Matematika Diskrit

Sistem Bilangan dan Konversi Bilangan

Pendahuluan

- Definisi:
 - Sistem Bilangan (number system) adalah suatu cara untuk mewakili besaran dari suatu item fisik
- Sistem bilangan desimal merupakan sistem bilangan yang paling familier dengan kita karena berbagai kemudahannya yang kita pergunakan sehari – hari.

Ada 4 sistem bilangan yaitu :

- Sistem bilangan DESIMAL
 Bilangan Dasar 10 dengan simbol 0 9
- 2. Sistem Bilangan BINER Bilangan Dasar 2 dengan simbol 0 dan 1
- 3. Sistem Bilangan OKTAL
 Bilangan Dasar 8 dengan simbol 0 7
- 4. Sistem Bilangan HEKSADESIMAL
 Bilangan Dasar 16 dengan simbol 0 9 dan A F

Macam-Macam Sistem Bilangan

Sistem	Radiks	Himpunan/Elemen Digit	Contoh
Desimal	r=10	{0,1,2,3,4,5,6,7,8,9}	255 ₁₀
Biner	r=2	{0,1}	11111111 ₂
Oktal	r= 8	{0,1,2,3,4,5,6,7}	377 ₈
Heksadesimal	r=16	{0,1,2,3,4,5,6,7,8,9,A,B, C, D, E, F}	FF ₁₆

Desimal	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Heksa	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
Biner	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Konversi Radiks-r ke Desimal

Rumus konversi radiks-r ke desimal:

$$D_r = \sum_{i=-n}^{n-1} d_i \times r^i$$

Contoh:

$$-11012 = 1 \times 23 + 1 \times 22 + 1 \times 20$$
$$= 8 + 4 + 1 = 1310$$

$$-572_8 = 5 \times 8^2 + 7 \times 8^1 + 2 \times 8^0$$
$$= 320 + 56 + 2 = 378_{10}$$

$$-2A_{16} = 2 \times 16^{1} + 10 \times 16^{0}$$
$$= 32 + 10 = 42_{10}$$

Konversi Bilangan Desimal ke Biner

 Konversi bilangan desimal bulat ke bilangan Biner: Gunakan pembagian dgn 2 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB).

```
    Contoh: Konersi 179<sub>10</sub> ke biner:

   179 / 2 = 89 \text{ sisa } 1 \text{ (LSB)}
           /2 = 44 \text{ sisa } 1
               /2 = 22 \text{ sisa } 0
                  /2 = 11 \text{ sisa } 0
                    /2 = 5 sisa 1
                       /2 = 2 sisa 1
                         / 2 = 1 sisa 0
                            / 2 = 0 sisa 1 (MSB)
     \Rightarrow 179<sub>10</sub> = 10110011<sub>2</sub>
```

• 45₁₀ =₂

```
    45/2 = 22 sisa 1 (LSB)
    /2=11 sisa 0
    /2 = 5 sisa 1
    /2 = 2 sisa 1
    /2 = 1 sisa 0
    /2 = 0 sisa 1 (MSB)
```

Konversi Bilangan Desimal ke Oktal

 Konversi bilangan desimal bulat ke bilangan oktal: Gunakan pembagian dgn 8 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). • Contoh: Konversi 179₁₀ ke oktal:

179 / 8 = 22 sisa 3 (LSB)
/ 8 = 2 sisa 6
/ 8 = 0 sisa 2 (MSB)

$$\Rightarrow$$
 179₁₀ = 263₈
MSB LSB

• 385₁₀ =₈

Konversi Bilangan Desimal ke Hexadesimal

 Konversi bilangan desimal bulat ke bilangan hexadesimal: Gunakan pembagian dgn 16 secara suksesif sampai sisanya = 0. Sisa-sisa pembagian membentuk jawaban, yaitu sisa yang pertama akan menjadi least significant bit (LSB) dan sisa yang terakhir menjadi most significant bit (MSB). • Contoh: Konversi 179₁₀ ke hexadesimal:

$$179 / 16 = 11 \text{ sisa } 3 \text{ (LSB)}$$

/ 16 = 0 sisa 3 (dalam bilangan hexadesimal berarti B)MSB

$$\Rightarrow 179_{10} = B3_{16}$$

$$\uparrow$$
MSB LSB

Konversi Bilangan Biner ke Oktal

Untuk mengkonversi bilangan biner ke bilangan oktal, lakukan pengelompokan 3 digit bilangan biner dari posisi LSB sampai ke MSB

 Contoh: konversikan 10110011₂ ke bilangan oktal

Jawab: 10 110 011

Jadi
$$10110011_2 = 263_8$$

• 10110₂ =₈

Konversi Bilangan Oktal ke Biner

Sebaliknya untuk mengkonversi Bilangan Oktal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan oktal ke 3 digit bilangan biner Contoh Konversikan 263₈ ke bilangan biner.

Jadi $263_8 = 010110011_2$ Karena 0 didepan tidak ada artinya kita bisa menuliskan 10110011_2

Konversi Bilangan Biner ke Hexadesimal

Untuk mengkonversi bilangan biner ke bilangan hexadesimal, lakukan pengelompokan 4 digit bilangan biner dari posisi LSB sampai ke MSB

 Contoh: konversikan 10110011₂ ke bilangan heksadesimal

Konversi Bilangan Hexadesimal ke Biner

Sebaliknya untuk mengkonversi Bilangan Hexadesimal ke Biner yang harus dilakukan adalah terjemahkan setiap digit bilangan Hexadesimal ke 4 digit bilangan biner Contoh Konversikan B3₁₆ ke bilangan biner.

Jadi
$$B3_{16} = 10110011_2$$

Tugas

Konversikan Bilangan di Bawah ini

•
$$11010_2 = \dots_{10}$$

•
$$7FD_{16} =_8$$

•
$$29A_{16} =_{10}$$