Risk Group Turnover in STI/HIV Epidemics

Jesse Knight¹, Linwei Wang¹, Huiting Ma¹, Katherine Young², Harry Hausler², Sheree Schwartz³, Stefan Baral³, and Sharmistha Mishra¹

¹MAP Centre for Urban Health Solutions, Unity Health Toronto

² TB HIV Care, South Africa

³ Dept. Epidemiology, Johns Hopkins Bloomberg School of Public Health

2019 April 05

Research Questions

- 1. How can rates of entry into and turnover between risk groups be chosen to ensure steady-state risk group sizes?
- 2. How can these rates be informed by commonly available data sources?
- 3. How are the dynamics of SIR epidemics influenced by the magnitude of turnover (from the highest risk group)?

Objectives

- 1. Formalize a mathematical framework for risk group demographics
- 2. Describe methods for deriving risk group demographic parameters from common data sources
- 3. Illustrate differences in modelled projections for different implementations of risk group demographics, using an example SIR system
 - (a) Impact of structure on prevalence:
 - i. Number of risk groups
 - ii. Inclusion of population growth
 - iii. Inclusion of turnover
 - (b) Impact of rates of turnover & treatment on:
 - i. Overall incidence & prevalence
 - ii. Sub-group incidence & prevalence
 - (c) Impact of turnover on fitted model outputs:
 - i. TPAF of high risk group