Catalogue

Niels Feld*

12 octobre 2024

Question 1 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

On peut définir une courbe elliptique E sur K comme l'ensemble

$$\{(x,y) \in \overline{K} \mid y^2 = x^3 + Ax + B\}.$$

0% 10%	40% 50%	80%
$\frac{10\%}{20\%}$	60%	100%
\square 30%	70 %	<u>—</u>

Commentaire après réponse:

C'est la définition choisie dans ce cours même si ce n'est pas la définition idéale.

Question 2 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$u^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2), P_3 = (x_3, y_3) \in E(\overline{K}) \setminus \{\infty\}$ tels que $P_1 + P_2 = P_3$ et $x_1 \neq x_2$. Alors,

$$x_3 = m^2 - x_1 - x_2, y_3 = m(x_1 - x_3) - y_1$$

où $m = \frac{y_2 - y_1}{x_2 - x_1}$.

Commentaire après réponse:

Voir le cours [Washington, p. 28].

Question 3 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\overline{K}) \setminus \{\infty\} \text{ et } P_3 = (x_3, y_3) \text{ tels que } P_1 + P_2 = P_3 \text{ et } x_1 \neq x_2 \text{ et } y_1 \neq y_2.$ Alors,

$$P_1 + P_2 = \infty.$$

0% 10%	40% 50%	80% 90%
20%	$\begin{bmatrix} 50\% \\ 60\% \end{bmatrix}$	100%
30%	70%	

Commentaire après réponse:

Voir le cours [Washington, p. 28].

^{*}Merci à Damien Mégy

Question 4 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soient $P_1 = (x_1, y_1), P_2 = (x_2, y_2) \in E(\overline{K}) \setminus \{\infty\}$ et $P_3 = (x_3, y_3)$ tels que $P_1 + P_2 = P_3$ et $P_1 = P_2$ et $y_1 \neq 0$. Alors,

$$x_3 = m^2 - 2x_1, y_3 = m(x_1 - x_3) - y_1,$$

où $m = \frac{3x_1^2 + A}{2u_1}$.

Commentaire après réponse: Voir le cours [Washington, p. 28].

Question 5 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soient K un corps de caractéristique $p \notin \{2,3\}$ et \overline{K} une clôture algébrique de K.

Soient $A, B \in K$ tels que $4A^3 + 27B^2 \neq 0$.

Soit une courbe elliptique E sur K définie par l'équation

$$y^2 = x^3 + Ax + B.$$

Soit $P \in E(\overline{K})$. Alors,

 $P + P = \infty$.

Commentaire après réponse: Voir le cours [Washington, p. 28].

Question 6 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit E la courbe elliptique sur $\mathbb Q$ définie par l'équation

$$y^2 = \frac{x(x+1)(2x+1)}{6}$$

Alors, on a

$$(0,0) + (1,1) = (1,1)$$

dans E.

Commentaire après réponse: On a $(0,0) + (1,1) = (\frac{1}{2}, \frac{-1}{2})$.

Question 7 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit E la courbe elliptique sur $\mathbb Q$ définie par l'équation

$$y^2 = x^3 - 25x.$$

Alors, on a

$$(0,0) + (-5,0) = (-5,0)$$

dans E.

0%	\square 40%	80%
10%	\square 50%	90%
\square 20%	\square 60%	100%
30%	\square 70%	

Commentaire après réponse: On a

$$(0,0) + (-5,0) = (5,0)$$

Question 8 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :

Soit K un corps fini de caractéristique $p \notin \{2,3\}$. Soit E une courbe elliptique sur K.

Alors, l'ensemble E(K) est un groupe fini.

Commentaire après réponse:

Commentaire après réponse:

0%

10%

20%

30%

Voir aussi le cours [Washington, p. 49]

40%

50%

60%

70%

80%

90%

100%

Commentaire après réponse:

Voir [Washington, p.67].

Commentaire après réponse: Cf [Washington, p.66].

40%

50%

60%

70%

80%

90%

100%

Alors, ϕ_q est séparable.

0%

10%

20%

30%

Question 20 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, E une courbe elliptique sur K, α un endomorphisme de E. Alors,

$$\alpha: E(\overline{K}) \to E(\overline{K})$$

est surjectif.

