

A two-step method for large output

Michiel Stock twitter: @michielstock

Motivation Introductor example Relational learning Other

Pairwise learning

Kronecker kerneridge regression
Two-step kerne

Computationa aspects

Cross-validation

Take home messages

A two-step method to incorporate task features for large output spaces

Michiel Stock¹, Tapio Pahikkala², Antti Airola², Bernard De Baets¹ & Willem Waegeman¹

¹KERMIT

Department of Mathematical Modelling, Statistics and Bioinformatics ${\sf Ghent\ University}$

²Department of Computer Science University of Turku

NIPS: extreme classification workshop
December 12, 2015

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Motivation

Introductory

example

learning Other

Pairwise learning

Kronecker kerne ridge regression Two-step kerne

Computationa aspects

Cross-validation Exact online learning

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Matirotion

Introductory example

Relational learning Other

Pairwise learning

Kronecker kerne ridge regression Two-step kernel ridge regression

Computational aspects

Cross-validation Exact online learning

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

@michielsto

Introductory example

Relational learning

Other applications

learning methods

Kronecker kerne ridge regression Two-step kerne ridge regression

Computational aspects

Cross-validation Exact online learning

@michielstock

example

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

emichiesto

Introductory example

example Relational

Other application

learning methods

ridge regression Two-step kernel ridge regression

Computationa aspects

Cross-validation Exact online learning

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

@michielsto

Introductory

example Relational

Other application:

learning methods

ridge regression Two-step kernel ridge regression

Computationa aspects

Cross-validation Exact online learning

Learning relations

method fo

Michiel Stock twitter: @michielstock

Motivatio Introductor

example Relational

learning Other applications

Pairwise learning methods

ridge regressio

Computationa aspects

Cross-validation Exact online learning

Other cool applications: drug design

A two-step method for large output

Michiel Stock twitter:

@michielstock

Introducto example Relational

Other applications

Pairwise learning methods

ridge regression
Two-step kerne

Computationa aspects

Cross-validation Exact online learning

Take home messages

Predicting interaction between proteins and small compounds

Other cool applications: social network analysis

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Motivation Introductory example Relational learning

Other applicatio

Pairwise learning methods

Kronecker kern ridge regressior Two-step kerne ridge regressior

aspects
Cross-validation
Exact online

Take home

Predicting links between people

Other cool applications: food pairing

A two-step method for large output

Michiel Stock twitter: @michielstock

Motivatio Introductor example Relational

Other applicatio

Pairwise learning method

ridge regressior
Two-step kerne
ridge regressior

Computation: aspects

Cross-validatio Exact online learning

Learning with pairwise feature representations

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Motivation Introductor example Relational learning Other applications

Pairwise learning methods

Kronecker kernel ridge regression
Two-step kernel ridge regression

Computationa aspects

Cross-validation Exact online learning

- d: instance (e.g. book)
- $\phi(d)$: instance features (e.g. genre)

- t : task (e.g. reader)
- $\psi(t)$: task features (e.g. social network)

Learning with pairwise feature representations

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Introductory example Relational learning Other applications

Pairwise learning methods

Kronecker kernel ridge regression
Two-step kernel ridge regression

Computationa aspects

Cross-validation Exact online learning

- d: instance (e.g. book)
- $\phi(d)$: instance features (e.g. genre)

- t : task (e.g. reader)
- $\psi(t)$: task features (e.g. social network)

Learning with pairwise feature representations

A two-step method for large output spaces

Michiel Stoc twitter: @michielstoc

Introductory example Relational learning Other applications

Pairwise learning methods

Kronecker kernel ridge regression Two-step kernel ridge regression

Computationa aspects

Cross-validation Exact online learning

Take home nessages

- d: instance (e.g. book)
- $\phi(d)$: instance features (e.g. genre)

- t : task (e.g. reader)
- $\psi(t)$: task features (e.g. social network)

Pairwise prediction function: $f(d,t) = \mathbf{w}^{\mathsf{T}}(\phi(d) \otimes \psi(t))$

Learning relations in two steps

@michielstock

Two-step kernel ridge regression

- Build a ridge regression model to generalize to new instances
- Build a ridge regression model to generalize to new tasks

The two-step ridge regression

Prediction function:

$$f(d,t) = \phi(d)^{\mathsf{T}} \mathbf{W} \psi(t)$$

Parameters can be found by solving:

$$\mathbf{\Phi}^{\mathsf{T}}\mathbf{Y}\mathbf{\Psi} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi} + \lambda_{d}\mathbf{I})\mathbf{W}(\mathbf{\Psi}^{\mathsf{T}}\mathbf{\Psi} + \lambda_{t}\mathbf{I})$$

