Лекция: Метод на свиващите изображения

Гено Николов, ФМИ, СУ "Св. Климент Охридски"

Съдържание на лекцията

- Метод на свиващите изображения
- Ред на сходимост на итерационен процес

Итерационни методи

Голяма част от методите за приближено пресмятане на корените на уравнения са итерационни. При тях се тръгва от някакво начално приближение *х*₀ и след това с извършването на определена числена процедура (итерация) се намира следващото приближение x_1 . Въз основа на x_1 и X_0 се определя X_2 и т.н. Построява се редица $X_0, X_1, X_2, \ldots, X_n$ клоняща към корена ξ на уравнението f(x) = 0. Тогава, при достатъчно големи n числото x_n ще даде приближение на корена ξ със зададена точност ε . Ние ще разгледаме тук един клас от итерационни методи, които се базират на така наречения метод на свиващите изображения.

Нека f(x) е функция, определена в [a,b]. Ще изследваме уравнението f(x)=0. За нас ще бъде удобно да запишем това уравнение във вида

$$\mathbf{X}=\varphi(\mathbf{X})$$
.

Това може да стане, например, като добавим x към двете страни на уравнението f(x)=0 или направим друго, еквивалентно преобразование. Ако ξ е корен на уравнението f(x)=0, то очевидно $\xi=\varphi(\xi)$. Да изберем точка x_0 от [a,b] и да построим редицата

$$x_0, x_1, x_2, \ldots, x_n, \ldots$$

по правилото

$$x_n = \varphi(x_{n-1}), \quad n = 1, 2, \dots$$
 (1)

Целта ни е да построим редица $\{x_n\}$, която клони към корена ξ на уравнението $\mathbf{x} = \varphi(\mathbf{x})$. Ясно е, че правилото (1) не поражда такава редица за произволна функция φ . Има обаче един клас от уравнения (т.е. от функции φ), при които простото итерационно правило (1) наистина дава редица $\{x_n\}$, която клони към корена ξ . Сега да видим, какви условия върху φ биха гарантирали такава сходимост. Първо, трябва да можем да построим редицата $\{x_n\}$. За целта, всяка следваща точка от редицата трябва да принадлежи на дефиниционната област [a, b] на φ . Това очевидно ще бъде така, ако е изпълнено

Условие 1. $\varphi(x) \in [a,b]$ за всяко $x \in [a,b]$.

Наистина, ако φ удовлетворява Условие 1 и изберем произволно начално приближение x_0 от [a,b], то $x_1=\varphi(x_0)$ ще принадлежи също на [a,b]. Оттук $x_2=\varphi(x_1)\in [a,b]$ и т.н. И така, доказахме

Лема 1.

Ако φ е изображение на [a,b] в себе си, то при произволно начално приближение x_0 от [a,b], всички останали точки от редицата $\{x_n\}$ принадлежат също на [a,b].

Ние търсим корена на уравнението $\mathbf{x} = \varphi(\mathbf{x})$, т.е. търсим точка ξ от $[\mathbf{a}, \mathbf{b}]$, за която $\xi = \varphi(\xi)$. Точката ξ е неподвижна точка при изображението φ . Следващото просто условие върху φ гарантира наличие на поне една неподвижна точка.

Условие 2. φ е непрекъснато изображение на интервала [a,b] в себе си.

Наистина, нека φ е непрекъсната функция, която удовлетворява Условие 2 (т.е. φ е непрекъснато изображение на [a,b] в себе си). Ако $a=\varphi(a)$, то a е неподвижна точка. Аналогично, ако $b=\varphi(b)$, то b е неподвижна точка. Да допуснем, че $a\neq\varphi(a)$ и $b\neq\varphi(b)$. Тъй като φ е изображение на [a,b] в себе си, то $\varphi(a)\in[a,b]$, $\varphi(b)\in[a,b]$ и следователно $a<\varphi(a)$, $\varphi(b)< b$. Функцията $r(x):=x-\varphi(x)$ е непрекъсната в [a,b] и

$$r(a) = a - \varphi(a) < 0, \quad r(b) = b - \varphi(b) > 0.$$

Затова съществува точка ξ от [a,b] такава, че $r(\xi)=0$, т.е. $\xi=\varphi(\xi)$. Да формулираме ясно получения резултат.

Лема 2.

Ако φ е непрекъснато изображение на интервала [a,b] в себе си, то φ има неподвижна точка в [a,b].

Условие на Липшиц

Лема 2 е твърде частен случай от известна теорема от топологията, според която всяко непрекъснато изображение на едно изпъкнало множество Ω от \mathbb{R}^n в себе си притежава неподвижна точка.

Остава да видим какви условия върху φ ще гарантират сходимост на редицата $\{x_n\}$ към неподвижната точка ξ .

