APPENDIX

PROOF OF THE THEOREMS

Theorem 1. $s^j(v_i^x, v_i^y) = 1$, if and only if $s_{Ie}^j(v_i^x, v_i^y) =$ $s_{Ia}^{j}(v_{j}^{x},v_{j}^{y})=1$ for every attribute a_{j} and when $\alpha\neq0$ and

Proof 1. We prove its necessity first. According to Equation (9), if $s_{Ie}^j(v_j^x, v_j^y) = s_{Ie}^j(v_j^x, v_j^y) = 1$, then $s^j(v_j^x, v_j^y) = 1$. We then prove its sufficiency by contradiction. Suppose $s^{j}(v_{j}^{x}, v_{j}^{y}) = 1$, then $s_{Ie}^{j}(v_{j}^{x}, v_{j}^{y}) = s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) = 1$ is false. Accordingly, the true cases may be one of following

1)
$$s_{Ie}^{j}(v_{j}^{x}, v_{j}^{y}) = 1, s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1:$$

 $s_{Ie}^{j}(v_{j}^{x}, v_{j}^{y}) = 1$
 $\Leftrightarrow \alpha + (1 - \alpha) \frac{1}{s_{Ia}^{j}} = 1$
 $\Leftrightarrow s_{Ie}^{j} = 1 \ (\alpha \in (0, 1))$

 $\Leftrightarrow s_{Ia}^j = 1 \; (\alpha \in (0,1)$ This result contradicts the assumption

$$s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1.$$
2)
$$s_{Ie}^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1, s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) = 1:$$
so,
$$s^{j}(v_{j}^{x}, v_{j}^{y}) = 1$$

$$\Leftrightarrow \alpha \frac{1}{s_{Ie}^{j}} + (1 - \alpha) = 1$$

$$\Leftrightarrow s_{Ie}^{j} = 1 \ (\alpha \in (0, 1))$$

 $\Leftrightarrow s_{Ie}^{j,R}=1 \ (\alpha \in (0,1))$ This result contradicts the assumption $s_{I_e}^j(v_i^x, v_i^y) \neq 1.$

3)
$$s_{Ie}^{Ie}(v_{j}^{j}, v_{j}^{j}) \neq 1$$
, $s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1$: $s^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1$, $s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y}) \neq 1$: $s^{j}(v_{j}^{x}, v_{j}^{y}) = 1$ $\Leftrightarrow \alpha \frac{1}{s_{Ie}^{j}} + (1 - \alpha) \frac{1}{s_{Ie}^{j}} = 1$ $\Leftrightarrow \alpha s_{Ia}^{j} + (1 - \alpha) \frac{1}{s_{Ie}^{j}} = s_{Ie}^{j} s_{Ia}^{j}$ $\Leftrightarrow \alpha (s_{Ia}^{j} - s_{Ie}^{j}) = s_{Ie}^{j} s_{Ia}^{j} - s_{Ie}^{j}$ $\Leftrightarrow \alpha = \frac{s_{Ie}^{j}(s_{Ia}^{j} - 1)}{(s_{Ia}^{j} - s_{Ie}^{j})} < 1$, becuse $\alpha < 1$ Since $s_{Ie}^{j} \in (0, 1]$ and $s_{Ia}^{j} \in (0, 1]$ $\Leftrightarrow s_{Ie}^{j} \in s_{Ie}^{j} - 1 < s_{Ie}^{j} > 1$
This result contradicts that $s_{Ie}^{j} \leq 1$. Hence, we conclude that $s_{Ie}^{j}(v_{j}^{x}, v_{j}^{y}) = 1$.

Theorem 3. The coupled metric attribute value similarity s^{j} satisfies the triangle inequality if both intra-attribute similarity s_{Ia}^{\jmath} and inter-attribute similarity s_{Ie}^{\jmath} satisfy the triangle inequality for every attribute a_i .

Proof 2. According to the conditions defined in Section 3, s_{Ia}^{\jmath} satisfying the triangle inequality means that

$$\frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{y})} + \frac{1}{s_{Ia}^{j}(v_{j}^{y},v_{j}^{z})} \ge 1 + \frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{z})},$$

 s_{Ie}^{\jmath} satisfying the triangle inequality means that

$$\frac{1}{s_{Ie}^{j}(v_{i}^{x},v_{i}^{y})} + \frac{1}{s_{Ie}^{j}(v_{i}^{y},v_{i}^{z})} \ge 1 + \frac{1}{s_{Ie}^{j}(v_{i}^{x},v_{i}^{z})}.$$

