Vizsgakérdések Analízis 2. (BSc)

Programtervező informatikus szak

A, B és C szakirány

2016-2017. tanév 1. félév

• Folytonosság

1. Definiálja egy $f \in \mathbb{R} \to \mathbb{R}$ függvény pontbeli folytonosságát.

Válasz. Egy $f \in \mathbb{R} \to \mathbb{R}$ függvény az $a \in \mathcal{D}_f$ pontban folytonos, ha

$$\forall \epsilon > 0 \ \exists \delta > 0 \ \forall x \in \mathcal{D}_f, |x - a| < \delta: |f(x) - f(a)| < \epsilon.$$

2. Mi a kapcsolat a pontbeli folytonosság és a határérték között?

Válasz. Ha $a \in \mathcal{D}_f \cap \mathcal{D}_f'$, akkor $f \in C\{a\} \iff \exists \lim_a f \text{ és } \lim_a f = f(a).$

3. Milyen tételt ismer hatványsor összegfüggvényének a folytonosságáról?

 ${f V\'alasz}$. Hatványsor összegfüggvénye a konvergenciahalmaz minden belső pontjában folytonos.

4. Hogyan szól a folytonosságra vonatkozó átviteli elv?

Válasz. $f \in C\{a\} \iff \forall (x_n) : \mathbb{N} \to \mathcal{D}_f, \lim_{n \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = f(a).$

5. Fogalmazza meg a hányadosfüggvény folytonosságára vonatkozó tételt.

Válasz. Ha $f, g \in C\{a\}$ és $g(a) \neq 0$, akkor $\frac{f}{g} \in C\{a\}$.

6. Milyen tételt ismer az összetett függvény pontbeli folytonosságáról?

Válasz. $g \in C\{a\}, f \in C\{g(a)\} \Longrightarrow f \circ g \in C\{a\}.$

7. Mit tud mondani a korlátos és zárt $[a, b] \subset \mathbb{R}$ intervallumon folytonos függvény értékkészletéről?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b$. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos [a,b]-n, akkor f korlátos [a,b]-n.

8. Hogyan szól a Weierstrass-tétel?

Válasz. Tegyük fel, hogy $[a,b] \subset \mathbb{R}$ korlátos és zárt intervallum és $f:[a,b] \to \mathbb{R}$ folytonos. Ekkor f-nek létezik abszolút maximuma és abszolút minimuma.

9. Mit mond ki a Bolzano-tétel?

Válasz. Tegyük fel, hogy $f:[a,b]\to\mathbb{R}$ folytonos függvény $(a< b,a,b\in\mathbb{R})$. Ha f a két végpontban különböző előjelű értéket vesz fel, vagyis $f(a)\cdot f(b)<0$, akkor van olyan $\xi\in(a,b)$, hogy $f(\xi)=0$.

10. Mit jelent az, hogy egy f függvény Darboux-tulajdonságú?

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény Darbouxtulajdonságú I-n, ha minden $a,b \in I$, a < b esetén az f függvény minden f(a) és f(b) közötti értéket felvesz [a,b]-ben.

11. Mit mond ki a Bolzano-Darboux-tétel?

Válasz. Ha az $f:[a,b] \to \mathbb{R}$ függvény folytonos az [a,b] intervallumon, akkor f minden f(a) és f(b) közötti értéket felvesz [a,b]-n, azaz ha f(a) < f(b), akkor $\forall c \in (f(a),f(b))$ -hez $\exists \xi \in (a,b): f(\xi) = c$.

12. Milyen állításokat ismer az inverz függvény folytonosságáról?

Válasz. Legyen az $f : [a, b] \to \mathbb{R}$ $(a < b, a, b \in \mathbb{R})$ függvény folytonos és invertálható. Ekkor f inverze folytonos.

Legyen $I \subset \mathbb{R}$ tetszőleges intervallum. Tegyük fel, hogy az $f: I \to \mathbb{R}$ függvény folytonos és invertálható I-n. Ekkor \mathcal{R}_f intervallum és az f függvény inverze folytonos a $\mathcal{D}_{f^{-1}}$ intervallumon.

13. Legyen az $f:[a,b] \to \mathbb{R}$ $(a < b, a, b \in \mathbb{R})$ függvény folytonos és invertálható. Mit mondhatunk ekkor az f függvényről?

