ABC-LogitBoost for Multi-Class Classification

Ping Li
Department of Statistical Science

Cornell University

What is Classification?

An Example: USPS Handwritten Zipcode Recognition

Person 1:

Person 2:

Person 3:

The task: Teach the machine to automatically recognize the 10 digits.

Multi-Class Classification

Given a training data set

$$\{y_i, X_i\}_{i=1}^N, \quad X_i \in \mathbb{R}^p, \quad y_i \in \{0, 1, 2, ..., K-1\}$$

the task is to learn a function to predict the class label y_i from X_i .

- K = 2: binary classification
- K > 2: multi-class classification

Many important practical problems can be cast as (multi-class) classification.

For example, Li, Burges, and Wu, NIPS 2007

Learning to Ranking Using Multiple Classification and Gradient Boosting.

Logistic Regression for Classification

First learn the class probabilities

$$\hat{p}_k = \Pr\left\{y=k|X\right\}, \qquad k=0,1,...,K-1,$$

$$\sum_{k=0}^{K-1} \hat{p}_k = 1, \qquad \text{(only } K-1 \text{ degrees of freedom)}.$$

Then assign the class label according to

$$\hat{y}|X = \operatorname*{argmax}_{k} \hat{p}_{k}$$

Multinomial Logit Probability Model

$$p_k = \frac{e^{F_k}}{\sum_{s=0}^{K-1} e^{F_s}}$$

where $F_k = F_k(\mathbf{x})$ is the function to be learned from the data.

Classical logistic regression:

$$F(\mathbf{x}) = \beta^{\mathsf{T}} \mathbf{x}$$

The task is to learn the coefficients β .

Flexible additive modeling:

$$F(\mathbf{x}) = F^{(M)}(\mathbf{x}) = \sum_{m=1}^{M} \rho_m h(\mathbf{x}; \mathbf{a}_m),$$

 $h(\mathbf{x}; \mathbf{a})$ is a pre-specified function (e.g., trees).

The task is to learn the parameters ρ_m and \mathbf{a}_m .

Both LogitBoost (Friedman et. al, 2000) and MART (Multiple Additive Regression Trees, Friedman 2001) adopted this model.

Learning Logistic Regression by Maximum Likelihood

Seek $F_{i,k}$ to maximize the mutlinomial likelihood: Suppose $y_i = k$,

$$Lik \propto p_{i,0}^0 \times ... \times p_{i,k}^1 \times ... \times p_{i,K-1}^0 = p_{i,k}$$

or equivalently, maximizing the log likelihood:

$$\log Lik \propto \log p_{i,k}$$

Or equivalently, minimizing the negative log likelihood loss

$$L_i = -\log p_{i,k}, \quad (y_i = k)$$

ABC-Boost

The Negative Log-Likelihood Loss

$$L = \sum_{i=1}^{N} L_i = \sum_{i=1}^{N} \left\{ -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k} \right\}$$

$$r_{i,k} = \begin{cases} 1 & \text{if } y_i = k \\ 0 & \text{otherwise} \end{cases}$$

Two Basic Optimization Methods for Maximum Likelihood

1. Newton's Method

Uses the first and second derivatives of the loss function.

The method in LogitBoost.

2. Gradient Descent

Only uses the first order derivative of the loss function.

MART used a creative combination of gradient descent and Newton's method.

Derivatives Used in LogitBoost and MART

The loss function:

$$L = \sum_{i=1}^{N} L_i = \sum_{i=1}^{N} \left\{ -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k} \right\}$$

The first derivative:

$$\frac{\partial L_i}{\partial F_{i,k}} = -\left(r_{i,k} - p_{i,k}\right)$$

The second derivative:

$$\frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k} \left(1 - p_{i,k} \right).$$

The Original LogitBoost Algorithm

Fall 2012

1:
$$F_{i,k} = 0$$
, $p_{i,k} = \frac{1}{K}$, $k = 0$ to $K - 1$, $i = 1$ to N

ABC-Boost

2: For $m=1\ {\rm to}\ M$ Do

3: For k=0 to K-1, Do

4:
$$w_{i,k} = p_{i,k} (1 - p_{i,k}), \qquad z_{i,k} = \frac{r_{i,k} - p_{i,k}}{p_{i,k} (1 - p_{i,k})}.$$

Fit the function $f_{i,k}$ by a weighted least-square of $z_{i,k}$ to \mathbf{x}_i with weights $w_{i,k}$. 5:

6:
$$F_{i,k} = F_{i,k} + \nu \frac{K-1}{K} \left(f_{i,k} - \frac{1}{K} \sum_{k=0}^{K-1} f_{i,k} \right)$$

