Quantum Computation Estimating eigenvalues: An application of QFT

Luís Soares Barbosa & Renato Neves

MSc Physics Engineering

Universidade do Minho, 2024-25

The problem: Eigenvalue estimation

Several algorithms previously discussed (Simon, Deutsch-Joza, etc) resort to the following technique:

- Take a controlled version of an operator *U* and prepare the target qubit with an eigenvector,
- win order to push up (or kick back) the associated eigenvalue to the state of the control qubit as in

$$cU\left(a_{0}|0\rangle+a_{1}|1\rangle\right)\left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right) \; = \; \left((-1)^{f(0)}a_{0}|0\rangle+(-1)^{f(1)}a_{1}|1\rangle\right) \; \left(\frac{|0\rangle-|1\rangle}{\sqrt{2}}\right)$$

The problem: Eigenvalue estimation

The question

Can this technique be generalised to estimate the eigenvalues of an arbitrary, *n*-qubit unitary operator U?

The eigenvalue estimation problem

Let $(|\psi\rangle,e^{i2\pi\phi})$, with $0\leq\phi<1$, be an eigenvector, eigenvalue pair for a unitary U. Determine ϕ .

Note that eigenvalues of unitary operators are always of this form. Why?

The strategy

- Use a controlled version of $\it U$ to prepare a state from which $\it \phi$ can be found.
- Then, resort to the inverse of the QFT to find it.
- The accuracy of the estimation increases with the number of qubits available for the recovery state

(Thus the problem reduces to a the phase estimation problem already discussed)

A Simple Example

Suppose we only have one qubit available. With it we can solve the following simple problem:

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ st ϕ is equal to one of the values $\{0\cdot\frac{1}{2},1\cdot\frac{1}{2}\}$. Find out ϕ .

This is obtained via the circuit

A Simple Example

Actually

$$\begin{aligned} |0\rangle |\psi\rangle &\mapsto_{H\otimes Id} \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) |\psi\rangle \\ &\mapsto_{cU} \frac{1}{\sqrt{2}}(|0\rangle |\psi\rangle + |1\rangle U |\psi\rangle) \\ &= \frac{1}{\sqrt{2}}(|0\rangle |\psi\rangle + e^{i2\pi\phi} |1\rangle |\psi\rangle) \\ &= \frac{1}{\sqrt{2}}(|0\rangle |\psi\rangle + e^{i2\pi\frac{x}{2}} |1\rangle |\psi\rangle) \\ &= \frac{1}{\sqrt{2}}(|0\rangle |\psi\rangle + \omega^{1\cdot x} |1\rangle |\psi\rangle) \\ &\mapsto_{QFT_1^{-1}\otimes Id} |x\rangle |\psi\rangle \end{aligned}$$

The general case

In less trivial cases, a multi-controlled version of U is reguired:

Intuitively it applies U to $|y\rangle$ a number of times equal to x

Examples

$$|10\rangle\,|y\rangle\mapsto|10\rangle\,(UU\,|y\rangle)$$
 and $|00\rangle\,|y\rangle\mapsto|00\rangle\,|y\rangle$

Note that $|\psi\rangle$ is also an eigenvector of U^{\times} , with eigenvalue $e^{i2\pi\times\phi}$, for any integer x.

Multi-controlled operations

Recall that a binary number $x_1 \dots x_n$ corresponds to the natural number $2^{n-1}x_1 + \dots + 2^0x_n$

We use this to build the previous multi-controlled operation in terms of simpler operations

Note that the multi-controlled operation uses n 'simply'-controlled rotations U^{2^i}

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ ϕ is equal to one of the following values $\left\{0\cdot\frac{1}{4},1\cdot\frac{1}{4},2\cdot\frac{1}{4},3\cdot\frac{1}{4}\right\}$

The following circuit discovers ϕ

Another Example

Take a unitary U with an eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ ϕ is equal to one of the following values $\left\{0\cdot\frac{1}{4},1\cdot\frac{1}{4},2\cdot\frac{1}{4},3\cdot\frac{1}{4}\right\}$

The following circuit discovers ϕ

Another Example

$$\begin{split} &|0\rangle\,|0\rangle\\ &\stackrel{H^{\otimes 2}}{\mapsto} \frac{1}{\sqrt{2^2}}\big(|00\rangle + |01\rangle + |10\rangle + |11\rangle\big)\\ &\stackrel{\mathsf{ctrl.}}{\mapsto} {}^U \frac{1}{\sqrt{2^2}}\big(|00\rangle + e^{i2\pi\phi}\,|01\rangle + e^{i2\pi\phi\cdot2}\,|10\rangle + e^{i2\pi\phi\cdot3}\,|11\rangle\big)\\ &= \frac{1}{\sqrt{2^2}}\big(|00\rangle + e^{i2\pi\times\frac{1}{4}}\,|01\rangle + e^{i2\pi\times\frac{1}{4}\cdot2}\,|10\rangle + e^{i2\pi\times\frac{1}{4}\cdot3}\,|11\rangle\big)\\ &= \frac{1}{\sqrt{2^2}}\big(|00\rangle + \omega_2^{\mathsf{x}}\,|01\rangle + \omega_2^{\mathsf{x}\cdot2}\,|10\rangle + \omega_2^{\mathsf{x}\cdot3}\,|11\rangle\big)\\ &\stackrel{QFT_2^{-1}}{\mapsto} |_{\mathsf{x}}\rangle \end{split}$$

