

UTILITY PATENT APPLICATION TRANSMITTAL UNDER 37 C.F.R. §1.53(b)

ASSISTANT COMMISSIONER FOR PATENTS

Box PATENT APPLICATION

Washington D.C. 20231

Sir:

Transmitted herewith for filing is the patent application of
INVENTOR OR APPLICATION IDENTIFIER: Jae Kwan LIM
FOR: METHOD OF INCREASING SWITCH CAPACITY

Enclosed are:

1. [X] 20 pages of specification, claims, abstract
2. [X] 7 sheets of FORMAL drawing.

3. [X] 2 pages of newly executed Declaration & Power of Attorney (original).
4. [X] Priority Claimed.
5. [] Small Entity Statement.
6. [] Information Disclosure Statement, Form PTO-1449 and reference.

10. [X] Authorization under 37 C.F.R. §1.136(a)(3).

11. [] Other:

66/ET/80

JC646 U.S. PTO

Case Docket No.:K-102

09/373704
08/13/99

09/373704
08/13/99

7. [X] Assignment Papers for LG Information & Communications, Ltd.
(cover sheet, assignment & assignment fee).
8. [X] Certified copy of Korean Patent Application No. 33454/1998, filed August 18, 1998.
9. [X] Two (2) return postcards.
[X] Stamp & Return with Courier.
[X] Prepaid Postcard-Stamped Filing Date & Returned with Unofficial Serial Number.

CLAIMS AS FILED					
For	No. Filed		No. Extra	Rate	Fee
Total Claims	12	- 20	0	X \$18.00	\$0.00
Indep. Claims	2	- 3	0	X \$78.00	\$0.00
Multiple Dependent Claims (If applicable)					
X \$260.00					
BASIC FEE					
\$760.00					
TOTAL FILING FEE					
\$760.00					

[] This is a Continuation-in-part (CIP) of prior application No: _____ filed _____. Incorporation By Reference-The entire disclosure of the prior application is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

[] Amend the specification by inserting before the first line the sentence:
--This application is a continuation-in-part of Application Serial No. _____ filed _____.--

[X] A check in the amount of \$760.00 (Check #7493) is attached.

[] Please charge my Deposit Account No. 16-0607 in the amount of \$__. A duplicate copy of this sheet is enclosed.

[X] The Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 16-0607. A duplicate copy is enclosed.

[X] Any additional filing fees required under 37 C.F.R. 1.16.

[X] The Commissioner is hereby authorized to charge payment of following fees during the pendency of this application or credit any overpayment to Deposit Account No. 16-0607. A duplicate copy of this sheet is enclosed.

[X] Any patent application processing fees under 37 C.F.R. 1.17.

[X] Any filing fees under 37 C.F.R. 1.16 for presentation of extra claims.

FLESHNER & KIM

Daniel Y.J. Kim
Registration No. 36,186

Correspondence Address Below:

P.O. Box 221200
Chantilly, VA 20153-1200
(703) 502-9440 DYK/mrc
Date: August 13, 1999

METHOD OF INCREASING SWITCH CAPACITY

BACKGROUND OF THE INVENTION

Field of the Invention

5 The present invention relates generally to a cross connect system. In particular, the present invention relates to a switch capacity increasing method which can increase the switch capacity by utilizing the existing switch network as it is.

Background of the Related Art

10 Generally, a 3-stage Clos switch network as shown in FIG. 1 has been widely used in a cross connect system. Referring to FIG. 1, the 3-stage Clos switch network comprises a first stage 10 having a plurality of switching elements 10a-10n, a second stage 20 having a plurality of switching elements 20a-20n connected to the switching elements 10a-10n of the first stage 10 in a many-to-many relationship, and a third stage 30 having a plurality of switching elements 30a-30n connected to the switching elements 20a-20n of the second stage 20 in a many-to-many relationship.

