

-1-

VITAMIN D RECEPTOR MODULATORS

BACKGROUND OF THE INVENTION

Vitamin D₃ Receptor (VDR) is a ligand dependent transcription factor that

5 belongs to the superfamily of nuclear hormone receptors. The VDR protein is 427 amino acids, with a molecular weight of ~50 kDa. The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ (the hormonally active form of Vitamin D) has its action mediated by its interaction with the nuclear receptor known as Vitamin D receptor ("VDR"). The VDR ligand, 1 α ,25-dihydroxyvitamin D₃ (1 α ,25(OH)₂D₃) acts upon a wide variety of tissues and cells both

10 related to and unrelated to calcium and phosphate homeostasis.

The activity 1 α ,25-dihydroxyvitamin D₃ in various systems suggests wide clinical applications. However, use of conventional VDR ligands is hampered by their associated toxicity, namely hypercalcemia (elevated serum calcium). Currently, 1 α ,25(OH)₂D₃, marketed as Rocaltrol® pharmaceutical agent (product of Hoffmann-La Roche), is

15 administered to kidney failure patients undergoing chronic kidney dialysis to treat hypocalcemia and the resultant metabolic bone disease. Other therapeutic agents, such as Calcipotriol® (synthetic analog of 1 α ,25(OH)₂D₃) show increased separation of binding affinity on VDR from hypercalcemic activity.

Recently, chemical modifications of 1 α ,25(OH)₂D₃ have yielded analogs with

20 attenuated calcium mobilization effects (R. Bouillon et. al., Endocrine Rev. 1995, 16, 200-257). One such analog, Dovonex ® pharmaceutical agent (product of Bristol-Meyers Squibb Co.), is currently used in Europe and the United States as a topical treatment for mild to moderate psoriasis (K. Kragballe et. al., Br. J. Dermatol. 1988, 119, 223-230).

Other Vitamin D₃ mimics have been described in the publication, Vitamin D

25 Analogs: Mechanism of Action of Therapeutic Applications, by Nagpal, S.; Lu, J.; Boehm, M. F., Curr. Med. Chem. 2001, 8, 1661-1679.

-2-

Although some degree of separation between the beneficial action and calcium raising (calcemic) effects has been achieved with these VDR ligands, to date the separation has been insufficient to allow for oral administration to treat conditions such as osteoporosis, cancers, leukemias, and severe psoriasis.

5 One example of a major class of disorder that could benefit from VDR mediated biological efficacy in the absence of hypercalcemia is osteoporosis. Osteoporosis is a systemic disorder characterized by decreased bone mass and microarchitectural deterioration of bone tissue leading to bone fragility and increased susceptibility to fractures of the hip, spine, and wrist (World Health Organization WHO 1994).

10 Osteoporosis affects an estimated 75 million people in the United States, Europe, and Japan.

Within the past few years, several antiresorptive therapies have been introduced. These include bisphosphonates, hormone replacement therapy (HRT), a selective estrogen receptor modulator (SERM), and calcitonins. These treatments reduce bone resorption, 15 bone formation, and increase bone density. However, none of these treatments increase true bone volume nor can they restore lost bone architecture.

Synthetic VDR ligands with reduced calcemic potential have been synthesized. For example, a class of bis-phenyl compounds stated to mimic 1α , 25-dihydroxyvitamin D₃ is described in US Patent No. 6,218,430 and the article; "Novel nonsecosteroidal 20 vitamin D mimics exert VDR-modulating activities with less calcium mobilization than 1α , 25-Dihydroxyvitamin D₃" by Marcus F. Boehm, et. al., Chemistry & Biology 1999, Vol 6, No. 5, pgs. 265-275.

Synthetic VDR ligands having an aryl-thiophene nucleus are described in United States provisional patent application SN 60/384151, filed 29 May 2002.

25 There remains a need for improved treatments using alternative or improved pharmaceutical agents that mimic 1α , $25(OH)_2D_3$ to stimulate bone formation, restore bone quality, and treat other diseases without the attendant disadvantage of hypercalcemia.

-3-

SUMMARY OF THE INVENTION

Novel compounds having a nucleus of formula “(AA)” have been found effective as Vitamin D Receptor (VDR) modulators:

5

The compounds of the invention with VDR modulating activities are represented by formula (I)

10 wherein the variables R, R', R1, R2, R_{PH}, L₁, L₂, L₃, R_B and R_C are as hereinafter defined. It is a discovery of this invention that compounds described herein display the desirable cell differentiation and antiproliferative effects of 1,25(OH)₂D₃ with reduced calcium mobilization (calcemic) effects if substituent R_C possesses a sulfonate or sulfonamide substituent.

15 In another aspect, the present invention is directed towards pharmaceutical compositions containing pharmaceutically effective amounts of compound of the invention or a pharmaceutically acceptable salt or prodrug thereof, either singly or in combination, together with pharmaceutically acceptable carriers and/or auxiliary agents.

Another aspect of the invention is a pharmaceutical formulation for treatment or prevention of osteoporosis containing pharmaceutically effective amounts of the vitamin D receptor modulator compound of the invention together with pharmaceutically effective amounts of co-agents conventionally used for the treatment of osteoporosis.

20 Another aspect of the invention is a pharmaceutical formulation for treatment or prevention of psoriasis containing pharmaceutically effective amounts of the vitamin D receptor modulator compound of the invention together with pharmaceutically effective amounts of co-agents conventionally used for the treatment of psoriasis.

25 Another aspect of the invention is a pharmaceutical formulation for treatment or prevention of psoriasis containing pharmaceutically effective amounts of the vitamin D receptor modulator compound of the invention together with pharmaceutically effective amounts of co-agents conventionally used for the treatment of psoriasis.

-4-

Another aspect of the invention is to use the compounds of the invention to treat disease states responsive to Vitamin D receptor ligands.

Another aspect of the invention is the prevention and treatment of acne, actinic keratosis, alopecia, Alzheimer's disease, autoimmune induced diabetes, bone fracture healing, breast

5 cancer, Crohn's disease, prostate cancer, benign prostatic hyperplasia, bladder cancer, colon cancer, Type I diabetes, host-graft rejection, hypercalcemia , Type II diabetes, leukemia, multiple sclerosis, insufficient sebum secretion, osteomalacia, osteoporosis, insufficient dermal firmness, insufficient dermal hydration, myelodysplastic syndrome, psoriatic arthritis, psoriasis, renal osteodystrophy, rheumatoid arthritis, scleroderma, 10 seborrheic dermatitis, skin cancer, systemic lupus erythematosis, skin cell damage from Mustard vesicants, ulcerative colitis and wrinkles; by administering to a mammal in need thereof a pharmaceutically effective amount of a compound of the invention.

DETAILED DESCRIPTION OF THE INVENTION

15 Definitions:

The term, "abscess" refers to adverse complications often associated with surgery, trauma, or diseases that predispose the host to abscess formation from encapsulated bacteria lymphocytes, macrophages, and etc.

20 The term, "adhesion" refers to the adverse and abnormal union of surfaces normally separate by the formation of new fibrous tissue resulting from an inflammatory process.

The term, "compound(s) of the invention" refers to one (or a plurality) of compounds described by Formulae I, II, or III or included in Tables 1, 2, or 3 or described in structural formulae A thru R or any of the compounds prepared as products in the

25 Schemes or Examples set out herein.

The term, "Active Ingredient" means a compound of the invention.

The term, "Mustard" is inclusive of both sulfur mustards and nitrogen mustards, either alone or in any combination. Exemplary of such compounds are the vesicants; bis(2-chloroethyl) sulfide (Chemical Agent Symbol HD), Cl(CH₂)₂S(CH₂)₂Cl 1,2-bis(2-chloroethylthio)ethane (Chemical Agent Symbol Q), Cl(CH₂)₂S(CH₂)₂S(CH₂)₂Cl; 30 bis(2-chloroethylthioethyl) ether, Cl(CH₂)₂S(CH₂)O(CH₂)₂S(CH₂)₂Cl (Chemical Agent Symbol T); tris(2-chloroethyl) amine (Chemical Agent Symbol HN3) N(CH₂CH₂Cl)₃;

-5-

N-methyl-2,2'-dichlorodiethylamine (Chemical Agent Symbol NH2); and 2,2'-dichlorotriethylamine, $\text{CH}_3\text{CH}_2\text{N}(\text{CH}_2\text{CH}_2\text{Cl})_2$ (Chemical Agent Symbol NH1).

The term, "(Acidic Group)" means an organic group that acts as a proton donor capable of hydrogen bonding. Illustrative of an (Acidic Group) is a group selected

5 from the following:

-C(O)OH,

-5-tetrazolyl,

10

-6-

or

-7-

The term, “-1,3-thiazolidine-2,4-dione-5-ethylidene”, refers to the radical represented by the structural formula:

5 The term, “-CH₂-C(O)-N-pyrrolidine” refers to the radical represented by the structural formula:

The term, “-CH₂-N-pyrrolidin-2-one” refers to the radical represented by the structural formula:

10 The term, “-CH₂-(1-methylpyrrolidin-2-one-3-yl)” refers to the organic radical represented by the structural formula:

The term, “1,3,4-oxadiazolin-2-one-5-yl” refers to the organic radical represented by the structural formula:

15

The term, “1,3,4-oxadiazolin-2-thione-5-yl” refers to the organic radical represented by the structural formula:

-8-

The term, "imidazolidine-2,4-dione-5-yl" refers to the organic radical represented by the structural formula:

5

The term, "isoxazol-3-ol-5-yl" refers to the organic radical represented by the structural formula:

The dotted line symbol crossing a solid line representing a bond

10

means that the bond so marked is the bond of attachment, for example, the group;

The term, "mammal" includes humans.

The term "halo" refer to fluorine, chlorine, bromine, and iodine.

15

The term "sulfonate" refers to the group

where R''' is C₁-C₅ alkyl, C₁-C₅ fluoroalkyl ,

-9-

where R' is -CO₂H, -CO₂R''', -OH, -CF₃, or C₁-C₅ alkyl.

The term "sulfonamide" refers to the group methyl, ethyl, branched C₃-C₅ alkyl,

5 where R'' is H, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl , or

or

where R''' is C₁-C₅ alkyl, C₁-C₅ fluoroalkyl ,

and

where R' is -CO₂H, -CO₂R''', -OH, -CF₃, or C₁-C₅ alkyl.

10 The term, "C₁-3 alkyl" refers to an alkyl group selected from methyl, ethyl, n-propyl, and isopropyl.

The term, "branched C₃-C₅ alkyl" is an alkyl group selected from 1-methylethyl; 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; 1,1-dimethylpropyl; 1,2-dimethylpropyl; or 2,2-dimethylpropyl. Preferred branched C₃-C₅ alkyl groups are 2-methylpropyl and 1,1-dimethylethyl, with the 1,1-dimethylethyl group being most preferred.

The term "alkenyl" refers to aliphatic groups wherein the point of attachment is a carbon-carbon double bond, for example vinyl, 1-propenyl, and 1-cyclohexenyl. Alkenyl

-10-

groups may be straight-chain, branched-chain, cyclic, or combinations thereof, and may be optionally substituted. Suitable alkenyl groups have from 2 to about 20 carbon atoms.

The term "C₁-C₅ alkyl" refers to saturated aliphatic groups including straight-chain, branched-chain, and cyclic groups and any combinations thereof Examples of C₁-C₅ alkyl groups are methyl, ethyl, n-propyl, from 1-methylethyl; n-butyl, 1-methylpropyl; 2-methylpropyl; 1,1-dimethylethyl; n-amyl, 1,1-dimethylpropyl; 1,2-dimethylpropyl; and 2,2-dimethylpropyl.

The term "cycloalkyl" includes organic radicals such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.

10 The term, "cycloalkenyl" includes organic radicals such as cyclopropenyl, cyclobutenyl, cyclopentenyl and cyclohexenyl.

The term, "C₁-C₅ fluoroalkyl" is an alkyl group containing fluorine and includes organic radicals such as -CF₃, -CHF₂, -CH₂F, -CF₂CF₃, -CHFCF₃, -CH₂CF₃, -CH₂CHF₂, and -CH₂CH₂F, with -CF₃ being preferred.

15 The abbreviation, "Me" means methyl.

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "tBu" means 1,1-dimethylethyl.

The term, "terminal hydroxyalkyl" is a group selected from

20 3-methyl-3-hydroxypentyl,

3-methyl-3-hydroxypentenyl,

3-methyl-3-hydroxypentynyl,

3-ethyl-3-hydroxypentyl,

3-ethyl-3-hydroxypentenyl,

3-ethyl-3-hydroxypentynyl,

3-ethyl-3-hydroxy-4-methylpentyl,

3-ethyl-3-hydroxy-4-methylpentenyl,

3-ethyl-3-hydroxy-4-methylpentynyl,

3-propyl-3-hydroxypentyl,

3-propyl-3-hydroxypentenyl,

3-propyl-3-hydroxypentynyl,

30 1-hydroxy-2-methyl-1-(methylethyl)propyl,

-11-

1-hydroxycycloalkenyl; or
1-hydroxycycloalkyl.

The term, “3-methyl-3-hydroxpenty” refers to the radical having the structural formula:

5

The term, “3-methyl-3-hydroxpentenyl” refers to the radical having the structural formula (both cis and trans isomers):

10 The term, “3-methyl-3-hydroxpentynyl” refers to the radical having the structural formula:

The term, “3-ethyl-3-hydroxpenty” refers to the radical having the structural formula:

15 The term, “3-ethyl-3-hydroxpentenyl” refers to the radical having the structural formula (both cis and trans isomers):

The term, “3-ethyl-3-hydroxpentynyl” refers to the radical having the structural formula:

-12-

The term, "3-propyl-3-hydroxypentyl" refers to the radical having the structural formula:

5 The term, "3-propyl-3-hydroxypentenyl" refers to the radical having the structural formula (both cis and trans isomers):

The term, "3-propyl-3-hydroxypentynyl" refers to the radical having the structural formula:

10

The term, "3-ethyl-3-hydroxy-4-methylpentyl" refers to the radical having the structural formula:

15 The term, "3-ethyl-3-hydroxy-4-methylpentenyl" refers to the radical having the structural formula (both cis and trans isomers):

-13-

The term, "3-ethyl-3-hydroxy-4-methylpentynyl" refers to the radical having the structural formula:

5 The term, "1-hydroxy-2-methyl-1-(methylethyl)propyl" refers to the radical having the structural formula:

The term, "3-methyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having the structural formula:

10 The term, "3-methyl-3-hydroxy-4,4-dimethylpentenyl." refers to the radical having the structural formula (both cis and trans isomers):

The term, "3-methyl-3-hydroxy-4,4-dimethylpentynyl" refers to the radical having the structural formula:

15

The term, "3-ethyl-3-hydroxy-4,4-dimethylpentyl" refers to the radical having the structural formula:

-14-

The term, "3-ethyl-3-hydroxy-4,4-dimethylpentenyl" refers to the radical having the structural formula (both cis and trans isomers):

5 The term, "3-ethyl-3-hydroxy-4,4-dimethylpentynyl" refers to the radical having the structural formula:

10 The term, "1-hydroxycycloalkenyl" refers to a radical selected from 1-hydroxycyclopentenyl, 1-hydroxycyclohexenyl, 1-hydroxycycloheptenyl, or 1-hydroxycyclooctenyl.

The term "hydroxycycloalkyl" refers to a radical having the general structural formula:

15 where w is an integer from 1 to 6 and the hydroxyl radical is substituted on any ring carbon atom.

The term "1-hydroxycycloalkyl" refers to a radical having the general structural formula:

Examples of 1-hydroxycycloalkyl radicals are

20 1-hydroxycyclopropyl, 1-hydroxycyclobutyl, 1-hydroxycyclopentyl, 1-hydroxycyclohexyl, 1-hydroxycycloheptyl, and 1-hydroxycyclooctyl.

-15-

The abbreviation, "Me" means methyl.

The abbreviation, "Et" means ethyl.

The abbreviation, "iPr" means 1-methylethyl.

The abbreviation, "nPr" means n-propyl.

5 The abbreviation, "3Me3OH-Pentyl" means 3-methyl-3-hydroxypentyl.

The abbreviation, "3Me3OH-Pentenyl" means 3-methyl-3-hydroxypentenyl

The abbreviation, "3Me3OH-Pentynyl" means 3-methyl-3-hydroxypentynyl

The abbreviation, "3Et3OH-Pentyl" means 3-ethyl-3-hydroxypentyl.

The abbreviation, "3Et3OH-Pentenyl" means 3-ethyl-3-hydroxypentenyl

10 The abbreviation, "3Et3OH-Pentynyl" means 3-ethyl-3-hydroxypentynyl

The abbreviation, "3Pr3OH-Pentyl" means 3-propyl-3-hydroxypentyl.

The abbreviation, "3Pr3OH-Pentenyl" means 3-propyl-3-hydroxypentenyl.

The abbreviation, "3Pr3OH-Pentynyl" means 3-propyl-3-hydroxypentynyl.

The abbreviation, "3Et3OH4Me-Pentyl" means 3-ethyl-3-hydroxy-4-methylpentyl.

15 The abbreviation, "3Et3OH4Me-Pentenyl" means 3-ethyl-3-hydroxy-4-methylpentenyl,

The abbreviation, "3Et3OH4Me-Pentynyl" means 3-ethyl-3-hydroxy-4-methylpentynyl.

The abbreviation, "1OH2Me1MeEt-Propyl" means 1-hydroxy-2-methyl-1-(methylethyl)propyl.

20 The dotted line symbol crossing a solid line representing a bond

means that the bond so marked is the bond of attachment.

25 The term, "mammal" includes humans.

Compounds of the Invention:

The compounds of the invention with vitamin receptor modulating (VDRM) activity are represented by formula (I) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

-16-

wherein;

R and R' are independently C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, or together R and R' form a substituted or unsubstituted, saturated or unsaturated carbocyclic ring having from 5 to 8 carbon atoms;

R_{PH} is hydrogen or methyl;

R1 and R2 are independently selected from the group consisting of hydrogen, halo, C₁-C₅ alkyl, C₁-C₅ fluoroalkyl, -O-C₁-C₅ alkyl, -S-C₁-C₅ alkyl, -O-C₁-C₅ fluoroalkyl, -CN, -NO₂, acetyl, -S-C₁-C₅ fluoroalkyl, C₂-C₅ alkenyl, C₃-C₅ cycloalkyl, 10 and C₃-C₅ cycloalkenyl;

L₁ and L₂ and L₃ are independently divalent linking groups independently selected from the group consisting of

a bond

-17-

5

where m is 0, 1 or 2, X_1 is oxygen or sulfur, and each R40 is independently hydrogen, C₁-C₅ alkyl, or C₁-C₅ fluoroalkyl;

R_B is

- branched C₃-C₅ alkyl,
- 10 3-methyl-3-hydroxypentyl,
- 3-methyl-3-hydroxypentenyl,
- 3-methyl-3-hydroxypentynyl,
- 3-ethyl-3-hydroxypentyl,
- 3-ethyl-3-hydroxypentenyl,
- 3-ethyl-3-hydroxypentynyl,
- 15 3-ethyl-3-hydroxypentyl,
- 3-ethyl-3-hydroxy-4-methylpentyl,

-18-

3-ethyl-3-hydroxy-4-methylpentenyl,
3-ethyl-3-hydroxy-4-methylpentynyl,
3-propyl-3-hydroxypentyl,
3-propyl-3-hydroxypentenyl,
3-propyl-3-hydroxypentynyl,
5 1-hydroxy-2-methyl-1-(methylethyl)propyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentenyl,
3-methyl-3-hydroxy-4,4-dimethylpentynyl,
10 3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
4,4-dimethyl-3-hydroxypropyl,
1-hydroxycyclopentenyl,
15 1-hydroxycyclohexenyl,
1-hydroxycycloheptenyl,
1-hydroxycyclooctenyl,
1-hydroxycyclopropyl,
1-hydroxycyclobutyl,
20 1-hydroxycyclopentyl,
1-hydroxycyclohexyl,
1-hydroxycycloheptyl, or
1-hydroxycyclooctyl;

provided, however, that when

25 R_B is
3-methyl-3-hydroxypentyl,
3-methyl-3-hydroxypentenyl,
3-methyl-3-hydroxypentynyl,
3-ethyl-3-hydroxypentyl,
30 3-ethyl-3-hydroxypentenyl,
3-ethyl-3-hydroxypentynyl,
4,4-dimethyl-3-hydroxypropyl,

-19-

3-ethyl-3-hydroxy-4-methylpentyl,
3-ethyl-3-hydroxy-4-methylpentenyl,
3-ethyl-3-hydroxy-4-methylpentynyl,
5
3-propyl-3-hydroxypentyl,
3-propyl-3-hydroxypentenyl,
3-propyl-3-hydroxypentynyl,
3-methyl-3-hydroxy-4,4-dimethylpentyl,
3-methyl-3-hydroxy-4,4-dimethylpentenyl,
10
3-methyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl,
3-ethyl-3-hydroxy-4,4-dimethylpentenyl,
3-ethyl-3-hydroxy-4,4-dimethylpentynyl, or
15
1-hydroxy-2-methyl-1-(methylethyl)propyl;

then L₁ and L₂ combine as a bond; and

R_C is

-O-SO₂-(R50)

where R50 is

-C₁₋₃alkyl, -CF₃, -(CH₂)₁₋₂CF₃,
20
-S-C₁₋₃alkyl, -SO₂-C₁₋₃alkyl,
-(CH₂)₁₋₂C(O)NHMe,
-(CH₂)₁₋₂-CO₂H; or

-NH-SO₂-(R50)

where R50 is

-C₁₋₃alkyl, -CF₃, -(CH₂)₁₋₂CF₃,
25
-S-C₁₋₃alkyl, -SO₂-C₁₋₃alkyl,
-(CH₂)₁₋₂-CO₂H,
-(CH₂)₁₋₂C(O)NHMe, or

-20-

where each R51 is independently,

5

In the preceding formula I the divalent linking groups to be oriented in either direction, for example, where divalent linker (L_1) has the identity

10 $-(\text{CH}_2)_m\text{-O-}$, it may be configured:

15 Preferred compounds of the invention with VDR modulating activities are represented by formula (II) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

wherein;

20 R2 and R2' are independently methyl or ethyl;

R21 and R22 are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

R2B is a group represented by the formula:

-21-

3-methyl-3-hydroxypentyl,
 3-methyl-3-hydroxypentenyl,
 3-methyl-3-hydroxypentynyl,
 3-ethyl-3-hydroxypentyl,
 3-ethyl-3-hydroxypentenyl,
 3-ethyl-3-hydroxypentynyl,
 3-ethyl-3-hydroxy-4-methylpentyl,
 3-ethyl-3-hydroxy-4-methylpentenyl,
 3-ethyl-3-hydroxy-4-methylpentynyl,
 3-propyl-3-hydroxypentyl,
 3-propyl-3-hydroxypentenyl,
 3-propyl-3-hydroxypentynyl,
 1-hydroxy-2-methyl-1-(methylethyl)propyl

5

10

15

R2C is

wherein Q is -O- or -NH-.

