UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

Faculdade de Ciências - Campus Bauru

DEPARTAMENTO DE COMPUTAÇÃO

BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

HABILITANDO UM PRÉDIO A LOCALIZAR CONTEXTUALMENTE DISPOSITIVOS UTILIZANDO REDES SEM FIO

Luís Henrique Puhl de Souza Graduando RA 11026006

Prof. Dr. Eduardo Martins MorgadoOrientador

SUMÁRIO

1	INTRODUÇÃO	2
2	PROBLEMA	3
2.1	SOBRE SISTEMAS DE POSICIONAMENTO	3
3	JUSTIFICATIVA	5
4	OBJETIVOS	
4.1	OBJETIVO GERAL	7
4.2	OBJETIVOS ESPECÍFICOS	7
5	FUNDAMENTAÇÃO TEÓRICA	8
5.1	Internet das coisas (IoT)	8
5.2	Localização contextual de dispositivos	8
5.2.1	Localização contextual	9
5.2.2	Contexto de um dispositivo em um prédio	10
5.3	Localização baseada em redes sem fio	10
6	MÉTODO DE PESQUISA	12
7	CRONOGRAMA	14
	REFERÊNCIAS	15

1 INTRODUÇÃO

Recentemente, Internet das Coisas (IoT - *Internet of Things*) vem tomando o foco das atenções de empresas e entusiastas de Tecnologia da Informação (DZONE, 2015) a tal ponto que as empresas líderes do segmento já incluem IoT como uma de suas áreas de atuação (IBM, 2016) (ARM, 2016) (MICROSOFT, 2016) (INTEL, 2016) (ORACLE, 2016) (GOOGLE, 2016) (AMAZON, 2016a).

Todo este movimento no mercado é justificado pelo baixo custo dos pequenos dispositivos computacionais (FUNDATION, 2015) (ESP8266.NET, 2016) e grandes serviços na nuvem (KAUFMANN; DOLAN, 2015) (AMAZON, 2016b). Este baixo custo possibilita a computação ubíqua descrita por Weiser em 1991 e 1992 (WEISER, 1999) que é entendida pelos autores como *"computação virtualmente onipresente"*. Também para os autores, esta virtual onipresença é base e consequência para a loT, sendo esta a realizadora da computação ubíqua.

Uma vez contextualizado o mercado e a oportunidade de implementação da computação ubíqua, percebemos a necessidade de dar aos elementos cotidianos (coisas) a capacidade info-computacional, tornando-os sensores e atuadores conectados, unicamente identificáveis e acessíveis através da rede mundial de computadores (LEMOS, 2013) (KRANENBURG, 2012).

É esperado que uma quantia total de 6,4 bilhões de dispositivos conectados exista até o final de 2016 (GARTNER, 2015) e entre 26 bilhões (GARTNER, 2014) e 50 bilhões até 2020 com até 250 novas coisas conectando-se por segundo (CISCO, 2013).

2 PROBLEMA

Tamanha quantidade de dispositivos conectados pouco acrescenta na vida diária se humanos ou coisas não puderem simplesmente se encontrar, tanto em ambiente real quanto virtual é necessário o contato entre as partes para a existência de uma interação.

Mais ainda, para melhor funcionamento de aplicações como o uso de conteúdo específico para cada usuário e situação é necessário coletar informações contextuais. Para a maioria das aplicações, a informação contextual de maior relevância é a localização física.

Destacamos a necessidade da criação desta informação através de sensores ativos sempre que necessário para que o dispositivo tenha ciência deste contexto em suas tomadas de decisão e para que outros (sistemas, pessoas e coisas) saibam a localização de qualquer dispositivo ao qual têm interesse de interagir.

Um exemplo da necessidade de localização de dispositivos dentro de um prédio seria um profissional saber onde está o dispositivo em seu local de trabalho, seja ele um vendedor e seu tablet para demostrar um produto fora de estoque em uma loja ou um médico e um desfibrilador.

2.1 SOBRE SISTEMAS DE POSICIONAMENTO

Sistemas de posicionamento (PS - *Positioning System*) são geralmente constituídos de um Ponto Origem Global escolhido (*O*) e um conjuto não vazio de Pontos de Referência (RP - *Reference Point*) cuja localização global em relação ao *O* é conhecida com precisão maior ou igual a oferecida pelo sistema.

