REGULAR LANGUAGES AND LEXICAL ANALYSIS

a.y. 2022-2023

1 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Recognizing languages

- $\mathcal{L} = \{a^n b^n \mid n > 0\}$ is a free language
- ullet Stack seem ideal to recognize words in ${\cal L}$
- Read the string one symbol at a time: push as onto stack; pop one symbol for each b and reject further as; check emptiness
- Do we really need all that "counting" to generate, e.g., arbitrary strings over the English alphabet?

Recognizing languages

ARBITRARY STRINGS OVER THE ALPHABET

- Do we really need all that "counting" to generate, e.g., arbitrary strings over the alphabet?
- $S \rightarrow a \mid b \mid \ldots \mid z \mid aS \mid bS \mid \ldots \mid zS$
- A state machine is enough

3 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Regular languages

- Regular grammars: free grammars with productions of the form
 - ullet A o a
 - ullet A o aB
 - ullet $A
 ightarrow \epsilon$
- Regular expressions
- Nondeterministic finite state automata
- Deterministic finite state automata
- At the basis of lexical analysis

Regular expressions

- ullet Fix an alphabet \mathcal{A} , and a number of operators
- Define regular expressions inductively
 - Base:
 - Every $a \in \mathcal{A}$ is a regular expression
 - ullet is a regular expression
 - Step: If r_1 and r_2 are regular expressions then
 - (Alternation) $r_1 \mid r_2$ is a regular expressions
 - (Concatenation) $r_1 \cdot r_2$ is a regular expressions (written $r_1 r_2$)
 - (Kleene star) ${r_1}^*$ is a regular expressions
 - (Parentheses) (r_1) is a regular expression

5 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Regular expressions

DENOTED LANGUAGE

- Given a regular expression r over \mathcal{A} , the **language denoted** by r, written $\mathcal{L}(r)$, is also inductively defined on the structure of r
 - Base:
 - $\mathcal{L}(a) = \{a\}$ for every $a \in \mathcal{A}$
 - $\mathcal{L}(\epsilon) = \{\epsilon\}$
 - Step:
 - If $r = r_1 \mid r_2$ then $\mathcal{L}(r) = \mathcal{L}(r_1) \cup \mathcal{L}(r_2)$
 - If $r = r_1 r_2$ then $\mathcal{L}(r) = \{ w_1 w_2 \mid w_1 \in \mathcal{L}(r_1) \text{ and } w_2 \in \mathcal{L}(r_2) \}$
 - If $r = r_1^*$ then

 $\mathcal{L}(r) = \{\epsilon\} \cup \{w_1 w_2 \dots w_k \mid k \ge 1 \text{ and } \forall i : 1 \le i \le k. w_i \in \mathcal{L}(r_1)\}$

ullet If $r=(\mathit{r}_1)$ then $\mathcal{L}(r)=\mathcal{L}(\mathit{r}_1)$

Regular expressions

CONVENTIONS

- Kleene star has highest precedence, is left associative
- Concatenation has second highest precedence, is left associative
- Alternation has lowest precedence, is left associative
- Then $(a \mid bc^*)$ means
 - (a | b(c*))
 - $(a | (b(c^*)))$

7 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Regular expressions **EXAMPLES**

- $\mathcal{L}(a \mid b) = \{a, b\}$
- $\mathcal{L}((a \mid b)(a \mid b)) = \{aa, ab, ba, bb\}$
- $\mathcal{L}(a^*) = \{a^n \mid n \ge 0\}$
- $\bullet \ \mathcal{L}(a \mid a^*b) = \{a\} \cup \{a^nb \mid n \geq 0\}$

Regular expressions **EXAMPLES**

- $(a \mid b \mid ... \mid z)(a \mid b \mid ... \mid z)^*$ denotes the set of words over the alphabet
- $(0 | 1)^*0$ denotes all the even binary numbers
- $b^*(abb^*)^*(a \mid \epsilon)$ denotes the set of words over $\{a, b\}$ with no consecutive occurrences of a
- $(a \mid b)^*aa(a \mid b)^*$ denotes the set of words over $\{a, b\}$ with consecutive occurrences of a

9 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Finite states automata

- Finite state automata are used to decide whether a word belongs to the language denoted by a regular expression
- Nondeterministic Finite state Automata (NFA)
- Deterministic Finite state Automata (DFA)

Nondeterministic finite state automata

- An NFA is a tuple $(S, A, move_n, s_0, F)$
- Where
 - *S* is a set of states
 - ullet \mathcal{A} is an alphabet with $\epsilon \notin \mathcal{A}$
 - ullet $s_0 \in S$ is the **initial** state
 - $F \subseteq S$ is the set of **final** (or **accepting**) states
 - move_n: $S \times (A \cup \{\epsilon\}) \rightarrow 2^S$ is the transition function

11 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Nondeterministic finite state automata GRAPHICAL REPRESENTATION

- $(S, A, \text{move}_n, s_0, F)$ is represented as a directed graph
- Where
 - Nodes represent states
 - The initial state is identified by an incoming arrow
 - Final states are identified by a double circle
 - Edges represent the transition function
 - E.g., suppose $move_n(S_1, a) = \{S_2, S_3\}$, then

