM OF (ERRORS**2) = 0.14134D-06 SUM OF (ERRORS**2) = 0.41137D-06 SUM OF (ERRORS**2) = 0.38367D-05 SUM OF (ERRORS**2) = 0.38367D-05 SUM OF (ERRORS**2) = 0.11149D-06 OSUM OF (ERRORS**2) = 0.1149D-06 SUM OF (ERRORS**2) = 0.11562D-03 SUM OF (ERRORS**2) = 0.16562D-03 SUM OF (ERRORS**2) = 0.16562D-03

322

11

DATE RUN 20 NOV 79			DYNAMIC PRESSURE	332.18 LBS/FT**2	HCE NOZZLE REA (ASR)	2**L4 5	INSTALLED ENGINE PERFORMANCE DATA	(LBM/HR) 11054.35 (LBM/HR/LBF) 1.30	MFT COR	.615 .088 .964	.650		WEIGHT BREAKDOWN	(LBM)		
A/B MAP CFG MAP ADENCFG	2		TOTAL TEMPERATURE	622.73 DEG R 13	: AFTBODY REFEREN AREA (A10R) EXIT AR	FT**2 11.3	AFTBODY DRAG		(18F)	(LBF)	LBF)		ENGINE	BARE ENGINE 0. ACCESSORIES 0. TOTAL (LBM) 597.		64.8 46.5 11.3
NOZZLE MAP DEL A/ ADENAB	ALTITUDE MACH NUMBER	000.0 FT 1.40	AMBIENT TEMPERATURE	*2 447.37 DEG R	REFERENCE 9 R) OR NACELLE	15.88	ET DRAG	7.000 33 0.086 34) 0.060 0.020	.156	(LBF) 989.641	Q		IR INDUCTION SYSTEM WEIGHT BREAKDOWN	INLET (LBM) = DUCT (LBM) = BYPASS DOORS (LBM) = T/O DOORS (LBM) = TOTAL (LBM) = = TOTAL (LBM)	DRAG BUILDUP	FRICTION (LBF) = 56 (LBF) = 144 . (LBF) = 201
INLET MAP N	ALT	2000	TOTAL PRESSURE	3089.92 LBS/FT**	E REFERENCE A10/A9 (A10/A	1.40	ASS TIOS INL	0.349 AC (FT**2 0.651 CD SPL (1 0.019 CD SPL (1 0.632 CD BLD 0.0 CD BYP	.632 CD INL TO DRAG INL CD INL RE DRAG INL	RAG I			A DWN	49. INLET 138. DUCT 360. BYPAS 546. T/O D	Z	SKIN F WAVE (TOTAL
			AMBIENT PRESSURE	970.98 LBS/FT**2	INLET CAPTUR AREA (AC)	7.00 FT**2	FORMANCE DATA G INLET RECOVERY INLET M OZZLE CFG FLOW RA	10122.129 ADSPL/AC 11054.352 A01/AC 1.092 AOBLD/AC SEC) 202.980 AO/AC SEC) 262.077 AOBYP/AC	OE/A		WLET MASS FLOW RATIO = 0.0	S SPILLAGE HUMBER S YPASS WITH	1	ENGINE MOUNTS (LBM) = FIREWALL (LBM) = COML (LBM) = TOTAL (LBM)		
							ENGINE PERF INCORPORATING AND NO	FN (LBF) UFT (LBM/HR) SFC (LBM/HR/L U2 COR (LBM/S) U2 ABS (LBM/S)	CFG (PRI) CGF (SEC)	323	REFERENCE IN	BYPASS VS OPTION 3 SCHEDULED EXCESS INL		ı	,	

STATION PROPERTY OUTPUT DATA

CTED	DATOUT9 0.22639D+01 0.22639D+01 0.54399D+01 0.3000D+04 0.23209D+01 0.20366D+01 0.10904D+01 0.063400D+01		
INTERFACE CORRECTION ERROR 5.7 Å TP8 0.0 0.21131D-03 0.31872D-08 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.12009D+01 0.84839D+00 0.0 0.87569D+00 0.9900D+00 0.9973D+00 0.89973D+00 0.12989D-08 0.12367D-08		11054.35 38.6228 0.0
STATIC I PRESSURE STATP7 0.0 0.0 0.0 0.4 1807D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.96540D+00 0.25381D+03 0.0 0.49649D+02 0.31005D+00 0.96971D+00 0.65713D+00 0.65713D+00 0.65713D+00 0.98895D+00		(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.14000D+01 0.0 0.37720D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.140000+01 0.85256D+00 0.0 0.95606D+00 0.11054D+05 0.5025D+05 0.51899D+03 0.0	3 PASSES	FUEL FLOW (LB/HR) NET THRUST/AIRFLO BOATTAIL DRAG SPILLAGE + LIP DR
REFERRED FLOW 57ATP5 0.52924D+03 0.20309D+03 0.10952D+03 0.10952D+02 0.10952D+02 0.10952D+02 0.10952D+02 0.10952D+02 0.10952D+03 0.19172D+03 0.19172D+03	0UTPUT DATA DATOUT5 01 0.31849D+01 01 0.66759D+01 0 0.36127D+02 01 0.36127D+02 01 0.67376D+00 01 0.80114D+03 03 0.45627D+03	ITERATIONS	21947.11 1.0921 -0.00 1.0921
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.26624D-01 0.25613D-01 0.25293D-01 0.1719D-01	DATOUT4 0.13921D+01 0.13438D+01 0.03533D+01 0.28025D-01 0.35033D+01 0.28025D-01 0.28025D-01 0.28025D+01 0.28025D+01 0.28025D+01 0.080725D+03	2	JST (E SHAFT HP TSFC
TEMPERATURE STATP3 0.44741D+03 0.62285D+03 0.81430D+03 0.13622D+04 0.13622D+04 0.29275D+04 0.29275D+04 0.2445D+04 0.14445D+04 0.1445D+04 0.1445D+04 0.1445D+04 0.1445D+04 0.1445D+04 0.1445D+04 0.1445	DATOUT3 0.86005D+03 0.0 0.20000D-01 0.30000D+01 0.10951D+01 0.30000D+01 0.56056D+01	ECOVERY= 0.9654	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
PRESSURE STATP2 0.67589D+01 0.20781D+02 0.46105D+02 0.46105D+02 0.46105D+02 0.25081D+03 0.21845D+03 0.21641D+03 0.21641D+03 0.2587D+02 0.45851D+02 0.45851D+02	DATOUT2 0.14517D+04 0.56056D+04 0.20060D-01 0.80073D+04 0.50000D-01 0.80073D+04 0.26056D+01 0.26637D+03 0.6000D-01 0.26637D+03	= 20000. R	262.08 10122.13 11824.98 10122.13
WEIGHT FLOW 55509D+03 0.26202D+03 0.26202D+03 0.12140D+03 0.11535D+03 0.11535D+03 0.11840D+03 0.12240D+03 0.12240D+03 0.12240D+03 0.12240D+03 0.12240D+03 0.12240D+03	DATOUT1 0.11825D+05 -0.17180D+05 0.11583D+01 0.23549D+05 0.23549D+05 0.23549D+05 0.23549D+05 0.23549D+05 0.21947D+05 0.21947D+05	00 ALTITUDE	SEC) DRAG RUST
STATION 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COMPONENT NO. TYPE 1 INLET 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 MIXER 9 DUCT B 10 NOZZLE 11 SHAFT	MACH= 1.40	AIRFLOW CLB/ NET THRUST TOTAL INLET INSTALLED TH

&D SPEC(7,10)=1,SPEC(4,9)=3000,AJMAX=689.,AJMIN=456., &END NEP - IMPUT

TOTAL PRESSURE TOTAL T	DEL A/B MAP CFG MAP ADENCFG 20 NOV 79	MACH NUMBER	1.40	SIENT TOTAL DYNAMIC SRATURE TEMPERATURE PRESSURE	DEG R 622.73 DEG R 1332.18 LBS/FT**2	FFERENCE AFTBODY REFERENCE NOZZLE JACELLE AREA (AJOR) EXIT AREA (A9R)	15.88 FT**2 11.34 FT**2	INSTALLED ENGINE AFTBODY DRAG PERFORMANCE DATA	.000 A10/A9 .092 A10 (FT**2) .060 A9 (FT**2)	.192 CD A/B .366 DRAG A/B (LBF) 2073.37 .107 CD A/B SPR	.000 DKAG A/B SFK (LBF) 0.09 .516 CD A/B TOT (LBF) 2073 37	S90 CD A/B REF DRAG A/B REF (LBF) 16 CD A/B PS	S (LBF) 381.53			SYSTEM KDOWN ENGINE WEIGHT BREAKDOWN	= 597. BARE ENGINE (LBM) = 3210. ACCESSORIES (LBM) = 0. 1) = 0. TOTAL (LBM) = 3210. = 597.	BUILDUP) = 564.8 = 1446.5 = 2011.3
X X X X X X X X X X X X X X X X X X X	ET MAP NOZZLE MAP ADENAB		0000.0 FT 1	MBIENT TOTAL RESSURE PRESSUR	73.98 LBS/FT**2 3089.92 LBS/FT**2 447.37	NLET CAPTURE REFERENCE RE AREA (AC) A10/A9 (A10/A9 R) OR N	.00 FT**2 1.40	ENGINE PERFORMANCE DATA NCORPORATING INLET RECOVERY INLET MASS AND NOZZLE CFG FLOW RATIOS INLET DRA	N (LBF) 11892.078 AOSPL/AC 0.355 AC (FT**2) 7 FT (LBM/HR) 30363.469 AOI/AC 0.645 CD SPL (TAB 3) 0 FC (LBM/HR/LBF) 2.553 AOBLD/AC 0.021 CD SPL (TAB 3A) 0 COR (LBM/SFC) 166.656 AO/AC 0.624 CD Rin	2 ABS (LBM/SEC) 220.212 AOBYPYAC 0.105 CD BYP 0 0.967 AOE/AC 0.519 CD INL TOT (LBF) 3413	GF (SEC) 0.0 DRAG INL REF (LBF) 559 CD INL PS	RAGINL PS (LBF) 2853	EFERENCE INLET MASS FLOW RATIO = 0.	YPASS VS SPILLAG OPTION NUMBER	CHEDULED 3: PPASS WITH XCESS INLET AIRFLOW SPILLED	NACELLE WEIGHT BREAKDOWN	NGINE MOUNTS (LBM) = 49. INLET (LBM) IREWALL (LBM) = 138. BYPASS DOORS (LBM) 0ML (LBM) = 546. T/O DOORS (LBM) TOTAL (LBM)	E DRAG	8F)

STATION PROPERTY OUTPUT DATA

	ECTED		DATOUT9 0.23266D+01 0.23266D+01 0.29029D+01 0.24485D+01 0.20378D+01 0.10702D+01 0.50921D+01 0.0000000000000000000000000000000000		
	INTERFACE CORRE FLOW ERROR 57ATP8 -0.10382D+00 0.51130D-01 2 0.0 0.53973D+00 0.53973D+00 0.67498D-01 2 0.0 2 0.0		DATOUT8 0.12009D+01 0.80413D+00 0.0 0.46241D+00 0.90017D+00 0.89963D+00 0.62197D+00 0.9800D+00 0.18235D+00 0.18235D+00 0.18235D+00	30363.47 54.0030 0.0	
	PRESSURE STATP7 0.0 0.0 0.44851D+02 0.0 0.0 0.0 0.0 0.23572D+02 0.18874D+02 0.18874D+02		DATOUT7 0.96660D+03 0.25381D+03 0.0 0.49649D+02 0.82949D+00 0.65713D+00 0.55432D+03 0.98965D+03	CLB/HR) T/AIRFLOW DRAG + LIP DRAG	
	MACH NUMBER STATP6 0.14000D+01 0.0 0.28505D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		DATOUT6 0.140000+01 0.852560+00 0.969040+00 0.1951233D+04 0.47207D+04 0.39866D+03 0.19413D+05 0.98000D+00	FUEL FLOW NET THRUS BOATTAIL SPILLAGE	
101100	REFERRED FLUW STATP5 0.17440103 0.17440103 0.39550402 0.439670402 0.212130402 0.0 0.31510402 0.48020402 0.468020402 0.468020402 0.118100403 0.194310403	TPUT DATA	DATOUTS 0 -0.33294D+01 0 0.53294D+01 0 0.661550D+02 1 0.667376D+00 1 0.55526D+00 1 0.79731D+03 1 0.055526D+00 1 0.79731D+03 2 0.05555D+03 4 0.0	553	0.739894
STALLON FRONCEST	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.25476D-01 0.23860D-01 0.23306D-01 0.23306D-01 0.23306D-01 0.23306D-01	COMPONENT OUTPUT	DATOUT4 0.13921D+0 0.73989D+0 0.0 18979D+0 0.37453D+0 0.23326D+0 0.2334D-0 0.82335D+0 0.82335D+0 0.82335D+0 0.82335D+0	T SHAFT HP	R VALUE IS
5	TOTAL STATP3 0.44741D+03 0.62285D+03 0.83227D+03 0.83227D+03 0.83227D+03 0.15378D+04 0.1378D+04 0.2372D+04 0.2372D+04 0.2372D+04 0.2372D+04 0.2372D+04 0.2372D+04 0.2372D+04		DATDUT3 0.86005D+03 0.0000D+01 0.30000D+01 0.10969D+01 0.3000D+01 0.3000D+01 0.56950D+01	GROSS THR TSFC TOTAL BRA INSTALLED	2) THE
	PRESSURE 5TATP2 0.67589D401 0.20807D402 0.47441D402 0.47441D402 0.13771D403 0.12540D403 0.12560D403 0.52856D402 0.34417D402		DATDUTZ 0.14517D+04 0.56056D+04 0.82050D+04 0.82050D+04 0.56056D+04 0.5715D+04 0.5056D+04 0.5056D+04 0.5056D+04 0.5056D+04	220.21 11892.08 9936.01 11892.08	ESSOR (COMPONENT
	MEIGHT FLOW STATP1 0.24432D+03 0.24432D+03 0.2568D+03 0.12568D+03 0.11205D+03 0.11940D+03 0.1039D+02 0.7020B+02 0.7020B+02 0.7039D+02 0.7039D+02 0.7039D+02		DATOUTI 0.99360D+05 0.17535D+05 0.84708D+05 0.12997D+05 0.96559D+05 0.96559D+05 0.12097D+05 0.12097D+05 0.12097D+05 0.12097D+05	EC) RAG UST	* * FOR COMPRE
	FLOW STATION 22 33 66 77 110 122	2000	MOZZEE MOZZE MOZZEE RFLOW (LB/ T THRUST TAL INLET	* * WARNING *	

&D
SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,
AJMAX=0.,AJMIN=0.,
&END
NEP - INPUT
MODE 1 NOW BEING USED

MODE 1 NOW BEING USED SUM OF (ERRORS**2) = 0.96743D-01 SUM OF (ERRORS**2) = 0.30083D-01 SUM OF (ERRORS**2) = 0.83391D-03 SUM OF (ERRORS**2) = 0.21205D-04 SUM OF (ERRORS**2) = 0.1987D-05 SUM OF (ERRORS**2) = 0.1155D-05 SUM OF (ERRORS**2) = 0.1155D-05 SUM OF (ERRORS**2) = 0.1155D-05 SUM OF (ERRORS**2) = 0.22757D-07 SUM OF (ERRORS**2) = 0.46849D-03 8

3

3

ã

q

骨

DATE RUN 20 NOV 79			DYNAMIC PRESSURE	34 LBS/FT**2	NOZZLE (A9R)	**2	INSTALLED ENGINE PERFORMANCE DATA	FN (LBF) 7540.5 WFT (LBM/HR) 11194.0 SFC (LBM/HR/LBF) 1.4	SFC COR				GHT BREAKDOWN	(LBM) = 3210. (LBM) = 0.			
CFG MAP ADENCFG			TOTAL TEMPERATURE	41.07 DEG R 1755.	SODY REFERENCE (Alor) EXIT AREA	11.34 FT	AFTBODY DRAG	**2) 2.440 *2) 15.877 *2) 6.507	(18F)	(LBF) 1852 (LBF) 1380	LBF) 452		ENGINE WEIGHT	BARE ENGINE (ACCESSORIES (TOTAL (LBM)			
AP DEL A/B MAP	MACH NUMBER	2.00	AMBIENT TEMPERATURE T	411.70 DEG R 74	REFERENCE AFTBO	15.88 FT**2		7.000 A10/A9 0.083 A10 (FT**2) 0.040 A9 (FT**2) 0.023 P9S/PAMB	146 873 695	384	DRAG AZ		R INDUCTION SYSTEM WEIGHT BREAKDOWN	= 597. EM) = 0. BM) = 0.	DRAG BUILDUP	(LBF) = 665.3 = 1905.9 = 2571.2	
ET MAP NOZZLE MAP ADENAB	ALTITUDE	30000.0 FT	TOTAL	.20 LBS/FT**2	REFERENCE 0/A9 (A10/A9 R)	1.40	INLET DRAG	AC (FT**Z) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD CD BLD	INL TOT 1G INL TOT (LBF INL REF 1G INL REF (LBF 1G INL REF (LBF	G INL			AIR INDU WEIGHT	INLET (LBM) DUCT (LBM) BYPASS DOORS (LB T/O DOORS (LBM) TOTAL (LBM)	NACELLE	SKIN FRICTION WAVE (LBF) TOTAL (LBF)	
INLET			SSURE	LBS/FT**2 4905	INLET CAPTURE AREA (AC) A1	7.00 FT**2	Y INLET MASS FLOW RATIOS	AOSPL/AC 0.219 AOI/AC 0.781 AOBLD/AC 0.018 AO/AC 0.763 AOBYP/AC 0.0	DEZAC 0.		RATIO = 0.0		WEIGHT BREAKDOWN	(LBM) = 49.			
			AMB	626.91			NGINE PERFORMANCE DATA ORPORATING INLET RECOVER' AND NOZZLE CFG	(LBF) 9288.930 (LBM/HR) 11194.035 (LBM/HR/LBF) 1.205 COR (LBM/SEC) 172.921 ABS (LBM/SEC) 304.983	(PRI) 0.905 (SEC) 0.084		FERENCE INLET MASS FLOW	BYPASS VS SPILLAGE OPTION NUMBER 3. SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED	NACELLE	ENGINE MOUNTS FIREWALL (LBM COWL (LBM) TOTAL (LBM)			
							INC	SEC 112 112 112 112	CFG	329	R		ı	1			

eran

11

ļ

CASE IDENTIFICATION NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO

STATION PROPERTY OUTPUT DATA

	21 141111	2	
ECTED	DATOUT9 0.18080D+0 0.68192D+0 0.3000D+6 0.23122D+0 0.18925D+0		42
HTE!!FACE CORR FLOW ERROR STATP8 0.37679D-03 0.22334D-06 0.0 0.0 0.0 0.0 0.26323D-07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.14281D+01 0.85530D+00 0.99000D+00 0.9009D+00	0.18682D+01 0.63261D-17 -0.72044D-06	30.4572
PRESSURE STATP7 0.0 0.0 0.0 0.48436D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.25381D+03 0.25381D+03 0.496495+02 0.32122D+00 0.96971D+00		CLB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATF6 0.2000D+01 0.0 0.42766D+00 0.0 0.34536D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.200000+01 0.735410+00 0.0913520+00 0.111946+05 0.501520+04 0.438670+04		BUTTAIL SPILLAGE
REFERRED FLOW STATP5 0.913340+03 0.172960+03 0.172960+03 0.112980+02 0.112980+02 0.112980+02 0.112980+02 0.112980+02 0.112980+02	DATOUTS 0.78255H+01 0.18874D+02 0.0 0.41613D+02 0.66156D+02 0.67376D+00 0.55526D+00		28149.45 1.2051 -0.01 1.2051
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.25470D-01 0.25470D-01 0.24197D-01 0.21199D-01	DATOUT4 0.15427D+01 0.15427D+01 0.0.26811D-01 0.2686D+01 0.21460D+01 0.11328D+01	0.93703D+0 0.80318D+0 0.52731D+0 53 2	SHAFT HP
TEMPERATURE STATP3 0.4184D+03 0.74072D+03 0.89739D+03 0.89739D+03 0.89739D+03 0.24382D+04 0.21885D+04 0.2186D+04 0.2186D+04 0.2186D+04 0.2186D+04	DATOUT3 0.11788D+04 0.0 0.20000D-01 0.3C000D+00 0.10000D+01 0.10000D+01	0.52731D+0 0.52731D+0 ECOVERY= 0.	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
TOTAL PRESSURE STATP2 0.43727D+01 0.55987D+02 0.55889D+02 0.54869D+02 0.24869D+02 0.24869D+02 0.2512D+03 0.23212D+03 0.23212D+03 0.23314D+02 0.52334D+02 0.52334D+02 0.53075D+02	DATOUT2 0.198970+04 0.527310+04 0.200000-01 0.803180+04 0.500000-01 0.527310+04 0.527310+04	0.52731D+0 0.52731D+0 0.52731D+0	304.98 9288.93 18860.72 9288.93
WEIGHT FLOW 5074P1 3078D+03 0.30487D+03 0.30487D+03 0.1285D+03 0.1285D+03 0.1285D+03 0.1285D+03 0.1285D+03 0.1285D+03 0.13162D+03 0.13162D+03 0.30798D+03 0.30798D+03	DATOUT1 188610+05 -0.164860+05 0.137240+05 0.248380+05 0.883530-01 0.248380+05 0.164850+05		SEC) DRAG RUST
330 STATION 112222221	COMPONENT NO. INTYPE 1 COMPRESE 5 COMPRESE 5 COMPRESE 6 TURBINE 8 MIXER 8 MIXER 9 PICT B	NUZZLE SHAFT SHAFT ACH= 2.00	AIRFLOW (LB/ HET THRUST TOTAL INLET

į i

8.2.2 DATABASE INLET 'TM1B3', DATABASE NOZZLE 'DRP1'

&D IWT=0,INST=1,IFLGRF=0,ALTP=10000,MACH=.6,ETAR=0,LABEL=F, SPEC(7,10)=0,SPEC(4,9)=0, &END NEP - INPUT MODE 1 NOW BEING USED SUM OF (ERRORS**2)= 0.33382D+00 SUM OF (ERRORS**2)= 0.17460D+00 SUM OF (ERRORS**2)= 0.70074D-01 SUM OF (ERRORS**2)= 0.72217D-03 SUM OF (ERRORS**2)= 0.32871D-03 SUM OF (ERRORS**2)= 0.32871D-03 SUM OF (ERRORS**2)= 0.30478D-04 SUM OF (ERRORS**2)= 0.30478D-04 SUM OF (ERRORS**2)= 0.30478D-05 SUM OF (ERRORS**2)= 0.30038D-05 SUM OF (ER SUM OF (ERRORS**2)= 0.58038D-06

332

I

&D SPEC(5,10)=5556, &END HEP - INPUT MODE I NOW BEING USED

333

H

. 6. e.

