Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого»

Институт компьютерных наук и технологий Программная инженерия

Отчёт по лабораторным работам по дисциплине «Вычислительная математика»

Студент гр. Руководитель: 5130904/30008 Ребдев П.А Скуднева Е.В

Санкт-Петербург 2025

Оглавление

Лабораторная работа №1	3
1. Задание	3
2. Решение	4
2.1 Ход решения	4
2.2 Основная программа	4
2.3 Интерполяционный полином Лагранжа	5
2.4 Программа spline	5
2.5 Программа QUANC8	6
3. Результаты	7
3.1 Нахождение значения функции в точках	7
3.2 Вычисления интеграла	9
4. Выводы	
5. Дополнения	11
5.1 Полный код всех программ	
Лабораторная работа №2	32
1. Задание	32
2. Решение	33
2.1 Ход решения	33
2.2 Основная программа	33
2.3 Вычисление обратной матрицы	
2.4 Перемножение матриц	
2.5 Вычисление нормы матрицы	34
3. Результаты	36
3.1 Оригинальные матрицы	36
3.2 Обратные матрицы	36
3.3 R матрицы	37
3.4 Нормы	
4. Выводы	
5. Дополнения	40
5.1 Полный код всех программ	40

Лабораторная работа №1

1. Задание

Вариант №16

Для функции f(x) = 1 - exp(-x) по узлам $x_k = 0.3k$ (k = 0.1, ...10) построить полином Лагранжа L(x) 10-й степени и сплайн-функцию S(x). Вычислить значения всех трех функций в точках $y_k = 0.15 + 0.3k$ (k = 0.1, ...9). Результаты отобразить графически.

Используя программу QUANC8, вычислить интегралы:

$$\int\limits_{0.5}^{1} \left| \sin(x) - 0.6 \right|^m dx$$
, для m = -1 и для m = -0.5

2. Решение

2.1 Ход решения

- 1. Построение вектора из 10 х координат по заранее заданному правилу (x[i] = (0.3d * i))
- 2. Вычисление вектора значений функции в точках, необходимого для построения интерполяционного полинома Лагранжа и SPLINE
- 3. Построение интерполяционного полинома Лагранжа с использованием вычисленного на прошлом шаге вектора значений функций
- 4. Построение SPLINE с использованием вычисленного на втором шаге вектора значений функций
- 5. Смещение изначального вектора х координат на +0.15
- 6. Вычисление значений функции, интерполяционного полинома Лагранжа и SPLINE в новых х
- 7. Вычисление погрешности интерполяционного полинома Лагранжа и SPLINE

2.2 Основная программа

main.cpp

```
#include <vector>
#include <vector>
#include "myFuncs.hpp"
#include "paint.hpp"
#include "quanc8.hpp"

int main()
{
    const unsigned pointsNum = 10;

    std::cout << std::fixed << std::setprecision(8);
    std::cout << "\033[1;32m";
    std::cout << "\033[0m\n";

    std::vector< double > x(pointsNum);

for (size_t i = 0; i <= pointsNum; ++i)
    {
        x[i] = (0.3d * i);
    }
```

```
std::vector< double > orig(pointsNum);
std::vector< double > Lagrange(pointsNum);
std::vector< double > spline(pointsNum);

for (size_t i = 0; i < pointsNum; ++i)
{
    double point = 0.15d + 0.3d * i;
    std::cout << "x = " << point;

    orig[i] = baseFunc(point);
    std::cout << ";\t f(x) = " << orig[i];

Lagrange[i] = LagrangePolynomial(pointsNum, x, point);
    std::cout << ";\t L(x) = " << Lagrange[i];

spline[i] = splineNum(pointsNum, x, point);
    std::cout << ";\t S(x) = " << spline[i] << '\n';
}
std::cout << "\n';
paint(x, orig, Lagrange, spline);
return 0;
}</pre>
```

2.3 Интерполяционный полином Лагранжа

myFuncs.cpp

```
double LagrangePolynomial(const unsigned pointsNum, const std::vector< double > & x, double point)
{
    double result = 0;
    for (size_t i = 0; i < pointsNum; ++i)
    {
        double localResult = baseFunc(x[i]);
        for (size_t j = 0; j < pointsNum; ++j)
        {
            if (j != i)
            {
                localResult *= (point - x[j]);
                localResult /= (x[i] - x[j]);
            }
            result += localResult;
        }
        return result;
}</pre>
```

2.4 Программа spline

myFuncs.cpp

```
double splineNum(const unsigned pointsNum, const std::vector< double > & x, double point)
{
   std::vector< double > func(pointsNum);
   for (size_t i = 0; i < pointsNum; ++i)
   {</pre>
```

```
func[i] = baseFunc(x[i]);
}
tk::spline s(x, func);
return s(point);
}
```

2.5 Программа QUANC8

main.cpp

```
double * result = new double;
double * errest = new double;
int * nofunR = new int;
double * posnR = new double;
int * flag = new int;
std::cout << "\033[1;32m";
std::cout << "Find integral from 0.5 to 1 abs(sin(x) -0.6)^{\wedge}m dx. With m = -1 and m = -0.5";
std::cout << "\033[0m\n";
quanc8(quanc1, 0.5, 1, std::pow(10, -6), std::pow(10, -7), result, errest, nofunR, posnR, flag);
std::cout << "I(-1) = " << *result << '\n';
quanc8(quanc2, 0.5, 1, std::pow(10, -6), std::pow(10, -7), result, errest, nofunR, posnR, flag);
std::cout << "I(-0.5) = " << *result << "\n\n";
delete result;
delete errest;
delete nofunR;
delete posnR;
delete flag;
```

myFuncs.cpp

```
double quanc1(double x)
{
  return std::pow(std::abs(std::sin(x) - 0.6), -1);
}
double quanc2(double x)
{
  return std::pow(std::abs(std::sin(x) - 0.6), -0.5);
}
```

3. Результаты

3.1 Нахождение значения функции в точках

В результате вычислений была получена следующая таблица:

х	f(x)	L(x)	L(x) - f(x)	S(x)	S(x) - f(x)
0.15	-0.161834	-0.161834	0	-0.165899	0,004065
0.45	-0.568312	-0.568312	0	-0.567179	0,001133
0.75	-1.117000	-1.117000	0	-1.117272	0.000272
1.05	-1.857651	-1.857651	0	-1.857430	0,000221
1.35	-2.857426	-2.857426	0	-2.857681	0,000255
1.65	-4.206980	-4.206980	0	-4.205697	0,001283
1.95	-6.028688	-6.028688	0	-6.032910	0,004222
2.25	-8.487736	-8.487736	0	-8.471245	0,016491
2.55	-11.807104	-11.807104	0	-11.867653	0,060549
2.85	-16.287782	-16.287777	5 * 10 ⁻⁶	-15.919744	0,368038

На графике красным обозначена оригинальная функция, зелёным интерполяционный полином Лагранжа, синим сплайн функция

3.2 Вычисления интеграла

При вычисления интеграла с помощью программы QUANC8 были получены следующие результаты:

На графики чёрным пунктиром обозначены границы интегрирования, красным m = -0.5, синим m = -1

4. Выводы

В ходе выполнения лабораторной работы с помощью интерполяционного полинома Лагранжа и программы SPLINE были найдены значения функции в точках. При использование типа данных double (16 чисел после мантиссы), и округление до 6го знака после запятой были получены следующие погрешности:

	полином Лагранжа	программа SPLINE
Максимальная разница	0,000005	0,368038
	0,00003%	2,25%
Минимальная разница	0	0,000272
	0	0,0002%

По данным из таблицы можно сделать следующие выводы:

- 1. Полином Лагранжа отлично подходит для аппроксимации функций, погрешность в 6м разряде начинает появляться при вычисление чисел с двумя целыми разрядами, что является довольно хорошим результатом
- 2. Высокая погрешность программы SPLINE скорее всего свидетельствует о не качественности конкретной реализации SPLINE алгоритма.

