

NP-Completeness

P: Polynomial-Time Solvable Problems

Ubiquitous Intractability

Focus of this course (+ Part I): Practical algorithms + supporting theory for fundamental computational problems.

Sad fact: Many important problems seem impossible to solve efficiently.

Next: How to formalize computational intractability using NP-completeness.

Later: Algorithmic approaches to NP-complete problems.

Polynomial-Time Solvability

Question: How to formalize (in)tractability?

Definition: A problem is polynomial-time solvable if there is an algorithm that correctly solves it in $O(n^k)$ time, for some constant k.

[Where n = input length = # of key strokes needed to describe input]

[Yes, even k = 10,000 is sufficient for this definition]

Comment: Will focus on deterministic algorithms, but to first order doesn't matter.

The Class P

Definition: P =the set of poly-time solvable problems.

Examples: Everything we've seen in this course except:

- Cycle-free shortest paths in graphs with negative cycles
- Knapsack [running time of our algorithm was $\Theta(nW),$ but input length proportional to $\log W$

Both problems are NP-complete

Interpretation: Rough litmus test for "computational tractability".

Traveling Salesman Problem

Input: Complete undirected graph with nonnegative edge costs.

Output: A min-cost tour [i.e., a cycle that visits every vertex exactly once].

OPT = 13

Conjecture: [Edmonds '65] There is no polynomial-time algorithm for TSP.

[As we'll see, equivalent to $P \neq NP$]

NP-Completeness

Reductions and Completeness

Reductions

Conjecture: [Edmonds '65] There is no polynomial-time algorithm that solves the TSP. [Equivalent to $P \neq NP$]

Really good idea: Amass evidence of intractability via <u>relative</u> difficulty - TSP "as hard as" lots of other problems.

Definition: [A little informal] Problem Π_1 reduces to problem Π_2 if: given a polynomial-time subroutine for Π_2 , can use it to solve Π_1 in polynomial time.

Quiz

Which of the following statements are true?

- A) Computing the median reduces to sorting
- B) Detecting a cycle reduces to depth-first search
- C) All pairs shortest paths reduces to single-source shortest paths
- D) All of the above

Completeness

Suppose Π_1 reduces to Π_2 .

Contrapositive: If Π_1 is not in P, then <u>neither is Π_2 </u>.

That is: Π_2 is at least as hard as Π_1 .

Definition: Let C = a set of problems.

The problem Π is C-complete if:

(1) $\Pi \in \mathcal{C}$ and (2) everything in \mathcal{C} reduces to Π .

That is: Π is the hardest problem in all of C.

Choice of the Class $\mathcal C$

Idea: Show TSP is C-complete for a REALLY BIG set C.

How about: Show this where C = ALL problems.

Halting Problem: Given a program and an input for it, will it eventually halt?

Fact: [Turing '36] No algorithm, however slow, solves the Halting Problem.

Contrast: TSP definitely solvable in finite time (via brute-force search).

Refined idea: TSP as hard as all brute-force-solvable problems.

NP-Completeness

Definition and Interpretation

The Class NP

Refined idea: Prove that TSP is as hard as all brute-force-solvable problems.

Definition: A problem is in NP if:

- (1) Solutions always have length polynomial in the input size
- (2) Purported solutions can be verified in polynomial time.

Examples: - Is there a TSP tour with length ≤ 1000 ?

- Constraint satisfaction problems (e.g., 3SAT)

Interpretation of NP-Completeness

Note: Every problem in NP can be solved by brute-force search in exponential time. [Just check every candidate solution.]

Fact: Vast majority of natural computational problems are in NP $[\approx \text{Can recognize a solution}]$

By definition of completeness: A polynomial-time algorithm for one NP-complete problem solves $\underline{\text{every}}$ problem in NP efficiently [i.e., implies that P=NP]

Upshot: NP-completeness is strong evidence of intractability!

A Little History

Interpretation: An NP-complete problem encodes simultaneously all problems for which a solution can be efficiently recognized (a "universal problem").

Question: Can such problems really exist?

Amazing fact #1: [Cook '71, Levin '73] NP-complete problems exist.

Amazing fact #2: [started by Karp '72] 1000s of natural and important problems are NP-complete (including TSP).

NP-Completeness User's Guide

Essential tool in the programmer's toolbox: The following recipe for proving that a problem Π is NP-complete.

- (1) Find a known NP-complete problem Π' (see e.g. Garey + Johnson, Computers + Intractability)
- (2) Prove that Π' reduces to Π
- \Rightarrow implies that Π at least as hard as Π'
- \Rightarrow Π is NP-complete as well (assuming Π is an NP problem)

NP-Completeness

The P vs. NP Question

The P vs. NP Question

Question: Is P = NP?

polynomial time solvable

can verify correctness of a solution in polynomial time

Widely conjectured: P≠NP. [Though see Gödel '56]

But: Has not been proved. [Worth \$1 million from Clay Institute]

Reasons to believe:

- (1) (psychological) if P=NP, someone would have proved it by now
- (2) (philosophical) if P=NP, then finding a proof always as easy as verifying one
- (3) (mathematical) ??

What's In A Name

FAQ: What does "NP" stand for?

"not polynomial"

Answer: "Nondeterministic polynomial"

[Modern, mathematically equivalent definition via efficient verification of purported solutions]

Historical reference: Knuth, "A Terminological Proposal", 1974.

Passed over:

NP-Completeness: The Beginning, Not the End

Question: So your problem is NP-complete. Now what?

Important: NP-completeness not a death sentence.

⇒ but, need appropriate expectations/strategy

Three useful strategies:

(1) Focus on computationally tractable special cases

Examples: - WIS in path graphs (and trees, bounded tree width) (NP-c in general graphs)

- Knapsack with polynomial size capacity (e.g., W = O(n))
- 2SAT (P) instead of 3SAT (NP-c)
- Vertex cover when OPT is small

Three Useful Strategies (con'd)

(2) Heuristics - fast algorithms that are not always correct

Examples (forthcoming): Greedy and dynamic programming-based heuristics for knapsack.

- (3) Solve in exponential time but faster than brute-force search.
- Knapsack (O(n) instead of 2^n)
- TSP ($\approx 2^n$ instead of $\approx n!$) (forthcoming)
- Vertex cover ($\approx 2^{OPT} n$ instead of n^{OPT}) (forthcoming)