The Return of Unlexicalized PCFGs

Accurate Unlexicalized Parsing

[Klein and Manning 1993]

- What do we mean by an "unlexicalized" PCFG?
 - Grammar rules are not systematically specified down to the level of lexical items
 - NP-stocks is not allowed
 - NP^S-CC is fine
 - Closed vs. open class words
 - Long tradition in linguistics of using function words as features or markers for selection (VB-have, SBAR-if/whether)
 - Different to the bilexical idea of semantic heads
 - Open-class selection is really a proxy for semantics

Thesis

 Most of what you need for accurate parsing, and much of what lexicalized PCFGs actually capture isn't lexical selection between content words but just basic grammatical features, like verb form, finiteness, presence of a verbal auxiliary, etc.

Experimental Approach

Corpus: Penn Treebank, WSJ; iterate on small dev set

```
Training: sections 02-21
```

Development: section 22 (first 20 files) ←

Test: section 23

- Size number of symbols in grammar.
 - Passive / complete symbols: NP, NP^S
 - Active / incomplete symbols: @NP_NP_CC [from binarization]
- We state-split as sparingly as possible
 - Highest accuracy with fewest symbols
 - Error-driven, manual hill-climb, one annotation at a time

Horizontal Markovization

Horizontal Markovization: Merges States

Vertical Markovization

 Vertical Markov order: rewrites depend on past k ancestor nodes.
(i.e., parent annotation)

Model	F1	Size
v=h=2v	77.8	7.5K

Unary Splits

 Problem: unary rewrites are used to transmute categories so a highprobability rule can be used.

Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5K
UNARY	78.3	8.0K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: SBAR sentential complementizers (that, whether, if), subordinating conjunctions (while, after), and true prepositions (in, of, to) are all tagged IN.
- Partial Solution:
 - Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0K
SPLIT-IN	80.3	8.1K

Yield Splits

 Problem: sometimes the behavior of a category depends on something inside its future yield.

Examples:

- Possessive NPs
- Finite vs. infinite VPs
- Lexical heads!
- Solution: annotate future elements into nodes.

Annotation	F1	Size
tag splits	82.3	9.7K
POSS-NP	83.1	9.8K
SPLIT-VP	85.7	10.5K

Distance / Recursion Splits

- Problem: vanilla PCFGs cannot distinguish attachment heights.
- Solution: mark a property of higher or lower sites:
 - Contains a verb.
 - Is (non)-recursive.
 - Base NPs [cf. Collins 99]
 - Right-recursive NPs

Annotation	F1	Size
Previous	85.7	10.5K
BASE-NP	86.0	11.7K
DOMINATES-V	86.9	14.1K
RIGHT-REC-NP	87.0	15.2K

A Fully Annotated Tree

Final Test Set Results

Parser	LP	LR	F1
Magerman 95	84.9	84.6	84.7
Collins 96	86.3	85.8	86.0
Klein & Manning 03	86.9	85.7	86.3
Charniak 97	87.4	87.5	87.4
Collins 99	88.7	88.6	88.6

Beats "first generation" lexicalized parsers

The Return of Unlexicalized PCFGs