Определение

Казваме, че функцията g удовлетворява условието на Липшиц с константа q в [a,b], ако

$$|g(x)-g(y)| \le q |x-y|$$
 за всяко $x,y \in [a,b]$.

Отбелязваме, че ако една функция удовлетворява условието на Липшиц в даден интервал, то тя е непрекъсната в този интервал.

Теорема

Следната теорема дава условията за прилагане на метода на свиващите изображения.

Теорема 1.

Нека φ е непрекъснато изображение на [a,b] в себе си, което удовлетворява условието на Липшиц с константа q<1. Тогава

- а) Уравнението $\mathbf{x} = \varphi(\mathbf{x})$ има единствен корен ξ в $[\mathbf{a}, \mathbf{b}]$;
- б) Редицата $\{x_n\}$ клони към ξ при $n \to \infty$. Нещо повече,

$$|x_n - \xi| \le (b - a) q^n$$
 за всяко n . (2)

Доказателство на Теорема 1

Доказателство. Най-напред ще докажем единствеността на неподвижната точка. Съгласно Лема 2, φ има поне една неподвижна точка. Да допуснем, че те са повече. Нека $\xi_1 = \varphi(\xi_1)$ и $\xi_2 = \varphi(\xi_2)$ за някои ξ_1, ξ_2 от [a, b]. Тогава при $\xi_1 \neq \xi_2$,

$$|\xi_1 - \xi_2| = |arphi(\xi_1) - arphi(\xi_2)|$$
 $\leq q |\xi_1 - \xi_2|$ (по условието на Липшиц) $< |\xi_1 - \xi_2|$ (защото $q < 1$).

Стигнахме до абсурд. Следователно $\xi_1 = \xi_2$. Единствеността на неподвижната точка е доказана.

Доказателство на Теорема 1 (продължение)

Сега ще докажем оценката (2), от която очевидно следва б). Имаме

$$|x_{n} - \xi| = |\varphi(x_{n-1}) - \varphi(\xi)| \le q |x_{n-1} - \xi|$$

$$= q |\varphi(x_{n-2}) - \varphi(\xi)| \le q^{2} |x_{n-2} - \xi|$$

$$\vdots$$

$$\le q^{n} |x_{0} - \xi|.$$

Тъй като $x_0 \in [a,b]$ и $\xi \in [a,b]$, то $|x_0 - \xi| < b - a$. С това оценката (2) е доказана.

Изображение φ , което изпълнява условието на Липшиц с константа по-малка от 1, се нарича свиващо изображение. При него разстоянието между образите $\varphi(x)$ и $\varphi(y)$ е строго по-малко от разстоянието между прообразите x и y (т.е. φ "свива" разстоянията).

Свиващи изображения: достатъчни условия

От теоремата за крайните нараствания следва, че ако φ е диференцируема функция в [a,b] и $|\varphi'(x)| \leq q < 1$ за всяко $x \in [a,b]$, то φ е свиващо изображение. Наистина, по теоремата за крайните нараствания,

$$\varphi(\mathbf{X}) - \varphi(\mathbf{y}) = \varphi'(\eta)(\mathbf{X} - \mathbf{y})$$

за някакво η между \boldsymbol{x} и \boldsymbol{y} . Тогава

$$|\varphi(x) - \varphi(y)| = |\varphi'(\eta)| \ |(x - y)| \le q|x - y| \quad (q < 1)$$

и следователно φ е свиващо изображение.

Сходящ итерационен процес

Определение

Нека уравнението $\mathbf{x} = \varphi(\mathbf{x})$ има корен ξ в $[\mathbf{a}, \mathbf{b}]$. Ще казваме, че итерационният процес, породен от функцията φ е сходящ в $[\mathbf{a}, \mathbf{b}]$, ако при всяко начално приближение \mathbf{x}_0 от $[\mathbf{a}, \mathbf{b}]$, редицата $\{\mathbf{x}_n\}$, построена по формулата

$$x_n = \varphi(x_{n-1}), \ n = 1, 2, \ldots,$$

е сходяща към корена ξ .

Теорема 1 представя метода на свиващите изображения за построяване на сходящи итерационни процеси. Сега ще приведем една по-слаба форма на тази теорема, която често се използва.

Сходящ итерационен процес

Следствие 1.

Нека ξ е корен на уравнението $\mathbf{x} = \varphi(\mathbf{x})$. Да предположим, че φ има непрекъсната производна в околност \mathcal{U} на ξ и $|\varphi'(\xi)| < 1$. Тогава при достатъчно добро начално приближение \mathbf{x}_0 итерационният процес, породен от φ , е сходящ. Нещо повече, съществуват константи $\mathbf{C} > \mathbf{0}$ и $\mathbf{0} < \mathbf{q} < \mathbf{1}$ такива, че

$$|x_n - \xi| \le C q^n$$
 за всяко n .

