Algorytmy Macierzowe Sprawozdanie z laboratorium nr. 1

Antoni Szczepański, Szymon Sumara 8 listopada 2021

1 Wybór Macierzy

Wygenerowaliśmy macierz FEM o rozmiarze 81, a nastepnie rozszerzyliśmy ja 7 razy. Macierz wygenerowana w Octave zapisaliśmy do pliku a nastepnie wczytaliśmy do programu za pomoca funkcji żead_matrix_from_file". Do przechowywania macierzy używaliśmy tych dostepnych w bibliotece numpy.

2 Schemat niezerowych wartości

Używajac funkcji spy wygenerowaliśmy wykres niezerowych wartości macierzy A jak i macierzy uzyskanej po pomnożeniu tej macierzy z sama soba.

Rysunek 1: Schemat niezerowych wartości naszej macierzy.

Rysunek 2: Schemat niezerowych wartości wynikowej macierzy.

3 Różne kolejności petli

Jak widać na poniższym wykresie najlepiej wypadały kolejności ijp i jip, ponieważ wtedy wykonywaliśmy najmniej transferów blokowych.

Rysunek 3: Zestawienie różnych kolejności petli.

Kolejność petli	ijp	ipj	jip	jpi	pij	pji
Czasy mnożeia [s]	44.3722	57.5040	44.1834	53.8872	53.020	56.8290

Tablica 1: Czasy mnożenia w zależności od kolejności petli

4 Mnożenie blokowe

Wraz ze wzrostem rozmiaru bloku spadał czas mnożenia, jednak i tak czasy mnożenia blokowego były dużo wyższe niż w wcześniejszych mnożeniach.

Rysunek 4: Wykres czasu mnożenia od długości bloku

5 Liczba operacji zmiennoprzecinkowych

Korzystajac ze wzoru 2*n*m*k na wyliczenie ilości operacji zmiennoprzecinkowych wyliczyliśmy, że do przemnożenia naszych macierzy trzeba wykonać 364568526 operacji zmiennoprzecinkowych.