End

8:
$$p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s}), \quad k = 0 \text{ to } K-1, \ i = 1 \text{ to } N$$

9: End

The Original MART Algorithm

1:
$$F_{i,k} = 0$$
, $p_{i,k} = \frac{1}{K}$, $k = 0$ to $K - 1$, $i = 1$ to N

- 2: For $m=1\ {\rm to}\ M$ Do
- 3: For k=0 to K-1 Do
- 4: $\{R_{j,k,m}\}_{j=1}^J = J\text{-terminal node regression tree from } \{r_{i,k} p_{i,k}, \ \mathbf{x}_i\}_{i=1}^N$ 5: $\beta_{j,k,m} = \frac{K-1}{K} \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} r_{i,k} p_{i,k}}{\sum_{\mathbf{x}_i \in R_{j,k,m}} (1-p_{i,k}) p_{i,k}}$ 6: $F_{i,k} = F_{i,k} + \nu \sum_{j=1}^J \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}$

5:
$$\beta_{j,k,m} = \frac{K-1}{K} \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} r_{i,k} - p_{i,k}}{\sum_{\mathbf{x}_i \in R_{j,k,m}} (1 - p_{i,k}) p_{i,k}}$$

6:
$$F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}$$

- 8: $p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s}), \quad k = 0 \text{ to } K-1, \ i = 1 \text{ to } N$
- 9: End

Comparing LogitBoost with MART

- LogitBoost used first and second derivatives to construct the trees.
- MART only used the first order information to construct the trees.
- Both used second-order information to update values of the terminal nodes.
- LogitBoost was believed to have numerical instability problems.

The Numerical Issue in LoigtBoost

4:
$$w_{i,k} = p_{i,k} (1 - p_{i,k}), \qquad z_{i,k} = \frac{r_{i,k} - p_{i,k}}{p_{i,k} (1 - p_{i,k})}.$$

5: Fit the function $f_{i,k}$ by a weighted least-square of $z_{i,k}$ to \mathbf{x}_i with weights $w_{i,k}$.

6:
$$F_{i,k} = F_{i,k} + \nu \frac{K-1}{K} \left(f_{i,k} - \frac{1}{K} \sum_{k=0}^{K-1} f_{i,k} \right)$$

The "instability issue":

When $p_{i,k}$ is close to 0 or 1, $z_{i,k}=z_{i,k}=\frac{r_{i,k}-p_{i,k}}{p_{i,k}(1-p_{i,k})}$ may approach infinity.

The Numerical Issue in LoigtBoost

(Friedman et al 2000) used regression trees and suggested some "crucial implementation protections":

- In Line 4, compute $z_{i,k}$ by $\frac{1}{p_{i,k}}$ (if $r_{i,k}=1$) or $\frac{-1}{1-p_{i,k}}$ (if $r_{i,k}=0$).
- Bound $|z_{i,k}|$ by $z_{max} \in [2,4]$.

Robust LogitBoost avoids this pointwise thresholding and is essentially free of numerical problems.

It turns out, the numerical issue does not really exist, especially when the trees are not too large.

Tree-Splitting Using the Second-Order Information

Feature values: x_i , i=1 to N. Assume $x_1 \leq x_2 \leq ... \leq x_N$.

Weight values: w_i , i = 1 to N. Response values: z_i , i = 1 to N.

We seek the index s, $1 \le s < N$, to maximize the gain of weighted SE:

$$Gain(s) = SE_T - (SE_L + SE_R)$$

$$= \sum_{i=1}^{N} (z_i - \bar{z})^2 w_i - \left[\sum_{i=1}^{s} (z_i - \bar{z}_L)^2 w_i + \sum_{i=s+1}^{N} (z_i - \bar{z}_R)^2 w_i \right]$$

where
$$\bar{z} = \frac{\sum_{i=1}^{N} z_i w_i}{\sum_{i=1}^{N} w_i}$$
, $\bar{z}_L = \frac{\sum_{i=1}^{s} z_i w_i}{\sum_{i=1}^{s} w_i}$, $\bar{z}_R = \frac{\sum_{i=s+1}^{N} z_i w_i}{\sum_{i=s+1}^{N} w_i}$.

