Deformations (a): tangent and obstantion spaces

Martin Olsson

Lecture 1 . Week 1

- 1) fasic defin
- 2) examples
- 3) obstruction spaces
- 4) examples

- Week 2
- 5) Picard categories
- Picard stacks
- 7) truncated cotangent complex
- 8) Overview of votangent complex.

Notilation.

R= k

X/k scheme of finite type

x E X (k).

The targent space of X at x is the dual of the k-vec. Sp. m/m^2 , where $m \in \mathcal{O}_{X,X}$ is the max. ideal.

Dual numbers

R ring, I 17-module.

R[I] ring of dual numbers

R[I]: as a group, ROI

(2, i) · (2', i') := (w', z'i+zi')

Remark 1 R[I] is functorial in I: $g: I \rightarrow J$ induces a map $R[I] \rightarrow R[J]$.

(2, i) 1-/(2,g(i))

Rmk? I = R, wite R[E] for R[I]

(Leady should be R[4]/(E?))

Remark 3. X top. Space, U sheet of rings on X, I ()-module, then can define 0[I].

In particular, it X is a scheme, I quh. Ox-module then get a ringed space $X[I] := (|X|, \theta_X[I]).$

Even Show X[I] is a scheme. X \(X \) X[I] X

Relationship us derivatives

A -> R ring homomorphism

M R-module

an A-derivation from R to M is an A-linear map $\partial: R \longrightarrow M$

s.t. 2(xy)= x2y+ y2x

~ R-modul Der (R, M)

A-Alg/R = (at. of pairs (c, f)

- C A-algebra

 $-b:C\longrightarrow R$ map of A-algebras

 $(C, f) \longrightarrow (c', f')$ is an A-alg. morphism $g: C \longrightarrow c'$ set. $G \xrightarrow{g} c'$

Lemma For any A-derivation 2: R - I, the induced map

 $R \longrightarrow R[I]$, $x \longmapsto x + \delta(x) = (x, \delta(x))$

is a morphism in A-Alg/R and the induced map

Der A (R, I) ~ Hom A-Alg/k (R, R[I]) is bijertie.

Mr
$$R \stackrel{5}{\longrightarrow} R[I]$$
 in $A-Alg/R$
 $X \longmapsto (x, g(x))$

- map of A-algebrus
$$(-)$$
 $S(x) = 0$ if x is in the image of A

- comp. at mult. $(-)$ $X_1y \in R$, $(xy, S(xy)) = (x, S(x)) \cdot (y, S(y)) = (xy, xS(y) + yS(xy))$
 $(-)$ $S(xy) = yS(x) + xS(y)$

Remark. (b: C
$$\Rightarrow$$
 R) \leftarrow A \rightarrow Alg /R and that $I = \ker(b)$ is square - zero. Then any section $s: R \rightarrow C/A$ induces an isom. $R(I) \rightarrow C$

S induces an isom. $R \otimes R / J^2 \sim R [\Omega_{R/A}^1]$.

 \Rightarrow Der_A $(R, \Pi_{R/A}^{1}) \Rightarrow$ sections of the diagonal map $R \otimes R/J^{2} \longrightarrow R$.

Q. What is the universal der.
$$R \xrightarrow{d} \Omega_{R/A}^{1}$$
?

 $\Omega_{R/A}^{1} = J/J^{2}$, $d: R \longrightarrow \Omega_{R/A}^{1} = J/J^{2}$
 $\chi \longmapsto \chi \otimes 1 - 1 \otimes \chi$

$$\begin{array}{ccc}
\boxed{1 \otimes x} &= x \otimes 1 + (1 \otimes x - x \otimes 1) \\
R \left[\prod_{R/A}^{2} \right] &\longrightarrow R \otimes R / J^{2} \downarrow \\
s_{A} \uparrow & (x, 1 \otimes x - x \otimes 1) \\
R & (x, 1 \otimes x - x \otimes 1)
\end{array}$$

The tangent space of a functor

Mod R = Cat. of fig. R-modules

H: Mod R -> Set functor

Commutes of finite product [H(IXJ) >> H(I) x H(J)]

Prop. H factors canonically

Sketch of proof. additive structure: $I \times I \longrightarrow I$, (iii) \longmapsto its

$$H(I) \times H(I) \leftarrow H(I \times I) \xrightarrow{\Sigma} H(I)$$

Mult. Structure: f & R.

$$\cdot \xi : H(I) \xrightarrow{H(x \ell)} H(I)$$

A -> R ring homo.

A-Alg/R has thite products

$$C \qquad (C, f) \times (C', f') = (C \times C', (x, y))$$

$$f(x) = f'(y)$$

Lemma. The functor Mod p - A-Alg/p

Commutes up finite products.

 $I \longrightarrow (R[I], \pi: R[I] \longrightarrow R)$

P: I, J ← Modr, R[IXJ] → R[I] × R[J] is an isom.

Dagasa

 \Box

Gr. $F: A-Alg/R \longrightarrow Set s.t.$ for $I,J \in Mod_R$, the map $F(R[I]) \times F(R[I]) \times F(R[I]) \text{ is an isom.}$

then Y I + Mod R, the set F (R[I]) has a canonical R-module str.

Reason F(RTI) is the image of I under Mod R -> A-Alg/R -> Set

Det Let $F: A-Alg/R \longrightarrow Set$ be a functor satisfying cond. in Cor. then the tangent space of F, denoted T_F , is the R-module F(R[E]).

