Mathematical Tools Problem Set 3

1 Linear Algebra

1.1 Vectors, Norm and Unit Vectors, and Matrices

- 1. Review the following definitions; scalar, vector, dot product, norm, matrix, and transpose.
- 2. Every combination of v = (1, -2, 1) and w = (0, 1, -1) has components that add to ———. Find c and d so that cv + dw = (3, 3, -6) [1].
- 3. How many corners does a cube have in 4 dimensions? How many 3D faces? How many edges? A typical corner is (0,0,1,0). A typical edge goes to (0,1,0,0) [1].
- 4. (a) What is the sum V of the twelve vectors that go from the center of a clock to the hours 1:00, 2:00, ..., 12:00?
 - (b) If the 2:00 vector is removed, why do the 11 remaining vectors add to 8:00?
 - (c) What are the components of that 2:00 vector $v = (\cos \theta, \sin \theta)$?
- 5. Draw vectors u, v, w so that their combinations cu + dv + ew fill only a line. Find vectors u, v, w so that their combinations cu + dv + ew fill only a plane.
- 6. For any unit vectors v and w, find the dot products (actual numbers) of:
 - (a) v and -v.
 - (b) v + w and v w.
 - (c) v 2w and v + 2w.
- 7. True or false (give a reason if true or a counterexample if false):
 - (a) If u is perpendicular (in three dimensions) to v and w, those vectors v and w are parallel.
 - (b) If u is perpendicular to v and w, then u is perpendicular to v + 2w,
 - (c) If u and v are perpendicular unit vectors then $||u-v|| = \sqrt{2}$.

8. The triangle inequality says: (length of v + w) \leq (length of v) + (length of w). Use the Schwarz inequality ($v.w \leq ||v|| ||w||$) to show that $||\mathbf{side 3}||$ of a triangle can not exceed $||\mathbf{side 2}|| + ||\mathbf{side 1}||$:

Triangle Inequality:
$$||v+w|| \le ||v|| + ||w||$$

- 9. Pick any numbers that add to x+y+z=0. Find the angle between your vector v=(x,y,z) and the vector w=(z,x,y). Challenge question: Explain why $\frac{v.w}{\|v\|\|w\|}$ is always $\frac{-1}{2}$.
- 10. Find the linear combination $2s_1 + 3s_2 + 4s_3 = b$. Then write b as a matrix-vector multiplication Sx. Compute the dot products (row of S).x:

$$s_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, s_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, s_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$
 go into the columns of S .

11. For these matrices, when does AB = BA? When does BC = CB? When does A times BC equal AB times C? Give the conditions on their entries p,q,r,z:

$$A = \begin{bmatrix} p & 0 \\ q & r \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \quad C = \begin{bmatrix} 0 & z \\ 0 & 0 \end{bmatrix}$$

- Find a nonzero matrix A for which $A^2 = 0$.
- Find a matrix that has $A^2 \neq 0$ but $A^3 = 0$.

1.2 Inverse Matrix, Determinant, Vector Spaces

- 1. Review the following definitions: inverse matrix, identity matrix, determinant, and vector spaces.
- 2. Find a point with z=2 on the intersection line of the planes x+y+3z=6 and x-y+z=4. Find the point with z=0. Find a third point halfway between.
- 3. Normally 4 "planes" in 4-dimensional space meet at a ——. Normally 4 column vectors in 4-dimensional space can combine to produce b. What combination of (1,0,0,0), (1,1,0,0), (1,1,1,0), (1,1,1,1) produces b = (3,3,3,2)? What 4 equations for x, y, z, t are you solving?
- 4. (a) What 2 by 2 matrix R rotates every vector by 90°? R times $\begin{bmatrix} x \\ y \end{bmatrix}$, is $\begin{bmatrix} y \\ -x \end{bmatrix}$.
 - (b) What 2 by 2 matrix R_2 rotates every vector by 180°?

(c) What 2 by 2 matrix E subtracts the first component from the second component? What 3 by 3 matrix does the same?

$$E\begin{bmatrix}3\\5\end{bmatrix} = \begin{bmatrix}3\\2\end{bmatrix} \qquad E\begin{bmatrix}3\\5\\7\end{bmatrix} = \begin{bmatrix}3\\2\\7\end{bmatrix}$$