NFS)		LOCAL MACH NUMBER (MNO								i.	
JMBER CM		AND						CONM		(MNO)	
STREAM MACH NUMBER (MNFS)		0/AC)		AOZAC PTZZPTO				LOCAL MACH NUMBER (MND)	MNO PT2/PT0	LOCAL MACH NUMBER O	
FREE		FLOW RATIO (AD/AC)		0.775	A0/AC PT2/PT0	AOZAC PTZZPTG		LOCAL	2.500	LOCAL	MND AO/AC
۸۶		MASS F		0.770	0.835	0.861		8	2.200	\$>	2.500
		٧٥	AOZAC PTZZPTO	0.762	0.830	0.860		PTG OFT)	1.650	AC OPT)	2.200
NUMBER (MNO)	MNPS	(PT2/PT0)	0.660	0.750	0.825	0.850		RECOVERY (PT2/P	1.200	RATIO (AO/A	1.650
MACH	2.500	RECOVERY (PT2	0.600	0.700	0.800	0.825		INLET RECO	0.900	MASS FLOW	1.200
LOCAL	1.000	PRESSURE REC	0.500	0.650	0.750	0.800		OPTIMUM	0.400	OPTIMUM	0.900
	00.0	INLET	0.350	0.580	0.650	0.700			0.0		0.800
**************************************		**************************************	MN0=0.900	MN0=1.650	MN0=2.200	MN0=2.500	334	**************************************	, 1	* * * * * * * * * * * * * * * * * * *	1'

1.400 1.650 2.200 0.0 0.580 0.740	LIMIT MASS FLOW	0.960 1.200 1.650 0.690 0.700 0.760	AG COEFFICIENT (CDSPL)	1.000 AOI/AC 0.0 CDSPL	0.400 0.500 0.650 0.044 0.021 0.0	0.400 0.500 0.650 0.044 0.021 0.0	0.400 0.500 0.600 0.115 0.060 0.015	0.400 0.500 0.600 0.170 0.085 0.027	0.500 0.600 0.670 0.140 0.052 0.0	0.500 0.700 1.000 0.225 0.0 0.0	0.550 0.745 1.000 0.265 0.0 0.0	0.550 0.850 1.000	0.940 1.000 AOI/AC
4.0	DISTORTION	96.	SPILLAGE DRAG COEFFIC	000	040	0 4 0	40	17	1 4	220	25	300	6
CC C C C C C C C C C C C C C C C C C C	0.0 0.580 0.0	.0 1.400 1.650 6.200 2.500 .0 0.0 0.580 0.740 0.800 DISTORTION LIMIT MASS FLOW RATIO (AD/AC)	.0 0.0 0.960 1.200 1.650 2.200 MND .600 0.960 1.200 1.650 2.200 2.500 MND .730 0.690 0.700 0.760 0.810 0.850 A0/AC	DISTORTION LIMIT MASS FLOW RATIO (A0/AC) VS LOCAL MACH NUMBER 0.960 1.200 1.650 2.200 2.500 MNO 0.690 0.700 0.760 0.810 0.850 A0/AC DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (A01/AC)	DISTORTION LIMIT MASS FLOW RATIO (AD/AC) VS LOCAL MACH NUMBER 0.960 1.200 1.650 2.200 2.500 MNO 0.690 0.700 0.760 0.810 0.850 AD/AC DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (A01/AC) 1.000 A01/AC	DISTORTION LIMIT MASS FLOW RATIO (AD/AC) VS LOCAL MACH NUMBER 0.900 1.200 1.650 2.200 2.500 MNO 0.690 0.700 0.760 0.810 0.850 MNO DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (ADI/AC) 1.000 ADI/AC 0.00 CDSPL 0.400 0.500 0.650 1.000 ADI/AC 0.044 0.021 0.0 0.000 0.000	DISTORTION LIMIT MASS FLOW RATIO (A0/AC) VS LOCAL MACH NUMBER 0.960 1.200 1.650 2.200 2.500 MNO 0.690 0.700 0.760 0.810 0.850 A0/AC DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (A01/AC) 1.000 A01/AC 0.400 0.500 0.650 1.000 A01/AC 0.400 0.500 0.650 1.000 A01/AC 0.044 0.021 0.0 0.650 1.000 A01/AC	DISTORTION LIMIT MASS FLOW RATIO (A0/AC) VS LOCAL MACH NUMBER 0.960	DISTORTION LIMIT MASS FLOW RATIO (AD/AC) VS LOCAL MACH NUMBER 0.960	DISTORTION LIMIT MASS FLOW RATIO (AO/AC) VS LOCAL MACH NUMBER 0.900	DISTORTION LIMIT MASS FLOW RATIO (AD/AC) VS LOCAL MACH NUMBER 0.500 0.760 0.760 0.810 MHVD DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (A01/AC) 0.00	DISTORTION LIMIT MASS FLOW RATIO (AO/AC) VS LOCAL MACH NUMBER 0.590 AO/AC 0.590 0.700 1.650 0.760 0.810 C.800 MND DRAG COEFFICIENT (CDSPL) VS INLET MASS FLOW RATIO (AOI/AC) 0.400 0.500 0.650 0.650 0.000 CDSPL 0.400 0.500 0.600 0.650 0.000 CDSPL 0.100 0.500 0.600 0.650 0.000 CDSPL 0.100 0.500 0.600 0.650 0.000 CDSPL 0.100 0.600 0.600 0.650 0.000 CDSPL 0.100 0.600 0.600 0.600 0.000 CDSPL 0.100 0.600 0.600 0.600 0.000 CDSPL 0.100 0.600 0.600 0.600 0.000 CDSPL 0.100 0.600 0.000 0.000 0.000 CDSPL 0.100 0.600 0.000 0.000 0.000 CDSPL 0.100 0.000 0.000 0.000 0.000 CDSPL 0.100 0.000	DISTORTION LIMIT MASS FLOW RATIO (AO/AC) VS LOCAL MACH NUMBER 0.580

(MND)

**************************************		REF SPILLAGE	DRAG	COEFF (REF C	CDSPL)	۸۶	LOCAL	LOCAL MACH NUMBER (MHO)	(MHO)			
	0.0	0.500	0.850	1.100	1.260	1.400	1.600	1.800	0.020	2.500	REF	CDSPL
**************************************		REF INLET	MASS FLOW	RATIO (REF	ADIZAC)	8 /	LOCAL	LOCAL MACH NUMBER (MND)	CMNO			
	0.0	0.500	0.850	1.100	1.260	1.400	1.600	1.800	2.200	2.500	MN0 REF	ADIZAC
* * * * * * * * * * * * * * * * * * *	BLEED	DRAG	COEFFICIENT (CD) BLD)	VS	BLEED MASS	FLOW RATIO	(AOBLD/AC)	AND	LOCAL P	MACH NUMBER	IMBER (MNO
336	0.0	0.890	0.900	1.250	1.650	2.000	2.200	2.590	MNO			
MN0=0.0	0.0	0.010	0.020	0.030	0.0	0.050	0.060	0.070	AOBLD/AC CDBLD			
MN0=0.890	0.0	0.010	0.020	0.030	0.0000	0.050	0.060	0.020	AOBLD/AC CDBLD			
MNG=0.900	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AOBLD/AC CDBLD			
MN0=1.250	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AOBLD/AC CDBLD			
MN0=1.650	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AGBLD/AC CDBLD			
MN0=2.000	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AOBLD/AC CDBLD			
MH0=2.200	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AOBLD/AC CDBLD			
MND=2.500	0.0	0.010	0.020	0.030	0.040	0.050	0.060	0.070	AOBLD/AC			

CDSPL

0.0

0.0

0.605

n n

		LOCAL MACH NUMBER (MNO)								LOCAL MACH MIMBED CHIEF	COURT (UND)		
CDBLD		AND	AOBYDAAC	CDBYP	CDBYP	CDBYP	AUBYP/AC CDBYP	AOBYP/AC CDBYP	AOBYP/AC CDBYP	AND			
0.076	200000000000000000000000000000000000000		0.280	1.000	0.875	0.650	0.450	0.280	0.280	(ADZAC)			
0.052	FLOW RATTO		0.240	0.240	0.675	0.510	0.335	0.220	0.240	FLOW RATIO (A(
0.040	BYPASS MASS	20.5		0.200	0.200	0.200	0.250	0.155	0.200	MASS FLO			
0.031	VS	2.200	0.160	0.160	0.160	0.160	001.0	0.110	0.160	\$ >			
0.022	T (CDBYP)	2.000	0.120	0.120	0.120	0.120	.12	0.077	0.120	(AOBLD/AC)			
0.014	COEFFICIENT	1.700	0.080	0.080	0.080	0.080	0.080	. 0 4	0.080	RATIO	AD/AC AOBLD/AC	AOZAC AOBLDZAC	AOZAC AOBLDZAC
900.0	BYPASS DRAG	1.200	0.040	0.040	0.040	0.040	0.040		0.017) MASS FLOW	1.000	1.000	1.000
0.0		1.010	0.0	0.0	0.0	0.0	0.0)	000	BLEED	0.400	0.400	0.400
	**************************************		MN0=1.010	MNO=1.200	MNO=1.700	MN0=2.000	MN0=2.200	MN0=2.500		*** ** *** *** *** *** *** *** *** *** *** *** *** *** **	MN0=0.0	MND=0.800	MN0=1.200

AD/AC ADBLD/AC

1.000

0.400

MN0=1.400

						LOCAL MACH NUMBER (MND)						
				ER (MND)	MNO AGBLD/AC	AND						
				LOCAL MACH NUMBER (MND)	0.023	FLOW RATIO (ADE/AC)						
				SA SA	2.000 2.200 0.020 0.020	ENGINE MASS FLOW						
				IO (AOBLD/AC)	1.600	VS			AC	AC	AC	P C
ADZAC ADBLDZAC	AD/AC AOBLD/AC	AD/AC AGBLD/AC	AO/AC AOBLD/AC	MASS FLOW RATIO	00 1.400 12 0.017	FLOW RATIO (AOBYP/AC)	ADE/AC ADBYP/AC	ADE/AC ADBYP/AC	00 AOE/AC AOBYP/AC	DD ADE/AC AOBYP/AC	00 ADEZAC ADBYPZAC	00 ADEZAC ADBYPZAC
1.00° AOB	1.000 AOZ	1.000 AOZ	1.000 AON	OPTIMUM BLEED MASS	0.800 1.200 0.0 0.012	MASS FLOW RATIO	1.000 A0E	1.000 AOE	0.620 1.000	0.625 1.000 0.0	0.720 1.000	0.760 1.000
0.400	0.400	0.400	0.400		0.0	BYPASS	0.300	0.300	0.300	0.300	0.300	0.300
MN0=1.600	MN0=2.000	MN0=2.200	MN0=2.500	***************************************	338	**************************************	MN0=0.0	MH0=1.190	MN0=1.200	THO=1.400	MN0=1.650	_MNJ=2.000
						4						

AOE/AC AOBYP/AC	AGEYAC AGBYP/AC
1.000	1.000
0.800	0.0
0.300	0.300
MH0=2.200	MN0=2.500

INLET START MACH NUMBER 3.000 MINIMUM MACH NUMBER FOR INLET DRAG CALCULATIONS 0.900

RATIO (A10/A9:								
AFT-BODY AREA		MNFS CD A/B						
AND		3.000	3.000	3.000	3.000	3.000	3.000	
ER (MNFS)		2.500	2.500	2.500	2.500	2.500	2.500	
STREAM MACH NUMBER (MNFS)	A10/A9	2.200	2.200	2.200	2.200	2.200	2.200	
FREE STREAM	10.000	1.600	1.600	1.600	1.600	1.600	1.600	
N.S	5.000	1.200	1.200	1.200	1.200	1.200	1.200	
(CD A/B)	3.330	1.000	1.000	1.000	1.000	1.000	1.000	
DRAG COEFFICIENT (CD A/B	2.500	0.900	0.900	0.900	0.900	0.900	0.900	
	2.000	0.800	0.800	0.800	0.800	0.800	0.800	
AFT-BODY	1.850	0.700	0.014	0 0.700	0.020	0.700	0.700	
**************************************		A10/A9= 1.850	A10/A9= 2.000	A10/A9= 2.500	A10/A9= 3.330	A10/A9= 5.000	A10/A9=10.000	3

* * * * * * * * * * * * * * * * * * *	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	GROSS	THRUST	GROSS THRUST COEFFICIENT (CF	(CFG)	۸۶	NOZZLE PRES	SSURE RATION	NOZZLE PRESSURE RATIO (PT9/PAMB)	AND	NOZZLE ARE/	NOZZLE AREA RATIO (A9/A8
		1.730	1.970	2.630	3.283	A9/A8						
A9/A8	1.730	1.500	2.000	3.000	4.000	5.000	6.500	8.500	11.000	16.000	20.000	PT9/PAMB CFG
A9/A8	1.970	1.500	2.000	3.000	0.980	5.000	6.500	8.500	11.000	16.000	20.000	PT9/PAMB CF6
A9/A8	2.630	1.500	2.000	3.000	4.000	5.000	6.500	8.500	11.000	16.000	20.000	PT9/PAMB CFG
A9/A8	3.283	3.283 1.500	2.000	3.000	4.000	5.000	6.500	8.500	11.000	16.000	20.000	PT9/PAMB CFG

 ${\mathbb G}$

 $\mathbb{C}_{\mathbb{F}}$

, ,

A9A8 = 0.17300b+01	0.11000D+02 0.98000D+02 0.98000D+02 0.97000D+02 0.97000D+02	
= 0.17300D+01 0.15000D+01 0.15000D+02 0.16000D+02 0.16000D+02 0.20000D+02 0.20000D+02 0.15000D+01 0.20000D+02 0.15000D+01 0.20000D+02 0.15000D+01 0.20000D+02 0.25000D+01		
= 0.17300D+01 0.15000D+01 0.86000D+00 0.96000D+00 0.96000D+00 0.96000D+01 0.96000D+01 0.96000D+01 0.96000D+01 0.15000D+01 0.96800D+01 0.15000D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.96800D+01 0.97200D+01	0.65000D+01 0.98450D+09 0.65000D+01 0.97100D+00 0.95900D+00 0.95900D+01	
- 0.17300b+01 0.15000b+01 0.86000b+00 0.96000b+00 0.97000b+00 0.197000b+01 0.15000b+01 0.15000b+01 0.20000b+01 0.15000b+01 0.98000b+00 0.98000b+00 0.98000b+00 0.97000b+01 0.98000b+01 0.97000b+01	0.500000000000000000000000000000000000	
- 0.17300D+01 0.18600D+02 0.18600D+02 0.16000D+02 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+01 0.19700D+02 0.19700D+02 0.2000D+02 0.2000D+02 0.28800D+01 0.19700D+02 0.19700D+01	0.4000D+01 0.98500D+00 0.98000D+00 0.98000D+00 0.97300D+00 0.97300D+01	
- 0.17300D+01 0.15000D+00 0.86000D+00 0.97000D+00 0.19700D+01 0.15700D+01	0.300000+01 0.960000+01 0.300000+01 0.300000+01 0.972000+01 0.372000+01	
0.17300D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.19700D+ 0.19700D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+ 0.15000D+	20000000000000000000000000000000000000	. 97000D+0
A9A88 CCTP CCTP CCTP CCTP CCTP CCTP CCTP CCTP	1750000+ 1860000+ 1860000+ 1970000+ 18960000+ 18960000+ 1980000+ 1980000+ 1980000+ 1980000+ 1980000+ 1980000+	+Q00096.
	P 74 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P 9 P	, , ,
0 0 0		
н н н	1 11 11 11	

TABLE DATA INPUT SUMMARY 11 TABLES

ARRAY LOCATION 1075 2149 3223 4459 5695 5695 7384 7978	1
NUMBER	
REFERENCE 1002 1003 1004 1005 1006 1009	2
TABLE NUMBER 2 3 4 4 7 7 9 10	11

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10675

DATE RUM 20 NOV 79			DYNAMIC PRESSURE	6.47 LBS/FT**2	E NOZZLE A (A9R) FT∺×2	INSTALLED ENGINE PERFORMANCE DATA	1 FN (LBF) 11073.8 7 WFT (LBM/HR) 10300.8 2 SFC (LBM/HR/LBF) 0.9	SFC COR	21		ICHT BREAKDOWN	(LBM) = 3210. (LBM) = 0.		
MAP CFG MAP CVRP			TOTAL TEMPERATURE	517.81 DEG R 36	FTBODY REFERENCEA (A10R) EXIT ARE	AFTBODY DRAG	15.	R (LBF) T (LBF) F (LBF)	S (LBF) 36.3		ENGINE WEI	1. BARE ENGINE 0. ACCESSORIES 0. TOTAL (LBM) 1.		.1
ZLE MAP DEL A/B RPI	UDE MACH NUMBER	0 FT 0.60	AMBIENT TEMPERATURE	483.03 DEG R	REFERENCE A R) OR NACELLE AR 15.88 F	DRAG	A) 0.0	(LBF) 0.0 (LBF) 0.0 (LSF) 0.0	DRA		IR INDUCTION SYSTEM WEIGHT BREAKDOWN	(LBM) = 26	MACELLE DRAG BUILDUP	ON (LBF) = 193 = 13 = 206
INLET MAF NOZZLE TM183 DRP1	ALTITUDE	10000.	TOTAL PRESSURE	1854.89 LBS/FT**2	REFERENCE A10/A9 (A10/A9 R	S INLET	272 AC (F	0			. A	49. INLET (LBM) 38. DUCT (LBM) 27. BYPASS DOORS 17. T/O DOORS (LB TOTAL (LBM)	NAC	SKIN FRICT: FORM (LBF) TOTAL (LBF)
			AMBIENT PRESSURE	1454.24 LBS/FT**2	INLET CAPTURE AREA (AC) 7.00 FT**2	RMANCE DATA INLET RECOVERY INLET MAS ZLE CFG FLOW RATI	11110.230 AOSPL/AC 0 10300.812 AOI/AC 0 0.927 AOBLD/AC 0 250.614 AO/AC 0		ET MASS FLOW RATIO = 0.0	SPILLAGE NUMBER YPASS WITH I AIRFLOW	NACELLE WEIGHT BREAKDOWN	NGINE MOUNTS (LBM) = 1 IREMALL (LBM) = 4 OWL (LBM) = 4 OTAL (LBM) = 6		
					344	ENGINE PERFORMANCE INCORPORATING INLET AND NOZZLE CF	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF WZ COR (LBM/SEC	CFG (PRI)	REFERENCE INLE	BYPASS VS S OPTION N 3 SCHEDULED BY EXCESS INLET SPILLE		mr.or		

STATION PROPEK : OUTPUT DATA

ECTED	DATOUT9 0.30069D+01 0.30069D+01 0.60041D+01 0.23190D+01 0.23190D+01 0.10895D+01 0.0035275D+01	
INTERFACE CORRECT FLOW ERROR 5 TATP8 0.0 0.0 647080-04 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.99842D+00 0.84986D+00 0.85982D+00 0.99000D+00 0.90000D+00 0.918672D+01 0.18672D+01 0.55618D-07	10300.81 51.0263 0.0
PRESSURE STATP7 D.0 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.9900D+00 0.25381D+03 0.49649D+02 0.29991D+00 0.96971D+00 0.65713D+00 0.64832D+03 0.064832D+03 0.097880D+00	FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
MACH NUMBER STATP6 0.00000000000000000000000000000000000	DATOUT6 0.6000D+00 0.10016D+01 0.10013D+01 0.10301D+05 0.4994D+04 0.50042D+04 0.98000D+00 0.0	FUEL FLOW NET THRUS BOATTAIL SPILLAGE
REFERRED FLOW STATP5 0.305480+03 0.250400+03 0.508490+02 0.508490+02 0.106330+02 0.196330+02 0.191030+02 0.191630+02 0.191630+03 0.191680+03	A UUT5 9D+01 4D+01 1D+02 6D+02 6D+00 6D+00 7D+03	15484.99 0.9271 0.00 0.9271
FUEL/AIR RATIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.26601D-01 0.26601D-01 0.26268D-01 0.3140D-01	MPONENT 0 DATOUT4 10721D+0 115047D+6 12996D+0 29106D-0 2998D+0 2998D+0 25013D+0 10807D+0 0 52301D+0 10807D+0	RUST AKE SHAFT HP D TSFC
TOTAL TEMPERATURE STATP3 0.517850103 0.517850103 0.742390103 0.742390103 0.742390103 0.742390103 0.742390103 0.742390103 0.742390103 0.742390103 0.129410104 0.292250104 0.292250104 0.292250104 0.292250104 0.292250104	DATOUT? 0.38298D+03 0.0 0.0 0.20000D-01 0.3000D+00 0.10000D+01 0.11093D+01 0.35275D+01 0.35275D+01 0.79990D+04 0.60050D+04	GROSS THRUST 1SFC 10TAL BRAKE INSTALLED TS
PRESSURE STATP2 0.10108D+02 0.12768D+02 0.37626D+02 0.37626D+02 0.37626D+02 0.37626D+03 0.37627D+03 0.19554D+03 0.19554D+03 0.3793D+02 0.35657D+02 0.35657D+02	DATOUT2 0.6464D+03 0.60050D+04 0.79990D+06 0.50000D-01 0.79990D+04 0.79990D+04 0.50000D-01 0.79990D+04 0.60000D-01 0.79990D+04 0.60000D-01 0.60000D-01 0.60000D-01 0.79990D+04 0.79990D+04 0.79990D+04	217.74 111110.23 4374.76 111110.23
WEIGHT FLOW STATP1 0.22061D+03 0.21775D+03 0.21775D+03 0.10882D+03 0.10882D+03 0.10848D+03 0.106454D+03 0.11043D+03 0.11043D+03 0.22061D+03	DATOUTI 0.43748D+04 0.16659D+05 0.21104D+05 0.94802D-01 0.21104D+05 0.94802D-01 0.0289D+05 0.16485D+05 0.15485D+05 0.15485D+05 0.15485D+05 0.15485D+05	SEC)
FLOW STATION 1 2 3 4 4 7 7 11 12 13	COMPONENT HO. TYPE 1 INLET 2 COMPRESR - 3 SPLITESR - 4 COMPRESR - 5 DUCT B 6 TURBINE 7 MIRBINE 8 DUCT B 9 DUCT B 10 NOZZLE 11 SHAFT 12 SHAFT	AIRFLOW (1875 NET THRUST TOTAL INLET D INSTALLED THR

DATE RUN 20 NOV 79			DYNAMIC PRESSURE	3 LBS/FT**2	OZZLE A9R)	*2	INSTALLED ENGINE PERFORMANCE DATA	(LBM/HR) 10520.3 (LBM/HR/LBF) 1.1	FN COR (LBF) 16238.0 WFT COR (LEM/HR) 19707.0 SFC COR (LBM/HR/LBF) 1.2				GHT BREAKDGWN	LBM) = 3210. LBM) = 0.		
CFG MAP			JTAL ERATURE	24 DEG R 835.0	REFERENCE N	11.34 FT×	FTBODY DRAG	113	LBF) 2457.40 PR (LBF) 0.0 OT (IBF) 2457.20	EF (LBF) 1140	s (LBF) 1317.26		ENGINE WEIGH	BARE ENGINE (I ACCESSORIES (I TOTAL (LBM)		
P DEL A/B MAP	MACH NUMBER	1.00	AMBIENT TEMPERATURE TEMPE	65.20 DEG R 558.	REFERENCE AFTBODY OR NACELLE AREA (A10	15.88 FT**2	*	.000	0.021 DRAG A/B (0.021 DRAG A/B (123.445 CD A/B SPR 0.013 DRAG A/B S 75.988 CD A/B TOT	.457 CD A/B DRAG A/B CD A/B	DRAG AZB		CTION SYSTEM BREAKDOWN	(LBM) = 261. 0. BM) = 0.	DRAG BUILDUP	(LBF) = 399.3 = 28.2 = 427.5
IT MAP NOZZLE MAI B3 DRP1	ALTITUDE	15000.0 FT	TOTAL PRESSURE	08 LBS/FT**2 4	REFERENCE 0/A9 (A10/A9 R)	1.40	INLET DRAG	2000	CD DINL TOT DRAG INL TOT (LBF) CD INL REF DRAG INL REF CD INL REF CD INL REF	RAG INL			AIR INDU	INLET (LBM) DUCT (LBM) BYPAS, DOORS T/O DJORS (LB	NACELLE	SKIN FR:CTION FORM (LBF) TOTAL (LBF)
INLE			BIENT ESSURE	LBS/FT**2 2258	INLET CAPTURE AREA (AC) AI	7.00 FT**2	RY INLET MASS FLOW RATIOS	6 AOSPL/AC 0.345 6 AOI/AC 0.655 0 AOBLD/AC 0.006 3 AOI/AC 0.650	ADE/AC 0.65		RATIO = 0.0		WEIGHT BREAKDOWN	S (LBM) = 49. M) = 138. = 427. = 613.		
			AM	1192.90			ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVES AND NOZZLE CFG	FN (LBF) WFT (LBM/HR) 10520.316 SFC (LBM/HR/LBF) 1.00 W2 COR (LBM/SEC) 229.43	F (SEC) (25.00 0.98 FG (SEC) 0.99	347	REFERENCE INLET MASS FLOW	BYPASS VS SPILLAGE OPTION NUMBER 3. SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW	NACELLE	ENGINE MOUNTS FIREWALL (LBN COWL (LBM) TOTAL (LBM)	1	

