Construção de Compiladores

Análise Sintática Ascendente – parte1

Profa. Helena Caseli helenacaseli@dc.ufscar.br

- Como é feita?
 - A análise é feita das folhas para a raiz
 - Parte-se das folhas (sequência de tokens retornada pelo analisador léxico) e, por meio de reduções, chega-se ao símbolo inicial da gramática
 - Analisadores de empilha-reduz (shift-reduce)

- Redução
- Derivação à direita

- Como é feita?
 - Componentes
 - Pilha onde os símbolos a serem reduzidos são empilhados
 - Tabela sintática guia o processo de empilha/reduz

- Como é feita?
 - Para reconhecer uma cadeia de entrada:
 - 1. Empilha
 - Os símbolos da cadeia de entrada
 - 2. Reduz
 - O lado direito de uma produção no topo da pilha (handle), substituindo-o pelo lado esquerdo da produção
 - Os passos 1 e 2 são repetidos até que
 - ACEITA os símbolos da cadeia de entrada foram consumidos e a pilha possui apenas o símbolo inicial da gramática
 OU
 - ERRO o processo foi interrompido antes de chegar ao final
 - O uso da sequência correta de handles no processo de análise leva ao símbolo inicial da gramática

Exemplo

- Inicialmente
 - 1. Empilha o primeiro símbolo da cadeia de entrada
 - 2. Consome o primeiro símbolo da cadeia

Exemplo

- Reduz
 - Substitui a lado direito de uma produção que está no topo da pilha (handle) pelo não terminal correspondente
 - Para a regra $A \rightarrow \alpha$, α pode ser reduzido a A

Exemplo

- Aceita a cadeia quando
 - → A pilha contém apenas o símbolo inicial <u>e</u>
 - A cadeia foi consumida (contém apenas \$)
- ERRO
 - Demais casos

Exemplo

Reconhecer n+n

Derivação à direita ao reverso

Pilha	Cadeia	Ação
\$	n + n \$	empilha n
\$ n	+ n \$	reduz S → n
3 \$ S	+ n \$	empilha +
\$ S +	n \$	empilha n
\$ S + n	\$	reduz S → n
2 \$ S + S	\$	reduz S→S
1 \$ S	\$	ACEITA
rada		

Derivação à direita da cadeia de entr

$$1 S \Rightarrow S + \underline{S}$$

 $3 \Rightarrow \underline{S} + n$
 $3 \Rightarrow n + n$

- Analisadores sintáticos ascendentes (ASA) 2 tipos
 - Analisador de precedência de operadores
 - Opera sobre a classe das gramáticas de operadores
 - Guiado por uma tabela de precedência
 - Analisador LR (k)
 - <u>Left to right with Rightmost derivation</u>
 - Lê a sentença em análise da esquerda para a direita
 - Produz uma derivação mais à direita ao reverso
 - Considerando-se k símbolos na cadeia de entrada

- Analisador de precedência de operadores
 - Opera sobre a classe das gramáticas de operadores
 - Gramática de operadores
 - Não há símbolos não-terminais adjacentes nas regras (ou seja, não-terminais são sempre separados por terminais)
 - Não há produções que derivam a cadeia nula (vazia)
 - Exemplo

- Guiado por uma tabela de precedência
 - Handle identificado com base nas relações de precedência entre tokens
 - < identifica o limite esquerdo do handle
 - = os terminais pertencem ao mesmo handle
 - > identifica o limite direito do handle

- Como é feita a ASA de precedência de operadores?
 - Seja <u>p</u> o terminal (ou \$) mais ao topo da <u>pilha</u> (os não-terminais são ignorados) e <u>c</u> o primeiro terminal da <u>cadeia</u> sendo analisada
 - Se p<c ou p=c, então empilha c

- Como é feita a ASA de precedência de operadores?
 - Seja <u>p</u> o terminal (ou \$) mais ao topo da <u>pilha</u> (os não-terminais são ignorados) e <u>c</u> o primeiro terminal da <u>cadeia</u> sendo analisada
 - Se p>c, então substitui o handle na pilha pelo lado esquerdo da produção correspondente
 - O handle estará delimitado na pilha pelas precedências < e >

- Tabela de precedência
 - Matriz quadrada que relaciona todos os terminais da gramática e o símbolo delimitador (\$)

Tabela de precedência de operadores

	+	*	**	()	id	\$
+	>	<	<	<	>	<	>
*	>	>	<	<	>	<	>
**	>	>	<	<	>	<	>
(<	<	<	<	=	<	
)	>	>	>		>		>
id	>	>	>		>		>
\$	<	<	<	<		<	ОК

