iemisc: Engineering Survey Examples

Irucka Embry, E.I.T. (EcoC²S)

2024-06-05

Contents

Replicate the R code	1
Midpoint Examples	2 2 2 2
Engineering Survey 1 (engr_survey) Example 1 (Tennessee (TN) Northing and Easting in US Survey foot)	3 4
Engineering Survey 1 Batch Mode (engr_survey_batch) Examples (Tennessee (TN) Northing and Easting in meters)	5
Engineering Survey 2 (engr_survey2) Examples	6
Engineering Survey 3 (engr_survey3) Example	7
Engineering Survey 4 (engr_survey4) Example	7
Conversion of Latitude/Longitude Coordinates to Engineering Survey Measurements (engr_survey_reverse) Tennessee	7 7 8
EcoC ² S Links	8
Copyright and License	8

Replicate the R code $\,$

Note: If you wish to replicate the R code below, then you will need to copy and paste the following commands in R first (to make sure you have the package and its dependencies):

```
install.packages("iemisc", "pander")
# install the packages and their dependencies
```

```
# load the required packages
install.load::load_package("iemisc", "pander")
```

Midpoint

Examples

Tennessee (TN) Northing and Easting in survey foot

```
Northing_begin <- 283715.8495
Easting_begin <- 1292428.3999

Northing_end <- 303340.6977
Easting_end <- 1295973.7743

pander(project_midpoint(Northing_begin, Easting_begin, Northing_end, Easting_end, units = "survey_ft", location = "TN", output = "advanced"))</pre>
```

Parameters	Value
Begin Project $(X = East, Y = North)$ [US	Tennessee 4100 1292428.3999,
survey foot]	283715.8495
End Project $(X = East, Y = North)$ [US	Tennessee 4100 1295973.7743,
survey foot]	303340.6977
Begin Project $(X = East, Y = North)$	Tennessee 4100 1292430.9848,
[international foot]	283716.4169
End Project $(X = East, Y = North)$	Tennessee 4100 1295976.3663,
[international foot]	303341.3044
Begin Project $(X = East, Y = North)$ [meters]	Tennessee 4100 393932.9642, 86476.7639
End Project $(X = East, Y = North)$ [meters]	Tennessee 4100 395013.5964, 92458.4296
Begin Project Degrees (Latitude, Longitude)	35.0913, -88.2600
Midpoint Project Degrees (Latitude,	35.1184, -88.2548
Longitude)	
End Project Degrees (Latitude, Longitude)	35.1454, -88.2496

Tennessee (TN) Northing and Easting in meters

Parameters	Value
Begin Project $(X = East, Y = North)$ [US	Tennessee 4100 3093019.1552,
survey foot]	762759.2356
End Project $(X = East, Y = North)$ [US	Tennessee 4100 2965201.5466,
survey foot]	770117.9840
Begin Project $(X = East, Y = North)$	Tennessee 4100 3093025.3412,
[international foot]	762760.7612
End Project $(X = East, Y = North)$	Tennessee 4100 2965207.4770,
[international foot]	770119.5243
Begin Project $(X = East, Y = North)$ [meters]	Tennessee 4100 942754.1240, 232489.4800
End Project $(X = East, Y = North)$ [meters]	Tennessee 4100 903795.2390, 234732.4310
Begin Project Degrees (Latitude, Longitude)	36.3685, -82.1797
Midpoint Project Degrees (Latitude,	36.3852, -82.3961
Longitude)	
End Project Degrees (Latitude, Longitude)	36.4016, -82.6127

Engineering Survey 1 (engr_survey)

Example 1 (Tennessee (TN) Northing and Easting in US Survey foot)

```
Northing3 <- c("630817.6396", "502170.6065", "562,312.2349", "574,370.7178")

Easting3 <- c("2559599.9201", "1433851.6509", "1,843,018.4099", "1,854,896.0041")

dt3A <- engr_survey(Northing3[1], Easting3[1], "survey_ft", "TN", output = "basic", utm = 1)
pander(dt3A) # first set of Northing, Easting points</pre>
```

• data_check:

