DEFINITIONS: SETS AND ELEMENTS

- A set is an unordered collection of objects.
 - Naïve set theory:
 - Georg Cantor (1845-1918) father of set theory

- The objects in a set are called the elements, or members of the set.
 A set is said to contain its elements.
- The notation $a \in A$ denotes that a is an element of the set A.
- If a is not a member of A, write $a \notin A$
- Uppercase letters used for sets
 - Lowercase letters for elements
 - ZyBook Participation Activity 1.1.1

SOME IMPORTANT SETS

- \mathbb{N} = natural numbers = { 0, 1, 2, 3, 4, ... }
- \blacksquare Z = Integers= { ...,-4,-3,-2,-1,0, 1, 2, 3, 4, ... }
- \blacksquare Z⁺ = Positive Integers = {1,2,3,4,...}
- \mathbb{Q} = rational numbers = $\{p/q : p \in \mathbb{Z}, q \in \mathbb{Z}^+\}$
- \blacksquare = real numbers = any decimal number of arbitrary precision
- Irrational numbers = $\{x: x \in \mathbb{R} \text{ and } x \notin \mathbb{Q} \}$
 - (e.g., pi, e,)
- $\emptyset = \{\}$ is the empty set

INTERVAL NOTATION

$$[a,b] = \{x \mid a \le x \le b\}$$

$$[a,b) = \{x \mid a \le x < b\}$$

$$(a,b] = \{x \mid a < x \le b\}$$

$$(a,b) = \{x \mid a < x < b\}$$

closed interval [a,b]
open interval (a,b)

(caution: ∞ can never have a square bracket)

SUBSETS

Definition: The set A is a *subset* of B, if and only if every element of A is also an element of B.

- The notation $A \subseteq B$ is used to indicate that A is a subset of the set B.
- $A \subseteq B$ holds if and only if is true. $\forall x (x \in A \rightarrow x \in B)$
- ZyBook Exercises 1.1

SHOWING A SET IS OR IS NOT A SUBSET OF ANOTHER SET

• Showing that A is a Subset of B: To show that $A \subseteq B$, show that if x belongs to A, then x also belongs to B:

$$\forall x (x \in A \to x \in B)$$

 $\forall x(x\in A\to x\in B)$ • Showing that A is not a Subset of B: $A\nsubseteq B$

$$\neg \forall x (x \in A \to x \in B)$$
$$\exists x \neg (x \in A \to x \in B)$$
$$\exists x (x \in A \land x \notin B)$$

• To show that A is not a subset of B, $A \nsubseteq B$, find an element $x \in A$ with x $\notin B$. (Such an x is a counterexample to the claim that $x \in A$ implies $x \in B$.)

PROPER SUBSETS

Definition: If $A \subseteq B$, but $A \neq B$, then we say A is a *proper subset* of B, denoted by $A \subset B$. i.e.,:

$$A \subset B$$
 iff

$$\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \not\in A)$$

Venn Diagram

SET EQUALITY

Definition: Two sets are equal **if and only if (iff)** they have the same elements; (Definitions are "iff" even if they only say "if")

If they have the same elements, then they are equal,

If they are equal, then they have the same elements.

Therefore if A and B are sets, then A and B are equal if and only if

$$\forall x (x \in A \leftrightarrow x \in B)$$

$$\forall x[(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

• We write A = B if A and B are equal sets.

$$\{1,3,5\} = \{3,5,1\}$$

 $\{1,5,5,5,3,3,1\} = \{1,3,5\}$

ANOTHER LOOK AT EQUALITY OF SETS

• Recall that two sets A and B are equal, denoted by A = B, iff

$$\forall x (x \in A \leftrightarrow x \in B)$$

• Using logical equivalences we have that A = B iff

$$\forall x [(x \in A \to x \in B) \land (x \in B \to x \in A)]$$

This is equivalent to

$$A \subseteq B$$
 and $B \subseteq A$

POWER SETS

Definition: The set of all subsets of a set A, denoted $\mathcal{P}(A)$, is called the *power set* of A.

Example: If $A = \{a,b\}$ then

$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

• If a set has n elements, then the cardinality of the power set is 2^{n} .