Também faz parte do sistema o ponto móvel (MU - *Mobile User*) sobre o qual temos interesse em determinar a posição que é feita pelo PS encontrando uma distância (com dimensão variável de acordo com o método utilizado para adquirir a distância) relativa a um sub-conjunto de RPs. Feito isso, é possível utilizar modelos matemáticos para, a partir das distâncias, encontrar uma posição do MU em relação aos RPs e uma nova transformação é aplicada para encontrar a posição relativa ao *O*.

Uma das maneiras de classificar PSs é entre os de Auto Posicionamento e Posicionamento Remoto. Os de Auto Posicionamento contém no MU todo aparato necessário para medir a distância dos RPs e calcular a posição em relação a *O*. Já os de Posicionamento Remoto tem o mínimo necessário na MU e todo o trabalho de cálculo de distância e posição global é feito nos RPs ou em uma unidade coordenadora

destes.

Para PSs eletrônicos baseados em radio-frequência (RF - *Radio Frequency*), geralmente, utilizam-se dois componentes básicos, Transmissores e Receptores, os quais assume-se que ao menos um destes está no RP e ao menos um outro no MU. Para calcular a distância entre MU e RP, utiliza-se as propriedades da comunicação por RF como tempo de chegada (TOA - *Time Of Arrival*), diferencial de tempo de chegada (TDOA - *Time Difference Of Arrival*) e ângulo de chegada de sinal (AOA - *Angle Of Arrival*).

Para maior precisão, é comum a utilização de múltiplas RPs geralmente com o número mínimo igual ao número de dimensões espaciais que deseja-se calcular. Notamos que para sistemas distribuídos a sincronização de relógios é um problema clássico então o tempo conta como dimensão.

Os sistemas classificados como "Sistema de Navegação Global por Satélite" (GNSS - Global Navigation Satellite System), como o tradicional Estadunidense Sistema de Posicionamento Global (GPS - Global Positioning System), utilizam a técnica em que o dispositivo móvel contém o receptor e os transmissores são fixos em satélites na órbita terrestre (DJUKNIC; RICHTON, 2001). Devido a posição e número de satélites, o GPS e seus correlatos estão sempre presentes do ponto de vista de um observador da superfície terrestre, sendo para este tipo de usuário um sistema ubíquo.

Entretanto, a força do sinal GNSS não é suficiente para penetrar a maioria dos prédios, uma vez que estes dependem de visão direta (LOS - *Line-Of-Sight*) entre os satélites e o receptor. A reflexão do sinal muitas vezes permite a leitura em ambientes fechados, porém o cálculo da posição não será confiável (CHEN; KOTZ, 2000). Portanto, apesar da ubiquidade dos GNSSs em ambientes abertos, são necessárias soluções diferentes para obter um Sistema de Posicionamento para Ambientes Fechados (IPS - *Indoor Positioning System*) sendo a ubiquidade deste essencial para conquistar o mesmo nível de confiança trazido pelos GNSSs.

Para implementar este IPS, propomos o uso de tecnologias já implantadas em dispositivos móveis e essenciais para o funcionamento dos mesmos, especialmente as de camadas de comunicação, que são ubíquas no ambiente dos dispositivos móveis, como Wi-Fi (padrão *IEEE 802.11*) e Bluetooth (padrão *Bluetooth SIG*), para que os objetos conectados em que temos interesse de encontrar o contexto locativo não necessitem de modificações.

3 JUSTIFICATIVA

Nossa proposta de IPS é de Posicionamento Remoto localizando dentro de um ambiente fechado dispositivos conectados a internet (IoT Devices) através de redes Wi-Fi e Bluetooth. Mediremos a distância destes MUs (devices) aos RP (sensores) utilizando o resíduo eletromagnético das redes sem fio (*sniffing*) disponibilizando as informações encontradas através de uma REST WEB API.

