Lecture 01

임베디드시스템설계소개

임베디드시스템

■ 일상생활 임베디드시스템

임베디드시스템

■ 자동차 임베디드시스템

* Image source: Toptal

임베디드시스템

■ 자동차 임베디드시스템 – 와이퍼 자동 제어

취업관련

삼성전자 DS부문

영상 처리 알고리즘 설계

- AI Deep learning & Computer Vision 알고리즘 개발
- 이미지 센서, 멀티미디어 IP용 ISP(Image Signal Processor) 알고리즘 개발
- 차세대 Sensor(DVS, SLAM 등) 알고리즘 개발
- 주요 연구 분야: Image Stabilization / WDR / Gamma Correction / Sensor compensation / Face verification / Noise Reduction / Demosaicing / Auto Focus / Auto Exposure / Auto White Balance

[System LSI사업부] Camera S/W 개발

직무정보

참고사항

수행업무

- □ Camera RTA (Real-time Algorithm) 솔루션 개발
- 3A algorithms을 포함한 화질 솔루션 개발
- Computer vision에 기반한 화질 솔루션 개발 (Motion estimation, flicker detection, object tracking, etc.)
- ☐ Image quality engineer
- 알고리즘 (RTA, ISP HW) deep understanding based 화질 튜닝 및 trouble shooting
- ☐ Camera System SW 개발
- Android Camera HAL 개발
- Linux Device Driver 개발
- Firmware 개발

지원자격

- □ 전공 관련
- 전기전자, 컴퓨터공학 전공

취업 관련

현대자동차

임베디드 소프트웨어 개발 및 검증

채용시까지 2022-12-05 00:00 ~ 채용시까지

[조직소개

- 우리 조직은 차량의 편의 시스템을 구성하는 요소인 모터, 스위치, 센서, 밸브 장치를 제어하는 표준화된 제어기를 개발하고 있습니다.
- 사양 개발 및 검증 업무를 수행하며 하드 코드 개발로 제어기에 적용하는 업무를 하고 있습니다.

[함께 하고 싶은 분]

- 제어기술 전문성을 동료들과 잘 공유하고, 배려하는 성향을 가진 분
- 자기주도적이고 적극적인 태도와 효율적인 업무 수행을 추구하는 분

□ 직무상세

- S/W 자체개발을 통한 S/W 단위/통합 및 HILs 검증 및 라이브러리 배포
- MATLAB을 활용한 사양 정합성 검증 및 배포

[SW 개발 및 검증]

- '• AUTOSAR 플랫폼 기반 Application S/W 개발
- S/W 정/동적 검증, 검증환경 구축 및 Test case 개발, S/W통합 및 HILS 검증
- 고장모드 도출, 안전설계 및 검증 업무 진행

[제어 사양 개발]

- 시스템 요구사항 및 아키텍처 개발
- 제어 사양서 표준화를 통한 업무 효율화 및 차종 사양서 개발

② 지원자격

- · 학사 학위 이상 소지자
- ·제어 공학 계열 (전기전자/로보틱스/컴퓨터/제어/IT 등) 전공자
- · Application S/W 개발, 제어 사양 개발 및 검증 경험 보유자
- · 임베디드 소프트웨어 경험 보유자
- · C/C++ 활용 역량 보유자
- ·최종합격 후, 회사가 지정하는 입사일에 입사 가능하신 분
- ·해외여행에 결격 사유가 없는 분 (남성의 경우, 회사가 지정한 입사일까지 병역을 마쳤거나 면제되신 분)

□ 우대사항

- · 임베디드 소프트웨어 관련 전공자
- · 비즈니스 영어 활용 가능자
- ·차량 공조 및 열관리 제어 요구사양서 개발 및 S/W 검증
- · MATLAB, AUTOSAR
- · SW아키텍처 설계 경험 보유자

- 마이크로컨트롤러 기본 요소
 - Central Processing Unit (CPU)
 - ② System clock
 - 3 Memory
 - ④ Peripherals (주변 장치)

■ 일반적인 AVR 마이크로컨트롤러 블록도

- AVR 마이크로컨트롤러
 - (modified) Harvard architecture
 - 8-bit RISC(Reduced Instruction Set Computer)

AVR families

	Flash size	Freq. (MHz)	Package	SRAM	EEPROM					
tinyAVR	0.5~32 KB	1.6~20	6~32 pins	32~3072 bytes	64~512 bytes					
megaAVR	4~256 KB	1.6~20	28~100 pins	256~16384 bytes	256~4096 bytes					
AVR Dx	16~128 KB	20~24	14~64 pins	4~16 KB	512 bytes					
XMEGA	16~256 KB	32	44~100 pins	1~32 KB	512~2048 bytes					
AVR32	NA									

ATmega128

Features

- High-performance, Low-power Atmel®AVR®8-bit Microcontroller
- Advanced RISC Architecture
- 133 Powerful Instructions Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers + Peripheral Control Registers
- Fully Static Operation
- Up to 16MIPS Throughput at 16MHz
- On-chip 2-cycle Multiplier
- High Endurance Non-volatile Memory segments
 - 128Kbytes of In-System Self-programmable Flash program memory
 - 4Kbytes EEPROM
 - 4Kbytes Internal SRAM
 - Write/Erase cycles: 10,000 Flash/100,000 EEPROM
 - Data retention: 20 years at 85°C/100 years at 25°C(1)
 - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
 - Up to 64Kbytes Optional External Memory Space
 - Programming Lock for Software Security
 - SPI Interface for In-System Programming
- QTouch® library support
 - Capacitive touch buttons, sliders and wheels
 - QTouch and QMatrix acquisition
 - Up to 64 sense channels
- JTAG (IEEE std. 1149.1 Compliant) Interface
 - Boundary-scan Capabilities According to the JTAG Standard
 - Extensive On-chip Debug Support
 - Programming of Flash, EEPROM, Fuses and Lock Bits through the JTAG Interface
- Peripheral Features
 - Two 8-bit Timer/Counters with Separate Prescalers and Compare Modes
 - Two Expanded 16-bit Timer/Counters with Separate Prescaler, Compare Mode and Capture Mode
 - Real Time Counter with Separate Oscillator
 - Two 8-bit PWM Channels
 - 6 PWM Channels with Programmable Resolution from 2 to 16 Bits
 - Output Compare Modulator
 - 8-channel, 10-bit ADC
 - 8 Single-ended Channels
 - 7 Differential Channels
 - 2 Differential Channels with Programmable Gain at 1x, 10x, or 200x
 - Byte-oriented Two-wire Serial Interface
 - Dual Programmable Serial USARTs
 - Master/Slave SPI Serial Interface
 - Programmable Watchdog Timer with On-chip Oscillator
 - On-chip Analog Comparator