Yet Another Example

Take a unitary U with eigenvector $|\psi\rangle$ whose eigenvalue is $e^{i2\pi\phi}$ st $\phi\in\left\{0\cdot\frac{1}{2^n},\ldots,2^n-1\cdot\frac{1}{2^n}\right\}$

The following circuit returns x such that $\phi = x \cdot \frac{1}{2^n}$

Exercise

Prove that indeed the circuit returns x such that $\phi = x \cdot \frac{1}{2^n}$

Yet Another Example

Exercise

Show that $QFT_n|0\rangle = H^{\otimes n}|0\rangle$.

Note that this allows to rewrite the previous circuit in the one below

Complexity of quantum eigenvalue estimation

How many gates does the circuit above use?

n 'Hadamards' + n 'simply'-controlled gates + n^2 gates for QFT_n^{-1}

encodes k in local phases (in the form of rotations)

... but precision is Limited

We assumed $0 \le \phi < 1$ takes a value from $\left\{0 \cdot \frac{1}{2^n}, \dots, 2^n - 1 \cdot \frac{1}{2^n}\right\}$... an assumption that arose from having only n qubits to estimate ...

But what to do if ϕ takes none of these values? Return the *n*-bit number k with $k \cdot \frac{1}{2^n}$ the value above closest to ϕ

Is the circuit above up to this task?

Setting the stage

Let
$$\omega_n = e^{i2\pi \cdot \frac{1}{2^n}}$$

To answer the previous question, we will use the following explicit defn. of OFT^{-1}

$$QFT_n^{-1}|x\rangle = \frac{1}{\sqrt{2^n}} \sum_{k=0}^{2^n - 1} \omega_n^{-k \cdot x} |k\rangle$$

Exercise

Prove that QFT_n^{-1} is indeed the inverse of QFT_n

Setting the stage

Let $k \cdot \frac{1}{2^n}$ be the value in $\left\{0 \cdot \frac{1}{2^n}, \dots, 2^n - 1 \cdot \frac{1}{2^n}\right\}$ closest to ϕ , i.e.

$$\exists_{\epsilon} \cdot 0 \leq |\epsilon| \leq \frac{1}{2^n} \text{ and } k \cdot \frac{1}{2^n} + \epsilon = \phi$$

Note that the difference ϵ decreases when the number of qubits increases.

Recall the circuit

converts $|0\rangle$ to Fourier basis converts encoded info. to comput. basis ψ

encodes k in local phases (in the form of rotations

Setting the stage

Let $k \cdot \frac{1}{2^n}$ be the value in $\left\{0 \cdot \frac{1}{2^n}, \dots, 2^n - 1 \cdot \frac{1}{2^n}\right\}$ closest to ϕ , i.e.

$$\exists_{\epsilon} \cdot 0 \leq |\epsilon| \leq \frac{1}{2^n} \text{ and } k \cdot \frac{1}{2^n} + \epsilon = \phi$$

Note that the difference ϵ decreases when the number of qubits increases.

Recall the circuit

converts |0 to Fourier basis converts encoded info. to comput. basis

encodes k in local phases (in the form of rotations)

Computing the output again

$$\begin{split} &|0\rangle \\ &\stackrel{H^{\otimes n}}{\mapsto} \frac{1}{\sqrt{2^{n}}} \big(|0\rangle + |1\rangle + \dots + |2^{n} - 1\rangle \big) \\ &\stackrel{\text{ctrl.}}{\mapsto} U \frac{1}{\sqrt{2^{n}}} \Big(|0\rangle + e^{i2\pi\phi \cdot 1} |1\rangle + \dots + e^{i2\pi\phi \cdot 2^{n-1}} |2^{n} - 1\rangle \Big) \\ &= \frac{1}{\sqrt{2^{n}}} \Big(|0\rangle + e^{i2\pi(k \cdot \frac{1}{2^{n}} + \epsilon) \cdot 1} |1\rangle + \dots + e^{i2\pi(k \cdot \frac{1}{2^{n}} + \epsilon) \cdot 2^{n-1}} |2^{n} - 1\rangle \Big) \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n} - 1} e^{i2\pi(k \cdot \frac{1}{2^{n}} + \epsilon) \cdot j} |j\rangle \\ &= \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n} - 1} e^{i2\pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i2\pi\epsilon \cdot j} |j\rangle \\ QFT^{-1} \frac{1}{\sqrt{2^{n}}} \sum_{j=0}^{2^{n} - 1} e^{i2\pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i2\pi\epsilon \cdot j} \Big(\frac{1}{\sqrt{2^{n}}} \sum_{l=0}^{2^{n} - 1} e^{-i2\pi j \cdot \frac{1}{2^{n}} \cdot l} |l\rangle \Big) \\ &= \frac{1}{2^{n}} \sum_{j=0}^{2^{n} - 1} e^{i2\pi k \cdot \frac{1}{2^{n}} \cdot j} e^{i2\pi\epsilon \cdot j} \Big(\sum_{l=0}^{2^{n} - 1} e^{-i2\pi j \cdot \frac{1}{2^{n}} \cdot l} |l\rangle \Big) \\ &= \frac{1}{2^{n}} \sum_{j=0}^{2^{n} - 1} \sum_{l=0}^{2^{n} - 1} e^{i2\pi\epsilon \cdot j} e^{i2\pi j \cdot \frac{1}{2^{n}} \cdot (k - l)} |l\rangle \end{split}$$

