

Laboratório de Fusão e Inteligência Artificial Aplicada (LaFIAA)

Prof. Pablo Rangel

Neurônio Biológico

Neurônio Biológico

Dendritos recebem sinais de outros neurônios

Neurônio agrega os sinais recebidos de todos os neurônios

Axônio transmite impulso se limiar for superado

Neurônio Artificial (McCulloch & Pitts, 1943)

Na década de 1940, McCulloch e Pitts propuseram um modelo matemático do neurônio.

Já nos anos 1950, Frank Rosenblatt criou o Perceptron, o primeiro modelo de rede capaz de aprender tarefas simples.

Representação de Entradas e Atributos

Entradas são um conjunto de atributos (a) que você deseja que uma rede neural aprenda.

Por exemplo, você gostaria de aprender sobre o perfil socioeconômico de uma população. A amostra pode ter como base o salario bruto e a idade.

Como estão em domínio de valores distintos, os atributos das amostras são convertidas para um intervalo entre 0 e 1

$$f(a) = \frac{valor - min}{max - min}$$

Representação de Entradas e Atributos

Seja Pessoa 1 x_1 e Pessoa 2 x_2 .

 x_1 possui 49 anos e salário de R\$ 20.000,00.

 x_2 possui 24 anos e salário de R\$5.000,00. Convertemos os atributos utilizando o método Min-Max.

Seja 18 anos e 120 anos as idades mínima e máxima. Seja R\$1.200,00 e R\$30.000,00 os salários mínimo e máximos.

$$X_1^{idade} = \frac{49-18}{120-18} = \frac{31}{102} \approx 0.30$$

$$X_1^{salario} = \frac{20000 - 1200}{30000 - 1200} = \frac{18800}{28800} \approx 0,65$$

$$X_1 = [0.3, 0.65]$$

$$X_2^{idade} = \frac{24-18}{120-18} = \frac{6}{102} \approx 0,05$$

$$X_2^{salario} = \frac{5000 - 1200}{30000 - 1200} = \frac{3800}{28800} \approx 0,13$$

$$X_2 = [0.05, 0.13]$$

Representação de Neurônios: inicialização

Neurônio N é representado pelos pesos.

Requer vetor de pesos w com o quantitativo de valores para cada amostra existente.

A inicialização pode ser com valores préfixados ou por função randômica r.

Pré-fixado: $w_i = [0, 0, 0, 0]$.

Randômico: $w_i = [r(0,1), r(0,1), r(0,1), r(0,1)].$

Representação de Neurônios: Soma

x_i: i-ésimo
 atributo a ser
 considerada no
 aprendizado.

w_i: *i-ésimo* peso do neurônio.

b: valor de ajuste para ativação.

φ: função de ativação.

y: saída do neurônio.

$$z = \sum_{i=1}^{n} w_i x_i + b$$

$$y = \phi(z)$$

Representação de Neurônios: Ativação

$$\phi(z) = \begin{cases} 1, z \ge 0 \\ 0, \text{caso contrário} \end{cases}$$

Representação de Neurônios: Ativação

$$\phi(z) = \frac{1}{1 + e^{-z}}$$

$$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

$$\phi(z) = max(0, z)$$

O Perceptron de Rosenblatt (1958): Modelo

Modelo de rede neural de camada única, usada para classificação binária. Requer exemplos de entrada x e a respectiva saída esperada (ground truth) g e consecutivas iterações.

É limitada à classificação binária, não sendo capaz de lidar com problemas não-lineares

Ajusta os pesos em função do erro ε um parâmetro η que indica a taxa de aprendizado.

$$\epsilon = (g - y)$$

$$w_i = w_i + \epsilon \cdot x_i \cdot \eta$$

$$b = b + \eta \cdot \epsilon$$

O Perceptron de Rosenblatt (1958): Exemplo

Um exemplo com a porta AND.

Sejam 4 entradas x para $0 \le k \le 4$ com 2 atributos para $0 \le i \le 2$.

Assim, temos x_{ki} .

O Perceptron de Rosenblatt (1958): Código

Paradigma Orientado a Objetos

Linguagem Python.

https://github.com/pablorangel82/introducao_aprendizado_supervisionado

O Perceptron de Rosenblatt (1958): Limitações

Um exemplo com a porta XOR.

Sejam k entradas $(0 \le k \le 4)$ cada uma com i atributos $(0 \le i \le 2)$.

Assim, temos x_{ki} .

O Perceptron de Rosenblatt (1958): Limitações

Um exemplo com a porta XOR.

Sejam k entradas $(0 \le k \le 4)$ cada uma com i atributos $(0 \le i \le 2)$.

