Суперкомпиляция как основа для построения алгоритмов решения уравнений в словах

А. Н. Непейвода Институт Программных систем им. А.К. Айламазяна РАН

IV совместное рабочее совещание по функциональному языку Рефал 8 июня 2021

Постановка задачи

Дана система уравнений в словах $\mathcal{E}qs$. Существует ли последовательность подстановок σ , порождающая решение $\mathcal{E}qs$?

Уравнения в словах

Определение

Даны алфавит констант Σ и переменных \mathcal{V} . Уравнение в словах — выражение $\Phi=\Psi$, где $\Phi,\Psi\in\{\Sigma\cup\mathcal{V}\}^*$. Решение уравнения в словах — подстановка $\sigma:\mathcal{V}\to\Sigma^*$ такая, что $\Phi\sigma$ буквально совпадает с $\Psi\sigma$.

 $\mathsf{E} = \mathsf{x} \mathsf{A} \mathsf{B} = \mathsf{B} \mathsf{A} \mathsf{x}$, где $\mathsf{A}, \mathsf{B} \in \mathsf{\Sigma}, \, \mathsf{x} \in \mathcal{V}$. Рассмотрим $\sigma_1 : \mathsf{x} \to \mathsf{B} \mathsf{x}$, $\sigma_2 : \mathsf{x} \to \varepsilon$. Тогда $\sigma_2 \circ \sigma_1 : \mathsf{x} \to \mathsf{B}$ — решение $\mathsf{E} \colon (\mathsf{x} \mathsf{A} \mathsf{B}) \sigma_1 \sigma_2 = \mathsf{B} \mathsf{A} \mathsf{B} = (\mathsf{B} \mathsf{A} \mathsf{x}) \sigma_1 \sigma_2$.

Краткая история

Теория:

- Решение квадратичных уравнений (xAy = yAx) и уравнений от одной переменной (Матиясевич, 1965)
- Решение уравнений от трех переменных (Хмелевский, 1971)
- Алгоритм решения уравнений в общем случае (Маканин, 1977)
- Более быстрые (но также гиперэкспоненциальные) алгоритмы (Plandowski, 2006, Jez, 2016)

Краткая история

Практика:

- эффективные алгоритмы решения линейных (xxx = yAz) уравнений (Rümmer et al., 2014-...)
- алгоритмы решения квадратичных уравнений (Le et al., Lin et al., 2018)
- алгоритмы решения уравнений с ограниченной длиной решений (Bjørner, 2009-..., Day, 2019)

Язык уравнений в словах

Определение

Множество закодированных уравнений:

```
Eqs ::= Eq Eqs | \varepsilon
Eq ::= (Side, Side)
Side ::= Char Side | Var Side | \varepsilon
```

 $Var \in \mathcal{V}$, $Char \in \Sigma$, ε — пустое слово.

Синтаксический сахар: (LHS, RHS) \longrightarrow LHS = RHS; (LHS₁, RHS₁)... (LHS_n, RHS_n) \longrightarrow \langle LHS_i = RHS_i $\rangle_{i=1}^{n}$.

Простой логический язык $\mathscr L$

Определение

Определим последовательность сужений Narrs.

Narrs ::= (Narr) Narrs | ε

 $\mathsf{Narr} ::= \mathsf{Var} \to \mathsf{Char} \; \mathsf{Var}' | \mathsf{Var} \to \mathsf{Var}_1 \mathsf{Var}' | \mathsf{Var} \to \varepsilon \mathsf{Var}_1 \mathsf{Var} \to \varepsilon \mathsf{Va$

Var, $Var_1 \in \mathcal{V}$, $Char \in \Sigma$, $Var \neq Var_1$.

Любая последовательность из Narrs определяет подстановку $\sigma: \mathcal{V} \to (\mathcal{V} \cup \Sigma)^*$. Пусть $\mathbf{x} \in \mathcal{V}$, тогда σ — это $\mathbf{x} \to \Phi$ или $\mathbf{x} \to \Phi \mathbf{x}$, где Φ не содержит \mathbf{x} .

Множество последовательностей из Narrs рассматриваем как простой логический язык $\mathscr L$ над Eqs.

Простой логический язык $\mathscr L$

Определение

Определим последовательность сужений Narrs.

Narrs ::= (Narr) Narrs |
$$\epsilon$$

$$\mathsf{Narr} ::= \mathsf{Var} \to \mathsf{Char} \; \mathsf{Var} \mathsf{Var} \to \mathsf{Var}_1 \mathsf{Var} \to \epsilon \mathsf{Var}_1 \mathsf{Var} \to$$

Совместимость сужений с $\langle \Phi_1 = \Psi_1, \ldots, \Phi_n = \Psi_n \rangle$:

Множество последовательностей из Narrs рассматриваем как простой логический язык $\mathscr L$ над Eqs.

