Math 136 - Linear Algebra

Winter 2016

Lecture 25: March 7, 2016

Lecturer: Yongqiang Zhao Notes By: Harsh Mistry

25.1 Matrix Inverse Theorems

Theorem 25.1 If A and B are invertible matrices and $c \in \mathbb{R}$ with $c \neq 0$, then

- 1. $(cA)^{-1} = \frac{1}{c}A^{-1}$
- 2. $(A^T)^{-1} = (A^{-1})^T$
- 3. $(AB)^{-1} = B^{-1}A^{-1}$

Theorem 25.2 If A is a $n \times m$ matrix such that RankA = n, then A is invertible

Theorem 25.3 Invertible Matrix Theorem

For any $n \times m$ matrix A, the following are equivalent:

- 1. A is invertible
- 2. The RREF of A is I
- 3. rankA = n
- 4. The system of equation $A\vec{x} = \vec{b}$ is consistent with a unique solution for all $\vec{b} \in \mathbb{R}^n$
- 5. The nullspace of A is $\{0\}$
- 6. The columns of A form a basis for \mathbb{R}^n
- 7. The rows of A form a basis for \mathbb{R}^n
- 8. A^T is invertible

Note

A is invertible \iff The system of equation $A\vec{x} = \vec{b}$ is consistent with a unique solution for all $\vec{b} \in \mathbb{R}^n$

$$A\vec{x} = \vec{b}$$

$$A^{-1}(A\vec{x}) = A^{-1}\vec{b}$$

$$(A^{-1}A)\vec{x} = A^{-1}\vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

End of Lecture Notes Notes by: Harsh Mistry