STATION PROPERTY OUTPUT DATA

CTED	DATOUT9 0.1500D+05 0.26733D+01 0.57945D+01 0.3000D+04 0.2327D+01 0.10895D+01 0.0000000000000000000000000000000000	
FLOW ERROR FLOW ERROR STATP8 0.0 0.75647D-04 0.10805D-06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT8 0.10765D+01 0.85079D+00 0.86757D+00 0.9900095+00 0.87994D+00 0.87994D+00 0.87994D+00 0.18676D+01 0.18676D+01	10520.32 45.3352 0.0
STATIC IP STATP7 0.0 0.0 0.0 0.37078D+02 0.0 0.0 0.0 0.37078D+02 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT7 0.98.002D+00 0.25381D+03 0.0.49649D+02 0.30392D+00 0.96971D+00 0.64842D+03 0.064842D+03 0.09634D+00	(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.10000D+01 0.0 0.35068D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.1000D+01 0.93138D+00 0.98509D+00 0.10520D+05 0.50144D+04 0.48313D+04 0.47042D+03 0.0	FUEL FLOW (NET THRUST) BOATTAIL DE
REFERRED FLOW 57475 0.38917D+03 0.22962D+03 0.50108D+02 0.50832D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02 0.10759D+02	4 DATOUTS 401 0.18946D+01 401 0.42210D+01 0.0 31445D+02 -01 0.66156D+02 +01 0.5736D+00 +01 0.83137D+03 +03 0.45627D+03 +04 0.0 2 ITERATIONS	18142.53 1.0002 1.0002
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT4 0.12002D+0 0.13813D+0 0.038674D-0 0.28674D-0 0.28674D-0 0.28674D-0 0.28674D-0 0.5968D+0 0.10885D+0 0.10885D+0 0.59275D+0 0.59275D+0 0.57981D+0	T SHAFT HP SFC
TOTAL TEMPERATURE STATP3 0.46522D+03 0.55835D+03 0.77032D+03 0.77032D+03 0.77032D+03 0.77032D+03 0.272059D+04 0.26239D+04 0.26239D+04 0.26229D+04 0.2462D+04	DATOUT3 0.62642D+03 0.0 0.0 0.2000D-01 0.3000D+00 0.1000D+01 0.11039D+01 0.3000D+00 0.45767D+01 0.80245D+01 0.80245D+01	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
PRESSURE STATP2 0.82972D+01 0.15406D+02 0.41185D+02 0.40361D+02 0.40361D+02 0.23387D+03 0.2038BD+03 0.2028BD+03 0.20140D+03 0.20140D+03 0.40397D+02 0.40397D+02	DATOUT2 0.57981D+04 0.57981D+04 0.80245D+04 0.50000D-01 0.57387D+04 0.57387D+04 0.57387D+04 0.57387D+04 0.57387D+04	232.00 10518.00 7624.53 10518.00
MEIGHT FLOM STATPI 0.23491D+03 0.23199D+03 0.11292D+03 0.1196D+03 0.11020D+03 0.10728D+03 0.10728D+03 0.11645D+03 0.11645D+03 0.23491D+03	DATOUT1 0.76245D+04 -0.16784D+05 -0.21920D+01 0.93537D-01 0.21920D+05 0.93537D-01 0.16784D+05 0.40389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03 0.040389D+03	SEC) DRAG RUST
WO THE STANDARD TH	COMPONENT NO. ITYPE 1 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 MIXER 9 DUCT B 10 HOZZLE 11 SHAFT 12 SHAFT	AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

ř.,

DATE RUN 20 NOV 79			DYNAMIC PRESSURE	2.18 LBS/FT**2	E NOZZLE A (A9R) FT**2		FN (LBF WFT (LB	.102 FN COR (LBF) 19520.2: .280 WFT COR (LBM/HR) 26214.1: .0 SFC COR (LBM/HR/LBF) 1.3 .00 .102 .280 .043 .059	29			WEIGHT BREAKDOWN	E (LBM) = 3210. S (LBM) = 0.		
۵.				133	REFERENCI EXIT ARE		15.8	2166	1246.2			ENGINE W	BARE ENGINE ACCESSORIES TOTAL (LBM)		
CFG MAR			TOTAL TEMPERATURE	73 DEG R		FTBODY DE	a_	CLBF CLBF CLBF	S (LBF)				BAR TOT		
A/B MAP	ER			622.7	E AFTBODY AREA (Alor 8 FT**2	∢	A10/A9 A10 (FT**2 A9 (FT**2) P9S/PAMB	CD A/B DRAG A/B (LBF CD A/B SPR CD A/B TOT DRAG A/B TOT CD A/B REF DRAG A/B REF CD A/B PS	DRAG A/B P			Σ	261. 0. 0. 261.	۵.	569.9 266.9 836.8
DEL A	MACH NUMBER	1.40	AMBIENT EMPERATURE	.37 DEG R	REFERENCE OR NACELLE			0.0 0.115 070.002 773.999 296.004				IR INDUCTION SYSTEM WEIGHT BREAKDOWN	E (LBM) = E (LBM	DRAG BUILDUP	(LBF) = 1
T MAP NOZZLE MAP B3 DRP1	ALTITUDE	20000.0 FT	TOTAL PRESSURE TE	.92 LBS/FT**2 447	REFERENCE 0/A9 (A10/A9 R) 1.40	INLET DRAG	A A	CD BYP CD INL TOT DRAG INL TOT (LBF) 1 CD INL REF CD INL REF (LBF) CD INL PS DRAG INL PS				AIR INDUCT WEIGHT B	INLET (LBM) DUCT (LBM) BYPASS DOORS (T/O DOORS (LBM) TOTAL (LBM)	NACELLE DR	SKIN FRICTION (WAVE (LBF) TOTAL (LBF)
INLET TM183				3089	E A1	MSS	0.345	0.0				NMO	49. 138. 427. 613.		
			ENT	S/FT**2	ET CAPTUR REA (AC) .00 FT**2	INLET MA	AOSPL/AC AOI/AC AOBLD/AC AO/AC	AOBYP/AC AOE/AC	RATIO = 0.0			H BREAKDOWN	LBM) =		
			AMBIEN	970.98 LBS	INLET ARE, 7.00	NCE DATA ET RECOVERY CFG	10498.672 11170.246 1.064 203.078	4.85 0.97 0.0	MASS FLOW RAT	LLAGE BER	SS WITH IRFLOW	NACELLE WEIGHT	E MOUNTS (
					350	ENGINE PERFORMANCE INCORPORATING INLET AND NOZZLE CF	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC)	8 55	REFERENCE INLET !	$\mapsto \Sigma$	BYPA ET A LED		ENGINE FIREW COML TOTAL		

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY DUTPUT DATA

CTED	DATOUT9 0.26000D+05 0.22639D+01	0.0 0.543990+01 0.300000+04 0.232090+01 0.203660+01 0.109040+01 0.0		
INTERFACE CORRECTED \$1ATP8 0.0 0.34139D-03 0.0 2 0.0 -0.17410D-06 0.17410D-06 0.17419D-06 2 0.0 2 0.0 2 0.0 1 0.0 1 0.0	DATOUT8 0.12009D+01 0.84839D+00	0.0 0.87569D+00 0.99001D+00 0.8973D+00 0.23222D-06 0.18678D+01 0.15496D-06		11170.25 39.6388 0.0
STATIC IN STATP7 0.0 0.0 0.0 0.42246D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.97552D+00 0.25381D+03	0.0 0.49649D+02 0.31005D+00 0.96971D+00 0.65713D+00 0.65148D+03 0.99890D+00		(LB/HR) /AIRFLOW RAG LIP DRAG
MACH NUMBER STATP6 0.140000+01 0.0 0.377200+00 0.0 0.377200+00 0.374400+00 0.374400+00		0.0 0.1170D+05 0.50024D+04 0.4686D+04 0.51899D+03 0.98000D+00	2 PASSES	FUEL FLOW (LB/HR) NET THRUST/AIRFLO BOATTAIL DRAG SPILLAGE + LIP DR
REFERED FLOW STATP5 0.53486D+03 0.20312D+03 0.48487D+03 0.48487D+03 0.56160D+02 0.56160D+02 0.19103D+02 0.19103D+02 0.4262D+03 0.4262D+03 0.15172D+03	DATOUT5 0.31849D+01 0.66759D+01	0.0 0.36127D+02 0.66156D+02 0.67376D+00 0.55526D+00 0.80114D+03 0.45627D+03	ITERATIONS	22449.18 1.0640 -0.02 1.0640
FUEL/AIR RATIO 5.10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT4 DATOU 0.13921D+01 0.31849 0.13438D+01 0.66759	0.13398D+01 0.28025D-01 0.35033D+01 0.23310D+01 0.11028D+01 0.70147D+03 0.80073D+04	55 1 IT	T SHAFT HP SFC
TOTAL STATURE STATUS 0.64741D+03 0.62285D+03 0.81430D+03 0.81430D+03 0.81430D+03 0.13622D+04 0.13622D+04 0.26253D+04 0.26253D+04 0.26253D+04 0.26819D+04 0.26819D+04	DATDUT3 .86005D+03	0.20000b+01 0.30000b+01 0.10000b+01 0.10951b+01 0.56055b+01 0.80073b+04	ECOVERY= 0.97	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
PRESSURE STATP2 0.67589D+02 0.20599D+02 0.46589D+02 0.46589D+02 0.25344D+03 0.25344D+03 0.25074D+03 0.22074D+03 0.22074D+03 0.22074D+03 0.246265D+02 0.46265D+02 0.46265D+02 0.46265D+02	DATOUT2 .14517D+0	0.20000D-01 0.80073D+04 0.5000D-01 0.80073D+04 0.57387D+03 0.6056D+03 0.26964D+04 0.26964D+04 0.26964D+04	= 20000. R	264.86 10498.68 11950.51 10498.68
WEIGHT FLOW STATP1 0.2677D+03 0.26477D+03 0.12268D+03 0.14209D+03 0.14209D+03 0.14209D+03 0.14209D+03 0.12425D+03 0.12425D+03 0.12678D+03 0.12678D+03 0.26787D+03	DATOUT1 .11951D+0	0.1158507401 0.23796D+05 0.23796D+05 0.17360D+05 0.17360D+05 0.22449D+05 0.22449D+05 0.25298D-01	00 ALTITUDE	SEC) DRAG RUST
FLOW STATION 11 10 112 113	OMPONENT O. TYPE INLET COMPRESR	NS NE	MACH= 1.40	AIRFLOW (LB/) NET THRUST TOTAL INLET I

INLET MAP NOZZLE MAP DEL A/B MAP CFG MAP CURP ALTITUDE MACH NUMBER 20000.0 FT 1.40	AMBIENT TOTAL AMBIENT TOTAL DYNAMIC PRESSURE PRESSURE TEMPERATURE TEMPERATURE PRESSURE 970.98 LBS/FT**2	INLET CAPTURE REFERENCE REFERENCE AFTBODY REFERENCE NOZZLE AREA (AC) A10/A9 R) OR NACELLE AREA (A10R) EXIT AREA (A9R) 7.00 FT**2 1.40 15.88 FT**2 11.34 FT**2	RFORMANCE DATA NG INLET RECOVERY INLET MASS INLET DRAG AFTBODY DRAG PERFORMANCE DATA	21705.715 A0SPL/AC 0.339 AC (FT**2) 7.000 A10/A9 2.089 FN (LBF) 20631 37752.645 A0I/AC 0.661 CD SPL (TAB 3) 0.007 A10 (FT**2) 15.877 WFT (LBM/HR) 37752 EC 204.992 A0/AC 0.017 CD SPL (TAB 3A) 0.083 A9 (FT**2) 7.601 SFC (LBM/HR/LBF) 1 EC 204.992 A0/AC 0.0644 CD BLD 0.020 P9S/PAMB 1.000 II.000 FN COR (LBM/HR/LBF) 44965 EC 264.859 A0BYP/AC 0.0 CD BYP 0.00 CD A/B 0.082 FN COR (LBM/HR/LBF) 9.00 CD A/B 0.00 CD A	DEVAC. 0.545 CD INC. 101 DRAG INL TOT (LBF) 1029.410 DRAG BSPR (LBF) 1.35.791 WF1 CDR (LBM/HR/LBF) 1.9 CD INL REF (LBF) 773.999 CD A/B TOT 0.082 CD INL REF (LBF) 773.999 CD A/B TOT CD INL REF (LBF) 1.09 CD INL PS	DRAG INL PS (LBF) 255.411 CD A/B REF (LBF) 920 CD A/B REF (LBF) 920 CD A/B PS 0 DRAG A/B PS 18	INLET MASS FLOW RATIO = 0.0	VS SPILLAGE ON HUMBER 3. D BYPASS WITH	711	ENGINE MOUNTS (LBM) = 69. 49. INLET (LBM) = 261. BARE ENGINE (LBM) = 3210. FIREWALL (LBM) = 138. DUCT (LBM) = 0. ACCESSORIES (LBM) = 0. COWL (LBM) = 427. BYPASS DOORS (LBM) = 0. TOTAL (LBM) = 3210. TOTAL (LBM) = 613. TOTAL (LBM) = 261.	NACELLE DRAG BUILDUP	SKIN FRICTION (LBF) = 569.9 MAVE (LBF) = 1266.9
	7.0		ORMANCE D INLET RE ZZLE CFG	21705 37752 F) 204 C) 264			HLET MASS	VS SPILLAGE ION HUMBER 3. YEASS WIT	ILLED MACELL	ENGINE P FIREWALL COWL (LB TOTAL (L		

I

STATION PROPERTY OUTPUT DATA

DATOUT9 0.22639D+01 0.22639D+01 0.54399D+01 0.54399D+01 0.23209D+01 0.20366D+01 0.1000000000000000000000000000000000		
TERFACE CORRE 5 TATP8 0 0 48 101D-03 0 25417D-06 0 0 0 0 0 0 0 17410D-06 0 0 0 0 17410D-06 0 0 0 0 0 0 0 0 0 0		37752.65 81.9520 0.0
STATIC IN STATP7 0.0 0.0 0.0 0.4 0.0 0.4 0.0 0.4 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0 0.0 0.0		(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.14000D+01 0.0 0.37720D+00 0.0 0.10000D+01 0.18719D+01	1 PASSES	FUEL FLOW NET THRUST BOATTAIL I SPILLAGE
REFERRED FLOW STATP5 0.53426D+03 0.20315D+03 0.10255D+03 0.10952D+02 0.10952D+02 0.10952D+02 0.10952D+03	TERATIONS	33656.23 1.7393 1.7393 1.7393
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.25613D-01 0.25613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.39613D-01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01 0.13438D+01	1 0 t	SHAFT HP
TOTAL STATP3 0.447410+03 0.622850+03 0.814300+03 0.814300+03 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.136220+04 0.2020000+04 0.300000+04 0.300000+03 0.200000+03 0.200000+03 0.3000000+03 0.300000+03 0.3000000+03 0.300000+03 0.300000+03 0.3000000+03 0.300000+03	ECOVERY= 0.975	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
PRESSURE 57ATP2 0.675890+01 0.209960+02 0.465820+02 0.465820+02 0.253400+03 0.253400+03 0.253400+03 0.253400+03 0.460580+02 0.460580+02 0.460580+02 0.460580+02 0.452950+02 0.452950+02 0.432950+02 0.432950+02 0.432950+02 0.560560+04 0.560560+04 0.560560+04 0.560560+04 0.560560+04 0.560560+04	= 20000. R	264.86 21705.72 11950.51 21705.72
MEIGHT FLOM 5.27522D+03 6.26473D+03 6.26473D+03 1.26473D+03 1.12266D+03 1.11653D+03 1.11653D+03 1.11653D+03 1.12423D+03 1.12423D+03 1.12423D+03 1.2752D+03 1.2752D+03 1.2752D+03 1.2752D+03 1.2753D+05 1.2753D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05 1.23793D+05	00 ALTITUDE	SEC) DRAG RUST
STATION 1 2 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	MACH≈ 1.40	AIRFLOW (LB/ WET THRUST TOTAL INLET INSTALLED TH

8D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0, 8END NEP - INPUT

ij,

C

MODE 1 HOW BEING USED SUM OF (ERRORS**2)= 0.95992D-01 SUM OF (ERRORS**2)= 0.74871D-03 SUM OF (ERRORS**2)= 0.74871D-03 SUM OF (ERRORS**2)= 0.19775D-04 SUM OF (ERRORS**2)= 0.19775D-04 SUM OF (ERRORS**2)= 0.7142D-05 SUM OF (ERRORS**2)= 0.7142D-05 SUM OF (ERRORS**2)= 0.14289D-05 SUM OF (ERRORS**2)= 0.24928D-07 SUM OF (ERRORS**2)= 0.24920D-05

ı

DATE RUN 20 NOV 79			DYNAMIC	1755.34 LBS/FT**2	ERENCE NO T AREA (A	11.34 FT**2	INSTALLED ENGINE PERFORMANCE DATA	2.453 FN (LBF) 7605.87 15.877 WFT (LBM/HR) 11291.4. 6.472 SFC (LBM/HR/LBF) 1.48	1772.313 WFT COR (LBM/HR) 42782.5 0.0 SFC COR (LBM/HR/LBF) 1.6 0.0 SFC COR (LBM/HR/LBF) 1.6 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064 0.064	889.800			GINE WEIGHT BREAKDOWN	ENGINE (LBM) = 3210. SSORIES (LBM) = 0. L (LBM) = 3210.		
ZB MAP CFG MAP	ER		TOTAL	741.07 DEG R	AREA (A10R)	8 FT**2	AFTBODY DRA	_	CD A/B DRAG A/B (LBF) CD A/B SPR DRAG A/B SPR (LBF) CD A/B TOT CD A/B REF CD A/B REF	S (LBF)			EN	261. BARE 0. ACCES 0. TOTAL		671.3 669.4 340.7
MAP DEL A	DE МАСН NUMBE	FT 2.00	AMBIENT TEMPERATURE	411.70 DEG R	REFERENC) OR MACELLE	15.8	DRAG	7.000 A) 0.045 A) 0.035	(LBF) 1198.215 (LBF) 430.059 (LBF) 430.059 (LBF) 768.156				INDUCTION SYSTEM EIGHT BREAKDOWN	LBM) = = DOORS (LBM) = RS (LBM) = LBM) = LBM) = RS (LBM) = RS (LBM	ELLE DRAG BUILDUP	CTION (LBF) = 1 F) = 2 BF) = 2
INLET MAP NOZZLE TM183 DRP1	ALTITUD	30000.0	TOTAL	905.20 LBS/FT**2	10	1.40	INLET	1 AC	CD BYP DRAG INL TOT DRAG INL TOT CD INL REF DRAG INL REF CD INL PS CD INL PS CD INL PS				AIR	INLET (LBM) DUCT (LBM) BYPASS DOORS T/O DOORS (L TOTAL (LBM)	NACE	SKIN FRI WAVE (LB TOTAL (L
н			AMBIENT	.91 LBS/FT**2 4	ET CAPTU REA (AC)	7.00 FT**2	OVERY INLET MASS FLOW RATIOS	.844 A0SPL/AC 0.21 .430 A0I/AC 0.78 .219 A0BLD/AC 0.01	26 A08YP/AC 0.	FLOW RATIO = 0.0	r		E WEIGHT BREAKDOWN	(LBM) = 49 138 138 138 138 158 158		
				929	35	6	ENGINE PERFORMANCE DA INCORPORATING INLET REC AND NOZZLE CFG	919	(PRI)	REFERENCE INLET MASS F	ILLAGE MBER ASS WIT	EXCESS INLET AIRFLOW SPILLED	NACELL	ENGINE MOUNTS FIREWALL (LBF COWL (LBM) TOTAL (LBM)		

ı

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY OUTPUT DATA

DATOUT9 0.300000+05 0.180800+01 0.48192D+01 0.3122D+01 0.18925D+01 0.18925D+01 0.18925D+01 0.18925D+01		
PTERFACE CORRE 5 TATP8 0 0 2 1281D-03 0 2 2 483D-06 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		11291.43 30.1179 0.0
STATIC I STATIC I STATP7 0.0 0.0 0.0 0.48858D+02 0.0 0.48858D+02 0.0 0.26937D+02 0.48727D+01 0.26937D+02 0.48727D+01 0.97892D+00 0.96971D+		(LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0	3 PASSES	FUEL FLOW NET THRUS BOATTAIL SPILLAGE
REFERRED FLOW 5747P5 0.92114P63 0.17293D403	TERATIONS	28285.55 1.2189 -0.01 1.2189
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	32 2 I	T SHAFT HP SFC
TOTAL FMPERATURE 5.1ATP3 0.740720+03 0.897390+03 0.897390+03 0.897390+03 0.897390+03 0.138570+04 0.138570+04 0.158570+04 0.145120+04 0.145120+04 0.145120+04 0.145120+04 0.145120+04 0.165120+04 0.10000+00	ECOVERY= 0.91	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
PRESSURE 51A7P2 0.43727D+01 0.55476D+02 0.55346D+02 0.55346D+02 0.25346D+02 0.25346D+02 0.25346D+02 0.25346D+02 0.25346D+02 0.25346D+02 0.25310D+03 0.253546D+02 0.25310D+02 0.25324D+02 0.25324D+02 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04 0.25731D+04	= 30000. R	307.59 9263.84 19021.70 9263.84
MEIGHT FILDM 5TATM 0.310660+03 0.307525+03 0.307520+03 0.127890+03 0.127890+03 0.127890+03 0.127890+03 0.127890+03 0.127890+03 0.131660+03 0.131660+03 0.10660+03 0.1	00 ALTITUDE	SEC) DRAG RUST
STATION STATION STATION COMPONENT NO. TYPE 13 SCOMPRESR SCOMPRESR SCOMPRESR TURBINE NO. TYPE 13 STATION SCOMPRESR SCOMPRE	MACH= 2.00	AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

30107. AD/AC= 0.8052

*1

MACH 2.006

OZAC EXCEUS DISTORTION LIMIT. ADSUM OF (ERRORS**2) = 0.76586D-02
SUM OF (ERRORS**2) = 0.31361D-03
SUM OF (ERRORS**2) = 0.23772D-04
SUM OF (ERRORS**2) = 0.13809D-04
SUM OF (ERRORS**2) = 0.16618D-03
BACHTDEN'S METHOD NOW BEING USED
SUM OF (ERRORS**2) = 0.18850D-05

