Motivation

Orientations and Isogeny Graphs

Sarah Arpin Universiteit Leiden

Women in Numbers 5 (WIN5) Joint work with M. Chen, K. Lauter, R. Scheidler, K. Stange, and H. Tran Isogeny Club

31 January 2023

Overview

Motivation

Class Group Action

Orientations

Cycles

Paths

Conclusion

Our Favorite Graphs, I

Motivation

•000

WIN5 II, https://arxiv.org/pdf/2205.03976.pdf

$$p = 179, \ell = 2$$

Our Favorite Graphs, II

Motivation

0000

CSIDH, https://eprint.iacr.org/2018/383.pdf

$$p = 419, \ell = 3, 5, 7$$

Hard Problems

Motivation

[EHLMP, 2018]: **Pathfinding** in the *l*-isogeny graph is equivalent to computing the endomorphism ring via **cycles** in the *l*-isogeny graph

Motivating Questions

Motivation

How do these hard problems change when we add orientations to our supersingular elliptic curves?

- Can we use the existence of oriented ℓ-isogeny volcanoes for pathfinding in the supersingular ℓ-isogeny graph?
 WIN5 I, 2022 "Orienteering with one endomorphism".
- The rims of oriented *l*-isogeny volcanoes form cycles. How do these cycles relate to **cycles** in the supersingular *l*-isogeny graph?:

WIN5 II, 2022 "Orientations and cycles in supersingular isogeny graphs".

Conclusion

Class Group Action: CSIDH and \mathbb{F}_p -curves

For CSIDH conditions on p:

$$X := \{E : y^2 = x^3 + Ax^2 + x : A \in \mathbb{F}_p, E \text{ supersingular}\}.$$

X covers all of the \mathbb{F}_p -isomorphism classes of SECs with

$$\operatorname{End}_{\mathbb{F}_p}(E) \cong \mathbb{Z}[\sqrt{-p}].$$

 $\mathcal{C}\ell(\mathbb{Z}[\sqrt{-p}])$ acts on X as follows:

Take an integral ideal $\mathfrak{l} \in [\mathfrak{l}] \in \mathcal{C}\ell(\mathbb{Z}[\sqrt{-p}])$.

$$E[\mathfrak{l}] := \bigcap_{\alpha \in \mathfrak{l}} \ker(\alpha)$$
$$[\mathfrak{l}] * E := E/E[\mathfrak{l}]$$

To compute $\cap_{\alpha \in I} \ker(\alpha)$ when $\mathfrak{l} = (\ell, \pi_p - 1)$, it suffices to compute $\ker(\ell) \cap \ker(\pi_p - 1)$.

This action of $\mathcal{C}\ell(\mathbb{Z}[\sqrt{-p}])$ is **free** and **transitive** on X.

Class Group Action: Generally

Supersingular elliptic curve $E/\overline{\mathbb{F}_p} \Rightarrow \operatorname{End}(E) \cong M$, a maximal order of the quaternion algebra $B_{p,\infty}$.

Take $\mathcal{O} \subset B_{p,\infty}$, quadratic imaginary subring and define:

$$SS_{\mathcal{O}}:=\{E/\overline{\mathbb{F}_p} \text{ supersingular with } \mathcal{O}\subset \mathrm{End}(E)\}/\overline{\mathbb{F}_p}\text{-isomorphism}$$

 $\mathcal{C}\ell(\mathcal{O})$ acts on $SS_{\mathcal{O}}$ as follows:

Take an integral ideal $\mathfrak{l} \in [\mathfrak{l}] \in \mathcal{C}\ell(\mathbb{Z}[\sqrt{-p}])$.

$$E[\mathfrak{l}] := \cap_{\alpha \in \mathfrak{l}} \ker(\alpha)$$

$$[\mathfrak{l}]*E:=E/E[\mathfrak{l}]$$

We want to refine this action to a subset of $SS_{\mathcal{O}}$, so we will put this on hold for a moment...

Orientations: Partial End(E) Information

K: imaginary quadratic field; E: supersingular elliptic curve.

Definition ((Primitive) Orientation)

A K-orientation on E is an embedding

$$\iota: K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q} =: \operatorname{End}^{0}(E) \cong B_{p,\infty}.$$

A K-orientation is an \mathcal{O} -orientation if $\iota(\mathcal{O}) \subseteq \operatorname{End}(E)$, and it is a **primitive** \mathcal{O} -orientation if $\iota(\mathcal{O}) = \operatorname{End}(E) \cap \iota(K)$.