After simplification, we obtain

$$Gain(s) = \frac{\left[\sum_{i=1}^{s} z_i w_i\right]^2}{\sum_{i=1}^{s} w_i} + \frac{\left[\sum_{i=s+1}^{N} z_i w_i\right]^2}{\sum_{i=s+1}^{N} w_i} - \frac{\left[\sum_{i=1}^{N} z_i w_i\right]^2}{\sum_{i=1}^{N} w_i}$$

$$= \frac{\left[\sum_{i=1}^{s} r_{i,k} - p_{i,k}\right]^{2}}{\sum_{i=1}^{s} p_{i,k}(1 - p_{i,k})} + \frac{\left[\sum_{i=s+1}^{N} r_{i,k} - p_{i,k}\right]^{2}}{\sum_{i=s+1}^{N} p_{i,k}(1 - p_{i,k})} - \frac{\left[\sum_{i=1}^{N} r_{i,k} - p_{i,k}\right]^{2}}{\sum_{i=1}^{N} p_{i,k}(1 - p_{i,k})}.$$

Recall
$$w_i = p_{i,k}(1 - p_{i,k}), \quad z_i = \frac{r_{i,k} - p_{i,k}}{p_{i,k}(1 - p_{i,k})}.$$

This procedure is numerically stable.

MART only used the first order information to construct the trees:

$$MARTGain(s) = \frac{1}{s} \left[\sum_{i=1}^{s} r_{i,k} - p_{i,k} \right]^{2} + \frac{1}{N-s} \left[\sum_{i=s+1}^{N} r_{i,k} - p_{i,k} \right]^{2} - \frac{1}{N} \left[\sum_{i=1}^{N} r_{i,k} - p_{i,k} \right]^{2}.$$

Which can also be derived by letting weights $w_{i,k}=1$ and response $z_{i,k}=r_{i,k}-p_{i,k}.$

LogitBoost used more information and could be more accurate in many datasets.

Update terminal node values

In LogitBoost:

$$\frac{\sum_{node} z_{i,k} w_{i,k}}{\sum_{node} w_{i,k}} = \frac{\sum_{node} r_{i,k} - p_{i,k}}{\sum_{node} p_{i,k} (1 - p_{i,k})},$$

which is the same as in MART.

Robust LogitBoost

1:
$$F_{i,k} = 0$$
, $p_{i,k} = \frac{1}{K}$, $k = 0$ to $K - 1$, $i = 1$ to N

2: For $m=1\ {\rm to}\ M$ Do

3: For k=0 to K-1 Do

4: $\{R_{j,k,m}\}_{j=1}^J = J \text{-terminal node regression tree from } \{r_{i,k}-p_{i,k}, \ \mathbf{x}_i\}_{i=1}^N,$ $: \qquad \text{with weights } p_{i,k}(1-p_{i,k}).$

 $\beta_{j,k,m} = \frac{K-1}{K} \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} r_{i,k} - p_{i,k}}{\sum_{\mathbf{x}_i \in R_{j,k,m}} (1 - p_{i,k}) p_{i,k}}$

6: $F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}$

8: $p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s}), \quad k = 0 \text{ to } K-1, \ i = 1 \text{ to } N$

9: End

Experiments on Binary Classification

(Multi-class classification is even more interesting!)

Data

Ping Li, Cornell University

IJCNN1: 49990 training samples, 91701 test samples

This dataset was used in a competition. LibSVM was the winner.

Forest100k: 100000 training samples, 50000 test samples

Forest521k: 521012 training samples, 50000 test samples

The two largest datasets from Bordes et al. JMLR 2005,

Fast Kernel Classifiers with Online and Active Learning

ABC-Boost for Multi-Class Classification

ABC = Adaptive Base Class

ABC-MART = ABC-Boost + MART

ABC-LogitBoost = ABC-Boost + (Robust) LogitBoost

The key to the success of ABC-Boost is the use of "better" derivatives.

Review Components of Logistic Regression

The multinomial logit probability model:

$$p_k = \frac{e^{F_k}}{\sum_{s=0}^{K-1} e^{F_s}}, \quad \sum_{k=0}^{K-1} p_k = 1$$

where $F_k = F_k(\mathbf{x})$ is the function to be learned from the data.

The sum-to-zero constraint:

$$\sum_{k=0}^{K-1} F_k(\mathbf{x}) = 0$$

is commonly used to obtain a unique solution (only K-1 degrees of freedom).

Why the sum-to-zero constraint?

$$\frac{e^{F_{i,k}+C}}{\sum_{s=0}^{K-1} e^{F_{i,s}+C}} = \frac{e^C e^{F_{i,k}}}{e^C \sum_{s=0}^{K-1} e^{F_{i,s}}} = \frac{e^{F_{i,k}}}{\sum_{s=0}^{K-1} e^{F_{i,s}}} = p_{i,k}.$$

For identifiability, one should impose a constraint.

