

High dimensional time series analysis

2. Time series graphics

robjhyndman.com/hdtsa

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

Time plots

```
ansett %>%
  filter(Airports=="MEL-SYD", Class=="Economy") %>%
  autoplot(Passengers)
```


Time plots

```
PBS %>%
filter(ATC2=="A10") %>%
select(Month, Concession, Type, Cost) %>%
summarise(total_cost = sum(Cost)) %>%
mutate(total_cost = total_cost/le6) ->
a10
```

```
## # A tsibble: 204 x 2 [1M]
##
        Month total cost
##
        <mth>
                   <dbl>
   1 1991 Jul
##
                  3.53
                   3.18
##
   2 1991 Aug
   3 1991 Sep
                   3.25
##
   4 1991 Oct
                   3.61
##
##
   5 1991 Nov
                   3.57
```

Time plots

```
a10 %>% autoplot(total_cost) +
  ylab("$ million") + xlab("Year") +
  ggtitle("Antidiabetic drug sales")
```



```
maxtemp %>%
autoplot(Temperature) +
xlab("Week") + ylab("Max temperature")
```



```
maxtemp %>%
  ggplot(aes(x = Day, y = Temperature)) +
  geom_point() +
  xlab("Week") + ylab("Max temperature")
```


Lab Session 2

- Create time plots of the following time series:
 Bricks from aus_production, Lynx from pelt,
 Google from gafa_stock
- Use help() to find out about the data in each series.
- For the last plot, modify the axis labels and title.

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

The seasonal period

- Seasonal period = no. observations before seasonal pattern repeats.
- Usually automatically detected using time index.
- Daily & sub-daily time series can have multiple periods.

Data	Minute	Hour	Day	Week	Year
Quarters					4
Months					12
Weeks					52
Days				7	365.25
Hours			24	168	8766
Minutes		60	1440	10080	525960
Seconds	60	3600	86400	604800	31557600

Seasonal plots

```
a10 %>% gg_season(total_cost, labels = "both") +
  ylab("$ million") +
  ggtitle("Seasonal plot: antidiabetic drug sales")
```


Seasonal plots

- Data plotted against the individual "seasons" in which the data were observed. (In this case a "season" is a month.)
- Something like a time plot except that the data from each season are overlapped.
- Enables the underlying seasonal pattern to be seen more clearly, and also allows any substantial departures from the seasonal pattern to be easily identified.
- In R: gg_season()

Seasonal subseries plots

```
a10 %>%
    gg_subseries(total_cost) + ylab("$ million") +
    ggtitle("Subseries plot: antidiabetic drug sales")
     Subseries plot: antidiabetic drug sales
      Jan
           Feb
                          May
                               Jun
                                     Jul
                                              Sep
                                                    Oct
                                                        Nov
                                                             Dec
   30 -
```

Seasonal subseries plots

- Data for each season collected together in time plot as separate time series.
- Enables the underlying seasonal pattern to be seen clearly, and changes in seasonality over time to be visualized.
- In R: gg_subseries()

Quarterly Australian Beer Production

```
beer <- aus_production %>%
   select(Quarter, Beer) %>%
   filter(year(Quarter) >= 1992)
beer %>% autoplot(Beer)
```


Quarterly Australian Beer Production

beer %>% gg_season(Beer, labels="right")

Quarterly Australian Beer Production

Lab Session 3

Look at the quarterly tourism data for the Snowy Mountains

```
snowy <- filter(tourism,
  Region == "Snowy Mountains",
  Purpose == "Holiday")</pre>
```

- Use autoplot(), gg_season() and gg_subseries() to explore the data.
- What do you learn?

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

- **Trend** pattern exists when there is a long-term increase or decrease in the data.
- Seasonal pattern exists when a series is influenced by seasonal factors (e.g., the quarter of the year, the month, or day of the week).
 - Cyclic pattern exists when data exhibit rises and falls that are not of fixed period (duration usually of at least 2 years).

Time series components

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

```
as_tsibble(fma::elec) %>%
filter(index >= 1980) %>%
autoplot(value) + xlab("Year") + ylab("GWh") +
ggtitle("Australian electricity production")
```



```
aus_production %>%
  autoplot(Bricks) +
  ggtitle("Australian clay brick production") +
  xlab("Year") + ylab("million units")
```



```
as_tsibble(fma::hsales) %>%
autoplot(value) +
ggtitle("Sales of new one-family houses, USA") +
xlab("Year") + ylab("Total sales")
```



```
as_tsibble(fma::ustreas) %>%
autoplot(value) +
ggtitle("US Treasury Bill Contracts") +
xlab("Day") + ylab("price")
```



```
pelt %>%
  autoplot(Lynx) +
  ggtitle("Annual Canadian Lynx Trappings") +
  xlab("Year") + ylab("Number trapped")
```


Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

Seasonal or cyclic?

Differences between seasonal and cyclic patterns:

- seasonal pattern constant length; cyclic pattern variable length
- average length of cycle longer than length of seasonal pattern
- magnitude of cycle more variable than magnitude of seasonal pattern

The timing of peaks and troughs is predictable with seasonal data, but unpredictable in the long term with cyclic data.

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

Example: Beer production

1 1992 01

2 1992 02 410

4 1992 Q4

6 1993 Q2

5 1993 Q1

3 1992 Q3 420

##

##

##

##

```
new_production <- aus_production %>%
  filter(year(Quarter) >= 1992)
new_production
```

```
## # A tsibble: 74 x 7 [10]
      Ouarter Beer Tobacco Bricks Cement Electrici
##
```

<qtr> <dbl> <dbl> <dbl> <dbl> ##

5777

6416

5724

6036

5853

5825

383

404

446

420

394

462

1289

1501

1539

1568

1450

1668

443

532

433

421

<db

383

397

422

384

394

32 **41**3

Example: Beer production

new_production %>% gg_lag(Beer)

Example: Beer production

new_production %>% gg_lag(Beer, geom='point')

Lagged scatterplots

- Each graph shows y_t plotted against y_{t-k} for different values of k.
- The autocorrelations are the correlations associated with these scatterplots.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

Covariance and **correlation**: measure extent of **linear relationship** between two variables (*y* and *X*).