X	Y
-84	36.05

• utm:

id	UTM Zone	$\mathrm{UTM}\ \mathrm{X} = \mathrm{East}\ [\mathrm{US}\ \mathrm{survey}\ \mathrm{foot}]$	UTM Y = North [US survey foot]
1	16S	2526981	13102431

Hemisphere	
North	

```
dt3B <- engr_survey(Northing3[2], Easting3[2], "survey_ft", "TN", output = "basic",
    utm = 0)
pander(dt3B) # second set of Northing, Easting points</pre>
```

X	Y
-87.8	35.7

```
dt3C <- engr_survey(Northing3[3], Easting3[3], "survey_ft", "TN", output = "basic",
    utm = 1)
pander(dt3C) # third set of Northing, Easting points</pre>
```

• data_check:

X	Y
-86.42	35.88

• utm:

id	UTM Zone	$\mathrm{UTM}\ \mathrm{X} = \mathrm{East}\ [\mathrm{US}\ \mathrm{survey}\ \mathrm{foot}]$	${\rm UTM}\ {\rm Y} = {\rm North}\ [{\rm US}\ {\rm survey}\ {\rm foot}]$
1	16S	1811130	13026554

Hemisphere
North

```
dt3D <- engr_survey(Northing3[4], Easting3[4], "survey_ft", "TN", output = "basic",
    utm = 0)
pander(dt3D) # fourth set of Northing, Easting points</pre>
```

X	Y
-86.38	35.91

Example 2 (Tennessee (TN) Northing and Easting in meters)

Parameters	Value
Degrees (Latitude, Longitude)	36.36846, -82.17969
Degrees Minutes (Latitude, Longitude)	36 22.10732, -82 10.78127
Degrees Minutes Seconds (Latitude,	36 22 6.43922, -82 10 46.87677
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Tennessee 4100 942754.12, 232489.48
State Plane $(X = East, Y = North)$ [US	Tennessee 4100 3093019.16, 762759.24
survey foot]	
State Plane $(X = East, Y = North)$	Tennessee 4100 3093025.34, 762760.76
[international foot]	

```
dt4B <- engr_survey(Northing4[2], Easting4[2], "meters", "TN", output = "table",
    utm = 0)
pander(dt4B)</pre>
```

Parameters	Value
Degrees (Latitude, Longitude)	36.40158, -82.61269
Degrees Minutes (Latitude, Longitude)	36 24.09480, -82 36.76122
Degrees Minutes Seconds (Latitude,	$36\ 24\ 5.68834,\ -82\ 36\ 45.67356$
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Tennessee 4100 903795.239, 234732.431
State Plane $(X = East, Y = North)$ [US	Tennessee 4100 2965201.547, 770117.984
survey foot]	
State Plane $(X = East, Y = North)$	Tennessee 4100 2965207.477, 770119.524
[international foot]	

Engineering Survey 1 Batch Mode (engr_survey_batch)

Examples (Tennessee (TN) Northing and Easting in meters)

```
Northing2 <- c(232489.48, 234732.431)
Easting2 <- c(942754.124, 903795.239)
dt4 <- engr_survey_batch(Northing2, Easting2, "meters", "TN", output = "table")
pander(dt4)</pre>
```

Parameters	Value
Degrees (Latitude, Longitude)	36.36845, -82.17968
Degrees Minutes (Latitude, Longitude)	36 22.10732, -82 10.78127
Degrees Minutes Seconds (Latitude,	36 22 6.43922, -82 10 46.87677
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Tennessee 4100 942754.12, 232489.48

Parameters	Value
State Plane ($X = East, Y = North$) [US	Tennessee 4100 3093019.14, 762759.24
survey foot]	
State Plane $(X = East, Y = North)$	Tennessee 4100 3093025.33, 762760.76
[international foot]	
Degrees (Latitude, Longitude)	36.40158, -82.61268
Degrees Minutes (Latitude, Longitude)	36 24.09480, -82 36.76122
Degrees Minutes Seconds (Latitude,	36 24 5.68834, -82 36 45.67356
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Tennessee 4100 903795.239, 234732.431
State Plane $(X = East, Y = North)$ [US	Tennessee 4100 2965201.547, 770117.984
survey foot	
State Plane $(X = East, Y = North)$	Tennessee 4100 2965207.477, 770119.524
[international foot]	·

