Manifolds II

January 6, 2025

Recall: Tangent Bundle

Given a chart (U,ϕ) about a point p, we have coordinates $(x^1,...,x^n)$ and a basis for T_qM of $\left(\frac{\partial}{\partial x^1}|_q,...,\frac{\partial}{\partial x^n}|_q\right)$ for $q \in U$.

Then given $TM \xrightarrow{\pi} M$, we may write $v_q = v^i \frac{\partial}{\partial x^i}|_q$.

Definition:

For M a topological manifold. A (real) vector bndle of rank k over M is a topological space E with a surjective continuous map $\pi: E \to M$ such that

- 1. $\forall p \in M$, the fiber $\pi^{-1}(p) =: E_p$ is endowed with the structure of a (real) vector space of dimension k.
- 2. $\forall p \in M$, there exists a neighborhood U of p in M and a homeomorphism $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ called a local trivialization.

$$\Phi: \pi^{-1}(U) \xrightarrow{\pi} U \times \mathbb{R}^k$$

and $\Phi|_{E_q}: E_q \to \{q\} \times \mathbb{R}^k$ is a linear isometry.

Examples

- 1. $TM \stackrel{\pi}{\rightarrow} M$
- 2. $E = M \times \mathbb{R}^k$ with a global trivialization.
- 3. The Mobius bundle over S^1 . $\gamma: \mathbb{R}^2 \to \mathbb{R}^2$ by $(x,y) \mapsto (x+1,(-1)\cdot y)$. Then $\langle \gamma \rangle \cong \mathbb{Z}$ a subgroup acting freely and isometrically on \mathbb{R}^2 . Then $E = \mathbb{R}^2/\langle \gamma \rangle \stackrel{\pi}{\to} S^1 = \mathbb{R}/\mathbb{Z}$ by $\overline{(x,y)} \mapsto \overline{x}$ is a vector bundle.

IMAGE 1

• We want to show that $\pi^{-1}(U) \cong U \times \mathbb{R}$

$$\mathbb{R}^{2} \xrightarrow{q} E \qquad (x,y) \longmapsto \overline{(x,y)}$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$\mathbb{R} \xrightarrow{\varepsilon} S^{1} \qquad x \longmapsto e^{(2\pi i)x}$$

Then let $p \in S^1$. We choose U a neighborhood of p such that U is evenly covered by ε . This means $\varepsilon^{-1}(U)$ is a disjoint union of open sets diffeomorphic to U.

IMAGE 2

1

Let \tilde{U} be a component in $\pi^{-1}(U)$. Then $\pi_1^{-1}(\tilde{U}) \cong \tilde{U} \times \mathbb{R}$ and $\pi^{-1}(U)$ is diffeomorphic to $U \times \mathbb{R}$.

Definition: Transition Function

Take $E \xrightarrow{\pi} M$ with $U, V \subseteq M$ admitting trivializations $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ and $\Psi : \pi^{-1}(V) \to V \times \mathbb{R}^k$. Let $w = U \cap V (\neq \emptyset)$.

$$\Phi \circ \Psi^{-1}: \qquad W \times \mathbb{R}^k \longrightarrow \pi^{-1}(W) \longrightarrow W \times \mathbb{R}^k$$

Then $\Phi \circ \Psi^{-1}|_{\{p\} \times \mathbb{R}^k}$ by $\{p\} \times \mathbb{R}^k \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism. $\Phi \circ \Psi^{-1}(p, v) = (p, \tau(p)v)$ by $\tau : p \mapsto \tau(p)$ and $\tau(p) \in GL(k, \mathbb{R})$ gives a smooth map $W \to GL(k, \mathbb{R})$.

Definition:

Let $\{E_1, \ldots, E_k\}$ be a basis of \mathbb{R}^k . Then

$$\tau(p) \cdot E_i = \sum_j \tau(p)_i^j E_j$$

with $\tau(p) = (\tau(p)_i^j)$ and $\tau(p)_j^i \in \mathbb{R}$. It suffices to show each $\tau(*)_i^j$ mapping $W \to \mathbb{R}$ and $p \mapsto (\tau(p)_i^j)$ is smooth. Then if $\sigma(p, v) := \Phi \circ \Psi^{-1}(p, v)$, $\tau(p)_i^j = \pi_j(\sigma(p, E_i))$ and π_j is a projection to the j-th component in \mathbb{R}^k .

Lemma 10.6 (Vector Bundle Chart Lemma)

Given M a smooth manifold, suppose that $\forall p \in M$ we are given a vector space E_p of dimension k. Let $E = \coprod_{p \in M} E_p$ (as a set) and $\pi : E \to M$ a mapping E_p to p. Suppose also that we have

- 1. $\{U_{\alpha}\}_{{\alpha}\in A}$ an open cover of M with a countable subcover.
- 2. $\forall \alpha \in A$ we hav ea bijection $\Phi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ such that $\Phi_{\alpha}|_{E_{n}} : E_{p} \to \{p\} \times \mathbb{R}^{k}$ is a linear isomorphism.
- 3. $\forall \alpha, \beta \in A \text{ with } U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset \text{ we have a smooth map } \tau_{\alpha\beta} : U_{\alpha\beta} \to GL(k,\mathbb{R}) \text{ such that } \Phi_{\alpha} \circ \phi_{\beta}^{-1} : U_{\alpha\beta} \times \mathbb{R}^k \to U_{\alpha\beta} \times \mathbb{R}^k \text{ by } (p,v) \mapsto (p,\tau(p)v).$

Then $E \stackrel{\pi}{\to} M$ is a vector bundle.

Example (Whitney Sum):

Suppose we have $E' \stackrel{\pi'}{\to} M$ and $E'' \stackrel{\pi''}{\to} M$ two vector bundles over M. Define $E = E' \oplus E''$ a new vector bundle over M by $E_p = E_p' \oplus E_p''$. Let $\{U_\alpha\}_{\alpha \in A}$ be a countable open cover of M such that each U_α admits trivializations for E' and E''. Then for $\pi : E \to M$, define $\Phi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^{k'} \times \mathbb{R}^{k''}$ by $(v', v'')_p \mapsto (p, \pi_2 \circ \Phi_\alpha^{-1}(v'), \pi_2 \circ \Phi_\alpha''(v''))$ where

$$\pi'(U_{\alpha}) \stackrel{\Phi'_{\alpha}}{\to} U_{\alpha} \times \mathbb{R}^{k'} \stackrel{\pi_2}{\to} \mathbb{R}^{k'}$$

Note that π_2 is the projection into the second component. Then $\tau:U_{\alpha\beta}\to G(k'+k'',\mathbb{R})$ by

$$p \mapsto \begin{pmatrix} \tau'(p) & 0 \\ 0 & \tau''(p) \end{pmatrix}$$

Example

For $\tau_{\alpha\beta}: U_{\alpha\beta} \to GL(k,\mathbb{R})$ by $p \mapsto \tau_{\alpha\beta}(p)$, we can write $U_{\alpha\beta\gamma} = U_{\alpha} \cap U_{\beta} \cup U_{\gamma}(\neq \varnothing)$ and get $\tau_{\alpha\beta} \cdot \tau_{\beta\gamma} = \tau_{\alpha\gamma}$. Note that this is $\Phi_{\alpha} \circ (\phi_{\beta}^{-1} \circ \phi_{\beta}) \circ \Phi_{\gamma}^{-1}$.

Without loss of generality, we assume each U_{α} is a chart for M. Then we want to show that we satisfy Lemma 1.35 from Lee

$$\pi^{-1}(U_{\alpha}) \stackrel{\Phi_{\alpha}}{\to} U_{\alpha \times \mathbb{R}^k} \stackrel{\phi_{\alpha} \times \mathrm{id}}{\to} \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^k \subseteq \mathbb{R}^{n+k}$$

 $(\pi^{-1}(U_{\alpha}) \cdot \tilde{\phi}_{\alpha} = (\phi_{\alpha} \times id) \circ \Phi_{\alpha})_{\alpha \in A}$ which satisfies (1). Since

$$\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta}) = \pi^{-1}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha\beta}) \times \mathbb{R}^{K}$$

we have that (2) is satisfied.

Finally, for (3),

$$\tilde{\phi_{\beta}} \circ \tilde{\phi_{\alpha}}^{-1} = (\Phi_{\beta} \circ (\phi_{\beta} \times id)) \circ ((\phi_{\alpha} \times id)^{-1} \circ \Phi_{\alpha}^{-1}) = \Phi_{\beta} \circ ((\phi_{\beta} \circ \phi_{\alpha}) \times id) \circ \Phi_{\alpha}^{-1}$$

gives $(x,c)\mapsto ((\phi_\beta\circ\phi_\alpha^{-1})x,(\Phi_\beta\circ\Phi_\alpha^{-1})\nu)$ a diffeomorphism.

(4) and (5) are trivial, and this is indeed a smooth manifold. Now we wish to show that it is a vector bundle. To show that $\pi: E \to M$ is smooth,

We have $\tilde{\phi}_{\alpha}^{-1} = (\phi_{\alpha} \times id)^{-1} \circ \Phi_{\alpha}^{-1}$.

$$\pi^{-1}(U_{lpha}) \stackrel{\Phi_{lpha}}{\longrightarrow} U_{lpha} imes \mathbb{R}^k \ \phi_{lpha}^{-1} \uparrow \qquad \qquad \downarrow \phi_{lpha} imes \mathrm{id} \ \phi_{lpha}(U_{lpha}) imes \mathbb{R}^k \qquad \qquad \phi_{lpha}(U_{lpha} imes \mathbb{R}^k)$$

Definition: Section of a Bundle

A (smooth) section of $E \xrightarrow{\pi} M$ is a (smooth) map $\sigma : M \to E$ such that $\pi \circ \sigma = \mathrm{id}_M$. $\Gamma(E) = \{\text{smooth sections of } E \xrightarrow{\pi} M \}$ and $\Gamma(E)$ is a $C^{\infty}(M)$ -module.

The zero section $Z: M \to E$ is given by $p \mapsto 0_p \in E_p$.

If *U* has a local trivialization, $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$.

$$\Phi: \qquad \pi^{-1}(U) \xrightarrow{\qquad \qquad} U \times \mathbb{R}^k \longleftarrow_{\Phi^{-1} \qquad \tilde{e}_i} (p, e_i)$$

Define $\sigma_i: U \to \pi^{-1}(U)$ by $\sigma_i = \Phi^{-1} \circ \tilde{e}_i$ gives a local section that is non-zero on U. $\{\sigma_1, \ldots, \sigma_n\}$ form a local frame on U (i.e. form a basis in E_p , $\forall p \in U$).

January 8, 2025

Recall

Last time we had a vector bundle $E \xrightarrow{\pi} M$ of rank k satisfying

- 1. $\pi^{-1}(p) = E_p$ has a (real) vector space structure of dimension k.
- 2. We have a local trivialization, $\forall p \in M$ there exists a neighborhood U and a diffeomorphism Φ

and $\Phi|_{E_p}: E_p \to \{p\} \times \mathbb{R}^k$ is a linear isomorphism. A section $\sigma: M \to E$ is a smooth map such that $\pi \circ \sigma = \mathrm{id}_M$.

We say that a collection of sections $\{\sigma_1, ..., \sigma_k : U \to E\}$ is linearly independent if $\{\sigma_1(x), ..., \sigma_k(x)\}$ is linearly independent for each $x \in U$. This is a (local) frame if it is a basis.

If $U \subseteq M$ admits a trivialization

$$\Phi: \qquad \pi^{-1}(U) \xrightarrow{\qquad \qquad } U \times \mathbb{R}^k$$

then there is a local frame $\{\sigma_1,\ldots,\sigma_k\}$ defined on U. Precisely, with $\tilde{e}_i(x)=(x,e_i),\,\sigma_i=\Phi^{-1}\circ\tilde{e}_i$.

