TSP Genetic Algorithm Report

Name: David Shaulov

ID: 317005403

<u>Chromosome representation:</u>

I chose to represent the route as a list of 48 cities, for example [3,42, ..., 8], where the route is $3 \rightarrow 42 \rightarrow \cdots \rightarrow 8 \rightarrow 3$

Fitness function implementation:

The fitness function measures the total distance traveled of the route, and returns $\frac{1}{total_distance}$, so that the lower the distance the higher the fitness.

Selection type:

- I have implemented both roulette and elitism selection.

Crossover types:

- Since regular crossover does not work well for the representation I have chosen, I implemented a different kind of crossover:
 - \circ Two random points are chosen $point_A$, $point_B$
 - o $parent_A[point_A:point_B]$ is copied to the child.
 - \circ Every city that was not copied from $parent_A$ is taken from $parent_B$ in order.
 - o Same for the second child but in reverse.
- This crossover ensures that cities don't repeat themselves while maintaining some information from parent chromosomes.

Mutation implementation:

Given mutation rate p, with probability p the mutation function chooses a random city and inserts it at a random index, for example for [3, 21, 5, 10, 11], a mutation might choose 11 and insert it at index 1 and the result will be [3, 11, 21, 5, 10].

Experiments:

- I have separated the experiments into 2 main categories: roulette selection and elitism selection since they achieve very different results.

Roulette Selection Experiments:

Population Size	Number of Generations	Mutation Rate
50	1000	0.05

Best performance is 100,243 at generation 280.

Population Size	Number of Generations	Mutation Rate
100	1000	0.05

- Result:

o Best performance is 106,720, at generation 580.

Population Size	Number of Generations	Mutation Rate
200	1000	0.05

Best performance is 102,611, at generation 357.

Population Size	Number of Generations	Mutation Rate
100	1000	0.1

Result:

o Best performance is 110,012, at generation 247.

Population Size	Number of Generations	Mutation Rate
100	1000	0.2

Best performance is 109,305, at generation 432.

Elitism Selection Experiments:

Population Size	Number of Generations	Mutation Rate	Elitism Size
100	1000	0.05	5

- Result:

Best performance is 36,737, at generation 317.

Population Size	Number of Generations	Mutation Rate	Elitism Size
100	1000	0.1	5

Best performance is 37,541, at generation 697.

Population Size	Number of Generations	Mutation Rate	Elitism Size
100	1000	0.05	20

- Result:

o Best performance is 37,278, at generation 829.

Population Size	Number of Generations	Mutation Rate	Elitism Size
100	10000	0.05	5

Best performance is 37,039, at generation 2600.

Population Size	Number of Generations	Mutation Rate	Elitism Size
200	10000	0.05	5

Result:

o Best performance is 34,565, at generation 1487.

Population Size	Number of Generations	Mutation Rate	Elitism Size
400	10000	0.05	5

o Best performance is 36,235, at generation 8279.

Population Size	Number of Generations	Mutation Rate	Elitism Size
200	10000	0.05	20

- Result:

Best performance is 35,210, at generation 1284.

Population Size	Number of Generations	Mutation Rate	Elitism Size
200	10000	0.1	20

Result:

Best performance is 34,933, at generation 3293.

Population Size	Number of Generations	Mutation Rate	Elitism Size
200	10000	0.075	10

- Result:

Best performance is 34,213, at generation 3864.

Comparison with brute force:

The brute force algorithm achieves a distance of 40,526 –the genetic algorithm outperforms it, but only by $\sim\!6,\!000$ units.

Runtimes:

- Experiments with 1,000 generations took about 10 seconds on average.

- Experiments with 10,000 generations took about 180 seconds on average.

Conclusion:

- Elitism selection achieves vastly better results.
- Mutation higher than 0.05 makes it harder to find better routes.
- Routes don't improve much after generation 2000.