1 Sequences

Consider a function $f(x) = e^{-x}\cos(2x+1)$.

We can use the Squeeze Theorem to show that $\lim_{x\to\infty} f(x) = 0$.

Therefore, $\lim_{n\to\infty} a_n = 0$.

Theorem 1.1

If $a_n = f(n)$, for some function f(x) and $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$.

Example 1.2

Consider $a_n = a^n$ for some real constant a.

If a > 0, define $f(x) = a^x = e^{x \log a}$.

Since $\lim_{x\to\infty} e^{x\log a} = \exp(\lim_{x\to\infty} x\log a) = \begin{cases} 0, & \text{if } \log a < 0\\ \infty, & \text{if } \log a > 0 \end{cases}$, then

$$\lim_{n \to \infty} a_n = \begin{cases} 0, & \text{if } 0 < a \le 1\\ \infty, & \text{if } a > 1 \end{cases}$$

.

If a < 0, then $a_n = (-1)^n |a|^n$, and hence 0 if |a| < 1. If |a| > 1 or a = -1, then the sequence diverges.

Example 1.3

Suppose that $f(x) = \sin(\pi x)$. Then $a_n = f(n) = 0$, and thus $\lim_{x\to\infty} a_n = 0$, but $\lim_{x\to\infty} \sin x$ does not exists.

A sequence is said to be bounded if $|a_n| < M$ and bounded above if $a_n < M$.

A sequence is said to be strictly increasing if $a_n < a_{n+1}$ and nondecreasing if $a_n \le a_{n+1}$.

Theorem 1.4

If $\{a_n\}$ is bounded and nondecreasing, then $\{a_n\}$ converges.

Proof.

Let $L = \sup a_n$.

Suppose some $\epsilon > 0$ is given.

Therefore, there exists M such that $L - a_M < \epsilon$.

But for any $n \geq M$, we have that $a_n \geq M$. So $L - a_n \leq L - a_m < \epsilon$, which means that $\lim_{n \to \infty} a_n = L$.

Suppose now that $\lim_{x\to\alpha} f(x) = L$.

If $\{a_n\}$ is a sequence, then the domain of f(x) so that $a_n \neq \alpha$ for any $n \in \mathbb{R}$ and $\lim_{x\to\infty} a_n = \alpha$, then $\lim_{n\to\alpha} f(a_n) = L$.

More is true. If $\lim_{n\to\infty} f(a_n) = L$ for all sequences of the stated type, then $\lim_{x\to\alpha} f(x) = L$.

Note that we can always find a nondecreasing or a nonincreasing subsequence.

Theorem 1.5

A bounded sequence always has a convergent subsequence.

Proof.

Pick a nondecrueasing or nonincreasing subsequence. Since it is bounded, we know that it has a limit. $\hfill\Box$

2 Series

In our current framework, $\sum_{i=1}^{\infty}$ does not make sense.

We define the *n*th partial sum as $S_n = \sum_{i=1}^n a_i$.

If the sequence $\{s_n\}$ converges, say to S, then we say that $\sum_{n=1}^{\infty} a_n$ converges and $\sum_{n=1}^{\infty} a_n = S$.

2.1 Geometric Series

Remember that $\sum_{n=0}^{\infty} r^n = \frac{1-r^{n+1}}{1-r}$.

Do these partial sums tend to a limit?

If |r| < 1, then $r^{n+1} \to 0$.

So $\sum_{n=0}^{\infty} r^n = \frac{1}{1-r}$ converges.

When r = 1 and r = -1, it diverges.