Bool'sche Algebra Benjamin Tröster, HTW Berlin

Bool'sche Algebra

Fahrplan

Recap

Einleitung

Erfüllbarkeit & Äquivalenz

Beweisstrategien

Strukturelle Induktion

Normalformdarstellungen

Aussagenlogik

Definition (Aussagenlogik)

Aussagenlogik, als Teilgebiet der Logik, befasst sich mit Aussagen und der Verknüpfung von Aussagen mittels *Junktoren*.

- Junktoren sind logische Verknüpfungen
- Klassische Junktoren:
 - ▶ Negation $\neg P$
 - ▶ Implikation/Subjunktion/Konditional $P \Rightarrow Q$
 - ightharpoonup Äquivalenz/Bikonditional/Bisubjunktion $P \Leftrightarrow Q$
 - ► Konjunktion $P \land Q$
 - ▶ Disjunktion $P \lor Q$

[Rau08]

Bool'sche Algebra nach Huntington (Wichtig!)

Definition

Die bool'sche Algebra nach Huntington ist definiert als Menge $\mathcal{V}:\{0,1\}$ mit den Verknüpfungen $\cdot(\wedge),+(\vee)$, sodass $\mathcal{V}\times\mathcal{V}\to\mathcal{V}$, also $\{0,1\}\times\{0,1\}\to\{0,1\}$.

- ► Kommutativgesetze (K): $a \cdot b = b \cdot a$ bzw. a + b = b + a
- Distributivgesetze (D): $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$ bzw. $a + (b \cdot c) = (a + b) \cdot (a + c)$
- ▶ Neutrale Elemente (N): $\exists e, n \in \mathcal{V}$ mit $a \cdot e = a$ und a + n = a
- ▶ Inverse Elemente (I): $\forall a \in \mathcal{V}$ existiert ein a' mit $a \cdot a' = n$ und a + a' = e

Übernommen von [Bar13] bzw. [Hof20]

Darstellungen & Bool'sche Funktionen

► Wahrheitstabelle

а	b	$a \Rightarrow b$
0	0	1
0	1	1
1	0	0
1	1	1

▶ Algebraische Darstellung: $y = ((0 \land x) \lor (1 \lor x))$

Notation und Operatorenbindung

- Syntactic Sugar (Ableitungen aus Basisverknüpfungen)
 - ▶ $(a \Rightarrow b)$ für $(\neg a \lor b)$ Implikation
 - ▶ $(a \Leftarrow b)$ für $(b \Rightarrow a)$ Inversion der Implikation
 - ▶ $(a \Leftrightarrow b)$ für $(a \Rightarrow b) \land (a \Leftarrow b)$ Äquivalenz
 - ▶ $(a \oplus b)$ für $\neg(a \Leftrightarrow b)$ Antivalenz oder Exklusiv-ODER/XOR
 - $ightharpoonup \neg (a \lor b) NOR$
 - $ightharpoonup \neg (a \land b) NAND$
- Bindung der Operatoren
 - ► ∧ bindet stärker als ∨
 - ▶ ¬ bindet stärker als ∧
- Klammerung
 - Gleiche Verknüpfungen: linksassoziativ zusammengefasst

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

Umformulieren:

$$Y = (A \lor B) \land (\neg A \lor B) \land (A \lor \neg B)$$

$$= ((A + B) \cdot (\overline{A} + B) \cdot (A + \overline{B}))$$

$$= ((A \cdot B \cdot B) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B})$$

$$+ (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}))$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = B

$$= (A \cdot (B \cdot B)) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}) = (A \cdot (B)) + (B \cdot A \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = A

$$= (A \cdot B) + (B \cdot (A \cdot A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B}) = (A \cdot B) + (B \cdot (A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Kommutativgesetz:

$$= (A \cdot B) + (B \cdot A) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für $X = A \cdot B$

$$= ((A \cdot B) + (B \cdot A)) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot A \cdot \overline{A}) + (B \cdot B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Idempotenz: $X \cdot X = X$ für X = A und X = B (Nicht dargestellt) Anwenden des Komplements

$$= (A \cdot B) + (A \cdot \overline{A}) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Identität:

$$= (((A \cdot B) + 0) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Komplements und Identität:

$$= (A \cdot B) + (B \cdot \overline{B}) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= ((A \cdot B) + 0) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden des Kommutativgesetz und Komplements:

$$= (A \cdot B) + (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot \overline{A} \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0 \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (B \cdot 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

