Nombres complexes

A Nombre complexe

1 Forme algébrique

(a) Définition

La forme algébrique de z est notée

$$z = a + bi$$

(b) Parties réelle et imaginaire

Les parties réelles et imaginaires de z sont a et b, notées

$$Re(z) = a$$
 $Im(z) = b$

2 Conjugué

(a) Définition

Le conjugué de z noté \bar{z} est défini par $\bar{z} = a + bi$

(b) Propriétés

•
$$\bar{z} + z = 2Re(z)$$

$$\bullet \ \overline{z+z\prime} = \bar{z} + \bar{z\prime}$$

• Si z' non nul:
$$\overline{\left(\frac{z}{z'}\right)} = \frac{\bar{z}}{\bar{z}'}$$

•
$$\bar{z} - z = 2iIm(z)$$

•
$$\overline{zz\prime} = \bar{z} \times \bar{z\prime}$$

•
$$\forall n \in \mathbb{Z}$$
: $\overline{z^n} = \overline{z}^n$

3 Module

(a) Définition

On appelle module de z, |z| défini par

$$|z| = \sqrt{a^2 + b^2}$$

(b) Propriétés

•
$$z\bar{z} = |z|^2$$

$$\bullet$$
 $|z| = |-z|$

• Si
$$z'$$
 non nul: $\left|\frac{z}{z'}\right| = \frac{|z|}{|z'|}$

•
$$|z| = |\bar{z}|$$

•
$$|zz\prime| = |z| \times |z|$$

•
$$\forall n \in \mathbb{N}: |z^n| = |z|^n$$

4 Représentation

Soit un repère orthonormal $(O, \overrightarrow{u}; \overrightarrow{v})$

Le point M(a; b) a pour affixe z = a + bi

Le vecteur \overrightarrow{OM} a donc pour affixe z et |z| = OM

B Équations dans $\mathbb C$

1 Polynômes du second degré

Soit $az^2 + bz + c = 0$ avec $a \neq 0$

 $\bullet\,$ Si $\Delta>0,$ il y a deux solutions réelles

$$z = \frac{-b \pm \sqrt{\Delta}}{2a}$$

• Si $\Delta = 0$, il y a une solution réelle

$$z_0 = \frac{-b}{2a}$$

• Si $\Delta < 0$, il y a deux solutions complexes

$$z = \frac{-b \pm i\sqrt{-\Delta}}{2a}$$

C Formes trigonométriques et exponentielles

1 Argument

On note $\arg(z)$ la mesure de l'angle orienté $(\overrightarrow{u};\overrightarrow{OM})$

$$arg(z) = (\overrightarrow{u}; \overrightarrow{OM})[2\pi]$$

Représentation de l'angle orienté $(\overrightarrow{u};\overrightarrow{OM})$ et du vecteur \overrightarrow{OM}

2 Forme trigonométrique

(a) Définition

Soit z d'argument θ

$$z = |z| (\cos(\theta) + i\sin(\theta))$$

(b) Propriétés

- $arg(zz') = arg(z) + arg(z')[2\pi]$
- $\arg(\frac{1}{z}) = -\arg(z)[2\pi]$
- $\arg(\frac{z}{zI}) = \arg(z) \arg(zI)[2\pi]$
- $\forall n \in \mathbb{N}: \arg(z^n) = n \arg(z)[2\pi]$
- z est réel $\Leftrightarrow \arg(z) = 0[2\pi]$ ou $\arg(z) = \pi[2\pi]$
- z est imaginaire $\Leftrightarrow \arg(z) = \frac{\pi}{2}[2\pi]$ ou $\arg(z) = -\frac{\pi}{2}[2\pi]$

3 Forme exponentielle

(a) Définition

 $\forall \theta \in \mathbb{R}$, on pose

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Soit z d'argument θ

$$z = |z|e^{i\theta}$$

(b) Propriétés

•
$$\overline{e^{i\theta}} = e^{-i\theta}$$

$$\bullet \ \ \frac{1}{e^{i\theta}} = e^{i\theta}$$

$$\bullet \ e^{i(\theta+\theta\prime)} = e^{i\theta}e^{i\theta\prime}$$

•
$$\forall n \in \mathbb{Z}: (e^{i\theta})^n = e^{in\theta}$$

(c) Formule d'Euler

 $\forall \theta \in \mathbb{R}$

$$cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 $sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

D Interprétation géométrique

1 Distance

$$AB = |z_B - z_A|$$

2 Angle

$$\left(\overrightarrow{u};\overrightarrow{AB}\right) = \arg(z_B - z_A)[2\pi]$$

3 Argument d'un quotient

$$(\overrightarrow{v_1}; \overrightarrow{v_2}) = \arg\left(\frac{z_2}{z_1}\right)$$