Лекция 3

		voltage	power	clock khz	техп. Nm	trans. Cnt	die
1971	i4004	15V	1W	740	10000	2300	12
1974	i8080	+5V,	1,3W	2000	6000	6000	
1978	i8086	+5V	2,5W	5000	3000	29000	33
1982	i80286	+5V	3,3W	8000	1500	134000	
1985	i386	+5V	1,5W	16000	1000	275000	
1989	i486	+5V	3,5W	20000	1000	1000000	
1993	Pentium	+5V	14,6W	60000	800	3100000	294
1995	Pentium Pro	+3,3V	35W	166000	500	5500000	307
1997	Pentium II	+2,8V	33W	233000	350	7500000	195
1999	Pentium III	+2,0V		450000	250	9500000	128
2001	Pentium 4	+1,605- 1,75V	48,9W	1300000	180	42000000	217
2004	P 4 Prescott	+1,287- 1,400V	89W	2800000	90	125000000	112
2006	P Core Duo			1860000	65	291000000	143
2008	Core i7				45	731000000	263
2011	Sandy Bridge		130W	3300000	32	2270000000	434
2014	Ivy Bridge		150W	3300000	22	4310000000	541

Закон Мура

«Закон Мура»

- Эмпирическое наблюдение
- Число транзисторов на кристалле процессора удваивается каждые 24 месяца
- Действует с 70-х годов по наст. время, хотя постепенно выходит на насыщение
- Гордон Мур сооснователь Intel

RISC

- RISC (Reduced Instruction Set Computing) противопоставление CISC (Complex Instruction Set Computing)
- Предпосылки (начало 80-х):
 - Традиционные архитектуры предлагали большое количество режимов адресации
 - Ориентировались на удобство написания программ на ассемблере человеком
 - Квинтессенция CISC: VAX
 - 21 режим адресации
 - «Сложные инструкции», вплоть до работы со списками

RISC

- Предпосылки (2) в то же время:
 - Все больше ПО разрабатывается на языках высокого уровня
 - UNIX ядро ОС написано на ЯВУ
 - Качество кода, генерируемого компиляторами, улучшается и становится ближе к качеству кода, написанного вручную
 - Компиляторы используют небольшое подмножество CISC-инструкций

Мотивация RISC

- Оставить только «основные» инструкции
- Оставить только «основные» режимы адресации
- За счет этого упростить и ускорить работу процессора

• Исследовательский процессор Berkeley RISC показал отличные результаты

Коммерциализация

- Середина 80-х: производители оборудования разрабатывают свои RISC-архитектуры
 - Berkeley RISC → Sun SPARC
 - DEC → Alpha
 - HP → PA-RISC
 - IBM → Power (PPC)
 - Stanford Univ → MIPS
 - Cambridge → ARM

Рабочие станции UNIX

- В итоге к 90-м годам каждый крупный производитель оборудования выпускал «workstation» на своей архитектуре со своей версией Unix
 - Sun: SPARC и Ultra SPARC, Solaris
 - HP: PA-RISC, HP-UX
 - IBM: ROMP, затем PPC, AIX
 - SGI: MIPS, IRIX

Workstations vs PCs

- В начале 90-х годов мощность «персональных компьютеров» на процессорах x86 (486, Pentium, ...) нагнала мощность «рабочих станций»
- WinNT приближалась по возможностям к возможностям Unix
- Активно развивались {Free, Net, Open}BSD и Linux

Market Share

«Гонка мегагерц» в 90-х

- В 90-х тактовая частота процессоров примерно удваивается каждые полтора года
- Примерное удвоение производительности каждые полтора года у х86 (т. н. закон Мура)
- В итоге большинство RISC-архитектур рабочих станций теряют рынок
- Традиционная концепция: Unix обречен, Wintel завоюет все

Смартфоны

- 2007 год iPhone использует iOS (производная от Darwin (BSD)), процессор ARM
- 2007 год Android ядро Linux, процессор ARM
- Далее бурный рост числа мобильных устройств

Процессорные архитектуры

Современный RISC

- ARM мобильные устройства
- MIPS Sony PlayStation, PS2, Nintendo 64, домашние маршрутизаторы
- Atmel AVR микроконтроллеры
- SPARC суперкомпьютеры

Микроконтроллер

- Процессор
- O3Y
- ПЗУ (EEPROM, Flash)
- GPIO
- Коммуникационные интерфейсы (UART, I2C, SPI)
- Таймеры
- АЦП

System-On-Chip

- Микроконтроллер по характеристикам приближающийся к компьютерам:
 - 512 и более MiB RAM
 - Несколько ядер
 - Интегрированный GPU