Sobre o contexto encontrado, propomos um ambiente consciente onde o contexto locativo oriundo do posicionamento remoto de cada dispositivo móvel é administrado e divulgado pelo prédio conectado ao invés da auto localização do aparelho, pois:

- a) Uma vez encontrada a localização, é mais fácil propagar esta informação do ambiente para o aparelho em comparação ao auto posicionamento, pois a negociação entre o ambiente e o aparelho é nula quando o primeiro contém a informação- o ambiente sempre disponibilizará uma informação coletada para o gerador desta informação;
- b) Pode-se lidar com grande heterogeneidade de dispositivos, uma vez que cada um deles não precisa se adaptar para cada mudança de ambiente;
- c) Este tipo de informação já é contida nos históricos de cada Ponto de Acesso
 Wi-Fi (AP Access Point), porém:
 - Geralmente sem uso poucas são as aplicações que usam a localização obtida pelo AP;
 - Com granularidade insuficiente para uso em aplicações contextualizadas;
 - geralmente não disponibilizada pelos APs.
- d) Uma vez instalado um PS deste gênero, a quantia de dispositivos que ele pode localizar fica limitada apenas pela rede física;
- e) Economia de hardware quando menos é exigido de cada dispositivo.

Levamos em conta também a quantidade prevista de em média 5 dispositivos loT por pessoa que seriam beneficiados sempre que utilizados no ambiente conectado.

A Figura 1 apresenta a arquitetura simplificada de uma aplicação IoT.

Para possibilitar testes em um ambiente real, o projeto aqui proposto será instalado dentro do prédio do Laboratório de Tecnologia da Informação Aplicada (LTIA) da Faculdade de Ciências da Unesp de Bauru.

Figura 1 – Modelo das camadas

Luís Henrique Puhl de Souza

Marcelo Augusto Cordeiro

Fonte: Marcelo Augusto Cordeiro

4 OBJETIVOS

4.1 OBJETIVO GERAL

Considerando características locais, propõem-se a construção de uma aplicação para localizar contextualmente dispositivos dentro de um prédio piloto e avaliar sua precisão.

Além desta aplicação, é objetivo definir o custo do projeto piloto, incluindo esforço de pesquisa assim como definir um custo para replicação deste localizador contextual em outros prédios.

4.2 OBJETIVOS ESPECÍFICOS

- a) Estabelecer o estado da arte sobre a desenvolvimento de aplicações IoT;
- b) Identificar desafios locais para o desenvolvimento;
- c) Identificar provedores de serviços, dispositivos e ferramentas para o desenvolvimento;
- d) construir sensores de identificação e localização (distância) de dispositivos cuja comunicação seja baseada em Bluetooth e Wi-Fi;
- e) Posicionar estes sensores;
- f) Construir um dispositivo agregador de informações dos sensores (gateway)
 e sua interface web (Web REST API Representational State Transfer Application Programming Interface);
- g) Estimar o custo total do projeto piloto incluindo esforço de pesquisa;
- h) Estimar o custo de replicação da aplicação em outros prédios.

5 FUNDAMENTAÇÃO TEÓRICA

Para conceituar, fundamentar e dar suporte teórico ao presente trabalho apresentamos nesta seção os tópicos: lot, localização contextual de dispositivos e localização baseada em redes sem fio.

5.1 Internet das coisas (IoT)

Uma das primeiras aplicações e definições de IoT foi feita por Kevin Ashton em 1999 para a *Procter & Gamble* (P&G) (ASHTON, 2009) e simultaneamente no laboratório Auto-ID Labs no Instituto de Tecnologia de Massachusetts (MIT - *Massachusetts Institute of Technology*) utilizando identificação por radio-frequência (RFID - *radio-frequency identification*) (ATZORI; IERA; MORABITO, 2010) (FRIEDEMANN; FLOERKEMEIR, 2011) e desde então cresceu ultrapassando o escopo da tecnologia RFID porém sempre com as premissas de "uma infraestrutura global para a Sociedade da Informação, habilitando serviços avançados através da interconexão de coisas (físicas e virtuais) baseadas em tecnologias, existentes e evolutivas, de informação e comunicação" International Telecommunication Union (2012, p. 1) (WORTMANN; FLÜCHTER, 2015).

