⑩日本国特許庁(IP)

① 特許出願公開

平1-312736 ⑫ 公 開 特 許 公 報(A)

Int. Cl. 4

識別記号

G 11 B

庁内整理番号

❸公開 平成1年(1989)12月18日

7/00 7/085 K-7520-5D E-2106-5D

審査請求 未請求 請求項の数 4 (全11頁)

50発明の名称 光ディスク装置及び光ディスク

> 顧 昭63-143407 ②特

願 昭63(1988)6月10日 22出

佐久間 (2)発 明 者

福島県白河市字老久保山1番地1 日本コロムビア株式会

社白河工場内

日本コロムビア株式会 勿出

東京都港区赤坂 4 丁目14番14号

2+

四代 理 人 弁理士 松 隈 秀盛

発明の名称 光ディスク装置及び光ディスク 修許構求の疑問

1. 光ディスクに連続信号を記録中に光ヘッドが トラックずれを生じた時に、绞光ディスクへの 記録を中断し、正しく記録すべきトラックを検 出して、該正しく記録すべきトラックに戻して 記録を行なう様にして成る光ディスク装置に於 いて、

上記連続信号を記憶する記憶手段と、

上記トラックずれを生じた直前のトラック位 選を検出する検出手設とを具備し、

上記検出手段によって検出したトラックずれ を生じた直前のトラック位置に上記光ヘッドを 戻して、上記記憶手段の記憶信号により連続信 **号を上記光ディスクに記録する様にして成るこ** とを特徴とする光ディスク装置。

2. 光ディスクに連続信号を記録中に光ヘッドが トラックずれを生じた時に、核光ディスクへの 記録を申助し、正しく記録すべきトラックを検 出して、核正しく記録すべきトラックに戻して 記録を行なう様にして成る光ディスク装置に於

上記連続信号を記憶する記憶手段と、

上記トラックずれを生じた直前のトラック位 置を検出する検出手段と、

上記光ヘッドからの検出信号のサーポパラメ ータを調整するサーボパラメータ調整手段とを 具備し、

上記検出手段の検出出力によってトラックず れを生じた直前のトラック位置に上記光ヘッド を戻し、上記記他手段の記憶信号により上記連 続信号を上記光ディスクに記録する際に上記サ ーポパラメータ問盤手段を制御する様にして成 ることを特徴とする光ディスク装置。

3. 光ディスクに連続信号を記録中に光ヘッドが トラックすれを生じた時に、该光ディスクへの 記録を中衡し、正しく記録すべきトラックを検 出して、該正しく記録すべきトラックに戻して 記録を行う様にして成る光ディスク装置に於い

7.

上記連続信号を記憶する記憶手段と、

上記トラックずれを生じた直前のトラック位 道を検出する検出手段と、

上記光ヘッドからの検出信号のサーボパラメ

- タを調整するサーボバラメータ調整手段と、 上記サーボバラメータ調整手段で調整された パラメータを記録するサーボバラメータ記録手 ほとを基備し、

上記検出手段の検出出力によってトラックずれを生じた直前のトラック位置に上記光ヘッドを戻し、上記記様手段の記憶信号により上記連続信号を上記光ディスクに記録する際に上記サーボパラメータ機整手段を制御すると共に、サーボパラメータ記録手段によって光ディスクに記録する様にして成ることを特徴とする光ディスク装置。

4. サーボバラメータを記録して成る光ディスク。 宛明の詳細な説明

スクを並列運転する必要があった。この様な問題 を解決するため本出願人は先に予めトラック情報 が記録されている光ティスクに連続データを記録 する装置に於いて、記録中にトラックずれを生じ た場合に直ちに記録を停止し元のトラック位置に 戻して記録を行うようにした光ディスク装置を提 深した。この構成を第8図及び第9図について説 則する。第8回に於いて記録、再生可能な光へッ F(I)より信号検出回路四に再生信号等の信号を入 力し、再生信号やHF信号更に、サーボの為のエ シー信号等を取り出す。これら検出信号のうちト ラックエラー信号a及びHF信号bを導出して、 トラックエラー検出回路(3)にトラックエラー信号 aを加え、HF信号 bをHF信号検出図路(5)に加 える。トラックエラー検出回路(3)は例えばウイン ドコンパレータでトラックエラー信号aが所定以 上の場合にトラックエラー検出回路(3)の出力には 検出信号でが出力される。この検出信号がトラッ クエラーでない場合もあるのでガーに備えて検出 信号にによってフリップフロップ回路(4)をセット

