Dikes Overtopping Kernel - Technical documentation

Generated by Doxygen 1.8.9.1

Fri Mar 25 2016 10:14:01

Contents

1	Mod	ules In	dex		1
	1.1	Modul	es List		. 1
2	Data	Type I	ndex		3
	2.1	Class	List		. 3
3	File	Index			5
	3.1	File Lis	st		. 5
4	Mod	ule Do	cumentati	ion	7
	4.1	dllover	topping M	Module Reference	. 7
		4.1.1	Detailed	Description	. 7
		4.1.2	Function	n/Subroutine Documentation	. 8
			4.1.2.1	calculateqo	. 8
			4.1.2.2	calculateqof	. 9
			4.1.2.3	calczvalue	. 10
			4.1.2.4	geometry_c_f	. 11
			4.1.2.5	getlanguage	. 11
			4.1.2.6	setlanguage	. 11
			4.1.2.7	validateinputc	. 11
			4.1.2.8	validateinputf	. 12
			4.1.2.9	versionnumber	. 13
	4.2	factorr	modulerto	overtopping Module Reference	. 13
		4.2.1	Function	n/Subroutine Documentation	. 13
			4.2.1.1	calculategammab	. 13
			4.2.1.2	calculategammabeta	. 14
			4.2.1.3	calculategammaf	. 14
			4.2.1.4	calculatetanalpha	. 15
	4.3	formul	amodulert	toovertopping Module Reference	. 16
		4.3.1	Function	n/Subroutine Documentation	. 17
			4.3.1.1	adjustinfluencefactors	. 17
			4.3.1.2	calculateanglewaveattack	. 17

iv CONTENTS

		4.3.1.3	calculatebreakerlimit	18
		4.3.1.4	calculatebreakerparameter	18
		4.3.1.5	calculatewavelength	19
		4.3.1.6	calculatewaveovertoppingdischarge	19
		4.3.1.7	calculatewaverunup	20
		4.3.1.8	calculatewavesteepness	21
		4.3.1.9	cubicroots	21
		4.3.1.10	isequalreal	22
		4.3.1.11	isequalzero	22
		4.3.1.12	realrootscubicfunction	22
		4.3.1.13	rootsdepressedcubic	23
		4.3.1.14	rootsgeneralcubic	24
4.4	geome	trymodule	rtoovertopping Module Reference	25
	4.4.1	Function/	Subroutine Documentation	26
		4.4.1.1	adjustnonhorizontalberms	26
		4.4.1.2	allocatevectorsgeometry	26
		4.4.1.3	basicgeometrytest	27
		4.4.1.4	calculatehorzdistance	28
		4.4.1.5	calculatehorzlengths	28
		4.4.1.6	calculatesegmentslopes	29
		4.4.1.7	checkcrosssection	30
		4.4.1.8	copygeometry	30
		4.4.1.9	deallocategeometry	31
		4.4.1.10	determinesegmenttypes	31
		4.4.1.11	initializegeometry	32
		4.4.1.12	mergesequentialberms	33
		4.4.1.13	removeberms	34
		4.4.1.14	removedikesegments	35
		4.4.1.15	splitcrosssection	35
4.5	mainm	odulertoov	vertopping Module Reference	36
	4.5.1	Function/	Subroutine Documentation	37
		4.5.1.1	calculateovertopping	37
		4.5.1.2	calculateovertoppingnegativefreeboard	37
		4.5.1.3	calculateovertoppingsection	38
		4.5.1.4	calculatewaveovertopping	39
		4.5.1.5	checkinputdata	40
		4.5.1.6	checkmodelfactors	41
		4.5.1.7	convertovertoppinginput	41
		4.5.1.8	interpolateresultssections	42
4.6	module	elogging M	odule Reference	43

CONTENTS

	4.6.1	Variable I	Documentation	43
		4.6.1.1	currentlogging	43
		4.6.1.2	maxfilenamelength	43
4.7	overto	opinginterf	ace Module Reference	43
	4.7.1	Variable I	Documentation	44
		4.7.1.1	varmodelfactorcriticalovertopping	44
4.8	overto	opingmess	ages Module Reference	44
	4.8.1	Function/	Subroutine Documentation	44
		4.8.1.1	getlanguage	44
		4.8.1.2	getovertoppingformat	44
		4.8.1.3	getovertoppingmessage	45
		4.8.1.4	getovertoppingparameter	45
		4.8.1.5	setlanguage	46
	4.8.2	Variable I	Documentation	46
		4.8.2.1	language	46
		4.8.2.2	maxmsg	46
		4.8.2.3	maxpar	46
4.9	typede	finitionsrto	overtopping Module Reference	46
	4.9.1	Variable I	Documentation	48
		4.9.1.1	berm_max	48
		4.9.1.2	berm_min	48
		4.9.1.3	fb_max	48
		4.9.1.4	fb_min	48
		4.9.1.5	fn_max	48
		4.9.1.6	fn_min	48
		4.9.1.7	foreshore_max	48
		4.9.1.8	foreshore_min	48
		4.9.1.9	frunup1_max	48
		4.9.1.10	frunup1_min	49
		4.9.1.11	frunup2_max	49
		4.9.1.12	frunup2_min	49
		4.9.1.13	frunup3_max	49
		4.9.1.14	frunup3_min	49
		4.9.1.15	fs_max	49
		4.9.1.16	fs_min	49
		4.9.1.17	margindiff	49
		4.9.1.18	margingrad	49
		4.9.1.19	mz2_max	50
		4.9.1.20	mz2_min	50
		4.9.1.21	rfactor_max	50

vi CONTENTS

4.9.1.24 slope_min 55 4.9.1.25 xdiff_min 56 4.9.1.26 z2_iter_max1 50 4.9.1.27 z2_iter_max2 55 4.9.1.28 z2_margin 55 4.10 waverunup Module Reference 55 4.10.1 Function/Subroutine Documentation 57 4.10.1.1 convergedwithresidu 57 4.10.1.2 determinestartingvalue 56 4.10.1.3 findsmallestresidu 56 4.10.1.4 innercalculation 55 4.10.1.5 iterationwaverunup 55 4.11.1 Detailed Description 56 4.11.1 Patalled Description 56 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 56 4.11.2.2 calculateqorto 50 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5.1.1 Detailed Description 60 5.1.2 normal 60 5.1.2.1 normal 60 5.1.2.2 rojoints 60 5.1.2.3 roughness 60 5.2.2 wember Data Documentation 67 5.2.2 moints 67 5.2.2 moints <th></th> <th></th> <th></th> <th>4.9.1.22</th> <th>rfactor_min</th> <th>50</th>				4.9.1.22	rfactor_min	50
4.9.1.25 xdiff_min 56 4.9.1.26 z2_iter_max1 56 4.9.1.27 z2_iter_max2 56 4.9.1.28 z2_margin 57 4.10 waverunup Module Reference 56 4.10.1 Function/Subroutine Documentation 56 4.10.1.1 converged-withresidu 57 4.10.1.2 determinestartingvalue 57 4.10.1.3 findsmallestresidu 56 4.10.1.4 innercalculation 56 4.10.1.5 literationwaverunup 55 4.11.1 Detailed Description 56 4.11.1 Detailed Description 56 4.11.2 Function/Subroutine Documentation 57 4.11.2 adjustprofile 55 4.11.2.1 adjustprofile 56 4.11.2.2 alculateqorto 56 4.11.2.3 profileinstructure 56 4.11.2.4 zfunctogratios 56 5 Data Type Documentation 66 5.1.2 normal 66 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.2.1 Detailed Description 67 5.2.2 normal 66 5.2.2.1 normal				4.9.1.23	slope_max	50
4.9.1.26 z2_iter_max1 56 4.9.1.27 z2_iter_max2 56 4.9.1.28 z2_margin 5 4.10 waverunup Module Reference 5 4.10.1 Function/Subroutine Documentation 5 4.10.1.1 converged withresidu 5 4.10.1.2 determinestartingvalue 5 4.10.1.3 findsmallestresidu 5 4.10.1.4 innercalculation 5 4.10.1.5 literationwaverunup 5 4.11.1 Detailed Description 5 4.11.2 Function/Subroutine Documentation 5 4.11.2.1 adjustprofile 5 4.11.2.2 calculateoprio 5 4.11.2.3 profileinstructure 5 4.11.2.4 zfunclogratios 5 5 Data Type Documentation 5 5.1.1 Detailed Description 5 5.1.2 Member Data Documentation 6 5.1.2.1 normal 6 5.1.2.2 npoints 6 5.1.2.3 roughness 6 5.2.1 Detailed Description 6 5.2.2 Member Data Documentation 6 5.2.2 npoints 6 5.2.2.1 normal 6 5				4.9.1.24	slope_min	50
4.9.1.27 z2_iter_max2 55 4.9.1.28 z2_margin 55 4.10 waverunup Module Reference 55 4.10.1 Function/Subroutine Documentation 55 4.10.1.1 convergedwithresidu 55 4.10.1.2 determinestartingvalue 55 4.10.1.3 findsmallestresidu 56 4.10.1.4 inercalculation 52 4.10.1.5 iterationwaverunup 55 4.11 Zunctionswitiovertopping Module Reference 55 4.11.1 Detailed Description 56 4.11.2.1 adjustprofile 57 4.11.2.2 calculateqorto 51 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 Detailed Description 56 5.1.1 Detailed Description 56 5.1.2 Member Data Documentation 60 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.2.1 Detailed Descrip				4.9.1.25	xdiff_min	50
4.9.1.28 z² margin 55 4.10 waverunup Module Reference 56 4.10.1 Function/Subroutine Documentation 50 4.10.1.1 convergedwithresidu 57 4.10.1.2 determinestartingvalue 56 4.10.1.3 findsmallestresidu 56 4.10.1.4 innercalculation 56 4.10.1.5 iterationwaverunup 56 4.11 ztunctionswitovertopping Module Reference 50 4.11.1 Detailed Description 56 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 57 4.11.2.2 calculategorto 56 4.11.2.3 profileinstructure 56 4.11.2.4 ztunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface:overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 66 5.1.2.1 normal 66 5.1.2.4 xooords 66 5.2.2 Member Data Documentation 66 5.2.2 Member Data Documentation 66 5.2.2.1 normal 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.				4.9.1.26	z2_iter_max1	50
4.10 waverunup Module Reference 5 4.10.1 Function/Subroutine Documentation 5 4.10.1.1 convergedwithresidu 5 4.10.1.2 determinestartingvalue 5 4.10.1.3 findsmallestresidu 5 4.10.1.4 innercalculation 5 4.10.1.5 iterationwaverunup 5 4.11 zfunctionswitovertopping Module Reference 5 4.11.1 Detailed Description 5 4.11.2 Function/Subroutine Documentation 5 4.11.2.1 adjustprofile 5 4.11.2.2 calculateqorto 5 4.11.2.3 profileinstructure 5 4.11.2.4 zfunclogratios 5 5 Data Type Documentation 5 5.1 overtoppinginterface:overtoppinggeometrytype Type Reference 5 5.1.1 Detailed Description 6 5.1.2.2 mpoints 6 5.1.2.3 roughness 6 5.2.2 Member Data Documentation 6 5.2.2 mormal 6 5.2.2.1 normal 6 5.2.2.2 mpoints 6 5.2.2.1 normal 6 5.2.2.2 mpoints 6 5.2.2.4 xoords 6				4.9.1.27	z2_iter_max2	50
4.10.1 Function/Subroutine Documentation 5 4.10.1.1 convergedwithresidu 5 4.10.1.2 determinestartingvalue 5 4.10.1.3 findsmallestresidu 5 4.10.1.4 innercalculation 5 4.10.1.5 iterationwaverunup 5 4.11 zfunctionswitovertopping Module Reference 5 4.11.1 Detailed Description 5 4.11.2 Function/Subroutine Documentation 5 4.11.2.1 adjustprofile 5 4.11.2.2 calculateqorto 5 4.11.2.3 profileinstructure 5 4.11.2.4 zfunclogratios 5 5 Data Type Documentation 5 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 5 5.1.1 Detailed Description 6 5.1.2.1 normal 6 5.1.2.2 nopoints 6 5.1.2.3 roughness 6 5.2.1 Detailed Description 6 5.2.2 Nember Data Documentation 6 5.2.2 normal 6 5.2.2 normal 6 5.2.2 normal 6 5.2.2.1 normal 6 5.2.2.2 noints 6				4.9.1.28	z2_margin	51
4.10.1.1 convergedwithresidu 5 4.10.1.2 determinestartingvalue 5 4.10.1.3 findsmallestresidu 5 4.10.1.4 innercalculation 5 4.10.1.5 iterationwaverunup 5 4.11 zfunctionswitovertopping Module Reference 5 4.11.1 Detailed Description 5 4.11.2 Function/Subroutine Documentation 5 4.11.2.1 adjustprofile 5 4.11.2.2 calculateqorto 5 4.11.2.3 profileinstructure 5 4.11.2.4 zfunclogratios 5 5 Data Type Documentation 5 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 5 5.1.1 Detailed Description 6 5.1.2.1 normal 6 5.1.2.2 npoints 6 5.1.2.3 roughness 6 5.2.1 Detailed Description 6 5.2.2 Member Data Documentation 6 5.2.2 npoints 6 5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 6 5.2.2.4 xcoords 6 5.2.2.5 ycoords 6		4.10	waveru	ınup Modu	le Reference	51
4.10.1.2 determinestartingvalue 55 4.10.1.3 findsmallestresidu 55 4.10.1.4 innercalculation 55 4.10.1.5 iterationwaverunup 55 4.11 zfunctionswilovertopping Module Reference 55 4.11.1 Detailed Description 56 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 56 4.11.2.2 calculateqorto 56 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1.1 Detailed Description 56 5.1.2 Member Data Documentation 66 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.2.1 Detailed Description 66 5.2.2 Nember Data Documentation 66 5.2.2 npoints 66 5.2.2.1 normal 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.2.4 xcoords 66 5.2.2.5 ycoords 66			4.10.1	Function	Subroutine Documentation	51
4.10.1.3 findsmallestresidu 55 4.10.1.4 innercalculation 55 4.10.1.5 iterationwaverunup 55 4.11 zfunctionswtiovertopping Module Reference 55 4.11.1 Detailed Description 5- 4.11.2 Function/Subroutine Documentation 5- 4.11.2.1 adjustprofile 5- 4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.2.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 61 5.2.1 Detailed Description 61 5.2.2 npoints 62 5.2.2.1 normal 63 5.2.2.2 npoints 64 5.2.2.3 roughness 64 5.2.2.4 xcoords 64 5.2.2.5 ycoords 64				4.10.1.1	convergedwithresidu	51
4.10.1.4 innercalculation 55 4.10.1.5 iterationwaverunup 55 4.11 zfunctionswtiovertopping Module Reference 55 4.11.1 Detailed Description 5- 4.11.2 Function/Subroutine Documentation 5- 4.11.2.1 adjustprofile 5- 4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 55 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 58 5.1.1 Detailed Description 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.2.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 61 5.2.1 Detailed Description 61 5.2.2.1 normal 61 5.2.2.2 npoints 62 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62				4.10.1.2	determinestartingvalue	51
4.10.1.5 iterationwaverunup 55 4.11 zfunctionswtiovertopping Module Reference 55 4.11.1 Detailed Description 56 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 56 4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 66 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2.1 Detailed Description 61 5.2.2 Member Data Documentation 62 5.2.1 normal 63 5.2.2.2 npoints 63 5.2.2.3 roughness 64 5.2.2.4 xcoords 64 5.2.2.5 ycoords 64				4.10.1.3	findsmallestresidu	52
4.11 zfunctionswitovertopping Module Reference 55 4.11.1 Detailed Description 54 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 56 4.11.2.2 calculateqorto 56 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 66 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.1.2.5 ycoords 66 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 67 5.2.2 Member Data Documentation 66 5.2.2.1 normal 67 5.2.2.2 npoints 67 5.2.2.3 roughness 66 5.2.2.4 xcoords 66 5.2.2.5 ycoords 66				4.10.1.4	innercalculation	52
4.11.1 Detailed Description 54 4.11.2 Function/Subroutine Documentation 56 4.11.2.1 adjustprofile 56 4.11.2.2 calculateqorto 56 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 58 5.1.1 Detailed Description 66 5.1.2.1 normal 66 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.5 yocords 60 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 66 5.2.2.1 normal 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.2.4 xcoords 66 5.2.2.5 ycoords 66				4.10.1.5	iterationwaverunup	53
4.11.2 Function/Subroutine Documentation 54 4.11.2.1 adjustprofile 54 4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 58 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 58 5.1.1 Detailed Description 66 5.1.2 Member Data Documentation 66 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 66 5.2.2.2 npoints 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.2.4 xcoords 66 5.2.2.5 ycoords 66		4.11	zfunctio	onswtiover	topping Module Reference	53
4.11.2.1 adjustprofile 54 4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.2.1 Detailed Description 60 5.2.2 Member Data Documentation 60 5.2.2.1 normal 60 5.2.2.2 npoints 60 5.2.2.3 roughness 60 5.2.2.4 xcoords 60 5.2.2.5 ycoords 60			4.11.1	Detailed	Description	54
4.11.2.2 calculateqorto 55 4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 56 5.1.1 Detailed Description 66 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 67 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 66 5.2.2.1 normal 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.2.4 xcoords 66 5.2.2.5 ycoords 66			4.11.2	Function	Subroutine Documentation	54
4.11.2.3 profileinstructure 56 4.11.2.4 zfunclogratios 56 5 Data Type Documentation 56 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 59 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 61 5.2.1 Detailed Description 62 5.2.2 Member Data Documentation 63 5.2.2.1 normal 64 5.2.2.2 npoints 64 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 63				4.11.2.1	adjustprofile	54
4.11.2.4 zfunclogratios 56 5 Data Type Documentation 55 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 56 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 6 5.2.1 Detailed Description 6 5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 6 5.2.2.4 xcoords 6 5.2.2.5 ycoords 6				4.11.2.2	calculateqorto	55
5 Data Type Documentation 55 5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 55 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 60 5.2.1 Detailed Description 60 5.2.2 Member Data Documentation 60 5.2.2.1 normal 60 5.2.2.2 npoints 60 5.2.2.3 roughness 60 5.2.2.4 xcoords 60 5.2.2.5 ycoords 60				4.11.2.3	profileinstructure	56
5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 58 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 60 5.2.1 Detailed Description 60 5.2.2 Member Data Documentation 60 5.2.2.1 normal 60 5.2.2.2 npoints 60 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62				4.11.2.4	zfunclogratios	56
5.1 overtoppinginterface::overtoppinggeometrytype Type Reference 58 5.1.1 Detailed Description 60 5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 60 5.2.1 Detailed Description 60 5.2.2 Member Data Documentation 60 5.2.2.1 normal 60 5.2.2.2 npoints 60 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62	5	Data	Type D	ocumenta	ation	59
5.1.1 Detailed Description 66 5.1.2 Member Data Documentation 66 5.1.2.1 normal 66 5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.1.2.5 ycoords 66 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 6 5.2.1 Detailed Description 6 5.2.2 Member Data Documentation 6 5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 6 5.2.2.4 xcoords 6 5.2.2.5 ycoords 62						59
5.1.2 Member Data Documentation 60 5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 60 5.2.1 Detailed Description 60 5.2.2 Member Data Documentation 60 5.2.2.1 normal 60 5.2.2.2 npoints 60 5.2.2.3 roughness 60 5.2.2.4 xcoords 60 5.2.2.5 ycoords 60						60
5.1.2.1 normal 60 5.1.2.2 npoints 60 5.1.2.3 roughness 60 5.1.2.4 xcoords 60 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 6: 5.2.1 Detailed Description 6: 5.2.2 Member Data Documentation 6: 5.2.2.1 normal 6: 5.2.2.2 npoints 6: 5.2.2.3 roughness 6: 5.2.2.4 xcoords 6: 5.2.2.5 ycoords 6:			_		•	60
5.1.2.2 npoints 66 5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.1.2.5 ycoords 66 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 67 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 67 5.2.2.1 normal 67 5.2.2.2 npoints 66 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62						60
5.1.2.3 roughness 66 5.1.2.4 xcoords 66 5.1.2.5 ycoords 66 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 65 5.2.1 Detailed Description 66 5.2.2 Member Data Documentation 66 5.2.2.1 normal 66 5.2.2.2 npoints 66 5.2.2.3 roughness 66 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62						60
5.1.2.4 xcoords 66 5.1.2.5 ycoords 60 5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 6: 5.2.1 Detailed Description 6: 5.2.2 Member Data Documentation 6: 5.2.2.1 normal 6: 5.2.2.2 npoints 6: 5.2.2.3 roughness 6: 5.2.2.4 xcoords 6: 5.2.2.5 ycoords 6:				5.1.2.3	•	60
5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference 6- 5.2.1 Detailed Description 6- 5.2.2 Member Data Documentation 6- 5.2.2.1 normal 6- 5.2.2.2 npoints 6- 5.2.2.3 roughness 6- 5.2.2.4 xcoords 6- 5.2.2.5 ycoords 6-				5.1.2.4	xcoords	60
5.2.1 Detailed Description 6 5.2.2 Member Data Documentation 6 5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 6 5.2.2.4 xcoords 6 5.2.2.5 ycoords 6				5.1.2.5	ycoords	60
5.2.2 Member Data Documentation 6 5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62		5.2	overtop	pinginterf	ace::overtoppinggeometrytypef Type Reference	61
5.2.2.1 normal 6 5.2.2.2 npoints 6 5.2.2.3 roughness 6 5.2.2.4 xcoords 6 5.2.2.5 ycoords 6			5.2.1	Detailed	Description	61
5.2.2.2 npoints 6 5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62			5.2.2	Member	Data Documentation	61
5.2.2.3 roughness 62 5.2.2.4 xcoords 62 5.2.2.5 ycoords 62				5.2.2.1	normal	61
5.2.2.4 xcoords 62 5.2.2.5 ycoords 62						61
5.2.2.5 ycoords				5.2.2.2	npoints	ОΙ
						62
5.3 modulelogging::tlogging Type Reference				5.2.2.3	roughness	
				5.2.2.3 5.2.2.4	roughness	62