Proposition 10.19

If $U \subseteq M$ admits a local frame, then $\pi^{-1}(U)$ admits a local trivialization.

Remember

If $E \stackrel{\pi}{\to} M$ admits a global frame, then $E = \pi^{-1}(M)$ has a trivialization. In other words, E is diffeomorphic to a trivial vector bundle $M \times \mathbb{R}^k$.

Examples

Example 1

Mobius bundle over S^1 .

IMAGE 1

To check whether it is a trivial bundle of S^1 , it suffices to check whether there exists a nowhere zero (global) section. This cannot happen (by itermediate value theorem), hence it is not $S^1 \times \mathbb{R}$.

4

Example 2

 TS^2 becasue there is no non-vanishing vector field over S^2 , hence $TS^2 \neq S^2 \times \mathbb{R}^2$.

Example 3

Let G be a Lie group. Every $X \in T_{\rho}G(\cong \mathfrak{q})$ uniquely determines a (left-invariant) vector field $\tilde{X} \in \mathfrak{X}(G)$. Starting with a basis $\{E_i\} \subseteq T_eG$ we get a global frame $\{\tilde{E}_i\}$ for TG. Hence TG is a trivial vector bundle $G \times \mathbb{R}^n$ $(n = \dim G)$. In particular, $TS^1 = S^1 \times \mathbb{R}$, $TS^3 = S^3 \times \mathbb{R}^3$.

Proof of Proposition

Define $\Psi:(x,v^1,\ldots,v^k)\in U\times\mathbb{R}^k\to\pi^{-1}(U)\ni v_x$ where $v_x=v^i\sigma_i(x)$.

 Ψ is a bijection. Note that $\Psi|_{E_x}: E_x \to \{x\} \times \mathbb{R}^k$ is a linear isomorphism because $\{\sigma_i(x)\}$ is a basis. Then to show that Ψ is a diffeomorphism, it suffices to show then that Ψ is a local diffeomorphism.

Let $x \in U$ and let V be a neighborhood of x such that $\pi^{-1}(V) \xrightarrow{\Phi} V \times \mathbb{R}^k$.

$$V \times \mathbb{R}^{k} \stackrel{\Psi|_{V \times \mathbb{R}^k}}{\to} \pi^{-1}(V) \stackrel{\Psi}{\to} V \times \mathbb{R}^k$$

We show that this composition is a diffeomorphism. Since $\Phi(\sigma_i(x)) = (x, \sigma_i^1(x), ..., \sigma_i^k(x))$

$$\Phi \circ \Psi|_{V \times \mathbb{R}^k}(x, v^1, \dots, v^k) = \Phi(v^i \sigma_i(x))$$
$$= (x, v^i \sigma_i^1(x), \dots, v^i \sigma_i^k(x))$$

Each $\sigma_i^j(x)$ is smooth. Hence $\Phi \circ \Psi|_{V \times \mathbb{R}^k}$ is smooth.

Let $\vec{v} = (v^1, \dots, v^k)$ and $\sum (x) = (\sigma_i^j(x))$, then $\Phi \circ \Psi(x, \vec{v}) = (x, \vec{v} \cdot \sum (x))$. Its inverse

$$\left(\Phi\circ\Psi\right)^{-1}(x,\vec{w})=\left(x,\vec{w}\cdot\sum(x)\right)$$

is also smooth. This shows that $\Phi \circ \Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism. Hence $\Psi|_{V \times \mathbb{R}^k}$ is a diffeomorphism $(V \subseteq U)$ and $\Psi: U \times \mathbb{R}^k \to \pi^{-1}(U)$ is also a diffeomorphism.

Definition: Bundle Morphism

A bundle morphism between is a pair of smooth maps (f,F) such that this diagram commutes

$$E \xrightarrow{F} E'$$

$$\downarrow_{\pi} \qquad \downarrow_{\pi'}$$

$$M \xrightarrow{f} M'$$

and $F|_{E_p}: E_p \to E'_{f(p)}$ is a linear map $(\forall p \in M)$. If it admits an inverse which is itself a bundle morphism, it is a unble isomorphism.

Remember that f is smooth because $f = \pi' \circ F \circ Z$

$$p \stackrel{Z}{\mapsto} 0_p \stackrel{F}{\mapsto} 0_{f(p)} \stackrel{\pi'}{\mapsto} f(p)$$

Remark

$$E \xrightarrow{F} E'$$

$$M$$

commutes and $F|_{E_p}: E_p \to E_p'$ is linear $(\forall p)$.

Remark

 $\operatorname{rank}(F|_{E_p})$ may depend on $p \in M$.

$$TM \xrightarrow{Df} TR$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi}$$

$$M \xrightarrow{f} \mathbb{R}$$

e.g. $M = \mathbb{R}^2$, $E = E' = TR^2 (= \mathbb{R}^4)$, $F((u, v)_{(x,y)}) = (u, xv)$. For $x \neq 0$, rank $(F|_{(x,y)}) = 2$ but for x = 0 rank $(F|_{(0,y)}) = 1$.

Proposition 10.26

If F is a bijective, smooth bundle homomorphism, then it is a bundle isomorphism. Proof left as an exercise. We need to show that F^{-1} is smooth.

Definition: Fiber Bundle

 $F \to E \xrightarrow{\pi} M$ with fiber F such that $E_x = \pi^{-1}(x)$ is diffeomorphic to F. This diagram commutes.

Fact

If $N \stackrel{F}{\rightarrow} M$ is a submersion from compact manifolds, then F is a fiber bundle.

Chapter 11: Cotangent Bundles

Review: Linear Algebra

Suppose we have a real vector space V of dimension n. Then $V^* = \{f : V \to \mathbb{R} \mid \text{linear}\}$.

If V has a basis $\{E_1, \ldots, E_n\}$, then we may define the dual basis for V^* $\{\epsilon^1, \ldots, \epsilon^n\}$ by $\epsilon^j(E_i) = \delta^j_i = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$.

Remember $V^{**} \cong V$ by $\xi: V \to V^{**}$ by $v \mapsto \xi(v): V^* \to \mathbb{R}$ and $\omega \mapsto \omega(v)$.

Remember also that if A is a linear map $V \to W$ then we may define $A^* : \omega \in W^* \to V^* \ni A^* \omega$ by $v \in V \to \mathbb{R} \ni \omega(Av)$ (ie. $(A^*\omega)(v) = \omega(Av)$).

6

Definition: Cotangent Bundle

Let M^n be a smooth manifold, and let (U, ϕ) be a chart. Then T_pM has a basis

$$\left\{ \frac{\partial}{\partial x^1} \Big|_p, \dots, \frac{\partial}{\partial x^n} \Big|_p \right\}$$

for every $p \in U$. Take its dual basis

$$\left\{\lambda^{1}|_{p},...,\lambda^{n}|_{p}\right\}$$

for T_p^*M . The cotangent bundle $T^*M = \coprod_{p \in M} T_p^*M$.

Similar to the TM case, if $T^*M \xrightarrow{\pi} M$, then $\omega|_p \in \pi^{-1}(U) \xrightarrow{\Phi} U \times \mathbb{R}^n \ni (p, a_1, \dots, a_n)$ where a_i is given by $\omega|_p = a_i \lambda^i|_p$. In other words, $a_i = \omega|_p \left(\frac{\partial}{\partial x^i}\Big|_p\right)$.

Computing Dual Transition

Suppose $(U,(x^1,...,x^n))$ and $(V,(y^1,...,y^n))$ are two charts $(W=U\cap V\neq\varnothing)$. Then $\left\{\frac{\partial}{\partial x^i}\Big|_p\right\}$ gives a dual $\{\lambda^i|_p\}$ and $\left\{\frac{\partial}{\partial y^i}\Big|_p\right\}$ gives $\{\mu^i|_p\}$.

Then, recall, $\frac{\partial}{\partial y^i}\Big|_p = \frac{\partial x^j}{\partial y^i} \frac{\partial}{\partial x^j}\Big|_p$ and $x^j(y^1, ..., y^n)$ is a j-component of $(y^1, ..., y^n) \to M \to (x^1, ..., x^n)$. If $\omega \in T_p^* M$, $\omega = a_i \lambda^i \Big|_p = b_j \mu^j \Big|_p$

$$a_{i} = \omega |_{p} \left(\frac{\partial}{\partial x^{i}} |_{p} \right) = \omega_{p} \left(\frac{\partial y^{j}}{\partial x_{i}} \frac{\partial}{\partial y^{j}} \right) = \frac{\partial y^{j}}{\partial x^{i}} \omega \left(\frac{\partial}{\partial y^{j}} \right) = \frac{\partial y^{j}}{\partial x^{i}} b_{j}$$

In particular, $\mu^j = \omega$, then $a_i = \frac{\partial y^k}{\partial x^i} b_k = \frac{\partial y^j}{\partial x^i}$. Hence $\mu^j = \omega = a_i \lambda^i = \frac{\partial y^i}{\partial x^i} \lambda^i$.

Definition: Smooth Covector Field

A smooth covector field is a smooth section of T^*M , call it $\Omega^1(M) = \Gamma(T^*M)$. Given $f \in C^{\infty}(M)$, we can define a smooth covector field $df \in \Omega^1(M)$ by $df(v|_p) = (v_p)(f)$. df(X) = Xf is smooth if X and f are smooth.

Differential

Given a local chart $(U,(x^1,...,x^n))$ and a smooth function $f:U\to\mathbb{R},\ df_p=a_i(p)\lambda^i|_p$.

$$\frac{\partial f}{\partial x^j} = df_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = a_i(p) \lambda^i \Big|_p \left(\frac{\partial}{\partial x^j} \Big|_p \right) = a_i(p) \delta^i_j = a_j(p)$$

That is, $df_p = \frac{\partial f}{\partial x^j}(p)\lambda^j|_p$. In particular, if we consider the coordinate function $x^i: U \to \mathbb{R}$, then $dx^i|_p = \frac{\partial x^i}{\partial x^j}(p)\lambda^j|_p = \lambda^i|_p$ for each $p \in U$ (i.e. $dx^i = \lambda^i$ on U).

With this, we can write $df = \frac{\partial f}{\partial x^i} dx^i$ and $dy^j = \frac{\partial y^j}{\partial x^i} \partial x^i$.

Proposition 11.22

For $f \in C^{\infty}(M)$, then df = 0 if and only if f is constant on every compnent of M.

Proof

- (\longleftarrow) is trivial.
- (\Longrightarrow) We assume M is connected. Fix $p \in M$, define $\mathcal{A} = \{q \in M : f(p) = f(q)\}$ is closed.

Now let $q \in A$ and U a local chart around q. Then $0 = df = \frac{\partial f}{\partial x^i} dx^i$ (i.e. $\frac{\partial f}{\partial x^i} \equiv 0$, $\forall i$). Hence f is constant on U and f(q) = f(p) for $U \in A$.

Proposition 11.23

Take $\gamma: J \to M$ a smooth curve $f \in C^{\infty}(M)$. Then $(df|_{\gamma(t)})(\gamma'(t)) = (\gamma'(t))f = (f \circ \gamma)'(t)$.

IMAGE 2

Recall that if $v \in T_p M$ and $f \in C^{\infty}(M)$ then $vf = (f \circ \gamma)'(0)$ where $\gamma : (-\varepsilon, \varepsilon) \to M$, $\gamma(0) = p$ and $\gamma'(0) = v$ $(f \circ \gamma : \mathbb{R} \to \mathbb{R}).$

January 13, 2025

Recall

 T^*M and $\Omega'(M) = \Gamma(T^*M)$. Let $(U,(x^1,\ldots,x^n))$ be a chart. Then inside U, we may write $\omega = \omega_i dx^i$. $\{dx^i|_p\}$ is a dual basis of $\{\frac{\partial}{\partial x^i} \subseteq T_pM\}$.

