Junghyun Jung, Ph.D.

https://junghyunjj.github.io/

Updated: June 13, 2025

Email: junghyun.jung@cshs.org

EDUCATION

• Dongguk University

Seoul, Korea

Ph.D. in Life Science

Sept. 2014 - Feb. 2020

Mentor: Dr. Wonhee Jang

Dissertation project: Bioinformatics-based approaches for identifying novel genetic markers

• Dongguk University

Seoul, Korea

M.S. in Life Science

Mar. 2012 - Aug. 2014

Mentor: Dr. Wonhee Jang

Dissertation project: Studies on the *in silico* analyzing methods related to toxic effects and mechanisms of chemicals

• Dongguk University

Seoul, Korea

B.S. in Life Science

Mar. 2007 - Feb. 2012

Professional and Academic Experience

• Cedars-Sinai Medical Center

Los Angeles, CA, USA

Research Data Scientist at Department of Computational Biomedicine

Jul. 2023 - present

Mentor: Dr. Kyoung Jae Won

- o Develop statistical tools
 - an agentic AI system for analyzing spatial omics datasets
 - Develop novel statistical methods for single-cell genetics datasets (sc-eQTL).
- Large-scale integrative analysis of complex traits
 - Perform multi-omic data analysis for complex diseases.
 - Perform spatiotemporal transcriptomic data analysis for complex diseases.

• University of Southern California

Los Angeles, CA, USA

Postdoctoral Researcher at Center for Genetic Epidemiology, Keck School of Medicine Aug. 2020 - Jun. 2023

Mentor: Dr. Nicholas Mancuso

- o Large-scale integrative analysis of complex disease
 - Perform integrative analysis using GWAS with molecular QTL (molQTL) data for TWAS analysis.
 - Perform Single-cell RNA/ATAC/TCR-seq data analysis.
- o Inference of negative selection in the evolutionary architecture
 - Develop a novel statistical method using Variational Bayesian methods.
 - Understand the landscape of evolutionary architectures across many molecular phenotypes.

• University of Southern California

Los Angeles, CA, USA

Postdoctoral Researcher at Department of Clinical Pharmacy, School of Pharmacy

Aug. 2020 - Jul. 2021

Mentor: Dr. Serghei Mangul

- \circ Genome/Exome-wide association study to identify common/rare variants influencing COVID-19 outcomes using Middle Eastern cohort
 - Analyze Whole-Exome seq (WES) data to identify rare variants using the Saudi Human Genome Program cohort.
 - Perform GWAS analysis to identify common variants using the Saudi Human Genome Program cohort.
- Rigorous benchmarking of HLA callers for RNA sequencing data
 - Evaluate performances of multiple HLA callers using gold standard data.
 - Consensus HLA typing based on multiple HLA callers using Genotype-Tissue Expression (GTEx) data.
 - HLA typing using multiple ancestry data.

• Dongguk University

Seoul, Korea Postdoctoral Researcher at Department of Computer Science and Engineering Mar. 2020 - Jul. 2020

Mentor: Dr. Jong Wha J. Joo

o Set-based analysis to increase the power of association testing

- Develop a statistical method to improve statistical power using multiple causal variants.
- Multivariate phenotype analysis by analyzing many phenotypes simultaneously.

• Dongguk University

Seoul, Korea Mar. 2018 - Aug. 2020

Instructor at Convergence Software Institute Dongguk (Biological Information Software Convergence)