- 5. Start with the vector $u_0=(1,0)$. Multiply again and again by the same "Markov matrix" $A=\begin{bmatrix} .8 & .3 \\ .2 & .7 \end{bmatrix}$. The next three vectors are u_1,u_2,u_3 : $u_1=Au_0,u_2=Au_1,u_3=Au_2$. What property do you notice for all four vectors u_0,\ldots,u_3 ?
- 6. Suppose u and v are the first two columns of a 3 by 3 matrix A. Which third columns w would make this matrix singular? Describe a typical column picture of Ax = b in that singular case, and a typical row picture (for a random b).
- 7. (a) If A is invertible and AB = AC, prove quickly that B = C.
 - (b) If $A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ find two different matrices such that AB = AC.
- 8. Could a 4 by 4 matrix A be invertible if every row contains the numbers 0, 1, 2, 3 in some order? What if every row of B contains 0, 1, 2, -3 in some order?
- 9. True or false (with a counterexample if false and a reason if true):
 - (a) A 4 by 4 matrix with a row of zeros is not invertible.
 - (b) Every matrix with 1 's down the main diagonal is invertible.
 - (c) If A is invertible then A^{-1} and A^2 are invertible.
- 10. How does the identity A(I + BA) = (I + AB)A connect the inverses of I + BA and I + AB? Those are both invertible or both singular: not obvious.
- 11. Describe a subspace S of each vector space V, and then a subspace SS of S.
 - (a) $V_1 = \text{all combinations of } (1, 1, 0, 0) \text{ and } (1, 1, 1, 0) \text{ and } (1, 1, 1, 1).$
 - (b) $V_2 = \text{all vectors perpendicular to } u = (1, 2, 1), \text{ so } u.v = 0.$
 - (c) $V_3 =$ all symmetric 2 by 2 matrices (as a subspace of all the 2 by 2 real matrices).
 - (d) V_4 = all solutions to the equation $\frac{d^4y}{dx^4} = 0$ (as subspace of the vector space of all real functions f(x)).

1.3 Span, Independence, Basis

- 1. Review the following definitions: independent vectors, spanning a space, basis for a space, and the dimension of a space.
- 2. Describe singular and invertible matrices in terms of the independence of their columns.
- 3. Suppose v_1, \ldots, v_n is a basis for \mathbb{R}^n and the n by n matrix A is invertible. Show that Av_1, \ldots, Av_n is also a basis for \mathbb{R}^n .
- 4. Start with the vectors $v_1 = (1, 2, 0)$ and $v_2 = (2, 3, 0)$.
 - (a) Are they linearly independent?
 - (b) Are they a basis for any space?
 - (c) What space V do they span?
 - (d) What is the dimension of V?
 - (e) Which matrices A have V as their column space?
 - (f) Which matrices have V as their nullspace?
 - (g) Describe all vectors v_3 that complete a basis V_1, v_2, v_3 for \mathbb{R}^3 .
- 5. Describe the subspace of R^3 (is it a line or plane or R^3 ?) spanned by:
 - (a) The two vectors (1, 1, -1) and (-1, -1, 1).
 - (b) The three vectors (0, 1, 1) and (1, 1, 0) and (0, 0, 0).
 - (c) All vectors in R³ with whole number components.
 - (d) All vectors with positive components.
- 6. The columns of A are n vectors from \mathbf{R}^m . If they are linearly independent, what is the rank of A? If they span \mathbf{R}^m , what is the rank? If they are a basis for \mathbf{R}^m , what then? Looking ahead: The rank r counts the number of columns.
- 7. The cosine space F_3 contains all combinations $y(x) = A \cos x + B \cos 2x + C \cos 3x$. Find a basis for the subspace with y(0) = 0.
- 8. Activity in a network of neurons: Consider two layers of N neurons each, an input layer and an output layer. Label the activities of the input layer neurons by $a_i, i = 0, ..., N1$, and similarly label the activities of the output layer neurons by b_i . Let W_{ij} by the strength of the synaptic connection from input neuron j to output neuron i. Also let there be synaptic connections between the output neurons: let B_{ij} be the strength of the connection from output neuron j to output neuron i (we can define $B_{ii} = 0$ for all i, if we want to exclude self-synapses). Let τ be a time constant of integration in the postsynaptic neuron. Then a very simple,

linear model of activity in the output layer, given the activity in the input layer, would be:

$$\tau \frac{db_i}{dt} = -b_i + \sum_j W_{ij} a_j + \sum_j B_{ij} b_j \tag{1}$$

The $-b_i$ term on the right just says that, in the absence of input from other cells, the neuron's activity b_i decays to zero (with time constant τ). Again, this is only a toy model, e.g. rates can go positive or negative and are unbounded in magnitude. The equation 1 can be written as a vector equation:

$$\tau \frac{db}{dt} = -b + Wa + Wb = -(1 - B)b + Wa$$

Write down an equation for the steady-state or fixed-point output activity pattern and solve it. [2]

References

- [1] Gilbert Strang. *Introduction to Linear Algebra*. Wellesley-Cambridge Press, Wellesley, MA, fourth edition, 2009.
- [2] Kenneth Miller. Linear Algebra for Theoretical Neuroscience. https://ctn.zuckermaninstitute.columbia.edu/sites/default/files/content/Miller/math-notes-1.pdf, 2008. [Online].