Statistical Machine Translation LING-462/COSC-482 Week 5: Decoding and tree-based models

Achim Ruopp achim.ruopp@Georgetown.edu

Agenda

- Language in ten minutes: Derek Acosta
- Decoding
- Break -
- Tree-based models
- HW3: Decoding
- Internships tips/inquiries

Statistical Machine Translation

- What we have now: statistical models
 - Word-based translation models
 - Phrase-based translation models
 - N-gram language models
 - Noisy channel model
 - Log-linear model
- Next: decoding
 - How do we find the most-likely or top-n most likely translations?

DECODING

Decoding

• We have a mathematical model for translation

$$p(\mathbf{e}|\mathbf{f})$$

• Task of decoding: find the translation e_{best} with highest probability

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \ p(\mathbf{e}|\mathbf{f})$$

- Two types of error
 - the most probable translation is bad \rightarrow fix the model
 - search does not find the most probably translation \rightarrow fix the search
- Decoding is evaluated by search error, not quality of translations (although these are often correlated)

• Task: translate this sentence from German into English

er geht ja nicht nach hause

Chapter 6: Decoding

• Task: translate this sentence from German into English

• Pick phrase in input, translate

• Task: translate this sentence from German into English

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation

• Task: translate this sentence from German into English

• Pick phrase in input, translate

• Task: translate this sentence from German into English

• Pick phrase in input, translate

Computing Translation Probability

Probabilistic model for phrase-based translation:

$$\mathbf{e}_{\mathsf{best}} = \mathsf{argmax}_{\mathbf{e}} \ \prod_{i=1}^{I} \phi(\bar{f}_i|\bar{e}_i) \ d(start_i - end_{i-1} - 1) \ p_{\scriptscriptstyle \mathrm{LM}}(\mathbf{e})$$

- Score is computed incrementally for each partial hypothesis
- Components

Phrase translation Picking phrase \bar{f}_i to be translated as a phrase \bar{e}_i

 \rightarrow look up score $\phi(\bar{f}_i|\bar{e}_i)$ from phrase translation table

Reordering Previous phrase ended in end_{i-1} , current phrase starts at $start_i$

 \rightarrow compute $d(start_i - end_{i-1} - 1)$

Language model For n-gram model, need to keep track of last n-1 words

 \rightarrow compute score $p_{\text{LM}}(w_i|w_{i-(n-1)},...,w_{i-1})$ for added words w_i

Translation Options

- Many translation options to choose from
 - in Europarl phrase table: 2727 matching phrase pairs for this sentence
 - by pruning to the top 20 per phrase, 202 translation options remain

Translation Options

- The machine translation decoder does not know the right answer
 - picking the right translation options
 - arranging them in the right order
- → Search problem solved by heuristic beam search

Decoding: Precompute Translation Options

consult phrase translation table for all input phrases

Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced

Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis

Decoding: Hypothesis Expansion

create hypotheses for all other translation options

Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis

Decoding: Find Best Path

backtrack from highest scoring complete hypothesis

Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)

Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

Worse hypothesis is dropped

Recombination

- Two hypothesis paths lead to hypotheses indistinguishable in subsequent search
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

Worse hypothesis is dropped

Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other
 - → no restriction to hypothesis recombination
- Language model: Last n-1 words used as history in n-gram language model
 - \rightarrow recombined hypotheses must match in their last n-1 words
- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase
 - → recombined hypotheses must have that same end position
- Other feature function may introduce additional restrictions

Pruning

- Recombination reduces search space, but not enough (we still have a NP complete problem on our hands)
- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks
 (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack

Stacks

- Hypothesis expansion in a stack decoder
 - translation option is applied to hypothesis
 - new hypothesis is dropped into a stack further down

Stack Decoding Algorithm

```
1: place empty hypothesis into stack 0
2: for all stacks 0...n-1 do
     for all hypotheses in stack do
3:
        for all translation options do
4:
           if applicable then
5:
             create new hypothesis
6:
             place in stack
7:
             recombine with existing hypothesis if possible
8:
             prune stack if too big
9:
          end if
10:
        end for
11:
     end for
12:
13: end for
```

Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
 - stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)
- Computational time complexity of decoding with histogram pruning

 $O(\max \text{ stack size} \times \text{translation options} \times \text{sentence length})$