Autocovariance and **autocorrelation**: measure linear relationship between **lagged values** of a time series y.

We measure the relationship between:

- y_t and y_{t-1}
- y_t and y_{t-2}
- y_t and y_{t-3}
- etc.

and

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$
$$r_k = c_k/c_0$$

and

We denote the sample autocovariance at lag k by c_k and the sample autocorrelation at lag k by r_k . Then define

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

$$r_k = c_k/c_0$$

- \blacksquare r_1 indicates how successive values of y relate to each other
- $ightharpoonup r_2$ indicates how y values two periods apart relate to each other
- r_k is almost the same as the sample correlation between y_t and v_{t-k} .

Results for first 9 lags for beer data:

```
new_production %>% ACF(Beer, lag_max = 9)
## # A tsibble: 9 x 2 [10]
     lag acf
##
## <lag> <dbl>
## 1 1Q -0.102
## 2 20 -0.657
## 3 3Q -0.0603
## 4
       40 0.869
## 5
       50 -0.0892
## 6
       60 -0.635
## 7
       70 -0.0542
## 8
       80 0.832
```

Results for first 9 lags for beer data:

- r_4 higher than for the other lags. This is due to the seasonal pattern in the data: the peaks tend to be 4 quarters apart and the troughs tend to be 2 quarters apart.
- $Arr r_2$ is more negative than for the other lags because troughs tend to be 2 quarters behind peaks.
- Together, the autocorrelations at lags 1, 2, ..., make up the autocorrelation or ACF.
- The plot is known as a correlogram

ACF

Trend and seasonality in ACF plots

- When data have a trend, the autocorrelations for small lags tend to be large and positive.
- When data are seasonal, the autocorrelations will be larger at the seasonal lags (i.e., at multiples of the seasonal frequency)
- When data are trended and seasonal, you see a combination of these effects.

Aus monthly electricity production

```
elec2 <- as_tsibble(fma::elec) %>%
  filter(year(index) >= 1980)
elec2 %>% autoplot(value)
```


Aus monthly electricity production

Aus monthly electricity production

Time plot shows clear trend and seasonality.

The same features are reflected in the ACF.

- The slowly decaying ACF indicates trend.
- The ACF peaks at lags 12, 24, 36, ..., indicate seasonality of length 12.

```
google_2015 <- gafa_stock %>%
  filter(Symbol == "GOOG", year(Date) == 2015) %>%
  select(Date, Close)
google_2015
```

```
## # A tsibble: 252 x 2 [!]
##
     Date
            Close
##
     <date> <dbl>
##
   1 2015-01-02 522.
##
   2 2015-01-05 511.
##
   3 2015-01-06
                 499.
##
   4 2015-01-07 498.
##
   5 2015-01-08
                 500.
##
   6 2015-01-09
                 493.
```



```
google_2015 %>%

ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
```

```
google_2015 %>%
   ACF(Close, lag_max=100)
# Error: Can't handle tsibble of irregular interval.
google_2015
```

```
## # A tsibble: 252 x 2 [!]
## Date Close
## <date> <dbl>
## 1 2015-01-02 522.
## 2 2015-01-05 511.
## 3 2015-01-06 499.
```

1 2015-01-02 522.

2 2015-01-05 511.

499.

498.

500.

493.

3 2015-01-06

4 2015-01-07

5 2015-01-08

6 2015-01-09

##

##

##

##

##

##

```
google_2015 <- google_2015 %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE)
google_2015

## # A tsibble: 252 x 3 [1]
## Date Close trading_day
## <date> <dbl> <int>
```

3

4

5

6

49

```
google_2015 %>%

ACF(Close, lag_max=100) %>%
autoplot()
```


Lab Session 4

Use gg_lag and ACF on the Snowy Mountains tourism data. What do you learn about the series?

Which is which?

Outline

- 1 Time plots
- 2 Seasonal plots
- 3 Seasonal or cyclic?
- 4 Lag plots and autocorrelation
- 5 White noise

Example: White noise

Example: White noise

 $\hbox{-0.206} \ 0.123 \ \hbox{-0.276} \ \hbox{-0.034} \ 0.003 \ 0.063 \ \hbox{-0.011} \ 0.051 \ \hbox{-0.142} \ 0.002$

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

Sampling distribution of autocorrelations

Sampling distribution of r_k for white noise data is asymptotically N(0,1/T).

- 95% of all r_k for white noise must lie within $\pm 1.96/\sqrt{T}$.
- If this is not the case, the series is probably not WN.
- Common to plot lines at $\pm 1.96/\sqrt{T}$ when plotting ACF. These are the **critical values**.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

Monthly total number of pigs slaughtered in the state of Victoria, Australia, from January 2014 through December 2018 (Source: Australian Bureau of Statistics.)

- Difficult to detect pattern in time plot.
- ACF shows significant autocorrelation for lag 2 and 12.
- Indicate some slight seasonality.

These show the series is **not a white noise series**.

You can compute the daily changes in the Google stock price in 2018 using

```
dgoog <- gafa_stock %>%
  filter(Symbol == "GOOG", year(Date) >= 2018) %>%
  mutate(trading_day = row_number()) %>%
  update_tsibble(index=trading_day, regular=TRUE) %>%
  mutate(diff = difference(Close))
```

Does diff look like white noise?