Class 17: Outline

Hour 1:

Dipoles & Magnetic Fields

Hour 2:

Expt. 7: Dipoles in B Fields

Last Time: Biot-Savart

The Biot-Savart Law

Current element of length ds carrying current l produces a magnetic field:

(http://ocw.mit.edu/ans7870/8/8.02T/f 04/visualizations/magnetostatics/03-CurrentElement3d/03cElement320.html)

$$\mathbf{d\vec{B}} = \frac{\mu_0}{4\pi} \frac{I \, d\vec{\mathbf{s}} \times \hat{\mathbf{r}}}{r^2}$$

Moving charges are currents too...

$$\vec{\mathbf{B}} = \frac{\mu_o}{4\pi} \frac{q \, \vec{\mathbf{v}} \, \mathbf{x} \, \hat{\mathbf{r}}}{r^2}$$

PRS Question: Force between wires

Magnetic Dipoles: Torque & Force

First: Review From Friday

Rectangular Current Loop

Place rectangular current loop in uniform B field

$$\vec{\mathbf{F}}_1 = \vec{\mathbf{F}}_3 = 0 \quad \left(\mathbf{I} \vec{\mathbf{L}} \middle\| \vec{\mathbf{B}} \right)$$

$$\vec{\mathbf{F}}_2 = I(-a\hat{\mathbf{j}}) \times (B\hat{\mathbf{i}}) = IaB\hat{\mathbf{k}}$$

$$\vec{\mathbf{F}}_4 = I(a\hat{\mathbf{j}}) \times (B\hat{\mathbf{i}}) = -IaB\hat{\mathbf{k}}$$

$$\vec{\mathbf{F}}_{net} = \vec{\mathbf{F}}_1 + \vec{\mathbf{F}}_2 + \vec{\mathbf{F}}_3 + \vec{\mathbf{F}}_4 = 0$$

No net force on the loop!!

Torque on Rectangular Loop

Recall:
$$\vec{ au} = \vec{r} \times \vec{F}$$

$$\vec{\tau} = \left(-\frac{b}{2}\hat{\mathbf{i}}\right) \times \vec{\mathbf{F}}_2 + \left(\frac{b}{2}\hat{\mathbf{i}}\right) \times \vec{\mathbf{F}}_4$$

$$= \left(-\frac{b}{2}\hat{\mathbf{i}}\right) \times \left(IaB\hat{\mathbf{k}}\right) + \left(\frac{b}{2}\hat{\mathbf{i}}\right) \times \left(-IaB\hat{\mathbf{k}}\right)$$

$$= \frac{IabB}{2}\hat{\mathbf{j}} + \frac{IabB}{2}\hat{\mathbf{j}} = IabB\hat{\mathbf{j}}$$

Torque Direction:

Thumb in torque direction, fingers rotate with object

Torque on Rectangular Loop

$$\vec{\tau} = IAB\hat{j}$$

$$\vec{A} = A\hat{n} = ab\hat{n}$$
: area vector $\hat{n} = +\hat{k}, \vec{B} = B\hat{i}$

$$\vec{\tau} = I\vec{A} \times \vec{B}$$

Familiar? No net force but there is a torque

Magnetic Dipole Moment

Define Magnetic Dipole Moment:

$$\vec{\mu} \equiv IA\hat{\mathbf{n}} \equiv I\vec{\mathbf{A}}$$

Then:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

Analogous to $\vec{ au} = \vec{p} \times \vec{E}$

τ tends to align μ with B

Animation: Another Way To Look At Torque

External field connects to field of compass needle and "pulls" the dipole into alignment

(http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/18-dipNeedle/18-Dip_320.html)

Interactive Java Applet: Another Way To Look At Torque

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/35-wireandmagnetapp/35-wirecompass320.html

Field of wire connects to field of compass needle and "pulls" the dipole into alignment

Demonstration: Galvanometer

Magnetic Dipole Moment

$$\vec{\mu} \equiv IA\hat{\mathbf{n}} \equiv IA$$

PRS Question: Torque on Dipole in Uniform Field

Dipoles don't move???

This dipole rotates but doesn't feel a net force

But dipoles
CAN feel force
due to **B**.
What's up?

PRS Question: Force on Magnetic Dipole

Something New Dipoles in Non-Uniform Fields: Force

To determine force, we need to know energy:

$$U_{Dipole} = -\vec{\mathbf{\mu}} \cdot \vec{\mathbf{B}}$$

Force tells how the energy changes with position:

$$\vec{\mathbf{F}}_{Dipole} = -\vec{\nabla} U_{Dipole} = \vec{\nabla} \left(\vec{\mathbf{\mu}} \cdot \vec{\mathbf{B}} \right)$$
(after math) = $\left(\vec{\mathbf{\mu}} \cdot \vec{\nabla} \right) \vec{\mathbf{B}}$

Dipoles only feel force in non-uniform field

$$\frac{\partial \vec{\mathbf{B}}}{\partial z}$$
 negative

Force down!

$$\vec{\mathbf{F}}_{Dipole} = (\vec{\boldsymbol{\mu}} \cdot \vec{\nabla}) \vec{\mathbf{B}} = \mu \frac{\partial \mathbf{B}}{\partial z}$$

Alternate Thought

What makes the field pictured?

Bar magnet below dipole, with N pole on top It is aligned with the dipole pictured, they attract!

Experiment 7: Magnetic Forces on Dipoles

Force on Dipole from Dipole: Anti-Parallel Alignment

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/16-MagneticForceRepel/16-MagForceRepel_f65_320.html

Force on Dipole from Dipole: Parallel Alignment

http://ocw.mit.edu/ans7870/8/8.02T/f04/visualizations/magnetostatics/15-MagneticForceAttract/15-MagForceAtt_f65_320.html

PRS Questions: Force on Magnetic Dipole