Hoje em dia, quase qualquer tecnologia de comunicação acessível a computadores pode ser utilizada como meio de comunicação entre nós da IoT, tornando RFID mais uma, porém de grande importância, tecnologia info-comunicacional a disposição das coisas para sua conexão. Esta gama de tecnologias possibilita uma variedade equivalente de coisas conectadas. Se a coisa pode usar de uma tecnologia de conexão, considerando suas restrições de volume, custo e utilidade, muito provavelmente vai fazê-lo gerando ao menos uma identidade virtual representando seu objeto físico e seus atributos. Esta identidade virtual e atributos virtuais serão expostos para todos indivíduos, humanos ou coisas, que lhe forem convenientes de qualquer lugar do universo virtual, fazendo efetivamente parte da internet.

5.2 Localização contextual de dispositivos

Em ciência da computação, os termos "Contexto" e "Consciência de Contexto" expressam uma ideia recente estudada nos campos de inteligência artificial e ciência cognitiva desde 1991. O tema "Contexto"ainda é considerado atual e promissor a ponto de mudar o cenário de negócios nos próximos 10 anos porém sem definição

simples. Tamanha é a falta de uma definição geral que realmente funcione para casos reais que existe uma proposta de definir o termo utilizando uma nova metodologia de pesquisa holística através de mineração e agrupamento de texto advindo de publicações cientificas (PASCALAU; NALEPA; KLUZA, 2013).

Mesmo sem uma definição permanente em vista, utilizaremos o que é considerado estado da arte para o termo *"Contexto"* que foi introduzido por Dey e Abowd (1999) e reforçado por Dey (2000):

"Contexto é qualquer informação que pode ser utilizada para caracterizar a situação de uma entidade. Uma entidade é uma pessoa, lugar ou objeto que é considerado relevante para a interação entre um usuário e uma aplicação, incluindo o próprio usuário e a aplicação."

Dey e Abowd (1999, p. 3) Tradução Nossa.

5.2.1 Localização contextual

Das informações contextuais que uma aplicação de cliente móvel pode obter, a localização é uma das mais importantes. Ajudar pessoas a navegar por mapas, encontrar objetos e pessoas com os quais tem interesse de interagir é sem dúvida uma boa meta a ser alcançada com a coleta da localização do cliente (BELLAVISTA; KÜPPER; HELAL, 2008).

Na categoria de Serviços Baseados em Localização (LBS - *Location-Based Services*) existem duas gerações. A primeira orientada a conteúdo que falhou, pois a informação de localização era armazenada pela rede, podendo até ser vendida pelo provedor a terceiros, causando a sensação de Spam no usuário final ao receber conteúdo desta provedora. Já na segunda geração, a posse da informação foi movida para o cliente móvel, deixando a cargo do usuário escolher se ela seria compartilhada e com quem. Esta mudança trouxe maior engajamento do usuário, resultando numa maior aceitação dessa geração (BELLAVISTA; KÜPPER; HELAL, 2008).

Ao contrário das técnicas atuais, neste trabalho os humanos ou tomadores de decisão não estarão em posse do cliente móvel, e sim em posse do prédio. Portanto, a mesma informação, sem degradação em sua importância, passará a ser coletada e armazenada pelo provedor da rede como nos LBSs de primeira geração. Esta decisão garante o foco no usuário uma vez que este mudou, antes ele detinha um cliente móvel, agora ele detem múltiplos. Isso torna a detenção do todo (coisas dentro do prédio) mais precioso do que o das partes (os clientes móveis).

Uma vez encontrada a localização de um dispositivo, metadados sobre o prédio são mesclados formando um conjunto rico contextualmente do ponto de vista da aplicação IoT Prédio como fornecedora principal dos dados para a internet e portanto seus usuários detentores. Essa riqueza é garantida com metadados sobre o dispositivo

(identificação, nome, histórico, carecteristicas) e sobre o prédio (ex.: mapa, estrutura de salas, horário de funcionamento, consumo energético, humanos responsáveis e lista de equipamentos) que trazem possibilidades de extração de informação importantes para os detentores deste prédio e seu conteúdo. Esta capacidade do prédio devese pelo papel de coordenador de informações e controlador de meta-informações semelhante ao Coordenador em uma aplicação na arquitetura Modelo-Apresentação-Adaptador-Controlador-Coordenador (MPACC - Model-PresentationAdapter-Controller-Coordinator) proposto por Román e Campbell Román e Campbell (2001).

