

影响期权价格的因素

厦门大学金融系

陈蓉 教授、博导

邮箱: aronge@xmu.edu.cn

个人网站: http://aronge.net

●目录

- 1. 期权的内在价值与时间价值
- 2. 期权价格曲线
- 3. 期权价格的影响因素
- 4. 波动率
- 5. Put-Call Parity
- 6. 希腊字母

1. 期权的内在价值与时间价值

● 期权: 到期 V.S. 未到期

● 期权报价(2014.2.18, S&P500 1840.76, Call)

201	20140222		0322	2014	0419	2014	0517	2014	0621	20140920		
行权价	期权费	行权价	期权费	行权价	期权费	行权价	期权费	行权价	期权费	行权价	期权费	
500	1265.79	500	1,342.17	1000	830	1425	410	500	1,082.50	1000	745	
1000	780.00	1000	836.9	1275	504	1500	335.3	1000	828.5	1300	518.45	
1200	626.40	1200	453	1500	337.32	1575	248.07	1200	595.05	1400	404	
1400	434.35	1400	430.5	1600	243.2	1650	125.25	1400	411.5	1475	316.65	
1500	340.50	1500	338.8	1700	144.61	1675	104.85	1500	259	1500	308	
1600	234.70	1600	237.47	1800	60.55	1700	130.9	1600	243.19	1525	310.4	
1655	156.50	1650	189.15	1805	57.12	1725	117.3	1625	181	1550	301.5	
1700	140.41	1700	139.48	1810	52.1	1750	106.5	1650	195.5	1575	254.6	
1800	41.00	1800	51	1815	48.65	1775	85.3	1675	171.43	1600	246.92	
1805	37.00	1805	48	1820	44.25	1800	67.51	1700	154.09	1625	163.3	
1810	30.50	1810	43.21	1825	43.3	1825	51	1725	123.75	1650	191.6	
1815	27.50	1815	41	1830	40	1850	36.5	1750	104.6	1675	147	
1820	21.50	1820	36.8	1835	36.3	1855	32.6	1775	86.45	1700	146.2	
1825	16.10	1825	32.6	1840	33.2	1865	28.3	1800	75.98	1725	94.05	
1830	13.60	1830	29.9	1845	31.09	1875	24.38	1825	60.08	1750	114.8	
1835	9.70	1835	26	1850	28	1900	15.3	1850	45.4	1775	93.4	
1840	6.65	1840	24	1855	21.4	1920	10.35	1875	33.8	1800	93.5	
1845	5.30	1845	21.6	1860	23.3	1925	9	1900	22.7	1825	78	
1850	2.90	1850	17.9	1865	18.67	1930	7.9	1925	14.8	1850	65	
1855	1.55	1855	16.3	1870	18.85	1950	4.9	1950	9.6	1875	52	
1860	0.80	1860	13.88	1875	16.6	1960	3.9	1975	5.64	1900	41	
2025	0.05	1865	12.1	1880	15	1975	2.81	2000	3.36	1925	- 5 2 7	

● 期权报价(2014.2.18, S&P500 1840.76, Put)

