Computer Arithmetics

732A90 Computational Statistics

Krzysztof Bartoszek (krzysztof.bartoszek@liu.se)

22 I 2019 (P42) Department of Computer and Information Science Linköping University

Computational Statistics — In brief

- Even simple data analysis (mean, variance) by hand is tedious
- Today: huge datasets, models capturing system complexity, interactions (between variables and observations)
- We will discuss:
 - Being careful with calculations—overflow

 - Beng carenii with calculations—overnow
 Generation of random variables including correlated ones
 Numerically optimizing functions, esp. maximum likelihood
 Computing confidence (credible) intervals for distributions
 when analytical ones are unobtainable

Lesson structure

- Lectures
- Computer Labs
- Seminars
- Examination: Reports, seminars, final exam
- Final exam: computer based
- Answer in English.
- Electronic reports as .PDF.
- Disclose ALL collaborations and sources.
- Provide source code (if used).
- E-mail contact: krzysztof.bartoszek@liu.se

Course materials, software

- Lecture slides
- 2016 lecture slides (732A38)
- Handouts, R code
- Various suggested www pages or articles
- Googling
- James E. Gentle "Computational Statistics", Springer, 2009
- Geof H. Givens, Jennifer A. Hoeting "Computational Statistics", Wiley, 2013
- R

Course contents

- Recad: R
- Recap: Basic Statistics
- Computer Arithmetics (JG pages 85–105)
- Optimization (JG pages 241–272, handouts)
- Random Number Generation (JG pages 305-312, 325-328, handouts)
- Monte Carlo Methods (JG pages 312-318, 328 417-429, handouts)
- Numerical Model Selection and Hypothesis Testing (JG pages 52-56, 424, 435-467, handouts)
- Expectation Maximization Algorithm and Stochastic Optimization (JG pages 275–284, 296–298, 480–483, handout)

Pages are recommended reading for each lecture, \mathbf{NOT} exact lecture content. The lectures will build up on this material.

Examination

Computer labs (need to be passed)

Presentation or opposition and attendance at seminars (see $732 A 90_Computational Statistics VT 2019_Course Information.pdf).$

Computer exam points

A: $[18, \infty)$, B: [16, 18), C: [14, 16), D: [12, 14), E: [10, 12), F: [0, 10)

Allowed aids for exam: printed books and own PDF document containing max 100 pages (see 732A90_ComputationalStatisticsVT2019_CourseInformation.pdf).

Computer Arithmetics

SHOULD YOU CARE?

For a detailed mathematical treatment see Ch. 4.2 in D. E. Knuth (1998). The Art of Computer Programming, Volume 2, Addison—Wesley

Computer Arithmetics: Examples

Computations can be affected by magnitudes of numbers

 $x < -0.5^10000; y < -0.4^10000; x/(x+y)+y/(x+y)$ x<-0.5^1000; y<-0.4^1000; x/(x|y)|y/(x|y) $x < -0.1^1000; y < -0.2^1000; x/(x+y)+y/(x+y)$

 $t < -rnorm(5, 10^18, 1); t[3] - t[4]; t[1] - t[2]$

x<-10^800; sd<-10^400; y<-x/sd; y

And your are doing estimation under a nice, fancy model . . .

Data presentation

- Computers store information in binary form 0 1 0 1 1 0 0 1
- 1Byte=8bits (typical counting unit)
- ullet 1Word=32 or 64bits (depending on architecture)
- 1KB=1024bytes ■ 1MB=1024KB
- and so on

QUESTION: Why binary form?

Character encoding

- ASCII (American Standard Code for Information

 - "standard" keyboard

 1–31 control characters, 0: NULL WHY?

 - Design influenced by contemporary (1960) hardware
 Extended ASCII: all 8 bits, 256 characters
- Unicode
 - 8, 16 or 32 bits encoding
 - "of more than 128,000 characters covering 135 modern and historic scripts, as well as multiple symbol sets" (Wikipedia)
- read.csv(), read.table() have fileEncoding argument

Fixed-point system (integers)

- We use the base-10 (decimal) system, e.g. $1234 = 1 \cdot 10^3 + 2 \cdot 10^2 + 3 \cdot 10^1 + 4 \cdot 10^0$
- ullet We could use base–m system for any m
- Computers: base-2 (binary) system
- Each integer represented as: $A = a_0 \cdot 2^0 + a_1 \cdot 2^1 + a_2 \cdot 2^2 + \dots$

EXERCISE: 5, 16, 17, 31, 32, 33, 255, 256 in binary QUESTION: What is the range of a byte, word, double word?

- Negative numbers

 - Leading bit: first bit 0 if positive, 1 if negative
 Twos-complement: sign bit 1, remaining bits to opposite value and then +1 e.g. 5 = 00000101, -5 = 11111011QUESTIONS 5 + (-5) = ?, try 12 and -12• Range: $[-2^{k-1}, 2^{k-1} - 1]$ on k bits WHY?