Example

$$p = 179$$
, End $(E_{22}) \cong \mathbb{Z} \langle 1, 2i, \frac{1}{2} + \frac{3}{4}i + \frac{1}{4}ij, \frac{1}{2} + i - \frac{1}{2}j \rangle$.

$$\iota: \mathbb{Q}(i) \hookrightarrow \mathrm{End}^0(E_{22})$$
 given via $i \mapsto i$.

 ι is not a $\mathbb{Z}[i]$ -orientation. It is a primitive $\mathbb{Z}[2i]$ orientation.

Definition (Conjugate)

Let ι be a $(K := \mathbb{Q}(\omega))$ -orientation and define: $\bar{\iota}(\overline{\omega}) := \iota(\omega)$

Oriented isogenies

Let (E, ι) be a K-oriented supersingular elliptic curve.

An isogeny $\varphi: E \to E'$ induces an isogeny

 $\varphi: (E,\iota) \to (E',\varphi_*\iota)$, where we define:

$$(\varphi_*\iota): K \to \operatorname{End}^0(E')$$
$$(\varphi_*\iota)(\alpha) := \frac{1}{[\operatorname{deg} \varphi]} \varphi \circ \iota(\alpha) \circ \hat{\varphi}.$$

If (E, ι) is a primitively \mathcal{O} -oriented supersingular elliptic curve, then $(E', \varphi_*\iota)$ is primitively \mathcal{O}' -oriented and one of the following is true:

- $\triangleright \mathcal{O}' = \mathcal{O} \ (\varphi \text{ is horizontal}),$
- $\triangleright \mathcal{O}' \subseteq \mathcal{O}$ (φ is descending),
- $\triangleright \mathcal{O}' \supseteq \mathcal{O}$ (φ is ascending).

 (E,ι) and (E',ι) are K-isomorphic if there exists an isomorphism $\eta: E \to E'$ such that $\eta_* \iota = \iota'$.

Oriented isogeny volcanoes

$$p = 179, \ell = 2$$

Motivation

Figure: The $\mathbb{Q}(\sqrt{-47})$ -oriented 2-isogeny volcano. Rim vertices are primitively oriented by $\mathcal{O}=\mathbb{Z}\left[\frac{1+\sqrt{-47}}{2}\right]$. Vertices on the altitude below the rim are primitively $\mathbb{Z}[\sqrt{-47}]$ -oriented.

Each oriented isogeny volcano covers the ℓ -isogeny graph:

OSIG: Graph Structure (Our Favorite Graphs, III)

$$\varphi: E \to F$$
, deg $\varphi = \ell$, K-orientation $\iota: K \hookrightarrow \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}$

The vertices on the **rim** of the volcano have a primitive \mathcal{O} -orientation, where \mathcal{O} is an order in K of conductor f, $(f, \ell) = 1$.

The vertices on altitude 1 of the volcano have a primitive $(\mathbb{Z} + \ell \mathcal{O})$ -orientation.

The vertices on altitude 2 of the volcano have a primitive $(\mathbb{Z} + \ell^2 \mathcal{O})$ -orientation.

There can be multiple volcanoes of \mathcal{O} -oriented curves. The collection of volcanoes is called a **cordillera**.

The Technical Bit: $SS_{\mathcal{O}}^{pr}$ and $\mathcal{E}\ell\ell(\mathcal{O})$

Fix p, K, O. Fix L'/K in which \exists prime \mathfrak{p} above p such that every EC with CM by \mathcal{O} has a rep. over L' with good reduction at \mathfrak{p} [AEC].

Definition $(SS_{\mathcal{O}}^{pr}, \mathcal{E}\ell\ell(\mathcal{O}))$

 $SS_{\mathcal{O}}^{pr} := \{\text{primitively } \mathcal{O}\text{-oriented supersingular EC's}\}/K\text{-isom.}$ $\mathcal{E}\ell\ell(\mathcal{O}) := \{E/L' : \operatorname{End}(E) \cong \mathcal{O} \text{ with good red. at } \mathfrak{p}\}/\operatorname{isom.}$

- $\triangleright |\mathcal{E}\ell\ell(\mathcal{O})| = h(\mathcal{O}).$
- Normalizing wrt the invariant differential, ∃! choice of primitive \mathcal{O} -orientation ι for $E \in \mathcal{E}\ell\ell(\mathcal{O})$.

