

南京大学 2021 年硕士研究生入学考试

科目名称:	普通物理一	_考试时间:	<u>三小时</u>	_满分:	150	分
-------	-------	--------	------------	------	-----	---

科目代码: ______适用专业: __物理学院等相关专业_

注意: ①所有答案必须写在答题纸或答题卡上,写在本试题纸或草稿纸上均无效;

②本科目不允许使用计算器;③本试题纸须随答题纸一起装入试题袋中交回!

- 1. 一个单摆,长度为L,小球质量为m,求在以下情况下,微小摆动的周期
 - ①电梯以加速度a上升(单摆在电梯中)
 - ② 在某星球表面该行星质量为 $\frac{1}{3}$ 地球质量,密度为地球的 $\frac{1}{2}$
 - ③ 小球带正电O, 电场方向竖直向下, 场强为E
 - ④ 小球带正电Q, 电场方向水平向右, 场强为E
- 2. 帆船在河中航行,风速对地 v_{θ} ,帆船表面与风垂直,空气密度 ρ ,帆面面积为S(空气分子碰撞帆面看作完全非弹性碰撞)
 - ①若帆船速度为v,则所受风的作用力多大;
 - ② 求帆船速度与时间对应关系船受到的阻力为恒力 $F(F < \rho S v_0^2)$,给出船速与时间的关系,求船的最大速度。

- 三、两同心圆薄壳球体, 如图所示, b = 2a, c = 3a
 - (1) 求两球壳间为真空介质时的电容;
- (2) 分别在球壳中灌入三种不同的介质 ε_{r1} , $\varepsilon_{r2}\varepsilon_{r3}$, 求壳间的等效电容(如图);
 - (3) 求 ε_{r2} , ε_{r3} 接触面上的极化电荷密度。

四、氢原子模型,电子绕静止的质子运动,半径为 R,电子的质量为 m,电子与质子的电荷为 -e,e;

- (1) 求电偶极矩 \vec{q} 和磁偶极矩 \vec{d} ;
- (2) 已知电偶极辐射功率 $P_e = \frac{1}{6\pi} q^{\alpha} \omega^{\beta} \varepsilon_0^{\gamma} c^{\delta}$, 用量纲分析确定 $\alpha, \beta, \gamma, \delta$ 并写出相应的磁偶极矩辐射功率的公式;
- (3) 忽略磁偶极矩辐射, 仅考虑电偶极矩辐射, 求质子与电子碰撞的时间(每次能量降低仍为圆周运动)

五、 (P_0, V_0) 经过准静态过程至 $(4P_0, 8V_0)$,

(1) 求此过程的熵 ΔS ;

(2) 若在经过准静态过程中,气体对外作功 dW 和吸热 dQ,满足 $\beta = \frac{dW}{dQ}$, β 为常数, 求 β ;

六、油膜可视为等密度、高度、底面积的小圆柱体,观察者与水平面成 30° 角观看,当半径为 r_1 时,第一次看见黄光,当半径扩散到 $r_2=2r_1$ 时,第三次看到黄光。空气的折射率 n_0 为 1,油膜的折射率为 n_1 ,玻璃的折射率为 $n_2(n_2>n_1)$,

- (1) 求油膜体积;
- (2) 能否再次看到黄光。

七、 N 根天线组成的发射阵列发射出波长为 λ 的电磁波,每根天线的间距为 $d=\frac{\lambda}{4}$,相邻天线的相位差为 δ 。可在 $(-\pi,\pi)$ 之间调整,

- (1) $\theta = \frac{\pi}{6}$ 时, 观测到最大强度, 求 δ ;
- (2) $\delta = \frac{\pi}{4}$ 时,观测到极大强度 $\theta = ?$,有几个?各朝什么方向?