CONTENTS vii

	5.3.1	Detailed	Description	62
	5.3.2	Member	Data Documentation	63
		5.3.2.1	filename	63
		5.3.2.2	verbosity	63
5.4	typede	finitionsrto	overtopping::tpgeometry Type Reference	63
	5.4.1	Detailed	Description	64
	5.4.2	Member	Data Documentation	64
		5.4.2.1	nbermsegments	64
		5.4.2.2	ncoordinates	64
		5.4.2.3	psi	64
		5.4.2.4	roughnessfactors	64
		5.4.2.5	segmentslopes	65
		5.4.2.6	segmenttypes	65
		5.4.2.7	xcoorddiff	65
		5.4.2.8	xcoordinates	65
		5.4.2.9	ycoorddiff	65
		5.4.2.10	ycoordinates	65
5.5	typede	finitionsrto	overtopping::tpload Type Reference	65
	5.5.1	Detailed	Description	66
	5.5.2	Member	Data Documentation	66
		5.5.2.1	$h \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	66
		5.5.2.2	hm0	67
		5.5.2.3	phi	67
		5.5.2.4	tm_10	67
5.6	typede	finitionsrto	overtopping::tpovertopping Type Reference	67
	5.6.1	Detailed	Description	68
	5.6.2	Member	Data Documentation	68
		5.6.2.1	qo	68
		5.6.2.2	z2	68
5.7	typede	finitionsrto	overtopping::tpovertoppinginput Type Reference	68
	5.7.1	Detailed	Description	70
	5.7.2	Member	Data Documentation	70
		5.7.2.1	computedovertopping	70
		5.7.2.2	criticalovertopping	70
		5.7.2.3	factordeterminationq_b_f_b	70
		5.7.2.4	factordeterminationq_b_f_n	70
		5.7.2.5	frunup1	70
		5.7.2.6	frunup2	70
		5.7.2.7	frunup3	71
		5.7.2.8	fshallow	71

viii CONTENTS

		5.7.2.9 m_z2	71
		5.7.2.10 reductionfactorforeshore	71
		5.7.2.11 relaxationfactor	71
		5.7.2.12 typerunup	71
	5.8	overtoppinginterface::tpprofilecoordinate Type Reference	72
		5.8.1 Detailed Description	72
		5.8.2 Member Data Documentation	72
		5.8.2.1 roughness	72
		5.8.2.2 xcoordinate	73
		5.8.2.3 zcoordinate	73
6	File I	Documentation	75
	6.1	dllOvertopping.f90 File Reference	75
		6.1.1 Detailed Description	76
	6.2	factorModuleRTOovertopping.f90 File Reference	76
		6.2.1 Detailed Description	76
	6.3	formulaModuleRTOovertopping.f90 File Reference	76
		6.3.1 Detailed Description	77
	6.4	geometryModuleRTOovertopping.f90 File Reference	77
		6.4.1 Detailed Description	78
	6.5	mainModuleRTOovertopping.f90 File Reference	79
		6.5.1 Detailed Description	79
	6.6	ModuleLogging.f90 File Reference	79
		6.6.1 Detailed Description	80
	6.7	overtoppingInterface.f90 File Reference	80
		6.7.1 Detailed Description	80
	6.8	OvertoppingMessages.f90 File Reference	80
		6.8.1 Detailed Description	81
	6.9	typeDefinitionsRTOovertopping.f90 File Reference	81
		6.9.1 Detailed Description	83
	6.10	waveRunup.f90 File Reference	83
		6.10.1 Detailed Description	83
	6.11	zFunctionsWTlOvertopping.f90 File Reference	83
		6.11.1 Detailed Description	84
Inc	lex		85

Chapter 1

Modules Index

1.1 Modules List

Here is a list of all modules with brief descriptions:

dllovertopping	
Calculate one type of overtopping	7
factormodulertoovertopping	13
formulamodulertoovertopping	16
geometrymodulertoovertopping	25
mainmodulertoovertopping	36
modulelogging	
overtoppinginterface	
overtoppingmessages	
typedefinitionsrtoovertopping	
waverunup	5
zfunctionswtiovertopping	
Module for the Limit State Functions (Z-functions) for wave overtopping	53

2 **Modules Index**

Chapter 2

Data Type Index

2.1 Class List

Here are the data types with brief descriptions:

overtoppinginterface::overtoppinggeometrytype	59
overtoppinginterface::overtoppinggeometrytypef	61
modulelogging::tlogging	
TLogging: structure for steering the logging	62
typedefinitionsrtoovertopping::tpgeometry	
TpGeometry: structure with geometry data	63
typedefinitionsrtoovertopping::tpload	
TpLoad: structure with load parameters	65
typedefinitionsrtoovertopping::tpovertopping	
TpOvertopping: structure with overtopping results	67
typedefinitionsrtoovertopping::tpovertoppinginput	
OvertoppingModelFactors: C-structure with model factors	68
overtoppinginterface::tpprofilecoordinate	72

Data Type Index

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

allOvertopping.190	
Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dll \leftarrow	
Overtopping.dll:	75
factorModuleRTOovertopping.f90	
This file contains a module with functions for the slope angle and influence factors	76
formulaModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping	76
geometryModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping related to the	
geometry	77
mainModuleRTOovertopping.f90	
This file contains a module with the core computations for Dikes Overtopping	79
ModuleLogging.f90	
Module for steering the extra logging	79
overtoppingInterface.f90	
This file contains the parameters and types (structs) as part of the interface to and from dll←	
Overtopping	80
OvertoppingMessages.f90	
This file contains the messages in the overtopping dll, in Dutch or English	80
typeDefinitionsRTOovertopping.f90	
This file contains a module with the type definitions for Dikes Overtopping	81
waveRunup.f90	
This file contains a module with the core computations for Dikes Overtopping	83
zFunctionsWTIOvertopping.f90	
This file contains the limit state functions for wave overtopping within WTI	83

6 File Index

Chapter 4

Module Documentation

4.1 dllovertopping Module Reference

Calculate one type of overtopping.

Functions/Subroutines

subroutine, public calculateqo (load, geometryInput, dikeHeight, modelFactors, overtopping, success, error
 — Text, verbosity, logFile)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF←: convert C-like input structures to Fortran input structures.

• subroutine, public calculateqof (load, geometryF, dikeHeight, modelFactors, overtopping, success, errorText, logging)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.

• subroutine, public calczvalue (criticalOvertoppingRate, modelFactors, Qo, z, success, errorMessage)

Subroutine that calculates the Z-function DikesOvertopping based on the discharge calculated with calculateQoF.

• subroutine, public validateinputc (geometryInput, dikeHeight, modelFactors, success, errorText)

Subroutine that validates the geometry Wrapper for ValidateInputFold: convert C-like input structures to Fortran input structures.

• subroutine, public validateinputf (geometryF, dikeHeight, modelFactors, errorStruct)

Subroutine that validates the geometry.

• subroutine, public setlanguage (lang)

Subroutine that sets the language for error and validation messages.

• subroutine, public getlanguage (lang)

Subroutine that gets the language for error and validation messages.

• subroutine, public versionnumber (version)

Subroutine that delivers the version number.

• type(overtoppinggeometrytypef) function geometry_c_f (geometryInput)

Private subroutine that converts geometry from c-pointer to fortran struct.

4.1.1 Detailed Description

Calculate one type of overtopping.

4.1.2 Function/Subroutine Documentation

4.1.2.1 subroutine, public dllovertopping::calculateqo (type(tpload), intent(in) *load*, type(overtoppinggeometrytype), intent(in) *geometryInput*, real(kind=wp), intent(in) *dikeHeight*, type(tpovertoppinginput), intent(inout) *modelFactors*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *success*, character(len=*), intent(out) *errorText*, integer, intent(in) *verbosity*, character(len=*), intent(in) *logFile*)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF: convert C-like input structures to Fortran input structures.

Parameters

in	geometryinput	struct with geometry and roughness as c-pointers
in	load	struct with waterlevel and wave parameters
in	dikeheight	dike height
in,out	modelfactors	struct with modelfactors
out	overtopping	structure with overtopping results
out	success	flag for success
out	errortext	error message (only set if not successful)
in	verbosity	level of verbosity
in	logfile	filename of logfile

Definition at line 43 of file dllOvertopping.f90.

Here is the call graph for this function:

4.1.2.2 subroutine, public dllovertopping::calculateqof (type(tpload), intent(in) *load*, type(overtoppinggeometrytypef), intent(in) *geometryF*, real(kind=wp), intent(in) *dikeHeight*, type(tpovertoppinginput), intent(inout) *modelFactors*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *success*, character(len=*), intent(out) *errorText*, type(tlogging), intent(in) *logging*)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.

Parameters

in	geometryf	struct with geometry and roughness
in	load	struct with waterlevel and wave parameters
in	dikeheight	dike height
in,out	modelfactors	struct with modelFactors
out	overtopping	structure with overtopping results
out	success	flag for success
out	errortext	error message (only set if not successful)
in	logging	logging struct

Definition at line 74 of file dllOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.2.3 subroutine, public dllovertopping::calczvalue (real(kind=wp), intent(in) *criticalOvertoppingRate*, type(tpovertoppinginput), intent(inout) *modelFactors*, real(kind=wp), intent(in) *Qo*, real(kind=wp), intent(out) *z*, logical, intent(out) *success*, character(len=*), intent(out) *errorMessage*)

Subroutine that calculates the Z-function DikesOvertopping based on the discharge calculated with calculateQoF.