Válasz. Ekkor f szigorúan monoton függvény.

14. Definiálja a megszüntethető szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban megszüntethető szakadási helye van, ha

$$\exists \lim_{a} f \text{ \'es ez v\'eges, de } \lim_{a} f \neq f(a).$$

15. Definiálja az elsőfajú szakadási hely fogalmát.

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}_f$ pontban elsőfajú szakadási helye (vagy ugráshelye) van, ha

$$\exists \, \lim_{a \to 0} f \text{ \'es } \exists \, \lim_{a \to 0} f, \ \, \text{mindkett\'o v\'eges, de} \ \, \lim_{a \to 0} f \neq \lim_{a \to 0} f.$$

16. Mit tud mondani *monoton* függvény szakadási helyeiről?

Válasz. Tetszőleges $f:(\alpha,\beta)\to\mathbb{R}$ monoton függvénynek legfeljebb elsőfajú szakadási helyei lehetnek; azaz tetszőleges $a\in(\alpha,\beta)$ pontban az f függvény vagy folytonos vagy pedig elsőfajú szakadási helye (vagy ugráshelye) van.

• Differenciálszámítás

17. Mikor mondja, hogy egy $f \in \mathbb{R} \to \mathbb{R}$ függvény differenciálható valamely pontban?

Válasz. Ha $a \in \operatorname{int} \mathcal{D}_f$, akkor:

$$f \in D\{a\} \iff \exists \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \qquad \text{és ez a határérték véges}.$$

18. Milyen ekvivalens átfogalmazást ismer a pontbeli deriválhatóságra a lineáris közelítéssel?

Válasz.
$$f \in D\{a\} \iff \exists A \in \mathbb{R} \text{ és } \exists \varepsilon : \mathcal{D}_f \to \mathbb{R}, \lim_{\varepsilon \to 0} \varepsilon = 0, \text{ hogy}$$

$$f(x) - f(a) = A(x - a) + \varepsilon(x)(x - a) \qquad (\forall x \in \mathcal{D}_f).$$

19. Mi a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

Válasz. $f \in D\{a\} \Longrightarrow f \in C\{a\}$, de fordítva nem igaz, pl. $f(x) = |x| \ (x \in \mathbb{R})$ függvényre $f \in C\{0\}$, de $f \notin D\{0\}$.

20. Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz.
$$f, g \in D\{a\} \implies fg \in D\{a\} \text{ és } (fg)'(a) = f'(a)g(a) + f(a)g'(a).$$

21. Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz.
$$f,g\in D\{a\},g(a)\neq 0\implies \frac{f}{g}\in D\{a\}$$
 és $\left(\frac{f}{g}\right)'(a)=\frac{f'(a)g(a)-f(a)g'(a)}{g^2(a)}$.

22. Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

Válasz. Ha
$$\mathcal{R}_g \subset \mathcal{D}_f$$
, $g \in D\{a\}$ és $f \in D\{g(a)\}$, akkor $f \circ g \in D\{a\}$ és

$$(f \circ q)'(a) = f'(q(a)) \cdot q'(a).$$

23. Milyen tételt tanult az inverz függvény differenciálhatóságáról és a deriváltjáról?

Válasz. Tegyük fel, hogy $f:(\alpha,\beta)\to\mathbb{R}$ szigorúan monoton növő, folytonos függvény (α,β) -n, és egy $a\in(\alpha,\beta)$ pontban $f\in D\{a\}$, továbbá $f'(a)\neq 0$. Ekkor $f^{-1}\in D\{b\}$, ahol b:=f(a) és

$$(f^{-1})'(b) = \frac{1}{f'(a)} = \frac{1}{f'(f^{-1}(b))}.$$

24. Milyen állítást tud mondani hatványsor összegfüggvényének a deriválhatóságáról és a deriváltjáról?

Válasz. Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, 2...). Tegyük fel, hogy a $\sum \alpha_n (x - a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban az f függvény differenciálható és a deriváltja az eredeti sor tagonkénti deriválásával kapott sor összege:

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1}.$$

Röviden fogalmazva: Hatványsor összegfüggvénye a konvergenciaintervallum belsejében differenciálható és a hatványsor deriválását szabad tagonként végezni.

