- 附件 10:问题 3 中,各点水速相同、水流与风同向时,锚链长度、型号、重物 球质量的 Matlab 求解程序
- 附件 11: 问题 3 中,各点水速相同、水流与风同向时,钢桶和钢管的倾斜角度、 锚链形状的 Matlab 求解程序

九、附件

附件 1: 风力方向与水流力方向同向时的刚体力学方程组 以水流力与风力同向为例,对模型 1 中的刚体力学方程组罗列如下:

钢桶及重物球:
$$\begin{cases} x: F_1 \sin \gamma_1 = F' \\ y: G_{bucket} + G_{ball} + \frac{F'}{\cos \alpha_2} \sin \alpha_2 = f_{ball} + f_{bucket} + F_1 \cos \gamma_1 \\ G_{ball} L \sin \beta + F_1 L \sin (\beta - \gamma_1) = \frac{F'}{\cos \alpha_2} L \sin \left(\frac{\pi}{2} - \alpha_2 - \beta\right) \end{cases}$$
钢管 1:
$$\begin{cases} G_{pipe} + F_1 \cos \gamma_1 = f_{pipe} + F_2 \cos \gamma_2 \\ F_1 \sin \gamma_1 = F_2 \sin \gamma_2 + + F_{wat_pipe} \\ F_1 L \sin (\gamma_1 - \theta_1) = F_2 L \sin (\theta_1 - \gamma_2) \end{cases}$$

$$\begin{cases} G_{pipe} + F_2 \cos \gamma_2 = f_{pipe} + F_3 \cos \gamma_3 \\ F_2 \sin \gamma_2 = F_3 \sin \gamma_3 + F_{wat_pipe} \\ F_2 L \sin (\gamma_2 - \theta_2) = F_3 L \sin (\theta_2 - \gamma_3) \end{cases}$$

$$\begin{cases} G_{pipe} + F_3 \cos \gamma_3 = f_{pipe} + F_4 \cos \gamma_4 \\ F_3 \sin \gamma_3 = F_4 \sin \gamma_4 + F_{wat_pipe} \\ F_3 L \sin (\gamma_3 - \theta_3) = F_4 L \sin (\theta_3 - \gamma_4) \end{cases}$$

$$\begin{cases} G_{pipe} + F_4 \cos \gamma_4 = f_{pipe} + F_5 \cos \gamma_5 \\ F_4 \sin \gamma_4 = F_5 \sin \gamma_5 + F_{wat_pipe} \\ F_4 L \sin (\gamma_4 - \theta_4) = F_5 L \sin (\theta_4 - \gamma_5) \end{cases}$$

$$\begin{cases} \pi \left(\frac{2}{2}\right)^2 dg \rho = G_{buoy} + F_5 \cos \gamma_5 \\ F_5 \sin \gamma_5 = 0.625 \times 2 \times (2 - d) v^2 + 374 \times 2 \times d \times v^2 \end{cases}$$

总高度: $H = y_0 + l_{bucket} \cos \beta + l_{pipe} (\cos \theta_1 + \cos \theta_2 + \cos \theta_3 + \cos \theta_4) + d$ 其中 $F' = F_{wind} + 4F_{wat_pipe} + F_{wat_bucket} + F_{wat_float}$

$$y = \frac{F'}{\sigma g} \cosh\left(\frac{\sigma g}{F'} x + \sinh^{-1}(\tan \alpha_1)\right) - \frac{F'}{\sigma g} \cosh\left(\sinh^{-1}(\tan \alpha_1)\right)$$

游动区域的最大半径: $R = x_0 + l_{bucket} \sin \beta + l_{pipe} \left(\sin \theta_1 + \sin \theta_2 + \sin \theta_3 + \sin \theta_4 \right)$ 其中 20 个方程中的符号含义同模型一,上述方程是以水流力与风力同向为例,水流力与风力反向、垂直时,对上述方程组的更改方式如(40)-(45)式,或(46)-(52)式。

附件 2: 问题 3 中,各点水速相同、水力与风力反向时的求解结果 表 7 各点水速相同、水力与风力反向时的系泊系统参数表

深度 H	H=16m	H=17m	H=18m	H=19m	H=20m
钢桶与竖直线夹角β	4.2767°	4.2466°	4.2174°	4.1891°	4.1615°
钢管 1 倾斜角度 θ_{l}	4.2296°	4.2001°	4.1715°	4.1438°	4.1168°
钢管 2 倾斜角度 $ heta_2$	4.2206°	4.1913°	4.1629°	4.1352°	4.1084°
钢管 3 倾斜角度 θ_3	4.2118°	4.1825°	4.1542°	4.1267°	4.1000°
钢管 4 倾斜角度 $ heta_{\!\scriptscriptstyle 4}$	4.2029°	4.1738°	4.1456°	4.1183°	4.0916°
浮标吃水深度 d	1.7569m	1.7673m	1.7775m	1.7876m	1.7975m
游动区域最大半径R	17.8246m	17.2931m	16.7433m	16.1768m	15.5948m
锚链与海床夹角 α_1	0°	0°	0°	0°	0°