Rmk. enough that F def. on full sub cat. ECA-Alg/R closed under bir. products and contains R[I]'s.

Lecture ? A → R

A-Alg/R: (at. of diagrams $C \to R$)

F: A-Alg/R \to Set functor.

and ib & I, JE Mode, the nat'l map

 $F(R[I0J]) \longrightarrow F(R[I]) \times F(R[J])$, then get tangent space T_F .

[in fact, $\forall I$, F(R[I]) is an R-m-dule and $T_F := F(R[E])$].

 $+: F(R[i]) \times F(R[i]) \longrightarrow F(R[i])$ $= \left(\frac{R[i, i]}{(i^2, i^2, i^2, i(i))}\right)^{i}$

xf: F(R[E]) -> F(R[E]) is induced by R[E] -> R[E] a+6.E -> a+662.

Problem 1 R ring, X 9, Spec R Separated, smooth.

Consider the functor Defx: Alg/R -> Set

(Z-Alg/R)

morphism of diagrams: arrow h: X'c -> Xc s.c.

$$\begin{pmatrix}
X \to X_c' \\
\downarrow & \downarrow \\
Spec R \to Spec C
\end{pmatrix}$$

$$\begin{array}{c}
X \to X_c \\
\downarrow & \downarrow \\
Spec R \to Spec C
\end{pmatrix}$$

$$\begin{array}{c}
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\
(*) \\$$

Rmk. If C=R[I] for some R-modul I, then any morphism has in (1) is an

isom.

Proof: $\forall I,J \in Mod_R$, $Det_X(R[I \oplus J]) \longrightarrow Det_X(R[I]) \times Det_X(R[J])$ is an isom.

Proof in Brian's lecture 3.

How to compute T Dufx or more generally the 12-module Debx (R[I])? Special case: X affine Facts: (1) Detx (R[I]) consists of one element. (2) For any deformation $\times \hookrightarrow \times'$ Speck - Speck(I) the set of maps $h: X' \longrightarrow X'$ as in (*)is in canonical figurion w H°(x, Tx & I) Why is there a lifting? X = Spa R [x1, ..., X2]/(61, ..., fe) In fact, X[I] -> Spec R[I] is a smooth litting Reason. X = Spec B, and $X \hookrightarrow X[I]$ be a smooth lifting. Spec R -> Spec R (I) B[I] - B R[I] <-- R Recull. To to Y I closed immersion det by a square-zero ideal J then the set of arrows & filling in the diagram is a pseudo-torson under Hom (for $\Omega^1_{Y/S}$, J).

pseudo-troson. either no wron exists on if an arrow exists, then there is a simply transitive action of Hom $(60^*\,\Omega^2\gamma/s\,,\, J)$ on the set of arrows.

To
$$Y \longrightarrow Y \times Y$$

S

As
$$\leftarrow B \leftarrow B \otimes B / I_{o}^{2}$$
 \uparrow
 \downarrow

$$\begin{array}{ccc}
I_{\Delta}/I_{\Delta}^{2} \longrightarrow J \\
II \\
A_{B} & \Omega_{Y/S}^{1}
\end{array}$$

For general X op Spec R, this also shows that $(X[I]) op Spec R[I]) op Det_X (R[I])$ Choose a covering $X = \bigcup_i U_i \quad w \quad each \ U_i \quad attine$.

Choose for each i a smooth lifting Ui - Spar[I] of Ui.

U= {Ui}. Wart to patch Ui to a litting of X.

 $X \longrightarrow X'$ $\longrightarrow \mathcal{O}_{X^1} \xrightarrow{\mathbb{Z}_R^{\otimes \mathcal{O}_X}} \mathcal{O}_X$ on |X|.

Ui → SperR[I] (→) Oui Exoui Oui on [Ui].

on Uij = Uin Uj get a diagram

two elements of Detais (RCI).

Pick V' an isom. G: Ui > Ui[I]

Note: Any other choice of si is given by composing us an automorphism of lists Look at lijk:

Hollist X

How to specify X'.

There is an obstruction for the σ i's to glue to an isom. $x' \longrightarrow X[I]$

Xij: Uij[I]
$$\xrightarrow{\sigma_{j}^{-1}}$$
 Uij $\xrightarrow{\sigma_{i}}$ Uij [I]

xij f H° (uij, Tuis ØI)

Lemma.
$$Xik = Xij + Xjk$$
 in $H^{\circ}(Uijk, T_{\times} \otimes I)$

Pt $Uijk TI$) G_{K}^{-1} , $Uijk$ G_{I}^{-1} Ui

(or The (Xi)) define a Cech waycle.

Thm. The map $\operatorname{Pet}_{X}\left(R(IJ)\longrightarrow H^{1}(X,T_{X}\otimes J),\;X'\longmapsto [X']\right)$ is an R-module isom.

_ 16ws 1

Lecture 3 Obstruction therries

$$\pi: A' \longrightarrow A$$
 surjection of rings, $I = \ker(\pi)$ square-zero ideal. $(A-\text{module})$ $g: X \longrightarrow Spec A$ smooth, separated scheme.