• Dongguk University

Seoul, Korea

Teaching assistant at Department of Life Science

Sept. 2012 - Aug. 2013

PUBLICATIONS

- [1] W. Oh, J. Jung, and J. W. J. Joo, "MR-GGI: accurate inference of gene-gene interactions using Mendelian randomization," BMC Bioinformatics, vol. 25, no. 1, pp. 1–16, 2024.
- [2] J. Song, D. Kim, J. Jung, E. Choi, et al., "Elucidating immunological characteristics of the adenoma-carcinoma sequence in colorectal cancer patients in South Korea using a bioinformatics approach," Scientific reports, vol. 14, no. 10105, 2024.
- [3] D. Kim, J. Song, S. Mangul, N. Mancuso, J. Jung*, and W. Jang*, "Large-scale integrative analysis of juvenile idiopathic arthritis for new insight into its pathogenesis," Arthritis Research & Therapy, vol. 26, no. 1, p. 47, 2024.
- [4] Z. Zhang, J. Jung, A. Kim, N. Suboc, S. Gazal, and N. Mancuso, "A scalable approach to characterize pleiotropy across thousands of human diseases and complex traits using GWAS summary statistics," The American Journal of Human Genetics, vol. 110, no. 11, pp. 1863–1874, 2023.
- [5] J. Jung*, Z. Lu, A. de Smith, and N. Mancuso*, "Novel insight into the etiology of ischemic stroke gained by integrative multiome-wide association study," Human Molecular Genetics, vol. 33, no. 2, pp. 170–181, 2024.
- [6] G. Butler-Laporte, G. Povysil, J. A. Kosmicki, E. T. Cirulli, T. Drivas, S. Furini, C. Saad, A. Schmidt, P. Olszewski, U. Korotko, J. Jung, et al., "Exome-wide association study to identify rare variants influencing COVID-19 outcomes: Results from the Host Genetics Initiative," PLoS Genetics, vol. 18, no. 11, p. e1010367, 2022.
- [7] W. group lead Andrews Shea J. 6 Kanai Masahiro 3 Cordioli Mattia 7, M. analyses team lead, M. analyses team members: PHEWAS Polimanti Renato 1, M. analyses team members: Mendelian randomization Harerimana Nadia 8, M. analyses team members: methods development Pirinen Matti 7, g. p. Manuscript analyses team members: PC projection, P. management lead Liao Rachel G. 3, P. management support Chwialkowska Karolina 9 Trankiem Amy 3 Balaconis Mary K. 3, H. Nguyen, et al., "A first update on mapping the human genetic architecture of COVID-19," Nature, vol. 608, no. 7921, pp. E1–E10, 2022.
- [8] Y. Shim, M. Shin, J. Jung, B. Koo, and W. Jang, "An in-silico approach to studying a very rare neurodegenerative disease using a disease with higher prevalence with shared pathways and genes: Cerebral adrenoleukodystrophy and Alzheimer's disease," Frontiers in molecular neuroscience, vol. 15, 2022.
- [9] J. Song, D. Kim, S. Lee, J. Jung, J. W. J. Joo, and W. Jang, "Integrative transcriptome-wide analysis of atopic dermatitis for drug repositioning," Communications biology, vol. 5, no. 1, pp. 1–13, 2022.