С помощью программы QUANC8 были вычислены значения интеграла для m = -0.5 и m = -1 с абсолютной и относительной погрешностями равными 10^-7. Погрешность вычисления при m = -0.5 составила 0.00000003, а при m = 0.01433744. Можно сделать вывод что программа QUANC8 вычисляет значение интеграла с высокой точностью.

5. Дополнения

5.1 Полный код всех программ

Описание файлов:

- main.cpp отвечает за хранение данных и их вывод в консоль
- myFunc.* отвечают за реализацию интерполяционного полинома Лагранжа, вычисление значения функции и является «прослойкой» между main.cpp, spline.h и quanc8.cpp
- paint.* отвечает за визуализацию вычисленных значений функции, интерполяционного полинома Лагранжа и программы SPLINE

main.cpp

```
#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>
#include "myFuncs.hpp"
#include "paint.hpp"
#include "quanc8.hpp"
int main()
 const unsigned pointsNum = 10;
 std::cout << std::fixed << std::setprecision(8);</pre>
 std::cout << "\033[1;32m";
 std::cout << "Base points = 0,3 * k (k = 0, 1, ...10)\nf(x) = 1 - \exp(x)\nPoints to calculate = 0,15 + 0,3k (k = 0, 1, ...9)\n";
 std::cout << "\033[0m\n";
 std::vector< double > x(pointsNum);
 for (size ti = 0; i \le pointsNum; ++i)
  x[i] = (0.3d * i);
 std::vector< double > orig(pointsNum);
 std::vector< double > Lagrange(pointsNum);
 std::vector< double > spline(pointsNum);
 for (size ti = 0; i < pointsNum; ++i)
  double point = 0.15d + 0.3d * i;
  std::cout << "x = " << point;
  orig[i] = baseFunc(point);
```

```
std::cout << ";\t f(x) = " << orig[i];
 Lagrange[i] = LagrangePolynomial(pointsNum, x, point);
 std::cout << ";\t L(x) = " << Lagrange[i];
 spline[i] = splineNum(pointsNum, x, point);
 std::cout << ";\t S(x) = " << spline[i] << '\n';
std::cout << '\n';
paint(x, orig, Lagrange, spline);
double * result = new double;
double * errest = new double;
int * nofunR = new int;
double * posnR = new double;
int * flag = new int;
std::cout << "\033[1;32m";
std::cout << "Find integral from 0.5 to 1 abs(sin(x) -0.6)^m dx. With m = -1 and m = -0.5";
std::cout << "\033[0m\n";
quanc8(quanc1, 0.5, 1, std::pow(10, -7), std::pow(10, -7), result, errest, nofunR, posnR, flag);
std::cout << "I(-1) = " << *result << '\n';
quanc8(quanc2, 0.5, 1, std::pow(10, -7), std::pow(10, -7), result, errest, nofunR, posnR, flag);
std::cout << "I(-0.5) = " << *result << "\n\n";
delete result;
delete errest;
delete nofunR;
delete posnR;
delete flag;
return 0;
```

myFuncs.hpp

```
#ifndef MYFUNCS_HPP

#define MYFUNCS_HPP

#include <vector>

double baseFunc(double point);
double LagrangePolynomial(const unsigned pointsNum, const std::vector< double > & x, double point);
double splineNum(const unsigned pointsNum, const std::vector< double > & x, double point);
double quanc1(double x);
double quanc2(double x);
#endif
```

myFuncs.cpp

```
#include "myFuncs.hpp"

#include <cmath>

#include "spline.h"
```

```
double baseFunc(double point)
return (1 - std::exp(point));
double LagrangePolynomial(const unsigned pointsNum, const std::vector< double > & x, double point)
double result = 0;
 for (size_t i = 0; i < pointsNum; ++i)</pre>
  double localResult = baseFunc(x[i]);
  for (size_t j = 0; j < pointsNum; ++j)
   if (j != i)
    localResult *= (point - x[j]);
    localResult /= (x[i] - x[j]);
 result += localResult;
 return result;
double splineNum(const unsigned pointsNum, const std::vector< double > & x, double point)
std::vector< double > func(pointsNum);
for (size_t i = 0; i < pointsNum; ++i)
 func[i] = baseFunc(x[i]);
tk::spline s(x, func);
return s(point);
double quanc1(double x)
return std::pow(std::abs(std::sin(x) - 0.6), -1);
double quanc2(double x)
return std::pow(std::abs(std::sin(x) - 0.6), -0.5);
```

paint.hpp

```
#ifndef PAINT_HPP
#define PAINT_HPP

#include <vector>
using vec = std::vector< double >;
void paint(const vec & x, const vec & orig, const vec & Lagrange, const vec & spline);
#endif
```

paint.cpp

```
#include "paint.hpp"
```

```
#include <SFML/Graphics.hpp>
void paint(const vec & x, const vec & orig, const vec & Lagrange, const vec & spline)
 const double scale = 100;
 const double w = 1920;
 const double h = 1080;
 sf::RenderWindow window(sf::VideoMode(w, h), "UwU");
 while (window.isOpen())
  sf::Event event;
  while (window.pollEvent(event))
   if (event.type == sf::Event::Closed)
    window.close();
  window.clear(sf::Color::White);
  for (size_t i = 0; i < x.size(); ++i)
   sf::CircleShape circle(5);
   circle.setPosition((w / 20) - orig[i] * scale, (h / 3) + x[i] * scale);
   circle.setFillColor(sf::Color(255, 0, 0, 150));
   window.draw(circle);
   circle.setPosition((w / 20) - Lagrange[i] * scale, (h / 3) + x[i] * scale);
   circle.setFillColor(sf::Color(0, 255, 0, 150));
   window.draw(circle);
   circle.setPosition((w / 20) - spline[i] * scale, (h / 3) + x[i] * scale);
   circle.setFillColor(sf::Color(0, 0, 255, 150));
   window.draw(circle);
  for (size t i = 0; i < orig.size() - 1; ++i)
   sf::Vertex line[] = {
    sf::Vertex(sf::Vector2f((w / 20) - orig[i] * scale, (h / 3) + x[i] * scale), sf::Color(255, 0, 0, 150)),
    sf::Vertex(sf::Vector2f((w / 20) - orig[i + 1] * scale, (h / 3) + x[i + 1] * scale), sf::Color(255, 0, 0, 150))
   window.draw(line, 5, sf::Lines);
   line[0] = sf::Vertex(sf::Vector2f((w / 20) - Lagrange[i] * scale, (h / 3) + x[i] * scale), sf::Color(0, 255, 0, 150));
   line[1] = sf::Vertex(sf::Vector2f((w / 20) - Lagrange[i + 1] * scale, (h / 3) + x[i + 1] * scale), sf::Color(0, 255, 0, 150));
   window.draw(line, 5, sf::Lines);
   line[0] = sf::Vertex(sf::Vector2f((w / 20) - spline[i] * scale, (h / 3) + x[i] * scale), sf::Color(0, 0, 255, 150));
   line[1] = sf::Vertex(sf::Vector2f((w / 20) - spline[i + 1] * scale, (h / 3) + x[i + 1] * scale), sf::Color(0, 0, 255, 150));
   window.draw(line, 5, sf::Lines);
  window.display();
```

quanc8.hpp

```
#pragma once

int quanc8(double(*fun)(double x), double a, double b,

double abserr, double relerr,

double *resultR, double *errestR,

int *nofunR,

double *posnR, int *flag);
```