Доказателство. Тъй като $\varphi'(t)$ е непрекъсната функция в $\mathcal U$ и $|\varphi'(\xi)|<1$, то съществуват q<1 и $\varepsilon>0$ такива, че

$$|arphi'(t)| \leq q$$
 за всяко $t \in [\xi - arepsilon, \xi + arepsilon]$.

Доказателство на Следствие 1

Освен това, при $t \in [\xi - \varepsilon, \xi + \varepsilon]$ имаме

$$|\varphi(t)-\xi|\leq q|t-\xi|\leq q\varepsilon<\varepsilon$$
,

т.е. $\varphi(t) \in [\xi - \varepsilon, \xi + \varepsilon]$. Следователно φ е свиващо изображение на интервала $[\xi - \varepsilon, \xi + \varepsilon]$ в себе си. Тогава всички твърдения на следствието следват от доказаната вече Теорема 1.

На следващата картинка е представена геометрична илюстрация на метода на свиващите изображения.

Картинка

Ред на сходимост на итерационен процес

Скоростта на сходимост в (2) се определя от общия член q^n на една геометрична прогресия. Затова е прието да се казва, че съответният итерационен процес е сходящ със скорост на геометрична прогресия. Това е доста бърза сходимост. Например, при $q=\frac{1}{2}$ и n=10 получаваме точност от порядъка на 10^{-3} . Има обаче процеси, които са много по-бързо сходящи. За да характеризираме тяхната скорост, ще въведем понятието ред на сходимост.

Определение

Казваме, че итерационният процес x_0, x_1, \ldots има ред на сходимост p, (p>1), ако съществуват положителни константи C и q<1 такива, че

$$|x_n - \xi| \le Cq^{p^n}$$
 за всяко n .

Достатъчно условие за ред на сходимост р

Следващата теорема ни дава един начин за определяне реда на сходимост на итерационния процес, породен от функцията φ .

Теорема 2.

Нека φ има непрекъснати производни до \pmb{p} —тата включително в околност на точката ξ , която е неподвижна за φ . Нека

$$\varphi'(\xi) = \ldots = \varphi^{(p-1)}(\xi) = 0, \quad \varphi^{(p)}(\xi) \neq 0.$$

Тогава, при достатъчно добро начално приближение $\mathbf{x_0}$, итерационният процес, породен от φ , има ред на сходимост $\boldsymbol{\rho}$.

Доказателство на Теорема 2

Доказателство. По формулата на Тейлър

$$\varphi(x) = \varphi(\xi) + \frac{\varphi'(\xi)}{1!} (x - \xi) + \dots + \frac{\varphi^{(p-1)}(\xi)}{(p-1)!} (x - \xi)^{p-1} + \frac{\varphi^{(p)}(\xi + \theta(x - \xi))}{p!} (x - \xi)^{p},$$

където $\theta \in (0,1)$. Тъй като $\varphi^{(j)}(\xi) = 0$ за $j = 1, \dots, p-1$, то

$$\varphi(x) - \varphi(\xi) = \frac{\varphi^{(p)}(\xi + \theta(x - \xi))}{p!}(x - \xi)^{p}.$$

Следователно, при всяко \mathbf{x} от достатъчно малка околност \mathcal{U} на $\mathbf{\xi}$,

$$|\varphi(\mathbf{x}) - \varphi(\xi)| \leq M |\mathbf{x} - \xi|^p$$
,

където $M:=\max_{t\in\mathcal{U}}\left|arphi^{(oldsymbol{p})}(t)\right|/oldsymbol{p}!$.

Доказателство на Теорема 2 (продължение)

Специално при $X = X_0$ имаме

$$|x_{n+1} - \xi| = |\varphi(x_n) - \varphi(\xi)| \le M |x_n - \xi|^p$$

$$= M |\varphi(x_{n-1}) - \varphi(\xi)|^p \le M \{ M |x_{n-1} - \xi|^p \}^p$$

$$= M^{1+p} |x_{n-1} - \xi|^{p^2} \le M^{1+p+p^2} |x_{n-2} - \xi|^{p^3} \le \dots$$

$$\le M^{1+p+\dots+p^n} |x_0 - \xi|^{p^{n+1}}$$

$$= M^{\frac{p^{n+1}-1}{p-1}} |x_0 - \xi|^{p^{n+1}} = M^{\frac{1}{1-p}} \cdot \left\{ M^{\frac{1}{p-1}} |x_0 - \xi| \right\}^{p^{n+1}}.$$

Доказателство на Теорема 2 (продължение)

Когато x_0 е достатъчно близко до ξ , $M^{1/(p-1)}|x_0-\xi| \leq q < 1$ и следователно

$$|x_{n+1} - \xi| \le C q^{p^{n+1}}$$
 за всяко n ,

където сме положили $C = M^{1/(1-p)}$. С това доказателството на Теорема 2 е завършено.

Край на лекцията!