Arithmetic operations

R operations on binary

- \bullet Addition, multiplication: base–2 instead of base–10
- Subtraction: A B = A + (-B) (twos-complement)
- Division: tedious, rounded towards 0 as.integer(17/3)
- Overflow: adding two large numbers the sign bit can be treated as a high order bit and on some architectures results in a negative number

loating-point system (rational, "real")

- How can we represent fractions (rational numbers)?
- Sign
- Exponent (signed, read standards if interested)
- Mantissa or Significand
- on 64bits:

OII 041	ms:	
sign	Exponent	Mantissa
(1bit)	(11bits)	(52 bits)

$$\pm 0.d_1d_2\dots d_p\cdot b^e \qquad b=2, \ \ p=52$$

• Range: $\approx [-10^{300}, 10^{300}] \approx [-b^{e_{max}}, b^{e_{max}}]$

Floating-point system

- Rationals rounded towards the nearest computer float options (digits 22) #max possible [1] 0.100000000000000055511
- EXAMPLE: Assume base b=10 and mantissa has 5 digits p = 5: $1.2345 = +0.12345 \cdot 10^{1}$ $4.0000567 = +0.40000 \cdot 10^{1}$
- Problem remains whatever base (b) is chosen
- EXERCISE: Try to convert some numbers

Floating-point system

- Distribution of computer floats
- Dense from −1 to 1
- Density decreases
- same number of points for each exponent:

$$\dots$$
, $\cdot 10^{-3}$, $\cdot 10^{-2}$, $\cdot 10^{-1}$, $\cdot 10^{1}$, $\cdot 10^{2}$, $\cdot 10^{3}$, \dots

• What about integers?

 $5 = +0.50000 \cdot 10^{1}$

options (digits=22)

9007199254740992

9007199254740993

9007199254740994

Floating-point system, special "numbers"

- We do not discuss how the exponent is actually coded.
- Usually the maximum allowed number in the exponent is one unit less than possible.
- \pm Inf: exponent is $\exp_{max} + 1$, mantissa is 0
- \bullet NaN: exponent is $\exp_{\max}+1,$ mantissa is $\neq 0$
- 0 WHY?

Overflow: number larger than can be represented

```
10^{\hat{}}400/10^{\hat{}}400 = \text{NaN}

10^{\hat{}}-200/10^{\hat{}}200 = 0
10^-200*10^200 =
```

10^200*10^200 = Inf

Underflow: loss of significant digits

0*10^400 = $x<-10^300$; while (1) {x<-x+1}

Arithmetic operations

- Floats are rounded so usual mathematical laws do not hold - floating point arithmetic
- Examples

1/3+1/3 = 0.6666667options (digits 22) $\frac{1/3+1/3}{1/3+1/3} = 0.6666666666666666296592$ $\frac{10^{(-200)}/(10^{(-200)}+10^{(-200)})}{10^{(-200)}/(10^{(-200)}+20^{(-200)})} = 0.5$

- Software is designed to make operations as correct as possible
- Do we need to work with such extreme numbers?

Arithmetic operations

- $\bullet \ X+Y, \ X\cdot Y$ can display overflow, underflow
- $A \neq B$ but X + A = B + X
- \bullet A + X = X but $A + Y \neq Y$
- \bullet A + X = X but X X / A
- COMPARING FLOATS IS TRICKY!

options (digits=22) x<-sqrt(2)

[1] 2.000000000000000444089

(x*x) = =2

[1] FALSE

isTRUE(all.equal(x*x,2))

[1] TRUE

Summation

Underflow problems can occur with any summation (x<-x+1)

```
{\bf options}\,(\;{\rm digits}\,{=}\,22)
x < -1:1000000; sum(1/x); sum(1/rev(x))
[1] 14.39272672286572252176
      14.39272672286572429812\\
```

• WHICH ONE IS CORRECT?

The exponential

 $\overline{\text{TRUE}})\;)\;\}$

[1] 0

fTaylor (20,100)

 $\exp(-20)$ //problem

fTaylor (-20,200)

options(digits=22)

 $\exp(20)$ #fine [1] 485165195.4097902774811

[1] 485165195.4097902774811

[1] 2.061153622438557869942e-09 fTaylor (-20,100)

 $[1] \quad -3.853877217352419393137e{-10}$

-3.853877217352419393137e - 10

fTaylor (20,100)-exp(20)

• WHICH ONE IS MORE ACCURATE?