「産業上の利用分野」

水発明は音楽情報等の連続信号を光ディスクに 確実に記録、再生するための光ディスク装置及ひ 光ディスクに関する。

〔従来の技術〕

は近の光ディスクでは再生専用ディスクだけでなく、テルル酸化物等の薄膜を用いて予め記録された情報以外に追加記録の可能な光ディスクも提案されている。 との場合、一般にこの複光ディスクのデータ記録にかっては、光ディスクに予めセクタを設け記録後にただちに記録内容のチェック確認を行ない、誤りがあれば他のセクタ等に同一データを書き直す様にしている。

特に記録しようとするデータが合声信号の様な 連続信号の場合にトラック飛びが生すると、セク タのロスを少くするため光ディスクを取り替えて 記録のやり直しを行なっている。この為に生演奏 後を光ディスクに配録する場合には複数の光ディ

し配録を停止させると共にフリップフロップ回路 (4)の出力以によってトラックサーチ回路(6)を作動 させて、見失った思われる記録すべきトラックを 探す。この状態を第9辺で説明すると、先ず記録 時にHF信号検出回路(5)によって光ディスクから の記録情報からHF信号を検出し、このHF信号 をトラックサーチ阻路(6)に供給する。第9凶で光 ディスクのトラックT」~Tょ上をスポットSP がP点迄来たときに塵埃、外部振動等の影響でト ラックエラーを起してスポットSPがトラックTs へ飛んでP2点へ米た場合には飛ぶ寸前でトラッ クT』への記録は停止され、再生状態となる、こ の時スポットSPが持ち来たされたトラックTs は未記録部分であるためにHF信号検出回路(5)か らはBF信号が検出されず、トラックサーチ回路 (5)より光ディスクの記録開始トラック側へキック 回路(7)によって1つのキックパルスを出すとこの キックパルスは光ヘッド(1)のスポットSPを1ト ラック分記録開始トラック側のトラックT→に戻 す。この状態でもHF信号検出回路のからのHF

上述の場合はトラックエラーによってスポット SPは未記録トラック側に移動した例を説明した がこれが記録してある側、即ち記録開始側のトラックエレーエ。の方へ何らかの原因で移動した場合には日下信号が検出されるので日下信号が検出 されない位置迄キック回路のを作動させてやれば 序記録開始トラック位置を検知することが出来る。

次に記録データをメモリするための構成を第8 図に戻して説明する、T」は入力信号が加えられ る端子で入力信号は端子T」を介してエンコーダ (8)によって所定のフォーマットデータになる様に エンコードされる。エンコードされた人力信号は クロックパルス発生器(9)からの同期信号によって パッファメモリ (10) に書き込まれる。ここでパ ッファメモリ (10) へのアドレスはライトアドレ スカウンタ (11) によってデータ人力され、バッ ファメモリ (10) の読み出しは答き込みより位相 が一定値遅れたリードアドレスカウンタ (12) に よって読み出される。ライトアドレスカウンタ (11) とリードアドレスカウンタ (12) の位相を 一定に保つ様なPLLを引算回路 (13) ,推照制 御発振器 (14) で構成する、即ち引舞回路 (13) によってライトアドレスカウンタ (11) のアドレ ス値よりリードアドレスカウンタ (12) のアドレ ス値が通常の状態でわずかに遅れる様にし、この 値を基準として選圧制御発振器(14)を作動し、

(15) を介して光ヘッド(L)により光ディスク上に 信号を記録している。今、先に述べたトラックエ ラーによってトラック飛びが生じごれを検出すれ ば記録アンプ (15) は停止させられると共に選比 副翻発振器 (14) からのクロックはゲート国路

(14) からのフロックはケート的に (16) で停止させられ、リードアドレスカウンタ (12) は停止状態となる。スポットト 日路 (16) が閉じてバッファメモリ (10) に貯えられていた データを出力する。ここで統出しのリードアドレスカウンター (12) の値はライトアドレスカウンター (12) の値はライトアドレスカウンター (14) は圧制御免援器 (14) には 領外増大し、バッファメモリー (10) のリードアドレスカウンター (11) 及びライトアドレスカウンター (11) 及びライトアドレスカウンター (11) 及びライトアドカウンター (12) はもとの安定状態のカウント おカウンター (12) はもとの安定状態のカウント おりコ はもとの 安定状態 の出力をディンター (17) を介し出力し、これに同期してディス