Nondeterministic finite state automata EXAMPLE

An NFA

Tabular representation of its transition function

	ϵ	а	Ь
S_0	Ø	$\{S_0, S_1\}$	$\{S_0\}$
S_1	Ø	Ø	$\{S_2\}$
S_2	Ø	Ø	$\{S_3\}$
<i>S</i> ₃	{ <i>S</i> ₃ }	Ø	Ø

13 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Nondeterministic finite state automata ACCEPTED LANGUAGES

- ullet The NFA ${\mathcal N}$ accepts (or recognizes) w iff there exists at least a path spelling w from its initial state to one of its final states
- Recall
 - ullet $\epsilon\epsilon$ spells ϵ
 - $a\epsilon$ spells a
 - ullet ϵa spells a
- The language **accepted** (or **recognized**) by \mathcal{N} , written $\mathcal{L}(\mathcal{N})$, is the set of all the strings accepted by \mathcal{N}

Nondeterministic finite state automata EXAMPLE

Accepted language

$$\mathcal{L}((a \mid b)^*abb)$$

15 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Nondeterministic finite state automata EXAMPLE

Accepted language

$$\mathcal{L}((a \mid b)^*abb)$$

Nondeterministic finite state automata EXAMPLE

Accepted language

$$\mathcal{L}(aa^* \mid bb^*)$$

17 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Thompson's construction

An algorithm to construct an NFA $\ensuremath{\mathcal{N}}$ from a regular expression r in such a way that

$$\mathcal{L}(\mathcal{N}) = \mathcal{L}(r)$$

The construction is based on the inductive definition of regular expressions

- ullet Base: r is either ϵ or a symbol of the alphabet
 - Define an NFA to recognize $\mathcal{L}(\epsilon)$
 - Define an NFA to recognize $\mathcal{L}(a)$
- Step: r is either $r_1 \mid r_2$, or r_1r_2 , or r_1^* , or (r_1)
 - Given NFAs \mathcal{N}_1 and \mathcal{N}_2 such that $\mathcal{L}(\mathcal{N}_i) = \mathcal{L}(r_i)$ for i = 1, 2
 - Define an NFA to recognize $\mathcal{L}(r_1 \mid r_2)$
 - Define an NFA to recognize $\mathcal{L}(r_1r_2)$
 - Define an NFA to recognize $\mathcal{L}(r_1^*)$
 - Define an NFA to recognize $\mathcal{L}((r_1))$

19 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Thompson's construction MAIN FEATURES

- Every step of the construction introduces 2 new states at most
 - The generated NFA has 2k states at most, where k is the number of symbols and of operators in the regular expression
- In every intermediate NFA there is
 - Exactly one final state
 - No edge incoming in the initial state
 - No edge outgoing from the final state

21 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Thompson's construction STEP

- COMPLEXITY
 - ullet Constructs an NFA with n nodes and m edges
 - Every step adds at most 2 states and 4 edges
 - Every step has constant time
 - There are |r| steps
 - Then:
 - Space: n + m is $\mathcal{O}(|r|)$
 - Time: $\mathcal{O}(|r|)$

23 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Thompson's construction

EXAMPLE OF APPLICATION

Take
$$r = (a \mid b)^* abb$$

$$a = r_1$$

$$b = r_2$$

EXAMPLE OF APPLICATION

$$a \mid b = r_1 \mid r_2 = r_3$$

Apply Thompson's construction for alternation to the automata for r_1 and r_2 , and get the automaton for r_3

25 / 112

Thompson's construction

EXAMPLE OF APPLICATION

$$(a \mid b) = (r_3) = r_4$$
 $(a \mid b)^* = r_4^* = r_5$

$$(a \mid b)^* = r_4^* = r_5$$

Apply Thompson's construction for parentheses and for Kleene star to the automaton for r_3 , and get the automaton for r_5

EXAMPLE OF APPLICATION

$$(a \mid b)^* a = r_5 r_1 = r_6$$

Apply Thompson's construction for concatenation to the automata for r_5 and for r_1 , and get the automaton for r_6

27 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Thompson's construction

EXAMPLE OF APPLICATION

$$r = (a \mid b)^*abb$$

In two more steps

- ullet Given a word w and an NFA ${\mathcal N}$ decide whether $w\in {\mathcal L}({\mathcal N})$
- Let w = bbb

• Reading *bbb* from S_0 is the same as reading it from any of the states in $\{S_0, S_1, S_3, S_5\}$

29 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of NFAs

 $\epsilon ext{-closure}$

- Let $(S, A, move_n, s_0, F)$ be an NFA, t be a state in S, and T be a subset of states
- ϵ -closure($\{t\}$) is the set of states in S which are reachable from t by zero or more ϵ -transitions
- ϵ -closure $(T) = \bigcup_{t \in T} \epsilon$ -closure $(\{t\})$

COMPUTATION OF $\epsilon\text{-CLOSURE}$

Data structures:

- Stack
- Boolean array "alreadyOn" of size |S| to check in constant time whether a state t in onto the stack
- Bidimensional array to record move_n. Every entry (t, x) is a linked list containing all the states in $move_n(t, x)$

31 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of NFAs

COMPUTATION OF ϵ -CLOSURE

```
foreach i=1,\ldots, |S| do alreadyOn[i] = false;

function closure(t,stack)

push t onto stack;

alreadyOn[t] = true;

foreach u \in move_n(t,\epsilon) do

if not alreadyOn[u] then

closure (u,stack);
```

COMPLEXITY OF $\epsilon\text{-CLOSURE}$

```
1 push t onto stack;
2 set alreadyOn[t] bit;
3 find next u \in \text{move}_n(t, \epsilon);
4 test alreadyOn[u] bit;
```

- Each of them takes constant time
- How many times are they repeated?