Problem. Understand liftings
$$X \hookrightarrow X'$$
 $g \downarrow \boxtimes \downarrow g' \subset Smooth$
 $Spec A \longrightarrow Spec A'$

Det
$$x: Alg/A \longrightarrow Set$$

$$(C \xrightarrow{b} A) \longmapsto \begin{cases} x \longrightarrow x_{c} \\ \downarrow & \downarrow \text{ Smooth} \end{cases}$$

$$Spec A \longrightarrow Spec C$$

Vesterday:
$$T_{Def_X} = H^1(X, T_{X/A})$$

 $(Def_X(A')) = H^1(X, T_X \otimes I)$

When X is affine

- 1) I lifting x' -> Spa A'
- 2) any two liftings are isomorphic
- 3) the group of automorphisms of any liting $X' \longrightarrow Spec A'$ is canonically isom. to $H^{\circ}(X, T_X \otimes I)$.

For general X, if X' -> Spen A' is a smooth lifting, I get a bijertion

Def
$$_{X}$$
 $(A' \rightarrow A) \xrightarrow{\varphi_{X'}} H^{1}(X, T_{X} \otimes I).$

$$[X''] \longrightarrow [\{X_{ij}\}] = \underline{Jsom}(X', X'')$$

[Yesterday the fixed lifting was $X[I] \rightarrow Spec A[I]$]

Det of
$$Q_{X'}$$

Over $X = \bigcup U_i$, U_i affine, $X'' \in \operatorname{Def}_{X}(A')$, $\forall i$, $U_i = \bigcup U_i''$ thouse $G_i : U_i'' \to U_i'$, $U_i = \bigcup U_i'$

This gives
$$\forall i,j$$
, $\forall i,j'$ $\forall i,j'$

Another way to say it:
$$X', X''$$
 get a sheat $\underline{I}_{som}(x', X'')$ on $|X|$.

$$(U(X) \longmapsto \{U, X''\} \}$$

$$U(X) \mapsto \{U, X''\} \}$$

$$U(X)$$

a: When 3x' -> Spen A'?

Let $U = \{U_i^*\}$ be a covering of X by affines. Fix littings $U_i^* \longrightarrow Spa A'$.

Vis, choose an iom. Gir. Ui luis -> Ui luis.

Lemma (i) {dijh} is a Cech 2- cocycle.

(ii) It 45" is a second choice of isom's, me {dijh},
then {dijk} - {dijh} is a Kech boundary.

 $\sim 0(g) \in H^2(X, T_X \otimes I).$

hop. \exists lithing $x' \xrightarrow{g'}$ Spec A' of g iff o(g) = o.

Summary a) \exists an obstruction $o(g) \in H^2(X)$, $T \times \otimes I$) s.t. $o(g) = 0 \iff Oef_X(A' \rightarrow A) \neq \emptyset$. B) If o(g) = 0, then the set of circ. classes of littings from a torsor under $H^1(X, T_X \otimes I)$. c) For any lifting of g, the gp of auto's is canonically isom. to H°(X, TX &I).

3

 Λ ring, $F: \Lambda-Alg \longrightarrow Set$

Det. An obstruction theory for F consists of the following data.

(i) & morphism A -> A. of A-algs W (cornel a nilp. ideal and As reduced,

and $a \in F(A)$, a functor $O_a: (f.type\ A_o-modules) \longrightarrow (f.type\ A_o-modules)$.

(ii) \(\text{diagram } A' \rightarrow A \rightarrow A0 \ \text{and } a \in F(A), where A' \rightarrow A \text{surj., |\text{der}(A' \rightarrow A) =: J

annihilated by ker $(A' \rightarrow Ao)$. In class $o(a) \in \mathcal{Q}_a(\mathcal{I})$, which is zero

(=) a lifts to F(A1). deformation situation

This should be functorial in the nat'll way

Example $X \stackrel{.}{\rightarrow} X'$ closed immersion defined by a square-zero ideal J.

L l.b. on X.

Problem. Understand liftings of L to 1' on X'.

litting of L to x'?

a pair (L', z), L' l.h. on X', and $z: j^*L' \Longrightarrow L$ on X.

 $(\mathcal{I}', \mathcal{I}) \simeq (\mathcal{L}'', \mathcal{E})$ if $\exists \quad 6: \ \mathcal{I}' \Rightarrow \mathcal{I}''$ (it. $\hat{J}^*\mathcal{I}' \Rightarrow \hat{J}^*\mathcal{L}''$

 $0 \longrightarrow J \longrightarrow 0 \xrightarrow{X} \longrightarrow 0 \xrightarrow{X} \longrightarrow 0 \qquad \text{seq. of sheares} \quad \text{on} \quad |X|$

(1+9) (1+6) = 1+ (9+6) +gf

$$0 \rightarrow H^{\circ}(J) \rightarrow H^{\circ}(O_{X^{1}}^{*}) \rightarrow H^{\circ}(O_{X}^{*}) \rightarrow H^{\circ}(O_{X}$$

If (I', v), (I', E), then there need not exist isom. $(I', \Sigma) \Rightarrow (I', \Sigma).$

Assume $H^{\circ}(O_{X'}^{\times}) \longrightarrow H^{\circ}(O_{X}^{\times})$ sury. Prop a) \exists obstruction $o(1) \in H^2(X, J)$ which is $o \iff \exists (L', l)$ 2 [17

- 6) If o(1) = 0, then the set of isom. classes of liftings (z',z) is a torson under $H^1(X, J)$.
- c) I lifting, the gp of auton is lan in bijection up H°(x, J).

Lecture 4 A' -> A Surj. map of rings, of square-zero kernel J.

