MÉTODOS NUMÉRICOS I TRABALHO I

EQUIPE:

CÍCERO CAVALCANTE LEANDRO MONTEIRO MURILO LIMA PAULO SÉRGIO RAFAEL DE LIMA

IMPLEMENTAÇÃO DO MÉTODO DE NEWTON - RAPHSON PARA CÁLCULO DE DESLOCAMENTO DE PARTÍCULAS - TEMA 1

SUMÁRIO

- Motivação
 - Problema
 - Método
- Metodologia
 - Análise
 - Modelagem
 - Implementação
- Estudo de Caso
- Conclusão

MOTIVAÇÃO

Problema

Em um sistema de partículas, o deslocamento de uma determinada partícula P é dado pela raiz da equação

$$f(d) = p0ed - 4d2$$

, onde p0 é um deslocamento (perturbação) inicial na posição da estática da partícula. O sistema calcula esse deslocamento d de uma partícula através do **método de Newton-Raphson**, em sua versão original, e também de uma forma modificada onde a função de iteração $\phi(d)$ é dada por $\phi(d) = d - (f(d)/f'(d0))$ onde f'(d0) é a derivada de da função f(d) avaliada em d, d0 é uma aproximação inicial e onde $f'(d0) \neq 0$. Desenvolva um sistema para calcular deslocamentos de partículas.

MOTIVAÇÃO

Método

Newton-Raphson Original

$$X_k = X_{k-1} - (f(X_{k-1})/f'(X_{k-1}))$$

Newton-Raphson Modificado

$$X_k = X_{k-1} - (f(X_{k-1})/f'(X_0))$$

METODOLOGIA

- Análise
 - Definição das classes
 - Padrão Behavioral Strategy
 - Atributos e funções

METODOLOGIA -> ANÁLISE

- Definição das classes
 - problema
 - newtonraphson
 - original
 - modificado

METODOLOGIA -> ANÁLISE

Padrão Behavioral Strategy

METODOLOGIA -> ANÁLISE

- Atributos e funções
 - número de partículas
 - precisão
 - perturbação inicial
 - intervalo (convergência)
 - aproximação inicial
 - critérios de parada
 - deslocamento
 - quadros comparativo e resposta

METODOLOGIA

Modelagem

METODOLOGIA

- Implementação
 - Classe newtonraphson
 - double* isolamento();
 - double getfx(double x);
 - double getdfx(double x);
 - virtual double* newton() = 0;
 - Classes modificado e original
 - double* newton();

METODOLOGIA -> IMPLEMENTAÇÃO

- Implementação
 - Classe problema
 - int simulacao();
 - void interface();
 - void comparativo();
 - void resposta();
 - Int Main()
 - Instancia problema;
 - simula o problema;

<u>A</u> rquivo	<u>E</u> ditar	<u>∨</u> er	Te <u>r</u> minal	Aba <u>s</u>	Aj <u>u</u> da	
			TR	ABALH() I DE	MÉTODOS NUMÉRICOS
Digite	o núme	ro de	e partícu	las: 3	3	
Digite	a prec	isão	0.0001]		

Figura1: dados iniciais

```
Arquivo Editar Ver Terminal Abas Ajuda

TRABALHO I DE MÉTODOS NUMÉRICOS

Número de partículas: 3 Precisão: 0.0001

Digite o deslocamento inicial da partícula P0: 0.01

Digite o deslocamento inicial da partícula P1: 0.5

Digite o deslocamento inicial da partícula P2: 150
```

Figura2: deslocamentos

<u>Arquivo Editar Ver Terminal Abas Aju</u> da												
TRABALHO I DE MÉTODOS NUMÉRICOS												
Número de partículas: 3 Precisão: 0.0001												
Escolha uma dentre as alternativas abaixo:												
1-Imprimir Quadro Comparativo 2-Imprimir Quadro Resposta 3-Reiniciar o programa 0-Sair												
Sua escolha: 1												

Figura3: opções

<u>A</u> rqı	uivo <u>E</u> dit	ar <u>∨</u> er Te <u>r</u> minal	Aba <u>s</u> Aj <u>u</u> da										
	QUADRO COMPARATIVO												
	Método Newton-Raphson ORIGINAL												
n	P0	[a, b] x0o	do	Ko	fxo	xk - x(k-1)							
0 1 2	0.01 0.5 150	[0 , 1] 0.5 [0 , 1] 0.5 [-4, -2] -3	0.051299318 0.44071138 -2.1207764	5 2 3	0.00006375727 0.00005660936 0.00000006106	0.00015894097 0.00002059321 0.00000000175							
	Método Newton-Raphson MODIFICADO												
n	P0	[a, b] x0m	dm	Km	fxm	xk - x(k-1)							
0 1 2	0.01 0.5 150	[0 , 1] 0.5 [0 , 1] 0.5 [-4, -2] -3	0.05216053 0.44072068 -2.1207721	40 3 4	0.00038698719 0.00019020017 0.00135567150	0.00009714722 0.00005989350 0.00004308087							
Pres	Pressione ENTER para voltar ao menu anterior												

Figura4: quadro comparativo

```
Arquivo Editar Ver Terminal Abas Ajuda
                             QUADRO RESPOSTA
       |P0
                  ldo
                                     dm
                                                        | |(do-dm)|
n
       0.01
                  |0.05129931800753 |0.05216052991242 |0.00086121190489379
0
       0.5
                  0.44071138285934 | 0.44072067677863 | 0.00000929391929094
       150
                  |-2.12077641897397 |-2.12077211945307 |0.00000429952089664
2
Pressione ENTER para voltar ao menu anterior...
```

Figura5: quadro resposta

CONCLUSÃO

- Conclusão
 - Original X Modificado
 - convergência
 - simplicidade
 - rapidez