ÁLGEBRA Y GEOMETRÍA ANALÍTICA I: FUNCIONES

Depto de Matemática Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNR

2020

DEFINICIONES BÁSICAS

Dados A y B conjuntos no vacíos, una función de A en B es una relación de A en B que verifica que cada elemento de A es exactamente una vez primera componente de un par ordenado de la relación. Lo notamos $f:A\to B$

En otras palabras la relación f es función si:

- 1. Para cada $a \in A$ existe $b \in B$ tal que (a,b) está en la relación
- 2. No puede haber dos pares (a,b_1) y (a,b_2) con $b_1 \neq b_2$ en la relación.

Podemos escrbir f(a) = b para indicar que la *imagen* de $a \in A$ es el elemento $b \in B$.

Si la relación que es función es un subconjunto de $A \times B$ diremos que el *dominio* de la función f es A y el *codominio* de f es B. Escribimos Dom(f) y Codom(f) respectivamente.

La *imagen* de A está definida como $f(A) = \{b \in B : b = f(a) \text{ para algún } a \in A\}.$

EJEMPLO

$$Si A = \{1,2,3\} \ y B = \{w,x,y,z\} \ sea$$

$$f = \{(1, w), (2, x), (3, x)\}.$$

Notemos que f cumple con las condiciones para ser función. Podemos escribir $f: A \to B$ con f(1) = w, f(2) = x y f(3) = x. En este caso $f(A) = \{w, x\}$.

EJERCICIO

Cuántas funciones distintas se pueden definir de A en B?

Decimos que $f: A \to B$ es inyectiva si cada elemento de B aparece a lo sumo una vez como segunda componente de los pares ordenados de la relación.

O bien,

$$\forall a_1, a_2 \in A, \quad f(a_1) = f(a_2) \Rightarrow a_1 = a_2$$

EJEMPLO

- ► En el ejemplo anterior f(2) = f(3) y por lo tanto f NO inyectiva
- ▶ $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = 3x + 7 es inyectiva. $f(x_1) = f(x_2) \Rightarrow 3x_1 + 7 = 3x_2 + 7 \Rightarrow 3x_1 = 3x_2 \Rightarrow x_1 = x_2$
- ▶ $g : \mathbb{R} \to \mathbb{R}$ tal que g(x) = |x| NO es inyectiva.

EJERCICIO

Como en relaciones, si $f: A \to B$ y $A_1 \subseteq A$,

$$f(A_1) = \{b \in B : f(a) = b \text{ para algún } a \in A_1\}$$

y decimos que es la imagen de A_1 por medio de f. Si $A_1 = A$ notamos f(A) = Im(f) y es el conjunto imagen de f.

EJEMPLO

- ► $A = \{1,2,3,4,5\}$ $y B = \{w,x,y,z\}, f : A \to B \text{ es } f = \{(1,w),(2,x),(3,x),(4,y),(5,y)\}$ entonces $f(\{1,2\}) = \{w,x\}.$ Además, $f(\{2,4,5\}) = \{x,y\}$ $y f(\{5\}) = \{y\}.$
- ▶ $Para A = \{a,b,c\} \ sea \ s : \mathscr{P}(A) \to \mathbb{N} \ tal \ que \ s(X) = |X| + 1. \ Es$ inyectiva?
- ▶ $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(x,y) = 2x + 3y verifica que $\operatorname{Im}(h) = \mathbb{Z}$. ya que: $\operatorname{Im}(h) \subseteq \mathbb{Z}$ y dado $z \in \mathbb{Z}$ existe $(-z,z) \in \mathbb{Z} \times \mathbb{Z}$ tal que h(-z,z) = 2(-z) + 3z = z. Esto prueba $\mathbb{Z} \subseteq \operatorname{Im}(h)$.

$$f: A \rightarrow B, A_1, A_2 \subseteq A$$

I)
$$f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$$

II) $f(A_1 \cap A_2) \subseteq f(A_1) \cap f(A_2)$

Dem.

TEOREMA

$$Seaf: A \rightarrow B$$
,

$$\forall X_1, X_2 \subseteq A$$
, $f(X_1 \cap X_2) = f(X_1) \cap f(X_2) \Leftrightarrow f$ inyectiva. Dem.

Por el teorema anterior, para cualquier $X_1, X_2 \subseteq A$, $f(X_1 \cap X_2) \subseteq f(X_1) \cap f(X_2)$.

