Analysing

R for Data Science Basel R Bootcamp

February 2019

What is analysing?

Create Groups

Group data by certain variables

- For all males (sex == "male")
- For all people in placebo condition (condition == "placebo")

Calculate summaries

- Count number of cases
- Calculate mean of age (mean(age))
- Calculate number of events (sum(events))

Bonus: Statistical Analyses

- Simple hypothesis tests (t-test, correlation test)
- Generalised linear model (regression, ANOVA)

Raw data (First 5 out of 1,000 rows)

id	sex	education	income	happiness
1	male	SEK_III	6300	5
2	male	obligatory_school	10900	7
3	female	SEK_III	5100	7
4	male	SEK_III	4200	7
5	male	SEK_III	4000	5

Aggregated data

education	sex	N	Inc_mean	Hap_mean
apprenticeship	female	2168	7663.0	6.9
apprenticeship	male	1818	7388.9	6.9
obligatory_school	female	714	7746.1	6.9
obligatory_school	male	525	7293.7	6.8
SEK_II	female	469	7385.0	6.9
SEK_II	male	272	7254.7	6.9

dplyr

To calculate grouped summary analyses, we will use dplyr (again!)

```
# Load packages individually
# install.packages('dplyr')
library(dplyr)
# Or just use the tidyverse!
# install.packages('tidyverse')
library(tidyverse)
```


The Pipe! %>%

dplyr makes extensive use of a new operator called the "Pipe" %>%

Read the "Pipe" %>% as "And Then..."

```
# Start with data
data %>% # AND THEN...
DO_SOMETHING %>% # AND THEN...
DO_SOMETHING %>% # AND THEN...
DO_SOMETHING %>% # AND THEN...
```


This is not a pipe (but %>% is!)

summarise()

Use summarise() to create new columns of summary statistics

```
df %>%
 summarise(
   NAME = SUMMARY_FUN(A),
   NAME = SUMMARY_FUN(B)
```

Summary functions

Function	Purpose
n()	Number of cases in each group
<pre>mean(), median(), max(), min() sum()</pre>	Summary stats

```
# Calculate summary statistics
baselers %>%
  summarise(
   N = n(),
    age_mean = mean(age),
    height_median = median(height),
    children_max = max(children, na.rm = TRUE)
```

```
## # A tibble: 1 x 4
        N age_mean height_median children_max
    <int>
              <dbl>
                            <dbl>
                                         <dbl>
              44.6
## 1 10000
                            171.
```

The result of summarise() will always be a tibble!

Important You can only include summary functions that return a single value (i.e.; can't use table())

Grouped Aggregation

group_by(),summarise()

Use group_by() to group data according to one or more columns

After grouping data, use summarise() to calculate summary statistics across groups of data

Statistical functions

Function	Purpose
n()	Number of cases in each group
<pre>mean(), median(), max(), min() sum()</pre>	Summary stats

```
# Group data by arm, and calculate many
# summary statistics
baselers %>%
  group_by(sex) %>%
  summarise(
   N = n()
   age_mean = mean(age),
   height_median = median(height),
   children_max = max(children)
```

```
## # A tibble: 2 x 5
               N age_mean height_median children_max
    <chr> <int>
                    <dbl>
                                  <dbl>
                                               <dbl>
## 1 female 5000
                     45.4
                                   164
                                                   6
                     43.8
## 2 male
            5000
                                   178.
                                                   6
```

Combine wrangling with analysing

You can easily combine multiple wrangling (filtering, slicing, renaming) and analysing operations at once!

