Unidimensional Elementary Cellular Automata

CA 3

Jelle Sakkers 16199946

February 2024

(a) Transient lengte als een functie van λ .

(b) Simulatie met $\lambda = 0.70$.

Ten eerste, een korte toelichting op de configuratieparameters voor de simulatie van transiëntie. De eendimensionale cellulaire automata hebben een breedte van 128 cellen (random), een buurt (neighborhood) van N=5 en 4 verschillende staten, K=4. Voor figuur (a) is een tijdsinterval van $t=10^4$ genomen, waarbij elke simulatie 10 keer is herhaald. Het gemiddelde van deze herhalingen is vervolgens genomen. Nu de resultaten. Figuur (a), resultaat van een experiment uit ¹. Figuur (a) toont bij $\lambda \approx 0.00$ vertoont de CA na in s_q , wat resulteert in een onmiddellijke overgang naar uniformiteit. Naarmate λ toeneemt tot ongeveer 0.20, duurt het tussen een aantal tijdstappen voordat het CA uniformiteit in s_q bereikt. Bij verdere toename van λ naar ongeveer 0.40 zijn er geen verschillen zichtbaar. Rond $\lambda \approx 0.45$ ondergaat de transient lengte een flinke toename naar ongeveer 170. Bij $\lambda \approx 0.58$ is de overgangsfase zo dramatisch lang geworden, ≈ 1750 dat deze beschouwd kan worden als het een fase naar langetermijngedrag, dat neigt naar meer chaotisch gedrag. Naarmate λ verder toeneemt en naar 0.70 stijgt, neemt de duur van de transient lengte af, het systemen toont steeds sneller chaotisch gedrag naarmate λ toeneemt. Figuur (b) toont een CA waarin slechts in enkele tijdstappen volledig ontwikkeld chaotisch gedrag wordt bereikt, dit gedrag toont zich ook voor groter dan dit.

¹Langton, C. G. 1990. Computation at the Edge of Chaos: Phase Transitions and Emergent Computation.