${\sf Cemahtuka}\ \mathscr{L}$

Интерпретатор \mathscr{L} WI $_{\mathscr{L}}$ принимает последовательность $(\sigma_1)(\sigma_2)...(\sigma_n)$ и систему $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$.

Вызов $Wl_{\mathscr{L}}((\sigma_1)(\sigma_2)...(\sigma_n)$, $\langle \Phi_i = \Psi_i \rangle_{i=1}^m$) возвращает T, если $\forall i, \ 1 \leqslant i \leqslant m \ (\Phi_i \sigma_1...\sigma_n = \Psi_i \sigma_1...\sigma_n)$, и F иначе.

Свойства интерпретатора $WI_{\mathscr{L}}$:

- совершает не больше n шагов (всегда завершается);
- ullet для всех $\langle \Phi_{\mathfrak{i}} = \Psi_{\mathfrak{i}}
 angle_{\mathfrak{i}=1}^{\mathfrak{m}}$ возвращает либо T, либо F.

Суперкомпиляция интерпретаторов языка $\mathscr L$

В вызове $WI_{\mathscr{L}}(P, \langle \Phi_i = \Psi_i \rangle_{i=1}^n)$ заменяем последовательность P на параметр \mathcal{P} .

Получаем следующую задачу суперкомпиляции:

$$\mathsf{WI}_{\mathscr{L}}(\mathfrak{P}, \langle \Phi_{\mathfrak{i}} = \Psi_{\mathfrak{i}} \rangle_{\mathfrak{i}=1}^{\mathfrak{n}})$$

Ее развертка порождает дерево (возможно, бесконечное): описание путей вычисления всех возможных \mathscr{L} -программ на $\langle \Phi_i = \Psi_i \rangle_{i=1}^n$.

Задача верификации

Пусть дана система уравнений $\mathcal{E}qs$. Скажем, что ее верификация успешна, если $\mathcal{E}qs$ если остаточная программа, порожденная суперкомпиляцией $\mathrm{WI}_{\mathscr{L}}(\mathcal{P},\mathcal{E}qs)$, содержит функцию, возвращающую T , лишь в том случае, если $\mathcal{E}qs$ имеет решения.

Суперкомпиляция может уходить в бесконечную развертку для некоторых $\mathcal{E}qs$.

р пробегает Narrs, Name — имя функции.

Синтаксис остаточных программ

```
Определение

Program ::= Rule; Program | \varepsilon

Rule ::= Name(Pattern) = Expression

Pattern ::= (Narr) | (Narr) ++ Pattern | p | \varepsilon

Expression ::= T | F | Name(p)
```

Все функции — от одного аргумента. В левых и правых частях определений — максимум по одному вхождению переменной р.

Пример

Для уравнения Ax = xA суперкомпилятор порождает следующую программу со входной точкой F(p).

```
F(('x \rightarrow \varepsilon')) = T
F(('x \rightarrow Ax') + p) = F(p)
F(p) = F
```

Для уравнения Ax = xB остаточная программа будет такой: (входная точка — G(p)).

```
G(('x \rightarrow \varepsilon')) = F
G(('x \rightarrow Ax') + p) = G(p)
G(p) = F
```

Общая структура интерпретаторов

- Smpl получает на вход статические данные (систему уравнений) и не меняет их семантику.
- Smpl всегда завершается.

Базовый интерпретатор WIBase g

Структура функции Smpl

Удалить общий префикс ightharpoonup Удалить общий суффикс

Эту операцию далее называем нормированием.

Входной формат

```
p — последовательности правил; \mathcal{E}qs — (системы) уравнений. Go(p,\mathcal{E}qs) = Main(p,Smpl(\varepsilon,\mathcal{E}qs));
```

• Суперкомпиляция задачи WIBase $_{\mathscr{L}}(\mathfrak{P}, \Phi = \Psi)$ успешно решает все квадратичные уравнения $\Phi = \Psi$.

14 / 27

Интерпретатор с расщеплением $WISplit_{\mathscr{L}}$

Структура функции Smpl

Нормировать — Расщепить слева — Нормировать

Входной формат

$$Go(p, \mathcal{E}qs) = Main(p, Smpl(0, \varepsilon, \mathcal{E}qs));$$

- Первый аргумент Smpl добавлен для сохранения оптимальности (см. ниже).
- Суперкомпиляция задачи WISplit $_{\mathscr{L}}(\mathfrak{P},\langle \Phi=\Psi\rangle)$ решает регулярно-упорядоченные уравнения $\Phi=\Psi$.

