Assignment: Measuring Cosmological Parameters Using Type Ia Supernovae

In this assignment, you'll analyze observational data from the Pantheon+SH0ES dataset of Type Ia supernovae to measure the Hubble constant H_0 and estimate the age of the universe. You will:

- Plot the Hubble diagram (distance modulus vs. redshift)
- Fit a cosmological model to derive H_0 and Ω_m
- Estimate the age of the universe
- · Analyze residuals to assess the model
- Explore the effect of fixing Ω_m
- Compare low-z and high-z results

Let's get started!

Getting Started: Setup and Libraries

Before we dive into the analysis, we need to import the necessary Python libraries:

- numpy, pandas for numerical operations and data handling
- matplotlib for plotting graphs
- scipy.optimize.curve_fit and scipy.integrate.quad for fitting cosmological models and integrating equations
- astropy.constants and astropy.units for physical constants and unit conversions

Make sure these libraries are installed in your environment. If not, you can install them using:

"bash pip install numpy pandas matplotlib scipy astropy

```
In [624]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from scipy.optimize import curve_fit
   from scipy.integrate import quad
   from astropy.constants import c
   from astropy import units as u
```


Load the Pantheon+SH0ES Dataset

We now load the observational supernova data from the Pantheon+SH0ES sample. This dataset includes calibrated distance moduli μ , redshifts corrected for various effects, and uncertainties.

Instructions:

- Make sure the data file is downloaded from <u>Pantheon dataset</u>
 (https://github.com/PantheonPlusSH0ES/DataRelease/blob/main/Pantheon%2B_Data/4_DISTANCES_AND_"
 and available locally.
- We use delim_whitespace=True because the file is space-delimited rather than comma-separated.
- Commented rows (starting with #) are automatically skipped.

We will extract:

- zHD: Hubble diagram redshift
- MU_SH0ES: Distance modulus using SH0ES calibration
- MU_SH0ES_ERR_DIAG : Associated uncertainty

More detailed column names and the meanings can be referred here:

Finally, we include a combined file of all the fitted parameters for each SN, before and after light-curve cuts are applied. This is in the format of a .FITRES file and has all the meta-information listed above along with the fitted SALT2 parameters. We show a screenshot of the release in Figure 7. Here, we give brief descriptions of each column. CID – name of SN. CIDint – counter of SNe in the sample. IDSURVEY – ID of the survey. TYPE – whether SN Ia or not – all SNe in this sample are SNe Ia. FIELD – if observed in a particular field. CUTFLAG_SNANA – any bits in light-curve fit flagged. ERRFLAG_FIT – flag in fit. zHEL – heliocentric redshift. zHELERR – heliocentric redshift error. zCMB – CMB redshift. zCMBERR – CMB redshift error. zHD – Hubble Diagram redshift. zHDERR – Hubble Diagram redshift error. VPEC – peculiar velocity. VPECERR – peculiar-velocity error. MWEBV – MW extinction. HOST_LOGMASS – mass of host. HOST_LOGMASS_ERR – error in mass of host. HOST_sSFR – sSFR of host. HOST_sSFR_ERR – error in sSFR of host. PKMJDINI – initial guess for PKMJD. SNRMAX1 – First highest signal-to-noise ratio (SNR) of light curve. SNRMAX2 – Second highest SNR of light curve. SNRMAX3 – Third highest SNR of light curve. PKMJD – Fitted PKMJD. PKMJDERR –

```
In [625]: # Local file path
file_path = "Pantheon+SH0ES.dat"

# Load the file
df = pd.read_csv(file_path, delim_whitespace=True, comment='#', header=None,)
# See structure
print(df.head())
print(len(df))
print(df.shape)
```

```
0
                            2
                                      3
                  1
                                                4
                                                          5
                                                                    6
                                                                              7
0
      CID
            IDSURVEY
                           zHD
                                  zHDERR
                                              zCMB
                                                    zCMBERR
                                                                  zHEL
                                                                        ZHELERR
1
   2011fe
                  51
                       0.00122
                                0.00084
                                          0.00122
                                                       2e-05
                                                              0.00082
                                                                          2e-05
2
   2011fe
                  56
                       0.00122
                                0.00084
                                          0.00122
                                                              0.00082
                                                      2e-05
                                                                          2e-05
                  51
3
   2012cg
                       0.00256
                                0.00084
                                          0.00256
                                                      2e-05
                                                              0.00144
                                                                          2e-05
                  56
4
   2012cg
                      0.00256
                                0.00084
                                          0.00256
                                                       2e-05
                                                              0.00144
                                                                          2e-05
          8
                               9
                                         10
                                                              11
                                                                          12
0
   m b corr
              m_b_corr_err_DIAG
                                  MU SH0ES
                                              MU_SHØES_ERR_DIAG
                                                                   CEPH DIST
1
    9.74571
                         1.51621
                                    28.9987
                                                         1.51645
                                                                      29.177
2
    9.80286
                         1.51723
                                    29.0559
                                                         1.51747
                                                                      29.177
3
    11.4703
                        0.781906
                                    30.7233
                                                        0.782372
                                                                     30.8433
4
    11.4919
                        0.798612
                                    30.7449
                                                        0.799068
                                                                     30.8433
               13
                                   14
                                               15
                                                          16
                                                                      17
                                                                                 18
\
0
   IS CALIBRATOR
                   USED IN SHOES HF
                                                        cERR
                                                                              x1ERR
                                                C
                                                                      x1
1
                                                    0.04008
                1
                                    0
                                         -0.1076
                                                              -0.548188
                                                                           0.13373
2
                1
                                                   0.038463
                                                              -0.380481
                                    0
                                       -0.032895
                                                                             0.0861
3
                1
                                    0
                                         0.10073
                                                   0.018231
                                                                0.49196
                                                                          0.023545
4
                1
                                    0
                                         0.12247
                                                    0.03903
                                                                0.71261
                                                                          0.083554
        19
                     20
                              21
                                            22
                                                           23
                                                                          24
                                                                               \
0
        mB
                 mBERR
                              x0
                                        x0ERR
                                                    COV_x1_c
                                                                   COV_x1_x0
                                    0.0793177
1
   9.58436
             0.0327221
                         2.63181
                                                  0.00011378
                                                                -0.00052525
2
   9.78448
             0.0352442
                          2.1888
                                    0.0710511
                                               -0.000443845
                                                                -0.00150198
3
   11.8161
             0.0237119
                         0.33695
                                   0.00735879
                                                -6.06025e-05
                                                                9.35054e-06
4
   11.8801
             0.0359611
                         0.31765
                                    0.0105211
                                                 0.000222656
                                                               -0.000136637
              25
                        26
                                  27
                                            28
                                                      29
                                                                     30
                                                                           31
                                                                                \
0
       COV c x0
                        RΑ
                                DEC
                                      HOST RA
                                                HOST DEC
                                                           HOST ANGSEP
                                                                         VPEC
1
    -0.00272765
                  210.774
                            54.2737
                                         -999
                                                    -999
                                                                     -9
                                                                             0
2
    -0.00220084
                  210.774
                            54.2737
                                         -999
                                                     -999
                                                                     -9
                                                                             0
                                                                             0
3
   -0.000110842
                  186.803
                             9.4203
                                         -999
                                                    -999
                                                                     -9
                                                     -999
                                                                     -9
                                                                             0
   -0.000344022
                  186.803
                             9.4203
                                          -999
        32
                                     34
                                                                                  \
                      33
                                                         35
                                                                   36
                                                                              37
                                                               PKMJD
0
   VPECERR
                  MWEBV
                          HOST LOGMASS
                                         HOST LOGMASS ERR
                                                                       PKMJDERR
                                                         -9
1
       250
            0.00758935
                                10.677
                                                               55815
                                                                         0.1071
2
       250
            0.00758935
                                 10.677
                                                          0
                                                             55815.2
                                                                         0.0579
3
       250
              0.0177724
                                  9.633
                                                     0.002
                                                             56082.4
                                                                         0.0278
4
       250
                                  9.633
                                                     0.004
                                                             56082.4
              0.0177724
                                                                         0.0667
     38
               39
                             40
                                                 41
                                                                      42
                                                     m_b_corr_err_VPEC
0
   NDOF
         FITCHI2
                        FITPROB
                                  m_b_corr_err_RAW
1
     36
         26.8859
                                             0.0991
                        0.86447
2
    101
         88.3064
                        0.81222
                                             0.0971
                                                                   1.496
3
    165
            233.5
                   0.000358347
                                             0.0399
                                                                  0.7134
4
     55
         100.122
                   0.000193186
                                             0.0931
                                                                  0.7134
             43
                              44
                                                      45
                                                                             46
                                   biasCor_m_b_COVSCALE
0
   biasCor m b
                 biasCorErr_m_b
                                                           biasCor m b COVADD
1
        0.0381
                           0.005
                                                        1
                                                                         0.003
2
                                                        1
       -0.0252
                           0.003
                                                                         0.004
3
        0.0545
                           0.019
                                                        1
                                                                         0.036
                                                        1
4
        0.0622
                           0.028
                                                                          0.04
```

```
1702
(1702, 47)
C:\Users\asus\AppData\Local\Temp\ipykernel_8580\3109395580.py:5: FutureWarnin
g: The 'delim_whitespace' keyword in pd.read_csv is deprecated and will be re
moved in a future version. Use ``sep='\s+'`` instead
   df = pd.read_csv(file_path, delim_whitespace=True, comment='#', header=Non
e,)
```