Just use the pipe %>%

```
baselers %>%
 filter(sex == "male" & children > 0) %>% # male parents only
  group_by(confession) %>%
  summarise(
   N = n(),
   age_mean = mean(age),
   income_median = median(income, na.rm = TRUE)
```

```
## # A tibble: 6 x 4
    confession
                             N age_mean income_median
    <chr>
                                   <dbl>
                          <int>
                                                 <dbl>
                                   43.5
## 1 <NA>
                           703
                                                  7000
## 2 catholic
                                   44.0
                                                  7100
                           1401
## 3 confessionless
                          1125
                                   43.8
                                                  7100
## 4 evangelical-reformed
                                   43.9
                                                  7200
## 5 muslim
                           155
                                   41.5
                                                  6800
## 6 other
                            247
                                    44.0
                                                  6900
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
    sex
                     age income
   <chr> <chr>
                   <dbl> <dbl>
                           6300
## 1 male
                      44
           no
## 2 male
                      65 10900
          no
## 3 female no
                      31
                           5100
                           4200
## 4 male
                           4000
## 5 male
```

```
## # A tibble: 2 x 4
    fasnacht
                  N age_mean income_mean
     <chr>
              <int>
                       <dbl>
                                   <dbl>
## 1 no
               9706
                        44.6
                                   7527.
                                   7692.
## 2 yes
                294
                        45.3
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
                     age income
    sex
   <chr> <chr>
                   <dbl> <dbl>
                          6300
## 1 male
                      44
          no
                      65 10900
## 2 male
          no
## 3 female no
                      31 5100
## 4 male
                           4200
                           4000
## 5 male
```

```
baselers %>%
  group_by(fasnacht) %>%
  summarise(
    N = n(),
    age_mean = mean(age),
    income_mean = mean(income, na.rm = TRUE)
```

```
## # A tibble: 2 x 4
    fasnacht
                  N age_mean income_mean
     <chr>
              <int>
                       <dbl>
                                   <dbl>
## 1 no
               9706
                        44.6
                                   7527.
                                   7692.
## 2 yes
                294
                        45.3
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
  slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
                      age income
    sex
    <chr> <chr>
                    <dbl> <dbl>
                           6300
## 1 male
                       44
           no
## 2 male
                       65 10900
           no
## 3 female no
                       31
                           5100
## 4 male
                            4200
                            4000
## 5 male
```

```
## # A tibble: 4 x 5
              fasnacht [2]
## # Groups:
    fasnacht sex
                        N age_mean income_mean
    <chr>
              <chr> <int>
                              <dbl>
                                         <dbl>
## 1 no
                                         7646.
             female
                     4886
                              45.4
## 2 no
             male
                      4820
                              43.8
                                         7407.
## 3 yes
                                         7829.
             female
                      114
                              46.4
## 4 yes
             male
                      180
                              44.6
                                         7602
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
  slice(1:5)
```

```
## # A tibble: 5 x 4
                     age income
           fasnacht
    sex
   <chr> <chr>
                    <dbl> <dbl>
## 1 male
                      44
                           6300
           no
                      65 10900
## 2 male
          no
## 3 female no
                      31
                           5100
## 4 male
                           4200
                           4000
## 5 male
```

```
baselers %>%
  group_by(fasnacht, sex) %>%
  summarise(
    N = n()
    age_mean = mean(age),
    income_mean = mean(income, na.rm = TRUE)
```

```
## # A tibble: 4 x 5
## # Groups: fasnacht [2]
    fasnacht sex
                        N age_mean income_mean
    <chr>
              <chr> <int>
                              <dbl>
                                          <dbl>
                                          7646.
## 1 no
             female
                     4886
                              45.4
## 2 no
                              43.8
                                         7407.
             male
                      4820
## 3 yes
                      114
                              46.4
                                         7829.
             female
                                          7602
## 4 yes
             male
                      180
                               44.6
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
                     age income
    sex
   <chr> <chr>
                    <dbl> <dbl>
                           6300
## 1 male
                      44
           no
## 2 male
                      65 10900
          no
## 3 female no
                      31
                           5100
## 4 male
                           4200
                           4000
## 5 male
```

```
## # A tibble: 2 x 5
## # Groups: fasnacht [2]
    fasnacht sex
                       N age_mean income_mean
    <chr>
             <chr> <int>
                            <dbl>
                                        <dbl>
## 1 no
                             43.8
                                        7407.
             male
                    4820
## 2 yes
             male
                     180
                             44.6
                                        7602
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
                     age income
    sex
   <chr> <chr>
                   <dbl> <dbl>
                      44
                          6300
## 1 male
          no
                      65 10900
## 2 male
          no
## 3 female no
                      31 5100
## 4 male
                           4200
## 5 male
                           4000
```

```
baselers %>%
  filter(sex == "male") %>% # male patients only
  group_by(fasnacht, sex) %>%
  summarise(
    N = n(),
    age_mean = mean(age),
    income_mean = mean(income, na.rm = TRUE)
## # A tibble: 2 x 5
```

```
## # Groups: fasnacht [2]
    fasnacht sex
                       N age_mean income_mean
    <chr>
                            <dbl>
             <chr> <int>
                                        <dbl>
                             43.8
                                        7407.
## 1 no
             male
                    4820
## 2 yes
             male
                     180
                             44.6
                                        7602
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
           fasnacht
                      age income
    sex
    <chr> <chr>
                    <dbl> <dbl>
                           6300
## 1 male
                       44
           no
## 2 male
                       65 10900
           no
## 3 female no
                       31
                           5100
## 4 male
                           4200
                           4000
## 5 male
```

```
## # A tibble: 4 x 3
    education
                           N income_mean
    <chr>
                       <int>
                                   <dbl>
                                   7555.
## 1 SEK_III
                        4034
                                   7551.
## 2 obligatory_school
                        1239
## 3 apprenticeship
                        3986
                                   7538.
## 4 SEK_II
                                   7338.
                         741
```

Here is part of the baselers dataframe

```
baselers %>%
 select(sex, fasnacht, age, income) %>%
 slice(1:5)
```

```
## # A tibble: 5 x 4
                     age income
           fasnacht
    sex
    <chr> <chr>
                    <dbl> <dbl>
                           6300
## 1 male
                      44
           no
                      65 10900
## 2 male
          no
## 3 female no
                      31
                           5100
## 4 male
                           4200
                           4000
## 5 male
```

```
baselers %>%
  group_by(education) %>%
  summarise(
    N = n(),
    income_mean = mean(income, na.rm = TRUE)
  ) %>%
  arrange(desc(income_mean))
```

```
## # A tibble: 4 x 3
    education
                           N income_mean
     <chr>
                       <int>
                                   <dbl>
## 1 SEK_III
                        4034
                                   7555.
                                   7551.
## 2 obligatory_school
                        1239
## 3 apprenticeship
                                   7538.
                        3986
## 4 SEK_II
                         741
                                   7338.
```

What have we not covered yet? Statistics!

