Doing the d3r integral 4(+,r) = Jdt S(+-+, -12-2,(+,)) e R=12-1,(+,) $\bar{A}(t,\vec{r}) = \int dt_0 S(t-t_0-1\vec{r}_1-\vec{r}_1(t_0)) = \vec{v}(t_0)$ Now we do the time integral, for each value of f, r only one time moment to = T will contribute $T = t - |\vec{r} - \vec{r}_*(r)| = retarded time$ Using $S(f(t)) = S(t_0-T)$ with $f(t_0) = t-t_0-1r-r_*(t_0)$ we howe $\frac{df}{dt_0} = -1 - \frac{1}{2} \frac{d}{dt_0} \left((\vec{r} - r_1(t_0))^2 \right)^{V_2} = -1 + \vec{n} \cdot \vec{V}(t_0)$ with $\vec{n} = \vec{r} - \vec{r}_*(t)$ 17- (+c) $|f'(\tau)| \qquad (1 - \overline{2} \cdot V(\tau))$

Problem · Show that and DT _ (-n:/c) at (1-n.1/c) 2r2 (1-n.V) Interpret <u>UT</u> physically by drawing a picture. - use implicit differentiation $1 - \overline{D} \cdot V_{*}(\tau)$ velocity So then we have an interpretation of 1 (1-ガッン) First note that this factor can be very large if the observation direction is parallel to \vec{v} and $\vec{v} = c$.

Fields of Lienard-Wiechert
Now We can compute the Electric Field
$E_{rad} = \tilde{n} \times \tilde{n} \times 1 \frac{\partial A_{rad}}{\partial t}$
c 94
So first we relate 2A/2t and 2A/2T:
$\frac{1}{C} \frac{\partial \hat{A}_{rad}}{\partial t} = \frac{1}{C} \frac{\partial A_{rad}}{\partial \tau} \frac{\partial T}{\partial t} = \frac{1}{C} \frac{\partial A_{rad}}{\partial \tau} \frac{1}{(1-n\cdot\dot{v})}$
Using:
$ \frac{\vec{A}_{rad}}{4\pi r} = \frac{\vec{v}(r)/c}{(1-\vec{n}\cdot\vec{v}/c)} $
$\frac{1}{c} \frac{\partial A_{rad}}{\partial T} = \frac{e}{4\pi rc^2} \left(\frac{\ddot{a}(T)}{(1-n\cdot v/c)} + \frac{\ddot{B}(n\cdot \ddot{a})}{(1-n\cdot v/c)^2} \right) $ use $\frac{a \times b \times c}{a \times b \times c} = \frac{e}{a \times b \times c}$
$= \underbrace{e} \int \left[\vec{a} + \vec{n} \times \vec{\beta} \times \vec{a} \right]^{b(ac) - (ab)c}$ $= \underbrace{e} \int \left[\vec{a} + \vec{n} \times \vec{\beta} \times \vec{a} \right]^{b(ac) - (ab)c}$
aleady transverse
Then nxnx 1 2Arad is (use nxnx (nxpxa)=-nxpxa)
$\vec{E}_{rad} = e \int \vec{n} \times (\vec{n} - \vec{\beta}) \times \vec{a}$
4TT r C2 (1-17. V/c)3

Radiated Power
dP(t) = dW = r ² S·ri this is what ds dt ds you want to know, if you dectector want to know if the
dectector will burn up.
One often wants to know how much energy was radiated away as the particle moved from A (labelled by (T, r(TA)) and B (labelled by (T, r(TB))). Then you want to know
$\frac{dP(T)}{dR} = \frac{dW}{dV} = \frac{dW}{dV} \frac{dV}{dV}$
Using $\frac{dT}{dt} = \frac{1}{(1-n\cdot\beta(t))}$ $S = (E^2 \vec{n})$
We have $dP(T) = r E ^2 (1 - n \cdot v(\tau)/c)$
$\frac{d\Omega}{d\Omega} = \frac{e^2 \left[\ln \times (n-\beta) \times \vec{\alpha}\right]^2}{\left[1-n \cdot \beta(\tau)\right]^5}$

Radiated Power à paralle1 to B
Then lets take the simplest case. A particle
moving relativistically but decelerating along the
motion:
Then $\vec{n} \cdot \vec{\beta} = \beta \cos \Theta$
B
$\frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} \frac{1}{n} = \frac{1}{n} $
So
$dP(T) = e^2 \alpha^2 \sin^2 \theta$
$\frac{dP(T) = e^2 \alpha^2 \sin^2 \theta}{d\Omega - 16\Pi^2 c^3 (1 - \beta \cos \theta)^5}$
1611 (1- 3 6030)
Comments:
1) For non-relativistic motion get the Larmour result
$\beta \ll 1$
$\frac{dP(T) = e^2 \alpha^2 \sin^2 \theta}{}$
d 52 16T ² C ³
(2) For $\beta \rightarrow 1$ and $\theta \rightarrow 0$ (1- $\beta \cos \theta$) gets
large and the radiation is peaked in the
direction of motion. For 822 this is plot
6 2 1 6 2 1 7 2 8
- 28 DI . (10
Polar Plat of dP

