

Course Overview

Understanding probability

What is probability?

Counting and chance simulation

How to count the number of possible outcomes?

Chance variability

How can we model chance variability by a box model?

Central limit theorem

What is the behaviour of the sample mean for a large sample size?

Today's outline

The box model

Random draws, sample sums and sample means

Expected value and Standard error

The box model

Statistical models

- A model is a representation of something which
 - is **simpler** but at the same time
 - captures the **key features** of the original.
- Data obtained in real life is generated by complicated processes.
- Statistical models are models for data-generating processes:
 - they are much simpler than the real data-generating process but
 - (hopefully) they capture the signal or key features within the data.

The box model

The **box model** is a very simple statistical model for representing a population. The box model can be thought of as:

- A collection of N objects, e.g. tickets, balls is imagined "in a box".
- Each object bears a number.
- A random sample of a certain number n of the objects is taken.
- The sampling may be with or without replacement.

Random samples and random draws

- Consider all possible ways of selecting n objects from the box. A random sample
 is when each possible of these selection is equally likely.
- A random draw is a random sample with n = 1.
 - If a single draw is taken, then each object in the box has an equal chance of being picked.
- If we completely know the contents of the box, we can write down the chance of each possible value.
- We let X denote the random draw:
 - this represents the "value we might get"
 - X can take different values with different probabilities/chances.
- The **distribution** of X is a **table** with two "columns":
 - each possible value x that X can take and
 - the corresponding probability/chance of that value.

Simple example

- For example, suppose X is a random draw from the following simple box:

There are then three possible tickets: $\boxed{1}$, $\boxed{2}$ and $\boxed{3}$ and each has equal chance of $\frac{1}{3}$ of being picked, so:

$$P(X = 1) = P(X = 2) = P(X = 3) = \frac{1}{3}$$
.

Here we write $P(\cdot)$ to denote the probability of each event.

The distribution of X:

Non-equal chance example

- We can have box models where the different possible values are not necessarily equally likely.
- For the box

if each "ticket" is equally likely, we have

$$P(X = 1) = \frac{1}{6}$$
, $P(X = 2) = \frac{2}{6} = \frac{1}{3}$, $P(X = 3) = \frac{3}{6} = \frac{1}{2}$.

The distribution of X:

$$X$$
 1 2 3 $P(X = x)$ $\frac{1}{6}$ $\frac{1}{3}$ $\frac{1}{2}$

Larger box example

Consider the box defined by the file y.dat in the R code below:

```
box = scan("y.dat")
box

## [1] 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12
```

```
## [1] 3 4 5 6 7 8 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 
## [31] 8 9 10 11 12 13 4 5 6 7 8 9 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 
## [61] 8 9 10 11 12 13 9 10 11 12 13 14 5 6 7 8 9 10 6 7 8 9 10 11 7 8 9 10 11 12 
## [91] 8 9 10 11 12 13 9 10 11 12 13 14 10 11 12 13 14 15 6 7 8 9 10 11 7 8 9 10 11 12 
## [121] 8 9 10 11 12 13 9 10 11 12 13 14 10 11 12 13 14 15 11 12 13 14 15 16 7 8 9 10 11 12 
## [181] 8 9 10 11 12 13 9 10 11 12 13 14 10 11 12 13 14 15 11 12 13 14 15 16 17 
## [181] 8 9 10 11 12 13 9 10 11 12 13 14 10 11 12 13 14 15 11 12 13 14 15 16 17 
## [211] 13 14 15 16 17 18
```

```
table(box) # note: first two rows below are only labels: the 'real' output is the third line
```

```
## box
## 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
## 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1
```

Find the probability P(X < 8)

sum(table(box)) # gives total freq, i.e. size of the box ## [1] 216 length(box) == sum(table(box))## [1] TRUE head(box < 8) # reports the first 6 values of 'box<8' ## [1] TRUE TRUE TRUE TRUE FALSE sum(box < 8) # reports the total numer of TRUE values in 'box<8'</pre> ## [1] 35

Find the *proportion* less than 8

```
sum(box < 8)/length(box)

## [1] 0.162037

mean(box < 8) # mean of TRUEs in 'box<8'

## [1] 0.162037</pre>
```

- The chance of drawing a value less than 8 is $\frac{35}{216} \approx 16\%$.
- Note: 35 = 1 + 3 + 6 + 10 + 15 (the frequencies of 3, 4, 5, 6 and 7 respectively).