15 Here, the whole switch capacity N of the switch network is predetermined when the switch network is designed. If the number of input/output of a switching element is defined by n, the ratio of the input number to the output number of each switching element in the first stage 10 becomes $n \times 2n$, and the ratio of the input

number to the output number of each switching element in the third stage 30 becomes $2n \times n$.

Also, the ratio of the input number to the output number of each switching element in the second stage 20 becomes $N/n \times N/n$.

5 Accordingly, the first stage 10 and the third stage 30 have a symmetrical arrangement based on the second stage 20.

Such a switch network as described above has the reduced number of cross points and high accessibility of crossbars, and a non-blocking is effected when two terminal points are connected to each other since at least one path is provided through the network to connect the two terminal points together. Because of the above reason, there is a tendency to apply the switch network as shown in FIG. 1, for instance, to the product name DACS IV (digital access communication system IV) manufactured by Lucent in the United States and to the product name 1631SX manufactured by Alcatel in the United States.

In the above-described switch network, the switching elements in the respective stages 10-30 are inserted into a shelf of the cross connect system in the form of a module or unit. On the rear surface of the shelf is provided a mother board in which a plurality of patterns for connecting input/output terminals of the respective modules as designed. Accordingly, the designer of the cross connect system should design or produce the switch network

after determining the whole switch capacity of the switch network required at the present time and in the future.

In the conventional cross connect system as shown in FIG. 1, the method of increasing the whole capacity of the switch network
5 may be classified into two.

One method is to produce the switch network having the switch capacity of $2N$ if the designer judges that the whole switch capacity required at the present time is N , but the switch capacity of $2N$ will be required thereafter. Another method is to produce and use the switch network having the switch capacity of N , and if required thereafter, to produce a new switch network having the switch capacity of $2N$ without using the previous switch network having the switch capacity of N any more.

However, the former method has problems that unnecessary expenses are spared on producing the switch network having the switch capacity of $2N$ though the switch capacity of N is only required at the present time. The latter method also has problems that excessive expenses are spared on producing a new switch network having the switch capacity of $2N$ since the previous switch network having the switch capacity of N is not used any more.
15
20

Such problems are caused by the fixed structure of the produced switch network. Specifically, the fixedly patterned structure of the shelf and the mother board of the cross connect

system, which is just like a printed circuit board (PCB), causes the problems in case of increasing the switch capacity of the present switch network.

5

SUMMARY OF THE INVENTION

Accordingly, the present invention is directed to a switch capacity increasing method that substantially obviate one or more of the problems due to limitations and disadvantages of the related art.

An object of the present invention is to provide a method of increasing switch capacity which can increase the whole switch capacity by utilizing the presently used switch network as it is.

Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims thereof as well as the appended drawings.

20

To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and broadly described, a method of increasing a switch capacity in a switch network system in which three or more switch stages including a

plurality of switching elements are connected in serial by using a predetermined logical circuit, the method comprising the steps of:
adding switch stage including a plurality of switching elements to correspond to the each switch stage; grouping switching elements of
5 a first switch stage and last switch stage in the switch stage and the added switch stage by a predetermined unit, respectively; and connecting the grouped switching elements of the first stage with corresponding switching elements of an intermediate switch stage which is placed between the first stage and last stage, respectively, and connecting the grouped switching elements of the last switch stage with the corresponding switching elements of the intermediate switch stage, respectively

In another aspect, a method of increasing a switch capacity in a switch network system in which three or more switch stages including a plurality of switching elements are connected in serial by using a predetermined logical circuit, the method comprising the steps of: adding switching elements to an intermediate switch stage which is placed between the first stage and last stage, respectively; and connecting extra input/output terminals of 15 switching elements in first and last switch stages with the added switching elements, respectively.

According to the aspects of the present invention as described above, the whole switch capacity can be increased by adding a new

switch network to the presently used switch network and manually changing the connection of the respective switching elements.

BRIEF DESCRIPTION OF THE DRAWINGS

5 The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention:

In the drawings:

FIG. 1 is a block diagram illustrating the construction of a conventional switch network.