quanc8.cpp

```
#include <math.h>
fun
        : The name of the user defined function f(x).
      : The lower limit of integration.
      : The upper limit of integration.
abserr: The absolute error tolerance. Should be positive.
relerr: The relative error tolerance. Should be positive.
result : An approximation to the integral I.
errest : An estimate of the absolute error in I.
nofun
          : The number of function evaluations used in the
                           calculation of result.
        : If flag < 0, then posn is the point reached when
posn
                          the limit on nfe was approached.
flag
       : Error indicator.
                           = 0, normal return.
                           = 1, invalid user input, relerr < 0, abserr < 0
                           < 0, If flag = -n then n subintervals did not
                                    converge. A small number (say 10) of
                                    unconverged subintervals may be acceptable.
                                    Check posn for further information.
*/
int quanc8(double(*fun)(double x), double a, double b,
        double abserr, double relerr,
        double *resultR, double *errestR,
        int *nofunR,
        double *posnR, int *flag)
{ /* begin function quanc8 */
 /* this code has been translated from fortran, hence use
 elements 1 .. n */
        double w0, w1, w2, w3, w4, area, x0, f0, stone, step, cor11;
        double qprev, qnow, qdiff, qleft, esterr, tolerr;
        static double qright[32], f[17], x[17], fsave[9][31];
        static double xsave[9][31];
        double posn, result, errest;
        double temp, temp1;
        int nofun:
        int levmin, levmax, levout, nomax, nofin, lev, nim, i, j, ii;
```

```
/* check user input */
if (abserr < 0.0 || relerr < 0.0)
         *flag = 1;
         *resultR = 0.0;
         *errestR = 0.0;
         *posnR = 0.0;
         *nofunR = 0;
         return (0);
/* *** stage 1 *** general initialization
set constants. */
levmin = 1;
levmax = 30;
levout = 6;
nomax = 5000;
         ii = 1;
         for (i = 0; i <= levout; i++) ii *= 2;
} /* ---> ii = 2 ** (levout+1) */
nofin = nomax - 8 * (levmax - levout + ii);
/* note that there will be trouble when nofun reaches nofin */
temp = 14175.0;
w0 = 3956.0 / temp;
w1 = 23552.0 / temp;
w2 = -3712.0 / temp;
w3 = 41984.0 / temp;
w4 = -18160.0 / temp;
/* initialize running sums to zero. */
*flag = 0;
posn = 0.0;
result = 0.0;
cor11 = 0.0;
errest = 0.0;
area = 0.0;
nofun = 0;
if (a == b) goto ExitQuanc8;
/* *** stage 2 *** initialization for first interval */
lev = 0;
nim = 1;
x0 = a;
x[16] = b;
qprev = 0.0;
/* set up evenly spaced panels */
f0 = (*fun)(x0);
stone = (b - a) / 16.0;
x[8] = 0.5 * (x0 + x[16]);
x[4] = 0.5 * (x0 + x[8]);
x[12] = 0.5 * (x[8] + x[16]);
x[2] = 0.5 * (x0 + x[4]);
```

```
x[6] = 0.5 * (x[4] + x[8]);
        x[10] = 0.5 * (x[8] + x[12]);
        x[14] = 0.5 * (x[12] + x[16]);
        for (j = 2; j \le 16; j = j + 2) f[j] = (*fun) (x[j]);
        nofun = 9;
        /* *** stage 3 *** central calculation
        requires gprev,x0,x2,x4,...,x16,f0,f2,f4,...,f16.
        calculates x1,x3,...x15, f1,f3,...f15,qleft,qright,qnow,qdiff,area.
         */
Stage3:
        x[1] = 0.5 * (x0 + x[2]);
        f[1] = (*fun)(x[1]);
        for (j = 3; j \le 15; j = j + 2)
                  x[j] = 0.5 * (x[j-1] + x[j+1]);
                  f[j] = (*fun)(x[j]);
        nofun += 8;
        step = (x[16] - x0) / 16.0;
        qleft = (w0 * (f0 + f[8]) + w1 * (f[1] + f[7]) + w2 * (f[2] + f[6])
                  + w3 * (f[3] + f[5]) + w4 * f[4]) * step;
        qright[lev + 1] = (w0 * (f[8] + f[16]) + w1 * (f[9] + f[15]) + w2 * (f[10] + f[14])
                  + w3 * (f[11] + f[13]) + w4 * f[12]) * step;
        qnow = qleft + qright[lev + 1];
        qdiff = qnow - qprev;
        area += qdiff;
        /* *** stage 4 *** interval convergence test */
        esterr = fabs(qdiff) / 1023.0;
                  tolerr = abserr;
                  temp = relerr * fabs(area);
                  if (temp > tolerr) tolerr = temp;
        } /* ---> tolerr = max(abserr, relerr * abs(area)) */
        tolerr *= (step / stone);
        if (lev < levmin) goto Stage5; /* keep subdividing
        if (lev >= levmax) goto Stage6B; /* too many nested levels
        if (nofun > nofin) goto Stage6; /* close to limit on fn calls */
        if (esterr <= tolerr) goto Stage7; /* this interval has converged */
                                                                                            /* *** stage 5 *** no
convergence
                                                                                                                          */
                                                                                            locate next interval.
Stage5:
        nim *= 2;
        ++lev;
        /* store right hand elements for future use. */
        for (i = 1; i <= 8; i++)
                  fsave[i][lev] = f[i + 8];
                  xsave[i][lev] = x[i + 8];
```

```
/* assemble left hand elements for immediate use. */
        qprev = qleft;
        for (i = 1; i <= 8; i++)
                 j = (-i);
                 f[2 * j + 18] = f[j + 9];
                 x[2 * j + 18] = x[j + 9];
        goto Stage3;
        /* *** stage 6 *** trouble section
        number of function values is about to exceed limit. */
Stage6:
        nofin *= 2;
        levmax = levout;
        posn = x0; /* this is our trouble spot */
        goto Stage7;
        /* current level is levmax. */
Stage6B:
        --(*flag); /* another interval has not converged */
                                    /* *** stage 7 *** interval converged
                                    add contributions into running sums. */
Stage7:
        result += qnow;
        errest += esterr;
        cor11 += qdiff / 1023.0;
        /* locate next interval. */
        while (nim != (2 * (nim / 2)))
                 nim /= 2;
                 --lev;
        }
        ++nim;
        if (lev <= 0) goto Stage8;
        /* assemble elements required for the next interval. */
        qprev = qright[lev];
        x0 = x[16];
        f0 = f[16];
        for (i = 1; i <= 8; i++)
                 f[2 * i] = fsave[i][lev];
                 x[2 * i] = xsave[i][lev];
        goto Stage3;
        /* *** stage 8 *** finalize and return */
Stage8:
        result += cor11;
        /* make sure errest not less than roundoff level. */
        if (errest == 0.0) goto ExitQuanc8;
```