Radiated Power a 11 to p pg. 2
Take the limit B -> 4 , 0 small 8= 1 = 1
$(1-\beta^2)$ $2(1-\beta)$
$(1-\beta\cos\theta) \qquad (1-\beta)+\theta^2$
<u>.</u>
$\frac{2\delta^2}{2\delta^2} = \frac{2\delta^2}{2}$
$\perp \perp \Theta^2 \qquad (1+(Y\Theta)^2)$
282 2
So then with sing = 0
12 22 3 28 (202
$\frac{dP}{d\Omega} = \frac{2e^2}{\pi^2} \frac{\alpha^2}{c^3} \frac{\gamma^8}{(1+(\gamma\theta)^2)^5}$
$\frac{dQ}{dQ} = \frac{11}{11} \frac{C^2}{C^2} \left(\frac{1}{1} + (8\theta)^2 \right)^2$
So the picture is take & large ~ 100. Then
the radiation is peaked in
the forward direction 0~1
100
But only transverse currents
radiate. So in the direction
of motion of the particle
1/2 80 there is no radiation. This
is known as the dead-cone and
dead is characteristic of heavy quark
cone jets.
() collinear radiation
dead cone
with dead cone

Total Radiated Power a 11 to B
We can also compute the total power:
$d\Omega = 2\pi \sin\theta d\theta \simeq 2\pi \theta d\theta (\theta \ll 1)$
So $P = \int d\Omega dP = 2e^{2} a^{3} \gamma^{6} \int \gamma d\theta \gamma \theta \frac{(\gamma \theta)^{2}}{(1+(\gamma \theta)^{2})^{3}}$
Let $x = 80$ 2π
π^{8}
$P = 4e^{2} \frac{\alpha^{2}}{\pi} \frac{\chi^{6}}{c^{3}} \int_{0}^{\infty} \frac{1}{(1+\chi^{2})^{5}}$
$TT C3 \int (1+x^2)^5$
Now you can extend the upper limit off -> 0 (8 large
and find
2 2 2/
$P = e^2 2 \alpha_{,1}^2 \gamma^6$ $4\pi 3 c^3$
4T 5 C3
7
We will see that this is a special case of
a relativistic generalization of the Larmour
tormula. Mote that I put ay because
I have assumed that the acceleration is parallel
to the velocity. In general,

Analysis of Lienard-Wiechert Result An = d2 x = propper acceleration analyzed in homework In LRF of particle (LRF = local rest frame $\frac{A^{m} = \left(0\right)}{\left(\frac{1}{4}\right)^{m}} \frac{A^{m}A}{A} = \frac{2}{4} + \frac{2}{4}$ $\chi^3 \alpha_{\parallel} = \alpha_{\parallel}$ and $\chi^2 \alpha_{\parallel} = \alpha_{\parallel}$ See prf at end $A^{M}A = \frac{1}{3} \left[\frac{a^{2}}{3} + \frac{a^{2}}{3^{2}} \right]$ of lecture So

Total Power (Pure Thinking)
In retrospect could guess this result
Look at the emission in rest frame of
particle - Ah in rest frame
energy $\rightarrow \Delta E = e^2 2 \alpha^2 \Delta t$ enitted $4\pi 3c^2$
enitted 4TT 3C2
momentum > DP = 0 & Since radiation
enritted is emitted symmetricall and
transverse to beam
Dt = At
$\Delta x = 0$
Then under boost /At / 18 8B / OE
DE = 8 DE LUP / 8B & / LAP
Ut = 8 Dt
And
total = DE = invariant
power
$= \underline{e^2} \underline{2} \underline{A}^{m} \underline{A}_{m}$
4th 3c3 Lytrue is all

Linear vs. Circular Acclerators
In general since P==mum and A==dum/dt
dw e2 2 AmAn = e2 2 1 dpm dpm
$\frac{dW}{d\tau} = \frac{e^2}{4\pi} \frac{2}{3} \frac{A^m A_m}{4\pi} = \frac{e^2}{4\pi} \frac{2}{3} \frac{1}{m^2 c^3} \frac{d\rho^m d\rho_m}{d\tau}$
· Then for a linear accelerator where do/dt
is parallel to v
$\frac{d\vec{p} - \vec{v} d\vec{p}}{dt} = \frac{d\vec{p}^2 + m^2}{dt} / c = v d\vec{p} - \vec{v} \vec{v} d\vec{p}$
di dt di dt cdi
So
$\frac{dp^{m}dp_{m} = -\left(\frac{dp^{o}}{dt}\right)^{2} + \left(\frac{dp}{dt}\right)^{2} - \left(\frac{dp^{o}}{dt}\right)^{2}}{dt}$
at at (dt / (at) (dt)
So that the radiated energy graws with the
applied force squared
$\frac{\partial W}{\partial T} = \frac{e^2}{4\pi} \frac{2}{3} \frac{(d\vec{p})^2}{(dt)^2}$
TT 41 3 m23 (at)
and is independent of X