• Number of translation options is linear with sentence length, hence:

$$O(\max \text{ stack size} \times \text{ sentence length}^2)$$

Quadratic complexity

Reordering Limits

- Limiting reordering to maximum reordering distance
- Typical reordering distance 5–8 words
 - depending on language pair
 - larger reordering limit hurts translation quality
- Reduces complexity to linear

 $O(\max \text{ stack size} \times \text{ sentence length})$

• Speed / quality trade-off by setting maximum stack size

Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words worse hypothesis has better score

Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - translation model: cost known
 - language model: output words known, but not context
 - → estimate without context
 - reordering model: unknown, ignored for future cost estimation

Cost Estimates from Translation Options

the tourism initiative addresses this for the first time

cost of cheapest translation options for each input span (log-probabilities)

Cost Estimates for all Spans

• Compute cost estimate for all contiguous spans by combining cheapest options

first	future cost estimate for n words (from first)								
word	1	2	3	4	5	6	7	8	9
the	-1.0	-3.0	-4.5	-6.9	-8.3	-9.3	-9.6	-10.6	-10.6
tourism	-2.0	-3.5	-5.9	-7.3	-8.3	-8.6	-9.6	-9.6	
initiative	-1.5	-3.9	-5.3	-6.3	-6.6	-7.6	-7.6		
addresses	-2.4	-3.8	-4.8	-5.1	-6.1	-6.1		•	
this	-1.4	-2.4	-2.7	-3.7	-3.7		•		
for	-1.0	-1.3	-2.3	-2.3		•			
the	-1.0	-2.2	-2.3		•				
first	-1.9	-2.4		•					
time	-1.6		•						

- Function words cheaper (the: -1.0) than content words (tourism -2.0)
- Common phrases cheaper (for the first time: -2.3) than unusual ones (tourism initiative addresses: -5.9)

Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative score: -5.88, future cost: -6.1 \rightarrow total cost -11.98
 - middle hypothesis starts with easiest part: the first time score: -4.11, future cost: $-9.3 \rightarrow \text{total cost } -13.41$
 - right hypothesis picks easy parts: this for ... time score: -4.86, future cost: $-9.1 \rightarrow \text{total cost } -13.96$

Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)

A* Search

- Uses admissible future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created

Greedy Hill-Climbing

- Create one complete hypothesis with depth-first search (or other means)
- Search for better hypotheses by applying change operators
 - change the translation of a word or phrase
 - combine the translation of two words into a phrase
 - split up the translation of a phrase into two smaller phrase translations
 - move parts of the output into a different position
 - swap parts of the output with the output at a different part of the sentence
- Terminates if no operator application produces a better translation

Summary

- Translation process: produce output left to right
- Translation options
- Decoding by hypothesis expansion
- Reducing search space
 - recombination
 - pruning (requires future cost estimate)
- Other decoding algorithms

Decoding Demo

- http://mt-class.org/jhu/stack-decoder/
- Coded by Matt Post http://cs.jhu.edu/~post/
- Install from https://github.com/mjpost/stack-decoder

TREE-BASED MODELS

Tree-Based Models

- Traditional statistical models operate on sequences of words
- Many translation problems can be best explained by pointing to syntax
 - reordering, e.g., verb movement in German–English translation
 - long distance agreement (e.g., subject-verb) in output
- ⇒ Translation models based on tree representation of language
 - significant ongoing research
 - state-of-the art for some language pairs

Phrase Structure Grammar

- Phrase structure
 - noun phrases: the big man, a house, ...
 - prepositional phrases: at 5 o'clock, in Edinburgh, ...
 - verb phrases: going out of business, eat chicken, ...
 - adjective phrases, ...
- Context-free Grammars (CFG)
 - non-terminal symbols: phrase structure labels, part-of-speech tags
 - terminal symbols: words
 - production rules: NT \rightarrow [NT,T]+ example: NP \rightarrow DET NN

Phrase Structure Grammar

Phrase structure grammar tree for an English sentence (as produced Collins' parser)

