Package 'SafeQuant'

December 11, 2015

Type Package

Title SafeQuant: Proteomics Data Analysis
Version 2.1
Date 2015-07-16
Author Erik Ahrne
Maintainer Erik Ahrne <erik.ahrne@unibas.ch></erik.ahrne@unibas.ch>
Description The SafeQuant Package includes methods for analysis of quantitative Proteomics data. More documentation to come.
Imports affy, limma, gplots, seqinr, corrplot, optparse, data.table, epiR
License GPL-3
License GFL-3
R topics documented:
addIdQvalues3addScaffoldPTMFAnnotations4barplotMSSignal4createCalibrationCurve5createExpDesign6createExpressionDataset7cvBoxplot8expDesignTagToExpDesign8export.safeQuantAnalysis9getAAProteinCoordinates10getAllCV10getAllEBayes11getBaselineIntensity12getCV13

getIdLevelQvals	16
	16
•	17
	18
	19
ϵ	19
	20
	21
	22
	 22
	 23
•	 24
•	- · 24
	25
	26
	26
	27
	28
	20 29
	2) 30
<u> </u>	30
	31
·	31 32
11	32 32
1	32 33
	33
	3 5
	35 36
· · · · · · · · · · · · · · · · · · ·	30 37
~	31 38
<u>.</u>	38
	30 39
	39 40
	40 41
	41 41
	41 42
E	+2 43
	43 43
	43 44
300110011111002211012210110111111111111	44 45
	43 46
	46 47
	47 40
•	48
	49
	49 ~~
	50
,,,,,,,	51
· · · · · · · · · · · · · · · · · · ·	52
	53
- F	54
tNormalize	55

addIdQvalues 3

	setNbPeptidesPerP	otein .	 	 																56
	setNbSpectraPerPro	otein	 	 																56
	sqNormalize		 	 																57
	standardise		 	 																58
	stripACs		 	 													•			59
Index																				60
addI	dQvalues	Add ia target			-		Ex	pr	ess	ion	Se	t (d	cal	си	lat	ed	l bo	ase	ed c	n

Description

Add identification leve q-values to ExpressionSet (calculated based on target-decoy score distribution)

Usage

```
addIdQvalues(eset = eset)
```

Arguments

eset

ExpressionSet

Details

if ptm column is part if the ExpressionSet q-values are calculated seperately for modified and non-modified features

Value

ExpressionSet object

Note

No note

See Also

 ${\tt getIdLevelQvals}$

```
print("No examples")
```

4 barplotMSSignal

```
{\it addScaffoldPTMFAnnotations}\\
```

Add scaffold ptm annotaitons to tmt experiment

Description

Add scaffold ptm annotaitons to tmt experiment

Usage

```
addScaffoldPTMFAnnotations(eset, file)
```

Arguments

eset ExpressionSet

file path to Scaffold file

Value

ExpressionSet object

Note

No note

References

No references

Examples

```
print("No examples")
```

barplotMSSignal

Barplot of ms-signal per column

Description

Barplot of ms-signal per column

```
barplotMSSignal(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  method = c("sum", "sharedSignal"), cex.lab = 1.25, cex.axis = 1.25,
  labels = rownames(pData(eset)), ...)
```

createCalibrationCurve 5

Arguments

eset expressionSet

col default condition colors

 $\label{eq:condition} \mbox{method} \qquad \mbox{c("median","sum","sharedSignal")}$

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

createCalibrationCurve

S3 class object describing a calibration curve and storing some figures of merit

Description

S3 class object describing a calibration curve and storing some figures of merit

Usage

```
createCalibrationCurve(eset, method = "blank")
```

Arguments

eset ExpressionSet

method to calculate Limit of Detection / Limit of Quantification. c("blank","low")

Details

No details

Value

calibrationCurve object

Note

No note

6 createExpDesign

References

Statistical characterization of multiple-reaction monitoring mass spectrometry (MRM-MS) assays for quantitative proteomics, Mani et al. (2012), http://www.ncbi.nlm.nih.gov/pubmed/23176545

Examples

```
print("No examples")
```

createExpDesign

Create Experimental Design

Description

Create Experimental Design

Usage

```
createExpDesign(tag, nbPlex)
```

Arguments

tag user input tag e.g. 1,2,3:4,5,6 indicating two condition with 3 reps each

nbPlex tmt 6 or 10 plex

Details

The first listed condition is always the control condition

Value

expDesign data.frame

Note

No note

References

NA

```
print("No examples")
```

create Expression Dataset

Create ExpressionSet object

Description

Create ExpressionSet object

Usage

```
createExpressionDataset(expressionMatrix = expressionMatrix,
  expDesign = expDesign, featureAnnotations = featureAnnotations)
```

Arguments

expressionMatrix

matrix of expression signals per feature and sample

expDesign

experimental design data.frame

 $feature \verb|Annotations|$

data.frame including e.g: Protein Description, Id score etc.