← entrada (cadeia)

- Construção da tabela de precedência 2 métodos
 - Intuitivo
 - Baseado no conhecimento da precedência e associatividade dos operadores
 - Mecânico
 - Obtém-se a tabela diretamente da gramática
 - As gramáticas NÃO podem ser ambíguas
 - As produções devem refletir a associatividade e a precedência dos operadores

- Construção da tabela de precedência 2 métodos
 - Intuitivo
 - Baseado no conhecimento da <u>precedência</u> e <u>associatividade</u> dos operadores

- Tabela de precedência Método intuitivo
 - Exemplo

Sabendo-se que

- ** tem maior precedência e é associativo à direita (ex: 2**3+5);
- * tem precedência intermediária e é associativo à esquerda;
- + tem menor precedência e é associativo à esquerda

ſ		+	*	**	()	id	\$ ← entrada
	+							
	*							
	**							
	(
)							
	id							
	\$							

- Tabela de precedência Método intuitivo
 - Exemplo

```
<E> ::= <E>+<E> | <E>*<E> | (<E>) | id
```

Se x tem <u>maior</u> precedência do que y, então tem-se que - x (na pilha) > y (na entrada)

Ex: *>+
**>+

** > *

	+	*	**	()	id	\$ ← entrada
+							
*	>						
**	>	>					
(
)							
id							
\$							

Tabela de precedência – Método intuitivo

** > *

Exemplo

pilha _

```
<E> ::= <E>+<E> | <E>*<E> | (<E>) | id
```

	+	*	**	()	id	\$ → — entrada
+		<	<				
*	>		<				
**	>	>					
(
)							
id							
\$							

* < **

- Tabela de precedência Método intuitivo
 - Exemplo

Se x e y têm precedência iqual (ou são iquais) e

- Se são <u>associativos à esquerda</u>, então x > y e y > x

Ex: * > * e + > +

- Se são <u>associativos à direita</u>, então x < y e y < x Ex: ** < **

	+	*	**	()	id	\$ —
+	>	<	<				
*	>	>	<				
**	>	>	<				
(
)							
id							
\$							

entrada

- Tabela de precedência Método intuitivo
 - Exemplo

```
<E> ::= <E>+<E> | <E>*<E> | (<E>) | id
```

As relações entre operadores e demais símbolos terminais (operandos e delimitadores) são fixas. Para qq operador z

	+	*	**	()	id	\$
+	^	<	<	<	>	<	\
*	>	>	<	<	>	<	>
**	>	>	<	<	>	<	>
(<	<	<				
)	>	>	>				
id	>	>	>				
\$	<	<	<				

- entrada

- Tabela de precedência Método intuitivo
 - Exemplo

```
<E> ::= <E>+<E> | <E>*<E> | (<E>) | id
```

```
As relações entre os operandos também são fixas

( < ( ) > ) id > ) $ < ( ( = )

id > $ < id ( < id ) > $
```

	+	*	**	()	id	\$	← entrada
+	>	<	<	<	>	<	>	
*	>	>	<	<	>	<	>	
**	>	>	<	<	>	<	>	
(<	<	<	<	=	<		
)	>	>	>		>		>	
id	>	>	>		>		>	
\$	<	<	<	<		<		

- Tabela de precedência Método intuitivo
 - Exemplo

	+	*	**	()	id	\$	→ — entrada
+	>	<	<	<	>	<	>	
*	>	>	<	<	>	<	>	
**	>	>	<	<	>	<	>	
(<	<	<	<	=	<		
)	>	>	>		>		>	
id	>	>	>		>		>	
\$	<	<	<	<		<	OK	

pilha _

- Construção da tabela de precedência 2 métodos
 - Intuitivo
 - Baseado no conhecimento da precedência e associatividade dos operadores
 - Mecânico
 - Obtém-se a tabela diretamente da gramática
 - As gramáticas <u>NÃO</u> podem ser <u>ambíguas</u>
 - As produções devem refletir a <u>associatividade</u> e a <u>precedência</u> dos operadores

- Tabela de precedência Método mecânico
 - Exemplo

```
<E>::= <E>+<E> | <E>*<E> | (<E>) | id
```

Essa gramática é ambígua? Se sim, como remover a ambiguidade?

