Teoría de Números

Práctica 1

Lucio Santi lsanti@dc.uba.ar

10 de septiembre de 2017

Ejercicio. Asumiendo que el anillo $\mathbb{Z}[\alpha = \frac{1+\sqrt{-19}}{2}]$ es DFU, probar que $(x,y) = (\pm 18,7)$ son las únicas soluciones enteras de la ecuación

$$x^2 + 19 = y^3$$

Resolución. Si factorizamos $x^2 + 19$ en $\mathbb{Z}[\alpha]$, tenemos

$$x^{2} + 19 = (x + \sqrt{-19})(x - \sqrt{-19})$$

= $((x - 1) + 2\alpha)((x + 1) - 2\alpha)$
= $\beta \cdot \gamma$

Consideremos un $\delta = a + b\alpha \in \mathbb{Z}[\alpha]$ tal que $\delta | \beta \vee \delta | \gamma$. Luego, se tiene que

$$\delta | ((x-1) + 2\alpha) - ((x+1) - 2\alpha) = -2 + 4\alpha = 2(-1 + 2\alpha) = \eta$$

Puesto que $\mathbb{Z}[\alpha]$ es un dominio de factorización única, η es expresable como producto de primos de forma única (salvo asociados). Por ende, supongamos que δ es un divisor primo de η . De esta forma, $\delta|2$ o bien $\delta|-1+2\alpha$, de lo que sigue que $N(\delta)|N(2)=4$ o bien $N(\delta)|N(-1+2\alpha)=19$, siendo $N(u+v\alpha)=u^2+uv+5v^2$ la norma de $\mathbb{Z}[\alpha]$. Observemos que, como función de u, $f(u)=N(u+v_0\alpha)=u^2+uv_0+5v_0^2$ es decreciente hasta $u=-v_0/2$, donde alcanza su mínimo, y luego creciente. De esta forma,

$$N(u + v\alpha) = u^2 + uv + 5v^2 \ge (-v/2)^2 + (-v/2)v + 5v^2 = 19/4v^2$$

Además, si buscamos que $\delta|2$ o que $\delta|-1+2\alpha$, necesariamente debe ocurrir que $b\neq 0$ si nos proponemos encontrar divisores no triviales. Así, $N(\delta)\geq {}^{19}/4>4$, por lo que δ no puede ser un divisor no trivial de 2 en $\mathbb{Z}[\alpha]$. Por otro lado, siempre que |b|>2, $N(\delta)>19$, de manera que $b=\pm 2$. No obstante, en tales casos los únicos valores de δ posibles son precisamente $-1+2\alpha$ y $1-2\alpha$. En consecuencia, puesto que $\delta=\pm (-1+2\alpha)$ no puede ser divisor simultáneo de β y de γ , se tiene que β y γ son coprimos en $\mathbb{Z}[\alpha]$ o bien el único divisor primo que comparten es 2. En el primer caso, deben ser β y γ cubos simultáneamente de forma tal de satisfacer la ecuación deseada. En particular, deben existir ciertos $c,d\in\mathbb{Z}$ tales que

$$\beta = (x - 1) + 2\alpha = (c + d\alpha)^{3}$$
$$= (c^{3} - 5d^{3} - 15cd^{2}) + (3c^{2}d - 4d^{3} + 3cd^{2})\alpha$$

de lo que, por unicidad de escritura, sigue que

$$d(3c^2 - 4d^2 + 3cd) = 2$$

y esto vale si y sólo si d = 1 y $c \in \{1, -2\}$. De esta forma,

$$x = 1 + c^3 - 5d^3 - 15cd^2 \in \{-18, 18\}$$

lo cual permite concluir que, en cualquier caso, y = 7 reemplazando en la ecuación original.

Finalmente, si β y γ comparten a 2 como único divisor común primo, es posible considerar $\beta' = 2\beta$ y $\gamma' = \frac{\gamma}{2}$ siendo así β' y γ' coprimos en $\mathbb{Z}[\alpha]$ (notar que $\gamma' = \frac{x+1}{2} - \alpha$ no es divisible por 2). A través de un razonamiento similar al anterior, puede arribarse a la conclusión de que no existe una forma de expresar como cubo en $\mathbb{Z}[\alpha]$ a γ' . Por ende, esto termina de probar que las únicas soluciones posibles a la ecuación planteada son las descriptas anteriormente.

Ejercicio. Caracterizaremos los primos que son suma de dos cuadrados. Probaremos que, si p es un primo impar, entonces $p = x^2 + y^2$ si y sólo si $p \equiv 1 \mod 4$.