1

DATE RUN 20 NOV 79		DYNAMIC	755.34 LBS/FT**2	NCE NOZZLE REA (A9R)	4 FT**2	INSTALLED ENGINE PERFORMANCE DATA	629 FN (LBF) 877 WFT (LBM/HR) 745 SFC (LBM/HR/LBF) 000 042 FN COR (LBF) 045 MFT COR (LBF)	0 SFC COR (LBM/HR/LBF) 2. 042 579	.032 .513 .066				WEIGHT BREAKDOWN	INE (LBM) = 3210. IES (LBM) = 0. BM) = 3210.		
MAP CFG MAP CVRP		TOTAL	1.07 DEG R 1	FTBODY REFEREN EA (Alor) EXIT AR	T**2 11.3	AFTBODY DRAG	115	R (LBF) 0	F (LBF) 882				ENGINE	1. BARE ENG 0. ACCESSOR 0. TOTAL (L 0.		
MAP DEL A/B	MACH NUMBER T 2.00	AMBIENT	1.70 DEG	REFERENCE AND OR NACELLE AR	15.88 F	DRAG	7.000	BF) 868.283 0.035 BF) 430.059	F) 438.224			TON	IGHT BREAKDOWN	(LBM) = 26 LBM) = 26 5 DOORS (LBM) = 26 (LBM) = 26	LLE DRAG BUILDUP	TION (LBF) = 671 1 = 1669 F) = 2340
INLET MAP NOZZLE TM183 DRP1	ALTITUDE 30000.0 F	TOTAL	0 LBS	REFERENCE Alozas (Alozas R)	1.40	INLET D	AC CFI	CORAGINA CORAGINA COLIN	A G				3	INLET DUCT OF SYPASS	NACELL	SKIN FRICT WAVE (LBF) TOTAL (LBF
¥.		AMBIENT 000000000000000000000000000000000000	6.91 LBS/	INLET CAPTURE AREA (AC)	7.00 FT**2	COVERY INLET MASS FLOW RATIOS	1.815 ADSPL/AC 0.17 1.815 AOLAC 0.82 1.037 AOAC 0.80 1.933 AOBYP/AC 0.00	UE/AC U.		FLOW RATIO = 0.0	#5	~	LLE WEIGHT BREAKDOWN	138. (LBM) = 138. BM) = 427. LBM) = 613.		
			62			ENGINE PERFORMANCE D INCORPORATING INLET RE AND NOZZLE CFG	FN (LBF) WFT (LBM/HR) 3842 SFC (LBM/HR/LBF) W2 COR (LB1/SEC) 19 W2 ABS (LBM/SEC) 28	CFG (PRI)	360	REFERENCE INLET MASS	N N N	XCESS INLET AIRFL	NACEL	ENGINE M FIREMALL COWL (LB TOTAL (L	,,	

Ĭ

H

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY OUTPUT DATA

ű

DATOUT9 0.300000000000000000000000000000000000		
HTERFACE CORRE FLOW ERROR 5 TATP8 0.0 49944D-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		38420.26 75.1024 0.0
STATIC IP STATIC IP STATP7 0.0 0.0 0.44772D+02 0.0 0.44805D+02 0.0 0.25295D+02 0.25295D+02 0.25295D+02 0.25295D+02 0.25295D+02 0.25295D+02 0.25295D+02 0.49649D+02 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.25381D+03 0.32107D+00 0.967797D+00 0.967797D+00		(LBZHR) TZAIRFLOW DRAG + LIP DRAG
MACH NUMBER STATP6 0.0 0.0 0.0 0.42762D+00 0.0 0.34536D+00 0.2 0.1000D+01 0.2 0.2 0.0 0.2 0.3551D+00 0.2 0.3551D+00 0.355	6 PASSES	FUEL FLOW NET THRUST BOATTAIL I SPILLAGE
REFERRED 6 84432D+03 0 84432D+03 0 17298D+03 0 10525D+03 0 1625D+02 0 645275D+02 0 1625D+02 0 10 129084D+02 0 1 0 18872D+03 0 1 0 1 0 18872D+03 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	TERATIONS	38609.14 1.8145 18.52 1.8145
FUEL/AIR STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25467D-01 0.27868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.13770D+01 0.13780B-01 0.26808D-01 0.26808D-01 0.26808D-01 0.27868D+01 0.27868D+01 0.27868D+01 0.27868D+01	68 5 I	T SHAFT HP SFC
TEMPERATUSE 5 T 1 P 3 0 411840+03 0 740720+03 0 897390+03 0 897390+03 0 897390+03 0 138590+04 0 128590+04 0 293040+04 0 293040+04 0 213870+04 0 213870+04 0 20000+04 0 300000+01 0 108050+01 0 108050+01 0 108050+01 0 108050+01 0 108050+01 0 108050+04	ECOVERY= 0.83	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
TOTAL PRESSURE 5TATP2 0.28624D+02 0.28624D+02 0.507172D+62 0.50717D+62 0.50717D+62 0.2184D+03 0.2184D+03 0.2184D+03 0.2184D+03 0.4812D+02 0.4812D+02 0.4812D+02 0.4812D+02 0.48132D+02 0.48132D+02 0.5073D+04	= 30000. R	281.93 21173.87 17435.27 21173.87
MEIGHT FLOW 57ATPI 57ATPI 6281790403 0.281790403 0.153000403 0.115800403 0.115800403 0.115800403 0.121750403 0.23250403 0.232550403 0.229690405 0.229690405 0.152500405 0.152500405 0.152500405 0.152500405 0.152500405	00 ALTITUDE	SEC) DRAG RUST
COMPONENT NO. TYPE 10 112 112 113 12 COMPRESS 12 COMPRESS 12 SPLITTER 13 SPLITTER 14 COMPRESS 15 TURBINE 16 MIXER 17 SHAFT 12 SHAFT 12 SHAFT	MACH= 2.00	AIRFLOW (LB/ NET THRUST TOTAL INLET INSTALLED TH

&D ENDIT=1, &END NEP - IMPUT

362

į i

8.2.3 DATABASE INLET 'FB', DATABASE NOZZLE 'ADENAB'

&D IWT=0,INST=1,IFLGRF=0,AJMAX=0.,AJMIN=0.,ALTP=10000,MACH=.6,ETAR=0,LABEL=F, SPEC(7,10)=0,SPEC(4,9)=0, &END NEP - INPUT &I INMAP='FB',NOZMAP='ADENAB',CFGMAP='ADENCFG',DCDMAP=0, DERP=0,ACI=7.,NWC=1,NWD=1,INLTWT=1,MODE=0, INOZ(1)=10,0,0,0,KVALUE=.000105,REFMFR=0,OPTB=3., A10A9R=1.4,ENGNO=1.,TABRF=0.,ICFCN=2, SCALE=1.,PRINT=1.,UNITI=1.,UNITO=1.,STOP=0., 0.333820+00 0.17460D+00 0.70074D-01 0.72217D-03 0.32217D-03 0.30478D-04 0.10161D-04 0.24682D-05 0.58038D-06 SUM OF (ERRORS**2)= 0.58038D-06 1 NOW BEING UCERRORS**2) = 0 (ERRORS**2) = 0 INSTAL - INSTLL FTFFFFF MODE SUM

, ,

&D SPEC(5,10)=5556, &END NEP - INPUT MODE I NOW BEING USED

Ó

O

Q

Ġ

I

OLD INSTALLATION MAPS

**************************************		LOCAL	MACH NUMBER	ER (MNO)		۸۶	FREE	STREAM MACH NUMBER (MHFS)	NUMBER (P	MNFS)		
	00.0	1.000	2.000	3.000	MNO							
**************************************	INLET PRESSURE	ESSURE RECOVERY	VERY (PT2/PI0)	10)	٧S	MASS FLOW	FLOW RATIO (AO/AC)	0/AC)	AND	LOCAL	LOCAL MACH NUMBER (MND)	(MNO)
MNO=0.600	0.750	0.775	0.800 0.985	0.825	0.850	0.875 0.958	0.900 0.928	A0/AC P12/P10				
MNO=0.850	0.625	0.650	0.675	0.700	0.725	0.750	0.775	0.780	A0/AC P12/P10			
MK0=1.200	0.625	0.650	0.675	0.700	0.725	0.750	0.765	0.775	A0/AC P12/P10			
MN0=2.000	0.700	0.725	0.750	0.775	0.800	0.820	0.830	0.840	A0/AC PT2/PT0			
MN0=2.001	0.700	0.725	0.750	0.775	0.800	0.820	0.835	0.845	A0/AC P12/P10			
MN0=2.500	0.800	0.825	0.850	0.875	1.900 0.912	0.915	0.925	0.930	AD/AC PT2/PT0			
**************************************		OPIIMUM IN	OPTIMUM INLET RECOVERY	RY (P12/P10	(140 07)	SA.	LOCAL	MACH NUMBER	(MNO)			
ı	0.0	0.300	0.600	1.060	0.970	1.700	2.000	2.001	2.200 0.925	2.500	MNO PT2/PT0	
**************************************		OPTIMUM MASS	SS FLOW RATIO	TIO (A0/AC OPT)	0PT)	s A	LOCAL	MACH NUMBER (MND)	(MND)			

Û

	0.600	0.800	1.000	1.200	1.400	1.600	2.000	2.001	2.200	2.500 0.916	MNO AO/AC	
**************************************		BUZZ LIMIT	MASS	FLOW RATIO	(AD/AC)	S A	LOCAL	MACH NUMBER (MND)	CMMO			
	00	1.400	1.500	1.600	1.800	2.000	2.001	9.822	2.500 0.875	MNO AO/AC		
**************************************		DISTORTION LIMIT	LIMIT MA	MASS FLOW I	RATIO (A0/AC)	Š	LOCAL	LOCAL MACH NUMBER (MND)	(MNO)			
	0.600	0.800	1.000	1.200	1.400	1.600	0.830	2.001	2.200	2.500 0.928	MNO AO/AC	
***************************************	SPILLAGE	DRAG COEFICIENT		(CDSPL)	8>	INLET MA!	SS FLOW RAT	INLET MASS FLOW RATIO (A01/AC)	AND	LOCAL M	LOCAL MACH NUMSER (MND)	
009. 0=0M 367	0.400	0.500	0.600	0.700	0.765	1.000	A01/AC CDSPL					
MNO=0.900	0.400	0.500	0.600	0.700	0.765	1.000	AOI/AC CDSPL					
MN0=1.200	0.400	0.500	0.600	0.700	0.765	0.775	1.000	AOI/AC CDSPL			٠	
MNO=1.500	0.400	0.500	0.600	0.700	0.765	0.775	0.800	1.000	A01/AC CDSPL			
MNO=1.700	0.400	0.500	0.600	9.700	0.070	0.775	0.800	0.823	0.00	A01/AC CDSPL		
MNO-1.990	0.400	0.500	0.600	0.700	0.765	0.775	0.800	0.823	0.865	1.000	ADI:/4C CDSPL	
MN0=2.000	0.400	0.700	1.000	A01/AC CDSPL								
MN0=2.200	0.400	0.700	1.000	AOI/AC								

Ü

O

9

O

Ü

Ç

							LOCAL MACH NUMBER (MNO)							
							LOCAL							
			CMNO	MNO REF CDSPL	CMND)	MNO REF ADI/AC	AND	MNO						
			LOCAL MACH NUMBER (MND)	2.500	LOCAL MACH NUMBER (MND)	2.500	(AOBLD/AC)	2.500						
			LOCAL	2.010	LDCAL	2.010	BLEED MASS FLOW RATIO (AOBLD/AC)	2.001						
			8>	2.000	8	2.000	BLEED MASS	2.000						
			CDSPL)	1.600	EF ADI/AC)	1.600	۸۶	1.600						
CDSPL	A01/AC CDSPL	A01/AC CDSPL	OBFF (REF	1.200	I RATIO CR	1.200	(D BLD)	1.200						
0.013	1.000	1.000	REF SPILLAGE DRAG COEFF	0.800	REF INLET MASS FLOW RATIO (REF ADI/AC)	0.770	FICIENT CC	0.8.0	AOBLD/AC CDBLD	AOBLD/AC CDBLD	AGBLD/AC CDBLD	ADBLD/AC CDBLD	AOBLD/AC CDBLD	4.0BLD/AC
0.013	0.700	0.700	REF SPILL	0.700	REF INLET	0.400	BLEED DRAG COEFFICIENT (CD BLD)	062.0	0.105	0.105	0.105	0.105	0.105	0.105
0.013	0.400	0.400		0.0		0.0		9.600	0.0	0.0	0.0	0.0	0.0	0.0
	MNG=2.400	MN0=2.500	* ************************************		**************************************	368	**************************************		MN0=0.600	062.0=0MM	MN0=0.800	MN0=1.200	MND=1.600	MN0=2.000

					LUCAL MACH NUMBER (MND)	94.			} · · ·	: :	Ş 2	ER (MIND)		
					JACH NU	AOBYP	CDBYP	CDBYP	CDBYP	CDBYP	CDBYP CDBYP CDBYP	LOCAL MACH NUMBER (MND)		
					LOCAL	0.260	0.0	0.0	0.330	0.290	0.257	LOCAL 1		
,				•		0.220	0.220	0.0	0.330	0.290	0.185 0.220 0.150	AND		
				(AOBYP/AC)	,	0.180	0.180	0.180	0.180	0.290	0.135 0.180 0.108	ACS		
				BYPASS MASS FLOW RATIO (AOBYP/AC)	MNO	0.140	0.146	0.140	0.140	0.140	0.140 0.075	FLOW RATIO (AG/AC)	AO/AC AGBI D/AC	
				PASS MASS	2.500	0.120	0.120	0.120	0.120	0.120	0.120	MASS FLOW	0.875	
				VS BY	2.209	0.100	0.100	0.100	0.100	0.100	0.100	s _v	0.850	
	AC	¥C	Q V	(CDBYP)	1.700	0.080	0.080	0.080	0.080	0.080	0.080	3LD/AC)	0.800	
CDBLD	AOBLD/AC CDBLD	AOBLD/AC CDBLD	AOBLD	OEFFICIENT	1.201	0.060	0.060	0.060	0.060	0.060	0.060	RATIO CADE	0.700	0 700
0.067	0.105	0.105	0.105	BYPASS DRAG COEFFICIENT (CDBYP)	1.200	0.040	0.040	0.040	0.040	0.025	0.040	BLEED MASS FLOW RATIO (AOBLD/AC)	0.600	0.600
0.0	0.0	0.0			0.0	00.0	0.0	0.0	0.0	0.0	00.	BLEEL	0.500	0.500
	MN0=2.001	MNO=2.500		**************************************		MN0=0.0	MN0=1.200	F:N0=1.201	MN0=1.700	MN0=2.200	MN0=2.500	**************************************	MN0=0.0	140=0.799

0

C

C

C

Ç.

-

						(OM						
						LOCAL MACH NUMBER (MND)						
						CH NG						
						CAL MA						
						2						
				(MND)		AND						
				LOCAL MACH NUMBER (MND)		E/AC)	AOE/AC Aobyp/ac	ADE/AC AOBYP/AC				
				MACH		IO (AO	AOE/ AOBY	AOE/ AOBY				
			AO/AC AGBLD/AC	LOCAL		DW RAT	0.915	0.915				
		y.	AO			ISS FL	••					ပ
		AOZAC AOBLDZAC	0.875	\$		ENGINE MASS FLOW RATIO (AOE/AC)	0.855	0.855				AOE/AC AOBYP/AC
AD/AC AOBLD/AC	AD/AC AOBLD/AC		8.5	(AGBLD/AC)		ũ	'n	SO.			ADE/AC AOBYP/AC	
A0.4 A0BL	A0./ A0B1	0.850	0.850			82	0.815	0.815			A0E/ A0BY	0.815
0.800	0.800	0.800	0.800	OPTIMUM BLEED MASS FLOW RATIO		6	0.785	0.785		AOE/AC AOBYP/AC	0.785	0.785
99	66			S FLOW	y ¥	OBYP/A	• •	6.6	ũ	A O	00	66
0.700	0.700	0.700	0.700	ED MAS	MNO AOBLD/AC	710 CA	0.715	0.715	ADE/AC AOBYP/AC	0.715	0.715	0.715
				JM BLE		ON RA						
0.600	0.600	0.600	0.660	OPTIM	0.070	BYPASS MASS FLOW RATIO (AOBYP/AC)	0.685	0.685	0.685	0.685	0.685	0.685
0.500	0.500	0.500	.500		2.001 0.050	YPASS 1	0.400	0.400	0.400	0.400	0.400	0.400
	00	00	00	***	6.0		2.5		0.0	00	00	9.0
.800	.200	. 700	000	**************************************		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	0	.190	. 200	009	000	.001
MN0=0.800	MN0=1.200	MNO=1.700	MN0=2.000	* * *	370	* * * * * * * * * * * * * * * * * * * *	MNO=0.0	MNO=1.190	MNO=1.200	_MN0=1.600	MN0=2.000	-nn0=2.001
	and the second s											- Jacobs

	AOE/AC AOBYP/A
AOE/AC AOBYP/AC	0.915
0.855	0.855
0.815	0.100
0.070	0.785
0.715	0.200
0.685	0.685
0.400	0.400
MN0=2.200	MN0=2.500

Ę,

INLET START MACH NUMBER 2.010 MINIMUM MACH NUMBER FOR INLET DRAG CALCULATIONS 0.600

(A10/A9)					
REA RATIO		MNFS CD A/B	MNFS CD A/B	MNFS CD A/B	MNFS CD A/B
AND AFT-BODY AREA RATIO (A10/A9)		2.200	2.200	2.200	2.200
AND		2.540	2.000	2.000	2.000
ER (MNFS)		1.500	1.500	1.530	1.500
MACH NUMB		1.200	1.200	1.200	1.200
FREE STREAM MACH NUMBER (MNFS)		1.100	1.100	1.100	1.100
VS F	410/49	1.000	1.000	1.000	1.000
(CD A/B)	5.000	0.950	0.950	0.950	0.950
AFT-BODY DRAG COEFFICIENT (CD A/B)	3.330	0.900	0.900	0.900	0.900
Y DRAG CO	2.500	0.800	0.300	0.037	0.800
AFT-BOD	2.273	0.600	0.600	0.600	0.600
* TABLE AB *		A10/A9= 2.273 0.600	A10/A9= 2.500 0.600	A10/A9= 3.330 0.600	A10725 5.000 0.600

Ë				
POWER SETTING (PS				
AND		8		
(PT9/PAMB)				
NOZZLE PRESSURE RATIO (PT9/PAMB)		PT9/PAMB CFG	PT9/PAMB CFG	PT9/PAMB CFG
NOZZLE PRE		12.000	12.000	12.000
۸۶		10.000	10.000	10.000
(CFG)	S.	8.000	8.000	8.000
GROSS THRUST COEFICIENT (CFG)	2.000	6.000	0.993	6.000
THRUST	1.500	4.000	4.000	4.000
GROSS	1.000	1.000 2.000	1.500 2.000	2.000 2.000
**************************************		1.006	1.500	2.000
*		S.	PS	Ps

373

C - Z

.

	0.120000+02	0 984000+00		0 120001402	200000000000000000000000000000000000000	0. 700007.0	120000+02	0.97600D+00
	0.10000D+02	0.985000+00 0.984000+00		0.100000+02	20-20-20-0 0 00-20-00-00 0		0.100000+02	0.97900D+00 0.97600D+00
	0.80000D+01	0.990000+00		0.80000D+01	0 985000+00		0.80000D+01	0.98200D+00
	0.60000D+01	0.98750D+00		0.60000D+01	0 990000+00		0.60000D+01	0.98250D+00
	0.400000+01	0.97000D+00		0.40000D+01	0.98500D+00		0.40000D+01	0.97750D+00
0.10000D+01	0.20000D+01	0.94500D+00	0.15000D+01	0.20000D+01	0.92500D+00	0.20000D+01		0.95000D+00
A948=	PTP0	2	A 9 A 8 =	PTPO	2	A948=	PTP0	2
0.0		9	0.0					
11			11			11		
2		,	7			7		

P

ı

.

TABLE DATA INPUT SUMMARY 11 TABLES

Ó

0

Ó

Ó

0

0

C

0

0

ARRAY LOCATION	1075	22	45	69	93	38	97	43	1
REFERENCE NUMBER	30	38	8	8	00	8	8	5	S
TABLE NUMBER	24	•	'n	9	7	•	•	9	-

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10747

SUM OF (ERRORS**2)= 0.58038D-06 FB 0

ITERFP(1)=1,2,3,8,9,10,0
ISECFP(1)=1,2,3,4,5,6,7,8,9,10,0,
RLFDC=3.44,ICCOMP=9,IFCOMP=10,CLMIN=3.,
AEND
ETTED AREA - NACWET
SINIUM
SINIUM
SLST=16200.,INLET=1,QMAX=1800.,NINLET=1,KSHAPE=1.,
AEND

NLET MEIGHT - INLWT SUM OF (ERRORS**2)= 0.43946D-03 SUM OF (ERRORS**2)= 0.55500D-07

375

ı

DATE RUN 20 NOV 79			DYNAMIC Pressure	366.47 LBS/FT**2	REFERENCE NOZZLE EXIT AREA (A9R)	11.34 FT**2	INSTALLED ENGINE Performance data	FN (LBF) 10722 WFT (LBM/HR) 10196 SFC (LBM/HR/LBF) 0	175.747 WFT COR (LBM/HR) 15603.20 175.747 WFT COR (LBM/HR) 15376.39: 0.0 SFC COR (LBM/HR/LBF) 0.98: 0.030	5.747 0.031 9.600	3.853			ENGINE WEIGHT BREAKDOWN	GINE (LBM) = 3210. RIES (LBM) = 0. LBM) = 3210.)	
CFG MAP ADENCFG			TOTAL TEMPERATURE	517.81 DEG R	AFTBODY REFE		AFTBODY DRAG			BF.)	PS (LBF)			ENGIN	BARE ENGINE ACCESSORIES TOTAL (LBM)			
DEL A/B MAP	MACH NUMBER	09.0	AMBIENT TEMPERATURE	483.03 DEG R 5	REFERENCE AFTB OR NACELLE AREA	15.88 FT**2		8000	0.00 DRAPO P. 0.	9.0	DRAG A			AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	= 1083. (LBM) = 156. (4) = 156.	= 1239 TI DIIP	(LBF) = 191.3 = 13.5	
MAP NOZZLE MAP ADENAB	ALTITUDE	10000.0 FT	TOTAL PRESSURE	.89 LBS/FT**2 48	REFERENCE A10/A9 (A10/A9 R)	1.40	INLET DRAG	C (FT**2) D SPL (TAB 3) D SPL (TAB 3A) D BLD	CD INL TOT DRAG INL TOT CD INL REF CD INL REF DRAG INL REF CLOF)	RAG INL PS (LBF)				AIR INDUC WEIGHT	INLET (LBM) DUCT (LBM) BYPASS DOORS (LBM) I/O DOORS (LBM)	IDIAL (LBM)	SKIN FRICTION (LBF)	IUIAL (LBF)
INLET FB				1854	CAPTURE A (AC)	7.00 FT**2	INLET MASS Flow Ratios	ADSPL/AC 0.167 ADI/AC 0.833 C ADBLD/AC 0.0	3 4 4 5 5) A	0.0 = 01			T BREAKDOWN	M) = 49. = 138. = 360.			
			AMBIENT PRESSURE	1454.24 LBS/FT**2	INLET	7.	MANCE DATA NLET RECOVERY LE CFG	10718.484 10196.762 0.951 250.614	0.980		T MASS FLOW RATIO	SPILLAGE Number	PASS WITH AIRFLOW D	NACELLE WEIGHT	ENGINE MOUNTS (LBM) FIREWALL (LBM) COWL (LBM) TOTAL (LBM)			
							ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC) WZ ARS (IRM/SEC)	RF CFG (PRI) CGF (SEC)	376	REFERENCE INLET	BYPASS VS SI OPTION N	SCHEDULED SYPASS WITH EXCESS INLET AIRFLOW			יו		

"