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

cvBoxplot

C.V. boxplot

Usage

```
cvBoxplot(eset,
  col = as.character(.getConditionColors(eset)[unique(pData(eset)$condition),
  ]), cex.names = 0.9, cex.axis = 1.25, cex.lab = 1.25,
  ylab = "C.V. (%)", ...)
```

Arguments

eset	ExpressionSet
col	col
cex.names	default 0.9
cex.axis	default 1.25
cex.lab	default 1.25
ylab	"C.V. (
	C.V. boxplot
	No details
	No note
	<pre>print("No examples")</pre>
	NA

expDesignTagToExpDesign

Create experimental design data.frame from user input string

Description

Create experimental design data.frame from user input string

Usage

```
expDesignTagToExpDesign(tag, expDesignDefault)
```

Arguments

tag tag expDesign data.frame

Details

tag: 1,2:3:4,5,6 condition is Control 1 Condition 1 TRUE 2 Condition 1 TRUE 3 Condition 1 TRUE 4 Condition 2 FALSE 5 Condition 2 FALSE 6 Condition 2 FALSE

Value

data.frame describing experimental design

Note

No note

References

NA

Examples

```
print("No examples")
```

```
export.safeQuantAnalysis
```

Export content of safeQuantAnalysis object

Description

Export content of safeQuantAnalysis object

Usage

```
## S3 method for class 'safeQuantAnalysis'
export(sqa, nbRows = nrow(sqa$pValue),
  file = NA)
```

Arguments

sqa safeQuantAnalysis object

nbRows Number of rows to export. Features are ordred by increasing minimal p.value

Details

NA

Note

No note

References

NA

See Also

```
safeQuantAnalysis
```

```
print("No examples")
```

10 getAllCV

```
getAAProteinCoordinates
```

Get amino acid coordinates on protein

Description

Get amino acid coordinates on protein

Usage

```
getAAProteinCoordinates(peptideSeq, proteinSeq, aaRegExpr = "[STY]")
```

Arguments

peptideSeq peptide sequence proteinSeq protein sequence

Details

NA

Value

vector of protein coordinates (mmodification residue number)

Note

No note

References

NA

Examples

```
print("No examples")
```

getAllCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation) per Condition

```
getAllCV(eset)
```

getAllEBayes 11

Arguments

eset

Expression Set

Details

CV = sd / mean

Value

data.frame of CVs per condition

Note

No note

References

NA

See Also

getCV

Examples

```
print("No examples")
```

getAllEBayes

Perform statistical test (mderated t-test), comparing all case to control

Description

Perform statistical test (mderated t-test), comparing all case to control

Usage

```
getAllEBayes(eset = eset, adjust = F, log = T, method = "pairwise")
```

Arguments

eset ExpressionSet

adjust TRUE/FALSE adjust for multiple testing using Benjamini & Hochberg (1995)

method log T/F log-transform expression values

method c("pairwise", "all")

Details

No details

Value

ExpressionSet object

12 getBaselineIntensity

Note

No note

References

Empirical Bayes method, Smyth (2004), http://www.ncbi.nlm.nih.gov/pubmed/16646809

See Also

eBayes

Examples

```
print("No examples")
```

getBaselineIntensity Get signal at zscore x (x standard deviations below mean)

Description

Get signal at zscore x (x standard deviations below mean)

Usage

```
getBaselineIntensity(intensities, promille = 5)
```

Arguments

intensities refrence run signals

percentile baseline value set as specified promille

Value

baseline value

Note

No note

References

NA

```
print("No examples")
```

getCV 13

getCV

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Description

Calculate Coefficiant of Variance per feature (Relative standard Deviation)

Usage

```
getCV(data)
```

Arguments

data

data.frame of replicate signals

Details

```
CV = sd / mean
```

Value

vector of CVs

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getExpDesignProgenesisCsv}$

Parse Experimental Design from Progenesis Csv Export

Description

Parse Experimental Design from Progenesis Csv Export

```
getExpDesignProgenesisCsv(file,
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file))
```

Arguments

file

path to progenesis csv file

Details

No details

Value

data.frame describing experimental design

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getGlobalNormFactors}$

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Description

Get normalization factors. calculated as summed/median signal per run (column) over summed/median of first run.