33 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Simulation of NFAs

COMPLEXITY OF ϵ -CLOSURE

```
1 push t onto stack;
2 set alreadyOn[t] bit;
3 find next u \in \text{move}_n(t, \epsilon);
4 test alreadyOn[u] bit;
```

- Line1 & Line2: Executed at each invocation of closure (either initial or recursive)
 - Every state goes onto stack at most once (alreadyOn bit initially false, then set to true, never changed again)
- ullet In aggregate, assuming that the NFA has n states and m edges, $\mathcal{O}(n)$

COMPLEXITY OF $\epsilon\text{-CLOSURE}$

```
1 push t onto stack;
2 set alreadyOn[t] bit;
3 find next u \in \text{move}_n(t, \epsilon);
4 test alreadyOn[u] bit;
```

- Line3 & Line4: Executed at each invocation of closure for all $u \in \text{move}_n(t, \epsilon)$
 - ullet In the worst case every state goes onto the stack, and every state has at least an ϵ -transition
- In aggregate, assuming that the NFA has n states and m edges, $\mathcal{O}(m)$

35 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of NFAs

COMPLEXITY OF ϵ -CLOSURE

 $\mathcal{O}(n+m)$

ALGORITHM

```
\begin{array}{ll} \textbf{input} & : \mathsf{NFA} \ \mathcal{N} = (S, \mathcal{A}, \mathsf{move}_n, s_0, F), \ \mathsf{w\$} \\ \textbf{output} & : \text{"yes" if } \mathsf{w} \in \mathcal{L}(\mathcal{N}), \text{ "no" otherwise} \\ \mathsf{states} = \epsilon\text{-}\mathsf{closure}(\{s_0\}) \ ; \\ \mathsf{symbol} = \mathsf{nextchar}() \ ; \\ \textbf{while} \ symbol \neq \$ \ \textbf{do} \\ & | \ \mathsf{states} = \epsilon\text{-}\mathsf{closure}(\bigcup_{t \in \mathsf{states}} \mathsf{move}_n(t, \mathsf{symbol})) \ ; \\ & | \ \mathsf{symbol} = \mathsf{nextchar}() \ ; \\ & | \ \mathsf{if} \ \mathit{states} \cap \ F \neq \emptyset \ \mathbf{then} \\ & | \ \mathsf{return} \ "\mathsf{yes"} \ ; \\ & | \ \mathsf{else} \\ & | \ \mathsf{return} \ "\mathsf{no"} \ ; \\ \end{array}
```

37 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Simulation of NFAs EXAMPLE

states	symbol	U_t move(t,symbol)	arepsilon-closure	
T0 = {0,1,2,4,7}	а	{3,8}	{1,2,3,4,6,7,8}	
T1 = {1,2,3,4,6,7,8}	b	{5,9}	{1,2,4,5,6,7,9}	
T2 ={1,2,4,5,6,7,9}	а	{3,8}	T1	
T1	b		T2	
T2	b	{5,10}	{1,2,4,5,6,7,10}	
T3={1,2,4,5,6,7, <mark>10</mark> }	\$			

COMPLEXITY

Dominant

39 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of NFAs COMPLEXITY

Data structures:

- Two stacks for states:
 - currentStack for the current states ("states" on the right-side of the assignment at Line L1)
 - nextStack for the next states ("states" on the left-side of the assignment at Line L1)
- ullet Boolean array "alreadyOn" of size |S| to check in constant time whether a state in onto the stack
- Bidimensional array to record move_n. Every entry (t, x) is a linked list containing all the states in $move_n(t, x)$

COMPLEXITY, LINE L1

```
foreach t on currentStack do

foreach u \in move_n(t, symbol) do

if not alreadyOn[u] then

closure(u,nextStack);

pop t from currentStack;

foreach s on nextStack do

pop s from nextStack;

push s on currentStack;

alreadyOn[s] = false;
```

41 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of NFAs

COMPLEXITY, LINE L1

COMPLEXITY

- Assume that the NFA has *n* states and *m* edges
- For each while-cycle
 - Populating nextStack is $\mathcal{O}(n+m)$
 - Swapping the stacks is $\mathcal{O}(n)$
- One while-cycle costs $\mathcal{O}(n+m)$
- The simulation of w costs $\mathcal{O}(|w|(n+m))$
- If the NFA results from Thompson's construction, (n+m) is $\mathcal{O}(|r|)$, then simulating w is $\mathcal{O}(|w||r|)$

43 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Wrap-up: Accepting regular languages by NFAs

- \bullet Take a regular expression r
- Apply Thomson's construction, get NFA $\leftarrow \mathcal{O}(|r|)$
- Simulate NFA $\leftarrow \mathcal{O}(|w||r|)$
- Overall: $\mathcal{O}(|w||r|)$

On ϵ -closure, again

Let $(S, A, \text{move}_n, s_0, F)$ be an NFA, and let $M \subseteq S$.

