Indiscernibles in infinitary languages and Erdős cardinals

C7X

September 2024

1 Conventions and aims

Almost all conventions in this note are defined in [1], except \subset is replaced by \subseteq , including in quotation. Lowercase Greek letters other than ϕ denote ordinals. For infinite cardinals π , ρ , let π^{ϱ} denote $\sum_{\kappa \leq a} \pi^{\kappa}$.

For infinite cardinals π , ρ , let π^{ϱ} denote $\sum_{\kappa<\rho}\pi^{\kappa}$. Given a first-order language \mathcal{L} , for cardinals π , ρ , we take $\mathcal{L}_{\pi,\rho}$ to be the infinitary extension of \mathcal{L} as used in [1], i.e. permitting conjunctions and disjunctions of length $<\pi$ and quantifications of length $<\rho$, and (in contrast to $\mathcal{L}_{\alpha,\beta}$ as defined in Karp's book [3]) allowing function and relation symbols of infinite arity.

For a well-ordered set X and an ordinal γ , define $[X]^{\gamma}$ to be the set of subsets of X with order type γ , likewise for $[X]^{<\gamma}$ and subsets of order type $<\gamma$. We define the Erdős-Rado partition calculus as usual except we allow infinite exponents, namely for a cardinal κ and ordinals α, γ, λ , the property $\kappa \to (\alpha)^{\gamma}_{\lambda}$ holds if for any function $f: [\kappa]^{\gamma} \to \lambda$, there is a subset H of κ of order type α such that the image of $[H]^{\gamma}$ under f is a singleton (such an H is said to be "homogeneous for f"). The property $\kappa \to (\alpha)^{<\gamma}_{\lambda}$ is defined likewise. For an infinite ordinal α , define the α -Erdős cardinal to be the least κ such that $\kappa \to (\alpha)^{<\omega}_2$. For further reading on the partition calculus, see chapter 7, section 2 of [1].

For a structure $\mathfrak{A} = (A, <, ...)$ in a language \mathcal{L} , a set $Y \subseteq A$ that is linearly ordered by a relation < is said to be a set of indiscernibles for \mathfrak{A} if for any finite sequences $x_0 < ... < x_n, y_0 < ... < y_n$ from A and any formula ϕ in \mathcal{L} with n+1 free variables, we have $\mathfrak{A} \models \phi(x_0, ..., x_n)$ iff $\mathfrak{A} \models \phi(y_0, ..., y_n)$.

Theorem 2.1 of chapter 8, section 2 of [1], is that for infinite cardinals κ, λ and ordinals $\alpha < \kappa$, the property $\kappa \to (\alpha)_{2^{\lambda}}^{<\omega}$ is equivalent to the following condition [which Drake calls (*)]:

For every structure $\mathfrak A$ of length λ , which has a subset X of its universe which is ordered in type κ by a relation <, there is a subset $Y \subseteq X$ with order type α under < such that $\langle Y, < \rangle$ is a set of indiscernibles for $\mathfrak A$.

We will denote this property by $*(\alpha, \lambda)$.

We will present a version of (*) for infinitary languages, show the property inconsistent for some languages, and give an upper bound on its consistency strength for others. Previous work on infinitary versions of (*) has been done in [2], however the author of this note is not aware of work on the properties presented here.

2 Infinitary quantifications

In this section we consider languages allowing infinitely many quantifications. For a structure $\mathfrak{A}=(A,<,\ldots)$ in a language \mathcal{L} , say that a set $Y\subseteq A$ that is linearly ordered by a relation < is a set of $\mathcal{L}_{\pi,\rho}$ -indiscernibles for \mathfrak{A} if for any $\beta<\rho$, any <-increasing sequences $(x_\xi)_{\xi<\beta}, (y_\xi)_{\xi<\beta}$ from A, and any formula ϕ in $\mathcal{L}_{\pi,\rho}$ with $|\beta|$ free variables, we have $\mathfrak{A} \models \phi((x_\xi)_{\xi<\beta})$ iff $\mathfrak{A} \models \phi((y_\xi)_{\xi<\beta})$.