- I. Sea p primo impar tal que p se escribe como suma de dos cuadrados. Probar que -1 es un cuadrado módulo p. Concluir que $p \equiv 1 \mod 4$.
- II. Sea p primo impar, $p \equiv 1 \mod 4$. Tomar $n \in \mathbb{Z}$ tal que $n^2 \equiv -1 \mod p$. Como $p|n^2+1$ en \mathbb{Z} , tenemos que p|(n+i)(n-i) en $\mathbb{Z}[i]$. Probar que p no es primo de $\mathbb{Z}[i]$ y, por lo tanto, es reducible.
- III. Sabiendo que $p = \alpha \cdot \beta$, α , $\beta \in \mathbb{Z}[i]$ no unidades, concluir que p es suma de dos cuadrados.

Resolución.

I. Sea p primo impar tal que $p=x^2+y^2$ para ciertos $x,y\in\mathbb{Z}$. Como p es impar, debe ser $x\equiv 0 \mod 2$ y $y\equiv 1 \mod 2$ o viceversa. Sin pérdida de generalidad, tomemos entonces $x\equiv 0 \mod 2$ y $y\equiv 1 \mod 2$. Observemos que $x^2\equiv 0 \mod 4$ y $y^2\equiv 1 \mod 4$. Veamos cuánto vale el símbolo de Legendre de -1:

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$

$$= (-1)^{\frac{x^2+y^2-1}{2}}$$

$$= (-1)^{\frac{x^2}{2}}(-1)^{\frac{y^2-1}{2}}$$

$$= 1$$

De esta manera, queda probado que -1 es un cuadrado módulo p. Como consecuencia, debe ser necesariamente $p \equiv 1 \mod 4$ pues, en caso contrario, $\left(\frac{-1}{p}\right) \neq 1$.

- II. Sea p primo impar, $p \equiv 1 \mod 4$, y sea $n \in \mathbb{Z}$ tal que $n^2 \equiv -1 \mod p$ (un tal n debe existir puesto que $\left(\frac{-1}{p}\right) = 1$). Como $p|n^2+1$ en \mathbb{Z} , se tiene que p|(n+i)(n-i) en $\mathbb{Z}[i]$. Supongamos que p es primo en $\mathbb{Z}[i]$. Luego, p|n+i o bien p|n-i. En el primer caso, se tiene que $n+i=p\gamma$ para cierto $\gamma=a+bi\in\mathbb{Z}[i]$. Luego, n+i=pa+pbi, con lo cual debe ser 1=pb, lo cual es un absurdo puesto que $p,b\in\mathbb{Z}$ y p>1. El otro caso puede argumentarse de manera análoga. Por ende, p no puede ser primo en $\mathbb{Z}[i]$ y, por lo tanto, no es irreducible (siendo $\mathbb{Z}[i]$ un DFU).
- III. En el contexto del ítem anterior, tenemos que $p = \alpha \cdot \beta$, con $\alpha, \beta \in \mathbb{Z}[i]$ no unidades. Luego,

$$N(p) = N(\alpha \cdot \beta) = N(\alpha)N(\beta)$$

Considerando $\alpha = a + bi$ y $\beta = c + di$ para ciertos $a, b, c, d \in \mathbb{Z}$, tenemos entonces

$$p^2 = (a^2 + b^2)(c^2 + d^2)$$

Al ser p primo en \mathbb{Z} , tenemos las siguientes posibilidades:

- $a^2 + b^2 = 1 \text{ y } c^2 + d^2 = p^2,$
- $a^2 + b^2 = p^2$ y $c^2 + d^2 = 1$, o bien
- $a^2 + b^2 = p y c^2 + d^2 = p$

Observar que los dos primeros casos no pueden suceder puesto que, de ser así, α o β serán una unidad de $\mathbb{Z}[i]$. Luego, del último ítem se desprende lo que buscábamos.

Ejercicio. Caracterización de los irreducibles de $\mathbb{Z}[i]$.

- I. Probar que $2 = (-i)(1+i)^2$ y que 1+i es irreducible.
- II. Sea $p \equiv 3 \mod 4$. Probar que $p = x^2 + y^2$ no tiene soluciones en \mathbb{Z} . Concluir que p es irreducible en $\mathbb{Z}[i]$.
- III. Utilizar el ejercicio anterior para probar que, si $p \equiv 1 \mod 4$, entonces p se factoriza en $\mathbb{Z}[i]$ como producto de dos irreducibles no asociados.
- IV. Probar que, si π es un irreducible de $\mathbb{Z}[i]$, entonces π es asociado a alguno de los irreducibles mencionados en los ítems anteriores (sug.: si π es irreducible, existe un primo $p \in \mathbb{Z}$ tal que $p|N(\pi) = \pi \bar{\pi}$ y usar factorización única).

