МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ им. В. Г. ШУХОВА» (БГТУ им. В.Г. Шухова)

Кафедра программного обеспечения вычислительной техники и автоматизированных систем

Лабораторная работа №4

по дисциплине: Теория автоматов и формальных языков тема: «Регулярные языки и конечные распознаватели»

Выполнил: ст. группы ПВ-223 Дмитриев Андрей Александрович

Проверил: Рязанов Юрий Дмитриевич **Цель работы:** изучить основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.

Вариант 2:

Вариант 2
1. <i>S</i> → <i>S</i> ; <i>O</i>
2. <i>S</i> → <i>O</i>
 O→Y[S]
$4. O \rightarrow Y[S][S]$
5. <i>O</i> → <i>a</i> = <i>E</i>
6. <i>Y</i> → <i>a</i> = <i>a</i>
7. <i>Y</i> →a <a< td=""></a<>
8. <i>Y</i> →!(<i>Y</i>)
9. <i>E</i> →(<i>E</i> + <i>E</i>)
10. E→(E*E)
11. $E \rightarrow a$

Задание 1. Преобразовать исходную КС-грамматику в LL(1)-грамматику (см. варианты заданий).

- 1. $S \rightarrow S;O$
- 2. $S \rightarrow O$
- $3. O \rightarrow Y[S]$
- $4. O \rightarrow Y[S][S]$
- 5. O \rightarrow a=E
- 6. $Y \rightarrow a=a$
- 7. $Y \rightarrow a < a$
- $8. \; Y \rightarrow !(Y)$
- 9. $E \rightarrow (E + E)$
- 10. E \rightarrow (E*E)
- 11. $E \rightarrow a$

Правило 1 – леворекурсивное:

- 1_1 . $S \rightarrow OS'$
- $1_2. S' \rightarrow ;OS'$
- 1_3. S' $\rightarrow \epsilon$

Правила 3,4 и 9,10 – следует факторизовать:

- $3_1. O \rightarrow Y[S]O$
- $3_2. O \rightarrow [S]$
- 3_3. O' $\rightarrow \epsilon$
- 9_0 . E \rightarrow (EE)
- 9. E` \rightarrow +E)
- 10. E` \rightarrow *E)

Получим грамматику в LL(1):

```
1\_1. S \rightarrow OS'
```

$$1_2. S' \rightarrow ;OS'$$

1 3. S'
$$\rightarrow \epsilon$$

$$2. S \rightarrow O$$

$$3_1. O \rightarrow Y[S]O$$

$$3_2. O \rightarrow [S]$$

$$3_3.0' \rightarrow \epsilon$$

5. O
$$\rightarrow$$
 a=E

6.
$$Y \rightarrow a=a$$

7.
$$Y \rightarrow a < a$$

$$8. Y \rightarrow !(Y)$$

$$9_0$$
. E \rightarrow (EE)

9. E'
$$\rightarrow$$
 +E)

10. E'
$$\to$$
 *E)

11.
$$E \rightarrow a$$

Задание 2. Определить множества ПЕРВЫХ для каждого символа LL(1) грамматики.

Задание 3. Определить множества СЛЕДУЮЩИХ для каждого символа LL(1)-грамматики.

Задание 4. Определить множество ВЫБОРА для каждого правила LL(1) грамматики.

Задание 5. Написать программу-распознаватель методом рекурсивного спуска. Программа должна выводить последовательность номеров правил, применяемых при левом выводе обрабатываемой цепочки.

Задание 6. Сформировать наборы тестовых данных. Тестовые данные должны содержать цепочки, принадлежащие языку, заданному грамматикой, (допустимые цепочки) и цепочки, не принадлежащие языку. Для каждой допустимой цепочки построить дерево вывода и левый вывод. Каждое правило грамматики должно использоваться в выводах допустимых цепочек хотя бы один раз.

Задание 7. Обработать цепочки из набора тестовых данных (см. п.6) программой-распознавателем.

Задание 8. Построить нисходящий МП-распознаватель по LL(1)-грамматике.

Задание 9. Написать программу-распознаватель, реализующую построенный нисходящий МП-распознаватель. Программа должна выводить на каждом шаге номер применяемого правила и промежуточную цепочку левого вывода.

Задание 10. Обработать цепочки из набора тестовых данных (см. п.6) программой-распознавателем.

Вывод: в ходе работы изучены основные способы задания регулярных языков, способы построения, алгоритмы преобразования, анализа и реализации конечных распознавателей.