Problem 1. Assume the following grammar and lexicon for a PCFG (probabilistic context-free grammar), where each grammatical rule is associated with a probability (the probabilities for the $NP \rightarrow \dots$ rules and the $VP \rightarrow \dots$ rules don't sum up to 1 because there are other rules that are not shown here).

Grammar				Lexicon
$S \rightarrow NP VP$	1	$VP \rightarrow V NP$	0.2	N: United, Houston, flights
$\text{NP} \to \text{N}$	0.1	$VP \to V \; NP \; PP$	0.3	V: diverted
$NP \rightarrow N PP$	0.2	$PP \rightarrow P NP$	1	P: to

Since the words are unambiguous (in this lexicon), assume that the probability of each lexical constituent (N, V, or P) is 1. For non-lexical constituents (S, NP, VP, PP), given a rule r of the form $C \to C_1 \dots C_n$, we calculate the probability of C as follows.

$$P(C) = P(r) \prod_{i=1}^{n} P(C_i)$$

a. (8 points) Draw the two parse trees generated by the grammar for the following sentence; use constituent trees in the same format as Figures 1, 2 and 3 in the Charniak article.

United diverted flights to Houston

(meaning: flights landed in Houston)

(meaning: flights did not land in Houston)

b. (6 points) Label each non-lexical constituent in the above trees with its probability.