25. Mi a kétszer deriválható függvény fogalma?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény kétszer deriválható az $a \in \operatorname{int} \mathcal{D}_f$ pontban, ha van olyan $\delta > 0$ szám, hogy $f \in D(K_\delta(a))$ és $f' \in D\{a\}$.

26. Fogalmazza meg a szorzatfüggvény deriváltjaira vonatkozó *Leibniz-tételt*.

Válasz. Legyen $n \in \mathbb{N}$. Ha $f, g \in D^n\{a\}$, akkor $fg \in D^n\{a\}$ és

$$(fg)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(a)g^{(n-k)}(a).$$

27. Mondja ki a Rolle-tételt.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b), f(a) = f(b)$, akkor $\exists \xi \in (a, b) : f'(\xi) = 0$.

28. Mondja ki a Cauchy-féle középértéktételt.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Tegyük fel, hogy $f, g \in C[a, b], f, g \in D(a, b)$ és $g'(x) \neq 0$, $(x \in (a, b))$. Ekkor $\exists \xi \in (a, b)$: $\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$.

29. Mondja ki a *Lagrange-féle középértéktételt*.

Válasz. Legyen $a, b \in \mathbb{R}, a < b$. Ha $f \in C[a, b], f \in D(a, b)$, akkor $\exists \xi \in (a, b) : \frac{f(b) - f(a)}{b - a} = f'(\xi)$.

30. Mit ért azon, hogy az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek valamely helyen lokális minimuma van?

Válasz. Az f függvénynek a $c \in \mathcal{D}_f$ pontban lokális minimuma van, ha

$$\exists K(c): f(c) \leq f(x) \qquad (x \in K(c) \cap \mathcal{D}_f).$$

31. Mit ért azon, hogy egy függvény valamely helyen jelet vált?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény a $c \in \mathcal{D}_f$ pontban előjelet vált, ha f(c) = 0 és $\exists \delta > 0$, hogy $K_{\delta}(c) \subset \mathcal{D}_f$, $f(x) < 0 \ \forall x \in (c - \delta, c)$ és $f(x) > 0 \ \forall x \in (c, c + \delta)$ vagy fordítva.

32. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű szükséges feltétel?

Válasz. Ha $f \in \mathbb{R} \to \mathbb{R}$, $c \in \text{int } \mathcal{D}_f$, $f \in D\{c\}$ és az f függvénynek c-ben lokális szélsőértéke van, akkor f'(c) = 0.

33. Hogyan szól a lokális szélsőértékre vonatkozó elsőrendű elégséges feltétel?

Válasz. Ha $f:(a,b)\to\mathbb{R},\ f\in D(a,b)$ és f' a $c\in(a,b)$ pontban előjelet vált, akkor az f függvénynek c-ben lokális szélsőértéke van.

34. Irja le a lokális minimumra vonatkozó másodrendű elégséges feltételt.

Válasz. Ha $f:(a,b)\to\mathbb{R},\,f\in D^2\{c\},\,(c\in(a,b)),\,f'(c)=0$ és f''(c)>0, akkor az f függvénynek c-ben lokális minimuma van.

35. Milyen *elégséges* feltételt ismer differenciálható függvény *szigorú monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$, $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$ és f' > 0 az (a,b) intervallumon, akkor f szigorúan monoton növekedő [a,b]-n.

36. Milyen *szükséges és elégséges* feltételt ismer differenciálható függvény *monoton növekedésével* kapcsolatban?

Válasz. Ha $f \in C[a,b]$ és $f \in D(a,b)$ $(a,b \in \mathbb{R}, a < b)$, akkor

f monoton növekedő [a, b]-n $\iff f' \ge 0$ [a, b]-n.

