Université de Lille Examen

Master 2 - "Mathématiques, Finance Computationnelle, Actuariat" (Cours de "Modèles de Taux") Mars 2022

Soit $(B_t)_{t\geq 0}$ un mouvement brownien sous une probabilité risque-neutre Q et considérons le modèle de Ho-Lee dans lequel le taux court vérifie

$$dr_t = adt + \sigma dB_t \tag{1}$$

avec $\sigma > 0$, a > 0 et $r_0 \in \mathbb{R}$.

- 1. Justifier que $(r_t)_{t\geq 0}$ est un processus gaussien. Calculer $Er_t, Var(r_t), Cov(r_s, r_t)$ pour tous $s, t \geq 0$.
- 2. Calculer $E|r_t r_s|^p$ pour tout $t \ge 0, p \ge 1$. Le processus r est-il hölderien? de quel ordre?
- 3. Montrer que pour tout 0 < t < T on a

$$\int_{t}^{T} B_s ds = (T - t)B_t + \int_{t}^{T} (T - s)dB_s.$$

4. Calculer l'espérance et la variance de la variable gaussienne

$$\int_{t}^{T} r_{s} ds.$$

- 5. Calculer $E\left(\int_t^T r_s ds | \mathcal{F}_t\right)$ et $Var\left(\int_t^T r_s ds | \mathcal{F}_t\right)$ et en déduire le prix B(t,T) du zéro-coupon dans le modèle Ho-Lee $(0 \le t \le T)$
- 6. Ecrire l'EDP des taux associée au modèle (1).

Soit, dans la suite, $(W_t)_{t\geq 0}$ un autre mouvement brownien (par rapport à la même filtration que B) tel que $\langle B, W \rangle_t = \rho t$ pour tout $t \geq 0$ avec $\rho \in (0, 1)$.

Soit $(x_t)_{t\geq 0}$ la solution de l'équation différentielle stochastique

$$dx_t = k(\theta - x_t)dt + \eta dW_t \tag{2}$$

avec $x_0 \in \mathbb{R}, \eta > 0, k \in \mathbb{R}$

- 7. Donner l'espérance et la covariance du processus $(r_t + x_t)_{t \geq 0}$.
- 8. Calculer $\lim_{t\to\infty} E(r_t+x_t)$ et $\lim_{t\to\infty} Var(r_t+x_t)$ et discuter le retour à la moyenne.
- 9. Calculer le prix du zéro-coupon dans le modèle deux facteurs avec les facteurs r et x, i.e. le taux court du modèle est $R(t) = r_t + x_t$ pour tout $t \ge 0$, où r et x sont donnés part (1) et (2).