Preview Dataset Columns

Before diving into the analysis, let's take a quick look at the column names in the dataset. This helps us verify the data loaded correctly and identify the relevant columns we'll use for cosmological modeling.

In [626]: print(df[[2, 10, 11]].to_string())

	2	10	11
0	zHD	MU_SH0ES	MU_SH0ES_ERR_DIAG
1	0.00122	<u>-</u> 28.9987	1.51645
2	0.00122	29.0559	1.51747
3	0.00256	30.7233	0.782372
4	0.00256	30.7449	0.799068
5	0.00299	30.7757	0.881212
6	0.00317	30.7946	0.614535
7	0.00331	30.4604	0.594683
8	0.00331	30.5528	0.580251
9	0.00331	30.4013	0.578445
10	0.00331	30.5107	0.578546
11	0.00331	31.5011	0.591006
12	0.00339	31.7933	0.55272
13	0.00349	31.4967	0.545492
14	0.00359	31.6969	0.550993
1 5	0.00333	30.9999	0.566505
16	0.00304	31.3933	0.476404
17	0.00407	31.3779	0.479276
18	0.00432	31.499	0.514259
19	0.00432	31.5611	0.530838
20	0.00452	31.9309	0.442017
21	0.00465	32.033	0.420403
22	0.00483	31.2476	0.558603
23	0.00483	31.1331	0.446882
24			
	0.00483	31.6525	0.564724
25	0.00483	31.2234	0.410577
26	0.00483	31.34	0.562589
27	0.00483	31.7635	0.574442
28	0.00488	31.4473	0.448264
29	0.00488	31.539	0.407028
30	0.00538	31.6512	0.514401
31	0.00548	31.7282	0.501431
32	0.0057	31.9117	0.469628
33	0.0057	31.8985	0.483668
34	0.00571	31.6799	0.375913
35	0.00571	31.6292	0.385756
36	0.00587	31.7403	0.491367
37	0.00588	32.1822	0.339643
38	0.00592	32.4685	0.487055
39	0.00602	31.9404	0.344335
40	0.00602	32.0666	0.343707
41	0.00602	31.9102	0.350249
42	0.00616	30.9079	0.524992
43	0.00616	31.1857	0.452235
44	0.00625	32.0667	0.32593
45	0.00625	32.0023	0.36156
46	0.00625	32.0999	0.322811
47	0.00625	32.0337	0.339166
48	0.0063	32.0754	0.533991
49	0.0063	32.0843	0.537335
50	0.0063	32.0203	0.538159
51	0.00631	32.8333	0.562902
52	0.00634	32.4001	0.482567
53	0.00648	32.4608	0.318474
54	0.00648	32.4338	0.32229
55	0.00665	31.7321	0.531169