spline.h

```
* spline.h
* simple cubic spline interpolation library without external
  dependencies
* Copyright (C) 2011, 2014, 2016, 2021 Tino Kluge (ttk448 at gmail.com)
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
  as published by the Free Software Foundation; either version 2
  of the License, or (at your option) any later version.
* This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
  along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.
#ifndef TK_SPLINE_H
#define TK SPLINE H
#include <cstdio>
#include <cassert>
#include <cmath>
#include <vector>
#include <algorithm>
#ifdef HAVE SSTREAM
#include <sstream>
#include <string>
#endif // HAVE_SSTREAM
```

```
// not ideal but disable unused-function warnings
// (we get them because we have implementations in the header file,
// and this is because we want to be able to quickly separate them
// into a cpp file if necessary)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-function"
// unnamed namespace only because the implementation is in this
// header file and we don't want to export symbols to the obj files
namespace
namespace tk
// spline interpolation
class spline
public:
  // spline types
  enum spline_type {
                     // linear interpolation
    linear = 10,
    cspline = 30,
                      // cubic splines (classical C^2)
    cspline_hermite = 31 // cubic hermite splines (local, only C^1)
  // boundary condition type for the spline end-points
  enum bd_type {
    first deriv = 1,
    second_deriv = 2
protected:
  std::vector<double> m x,m y;
                                      // x,y coordinates of points
  // interpolation parameters
  // f(x) = a_i + b_i*(x-x_i) + c_i*(x-x_i)^2 + d_i*(x-x_i)^3
  // where a_i = y_i, or else it won't go through grid points
  std::vector<double> m_b,m_c,m_d;
                                        // spline coefficients
  double m_c0;
                               // for left extrapolation
  spline type m type;
  bd_type m_left, m_right;
  double m_left_value, m_right_value;
  bool m_made_monotonic;
  void set_coeffs_from_b();
                                   // calculate c_i, d_i from b_i
  size_t find_closest(double x) const; // closest idx so that m_x[idx]<=x
public:
  // default constructor: set boundary condition to be zero curvature
  // at both ends, i.e. natural splines
  spline(): m_type(cspline),
    m left(second deriv), m right(second deriv),
    m_left_value(0.0), m_right_value(0.0), m_made_monotonic(false)
```

```
spline(const std::vector<double>& X, const std::vector<double>& Y,
      spline_type type = cspline,
      bool make_monotonic = false,
      bd_type left = second_deriv, double left_value = 0.0,
     bd_type right = second_deriv, double right_value = 0.0
    m_type(type),
    m_left(left), m_right(right),
    m_left_value(left_value), m_right_value(right_value),
    m_made_monotonic(false) // false correct here: make_monotonic() sets it
    this->set_points(X,Y,m_type);
    if(make_monotonic) {
      this->make_monotonic();
  // modify boundary conditions: if called it must be before set_points()
  void set_boundary(bd_type left, double left_value,
            bd_type right, double right_value);
  // set all data points (cubic_spline=false means linear interpolation)
  void set points(const std::vector<double>& x,
           const std::vector<double>& y,
           spline type type=cspline);
  // adjust coefficients so that the spline becomes piecewise monotonic
  // where possible
  // this is done by adjusting slopes at grid points by a non-negative
  // factor and this will break C^2
  // this can also break boundary conditions if adjustments need to
  // be made at the boundary points
  // returns false if no adjustments have been made, true otherwise
  bool make_monotonic();
  // evaluates the spline at point x
  double operator() (double x) const;
  double deriv(int order, double x) const;
  // returns the input data points
  std::vector<double> get_x() const { return m_x; }
  std::vector<double> get_y() const { return m_y; }
  double get x min() const { assert(!m x.empty()); return m x.front(); }
  double get_x_max() const { assert(!m_x.empty()); return m_x.back(); }
#ifdef HAVE SSTREAM
  // spline info string, i.e. spline type, boundary conditions etc.
  std::string info() const;
#endif // HAVE SSTREAM
};
namespace internal
```

```
// band matrix solver
class band_matrix
private:
  std::vector< std::vector<double> > m_upper; // upper band
  std::vector< std::vector<double> > m_lower; // lower band
public:
                                   // constructor
  band_matrix() {};
  band_matrix(int dim, int n_u, int n_l); // constructor
                             // destructor
  ~band_matrix() {};
  void resize(int dim, int n_u, int n_l); // init with dim,n_u,n_l
                               // matrix dimension
  int dim() const;
  int num upper() const
    return (int)m_upper.size()-1;
  int num_lower() const
    return (int)m_lower.size()-1;
  // access operator
  double & operator () (int i, int j);
                                       // write
  double operator () (int i, int j) const; // read
  // we can store an additional diagonal (in m lower)
  double& saved_diag(int i);
  double saved_diag(int i) const;
  void lu_decompose();
  std::vector<double> r_solve(const std::vector<double>& b) const;
  std::vector<double> |_solve(const std::vector<double>& b) const;
  std::vector<double> lu_solve(const std::vector<double>& b,
                  bool is lu decomposed=false);
} // namespace internal
// implementation part, which could be separated into a cpp file
// spline implementation
void spline::set_boundary(spline::bd_type left, double left_value,
              spline::bd_type right, double right_value)
  assert(m x.size()==0);
                             // set_points() must not have happened yet
  m_left=left;
  m_right=right;
  m_left_value=left_value;
  m_right_value=right_value;
```

```
void spline::set_coeffs_from_b()
 assert(m_x.size()==m_y.size());
 assert(m_x.size()==m_b.size());
 assert(m_x.size()>2);
 size t n=m b.size();
 if(m_c.size()!=n)
   m_c.resize(n);
 if(m_d.size()!=n)
   m_d.resize(n);
 for(size t i=0; i<n-1; i++) {
   const double h = m_x[i+1]-m_x[i];
   // from continuity and differentiability condition
   m_c[i] = (3.0*(m_y[i+1]-m_y[i])/h - (2.0*m_b[i]+m_b[i+1]))/h;
   // from differentiability condition
   m_d[i] = ((m_b[i+1]-m_b[i])/(3.0*h) - 2.0/3.0*m_c[i])/h;
 // for left extrapolation coefficients
 m_c0 = (m_left == first_deriv) ? 0.0 : m_c[0];
void spline::set points(const std::vector<double>& x,
            const std::vector<double>& y,
            spline_type type)
 assert(x.size()==y.size());
 assert(x.size()>2);
 m_type=type;
 m_made_monotonic=false;
 m_x=x;
 m_y=y;
 int n = (int) x.size();
 // check strict monotonicity of input vector x
 for(int i=0; i<n-1; i++) {
   assert(m_x[i] < m_x[i+1]);
 if(type==linear) {
   // linear interpolation
   m_d.resize(n);
   m_c.resize(n);
   m_b.resize(n);
   for(int i=0; i<n-1; i++) {
      m_d[i]=0.0;
      m c[i]=0.0;
      m_b[i]=(m_y[i+1]-m_y[i])/(m_x[i+1]-m_x[i]);
   // ignore boundary conditions, set slope equal to the last segment
   m b[n-1]=m b[n-2];
   m_c[n-1]=0.0;
```

```
m d[n-1]=0.0;
} else if(type==cspline) {
  // classical cubic splines which are C^2 (twice cont differentiable)
  // this requires solving an equation system
  // setting up the matrix and right hand side of the equation system
  // for the parameters b[]
  internal::band matrix A(n,1,1);
  std::vector<double> rhs(n);
  for(int i=1; i<n-1; i++) {
    A(i,i-1)=1.0/3.0*(x[i]-x[i-1]);
    A(i,i)=2.0/3.0*(x[i+1]-x[i-1]);
    A(i,i+1)=1.0/3.0*(x[i+1]-x[i]);
    rhs[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]);
  // boundary conditions
  if(m_left == spline::second_deriv) {
    // 2*c[0] = f''
    A(0,0)=2.0;
    A(0,1)=0.0;
    rhs[0]=m_left_value;
  } else if(m_left == spline::first_deriv) {
    // b[0] = f', needs to be re-expressed in terms of c:
    //(2c[0]+c[1])(x[1]-x[0]) = 3((y[1]-y[0])/(x[1]-x[0]) - f')
    A(0,0)=2.0*(x[1]-x[0]);
    A(0,1)=1.0*(x[1]-x[0]);
    rhs[0]=3.0*((y[1]-y[0])/(x[1]-x[0])-m_left_value);
  } else {
    assert(false);
  if(m_right == spline::second_deriv) {
    // 2*c[n-1] = f"
    A(n-1,n-1)=2.0;
    A(n-1,n-2)=0.0;
    rhs[n-1]=m right value;
  } else if(m_right == spline::first_deriv) {
     // b[n-1] = f', needs to be re-expressed in terms of c:
    // (c[n-2]+2c[n-1])(x[n-1]-x[n-2])
    // = 3 (f' - (y[n-1]-y[n-2])/(x[n-1]-x[n-2]))
    A(n-1,n-1)=2.0*(x[n-1]-x[n-2]);
    A(n-1,n-2)=1.0*(x[n-1]-x[n-2]);
    rhs[n-1]=3.0*(m_right_value-(y[n-1]-y[n-2])/(x[n-1]-x[n-2]));
  } else {
    assert(false);
  // solve the equation system to obtain the parameters c[]
  m_c=A.lu_solve(rhs);
  // calculate parameters b[] and d[] based on c[]
  m d.resize(n);
  m b.resize(n);
  for(int i=0; i<n-1; i++) {
    m_d[i]=1.0/3.0*(m_c[i+1]-m_c[i])/(x[i+1]-x[i]);
    m_b[i]=(y[i+1]-y[i])/(x[i+1]-x[i])
        -1.0/3.0*(2.0*m_c[i]+m_c[i+1])*(x[i+1]-x[i]);
```

```
// for the right extrapolation coefficients (zero cubic term)
  // f_{n-1}(x) = y_{n-1} + b*(x-x_{n-1}) + c*(x-x_{n-1})^2
  double h=x[n-1]-x[n-2];
  // m_c[n-1] is determined by the boundary condition
  m_d[n-1]=0.0;