They are also $x^i: U \to \mathbb{R}$ coordinates functions where dx^i is the differential of x^i .

Given $f \in C^{\infty}(M)$ or $C^{\infty}(U)$, $df \in \Omega'(M)$ or $\Omega'(U)$ is defined by $df(X_p) = (Xf)(p)$.

Inside a chart, $df = \frac{\partial f}{\partial x^i} dx^i$.

We have a change of coordinates where $(U,(x^1,...,x^n))$ and $(V,(y^1,...,y^n))$ and $W=U\cap V\neq\emptyset$ gives $dy^j=\frac{\partial y^j}{\partial x^i}dx^i$.

Recall (Linear Algebra)

If $A: V \to W$ is a linear map with $w \in W^*$ and $v \in V$, then $A^*: W^* \to V^*$ is the dual map defined by $(A^*w)(v) :=$ w(Av).

Dual of the Tangent Space

Let $F: M \to N$ be a smooth map between manifolds.

$$DF_p: T_pM \to T_{F(p)}N$$
$$(DF_p)^*: T_{F(p)}^*M \to T_p^*N$$

and $(DF_p^*\omega)(v) = \omega(DF_p(v))$ for $\omega \in T_{F(p)}^*N$ and $v \in T_pM$.

Definition: Pullback

Given $\omega \in \Omega'(N)$, we can define $F^*\omega$, a section of T^*M , by $(F^*\omega)_p(\nu) = \omega(DF_p(\nu))$ or $(F^*\omega)_p = DF_p^*\omega$. We call this the pullback of ω by F.

Recall that for $u \in C^{\infty}(N)$, $M \xrightarrow{F} N \xrightarrow{u} \mathbb{R}$. Then we can define $F^*u \in C^{\infty}(M)$ by $F^*u = u \circ F$.

Proposition

If $F: M \to N$ is smooth, $u \in C^{\infty}(N)$ and $\omega \in \Omega'(N)$, then

1.
$$F^*(u\omega) = (F^*u)(F^*\omega)$$
.

2.
$$F^*(du) = d(F^*u)$$
.

Proof of 1

 $\forall p \in M, \forall v \in T_pM$

$$(F^*(u\omega))_p(v) = DF_p^*(u\omega)(v) = u_{F(p)}\omega_{F(p)}(DF_p(v)) = (u \circ F(p))\omega(DF_p(v)) = (F^*u)(F^*\omega)$$

Proof of 2

$$(F^*(du))(v) = du(DF_p(v)) = (DF_p(v))u = (du)_{F(p)}DF_p(v) = d(u \circ F)(v) = d(F^*u)(v)$$

Change of Coordinates

Locally, $F: M \to N$. Let $(U, (x^1, ..., x^n))$ be a chart around p and $(V, (y^1, ..., y^n))$ a chart around F(p). For $\omega \in \Omega'(N)$, in $V = \omega_i dy^i$ and

$$F^*\omega = F^*(\omega_i dy^i) = (F^*\omega_i)(F^*dy^i) = (F^*\omega_i)d(F^*y^i) = (\omega_i \circ F)(dF^i)$$

where $F^i = y^i \circ F$ is the *i*th component of F.

When F is smooth and $\omega \in \Omega'(N)$, then $F^*\omega \in \Omega'(M)$. In fact, locally, $F^*\omega = (\omega_i \circ F)d(F^i)$. Hence $F^*\omega$ is smooth.

Example 1

Take $F: \mathbb{R}^3 \to \mathbb{R}^2$ by $(x, y, z) \mapsto (u(x, y, z), v(x, y, z)) = (x^2 y, y \sin(z))$. Then $\omega = u \, dv + v \, du \in \Omega'(\mathbb{R}^2)$. So

$$F^*\omega = F^*(u \, dv + v \, du)$$

$$= (F^*u)d(F^*v) + (F^*v)d(F^*u)$$

$$= x^2y \, d(y\sin(z)) + (y\sin(z)) \, d(x^2y)$$

$$= x^2y(\sin(z) \, dy + y\cos(z) \, dz) + y\sin(z)(2xy \, dx + x^2 \, dy)$$

Example 2

$$M = \mathbb{R}^2 - \{0\}$$
 and $\gamma : [0, 2\pi] \to M$ by $t \mapsto (r\cos(t), r\sin(t))$ for $t > 0$. Take $\omega = \frac{x \, dy - y \, dx}{x^2 + y^2} \in \Omega'(M)$

$$\gamma^* \omega = \frac{1}{r^2} (r \cos(t) d(r \sin(t)) - r \sin(t) d(r \cos(t))$$
$$= \cos(t) (\cos(t)) dt - \sin(t) (\sin(t)) dt$$
$$= dt$$

Definition: Line Integral

If $\eta \in \Omega'(\mathbb{R})$ or $\Omega'(I)$ (where $I \subseteq \mathbb{R}$) is an interval), η can be written as $\eta(t) = f(t) dt$ and define

$$\int_{I} \eta = \int_{a}^{b} f(t) dt$$

Let $\gamma:[a,b]\to M$ be a smooth curve on M. Let $\omega\in\Omega'(t)$. Define

$$\int_{\gamma} \omega = \int_{a}^{b} \gamma^* \omega$$

with $\gamma^*(\omega) \in \Omega'([a,b])$.

Proposition 11.31

Take $\phi: I \to J$ a diffeomorphism between intervals with $\phi' > 0$. Then

$$\int_{J} \phi^* \omega = \int_{\phi(J)} \omega$$

Write s for coordinates on I and t for coordinates on I. Then $\omega = f(t) dt \in \Omega^1(I)$ and

$$\phi^* \omega = (\phi^* f) \ d(\phi^* t) = (f \circ \phi) \ d(t \circ \phi) = f(\phi(s)) \ d(\phi(s)) = f(\phi(s)) \phi'(s) \ ds$$

Then

$$\int_{I} \phi^{*} \omega = \int_{I} f(\phi(s)) \phi'(s) ds \stackrel{t=\phi(s)}{=} \int_{I} f(t) dt = \int_{I} \omega$$

Proposition 11.37: Independence of Reparameterization

Suppose $\gamma:I\to M$ is a smooth curve and $\phi:J\to I$ is a diffeomorphism with $\phi'>0$. Then $\tilde{\gamma}:=\gamma\circ\phi:J\to M$ is a reparameterization of γ and

$$\int_{\gamma} \omega = \int_{\tilde{\gamma}} \omega$$

If $\phi' < 0$, then $\int_{\gamma} \omega = -\int_{\tilde{\gamma}} \omega$.

Proof

$$\int_{\gamma}\omega=\int_{I}\gamma^{*}\omega\int_{J}\phi^{*}\gamma^{*}\omega=\int_{J}(\gamma\circ\phi)^{*}\omega=\int_{\tilde{\gamma}}\omega$$

Example

Take $\gamma:[0,2\pi]\to M=\mathbb{R}^2-\{0\}$ by $t\mapsto (r\cos(t),r\sin(t))$ with t>0. If $\omega=\frac{x\,dy-y\,dx}{x^2+y^2}$, then $\gamma^*\omega=dt$ and

$$\int_{\gamma} \omega = \int_{0}^{2\pi} \gamma^* \omega = \int_{0}^{2\pi} dt = 2\pi$$

Proposition 11.38

For $\gamma: I \to M$

$$\int_{\gamma} \omega = \int_{I} \omega_{\gamma(t)}(\gamma'(t)) dt$$

Proof

In a local chart $(U,(x^1,\ldots,x^n))$, we can write $\omega=\omega_idx^i$. Then $\gamma(t)=(\gamma^1(t),\ldots,\gamma^n(t))$ and

$$\gamma^* \omega = \gamma^* (\omega_i dx^i)$$

$$= (\gamma^* \omega_i) d(\gamma^* x^i)$$

$$= (\omega_i \circ \gamma) d\gamma^i$$

$$= \omega_i (\gamma(t)) \frac{d\gamma^i}{dt} dt$$

$$= \omega_i (\gamma(t)) \dot{\gamma}^i(t) dt$$

Since $\omega = \omega_i dx^i$ and $\dot{\gamma}(t) = (\dot{\gamma}^1(t), \dots, \dot{\gamma}^n(t)) = \dot{\gamma}^i(t) \frac{\partial}{\partial x^i}$, $\omega_{\gamma(t)}(\dot{\gamma}(t)) = \omega_i(\gamma(t))\dot{\gamma}^i(t)$ and

$$\omega_i(\gamma(t))\dot{\gamma}^i(t)dt = \omega_{\gamma(t)}(\dot{\gamma}(t))dt$$

Hence $\int_{\gamma} \omega = \int_{I} \gamma^* \omega = \int_{I} \omega_{\gamma(t)}(\dot{\gamma}(t)) \ dt$.

Corollary

Then, if $f: M \to \mathbb{R}$ is a smooth function,

$$\int_{\gamma} df = \int_{I} (df)_{\gamma(t)} (\dot{\gamma}(t)) dt = \int_{I} (f \circ \gamma)'(t) dt = f(\gamma(b)) - f(\gamma(a))$$

Therefore $\int_{\gamma} df$ only depends on the value of f at the endpoints of γ .

Definition: Exact and Conservative Forms

Let $\omega \in \Omega^1(M)$. We say that ω is. . .

- 1. exact if there exists $f \in C^{\infty}(M)$ such that $\omega = df$.
- 2. conservative if $\int_C \omega$ = 0 for any closed, piecewise-smooth curve in M

f is called the potential of ω .

Remark

If $\int_C \omega = 0$, we may write C as the concatenation of curves γ then $-\sigma$. Then

$$0 = \int_{C} \omega = \int_{\gamma} \omega + \int_{-\sigma} \omega = \int_{\gamma} \omega - \int_{\sigma} \omega$$

Remark

Exact implies conservative.

Theorem

If $\omega \in \Omega^1(M)$ is conservative, then it is exact.

Proof

Fix a bse point $p_0 \in M$.

We have that $\int_{p}^{q} \omega = \int_{\gamma} \omega$ is well-defined by the conservative assumption, and we define $f(p) = \int_{p_0}^{p} \omega$.

Let $q_0 \in M$ and let $(U, (x^1, ..., x^n))$ be a chart centered at q_0 . Inside $U, \omega = \omega_i dx^i$ and $df = \frac{\partial f}{\partial x^i} dx^i$.

We need to show that $\frac{\partial f}{\partial x^i} = \omega_i$ for each i. Fix an index i and consider a curve $\sigma: (-\varepsilon, \varepsilon) \to U$ by $t \mapsto (0, ..., t, ..., 0)$.

IMAGE 1

Let $q_{-} = \sigma(-\varepsilon)$, then

$$f(q_0) = \int_{p_0}^{q} \omega = \int_{p_0}^{q_-} \omega + \int_{q_-}^{q} \omega =: \tilde{f}(q)$$

so $f(q_0) = \operatorname{constant} + \tilde{f}(q)$. Hence $\frac{\partial f}{\partial x^j} = \frac{\partial \tilde{f}}{\partial x^j}$ in U. Therefore

$$\tilde{f}(\sigma(s)) = \int_{q_{-}}^{\sigma(s)} \omega$$

$$= \int_{\sigma|_{[-\varepsilon,s]}}^{s} \omega$$

$$= \int_{-\varepsilon}^{s} \omega_{\sigma(t)}(\dot{\sigma}(t)) dt$$

$$= \int_{-\varepsilon}^{s} \omega_{\sigma(t)} \left(\frac{\partial}{\partial x^{i}}\right) dt$$

$$= \int_{-\varepsilon}^{s} \omega_{i}(\sigma(t)) dt$$

and

$$\left. \frac{\partial f}{\partial x^i} \right|_{q_0} = \left. \frac{\partial \tilde{f}}{\partial x^i} \right|_{q_0} = (\tilde{f} \circ \sigma)'(0) = \frac{d}{ds} \Big|_{s=0} \left(\int_{-\varepsilon}^s \omega_i(\sigma(t)) dt \right) = \omega_i(\sigma(0)) = \omega_i(q_0)$$

Remark

Take $\omega = df \in \Omega^1(M)$ which is $\omega_i dx^i$ locally or $\omega_i = \frac{\partial f}{\partial x^i}$ when exact.

$$\frac{\partial \omega_i}{\partial x^j} = \frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial \omega_j}{\partial x^i}$$

Note: $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ does not, in general, imply $\omega = df$.