Engineering Survey 2 (engr_survey2)

Examples

```
station5 <- "516+64.10"
station6 <- "511+29.10"

engr_survey2(station5, station6, units1 = "foot", units2 = "kilometers")

## 0.163068 [km]
station7 <- "303+91.00"
station8 <- "299+41.00"

engr_survey2(station7, station8, units1 = "meters", units2 = "foot")

## 450 [ft]
station9 <- "43+50.00"
station10 <- "52+00.00"

engr_survey2(station9, station10, units1 = "foot", units2 = "mile")

## 0.1609848 [international_mile]</pre>
```

Engineering Survey 3 (engr_survey3)

Example

```
engr_survey3(23, station_distance = 100, units = "survey_mile", output = "numeric")
## [1] 1214.402
```

Engineering Survey 4 (engr_survey4)

Example

```
engr_survey4(1394.32, "45+43.12", units = "kilometers")
## [1] "Sta. 50288+52.68"
```

Conversion of Latitude/Longitude Coordinates to Engineering Survey Measurements (engr_survey_reverse)

Tennessee

```
lat <- 35.8466965

long <- -88.9206794

dt1A <- engr_survey_reverse(lat, long, units = "survey_ft", location = "TN", output = "table",
    utm = 0)
pander(dt1A)</pre>
```

Parameters	Value
Degrees (Latitude, Longitude)	35.8467, -88.92068
Degrees Minutes (Latitude, Longitude)	35 50.80178, -88 55.24076
Degrees Minutes Seconds (Latitude,	35 50 48.10739, -88 55 14.44584
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Tennessee 4100 336204.8118, 171842.6309
State Plane $(X = East, Y = North)$ [US]	Tennessee 4100 1103031.9533, 563787.0316
survey foot]	
State Plane $(X = East, Y = North)$	Tennessee 4100 1103034.1594, 563788.1592
[international foot]	
Projected CRS + Defined Units	+init=epsg:32136 + units=us-ft

Kentucky

```
lats <- "37'50'21.5988''N"
longs <- "84'16'12.0720'W"

dt2B <- engr_survey_reverse(lats, longs, "foot", "KY", output = "table", utm = 0)
pander(dt2B)</pre>
```

Parameters	Value
Degrees (Latitude, Longitude)	37.83933, -84.27002
Degrees Minutes (Latitude, Longitude)	37 50.35998, -84 16.20119
Degrees Minutes Seconds (Latitude,	37 50 21.59880, -84 16 12.07199
Longitude)	
State Plane $(X = East, Y = North)$ [meters]	Kentucky (Single Zone) 1600
, , , , , , , , , , , , , , , , , , , ,	1630255.5592, 1168172.2563
State Plane $(X = East, Y = North)$ [US	Kentucky (Single Zone) 1600
survey foot]	5348596.7804, 3832578.4776
State Plane $(X = East, Y = North)$	Kentucky (Single Zone) 1600
[international foot]	5348607.4776, 3832586.1427
Projected CRS + Defined Units	+init = epsg:3088 + units = ft

EcoC²S Links

```
EcoC2S Home - https://www.ecoccs.com/
About EcoC2S - https://www.ecoccs.com/about_ecoc2s.html
Services - https://www.ecoccs.com/services.html
1 Stop Shop - https://www.ecoccs.com/other_biz.html
Products - https://www.questionuniverse.com/products.html
Media - https://www.ecoccs.com/media.html
Resources - https://www.ecoccs.com/resources.html
R Trainings and Resources provided by EcoC2S (Irucka Embry, E.I.T.) - https://www.ecoccs.com/rtraining.html
```

Copyright and License

All R code written by Irucka Embry is distributed under the GPL-3 (or later) license, see the GNU General Public License {GPL} page.

All written content originally created by Irucka Embry is copyrighted under the Creative Commons Attribution-ShareAlike 4.0 International License. All other written content retains the copyright of the original author(s).

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.