31 Біполяра

§31.1 Абсолютна опуклість і біполяра

Означення 31.1. Нехай X — лінійний простір.

Абсолютно опуклою комбінацією набору елементів $\{x_k\}_{k=1}^n \subset X$ називається будь-яка сума вигляду $\sum_{k=1}^n \lambda_k x_k$, де $\sum_{k=1}^n |\lambda_k| \le 1$.

Означення 31.2. Абсолютно опуклою оболонкою множини A в лінійному просторі X називається множина усіх абсолютно опуклих комбінацій скінченняшя числа елементів множини A. Позначається абсолютно опукла оболонка як асопу A.

Нехай (X,Y) — дуальна пара, $A \subset X$. Тоді $A^0 \subset Y$ і у цієї множини теж можна розглянути поляру.

Означення 31.3. Множина $(A^0)^0 \subset X$ називається **біполярою** множини $A \subset X$ і позначається як A^{00} .

Теорема 31.1

Біполяра A^{00} множини $A\subset X$ збігається з $\sigma(X,Y)$ -замиканням абсолютно опуклої оболонки множини A.

Доведення. Зауважимо, що $A^{00}\supset A$. Дійсно, якщо $x\in A$, то за означенням множини A^0 :

$$\forall y \in A^0 \quad |\langle x, y \rangle| \le 1.$$

Це означає, що $X \in A^{00}$.

Далі, біполяра — частковий приклад поляри. Отже, відповідно до пункту 6) теореми 13.2 A^{00} — опукла врівноважена $\sigma(X,Y)$ -замкнена множина. Відповідно, A^{00} $\supset \overline{aconv}$ A

Для доведення оберненого включання візьмемо довільну точку $x_0 \in X \setminus \overline{\text{асопv}} A$ і переконаємося, що $x_0 \notin A^{00}$. Дійсно, оскільки $x_0 \in \overline{\text{асопv}} A$ і $\overline{\text{асопv}} A$ — це опукла врівноважена $\sigma(X,Y)$ -замкнена множина, тому за теоремою Хана—Банаха (теорем. 28.5) існує такий $\sigma(X,Y)$ -неперервний лінійний функціонал y на X, що

- 1. $|y(x)| \le 1 \ \forall x \in \overline{\text{aconv}} A$;
- 2. $|y(x_0)| > 1$.

Будь-який $\sigma(X,Y)$ -неперервний лінійний функціонал — це елемент простору Y. Умова 1 означає, що $y \in (\overline{\text{aconv}} A)^0 \subset A^0$. Тоді друга умова означає, що $x_0 \notin A^{00}$. \square

Наслідок 31.1

Якщо $A\subset X-\sigma(X,Y)$ -замкнена врівноважена множина, то $A^{00}=A.$ Зокрема, $B^{000}=B^0$ $\forall B\subset Y.$

Наслідок 31.2

 $A^{\perp\perp}=\overline{\lim}\,A\ \forall A\subset X.$ Якщо A — лінійний підпростір, то $A^{\perp\perp}=\overline{A}.$ Нарешті, $B^{\perp\perp\perp}=B^\perp\ \forall B\subset Y.$

Доведення.

$$A^{\perp \perp} = (A^{\perp})^{\perp} = ((\ln A)^{\perp})^{\perp}) = (\ln A)^{00} = \overline{\ln} A. \qquad \Box$$

Наслідок 31.3

Якщо $A_1,A_2\subset X-\sigma(X,Y)$ -замкнені врівноважені множини, то $A_1=A_2\iff A_1^0=A_2^0.$ Якщо до того ж $A_1=A_2-$ підпростори, то $A_1=A_2\iff A_1^\perp=A_2^\perp$

З іншого боку, якщо $A_1^0=A_2^0$, то $A_1^{00}=A_2^{00}$ і можна застосувати теорему про біполяру.

Теорема 31.2

Нехай (X,Y) — дуальна пара і $A\subset X$. Тоді наступні умови є еквівалентними:

- 1. Множина функціоналів $A \subset X$ розділяє точки простору X.
- 2. $A^{\perp} = \{0\};$
- 3. $A^{\perp \perp} = X$;
- 4. Лінійна оболонка множини $A \in \sigma(Y, X)$ -щільною в Y.

Доведення. 1 \implies 2. Включення $A^{\perp} \supset \{0\}$ виконано завжди. Якщо ж $x \in X \setminus \{0\}$, то за умовою існує $y \in A$ такий, що $\langle x, y \rangle \neq 0$. У цьому випадку $x \notin A^{\perp}$.

- $2 \implies 1.$ Нехай $x \in X \setminus \{0\}.$ Тоді $x \notin A^\perp,$ отже існує $y \in A,$ такий що $\langle x,y \rangle \neq 0.$
- $2\iff 3$. Оскільки A^\perp і $\{0\}$ це $\sigma(X,Y)$ -замкнені підпростори, можна скористатися наслідком 11.3.

$$3 \iff 4$$
. За наслідком $11.2 \ A^{\perp \perp} = \overline{\lim} \ A$.

§31.2 Література

[1] **Кадец В. М.** Курс функционального анализа / В. М. Кадец — Х.: ХНУ им. В. Н. Каразина, 2006. (стр. 533-535).