January 15, 2025

Recall

If $\omega \in \Omega^1(M)$ and $\gamma : \mathbb{R} \supseteq I \to M$ a (piecewise) smooth curve, then

$$\int_{\gamma} \omega = \int_{I} \gamma^* \omega$$

If df is the differential of a smooth function, then

$$\int_{\gamma} df = f(\gamma(b)) - f(\gamma(a))$$

only depends on endpoints. In particular, along a closed (piecewise) smooth curve

$$\int_C df = 0$$

We have that ω is exact if $\omega=df$ and conservative if $\int_C \omega=0$ for every closed curve. ω is exact if and only if it is also conservative.

Recall: Checking Exactness

Take $\omega \in \Omega^1(M)$,

$$\omega_i dx^i = \omega = df = \frac{\partial f}{\partial x^i} dx^i$$

Then

$$\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2}{\partial x^j \partial x^i}$$

That is, $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$.

Definition: Closed 1-Form

We say $\omega \in \Omega^1(M)$ is closed if in every chart $(U,(x^i))$, $\omega = \omega_i dx^i$ satisfies $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$. Exact implies closed, however the converse is not true in general.

Example

 $\exists \omega \in \Omega^1(\mathbb{R}^2 - \{0\})$ such that ω is closed but $\int_C \omega = 2\pi$.

Corollary 11.50

If $\omega \in \Omega^1(M)$ is closed, then $\forall p \in M$ there exists a chart U at p such that $\omega_U = df$ for some $f \in C^\infty(U)$

Proposition 11.45

For $\omega \in \Omega^1(M)$, the following are equivalent

- 1. ω is closed.
- 2. ω satisfies $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ in some chart at every point.
- 3. For every open $U \subseteq M$ and $X, Y \in \mathfrak{X}(U)$, it holds that

$$X(\omega(Y)) - Y(\omega(X)) = \omega([X, Y])$$

The proof that 1 implies 2 is trivial.

Proof 3 Implies 1

Pick U as a chart, $X = \frac{\partial}{\partial x^i}$, and $Y = \frac{\partial}{\partial x^j}$. Then, since $\omega = \omega_i dx^i$,

$$X(\omega(Y)) = X(\omega_j) = \frac{\partial w_j}{\partial x^i}$$

Similarly, $Y(\omega(X)) = \frac{\partial \omega_i}{\partial x^j}$. Then $[X,Y] = \left[\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j}\right] = 0$ and

$$\frac{\partial \omega_j}{\partial x^i} - \frac{\partial \omega_i}{\partial x^j} = 0$$

Proof 2 Implies 3

Fix any $p \in U$. We have a chart $(V, (x^i))$ at p such that $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$. Then

$$X(\omega(y)) = X\left((\omega_i dx^i)\left(Y^j \frac{\partial}{\partial x^j}\right)\right) = X(\omega_i Y^i) = (X\omega_i)Y^i + \omega_i(XY^i) = x^j \frac{\partial w_i}{\partial x^j}Y^i + \omega_i(XY^i) = X^j Y^i \frac{\partial \omega_j}{\partial x^i}$$

Similarly,

$$Y(\omega(X)) = Y(\omega_i x^i) = Y^j \frac{\partial \omega_i}{\partial x^j} x^i - \omega_i (YX^i) = X^i Y^j \frac{\partial \omega_i}{\partial x^j}$$

which is equivalent under a change of indicies. Hence

$$X(\omega(Y)) - Y(\omega(X)) = \omega_i(XY^i) - \omega_i(YX^i) = \omega_i(XY^i - YX^i) = \omega([X, Y])$$

Lemma

Suppose $F:M\to N$ is a local diffeomorphism. Then $F^*:\Omega^1(N)\to\Omega^1(M)$ sends exact (or closed) 1-forms to exact (or closed) ones.

Proof of Exact

If $\omega = df \in \Omega^1(N)$, then $F^*\omega = F^*(df) = d(F^*f)$ is exact on M.

Proof of Closed

If $\omega \in \Omega^1(N)$ is closed, then $\frac{\partial \omega_i}{\partial x^j} = \frac{\partial \omega_j}{\partial x^i}$ in every chart of N. For any $p \in M$, we consider a chart at p by $(V, \phi \circ F)$

IMAGE 1

Therefore $\phi \circ F \circ (\phi \circ F)^{-1} = \mathrm{id}$ and $F^* = \mathrm{id}$ so $F^* \omega$ is closed.

Poincaré Lemma

Let $\omega \in \Omega^1(M)$ be closed. Fix $p \in M$, and let (U, ϕ) be a chart at p such that $\phi(U) = B_1(0) \subseteq \mathbb{R}^n$.

IMAGE 2

Assuming the above, every closed 1-form on $B_1(0)$ is exact. $(\phi^{-1})^*(\omega|_U) = df$ for some $f \in C^{\infty}(B_1(0))$ where $\omega|_U = \phi^*(df) = d(\phi^*f) \in C^{\infty}(U)$

Definition: Star-Shaped Domain

We say that $U \subseteq \mathbb{R}^n$ open is star-shaped with a center $c \in U$ (wlog c = 0) if for any $x \in U$, the segment γ_x from c to x is contained in U.

IMAGE 3

If
$$x = (x^i)$$
, then $\gamma_x(t) = (tx^i)$.

Theorem 11.49 (Poincaré Lemma)

If $U \subseteq \mathbb{R}^n$ is star-shaped, then every closed 1-form is exact.

Recall

If ω is an exact 1-form, then $f(q) = \int_{p_0}^p \omega$ is a potential. We also have that $\int_{\gamma} \omega = \int_I \omega_{\gamma(t)}(\dot{\gamma}(t)) \ dt$.

Proof

Let $\omega \in \Omega^1(U)$ be a closed 1-form.

We need to construct $f \in C^{\infty}(U)$ such that $df = \omega$. That is, for all i, $\frac{\partial f}{\partial x^i} = \omega^i$. Define

$$f(x) = \int_{\gamma_x} \omega = \int_0^1 \omega_{\gamma_x(t)}(\dot{\gamma}_x(t)) dt = \int_0^1 \omega_i|_{\gamma_x(t)} dx^i(x^1, ..., x^n) dt = \int_0^1 \omega_i|_{tx} x^i dt$$

Since everything is smooth,

$$\frac{\partial f}{\partial x^{j}}(x) = \int_{0}^{1} \frac{\partial}{\partial x^{j}} (\omega_{i}(tx) \cdot x^{i}) dt$$

$$= \int_{0}^{1} \frac{\partial \omega_{i}(tx)}{\partial x^{j}} \cdot x^{i} + \omega_{i}(tx) \frac{\partial x^{i}}{\partial x^{j}} dt$$

$$= \int_{0}^{1} \left(\frac{\partial w_{i}}{\partial x^{j}} \right) \Big|_{(tx)} tx^{i} + \omega_{j}(tx) dt$$

$$= \int_{0}^{1} \frac{\partial \omega_{j}}{\partial x^{i}} \Big|_{tx} tx^{i} + \omega_{j}(tx) dt$$

$$= \int_{0}^{1} \frac{d}{dt} (t\omega_{j}(tx)) dt$$

$$= t\omega_{j}(tx) \Big|_{0}^{1}$$

$$= \omega_{j}(x)$$

Tensors: Multilinear Maps

All vector spaces will be finite dimensional in our consideration.

$$F: V_1 \times \cdots \times V_k \to W$$

linear in every component. Denote $L(V_1,\ldots,V_k;W)$ to be the set of all such multilinear maps. Given $\omega\in L(V_1;\mathbb{R})=V_1^*$ and $\eta\in V_2^*$, we can define $\omega\otimes\eta\in L(V_1,V_2;\mathbb{R})$ by $\omega\otimes\eta(v_1,v_2)=\omega(v_1)\cdot\eta(v_2)$.

Remark

 $(2\omega) \otimes \eta = \omega \otimes (2\eta)$. We assume $\otimes_{\mathbb{R}}$.

Similarly, given $\omega_i \in V_i^*$, we can define $\omega_1 \otimes \cdots \otimes \omega_k \in L(V_1, \ldots, V_K; \mathbb{R})$.

Proposition

Let V_j with dimension n_j (j=1,...,k). Each V_j has a basis $\{E_1^{(j)},...,E_{n_j}^{(j)}\}$. Its dual basis $\{\varepsilon_{(j)}^1,...,\varepsilon_{(j)}^{n_j}\}\subseteq V_j^*$. Then $L(V_1,...,V_k;\mathbb{R})$ has a basis

$$\mathcal{B} = \left\{ \varepsilon_{(1)}^{i_1} \otimes \cdots \otimes \varepsilon_{(k)}^{i_k} : 1 \leq i_j \leq n_j \right\}$$

Proof

For a multi-index $I=(i_1,\ldots,i_k)$ with $i\leq i_j\leq n_j$, we write $\varepsilon^I=\varepsilon^{i_1}_{(1)}\otimes\cdots\otimes\varepsilon^{i_k}_{(k)}$. For any $F\in L(V_1,\ldots,V_k;\mathbb{R})$, define $F_I=F(E^{(1)}_{i_1},\ldots,E^{(k)}_{i_k})$. We claim that $F=F_I\varepsilon^I$. In fact, for $(v_1,\ldots,v_k)\in V_1\times\cdots\times V_k$, $v_j=v^i_jE^{(j)}_i$. We may check that $F(v_1,\ldots,v_k)=F_I\varepsilon^I(v_1,\ldots,v_k)$. Therefore $\mathcal B$ spans $L(V_1,\ldots,V_k;\mathbb{R})$. Then, if $F_I\varepsilon^I=0$, then applying it to $(E^{(1)}_{i_1},\ldots E^{(k)}_{i_k})$ gives $F_I=0$. Therefore $\mathcal B$ is linearly independent. In particular, $\dim L(V_1,\ldots,V_k;\mathbb{R})=\prod_{j=1}^k n_j=\prod_{j=1}^k \dim V_j$.

Definition: Formal Linear Combination

Let S be a set. Define

$$\mathcal{F}(S) = \left\{ \sum_{i=1}^{m} a_i s_i : a_i \in \mathbb{R}, s_i \in S \right\}$$

This is the free (real) vector space on S containing formal linear combinations of elements of S. Define $V_1 \otimes \cdots \otimes V_k = \mathcal{F}(V_1 \times \cdots \times V_k)/R$ where R is generated by

$$(v_1, ..., v_j + v'_j, ..., v_k) \sim (v_1, ..., v_j, ..., v_k) + (v_1, ..., v'_j, ..., v_k)$$

 $(v_1, ..., cv_j, ..., v_k) \sim c(v_1, ..., v_k)$

In other words, in the quotient $v_1 \otimes \cdots \otimes v_k = \prod (V_1, \dots, v_k)$.

Proposition

 $V_1 \otimes \cdots \otimes V_k \text{ has a basis } \Big\{ E_{i_1}^{(1)} \otimes \cdots \otimes E_{i_k}^{(k)} \, : \, 1 \leq i_j \leq n_j \Big\}.$

Proposition

There exists a canonical isomorphism $(V_1 \otimes V_2) \otimes V_3 \cong V_1 \otimes (V_2 \otimes V_3)$ by sending $(v_1 \otimes v_2) \otimes v_3 \mapsto v_1 \otimes (v_2 \otimes v_3)$.