10 FIG. 2 is a block diagram illustrating the construction of the switch network whose switch capacity is increased by the integral number of times according to a first embodiment of the present invention.

15 FIG. 3 is a block diagram illustrating the equivalent construction of the switch network of FIG. 2.

20 FIG. 4a is a block diagram illustrating the construction of the switch network having the whole switch capacity of 2.

FIG. 4b is a block diagram illustrating the construction of the switch network whose switch capacity is increased from 2 to 4.

FIG. 4c is a block diagram illustrating the construction of

the switch network having the whole switch capacity of 4.

FIG. 5a is a block diagram illustrating the construction of the switch network having the switch capacity of 4×4 .

FIG. 5b is a block diagram illustrating the construction of
5 the switch network whose switch capacity is increased from 4×4 to 6×6 according to a second embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

FIG. 2 is a block diagram illustrating the construction of the switch network whose switch capacity is increased by the integral number of times according to a first embodiment of the present invention.

Referring to FIG. 2, the switch network according to the first embodiment of the present invention includes first stages 40 and 70 having a plurality of switching elements 40a-40n and 70a-70n, second stages 50 and 80 having a plurality of switching elements 50a-50n and 80a-80n respectively connected to the switching elements 40a-40n and 70a-70n of the first stages 40 and 70 in a many-to-many relationship, and third stages 60 and 90 having a plurality of switching elements 60a-60n and 90a-90n respectively

connected to the switching elements 50a-50n and 80a-80n of the second stages 50 and 80 in a many-to-many relationship.

Here, if the input number of the switching element is defined by n and the whole switch capacity of the switch network is defined by N, the ratios of the input number to the output number of the switching elements provided in the first, second, and third stages are $n \times 2n$, $N/n \times N/n$, and $2n \times n$, respectively.

Accordingly, the switch network according to the first embodiment of the present invention has a symmetrical arrangement based on the second stages 50 and 80. Also, the switching elements provided in the first stages 40 and 70 and the second stages 50 and 80 and the switching elements provided in the second stages 50 and 80 and the third stages 60 and 90 are respectively connected through communication lines (for instance, cables) which can change the input/output connection ports of the switching elements. Accordingly, in case of increasing the switch network, the shelf or mother board of the existing cross connect system are used as they are, and only the input/output connection ports thereof are changed according to the first embodiment of the present invention.

Hereinafter, the switch capacity increasing method for a cross connect system according to the first embodiment of the present invention will be explained in detail.

First, a new switch network is added to the existing switch

network. Thereafter, the switching elements 40a-40n, 70a-70n, 60a-60n, and 90a-90n respectively provided in the first stages 40 and 70 and the third stages 60 and 90 of the existing switch network and the new switch network are classified into pairs. FIG. 2 shows
5 2 pairs of the switching elements 45a, 45b, 75a, 75b, 65a, 65b, 95a, and 95b in each stage. Then, the first switching elements 40a, 40n-1, 70a, and 70n-1 of the pairs 45a, 45b, 75a, and 75b of the switching elements in the first stages 40, 70, 60, and 90 of the existing switch network and the new switch network are connected to the switching elements 50a-50n provided in the second stage 50 of the existing switch network in a many-to-many relationship, and the second switching elements 40b, 40n, 70b, and 70n of the pairs 45a, 45b, 75a, and 75b of the switching elements are connected to the switching elements 80a-80n provided in the second stage 80 of the new switch network in a many-to-many relationship. Thereafter, the first switching elements 60a, 60n-1, 90a, and 90n-1 of the pairs 65a, 65n, 95a, and 95n of the switching elements in the third stages 60 and 90 of the existing switch network and the new switch network are connected to the switching elements 50a-50n provided in
15 the second stage of the existing switch network in a many-to-many relationship, and the second switching elements 60b, 60n, 90b, and 90n of the pairs 65a, 65n, 95a, and 95n of the switching elements are connected to the switching elements 80a-80n provided in the
20

second stage 80 of the new switch network in a many-to-many relationship.