ZyBook Exercises 1.2

SUMMARY OF SET OPERATIONS

Operation	Notation	Description
Intersection	AnB	$\{x:x\in A \text{ and } x\in B\}$
Union	ΑυΒ	$\{x: x \in A \text{ or } x \in B \text{ or both } \}$
Difference	A - B	{ x : x ∈ A and x ∉ B }
Symmetric difference	A ⊕ B	$\{x: x \in A - B \text{ or } x \in B - A\}$
Complement	Ā	{ x : x ∉ A }

ZyBook Exercises 1.5

SET IDENTIFIES (ZYBOOK EXERCISE 1.6)

Name	Identities		
Idempotent laws	$A \cup A = A$	$A \cap A = A$	
Associative laws	(A u B) u C = A u (B u C)	(A n B) n C = A n (B n C)	
Commutative laws	ΑυΒ=ΒυΑ	A n B = B n A	
Distributive laws	A υ (B ∩ C) = (A υ B) ∩ (A υ C)	A n (B u C) = (A n B) u (A n C)	
Identity laws	A u Ø = A	$A \cap U = A$	
Domination laws	$A \cap \emptyset = \emptyset$	A u <i>U</i> = <i>U</i>	
Double Complement law	$\overline{\overline{A}}$ =	=A	
Complement laws	$A \cap \overline{A} = \emptyset$ $\overline{U} = \emptyset$	$A \cup \overline{A} = U$ $\overline{\varnothing} = U$	
De Morgan's laws	$\overline{A \cup B} = \overline{A} \cap \overline{B}$	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	
Absorption laws	A ∪ (A ∩ B) = A	A ∩ (A ∪ B) = A	

N-TUPLES

```
(11, 12)
                            ordered pair
( 🍎, 🌙, 🌼 )
                           a 3-tuple
( ĕ, ‡, , → , 11, Leo ) a 5-tuple
```

 As opposed to sets, repetition and ordering do matter with *n*-tuples.

```
• (11, 11, 11, 12, 13) \neq (11, 12, 13)
```


CARTESIAN PRODUCT

Definition: The cartesian products of the sets A_1, A_2, \dots, A_n , denoted by $A_1 \times A_2 \times \dots \times A_n$, is the set of ordered n-tuples (a_1, a_2, \dots, a_n) where a_i belongs to A_i for i = 1, ... n.

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Example: What is $A \times B \times C$ where $A = \{0,1\}, B = \{1,2\}$ and $C = \{0,1,2\}$

Solution:
$$A \times B \times C = \{(0,1,0), (0,1,1), (0,1,2), (0,2,0), (0,2,1), (0,2,2), (1,1,0), (1,1,1), (1,1,2), (1,2,0), (1,2,1), (1,2,2)\}$$

ZyBook Exercises 1.3 (1.3.1-1.3.3)

Set Partitions

Two sets, A and B, are said to be **disjoint** if their intersection is empty (A \cap B = \emptyset). A sequence of sets, A₁, A₂, ..., A_n, is **pairwise disjoint** if every pair of distinct sets in the sequence is disjoint (i.e., A_i \cap A_j = \emptyset for any i and j in the range from 1 through n where i \neq j).

A **partition** of a non-empty set A is a collection of non-empty subsets of A such that each element of A is in exactly one of the subsets. $A_1, A_2, ..., A_n$ is a partition for a non-empty set A if all of the following conditions hold:

- For all i, $A_i \subseteq A$.
- For all i, A_i ≠ Ø
- A₁, A₂, ...,A_n are pairwise disjoint.
- $A = A_1 \cup A_2 \cup ... \cup A_n$

PROPOSITIONAL LOGIC

- Constructing Propositions
 - Propositional Variables: p, q, r, s, ...
 - The proposition that is always true is denoted by \mathbf{T} and the proposition that is always false is denoted by \mathbf{F} .
 - Compound Propositions; constructed from logical connectives and other propositions
 - Negation ¬
 - Conjunction ∧
 - Disjunction V
 - Implication →
 - Biconditional \leftrightarrow

DIFFERENT WAYS OF EXPRESSING

$$P \rightarrow Q$$

- if p, then q
- **if** p, q
- \mathbf{q} unless $\neg p$
- $q ext{ if } p$
- q whenever p
 - q follows from p

- p implies q
- p only if q
- q when p
- p is sufficient for q
- q is necessary for p
- a necessary condition for p is q
- lacktriangle a sufficient condition for q is p
- See also page 44 of Book of Proof and Table 2.3.2 in ZyBook

EQUIVALENT STATEMENTS FOR $P \rightarrow Q$

- If x > 2 then $x^2 > 4$
- $x^2 > 4$ if x > 2
- x > 2 only if $x^2 > 4$
- x > 2 is sufficient for $x^2 > 4$
- $x^2>4$ is necessary for x>2
- You will find any of the above statements in many math books when introducing theorems
 - You need to memorize the above equivalent statements to understand what the theorem is saying.

