Nombre: Eguiarte Morett Luis Andrés.

Titulo Tarea: Espectro en amplitud y fase y Respuesta en frecuencia en MATLAB.

Tarea No. 6

Para la siguiente señal:

 $t=\Delta$

 $T=2\Delta$

A=1

- a) Obtener los primeros 100 coeficientes A_n y Θ_n
 - i) $\Delta = 0.1[uS]; T=0.2[uS]$
 - ii) Δ =0.05[uS]; T=0.05 [uS]
 - iii) Δ =0.01[uS]; T=0.01 [uS]
- i) $\Delta = 0.1[uS]; T=0.2[uS]$

Para la entrada

n	Anx	thetan
_		
0	0.5	0
1	0.63662	1.5708
2	0 3.	1416
3	0.21221	1.5708
4	0 3.	1416
5	0.12732	
6	0 3.	
7	0.090946	1.5708
8	0 3.	1416
9	0.070736	1.5708
10		.1416
11	0.057875	1.5708
12		.1416
13	0.048971	1.5708
14	0 3	.1416

```
0.042441 1.5708
15
16
      0 3.1416
17
    0.037448 1.5708
18
     0 3.1416
    0.033506 1.5708
19
20
    0 3.1416
    0.030315 1.5708
21
22
     0 3.1416
23
    0.027679 1.5708
24
     0 3.1416
25
    0.025465 1.5708
26
    0 0
27
    0.023579 1.5708
    0 3.1416
28
29
    0.021952 1.5708
30
     0 3.1416
31
    0.020536 1.5708
32
    0 3.1416
33
    0.019292 1.5708
34
    0 0
35
    0.018189 1.5708
    0 3.1416
36
    0.017206 1.5708
37
38
    0 3.1416
39
    0.016324 1.5708
40
    0 3.1416
41
    0.015527 1.5708
42
    0 0
    0.014805 1.5708
43
    0 3.1416
44
45
    0.014147 1.5708
46
     0 3.1416
47
    0.013545 1.5708
48
    0 3.1416
49
    0.012992 1.5708
50
     0 0
51
    0.012483 1.5708
52
     0 0
    0.012012 1.5708
53
54
    0 3.1416
55
    0.011575 1.5708
56
    0 3.1416
57
    0.011169 1.5708
58
     0 0
    0.01079 1.5708
59
    0 3.1416
60
61
    0.010436 1.5708
    0 3.1416
62
    0.010105 1.5708
63
64
    0 3.1416
65
   0.0097942 1.5708
66
      0 3.1416
```

```
0.0095018 1.5708
67
68
    0 0
69
   0.0092264 1.5708
70
    0 3.1416
71 0.0089665 1.5708
72
    0 3.1416
73 0.0087208 1.5708
74
    0 3.1416
75
   0.0084883 1.5708
76
    0 3.1416
77 0.0082678 1.5708
78
    0 3.1416
79
   0.0080585 1.5708
80
   0 3.1416
81 0.0078595 1.5708
82
    0 3.1416
83 0.0076701 1.5708
84
    0 0
85 0.0074896 1.5708
   0 3.1416
86
87
   0.0073175 1.5708
88
    0 3.1416
89
   0.007153 1.5708
    0 3.1416
90
91 0.0069958 1.5708
92
   0 3.1416
93
   0.0068454 1.5708
94
   0 0
95 0.0067013 1.5708
96
    0 3.1416
97 0.0065631 1.5708
98
     0 3.1416
99
   0.0064305 1.5708
```