Preferred compounds have the substituent R2C of formula II as:

20

Preferred compounds of the invention with VDR modulating activities are represented by formula (III) or a pharmaceutically acceptable salt or a prodrug derivative thereof:

-22-

wherein;

R3 and R3' are independently methyl or ethyl;

R31 and R32 are independently selected from the group consisting of hydrogen, fluoro, -Cl, -CF₃, -CH₂F, -CHF₂, methoxy, ethoxy, vinyl, methyl, ethyl, propyl, 1-

5 methylethyl, 1,1-dimethylethyl, butyl, 1-methylpropyl, 2-methylpropyl, or cyclopropyl;

R3B is 3-hydroxy-3-ethyl-pentyl or 4,4-dimethyl(-3-hydroxypropyl).

R3C is

10

or

Preferred compounds of the invention are represented by the structural formulae M-1 to M-31 as follows:

15

M-1)

M-2)

M-3)

-23-

M-4)

M-5)

5

M-6)

M-7)

10

-24-

M-8)

M-9)

5

M-10)

M-11)

M-12)

10

-25-

M-13)

M-14)

5

M-15)

M-16)

10

M-17)

-26-

M-18)

M-19)

5

M-20)

M-21)

M-22)

10

M-23)

-27-

M-24)

M-25)

M-26)

10

M-27)

-28-

Preferred sulfonamide functional compounds of the invention are represented by the structural formulae M-32 to M-50 as follows:

M-32)

5

M-33)

M-34)

10

M-35)

M-36)

-29-

M-37)

M-38)

5

M-39)

M-40)

10

M-41)

M-42)

-30-

M-43)

5

M-44)

M-45)

M-46)

10

M-47)

-31-

M-48)

M-49)

5

M-50)

Other preferred compounds of the invention are represented by the formula:

10

or

-32-

Other preferred compounds of the invention are represented by the formula:

, or

5

Other preferred compounds of the invention are represented by the formula:

-33-

Other preferred compounds of the invention are represented by the formula:

5

-34-

5

-35-

5

, or.

Other preferred compounds of the invention are represented by the formula:

-36-

5

-37-

5

-38-

, or.

5

Other specific compounds and pharmaceutically acceptable salts and prodrug derivatives thereof, that are preferred embodiments of this invention and are preferred for practicing the method of treatment of the invention are set out in the following three Tables. All numbers in the Tables cells reciting chemical species (except for the

10 abbreviation "3Et3OH-Pentyl") are to be understood as subscripts in chemical formulae, for example, in row, Code 11, Column, R_{C4}, the symbol, "-O-S(O)₂Me" is to be understood as the conventional chemical nomenclature, -O-S(O)₂Me. Each row of the Tables is a single compound having an identifying "Code" (e.g., "14", "33A, 21B") defining the specific substituents in the structural formula displayed above each Table, as
15 follows:

A preferred compounds of the invention or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

-39-

where said compound is selected from a compound code numbered 1 thru 135, with each compound having the specific selection of substituents R_{B4} , R_{C4} , L_{14} , L_{24} , L_{34} , and R_{C4} shown in the row following the compound code number, as set out in the following

Table 1 :

5

Table 1

Cod e No.	R_{B4}	L_{34}	L_{24}	L_{14}	R_{C4}
1	tBu	C(O)	CH2	O	-O-S(O)2Me
2	tBu	C(O)	CH2	CH2	-O-S(O)2Me
3	tBu	C(O)	CH(Me)	CH2	-O-S(O)2Me
4	tBu	CHOH	CH2	O	-O-S(O)2Me
5	tBu	CHOH	CH2	CH2	-O-S(O)2Me
6	tBu	CHOH	CH(Me)	CH2	-O-S(O)2Me
7	tBu	C(Me)OH	CH2	O	-O-S(O)2Me
8	tBu	C(Me)OH	CH2	CH2	-O-S(O)2Me
9	tBu	C(Me)OH	CH(Me)	CH2	-O-S(O)2Me
10	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Me
11	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Me
12	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Me
13	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Me
14	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Me
15	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Me
16	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Me
17	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Me
18	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Me

-40-

19	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Me
20	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2Me
21	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Me
22	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Me
23	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2Me
24	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Me
25	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Me
26	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2Me
27	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Me
28	tBu	C(O)	CH2	O	-O-S(O)2Et
29	tBu	C(O)	CH2	CH2	-O-S(O)2Et
30	tBu	C(O)	CH(Me)	CH2	-O-S(O)2Et
31	tBu	CHOH	CH2	O	-O-S(O)2Et
32	tBu	CHOH	CH2	CH2	-O-S(O)2Et
33	tBu	CHOH	CH(Me)	CH2	-O-S(O)2Et
34	tBu	C(Me)OH	CH2	O	-O-S(O)2Et
35	tBu	C(Me)OH	CH2	CH2	-O-S(O)2Et
36	tBu	C(Me)OH	CH(Me)	CH2	-O-S(O)2Et
37	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Et
38	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Et
39	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Et
40	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Et
41	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Et
42	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Et
43	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2Et
44	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2Et
45	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2Et
46	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Et
47	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2Et
48	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Et
49	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Et

-41-

50	1-hydroxycyclohexy	bond	CH2	CH2	-O-S(O)2Et
51	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Et
52	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2Et
53	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2Et
54	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2Et
55	tBu	C(O)	CH2	O	-O-S(O)2CH2CO2H
56	tBu	C(O)	CH2	CH2	-O-S(O)2CH2CO2H
57	tBu	C(O)	CH(Me)	CH2	-O-S(O)2CH2CO2H
58	tBu	CHOH	CH2	O	-O-S(O)2CH2CO2H
59	tBu	CHOH	CH2	CH2	-O-S(O)2CH2CO2H
60	tBu	CHOH	CH(Me)	CH2	-O-S(O)2CH2CO2H
61	tBu	C(Me)OH	CH2	O	-O-S(O)2CH2CO2H
62	tBu	C(Me)OH	CH2	CH2	-O-S(O)2CH2CO2H
63	tBu	C(Me)OH	CH(Me)	CH2	-O-S(O)2CH2CO2H
64	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2CH2CO2H
65	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2CH2CO2H
66	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
67	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2CH2CO2H
68	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2CH2CO2H
69	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
70	1-hydroxycyclopentyl	bond	CH2	O	-O-S(O)2CH2CO2H
71	1-hydroxycyclopentyl	bond	CH2	CH2	-O-S(O)2CH2CO2H
72	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
73	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2CH2CO2H
74	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2CH2CO2H
75	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
76	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2CH2CO2H
77	1-hydroxycyclohexy	bond	CH2	CH2	-O-S(O)2CH2CO2H
78	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
79	1-hydroxycyclohexyl	bond	CH2	O	-O-S(O)2CH2CO2H
80	1-hydroxycyclohexyl	bond	CH2	CH2	-O-S(O)2CH2CO2H

-42-

81	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-O-S(O)2CH2CO2H
82	tBu	C(O)	CH2	O	-NH-S(O)2Me
83	tBu	C(O)	CH2	CH2	-NH-S(O)2Me
84	tBu	C(O)	CH(Me)	CH2	-NH-S(O)2Me
85	tBu	CHOH	CH2	O	-NH-S(O)2Me
86	tBu	CHOH	CH2	CH2	-NH-S(O)2Me
87	tBu	CHOH	CH(Me)	CH2	-NH-S(O)2Me
88	tBu	C(Me)OH	CH2	O	-NH-S(O)2Me
89	tBu	C(Me)OH	CH2	CH2	-NH-S(O)2Me
90	tBu	C(Me)OH	CH(Me)	CH2	-NH-S(O)2Me
91	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2Me
92	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2Me
93	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2Me
94	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2Me
95	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2Me
96	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2Me
97	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2Me
98	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2Me
99	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2Me
100	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2Me
101	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2Me
102	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2Me
103	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2Me
104	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2Me
105	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2Me
106	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2Me
107	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2Me
108	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2Me
109	tBu	C(O)	CH2	O	-NH-S(O)2CH2CO2H
110	tBu	C(O)	CH2	CH2	-NH-S(O)2CH2CO2H
111	tBu	C(O)	CH(Me)	CH2	-NH-S(O)2CH2CO2H

-43-

112	tBu	CHOH	CH2	O	-NH-S(O)2CH2CO2H
113	tBu	CHOH	CH2	CH2	-NH-S(O)2CH2CO2H
114	tBu	CHOH	CH(Me)	CH2	-NH-S(O)2CH2CO2H
115	tBu	C(Me)OH	CH2	O	-NH-S(O)2CH2CO2H
116	tBu	C(Me)OH	CH2	CH2	-NH-S(O)2CH2CO2H
117	tBu	C(Me)OH	CH(Me)	CH2	-NH-S(O)2CH2CO2H
118	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2CH2CO2H
119	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
120	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H
121	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2CH2CO2H
122	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
123	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H
124	1-hydroxycyclopentyl	bond	CH2	O	-NH-S(O)2CH2CO2H
125	1-hydroxycyclopentyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
126	1-hydroxycyclopentyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H
127	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2CH2CO2H
128	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
129	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H
130	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2CH2CO2H
131	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
132	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H
133	1-hydroxycyclohexyl	bond	CH2	O	-NH-S(O)2CH2CO2H
134	1-hydroxycyclohexyl	bond	CH2	CH2	-NH-S(O)2CH2CO2H
135	1-hydroxycyclohexyl	bond	CH(Me)	CH2	-NH-S(O)2CH2CO2H

-44-

A preferred compound of the invention or a pharmaceutically acceptable salt or an ester prodrug derivative thereof represented by the formula:

where said compound is selected from a compound code numbered 1A thru 45A, with
5 each compound having the specific selection of substituents R_{B5} and R_{C5} shown
in the row following the compound code number, as set out in the following Table 2 :

-45-

Table 2

Code No.	R _{B5}	R _{C5}
1A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
2A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
3A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
4A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
5A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
6A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
7A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
8A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
9A	3Et3OH-Pentyl	-NH-S(O)2CH ₂ CO ₂ H
10A	3Et3OH-Pentyl	-O-S(O)2Me
11A	3Et3OH-Pentyl	-O-S(O)2Me
12A	3Et3OH-Pentyl	-O-S(O)2Me
13A	3Et3OH-Pentyl	-O-S(O)2Me
14A	3Et3OH-Pentyl	-O-S(O)2Me
15A	3Et3OH-Pentyl	-O-S(O)2Me
16A	3Et3OH-Pentyl	-O-S(O)2Me
17A	3Et3OH-Pentyl	-O-S(O)2Me
18A	3Et3OH-Pentyl	-O-S(O)2Me
19A	3Et3OH-Pentyl	-O-S(O)2Et
20A	3Et3OH-Pentyl	-O-S(O)2Et
21A	3Et3OH-Pentyl	-O-S(O)2Et
22A	3Et3OH-Pentyl	-O-S(O)2Et
23A	3Et3OH-Pentyl	-O-S(O)2Et
24A	3Et3OH-Pentyl	-O-S(O)2Et
25A	3Et3OH-Pentyl	-O-S(O)2Et
26A	3Et3OH-Pentyl	-O-S(O)2Et
27A	3Et3OH-Pentyl	-O-S(O)2Et
28A	3Et3OH-Pentyl	-O-S(O)2CH ₂ CO ₂ H

-46-

29A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
30A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
31A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
32A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
33A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
34A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
35A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
36A	3Et3OH-Pentyl	-O-S(O)2CH2CO2H
37A	3Et3OH-Pentyl	-NH-S(O)2Me
38A	3Et3OH-Pentyl	-NH-S(O)2Me
39A	3Et3OH-Pentyl	-NH-S(O)2Me
40A	3Et3OH-Pentyl	-NH-S(O)2Me
41A	3Et3OH-Pentyl	-NH-S(O)2Me
42A	3Et3OH-Pentyl	-NH-S(O)2Me
43A	3Et3OH-Pentyl	-NH-S(O)2Me
44A	3Et3OH-Pentyl	-NH-S(O)2Me
45A	3Et3OH-Pentyl	-NH-S(O)2Me

Method of Making the Compounds of the Invention:

Compounds of the invention represented by formula (I) may be prepared by the methods set out below. It will be understood by one skilled in the chemical arts that the reactants may be varied to analogous molecules to provide desired substitutions in the final reaction product.

Definitions of symbols used in the Schemes:

(PhO)2P(O)N3 – diphenyl phosphorus azide

BBr₃ – boron tribromideBF₃-OEt₂ – boron trifluoride etherate

BnBr – benzyl bromide

CH₃CN – acetonitrile

DMAP - 4-(dimethylamino)pyridine

DMF – N,N-dimethylformamide

DMSO – dimethylsulfoxide

DPPF – dichloro[1,1'-bis(diphenylphosphino)ferrocene]

10

15

-47-

DPPB – 1,4-bis(diphenylphosphino)butane
EDCI – 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride
Et₃N – triethylamine
EtOH – ethanol
5 H₂NCH₂CO₂Me – methyl glycinate
HN(OMe)Me – N-methyl-O-methyl hydroxylamine
HNMe₂ – dimethyl amine
K₂CO₃ – potassium carbonate
KOH – potassium hydroxide
10 LAH – lithium aluminum hydride
LiHMDS – lithium hexamethyldisilazide
mCPBA – meta-chloroperbenzoic acid
MeI – methyl iodide
MeOH – methanol
15 NaBH₄ – sodium borohydride
NaH – sodium hydride
NaI – sodium iodide
NMP - N-methylpyrrolidin-2-one
Na-S-R₃ – sodium alkylmercaptide
20 PBr₃ – phosphorus tribromide
Pd(OAc)₂ – palladium (II) acetate
Pd-C – palladium on carbon
pTSA – para-toluenesulfonic acid
Pyr - pyridine
25 R₂MgBr – alkyl magnesium bromide
R₃MgBr – alkyl magnesium bromide
R₅MgBr – alkyl magnesium bromide
R₂S(O)NH₂ – alkylsulfonamide
tBuC(O)CH₂Br – 2-bromopinacolone
30 Tf₂O – triflic anhydride
TFA – trifluoroacetic acid
THF – tetrahydrofuran

-48-

Scheme 1

Synthesis of Phenylalkyl-Phenyl Sulfonates

-49-

Scheme 2
Synthesis of Phenylalkyl-Phenyl Sulfonamide

-50-

Scheme 3
Synthesis of Pentanone Sidechain Analogs

-51-

Scheme 4
Synthesis of Pentanone/Sulfonamide Analogs

 $R = H, Me, Cl$ $R_1 = H, Me, Cl$ $R_2 = Me, Et, Pr$ $R_3 = C_1-C_5, C_3-C_6 \text{ cycloalkyl}, (CH_2)_nC(O)R_4, NH_2, NHR_2,$ $N(R_2)R_2, NHC(O)R_2,$ $NH(CH_2)_nCO_2Me,$ $N(R_2)(CH_2)_nCO_2Me$ $R_4 = OMe, NHR_2, N(R_2)R_2,$ $NH(CH_2)_mCO_2Me,$ $N(R_2)(CH_2)_mCO_2Me$ $n = 1-5$ $m = 1-3$ $R_3 = (CH_2)_nC(O)R_4,$ $NH(CH_2)_nCO_2H,$ $N(R_2)(CH_2)_nCO_2H$ $R_4 = OH,$ $NH(CH_2)_mCO_2H,$ $N(R_2)(CH_2)_mCO_2H$ $n = 1-5$ $m = 1-3$

-52-

Scheme 5
Synthesis of Methylated Pinacol Sidechain-Sulfonamides

-53-

Scheme 6

Synthesis of Unsymmetrical Central Linked Phenylalkyl-Phenyl Scaffold

-54-

Scheme 7
Synthesis of Tertiary Alcohol-Sulfonate Sidechain

-55-

Scheme 8

Synthesis of Tertiary Alcohol-Sulfonamide Sidechain

-56-

Scheme 9

Alternative Synthesis of Phenylalkyl-Phenyl Scaffold

-57-

Scheme 10
Synthesis of Pentytol - Sulfonate Analogs

-58-

Scheme 11
Synthesis of Cis- Pentenol - Sulfonate Analogs

5

Scheme 12
Synthesis of Trans- Pentenol - Sulfonate Analogs

-59-

Scheme 13
Synthesis of Pentynol - Sulfonamide Analogs

-60-

Scheme 14
Synthesis of Cis-Pentenol - Sulfonamide Analogs

5

Scheme 15
Synthesis of Trans-Pentenol - Sulfonamide Analogs

-61-

Preparation of phenylalkyl-phenyl sulfonates (Scheme 1).

A mixture of 3-substituted-4-hydroxy benzoic acid 1a and methanol is treated with HCl (gas) to yield methyl benzoate ester 1. Methyl benzoate ester 1 is reacted with excess alkyl magnesium bromide to produce tertiary alcohol 2. Tertiary alcohol 2 is converted to phenol 4 by reaction with O-benzyl-2-substituted phenol 3a and BF₃-Et₂O. O-benzyl-2-substituted phenol 3a is derived from reaction of 2-substituted phenol 3 with benzylbromide and NaH. Phenol 4 is reacted with NaH/1-bromopinacolone to give ketone 5. Ketone 5 is reduced with NaBH₄ and hydrogenolyzed with Pd-C/H₂ to give alcohol-phenol 6. Alcohol-phenol 6 is reacted with a sulfonyl chloride to give a sulfonyl derivative 7. Sulfonyl derivative 7 is hydrolyzed with aq. LiOH/MeOH to give sulfonyl-acid derivatives 7a.

Preparation of phenylalkyl-phenyl sulfonamides (Scheme 2).

Phenol 4 is reacted with triflic anhydride/pyridine to give triflate 8 which is subjected to methoxycarbonylation with Pd(OAc)₂, DPPF (or DPPB), CO (689-6895 KPa), methanol and triethylamine in either DMF or DMSO at 80-100 °C to yield methyl ester 9. Methyl ester 9 is subjected to palladium catalyzed hydrogenolysis and alkylated with NaH/1-bromopinacolone to give ketone 10. Ketone 10 is sequentially reacted with sodium borohydride/MeOH, NaH/BnBr, and potassium hydroxide/EtOH/H₂O/80 °C to produce acid 11. Acid 11 is reacted with (PhO)₂P(O)N₃/Et₃N and heated with t-BuOH at 90 C to give BOC-amine 12. Boc-amine 12 is reacted with TFA/anisole to give amine 13. Amine 13 is reacted with a sulfonyl chloride/pyridine and Pd-C/H₂ to afford sulfonamide 14. Sulfonamide 14 is reacted with aq. LiOH/MeOH to give sulfonamide 14a.

Preparation of pentanone sidechain analogs (Scheme 3).

Ester 9 is reduced with LAH to give benzyl alcohol 15. Benzyl alcohol 15 is converted to benzylic bromide 16 with PBr₃ and alkylated with the lithium enolate of pinacolone to afford ketone 17. Ketone 17 is reacted with Pd-C/H₂ to afford alcohol 18. Alcohol 18 is sulfonated with an alkyl sulfonyl chloride/pyridine and reduced with NaBH₄/MeOH to give sulfonate 19. Sulfonate 19 is reacted with aq. LiOH/MeOH to produce sulfonamide 19a.

-62-

Preparation of pentanone/sulfonamide analogs (Scheme 4).

Ketone phenol 18 is reacted with triflic anhydride/pyridine and NaBH4/MeOH to give triflate 20. Triflate 20 is subjected to methoxycarbonylation with Pd(OAc)2, DPPF (or DPPB), CO (689-6895 KPa), methanol and triethylamine in either DMF or DMSO at 80-

5 100 °C to yield methyl ester 21. Methyl ester 21 is reacted with NaH/BnBr and potassium hydroxide/EtOH/H2O/80 °C to produce acid 22. Acid 22 is reacted with (PhO)2P(O)N3/Et3N and heated with t-BuOH at 90 °C to give BOC-amine 23. BOC-amine 23 is reacted with TFA/anisole to give amine 24. Amine 24 is reacted with a sulfonyl chloride/pyridine and Pd-C/H2 to give sulfonamide 25. Sulfonamide 25 is
10 reacted with aq. LiOH/MeOH to give sulfonamide 25a.

Preparation of methylated pinacol sidechain-sulfonamides (Scheme 5).

Ketone 10 is reacted with LiHMDS/MeI and NaBH4/MeOH to give ester 26. Ester 26 is reacted with KOH/EtOH/H2O/80 °C, (PhO)2P(O)N3/Et3N and heated with t-BuOH at 90 °C to give BOC-amine 28. BOC-amine 28 is reacted with TFA/anisole to give amine 29. Amine 29 is reacted with a sulfonyl chloride/pyridine and Pd-C/H2 to give sulfonamide 30. Sulfonamide 30 is reacted with aq. LiOH/MeOH to afford sulfonamide 30a.

Preparation of unsymmetrical central link phenylalkyl-phenyl scaffold (Scheme 6).

20 3-Substituted-4-hydroxy benzoic acid 1a is reacted with EDCI/HN(OMe)Me/DMAP and NaH/BnBr to give amide 31. Amide 31 is reacted sequentially with a R2MgBr and R3MgBr to give alcohol 33. Alcohol 33 is treated with phenol 3 and BF3-OEt2 to give phenol 34. Phenol 34 is sequentially reacted with: 1) triflic anhydride/pyridine; 2) Pd(OAc)2, DPPF (or DPPB), CO (689-6895 KPa), methanol and triethylamine in either
25 DMF or DMSO at 80-100 °C; 3) Pd-C/H2; 4) NaH/1-bromopinacolone; 5) NaBH4/MeOH; 6) NaH/BnBr; and 7) KOH/EtOH/H2O/80 °C to give acid 35. Acid 35 is reacted with (PhO)2P(O)N3/Et3N, heated with t-BuOH at 90 °C, and TFA/anisole to give amine 36. Amine 36 is reacted with a sulfonyl chloride/pyridine and Pd-C/H2 to afford sulfonamide 37. Sulfonamide 37 is reacted with aq. LiOH/MeOH to give sulfonamide
30 37a.

-63-

Preparation of tertiary alcohol-sulfonate sidechain (Scheme 7).

Phenol 4 is reacted with NaH/1-bromopinacolone and R5MgBr to give alcohol 38.

