

3D Audio-Visual Segmentation

Artem Sokolov, Swapnil Bhosale, Xiatian Zhu University of Surrey

Audio Imagination: Workshop on Al-Driven Speech, Music, and Sound Generation

Motivation & Novel Research Problem:

- > Human perception of the world predominantly occurs in three dimensions
- > In 2D Audio-Visual Segmentation (AVS), mapping from 2D images to 3D scenes is missing and spatial audio is not taken into consideration
- => 2D Audio-Visual Segmentation is insufficient for real world operations

We propose a novel **3D Audio-Visual Segmentation** problem:

Given: 3D audio-visual scene (represented by sequence of frames with visual and spatial audio cues)

Goal: to obtain consistent 3D mask of the sound-emitting object

Method: EchoSegnet

Stage 1:

Generate 2D Audio-Visual Segmentation masks using OWOD-BIND³ (Class-agnostic object detection + SAM + ImageBind)

Stage 2:

Lift⁴ these 2D AVS masks into built 3D Gaussian Splatting⁵ scene representation

Stage 3:

Apply **AISRM** to the initial 3D segmentation to retain only 3D Gaussians of the sound-emitting object

Dataset: 3DAVS-S34-O7

Microwave

Vacuum cleaner

Washing machine

Clocks Coffee machines

Telephones

We propose the first simulation-based 3D Audio-Visual Segmentation benchmark 3DAVS-S34-O7:

- 34 photorealistic, semantically meaningful indoor 3D scenes with visual and grounded spatial sound cues across 7 objects
- Created using Habitat¹ and SoundSpaces² 2.0 platforms
- Two benchmarking subsets:
- □ single-instance
- ☐ multi-instance (with the goal to segment **only the sound-emitting** object **from multiple** instances)

For each scene we capture 120 frames at 1 fps (symbolizing embodied agent's path).

Each frame includes: RGB view, 1 second binaural audio, and semantic mask, highlighting sounding object.

Experimental Results:

Approach	single-instance		multi-instance	
	mIoU ↑	F-Score ↑	mIoU ↑	F-Score ↑
EchoSegnet w/o AISRM	0.761	0.628	0.757	0.609
EchoSegnet w/ AISRM	0.823	0.730	0.801	0.714
DenseAV [11] (2D SSL)	0.426	0.023	0.436	0.023
OWOD-BIND [3] (2D AVS)	0.693	0.523	0.696	0.502

- > AISRM improves accuracy of EchoSegnet across both single- and multi-instance subsets
- ➤ 2D AVS pipeline OWOD-BIND³ cannot address the 3D AVS task due to its inability to capture spatial relationships between objects and their sound
- EchoSegnet is the only method to segment sounding objects partially visible in frame

- [2] Chen et al., Soundspaces 2.0: A simulation platform for visual-acoustic learning. In: NeurIPS Datasets and Benchmarks Track, 2022.
- [3] Bhosale et al. Leveraging foundation models for unsupervised audio-visual segmentation. In: ICCV Workshop AV4D, 2023.
- [4] Hu et al. SAGD: Boundary-enhanced segment anything in 3d gaussian via gaussian decomposition. In: arXiv, 2024. [5] Kerbl et al., 3d gaussian splatting for real-time radiance field rendering. In: ACM Transactions on Graphics, 42(4), 2023.