Proposition

$$L(V_1,\ldots,V_k;\mathbb{R})\cong V_1^*\otimes\cdots\otimes V_k^*$$
.

Proof Sketch

Define $\Phi: V_1^* \times \cdots \times V_k^* \to L(V_1, \dots, V_k; \mathbb{R})$ by $(\omega^1, \dots, \omega^k) \mapsto \omega^1 \otimes \cdots \otimes \omega^k$. By multilinear, this induces an isomorphism

$$\Phi: {V_1^*} \otimes \cdots \otimes {V_k^*} \cong L(V_1, \dots, V_k; \mathbb{R})$$

Recall

 $V^{**} \cong V$ for finite dimensional vector spaces, so $V_1 \otimes \cdots \otimes V_k = L(V_1^*, \dots, V_k^*; \mathbb{R})$.

Definition: Tensor

A tensor of (k, l)-type is an element in $\underbrace{V \otimes \cdots \otimes V}_{k} \otimes \underbrace{V^* \otimes \cdots \otimes V^*}_{l}$.

The collection of such elements in $T^{(k,l)}V$. Most of the time we consider $T^{(0,l)}V$.

Examples

A vector in V is a (1,0)-tensor.

A covector in V^* is a (0,1)-tensor.

A linear map $A \in L(V)$ is a (1,1)-tensor.

An inner product is a (0,2)-tensor.

Symmetric Tensor

We say that $\alpha \in T^{(0,l)}V$ is symmetric if $\alpha(\ldots, v_i, \ldots, v_j, \ldots) = \alpha(\ldots, v_j, \ldots, v_i, \ldots)$.

Alternating Tensor

We say that $\alpha \in T^{(0,l)}V$ is alternating if $\alpha(\ldots, v_i, \ldots, v_j, \ldots) = -\alpha(\ldots, v_j, \ldots, v_i, \ldots)$.

January 22, 2024

Alternating/Symmetric Tensors

Let $\sigma \in S_l$ and $\alpha \in T^{(0,l)}V$.

Define σ_{α} or $(\sigma \cdot \alpha)$ as a new (0, l)-tensor by $(\sigma \cdot \alpha)(v_1, \ldots, v_l) := \alpha(v_{\sigma(1)}, \ldots, v_{\sigma(l)})$.

Then α is symmetric if and only if $\sigma \cdot \alpha = \alpha$.

 α is alternating if and only if $\sigma \cdot \alpha = (\operatorname{sign} \sigma) \cdot \alpha$.

Define Sym: $T^{(0,l)}V \to S^lV$ by

$$\operatorname{Sym}(\alpha) = \frac{1}{l!} \sum_{\sigma \in S^l} (\sigma \cdot \alpha)$$

Then $\operatorname{Sym}(\alpha)$ is symmetric for all $\tau \in S^l$.

Define Alt: $T^{(0,l)}V \to \Lambda^l V$, the set of alternating (anti)-tensors by

$$Alt(\alpha) = \frac{1}{l!} \sum_{\sigma \in S^l} (sign \, \sigma)(\sigma \cdot \alpha)$$

Definition: Tensor Bundles

Recall that $T_pM \rightsquigarrow TM = \coprod_{p \in M} T_pM$ and $T_p^*M \rightsquigarrow T^*M$.

Then $T^{(k,l)}T_pM \rightsquigarrow T^{(k,l)}TM = \coprod_{p \in M} T^{(k,l)}T_pM$ a tensor bundle.

Mostly, we will consider $T^{(0,l)}TM$.

Inside a chart $(U,(x^1,...,x^n))$, $T^{(k,l)}TM$ has a local frame

$$\left\{\frac{\partial}{\partial x^{i1}}\otimes\cdots\otimes\frac{\partial}{\partial x^{ik}}\otimes dx^{j1}\otimes\cdots\otimes dx^{jl}\right\}$$

Definition: Smooth Tensor Field

A smooth tensor field of type (k, l) is a smooth section of $T^{(k, l)}TM$. To check that a (o, l)-tensor field A is smooth, we can do either of the following

- 1. Write A in a local chart, then $A = A_I dx^I$ where A_I are functions in U and $dx^I = dx^{i1} \otimes dx^{il}$ with I = (i1, ..., il). Then A is smooth if and only if A_I is smooth for all I.
- 2. Check A testing on any l many smooth vector fields results in a smooth function.

Remark

Every (0, l)-tensor field A defines a map

$$\mathcal{A} = \underbrace{\mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M)}_{l} \to C^{\infty}(M)$$

by $A(x_1,...,X_l)(p) = A_p(X_1(p),...,X_l(p))$. This map \mathcal{A} is $C^{\infty}(M)$ -multilinear.

Lemma 12.24

Every $C^{\infty}(M)$ -multilinear map $\mathcal{A}:\mathfrak{X}(M)\times\cdots\times\mathfrak{X}(M)\to\mathbb{C}^{\infty}(M)$ defines a smooth (0,l)-tensor field

$$A_p(v_1,\ldots,v_l) = (\mathcal{A}(X_1,\ldots,X_l))(p)$$

Example

Given $\omega \in \Omega^1(M)$, define $\mathcal{A}: \mathfrak{X}(M) \times \cdots \times \mathfrak{X}(M) \to \mathbb{C}^{\infty}(M)$ by $(X,Y) \mapsto \omega(L_XY)$. If X,Y and X',Y' only agree at a point p, then in general $(L_XY)(p) \neq (L_{X'}Y')(p)$.

Proof

 \mathcal{A} acts locally only depending on the value of X_1,\ldots,X_l in a neighborhood of p, call it U. It suffices to show that if $X_i=0$ for some i on U, then $\mathcal{A}(X_1,\ldots,X_l)(p)=0$. Let ψ be a bump function with $\sup \psi \subseteq U$ and $\psi(p)=1$. Let also $V\subseteq U$ such that $\overline{V}\subseteq U$. Then $\psi X_i\equiv 0$ on M. Then

$$0 = \mathcal{A}(X_1, ..., \psi X_i, ..., X_l)(p) = \psi(p) A(X_1, ..., X_l)(p) = \mathcal{A}(X_1, ..., X_l)(p)$$

Now \mathcal{A} acts pointwisely. Write $X_i = a_i^j \frac{\partial}{\partial x^j}$ in U.

Extend each $\frac{\partial}{\partial x^j}\Big|_V$ to $E_j \in \mathfrak{X}(M)$ and each $a_i^j|_V$ to $f_i^j \in C^{\infty}(M)$. Then inside V.

$$A(X_1,...,X_l)(p) = A(X_1,...,f_i^j E_j,...,X_l)(p) = f_i^j(p)A(X_1,...,X_l)(p)$$

Now let $v_1, ..., v_l \in T_pM$. Define A a (0, l)-tensor field by $A_p(v_1, ..., v_l) = \mathcal{A}(X_1, ..., X_l)$ where $X_i \in \mathfrak{X}(M)$ extends v_i . By assumption, $A(X_1, ..., X_l)$ is a smooth function if $X_1, ..., X_l \in \mathfrak{X}(M)$ hence A is a smooth (0, l)-tensor field.

Definition:

Write $\mathcal{T}^{(0,l)}M = \Gamma(T^{(0,l)}TM)$ where Γ is the section.

Then for $F: M \to N$ a smooth map and $A \in \mathcal{T}^{(0,l)}N$, for $\nu_i \in T_pM$ define $F^*A \in \mathcal{T}^{(0,l)}M$ by

$$(F^*A)_p(v_1,...,v_l) := A_{F(p)}(DF_p(v_1),...,DF_p(v_l))$$

Lie Derivatives

Recall that if $X, Y \in \mathfrak{X}(M)$, we define $(L_X Y)_p$ where X generates a flow $\phi_t : M \to N$

IMAGE 1

 $(\phi_{-t})_* Y_{\phi_t(p)} = ((\phi_{-t})_* Y)_p \in T_p M \text{ for } Y_p \in T_p M. \text{ Then } L_X Y = \frac{d}{dt} \Big|_{t=0} ((\phi_{-t})_* Y)_p.$ If $A \in \mathcal{T}^{(0,l)} M$,

IMAGE 2

$$(\phi_t^* A)_p = (\phi_t)^* (A_{\phi_t(p)} \in T^{(0,l)} T_p M$$

So $L_V A = \frac{d}{dt} \Big|_{t=0} (\phi_t^* A)_p$.

Properties

1. $L_V f = V f$ (where $f \in C^{\infty}(M)$ can be thought of as a smooth (0,0)-tensor field). Then

$$(L_{\nu}f)(p) = \frac{d}{dt}\Big|_{t=0} (\phi_t^* f)_p = \frac{d}{dt}\Big|_{t=0} (f \circ \phi_t(p)) = (Vf)_p$$

- 1. $L_V(fA) = (Vf)A + fL_VA$.
- 2. $L_V(A \otimes B) = (L_V A) \otimes B + A \otimes (L_V B)$.
- 3. $L_V(A(X_1,...,X_l)) = (L_VA)(X_1,...,X_l) + A(L_VX_1,...,X_l) + ... + A(X_1,...,L_VX_l)$ for $A \in \mathcal{T}^{(o,l)}M$ and $X_i \in \mathfrak{X}(M)$.

Proof of 2

We have $O := \{ p \in M : V_p \neq 0 \}$ open in M and supp $V = \overline{\{ p \in M : V_p \neq 0 \}}$.

1. (2) holds on O.

Recall that if $V_p \neq 0$, then there exists a local chart $(U,(x^i))$ centered at p such that on $U,V=\frac{\partial}{\partial x^1}$. In particular, its flow ϕ_t is $(x^1,\ldots,x^n)\mapsto (x^1+t,x^2,\ldots,x^n)$.

Then take some chart $U \subseteq O$ centered at p such that $V = \frac{\partial}{\partial x^1}$ in U. Inside U, write $A = A_I dx^I$, and

$$\phi_t^*(fA) = (\phi_t^* f)(\phi_t^* f)(\phi_t^* A)$$

$$= (f \circ \phi_t)\phi_t^* (A_I dx^I)$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)\phi_t^* dx^I$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)dx^I$$

- 2. (2) holds on supp V by taking limits.
- 3. (2) holds outside supp V, since $V \equiv 0$ on open $M \setminus \text{supp } V$ and hence $\phi_t \equiv \text{id}$. So both sides are identically zero.

January 27, 2025

Recall: Prop 12.32(2)

$$L_V(fA) = (Vf)A + fL_VA$$

Proof Step 1:

Show that he equality holds on $\{p \in M : V(p) \neq 0\}$.

Let $p \in M$ with $V(p) \neq 0$.

Take any chart (U, x^i) centered at p such that $V = \frac{\partial}{\partial x^i}$ on U. Then its flow is

$$\theta_t : (x^1, ..., x^n) \mapsto (x^1 + t, x^2, ..., x^n)$$

in U. In U, we write $A = A_I dx^I$ (where $dx^I = dx^{i1} \otimes \cdots \otimes dx^{il}$). Recall that

$$\theta_t^*(dx^i) = d(\theta_t^*x^i) = d(x^i\theta_t) = \begin{cases} d(x^1 + t) = dx^1 & i = 1\\ d(x^i) & i \neq 1 \end{cases}$$

Write the pullback of θ_t

$$\theta_t^*(fA) = (\theta_t^* f)(\theta_t^* A_I dx^I)$$

$$= (f \circ \theta_t)(A_I \circ \theta_t)(dx^I)$$

$$= f(x^1 + t, x^2, ..., x^n)A_I(x^1 + t, ..., x^n)dx^I$$

So for $p = (x^i)$,

$$(L_{V}(fA))_{p} = \frac{d}{dt}\Big|_{t=0} f(x^{1} + t, x^{2}, ..., x^{n}) A_{I}(x^{1} + t, ..., x^{n}) dx^{I}$$

$$= \underbrace{\frac{\partial f}{\partial x^{1}}(x^{1}, ..., x^{n})}_{Vf} \underbrace{A_{I}(x^{1}, ..., x^{n}) dX^{I}}_{\theta_{t}^{*}A} + f(x^{1}, ..., x^{n}) \frac{\partial A_{I}}{\partial x^{1}(x^{1}, ..., x^{n}) dx^{I}}$$

inside U. Hence $Vf = \frac{\partial f}{\partial x^1}$.