  m_b[n-1]=3.0*m_d[n-2]*h*h+2.0*m_c[n-2]*h+m_b[n-2]; // = f'_{n-2}(x_{n-1})
  if(m right==first deriv)
    m c[n-1]=0.0; // force linear extrapolation
} else if(type==cspline_hermite) {
  // hermite cubic splines which are C^1 (cont. differentiable)
  // and derivatives are specified on each grid point
  // (here we use 3-point finite differences)
  m b.resize(n);
  m_c.resize(n);
  m d.resize(n);
  // set b to match 1st order derivative finite difference
  for(int i=1; i<n-1; i++) {
    const double h = m_x[i+1]-m_x[i];
    const double hl = m_x[i]-m_x[i-1];
    m_b[i] = -h/(hl*(hl+h))*m_y[i-1] + (h-hl)/(hl*h)*m_y[i]
         + hl/(h*(hl+h))*m_y[i+1];
  // boundary conditions determine b[0] and b[n-1]
  if(m left==first deriv) {
    m_b[0]=m_left_value;
  } else if(m_left==second_deriv) {
    const double h = m_x[1]-m_x[0];
    m_b[0]=0.5*(-m_b[1]-0.5*m_left_value*h+3.0*(m_y[1]-m_y[0])/h);
  } else {
    assert(false);
  if(m right==first deriv) {
    m_b[n-1]=m_right_value;
    m_c[n-1]=0.0;
  } else if(m_right==second_deriv) {
    const double h = m_x[n-1]-m_x[n-2];
    m_b[n-1]=0.5*(-m_b[n-2]+0.5*m_right_value*h+3.0*(m_y[n-1]-m_y[n-2])/h);
    m_c[n-1]=0.5*m_right_value;
  } else {
    assert(false);
  m_d[n-1]=0.0;
  // parameters c and d are determined by continuity and differentiability
  set_coeffs_from_b();
} else {
  assert(false);
// for left extrapolation coefficients
m_c0 = (m_left == first_deriv) ? 0.0 : m_c[0];
```

```
bool spline::make monotonic()
  assert(m_x.size()==m_y.size());
  assert(m_x.size()==m_b.size());
  assert(m_x.size()>2);
  bool modified = false;
  const int n=(int)m x.size();
  // make sure: input data monotonic increasing --> b i>=0
           input data monotonic decreasing --> b i<=0
  for(int i=0; i<n; i++) {
    int im1 = std::max(i-1, 0);
    int ip1 = std::min(i+1, n-1);
    if(\ ((m_y[im1] <= m_y[i]) \&\& \ (m_y[i] <= m_y[ip1]) \&\& \ m_b[i] < 0.0) \ |\ |
      ((m_y[im1]>=m_y[i]) && (m_y[i]>=m_y[ip1]) && m_b[i]>0.0)) 
      modified=true;
      m b[i]=0.0;
    }
  // if input data is monotonic (b[i], b[i+1], avg have all the same sign)
  // ensure a sufficient criteria for monotonicity is satisfied:
  // sqrt(b[i]^2+b[i+1]^2) \le 3 |avg|, with avg=(y[i+1]-y[i])/h,
  for(int i=0; i<n-1; i++) {
    double h = m_x[i+1]-m_x[i];
    double avg = (m y[i+1]-m y[i])/h;
    if( avg==0.0 \&\& (m_b[i]!=0.0 \mid | m_b[i+1]!=0.0) ) {
      modified=true;
      m b[i]=0.0;
      m_b[i+1]=0.0;
    } else if( (m_b[i]>=0.0 && m_b[i+1]>=0.0 && avg>0.0) ||
           (m b[i] <= 0.0 \&\& m b[i+1] <= 0.0 \&\& avg < 0.0)){
      // input data is monotonic
      double r = sqrt(m_b[i]*m_b[i]+m_b[i+1]*m_b[i+1])/std::fabs(avg);
      if(r>3.0) {
        // sufficient criteria for monotonicity: r<=3
        // adjust b[i] and b[i+1]
        modified=true;
        m_b[i] *= (3.0/r);
        m_b[i+1] *= (3.0/r);
      }
  if(modified==true) {
    set_coeffs_from_b();
    m_made_monotonic=true;
  return modified;
// return the closest idx so that m x[idx] \le x (return 0 if x \le x[0])
size t spline::find closest(double x) const
  std::vector<double>::const_iterator it;
  it=std::upper bound(m x.begin(),m x.end(),x);
  size t idx = std::max(int(it-m x.begin())-1, 0); // m x[idx] \le x
```

```
return idx;
double spline::operator() (double x) const
 // polynomial evaluation using Horner's scheme
 // TODO: consider more numerically accurate algorithms, e.g.:
 // - Clenshaw
 // - Even-Odd method by A.C.R. Newbery
 // - Compensated Horner Scheme
 size_t n=m_x.size();
 size_t idx=find_closest(x);
 double h=x-m_x[idx];
 double interpol;
 if(x<m_x[0]) {
   // extrapolation to the left
   interpol=(m_c0*h + m_b[0])*h + m_y[0];
 } else if(x>m_x[n-1]) {
   // extrapolation to the right
   interpol=(m_c[n-1]*h + m_b[n-1])*h + m_y[n-1];
 } else {
   // interpolation
   interpol=((m_d[idx]*h + m_c[idx])*h + m_b[idx])*h + m_y[idx];
 return interpol;
double spline::deriv(int order, double x) const
 assert(order>0);
 size_t n=m_x.size();
 size t idx = find closest(x);
 double h=x-m x[idx];
 double interpol;
 if(x<m_x[0]) {
   // extrapolation to the left
   switch(order) {
   case 1:
      interpol=2.0*m c0*h + m b[0];
      break;
   case 2:
      interpol=2.0*m c0;
      break;
   default:
      interpol=0.0;
      break;
 } else if(x>m_x[n-1]) {
   // extrapolation to the right
   switch(order) {
   case 1:
      interpol=2.0*m_c[n-1]*h + m_b[n-1];
      break;
   case 2:
```

```
interpol=2.0*m_c[n-1];
      break;
    default:
      interpol=0.0;
      break;
 } else {
    // interpolation
    switch(order) {
    case 1:
      interpol=(3.0*m_d[idx]*h + 2.0*m_c[idx])*h + m_b[idx];
    case 2:
      interpol=6.0*m_d[idx]*h + 2.0*m_c[idx];
    case 3:
      interpol=6.0*m_d[idx];
      break;
    default:
      interpol=0.0;
      break;
    }
  return interpol;
#ifdef HAVE SSTREAM
std::string spline::info() const
 std::stringstream ss;
  ss << "type " << m_type << ", left boundary deriv " << m_left << " = ";
 ss << m_left_value << ", right boundary deriv " << m_right << " = ";
  ss << m_right_value << std::endl;
  if(m made monotonic) {
    ss << "(spline has been adjusted for piece-wise monotonicity)";
  return ss.str();
#endif // HAVE_SSTREAM
namespace internal
// band_matrix implementation
band_matrix::band_matrix(int dim, int n_u, int n_l)
 resize(dim, n_u, n_l);
void band_matrix::resize(int dim, int n_u, int n_l)
  assert(dim>0);
  assert(n_u>=0);
  assert(n_l>=0);
```

```
m upper.resize(n u+1);
  m_lower.resize(n_l+1);
  for(size_t i=0; i<m_upper.size(); i++) {
    m_upper[i].resize(dim);
  for(size_t i=0; i<m_lower.size(); i++) {</pre>
    m_lower[i].resize(dim);
int band_matrix::dim() const
  if(m_upper.size()>0) {
    return m_upper[0].size();
 } else {
    return 0;
\frac{1}{2} defines the new operator (), so that we can access the elements
// by A(i,j), index going from i=0,...,dim()-1
double & band_matrix::operator () (int i, int j)
              // what band is the entry
  int k=j-i;
  assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
 assert( (-num lower()<=k) && (k<=num upper()) );</pre>
  // k=0 -> diagonal, k<0 lower left part, k>0 upper right part
  if(k>=0) return m_upper[k][i];
  else
          return m_lower[-k][i];
double band_matrix::operator () (int i, int j) const
              // what band is the entry
  int k=j-i;
  assert( (i>=0) && (i<dim()) && (j>=0) && (j<dim()) );
  assert( (-num lower()<=k) && (k<=num upper()) );</pre>
  // k=0 -> diagonal, k<0 lower left part, k>0 upper right part
  if(k>=0) return m_upper[k][i];
          return m_lower[-k][i];
  else
// second diag (used in LU decomposition), saved in m_lower
double band matrix::saved diag(inti) const
  assert( (i>=0) && (i<dim()) );
  return m lower[0][i];
double & band_matrix::saved_diag(int i)
  assert( (i>=0) && (i<dim()) );
  return m_lower[0][i];
// LR-Decomposition of a band matrix
void band_matrix::lu_decompose()
  int i_max,j_max;
 int j min;
```

```
double x;
 // preconditioning
  // normalize column i so that a ii=1
  for(int i=0; i<this->dim(); i++) {
    assert(this->operator()(i,i)!=0.0);
    this->saved diag(i)=1.0/this->operator()(i,i);
    j min=std::max(0,i-this->num lower());
    j max=std::min(this->dim()-1,i+this->num upper());
    for(int j=j_min; j<=j_max; j++) {
      this->operator()(i,j) *= this->saved_diag(i);
    this->operator()(i,i)=1.0;
                                  // prevents rounding errors
 // Gauss LR-Decomposition
 for(int k=0; k<this->dim(); k++) {
    i max=std::min(this->dim()-1,k+this->num_lower()); // num_lower not a mistake!
    for(int i=k+1; i<=i_max; i++) {
      assert(this->operator()(k,k)!=0.0);
      x=-this->operator()(i,k)/this->operator()(k,k);
      this->operator()(i,k)=-x;
                                             // assembly part of L
      j_max=std::min(this->dim()-1,k+this->num_upper());
      for(int j=k+1; j<=j_max; j++) {
         // assembly part of R
        this->operator()(i,j)=this->operator()(i,j)+x*this->operator()(k,j);
 }
// solves Ly=b
std::vector<double> band_matrix::l_solve(const std::vector<double>& b) const
  assert( this->dim()==(int)b.size() );
 std::vector<double> x(this->dim());
  int j_start;
  double sum;
  for(int i=0; i<this->dim(); i++) {
    sum=0;
    j_start=std::max(0,i-this->num_lower());
    for(int j=j start; j<i; j++) sum += this->operator()(i,j)*x[j];
    x[i]=(b[i]*this->saved_diag(i)) - sum;
  return x;
// solves Rx=y
std::vector<double> band_matrix::r_solve(const std::vector<double>& b) const
  assert( this->dim()==(int)b.size() );
  std::vector<double> x(this->dim());
  int j stop;
  double sum;
  for(int i=this->dim()-1; i>=0; i--) {
    sum=0;
    j stop=std::min(this->dim()-1,i+this->num upper());
    for(int j=i+1; j <= j\_stop; j++) sum += this->operator()(i,j)*x[j];
```

```
x[i]=(b[i] - sum) / this->operator()(i,i);
  return x;
std::vector<double> band_matrix::lu_solve(const std::vector<double>& b,
    bool is_lu_decomposed)
  assert( this->dim()==(int)b.size() );
  std::vector<double> x,y;
  if(is_lu_decomposed==false) {
    this->lu_decompose();
  y=this->l_solve(b);
  x=this->r_solve(y);
  return x;
} // namespace internal
} // namespace tk
} // namespace
#pragma GCC diagnostic pop
#endif /* TK_SPLINE_H */
```