Ahora, $y \in f(X_1) \cap f(X_2) \Rightarrow y \in f(X_1) \land y \in f(X_2) \Rightarrow \exists x_1 \in X_1 : y = f(x_1) \land \exists x_2 \in X_2 : y = f(x_2).$ Entonces $f(x_1) = f(x_2).$ Como f invectiva $x_1 (= x_2) \in X_1 \cap X_2, y \in f(X_1 \cap X_2).$

$$\Rightarrow$$
)

Sean $x_1, x_2 \in A$ tales que $f(x_1) = f(x_2)$. Definimos $X_1 = \{x_1\}$ y $X_2 = \{x_2\}.$

Por lo tanto, $f(X_1) = \{f(x_1)\}\ y f(X_2) = \{f(x_2)\}\$. De manera que $f(X_1) \cap f(X_2) = \{f(x_1)\}.$

Por hipótesis, $f(X_1) \cap f(X_2) = f(X_1 \cap X_2)$. Si $x_1 \neq x_2, X_1 \cap X_2 = \emptyset$.

Contradiciendo la hipótesis.

Por lo tanto, $x_1 = x_2$, probando la inyectividad de f, ya que mostramos que

$$f(x_1) = f(x_2) \Rightarrow x_1 = x_2.$$

$$f: A \rightarrow B, A_1 \subseteq A$$

- ▶ $f \mid_{A_1}: A_1 \to B$ es tal que $f \mid_{A_1} (a) = f(a)$ si $a \in A_1$. Es LA restricción de f a A_1 .
- ▶ Para $A \subseteq A_2$, $g : A_2 \to B$ tal que g(a) = f(a) si $a \in A$. Es UNA extensión de f a A_2 .

EJEMPLO

$$A = \{1, 2, 3, 4, 5\}, B = \mathbb{N}, A_1 = \{2, 3, 5\} \text{ y } A_2 = \{1, 2, 3, 4, 5, 6, 10\}. Si$$

 $f = \{(1, 1), (2, 3), (3, 5), (4, 7), (5, 9)\}$

- $f \mid_{A_1} = \{(2,3), (3,5), (5,9)\}$
- **P** $g: A_2 \to \mathbb{N}$: $g = \{(1,1), (2,3), (3,5), (4,7), (5,9), (6,11), (10,19)\}$ es UNA extensión de f a A_2 .
- ▶ $h: A_2 \to \mathbb{N}: h = \{(1,1), (2,3), (3,5), (4,7), (5,9), (6,9), (10,8)\}$ es UNA extensión de f a A_2 .

Dada una función $f: A \to B$ y $B_1 \subseteq B$, la preimagen de B_1 por medio de f, notada como $f^{-1}(B_1)$, es el conjunto

$$f^{-1}(B_1) = \{ x \in A : f(a) \in B_1 \}.$$

La preimagen de un conjunto es otro conjunto

EJEMPLO

 $f: \mathbb{Z} \to \mathbb{R}$ tal que $f(x) = x^2 + 5$.

- ► $Si\ B = \{0\}\ entonces\ f^{-1}(B) = \emptyset.$
- ► $Si B = [5, +\infty) \ entonces f^{-1}(B) = \mathbb{Z}.$
- ► Si B = [6, 10] entonces $f^{-1}(B) = \{1, -1, -2, 2\}$. (Verificarlo)

 $f: A \rightarrow B$, $B_1, B_2 \subseteq B$, entonces:

$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

$$ightharpoonup f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

Dem. Hacemos solo la última, las otras dos ejercicio.

Dado $a \in A$,

$$\underline{a \in f^{-1}(\overline{B_1})} \Leftrightarrow f(a) \in \overline{B_1} \Leftrightarrow \neg (f(a) \in B_1) \Leftrightarrow \neg (a \in f^{-1}(B_1)) \Leftrightarrow a \in f^{-1}(B_1).$$

Decimos que $f: A \rightarrow B$ es survectiva si cada elemento de B aparece una vez como segunda componente de los pares ordenados de la relación.

O bien,
$$f(A) = \operatorname{Im}(f) = B$$

Dado $y \in B$, $\exists x \in A$: f(x) = y.

