实验: X 射线的吸收和特征谱测量

Part1 **摘要**:本次实验主要为了了解 X 射线与物质的相互作用,及其在物质中的吸收规律、测量不同能量的 X 射线在金属铝中的吸收系数以及了解元素的特征 X 射线能量与原子序数的关系。实验数据通过最小二乘拟合等方面来得出我们所需要的物理量。

Part2 实验原理介绍

一、X 射线的吸收

X 射线的吸收: X 射线是一种电磁波,它的波长在 100Å到 0.01Å之间。如图 所示,当一束单色的 X 射线垂直入射到吸收体上,通过吸收体后,其强度将减弱,即 X 射线被物质吸收。这一过程可分为吸收和散射两部分: 1.光电吸收:

入射 X 射线打出原子的内层电子,如 K 层电子,结果在 K 层出现一个空位,接着 发生两种可能的过程: (1)当 L 层或高层电子迁移到 K 层空位上时,发出 KX 射线 (对重元素发生几率较大); (2)放出俄歇电子(对轻元素发生几率较大)。2.散射:散射是电磁波与原子或分子中的电子发生作用。散射也分为两种。(1)波长不改变的散射,X 射 线使原子中的电子发生振动,振动的电子向 各方向辐射电磁波,其频率与 X 射线的频率 相同,这种散射叫做汤姆逊散射; (2) 波长改变的散射,即康普顿散射。对于铝,当 X 射

线的能量低于 0.04 MeV 时光电效应占优势,康普顿散射可以忽略。

如图 5-1 所示,设一厚度及成份均匀的吸收体,其厚度为 R,每立方厘米有 N 个原子。若能量为 hv 的准直光 z 束,单位时间内垂直入射到吸收体单位面积上的光子数为 I0,那么通过厚度为 t 的物质后,透射出去的光子数为 I (t) 并表示为:

$$I(t) = I_0 e^{-\mu t}$$

其中, μ 为该物质对某一能量 X 射线的线性吸收系数, $\mu=N\bullet\sigma$, σ 为截面,其单位为 $\mathrm{cm}^2/\mathit{atom}$, μ 的量纲为 cm^{-1} 。对于原子序数为 Z 的原子,K 层的光电截面为 $\sigma_{\mathrm{ph}}(\mathrm{cm}^2/\mathit{atom})$ 。

$$\sigma_{\rm ph} = \varphi_0 Z^5 \alpha^4 2^{5/2} \cdot (m_0 c^2 / h v)^{7/2}$$

其中,
$$\varphi_0 = \frac{8}{3}\pi r_0^2$$
, $r_0 = e^2/m_0 c^2$, $a = 2\pi e^2/hc \sim \frac{1}{137.04}$ 。

对于汤姆孙散射,每个电子截面是 $\sigma_{T}(\text{cm}^{2}/\text{electron})$

$$\mathbb{H} \, \sigma_{\mathrm{T}} = \frac{8\pi}{3} \left(\frac{e^2}{m_0 c^2} \right)^2 = 0.6652 \times 10^{-24} (cm^2 / electron)$$

$$\mu_{\rm ph} = N\sigma_{ph}, \mu_r = NZ\sigma_T$$

总的线性吸收系数 μ 为两者之和,即 $\mu = \mu_{ph} + \mu_T$ 质量吸收系数为 μ_m

$$\mathbb{H}\,\mu_{\rm m} = \frac{\mu}{\rho}(cm^2/g) = \sigma\frac{N_A}{A}$$

所以我们有, $I = I_0 e^{-\mu_m \rho t}$

(式中 N_A 是阿佛加德罗常数,A 是原子量。上图表示了金属铅、铜、铝 的质量吸收系数随波长的变化。在能量低于 0.1 MeV 时,随着能量减小截

面显示 出尖锐的突变。实验表明,吸收系数突然下降的波长(吸收限)与 K 系激发限的波 长很接近。在长波长区还有 L 突变与 M 突变存在,由于 L 层和 M 层构造的复杂 性,这些突变不如 K 突变那样明显,并且有几个最大值。各种元素对不同波长入射 X 射线的吸收系数,由实验确定。元素的质量吸收系数与入射 X 射线能量之间的关系,可以用经验公式表示:

对
$$E' > E > E_k$$
。

$$\mu_{\rm m} = C_k' \lambda^n (cm^2/g) \vec{\boxtimes} \mu_{\rm m} = C_k' (12.3981/E)^n$$