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse: Voir [Washington, p.69].

Question 21 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $n \in \mathbb{N}, p \notin \{2,3\}$ un nombre premier, $q = p^n$, \mathbb{F}_q un corps à q élément, $(r,s) \in \mathbb{Z}^2 \setminus \{0,0\}$, ϕ_q l'endomorphisme de Frobenius de E.

Alors, $r \cdot \phi_q + s$ est séparable si, et seulement si, p ne divise pas r.

0%	40 %	80%
10%	\Box 50%	90%
\square 20%	\square 60%	100 %
30%	70%	

Commentaire après réponse: Voir [Washington, p.72].

Question 22 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K, A, $B \in K$, E la courbe elliptique sur K définie par l'équation

$$y^2 = x^3 + Ax + B$$

et $(x, y) \neq \infty$ un point de E. Si $3x^2 + A = 0$, alors $y \neq 0$.

0%	40%	80%
10%	50%	90%
20%	60%	100%
30%	70%	

Commentaire après réponse:

On démontre la contraposée.

Par hypothèse, le polynôme $p(X) = X^3 + AX + B$ possède x comme racine et x est une racine simple, donc $p'(x) \neq 0$.

Question 23 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} sa clôture algébrique, $A,B \in K$, E la courbe elliptique sur K définie par l'équation

$$y^2 = x^3 + Ax + B$$

et α un endomorphisme non-trivial de E. Il existe des polynômes $p,q,s,t\in K[x]$ tels que p et q sont premiers entre eux, r,s sont premiers entre eux, et

$$\alpha(x,y) = (p(x)/q(x), ys(x)/t(x))$$

pour tout point (x,y) de E tels que $q(x) \neq 0$ et $t(x) \neq 0$.

Soit $x_0 \in \overline{K}$ tel que $t(x_0) = 0$. Alors, $q(x_0) = 0$.

0%	40%	80%
10 %	\square 50%	90%
\square 20%	\square 60%	100%
30%	70 %	

Commentaire après réponse: Voir [Washington, p.89].

Question 24 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps, p et q deux polynômes à coefficients dans K sans racines communes et tel que $q \neq 0$.

Alors, la dérivée de la fraction rationnelle $\frac{p}{q}$ est identiquement nulle si, et seulement si p'=q'=0

	0%	40%	80%
	10%	50%	90%
	20%	60%	100%
	30%	70%	

Commentaire après réponse:

On suppose $\frac{p}{q}$ possède une dérivée nulle. Alors, p'q=q'p donc q divise q' donc q'=0; de même pour p. La réciproque est triviale.