Parameters

in	criticalovertop-	critical overtoppingrate
2.11	•	orthodrovortoppingrato
	pingrate	
in,out	modelfactors	struct with modelfactors
in	qo	calculated discharge
out	Z	z value
out	errormessage	error message (only if not successful)
out	success	flag for success

Definition at line 107 of file dllOvertopping.f90.

Here is the call graph for this function:

4.1.2.4 type(overtoppinggeometrytypef) function dllovertopping::geometry_c_f (type(overtoppinggeometrytype), intent(in) geometryInput) [private]

Private subroutine that converts geometry from c-pointer to fortran struct.

Parameters

in	geometryinput	struct with geometry and roughness as c-pointers
----	---------------	--

Returns

fortran struct with geometry and roughness

Definition at line 310 of file dllOvertopping.f90.

Here is the caller graph for this function:

4.1.2.5 subroutine, public dllovertopping::getlanguage (character(len=*), intent(out) lang)

Subroutine that gets the language for error and validation messages.

Definition at line 276 of file dllOvertopping.f90.

4.1.2.6 subroutine, public dllovertopping::setlanguage (character(len=*), intent(in) lang)

Subroutine that sets the language for error and validation messages.

Definition at line 263 of file dllOvertopping.f90.

4.1.2.7 subroutine, public dllovertopping::validateinputc (type(overtoppinggeometrytype), intent(in) *geometryInput*, real(kind=wp), intent(in) *dikeHeight*, type(tpovertoppinginput), intent(inout) *modelFactors*, logical, intent(out) *success*, character(len=*), intent(out) *errorText*)

Subroutine that validates the geometry Wrapper for ValidateInputFold: convert C-like input structures to Fortran input structures.

in	geometryinput	struct with geometry and roughness as c-pointers
in	dikeheight	dike height
in,out	modelfactors	struct with modelfactors
out	success	flag for success

out	errortext	error message (only set if not successful)
-----	-----------	--

Definition at line 127 of file dllOvertopping.f90.

Here is the call graph for this function:

4.1.2.8 subroutine, public dllovertopping::validateinputf (type(overtoppinggeometrytypef), intent(in) *geometryF*, real(kind=wp), intent(in) *dikeHeight*, type(tpovertoppinginput), intent(inout) *modelFactors*, type(terrormessages), intent(inout) *errorStruct*)

Subroutine that validates the geometry.

Parameters

in	geometryf	struct with geometry and roughness
in	dikeheight	dike height
in,out	modelfactors	struct with modelFactors
in,out	errorstruct	error message (only set if not successful)

Definition at line 178 of file dllOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.1.2.9 subroutine, public dllovertopping::versionnumber (character(len=*), intent(out) version)

Subroutine that delivers the version number.

Parameters

out	version	version number
-----	---------	----------------

Definition at line 288 of file dllOvertopping.f90.

4.2 factormodulertoovertopping Module Reference

Functions/Subroutines

- subroutine, public calculatetanalpha (h, Hm0, z2, geometry, tanAlpha, succes, errorMessage)
 calculateTanAlpha representative slope angle
- subroutine, public calculategammabeta (Hm0, Tm_10, beta, gammaBeta_z, gammaBeta_o) calculateGammaBeta influence factor angle of wave attack
- subroutine, public calculategammaf (h, ksi0, ksi0Limit, gammaB, z2, geometry, gammaF, succes, error

 Message)

calculateGammaF influence factor roughness

• subroutine, public calculategammab (h, Hm0, z2, geometry, gammaB, succes, errorMessage) calculateGammaB influence factor berms

4.2.1 Function/Subroutine Documentation

4.2.1.1 subroutine, public factormodulertoovertopping::calculategammab (real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *z2*, type(typeometry), intent(in) *geometry*, real(wp), intent(out) *gammaB*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateGammaB influence factor berms

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data
out	gammab	influence factor berms

out	succes	flag for succes
out	errormessage	error message

Definition at line 286 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.1.2 subroutine, public factormodulertoovertopping::calculategammabeta (real(wp), intent(inout) *Hm0*, real(wp), intent(inout) *Tm_10*, real(wp), intent(in) *beta*, real(wp), intent(out) *gammaBeta_z*, real(wp), intent(out) *gammaBeta_o*)

calculateGammaBeta influence factor angle of wave attack

Parameters

in,out	hm0	significant wave height (m)
in,out	tm_10	spectral wave period (s)
in	beta	angle of wave attack (degree)
out	gammabeta_z	influence factor angle of wave attack 2% wave run-up
out	gammabeta_o	influence factor angle of wave attack overtopping

Definition at line 115 of file factorModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.2.1.3 subroutine, public factormodulertoovertopping::calculategammaf (real(wp), intent(in) h, real(wp), intent(in) ksi0, real(wp), intent(in) ksi0Limit, real(wp), intent(in) gammaB, real(wp), intent(in) z2, type(tpgeometry), intent(in) geometry, real(wp), intent(out) gammaF, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateGammaF influence factor roughness

in	h	local water level (m+NAP)
in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
in	gammab	influence factor berms
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data
out	gammaf	influence factor roughness
out	succes	flag for succes
out	errormessage	error message

Definition at line 155 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.2.1.4 subroutine, public factormodulertoovertopping::calculatetanalpha (real(wp), intent(in) h, real(wp), intent(in) h, real(wp), intent(in) z2, type(typeometry), intent(in) geometry, real(wp), intent(out) tanAlpha, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

 $calculate Tan Alpha \ representative \ slope \ angle$

Parameters

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	z2	2% wave run-up (m)
in	geometry	structure with geometry data
out	tanalpha	representative slope angle
out	succes	flag for succes
out	errormessage	error message

Definition at line 36 of file factorModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3 formulamodulertoovertopping Module Reference

Functions/Subroutines

• subroutine, public calculatewaverunup (Hm0, ksi0, ksi0Limit, gammaB, gammaF, gammaBeta, modelFactors, z2, succes, errorMessage)

calculateWaveRunup: calculate wave runup

• subroutine, public calculatewaveovertoppingdischarge (h, Hm0, tanAlpha, gammaB, gammaB, gammaBeta, ksi0, hCrest, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

• subroutine, public calculatewavelength (Tm_10, L0)

calculateWaveLength: calculate the wave length

• subroutine, public calculatewavesteepness (Hm0, Tm_10, s0, succes, errorMessage)

calculateWaveSteepness: calculate the wave steepness

• subroutine, public calculatebreakerparameter (tanAlpha, s0, ksi0, succes, errorMessage)

calculateBreakerParameter: calculate the breaker parameter

• subroutine, public calculateanglewaveattack (phi, psi, beta)

calculateAngleWaveAttack: calculate the angle of wave attack

• subroutine, public calculatebreakerlimit (modelFactors, gammaB, ksi0Limit, succes, errorMessage)

calculateBreakerLimit: calculate the breaker limit

• subroutine, public adjustinfluencefactors (gammaB, gammaF, gammaBeta, gammaBetaType, ksi0, ksi0Limit, succes, errorMessage)

adjustInfluenceFactors: adjust the influence factors

• subroutine realrootscubicfunction (a, b, c, d, N, x, succes, errorMessage)

realRootsCubicFunction: calculate the roots of a cubic function

• subroutine rootsgeneralcubic (a, b, c, d, z, succes, errorMessage)

rootsGeneralCubic: calculate the roots of a generic cubic function

• subroutine rootsdepressedcubic (p, q, z)

rootsDepressedCubic: calculate the roots of a depressed cubic function

• subroutine cubicroots (z, roots)

cubicRoots: calculate the roots of a cubic function

• logical function, public isequalreal (x1, x2)

isEqualReal: are two reals (almost) equal

• logical function, public isequalzero (x)

isEqualZero: is a real (almost) zero

4.3.1 Function/Subroutine Documentation

4.3.1.1 subroutine, public formulamodulertoovertopping::adjustinfluencefactors (real(wp), intent(inout) gammaB, real(wp), intent(inout) gammaBeta, integer, intent(in) gammaBetaType, real(wp), intent(in) ksi0, real(wp), intent(in) ksi0Limit, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

adjustInfluenceFactors: adjust the influence factors

Parameters

in,out	gammab	influence factor berms
in,out	gammaf	influence factor roughness
in,out	gammabeta	influence factor angle of wave attack
in	gammabetatype	type influence factor angle of wave attack: 1 = wave run-up, 2 = overtopping
in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
out	succes	flag for succes
out	errormessage	error message

Definition at line 377 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.2 subroutine, public formulamodulertoovertopping::calculateanglewaveattack (real(wp), intent(in) phi, real(wp), intent(in) psi, real(wp), intent(out) beta)

calculateAngleWaveAttack: calculate the angle of wave attack

in	phi	wave direction (degree)
in	psi	dike normal (degree)
out	beta	angle of wave attack (degree)

Definition at line 285 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.3 subroutine, public formulamodulertoovertopping::calculatebreakerlimit (type (tpovertoppinginput), intent(in) modelFactors, real(wp), intent(in) gammaB, real(wp), intent(out) ksi0Limit, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateBreakerLimit: calculate the breaker limit

Definition at line 308 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.4 subroutine, public formulamodulertoovertopping::calculatebreakerparameter (real(wp), intent(in) *tanAlpha*, real(wp), intent(in) *s0*, real(wp), intent(out) *ksi0*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateBreakerParameter: calculate the breaker parameter

Parameters

in	tanalpha	representative slope angle
in	s0	wave steepness
out	ksi0	breaker parameter
out	succes	flag for succes
out	errormessage	error message

Definition at line 244 of file formula Module RTO overtopping. f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.5 subroutine, public formulamodulertoovertopping::calculatewavelength (real(wp), intent(in) *Tm_10*, real(wp), intent(out) *L0*)

calculateWaveLength: calculate the wave length

Parameters

in	tm_10	spectral wave period (s)
out	10	wave length (m)

Definition at line 181 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.6 subroutine, public formulamodulertoovertopping::calculatewaveovertoppingdischarge (real(wp), intent(in) h, real(wp), intent(in) hm0, real(wp), intent(in) tanAlpha, real(wp), intent(in) gammaB, real(wp), intent(in) gammaB, real(wp), intent(in) gammaBeta, real(wp), intent(in) hCrest, type(tpovertoppinginput), intent(in) modelFactors, real(wp), intent(out) Qo, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tanalpha	representative slope angle
in	gammab	influence factor berms
in	gammaf	influence factor roughness

in	gammabeta	influence factor angle of wave attack
in	ksi0	breaker parameter
in	hcrest	crest level (m+NAP)
in	modelfactors	structure with model factors
out	qo	wave overtopping discharge (I/m per s)
out	succes	flag for succes
out	errormessage	error message

Definition at line 84 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.7 subroutine, public formulamodulertoovertopping::calculatewaverunup (real(wp), intent(in) *Hm0*, real(wp), intent(in) *ksi0*, real(wp), intent(in) *ksi0Limit*, real(wp), intent(inout) *gammaB*, real(wp), intent(inout) *gammaF*, real(wp), intent(inout) *gammaBeta*, type (tpovertoppinginput), intent(in) *modelFactors*, real(wp), intent(out) *z2*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveRunup: calculate wave runup

Parameters

in	hm0	significant wave height (m)
in	ksi0	breaker parameter
in	ksi0limit	limit value breaker parameter
in,out	gammab	influence factor berms
in,out	gammaf	influence factor roughness
in,out	gammabeta	influence factor angle of wave attack
in	modelfactors	structure with model factors
out	z2	2% wave run-up (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 35 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.8 subroutine, public formulamodulertoovertopping::calculatewavesteepness (real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(out) *s0*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveSteepness: calculate the wave steepness

Parameters

in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
out	s0	wave steepness
out	succes	flag for succes
out	errormessage	error message

Definition at line 202 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.9 subroutine formulamodulertoovertopping::cubicroots (double complex, intent(in) z, double complex, dimension(3), intent(out) roots) [private]

cubicRoots: calculate the roots of a cubic function

Parameters

in	Z	complex number
out	roots	cubic roots

Definition at line 625 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.10 logical function, public formulamodulertoovertopping::isequalreal (real(wp), intent(in) x1, real(wp), intent(in) x2)

isEqualReal: are two reals (almost) equal

Parameters

in	x1	first real
in	x2	second real

Definition at line 666 of file formulaModuleRTOovertopping.f90.

4.3.1.11 logical function, public formulamodulertoovertopping::isequalzero (real(wp), intent(in) x)

isEqualZero: is a real (almost) zero

Parameters

in	X	real number

Definition at line 690 of file formulaModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.3.1.12 subroutine formulamodulertoovertopping::realrootscubicfunction (real(wp), intent(in) a, real(wp), intent(in) b, real(wp), intent(in) c, real(wp), intent(in) d, integer, intent(out) N, real(wp), dimension(3), intent(out) x, logical, intent(out) succes, character(len=*), intent(out) errorMessage) [private]

realRootsCubicFunction: calculate the roots of a cubic function

in	а	coefficient a cubic function
in	b	coefficient b cubic function
in	С	coefficient c cubic function
in	d	coefficient d cubic function
out	n	number of real roots cubic function
out	X	real roots cubic function
out	succes	flag for succes
out	errormessage	error message

Definition at line 475 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.13 subroutine formulamodulertoovertopping::rootsdepressedcubic (real(wp), intent(in) p, real(wp), intent(in) q, double complex, dimension(3), intent(out) z) [private]

rootsDepressedCubic: calculate the roots of a depressed cubic function

Parameters

in	р	coefficient p depressed cubic
in	q	coefficient q depressed cubic
out	Z	roots depressed cubic

Definition at line 584 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.3.1.14 subroutine formulamodulertoovertopping::rootsgeneralcubic (real(wp), intent(in) a, real(wp), intent(in) b, real(wp), intent(in) c, real(wp), intent(in) d, double complex, dimension(3), intent(out) z, logical, intent(out) succes, character(len=*), intent(out) errorMessage) [private]

rootsGeneralCubic: calculate the roots of a generic cubic function

Parameters

in	а	coefficients a cubic function
in	b	coefficients b cubic function
in	С	coefficients c cubic function
in	d	coefficients d cubic function
out	Z	roots cubic function
out	succes	flag for succes
out	errormessage	error message

Definition at line 531 of file formulaModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4 geometrymodulertoovertopping Module Reference

Functions/Subroutines

 subroutine, public checkcrosssection (psi, nCoordinates, xCoordinates, yCoordinates, roughnessFactors, succes, errorMessage)

checkCrossSection: check cross section

• subroutine, public initializegeometry (psi, nCoordinates, xCoordinates, yCoordinates, roughnessFactors, geometry, succes, errorMessage)

initializeGeometry: initialize the geometry

subroutine, public allocatevectorsgeometry (nCoordinates, geometry, succes, errorMessage)

allocateVectorsGeometry: allocate the geometry vectors

subroutine, public deallocategeometry (geometry)

deallocateGeometry: deallocate the geometry vectors

• subroutine, public calculatesegmentslopes (geometry, succes, errorMessage)

calculateSegmentSlopes: calculate the segment slopes

subroutine, public determinesegmenttypes (geometry)

determineSegmentTypes: determine the segment types

• subroutine, public copygeometry (geometry, geometryCopy, succes, errorMessage)

copyGeometry: copy a geometry structure

• subroutine, public mergesequentialberms (geometry, geometryMergedBerms, succes, errorMessage)

mergeSequentialBerms: merge sequential berms

subroutine, public adjustnonhorizontalberms (geometry, geometryFlatBerms, succes, errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

• subroutine, public removeberms (geometry, geometryNoBerms, succes, errorMessage)

removeBerms: remove berms

• subroutine, public removedikesegments (geometry, index, geometryAdjusted, succes, errorMessage) removeDikeSegments: remove dike segments

subroutine, public splitcrosssection (geometry, L0, NwideBerms, geometrysectionB, geometrysectionF, succes, errorMessage)

splitCrossSection: split a cross section

- subroutine, public calculatehorzlengths (geometry, yLower, yUpper, horzLengths, succes, errorMessage) calculateHorzLengths: calculate horizontal lengths
- subroutine, public calculatehorzdistance (geometry, yLower, yUpper, dx, succes, errorMessage) calculateHorzDistance: calculate horizontal distance
- subroutine, public basicgeometrytest (geometryF, success, errorStruct)
 basicGeometryTest: test the input geometry (the adjusted geometry is checked elsewhere)