クの回転を行なうことにより、記録成長の変化は 生じない様に成されている。

書き込まれたデータを直ちに出力して記録アンプ

(発明が解決しようとする課題)

叙上の従来構成によるとエラー飛びが発生した 場合、記録を中断し、正しく記録すべきトラック を見つけ出し、記録パッファメモリを使用して、 再び記録を続け、記録エラー領域の再生時には、 パッファメモリを使用して、再生データが一時中 勝しても、連続したデータとして読み出すことが 出来る。即ち、エラー発生時に光ディスクの記録 を中断し、正しく配鎖すべきトラックを見つけて 記録を続行しているが、第9図の区間Dに示す様 に光ディスクのトラックへの記録中断位置から記 録再捌までの領域に、無記録部が発生する。これ によって、この領域再生時にも、バッファメモリ を使用しないと、連続信号として、再生すること ができないと云う1つの問題があった。そこで、 本発明ではこの問題を解決すべく記録を中断する 直前のディスク位置へ戻して連続したデータを記

鍵する様にしているが、この場合にトラック飛び が発生した、即ち記録を中断する直前のディスク 位置に戻して記録を行う場合には再びこの部分で トラック飛びを発生する確率が高いために記録が 確実に行なえなくなると云う第2の問題が発生し た。そこで本発明ではこの第2の問題を解決すべ く中断した部分のトラックに記録を行う際にサー ポパラメータ、例えばサーボゲイン特を自動調整 して、記録を行う様にしたが、この場合も再生時 には再記録した部分のサーボゲイン等が途中で変 るために再生時には確実な再生が行なえなくなる 第3の問題が発生する。そこで本発明では更に、 この第3の問題を解決するためにサーボバラメー タを光ディスクに記録し、再生時には、このサー ボバラメータを検出し、この部分でサーボゲイン 等を調整して再生出来る様にしている。

本発明は叙上の各種問題点に豁み成されたもので本発明の第1の目的はエラー発生時点に戻して 連続したデータを記録することの出来る光ヘッド 装置を提供するにある。

> 設置に於いて、連続信号を記憶する記憶手段 (10)と、トラックずれを生じた直前のトラック位置を検出する検出手段(18)とを具備 し、検出手段(18)によって検出したトラック がれを生じた直前のトラック位置に光へッド(I)を戻して、記憶手段(10)の記憶信号を より連続信号を光ディスクに記録する様にして成ることを特徴とする光ディスク装置。

(II) 光ディスクに連続信号を記録中に光ペスクに連続信号を記録中に光ディスクで連続信号を記録される中断し、正しく記録すべきトラックに受験する機にして記録を行なる光ではできる光ではでいた。 連続に関する記憶する記憶する記憶では、2000を検出する検出手段(18)と、タクではできる検出手段(18)と、タクではできる検出手段(18)と、タクではできる検出手段(19)と、タクではできるサーボバラメータ調整手段(19)と、検出手段の検出力によって光でである。

本発明の第2の目的はエラー発生時点に戻して データを記録する際に、サーボパラメータを調整 して記録が確実に行なえる様にした光ヘッド装置 を提供するにある。

本発明の第3の目的はサーボパラメータを変えて記録したデータ部分のサーボパラメータを光ディスクに記録し、このサーボパラメータを検出することで再生時にサーボパラメータを調整し得る光ディスク装置又は光ディスクを提供しようとするものである。

(課題を解決するための手段)

本発明の光ピックアップ装置及び光ディスクは その一例が第1図、第5図及び第6図に示されて いる様に

(1) 光ディスクに連続信号を記録中に光ヘッド (I)がトラックずれを生じた時に、光ディスク への記録を中断し、正しく記録すべきトラッ クを検出して、正しく記録すべきトラックに 戻して記録を行なう様にして成る光ディスク

ッド(1)を戻し、記憶手段 (10) の記憶信号により連続信号を光ディスクに記録する際にサーボパラメータ調整手段 (19) を関御する様にして成ることを特徴とする光ディスク装置。

(目) 光ディスクに連続信号を記録中に光ヘッド (I)がトラックずれを生じた時に、光ディスク への記録を中断し、正しく記録すべきトラッ クを検出して、正しく記録すべきトラックに 戻して記録を行う様にして成る光ディスク装 置に於いて、連続信号を記憶する記憶手段 (10) と、トラックずれを生じた直前のトラ ック位置を検出する検出手段(18)と、光へ ッド(1)からの検出信号のサーボパラメータを 湖盤するサーボパラメータ湖盤手段 (19) と、 サーボバラメータ調整手段(19)で開設され たパラメータを配録するサーボパラメータ記 **録手段 (21) とを其備し、検出手段 (18) の** 検出出力によってトラックずれを生じた直前 のトラック位置に光ヘッド(1)を戻し、記憶手 段(10)の記憶信号により連続信号を光ディ