Para la respuesta en frecuencia

n	Hn	theta_h
0	1	0
1	0.99803	-0.062749
2	0.9922	-0.12501
3	0.98269	-0.18631
4	0.96984	-0.24623
5	0.95403	-0.3044
6	0.93572	-0.36052
7	0.91537	-0.41436
8	0.89348	-0.46577
9	0.87046	-0.51466
10	0.84673	-0.56098
11	0.82264	-0.60476
12	0.79847	-0.64604

```
13
    0.77448
               -0.68491
14
    0.75085
               -0.72146
15
    0.72773
               -0.75579
16
    0.70523
               -0.78805
17
    0.68344
               -0.81833
18
     0.6624
               -0.84678
    0.64214
19
               -0.87351
20
    0.62268
               -0.89864
21
    0.60401
               -0.92227
22
    0.58613
               -0.94452
23
               -0.96547
    0.56903
24
    0.55267
               -0.98524
25
    0.53703
                -1.0039
    0.52209
26
                -1.0215
27
    0.50781
                -1.0382
28
    0.49416
                -1.0539
29
    0.48112
                -1.0689
30
    0.46865
                -1.083
31
    0.45673
                -1.0965
32
    0.44532
                -1.1093
33
    0.43441
                -1.1214
    0.42395
34
                -1.133
35
    0.41394
                -1.144
36
    0.40434
                -1.1545
37
    0.39514
                -1.1646
38
    0.38631
                -1.1742
39
    0.37784
                -1.1833
40
     0.3697
               -1.1921
41
    0.36187
                -1.2005
42
    0.35435
                -1.2086
43
    0.34711
                -1.2163
44
    0.34015
                -1.2237
45
                -1.2308
    0.33344
46
    0.32697
                -1.2377
47
    0.32074
                -1.2443
48
    0.31472
                -1.2506
49
    0.30892
                -1.2567
50
    0.30331
                -1.2626
51
     0.2979
               -1.2683
52
    0.29267
                -1.2738
53
     0.2876
               -1.2791
54
    0.28271
                -1.2842
55
    0.27797
                -1.2891
56
    0.27338
                -1.2939
57
                -1.2985
    0.26893
                -1.303
58
    0.26462
59
    0.26044
                -1.3073
60
    0.25639
                -1.3115
                -1.3156
61
    0.25246
62
    0.24864
                -1.3195
63
    0.24493
                -1.3233
```

64

0.24133

-1.3271

65 66 67 68 69 70 71 73 74 75 77 78 81 82 83 84 88 89 91 92 93	0.23783 0.23442 0.23111 0.22789 0.22476 0.22171 0.21873 0.21584 0.21302 0.21027 0.20758 0.20497 0.20242 0.19993 0.19749 0.19512 0.1928 0.19054 0.18832 0.18616 0.18404 0.18197 0.17995 0.17797 0.17603 0.17414 0.17228 0.17046 0.16868	-1.3307 -1.3342 -1.3376 -1.3409 -1.3441 -1.3472 -1.3503 -1.3532 -1.3561 -1.3644 -1.367 -1.3695 -1.372 -1.3744 -1.3768 -1.3791 -1.3813 -1.3835 -1.3857 -1.3899 -1.3919 -1.3938 -1.3958 -1.3958 -1.3958
90	0.17414	-1.3958
93	0.17046 0.16868	-1.3995 -1.4013
94	0.16694	-1.4031
95	0.16523	-1.4048
96	0.16355	-1.4065
97	0.16191	-1.4082
98	0.1603	-1.4098
99	0.15872	-1.4114