4.4.1 Function/Subroutine Documentation

4.4.1.1 subroutine, public geometrymodulertoovertopping::adjustnonhorizontalberms (type (tygeometry), intent(in) geometry, type (tygeometry), intent(out) geometryFlatBerms, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

Parameters

in	geometry	structure with geometry data
out	geometryflat-	geometry data with horizontal berms
	berms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 526 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.2 subroutine, public geometrymodulertoovertopping::allocatevectorsgeometry (integer, intent(in) *nCoordinates*, type (typeometry), intent(inout) *geometry*, logical, intent(out) *succes*, character(len=*), intent(inout) *errorMessage*)

allocateVectorsGeometry: allocate the geometry vectors

Parameters

in	ncoordinates	number of coordinates
in,out	geometry	structure with geometry data
out	succes	succes flag
in,out	errormessage	error message (only set in case of error)

Definition at line 222 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.3 subroutine, public geometrymodulertoovertopping::basicgeometrytest (type(overtoppinggeometrytypef), intent(in) *geometryF*, logical, intent(out) *success*, type(terrormessages), intent(inout) *errorStruct*)

basicGeometryTest: test the input geometry (the adjusted geometry is checked elsewhere)

Parameters

in	geometryf	struct with geometry and roughness
in,out	errorstruct	error message (only set if not successful)
out	success	success flag

Definition at line 1028 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.4 subroutine, public geometrymodulertoovertopping::calculatehorzdistance (type (typeometry), intent(in) geometry, real(wp), intent(in) yLower, real(wp), intent(out) dx, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

calculateHorzDistance: calculate horizontal distance

Parameters

in	geometry	structure with geometry data
in	ylower	y-coordinate lower bound (m+NAP)
in	yupper	y-coordinate upper bound (m+NAP)
out	dx	horizontal distance between bounds (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 979 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.5 subroutine, public geometrymodulertoovertopping::calculatehorzlengths (type (tygeometry), intent(in) *geometry*, real(wp), intent(in) *yUpper*, real(wp), dimension(geometry%ncoordinates-1), intent(out) *horzLengths*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateHorzLengths: calculate horizontal lengths

in	geometry	structure with geometry data
in	ylower	y-coord. lower bound (m+NAP)
in	yupper	y-coord. upper bound (m+NAP)
out	horzlengths	horizontal lengths segments (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 883 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.6 subroutine, public geometrymodulertoovertopping::calculatesegmentslopes (type (tpgeometry), intent(inout) *geometry*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateSegmentSlopes: calculate the segment slopes

Parameters

in	,out	geometry	structure with geometry data
С	out	succes	flag for succes
С	out	errormessage	error message

Definition at line 284 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.7 subroutine, public geometrymodulertoovertopping::checkcrosssection (real(wp), intent(in) *psi*, integer, intent(in) *nCoordinates*, real(wp), dimension (ncoordinates), intent(in) *xCoordinates*, real(wp), dimension (ncoordinates), intent(in) *yCoordinates*, real(wp), dimension(ncoordinates-1), intent(in) *roughnessFactors*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

checkCrossSection: check cross section

Parameters

in	psi	dike normal (degree)
in	ncoordinates	number of coordinates
in	xcoordinates	x-coordinates (m)
in	ycoordinates	y-coordinates (m+NAP)
in	roughnessfac-	roughness factors
	tors	
out	succes	flag for succes
out	errormessage	error message

Definition at line 35 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

4.4.1.8 subroutine, public geometrymodulertoovertopping::copygeometry (type (tpgeometry), intent(in) *geometry*, type (tpgeometry), intent(inout) *geometryCopy*, logical, intent(out) *succes*, character(len=*), intent(inout) *errorMessage*)

copyGeometry: copy a geometry structure

Parameters

in	geometry	structure with geometry data
in,out	geometrycopy	structure with geometry data copy
out	succes	succes flag
in,out	errormessage	error message, only set in case of error

Definition at line 366 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.9 subroutine, public geometrymodulertoovertopping::deallocategeometry (type (typeometry), intent(inout) geometry)

deallocateGeometry: deallocate the geometry vectors

Parameters

in,out	geometry	structure with geometry data
--------	----------	------------------------------

Definition at line 261 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.10 subroutine, public geometrymodulertoovertopping::determinesegmenttypes (type (type ometry), intent(inout) geometry)

determineSegmentTypes: determine the segment types

Parameters

_			
	in,out	geometry	structure with geometry data

Definition at line 323 of file geometryModuleRTOovertopping.f90.

Here is the caller graph for this function:

4.4.1.11 subroutine, public geometrymodulertoovertopping::initializegeometry (real(wp), intent(in) *psi*, integer, intent(in) *nCoordinates*, real(wp), dimension (ncoordinates), intent(in) *xCoordinates*, real(wp), dimension (ncoordinates), intent(in) *yCoordinates*, real(wp), dimension(ncoordinates-1), intent(in) *roughnessFactors*, type (tpgeometry), intent(out) *geometry*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

initializeGeometry: initialize the geometry

Parameters

in	psi	dike normal (degree)
in	ncoordinates	number of coordinates
in	xcoordinates	x-coordinates (m)
in	ycoordinates	y-coordinates (m+NAP)
in	roughnessfac-	roughness factors
	tors	
out	geometry	structure with geometry data
out	succes	flag for succes
out	errormessage	error message

Definition at line 146 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.12 subroutine, public geometrymodulertoovertopping::mergesequentialberms (type (tpgeometry), intent(in) *geometry,* type (tpgeometry), intent(inout) *geometryMergedBerms,* logical, intent(out) *succes,* character(len=*), intent(out) *errorMessage*)

mergeSequentialBerms: merge sequential berms

Parameters

in	geometry	structure with geometry data
in,out	geome-	geometry data with merged sequential berms
	trymergedberms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 417 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.13 subroutine, public geometrymodulertoovertopping::removeberms (type (typeometry), intent(in) *geometry*, type (typeometry), intent(out) *geometryNoBerms*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

removeBerms: remove berms

Parameters

in	geometry	structure with geometry data
out	geome-	geometry data withouth berms
	trynoberms	
out	succes	flag for succes
out	errormessage	error message

Definition at line 615 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.14 subroutine, public geometrymodulertoovertopping::removedikesegments (type (typeometry), intent(in) *geometry*, integer, intent(in) *index*, type (typeometry), intent(out) *geometryAdjusted*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

removeDikeSegments: remove dike segments

Parameters

in	geometry	structure with geometry data
in	index	index starting point new cross section
out	geometryad-	geometry data with removed dike segments
	justed	
out	succes	flag for succes
out	errormessage	error message

Definition at line 714 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.4.1.15 subroutine, public geometrymodulertoovertopping::splitcrosssection (type (tpgeometry), intent(in) *geometry*, real(wp), intent(in) *L0*, integer, intent(out) *NwideBerms*, type (tpgeometry), intent(out) *geometrysectionB*, type (tpgeometry), intent(out) *geometrysectionB*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

splitCrossSection: split a cross section

Parameters

in	geometry	structure with geometry data
in	10	wave length (m)
out	nwideberms	number of wide berms
out	geometrysec-	geometry data with wide berms to ordinary berms
	tionb	
out	geometrysec-	geometry data with wide berms to foreshores
	tionf	
out	succes	flag for succes
out	errormessage	error message

Definition at line 778 of file geometryModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5 mainmodulertoovertopping Module Reference

Functions/Subroutines

- subroutine, public calculateovertopping (geometry, load, modelFactors, overtopping, succes, errorMessage) calculateOvertopping: calculate the overtopping
- subroutine, public calculateovertoppingsection (geometry, h, Hm0, Tm_10, L0, gammaBeta_z, gammaBeta
 _o, modelFactors, overtopping, succes, errorMessage)
 - calculateOvertoppingSection: calculate the overtopping for a section
- subroutine, public calculatewaveovertopping (geometry, h, Hm0, Tm_10, z2, gammaBeta_o, modelFactors, Qo, succes, errorMessage)
 - calculateWaveOvertopping: calculate wave overtopping
- subroutine calculateovertoppingnegativefreeboard (load, geometry, overtopping, succes, errorMessage) calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard
- subroutine, public interpolateresultssections (geometry, L0, NwideBerms, overtoppingB, overtoppingF, overtopping, succes, errorMessage)
 - interpolateResultsSections: interpolate results for split cross sections
- subroutine, public checkinputdata (geometry, load, modelFactors, succes, errorMessage)
 - checkInputdata: check the input data
- subroutine, public checkmodelfactors (modelFactors, dimErrMessage, errorMessages, ierr)
 - checkModelFactors: check the input data
- subroutine, public convertovertoppinginput (modelFactors, success, errorMessage)
 - convertOvertoppingInput: convert the model factors from C-like to Fortran

4.5.1 Function/Subroutine Documentation

4.5.1.1 subroutine, public mainmodulertoovertopping::calculateovertopping (type (tpgeometry), intent(in) *geometry*, type (tpload), intent(in) *load*, type (tpovertoppinginput), intent(in) *modelFactors*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateOvertopping: calculate the overtopping

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in	modelfactors	structure with model factors
out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 37 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.2 subroutine mainmodulertoovertopping::calculateovertoppingnegativefreeboard (type (tpload), intent(in) *load*, type (tpgeometry), intent(in) *geometry*, type (tpovertopping), intent(inout) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*) [private]

calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in,out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 479 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

4.5.1.3 subroutine, public mainmodulertoovertopping::calculateovertoppingsection (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(in) *L0*, real(wp), intent(inout) *gammaBeta_z*, real(wp), intent(inout) *gammaBeta_o*, type (typovertopping), intent(in) *modelFactors*, type (typovertopping), intent(out) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateOvertoppingSection: calculate the overtopping for a section

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
in	10	wave length (m)
in,out	gammabeta_z	influence angle wave attack wave run-up
in,out	gammabeta_o	influence angle wave attack overtopping
in	modelfactors	structure with model factors
out	overtopping	structure with overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 166 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.4 subroutine, public mainmodulertoovertopping::calculatewaveovertopping (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(in) *z2*, real(wp), intent(inout) *gammaBeta_o*, type (typovertoppinginput), intent(in) *modelFactors*, real(wp), intent(out) *Qo*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

calculateWaveOvertopping: calculate wave overtopping

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
in	z2	2% wave run-up (m)
in,out	gammabeta_o	influence angle wave attack overtopping
in	modelfactors	structure with model factors
out	qo	wave overtopping discharge (m3/m per s)
out	succes	flag for succes
out	errormessage	error message

Definition at line 392 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.5 subroutine, public mainmodulertoovertopping::checkinputdata (type (tpgeometry), intent(in) *geometry*, type (tpload), intent(in) *load*, type (tpovertoppinginput), intent(in) *modelFactors*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

checkInputdata: check the input data

Parameters

in	geometry	structure with geometry data
in	load	structure with load parameters
in	modelfactors	structure with model factors
out	succes	flag for succes
out	errormessage	error message

Definition at line 596 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.6 subroutine, public mainmodulertoovertopping::checkmodelfactors (type (tpovertoppinginput), intent(in) *modelFactors*, integer, intent(in) *dimErrMessage*, character(len=*), dimension(dimerrmessage), intent(out) *errorMessages*, integer, intent(out) *ierr*)

checkModelFactors: check the input data

Parameters

in	modelfactors	structure with model factors
in	dimerrmessage	max. number of error messages
out	ierr	number of errors found
out	errormessages	error message

Definition at line 655 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.7 subroutine, public mainmodulertoovertopping::convertovertoppinginput (type (tpovertoppinginput), intent(inout) modelFactors, logical, intent(out) success, character(len=*), intent(inout) errorMessage)

convertOvertoppingInput: convert the model factors from C-like to Fortran

Parameters

in	,out	modelfactors	model factors and other input for overtopping
C	out	success	flag for success
in	,out	errormessage	error message; only set when not successful

Definition at line 751 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.5.1.8 subroutine, public mainmodulertoovertopping::interpolateresultssections (type (tpgeometry), intent(in) *geometry*, real(wp), intent(in) *L0*, integer, intent(in) *NwideBerms*, type (tpovertopping), intent(in) *overtoppingB*, type (tpovertopping), intent(in) *overtoppingF*, type (tpovertopping), intent(out) *overtopping*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*)

interpolateResultsSections: interpolate results for split cross sections

Parameters

in	geometry	structure with geometry data
in	10	wave length (m)
in	nwideberms	number of wide berms
in	overtoppingb	structure with overtopping results ordinary berms
in	overtoppingf	structure with overtopping results foreshores
out	overtopping	structure with combined overtopping results
out	succes	flag for succes
out	errormessage	error message

Definition at line 515 of file mainModuleRTOovertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.6 modulelogging Module Reference

Data Types

• type tlogging

TLogging: structure for steering the logging.

Variables

- integer, parameter maxfilenamelength = 256

 maximum length of filename
- type(tlogging) currentlogging copy of argument logging

4.6.1 Variable Documentation

4.6.1.1 type(tlogging) modulelogging::currentlogging

copy of argument logging

Definition at line 21 of file ModuleLogging.f90.

4.6.1.2 integer, parameter modulelogging::maxfilenamelength = 256

maximum length of filename

Definition at line 13 of file ModuleLogging.f90.

4.7 overtoppinginterface Module Reference

Data Types

- type overtoppinggeometrytype
- · type overtoppinggeometrytypef
- · type tpprofilecoordinate

Variables

integer, parameter, public varmodelfactorcriticalovertopping = 8
 Model factor critical overtopping.

4.7.1 Variable Documentation

4.7.1.1 integer, parameter, public overtoppinginterface::varmodelfactorcriticalovertopping = 8

Model factor critical overtopping.

Definition at line 17 of file overtoppingInterface.f90.

4.8 overtoppingmessages Module Reference

Functions/Subroutines

• subroutine setlanguage (lang)

IDs for the strings in this module:

• subroutine getlanguage (lang)

Subroutine that gets the language for error and validation messages.

character(len=maxmsg) function getovertoppingmessage (ID)

Subroutine that returns a message with the corresponding ID in the current language.

character(len=maxmsg) function getovertoppingformat (ID)

Subroutine that returns a Fortran format string with the corresponding ID in the current language.

character(len=maxpar) function getovertoppingparameter (ID)

Subroutine that returns the name of an input parameter with the corresponding ID in the current language.

Variables

• integer, parameter, private maxmsg = 128

Module for the messages in the overtopping dll, in Dutch or English.

- integer, parameter, private maxpar =32
- character(len=2), private language = 'NL'

default : Dutch

4.8.1 Function/Subroutine Documentation

4.8.1.1 subroutine overtoppingmessages::getlanguage (character(len=*), intent(out) lang)

Subroutine that gets the language for error and validation messages.

Parameters

out	lang	filled with current language ID

Definition at line 101 of file OvertoppingMessages.f90.

4.8.1.2 character(len=maxmsq) function overtoppingmessages::getovertoppingformat (integer, intent(in) ID)

Subroutine that returns a Fortran format string with the corresponding ID in the current language.

Parameters

in	id	identification number of string

Definition at line 261 of file OvertoppingMessages.f90.

Here is the caller graph for this function:

4.8.1.3 character(len=maxmsg) function overtoppingmessages::getovertoppingmessage (integer, intent(in) ID)

Subroutine that returns a message with the corresponding ID in the current language.

Parameters

in	id	identification number of string

Definition at line 111 of file OvertoppingMessages.f90.

Here is the caller graph for this function:

4.8.1.4 character(len=maxpar) function overtoppingmessages::getovertoppingparameter (integer, intent(in) ID)

Subroutine that returns the name of an input parameter with the corresponding ID in the current language.

