Math Review

Peifan Wu

September 8, 2020

Basic Linear Algebra

1.1 Definitions of Vectors and Matrices

Vector
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 is a column vector.

Vector
$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$$
 is a column vector.

The transpose of x : $x^T = x' = [x_1, x_2, \dots, x_n]$ is a row vector.

Matrix $A = \begin{bmatrix} A_{11} & \dots & A_{1m} \\ \vdots & \ddots & \vdots \\ A_{n1} & \dots & A_{nm} \end{bmatrix}$ is a $n \times m$ matrix. Each element of the matrix is represented by A_{ij} , $i = 1, \dots, n$, $j = 1, \dots, m$.

The transpose of matrix A is denoted as A^T , A' where A^T is A is denoted as A^T . A' where A^T is A is denoted as A^T . A' where A^T is A is Notice that $(A^T)^T = A$.

The transpose of matrix A is denoted as A^T , A' where $A_{ij}^T = A_{ji}$. Notice that $(A^T)^T = A$.

1.2 Matrix Operations

Addition/Substraction