Then ϵ -closure(M) is **the least** set $X \subseteq S$ that is a solution to the set equation

$$X = M \cup \{N' \mid N \in X \text{ and } N' \in \text{move}_n(N, \epsilon)\}$$

• For example

- ϵ -closure($\{S_0\}$) = $\{S_0, S_1, S_2, S_3\}$
- ullet Start with S_0 in the set
- ullet Take S_1 because $S_1 \in \mathrm{move}_n(S_0,\epsilon)$
- . . .

45 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Fixed Point

• The set equation

$$X = M \cup \{N' \mid N \in X \text{ and } N' \in \text{move}_n(N, \epsilon)\}$$

• Is an instance of the general form of set equation

$$X = f(X)$$

Fixed Point

- If
- $f: 2^D \to 2^D$ for some finite set D, and f is monotonic, i.e. $X \subseteq Y$ implies $f(X) \subseteq f(Y)$
- Then there is a precise technique to solve the equation X = f(X)

47 / 112

Fixed Point

THEOREM

Let S be a finite set, and let $f: 2^S \to 2^S$ be monotonic. Then $\exists m \in \mathbb{N}$ such that the unique minimal solution to the set equation X = f(X) is $f^m(\emptyset)$

Fixed Point PROOF

- Show that $m \in \mathbb{N}$ exists such that $f^m(\emptyset)$ is a solution to X = f(X)
- Show that $f^m(\emptyset)$ is the unique minimal solution

49 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Fixed Point

PROOF

 $m\in\mathbb{N}$ exists such that $f^m(\emptyset)$ is a solution to X=f(X)

- $\emptyset \subseteq f(\emptyset)$
- Then, by f monotonic, $f(\emptyset) \subseteq f^2(\emptyset)$
- ullet Then, by induction, $f^i(\emptyset) \subseteq f^{i+1}(\emptyset)$ forall $i \in \mathbb{N}$
- Then we have a chain $\emptyset \subseteq f^1(\emptyset) \subseteq f^2(\emptyset) \subseteq f^3(\emptyset) \dots$
- \bullet Then, by 2^{S} finite, the sets in the chain cannot be all different
- ullet Then for some m it must be $f^m(\emptyset) = f^{m+1}(\emptyset) = f(f^m(\emptyset))$
- Then $f^m(\emptyset)$ is a solution to X = f(X)

Fixed Point PROOF

 $f^m(\emptyset)$ is the unique minimal solution

- Suppose another solution to X = f(X) exists, say A.
- Then, by hypothesis, A = f(A)
- Then, A = f(A), $A = f(A) = f^2(A) = ... = f^m(A)$
- Then, by $\emptyset \subseteq A$ and f monotonic, $f^m(\emptyset) \subseteq f^m(A)$
- Then, by $f^m(A) = A$, $f^m(\emptyset) \subseteq A$
- Then $f^m(\emptyset)$ is the unique minimal solution to X = f(X)

51 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Deterministic finite state automata

- NFA: $(S, \mathcal{A}, \text{move}_n, s_0, F)$ where $\text{move}_n : S \times (\mathcal{A} \cup \{\epsilon\}) \to 2^S$
- DFA: $(S, \mathcal{A}, \text{move}_d, s_0, F)$ where $\text{move}_d : S \times \mathcal{A} \to S$
- In any DFA
 - ullet There is no ϵ -transition
 - If $move_d$ is **total**, then from every state there is **exactly one** a-transition for every $a \in \mathcal{A}$
 - If $move_d$ is **partial**, then from every state there is **at most one** a-transition for every $a \in \mathcal{A}$

Deterministic finite state automata

- Take the alphabet {a}
- An example of DFA with total transition function is

• An example of DFA with partial transition function is

53 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Simulation of DFAs

ACCEPTED LANGUAGES

The language recognized by a DFA \mathcal{D} , denoted by $\mathcal{L}(\mathcal{D})$, is the set of words w such that

- Either there is a path spelling $w = a_1 \cdots a_k$ with k >= 1 from the initial state of \mathcal{D} to some of its final states
- ullet Or the initial state is also final and $w=\epsilon$

TOTAL TRANSITION FUNCTION

- Answer the question " $w \in \mathcal{L}(\mathcal{D})$?"
- ullet Starting from the initial state, follow the path spelling w
- If the reached state is final, then return "yes"
- Otherwise return "no"

55 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Simulation of DFAs

PARTIAL TRANSITION FUNCTION

- Answer the question " $w \in \mathcal{L}(\mathcal{D})$?"
- Starting from the initial state, begin following the path spelling $w = a_1 \cdots a_k$
- If for some a_i there is no target state, then return "no"
- If w is over and the reached state is final, then return "yes"
- Otherwise return "no"