Parameters

in	id	identification number of string

Definition at line 323 of file OvertoppingMessages.f90.

Here is the caller graph for this function:

4.8.1.5 subroutine overtoppingmessages::setlanguage (character(len=*), intent(in) lang)

IDs for the strings in this module:

Subroutine that sets the language for error and validation messages only strings 'NL' and 'UK' are recognized (lower and upper case)

Parameters

in	lang	new language ID to be used
----	------	----------------------------

Definition at line 83 of file OvertoppingMessages.f90.

4.8.2 Variable Documentation

4.8.2.1 character(len=2), private overtoppingmessages::language = 'NL'

default : Dutch

Definition at line 17 of file OvertoppingMessages.f90.

4.8.2.2 integer, parameter, private overtoppingmessages::maxmsg = 128

Module for the messages in the overtopping dll, in Dutch or English.

Definition at line 15 of file OvertoppingMessages.f90.

4.8.2.3 integer, parameter, private overtoppingmessages::maxpar =32

Definition at line 15 of file OvertoppingMessages.f90.

4.9 typedefinitionsrtoovertopping Module Reference

Data Types

· type tpgeometry

tpGeometry: structure with geometry data

type tpload

tpLoad: structure with load parameters

· type tpovertopping

tpOvertopping: structure with overtopping results

• type tpovertoppinginput

OvertoppingModelFactors: C-structure with model factors.

Variables

• real(wp), parameter xdiff_min = 2.0d-2

minimal value distance between x-coordinates (m)

• real(wp), parameter margindiff = 1.0d-14

margin for minimal distance (m)

• real(wp), parameter berm_min = 0.0d0

minimal value gradient berm segment

real(wp), parameter berm_max = 1.0d0/15

```
maximal value gradient berm segment
real(wp), parameter slope_min = 1.0d0/8
     minimal value gradient slope segment
real(wp), parameter slope_max = 1.0d0
     maximal value gradient slope segment
• real(wp), parameter margingrad = 0.0025d0
     margin for minimal and maximal gradients
• real(wp), parameter rfactor_min = 0.5d0
     minimal value roughness factor dike segments
• real(wp), parameter rfactor_max = 1.0d0
     maximal value roughness factor dike segments
real(wp), parameter mz2_min = 0.0d0
     minimal value model factor of 2% runup height

    real(wp), parameter mz2_max = huge(mz2_max)

     maximal value model factor of 2% runup height
• real(wp), parameter frunup1_min = 0.0d0
     minimal value model factor 1 for wave run-up
real(wp), parameter frunup1_max = huge(fRunup1_max)
     maximal value model factor 1 for wave run-up

    real(wp), parameter frunup2_min = 0.0d0

     minimal value model factor 2 for wave run-up

    real(wp), parameter frunup2 max = huge(fRunup2 max)

     maximal value model factor 2 for wave run-up
• real(wp), parameter frunup3_min = 0.0d0
     minimal value model factor 3 for wave run-up
real(wp), parameter frunup3_max = huge(fRunup3_max)
     maximal value model factor 3 for wave run-up
real(wp), parameter fb_min = 0.0d0
     minimal value model factor for breaking waves

    real(wp), parameter fb max = huge(fB max)

     maximal value model factor for breaking waves
• real(wp), parameter fn min = 0.0d0
     minimal value model factor for non-breaking waves
real(wp), parameter fn_max = huge(fN_max)
     maximal value model factor for non-breaking waves
real(wp), parameter fs_min = 0.0d0
     minimal value model factor for shallow waves

    real(wp), parameter fs max = huge(fS max)

     maximal value model factor for shallow waves
• real(wp), parameter foreshore_min = 0.3d0
     minimal value reduction factor foreshore
• real(wp), parameter foreshore_max = 1.0d0
     maximal value reduction factor foreshore
integer, parameter z2_iter_max1 = 49
     maximal number of iterations for calculation z2 part 1
• integer, parameter z2 iter max2 = 70
     maximal number of iterations for calculation z2 part 1 & 2
```

• real(wp), parameter z2_margin = 0.001d0

margin for convergence criterium calculation z2

4.9.1 Variable Documentation

4.9.1.1 real(wp), parameter typedefinitionsrtoovertopping::berm_max = 1.0d0/15

maximal value gradient berm segment

Definition at line 67 of file typeDefinitionsRTOovertopping.f90.

4.9.1.2 real(wp), parameter typedefinitionsrtoovertopping::berm_min = 0.0d0

minimal value gradient berm segment

Definition at line 66 of file typeDefinitionsRTOovertopping.f90.

4.9.1.3 real(wp), parameter typedefinitionsrtoovertopping::fb_max = huge(fB_max)

maximal value model factor for breaking waves

Definition at line 82 of file typeDefinitionsRTOovertopping.f90.

4.9.1.4 real(wp), parameter typedefinitionsrtoovertopping::fb_min = 0.0d0

minimal value model factor for breaking waves

Definition at line 81 of file typeDefinitionsRTOovertopping.f90.

4.9.1.5 real(wp), parameter typedefinitionsrtoovertopping::fn_max = huge(fN_max)

maximal value model factor for non-breaking waves

Definition at line 84 of file typeDefinitionsRTOovertopping.f90.

4.9.1.6 real(wp), parameter typedefinitionsrtoovertopping::fn_min = 0.0d0

minimal value model factor for non-breaking waves

Definition at line 83 of file typeDefinitionsRTOovertopping.f90.

4.9.1.7 real(wp), parameter typedefinitionsrtoovertopping::foreshore_max = 1.0d0

maximal value reduction factor foreshore

Definition at line 88 of file typeDefinitionsRTOovertopping.f90.

4.9.1.8 real(wp), parameter typedefinitionsrtoovertopping::foreshore_min = 0.3d0

minimal value reduction factor foreshore

Definition at line 87 of file typeDefinitionsRTOovertopping.f90.

4.9.1.9 real(wp), parameter typedefinitionsrtoovertopping::frunup1_max = huge(fRunup1_max)

maximal value model factor 1 for wave run-up

Definition at line 76 of file typeDefinitionsRTOovertopping.f90.

4.9.1.10 real(wp), parameter typedefinitionsrtoovertopping::frunup1_min = 0.0d0

minimal value model factor 1 for wave run-up

Definition at line 75 of file typeDefinitionsRTOovertopping.f90.

4.9.1.11 real(wp), parameter typedefinitionsrtoovertopping::frunup2_max = huge(fRunup2_max)

maximal value model factor 2 for wave run-up

Definition at line 78 of file typeDefinitionsRTOovertopping.f90.

4.9.1.12 real(wp), parameter typedefinitionsrtoovertopping::frunup2_min = 0.0d0

minimal value model factor 2 for wave run-up

Definition at line 77 of file typeDefinitionsRTOovertopping.f90.

4.9.1.13 real(wp), parameter typedefinitionsrtoovertopping::frunup3_max = huge(fRunup3_max)

maximal value model factor 3 for wave run-up

Definition at line 80 of file typeDefinitionsRTOovertopping.f90.

4.9.1.14 real(wp), parameter typedefinitionsrtoovertopping::frunup3_min = 0.0d0

minimal value model factor 3 for wave run-up

Definition at line 79 of file typeDefinitionsRTOovertopping.f90.

4.9.1.15 real(wp), parameter typedefinitionsrtoovertopping::fs_max = huge(fS_max)

maximal value model factor for shallow waves

Definition at line 86 of file typeDefinitionsRTOovertopping.f90.

4.9.1.16 real(wp), parameter typedefinitionsrtoovertopping::fs_min = 0.0d0

minimal value model factor for shallow waves

Definition at line 85 of file typeDefinitionsRTOovertopping.f90.

4.9.1.17 real(wp), parameter typedefinitionsrtoovertopping::margindiff = 1.0d-14

margin for minimal distance (m)

Definition at line 65 of file typeDefinitionsRTOovertopping.f90.

4.9.1.18 real(wp), parameter typedefinitionsrtoovertopping::margingrad = 0.0025d0

margin for minimal and maximal gradients

Definition at line 70 of file typeDefinitionsRTOovertopping.f90.

4.9.1.19 real(wp), parameter typedefinitionsrtoovertopping::mz2_max = huge(mz2_max)

maximal value model factor of 2% runup height

Definition at line 74 of file typeDefinitionsRTOovertopping.f90.

4.9.1.20 real(wp), parameter typedefinitionsrtoovertopping::mz2_min = 0.0d0

minimal value model factor of 2% runup height

Definition at line 73 of file typeDefinitionsRTOovertopping.f90.

4.9.1.21 real(wp), parameter typedefinitionsrtoovertopping::rfactor_max = 1.0d0

maximal value roughness factor dike segments

Definition at line 72 of file typeDefinitionsRTOovertopping.f90.

4.9.1.22 real(wp), parameter typedefinitionsrtoovertopping::rfactor_min = 0.5d0

minimal value roughness factor dike segments

Definition at line 71 of file typeDefinitionsRTOovertopping.f90.

4.9.1.23 real(wp), parameter typedefinitionsrtoovertopping::slope_max = 1.0d0

maximal value gradient slope segment

Definition at line 69 of file typeDefinitionsRTOovertopping.f90.

4.9.1.24 real(wp), parameter typedefinitionsrtoovertopping::slope_min = 1.0d0/8

minimal value gradient slope segment

Definition at line 68 of file typeDefinitionsRTOovertopping.f90.

4.9.1.25 real(wp), parameter typedefinitionsrtoovertopping::xdiff_min = 2.0d-2

minimal value distance between x-coordinates (m)

Definition at line 64 of file typeDefinitionsRTOovertopping.f90.

4.9.1.26 integer, parameter typedefinitionsrtoovertopping::z2_iter_max1 = 49

maximal number of iterations for calculation z2 part 1

Definition at line 89 of file typeDefinitionsRTOovertopping.f90.

4.9.1.27 integer, parameter typedefinitionsrtoovertopping::z2_iter_max2 = 70

maximal number of iterations for calculation z2 part 1 & 2

Definition at line 90 of file typeDefinitionsRTOovertopping.f90.

4.9.1.28 real(wp), parameter typedefinitionsrtoovertopping::z2_margin = 0.001d0

margin for convergence criterium calculation z2

Definition at line 91 of file typeDefinitionsRTOovertopping.f90.

4.10 waverunup Module Reference

Functions/Subroutines

• subroutine, public iterationwaverunup (geometry, h, Hm0, Tm_10, gammaBeta_z, modelFactors, z2, succes, errorMessage)

iterationWaveRunup: iteration for the wave runup

- real(kind=wp) function innercalculation (geometry, h, Hm0, gammaBeta_z, modelFactors, z2, s0, geometry ←
 FlatBerms, succes, errorMessage)
- real(kind=wp) function determinestartingvalue (i, relaxationFactor, z2_start, z2_end, Hm0)
- integer function findsmallestresidu (z2_start, z2_end, n)
- subroutine convergedwithresidu (z2_start, z2_end)

4.10.1 Function/Subroutine Documentation

4.10.1.1 subroutine waverunup::convergedwithresidu (real(kind=wp), dimension(:), intent(in) z2_start, real(kind=wp), dimension(:), intent(inout) z2_end) [private]

Definition at line 317 of file waveRunup.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.10.1.2 real(kind=wp) function waverunup::determinestartingvalue (integer, intent(in) *i*, real(kind=wp), intent(in) relaxationFactor, real(kind=wp), dimension(:), intent(in) z2_start, real(kind=wp), dimension(:), intent(in) z2_end, real(kind=wp), intent(in) Hm0) [private]

Definition at line 266 of file waveRunup.f90.

Here is the caller graph for this function:

4.10.1.3 integer function waverunup::findsmallestresidu (real(kind=wp), dimension(:), intent(in) z2_start, real(kind=wp), dimension(:), intent(in) z2_end, integer, intent(in), optional n) [private]

Definition at line 288 of file waveRunup.f90.

Here is the caller graph for this function:

4.10.1.4 real(kind=wp) function waverunup::innercalculation (type (tpgeometry), intent(in) geometry, real(wp), intent(in) h, real(wp), intent(in) Hm0, real(wp), intent(inout) gammaBeta_z, type (tpovertoppinginput), intent(in) modelFactors, real(wp), intent(in) z2, real(kind=wp), intent(in) s0, type (tpgeometry), intent(in) geometryFlatBerms, logical, intent(out) succes, character(len=*), intent(out) errorMessage) [private]

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in,out	gammabeta_z	influence factor angle wave attack 2% run-up
in	modelfactors	structure with model factors
in	z2	2% wave run-up (m)
in	s0	wave steepness
in	geometryflat-	structure with geometry data with horizontal berms
	berms	
out	succes	flag for succes
out	errormessage	error message

Returns

2% wave run-up at end of inner calculation

Definition at line 162 of file waveRunup.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.10.1.5 subroutine, public waverunup::iterationwaverunup (type (typeometry), intent(in) *geometry*, real(wp), intent(in) *h*, real(wp), intent(in) *Hm0*, real(wp), intent(in) *Tm_10*, real(wp), intent(inout) *gammaBeta_z*, type (typovertoppinginput), intent(in) *modelFactors*, real(wp), intent(out) *z2*, logical, intent(out) *succes*, character(len=*), intent(out) *errorMessage*

iterationWaveRunup: iteration for the wave runup

Parameters

in	geometry	structure with geometry data
in	h	local water level (m+NAP)
in	hm0	significant wave height (m)
in	tm_10	spectral wave period (s)
in,out	gammabeta_z	influence factor angle wave attack 2% run-up
in	modelfactors	structure with model factors
out	z2	2% wave run-up (m)
out	succes	flag for succes
out	errormessage	error message

Definition at line 34 of file waveRunup.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.11 zfunctionswtiovertopping Module Reference

Module for the Limit State Functions (Z-functions) for wave overtopping.

Functions/Subroutines

subroutine, public calculateqorto (dikeHeight, modelFactors, overtopping, load, geometry, succes, error
 — Message)

Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.

subroutine, public profileinstructure (nrCoordinates, xcoordinates, ycoordinates, dikeHeight, nrCoords
 — Adjusted, xCoordsAdjusted, zCoordsAdjusted, succes, errorMessage)

Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.

subroutine adjustprofile (nrCoordinates, coordinates, dikeHeight, nrCoordsAdjusted, xCoordsAdjusted, z←
CoordsAdjusted, succes, errorMessage)

Subroutine adjust the profile due to a desired dike height.

• real(kind=wp) function, public zfunclogratios (qo, qc, mqo, mqc, success, errorMessage)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

4.11.1 Detailed Description

Module for the Limit State Functions (Z-functions) for wave overtopping.

4.11.2 Function/Subroutine Documentation

4.11.2.1 subroutine zfunctionswtiovertopping::adjustprofile (integer, intent(in) nrCoordinates, type(typrofilecoordinate), dimension(nrcoordinates), intent(in) coordinates, real(kind=wp), intent(in) dikeHeight, integer, intent(out) nrCoordsAdjusted, real(kind=wp), dimension(:), pointer xCoordsAdjusted, real(kind=wp), dimension(:), pointer zCoordsAdjusted, logical, intent(out) succes, character(len=*), intent(out) errorMessage) [private]

Subroutine adjust the profile due to a desired dike height.

Parameters

in	nrcoordinates	number of coordinates of the profile
in	coordinates	structure for the profile
in	dikeheight	dike height
out	nrcoordsad-	number of coordinates in the adjusted profile
	justed	
	xcoordsadjusted	vector with x-coordinates of the adjusted profile
	zcoordsadjusted	vector with y-coordinates of the adjusted profile
out	succes	flag for succes
out	errormessage	error message

Definition at line 110 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.11.2.2 subroutine, public zfunctionswtiovertopping::calculateqorto (real(kind=wp), intent(in) dikeHeight, type(tpovertoppinginput), intent(inout) modelFactors, type (tpovertopping), intent(out) overtopping, type (tpload), intent(in) load, type (tpgeometry), intent(in) geometry, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.