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

O

0

O

0

Ū

O

		A STATE OF THE STA	
	CTED	DATOUT9 0.100000+05 0.300690+01 0.3000000+04 0.231900+04 0.216920+01 0.108950+01 0.349190+01	
	INTERFACE CORRECTED FLOW ERROR STATP8 0.0 0.26906D-07 0.26906D-07 0.0 0.16535D-08 0.16535D-07 0.16535D-07 0.16535D-07 0.16535D-07	DATOUT8 0.99842D+00 0.84986D+00 0.85982D+00 0.99000D+00 0.9000D+00 0.3224D-07 0.18672D+01 0.57085D-07	10196.76 49.7379 0.0 0.0
	PRESSURE STATP7 0.0 0.0 0.0 0.34464D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.980000+00 0.253810+03 0.96490+02 0.96910+00 0.648320+03 0.0 0.964180+00	L FLOW (1B/HR) THRUST/AIRFLOW TTAIL DRAG LLAGE + LIP DRAG
	MACH NUMBER STATP6 0.6000D+00 0.0 0.33530D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.600000+00 0.100160+01 0.10030+01 6.101970+05 0.499940+04 0.500420+04 0.500420+04 0.980000+00 0.0	FUEL FLOW NET THRUST BOATTAIL D SPILLAGE +
Y OUTPUT DATA	REFERRED FLOW STATP5 0.30236D+03 0.95736D+03 0.95736D+02 0.50849D+02 0.10633D+02 0.10633D+02 0.10103D+02 0.19103D+02 0.41864D+02 0.41864D+02 0.41864D+02 0.41864D+02 0.41864D+02 0.41864D+03 0.4258D+03 0.15168D+03	175 D+01 D+02 D+02 D+03 D+03	15048.31 0.9513 0.00 0.9513
TATION PROPERTY	FUEL/AIR RATIO 0.0 0.0 0.0 0.0 0.0 0.27651D-01 0.26601D-01 0.26601D-01 0.26601D-01 0.3140D-01	COMPONENT OUTPUT DATA 0.10721D+01 0.12759 0.15047D+01 0.54534 0.029106D-01 0.68156 0.34998D+01 0.67376 0.25013D+01 0.55526 0.10807D+01 0.55526 0.10807D+01 0.56902 0.51511D+03 0.45627 0.7999DD+04 0.0	ST SHAFT HP ISFC
ST	TEMPERATURE STATP3 0.48303D+03 0.51785D+03 0.74239D+03 0.74239D+03 0.74239D+03 0.12941D+04 0.29249D+04 0.29225D+04 0.29225D+04 0.2425D+04 0.2436D+04	DATOUT3 0.38298D+03 0.0 0.2000D-01 0.3000D+01 0.1000D+01 0.11093D+01 0.34919D+01 0.74990D+04 0.60050D+04	GROSS THRUS TSFC TOTAL BRAKE INSTALLED T
	TOTAL PRESSURE STATP2 0.10108D+02 0.3266D+02 0.37246D+02 0.37246D+02 0.37246D+02 0.37246D+02 0.37246D+03 0.37246D+03 0.37256D+03 0.37250D+02 0.37250D+02 0.37250D+02	DATOUT2 0.6464D+03 0.60050D+04 0.20000D-01 0.79990D+04 0.79990D+04 0.6000D-01 0.6000D-01 0.79990D+04 0.6000D-01 0.6000D-01	215.50 10718.49 4329.83 10718.49
	MEIGHT FLOM STATP1 0.21838D+03 0.21555D+03 0.10783D+03 0.10772D+03 0.10244D+03 0.10527D+03 0.10527D+03 0.1056D+03 0.21838D+03 0.21838D+03	DATOUTI 0.43298D+04 -0.16491D+05 0.99902D+00 0.94802D+00 0.94802D+00 0.94802D+00 0.16491D+05 0.16491D+05 0.16491D+05 0.1648D+05 0.1925D-02 0.10821D-02	B/SEC) IT DRAG THRUST
	FLOW STATION 12 10 11 13	COMPONENT NO. TYPE 1 INLET 2 COMPRESR -0 3 SPLITTER 0 4 COMPRESR -0 4 COMPRESR -0 5 SPLITTER 0 4 DUCT B 10 SHAFT 12 SHAFT 12 SHAFT	AIRFLOM (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST

D

7

11

ı

DATE RUN 20 NOV 79		DYNAMIC	5.03 LBS/FT**2	E NOZZLE A (A9R)	FT**2	INSTALLED ENGINE PERFORMANCE DATA	FN (LBF) 9887 WFT (LBM/HR) 10547 SFC (LBM/HR/LBF) 1	12 FN COR (LBF) 17540.86: 12 MFT COR (LBM/HR) 19757.516 5FC COR (LBM/HR/LBF) 1.126		'n		14.7	IGHT BREAKDOWN			
MAP CFG MAP ADENCFG		TOTAL Temperature	558.24 DEG R 835	: AFTBODY REFERENCE AREA (A10R) EXIT AREA	FT**2 11.34 P	AFTBODY DRAG	A10/A9 A10 (FT**2) 3.94 A9 (FT**2) 4.02 P95/PAMB 1.00	A/B (LBF B SPR A/B SPR B TOT	A/B TOT (LBF) B REF A/B REF (LBF) B PS	IVB PS (LBF)			ENGINE WEIGHT	3. BARE ENGINE 0. ACCESSORIES 6. TOTAL (LBM) 9.		2. 0.
MAP DEL A/B MAP	E MACH NUMBER FT 1.00	AMBIENT TEMPERATURE	465.20 DEG R	REFERENCE OR NACELLE AN	15.88	DRAG	7.000 A10 0.061 A10 0.040 A9	80522	421.75	DRA			AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	NLET (LBM) = 1083. UCT (LBM) = 0. YPASS DOORS (LBM) = 156. /O DOORS (LBM) = 0. 0TAL (LBM) = 1239.	NACELLE DRAG BUILDUP	ON (LBF) = 391 = 27 = 418
INLET MAP NOZZLE MAP FB ADENAB	ALTITUDE 15000.0 F	TOTAL Pressure	2258.08 LBS/FT**2	REFERENCE A10/A9 (A10/A9 R)	1.40	INLET D	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD	CD INL TOT DRAG INL TOT CD INL REF DRAG INL REF	CD INL PS DRAG INL PS (LBF)				AIR IN WEIG	INLET (LBM) DUCT (LBM) BYPASS DOC T/O DOORS TOTAL (LBM	NACELL	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INL		AMBIENT PRESSURE	.90 LBS/FT**2 225	INLET CAPTURE AREA (AC) A	7.00 FT**2	RY INLET MASS FLO I RATIOS	AOSPL/AC 0.328 AOI/AC 0.672 AOBLD/AC 0.020 AO/AC 0.052 AOBYP/AC 0.0552	ADE/AC		FLOW RATIO = 0.0			IGHT BREAKDOWN	(LBM) = 49.		
		₹ Q	1192.90			ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) 10191.926 WFT (LBM/HR) 10547.277 SFC (LBM/HR/LBF) 1.035 W2 COR (LBM/SEC) 229.572 W2 ABS (LBM/SEC) 232.604		379	REFERENCE INLET MASS FLOW	BYPASS VS SPILLAGE OPTION NUMBER	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED		ENGINE MOUNTS C FIREWALL (LBM) COWL (LBM) TOTAL (LBM)		

G

C

0

O

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

STATION PROPERTY OUTPUT DATA

D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	
STATIC II 6	0.0
ATP6 ATP6 COOD+01	DRAG + LIP DRAG
0000000000 000000000 m	0 0
	1.0349
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.25206D- 0.12597D- 0.13813D+ 0.13812D+ 0.13812D+ 0.10885D+ 0.	BRAKE SHAFT HP Led TSFC
TEMPERATUR \$TATP3 0.46522D+0 0.77032D+0 0.77032D+0 0.77032D+0 0.13214D+0 0.13214D+0 0.13214D+0 0.13214D+0 0.13214D+0 0.14442D+0	TOTAL BRAKE INSTALLED T
TOTAL PRESSURE 0.82972D+01 0.15290D+02 0.40464D+02 0.20191D+03 0.20191D+03 0.20191D+03 0.20191D+03 0.20191D+03 0.20191D+03 0.36930D+02 0.36930D+02 0.36930D+04 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01 0.20300D-01	7644.22
MEIGHT FLOM C23551D+03 0.23551D+03 0.23551D+03 0.1321D+03 0.11937D+03 0.11937D+03 0.11937D+03 0.11673D+03 0.11673D+03 0.23551D+03 0.23551D+03 0.23551D+03 0.23551D+03 0.23551D+03 0.23551D+03 0.23551D+03 0.16827D+05 0.16827D	T DRAG
ELOW 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	AL INLE TALLED

0

O

Û

								34 38	99	45			
6.2 2.9							NGINE	8216.96 11067.35 1.34	FN COR (LBF) 17908.60 WFT COR (LBM/HR) 25972.66	LBF) 1.			
DATE RUN 20 NOV 79							LED E	2 7185	E HE	M/HR/			
ā"			w	FT**2			INSTALLED ENGINE PERFORMANCE DATA	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF)	R CLBF	er C			
		YNAMIC	PRESSURE	S LBS/	DZZLE A9R)	2							
		۵	ā	1332.18 LBS/FT**2	REFERENCE NOZZLE EXIT AREA (A9R)	11.34 FT**2		3.325	118		123	.030	.668
F.G					REFERE	11.3	RAG	, H	2502	·	2502	1861	640
CFG MAP ADENCFG		7	TEMPERATURE	622.73 DEG R	•		AFTBODY DRAG		CD A/B 0.118 DRAG A/B (LBF) 2502.123	R CLBF	T CLBF	F (LBF	(LBF)
		2	TEMPE	522.73	SODY CA10R	2	AFT	A10 (FT**2) A9 (FT**2)	2 2 2 2	SPR VB SP	KEF	IVB RE	VB PS
DEL A/B MAP	ER				E AFT	15.88 FT**2		A10/A9 A10 (F A9 (FT	CD A/I	DRAG A	DRAG:	DRAG CD A/I	DRAG
DEL /	MACH NUMBER	IENT	TEMPERATURE	DEG F	REFERENCE AFTBODY OR NACELLE AREA (A10R)	15.8		.050	. 188	.050	138		
ΑÞ	MAG	AMB	TEMPE	447.37 DEG R	OR N		ø	~000		1749	1283		
NOZZLE MAP Adenab	rude	-			2		INLET DRAG	AC (FT**2) 7.000 CD SPL (TAB 3) 0.059 CD SPL (TAB 3A) 0.050		CLBF	(LBF)		
ON .	ALTITUDE		E E	LBS/FT**2	RENCE NIOZA9	1.40	IN	(TAB	10.	REF	PS IN		
MAP		TOTAL	PRESSURE	92 LB	REFERENCE A10/A9 (A10/A9 R)			S C C C C C C C C C C C C C C C C C C C	200	CD INI	CD IN		
INLET MAP FB			_	3089.92	A10		S	0.273	. 633				
				* 2	PTURE AC)	1××2	INLET MASS Flow Ratios	AC BOY	P/AC 0				0.0
		TNE	URE	S/FT*	INLET CAPTURE AREA (AC)	7.00 FT**2	INL	ADSPL/AC ADI/AC ADBLD/AC	AOBYP/AC AOE/AC				= 0IT
		AMBIENT	PRES	970.98 LBS/FT**2	INI		OVERY	.359	368	0.967	•		LOW RA
				970			HCE DA ET REC CFG	10140.785	262	000	•		MASS F
							ENGINE PERFORMANCE DATA Incorporating inlet recovery and nozzle cfg	F) BM/HR) BM/HR/LBF) CIRM/SEC)	SEC)				REFERENCE INLET MASS FLOW RATIO
							ORATII AND	(LBF) T (LBM/HR) C (LBM/HR/LBF) COR (LBM/KR/LBF)	CLBM	(PRI)			ENCE
							ENGI	EN CLE	WZ ABS	CFG		82	REFER

ENGINE WEIGHT BREAKDOWN BARE ENGINE (LBM) = ACCESSORIES (LBM) = TOTAL (LBM) = 1083. 156. 1239. AIR INDUCTION SYSTEM WEIGHT BREAKDOWN INLET (LBM) = DUCT (LBM) = BYPASS DOORS (LAM) = T/O DOORS (LBM) = TOTAL (LBM) = 49. 360. 546. NACELLE WEIGHT BREAKDOWN ENGINE MOUNTS (LBM) = FIREWALL (LBM) = COWL (LBM) = TOTAL (LBM) = TOTAL (LBM) 3. SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED

BYPASS VS SPILLAGE OPTION NUMBER

I

3210. 3210.

564.8 1446.5 2011.3 NACELLE DRAG BUILDUP SKIN FRICTION (S.BF) = WAVE (LBF) = TOTAL (LBF) =

"

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

	,ED					
	INTERFACE CORRE, "ED FLOW ERROR STATP8	0.14677D-03	0.0	0.15600D-07 -0.16412D-07 0.0	0.16595D-07	
	STATIC PRESSURE STATP7	0000	0.41856D+02	0.0 0.41856D+02	0.22969D+02 0.67589D+01	
	MACH NUMBER STATP6	0.14000D+01 0.0 0.0	0.37720D+00	0.0 0.0 0.37440D+00	0.18427D+01	
STATION PROPERTY OUTPUT DATA	REFERRED FLOW STATPS	0.52983D+03 0.20308D+03 0.10255D+03	0.56160D+02 0.10952D+02	0.19103D+02 0.41904D+02 0.80046D+02	0.15172D+03 0.15172D+03	PUT DATA
ATION PROPERT	FUEL/AIR RATIO STATP4	0000		0.26624D-01 0.25613D-01 0.25293D-01	0.11719D-01 0.11719D-01	COMPONENT OUTPUT DATA
51	TOTAL TEMPERATURE STATP3	0.44741D+03 0.62285D+03 0.81430D+03	0.81430D+03 0.13622D+04	0.29275D+04 0.24253D+04 0.20819D+04	0.14445D+04 0.14445D+04	
	TOTAL PRESSURE STATP2	0.67589D+01 0.20806D+02 0.47102D+02	0.46159D+02 0.25110D+03 0.21871D+03	0.21666D+03 0.93354D+02 0.45839D+02	0.42902D+02 0.42902D+02	
	WEIGHT FLOW STATPI	0.265400+03 0.262330+03 0.262330+03	0.14078D+03 0.11547D+03 0.60773D+01	0.11854D+03 0.123100+03 0.12462D+03	0.26540D+03 0.26540D+03	
	FLOW	- N N 4	- N & N		125	COMPONENT

				COMPONENT DUTPUT DATA	PUT DATA				
COMPONENT									
		DATOUT2	DATOUTS	DATOUT	DATOUTS	DATOUT6	DATOUT7	DATOUTS	DATOUT9
1 INLET	0.118.3D+05	0.14517D+04	4 0.86005D+03	6.13921D+01	0.31849D+01	0.14000D+01	0.966540+00	0.12099D+01	0.20000D+05
2 COMPRESE		0.56056D+04	0.0	0.13438D+01	0.667590+01	0.85256D+00	0.25381D+03	0.84839D+00	0.226390+01
3 SPLITTER	0.11583D+01	0.20000D-01	1 0.20000D-01	0,0	3.0		0.0	0.0	0.0
	-0.23577D+05	0.80073D+04	-	0.13398D+01	0.36127D+02		0.49649D+02	0.87569D+00	0.54399D+01
5 DUCT B	0.91758D-01	0.50000D-01	0.3000D+	0.280250-01	0.66156D+02	0.11067D+05	0.31005D+00	0.99000000	0.3000D+0
Se TURBINE	0.23577D+05	0.80073D+04	0.10000D+	0.35033D+01	0.67376D+00		0.96971D+00	0.900010+00	0.23209D+01
_	0.17200D+05	0.56056D+04	0.10000D+	0.23310D+01	0.55526D+00	5.46686D+04	0.657130+00	0.89973D+00	0.20366D+0]
8 MIXER	0.40389D+03	0.27387D+03	0.10951D+	0.11028D+01	0.80114D+03	0.518990+03	0.651480+03	0.16251D-07	0.10904D+01
	0.0	0.60000D-01	0.3000D+	0.0	0.0	0.0	0.0	0.0	0.0
	0.21979D+05	0.26644D+04	0.63475D+	0.68769D+03	0.45627D+03	0.980000+00	0.98897D+00	0.18678D+01	0.63475D+01
	-0.27620D-03	0.800730+0^	0.8067334	0.80073D+05	0.0	0.0	0.0	-0.117150-07	0.0
	0.32280D-02	0.56056D+04		0.56056D+04	0.0	0.0	0.0	0.18768D-06	0.0
MACH= 1.4000	00 ALTITUGE=	= 20000.	RECOVERY= 0.9665		2 ITERATIONS	3 PASSES			
AIRFLOW (18/SEC)	SEC.)	262.37	GROSS THRUST	-	21978.92		(LB/HK)	11067.36	
NET THRUST		10140.79			1.0914		VAIRFLOW	38.6510	
TOTAL INLET	DRAG	11838.13		SHAFT HP	00.0		RAG	0.0	
INSTALLED TH	RUST	10140.79		SFC	1.0914	SPILLAGE + LIP DRAG	LIP DRAG	0.0	

DATE RUN 20 NOV 79			DYNAMIC Pressure	1332.18 LB3/FT##2	REFERENCE NOZZLE EXIT AREA (A9R)	11.34 FTHM2	INSTALLED ENGINE PERFORMANCE DATA	15.877 WFT (LBM/HR) 47063.13; 11.000 SFC (LBM/HR/LBF) 9.66;	0.638 FN COR (LBF) 153370.06; 805.750 WFT COR (LBM/HR) 116446.81; 0.0 SFC COR (LBM/HR/LBF) 0.718 0.0	805.750 0.038 801.783 0.000	3.967			ENGINE WEIGHT BREAKDOWN	BARE ENGINE (LBM) = 3210. ACCESSORIES (LBM) = 0. *OTAL (LBM) = 3210.		
P CFG MAP ADENCFG			TOTAL TEMPERATURE	622.73 DEG R			AFTBODY DRAG	25	(LBF) R SPR (LBF) T	TOT (LBF) F REF (LBF)	PS (LBF)			ENG	BARE ACCES TOTAL		
DEL A/B MAP	MACH NUMBER	1.40	AMBIENT Temperature	447.37 DEG R	REFERENCE AFTBODY OR NACELLE AREA (AIOR)	15.88 FT##2		7.000 A1 0.053 A1 0.050 A9	0.314 CD AV 0.438 DRAG 1080.372 CD AV 0.050 DRAG 466.263 CD AV	1.385 DRAG 3614.108 CD A/ DRAG CD A/	DRAG			AIR INDUCTION SYSTEM WEIGHT BREAKDOWN		- 1237 11 DUP	(LBF) = 564.8 = 1446.5 = 2011.3
MAP NOZZLE MAP Adenab	ALTITUDE	20000.0 FT	TOTAL PRESSURE T	LBS/FT##2	REFERENCE A10/A9 (A10/A9 R)	1.40	INLET DRAG	(FT##2) SPL (TAB 3) SPL (TAB 3A)	CD BYP CD INI TOT DRAG INI REF CD INI REF DRAG INI REF (LBF)	AG INL PS (LBF)				AIR INDUC WEIGHT	INLET (LBM) DUCT (LBM) BYFASS DOORS (LBM) TO DOORS (LBM)	NACELLE DI	SKIN FRICTION (LBF) Mave (LBF) Total (LBF)
INLET				.98 LBS/FT##2 3089.92	INLET CAPTURE A10/1	7.00 FT**2	INLET MASS Flow Ratios	ADSPL/AC 0.267 AC ADI/AC 0.733 CI ADBLD/AC 0.036 CI ADI/AC 0.696 CI	0.475	36	110 = 0.0			IT BREAKDOWN	(LBM) = 49. = 138. = 560.		
			AMBIENT PRESSURE	970.98 LB	INC	,	ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	74218.000 47063.133 1.BF) 0.634 5EC) 152.555			NLET MASS FLOW RATIO	S SPILLAGE N NUMBER	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW	MACELLE WEIGHT BREAKDOWN	ENGINE MOUNTS (L FIREWALL (LBM) COWL (LBM) TOTAL (LBM)		
							ENGINE PER INCORPORATIN AND N	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC)	RF CFG (PRI) CGF (SEC)	385	REFERENCE INLET	BYPASS VS OPTION	SCHEDULED EXCESS IN			,,	

STATION PROPERTY DUTPUT DATA

MACH PRESSURE FLOW ERISTATPS 114000D+01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		RECTED	0 0	10					01 0.15133D+0		3.14 4032 0.0
FOW HEIGHT FREERRE F		NTERFACE COR FLOW ERRO STATP8		-0.12663D+0 -0.25017D+0 0.0		000		77	7		47063. 364.46
FLOM FLOM FRESHURE FIGHERATURE FLOM FLOM		STATIC PRESSURE STATP7	. 43422D+	.15576D+ .15576D+ .56051D+ .67589D+		000					CLB/HR) T/AIRFLOW DRAG + LIP DRAG
FLOW HEIGHT FOTAL TOTAL FORESURE FRANCE FORE FORE FORE FORE FORE FORE FORE FOR		MACH NUMBER STATP6		0.0 0.38020D+00 0.1000DD+01 0.23317D+61		DATOUT6 0.14000D+01 0.85256D+00		77			FUEL FLOW NET THRUS BOATTAIL SPILLAGE
FLOW HEIGHT TOTAL TOTAL FRESURE STATES TO CONTROL STATES S	T COLLOS DATA	REFERRED FLOW STATPS	0.411290403 0.935970402 0.418100402 0.536960402	0.42317D+01 0.32698D+02 0.81053D+02 0.15422D+03 0.20847D+03		.31849D+0	-0.66488D+02 0.66156D+02	0.55526D+00 0.84110D:03	0.63890D+03 0.0 0.0		83407.69 0.6341 75333.16 0.6341
FLOW MEIGHT TOTAL TOTAL TOTAL TOTAL STATES S	ALTON PROPERT	FUEL/AIR RATIO STATP4		0.20258D-01 0.20258D-01 0.20212D-01 0.15470D-01 0.35200D-01	COMPONENT OUT		0.16045D+00 0.21514D-01	0.23863D+01 0.10920D+01	0.15977D+04 0.79712D+04 0.56056D+04	51	SHAFT
FLOW MEIGHT TOTAL TOTAL STATP1 STATP2	ō	TCTA EMPERA STATE	. 83295 . 83295 . 83295 . 83295 . 17621	. 25939 . 25939 . 22286 . 30000		.86005D	808	0000	. 1513 . 7971 . 5605	11	THRU BRA)
FLOW WE STION STATION		PRESSURE STATP2	675890+0 207800+0 483870+0 474190+0 474190+0	. 554890+0 . 554890+0 . 171030+0 . 102810+0 . 102280+0		DATOUT2 .14517D+0 .56056D+6	. 79712D+0 . 50000D-0	.56056D+0 .27387D+0	.64481D+0 .79712D+0 .56056D+0	20000.	90.90
FLOW STATION 1 2 3 4 6 6 7 10 11 12 13 12 13 10 10 10 10 10 10 10 10 10 10 10 10 10		WEIGHT FLOW STATPI	0.60330F+03 0.24315F+03 0.24318D+03 0.81112D+02 0.13672D+03	0.550060+03 0.455080+03 0.455080+03 0.591800+03 0.603300+03		DATOUTI 0.91897D+0 0.17510D+0	0.27358D+0 0.31152D-0	.69135D+0 .69135D+0 .40389D+0	.83408D+0 .23708D+0 .51625D+0		EC) RAG UST
		FLOW	๚๗๗๕๗๛	111098 1321		TYPE TYPE INLET COMPRESR	COMPRESR DUCT B	90 TURBINE 8 MIXER	9 DUCI B 10 NOZZLE 11 SHAFT 12 SHAFT		AIRFLOW (LB/S NET THRUST TOTAL INLET I INSTALLED THR

ERROR PRINT *** NO CONVERGENCE

* * WARNING * * FOR COMPRESSOR (COMPONENT 4) THE R VALUE IS

* * WARNING * * FOR COMPRESSOR (COMPONENT

0.708194

2) THE R VALUE IS

2D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30000,MACH=2.,ETAR=0,AJMAX=0.,AJMIN=0., 3END NEP - INPUT

0.95534D-01 0.29156D-01 0.70124D-03 0.18973D-04 0.43768D-06 0.17396D-02 0.47396D-05 (ERRORS**2)= 0.50913D-05 (ERRORS**2)= 0.10576D-06 SUM OF SU

MAP NOZZIE MAP OEL A/B MAP CFG MAP ADENGFG 20 NOV 79	ALTITUDE MACH NUMBER	30000.0 FT 2.00	TOTAL DYNAMIC TOTAL DYNAMIC TEMPERATURE PRESSURE	LBS/FT**2 411.70 DEG R 741.07 DEG R 1755.34 LBS/FT**2	REFERENCE REFERENCE AFTBODY REFERENCE NOZZLE AIO/A9 R) OR NACELLE AREA (AIOR) EXIT AREA (A9R)	1.40 15.88 FT**2 11.34 FT**2	INSTALLED ENGINE INLET DRAG PERFORMANCE DATA	(2) TAB 3) TAB 3A)	0.002 CD A/B (LBF)	0.0 SFC COR 0.065	PS (LBF) 776.917 CD A/B REF DRAG A/B REF (LBF)	DRAG A/B PS (LBF) 455.383			AIR INDUCTION SYSTEM WEIGHT BREAKDOWN ENGINE WEIGHT BREAKDOWN	INLET (LBM) = 1083. BARE ENGINE (LBM) = 3210. DUCT (LBM) = 0. ACCESSORIES (LBM) = 0. BYPASS DOORS (LBM) = 156. TOTAL (LBM) = 3210. T/O DOORS (LBM) = 0. TOTAL (LBM) = 1239.	NACELLE DRAG BUILDUP	SKIN FRICTION (LBF) = 665.3 WAVE (LBF) = 1905.9 TOTAL (LBF) = 2571.2
INLET P			AMBIENT TO PRESSURE PRE	626.91 LBS/FT**2 4905.20	INLET CAPTURE AIO/A	7.00 FT**2	ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY INLET MASS AND NOZZLE CFG FLOW RATIOS	FN (LBF) 9625.707 AOSPL/AC 0.155 AC WFT (LBM/HR) 11464.727 AOI/AC 0.845 CI SFC (LBM/HR/LBF) 1.191 AOBLD/AC 0.060 CI H.2 CAB 1.72 9.20 AO.AC 0.785 CI	IBS (LBM/SEC) 312.139 AOBYP/AC 0.003 ADE/AC 0.782		388	REFERENCE INLET MASS FLOW RATIO = 0.0	BYPASS VS SPILLAGE OPTION NUMBER	SCHEDULED SYPASS WITH EXCESS INLET AIRFLOW SPILLED	NACELLE WEIGHT BREAKDOWN	ENGINE MOUNTS (LBM) = 49. FIREWALL (LBM) = 138. COWL (LBM) = 360. TOTAL (LBM) = 546.		