Anwenden der Dominanz und Identität:

$$= (A \cdot B) + (B \cdot 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= ((A \cdot B) + 0) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

$$= (A \cdot B) + (A \cdot B \cdot \overline{B}) + (A \cdot \overline{A} \cdot \overline{B}) + (B \cdot \overline{A} \cdot \overline{B})$$

... Wiederholung Identität und Dominanz durch 0 und Anwenden der Identität

$$= (A \cdot B) + (\overline{A} \cdot 0) = (A \cdot B) + (0)$$
$$= ((A \cdot B) + 0) = (A \cdot B)$$

Heute

- ► Erfüllbarkeit & Äquivalenz
- ► Beweisstrategien & Induktion Strukturelle Induktion
- Negationstheorem
- De Morgan Regeln & Dualitätsprinzip
- Universelle Operatoren
- Normalformen
- Bitweise logische Operationen, Bit-Maskierung
- ► (Einführung Logikgatter)

Erfüllbarkeit

Definition (Erfüllbarkeit)

Sei φ ein beliebiger boolescher Ausdruck. φ heißt

- erfüllbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 1$.
- ightharpoonup widerlegbar, wenn es Werte x_1, \ldots, x_n gibt, mit $\varphi(x_1, \ldots, x_n) = 0$.
- unerfüllbar, wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 0 ist.
- ightharpoonup allgemeingültig, wenn wenn $\varphi(x_1,\ldots,x_n)$ immer gleich 1 ist.

Einen allgemeingültigen Ausdruck bezeichnen wir auch als Tautologie.

Erfüllbarkeit/Unerfüllbar/Allgemeingültig

- Erfüllbare Funktionen
 - $ightharpoonup \varphi_1 = \neg x$
 - $ightharpoonup \varphi_2 = x \wedge y$
 - $ightharpoonup \varphi_3 = x \lor y$
- Unerfüllbare Funktionen
 - $ightharpoonup \varphi_1 = 0$
 - $ightharpoonup \varphi_2 = x \wedge \neg x$
 - $ightharpoonup \varphi_3 = \neg(x \lor \neg x)$
- ► Allgemeingültige Funktionen
 - $ightharpoonup \varphi_1 = 1$
 - $ightharpoonup \varphi_2 = x \vee \neg x$
 - $ightharpoonup \varphi_3 = \neg(x \land \neg x)$

Äquivalenz

Definition (Äquivalenz)

Zwei bool'sche Ausdrücke φ und ψ sind äquivalent, falls sie dieselbe Funktion repräsentieren. In anderen Worten: φ und ψ sind genau dann äquivalent, wenn für alle Variablenbelegungen x_1, \ldots, x_n die folgende Beziehung gilt:

$$\varphi(\mathbf{x}_1,\ldots,\mathbf{x}_n)=\psi(\mathbf{x}_1,\ldots,\mathbf{x}_n)$$

D.h. Zwei bool'sche Ausdrücke ϕ und ψ sind genau dann äquivalent, wenn der Ausdruck $\varphi \Leftrightarrow \psi$ eine Tautologie ist.

Mithilfe von Wahrheitstafeln, algebraischer Umformung oder durch erzeugen einer Normalform können wir die Äquivalenz feststellen.

