CMPT-413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Why are parsing algorithms important?

- A linguistic theory is implemented in a formal system to generate the set of grammatical strings and rule out ungrammatical strings.
- Such a formal system has computational properties.
- One such property is a simple decision problem: given a string, can it be generated by the formal system (recognition).
- If it is generated, what were the steps taken to recognize the string (parsing).

Why are parsing algorithms important?

- Consider the recognition problem: find algorithms for this problem for a particular formal system.
- The algorithm must be decidable.
- Preferably the algorithm should be polynomial: enables computational implementations of linguistic theories.
- Elegant, polynomial-time algorithms exist for formalisms like CFG

Top-down, depth-first, left to right parsing

```
S \rightarrow NPVP
NP \rightarrow Det N
NP \rightarrow Det N PP
VP \rightarrow V
VP \rightarrow VNP
VP \rightarrow VNPPP
PP \rightarrow PNP
NP \rightarrow I
Det \rightarrow a | the
 V \rightarrow saw
  N → park | dog | man | telescope
  P \rightarrow in \mid with
```

Top-down, depth-first, left to right parsing

- Consider the input string: the dog saw a man in the park
- S ... (S (NP VP)) ... (S (NP Det N) VP) ... (S (NP (Det the) N) VP) ... (S (NP (Det the) (N dog)) VP) ...
- (S (NP (Det the) (N dog)) VP) ... (S (NP (Det the) (N dog)) (VP V NP PP)) ... (S (NP (Det the) (N dog)) (VP (V saw) NP PP)) ...
- (S (NP (Det the) (N dog)) (VP (V saw) (NP Det N) PP)) . . .
- (S (NP (Det the) (N dog)) (VP (V saw) (NP (Det a) (N man)) (PP (P in) (NP (Det the) (N park)))))

Number of derivations

CFG rules $\{ S \rightarrow S S, S \rightarrow a \}$

$n:a^n$	number of parses
1	1
2	1
3	2
4	5
5	14
6	42
7	132
8	429
9	1430
10	4862
11	16796

Number of derivations grows exponentially

 $L(G) = a + using CFG rules \{ S \rightarrow S S, S \rightarrow a \}$

Syntactic Ambiguity: (Church and Patil 1982)

Algebraic character of parse derivations

Power Series for grammar for coordination (more general than PPs):
 NP → cabbages | kings | NP and NP

```
NP = cabbages + cabbages and kings
+ 2 (cabbages and cabbages and kings)
+ 5 (cabbages and kings and cabbages and kings)
+ 14 ...
```

CFG Ambiguity

- Coefficients in previous equation equal the number of parses for each string derived from E
- These ambiguity coefficients are Catalan numbers:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

• $\begin{pmatrix} a \\ b \end{pmatrix}$ is the binomial coefficient

$$\begin{pmatrix} a \\ b \end{pmatrix} = \frac{a!}{(b!(a-b)!)}$$

- Why Catalan numbers? Cat(n) is the number of ways to parenthesize an expression of length *n* with two conditions:
 - 1. there must be equal numbers of open and close parens
 - 2. they must be properly nested so that an open precedes a close

- For an expression of length n there are a total of 2n choose n parenthesis pairs. But n+1 of them have the right parenthesis to the left of its matching left parenthesis () ().
- So we divide 2n choose n by n + 1:

$$Cat(n) = \frac{1}{n+1} \binom{2n}{n}$$

n	catalan(n)
1	1
2	2
3	5
4	14
5	42
6	132
7	429
8	1430
9	4862
10	16796

 Cat(n) also provides exactly the number of parses for the sentence: John saw the man on the hill with the telescope (generated by the grammar given below, a different grammar will have different number of parses)

$$S \rightarrow NPVP$$
 $VP \rightarrow VPPP$ $NP \rightarrow John \mid Det N$ $NP \rightarrow NPPP$ $NP \rightarrow man \mid hill \mid telescope$ $PP \rightarrow PNP$ $VP \rightarrow VNP$ $VP \rightarrow the$ $VP \rightarrow the$ $PP \rightarrow the$

In the above sentence there are 2 PPs, so number of parse trees = Cat(2 + 1) = 5. With 8 PPs: Cat(9) = 4862 parse trees

• Other sub-grammars are simpler. For chains of adjectives:

cross-eyed pot-bellied ugly hairy professor

We can write the following grammar, and compute the power series:

$$ADJP \rightarrow adj ADJP \mid \epsilon$$

$$ADJP = 1 + adj + adj^2 + adj^3 + \dots$$

Now consider power series of combinations of sub-grammars:

```
S = NP \cdot VP

( The number of products over sales ... )

( is near the number of sales ... )
```

 Both the NP subgrammar and the VP subgrammar power series have Catalan coefficients

• The power series for the S \rightarrow NP VP grammar is the multiplication:

$$(N \sum_{i} Cat_{i} (PN)^{i}) \cdot (is \sum_{j} Cat_{j} (PN)^{j})$$

In a parser for this grammar, this leads to a cross-product:

$$L \times R = \{(l, r) | l \in L \& r \in R \}$$

A simple change:

```
Is (The number of products over sales ...)

( near the number of sales ...)

= \operatorname{Is} N \sum_{i} \operatorname{Cat}_{i} (PN)^{i} \cdot (\sum_{j} \operatorname{Cat}_{j} (PN)^{j})
= \operatorname{Is} N \sum_{i} \sum_{j} \operatorname{Cat}_{i} \operatorname{Cat}_{j} (PN)^{i+j}
= \operatorname{Is} N \sum_{i+j} \operatorname{Cat}_{i+j+1} (PN)^{i+j}
```