Deterministic finite state automata

PARTIAL VS TOTAL TRANSITION FUNCTION

- ullet Let ${\mathcal D}$ be a DFA with partial transition function
- Can you define a DFA \mathcal{D}' with total transition function such that $\mathcal{L}(\mathcal{D}') = \mathcal{L}(\mathcal{D})$?
- Use a sink
 - \bullet Add a sink to the states of ${\cal D}$
 - Let the sink be the target of all the undefined transitions
 - For every symbol in the alphabet, add the sink with a self-loop

57 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Subset construction

Given the NFA $\mathcal N$ construct a DFA $\mathcal D$ such that $\mathcal L(\mathcal D) = \mathcal L(\mathcal N)$

Idea: Use ϵ -closure to map subsets of states of the NFA into one single state of the DFA

Subset Construction

- This is the first instance of a construction we will see again later in the course
- Define the initial state of the DFA
- Populate the collection of all its states while defining the transition function

59 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Subset Construction

```
: NFA \mathcal{N} = (S, \mathcal{A}, \text{move}_n, S_0, F)
input
                            : DFA \mathcal{D} = (R, \mathcal{A}, \text{move}_d, T_0, E) such that \mathcal{L}(\mathcal{D}) = \mathcal{L}(\mathcal{N})
output
T_0 = \epsilon-closure(\{S_0\});
R = \{T_0\};
set \mathcal{T}_0 as unmarked ;
while some T \in R is unmarked do
     mark T:
      foreach a \in A do
            T' = \epsilon-closure(\bigcup_{t \in T} \text{move}_n(t, a));
            if T' \neq \emptyset then
                 move_d(T, a) = T';
                  if T' \not\in R then
                       add T' to R;
                        set T' as unmarked;
foreach T \in R do
 if (T \cap F) \neq \emptyset then set T \in E;
```

Subset Construction

COMPLEXITY

Dominant

```
while some T \in R is unmarked do

...;

foreach a \in A do

T' = \epsilon-closure(\bigcup_{t \in T} \text{move}_n(t, a));

\vdots
```

61 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Subset Construction

COMPLEXITY

```
while some T \in R is unmarked do \cdots; foreach a \in \mathcal{A} do T' = \epsilon-closure(\bigcup_{t \in T} \text{move}_n(t, \mathsf{a}));
```

- Suppose the NFA has n states and m edges, and the DFA has n_d states
- \bullet while is repeated n_d times
- ullet foreach is repeated $|\mathcal{A}|$ times
- ϵ -closure $(\bigcup_{t \in T} \text{move}_n(t, a))$ costs $\mathcal{O}(n + m)$
- Then the subset construction is $\mathcal{O}(n_d \cdot |\mathcal{A}| \cdot (n+m))$
- The question is: how big can n_d be?

Subset construction EXAMPLE OF APPLICATION

From the NFA

63 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Subset construction **EXAMPLE OF APPLICATION**

	a	b
T0 = ε -closure({1}) = {1,2,4} % initial, final	ε -closure({3}) = T1	ε -closure({5}) = T2
T1 = {3} % final	ε -closure({3}) = T1	
T2 = {5} % final		ε -closure({5}) = T2

Subset construction EXAMPLE OF APPLICATION

Get the DFA

65 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Subset construction **EXAMPLE OF APPLICATION**

From the NFA

Subset construction

EXAMPLE OF APPLICATION

	a	b
T0 = ε -closure({A}) = {A,B,C,E} % initial, final	ε -closure({D,E}) = T1	ε -closure({A,E}) = {A,B,C,E} = T0
T1 = {D,E} % final	ε -closure({E}) = T2	ε -closure({A,B}) = {A,B,C,E} = T0
T2 = {E} % final	ε -closure({E}) = T2	ε -closure({A}) = T0

67 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Subset construction

EXAMPLE OF APPLICATION

Get the DFA

Subset construction **EXAMPLE OF APPLICATION**

From the NFA

69 / 112

Formal Languages and Compilers

Paola Quaglia, 2022

Subset construction

EXAMPLE OF APPLICATION

		b
T0 = ε -closure({0}) = {0,1,2,4,7} % initial	ε -closure({3,8}) = T1	ε -closure({5}) = T2
T1 = {1,2,3,4,6,7,8}	ε -closure({3,8}) = T1	ε -closure({5,9}) = T3
T2 = {1,2,4,5,6,7}	ε -closure({3,8}) = T1	ε -closure({5}) = T2
T3 = {1,2,4,5,6,7,9}	ε -closure({3,8}) = T1	ε -closure({5,10}) =T4
T4 = {1,2,4,5,6,7,10} % final	ε -closure({3,8}) = T1	ε -closure({5}) = T2

Subset construction EXAMPLE OF APPLICATION

Get the DFA

71 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Subset construction

Both automata recognize $\mathcal{L}((a \mid b)^*abb)$

Can we get a smaller deterministic structure accepting the same language?