EJEMPLO

- 1. $A = \{1,2,3,4\}, B = \{a,b,c,d\}, f = \{(1,a),(2,a),(3,d),(4,c)\}$ $Im(f) = \{a,c,d\}.$ No es sobre ya que $\exists b \in B$ que no tiene preimagen.
- 2. Si $g = \{(1,d), (2,b), (3,c), (4,a)\}$ con los mismos A y B, Im(g) = B, es decir, g es survectiva.
- 3. $A = \{1,2,3,4\}$, $B = \{w\}$ cualquier función de A en B es suryectiva. Niguna función de B en A es suryectiva.

Una función es biyectiva si es inyectiva y suryectiva.

EJEMPLO

- 1. La función del Ejemplo 1. anterior NO es biyectiva ya que no es suryectiva.
- 2. La función del Ejemplo 2. anterior es biyectiva ya que además de suryectiva es inyectiva (verificarlo).
- 3. Recordemos la función $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(x,y) = 2x + 3y. Vimos que es suryectiva en un ejemplo anterior. Es inyectiva?

$$h(x_1, y_1) = h(x_2, y_2) \Rightarrow 2x_1 + 3y_1 = 2x_2 + 3y_2 \Rightarrow 2(x_1 - x_2) = 3(y_2 - y_1)$$

Que podemos decir?

Si tomamos (3,0) y (0,2) la igualdad se cumple y los pares ordenados son distintos. NO es inyectiva. NO es biyectiva.

Sean f g dos funciones tales que $Im(f) \cap Dom(g) \neq \emptyset$. Se define la composición de g con f g se la nota $g \circ f$ a la función con dominio:

$$Dom(g\circ f)=\{x\in Dom(f):\, f(x)\in Dom(g)\}$$

y tal que $(g \circ f)(x) = g(f(x))$ *para todo x* \in Dom $(g \circ f)$.

Bajo la condición $\text{Im}(f) \cap \text{Dom}(g) \neq \emptyset$ decimos que la *composición* de g con f es posible ya que su dominio es no vacío.

Existen funciones para las cuales $g \circ f$ está bien definida y que no lo esté $f \circ g$. Es más, pueden ser posibles ambas composiciones y sin embargo, ser distintas. Construir ejemplos de tales situaciones. Decimos entonces que la composición de funciones NO es conmutativa.

PROPOSICIÓN

La composición de funciones es asociativa.

Dem. Supongamos que $f: A \to B$, $g: B \to C$ y $h: C \to D$. En este caso son posibles las siguientes composiciones (verficarlo): $(h \circ g) \circ f$ y $h \circ (g \circ f)$ y su dominio es A y codominio D.

Además,

$$((h \circ g) \circ f)(x) = (h \circ g)(f(x)) = h(g(f(x))) = h((g \circ f)(x)) = (h \circ (g \circ f))(x)$$

para cualquier $x \in A$.

EJEMPLO

 $Sif: A \rightarrow A \ la \ composición \ f \circ f \ es \ posible \ y \ se \ nota \ f^2.$

Recursivamente $f^n = f \circ f^{n-1}$ para $n \ge 2$.

Si $f: A \to B$ y $g: B \to C$ inyectiva (suryectiva) entonces $g \circ f: A \to C$ es inyectiva (suryectiva).

Dem. Veamos que si f y g son inyectivas, $g \circ f$ lo es.

Dados $a_1, a_2 \in A$,

$$(g \circ f)(a_1) = (g \circ f)(a_2) \Rightarrow g(f(a_1)) = g(f(a_2)) \Rightarrow f(a_1) = f(a_2) \Rightarrow a_1 = a_2.$$

Para la survectividad: dado $c \in C$ sabemos que existe $b \in B$ tal que g(b) = c (g survectiva).

Dado ESE elemento b por la survectividad de f, existe $a \in A$ tal que f(a) = b.

Por lo tanto, dado $c \in C$, existe $a \in A$ tal que g(f(a)) = g(b) = c.

Una función $f: A \to B$ es inversible si existe una función $g: B \to A$ tal que $g \circ f = id_A$ y $f \circ g = id_B$.

Si f es inversible, g también lo es.

TEOREMA

Si $f: A \rightarrow B$ es inversible $y g: B \rightarrow A$ es una inversa de f, entonces es única.

Dem.