Para la salida

n	Any	theta_h_y
0	0.5	0
1	0.63537	1.508
2	0 3	.0166
3	0.20853	1.3845
4	0 2	.8954
5	0.12147	1.2664
6	0 2	.7811
7	0.083249	1.1564
8	0 2	.6758
9	0.061573	1.0561

```
10
    0 2.5806
11
    0.04761 0.96603
12
    0 2.4955
13
   0.037927 0.88589
    0 2.4201
14
15
    0.030886 0.815
    0 2.3535
16
17
    0.025594 0.75246
    0 2.2948
18
19
    0.021516 0.69728
    0 2.243
20
21
    0.018311 0.64853
22
    0 2.1971
    0.01575 0.60532
23
24
    0 2.1564
25
   0.013675 0.56691
26
    0 -1.0215
   0.011973 0.53264
27
    0 2.0877
28
29
    0.010562 0.50193
   0 2.0586
30
31 0.0093794 0.47431
   0 2.0323
32
33 0.0083803 0.44938
34
    0 -1.133
35
   0.0075292 0.42678
36
   0 1.9871
37 0.0067988 0.40622
38
   0 1.9674
39 0.0061677 0.38746
40
   0 1.9495
41
   0.0056189 0.37028
   0 -1.2086
42
43
   0.0051391 0.35449
44
    0 1.9179
45 0.0047172 0.33995
46
    0 1.9039
   0.0043444 0.32651
47
48
   0 1.891
49
   0.0040136 0.31406
50
   0 -1.2626
51 0.0037186 0.30249
52
    0 -1.2738
53 0.0034546 0.29172
54
   0 1.8574
55
   0.0032175 0.28168
56
   0 1.8477
57
   0.0030036 0.27228
58
    0 -1.303
59 0.0028102 0.26348
60
   0 1.8301
61 0.0026348 0.25522
```

```
62 0 1.8221
63 0.0024751 0.24745
64 0 1.8145
65 0.0023293 0.24013
66
   0 1.8074
67 0.002196 0.23322
68
   0 -1.3409
69 0.0020737 0.22669
70 0 1.7944
71 0.0019613 0.22052
  0 1.7883
72
73 0.0018577 0.21466
74
   0 1.7826
75
   0.001762 0.2091
76
   0 1.7772
77 0.0016735 0.20382
78
  0 1.7721
79 0.0015915 0.1988
80 0 1.7672
81 0.0015153 0.19402
82 0 1.7625
83 0.0014445 0.18945
  0 -1.3835
84
85 0.0013784 0.1851
86
   0 1.7538
87 0.0013168 0.18094
   0 1.7497
88
89 0.0012592 0.17696
90
   0 1.7458
91 0.0012052 0.17314
92
   0 1.7421
93 0.0011547 0.16949
94
   0 -1.4031
95 0.0011072 0.16599
96
   0 1.7351
97 0.0010626 0.16263
98
   0 1.7318
99 0.0010207 0.1594
```


ii) Δ =0.05[uS]; T=0.05 [uS]

n	Anx	thetan
0	0.5	0
1	0.63662	1.5708
2	0 3	.1416
3	0.21221	1.5708
4	0 3	.1416
5	0.12732	1.5708
6	0 3	.1416
7	0.090946	1.5708
8	0 3	.1416
9	0.070736	1.5708
10	0 3	3.1416
11	0.057875	1.5708
12	0 3	3.1416
13	0.048971	L 1.5708
14	0 3	3.1416
15	0.042441	L 1.5708
16	0 3	3.1416
17	0.037448	3 1.5708
18	0 3	3.1416

```
19
    0.033506 1.5708
20
      0 3.1416
21
    0.030315 1.5708
22
     0 3.1416
    0.027679 1.5708
23
24
    0 3.1416
25
    0.025465 1.5708
26
     0 0
27
    0.023579 1.5708
28
     0 3.1416
    0.021952 1.5708
29
30
    0 3.1416
31
    0.020536 1.5708
32
    0 3.1416
33
    0.019292 1.5708
34
     0 0
35
    0.018189 1.5708
    0 3.1416
36
37
    0.017206 1.5708
38
    0 3.1416
39
    0.016324 1.5708
40
    0 3.1416
41
    0.015527 1.5708
42
    0 0
43
    0.014805 1.5708
    0 3.1416
44
45
    0.014147 1.5708
46
    0 3.1416
47
    0.013545 1.5708
48
     0 3.1416
49
    0.012992 1.5708
50
     0 0
51
    0.012483 1.5708
    0 0
52
53
    0.012012 1.5708
54
    0 3.1416
55
    0.011575 1.5708
56
     0 3.1416
57
    0.011169 1.5708
58
     0 0
59
    0.01079 1.5708
    0 3.1416
60
61
    0.010436 1.5708
62
     0 3.1416
    0.010105 1.5708
63
64
      0 3.1416
65
   0.0097942 1.5708
    0 3.1416
66
67
   0.0095018 1.5708
68
    0 0
   0.0092264 1.5708
69
70
   0 3.1416
```