5.2.2 Contexto de um dispositivo em um prédio

Para os metadados agregados à informação de posição pelo prédio definimos que o modelo de divulgação terá de conter além da posição do dispositivo informação sobre este (nome, histórico), informação da estrutura do prédio (mapa imagem, mapa lógico, nome, localização global, endereço, etc), ligação entre a estrutura do prédio e a localização do dispositivo (posição no mapa lógico) e informação sobre o estado do prédio (horário de funcionamento, frequentadores, etc).

Este modelo visa prover fácil mineração e reutilização de informações por terceiros após a implementação do projeto que é medida pela disponibilidade e relacionamento das informações providas. Essa métrica também será utilizada para avaliar o projeto final.

Este foco em reusabilidade vem da definição de Web Semantica (*Semantic Web*) e de uma de suas realizadoras, a Ligação de Dados (*Linked Data*), que sugerem o uso de um formato padrão além de ser acessível e gerenciável pelas ferramentas de exploração. Desta forma a Web de Dados (*Web of Data*) é construída opondo uma simples coleção de dados (BIZER; HEATH; BERNERS-LEE, 2009).

5.3 Localização baseada em redes sem fio

Para o sistema de posicionamento nos baseamos em técnicas de triangulação de distâncias adquiridas com a medição de características eletromagnéticas (ex.: potência de sinal) e dos protocolos (ex.: Tempo de chegada) que já foram explorados anteriormente (ABUSUBAIH; RATHKE; WOLISZ, 2007) (BAHILLO et al., 2009) (FELDMANN et al., 2003).

Portanto os sensores seguirão as especificações de *WiFi IEEE 802.11* (CROW et al., 1997) e *Bluetooth low energy (BLE)* (HOSSAIN; SOH, 2007).

Para construir estes sensores uma plataforma de hardware adequada é necessária, para esta escolhemos o Raspberry Pi (VUJOVIC et al., 2014) (VUJOVIĆ;

MAKSIMOVIĆ, 2015) que já foi provado funcional no caso de Localização através WiFi por Ferreira (2016) especialmente a sua versão 3 que adiciona a capacidade de sensor *WiFi* e *Bluetooth* em sua placa principal sem necessidade de adaptadores externos destacando ainda mais sua escolha (RASPBERRY PI FOUNDATION, 2016).

6 MÉTODO DE PESQUISA

Abordagens para medir distâncias através de redes sem fio Wi-Fi (BAHILLO et al., 2009) e Bluetooth já existem e, propor novas maneiras não é o foco deste trabalho. Utilizando essas técnicas, propomos estabelecer uma rede de nós sensores colaborativos fixos no ambiente onde deseja-se obter a localização dos dispositivos. As informações de distância serão compartilhadas entre os nós para maior precisão da informação.

Para a implementação, pretende-se utilizar os softwares de maior destaque recentemente nos ramos de comunicação de baixa energia (*MQTT*), serviços *Web* para armazenamento (*MongoDB*) e publicação (*NodeJS*), além de softwares para medição da distância sem interferir na comuncação (*Sniffing*) e das plataformas de hardware disponíveis e recomendadas para IoT com capacidade Wi-Fi e Bluetooth (*Raspberry Pi 3*).

Mesmo com a grande quantidade de dispositivos já conectados são poucos os documentos descrevendo boas práticas para concepção, construção e manutenção de aplicações IoT, especialmente sobre os cuidados tomados quanto a segurança e análise de custos para a implementação e manutenção.

Além disso, a falta de referências neste sentido é agravada quando considera-se a implementação no interior do estado de São Paulo. Nesta região, poucas são as organizações atualizadas neste tema, levando a uma falta enorme de conteúdo escrito na linguagem local além de serviços e produtos disponíveis para construção de uma plataforma completa e competitiva nesta região.

Devido a falta de conteúdo e instrução, utilizaremos prototipagem ágil para este projeto, uma vez que esta metodologia de desenvolvimento é recomendada para projetos cujas especificações e definições não são claras, demandando muitas modificações das mesmas durante a execução do mesmo. Esse método entra em contraste com metodologias clássicas, como a cascata que apesar de previsíveis, não reagem bem a ambientes de extrema incerteza.