Лабораторная работа №2

1. Задание

Вариант №16

Написать процедуру формирования матрицы В по формулам:

$$B_{ik} = \begin{cases} \frac{0.01}{(N-i+k)(i+1)} & \text{для} & i=k\\ 0 & \text{для} & i< k\\ i(N-K) & \text{для} & i> k \end{cases}$$

Вычислить матрицу B^{-1} , используя процедуры DECOMP и SOLVE, и найти норму матрицы $R = BB^{-1} - E$ для N = 3, 6, 9. Объяснить результаты.

$$||R|| = \sqrt{\sum_{i}^{N} \sum_{k}^{N} R_{ik}^2}$$

2. Решение

2.1 Ход решения

- 1. Сформировать матрицы по заданному правилу
- 2. Вычислить обратные матрицы с помощью процедур DECOMP и SOLVE
- 3. Сформировать R матрицы, которые равны разнице произведений оригинальных и обратных матриц и единичных матриц
- 4. Вычислить нормы R матриц

2.2 Основная программа

main.cpp

```
#include <iostream>
#include <iomanip>
#include <vector>
#include "matrixFunc.hpp"
int main()
 size_t n[] = \{3, 6, 9\};
 for (size_t q = 0; q < 3; ++q)
  std::vector< double > b(n[q] * n[q]);
  std::cout << "\033[1;32mStandart matrix " << n[q] << 'x' << n[q] << ":\033[1;0m\n";
  printMatrix(b, std::cout);
  std::vector< double > antiB(antiMatrix(b));
  std::cout << "\033[1;33mAnti matrix:\033[1;0m\n";
  printMatrix(antiB, std::cout);
  std::vector< double > r(multiMatrix(b, antiB));
  for (int i = 0; i < n[q]; ++i)
   r[i * n[q] + i] -= 1;
  std::cout << "\033[1;34mR matrix:\033[1;0m\n";
  printMatrix(r, std::cout);
  return 0;
```