37. Mi a konvex függvény definíciója?

Válasz. Az $f \in \mathbb{R} \to \mathbb{R}$ függvény konvex az $I \subset \mathbb{R}$ intervallumon, ha

$$\forall a, b \in I, \ a < b \ \text{eset\'en}$$

$$f(x) \le \frac{f(b) - f(a)}{b - a}(x - a) + f(a) \quad (\forall x \in (a, b)).$$

38. Jellemezze egy függvény konvexitását egyenlőtlenséggel.

Válasz. Az $I \subset \mathbb{R}$ intervallumon értelmezett $f: I \to \mathbb{R}$ függvény akkor és csak akkor konvex I-n, ha

$$\forall a, b \in I, \ a < b \ \text{ és } \ \forall \lambda \in (0, 1) \ \text{ esetén}$$

$$f(\lambda a + (1 - \lambda)b) \le \lambda f(a) + (1 - \lambda)f(b).$$

39. Jellemezze egy függvény konvexitását a differenciahányados segítségével.

Válasz. Legyen $I \subset \mathbb{R}$ tetszőleges nyílt intervallum, és $f: I \to \mathbb{R}$. Ekkor f konvex I-n $\iff \forall c \in I$ esetén a $\triangle_c f(x) = \frac{f(x) - f(c)}{x - c}$ $(x \in I \setminus \{c\})$ függvény monoton növekedő.

40. Jellemezze egy függvény konvexitását az első derivált segítségével.

Válasz. Legyen $f:(a,b)\to\mathbb{R}$ és $f\in D$. Ekkor

f konvex [a, b]-n \iff f' monoton növekedő [a, b]-n.

41. Jellemezze egy függvény konkávitását a második derivált segítségével.

Válasz. Legyen $f:(a,b)\to\mathbb{R}$ és $f\in D^2$. Ekkor

$$f \operatorname{konk\acute{a}v} [a, b]$$
-n $\iff f'' < 0 [a, b]$ -n.

42. Mi az inflexiós pont definíciója?

Válasz. Legyen $\alpha, \beta \in \mathbb{R}$, $\alpha < \beta$, és tegyük fel, hogy $f \in D(\alpha, \beta)$. Azt mondjuk, hogy a $c \in (\alpha, \beta)$ pont az f függvénynek inflexiós pontja, ha

 $\exists \, \delta > 0 : f \text{ konvex } (c - \delta, c]$ -n és konkáv $[c, c + \delta)$ -n vagy fordítva.

43. Írja le a $\frac{0}{0}$ esetre vonatkozó *L'Hospital-szabályt*.

Válasz. Legyen $-\infty \le a < b < +\infty, f, g: (a,b) \to \mathbb{R}, f, g \in D(a,b), g'(x) \ne 0 \quad (x \in (a,b)),$ $\lim_{a \to 0} f = \lim_{a \to 0} g = 0$ és tegyük fel, hogy létezik a $\lim_{a \to 0} \frac{f'}{g'} = A \in \overline{\mathbb{R}}$ határérték. Ekkor $\exists \lim_{a \to 0} \frac{f}{g}$ és $\lim_{a \to 0} \frac{f}{g} = A$.

44. Mi a kapcsolat a hatványsor összegfüggvénye és a hatványsor együtthatói között?

Válasz. Legyen $a \in \mathbb{R}$ és $\alpha_n \in \mathbb{R}$ (n = 0, 1, 2...). Tegyük fel, hogy a $\sum \alpha_n (x - a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és jelölje f az összegfüggvényét:

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in k_R(a)).$$

Ekkor $f \in D^{\infty}(k_R(a))$ és

$$\alpha_n = \frac{f^{(n)}(a)}{n!}$$
 $(n = 0, 1, 2, ...).$

45. Hogyan definiálja egy függvény Taylor-sorát?

Válasz. Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és $f \in D^{\infty}\{a\}$. Ekkor a

$$\sum_{n=0} \frac{f^{(n)}(a)}{n!} (x-a)^n \qquad (x \in \mathbb{R})$$

hatványsort az f függvény a-hoz tartozó Taylor-sorának nevezzük.

46. Fogalmazza meg a Taylor-formula Lagrange maradéktaggal néven tanult tételt.

Válasz. Legyen $n \in \mathbb{N}$, $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f$ és $f \in D^{n+1}(K(a))$. Ekkor $\forall x \in K(a)$ ponthoz $\exists \xi \in (a, x)$ (ha a < x) vagy $\exists \xi \in (x, a)$ (ha x < a), hogy

$$f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-a)^{n+1}.$$

- Elemi függvények
- 47. Értelmezze az ln függvényt.

Válasz. Az $\mathbb{R} \ni x \mapsto e^x \in (0, +\infty)$ leképezés bijekció. Ennek az inverze az $\ln : (0, +\infty) \to \mathbb{R}$ logaritmus függvény.