Expected value and standard error

- In some situations, we may not know the exact contents of the box. Indeed, boxes
 are used to model populations and we might not know everything about the
 population.
- Instead we might have access to summary information about the box.
- For a random draw X from a box, we define the following two quantities:
 - We denote the **expected value** E(X) as the mean of the box
 - We denote the **standard error** SE(X) as the standard deviation of the box

Interpreting the expected value E(X)

The random draw may be "decomposed" into two pieces:

$$X = E(X) + [X - E(X)] = E(X) + \varepsilon.$$

- The first part E(X) is not random.
- All randomness is included in the chance error ε , which is itself can be represented by a random draw from an **error box** (a box with mean zero).
- Example: a random draw X from the box

(which has mean 2) may instead be thought of as $X=2+\varepsilon$ where the chance error ε is a random draw from the error box

Interpreting the standard error SE(X)

- The standard error measures the typical size of the error ε . It is a measure of random variation in the outcome of X.
- For two different random draws, one with the larger SE is likely to differ from its expected value by a larger amount.
- The standard error is the root-mean-square of the error box.

$$SE(X) = SD(box) = \sqrt{\frac{(1-2)^2 + (2-2)^2 + (3-2)^2}{3}} \approx 0.816$$

$$SE(X) = RMS(\text{error box}) = \sqrt{\frac{(-1)^2 + 0^2 + 1^2}{3}} \approx 0.816$$

Sums of random draws

New interpretation of mean and SD

- We have introduced the concepts of
 - a random draw X from a box
 - its expected value E(X)
 - its standard error SE(X)
- The expected value and standard error are not "new" things, rather, they are new interpretations of old things.
 - It is really "worth the effort" to introduce these new names for these things are already know about?
 - The expected value and standard error become very useful when we have more than one draw.

Sum of two random draws

Consider the two boxes

- The first box has mean 2 and SD $\sqrt{\frac{1}{3}\left[(-1)^2 + 0^2 + 1^2\right]} = \sqrt{\frac{2}{3}} \approx 0.816$.
- The second box has mean 5 and SD

$$\sqrt{\frac{1}{4}\left[(-3)^2 + (-1)^2 + 1^2 + 3^2\right]} = \sqrt{5} \approx 2.236.$$

Suppose we are going to take a random draw from each, X from the first box, Y from the second box, in such a way that **each possible pair of values is equally likely**. What is the behaviour of the (random) sum S = X + Y?

All possible pairs/sums

There are 12 possible pairs:

Table of all possible pairs and their sums

Sample	Sum
(1,2)	3
(1,4)	5
(1,6)	7
(1,8)	9
(2,2)	4
(2,4)	6
(2,6)	8
(2,8)	10
(3,2)	5
(3,4)	7
(3,6)	9
(3,8)	11

Single random draw from a "bigger" box

Thus getting a random pair (X, Y) and forming the sum S = X + Y is **equivalent** to a *single random draw* from the bigger box

What are the mean and SD of this "bigger" box?

Using outer()

[1] 5.666667

• The R function outer() forms a two-way array by applying an operation to each pair of elements from two vectors:

```
bx = c(1, 2, 3)

by = c(2, 4, 6, 8)

bs = outer(bx, by, "+")

bs

## [,1] [,2] [,3] [,4]

## [1,] 3 5 7 9

## [2,] 4 6 8 10

## [3,] 5 7 9 11

mean(bs)

## [1] 7
```

Expected value and standard error of the sum

- So we have that E(S)=7 and $SE(S)=\sqrt{5\frac{2}{3}}\approx 2.38$.
- As it turns out

$$7 = E(S) = E(X + Y) = E(X) + E(Y) = 2 + 5$$
.

$$5\frac{2}{3} = SE(S)^2 = SE(X+Y)^2 = SE(X)^2 + SE(Y)^2 = \frac{2}{3} + 5.$$

- So in this case we have
 - expected value of sum is sum of expected values;
 - squared SE of the sum is the sum of the squared SEs
- These results hold in general.

Sum of two random draws.

Consider two boxes

- Suppose we are going to take a random draw from each: X from the first box, Y from the second box, in such a way that **each possible pair of values is equally likely**.