Alcohol 38 is treated with Pd-C/H2 and a sulfonyl chloride/pyridine to give sulfonate 39.

Sulfonamide 39 is reacted with aq. LiOH/MeOH to give sulfonamide 39a.

5

Preparation of tertiary alcohol-sulfonamide sidechain (Scheme 8).

Alcohol 38 is reacted with Pd-C/H2, triflic anhydride/pyridine and Pd(OAc)2, DPPF (or DPPB), CO (689-6895 KPa), methanol and triethylamine in either DMF or DMSO at 80-100 °C to give ester 40. Ester 40 is reacted sequentially with: 1) NaH/BnBr; 2)

10 KOH/EtOH/H2O; 3) (PhO)2P(O)N3/Et3N; 4) heated with t-BuOH at 90 °C; and 5) TFA/anisole to give amine 41. Amine 41 is reacted with a sulfonyl chloride/pyridine and Pd-C/H2 to afford sulfonamide 42. Sulfonamide 42 is treated with aq. LiOH/MeOH to give sulfonamide-acids 42a.

15 Alternative preparation of phenylalkyl-phenyl scaffold (Scheme 9).

Phenol 2 is reacted with pTSA/heat to give a mixture of e/z olefin 43. Olefin 43 is reacted with 1-chloropinacolone/KI/K2CO3 to give ketone 44. Ketone 44 is reacted with a substituted phenol 3 and BF3-OEt3 to give phenol 45. Phenol 45 is reacted with a sulfonyl chloride/pyridine and NaBH4/MeOH to give sulfonate 46. Sulfonate 46 is

20 reacted with aq. LiOH/MeOH to give sulfonate-acids 46a.

Preparation of pentynol-sulfonate analogs (Scheme 10).

Phenol 4 is reacted with DPTBSCl/Imid and Pd-C/H2 to give silyl ether-phenol 47. Silyl ether-phenol 47 is reacted with triflic anhydride/pyridine to give triflate 48. Triflate 48 is

25 reacted with TMS-acetylene/Et3N/Pd(PPh3)2Cl2 at 80 °C and CsF/H2O to give acetylene 49. Acetylene 49 is treated with Zn(OTf)2/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 50. Alternatively, acetylene 49 is reacted with LiHMDS/ketone 73 to give alcohol 50. Alcohol 50 is reacted with TBAF and NaH/R3SO2Cl to give sulfonate 51. Sulfonate 51 is reacted with aq. LiOH/MeOH to give sulfonate-acids 52.

30

Preparation of cis-pentenol-sulfonate analogs (Scheme 11).

-64-

Alcohol 50 is reacted with Lindlar catalyst/H₂ to give cis-olefin 53. Cis-olefin 53 is reacted with TBAF and NaH/R₃SO₂Cl to give sulfonate 54. Sulfonate 54 is reacted with dilute aq. LiOH/MeOH to give sulfonate-acids 55.

5 Preparation of trans-pentenol-sulfonate analogs (Scheme 12).

Alcohol 50 is reacted with LAH or Red-Al to give trans-olefin 56. Trans-olefin 56 is reacted with TBAF and NaH/a sulfonyl chloride to give sulfonate 57. Sulfonate 57 is reacted with dilute aq LiOH/MeOH to give sulfonate-acids 58.

10 Preparation of pentynol-sulfonamide analogs (Scheme 13).

Ester 9 is reacted with KOH/MeOH to give acid 59. Acid 59 is treated with (PhO)₂P(O)N₃/Et₃N and heated with t-BuOH at 90° C to give Boc-amine 60. Boc-amine 60 is reacted with Pd-C/H₂ and triflic anhydride/Et₃N to give triflate 61. Triflate 61 is reacted with TMS-acetylene/Et₃N/Pd(PPh₃)₂Cl₂ at 80 °C and CsF/H₂O to give acetylene 62. Acetylene 62 is treated with Zn(OTf)₂/t-butyl aldehyde/chiral auxiliary (with or without) to give alcohol 63. Alternatively, acetylene 62 is reacted with LiHMDS/ketone 73 to give alcohol 63. Alcohol 63 is reacted with acetyl chloride to give acetate 64. Acetate 64 is reacted with TFA/anisole, a sulfonyl chloride/Et₃N, and K₂CO₃/MeOH to give amine 65. Amine 65 is reacted with aq LiOH/MeOH to give a sulfonamide 66.

20

Preparation of cis-pentenol-sulfonamide analogs (Scheme 14).

Acetate 64 is reacted with Lindlar's catalyst/H₂, TFA/anisole, and a sulfonyl chloride/Et₃N to give sulfonamide 67. Sulfonamide 67 is reacted with K₂CO₃/MeOH to give alcohol 68. Alcohol 68 is reacted with aq. LiOH/MeOH to give sulfonamide 69.

25

Preparation of trans-pentenol-sulfonamide analogs (Scheme 15).

~~Acetate~~ 64 is reacted with TFA/anisole and LAH to give trans-pentenol 70. Trans-pentenol is reacted with a sulfonyl chloride/Et₃N to give sulfonamide 71. Sulfonamide 71 is reacted with aq. LiOH/MeOH to give sulfonamide 72.

30

-65-

EXAMPLES

General Experimental Conditions:

The starting material/intermediate is the compound from the immediate preceding experimental unless otherwise indicated.

5 All reactions are performed under nitrogen/argon atmosphere, in a stirred reaction vessel, and at room temperature unless indicated otherwise.

Concentration is performed from RT to about 70°C under vacuum (0.05 to 1 mm Hg).

Unless otherwise indicated, the organic layer is MgSO₄/Na₂SO₄ dried is defined
10 as stirring the solution with a dessicant for 5-15 m and filtering off the dessicant to give an anhydrous filtrate.

For analogous multi-step reaction procedures, the yield is given either for the ultimate step or overall multi-steps as indicated.

Solutions are “concentrated” at a range of 25-75°C with reduced pressure.

15 in-vacuo – 25-75°C; 0.05 to 1 mm

Unless otherwise indicated, “the residue is chromatographed” is defined as silica gel chromatography of residue with moderate nitrogen pressure (flash chromatography) or a medium pressure chromatography systems using a silica gel to crude product ratio of ~10-100.

20 Thin layer chromatography is performed with silica gel plates with UV and/or appropriate staining solution.

NMR spectra are obtained with either 300 or 400 mHz spectrometer.

NMR – denotes NMR spectrum is consistent with assigned structure.

HRMS – high resolution mass spectrum

25 ES-MS – electrospray mass spectrum

Abbreviations:

Aq - aqueous

d – day

eq - equivalent

30 h – hour

m – minute

satd – saturated

-66-

disp – dispersion

quant – quantitative

rt for retention time (both small caps to minimize confusion with RT)

RT – room temperature

5

Chemical Definitions:

BBr₃ – boron tribromide

BF₃-OEt₂ – boron trifluoride etherate

BnBr – benzyl bromide

10

CH₂Cl₂-dichloromethane

CH₃CN – acetonitrile

CO-carbon monoxide

Dess-Martin reagent – 1,1,1-tris(acetyloxy)-1,1-dihydro-1,2-benziodoxol-3-(1H)-one

15

DIBAlH - Diisobutyl Aluminum Hydride

DMAP - 4-(dimethylamino)pyridine

DMF – N,N-dimethylformamide

DMSO – dimethylsulfoxide

DPPB – 1,4-bis(diphenylphosphino)butane

20

DPPF – dichloro[1,1'-bis(diphenylphosphino)ferrocene]

EDCI – 3-Ethyl-1-[3-(dimethylamino)propyl]carbodiimide hydrochloride

Et₃N – triethylamine

EtMgBr- ethyl magnesium bromide

EtOAc – ethyl acetate

25

EtOH – ethanol

H₂NCH₂CO₂Me – methyl glycinate

Hept – heptane

Hex - hexanes

HN(OMe)Me – N-methyl-O-methyl hydroxylamine

30

HNMe₂ – dimethyl amine

HATU – O-(7-azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate

-67-

HOAT – 7-aza-1-hydroxybenzotriazole
HOBT – 1-hydroxybenzotriazole
K₂CO₃ – potassium carbonate
KOH – potassium hydroxide
5 LAH – lithium aluminum hydride
LiHMDS – lithium hexamethyldisilazide
mCPBA – meta-chloroperbenzoic acid
MeI – methyl iodide
MeOH – methanol
10 NaBH₄ – sodium borohydride
MgSO₄ – magnesium sulfate
NaH – sodium hydride
NaHCO₃ – sodium bicarbonate
NaI – sodium iodide
15 Na₂SO₄ – sodium sulfate
NH₄Cl – ammonium chloride
NMO – 4-methylmorpholine N-oxide
NMP – N-methylpyrrolidin-2-one
Na-S-R₃ – sodium alkylmercaptide
20 PBr₃ – phosphorus tribromide
Pd(DPPF) – palladium dichloro[1,1'-bis(diphenylphosphino)ferrocene]
Pd(OAc)₂ – palladium (II) acetate
Pd(TPP)₄ – palladium tetrakis(triphenylphosphine)
Pd-C – palladium on carbon
25 (PhO)₂P(O)N₃ – diphenyl phosphorus azide
pTSA – para-toluenesulfonic acid
Pyr – pyridine
Red-Al – sodium bis(2-methoxyethoxy)aluminum hydride
R₂MgBr – alkyl magnesium bromide
30 R₃MgBr – alkyl magnesium bromide
R₅MgBr – alkyl magnesium bromide
R₂S(O)NH₂ – alkylsulfonamide

-68-

TBAF- tetrabutylammonium fluoride
 TBSCl- *tert*-butyldimethylsilyl chloride
 tBuC(O)CH₂Br – 1-bromopinacolone
 Tf₂O – triflic anhydride
 5 TFA – trifluoroacetic acid
 THF – tetrahydrofuran
 TPAP – tetrapropylammonium perruthenate
 Zn(OTf)₂ – zinc trifluoromethane sulfonate.

10

Example 1

Preparation of 3’-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3’-[4-(methanesulfonyloxy)-3-methylphenyl]pentane.

A. 3’,3’-Bis[4-hydroxy-3-methylphenyl]pentane .

15

To a mixture of o-cresol (196 g, 1.81 mol) and 3-pentanone (60 ml, 0.57 mol) is added MeSO₃H (45 ml, 0.69 mol) and stirred for 3 d. The reaction is carefully basified to pH 8 with satd Na₂CO₃ and extracted with EtOAc. The organic layer is washed with water (6 X 500 ml), Na₂SO₄ dried, concentrated, chromatographed (2 kg 20 SiO₂, Hex to 80% EtOAc/Hex), and triturated with Hex to give the title compound as a white solid (100 g, 61%).

NMR 400 MHz(DMSO): δ 0.49 (t, J = 7.3 Hz, 6H), 1.91 (q, J = 7.3 Hz, 4H), 2.02 (s, 6H), 6.61 (d, J = 8.3 Hz, 2H), 6.73 (d, J = 8.3 Hz, 2H), 6.76 (s, 2H), 8.94 (s, 2H).

High Res. EI-MS: 284.1794; calc. for C₁₉H₂₄O₂: 284.1776

-69-

B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane .

5 To a mixture of 60% NaH disp (8.0 g, 200 mmol) and DMF (600 ml) is added 3,3-bis[4-hydroxy-3-methylphenyl]pentane (56.88 g, 200 mmol) and stirred for 2 h. The reaction is added 3,3-dimethyl-1-bromo-2-butanone (26.93 ml, 200 mmol) dropwise and stirred overnight. The solvent is removed in-vacuo. The resulting residue is added EtOAc/water (800 ml/200 ml), acidified to pH 3 with 5N HCl, and partitioned. The organic layer is washed with water (2X), brine, Na_2SO_4 dried, concentrated, and chromatographed (3 kg SiO_2 , Hex to 15% EtOAc/Hex) to give the title compound as a white solid (35 g, 46%).

10 NMR (300MHz, DMSO): δ 0.52 (t, J = 7.3 Hz, 6H), 1.16 (s, 9H), 1.95 (q, J = 7.3 Hz, 4H), 2.04 (s, 3H), 2.12 (s, 3H), 5.05 (s, 2H), 6.57 (d, J = 9.1 Hz, 1H), 6.63 (d, J = 8.1 Hz, 1H), 6.81 (m, 2H), 8.97 (s, 1H).

15 ES-MS: 400(M+NH4).

C. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane

20 To a 0 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane (7.3 g, 19.1 mmol) and methanol (75 ml) is added NaBH_4 (1.58 g, 42.6 mmol) in portions. After 2 h, the reaction is warmed to RT and stirred overnight. The reaction is quenched with 1N HCl and then concentrated in-vacuo. The mixture is partitioned between Et_2O /water. The organic layer is washed with water, Na_2SO_4 dried, and concentrated to give the title compound as a glassy solid (7.2 g, 98%).

25 NMR

-70-

High Res. ES-MS: 402.3010; calc. for C₂₅H₄₀NO₃: 402.3008

D. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methanesulfonyloxy-3-methylphenyl]pentane

5 To a mixture of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane (150 mg, 0.39 mmol) and DMF (1.5 ml) is added 60% NaH disp (16.4 mg, 0.41 mmol). After stirring for 5 m, the reaction is added mesyl chloride (33 ul, 0.43 mmol) and heated to 80 °C for 5 h. The reaction is concentrated in vacuo and partitioned between Et₂O/water. The organic layer is Na₂SO₄ dried,
10 concentrated, and chromatographed (MeCl₂ to 5% EtOAc/MeCl₂) to give the title compound as a glassy solid (100 mg, 55%).

NMR

High Res. ES-MS: 480.2799; calc. for C₂₆H₃₈O₅S+(NH₄): 480.2784

-71-

Examples 2 & 3

Preparation of enantiomers of isomers of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(4-(methanesulfonyloxy)-3-methylphenyl]pentane.

5 A racemate mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(methanesulfonyloxy)-3-methylphenyl)pentane is chromatographed on (Chiralpak AD) to give isomer 1 (Example 2) of the title compound as an oil (22 mg, 36%) and isomer 2 (Example 3) of the title compound as an oil (20 mg, 34%).

Isomer 1

10 rt: 5.97 m (40% IPA/heptane)

NMR equivalent to Example 1.

High Res. ES-MS: 480.2765; calc. for C₂₆H₃₈O₅S+(NH₄): 480.2784

Isomer 2

rt: 8.20 m (40% IPA/heptane)

15 NMR equivalent to Example 1.

High Res. ES-MS: 480.2773; calc. for C₂₆H₃₈O₅S+(NH₄): 480.2784

Example 4

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(methanesulfonyloxy)-3-methylphenyl)pentane.

-72-

Using a procedure analogous to Example 1D, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(hydroxy)-3-methylphenyl]pentane (Example 1B) gives the title compound (1.68 g, 61%).

NMR

5 FAB-MS: 460.4(M+).

Example 5

Preparation of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(trifluoromethanesulfonyloxy)-3-methylphenyl]pentane.

10

To a mixture of 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane (20 g, 52 mmol) and pyridine (30 ml) at 0 °C is added triflic anhydride (9.7 ml, 57 mmol). The reaction is warmed to RT and stirred 15 overnight. The mixture is partitioned between Et₂O/1N HCl. The organic layer is washed with brine, Na₂SO₄ dried, concentrated, and chromatographed (hex to 10% EtOAc/hex) to give the title compound as an oil (26.3 g, 98%).

NMRES-MS: 532.5 (M+NH₄).

20

-73-

Example 6

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(trifluoromethanesulfonyloxy)-3-methylphenyl]pentane.

5

To a 0 °C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(trifluoromethanesulfonyloxy)-3-methylphenyl)pentane (25.5 g, 49.5 mmol) and MeOH (200 ml) is added NaBH₄ (2.63 g, 69.3 mmol) in portions. The reaction is warmed to RT, stirred overnight, and concentrated. The mixture is partitioned between Et₂O/1N HCl.

10 The organic layer is washed with water, Na₂SO₄ dried, and concentrated to give the title compound as an oil (26 g, quant).

NMR

High Res. EI-MS, m/e: 516.2171; calc. for C₂₆H₃₅F₃O₅S: 516.2157

-74-

Example 7

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(trifluoromethanesulfonyloxy)-3-methylphenyl]pentane.

5 Using a procedure analogous to Example 1D, 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(hydroxy)-3-methylphenyl)pentane gives the title compound (290 mg, 21%).

NMR

High Res. ES-MS: 551.2048; calc. for $C_{27}H_{35}F_3O_5S+(Na)$: 551.2055

10

Example 8

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(ethanesulfonyloxy)-3-methylphenyl)pentane.

15 Using a procedure analogous to Example 1D, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(hydroxy)-3-methylphenyl)pentane gives the title compound (1.0 g, 81%).

NMR

High Res. ES-MS: 497.2334; calc. for $C_{27}H_{38}O_5S+Na$: 497.2338.

20

-75-

Example 9

Preparation of 3'-[4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(ethanesulfonyloxy)-3-methylphenyl]pentane.

Using a procedure analogous to Example 1C, 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(hydroxy)-3-methylphenyl)pentane gives the title compound (550 mg, quant).

NMR

High Res. ES-MS: 499.2508; calc. for C₂₇H₄₀O₅S+Na: 499.2494.

-76-

Example 10

Preparation of 3'-(4-(2-hydroxy-2-methyl-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(ethanesulfonyloxy)-3-methylphenyl)pentane.

5 To a 0 C mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(ethanesulfonyloxy)-3-methylphenyl)pentane (200 mg, 0.42 mmol) in THF (1 ml) is added 3 M MeMgBr/THF (150 ul, 0.46 mmol), warmed to RT, and stirred overnight. The reaction is diluted with Et₂O, washed with 1 N HCl, water, brine, Na₂SO₄ dried, and chromatographed (CHCl₃ to 10% EtOAc/CHCl₃) to give the title compound (150 mg, 10 75%).

ES-MS: 489.1 (M-1).

Example 11

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(methanesulfonyloxy)-3-methylphenyl)pentane.

Using a procedure analogous to Example 1D, 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(hydroxy)-3-methylphenyl)pentane gives the title compound (1.68 g, 61%).

20 NMR

FAB-MS: 460.4 (M+).

-77-

Example 12

Preparation of 3'-(4-(2-hydroxy-2-methyl-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(methanesulfonylamino)-3-methylphenyl]pentane.

5

A. 3'-(4-(2-benzyloxy)-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane.

To a mixture of 3'-(4-(2-hydroxy-3-methylphenyl]-3'-[4-hydroxy-3-methylphenyl]pentane (70 g, 246 mmol)/DMF (800 ml) is added 60% disp NaH (9.9 g, 10 246 mmol). After stirring for 90 m, benzyl bromide (4.2 ml, 35.2 mmol) is added dropwise. The reaction is stirred for 18 h and concentrated (vacuum at 50 C). The residue is added Et₂O/1 N HCl and partitioned. The organic layer is washed with water (2X), Na₂SO₄ dried, and concentrated. The residue is chromatographed (Hex to 20% EtOAc/Hex) to give the title compound (44 g, 48%, R_f=0.15; 10% EtAOc/Hex).

Published under license from U.S. Patent and Trademark Office

-78-

B. 3'-[4-(2-benzyloxy)-3-methylphenyl]-3'-[4-trifluoromethylsulfonyloxy-3-methylphenyl]pentane.

Using a procedure analogous to Example 5, 3'-(4-(2-benzyloxy)-3-methylphenyl)-5'-(4-hydroxy-3-methylphenyl)pentane gives the title compound (27 g, 95%).

NMR

C. 3'-(4-(Benzylxy)-3-methylphenyl)-3'-(4-(methoxycarbonyl)-3-methylphenyl)pentane.

10

A mixture of 3'-(4-(2-benzyloxy)-3-methylphenyl)-3'-(4-trifluoromethylsulfonyloxy-3-methylphenyl)pentane (35.5 g, 70 mmol), Pd(OAc)₂ (1.6 g, 7.0 mmol), DPPF (7.8 g, 14.0 mmol), MeOH (30 ml, 700 mmol), Et₃N (30 ml, 210 mmol), and DMF (133 ml) is pressurized with carbon monoxide (1000 psi) and heated 15 to 110 °C for 48 h. After cooling, the reaction is filtered through diatomaceous earth with EtOAc wash. The filtrate is diluted with Et₂O, washed with 1N HCl, and filtered through diatomaceous earth. The filtrate is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (Hex to 10% EtOAc/Hex) to give the title compound (26 g, 89%).

[Priority claimed from U.S. Provisional Application No. 60/483,330, filed June 24, 2003.]

D. 3'-[4-(Benzylxy)-3-methylphenyl]-3'-[4-carboxyl-3-methylphenyl]pentane.

5 A mixture of 3'-(4-benzylxy-3-methylphenyl)-3'-(4-methoxycarbonyl-3-methylphenyl)pentane (26 g, 62 mmol), EtOH (200 ml), water (100 ml) is added KOH (17 g, 300 mmol) and heated to 65 °C for 24 h. The reaction is concentrated and the residue was partitioned between Et₂O and 1N HCl. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (CHCl₃ to 5%
10 MeOH/CHCl₃) to give the title compound (23 g, 92%).

NMR

High Res. ES-MS (negative ion): 401.2099; calc. for C₂₇H₃₀O₃-H: 401.2117.

PCT I P U S U H / 3 5 5 1 3

-80-

E. 3'-[4-(Benzylxy)-3-methylphenyl]-3'-[4-(t-butoxycarbonylamino)-3-methylphenyl]pentane.

To a 0 C mixture of 3'-(4-(benzylxy)-3-methylphenyl)-3'-(4-(carboxy)-3-methylphenyl)pentane (3.2 g, 7.9 mmol), Et₃N (1.2 ml, 8.3 mmol), and CH₂Cl₂ (15 ml) is added (PhO)₂PO(N₃) (1.8 ml, 8.2 mmol) and stirred for 1 h. The reaction is concentrated to a small volume. This concentrate is added to a 90 C solution of t-BuOH and heated with an open stream of nitrogen for 1.75 h. The reaction is cooled to RT, dissolved in a minimal of 1:1 CH₂Cl₂:10% EtOAc/Hex, and chromatographed (10% EtOAc/Hex) to give the title compound as a white glassy solid (2.6 g, 69%).

F. 3'-(4-(Hydroxy)-3-methylphenyl)-3'-(4-(t-butoxycarbonylamino)-3-methylphenyl)pentane.

A mixture of 3'-(4-(benzylxy)-3-methylphenyl)-3'-(4-(t-butoxycarbonylamino)-3-methylphenyl)pentane (2.45 g, 5.2 mmol), 10% Pd-C (250 mg), and EtOH (15 ml) is hydrogenated at 1 atmospheric pressure for 48 h. the reaction is filtered through diatomaceous earth with CH₂Cl₂ washes. The filtrate is concentrated and chromatographed (CH₂Cl₂ to 5% EtOAc/CH₂Cl₂) to give the title compound as a white glassy solid (2.0 g, quant).