One popular choice is to assume $\sum_{k=0}^{K-1} F_{i,k} = const$, equivalent to

$$\sum_{k=0}^{K-1} F_{i,k} = 0.$$

This is the assumption used in many papers including LogitBoost and MART.

The negative log-Likelihood loss

$$L = \sum_{i=1}^{N} L_i = \sum_{i=1}^{N} \left\{ -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k} \right\}$$

$$r_{i,k} = \begin{cases} 1 & \text{if } y_i = k \\ 0 & \text{otherwise} \end{cases} \qquad \sum_{k=0}^{K-1} r_{i,k} = 1$$

Derivatives used in LogitBoost and MART:

$$\frac{\partial L_i}{\partial F_{i,k}} = -\left(r_{i,k} - p_{i,k}\right)$$

$$\frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k} \left(1 - p_{i,k} \right),\,$$

which could be derived without imposing any constraints on F_k .

Singularity of Hessian without Sum-to-zero Constraint

Fall 2012

Without sum-to-zero constraint $\sum_{k=0}^{K-1} F_{i,k} = 0$:

$$\frac{\partial L_i}{\partial F_{i,k}} = -(r_{i,k} - p_{i,k}), \qquad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k} (1 - p_{i,k}).$$

For example, when K=3.

$$\begin{vmatrix} \frac{\partial^{2}L_{i}}{\partial F_{i,0}^{2}} & \frac{\partial^{2}L_{i}}{\partial F_{i,0}F_{i,1}} & \frac{\partial^{2}L_{i}}{\partial F_{i,0}F_{i,2}} \\ \frac{\partial^{2}L_{i}}{\partial F_{i,1}F_{i,0}} & \frac{\partial^{2}L_{i}}{\partial F_{i,1}^{2}} & \frac{\partial^{2}L_{i}}{\partial F_{i,1}F_{i,2}} \\ \frac{\partial^{2}L_{i}}{\partial F_{i,2}F_{i,0}} & \frac{\partial^{2}L_{i}}{\partial F_{i,2}F_{i,1}} & \frac{\partial^{2}L_{i}}{\partial F_{i,2}^{2}} \end{vmatrix} = \begin{vmatrix} p_{0}(1-p_{0}) & -p_{0}p_{1} & -p_{0}p_{2} \\ -p_{1}p_{0} & p_{1}(1-p_{1}) & -p_{1}p_{2} \\ -p_{2}p_{0} & -p_{2}p_{1} & p_{2}(1-p_{2}) \end{vmatrix}$$

Diagonal Approximation

(Friedman et al 2000 and Friedman 2001) used diagonal approximation of Hessian:

$$\frac{K-1}{K} \begin{bmatrix} \frac{\partial^2 L_i}{\partial F_{i,0}^2} & & \\ & \frac{\partial^2 L_i}{\partial F_{i,1}^2} & \\ & & \frac{\partial^2 L_i}{\partial F_{i,2}^2} \end{bmatrix}$$

$$= \frac{K-1}{K} \begin{bmatrix} p_0(1-p_0) & & \\ & p_1(1-p_1) & \\ & & p_2(1-p_2) \end{bmatrix}$$

Derivatives Under Sum-to-zero Constraint

The loss function:

$$L_i = -\sum_{k=0}^{K-1} r_{i,k} \log p_{i,k}$$

The probability model and sum-to-zero constraint:

$$p_{i,k} = \frac{e^{F_{i,k}}}{\sum_{s=0}^{K-1} e^{F_{i,s}}}, \qquad \sum_{k=0}^{K-1} F_{i,k} = 0$$

Without loss of generality, we assume k=0 is the base class

$$F_{i,0} = -\sum_{i=1}^{K-1} F_{i,k}$$

New derivatives:

$$\frac{\partial L_i}{\partial F_{i,k}} = (r_{i,0} - p_{i,0}) - (r_{i,k} - p_{i,k}),$$

$$\frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,0}(1 - p_{i,0}) + p_{i,k}(1 - p_{i,k}) + 2p_{i,0}p_{i,k}.$$

MART and LogitBoost used:

$$\frac{\partial L_i}{\partial F_{i,k}} = -(r_{i,k} - p_{i,k}), \qquad \frac{\partial^2 L_i}{\partial F_{i,k}^2} = p_{i,k} (1 - p_{i,k}).$$