For cardinals π , ρ and ordinals α , λ , let $*(\alpha, \lambda)_{\pi,\rho}$ denote the property obtained from $*(\alpha, \lambda)$ by replacing "a set of indiscernibles for \mathfrak{A} " with "a set of $\mathcal{L}_{\pi,\rho}$ -indiscernibles for \mathfrak{A} ". If this property holds, we say that κ has property $*(\alpha, \lambda)_{\pi,\rho}$. We will only consider the case where $\alpha \geq \rho$ holds, otherwise the property becomes trivial as there would be no <-increasing sequences $(x_{\xi})_{\xi < \beta}$ from Y for any β such that $\alpha < \beta < \rho$.

The following theorem is adapted from one way of theorem 2.1 of chapter 8, section 2 of [1].

Theorem 1: For cardinals κ and ordinals $\alpha \geq \omega_1$, if κ has property $*(\alpha, \omega_1)_{\omega, \omega_1}$, then $\kappa \to (\alpha)_{\omega_1}^{<\omega_1}$.

Proof: Let κ be as given. Let $f: [\kappa]^{<\omega_1} \to \omega_1$ be arbitrary. For each $\beta < \omega_1$ and $\gamma < \omega_1$, define a predicate on $[\kappa]^{<\omega_1}$ by $R_{\beta,\gamma}((x_\xi)_{\xi<\beta}) \iff \bigwedge_{\xi<\nu<\beta}(x_\xi< x_\nu) \land f(\{x_\xi \mid \xi < \beta\}) = \gamma$. Let $\mathfrak A$ be the structure $(\kappa, <, (R_{\beta,\gamma})_{\beta<\omega_1,\gamma<\omega_1})$, with length ω_1 by using a pairing function from $\omega_1 \times \omega_1$ to ω_1 . By property $*(\alpha,\omega_1)_{\omega,\omega_1}$, there is a set $Y\subseteq \kappa$ of $\mathcal L_{\omega,\omega_1}$ -indiscernibles for $\mathfrak A$ of order type α . Choose any $\beta < \omega_1$ and choose arbitrary <-increasing sequences $(x_\xi)_{\xi<\beta}$ and $(y_\xi)_{\xi<\beta}$ from Y. By $\mathcal L_{\omega,\omega_1}$ -indiscernibility, for any $\gamma < \omega_1$, we have $\mathfrak A = R_{\beta,\gamma}((x_\xi)_{\xi<\beta})$ iff $\mathfrak A \models R_{\beta,\gamma}((y_\xi)_{\xi<\beta})$, so $f(\{x_\xi \mid \xi < \beta\}) = f(\{y_\xi \mid \xi < \beta\})$. As $(x_\xi)_{\xi<\beta}$ and $(y_\xi)_{\xi<\beta}$ were arbitrary sequences from $Y^{<\omega_1}$, $\{x_\xi \mid \xi < \beta\}$ and $\{y_\xi \mid \xi < \beta\}$ are arbitrary members of $[Y]^{<\omega_1}$, so Y is homogeneous for f. \square

Corollary 2: Assuming the axiom of choice, there can be no infinite cardinals κ, λ and infinite ordinal $\alpha \geq \omega_1$ such that κ has property $*(\alpha, \lambda)_{\omega, \omega_1}$.

Proof: By theorem 4.1 of chapter 7, section 4 of [1], assuming choice, there are no cardinals κ such that $\kappa \to (\omega)_2^{\omega}$. \square

Corollary 3: Assuming the axiom of choice, there can be no infinite cardinals $\kappa, \lambda, \pi, \rho$ with $\rho \geq \omega_1$ and ordinal $\alpha \geq \rho$ such that κ has property $*(\alpha, \lambda)_{\pi, \rho}$.

As we do not consider properties $*(\alpha, \lambda)_{\pi, \rho}$ where $\alpha < \rho$, this is all that can be said for $\rho \ge \omega_1$.

