Chapter 5

SEQUENTIAL CIRCUITS:

Small Designs

In this Chapter

- Sequential circuit design models
- Design examples:
 - registers, counters, sequence recognizer
- Sequential circuit timing
- Interfacing sequential circuits

Sequential Circuit as a Finite State Machine (FSM)

- Requires flip-flop(s) to save circuit state
- There are three types of FSMs.
 - Mealy State Machine
 - Moore State Machine
 - Hybrid
- Requires combinational circuit(s) to generate next circuit state and output(s)
- Two types of circuits:
 - Functions of the circuits cannot be determined in advance
 - FSM design is modeled with a finite state diagram (FSD)
 - Functions of the circuits can be determined in advance
 - E.g., MUX, adder, ALU
 - No need for an FSD

A simple design Example (Parallel-load register with enable)

- Assume unknown combinational circuit
 - 1. Design 1-bit register 1st
 - We have seen D flip-flop with enable in Ch4
 - Here, the flip-flop formally modeled as FSD (next slide)
 - 2. Combine register slices to create 4-bit register below
 - enable, clk, _reset connect to all

FSM design steps

(1-bit parallel-load register example)

1. Draw FSD and detailed block diagram of 1-bit register slice

Fig 5.4

2. Convert FSD to truth table (also called transition table)

Current State	External Inputs		Next State	
q	E	x	d	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	1	
1	0	1	1	
1	1	0	0	
1	1	1	1	
	T	able 5.1		

4. Draw final circuit

3. Find minimal SOP or POS expression(s) for the output(s)

Circuit shown 1st in Chap. 4.

Some design rules

- If cannot determine function(s) of combinational circuit(s) in advance:
 - 1. Model FSM as FSD
 - May need to design bit-slice 1st
 - 2. Determine number of flip flops
 - 3. Convert the FSD to truth table
 - 4. Find minimal expressions for next state variable(s) and output(s)
 - 5. Draw the complete circuit with flip-flops
- Otherwise
 - Use bit-serial design with known modules
 - Or, bit-parallel design with known modules

Multi-Function Register

- Performs one of many functions
- Can be designed bit-serial or bit-parallel
- If cannot determine function(s) of combinational circuit(s) in advance
 - Model a bit-slice (e.g., 1-bit) as FSD
- Otherwise: Oh, I can use a MUX
 - Bit-serial: Use 1-bit 4-to-1 MUXs, for example
 - Bit-parallel: Use n-bit 4-to-1 MUX

f1 f0	→ [4-function, n	-bit, registe	r } ←	enable clock _reset
		Z			

f1	f0	Action
0	0	Clear (synchronous reset)
0	1	Load X
1	0	Arithmetic shift (shifts right
	U	repeating the sign bit)
1	1	Right shift (shifts right entering 0
		from left)

Fig 5.6

FSM (A formal view)

Three types of FSMs:

- Moore
 - External inputs do not synchronously affect outputs
 - Outputs called Moore
- Mealy
 - External inputs synchronously affect outputs
 - Outputs called Mealy
- Hybrid
 - Generates both Moore and Mealy outputs

Fig 5.6

Fig 5.12

Sequence Recognizer

Suppose FSM recognizes overlapping input sequence "101":

- Inputs processed one bit at a time (one per clock cycle)
- Not possible to determine the functions of the combinational circuits in advance
 - Model FSM as FSD
- Reset initializes the machine to known state
- Can be designed either as Moore or Mealy machine

Sequential Circuit Timing (1)

- Clock skew due to delay (τ_{cs}) in clock signal
- Clock skew can create circuit timing problems
 - 1. If $\Delta cc < \tau_{CS}$, FF2 will load $d2^{New}$ and not $d2^{Current}$
 - FSM results in functional error
 - 2. If $\Delta cc = \tau_{cs}$, d2 may be still changing when clk2 arrives
 - FSM malfunction due to setup or hold time violation at FF2
- $\Delta cc > \tau_{cs}$, FF2 will load $d2^{Current}$ as it should
 - Circuit will function correctly

clk1 reaches FF1 1st and after some delay

Sequential Circuit Timing (2)

- Possible problem: Next clk1 reaches FF2 before previous clk2 reaches FF1
 - If $\Delta cc \sim \tau \tau_{cs}$, d2 may be still changing when clk1 arrives
 - FSM malfunction due to setup or hold time violation at FF2
- Normal operation
 - When $\Delta cc < \tau \tau_{cs}$

clk1 reaches FF2 1st and after some delay

Clock Frequency Estimation – With Clock Skew

Add τ_{CS} to the clock period determined in Ch. 4

$$\tau \geq \tau_{cq-max} + \tau_{pd-max} + \tau_{st} + \tau_{cs}$$

Interfacing Sequential Circuits

- How to handle asynchronous inputs
 - Asynchronous inputs may change at any time with respect to *clock* signal
 - They can cause setup or hold time violation if directly enter FSM
- Solution: Use synchronization flip-flop(s)
 - Asynchronous input d may violate setup or hold time of synchronizing FF, not FFs of FSM
 - q of synchronizing FF will eventually stabilize if setup or hold time violated
 - May use two synchronizing FFs if q slow to stabilize

