CHAPTER 11:

Multilayer Perceptrons

Functioning of brain

- Interconnected Billions of neurons
 - Individual neurons: Simple
 - Perform parallel processing
 - Distributed associative memory

Artificial Neural Network

TROY

- Neurons → Nodes
- Synapse → weights

TROJANS

Neural Networks: Features

- Networks of processing units (neurons) with connections (synapses) between them
- Large number of neurons: 10¹⁰
- Large connectitivity: 10⁵
- Parallel processing
- Distributed computation/memory
- Robust to noise, failures

Perceptron

Basic unit in neural network

What a Perceptron Does

• Regression: $y=wx+w_0$

• Classification: $y=1(wx+w_0>0)$

$$y = \text{sigmoid}(o) = \frac{1}{1 + \exp[-\mathbf{w}^T \mathbf{x}]}$$

K Outputs

Regression:

$$\mathbf{y}_i = \sum_{i=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0} = \mathbf{w}_i^T \mathbf{x}$$

$$o_{i} = \mathbf{w}_{i}^{T} \mathbf{x}$$

$$y_{i} = \frac{\exp o_{i}}{\sum_{k} \exp o_{k}}$$

$$\text{choose } C_{i}$$

$$\text{if } y_{i} = \max_{k} y_{k}$$

Training

- Online (instances seen one by one) vs batch (whole sample) learning:
 - No need to store the whole sample
 - Problem may change in time
 - Wear and degradation in system components
- Stochastic gradient-descent: Update after a single pattern
- Generic update rule (LMS rule):

$$\Delta \mathbf{w}_{ij}^{t} = \eta (\mathbf{r}_{i}^{t} - \mathbf{y}_{i}^{t}) \mathbf{x}_{j}^{t}$$

Update=LearningFactor·(DesiredOutput—ActualOutput) ·Input

Training a Perceptron: Regression

Regression (Linear output):

$$E^{t}(\mathbf{w} \mid \mathbf{x}^{t}, r^{t}) = \frac{1}{2}(r^{t} - y^{t})^{2} = \frac{1}{2}[r^{t} - (\mathbf{w}^{T}\mathbf{x}^{t})]^{2}$$
$$\Delta w_{j}^{t} = \eta(r^{t} - y^{t})x_{j}^{t}$$

Single Layer Perceptron: AND

XOR

x_1	χ_2	r
0	0	0
0	1	1
1	0	1
1	1	0

• Problem: No w_0 , w_1 , w_2 that can satisfy:

$$w_0 \le 0$$
 $w_2 + w_0 > 0$ (Minsky and Papert, 1969) $w_1 + w_0 > 0$ $w_1 + w_2 + w_0 \le 0$

A single layer network can not represent XOR.

- Single layer can represent linearly separable data
 - Can not represent data which can not be linearly separable: Limited representation ability
- Multilayer
 - Can represent non linear separation
 - A 2-layer perceptron can represent any bounded continuous function with arbitrarily small error

Multilayer Perceptrons

$$\mathbf{y}_i = \mathbf{v}_i^\mathsf{T} \mathbf{z} = \sum_{h=1}^H \mathbf{v}_{ih} \mathbf{z}_h + \mathbf{v}_{i0}$$

$$z_{h} = \operatorname{sigmoid} \left(\mathbf{w}_{h}^{T} \mathbf{x}\right)$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0}\right)\right]}$$

(Rumelhart et al., 1986)

Multilayer Perceptrons: XOR

- Linear combination of inputs will result into another input combinations
 - Can not represent nonlinearity
- Thresholding function aka transfer function
 - Must be continuous and differentiable (Because of gradient descent)
 - Popular functions: Sigmoid (Most popular), Hyperbolic tangent function (tanh),.. Etc.

Training Multilayer: Backpropagation

$$y_{i} = \mathbf{v}_{i}^{T} \mathbf{z} = \sum_{h=1}^{H} v_{ih} z_{h} + v_{i0}$$

$$z_{h} = \operatorname{sigmoid} \left(\mathbf{w}_{h}^{T} \mathbf{x}\right)$$

$$= \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^{d} w_{hj} x_{j} + w_{h0}\right)\right]}$$

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

Multilayer Training: Regression

$$\mathbf{y}^t = \sum_{h=1}^H \mathbf{v}_h \mathbf{z}_h^t + \mathbf{v}_0$$

$$\Delta \mathbf{v}_h = \sum_t (\mathbf{r}^t - \mathbf{y}^t) \mathbf{z}_h^t$$

Backward

$$z_h = \underline{\operatorname{sigmoid}}(\mathbf{w}_h^T \mathbf{x})$$

X

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \sum_{t} \frac{\partial E}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$= -\eta \sum_{t} -(r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Regression with Multiple Outputs

$$E(\mathbf{W}, \mathbf{V} \mid \mathbf{X}) = \frac{1}{2} \sum_{t} \sum_{i} (r_{i}^{t} - y_{i}^{t})^{2}$$

$$y_{i}^{t} = \sum_{h=1}^{H} \mathbf{v}_{ih} z_{h}^{t} + \mathbf{v}_{i0}$$

$$\Delta \mathbf{v}_{ih} = \eta \sum_{t} (r_{i}^{t} - y_{i}^{t}) z_{h}^{t}$$

$$\Delta \mathbf{w}_{hj} = \eta \sum_{t} \left[\sum_{i} (r_{i}^{t} - y_{i}^{t}) \mathbf{v}_{ih} \right] z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Backpropagation: Algorithm