Given the DFA $\mathcal D$ construct a minimal DFA $\mathcal D'$ such that $\mathcal L(\mathcal D')=\mathcal L(\mathcal D)$

73 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

DFA minimization

INTUITION

Partition the states of the DFA into equivalent classes

Two states s and t are equivalent iff for every x the simulation of x from s is successfull iff the simulation of x from t is successfull

STATE EQUIVALENCE

Let $\mathcal{D} = (S, \mathcal{A}, \text{move}_d, s_0, F)$ be a DFA with **total** transition function Then $s, t \in S$ are **equivalent** iff the following holds

$$\operatorname{move}_{d}^{*}(s,x) \in F \text{ iff } \operatorname{move}_{d}^{*}(t,x) \in F \text{ for every } x \in \mathcal{A}^{*}$$

where the multi-step transition function move_d^* is defined by induction on the length of strings

- $\operatorname{move}_{d}^{*}(s, \epsilon) = s$
- $\operatorname{move}_{d}^{*}(s, wa) = \operatorname{move}_{d}(\operatorname{move}_{d}^{*}(s, w), a)$

75 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

DFA minimization

PARTITION REFINEMENT

- Partition the states into blocks (subsets of states)
- Start with the two blocks
 - $B_1 = F$
 - $B_2 = S \setminus F$
 - Why this choice for the initial partition?
 - $s \in B_1$ and $t \in B_2$ are not equivalent because $\text{move}_d^*(s, \epsilon) \in F$ and $\text{move}_d^*(t, \epsilon) \notin F$

PARTITION REFINEMENT

- Check whether the blocks contain equivalent states
- If not so, refine the blocks by splitting them further
- Repeat the checking-refining steps up to the point that the partition cannot be further refined

77 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

DFA minimization

PARTITION REFINEMENT: SPLITTING BLOCKS

- If all the states in $B_i = \{s_1, \ldots, s_k\}$ are equivalent, then for every $a \in \mathcal{A}$ the target states of the a-transition from s_1, \ldots, s_k should belong to the same block
- The block B_i can be split wrt (a, B_j) if for some $s, t \in B_i$ $move_d(s, a) \in B_j$ and $move_d(t, a) \notin B_j$
- Splitting the block B_i wrt (a, B_j) amounts to replacing B_i by the two blocks
 - $\{s \in B_i \mid \text{move}_d(s, a) \in B_j\}$ • $\{s \in B_i \mid \text{move}_d(s, a) \notin B_i\}$

PARTITION REFINEMENT

```
B_1 = F;

B_2 = S \setminus F;

P = \{B_1, B_2\};

while Some B_i \in P can be split wrt some (a, B_j) do

Update P by removing B_i and adding the two blocks

\{s \in B_i \mid \text{move}_d(s, a) \in B_j\} and

\{s \in B_i \mid \text{move}_d(s, a) \notin B_j\}
```

79 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

DFA minimization

PARTITION REFINEMENT

Block B_i can be split wrt (a, B_i) if for some $s, t \in B_i$

• $\operatorname{move}_d(s, a) \in B_i$ and $\operatorname{move}_d(t, a) \notin B_i$

Initial Partition: $B_1 = \{E\}$ $B_2 = \{A, B, C, D\}$

- $\operatorname{move}_d(D, b) = E \in B_1 \text{ and } \operatorname{move}_d(A, b) = C \notin B_1$
- Then we can split B_2 wrt (b, B_1)

PARTITION REFINEMENT

Init
$$B_1 = \{E\}; B_2 = \{A, B, C, D\}$$

split B_2 $B_1 = \{E\}; B_{21} = \{D\}; B_{22} = \{A, B, C\}$
split B_{22} $B_1 = \{E\}; B_{21} = \{D\}; B_{221} = \{B\}; B_{222} = \{A, C\}$

81 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

DFA Minimization

- Run partition refinement over a DFA with total transition function
- Each block is temporarily considered a state of the min-DFA
- The initial state of the min-DFA is the one represented by the block containing s₀
- The final states of the min-DFA are those represented by blocks containing final states of the original DFA
- The transition function of the min-DFA is derived from the original move_d as follows:

If $s \in B_i$ and $move_d(s, a) \in B_j$, then there is an a-transition in the min-DFA from the state represented by B_i to the state represented by B_i

- If any of the temporary state is dead, remove it, and remove all the transitions to/from it
- Observe: The min-DFA can have partial transition function

PARTITION REFINEMENT

 $\{E\}; \{D\}; \{B\}; \{A,C\}$

83 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Training

Minimize the DFA

• The DFA has partial transition function, then take

• Initial partition:

$$B_1 = \{D\}; B_2 = \{A, B, C, sink\}$$

- Split B_2 by $move_d(A, a) \in B_2$ and $move_d(B, a) \notin B_2$
- First refinement:

$$B_1 = \{D\}; B_{21} = \{A, sink\}; B_{22} = \{B, C\}$$

85 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Training

• First refinement:

$$B_1 = \{D\}; B_{21} = \{A, sink\}; B_{22} = \{B, C\}$$

- Split B_{22} by $move_d(B, b) \in B_{22}$ and $move_d(C, b) \not\in B_{22}$
- Second refinement:

$$B_1 = \{D\}; B_{21} = \{A, sink\}; B_{221} = \{B\} B_{222} = \{C\}$$

• Second refinement:

$$B_1 = \{D\}; B_{21} = \{A, sink\}; B_{221} = \{B\} B_{222} = \{C\}$$

- Split B_{21} by $move_d(A, a) \in B_{221}$ and $move_d(sink, a) \notin B_{221}$
- Last refinement:

$$B_1 = \{D\}; \ B_{211} = \{A\}; \ B_{212} = \{sink\}; \ B_{221} = \{B\} \ B_{222} = \{C\}$$