Beweisstrategien

- ▶ Direkter Beweis
 - ightharpoonup Annahme: A ist allgemeingültig, durch richtiges Schließen: $A \Rightarrow B$
- ► Indirekter Beweis:
 - Negation der Annahme darf zu keinem korrekten Ergebnis führen
- ► Vollständige Induktion
 - ▶ Beweise für Aussagen über die natürlichen Zahlen №
 - ▶ Basierend auf den Peano-Axiomen für N

Beweisregeln

- ► Abtrennungsregel:
 - ▶ Sind A und $A \Rightarrow B$ allgemeingültig, so ist B allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $(A \land (A \Rightarrow B)) \Rightarrow B$
- ► Fallunterscheidung
 - ▶ Sind $A \Rightarrow B$ und $\neg A \Rightarrow B$ allgemeingültig, so ist B allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land ((\neg A) \Rightarrow B)) \Rightarrow B$
- Kettenschluss
 - ▶ Sind $A \Rightarrow B$ und $B \Rightarrow C$ allgemeingültig, so ist $A \Rightarrow C$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$

Beweisregeln

- ▶ Indirekter Beweis
 - ▶ Sind $A \Rightarrow B$ und $A \Rightarrow \neg B$ allgemeingültig, so ist $\neg A$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $((A \Rightarrow B) \land (A \Rightarrow (\neg B))) \Rightarrow (\neg A)$
- ► Kontraposition: Ist $A \Rightarrow B$ allgemeingültig, so ist $(\neg B) \Rightarrow (\neg A)$ allgemeingültig
 - ► Korrektheit folgt aus der Allgemeingültigkeit von $(A \Rightarrow B) \Rightarrow ((\neg B) \Rightarrow (\neg A)).$

Beispiel: Direkter Beweis

Theorem

Quadrate ungerader Zahlen sind ungerade Das Quadrat einer ungeraden Zahl n, wobei $n \in \mathbb{N}_0$, sei immer ungerade.

Beispiel: Direkter Beweis

Beweis.

n sei eine ungerade Zahl. Dann ist lässt sich n als $n=2\cdot k+1, k\in\mathbb{N}_0$ schreiben. Hieraus folgert:

$$n^{2} = (2 \cdot \mathbf{k} + 1)^{2}$$

$$\Leftrightarrow = 4 \cdot \mathbf{k}^{2} + 4 \cdot \mathbf{k} + 1$$

$$\Leftrightarrow = 2 \cdot (2\mathbf{k}^{2} + 2\mathbf{k}) + 1$$

Nun ist n^2 ungerade, da aus $k \in \mathbb{N}_0$ und $(2k^2 + 2k) \in \mathbb{N}_0$ und eine Vielfaches von 2 immer eine gerade Zahl folgt. Die Addition der 1 ergibt eben die ungerade Zahl.

Beispiel: Indirekter Beweis

Theorem (Größte Primzahlen)

Es gibt keine größte Primzahl p.

Beispiel: Indirekter Beweis

Größte Primzahlen.

Annahme: Es gebe nur endlich viele Primzahlen. D.h. es gibt eine endliche Menge von Primzahlen $\mathbb{P}=\{p_1,p_2,\ldots,p_r\}$. Konstruieren wir eine neue Primzahl aus allen Faktoren von \mathbb{P} und addieren 1 hinzu. Die neue Zahl sei also $p_{r^+}:=p_1\cdot\ldots\cdot p_r+1$ und p sei ein Primteiler von p_{r^+} . Dann ist p aber verschieden der $p_i\in\mathbb{P}$, da sonst $p|p_{r^+}$ oder $p|p_1\cdot\ldots\cdot p_r$ gelten würde. Dies steht im Widerspruch zur Annahme des Satzes! Es kann also nicht endlich viele Primzahlen geben.

Vollständige Induktion

- ▶ Drei Teile:
 - ► Induktionsanfang (IA) & Induktionsannahme
 - ► Induktionsschritt (IS)
 - ► Induktionsschluss

Beispiel: Vollständige Induktion

Theorem

$$\forall n (n \in \mathbb{N}_0 \to 2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

Beweis.