NMR

ES-MS: 384.2 (M+H) .

-81-

G. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(t-butoxycarbonylamino)-3-methylphenyl]pentane.

Using a procedure analogous to Example 1B , 3'-[4-(hydroxy)-3-methylphenyl]-3'-[4-(t-butoxycarbonylamino)-3-methylphenyl]pentane gives the compound as a white glassy solid (2.3 g, 96%).

H. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(t-butoxycarbonylamino)-3-methylphenyl]pentane.

10

Using a procedure analogous to Example 1C, 3'-[4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(t-butoxycarbonylamino)-3-methylphenyl]pentane gives the title compound as a white glassy solid (2.1 g, quant).

15 **NMR**

High Res. ES-MS: 501.3693; calc. for C₃₀H₄₅NO₄+(NH₄): 501.3692.

I. 3'-[4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-amino-3-methylphenyl]pentane.

5 To a mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(t-butoxycarbonylamino)-3-methylphenyl]pentane (2.2 g, 4.5 mmol), anisole (9.9 ml, 90.9 mmol), and CH₂Cl₂ (5 ml) is added TFA (7.0 ml, 90.9 mmol). The reaction is stirred for 2 h, concentrated, and partitioned between EtOAc/satd Na₂CO₃. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (50% CHCl₃/Hex to CHCl₃) to give the title compound (250 mg, 92%).

10 NMR

High Res. ES-MS: 384.2915; calc. for C₂₅H₃₈NO₂: 384.2903.

15 J. 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(methanesulfonylamino)-3-methylphenyl]pentane.

Using a procedure analogous to Example 5, 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-(amino)-3-methylphenyl]pentane gives the title compound as a glassy white solid (240 mg, 80%).

20 NMR

High Res. FAB-MS: 461.2613; calc. for C₂₆H₃₉NO₄S: 461.2600.

Example 13 & 14

Preparation of enantiomers of 3'-(4-(2-Hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-[4-(methanesulfonylamino)-3-methylphenyl]pentane.

25

-83-

A racemic mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-[4-(methanesulfonylamino)-3-methylphenyl]pentane is chromatographed (Chiralpak AD) to give enantiomer 1 (Example 13) of the title compound (82 mg, 41%) and enantiomer 2 (Example 14) of the title compound (73 mg, 37%).

Enantiomer 1

rt: 5.43 m (40% IPA/Hept); 225 nm.

NMR equivalent to Example 12.

High Res. ES-MS: 479.2966; calc. for C₂₆H₃₉NO₄S+(NH₄): 479.2944

Enantiomer 2

rt: 7.14 m (40% IPA/Hept); 225 nm.

NMR equivalent to Example 12.

High Res. ES-MS: 479.2932; calc. for C₂₆H₃₉NO₄S+(NH₄): 479.2944

15

Example 15 & 16

Preparation of enantiomers of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl)-3'-[4-(ethanesulfonyloxy)-3-methylphenyl]pentane.

-84-

A racemic mixture of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-(ethanesulfonyloxy)-3-methylphenyl]pentane is chromatographed on (Chiralpak AD) to give enantiomer 1 (Example 15) of the title compound (209 mg, quant) and enantiomer 2 (Example 16) of the title compound (199 mg, quant).

5 Enantiomer 1, Example 15

rt: 7.8 m (20% IPA/Hept); 220 nm.

NMR equivalent to Example 9.

High Res. ES-MS: 494.2943; calc. for C₂₇H₄₀O₅S+(NH₄): 494.2940

Enantiomer 2, Example 16

10 rt: 11.0 m (20% IPA/Hept); 220 nm.

NMR equivalent to Example 9.

High Res. ES-MS: 494.2960; calc. for C₂₇H₄₀O₅S+(NH₄): 494.2940

Example 17

15 Preparation of N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-methanesulfonamide.

To a 0 °C mixture of 1-{4-[1-(4-amino-3-methyl-phenyl)-1-ethyl-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (763 mg, 2 mmol), triethylamine (0.42 mL, 3 mmol) and CH₂Cl₂ (7 mL) is added methanesulfonyl chloride (0.155 mL, 2 mmol). The reaction is warmed to RT and stirred for 3 h. The reaction is diluted with CH₂Cl₂ dichloromethane and washed with 0.2 N HCl. The organic phase is Na₂SO₄ dried, concentrated, and chromatographed (0% to 25% EtOAc/Hex) to give the title compound (800 mg, 87%).

25 ¹H NMR (CDCl₃) δ 7.29 (d, 1H, J = 8.3 Hz), 7.03 (d, 1H, J = 8.3 Hz), 6.99 (s, 1H), 6.89 (s, 1H), 6.88 (d, 1H, J = 8.3 Hz), 6.49 (d, 1H, J = 8.3 Hz), 6.02 (s, 1H), 4.84 (s, 2H), 3.01 (s, 3H), 2.26 (s, 3H), 2.24 (s, 3H), 2.03 (q, 4H), 1.25 (s, 9H), 0.58 (t, 6H).

SEARCHED
INDEXED
MAILED

-85-

HRMS: calcd. for C₂₆H₄₁N₂O₄S (M+18), 477.2787, found, 477.2801.

Example 18

Preparation of N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-

5 propyl}-2-methyl-phenyl)-N-methyl-methanesulfonamide

To a mixture of N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-methanesulfonamide (230 mg, 0.5 mmol), triphenyl phosphine (197 mg, 0.75 mmol), MeOH (0.03 mL, 0.75 mmol), and THF (10 mL) is added diethylazodicarboxylate (0.12 mL, 0.75 mmol) and stirred overnight. The reaction is concentrated and chromatographed (0% to 25% EtOAc/Hex) to give the title compound (180 mg, 76%).

¹H NMR (CDCl₃) δ 7.09 (s, 1H), 7.07 (d, 1H, J = 8.4 Hz), 6.97 (dd, 1H, J = 2.2, 8.4 Hz),

10 6.92 (s, 1H), 6.88 (dd, 1H, J = 2.2, 8.4 Hz), 6.49 (d, 1H, J = 8.4 Hz), 4.85 (s, 2H), 3.21 (s, 3H), 2.95 (s, 3H), 2.35 (s, 3H), 2.25 (s, 3H), 2.03 (q, 4H), 1.25 (s, 9H), 0.58 (t, 6H).

HRMS: calcd. for C₂₇H₄₃N₂O₄S (M+18), 491.2944, found, 491.2939.

Example 19

20 Preparation of N-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenyl)-N-methyl-methanesulfonamide

PCT/US2004/035513

-86-

To a 0 °C mixture of N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-N-methyl-methanesulfonamide (100 mg, 0.21 mmol), MeOH (5 mL), and THF (10 mL) is added NaBH₄ (12 mg, 0.32 mmol). The reaction is warmed to RT and stirred for 5 h and concentrated. The residue is partitioned between

5 EtOAc and 0.2 N HCl. The organic phase is Na₂SO₄ dried, concentrated, and chromatographed (0% to 25 % EtOAc/Hex) to give the title compound (60 mg, 60%).

¹H NMR (CDCl₃) δ 7.09 (s, 1H), 7.08 (d, 1H, J = 8.3 Hz), 6.97 (dd, 1H, J = 2.0, 8.3 Hz), 6.93 (dd, 1H, J = 2.0, 8.3 Hz), 6.92 (s, 1H), 6.71 (d, 1H, J = 8.3 Hz), 4.10 (dd, 1H, J = 2.7, 8.7 Hz), 3.87 (dd, 1H, J = 8.7, 8.8 Hz), 3.72 (dd, 1H, J = 2.4, 8.8 Hz), 3.22 (s, 3H),

10 2.96 (s, 3H), 2.36 (s, 3H), 2.20 (s, 3H), 2.05 (q, 4H), 1.03 (s, 9H), 0.62 (t, 6H).

HRMS: calcd. for C₂₇H₄₁NO₄NaS (M+23), 498.2654, found, 498.2657.

Example 20 and Example 21

Preparation of enantiomers of N-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-

15 methyl-phenyl]-propyl}-2-methyl-phenyl)-N-methyl-methanesulfonamide

A racemic mixture of N-(4-{1-ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenyl)-N-methyl-methanesulfonamide (48 mg) is chromatographed (Chiralpak AD column) to give enantiomer 1, Example 20 (13 mg,

20 27%) and enantiomer 2, Example 21 (12 mg, 25%).

HPLC: Chiralpak AD (4.6 x 150 mm); 60% heptane, 40% 2-propanol; flow rate: 1.0 ml/m; UV: 225 nm

Enantiomer 1, Example 20: rt = 4.98 m;

25 ¹H NMR (CDCl₃): equivalent to Example 19

Enantiomer 2, Example 21: rt = 5.97 m.

¹H NMR (CDCl₃): equivalent to Example 19

Example 22 and Example 23

Preparation of N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-N, N-bis-ethanesulfonamide

5

and

and N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-ethanesulfonamide

Using a procedure analogous to Example 17, 1-{4-[1-(4-amino-3-methyl-phenyl)-

10 1-ethyl-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (229 mg, 0.6 mmol),
ethanesulfonyl chloride (0.080 mL, 0.9 mmol) gives N-(4-{1-[4-(3,3-dimethyl-2-oxo-
butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-N, N-bis-ethanesulfonamide
(Example 22) (120 mg, 35%), and N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-
phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-ethanesulfonamide (Example 23) (130 mg,
15 46%).

for Example 22

¹H NMR (CDCl₃) δ 7.15 (d, 1H, J = 8.3 Hz), 7.10 (s, 1H), 7.01 (d, 1H, J = 8.8 Hz), 6.94
(s, 1H), 6.86 (d, 1H, J = 8.8 Hz), 6.49 (d, 1H, J = 8.3 Hz), 4.85 (s, 2H), 3.55, 3.72 (m,
4H), 2.40 (s, 3H), 2.27 (s, 3H), 2.04 (q, 4H), 1.54 (m, 6H), 1.27 (s, 9H), 0.59 (t, 6H);
20 LC-MS: 583 (M+18).

for Example 23

¹H NMR (CDCl₃) δ 7.28 (d, 1H, J = 8.3 Hz), 7.01 (dd, 1H, J = 2.0, 8.3 Hz), 6.97 (s, 1H),
6.89 (s, 1H), 6.86 (d, 1H, J = 8.3 Hz), 6.49 (d, 1H, J = 8.3 Hz), 5.97 (s, 1H), 4.85 (s, 2H),
3.16 (q, 2H), 2.27 (s, 3H), 2.25 (s, 3H), 2.04 (q, 4H), 1.41 (t, 3H), 1.27 (s, 9H), 0.59 (t,
25 6H).

LC-MS: 491 (M+18).

Example 24

Preparation of N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-

5 propyl}-2-methyl-phenyl)-N-methyl-ethanesulfonamide.

The title compound is prepared from N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-ethanesulfonamide and methanol using a procedure analogous to Example 18 (78%).

10 ^1H NMR (CDCl_3) δ 7.09 (d, 1H, $J = 8.4$ Hz), 7.08 (s, 1H), 6.96 (dd, 1H, $J = 2.0, 8.4$ Hz), 6.92 (d, 1H, $J = 2.2$ Hz), 6.88 (dd, 1H, $J = 2.2, 8.4$ Hz), 6.49 (d, 1H, $J = 8.4$ Hz), 4.85 (s, 2H), 3.22 (s, 3H), 3.12 (q, 2H), 2.35 (s, 3H), 2.25 (s, 3H), 2.03 (q, 4H), 1.43 (t, 3H), 1.25 (s, 9H), 0.60 (t, 6H).

HRMS: calcd. for $\text{C}_{28}\text{H}_{41}\text{NO}_4\text{NaS}$ (M+23), 510.2654, found, 510.2666.

15

Example 25 and Example 26

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-N,N-bis-1-propanesulfonamide

20

and

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-1-propanesulfonamide

P U S U T P / U S A L S

-89-

Using a procedure analogous to Example 22 and Example 23, 1-(4-[1-(4-amino-3-methyl-phenyl)-1-ethyl-propyl]-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one and 1-propane-sulfonyl chloride give the title compounds Example 25 (34%) and Example 26 (42%).

for Example 25:

¹H NMR (CDCl₃) δ 7.13 (d, 1H, J = 8.3 Hz), 7.10 (s, 1H), 7.01 (d, 1H, J = 8.3 Hz), 6.94 (s, 1H), 6.87 (d, 1H, J = 8.8 Hz), 6.49 (d, 1H, J = 8.8 Hz), 4.85 (s, 2H), 3.63 (m, 2H), 3.50 (m, 2H), 2.39 (s, 3H), 2.25 (s, 3H), 1.92, 2.06 (m, 8H), 1.26 (s, 9H), 1.09 (t, 6H), 0.59 (t, 6H);

HRMS: Calcd. for C₃₁H₄₇NO₆NaS₂ (M+23), 616.2743, found, 616.2769;

for Example 26:

¹H NMR (CDCl₃) δ 7.28 (d, 1H, J = 8.8 Hz), 7.00 (dd, 1H, J = 2.4, 8.3 Hz), 6.97 (s, 1H), 6.89 (s, 1H), 6.87 (d, 1H, J = 8.8 Hz), 6.49 (d, 1H, J = 8.3 Hz), 6.00 (s, 1H), 4.84 (s, 2H), 3.09 (q, 2H), 2.25 (s, 3H), 2.23 (s, 3H), 2.02 (q, 4H), 1.87 (q, 2H), 1.25 (s, 9H), 1.04 (t, 3H), 0.58 (t, 6H);

HRMS: Calcd. for C₂₈H₄₁NO₄NaS (M+23), 510.2654, found, 510.2664.

20

Example 27

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-trifluoromethanesulfonamide

25

-90-

The title compound is prepared from 1-{4-[1-(4-amino-3-methyl-phenyl)-1-ethyl-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one and trifluoromethane sulfonyl chloride using a procedure analogous to Example 17 (45%).

¹H NMR (CDCl₃) δ 6.94 (s, 1H), 6.92 (d, 1H, J = 8.3 Hz), 6.83 (s, 1H), 6.81 (d, 1H, J = 8.8 Hz), 6.58 (d, 1H, J = 8.8 Hz), 6.49 (d, 1H, J = 8.3 Hz), 4.84 (s, 2H), 2.25 (s, 3H), 2.13 (s, 3H), 2.01 (q, 4H), 1.27 (s, 9H), 0.59 (t, 6H).

Example 28 and Example 29

Preparation of N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-

10 propyl}-2-methyl-phenyl)-N,N-bis-2,2,2-trifluoro-ethanesulfonamide

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2,2,2-trifluoro-ethanesulfonamide

15

Using a procedure analogous to Example 22 and Example 23, 1-{4-[1-(4-amino-3-methyl-phenyl)-1-ethyl-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one and 1-propane-sulfonyl chloride give the title compounds Example 28 (49%) and Example 29 (25%).

for Example 28:

¹H NMR (CDCl₃) δ 7.16 (s, 1H), 7.08 (s, 2H), 6.93 (s, 1H), 6.86 (d, 1H, J = 8.3 Hz), 6.49 (d, 1H, J = 8.8 Hz), 4.86 (s, 2H), 4.49 (m, 2H), 4.34 (m, 2H), 2.38 (s, 3H), 2.27 (s, 3H), 2.05 (q, 4H), 1.27 (s, 9H), 0.61 (t, 6H);

25

-91-

HRMS: Calcd. for C₂₉H₄₁N₂O₆F₆S₂ (M+18), 691.2310, found, 691.2337;

for Example 29:

¹H NMR (CDCl₃) δ 7.26 (d, 1H, J = 8.8 Hz), 7.03 (m, 2H), 6.89 (s, 1H), 6.87 (d, 1H, J = 8.3 Hz), 6.49 (d, 1H, J = 8.8 Hz), 6.02 (s, 1H), 4.85 (s, 2H), 3.87 (m, 2H), 2.28 (s, 3H), 2.24 (s, 3H), 2.03 (q, 4H), 1.25 (s, 9H), 0.59 (t, 6H).

HRMS: calcd. for C₂₇H₄₀N₂O₄F₃S (M+18), 545.2661, found, 545.2685.

10

Example 30

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-N-(2-methylsulfanyl-ethyl)-methanesulfonamide

15

The title compound is prepared from N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-methanesulfonamide and 2-methylsulfanyl-ethanol using a procedure analogous to Example 18 (58%).

20

¹H NMR (CDCl₃) δ 7.10 (d, 1H, J = 2.0 Hz), 7.08 (d, 1H, J = 8.4 Hz), 6.97 (dd, 1H, J = 2.0, 8.4 Hz), 6.92 (d, 1H, J = 2.0 Hz), 6.88 (dd, 1H, J = 2.4, 8.8 Hz), 6.49 (d, 1H, J = 8.8 Hz), 4.85 (s, 2H), 3.75 (m, 2H), 2.99 (s, 3H), 2.35 (s, 3H), 2.25 (s, 3H), 2.10 (m, 2H), 2.02 (q, 4H), 1.73 (s, 3H), 1.25 (s, 9H), 0.59 (t, 6H).

HRMS: calcd. for C₂₉H₄₇N₂O₄S₂ (M+18), 551.2977, found, 551.2984.

25

Example 31

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-ethylsulfanyl-ethanesulfonamide

-92-

A. N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-chloro-ethanesulfonamide

5 Using a procedure analogous to Example 17, 1-{4-[1-(4-amino-3-methyl-phenyl)-1-ethyl-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (382 mg, 1 mmol), 2-chloro-ethanesulfonyl chloride (0.1 mL, 1 mmol) and triethylamine (0.14 mL, 1 mmol) give the title compound as a oil (500 mg, quant.)

ESMS: 470 (M-HCl);

10

B. N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-ethylsulfanyl-ethanesulfonamide

15 A 0 °C solution of ethanethiol (0.1 mL, 1.35 mmol) in THF (5 mL) is treated with NaH (81 mg, 2 mmol, 60% in mineral oil) and stirred for 10 m. The mixture is added a solution of N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-chloro-ethanesulfonamide (500 mg, 1mmol) in THF (10 mL), warmed to RT, and stirred overnight. The reaction is concentrated, dissolved in CH₂Cl₂, and washed with 0.2 N HCl. The organic layer is concentrated and chromatographed (0%-20% EtOA/Hex) to give the title compound (270 mg, 51%).

20 ¹H NMR (CDCl₃) δ 7.28 (d, 1H, J = 8.3 Hz), 7.02 (d, 1H, J = 8.3 Hz), 6.98 (s, 1H), 6.87, 6.89 (m, 2H), 6.49 (d, 1H, J = 8.8 Hz), 6.27 (s, 1H), 4.85 (s, 2H), 3.36 (m, 2H), 3.30 (m, 2H), 2.51 (q, 2H), 2.28 (s, 3H), 2.25 (s, 3H), 2.03 (q, 4H), 1.27 (s, 9H), 1.22 (t, 3H), 0.60 (t, 6H);

HRMS: Calcd. for C₂₉H₄₄NO₄S₂ (M+1), 534.2712, found, 534.2736.

25

-93-

Example 32

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-ethanesulfonyl-ethanesulfonamide

5 To a solution of **N-(4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-ethanesulfonyl-ethanesulfonamide** (220 mg, 0.41 mmol) in dichloromethane (10 mL) is added m-chloroperbenzoic acid (427 mg, 1.24 mmol, 50%) at RT. After stirring for 3 h, the reaction is concentrated and chromatographed (0%-33% EtOAc/Hex) to give the title compound (190 mg, 81%).

10 ^1H NMR (CDCl_3) δ 7.27 (d, 1H, $J = 8.3$ Hz), 7.03 (d, 1H, $J = 8.3$ Hz), 7.02 (s, 1H), 6.86, 6.90 (m, 2H), 6.50 (d, 1H, $J = 8.3$ Hz), 6.19 (s, 1H), 4.85 (s, 2H), 3.60 (m, 2H), 3.44 (m, 2H), 3.08 (q, 2H), 2.30 (s, 3H), 2.25 (s, 3H), 2.03 (q, 4H), 1.45 (t, 3H), 1.27 (s, 9H), 0.60 (t, 6H);

HRMS: Calcd. for $\text{C}_{29}\text{H}_{43}\text{NO}_6\text{NaS}_2$ ($M+23$), 588.2430, found, 588.2406.

15

Example 33

N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-isopropylsulfanyl-ethanesulfonamide

20 Using a procedure analogous to Example 31B, **4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-chloro-ethanesulfonamide** (Example 31A) and propane-2-thiol give the title compound (44%).

25 ^1H NMR (CDCl_3) δ 7.29 (d, 1H, $J = 8.3$ Hz), 7.02 (d, 1H, $J = 8.8$ Hz), 6.98 (s, 1H), 6.89 (s, 1H), 6.88 (d, 1H, $J = 8.3$ Hz), 6.49 (d, 1H, $J = 8.8$ Hz), 6.09 (s, 1H), 4.85 (s, 2H), 3.35 (t, 2H), 2.92 (m, 3H), 2.27 (s, 3H), 2.25 (s, 3H), 2.03 (q, 4H), 1.27 (s, 9H), 1.23 (d, 6H), 0.60 (t, 6H);

-94-

HRMS: Calcd. for C₃₀H₄₅NO₄NaS₂ (M+23), 570.2688, found, 570.2680.

Example 34

5 N-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-(propane-2-sulfonyl)-ethanesulfonamide

Using a procedure analogous to Example 32, 4-{1-[4-(3,3-dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenyl)-2-(isopropylsulfonyl)ethanesulfonamide and m-chloroperbenzoic acid give the title compound (75%).

10 ¹H NMR (CDCl₃) δ 7.28 (d, 1H, J = 8.4 Hz), 7.03 (d, 1H, J = 8.4 Hz), 7.01 (s, 1H), 6.90 (s, 1H), 6.87 (d, 1H, J = 8.4 Hz), 6.50 (d, 1H, J = 8.4 Hz), 6.24 (s, 1H), 4.84 (s, 2H), 3.59 (m, 2H), 3.39 (m, 2H), 3.16 (m, 1H), 2.29 (s, 3H), 2.24 (s, 3H), 2.02 (q, 4H), 1.41 (d, 6H), 1.25 (s, 9H), 0.59 (t, 6H);

15 HRMS: Calcd. for C₃₀H₄₆NO₆S₂ (M+1), 580.2767, found, 580.2779.

Example 35

Preparation of trifluoro-methanesulfonic acid 4-{1-ethyl-1-[4-(2-hydroxy-2,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenyl ester.

