

Alae KHIDOUR 24203 avec:

Erwan DZIK 7606 Damien LE VASSEUR 18003

Génération de nombre aléatoire à partir d'un phénomène chaotique

Plan

I.Introduction

- II. Expérience : Mouvement Brownien
 - i. Définition
 - ii. Dispositif
 - iii. Extraction des données
 - iv. Vérification Mouvement Brownien
- III. Etude Statistique
 - i. Le test du χ^2 d'adéquation
 - ii. OPERM5 test, Birthday test, Minimum distance test
- IV. Conclusion

Introduction

- Nécessité de la génération de nombre aléatoires
- Des générateurs existants mais vulnérables
- Évaluation de cette vulnérabilité par des tests statistiques
- Génération à partir d'un phénomène chaotique
- Objectif: Lier phénomène chaotique et générateur pseudo-aléatoire
- Choix du phénomène chaotique : Mouvement Brownien

Robert Brown (1773-1858)

Problématique:

Dans quelle mesure un phénomène chaotique peut il être un bon générateur aléatoire?

L'Expérience : Mouvement Brownien Définition

- Le mouvement est irrégulier et imprévisible.
- La direction d'une particule change de façon erratique, et ce, quelque soit l'échelle d'observation.
- Le caractère erratique du mouvement est d'autant plus prononcé que la particule est petite.
- Le mouvement ne s'arrête jamais et est non borné.
- Déplacement moyen nul.

L'Expérience : Mouvement Brownien Dispositif

L'Expérience : Mouvement Brownien Dispositif

L'Expérience : Mouvement Brownien

Extraction des données

- Traitement de l'image puis extraction
- Quelques chiffres:
 - 55 min de vidéo
 - 175 610 frames dont 133 969 exploitables
 - 5 090 822 chiffres générés

Ci dessus le traitement de l'image.

Ci contre le parcours pour la recherche de la bille.

L'Expérience : Mouvement Brownien Extraction des données

X	Y
4. 417 173766058147266e-01	7. <mark>203</mark> 363107955825712e-01
2.464304590388567973e-01	7. <mark>535</mark> 745013213272694e-01
1. <mark>768</mark> 274799407165033e-01	7.972116318291000425e-01
2.189419778810706976e-01	9. <mark>200</mark> 192338515787993e-01

→417203464<mark>5357</mark>68972189**200**...

Etude statistique : Quelques propriétés

Répartition des chiffres quasi-uniforme (pour 5 090 822 chiffres généré)					
chiffre	0	1	2	3	4
	509226	502846 (9.878%)	503921 (9.899%)	508556	508721 (9.992%)
chiffre	5	6	7	8	9
	508582	513633 (10.089%)	514109 (10.098%)	510635 (10.031%)	510593 (10.029%)

L'Expérience : Mouvement Brownien Vérification du mouvement brownien

Distribution gaussienne du déplacement

L'Expérience : Mouvement Brownien Vérification du mouvement brownien

Relation D'Einstein (1905):

$$\overline{(\Delta x)^2} \propto \tau$$

Etude statistique: Le test du X² d'adéquation

- -Permet de vérifier l'adéquation d'une distribution empirique à une distribution théorique.
- -La valeur du X² est calculé ainsi:

$$\chi^2 = \sum_{i=1}^n \frac{(O_i - E_i)^2}{E_i}$$

Oi: Fréquences observées

Ei: Fréquences théoriques

Etude statistique: Le test du X d'adéquation

Principe du Test:

-Hypothèse nulle: "Les valeurs obtenues empiriquement suivent la loi donnée"

-On calcule la valeur du χ^2 et on note le degré k de liberté de l'expérience.

Etude statistique: Le test du X² d'adéquation

- On considère CV la valeur critique telle que l'aire sous la courbe vaut α (Usuellement α=0.01 ou α=0.05)
- -Pour chaque valeur de α et de k il existe des tables qui donnent la valeur de CV selon la loi du χ^2 .
- -Si χ^2 > CV, et si n est suffisamment grand, alors l'hypothèse nulle est à rejeter avec une probabilité d'erreur d'au plus α .

Test OPERM5

Principe du test:

- 1) 5 chiffres
- 2) Au plus 120 arrangements
- 3) Tableau occurrence des arrangements
- 4) La théorie prédit que les différents arrangements doivent être équitablement réparti et donc la probabilité d'apparition d'un des états doit suivre une loi uniforme de paramètre (1/nombre d'états).
- 5) Test du χ^2
- 6)Finalement nous répétons ce même procédé plusieurs fois pour différentes valeurs de départs et nous effectuons une moyenne des valeurs de χ^2 .

Test OPERM5

Test OPERM5 Courbe pour Python

Test OPERM5

Test OPERM5

- -Le degré k de liberté de l'expérience pour un nombre de départ composé de 5 chiffres différents deux à deux est 120-1=119.
- -La table du χ^2 donne CV= 157.80 pour α =0.01 et CV= 145.46 pour α =0.05
- -Test effectué pour 50 valeurs de départ différentes, la moyenne donne: 132.646
- -On en déduit que nos valeur passent le test puisque l'hypothèse nulle n'est pas rejetée par le test du χ^2 .

- 8000 points choisis aléatoirement dans un carré de 10000 par 10000
- d distance minimale
- On réitère 100 fois
- d² suit presque une loi exponentielle d'espérance 0.995
- Test du χ²

Nos valeurs Python

Occurrence de d²

d ²	0	1	2	3	4
Expérience	97	2	0	0	1
Python	31	47	18	0	4
Théorie	63.02	23.30	8.61	3.18	1.17

_,	100×	(k + 1 0,995e ^{0,995t} dt k

	Python	Notre générateur
X ²	60.543	49.613

Avec Degré de liberté = 4 et α = 0.01, on a CV = 13.28

Etude Statistique : Birthday test

- m anniversaires parmi n jours
- Tri des m anniversaires dans l'ordre croissant
- On note tous les espacements entre 2 anniversaires successifs
- On compte j le nombre d'espacements qui apparaissent plus d'une fois
- j suit asymptotiquement la loi de Poisson avec une espérance de m³ / 4n

Etude Statistique : Birthday test

Loi de poisson de paramètre :

 $\frac{m^3}{4n}$

n: nombre de jours

m : nombres de dates d'anniversaire

Etude Statistique : Birthday test Nos données soumisent au test

Conclusion

- Imaginer un dispositif plus grand avec un budget d'entreprise
- Le birthday test qui mets en lumière une des limites de ce générateur, c'est à dire la vitesse de génération des nombres
- Conclusion: Il peut être intéressant de voir ce générateur de comme un générateur de graines et non de nombres aléatoires.
- Les graines peuvent être du coup utilisées dans des générateurs numériques pseudo-aléatoires qui eux passent les testes et ont une vitesse de génération largement supérieur à notre dispositif