Usage

```
getGlobalNormFactors(eset, method = "sum")
```

Arguments

eset

ExpressionSet

Details

No details

Value

vector of normalization factors

Note

No note

getIBAQEset 15

References

NA

Examples

```
print("No examples")
```

getIBAQEset

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

Description

Calculate intensity-based absolute-protein-quantification (iBAQ) metric per protein

Usage

```
getIBAQEset(eset, proteinDB = NA, peptideLength = c(5, 36),
   nbMiscleavages = 0, proteaseRegExp = .getProteaseRegExp("trypsin"))
```

Arguments

eset protein level ExpressionSet

peptideLength peptide length interval (to get number of peptides used for normalization)

nbMiscleavages number of mis-cleavages allowed when digesting protein sequences in silico (to

s number of first-cleavages anowed when digesting protein sequieces in sinco (to

get number of peptides used for normalization)

proteaseRegExp protease Reg Exp cleavage rule

list protein sequneces

Details

No details

Value

ExpressionSet

Note

No note

References

Global quantification of mammalian gene expression control, Schwanhausser (2011), http://www.ncbi.nlm.nih.gov/pubmed/21593866, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

```
print("No examples")
```

16 getImpuritiesMatrix

 ${\tt getIdLevelQvals}$

Calculates identification level q-values based on target-decoy score distributions

Description

Calculates identification level q-values based on target-decoy score distributions

Usage

```
getIdLevelQvals(scores, isDecoy)
```

Arguments

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

Details

```
q-value = (Nb. Decoy Entries at idScore Threshold S^*) / (Nb. Target Entries at idScore Threshold S). (* idScore >= S)
```

Value

vector of q.values

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getImpuritiesMatrix}$

Get Thermo TMT impurity matrix

Description

Get Thermo TMT impurity matrix

```
getImpuritiesMatrix(plexNb = 6, test = F)
```

getIntSumPerProtein 17

Arguments

plexNb integer, 6 or 10 plex

Details

No details

Value

impurity matrix matrix

Note

No note

References

NA

Examples

```
print("No examples")
```

getIntSumPerProtein

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Description

Sum up raw intensities per protein and channel. keep track of number of summed spectra and unique peptides

Usage

```
getIntSumPerProtein(intData, proteinACs, peptides, minNbPeptPerProt = 1)
```

Arguments

intData data.frame of intensities per channel proteinACs vector of protein accession numbers

peptides vector of peptide sequneces

minNbPeptPerProt

minimal number of peptides per protein

Details

NA

Value

list containing 3 objects 1) data.frame of channel intensities per protein ac, 2) vector listing number of summed spectra per protein, 3) vector listing number of summed peptides per protein

18 getLoocvFoldError

Note

No note

References

NA

Examples

```
print("No examples")
```

getLoocvFoldError

Leave-One-Out Cross Validate Qunatification Model

Description

Leave-One-Out Cross Validate Qunatification Model

Usage

```
getLoocvFoldError(df)
```

Arguments

```
data.frame of two columns 1) "signal" - ms metric 2) "cpc" absolute quantity
```

Details

No details

Value

data.frame of fold errors per (left-out) protein

Note

No note

References

NA

See Also

NA

```
print("No examples")
```

getMeanCenteredRange

getMeanCenteredRange Get modification coordinates on protein

Description

Get modification coordinates on protein

Usage

```
getMeanCenteredRange(d, nbSd = 4)
```

Arguments

d numeric vector

nbSd range spanning number of sd frmo mean

Details

NA

Value

vector range boundries

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt getModifProteinCoordinates}$

Get modification coordinates on protein

Description

Get modification coordinates on protein

```
getModifProteinCoordinates(modifAnnot, peptideSeq, proteinSeq, format = 1)
```

20 getMotifX

Arguments

modifannot modification as annotated by progenesis. E.g. '[15] Phospho (ST)|[30] Phospho

(ST)'

peptideSeq peptide sequence
proteinSeq protein sequence

format c(1,2) 1. progenesis 2. scaffold

Details

NA

Value

vector of protein coordinates (mmodification residue number)

Note

No note

References

NA

Examples

```
print("No examples")
```

getMotifX

Create motif-x peptide annotation

Description

Create motif-x peptide annotation

Usage

```
getMotifX(modifPos, peptide, proteinSeq, motifLength = 4)
```

Arguments

modifPos vector positions
peptide peptide sequence
proteinSeq protein sequence

motifLength motif flanking sequence

Details

motif-x example PGDYS*TTPG

Value

vector of motifs

Note

No note

References

NA

Examples

```
print("No examples")
```

getNbDetectablePeptides

Get number peptides passing defined length criteria

Description

Get number peptides passing defined length criteria

Usage

```
getNbDetectablePeptides(peptides, peptideLength = c(5, 36))
```

Arguments

peptides list of peptides

vector of two integers defining peptide length range

Details

No details

Value

integer corresponding to number of detectable peptides

Note

No note

```
print("No examples")
```

 ${\tt getNbMisCleavages}$

Get number of mis-cleavages perp peptide

Description

Get number of mis-cleavages perp peptide

Usage

```
getNbMisCleavages(peptide, protease = "trypsin")
```

Arguments

peptide character vector protease regular expression

Details

NA

Value

vector ofintegers

Note

No note

References

NA

Examples

```
print("No examples")
```

```
getNbPeptidesPerProtein
```

Get number of peptides per protein

Description

Get number of peptides per protein

Usage

```
getNbPeptidesPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

table

Note

No note

References

NA

Examples