20

A. 1-(4-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one.

-95-

Using a procedure analogous to Example 13A, 1-{4-[1-Ethyl-1-(4-hydroxy-3-methyl-phenyl)-propyl]-2-methyl-phenoxy}-3,3-dimethyl-butan-2-one (Example 1B) (4.91 g, 12.83 mmol) and TBSCl (1.93 g, 12.83 mmol) give the title compound (5.74 g, 11.57 mmol, 90%). ^1H NMR (CDCl_3), δ 0.21 (s, 6H), 0.60 (t, $J = 7.5$ Hz, 6H), 1.01 (s, 9H), 1.26 (s, 9H), 2.01 (q, $J = 7.5$ Hz, 4H), 2.16 (s, 3H), 2.24 (s, 3H), 4.83 (s, 2H), 6.50 (d, $J = 8.4$ Hz, 1H), 6.63 (d, $J = 8.4$ Hz, 1H), 6.82 (dd, $J = 8.4, 2.3$ Hz, 1H), 6.87-6.93 (m, 3H). LC/MS (m/z): calcd for $\text{C}_{31}\text{H}_{52}\text{NO}_3\text{Si} (\text{M} + \text{NH}_4)^+$: 514.8; found: 514.5.

10

B. Trifluoro-methanesulfonic acid 4-{1-ethyl-1-[4-(2-hydroxy-2,3,3-trimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenyl ester.

15

To a solution of 1-(4-{1-[4-(tert-Butyl-dimethyl-silyloxy)-3-methyl-phenyl]-1-ethyl-propyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one (5.63 g, 11.40 mmol) in THF (100 mL) is treated with 3.0 M CH_3MgBr (5.7 mL, 17.24 mmol). The reaction is stirred for 1 h, quenched with satd NH_4Cl (50 mL) at 0 °C, diluted with EtOAc (100 mL), washed with 0.1 M HCl (2 x 50 mL), MgSO_4 dried, and concentrated. The resulting residue is dissolved in THF (50 mL), and reacted with 1.0 M TBAF (12.6 mL, 12.6 mmol) for 1h. The reaction is diluted with EtOAc (100 mL), washed with 0.1 M HCl (3 x 50 mL), brine (50 mL), MgSO_4 dried, and concentrated. The resulting residue is dissolved in CH_2Cl_2 (100 mL), cooled to 0 °C, treated with Et_3N (1.7 mL, 12.38 mmol) and Tf_2O

20

-96-

(1.9 mL, 11.35 mmol). After stirring 5 m, the reaction is washed with 0.1 M HCl (2 x 50 mL), MgSO₄ dried, concentrated, and chromatographed to give the title compound (5.30 g, 10.0 mmol, 87% for 3-steps). ¹H NMR (CDCl₃), δ 0.61 (t, J = 7.1 Hz, 6H), 1.05(s, 9H), 1.34 (s, 3H), 2.05(q, J = 7.1 Hz, 4H), 2.21 (s, 3H), 2.33 (s, 3H), 3.84 (d, J = 8.9 Hz, 1H), 4.01 (d, J = 8.9 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.87 (d, J = 2.2 Hz, 1H), 6.93 (dd, J = 8.8, 2.6 Hz, 1H), 7.02-7.11 (m, 3H). LC/MS (m/z): calcd for C₂₇H₄₁NF₃O₅S (M +NH₄)⁺: 548.7; found: 548.2.

Example 36

10 Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-phenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane.

A. 3'-(4-Methoxyphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane.

15

To a mixture of 3-(4-methoxyphenyl)-3-pentanol (ref. 1) (0.19 g, 1 mmol) and o-cresol (0.8 g, 7.4 mmol) is added BF₃-ethereate (4 drops) and stirred for 16 h. The mixture is partitioned between diethylether and water, and the organic layer is Na₂SO₄ dried, and concentrated. The residue is vacuum dried (70-2 °C/0.04 mm) for 16 h to give the title compound (0.19 g, 67%).

-97-

H-NMR (400 mHz, CDCl₃): 7.06 (2H, d, J = 8.8 Hz), 6.85 (2H, m), 6.77 (2H, d, 8.8 Hz), 6.64 (1H, d, J = 8.0 Hz), 4.75 (1H, s), 3.77 (3H, s), 2.18 (3H, s), 2.01 (4H, q, J = 7.4 Hz), 0.59 (6H, t, J = 7.4 Hz).

ES/MS: 283.2 (M+1).

5 Ref. 1: Collins, David J.; Jacobs, Howard A. Steric and stereoelectronic effects in the hydrogenolysis and Birch reduction of some hindered tertiary-benzylic carbinols. Australian Journal of Chemistry (1987), 40(12), 1989-2004.

B. 3'-(4-Methoxyphenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane.

10

To a mixture of 3'-(4-methoxyphenyl)-3'-(4-hydroxy-3-methylphenyl)pentane (0.19 g, 0.67 mmol) and methanesulfonyl chloride (62 uL, 0.8 mmol) and of methylene chloride (10 mL) is added diisopropylethylamine (139 uL, 0.8 mmol). After stirring for

15 16 h, the reaction is quenched with saturated sodium bicarbonate. The organic layer is Na₂SO₄ dried, concentrated to give the title compound (0.19 g, 78%).

H-NMR (400 mHz, CDCl₃): 7.12 (1H, d, J = 8.4 Hz), 7.03 (4H, m), 6.78 (2H, d, J = 8.8 Hz), 3.78 (3H, s), 3.16 (3H, s), 2.29 (3H, s), 2.03 (4H, q, J = 7.2 Hz), 0.59 (6H, t, J = 7.2 Hz).

20 ES/MS: 380.3 (M+NH₄)

C. 3'-(4-Hydroxyphenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane.

25 To a mixture of 3'-(4-methoxyphenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane (0.19 g, 0.5 mmol) and methylene chloride (2 ml) is added 1.0 M boron tribromide (1.0 ml, 1.0 mmol). After stirring for 1 h, the mixture is quenched with

-98-

satd NaHCO₃. The organic phase is Na₂SO₄ dried and concentrated to give the title compound (0.17 g, 99%).

H-NMR (400 mHz, CDCl₃): 7.06 (1H, d, J = 8.6 Hz), 7.01 (4H, m), 6.72 (2H, d, 8.4 Hz), 4.71 (1H, s), 3.15 (3H, s), 2.29 (3H, s), 2.02 (4H, q, J = 7.4 Hz), 0.59 (6H, t, J = 7.4 Hz).

5 ES/MS: 366.3 (M+NH₄)

D. 3'-(4-(2-Oxo-3,3-dimethylbutoxy)-phenyl]-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane.

10 To a mixture of Hex washed NaH (15 mg 60% in mineral oil, 0.6 mmol) and DMF (2 mL) is added 3'-(4-hydroxyphenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane (0.17g, 0.5 mmol) and 1-chloropinacolone (81 mg, 0.6 mmol). After stirring for 16 h, the reaction is quenched with satd NaHCO₃ and extracted with diethyl ether. The organic layer is washed with water, Na₂SO₄ dried, concentrated, and chromatographed (7.5% EtOAc/Hex to 12% EtOAc/Hex) to give the title compound (0.12 g, 55%).

H-NMR (300 mHz, DMSO-d6): δ 7.20 (1H, d, J = 8.2 Hz), 7.12 (1H, s), 7.04 (3H, m), 6.76 (2H, d, J = 8.2 Hz), 5.05 (2H, s), 3.41 (3H, s), 2.24 (3H, s), 2.04 (4H, q, J = 7.4 Hz), 1.15 (9H, s), 0.55 (6H, t, J = 7.4 Hz).

20 ES/MS: 464.3 (m+NH₄).

-99-

Example 37

Preparation of 3'-(4-(2-hydroxy-3,3-dimethylbutoxy)-phenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane.

5 To a mixture of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-phenyl)-3'-(4-methylsulfonyloxy-3-methylphenyl)pentane (84 mg, 0.19 mmol) and EtOH (2 ml) is added sodium borohydride (7 mg, 0.19 mmol). After stirring for 30 m, the mixture is quenched with satd NaHCO₃ and water and extracted with diethyl ether. The organic layer is Na₂SO₄ dried, concentrated, and chromatographed (7.5% EtOAc/Hex to 15% EtOAc/Hex) to give the title compound (59 mg, 69%).

10 H-NMR (400 MHz, CDCl₃): δ 7.13 (1H, d, J = 8.4 Hz), 7.04 (4H, m), 6.80 (2H, d, J = 8.8 Hz), 4.09 (2H, d, J = 10.0 Hz), 3.84 (1H, t, J = 9.8 Hz), 3.67 (1H, d, J = 10 Hz), 3.16 (3H, s), 2.29 (3H, s), 2.03 (4H, q, J = 7.0 Hz), 0.99 (9H, s), 0.60 (6H, t, J = 7.0 Hz).

15 FAB/MS: 448.2 (m+).

Example 38

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane.

20

-100-

A. z/e-3-(4-Hydroxyphenyl)-3-pentene.

Using a procedure analogous to Example 36 C, 3-(4-methoxyphenyl)-3-pentanol
5 (0.4 g, 2 mmol) and 1M boron tribromide (4 ml, 4 mmol) give the title compound (0.28 g, 86%).

H-NMR (400 mHz, CDCl₃): 5.63 (0.6 H, q, J = 6.8 Hz), 5.48 (0.4 H, q, J = 6.8 Hz).

B. z/e-3'-(4-Methylsulfonyloxyphenyl)-3'-pentene.

10 Using a procedure analogous to Example 36 B, z/e-3-(4-hydroxyphenyl)-3-pentene (0.28 g, 1.7 mmol) gives the title compound (0.34 g, 84%).

H-NMR (400 mHz, CDCl₃): 5.72 (0.6 H, q, J = 6.9 Hz), 5.54 (0.4 H, q, J = 6.9 Hz).

15 C. 3'-(4-Hydroxy-3-methylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane.

-101-

Using a procedure analogous to Example 36 A, z/e-3'-(4-methylsulfonyloxyphenyl)-3'-pentene (0.34 g, 1.4 mmol) gives the title compound (0.33 g, 68%).

H-NMR (400 mHz, CDCl₃): 7.19 (2H, d, J = 8.0 Hz), 7.14 (2H, d, J = 8.0 Hz), 6.85 (1H, s), 6.83 (1H, d, J = 7.2 Hz), 6.64 (1H, d, J = 7.2 Hz), 4.58 (1H, m), 3.11 (3H, s), 2.19 (3H, s), 2.03 (4H, q, J = 7.4 Hz), 0.59 (6H, t, J = 7.4 Hz).

ES/MS: 366.3 (M+NH₄), 347.2 (m-1).

D. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-[4-methylsulfonyloxy-phenyl]pentane.

Using a procedure analogous to Example 36D, 3'-(4-hydroxy-3-methylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane (0.17g, 0.5 mmol) gives the title compound (0.14 g, 63%).

H-NMR (300 mHz, DMSO-d₆): δ 7.25 (4H, s), 6.92 (1H, s), 6.88 (1H, d, J = 8.2 Hz), 6.61 (1H, d, J = 8.2 Hz), 5.06 (2H, s), 3.35 (3H, s), 2.14 (3H, s), 2.04 (4H, q, J = 8.2 Hz), 1.16 (9H, s), 0.54 (6H, t, J = 8.2 Hz).

FAB/MS: 446.2 (M₊).

Example 39

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-ethylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane.

-102-

A. 3'-(4-Hydroxy-3-ethylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane.

Using a procedure analogous to Example 36A, z/e-3'-(4-methylsulfonyloxyphenyl)-3'-pentene (0.2 g, 0.8 mmol) gives the title compound (0.135 g, 45%).

H-NMR (400 mHz, CDCl₃): 7.20 (2H, d, J = 8.8 Hz), 7.14 (2H, d, J = 8.8 Hz), 6.88 (1H, s), 6.80 (1H, d, J = 8.4 Hz), 6.64 (1H, d, J = 8.4 Hz), 4.60 (1H, m), 3.11 (3H, s), 2.56 (2H, q, J = 7.2 Hz), 2.03 (4H, m), 1.16 (3H, t, J = 7.2 Hz), 0.60 (6H, t, J = 7.4 Hz).

ES/MS: 380.2 (M+NH₄), 361.1 (m-1).

10

B. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-ethylphenyl]-3'-[4-methylsulfonyloxy-phenyl]pentane.

15

Using a procedure analogous to Example 36D, 3'-(4-hydroxy-3-ethylphenyl)-3'-(4-methylsulfonyloxy-phenyl)pentane (0.14g, 0.4 mmol) gives the title compound (70 mg, 40 %).

H-NMR (300 mHz, DMSO-d₆): δ 7.25 (4H, s), 6.92 (1H, s), 6.88 (1H, d, J = 8.2 Hz), 6.62 (1H, d, J = 8.2 Hz), 5.06 (2H, s), 3.35 (3H, s), 2.55 (2H, q, J = 6.8 Hz), 2.04 (4H, q, J = 6.8 Hz), 1.16 (9H, s), 1.07 (3H, t, J = 6.8 Hz), 0.54 (6H, t, J = 6.8 Hz).

20

-103-

Example 40

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-3-methylphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

5

A. z/e-3'-(3,5-Dimethyl-4-methylsulfonyloxyphenyl)-3'-pentene.

Using a procedure analogous to Example 36C, 3'-(3,5-dimethyl-4-methoxyphenyl)-3'-pentanol (2.2 g, 10 mmol) is reacted for 3 h to give crude z/e-3'-(3,5-dimethyl-4-hydroxyphenyl)-3'-pentene [ES/MS: 191.1 (M+1) 189.1 (M-1)]. Using a procedure analogous to Example 36B, crude z/e-3'-(3,5-dimethyl-4-hydroxyphenyl)-3'-pentene gives the title compound (2.12 g, 79% crude).

H-NMR (400 mHz, CDCl₃): 5.68 (0.7 H, q, J = 6.6 Hz), 5.48 (0.3 H, q, J = 6.6 Hz).

ES/MS: 269.1 (M+1)

15

B. 3'-(4-Hydroxy-3-methylphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

Using a procedure analogous to Example 36A, z/e-3'-(3,5-dimethyl-4-methylsulfonyloxyphenyl)-3'-pentene (0.27 g, 1 mmol) gives the title compound (0.29 g, 76 %).

-104-

H-NMR (400 mHz, CDCl₃): 6.8-6.9 (4H, m), 6.64 (2H, d, J = 8.4 Hz), 4.60 (1H, m), 3.25 (3H, s), 2.30 (6H, s), 2.19 (3H, s), 1.99 (4H, q, J = 7.2 Hz), 0.58 (6H, t, J = 7.2 Hz).
ES/MS: 394.3 (M+NH₄), 375.1 (m-1).

5 C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-3-methylphenyl]-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

Using a procedure analogous to Example 36D, 3'-(4-hydroxy-3-methylphenyl)-3'-
10 (3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane (0.29 g, 0.76 mmol) gives the title
compound (176 mg, 49 %).
H-NMR (300 mHz, DMSO-d₆): δ 6.83-6.95 (4H, m), 6.61 (1H, d, J = 7.5 Hz), 5.05
(2H, s), 3.26 (3H, s), 2.30 (6H, s), 2.24 (3H, s), 2.00 (4H, q, J = 6.8 Hz), 1.15 (9H, s),
1.07 (3H, t, J = 6.8 Hz), 0.51 (6H, t, J = 6.8 Hz).
15 FAB/MS: 474.1 (M+).

Example 41

Preparation of 3'-(4-(2-oxo-3,3-dimethylbutoxy)-phenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

-105-

A. 3'-(4-Methoxyphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

Using a procedure analogous to Example 36A, z/e-3'-(3,5-dimethyl-4-methylsulfonyloxyphenyl)-3'-pentene (0.27 g, 1 mmol) and anisole (0.54 g, 5 mmol) are reacted for 64 h to give the title compound (0.22 g, 58%).

H-NMR (400 mHz, CDCl₃): 7.04 (2H, d, J = 8.8 Hz), 6.84 (2H, s), 6.78 (2H, d, J = 8.8 Hz), 3.78 (3H, s), 3.26 (3H, s), 2.30 (6H, s), 2.01 (4H, q, J = 7.2 Hz), 0.59 (6H, t, J = 7.2 Hz).

10

B. 3'-(4-Hydroxyphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane.

Using a procedure analogous to Example 36C, 3'-(4-methoxyphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane (0.22 g, 0.6 mmol) is reacted for 8 h to give the title compound (0.2 g, 95%).

H-NMR (400 mHz, CDCl₃): 7.00 (2H, d, J = 8.8 Hz), 6.84 (2H, s), 6.71 (2H, d, J = 8.8 Hz), 4.60 (1H, s), 3.26 (3H, s), 2.30 (6H, s), 2.00 (4H, q, J = 7.6 Hz), 0.58 (6H, t, J = 7.6 Hz).

20

C. 3'-[4-(2-Oxo-3,3-dimethylbutoxy)-phenyl]-3'-[3,5-dimethyl-4-methylsulfonyloxy-phenyl]pentane.

-106-

Using a procedure analogous to Example 36D, 3'-(4-hydroxyphenyl)-3'-(3,5-dimethyl-4-methylsulfonyloxy-phenyl)pentane (0.19 g, 0.54 mmol) gives the title compound (173 mg, 70 %).

H-NMR (300 mHz, DMSO-d6): δ 7.04 (2H, d, J = 8.2 Hz), 6.90 (2H, s), 6.75 (2H, d, J = 8.2 Hz), 5.04 (2H, s), 3.26 (3H, s), 2.24 (6H, s), 2.02 (4H, q, J = 7.0 Hz), 1.15 (9H, s), 0.53 (6H, t, J = 7.0 Hz).

ES/MS: 478.3 (M+NH4).

10

Example 42

Preparation of 3'-[3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3'-[4-(methylsulfonyloxy)phenyl]pentane.

15 A. 3-(3-Chloro-4-hydroxyphenyl)-3-pentanol.

To a solution of methyl 3-chloro-4-hydroxybenzoate (25.0 g, 133 mmol) in THF (250 mL) is added dropwise 1.0 M ethylmagnesium bromide/THF (442 mL, 442 mmol) at

-107-

a rate maintaining the temperature below 27 °C. The brownish grey reaction is stirred for 72 h. The reaction mixture is cooled in an ice bath and quenched with satd ammonium chloride (1 ml portions) until evolution of ethane subsides. Additional satd NH₄Cl solution is added (total of 50mL) and the mixture is concentrated to remove most of the

5 THF. The residue is added to water and ether, filtered through diatomaceous earth, and partitioned. The organic layer is washed with brine (3 X), MgSO₄ dried, and concentrated to give the title compound (28.6 g, 99%).

H-NMR (300 mHz, CDCl₃): δ 7.38 (1H, d, J = 1.6 Hz), 7.07 (1H, dd, J = 8.4 Hz, J = 1.6 Hz), 6.95 (1H, d, J = 8.4 Hz), 5.53 (1H, br s), 1.80 (4H, m), 0.76 (6H, t, J = 7.6 Hz).

10 IR (CHCl₃): 3600 cm⁻¹, 3540 cm⁻¹

TOF MS EI+ 214.076; Calc. m/z. 214.0761

B. [E, Z]-3-(3-Chloro-4-hydroxyphenyl)-3-pentene

15

A mixture of 3-(3-chloro-4-hydroxyphenyl)-3-pentanol (10.0 g, 46.5 mmol), pTSA monohydrate (20 mg, catalytic amount), and toluene (300 mL) is heated on a steam bath for 3 h. The toluene solution is cooled to RT, washed with satd sodium carbonate solution (25 mL), MgSO₄ dried, and concentrated to give the title compounds as a [E:Z] isomeric mixture of [85:15] (9.2 g, quant).

TLC (CHCl₃): Rf ~0.7

H-NMR (300 mHz, DMSO-d6): δ 6.85-7.30 (3H, m), 5.65 (0.85H, q, J = 6.8 Hz), 5.43 (0.15H, q, J = 6.8 Hz), 2.43 (1.7H, q, J = 7.6 Hz), 2.28 (0.3H, q, J = 7.6 Hz),

25 1.72 (2.55H, d, J = 7.6 Hz), 1.52 (0.45H, d, J = 7.6 Hz), 0.90 (2.55H, t, J = 7.6 Hz), 0.85 (0.45H, t, J = 7.6 Hz)..

-108-

C. [E,Z]-3-[3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene

5

A mixture of [E,Z]-3-(3-Chloro-4-hydroxyphenyl)-3-pentene (4.00 g, 20.3 mmol) and 1-chloropinacolone (2.73 g, 20.3 mmol), anhydrous KI (0.17 g, 1.0 mmol), K₂CO₃ (14.0 g, 102 mmol) and acetonitrile (80 mL) is refluxed for 3 h. The reaction is cooled to RT and concentrated. The residue is partitioned between methylene chloride (50 mL) and ice water (50 mL). The organic layer is MgSO₄ dried, concentrated, and chromatographed (40% to 70% chloroform in hexane) to give the title compounds as an 85 : 15 [E, Z] mixture (5.07 g, 85%).

H-NMR (300 mHz, DMSO-d6): δ 7.37 (0.85H, d, J = 2.1 Hz), 7.22 (0.85H, dd, J=2.1, J = 8.6 Hz), 7.18 (0.15H, d, J = 2.1 Hz), 7.03 (0.15H, dd, J = 2.0 Hz, J = 8.4 Hz), 6.88 (0.15H, d, J = 8.4 Hz), 6.85 (0.85H, d, J = 8.6 Hz), 5.71 (0.85H, m), 5.52 (0.15H, m), 5.25 (2H, s), 2.45 (1.70H, q, J = 7.6 Hz), 2.30 (0.30H, q, J = 7.6 Hz), 1.75 (2.55H, d, J = 7.6 Hz), 1.53 (0.45H, d, J = 7.6 Hz), 1.17 (9H, s), 0.91 (2.55H, t, J = 7.6 Hz), 0.88 (0.45H, t, J = 7.6 Hz).

TOF MS EI+ : 294.139; Calc. m/z 294.1387.

D. 3'-(3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane.

-109-

5 A -20 °C solution of [E,Z]-3-[3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene (4.5 g, 15.2 mmol), phenol (17.2 g, 183 mmol) and methylene chloride (30 mL) is treated with BF₃-etherate (0.863 g, 6.1 mmol) and stirred for 30 m while maintaining the temperature near -20 °C. The resulting light reddish brown solution is allowed to warm to 0 °C and kept at that temperature for 16 h. The reaction is distilled at 45 °C/0.04
10 mm to remove most of the excess phenol. The residue is treated with powdered
NaHCO₃ (600 mg), ethylene glycol (15 ml), and distilled to remove the last of the phenol and almost all of the glycol. The resulting viscous tan oily residue is cooled to RT and distributed between sat NaHCO₃ (25 mL) and ethyl acetate (200 mL). The organic layer is separated, washed with water (5 x 50 mL), Na₂SO₄ dried, and concentrated to give the
15 title compound as an oil (5.8 g, 98%).

