

Computación cuántica

Prof. Alcides Montoya C., Ph.D Escuela de Física Universidad Nacional de Colombia Sede Medellín

Quantum Computing Explained

DAVID McMAHON

INTRODUCCIÓN AL FORMALISMO DE LA MECÁNICA CUÁNTICA NO RELATIVISTA

Qiskit

COLUMN TOWARDS

Ma: Carolina Spinel Gómez

Facultad & Ciencias

¿Cuál es la diferencia entre la computación clásica y la computación cuántica?

Semillero de computación cuántica - UNAL

George Boole

(Lincoln, Reino Unido, 1815 - Ballintemple, actual Irlanda, 1864) Matemático británico, creador de un nuevo sistema de cálculo lógico que póstumamente sería llamado Álgebra de Boole.

https://blogs.scientificamerican.com/guest-blog/the-bicentennial-of-george-boole-the-man-who-laid-the-foundations-of-the-digital-age/

Basic Boolean Algebraic Identities

			E)
^~	\sim	10.	110
Ad			\vee
/ NW	•		

$$A + 0 = A$$

$$A + 1 = 1$$

$$A + A = A$$

$$A + \overline{A} = 1$$

$$0A = 0$$

$$1A = A$$

$$AA = A$$

$$A\overline{A} = 0$$

https://www.daviddarling.info/encyclopedia/B/Boolean_algebra.html

Decimal	Binario	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	А
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

posición 3 2 1 0 1 1 1 1 1 1 Código binario

$$1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0$$

Código decimal: 8+4+2+1 = 15

Decimal = 4156

Division	Quotient	Remainder	
4156/16	259	12 – C	1
259/16	16	3	
16/16	1	0	
1/16	0	1	

Hexadecimal = 103C

Hexadecimal	Decimal	Binario	Octal
0	0	0000	0
1	1	0001	1
2	2	0010	2
3	3	0011	3
4	4	0100	4
5	5	0101	5
6	6	0110	6
7	7	0111	7
8	8	1000	10
9	9	1001	11
A	10	1010	12
В	11	1011	13
C	12	1100	14
D	13	1101	15
E	14	1110	16
F	15	1111	17

BCD Code

Decimal	8421	2421	8 4 -2 -1	XS-3
0	0000	0000	0000	0011
1	0001	0001	0111	0100
2	0010	0010	0110	0101
3	0011	0011	0101	0110
4	0100	0100	0100	0111
5	0101	1011	1011	1000
6	0110	1100	1010	1001
7	0111	1101	1001	1010
8	1000	1110	1000	1011
9	1001	1111	1111	1100

El primer transistor

The first transistor was invented by John Bardeen (left) and Walter Brattain (right) and later in 1947 William Shockley (centre) saw the great potential of the device. The same year the first transistor, now an essential part of making smaller electronic devices such as computers and phones, was demonstrated at Bell Laboratories.

https://www.digikey.com/es/maker/blogs/2018/71st-a nniversary-of-the-transistor

https://www.digikey.com/en/articles/transistor-basics

NPN Transistor Operation **Buckets** Collector represent Voltage (Holding water Light blue arrow = pressure) Collector Current flowing to Emitter Green arrow = **Base Current** Gray Oval = Valve diameter of pipe = between Collector/ **Bias Resistance** Emitter, Base Current (a Resistor) B opens the Valve Base Base Current flowing into the Emitter Yellow arrow coming from Collector current E trying to get into Base Combined Collector & but blocked by reverse diode action **Base Current in Emitter** Emitter flowing on to Ground Ground

https://www.digikey.com/en/articles/transistor-basics

https://researchoutreach.org/articles/engineering-t echnology/architecting-integrated-circuit-fabrics-na noscale/

https://www.digikey.com/es/maker/blogs/2018/71st-an niversary-of-the-transistor

TO-247

Therefore, $(278)_{10} = 0010\ 0111\ 1000$

1999: Intel Pentium III Xeon™

https://www.tayloredge.com/museum/processor/processorhistory.html

ASCII TABLE

Decimal	Hex	Char	Decimal	Hex	Char	Deci
0	0	[NULL]	32	20	[SPACE]	64
1	1	[START OF HEADING]	33	21	1	65
2	2	[START OF TEXT]	34	22	н	66
3	3	[END OF TEXT]	35	23	#	67
4	4	[END OF TRANSMISSION]	36	24	\$	68
5	5	[ENQUIRY]	37	25	%	69
6	6	[ACKNOWLEDGE]	38	26	&	70
7	7	[BELL]	39	27	1	71
8	8	[BACKSPACE]	40	28	(72
9	9	[HORIZONTAL TAB]	41	29)	73
10	A	[LINE FEED]	42	2A	*	74
11	В	[VERTICAL TAB]	43	2B	+	75

Alan Turing - 23 June 1912 – 7 June 1954

"Turing atacó el problema imaginando una máquina con una cinta infinitamente larga. La cinta está cubierta con símbolos que dan instrucciones a la máquina, diciéndole cómo manipular otros símbolos. Esta máquina de Turing universal, como se la conoce, es un modelo matemático de las computadoras modernas que todos usamos hoy"

John von Neumann, el matemático que diseñó los ordenadores modernos

"El científico húngaro-estadounidense construyó el primer computador que podía realizar diversas tareas, entre otras muchas contribuciones a todo tipo de disciplinas desde la física cuántica a la economía

https://elpais.com/ciencia/cafe-y-teoremas/2023-02-23/john-von-neumann-el-matematico-que-diseno-los-ordenadores-modernos.html

Machine code and instruction sets

There is no set binary bit pattern for different opcodes in an instruction set. Different processors will use different patterns, but sometimes it might be the case that you are given certain bit patterns that represent different opcodes. You will then be asked to write machine code instructions using them. Below is an example of bit patterns that might represent certain instructions.

Machine code	Instruction	Addressing mode	Example
0000	STORE	Address	STO 12
0001	LOAD	Number	LDA #12
0010	LOAD	Address	LDA 12
0100	ADD	Number	ADD #12
1000	ADD	Address	ADD 12
1111	HALT	None	HALT

ARM data-processing instruction

https://www.allaboutcircuits.com/technical-articles/how-to-write-assembly-basic-assembly-instructions-ARM-instruction-set/

Enter location here

	main():		
⇒ 00000750:	F1AD0D08	sub.w	sp, sp, #8
70	WDTCTL = WDTPW	WDTHOLD;	// Stop WI
00000754:	490D	ldr	r1, [pc, #0x34]
00000756:	F44F40B5	mov.w	r0, #0x5a80
0000075a:	8008	strh	r0, [r1]
71	P1DIR = BIT0;		// P1.0 si
0000075c:	490C	ldr	r1, [pc, #0x30]
0000075e:	7808	ldrb	r0, [r1]
00000760:	F0400001	orr	r0, r0, #1
00000764:	7008	strb	r0, [r1]

C/Java Compiler

Assembly Language

MIPS Assembler

Machine Language

```
0000 1001 1100 0110 1010 1111 0101 1000 1010 1111 0101 1000 1000 1100 0110 1100 0110 1100 0110 1100 0110 1101 1000 0000 1001 0101 1000 0000 1001
```

Machine language instructions	Assembly language instructions	FORTRAN language instructions
0110 0011 0010 0001 0100 0011 0010 0010	LDA X ADA Y	D = X+Y+Z
0100 0011 0010 0011 0111 0011 0010 0100	ADA Z STA D	

https://youtu.be/Mv2XQgpbTNE

Machine's Instruction Cycle

Propongo: Leer el capítulo O del texto Introducción al formalismo de la mecánica cuántica no relativista