Training Neural Networks I

overview

- ▼ One time setup
 - ▼ activation functions, preprocessing, weight initialization, regularization, gradient checking
- ▼ Training dynamics
 - **▼** babysitting the learning process, parameter updates, hyperparameter optimization
- **▼** Evaluation
 - ▼ model ensembles

Activation Functions

- 1. Sigmoid
 - a. 3 problems
 - saturated neurons kill the gradients
 - sigmoid function is flat for too negative, too positive
 - · sigmoid outputs are not zero-centered
 - consider what happends when the input to a neuron x is always positive
 - the gradients on w always all positive or all negative
 - o this is also why you want zero-mean data
 - inefficient gradient update
 - · exp is a bit compute expensive
- 2. Tanh
 - a. zero centered
 - b. problems
 - still kills gradients when saturated

3. ReLU (rectified linear unit)

- a. does not saturate (in +region)
- b. very computationally efficient
- c. converges much faster than sigmoid/tanh in practice (e.g., 6x)
- d. actually more biologically plausible than sigmoid
- e. problems
 - not zero-centered output
 - an annoyance
 - what is the gradient when x<0?
 - do have saturation when x is negative
 - kill the gradient in half of the region (active relu, dead relu)
 - dead relu will never actiate → never update
 - happends through training (e.g., too big learning rate)

4. Leaky ReLU

- a. does not saturate
- b. computationally efficient
- c. convergew much faster than sigmoid/tanh in practice
- d. will not die
- 5. PReLU (parametric rectifier)
- 6. ELU (exponential linear units)
 - a. all benefits of relu
 - b. closer to zero mean outputs
 - c. negative saturation regime compared with leaky relu adds some robustness to noise
 - d. problem
 - computation requires exp

7. Maxout neuron

a. does not have the basic form of dot product → nonlinaerity

- b. generlizes relu and leaky relu
- c. linear regime
- d. does not saturate
- e. does not die
- f. problem
 - doubles the number of parameters/neuron

Data Preprocessing

- 1. Preprocess the data
 - a. zero center
 - b. normalize
 - i. 이미지는 별로 안함
 - c. decorrelate
 - d. whitening
- 2. Weight initilization
 - a. what happens when w=0 init is used?
 - all the neurons are doing the same operation
 - output the same thing with same gradient and update in the same way
 - all neurons are exactly the same
 - b. Small random numbers
 - i. gaussian with zero mean and 1e-2 standard deviation
 - ii. works okay for small networks but problems with deeper networks
 - standard deviation shrinks near the 0.
 - iii. all activations become zero
 - iv. think about the backward pass. what do the gradients look like
 - x is samll, weights are very small, not update
 - v. weights big, sample from 1 instead of 0.01

- vi. almost all neurons completely saturated, either -1 and 1
 - · gradients will be all zero

3. Xavier initialization

- a. reasonale initialization
 - i. mathematical derivation assumes linear activations
- b. variance input = variance output
- c. small umber of inputs divide small value → large weight
- d. many inputs smaller weights

4. batch normalization

- a. a batch of activations at some layer
- b. to make each dimension unit gaussian, apply a vanilla differentiabler function
- c. usually inserted arfter fully connected or convolutional layers and before nonlinearity
- d. per activation map one mean one ddeviation for conv
- e. problem
 - do we necessariliy want a unit gaussian input to a tanh layer
- f. normalize and then allow the network to squash therange if it wants to
- g. note the network an learn to recover the identity mapping
- h. property
 - improves gradient flow through the network
 - allows higher learning rates
 - reduces the strong dependence on initialization
 - acts as a form of regularization in a funny way, and slightly reduces the need for tdropout, maybe
- i. note: at test time batchnorm layer functions differently
 - the mean std are not computed based on the batch
 - instead a single fixed empirical mean of activations during training is used

e.g., can be estimated during training with running averages

Babysitting the Learning Process

- 1. Choose the architecture
 - a. say we start with one hidden lyaer of 50 neurons
 - b. double check that the loss is reasonable
 - c. lets try to train now
 - make sure that you can overfit very small portion of the training data
 - d. start with small regularization and find learning rate that makes the loss go down
 - loss not going down: learning rate too low
 - e. notice train/val accuracy goest to 20% though, what's up with that?
 - · remember this is softmax
 - loss exploding : learning rate too high
- 2. Hyperparameter optimization
 - a. cross-validation strategy
 - i. coarse → find cross-validation in stages
 - b. first: only a few epochs to get rough idea of what params work
 - c. second: longer running time, finer search
 - d. tip for detecting explosions in the solver: if the cost is ever > 3 * original cost, break out early
 - e. note it's best to optimize in log space
 - f. now run finer search
 - g. adjust range
 - h. random search vs grid search
 - i. hyperparameters to play with
 - · network architecture
 - learning rate, its decay schedule, update type

- regularization (I2/dropout strength)
- j. big gap \rightarrow overfitting \rightarrow increase regularization strength?
- k. no gap \rightarrow increase model capacity?
- I. track the ratio of weight updates / weight magnitudes