Parameters

in	dikeheight	dike height
in,out	modelfactors	struct with model factors
out	overtopping	structure with overtopping results
in	geometry	structure with geometry data
in	load	structure with load parameters
out	succes	flag for succes
out	errormessage	error message

Definition at line 33 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.11.2.3 subroutine, public zfunctionswtiovertopping::profileinstructure (integer, intent(in) nrCoordinates, real(kind=wp), dimension(nrcoordinates), intent(in) xcoordinates, real(kind=wp), dimension(nrcoordinates), intent(in) ycoordinates, real(kind=wp), intent(in) dikeHeight, integer, intent(out) nrCoordsAdjusted, real(kind=wp), dimension(:), pointer xCoordsAdjusted, real(kind=wp), dimension(:), pointer zCoordsAdjusted, logical, intent(out) succes, character(len=*), intent(out) errorMessage)

Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.

Parameters

in	nrcoordinates	number of coordinates of the profile
in	xcoordinates	vector with x-coordinates of the profile
in	ycoordinates	vector with y-coordinates of the profile
in	dikeheight	dike height
out	nrcoordsad-	number of coordinates in the adjusted profile
	justed	
	xcoordsadjusted	vector with x-coordinates of the adjusted profile
	zcoordsadjusted	vector with y-coordinates of the adjusted profile
out	succes	flag for succes
out	errormessage	error message

Definition at line 85 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

4.11.2.4 real (kind=wp) function, public zfunctionswtiovertopping::zfunclogratios (real (kind=wp), intent(in) *qo*, real (kind=wp), intent(in) *qc*, real (kind=wp), intent(in) *mqo*, real (kind=wp), intent(in) *mqc*, logical, intent(out) *success*, character(len=*), intent(out) *errorMessage*)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

Parameters 4 8 1	
------------------	--

in	qo	computed overtopping discharge
----	----	--------------------------------

in	qc	Critical overtopping discharge
in	mqo	Model factor computed overtopping discharge
in	mqc	Model factor Critical overtopping discharge
out	success	Flag for succes
out	errormessage	error message, only set if not successful

Returns

Value z-function

Definition at line 212 of file zFunctionsWTIOvertopping.f90.

Here is the call graph for this function:

Here is the caller graph for this function:

Chapter 5

Data Type Documentation

5.1 overtoppinginterface::overtoppinggeometrytype Type Reference

Collaboration diagram for overtoppinginterface::overtoppinggeometrytype:

Public Attributes

- real(kind=wp) normal
- integer npoints
- type(c_ptr) xcoords
- type(c_ptr) ycoords
- type(c_ptr) roughness

5.1.1 Detailed Description

3.1.1	Detailed Description
Definit	ion at line 25 of file overtoppingInterface.f90.
5.1.2	Member Data Documentation
5.1.2.1	real(kind=wp) overtoppinginterface::overtoppinggeometrytype::normal
Definit	ion at line 26 of file overtoppingInterface.f90.
5.1.2.2	integer overtoppinginterface::overtoppinggeometrytype::npoints
Definit	ion at line 27 of file overtoppingInterface.f90.
5.1.2.3	type(c_ptr) overtoppinginterface::overtoppinggeometrytype::roughness
Definit	ion at line 30 of file overtoppingInterface.f90.
5.1.2.4	type(c_ptr) overtoppinginterface::overtoppinggeometrytype::xcoords
Definit	ion at line 28 of file overtoppingInterface.f90.

 $5.1.2.5 \quad type (c_ptr) \ overtopping interface:: overtopping geometry type:: ycoords$

Definition at line 29 of file overtoppingInterface.f90.

5.2 overtoppinginterface::overtoppinggeometrytypef Type Reference

Collaboration diagram for overtoppinginterface::overtoppinggeometrytypef:

Public Attributes

- real(kind=wp) normal
- · integer npoints
- real(kind=wp), dimension(:), pointer xcoords
- real(kind=wp), dimension(:), pointer ycoords
- real(kind=wp), dimension(:), pointer roughness

5.2.1 Detailed Description

Definition at line 33 of file overtoppingInterface.f90.

5.2.2 Member Data Documentation

5.2.2.1 real(kind=wp) overtoppinginterface::overtoppinggeometrytypef::normal

Definition at line 34 of file overtoppingInterface.f90.

5.2.2.2 integer overtoppinginterface::overtoppinggeometrytypef::npoints

Definition at line 35 of file overtoppingInterface.f90.

5.2.2.3 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::roughness

Definition at line 38 of file overtoppingInterface.f90.

5.2.2.4 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::xcoords

Definition at line 36 of file overtoppingInterface.f90.

5.2.2.5 real(kind=wp), dimension(:), pointer overtoppinginterface::overtoppinggeometrytypef::ycoords

Definition at line 37 of file overtoppingInterface.f90.

5.3 modulelogging::tlogging Type Reference

TLogging: structure for steering the logging.

Collaboration diagram for modulelogging::tlogging:

Public Attributes

- integer verbosity = verboseNone
 level of verbosity: one of verboseNone, verboseBasic, verboseDetailed, verboseDebugging
- character(len=maxfilenamelength) filename = ''
 filename of logging

5.3.1 Detailed Description

TLogging: structure for steering the logging.

Definition at line 16 of file ModuleLogging.f90.

5.3.2 Member Data Documentation

5.3.2.1 character(len=maxfilenamelength) modulelogging::filename = ' '

filename of logging

Definition at line 18 of file ModuleLogging.f90.

5.3.2.2 integer modulelogging::tlogging::verbosity = verboseNone

level of verbosity: one of verboseNone, verboseBasic, verboseDetailed, verboseDebugging Definition at line 17 of file ModuleLogging.f90.

5.4 typedefinitionsrtoovertopping::tpgeometry Type Reference

tpGeometry: structure with geometry data

Collaboration diagram for typedefinitionsrtoovertopping::tpgeometry:

Public Attributes

real(wp) psi

dike normal (degrees)

· integer ncoordinates

number of coordinates cross section

• real(wp), dimension(:), pointer xcoordinates

vector with x-coordinates cross section (m)

real(wp), dimension(:), pointer ycoordinates
 vector with y-coordinates cross section (m+NAP)

real(wp), dimension(:), pointer roughnessfactors
 vector with roughness factors cross section

real(wp), dimension(:), pointer xcoorddiff
 vector with differences in x-coordinates (m)

real(wp), dimension(:), pointer ycoorddiff
 vector with differences in y-coordinates (m)

real(wp), dimension(:), pointer segmentslopes
 vector with slopes dike segments

integer, dimension(:), pointer segmenttypes
 vector with segment types (1=slope,2=berm,3=other)

• integer nbermsegments

number of berm segments

5.4.1 Detailed Description

tpGeometry: structure with geometry data

Definition at line 18 of file typeDefinitionsRTOovertopping.f90.

5.4.2 Member Data Documentation

5.4.2.1 integer typedefinitionsrtoovertopping::tpgeometry::nbermsegments

number of berm segments

Definition at line 28 of file typeDefinitionsRTOovertopping.f90.

5.4.2.2 integer typedefinitionsrtoovertopping::tpgeometry::ncoordinates

number of coordinates cross section

Definition at line 20 of file typeDefinitionsRTOovertopping.f90.

5.4.2.3 real(wp) typedefinitionsrtoovertopping::tpgeometry::psi

dike normal (degrees)

Definition at line 19 of file typeDefinitionsRTOovertopping.f90.

5.4.2.4 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::roughnessfactors

vector with roughness factors cross section

Definition at line 23 of file typeDefinitionsRTOovertopping.f90.

5.4.2.5 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::segmentslopes

vector with slopes dike segments

Definition at line 26 of file typeDefinitionsRTOovertopping.f90.

5.4.2.6 integer, dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::segmenttypes

vector with segment types (1=slope,2=berm,3=other)

Definition at line 27 of file typeDefinitionsRTOovertopping.f90.

5.4.2.7 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::xcoorddiff

vector with differences in x-coordinates (m)

Definition at line 24 of file typeDefinitionsRTOovertopping.f90.

5.4.2.8 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::xcoordinates

vector with x-coordinates cross section (m)

Definition at line 21 of file typeDefinitionsRTOovertopping.f90.

5.4.2.9 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::ycoorddiff

vector with differences in y-coordinates (m)

Definition at line 25 of file typeDefinitionsRTOovertopping.f90.

5.4.2.10 real(wp), dimension(:), pointer typedefinitionsrtoovertopping::tpgeometry::ycoordinates

vector with y-coordinates cross section (m+NAP)

Definition at line 22 of file typeDefinitionsRTOovertopping.f90.

5.5 typedefinitionsrtoovertopping::tpload Type Reference

tpLoad: structure with load parameters

Collaboration diagram for typedefinitionsrtoovertopping::tpload:

Public Attributes

real(wp) h

local water level (m+NAP)

real(wp) hm0

significant wave height (m)

real(wp) tm_10

spectral wave period (s)

real(wp) phi

wave direction (degrees)

5.5.1 Detailed Description

tpLoad: structure with load parameters

Definition at line 32 of file typeDefinitionsRTOovertopping.f90.

5.5.2 Member Data Documentation

5.5.2.1 real(wp) typedefinitionsrtoovertopping::tpload::h

local water level (m+NAP)

Definition at line 33 of file typeDefinitionsRTOovertopping.f90.

5.5.2.2 real(wp) typedefinitionsrtoovertopping::tpload::hm0

significant wave height (m)

Definition at line 34 of file typeDefinitionsRTOovertopping.f90.

5.5.2.3 real(wp) typedefinitionsrtoovertopping::tpload::phi

wave direction (degrees)

Definition at line 36 of file typeDefinitionsRTOovertopping.f90.

5.5.2.4 real(wp) typedefinitionsrtoovertopping::tpload::tm_10

spectral wave period (s)

Definition at line 35 of file typeDefinitionsRTOovertopping.f90.

5.6 typedefinitionsrtoovertopping::tpovertopping Type Reference

tpOvertopping: structure with overtopping results

Collaboration diagram for typedefinitionsrtoovertopping::tpovertopping:

Public Attributes

real(wp) z2

2% wave run-up (m)

• real(wp) qo

14/01/0	avartar	nina	discharge	(m2/m	nore	٠١
vvav u	OV = I I OU)() ()	UISCHALUE	1111.5/111	uei s	. ,

5.6.1 Detailed Description

tpOvertopping: structure with overtopping results

Definition at line 56 of file typeDefinitionsRTOovertopping.f90.

5.6.2 Member Data Documentation

5.6.2.1 real(wp) typedefinitionsrtoovertopping::tpovertopping::qo

wave overtopping discharge (m3/m per s)

Definition at line 58 of file typeDefinitionsRTOovertopping.f90.

5.6.2.2 real(wp) typedefinitionsrtoovertopping::tpovertopping::z2

2% wave run-up (m)

Definition at line 57 of file typeDefinitionsRTOovertopping.f90.

5.7 typedefinitionsrtoovertopping::tpovertoppinginput Type Reference

 $Overtopping Model Factors: \ C\text{-structure with model factors}.$

Collaboration diagram for typedefinitionsrtoovertopping::tpovertoppinginput:

Public Attributes

```
    real(kind=wp) factordeterminationq_b_f_n
        model factor for non-breaking waves
    real(kind=wp) factordeterminationq_b_f_b
        model factor for breaking waves
    real(kind=wp) m_z2
        model factor describing the uncertainty of 2% runup height
    real(kind=wp) frunup1
        model factor 1 for wave run-up (for backwards compatability)
    real(kind=wp) frunup2
        model factor 2 for wave run-up (idem)
    real(kind=wp) frunup3
        model factor 3 for wave run-up (idem)
    real(kind=wp) fshallow
```

model factor for shallow waves

• real(kind=wp) computedovertopping

model factor computed overtopping

- real(kind=wp) criticalovertopping
 - model factor critical overtopping
- integer typerunup

0: fRunup1, 2 and 3 are given; 1: m_z2 is given

real(kind=wp) relaxationfactor

relaxation factor iteration procedure wave runup

• real(kind=wp) reductionfactorforeshore = 0.5_wp

reduction factor foreshore

5.7.1 Detailed Description

OvertoppingModelFactors: C-structure with model factors.

Definition at line 40 of file typeDefinitionsRTOovertopping.f90.

5.7.2 Member Data Documentation

5.7.2.1 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::computedovertopping

model factor computed overtopping

Definition at line 48 of file typeDefinitionsRTOovertopping.f90.

5.7.2.2 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::criticalovertopping

model factor critical overtopping

Definition at line 49 of file typeDefinitionsRTOovertopping.f90.

5.7.2.3 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::factordeterminationq_b_f_b

model factor for breaking waves

Definition at line 42 of file typeDefinitionsRTOovertopping.f90.

5.7.2.4 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::factordeterminationq_b_f_n

model factor for non-breaking waves

Definition at line 41 of file typeDefinitionsRTOovertopping.f90.

5.7.2.5 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::frunup1

model factor 1 for wave run-up (for backwards compatability)

Definition at line 44 of file typeDefinitionsRTOovertopping.f90.

5.7.2.6 real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::frunup2

model factor 2 for wave run-up (idem)

Definition at line 45 of file typeDefinitionsRTOovertopping.f90.

5.7.2.7	real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::frunup3
model f	actor 3 for wave run-up (idem)
Definition	on at line 46 of file typeDefinitionsRTOovertopping.f90.
5.7.2.8	real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::fshallow
model f	actor for shallow waves
Definition	on at line 47 of file typeDefinitionsRTOovertopping.f90.
5.7.2.9	real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::m_z2
model f	actor describing the uncertainty of 2% runup height
Definition	on at line 43 of file typeDefinitionsRTOovertopping.f90.
	real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::reductionfactorforeshore = 0.5_wp on factor foreshore
Definition	on at line 52 of file typeDefinitionsRTOovertopping.f90.
5.7.2.11	real(kind=wp) typedefinitionsrtoovertopping::tpovertoppinginput::relaxationfactor
rolovati	on factor iteration procedure wave runup
	on at line 51 of file typeDefinitionsRTOovertopping.f90.
Deminio	on at line 31 of the type Definitions (1 Oover topping.130).
5.7.2.12	integer typedefinitionsrtoovertopping::tpovertoppinginput::typerunup
0: fRun	up1, 2 and 3 are given; 1: m_z2 is given
Definition	on at line 50 of file typeDefinitionsRTOovertopping.f90.

5.8 overtoppinginterface::tpprofilecoordinate Type Reference

Collaboration diagram for overtoppinginterface::tpprofilecoordinate:

Public Attributes

- real(kind=wp) xcoordinate
 - X-coordinate foreland profile.
- real(kind=wp) zcoordinate
 - Z-coordinate foreland profile.
- real(kind=wp) roughness

Roughness of the area between two points.

5.8.1 Detailed Description

Definition at line 19 of file overtoppingInterface.f90.

5.8.2 Member Data Documentation

5.8.2.1 real(kind=wp) overtoppinginterface::tpprofilecoordinate::roughness

Roughness of the area between two points.

Definition at line 22 of file overtoppingInterface.f90.

5.8.2.2 real(kind=wp) overtoppinginterface::tpprofilecoordinate::xcoordinate

X-coordinate foreland profile.

Definition at line 20 of file overtoppingInterface.f90.

5.8.2.3 real(kind=wp) overtoppinginterface::tpprofilecoordinate::zcoordinate

Z-coordinate foreland profile.

Definition at line 21 of file overtoppingInterface.f90.

Data Ty	pe Doc	umen	tatior
---------	--------	------	--------

Chapter 6

File Documentation

6.1 dllOvertopping.f90 File Reference

Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dllOvertopping.dll:

Modules

module dllovertopping

Calculate one type of overtopping.