Initialize all v_{ih} and w_{hj} to $\mathrm{rand}(-0.01, 0.01)$ Repeat

For all
$$(\boldsymbol{x}^t, r^t) \in \mathcal{X}$$
 in random order For $h = 1, \dots, H$ $z_h \leftarrow \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}^t)$ For $i = 1, \dots, K$ $y_i = \boldsymbol{v}_i^T \boldsymbol{z}$ For $i = 1, \dots, K$ $\Delta \boldsymbol{v}_i = \eta(r_i^t - y_i^t) \boldsymbol{z}$ For $h = 1, \dots, H$ $\Delta \boldsymbol{w}_h = \eta(\sum_i (r_i^t - y_i^t) v_{ih}) z_h (1 - z_h) \boldsymbol{x}^t$ For $i = 1, \dots, K$ $v_i \leftarrow v_i + \Delta v_i$ For $h = 1, \dots, H$

 $\boldsymbol{w}_h \leftarrow \boldsymbol{w}_h + \Delta \boldsymbol{w}_h$

Until convergence

Learning: Issues & Approaches

- Number of epochs
 - Fixed number vs target validation error

Batch vs Stochastic

 Avoid Overfitting: avoid divergence of errors between training set and validation set.

Backpropagation: Fitting a curve

Two-Class Discrimination

• One sigmoid output y^t for $P(C_1|x^t)$ and $P(C_2|x^t) \equiv 1-y^t$

$$y^{t} = \operatorname{sigmoid}\left(\sum_{h=1}^{H} v_{h} z_{h}^{t} + v_{0}\right)$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} r^{t} \log y^{t} + (1 - r^{t}) \log (1 - y^{t})$$

$$\Delta v_{h} = \eta \sum_{t} (r^{t} - y^{t}) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

$$o_{i}^{t} = \sum_{h=1}^{H} v_{ih} z_{h}^{t} + v_{i0} \qquad y_{i}^{t} = \frac{\exp o_{i}^{t}}{\sum_{k} \exp o_{k}^{t}} \equiv P(C_{i} \mid \mathbf{x}^{t})$$

$$E(\mathbf{W}, \mathbf{v} \mid \mathcal{X}) = -\sum_{t} \sum_{i} r_{i}^{t} \log y_{i}^{t}$$

$$\Delta v_{ih} = \eta \sum_{t} \left(r_{i}^{t} - y_{i}^{t} \right) z_{h}^{t}$$

$$\Delta w_{hj} = \eta \sum_{t} \left[\sum_{i} \left(r_{i}^{t} - y_{i}^{t} \right) v_{ih} \right] z_{h}^{t} (1 - z_{h}^{t}) x_{j}^{t}$$

Multiple Hidden Layers

 MLP with one hidden layer is a universal approximator (Hornik et al., 1989), but using multiple layers may lead to simpler networks

$$z_{1h} = \operatorname{sigmoid}\left(\mathbf{w}_{1h}^{\mathsf{T}}\mathbf{x}\right) = \operatorname{sigmoid}\left(\sum_{j=1}^{d} w_{1hj}x_{j} + w_{1h0}\right), h = 1, ..., H_{1}$$

$$z_{2l} = \text{sigmoid}\left(\mathbf{w}_{2l}^{T}\mathbf{z}_{1}\right) = \text{sigmoid}\left(\sum_{h=1}^{H_{1}} w_{2lh}z_{1h} + w_{2l0}\right), l = 1,...,H_{2}$$

$$y = \mathbf{v}^T \mathbf{z}_2 = \sum_{l=1}^{H_2} \mathbf{v}_l \mathbf{z}_{2l} + \mathbf{v}_0$$

Momentum

$$\Delta \mathbf{w}_{i}^{t} = -\eta \frac{\partial \mathbf{E}^{t}}{\partial \mathbf{w}_{i}} + \alpha \Delta \mathbf{w}_{i}^{t-1}$$

Adaptive learning rate

$$\Delta \eta = \begin{cases} +a & \text{if } E^{t+\tau} < E^t \\ -b\eta & \text{otherwise} \end{cases}$$

Overfitting/Overtraining

Number of weights: H(d+1)+(H+1)K

Structuring the MLP

- Structure MLP using domain knowledge
- Large structures are hard to train
- Use hints from the local structures
 - Invariance to translation, rotation, size

Structure the MLP

Weight sharing: shares the same weight but connected to different inputs

A

A

A

- Virtual
- Augmented error: $E' = E + \lambda_h E_h$

If $\mathbf{x'}$ and \mathbf{x} are the "same": $E_h = [g(x \mid \theta) - g(x' \mid \theta)]^2$

Approximation hint:

$$E_h = \begin{cases} 0 & \text{if } g(x \mid \theta) \in [a_x, b_x] \\ (g(x \mid \theta) - a_x)^2 & \text{if } g(x \mid \theta) < a_x \\ (g(x \mid \theta) - b_x)^2 & \text{if } g(x \mid \theta) > b_x \end{cases}$$

Tuning the Network Size

- Destructive
- Weight decay:

Growing networks

$$\Delta w_{i} = -\eta \frac{\partial E}{\partial w_{i}} - \lambda w_{i}$$
$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

$$E' = E + \frac{\lambda}{2} \sum_{i} w_{i}^{2}$$

Dynamic Node Creation

(Ash, 1989)

Cascade Correlation

(Fahlman and Lebiere, 1989)