48. Mi a definíciója az a^x $(a, x \in \mathbb{R}, a > 0)$ hatványnak?

Válasz. $a^x := \exp(x \ln a)$.

- **49.** Szemléltesse az exp_a függvények grafikonjait.
- **50.** Definiálja az $\alpha \in \mathbb{R}$ kitevőjű hatványfüggvényeket.
- **51.** Szemléltesse az $\alpha \in \mathbb{R}$ kitevőjű hatványfüggvények grafikonjait.

52. Definiálja a π számot.

Válasz. A cos függvénynek a [0,2] intervallumban pontosan egy zérushelye van, azaz [0,2]nek pontosan egy ξ pontjában áll fenn a cos $\xi=0$ egyenlőség. Ennek a ξ számnak a kétszereseként értelmezzük a π számot: $\pi:=2\xi$.

53. Mit tud mondani a sin és a cos függvények periodicitásáról?

Válasz. A sin és a cos függvények 2π -szerint periodikusak függvények, és 2π a legkisebb periódusuk.

- 54. Értelmezze az arc sin függvényt, és vázolja a grafikonját.
- 55. Értelmezze az arc cos függvényt, és vázolja a grafikonját.
- **56.** Értelmezze az arc tg függvényt, és vázolja a grafikonját.
- 57. Értelmezze az arc ctg függvényt, és vázolja a grafikonját.

• A határozatlan integrál (primitív függvények)

58. Definiálja a primitív függvényt.

Válasz. Legyen $I \subset \mathbb{R}$ egy nyílt intervallum. A $F: I \to \mathbb{R}$ függvény a $f: I \to \mathbb{R}$ egy primitív függvénye, ha $F \in D(I)$ és F'(x) = f(x) $(x \in I)$.

59. Milyen *elégséges* feltételt ismer primitív függvény létezésére?

Válasz. Ha $I \subset \mathbb{R}$ nyílt intervallum és $f: I \to \mathbb{R}$ folytonos függvény, akkor f-nek létezik primitív függvénye.

60. Milyen *szükséges* feltételt ismer primitív függvény létezésére?

Válasz. Ha $I \subset \mathbb{R}$ nyílt intervallum és az $f: I \to \mathbb{R}$ függvénynek van primitív függvénye, akkor f Darboux-tulajdonságú az I intervallumon.

61. Adjon meg olyan függvényt, amelyiknek *nincs* primitív függvénye.

Válasz. $f(x) := sign(x) (x \in (-1,1)).$

62. Mit jelent egy függvény határozatlan integrálja?

Válasz. Legyen $I \subset \mathbb{R}$ egy nyílt intervallum és $F: I \to \mathbb{R}$ a $f: I \to \mathbb{R}$ függvény egy primitív függvénye. A f függvény határozatlan integrálja a következő függvényhalmaz:

$$\int f := \{ F + c \mid c \in \mathbb{R} \}.$$

63. Mit ért a határozatlan integrál linearitásán?

Válasz. Legyen $I \subset \mathbb{R}$ nyílt intervallum. Ha az $f, g: I \to \mathbb{R}$ függvényeknek létezik primitív függvénye, akkor tetszőleges $\alpha, \beta \in \mathbb{R}$ mellett $(\alpha f + \beta g)$ -nek is létezik primitív függvénye és

$$\int (\alpha f + \beta g) = \alpha \int f + \beta \int g.$$

64. Milyen állítást ismer hatványsor összegfüggvényének a primitív függvényéről?

Válasz. Legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x-a)^n \qquad (x \in K_R(a), \ R > 0).$$

Ekkor f-nek van primitív függvénye és

$$F(x) := \sum_{n=0}^{+\infty} \frac{\alpha_n}{n+1} (x-a)^{n+1} \qquad (x \in K_R(a))$$

a f függvény egy primitív függvénye.