			<u></u>
1652	0.74911	42.9396	0.262488
1653	0.7493	43.1772	0.163225
1654	0.75074	42.9012	0.318716
1 655	0.75899	43.2469	0.233153
1 656	0.76076	43.0667	0.201161
1657	0.7611	43.1767	0.236628
1658	0.76165	43.131	0.239872
1 659	0.76566	43.2369	0.225434
1660	0.76666	43.4224	0.250162
1661	0.76674	43.3623	0.27025
1662	0.76709	43.5587	0.25715
1 663	0.76865	43.2929	0.311675
1664	0.76932	43.2168	0.162741
1665	0.77309	43.3568	0.295081
1666	0.77929	43.0395	0.311092
1667	0.78807	43.3042	0.232049
1668	0.78907	43.3837	0.271177
1 669	0.78928	43.1995	0.165559
1670	0.79662	42.9026	0.372096
1671	0.79863	43.4338	0.288144
1672	0.83981	43.36	0.211845
1673	0.83981	43.2012	0.390423
1674	0.85482	43.6168	0.299913
1 675	0.93585	43.5331	0.239939
1676	0.97423		0.201519
1677	1.01242		0.367085
	1.01988	44.2757	0.225903
1679		43.9706	0.47547
1680	1.02789	44.5364	0.353385
1681	1.04817	44.4229	0.488758
1682		44.4405	0.22363
	1.23225		0.610496
	1.23597		0.273735
		44.8641	0.275291
	1.3041	44.7206	0.316517
1687	1.30611	45.0197	0.445162
1688	1.31317	44.7867	0.316349
1689	1.3291	44.8745	0.238344
1690	1.34101	44.7541	0.306395
1691	1.35136	44.5492	0.31846
1692	1.35608	44.8094	0.238282
1693	1.39103	44.7944	0.374345
1694	1.41633	44.4579	0.735776
1695	1.5429	45.0902	0.371014
1696	1.54901	45.293	0.233771
1697	1.61505	45.1595	0.333024
1698	1.69706	45.2863	0.38048
1699	1.80119		0.281981
1700	1.91165		0.358642
1701	2.26137	46.1828	0.281309

Clean and Extract Relevant Data

To ensure reliable fitting, we remove any rows that have missing values in key columns:

- zHD: redshift for the Hubble diagram
- MU SH0ES: distance modulus
- MU SHOES ERR DIAG: uncertainty in the distance modulus

We then extract these cleaned columns as NumPy arrays to prepare for analysis and modeling.

```
In [ ]: # Filter for entries with usable data based on the required columns
        z = df[2].values[1:].astype(float) # skip header row and converted into floa
        t type
        m = df[10].values[1:] .astype(float)
        m_e = df[11].values[1:].astype(float)
```

Plot the Hubble Diagram

Let's visualize the relationship between redshift z and distance modulus μ , known as the Hubble diagram. This plot is a cornerstone of observational cosmology—it allows us to compare supernova observations with theoretical predictions based on different cosmological models.

We use a logarithmic scale on the redshift axis to clearly display both nearby and distant supernovae.

```
In [686]: # Write a code to plot the distance modulus and the redshift (x-axis), label t
    hem accordingly.
    plt.figure()
    plt.errorbar(z, m, m_e, label='Observed Data', color='skyblue')
    plt.xlabel('Redshift (z)')
    plt.ylabel('Distance Modulus (μ)')
    plt.title('Hubble Diagram: Distance Modulus vs Redshift')
    plt.grid(True)

#Try using log scale in x-axis
    plt.xscale('log')
    plt.legend()
    plt.show()
```

Hubble Diagram: Distance Modulus vs Redshift

Define the Cosmological Model

We now define the theoretical framework based on the flat ΛCDM model (read about the model in wikipedia if needed). This involves:

· The dimensionless Hubble parameter:

$$E(z) = \sqrt{\Omega_m (1+z)^3 + (1-\Omega_m)}$$

· The distance modulus is:

$$\mu(z) = 5 \log_{10}(d_L/{
m Mpc}) + 25$$

· And the corresponding luminosity distance :

$$d_L(z) = (1+z)\cdotrac{c}{H_0}\int_0^zrac{dz'}{E(z')}$$

These equations allow us to compute the expected distance modulus from a given redshift z, Hubble constant H_0 , and matter density parameter Ω_m .

```
In [ ]: # Define the E(z) for flat LCDM
def E(z, Omega_m):
    return np.sqrt(Omega_m * (1+z)**3 + (1 - Omega_m))

# Luminosity distance in Mpc, try using scipy quad to integrate.
def luminosity_distance(z, H0, Omega_m):
    integral, _ = quad(lambda z_: 1 / E(z_, Omega_m), 0, z)
    d_L = (1 + z) * (c.to('km/s').value / H0) * integral
    return d_L # in Mpc

# Theoretical distance modulus, use above function inside mu_theory to compute
Luminosity distance
def mu_theory(z, H0, Omega_m):
    return 5 * np.log10([luminosity_distance(z_, H0, Omega_m) for z_ in z]) +
25
```


🦴 Fit the Model to Supernova Data

We now perform a non-linear least squares fit to the supernova data using our theoretical model for $\mu(z)$. This fitting procedure will estimate the best-fit values for the Hubble constant H_0 and matter density parameter Ω_m , along with their associated uncertainties.

We'll use:

- curve fit from scipy.optimize for the fitting.
- The observed distance modulus (\mu), redshift (z), and measurement errors.

The initial guess is:

- $H_0 = 70 \, \text{km/s/Mpc}$
- $\Omega_m = 0.3$

```
In [630]: # Initial guess: H0 = 70, Omega_m = 0.3
          p0 = [70, 0.3]
           # Write a code for fitting and taking error out of the parameters
           p_optimal, covariance = curve_fit(mu_theory, z, m, p0=p0, sigma=m_e, absolute_
           sigma=True)
          HO_fit, Omega_m_fit = p_optimal
          H0 err, Omega m err = np.sqrt(np.diag(covariance))
           print(f"Fitted H0 = {H0_fit:.2f} ± {H0_err:.2f} km/s/Mpc")
           print(f"Fitted Omega_m = {Omega_m_fit:.3f} ± {Omega_m_err:.3f}")
          Fitted H0 = 72.97 \pm 0.26 \text{ km/s/Mpc}
          Fitted Omega m = 0.351 \pm 0.019
```

Estimate the Age of the Universe

Now that we have the best-fit values of H_0 and Ω_m , we can estimate the age of the universe. This is done by integrating the inverse of the Hubble parameter over redshift:

$$t_0 = \int_0^\infty rac{1}{(1+z)H(z)} \, dz$$

We convert H_0 to SI units and express the result in gigayears (Gyr). This provides an independent check on our cosmological model by comparing the estimated age to values from other probes like Planck CMB measurements.

```
In [687]: # Write the function for age of the universe as above

def age_of_universe(H0, Omega_m):
    integral = lambda z_: 1 / ((1 + z_) * E(z_, Omega_m))
    integral, _ = quad(integral, 0, np.inf) # Using quad function to integrat
    e the equation
        H0_si = H0 * u.km / (u.s * u.Mpc) # Convert H0 to SI units
        t0 = integral / H0_si.to('1/s').value / (3600 * 24 * 365.25 * 1e9) # Conv
    ert to Gyr
    return t0 # in Gyr

t0 = age_of_universe(H0_fit, Omega_m_fit)
    print(f"Estimated age of Universe: {t0:.2f} Gyr")
```

Estimated age of Universe: 12.36 Gyr

📊 Analyze Residuals

To evaluate how well our cosmological model fits the data, we compute the residuals:

$$Residual = \mu_{obs} - \mu_{model}$$

Plotting these residuals against redshift helps identify any systematic trends, biases, or outliers. A good model fit should show residuals scattered randomly around zero without any significant structure.

```
In [632]: # Write the code to find residual by computing mu_theory and then plot
    mu_model = mu_theory(z, H0_fit, Omega_m_fit) # Compute the theoretical distan
    ce modulus

# Calculate residuals
    residuals = m - mu_model
    # Plot residuals
    plt.figure(figsize=(10, 4))
    plt.grid(True)
    plt.scatter(z, residuals, label='Residuals', color='hotpink', s=20)
    plt.legend()
    plt.xlabel('Redshift (z)')
    plt.ylabel('Residuals (μ_obs - μ_model)')
    plt.title('Residuals of Distance Modulus vs Redshift')
    plt.show()
```