- Tabela de precedência Método mecânico
 - Exemplo

```
<E> ::= <E>+<E> | <E>*<E> | (<E>) | id
```

A ambiguidade da gramática é eliminada mantendo-se a precedência e a associatividade dos operadores

```
<E> ::= <E>+<T> | <T>
<T> ::= <T>*<F> | <F>
<F> ::= <P>**<F> | <P>
<P> ::= id | (<E>)
```

- Tabela de precedência Método mecânico
 - Exemplo

pilha

```
<E> ::= <E>+<T> | <T> <T> ::= <T>*<F> | <F> ::= <P>***<F> | <P> <P> ::= id | (<E>)
```

Formalmente, para cada dois terminais a e b - a = b se $\alpha a \beta b \delta$ é lado direito de produção e β é ϵ ou um único símbolo não-terminal

	+	*	**	()	id	\$ → entrada
+							
*							
**							
(=		
)							
id							
\$							

- Tabela de precedência Método mecânico
 - Exemplo

pilha

```
<E> ::= <E>+<T> | <T>
<T> ::= <T>*<F> | <F>
<F> ::= <P>***<F> | <P>
<P> ::= id | (<E>)
```

Formalmente, para cada dois terminais a e b - a < b se $\alpha a X\beta$ é lado direito de produção e X produz $\gamma b\delta$ e γ é ϵ ou um não-terminal

	+	*	**	()	id	\$
+		<	<	<		<	
*			<	<		<	
**			<	<		<	
(<	<	<	<	=	<	
)							
id							
\$							

← entrada

- Tabela de precedência Método mecânico
 - Exemplo

pilha

```
<E> ::= <E>+<T> | <T>
<T> ::= <T>*<F> | <F>
<F> ::= <P>**<F> | <P>
<P> ::= id | (<E>)
```

Formalmente, para cada terminal b
- \$ < b se S produz γbδ e γ é ε ou um
símbolo não-terminal

	+	*	**	()	id	\$
+		<	<	<		<	
*			<	<		<	
**			<	<		<	
(<	<	<	<	=	<	
)							
id							
\$	<	<	<	<		<	

← entrada

- Tabela de precedência Método mecânico
 - Exemplo

```
<E> ::= <E>+<T> | <T>
<T> ::= <T>*<F> | <F>
<F> ::= <P>**<F> | <P>
<P> ::= id | (<E>)
```

Formalmente, para cada dois terminais a e b - a > b se $\alpha Xb\beta$ é lado direito de produção e X produz $\gamma a\delta$ e δ é ϵ ou um símbolo não-terminal

	+	*	**	()	id	\$
+	\	<	<	<	>	<	
*	>	>	<	<	>	<	
**	>	>	<	<	>	<	
(<	<	<	<	=	<	
)	>	>	>		>		
id	>	>	>		>		
\$	<	<	<	<		<	

← entrada

pilha

- Tabela de precedência Método mecânico
 - Exemplo

pilha

```
<E> ::= <E>+<T> | <T>
<T> ::= <T>*<F> | <F>
<F> ::= <P>***<F> | <P>
<P> ::= id | (<E>)
```

Formalmente, para cada terminal a - a > \$ se S produz ya δ e δ é ϵ ou um símbolo não-terminal

	+	*	**	()	id	\$
+	>	<	<	<	>	<	>
*	>	>	<	<	>	<	>
**	>	>	<	<	>	<	>
(<	<	<	<	=	<	
)	>	>	>		>		>
id	>	>	>		>		>
\$	<	<	<	<		<	

← entrada

- Tabela de precedência Método mecânico
 - Exemplo

pilha 🚄

	+	*	**	()	id	\$
+	>	<	<	<	>	<	\
*	>	>	<	<	>	<	>
**	>	>	<	<	>	<	>
(<	<	<	<	=	<	
)	>	>	>		>		>
id	>	>	>		>		>
\$	<	<	<	<		<	OK

← entrada

Algoritmo do ASA de precedência de operadores

```
(* Seja S o símbolo inicial da gramática, p o símbolo terminal mais ao topo da pilha e c o primeiro símbolo da cadeia de entrada *)

do

if ($S \( \tilde{e}\) o topo da pilha and $\( \tilde{e}\) o primeiro símbolo da cadeia) then ACEITA

else if ($p < c \( \tilde{o}r p = c \)) then

empilha c; (* enquanto a precedência for < ou =, empilha *)

avance na leitura da entrada;

else if ($p > c$) then (* precedência > significa fim do handle, desempilha *)

desempilha at\( \tilde{e}\) encontrar a relaç\( \tilde{a}\) o < entre o terminal do topo e o

último desempilhado;

empilha o n\( \tilde{a}\)-terminal correspondente ao handle; (* reduz *)

else ERRO

until ACEITA or ERRO;
```