65. Mit mond ki a primitív függvényekkel kapcsolatos parciális integrálás tétele?

Válasz. Legyen $I \subset \mathbb{R}$ nyílt intervallum. Tegyük fel hogy, $f, g \in D(I)$ és f'g-nek létezik primitív függvénye. Ekkor fg'-nek is van primitív függvénye és

$$\int fg' = fg - \int f'g.$$

66. Hogyan szól a primitív függvényekkel kapcsolatos *első helyettesítési szabály*?

Válasz. Legyenek $I, J \subset \mathbb{R}$ nyílt intervallumok, $g: I \to \mathbb{R}$, $g \in D(I)$, $\mathcal{R}_g \subset J$ és $f: J \to \mathbb{R}$. Ha az f függvénynek van primitív függvénye, akkor $(f \circ g) \cdot g'$ -nek is van primitív függvénye és

$$\int (f \circ g) \cdot g' = \left(\int f \right) \circ g.$$

67. Fogalmazza meg a primitív függvényekkel kapcsolatos *második helyettesítési* szabályt.

Válasz. Legyenek $I,J\subset\mathbb{R}$ nyílt intervallumok. Tegyük fel, hogy $f:I\to\mathbb{R},\ g:J\to I$ bijekció, $g\in D(J)$ és az $f\circ g\cdot g':J\to\mathbb{R}$ függvénynek van primitív függvénye. Ekkor f-nek is van primitív függvénye és

$$\int f(x) dx = \int f(g(t)) \cdot g'(t) dt_{|t=g^{-1}(x)} \qquad (x \in I).$$

• A határozott integrál

68. Definiálja intervallum egy felosztását.

Válasz. Legyen $a, b \in \mathbf{R}$, a < b. Ekkor az [a, b] intervallum felosztásán olyan véges $\tau = \{x_0, \dots, x_n\} \subset [a, b]$ halmazt értünk, amelyre $a = x_0 < x_1 < \dots < x_n = b$.

69. Mit jelent egy felosztás finomítása?

Válasz. Legyen $a,b\in\mathbb{R},\ a< b$ és $\tau_1,\tau_2\subset[a,b]$ egy-egy felosztása [a,b]-nek. Ekkor τ_2 finomítása τ_1 -nek, ha $\tau_1\subset\tau_2$.

70. Mi az alsó közelítő összeg definíciója?

Válasz. Legyen $a, b \in \mathbf{R}$, $a < b, f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $m_i := \inf\{f(x) \mid x_i \le x \le x_{i+1}\}$ (i = 0, ..., n-1). Ekkor

$$s(f,\tau) := \sum_{i=0}^{n-1} m_i (x_{i+1} - x_i)$$

az f függvény τ -hoz tartozó alsó közelítő összege.

71. Mi a felső közelítő összeg definíciója?

Válasz. Legyen $a, b \in \mathbb{R}, \ a < b, \ f : [a, b] \to \mathbb{R}$ egy korlátos függvény, $\tau = \{x_0, ..., x_n\} \subset [a, b]$ egy felosztása [a, b]-nek, $M_i := \sup\{f(x) \mid x_i \le x \le x_{i+1}\}$ (i = 0, ..., n-1). Ekkor

$$S(f,\tau) := \sum_{i=0}^{n-1} M_i(x_{i+1} - x_i)$$

az f függvény τ -hoz tartozó felső közelítő összege.

72. Mi történik egy alsó közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Válasz. Legyen $a,b\in\mathbb{R},\,a< b$ és $f:[a,b]\to\mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2\subset[a,b]$ egy felosztása [a,b]-nek, $s(f,\tau_1),\,s(f,\tau_2)$ a megfelelő alsó közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $s(f,\tau_1)\leq s(f,\tau_2)$.

73. Mi történik egy felső közelítő összeggel, ha a neki megfelelő felosztást finomítjuk?

Válasz. Legyen $a,b\in\mathbb{R},\,a< b$ és $f:[a,b]\to\mathbb{R}$ egy korlátos függvény. Ha $\tau_1,\tau_2\subset[a,b]$ egy egy felosztása [a,b]-nek, $S(f,\tau_1),\,S(f,\tau_2)$ a megfelelő felső közelítő összegek és τ_2 finomítása τ_1 -nek, akkor $S(f,\tau_1)\geq S(f,\tau_2)$.

74. Milyen viszony van az alsó és a felső közelítő összegek között?

Válasz. Legyen $a, b \in \mathbb{R}$, a < b és $f : [a, b] \to \mathbb{R}$ egy korlátos függvény. Ha $\tau_1, \tau_2 \subset [a, b]$ egy-egy felosztása [a, b]-nek, $s(f, \tau_1)$, $S(f, \tau_2)$ a megfelelő alsó, ill. felső közelítő összeg, akkor $s(f, \tau_1) \leq S(f, \tau_2)$.