```
print("No examples")
```

getNbSpectraPerProtein

Get number of spectra per protein

Description

Get number of spectra per protein

Usage

```
getNbSpectraPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

table

Note

No note

References

NA

```
print("No examples")
```

24 getRatios

getPeptides

Digest protein

Description

Digest protein

Usage

```
getPeptides(proteinSeq, proteaseRegExp = .getProteaseRegExp("trypsin"),
    nbMiscleavages = 0)
```

Arguments

proteinSeq

protein sequence

Details

No details

Value

vector of peptides

Note

No note

Examples

```
print("No examples")
```

getRatios

Calculate ratios, comparing all case to control

Description

Calculate ratios, comparing all case to control

Usage

```
getRatios(eset, method = "median", log2 = T)
```

Arguments

eset ExpressionSet method median or mean

Details

No details

getRTNormFactors 25

Value

ExpressionSet object

Note

No note

References

NA

Examples

```
print("No examples")
```

getRTNormFactors

Get retentiontime base normalization factors

Description

Get retentiontime base normalization factors

Usage

```
getRTNormFactors(eset, minFeaturesPerBin = 100)
```

Arguments

eset ExpressionSet

 $\min Features Per Bin$

minumum number of features per bin. If nb. features are < minFeaturesPerBin -> include neighbouring bins.

Details

No details

Value

data.frame normalization factors per retention time bin (minute)

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

```
print("No examples")
```

 ${\tt getScoreCutOff}$

Get score cutoff for a given fdr cut-off

Description

Get score cutoff for a given fdr cut-off

Usage

```
getScoreCutOff(scores, isDecoy, fdrCutOff = 0.01)
```

Arguments

scores peptide/protein identficationscore

isDecoy vector of TRUE/FALSE

fdrCutOff [0,1]

Details

NA

Value

scoreCutoff

Note

No note

References

NA

Examples

```
print("No examples")
```

getSignalPerCondition Summarize replicate signal per condition (min)

Description

Summarize replicate signal per condition (min)

```
getSignalPerCondition(eset, method = "median")
```

getTopX 27

Arguments

method median (default), mean, max, min, sd

data data.frame of replicate signals

Details

No details

Value

data.frame of per condition signals

Note

No note

References

NA

Examples

```
print("No examples")
```

getTopX

Calculate Mean of X most intense features

Description

Calculate Mean of X most intense features

Usage

```
getTopX(entryData, topX = 3)
```

Arguments

entryData data.frame listing feature intensities of one entry. Typically rows corresponds to

Peptide entries of one protein

topX best X flyers

Details

No details

Value

vector of topX intensities per column (sample)

Note

No note

28 getUserOptions

References

Absolute quantification of proteins by LCMSE: A virtue of parallel MS acquisition, Silva (2006), http://www.ncbi.nlm.nih.gov/pubmed/16219938, Critical assessment of proteome-wide label-free absolute abundance estimation strategies. Ahrne (2013), http://www.ncbi.nlm.nih.gov/pubmed/23794183

Examples

```
print("No examples")
```

getUserOptions

Read User Specified Command Line Options

Description

Read User Specified Command Line Options

Usage

```
getUserOptions(version = version)
```

Arguments

version

Safequant version number

Details

No details

Value

user options list

Note

No note

References

NA

```
print("No examples")
```

globalNormalize 29

globalNormalize	Normalize, Norm factors calculated as median signal per run (column) over median of first run.

Description

Normalize, Norm factors calculated as median signal per run (column) over median of first run.

Usage

```
globalNormalize(eset, globalNormFactors)
```

Arguments

eset

Expression Set

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

See Also

getGlobalNormFactors

```
print("No examples")
```

30 isCon

hClustHeatMap Hierarchical clustering heat map, cluster by runs intensity, features ratio and display log2 ratios to control median	s by
---	------

Description

Hierarchical clustering heat map, cluster by runs intensity, features by ratio and display log2 ratios to control median

Usage

```
hClustHeatMap(eset, conditionColors = .getConditionColors(eset),
  breaks = seq(-2, 2, length = 20), ...)
```

Arguments

```
 \begin{array}{ccc} \text{eset} & \text{ExpressionSet} \\ \text{conditionColors} & \\ & \text{data.frame of colors per condition} \end{array}
```

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt isCon}$

Check if protein is a contaminant entry

Description

Check if protein is a contaminant entry

Usage

```
isCon(ac)
```

Arguments

ac

vector of protein accession numbers

isDecoy 31

Details

contanminants proteins are typically annotated as: CON_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

Examples

```
print("No examples")
```

isDecoy

Check if protein is a decoy entry

Description

Check if protein is a decoy entry

Usage

isDecoy(ac)