H分别为16m、17m、18m、19m、20m 时绘制的锚链形状图形如下:

附件 3: 问题 3 中,各点水速相同、水力与风力垂直时的求解结果 表 8 各点水速相同、水力与风力垂直时的系泊系统参数表

深度 H	H=16m	H=17m	H=18m	H=19m	H=20m
钢桶与竖直线夹角β	3.8142°	3.8056°	3.7974°	3.7895°	3.7820°
钢管 1 倾斜角度 $\theta_{ ext{l}}$	3.7719°	3.7637°	3.7559°	3.7484°	3.7412°
钢管 2 倾斜角度 θ_2	3.7639°	3.7558°	3.7480°	3.7406°	3.7334°
钢管 3 倾斜角度 θ_3	3.7560°	3.7479°	3.7402°	3.7329°	3.7258°

钢管 4 倾斜角度 $ heta_{\scriptscriptstyle 4}$	3.7480°	3.7400°	3.7324°	3.7252°	3.7182°
浮标吃水深度 d	1.7506m	1.7610m	1.7713m	1.7814m	1.7914m
游动区域最大半径R	17.6114m	17.0670m	16.5060m	15.9300m	15.3403m
锚链与海床夹角 $lpha_{ m l}$	0°	0°	0°	0°	0°

H分别为16m、17m、18m、19m、20m 时绘制的锚链形状图形如下:

附件 4: 问题 3 中,各点水速不同、水力与风力同向时的求解结果 表 9 各点水速不同、水力与风力同向时的系泊系统参数表

(大) 日 点 小 返 行 引 、					
深度 H	H=16m	H=17m	H=18m	H=19m	H=20m
钢桶与竖直线夹角β	4.4417°	4.4105°	4.3803°	4.3511°	4.3226°
钢管 1 倾斜角度 $ heta_{ ext{ iny l}}$	4.3632°	4.3324°	4.3026°	4.2737°	4.2455°
钢管 2 倾斜角度 $ heta_2$	4.3150°	4.2846°	4.2552°	4.2267°	4.1990°
钢管 3 倾斜角度 θ_3	4.2671°	4.2372°	4.2081°	4.1800°	4.1526°
钢管 4 倾斜角度 $ heta_{\!\scriptscriptstyle 4}$	4.2142°	4.1847°	4.1560°	4.1283°	4.1014°
浮标吃水深度 d	1.7612m	1.7718m	1.7821m	1.7923m	1.8024m
游动区域最大半径R	17.9413m	17.4212m	16.8888m	16.3368m	15.7695m
锚链与海床夹角 $lpha_{\!\scriptscriptstyle l}$	0°	0°	0°	0°	0°

H分别为 16m、17m、18m、19m、20m 时绘制的锚链形状图形如下:

附件 5: 水流力与风力夹角为任意角度时,锚链形状水流力与风力夹角为任意角度 η,按照模型三中所求解得到的三个决策变量,锚链取五号,长度 20.9m,重物球质量 4635.24kg, 当水深为 20m 时,锚链线形状:

图 16 水流力与风力不同夹角时锚链形状

附件 6: 问题 1 中,系泊系统参数求解的 Matlab 程序

function question1

options=optimset('MaxFunEvals',1e4,'MaxIter',1e4);

format long

[x,fval,exitflag]=fsolve(@fangcheng,x0,options)%设置初值

x(9:18)=x(9:18)/pi*180

function F=fangcheng(x)

Fwind=x(1);%风力

unuse=x(2);

alph1=0:%弧度<0.2793

d=x(3);%吃水深度 0.5

F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); the eta 4=x(12);

beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18); x1=x(19);%锚链末端横坐标

%%

Vwind=24;%风速

H=18;%水深

p=1025;%海水密度

sigma=7;