Corollary

 $L_V(df) = d(L_v f)$ for $f \in C^{\infty}(M)$.

Proof

For all $X \in \mathfrak{X}(M)$,

$$(L_V(df))(X) = V(df(X)) - df(L_VX) = VXf - \lceil V, X \rceil f = VXf - (VXf - XVf) = XVf$$

and

$$(d(L_V f))(X) = X(L_V f) = XV f.$$

Proof Step 2:

Show that the equality holds on $\overline{\{p \in M : V(p) \neq 0\}}$.

Proof Step 3:

Show that the equality holds elsewhere.

Recall: Invariance

For two vector fields, X and Y, Y is invariant under the flow of X if $L_XY \equiv 0$.

We say a (0, l)-tensor field A is invariant under a map $F: M \to M$ if $F^*A = A$. Equivalently, if under a flow $\theta_t: M \to M$ if $\theta_t^*A = A$ for all t.

Theorem 12.37

A is invariant under θ_t , $\forall t$, if and only if $L_V A = 0$.

Note

$$\frac{d}{dt}\Big|_{t=t_0} (\theta_t^* A)_p = (\theta_{t_0}^* (L_v A))_p = \theta_{t_0})^* (L_V A)_{\theta_{t_0}^* (p)}$$

So

$$\frac{d}{dt}\Big|_{t=t_{0}}(\theta_{t}^{*}A)_{p} = \frac{d}{dt}\Big|_{t=t_{0}}(\theta_{t}^{*})A_{\theta_{t}(p)}$$

$$\stackrel{t=s+t_{0}}{=} \frac{d}{ds}\Big|_{s=0}\theta_{s+t}^{*}A_{\theta_{s+t_{0}}(p)}$$

$$= \frac{d}{ds}\Big|_{s=0}\theta_{t_{0}}^{*} \circ \theta_{s}^{*}A_{\theta_{t_{0}}(\theta_{s}(p))}$$

$$= \theta_{t_{0}}^{*}(L_{V}A)_{\theta_{t_{0}}^{*}(p)}$$

Therefore, if A is invariant under θ_t , then $\theta_t^* = A$ and

$$L_V A = \frac{d}{dt}\Big|_{t=0} (\theta_t^* A)_p = \frac{d}{dt}\Big|_{t=0} A_p = 0.$$

In the other direction, if $L_V A \equiv 0$, we show that $(\theta_t^* A)_p = A_p$ for every p and each t. From above,

$$\frac{d}{dt}\Big|_{t=t_0}(\theta_t^*A)_p = \theta_{t_0}^*\underbrace{(L_VA)_{\theta_{t_0}(p)}}_{=0} = 0$$

Hence $(\theta_t^* A)_p$ is a constant A_p .

Special Tensors (for this course)

Riemannian Metric

g a (0,2)-tensor, symmetric and positive definite. That is, at each point p

$$g_p:T_pM\times T_pM\to\mathbb{R}$$

which is bilinear, symmetric and positive definite. This is an inner product.

K (Differential) Form

 ω a (0, k)-tensor, alternating.

Riemannian Metric

In a chart $(U,(x^i))$, $g = g_{ij} dx^i \otimes dx^j$.

Since it is symmetric, $g(\partial_i, \partial_j) = g(\partial_j, \partial_i)$ (i.e. $g_{ij} = g_{ji}$). We write $dx^i dx^j = \text{Sym}(dx^i \otimes dx^j)$. In this case

$$Sym(dx^{i} \otimes dx^{j}) = \frac{1}{2} \left(dx^{i} \otimes dx^{j} + dx^{j} \otimes dx^{i} \right)$$

So we may write $g = g_{ij} dx^i dx^j$ and, sometimes, $(dx^1)^2 = dx^1 dx^1$.

We have also that g_{ij} correspinds to a positive definite, symmetric $n \times n$ matrix.

Example

In \mathbb{R}^n , $g_E = \delta_{ij} dx^i dx^j$. For $v = v^k \partial_k$ and $w = w^l \partial_l$,

$$g_E(v,w) = \delta_{ij} dx^i dx^j (v^k \partial_k w^l \partial_l) = v^k w^l \delta_{ij} \underbrace{dx^i (\partial_k)}_{\delta_k^i} \underbrace{dx^j (\partial_l)}_{\delta_l^i} = v^1 w^1 + \dots + v^n w^n$$

Example

Consider $S^2 \subseteq \mathbb{R}^3$ embedded such that $T_p S^2 \hookrightarrow T_p \mathbb{R}^3 \cong \mathbb{R}^3$.

Then $g_p(v, w) = v \cdot w$ defines a Riemannian metric on S^2 .

Proposition

Any smooth manifold admits a Riemannian metric.

Proof 1

Embed M into \mathbb{R}^N with N sufficiently large. Then M is an embedded submanifold in \mathbb{R}^N which induces a Riemannian metric on M.

Proof 2

Let $\{U_i\}$ be a countable cover of M (with each U_i a chart) and $\{\psi_i\}$ be a partition of unity with respect to this cover.

IMAGE 1

So $\phi_i^* g_E$ defines a Riemannian metric on U_i and we construct $\sum_i \psi_i(\phi_i^* g_E)$.

Example: Metric Product

Take (M_1,g_1) and (M_2,g_2) and construct $g_1\oplus g_2$ on $M_1\times M_2$ by either

$$g_1 \oplus g_2 = \begin{pmatrix} g_1 & 0 \\ 0 & g_2 \end{pmatrix}$$

or

$$(g_1 + g_2)((v_1, v_1), (w_1, w_2)) = g_1(v_1, w_1) + g_2(v_2, w_2)$$

e.g. $S^1 \subseteq \mathbb{R}^2$ gives (S^1, g_1) , then on the *n*-torus we construct $(\mathbb{T}^n, g_1 \oplus \cdots \oplus g_1)$.

Example: Warped Product

IMAGE 2

Take $f: M \to \mathbb{R}^+$ smooth, (M, g) and (N, h). Define a new metric \tilde{g} on $M \times N$ by

$$\tilde{g}_{(x,y)} = g_x + f(x)h_y$$

An example in polar coordinates is

$$(dx)^{2} + (dy)^{2} = (d(r\cos\theta))^{2} + (d(r\sin\theta))^{2} = (\cos\theta \, dr - r\sin\theta \, d\theta)^{2} + (\sin\theta \, dr + r\cos\theta \, d\theta)^{2} = dr^{2} + r^{2} \, d\theta^{2}$$

Imagine fixing a direction r and at each point attaching a circle of radius r.

IMAGE 3

Recall: Gradient

If $f \in C^{\infty}(\mathbb{R}^n)$, then

$$\nabla f = \frac{\partial f}{\partial x^i} \frac{\partial}{\partial x^i}$$

Note that this violates our Einstein summation.

If $f \in C^{\infty}(M)$, its differential df is a 1-form and not a vector field. Why? Because in \mathbb{R}^n we are implicitly using the Euclidean metric.

If we have an inner product on a TVS, say $(V, (\cdot, \cdot))$, then we can construct an isomorphism $V \cong V^*$ by $v \mapsto (v, \cdot)$.

On (M,g) we use g to construct a bundle isomorphism between TM and T^*M by $(p,v)\mapsto g_p(v,\cdot)$.

With this, given $df \in \Omega^1(M)$, we can define a vector field $\nabla f \in \mathfrak{X}(M)$ by

$$g(\nabla f, X) = (df)(X) = Xf$$

In a chart $(U,(x^i))$, set $\nabla f = b^i \frac{\partial}{\partial x^i}$. Then

$$g\left(\nabla f, \frac{\partial}{\partial x^{j}}\right) = g\left(b^{i} \frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{j}}\right) = b^{i} g_{ij} = (df)\left(\frac{\partial}{\partial x^{j}}\right) = \frac{\partial f}{\partial x^{j}}$$

Let g^{ij} be the inverse of g_{ij} , then

$$b^{k} = b^{i} \delta_{i}^{k} = b^{i} g_{ij} g^{jk} = \frac{\partial f}{\partial x^{j}} g$$

$$\nabla f = b^k \frac{\partial}{\partial x^k} = \frac{\partial f}{\partial x^j} g^{jk} \frac{\partial}{\partial x^k}$$

Then from above, we actually have

$$\nabla f = \frac{\partial f}{\partial x^i} \delta_{ij} \frac{\partial}{\partial x^j}$$

which satisfies our summation convention.

Example

If $g_E = dr^2 + r^2 d\theta^2$ in polar coordinates,

$$(g_{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}$$
 and $(g^{ij}) = \begin{pmatrix} 1 & 0 \\ 0 & 1/r^2 \end{pmatrix}$

So

$$\nabla f = \frac{\partial f}{\partial x^{j}} g^{jk} \frac{\partial}{\partial x^{k}} = \frac{\partial f}{\partial r} \frac{\partial}{\partial r} + \frac{\partial f}{\partial \theta} \frac{1}{r^{2}} \frac{\partial}{\partial \theta}$$

Isometric Metrics

We say that (M,g) and (N,h) are isometric if there is a diffeomorphism $F:M\to N$ such that $F^*h=g$. With g, we can define (for $v\in T_pM$), $||v||_g=(g_p(v,v))^{1/2}$ and (for $v,w\in T_pM$)

$$\cos(v, w) = \frac{g_p(v, w)}{||w||_g ||w||_g}$$

Definition: Length

Let $\gamma: I \to M$ be a (piecewise) smooth curve.

Define length_g(γ) = $\int_I ||\gamma'(t)||_g dt$.

Remember that $\operatorname{length}_g(\gamma)$ is independent of reparameterization. That is

$$J \xrightarrow{\phi} I \xrightarrow{\gamma} M$$
 with $\tilde{\gamma} = \gamma \circ \phi$ we have

$$\int_{J} ||\tilde{\gamma}'(t)|| dt = \int_{J} ||(\gamma \circ \phi)'(t)|| dt$$

$$= \int_{J} ||\gamma'(\phi(t)) \cdot \phi'(t)|| dt$$

$$\stackrel{\phi'>0}{=} \int_{J} ||\gamma'(\phi(t))|| \phi'(t) dt$$

$$\stackrel{s=\phi(t)}{=} \int_{I} ||\gamma'(s)|| ds$$

Definition: Distance

Given (M, g), define

$$d_g(p,q) = \inf \{ \operatorname{length}_g(\gamma) : \gamma \text{ is piecewise smooth from } p \text{ to } q \}$$

Theorem

 (M, d_g) is a metric space.

Moreover, it induces a metric topology that coincides with the manifold topology.

Theorem: Hopf-Rinow

The following are equivalent.

- 1. (M, d_g) is a complete metric space.
- 2. $\forall p, q \in M$, there exists a length-minimizing curve (a geodesic) from p to q.

Definition: Geodesic

A curve such that the second derivative along $\gamma \equiv 0$.