All possible sums

- There are MN possible sums, we may arrange them in a two-way array with M (horizontal) rows and N (vertical) columns.
- Noting that $\sum_{i=1}^{M} x_i = M\bar{x}$, we may write the column sums below the line:

$$x_1 + y_1$$
 $x_1 + y_2$ \cdots $x_1 + y_N$
 $x_2 + y_1$ $x_2 + y_2$ \cdots $x_2 + y_N$
 \vdots \vdots \ddots \vdots
 $x_M + y_1$ $x_M + y_2$ \cdots $x_M + y_N$
 $M\bar{x} + My_1$ $M\bar{x} + My_2$ \cdots $M\bar{x} + My_N$

The sum of column sums is

$$\underbrace{M\bar{x} + \dots + M\bar{x}}_{N \text{ terms}} + M(y_1 + \dots + y_N) = NM\bar{x} + MN\bar{y}$$

Thus the average of all possible sums is

$$\frac{\text{sum of all possible sums}}{\text{no. of all possible sums}} = \frac{NM\bar{x} + MN\bar{y}}{MN} = \bar{x} + \bar{y} = E(X) + E(Y).$$

That is,

$$E(X + Y) = E(X) + E(Y).$$

Computing formula for SD

- For a list of numbers x_1, x_2, \ldots, x_M , the square of the SD may be written as

$$SD^2 = \frac{1}{M} \sum_{i=1}^{M} (x_i - \bar{x})^2 = \left(\frac{1}{M} \sum_{i=1}^{M} x_i^2\right) - \bar{x}^2$$

the "mean square minus the square of the mean".

To see why, recall that $\sum_{i=1}^{M} x_i = M\bar{x}$ and so:

$$\sum_{i=1}^{M} (x_i - \bar{x})^2 = (x_1^2 - 2\bar{x}x_1 + \bar{x}^2) + \dots + (x_M^2 - 2\bar{x}x_M + \bar{x}^2)$$

$$= (x_1^2 + \dots + x_M^2) - 2\bar{x}(x_1 + \dots + x_M) + \underline{\bar{x}}^2 + \dots + \underline{\bar{x}}^2$$

$$= \sum_{i=1}^{M} x_i^2 - 2\bar{x}M\bar{x} + M\bar{x}^2 = \sum_{i=1}^{M} x_i^2 - M\bar{x}^2$$

28/47

Easy way to compute SD in R

The computing formula above can be used to write a quick-and-easy R function to compute the (population) SD of a list of numbers.

```
popsd = function(x) sqrt(mean(x^2) - (mean(x)^2))
```

· Let's try it out:

```
x = 1:10
x # this list has mean 5.5

## [1] 1 2 3 4 5 6 7 8 9 10

sqrt(mean((x - 5.5)^2))

## [1] 2.872281

popsd(x)
```

[1] 2.872281

SE of a sum (not examinable)

- It is possible to deduce the SE of our general sum S = X + Y.
- We do so by first working out the mean-square of the bigger box of all possible sums.
- Write each squared sum $(x_i + y_j)^2 = x_i^2 + 2x_iy_j + y_j^2$ in an array and add over columns:

$$x_{1}^{2} + 2x_{1}y_{1} + y_{1}^{2} \qquad \cdots \qquad x_{1}^{2} + 2x_{1}y_{N} + y_{N}^{2}$$

$$x_{2}^{2} + 2x_{2}y_{1} + y_{1}^{2} \qquad \cdots \qquad x_{2}^{2} + 2x_{2}y_{N} + y_{N}^{2}$$

$$\vdots \qquad \ddots \qquad \vdots$$

$$x_{M}^{2} + 2x_{M}y_{1} + y_{1}^{2} \qquad \cdots \qquad x_{M}^{2} + 2x_{M}y_{N} + y_{N}^{2}$$

$$\sum_{i} x_{i}^{2} + 2M\bar{x}y_{1} + My_{1}^{2} \qquad \cdots \qquad \sum_{i} x_{i}^{2} + 2M\bar{x}y_{N} + My_{N}^{2}$$

SE of a sum (not examinable)

The sum of squares (of all possible sums) is then

$$\left(\sum_{i} x_{i}^{2} + 2M\bar{x}y_{1} + My_{1}^{2}\right) + \dots + \left(\sum_{i} x_{i}^{2} + 2M\bar{x}y_{N} + My_{N}^{2}\right) = N \sum_{i} x_{i}^{2} + 2M\bar{x}(y_{1} + \dots + y_{N}) + M(y_{1}^{2} + \dots + y_{N}^{2}) = N \sum_{i} x_{i}^{2} + 2MN\bar{x}\bar{y} + M \sum_{j} y_{j}^{2}.$$