- [10] J. L. Wiemels, R. Wang, M. Zhou, H. Hansen, R. Gallant, J. Jung, N. Mancuso, A. J. De Smith, C. Metayer, S. C. Kogan, et al., "Cytomegalovirus proteins, maternal pregnancy cytokines, and their impact on neonatal immune cytokine profiles and acute lymphoblastic leukemogenesis in children," *Haematologica*, 2022.
- [11] A. Kousathanas, E. Pairo-Castineira, K. Rawlik, A. Stuckey, C. A. Odhams, S. Walker, C. D. Russell, T. Malinauskas, Y. Wu, J. Millar, J. Jung, et al., "Whole genome sequencing reveals host factors underlying critical Covid-19," Nature, pp. 1–10, 2022.
- [12] C. Fallerini, N. Picchiotti, M. Baldassarri, K. Zguro, S. Daga, F. Fava, E. Benetti, S. Amitrano, M. Bruttini, M. Palmieri, J. Jung, et al., "Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity," Human genetics, pp. 1–27, 2021.
- [13] M. D'Antonio, J. P. Nguyen, T. D. Arthur, H. Matsui, B. M. Neale, M. Daly, A. Ganna, C. Stevens, G. A. Pathak, S. J. Andrews, J. Jung, et al., "SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues," Cell reports, vol. 37, no. 7, p. 110020, 2021.
- [14] B. Lee, M. K. Shin, I.-W. Hwang, J. Jung, Y. J. Shim, G. W. Kim, S. T. Kim, W. Jang, and J.-S. Sung, "A Deep Learning Approach with Data Augmentation to Predict Novel Spider Neurotoxic Peptides," International Journal of Molecular Sciences, vol. 22, no. 22, p. 12291, 2021.
- [15] G. Povysil, G. Butler-Laporte, N. Shang, C. Wang, A. Khan, M. Alaamery, T. Nakanishi, S. Zhou, V. Forgetta, R. J. Eveleigh, **J. Jung**, et al., "Rare loss-of-function variants in type I IFN immunity genes are not associated with severe COVID-19," The Journal of Clinical Investigation, vol. 131, no. 14, 2021.
- [16] F. Hormozdiari[†], J. Jung[†], E. Eskin, and J. W. J. Joo, "MARS: leveraging allelic heterogeneity to increase power of association testing," *Genome biology*, vol. 22, pp. 1–26, April 2021.
- [17] D. Kim, J. Song, S. Lee, **J. Jung**, and W. Jang, "An Integrative Transcriptomic Analysis of Systemic Juvenile Idiopathic Arthritis for Identifying Potential Genetic Markers and Drug Candidates," *International Journal of Molecular Sciences*, vol. 22, no. 2, p. 712, 2021.
- [18] J. H. Choi, T. Kim, **J. Jung**, and J. W. J. Joo, "Fully automated web-based tool for identifying regulatory hotspots," *BMC genomics*, vol. 21, no. 10, pp. 1–7, 2020.
- [19] G. J. Lee, S. M. Park, J. Jung, and J. W. J. Joo, "A Fully Automated Parallel-Processing R Package for High-Dimensional Multiple-Phenotype Analysis Considering Population Structure," *International Journal of Fuzzy Logic and Intelligent Systems*, vol. 20, no. 3, pp. 219–226, 2020.
- [20] J. Song, D. Kim, J. Hong, G. W. Kim, J. Jung, S. Park, H. J. Park, J. W. J. Joo, and W. Jang, "Meta-analysis of polymyositis and dermatomyositis microarray data reveals novel genetic biomarkers," Genes, vol. 10, no. 11, p. 864, 2019.
- [21] <u>J. Jung</u>, G. W. Kim, B. Lee, J. W. J. Joo, and W. Jang, "Integrative genomic and transcriptomic analysis of genetic markers in Dupuytren's disease," *BMC medical genomics*, vol. 12, no. 5, pp. 1–10, 2019.
- [22] E. Lee, H. Jeon, M. Lee, J. Ryu, C. Kang, S. Kim, **J. Jung**, and Y. Kwon, "Molecular origin of AuNPs-induced cytotoxicity and mechanistic study," *Scientific reports*, vol. 9, no. 1, pp. 1–13, 2019.
- [23] <u>J. Jung</u>, G. W. Kim, W. Lee, C. Mok, S. H. Chung, and W. Jang, "Meta-and cross-species analyses of insulin resistance based on gene expression datasets in human white adipose tissues," *Scientific reports*, vol. 8, no. 1, pp. 1–13, 2018.
- [24] H. Kim, J. Yoo, J. Shin, Y. Chang, J. Jung, D.-G. Jo, J. Kim, W. Jang, C. J. Lengner, B.-S. Kim, et al., "Modelling APOE 3/4 allele-associated sporadic Alzheimer's disease in an induced neuron," Brain, vol. 140, no. 8, pp. 2193–2209, 2017.