71	0.0089665	
72	0 3.1	
73	0.0087208	
74	0 3.1	416
75	0.0084883	
76	0 3.1	416
77	0.0082678	
78	0 3.1	416
79	0.0080585	
80	0 3.1	416
81	0.0078595	
82	0 3.1	416
83	0.0076701	1.5708
84	0	0
85	0.0074896	1.5708
86	0 3.1	
87	0.0073175	
88	0 3.1	
89	0.007153	
90	0 3.1	
91	0.0069958	1.5708
92	0 3.1	
93	0.0068454	
94	0	
95	0.0067013	
96	0 3.1	
97	0.0065631	
98	0 3.1	
99	0.0064305	

n	Hn	theta_h
_		
0	1	0
1	0.9922	-0.12501
2	0.96984	-0.24623
3	0.93572	-0.36052
4	0.89348	-0.46577
5	0.84673	-0.56098
6	0.79847	-0.64604
7	0.75085	-0.72146
8	0.70523	-0.78805
9	0.6624	-0.84678
10	0.62268	-0.89864
11	0.58613	-0.94452
12	0.55267	-0.98524
13	0.52209	-1.0215
14	0.49416	-1.0539
15	0.46865	-1.083
16	0.44532	-1.1093
17	0.42395	-1.133
18	0.40434	-1.1545

```
19
     0.38631
                -1.1742
20
     0.3697
               -1.1921
21
     0.35435
                -1.2086
22
     0.34015
                -1.2237
23
     0.32697
                -1.2377
24
     0.31472
                -1.2506
25
     0.30331
                -1.2626
                -1.2738
26
     0.29267
27
     0.28271
                -1.2842
28
     0.27338
                -1.2939
29
     0.26462
                 -1.303
30
     0.25639
                -1.3115
31
     0.24864
                -1.3195
32
     0.24133
                -1.3271
33
     0.23442
                -1.3342
34
     0.22789
                -1.3409
35
     0.22171
                -1.3472
     0.21584
36
                -1.3532
37
     0.21027
                -1.3589
38
     0.20497
                -1.3644
39
     0.19993
                -1.3695
40
     0.19512
                -1.3744
41
     0.19054
                -1.3791
42
     0.18616
                -1.3835
43
     0.18197
                -1.3878
     0.17797
44
                -1.3919
45
     0.17414
                -1.3958
46
     0.17046
                -1.3995
47
     0.16694
                -1.4031
48
     0.16355
                -1.4065
49
     0.1603
               -1.4098
50
     0.15718
                 -1.413
51
     0.15417
                 -1.416
52
     0.15127
                -1.4189
53
     0.14848
                -1.4218
54
     0.14579
                -1.4245
55
     0.1432
               -1.4271
56
     0.14069
                -1.4296
57
     0.13827
                -1.4321
58
     0.13593
                -1.4344
59
     0.13367
                -1.4367
     0.13148
                -1.4389
60
61
     0.12936
                -1.4411
62
     0.12731
                -1.4431
     0.12532
                -1.4451
63
     0.12339
                -1.4471
64
                 -1.449
65
     0.12152
66
     0.1197
               -1.4508
67
     0.11794
                -1.4526
68
     0.11623
                -1.4543
69
     0.11457
                 -1.456
70
     0.11295
                -1.4576
```

```
71
     0.11138
               -1.4592
72
     0.10986
               -1.4607
73
     0.10837
               -1.4622
74
     0.10692
                -1.4637
75
               -1.4651
     0.10551
76
     0.10414
               -1.4665
77
     0.1028
               -1.4678
78
     0.1015
               -1.4691
79
     0.10022
               -1.4704
80
    0.098983
                -1.4717
81
    0.097773
                -1.4729
82
    0.096592
                -1.4741
83
    0.095439
                -1.4752
                -1.4763
84
    0.094313
85
                -1.4774
    0.093213
86
    0.092138
                -1.4785
87
    0.091088
                -1.4796
    0.090061
                -1.4806
88
89
    0.089058
                -1.4816
90
    0.088076
                -1.4826
91
    0.087115
                -1.4836
92
                -1.4845
    0.086175
93
    0.085256
                -1.4854
94
    0.084355
                -1.4863
95
    0.083473
                -1.4872
96
     0.08261
                -1.4881
97
    0.081764
                -1.4889
98
    0.080935
                -1.4898
99
    0.080123
                -1.4906
```

