Cryptography 2/12

Reagan Shirk February 12, 2020

Modular Class Ring and Chinese Remainder Theorem

• Say you have $\frac{\mathbb{Z}}{15\mathbb{Z}}$, you can do:

mod15	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
mod3	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2
$\mod 5$	0	1	2	3	4	0	1	2	3	4	0	1	2	3	4

• And we can see that:

$$x \equiv a_1 \bmod 3$$
$$x \equiv a_2 \bmod 5$$

ϕ Function

- Today we want to prove that if $gcd(m_1, m_2) = 1$, then $\phi(m_1, m_2) = \phi(m_1)\phi(m_2)$
 - We know that $\phi(p) = p 1$ and that $\phi(p^m) = p^m p^{m-1}$
 - As long as you know the factorization of p, you can calculate the ϕ function
- How do you prove this?
 - If a is invertible $mod m_1 m_2$:

$$\Rightarrow \exists \ b \ \text{such that} \ ab \equiv 1(m_1m_2)$$

$$\Rightarrow ab \equiv 1(m_1) \ \& \ ab \equiv 1(\text{mod}\ m_2)$$

$$\Rightarrow a \ \text{is invertible mod} \ m_1 \ \& \ a \ \text{is invertible mod} \ m_2$$
 If a is invertible mod m_1 & it is invertible mod m_2 , then
$$\Rightarrow \exists \ b_2 \ \text{such that} \ ab_1 \equiv 1(m_1)$$

$$\exists b_2 \ \text{such that} \ ab_2 \equiv 1(m_2)$$

$$\Rightarrow \ \text{By CRT} \ , b \equiv b_1 \ \text{mod} \ m_1 \ \& \ b \equiv b_2 \ \text{mod} \ m_2$$

$$\Rightarrow ab \equiv 1 \ \text{mod} \ m_1m_2$$

- I have no idea what any of that means
- If $p \neq q$ and p, q are both primes, then $\phi(p, q) = (p 1)(q 1)$
- What is $51^{38} \mod 77$?
 - Split it into 11 and 7
 - First calculate 51³⁸ mod 7
 - * 51 lives in mod7, so it gives you 2. But 38 lives in mod6, so you put the result of 38 mod 6 in the exponent and the final result of 51^{38} mod 7 is 2^2 mod 7 = 4
- Remember that by FLT, $x^6 = 1 \mod 7$ if $7 \nmid x$