

Fakultät für Elektrotechnik, Prof. Dr. Götzmann

Klausur SYT, WS17/18

- Die Bearbeitungszeit beträgt zwei Stunden. Es ist der vollständige Lösungsweg einzutragen, damit auch Teillösungen bewertet werden können.
- Mobiltelefone sind auszuschalten und auf den Tisch zu legen
- Zulässige Hilfsmittel:
 - Taschenrechner ohne Text- und Formelspeicherfunktion
 - Mathematische Formelsammlung (Bronstein oder Ähnliches)
 - Selbstgeschriebene Formelsammlung, 1 DIN A4-Seite, ohne Aufgaben und Lösungen
 - Offizielle Formelsammlung (wird mit der Klausur verteilt)

Name:	Studiengang:	Matr.Nr.:
PUNKTE:		Note:
Rechnen Sie bei allen Aufgaben stets gerundet auf $0.00344 => 0.00341$	zwei signifikante Nachkomm	astellen (Beispiel: 12,5456 => 12,55 bzw.

1. Aufg.:	Verständnisfragen/Multiple Choice Es ist immer nur eine Antwort zutreffend. Kreuzen Sie diese an!	
a)	Bei einem linearen System: O ist die Ausgangsgröße immer eine lineare Funktion O ist die Eingangsgröße immer eine lineare Funktion O überlagern sich die Wirkungen der Eingangsgrößen additiv O darf keine Totzeit enthalten sein	2
b)	Bei einem zeitinvarianten System: O enthält das System keine dynamischen Glieder O enthält das System keine nichtlinearen Glieder O ist der Ausgang immer konstant O enthält das System keine zeitabhängigen Parameter	2
c)	Bei einem stabilen LZI-System: O kommt der Ausgang immer zur Ruhe O geht die Übergangsfunktion auf Null O geht die Impulsantwort auf Null O treten keine Schwingungen auf	2
d)	Wie kann mit Hilfe von g(t) der Systemausgang v(t) prinzipiell nicht berechnet werden: O mit dem Faltungsintegral O mit $v(t) = g(t) \cdot u(t)$ O mit der Laplacetransformation O mit der Fouriertransformation	2
e)	Die Zustandsraumdarstellung: O verwendet Matrizen. O beruht auf Differentialgleichungen 2. Ordnung O ist nicht für Mehrgrößensysteme geeignet O arbeitet im Bildbereich der Laplace-Transformation	2

Matrikelnummer: Seite: 2 / 11

2. Aufg.:	: f(t) ↑		
	Gegeben ist die 2 nebenstehende		
	Zeitfunktion $f(t)$ 1 1 2 3 t		
a)	Bestimmen Sie $f(t)$!	3	
b)	Handelt es sich bei $f(t)$ um ein Leistungssignal? (Begründung erforderlich)!	2	
c)	Bestimmen Sie die Laplace-Transformierte $F(s) = L\{f(t)\}$!	3	
d)	Gegeben ist Laplace-Transformierte $M(s) = \frac{(1-e^{-s})s+e^{-s}}{s^2}$. Berechnen Sie die zugehörige kausale Zeitfunktion $m(t)$!	3	

Matrikelnummer: Seite: 3 / 11

Matrikelnummer: Seite: 4 / 11

3. Aufg.:	Gegeben ist die nebenstehende Schaltung:	17
a)	Bestimmen Sie die Übertragungsfunktion $G(s) = \frac{I(s)}{U(s)}!$	4
	Im Weiteren sei die Übertragungsfunktion $G(s) = \frac{s+3}{(s+2)(s+1)^2}!$	
b)	Ist das System mit dieser Übertragungsfunktion stabil (Begründung erforderlich)?	2
c)	Skizzieren Sie $h(t)$! (Anfangs- und Endwert, Einschwingzeit, Übergangsverhalten)!	4
d)	Die Eingangsgröße $u(t)$ zeigt nebenstehende Skizze. Berechnen Sie $U(s)!$	2
e)	Berechnen Sie den Ausgang $v(t)$ des Systems mit der Eingangsgröße aus d)	5

Matrikelnummer: Seite: 5 / 11

Matrikelnummer: Seite: 6 / 11

4. Aufg.:	Ein PWM-Signal der Periodendauer T hat eine Impulslänge a <t (s.="" skizze).<="" th=""><th>12</th></t>	12
a)	Berechnen Sie den komplexen Fourierkoeffizienten <u>C</u> ₀ in Abhängigkeit von a!	
b)	Berechnen Sie den allgemeinen Fourierkoeffizienten \underline{C}_k in Abhängigkeit von a!	
c)	Berechnen Sie die Fouriertransformierte der Grundperiode ($0 \le t \le T$) des PWM-Signals!	4
d)	d) Berechnen Sie die Fouriertransformierte des gesamten PWM-Signals!	

Matrikelnummer: Seite: 7 / 11

Matrikelnummer: Seite: 8 / 11

5. Auf	g.:	Ein diskretes System hat die Übertragungsfunktion $G(z) = \frac{z+0.5}{(z-0.8)(z-0.2)}$	10
	a)	Geben Sie die Differenzengleichung des Systems an!	2
	b)	Berechnen Sie allgemein die Übergangsfolge <i>h[k]</i> des Systems!	4
	c)	Berechnen Sie die ersten 4 Werte der Gewichtsfolge <i>g[k]</i> des Systems!	4

Matrikelnummer: Seite: 9 / 11

Matrikelnummer: Seite: 10 / 11

Zusatzblatt

Matrikelnummer: Seite: 11 / 11

Zusatzblatt