Proteus

Microchip Studio

Blinking LEDs

Memory-mapped I/O

```
/* Data Direction Register, Port A */
#define DDRA _SFR_IO8(0x1A)

/* Data Register, Port A */
#define PORTA _SFR_IO8(0x1B)
                                             #define _SFR_IO8(io_addr) _MMIO_BYTE((io_addr)+__SFR_OFFSET)
#define _MMIO_BYTE(mem_addr) (*(volatile uint8_t*)(mem_addr))
#ifndef __SFR_OFFSET

# if __AVR_ARCH__>=100

# define __SFR_OFFSET 0x00

# else

# define __SFR_OFFSET 0x20

# endif
                                                                                                               DDRA = 0x1A 혹은 DDRA = 0x3A
PORTA = 0x1B 혹은 PORTA = 0x3B
```

Proteus & Microchip Studio

Memory-mapped I/O

■ ATmega128

DDRA = 0x1A 혹은 DDRA = 0x3A PORTA = 0x1B 혹은 PORTA = 0x3B

Register Summary (Continued)

_											
	Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
	(\$61)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	88
	(\$60)	Reserved	-	-	-	-	-	-	-	-	
	\$3F (\$5F)	SREG		Т	н	S	V	N	Z	С	10
	\$3E (\$5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	13
	\$3D (\$5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	13
	\$3C (\$5C)	XDIV	XDIVEN	XDIV6	XDIV5	XDIV4	XDIV3	XDIV2	XDIV1	XDIV0	36
	\$3B (\$5B)	RAMPZ	-	-	-	-	-	-	-	RAMPZ0	13
	\$3A (\$5A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	90
	\$39 (\$59)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO	91
	\$38 (\$58)	EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTE	INTF1	INTFO	91
	\$37 (\$57)	TIMSK	OCIE2	TOIE2	TICIE1	OCIE1A	OCIE1B	TOIE1	OCIE0	TOIE0	108, 138, 158
	\$36 (\$56)	TIFR	OCF2	TOV2	ICF1	OCF1A	OCF1B	TOV1	OCF0	TOVO	108, 140, 159
	\$35 (\$55)	MCUCR	SRE	SRW10	SE	SM1	SMO	SM2	IVSEL	IVCE	30, 44, 63
	\$34 (\$54)	MCUCSR	JTD	-	-	JTRF	WDRF	BORF	EXTRE	PORF	53, 254
	\$33 (\$53)	TCCR0	FOC0	WGM00	COM01	COM00	WGM01	CS02	CS01	CS00	103
	\$32 (\$52)	TCNTO			,	Timer/Co	unter0 (8 Bit)		,	,	105

\$1B (\$3B)	PORTA	PORTA7	PORTA6	PORTA5	PORTA	4 F	PORTA3	PORT	'A2	PORTA1	P	ORTA0		86
\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4		DDA3	DDA	2	DDA1	-	DDAO		86
•				\$ED (\$4D)	TONTIN				m-counter r - c	ourner megrater mg	royie			197
				\$2C (\$4C)	TCNT1L	Timer/Counter1 - Counter Register Low Byte						137		
				\$2B (\$4B)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte							137	
				\$2A (\$4A)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte							137	
				\$29 (\$49)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte							137	
	\$28 (\$48) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte											137		
				\$27 (\$47)	ICR1H	Timer/Counter1 = Input Capture Register High Byte							138	
				\$26 (\$46)	ICR1L	Timer/Counter1 – Input Capture Register Low Byte						138		
				\$25 (\$45)	TCCR2	FOC2	WGM20	COM21	COM20	WGM21	CS22	CS21	CS20	156
				\$24 (\$44)	TCNT2				Timer/Co	ounter2 (8 Bit)				158
				\$23 (\$43)	OCR2	Timer/Counter2 Output Compare Register						158		
				\$22 (\$42)	OCDR	IDRD/OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDR0	251
				\$21 (\$41)	WDTCR	-	-	-	WDCE	WDE	WDP2	WDP1	WDP0	55
				\$20 (\$40)	SFIOR	TSM	-	_	-	ACME	PUD	PSR0	PSR321	72, 109, 144, 227
				\$1F (\$3F)	EEARH	-	-	-	-		EEPROM Add	ess Register High		20
				\$1E (\$3E)	EEARL	EEPROM Address Register Low Byte							20	
				\$1D (\$3D)	EEDR	EEPROM Data Register						21		
				\$1C (\$3C)	EECR	-	-	-	-	EERIE	EEMWE	EEWE	EERE	21
				\$1D (\$0D)	20074	CONTAC	CONTAC	000745	000744	DODTAG	000740	000744	DODTAG	33
				\$1A (\$3A)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	86

Memory-mapped I/O

Memory-mapped I/O

Appendix

von Neumann architecture