n Any theta_h_y

0	0.5 0
1	0.63165 1.4458
2	0 2.8954
3	0.19856 1.2103
4	0 2.6758
5	0.10781 1.0098
6	0 2.4955
7	0.068286 0.84934
8	0 2.3535
9	0.046855 0.72401
10	0 2.243
11	0.033922 0.62628
12	0 2.1564
13	0.025567 0.54929
14	0 2.0877
15	0.01989 0.48776
16	0 2.0323
17	0.015876 0.43781
18	0 1.9871

```
0.012944 0.39663
19
20
        0 1.9495
21
     0.010742 0.36222
22
       0 1.9179
    0.0090503 0.3331
23
24
       0 1.891
25
    0.0077238 0.30817
        0 -1.2738
26
27
    0.0066658 0.28662
28
       0 1.8477
29
    0.0058091 0.26781
30
       0 1.8301
31
    0.0051061 0.25128
32
        0 1.8145
    0.0045224 0.23663
33
34
        0 -1.3409
35
    0.0040326 0.22356
36
       0 1.7883
37
    0.0036178 0.21185
        0 1.7772
38
39
    0.0032635 0.20128
40
       0 1.7672
41
    0.0029585 0.19171
       0 -1.3835
42
43
    0.0026941 0.18299
44
        0 1.7497
45
    0.0024635 0.17503
46
        0 1.7421
47
    0.0022612 0.16772
       0 1.7351
48
49
    0.0020827 0.161
50
        0 -1.413
    0.0019244 0.15479
51
52
        0 -1.4189
53
    0.0017835 0.14903
       0 1.7171
54
55
    0.0016575 0.14369
56
        0 1.712
57
    0.0015443 0.13871
58
        0 -1.4344
59
    0.0014423 0.13407
       0 1.7027
60
61
     0.00135 0.12972
        0 1.6984
62
63
    0.0012663 0.12565
        0 1.6945
64
    0.0011902 0.12182
65
66
       0 1.6908
67
    0.0011207 0.11822
68
       0 -1.4543
69
    0.0010571 0.11482
70
        0 1.684
```

```
71
   0.00099872 0.11162
72
       0 1.6809
73
   0.00094506 0.10858
74
       0 1.6779
75
   0.00089561 0.10571
76
      0 1.6751
77
   0.00084993 0.10298
78
       0 1.6725
79
   0.00080765 0.10039
80
      0 1.6699
   0.00076845 0.09793
81
82
      0 1.6675
   83
84
    0 -1.4763
85
   0.00069813 0.093348
86
       0 1.6631
87
   0.00066653 0.091215
88
       0 1.661
89
   0.00063703 0.089176
90
      0 1.659
91
   0.00060944 0.087226
92
       0 1.6571
93
   0.00058361 0.085359
94
      0 -1.4863
95
   0.00055938 0.083571
      0 1.6535
96
   0.00053662  0.081855
97
98
       0 1.6518
99 0.00051523 0.080209
```


iii) Δ =0.01[uS]; T=0.01 [uS]

n	Anx	thetan
0	0.5	0
1	0.63662	1.5708
2	0 3	.1416
3	0.21221	1.5708
4	0 3	.1416
5	0.12732	1.5708
6	0 3	.1416
7		1.5708
8		.1416
9	0.070736	1.5708
10		3.1416
11		5 1.5708
12		3.1416
13	0.048971	L 1.5708
14		3.1416
15		L 1.5708
16		3.1416
17		3 1.5708
18		3.1416
19	0.033506	5 1.5708

```
20
    0 3.1416
21
    0.030315 1.5708
22
    0 3.1416
23
   0.027679 1.5708
    0 3.1416
24
25
    0.025465 1.5708
26
    0 0
    0.023579 1.5708
27
28
    0 3.1416
29
    0.021952 1.5708
    0 3.1416
30
31
    0.020536 1.5708
32
    0 3.1416
    0.019292 1.5708
33
34
    0 0
35
   0.018189 1.5708
36
    0 3.1416
   0.017206 1.5708
37
38
    0 3.1416
    0.016324 1.5708
39
40
    0 3.1416
41
   0.015527 1.5708
42
    0 0
   0.014805 1.5708
43
44
    0 3.1416
    0.014147 1.5708
45
    0 3.1416
46
47
    0.013545 1.5708
48
    0 3.1416
   0.012992 1.5708
49
50
    0 0
51
    0.012483 1.5708
52
    0 0
    0.012012 1.5708
53
    0 3.1416
54
55
   0.011575 1.5708
56
    0 3.1416
57
    0.011169 1.5708
58
    0 0
59
    0.01079 1.5708
60
    0 3.1416
    0.010436 1.5708
61
62
    0 3.1416
63
   0.010105 1.5708
    0 3.1416
64
65
   0.0097942 1.5708
    0 3.1416
66
67
   0.0095018 1.5708
68
    0 0
69 0.0092264 1.5708
70
   0 3.1416
71
   0.0089665 1.5708
```