As described above, the switch network is increased by classifying the switching elements provided in the first stages 40 and 70 and the third stages 60 and 90 into pairs and then connecting the input/output terminals of the switching elements in a manner as described above. FIG. 3 illustrates the equivalent circuit of the increased switch network of FIG. 2.

According to the first embodiment of the present invention, the whole switch capacity of the increased switch network becomes 2^N times as large as that of the previous switch network by adding the second switch network 70, 80, and 90 which is identical to the existing first stage 40, second state 50, and third stage 60. For example, the whole switch capacity of the switch network can be increased from 2 to one of 4, 8, 16, 32,...

In case that the whole switch capacity of the existing switch network is N, and that of the new switch network is $2N$, the number and the input/output number of the switching elements provided in the respective stages of the existing switch network and the new switch network are identical.

FIGs. 4a to 4c illustrate the first embodiment of the present invention exemplifying that the whole switch capacity of the switch network is increased from 2 to 4.

FIG. 4a is a block diagram illustrating the construction of the switch network having the whole switch capacity of 2. FIG. 4b is a block diagram illustrating the construction of the switch network whose switch capacity is increased from 2 to 4 according to the switch capacity increasing method of the present invention. FIG. 4c is a block diagram illustrating the construction of the switch network initially designed to have the whole switch capacity of 4. Upon comparing the switch networks in FIGs. 4b and 4c, it can be recognized that the same switching paths are provided.

FIGs. 5a and 5b show the switch network according to the second embodiment of the present invention wherein the switch capacity is increased fraction times.

FIG. 5a is a block diagram illustrating the construction of the switch network having the switch capacity of 4×4 , and FIG. 5b is a block diagram illustrating the construction of the switch network whose switch capacity is increased from 4×4 to 6×6 according to the second embodiment of the present invention.

Referring to FIGs. 5a and 5b, the switch network according to the second embodiment of the present invention includes a first stage 300a having a plurality of switching elements SE41 and SE42, a second stage 400b having a plurality of switching elements SE51-SE56 connected to the switching elements SE41 and SE42 of the first stage 300a in a many-to-many relationship, and a third stage 500a

having a plurality of switching elements SE61 and SE62 connected to the switching elements SE51-SE56 of the second stage 400b in a many-to-many relationship.

Here, if the input number of the switching element is defined by n and the whole switch capacity of the switch network is defined by N, the ratio of the input number to the output number of the first stage 300a becomes $1.5 \times 2 \times 4$ (i.e., 3×6), the ratio of the input number to the output number of the second stages 400a-400c becomes 2×2 , and the ratio of the input number to the output number of the third stage 500a becomes $1.5 \times 4 \times 2$ (i.e., 6×3).

According to the second embodiment of the present invention, when the connection ports of the input/output terminals of the switching elements in the first stage 300a and the third stage 500a are initially connected, the input/output terminals indicated as dotted lines in FIGs. 5a and 5b are not connected. Thereafter, if the increase of the switch capacity by 1.5 times is required due to the increase of subscribers, only the second stage 400c is added to the existing switch network as shown in FIG. 5a, and the input/output terminals which have not been used as indicated as the dotted lines in FIG. 5a are connected in a many-to-many relationship to the switching elements SE55 and SE56 of the newly added second stage 400c. Also, according to the second embodiment

of the present invention, the switching elements provided in the first stage 300a and the second stage 400a and the switching elements provided in the second stage 400a and the third stage 500a are respectively connected through communication lines which can change the input/output connection ports of the switching elements. Accordingly, in case of increasing the switch network, the existing shelf or mother board of the existing cross connect system are used as they are, and only a portion of the input/output connection ports thereof is changed according to the second embodiment of the present invention.

Hereinafter, the switch capacity increasing method for a cross connect system according to the second embodiment of the present invention will be explained in detail.