Prädikat:
$$\varphi(n) \equiv (2^0 + 2^1 + \dots 2^n = 2^{n+1} - 1)$$

- 1. Induktions an fang (IA): $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt (IS):

$$\varphi(n)\Rightarrow \varphi(n^+)$$

$$2^0+2^1+\cdots+2^n+2^nn+1=2^{n+2}-1\quad \text{nach Voraussetzung wahr}$$

$$\Leftrightarrow (2^{n+1}-1)+(2^{n+1})=2^{(n+1)+1}-1\quad \text{Einsetzen der Voraussetzung}$$

$$\mathbf{Anm.:}\ a^n\cdot a^m=a^{n+m}$$

$$\Leftrightarrow 2^{n+1}\cdot 2^{n+1}-1=2^{(n+1)+1}-1$$

$$\Leftrightarrow 2^{(n+2)}-1=2^{(n+2)}-1\surd$$

Beweis.

Prädikat:
$$\varphi(\mathbf{n}) \equiv (2^0 + 2^1 + \dots 2^{\mathbf{n}} = 2^{\mathbf{n}+1} - 1)$$

- 1. Induktionsanfang: $\varphi(0)$ soll gelten $2^0 = 2^{0+1} 1 \Leftrightarrow 1 = 1\sqrt{2}$
- 2. Induktionsschritt:

$$\varphi(n) \Rightarrow \varphi(n^{+})$$

$$2^{0} + 2^{1} + \dots + 2^{n} + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+1} - 1 + 2^{n+1} = 2^{(n+1)+1} - 1$$

$$\Leftrightarrow 2^{n+2} - 1 = 2^{(n+2)} - 1 \checkmark$$

3. Induktionsschluss:

nach IA und IS
$$\Rightarrow \varphi(n)(\forall n(\varphi(n)))$$

Kleiner Gauß

Theorem

Die Gaußsche Summenformel ist eine Formel für die Summe der ersten n aufeinanderfolgenden natürlichen Zahlen:

$$0+1+2+\ldots+n=\sum_{i=1}^{n}i=\frac{n(n+1)}{2}=\frac{n^2+n}{2}$$

воог Kleiner Gauß.

Benja

1. Induktionsanfang: $\varphi(1)$ soll gelten $\frac{1(1+1)}{2}=1$ $\sqrt{}$ Vorausstzung, z.z.: $\sum_{i}^{i+1}=\frac{(n+1)(n+1+1)}{2}=\frac{(n+1)(n+2)}{2}$

2. Induktionsschritt:

$$\sum_{i=0}^{n+1} i = \sum_{i=0}^{n} i + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1)$$

$$= \frac{n(n+1) + 2 \cdot (n+1)}{2}$$

$$= \frac{(n+1)(n+2)}{2} \quad \checkmark$$

3. Induktionsschluss: nach IA und IS $\Rightarrow \varphi(n)(\forall n(\varphi(n)))$

Strukturelle Induktion

- ► Vollständige Induktion ist eine Spezialfall der strukturellen Induktion
- ▶ Wie in der vollständigen Induktion: Beweis für Basisfälle (Atome)
- Anschließend via Induktionsschritt zeigen, dass sich die Gültigkeit der Behauptung auf nächste Ebene überträgt
- ▶ Basisfälle (bool'sche Algebra): Alle nicht zusammengesetzten Elemente
 - ► Wahrheitswerte 0 und 1,
 - bool'schen Ausdrücke mit einer Variablen
 - ▶ D.h. Rückführung auf $x \land \neg x$ bzw. $x \lor \neg x$
 - lnduktionsanfang den Ausdruck f = x
- Induktionsschritt: Zeigt, dass Behauptung für beliebig zusammengesetzte Ausdrücke gilt
 - ► Induktionsschritt nur Elementaroperatoren: ¬, ∧, ∨

Beispiel Strukturelle Induktion

Theorem

Sei φ ein beliebiger boolescher Ausdruck, in dem neben den Variablen x_1, \ldots, x_n ausschließlich der Implikationsoperator vorkommt. Dann ist φ stets erfüllbar.

