Classical Physics

Ikhan Choi

August 8, 2022

Contents

Ι	Mechanics	2
1	Newtonian mechanics 1.1 Laws of motion	3 3 3 3
2	Lagrangian mechanics2.1 Calculus of variations2.2 Rigid bodies	5 5
3	Hamiltonian mechanics	6
II		7
4	Fluid mechanics	8
5	Waves	9
6	Thermodynamics 6.1 Equilibrium	10 10 10
7	Kinetic theory	11
8		12
9		13
II]	Classical field theory	14
10	Relativity 10.1 Special relativity	15 15 15 15 15
11	Electromagnetism	16
12	Lagrangian field theory	17

Part I Mechanics

Newtonian mechanics

1.1 Laws of motion

- 1.1 (Galilean structure).
- 1.2 (Galilean group).
- 1.3 (Conservation laws).

1.2 Oscillation

- 1.4 (Harmonic oscillator).
- 1.5 (Damped oscillation).
- 1.6 (Pendulum).
- 1.7 (Lissajous curve).
- 1.8 (Coupled oscillation).

1.3 Central forces

- 1.9 (Polar coordinates).
- 1.10 (Effective potential).
- 1.11 (Kepler's problem).
- 1.12 (Rutherford scattering).

1.4 System of particles

- 1.13 (Closed systems).
- 1.14 (Collisions).
- 1.15 (Two-body problem).
- 1.16 (Three-body problem).

Exercises

method of similarity (scaling)

Lagrangian mechanics

2.1 Calculus of variations

- 2.1 (Euler-Lagrange equation).
- **2.2** (Closed system). $\frac{\partial \mathcal{L}}{\partial t} = 0$
- **2.3** (Definition of generalized momentum). $\frac{\partial \mathcal{L}}{\partial q} = 0$
- 2.4 (Equivalence to Newtonian mechanics).

2.2 Rigid bodies

- 2.5 (Inertia tensor).
- 2.6 (Eulerian angle).
- 2.7 (Lagrangian top).

Exercises

- 2.8 (Brachiostochrone).
- 2.9 (Geodesic on the sphere).
- 2.10 (Dido's isoperimetric problem).
- 2.11 (Pendulum with moving support). A rhenomic system
- 2.12 (Sliding beads on a rim).
- 2.13 (Double pulley system).

Hamiltonian mechanics

Exercises

Part II

Fluid mechanics

Waves

Thermodynamics

6.1 Equilibrium

Equation of states Maxwell's relations Thermal processes

6.2 Ensembles

ensembles microcanonical, canonical, grand canonical classical gas

Kinetic theory

ergodic hypothesis Boltzmann statistics Boltzmann equation BBGKY hierarchy stochastic processes linear response

Part III Classical field theory

Relativity

- 10.1 Special relativity
- 10.2 General relativity
- 10.3 Einstein field equation
- 10.4 Black holes

Electromagnetism

Lagrangian field theory