Théorie du transport optimal

Racine Florian

November 27, 2022

Table des matières

Chapter 1	Introduction	Page 2	_
1.1	Formulation du problème	2	
Chapter 2	Modélisation	Page 3	
Chapter 3	La formulation du problème de transfert optimal de Monge	Page 5	

Chapter 1

Introduction

1.1 Formulation du problème

Question 1

Quelle est la façon optimal de transporter un tas de sable dans un trou ?

Question 2

Comment constuire un chateau de sable d'une forme données à partir d'un tas de sable ?

Figure 1.1: Transporter un tas de sable dans un trou

Note:-

Avec le même nombre de grain de sable et la même masse.

Chapter 2

Modélisation

 $\nu \in \mathcal{P}(\mathbb{R}) ; \mu \in \mathcal{P}(\mathbb{R})$

Definition 2.0.1

 $\forall A \in \mathcal{P}(\mathbb{R}), \mu[A]$ décrit quelle quantité de sable est dans A.

Figure 2.1: $\mu[A]$

Definition 2.0.2

Cout infinitésimal:

$$C: \left| \begin{array}{ccc} \mathbb{R} * \mathbb{R} & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & C(x,y) \end{array} \right|$$

Cout de transporter un grain de sable de x vers y.

Question 3

Comment transporter un tas de sable avec un cout global minimal?

Definition 2.0.3

Un plan de transport entre les mesures μ et ν est une mesure de probabilité : $\Pi \in \mathcal{P}(\mathbb{R} * \mathbb{R})$ à pour marginale μ et ν .

Note:-

 $\Pi \in \mathcal{P}(\mathbb{R} * \mathbb{R})$ à pour marginal μ et ν

$$\Leftrightarrow \forall A, B \text{ enssemble mesurable avec } A \subset \mathbb{R} \text{ et } B \subset \mathbb{R} \begin{cases} \Pi[A \times \mathbb{R}] = \mu[A] \\ \Pi[\mathbb{R} \times B] = \mu[B] \end{cases}$$

$$\Leftrightarrow \forall \varphi \in C^0(\mathbb{R}), \Psi \in C^0(\mathbb{R}): \int_{\mathbb{R} \times \mathbb{R}} \varphi(x) + \Psi(y) \, d\Pi(x,y) = \int \, \varphi(x) \, d\mu(x)$$

Note:-

On notera, $\Pi(\mu, \nu) = \{ \Pi \in \mathcal{P}(\mathbb{R} \times \mathbb{R}) | \Pi \text{ a pour marginal, } \mu, \nu \}$

On remarquera que, $\Pi(\mu, \nu) \neq \emptyset$

 $I[\Pi] = \int_{\mathbb{R}^2} C(x,y) d\Pi(x,y)$ Le cout total assocé au plan de transport optimal.

On cherche, $\tau_c(\mu, \nu) = INF_{\Pi \in \Pi(\mu, \nu)}(I[\Pi])$

Definition 2.0.4

S'il existe $\Pi_0 \in \mathcal{P}(\mathbb{R} \times \mathbb{R})$ tel que $I[\Pi_0] = \tau_c(\mu, \nu)$

 Π_0 est appelé un plan de transfert optimal

Example 2.0.1 (Exemple trivial (Kotorovitch))

a < *b*

c < *d*

 $C(x, y) = |x - y|^2$

 $\mu = \frac{1}{2}(\delta_a + \delta_b)$ $\nu = \frac{1}{2}(\delta_c + \delta_d)$

Question 4

 $\Pi(\mu, \nu) = ?$

Solution: $\Pi_{\alpha} = \frac{1}{2} (\alpha \delta_{(a,c)} + (1-\alpha)\delta_{(a,d)} + (1-\alpha)\delta_{(b,c)} + \alpha \delta_{(b,d)}) \Pi(\mu, \nu) = \{\Pi_{\alpha} | \alpha \in [0,1]\}$

Question 5

Calculer : $I[\Pi] \forall \Pi \in \Pi(\mu, \nu)$

Solution: $I[\Pi_{\alpha}] = \int_{\mathbb{R}^2} C(x, y) d\Pi_{\alpha}(x, y)$ $I[\Pi_{\alpha}] = \frac{1}{2} (\alpha C(a, c) + (1 - \alpha)C(a, d) + (1 - \alpha)C(b, c) + \alpha C(b, d))$ $I[\Pi_{\alpha}] = \frac{1}{2} (a^2 + b^2 + c^2 + d^2) - \alpha(ac + bd) - (1 - \alpha)(ad + cb)$

Question 6

Trouver : $\tau_c(\mu, \nu)$

Solution: $P(\alpha) = \frac{\partial I[\Pi_{\alpha}]}{\partial \alpha} \implies P(\alpha) = -ac - bd + ad + cb; \implies P(\alpha) = (d - c)(a - b) < 0$