Supongamos que existen dos funciones $g: B \to A$ y $h: B \to A$ tales que $f \circ h = id_B, f \circ g = id_B, g \circ f = id_A$ y $h \circ f = id_A$. De esta manera:

$$h = h \circ id_B = h \circ (f \circ g) = (h \circ f) \circ g = id_A \circ g = g.$$

La inversa de f (si f inversible) tiene una notación propia por su unicidad: f^{-1} .

 $f: A \rightarrow B$ es inversible si y sólo si es biyectiva.

Dem.

$$\Rightarrow$$
)

f inyectiva?

$$f(a_1) = f(a_2) \Rightarrow f^{-1}(f(a_1)) = f^{-1}(f(a_2)) \Rightarrow a_1 = a_2$$

f survectiva?

Dado $b \in B$; $\exists a \in A : f(a) = b$?

$$f(a) = b \Leftrightarrow a = f^{-1}(b)$$
. Ahora $f^{-1}(b)$ existe para cualquier elemento

 $b \in B \text{ y } f^{-1}(b) \in A.$

Como f es suryectiva, defino $g: B \to A$ de manera que a cada elemento de B le asigna $a \in A$ tal que f(a) = b.

Por la inyectividad g es función. En efecto, si $g(b) = a_1$ y $g(b) = a_2$, con $a_1 \neq a_2$ seria porque $f(a_1) = f(a_2)$, contradiciendo la inyectividad de f.

g está bien definida y verifica ser la inversa de f (verificar).

Si $f: A \to B$ y $g: B \to C$ inversibles entonces $g \circ f$ es inversible y $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Dem.

Como la composición de funciones biyectivas es biyectiva, $g \circ f$ es inversible.

Sólo resta verificar que LA inversa es $f^{-1} \circ g^{-1}$. Para ello:

$$(f^{-1} \circ g^{-1}) \circ (g \circ f) = f^{-1} \circ (g^{-1} \circ g) \circ f = f^{-1} \circ (id_B) \circ f$$

$$= (f^{-1} \circ id_B) \circ f = f^{-1} \circ f = id_A.$$

Análoga la otra composición.

Recordar definición de preimagen y contrastar con función inversa. La preimagen siempre existe, es un conjunto. La función inversa (cuando existe) es una FUNCIÓN.

 $f: A \to B$, A y B finitos, |A| = |B|. Entonces son equivalentes:

- A) f inyectiva;
- B) f suryectiva;
- c) f inversible.

Hipótesis: A y B finitos.

Dem.

Ya sabemos que \mathbb{C}) \Leftrightarrow \mathbb{A}) \wedge \mathbb{B}).

Si probamos que A) ⇔ B) completamos la demostración.

Supongamos que f no es inyectiva y que vale B). Entonces existen $a_1 \neq a_2$ tales que $f(a_1) = f(a_2)$. Con lo cual |A| > |f(A)| = |B|. Contradicción.

Si f no es suryectiva y que vale A) |f(A)| < |B| = |A| pero como es inyectiva $|A| \le |f(A)|$. Contradicción.

FUNCIONES ESPECIALES: OPERACIONES

DEFINICIÓN

Dados A y B no vacios, una función $f: A \times A \rightarrow B$ es una operación binaria en A. Si además, $Im(f) \subseteq A$ la operación es cerrada en A.

DEFINICIÓN

 $Si\ g:A \to A\ entonces\ g\ es\ una\ operación\ monaria\ (unaria)\ en\ A.$

EJEMPLO

- ▶ $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que f(a,b) = a b es una operación binaria cerrada en \mathbb{Z} .
- ▶ $q: \mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}$ tal que g(a,b) = a b es una operación en \mathbb{Z} que NO es cerrada. Ya que $\exists (3,7) \in \mathbb{Z}^+ \times \mathbb{Z}^+$ tal que $g(3,7) \notin \mathbb{Z}^+$.
- ▶ $h: \mathbb{R}^+ \to \mathbb{R}^+$ tal que $h(a) = \frac{1}{a}$ es una operación monaria en \mathbb{R}^+ .

EJEMPLO

Dado un conjunto universal *U* consideramos

- ▶ $f: \mathcal{P}(\mathcal{U}) \times \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ tal que $f(A,B) = A \cup B$. f es una operación cerrada binaria.
- ▶ $g: \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ tal que $g(A) = \overline{A}$ es una operación monaria.

DEFINICIÓN

 $Dada f : A \times A \rightarrow B$ operación binaria en A.

