חורף תשע"ב

מבוא לבינה מלאכותית 236501 מועד א'

הוראות כלליות

- משך הבחינה 3 שעות. לא תינתן הארכה.
 - אין לעשות שימוש בחומר עזר. •

שאלה 1 (20 נק')

על מנת לפתור את weighted-A* נתון מרחב מצבים ויוריסטיקה h. הוחלט לעשות שימוש באלגוריתם $w_1,w_2 \in [0,1]$. הבעיה. האלגוריתם הורץ פעמיים, עם שתי משקולות שונות

- (10 נק') אז ההרצה עם w_2 אז ההרצה עם w_2 , אז ההרצה עם w_2 , אז ההרצה עם $w_1 < w_2$
- ב. כיצד תשתנה תשובתכם לסעיף א' אם נתון שהיוריסטיקה h היא פרופורציונלית ל- $h^*(s_1)>h(s_2)\Leftrightarrow h^*(s_1)>h^*(s_2)$ (פרופורציונלית:

שאלה 2 (20 נק')

נתון משחק סכום-אפס עם מקדם סיעוף b. הוחלט להריץ את אלגוריתם אלפא-ביתא עם מיון בנים. לשחקן נתונה פונקציית תועלת μ , שתשמש גם להערכת העלים וגם למיון הבנים. כל עלויות החישוב זניחות ביחס לזמן החישוב של μ .

?בהנחה שהמיון הוא אופטימלי, מאיזה עומק יהיה מיון בנים באמצעות u חסכוני יותר מאשר מיון אקראי

שאלה 3 (20 נק')

נתונה קבוצת דוגמאות עם תכונות נומינליות. ידוע כי אין רעש בסיווג. הקבוצה חולקה לקבוצת אימון נתונה קבוצת מבחן. נתונים גם שני עצי החלטה T_1, T_2 הקונסיסטנטיים עם קבוצת האימון.

- (10 נק') או T_2 או T_2 , אז T_1 אז T_1 , אז T_1 , אז T_1 , אז T_2 או הוכח\הפרך: אם
- (10) ב. הוכח\הפרך: אם $|T_1| < |T_1|$, אז $|T_1| < |T_2|$ מדויק יותר מ- $|T_2|$ על קבוצת המבחן.

שאלה 4 (10 נק')

הוחלט להשתמש באלגוריתם *A על מנת למצוא את ההוכחה הקצרה ביותר ברזולוציה. הוצעה היוריסטיקה הבאה לפתרון הבעיה:

$$h(s) = \min_{\varphi \in s} \#literals(\varphi)$$

כלומר, מספר הליטרלים בפסוקית הקטנה ביותר במצב הנוכחי.

הוכח\הפרך: היוריסטיקה h קבילה.

(נק') שאלה 5

נתונה קבוצה של N איברים. ידוע כי קיימת תת-קבוצה "אידיאלית" לקבוצה זו; נסמנה G. ברצוננו למצוא את G באמצעות חיפוש לוקאלי. הוצעו ארבעה אלגוריתמים שונים לפתרון הבעיה, כל אחד עם יתרונותיו וחסרונותיו:

- Exhaustive Search •
- Steepest-Ascent Hill-Climbing with Side-Stepping •
- Steepest-Ascent Hill-Climbing with Random-Restarts (no side-stepping)
 - Stochastic Hill-Climbing •

עבור כל אלגוריתם חיפוש, עליכם להציע פונקציית תועלת (utility) שתגרום לאלגוריתם הזה למצוא את לפני כל השאר (בהסתברות גבוהה). G

למשל, עבור חיפוש אקזוסטיבי, ניתן להסתכל על פונקציית התועלת:

$$u(s) = \begin{cases} 1 & s = G \\ 0 & s \neq G \end{cases}$$

בהצלחה!