3 Infinitary conjunctions and disjunctions

Corollary 3 above rules out the consistency of properties $*(\alpha, \lambda)_{\pi,\rho}$ with $\rho \geq \omega_1$. However, it does not rule out consistency of the $\rho = \omega$ case. In fact, $*(\alpha, \lambda)_{\pi,\omega}$ is consistent relative to an α -Erdős cardinal. The following lemma is a generalization of one way of theorem 2.1 of chapter 8, section 2 of [1].

Lemma 4: Let κ, λ be infinite cardinals and $\alpha < \kappa$ be an ordinal. If $\kappa \to (\alpha)_{2\lambda^{\varpi}}^{<\omega}$ holds, then κ has property $*(\alpha, \lambda)_{\pi,\omega}$.

Proof: Assume $\kappa \to (\alpha)_{2^{\lambda^{\pi}}}^{<\omega}$, and let $\mathfrak{A} = (A, <, \ldots)$ be a structure of length λ such that there is a subset X of A which is ordered in order type κ by a relation < of the structure. Define an equivalence relation \sim on $[X]^{<\omega}$ by $\{x_0, \ldots, x_n\} \sim \{y_0, \ldots, y_n\}$ iff $\mathfrak{A} \models \phi(x_0, \ldots, x_n) \iff \mathfrak{A} \models \phi(y_0, \ldots, y_n)$ for all $\mathcal{L}_{\pi,\omega}$ formulas ϕ with the displayed free variables, where x_0, \ldots, x_n and y_0, \ldots, y_n are enumerated in <-increasing order. As there are λ -many nonlogical symbols of the language of \mathcal{A} and formulas are of length $<\pi$, there are λ^{π} formulas ϕ in $\mathcal{L}_{\pi,\omega}$. For each of these, $\phi(x_0, \ldots, x_n)$ may either be true or false, so \sim partitions X into at most $2^{\lambda^{\pi}}$ pieces. By $\kappa \to (\alpha)_{2^{\lambda^{\pi}}}^{<\omega}$, there is an $H \subseteq X$ of order type α under < which is homogeneous for the partition \sim . Then $\langle H, < \rangle$ is a set of $\mathcal{L}_{\pi,\omega}$ -indiscernibles for $\mathfrak A$ of order type α . \square

Lemma 5: Let α be an ordinal and κ be the α -Erdős cardinal. For any ordinals $\lambda, \pi < \kappa$, we have $2^{\lambda^{\pm}} < \kappa$.

Proof: By corollary 4.7 of chapter 7, section 4 of [1], κ is strongly inaccessible. Thus for any $\nu < \kappa$, we have $\lambda^{\nu} < \kappa$. As $\lambda^{\underline{\pi}} = \sum_{\nu < \pi} \lambda^{\nu}$ is a sum of ν -many cardinals that are less than κ , we have $\lambda^{\underline{\pi}} < \kappa$. Finally, again by strong inaccessibility $2^{\lambda^{\underline{\pi}}}$ must be less than κ . \square

Corollary 6: Let α be an ordinal. Assuming the α -Erdős cardinal exists, for all ordinals $\lambda, \pi, \omega < \kappa$, it is consistent that there is a cardinal with property $*(\alpha, \lambda)_{\pi,\omega}$.

Proof: Let κ be the α -Erdős cardinal. By lemma 5, for any $\lambda, \pi < \kappa$ we have $2^{\lambda^{\pm}} < \kappa$. By corollary 2.2 of chapter 8, section 2 of [1], we have $\kappa \to (\alpha)^{<\omega}_{\nu}$ for all $\nu < \kappa$, so $\kappa \to (\alpha)^{<\omega}_{\gamma\lambda^{\pm}}$. By lemma 4, κ has property $*(\alpha, \lambda)_{\pi,\omega}$. \square

References

- [1] F. R. Drake. Set Theory: An Introduction to Large Cardinals, volume 76 of Studies in Logic and the Foundations of Mathematics. 1974.
- [2] Q. Feng. A hierarchy of Ramsey cardinals. Annals of Pure and Applied Logic, 49, 1990.
- [3] C. R. Karp. Languages with Expressions of Infinite Length, volume 36 of Studies in Logic and the Foundations of Mathematics. 1964.