Assim, temos x_{ki} .

XOR – Não linearmente separável

Uma possibilidade...

Podemos expressar o XOR como uma expressão combinatória entre AND e OR

$$\bigoplus (x_1, x_2) = (x_1 \lor x_2) \land \\
\neg (x_1 \land x_2)$$

Precisamos de uma arquitetura que possibilite essa solução...

$$x_{0,0} \ 0$$
 $x_{0,1} \ 0$ $(0 \lor 0) \land \neg (0 \land 0)$ $d_0 \ 0$
 $x_{1,0} \ 0$ $x_{1,1} \ 1$ $(0 \lor 1) \land \neg (0 \land 1)$ $d_1 \ 1$
 $x_{2,0} \ 1$ $x_{2,1} \ 0$ $(1 \lor 0) \land \neg (1 \land 0)$ $d_2 \ 1$
 $x_{3,0} \ 1$ $x_{3,1} \ 1$ $(1 \lor 1) \land \neg (1 \land 1)$ $d_3 \ 0$

MultiLayer Perceptron (MLP)

Entradas x apresentadas para cada camada oculta da rede. As saídas dos neurônios da camada oculta servirão de entrada para as camadas seguintes (forward pass).

Retropropagar o erro e ajustar os pesos desde a camada de saída até a primeira camada oculta (backward pass).

Considere o neurônio de uma camada existente.

Uma entrada é representada como x.

Considere o *i- ésimo* peso *w* ou atributo de uma entrada.

b: valor de ajuste para ativação.

$$z = b + \sum_{i} w_i \cdot x_i$$
$$y = \phi(z) = \frac{1}{1 + e^{-z}}$$

Como tratar erros descobertos nas camadas e ajustar os pesos retroativamente?

Algoritmo de Backpropagation.

Como calcular a primeira derivada parcial?

$$E^{saida} = \frac{1}{2}(g - y^{saida})^{2}$$

$$(g - y^{saida})^{2} = \mu^{2}$$

$$\epsilon = \frac{\partial E}{\partial y} = \frac{1}{2} \cdot 2(g - y^{saida}) \cdot \frac{d\mu}{dy}$$

$$\epsilon = \frac{\partial E}{\partial y} = \frac{1}{2} \cdot 2(g - y^{saida}) \cdot -1 = -(g - y^{saida})$$

$$\epsilon^{saida} = y^{saida} - g$$

$$Gradiente: \frac{\partial \epsilon}{\partial w} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w}$$

Como calcular a segunda derivada parcial?

$$y^{saida} = \phi(z^{saida}) = \frac{1}{1 + e^{-z^{saida}}}$$

$$\frac{\partial y}{\partial z} = \frac{d\phi(z)}{dz} = \phi(z)(1 - \phi(z))$$

$$\delta^{saida} = y^{saida}(1 - y^{saida}) \cdot \epsilon^{saida}$$

$$Gradiente: \frac{\partial \epsilon}{\partial w} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w}$$

Como calcular a terceira derivada parcial?

$$\frac{d}{dz} = y^{saida}(1 - y^{saida}) = \delta^{saida}$$

$$\epsilon^{oculto} = y^{oculto}(1 - y^{oculto})$$

$$\delta^{oculto} = \delta^{saida} \cdot w^{saida} \cdot \epsilon^{oculto}$$

$$Gradiente: \frac{\partial \epsilon}{\partial w} = \frac{\partial E}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial w}$$

Com base no erro calculado retroativamente, vamos ajustar os pesos das camadas!

Como ajustar os pesos?

$$w_i^{saida} = w_i^{saida} - (\eta \cdot \delta^{saida} * y_i^{oculto})$$

$$b_i^{saida} = b_i^{saida} - (\eta \cdot \delta^{saida})$$

$$w_i^{oculto} = w_i^{oculto} - (\mu \cdot \delta^{oculto} * x_i)$$

$$b_i^{oculto} = b_i^{oculto} - (\eta \cdot \delta^{oculto})$$

MultiLayer Perceptron (MLP): resolvendo o XOR

Na camada oculta, ter um neurônio para a operação OR e um neurônio para operação NOT AND Na camada saída, ter um neurônio para agregação dos resultados da camada oculta (AND).

MultiLayer Perceptron (MLP): Código

Paradigma Orientado a Objetos

Linguagem Python.

https://github.com/pablorangel82/introducao_aprendizado_supervisionado

Laboratório de Fusão e Inteligência Artificial Aplicada (LaFIAA)

Dúvidas?

pablo.rangel@marinha.mil.br