- Since there are MN possible sums, the mean square is

$$\frac{1}{M} \sum_{i} x_i^2 + 2\bar{x}\bar{y} + \frac{1}{N} \sum_{j} y_j^2.$$

SE of a sum (not examinable)

· Since mean of all possible sums is $\bar{x} + \bar{y}$, the squared SD of all possible sums is

$$SE(S)^{2} = \frac{1}{M} \sum_{i} x_{i}^{2} + 2\bar{x}\bar{y} + \frac{1}{N} \sum_{j} y_{j}^{2} - \underbrace{\left(\bar{x}^{2} + 2\bar{x}\bar{y} + \bar{y}^{2}\right)}_{sq. of mean}$$

$$= \frac{1}{M} \sum_{i} x_{i}^{2} - \bar{x}^{2} + \frac{1}{N} \sum_{j} y_{j}^{2} - \bar{y}^{2}$$

$$= \frac{1}{M} \sum_{i} (x_{i} - \bar{x})^{2} + \frac{1}{N} \sum_{j} (y_{j} - \bar{y})^{2}$$

$$= SE(X)^{2} + SE(Y)^{2}.$$

Random samples with replacement of size n=2

A special case of our general sum is where we have a single box

but take two random draws with replacement.

- This means each of the N^2 possible pairs $(x_1, x_1), \ldots, (x_1, x_n), \ldots, (x_n, x_1), \ldots, (x_n, x_n)$ is **equally likely**.
- This is where both boxes are (effectively) the same, so E(X) = E(Y) and SE(X) = SE(Y).
- If we write the mean of the box as μ and the SD of the box as σ , then the sum S of the two random draws has
 - $E(S) = E(X) + E(Y) = \mu + \mu = 2\mu$
 - $SE(S)^2 = SE(X)^2 + SE(Y)^2 = \sigma^2 + \sigma^2 = 2\sigma^2 \implies SE(S) = \sqrt{2}\sigma$.

Sums and averages of random samples of size *n*

Random samples of size n

- We may easily extend the results to any $n \geq 2$. Suppose:
 - we have a box with mean μ and SD σ ;
 - we are going to take a random sample of size n from the box with replacement;
 - so each possible sample of size *n* is equally likely.
- Let us write
 - the random draws as X_1, X_2, \ldots, X_n ;
 - the sum as $S = X_1 + \cdots + X_n$;
 - the sample average as $\bar{X} = \frac{S}{n} = \frac{1}{n}(X_1 + \dots + X_n) = \frac{1}{n}\sum_{i=1}^n X_i$.
- · What are the expected value and standard error of both S and $ar{X}$?

The sum S

- Each single draw has the same behaviour. That is each X_1, \ldots, X_n is a single random draw from the same box with $E(X_1) = \mu$ and $SE(X_1) = \sigma$.
- Expected value of sum is sum of expected values:

$$E(S) = E(X_1 + \dots + X_n) = E(X_1 + \dots + X_{n-1}) + E(X_n) = \dots = E(X_1) + \dots + E(X_n) = \underbrace{\mu + \dots + \mu}_{n \text{ terms}} = n\mu.$$

· Also,

$$SE(S)^{2} = SE(X_{1} + \dots + X_{n-1})^{2} + SE(X_{n})^{2} =$$

$$\dots = SE(X_{1})^{2} + \dots + SE(X_{n})^{2} = \underbrace{\sigma^{2} + \dots + \sigma^{2}}_{n \text{ terms}} = n\sigma^{2}$$

$$\implies SE(S) = \sqrt{n}\sigma$$

What if we divide by N?

Consider the box

What is the expected value and standard error of a random draw if we divide each x_i by N?

This gives us a new box

where
$$y_i = \frac{x_i}{N}$$
.

What if we divide by N?