▶ Idee: Wir zeigen, dass $\varphi(x_1, ..., x_n)$ stets gleich 1 ist, wenn wir alle Variablen 1 sind

Beispiel Strukturelle Induktion

Beweis.

Induktionsanfang (IA): φ sei ein nicht zusammengesetzter boolescher Term. φ hat die Form x_i , da keine Konstanten erlaubt sind . Es gilt $\varphi(1)=1$. Induktionsvoraussetzung (IV): φ sei ein zusammengesetzter boolescher Ausdruck, in dem neben den Variablen x_1,\ldots,x_n ausschließlich der Implikationsoperator vorkommt. Wir nehmen an, die Behauptung sei für alle Unterterme von φ bereits bewiesen.

Induktionsschritt (IS): Da die Implikation der einzige Operator ist, der in φ vorkommen darf, hat φ die Form $\varphi_1\Rightarrow\varphi_2$. Dann ist

$$\varphi(1,\ldots,1)=\varphi_1(1,\ldots,1)\Rightarrow\varphi_2(1,\ldots,1)=1\Rightarrow 1=1$$

somit ist φ bewiesen.

Negationstheorem

Theorem (Negationstheorem)

Sei $f(0, 1, x_1, ..., x_n, \land, \lor, \neg)$ ein boolescher Ausdruck, in dem neben den Konstanten 1 und 0 und den Variablen $x_1, ..., x_n$ die booleschen Operatoren \land, \lor und \neg vorkommen. Dann gilt:

$$\overline{f(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)}=f(1,0,\overline{x_1},\ldots,\overline{x_n},\vee,\wedge,\neg)$$

Negationstheorem.

Induktionsanfang (IA): Sei φ ein nicht zusammengesetzter Ausdruck. Wir betrachten alle Ausdrücke f der Länge 1:

$$\mathsf{Fall}\ 1\ \underline{\varphi=0}\\ \overline{\varphi(0,1,\mathsf{x}_1,\ldots,\mathsf{x}_{\mathsf{n}},\wedge,\vee,\neg)}=\overline{0}=1=\varphi(1,0,\overline{\mathsf{x}_1},\ldots,\overline{\mathsf{x}_{\mathsf{n}}},\vee,\wedge,\neg)$$

Fall 2
$$\frac{\varphi = 1}{\varphi(0, 1, \mathsf{x}_1, \dots, \mathsf{x}_n, \wedge, \vee, \neg)} = 1 = 0 = \varphi(1, 0, \overline{\mathsf{x}_1}, \dots, \overline{\mathsf{x}_n}, \vee, \wedge, \neg)$$

Fall 3
$$\underline{\varphi} = x_i$$

 $\underline{\varphi}(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg) = \overline{(x_i)} = (\overline{(x_i)}) = \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$

Beweis.

Induktionsvoraussetzung (IV): Wir nehmen an, die Behauptung sei für alle Unterterme von f bereits bewiesen.

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 1: $\varphi = \overline{\varphi}_1$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)}$$

$$\underline{\psi} \overline{\varphi_1(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)}$$

$$= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 30, Oktober 2021

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 2:
$$\varphi = \varphi_1 \wedge \varphi_2$$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \wedge \underline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
= \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \vee \overline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
\underline{\stackrel{\text{IV}}{=}} \varphi_1(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \vee \varphi_2(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \\
= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 30, Oktober 2021

Beweis.