First, the new second stage 400c is added to the existing switch network to increase the whole switch capacity. Thereafter, the input/output terminals, which have not been used (shown as the dotted lines in FIGs. 5a and 5b), of the switching elements SE41, SE42, SE61, and SE62 provided in the first stage 300a and the third stage 500a are respectively connected to the switching elements SE55 and SE56 of the newly added second stage 400c in a many-to-many relationship. In FIGs. 5a and 5b, each dotted block tying the switching elements indicates a module, and the increase of the switch capacity is performed in the unit of a module.

The switch capacity increasing method according to the second embodiment of the present invention wherein the whole switch capacity is increased by 1.5 times will be a more economical and effective method if the whole switch capacity of the switch network becomes larger.

As described above, according to the present invention, the switch capacity of the switch network can be increased by adding a new switch network to the existing switch network, and changing the connection of the communication lines as proposed by the present invention. At this time, the increase of the switch network by both 2^N times of $2N$ and 1.5 times of 2^N is possible.

Consequently, according to the present invention, a switch network having a proper switch capacity can be produced when designing or manufacturing a cross connect system, and in case of increasing the switch capacity of the switch network, the existing switch network can be used as it is, thereby preventing unnecessary or excessive expenses from being spared.

While the present invention has been described and illustrated herein with reference to the preferred embodiments thereof, it will be apparent to those skilled in the art that various modifications and variations can be made therein without departing from the spirit and scope of the invention. Thus, it is intended that the present invention covers the modifications and variations of this

invention that come within the scope of the appended claims and their equivalents.

What is claimed is:

1. A method of increasing a switch capacity in a switch network system in which three or more switch stages including a plurality of switching elements are connected in serial by using a predetermined logical circuit, the method comprising the steps of:
5

adding switch stage including a plurality of switching elements to correspond to the each switch stage;

grouping switching elements of a first switch stage and last switch stage in the switch stage and the added switch stage by a predetermined unit, respectively; and

15 connecting the grouped switching elements of the first stage with corresponding switching elements of an intermediate switch stage which is placed between the first stage and last stage, respectively, and connecting the grouped switching elements of the last switch stage with the corresponding switching elements of the intermediate switch stage, respectively.

2. The method of increasing a switch capacity as claimed in claim 1, wherein the switching elements of the first and last
20 switch stages are grouped by a pair of unit, respectively.

3. The method of increasing a switch capacity as claimed in claim 1, wherein the connecting step includes the steps of:

connecting a first switching element of the each grouped switching element in the first and last switch stages with each switching element of the intermediate switch stage which is not added, respectively; and

5 connecting the other switching element of the each grouped switching elements in the first and last switch stages with each switching element in the intermediate switch terminals which is added, respectively.

4. The method of increasing a switch capacity as claimed in claim 1, wherein if the switching elements are added to the switch stages of the switch network system, the added switch capacity is increased by the unit of 2^N times.

15 5. The method of increasing a switch capacity as claimed in claim 1, wherein the connecting step is carried out by changing an access port of input/output terminals of the respective switching elements.

20 6. A method of increasing a switch capacity in a switch network system in which three or more switch stages including a plurality of switching elements are connected in serial by using a predetermined logical circuit, the method comprising the steps of:

adding switching elements to an intermediate switch stage which is placed between the first stage and last stage, respectively; and

connecting extra input/output terminals of switching elements in first and last switch stages with the added switching elements, respectively.

7. The method of increasing a switch capacity as claimed in claim 6, wherein the first switch stage includes switching element of which ratio of the number of input/output is 1.5 times of $n \times 2n$, whereby n is defined as the number of input of the switching elements and N is defined as a whole capacity of the switch network.

15 8. The method of increasing a switch capacity as claimed in claim 6, wherein the each switch element of the intermediate switch stage is connected to the switching elements of the first and last switch stages, the switching elements of the intermediate switch stage having the number of input/output of $N/n \times N/n$.

20

9. The method of increasing a switch capacity as claimed in claim 6, wherein the each switch element of the intermediate switch stage is connected to respective switching element of the

intermediate switch terminal, the switching elements of the intermediate switch stage having the number of input/output of 1.5 times of $2n \times n$.