对铝吸收体, E '为 6.20keV, E_K 为 1.5596keV, C_K 为 16.16,n 为 2.7345。 二、X 射线的特征谱:原子可以通过核衰变过程转换及轨道电子俘获,也可以通过外部射线如 X 射线,β 射线(电子束)、 α 粒子或其他带电粒子与原子中电子相互作用产生内层电子空位,在电子跃迁时产生特征 X 射线。玻耳理论指出电子跃迁时放出的光子具有一定的波长 λ ,它的能量为:

hv =
$$Z^2 \frac{2\pi m_0 e^4}{h^2} (\frac{1}{n_1^2} - \frac{1}{n_2^2}) \exists \vec{k} hv = (aZ)^2 \frac{m_0 c^2}{2} (\frac{1}{n_1^2} - \frac{1}{n_2^2})$$

其中 n_1, n_2 为电子终态、始态所处壳层的主量子数,对 K_{α} 线系, n_1 =1, n_2 =2,对 L_{α} 线系, n_1 =2, n_2 =3,根据特征 X 射线的能量,可以辨认激发原子的原子序数。 莫塞莱在实验中发现,轻元素的原子序数与 K_{α} 及 L_{α} 系特征 X 射线的频率 $v^{1/2}$ 之间存在线性关系。 K_{α} 系的关系为:

$$v^{1/2} = k(Z-1)$$

 L_{α} 线性关系表示为: $v^{1/2} = k(Z-7.4)$

Prat3 实验内容

- 1.用 238 Pu X 射线源激发 Zn、Cu、Ni 等样品产生特征 X 射线,并测量特征 X 射线在铝中的吸收系数。
- 2.测量几种元素的特征 X 射线谱确定未知元素。

Part4 实验数据处理与分析

1. 对于吸收系数的处理

由公式 $I=I_0\mathrm{e}^{-\mu_m\rho^i}$ 计算,取对数之后,直线拟合的斜率与吸收系数有一定关系。

元素	测量时间	计数(0片)	计数(1片)	计数(2片)	计数(3片)	计数(4片)	计数(5 片)	计数(6 片)
Ti	20s	189184	95791	47190	24059	12137	5899	3087
Cr	20s	187785	124353	81660	54270	35367	23606	15390
Fe	20s	189088	145409	110960	85289	66221	50158	38852
Zn	10s	88424	78840	70366	62306	55433	43953	39633
Ge	10s	89330	81379	74633	69955	63484	59849	54575
Cu	20s	174413	153346	134364	115958	100291	87191	76424

对于不同元素的密度,通过查找可得:

元素	Ti	Cr	Fe	Zn	Ge	Cu
密度 (g/cm^3)	4. 51	7. 20	7. 87	7. 14	6. 24	8.96

对于 Ti, 拟合斜率为 0.69, 测量时间为 20s, 吸收片厚度取 10um, 则 可 得 吸 收 系 数 为 $0.69 \div 4.51g/cm^3 \div 10^{-3}cm$ = $152.99cm^2/g$

对于 Cr, 拟合斜率为: 0.42 则吸收系数为:

$$0.42 \div 7.20 g / cm^3 \div 10^{-3} cm$$
$$= 58.33 cm^2 / g$$

对于 Fe, 拟合斜率为: 0.26 则 吸 收 系 数 为

 $0.26 \div 7.87 \text{g/cm}^3 \div 10^{-3} \text{cm}$ $= 33.04 \text{cm}^2 / \text{g}$

对于 Zn, 拟合斜率为: 0.12 则吸收系数为:

$$0.12 \div 7.14 \text{g/} cm^3 \div 10^{-3} cm$$
$$= 16.81 cm^2 / \text{g}$$

对于 Cu, 拟合斜率为: 0.14

则吸收系数为:

$$0.14 \div 8.96 \text{g}/cm^3 \div 10^{-3} \text{cm}$$
$$= 15.63 \text{cm}^2/\text{g}$$

对于 Ge, 拟合斜率为: 0.08 则吸收系数为:

$$0.8 \div 6.24 g / cm^3 \div 10^{-3} cm$$
$$= 12.82 cm^2 / g$$

2. 对于特征 X 射线谱的处理

对模拟平台进行刻度,为了便于找到峰位本次实验中选取了 $K\alpha$ 不是很近的三个元素进行刻度,对应数据与拟合曲线如下

14 /14/20 /14/2	13 / 3 / 2 / 2										
元素	Ti	Fe	Zn								
Κα	4.51	6. 40	8.63								
峰位道址	2769. 19	3882.49	5239.76								