Induktionsschritt (IS): Wir unterscheiden drei Fälle:

Fall 3:
$$\varphi = \varphi_1 \vee \varphi_2$$

$$\overline{\varphi(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} = \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \vee \underline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
= \overline{\varphi_1(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \wedge \overline{\varphi_2(0, 1, x_1, \dots, x_n, \wedge, \vee, \neg)} \\
\underline{W} = \varphi_1(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \wedge \varphi_2(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg) \\
= \varphi(1, 0, \overline{x_1}, \dots, \overline{x_n}, \vee, \wedge, \neg)$$

Bool'sche Algebra, 30, Oktober 2021

Negationstheorem & De Morgan'sche Regel

- Mithilfe des Negationstheorem haben wir die De Morgansche Regel bewiesen:
- ► Noch besser: Wir erhalten das Dualitätsprinzip Symmetrieeigenschaft!
- D.h. Gültigkeit der dualen Gleichung ableitbar
- ▶ Durch Vertauschen der Wahrheitswerte und der Operatoren ∧ und ∨ entsteht

Dualitätsprinzip

Theorem

Sei

$$\varphi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)=\psi(0,1,x_1,\ldots,x_n,\wedge,\vee,\neg)$$

ein Gesetz der booleschen Algebra, in der neben Variablen und den Konstanten 0 und 1 ausschließlich die Elementarverknüpfungen \neg, \land und \lor vorkommen. Dann ist auch die duale Gleichung

$$\varphi(1,0,\mathbf{x}_1,\ldots,\mathbf{x}_n,\vee,\wedge,\neg)=\psi(1,0,\mathbf{x}_1,\ldots,\mathbf{x}_n,\vee,\wedge,\neg)$$

ein Gesetz der booleschen Algebra.

Vollständige Operatorensysteme

Definition (Vollständige Operatorensystem)

 \mathcal{M} sei eine beliebige Menge von Operatoren. \mathcal{M} ist ein vollständiges Operatorensystem, wenn sich jede boolesche Funktion durch einen Ausdruck beschreiben lässt, in dem neben den Variablen x_1, \ldots, x_n ausschließlich Operatoren aus \mathcal{M} vorkommen.

- ▶ Die Elementaroperatoren \land, \lor und \neg bilden zusammen ein vollständiges Operatorensystem
- ▶ Die Operatoren NAND und NOR bilden jeder für sich bereits ein vollständiges Operatorensystem
- ▶ Die Implikation und die 0 bilden zusammen ebenfalls ein vollständiges Operatorensystem

Universelle Operatoren

ightharpoonup Reduktion von \land, \lor und \neg auf NAND

$$\overline{x} = \overline{x \wedge x}$$

$$x \wedge y = \overline{\overline{x \wedge y}} \quad \text{Idee:Doppelte Negation hebt sicht auf}$$

$$= \overline{\overline{x \wedge y} \wedge \overline{x \wedge y}}$$

$$x \vee y = \overline{\overline{x \vee y}} \quad \text{Idee: OR ist A und K}$$

$$= \overline{\overline{x} \wedge \overline{y}}$$

$$= \overline{\overline{x \wedge x} \wedge \overline{y \wedge y}}$$

Normalformdarstellungen

- Normalform beschreibt eine eindeutige Darstellung
- ▶ Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- Literal: Teilausdruck, der entweder negierte oder unnegierte Variable darstellt
- ► Wahrheitstafeldarstellung ist eine Art der Normalformdarstellungen
- ▶ Bool'sche Ausdrücke hingegen sind keine Normalformdarstellung
 - ▶ Jede bool'sche Funktion durch unendlich viele Ausdrücke beschrieben werden

Normalformdarstellungen

- Vollform: Ausdruck, in dem jede Variable genau einmal vorkommt
- ► Vollkonjunktion (**Minterm**): Ausdruck, in dem sämtliche vereinbarten Variablen (bzw. deren Negate) konjunktiv verbunden sind
 - ▶ Beispiel: $A, B, C : A \land \neg B \land C$
- ► Volldisjunktion (Maxterm): Ausdruck, in dem sämtliche vereinbarten Variablen (bzw. deren Negate) disjunktiv verbunden sind
 - ▶ Beispiel: $A, B, C : A \lor \neg B \lor \neg C$
- Negationen nur in atomarer Form
 - $ightharpoonup \neg (A \land B)$: nicht atomar
 - \blacktriangleright $(\neg A \lor \neg B)$: atomar