P'
Smooth scheme of reduction
Spec A'
Spec A'

and X J, p

Spec A

local problem on 1x1.

I sheaf on |X| which to any open UCX associates the set of diagrams

What are the global sections?

The set of arrows filling in the diagram
from a forson under Hom ((ioj)* $\Omega_{p/A}^{1}$, $J \otimes O u$)

= Hom (j* $\Omega_{p/A}^{1}$, $J \otimes O u$)

= j* $T_{p/A} \otimes J$

Three is an action of j* TP/A &J on L.

colormal bundle := j*I, ICOp ideal of x $= I/I^2 = N^{\vee}$

0 -> I/I2 -> j* Np/A -> Nx/A -> 0

O-) Tx/A -> j* Tp/A -> N -> O

D → TX/A WJ → j*TP/A WJ → O

Claim. TX/A OF acts trivially on I.

a Section & F TX/A & J(u) corresponds to a diagram

Dagas

So we get an autien of NOT on I.

hop I is a torson under NOJ.

tousn. a) & UCX, I wering U=Uui s.t. I(ui) # \$

b) & UCX, either L(W=\$, or the action of NOJ(U) on L(U) is simply transitive.

Sketch of 18t

Check that if U is affine, then action of NOVJ (U) on I(U) is simply transitive.

 $0 \longrightarrow T_{X/A} \otimes J(u) \longrightarrow j^* T_{P/A} \otimes J(u) \longrightarrow N \otimes J(u) \longrightarrow 0$

Chennel fact. If G is a sheaf of abelian groups, then the set of isom. classes of G-torsors on |X| one in G and bijection by $H^{1}(X,G)$.

In particula, L (-) [L] E H1(X, NOJ).

In our case, Choose a covering of X=U U i of U i affines, and $s \in L(U i)$.

On links, get two sections siluis, siluis & I(lis).

Action of N&J (Uij) on L(Uij) is simply transitive

ラ ヨ! xij ← NoJ (uij) st. xij * si (uij = sī | uij

Check {xij} is a cech 1-cocycle ~ H1(X, NOJ).

I time (=) $L(x) \neq \emptyset$ (=) [I] $CH^{1}(X, N \otimes J)$ is zero.

._

Summary (i) \exists (anonical obstruction $o(j) \in H^{2}(X, N \otimes J)$, $(J \cup J)^{2}$ whose vanishing is necessate for existence of a lifting of j. (ii) The set of liftings j' of j' form a torsor under $H^{o}(X, N \otimes J)$ if o(j) = 0.

Ruh $0 \longrightarrow T_{X/A} \longrightarrow j^* T_{P/A} \longrightarrow N \longrightarrow 0$ induce $H^{\circ}(X, N \otimes J) \longrightarrow H^{1}(X, T_{X/A} \otimes J) \longrightarrow H^{1}(X, j^* T_{P/A} \otimes J)$

What is
$$S(o(j)) = ?$$
 $o(g)!$

Ex. P smooth proper surface /k. XCP smooth rat'l curve of X. X=-1.

[Hantshorm, V.1.4.1] deg N = -1 $H^{1}(X, N \otimes J) = 0, \qquad H^{0}(X, N \otimes J) = 0.$

Leitme 5

Picend cut is a groupoid P together w the following extra str.

- (a) A functor +: PxP -> P
- (4) An isom. of functors PXPXP

 +x1/ Jx+

 PXP => PXP

 + J+

 $G_{x,y,z}: (x+y)+z \implies x+(y+z)$

(v) A nat'l transf. $P \times P \xrightarrow{\tau} f \times P$

Tring = Xty > ytx.

- (o) $\forall x \in P$, the functor $P \rightarrow P$, $y \mapsto x + y$ is an equiv-
- (i) (pentagon axim) (x+y)+(3+w) $G_{x_1,y_1,3+w}/$ $G_{x_1,y_2,3+w}/$ $G_{x_1,y_2,3+w}/$ $G_{x_1,y_2,3+w}/$ $G_{x_1,y_2,w}/$ G_{x_1,y_2,w

(iii) YxiyfP, Txiyoty,x=id.

(iv) (Hexagon axion) $x + (y+3) = \frac{\tau}{2} x + (3+y)$ 6 ((x+y)+3 //, (x+3)+y) $\tau = \frac{\tau}{3} + (x+y) = \frac{\sigma}{3} (3+x)+y$

Ex X scheme

Pic(X) groupsid of line bundles on X

Ø: Pic(x) x Pic(x) -> Pic(x)

Example. f: X -> Y morphism of schemes

I que Ox-module.

An I - ext'n of X over Y is a diagram $\times \mathcal{S}, \times'$ Where j is square-zero, together of an

isom. I $\xrightarrow{2}$ ker $(0_{x_1} \longrightarrow 0_x)$

Let $\frac{E_{Xal}}{Y}(X, I) = (at. of I - extensions of X over Y)$

 $\frac{\mathsf{Rmk}}{\mathsf{I}} \stackrel{\mathsf{a}}{\longrightarrow} 0_{\mathsf{X}} \stackrel{\mathsf{a}}{\longrightarrow} 0_{\mathsf{X}}$

b) If $A \rightarrow B$ is a morphism of shears of algo on a top. space T, and I is a B-module, get (at $E \times al_A(B, I)$)

Obs. Exaly (x, I) is a groupsid.