Fit with Fixed Matter Density

To reduce parameter degeneracy, let's fix $\Omega_m=0.3$ and fit only for the Hubble constant $H_0.$

```
In [688]: def mu_fixed_Om(z, H0):
    return mu_theory(z, H0, Omega_m=0.3)
residuals = m - mu_fixed_Om(z, H0_fit)

# Try fitting with this fixed value 'Omega_m=0.3'
plt.figure(figsize=(10, 4))
plt.grid(True)
plt.scatter(z, residuals, label='Residuals at fixed $ \Omega_m = 0.3 $ ', colo
r='lightgreen', s=20)
plt.legend()
plt.xlabel('Redshift (z)')
plt.ylabel('Residuals (μ_obs - μ_model)')
plt.title('Residuals of Distance Modulus vs Redshift')
plt.show()
```

```
<>:8: SyntaxWarning: invalid escape sequence '\0'
<>:8: SyntaxWarning: invalid escape sequence '\0'
C:\Users\asus\AppData\Local\Temp\ipykernel_8580\263392893.py:8: SyntaxWarnin
g: invalid escape sequence '\0'
  plt.scatter(z, residuals, label='Residuals at fixed $ \Omega_m = 0.3 $ ', c
olor='lightgreen', s=20)
```


Compare Low-z and High-z Subsamples

Finally, we examine whether the inferred value of H_0 changes with redshift by splitting the dataset into:

- Low-z supernovae (z < 0.1)
- **High-z** supernovae ($z \ge 0.1$)

We then fit each subset separately (keeping $\Omega_m=0.3$) to explore any potential tension or trend with redshift.

```
In []: # Split the data for the three columns and do the fitting again and see
    z_split = 0.1

# Calculate H0 for low and high redshift by using curve_fit function
    H0_low, cov_low = curve_fit(mu_theory, z[z < z_split], m[z < z_split], p0=p0,
    sigma=m_e[z < z_split], absolute_sigma=True)
    H0_high, cov_high = curve_fit(mu_theory, z[z >= z_split], m[z >= z_split], p0=
    p0, sigma=m_e[z >= z_split], absolute_sigma=True)

# Calculate the errors(standard deviation) for the low and high redshift
    H0_low_err = np.sqrt(cov_low[0][0])
    H0_high_err = np.sqrt(cov_high[0][0])

# print the results
    print(f"Low-z (z < {z_split}): H0 = {H0_low[0]:.2f} ± {H0_low_err:.2f} km/s/Mpc
    c")
    print(f"High-z (z ≥ {z_split}): H0 = {H0_high[0]:.2f} ± {H0_high_err:.2f} km/s/Mpc")

Low-z (z < 0.1): H0 = 72.74 ± 0.59 km/s/Mpc</pre>
```

```
Low-z (z < 0.1): H_0 = 72.74 \pm 0.59 \text{ km/s/Mpc}
High-z (z \geq 0.1): H_0 = 73.18 \pm 0.50 \text{ km/s/Mpc}
```

You can check your results and potential reasons for different values from accepted constant using this paper by authors of the Pantheon+ dataset (https://arxiv.org/pdf/2310.11727)

You can find more about the dataset in the paper too

```
In [677]: # Hubble diagram with model fit
plt.figure()
plt.errorbar(z, m, m_e ,color='orange', label='Observed Data')
mu_model = mu_theory(z, H0_fit, Omega_m_fit)
plt.plot(z, mu_model, label='Model Fit', color='black')
plt.grid(True)
plt.xlabel('Redshift (z)')
plt.ylabel('Distance Modulus')
plt.title('Hubble diagram with Model fit')
plt.xscale('log')
plt.legend()
plt.show()
```

Hubble diagram with Model fit