Mais especificamente, utilizaremos uma variante da metodologia *Scrum* (JAMES, 2016) que será adaptada para o projeto. Nela, serão executadas iterações de uma semana em que a cada iteração, uma nova versão melhorada do produto completo (hardware, software, documentação e resultados) será entregue.

Dentro de cada iteração, as camadas da aplicação IoT serão escolhidas, implementadas, justificadas e avaliadas, sendo todo processo documentado. Como resultado

de cada uma delas, será gerado um relatório das mudanças a partir da iteração anterior.

Com mais detalhes, cada iteração cumprirá uma parte de cada objetivo no trabalho completo levando o projeto integralmente para um estágio de completude maior a cada iteração. Serão foco de cada iteração os objetivos abaixo, gerando um relatório utilizado para tomar e justificar decisões durante a execução do projeto bem como servir de posterior documentação. Os objetivos de cada iteração são:

- a) Escolha de provedores de serviços, dispositivos e ferramentas para o desenvolvimento;
- b) construir, avaliar, testar e manter dos sensores;
- c) construir um dispositivo agregador e sua API;
- d) Estimar o custo total do projeto piloto;
- e) Estimar o custo de replicação;
- f) Identificar os desafios para o desenvolvimento.

Desta forma, esperamos garantir a liberdade necessária para o projeto ser executado com sucesso, mesmo no ambiente de incerteza no qual o mercado local de IoT encontra-se, cumprindo as premissas de de funcionamento, manutenção e segurança que são grande importância para os interessados na área.

7 CRONOGRAMA

Devido a natureza ágil e iterativa da metodologia, o cronograma será dividido em apenas três partes: Levantamento Bibliográfico Inicial, Desenvolvimento Iterativo (Escolha de provedores e fornecedores; Construção, avaliação, teste e manutenção dos sensores e agregadores; Estimativas de custos totais e de replicação e Documentação de desenvolvimento) e Revisão Final. Estas partes serão distribuídas durante o ano letivo conforme a Tabela 1 considerando as alterações do calendário letivo da Faculdade de Ciências da UNESP de Bauru que esteve em estado de greve de 1º de Junho à 18 de Agosto de 2016.

Tabela 1 – Cronograma de Atividades Propostas

Atividade	Fev	Mar	Abr	Mai	Ago	Set	Out	Nov	Dez	Jan	Total
Levantamento Bibliográfico Inicial	Х	Х									2
Escolha de provedores e fornecedores		Х	Х	Х	Х	Х	Х				6
Construção, avaliação e manutenção dos sensores e agregadores			X	X	X	X	X	X			6
Estimativas de custos					Х	Х	Х	Х	Х		5
Documentação de desenvolvimento			Х	Х	Х	Х	Х	Х	Х		7
Revisão Final								Х	Х	Х	3
Semanas disponíveis	4	5	4	4	2	4	4	4	3	3	37
Total de atividades	4	10	12	12	8	16	16	16	9	3	106

Fonte: Produzido pelo autor.

Cada atividade realizada representa uma melhoria ou avanço no projeto total porém o número total é apenas uma estimativa devido a natureza da metodologia. Nesta segunda versão do cronograma foram estimadas 106 atividades distribuidas em 37 semanas, de acordo com as alterações dos calendários letivos anteriormente mencionados. As diferenças entre as duas vesões são nos meses de junho a janeiro onde houve redução de 40 para 37 semanas disponíveis e consequente redução da estimativa de atividades de 111 para 106.

REFERÊNCIAS

ABUSUBAIH, M.; RATHKE, B.; WOLISZ, A. A Dual Distance Measurement Scheme for Indoor IEEE 802 . 11 Wireless Local Area Networks *. *Proceedings of the 9th International Conference on Mobile and Wireless Communications Networks*, p. 121–125, 2007. ISSN 978-1-4244-1719-3. Disponível em: .

AMAZON. AWS IoT. 2016. 1-8 p. Disponível em: https://aws.amazon.com/pt/iot/>.