Potential solutions

Solution A:

- ${\color{red} \bullet}$ Sort the numbers ascending CAN BE EXPENSIVE
- Sum in this order

Solution B:

- \bullet Sum numbers pairwise, from n obtain n/2 numbers
- HOW TO CHOOSE PAIRS? Continue until 1 number left

More on summing

Example • Computing exponent using Taylor series

$$e^x = 1 + x + x^2/2 + x^3/6 + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

 $fTaylor < -function(x,N)\{1+sum(sapply(1:N,$

function(i,x) $\{x^i/prod(1:i)\}$,x x, simplify

More on summing

Example

• Computing exponent using Taylor series

$$e^x - 1 + x + x^2/2 + x^3/6 + \dots = \sum_{i=0}^{\infty} \frac{x^i}{i!}$$

- WHY?
- Varying sign of terms
- CANCELLATION adding two numbers of almost equal magnitude but of opposite sign
- Effects of cancellations accumulate
- SOLUTION: Different algorithm . . .

Can you explain why?

 $\#\#\ Example\ due\ to\ Thomas\ Ericsson\ in\ his$

x < -seq (from = 0.995, to = 1.005, by = 0.0001)y1<-f1(x); y2<-f2(x)

plot(x,y1,pch 19,cex 0.5,ylim c(-5*10^(-15),20 *10^(-15)),main="Two_ways_to_calculate_(x -1)^6",xlab="x",ylab="y") ${\bf points}\,(x\,,y2\,,pch\!=\!18,cex\!=\!0.8)$

• Many problems (in Statistics, Numerical methods, e.t.c) can be reduced to solving

$$\mathbf{A}\vec{x}=\vec{b}$$

 \mathbf{A} (design) matrix \vec{x} vector of unknowns \vec{b} vector of scalars (data)

• Algorithm should be numerically stable

(small changes in \mathbf{A} or \vec{b} imply in small changes in \vec{x})

Example: Linear regression models

Minimize

$$RSS(\beta_0, \beta_1, \dots, \beta_m) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_m x_{im})^2$$

The system of equations

$$\frac{\partial RSS}{\beta_0} = \frac{\partial RSS}{\beta_1} = \dots \frac{\partial RSS}{\beta_m} = 0$$

can be written as

$$\mathbf{X}^T \mathbf{X} \vec{\beta} = \mathbf{X} \vec{y}$$

where

$$\mathbf{X} = \begin{bmatrix} 1 & x_{11} & \dots & x_{1m} \\ 1 & x_{21} & \dots & x_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{nm} \end{bmatrix}$$

Solving a linear system

- ullet $\mathbf{A}\vec{x} = \vec{b}$ needs a stable numerical solution
- Computer arithmetics
- \bullet Stable: small perturbation in $\vec{b},$ small perturbations in \vec{x}
- $\begin{aligned} &\| \vec{b} \| = \| \vec{\mathbf{A}} \vec{\mathbf{x}} \| \leq \| \mathbf{A} \| \| \vec{x} \| \text{ implies } \| \vec{x} \|^{-1} \leq \| \mathbf{A} \| \| \vec{b} \|^{-1} \\ &\| \vec{\delta} \vec{\mathbf{x}} \| = \| \mathbf{A}^{-1} (\delta \vec{b}) \| \leq \| \mathbf{A}^{-1} \| \| \delta \vec{b} \| \end{aligned}$ together

$$\frac{\|\delta \vec{x}\|}{\|\vec{x}\|} \le \|\mathbf{A}^{-1}\| \|\mathbf{A}\| \frac{\|\delta \vec{b}\|}{\|\vec{b}\|}$$

Solving a linear system

Condition number of a matrix

$$\kappa(\mathbf{A}) = \|\mathbf{A}^{-1}\| \|\mathbf{A}\|$$

- \bullet Large $\kappa(\mathbf{A})$ is a bad sign, but does not imply ill-conditioning
- \bullet L_2 norm: $\kappa(\mathbf{A})$ is the ratio of the maximum and minimum eigenvalues of \mathbf{A}
- \bullet Under L_2 norm

$$\kappa(\mathbf{A}^T\mathbf{A}) \ge \kappa(\mathbf{A})^2 \ge \kappa(\mathbf{A})$$

 $({\rm regression\ setting})$

Dealing with ill-conditioning

- Rescale the variables (columns)
- Use a different algorithm for solving e.g. QR, Cholesky, SVD

 ${\bf Cholesky:} \ {\bf A} \ {\bf symmetric-positive-definite}$ $\mathbf{A}\vec{x} = \vec{b}$ is equivalent to $\mathbf{L}\mathbf{L}^T\vec{x} = \vec{b}$ WHY?

- $\ \, \textbf{Solve} \,\, \mathbf{L} \vec{y} = \vec{b}$
- 3 Solve $\mathbf{L}^T \vec{x} = \vec{y}$

Summary

- Computations can behave "differently" at different numerical ranges.
- Floating point system.
- Computer arithmetics is not the same as "usual" arithmetic.
- Summing series, solving linear systems (inversion?)