Neural Networks: Basic Concepts

Mark Craven and David Page Computer Sciences 760 Spring 2019

Goals for the lecture

you should understand the following concepts

- perceptrons
- the perceptron training rule
- linear separability
- · hidden units
- · multilayer neural networks
- gradient descent
- stochastic (online) gradient descent
- · activation functions
 - · sigmoid, hyperbolic tangent, ReLU
- · loss functions
 - squared error, cross entropy
- · logistic regression

Neural networks

- · a.k.a. artificial neural networks, connectionist models
- · inspired by interconnected neurons in biological systems
 - · simple processing units
 - · each unit receives a number of real-valued inputs
 - · each unit produces a single real-valued output

Perceptrons

[McCulloch & Pitts, 1943; Rosenblatt, 1959; Widrow & Hoff, 1960]

input units: represent given x

output unit: represents binary classification

Perceptron example

features, class labels are represented numerically

$$\mathbf{x} = \langle 1, 0, 0, 1 \rangle$$
 $w_0 + \sum_{i=1}^n w_i x_i = -0.1$ $o = 0$

Learning a perceptron: the perceptron training rule

- 1. randomly initialize weights
- 2. iterate through training instances until convergence

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

2b. update each weight

$$\Delta w_i = \eta (y - o) x_i$$

$$\eta \text{ is learning rate;}$$
set to value << 1
$$w_i \leftarrow w_i + \Delta w_i$$

Representational power of perceptrons

perceptrons can represent only linearly separable concepts

$$o = \begin{cases} 1 & \text{if } w_0 + \sum_{i=1}^n w_i x_i > 0 \\ 0 & \text{otherwise} \end{cases}$$

decision boundary given by:

1 if
$$w_0 + w_1 x_1 + w_2 x_2 > 0$$

$$w_1 x_1 + w_2 x_2 = -w_0$$

$$x_2 = -\frac{w_1}{w_2} x_1 - \frac{w_0}{w_2}$$

Representational power of perceptrons

- in previous example, feature space was 2D so decision boundary was a line
- in higher dimensions, decision boundary is a hyperplane

Example multilayer neural network

output units

hidden units

input units

figure from Huang & Lippmann, NIPS 1988

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h__d"

Decision regions of a multilayer neural network head hid who'd hood figure from Huang & Lippmann, NIPS 1988 4000 F1 F2 (Rz) 1000 F2 (Rz) 1000 F1 (Rz) F1 P2

input: two features from spectral analysis of a spoken sound

output: vowel sound occurring in the context "h__d"

Learning in multilayer networks

- · work on neural nets fizzled in the 1960's
 - single layer networks had representational limitations (linear separability)
 - · no effective methods for training multilayer networks

- revived again with the invention of backpropagation method [Rumelhart & McClelland, 1986; also Werbos, 1975]
 - key insight: require neural network to be differentiable; use gradient descent

Gradient descent general idea

- · Specify a loss function that we want to optimize
- Specify a neural network in which the weights are differentiable w.r.t. the loss function
- Iteratively update the weights to minimize the loss function, using derivatives to guide each step

Gradient descent in weight space

Given a training set $D = \{(x^{(1)}, y^{(1)})...(x^{(m)}, y^{(m)})\}$ we can specify a *loss function* that is a function of our weight vector \mathbf{w}

This loss function defines a surface over the model (i.e. weight) space

Gradient descent in weight space

gradient descent is an iterative process aimed at finding a minimum in the loss function

on each iteration

- current weights define a point in this space
- find direction in which loss function descends most steeply
- take a step (i.e. update weights) in that direction

Gradient descent in weight space

calculate the gradient of
$$E$$
: $\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n}\right]$

The sigmoid function

- to be able to differentiate E with respect to w_i , our network must represent a continuous function
- one choice is to use *sigmoid functions* instead of threshold functions in our hidden and output units

The sigmoid function

for the case of a single-layer network

Other activation functions

- the sigmoid is just one choice for an activation function
- · there are others we can use including

hyperbolic tangent

$$f(x) = \tanh(x) = \frac{2}{1 + e^{-2x}} - 1$$

rectified linear (ReLU)

$$f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Other loss functions

- squared error is just one choice for an loss function
- · there are others we can use including

cross entropy

$$E(\mathbf{w}) = \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

multiclass cross entropy

$$E(\mathbf{w}) = -\sum_{d \in D} \sum_{i=1}^{\# classes} y_i^{(d)} ln\left(o_i^{(d)}\right)$$

Batch neural network training

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)})...(x^{(m)}, y^{(m)})\}$ initialize all weights in w to small random numbers until stopping criteria met do

initialize the error E(w) = 0

for each $(x^{(d)}, y^{(d)})$ in the training set

input $\mathbf{x}^{(d)}$ to the network and compute output $o^{(d)}$

increment the error $E(\mathbf{w}) = E(\mathbf{w}) + \frac{1}{2} \left(y^{(d)} - o^{(d)} \right)^2$

calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta w = -\eta \ \nabla E(w)$$

Online vs. batch training

- Standard gradient descent (batch training): calculates error gradient for the entire training set, before taking a step in weight space
- Stochastic gradient descent (online training): calculates error gradient for a single instance (or a small set of instances, a mini-batch), then takes a step in weight space
 - much faster convergence
 - less susceptible to local minima

Online neural network training (stochastic gradient descent)

given: network structure and a training set $D = \{(x^{(1)}, y^{(1)})...(x^{(m)}, y^{(m)})\}$ initialize all weights in w to small random numbers until stopping criteria met do

opping ontone mot do

for each $(\boldsymbol{x}^{(d)}, y^{(d)})$ in the training set

input $\mathbf{x}^{(d)}$ to the network and compute output $o^{(d)}$

calculate the error $E(\mathbf{w}) = \frac{1}{2} (y^{(d)} - o^{(d)})^2$ calculate the gradient

$$\nabla E(\mathbf{w}) = \left[\frac{\partial E}{\partial w_0}, \frac{\partial E}{\partial w_1}, \cdots, \frac{\partial E}{\partial w_n} \right]$$

update the weights

$$\Delta w = -\eta \ \nabla E(w)$$

Logistic regression

 a single layer neural net with a <u>sigmoid</u> in which the weights are trained to minimize <u>cross entropy</u>

$$E(\mathbf{w}) = -\sum_{d \in D} \ln P(y^{(d)} | \mathbf{x}^{(d)})$$

$$= \sum_{d \in D} -y^{(d)} \ln(o^{(d)}) - (1 - y^{(d)}) \ln(1 - o^{(d)})$$

• the name is a misnomer since LR is used for classification