Question 25 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , E une courbe elliptique sur K et $n \in \mathbb{N}^*$. Alors,	Question 28 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p>3$, E une courbe elliptique sur K . On dit que E est $supersingulière$ si
$E[n] = \{ P \in E(K) nP = \infty \}.$	$E[p] \simeq \{0\}.$
$\begin{array}{c cccc} & 0\% & & & & & & & & & & & & & & & & & $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Commentaire après réponse: Voir [Washington, p. 91].	Commentaire après réponse: Voir [Washington, p. 93].
Question 26 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , et E une courbe elliptique sur K . Alors, le groupe $E[3]$ est isomorphe au groupe $\mathbb{Z}/(3)$.	Question 29 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur $K, j \in \mathbb{N}^*$, et P un point de E . Si P est d'ordre p , alors il existe un point Q de E d'ordre p^j .
$\begin{array}{c cccc} & 0\% & & & & 40\% & & 80\% \\ \hline 10\% & & 50\% & & 90\% \\ \hline 20\% & & 60\% & & 100\% \\ \hline 30\% & & 70\% & & \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Commentaire après réponse: Voir [Washington, p. 92].	Commentaire après réponse: Voir [Washington, p. 100].
Question 27 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur K et $n \in \mathbb{N}^*$. Si p ne divise pas n , alors le groupe $E[n]$ est isomorphe au groupe $\mathbb{Z}/(n^2)$. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Question 30 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , E une courbe elliptique sur K , $n \in \mathbb{N}^*$ premier à p , e_n l'accouplement de Weil associé à E et $\{T_1, T_2\}$ une base du \mathbb{Z} -module $E[n]$. Alors, $e_n(T_1, T_2)$ est une racine primitive n -ième. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Question 31 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient K un corps de caractéristique $p \notin \{2,3\}$, \overline{K} une clôture algébrique de K , $n \in \mathbb{N}^*$ premier à p , $\mu_n = \{x \in \overline{K} \mid x^n = 1\}$, et E une courbe elliptique sur K Si $E[n] \subset E(K)$, alors $\mu_n \subset K$.	Question 34 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, $\overline{\mathbb{F}}_q$ une clôture algébrique, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et P un point de E . Alors, $P \in E(\mathbb{F}_q)$ si, et seulement si $\phi_q(P) = P$.
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Commentaire après réponse: Voir [Washington, p. 102].	Commentaire après réponse: Voir [Washington, p.112].
Question 32 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soit E une courbe elliptique sur un corps fini \mathbb{F}_q . Alors, il existe $n \in \mathbb{N}^*$ tel que	Question 35 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$,
$E(\mathbb{F}_a) \simeq \mathbb{Z}/(n)$	$\ker(\phi_q^n - 1) = \{0\}.$
ou il existe $n_1, n_2 \in \mathbb{N}^*$ tels que $n_1 n_2$ et $E(\mathbb{F}_q) \simeq \mathbb{Z}/(n_1) \oplus \mathbb{Z}/(n_2).$	$ \begin{array}{c cccc} \hline & 0\% & & \hline & 40\% & & \hline & 80\% \\ \hline & 10\% & & \hline & 50\% & & \hline & 90\% \\ \hline & 20\% & & \hline & 60\% & & \hline & 100\% \\ \hline & 30\% & & \hline & 70\% & & \hline \end{array} $
$\begin{array}{c cccc} & 0\% & & & & 40\% & & 80\% \\ & 10\% & & 50\% & & 90\% \\ & 20\% & & 60\% & & 100\% \\ \hline \end{array}$	Commentaire après réponse: Voir [Washington, p.112].
30% 70% Commentaire après réponse: Voir [Washington, p.110]. Question 33 Vrai ou faux? Donner	Question 36 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$. Alors, $\phi_q^n - 1$ est séparable.
votre degré de confiance dans ce qui suit : Soit E une courbe elliptique sur un corps fini \mathbb{F}_q . Alors, $ q+1-\operatorname{Card}(E(\mathbb{F}_q)) \geq 2\sqrt{q}.$	$\begin{array}{c cccc} & 0\% & & & & & & & & & & & & & & & & & $
$ \begin{array}{c cccc} & 0\% & & & & & & & & & & & & & $	Commentaire après réponse: Voir [Washington, p.113].
	Question 37 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $n \in \mathbb{N}^*$. Alors, $\mathrm{Card}(E(\mathbb{F}_{q^n})) = \deg(\phi_q^n).$
	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $

Commentaire après réponse: Voir [Washington, p.113].