Define $\rho: \mathcal{E}\ell\ell(\mathcal{O}) \to SS^{pr}_{\mathcal{O}}$ by $\rho(E) := (\widetilde{E}, \iota)$.

- ρ is injective.
- ▶ If p is ramified in \mathcal{O} , $\rho(\mathcal{E}\ell\ell(\mathcal{O})) = SS_{\mathcal{O}}^{pr}$.
- ► For $(E, \iota) \in SS^{pr}_{\mathcal{O}}$, (E, ι) or $(E^{(p)}, (\pi_p)_*\iota)$ is in $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

Class group action: Walking the rim cycles

$$(E,\iota) \in SS^{pr}_{\mathcal{O}}.$$

 \mathfrak{a} : an ideal of \mathcal{O} coprime to p.

Define a subgroup:

$$E[\iota(\mathfrak{a})] := \bigcap_{\alpha \in \iota(\mathfrak{a})} \ker(\alpha)$$

and isogeny with this kernel:

$$\varphi_{\mathfrak{a}}: E \to E/E[\iota(\mathfrak{a})].$$

The action of $Cl(\mathcal{O})$ on $SS_{\mathcal{O}}^{pr}$ is: $\mathfrak{a} * (E, \iota) := (\varphi_{\mathfrak{a}}(E), (\varphi_{\mathfrak{a}})_* \iota).$

Theorem (Onuki, 2021)

The action of $Cl(\mathcal{O})$ is free and transitive on $\rho(\mathcal{E}\ell\ell(\mathcal{O}))$.

$$p = 179, \ell = 2, K = \mathbb{Q}(\sqrt{-47}),$$

$$\mathcal{O}_K = \mathbb{Z}\left[\frac{1+\sqrt{-47}}{2}\right], (2)\mathcal{O}_K = \mathfrak{l}_2\overline{\mathfrak{l}_2}$$

Conjugate vertex orientations:

Cycles in ℓ -isogeny graphs

Motivation

$$p = 179, \ell = 2, \mathcal{O} = \mathbb{Z}[\sqrt{-47}]$$

Green rim corresponds to green cycle.

Isogeny cycles

How do we find cycles in the supersingular ℓ -isogeny graph?

- ▶ Wandering the graph and hoping to find collisions is inefficient. We can navigate the graph by finding paths to curves with known endomorphism rings (like E_{1728}).
- ▶ WIN5 I (2022) "Orienteering with one endomorphism" provides explicit algorithms.
- ▶ WIN5 II (2022) "Orientations and cycles in supersingular isogeny graphs" count cycles in \mathcal{G}_{ℓ} of a given length.

WIN5 I: https://arxiv.org/abs/2201.11079, WIN5 II: https://arxiv.org/abs/2205.03976

Definition (Isogeny cycle)

An isogeny cycle is a closed walk, forgetting basepoint, in \mathcal{G}_{ℓ} containing no backtracking (no consecutive edges compose to multiplication-by- ℓ) which is not a power of another closed walk (i.e., not equal to another closed walk repeated more than once).

Bijection

Theorem (WIN5 II)

The **isogeny-cycles of length** r in \mathcal{G}_{ℓ} are in bijection with the directed **rims of length** r of the union of all oriented supersingular ℓ -isogeny volcanoes over $\overline{\mathbb{F}}_p$, up to conjugation of the orientations.

- ► The map from volcano rims to isogeny cycles is simply forgetting the orientation.
- ▶ The map from isogeny cycles to volcano rims consists of obtaining orientations from the endomorphisms defined by walking around the cycle.
- ▶ Vertices with extra automorphisms provide difficulties in cycle counting. In particular: isogenies with j = 0,1728 as codomain. We make a careful choice for each such isogeny.

Paths

Conclusion

Example

Motivation

isogeny cycle	length	endomorphism	0	$h(\mathcal{O})$
$(j_3, \overline{j_3}, 171)$	3	$\frac{\pm 1 \pm \sqrt{-31}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-31}}{2}\right]$	3
$(61, j_1, 140, \overline{j_1})$	4	$\frac{\pm 5 \pm \sqrt{-39}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-39}}{2}\right]$	4
$(22, \overline{j_2}, \overline{j_3}, j_3, j_2)$	5	$\frac{\pm 9 \pm \sqrt{-47}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-47}}{2}\right]$	5

Table: Cycles of lengths 3, 4, and 5 in \mathcal{G}_2 with p = 179, with the associated endomorphisms to which the cycles compose.