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

O

0

0

1

C

Q

C.

O

DATA
_
_
=
-
OUTPUT
$\overline{}$
-
_
$\overline{}$
0
_
•
_
α
ш
PROPERTY
=
_
2
0.
-
=
0
H
TION
-
STAT
=

		DATOITA	0.30000D+0	0.48192D+0	0.18925D+01	0.11685D+02 0.0		
	INTERFACE CORRECTED FLOW ERROR 51A1P8 -0.32519D-03 -0.73904D-06 2 0.0 0.19746D-06 0.19746D-06 0.19746D-06 2 0.0 2 0.0 2 0.0 2 0.0 0.19746D-06 0.19746D-06 0.19746D-06 0.19746D-06 0.19746D-07 2 0.0 0.19746D-07 1 0.0	DATOIITA	.14281D+01 .85530D+00	0.88151D+00 0.99000D+00	0.90053D+00 0.38082D-06	0.18682D+01 -0.20383D-06 0.24216D-05		11464.73 30.8379 0.0 0.0
	STATIC II PRESSURE STATP7 0.0 0.0 0.49607D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0					0.0 0.0 0.0		THRUST/AIRFLOW THRUST/AIRFLOW TTAIL DRAG LLAGE + LIP DRAG
	MACH NUMBER STATP6 0.2000D+01 0.0 0.42766D+00 0.0 0.0 0.0 0.34536D+00 0.34536D+00	DATOUTE		0.91352D+00 0.11465D+05	0.43867D+04 0.61463D+03	0.98000D+00 0.0	2 PASSES	FUEL FLOW NET THRUST BUATTAIL D SPILLAGE +
Y OUTPUT DATA	REFERED FLOW STATP5 0.934770+03 0.172840+03 0.452730+02 0.621310+02 0.12980+02 0.190960+02 0.417610+02 0.746970+02 0.746970+02 0.746970+03 0.151740+03	PUT DATA DATOUTS	0.782250+01 0.18874D+02	0.41613D+02 0.66156D+02	.55526D+0 .74648D+0	0.0 0.0	ITERATIONS	28928.94 1.1911 1.1911 1.1911
STATION PROPERTY	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.25470D-01 0.24503D-01 0.24197D-01 0.24197D-01 0.24197D-01	COMPONENT OUTPUT DATOUT4			.21460D+0	0.94998D+03 0.80318D+04 0.52731D+04	2 1	RUST AKE SHAFT HP D TSFC
ST	TOTAL TEMPERATURE STATP3 0.41184D+03 0.741184D+03 0.740739D+03 0.89739D+03 0.1832D+04 0.14382D+04 0.14382D+04 0.293040404 0.293040404 0.293040404 0.24308D+04 0.24308D+04	ATOUTS	117880	300000+0	1000000	0.11685D+02 0.80318D+04 0.52731D+04	RECOVERY= 0.927	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
	PRESSURE \$77770 0.437270 0.437270 0.437270 0.43740 0.561960 0.561960 0.561960 0.23740 0.23754	ATOUT	.19897D+0 .52731D+0	. 80318D+0 . 50000D-0	.52731D+0 .27387D+0	0.29508D+04 0.80318D+04 0.52731D+04	= 30000. R	312.14 9625.71 19303.23 9625.71
	WEIGHT FLOW SIATP1 0.315430+03 0.315240+03 0.312240+03 0.131620+03 0.125040+03 0.125020+03 0.158220+03 0.154800+03 0.315430+03 0.315430+03 0.315430+03	ATOU	.19303D+0 .16884D+0		.403893+0	0.28929D+05 -0.51851D-02 0.40886D-01	00 ALTITUDE	B/SEC) T DRAG THRUST
	STATION STATION 1 1 2 3 3 4 4 7 7 7 10 11 11 12 13	COMPONENT NO. TYPE	2 COMPRESE	COMPRES DUCT B	7 TURBINE 8 MIXER 9 DHCT B	10 NOZZLE 11 SHAFT 12 SHAFT	MACH= 2.0000	AIRFLOW (LB/NET THRUST TOTAL INLET

MAP NOZZLE MAP DEL A/B MAP CFG MAP DATE RUN ADENAB ADENCFG 20 NOV 79	ALTITUDE MACH NUMBER	30000.0 FT 2.00	TOTAL AMBIENT TOTAL DYNAMIC PRESSURE TEMPERATURE PRESSURE	LBS/FT**2 411.70 DEG R 741.07 DEG R 1755.34 LBS/FT**2	REFERENCE REFERENCE AFTBODY REFERENCE NOZZLE 0/A9 (A10/A9 R) OR NACELLE AREA (A10R) EXIT AREA (A9R)	1.40 15.88 FT**2	INSTALLED ENGINE AFTBODY DRAG PERFORMANCE DATA	7.000 A10/A9 1.539 FN (LBF 0.023 A10 (FT**2) 15.877 WFT (LB 0.045 A9 (FT**2) 10.317 SFC (LB 0.038 P9S/PAMB 1.000 0.031 FN COR	OT 0.303 DRAG A/B (LBF) 854.809 TOT (LBF) 3718.160 CD A/B SPR (EF 0.045 DRAG A/B SPR (LBF) 0.0 REF (LBF) 552.931 CD A/B TOT (LBF) 854.800	PS (LBF) 3165.228 CD A/B REF (LBF) 818 CD A/B REF (LBF) 818 CD A/B PS 00	•			AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	INLET (LBM) = 1083. BARE ENGINE (LBM) = 3210. DUCT (LBM) = 0. ACCESSORIES (LBM) = 0. BYPASS DOORS (LBM) = 156. TOTAL (LBM) = 3210. T/O DOORS (LBM) = 0. TOTAL (LBM) = 1239.	NACELLE DRAG BUILDU	SKIN FRICTION (LBF) = 665.3 WAVE (LBF) = 1905.9 TOTAL (LBF) = 2571.2
INLET M FB			AMBIENT TO PRESSURE PRE	626.91 LBS/FT**2 4905.20	APTURE A1	7.00 FT**2	ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY INLET MASS AND NOZZLE CFG FLOW RATIOS	FN (LBF) 24072.602 A0SPL/AC 0.155 AC WFT (LBM/HR) 42554.871 A01/AC 0.845 CD SFC (LBM/HR/LBF) 1.768 A0BLD/AC 0.059 CD WZ COR (LBM/SEC) 134.138 A0/AC 0.786 CD WZ ABS (LBM/SEC) 312.139 A0BYP/AC 0.179 CD	(PRI) 0.927 A0E/AC 0.607 (SEC) 0.00	391	REFERENCE INLET MASS FLOW RATIO = 0.0	BYPASS VS SPILLAGE OPTION NUMBER	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED	NACELLE WEIGHT BREAKDOWN	ENGINE MOUNTS (LBM) = 49. FIREWALL (LBM) = 138. COWL (LBM) = 360. TOTAL (LBM) = 546.		

O

 \cap

STATION PROPERTY OUTPUT DATA

	CTED	DATOUT9 0.300000+05 0.180500+01 0.481920+01 0.300000+04 0.231220+01 0.109580+01 0.109580+01 0.109580+01 0.108580+01 0.108580+01	
	INTERFACE CORRECTED FLOW EROR STATP8 -0.53945D-04 -0.73904D-06 0.0 0.19746D-06 -0.87882D-07 2 0.0 2 0.0		77.1215
	STATIC STATP7 0.0 0.0 0.0 0.495941)+0 0.0 0.0 0.0 0.0 0.49594D+0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.92697D+00 0.25381D+03 0.49649D+02 0.32122D+00 0.96971D+00 0.65713D+00 0.65713D+00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	THRUST/AIRFLOW TAIL DRAG LAGE + LIP DRAG
⋖	MACH NUMBER STATP6 0.2000D+01 0.0 0.42766D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATO 0.7354 0.7354 0.9135 0.51156 0.51166 0.0166 0.	BOAT SPIL
IY CUIPUT DATA	REFERRED FLOW STATP5 0.93477D+03 0.17288D+03 0.17288D+03 0.62131D+02 0.62131D+02 0.11298D+02 0.11298D+02 0.19761D+02 0.19761D+02 0.464D+03 0.14264D+03 0.22415D+03	UTPUT DATA DATOUT5 1 0.78225D+01 1 0.18874D+02 0 0.41613D+02 1 0.67156D+00 1 0.67376D+00 1 0.68728D+03 4 0.0 4 0.0 TERATIONS ITERATIONS	1.7678
INITON PROPERTY	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.24503D-01 0.24503D-01 0.24503D-01 0.27868D-01	COMPONENT OUTPUT DATA DATOUT4 0.17986D+01 0.18874 0.15427D+01 0.18874 0.26811D-01 0.26811D-01 0.2468D+01 0.21460D+01 0.21460D+01 0.21460D+01 0.21460D+01 0.21460D+01 0.25250 0.1857D+04 0.68728 0.80318D+04 0.68728 0.80318D+04 0.68728 0.80318D+04 0.68728	SHAFT HP
n	TOTAL TEMPERATURE STATP3 0.41184D+03 0.74072D+03 0.89739D+03 0.89739D+04 0.14582D+04 0.13857D+04 0.25304D+04 0.25304D+04 0.25304D+04 0.25304D+04 0.21386D+04 0.21386D+04 0.21385D+04 0.21386D+04 0.21386D+04 0.21386D+04 0.21386D+04	UT3 8D+04 0D-01 0D+01 0D	ISTAL BRAKE INSTALLED T
	TOTAL PRESSURE STATP2 0.43727D+01 0.31708D+02 0.56181D+02 0.56181D+02 0.2774D+03 0.23766D+03 0.23766D+03 0.23764BD+03 0.23764BD+03 0.23764BD+03 0.23764BD+03 0.53763D+02 0.54383D+02 0.54383D+02	DATOUT2 0.19897D+04 0.52731D+04 0.50000D-01 0.50000D-01 0.80318D+04 0.52731D+04 0.52731D+04 0.52731D+04 0.52731D+04 0.52731D+04 0.52731D+04 0.52731D+04	19303.23 24072.60
	MEIGHT FLOW SIATPI 0.3238BH03 0.31216bH03 0.31216bH03 0.13158BH03 0.1250BH03 0.1250BH03 0.12519BH003 0.12312BH003 0.13312BH003 0.13312BH003 0.13312BH003 0.13312BH003 0.3239BH03	DATOUTI 0.19303D+05 -0.16880D+05 -0.25432D+01 0.88353D-01 0.25432D+05 0.16880D+05 0.40389D+03 0.43376D+05 0.43376D+05 0.43376D+05 0.43376D+05 0.43376D+05 0.43376D+05	DRAG
	STATION 25 22 23 335 10 88 11 12 13 13	COMPONENT NO. TYPE 1 INLET 2 COMPRESR -0 3 SPLITER 0 4 COMPRESR -0 5 DUCT B 7 TURBINE 0 7 TURBINE 0 8 MIXER 0 9 DUCT B 10 NOZZLE 0 11 SHAFT -0 12 SHAFT 0 14 STRFLOW (LB/SE	TOTAL INLET DRAG

ENDIT=1, REND

Ó

0

8.2.4 DATABASE INLET 'AST', DATABASE NOZZLE 'DRP1'

IWT=0,INST=1,IFLGRF=0,ALTP=10000,MACH=.6,ETAR=0,LABEL=F, SPEC(7,10)=0,SPEC(4,9)=0, &END NEP - INPUT

C

O

0

O

O

1 NOW BEING USED F (ERRORS**2)= 0.3382D+00 F (ERRORS**2)= 0.17460D+00 F (ERRORS**2)= 0.70074D-01 F (ERRORS**2)= 0.72217D-03 F (ERRORS**2)= 0.32871D-03 F (ERRORS**2)= 0.32871D-03 F (ERRORS**2)= 0.36478D-04 F (ERRORS**2)= 0.24682D-05 F (ERRORS**2)= 0.24682D-05 SUM OF (ERRORS**2)= 0.58038D-06 INSTAL - INSTLL -----SUM

395

"

8D SPEC(5,10)=5556, REND HEP - INPUT

MODE I NOW BEING USED

396

"

OLD INSTALLATION MAPS

Ò

O

0

Ó

O

Ø

Ü

**************************************		LOCAL	LOCAL MACH NUMBER (MNO)	SER (MNO)		۸۶	FREE	FREE STREAM MACH NUMBER CINFS)	NUMBER CON	FS)	
	00	1.200	2.350	MNO		٠.					
**************************************	INLET PR	INLET PRESSURE RECOVERY (PT2/PT0)	JERY (P12/	PT0)	S.	Mass Flo	Mass Flow Ratio (Ad/AC)	A0/AC)	AND	LOCAL MACH NUMBER (MND)	MBER (MND)
MNO=0.800	0.540	0.575	0.600	0.625	0.626	A0/AC P12/P10					4.10
MNO=1.260	0.550	0.575	0.600	0.615 0.961	0.625	0.630	0.631	A0/AC P12/P10			3
MO=1 .60	0.580	0.653	0.670	0.680	0.682	A0/AC PT2/PT0			× *1		
MN0=1.610	0.680	0.700	0.710	A0/AC P12/P10							
MN0=1.800	0.740	0.765	0.766	A0/AC PT2/PT0							
MN0=2.000	0.805	0.820	0.825	0.826	A0/AC P12/P10						
MN0=2.200	0.885	0.892	0.895	0.896 0.800	A0/AC P12/P10						
MN0=2.350	0.930	0.940	0.945	0.950	A0/AC P12/P10						

1.200	DISTORTION LIMIT MASS FLOW RATIO (AG/AC) VS LOCAL MACH NUMBER (MNO) 0.800 1.200 1.500 1.610 1.800 2.000 2.200 2.350 MNO 0.622 0.628 0.710 0.711 0.765 0.840 0.900 0.950 AG/AC	0.0 0.400 0.800 1.200 1.600 1.610 1.800 2.000 2.200 2.350 0.00 0.0 0.0 0.0 0.0 0.885 0.930	BUZZ LIMIT MASS FLOW RATIO (AO/AC) VS LOCAL MACH NUMBER (MNO)	0.600 0.800 1.200 1.600 1.610 1.800 2.000 2.200 2.350 MNO 0.615 0.615 0.615 0.665 0.702 0.760 0.825 0.895 0.945 AD/AC	OPTIMUM MASS FLOW RATIO (A0/AC OPT) VS LOCAL MACH NUMBER (MNO)	0.0 0.943 0.970 0.800 1.200 1.600 1.610 1.800 2.000 2.200 2.350 0.943 0.970 0.970 0.962 0.895 0.930 0.930 0.930 0.930 0.930
-------	---	--	---	---	--	---

Û

CDSPL
0.
0.0
1.200

O

Ò

O

**************************************		REF SPILL	REF SPILLAGE DRAG COEFF (COEFF (REF	REF CDSPL)	S _A	LOCAL	LOCAL MACH NUMBER (MND)	R (MNO)			
	00	0.4.0	070.0	1.200	1.600	1.610	1.800	2.000	2.200	2.350	MNO REF CDSPL	ب
京学院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院院		RSF INLET	REF INLET MASS FLOW RATIO		(REF A01/AC)	S A	POCAL	LOCAL MACH NUMBER (MND)	R (MNO)			
	0.0	0.400	0.800	1.200	1.600	1.610	1.800	2.000	2.200	2.350	MNO REF A01/AC	¥C
张文宗朱宗宗宗宗宗宗	BLEED	BLEED DRAG COEFICIENT (CD BLD)	FICIENT (CD 8(D)	S S	BLEED MASS	BLEED MASS FLOW RATIO (AUBLD/AC)	CAUBLD/AC)	AND	LOCAL	LOCAL MACH NUMBER (MND)	CHIC
399	0.0	0.600	1.300	1.600	1.610	2.200	2.350	ONE				
MNO=2.0	0.0	0.040	0.080	0.120	AOBLD/AC CDBLD	U						
MN0=0.600	0.0	0.0	0.080	0.120	AOBLD/AC CDBLD	4						
MN0=1.000	0.0	0.040	0.050	0.120	AOBLD/AC CDBLD	4						
MN0=1.600	0.0	0.040	0.050	0.120	AOBLD/AC CDBLD							
_M40=1.610	6.0	0.040	0.030	0.120	AOBLD/AC CDBLD							
MN0=2.200	0.0	0.040	0.080	0.120	AOBLD/AC CD&LD							
_MND=2.350	0.0	0.040	0.080	0.120	AOBLD/AC CDBLD							

*****									•	000000000000000000000000000000000000000
* TABLE 5 *		SS DRAG CO	BYPASS DRAG CUEFFICIENT (CDBYF)	(CDBYP)	VS BYPA	SS MASS	BYPASS MASS FLOW KALLO (AUBIF/AC)	CAUBIFIACE	AND	LUCAL MACH NOMBER (MINU)
	1.200	1.400	1.700	2.100	2.350	MNO				
MNO=1.200	0.0	0.040	0.080	0.120	0.160	0.200	0.220	AOBYP/AC CDBYP		
MNO=1.400	0.0	0.040	0.080	0.120	0.160	0.200	0.220	ADDYP/AC CDBYP		
MNO=1.700	0.0	0.040	9.080	0.120	0.160	0.200	0.220	ADBYP/AC CDBYP		
MN0=2.100	0.0	0.040	0.080	n.120 0.092	0.160	0.200	0.220	AOBYP/AC CDBYP		
MN0=2.350	0.0	0.040	0.080	0.120	0.160	0.200	0.220	AOBYP/AC CDBYP		
400										
**************************************	BLEED	MASS	FLOW RATIO (AOBLD/AC)	BLD/AC)	s ^	MASS FL	MASS FLOW RATIO (A	(AD/AC)	AND	LOCAL MACH NUMBER (MNO).
MN0=0.600	0.300	3.000	AO/AC AOBLD/AC			•				
MN0=0.800	0.500	0.610	1.000	AOZAC AOBLDZAC						
MMO=1.000	0.500	0.610	1.000	AO/AC AOBLD/AC		,				
MMO=1.200	0.500	0.615	1.000	ADZAC AOBLDZAC						
MN0=1.600	0.500	0.610	0.700	1.000	ADZAC AUBLDZAC			4		
MN0=1.610	0.600	0.700	1.000	AOZAC AOBLDZAC						
_										

()

				er e de		MNO						I Juli
					MNO AOBLD/AC	LOCAL MACH NUMBER (MND)						
					2.350	LOCAL						
				ER (MNO)	2.200	AND						
				LOCAL MACH NUMBER (MND)	2.000	0 (A0E/AC)						
				LOCAL	1.800	FLOW RATI			. "			
				s, (c	1.610	ENGINE MASS FLOW RATIO (ADE/AC)	٠			¥		
				(AOBLD/AC)	0.040	8>						
AOZAC AOBLDZAC	AO/AC AOBLD/AC	A3/AC A0BLD/AC	AO/AC AOBLD/AC	FLOW RATIO	1.200	YP/4C)	A0E/AC A0BYP/AC	AOE/AC AOBYP/AC	ADE/AC ADBYP/AC	ADE/AC ADBYP/AC	AOE/AC AOBYP/AC	ADE/AC ADBYP/AC
1.000	1.000	1.000	1.000	BLEED MASS	0.800	BYPASS MASS FLOW RATIO (AOBYP/4C)	3.000	3.000	1.000	1.000	1.000	1.000
0.763	0.825	0.895	0.945	OPTIMUM	0.400	MASS FLOW	0.600	0.00	0.615	0.635	0.665	0.700
0.600	0.700	0.750	0.800		00.0		0.0	0.0	0.300	0.300	0.300	0.300
MN0=1.800	MN0=2.000	MN0=2.200	MN0=2.350	***************************************	401	*********	MN0=0.0	MNO=1.190	MN0=1.200	MNO=1.400	MM0=1.600	_MNO=1.610

C

0

C

AOE/AC AOBYP/AC	AOE/AC AOBYP/AC	AOE/AC Aobyp/ac	AOE/AC AOBYP/AC
1.000	1.300	1.000	1.000
0.760	0.825	0.894	0.945
0.300	0.300	0.300	0.300
MI(0=1.800	MN0=2.00C	MNO=2.200	MN0=2.350

INLET START MACH NUMBER 1.610 Minimum mach number for inlet drag calculations 0.800

Ç

11

I

_							
AND AFT-BODY AREA RATIO (A10/A9)							
) CA1							
RATIO							
IREA							
0DY /		S A/B	S A/B	S A/B	S A/B	S A / B	8/8
IFT-B		MNFS CD A/B	MNFS CD A/B	MNFS CD A/B	MNFS CD A/B	MNFS CD A/B	MNFS CD A/B
AND		00		04	ом	00	0.4
		5.000	3.000	3.000	3.000	3.000	3.000
FREE STREAM MACH NUMBER (MNFS)		2.500	2.500	2.500	2.50%	0.082	2.500
ER		0.0	80.0	0.0	20.0	20	2.0
NUMB	/A9	0.9	20	20	200	20	6.4
MACH	A10/A9	2.200	2.200	2.200	2.200	2.200	2.200
REAM	6	0.9	5 N	0 80	910	06	
E ST	10.000	1.600	1.600	1.600	1.600	1.600	1.600
F							
۸۶	5.000	1.200	1.200	1.200	1.200	1.200	1.200
A/B)	3.330	1.000	1.000	1.000	1.000	1.000	1.000
93)	m	40	40	40	40	-0	-10
HENT	2.500	0.900	0.900	0.900	0.900	0.900	0.900
EFFI(2	00	00	00	00	00	00
AG CO	2.000	0.800	0.800	0.800	0.800	0.800	0.800
DY DR	2.	66	9.0	00	9.0		
AFT-BODY DRAG COEFFICIENT (CD A/B)	20	13	14	00	200	23	000
A	1.850	0.0	0.0	0.0	0.0	0.0	0.0
**************************************		A10/A9= 1.850 0.700 0.013	A10/A9= 2.000 0.700 0.014	A10/A9= 2.500 0.700	A10/A9= 3.330 0.760	A10/A9= 5.000 0.700 0.023	A10/A9=10.000 8.700 0.027
**************************************		/A9=	-647	/A9=	- KA 9 =	-64×	/A9=1
* * *		A10.	A10.	A10,	A10,	A10,	A10,

Ü

10 CA9,		PT9/PAMB CFG	PT9/PAMB CFG	PT9/PAMB CFG	PT9/PAMB
EA RATI		PT9 CFG	PT9 CFG	PT9 CFG	P19/
NOZZLE AREA RATIO (A9,		20.000	20.000	20.000	20.000
ONA (16.000	16.000	16.000	16.000
(PT9/PAMB		11.000	11.000	11.000	11.000
SURE RATIO		8.500 0.988	8.500 0.980	8.500 0.948	8.500
NOZZLE PRESSURE RATIO (PT9/PAMB)		6.500	6.500	6.500	6.500
۸۶	A9/A8	5.000	5.000	5.000	5.000
(CFG)	3.283	6.000	4.000	4.000	4.000
GROSS THRUST COEFFICIENT	2.630	3.000	3.000	3.000	3.000
THRUST	1.970	2.000	2.000	2.000	2.000
GROSS	1.730				
* * * * * * * * * * * * * * *		1.750 1.500	1.970 1.500	2.630 1.500	3.283 1.500 0.952
**************************************		A9/A8	A9/A8	A9/A8	A9/A8

ין

O

Ö

	0 11000110	20+100000				0 110000402	201000000				0 11000+02	20.000000	00.000000			0 110000402	20.0000000	00.000000000000000000000000000000000000	
	0.850000+01	0 08800				0 850000401	200000000	00.000			0 850000+01	0 00000000	2000			0 A50000+01	201800400	20001	
	0.650000+01	0 984500+00	2000			1 450000+01	971000+00				650000+01	0 959000+00	2000			650000+01	0 952000+00	2000	
	0.50000D+01	0.987000+00				0.500000+01	0.982000+00				0.500000+01	0 96 9000+00				0.500000+01	0.955000+00		
	0.400000+01	0.985000+00				0.400000+01	0.980000+00				0.400000+01	0.97300D+00				0.400000+01	0.96300D+00		
		0.960000+00				0.30000D+01	0.968000+00					0.97200D+00					0.97200D+00		
			0.20000D+02	0.96000D+00		0.2000D+01	0.93000D+00	0.20000D+02	0.97000D+00		0.20000D+01	0.94000D+00	0.20000D+02	0.97000D+00		0.20000D+01	0.96900D+00	0.20000D+02	0.970000+00
	0.15000D+01					0.15000D+01		0.16000D+02		_	•	0.92800D+00	_		-	0.15000D+01		٠,	0.960000+00
A9A8=	PTPO	2	PTPO	>0	A9A8=	PTP0	>	PTPO	2	A.9A8=	PTPO	2	PTPO	2	A9A8=	PTPO	20	PTPO	2
					۰.					0.0					0.0				
										0					0				
0.0 - 2					7					2					N				

!'