AMAZON. AWS IoT. 2016. 1-8 p. Disponível em: https://aws.amazon.com/pt/iot/>.

ARM. Welcome to mbed. 2016. Disponível em: https://www.mbed.com/en/>.

ASHTON, K. That 'Internet of Things' Thing. *RFiD Journal*, v. 22, n. 7, p. 4986, 2009. Disponível em: .

ATZORI, L.; IERA, A.; MORABITO, G. The Internet of Things: A survey. *Computer Networks*, Elsevier B.V., v. 54, n. 15, p. 2787–2805, 2010. ISSN 13891286. Disponível em: http://linkinghub.elsevier.com/retrieve/pii/S1389128610001568>.

BAHILLO, A. et al. IEEE 802.11 distance estimation based on RTS/CTS two-frame exchange mechanism. In: IEEE. *Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th.* 2009. p. 1–5. Disponível em: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5073583>.

BELLAVISTA, P.; KÜPPER, A.; HELAL, S. Location-based services: Back to the future. *IEEE Pervasive Computing*, v. 7, n. 2, p. 85–89, 2008. ISSN 15361268.

BIZER, C.; HEATH, T.; BERNERS-LEE, T. Linked Data - The Story So Far. *International Journal on Semantic Web and Information Systems*, IGI Global, v. 5, n. 3, p. 1–22, jan 2009. ISSN 1552-6283. Disponível em: http://www.igi-global.com/article/linked-data-story-far/37496.

CHEN, G.; KOTZ, D. *A Survey of Context-Aware Mobile Computing Research*. [S.I.], 2000. v. 3755, n. TR2000-381, 1–16 p. Disponível em: http://www.cs.dartmouth.edu/reports/abstracts/TR2000-381/.

CISCO. *How Many Internet Connections are in the World? Right. Now.* 2013. 2 p. Disponível em: http://blogs.cisco.com/news/cisco-connections-counter>.

CROW, B. et al. IEEE 802.11 Wireless Local Area Networks. *IEEE Communications Magazine*, v. 35, n. 9, p. 116–126, 1997. ISSN 01636804. Disponível em: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=620533>.

Referências 16

DEY, A. K. Providing Architectural Support for Building Context-Aware Applications. *Sensors Peterborough NH*, v. 16, n. November, p. 97–166, 2000. ISSN 07370024. Disponível em: http://portal.acm.org/citation.cfm?id=932974.

DEY, A. K.; ABOWD, G. D. Towards a Better Understanding of Context and Context-Awareness. *Computing Systems*, v. 40, n. 3, p. 304–307, 1999. ISSN 00219266.

DJUKNIC, G. M.; RICHTON, R. E. Geolocation and assisted GPS. *Computer*, v. 34, n. 2, p. 123–125, 2001. Disponível em: http://ieeexplore.ieee.org/xpl/articleDetails.jsp? arnumber=901174>.

DZONE. THE DZONE GUIDE TO THE INTERNET OF THINGS. *DZone*, p. 32, 2015. Disponível em: https://dzone.com/guides/internet-of-things-1.

ESP8266.NET. *ESP8266.net home*. 2016. Disponível em: http://esp8266.net/>.

FELDMANN, S. et al. An indoor Bluetooth-based positioning system: concept, Implementation and experimental evaluation. *International Conference on Wireless Networks*, n. JANUARY 2003, p. 109–113, 2003. ISSN 09621105. Disponível em: .

FERREIRA, L. C. P. *Sistema localizador interior de baixo custo*. 2016. Disponível em: http://repositorio.ipl.pt/handle/10400.21/6162.

FRIEDEMANN, M.; FLOERKEMEIR, C. From the Internet to the Internet of Things. From Active Data Management to Event-Based Systems and More, p. 242–259, 2011. ISSN 0302-9743. Disponível em: http://www.ulb.tu-darmstadt.de/tocs/79304567.pdf.

FUNDATION, R. *Raspberry Pi Zero: the \$5 computer.* 2015. 2 p. Disponível em: https://www.raspberrypi.org/blog/raspberry-pi-zero/.

GARTNER. *Gartner Says the Internet of Things Will Transform the Data Center.* 2014. 5 p. Disponível em: http://www.gartner.com/newsroom/id/2684616.