Question 38 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , ϕ_q le Frobenius de E , et $a=q+1-\operatorname{Card}(\mathbb{F}_q)$.	Question 41 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini, $A, B \in \mathbb{F}_q$, E la courbe elliptique sur \mathbb{F}_q définie par l'équation $y^2 = x^3 + Ax + B.$
Alors, $\phi_q^2 + a\phi_q + q = 0.$	y = x + 11x + B. Alors,
$ \begin{array}{c cccc} \hline & 0\% & & & & & & & & & & & & \\ \hline & 10\% & & & & & & & & & \\ \hline & 20\% & & & & & & & & \\ \hline & 30\% & & & & & & & \\ \hline \end{array} $	$\operatorname{Card}(\mathbb{F}_q) = q + 1 - \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + Ax + B}{\mathbb{F}_q} \right).$
Commentaire après réponse: Voir [Washington, p.114].	$ \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $
Question 39 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :	Commentaire après réponse:
Soient \mathbb{F}_q un corps fini, E une courbe elliptique	Voir [Washington, p.118].
sur \mathbb{F}_q , ϕ_q le Frobenius de E , m un entier premier avec q , $(\phi_q)_m$ la restriction du Frobenius à $E[m]$ et $a=q+1-\operatorname{Card}(\mathbb{F}_q)$. Alors, $a\equiv\operatorname{Tr}((\phi_q)_m)\pmod{m}.$	Question 42 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient \mathbb{F}_q un corps fini de caractéristique $p \notin \{2,3\}$, E une courbe elliptique sur \mathbb{F}_q . Si E est supersingulière, alors
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\operatorname{Card}(E(\mathbb{F}_q)) \equiv 1 \pmod{p}.$
20% 60% 100% Commentaire après réponse:	$\begin{array}{c cccc} & 0\% & & & & 40\% & & & 80\% \\ & 10\% & & & 50\% & & 90\% \\ & 20\% & & & 60\% & & 100\% \\ \end{array}$
Voir [Washington, p.115].	30% 70%
Question 40 Vrai ou faux? Donner votre degré de confiance dans ce qui suit :	Commentaire après réponse: Voir [Washington, p.143].
Soient \mathbb{F}_q un corps fini, E une courbe elliptique sur \mathbb{F}_q , $a=q+1-\operatorname{Card}(E(\mathbb{F}_q))$, ϕ_q le Frobenius de E , α,β les deux racines du polynôme caractéristique de ϕ_q et $n\in\mathbb{N}$. On note $s_n=\alpha^n+\beta^n$. Alors, si $n>0$,	Question 43 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, E une courbe elliptique sur \mathbb{F}_p . Si
$s_{n+1} = as_n + qs_{n-1}.$	$\operatorname{Card}(E(\mathbb{F}_p)) = p$
	alors, E est supersingulière.

Question 44 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3,5\}$ un nombre premier, E une courbe elliptique sur \mathbb{F}_p . Si $E(\mathbb{F}_p)$ contient un élément d'ordre p, alors

Commentaire après réponse:

Cf [Washington, p. 180]. Comme p divise Card $E(\mathbb{F}_p)$, il existe k un entier naturel non-nul tel que Card $E(\mathbb{F}_p) = kp$. L'inégalité de Hasse peut s'écrire :

$$|\sqrt{\operatorname{Card} E(\mathbb{F}_p)} - \sqrt{p}| \le 1$$

donc

$$|\sqrt{k} - 1| \le 1/\sqrt{p} \le 1/\sqrt{7} \le 0.4$$

donc

$$\sqrt{k} < 1.4$$

donc k < 2 donc k = 1.

Question 45 Vrai ou faux? Donner votre degré de confiance dans ce qui suit : Soient $p \notin \{2,3\}$ un nombre premier, $n \in \mathbb{N}^*$, $q = p^n$, E une courbe elliptique sur \mathbb{F}_q . Si

$$\operatorname{Card} E(\mathbb{F}_q) = q,$$

alors

$$\operatorname{Card} E(\mathbb{F}_{q^2}) = q^2,$$

Commentaire après réponse: Cf [Washington, p. 180].

Question 46

Soient K un corps de caractéristique $p \notin \{2,3\}$, $A,B \in K$ et E la courbe elliptique sur K définie par

$$y^2 = x^3 + Ax + B.$$

On note j(E) le j-invariant de E. Calculer $j(E)\frac{4A^3+27B^2}{4A^3}-1000$.

Commentaire après réponse:

Voir aussi [Washington, p. 60.

Question 47

Soient A=23 et B=456. Soit E la courbe elliptique sur $\mathbb Q$ définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P)=2P$. Alors α est un homomorphisme et

$$\alpha(x,y) = (R_1(x,y), R_2(x,y)),$$

où R_1, R_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - \lambda x.$$

Calculer λ .

Commentaire après réponse: On a

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$$

 $_{
m et}$

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y.$$

Voir aussi [Washington, p. 64].

Question 48

Soient A=456 et B=789. Soit E la courbe elliptique sur $\mathbb Q$ définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P)=2P$. Alors α est un homomorphisme et

$$\alpha(x, y) = (R_1(x, y), R_2(x, y)),$$

où R_1, R_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + \lambda}{2y}\right)^2\right) - y.$$

Calculer λ .