H-NMR (300 mHz, CDCl₃): 7.21 (1H, d, J = 2.3 Hz), 6.99 (2H, d, J = 8.7 Hz), 6.95 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.75 (2H, d, J = 8.7 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 4.86 (1H, s), 2.02 (4H, q, J = 7.3 Hz), 1.28 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

ES(+) MS m/z: 389.3 (M+H); calc. m/z 389.1883 (M+H).

20

E. 3'-(3-Chloro-4-(2-Oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane.

-110-

5 Using a procedure analogous to Example 17 with brine and satd NaHCO₃ washes, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane gives the title compound as a colorless oil (1.16 g., 97 %).

H-NMR (300 mHz, CDCl₃): δ 7.15-7.20 (1H, m), 6.91 (2H, dd, J = 2.3 Hz, J = 8.7 Hz), 6.61 (1H, d, J = 8.7 Hz), 4.91 (2H, s), 3.14 (3H, s), 2.04 (4H, q, J = 7.4 Hz), 1.26 (9H, s), 10 0.62 (6H, t, J = 7.4 Hz).

IR (CHCl₃) 1727.91 cm⁻¹.

ES(+) MS m/z: 489.2 (M+Na); Calc. m/z 489.1478 (M+Na).

Example 43

15 Preparation of racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane.

Using a procedure analogous to Example 1C with acetone quench, 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane gives the title compound as an oil (646 mg, 99%).

H-NMR (300 mHz, DMSO-D6): δ 7.0-7.3 (7H, m), 4.74 (1H, d), 4.11 (1H, dd), 3.86 (1H, dd), 4.97 (1H, m), 3.36 (3H, s), 3.32 (1H, s), 2.06 (4H, q, J = 7.3 Hz), 0.93 (9H, s), 0.57 (6H, t, J = 7.3 Hz).

-111-

IR (CHCl₃): 3587.94 cm⁻¹.

ES(+) MS m/z: 486.3 (M+NH₄), 491.2 (M+Na); Calc. 486.2081 (M+NH₄), 491.1713 (M+Na).

5

Example 44 and Example 45

Preparation of enantiomers of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane.

10 A racemic mixture 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane (558 mg) is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 44 (199 mg, 36%) and enantiomer 2, Example 45 (193 mg, 35%).

Enantiomer 1, Example 44

15 HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 6.1 m; 240 nm; ee 100% by HPLC.

H-NMR (300 MHz, CDCl₃): δ 7.1-7.3 (5H, m), 6.95 (1H, dd, J = 2.1, J = 8.6), 6.83 (1H, d, J = 8.6), 4.17 (1H, dd), 3.88 (1H, t), 3.72 (1H, m), 3.17 (3H, s), 2.58 (1H, d), 2.05 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

20 FAB(+) MS m/z [M]: 468.2; calc. m/z 468.1737.

Enantiomer 2, Example 45

HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 8.6 m; 240 nm; ee 98.4% by HPLC.

25 H-NMR (300 MHz, CDCl₃): δ 7.1-7.3 (5H, m), 6.95 (1H, dd, J = 2.1, J = 8.6), 6.83 (1H, d, J = 8.6), 4.17 (1H, dd), 3.88 (1H, t), 3.72 (1H, m), 3.17 (3H, s), 2.58 (1H, d), 2.05 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

FAB(+) MS m/z [M]: 468.3; calc. m/z 468.1737.

-112-

Example 46

Preparation of 3'-(3-chloro-4-(2-Oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane.

5

10 Using a procedure analogous to Example 17 at RT with potassium phosphate monobasic/sodium hydroxide buffer quench, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane and triflic anhydride give the title compound as a colorless oil (3.7g, 69%).
H-NMR (300 mHz, DMSO-D6): δ 7.40 (2H, d, J = 8.7 Hz), 7.33 (2H, d, J = 8.7 Hz), 7.15 (1H, d, J = 2.1 Hz), 6.68 (1H, dd, J = 2.1 Hz, J = 8.6 Hz), 6.78 (2H, d, J = 8.6 Hz), 5.22 (2H, s), 2.07 (4H, q, J = 7.3 Hz), 1.17 (9H, s), 0.62 (6H, t, J = 7.3 Hz).
FAB+ MS: 521.0 (M+H); calc. 521.1376 (M+H).
ES MS: 521.3 (M+1), 538.3 (M+NH4), 543.2 (M+Na)

15

Example 47

Preparation of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane.

20

-113-

Using a procedure analogous to Example 1C, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane gives the title compound as a colorless oil (495 mg, 99%).

⁵ H-NMR (300 mHz, CDCl₃): δ 7.21 (2H, d, J = 8.8 Hz), 7.16 (2H, d, J = 8.8 Hz), 6.97 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.84 (1H, d, J = 8.6 Hz), 4.18 (1H, dd, J = 2.6 Hz, J = 9.0 Hz), 3.89 (t, J = 8.9 Hz), 3.73 (1H, dt, J = 2.6, J = 8.9, J = 3.0), 2.57, (1H, d, J = 3.0 Hz), 2.06 (4H, q, J = 7.3 Hz), 1.04 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

¹⁰ FAB(+) MS m/z [M]: 522.1; calc. 522.1455.

ES (+) MS m/z: 540.3 (M+NH₄); calc 540.1798.

Example 48

¹⁵ Preparation of 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl)pentane.

-114-

A. [E,Z]-3-[3-Chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene.

5 Using a procedure analogous to Example 17, [E,Z]-3-(3-chloro-4-hydroxyphenyl)-3-pentene, triflic anhydride, and diisopropylethylamine give the title compound as a brown oil in a [E:Z] ratio of 3:1 (8.7 g, quant).

10 H-NMR (300 mHz, CDCl3): δ 7.01-7.40 (3H, m), 5.67 (0.75H, q, J = 6.9 Hz), 5.53 (0.25H, q, J = 6.9 Hz), 2.41 (1.5H, q, J = 7.6 Hz), 2.24 (0.5H, q, J = 7.6 Hz), 1.84 (2.25H, d, J = 7.6 Hz), 1.48 (0.75H, d, J = 7.6 Hz), 0.91 (2.25H, t, J = 7.6 Hz), 0.86 (0.75H, t, J = 7.6 Hz).

TOF MS EI+ :328.015; calc. 328.0226.

B. 3'-(4-hydroxy-3-methylphenyl)-3'-[3-chloro-4-(methylsulfonyloxy)-

15 phenyl]pentane.

20 Using a procedure analogous to Example 42D, [E,Z]-3-[3-chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene and o-cresol give the title compound as a pale tan oil (4.29g, 38%).

-115-

H-NMR (300 mHz, CDCl₃): 6.5 to 7.3 (6H, m) 4.57 (1H, s), 2.21 (3H, s), 2.05 (4H, q, J = 7.3 Hz), 0.62 (6H, t, J = 7.3 Hz).

ES(-) MS m/z: 435.1 (M-H); calc. 435.0645.

5 C. Preparation of 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)-phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl]pentane.

NOTE: Triflate Rearrangement Procedure

10

Using a procedure analogous to Example 42C, 3'-(3-chloro-4-hydroxyphenyl)-3'-[3-methyl-4-(methylsulfonyloxy)phenyl]pentane and chromatographies (30% to 50%

15 chloroform/Hex; Hex to 10% EtOAc/Hex) to give the title compound (2.61 g, 53%).

H-NMR (300 mHz, CDCl₃): δ 7.15 (1H, d, J = 2.3 Hz), 7.11 (1H, d, J = 8.4 Hz), 7.04 (1H, d, J = 2.3 Hz), 7.02 (1H, dd, J = 2.3 Hz, J = 8.4 Hz), 6.89 (1H, dd, J = 8.6 Hz, J = 2.3 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 2.32 (3H, s), 2.03 (4H, q, J = 7.2 Hz), 1.26 (9H, s), 0.60 (6H, t, J = 7.2 Hz).

20 ES(+) MS m/z: 552.2 (M+NH₄); calc. 552.1798

FAB(+) MS m/z [M]: 534.9; calc. 534.

Example 49

Preparation of 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl]pentane.

-116-

Using a procedure analogous to Example 1C, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(methylsulfonyloxy)phenyl)pentane gives
5 the title compound (719 mg, 98%).

H-NMR (300 mHz, CDCl₃): δ 7.15 (1H, d, J = 2.3 Hz), 7.13 (1H, d, J = 8.4 Hz), 7.05 (1H, d, J = 2.0 Hz), 7.03 (1H, dd, J = 2.3 Hz, J = 8.4 Hz), 6.96 (1H, dd, J = 8.6 Hz, J = 2.3 Hz), 6.86 (1H, d, J = 8.6 Hz), 4.20 (1H, dd, J = 8.9, 2.5 Hz), 3.906 (1H, t, J = 8.9 Hz), 3.75 (1H, dd, J = 8.9, 2.5 Hz), 2.59 (1H, br s), 2.34 (3H, s), 2.06 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.63 (6H, t, J = 7.3 Hz).

ES(+) MS m/z: 554.2 (M+NH₄); calc. 554.1954.

FAB(+) MS m/z [M]: 536.1; calc. 536.1661

15

Example 50

Preparation of 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-(methylsulfonyloxy)phenyl)pentane.

20 A. 3-(3-Chloro-4-hydroxyphenyl)-3-pentanol.

-117-

To a solution of methyl 3-chloro-4-hydroxybenzoate (25.0 g, 133 mmol) in THF (250 mL) is added dropwise 1.0 M ethylmagnesium bromide in THF (442 mL, 442 mmol) so as to maintain the temperature below 27 °C. The resulting brownish grey solution is allowed to stir for 72 h during which time a cream-colored gelatinous
 5 precipitate is formed. The reaction mixture is cooled in an ice bath and quenched with 1 mL portions of sat. ammonium chloride solution until evolution of ethane subsides. Additional NH₄Cl solution is added (to a total of 50mL) and the resulting mixture is concentrated to remove most of the THF. The resulting residue is distributed into water and ether and filtered through diatomaceous earth to break the partial emulsion that forms.
 10 The organic layer is washed 3 times with sat. NaCl, dried over anhydrous magnesium sulfate and concentrated under vacuum to give the title compound (28.6 g, 99%).

H-NMR (300 mHz, CDCl₃): δ 7.38 (1H, d, J = 1.6 Hz), 7.07 (1H, dd, J = 8.4 Hz, J = 1.6 Hz), 6.95 (1H, d, J = 8.4 Hz), 5.53 (1H, br s), 1.80 (4H, m), 0.76 (6H, t, J = 7.6 Hz).
 15 IR (CHCl₃): 3600 cm⁻¹, 3540 cm⁻¹
 TOF MS EI+ 214.076; Calc. m/z. 214.0761

B. [E, Z]-3-(3-Chloro-4-hydroxyphenyl)-3-pentene

20

A mixture of 3-(3-chloro-4-hydroxyphenyl)-3-pentanol (10.0 g, 46.5 mmol), p-toluene sulfonic acid monohydrate (20 mg, catalytic amount), and toluene (300 mL) ~~are~~ heated on a steam bath for 3 h. Analysis by TLC (silica gel, CHCl₃) shows loss
 25 of the starting material and formation of a more mobile spot at Rf ~0.7. The toluene solution is allowed to cool to RT and is washed with sat. sodium carbonate solution (25 mL) and dried over anhydrous magnesium sulfate. Concentration under reduced pressure gives the title mixture of [E, Z]-isomeric compounds in a ratio of

-118-

approximately 85 : 15, respectively (9.2 g, 100%). The product can be used without further purification.

H-NMR (300 mHz, DMSO-d6): δ 6.85-7.30 (3H, m), 5.65 (0.85H, q, J = 6.8 Hz), 5.43 (0.15H, q, J = 6.8 Hz), 2.43 (1.7H, q, J = 7.6 Hz), 2.28 (0.3H, q, J = 7.6 Hz), 1.72 (2.55H, d, J = 7.6 Hz), 1.52 (0.45H, d, J = 7.6 Hz), 0.90 (2.55H, t, J = 7.6 Hz), 0.85 (0.45H, t, J = 7.6 Hz)..

C. [E,Z]-3-[3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene

10

[E,Z]-3-(3-Chloro-4-hydroxyphenyl)-3-pentene (4.00 g, 20.3 mmol) and 1-chloropinacolone (2.73 g, 20.3 mmol), anhydrous KI (0.17 g, 1.0 mmol), K2CO3 (14.0 g, 15 102 mmol) and acetonitrile (80 mL) are combined and heated at reflux for 3 h. The reaction mixture is allowed to cool to RT and most of the solvent is removed by concentration under reduced pressure. The resulting solid residue is distributed between methylene chloride (50 mL) and ice water (50 mL) and the layers are separated. The organic layer is dried over anhydrous magnesium sulfate and concentrated to provide an oil, ~ 6.0 g. The crude product is purified by silica gel chromatography using a gradient of 40% to 70% chloroform in hexane. Concentration of fractions containing either or both of the desired isomers provides the title compounds as an 85 : 15 [E, Z] mixture, respectively (5.07 g, 85%).

H-NMR (300 mHz, DMSO-d6): δ 7.37 (0.85H, d, J = 2.1 Hz), 7.22 (0.85H, dd, J =2.1, J = 8.6 Hz), 7.18 (0.15H, d, J = 2.1 Hz), 7.03 (0.15H, dd, J = 2.0 Hz, J = 8.4 Hz), 6.88 (0.15H, d, J = 8.4 Hz), 6.85 (0.85H, d, J = 8.6 Hz), 5.71 (0.85H, m), 5.52 (0.15H, m), 5.25 (2H, s), 2.45 (1.70H, q, J = 7.6 Hz), 2.30 (0.30H, q, J = 7.6 Hz), 1.75 (2.55H, d, J = 7.6

-119-

Hz), 1.53 (0.45H, d, J = 7.6 Hz), 1.17 (9H, s), 0.91 (2.55H, t, J = 7.6 Hz), 0.88 (0.45H, t, J = 7.6 Hz).

TOF MS EI+ : 294.139; Calc. m/z 294.1387.

5 D. 3'-[3-Chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3'-(4-hydroxyphenyl)pentane.

10

A solution of [E,Z]-3-[3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl]-3-pentene (4.5 g, 15.2 mmol) and phenol (17.2 g, 183 mmol) in methylene chloride (30 mL) is carefully cooled to -20 °C so as not to cause crystallization of the phenol. The cold solution is treated with BF_3 -etherate (0.863 g, 6.1 mmol) and the resulting mixture is stirred for 30 m
15 while the temperature is maintained near -20 °C. The resulting light reddish brown solution is then allowed to warm to 0 °C and kept at that temperature for 16 h. The reaction mixture is placed under vacuum (0.04 mm, 45 °C oil bath) and distilled to remove most of the excess phenol. When the distillation slows, the residue is treated with powdered NaHCO_3 (600 mg) and ethylene glycol (15 ml) and the distillation is resumed
20 to remove the last of the phenol and almost all of the glycol. The resulting viscous tan oily residue is cooled to RT and distributed between sat NaHCO_3 (25 mL) and ethyl acetate (200 mL). The organic layer is separated and washed with water (5 x 50 mL), dried over anhydrous sodium sulfate and concentrated to give the title product as a nearly colorless oil (5.8 g, 98%) which requires no further purification.
25 H-NMR (300 MHz, CDCl_3): 7.21 (1H, d, J = 2.3 Hz), 6.99 (2H, d, J = 8.7 Hz), 6.95 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.75 (2H, d, J = 8.7 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 4.86 (1H, s), 2.02 (4H, q, J = 7.3 Hz), 1.28 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

-120-

ES(+) MS m/z: 389.3 (M+H); calc. m/z 389.1883 (M+H).

E. 3'-[3-Chloro-4-(2-Oxo-3,3-dimethylbutoxy)phenyl]-3'-(4-methylsulfonyloxyphenyl)pentane.

5

To 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane (1.00

10 g, 2.57 mmol) in methylene chloride (100mL) is added successively by syringe triethyl
amine (0.390 g, 3.85 mmol) and methanesulfonyl chloride (0.368, 0.25 mL, 3.21 mmol).

After stirring the reaction mixture for 2 h, it is concentrated to near dryness and the residue is distributed between EtOAc (125 mL) and 0.1 N HCl (50 mL). The organic layer is separated and washed with sat. NaCl and with sat. NaHCO₃, dried over

15 anhydrous magnesium sulfate and, concentrated. Drying of the residue under high vacuum provides the title compound as a colorless oil (1.16 g., 97 %).

H-NMR (300 mHz, CDCl₃): δ 7.15-7.20 (1H, m), 6.91 (2H, dd, J = 2.3 Hz, J = 8.7 Hz), 6.61 (1H, d, J = 8.7 Hz), 4.91 (2H, s), 3.14 (3H, s), 2.04 (4H, q, J = 7.4 Hz), 1.26 (9H, s), 0.62 (6H, t, J = 7.4 Hz).

20 IR (CHCl₃) 1727.91 cm⁻¹.

ES(+) MS m/z: 489.2 (M+Na); Calc. m/z 489.1478 (M+Na).

-121-

Example 51

Preparation of racemic 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(4-methylsulfonyloxyphenyl)pentane.

5 To 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-methylsulfonyloxyphenyl)pentane (650 mg, 1.39 mmol) in 45 mL of MeOH at 0 °C. is added sodium borohydride (55.4 mg, 1.46 mmol). The reaction mixture is allowed to warm to RT and after 16h the excess reagent is destroyed by the addition of acetone (1 ml.). The resulting solution is concentrated to near dryness under reduced pressure and the residue is distributed between methylene chloride (20 mL) and water (20 mL). The organic layer is separated and the aqueous layer is extracted with additional methylene chloride (10 mL). The combined organic extracts are dried over anhydrous sodium sulfate and concentrated to an oil which is the title compound (646 mg, 99%).

10 H-NMR (300 mHz, DMSO-D6): δ 7.0-7.3 (7H, m), 4.74 (1H, d), 4.11 (1H, dd), 3.86 (1H, dd), 4.97 (1H, m), 3.36 (3H, s), 3.32 (1H, s), 2.06 (4H, q, J = 7.3 Hz), 0.93 (9H, s), 0.57 (6H, t, J = 7.3 Hz).

15 IR (CHCl₃): 3587.94 cm⁻¹.

ES(+) MS m/z: 486.3 (M+NH₄), 491.2 (M+Na); Calc. 486,2081 (M+NH₄), 491.1713 (M+Na).

20 for Example 51A and Example 51B

-122-

Preparation of enantiomers of 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(4-methylsulfonyloxyphenyl)pentane.

A racemic mixture 3'-[3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl]-3'-(4-methylsulfonyloxyphenyl)pentane (558 mg) is chromatographed with a Chiralcel AD column to give enantiomer 1, Example 2A (199 mg, 36%) and enantiomer 2, Example 2B (193 mg, 35%).

for Enantiomer 1, Example 51A

HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 6.1 m; 240 nm; ee 100% by HPLC.

H-NMR (300 MHz, CDCl₃): δ 7.1-7.3 (5H, m), 6.95 (1H, dd, J = 2.1, J= 8.6), 6.83 (1H, d, J = 8.6), 4.17 (1H, dd), 3.88 (1H, t), 3.72 (1H, m), 3.17 (3H, s), 2.58 (1H, d), 2.05 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

FAB(+) MS m/z [M]: 468.2; calc. m/z 468.1737.

15

for Enantiomer 2, Example 51B

HPLC: Chiralpak AD (4.6 X 150 mm); 100% 3A Alcohol; 0.6 mL/m (flow rate); rt = 8.6 m; 240 nm; ee 98.4% by HPLC.

H-NMR (300 MHz, CDCl₃): δ 7.1-7.3 (5H, m), 6.95 (1H, dd, J = 2.1, J= 8.6), 6.83 (1H, d, J = 8.6), 4.17 (1H, dd), 3.88 (1H, t), 3.72 (1H, m), 3.17 (3H, s), 2.58 (1H, d), 2.05 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

FAB(+) MS m/z [M]: 468.3; calc. m/z 468.1737.

25

30

-123-

Example 52

Preparation of 3'-(3-chloro-4-(2-Oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane.

5

To 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(4-hydroxyphenyl)pentane.

(4.00 g, 10.3 mmol) and diisopropylethylamine (1.40 g, 1.88 mL, 10.8 mmol) in 160 mL of methylene chloride is added by syringe trifluoromethanesulfonic anhydride (3.05 g, 1.82 mL, 10.8 mmol) at RT. After stirring the mixture for 16 h, the resulting

10 brown solution is poured over pH=7.00 potassium phosphate monobasic/sodium hydroxide buffer (150 mL) and ice (150 g). The organic layer is separated and washed with additional buffer (2 x 150 mL), dried over anhydrous magnesium sulfate, and concentrated to an almost colorless viscous oil (5.2 g). The oil was purified by chromatography over silica gel with a gradient of 25% to 75% of chloroform-hexane.

15 Appropriate fractions are combined and concentrated to provide the title compound as a clear, colorless oil (3.7g, 69%).

H-NMR (300 mHz, DMSO-D6): δ 7.40 (2H, d, J = 8.7 Hz), 7.33 (2H, d, J = 8.7 Hz), 7.15 (1H, d, J = 2.1 Hz), 6.68 (1H, dd, J = 2.1 Hz, J = 8.6 Hz), 6.78 (2H, d, J = 8.6 Hz), 5.22 (2H, s), 2.07 (4H, q, J = 7.3 Hz), 1.17 (9H, s), 0.62 (6H, t, J = 7.3 Hz).

20 FAB+ MS: 521.0 (M+H); calc. 521.1376 (M+H).

ES MS: 521.3 (M+1), 538.3 (M+NH4), 543.2 (M+Na)

25

30

-124-

Example 53

Preparation of racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane.

5

To 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(4-trifluoromethylsulfonyloxyphenyl)pentane (500 mg, 0.96 mmol) in 40 mL of MeOH at 0 °C is added sodium borohydride (38 mg, 1.0 mmol). After 30 min at 0 °C, the excess reagent is destroyed by the addition of acetone (1 mL.) and pH=7.00 potassium

10 phosphate monobasic/sodium hydroxide buffer (10 mL). The resulting mixture is concentrated to near dryness under reduced pressure and the residue is distributed between methylene chloride (20 mL) and water (20 mL). The organic layer is separated and the aqueous layer is extracted with additional methylene chloride (10 mL). The combined organic extracts are dried over anhydrous magnesium sulfate and 15 concentrated to a colorless oil which is the title compound (495 mg, 99%).