$$\begin{array}{c} X_{2}^{1} \\ \downarrow h \\ \downarrow \\ Y \end{array}$$

 $l_1: I \longrightarrow |a_1(\theta_X) \rightarrow \theta_X)$

 $0 \longrightarrow I \longrightarrow \mathcal{O}_{X_{Z'}} \longrightarrow \mathcal{O}_{X} \longrightarrow 0$

11 57

 $0 \rightarrow I \longrightarrow O_{X_2} - O_X \rightarrow O$

٨

$$Exal\ \gamma(X,I) \longrightarrow Exal\ \gamma(U,I|_U).$$

$$I \longrightarrow 0_{x^{1}} \xrightarrow{\tau_{1}} 0_{x}$$

$$1 \qquad \chi$$

$$1 \qquad \chi$$

$$0x'_{u} = 0x' \oplus J$$

$$= (0x' \oplus J) / \{(ii-u(i)): i \in I\}$$

$$(p_{1}, p_{2}): Exd_{\gamma}(X, IGJ) \rightarrow Exd_{\gamma}(X, I) \times Exd_{\gamma}(X, J)$$

is an equi. of cats.

$$+: \underbrace{\mathsf{Exal}_{Y}(X, I)} \times \underbrace{\mathsf{Exal}_{Y}(X, I)} \leftarrow \underbrace{\mathsf{Exal}_{Y}(X, I \oplus I)} \xrightarrow{\Sigma_{X}} \underbrace{\mathsf{Exal}_{Y}(X, I)}$$

GIT

$$\{x\}$$
. Let $f:A \to B$ be a homomorphism of abelian gps. Define $P_f:$ obj. = elfs $x \in B$, morphism $x \to y$ is an elt $h \in A$ of $f(h) = y - x$.

$$\begin{array}{ccccc}
\text{t: } & P_f \times P_f & \longrightarrow & P_f \\
& (x_i,y_i) & \longmapsto & x_i + y_i \\
& (x_i,y_i) & \longmapsto & x_i + y_i \\
\end{array}$$

T top space (site)

A Picard (pre)-stack over T is a (pre) stack P in grappoids, M morphisms

of stacks (+, 6, T) sit $\forall UCT$, the filer (P(U), +, 6, T) is a Picard cat

Ex Pic (-) defines a Picand Hack on [X]

Ex Exal y (-, I) gives a Picard stack on [X]

Ex. $f: A \longrightarrow B$ homom. of sheares of ab. gps on a top. space T, then get Picard prestack pch $(A \longrightarrow B)$

T top. space, P_1 , P_2 Picard stack over T. A morphism $P_1 \rightarrow P_2$ is a pair (F, z), where $F: P_1 \rightarrow P_2$ is a morphism of stacks, and z: |F(x+y)| = |F(x)| + |F(y)|.

Sit. $F(x+y) \xrightarrow{2} F(x) + |F(y)| \qquad F((x+y)+3) \xrightarrow{2} F(x+y) + |F(3)| \xrightarrow{2} (F(x+y)+F(3)) + |F(3)| = |F(x+y)| + |$

- Picard Hack HOM (P1, P2).

- i'dentity element

- larnels

- 8

```
Leiture b
 Picard Stacks
  T top space
  (p, +, \sigma, \tau)
```

K' & C [-1,0] (T)

 $\left[\begin{array}{c} K_{-1} \xrightarrow{q} K_{0} \end{array} \right]$

pch (K") Picard prestarle

 $pch(k^{\circ})_{l,l}$; abj. $x \in k^{\circ}(u)$

mor. $x \rightarrow y$ is an elt $3 \in k^{-1}(u)$ st d(3) = y-x.

- ch (K°) stackification of pch (K°)

If P is a Picard stack, then HOM(ch(K), P) -> HOM(pch(K), P)

Ruch pch(k) -> ch(k) is fully faithful.

Ruh f: Ki - Ki, this induces a morphism of Picard stacks $ch(t): ch(k_1) \longrightarrow ch(k_2)$

· f1, f2: ki -> ki and a homotopy h between f1 and f2

 $h: k_1^o \rightarrow K_2^{-1}$ sit. $f \times K_1^o = f_1(x) - f_2(x) = dh(x)$ and $f_1^{-1} - f_2^{-1} = hd$

Then get an ism. of morphisms ch(h): ch(tz) -> ch(tz)

i.e. $\forall x \in pch(K_1)$, an ison. $ch(f_1)(x) \Longrightarrow ch(f_2)(x)$.

 $x \in k_1^2$, $z \in k_2^2$ sit. $dz = f_1(x) - f_2(x)$.

Lemma. If K-1 is Hasque, then pch(K) is a stack.

 $p_{\underline{b}}$, $p_{\underline{ch}}(k) \xrightarrow{\pi} ch(k)$

Let UCT open and XECh(K)u.

Let L be the sheaf on U which to any open $V \subset U$ assoc. the set of pairs (y, l), $y \in K^{\circ}(V)$, and $l: T(y) \longrightarrow x|_{V}$ in $ch(k)_{V}$

Claim L is a K-1 | u - forson.

Reason $(y', \ell') \in \mathcal{I}$, $\pi(y) \xrightarrow{\ell} \chi(v \xrightarrow{\ell'-1} \pi(y'))$ $3 \in \mathbb{R}^{-1}$

L is classified by an elt [1] \in H¹(U, K⁻¹(u) = 0 ~~ 1 is trivial, her section.