Functions/Subroutines

 subroutine, public dllovertopping::calculateqo (load, geometryInput, dikeHeight, modelFactors, overtopping, success, errorText, verbosity, logFile)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping Wrapper for calculateQoF ← : convert C-like input structures to Fortran input structures.

subroutine, public dllovertopping::calculateqof (load, geometryF, dikeHeight, modelFactors, overtopping, success, errorText, logging)

Subroutine that calculates the discharge needed for the Z-function DikesOvertopping.

subroutine, public dllovertopping::calczvalue (criticalOvertoppingRate, modelFactors, Qo, z, success, error
 — Message)

 $Subroutine\ that\ calculates\ the\ Z\mbox{-}function\ DikesOvertopping\ based\ on\ the\ discharge\ calculated\ with\ calculateQoF.$

subroutine, public dllovertopping::validateinputc (geometryInput, dikeHeight, modelFactors, success, error
 — Text)

Subroutine that validates the geometry Wrapper for ValidateInputFold: convert C-like input structures to Fortran input structures.

• subroutine, public dllovertopping::validateinputf (geometryF, dikeHeight, modelFactors, errorStruct)

Subroutine that validates the geometry.

• subroutine, public dllovertopping::setlanguage (lang)

Subroutine that sets the language for error and validation messages.

• subroutine, public dllovertopping::getlanguage (lang)

Subroutine that gets the language for error and validation messages.

• subroutine, public dllovertopping::versionnumber (version)

Subroutine that delivers the version number.

type(overtoppinggeometrytypef) function dllovertopping::geometry_c_f (geometryInput)

Private subroutine that converts geometry from c-pointer to fortran struct.

6.1.1 Detailed Description

Main entry for the dll DikesOvertopping FUNCTIONS/SUBROUTINES exported from dllOvertopping.dll:

- · calcZValue
- calculateQo
- · calculateQoF
- ValidateInputC
- ValidateInputF
- SetLanguage
- · GetLanguage
- · versionNumber

6.2 factorModuleRTOovertopping.f90 File Reference

This file contains a module with functions for the slope angle and influence factors.

Modules

· module factormodulertoovertopping

Functions/Subroutines

• subroutine, public factormodulertoovertopping::calculatetanalpha (h, Hm0, z2, geometry, tanAlpha, succes, errorMessage)

calculateTanAlpha representative slope angle

subroutine, public factormodulertoovertopping::calculategammabeta (Hm0, Tm_10, beta, gammaBeta_
 z, gammaBeta_o)

calculateGammaBeta influence factor angle of wave attack

• subroutine, public factormodulertoovertopping::calculategammaf (h, ksi0, ksi0Limit, gammaB, z2, geometry, gammaF, succes, errorMessage)

calculateGammaF influence factor roughness

• subroutine, public factormodulertoovertopping::calculategammab (h, Hm0, z2, geometry, gammaB, succes, errorMessage)

calculateGammaB influence factor berms

6.2.1 Detailed Description

This file contains a module with functions for the slope angle and influence factors.

6.3 formulaModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping.

Modules

· module formulamodulertoovertopping

Functions/Subroutines

• subroutine, public formulamodulertoovertopping::calculatewaverunup (Hm0, ksi0, ksi0Limit, gammaB, gammaF, gammaBeta, modelFactors, z2, succes, errorMessage)

calculateWaveRunup: calculate wave runup

• subroutine, public formulamodulertoovertopping::calculatewaveovertoppingdischarge (h, Hm0, tanAlpha, gammaB, gammaF, gammaBeta, ksi0, hCrest, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertoppingDischarge: calculate the wave overtopping discharge

subroutine, public formulamodulertoovertopping::calculatewavelength (Tm_10, L0)

calculateWaveLength: calculate the wave length

subroutine, public formulamodulertoovertopping::calculatewavesteepness (Hm0, Tm_10, s0, succes, error
 — Message)

calculateWaveSteepness: calculate the wave steepness

• subroutine, public formulamodulertoovertopping::calculatebreakerparameter (tanAlpha, s0, ksi0, succes, errorMessage)

calculateBreakerParameter: calculate the breaker parameter

subroutine, public formulamodulertoovertopping::calculateanglewaveattack (phi, psi, beta)

calculateAngleWaveAttack: calculate the angle of wave attack

• subroutine, public formulamodulertoovertopping::calculatebreakerlimit (modelFactors, gammaB, ksi0Limit, succes, errorMessage)

calculateBreakerLimit: calculate the breaker limit

• subroutine, public formulamodulertoovertopping::adjustinfluencefactors (gammaB, gammaF, gammaBeta, gammaBetaType, ksi0, ksi0Limit, succes, errorMessage)

adjustInfluenceFactors: adjust the influence factors

• subroutine formulamodulertoovertopping::realrootscubicfunction (a, b, c, d, N, x, succes, errorMessage)

realRootsCubicFunction: calculate the roots of a cubic function

• subroutine formulamodulertoovertopping::rootsgeneralcubic (a, b, c, d, z, succes, errorMessage)

rootsGeneralCubic: calculate the roots of a generic cubic function

• subroutine formulamodulertoovertopping::rootsdepressedcubic (p, q, z)

 $roots Depressed Cubic: \ calculate \ the \ roots \ of \ a \ depressed \ cubic \ function$

subroutine formulamodulertoovertopping::cubicroots (z, roots)

cubicRoots: calculate the roots of a cubic function

• logical function, public formulamodulertoovertopping::isequalreal (x1, x2)

isEqualReal: are two reals (almost) equal

• logical function, public formulamodulertoovertopping::isequalzero (x)

isEqualZero: is a real (almost) zero

6.3.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping.

6.4 geometryModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping related to the geometry.

Modules

· module geometrymodulertoovertopping

Functions/Subroutines

subroutine, public geometrymodulertoovertopping::checkcrosssection (psi, nCoordinates, xCoordinates, y←
 Coordinates, roughnessFactors, succes, errorMessage)

checkCrossSection: check cross section

subroutine, public geometrymodulertoovertopping::initializegeometry (psi, nCoordinates, xCoordinates, y←
 Coordinates, roughnessFactors, geometry, succes, errorMessage)

initializeGeometry: initialize the geometry

• subroutine, public geometrymodulertoovertopping::allocatevectorsgeometry (nCoordinates, geometry, succes, errorMessage)

allocateVectorsGeometry: allocate the geometry vectors

• subroutine, public geometrymodulertoovertopping::deallocategeometry (geometry)

deallocateGeometry: deallocate the geometry vectors

subroutine, public geometrymodulertoovertopping::calculatesegmentslopes (geometry, succes, error
 — Message)

calculateSegmentSlopes: calculate the segment slopes

• subroutine, public geometrymodulertoovertopping::determinesegmenttypes (geometry)

determineSegmentTypes: determine the segment types

subroutine, public geometrymodulertoovertopping::copygeometry (geometry, geometryCopy, succes, error
 — Message)

copyGeometry: copy a geometry structure

subroutine, public geometrymodulertoovertopping::mergesequentialberms (geometry, geometryMerged
 — Berms, succes, errorMessage)

mergeSequentialBerms: merge sequential berms

subroutine, public geometrymodulertoovertopping::adjustnonhorizontalberms (geometry, geometryFlat
 — Berms, succes, errorMessage)

adjustNonHorizontalBerms: adjust non-horizontal berms

subroutine, public geometrymodulertoovertopping::removeberms (geometry, geometryNoBerms, succes, errorMessage)

removeBerms: remove berms

subroutine, public geometrymodulertoovertopping::removedikesegments (geometry, index, geometry ← Adjusted, succes, errorMessage)

removeDikeSegments: remove dike segments

• subroutine, public geometrymodulertoovertopping::splitcrosssection (geometry, L0, NwideBerms, geometrysectionB, geometrysectionF, succes, errorMessage)

splitCrossSection: split a cross section

• subroutine, public geometrymodulertoovertopping::calculatehorzlengths (geometry, yLower, yUpper, horz ← Lengths, succes, errorMessage)

calculateHorzLengths: calculate horizontal lengths

• subroutine, public geometrymodulertoovertopping::calculatehorzdistance (geometry, yLower, yUpper, dx, succes, errorMessage)

calculateHorzDistance: calculate horizontal distance

• subroutine, public geometrymodulertoovertopping::basicgeometrytest (geometryF, success, errorStruct)

 $basic Geometry \textit{Test: test the input geometry (the \textit{adjusted geometry is checked elsewhere)} \\$

6.4.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping related to the geometry.

6.5 mainModuleRTOovertopping.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping.

Modules

· module mainmodulertoovertopping

Functions/Subroutines

subroutine, public mainmodulertoovertopping::calculateovertopping (geometry, load, modelFactors, overtopping, succes, errorMessage)

calculateOvertopping: calculate the overtopping

• subroutine, public mainmodulertoovertopping::calculateovertoppingsection (geometry, h, Hm0, Tm_10, L0, gammaBeta_z, gammaBeta_o, modelFactors, overtopping, succes, errorMessage)

calculateOvertoppingSection: calculate the overtopping for a section

• subroutine, public mainmodulertoovertopping::calculatewaveovertopping (geometry, h, Hm0, Tm_10, z2, gammaBeta_o, modelFactors, Qo, succes, errorMessage)

calculateWaveOvertopping: calculate wave overtopping

 subroutine mainmodulertoovertopping::calculateovertoppingnegativefreeboard (load, geometry, overtopping, succes, errorMessage)

calculateOvertoppingNegativeFreeboard: calculate overtopping in case of negative freeboard

• subroutine, public mainmodulertoovertopping::interpolateresultssections (geometry, L0, NwideBerms, overtoppingB, overtoppingF, overtopping, succes, errorMessage)

interpolateResultsSections: interpolate results for split cross sections

• subroutine, public mainmodulertoovertopping::checkinputdata (geometry, load, modelFactors, succes, errorMessage)

checkInputdata: check the input data

subroutine, public mainmodulertoovertopping::checkmodelfactors (modelFactors, dimErrMessage, error
 — Messages, ierr)

checkModelFactors: check the input data

subroutine, public mainmodulertoovertopping::convertovertoppinginput (modelFactors, success, error
 — Message)

convertOvertoppingInput: convert the model factors from C-like to Fortran

6.5.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping.

6.6 ModuleLogging.f90 File Reference

Module for steering the extra logging.

Data Types

• type modulelogging::tlogging

TLogging: structure for steering the logging.

Modules

• module modulelogging

Variables

- integer, parameter modulelogging::maxfilenamelength = 256

 maximum length of filename
- type(tlogging) modulelogging::currentlogging copy of argument logging

6.6.1 Detailed Description

Module for steering the extra logging.

6.7 overtoppingInterface.f90 File Reference

This file contains the parameters and types (structs) as part of the interface to and from dllOvertopping.

Data Types

- · type overtoppinginterface::tpprofilecoordinate
- · type overtoppinginterface::overtoppinggeometrytype
- type overtoppinginterface::overtoppinggeometrytypef

Modules

• module overtoppinginterface

Variables

• integer, parameter, public overtoppinginterface::varmodelfactorcriticalovertopping = 8

Model factor critical overtopping.

6.7.1 Detailed Description

This file contains the parameters and types (structs) as part of the interface to and from dllOvertopping.

6.8 OvertoppingMessages.f90 File Reference

This file contains the messages in the overtopping dll, in Dutch or English.

Modules

• module overtoppingmessages

Functions/Subroutines

• subroutine overtoppingmessages::setlanguage (lang)

IDs for the strings in this module:

• subroutine overtoppingmessages::getlanguage (lang)

Subroutine that gets the language for error and validation messages.

• character(len=maxmsg) function overtoppingmessages::getovertoppingmessage (ID)

Subroutine that returns a message with the corresponding ID in the current language.

• character(len=maxmsg) function overtoppingmessages::getovertoppingformat (ID)

Subroutine that returns a Fortran format string with the corresponding ID in the current language.

• character(len=maxpar) function overtoppingmessages::getovertoppingparameter (ID)

Subroutine that returns the name of an input parameter with the corresponding ID in the current language.

Variables

integer, parameter, private overtoppingmessages::maxmsg = 128
 Module for the messages in the overtopping dll, in Dutch or English.

- integer, parameter, private overtoppingmessages::maxpar =32
- character(len=2), private overtoppingmessages::language = 'NL'

default : Dutch

6.8.1 Detailed Description

This file contains the messages in the overtopping dll, in Dutch or English.

6.9 typeDefinitionsRTOovertopping.f90 File Reference

This file contains a module with the type definitions for Dikes Overtopping.

Data Types

· type typedefinitionsrtoovertopping::tpgeometry

tpGeometry: structure with geometry data

• type typedefinitionsrtoovertopping::tpload

tpLoad: structure with load parameters

• type typedefinitionsrtoovertopping::tpovertoppinginput

OvertoppingModelFactors: C-structure with model factors.

type typedefinitionsrtoovertopping::tpovertopping

tpOvertopping: structure with overtopping results

Modules

module typedefinitionsrtoovertopping

Variables

real(wp), parameter typedefinitionsrtoovertopping::xdiff_min = 2.0d-2
 minimal value distance between x-coordinates (m)

- real(wp), parameter typedefinitionsrtoovertopping::margindiff = 1.0d-14
 margin for minimal distance (m)
- real(wp), parameter typedefinitionsrtoovertopping::berm_min = 0.0d0
 minimal value gradient berm segment
- real(wp), parameter typedefinitionsrtoovertopping::berm_max = 1.0d0/15
 maximal value gradient berm segment
- real(wp), parameter typedefinitionsrtoovertopping::slope_min = 1.0d0/8
 minimal value gradient slope segment
- real(wp), parameter typedefinitionsrtoovertopping::slope_max = 1.0d0
 maximal value gradient slope segment
- real(wp), parameter typedefinitionsrtoovertopping::margingrad = 0.0025d0 margin for minimal and maximal gradients
- real(wp), parameter typedefinitionsrtoovertopping::rfactor_min = 0.5d0
 minimal value roughness factor dike segments
- real(wp), parameter typedefinitionsrtoovertopping::rfactor_max = 1.0d0

 maximal value roughness factor dike segments
- real(wp), parameter typedefinitionsrtoovertopping::mz2_min = 0.0d0 minimal value model factor of 2% runup height
- real(wp), parameter typedefinitionsrtoovertopping::mz2_max = huge(mz2_max)
 maximal value model factor of 2% runup height
- real(wp), parameter typedefinitionsrtoovertopping::frunup1_min = 0.0d0
 minimal value model factor 1 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup1_max = huge(fRunup1_max)
 maximal value model factor 1 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup2_min = 0.0d0
 minimal value model factor 2 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup2_max = huge(fRunup2_max)
 maximal value model factor 2 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup3_min = 0.0d0 minimal value model factor 3 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::frunup3_max = huge(fRunup3_max)
 maximal value model factor 3 for wave run-up
- real(wp), parameter typedefinitionsrtoovertopping::fb_min = 0.0d0 minimal value model factor for breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fb_max = huge(fB_max)

 maximal value model factor for breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fn_min = 0.0d0 minimal value model factor for non-breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fn_max = huge(fN_max)
 maximal value model factor for non-breaking waves
- real(wp), parameter typedefinitionsrtoovertopping::fs_min = 0.0d0

 minimal value model factor for shallow waves
- real(wp), parameter typedefinitionsrtoovertopping::fs_max = huge(fS_max) maximal value model factor for shallow waves
- real(wp), parameter typedefinitionsrtoovertopping::foreshore_min = 0.3d0

 minimal value reduction factor foreshore
- real(wp), parameter typedefinitionsrtoovertopping::foreshore_max = 1.0d0

maximal value reduction factor foreshore

- integer, parameter typedefinitionsrtoovertopping::z2_iter_max1 = 49

 maximal number of iterations for calculation z2 part 1
- integer, parameter typedefinitionsrtoovertopping::z2_iter_max2 = 70

 maximal number of iterations for calculation z2 part 1 & 2
- real(wp), parameter typedefinitionsrtoovertopping::z2_margin = 0.001d0
 margin for convergence criterium calculation z2

6.9.1 Detailed Description

This file contains a module with the type definitions for Dikes Overtopping.