スクに記録する際にサーボパラメータ 離整手段 (19) を制御すると共に、サーボパラメーク 脚整手段 (19) のサーボパラメータをサーボパラメータ記録手段によって光ディスクに記録する様にして成ることを特徴とする光ディスク装置。並びに

(IV) サーボパラメータを記録して成る光ディスクである。

(作用)

本発明の第1の課題解決手段による光ピックアップ装置によれば、光ディスクへ連続信号を記録中にトラック飛びを生じた場合に記録を中断させ、光ディスクトラックの記録中断直前迄戻して再記録を行なう様にしたので中断位置から連続した記録が行なわれてトラックに無信号期間を生じないので、再生時には記憶手段を使用せずに連続デークを読み出すことが出来る。

本発明の第2の課題解決手段による光ピックアップ装置によれば、光ディスクへ連続信号を記録

中にトラック機びを生じた場合は記録を中断させ、 光ディスクトラックの記録中断直前迄戻して再記 録を行なうが、トラック機びを生じた位置に再記 録を行なうために再びトラック機びを発生する可 能性があるのでサーボゲイン等のサーボパラメー タを変化させて記録を行なう様にしたので、トラック機びを生ずる可能性のあるトラックでも確 な記録を行うことが出来て、連続した信号記録を 行なうことが可能となり、再生時には記憶手段を 用いることなく連続信号を読み出すことが出来る。

本発明の第3及び第4の課題解決手段による光 ピックアップ装置及び光ディスクによれば、光ディスクへ連続信号を記録中にトラック機びを生の た場合に記録を中断させ、光ディスクトラック には銀中断直面迄戻して再記録を行なうが、、に再い の飛びを生じた位置に再記録を行なうために再い トラック機びを発生する可能性があるので、サー ボゲイン等のサーボパラメータを変化させた びが発生するのでサーボパラメータを変化させた びが発生するのでサーボパラメータを変化させた

トラック部分にサーボパラメータを記録するエリアを設けて、このパラメータを記録し、再生時にこれを検出して、サーボパラメータを変化させて、再生を行なう様にしたので再生時もトラック飛びの発生しない光ピックアップ装置及び光ディスクが得られる。

(実施例)

以下、本発明の光ピックアップ装置を第1図乃 至第4図について説明する。尚、第8図及び第9 図との対応部分には同一符号を付して直復説明を 省略する。

第1図に於いて、フリップフロップ回路(4)の出力は記録エラーアドレス番号セット回路 (20) 及び記録部未記録部変化点検出间路 (18) に供給され、トラックエラー検出回路(3)の出力はフリップフロップ回路(4)のセット端子に供給されると同時に記録エラーアドレス番号セット回路 (20) にも供給される。記録エラーアドレス番号セット回路 (20) の出力はゲート同路 (23) を介してアド レス比較回路(22a) に供給されている。アドレス比較回路(22a) にはHF信号検出回路(6)からHF信号をデコードしたアドレス番号が供給される。アドレス比較回路(22a) の出力はトラッキングサーチ回路(6)に供給され、トラッキングサーチ回路(6)に供給され、トラッキングサーチ回路(6)の出力は記録部、未記録部変化点検出回路(18) の出力によってフリップフロップ回路(4)をリセットする構成とされている。他の構成は第8回と同じである。

第1週の動作を以下説明する。

光へッド(1)からの再生信号は信号検出回路(2)に供給され、この信号検出回路(2)からはトラックエラー信号 a とHF信号 b が分離され、トラックエラー検出回路(3)とHF信号検出回路(3)はトラックエラー 信号が所定値以上の場合にトラックエラー検出出力 d 号 c が出力される。第2 図はトラックエラー検出回路(3)の一例を示すもので、ウィンドコンパレータ (3a) 及び種分検出回路(3b) より構成さ