Example

isogeny cycle	length	endomorphism	0	$h(\mathcal{O})$
$(22,\overline{j_2},\overline{j_1},140,j_1,j_2)$	6	$\frac{\pm 13 \pm \sqrt{-87}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-87}}{2}\right]$	6
$(140, j_1, j_2, j_3, 171, 120)$ $(140, \overline{j_1}, \overline{j_2}, \overline{j_3}, 171, 120)$	6	$\frac{\pm 5 \pm \sqrt{-231}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-231}}{2}\right]$	12
(0, 121, 112, 35, 112, 121)*	6	$\frac{\pm 3 \pm \sqrt{-247}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-247}}{2}\right]$	6
$(22, j_2, j_3, 171, \bar{j}_3, \bar{j}_2)$ $(0, 121, 112, 35, 112, 121)^*$	6	$\frac{\pm 1 \pm \sqrt{-255}}{2}$	$\mathbb{Z}\left[\frac{1+\sqrt{-255}}{2}\right]$	12
$(61, j_1, j_2, 22, \overline{j_2}, \overline{j_1})$	6	$\frac{\pm 11 \pm 3\sqrt{-15}}{2}$	$\mathbb{Z}\left[3\left(\frac{1+\sqrt{-15}}{2}\right)\right]$	6

Table: Isogeny cycles of length six, with the associated endomorphisms to which the cycles compose. *The two starred cycles are not uniquely determined by their j-invariants. The bijection between these two cycles and the two associated endomorphisms is not canonical, but we choose an arbitrary assignment and make a non-canonical bijection.

Paths

Path-finding

Motivation

$$p = 179, \ell = 2, \mathcal{O} = \mathbb{Z}[\sqrt{-47}]$$

Combining the blue, green, and red paths in the oriented volcano, we find a path from E_{120} to E_{1728} in the supersingular 2-isogeny graph.

Paths

Walking to the rim

E: supersingular elliptic curve over $\overline{\mathbb{F}_p}$ with primitive \mathcal{O} -orientation ι . Let $\mathcal{O} = \langle \alpha \rangle \subseteq K$ and set $\theta := \iota(\alpha)$.

Task: Find a path of ℓ -isogenies from (E, ι) to the rim of a K-oriented ℓ -isogeny volcano.

- ▶ The number of steps to the rim is the number of times ℓ^2 divides the discriminant of θ . Call this number k.
- \triangleright Translate θ to an ℓ -suitable translation (so that division-by- $[\ell]$ is possible for $\varphi_* \iota$ when φ is ascending)
- Any non-trivial $P \in \ker(\theta) \cap E[\ell]$ generates the kernel of an **ascending** ℓ -isogeny φ .
- ightharpoonup Compute the resulting $(E', \varphi_*\iota)$
- ▶ Repeat steps (2) through (3) until the resulting oriented curve is on the rim.

Explicit Classical Path-Finding Algorithm

Theorem (WIN5 I)

Given a supersingular elliptic curve $E/\overline{\mathbb{F}}_p$ and an endomorphism θ , we provide a classical algorithm for ℓ -isogeny path-finding that is subexponential in $\log p$ times a class number relating to θ .

This algorithm is polynomial time in some cases.

Explicit Quantum Path-Finding Algorithm

Theorem (WIN5 I)

Given a supersingular elliptic curve $E/\overline{\mathbb{F}}_n$ and an endomorphism θ , we provide a quantum algorithm for finding a smooth isogeny to E_{1728} that runs in subexponential time in $\operatorname{disc}(\theta)$, plus factors depending on θ 's evaluation time.

Conclusion

- ightharpoonup Cycles in supersingular ℓ -isogeny graphs enable endomorphism ring computation.
- ▶ Oriented supersingular ℓ -isogeny graphs cover the supersingular ℓ -isogeny graph \mathcal{G}_{ℓ} .
- ▶ The isogeny cycles in \mathcal{G}_{ℓ} are rims of oriented supersingular isogeny volcanoes.
- ▶ The behavior of primes above ℓ in the class groups of imaginary quadratic orders determines the number of isogeny cycles of a fixed length.
- ▶ Leaking information about small endomorphisms and certain classes of large endomorphisms leads to a subexponential path-finding algorithm on the supersingular ℓ-isogeny graph.

Motivation

Thank you.

Any questions?