g=9.8;%重力加速度

```
Mball=1200*0.869426751592357;%重物球质量
maolian=22.05:%锚链长度
maolian=maolian-x(2);%减去沉在海底的长度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)(Fwind/sigma/g*cosh(sigma*g*t/Fwind+asinh(tan(alph1)))-Fwind/sigma/g*co
sh(asinh(tan(alph1))));
Dy=(a)(t)(sqrt(1+(sinh(sigma*g*t/Fwind+asinh(tan(alph1)))).^2));
xx=0:0.001:x1;
yy=y(xx);
xx=[0:0.001:unuse,xx+unuse+0.001];
u=length(0:0.001:unuse);
yy=[zeros(1,u),yy];
plot(xx,yy,'LineWidth',3,'markersize',8)
set(gca,'xtick',[0:x1+unuse+1],'ytick',[0:yy(end)+1])
title('锚链形状')
xlabel('锚链投影长度/m')
ylabel('距离海底高度/m')
grid on
R=sin(beta)+sin(theta1)+sin(theta2)+sin(theta3)+sin(theta4)+xx(end)-0.001
F(1)=quad(Dy,0,x1)-maolian;%锚链长度
alph2=atan(sinh(sigma*g*x1/Fwind+asinh(tan(alph1))));
v1=v(x1)
%钢桶
F(2)=F1*sin(gama1-beta)+Fwind/cos(alph2)*sin(pi/2-alph2-beta)-Mball*g*sin(beta);
%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-Fwind*tan(alph2);% 竖 直 受
力平衡
F(4)=F1*sin(gama1)-Fwind;%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*sin(gama1-theta1)-F2*sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-Fwind;
F(10)=F3*sin(gama3)-Fwind;
F(11)=F4*sin(gama4)-Fwind;
F(12)=F5*sin(gama5)-Fwind;
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
```

```
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
附件 7: 锚链部分沉底情况下,系泊系统参数求解的 Matlab 程序
function question 1 luodi
x0 = [1372.4, 6, 0.78, 14496.80, 14592.35, 14687.92, 14783.49, 14879.07, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.0
09,0.09,0.09,0.09,0.09,0.09,17.75];
options=optimset('MaxFunEvals',1e4,'MaxIter',1e4);
format long
[x,fval,exitflag]=fsolve(@fangcheng,x0,options)%设置初值
x(9:18)=x(9:18)/pi*180
function F=fangcheng(x)
Fwind=x(1);%风力
unuse=x(2);
alph1=0;%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4);F2=x(5);F3=x(6);F4=x(7);F5=x(8);theta1=x(9);theta2=x(10);theta3=x(11);th
eta4=x(12):
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36:%风速
H=18;%水深
p=1025;%海水密度
sigma=7;
g=9.8;%重力加速度
Mball=4090*0.869426751592357;%重物球质量
maolian=22.05;%锚链长度
maolian=maolian-x(2);%减去沉在海底的长度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)(Fwind/sigma/g*cosh(sigma*g*t/Fwind+asinh(tan(alph1)))-Fwind/sigma/g*co
sh(asinh(tan(alph1))));
Dy=(a)(t)(sqrt(1+(sinh(sigma*g*t/Fwind+asinh(tan(alph1)))).^2));
xx=0:0.001:x1;
yy=y(xx);
xx=[0:0.001:unuse,xx+unuse+0.001];
u=length(0:0.001:unuse);
yy=[zeros(1,u),yy];
```

```
plot(xx,yy,'LineWidth',3,'markersize',8)
set(gca,'xtick',[0:x1+unuse+1],'ytick',[0:yy(end)+1])
title('锚链形状')
xlabel('锚链投影长度/m')
ylabel('距离海底高度/m')
grid on
R=sin(beta)+sin(theta1)+sin(theta2)+sin(theta3)+sin(theta4)+xx(end)-0.001
F(1)=quad(Dy,0,x1)-maolian;%锚链长度
alph2=atan(sinh(sigma*g*x1/Fwind+asinh(tan(alph1))));
y1=y(x1)
%钢桶
F(2)=F1*sin(gama1-beta)+Fwind/cos(alph2)*sin(pi/2-alph2-beta)-Mball*g*sin(beta);
%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-Fwind*tan(alph2);% 竖 直 受
力平衡
F(4)=F1*sin(gama1)-Fwind:%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(\text{gama1-theta1})-F2*\sin(\text{theta1-gama2});
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*\sin(gama3-theta3)-F4*\sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-Fwind;
F(10)=F3*sin(gama3)-Fwind;
F(11)=F4*sin(gama4)-Fwind;
F(12)=F5*sin(gama5)-Fwind;
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
附件 8: 锚链不存在沉底的情况下, 系泊系统参数求解的 Matlab 程序
function question1 weiluodi
x0=[1372.4,6,0.78,14496.80,14592.35,14687.92,14783.49,14879.07,0.09,0.09,0.09,0.09]
