

Autor: Krzysztof Zdon

Prowadzacy: Krzysztof Zdon

Podróż z Gaussem – Finaliści

Tytułowy Gauss raz jeszcze

Definicja 1. Wielomian $a_0 + a_1x + ... + a_nx^n \in \mathbb{Z}[X]$ nazwiemy wielomianem pierwotnym, jeśli $NWD(a_1, ..., a_n) = 1$.

Definicja 2. Jeżeli $f(x) = b_0 + b_1 x + ... + b_n x^n \in \mathbb{Q}[X]$ jest niezerowym wielomianem o współczynnikach wymiernych, to zawartością tego wielomianu nazywamy taką liczbę wymierną C = C(f) > 0, dla której zachodzi równość:

$$f(x) = C(f)(a_0 + a_1x + \dots + a_nx^n) = C(f)a(x),$$

gdzie a jest wielomianem pierwotnym.

Zadanie 1. Udowodnij, że niezerowy wielomian a o współczynnikach wymiernych ma dokładnie jedną zawartość.

Zadanie 2. Jeżeli $f(x), g(x) \in \mathbb{Z}[X]$ są dwoma wielomianami pierwotnymi, to f(x)g(x) również jest wielomianem pierwotnym.

Twierdzenie 1. Jeżeli $f(x) \in \mathbb{Z}[X]$ i f(x) = g(x)h(x) jest rozkładem na iloczyn wielomianów o współczynnikach wymiernych, to istnieją takie wielomiany g'(x) oraz h'(x) o współczynnikach całkowitych, że: f(x) = g'(x)h'(x) oraz istnieją takie $c, d \in \mathbb{Q}$, że: g(x) = cg'(x) oraz h(x) = dh'(x).

Dowód. Niech g(x) = C(g)a(x), h(x) = C(h)b(x) będą rozkładami wielomianów g(x), h(x) na iloczyn zawartości i części pierwotnych. Wtedy $C(g) \cdot C(h) = C(gh) = C(f) \in \mathbb{Z}$. Wystarczy teraz położyć g'(x) = C(f)a(x), h'(x) = b(x).

Zadanie 3. Liczby $a_1, ..., a_n \in \mathbb{Z}$ są parami różne. Udowodnij że wielomian $(x - a_1)(x - a_2)...(x - a_n) - 1$ jest nierozkładalny nad $\mathbb{Q}[X]$.

Wielomiany nierozkładalne

Ostatnie zadanie z poprzedniej części zachęca nas do przyjrzenia się, kiedy wielomiany nad $\mathbb Z$ są nierozkładalne.

Twierdzenie 2 (Przypomnienie - tw. Eisensteina). Załóżmy, że dany jest wielomian $f(x) = a_n x^n + ... + a_1 x + a_0$ o współczynnikach z \mathbb{Z} taki, że $p \mid a_i$ dla $0 \le i \le n-1$, $p \nmid a_n$ oraz $p^2 \nmid a_0$. Wówczas f jest nierozkładalny.

Istnieją również inne warunki, np.:

Twierdzenie 3. Załóżmy, że dany mamy wielomian $f(x) = a_n x^n + ... + a_1 x + a_0 \in \mathbb{Z}[X]$ taki, że $|a_0|$ jest liczbą pierwszą oraz $|a_0| > |a_1| + ... + |a_n|$. Wówczas f jest nierozkładalny.

Twierdzenie 4 (Lemat Perrona). Załóżmy, że dany mamy wielomian unormowany $f(x) = x^n + ... + a_1 x + a_0 \in \mathbb{Z}[X]$ taki, że $a_0 \neq 0$ oraz $|a_{n-1}| > |a_0| + ... + |a_{n-2}| + 1$. Wówczas f jest nierozkładalny.

Poręba Wielka, 14.01.2025

Autor: Krzysztof Zdon Prowadzący: Krzysztof Zdon

Wielomiany minimalne

Definicja 3. Liczbę zespoloną α nazwiemy **liczbą algebraiczną**, gdy istnieje wielomian $f \in \mathbb{Z}[X]$ taki, że $f(\alpha) = 0$. Z kolei **liczbą algebraiczną całkowitą** β nazwiemy liczbę zespoloną, dla której istnieje unormowany wielomian $f \in \mathbb{Z}[X]$ taki, że $f(\beta) = 0$.