Assume class 0 is the base class. The determinant of the Hessian is

$$\begin{vmatrix} \frac{\partial^2 L_i}{\partial F_{i,1}^2} & \frac{\partial^2 L_i}{\partial F_{i,1} F_{i,2}} \\ \frac{\partial^2 L_i}{\partial F_{i,2} F_{i,1}} & \frac{\partial^2 L_i}{\partial F_{i,2}^2} \end{vmatrix} =$$

$$\begin{vmatrix} p_0(1-p_0) + p_1(1-p_1) + 2p_0p_1 & p_0 - p_0^2 + p_0p_1 + p_0p_2 - p_1p_2 \\ p_0 - p_0^2 + p_0p_1 + p_0p_2 - p_1p_2 & p_0(1-p_0) + p_2(1-p_2) + 2p_0p_2 \end{vmatrix}$$

$$= p_0p_1 + p_0p_2 + p_1p_2 - p_0p_1^2 - p_0p_2^2 - p_1p_2^2 - p_2p_1^2 - p_1p_0^2 - p_2p_0^2 + 6p_0p_1p_2,$$

independent of the choice of the base class.

However, diagonal approximation appears to be a must when using trees. Thus the choice of base class matters

Adaptive Base Class Boost (ABC-Boost)

Two Key Ideas of ABC-Boost:

1. Formulate the multi-class boosting algorithm by considering a base class.

Do not have to train for the base class, which is inferred from the sum-zero-constraint $\sum_{k=0}^{K-1} F_{i,k} = 0$.

2. At each boosting step, adaptively choose the base class.

How to choose the base class?

- We should choose the base class based on performance (training loss).
 How?
- ullet (One Idea) Exhaustively search for all K base classes and choose the base class that leads to the best performance (smallest training loss).
 - Computationally expensive (but not too bad, unless K is really large)
 - Good performance can be achieved.
- Many other ideas.

ABC-MART = ABC-Boost + MART.

ABC-LogitBoost = ABC-Boost + Robust LogitBoost.

The Original MART Algorithm

1:
$$F_{i,k} = 0$$
, $p_{i,k} = \frac{1}{K}$, $k = 0$ to $K - 1$, $i = 1$ to N

- 2: For $m=1\ {\rm to}\ M$ Do
- 3: For k = 0 to K 1 Do
- 4: $\{R_{j,k,m}\}_{j=1}^J = J$ -terminal node regression tree from $\{r_{i,k} p_{i,k}, \mathbf{x}_i\}_{i=1}^N$

5:
$$\beta_{j,k,m} = \frac{K-1}{K} \frac{\sum_{\mathbf{x}_{i} \in R_{j,k,m}} r_{i,k} - p_{i,k}}{\sum_{\mathbf{x}_{i} \in R_{j,k,m}} (1 - p_{i,k}) p_{i,k}}$$
6:
$$F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_{i} \in R_{j,k,m}}$$

6:
$$F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}$$

- 8: $p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s}), \quad k = 0 \text{ to } K-1, \ i = 1 \text{ to } N$
- 9: End

ABC-MART

1:
$$F_{i,k} = 0$$
, $k = 0$ to $K - 1$, $i = 1$ to N

2: For $m=1\ {
m to}\ M$ Do

: For
$$b=0$$
 to $K-1$ DO

3: For
$$k=0$$
 to $K-1$ (and $k \neq b$) Do

4:
$$\{R_{j,k,m}\}_{j=1}^J = J$$
-terminal node tree from $\{r_{i,k} - p_{i,k} - (r_{i,b} - p_{i,b}), \mathbf{x}_i\}_{i=1}^N$

5:
$$\beta_{j,k,m} = \frac{\sum_{\mathbf{x}_i \in R_{j,k,m}} (r_{i,k} - p_{i,k}) - (r_{i,b} - p_{i,b})}{\sum_{\mathbf{x}_i \in R_{j,k,m}} (1 - p_{i,k}) p_{i,k} + (1 - p_{i,b}) p_{i,b} + 2p_{i,k} p_{i,b}}$$

6:
$$F_{i,k} = F_{i,k} + \nu \sum_{j=1}^{J} \beta_{j,k,m} 1_{\mathbf{x}_i \in R_{j,k,m}}$$

7: End

8:
$$p_{i,k} = \exp(F_{i,k}) / \sum_{s=0}^{K-1} \exp(F_{i,s})$$

9: End

Datasets

- UCI-Covertype Total 581012 samples.
 - Two datasets were generated: Covertype290k, Covertype145k
- UCI-Poker Original 25010 training samples and 1 million test samples.

