Control Theory Homework 3

Kamil Kamaliev, Var e k.kamaliev@innopolis.university

March 2020

Exercise 3.

$$W = \frac{s+2}{2s^2+7}$$

Figure 1: Simulink Schema

I decided to start with $k_p = 1$ and $k_d = k_i = 0$

Figure 2: $k_p = 1$ and $k_d = k_i = 0$

As we can see, the system is far from the desired control. To solve this problem, I adjusted the the coefficients using PID Tuner.

Figure 3: Overshoot with $k_p = 35$, $k_d = 0.4$, $k_i = 61$

The controller above stabilize the system pretty fast. However, it overshoots.

Figure 4: No overshoot with $k_p = 5.33, \ k_d = 0.99, \ k_i = 6.75$

The controller above doesn't overshoot. However, its stabilization time is greater than the one that the previous controller had.

As a result, we need to make choice between overshooting and minimizing the stabilization time.

Exercise 4.

$$W(s) = \frac{s+4}{s^2 + 3s + 15}$$

Afer openning the Matlab Control System Designer, we see the following picture:

Figure 5: Original System

To make orientation easier the following design requirements were set: rise_time=1, settle_time=3, overshoot=20%

Then, in order to make it rise to 1, I added integrator (real pole in zero) and, to decrease the rise time, adjusted the bode magnitude plot

After the described manipulations I obtained the following:

Figure 6: System with integrator and adjusted bode plot

To get rid of overshoot and decrease the stabilization time, I added several real zeroes and symmetric complex pole

Figure 7: System with integrator and adjusted bode plot