

The Co-Simulation of a Cardiac Pacemaker using VDM and 20-sim

Carl Gamble, Martin Mansfield, John Fitzgerald (Centre for Software Reliability, Newcastle University, UK)

Co-simulation of a Cardiac Pacemaker

- 1. Motivation
- 2. Co-model Development Approaches
- 3. Heart Modelling
- 4. Pacemakers and Co-Model
- 5. Simulation Results
- 6. Future Directions

Motivations for DESTECS

- Demanding requirements for:
 - Rapid development in competitive markets
 - Resource utilisation
 - Resilience
 - Complexity of error detection and recovery
- The need for coordinated engineering:
 - Across disciplines (cultures, abstractions, formalisms)
 - ... and models.

DESTECS Approach

(www.destecs.org)

- Bridge disciplines through co-simulation
 - Combine DE controller models and CT plant models
 - Collaboration while working with familiar formalism
- Develop methods and tools
 - Linking heterogeneous models, each in an appropriate formalism
 - A linking co-simulation engine, based on a reconciled operational semantics of the two simulations
- Patterns for modelling faults and fault tolerance mechanisms

Basic DESTECS Concepts

Basic DESTECS Concepts

Co-model Development Approaches

Approach	Pros	Cons	Use where
DE-first	Complex controller behaviour early	Plant dynamics oversimple;Loop controllers not tuned;Envt. model complexity	Complex DE control is priority;Legacy DE;Mainly DE modellers
CT-first	 Plant dynamics early; loop controllers tuned 	Complex DE control not easily studied	Plant/envt needs priority;Legacy CT;Mainly CT modellers
Contract- first	 Co-model from beginning; constituents co- 	 Constituents mutually dependent for test; restricted to tool-prescribed design 	Basic co-model can be quickly built;
Hybrid Contract- first	 Co-model early; Constituents not mutually dependent for test 	Extra effort building constituents	•Start-up cost of basic contract-first is high •Integration of two legacy

Images from: http://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart

Images from: http://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart

_

Images from: http://en.wikipedia.org/wiki/Electrical_conduction_system_of_the_heart

Heart Defects:

- Sinus Bradycardia: SA node fires too slowly
- Third Degree AV Block: Action potential does not reach AV node

Images from: http://en.wikipedia.org/wiki/Electrical conduction system of the heart

Modelling the Heart DE-first (VDM)

R: resting

a: SA node timeout sb: sinus bradycardia timeout

d: ventrical contraction ends

e: AV node timeout

AC: atrial contraction

VC: Ventrical contraction

b: atrial contraction ends

c: charge conducted hb: heart block present

IP: Internodal pathway

Initial Heart Approximation (VDM-SL)

```
operations
 ProgressModel: () ==> Process
 ProgressModel() == (
    if cycle.stage = <Resting> then (
      if nodes.SA = 0 then EnterStage(<Atrial Contraction>);
      else if nodes.AV = 0 then EnterStage(<Ventricular_Contraction>);)
    else (
      if cycle.timer = 0 then ProgressStage();
   Decrement All Timers();
   return cycle.stage;
```

VDM-SL state transition model using simple timers

Modelling the Heart (20-sim)

- Nodes modelled as capacitors with discharge conditions
- Faults activated via global variables

Initial Pacemaker Description (VDM-SL)

```
ProgressModel: () ==> Activity
                                       VDM-SL state transition model
ProgressModel() == (
                                                       using simple timers
  Update Timers();
  if settings.a sensed then (
         if Detect Atrial Stimulation() then A Stimulated();
         if Atrial Timeout() and settings.a paced then (
           Stimulate A();
           return "Delivered Atrial Stimulation";)
         else (
           if AV Timeout() and settings.triggered then (
                                                                    S1
           Stimulate V();
           return "Ventricular Stimulation";
        ),
                                                                         d
                                                                а
                                                       S3
                                                                    S2
```


Simulating DE only Progression

DE Simulator (VDM-SL)

Translating Pacemaker to VDM-RT

Establishing a Co-model

Results of DE First Model

Results of DE First Model

Normal heart trace

Tim	Stage	Action
858	<atrial_contraction></atrial_contraction>	
938	<av_distribution></av_distribution>	0
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
111 Q	<resting></resting>	0
179	<atrial_contraction></atrial_contraction>	0
	<av_distribution></av_distribution>	0
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
205	<resting></resting>	[]
273	<atrial_contraction></atrial_contraction>	0
•	<av_distribution></av_distribution>	[]
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
299	<resting></resting>	0

Results of DE First Model

Normal heart trace

Tim	Stage	Action
858	<atrial_contraction></atrial_contraction>	0
938	<av_distribution></av_distribution>	[]
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
111 Q	<resting></resting>	
179	<atrial_contraction></atrial_contraction>	[]
187	<av_distribution></av_distribution>	[]
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
205		[]
273	<atrial_contraction></atrial_contraction>	0
281	<av_distribution></av_distribution>	[]
	<ventricular_contracti< td=""><td>0</td></ventricular_contracti<>	0
299		

Trace with heart block active

Time Stage	Action
858 < Atrial_Contraction >	0
938 < AV_Distribution >	[]
1058 < Resting >	[]
1069 < Resting >	Ventricular Stimusition
1070 < Ventricular_Contracti	[]
1130 < Resting >	[]
1795 < Atrial_Contraction >	O
1875 < AV_Distribution >	[]
1995 < Resting >	O
2006 < Resting >	Ventricular Stimusition
2007 < Ventricular_Contracti	0
2067 < Resting >	[]

Comparison of real and simulated ECG

Comparison of real and simulated ECG

Simulated ECG with heart block

Comparison of real and simulated ECG

Simulated ECG with heart block

Simulated ECG with heart block and pacing

Fidelity of heart model (output traces and response)

Fidelity of heart model (output traces and response)

Nodes only

Key

SA - Sinoatrial node

IP – Internodal pathway

AV - Atrioventricular node

MC – Myocardia

PF – Purkinje fibres

Fidelity of heart model (output traces and response)

Nodes only

Nodes and single myocardia

Key

SA - Sinoatrial node

IP - Internodal pathway

AV - Atrioventricular node

MC - Myocardia

PF – Purkinje fibres

Fidelity of heart model (output traces and response)

Nodes only

SA IP AV Nodes and single myocardia

SA MC IP AV MC Nodes, pathways and multiple myocardia (finite element)

MC	SA	MC
MC	IP	MC
MC		MC
	AV	
MC	PF	MC
MC		MC
MC		MC
MC	MC	MC

Key

SA – Sinoatrial node

IP - Internodal pathway

AV – Atrioventricular node

MC – Myocardia

PF - Purkinje fibres

- Heart conditions modelled
 - Heart block types 1 and 2
 - Atrial Fibrilation
 - Atrial Tachycardia
 - •

- Heart conditions modelled
 - Heart block types 1 and 2
 - Atrial Fibrilation
 - Atrial Tachycardia
 - •
- Fault modelling
 - Signal noise on sensing leads
 - Imperfect stimulation

- Heart conditions modelled
 - Heart block types 1 and 2
 - Atrial Fibrilation
 - Atrial Tachycardia
 - •
- Fault modelling
 - Signal noise on sensing leads
 - Imperfect stimulation
- Pacing behaviours
 - All heart conditions/modes
 - Lead noise tolerance
 - Accelerometers

The Co-Simulation of a Cardiac Pacemaker using VDM and 20-sim

Carl Gamble, Martin Mansfield, John Fitzgerald (Centre for Software Reliability, Newcastle University, UK)