Observations a) the sheet assoc. to the presheet

U (-- the set of isom classes in ch(k') u

 $= \mathcal{H}^{\circ}(\mathsf{k}^{\circ}) = \mathsf{k}^{\circ}/\mathsf{Im}(\mathsf{k}^{-1} \rightarrow \mathsf{k}^{\circ})$

8) What is the automorphism gp of an obj. $x \in K^{0}(u)$, $An+(x) = \left\{z \in K^{-1}(u): dz = x-x=0\right\}$

On It $f: k_1 \rightarrow k_2'$ is a q-isom, then $ch(f): ch(k_1) \Rightarrow ch(k_2)$ is an equiv.

 $\mathcal{C}^{[-1,0]}(T)$ \mathcal{C} $\mathcal{C}^{[-1,0]}(T)$ be full Jubrat. of complexes $k^{-1}-1$ $k^{\circ} \vee k^{-1}$ injectile.

Than _ ch indues an equir. of 2-cats

 $\widetilde{c}^{[-1,0]}(T) \longrightarrow (Picand Starks over T)$

(Picard starks, isom. classes of morphisms) ~ D^[-1,0] (T).

0. .

Lenne $f: X \longrightarrow Y$ morphism of stacks, and $f: X \longrightarrow Y$ is the corresponding map on sheares of Born. classes. Assume F is an isom. and $\forall U \subset T$ and $x \in XU$, the map of sheares $Aut_{X}(x) \longrightarrow Aut_{Y}(t)$ is an isom. Then f is an isom.

M. Given x,y + Hu, want

 $I_{som_{\mathcal{H}}}(x,y) \rightarrow I_{som_{\mathcal{H}}}(f(x), f(y))$ to be an isom.

injectivity $d, \beta: x \rightarrow y$, $f(d) = f(\beta): f(x) \rightarrow f(y)$. $d^{-1} \circ \beta \in \text{ken} \left(\text{Aut}_{*}(x) \rightarrow \text{Aut}_{*}(f(x)) \right) \implies d = \beta$

Surjectivity. $\sigma = f(x) \rightarrow f(y)$. Enough to show σ is in image locally. $x_1y_1 \rightarrow same$ thing in X. So beauty $\exists \ \ \tau = x \rightarrow y$.

 $\sigma^{-1} \cdot f(\tau)$: f(x) = 0

Essential surj.

y = y + , 3 wering T = Uli and (xi, li) w xi + Xui,
li: f(xi) => y | ui in y ui

Then on Uij, $\exists ! isom. Gij : xi | uij <math>\Rightarrow xj | uij \Rightarrow xf$ $f(xi)|_{uij} \xrightarrow{f(Gij)} f(xij)|_{uij}$ $Uij \xrightarrow{(xi)} Uij \xrightarrow{(xi)} Uij$ $Uij \xrightarrow{(xi)} Uij \xrightarrow{(xi)} Uij$

Bjkobij bik: xilujik -> xklujik are both equal to the unique morphism

$$\begin{cases} (x_i) | u_{ijk} \xrightarrow{f(-)} f(x_k) | u_{ijk} \\ \vdots & \text{if } u_{ijk} \end{cases}$$

Lemma P Picard Stack/T, {Ui} collection of open subsets, kit P(Ui), Vi.

$$k = \bigoplus_{i} \mathbb{Z}_{u_i} \qquad \left[\mathbb{Z}_{u_i} = \hat{j}! \mathbb{Z}, \hat{j}: u_i \hookrightarrow T \right]$$

Then \exists morphism $F: \operatorname{ch}(o \to k) \to p$ and isom's $\operatorname{Ci}: F(1 \in \mathbb{Z}_{u_i}(u_i)) \to k_i$.

and the date (F, {6i}) is unique up to unique isom.

Lemma, Let P be a Piand stack over T, then $\exists K \in C^{[-1,0]}(T)$ and an isom.

$$\mathcal{L}_{X}$$
 $\mathcal{P}ic(X) = ch(\mathcal{O}_{X}^{X} \rightarrow 0)$

Po Choose data

$$K^{o} = \emptyset \mathbb{Z}_{W}, \qquad F: \operatorname{ch}(o \to K^{o}) \longrightarrow \mathcal{P}.$$

$$|c^{-1}(v)| = \{(x, \ell); x \in k^{o}(v), \ell : F(o) \Rightarrow F(o)\}$$

$$k^{-1} \rightarrow k^{\rho}$$

$$(\chi, \ell) + (\chi', \ell') = (\chi + \chi', ?)$$

$$(x, \ell) \mapsto x$$

$$x \rightarrow x'$$
 in pch $(k^{-1} \rightarrow k^{o})$; (1)

$$\xrightarrow{3}$$
 $\vdash (x+x)$

$$(x^{l}-X,l)$$
, $l: F(0) \Longrightarrow F(x^{l}-X)$.

$$\sim F(0) + F(x) \rightarrow F(x'-x) + F(x)$$

)
$$\sim$$
 pch $(k^{-1} \rightarrow k^{\circ}) \rightarrow \mathcal{P}$.

Leiture 7

Theorem: ch: $C^{[-1,0]}(T) \Longrightarrow (Picard stacks)$ is an equir. of z-cats

Lemma P Picard stack, then $\exists \ k \in (C^{-2}, \circ)(T)$ and an equive $ch(k) \Longrightarrow P$.