09,0.09,0.09,0.09,0.09,0.09,0.09,17.75];
options=optimset('MaxFunEvals',1e4,'MaxIter',1e4);
format long
[x,fval,exitflag]=fsolve(@fangcheng,x0,options)%设置初值\
x(9:18)=x(9:18)/pi*180
function F=fangcheng(x)
```

```
Fwind=x(1);%风力
alph1=x(2);%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); th
eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36:%风速
H=18;%水深
p=1025;%海水密度
sigma=7;
g=9.8;%重力加速度
Mball=2010*0.869426751592357;%重物球质量
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)(Fwind/sigma/g*cosh(sigma*g*t/Fwind+asinh(tan(alph1)))-Fwind/sigma/g*co
sh(asinh(tan(alph1))));
Dy=(a)(t)(sqrt(1+(sinh(sigma*g*t/Fwind+asinh(tan(alph1)))).^2));
Y=y(x1)
xx=0:0.001:x1;
yy=y(xx);
plot(xx,yy,'LineWidth',3,'markersize',8)
set(gca,'xtick',[0:x1+1],'ytick',[0:yy(end)+1])
title('锚链形状')
xlabel('锚链投影长度/m')
ylabel('距离海底高度/m')
grid on
% pause
F(1)=quad(Dy,0,x1)-22.05;%锚链长度
% alph2=atan((y(x1+0.001)-y(x1-0.001))/0.002);
alph2=atan(sinh(sigma*g*x1/Fwind+asinh(tan(alph1))));
y1=y(x1);
R=x1+\sin(beta)+\sin(theta1)+\sin(theta2)+\sin(theta3)+\sin(theta4)
%钢桶
F(2)=F1*sin(gama1-beta)+Fwind/cos(alph2)*sin(pi/2-alph2-beta)-Mball*g*sin(beta);
%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-Fwind*tan(alph2);% 竖 直 受
力平衡
F(4)=F1*sin(gama1)-Fwind;%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(\text{gama1-theta1})-F2*\sin(\text{theta1-gama2});
```

```
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-Fwind;
F(10)=F3*sin(gama3)-Fwind;
F(11)=F4*sin(gama4)-Fwind;
F(12)=F5*sin(gama5)-Fwind;
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
附件 9: 问题 2 中, 系泊系统参数求解的 Matlab 程序
function question2
global Mball
G=[];beta=[];alph1=[];d=[];R=[];
for Mball1=1700:10:5000
    Mball=Mball1*0.869426751592357:
    [x,fval,exitflag,r,Unuse]=fun;
    if (Unuse==0&x(2)>0.279)|x(3)>1.5|x(13)>0.087%只选取阿发 1 小于 16°,浮
标深度小于1.5米, β小于5度的解
        continue
    elseif Unuse==0%代表没有落在地面的锚链
        alph1=[alph1;x(2)];G=[G;Mball1];beta=[beta;x(13)];d=[d;x(3)];R=[R;r];
    else%代表有落在地面的锚链
        alph1=[alph1;0];G=[G;Mball1];beta=[beta;x(13)];d=[d;x(3)];R=[R;r];
    end
end
G,beta=beta/pi*180,alph1=alph1/pi*180,d,R
figure(1)
plot(G,beta)
title('β随重物球质量变化图')
xlabel('重物球质量/kg')
ylabel('β/°')
grid on
figure(2)
plot(G,R)
title('区域半径随重物球质量变化图')
xlabel('重物球质量/kg')
```

```
ylabel('半径/m')
grid on
figure(3)
plot(G,d)
title('吃水深度随重物球质量变化图')
xlabel('重物球质量/kg')
ylabel('深度/m')
grid on
figure(4)
plot(G,alph1)
title(' a 1 随重物球质量变化图')
xlabel('重物球质量/kg')
ylabel('\alpha 1/^{\circ}')
set(gca,'ytick',[0:16])
grid on
figure(5)
k=[0.1,0.8,0.1];%吃水深度: β:区域半径=0.1: 0.8:0.1
y=d/\max(d)*k(1)+beta/\max(beta)*k(2)+R/\max(R)*k(3);
plot(G,y)
title('优化目标随重物球质量变化图')
xlabel('重物球质量/kg')
ylabel('目标值')
grid on
[a,place]=min(y)
G(place),beta(place),alph1(place),d(place),R(place)
end
function [x,fval,exitflag,R,Unuse]=fun
global R Mball
options=optimset('MaxFunEvals',1e4,'MaxIter',1e4);
format long
x0 = [1372.4, 0.18, 0.78, 14496.80, 14592.35, 14687.92, 14783.49, 14879.07, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 
9,0.09,0.09,0.09,0.09,0.09,0.09,0.09,17.75];
[x,fval,exitflag]=fsolve(@fangcheng2,x0,options);
Unuse=0;%代表没有落在地面的锚链
if x(2) < 0
x0=[1372.4,6,0.78,14496.80,14592.35,14687.92,14783.49,14879.07,0.09,0.09,0.09,0.09]
09,0.09,0.09,0.09,0.09,0.09,0.09,17.75];
            [x,fval,exitflag]=fsolve(@fangcheng1,x0,options);
            Unuse=1;%代表有落在地面的锚链
end
end
function F=fangcheng1(x)
global R Mball
```

```
