1SPÉ

ÉNERGIE DISSIPÉE PAR UN REBOND

TP

Le but de ce TP est de déterminer l'évolution de l'énergie mécanique d'un ballon grâce au pointage d'une vidéo pour déterminer l'énergie perdue lors d'un rebond.

Pointage de la vidéo

- 1. À l'aide du logiciel AviMéca, ouvrir le fichier darwin.avi puis pointez la vidéo en vous aidant de la méthode décrite dans la notice à votre disposition (pensez à définir l'échelle et <u>placer le repère de façon à ce que l'origine soit placée au centre de la balle au moment où elle touche le sol</u>).
- 2. Envoyez ensuite les données vers le tableur scientifique Regressi.

Exploitation avec Regressi

En vous aidant de la notice fournie :

- 3. Créer sur Regressi la grandeur vitesse horizontale V_x à partir de la dérivée de la position horizontale x, puis créer la grandeur vitesse verticale V_y à partir de la dérivée de la position verticale y.
- 4. Exprimer l'énergie cinétique E_c du ballon en fonction de la masse m du ballon, de sa vitesse horizontale v_x et de sa vitesse verticale v_y .

	\sim $^{\prime}$					1 /	_		_	
5	(raar	ı	arana	ΔIIC	$C \supset I$	c	H.C	ciir	Regress	· •
J.	$C_1 \subset C_1$	ıa	grand	Cui	Cai	Cuice		Sui	TICKT COO	

- 6. Exprimer l'énergie potentielle de pesanteur E_p du ballon en fonction de la masse m du ballon, de la pesanteur g et de l'altitude du ballon y.
- 7. Créer la grandeur calculée Ep sur Regressi.
- 8. Exprimer l'énergie mécanique E_m du ballon en fonction de son énergie cinétique E_c et de son énergie potentielle E_p .

9. Afficher le tracer des évolutions de E_{c} , E_{p} et E_{m} au cours du temps.

10. Déterminer sur le graphique l'énergie dissipée lors du rebond.

11. Où est passée l'énergie ?