Synchronous Phrase Structure Grammar

• English rule

$$NP \rightarrow DET JJ NN$$

• French rule

$$NP \rightarrow DET NN JJ$$

• Synchronous rule (indices indicate alignment):

$$NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$$

Synchronous Grammar Rules

Nonterminal rules

$$NP \rightarrow DET_1 NN_2 JJ_3 \mid DET_1 JJ_3 NN_2$$

Terminal rules

$$N \rightarrow maison \mid house$$
 $NP \rightarrow la \ maison \ bleue \mid the \ blue \ house$

Mixed rules

$$NP \rightarrow la \ maison \ JJ_1 \mid the \ JJ_1 \ house$$

Tree-Based Translation Model

- Translation by parsing
 - synchronous grammar has to parse entire input sentence
 - output tree is generated at the same time
 - process is broken up into a number of rule applications
- Translation probability

$$SCORE(TREE, E, F) = \prod_{i} RULE_{i}$$

Many ways to assign probabilities to rules

Aligned Tree Pair

Phrase structure grammar trees with word alignment (German–English sentence pair.)

Reordering Rule

• Subtree alignment

• Synchronous grammar rule

$$VP \rightarrow PPER_1 NP_2$$
 aushändigen | passing on $PP_1 NP_2$

- Note:
 - one word aushändigen mapped to two words passing on ok
 - but: fully non-terminal rule not possible (one-to-one mapping constraint for nonterminals)

Another Rule

• Subtree alignment

• Synchronous grammar rule (stripping out English internal structure)

$$PRO/PP \rightarrow Ihnen \mid to you$$

Rule with internal structure

Another Rule

• Translation of German werde to English shall be

- Translation rule needs to include mapping of VP
- \Rightarrow Complex rule

$$VP
ightarrow VAFIN VP_1 \ WP
ightharpoonup VP \ Werde \ WB VP_1 \ be$$

Internal Structure

• Stripping out internal structure

$$VP \rightarrow werde VP_1 \mid shall be VP_1$$

- ⇒ synchronous context free grammar
- Maintaining internal structure

$$VP \rightarrow egin{pmatrix} VAFIN & VP_1 & MD & VP & VP_1 & MD & VP_1 &$$

⇒ synchronous tree substitution grammar

Learning Synchronous Grammars

- Extracting rules from a word-aligned parallel corpus
- First: Hierarchical phrase-based model
 - only one non-terminal symbol x
 - no linguistic syntax, just a formally syntactic model
- Then: Synchronous phrase structure model
 - non-terminals for words and phrases: NP, VP, PP, ADJ, ...
 - corpus must also be parsed with syntactic parser

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Phrase Translation Rules

Extracting Hierarchical Phrase Translation Rules

Formal Definition

Recall: consistent phrase pairs

$$(ar{e},ar{f})$$
 consistent with $A\Leftrightarrow$ $orall e_i\inar{e}:(e_i,f_j)\in A o f_j\inar{f}$ And $orall f_j\inar{f}:(e_i,f_j)\in A o e_i\inar{e}$ And $\exists e_i\inar{e},f_j\inar{f}:(e_i,f_j)\in A$

• Let P be the set of all extracted phrase pairs (\bar{e}, \bar{f})

Formal Definition

• Extend recursively:

$$\begin{split} \text{if } (\bar{e},\bar{f}) \in P \text{ and } (\bar{e}_{\text{SUB}},\bar{f}_{\text{SUB}}) \in P \\ \text{and } \bar{e} &= \bar{e}_{\text{PRE}} + \bar{e}_{\text{SUB}} + \bar{e}_{\text{POST}} \\ \text{and } \bar{f} &= \bar{f}_{\text{PRE}} + \bar{f}_{\text{SUB}} + \bar{f}_{\text{POST}} \\ \text{and } \bar{e} &\neq \bar{e}_{\text{SUB}} \text{ and } \bar{f} \neq \bar{f}_{\text{SUB}} \end{split}$$

$$\text{add } (e_{\text{PRE}} + \mathbf{X} + e_{\text{POST}}, f_{\text{PRE}} + \mathbf{X} + f_{\text{POST}}) \text{ to } P \end{split}$$

(note: any of e_{PRE} , e_{POST} , f_{PRE} , or f_{POST} may be empty)

