PET experiment

BY LEVI KEAY

LAB PARTNER: MARCUS LEE?

Table of contents

- ▶ What is PET?
 - ► Physical mechanism
 - Uses
- Experiment:
 - Apparatus
 - Data collection
 - Sources of background Noise
 - Corrective measures
 - Characterization of scanning system

Image reconstruction with inverse Radon Transform

Physical Mechanism:

1) Beta Positive decay -> Positron emission

Detection:

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation

Detection:

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

Use pair of scintillators + photomultiplier tubes : capture gamma photons + amplify/convert to electrical signal

Physical Mechanism:

- 1) Beta Positive decay -> Positron emission
- 2) Positron meets electron -> Annihilation
- 3) Two photons (511 keV) produced, travelling in opposite directions

Detection:

Use pair of scintillators + photomultiplier tubes :
capture gamma photons + amplify/convert to electrical signal

2) Use hardware: count number of **coincident*** photon captures

*when **both scintillators activated within time window** (~ns)

Scintillator

Photo-multiplier tube (PMT)

Source arm

Computer

Hardware

High voltage power supply (for PMTs)

Track

Step motors

from PMT

Data collected from a scan of a single radioactive source looks like this:

The aperture is set to 3mm.

Why does it not go to zero outside of the aperture?

Limitations of resolution: SNR and aperture

Limitations of resolution: SNR and aperture

1. Segment using first spatial derivative

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal

- 1. Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal
- 4. Isolate the primary signal by subtracting the corrective signal

- Segment using first spatial derivative
- 2. Fit gaussian to the tails
- 3. Generate corrective signal
- 4. Isolate the primary signal by subtracting the corrective signal
- 5. Fit gaussian to the primary signal,

measure full width @ half maximum (FWHM)

- Considering two sources figure
- Rotation progression

- ▶ Why is SNR important in this context?
- Medical application : looking for a tumour
 - ▶ Smaller signal
 - ▶ Important to get right

Sensative to scanner alignment!

Attempt to center this point on the spatial (vertical) axis by removing rows at the bottom:

Sensative to scanner alignment!

That's better!