System-On-Chip — Raspberry Pi3

Типы ОЗУ

- Статическая память произвольного доступа (SRAM)
- Динамическая память произвольного доступа (DRAM)

Временные характеристики ОЗУ

- Время чтения время от начала операции чтения до появления значения на выходе
- Время цикла время от начала операции чтения до готовности к следующей операции

Статическая ППД

- 6 транзисторов
- Время чтения: ~1 такт
- Время цикла: ~1 такт
- Время записи: ~2 такта
- Тактовая частота любая

Динамическая ППД

• 1 транзистор + 1 конденсатор

• Необходимость регенерации ап

Обновление DRAM

- Распознаваемый «единичный» заряд в конденсаторе может держаться до 1-10с
- Обновление чтение и запись обратно каждой ячейки
- Современные поколения DRAM обновляют каждую ячейку каждые 64мс
- Во время обновления память недоступна процессору
- Накладные расходы на обновление примерно 1% времени

Модификации DRAM

- SDRAM (synchronuous DRAM) использует тактовые импульсы для синхронизации. Все временные характеристики задаются в тактах.
- DDR SDRAM (Double Data Rate) передача/прием данных дважды за такт
- DDR, DDR2, DDR3

Алгоритм чтения из DRAM

- ROW SELECT на нужную строку подается напряжение V, транзисторы открываются
- Напряжение вертикальной линии В+ слегда изменяется, разница В+ и В- усиливается дифференциальным усилителем одновременно считывается и фиксируется (latch) целая строка
- COL SELECT выборка нужных битов из выбранной строки
- После выборки нужных бит строка закрывается
- PRECHARGE на все битовые (вертикальные) линии В+ и В- подается напряжение 0.5 V (от рабочего)

Memory Timings

- CAS Latency (Tcl) время между выдачей адреса столбца и получением данных
- RAS to CAS Delay (Trcd) время между выдачей адрес строки и адреса столбца
- Row Precharge Time (Trp) время между выдачей команды precharge и открытием следующей строки
- Row Active Time (Tras) время между выборкой строки и выдачей команды precharge

•

Row Cycle Time: Trc = Tras + Trp

Производительность памяти

- PC-3200 (DDR-400) 2000
 - 3-4-4-8 (15ns-20ns-20ns-40ns)
- PC2-6400 (DDR2-800) 2003
 - 5-5-5-16 (12.5-12.5-12.5-40)
- PC3-12800 (DDR3-1600) 2007
 - 9-9-9-27 (11.25-11.25-11.25-33.75)

Сравнение скорости ЦП и ОЗУ

- Предположим, тактовая частота процессора
 3.2ГГц
- Тактовая частота ОЗУ 800 МГц (¼ от частоты процессора)
- Время чтения: 72 тактов процессора
- Время цикла: 108 тактов
- С учетом накладных расходов время чтения из ОЗУ: 100 200 тактов процессора

Кэширование

• Кэш (cache) (заначка, тайник) — средство для сглаживания разности скоростей устройств. Некоторая часть данных с медленного устройства помещается в кэш, работающий со скоростью быстрого устройства.

Иерархия памяти

Кэш-память ЦП

- L1 наименьший размер (до 64 KiB), делится на кэш инструкций и данных (L1I, L1D), раздельный для каждого ядра
- L2 средний размер (1МіВ), общая для данных и инструкций, раздельный
- L3 наибольший размер (до 8МіВ), общая для данных и инструкций, общая для всех ядер
- TLB (translation lookahead buffer) для организации виртуальной памяти

Работа кэш-памяти

- Попадание (hit) значение берется из кэша, а не из ОЗУ
- Промах (miss) требуемой ячейки в кэше нет
 - Обязательный промах (ячейка не загружена)
 - Промах из-за размера
 - Промах из-за конфликта (ячейка была в кэше, но оказалась выгруженной)

Характеристики кэш-памяти

- Размер
- Время доступа
- Размер ряда (блока) кэша
- Ассоциативность
- Политика записи в основную память
- Политика замещения
- Политика обеспечения когерентности

Размер ряда (блока)

- При чтении одного байта из ОЗУ загружается ряд (блок) ячеек
- Типичный размер: 32 или 64 байта

Ассоциативность

- Предположим, что кэш позволяет разместить М блоков
- Рассмотрим загрузку блока В из памяти в кэш
- Если блок В может быть размещен в любой ячейке кэша полностью ассоциативный
- Если блок В может быть размещен в одной ячейке **прямое отображение**
- Если блок В может быть размещен в N ячейках кэш N-ассоциативный