Formale Definition

Definition (Minterm, Maxterm, Literal)

Sei $f(x_1, ..., x_n)$ eine beliebige n-stellige boolesche Funktion. Jeder Ausdruck der Form

$$\hat{x_1} \wedge \ldots \wedge \hat{x_n} \quad \text{mit } \hat{x_i} \in \{\overline{x_i}, x_i\}$$

heißt Minterm, jeder Ausdruck der Form

$$\hat{x_1} \vee \ldots \vee \hat{x_n} \quad \text{mit } \hat{x_i} \in \{\overline{x_i}, x_i\}$$

wird Maxterm genannt.

Der Teilausdruck $\hat{x_i}$, der entweder aus einer negierten oder einer unnegierten Variablen besteht, heißt **Literal**.

Disjunktive Normalform

- ▶ Die disjunktive Normalform (DNF) ist jene Darstellungsart, bei der eine Reihe von Vollkonjunktionen disjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(A \land \neg B \land C) \lor (A \land B \land C) \lor (\neg A \land \neg B \land C)$
- ► Andere Bezeichnungen:
 - ► Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
 - ► Vollständige disjunktive/konjunktive Normalform

Beispiel: Disjunktive Normalform

$$f(x_1,x_2,x_3)=(x_1\Rightarrow x_2)\wedge (\neg x_1\Leftrightarrow x_3)$$

	x_1	x_2	X 3	$x_1 \Rightarrow x_2$	$\neg x_1 \Leftrightarrow x_3$	$(x_1 \Rightarrow x_2) \land (\neg x_1 \Leftrightarrow x_3)$		
1	0	0	0	1	0	0		
2	0	0	1	1	1	1		
3	0	1	0	1	0	0		
4	0	1	1	1	1	1		
5	1	0	0	0	1	0		
6	1	0	1	0	0	0		
7	1	1	0	1	1	1		
8	1	1	1	1	0	0		

Vollkonjunktion/Minterm: 2: $(\neg x_1 \land \neg x_2 \land x_3)$, 4: $(\neg x_1 \land x_2 \land x_3)$, 7: $(x_1 \land x_2 \land \neg x_3)$ DNF: $(\neg x_1 \land \neg x_2 \land x_3) \lor (\neg x_1 \land x_2 \land x_3) \lor (x_1 \land x_2 \land \neg x_3)$

Konjunktive Normalform

- ▶ Die konjunktive Normalform (KNF) ist jene Darstellungsart, bei der eine Reihe von Volldisjunktionen konjunktiv verknüpft wird. Negationen treten nur in atomarer Form auf.
 - $(\neg A \lor \neg B \lor \neg C) \land (A \lor B \lor C) \land (A \lor \neg B \lor \neg C)$
- ► Andere Bezeichnungen:
 - ► Kanonische disjunktive/konjunktive Normalform (KDNF/KKNF)
 - ► Vollständige disjunktive/konjunktive Normalform

Beispiel: Konjunktive Normalform $f(x_1, x_2, x_3) = (x_1 \land x_2) \lor x_3$

	X 1	X 2	X 3	$x_1 \wedge x_2$	$(x_1 \wedge x_2) \vee x_3$
1	0	0	0	0	0
2	0	0	1	0	1
3	0	1	0	0	0
4	0	1	1	1	1
5	1	0	0	0	0
6	1	0	1	0	1
7	1	1	0	1	1
8	1	1	1	1	1

Vollkonjunktion/Minterm: 1: $\neg(\neg x_1 \land \neg x_2 \land \neg x_3)$, 3: $\neg(\neg x_1 \land x_2 \land \neg x_3)$, 5: $\neg(x_1 \land \neg x_2 \land \neg x_3)$

Volldisjunktion/Maxterm: 1: $(x_1 \lor x_2 \lor x_3)$, 3: $(x_1 \lor \neg x_2 \lor x_3)$, 5: $(\neg x_1 \lor x_2 \lor x_3)$