Definicja 4. Wielomian minimalny liczby algebraicznej α to najmniejszy stopniem wielomian unormowany $m_{\alpha}(x) \in \mathbb{Z}[X]$, którego pierwiastkiem jest α .

Przykład 1. Wszystkie liczby 5, $\sqrt{2}$, i, $\zeta_p = cos(\frac{\pi}{p}) + isin(\frac{\pi}{p})$, $\frac{1}{2}$ są liczbami algebraicznymi. Wszystkie też poza $\frac{1}{2}$ są liczbami algebraicznymi całkowitymi. Negatywnym przykładem może być np. π , choć dowód tego faktu jest nieelementarny. Możemy też wypisać wielomiany minimalne dla każdego z nich np.:

$$m_{\frac{1}{2}}(x) = x - \frac{1}{2}, \quad m_{\sqrt{2}}(x) = x^2 - 2, \quad m_{\zeta_p} = x^{p-1} + \dots + x + 1$$

Stwierdzenie 1. Suma i iloczyn liczb algebraicznych są liczbami algebraicznymi.

Twierdzenie 5. Dla każdego wielomianu minimalnego f pewnej liczby algebraicznej całkowitej prawdziwe są następujące stwierdzenia:

- \bullet Wielomian f jest nierozkładalny.
- $g(\alpha) = 0$ wtedy i tylko wtedy, gdy f|g.

Twierdzenie 6. Wielomian unormowany $f \in \mathbb{Z}[X]$ o pierwiastku α jest jego wielomianem minimalnym wtedy i tylko wtedy, gdy f jest nierozkładalne.

Zadanie 4. Udowodnij, że istotnie $m_{\zeta_p} = x^{p-1} + ... + x + 1$.

Wskazówka: kryterium Eisensteina.

Zadania

Zadanie 5. Niech $p \in \mathbb{P}$ i współczynniki $a_0, ..., a_{p-1} \in \mathbb{Q}$ będą takie, że:

$$a_0 + a_1 \zeta_p + \dots + a_{p-1} \zeta_p^{p-1} = 0.$$

Wówczas $a_0 = a_1 = \dots = a_{p-1} = 0.$

Zadanie 6. Udowodnij, że wielomian $x^p + (p+1)x^{p-1} + p - 1$ dla dowolnej liczby pierwszej p jest nierozkładalny.

Zadanie 7. Udowodnij, że:

$$\sqrt{1001^2+1}+...+\sqrt{2000^2+1}$$

nie jest liczbą wymierną.

Zadanie 8. Dany jest wielomian $P(x) \in \mathbb{Z}[X]$ stopnia parzystego. Współczynnik wiodący P jest kwadratem liczby całkowitej, Wiadomo również, że istnieje nieskończenie wiele liczb całkowitych n takich, że P(n) jest kwadratem liczby całkowitej. Udowodnij, że P jest kwadratem pewnego wielomianu o współczynnikach całkowitych.

Poręba Wielka, 14.01.2025

Autor: Krzysztof Zdon Prowadzący: Krzysztof Zdon

Zadanie 9. Udowodnij, że dla każdego wielomianu $f \in \mathbb{Z}[X]$ istnieje nieskończony zbiór S taki, że dla każdego $t \in S$ wielomian f + t jest nierozkładalny nad $\mathbb{Q}[X]$.

Zadanie 10. Niech $P(x) = a_d x^d + \cdots + a_1 x + a_0$ będzie niestałym wielomianem o nieujemnych współczynnikach całkowitych, który ma d pierwiastków wymiernych. Udowodnij, że:

NWD
$$(P(m), P(m+1), \dots, P(n)) \ge m \binom{n}{m}$$
,

dla wszystkich n > m.

Zadanie 11. Dane są względnie pierwsze dodatnie liczby całkowite n, r > 1, przy czym n jest nieparzyste. Załóżmy, że istnieją takie wielomiany P(x), Q(x) o współczynnikach całkowitych, że:

$$(x-1)^n - (x^n - 1) = (x^r - 1)P(x) + nQ(x).$$

Udowodnić, że:

$$n \mid r^{n-1} - 1.$$