Logistic Regression

INDRAPRASTHA INSTITUTE *of* INFORMATION TECHNOLOGY **DELHI**

The Problem

The Problem

Motivation

- Logistic regression is the type of regression we use for a binary (or discrete) response variable $(Y \in \{0,1\})$
- Linear regression is the type of regression we use for a continuous, normally distributed response $(Y \in \square^m)$ variable

• Use a function to map real numbers to {0,1}

Dependent Variable Characteristics

• Each trial has two possible outcomes: success or failure.

• The probability of success (call it *p*) is the same for each trial.

• The trials are independent, meaning the outcome of one trial doesn't influence the outcome of any other trial.

Bernoulli Distribution

$$Pr(y|x;p) = \begin{cases} p, & y = 1\\ 1 - p, & y = 0 \end{cases}$$
$$= p^{y} (1 - p)^{(1-y)}$$

- Input: Linear combination of variables
- Output: Bernoulli distribution p

$$\ln\left(odds\right) = \ln\left(\frac{p}{1-p}\right) = \ln\left(p\right) - \ln\left(1-p\right)$$

- Range = -inf to +inf
 - o Solves the problem we encountered in
 - fitting a linear model to probabilities

 P only range from 0 to 1, we can get linear predictions that are outside of this range

Logit

• We want to predict *p*, hence p has to be our Y axis rather X axis.

• The inverse of the logit function is the sigmoid function

• $logit^{-1}(z) = \sigma(z) = 1/(1 + exp(-z))$

Inverse Logit

Inverse Logit: Derivation

$$logit(p) =$$

Let
$$logit(p) = \hat{y}$$
:

Taking exponential both the sides:

Adding 1 both the sides:

Cross-Multiplication:

Simplifying it further:

$$logit(p)$$
 =

$$logit(p) =$$

$$logit(p) =$$

$$\frac{logit(n) = }{}$$

$$logit(p) = log \frac{p}{1-p}$$

$$\hat{y} = log \frac{p}{1-p}$$

 $e^{\hat{y}} = \frac{p}{1-p}$

 $e^{\hat{y}} + 1 = \frac{p}{1-p} + 1$

$$\hat{y} = l$$

$$iogit(p)$$

$$\hat{y} = l$$

$$iogit(p)$$

$$\hat{u} = l$$

$$logit(p)$$
 =

$$\frac{1}{\log i t(n)}$$

 $e^{\hat{y}} + 1 = \frac{1}{1-p}$

 $1 - p = \frac{1}{e^{\hat{y}} + 1}$

 $p = \frac{e^{\hat{y}}}{e^{\hat{y}} + 1} = \frac{1}{1 + e^{-\hat{y}}}$

Linear Regression vs Logistic

Linear Regression vs Logistics Regression

• Linear regression we had $h_{\theta}(x) = \theta^{T}x$

$$\circ h_{\theta}(x) = \theta^{\mathsf{T}} x$$

• logistic regression we have $h_{\theta}(x)=1/(1+e^{-\theta \tau x})$

$$h_{\theta}(x) = 1/(1 + e^{-\theta \tau x})$$

• Hypothesis $h\theta(X) = \frac{1}{1 + e^{-\left(\beta_0 + \beta_1 X\right)}}$ (Predicted)

$$J(\theta) = \frac{1}{2} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

• Hypothesis $h\theta(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$

• Hypothesis
$$h\theta(X) = \frac{1}{1 + e^{-\left(\beta_0 + \beta_1 X\right)}}$$

• Cost Function
$$\begin{cases} -log(h_{\theta}(x)) & \text{if } y = 1 \\ -log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

General Cost Function

$$J(heta) = -rac{1}{m}\sum\left[y^{(i)}\log(h heta(x(i))) + \left(1-y^{(i)}
ight)\log(1-h heta(x(i)))
ight]$$

$$m extstyle = rac{\partial}{\partial heta j} J(heta)$$

Repeat
$$\{$$

$$\theta_j := \theta_j - \alpha \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$
 $\{$ (simultaneously update all θ_j)

