Compressible flow

Aslak Grinsted

So far we have worked predominantly with incompressible flows.

- That is convenient because:
 - ρ is constant and can be freely moved in and out of differential operators.
 - and the mass conservation eqn simplifies to $\nabla \cdot \boldsymbol{v} = \boldsymbol{0}$
- We have even applied it to air.
 - - everyday experience tells us it is pretty compressible.
 - - balloons
 - sound waves (pressure/density waves)

Sound propagation

- I am sure you know that sound is pressure waves.
 - Changes in density
 - Changes in pressure
 - Small velocities
- We have previously talked about
 - Mechanical balances
 - Mass balance
 - Relationship between pressure and density? (Compressibility/Hooke/... Ch1)
- Do we have what we need to let us understand sound waves?

Lets revisit

- We have
 - $\rho \frac{Dv}{Dt} = f + \nabla \cdot \mathbf{\sigma}$ momentum conservation
 - $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho v) = 0$ mass conservation

- Assume ideal (viscosity free) fluid
 - $\sigma = -pI$ and $\nabla \cdot \sigma = -\nabla p$

• So we have:

$$\bullet \frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = \boldsymbol{g} - \frac{1}{\rho} \nabla p$$

Euler equations for ideal compressible flow

•
$$\rho \frac{Dv}{Dt} = f + \nabla \cdot \mathbf{\sigma}$$

$$\bullet \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

•
$$\nabla \cdot \mathbf{\sigma} = -\nabla \mathbf{p}$$

Now consider a small perturbation (SOUND)

- Start from hydrostatic equilibrium.
 - $p = p_0 | \rho = \rho_0 | v = 0$
- Consider small perturbation

•
$$p = p_0 + \Delta p$$

•
$$\rho = \rho_0 + \Delta \rho$$

•
$$v = \Delta v$$

Step 1: Insert in (1)

•
$$\frac{\partial v}{\partial t} + (v \cdot \nabla)v = -\frac{1}{\rho_0} \nabla \Delta p$$

1.
$$\frac{\partial v}{\partial t} + (\mathbf{v} \cdot \nabla)\mathbf{v} = \mathbf{p} - \frac{1}{\rho} \nabla p$$

2.
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

•
$$\frac{\partial \rho}{\partial t} + (\boldsymbol{v} \cdot \nabla)\rho + \rho(\nabla \cdot \boldsymbol{v}) = 0$$

3.
$$(\boldsymbol{v} \cdot \nabla) \Delta \rho$$

Step 2: insert in the mass balance eqn...

$$\bullet \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

•
$$\nabla \cdot (\rho \mathbf{v}) =$$

- $(\boldsymbol{v} \cdot \nabla) \rho + \rho (\nabla \cdot \boldsymbol{v})$
- = $(\boldsymbol{v} \cdot \nabla)\Delta\rho + (\rho_0 + \Delta\rho)(\nabla \cdot \boldsymbol{v})$
- = $(\boldsymbol{v} \cdot \nabla)\Delta\rho + \rho_0(\nabla \cdot \boldsymbol{v}) + \Delta\rho(\nabla \cdot \boldsymbol{v})$
- = small*small + big*small + small*small

• HENCE:
$$\frac{\partial \Delta \rho}{\partial t} = -\rho_0 (\nabla \cdot \boldsymbol{v})$$

• small perturb

•
$$p = p_0 + \Delta p$$

•
$$\rho = \rho_0 + \Delta \rho$$

•
$$v = \Delta v$$

• Apply
$$\frac{\partial}{\partial t}$$
 to (B)

$$\bullet \frac{\partial^2 \Delta \rho}{\partial t^2} = -\rho_0 \left(\nabla \cdot \frac{\partial}{\partial t} \boldsymbol{v} \right)$$

A.
$$\frac{\partial v}{\partial t} = -\frac{1}{\rho_0} \nabla \Delta p$$
B.
$$\frac{\partial \Delta \rho}{\partial t} = -\rho_0 (\nabla \cdot v)$$

$$B. \ \frac{\partial \Delta \rho}{\partial t} = -\rho_0 (\nabla \cdot \boldsymbol{v})$$

Insert A on RHS

$$\bullet \ \frac{\partial^2 \Delta \rho}{\partial t^2} = \ \nabla^2 \Delta p$$

- Really close to a wave eqn. now
 - Needs relationship tween p and rho

- barotropic equation of state
 - $p = p(\rho)$
- Linearize:

•
$$\Delta p \approx \frac{dp}{d\rho} \Big|_{0} \Delta \rho$$

• $\Delta p \approx \frac{K_0}{\rho_0} \Delta \rho$

- (this is how we defined equilib. bulk modulus)
- Inserting gives:

•
$$\frac{\partial^2 \Delta \rho}{\partial t^2} = \frac{K_0}{\rho_0} \nabla^2 \Delta \rho$$

• Speed of sound is
$$c_0 = \sqrt{\frac{K_0}{\rho_0}}$$

•
$$\frac{\partial^2 \Delta \rho}{\partial t^2} = \nabla^2 \Delta p$$

riuia	1	c_0
Glycerol	25	1920
Sea water	20	1521
Fresh water	20	1482
Lube oil	25	1461
Mercury	25	1449
Ethanol	25	1145
Hydrogen	27	1310
Helium	0	973
Water vapor	100	478
Neon	30	461
Humid air	20	345
Dry air	20	343
Oxygen	30	332
Argon	0	308
Nitrogen	27	363
Unit	°C	$\mathrm{m}\mathrm{s}^{-1}$

Fluid

Empirical sound speeds in various liquids (above) and gases (below). The temperature of the measurement is also listed.