Resolución.

I. La cuenta es inmediata:

$$(-i)(1+i)^2 = (-i)(1+2i-1) = 2$$

Consideremos ahora los divisores de 1+i en $\mathbb{Z}[i]$. Sea entonces $\alpha \in \mathbb{Z}[i]$ tal que $\alpha|1+i$, de manera que $N(\alpha)|N(1+i)=2$. Luego, $N(\alpha)\in\{1,2\}$. No obstante, todos los elementos de $\mathbb{Z}[i]$ con norma 2 son asociados de 1+i, con lo cual se concluye que 1+i es irreducible en dicho anillo.

II. Sea p primo en \mathbb{Z} tal que $p \equiv 3 \mod 4$. Consideremos un divisor primo $\alpha = a + bi \in \mathbb{Z}[i]$ de p. Debe ocurrir que $N(\alpha)|N(p) = p^2$, por lo que $N(\alpha) \in \{p, p^2\}$. No obstante $N(\alpha) = a^2 + b^2 \neq p$ como consecuencia del ejercicio anterior (esto sólo es posible cuando $p \equiv 1 \mod 4$). Luego, debe ser $N(\alpha) = p^2$. Pero, entonces,

$$p^2 = N(p) = N(\alpha \cdot \beta) = N(\alpha)N(\beta) = p^2 N(\beta)$$

de manera que $N(\beta) = 1$. Por ende, β es unidad y p es asociado a α , por lo que es irreducible en $\mathbb{Z}[i]$.

III. Dado p primo en \mathbb{Z} tal que $p \equiv 1 \mod 4$, del ejercicio anterior tenemos que $p = x^2 + y^2$ para ciertos $x, y \in \mathbb{Z}$. Luego, p = (x + yi)(x - yi) en $\mathbb{Z}[i]$. Sea $\alpha = a + bi \in \mathbb{Z}[i]$ un divisor primo de x + yi. Luego, $N(\alpha)|N(x + yi) = p$, de lo que se desprende que $N(\alpha) = a^2 + b^2 = p$. Entonces,

$$(a+bi)(a-bi) = (x+yi)(x-yi)$$

Y, escribiendo $x + yi = \alpha \cdot \beta$,

$$\alpha(a-bi) = \alpha \cdot \beta(x-yi)$$

Al ser $\mathbb{Z}[i]$ un DFU y α primo, tenemos que $a - bi = \beta(x - yi)$, con lo cual

$$p = N(a - bi)$$

$$= N(\beta(x - yi))$$

$$= N(\beta)N(x - yi)$$

$$= N(\beta)p$$

Por ende, se tiene que $N(\beta)=1$ o, en otras palabras, β es una unidad. Así, x+yi es asociado de α , de manera que es irreducible en $\mathbb{Z}[i]$. Un argumento similar puede darse para la irreducibilidad de x-yi. Observar que ambos son no asociados puesto que ninguna unidad ν del anillo es tal que $x+yi=\nu(x-yi)$.

IV. Sea π un irreducible de $\mathbb{Z}[i]$. Puesto que $N(\pi) > 1$, debe existir algún primo $p \in \mathbb{Z}$ tal que $p|N(\pi) = \pi\bar{\pi}$, es decir, $\pi\bar{\pi} = pq$ para algún $q \in \mathbb{Z}$. Primero notemos que, si $\bar{\pi} \in \mathbb{Z}$, se tiene que $\pi = \bar{\pi} \in \mathbb{Z}$, con lo que necesariamente $\pi = \pm p$. Así, por factorización única en $\mathbb{Z}[i]$, π debe ser tal que $\pi \equiv 3 \mod 4$. Ahora consideremos $\bar{\pi} \notin \mathbb{Z}$. De ser así, existe por lo menos un factor irreducible de p que no aparece en $\bar{\pi}$. Dicho factor, pues, debe ser necesariamente asociado a π , de nuevo valiéndonos de la factorización única en $\mathbb{Z}[i]$.

Ejercicio. Factorizar como producto de irreducibles los elementos 7 + 4i y 23 + 14i en $\mathbb{Z}[i]$.

Resolución. Inmediato usando SageMath ©:

```
sage: K.<i> = QuadraticField(-1)
sage: factor(7 - 4*i)
(i) * (-i - 2) * (2*i + 3)
sage: factor(23+14*i)
(-i - 2)^2 * (-2*i + 5)
```