Arguments

ac

vector of protein accession numbers

Details

decoy proteins are typically annotated as: REV_P0000

Value

vector TRUE/FALSE

Note

No note

References

NA

```
print("No examples")
```

32 missinValueBarplot

 $is {\tt StrippedACs}$

Check if ACs are in "non-stripped" uniprot format e.g. "sp\Q8CHJ2\AQP12_MOUSE"

Description

Check if ACs are in "non-stripped" uniprot format e.g. "splQ8CHJ2|AQP12_MOUSE"

Usage

```
isStrippedACs(acs)
```

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

boolean TRUE/FALSE

Note

No note

References

NA

Examples

```
print("No examples")
```

missinValueBarplot

Plot Percentage of Features with with missing values

Description

Plot Percentage of Features with with missing values

```
missinValueBarplot(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, ]),
  cex.axis = 1.25, cex.lab = 1.25, ...)
```

pairsAnnot 33

Arguments

eset ExpressionSet

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

pairsAnnot

Plot lower triangle Pearsons R². Diagonal text, upper triangle all against all scatter plots with lm abline

Description

Plot lower triangle Pearsons R^2. Diagonal text, upper triangle all against all scatter plots with lm abline

Usage

```
pairsAnnot(data, textCol = rep(1, ncol(data)), diagText = colnames(data),
  col = rgb(0, 100, 0, 50, maxColorValue = 255), isHeatCol = F,
  cexTxt = 2, ...)
```

Arguments

data data.frame
textCol text color
diagText diagnoal text
col dot col
isHeatCol heat colors
cexTxt cex txt

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 $\verb"parseMaxQuantProteinGroupTxt"$

Parse MaxQuant Protein Group Txt

Description

Parse MaxQuant Protein Group Txt

Usage

```
parseMaxQuantProteinGroupTxt(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to MaxQuant Protein txt file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisFeatureCsv}$

Parse Progenesis Feature Csv Export

Description

Parse Progenesis Feature Csv Export

Usage

```
parseProgenesisFeatureCsv(file = file,
  expDesign = getExpDesignProgenesisCsv(file), method = "auc")
```

Arguments

file path to Progenesis Feature csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

parseProgenesisPeptideMeasurementCsv

Parse Progenesis Peptide Measurement Csv Export

Description

Parse Progenesis Peptide Measurement Csv Export

Usage

```
parseProgenesisPeptideMeasurementCsv(file, expDesign = expDesign,
  method = "auc",
  expressionColIndices = .getProgenesisCsvExpressionColIndices(file, method =
  method))
```

Arguments

file path to Progenesis Peptide Measurement csv file

expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

 ${\tt parseProgenesisProteinCsv}$

Parse Progenesis Protein Csv

Description

Parse Progenesis Protein Csv

Usage

```
parseProgenesisProteinCsv(file = file, expDesign = expDesign,
  method = "auc")
```

Arguments

file path to Progenesis Protein csv file expDesign experimental design data.frame

method auc (area under curve) or spc (spectral count)

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

```
print("No examples")
```

38 parseScaffoldRawFile

```
{\tt parseScaffoldPTMReport}
```

Parse scaffold PTM Spectrum Report

Description

Parse scaffold PTM Spectrum Report

Usage

```
parseScaffoldPTMReport(file)
```

Arguments

file

path to Scaffold file

Details

No details

Value

data.frame

Note

No note

References

NA

Examples

```
print("No examples")
```

```
parseScaffoldRawFile Parse scaffold output .xls file (RAW export)
```

Description

Parse scaffold output .xls file (RAW export)

Usage

```
parseScaffoldRawFile(fileName, expDesign = expDesign,
  keepFirstAcOnly = FALSE, isPurityCorrect = T)
```

Arguments

expDesign experimental design data.frame

keepFirstAcOnly

TRUE/FALSE If multiple ACs in Accession. Numbers filed. Then keep the first

one only

file path to Scaffold file

Details

No details

Value

ExpressionSet object

Note

No note

References

NA

See Also

ExpressionSet

Examples

```
print("No examples")
```

perFeatureNormalization

Per Feature Normalization

Description

Per Feature Normalization

Usage

```
perFeatureNormalization(eset, normFactors)
```

Arguments

eset ExpressionSet

matrix normalization factors (logged) (row names are proteins)

Details

Example Usage: Normalize phospho peptide signals for Protein Changes

Value

ExpressionSet object

Note

No note

References

No references

See Also

topX

Examples

```
print("No examples")
```

```
plotAbsEstCalibrationCurve
```

Plot absolut Estimation calibration Curve

Description

Plot absolut Estimation calibration Curve

Usage

```
plotAbsEstCalibrationCurve(fit, dispElements = c("formula", "lowess",
   "stats"), xlab = "Conc. (CPC) ", ylab = "Pred. Conc. (CPC) ",
   predictorName = paste("log10(", names(coef(fit))[2], ")", sep = ""),
   text = F, cex.lab = 1, cex.axis = 1, cex.text = 1, cex.dot = 1, ...,
   main = "")
```

Arguments

