CHM129

The Equilibrium Constant: Practice

1. Consider the following reaction:

$$2 \text{ NO}_{(g)} + 2 \text{ H}_{2(g)} \leftrightarrow \text{ N}_{2(g)} + 2 \text{H}_{2}\text{O}_{(g)}$$

A mixture at 300K initially contains 0.10mol of NO, 0.050mol of H_2 , and 0.10mol of H_2 O in a 1.0L vessel. At equilibrium, the concentration of NO is 0.062M. What are the equilibrium concentrations of H_2 , N_2 , and H_2 O and the value of the equilibrium constant?

$$= \frac{(0.019)(0.138)^2}{(0.062)^2(0.012)^2}$$

ا	[ND]	[Ha]	[N2]	[Hall]
I	0.10	0.050	O	0-10
C	- 0.038	-0.038	+0.019	+0.038
			0.019	0.138

2. Consider the dissolution of silver chloride, AgCl, in water:

AgCl (s)
$$\leftrightarrow$$
 Ag⁺(aq) + Cl⁻(aq) K=1.8x10⁻¹⁰

Based on the value of K, would you consider AgCl a soluble or insoluble salt? Write the equilibrium expression and determine the [Ag+] at equilibrium.

$$K = [Agt][CI] = 1.8 \times 10^{10}$$

 $(x)(x) = 1.8 \times 10^{-10}$
 $x = \sqrt{1.8 \times 10^{-10}}$
 $x = 1.3 \times 10^{-5} Ll = [Agt]$

3. Consider the following reaction:

$$CO_{2(g)} + H_{2(g)} \leftrightarrow CO_{(g)} + H_{2}O_{(g)}$$
 K=0.802 at 395 °C

If a reaction mixture contains initially 1.50mol of CO_2 and 1.50mol of H_2 are placed in a 0.750L container, what are the masses of CO_2 , H_2 , CO, and H_2O in the equilibrium mixture?

$$K = \frac{[CO][H_2O]}{[CO_2][H_0]} = 0.802$$

$$\frac{(x)(x)}{(2.00-x)(2.00-x)} = 0.802$$

$$\frac{\chi^2}{(2.00-x)^2} = 0.802$$

mol
$$CO_2$$
 = mol H_2 = $(1.0(eL))(0.750L)$ = 0.795 mol 100 CO = mol H_2O = $(0.945L)(0.750L)$ = 0.709 mol 100 100