CSCI/ARTI 8950 Machine Learning

Assignment Number 3: Due Thursday 1/23/2006 (in class)

1. [10 points] Consider the following training set of samples for machine learning:

Example	A1	A2	A3	A4	label
1	1	2	2	2	=
2	1	1	1	1	\mathbf{a}
3	2	3	2	1	b
4	1	3	3	3	c
5	3	1	2	1	d
6	1	1	1	2	_

The attributes A1 through A4 are integers with values in the range [1,2,3] each.

- (a) For the label assignment (a=-,b=+,c=-,d=+) give a minimal size (measured by the total number of nodes) decision tree that can correctly classify all the training examples.
- (b) How would the tree given in Part (a) above classify the following examples: (1,2,2,3) and (3,2,1,1)?
- (c) Propose a label assignment for a, b, c, and d that will make attribute **A4** better than attribute **A3** according to the ID3 information gain measure.
- 2. [10 points] Solve problem 4.9 on page 125 of the text book.
- 3. [10 points] Solve problem 5.3 on page 152 of the text book.
- 4. [10 points] Consider the following training set of samples for machine learning:

Example	Sentence	Label
1	This test is easy	+
2	This problem is easy	+
3	Two is more than three	_
4	Swimming is easy	_

Apply the Naive Bayes method to the above examples. You should:

- (a) Identify the vocabulary.
- (b) For every word Wi in the vocabulary, compute $P(Wi \parallel +)$ and $P(Wi \parallel -)$. (Hint, many probabilities are equal)
- (c) Use the Naive Bayes classifier to classify the following sentences:
 - i. This problem is more than easy
 - ii. No test is easy