- [25] J. Yoo, E. Lee, H. Y. Kim, D.-H. Youn, J. Jung, H. Kim, Y. Chang, W. Lee, J. Shin, S. Baek, et al., "Electromagnetized gold nanoparticles mediate direct lineage reprogramming into induced dopamine neurons in vivo for Parkinson's disease therapy," Nature nanotechnology, vol. 12, no. 10, pp. 1006–1014, 2017.
- [26] J. Jung, K. Hah, W. Lee, and W. Jang, "Meta-analysis of microarray datasets for the risk assessment of coplanar polychlorinated biphenyl 77 (PCB77) on human health," Toxicology and Environmental Health Sciences, vol. 9, no. 2, pp. 161–168, 2017.
- [27] <u>J. Jung</u>, C. Mok, W. Lee, and W. Jang, "Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk: An assessment of Bisphenol A," *Molecular & Cellular Toxicology*, vol. 13, no. 2, pp. 239–249, 2017.
- [28] E. Lee, J. Jung, D. Jung, C. S. Mok, H. Jeon, C.-S. Park, W. Jang, and Y. Kwon, "Inhibitory effects of novel SphK2 inhibitors on migration of cancer cells," Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), vol. 17, no. 12, pp. 1689–1697, 2017.
- [29] H. G. Kang, D.-H. Kim, S.-J. Kim, Y. Cho, **J. Jung**, W. Jang, and K.-H. Chun, "Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain," *Oncotarget*, vol. 7, no. 42, p. 68229, 2016.

Conference Presentations - Oral Presentation

- Z. Zhang, J. Jung, N. Suboc, S. Gazal, N. Mancuso. A variational Bayesian approach to characterize
 pleiotropic components across thousands of human diseases and complex traits using GWAS summary
 statistics. ASHG, Los Angeles, CA, USA, 2022
- J. Jung, G.W. Kim, B. Lee, J.W.J. Joo., W. Jang. Integrative genomic and transcriptomic analysis for genetic markers in Dupuytren's disease. TBC/BIOINFO 2018. Seoul, Korea, 2018
- J. Jung, G.W. Kim, J.H. Park, S.H. Chung, W. Jang . Meta-analysis of insulin resistance based on gene expression datasets in human adipose tissues. The 13th international congress on obesity (ICO). Vancouver, Canada, 2016.
- G.W. Kim, **J. Jung**, H.K. Jo, K.J. Jeong, W. Jang, S.H. Chung. Elucidation of suppressive mechanism of betulinic acid on adipogenesis using global gene expression profiling. The 13th international congress on obesity (ICO). Vancouver, Canada, 2016.

Conference Presentations - Poster Presentation

- J. Jung, Z. Lu, N. Mancuso. Novel insight into the etiology of ischemic stroke gained by integrating human transcriptome-wide association study with rodent expression data. ASHG, Virtual, 2021
- Z. Zhang, J. Jung, N. Suboc, S. Gazal, N. Mancuso. A variational Bayesian approach to characterize latent genetic components using GWAS summary statistics. ASHG, Virtual, 2021
- Z. Lu, **J. Jung**, S. Gazal, N. Mancuso. Residual proteome-wide association study identifies genes for blood-related traits. ASHG, Virtual, 2021
- J. Jung, R. Brown, W. Jang, B. Pasaniuc, J.W.J. Joo and E. Eskin. GGmend: A Mendelian randomization method for finding gene-on-gene regulatory effects in the presence of unobserved confounders. 23th RECOMB, Washington, D.C., USA, 2019.
- F. Hormozdiari, J. Jung, E. Eskin and J.W.J. Joo. Leveraging allelic heterogeneity to increase the power of association testing. 23th RECOMB, Washington, D.C., USA, 2019.
- J. Song, W. Jang, J. Jung, D.E. Kim and J.Y. Hong W. Jang. Meta-analysis of polymyositis and dermatomyositis microarray data sets. 23th RECOMB, Washington, D.C., USA, 2019.