Lower. $K, L \in C^{C-1}, \circ J(T)$, and let $F: ch(k) \longrightarrow ch(L)$ be a morphism of Picard stacks, then $\exists \ a \ q$ -isom. $k: k' \longrightarrow K$ and a morphism $l: k' \longrightarrow L$ s.t. $F \simeq ch(l) \circ ch(k)^{-1}$. In particular. If $K \in C^{C-1}, \circ J(T)$, then any morphism $F: ch(k) \longrightarrow ch(L)$ is isom. to ch(f) for some $f: k \longrightarrow L$.

Sketch of prof Choose data { (Ui, ki, li, si)}ie I s.t.

- a) lic T open set
- 6) ki e K°(Ui), li e L°(Ui), Gi: F(ki) => li
- (c) the map $K^{10} := \bigoplus_{i \in I} \mathbb{Z}_{U_i} \longrightarrow K^{0}$ is surjective $K^{1-1} := K^{-1} \times K^{10}$

 $l: k' \rightarrow L$: $l^{\circ}: k'^{\circ} \rightarrow L^{\circ}$, $Zu_{i} \rightarrow L^{\circ}$ given by l_{i} $l^{-1}: k^{i-1} \rightarrow L^{-1}$ $\left(v, \left(U_{i}, k_{i}, l_{i}, \sigma_{i}\right)\right) \in k^{i-1}$

In the unique ext $t \in L^{-1}$ sit. $F(o) \xrightarrow{F(v)} F(k_i)$ $\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^$

The σ 's define an isom. $\sigma: F \longrightarrow ch(e) \circ ch(k)^{-1}$. \square

Lemma K1, $k_2 \in \mathcal{C}^{[-1,0]}(T)$. For two morphisms of complexes $61, f_2: k_1 \rightarrow k_2$ w assoc. morphisms $f_1, f_2: ch(k_1) \rightarrow ch(k_2)$ and any isom. $H: f_1 \Rightarrow f_2, \exists !$ homotopy $h: k_1^0 \rightarrow k_2^1$ s.t. H= ch(h).

Idea If
$$k \in K_1^{\circ}$$
 is a section.

Jection
$$h(k) \in k_z^{-1}$$
 set. $dh(k) = f_z(k) - f_1(k)$. \square .

hobbens

- a) This doesn't see Ox-module structure.
- b) Not the full complex.

hop Let $j: X \hookrightarrow S$ be a closed immersion defined by an ideal I. Then $T \in I_{X/S} \cup I_{J/S} \cup$

Prop. Let $f: X \rightarrow S$ be a smooth morphism. Then $T \leq 1 T_{X/S} [1] \simeq T_{X/S} [1]$ X = X X = X

Pt. $\mathcal{H}^{\circ}(tell_{x/s}(tell) = 0)$ $\mathcal{H}^{-1}(tell_{x/s}(tell) = Tx/s$ $\mathcal{H}^{-1}(tell_{x/s}(tell) = Tx/s$ $\mathcal{X}[0x; e]$

D

$$X \stackrel{j}{\hookrightarrow} P$$
 g smooth, j closed
6) Ig Then $T \leq 1 T \times / s [1] \simeq (j^* T_{P/s} \rightarrow N_{X/p})$

I ideal of X in P, I/I2 & j Np/c

non-commutatie diagram!

8.8' & Nx/p.

$$X \longrightarrow X_{\delta'}$$

Upshot I fully faithful function

-> Exal ((x,0x).

$$\frac{\text{Clain}}{\text{ch}\left(j^*\top p/s \to N \times / p\right)} \Rightarrow \underline{\text{Exal}}_{s}\left(x, 0 \times\right) \text{ is an equiv.}$$

- a) choice of factorization of 6.
- b factorization need not exist

F has a left adjoint
$$\Omega \mapsto f^{-1}Os\{\Omega\}$$

$$B[x_i] \xrightarrow{A} A$$

$$f^{-1}O_S \{n\}(u) = f^{-1}O_S(u)[x_i]_{i \in \mathbb{R}(u)}$$

a)
$$R = F(0x)$$

B) Choose Open sets
$$U_i \subset I \times I$$
, sections $f_i \in O_{\times}(u_i)$

Def'n The truncated tangent complex of f is the complex
$$Hom(\Omega_{f^{-1}OS}^{1}\{F(O_{X})\}/f^{-1}O_{S}, O_{X})$$
 $\longrightarrow Hom(I/I^{2}, O_{X})$

$$GF(0_X) = 6^{-1} O_S \{F(0_X)\} \xrightarrow{\pi} O_X$$

$$F: (f^{-1} O_S - alg) \longrightarrow (sheares of sets)$$

4

),

Drag 78

Thm. For any quoh.
$$O_X$$
-module M ,
$$\operatorname{ch} \left(\operatorname{Teo} \left(\operatorname{RHom} \left(\operatorname{T}_{7-1} \operatorname{L}_{X/S}, M \right) \left[1 \right] \right) \right) \right) \simeq \operatorname{Exal}_S \left(X, M \right) .$$

T7-1 1 x/s truncated to tangent complex.

Given nzo,
$$GF \cdots GF GF (Ox)$$

$$A_n = f^{-1}O_5 - alg$$

$$(n+1) Gries of GF$$

$$- U_n \rightarrow Ox$$

A. simplicial
$$f^{-1}$$
 Os - algebra. Ant 1 Signal f^{-1} Os - f^{-1} Os - f^{-1} Ant 1 Signal f^{-1} Os - f^{-1} Os -

$$AF \xrightarrow{\alpha} id$$
 $Az = GFAFAF(Ox)$
 $A = AFAF(Ox)$

L,

Rink This is an actual complex of flat 0x-modules.