H-NMR (300 MHz, CDCl₃): δ 7.21 (2H, d, J = 8.8 Hz), 7.16 (2H, d, J = 8.8 Hz), 6.97 (1H, dd, J = 2.3 Hz, J = 8.6 Hz), 6.84 (1H, d, J = 8.6 Hz), 4.18 (1H, dd, J = 2.6 Hz, J = 9.0 Hz), 3.89 (t, J = 8.9 Hz), 3.73 (1H, dt, J = 2.6, J = 8.9, J = 3.0), 2.57, (1H, d, J = 3.0 Hz), 2.06 (4H, q, J = 7.3 Hz), 1.04 (9H, s), 0.62 (6H, t, J = 7.3 Hz).
FAB(+) MS m/z [M]: 522.1; calc. 522.1455.
ES (+) MS m/z: 540.3 (M+NH₄); calc 540.1798.

25

-125-

Example 54

Preparation of 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl)pentane.

5

A. [E,Z]-3-[3-Chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene.

In a procedure analogous to Example 52, [E,Z]-3-(3-chloro-4-hydroxyphenyl)-3-pentene
10 (5.15 g, 26 mmol), trifluoromethanesulfonic anhydride (8.13 g, 28 mmol), and diisopropylethylamine (3.7 g, 5.0 mL, 28 mmol) are reacted in 200 mL of methylene chloride to give the title compound as a brown oil (8.7 g, approx. 100%) which is used without further purification. The {E, Z} olefin isomers are present in a ratio of about 3 to 1, respectively.

15 H-NMR (300 mHz, CDCl₃): δ 7.01-7.40 (3H, m), 5.67 (0.75H, q, J = 6.9 Hz), 5.53 (0.25H, q, J = 6.9 Hz), 2.41 (1.5H, q, J = 7.6 Hz), 2.24 (0.5H, q, J = 7.6 Hz), 1.84 (2.25H, d, J = 7.6 Hz), 1.48 (0.75H, d, J = 7.6 Hz), 0.91 (2.25H, t, J = 7.6 Hz), 0.86 (0.75H, t, J = 7.6 Hz).

TOF MS EI+ :328.015; calc. 328.0226.

20 In an alternative preparation, a solution of [E,Z]-3-(3-chloro-4-hydroxyphenyl)-3-pentene (9.85 g, 50 mmol), and triethyl amine (5.32 g, 7.29 mL, 52 mmol) in 400 mL of methylene chloride at -35 deg C is treated slowly with trifluoromethanesulfonic anhydride (8.13 g, 28 mmol) added by syringe, so as to keep the temperature below minus 30 °C. The resulting pale yellow solution is stirred for 3 h while it is allowed to warm to RT. The reaction mixture is then poured over pH=7.00 potassium phosphate
25

-126-

monobasic/sodium hydroxide buffer (150 mL) and ice (150 g). The organic layer is separated and washed with additional buffer (4 x 150 mL), dried over anhydrous magnesium sulfate, and concentrated to a pale yellow oil (16.7 g, 98%). Final purification was accomplished by chromatography over silica gel using 10%

5 chloroform in hexane as the eluent. Fractions containing only the title olefins as determined by TLC (silica gel; hexane) are combined to provide 11.7 g (71%) of the purified [E,Z] mixture of olefins in a ratio of 9 to 1, respectively.

H-NMR (300 mHz, CDCl₃): δ 7.01-7.40 (3H, m), 5.67 (0.9H, q, J = 6.9 Hz), 5.53 (0.1H, q, J = 6.9 Hz), 2.41 (1.8H, q, J = 7.6 Hz), 2.24 (0.2H, q, J = 7.6 Hz), 1.84 (2.7H, d, J =

10 7.6 Hz), 1.48 (0.3H, d, J = 7.6 Hz), 0.91 (2.7H, t, J = 7.6 Hz), 0.86 (0.3H, t, J = 7.6 Hz)..

B. 3'-(4-hydroxy-3-methylphenyl)-3'-[3-chloro-4-(methylsulfonyloxy)-phenyl]pentane.

.15

In a procedure analogous to Example 50D, [E,Z]-3-[3-chloro-4-(trifluoromethylsulfonyloxy)phenyl]-3-pentene (8.7 g, 26 mmol) and o-cresol (17.2 g, 159 mmol) in 200 mL methylene chloride are treated at RT with BF₃-etherate (1.47 g, 10.4 mmol) and the resulting mixture is stirred for 30 m at ambient temperature. The resulting 20 light reddish brown solution is then worked up by the distillation and extraction procedure analogous to that used in the aforementioned example. The crude product was obtained as a tan oil which is purified by chromatography over silica gel with a gradient of 50% to 60% chloroform in hexane. Fractions that contained the desired product were combined and concentrated to provide the title compound as a pale tan oil (4.29g, 38%).

-127-

H-NMR (300 mHz, CDCl₃): 6.5 to 7.3 (6H, m) 4.57 (1H, s), 2.21 (3H, s), 2.05 (4H, q, J = 7.3 Hz), 0.62 (6H, t, J = 7.3 Hz).

ES(-) MS m/z: 435.1 (M-H); calc. 435.0645.

5 C. Preparation of 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)-phenyl]-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl]pentane.

Note: (A Triflate Rearrangement Procedure)

10 In a procedure analogous to Example 50C, 3'-(3-chloro-4-hydroxyphenyl)-3'-(3-methyl-4-(methylsulfonyloxy)phenyl]pentane(4.00g, 9.17 mmol), 1-chloropinacolone (1.30 g, 9.62 mmol), anhydrous KI (76 mg, 0.46 mmol), and anhydrous K₂CO₃ (6.32 g, 45.9 mmol) are reacted in 125 mL acetonitrile. The title product is isolated and purified by silica gel chromatography using a gradient of 30% to 50% chloroform in hexane. Further 15 chromatography of mixed fractions with a hexane to 10% EtOAc gradient provides additional pure compound (total amount 2.61 g, 53%).

20 H-NMR (300 mHz, CDCl₃): δ 7.15 (1H, d, J = 2.3 Hz), 7.11 (1H, d, J = 8.4 Hz), 7.04 (1H, d, J = 2.3 Hz), 7.02 (1H, dd, J = 2.3 Hz, J = 8.4 Hz), 6.89 (1H, dd, J = 8.6 Hz, J = 2.3 Hz), 6.62 (1H, d, J = 8.6 Hz), 4.91 (2H, s), 2.32 (3H, s), 2.03 (4H, q, J = 7.2 Hz), 1.26 (9H, s), 0.60 (6H, t, J = 7.2 Hz).

ES(+) MS m/z: 552.2 (M+NH₄); calc. 552.1798

FAB(+) MS m/z [M]: 534.9; calc. 534.

Further NMR data: COSY data allowed the spin systems of the two aromatic rings to be grouped together. When the OCH₂ was selectively excited, a NOE is observed with a 25 resonance at 6.62 δ which is ortho only coupled. When the aromatic methyl (at 2.32 δ) was excited, a NOE is observed to a meta coupled proton at 7.04 δ. These resonances are not part of the same spin system, requiring the OCH₂ and aromatic methyl to be on

-128-

different rings. Therefore the triflate has migrated during the reaction and the isolated product has the structure shown above. (HMBC data also supports this conclusion.)

Example 55

5 Preparation of racemic 3'-(3-chloro-4-(2-hydroxy-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(trifluoromethylsulfonyloxy)phenyl)pentane.

In a procedure analogous to Example 51, 3'-(3-chloro-4-(2-oxo-3,3-dimethylbutoxy)phenyl)-3'-(3-methyl-4-(methylsulfonyloxy)phenyl)pentane (730 mg, 1.36 mmol) in 60 mL of MeOH is reduced by sodium borohydride (76 mg, 2.0 mmol). After 30 min, the mixture is quenched and worked up to provide the crude product which was purified by chromatography over silica gel with a gradient of hexane to 5% EtOAc in hexane to provide the title compound (719 mg, 98%).

15 H-NMR (300 mHz, CDCl₃): δ 7.15 (1H, d, J = 2.3 Hz), 7.13 (1H, d, J = 8.4 Hz), 7.05 (1H, d, J = 2.0 Hz), 7.03 (1H, dd, J = 2.3 Hz, J = 8.4 Hz), 6.96 (1H, dd, J = 8.6 Hz, J = 2.3 Hz), 6.86 (1H, d, J = 8.6 Hz), 4.20 (1H, dd, J = 8.9, 2.5 Hz), 3.906 (1H, t, J = 8.9 Hz), 3.75 (1H, dd, J = 8.9, 2.5 Hz), 2.59 (1H, br s), 2.34 (3H, s), 2.06 (4H, q, J = 7.3 Hz), 1.03 (9H, s), 0.63 (6H, t, J = 7.3 Hz).

20 ES(+) MS m/z: 554.2 (M+NH₄); calc. 554.1954.

FAB(+) MS m/z [M]: 536.1; calc. 536.1661

Compounds of the Invention – Salts, Stereoisomers, & Prodrugs:

25 Salts of the compounds represented by formulae I are an additional aspect of the invention. The skilled artisan will also appreciate that the family of compounds of formulae I include acidic and basic members and that the present invention includes pharmaceutically acceptable salts thereof.

In those instances where the compounds of the invention possess acidic or basic functional groups various salts may be formed which are more water soluble and physiologically suitable than the parent compound. Representative pharmaceutically acceptable salts, include but are not limited to, the alkali and alkaline earth salts such as 5 lithium, sodium, potassium, ammonium, calcium, magnesium, aluminum, zinc, and the like. Sodium and potassium salts are particularly preferred. Salts are conveniently prepared from the free acid by treating the acid in solution with a base or by exposing the acid to an ion exchange resin. For example, a carboxylic acid substituent on the compound of Formula I may be selected as -CO₂H and salts may be formed by reaction 10 with appropriate bases (e.g., NaOH, KOH) to yield the corresponding sodium and potassium salt.

Included within the definition of pharmaceutically acceptable salts are the relatively non-toxic, inorganic and organic base addition salts of compounds of the present invention, for example, ammonium, quaternary ammonium, and amine cations, 15 derived from nitrogenous bases of sufficient basicity to form salts with the compounds of this invention (see, for example, S. M. Berge, *et al.*, "Pharmaceutical Salts," *J. Pharm. Sci.*, 66: 1-19 (1977)). Moreover, the basic group(s) of the compound of the invention may be reacted with suitable organic or inorganic acids to form salts such as acetate, benzenesulfonate, benzoate, bicarbonate, bisulfate, bitartrate, borate, bromide, camsylate, 20 carbonate, chloride, choline, clavulanate, citrate, chloride, chlorprocaine, choline, diethanolamine, dihydrochloride, diphosphate, edetate, edisylate, estolate, esylate, ethylenediamine, fluoride, fumarate, gluceptate, gluconate, glutamate, glycolylarsanilate, hexylresorcinate, hydrabamine, bromide, chloride, hydrobromide, hydrochloride, hydroxynaphthoate, iodide, isothionate, lactate, lactobionate, laurate, malate, maleate, 25 malseate, mandelate, meglumine, mesylate, mesviante, methylbromide, methylnitrate, methylsulfate, mucate, napsylate, nitrate, oleate, oxalate, palmitate, pamoate, pentothenate, phosphate, polygalacturonate, procane, salicylate, stearate, subacetate, succinate, sulfate, tannate, tartrate, teoclate, tosylate, trifluoroacetate, trifluoromethane sulfonate, and valerate.

30 Certain compounds of the invention may possess one or more chiral centers and may thus exist in optically active forms. Likewise, when the compounds contain an alkenyl or alkenylene group there exists the possibility of cis- and trans- isomeric forms of

-130-

the compounds. The R- and S- isomers and mixtures thereof, including racemic mixtures as well as mixtures of cis- and trans- isomers, are contemplated by this invention.

Additional asymmetric carbon atoms can be present in a substituent group such as an alkyl group. All such isomers as well as the mixtures thereof are intended to be included

5 in the invention. If a particular stereoisomer is desired, it can be prepared by methods well known in the art by using stereospecific reactions with starting materials which contain the asymmetric centers and are already resolved or, alternatively by methods which lead to mixtures of the stereoisomers and subsequent resolution by known methods. For example, a chiral column may be used such as those sold by Daicel

10 Chemical Industries identified by the trademarks:

CHIRALPAK AD, CHIRALPAK AS, CHIRALPAK OD, CHIRALPAK OJ,

CHIRALPAK OA, CHIRALPAK OB, CHIRALPAK OC, CHIRALPAK OF,

CHIRALPAK OG, CHIRALPAK OK, and

CHIRALPAK CA-1.

15 By another conventional method, a racemic mixture may be reacted with a single enantiomer of some other compound. This changes the racemic form into a mixture of diastereomers. These diastereomers, because they have different melting points, different boiling points, and different solubilities can be separated by conventional means, such as crystallization.

20 The present invention is also embodied in mixtures of compounds of formulae I .

Prodrugs are derivatives of the compounds of the invention which have chemically or metabolically cleavable groups and become by solvolysis or under physiological conditions the compounds of the invention which are pharmaceutically active in vivo.

Derivatives of the compounds of this invention have activity in both their acid and base 25 derivative forms, but the acid derivative form often offers advantages of solubility, tissue compatibility, or delayed release in a mammalian organism (see, Bundgard, H., Design of Prodrugs, pp. 7-9, 21-24, Elsevier, Amsterdam 1985). Prodrugs include acid derivatives well known to practitioners of the art, such as, for example, esters prepared by reaction of the parent acidic compound with a suitable alcohol, or amides prepared by reaction of the

30 parent acid compound with a suitable amine. Simple aliphatic or aromatic esters derived from acidic groups pendent on the compounds of this invention are preferred prodrugs. In some cases it is desirable to prepare double ester type prodrugs such as (acyloxy) alkyl

-131-

esters or ((alkoxycarbonyl)oxy)alkyl esters. Particularly preferred esters to use as prodrugs are; methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, morpholinoethyl, and N,N-diethylglycolamido.

5 N,N-diethylglycolamido ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula (I) (in a medium such as dimethylformamide) with 2-chloro-N,N-diethylacetamide (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA; Item No.25,099-6).

10 Morpholinylethyl ester prodrugs may be prepared by reaction of the sodium salt of a compound of Formula I (in a medium such as dimethylformamide) 4-(2-chloroethyl)morpholine hydrochloride (available from Aldrich Chemical Co., Milwaukee, Wisconsin USA, Item No. C5,220-3). For example, prodrugs may be prepared by reaction of the sodium salt for a compound of Formula I with;

15 and sodium iodide to provide the ester prodrug pendent group

Also, lower alkyl (viz., C₁-C₈) ester prodrugs may be prepared by conventional means such as reacting the sodium or potassium salt (derived by forming the salt of any acidic compound of the invention; viz., reaction of a base such as KOH with an acidic group such as -CO₂H) of a compound of Formula I with an alkyl iodide such as methyl iodide, ethyl iodide, n-propyl iodide, isopropyl iodide. Typical ester prodrug substituents are

-132-

or

Pharmaceutical Formulations containing the Novel Compounds of the Invention:

Pharmaceutical formulations of the invention are prepared by combining (e.g., mixing) a therapeutically effective amount of the compound of the invention (compounds of Formula I) together with a pharmaceutically acceptable carrier or diluent. The present pharmaceutical formulations are prepared by known procedures using well-known and readily available ingredients.

In making the compositions of the present invention, the compounds of Formula I will usually be admixed with a carrier, or diluted by a carrier, or enclosed within a carrier which may be in the form of a capsule, sachet, paper or other container. When the carrier serves as a diluent, it may be a solid, semi-solid or liquid material which acts as a vehicle, or can be in the form of tablets, pills, powders, lozenges, elixirs, suspensions, emulsions, solutions, syrups, aerosols (as a solid or in a liquid medium), or ointment, containing, for example, up to 10% by weight of the compound. The compounds of the present invention are preferably formulated prior to administration.

The compounds of the invention may also be delivered by suitable formulations contained in a transderm patch. Alternatively, the compounds of the invention may be delivered to a patient by sublingual administration.

For the pharmaceutical formulations any suitable carrier known in the art can be used. In such a formulation, the carrier may be a solid, liquid, or mixture of a solid and a liquid. Solid form formulations include powders, tablets and capsules. A solid carrier can be one or more substances which may also act as flavoring agents, lubricants, solubilisers, suspending agents, binders, tablet disintegrating agents and encapsulating material.

Tablets for oral administration may contain suitable excipients such as calcium carbonate, sodium carbonate, lactose, calcium phosphate, together with disintegrating agents, such as maize, starch, or alginic acid, and/or binding agents, for example,

-133-

gelatin or acacia, and lubricating agents such as magnesium stearate, stearic acid, or talc.

In powders the carrier is a finely divided solid which is in admixture with the finely divided Active ingredient. In tablets the compound of Formula I is mixed with a carrier having the necessary binding properties in suitable proportions and compacted in the shape and size desired. The powders and tablets preferably contain from about 1 to about 99 weight percent of the compound which is the novel compound of this invention. Suitable solid carriers are magnesium carbonate, magnesium stearate, talc, sugar lactose, pectin, dextrin, starch, gelatin, tragacanth, methyl cellulose, sodium carboxymethyl cellulose, low melting waxes, and cocoa butter.

Sterile liquid form formulations include suspensions, emulsions, syrups and elixirs.

The Active Ingredient may be dissolved or suspended in a pharmaceutically acceptable carrier, such as sterile water, sterile organic solvent or a mixture of both. The compounds can often be dissolved in a suitable organic solvent, for instance aqueous propylene glycol. Other compositions can be made by dispersing the finely divided compounds of the invention in aqueous starch or sodium carboxymethyl cellulose solution or in a suitable oil.

20 **Methods of Using the Compounds of the Invention:**

Many disease states are benefited by treatment with the compounds of Formula I include, but are not limited to:

- disease states characterized by abnormal calcium regulation
- disease states characterized by abnormal cell proliferation
- 25 disease states characterized by abnormal cell differentiation
- disease states characterized by abnormal immune response
- disease states characterized by abnormal dermatological conditions
- disease states characterized by neurodegenerative condition
- disease states characterized by inflammation
- 30 disease states characterized by vitamin D sensitivity
- disease states characterized by hyperproliferative disorders.

-134-

Specific disease states benefited by treatment of the compounds of Formula I and II include, but are not limited to:

	Acne
5	Actinic keratosis
	Alopecia
	Alzheimer's disease
	Benign prostatic hyperplasia
	Bladder cancer
10	Bone maintenance in zero gravity
	Bone fracture healing
	Breast cancer
	Chemoprevention of Cancer
	Crohn's disease
	Colon cancer
15	Type I diabetes
	Host-graft rejection
	Hypercalcemia
	Type II diabetes
	Leukemia
20	Multiple sclerosis
	Myelodysplastic syndrome
	Insufficient sebum secretion
	Osteomalacia
	Osteoporosis
25	Insufficient dermal firmness
	Insufficient dermal hydration
	Psoriatic arthritis
	Prostate cancer
	Psoriasis
30	Renal osteodystrophy
	Rheumatoid arthritis
	Scleroderma

-135-

Skin cancer
Systemic lupus erythematosus
Skin cell damage from Mustard vesicants
Ulcerative colitis
5 Vitiligo
Wrinkles

Particularly preferred is the treatment of psoriasis and osteoporosis by administration to a mammal (including a human) of a therapeutically effective amount of compounds of Formulae I. By "pharmaceutically effective amount" it is meant that 10 quantity of pharmaceutical agent corresponding to formulae I which prevents, removes or reduces the deleterious effects of a disease state in mammals, including humans.

The specific dose of a compound administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the compound administered, 15 the route of administration and the condition being treated. Typical daily doses will contain a pharmaceutically effective amount typically in the range of from about 0.0001 mg/kg/day to about 50 mg/kg/day of body weight of an active compound of this invention. Preferably the dose of compounds of the invention will be from 0.0001 to 5 mg/kg/day of body weight.

20 Preferably compounds of the invention (e.g., per Formula I) or pharmaceutical formulations containing these compounds are in unit dosage form for administration to a mammal. The unit dosage form can be a capsule or tablet itself, or the appropriate number of any of these. The quantity of Active ingredient in a unit dose of composition may be varied or adjusted from about 0.0001 to about 1000 milligrams or more 25 according to the particular treatment involved. It may be appreciated that it is necessary to make routine variations to the dosage depending on the age and condition of the patient. Dosage will also depend on the route of administration. The compounds of the invention may be administered by a variety of routes including oral, aerosol, rectal, transdermal, sublingual, subcutaneous, intravenous, intramuscular, and 30 intranasal. Particularly preferred is the treatment of psoriasis with an ointment type formulation containing the compounds of the invention. The ointment formulation may be applied as needed, typically from one to 6 times daily.

-136-

Treatment of psoriasis is preferably done with topical application by a formulation in the form of a cream, oil, emulsion, paste or ointment containing a therapeutically effective amount of a compound of the invention.. The formulation for topical treatment contains from 0.5 to 0.00005 weight percent, preferably from .05 to 5 0.0005 weight percent, and most preferably from 0.025 to 0.001 of a Active Ingredient.

For example, two semisolid topical preparations useful as vehicles for VDR modulators in treatment and prevention of psoriasis are as follows:

Polyethylene Glycol Ointment USP (p. 2495)

Prepare Polyethylene Glycol Ointment as follows:

10 Polyethylene Glycol 3350 400 g.
 Polyethylene Glycol 400 600 g.
 To make 1000 g.

15 Heat the two ingredients on a water bath to 65C. Allow to cool, and stir until congealed. If a firmer preparation is desired, replace up to 100 g of the polyethylene glycol 400 with an equal amount of polyethylene glycol 3350.

Hydrophilic Ointment USP (p. 1216)

Prepare Hydrophilic Ointment as follows:

20 Methylparaben 0.25 g.
 Propylparaben 0.15 g.
 Sodium Lauryl Sulfate 10 g.
 Propylene Glycol 120 g.
 Stearyl Alcohol 250 g.
 White Petrolatum 250 g.
25 Purified Water 370 g.
 To make about 1000 g.

The Stearyl Alcohol and White Petrolatum are melted on a steam bath, and warmed to about 75C. The other ingredients, previously dissolved in the water are added, warmed to 75C, and the mixture stirred until it congeals.

