Программирование с зависимыми типами

Эридан Доморацкий (на основе курса Валерия Исаева)

6 сентября 2025 г.

Мотивация

- ▶ Типизация в языках программирования позволяет выражать свойства программ
- Чем мощнее система типов, тем больше свойств она позволяет выразить
- Зависимые типы позволяют полностью описывать спецификацию программы

Пример

В простых системах типов мы можем приписать функции сортировки такой тип:

$$\mathtt{sort}: \forall \alpha. \ \mathtt{List} \ \alpha \to \mathtt{List} \ \alpha$$

- Этот тип ничего не говорит о результате работы функции, кроме того, что это список элементов того же типа, что и исходный
- В языке с зависимыми типами мы можем уточнить её тип до:

$$\mathtt{sort}: \forall \alpha. \ \mathtt{List} \ \alpha \to \mathtt{SortedList} \ \alpha$$

И даже так мы всё ещё не полностью описали её... Что осталось за кадром?

Пример

 В простых системах типов мы можем приписать функции сортировки такой тип:

$$\mathtt{sort}: \forall \alpha. \ \mathtt{List} \ \alpha \to \mathtt{List} \ \alpha$$

- Этот тип ничего не говорит о результате работы функции, кроме того, что это список элементов того же типа, что и исходный
- В языке с зависимыми типами мы можем уточнить её тип до:

$$\mathtt{sort}: \forall \alpha. \ \mathtt{List} \ \alpha \to \mathtt{SortedList} \ \alpha$$

И даже так мы всё ещё не полностью описали её...
 Что осталось за кадром? Результирующий список должен содержать те же элементы, что и исходный

Альтернативы

- ► Если мы хотим описать тип отсортированных списков, то нам нужно уметь выражать произвольные логические формулы
- Тогда мы можем определить этот тип следующим способом:

```
\big\{ \mathtt{xs} : \mathtt{List} \ \alpha \ \big| \ \forall i, 2 \leq i \leq \mathtt{length} \ \mathtt{xs} \to \mathtt{xs} [\mathtt{i} \ \mathtt{-} \ \mathtt{1}] \leq \mathtt{xs} [\mathtt{i}] \big\}
```

- ► Если мы хотим реализовать функцию sort, то нам нужно не только уметь выражать утверждения, но и их доказательства
- Тогда мы могли бы разделить язык на две части: отдельно программы и отдельно доказательства

Соответствие Карри-Говарда

- Зависимые типы предоставляют более гибкий и удобный подход
- ▶ Логические формулы можно записывать на языке типов, тогда доказательство это программа соответствующего типа:

Логическая связка		Т	\rightarrow	\wedge	V
Конструктор типа	Void	()	->	(,)	Either

▶ Благодаря этому нет необходимости в двух разных языках

Зависимые типы

При помощи простых типов можно выражать только формулы пропозициональной логики:

$$((P \to Q) \to P) \to P \simeq ((\alpha \to \beta) \to \alpha) \to \alpha$$

- Для формулировки интересных утверждений нам нужны кванторы
- Аналогами кванторов являются зависимые типы

Лямбда-куб

Рис.: Лямбда-куб

- $\lambda \to -$ просто-типизированное λ -исчисление, STLC
- λ2 System F, Haskell
- $\triangleright \lambda \omega$ GHC Haskell
- $ightharpoonup \lambda P$ STLC с зависимыми типами
- $ightharpoonup \lambda P\omega$ исчисление конструкций, Coq, Agda

Алгебра типов

- Мы умеем думать о типах с точки зрения количества элементов:
 - ▶ Void пустой
 - ▶ () один элемент
 - ightharpoonup Either a b a+b элементов
 - \triangleright (a, b) $a \cdot b$ элементов
 - ▶ a -> b b^a элементов
- Зависимые типы привносят в эту схему дополнительную степень свободы

∑-типы

Как закодировать квантор существования в типах?