72	0 3.1416
73	0.0087208 1.5708
74	0 3.1416
75	0.0084883 1.5708
76	0 3.1416
77	0.0082678 1.5708
78	0 3.1416
79	0.0080585 1.5708
80	0 3.1416
81	0.0078595 1.5708
82	0 3.1416
83	0.0076701 1.5708
84	0 0 0.0074896 1.5708
85	0.0074896 1.5708
86	0 3.1416
87	0.0073175 1.5708
88	0 3.1416
89	0.007153 1.5708
90	0 3.1416
91	0.0069958 1.5708
92	0 3.1416
93	0.0068454 1.5708
94	0 0
95	0 0 0.0067013 1.5708
96	0 3.1416
97	0.0065631 1.5708
98	0 3.1416
99	0.0064305 1.5708

n	Hn	theta_h
0	1	0
1	0.84673	-0.56098
2	0.62268	-0.89864
3	0.46865	-1.083
4	0.3697	-1.1921
5	0.30331	-1.2626
6	0.25639	-1.3115
7	0.22171	-1.3472
8	0.19512	-1.3744
9	0.17414	-1.3958
10	0.15718	-1.413
11	0.1432	-1.4271
12	0.13148	-1.4389
13	0.12152	-1.449
14	0.11295	-1.4576
15	0.10551	-1.4651
16	0.098983	-1.4717
17	0.093213	-1.4774
18	0.088076	-1.4826
19	0.083473	-1.4872

```
20
    0.079327
                -1.4914
21
    0.075571
                -1.4952
22
    0.072155
                -1.4986
23
    0.069033
                -1.5017
24
    0.066169
                -1.5046
25
    0.063533
                -1.5072
26
    0.061099
                -1.5097
27
    0.058844
                -1.5119
                 -1.514
28
    0.056749
29
    0.054799
                 -1.516
    0.052977
                -1.5178
30
31
    0.051273
                -1.5195
32
    0.049675
                -1.5211
33
    0.048173
                -1.5226
34
    0.046759
                 -1.524
35
    0.045426
                -1.5254
36
    0.044167
                -1.5266
37
    0.042975
                -1.5278
38
    0.041846
                -1.5289
39
    0.040775
                 -1.53
40
    0.039757
                 -1.531
41
    0.038789
                 -1.532
42
    0.037867
                -1.5329
43
    0.036987
                -1.5338
44
    0.036148
                -1.5346
45
    0.035346
                -1.5354
46
    0.034578
                -1.5362
47
    0.033843
                -1.5369
48
    0.033139
                -1.5377
    0.032463
                -1.5383
49
50
                 -1.539
    0.031815
51
    0.031192
                -1.5396
52
                -1.5402
    0.030592
53
    0.030016
                -1.5408
     0.02946
                -1.5413
54
55
    0.028925
                -1.5419
56
    0.028409
                -1.5424
57
    0.027911
                -1.5429
58
     0.02743
                -1.5434
59
    0.026966
                -1.5438
60
    0.026516
                -1.5443
                -1.5447
61
    0.026082
62
    0.025662
                -1.5451
63
    0.025255
                -1.5455
64
     0.02486
                -1.5459
65
    0.024478
                -1.5463
66
    0.024107
                -1.5467
67
    0.023748
                 -1.547
    0.023399
                -1.5474
68
69
     0.02306
                -1.5477
70
    0.022731
                -1.5481
71
    0.022411
                -1.5484
```

```
72
    0.022099
                -1.5487
73
    0.021797
                -1.549
                -1.5493
74
    0.021502
75
    0.021216
                -1.5496
76
    0.020937
                -1.5499
77
    0.020665
                -1.5501
78
     0.0204
               -1.5504
79
    0.020142
                -1.5507
80
     0.01989
                -1.5509
81
    0.019645
                -1.5512
82
    0.019405
                -1.5514
83
    0.019172
                -1.5516
84
    0.018944
                -1.5519
85
    0.018721
                -1.5521
86
    0.018503
                -1.5523
87
    0.018291
                -1.5525
88
    0.018083
                -1.5527
89
     0.01788
                -1.5529
90
    0.017681
                -1.5531
91
    0.017487
                -1.5533
92
    0.017297
                -1.5535
93
    0.017111
                -1.5537
94
                -1.5539
    0.016929
95
    0.016751
                -1.554
96
                -1.5542
    0.016576
97
    0.016406
                -1.5544
98
    0.016238
                -1.5546
99
    0.016074
                -1.5547
```