- J. Jung, G.W. Kim, J.H. Park, S.H. Chung, W. Jang. Cross-species analysis reveals molecular mechanisms of insulin resistance in white adipose tissues. 12th International Conference on Toxicogenomics (ICT), Seoul, Korea, 2016.
- J. Jung, G.W. Kim, J.H. Park, S.H. Chung, W. Jang. Integrative cross-species analysis of insulin resistance expression profile in white adipose tissues. 9th International Conference on Environmental Health Sciences (ICoEHS), Incheon, Korea, 2016.
- J. Jung, J.H. Park, W. Jang. Meta-analysis of microarray gene expression datasets for silver nanoparticles. 11th International Conference on Toxicogenomics (ICT), Seoul, Korea, 2015.
- J. Jung, J.H. Park, W. Jang. Meta-analysis of microarray and RNA-Seq gene expression datasets for carcinogenic risk assessment of Bisphenol A. 8th International Conference on Environmental Health Sciences (ICoEHS), Incheon, Korea, 2015.
- J. Jung, J.H. Park, W. Jang. Meta-analysis of microarray gene expression datasets for in silico risk assessment of Bisphenol A. 6th International Conference on Environmental Health Sciences (ICoEHS), Incheon, Korea, 2013.

PATENTS

- Genetic markers for diagnosing juvenile idiopathic arthritis and diagnosis method using these markers. 2024.12.24. Korea (1027481570000)
- Composition for diagnosing Insulin Resistance and its uses. 2020.04.10. Korea (1021018070000)
- Diagnostic kit comprising biomarkers for bisphenol A exposure diagnosis. 2018.12.21. Korea (1019336950000)
- Diagnostic kit comprising biomarkers for genistein exposure diagnosis. 2018.12.21. Korea (1019336940000)
- Diagnostic kit comprising biomarkers for polychlorinated biphenyl 77 exposure diagnosis. 2018.12.21. Korea (1019336920000)

Honors and Awards

- Dongguk Global Researcher Scholarship, 2014
- 13th International Conference on Toxicogenomics (ICT), Best poster, The Korea Society of Toxicogenomics and Toxicoproteomics, 2016
- 9th International Conference on Environmental Health Sciences (ICoEHS), Best poster, Society of Environmental Risk Assessment and Health Science, 2016
- 6th International Conference on Environmental Health Sciences (ICoEHS), Best poster, Society of Environmental Risk Assessment and Health Science, 2013

Teaching Experience

• Invited lecturer on Statistical Methods in Human Genetics (PM 570)

University of Southern California (spring 2023)

I introduce cutting-edge tools for genome-wide association and genetic perturbations analysis that have been recently published.

• Workshop on Genomic Data Analysis and Deep Learning

LINC+ Donguk University (Winter 2019)

A 1-month workshop introducing attendees to the basics of Omics data analysis. Topics include preprocessing of RNA-seq and expression microarray data, differentially expressed genes (DEGs) analysis and functional enrichment analysis.

• Instructor for Big Data Processing/Analysis using Public Databases (BSI4002-01 and BSI4001-01)

Convergence Software Institute Dongguk (2018 - 2020)

This course provides the basic principles of computer analysis programming and the basics of biological data analysis using Python and R.

PROFESSIONAL SERVICE

- Editorial Board Member: BMC Genomics (May 2025 -)
- Review Editor: Frontiers in Molecular Bioscience (June 2023 -)
- Reviews: Genome medicine, The American Journal of Human Genetics, Translational Stroke Research, Cardiovascular Diabetology, BMC Medicine, BMC Genomics, Molecular Neurobiology, European Journal of Medical Research, Scientific Reports

RESEARCH TECHNIQUE

- Computational Skills
 - NGS data analysis: WES, RNA-seq, ATAC-seq, Chip-seq, and scRNA/scATAC/scTCR-seq data analysis
 - Spatial omics analysis: Spatial transcriptome data analysis
 - Micoarray data analysis: SNP and expression array data analysis
 - **High performance computing**: Slurm and Sun Grid Engine (SGE)
 - Programming languages:: R, Python, and Bash
 - Other software applications: Docker, Singularity, Git, LaTeX, SPSS, and ImageJ