Looking into the final state

The amplitude of $|k\rangle$ is $\frac{1}{2^n}\sum_{j=0}^{2^n-1}e^{i2\pi\epsilon\cdot j}$ which is a finite geometric series.

Therefore,

$$\frac{1}{2^{n}} \sum_{j=0}^{2^{n}-1} e^{i2\pi\epsilon j} = \begin{cases} 1 & \text{if } \epsilon = 0\\ \frac{1}{2^{n}} \frac{1 - e^{i2\pi\epsilon 2^{n}}}{1 - e^{i2\pi\epsilon}} & \text{if } \epsilon \neq 0 \end{cases}$$

Let us proceed under the assumption $\epsilon \neq 0$.

A geometric detour

 $|1 - e^{i\theta}|$ for some angle θ is the Euclidean distance between 1 and $e^{i\theta}$ (length of the straight line segment between both points)

Consider also arc length θ between 1 and $e^{i\theta}$ (distance between the two points by running along the unit circle)

Theorem

Let d^E and d^a be respectively the Euclidean distance and arc length between 1 and $e^{i\theta}$. Then,

a.
$$d^E \leq d^a$$

b. if
$$0 \le \theta \le \pi$$
 we have $\frac{d^a}{d^E} \le \frac{\pi}{2}$

Finally!

Recall $\left|\frac{1}{2^n}\frac{1-e^{i2\pi\epsilon^2n}}{1-e^{i2\pi\epsilon}}\right|^2$ is the probability of measuring $|k\rangle$

$$\begin{split} \left| \frac{1}{2^n} \frac{1 - e^{i2\pi\epsilon 2^n}}{1 - e^{i2\pi\epsilon}} \right|^2 &= \left(\frac{1}{2^n} \right)^2 \frac{\left| 1 - e^{i2\pi\epsilon 2^n} \right|^2}{\left| 1 - e^{i2\pi\epsilon} \right|^2} \\ &\geq \left(\frac{1}{2^n} \right)^2 \frac{\left| 1 - e^{i2\pi\epsilon 2^n} \right|^2}{(2\pi\epsilon)^2} & \qquad \qquad \{\text{Thm. [a.]}\} \\ &\geq \left(\frac{1}{2^n} \right)^2 \frac{\left(\frac{2}{\pi} \cdot 2\pi\epsilon 2^n \right)^2}{(2\pi\epsilon)^2} & \qquad \qquad \{\text{Thm. [b.]}\} \\ &= \left(\frac{1}{2^n} \right)^2 \frac{\left(4\epsilon 2^n \right)^2}{(2\pi\epsilon)^2} \\ &= \left(\frac{1}{2^n} \right)^2 \frac{\left(2 \cdot 2^n \right)^2}{\pi^2} = \frac{2^2}{\pi^2} = \frac{4}{\pi^2} \end{split}$$

Working with a superposition of eigenvectors

The algorithm requires an eigenvector as input, but sometimes is highly difficult to build such a vector.

Often it is easier to feed instead a superposition of eigenvectors.

Indeed, by the spectral theorem one knows that the eigenvectors $\{|\psi_1\rangle,\ldots,|\psi_N\rangle\}$ of U (with associated eigenvalues $e^{i2\pi\phi_1},\ldots,e^{i2\pi\phi_N}$) form a basis for the $N(=2^n)$ -dimensional vector space on which U acts.

Thus, one may define

$$|\psi\rangle = \frac{1}{\sqrt{N}}(|\psi_1\rangle + \cdots + |\psi_N\rangle)$$

to feed the circuit

Working with a superposition of eigenvectors

encodes k in local phases (in the form of rotations)

Exercise

Show that if $\forall_{i \leq N} \cdot \phi_i \in \left\{0 \cdot \frac{1}{2^n}, \dots, 2^n - 1 \cdot \frac{1}{2^n}\right\}$ then the circuit's output is

$$\frac{1}{\sqrt{N}} \left(\left. \left| x_1 \right\rangle \left| \psi_1 \right\rangle + \dots + \left| x_N \right\rangle \left| \psi_N \right\rangle \right) \qquad \left(\phi_i = x_i \cdot \frac{1}{2^n} \right)$$