- If Y is a random draw from this new box then we can work out E(Y) as:

$$E(Y) = \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i = \frac{1}{N} \sum_{i=1}^{N} \frac{x_i}{N} = \frac{1}{N} \left(\frac{1}{N} \sum_{i=1}^{N} x_i \right) = \frac{\bar{x}}{N} = \frac{E(X)}{N}$$

We can also work out the standard error:

$$SE(Y)^{2} = \frac{1}{N} \sum_{i=1}^{N} (y_{i} - \bar{y})^{2} = \frac{1}{N} \sum_{i=1}^{N} (\frac{x_{i}}{N} - \frac{\bar{x}}{N})^{2}$$

$$= \frac{1}{N^{2}} \frac{1}{N} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2} = \frac{SE(X)^{2}}{N^{2}}$$

$$\implies SE(Y) = \frac{SE(X)}{N}$$

The sample average \bar{X}

- The sample average \bar{X} is just $\frac{S}{n}$, so we can immediately work out the expected value and standard error.
- We thus obtain immediately that for the average,

$$E(\bar{X}) = \frac{E(S)}{n} = \frac{n\mu}{n} = \mu;$$

As for the standard error we have

$$SE(\bar{X}) = \frac{SE(S)}{n} = \frac{\sigma\sqrt{n}}{n} = \frac{\sigma}{\sqrt{n}}.$$

Example: 6-sided die

- Consider rolling a fair 6-sided die.
- In this case each of the numbers 1,2,3,4,5,6 are equally likely.
- This is equivalent to a random draw from the box

The mean is $\mu=3.5=\frac{7}{2}$, mean-square $\frac{1+4+9+16+25+36}{6}=\frac{91}{6}$ and thus SD

$$\sigma = \sqrt{\frac{91}{6} - \left(\frac{7}{2}\right)^2} = \sqrt{\frac{91}{6} - \frac{49}{4}} = \sqrt{\frac{182 - 147}{12}} = \sqrt{\frac{35}{12}} \approx 1.71$$

Rolling the die 3 times: sum of rolls

- Suppose we roll the die (independently) 3 times. What is the random behaviour of the **sum** of the values of the three rolls?
- Let X_1, X_2, X_3 denote 3 random draws with replacement from the box

Then the sum of the 3 rolls $S=X_1+X_2+X_3$ has $E(S)=3\mu=\frac{21}{2}=10.5$ and

$$SE(S) = \sigma\sqrt{3} = \sqrt{\frac{35}{12} \times 3} = \sqrt{\frac{35}{4}} = \frac{\sqrt{35}}{2} \approx 2.958.$$

The box of all possible sums here is exactly the dataset y.dat from earlier in the lecture!

Rolling the die 3 times: average of rolls

- What is the random behaviour of the average of the values of the three rolls?
- Writing $\bar{X} = \frac{X_1 + X_2 + X_3}{3} = \frac{S}{3}$, we have

$$E(\bar{X}) = \frac{E(S)}{3} = \frac{3\mu}{3} = \mu = 3.5$$

and

$$SE(\bar{X}) = \frac{\sigma}{\sqrt{3}} = \sqrt{\frac{35}{12} \times \frac{1}{3}} = \sqrt{\frac{35}{36}} = \frac{\sqrt{35}}{6} \approx 0.956.$$

Demonstration

Let us simulate 3 rolls of a 6-sided die 1000 times, and look at the corresponding 1000 sums and averages of each triplet.

```
d = 1:6
S = 0  # empty vector to catch the sums
for (i in 1:1000) {
    rolls = sample(d, size = 3, replace = T)
    S[i] = sum(rolls)
}
mean(S)
```

```
## [1] 10.476
```

```
sd(S)
```

```
## [1] 3.014052
```

```
popsd(S)
```

```
## [1] 3.012544
```

hist(S, pr = T, breaks = br)

Note these proportions are *close* to (but not *exactly* equal to) the corresponding proportions in y.dat.

Averages

hist(Xbar, pr = T, breaks = br/3)

Histogram of Xbar

Same shape as for the sums, but centred on 3.5 and less spread-out.

Closing remarks: *n* getting larger

- We have seen that for n random draws (with replacement) from a box with mean μ and SE σ
 - the *sum* of draws S has $E(S) = n\mu$ and $SE(S) = \sigma\sqrt{n}$;
 - the average of the draws \bar{X} has $E(\bar{X})=\mu$ and $SE(\bar{X})=\frac{\sigma}{\sqrt{n}}$.
- What happens to the SE of each as n gets bigger?
 - for the sum, $\sigma\sqrt{n}$ gets larger **but**
 - for the average, $\frac{\sigma}{\sqrt{n}}$ gets **smaller**.
- In particular, for the average \bar{X} , the random variability about $E(\bar{X})=\mu$ gets less as the sample size n increases.