6.10 waveRunup.f90 File Reference

This file contains a module with the core computations for Dikes Overtopping.

Modules

· module waverunup

Functions/Subroutines

• subroutine, public waverunup::iterationwaverunup (geometry, h, Hm0, Tm_10, gammaBeta_z, modelFactors, z2, succes, errorMessage)

iterationWaveRunup: iteration for the wave runup

- real(kind=wp) function waverunup::innercalculation (geometry, h, Hm0, gammaBeta_z, modelFactors, z2, s0, geometryFlatBerms, succes, errorMessage)
- real(kind=wp) function waverunup::determinestartingvalue (i, relaxationFactor, z2_start, z2_end, Hm0)
- integer function waverunup::findsmallestresidu (z2_start, z2_end, n)
- subroutine waverunup::convergedwithresidu (z2_start, z2_end)

6.10.1 Detailed Description

This file contains a module with the core computations for Dikes Overtopping.

6.11 zFunctionsWTIOvertopping.f90 File Reference

This file contains the limit state functions for wave overtopping within WTI.

Modules

• module zfunctionswtiovertopping

Module for the Limit State Functions (Z-functions) for wave overtopping.

Functions/Subroutines

subroutine, public zfunctionswtiovertopping::calculateqorto (dikeHeight, modelFactors, overtopping, load, geometry, succes, errorMessage)

Subroutine to calculate the overtopping discharge with the RTO-overtopping dll.

• subroutine, public zfunctionswtiovertopping::profileinstructure (nrCoordinates, xcoordinates, ycoordinates, dikeHeight, nrCoordsAdjusted, xCoordsAdjusted, zCoordsAdjusted, succes, errorMessage)

Subroutine to fill the profile in a structure and call the adjustment function of the profile due to a desired dike height.

• subroutine zfunctionswtiovertopping::adjustprofile (nrCoordinates, coordinates, dikeHeight, nrCoords ← Adjusted, xCoords Adjusted, zCoords Adjusted, succes, error Message)

Subroutine adjust the profile due to a desired dike height.

real(kind=wp) function, public zfunctionswtiovertopping::zfunclogratios (qo, qc, mqo, mqc, success, error
 — Message)

Routine to compute the limit state value by using the logs of the overtopping discharges (computed and desired)

6.11.1 Detailed Description

This file contains the limit state functions for wave overtopping within WTI.

Index

adjustinfluencefactors	calculatewaveovertopping
formulamodulertoovertopping, 17	mainmodulertoovertopping, 39
adjustnonhorizontalberms	calculatewaveovertoppingdischarge
geometrymodulertoovertopping, 26	formulamodulertoovertopping, 19
adjustprofile	calculatewaverunup
zfunctionswtiovertopping, 54	formulamodulertoovertopping, 20
allocatevectorsgeometry	calculatewavesteepness
geometrymodulertoovertopping, 26	formulamodulertoovertopping, 21
	calczvalue
basicgeometrytest	dllovertopping, 10
geometrymodulertoovertopping, 27	checkcrosssection
berm_max	geometrymodulertoovertopping, 30
typedefinitionsrtoovertopping, 48	checkinputdata
berm_min	mainmodulertoovertopping, 40
typedefinitionsrtoovertopping, 48	checkmodelfactors
	mainmodulertoovertopping, 41
calculateanglewaveattack	computedovertopping
formulamodulertoovertopping, 17	typedefinitionsrtoovertopping::tpovertoppinginput
calculatebreakerlimit	70
formulamodulertoovertopping, 18	convergedwithresidu
calculatebreakerparameter	waverunup, 51
formulamodulertoovertopping, 18	convertovertoppinginput
calculategammab	mainmodulertoovertopping, 41
factormodulertoovertopping, 13	copygeometry
calculategammabeta	geometrymodulertoovertopping, 30
factormodulertoovertopping, 14	criticalovertopping
calculategammaf	typedefinitionsrtoovertopping::tpovertoppinginput
factormodulertoovertopping, 14	70
calculatehorzdistance	cubicroots
geometrymodulertoovertopping, 28	formulamodulertoovertopping, 21
calculatehorzlengths	currentlogging
geometrymodulertoovertopping, 28	modulelogging, 43
calculateovertopping	
mainmodulertoovertopping, 37	deallocategeometry
calculateovertoppingnegativefreeboard	geometrymodulertoovertopping, 31
mainmodulertoovertopping, 37	determinesegmenttypes
calculateovertoppingsection	geometrymodulertoovertopping, 31
mainmodulertoovertopping, 38	determinestartingvalue
calculatego	waverunup, 51
dllovertopping, 8	dllOvertopping.f90, 75
calculategof	dllovertopping, 7
dllovertopping, 9	calculatego, 8
calculategorto	calculategof, 9
zfunctionswtiovertopping, 55	calczvalue, 10
calculatesegmentslopes	geometry c f, 10
geometrymodulertoovertopping, 29	getlanguage, 11
calculatetanalpha	setlanguage, 11
factormodulertoovertopping, 15	validateinputc, 11
calculatewavelength	validateinputf, 12
formulamodulertoovertopping, 19	versionnumber. 13

factorModuleRTOovertopping.f90, 76	frunup3
factordeterminationq_b_f_b	typedefinitionsrtoovertopping::tpovertoppinginput,
typedefinitionsrtoovertopping::tpovertoppinginput,	70
70	frunup3_max
factordeterminationq_b_f_n	typedefinitionsrtoovertopping, 49
typedefinitionsrtoovertopping::tpovertoppinginput,	frunup3_min
70	typedefinitionsrtoovertopping, 49
factormodulertoovertopping, 13	fs_max
calculategammab, 13	typedefinitionsrtoovertopping, 49
calculategammabeta, 14	fs_min
calculategammaf, 14	typedefinitionsrtoovertopping, 49
calculatetanalpha, 15	fshallow
fb_max	typedefinitionsrtoovertopping::tpovertoppinginput,
typedefinitionsrtoovertopping, 48	71
fb_min	
	geometry_c_f
typedefinitionsrtoovertopping, 48	dllovertopping, 10
filename	geometryModuleRTOovertopping.f90, 77
modulelogging::tlogging, 63	geometrymodulertoovertopping, 25
findsmallestresidu	adjustnonhorizontalberms, 26
waverunup, 51	allocatevectorsgeometry, 26
fn_max	basicgeometrytest, 27
typedefinitionsrtoovertopping, 48	calculatehorzdistance, 28
fn_min	calculatehorzlengths, 28
typedefinitionsrtoovertopping, 48	
foreshore_max	calculatesegmentslopes, 29
typedefinitionsrtoovertopping, 48	checkcrosssection, 30
foreshore_min	copygeometry, 30
typedefinitionsrtoovertopping, 48	deallocategeometry, 31
formulaModuleRTOovertopping.f90, 76	determinesegmenttypes, 31
formulamodulertoovertopping, 16	initializegeometry, 32
adjustinfluencefactors, 17	mergesequentialberms, 32
calculateanglewaveattack, 17	removedilesegments 35
calculatebreakerlimit, 18	removedikesegments, 35
calculatebreakerparameter, 18	splitcrosssection, 35
calculatewavelength, 19	getlanguage
calculatewaveovertoppingdischarge, 19	dllovertopping, 11
calculatewaverunup, 20	overtoppingmessages, 44
calculatewavesteepness, 21	getovertoppingformat
cubicroots, 21	overtoppingmessages, 44
isequalreal, 22	getovertoppingmessage
isequalzero, 22	overtoppingmessages, 45
realrootscubicfunction, 22	getovertoppingparameter
rootsdepressedcubic, 23	overtoppingmessages, 45
rootsgeneralcubic, 23	h
frunup1	typedefinitionsrtoovertopping::tpload, 66
typedefinitionsrtoovertopping::tpovertoppinginput,	hm0
70	
frunup1_max	typedefinitionsrtoovertopping::tpload, 66
typedefinitionsrtoovertopping, 48	initializegeometry
frunup1_min	geometrymodulertoovertopping, 32
typedefinitionsrtoovertopping, 48	innercalculation
frunup2	waverunup, 52
typedefinitionsrtoovertopping::tpovertoppinginput,	interpolateresultssections
70	mainmodulertoovertopping, 42
frunup2_max	isequalreal
typedefinitionsrtoovertopping, 49	formulamodulertoovertopping, 22
frunup2_min	isequalzero
typedefinitionsrtoovertopping, 49	formulamodulertoovertopping, 22
-7 F 2 2 2 (2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	g,

iterationwaverunup waverunup, 53	OvertoppingMessages.f90, 80 overtoppinginterface, 43
	varmodelfactorcriticalovertopping, 44
language	overtoppinginterface::overtoppinggeometrytype, 59
overtoppingmessages, 46	normal, 60
	npoints, 60
m_z2	roughness, 60
typedefinitionsrtoovertopping::tpovertoppinginput,	xcoords, 60
71	ycoords, 60
mainModuleRTOovertopping.f90, 79	overtoppinginterface::overtoppinggeometrytypef, 61
mainmodulertoovertopping, 36	normal, 61
calculateovertopping, 37	npoints, 61
calculateovertoppingnegativefreeboard, 37	roughness, 61
calculateovertoppingsection, 38	xcoords, 62
calculatewaveovertopping, 39	ycoords, 62
checkinputdata, 40	overtoppinginterface::tpprofilecoordinate, 72
checkmodelfactors, 41	roughness, 72
convertovertoppinginput, 41	xcoordinate, 72
interpolateresultssections, 42	zcoordinate, 73
margindiff	overtoppingmessages, 44
typedefinitionsrtoovertopping, 49	getlanguage, 44
margingrad	getovertoppingformat, 44
typedefinitionsrtoovertopping, 49	getovertoppingmessage, 45
maxfilenamelength	getovertoppingparameter, 45
modulelogging, 43	language, 46
maxmsg	maxmsg, 46
overtoppingmessages, 46	maxpar, 46
maxpar	setlanguage, 45
overtoppingmessages, 46	
mergesequentialberms	phi
geometrymodulertoovertopping, 32	typedefinitionsrtoovertopping::tpload, 67
ModuleLogging.f90, 79	profileinstructure
modulelogging, 43	zfunctionswtiovertopping, 55
currentlogging, 43	psi
maxfilenamelength, 43	typedefinitionsrtoovertopping::tpgeometry, 64
modulelogging::tlogging, 62	
filename, 63	qo
verbosity, 63	typedefinitionsrtoovertopping::tpovertopping, 68
mz2_max	
typedefinitionsrtoovertopping, 49	realrootscubicfunction
mz2_min	formulamodulertoovertopping, 22
typedefinitionsrtoovertopping, 50	reductionfactorforeshore
71 67	typedefinitionsrtoovertopping::tpovertoppinginput,
nbermsegments	71
typedefinitionsrtoovertopping::tpgeometry, 64	relaxationfactor
ncoordinates	typedefinitionsrtoovertopping::tpovertoppinginput,
typedefinitionsrtoovertopping::tpgeometry, 64	71
normal	removeberms
overtoppinginterface::overtoppinggeometrytype,	geometrymodulertoovertopping, 34
60	removedikesegments
overtoppinginterface::overtoppinggeometrytypef,	geometrymodulertoovertopping, 35
61	rfactor_max
npoints	typedefinitionsrtoovertopping, 50
overtoppinginterface::overtoppinggeometrytype,	rfactor_min
60	typedefinitionsrtoovertopping, 50
overtoppinginterface::overtoppinggeometrytypef,	rootsdepressedcubic
61	formulamodulertoovertopping, 23
	rootsgeneralcubic
overtoppingInterface.f90, 80	formulamodulertoovertopping, 23

roughness	roughnessfactors, 64
overtoppinginterface::overtoppinggeometrytype,	segmentslopes, 64
60	segmenttypes, 65
overtoppinginterface::overtoppinggeometrytypef,	xcoorddiff, 65
61	xcoordinates, 65
overtoppinginterface::tpprofilecoordinate, 72	ycoorddiff, 65
roughnessfactors	ycoordinates, 65
typedefinitionsrtoovertopping::tpgeometry, 64	typedefinitionsrtoovertopping::tpload, 65
	h, 66
segmentslopes	hm0, 66
typedefinitionsrtoovertopping::tpgeometry, 64	phi, 67
segmenttypes	tm_10, 67
typedefinitionsrtoovertopping::tpgeometry, 65	typedefinitionsrtoovertopping::tpovertopping, 67
setlanguage	qo, 68
dllovertopping, 11	z2, 68
overtoppingmessages, 45	typedefinitionsrtoovertopping::tpovertoppinginput, 68
slope_max	computedovertopping, 70
typedefinitionsrtoovertopping, 50	criticalovertopping, 70
slope_min	factordeterminationq_b_f_b, 70
typedefinitionsrtoovertopping, 50	factordeterminationq_b_f_n, 70
splitcrosssection	frunup1, 70
geometrymodulertoovertopping, 35	frunup2, 70
t 10	frunup3, 70
tm_10	fshallow, 71
typedefinitionsrtoovertopping::tpload, 67	m_z2, 71
typeDefinitionsRTOovertopping.f90, 81	reductionfactorforeshore, 71
typedefinitionsrtoovertopping, 46	relaxationfactor, 71
berm_max, 48	typerunup, 71
berm_min, 48	typerunup
fb_max, 48	typedefinitionsrtoovertopping::tpovertoppinginput,
fb_min, 48	71
fn_max, 48	
fn_min, 48 foreshore_max, 48	validateinputc
foreshore_min, 48	dllovertopping, 11
	validateinputf
frunup1_max, 48	dllovertopping, 12
frunup1_min, 48	varmodelfactorcriticalovertopping
frunup2_max, 49 frunup2_min, 49	overtoppinginterface, 44
frunup3_max, 49	verbosity
frunup3_min, 49	modulelogging::tlogging, 63
fs max, 49	versionnumber
fs min, 49	dllovertopping, 13
margindiff, 49	
margingrad, 49	waveRunup.f90, 83
mz2_max, 49	waverunup, 51
mz2 min, 50	convergedwithresidu, 51
rfactor_max, 50	determinestartingvalue, 51
rfactor_min, 50	findsmallestresidu, 51
slope_max, 50	innercalculation, 52
slope_min, 50	iterationwaverunup, 53
xdiff_min, 50	
z2_iter_max1, 50	xcoorddiff
z2_iter_max2, 50	typedefinitionsrtoovertopping::tpgeometry, 65
z2_margin, 50	xcoordinate
typedefinitionsrtoovertopping::tpgeometry, 63	overtoppinginterface::tpprofilecoordinate, 72
nbermsegments, 64	xcoordinates
ncoordinates, 64	typedefinitionsrtoovertopping::tpgeometry, 65
psi. 64	xcoords

```
overtoppinginterface::overtoppinggeometrytype,
     overtoppinginterface::overtoppinggeometrytypef,
          62
xdiff_min
     typedefinitionsrtoovertopping, 50
ycoorddiff
     typedefinitionsrtoovertopping::tpgeometry, 65
ycoordinates
     typedefinitionsrtoovertopping::tpgeometry, 65
ycoords
     overtoppinginterface::overtoppinggeometrytype,
     overtoppinginterface::overtoppinggeometrytypef,
z2
     typedefinitionsrtoovertopping::tpovertopping, 68
z2_iter_max1
     typedefinitionsrtoovertopping, 50
z2 iter max2
     typedefinitionsrtoovertopping, 50
z2 margin
     typedefinitionsrtoovertopping, 50
zFunctionsWTIOvertopping.f90, 83
zcoordinate
     overtoppinginterface::tpprofilecoordinate, 73
zfunclogratios
     zfunctionswtiovertopping, 56
zfunctionswtiovertopping, 53
     adjustprofile, 54
     calculateqorto, 55
     profileinstructure, 55
     zfunclogratios, 56
```