Hence, according to Equation (9)

$$\begin{split} &\frac{1}{s^{j}(v_{j}^{x},v_{j}^{y})} + \frac{1}{s^{j}(v_{j}^{y},v_{j}^{z})} \\ = &\alpha \frac{1}{s_{Ie}^{j}(v_{j}^{x},v_{j}^{y})} + (1-\alpha)\frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{y})} + \\ &\alpha \frac{1}{s_{Ie}^{j}(v_{j}^{y},v_{j}^{z})} + (1-\alpha)\frac{1}{s_{Ia}^{j}(v_{j}^{y},v_{j}^{z})} \\ \geq &\alpha (1 + \frac{1}{s_{Ie}^{j}(v_{j}^{x},v_{j}^{z})}) + (1-\alpha)(1 + \frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{z})}) \\ = &1 + \alpha \frac{1}{s_{Ie}^{j}(v_{j}^{x},v_{j}^{z})} + (1-\alpha)\frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{z})} \\ = &1 + \frac{1}{s^{j}(v_{i}^{x},v_{i}^{z})} \end{split}$$

Consequently, we conclude that the coupled metric attribute value similarity s^j satisfies the triangle inequality.

Theorem 4. The intra-attribute similarity s_{Ia}^{j} satisfies the triangle inequality for any attribute a_j .

Proof 3. We here prove that

$$\frac{1}{s_{Ia}^j(v_j^x,v_j^y)} + \frac{1}{s_{Ia}^j(v_j^y,v_j^z)} \geq 1 + \frac{1}{s_{Ia}^j(v_j^x,v_j^z)}$$

Considering the following cases:

1) $v_j^x=v_j^y$ or $v_j^y=v_j^z$, or $v_j^x=v_j^y=v_j^z$: According to Equation (3) and $s_{Ia}^j\in(0,1]$, the following holds:

$$\frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{y})} + \frac{1}{s_{Ia}^{j}(v_{j}^{y},v_{j}^{z})} \ge 1 + \frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{z})}$$

Hence, s_{Ia}^{j} satisfies the triangle inequality for this

2) $v_i^x \neq v_j^y$ and $v_j^y \neq v_j^z$:

$$\begin{aligned} &\frac{1}{s_{Ia}^{j}(v_{j}^{x}, v_{j}^{y})} + \frac{1}{s_{Ia}^{j}(v_{j}^{y}, v_{j}^{z})} - \frac{1}{s_{Ia}^{j}(v_{j}^{x}, v_{j}^{z})} - 1 \\ = &\frac{\log(xy) + \log x \cdot \log y}{\log x \cdot \log y} + \frac{\log(yz) + \log y \cdot \log z}{\log y \cdot \log z} - \\ &(\frac{\log(xz) + \log x \cdot \log z}{\log x \cdot \log z} + 1) \\ = &\frac{2}{\log x} \end{aligned}$$

Since $|I(v_j^y)| \ge 1$, $y = |I(v_j^y)| + 1 \ge 2$, accordingly $\frac{2}{\log y} \ge 0$ Therefore, we have

$$\frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{y})} + \frac{1}{s_{Ia}^{j}(v_{j}^{y},v_{j}^{z})} \ge 1 + \frac{1}{s_{Ia}^{j}(v_{j}^{x},v_{j}^{z})}$$

Consequently, we conclude that the intra-attribute similarity s_{Ia}^{j} satisfies the triangle inequality for any attribute

Theorem 5. The inter-attribute similarity s_{Ie}^{\jmath} satisfies the triangle inequality for any attribute a_j .

Proof 4. According to Equation (8), if $s_{Ie}^{k|j}$ satisfies the triangle inequality, then s_{Ie}^{j} satisfies it as well.

Considering the following cases:

1) $v_j^x=v_j^y$ or $v_j^y=v_j^z$, or $v_j^x=v_j^y=v_j^z$: According to Equation (7) and $s_{Ie}^{k[j]}\in(0,1]$, the following holds:

$$\frac{1}{s_{Ie}^j(v_j^x,v_j^y)} + \frac{1}{s_{Ie}^j(v_j^y,v_j^z)} \geq 1 + \frac{1}{s_{Ie}^j(v_j^x,v_j^z)}$$

2) $v_i^x \neq v_i^y$ and $v_i^y \neq v_i^z$:

$$\begin{split} s_{Ie}^{k|j}(v_j^x, v_j^y) &= \\ \frac{\sum_{i=1}^{|W_k|} \max(p_x^i, p_y^i)}{2 \cdot \sum_{i=1}^{|W_k|} \max(p_x^i, p_y^i) - \sum_{i=1}^{|W_k|} \min(p_x^i, p_y^i)} \end{split}$$

According to the distance-similarity mapping function (see Equation (6)), the distance is:

$$dist = 1 - \frac{\sum_{i=1}^{|W_k|} \min(p_x^i, p_y^i)}{\sum_{i=1}^{|W_k|} \max(p_x^i, p_y^i)}$$

Note that the above is the Jaccard distance. The Jaccard distance is a metric distance and satisfies the triangle inequality. Accordingly, we conclude that $s_{Ie}^{k|j}$ satisfies the triangle inequality.

Hence, s_{Ie}^{j} satisfies the triangle inequality.