- (i) Hi(Lx/s) is queh and who if S loc. noetherian and f is of finite type.
- (ii) $\chi' \xrightarrow{\iota_{\lambda}} \chi$

then there is a base change morphism

u* 1x/y → 1x'/y'.

If (x) is contesian and for indep. (eg., either ff, v is flat), then is a q-ison.

and fix ly/y & ux lx/y -> Lx/y is a qison.

- (iii) $X \xrightarrow{f} Y \xrightarrow{5} Z$, then there is a dist. triangle $f^* L_{Y/Z} \longrightarrow L_{X/Y} \longrightarrow f^* L_{Y/Z} [1]$
- (iv) T3-1 Lx/y is equal to our earlier T3-1 Lx/y

Rmk. a) Ho (IX/4) = RX/Y

- 6) If f is smooth, then LX/Y = 1 1 is a q-isom.
- c) It $X \hookrightarrow Y$ is a closed innersion which is lci, then $L \times / Y = I / I^2 [1]$.

Thm (IMusic) ch (T3-1 (R Hom (LX/Y, I)[1])) = Exaly (X, I).

 $\Rightarrow \text{Ext}^{2}\left(L_{X/Y}, I\right) \sim \text{Exal}_{Y}(X, I)$ $\text{Ext}^{\circ}\left(L_{X/Y}, I\right) = \text{Hom}\left(\Omega_{X/Y}^{2}, I\right) \text{ is the antograph of any } X \stackrel{I}{\longrightarrow} X'$

i closed immorsion defined by square-zono ideal J.

Fill in diagram as indicated, up i square - zero 5.4. f. J => |cen (0x -> 0x0).

Solution

$$0 \longrightarrow \text{Ext}^{\circ}(\mathbb{L}_{X_{0}/Y_{0}}, f_{0}^{*}J) \longrightarrow \text{Ext}^{\circ}(\mathbb{L}_{X_{0}/Y_{0}}, f_{0}^{*}J) \longrightarrow \text{Ext}^{\circ}(f_{0}^{*}\mathbb{L}_{Y_{0}/Y_{0}}, f_{0}^{*}J)$$

$$\longrightarrow \operatorname{Ext}^{1}\left(\operatorname{L}_{Xo/Yo}, \, f_{o}^{*}J\right) \longrightarrow \operatorname{Ext}^{1}\left(\operatorname{L}_{Xo/Y}, \, f_{o}^{*}J\right) \longrightarrow \operatorname{Ext}^{1}\left(f_{o}^{*}\operatorname{L}_{Yo/Y}, \, f_{o}^{*}J\right)$$

Thm (i) \exists obstruction $o(f_0) = o(id) \in Hom(f_0^*J, f_0^*J) = \operatorname{Ext}^1(f_0^* \downarrow Y_0/Y, f_0^*J)$

whose vanishing is nec-suff. for a solution to the problem.

(i) It o (fo) = 0, then the set of isom. Classes of Solutions form a torsor under Ext 1 (1 xo/yo, fo J).

(iii) Aut = Ext ([x / y , f])

Thm (Illusie) There is can class o(6) = Ext 1 (6 1 40/20, I) sit. fexists

(=) $o(f_0)=0$. If $o(f_0)=0$, then the set of maps f is a torson under Ext° $(f_0^* \text{ L } Y_0/Z_0, \text{ I})$.

Sketch. $e(x) \in Ext^{\frac{1}{0}}_{x_0}(L_{x_0/2}, I)$. $e(y) \in Ext^{\frac{1}{0}}_{y_0}(L_{y_0/2}, J)$

 $\operatorname{Ext}^{2}_{0Y_{0}}\left(\operatorname{L}_{Y_{0}/2},\operatorname{J}\right)\longrightarrow\operatorname{Ext}^{2}_{0X_{0}}\left(f_{0}^{*}\operatorname{L}_{Y_{0}/2},f_{0}^{*}\operatorname{J}\right)$ $\operatorname{e}(Y)$ $\operatorname{Ext}^{2}_{0X_{0}}\left(f_{0}^{*}\operatorname{L}_{Y_{0}/2},\operatorname{I}\right).$ $\operatorname{Ext}^{2}_{0X_{0}}\left(f_{0}^{*}\operatorname{L}_{Y_{0}/2},\operatorname{I}\right).$

Want, 3x = 3 y.

h, 120/2 -> fox 11/0/2 -> fox 11/0/2 0 +1

 $\operatorname{Ext}^{\circ}\left(h_{o}^{*} \operatorname{L}_{Z_{o}/Z_{o}, T}\right) \longrightarrow \operatorname{Ext}^{1}\left(h_{o}^{*} \operatorname{L}_{Y_{o}/Z_{o}, T}\right) \longrightarrow \operatorname{Ext}^{1}\left(h_{o}^{*} \operatorname{L}_{Y_{o}/Z_{o}, T}\right)$ $\theta(h_{o}) = 3x - 3y.$ $\operatorname{Hom}\left(h_{o}^{*}k, T\right) = \operatorname{Ext}^{1}\left(h_{o}^{*} h_{Z_{o}/Z_{o}, T}\right)$