Statistical functions (almost) always require two key arguments

data	A dataframe
formula	A formula specifying variables in the model

A formula specifies a dependent variable (y) as a function of one or more **independent** variables (x1, x2, ...) in the form:

formula =
$$y \sim x1 + x2 + ...$$

How to create a statistical object:

```
# Example: Create regression object (my_glm)
my_glm <- glm(formula = income ~ age + height,</pre>
               data = baselers)
```


Simple hypothesis tests

All of the basic **one and two sample hypothesis tests** are included in the stats package.

These tests take either a **formula** for the argument formula, or individual vectors for the arguments x, and y

Hypothesis Test	R Function
t-test	t.test()
Correlation Test	cor.test()
Chi-Square Test	<pre>chisq.test()</pre>

t-test with t.test()

```
# 2-sample t-test
t.test(formula = income ~ sex,
       data = baselers)
##
      Welch Two Sample t-test
## data: income by sex
## t = 4, df = 8500, p-value = 6e-05
## alternative hypothesis: true difference in means is not (
## 95 percent confidence interval:
## 120.6 352.2
## sample estimates:
## mean in group female
                         mean in group male
##
                   7650
                                        7414
```

Regression with glm(), lm()

How to create a regression model predicting, e.g., how much money people spend on food as a function of income?

Part of the baselers dataframe:

food	income	happiness
610	6300	5
1550	10900	7
720	5100	7
680	4200	7
260	4000	5

Generalized regression with glm()

```
# food (y) on income (x1) and happiness (x2)
food_glm <- glm(formula = food ~ income + happiness,</pre>
                 data = baselers)
# Print food_glm
food_glm
## Call: glm(formula = food ~ income + happiness, data = baselers)
## Coefficients:
## (Intercept)
                     income
                               happiness
                      0.101
                                  52.205
      -302.089
## Degrees of Freedom: 8509 Total (i.e. Null); 8507 Residual
    (1490 observations deleted due to missingness)
## Null Deviance:
                         1.27e+09
## Residual Deviance: 6.06e+08
                                   AIC: 119000
```

Exploring statistical objects

Explore statistical objects using generic functions such as print(), summary(), predict() and plot().

Generic functions different things depending on the class label of the object.

```
# Create statistical object
obj <- STAT_FUN(formula = ...,</pre>
               data = ...)
names(obj)
                # Elements
print(obj) # Print
summary(obj)
                # Summary
plot(obj)
             # Plotting
predict(obj, ..) # Predict
```

```
# Create a glm object
my_glm <- glm(formula = income ~ happiness + age,
              data = baselers)
summary(my_glm)
## Call:
## glm(formula = income ~ happiness + age, data = baselers)
## Deviance Residuals:
              1Q Median
                              3Q
                                     Max
     Min
   -4045
            -835
                             814
                                    4899
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           94.363 16.70 < 2e-16 ***
## (Intercept) 1575.497
                           12.520 -8.02 1.2e-15 ***
## happiness -100.431
               149.312
                            0.815 183.31 < 2e-16 ***
## age
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' 201/23
 R For Data Science | February 2019
```

tidy()

The tidy() function from the broom package **converts** the most important results of many statistical object like "glm" to a data frame.

```
# install and load broom
install.packages('broom')
library(broom)
```


my_glm is a long list with many kinds of outputs and an ugly printout

```
# Print (raw glm)
my_glm
##
## Call: glm(formula = income ~ happiness + age, data = baselers
##
## Coefficients:
## (Intercept)
                  happiness
                                     age
##
          1575
                       -100
                                     149
## Degrees of Freedom: 8509 Total (i.e. Null); 8507 Residual
    (1490 observations deleted due to missingness)
## Null Deviance:
                         6.33e + 10
## Residual Deviance: 1.28e+10
                                   AIC: 145000
# Class (raw glm)
class(my_glm)
## [1] "glm" "lm"
```

tidy()

The tidy() function from the broom package **converts** the most important results of many statistical object like "glm" to a data frame.

```
# install and load broom
install.packages('broom')
library(broom)
```



```
# Print (tidy glm)
tidy(my_glm)
## # A tibble: 3 x 5
                estimate std.error statistic p.value
    term
    <chr>
                             <dbl>
                                                <dbl>
                   <dbl>
                                       <dbl>
                                       16.7 1.33e-61
                   1575.
                            94.4
## 1 (Intercept)
                            12.5
                                       -8.02 1.18e-15
## 2 happiness
                   -100.
## 3 age
                    149.
                             0.815
                                      183. 0.
# Class (tidy glm)
class(tidy(my_glm))
## [1] "tbl_df"
                   "tbl"
                                "data.frame"
```

Practical