Fwind=x(1);%风力
unuse=x(2):
alph1=0;%弧度<0.2793
d=x(3):%吃水深度 0.5
F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); th
eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36;%风速
H=18;%水深
p=1025;%海水密度
sigma=7;
g=9.8:%重力加速度
% Mball=1200;%重物球质量
maolian=22.05;%锚链长度
maolian=maolian-x(2);%减去沉在海底的长度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)(Fwind/sigma/g*cosh(sigma*g*t/Fwind+asinh(tan(alph1)))-Fwind/sigma/g*co
sh(asinh(tan(alph1))));
Dy=(a)(t)(sqrt(1+(sinh(sigma*g*t/Fwind+asinh(tan(alph1)))).^2));
R=sin(beta)+sin(theta1)+sin(theta2)+sin(theta3)+sin(theta4)+x1+unuse;
F(1)=quad(Dy,0,x1)-maolian;%锚链长度
alph2=atan(sinh(sigma*g*x1/Fwind+asinh(tan(alph1))));
y1=y(x1);
%钢桶
F(2)=F1*sin(gama1-beta)+Fwind/cos(alph2)*sin(pi/2-alph2-beta)-Mball*g*sin(beta);
%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-Fwind*tan(alph2);% 竖直受
力平衡
F(4)=F1*sin(gama1)-Fwind;%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(gama1-theta1)-F2*\sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*\sin(gama3-theta3)-F4*\sin(theta3-gama4);
F(8)=F4*sin(gama4-theta4)-F5*sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-Fwind;
F(10)=F3*sin(gama3)-Fwind;
F(11)=F4*sin(gama4)-Fwind;
F(12)=F5*sin(gama5)-Fwind;
```

```
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
end
function F=fangcheng2(x)
global R Mball
Fwind=x(1);%风力
alph1=x(2);%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); th
eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36;%风速
H=18:%水深
p=1025;%海水密度
sigma=7:
g=9.8;%重力加速度
% Mball=1200;%重物球质量
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)(Fwind/sigma/g*cosh(sigma*g*t/Fwind+asinh(tan(alph1)))-Fwind/sigma/g*co
sh(asinh(tan(alph1))));
Dy=(a)(t)(sqrt(1+(sinh(sigma*g*t/Fwind+asinh(tan(alph1)))).^2));
R=x1+\sin(beta)+\sin(theta1)+\sin(theta2)+\sin(theta3)+\sin(theta4);
F(1)=quad(Dy,0,x1)-22.05;%锚链长度
alph2=atan(sinh(sigma*g*x1/Fwind+asinh(tan(alph1))));
y1=y(x1);
%钢桶
F(2)=F1*sin(gama1-beta)+Fwind/cos(alph2)*sin(pi/2-alph2-beta)-Mball*g*sin(beta);
%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-Fwind*tan(alph2);% 竖 直 受
力平衡
F(4)=F1*sin(gama1)-Fwind;%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(\text{gama1-theta1})-F2*\sin(\text{theta1-gama2});
```

```
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-Fwind;
F(10)=F3*sin(gama3)-Fwind;
F(11)=F4*sin(gama4)-Fwind;
F(12)=F5*sin(gama5)-Fwind;
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*cos(gama3)+10*g-F4*cos(gama4)-floatage_pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
附件 10:问题 3 中,各点水速相同、水流与风同向时,锚链长度、型号、重物
         球质量的 Matlab 求解程序
function question3 junyunshuili %水力与风力同向
clc
clear
tic
global Mball sigma maolian H G BETA ALPH1 D RR A
SIGMA=[3.2,7,12.5,19.5,28.12];
G=[];BETA=[];ALPH1=[];D=[];RR=[];A=[];XX=[];THETA=[];
H=20;
    for xinghao=5:5
        sigma=SIGMA(xinghao);
        for maolian=21.1:0.1:22
            for Mball=4000:1:4002
                [x,fval,exitflag,r,Unuse]=fun;
         (\text{Unuse}=0\&x(2)>0.279)|x(3)>1.8|x(3)<0|x(13)>0.087|\text{exitflag}<1|(\text{Unuse}=0.087)|x(3)>0.087|\text{exitflag}<1|
         =1&x(2)<0)%只选取阿发 1 小于 16°, 浮标深度小于 1.5 米, β 小于 5
         度的解
                     continue
                elseif Unuse==0%代表没有落在地面的锚链
         ALPH1=[ALPH1;x(2)];G=[G;Mbal1];BETA=[BETA;x(13)];D=[D;x(3)];R
         R=[RR;r];A=[A;sigma,maolian,Mball];XX=[XX,[Unuse;x]];THETA=[TH
         ETA,x(12:15)];
                else%代表有落在地面的锚链
```