Dealing with Ambiguity

- A CFG for natural language can end up providing exponentially many analyses, approx n!, for an input sentence of length n
- Much worse than the worst case in the part of speech tagging case, which was n^m for m distinct part of speech tags
- If we actually have to process all the analyses, then our parser might as well be exponential
- Typically, we can directly use the compact description (in the case of CKY, the chart or 2D array, also called a *forest*)

Dealing with Ambiguity

- Solutions to this problem:
 - CKY algorithm: computes all parses in $O(n^3)$ time. Problem is that worst-case and average-case time is the same.
 - Earley algorithm: computes all parses in $O(n^3)$ time for arbitrary CFGs,

 $O(n^2)$ for unambiguous CFGs, and O(n) for so-called bounded-state CFGs (e.g. $S \to aSa \mid bSb \mid aa \mid bb$ which generates palindromes over the alphabet a, b). Also, average case performance of Earley is better than CKY.

 Deterministic parsing: only report one parse. Two options: top-down (LL parsing) or bottom-up (LR or shift-reduce) parsing

- Every CFG has an equivalent pushdown automata: a finite state machine which has additional memory in the form of a stack
- Consider the grammar: $NP \rightarrow Det N$, $Det \rightarrow the$, $N \rightarrow dogs$
- Consider the input: the dogs
- shift the first word *the* into the stack, check if the top *n* symbols in the stack matches the right hand side of a rule in which case you can **reduce** that rule, or optionally you can shift another word into the stack

- reduce using the rule $Det \rightarrow the$, and push Det onto the stack
- shift dogs, and then reduce using $N \to dogs$ and push N onto the stack
- the stack now contains Det, N which matches the rhs of the rule $NP \to Det\ N$ which means we can reduce using this rule, pushing NP onto the stack
- If NP is the start symbol and since there is no more input left to shift, we can accept the string

 Can this grammar get stuck (that is, there is no shift or reduce possible at some stage while parsing) on a valid string?
• What happens if we add the rule $NP \rightarrow dogs$ to the grammar?

- Sometimes humans can be "led down the garden-path" when processing a sentence (from left to right)
- Such garden-path sentences lead to a situation where one is forced to backtrack because of a commitment to only one out of many possible derivations
- Consider the sentence: The emergency crews hate most is domestic violence.
- Consider the sentence:
 The horse raced past the barn fell

- Once you process the word *fell* you are forced to reanalyze the previous word *raced* as being a verb inside a *relative clause*: *raced past the barn*, meaning *the horse that was raced past the barn*
- Notice however that other examples with the same structure but different words do not behave the same way.
- For example:
 the flowers delivered to the patient arrived

- A dotted rule is a way to get around the explicit conversion of a CFG to Chomsky Normal Form
- Since natural language grammars are quite large, and are often modified to be able to parse more data, avoiding the explicit conversion to CNF is an advantage
- A dotted rule denotes that the right hand side of a CF rule has been partially recognized/parsed

- $S \rightarrow \bullet NP \ VP$ indicates that once we find an NP and a VP we have recognized an S
- $S \rightarrow NP$ VP indicates that we've recognized an NP and we need a VP
- $S \rightarrow NP \ VP$ indicates that we have a complete S
- Consider the dotted rule $S \to \bullet NP\ VP$ and assume our CFG contains a rule $NP \to John$

Because we have such an NP rule we can **predict** a new dotted rule $NP \rightarrow \bullet John$

- If we have the dotted rule: $NP \rightarrow \bullet John$ and the next input symbol on our *input tape* is the word *John* we can **scan** the input and create a new dotted rule $NP \rightarrow John$ •
- Consider the dotted rule S → •NP VP and NP → John •
 Since NP has been completely recognized we can complete
 S → NP VP
- These three steps: *predictor*, *scanner* and *completer* form the *Earley* parsing algorithm and can be used to parse using any CFG without conversion to CNF
 - Note that we have not accounted for ϵ in the scanner

- A *state* is a dotted rule plus a span over the input string, e.g. $(S \rightarrow NP \bullet VP, [4, 8])$ implies that we have recognized an NP
- We store all the states in a *chart* typically, in *chart[i]* we store all states of the form: $(A \to \alpha \bullet \beta, [i, j])$ or states of the form: $(A \to \alpha \bullet \beta, [j, i])$, where $\alpha, \beta \in (N \cup T)^*$

- Note that $(S \to NP \bullet VP, [0, 8])$ implies that in the chart there are two states $(NP \to \alpha \bullet, [0, 8])$ and $(S \to \bullet NP VP, [0, 0])$ this is the *completer* rule, the heart of the Earley parser
- Also if we have state $(S \to \bullet NP \ VP, [0, 0])$ in the chart, then we always *predict* the state $(NP \to \bullet \alpha, [0, 0])$ for all rules $NP \to \alpha$ in the grammar

$$S \rightarrow NP VP$$
 $NP \rightarrow Det N \mid NP PP \mid John$
 $Det \rightarrow the$
 $N \rightarrow cookie \mid table$
 $VP \rightarrow VP PP \mid V NP \mid V$
 $V \rightarrow ate$
 $PP \rightarrow P NP$
 $P \rightarrow on$

Consider the input: 0 John 1 ate 2 on 3 the 4 table 5 What can we predict from the state $(S \rightarrow \bullet NP \ VP, [0, 0])$? What can we complete from the state $(V \rightarrow ate \bullet, [1, 2])$?