 Poker25kT1, Poker25kT2, Poker525k, Poker275k, Poker150k, Poker100k.
- MNIST Originally 60000 training samples and 10000 test samples.
 MNIST10k swapped the training with test samples.
- Many variations of MNIST Original MNIST is a well-known easy problem. (www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/ DeepVsShallowComparisonICML2007) created a variety of much more difficult datasets by adding various background (correlated) noise, background images, rotations, etc.
- UCI-Letter Total 20000 samples.

dataset	K	# training	# test	# features
Covertype290k	7	290506	290506	54
Covertype145k	7	145253	290506	54
Poker525k	10	525010	500000	25
Poker275k	10	275010	500000	25
Poker150k	10	150010	500000	25
Poker100k	10	100010	500000	25
Poker25kT1	10	25010	500000	25
Poker25kT2	10	25010	500000	25
Mnist10k	10	10000	60000	784
M-Basic	10	12000	50000	784
M-Rotate	10	12000	50000	784
M-Image	10	12000	50000	784
M-Rand	10	12000	50000	784
M-RotImg	10	12000	50000	784
M-Noise1	10	10000	2000	784
M-Noise2	10	10000	2000	784
M-Noise3	10	10000	2000	784
M-Noise4	10	10000	2000	784
M-Noise5	10	10000	2000	784
M-Noise6	10	10000	2000	784
Letter15k	26	15000	5000	16
Letter4k	26	4000	16000	16
Letter2k	26	2000	18000	16

Summary of test mis-classification errors

Dataset	mart	abc-mart	logitboost	abc-logitboost	logistic regression	# test
Covertype290k	11350	10454	10765	9727	80233	290506
Covertype145k	15767	14665	14928	13986	80314	290506
Poker525k	7061	2424	2704	1736	248892	500000
Poker275k	15404	3679	6533	2727	248892	500000
Poker150k	22289	12340	16163	5104	248892	500000
Poker100k	27871	21293	25715	13707	248892	500000
Poker25kT1	43575	34879	46789	37345	250110	500000
Poker25kT2	42935	34326	46600	36731	249056	500000
Mnist10k	2815	2440	2381	2102	13950	60000
M-Basic	2058	1843	1723	1602	10993	50000
M-Rotate	7674	6634	6813	5959	26584	50000
M-Image	5821	4727	4703	4268	19353	50000
M-Rand	6577	5300	5020	4725	18189	50000
M-RotImg	24912	23072	22962	22343	33216	50000
M-Noise1	305	245	267	234	935	2000
M-Noise2	325	262	270	237	940	2000
M-Noise3	310	264	277	238	954	2000
M-Noise4	308	243	256	238	933	2000
M-Noise5	294	244	242	227	867	2000
M-Noise6	279	224	226	201	788	2000
Letter15k	155	125	139	109	1130	5000
Letter4k	1370	1149	1252	1055	3712	16000
Letter2k	2482	2220	2309	2034	4381	18000

P-Values

- \bullet P1: for testing if abc-mart has significantly lower **error rates** than mart.
- P2: for testing if (robust) logitboost has significantly lower error rates than mart.
- ullet P3: for testing if abc-logitboost has significantly lower error rates than abc-mart.
- \bullet P4: for testing if abc-logitboost has significantly lower error rates than (robust) logitboost.

P-values are computed using binomial distributions and normal approximations.

Summary of test P-Values

Dataset	P1	P2	P3	P4
Covertype290k	3×10^{-10}	3×10^{-5}	9×10^{-8}	8×10^{-14}
Covertype145k	4×10^{-11}	4×10^{-7}	2×10^{-5}	7×10^{-9}
Poker525k	0	0	0	0
Poker275k	0	0	0	0
Poker150k	0	0	0	0
Poker100k	0	0	0	0
Poker25kT1	0			0
Poker25kT2	0			0
Mnist10k	5×10^{-8}	3×10^{-10}	1×10^{-7}	1×10^{-5}
M-Basic	2×10^{-4}	1×10^{-8}	1×10^{-5}	0.0164
M-Rotate	0	5×10^{-15}	6×10^{-11}	3×10^{-16}
M-Image	0	0	2×10^{-7}	7×10^{-7}
M-Rand	0	0	7×10^{-10}	8×10^{-4}
M-RotImg	0	0	2×10^{-6}	4×10^{-5}
M-Noise1	0.0029	0.0430	0.2961	0.0574
M-Noise2	0.0024	0.0072	0.1158	0.0583
M-Noise3	0.0190	0.0701	0.1073	0.0327
M-Noise4	0.0014	0.0090	0.4040	0.1935
M-Noise5	0.0102	0.0079	0.2021	0.2305
M-Noise6	0.0043	0.0058	0.1189	0.1002
Letter15k	0.0345	0.1718	0.1449	0.0268
Letter4k	2×10^{-6}	0.008	0.019	1×10^{-5}
Letter2k	2×10^{-5}	0.003	0.001	4×10^{-6}