F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);

```
ALPH1=[ALPH1;0];G=[G;Mball];BETA=[BETA;x(13)];D=[D;x(3)];RR=
         [RR;r];A=[A;sigma,maolian,Mball];XX=[XX,[Unuse;x]];THETA=[THET
         A,x(12:15)];
                end
            end
        end
    end
G,BETA=BETA/pi*180,ALPH1=ALPH1/pi*180,D,RR,A,XX%sigma,maolian,Mball
k=[0.1,0.8,0.1];%吃水深度: β:区域半径=0.1: 0.8:0.1
y=D/1.5*k(1)+BETA/5*k(2)+RR/30*k(3);
[aim,place]=min(y)
D(place),BETA(place),RR(place),A(place,:)%sigma,maolian,Mball
sigma cu=A(place,1)
maolian cu=A(place,2)
Mball cu=A(place,3)
aim cu=aim
THETA=THETA
toc
end
function [x,fval,exitflag,R,Unuse]=fun
global R
format long
x0=[1372.4,0.18,0.78,14496.80,14592.35,14687.92,14783.49,14879.07,0.09,0.09,0.0]
         9,0.09,0.09,0.09,0.09,0.09,0.09,0.09,17.75];
[x,fval,exitflag]=fsolve(@fangcheng2,x0)
Unuse=0;%代表没有落在地面的锚链
if x(2) < 0
         x0=[1372.4,6,0.78,14496.80,14592.35,14687.92,14783.49,14879.07,0.09,
         [x,fval,exitflag]=fsolve(@fangcheng1,x0)
    Unuse=1:%代表有落在地面的锚链
end
end
function F=fangeheng1(x)
global R Mball sigma maolian H
Fwind=x(1);%风力
unuse=x(2);
alph1=0;%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4);F2=x(5);F3=x(6);F4=x(7);F5=x(8);theta1=x(9);theta2=x(10);theta3=x(11);th
         eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
```

```
%%
Vwind=36;%风速
p=1025;%海水密度
g=9.8;%重力加速度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=(a)(t)((Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*1.5)/sigma/g*cosh(sigm
                    nd+42.075*4+252.45+2*d*374*1.5*1.5)+asinh(tan(alph1)))-(Fwind+42.0
                    75*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(asinh(tan(alph1))));
Dy=(a(t)(sqrt(1+(sinh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)+asin))
                   h(tan(alph1))).^2));
R=sin(beta)+sin(theta1)+sin(theta2)+sin(theta3)+sin(theta4)+x1+unuse;
F(1)=quad(Dy,0,x1)-(maolian-x(2));%锚链长度
alph2=atan(sinh(sigma*g*x1/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)+asinh(tan
                    (alph1))));
y1=y(x1);
%钢桶
F(2)=F1*sin(gama1-beta)+(Fwind+42.075*4+2*d*374*1.5*1.5)/cos(alph2)*sin(pi/2-
                   alph2-beta)-Mball*g*sin(beta);%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-(Fwind+42.075*4+252.45+2*
                    d*374*1.5*1.5)*tan(alph2);%竖直受力平衡
F(4)=F1*sin(gama1)-(Fwind+42.075*4+2*d*374*1.5*1.5);%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(gama1-theta1)-F2*\sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*sin(gama4-theta4)-F5*sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-(Fwind+42.075*3+2*d*374*1.5*1.5);
F(10)=F3*\sin(gama3)-(Fwind+42.075*2+2*d*374*1.5*1.5);
F(11)=F4*sin(gama4)-(Fwind+42.075*1+2*d*374*1.5*1.5);
F(12)=F5*\sin(gama5)-(Fwind+2*d*374*1.5*1.5);
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
end
function F=fangcheng2(x)
```

```
global R Mball sigma maolian H
Fwind=x(1);%风力
alph1=x(2);%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); th
         eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36;%风速
p=1025;%海水密度
g=9.8;%重力加速度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
f=2*d*374*1.5*1.5;
%%
y=@(t)((Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+25