Donc, $I[\Pi_{\alpha}]$ atteint son min en $\alpha = 1$

 $\Pi_0 = \Pi_{\alpha=1}$

Donc, $a \to c$ et, $b \to d$

Figure 2.2: Solution

Chapter 3

La formulation du problème de transfert optimal de Monge

Note:-

On autorise pas le fait de couper les masses. A chaque x est associé une unique y. On dit que T envoie μ sur ν et on note : $T\#\mu=\nu$

Proposition 3.0.1

 $\forall A \subset \mathbb{R}$ partie mesurable : $\nu(A) = \mu(T^{-1}(A))$

 \Leftrightarrow

Proposition 3.0.2

$$\forall \varphi \text{ continue} : \int_{\mathbb{R}} \varphi(y) \, d\nu(y) = \int_{\mathbb{R}} (\varphi \circ T)(x) \, d\mu(x)$$

$$\tau_c^M(\mu, \nu) = INF_{TtqT\#f=\nu}I[T]$$

$$I(T) = \int_{\mathbb{R}} C(x, T(x)) \, d\mu(x)$$

Note:-

Solution de cout optimal d'après Kantorovitch \leq Solution de cout optimal d'après Monge Dans le première exemple ils coincident.

Note:-

Kantorovitch définit un problème linéare en Π . Monge définit un problème non linéare en T.

Note:-

Problème de kantorovitch admet toujours une solution Π_0 .

Problème de Monge n'admet pas toujours de solution n'y même d'application qui envoi μ sur ν .

Example 3.0.1

```
\begin{cases} \mu \in \mathcal{P}(\mathbb{R}) \\ \nu = \delta_a \end{cases}
```

Kantorovitch : $\Pi(\mu, \nu) = \{\mu \otimes \delta_a\}$

Monge : Quelles sont les T tel que $T#\mu = \nu$?

Il en existe une seule:

$$\forall x | T : \left| \begin{array}{ccc} x & \longrightarrow & a \\ \mathbb{R} & \longmapsto & \mathbb{R} \end{array} \right.$$

$$\tau_c^M(\mu, \nu) = \tau_c(\mu, \nu)$$
 D'une part :

$$\tau_c^M(\mu, \nu) = \int_{\mathbb{R}} C(T(x), x) \, d\mu(x)$$

$$\tau_c^M(\mu, \nu) = \int_{\mathbb{R}} C(0, x) \, d\mu(x)$$
 D'autre part :

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) \, d\Pi(x, y)$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) \, d(\mu \otimes \delta_a)(x, y)$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) \, d\mu(x) d\delta_a$$

$$\tau_c(\mu, \nu) = \int_{\mathbb{R}} C(x, y) \, d\mu(x)$$

Example 3.0.2

$$\begin{cases} \mu = \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} \\ \nu = \frac{1}{n} \sum_{i=1}^{n} \delta_{y_i} \end{cases}$$

Les plans de transporte Π entre μ et ν peuvent être représenté par des matrices bistochastiques de tailles n

$$\begin{array}{l} 0 \leq \Pi_{i,j} \leq 1 \\ \sum_{i=1}^{n} \Pi_{i,j} = 1 \\ \sum_{j=1}^{n} \Pi_{i,j} = 1 \end{array}$$

Note:-

On note \mathcal{B}_n l'enssemble des matrices bisctochastiques.

Soit
$$\Pi \in \mathcal{B}_n$$
: $I[\Pi] = \frac{1}{n} \sum_{i=1}^n C(x_i, y_i) \Pi_{i,j}$
 $\tau_c(\mu, \nu) = INF_{\Pi \in \mathcal{B}_n} \{ \frac{1}{n} \sum_{i=1}^n \Pi_{i,j} C(x_i, y_i) \}$

Il s'agit d'un problème linéaire de minimisation sur un enssemble convexe.

Proposition 3.0.3 Enssemble convexe

 \mathcal{B}_n est convexe $\Leftrightarrow A, B \in \mathcal{B}_n$ alors $\forall \theta \in [0, 1] | \theta A + (1 - \theta)B \in \mathcal{B}_n$

Definition 3.0.1: Points extremaux

L'enssemble des points extremaux de E convexe est l'enssemble des $e \in E$ tel que :

si $e = \theta e_1 + (1 - \theta)e_2$ avec $\theta \in [0, 1], e_1 \in E, e_2 \in E$

Alors $\theta = 0$ ou $\theta = 1$

Theorem 3.0.1 Théorème de Choquet

F est linéaire sur un domaine K convexe et compact, alors F admet au moin un minimum. Parmi les minimums de F au moin l'un d'eux est un extrema de K.

Theorem 3.0.2 Théorème de Birkhoff

 \mathcal{B}_n est convexe et compact. \mathcal{B}_n admet n points extremaux qui sont les matrices de permutations

Ainsi, le min pour le problème de Kantorovitch est atteint pour $\begin{cases} \Pi_{i,j} = 1 | sij = \sigma(i) \\ \Pi_{i,j} = 0 | sinon \end{cases}$