- ► f es conmutativa $si f(a_1, a_2) = f(a_2, a_1)$ para todo $(a_1, a_2) \in A \times A$.
- ► Si f es cerrada, entonces f es asociativa si f(f(a,b),c) = f(a,f(b,c)) para todo $a,b,c \in A$.

Vamos comunmente a usar una notación más "parecida" a una operación. Por ejemplo, $f: A \times A \to B$ operación binaria en A tal que $f(a,b) = a \otimes b$. Entonces la asociatividad es mas "amigable" para usar $(a \otimes b) \otimes c = a \otimes (b \otimes c)$ para todo $a,b,c \in A$.

EJEMPLO

- Ya probamos que la operación unión de conjuntos verifica ambas.
- ▶ Sea $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ tal que h(a,b) = a|b| es cerrada.

Es asociativa? Es conmutativa?

 $ightharpoonup g: \mathbb{R} \times \mathbb{R} \to \mathbb{Z} \ tal \ que \ g(a,b) = \lceil a+b \rceil.$

Verificar que es cerrada y conmutativa.

No es asociativa. Basta considerar a = 0, 2, b = 1, 5 y c = 2, 6.

Dada $f: A \times A \to A$ operación binaria en A (obviamente cerrada). Decimos que la operación posee neutro si existe $a_0 \in A$ tal que $f(a,a_0) = f(a_0,a) = a$ para todo $a \in A$.

en la notación más usual escribimos $a \otimes a_0 = a_0 \otimes a = a$ para todo $a \in A$.

Para mostrar que una operación posee neutro, exhibimos un elemento que cumple con la definición...EXISTENCIA! Es único?

EJEMPLO

- ► La operación unión de conjuntos posee neutro. El conjunto 0.
- La operación intersección de conjuntos? El conjunto \mathcal{U} tal que en $\mathcal{P}(\mathcal{U})$ esté definida la operación.
- ► En \mathbb{Z} la operación $a \otimes b = a b$ (la resta en \mathbb{Z}) posee neutro? NO. Cómo se prueba?
- Si $A = \{1, 2, ..., 7\}$ definimos $g : A \times A \rightarrow A$ tal que $g(a,b) = \min\{a,b\}$.

Es conmutativa?

Es asociativa?

Posee neutro? Si. El número 7 ∈ A es tal que

$$g(a,7) = \min\{a,7\} = a$$

ya que a ∈ A verifica a \leq 7.

 $Sif: A \times A \rightarrow A$ posee neutro, éste es único.

Dem.

Supongamos que $f(a,b) = a \otimes b$ y sean $x,y \in A$ elementos neutros. Entonces:

$$a \otimes x = x \otimes a = a \qquad \forall a \in A$$

y también

$$a \otimes y = y \otimes a = a \qquad \forall a \in A.$$

Como en particular $x \in A$ para y neutro, resulta que

$$x \otimes y = y \times x = x$$

pero si miramos a $y \in A$ para x neutro esta misma igualdad es

$$x \otimes y = y \times x = y$$
.

Probando asi que x = y.

Dada $f: A \times A \to A$ operación binaria en A (obviamente cerrada). Si f posee neutro $x \in A$, decimos que la operación posee inversos si para cada $a \in A$ existe $a' \in A$ tal que f(a,a') = f(a',a) = x.

EJEMPLO

Sea \star la operación definida en $A = \{0, 1, 3\}$ dada por la siguiente tabla:

*	0	1	3
0	1	3	0
1	3	0	1
3	0	1	3

Notemos que podemos ver la conmutatividad de la forma de la tabla, lo mismo que la existencia de neutro y de inverso. Es conmutativa y 3 es neutro. Todos los elementos poseen inverso, por ejemplo, 1 es inverso de 0.

Es otra forma de presentar las funciones que definen operaciones, por su "tabla de valores".

TEOREMA

Si $f: A \times A \to A$ es una operación asociativa, con elemento neutro $x \in A$ que posee inversos, entonces, cada elemento posee un único inverso.

Dem.

Supongamos que $a \in A$ posee dos elementos inversos, a_1 y a_2 y notemos con $f(a,b) = a \star b$. Entonces:

$$a_1 = a_1 \star x = a_1 \star (a \star a_2) = (a_1 \star a) \star a_2 = x \star a_2 = a_2.$$

shutterstock.com • 1336717865