れている。トラックエラー信号aはウインドコン パレータ (3a) に供給され、このウインドコンパ レータ (3a) では±の基準電圧+REF、-REF が加えられていて、これらの基準電圧以上のトラ ックエラー信号a゚ が取り出される、即ち、第3 図Aに示す様にトラックエラー信号aがまの基準 **選圧±REFをスレーショルドレベルとして、こ** れらの基準電圧以上のパルスa′が第3図Bに示 す様にウインドコンパレータ (3a) から収り出さ れる。この電圧パルスa′は積分検出回路(3b) で種分されて第3図じで示す様にトラックエラー 検出信号とが取り出される、ここで基準選圧は、 光ピームがトラック万向に移動した場合のトラッ クエラー信号の最大レベルより小さくしておけば 度い。これによって外部接動によってセラックを 外れた場合でも直ぐにトラックエラーを検出しう る。この場合積分検出団路(3b)はなくても良い がこの積分検出回路 (3b) を置くことで特に短い パルス性のノイズなどを検出せず、里にピームの 設定移動速度以上の早い信号をのぞき、 S/N を

改善することが出来る。この様なトラックエラー 検出回路(3)を用いることで書き込み中に検出した トラックエラーがエラーであるとする確率はかな り高いものとなる。この様なトラックエラー検出 付号にをフリップフロップ回路(4)のセット端子に 供給して、フリップフロップ回路(4)のQ出力によ って前述した様にゲート回路 ():6) ーリードアド レスカウンタ (12) →バッファメモリ (10) →記 録アンプ (15) を通じて光ヘッド(1)から光ディス クへの記録を停止させると共に記録、未記録部変 化点検出回路 (18) を作動させる。これと同時に トラックエラーで見失ったと思われる記録すべき トラックを探すために、トラックエラー検出回路 (3)のトラックエラー検出信号の出力されるトラッ ク位置を示すアドレス番号を記録エラーアドレス 益号セット回路 (20) にセットする。トラックエ ラー発生時のアドレス番号はゲート回路 (23) を 介してアドレス比較国路 (22a) に供給される。 一方HF信号検出回路(5)からのHF信号はトラッ クサーチ回路(6)に供給されると共にHF信号から

デコードされたアドレス番号がアドレス比較回路 (22a) に供給され、トラックエラー発生時のア ドレス皆号と比較される。この比較出力はトラッ クサーチ回路(6)に供給され、キック網路(7)をアド レス沿号が一致するまで動作させる。このキック 回路(7)の動作を第4図の光ディスクトラックにつ いて説明する。第4図のトラックに連続信号を記 録しているものとし、トラックTェ~Tェを光へ ッド(1)のスポットSPがP点迄来たときに選埃。 外部撮動等の影響でトラックエラーを起してスポ ットSPがスポット点P1 で示すトラックT5 へ 機んだ場合には飛ぶ寸前でトラック T 3 での P 点 **到達以後の記録は停止され、再生状態となる。こ** の時スポット点P」が持ち来たされたトラックTs は未記録部分であるためにHF信号検出回路(5)か らはHF信号が検出されずトラックサーチ回路(6) より光ディスクの記録開始トラック側へ1つのキ ックパルスを出すと、キックパルスはキック国路 (7)を介して、光ヘッド(I)のスホットSPを1トラ ック分記録開始トラック側のトラックで4 に戻す。

第4図の例ではトラックエラーによってスポットSPは未記録トラック側に移動した例を説明したが、これが記録してある側、即ち、記録開始側のトラックT: ~T: の方へ何らかの原因で移動した場合には、上述とは、反対方向(未記録トラック側)にキック回路のを制御し、再記録開始位

選のスポット点とを検知することができる。

記録データをメモリするためのエンコーダ(8)からカウンタ (17) 迄の符号(8)乃至符号 (17) で示される各部の動作は第8図と全く同様なので、その動作説明を省略する。

本例は、上述のごとく構成したので、記録中の 外部最勤等でトラックずれなどのエラーを起ごし ても、無信号トラックを形成することなく連続デ ータを光ディスクに記録することができる。 再生 時には、バッファメモリを使用せずに連続信号を 再生することができる。

本発明の光ピックアップ装置の他の実施例を第 5 関で説明する。

前、第1図との対応部分には同一符号を付して 沮複説明を省略する。

第5 図で、光ヘッド(I)と信号検出回路(2)間にサーボパラメータ調整回路(19)を設ける。第1 図のアドレス比較回路(22a)はアドレス、サーボ制御パラメータ比較回路(22b)と成され、このアドレス、サーボ制御パラメータ比較回路(22b)