2014	0222	2014	0322	2014	0419	2014	0517		2014	0621	2014	0920	2014	1220	2015	0117
行权价	期权费	行权价	期权费	行权价	期权费	行权价	期权费	:	行权价	期权费	行权价	期权费	行权价	期权费	行权价	期权费
500	0.05	500	0.05	800	0.05	900	0.15		500	0.05	100	0.05	100	0.05	100	0.05
1000	0.05	1000	0.05	900	0.1	1100	0.55		1000	0.35	500	0.16	500	0.25	600	1.2
1500	0.05	1200	0.05	1000	0.15	1200	0.7		1200	1.3	1000	1.15	1000	2.65	1000	3.1
1600	0.05	1400	0.35	1200	0.3	1400	1.85		1400	4	1200	3.4	1200	7	1200	8.4
1700	0.15	1500	0.7	1400	1.05	1600	6.8		1600	11	1400	9.25	1400	16.5	1400	20.05
1800	0.6	1600	1.4	1600	3.3	1610	7.2		1700	22	1600	25	1500	26.3	1500	29.5
1805	0.7	1700	3.3	1700	8	1625	8.39		1800	45	1625	28.5	1600	39.6	1600	43.5
1810	0.8	1800	13.5	1800	23	1630	8.25		1825	54.7	1650	32	1700	62	1625	50.2
1815	1.25	1805	14	1805	32.55	1640	8.85		1850	64.2	1675	42.38	1725	68.5	1650	53.4
1820	1.7	1810	15.55	1810	26.3	1650	9.7		1875	76.75	1700	41	1750	75	1675	66
1825	2.35	1815	16.9	1815	33.88	1675	12		1900	94.5	1725	54.2	1775	88.5	1700	66
1830	3.6	1820	18.15	1820	29.46	1700	14.45		1950	227.3	1750	55	1800	92	1725	115.2
1835	4.3	1825	19.5	1825	30.3	1710	15.4		1975	211.2	1775	61.6	1825	107.6	1750	86
1840	7.05	1830	21.5	1830	33.34	1720	17.1		2000	174	1800	69.3	1850	114	1775	88.6
1845	9.6	1835	24	1835	35.02	1725	17.66		2025	235.2	1825	78.9	1875	136.5	1800	100
1850	13.2	1840	26	1840	37.2	1730	18.7		2050	277.5	1850	89.9	1900	169.85	1825	116.4
1855	16.27	1845	28.6	1845	49.6	1750	22.05		2075	285.5	1875	118.2	1925	187.85	1850	119.3
1860	20.47	1850	30.5	1850	40.97	1775	26.9		2100	320.1	1900	120.4	1950	214.5	1875	140.13
1865	25.39	1855	35.4	1860	45.88	1800	33.85		2200	373	2100	324	2050	263.75		
1870	33.4	1860	35.75	1870	52.5	1820	40.05		2250	420.61	2125	314	2100	307.9		
1875	33.5	1865	44.1	1875	55.75	1825	42.12		2500	703.4	2200	413	2150	391		
1880	39.48	1870	43.2	1880	59.47	1850	52.85				2300	486	2200	442		
1885	143.13	1875	46.81	1890	114.3	1855	54.52						2500	736.65		
1890	149.5	1880	50.32	1900	75.6	1875	65.55									
1895	54.98	1885	129.4	1910	87	1900	84.75									- 6 -

● 欧式期权的内在价值

- 欧式期权的内在价值:以当前来看,期权有多合算?
- 假设现货2200点
 - 看涨期权:有权利以2000点买,内在价值大约200点
 - : 有权利以2400点买,内在价值为0
 - 看跌期权:有权利以2000点卖,内在价值为0
 - : 有权利以2500点卖,内在价值大约300点

● 欧式期权精确内在价值

	到期回报	内在价值
看涨期权	$\max(S_T - X, 0)$	$\max\left(S-D-\frac{X}{1+r(T-t)},0\right)$
看跌期权	$\max(X-S_T,0)$	$\max\left(\frac{X}{1+r(T-t)}-(S-D),0\right)$

■ 其中: S_T 为到期现货价格; S为当前现货价格, D为期权期限内现货支付的红利现值, r为T-t期限的无风险利率

● 实值、平价与虚值期权

- 实值期权=内在价值是正的期权(in the money, ITM)
- 虚值期权=内在价值是零的期权(out of the money, OTM)
- 平价期权=转折点期权(At the Money, ATM)

● 欧式期权的时间价值

- 期权时间价值 = 期权价格 期权内在价值
- 期权的时间价值是源于期权多头权利义务不对称这一特性 ,在期权尚未到期时,标的资产价格的波动为期权持有者 带来收益的可能性所隐含的价值。
- 有时也叫做"波动的价值"

● 什么影响期权时间价值?