@michielstock

Two-step kernel ridge regression

The two-step ridge regression

method for

Michiel Stock twitter: @michielstock

Prediction function:

$$f(d,t) = \phi(d)^{\mathsf{T}} \mathbf{W} \psi(t)$$

Parameters can be found by solving:

$$\mathbf{\Phi}^{\mathsf{T}}\mathbf{Y}\mathbf{\Psi} = (\mathbf{\Phi}^{\mathsf{T}}\mathbf{\Phi} + \lambda_{d}\mathbf{I})\mathbf{W}(\mathbf{\Psi}^{\mathsf{T}}\mathbf{\Psi} + \lambda_{t}\mathbf{I})$$

Two hyperparameters: λ_d and λ_t !

Motivation Introductory example

learning
Other
applications

Pairwise learning methods

ridge regression Two-step kernel ridge regression

Computationa aspects

Cross-validatio Exact online learning

Four ways of cross validation

method for large outpu

Michiel Stock twitter: @michielstock

Introductor example Relational learning Other

Pairwise learning methods

Kronecker kerne ridge regression Two-step kerne ridge regression

Computational aspects

Cross-validation Exact online learning

Take home messages

Train

Four ways of cross validation

method for large output

Michiel Stock twitter: @michielstock

Introductory example Relational learning Other

Pairwise learning methods

ridge regression
Two-step kerne
ridge regression

Computational aspects

Cross-validation Exact online learning

- Analytic shortcuts can be derived to perform LOOCV for each setting!
- Tuning λ_d and λ_t essentially free!

Effect of regularization for the four settings

A two-step method for large output

Michiel Stoc twitter: @michielstoc

Introductory example Relational learning Other

Pairwise learning methods

ridge regression
Two-step kerne
ridge regression

Computationa aspects

Cross-validation Exact online learning

Take home messages Data: protein-ligand interactions. Evaluation by AUC (lighter = better performance)

Clear difference between four settings and λ_d and λ_t !

Learning with mini-batches

@michielstock

Exact online learning

Tasks New training tasks Instances Initial training data New training instances Even more training

instances

Learning with mini-batches

method fo large outpu

Michiel Stock twitter: @michielstock

Motivation Introductor example Relational learning Other

Pairwise learning methods

Kronecker kerne ridge regression Two-step kerne

Computationa aspects

Cross-validation
Exact online learning

Take home

Exact updating of the parameters when new training instances and/or taks become available

- scalable for "Big Data" applications
- updating model in dynamic environment

Exact online learning for hierarchical text classification

A two-step method for large output spaces

Michiel Stock twitter: @michielstock

Motivation Introductory example Relational learning Other applications

Pairwise learning methods

ridge regressior Two-step kerne ridge regressior

Computational aspects

Exact online learning

Take home messages Hierarchical text classification (> 12,000 labels): from 5,000 to 350,000 instances in steps of 1,000 instances.

Why two-step ridge regression?

@michielstock

Take home messages

• Zero-shot learning, transfer learning, multi-task learning... in one line of code

Why two-step ridge regression?

method for large outpu spaces

Michiel Stock twitter: @michielstock

Introductory example Relational learning Other

Pairwise learning

Kronecker kern ridge regression Two-step kerne ridge regression

Computationa aspects

Cross-validation

- Zero-shot learning, transfer learning, multi-task learning...
 in one line of code
- Theoretically well founded

Why two-step ridge regression?

method for large output spaces

Michiel Stock twitter: @michielstock

Motivation Introductory example Relational learning Other applications

Pairwise learning methods

Kronecker kerne ridge regression Two-step kerne ridge regression

Computational aspects

Cross-validation Exact online learning

- Zero-shot learning, transfer learning, multi-task learning...
 in one line of code
- Theoretically well founded
- Allows for nifty computational tricks
 - 'free' tuning for the hyperparameters
 - 'free' LOOCV for all four settings!
 - closed-form solution for updating with mini-batches

A two-step method for large output

Michiel Stock twitter: @michielstock

Motivation Introductory example Relational learning Other

Pairwise learning

Kronecker kerne ridge regression Two-step kernel

Computationa

Cross-validation
Exact online

Take home messages

A two-step method to incorporate task features for large output spaces

Michiel Stock¹, Tapio Pahikkala², Antti Airola², Bernard De Baets¹ & Willem Waegeman¹

¹KERMIT

Department of Mathematical Modelling, Statistics and Bioinformatics ${\sf Ghent\ University}$

²Department of Computer Science University of Turku

NIPS: extreme classification workshop

December 12, 2015