18.102 Assignment 3

Octavio Vega

February 16, 2023

Problem 1

(a)

Proof. We want to show that $u \in M'$. First, we show that u is linear.

Let $a, b \in M$ and let $\lambda \in \mathbb{C}$. Then

$$u(\lambda a) = \lim_{k \to \infty} (\lambda a_k) = \lambda \cdot \lim_{k \to \infty} a_k = \lambda u(a)$$
, and (1)

$$u(a+b) = \lim_{k \to \infty} (a_k + b_k) = \lim_{k \to \infty} a_k + \lim_{k \to \infty} b_k = u(a) + u(b).$$
 (2)

So u is linear on M. Next, we show that u is bounded.

Let $a \in M$, i.e. $\lim_{k \to \infty} a_k$ exists. Then a is bounded, so $\exists B \ge 0$ such that $\forall k \in \mathbb{N}, |a_k| \le B$. Then by continuity of the norm,

$$||u|| \le |u(a)| \tag{3}$$

$$= \left| \lim_{k \to \infty} a_k \right| \tag{4}$$

$$=\lim_{k\to\infty}|a_k|\tag{5}$$

$$\leq B,$$
 (6)

so u is bounded.

Then we conclude that u is a bounded linear functional on M.