TABLE DATA INPUT SUMMARY 11 TABLES

ARRAY LOCATION	07	3223	63	33	97	17
20	00	1000	00	00	80	55
TABLE NUMBER	24) ፈ ແ	101	~ ∞	۰,	11

DATA STORAGE ALLOCATION 20000 DATA STORAGE NOT USED 10675

RUN 10V 79							ENGINE CE DATA	10660.85 10092.71 F) 0.94	15513.74 R) 15219.48 R/LBF) 0.92									
DATE RUN 20 NOV 7			DYNAMIC	.47 LBS/FT**2	NOZZLE (A9R)	f#2	INSTALLED EMGINE Performance data	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF)	FN COR (LBF) WFT COR (LBM/HR) SFC CUR (LBM/HR/LB						ENGINE WEIGHT BREAKDOWN	(LBM) = 3210. (LBM) = 0.		
				366.	REFERENCE I	11.34 FT**2	9	15.877	100.01	0.0		36.709			GINE WEI	BARE ENGINE (ACCESSORIES (TOTAL (LBM)		
AP CFG MAP			TOTAL TEMPERATURE	517.81 DEG R	AFTBODY RE AREA (A10R) EX	FT**2	AFTBODY DRAG	10/A9 10 (FT**2) 9 (FT**2)	A/B (LBF	404	u_	A/B PS (LBF)			ä			
DEL A/B MAP	HUMBER	09.0	4T TURE	DEG R	RENCE AF	15.88 FT		00 A10/ A10 A9 C	OR B S S S S S S S S S S S S S S S S S S S	DRA G	CORD	DRAG			STEM	767 302 302 614	LDUP	193.1
	MACH NUMBER	•	AMBIENT TEMPERATURE	483.03 DE	REFERENCE OR NACELLE			2000	0000		e .				CTION SY BREAKDO	(LBM) =	BU S	(18F) = = =
T MAP NOZZLE MAP DRP1	ALTITUDE	10000.0 FT	TOTAL Pressure	.89 LBS/FT**2	REFERENCE 0/A9 (A10/A9 R)	1.40	INLET DRAG	AC (FT*#2) CD SPL (TAB 3) CD SPL (TAB 3A) CD 8LD	CD BYP CD INL TOT DRAG INL TOT (LBF)	L REF	DRAG INL PS (LBF)				AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	INLET (LBM) DUCT (LBM) BYPASS DOORS (LI T/O DOORS (LBM) TOTAL (LBM)	ELLE	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET				1854	Α1	2	MASS ATIOS	C 0.385 0.615 C000	0.0			0			NMOQ	49. 138. 427. 613.		
			AMBIENT Pressure	LBS/FT**2	INLET CAPTURE AREA (AC)	7.00 FT**2	' INLET MASS FLOW RATIO	AOSPL/AC AOI/AC AOBLD/AC AO/AC	AOBYP/A AOE/AC			ATIO = 0.			GHT BREAKDOWN	(LBM)		
			AMBI	1454.24 L	Ē		INCE DATA ET RECOVERY CFG	10697.570 10092.711 0.943 250.614	213	0.0		MASS FLOW RATIO	SPILLAGE NUMBER	SS WITH IRFLOW	NACELLE WEIGHT	ENGINE MOUNTS (LBM) FIREWALL (LBM) COWL (LBM) TOTAL (LBM)		
							ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC)	WZ ABS (LBM/SEC) RF CFG (PRI)	cer (sec)	407	REFERENCE INLET	BYPASS VS SPI OPTION NUM	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED	l			

O

(b)

"

STATION PROPERTY OUTPUT DATA

DATOUT9 0.10000D+05 0.30069D+01			
INTERFACE CORRECTED 5 1 2 W ERROR 5 TATP8 0.0 0.0 0.26 90 6 D - 0.7 0.0 0.2 38 6 3 D - 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.85982D+00 0.99000D+00 0.9000D+00 0.33224D-07 0.0 0.18672D+01 0.57085D-07 0.65618D-07		10092.71 50.1669 0.0
STATIC STATP7 0.0 0.0 0.0 0.34112D+0 0.0 0.34112D+0 0.0 0.18711D+0 0.18711D+0 0.1010&D+0	00000000		. FLOW (LB/HR) THRUST/AIRFLOW TAIL DRAG
	00000000	10 PASSES	FUEL NET BOAT
E RATIO REFERRED STATPS STATPS	0.28061D+02 0.66156D+02 0.67376D+00 0.55526D+00 0.84902D+03 0.0 0.45627D+03	ITERATIONS 1	14982.00 0.9435 0.00 0.9435
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.27651D-01 0.26601D-01 0.26601D-01 0.3140D-01 0.13140D-01 0.13140D-01 0.13140D-01 0.13140D-01 0.15140D-01 0.15140D-01	0.12996b+01 0.29106b-01 0.34998b+01 0.25013b+01 0.10807b+01 0.0 0.51686b+03 0.79990b+04 0.60050b+04	1	RUST AKE SHAFT HP 7 TSFC
TEMPERATUR STATP3 0.48303D+0 0.51785D+0 0.74239D+0 0.74239D+0 0.74239D+0 0.22405D+0 0.29249D+0 0.29249D+0 0.29249D+0 0.29225D+0 0.26225D+0 0.14436D+0 0.14436D+0 0.14436D+0 0.14436D+0 0.14436D+0 0.14436D+0 0.14436D+0	0.0 0.300000+00 0.100000+01 0.1100000+01 0.345620+01 0.799900+04	RECOVERY= 0.9700	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
1014L SIATP2 10103D+0 137613D+0 137613D+0 137613D+0 137613D+0 137613D+0 137613D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0 13784D+0	0.7990D+04 0.5000D-01 0.7990D+54 0.60050D+04 0.27387D+03 0.60000C-01 0.22300D+04 0.79990D+04	10000.	213.24 10697.57 4284.43 10697.57
WEIGHT FLOW STATP1 0.21335D+0 0.21335D+0 0.10662D+0 0.10662D+0 0.10652D+0 0.10652D+0 0.10652D+0 0.10652D+0 0.10652D+0 0.10652D+0 0.10652D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0 0.21615D+0	-0.206770+05 0.94802D-01 0.206770+05 0.163230+05 0.403890+03 0.014982D+05 0.1804D-02	00 ALTITUDE=	B/SEC) T DRAG THRUST
FLOW STATION 1 2 3 4 4 6 6 7 6 7 8 8 9 10 11 12 13 13 13 13 13 13 13 14 15 16 17 16 17 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		MACH= 0.6000	AIRFLOW (LB/SEC HET THRUST TOTAL INLET DRA INSTALLED THRUS

(ERRORS**2)= 0.36440D-02 (ERRORS**2)= 0.17738D-04 (ERRORS**2)= 0.29695D-07

888

0

Q

0

Ę,

11

I

RUN DV 79							ENGINE E DATA		14643.3 10 18926.1 1/LBF) 1.2								
DATE RUN 20 NOV 79			ر س س	/FT**2			INSTALLED ENGINE PERFORMANCE DATA	(LBF) (LBF) (LBh : <18F)	COR (LBF) COR (LBM/HR) COR (LBM/HR/					BREAKDOWN	= 3210. = 0. = 3210.		
			DYNAMIC	.03 LBS/FT**2	NOZZLE (A9R)	FT**2		FN C	FR	~9EH					CE 813		
				835	REFERENCE EXIT AREA	11.34 F	9	3.925 15.877 4.045 1.000		2476.92 0.08 1140.14	1336.78			ENGINE METGHT	BARE ENGINE ACCESSORIES TOTAL (LBM)		
CFG MAP			TOTAL TEMPERATURE	4 DEG R			AFTBODY DRAG	_		EF (LBF)	(LBF)			ũ	BARE TOTA		
A/B MAP	1BER	_		R 558.24 DEG	REFERENCE AFTBODY Or nacelle area (a10r)	15.88 FT**2	AF	A10 (FT**2) A10 (FT**2) A9 (FT**2) P9S/PAMB	10 kg kg	DRAG A/B TOTO	DRAG A/B PS			E	767. 0. 302. 614. 1683.	å	399.3 28.2 427.5
DEL	MACH NUMBER	1.00	AMBIENT TEMPERATURE	465.20 DEG	REFEREN OR NACELL	15.		7.000 0.030 0.037	0.0 0.087 506.527 0.030 175.357	331.170				TION SYSTEM BREAKDOWN	CLBM) = =	RAG BUILD	(LBF) =
T MAP NOZZLE MAP	ALTITUDE	15000.0 FT	TOTAL PRESSURE T	.08 LBS/FT**2	REFERENCE A10/A9 (A10/A9 R)	1.40	INLET DRAG	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD	CD BYP CD INL TOT DRAG INL TOT (LBF) CD INL REF DRAG INL REF (LBF)	DRAG INL PS (LBF)				AIR INDUCTION WEIGHT BREA	INLET (LBM) DUCT (LBM) BYPASS DOORS (LBM) T/O DOORS (LBM) TOTAL (LBM)	NACELLE DRAG BUILDUP	SKIN FRICTION FORM (LBF) TOTAL (LBF)
INLET				FT##2 2258	CAPTURE (CAC)	0 FT××2	INLET MASS FLOW RATIOS	A01/AC 0.353 A01/AC 0.647 A0BLD/AC 0.023 A0/AC 0.624	08YP/AC 0.0 DE/AC 0.625		0.0 = 0			BREAKDOWN	1) = 49. = 138. = 427. = 613.		
			AMBIENT PRESSURE	1192.90 LBS/FT**2	INLET	7.00		9922.309 10103.441 1.018 229.548	0.941 0.997 0.0		MASS FLOW RATIO	SPILLAGE NUMBER	SS WITH IRFLOW	NACELLE WEIGHT	ENGINE MOUNTS (LBM) FIREMALL (LBM) COWL (LBM) TOTAL (LBM)		
							ENGINE PEKFURMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) WFT (LBM/HR) SFC (LBM/HR/LBF) WZ COR (LBM/SEC)	RF CFG (PRI) CGF (SEC)	410	REFERENCE INLET	BYPASS VS SPII OPTION NUMI	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED		ENG FIRE TOT		

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

	C1ED	DATOUT9 0.150000+05 0.267330+01 0.579450+01 0.300000+04 0.232270+01 0.108950+01 0.439530+01		
	INTERFACE CORRECTED \$1 ATP8 0.0 0.17232D-03 0.17232D-03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUTS 0.10765D+01 0.85079D+00 0.9600D+00 0.9909D+00 0.15361D-07 0.18674D+01 0.18674D+01		10103.44
	STATIC IN STATP7 0.0 0.0 0.0 0.35609D+02 0.0 0.0 0.0 0.19529D+02 0.19529D+02	DATOUT7 0.9419D+00 0.25381D+03 0.0496495+02 0.30392D+00 0.96971D+00 0.65713D+00 0.6842D+03 0.09702D+00		CLB/HR) /AIRFLOW /RAG LIP DRAG
_	MACH NUMBER STATP6 0.1000D+01 0.0 0.35068D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.1000D+01 0.93138D+00 0.098509D+00 0.10103D+05 0.50144D+04 0.47042D+03 0.0000D+00	3 PASSES	FUEL FLOW (LBJHR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
STATION PROPERTY OUTPUT DATA	REFERRED FLOW 51ATP5 0.27378D+03 0.20364D+03 0.50108D+03 0.52832D+02 0.52832D+02 0.10759D+02 0.0099D+02 0.41919D+02 0.41919D+02 0.41919D+02 0.41919D+03 0.4260D+03 0.15170D+03	0UTPUT DATA DATOUT5 01 0.18946D+01 01 0.42210D+01 01 0.51545D+02 01 0.6156D+02 01 0.65526D+00 01 0.83137D+03 04 0.0	ITERATIONS	17245.42 1.0183 -0.00 1.0183
ATION PROPERT	FUEL/AIR RATIO 0.0 0.0 0.0 0.0 0.0 0.27241D-01 0.25879D-01 0.12597D-01	COMPONENT OUT DATOUT4 0.13013D+01 0.13177D+01 0.28674E-01 0.28674E-01 0.28674E-01 0.28674E-01 0.28674E-01 0.58244D+03 0.68245D+04 0.68245D+04	412 2 IT	ST E SHAFT HP TSFC
ST	TEMPERATURE STATP3 0.46522D+03 0.77032D+03 0.77032D+04 0.12679D+04 0.29259D+04 0.29259D+04 0.29259D+04 0.14442D+04 0.144442D+04 0.144442D+04 0.14442D+04 0.14442D+04 0.14442D+04 0.144442D+04 0.144442	DATOUT3 0.62642D+03 0.0 0.20000D+01 0.30000D+01 0.10000D+01 0.10039D+01 0.30000D+01 0.30000D+01 0.30245D+01 0.57981D+04	RECOVERY= 0.94	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
	TOTAL PRESSURE STATP2 0.829720+01 0.39530+02 0.387620+02 0.284600+03 0.193410+03 0.193410+03 0.193410+03 0.393090+02 0.387970+02 0.364690+02	DATOUT2 0.10574D+04 0.57981D+104 0.20000D-01 0.50000D-01 0.5738D+04 0.5738D+04 0.5738D+05 0.6000D-01 0.24594D+04 0.57981D+04	15000.	222.83 9922.31 7323.11 9922.31
	MEIGHT FLOW 22AFP1 0.225600+03 0.222790+03 0.222790+03 0.108450+03 0.108450+03 0.108450+03 0.108450+03 0.108450+03 0.108850+03 0.109900+03 0.225600+03 0.225600+03	DATOUT1 0.7231D+04 0.16119D+05 0.10544D+01 0.21052D+05 0.93537D-01 0.21952D+05 0.40389D+03 0.00 0.17245D+05 -0.2589D-04	00 ALTITUDE=	SEC) DRAG RUST
	STATION 111 122 123 124 125 125 125 125 125 125 125 125 125 125	COMPONENT NO. INTER 1 INTER 2 COMPRESR 3 SPLITTER 4 COMPRESR 5 DUCT B 6 TURBINE 7 TURBINE 8 MIXER 9 DUCT B 10 NOZZLE 11 SHAFT	MACH= 1.0000	AIRFLOW (LB/SEC) HET THRUST TOTAL INLET DRAG INSTALLED THRUST

412

"

DATE RUN 20 NOV			
		DYNAMIC PRESSURE 1332.18 LBS/FTHH2	REFERENCE NOZZLE EXIT AREA (A9R) 11.34 FT**2
TAP CFG MAP		TOTAL TEMPERATURE 622.73 DEG R	
MAP DEL A/B MAP	MACH NUMBER 1.40	AMBIENT TEMPERATURE 447.37 DEG R	REFERENCE AFTBODY OR NACELLE AREA (A10R) 15.88 FT##2
INLET MAP NOZZLE MAP AST DRP1	ALTITUDE 20000.0 FT	TOTAL PRESSURE 3089.92 LBS/FT##2	REFERENCE A10/A9 (A10/A9 R) 1.40
		PRESSI 970.98 LBS/FTKHZ	INLET CAPTURE AREA (AC) 7.00 FT##2

•

Ġ

Ó

O

0

Ó

INSTALLED ENGINE PERFORMANCE DATA	34 FN (LBF) 7423.84(77 WFT (LBM/HR) 10641.000 62 SFC (LBM/HR/LBF) 1.43.	28 MFT COR (LBM/HR) 24972.11. SFC COR (LBM/HR/LBF) 1.54.	228 4.3 5.1	
AFTBODY DRAG	A10/A9 A10 (FT**2) 15.877 A9 (FT**2) 4.762 P95/PAMB 1.000	CD A/B DRAG A/B (LBF) 2200,928 WF1 CD A/B SPR DRAG A/B SPR (LBF) 0.0 SFC	CD A/B TOT 0.104 DRAG A/B TOT (LBF) 2200.928 CD A/B REF 0.043 DRAG A/B REF (LBF) 920.051	DRAG AZB PS (LBF) 1280.8
INLET DRAG	AC (FT##2) 7.000 CD SPL (TAB 3) 0.03C CD SPL (TAB 3A) 0.055 CD BLD 0.065	CD BYP 0.024 CD INL TOT 0.151 DRAG INL TOT (LBF) 1407.024 CD INL REF 0.032	298.410 0.119 1108.614	
INLET MASS FLOW RATIOS	AOSPL/AC 0.332 AUI/AC 0.668 AOBLD/AC 0.033 AO/AC 0.635	A0BYP/AC 0.027 A0E/AC 0.608		110 = 0.0
ENGINE PERFURMANCE DATA Incorporating inlet recovery and nozzle cfg	FN (LBF) 9813.336 WF: (LBM/MR) 10641.008 SFC (LBM/MR/LBF) 1.084 WZ COR (LBM/SEC) 202.888			REFERENCE INLET MASS FLOW RATIO = 0.0

BYPASS VS SPILLAGE
OPTION NUMBER
3.
SCHEDULED BYPASS WITH
EXCESS INLET ATRFLOW
SPILLED

NACELLE WEIGHT BREAKDOWN

ENGINE MOUNTS (LBM) = 49. INLET (LBM) = 138. DUCT (LBM) = 627. BYPASS DOORS (LBM) = 613. T/O DOORS (LBM) = 10TAL (

ENGINE MEIGHT BREAKDOWN

BARE ENGINE (LBM) = 3210. ACCESSORIES (LBM) = 0. TOTAL (LBM) = 3210.

767. 302. 614. 1683.

AIR INDUCTION SYSTEM WEIGHT BREAKDOWN

NACELLE DRAG BUILDUP

SKIN FRICTION (LBF) = 569.9 WAVE (LBF) = 1266.9 TOTAL (LBF) = 1836.8

•

STATION PROPERTY CUTPUT DATA

CTED	DATOUT9 0.20000D+05 0.22639D+01 0.0000D+05 0.30300D+05 0.23299D+01 0.23299D+01 0.10504D+01 0.0000000000000000000000000000000000	
INTERFACE CORRECTED FLOW ERROR 51ATPS 0.0 0.75413D-03 0.31895D-08 2.0.0 -0.18865D-08 0.14162D-08 2.0.0 2.0.28572D-08	DATOUT8 0.12009D+01 0.84839D+00 0.87569D+00 0.9500D+00 0.99573D+00 0.89573D+00 0.12578D+01 0.12578D+01	10641.01 38.8779 0.0
PRESSURE STATP7 0.0 0.0 0.0 0.40244D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	DATOUT7 0.92930D+00 0.25381D+03 0.0 0.49649D+02 0.31005D+00 0.65713D+00 0.65748D+03 0.0 0.10005D+01	CIRCHRY
MACH NUMBER STATP6. 0.1400D+01 0.0 0.3720D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT6 0.140000+01 0.852560+00 0.956060+00 0.106410+05 0.518990+05 0.980000+00 0.0	
REFERED FLOW STATP5 0.50.973D+03 0.20320D+03 0.10952D+02 0.10952D+02 0.10952D+02 0.19103D+02 0.19103D+02 0.19103D+02 0.19103D+02 0.19103D+02 0.19103D+02 0.19103D+02	UTPUT DATA DATOUT5 1 0.51849D+01 1 0.66759D+01 1 0.36127D+02 1 0.66156D+02 1 0.65156D+02 1 0.55526D+00 1 0.55526D+00 1 0.55526D+03 4 0.0 TERATIONS	21202.34 1.0843 -0.00 1.0843
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	CCMPONENT OUTPUT DATA DATOUT4 0.13438D+01 0.31849 0.13598D+01 0.66759 0.13398D+01 0.36127 0.28025D-01 0.66156 1.0.2310D+01 0.65156 1.0.2310D+01 0.80114 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	SHAFT HP FC
TOTAL STATP3 0.44741D+03 0.62285D+03 0.81430D+03 0.81430D+03 0.81430D+03 0.13622D+04 0.13091D+04 0.26255D+04 0.26255D+04 0.2445D+04 0.14445D+04	DATOUT3 0.86005D+03 0.0 0.2000D-01 0.3000D+00 0.10095D+01 0.3000D+01 0.3000D+01 0.50073D+01 0.56056D+04	E SE
TOTAL STATP2 0.67589D+01 0.67589D+02 0.45281D+02 0.44381D+02 0.24143D+02 0.24143D+03 0.2031D+03 0.2031D+03 0.2031D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.4143D+03 0.41249D+02	DATOUT2 0.14517D+04 0.5655D+04 0.2000D-01 0.80073D+04 0.5000D-01 0.27387D+03 0.6000D-01 0.26733D+04 0.26733D+04 0.56056D+04	3,000
WEIGHT FLOW STATP1 0.25518D+03 0.2522D+03 0.1562D+03 0.15556D+03 0.13556D+03 0.13556D+03 0.13556D+03 0.11982D+03 0.11982D+03 0.11982D+03 0.25518D+03	DATOUT1 0.11389D+05 0.11583D+05 0.11583D+01 0.22669D+05 0.22669D+05 0.1653D+05 0.1653D+05 0.40389D+03 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05 0.21202D+05	B/SEC) IT DRAG THRUST
FLOW STATION 1 2 3 4 4 6 6 7 7 10 11 12 13	COMPONENT NO. TYPE 1 INLET 2 COMPRESR -0 3 SPLITTER 0 4 COMPRESR -0 4 COMPRESR -0 4 COMPRESR -0 5 FUCT B 0 7 TURBINE 0 9 DUCT B 0 9 DUCT B 0 10 NOZZLE 0 11 SHAFT -0 MACH= 1.4000	AIRFLOW (LB/SEC) NET THRUST TOTAL INLET DRAG INSTALLED THRUST

#D SPEC(7,10)=1,SPEC(4,9)=3000, #END HEP - IMPUT

8

DATE RUN 20 NOV 79	DYNAMIC PRESSURE 1332.18 LBS/FT**2	E NOZZLE A (A9R) FT**2	INSTALLED ENGINE PERFORMANCE DATA	36 FN (LBF) 18045.25 77 WFT (LBM/HR) 35968.98 33 SFC (LBM/HR/LBF) 1.99 00 83 FN COR (LBF) 39329.02 87 WFT COR (LBM/HR) 84411.31 SFC COR (LBM/HR/LBF) 2.14	83 43 51 339
DEL A/B MAP CFG MAP CVRP NUMBER 1.40	TOTAL TEMPERATURE 622.73 DEG R	REFERENCE AFTBODY REFERENCE NOZZLE OR NACELLE AREA (A10R) EXIT AREA (A9R) 15.88 FT**2	A: , BODY DRAG	A10 (FT**2) 2.13 A9 (FT**2) 7.43 P95/PAMB 1.00 CD A/B DRAG A/B (LBF) 1746.78 CD A/B SPR	.032 DRAG AVB SPR (LBF) 0.0 .410 CD AVB TOT (LBF) 1746.787 .165 CD AVB REF .445 DRAG AVB REF (LBF) 920.051 CD AVB REF (LBF) 920.051 DRAG AVB PS (LBF) 826.737
MAP NOZZLE MAP DRP1 ALTITUDE MACH 20000.0 FT	TOTAL AMBIENT PRESSURE TEMPERATURE 3089.92 LBS/FT**2 447.37 DEG R	REFERENCE REFERENC A10/A9 (A10/A9 R) OR NACELLE 1.40 15.8	INLET DRAG	AC (FT**2) CD SPL (TAB 3) CD SPL (TAB 3A) CD BLD CD BLD CD BYP CD INL TOT DRAG INL TOT (LBF) 1838	REF 11 REF (LBF) 298 12 PS (LBF) 1540
INLET	AMBIENT PRESSURE 970.98 LBS/FT∺¥2 308	INLET CAPTURE AREA (AC) A 7.00 FT**2	ENGINE PERFORMANCE DATA. INCORPORATING INLET RFCGVERY INLET MASS AND NOZZLE CFG FLOW RATIOS	(LBF) 2041 (LBM/HR/LBF) 3596 (LBM/SEC) 18 (BS (LBM/SEC) 25	CGF (SEC) 0.90 CGF (SEC) 0.0 419

	ENGINE WEIGHT BREAKDOWN	BARE ENGINE (LBM) = 3210. ACCESSORIES (LBM) = 0. TOTAL (LBM) = 3210.	
	AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	INLET (LBM) = 767. DUCT (LBM) = 0. BYPASS DOORS (LBM) = 302. T/O DOORS (LBM) = 614. TOTAL (LBM) = 1683.	
OPTION NUMBER 3. SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED	NACELLE WEIGHT BREAKDOWN	ENGINE MOUNTS (LBM) = 49. FIREWALL (LBM) = 138. COML (LBM) = 427. TOTAL (LBM) = 613.	

