Problem Set Intelligence

[Due by 11:59 PM on Tuesday, January 25.]

Question 1:

Consider the following choice:

$$\mathbf{x} \equiv (\$100, 0.8; -\$100, 0.2)$$
 vs. $\mathbf{y} \equiv \left(\$70, \frac{5}{9}; \$40, \frac{1}{3}; \$0, \frac{1}{9}\right)$

- (a) Rachel is an EV maximizer with initial wealth \$1,000. Which does she choose?
- **(b)** Stanley and Yusuf are EU maximizers with initial wealth \$10,000.
 - (i) If Stanley has a CRRA utility function with $\rho = 1/4$, which does he choose?
 - (ii) If Yusuf has a CRRA utility function with $\rho = 4$, which does he choose?

Question 2:

Suppose that Sarah has initial wealth \$50,000 that she plans to invest for a year and then consume it. There are two assets in which she can invest. First, there is a risk-free asset that yields a certain return of 4%. Second, there is a risky asset that yields a return of 20% with probability 2/3 and a return of -25% with probability 1/3. Assume these are the only two assets in which Sarah can invest, and she can split her wealth between them.

If Sarah is an expected-utility maximizer with utility function $u(x) = \ln x$, how much would she invest in each asset?

Question 3:

Consider the following three choice situations:

Choice (i): (\$700,
$$\frac{1}{2}$$
; \$0, $\frac{1}{2}$) vs. (\$300, 1)
Choice (ii): ($-\$300, \frac{1}{3}$; $-\$500, \frac{2}{3}$) vs. ($-\$400, 1$)
Choice (iii): (\$700, $\frac{1}{4}$; \$500, $\frac{1}{4}$; \$300, $\frac{1}{4}$; \$100, $\frac{1}{4}$) vs. (\$450, $\frac{1}{2}$; \$350, $\frac{1}{2}$)

- (a) Suppose Gemma is a risk-averse expected utility maximizer. For each choice, can we determine which option Gemma will choose, or do we need more information?
- **(b)** For each choice, as Gemma becomes more risk averse, does she become more prone to choose the first or second option?
- (c) Now suppose Gemma has a CRRA utility function. For each choice, as Gemma's wealth becomes larger, does she become more prone to choose the first or second option?

(Note: You should be able to intuit an answer to part (c) — no math is needed.)

Question 4: (Demand for Insurance)

Suppose you are a risk-averse expected utility maximizer with utility function u(x). You have initial wealth \$30,000, but before you consume it, you are subject to the following health risk (these events are mutually exclusive):

Required Medical Payment	Probability
\$100	15%
\$400	10%
\$800	4%
\$2,000	2%
\$15,000	1%

Now suppose that an insurance agent offers to sell you health insurance with 20% coinsurance — that is, for any medical payment that you require, you must pay for 20% of the payment and the insurance company pays the rest. The price of this insurance is p.

- (a) If you do not buy the insurance, what lottery do you face? If you buy the insurance, what lottery do you face?
- (b) Let p^* denote your willingness to pay for the insurance so that you prefer to buy the insurance if $p < p^*$ and you prefer not to buy the insurance if $p > p^*$. Provide an equation from which you could derive p^* .
 - (c) If you are risk-neutral, what can we say about your p^* ? If you are risk-averse, what can we

say about your p^* ? As you become more risk averse, what happens to your p^* ? Briefly explain your answers.

(d) If the coinsurance rate goes down to 15%, what happens to your p^* ? Briefly explain your answer.

Question 5:

Consider the following choice (where $p \in [0, 1]$, $q \in [0, 1]$, and $p + q \le 1$):

$$\mathbf{x} \equiv (\$40, p; \$10, q; \$0, 1 - p - q)$$
 vs. $\mathbf{y} \equiv (\$30, \frac{1}{2}; \$20, \frac{1}{6}; \$0, \frac{1}{3})$

- (a) For what values of p and q does lottery \mathbf{x} dominate lottery \mathbf{y} ?
- (b) For what values of p and q does lottery y dominate lottery x?

Question 6: [optional, no extra credit, but worth trying]

Short-Answer Questions: For each question below, please provide a short, concise answer — your answer only needs to be a few sentences.

- (a) Suppose Karen is a risk-averse expected utility maximizer. As Karen's wealth goes up, will she act more or less risk-averse? Briefly explain your answer.
- (b) Suppose Julian is a risk-averse expected utility maximizer. If he were extremely risk-averse, could he prefer the lottery (1000, 1) over the lottery $(1000, \frac{1}{2}; 1100, \frac{1}{2})$? Briefly explain your answer.
- (c) Does the St. Petersburg Paradox suggest that expected utility is a bad model of human behavior? Briefly explain your answer.