GARTNER. Gartner Says 6.4 Billion Connected "Things"Will Be in Use in 2016, Up 30 Percent From 2015. 2015. 1 p. Disponível em: http://www.gartner.com/newsroom/id/3165317.

GOOGLE. *Google for Internet of Things*. 2016. 1–5 p. Disponível em: https://cloud.google.com/solutions/iot/>.

HOSSAIN, A. K. M. M.; SOH, W.-S. A Comprehensive Study of Bluetooth Signal Parameters for Localization. In: *2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications*. IEEE, 2007. p. 1–5. ISBN 978-1-4244-1143-6. ISSN 2166-9570. Disponível em: .">http://ieeexplore.ieee.org/xpl/login.jsp?tp={&}arnumber=853>.

IBM. IBM IoT. 2016. 1–5 p. Disponível em: http://www.ibm.com/internet-of-things/>.

INTEL. *IoT Solutions | IntelDeveloper Zone*. 2016. 1–4 p. Disponível em: https://software.intel.com/en-us/articles/a-fast-flexible-and-scalable-path-to-commercial-iot-solutions.

Referências 17

International Telecommunication Union. Overview of the Internet of things. *Series Y: Global information infrastructure, internet protocol aspects and next-generation networks - Frameworks and functional architecture models*, p. 22, 2012. Disponível em: http://handle.itu.int/11.1002/1000/11559>.

JAMES, M. The Ultimate Scrum Reference Card. *Dzone*, p. 6, 2016. Disponível em: https://dzone.com/refcardz/scrum.

KAUFMANN, A.; DOLAN, K. *Price Comparison: Google Cloud vs AWS*. [S.I.], 2015. 16 p. Disponível em: https://cloud.google.com/files/esg-whitepaper.pdf>.

KRANENBURG, R. van. The Sensing Planet: Why The Internet Of Things Is The Biggest Next Big Thing. *Co.CREATE*, p. 1–8, 2012. Disponível em: http://www.fastcocreate.com/1681563/ the-sensing-planet-why-the-internet-of-things-is-the-biggest-next-big-thing>.

LEMOS, A. A Comunicação das Coisas: Internet das Coisas e Teoria Ator-Rede. p. 1–23, 2013.

MICROSOFT. *The Internet of Your Things*. 2016. Disponível em: https://dev.windows.com/en-US/iot>.

ORACLE. *Oracle IoT*. 2016. 3–5 p. Disponível em: https://www.oracle.com/solutions/internet-of-things/index.html.

PASCALAU, E.; NALEPA, G. J.; KLUZA, K. Towards a Better Understanding of. *Proceedings of the 2013 Federated Conference on Computer Science and Information Systems*, p. 959–962, 2013. ISSN 1743-9213.

RASPBERRY PI FOUNDATION. *Raspberry Pi 3 Model B - Raspberry Pi*. 2016. Disponível em: https://www.raspberrypi.org/products/raspberry-pi-3-model-b/.

ROMÁN, M.; CAMPBELL, R. H. A Model for Ubiquitous Applications. 2001. Disponível em: .

VUJOVIĆ, V.; MAKSIMOVIĆ, M. Raspberry Pi as a Sensor Web node for home automation. *Computers & Electrical Engineering*, v. 44, p. 153–171, feb 2015. ISSN 00457906. Disponível em: http://www.sciencedirect.com/science/article/pii/S0045790615000257.

VUJOVIC, V. et al. Raspberry Pi as Internet of Things hardware: Performances and Constraints Raspberry Pi as Internet of Things hardware: Performances and Constraints. n. JUNE, 2014.

WEISER, M. The computer for the 21st century. *SIGMOBILE Mob. Comput. Commun. Rev.*, v. 3, n. 3, p. 3–11, 1999. ISSN 1559-1662. Disponível em: http://dl.acm.org/citation.cfm?doid=329124.329126.

WORTMANN, F.; FLÜCHTER, K. *Internet of Things: Converging Technologies for Smart Environments and Integrated Ecosystems*. [s.n.], 2015. v. 57. 221–224 p. ISSN 1867-0202. Disponível em: http://dx.doi.org/10.1007/s12599-015-0383-3.