Интерпретатор с подсчетом WICount

Ищет противоречия путем сравнения мультимножеств термов с левой и правой стороны уравнения.

Входной формат

$$Go(p, \mathcal{E}qs) = Main(p, Smpl(0, \varepsilon, \mathcal{E}qs));$$

• Суперкомпиляция WICount $_{\mathscr{L}}(\mathfrak{P},\langle\Phi=\Psi\rangle)$ решает все уравнения $\Phi=\Psi$ от одной переменной.

Рекламная пауза

Классы уравнений, которые в общем не решаются CVC4 и Z3Str3, но решаются у нас:

- квадратичные уравнения, не имеющие решений $(x_1 x_2 x_3 ABABAB = AAABBB x_2 x_3 x_1);$
- регулярно-упорядоченные уравнения, не имеющие решений (ABxxyy = xxyyBA).

Уравнения от одной переменной, не решаемые CVC4 и Z3Str3 — те же регулярно-упорядоченные без решений.

Таблица тестирования

Тестовый набор	Тесты	Не завершились		
		CVC4	Z3str3	$WICount_\mathscr{L}$
Track 1 (Woorpje)	200	8	13	21
Track 5 (Woorpje)	200	4	14	19
Наш набор	50	21	28	10

Среднее время работы WICount $_{\mathscr{L}}$: 3,5 минуты на **один** тест.

Время работы CVC4 и Z3str3 — меньше 2 минут на все тесты.

Почему такая разница по времени?

Мы решаем разные задачи:

- солверы ищут одно решение;
- мы пытаемся построить описание всех решений.

Следствия

- солверы всегда решают безкоэффициентные уравнения (у них есть пустое решение);
- наш метод работает очень медленно на линейных уравнениях.

Другие интерпретаторы

- Интерпретатор, вычисляющий возможные длины переменных с последующим порождением подстановок вида $x \to s_1 \dots s_n$ (s_i символьные переменные).
- Интерпретатор, позволяющий в некоторых случаях строить подстановки с конца уравнения.
- Интерпретатор, решающий систему линейных диофантовых уравнений на длины переменных в уравнениях (Олег Шатнюк).

Лемма об оптимальности

Лемма

Все операции свертки в графе развертки $\mathrm{WI}_\mathscr{L}(\mathfrak{P},\langle\Phi_\mathfrak{i}=\Psi_\mathfrak{i}\rangle_{\mathfrak{i}=1}^\mathfrak{n})$ совершаются только над узлами, помеченными конфигурациями вида:

$$\operatorname{Main}(\mathcal{P}_{\mathbf{j}}, \langle \Phi_{\mathbf{i}}^{\mathbf{j}} = \Psi_{\mathbf{i}}^{\mathbf{j}} \rangle_{\mathbf{i}=1}^{n_{\mathbf{j}}})$$

где $\mathcal{P}_{\mathbf{j}}$, и других вхождений параметров нет.

Эта лемма определяет соответствие между графом развертки $\mathsf{WI}_\mathscr{L}(\mathfrak{P}, \langle \Phi_\mathfrak{i} = \Psi_\mathfrak{i} \rangle_{\mathfrak{i}=1}^n)$ и графом решения системы $\langle \Phi_\mathfrak{i} = \Psi_\mathfrak{i} \rangle_{\mathfrak{i}=1}^n$.

Порождение сужений

Порождение нового узла

Транзитные операции

Новый шаг развертки

Свертка

Удаление данных интерпретатора

Граф решений

О дополнительной разметке

- В интерпретаторе WIBase_ℒ помним только применяемую последней подстановку;
- В интерпретаторах WISplit $_{\mathscr{L}}$ и WICount $_{\mathscr{L}}$ еще и количество уравнений в последней базовой конфигурации.

A

Структура интерпретаторов

Если преобразования не инъективны, понадобится (очередная) дополнительная разметка.

Пример

Допустим, мы умеем не только расщеплять уравнения, но и удалять дубли. Пусть после шага $x \to Ax$ получилась система с двумя уравнениями:

$$xAAy = yAxA$$

 $Ax = xA$

Что можно сказать о системе, предшествующей ей, если известно, что в ней было два уравнения?

Основные особенности решения

- Для свертки было использовано отношение переименовки, чтобы избежать привязки к особенностям суперкомпилятора.
- Структура интерпретаторов подобрана таким образом, чтобы можно было использовать списочные стуктуры вместо рефальских.

Рекламная пауза

А если мы используем SCP4, можно просто написать в заголовке так:

```
*$Transient No;
(или не писать ничего!)
```

...и никакой дополнительной разметки не понадобится!

Спасибо!