```
fit simple log-linear model
dispElements c("formula","lowess","stats")
cex.lab= expansion factor for axis labels
cex.axis= expansion factor for legend
cex.dot= expansion factor for plotted dots
```

Note

No note

References

NA

plotExpDesign 41

Examples

```
print("No examples")
```

plotExpDesign

Display experimental design, high-lighting the control condition

Description

Display experimental design, high-lighting the control condition

Usage

```
plotExpDesign(eset, condColors = .getConditionColors(eset), version = "X")
```

Arguments

eset

ExpressionSet

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotIdScoreVsFDR

Plot FDR vs. identification score

Description

Plot FDR vs. identification score

Usage

```
plotIdScoreVsFDR(idScore, qvals, qvalueThrs = 0.01,
  ylab = "False Discovery Rate", xlab = "Identification Score", lwd = 1.5,
  ...)
```

Arguments

idScore vector of identification scores

qvals vector of q-valres

qvalueThrs threshold indicated by horizontal line

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

 ${\tt plotMSSignalDistributions}$

Plot ms.signal distributions

Description

Plot ms.signal distributions

Usage

```
plotMSSignalDistributions(d, col = 1:100, cex.axis = 1, cex.lab = 1,
  ylab = "Frequnecy", xlab = "MS-Signal", ...)
```

Arguments

matrix matrix of ms-signals

color color

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotNbIdentificationsVsRT

Plot the number of identified Features per Reteintion Time minute.

Description

Plot the number of identified Features per Reteintion Time minute.

Usage

```
plotNbIdentificationsVsRT(eset, cex.axis = 1.25, cex.lab = 1.25,
  col = "blue", lwd = 2, ...)
```

Arguments

eset

ExpressionSet

Note

No note

References

NA

Examples

```
print("No examples")
```

 $\verb|plotNbValidDeFeaturesPerFDR|$

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Description

Plot Total Number of diffrentially Abundant Features (applying ratio cutoff) vs. qValue/pValue for all conditions

Usage

```
plotNbValidDeFeaturesPerFDR(sqa, upRegulated = T, log2RatioCufOff = log2(1), pvalRange = c(0, 0.3), pvalCutOff = 1, isLegend = T, isAdjusted = T, ylab = "Nb. Features", ...)
```

Arguments

sqa SafeQuantAnalysis Object

upRegulated TRUE/FALSE select for upregulated features

log2RatioCufOff

log2 ratio cut-off

 $\begin{array}{ll} pvalRange & pValue/qValue \ range \\ pvalCutOff & pValue/qValue \ cut-off \end{array}$

isLegend TRUE/FALSE display legend

isAdjusted TRUE/FALSE qValues/pValue on x-axis

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotPrecMassErrorDistrib

Plot Precursor Mass Error Distribution

Description

Plot Precursor Mass Error Distribution

Usage

```
plotPrecMassErrorDistrib(eset, pMassTolWindow = c(-10, 10), ...)
```

Arguments

eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotPrecMassErrorVsScore

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

Description

Plot precursorMass error v.s score highlighting decoy and displaying user specified user specified precursor mass filter

Usage

```
plotPrecMassErrorVsScore(eset, pMassTolWindow = c(-10, 10), ...)
```

Arguments

```
eset ExpressionSet

pMassTolWindow Precursor Mass Error Tolerance Window
```

Details

No details

Note

No note

References

NA

```
print("No examples")
```

46 plotROC

plotQValueVsPValue

Plot qValue vs pValue

Description

Plot qValue vs pValue

Usage

```
plotQValueVsPValue(sqa, lim = c(0, 1))
```

Arguments

sqa SafeQuantAnalysis Object lim x-axis and y-axis range

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotROC

Plot Number of Identifications vs. FDR

Description

Plot Number of Identifications vs. FDR

Usage

```
plotROC(qvals, qvalueThrs = 0.01, xlab = "False Discovery Rate",
  ylab = "# Valid Identifications", xlim = c(0, 0.1), breaks = 100,
  col = "blue", lwd = 1.5, ...)
```

Arguments

qvals vector of q-values

qvalueThrs threshold indicated by vertical line

breaks see breaks for hist function

plotRTNorm 47

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotRTNorm

Plot all retention time profile overalying ratios

Description

Plot all retention time profile overalying ratios

Usage

```
plotRTNorm(rtNormFactors, eset, samples = 1:ncol(rtNormFactors), main = "",
...)
```

Arguments

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

eset ExprsssionSet

samples specify samples (sample numbers) to be plotted

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

Examples

```
print("No examples")
```

plotRTNormSummary

Plot all retention time normalization profiles

Description

Plot all retention time normalization profiles

Usage