Commentaire après réponse:

On a

$$R_1(x,y) = \left(\frac{3x^2 + A}{2y}\right)^2 - 2x$$

et

$$R_2(x,y) = \left(\frac{3x^2 + A}{2y}\right) \left(3x - \left(\frac{3x^2 + A}{2y}\right)^2\right) - y.$$

Voir aussi [Washington, p. 64].

Question 49

Soient A=456 et B=789. Soit E la courbe elliptique sur $\mathbb Q$ définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P)=2P$. Alors α est un homomorphisme et on écrit

$$\alpha(x,y) = (r_1(x), r_2(x)y),$$

où r_1, r_2 sont des fractions rationnelles. Il existe $\lambda \in \mathbb{N}$ tel que

$$r_1(x) = \frac{x^4 - 2Ax^2 - \lambda \cdot Bx + A^2}{4(x^3 + Ax + B)}.$$

Calculer λ .

Commentaire après réponse:

$$r_1(x) = \frac{x^4 - 2Ax^2 - 8Bx + A^2}{4(x^3 + Ax + B)}.$$

Voir aussi [Washington, p. 66].

Question 50

Soient A=123 et B=789. Soit E la courbe elliptique sur $\mathbb Q$ définie par

$$y^2 = x^3 + Ax + B$$

et soit α l'endomorphisme de E défini, pour tout point P de E, par $\alpha(P)=2P$. Calculer $\deg(\alpha)$.

Commentaire après réponse:

Voir aussi [Washington, p. 66].

Question 51

Soient E une courbe elliptique définie sur le corps fini \mathbb{F}_{11} et ϕ_{11} son Frobenius. Calculer $\deg(\phi_{11})$.

Commentaire après réponse:

Voir [Washington, p. 66].

Question 55

Question 56

matrice de N.

Soient a = 2, b = 3.

 $\det(N) = 3.$

0

Question 57

Commentaire après réponse: Voir [Washington, p. 106].

Question 52

Soient a, b, c les trois racines du polynôme

$$x^3 + 4x^2 - 7x - 13.$$

Calculer abc.

taille 2×2 et $Com(N)^T$ la transposée de la co-
matrice de N .
On suppose que $det(M + N) = 500$, $det(M) =$
$150, \det(N) = 30.$

Soient $M, N \in \mathbf{M}_2(\mathbb{Q})$ deux matrices carrées de taille 2×2 et $Com(N)^T$ la transposée de la co-

On suppose que det(M+N)=11, det(M)=5,

Soient $M, N \in \mathbf{M}_2(\mathbb{Q})$ deux matrices carrées de

Commentaire après réponse:

Formule de Viète.

Question 53

Si $\lambda \in \mathbb{Q} \setminus \{0,1\}$, on note $j(\lambda)$ le j-invariant de la courbe elliptique d'équation

$$y^2 = x(x-1)(x-\lambda).$$

Soit $\mathbf{j} \in \mathbb{Q} \setminus \{0, 1728\}$, on note a le nombre de $\lambda \in \mathbb{Q} \setminus \{0,1\} \text{ tel que } j(\lambda) = \mathbf{j}.$

Calculer a.

Commentaire après réponse:

Cf [Washington, p. 87].

Question 54

Soit E la courbe elliptique sur \mathbb{R} définie par

$$y^2 = x^3 - 2.$$

On note α l'endomorphisme de E induit par la conjugaison complexe, i.e.

$$\alpha(x,y) = (\overline{x}, \overline{y})$$

pour tout point $(x,y) \neq \infty$ de E. On note α_2 l'endomorphisme \mathbb{Z} -linéaire de E[2] induit par

 \mathbf{C}

Soit E la courbe elliptique sur \mathbb{F}_5 définie	par		
l'équation			
$y^2 = x^3 + x + 1.$			

3

Commentaire après réponse:

Voir [Washington, p. 106].

Calculer $Card(E(\mathbb{F}_5))$.

α .	
Calculer $Tr(\alpha_2) \in \mathbb{Z}$.	
	Gommentaire après réponse:

Yoir [Washington, p. 108]. 3 4 5 2

Commentaire après réponse:

Cf [Washington, p. 94].