2.3 Вычисление обратной матрицы

matrixFunc.cpp

```
vec antiMatrix(const vec & m)
{
  int dim = std::sqrt(m.size());
  vec copy(m);
  double cond;
  std::vector< int > ipvt(dim);
  vec work(dim);

decomp_(&dim, &dim, copy.data(), &cond, ipvt.data(), work.data());

vec result(m.size());
  for (int i = 0; i < dim; ++i)
  {
     vec b(dim, 0.0);
     b[i] = 1.0;
     solve_(&dim, &dim, copy.data(), b.data(), ipvt.data());
     for (int j = 0; j < dim; ++j)
     {
          result[i * dim + j] = b[j];
     }
     return result;
}</pre>
```

2.4 Перемножение матриц

matrixFunc.cpp

```
vec multiMatrix(const vec & first, const vec & second) noexcept
{
    vec result(first.size());
    int n = std::sqrt(first.size());
    for (size_t i = 0; i < n; ++i)
    {
        for (size_t j = 0; j < n; ++j)
        {
            result[i * n + j] = 0;
            for (size_t q = 0; q < n; ++q)
        {
                result[i * n + j] += first[i * n + q] * second[q * n + j];
        }
        }
    }
    return result;
}</pre>
```

2.5 Вычисление нормы матрицы

matrixFunc.cpp

```
double calcNorm(const vec & m)
{
  int n = std::sqrt(m.size());
  double norm = 0;
  for (size_t i = 0; i < n; ++i)
  {
    for (size_t j = 0; j < n; ++j)</pre>
```

```
{
  norm += std::pow(m[i * n + j], 2);
}
norm = std::sqrt(norm);
return norm;
}
```

3. Результаты

3.1 Оригинальные матрицы

N = 3

3,33E-03	0	0		
3	1,67E-03	0		
6	4	1,11E-03		

N = 6

1,67E-03	0	0	0	0	0
6	8,33E-04	0	0	0	0
12	10	5,56E-04	0	0	0
18	15	12	4,17E-04	0	0
24	20	16	12	3,33E-04	0
30	25	20	15	10	2,78E-04

N = 9

1,11E-03	0	0	0	0	0	0	0	0
9	5,56E-04	0	0	0	0	0	0	0
18	16	3,70E-04	0	0	0	0	0	0
27	24	21	2,78E-04	0	0	0	0	0
36	32	28	24	2,22E-04	0	0	0	0
45	40	35	30	25	1,85E-04	0	0	0
54	48	42	36	30	24	1,59E-04	0	0
63	56	49	42	35	28	21	1,39E-04	0
72	64	56	48	40	32	24	16	1,23E-04

3.2 Обратные матрицы

N = 3

300	0	0	
-5,40E+05	600	0	
1,94E+09	-2,16E+06	900	

N = 6

600	0	0	0	0	0
-4,32E+06	1200	0	0	0	0
7,77E+10	-2,16E07	1800	0	0	0
-2,24E+15	6,22E+11	-5,18E+07	2400	0	0
8,06E+19	-2,24E+16	1,87E+12	-8,64E+07 3000		0
-2,90E+24	8,06E+20	-6,72E+16	3,11E+12	-1,08E+08	3600

N = 9

900	0	0	0	0	0	0	0	0
-1,46E+07	1800	0	0	0	0	0	0	0
6,30E+11	-7,78E+07	2700	0	0	0	0	0	0
-4,76E+16	5,88E+12	-2,04E+08	3600	0	0	0	0	0
5,14E+21	-6,35E+17	2,20E+13	-3,89E+08	4500	0	0	0	0
-6,94E+26	8,57E+22	-2,98E+18	5,25E+13	-6,08E+08	5400	0	0	0
1,05E+32	-1,230E+28	4,50E+23	-7,97E+18	9,19E+13	-8,16E+08	6300	0	0
-1,59E+37	1,96E+33	-6,80E+28	1,20E+24	-1,39E+19	1,23E+14	-9,53E+08	7200	0
2,06E+42	-2,54E+38	8,82E+33	-1,56E+29	1,80E+24	-1,60E+19	1,23E+14	-9,33E+08	8100

3.3 R матрицы

N = 3

0	0	0
-1,14E-13	0	0
-4,66E-10	0	0

N = 6

0	0	0	0	0	0
-4,55E-13	0	0	0	0	0
0	2,98E-08	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1,31E+05	0	0	0	0	0

N = 9

0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
-128	0	0	0	0	0	0	0	0
-5,03E+07	2048	0	0	0	0	0	0	0
-4,40E+12	0	0	0	0	0	0	0	0
0	-3,52E+13	0	0,25	0	0	0	0	0
7,56E+22	-9,22E+18	0	-2,15E+09	3,27E+04	-0,25	0	0	0

3.4 Нормы

N = 3; | | R | | = 4,66E-10

N = 6; ||R|| = 1,31E+05

N = 9; ||R|| = 7,56E+22

4. Выводы

В ходе выполнения лабораторной работы был изучен метод нахождения обратной матрицы с помощью процедур DECOMP и SOLVE. Было обнаружено, что с увеличением стороны квадратной матрицы в 2 раза, среднеквадратичная норма R вырастает на десятки порядков, что может свидетельствует о том, что с ростом размера матрицы значительно возрастают погрешности при вычисление обратной матрицы, а так же погрешность при перемножение матриц. В ходе выполнения лабораторный работы для хранения элементов матрицы использовался тип данных double, что может являться причиной резкого роста погрешности, так как double поддерживает лишь 16 чисел после мантиссы. Можно с уверенностью заключить, что с ростом размера матрицы значительно вырастают и погрешности при вычислениях

5. Дополнения

5.1 Полный код всех программ

Описание файлов:

- main.cpp является связующим звеном между функциями реализованными в matrixFunc.*
- matrixFunc.* содержит функции заполнения матрицы, вывода матрицы, нахождения нормы матрицы, перемножения матриц и нахождения обратной матрицы с использованием процедур DECOMP и SOLVE
- *.f файлы содержащие оригинальные Фортран процедуры DECOMP и SOLVE

main.cpp

```
#include <iostream>
#include <iomanip>
#include <vector>
#include "matrixFunc.hpp"
int main()
 size_t n[] = \{3, 6, 9\};
 for (size_t q = 0; q < 3; ++q)
  std::vector< double > b(n[q] * n[q]);
  fillMatrix(b);
  printMatrix(b, std::cout);
  std::vector< double > antiB(antiMatrix(b));
  std::cout << "\033[1;33mAnti matrix:\033[1;0m\n";
  printMatrix(antiB, std::cout);
  std::vector< double > r(multiMatrix(b, antiB));
  for (int i = 0; i < n[q]; ++i)
   r[i * n[q] + i] -= 1;
  std::cout << "\033[1;34mR matrix:\033[1;0m\n";
  printMatrix(r, std::cout);
  std::cout << "\033[1;35mNorm of R: " << calcNorm(r) << "\033[1;0m\n\n";
 return 0;
```

matrixFunc.hpp

```
#ifndef MATRIXFUNC_HPP

#define MATRIXFUNC_HPP

#include <iostream>
#include <vector>

using vec = std::vector< double >;

void fillMatrix(vec & m) noexcept;
void printMatrix(const vec & m, std::ostream & out);
vec antiMatrix(const vec & m);
vec multiMatrix(const vec & first, const vec & second) noexcept;
double calcNorm(const vec & m);

#endif
```

