Formulas

1) PV= nRT

 $N_{M} < C^{2} >$

3 NKT

rms1 Crms2

[PV=NKT] Derivation

V = N Rt

No

and R = K

Na -- PV = NKT

Assumtions made for idealogos

Relationship between molecule speed and pressure exerted

To show the relationship between the speed of the molecules in a gas and the pressure it exerts, the following assumptions are made:

- The forces between molecules are negligible (except during collisions).
- The volume of the molecules is negligible compared with the total volume occupied by the gas.
- All collisions between the molecules and between the molecules and the container walls are perfectly elastic.
- The time spent in colliding is negligible compared with the time between collisions.
- There are many identical molecules that move at random.

I deal gas

There is pressure becomes molecules hit the walls of contoiner, thus there is a change in monentum which nears there is force, and force over on one is pressure

· F: rate of change of momentum =
$$\frac{Dm}{Dt}$$

$$= \frac{2mc}{2l} = \frac{mc^2}{l}$$

$$\frac{\text{mc}^2}{\text{Pressure}} = \frac{\text{force}}{\text{Area}} = \frac{L}{L^2}$$

$$= \frac{MC^2}{\sqrt{}}$$

· However c is relocally of just one gos molecule, but ther
one notecules moving in all 3 oxis, ie Cx, Cy, Cz
:. We take RMS ratue
$\operatorname{and} \angle \operatorname{Ca7} = \angle \operatorname{Cy}^2 7 = \angle \operatorname{Cz}^2 7$
$2C^2 > = 2Cx^2 > x^3$
$2C^{2} > = 2C^{2} \times 3$ $2Ca^{2} > = 2C^{2} \times 3$ sub this back into agm $2Ca^{2} > = 2C^{2} \times 3$ on previous page
$:. pressure = \frac{M\left(\frac{CC^2}{3}\right)}{V}$
= PV = 1 m < c2> = this is for I molecule this is for I molecule that could be morning im x, y or z, but there are N number of molecular
so we multiply by N
$PV = \frac{1}{3} Nm cc^2$

	Ang K. E of mole	ecules
	O	
Egnati	PV=nRT and PV	= L Nmcc2>
		3

NRT= 13 Nm CC2> N=n

6.03 × 10²³

Bottermonuntarity $\frac{3}{3}NRT = Nm \angle C^{2}$

 $R = \frac{N}{Na} = \frac{N}{Na} = \frac{N}{Na}$ $R = \frac{N}{Na} = \frac{N}{Na} = \frac{N}{Na}$

Non the multiply by 1 to turn it

 $\frac{\text{in } kE, i.e. }{2} \text{ in } v^2 = \text{Im} \angle c^2 7$ $\frac{3}{2} \text{ kT} = \frac{1}{2} \text{ m} \angle C^2 7$

: (Re)= 3 KT

and for Nimolecules

(KE)= 3 NKT

