1	10. The combination of claim 1 wherein said
2	radiant burner comprises a supported metal fiber
3	material consisting essentially of an alloy containing
4	principally iron, chromium, and aluminum and smaller
5	quantities of yttrium, silicon, and manganese, said
6	alloy having extended life at operating temperatures up
7	to 2000°F.
8	
9	
10	11. The combination of claim 1 wherein said
11	radiant burner is configured to direct radiation at an
12	included angle of radiation between 45-180 degrees.
13	
14	
15	12. The combination of claim 1 wherein said
16	radiant burner has a hemispherical shape.
17	
18	
19	13. The combination of claim 1 wherein said
20	radiant burner has surface temperatures ranging from
21	1500°F to 1900°F, in operation.
22	
23	
24	
25	
26	

٦	14. The combination of claim 1 wherein said
1	
2	radiant burner has an operating combustion intensity
3	typically ranging from 150,000 btu/ft ² /h to
4	$350,000 \text{ btu/ft}^2/h$, wherein the combustion intensity is
5	defined as the higher heating value of the fuel
6	combusted divided by the permeable radiant burner
7	surface area.
8	
9	
10	15. The combination of claim 1 wherein said
11	radiant burner has an operating excess air ratio
12	typically ranging from 30% to 100%, wherein the excess
13	air ratio is defined as percent combustion air in
14	excess of the stoichiometric amount required for
15	complete combustion of the burner fuel.
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	

1	16. Endothermic catalytic reaction
2	apparatus, comprising
3	a) a combustion chamber,
4	b) a tubular reaction chamber having two
5	generally tubular legs extending in generally parallel,
6	spaced apart relation within the combustion chamber,
7	c) catalyst within said reaction chamber
8	for reacting with a hydrocarbon and steam received
9	within the reactor chamber, to produce hydrogen and
10	carbon dioxide,
11	d) a generally tubular radiant burner
12	within the combustion chamber and extending in
13	generally parallel relation to at least one of said
14	legs, said burner spaced from said legs,
15	e) said two legs having axes, and said
16	tubular burner having an axis which is spaced in offset
17	relation to a plane defined by said leg axes.
18	
19	
20	17. The combination of claim 16 wherein said
21	burner axis is approximately equidistant from said leg
22	axes.
23	
24	
25	