         2.45+f)+asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asi
         nh(tan(alph1))));
2));
R=x1+\sin(beta)+\sin(theta1)+\sin(theta2)+\sin(theta3)+\sin(theta4);
F(1)=quad(Dy,0,x1)-maolian;%锚链长度
alph2=atan(sinh(sigma*g*x1/(Fwind+42.075*4+252.45+f)+asinh(tan(alph1))));
y1=y(x1);
%钢桶
F(2)=F1*sin(gama1-beta)+(Fwind+42.075*4+f)/cos(alph2)*sin(pi/2-alph2-beta)-Mba
         ll*g*sin(beta);%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-(Fwind+42.075*4+252.45+f)*
         tan(alph2);%竖直受力平衡
F(4)=F1*sin(gama1)-(Fwind+42.075*4+f);%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(gama1-theta1)-F2*\sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-(Fwind+42.075*3+f);
F(10)=F3*sin(gama3)-(Fwind+42.075*2+f);
F(11)=F4*sin(gama4)-(Fwind+42.075*1+f);
F(12)=F5*sin(gama5)-(Fwind+1683);
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
```

```
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
end
附件 11: 问题 3 中,各点水速相同、水流与风同向时,钢桶和钢管的倾斜角度、
                       锚链形状的 Matlab 求解程序
function question3 fenxi junyunshuili
global Mball H maolian sigma
Mball=4030;H=input('输入海深 H: ');maolian=20.9;sigma=28.12;
  [x,fval,exitflag,r,Unuse]=fun;
if Unuse==0%代表没有落在地面的锚链
                    alph1=x(2);beta=x(13);d=x(3),R=r;
else%代表有落在地面的锚链
                    alph1=0;beta=x(13);d=x(3);R=r;
beta=beta/pi*180,alph1=alph1/pi*180,d,R
x(9:13)/pi*180
end
function [x,fval,exitflag,R,Unuse]=fun
global R Mball
format long
x0 = [1372.4, 0.18, 0.78, 14496.80, 14592.35, 14687.92, 14783.49, 14879.07, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 0.09, 
9,0.09,0.09,0.09,0.09,0.09,0.09,0.09,17.75];
[x,fval,exitflag]=fsolve(@fangcheng2,x0)
Unuse=0:%代表没有落在地面的锚链
if x(2) < 0
x0=[1372.4,6,0.78,14496.80,14592.35,14687.92,14783.49,14879.07,0.09,0.09,0.09,0.09]
09,0.09,0.09,0.09,0.09,0.09,17.75]';
          [x,fval,exitflag]=fsolve(@fangcheng1,x0)
          Unuse=1;%代表有落在地面的锚链
end
end
function F=fangcheng1(x)
global R Mball sigma maolian H
Fwind=x(1);%风力
unuse=x(2);
alph1=0;%弧度<0.2793
d=x(3);%吃水深度 0.5
```

```
F1=x(4); F2=x(5); F3=x(6); F4=x(7); F5=x(8); theta 1=x(9); theta 2=x(10); theta 3=x(11); th
eta4=x(12);
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19):%锚链末端横坐标
%%
Vwind=36;%风速
p=1025;%海水密度
g=9.8;%重力加速度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F = ones(19,1);
%%
y=@(t)((Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*374*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*d*4*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*0*1.5*1.5)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+2*0*1.5)/sigma/g*co
nd+42.075*4+252.45+2*d*374*1.5*1.5)+asinh(tan(alph1)))-(Fwind+42.075*4+252.
45+2*d*374*1.5*1.5)/sigma/g*cosh(asinh(tan(alph1))));
Dy= @(t)(sqrt(1+(sinh(sigma*g*t/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)+asin))
h(tan(alph1)))).^2));
R=sin(beta)+sin(theta1)+sin(theta2)+sin(theta3)+sin(theta4)+x1+unuse;
F(1)=quad(Dy,0,x1)-(maolian-x(2));%锚链长度
alph2=atan(sinh(sigma*g*x1/(Fwind+42.075*4+252.45+2*d*374*1.5*1.5)+asinh(tan
(alph1))));
y1=y(x1);
xx=0:0.001:x1;
yy=y(xx);
xx=[0:0.001:unuse,xx+unuse+0.001];xx=(xx-xx(1))*0.89;
u = length(0:0.001:unuse);
yy=[zeros(1,u),yy];
plot(xx,yy,'LineWidth',3,'markersize',8)
