Recursion & Tree Recursion

Discussion 3: September 12, 2018

1 More Recursion

Questions

1.1 In discussion 1, we implemented the function is_prime, which takes in a positive integer and returns whether or not that integer is prime, iteratively.

Now, let's implement it recursively! As a reminder, an integer is considered prime if it has exactly two unique factors: 1 and itself.

def	<pre>is_prime(n):</pre>			
	>>>	<pre>is_prime(7)</pre>		
	True			
	>>>	is_prime(10)		
	Fals	False		
	>>>	<pre>is_prime(1)</pre>		
	Fals	se		
	def	<pre>prime_helper()</pre>		
		if:		
		elif:		
		else:		
	roti			

1.2 Define a function make_fn_repeater which takes in a one-argument function f and an integer x. It should return another function which takes in one argument, another integer. This function returns the result of applying f to x this number of times.

Make sure to use recursion in your solution.

```
def make_func_repeater(f, x):
    """
    >>> incr_1 = make_func_repeater(lambda x: x + 1, 1)
    >>> incr_1(2) #same as f(f(x))
    3
    >>> incr_1(5)
    6
    """

    def repeat(_______):
        return ______
        else:
        return ______
```

2 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is the recursive fibonacci function:

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    else:
        return fib(n - 1) + fib(n - 2)
```

This type of recursion is called **tree recursion**, because it makes more than one recursive call in its recursive case. If we draw out the recursive calls, we see the recursive calls in the shape of an upside-down tree:

We could, in theory, use loops to write the same procedure. However, problems that are naturally solved using tree recursive procedures are generally difficult to write iteratively. It is sometimes the case that a tree recursive problem also involves iteration: for example, you might use a while loop to add together multiple recursive calls.

As a general rule of thumb, whenever you need to try multiple possibilities at the same time, you should consider using tree recursion.

Questions

2.1 I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many different ways can I go up this flight of stairs? Write a function count_stair_ways that solves this problem for me. Assume n is positive.

Before we start, what's the base case for this question? What is the simplest input?

```
What do count_stair_ways(n - 1) and count_stair_ways(n - 2) represent?
```

Use those two recursive calls to write the recursive case:

```
def count_stair_ways(n):
```

2.2 Consider a special version of the count_stairways problem, where instead of taking 1 or 2 steps, we are able to take **up to and including** k steps at a time.

Write a function count_k that figures out the number of paths for this scenario. Assume n and k are positive.

```
def count_k(n, k):
    """
    >>> count_k(3, 3) # 3, 2 + 1, 1 + 2, 1 + 1 + 1
    4
    >>> count_k(4, 4)
    8
    >>> count_k(10, 3)
    274
    >>> count_k(300, 1) # Only one step at a time
    1
    """
```

2.3 Here's a part of the Pascal's triangle:

```
Column:
                        2
                                           . . .
Row 0:
            1
Row 1:
                  1
                        1
Row 2:
            1
                  2
            1
                  3
                        3
Row 3:
            1
                  4
                        6
                              4
                                     1
Row 4:
```

. . .

Every number in Pascal's triangle is defined as the sum of the item above it and the item that is directly to the upper left of it, use 0 if the entry is empty. Define the procedure pascal(row, column) which takes a row and a column, and finds the value at that position in the triangle.

def pascal(row, column):