の出力はサーボパラメータ調整図路(19)に供給 されている。

上述の構成で光ディスクに連続信号の記録中に トラックエラーが発生した時点でのアドレス番号 がアドレス、サーポ制御パラメータ比較回路(22b) に供給されると共にHF信号検出団路(5)でHF信 牙をデコードしたアドレス番号も供給されて、阿 アドレス番号の比較が成され、アドレス番号が一 **蚊するまでキック団路(7)を動作させて、再生状態** とし元のP点に戻ってアドレス番号が一致したら 一致信号をサーボパラメータ調整関路(19)に供 給して、サーボバラメータ調整回路 (19) を制御 する。サーボパラメータ調整照路(19)は例えば サーポゲインを数段階に切り換える様にしたり、 ポテンショメータに設けたモータを制御すること によってサーポゲインを連続的に調整する様にし てもよい。上述の実施例によれば記録中の外部撮 動等でトラックずれなどのエラーを起こしても、 サーポゲインを変えてエラーの検出を発生しにく い状態にして、再度、連続データを続けて記録す

ることができる。よって、再生時には、バッファメモリを使用せずに、連続信号を再生することができる。

39.6 図及び第7図は本発明の更に他の実施例を 示すものである。

第5個と対応部分には同一符号を付して異複模 明を省略する。

ーボパラメータ調整回路 (19) を制御する。サーボパラメータ調整回路 (19) は例えばサーボゲインを鉄段階に切り扱える様にすると同時にサーボ 制御パラメータ記録回路 (21) を介して光ディスクのトラック機び部分に第7回に示す様にサーボ 制御パラメータを記録する。

第7 図でトラックを所定のブロックで区切る。 (24) はアドレス番号の記録される領域でその扱 にサーボ制御パラメータを記録するエリア (25) を設ける。 (26) はデータ記録領域である。

このエリア (25) にサーボパラメータ、例えばサーボゲイン等を 2 段階に調整した場合にはフラグを立てる。このエリア (25) にフラグであるピットが形成されていれば、サーボゲインをトラットが発生しにくいように切り換えてコントロールし、ピットが無ければ、通常のサーボゲインで、コントロールするようにする。この様にサーボ制御パラルする様にしてもよい。この様にサーボ制御パラ

(発明の効果)

本発明は、上述のごとく構成したので、記録中の外部援動等でトラックずれなどのエラーを起こしても、このエラーを起こした位置から連続デー

ットを戻すための光ディスクの一部平面図である。
(1) は光ヘッド、(2) は信号検出回路、(3) はトラックエラー検出回路、(4) はフリップフロップ回路、
(5) は日ド信号検出回路、(6) はトラックサーチ回路、
(7) はキック回路、(8) はエンコーダ、(10) はパッファメモリ、(11) はライトアンタ、(14) は毎年ファスカウンタ、(12) はリードアレドスカウンタ、(14) は近ゲート回路、(17) は記録アンプ、(16) はポテート回路、(17) はカウンタ、(18) は記録が記録部後化点検出回路、(19) はサーボパラメータ。
は野遊路、(20) は記録エラーアドレス番号に対し路、(22a) はアドレス制御パラメータ比較回路、(22b) はアドレス、サーボ制御パラメータ比較回路、(22b) はアドレス、サーボ制御パラメータ比較回路、

代埋人 松服务盛

タを光ディスクに配録することができる。再生時には、配憶手段を使用せずに連続信号を再生することができる。又、エラーを起こした部分に再配録するときサーボゲインを変える様にしているのでエラーの発生したくい状態で再配録が出来るのでエラーが発生したくい状態で再記録が出来る。 更にサーボゲイン変化位置を光ディスクに書き込み、再生時にこれを読み出す様にしたので、再生時によりまることなく連続信号が得られる効果を有する。

図面の簡単な説明

第1図は本発明の光ディスク装置及び光ディスクの一実施例を示す糸統図、第2図はトラックコー検出図路の一実施例を示す糸統図、第3図はトラックエラー検出図路の波形説明図、第4はは小ラックへスポットを戻すための光ディスクの他の実施例を示するのは、第3図はボークの飛び部分のトラックへスポの系統図、第3図は従来の光ディスクを設置の系統図、第9図は従来の内定トラックへスポ

トラッフエラー放出回路の一支先例を示す系統図 第 2 図

トラッフエブー校出回路の波形設明日 第 3 図

一部平面团 第4図

トファフ飛び部介のトラック Na記録方法の説明日

第 7 図

特開平1-312736 (11)

従来の対定トラックへスポットを戻すたかの先が次か 一符平面図

第 8 図

THIS PAGE BLANK (USPTO)