% set(gca,'xtick',[0:x1+unuse+1],'ytick',[0:yy(end)+1])
title('锚链形状')
xlabel('锚链投影长度/m')
ylabel('距离海底高度/m')
grid on
%钢桶
F(2)=F1*sin(gama1-beta)+(Fwind+42.075*4+2*d*374*1.5*1.5)/cos(alph2)*sin(pi/2-
alph2-beta)-Mball*g*sin(beta);%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-(Fwind+42.075*4+252.45+2*
d*374*1.5*1.5)*tan(alph2);%竖直受力平衡
F(4)=F1*sin(gama1)-(Fwind+42.075*4+2*d*374*1.5*1.5);%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(gama1-theta1)-F2*\sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*\sin(gama3-theta3)-F4*\sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
```

```
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-(Fwind+42.075*3+2*d*374*1.5*1.5);
F(10)=F3*\sin(gama3)-(Fwind+42.075*2+2*d*374*1.5*1.5);
F(11)=F4*\sin(gama4)-(Fwind+42.075*1+2*d*374*1.5*1.5);
F(12)=F5*sin(gama5)-(Fwind+2*d*374*1.5*1.5);
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
end
function F=fangcheng2(x)
global R Mball sigma maolian H
Fwind=x(1);%风力
alph1=x(2);%弧度<0.2793
d=x(3);%吃水深度 0.5
F1=x(4);F2=x(5);F3=x(6);F4=x(7);F5=x(8);theta1=x(9);theta2=x(10);theta3=x(11);th
eta4=x(12):
beta=x(13);gama1=x(14);gama2=x(15);gama3=x(16);gama4=x(17);gama5=x(18);
x1=x(19);%锚链末端横坐标
%%
Vwind=36:%风速
p=1025;%海水密度
g=9.8;%重力加速度
floatage bucket=0.15*0.15*pi*p;%钢桶浮力
floatage pipe=0.025*0.025*pi*p;%钢管浮力
F=ones(19,1);
f=2*d*374*1.5*1.5;
%%
y=\omega(t)((Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+252.45+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+52.55+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+52.55+f)/sigma/g*cosh(sigma*g*t/(Fwind+42.075*4+52.55+f)/sigma
2.45+f)+asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+252.45+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1)))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(tan(alph1))-(Fwind+42.075*4+f)/sigma/g*cosh(asinh(ta
h1))));
R=x1+\sin(beta)+\sin(theta1)+\sin(theta2)+\sin(theta3)+\sin(theta4);
F(1)=quad(Dy,0,x1)-maolian;%锚链长度
alph2=atan(sinh(sigma*g*x1/(Fwind+42.075*4+252.45+f)+asinh(tan(alph1))));
y1=y(x1);
xx=0:0.001:x1;
yy=y(xx);
plot(xx,yy,'LineWidth',3,'markersize',8)
```

```
% set(gca,'xtick',[0:x1+1],'ytick',[0:yy(end)+1])
title('锚链形状')
xlabel('锚链投影长度/m')
ylabel('距离海底高度/m')
grid on
%钢桶
F(2)=F1*sin(gama1-beta)+(Fwind+42.075*4+f)/cos(alph2)*sin(pi/2-alph2-beta)-Mba
ll*g*sin(beta);%力矩平衡
F(3)=F1*cos(gama1)+floatage bucket-100*g-Mball*g-(Fwind+42.075*4+252.45+f)*
tan(alph2);%竖直受力平衡
F(4)=F1*sin(gama1)-(Fwind+42.075*4+f);%水平受力平衡
%4个钢管力矩平衡
F(5)=F1*\sin(gama1-theta1)-F2*\sin(theta1-gama2);
F(6)=F2*sin(gama2-theta2)-F3*sin(theta2-gama3);
F(7)=F3*sin(gama3-theta3)-F4*sin(theta3-gama4);
F(8)=F4*\sin(gama4-theta4)-F5*\sin(theta4-gama5);
%4个钢管水平受力平衡
F(9)=F2*sin(gama2)-(Fwind+42.075*3+f);
F(10)=F3*sin(gama3)-(Fwind+42.075*2+f);
F(11)=F4*sin(gama4)-(Fwind+42.075*1+f);
F(12)=F5*sin(gama5)-(Fwind+f);
%4个钢管竖直受力平衡
F(13)=F1*\cos(gama1)+10*g-F2*\cos(gama2)-floatage pipe;
F(14)=F2*\cos(gama2)+10*g-F3*\cos(gama3)-floatage pipe;
F(15)=F3*\cos(gama3)+10*g-F4*\cos(gama4)-floatage pipe;
F(16)=F4*\cos(gama4)+10*g-F5*\cos(gama5)-floatage pipe;
F(17)=F5*cos(gama5)+1000*g-pi*d*p*g;%浮标竖直受力
F(18)=y1+cos(beta)+cos(theta1)+cos(theta2)+cos(theta3)+cos(theta4)+d-H;%水深
F(19)=2*(2-d)*0.625*Vwind*Vwind-Fwind;%风力
end
```