New Results Concerning Collective Motion in Triaxial Nuclei

Robert POENARU^{1,2}

¹Dept. of Th. Phys. @ IFIN-HH Magurele, Romania

²Doctoral School of Physics Bucharest, Romania

UB Faculty of Physics Meeting June 22, 2022

Table of Contents

Nuclear Shapes

Nuclear Deformation

Most of the nuclei are either *spherical* or *axially symmetric* in their ground-state.

Deformation parameter β (Bohr, 1969): preserves axial symmetry

Figure 1: spherical: $\beta = 0$ prolate: $\beta > 0$ oblate: $\beta < 0$

Nuclear Triaxiality

Non-axial shape

Deviations from symmetric shapes can occur across the chart of nuclides \rightarrow **triaxial nuclei**.

The triaxiality parameter γ (Bohr, 1969): departure from axial symmetry

Fingerprints for Triaxiality

- Experimentally, stable triaxial nuclei represent a real challenge
- Clear signatures for confirming stable triaxiality in nuclei
 - Chiral symmetry breaking (Frauendorf, 1997)
 - **Wobbling motion** (Bohr & Mottelson, 1975)

Wobbling Motion (WM)

- Unique to non-axial nuclei
- Predicted 50 years ago for even-A nuclei
- First experimental evidence for ¹⁶³Lu (Ødegård, 2001)
- Currently: confirmed wobblers within the mass regions $A \approx [100, 130, 160, 180]$.

Energy of Deformed Nuclei

Collective Motion

- A nucleus droplet can generate angular momentum from the rotation and vibration of the droplet itself
- Each individual nucleon contributes to the total angular momentum → collectiveness
- ARotation can occur only if the nuclear potential is deformed

Triaxial Rotor Energy

- A triaxial nucleus can rotate about any of the three axes
- Rotation about the axis with **the largest moment of inertia** (MOI) is energetically the most favorable: $E_{\rm rot} \propto \frac{\hbar^2}{2\mathcal{I}_{\rm max}}I(I+1)$
- MOI anisotropy \rightarrow the main rotation around \mathcal{J}_{max} is disturbed by the other two axes \rightarrow total motion of the rotating nucleus has an oscillating behavior

Wobbling Motion

- Total angular momentum I disaligned w.r.t. body-fixed axes
- ullet The a.m. **precesses** and **wobbles** around the axis with $\mathcal{J}_{\mathsf{max}}$
- The precession of I can increase by tilting
- Tilting by an energy quanta \sim *vibrational character* \rightarrow **wobbling phonon** $n_w = 0, 1, 2...$

Wobbling Spectrum

Even-A Nuclei

- Employing the Harmonic Approximation (Bohr, 1969)
- Ĥ composed of a rotational part and harmonic oscillation (i.e., wobbling) part:

$$\hat{H} = \frac{\hbar^2}{2\mathcal{J}_{\text{max}}}I(I+1) + \hbar\omega_{\text{wob}}\left(n_w + \frac{1}{2}\right), n = 0, 1, 2, \dots$$
 (1)

New Results for A=130

Recent findings for even-even nuclei

- Two wobbling bands have been identified experimentally in ¹³⁰Ba (Petrache et al., 2019)
- DFT+PRM description of the wobbling motion described the excited spectra (Chen et al., 2019)
- ullet Stable triaxiality for eta=0.24 and $\gamma=21.5^\circ$
- Infer spin-dependence for $\mathcal{J}_{1,2,3}$

Figure from Petrache et al., 2019

New Results for A=130 II

Harmonic Approximation

• Employed an energy spectrum of harmonic type according to Eq. 1:

$$E_{I,n_{w}} = \frac{\hbar^{2}}{2\mathcal{J}_{3}}I(I+1) + \hbar\omega_{\text{wob}}(n_{w} + \frac{1}{2})$$
 (2)

• wobbling frequency - linear dependence on *I* (fixed MOI ordering $\mathcal{J}_3 > \mathcal{J}_{1,2}$)

$$\hbar\omega_{\mathsf{wob}}(I) = 2f(\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3) \cdot I \tag{3}$$

Figure from Petrache et al., 2019

New Results for A=130 III

Harmonic Approximation

- Reproduced the excited spectra for {B1, B2}
- Fix a free parameter set: $\mathcal{P} = [\mathcal{J}_1, \mathcal{J}_2, \mathcal{J}_3]$
- Adopt a fitting procedure:

$$\chi^{2} = \frac{1}{N_{T}} \sum_{i=1}^{N_{T}} \frac{\left(E_{\text{exp}}^{(i)} - E_{\text{th}}^{(i)}\right)}{E_{\text{exp}}^{(i)}}$$
(4)

Results for ¹³⁰Ba **PRELIMINARY!**

\mathcal{J}_1^{fit}	\mathcal{J}_2^{fit}	\mathcal{J}_3^{fit}	$\lceil \hbar^2 \text{MeV}^{-1} \rceil$
27	22	43	[10 IVICV

New Results for A=130 IV

- **Left:** Wobbling energy* $E_{\text{wob}}(I) = E_{\text{B2}}(I) E_{\text{B1}}(I)$
- **Center:** Rotational frequency $\hbar\omega_{\rm rot}$ collective
- **Right:** Interband transition probabilities $I_{B2} o I_{B1}$

Electromagnetic transitions

- Deformation parameters $\beta=0.24$ and $\gamma=21.5^\circ$ were adopted for *quadrupole* moments and transition probabilities
- PRM values are calculated by Chen et al.

,	$B(E2)_{out}/B(E2)_{in}$				
'	Th.	PRM*	Exp.		
11	0.37	-	-		
13	0.32	0.51	0.32		
15	0.27	0.42	0.36		
17	0.24	0.35	0.22		
19	0.21	0.29	0.22		
21	0.19	0.25	0.41		
23	0.18	-	-		
25	0.16	-	-		

Experimental Evidence

Wobbling nuclei (up to date) *Poenaru, 2022, in progress*