Comparisons with SVM and Deep Learning

Datasets: M-Noise1 to M-Noise6

Results on SVM, Neural Nets, and Deep Learning are from

www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/

DeepVsShallowComparisonICML2007

Comparisons with SVM and Deep Learning

Datasets: M-Noise1 to M-Noise6

More Comparisons with SVM and Deep Learning

	M-Basic	M-Rotate	M-Image	M-Rand	M-RotImg
SVM-RBF	3.05 %	11.11%	22.61%	14.58%	55.18%
SVM-POLY	3.69%	15.42%	24.01%	16.62%	56.41%
NNET	4.69%	18.11%	27.41%	20.04%	62.16%
DBN-3	3.11%	10.30 %	16.31%	6.73 %	47.39%
SAA-3	3.46%	10.30 %	23.00%	11.28%	51.93%
DBN-1	3.94%	14.69%	16.15%	9.80%	52.21%
mart	4.12%	15.35%	11.64%	13.15%	49.82%
abc-mart	3.69%	13.27%	9.45%	10.60%	46.14%
logitboost	3.45%	13.63%	9.41%	10.04%	45.92%
abc-logitboost	3.20%	11.92%	8.54%	9.45%	44.69 %

Training Loss Vs Boosting Iterations

Test Errors Vs Boosting Iterations

Detailed Experiment Results on Mnist10k

 $J \in \{4,6,8,10,12,14,16,18,20,24,30,40,50\}$

 $\nu \in \{0.04, 0.06, 0.08, 0.1\}.$

The goal is to show the improvements at all reasonable combinations of J and ν .

	mart	abc-mart		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	3356 3060	3329 3019	3318 2855	3326 2794
J=6	3185 2760	3093 2626	3129 2656	3217 2590
J=8	3049 2558	3054 2555	3054 2534	3035 2577
J = 10	3020 2547	2973 2521	2990 2520	2978 2506
J = 12	2927 2498	2917 2457	2945 2488	2907 2490
J = 14	2925 2487	2901 2471	2877 2470	2884 2454
J = 16	2899 2478	2893 2452	2873 2465	2860 2451
J = 18	2857 2469	2880 2460	2870 2437	2855 2454
J = 20	2833 2441	2834 2448	2834 2444	2815 2440
J = 24	2840 2447	2827 2431	2801 2427	2784 2455
J = 30	2826 2457	2822 2443	2828 2470	2807 2450
J = 40	2837 2482	2809 2440	2836 2447	2782 2506
J = 50	2813 2502	2826 2459	2824 2469	2786 2499

	logitboost	abc-logit		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	2936 2630	2970 2600	2980 2535	3017 2522
J=6	2710 2263	2693 2252	2710 2226	2711 2223
J=8	2599 2159	2619 2138	2589 2120	2597 2143
J = 10	2553 2122	2527 2118	2516 2091	2500 2097
J = 12	2472 2084	2468 2090	2468 2090	2464 2095
J = 14	2451 2083	2420 2094	2432 2063	2419 2050
J = 16	2424 2111	2437 2114	2393 2097	2395 2082
J = 18	2399 2088	2402 2087	2389 2088	2380 2097
J = 20	2388 2128	2414 2112	2411 2095	2381 2102
J = 24	2442 2174	2415 2147	2417 2129	2419 2138
J = 30	2468 2235	2434 2237	2423 2221	2449 2177
J = 40	2551 2310	2509 2284	2518 2257	2531 2260
J = 50	2612 2353	2622 2359	2579 2332	2570 2341

		P1		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	7×10^{-5}	3×10^{-5}	7×10^{-10}	1×10^{-12}
J=6	8×10^{-9}	1×10^{-10}	9×10^{-11}	0
J=8	9×10^{-12}	4×10^{-12}	5×10^{-13}	2×10^{-10}
J = 10	4×10^{-11}	2×10^{-10}	4×10^{-11}	3×10^{-11}
J = 12	1×10^{-9}	7×10^{-11}	1×10^{-10}	3×10^{-9}
J = 14	6×10^{-10}	1×10^{-9}	6×10^{-9}	9×10^{-10}
J = 16	2×10^{-9}	3×10^{-10}	6×10^{-9}	5×10^{-9}
J = 18	3×10^{-8}	2×10^{-9}	6×10^{-10}	9×10^{-9}
J = 20	2×10^{-8}	3×10^{-8}	2×10^{-8}	6×10^{-8}
J = 24	2×10^{-8}	1×10^{-8}	6×10^{-8}	2×10^{-6}
J = 30	1×10^{-7}	5×10^{-8}	2×10^{-7}	2×10^{-7}
J = 40	3×10^{-7}	1×10^{-7}	2×10^{-8}	5×10^{-5}
J = 50	6×10^{-6}	1×10^{-7}	3×10^{-7}	3×10^{-5}