87 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Training

• Last refinement:

$$B_1 = \{D\}; B_{211} = \{A\}; B_{212} = \{sink\}; B_{221} = \{B\} B_{222} = \{C\}$$

- \bullet Remove the sink and all the transitions to/from it, get the original DFA
- The original DFA was already minimal

• Find the minimal equivalent DFA

- First find the equivalent DFA
- Then minimize the DFA

89 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Training

		a	b
A={1}	initial	В	A
B={1,2}		С	D
C={1,2,3}		E	F
D={1,3}		G	Н
E={1,2,3,4}	final	Е	F
F={1,3,4}	final	G	Н
G={1,2,4}	final	С	D
H={1,4}	final	В	A

DFA resulting from the subset construction

91 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Training MINIMIZATION

- Partition: {*A*, *B*, *C*, *D*}; {*E*, *F*, *G*, *H*}
- Split: $move_d(A, a)$, $move_d(C, a)$
- Partition: {*A*, *B*}; {*C*, *D*}; {*E*, *F*, *G*, *H*}
- Split: $move_d(A, a)$, $move_d(B, a)$
- Partition: {*A*}; {*B*}; {*C*, *D*}; {*E*, *F*, *G*, *H*}
- Split: $move_d(G, b)$, $move_d(H, b)$
- Partition: {*A*}; {*B*}; {*C*, *D*}; {*E*, *F*, *H*}; {*G*}

Training MINIMIZATION

93 / 112

- Partition: {A}; {B}; {C, D}; {E, F, H}; {G}
- Split: by $move_d(C, a)$, $move_d(D, a)$
- Partition: {A}; {B}; {C}; {D}; {E, F, H}; {G}
- Split: $move_d(E, a)$, $move_d(H, a)$
- Partition: {A}; {B}; {C}; {D}; {E, F}; {H}; {G}
- Split: $move_d(E, a)$, $move_d(F, a)$
- Partition: {A}; {B}; {C}; {D}; {E};{F}; {G}; {H}
- Already minimal

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Number of states of DFAs: worst case

LEMMA

For each $n \in \mathbb{N}^+$ there is an NFA with (n+1) states whose minimal equivalent DFA has at least 2^n states and total transition function

Number of states of DFAs: worst case PROOF

- Take $\mathcal{L} = \mathcal{L}((a \mid b)^* a(a \mid b)^{n-1})$
- There is an NFA accepting \mathcal{L} which has exactly n+1 states

- ullet Suppose, by contradiction, that a minimal DFA $\mathcal D$ exists which accepts $\mathcal L$ and has $k<2^n$ states
- There are exactly 2^n distinct words over $\{a, b\}$ whose length is n
- ullet Then there are two paths in ${\mathcal D}$
 - Whose lenght is *n*
 - ullet Spell, respectively, w_1 and w_2 with $w_1
 eq w_2$
 - Share at least one node

95 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Number of states of DFAs: worst case **PROOF**

- Then, for some x_1, x_2, x , either $w_1 = x_1ax$ and $w_2 = x_2bx$ or $w_1 = x_1bx$ and $w_2 = x_2ax$
- Wlog suppose that $w_1 = x_1 ax$ and $w_2 = x_2 bx$
- Then $w_1' = x_1 a b^{n-1} \in \mathcal{L}(\mathcal{D})$
- ullet Then the state reached by w_1' in ${\mathcal D}$ is final
- Contradiction: that state cannot be final because it is also reached by $x_2bb^{n-1} \notin \mathcal{L}(\mathcal{D})$

Pumping Lemma for regular languages

LEMMA

Let ${\mathcal L}$ be a regular language. Then

- $\exists p \in \mathbb{N}^+$ such that
- $\forall z \in \mathcal{L}$ such that |z| > p
- $\exists u, v, w$ such that
 - z = uvw and
 - $|uv| \le p$ and
 - |v| > 0 and
 - $\forall i \in \mathbb{N}.uv^iw \in \mathcal{L}$

97 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for regular languages PROOF

- ullet Let ${\mathcal L}$ be a regular language
- ullet Then there exists a DFA $\mathcal{D}=(S,\mathcal{A},\mathrm{move}_d,s_0,F)$ such that $\mathcal{L}=\mathcal{L}(\mathcal{D})$
- Let p = |S| 1
- ullet Then all the paths from s_0 to some final state that traverse every state at most once have their lengths bounded by p
- Then, by |z| > p, for some a_1, \ldots, a_p and for some z', $z = a_1 \cdots a_p z'$ and at least one state, say s^* , is traversed more than once along the path $a_1 \cdots a_p$