30 For each of the above formulations the Active Ingredient is added during the heating step in an amount that is from 0.5 to 0.00005 weight percent, preferably from .05 to 0.0005 weight percent, and most preferably from 0.025 to 0.001 weight percent of the

-137-

total ointment weight. (Source: - United States Pharmacopoeia 24, United States Pharmacopeial Convention, 1999)

Conventional therapy for osteoporosis includes; (i) estrogens, (ii) androgens, (iii) 5 calcium supplements, (iv) vitamin D metabolites, (v) thiazide diuretics, (vi) calcitonin, (vii) bisphosphonates, (viii) SERMS, and (ix) fluorides (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77; the disclosure of which is incorporated herein by reference.). Any one or combination of these conventional therapies may be used in combination with 10 the method of treatment using compounds of Formulae I as taught herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention (e.g., as defined by formula I) may be administered separately or simultaneously with a conventional therapy. Alternatively, the vitamin D receptor modulator compounds of the invention may be combined with conventional therapeutic agents in a formulation 15 for treatment of osteoporosis such as set out below:

A formulation for treating osteoporosis comprising:

Ingredient (A1): a vitamin D receptor modulator represented by formula (I), or a pharmaceutically acceptable salt or prodrug derivative thereof;

20 Ingredient (B1):

one or more co-agents that are conventional for treatment
osteoporosis selected from the group consisting of:

- a. estrogens,
- b. androgens,
- c. calcium supplements,
- d. vitamin D metabolites,
- e. thiazide diuretics,
- f. calcitonin,
- g. bisphosphonates,
- h. SERMS, and
- i. fluorides.

30 Ingredient (C1): optionally, a carrier or diluent.

-138-

Typically useful formulations are those wherein the weight ratio of (A1) to (B1) is from 10:1 to 1:1000 and preferably from 1:1 to 1:100.

Combination Therapy for Psoriasis:

5 Conventional therapy for psoriasis includes topical glucocorticoids, salicylic acid, crude coal tar, ultraviolet light, and methotrexate (see, Harrison's Principles of Internal Medicine, 13th edition, 1994, published by McGraw Hill Publ., ISBN 0-07-032370-4, pgs.2172-77). Any one or combination of these conventional therapies may be used in combination with the method of treatment using compounds of Formulae I as taught
10 herein. For example, in a method of treating osteoporosis, the vitamin D receptor modulator compounds of the invention (e.g., as defined by formula I) may be topically administered separately or simultaneously with a conventional therapy. Alternatively, the vitamin D receptor modulator compounds of the invention may be combined with conventional therapeutic agents in a topically applied formulation for treatment of
15 osteoporosis such as set out below:

A formulation for treating psoriasis comprising:

Ingredient (A2): a vitamin D receptor modulator represented by formula (I), or a pharmaceutically acceptable salt or prodrug derivative thereof;

20 Ingredient (B2):
 one or more co-agents that are conventional for treatment psoriasis selected from the group consisting of:
 a. topical glucocorticoids ,
 b. salicylic acid, or
 c. crude coal tar.

Ingredient (C2): optionally, a carrier or diluent.

Typically useful formulations are those wherein the weight ratio of (A2) to (B2) is from 1:10 to 1:100000 and preferably from 1:100 to 1:10000.

-139-

Assays and Test Results:

Table 3
Summary of Experimental Results

Test Cmpd. ¹	RXR-VDR heterodime r ² EC ₅₀ (nM)	VDR EC ₅₀ (nM) (Caco-2 cells) ³	OCN Promoter ⁴ EC ₅₀ (nM)	Mouse Hypercal ⁵ μg/Kg/d
Ex. 1	3.41	117.81	2.72	
Ex. 2		46.5	5.1	50
Ex. 3		133	16.3	50
Ex. 4		164	0.91	
Ex. 5		1594.5	20.75	>500
Ex. 6		1138	11.3	300
Ex. 7		331	84	100
Ex. 8		34.75	3.48	
Ex. 9		13		
Ex. 10		15	0.3	
Ex. 12		112	2.325	
Ex. 14		89	9.77	<300

-140-

Ex. 17			3.75	
Ex. 18	69.56	485.21	7.625	1500
Ex. 19			16.75	
Ex. 20			28.1	500
Ex. 21			124.5	
Ex. 22			29.8	500
Ex. 23	0.817	6.0645	0.33	500
Ex. 24			44.65	<1000
Ex. 25	47.26	1285.266	34.25	
Ex. 26	5.697	333.00	3.685	<1000
Ex. 27			10.59	500
Ex. 28			17.9	1000
Ex. 29			4.585	100
Ex. 30			103.8	
Ex. 31			44	

-141-

Ex. 32			239.57	
Ex. 33			49.37	
Ex. 34			373.53	
Ex. 35	137.92	615.60	20.1	
Ex. 36 2044283	15.226	592.38	45.5	>3000
Ex. 37		308.25	67.23	
Ex. 38			2.085	<300
Ex. 39		18	1.79	<100
Ex. 40		374.5	1.905	300
Ex. 41		614	111.4	
Ex. 42	495.3014	728.4	25.15	<1000
Ex. 43,51			7.525.	
Ex. 44	2.208	86.604	2.4	
Ex. 45,51B	24.00	353.18	13	
Ex. 48			54.1	<1000
Ex 46 ,52			217.1	

-142-

Ex. 47,53	12.53	430.90	92.45	
AA	12	16	5	0.06
BB		225	11	20
CC		710000	10000	>30000

Table 4
Summary of Experimental Results

Test Cmpd. ¹	Kera. Prolif. IC ₅₀ (nM)	IL-10 IC ₅₀ (nM)
Ex. 14	2	
Ex. 17	2	
Ex. 18	32	
Ex. 21	67	
Ex. 25	14.55	
Ex. 26	4.4	
Ex. 36	36	
Ex. 42	9	
Ex. 43,51	4	
Ex. 45,51B	27	39.5087
Ex 46 ,52	90	

-143-

Ex. 47,53	300	
Ex. 48	13	
AE	18	

Explanation of Table 3 and 4 column numerical superscripts:

1. Test Compound coded with Example numbers correspond to the products of the same numbered example in the specification. Alphabetical symbols (e.g., "AA", "BZ")
 5 correspond to the chemical species identified by the same symbol in the specification.

"AA" = 1 α ,25-dihydroxyvitamin D₃

"BB" = 3-(4-{1-Ethyl-1-[4-(2-hydroxy-3,3-dimethyl-butoxy)-3-methyl-phenyl]-propyl}-2-methyl-phenoxy)-propane-1,2-diol

"CC" = 1-(4-{1-[4-(3,3-Dimethyl-2-oxo-butoxy)-3-methyl-phenyl]-cyclohexyl}-2-methyl-phenoxy)-3,3-dimethyl-butan-2-one
 10

"DD" = compound represented by the formula:

"EE" = compound represented by the formula:

15

"FF" -= calcipotriol (structural formula below):

-144-

2. The RXR-VDR heterodimerization (SaOS-2 cells) test is described in the “Assay” section of the Description, infra.
3. The VDR CTF (Caco-2 cells) test is described in the “Assay” section of the Description, infra.
4. The OCN Promoter test is described in the “Assay” section of the Description, infra.
5. The Mouse Hypercalcemia test is described in the “Assay” section of the Description, infra.
6. The keratinocyte proliferation assay is described in the “Assay” section of the Description, infra.
7. The IL-10 induction assay is described in the “Assay” section of the Description, infra.

15 Assay Methods

Use of the Assay Methods:

The evaluation of the novel compounds of the invention for osteoporosis and other related diseases is done using a plurality of test results. The use of multiple assays is necessary since the combined properties of (i) high activity for the vitamin D receptor, and (ii) prevention of hypercalcemia must be achieved to have utility for the methods of treating diseases, which are also, aspects of this invention. Some of the tests described below are believed related to other tests and measure related properties of compounds. Consequently, a compound may be considered to have utility in the practice of the invention if it meets most, if not all, of the acceptance criteria for the above described tests.

The evaluation of the novel compounds of the invention for psoriasis is done using the Keratinocyte Proliferation Assay in combination with other assays that measure

-145-

inhibition of IL-2 production and stimulation of IL-10 production in peripheral blood mononuclear cells (PBMCs).

Brief Description, Utility and Acceptance Criteria for the Assay Methods:

5 1. The RXR-VDR heterodimer Assay:

This assay provides the VDR activity of a test compound. It is desirable to have low EC50 values for a compound in this assay. The lower the EC50 value, the more active the compound will be as a VDR agonist. Desired assay results are EC50 values less than or equal to 600 nM. Preferred assay results are less than
10 250 nM, and most preferably less than 150 nM.

2. The Caco-2 cell Co-transfection Assay:

The Caco-2 cell assay is an indicator for the undesirable condition of hypercalcemia. This co-transfection assay is a surrogate assay for in vivo calcemic activity of VDR ligands. It is desirable to have high EC50 values for a test compound in this assay. The higher the EC50 values for a compound the less calcemic it will be in vivo. Desired assay results are EC50 greater than or equal to 300 nM. Preferred assay results are greater than 1000 nM.

20 3. The OCN (osteocalcin) Promoter Assay

The OCN Promoter Assay is an indicator and marker for osteoporosis. Desired assay results are EC50 less than or equal to 325 nM. Preferred assay results are less than 50 nM.

25 4. The Mouse Hypercalcemia Assay

The Mouse Hypercalcemia Assay is a six day hypercalcemia test for toxicity and selectivity. Acceptable test results are levels greater than 300 µg/kg/day. Preferred assay results are levels greater than 1000 µg/kg/day.

30 5. The Keratinocyte Proliferation Assay

-146-

This Assay is indicative for the treatment of psoriasis. An acceptable test result is IC50 value of less than or equal to 300 nM. Preferred assay results are IC50 values of less than 100 nM.

5 6. The IL-10 induction Assay

This is an in vitro efficacy assay for psoriasis, abscess and adhesion. Psoriasis involves both keratinocytes and immune cells. IL-10 is a unique cytokine because it is anti-inflammatory and immunosuppressive. This assay tells us whether a VDRM is able to function as an agonist in PBMCs (primary blood mononuclear cells) or not. A lower
10 EC50 value is desirable in this assay since a compound with a lower EC50 value will be a better agonist in PBMCs. An acceptable test result is an EC50 value of less than 200 nM. Preferred assay results are EC50 values of less than 100 nM.

7. Other Compound Assay Standards

15 An alternative measure of the efficacy of compounds of the invention for treatment of osteoporosis is a numerical ratio calculated as follows:

Dose Threshold needed to induce hypercalcemia

divided by

Dose Threshold needed for bone efficacy

20

An alternative measure of the efficacy of compounds of the invention for treatment of psoriasis is a numerical ratio calculated as follows:

Dose Threshold needed to induce hypercalcemia

divided by

Dose Threshold needed to induce keratinocyte proliferation

25

For the above ratios, Dose Thresholds are determined from dose response curve data.

8. The CaT1 (calcium transport protein 1) Assay

The CaT1 Assay is an indicator for the undesirable condition of hypercalcemia. The
30 higher the EC50 values for a compound the less calcemic it will be in vivo. Desired assay results are EC50 greater than or equal to 500 nM. Preferred assay results are greater than 1000 nM.

-147-

Details of the Assay Methods:

(1) Materials and Method for RXR-VDR Heterodimerization Assay:

Transfection Method:

- FuGENE 6 Transfection Reagent (Roche Cat # 1814 443)

5 Growth Media:

- D-MEM High Glucose (Gibco BRL Cat # 11054-020), 10% FBS, 1% antibiotic-antimycotic (Ab-Am)

FBS heat inactivated (Gibco BRL Cat # 10092-147)

Ab-Am (Gibco BRL Cat # 15240-062)

10 Cells:

- Grow SaOs-2 cells in T-152 cm² culture flasks in *growth media*.

- Keep the density at 5-6 x 10⁵ cells/ml

- Passage cells 1:3 twice a week

- Add Trypsin EDTA (Gibco BRL Cat # 25300-020) and incubate

15 • Resuspend cells in plating media and transfer into growth media.

Wash Media:

- HBSS Low Glucose Without Phenol Red (Gibco BRL Cat # 14175-095), 1% Ab-Am

Plating Media:

- D-MEM Low Glucose Without Phenol Red (Gibco BRL Cat # 11054-020), 1% Ab-Am

20 D-MEM

Stripped FBS (Hyclone Cat# SH30068.03 Lot # AHM9371)

Ab-Am

Transfection / Treatment Media:

- D-MEM Low Glucose Without Phenol Red only

25 T-152 cm² culture flask:

- Use Corning Coastar T-152 cm² culture flask (Cat # 430825) to grow the cells

Flat well Plates:

- Use well plate to plate cells
- Use Deep well plate sterile to make up treatment media.

30

Luciferase Assay Reagent:

- Use Steady-Glo Luciferase Reagent from Promega (Cat # E2550) Consists of:

-148-

- a. E2533 Assay Substrate, lyophilized product and
- b. E2543 Assay Buffer.

- Thaw at room temperature
- Store

5 **DAY 1: Cell Plating:**

Cell Harvesting

Aspirate media from culture flask, rinse cells with HBSS and aspirate.

Add trypsin and incubate.

When cells appear detached, resuspend cells in *growth media*.

10 Transfer into a new flask with fresh *growth media* for passaging the cells.

Plate well plates and two extra plates

A. **Cell Count**

Mix the cell suspension using pipette

Use *Hematocytometer* to count the cells

15 Load cell suspension onto the hemocytometer chamber

Count cells.

Plate seeding:

Use plating media 10 % Stripped FBS in D-MEM Low Glucose, Without Phenol Red, 1%

Ab-Am

20 Plate 14 plates @ 165 µl / well.

In sterile flask add cell suspension

to *plating media*.

Mix .

Add cells / well.

25 Place the cells in the incubator.

Cells should be about 75 % confluent prior to transfection.

Step 1: DNA and Media

Add plain DMEM media to tubes for mixing the DNA

30 Add the Reporter gene pFR-LUC

Add the Gal4-RXR-DEF and VP16-VDR-LBD

-149-

Step 2: FuGENE and Media

Prepare plain DMEM media in a tubes for mixing FuGENE

Add *FuGENE 6 Transfection Reagent*

Incubate

5

Step 3: FuGENE , DNA and Media Complex

Add FuGENE Media complex from step 2 to DNA Media complex from step1

Incubate

10 **Step 4: FuGENE , DNA and Media Complex to-well plate**

Add FuGENE-DNA-Media complex from step 3 to each plate

Incubate.

Day 3: Dosing

15 **Treatment preparation**

Allow for transfection time

Make a stock solution of the compounds in DMSO

Vortex until all the compounds has been dissolved.

Further dilute in D-MEM (Low Glucose – With out Phenol Red)

20 **Add compounds in quadruplicate to give final volume**

Incubate.

Day 4: Luciferase Assay

Read the plates after drug treatment

Remove part of media from all the wells and leave remainder

25 **Add Steady-Glo Luciferase Reagent mixture / wells**

Incubate

Count each well using a Luminescence counter, Top Count NXT by Packard

Set a delay between plates to reduce the background.

30 **(2) Materials and Method for The Caco-2 Cell Assay:**

Caco-2 cells, grown in phenol red free, DMEM (Invitrogen, Carlsbad, CA)

containing 10 % charcoal-stripped FCS (Hyclone, Logan, UT), were transfected

-150-

with Fugene 6 reagent (Roche Diagnostics, Indianapolis, IN). Cells (5000/well) were plated 18 h before transfection in a 96 well plate. The Cells were transfected with Gal4-responsive reporter pFRLuc (150 ng, Stratagene, La Jolla CA) and the receptor expression vector pGal4-VDR-LBD (10 ng), along with Fugene 6
5 reagent (0.2 µl/well). The DNA-Fugene complex was formed by incubating the mixture for 30 min at room temperature. The cells were transfected in triplicate for 5 h, and treated with various concentrations of VDR ligands (form 0.01 nM to 10,000 nM concentration range) 18h post-transfection. The luciferase activity was quantified using Steady-Glo reagent kit (Promega, Madison, WI) as per
10 manufacturer's specifications.

(3) Materials and Method for The OCN Promoter Assay:

The activation of osteocalcin by VDR ligands was evaluated in a rat
15 osteoblast-like cell line RG-15 (ROS 17/2.8) stably expressing rat osteocalcin promoter fused with luciferase reporter gene. The stable cell lines were established as reported before (Activation of Osteocalcin Transcription involves interaction of protein kinase A- and Protein kinase C-dependent pathways.
Boguslawski, G., Hale, L. V., Yu, X.-P., Miles, R. R., Onyia, J. E., Santerre R.
20 F., Chandrasekhar, S. J Biol. Chem. 275, 999-1006, 2000). Confluent RG-15 cells maintained in DMEM/F-12 medium (3:1) containing 5% FBS, 300 µg/ml G418 and at 37°C under 5% CO₂/95% air atmosphere were trypsinized (0.25% trypsin) and plated into white opaque 96-well cell culture plates (25000 cells/well). After 24 hr, cells (in DMEM/F-12 medium + 2% FBS) were treated
25 with various concentrations of compounds, dissolved in DMSO. The final DMSO concentration remained at 0.01% (v/v). After 48 hr treatment, the medium was removed, cells were lysed with 50 µl of lysis buffer (From Luciferase reporter assay system, Roche Diagnostics, Indianapolis, IN) and assayed for luciferase activity using the Luciferase Reporter Gene Assay kit from
30 Boehringer Mannheim as per manufacturer's specifications.

-151-

(4) Materials and Method for The Mouse Hypercalcemia Assay:

Weanling, virus -antibody-free, five to six weeks old female DBF mice (Harlan, Indianapolis, IN) are used for all the studies. Animals are allowed to acclimate to local vivarium conditions for 2 days. Mice are maintained on a 12 hr light/dark cycle at 22°C
5 with ad lib access to food (TD 5001 with 1.2% Ca and 0.9%P, Teklad, Madison, WI) and water. The animals then are divided into groups with 4-5 mice per group. Different doses of test compounds prepared in 10% Ethanol and 90% sesame oil are administered to mice orally via gavage for 6 days. 1 α -25(OH)₂D₃ 0.5 μ g/kg/d was also given to one group of mice as the positive control. Serum ionized calcium is evaluated at 6 hours after the last
10 dosing under isoflurane anesthesia by Ciba-Corning Ca++/PH Analyzer, (Model 634, Chiron Diagnostics Corp., East Walpole, MA). Raw data of group differences is assessed by analysis of variance (ANOVA) using Fisher's protected least significant difference (PLSD) where the significance level was P< 0.05.

15 **(5) The Keratinocyte Proliferation Assay:**

KERtr cells (Human skin keratinocyte transformed with a retrovirus vector, obtained from ATCC) were plated in 96-well flat-bottomed plates (3000 cells/well) in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF (Life Technologies, Rockville, MD) and incubated at 37°C for two days.
20 The cells were treated with various concentrations of VDR ligands (ten-fold serial dilution from 10,000 nM to 0.1 nM in triplicate), dissolved in 100 μ l keratinocyte serum free medium supplemented with bovine pituitary extract in the absence of EGF and incubated at 37°C for 72hr. BrdU (5-bromo-2'-deoxyuridine) incorporation was analyzed as a measure of DNA replication (Cell proliferation ELISA kit, Roche Diagnostics,
25 Indianapolis, IN) and absorbance was measured at 405 nm. Potency values (IC₅₀) values were determined as the concentration (nM) of compound that elicited a half-maximal response.

(6) Materials and Method for human IL-10 Induction Assay:

30 Isolation of peripheral blood mononuclear cells (PBMCs):

- A. Collect 50 ml of human blood and dilute with media, RPMI-1640.
- B. Prepare sterile tubes with ficol.

-152-

C. Add diluted blood to tubes.

D. Centrifuge.

E. Discard the top layer and collect the cells from middle layer.

F. Divide all cells into four tubes and add media.

5 G. Centrifuge.

H. Aspirate off media and resuspend.

I. Collect all cells

J. Centrifuge. at 1200 rpm for 10 minutes.

K. Resuspend in RPMI-1640 with 2% FBS and count cells

10 Stimulation of PBMC:

L. Prepare TPA in DMSO.

M. Dissolve PHA in water .

N. Plate TPA/PHA treated PBMCs in well plates.

O. Incubate.

15 Treatment:

P. Prepare all compound dilutions in plain RPMI- 1640 media.

Q. Add diluted compound.

R. Incubate.

Sample Collection and assay:

20 S. Remove all the cells by centrifugation and assay the supernatant for IL-10 by immunoassay.

1) T. Perform IL-10 assay using anti-human IL-10 antibody coated beads, as described by the manufacturer (Linco Research Inc., St. Charles, MO).

25 (8) Materials and Methods for CaT-1 Assay:

Human colon carcinoma, Caco-2 cells, maintained in DMEM (high glucose with 25 mM Hepes buffer; Invitrogen, Carlsbad, CA) supplemented with 10 % fetal bovine serum (Invitrogen, Carlsbad, CA), are plated at 5500 cell per well in a 96-well plate in a total volume of 100 µl/well. The cells are kept in the 96-well plate for 6 days to 30 differentiate them to small intestinal cells that express the calcium transporter, CaT1. On day 3 after plating, old media is removed and replaced with fresh media (150 µl/well). On day 6 the old media is removed and the cells are kept in treatment media (180 µl/well)

-153-

that contained 10 % charcoal stripped fetal bovine serum (Hyclone, Logan, UT) in DMEM (low glucose, without phenol red; Invitrogen, Carlsbad, CA). The cells are treated with various concentrations of VDR ligands (from 0.01 nM to 10,000 nM concentration range) prepared in treatment media (20 μ l/well). Twenty hours post-treatment, total RNA
5 is prepared by RNeasy 96 method as described by the manufacturer (Qiagen, Valencia, CA). The RNA is reverse transcribed and amplified for human CaT1 and GAPDH (control) messages by quantitative RT-PCR using ABI PRISM 7900HT Sequence Detection System according to manufacturer's instructions (Applied Biosystems, Foster City, CA). Optimized primer pairs and probes for human CaT1 and GAPDH genes are
10 obtained commercially (Applied Biosystems, Foster City, CA). Each 20 μ l quantitative RT-PCR reaction in a 384-well Taqman PCR plate consists of forward and reverse primers (900 nM), Taqman probe (200 nM), total RNA (4 μ l form each well of the 96-well culture plate) and 10 μ l of Taqman Universal PCR Master Mix (Roche Diagnostics, Indianapolis, IN). Reactions are incubated at 48°C for 30 minutes, followed by 10 minutes
15 at 95°C and subjected to 40 cycles of PCR (95°C for 15 seconds followed by 60°C for 1 minute). GAPDH is used as an internal control and its primer and probe set are obtained commercially (Applied Biosystems, Foster City, CA).