- ■剩余期限
- 标的资产价格的波动率(期权的波动价值)
- 内在价值
 - 在合理定价的情况下,在期权平价点,时间价值达到最大,并 随期权实值量和虚值量增加而递减

● 期权时间价值与内在价值的关系

2. 期权价格曲线

● 无收益资产 欧式看涨期权价格曲线

● 看涨期权曲线的移动

剩余期限: 0-1年

波动率: 0%-80%

● 无收益资产 欧式看跌期权价格曲线

3. 期权价格的影响因素

● 期权价格的影响因素

变量	欧式看涨	欧式看跌
标的资产价格	+	_
执行价格	_	+
红利	_	+
标的资产波动率	+	+
剩余期限	?	?
无风险利率	?	?

4. 波动率

● 波动率(Volatility)

- 期权价格影响因素中的不可观测变量
- 现货价格不变时,期权价格仍然可能变化!
- 没有波动,期权就没有存在的价值

● 波动率与标准差

- 在统计中的对应概念: 价格(对数)收益率的年化标准差
- 简单(不精确)示例:三天收益率分别为1%,-1.2%和0.8%,平均收益率为0.2%,则每天标准差等于

$$\sqrt{\frac{\left(1\% - 0.2\%\right)^2 + \left(-1.2\% - 0.2\%\right)^2 + \left(0.8\% - 0.2\%\right)^2}{3}} \approx 1\%$$

■ 年化为

$$1\% \times \sqrt{242} \approx 15.6\%$$

● 如何估计波动率?

- 历史波动率 (来源于标的资产价格的标准差,历史波动)
 - 样本标准差
 - EWMA
 - GARCH
 - 随机波动率模型
 - 已实现波动率(高频数据)
- 隐含波动率(来源于期权价格, 预期波动)
 - → (BS模型)隐含波动率: 常用平价隐含波动率
 - → 无模型隐含波动率(如VIX)

● B-S公式与隐含波动率

■ 无红利欧式看涨期权定价公式:

$$\begin{split} & \boldsymbol{c} = SN\left(d_{_{1}}\right) - Xe^{-r\left(T-t\right)}N\left(d_{_{2}}\right) \\ d_{_{1}} &= \frac{\ln\left(S \mid X\right) + \left(r + \sigma^{2} \mid 2\right)\left(T - t\right)}{\sigma\sqrt{T - t}} \\ d_{_{2}} &= \frac{\ln\left(S \mid X\right) + \left(r - \sigma^{2} \mid 2\right)\left(T - t\right)}{\sigma\sqrt{T - t}} = d_{_{1}} - \sigma\sqrt{T - t} \end{split}$$

■ BS公式: 期权价格与隐含波动率的转换器

● 隐含波动率:波动率微笑

● 隐含波动率曲面

5. PUT-CALL PARITY

● 欧式期权PCP平价 (假设标的资产不付红利)

- 组合1: 看涨期权 $_{\mathbf{c}}$ 十现金(行权价的无风险贴现值 $_{1+r(T-t)}$)
- 组合2: 看跌期权p+标的资产S

6. 希腊字母 (GREEKS)

Greeks

- 比较静态的敏感性分析: 其他条件不变
- Delta: 标的资产价格变动1单位,期权价格变多少?
- Gamma: 标的资产价格变动1单位, Delta变多少?
- Theta: 时间推移1单位,期权价格变多少?
- Vega: 波动率变化1单位,期权价格变多少?
- Rho: 利率变化1单位,期权价格变多少?

DELTA

● 欧式期权的Delta (A)

■ Delta: 标的资产价格变动1单位,期权价格变多少?

