Лабораторная работа №3

Математическое моделирование

Байрамгельдыев Довлетмурат

Содержание

Список литературы		16
5	Выводы	15
4	Выполнение лабораторной работы	9
3	Теоретическое введение	7
2	Задание	6
1	Цель работы	5

Список иллюстраций

4.1	Программа на Julia для первого случая	9
4.2	График на Julia для первого случая	10
4.3	Программа на Julia для второго случая	11
4.4	График на Julia для второго случая	12
4.5	Программа на OpenModelica для первого случая	12
4.6	Установка симуляции OpenModelica	13
4.7	График на OpenModelica для первого случая	13
4.8	Изменение параметров на OpenModelica для второго случая	14
4.9	График на OpenModelica для второго случая	14

Список таблиц

1 Цель работы

- Построение простейшей математической модели боевых действий модели Ланчестера
- Визуализация модели на языках Julia и OpenModelica
- Сравнение языков Julia и OpenModelica

2 Задание

- Построить график изменения численности войск армии X и армии Y на основе модели боевых действий между регулярными войсками
- Построить график изменения численности войск армии X и армии Y на основе модели боевых действий с участием регулярных войск и партизанских отрядов
- Проанализировать графики

3 Теоретическое введение

Модель Ланчестера является простейшей моделью для описания боевых действий. Основной характеристикой соперников являются численности сторон (если какая-то из численностей обращается в ноль при положительной численности соперника, то данная сторона считается проигравшей).

Существует три случая ведения боевых действий:

- Боевые действия между регулярными войсками
- Боевые действия с участием регулярных войск и партизанских отрядов
- Боевые действия между партизанскими отрядами

В рамках нашей задачи мы будем рассматривать только первые два случая. Для описания этих случаев будут использоваться общие обозначения:

- a(t) и h(t) коэффициенты, описывающие потери, не связанные с боевыми действиями (болезнь, дезертирство и пр.)
- b(t) и c(t) коэффициенты, отражающие потери на поле боя
- P(t) и Q(t) функции, учитывающие возможность подхода подкрепления к войскам

В первом случае (бой между регулярными войсками) модель имеет вид:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -c(t)x(t) - h(t)y(t) + Q(t) \end{cases}$$

Во втором случае в борьбу добавляются партизанские отряды. Нерегулярные войска в отличии от постоянной армии менее уязвимы, так как действуют скрытно, в этом случае сопернику приходится действовать неизбирательно, по площадям, занимаемым партизанами. Поэтому считается, что темп потерь партизан, проводящих свои операции в разных местах на некоторой известной территории, пропорционален не только численности армейских соединений, но и численности самих партизан. В результате модель принимает вид:

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -a(t)x(t) - b(t)y(t) + P(t) \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -c(t)x(t)y(t) - h(t)y(t) + Q(t) \end{cases}$$

4 Выполнение лабораторной работы

Построив модель для случая боевых действий между регулярными войсками, пишем программу на языке Julia (рис. 4.1). Указываем начальные значения и коэффициенты, задаем функции возможности подхода подкрепления и функцию, описывающую нашу модель. С помощью библиотеки DifferentialEquations находим решение системы [ode-solve?] и визуализируем его средствами библиотеки Plots.

```
using Plots
using DifferentialEquations

const x0 = 30000
const y0 = 17000

const a = 0.45
const b = 0.86
const b = 0.86
const c = 0.49
const h = 0.73

P(t) = sin(t) + 1
Q(t) = cos(t) + 2

### 2

### 2

### 2

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

### 3

#
```

Рис. 4.1: Программа на Julia для первого случая

Из полученного графика можно сделать вывод, что армия Y в заданных условиях является проигравшей стороной, так как численность ее армии доходит до нуля (рис. 4.2).

Рис. 4.2: График на Julia для первого случая

Меняем значения коэффициентов и функций P(t) и Q(t), а также слегка меняем функцию, описывающую нашу модель, чтобы она соответствовала второму случаю (рис. 4.3).

```
const a = 0.34
const b = 0.81
const c = 0.22
const h = 0.91
P(t) = abs(sin(2*t))
Q(t) = abs(cos(t))
u0 = [x0, y0]
p = (a, b, c, h)
T = (0, 0.001)
function F(du, u, p, t)
     a, b, c, h = p
     du[1] = -a*u[1] - b*u[2] + P(t)
     du[2] = -c*u[1]*u[2] - h*u[2] + Q(t)
end
T = (0, 1.5)
function F(du, u, p, t)
    a, b, c, h = p
    du[1] = -a*u[1] - b*u[2] + P(t)
    du[2] = -c*u[1] - h*u[2] + Q(t)
end
```

Рис. 4.3: Программа на Julia для второго случая

Из графика видно, что армия Y стремительно теряет в численности при указанных условиях и опять проигрывает (рис. 4.4).

Рис. 4.4: График на Julia для второго случая

Далее описываем модель для первого случая на OpenModelica (рис. 4.5). В параметрах указываем начальные значения и коэффициенты, в разделе equation задаем функции, описывающие модель.

```
model lab03
parameter Real a( start=0.45);
  parameter Real b( start=0.86);
  parameter Real c( start=0.49);
  parameter Real h( start=0.73);
  Real x(start=30000);
  Real y(start=17000);

equation
    der(x)=-a*x-b*y+2*sin(time+1);
    der(y)=-c*x-h*y+2*cos(time+2);

annotation(experiment(StartTime=0, StopTime=1, Tolerance=1e-6, Interval=0.05));
end lab03;
```

Рис. 4.5: Программа на OpenModelica для первого случая

В установке симуляции настроим начальное и конечное время, а также размер интервала (рис. 4.6).

Рис. 4.6: Установка симуляции OpenModelica

Полученный график демонстрирует, что армия Y находится на проигрывающей позиции (рис. 4.7).

Рис. 4.7: График на OpenModelica для первого случая

Для второго случая меняем значения параметров-коэффициентов (рис. 4.8) и функции, задающие модель (рис. ??).

```
model lab03_1

parameter Real a( start=0.34);
  parameter Real b( start=0.81);
  parameter Real c( start=0.22);
  parameter Real h( start=0.91);
  Real x(start=30000);
  Real y(start=17000);

equation
    der(x)=-a*x-b*y+sin(2*time);
    der(y)=-c*x*y-h*y+cos(time);

annotation(experiment(StartTime=0, StopTime=1, Tolerance=1e-6, Interval=0.002));
end lab03_1;
```

Рис. 4.8: Изменение параметров на OpenModelica для второго случая

График показывает, что проигрывающей стороной является армия Y, чья численность значительно упала в короткие сроки (рис. 4.9).

Рис. 4.9: График на OpenModelica для второго случая

5 Выводы

В ходе работы была освоена простейшая модель боевых действий — модель Ланчестера, и были применены навыки работы с Julia и OpenModelica для визуализации модели с помощью графиков. Результатом работы стали графики, демонстрирующие изменение численности двух армий на основе двух случаев ведения боевых действий, которые позволили нам сделать выводы о том, какая сторона считается проигравшей.

Сравнивая Julia и OpenModelica, отмечу, что, на мой взгляд, OpenModelica больше подходит для решения данной задачи, так как она специализируется на работе с дифференциальными уравнениями, в то время как Julia требует применения дополнительных библиотек.

Список литературы

https://cyberleninka.ru/article/n/model-lanchestera-kak-diskretnaya-upravlyaem aya-sistema/viewer

Кулябов Д. С. *Лабораторная работа N^{o}3*: https://esystem.rudn.ru/mod/resource/v iew.php?id=831037