February 3, 2025

Recall: Wedge Product

$$\bigwedge^{k} V^{*} \times \bigwedge^{l} V^{*} \to \bigwedge^{k+l} V^{*}$$
$$(\omega, \eta) \mapsto \omega \wedge \eta$$

By
$$\frac{(k+l)!}{k!l!} \operatorname{Alt}(\omega \otimes \eta) = \frac{1}{k!l!} \sum_{\sigma \in S_{k+l}} (\sigma \cdot (\omega \otimes \eta)).$$

 $\epsilon^I \in \bigwedge^k V^*$, so

$$\epsilon^{I}(v_1, \dots, v_k) = \det \begin{pmatrix} \epsilon^{i_1}(v_1) & \cdots & \epsilon^{i_1}(v_k) \\ \vdots & & \vdots \\ \epsilon^{i_k}(v_1) & \cdots & \epsilon^{i_k}(v_k) \end{pmatrix}$$

26

We have a V basis $\{E_I\}$ and a V^* dual basis $\{\epsilon^I\}$ with $I=(i_1,\ldots,i_k)$. We also have that $\epsilon^I(E_{j_1},\ldots,E_{j_k})=\delta^I_J$. Then $\mathcal{B}=\{E^I:I \text{ is strictly increasing}\}$ is a basis for $\bigwedge^k V^*$.

Lemma 14.10

$$e^{I} \wedge e^{J} = e^{IJ}$$

Proof

We show that $\epsilon^I \wedge \epsilon^J(E_{p_k}, \dots, E_{p_{k+l}}) = \epsilon^{IJ}(E_{p_1}, \dots, E_{p_{k+l}})$, $P = (p_1, \dots, p_{k+l})$. If $I \cup J \neq P$, then both sides are zero.

If IJ or P has repeated index, then both sides are zero.

Then the only nontrivial case is when P = IJ without repeated indecies. Write $IJ = \{i_1, ..., i_k, j_1, ..., j_l\}$ such that we can apply a permutation $\gamma \in S_{k+l}$ to generate a strictly increasing $P = \{p_1, ..., p_{k+l}\}$. Then write $P_1 = \{p_1, ..., p_k\}$ and $P_2 = \{p_{k+1}, ..., p_{k+l}\}$, and compute

$$\epsilon^{P} = \epsilon^{P_{1}} \wedge \epsilon^{P_{2}}$$

$$= \frac{1}{k! l!} \sum_{\sigma \in S_{k+l}} (\operatorname{sign} \sigma) \cdot (\sigma(\epsilon^{P_{1}} \otimes \epsilon^{P_{2}}))$$

$$= \frac{1}{k! l!} \sum_{\sigma' \in S_{k+l}} (\operatorname{sign} \sigma') (\operatorname{sign} \gamma) ((\gamma \cdot \sigma')(\epsilon^{P_{1}} \otimes \epsilon^{P_{2}}))$$

$$= \operatorname{sign} \gamma(\epsilon^{I} \wedge \epsilon^{J})$$

Proposition 14.11

1. If $\omega^i \in V^*$ and $v_j \in V$, then $\omega^1 \wedge \cdots \wedge \omega^k(v_1, \dots, v_k) = \det(w^i(v_j))$.

Proof

It suffices to check (assuming *I*, *J* strictly increasing)

$$(\epsilon^{i_1} \wedge \cdots \wedge \epsilon^{i_k})(E_{j_1}, \dots, E_{j_k}) = \epsilon^I(E_{j_1}, \dots, E_{j_k}) = \delta^I_J = \det(\epsilon^{i_p}(E_{j_q})).$$

Definition: Graded Algebra

Write $\bigwedge V^* = \bigoplus_{k=0}^n \bigwedge^k V^*$ with $\dim \bigwedge V^* = 2^n$. Remember that $\dim \bigwedge^k V^* = \binom{n}{k}$. It is graded if $(\bigwedge^k) \wedge (\bigwedge^l) \subseteq \bigwedge^{k+l}$.

Differential Forms on Manifolds

Given a manifold M, a k-form on $M \wedge^k (T^*M) = \coprod_{p \in M} (\bigwedge^k T_p^*M)$ is a section of the bundle $\bigwedge^k (T^*M) \to M$. $\Omega^k(M)$ is the collection of k-forms on M.

Locally, $\omega \in \Omega^k(M)$ may be written $\omega = \sum \omega_I dx^I$ for a chart $(U,(x^i))$. Summing over strictly increasing $I, dx^I = dx^{i_1} \wedge \cdots \wedge dx^{i_k}$ and $\omega_I = \omega \left(\frac{\partial}{\partial x^{i_1}}, \ldots, \frac{\partial}{\partial x^{i_k}} \right)$.

Pullback

For $F: M \to N$ and $\omega \in \Omega^k(N)$, we define $(F^*\omega) \in \Omega^k(M)$ by

$$(F^*\omega)(v_1,\ldots,v_k)=\omega(DF(v_1),\ldots,DF(v_k)).$$

It follows that

$$F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$$

and

$$F^*\left(\sum_{I}^{I}\omega_{I}dx^{I}\right) = \sum_{I}^{I}(F^*\omega_{I})F^*(dx^{i_1}\wedge\cdots\wedge dx^{i_k})$$

$$= \sum_{I}^{I}(\omega_{I}\circ F)(d(x^{i_1}\circ F)\wedge\cdots\wedge d(x^{i_k}\circ F))$$

$$= \sum_{I}^{I}(\omega_{I}\circ F)dF^{i_1}\wedge\cdots\wedge dF^{i_k}$$

Example

For $F: \mathbb{R}^2 \to \mathbb{R}^3$ by $F(u, v) = (u, v, u^2 - v^2)$ and $\omega = y \, dx \wedge dz \in \Omega^2(\mathbb{R}^3)$.

$$F^*\omega = F^*(y \, dx \wedge dz) = v \, du \wedge d(u^2 - v^2) = v \, du \wedge (2u \, du - 2v \, dv = -2v^2 \, du \wedge dv$$

Proposition 14.20

For $F: M^n \to N^n$ with local coordinates (x^i) and (y^i) respectively, if $u \in C^{\infty}(N)$ then

$$F^*(u dy^1 \wedge \cdots \wedge dy^n) = (u \circ F) \det DF$$

Proof

Write F in components $(F^1, ..., F^n)$ where $F^i = y^i \circ F$

$$F^*(u \, dy^1 \wedge \dots \wedge dy^n) = (u \circ F) dF^1 \wedge \dots \wedge dF^n \left(\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n} \right)$$
$$= (u \circ F) \det \left(dF^i \left(\frac{\partial}{\partial x^j} \right) \right)$$
$$= (u \circ F) \det(DF)$$

If $(U,(x^i))$ and $(\tilde{U},(\tilde{x}^i))$ are local charts with $U\cap \tilde{U}\neq \emptyset$, then using $F=\mathrm{id}_{U\cap \tilde{U}}$ we have that $F^*=\mathrm{id}_{U\cap \tilde{U}}$

$$d\tilde{x}^i \wedge \dots \wedge d\tilde{x}^n = \det\left(\frac{\partial \tilde{x}^j}{\partial x^i}\right) dx^1 \wedge \dots \wedge dx^n$$

Definition: Exterior Derivative

For $\omega \in \Omega^k(U)$, $U \subseteq \mathbb{R}^n$ open, $\omega = \sum_I' \omega_I dx^I$ define $d : \omega^k(U) \to \omega^{k+1}(U)$ by $\omega \mapsto d\omega$. Then

$$d\omega = \sum_{I}^{I} \underbrace{d\omega_{I}}_{\in \Omega^{1}(U)} \wedge \underbrace{dx^{I}}_{\in \Omega^{k}(U)}$$

Example

 $\omega \in \Omega^1(U), \, \omega = \sum_{i=1}^n \omega_i dx^i.$

$$d\omega = \sum_{i=1}^{n} d\omega_{i} \wedge dx^{i} = \sum_{i,j=1}^{n} \frac{\partial \omega_{i}}{\partial x^{j}} dx^{j} \wedge dx^{i} = \sum_{i < j} \left(\frac{\partial \omega_{j}}{\partial x^{i}} - \frac{\partial \omega_{i}}{\partial x^{j}} \right) dx^{i} \wedge dx^{j}$$

For $\omega = df \in \Omega^1(M)$, $d(df) = \sum_{i < j} \left(\frac{\partial^2 f}{\partial x^j \partial x^i} - \frac{\partial^2 f}{\partial x^i \partial x^j} \right) dx^i \wedge dx^j = 0$. That is, $(d \circ d)(f) = 0$ for any smooth function $f \in C^{\infty}(M)$.

Proposition

- 1. d is \mathbb{R} -linear.
- 2. $d(\omega \wedge \eta) = (d\omega) \wedge \eta + (-1)^k \omega \wedge (d\eta)$ with $k = \deg \omega$.
- 3. $d \circ d = 0$.
- 4. $F^*(d\omega) = d(F^*\omega)$.

Proof of b

Write $\omega = u \, dx^I$ and $\eta = v \, dx^J$.

Claim: $d(u dx^I) = du \wedge dx^I$ for any index (perhaps not strictly increasing) I.

If *I* has a repeated index, both sides are zero.

If not, let $\sigma \in S_k$ such that $I_{\sigma} = J$ strictly increasing.

$$d(u\,dx^I) = d((\operatorname{sign}\sigma)u\,dx^J) = \operatorname{sign}\sigma \cdot du \wedge dx^J = du \wedge (\operatorname{sign}\sigma \cdot dx^J) = du \wedge dx^I$$

Then

$$d(\omega \wedge \eta) = d(u \, dx^I \wedge v \, dx^J) = d(uv \, dx^I \wedge dx^J) = d(uv \, dx^{IJ}) = d(uv) \wedge dx^{IJ} = (u \, dv + v \, du) \wedge (dx^I \wedge dx^J)$$

So

$$d\omega \wedge \eta + (-1)^k \omega \wedge d\eta = du \wedge dx^I \wedge (v dx^J) + (-1)^k u dx^I \wedge (dv \wedge dx^J)$$

and it suffices to show that $dv \wedge dx^I \wedge dx^J = (-1)^k dx^I \wedge dv \wedge dx^J$.

Proof b Implies c

Write

$$d \circ d(\omega_I dx^I) = d(d\omega_I \wedge dx^I) = d(d\omega_I) \wedge dx^I + (-1)^I d\omega_I \wedge d(dx^I) = 0$$

Proof of d

Write $\omega = u \, dx^I$ such that $d\omega = du \wedge dx^I$.

$$F^*(d\omega) = F^*(du \wedge dx^I) = d(u \circ F) \wedge dF^{i_1} \wedge \cdots \wedge dF^{i_k}$$

and

$$d(F^*\omega) = d((u \circ F)dF^{i_1} \wedge \cdots \wedge dF^{i_k} = d(u \circ F) \wedge dF^{i_1} \wedge \cdots \wedge dF^{i_k}$$

February 5, 2025

Theorem 14.24

There is a unique map $d: \Omega^*(M) \to \Omega^*(M)$ with $d(\Omega^k(M)) \subseteq \Omega^{k+1}(M)$ such that

- 1. d is \mathbb{R} -linear
- 2. $d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^k \omega \wedge d\eta$
- 3. $d \circ d = 0$
- 4. df(X) = Xf for all $f \in \Omega^0(M) = C^{\infty}(M)$ and $X \in \mathfrak{X}(M)$.

Proof: Existence

Let $\omega \in \Omega^k(M)$. Then $\omega|_U \in \Omega^k(U)$. We have that $\varphi^{-1*}\omega \in \Omega^k(\varphi(U))$, $d(\varphi^{-1*}\omega) \in \Omega^{k+1}(\varphi(U))$, and $d\omega := \varphi^*d(\varphi^{-1*}\omega) \in \Omega^{k+1}(U)$ on U.