■ Delta: $\Delta = \frac{\Delta c}{\Delta S}$

■ Delta: 期权价格曲线切线斜率

看涨期权价格

看跌期权价格

● (无红利欧式) Delta的特征(I)

- 看涨期权多头: 0<∆<1</p>
- 空头符号刚好相反

看涨期权价格

- 看跌期权多头: -1<Δ<0</p>
- 空头符号刚好相反

看跌期权价格

● (无红利欧式) Delta的特征(II)

■ 看涨期权Delta=看跌期权Delta+1

-1.5

$$c+rac{X}{1+r(T-t)}=p+S\Rightarrow rac{\partial c}{\partial S}=rac{\partial p}{\partial S}+1$$
Delta值
1.5
0.0
5
10
15
20
25
看跌期权

标的资产价格

● Delta的特征 (III)

■ 快到期时,实值、虚值和平价期权的Delta差异较大

● Delta的特征(IV)

- 波动率较高时, Delta差异较小
- 波动率较低时, Delta差异较大

● 看涨期权曲线的移动

剩余期限: 0-1年

波动率: 0%-80%

● 看涨期权Delta/现货价格/剩余期限三维图

● 看跌期权Delta/现货价格/剩余期限三维图

● 证券组合的Delta值

头寸	Delta值	Examples	
现货多头	1	5单位现货多头: 5×1=5	
现货空头	-1		
期货多头	1		
期货空头	-1	4单位期货空头: 4×(-1)=-4	
欧式看涨期权多头(无红利)	0<Δ<1	4单位看涨多头,每单位Delta为0.5: 4×0.5=2	
欧式看涨期权空头(无红利)	− 1<Δ<0		
欧式看跌期权多头(无红利)	− 1<Δ<0	2单位看跌多头,每单位Delta为-0.5: 2×(-0.5)=-1	
欧式看跌期权空头(无红利)	0<∆<1		
投资组合	$\sum w_i \Delta_i$	$5 \times 1 + 4 \times (-1) + 4 \times 0.5 + 2 \times (-0.5) = 0$	

● △中性

- △中性意味着投资组合对现货价格变动的一阶敏感性为0
- Δ 中性的实现:运用同一标的资产的现货、期权和期货等进行相互套期保值,使证券组合的 Δ 值等于0
- Δ 中性的特点:动态,需要不断调整头寸以使组合重新处于 Δ 中性状态,这种调整称为再均衡(Rebalancing)。

GAMMA

● 欧式期权的Gamma (
$$\Gamma$$
) $\Delta c \approx Delta \times \Delta S + \frac{1}{2}Gamma \times (\Delta S)^2$

Gamma: 标的资产价格变动1单位,期权Delta变多少?

Gamma:
$$\Gamma = \frac{\partial(\Delta)}{\partial S} = \frac{\partial^2 c}{\partial S^2}$$

Gamma: 期权价格曲线曲度的主要部分

● (无红利欧式) Gamma的特征(I)

■ 看涨期权Delta=看跌期权Delta

$$c + \frac{X}{1 + r(T - t)} = p + S \Longrightarrow \frac{\partial^2 c}{\partial S^2} = \frac{\partial^2 p}{\partial S^2}$$

■ 期权多头Gamma>0,期权空头Gamma<0

● (无红利欧式) Gamma的特征(II)

■ 平价附近期权的Gamma值较大

● Gamma的特征(III)

- 快到期时,实值、虚值和平价期权的Gamma差异较大
- 波动率较低时,实值、虚值和平价期权的Gamma差异较大

● 期权Gamma/现货价格/剩余期限三维图

● 证券组合的Gamma值

头寸	Gamma值	Examples		
现货多头	0	5单位现货多头: 5×0=0		
现货空头	0			
期货多头	0			
期货空头	0	4单位期货空头: 4×0=0		
欧式看涨期权多头(无红利)	>0	4单位看涨多头,每单位Gamma为0.12: 4×0.12=0.48		
欧式看涨期权空头(无红利)	<0			
欧式看跌期权多头(无红利)	>0			
欧式看跌期权空头(无红利)	<0	4单位看跌空头,每单位Gamma为-0.12: 4×(-0.12)=-0.48		
投资组合	$\sum w_i \Gamma_i$	$5 \times 0 + 4 \times 0 + 4 \times 0.12 + 4 \times (-0.12) = 0$		

