PODZIAŁ ZBIORU NA BLOKI

Podziałem zbioru n-elementowego X na k bloków nazywamy każdą rodzinę zbiorów,

$$\pi = \{ A_1, ..., A_k \}$$
,

dla której zachodzi

 $A_1 \cup ... \cup A_k = X$, $A_i \cap A_j = \emptyset$ dla $1 \le i < j \le k$ oraz $A_i \ne \emptyset$, $1 \le i \le k$

 $A_1,...,A_k$ - bloki podziału π

 $\Pi_k(X)$ - zbiór wszystkich podziałów zbioru X na k bloków

 $\Pi(X)$ - zbiór wszystkich podziałów zbioru X

$$\Pi(X) = \Pi_1(X) \cup ... \cup \Pi_n(X)$$

Przykład zbioru podziałów na zadaną liczbę bloków

$$X = \{ a, b, c, d \}$$

$$k = 3$$

 $\Pi_3(X)$:

$$\pi^1 = \{ \{a\}, \{b\}, \{c, d\} \}$$
 $\pi^2 = \{ \{a\}, \{b, c\}, \{d\} \}$

$$\pi^3 = \{ \{a, b\}, \{c\}, \{d\} \}$$

$$\pi^4 = \{ \{a, c\}, \{b\}, \{d\} \}$$

$$\pi^5 = \{ \{a\}, \{b, d\}, \{c\} \}$$
 $\pi^6 = \{ \{a, d\}, \{b\}, \{c\} \}$

Ile jest podziałów zbioru n-elementowego na k bloków?

Przykład c.d.

$$X = \{ a, b, c, d \},$$
 $|X| = 4,$ $k = 3$
 $\Pi_3(X) = \{ \pi^1, \pi^2, ..., \pi^6 \}$ $|\Pi_3(X)| = 6$

LICZBY STIRLINGA (drugiego rodzaju)

$$\begin{cases} n \\ k \end{cases} = |\Pi_k(X)|, \quad \text{dla} \ |X| = n$$

$$\begin{cases} n \\ k \end{cases} = 0, \quad \text{dla} \ k > n. \quad \text{Dodatkowo przyjmujemy, } \text{że} \quad \begin{cases} 0 \\ 0 \end{cases} = 1$$

Wyznaczanie liczb Stirlinga drugiego rodzaju:

Twierdzenie

$${n \brace k} = {n-1 \brace k-1} + k {n-1 \brack k}, \quad \text{dla } 0 < k < n$$

<u>Dowód</u>

Rozważmy zbiór wszystkich podziałów zbioru $X = \{1, 2, ..., n\}$ na k bloków. Dla dowolnego podziału $\pi \in \Pi_k(X)$ zachodzi jeden z dwóch rozłącznych przypadków:

- zawiera blok jednoelementowy $\{n\}$ albo
- *n* jest elementem bloku co najmniej dwuelementowego.

Liczba podziałów w $\Pi_k(X)$, dla których zachodzi przypadek pierwszy, jest równa liczbie podziałów zbioru n-1 elementowego na k-1 bloków, czyli wynosi $\binom{n-1}{k-1}$.

Liczba podziałów, dla których zachodzi przypadek drugi, jest równa $k \, {n-1 \brace k}$, ponieważ podziały te otrzymujemy z podziałów zbioru $\{1,2,...,n-1\}$ na k bloków poprzez dodawanie elementu n kolejno do każdego z bloków takiego podziału.

Oba przypadki są rozłączne, a zatem
$$|\Pi_k(X)| = {n-1 \brace k-1} + k {n-1 \brace k}.$$

Ile jest wszystkich podziałów zbioru n-elementowego?

$$B_n = |\Pi(X)|$$
 dla $|X| = n$; $B_n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix}$; B_n - **liczba Bella**

Tablica liczb Stirlinga drugiego rodzaju i liczb Bella:

