Christiane Peters
Technische Universiteit Eindhoven

joint work with Daniel J. Bernstein and Tanja Lange

PQCrypto 2010 Recent Results Session

May 28, 2010

Problem

- Today only binary linear codes.
- Given a parity-check matrix $H \in \mathbf{F}_2^{(n-k)\times n}$, a syndrome $s \in \mathbf{F}_2^{n-k}$, and a weight $w \in \{0,1,2,\ldots\}$.
- Find a vector $e \in \mathbf{F}_2^n$ of weight w such that $s = He^t$.
- Assume that the attacker does not know the structure of the underlying code.

Well-known ISD algorithms

Figure from Overbeck and Sendrier: Code-based Cryptography, in Post-Quantum Cryptography (eds.: Bernstein, Buchmann, and Dahmen)

Lower bound on collision decoding

Finiasz and Sendrier. Security bounds for the design of code-based cryptosystems. Asiacrypt 2009.

- Lower bound on cost of collision decoding.
- Birthday-decoding trick increasing the probability of an iteration to succeed in Stern's algorithm.

Bound is tight for original McEliece parameters (1024, 524, 50).

News

Plain information-set decoding

	-
0	w

Lee-Brickell

Stern

For simplicity assume s=0. Goal: find w columns of the parity check matrix H adding up to zero.

If the sum has weight w-2p-2q add the corresponding w-2p-2q columns in the $(n-k-2\ell)\times(n-k-2\ell)$ submatrix.

Else make a new column selection.

- Collision decoding is the special case q=0 of ball-collision decoding.
- Disadvantage of collision decoding is that errors are required to avoid an asymptotically quite large stretch of ℓ positions.

- Ball-collision assumes that there are asymptotically increasingly many errors in those ℓ positions.
- Expand each p-sum A_1x_0 into a small ball namely $\{A_1x_0 + x_1 : x_1 \in \mathbf{F}_2^{\ell} \times \{0\}^{\ell}, \operatorname{wt}(x_1) = q\}.$
- Expand each p-sum A_1y_0 into a small ball.
- Search for collisions between these balls.

- Some extra work is required to enumerate the points in each ball.
- But it is only about the square root of the improvement in success probability.
- The cost ratio is asymptotically superpolynomial as shown in our analysis.

Success probability

 The chance that the algorithm succeeds after the first round is

$$\frac{\binom{k/2}{p}^2 \binom{\ell}{q}^2 \binom{n-k-2\ell}{w-2p-2q}}{\binom{n}{w}}.$$

- The expected number of iterations is very close to the reciprocal of the success probability of a single iteration.
- Ignore extremely unusual codes for which the average number of iterations is significantly different from the reciprocal of the success probability of a single iteration.

Cost of one iteration

(Updating the matrix: row-reduction)

$$\frac{1}{2}(n-k)^2(n+k)$$

+ (Hashing step: building sums corresponding to the balls)

$$2\ell \Big(2L(k/2,p) - k/2\Big) + 2\min\{1,q\} \binom{k/2}{p} L(\ell,q)$$

 + (Collision step: compute the whole vector and check its weight)

$$2(w-2p-2q+1)(2p)\binom{k/2}{p}^2\binom{\ell}{q}^22^{-2\ell}$$

where
$$L(k,p) = \sum_{i=1}^{p} {k \choose i}$$
.

Example #1

- Bernstein-Lange-P. (PQCrypto 2008): parameters (6624,5129,117) achieve 256-bit security $(2^{255.87}$ bit ops)
- Using collision decoding with the birthday speedup takes $2^{255.54880}$ bit operations $(1.2467039 \times \text{speedup})$.
- A lower bound on collision decoding are $2^{255.1787}$ bit operations (Finiasz-Sendrier, Asiacrypt 2009). $(1.6112985 \times \text{ speedup compared to collision decoding})$
- Ball-collision decoding with parameters $\ell=47$, p=8, and q=1 needs only $2^{254.1519}$ bit operations to attack the same system.
- Ball-collision decoding results in a 3.2830× speedup compared to the upper bound given at PQCrypto 2008.

Example #2

- Attacking a system based on a code with parameters (30332, 22968, 494) requires $2^{1000.9577}$ bit operations using collision decoding with the optimal parameters $\ell=140$, p=27 and q=0.
- The lower bound by Finiasz and Sendrier breaks the complexity down to $2^{999.45027}$, $2.8430\times$ smaller than the cost of collision decoding.
- Ball-collision decoding takes $2^{996.21534}$ bit operations. This is $26.767\times$ smaller than the cost of collision decoding, and $9.415\times$ smaller than the Finiasz–Sendrier lower bound. (using parameters $\ell=156,\ p=29$ and q=1).

Further results

- Our paper includes a proof that asymptotically q=0 is suboptimal for any code rate.
- Our paper proposes a new lower bound

$$\min \left\{ \frac{1}{2} \binom{n}{w} \binom{n-k}{w-p}^{-1} \binom{k}{p}^{-1/2} : p \ge 0 \right\}$$

which gives security levels in the same ballpark of the cost of known attacks.

 Parameters protecting against this bound pay only about a 20% performance penalty at high security levels, compared to parameters that merely protect against known attacks.

Thank you for your attention!