Pramod Parajuli Simulation and Modeling, CS-331

Chapter 6
Probability Concepts

Stochastic Variables

- -Ordered set of random values
- -Stochastic process give rise to stochastic variable
- -Stochastic process can be discrete or continuous

Probability Mass Function (PMF)

- -Distribution of probabilities
- -If a variable can take n different values x_n (n = 1, 2, 3, ... N), and probability of x_n being take is $p(x_n)$, then the set of numbers comprise of $p(x_n)$ is probability mass function

$$\sum_{n=1}^{N} p(x_i) = 1$$

-In certain cases like dice roll, the PMF values may be known (e.g. 1/6). But most of the time, PMF is counted from input sample

-Example - table 6-1

Cumulative Distribution Function (CDF)

-For a continuous variable, probability of any one specific value occurring is considered logically to be zero

$$F(x) = P(-\infty < X \le x)$$

$$F(x) = P(X \le x)$$

$$F(-\infty) = 0$$

$$gives: 0 \le F(x) \le 1$$

$$F(+\infty) = 1$$

-Let f(x) is PDF and the probability that 'x' falls in the range x1 to x2 is given by

$$= \int_{x_1}^{x_2} f(x)dx \qquad = \int_{-\infty}^{\infty} f(x)dx = 1$$

Cumulative Distribution Function

- -As we have seen already, value of 'infinity' is implementation dependent
- -But, the cumulative distribution function (CDF) will be

$$F(x) = \int_{-\infty}^{x} f(x)dx$$

gives, $0 \le F(x) \le 1$

-Therefore, probability of x falling in the range x1 to x2 is,

$$F(x_2) - F(x_1)$$

Probability Density

-If,
$$P(x < X \le x + \Delta x) = f(x).\Delta x$$

then,

$$f(x) = \frac{P(x < X \le x + \Delta x)}{\Delta x}$$

is said to be probability density/density function in continuous system

In discrete system, it is called frequency function

Mean (Expectation)

mean =
$$\frac{1}{N} \sum_{i=1}^{N} x_i$$
 $x_i (i = 1, 2, 3, 4, ..., N)$

If observation fall into I groups i.e. x_i element have

$$n_i$$
 occurrences
$$m = \frac{1}{N} \sum_{i=1}^{I} n_i . x_i \qquad m = \sum_{i=1}^{I} p(x) . x_i$$

For continuous variable;

$$m = \int_{-\infty}^{\infty} x.f(x)dx$$

ble;
$$\sum_{x} (aX) = a\sum_{x} (x)$$

$$\sum_{x} (x_1 + x_2) = \sum_{x} (x_1) + \sum_{x} (x_2)$$
 (C) Pramod Parajuli, 2004

Mean (Expectation)

- -Most of the times, the selection of expectation has no occurrence in the sample
- -Therefore, it is better to take the nearest sample
- -Note; if a value is being multiplied in future, then it must not be corrected. Only after the multiplication it should be corrected. (example)

Mode

Peak probability density function

Median

- -Half of the random values will fall below this point
- -Normally, cumulative function, F(x) = 0.5

Variance

- -Standard deviation
- -Measure of the degree to which data are dispersed from the mean value
- -Computed as +ve square root of variance

$$S = \left[\frac{1}{(N-1)} \sum_{i=1}^{N} (m - x_i)^2\right]^{1/2}$$

-If I-groups

$$S = \left[\sum_{i=1}^{I} p(x_i) \cdot (m - x_i)^2 \right]^{1/2}$$

CSILL9

Variance

-For continuous

$$s = \int_{-\infty}^{\infty} f(x)x^2 dx - m^2$$

-If mean 'm' and data are at same point, standard deviation = 0

Coefficient of Variance

 $s \tan dard - deviation$

mean – value

-Better than variance as it is expressed in relative terms

Auto-correlated

- -All the data are supposed to be independent of each other
- -But if data at ith step is related to previous data using any kind of relationship they are said to be auto-correlated
- -In such case, only the 'mean' holds the meaning, others do not

Numerical Evaluation of probability functions

- -Required for random number generation
- -For computation, numerical methods required

Representation

- -Frequency distribution
- -Relative frequency distribution

If
$$x_i < x \le x_{i+1}$$
 then relative frequency distribution= $p_i = \int_{x_i}^{x_{i+1}} f(x) dx$

density function =
$$\frac{p_i}{(x_{i+1} - x_i)}$$

For cumulative
$$F_n = \sum_{i=0}^n p_i$$