 $\mathsf{KNF} \colon (x_1 \vee x_2 \vee x_3) \wedge (x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_3)$

- ► Eigenschaft eines Minterms bzw. Maxterms ermöglicht Konstruktion aller *n*-stelligen bool'schen Funktionen
- ▶ D.h. durch KNF und DNF können wir eindeutige Darstellungen für beliebige Funktionen angeben
- ▶ Diese Darstellung hat ein Problem: Sie ist nicht minimal
 - Es gibt eine kürzere Darstellung
 - ► KNF für jedes Element der Nullmenge einen Maxterm
 - DNF für jedes Element der Einsmenge einen Minterm
 - Dünn bzw. dicht besetzte Funktionen kompakte Darstellung
 - ► Andere Formelklassen: Länge steigt der KNDF/DNF exponentiell mit Anzahl freien Variablen der Funktion
- ▶ Bsp.: Antivalenz (XOR) $A_n(x_1, ..., x_n) = x_1 \Leftrightarrow x_2 \times x_3 \Leftrightarrow ... \Leftrightarrow x_n$
- ► Lösung: Reed-Muller-Normalform

Bitweise logische Operationen

A, B seien Bitvektoren, ∘ eine beliebige Verknüpfung

Dann erhalten wir als Ergebnis: $E = A \circ B$

Bitmaskierung

UND, ODER und XOR als spezielle Bit-Masken

UND Maskierung

Maskierung von IP-Adressen:

	IPv4-Adresse	11000000 10101000 00000001 10000001	192.168.1.129
UND	Netzmaske	11111111 11111111 111111111 00000000	255.255.255.0
=	Netzwerkteil	11000000 10101000 00000001 00000000	192.168.1.0
	IPv4-Adresse	11000000 10101000 00000001 10000001	192.168.1.129
UND	NOT Netzmaske	00000000 00000000 00000000 11111111	0.0.0.255
=	Geräteteil	00000000 00000000 00000000 10000001	0.0.0.129

OR Maskierung

Image Mask

XOR Encryption

- ▶ Zufällig gleichverteilter Schlüssel der länge n: $k \in \mathcal{K}, \mathcal{K} := \{0,1\}^n, n \in \mathbb{N},$ Schlüsselraum \mathcal{K} ist die Permutationen aller Bitstrings
- ▶ Nachricht $m \in \mathcal{M}$ binär kodiert, sodass $min\{0,1\}^n$
- Nachricht und Schlüssel sind gleich lang
- ▶ Verschlüsselung: $Enc_k(m) = m \oplus k = c$
- ▶ Entschlüsselung: $Dec_k(c) = c \oplus k = m$
- ► Korrektheit: $m = Dec_k(Enc_k(m)) = m$, da $m = k \oplus m \oplus k = m$ und $k \oplus k = 0$ den Bitvektor $\vec{0}$ ergibt

msg:	0	1	1	1	0	0	1	1	$ _{\sigma}$
key:	1	1	0	0	1	0	0	1	
CT:									

Quellen I

- Barnett, Janet Heine (2013). "Boolean algebra as an abstract structure: Edward V. Huntington and axiomatization". In: *Convergence*.
- Bewersdorff, Jörg (2007). "Algebra für Einsteiger: Von der Gleichungsauflösung zur Galois-Theorie, 3". In: *Aufl. Vieweg+ Teubner, Wiesbaden (2007, Juli)*.
- Hoffmann, Dirk W (2020). *Grundlagen der technischen Informatik*. Carl Hanser Verlag GmbH Co KG.
- Rautenberg, Wolfgang (2008). Einführung in die mathematische Logik. Springer.
- Sasao, Tsutomu (1999). "Lattice and Boolean Algebra". In: Switching Theory for Logic Synthesis. Springer, S. 17–34.

Quellen II

Teschl, Gerald und Susanne Teschl (2013). Mathematik für Informatiker: Band 1: Diskrete Mathematik und Lineare Algebra. Springer-Verlag.