n Any theta_h_y

0	0.5	0
1	0.53905	1.0098
2	0 2	.243
3	0.099451	0.48776
4	0 1.9	9495
5	0.038619	0.30817
6	0 1.3	8301
7	0.020163	0.22356
8	0 1.	7672
9	0.012318	0.17503
10	0 1.	.7286
11	0.0082874	0.14369
12	0 1.	.7027
13	0.0059509	0.12182
14	0 1	684
15	0.004478	0.10571
16	0 1.	.6699
17	0.0034907	0.093348
18	0 1	659
19	0.0027969	0.083571

```
20
      0 1.6502
21
    0.002291 0.075643
22
       0 1.643
23
    0.0019108 0.069088
24
       0 1.637
25
    0.0016179 0.063576
        0 -1.5097
26
27
    0.0013875 0.058878
28
        0 1.6276
29
    0.001203 0.054826
30
       0 1.6238
31
    0.0010529 0.051295
32
       0
          1.6205
33
   0.00092933 0.048191
34
       0 -1.524
35
   0.00082626 0.045442
36
     0 1.615
   37
38
       0 1.6127
39
   0.00066559 0.040786
40
        0 1.6106
41
   0.00060229 0.038799
     0 -1.5329
42
43
    0.0005476 0.036996
44
       0 1.607
45
   0.00050004 0.035353
46
        0 1.6054
47
   0.00045841 0.03385
48
     0 1.6039
49
   0.00042177 0.032469
50
       0 -1.539
51
   0.00038936 0.031197
52
        0 -1.5402
53
   0.00036054 0.03002
       0 1.6003
54
55
   0.00033481 0.028929
56
       0 1.5992
57
   0.00031173 0.027915
58
        0 -1.5434
59
   0.00029096 0.026969
60
       0 1.5973
    0.0002722 0.026085
61
62
      0 1.5965
63
    0.0002552 0.025257
64
        0 1.5957
   0.00023974 0.02448
65
66
        0 1.5949
67
   0.00022565 0.02375
       0 -1.5474
68
69
   0.00021276 0.023062
70
       0 1.5935
71
   0.00020094 0.022412
```

```
72
    0 1.5929
73
   0.00019009 0.021799
74
    0 1.5923
75 0.00018009 0.021217
    0 1.5917
76
77
   0.00017085 0.020667
78
    0 1.5912
   0.00016231 0.020143
79
80
   0 1.5907
81
   0.0001544 0.019646
    0 1.5902
82
83 0.00014705 0.019173
84
      0 -1.5519
85
   0.00014021 0.018722
    0 1.5893
86
   0.00013384 \quad 0.018292
87
88
   0 1.5889
89
   0.00012789 0.017881
90
    0 1.5885
91
   0.00012234 0.017488
92
   0 1.5881
93 0.00011713 0.017112
    0 -1.5539
94
95 0.00011225 0.016752
96
      0 1.5874
97
   0.00010767 0.016406
98
       0 1.587
99
```