```
plotRTNormSummary(eset,
  col = as.character(.getConditionColors(eset)[pData(eset)$condition, 1]),
  ...)
```

Arguments

rtNormFactors data.frame of normalization factor per r.t bin and sample, obtained by getRT-

NormFactors

condNames vector of condition names

Details

No details

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
getRTNormFactors
```

```
print("No examples")
```

plotScoreDistrib 49

plotScoreDistrib

Plot identifications target decoy distribution

Description

Plot identifications target decoy distribution

Usage

```
plotScoreDistrib(targetScores, decoyScores, xlab = "Identification Score",
  ylab = "Counts", ...)
```

Arguments

targetScores
decoyScores

xlab default "Identification Score"

ylab default "Counts"

Details

No details

Note

No note

References

NA

Examples

```
print("No examples")
```

plotVolcano

Plots volcano, data points colored by max cv of the 2 compared conditions

Description

Plots volcano, data points colored by max cv of the 2 compared conditions

Usage

```
plotVolcano(obj, ratioThrs = 1, pValueThreshold = 0.01, adjusted = T, ...)
```

50 plotXYDensity

Arguments

```
obj safeQuantAnalysis object or data.frame ratioThrs default 1
```

pValueThreshold

default 0.01

adjusted TRUE/FALSE plot qValues or pValues on y-axis

ratioCutOffAbsLog2

ratio abline

abs Log 10 pValue Cut Off

pValue abline

Details

data.frame input object should contain 3 columns (ratio,qValue,cv)

Note

No note

References

NA

Examples

```
print("No examples")
```

plotXYDensity

Scatter plot with density coloring

Description

Scatter plot with density coloring

Usage

```
plotXYDensity(x, y, isFitLm = T, legendPos = "bottomright",
  disp = c("abline", "R", "Rc"), ...)
```

Arguments

x number vectory number vectorisFitLm fit linear model

disp c("abline","R","Rc") display options

Note

No note

References

NA

Examples

```
print("No examples")
```

```
print.safeQuantAnalysis
```

Print content of safeQuantAnalysis object

Description

Print content of safeQuantAnalysis object

Usage

```
## S3 method for class 'safeQuantAnalysis'
print(sqa)
```

Arguments

sqa

safeQuantAnalysis object

Details

NA

Note

No note

References

NA

See Also

```
{\it safeQuantAnalysis}
```

```
print("No examples")
```

52 purityCorrectTMT

purityCorrectTMT	Correct channel intensities based on Reporter ion Isotopic Distribu-
	tions

Description

Correct channel intensities based on Reporter ion Isotopic Distributions

Usage

```
purityCorrectTMT(tmtData, impurityMatrix = impurityMatrix,
  invalidReplace = "allNA")
```

Arguments

tmtData data.frame containing tmt channel intensities

impurityMatrix correction matrix

method to deal with NA and negative values c("","allZero","allNA","allOrg")

Details

Same method as MSnbase, and described in Breitwieser et al. 2012 (Book Chapter)

Value

data.frame of corrected tmt intensities

Note

No note

References

NA

```
print("No examples")
```

removeOutliers 53

removeOutliers

Set value to NA if it deviatves with more than 1.5 * IQR from lower/upper quantile

Description

Set value to NA if it deviatives with more than 1.5 \ast IQR from lower/upper quantile

Usage

```
removeOutliers(x, na.rm = TRUE, ...)
```

Arguments

na.rm logical indicating whether missing values should be removed.

vector numeric

Details

No details

Value

vector numeric

Note

No note

References

NA

See Also

NA

```
print("No examples")
```

54 rollUp

rollUp

Roll up feature intensites per unique colum combination

Description

Roll up feature intensites per unique colum combination

Usage

```
rollUp(eset, method = "sum", featureDataColumnName = c("proteinName"))
```

Arguments

eset ExpressionSet

method "sum", "mean" or "top3"

 $feature {\tt DataColumnName}$

vector of column names e.g. peptide or proteinName

Details

 $feature Data Column Name = c("peptide", "charge", "ptm"), \ method = c("sum"), \ sums \ up \ intensities per peptie modification charge state$

Value

ExpressionSet object

Note

No note

References

No references

See Also

topX

```
print("No examples")
```

rtNormalize 55

rtNormalize

Normalization data per retention time bin

Description

Normalization data per retention time bin

Usage

```
rtNormalize(eset, rtNormFactors)
```

Arguments

eset ExpressionSet

rtNormFactors obtained using getRTNormFactors

Details

Normalize for variations in elelctrospray ionization current.

