Practical Computer Vision Week 1

Computer Vision and CNN

Intro and TMI

What Will We Do?

What will we do? - In Session

- A New Computer Vision Application for each Week
- Presentation or Activity
- Introductory Lecture
- Keras / Tensorflow Lab

What will we do? – Homework

- Programming Assignment
- Prepare Presentation
- Review Materials
- Optional Advanced Study Materials

Syllabus

Week	Class 1	Class 2	Homework	
Week 1 (01. 14) CNN and openCV	What Will We Do? Review: CNN	OpenCV Practice (LAB Session)	Image and Video Processing with openCV	
Week 2 (01. 21) CNN Architecture	Advancements in CNN Architecture	Image Classification with Deep Learning (LAB Session)	Image Classification (Dogs vs Cats)	
Week 3 (01.28) Object Detection	Object Localization and Detection	SSD & MobileNet (LAB Session)	Car Detection with YOLO	

Syllabus

Week	Class 1	Class 2	Homework	
Week 4 (02.04) Landmark Detection & Image Segmentation	Features and Object Recognition	Image Segmentation (LAB)	Face Detection and Recognition	
Week 5 (02. 18) Landmark Detection and Tracking	Object Motion and Tracking	Optical Flow and Feature Matching	Vehicle Localization with SLAM	
Week 6 (02. 25) Neural Style Transfer	Neural Style Transfer	Art generation with Neural Style Transfer (LAB)	Art Generation Team Project	
Week 7 (03. 04) GANs	GANs Intuition	Image Creation with GANs (LAB)	Image Augmentation using GANs	

7 / n

Various Applications of Computer Vision

What is Computer Vision?

Image Classification (Week 2)

Object Detection (Week 3)

Image Segmentation (Week 4)

Landmark Detection and Facial Recognition (Week 4)

Neural Style Transfer (Week 6)

Elzzy Content Style

Generative Adversarial Networks (Week 7)

Review: CNN

CNN In Edge Detection

6	30	30	0
0	30	3	0
0	30	30	2
0	30	30	0

1:02

Dark.

Schorr Filter

Paromer 1019

10

10

ーん

Padding

Practical CV Week 1

- Image 가 작아진다

- 각 픽셀외계산반후의 분산이 크다

$$(n+2p-f+1)*(n+2p-f+1)$$

$$(n-f+1)*(n-f+1)$$

Padding

- Valid Convolution: No padding

- **Same Convolution**: Pad so that Output size as the same as the input size

Strided Convolutions

2	3	7	4	6	2	9
6	6	9	8	7	4	3
3	4	8	3	8	9	7
7	8	3	6	6	3	4
4	2	1	8	3	4	6
3	2	4	1	9	8	3
0	1	3	9	2	1	4

Convolutions Over Volume

Convolutions Over Volume

One Layer of Convolutional Network

3 x 3 x 3

fAFARC

$$(n-f+1)\times (n-f+1)\times nf$$

Summary of Notation

 $f^{[l]}$ = filter size

 $p^{[l]} = padding$

 $s^{[l]} = \text{stride}$

 $n_c^{[l]}$ = number of filters

 $Input: n_H^{[l-1]} \times n_w^{[l-1]} \times n_c^{[l-1]}$

Output: $n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$

$$n^{[l]} = \left\lfloor \frac{n^{[l-1]} + 2P^{[l]} - f^{[l]}}{s^{[l]}} \right\rfloor + 1$$

Each Filter Size: $f^{[l]} \times f^{[l]} \times n_c^{[l]}$

 $Activations: a^{[l]} \rightarrow n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$

Set of m Activations : $A^{[l]} \rightarrow m \times n_H^{[l]} \times n_w^{[l]} \times n_c^{[l]}$

Each Filter Size: $f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$

Pooling Layer

Marpoling.

Average Porting

- 3 Types of Layers
- Convolution
- Pooling
- Fully Connected

9	2
6	3

$$n=2, (s=2)$$

CNN Example

GNVI POOLA	Layer	Activation shape	Activation Size	# of Parameters
32x32x3 f=5 28x28x8 f=2 14x14x8	INPUT	(32, 32(3)	3072	0
p=0 32-5+1	CONV1	(28. 28. 8)	6072	(5×5×3+1) ×8=6
(anv2 porl2 TO) t/2	POOL1	(14., 148)	1568	0
37 → FOY → 10 10 FOY	CONV2	(10, 10, 16)	1600	(\$x\$x8+1) x 16
f5 f2 5x5 x16	POOL2	(5, 5, 16)	400	
5=1, 10×10×16 5=2 1/2 24	FC3	(120, 1)	120	
16 (400. CA)	FC4	(84, 1)	84	
Loyer 2	Softmax	(10, 1)	10	

27 / n

CNN Example

Layer	Activation shape	Activation Size	# of Parameters
INPUT	(32, 32, 3)	3072	0
CONV1	(28. 28. 8)	6072	(5*5*3+1)*8 = 608
POOL1	(14., 14, 8)	1568	0
CONV2	(10, 10, 16)	1600	(5*5*8+1)*16 = 3216
POOL2	(5, 5, 16)	400	0
FC3	(120, 1)	120	400*120+ 120 = 48120
FC4	(84, 1)	84	120*84+84 = 10164
Softmax	(10, 1)	10	84*10 + 10 = 850

openCV

Assignments

HOMEWORK

- GROUP Assignment
- Study and Present CNN Architectures
- AlexNet + VGG
- GoogleNet (Inception) + Xception
- ResNet + ResNeXt

INDIVIDUAL Self Practice

- OpenCV Practice
- CNN Practice (numpy, keras, tensorflow, pytorch)