Σ-типы

- ▶ Как закодировать квантор существования в типах?
- ▶ Квантор существования можно представлять как дизъюнкцию:

$$\exists x \in A. \ P(x) \simeq P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$$

Σ-типы

- ▶ Как закодировать квантор существования в типах?
- Квантор существования можно представлять как дизъюнкцию:

$$\exists x \in A. \ P(x) \simeq P(x_1) \lor P(x_2) \lor ... \lor P(x_n)$$

▶ Дизъюнкцию мы кодируем как тип-сумму:

$$P(x_1) \vee P(x_2) \vee ... \vee P(x_n) \simeq P x_1 + P x_2 + ... + P x_n$$

Σ-типы

- ▶ Как закодировать квантор существования в типах?
- ▶ Квантор существования можно представлять как дизъюнкцию:

$$\exists x \in A. \ P(x) \simeq P(x_1) \vee P(x_2) \vee ... \vee P(x_n)$$

Дизъюнкцию мы кодируем как тип-сумму:

$$P(x_1) \vee P(x_2) \vee ... \vee P(x_n) \simeq P x_1 + P x_2 + ... + P x_n$$

▶ Обобщим тип-сумму до Σ-типа:

$$P x_1 + P x_2 + ... + P x_n \simeq \sum_{x:A} P x$$

- ightharpoonup Значениями ightharpoonup-типов являются зависимые пары: если a : m A и b : m B m a, то (a,b) : $m \sum_{a:A}
 m B$ m a, то есть тип второго элемента зависимой пары зависит от значения первого элемента
- С другой стороны, Σ-типы обобщают типы-произведения до типов зависимого произведения
- Таким образом, тип независимого произведения $A \times B$ может быть записан как $\sum_{a \in A} B$, где B не зависит от a

▶ Как закодировать квантор всеобщности в типах?

- Как закодировать квантор всеобщности в типах?
- ▶ Квантор всеобщности можно представлять как конъюнкцию:

$$\forall x \in A. \ P(x) \simeq P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n)$$

- ▶ Как закодировать квантор всеобщности в типах?
- ▶ Квантор всеобщности можно представлять как конъюнкцию:

$$\forall x \in A. \ P(x) \simeq P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n)$$

▶ Конъюнкцию мы кодируем как тип-произведение:

$$P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n) \simeq P \ x_1 \times P \ x_2 \times ... \times P \ x_n$$

- Как закодировать квантор всеобщности в типах?
- Квантор всеобщности можно представлять как конъюнкцию:

$$\forall x \in A. \ P(x) \simeq P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n)$$

Конъюнкцию мы кодируем как тип-произведение:

$$P(x_1) \wedge P(x_2) \wedge ... \wedge P(x_n) \simeq P \ x_1 \times P \ x_2 \times ... \times P \ x_n$$

Обобщим тип-произведение до П-типа:

$$P x_1 \times P x_2 \times ... \times P x_n \simeq \prod_{x:A} P x$$

- Значениями П-типов являются зависимые функции: у которых тип возвращаемого значения зависит от значения переданного аргумента
- С другой стороны П-типы обобщают стрелочные типы (типы-экспоненты) до типов зависимых функций
- ▶ Таким образом, тип независимой функции $A \to B$ может быть записан как $\prod_{a \in A} B$, где B не зависит от a

Применения

Языки с зависимыми типами используют для двух разных целей:

- Во-первых, для верификации программ:
 - Мы можем записывать формальные свойства алгоритмов на языке типов, после чего доказывать их выполнение
 - Некоторые языки с зависимыми типами предоставляют возможность экстракции программ в исполняемые языки, чтобы минимизировать человеческий фактор
- Во-вторых, для формализации математики:
 - Раз уж языки с зависимыми типами позволяют нам записывать произвольные логические формулы, мы можем записывать на них и абстрактные математические утверждения и доказывать их в выбранной аксиоматике
 - Языки программирования предоставляют некоторую аксиоматику «из коробки» и зачастую позволяют расширять её дополнительными аксиомами

Реализации

- ► Существует несколько языков с зависимыми типами: Agda, Idris, Rocq (Coq), Lean, F* и т. д.
- ► Мы будем использовать Arend:
 - Использует преимущественно λ -синтаксис (в отличие от Coq и ему подобных), что позволит смотреть наиболее конкретно на суть происходящего
 - Использует гомотопическую теорию типов (HoTT), что позволит нам посмотреть на богатство и гибкость современных зависимых систем типов (чтобы другие потом казались убогими)
 - Интегрирован в IntelliJ IDEA, что упрощает начало работы с языком (потому что не надо разбираться с установкой инструментария для программирования)