• Set of hierarchical phrase pairs is the closure under this extension mechanism

Comments

 Removal of multiple sub-phrases leads to rules with multiple non-terminals, such as:

$$Y \rightarrow X_1 X_2 \mid X_2 \text{ of } X_1$$

- Typical restrictions to limit complexity [Chiang, 2005]
 - at most 2 nonterminal symbols
 - at least 1 but at most 5 words per language
 - span at most 15 words (counting gaps)

Learning Syntactic Translation Rules

Chapter 11: Tree-Based Models

Constraints on Syntactic Rules

- Same word alignment constraints as hierarchical models
- Hierarchical: rule can cover any span
 syntactic rules must cover constituents in the tree
- ◆ Hierarchical: gaps may cover any span
 ⇒ gaps must cover constituents in the tree

Much less rules are extracted (all things being equal)

Impossible Rules

Rules with Context

Rule with this phrase pair requires syntactic context

Too Many Rules Extractable

- Huge number of rules can be extracted
 (every alignable node may or may not be part of a rule → exponential number of rules)
- Need to limit which rules to extract
- Option 1: similar restriction as for hierarchical model (maximum span size, maximum number of terminals and non-terminals, etc.)
- Option 2: only extract minimal rules ("GHKM" rules)

Minimal Rules

Extract: set of smallest rules required to explain the sentence pair

Extracted rule: PRP \rightarrow Ich | I

Extracted rule: $PRP \rightarrow Ihnen \mid you$

Extracted rule: $DT \rightarrow die \mid some$

Extracted rule: NNS → Anmerkungen | comments

Insertion Rule

Extracted rule: $PP \rightarrow X \mid to PRP$

Non-Lexical Rule

Extracted rule: NP \rightarrow X₁ X₂ | DT₁ NNS₂

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow X_1 X_2$ aushändigen | passing on $PP_1 NP_2$

Lexical Rule with Syntactic Context

Extracted rule: $VP \rightarrow werde \ X \mid shall \ be \ VP$ (ignoring internal structure)

Non-Lexical Rule

Extracted rule: $S \rightarrow X_1 X_2 \mid PRP_1 VP_2$

DONE — note: one rule per alignable constituent

Unaligned Source Words

Attach to neighboring words or higher nodes → additional rules

Too Few Phrasal Rules?

- Lexical rules will be 1-to-1 mappings (unless word alignment requires otherwise)
- But: phrasal rules very beneficial in phrase-based models
- Solutions
 - combine rules that contain a maximum number of symbols (as in hierarchical models, recall: "Option 1")
 - compose minimal rules to cover a maximum number of non-leaf nodes

Composed Rules

• Current rules

$$X_1 X_2 = NP$$

$$DT_1 NNS_1$$

• Composed rule

(1 non-leaf node: NP)

Composed Rules

• Minimal rule:

3 non-leaf nodes:

VP, PP, NP

• Composed rule:

3 non-leaf nodes: **VP**, **PP** and **NP**

Relaxing Tree Constraints

• Impossible rule

$$egin{array}{lll} X & = & MD & VB \\ & & & | & & | \\ werde & shall & be \end{array}$$

- Create new non-terminal label: MD+VB
- \Rightarrow New rule

$$\begin{array}{ccc} x & = & MD+VB \\ | & & \\ werde & & MD & VB \\ | & | \\ shall & be \end{array}$$

Zollmann Venugopal Relaxation

- If span consists of two constituents, join them: X+Y
- If span conststs of three constituents, join them: X+Y+Z
- If span covers constituents with the same parent x and include
 - every but the first child Y, label as $X \setminus Y$
 - every but the last child Y, label as X/Y
- For all other cases, label as FAIL

⇒ More rules can be extracted, but number of non-terminals blows up

Special Problem: Flat Structures

Flat structures severely limit rule extraction

• Can only extract rules for individual words or entire phrase

Relaxation by Tree Binarization

More rules can be extracted Left-binarization or right-binarization?

Scoring Translation Rules

- Extract all rules from corpus
- Score based on counts
 - joint rule probability: $p(LHS, RHS_f, RHS_e)$
 - rule application probability: $p(\text{RHS}_f, \text{RHS}_e|\text{LHS})$
 - direct translation probability: $p(RHS_e|RHS_f, LHS)$
 - noisy channel translation probability: $p(RHS_f|RHS_e, LHS)$
 - lexical translation probability: $\prod_{e_i \in RHS_e} p(e_i | RHS_f, a)$