Pumping Lemma for regular languages PROOF

- Then there is a cycle in \mathcal{D} that goes from s^* to s^* and that spells $a_{i+1} \cdots a_j$ for some i and j such that $i < j \le p$
- Then let
 - $u = a_1 \cdots a_i$
 - $v = a_{i+1} \cdots a_j$

$$w = \begin{cases} z' & \text{if } j = p \\ a_{j+1} \cdots a_p z' & \text{if } j$$

- Then
 - $|uv| \leq p$
 - ullet The length of v is at least 1
 - uv^iw is accepted by \mathcal{D} for every $i \in \mathbb{N}$

99 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma for regular languages WHAT FOR

- WHAI FUR
 - Show by contradiction that a language is not regular
 - Assume the language be regular
 - Show that not(thesis) is true
 - Thesis:

$$\exists p \in \mathbb{N}^+$$
. $\forall z \in \mathcal{L}$: $|z| > p$. $\exists u, v, w$. P where $P \equiv (z = uvw \text{ and } |uv| \le p \text{ and } |v| > 0 \text{ and } \forall i \in \mathbb{N}.uv^iw \in \mathcal{L})$

• not(thesis):

$$\forall p \in \mathbb{N}^+$$
. $\exists z \in \mathcal{L}$: $|z| > p$. $\forall u, v, w$. Q where $Q \equiv (z = uvw \text{ and } |uv| \le p \text{ and } |v| > 0)$ implies $(\exists i \in \mathbb{N}.uv^iw \notin \mathcal{L})$

Pumping Lemma at work

LEMMA

 $\mathcal{L} = \{a^n b^n \mid n > 0\}$ is not regular

101 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Pumping Lemma at work

- ullet Suppose $\mathcal L$ is regular, and let p be an arbitrary positive integer
- Take $z = a^p b^p$
- Observe that $\forall u, v, w$ if $(z = uvw \text{ and } |uv| \le p \text{ and } |v| > 0)$
 - Then v contains only as, by $|uv| \le p$
 - And v contains at least one a, by |v| > 0
- Then, for some j > 0, $uv^2w = a^pa^jb^p$
- ullet Then $uv^2w \notin \mathcal{L}$ which contradicts the Pumping Lemma for regular languages

- Let \mathcal{L}_1 be the language of words over $\{a, b\}$ with an odd number of occurrences of bs. Is \mathcal{L}_1 regular?
- Let \mathcal{L}_2 be the language of words over $\{a,b\}$ with an even number of occurrences of as. Is \mathcal{L}_2 regular?
- Let \mathcal{L}_3 be the language of words over $\{a,b\}$ with an even number of occurrences of as and an odd number of occurrences of bs. Is \mathcal{L}_3 regular?

103 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 2022

Closure properties of regular languages

LEMMA

Regular languages are closed wrt

- union
- concatenation
- complementation
- intersection

Lexical analysis

Provide input to syntax analysis

Example grammar: c99_grammar.y

Typical choice of tokens:

- One token for each keyword
- Tokens for operators (or for classes of operators)
- One token for identifiers
- Tokens for punctuation symbols

Task:

- Recognize lexemes
- Return tokens (pairs of token-name and token-value)

105 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Lexical analysis

Lexemes

- Described by regular expressions
- Recognized by a state machine that can take appropriate actions when recognizing words

Pattern matching based on NFAs

107 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Pattern matching based on NFAs

- Simulate the NFA
- Actions are associated with final states
- Find the longest match: continue simulating until no further move is possible
- If the reached set of states has associated actions, execute the "first" action
- Otherwise
 - Look backwards to the sequence of states
 - Pick up the first set of states containing at least a final one
 - Execute the "first" action
 - Update the pointer to the input buffer accordingly

Pattern matching based on DFAs obtained by subset construction is analogous

Lexical analysis generators FLEX

- flex is normally distributed with C, and available from http://flex.sourceforge.net/
- Write a file file.1 for flex
- Compile file.1 with flex and get lex.yy.c
- Compile lex.yy.c with gcc and get the lexer

```
$> flex file.l
$> gcc lex.yy.c -lfl
$> ./a
```

109 / 112

FORMAL LANGUAGES AND COMPILER

Paola Quaglia, 202

Lexical analysis generators

FILES FOR FLEX

Lexical analysis generators

DISAMBIGUATION

```
%%
pattern-1 {action-1};
pattern-2 {action-2};
....
%%
....
```

- Always take the longest match
- If there are more longest matches, take the first in the list

111 / 112

FORMAL LANGUAGES AND COMPILERS

Paola Quaglia, 2022

Lexical analysis generators

PATTERNS FOR FLEX

Metacharacters

- Metacharacter matches
 - . any character except newline
 - \n newline
 - * zero or more copies of
 - + one or more copies of
 - ? zero or one copy of
 - [] character class
 - beginning of line, negation if used in []
 - \$ end of line
 - a|b a or b
 - () grouping
 - "+" literal "+"
 - {} regexp defined in the preamble