PROVING $P \rightarrow Q$ IS FALSE: $P \land \neg Q$

- Sometimes you want to prove a $p \rightarrow q$ assertion is false
- Recall this is a promise that if p is true, then q is true
- So I need to find an example where p is true and q is false:
 - $p \land \neg q$
- If $x^2 > 4$ then x > 2?
 - False!
 - Consider x = -3.
 - $x^2 = 9$ so p is true, and x < 2 so q is false.

CONVERSE AND INVERSE OF $P \rightarrow Q$

- From $p \rightarrow q$ we can form new conditional statements .
 - $q \rightarrow p$ is the **converse** of $p \rightarrow q$
 - $\neg p \rightarrow \neg q$ is the **inverse** of $p \rightarrow q$

Example: Find the converse, and inverse of "if you are a bird, then you have wings."

Solution:

converse: If you have wings, then you are a bird

inverse: If you are not a bird, then you do not have wings.

- They are not equivalent to $p \rightarrow q$
 - If you are a bird you have wings, (assume this is true)
 - If you have wings then you are a bird (not necessarily true)
 - If you are not a bird, then you do not have wings (not necessarily true)

CONVERSE, CONTRAPOSITIVE, INVERSE

Proposition:	$p \rightarrow q$	Ex: If it is raining today, the game will be cancelled.
Converse:	$q \rightarrow p$	If the game is cancelled, it is raining today.
Contrapositive:	¬q → ¬p	If the game is not cancelled, then it is not raining today.
Inverse:	¬p → ¬q	If it is not raining today, the game will not be cancelled.

Only the contrapositive is equivalent to the original statement

$$\neg Q \rightarrow \neg P$$
 IS THE SAME AS $P \rightarrow Q$

- Two propositions are equivalent if they always have the same truth value.
- **Example**: Show using a truth table that the conditional is equivalent to the contrapositive.

Solution:

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T
T	F	F	T	F	F
F	Т	Т	F	T	T
F	F	Т	Т	Т	T

You can also show the equivalence using "proofs": ZyBook 2.5

BICONDITIONAL

• If p and q are propositions, then we can form the *biconditional* proposition $p \leftrightarrow q$, read as "p if and only if q." The biconditional $p \leftrightarrow q$ denotes the proposition with this truth table:

p	q	$p \leftrightarrow q$
Т	T	T
Т	F	F
F	T	F
F	F	Т

• If p denotes "I am at home." and q denotes "It is raining." then $p \leftrightarrow q$ denotes "I am at home if and only if it is raining."

EXPRESSING THE BICONDITIONAL

- Some alternative ways "p if and only if q" is expressed in English:
 - p is necessary and sufficient for q
 - if p then q, and conversely
 - p iff q

LOGICALLY EQUIVALENT

- Two compound propositions p and q are logically equivalent iff $p \leftrightarrow q$ is a tautology.
- We write this as $p \Leftrightarrow q$ or as $p \equiv q$ where p and q are compound propositions.
- Two compound propositions p and q are equivalent if and only if the columns in a truth table giving their truth values agree.

• T	p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
	T	T	F	T	T
	T	F	F	F	F
	F	T	T	T	T
	F	F	T	T	Т

LAWS OF PROPOSITIONAL LOGIC

Idempotent laws:	$p \vee p \equiv p$	$p \wedge p \equiv p$
Associative laws:	$(p \vee q) \vee r \equiv p \vee (q \vee r)$	$(p \wedge q) \wedge r = p \wedge (q \wedge r)$
Commutative laws:	$p \vee q = q \vee p$	$p \wedge q = q \wedge p$
Distributive laws:	$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
Identity laws:	$p \vee F \equiv p$	$p \wedge T \equiv p$
Domination laws:	$p \wedge F \equiv F$	$p \vee T \equiv T$
Double negation law:	$\neg \neg p \equiv p$	
Complement laws:	p ∧ ¬p ≡ F ¬T ≡ F	$p \vee \neg p \equiv T$ $\neg F \equiv T$
De Morgan's laws:	$\neg(p \lor q) \equiv \neg p \land \neg q$	$\neg(p \land q) \equiv \neg p \lor \neg q$
Absorption laws:	$p \lor (p \land q) \equiv p$	$p \wedge (p \vee q) \equiv p$
Conditional identities:	$p \rightarrow q = \neg p \lor q$	$p \leftrightarrow q = (p \rightarrow q) \land (q \rightarrow p)$

UNIVERSAL QUANTIFIER

• $\forall x P(x)$ is read as "For all x, P(x)" or "For every x, P(x)"

Examples:

- 1) If P(x) denotes "x > 0" and U is the integers, then $\forall x P(x)$ is false.
- 2) If P(x) denotes "x > 0" and U is the positive integers, then $\forall x P(x)$ is true.
- 3) If P(x) denotes "x is even" and U is the integers, then $\forall x P(x)$ is false.

