Math 395

Homework 3

Due: 2/15/2024

Name: Avinash lyer

Collaborators: Nate Hall, Antonio Cabello, Gianluca Crescenzo, Nora Manukyan, Timothy Rainone

Problem 1

Let $\varphi: R \to S$ be a ring homomorphism. Let $\mathfrak{p} \in \operatorname{Spec}(S)$. We will prove that $\varphi^{-1}(\mathfrak{p}) \subset R$ is an element of $\operatorname{Spec}(R)$.

We will start by showing that $\varphi^{-1}(\mathfrak{p})$ is an ideal. Let $\mathfrak{p} \in \operatorname{Spec}(S)$. Since $0_S \in \operatorname{Spec}(S)$, and $0_R \in \varphi^{-1}(0_S)$, it is the case that $\varphi^{-1}(\mathfrak{p})$ is non-empty.

Let $a, b \in \varphi^{-1}(\mathfrak{p})$. Considering $\varphi(a-b)$, we have $\varphi(a-b) = \varphi(a) - \varphi(b)$, and since $\varphi(a), \varphi(b) \in \mathfrak{p}$, it is the case that $\varphi(a-b) \in \mathfrak{p}$, so $a-b \in \varphi^{-1}(\mathfrak{p})$.

Similarly, for $r \in R$, $a \in \varphi^{-1}(\mathfrak{p})$, $\varphi(ra) = \varphi(r)\varphi(a) \in \mathfrak{p}$, so $ra \in \varphi^{-1}(\mathfrak{p})$. Therefore, $\varphi^{-1}(\mathfrak{p})$ is non-empty, closed under subtraction, and closed under multiplication by elements of the ring, so $\varphi^{-1}(\mathfrak{p})$ is an ideal.

Let $ab \in \varphi^{-1}(\mathfrak{p})$. Then, $\varphi(ab) \in \mathfrak{p}$. So, $\varphi(a)\varphi(b) \in \mathfrak{p}$, meaning either $\varphi(a) \in \mathfrak{p}$ or $\varphi(b) \in \mathfrak{p}$. Therefore, $a \in \varphi^{-1}(\mathfrak{p})$ or $b \in \varphi^{-1}(\mathfrak{p})$. Therefore, $\varphi^{-1}(\mathfrak{p})$ is prime.

Problem 4

Let I, J be ideals of R with $I \subseteq J$. We will show that J/I is an ideal of R/I and $(R/I)/(J/I) \cong R/J$.

We know that J/I is non-empty, as it contains 0_R , so we will show that J/I is closed under subtraction and multiplication by elements of R/I. Thus, by the rules of subrings, for $j_1, j_2, j \in J$, we have

$$(j_1 + I) - (j_2 + I) = (j_1 - j_2) + I$$

 $\in J/I.$

and, since $j \in R$, by the properties of the quotient ring,

$$(r+1)(j+1) = (rj) + 1,$$

and since $rj \in J$ as J is an ideal,

$$(rj+I) \in J/I$$
.

Similarly,

$$(j+I)(r+I) = (jr) + I$$
$$\in J/I.$$

Therefore, since J/I is non-empty, closed under subtraction, and closed under multiplication by elements of R/I, it is the case that J/I is an ideal R/I.

Let $\varphi: R/I \to R/J$, $r+I \mapsto r+J$. We will show that φ is a well-defined homomorphism with $\ker(\varphi) = J/I$.

Let $r_1 \sim_{R/I} r_2$. Then, $r_1 = r_2 + i$ for some $i \in I$. Then,

$$\varphi(r_1) = r_1 + J$$
$$= (r_2 + i) + J,$$

and since $I \subseteq J$,

$$= r_2 + J$$
.

Thus, φ is well-defined. Additionally,

$$\varphi((r_1 + I) + (r_2 + I)) = \varphi((r_1 + r_2) + I)$$

$$= (r_1 + r_2) + J$$

$$= (r_1 + J) + (r_2 + J)$$

$$= \varphi(r_1 + I) + \varphi(r_2 + I),$$

and

$$\varphi((r_1 + I)(r_2 + I)) = \varphi(r_1 r_2 + I)$$

$$= r_1 r_2 + J$$

$$= (r_1 + J)(r_2 + J)$$

$$= \varphi(r_1 + I)\varphi(r_2 + I).$$

Therefore, φ is a homomorphism. The elements that φ maps to 0+J are precisely the elements of j+I where $j\in J$, as

$$\varphi(j+I) = j+J$$
$$= 0+J.$$

Thus, $ker(\varphi) = J/I$.

By the first isomorphism theorem, $(R/I)/(J/I) \cong R/J$.

Problem 5

Define $\varphi : \mathbb{F}_p \to \mathbb{F}_p$, where $\varphi(x) = x^p$ for $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$. We will show that φ is an isomorphism.

We will start by showing that φ is a well-defined homomorphism. Let $[a]_p = [b]_p$. Then, a = b + kp for some $k \in \mathbb{Z}$. By Fermat's Little Theorem, $\varphi(a) = a^p \equiv [a]_p$, and $\varphi(b + kp) = b^p + p(\ell)$ for some ℓ , so $\varphi(b) \equiv [b]_p$ as well. Thus, $\varphi([a]_p) = \varphi([b]_p)$.

Since φ is well-defined, we find that, for $a, b \in \mathbb{F}_p$,

$$\varphi(a+b) = ([a+b]_p)^p$$

$$\equiv [a+b]_p$$

$$= [a]_p + [b]_p$$

$$\equiv ([a]_p)^p + ([b]_p)^p$$

$$= \varphi(a) + \varphi(b),$$

and

$$\varphi(ab) = ([ab]_p)^p$$

$$\equiv [ab]_p$$

$$= [a]_p[b]_p$$

$$\equiv ([a]_p)^p ([b]_p)^p$$

$$= \varphi(a)\varphi(b),$$

meaning φ is a homomorphism.

Since, for all $x \in \mathbb{F}_p$, $x \equiv x^p$, it is the case that φ is surjective. Finally, since $\varphi(0) = 0$, and for $x \neq 0$, $\varphi(x) = x \neq 0$, it is the case that $\ker(\varphi) = \{0\}$, meaning φ is injective.

Since φ is a bijective homomorphism, φ is an isomorphism.

Problem 8

Let R be a commutative ring with $I, J \subseteq R$ ideals, and let $\mathfrak{p} \in \operatorname{Spec}(R)$, where $I \cap J \subset \mathfrak{p}$. We will show that either $I \subseteq \mathfrak{p}$ or $J \subseteq \mathfrak{p}$.

Suppose toward contradiction that $I \nsubseteq \mathfrak{p}$ and $J \nsubseteq \mathfrak{p}$. Then, $\exists i \in I$ and $j \in J$ such that $i \notin \mathfrak{p}$ and $j \notin \mathfrak{p}$. However, $ij \in I$ and $ij \in J$ by the definition of ideal, meaning $ij \in I \cap J$. Since $I \cap J \subset \mathfrak{p}$, this means $ij \in \mathfrak{p}$. By the definition of prime ideal, this means $i \in \mathfrak{p}$ or $j \in \mathfrak{p}$, which is a contradiction of our assumption.