5 10. The method of increasing a switch capacity as claimed in claim 6, wherein if switching elements are added to the switch stage of the switch network system, the added switch capacity is increased by the unit of 1.5 times of 2^N .

11. The method of increasing a switch capacity as claimed in claim 6, wherein the connecting step is carried out by changing an access port of input/output terminals of the respective switching elements.

15 12. The method of increasing a switch capacity as claimed in claim 6, wherein the switching elements are added by the unit of module.

ABSTRACT

Disclosed a method of increasing the whole switch capacity by utilizing the presently used switch network as it is. The present invention, the method of increasing a switch capacity in a switch network system in which three or more switch stages including a plurality of switching elements are connected in serial by using a predetermined logical circuit, the method comprising the steps of:
5 adding switch stage including a plurality of switching elements to correspond to the each switch stage; grouping switching elements of a first switch stage and last switch stage in the switch stage and the added switch stage by a predetermined unit, respectively; and connecting the grouped switching elements of the first stage with corresponding switching elements of an intermediate switch stage which is placed between the first stage and last stage,
15 respectively, and connecting the grouped switching elements of the last switch stage with the corresponding switching elements of the intermediate switch stage, respectively

SEARCHED INDEXED
SERIALIZED FILED

FIG. 1
Related art

FIG.2

FIG.3

FIG.4a

FIG.4b

FIG.4c

FIG.5a

FIG.5b

Docket No.: _____

DECLARATION AND POWER OF ATTORNEY

As a below named inventor, I hereby declare that:

My residence, post office and citizenship are as stated below next to my name,

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter claimed and for which a patent is sought on the invention entitled _____
METHOD OF INCREASING SWITCH CAPACITY

the specification of which

[X] is attached hereto [] was filed on _____ as Application Serial No. _____ and was
amended on _____ (if applicable)

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is known to me to be material to patentability in accordance with Title 37, Code of Federal Regulations, Section 1.56(a).

I hereby claim foreign priority or provisional application benefits under Title 35, United States Code, Section 119 of any foreign application(s) for patent or inventor's certificate, or provisional application(s) listed below and have also identified below any foreign application for patent or inventor's certificate, or provisional application(s) having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s) or U.S. Provisional Application(s):			Priority Claimed	
<u>Number</u>	<u>Country</u>	<u>Day/Month/Year</u>	<u>Yes</u>	<u>No</u>
33454 /1998	Korea	18/August/1998	X	

I hereby claim the benefit under Title 35, United States Code, Section 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, Section 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, Section 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

Prior U. S. Application(s):
Serial No. Filing Date Status: Patented, Pending, Abandoned

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

I hereby appoint the following attorney(s) and/or agent(s): Daniel Y.J. Kim, Registration No. 36,186 and Mark L. Fleshner, Registration No. 34,596; Carl R. Wesolowski, Registration No. 40,372, John C. Eisenhart, Registration No. 38,128, Rene A. Vasquez, Registration No. 36,647, all of

The Law Offices of
FLESHNER & KIM
P. O. Box 221200
Chantilly, Virginia 20153-1200

With full power of substitution and revocation, to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith, and all future correspondence should be addressed to them.

Full name of sole or first inventor: Jae Kwan LIM

Inventor's signature: Jae Kwan LIM Date: July 19, 1999

Residence: Seoul, Korea

Citizenship: Republic of Korea

Post Office Address: Hangang Hyondae APT., 112-801, Huksok2-dong, Tongjak-gu, Seoul, Korea

Full name of joint inventor(s):

Inventor's signature: _____ Date: _____

Residence: _____

Citizenship: _____

Post Office Address: _____

Full name of joint inventor(s):

Inventor's signature: _____ Date: _____

Residence: _____

Citizenship: _____

Post Office Address: _____

Full name of joint inventor(s):

Inventor's signature: _____ Date: _____

Residence: _____

Citizenship: _____

Post Office Address: _____