	B_n		${n \brace k}$											
		k = 0	1	2	3	4	5	6	7	8	9	10		
n = 0	1	1	0	0	0	0	0	0	0	0	0	0		
1	1	0	1	0	0	0	0	0	0	0	0	0		
2	2	0	1	1	0	0	0	0	0	0	0	0		
3	5	0	1	3	1	0	0	0	0	0	0	0		
4	15	0	1	7	6	1	0	0	0	0	0	0		
5	52	0	1	15	25	10	1	0	0	0	0	0		
6	203	0	1	31	90	65	15	1	0	0	0	0		
7	877	0	1	63	301	350	140	21	1	0	0	0		
8	4140	0	1	127	966	1701	1050	266	28	1	0	0		
9	21147	0	1	255	3025	7770	6951	2646	462	36	1	0		
10	115975	0	1	511	9330	34105	42525	22827	5880	750	45	1		

GENEROWANIE PODZIAŁÓW ZBIORU

Jeśli mamy podział $\pi = \{A_1, ..., A_k\}$ na k bloków

dla zbioru $\{1, ..., n-1\},\$

to możemy utworzyć k+1 podziałów zbioru $X = \{1, ..., n\}$:

$$\{A_1 \cup \{n\}, A_2, ..., A_k\}$$

$$\{A_1, A_2 \cup \{n\}, \ldots, A_k\}$$

. . .

$$\{A_1, A_2, ..., A_k \cup \{n\}\}$$

$$\{A_1, A_2, \ldots, A_k, \{n\}\}$$

Przykład generowania podziałów zbioru {1, 2, 3}

Tożsamości dla liczb Stirlinga i Bella

dla
$$m, n \in \mathbb{N}$$
 zachodzi $m^n = \sum_{k=0}^n \begin{Bmatrix} n \\ k \end{Bmatrix} \cdot m^{\underline{k}} = \sum_{k=0}^n (-1)^{n-k} \cdot \begin{Bmatrix} n \\ k \end{Bmatrix} \cdot m^{\overline{k}}$

$$B_{n+1} = \sum_{i=0}^{n} \binom{n}{i} \cdot B_i$$

ZWIĄZEK PODZIAŁU ZBIORU NA BLOKI Z RELACJĄ RÓWNOWAŻNOŚCI

Każdemu podziałowi $\pi \in \Pi(X)$ można jednoznacznie przyporządkować relację równoważności $E(\pi)$ w zbiorze X, definiując ją jako

$$E(\pi) = \bigcup_{A \in \pi} A \times A$$

tzn. dwa elementy $x, y \in X$ są w relacji $E(\pi)$, czyli $(x, y) \in E(\pi)$, wtedy i tylko wtedy, gdy x i y należą do tego samego bloku podziału.

Przykład relacji definiowanej podziałem

$$X = \{ a, b, c, d, e \}, \qquad \pi^5 = \{ \{a\}, \{b, d\}, \{c, e\} \}$$

$$E(\pi^5) = \{ (a, a), (b, b), (b, d), (d, b), (d, d), (c, c), (c, e), (e, c), (e, e) \}$$

$$\{a\} \times \{a\} \qquad \{b, d\} \times \{b, d\} \qquad \{c, e\} \times \{c, e\}$$

tablica relacji:

	a	b	c	d	e
a	1				
b		1		1	
c			1		1
d		1		1	
e			1		1

	a	b	d	c	e
a	1				
b		1	1		
d		1	1		
c	•			1	1
e				1	1

Każdej relacji równoważności E w zbiorze X można jednoznacznie przyporządkować podział zbioru X na bloki, definiując go jako

$$X|E = \{ x|E : x \in X \},$$

gdzie pojedynczy blok $x|E=\{y\in X:xEy\}$ nazywany jest klasq abstrakcji elementu x

Przykład podziału zbioru na klasy abstrakcji

$$X=N$$
, $xEy \Leftrightarrow x+y$ jest liczbą parzystą podział $N \mid E = \{ \ 0 \mid E, \ 1 \mid E \}$ $0 \mid E = \{ \ y \in N : y \text{ jest parzysta } \}$, $1 \mid E = \{ \ y \in N : y \text{ jest nieparzysta } \}$

Przykład podziału zbioru na klasy abstrakcji

tablica relacji E na zbiorze $X = \{ a, b, c, d, e \}$:

	a	b	c	d	e
a	1		1		
b		1		1	1
c	1		1		
d		1		1	1
e		1		1	1

podział $X|E = \{ a|E, b|E \}$, gdzie $a|E = \{ a, c \}$, $b|E = \{ b, d, e \}$

Ile jest wszystkich relacji równoważności na zbiorze *n*-element.?

