DATOS EXPERIMENTALES Y TRATAMIENTO DE DATOS

Las cantidades que realmente cogimos fueron:

воте	Masa bote (m_B) (g)	Masa con agua (m_{B+H_2O}) (g)	Masa agua (m'_{H_2O}) (g)	Masa total (m_T) (g)	Masa alcohol (m' _{OH}) (g)	Fracción molar agua
1	30,468	51,254	20,786	51,254	0,000	1,00000000
2	30,276	36,157	5,881	37,826	1,669	0,90011108
3	31,053	43,848	12,795	53,052	9,204	0,78046420
4	30,116	42,579	12,463	56,235	13,656	0,70005137
5	30,477	38,653	8,176	52,603	13,950	0,59981174
6	37,573	40,304	2,731	47,300	6,996	0,49957163
7	49,909	52,221	2,312	61,110	8,889	0,39945310
8	30,119	32,844	2,725	49,103	16,259	0,30001615
9	30,345	31,856	1,511	47,355	15,499	0,19956001
10	30,253	31,017	0,764	47,355	16,338	0,10681227
11	30,135	30,135	0,000	44,275	14,140	0,00000000

$$m'_{H_2O} = m_{B+H_2O} - m_B \Rightarrow s(m'_{H_2O}) = \sqrt{s^2(m_{B+H_2O}) + s^2(m'_{H_2O})} = \sqrt{\left(\frac{0.001}{\sqrt{12}}\right)^2 + \left(\frac{0.001}{\sqrt{12}}\right)^2} = \frac{0.001}{\sqrt{6}} \approx 4.1 \cdot 10^{-4} (g)$$

Que coincide también con la incertidumbre del alcohol

Pero tenemos que tener en cuenta que el alcohol no es alcohol puro, sino que es alcohol al 96% en volumen, así que las fracciones molares reales se obtienen mediante la siguiente expresión:

$$\chi_{H,O} = \frac{n_{H,O}}{n_{OH} + n_{H,O}} = \frac{\frac{m_{H,O}}{M_{H,O}}}{\frac{m_{H,O}}{M_{H,O}}} = \frac{\frac{V_{H,O} \cdot \rho_{H,O}}{M_{H,O}}}{\frac{V_{H,O} \cdot \rho_{H,O}}{M_{H,O}} + \frac{V_{OH} \cdot \rho_{OH}}{M_{OH}}} = \frac{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}}{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}} = \frac{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}}{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}} = \frac{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}}{\frac{(V'_{H,O} + 0.04 \cdot V'_{OH}) \cdot \rho_{H,O}}{M_{H,O}}} = \frac{1}{1 + \frac{M_{OH}}{M_{H,O}} \cdot \frac{m'_{OH}}{\rho'_{OH}} \cdot \rho_{OH}}} = \frac{1}{1 + \frac{M_{OH}}{M_{H,O}} \cdot \frac{m'_{H,O}}{\rho'_{OH}} \cdot \frac{m'_{H,O}}{\rho'_{OH}}}} = \frac{1}{1 + \frac{M_{OH}}{M_{H,O}} \cdot \frac{m'_{H,O}}{\rho'_{OH}}} = \frac{1}{1 +$$

Donde los elementos sin primar son los reales, mientras que los primados son suponiendo que el alcohol del bote es puro. También supusimos que la densidad del alcohol al 96 % en volumen es aproximadamente igual a la densidad del alcohol puro, ya que, como mediremos posteriormente

$$\rho_{OH} = 0.8032 \approx 0.789 (g/cm^3)$$

$$s(\chi_{H_{2O}}) = \sqrt{\left(\frac{\partial \chi_{H_{2O}}}{\partial m'_{H_{2O}}}\right)^{2} \cdot s^{2}(m'_{H_{2O}}) + \left(\frac{\partial \chi_{H_{2O}}}{\partial m'_{OH}}\right)^{2} \cdot s^{2}(m'_{OH})} = s(m'_{H_{2O}}) \cdot \sqrt{\left(\frac{\partial \chi_{H_{2O}}}{\partial m'_{H_{2O}}}\right)^{2} + \left(\frac{\partial \chi_{H_{2O}}}{\partial m'_{OH}}\right)^{2}}$$

$$m_{H_{2O}} = m'_{H_{2O}} + 0.04 \cdot m'_{OH} \Rightarrow s(m_{H_{2O}}) = \sqrt{s^{2}(m'_{H_{2O}}) + 0.96^{2} \cdot s^{2}(m'_{OH})} \approx 5.7 \cdot 10^{-4}(g)$$

$$m_{OH} = 0.96 \cdot m'_{OH} \Rightarrow s(m_{OH}) = 0.96 \cdot s_{OH} \approx 3.9 \cdot 10^{-4}(g)$$

ВОТЕ	/	Masa alcohol (m'_{OH}) (g)	Masa agua real (m_{H_2O}) (g)	Masa alcohol real (m_{OH})	Fracción molar agua real χ_{H_2O}	$s(\chi_{H_2O})$
1	20,786	0,000	20,786	0	1	0
2	5,881	1,669	5,96561	1,60224	0,90496	0,00022
3	12,795	9,204	13,26162	8,83584	0,793313	0,000086
4	12,463	13,656	13,15532	13,10976	0,719590	0,000085
5	8,176	13,950	8,88322	13,39200	0,62912	0,00012
6	2,731	6,996	3,08568	6,71616	0,54022	0,00035
7	2,312	8,889	2,76265	8,53344	0,45293	0,00038
8	2,725	16,259	3,54928	15,60864	0,36769	0,00027
9	1,511	15,499	2,29675	14,87904	0,28303	0,00036
10	0,764	16,338	1,59229	15,68448	0,20611	0,00042
11	0,000	14,140	0,71686	13,57440	0,11898	0,00060

La incertidumbre de la fracción molar del primer bote es lógico que de 0, ya que al meter sólo agua, sabemos que la fracción molar va a ser 1 exacto.

DENSIDAD FRENTE A TEMPERATURA PARA DIVERSAS FRACCIONES MOLARES

Densidades	de cada bote:	BOTE 1	BOTE 2	BOTE 3	BOTE 4	BOTE 5	BOTE 6
Temp (°C)	Temp (K)	Densidad (g/cm^3)	Densidad (g/cm ³)	Densidad (g/cm^3)	Densidad (g/cm³)	Densidad (g/cm^3)	Densidad (g/cm³)
34,0	307,15				0,9063		
33,0	306,15				0,9073		
32,0	305,15				0,9082		
31,2	304,35	*******			0,9088		
30,3	303,45		**********	0,9365	0,9095		
29,2	302,35	0,9952	0,9635	0,9374	0,9104		
29,0	302,15					0,8871	
28,6	301,75	0,9955		0,9376	0,9108	0,8881	
28,2	301,35	0,9957	0,9641	0,9379		0,8894	0,8674
27,8	300,95	0,9959	0,9643	0,9386	0,9114	0,8906	0,8678
27,3	300,45	0,9962	0,9646	0,9390	0,9118	0,8914	0,8685
26,6	299,75	0,9963	0,9650	0,9396	0,9122	0,8923	0,8692
26,3	299,45	0,9964	0,9651				
25,9	299,05	0,9965	0,9653	0,9400	0,9127	0,8932	0.8700
25,4	298,55	0,9966	0,9656	0,9403	0,9131	0,8936	0,8705
25,0	298,15	0,9967	0,9658	0,9406	0,9133	0,8940	0,8709