75. Mi a Darboux-féle alsó integrál definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $s(f,\tau)$ az f függvény τ -hoz tartozó alsó közelítő összege. Jelölje $\mathcal{F}[a,b]$ az [a,b] felosztásainak a halmazát. Ekkor az $\{s(f,\tau)\mid \tau\in\mathcal{F}\big([a,b]\big)\}$ halmaz felülről korlátos, ezért létezik a szuprémuma. Az

$$I_*(f) := \sup \{ s(f, \tau) \mid \tau \in \mathcal{F}[a, b] \}$$

számot az f függvény Darboux-féle alsó integráljának nevezzük.

76. Mi a *Darboux-féle felső integrál* definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $S(f,\tau)$ az f függvény τ -hoz tartozó felső közelítő összege. Jelölje $\mathcal{F}[a,b]$ az [a,b] felosztásainak a halmazát. Ekkor az $\{S(f,\tau)\mid \tau\in\mathcal{F}[a,b]\}$ halmaz alulról korlátos, ezért létezik az infimuma. Az

$$I^*(f) := \inf \{ S(f, \tau) \mid \tau \in \mathcal{F}[a, b] \}$$

9

számot az f függvény Darboux-féle felső integráljának nevezzük.

77. Mikor nevez egy függvényt (Riemann)-integrálhatónak?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b$ és $f:[a,b] \to \mathbb{R}$ egy korlátos függvény, I_*f , ill. I^*f az f függvény Darboux-féle alsó, ill. felső integrálja. Ekkor f Riemann-integrálható az [a,b] intervallumon (jelekkel: $f \in R[a,b]$), ha $I_*f = I^*f$.

78. Hogyan értelmezi egy függvény határozott (vagy Riemann-)integrálját?

Válasz. Legyen $a,b \in \mathbb{R}$, a < b és $f:[a,b] \to \mathbb{R}$ egy korlátos függvény, I_*f , ill. I^*f az f függvény Darboux-féle alsó, ill. felső integrálja. Ha $I_*f = I^*f$, akkor az f függvény határozott (vagy Riemann-)integrálja az $I_*f = I^*f$ valós szám.

79. Adjon meg egy példát nem integrálható függvényre.

Válasz. Legyen

$$f(x) := \begin{cases} 1, & \text{ha } x \in \mathbb{Q} \\ 0, & \text{ha } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

Ekkor $f \notin R[0,1]$.

80. Mi az oszcillációs összeg definíciója?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény, $\tau \subset [a,b]$ egy felosztása [a,b]-nek, $s(f,\tau)$, $S(f,\tau)$ az f függvény τ -hoz tartozó alsó, ill. felső közelítő összege. Ekkor $\Omega(f,\tau):=S(f,\tau)-s(f,\tau)$ az f függvény τ felosztáshoz tartozó oszcillációs összege.

81. Hogyan szól a Riemann-integrálhatósággal kapcsolatban tanult kritérium az oszcillációs összegekkel megfogalmazva?

Válasz. Legyen $a,b \in \mathbb{R},\ a < b,\ f:[a,b] \to \mathbb{R}$ korlátos függvény és valamely $\tau \subset [a,b]$ felosztás esetén $\Omega(f,\tau)$ az f függvény τ -hoz tartozó oszcillációs összege. Ekkor

$$f \in R[a,b] \iff \forall \varepsilon > 0 \ \exists \tau \in \mathcal{F}[a,b] : \ \Omega(f,\tau) < \varepsilon.$$

82. Milyen tételt tanult Riemann-integrálható függvény megváltoztatását illetően?

Válasz. Legyen $a,b \in \mathbb{R}$, a < b. Ha az $f \in R[a,b]$ függvény értékét *véges sok* pontban tetszőlegesn megváltoztatjuk, akkor az így kapott \tilde{f} függvény is Riemann-integrálható és $\int\limits_a^b f = \int\limits_a^b \tilde{f}.$

83. Hogyan szól a Riemann-integrálható függvények szorzatával kapcsolatban tanult tétel?

Válasz. Ha $f, g \in R[a, b]$, akkor $fg \in R[a, b]$.