Twierdzenie

Liczba wszystkich relacji równoważności w zbiorze X, dla $\mid X \mid = n$, jest równa liczbie Bella B_n .

Dowód

Istnieje bijekcja pomiędzy zbiorem relacji równoważności na danym zbiorze a zbiorem wszystkich podziałów danego zbioru $\Pi(X)$.

ZLICZANIE SURJEKCJI

Ile jest funkcji ze zbioru X <u>na</u> zbiór Y?

$$| Sur(X, Y) | = ?$$

Przyjmijmy oznaczenie:

 $s_{n,m} = |\operatorname{Sur}(X, Y)|$ - liczba funkcji z X **na** Y, dla |X| = n, |Y| = m

• każdej funkcji $f \in Sur(X, Y)$ można przyporządkować podział zbioru X na m bloków, definiując go jako

$$N(f) = \{ f^{-1}(\{y\}) : y \in Y \}$$
 (tzw. jądro funkcji)

• każdemu podziałowi $\pi \in \Pi_k(X)$ odpowiada dokładnie m! funkcji $f \in \operatorname{Sur}(X, Y)$, dla których $N(f) = \pi$. Każda z tych surjekcji przyporządkowuje wzajemnie jednoznacznie blokom podziału π elementy zbioru Y

$$s_{n,m} = m! \cdot {n \brace m} = |\operatorname{Sur}(X, Y)|, \text{ dla } |X| = n, |Y| = m$$

Przykład

$$n = 4$$
, $m = 3$, $\Pi_3(X) \ni \pi = N(f) = \{ \{1\}, \{2, 3\}, \{4\} \}$

PODZIAŁ LICZBY

$$n, k \in \{1, 2, \dots\}$$

Na ile sposobów można zapisać liczbę n w postaci sumy k składników: $n=a_1+...+a_k$, gdzie $a_1 \ge a_2 \ge ... \ge a_k > 0$?

Każdy taki ciąg składników $a_1, ..., a_k$ nazywamy podziałem liczby n na k składników

P(n, k)

- liczba podziałów liczby n na k składników

 $P(n) = \sum_{k=1}^{n} P(n,k)$ - liczba wszystkich podziałów liczby n

Przyjmujemy dodatkowo, że

$$P(0, 0) = P(0) = 1$$

Przykład zbioru podziałów liczby 6

n = 6	6
	5 1
	4 2
	4 1 1
	3 3
	3 2 1
	3 1 1 1
	2 2 2
	2 2 1 1
	2 1 1 1 1
	1 1 1 1 1 1

P(6,1) = 1 P(6,2) = 3 P(6,3) = 3 P(6,4) = 2 P(6,5) = 1 P(6,6) = 1
P(6) = 11

Diagram Ferrersa

Dla podziału $n = a_1 + ... + a_k$ tworzymy diagram o k wierszach, który zawiera a_i punktów w i-tym wierszu

Przykład diagramu dla podziału liczby 10

$$10 = 5 + 3 + 2$$

• • • •

• • •

Podział sprzężony powstaje po tzw. transpozycji diagramu Ferrersa

Przykład podziałów sprzężonych

 $P^k(n)$ - liczba podziałów liczby n o największym składniku równym k

Twierdzenie

Liczba podziałów liczby n na k składników jest równa liczbie takich podziałów liczby n, w których największy składnik równy jest k: $P(n,k) = P^k(n) , \qquad \text{dla } k \leq n$

Dowód

Każdy podział liczby n na k składników po transpozycji wyznacza dokładnie jeden, sprzężony z nim, podział liczby n, w którym największy składnik równy jest k. Transpozycja tego podziału sprzężonego wskazuje jednoznacznie na wyjściowy podział. Zatem istnieje bijekcja pomiędzy tymi dwoma zbiorami podziałów.