REFERENCE INLET MASS FLOW RATIO = 0.0

BYPASS VS SPILLAGE OPTION NUMBER

ı

NACELLE DRAG BUILDUP

569.9 1266.9 1836.8 11 11 11 SKIN FRICTION (LBF)
WAVE (LBF)
TOTAL (LBF)

3

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

	160		DATOUT9 0.22639000 0.52639000 0.5439000 0.53209000 0.23209000 0.23209000 0.20360000 0.203600000 0.20360000000000000000000000000000000000		ĵ.
	INTERFACE CORRECTED FLOW ERROR STATP8 0.0 0.75413D-03 0.31895D-08 0.0 0.0 0.18865D-08 0.14162D-08 0.14162D-08 0.0 0.14162D-08		DATOUT8 0.12003D+01 0.84839D+00 0.87569D+00 0.97000D+00 0.9973D+00 0.98973D+00 0.18231D+01 0.12376D-08		35968.98 80.8688 0.0
	STATIC I STATP7 0.0 0.0 0.0 0.40244D+02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0		DATOUT7 0.929303+0 0.25381D+03 0.0649D+02 0.49649D+02 0.96371D+00 0.65148D+03 0.65148D+03 0.00		(LB/HR) /AIRFLOW RAG LIP DRAG
	MACH NUMBER STATP6 0.140000+01 0.0 0.377200+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.		DATOUT6 0.85256D+00 0.95605D+00 0.1064D+05 0.1064D+05 0.5024D+05 0.51899D+03 0.25323D+05 0.00	1 PASSES	FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
Y OUTPUT DATA	REFERED FLOW STATP5 0.503700+03 0.203200+03 0.484870+02 0.561600+02 0.109520+02 0.191030+02 0.191030+02 0.419050+02 0.419050+03 0.42660+03 0.224670+03	PUT DATA	DATOUTE 0.31849D+01 0.66759D+01 0.36127D+02 0.65126D+02 0.67376D+02 0.55526D+03 0.5514D+03 0.68907D+03	ITERATIONS	31801.44 1.7621 -0.00 1.7621
STATION PROPERTY	FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	COMPONENT OUTPUT	DATOUT4 0.13921D+01 0.13438D+01 0.0 0.25025D-01 0.2510D+01 0.2310D+01 0.2751D-01 0.1022D+01 0.1073D+01 0.1073D+04 0.56056D+04	3	UST KE SHAFT HP TSFC
ST/	TOTAL STATURE STATURE 0.44741D+03 0.62285D+03 0.81430D+03 0.81430D+03 0.13622D+04 0.13622D+04 0.2625D+04 0.2625D+04 0.2625D+04 0.2625D+04 0.2625D+04 0.2625D+04		DATOUT3 0.86005D+03 0.0 0.2000D-01 0.3000D+01 0.10951D+01 0.10951D+01 0.50073D+01 0.56056D+01	RECOVERY= 0.929	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
	PRESSURE SIATP2 0.67589D401 0.2030D4020 0.44331D402 0.44331D402 0.24143D402 0.2163D403 0.2030D403 0.2030D403 0.89758D402 0.4073D402 0.41249D402		DATOUT2 0.14517D+04 0.56056D+04 0.20000D-01 0.80073D+04 0.56056D+04 0.27337D+03 0.56056D+04 0.56056D+04	20000.	252.41 20412.44 11389.00 20412.44
	WEIGHT FLOW STATP1 0.25220+03 0.25220+03 0.1686D+03 0.11686D+03 0.13536D+03 0.13536D+03 0.11392D+03 0.11392D+03 0.11836D+03 0.11836D+03 0.11982D+03 0.2522D+03 0.26222D+03		DATOUTI 0.11389D+05 -0.16537D+05 0.11583D+01 0.22669D+05 0.22669D+05 0.22669D+05 0.22669D+05 0.22669D+05 0.22669D+05 0.22669D+05 0.22669D+05 0.2669D+05	OO ALTITUDE=	37SEC) T DRAG THRUST
	FLOW STATION 1 2 3 4 4 7 7 10 11 13	2000	TOTAL BENEFIT OF THE PROPERTY	MACH= 1.4000	AIRFLOM (LB/SEC) HET THRUST TOTAL INLET DRAG IMSTALLED THRUST

&D SPEC(7,10)=0,SPEC(4,9)=0,ALTP=30060,MACH=2.,ETAR=0, &END NEP - INPUT

MODE 1 NOW BEING USED SUN OF (ERRORS**2) = 0.95857D-01 SUM OF (ERRORS**2) = 0.29404D-01 SUM OF (ERRORS**2) = 0.73434D-03 SUM OF (ERRORS**2) = 0.19533D-04 SUM OF (ERRORS**2) = 0.195779D-06 SUM OF (ERRORS**2) = 0.16496D-04 SUM OF (ERRORS**2) = 0.45887D-06 AST 0 SUM OF (ERRORS**2) = 0.45887D-06 SUM OF (ERRORS**2) = 0.45887D-06

67 V							ENGINE E DATA	7643.398 11490.393 1.503 25801.395 43536.425 7LBF) 1.683
DATE RUN 20 NOV 79			DYNAMIC Pressure	1755.34 LBS/FT**2)ZZLE 19R)	5	INSTALLED ENGINE Performance data	FN (LBF) 7643.398 WFT (LBM/HR) 11490.391 SFC (LBM/HR/LBF) 1.501 WFT COR (LBM/HR) 43536.422 SFC COR (LBM/HR/LBF) 1.681
			á.	1755.3	REFERENCE NOZZLE EXIT AREA (A9R)	11.34 FT**2	A G	2.430 15.877 6.534 1.000
CVRP			TOTAL TEMPERATURE	741.07 DEG R		¥2	AFTBODY DRAG	A10/A9 A10 (FT**2) A10 (FT**2) A9 (FT**2) A9 (FT**2) A9 (FT**2) A9 (FT**2) A9 (FT**2) B0 A/B B0 A/B B0 A/B B0 B0 B0 A/B B0 B0 B0 A/B B0
DEL A/B MAP	1B E R	_	E E		REFERENCE AFTBODY NACELLE AREA (A10R)	15.88 FT**2		A PAGE OF PAGE
	MACH NUMBER	2.00	AMBIENT TEMPERATURE	411.70 DEG R	REFEREN OR NACELI	15.		7.000 0.008 0.052 0.028 0.028 1082.063 98.299 98.2.99
MAP NOZZLE MAP DRP1	ALTITUDE	30000.0 FT	TOTAL PRESSURE T	LBS/FT**2	REFERENCE A10/A9 (A10/A9 R)	1.40	INLET DRAG	AC (FT**2) 7.000 CD SPL (TAB 3) 0.0 CD SPL (TAB 3A) 0.008 CD BLD 0.052 CD INL TOT (LBF) 1082.063 CD INL REF (LBF) 98.299 CD INL PS (LBF) 983.763
INLET M AST			PRE	4905.20	A10/A		S	0.130 0.085
			NT	S/FT**2	INLET CAPTURE AREA (AC)	7.00 FT**2	INLET MASS FLOW RATIOS	SPL/AC SLD/AC AC AC SYP/AC E/AC = 0.0
			AMBIENT PRESSURE	626.91 LBS/FT**2	INL	7	NCE DATA ET RECOVERY CFG	9511.301 11490.391 1.208 173.017 312.720 0.929 0.979 0.979
							ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) WFT (LBMZHR) SFC (LBMZHR) H2 COR (LBMZEC) H2 ABS (LBMZEC) H2 ADS H2 AOS H2 AO

ť.

AIR INDUCTION SYSTEM WEIGHT BREAKDOWN

NACL' LE WEIGHT BREAKDOWN

SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED

BYPASS VS SPILLAGE OPTION NUMBER

3210. 3210. ENGINE WEIGHT BREAKDOWN BARE ENGINE (LBM) = ACCESSORIES (LBM) = TOTAL (LBM) =

767. 302. 614. 1683.

INLET (LBM) = DUCT (LBM) = BYPASS DOORS (LBM) = T/O DOORS (LBM) = TOTAL (LBM) =

49. 138. 427. 613.

ENGINE MOUNTS (LBM) = FIREMALL (LBM) = COUL (LBM) = TOTAL (LBM) =

NACELLE DRAG BUILDUP

671.3 1669.4 2340.7 SKIN FRICTION (LBF) = WAVE (LBF) = TOTAL (LBF) =

STATION PROPERTY GUTPUT DATA

CTED	DATOUT9 0.300000+05 0.180300+01 0.481920+01 0.300009+04 0.183220+01 0.10953D+01 0.10953D+01 0.00	
INTERFACE CORRECTED FLOW ERROR 51ATP8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	DATOUT8 0.14221D+01 0.85529D+00 0.08151D+00 0.99000D+00 0.90053D+00 0.32104D-05 0.13682D+01 0.13682D+01	11490.39 30.4147 0.0
STATIC PRESSURE STATP7 0.0 0.0 0.49718D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT7 0.92930D+00 0.25381D+03 0.049649D+02 0.32122D+00 0.96971D+00 0.67037D+03 0.07874D+03	FLOW CLB/HR) THRUST/AIRFLOW TAIL DRAG
MACH NUMBER STATP6 0.20000D+01 0.0 0.0 0.42766D+00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0000000000	FUEL NET BOAT SPIL
REFERRED FLOW STATP5 0.93651D+03 0.10526D+03 0.45273D+02 0.62131D+02 0.11298D+02 0.19096D+02 0.74697D+03 0.15174D+03 0.15174D+	PUT DATA 0.78225D+01 0.18274D+02 0.06156D+02 0.66156D+00 0.76648D+03 0.76648D+03 0.76648D+03 0.0627D+03	11EKAIIUNS 28850.51 1.2081 1.2081
FUEL/AIR RATIO STATP4 0.0 0.0 0.0 0.0 0.0 0.0 0.25470D-01 0.25470D-01 0.24197D-01 0.20199D-01 0.10199D-01	MPONENT O DATOUT4 17986D+0 15427D+0 2681D-0 3486B+0 2460B+0 11328D+0 11328D+0 11328D+0 11328D+0 52730B+0	- 4
TOTAL EMPERATURE STATP3 0.41184D+03 0.74072D+03 0.89739D+03 0.89739D+03 0.89739D+03 0.29304D+04 0.29304D+04 0.29304D+04 0.29304D+04 0.29304D+04 0.29304D+04 0.29304D+04 0.29304D+04 0.14512D+04 0.14512D+04	200000000000000000000000000000000000000	RECUVERT 0.9293 GROSS THRUST TSFC TOTAL BRAKE SHAFT INSTALLED TSFC
TOTAL PRESSURE STATP2 0.43727D+01 0.31787D+02 0.57471D+02 0.56321D+02 0.56321D+02 0.23826D+03 0.23826D+03 0.23826D+03 0.23826D+03 0.23810D+03 0.23507D+03 0.53719D+02	DATOUT2 0.19897D+04 0.52730D+04 0.20000D-01 0.50318D+04 0.52738D+04 0.52738D+04 0.52738D+04 0.52738D+04 0.52738D+04 0.52738D+04	312.72 9511.30 19339.21 9511.30
WEIGHT FLOW STATP1 0.31613D+03 0.31294D+03 0.31294D+03 0.13191D+03 0.13191D+03 0.12851D+03 0.12851D+03 0.13345D+03 0.1351DD+03 0.31613D+03 0.31613D+03	432833333 4338 0065	B/SEC) ET DRAG THRUST
FLOW 2 2 3 4 4 5 6 7 7 7 110 112 113	COMPONENT NO. TYPE 1 INLET 2 COMPRESR -0. 3 SPLITTER 0 TORBINE 7 TURBINE 8 MIXER 10 NOZLE 11 SHAFT -0.	KUS1 INCE

\$D SPEC(7,10)=1,SPEC(4,9)=3000, \$END NEP - INPUT

Q

DATE RUN 20 NOV 79		DYNAMIC PRESSURE		INSTALLED ENGINE PERFORMANCE DATA	FN (LBF) 16765.69 WFT (LBM/HR/LBF) 42661.45 SFC (LBM/HR/LBF) 2.54 FN COR (LBF) 56595.01 WFT COR (LDM/HR) 161641.75 SFC COR (LBM/HR/LBF) 2.85	HT BREAKDOWM	(LBM) = 3210. (LBM) = 0. = 3210.	
CFG MAP		AL ATURE	REFERENCE EXIT AREA 11.34 F1	AFTBODY DRAG	2) 15.877 10.347 (LBF) 10.57.358 R (LBF) 0.0 5PR (LBF) 0.0 T TOT (LBF) 1057.358 FF (LBF) 8.0032 FF (LBF) 882.513 PS (LBF) 174.844	ENGINE WEIGHT	BARE ENGINE (I ACCESSORIES (I TOTAL (LBM)	
DEL A/B MAP	MACH NUMBER 2.00	TENT SATURE	FERENCE AFT	AFT	7.000 A10/A9 0.008 A9 (FT**Z) 0.008 A9 (FT**Z) 0.052 P9S/PAM3 0.538 CD A/B 0.598 DRAG A/B (LBF 7346.008 CD A/B SPR 0.008 DRAG A/B SPR 98.299 CD A/B TOT 7247.707 CD A/B REF CD A/B PS 0.590 DRAG A/B TOT 7247.707 CD A/B PS CD A/B PS CD A/B PS	ON SYSTEM	= 767. = 0. .BM) = 302. = 1683.	DRAG BUILDUP (LBF) = 671.3 1669.4 2340.7
MAP NOZZLE MAP DRP1	ALTITUDE P 30000.0 FT	PRESSURE TEMPER	ENCE 10/A9 R)	INLET DRAG	AC (FT**Z) CD SPL (TAB 3) CD SPL (TAB 3A) CD SPL (TAB 3A) CD BLD CD BYP CD INL TOT CD INL REF CD INL REF CD INL REF CD INL PS	AIR INDUCTION SYSTEM WEIGHT BREAKDOWN	INLET (LBM) DUCT (LBM) BYPASS DOORS (LBM) T/O DOORS (LBM) TOTAL (LBM)	NACELLE DRAG B SKIN FRICTION (LBF) WAVE (LBF) TOTAL (LBF)
INLET		SSURE	NLET CAPTURE AREA (AC) 7.00 FT**2	RY INLET MASS FLOW RATIOS	AOSPL/AC 0.130 AOI/AC 0.870 AOBLD/AC 0.045 AOAC 0.825 AOBYP/AC 0.386 AOE/AC 0.439	EIGHT BREAKDOWN	S (LBM) = 49. 138. = 427. = 613.	
		AMB PRE		ENGINE PERFORMANCE DATA INCORPORATING INLET RECOVERY AND NOZZLE CFG	FN (LBF) SFC (LBM/HR) SFC (LBM/HR/LBF) 1.764 M2 COR (LBM/SEC) M2 ABS (LBM/SEC) S12.720 RF CFG (PRI) CGF (SEC) RF RFFERENCE INLET MASS FLOW R BYPASS VS SPILLAGE	SCHEDULED BYPASS WITH EXCESS INLET AIRFLOW SPILLED NACELLE WEIGHT	ENGINE MOUNTS (FIREMALL (LBM) COWL (LBM) TOTAL (LBM)	
						ı	11	

"

I

NOW GET WEIGHT AT MAX CONDITIONS, CAN'T DO IT WITH NVOPT NO CASE IDENTIFICATION

O

DATA	
OUTPUT	
_	
ERT	
PROPERTY	
STATION	
S	

INTERFACE CORRECTED FLOW ERROR 51ATP8 0.0 -0.68974D-05 0.0 0.0 0.0 0.15844D-05 -0.11730D-05 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT8 0.14281D+01 0.3000D+05 0.85529D+00 0.1608D+00 0.9000D+00 0.9000D+00 0.9000D+00 0.32104D-05 0.3000D+00 0.300	42661.46 77.3478 0.0
STATIC STATP7 0.0 0.0 0.4 0.4 0.0 0.0 0.0 0.0 0.0 0.0	DATOUT7 0.92930D+00 0.25381D+03 0.0 149649D+02 0.3212D+00 0.9671D+00 0.67097D+03 0.0 0.0	I (LB/HR) T/AIRFLOW DRAG + LIP DRAG
MACH NUMBER STATPE 0.20000D+01 0.0 0.42766D+00 0.0 0.0 0.34536D+00 0.34536D+00	DATOUT6 0.20000D+01 0.73541D+00 0.91352D+00 0.11490D+05 0.50152D+04 0.43867D+05 0.51171D+05 0.98000D+00 0.0	FUEL FLOW (LB/HR) NET THRUST/AIRFLOW BOATTAIL DRAG SPILLAGE + LIP DRAG
REFERRED FLOM STATP5 0.93651D+03 0.17277D+03 0.10526D+03 0.62131D+02 0.11298D+02 0.19095D+02 0.1761D+02 0.14264D+03 0.22415D+03 0.22415D+03	DATOUT5 1 0.78225D+01 1 0.18874D+02 0.0 0.41613D+02 1 0.6156D+02 1 0.67376D+00 1 0.55526D+00 1 0.55526D+00 1 0.68728D+03 4 0.68728D+03 4 0.0 1TERATIONS	43527.46 1.7637 0.41
FUEL/AIR REFER RATIO STATP 0.0 0.0 0.0 0.17277 0.0 0.17277 0.0 0.1528 0.0 0.1258 0.0 0.25470D-01 0.25470D-01 0.25470D-01 0.25470D-01 0.25470D-01 0.2588D-01 0.37868D-01 0.37868D-01 0.37868D-01 0.25415 0.37868D-01 0.25415	DATOUT4 0.17986D+01 0.15427D+01 0.0 0.13775D+01 0.34568D+01 0.21460D+01 0.21460D+01 0.27390D-01 0.1328D+04 0.27390D-01 0.152730D+04	IST E SHAFT HP TSFC
TOTAL STATP3 0.4184D+03 0.4184D+03 0.89739D+03 0.89739D+03 0.89739D+03 0.89739D+03 0.14382D+04 0.13857D+04 0.24368D+04 0.24368D+04 0.14512D+04 0.3000D+04	DATOUTS 0.11788D+04 0.20000D-01 0.30000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.10000D+01 0.52730D+02	GROSS THRUST TSFC TOTAL BRAKE INSTALLED TS
TOTAL STATE STATE 0.43727D+01 0.31787D+02 0.56321D+02 0.56321D+02 0.5321D+03 0.23826D+03 0.23826D+03 0.23826D+03 0.2387D+03 0.2387D+03 0.2387D+03 0.2387D+03	DATOUT2 0.19897D+04 0.25070D+04 0.20000D-01 0.80318D+04 0.80318D+04 0.52730D+04 0.27387D+03 0.6000D-01 0.43118D+04 0.52730D+04 0.52730D+04	312.72 24188.25 19339.21 24188.25
MEIGHT FLOM STATP1 0.32479D+03 0.31294D+03 0.13191D+03 0.12531D+03 0.12531D+03 0.12551D+03 0.12551D+03 0.12551D+03 0.12551D+03 0.12551D+03 0.12551D+03	DATOUTI 0.19339D+05 0.1692D+05 0.13724D+01 0.25496D+05 0.8353D-01 0.25496D+05 0.40389D+03 0.40389D+03 0.43527D+05 0.43527D+05 0.43527D+05 0.43527D+05 0.43527D+05 0.43527D+05	B/SEC) I DRAG THRUST
FLOW 2 2 3 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	NO. TYPE 1 INLET 2 COMPRESR -0 3 SPLITTER -0 4 COMPRESR -0 4 COMPRESR -0 7 TURBINE 0 7 TURBINE 0 8 MIXER 0 9 DUCT B 10 NOZZLE 0 11 SHAFT -0 12 SHAFT 0	AIRFLOW (LB/SEC NET THRUST TOTAL INLET DRA INSTALLED THRUS

&D ENDIT=1, &END NEP - INPUT

424

"

REFERENCES

 Sharp, B. M., and Howe, J. P., Procedure for Estimating Inlet External and Internal Performance, NWC-TP-5555, Naval Weapons Center, April 1974.

- 2. Onat, E., and Klees, G. W., A Method to Estimate Weight and Dimension of Large and Small Gas Turbine Engines, CR159481, NASA Lewis Research Center, January 1979.
- Atkins, R. A., Hickcox, T. E., and Ball, W. H., Rapid Evaluation of Propulsion Effects, AFFDL-TR-78-91, Vols. I-IV, Air Force Flight Dynamics Laboratory, July 1978.
- 4. Fishbach, L. H., and Caddy, M. L., NNEP The Navy NASA Engine Program NASA-TMX-71857, Lewis Research Center, December 1975.