EXISTENTIAL QUANTIFIER 3

■ $\exists x P(x)$ is read as "For some x, P(x)", or as "There is an x such that P(x)," or "For at least one x, P(x)."

Examples:

- If P(x) denotes "x > 0" and U is the integers, then $\exists x P(x)$ is true. It is also true if U is the positive integers.
- 2. If P(x) denotes "x < 0" and U is the positive integers, then $\exists x P(x)$ is false.
- 3. If P(x) denotes "x is even" and U is the integers, then $\exists x P(x)$ is true.

UNIQUENESS QUANTIFIER 3!

- $\exists ! x P(x)$ means that P(x) is true for one and only one x in the universe of discourse.
- This is commonly expressed in English in the following equivalent ways:
 - "There is a unique x such that P(x)."
 - "There is one and only one x such that P(x)"
- Examples:
 - 1. If P(x) denotes "x + 1 = 0" and U is the integers, then $\exists ! x P(x)$ is true.
 - 2. But if P(x) denotes "x > 0," then $\exists ! x P(x)$ is false.
- The uniqueness quantifier is not really needed as the restriction that there is a unique x such that P(x) can be expressed as:

$$\exists x \ (P(x) \land \forall y \ (P(y) \to y = x))$$

Table 2.8.1: Summary of De Morgan's laws for quantified statements.

$$\neg \forall x P(x) \equiv \exists x \neg P(x)$$

$$\neg \exists x P(x) \equiv \forall x \neg P(x)$$

QUANTIFICATIONS OF TWO VARIABLES

Statement	When True?	When False
$\forall x \forall y P(x, y) \\ \forall y \forall x P(x, y)$	P(x,y) is true for every pair x,y .	There is a pair x , y for which $P(x,y)$ is false.
$\forall x \exists y P(x,y)$	For every x there is a y for which $P(x,y)$ is true.	There is an x such that $P(x,y)$ is false for every y .
$\exists x \forall y P(x,y)$	There is an x for which $P(x,y)$ is true for every y .	For every x there is a y for which $P(x,y)$ is false.
$\exists x \exists y P(x, y)$ $\exists y \exists x P(x, y)$	There is a pair x , y for which $P(x,y)$ is true.	P(x,y) is false for every pair x,y

ZyBook 2.9.1-2.9.4

Table 2.9.2: De Morgan's laws for nested quantified statements.

$$\neg \forall x \ \forall y \ P(x, y) \equiv \exists x \ \exists y \ \neg P(x, y)$$

$$\neg \forall x \ \exists y \ P(x, y) \equiv \exists x \ \forall y \ \neg P(x, y)$$

$$\neg \exists x \ \forall y \ P(x, y) \equiv \forall x \ \exists y \ \neg P(x, y)$$

$$\neg \exists x \ \exists y \ P(x, y) \equiv \forall x \ \forall y \ \neg P(x, y)$$

THEOREMS

- A theorem is any inference obtained from:
 - a set of premises: Γ
 - axioms or previously proved Theorems and
 - the rules of inference
- Notation (Hilbert system):

$$\Gamma \vdash \alpha$$
 $\vdash \alpha$ if Γ is empty

(ZyBook Notation):

⊢ is called the (single) "Turnstile" symbol

EXAMPLE: HILBERT SYSTEM

- Small set of rules of inference and axioms from where all "theorems" can be derived
- Lukasiewicz Axioms and only Modus Ponens
- 3 fixed Axioms (all truth tables are Tautologies) doc cam:

A1
$$\alpha \to (\beta \to \alpha)$$

A2 $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$
A3 $(\neg \alpha \to \neg \beta) \to (\beta \to \alpha)$

Modus Ponens

$$\blacksquare p, p \rightarrow q \vdash q$$

 Goal: Use only axioms and modus ponens (and previous results) to prove all theorems of propositional logic