		P2		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	2×10^{-8}	2×10^{-6}	6×10^{-6}	3×10^{-6}
J=6	1×10^{-10}	4×10^{-8}	9×10^{-9}	8×10^{-12}
J=8	4×10^{-10}	2×10^{-9}	1×10^{-10}	1×10^{-9}
J = 10	7×10^{-11}	4×10^{-10}	3×10^{-11}	2×10^{-11}
J = 12	1×10^{-10}	2×10^{-10}	2×10^{-11}	3×10^{-10}
J = 14	2×10^{-11}	8×10^{-12}	2×10^{-10}	3×10^{-11}
J = 16	1×10^{-11}	8×10^{-11}	7×10^{-12}	3×10^{-11}
J = 18	5×10^{-11}	9×10^{-12}	6×10^{-12}	9×10^{-12}
J = 20	2×10^{-10}	2×10^{-9}	1×10^{-9}	4×10^{-10}
J = 24	1×10^{-8}	3×10^{-9}	3×10^{-8}	1×10^{-7}
J = 30	2×10^{-7}	2×10^{-8}	5×10^{-9}	2×10^{-7}
J = 40	3×10^{-5}	1×10^{-5}	4×10^{-6}	2×10^{-4}
J = 50	0.0026	0.0023	3×10^{-4}	0.0013

		P3		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	3×10^{-9}	5×10^{-9}	4×10^{-6}	7×10^{-6}
J=6	4×10^{-13}	2×10^{-8}	2×10^{-10}	3×10^{-8}
J=8	2×10^{-9}	3×10^{-10}	3×10^{-10}	6×10^{-11}
J = 10	1×10^{-10}	8×10^{-10}	6×10^{-11}	4×10^{-10}
J = 12	2×10^{-10}	2×10^{-8}	1×10^{-9}	1×10^{-9}
J = 14	5×10^{-10}	6×10^{-9}	4×10^{-10}	4×10^{-10}
J = 16	2×10^{-8}	2×10^{-7}	1×10^{-8}	1×10^{-8}
J = 18	4×10^{-9}	8×10^{-9}	6×10^{-8}	3×10^{-8}
J = 20	1×10^{-6}	2×10^{-7}	6×10^{-8}	2×10^{-7}
J = 24	2×10^{-5}	9×10^{-6}	3×10^{-6}	9×10^{-7}
J = 30	5×10^{-4}	0.0011	1×10^{-4}	2×10^{-5}
J = 40	0.0056	0.0103	0.0024	1×10^{-4}
J = 50	0.0145	0.0707	0.0218	0.0102

		P4		
	$\nu = 0.04$	$\nu = 0.06$	$\nu = 0.08$	$\nu = 0.1$
J=4	1×10^{-5}	2×10^{-7}	4×10^{-10}	5×10^{-12}
J=6	5×10^{-11}	7×10^{-11}	1×10^{-12}	6×10^{-13}
J=8	4×10^{-11}	5×10^{-13}	2×10^{-12}	8×10^{-12}
J = 10	6×10^{-11}	5×10^{-10}	8×10^{-11}	7×10^{-10}
J = 12	2×10^{-9}	6×10^{-9}	6×10^{-9}	1×10^{-8}
J = 14	1×10^{-8}	4×10^{-7}	1×10^{-8}	9×10^{-9}
J = 16	1×10^{-6}	5×10^{-7}	3×10^{-6}	9×10^{-7}
J = 18	1×10^{-6}	8×10^{-7}	2×10^{-6}	8×10^{-6}
J = 20	4×10^{-5}	2×10^{-6}	8×10^{-7}	1×10^{-5}
J = 24	3×10^{-5}	3×10^{-5}	7×10^{-6}	1×10^{-5}
J = 30	3×10^{-4}	0.0016	0.0012	2×10^{-5}
J = 40	2×10^{-4}	5×10^{-4}	6×10^{-5}	3×10^{-5}
J = 50	9×10^{-5}	7×10^{-5}	2×10^{-4}	4×10^{-4}

Want to See More?