matrixFunc.cpp

```
#include "matrixFunc.hpp"
#include <cmath>
#include <iomanip>
extern "C" {
 int decomp_(int *ndim, int *n, double *a, double *cond, int *ipvt, double *work);
 int solve_(int *ndim, int *n, double *a, double *b, int *ipvt);
void fillMatrix(vec & m) noexcept
 int n = std::sqrt(m.size());
 for (int i = 0; i < n; ++i)
  for (int j = 0; j < n; ++j)
   if (i == j)
    m[i * n + j] = 0.01 / ((n - i + j) * (i + 1));
   else if (i < j)
    m[i * n + j] = 0;
   }
   else
    m[i * n + j] = i * (n - j);
   }
void printMatrix(const vec & m, std::ostream & out)
 int n = std::sqrt(m.size());
 for (size_t i = 0; i < n; ++i)
  for (size_t j = 0; j < n; ++j)
```

```
out << m[i * n + j] << '\t';
 out << '\n';
vec antiMatrix(const vec & m)
int dim = std::sqrt(m.size());
vec copy(m);
double cond;
std::vector< int > ipvt(dim);
vec work(dim);
decomp_(&dim, &dim, copy.data(), &cond, ipvt.data(), work.data());
vec result(m.size());
for (int i = 0; i < dim; ++i)
 vec b(dim, 0.0);
 b[i] = 1.0;
 solve_(&dim, &dim, copy.data(), b.data(), ipvt.data());
 for (int j = 0; j < dim; ++j)
  result[i * dim + j] = b[j];
return result;
vec multiMatrix(const vec & first, const vec & second) noexcept
vec result(first.size());
int n = std::sqrt(first.size());
for (size_t i = 0; i < n; ++i)
 for (size_t j = 0; j < n; ++j)
  result[i * n + j] = 0;
  for (size_t q = 0; q < n; ++q)
   result[i * n + j] += first[i * n + q] * second[q * n + j];
return result;
double calcNorm(const vec & m)
int n = std::sqrt(m.size());
double norm = 0;
for (size_t i = 0; i < n; ++i)
 for (size_t j = 0; j < n; ++j)
  norm += std::pow(m[i * n + j], 2);
```

```
norm = std::sqrt(norm);
return norm;
}
```

decomp.f

```
c Code from http://www.netlib.org/fmm/
   subroutine decomp(ndim,n,a,cond,ipvt,work)
   integer ndim,n
   double precision a(ndim,n),cond,work(n)
   integer ipvt(n)
   decomposes a double precision matrix by gaussian elimination
   and estimates the condition of the matrix.
С
   use solve to compute solutions to linear systems.
С
   input..
С
С
     ndim = declared row dimension of the array containing a.
С
     n = order of the matrix.
С
     a = matrix to be triangularized.
   output..
С
     a contains an upper triangular matrix u and a permuted
      version of a lower triangular matrix i-l so that
С
      (permutation matrix)*a = I*u.
С
С
     cond = an estimate of the condition of a.
С
       for the linear system a*x = b, changes in a and b
С
       may cause changes cond times as large in x.
       if cond+1.0 .eq. cond , a is singular to working
       precision. cond is set to 1.0d+32 if exact
С
       singularity is detected.
С
     ipvt = the pivot vector.
       ipvt(k) = the index of the k-th pivot row
       ipvt(n) = (-1)**(number of interchanges)
С
С
   work space.. the vector work must be declared and included
С
           in the call. its input contents are ignored.
С
           its output contents are usually unimportant.
   the determinant of a can be obtained on output by
     det(a) = ipvt(n) * a(1,1) * a(2,2) * ... * a(n,n).
   double precision ek, t, anorm, ynorm, znorm
   integer nm1, i, j, k, kp1, kb, km1, m
   double precision dabs, dsign
   ipvt(n) = 1
   if (n.eq. 1) go to 80
   nm1 = n - 1
```

```
compute 1-norm of a
   anorm = 0.0d0
   do 10 j = 1, n
    t = 0.0d0
    do 5 i = 1, n
      t = t + dabs(a(i,j))
  5 continue
    if (t .gt. anorm) anorm = t
 10 continue
  gaussian elimination with partial pivoting
   do 35 k = 1,nm1
    kp1= k+1
     find pivot
     m = k
     do 15 i = kp1,n
      if (dabs(a(i,k)) .gt. dabs(a(m,k))) m = i
 15 continue
    ipvt(k) = m
    if (m.ne. k) ipvt(n) = -ipvt(n)
    t = a(m,k)
    a(m,k) = a(k,k)
    a(k,k) = t
С
     skip step if pivot is zero
    if (t .eq. 0.0d0) go to 35
     compute multipliers
    do 20 i = kp1,n
       a(i,k) = -a(i,k)/t
 20 continue
     interchange and eliminate by columns
    do 30 j = kp1,n
       t = a(m,j)
       a(m,j) = a(k,j)
       a(k,j) = t
       if (t .eq. 0.0d0) go to 30
       do 25 i = kp1,n
        a(i,j) = a(i,j) + a(i,k)*t
 25
        continue
 30 continue
 35 continue
c cond = (1-norm of a)*(an estimate of 1-norm of a-inverse)
  estimate obtained by one step of inverse iteration for the
  small singular vector. this involves solving two systems
  of equations, (a-transpose)^*y = e and a^*z = y where e
```

```
is a vector of +1 or -1 chosen to cause growth in y.
   estimate = (1-norm of z)/(1-norm of y)
С
  solve (a-transpose)*y = e
   do 50 k = 1, n
    t = 0.0d0
    if (k.eq. 1) go to 45
    km1 = k-1
    do 40 i = 1, km1
      t = t + a(i,k)*work(i)
 40 continue
 45 ek = 1.0d0
    if (t .lt. 0.0d0) ek = -1.0d0
    if (a(k,k) .eq. 0.0d0) go to 90
    work(k) = -(ek + t)/a(k,k)
 50 continue
   do 60 kb = 1, nm1
    k = n - kb
    t = 0.0d0
    kp1 = k+1
    do 55 i = kp1, n
      t = t + a(i,k)*work(i)
 55 continue
    work(k) = t + work(k)
     m = ipvt(k)
    if (m .eq. k) go to 60
    t = work(m)
    work(m) = work(k)
    work(k) = t
 60 continue
   ynorm = 0.0d0
   do 65 i = 1, n
    ynorm = ynorm + dabs(work(i))
 65 continue
  solve a*z = y
  call solve(ndim, n, a, work, ipvt)
   znorm = 0.0d0
   do 70 i = 1, n
    znorm = znorm + dabs(work(i))
 70 continue
  estimate condition
   cond = anorm*znorm/ynorm
   if (cond .lt. 1.0d0) cond = 1.0d0
   return
  1-by-1
 80 \text{ cond} = 1.0d0
  if (a(1,1) .ne. 0.0d0) return
```

```
c exact singularity
c 90 cond = 1.0d+32
return
end
```

solve.f

```
c Code from http://www.netlib.org/fmm/
   subroutine solve(ndim, n, a, b, ipvt)
   integer ndim, n, ipvt(n)
   double precision a(ndim,n),b(n)
c solution of linear system, a*x = b.
  do not use if decomp has detected singularity.
c input..
   ndim = declared row dimension of array containing a .
С
   n = order of matrix.
   a = triangularized matrix obtained from decomp.
С
   b = right hand side vector.
С
   ipvt = pivot vector obtained from decomp .
С
  output..
   b = solution vector, x.
   integer kb, km1, nm1, kp1, i, k, m
   double precision t
   forward elimination
   if (n .eq. 1) go to 50
   nm1 = n-1
   do 20 k = 1, nm1
    kp1 = k+1
    m = ipvt(k)
    t = b(m)
    b(m) = b(k)
    b(k) = t
     do 10 i = kp1, n
       b(i) = b(i) + a(i,k)*t
  10 continue
  20 continue
   back substitution
   do 40 kb = 1,nm1
     km1 = n-kb
     k = km1+1
```

```
b(k) = b(k)/a(k,k)

t = -b(k)

do 30 i = 1, km1

b(i) = b(i) + a(i,k)*t

30 continue

40 continue

50 b(1) = b(1)/a(1,1)

return

end
```