GTOC 12: Sustainable Asteroid Mining Approach of the OptimiCS team

Members: Sébastien Goulet, Vincent Debout, Patrice Mathieu, Vincent Cucchietti, Maxime Journot, Julien Asquier, Romain Garmier, Laurène Beauvalet, Thierry Ceolin, Laurent Chausson, Pascal Parraud

Speakers: Vincent Debout, Sébastien Goulet

GTOC 12 Workshop

January 15th, 2024 Tsinghua University, Beijing, China

CS Group contributes to a wide range of space missions

https://www.csgroup.eu

Preliminary analysis and databases

Fleet construction pipeline

Solving the optimal control problem

Compute the best trajectory for a body-to-body transfer duration/mass trade-off

- Direct approach (inspired from C.H. Yam et al., 2010) Sims-Flanagan transcription with regular time segments Constant inertial low-thrust instead of impulse Taylor integration
- NLP solver: SLSQP (from NLOPT) and IPOPT

Delta-V estimation

Maximum Initial Mass (MIMA, Hennes et al., 2016) approximation ΔV_D overestimates ΔV_D Lambert impulse solution ΔV_D underestimate it

asteroid to asteroid transfer example

Weighted ΔV estimation:

$$\Delta V = \Delta V_L * (1 - w) + \Delta V_D * w$$

with
$$w = m_i / m^*$$
 or $w = (m_i / m^*)^2$

Preliminary analysis and databases

Fleet construction pipeline

Preliminary analysis and databases

Analysis

Filtering of the most promising asteroids

Densest zones at 2.4 AU and 2.75 AU

 $60k \rightarrow 17k$ asteroids

- a < 2.95 AU
 </p>
- \rightarrow $i < 8^{\circ}$

Preliminary analysis and databases

Asteroid accessibility database

Used to drive the exploration during the search

For each asteroid on a 5-day time grid:

- Consider only close neighbors (within 1 AU at t and t + 150 days)
- \triangleright Consider only cheap targets (min $\Delta V_L < 3$ km/s within 400 days)
- → Store the cheapest targets and associated MIMA values

Preliminary analysis and databases

ALAP & ASAP databases

For each selected asteroid:

- ASAP: find the transfer to reach asteroid from Earth As Soon As Possible
- ALAP: find the backward transfer to reach asteroid from Earth As Late As Possible (with an estimated final mass of 1300kg)

for a 5-day grid transfer duration (starting at time optimal)

→ databases contain a discretized Pareto of the Earth-asteroid transfers

Preliminary analysis and databases

Fleet construction pipeline

Decoupling the upstream and downstream parts of the trajectory

The list of asteroids visited by a ship is cut into upstream and downstream semi-sequences

- Constructed independently, maximizing the collected mass expectancy
- Semi-sequences that share a pivot asteroid can be merged

Collected mass expectancy: mirror hypothesis

Estimation of the mining time expectancy for an asteroid

> Hypothetical symmetric event with respect to a median time point

Banks of semi-sequences

Beam search

- Initialization: from ASAP or ALAP databases + asteroids filter
- Exploration: asteroid accessibility database + weighted ΔV estimation, revisit not allowed
- Heuristic: total ΔV / transfer time / collected mass expectancy compromise + mass range constraint

Filters

- > Tabu iterations: Concatenation of successive runs removing the most frequently visited asteroids
- > Downstream filter: Only consider the set of asteroids retained in the upstream phase

Assembling into fleets

Simulated annealing

- Parameters: ships count, forbidden asteroids
- Variables: pivots and associated pairs of upstream/downstream semi-sequences
- Mutations: change a pivot (and the associated pair) or change a semi-sequence
- Heuristic: average collected mass

Several successive runs with varying ship count and sets of forbidden asteroids

Finalizing the low-thrust trajectories

- I. Preliminary real trajectories
- Forward pass: optimal control, updates of mass events, removal of spurious asteroid visits
- Relaxations needed to improve the feasibility on some difficult trajectories:

 Reduction of the initial mass, events shifting toward the median date, or removal of the pivot

Global sub-fleet level optimization

- Preliminary real trajectories used as first guess.
- Simultaneously optimize all legs and adjust asteroid visit dates
- Ensure the final 500kg mass constraint
- Maximize the collected mass

Preliminary analysis and databases

Fleet construction pipeline

Final fleet assembly

Concatenation of our best compatible solo ships and sub-fleets

Considering the bonus coefficients, and with potential simplification of duplicates and slight re-optimization

Courtesy of Tsinghua University

29 Mining Ships

- > 5 pairs of cooperating ships
- > 19 individual ships

236 mined asteroids

673kg in average collected per ship

Relative lack of ship cooperation

Our first fleets presented larger independent groups (up to 7 ships) that were progressively replaced by smaller sub-fleets

Most of the exploited asteroids are close to 3 AU

Thank you!

GTOC 12: Sustainable Asteroid Mining Approach of the OptimiCS team

January 15th, 2024

Speakers: Vincent Debout, Sébastien Goulet

vincent.debout@csgroup.eu, sebastien.goulet@csgroup.eu