84. Hogyan szól a Riemann-integrálható függvények hányadosával kapcsolatban tanult tétel?

10

Válasz. Legyen $f,g\in R[a,b]$ tetszőleges és tegyük fel, hogy valamilyen m>0 számmal $|g(x)|\geq m$ $(x\in [a,b])$. Ekkor $\frac{f}{g}\in R[a,b]$.

85. Mit ért a Riemann-integrál intervallum szerinti additivitásán?

Válasz. Tegyük fel, hogy $f \in R[a,b]$ és $c \in (a,b)$ egy tetszőleges pont. Ekkor

$$f \in R[a,c], \quad f \in R[c,b],$$
 és $\int_a^b f = \int_c^c f + \int_c^b f.$

- **86.** Mi a kapcsolat a folytonosság és a Riemann-integrálhatóság között? **Válasz.** Legyen $a, b \in \mathbb{R}$, a < b. Ekkor $C[a, b] \subset R[a, b]$, de $C[a, b] \neq R[a, b]$.
- 87. Mi a kapcsolat a monotonitás és a Riemann-integrálhatóság között? Válasz. Legyen $a, b \in \mathbb{R}, \ a < b$. Ha f monoton az [a, b] intervallumon, akkor $f \in R[a, b]$.
- 88. Mit ért azon, hogy a Riemann-integrál az integrandusban monoton?

Válasz. Ha
$$f, g \in R[a, b]$$
 és $f \leq g$, akkor $\int_a^b f \leq \int_a^b g$.

89. Mit lehet mondani Riemann-integrálható függvény abszolút értékéről integrálhatóság szempontjából?

Válasz. Ha
$$f \in R[a,b]$$
, akkor $|f| \in R[a,b]$ és $\left| \int_a^b f \right| \le \int_a^b |f|$.

90. Mi az integrálszámítás első középértéktétele?

Válasz. Legyen $f, g \in R[a, b], g \ge 0, M = \sup \mathcal{R}_f$ és $m = \inf \mathcal{R}_f$. Ekkor

$$m\int_{a}^{b}g \le \int_{a}^{b}fg \le M\int_{a}^{b}g.$$

Ha még $f \in C[a,b]$ is teljesül, akkor $\exists \ \xi \in [a,b]$, hogy

$$\int_{a}^{b} fg = f(\xi) \int_{a}^{b} g.$$

91. Fogalmazza meg a Cauchy–Bunyakovszkij-féle egyenlőtlenséget.

Válasz. Haf és g integrálhatóak [a,b]-n, akkor fg is integrálható[a,b]-n és

$$\int_{a}^{b} |f(x)g(x)| dx \le \sqrt{\int_{a}^{b} f^{2}(x) dx} \cdot \sqrt{\int_{a}^{b} g^{2}(x) dx}.$$

92. Definiálja az [a,b] intervallumon a primitív függvényt.

Válasz. Legyen $[a,b]\subset\mathbb{R}$ korlátos és zárt intervallum. A $F:[a,b]\to\mathbb{R}$ függvény a $f:[a,b]\to\mathbb{R}$ egy primitív függvénye, ha F folytonos [a,b]-n, $F\in D\{x\}$ minden $x\in(a,b)$ esetén és F'(x)=f(x) $(x\in(a,b))$.

93. Hogyan szól a Newton-Leibniz-tétel?

Válasz. Ha $f \in R[a,b]$ és f-nek létezik primitív függvénye az [a,b] intervallumon, akkor $\int_a^b f = F(b) - F(a)$, ahol F a f függvénye egy primitív függvénye.

94. Definiálja az integrálfüggvényt.

Válasz. Legyen $f \in R[a,b]$ és $x_0 \in [a,b]$. Ekkor a $F(x) := \int_{x_0}^x f(t) \, dt \quad (x \in [a,b])$ függvényt a f függvényintegrálfüggvényének nevezzük.

95. Írja le az integrálfüggvénnyel kapcsolatban tanult tételt.

Válasz. Legyen
$$f \in R[a,b], x_0 \in [a,b], F(x) := \int_{x_0}^x f(t) dt \quad (x \in [a,b]).$$
 Ekkor

 $1^o\,$ aFintegrálfüggvény folytonos [a,b]-n;

 2^o ha $d \in (a,b)$ és f folytonos d-ben, akkor F differenciálható d-ben és F'(d) = f(d).