Twierdzenie

Dla $n \ge k > 0$ zachodzi P(n, k) = P(n-1, k-1) + P(n-k, k)

Dowód

Rozważmy zbiór wszystkich podziałów liczby n na k składników. Podzielmy go na dwa rozłączne podzbiory:

- podziałów, które nie zawierają żadnego składnika równego 1
- podziałów, które zawierają co najmniej jeden składnik równy 1.

Każdemu podziałowi $a_1 + ... + a_k$ z pierwszego podzbioru można wzajemnie jednoznacznie przyporządkować podział

$$(a_1-1)+...+(a_k-1)=n-k$$
.

Zatem liczba podziałów w pierwszym podzbiorze wynosi P(n-k, k), bo tyle jest podziałów liczby n-k na k składników.

Każdemu podziałowi $a_1 + ... + a_{k-1} + 1$ z drugiego podzbioru można wzajemnie jednoznacznie przyporządkować podział

$$a_1 + \dots + a_{k-1} = n-1$$
.

Zatem liczba podziałów w drugim podzbiorze wynosi P(n-1, k-1), bo tyle jest podziałów liczby n-1 na k-1 składników.

Oba podzbiory są rozłączne, a zatem wszystkich podziałów liczby n na k składników jest P(n, k) = P(n-1, k-1) + P(n-k, k).

Tablica liczby podziałów liczby na składniki:

	P(n)	P(n, k)													
		k = 0	1	2	3	4	5	6	7	8	9	10	11	12	
n = 0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	0	1	0	0	0	0	0	0	0	0	0	0	0	
2	2	0	1	1	0	0	0	0	0	0	0	0	0	0	
3	3	0	1	1	1	0	0	0	0	0	0	0	0	0	
4	5	0	1	2	1	1	0	0	0	0	0	0	0	0	
5	7	0	1	2	2	1	1	0	0	0	0	0	0	0	
6	11	0	1	3	3	2	1	1	0	0	0	0	0	0	
7	15	0	1	3	4	3	2	1	1	0	0	0	0	0	
8	22	0	1	4	5	5	3	2	1	1	0	0	0	0	
9	30	0	1	4	7	6	5	3	2	1	1	0	0	0	
10	42	0	1	5	8	9	7	5	3	2	1	1	0	0	
11	56	0	1	5	10	11	10	7	5	3	2	1	1	0	
12	77	0	1	6	12	15	13	11	7	5	3	2	1	1	

Twierdzenie

Dla
$$n \ge k > 0$$
 zachodzi $P(n, k) = \sum_{i=0}^{k} P(n-k, i)$

Dowód

Rozbijmy zbiór wszystkich podziałów liczby n na k składników na k+1 bloków: $B_0, B_1, ..., B_k$, gdzie B_i (i=0,1,...,k) oznacza zbiór takich podziałów liczby n, które zawierają k-i składników równych 1. Każdemu podziałowi $a_1+a_2+...+a_i+1+...+1$ ze zbioru B_i , można wzajemnie jednoznacznie przyporządkować podział

$$(a_1-1)+(a_2-1)+...+(a_i-1)=n-k$$
.

Zatem liczba podziałów w zbiorze B_i wynosi P(n-k, i), bo tyle jest podziałów liczby n-k na i składników.

Sumując wszystkie P(n-k, i) po i=0, 1, ..., k dostajemy liczność zbioru wszystkich podziałów liczby n na k składników.

 $P_k(n)$ - liczba podziałów liczby n na składniki nie większe od k $(n=a_1+...+a_i \ i \ a_i \le k \ dla \ i=1,2,...,j)$

Twierdzenie

Dla
$$n \ge k > 0$$
 zachodzi $P_k(n) = \sum_{i=1}^k P(n,i)$

Dowód

Zauważmy, że $P_k(n) = \sum_{i=1}^k P^i(n)$, a wcześniej wykazano, że $P^i(n) = P(n, i)$.