IMAGE 1

Proof: Well-defined

If (V, ψ) is another chart with $U \cap V \neq \emptyset$, we need to show that $\psi^*(d(\psi^{-1*}\omega)) = \varphi^*(d\varphi^{-1*}\omega)$. This is equivalent to

$$\iff d(\psi^{-1*}\omega) = \psi^{-1*}\varphi^*(d(\varphi^{-1*}\omega))$$

$$\iff d(\psi^{-1*}\omega = (\varphi \circ \psi^{-1})^*d(\varphi^{-1*}\omega)$$

where

$$(\varphi \circ \psi^{-1})^* d(\varphi^{-1*} \omega) = d((\varphi \circ \psi^{-1})^* \varphi^{-1*} \omega) = d(\psi^{-1*} \circ \varphi^* \circ \varphi^{-1*} \omega) = d(\psi^{-1*} \omega)$$

Proof: Uni!

For any $d: \Omega^*(M) \to \Omega^*(M)$ with the property $(d\omega)_p$ only depends on $\omega|_U$ where $p \in U$. Suppose $\omega_1 = \omega_2$ on U. We need to show that $(d\omega_1)_p = (d\omega_2)_p$. So set $\eta = \omega_1 - \omega_2$. Then $\omega \equiv 0$ on U, and we need to show that $(d\eta)_p = 0$. Let ψ be a bump function such that $\operatorname{supp} \psi \subseteq U$ and $\psi(p) = 1$. Then $\psi \eta = 0 \in \Omega^k(M)$.

$$0 = d(\psi \eta) = d\psi \wedge \eta + (-1)^0 \psi \wedge d\eta$$

At point p, it reads

$$0 = 0 \wedge \eta_p + \overbrace{\psi(p)}^{=1} \wedge d\eta_p$$

That is, $0=d\eta_p$. Let $p\in M$, U a chart around p, say $(U,(x^i))$, and $\omega\in\Omega^k(U)$. We know that $(d\omega)_p$ only depends on $\omega|_U=\sum_I'\omega_Idx^I$. Then for $p\in V\subseteq \overline{V}\subseteq U$, $\omega|_U$ extends functions $\omega_I,x^I\in C^\infty(V)$ to globally defined functions $\tilde{\omega}_I,\tilde{x}^I\in C^\infty(M)$. Therefore

$$d(\omega|_{U}) = \sum_{I}^{I} d(\omega_{I} dx^{I})$$

$$= \sum_{I}^{I} d(\tilde{\omega}_{I} \tilde{x}^{I})$$

$$= \sum_{I}^{I} (d\tilde{\omega}_{I} \wedge d\tilde{x}^{I} + \omega_{I} \wedge d(d\tilde{x}^{i_{1}} \wedge \cdots \wedge d\tilde{x}^{i_{k}}))$$

$$= \sum_{I}^{I} d\omega_{I} \wedge dx^{I}$$

which is the same formula for \mathbb{R}^n .

Proposition: 14.26

 $F^*(d\omega) = d(F^*\omega).$

Proposition: 14.32

 $\mathcal{L}_V(\omega \wedge \eta) = (\mathcal{L}_V \omega) \wedge \eta + \omega \wedge (\mathcal{L}_V \eta).$

Corollary

 $\mathcal{L}_V(d\omega) = d(\mathcal{L}_V\omega).$

Definition: Interior Multiplication

Given $\omega \in \bigwedge^k V^*$ and $v \in V$, define $\iota_V \omega \in \bigwedge^{k-1} V^*$ (sometimes written $V \sqcup \omega$).

$$(\iota_v\omega)(u_1,\dots,u_{k-1})=\omega(v,u_1,\dots,u_{k-1})$$

This defines $\iota_V : \bigwedge^k V^* \to \bigwedge^{k-1} V^*$, and we have $\iota_V \circ \iota_V = 0$.

$$\iota_{\nu}(\omega \wedge \eta) = (\iota_{V}\omega) \wedge \eta + (-1)^{k}\omega \wedge (\iota_{V}\eta)$$

Proof

It suffices to show that for $\omega^1, \dots, \omega^k \in V^*$

$$\iota_{V}(\omega^{1} \wedge \cdots \wedge \omega^{k}) = \sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v) \omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k}$$

Where $\hat{\omega}^i$ is meant to denots "forgetting" a term in the wedge product. That is, the first term has no ω^1 , the second no ω^2 , etc.

Assuming this, it suffices to consider $\omega = \omega^1 \wedge \cdots \wedge \omega^k$ and $\eta = \eta^1 \wedge \cdots \wedge \eta^l$. Then

$$\iota_{V}(\omega \wedge \eta) = \iota_{V}(\omega^{1} \wedge \cdots \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l})$$

$$= \sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v) \omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l} + \sum_{i=1}^{l} (-1)^{k+i-1} \eta^{i}(v) \omega^{1} \wedge \cdots \wedge \omega^{k} \wedge \eta^{1} \wedge \cdots \wedge \eta^{l}$$

$$= (\iota_{V}\omega) \wedge \eta + (-1)^{k} \omega \wedge (\iota_{V}\eta)$$

Write $v_1 = v$, and apply both sides to $(v_2, ..., v_k)$. The left hand side is

$$\omega^{1} \wedge \cdots \omega^{k}(v_{1}, \dots, v_{k}) = \det(\omega^{i}(v_{j})) = \det\begin{pmatrix} \omega^{1}(v_{1}) & \cdots & \omega^{i}(v_{1}) & \cdots & \omega^{k}(v_{1}) \\ \vdots & & & \vdots \\ \omega^{1}(v_{k}) & \cdots & \omega^{i}(v_{1}) & \cdots & \omega^{k}(v_{k}) \end{pmatrix}$$

The right hand side is given by

$$\sum_{i=1}^{k} (-1)^{i-1} \omega^{i}(v_{1})(\omega^{1} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega^{k})(v_{1}, \dots, v_{k})$$

which, when expanded, gives $\det(\omega^i(v_i))$ along the first row.

Proposition 14.35 (Cartan)

If $V \in \mathfrak{X}(M)$ and $\omega \in \Omega^k(M)$, then

$$\mathcal{L}_V\omega = V \, \lrcorner \, (d\omega) + d(V \, \lrcorner \, \omega)$$

Corollary

$$\mathcal{L}_V(d\omega) = d(\mathcal{L}_V\omega)$$

Proof

By assuming Cartan's formula, the left hand side is

$$V = \overbrace{(d \circ d\omega)}^{=0} + d(V - d\omega)$$

and the right hand side is

$$d(V \rfloor d\omega + d(V \rfloor \omega)) = d(V \rfloor d\omega) + d \circ d(v \rfloor \omega)$$

Proof (of Cartan's Formula)

We prove by induction on $\deg(\omega)$. When ω is a function $f \in C^{\infty}(M) = \Omega^{0}(M)$, the left hand side is

$$\mathcal{L}_V f = V f$$

and the right hand side is

$$V \perp (df) + d(V) = df(V) = Vf$$

since ι_V maps Ω^k to Ω^{k-1} .

Assuming it holds for k-1 forms, we consider $\omega \in \Omega^k(M)$ and locally write $\omega = \sum_{i=1}^{l} \omega_I dx^I$. It suffices to show that the formula holds for $\omega = du \wedge \beta$, $u \in C^{\infty}(M)$, $\beta \in \Omega^{k-1}(M)$.

$$(\omega_I dx^{i_1} \wedge \cdots \wedge dx^{i_k} = \underbrace{dx^{i_1}}_{du} \wedge \underbrace{(\omega_I dx^{i_1} \wedge \cdots \wedge dx^{i_k})}_{\beta})$$

The left hand side is

$$\mathcal{L}_{V}(du \wedge \beta) = \mathcal{L}_{V}du) \wedge \beta + du \wedge \mathcal{L}_{V}\beta$$

$$= d(\mathcal{L}_{V}u) \wedge \beta + du \wedge (V \perp d\beta + d(V \perp \beta))$$

$$= d(Vu) \wedge \beta + du \wedge (V \perp d\beta) + du \wedge d(V \perp \beta)$$

and the right hand side is

$$V \rfloor (d(du \land \beta)) + d(V \rfloor (du \land \beta)) = V \rfloor ((d \land du) \land \beta + (-1)du \land d\beta + d((V \rfloor du) \land \beta + du \land (V \rfloor \beta))$$
$$= (-1)(Vu)d\beta + d(Vu) \land \beta + (Vu)d\beta$$

Proposition 14.32

$$d\omega(X_1,\ldots,X_{k+1}) = \sum_{1 \leq i \leq k+1} (-1)^{i-1} X_i(\omega(X_1,\ldots,\hat{x}_i,\ldots,X_{k+1})) + \sum_{1 \leq i \leq j \leq k+1} (-1)^{i+j} \omega([X_i,X_j],X_1,\ldots,\hat{X}_i,\ldots,\hat{X}_j,\ldots,X_{k+1})$$

When $\omega \in \Omega^1$, it reads

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega(\lceil X, Y \rceil)$$

In particular, for ω closed,

$$X(\omega(Y)) - Y(\omega(X)) = \omega([X, Y])$$

Proof

It suffices to prove that for $\omega = udv$, $u, v \in C^{\infty}(M)$ that

$$d(\omega) = d(udv) = du \wedge dv$$

The left hand side

$$(du \wedge dv)(X,Y) = \det\begin{pmatrix} du(X) & du(Y) \\ dv(X) & dv(Y) \end{pmatrix} = \det\begin{pmatrix} X_u & Y_u \\ X_v & Y_v \end{pmatrix}$$

and the right hand side

$$\begin{split} X(udv(Y)) - Y(udv(X)) - u(dv([X,Y]) &= X(u(Yv)) - Y(u(Xv)) - u([X,Y]v) \\ &= (Xu)(Yv) + u(XYv) - (Yu)(Xv) - u(YXv) - u([X,Y]v) \\ &= \det\begin{pmatrix} X_u & Y_u \\ X_v & Y_v \end{pmatrix} \end{split}$$

Example

For $f \in \Omega^*(\mathbb{R}^3)$ and $df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz \in \Omega^{*+1}(\mathbb{R}^3)$, write Pdx + Qdy + Rdz and

$$\begin{split} d(Pdx + Qdy + Rdz) &= \left(\frac{\partial P}{\partial y}dy + \frac{\partial P}{\partial z}dz\right) \wedge dx + \left(\frac{\partial Q}{\partial x}dx + \frac{\partial Q}{\partial z}dz\right) \wedge dy + \left(\frac{\partial R}{\partial x}dx + \frac{\partial R}{\partial y}dy\right) \wedge dz \\ &= \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}dx \wedge dy\right) + \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}dy \wedge dz\right) + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}dz \wedge dx\right) \end{split}$$

Recall that for $X = (P, Q, R) \in \mathfrak{X}(\mathbb{R}^3)$, this is the curl of X. Let $\omega = udx \wedge dy + vdy \wedge dz + wdz \wedge dx$, then

$$d\omega = \frac{\partial u}{\partial z} dz \wedge dx \wedge dy + \frac{\partial v}{\partial z} dx \wedge dy \wedge dz + \frac{\partial w}{\partial z} dy \wedge dz \wedge dx$$
$$= \left(\frac{\partial V}{\partial x} + \frac{\partial W}{\partial y} + \frac{\partial U}{\partial z}\right) dx \wedge dy \wedge dz$$

Recall that this is divergence. We can also look at the gradient

grad
$$f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$

we have

$$\operatorname{grad} f \cdot X = Xf = df(X) = \sum_{i} \frac{\partial f}{\partial x^{i}} \cdot x^{i}$$

Putting this together,

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{\operatorname{grad}} \mathfrak{X}(M) \xrightarrow{\operatorname{curl}} \mathfrak{X}(M) \xrightarrow{\operatorname{div}} C^{\infty}(\mathbb{R}^{3})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\Omega^{0}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{3}(\mathbb{R}^{3})$$