● Gamma 中性

- 只有期权有Gamma值
- 证券组合Γ值为零时称为处于Γ中性状态。
- Γ 中性是为了消除 Δ 中性的误差,同样也是动态的概念。
- 由于保持 Γ 中性只能通过期权头寸的调整获得,实现 Γ 中性的结果往往是 Δ 非中性,因而常常还需要运用标的资产或期货头寸进行调整,才能使得证券组合同时实现 Δ 中性和 Γ 中性

THETA

欧式期权的Theta (Θ)

- Theta: 时间推移1单位,期权价格变多少?
- Theta: $\Delta = \frac{\Delta c}{\Delta t}$
- 期权的Θ通常为负:一般来说,随着到期日的临近,期权价值逐渐衰减(time decay)
- 处于深度实值状态的无红利资产欧式看跌期权和处于实值 状态的标的资产红利很高的欧式看涨期权, Θ 可能为正。

● Theta的特征(I)

■ 剩余期限越短, time decay速度越快, Theta负得越多

Time Remaining Until Expiration Date

● Theta的特征(II)

■ 与实值、虚值期权相比,平价期权的Theta负值最大

● Theta的特征(III)

■ 快到期时,实值、虚值和平价期权的Theta差异较大

● 看涨期权Theta/现货价格/剩余期限三维图

● 看跌期权Theta/现货价格/剩余期限三维图

●Theta与套期保值

- 时间的推移是确定的,没有风险可言。因此无需"Theta中性"。
- Theta值的大小反映了期权购买者随时间推移所损失的价值, 因而Theta值仍是一个重要的敏感性指标。

VEGA

● 欧式期权的Vega

- Vega: 隐含波动率变动1单位,期权价格变多少?
- Vega: $v = \frac{\Delta c}{\Delta \sigma}$

● Vega的特征(I)

- Vega>0
- (欧式)看涨期权Vega=看跌期权Vega

$$c + \frac{X}{1 + r(T - t)} = p + S \Longrightarrow \frac{\partial c}{\partial \sigma} = \frac{\partial p}{\partial \sigma}$$

● Vega的特征 (II)

- 平价期权的Vega值较大
- 剩余期限越长, Vega值越大

● Vega的特征(III)

■ 初始波动率较大时, Vega值较大

● 期权Vega/现货价格/剩余期限三维图

● 证券组合的Vega值

头寸	Vega值	Examples		
现货多头	0	5单位现货多头: 5×0=0		
现货空头	0			
期货多头	0			
期货空头	0	4单位期货空头: 4×0=0		
欧式看涨期权多头(无红利)	>0	4单位看涨多头,每单位Vega为0.12: 4×0.12=0.48		
欧式看涨期权空头(无红利)	<0			
欧式看跌期权多头(无红利)	>0			
欧式看跌期权空头(无红利)	<0	4单位看跌空头,每单位Vega为一0.12: 4×(一0.12)=-0.48		
投资组合	$\sum w_i v_i$	$5 \times 0 + 4 \times 0 + 4 \times 0.12 + 4 \times (-0.12) = 0$		

● Vega 中性

- 只有期权有Vega值
- 证券组合Vega 值为零时称为处于Vega 中性状态。
- Vega 中性是为了消除<mark>隐含波动率</mark>变化的影响,同样也是动态的概念。
- 由于保持Vega 中性只能通过期权头寸的调整获得,实现Vega 中性的结果往往是Δ非中性和Γ非中性,因而常常还需要运用 标的资产、期货头寸、期权头寸进行调整,才能使得证券组 合同时实现Δ中性、Γ中性和Vega中性

● 希腊字母符号

	Delta	Gamma	Theta	Vega
看涨多头	+	+	_	+
看涨空头	_	_	+	_
看跌多头	_	+	_	+
看跌空头	+	_	+	_

● 希腊字母之间的关系

■ 组合价值变动(忽略利率影响)

$$\Delta\Pi \approx Delta \times \Delta S + \frac{1}{2}Gamma \times (\Delta S)^2 + Theta \times \Delta t + Vega \times \Delta \sigma$$

■ 若不考虑隐含波动率的变化, Delta中性组合价值主要是 Gamma和Theta的权衡

Any Questions?

谢谢!