ASA de precedência de operadores

Reconhecer id*(id+id)

reduz T → T*F

OK

_	Гуо	m.b.l	_				•		K	econnecer i	u"(lu+lu)
•	Exe	:: <e< td=""><td></td><td>>⊥∠T</td><td>·> ~</td><td>т 🖴</td><td></td><td></td><td>Pilha</td><td>Cadeia</td><td>Ação</td></e<>		> ⊥∠T	·> ~	т 🖴			Pilha	Cadeia	Ação
		`∟							\$	id*(id+id)\$	empilha id
		(F> :::			•				\$ id	*(id+id)\$	reduz P → id
	<	P> ::	= id	(<e></e>	·)				\$ P	*(id+id)\$	empilha *
Tabela de p	rece	dênci	a de	opera	adore	es	ent	rada-	\$ P*	(id+id)\$	empilha (
		I		•	_		I		\$ P*(id+id)\$	empilha id
		+	*	**	()	id	\$	⋖ ¹\$ P*(id+id)\$	empilha id
	+	>	<	<	<	>	<	>	\$ P*(id	+id)\$	reduz P → id
	*	>	>	<	<	>	<	>	\$ P*(P	+id)\$	empilha +
	**	>	>	<	<	>	<	>	\$ P*(P+	id)\$	empilha id
		<	<	<	<	=	<		\$ P*(P+id)\$	reduz P→id
	\	>	>	>		>		>	\$ P*(P+P)\$	reduz E → E+T
	id	>	>	>		>		>	\$ P*(E)\$	empilha)
	\$							OK	\$ P*(E)	\$	reduz P → (E)
		<	<	l <	<		<	IUK		_	

- Tabela de precedência
 - Exercício Construa a tabela de precedência de operadores

entrada — Tabela de precedência de operadores

	id	V	&	()	\$
id						
V						
&						
(
)						
\$						

MÉTODO MECÂNICO ("colinha")

- 1. a = b para terminais derivados no mesmo nível
- 2. a < b se a é derivado num nível mais próximo da raiz do que b
- 3. a > b se a é derivado num nível mais baixo (distante da raiz) do que b
- 4. \$ < b se b é derivado a partir do símbolo inicial "no início" da derivação
- 5. a > \$ se a é derivado a partir do símbolo inicial "no fim" da derivação

- Tabela de precedência
 - Exercício Construa a tabela de precedência de operadores

			entrada —
Tabela de	precedência	de	operadores

	id	V	&	()	\$
id		>	>		>	>
V	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	V	<	<	=	
)		^	>		>	>
\$	<	<	<	<		ОК

- ASA de precedência de operadores
 - Exercício

pilha .

Reconhecer id & id v id

Pilha	Cadeia	Ação		
\$	id&idvid\$			

entrada — Tabela de precedência de operadores

	id	V	&	()	\$
id		۸	>		^	>
V	<	^	<	<	>	>
&	<	>	>	<	>	>
(<	\	<	<	=	
)		^	>		>	>
\$	<	V	<	V		OK

- ASA de precedência de operadores
 - Exercício

entrada — Tabela de precedência de operadores

	id	V	&	()	\$
id		^	>		>	\
V	<	>	<	<	>	>
&	<	>	>	<	>	>
(<	<	<	<	=	
)		>	>		>	>
\$	<	V	<	<		ОК

Reconhecer id & id v id

Pilha	Cadeia	Ação
\$	id&idvid\$	empilha
\$ id	&id v id\$	reduz
\$ F	&id v id\$	empilha
\$F&	idvid\$	empilha
\$ F & id	vid\$	reduz
\$F&F	vid\$	reduz
\$ T	vid\$	empilha
\$ T V	id\$	empilha
\$T v id	\$	reduz
\$ T v F	\$	reduz
\$E	\$	ACEITA

- ASA de precedência de operadores
 - Exercício

Reconhecer (id)

Pilha	Cadeia	Ação
\$	(id)\$	

entrada — Tabela de precedência de operadores

	id	V	&	()	\$
id		^	>		^	>
V	<	^	<	<	^	>
&	<	>	>	<	>	>
(<	\	<	<	Ш	
)		^	>		^	>
\$	<	<	<	<		OK

pilha

- ASA de precedência de operadores
 - Exercício

entrada — Tabela de precedência de operadores

	id	V	&	()	\$
id		^	>		>	>
V	<	^	<	<	>	>
&	<	>	>	<	>	>
(<	\	<	<	=	
)		^	>		>	>
\$	<	<	<	<		ОК

Reconhecer (id)

Pilha	Cadeia	Ação
\$	(id)\$	empilha
\$ (id)\$	empilha
\$ (id)\$	reduz
\$(F)\$	empilha
\$(F)	\$	reduz
\$E	\$	ACEITA

- Tabela de precedência
 - Alguma observação em relação ao espaço utilizado?
 - Qual o tamanho dessa tabela?
 - É necessário uma tabela inteira simplesmente para comparar dois valores e dizer qual é o maior?

