CSC6013 - Worksheet for Week 5

Back Substitution

Compute the complexity of the recursive algorithms based on the recursive equation and stop condition. Show your work, not just your final answer.

1.
$$T(n) = 2T(n-1) + 1$$
 and $T(0) = 1$

a. You can compute this complexity as a tight upper bound.

2.
$$T(n) = T(n-2) + n^2$$
 and $T(0) = 1$

a. Hint: Assume n is even; that is, n = 2k for some integer k.

3.
$$T(n) = T(n-1) + 1/n$$
 and $T(1) = 1$

a. Hint: Go online and find a formula for the sum of the first n terms of the "harmonic series".

CSC6013 - Worksheet for Week 5

Master Method

Compute the complexity of the recursive algorithms based on the recursive equation and stop condition. Show your work, not just your final answer.

4.
$$T(n) = 2T(n/4) + 1$$
 and $T(0) = 1$

a. Be sure to rewrite 1 as n⁰.

5.
$$T(n) = 2T(n/4) + n^{1/2}$$
 and $T(0) = 1$

a. Note that $n^{1/2}$ is the square root of n.

6.
$$T(n) = 2T(n/4) + n^2$$
 and $T(0) = 1$

a. This is similar to the previous one.

CSC6013 - Worksheet for Week 5

Master Method

Compute the complexity of the recursive algorithms based on the recursive equation and stop condition. Show your work, not just your final answer.

7.
$$T(n) = 10T(n/3) + n^2$$
 and $T(0) = 1$

- a. In your answer, round the value of the logarithm to 2 decimal places.
- b. Remember that the $log_b(a)$ is equal to $log_2(a) / log_2(b)$.

8.
$$T(n) = 2T(2n/3) + 1$$
 and $T(0) = 1$

- a. In your answer, round the value of the logarithm to 2 decimal places.
- b. Be sure to rewrite 1 as n⁰.
- c. Remember that the $log_b(a)$ is equal to $log_2(a) / log_2(b)$.
- d. Hint: rewrite 2n / 3 as n / (3/2)