What is Claimed is:

1. A method for fabricating a capacitor of a semiconductor device, comprising the steps of:

forming a storage electrode using silicon;

sequentially depositing a first Al_2O_3 film, a Ta_2O_5 layer doped with Ti, and a second Al_2O_3 film on the storage electrode to form a dielectric film; and

forming a plate electrode on the dielectric film 10 using metal.

2. The method according to claim 1, wherein the first Al_2O_3 film and the second Al_2O_3 film is formed in a LPCVD process, an ALD process or a PECVD process.

15

5

3. The method according to claim 1, the first Al_2O_3 film, the Ta_2O_5 layer doped with Ti, and the second Al_2O_3 film have a thickness ranging from 5 to 100Å, respectively.

20

4. The method according to claim 1, wherein the Ta_2O_5 layer doped with Ti is formed using a cocktail source containing 1 - 50% of a Ti source in an in-situ doping process.

5. The method according to claim 4, wherein the in-situ doping process is performed using a mixture of the cocktail source and O_2 gas.

5

15

- 6. The method according to claim 1, wherein the ${\rm Ta_2O_5}$ layer doped with Ti is formed in an ALD process, an MOCVD process or a PECVD process.
- 7. A capacitor of a semiconductor device, comprising:
 - a storage electrode comprising silicon;
 - a dielectric film disposed on the storage electrode, the dielectric film including a stacked structure of a first Al_2O_3 film, a Ta_2O_5 layer doped with Ti, and a second Al_2O_3 film; and
 - a metal plate electrode disposed on the dielectric film.