- Funções de precedência
 - Diminuem a necessidade de espaço
 - O(n²) com matriz (tabela) de precedência
 - O(2n) com funções de precedência
 - onde n é o número de terminais da gramática
 - Mapeiam símbolos terminais para inteiros
 - Funções de precedência utilizadas
 - f: para símbolo de pilha
 - g: para símbolo de entrada

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		۸	^	>
V	\	^	<	>
&	<	>	>	>
\$	V	٧	<	

- Exemplo
 - Dada a gramática de expressões lógicas (versão + simples)

Encontre as funções de precedência correspondentes

Tabela de precedência de operadores

	id	V	&	\$
id		۸	^	>
V	/	\	<	>
&	/	\	>	>
\$	V	٧	<	

1. Criar símbolos f_a e g_a para cada terminal a e para o símbolo \$

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		۸	^	>
V	\	^	<	>
&	/	/	>	>
\$	V	٧	<	

- 2. Distribuir os símbolos criados em grupos
- Se a = b então f_a e g_b ficam no mesmo grupo
- Se a = b e c = b então f_a e f_c ficam no mesmo grupo que g_b
- Se, no caso anterior, tem-se ainda que c = d então f_a , f_c , g_b e g_d ficam no mesmo grupo mesmo que a = d não ocorra

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		^	۸	^
V	/	>	\	>
&	/	>	^	>
\$	V	V	٧	

- 3. Gerar um grafo direcionado no qual os nós são os grupos formados em 2
- Para quaisquer a e b
- Se a > b construa um arco do grupo f_a para o grupo g_b
- Se a < b construa um arco do grupo g_b para o grupo f_a

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

<F> ::= id

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		۸	۸	>
V	<	\	\	>
&	<	>	^	>
\$	V	٧	٧	

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		>	>	>
V	/	>	<	>
&	<	>	>	>
\$	<	<	<	

- 4. Se o grafo contém ciclo, as funções de precedência não existem. Se não houver ciclos
 f(a) é igual ao comprimento do caminho mais longo iniciando em f
- g(a) é igual ao comprimento do caminho mais longo iniciando em g_a

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

<F> ::= id

Encontre as funções de precedência correspondentes

	id	V	&	\$
id		۸	۸	>
V	<	\	\	>
&	<	>	^	^
\$	V	٧	٧	

	id	V	&	\$
f	4	2	4	0
g	5	1	3	0

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Pilha

\$

Cadeia

id&idvid\$

Ação

Reconheça a cadeia id & id v id

Usando as funções de precedência

Pilha Entrada

		id	V	&	\$
1	f	4	2	4	0
ι [g	5	1	3	0

Lembre-se

- Se f(a) < g(b) ou f(a) = g(b) então empilha
- Se f(a) > g(b) então reduz

Exemplo

Dada a gramática de expressões lógicas (versão + simples)

Reconheça a cadeia id & id v id

Usando as funções de precedência

Pilha Entrada

		id	V	&	\$
	f	4	2	4	0
l	g	5	1	3	0

Lembre-se

- Se f(a) < g(b) ou f(a) = g(b) então empilha
- Se f(a) > g(b) então reduz

Pilha	Cadeia	Ação
\$	id&idvid\$	empilha
\$ id	&id v id\$	reduz
\$ F	&id v id\$	empilha
\$F&	idvid\$	empilha
\$ F & id	vid\$	reduz
\$F&F	vid\$	reduz
\$ T	vid\$	empilha
\$ T V	id\$	empilha
\$T v id	\$	reduz
\$ T v F	\$	reduz
\$E	\$	ACEITA

- ASA de Precedência de Operadores
 - Vantagem
 - É simples e eficiente
 - Muito eficiente no reconhecimento de expressões aritméticas e lógicas
 - Desvantagens
 - Tem dificuldade em lidar com operadores iguais que tenham significados distintos
 - Por exemplo, o operador "-" que pode ser binário ou unário
 - É aplicável a apenas uma classe restrita de gramáticas (gramáticas de operadores)