Value

data.frame normalization factors per retention time bin (minute)

Note

No note

References

In Silico Instrumental Response Correction Improves Precision of Label-free Proteomics and Accuracy of Proteomics-based Predictive Models, Lyutvinskiy et al. (2013), http://www.ncbi.nlm.nih.gov/pubmed/23589346

See Also

```
{\tt getRTNormFactors}
```

```
print("No examples")
```

 ${\tt setNbPeptidesPerProtein}$

Set nbPeptides coulmn of featureData

Description

Set nbPeptides coulmn of featureData

Usage

```
setNbPeptidesPerProtein(eset)
```

Arguments

eset

ExpressionSet

Details

NA

Value

eset

Note

No note

References

NA

Examples

```
print("No examples")
```

setNbSpectraPerProtein

Set nbPeptides coulmn of featureData

Description

Set nbPeptides coulmn of featureData

Usage

```
setNbSpectraPerProtein(eset)
```

Arguments

eset

Expression Set

sqNormalize 57

Details

NA

Value

eset

Note

No note

References

NA

Examples

```
print("No examples")
```

sqNormalize

Normalize

Description

Normalize

Usage

```
sqNormalize(eset, method = "global")
```

Arguments

eset

ExpressionSet

 ${\tt method}$

c("global","rt","quantile")

Details

No details

Value

eset ExpressionSet

Note

No note

References

NA

58 standardise

See Also

```
getGlobalNormFactors, getRTNormFactors
```

Examples

```
print("No examples")
```

standardise

Standardise data

Description

Standardise data

Usage

standardise(d)

Arguments

d

vector or data.frame or matrix

Details

No details

Value

vector or data.frame or matrix

Note

No note

```
print("No examples")
```

stripACs 59

stripACs

strip uniprot format e.g. "sp\Q8CHJ2\AQP12_MOUSE" -> Q8CHJ2

Description

```
strip uniprot format e.g. "splQ8CHJ2lAQP12_MOUSE" -> Q8CHJ2
```

Usage

stripACs(acs)

Arguments

acs

accession numbers

Details

TRUE if less than 10

Value

vector character

Note

No note

References

NA

Examples

print("No examples")

Index

*Topic normalization getGlobalNormFactors, 14 getLoocvFoldError, 18 globalNormalize, 29 removeOutliers, 53 sqNormalize, 57	getSignalPerCondition, 26 getTopX, 27 getUserOptions, 28 globalNormalize, 29 hClustHeatMap, 30
addIdQvalues, 3	isCon, 30
${\it addScaffoldPTMFAnnotations}, 4\\$	isDecoy, 31
barplotMSSignal,4	isStrippedACs, 32
bai protiissigiiar, +	missinValueBarplot,32
<pre>createCalibrationCurve, 5</pre>	• •
createExpDesign, 6	pairsAnnot, 33
createExpressionDataset, 7	${\tt parseMaxQuantProteinGroupTxt,34}$
cvBoxplot, 8	parseProgenesisFeatureCsv, 35
2 12	parse Progenesis Peptide Measurement Csv,
eBayes, 12	36
expDesignTagToExpDesign, 8	parseProgenesisProteinCsv, 37
export.safeQuantAnalysis, 9	parseScaffoldPTMReport, 38
ExpressionSet, 7, 34–37, 39	parseScaffoldRawFile, 38
getAAProteinCoordinates, 10	perFeatureNormalization, 39
getAllCV, 10	plotAbsEstCalibrationCurve, 40
getAllEBayes, 11	plotExpDesign, 41
getBaselineIntensity, 12	plotIdScoreVsFDR, 41
getCV, 11, 13	plotMSSignalDistributions, 42
getExpDesignProgenesisCsv, 13	plotNbIdentificationsVsRT, 43
getGlobalNormFactors, 14	plotNbValidDeFeaturesPerFDR, 43
getIBAQEset, 15	plotPrecMassErrorDistrib, 44
getIdLevelQvals, 3, 16	plotPrecMassErrorVsScore, 45
getImpuritiesMatrix, 16	plotQValueVsPValue, 46
getIntSumPerProtein, 17	plotROC, 46
getLoocvFoldError, 18	plotRTNorm, 47 plotRTNormSummary, 48
getMeanCenteredRange, 19	plotScoreDistrib, 49
<pre>getModifProteinCoordinates, 19</pre>	plotVolcano, 49
getMotifX, 20	plotXYDensity, 50
<pre>getNbDetectablePeptides, 21</pre>	print.safeQuantAnalysis, 51
<pre>getNbMisCleavages, 22</pre>	purityCorrectTMT, 52
getNbPeptidesPerProtein, 22	par 10,0011 cct1111, 32
getNbSpectraPerProtein, 23	removeOutliers, 53
getPeptides, 24	rollUp, 54
getRatios, 24	rtNormalize, 55
$\mathtt{getRTNormFactors}, 25, 47, 48, 55$	
getScoreCutOff, 26	safeQuantAnalysis, 9, 51

INDEX 61

```
setNbPeptidesPerProtein, 56
setNbSpectraPerProtein, 56
sqNormalize, 57
standardise, 58
stripACs, 59
topX, 40, 54
```