b. Código de los espectros de amplitud y fase

```
%%Definiendo variables
clc;
%delta=.0000001;%definiendo ancho de pulso
%para cada caso:
%delta=.00000005
delta=.00000001
T0=2*delta;%definiendo duracion del pulso
a0=(1/T0)*delta;%componente de directa
n=1:1:99; %definiendo valores de n
R=1000;
C=.000000000002;
%%Obteniendo valores de An, thetan, an, bn
Anx=((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
Hn=1./(sqrt(1+power(n.*2*pi*(1/T0)*R*C,2)));
Any=Anx.*Hn;
theta_h=atan2((n.*2*pi*(1/T0)*R*C),1).*-1;
thetan=atan2(bn,an);
theta h y=theta h+thetan;
n=[0,n];
theta h=[0,theta h];
Hn=[1,Hn];
an=[a0,an];
bn=[0,bn];
```

```
Anx=[a0,Anx];
Any=[0.5,Any];
thetan=[0,thetan];
theta h y=[0,theta h y];
an=an';
bn=bn';
Anx=Anx';
thetan=thetan';
n=n';
theta h=theta h';
Hn=Hn';
Any=Any';
theta h y=theta h y';
tabla=table(n,Anx,thetan);
disp(tabla);
tabla2=table(n,Hn,theta h);
disp(tabla2);
tabla3=table(n,Any,theta h y);
disp(tabla3);
%% Graficas del espectro en amplitud y en fase
subplot(2,3,1);
stem(n.*(1/T0), Anx);
title('Espectro de Amplitud');
xlabel('Frecuencia [Hz]');
ylabel('A n');
axis([0 400000000 0 0.7]);
grid;
%%
subplot(2,3,4);
stem(n.*(1/T0), thetan);
title('Espectro de Fase');
xlabel('Frecuencia [Hz]');
ylabel('Theta n');
grid;
%%
subplot(2,3,2);
stem(n.*(1/T0), Hn);
title('Respuesta en Amplitud');
xlabel('Frecuencia [Hz]');
ylabel('H n');
axis([0 400000000 0 1.2]);
grid;
%%
subplot(2,3,5);
stem(n.*(1/T0), theta_h);
title('Respuesta de Fase');
xlabel('Frecuencia [Hz]');
ylabel('Theta_h');
grid;
%%
```

```
subplot(2,3,3);
stem(n.*(1/T0), Any);
title('Espectro de Amplitud de Salida');
xlabel('Frecuencia [Hz]');
ylabel('A_y');
axis([0 400000000 0 0.7]);
grid;
%%
subplot(2,3,6);
stem(n.*(1/T0), theta_h_y);
title('Espectro de Fase de la salida');
xlabel('Frecuencia [Hz]');
ylabel('Theta_hy');
grid;
```

c. Código de y(t).

```
%%Definiendo variables
clc:
%delta=.0000001;%definiendo ancho de pulso
%delta=.00000005;
delta=.0000001;
T0=2*delta;%definiendo duración del pulso
T01=2*delta1;
T02=2*delta2;
a0=(1/T0)*delta;%componente de directa
n=1:1:99; %definiendo valores de n
an=(1./(pi*n)).*sin((2*pi.*n)*(delta/T0));
bn=(1./(pi*n)).*(1.-cos((2*pi.*n)*(delta/T0)));
fm = 3000;
t=0:1/fm:0.3;
R=1000:
C=.000000000002
%%Obteniendo valores de An, thetan, an, bn
Anx = ((sqrt(2))./(pi.*n)).*(sqrt(1.-cos((2*pi.*n)*(delta/T0))));%vector de An
thetan=atan2(bn,an);%vector de theta sub n
Hn=1./(sqrt(1+power(n.*2*pi*(1/T0)*R*C,2)));
Any=Anx.*Hn;
theta h=atan2((n.*2*pi*(1/T0)*R*C),1).*-1;
theta h y=theta h+thetan;
n=[0,n];
Anx=[a0,Anx];
thetan=[0,thetan];
theta h y=[0,theta h y];
Any=[0.5,Any];
v=0;
for i=1:100
```

```
y=Any(i)*cos(2*pi*n(i)*(1/T0)*t-theta_h_y(i))+y;\\ end\\ \%\% Se definien subplots y donde estara situado cada uno en la ventana\\ plot(t,y, 'b');\\ title('y(t) a N=100 (delta=.00000001)');\\ xlabel('Tiempo [segundos]');\\ ylabel('x(t)');\\ axis([0 0.005 0 1]);\\ grid;
```