IT IS VERY IMPORTANT TO SPELL OUT THE REASON FOR EACH STEP

 $\begin{array}{lll} \textbf{Theorem 2} & \alpha \to \beta, \beta \to \gamma \vdash \alpha \to \gamma \\ & \textbf{Proof 1}.\beta \to \gamma & P \\ & 2.(\beta \to \gamma) \to (\alpha \to (\beta \to \gamma)) & A1 \\ & 3.\alpha \to (\beta \to \gamma) & MP1, 2 \\ & 4. (\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma)) & A2 \\ & 5.(\alpha \to \beta) \to (\alpha \to \gamma) & MP3, 4 \\ & 6.\alpha \to \beta & P \\ & 7.\alpha \to \gamma & MP5, 6 \end{array}$

PROOF BY CONTRADICTION

Meta – Theorem

Let Γ be a set of premises

Meta-Corollary

$$\Gamma, \neg \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \alpha$$

$$(a)\Gamma, \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \neg \alpha$$

$$(b)\Gamma, \neg \alpha \vdash \alpha \implies \Gamma \vdash \alpha$$

USING PROOF BY CONTRADICTION

Theorem 6 $\alpha \to \beta, \neg \beta \vdash \neg \alpha$ (Modus Tollens)

Proof Assume $\alpha \to \beta, \neg \beta, \neg \neg \alpha$

$1.\alpha \rightarrow \beta$	P
2. egeta	P
$3.\neg\neg\alpha$	P
$4.\alpha$	Thm 4, 3
5.eta	MP1.4

You get a contradiction with lines 2 and 5

Axioms, Rules, and Theorems that can be used to justify Proofs

You only need them when a question has this symbol: \vdash Also if the question has the symbol \vdash you also do not need anything else from the other pages

A1
$$\alpha \rightarrow (\beta \rightarrow \alpha)$$

A2 $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
A3 $(\neg \alpha \rightarrow \neg \beta) \rightarrow (\beta \rightarrow \alpha)$
A4 $(\alpha \land \beta) \rightarrow \alpha$
A5 $(\alpha \land \beta) \rightarrow \beta$
A6 $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \gamma) \rightarrow (\alpha \rightarrow (\beta \land \gamma)))$
A7 $\alpha \rightarrow (\alpha \lor \beta)$
A8 $\beta \rightarrow (\alpha \lor \beta)$
A9 $(\alpha \rightarrow \gamma) \rightarrow ((\beta \rightarrow \gamma) \rightarrow ((\alpha \lor \beta) \rightarrow \gamma))$
Rule 1 $\alpha \vdash \beta \rightarrow \alpha$
Rule 2 $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
Rule 3 $\neg \alpha \rightarrow \neg \beta \vdash \beta \rightarrow \alpha$ Contrapositive
Rule 4 $\alpha \land \beta \vdash \alpha$ Simplification
Rule 5 $\alpha \land \beta \vdash \beta$ Simplification
Rule 6 $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \gamma) \rightarrow (\alpha \rightarrow (\beta \land \gamma)))$
Rule 7 $\alpha \vdash \alpha \lor \beta$ Addition
Rule 8 $\beta \vdash \alpha \lor \beta$ Addition
Rule 9 $\alpha \rightarrow \gamma, \beta \rightarrow \gamma \vdash (\alpha \lor \beta) \rightarrow \gamma$ Hypothetical Syllogism
Theorem 1 $\vdash \alpha \rightarrow \alpha$ Hypothetical Syllogism
Theorem 4 $\neg \neg \alpha \vdash \alpha$ Hypothetical Syllogism
Theorem 5 $\alpha, \neg \alpha \vdash \beta$ Hypothetical Syllogism
Theorem 6 $\alpha \rightarrow \beta, \neg \beta \vdash \neg \alpha$ Hoduls Tollens
Theorem 7 $\alpha \rightarrow \beta, \neg \alpha \rightarrow \beta \vdash \beta$ Moduls Tollens
Theorem 9 $\alpha \rightarrow \gamma, \beta \rightarrow \gamma \vdash (\alpha \lor \beta) \rightarrow \gamma$ Conjunction
Theorem 10 $\alpha, \beta \vdash \alpha \land \beta$ Disjunctive Syllogism
Theorem 11 $\alpha \lor \beta, \neg \alpha \vdash \beta$ Disjunctive Syllogism
Theorem 12 $\vdash \alpha \lor \neg \alpha$ De Morgan's Law