对于未知元素, 实验中测得对应的峰位 ($K\alpha$) 分别为: 7. 47204, 6. 91663, 4. 917则对应元素分别为: Ni (标准 $K\alpha$ 为 7. 47)、Co (标准 $K\alpha$ 为 6. 92)、V (标准 $K\alpha$ 为 4. 95)。

由: $(hv)^{1/2} = c(z-d)$ 进行处理和射线拟合

元素	Ti	V	Cr	Fe	Со	Ni	Cu	Zn	Ge
$(hv)^{1/2}$	2. 13	2. 22	2. 33	2. 53	2.63	2. 73	2.84	2.92	3. 15
原子序数	22	23	24	26	27	28	29	30	32

$$y = 101.48x - 108.42$$
$$= 101.48(x - 1.07)$$

则可知 c=101.48, d=1.07 此时能量单位为 eV;于

 $(v)^{1/2} = K(Z-1)$ 比较可知较

为吻合

Part5 实验思考题

1. 238 *Pu* 源的 ULX 射线能量在 11.6- 21.7keV 之间,试说明 238 *Pu* 源是否可激发 Ag 的 K_a 线。

答:由前面是所求的射线拟合公式可知 Ag 的 K_{α} 射线能量

 $(hv)^{1/2} = 101.48 \times (47 - 1.07) = 4.66$,则能量为 $4.66^2 = 21.71$ KeV;该能量不在 11.6 - 21.7 KeV 之间;故不能。

2.试比较每个原子的汤姆逊散射截面与铝原子的光电效应截面。你认为汤姆逊散射截面是否重要?

答: 经计算知道本实验中的截面为 2-3Mb; 远大于汤姆孙散射时的截面; 所以汤姆孙散射实验在本次实验中不重要。

3.假设一束非理想准直束,其发散角为 10°、25°,试估计对铝的线性吸收系数实验值的影响。

答:若有一定反射角度,影响实验中的 t;考虑角度我们有 $t=t^{\prime}\cos\theta$,本实验中的吸收系数中计算为 $\mu_{\rm m}=\frac{k}{t\rho}$,k 为拟合斜率,则该实验会导致测量结果偏大;即 10 度是实验值为真实值的 1. 0154 倍,25 度时实验值为真实值的 1. 1034 倍。

Part6 附 Excel 数据处理

A	В	C	D	E	F	G	Н	1	J	K
Ti/20s				Ge/10s						
0	189184	12. 15047537		0	89330	11.40009266		4.51	2769.19	
1	95791	11. 46992401		1	81379	11.30687253		6.4	3882.49	
2		10. 76193728		2	74633	11. 22033805		8, 63	5239.76	
3	24059	10.08826443		3	69955	11. 15560746				
4	12137	9. 404013917		4	63484	11.05854318				
5	5899	8.682538124		5	59849	10. 99958				
6	3087	8. 034955025		6	54575	10. 90733118				
Cr/20s				7	50645	10.83259579				
0	187785	12. 14305297		un1/20s						
1	124353	11. 73087957		0	186311	12. 1351726				
2	81660	11.31031956		1	109233	11.60123849				
3	54270	10. 90172687		2	60832	11.01587125				
4	35367	10. 47353446		3	36378	10. 50171948				
5	23606	10.0692562		4	21653	9. 982899292				
6	15390	9.641473227		5	12715	9. 450537678				
Fe/20s				6	7446	8. 915432254				
0	189088	12. 14996779		7	4376	8. 383890344				
1	145409	11.88730574		un2/10s						
2	110960	11.61692505		0	92951	11. 43982775				
3	85289	11. 35380077		1	72377	11. 18964385				
4	66221	11. 10075291		2	59233	10. 9892341				
5	50158	10. 8229333		3	47035	10.75864728				
6	38852	10. 56751483		4	38585	10. 56061888				
Cu/20s				5	31066	10.34386925				
0	174413	12.06918133		6	25361	10. 14096784				
1	153346	11. 94045209		7	20394	9. 922996019				
2	134364	11.80830781		un3/10s						
3	115958	11.66098334		0	88997	11.39635794				
4	100291	11.51583124		1	75139	11. 22709501				
5	87191	11. 37585639		2	63316	11.05589334				
6	76424	11. 24405206		3	53099	10.87991337				