# 1. Data tuples

- a. Confusion matrix (TP, TN, FP, FN)
  - i. Threshold: Prob >= 0.55 (positive) else negative
  - ii. From the table

| Tuple # | Class (True) | Prob (classifier) | Prediction |
|---------|--------------|-------------------|------------|
| 1       | р            | 0.95              | Positive   |
| 2       | n            | 0.85              | Positive   |
| 3       | р            | 0.78              | Positive   |
| 4       | р            | 0.66              | Positive   |
| 5       | n            | 0.60              | Positive   |
| 6       | р            | 0.55              | Positive   |
| 7       | n            | 0.53              | Negative   |
| 8       | n            | 0.52              | Negative   |
| 9       | n            | 0.51              | Negative   |
| 10      | p            | 0.40              | Negative   |

- 1
- 2. True Positives (TP): Correctly classified positive cases
  - a. Tuples: 1, 3, 4, 6
  - b. Count: 4
- 3. False Positives (FP): Incorrectly classified negative cases as positive (n classified as p)
  - a. Tuples: 2, 5
  - b. Count: 2
- 4. True Negatives (TN): Correctly classified negative cases (n)
  - a. Tuples: 7, 8, 9
  - b. Count: 3
- 5. False Negatives (FN): Incorrectly classified positive cases as negative (p classified as n)
  - a. Tuple: 10
  - b. Count: 1

| Confusion Matrix:   |                    |                    |  |  |  |  |
|---------------------|--------------------|--------------------|--|--|--|--|
|                     | Predicted Positive | Predicted Negative |  |  |  |  |
| Actual Positive (p) | TP = 4             | FN = 1             |  |  |  |  |
| Actual Negative (n) | FP = 2             | TN = 3             |  |  |  |  |

- 6
- iii. Metrics calculation

# 1. Accuracy

Accuracy = 
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{4+3}{4+3+2+1} = \frac{7}{10} = 0.7$$

# 2. Sensitivity (True Positive Rate)

Sensitivity (TPR) = 
$$\frac{TP}{TP + FN} = \frac{4}{4+1} = \frac{4}{5} = 0.8$$

# 3. Specificity (True Negative Rate)

Specificity (TNR) 
$$= \frac{TN}{TN + FP} = \frac{3}{3+2} = \frac{3}{5} = 0.6$$

# 1.

#### 4. Precision

Precision = 
$$\frac{TP}{TP + FP} = \frac{4}{4+2} = \frac{4}{6} = 0.67$$

## 5. Recall

Recall is the same as sensitivity:

$$Recall = \frac{TP}{TP + FN} = 0.8$$

#### 6. F1 Score

$$\text{F1 Score} = 2 \times \frac{\text{Precision} \times \text{Recall}}{\text{Precision} + \text{Recall}} = 2 \times \frac{0.67 \times 0.8}{0.67 + 0.8} = 2 \times \frac{0.536}{1.47} \approx 0.73$$

### 2.

## 3. Summary of results:

- a. Accuracy: 0.7
- b. Sensitivity (TPR): 0.8
- c. Specificity (TNR): 0.6
- d. Precision: 0.67
- e. Recall: 0.8
- f. F1 Score: 0.73

### 2. Threshold to make positive / negative calls

- a. Key
  - i. p (positive) and n (negative) are the true classes
  - ii. A threshold decides if a probability should be classified as positive or negative

- iii. For each threshold, classify probabilities accordingly and calculate the confusion matrix values (TP, FP, TN, FN)
- iv. Calculations
  - 1. Threshold = 0.9
    - a. Prediction rule: Only probabilities ≥ 0.9 are classified as Positive.
    - b. Tuples 1 (p) is classified as Positive.

| Tuple | Class | Prob | Prediction | Outcome |
|-------|-------|------|------------|---------|
| 1     | р     | 0.95 | Positive   | TP      |
| 2     | n     | 0.85 | Negative   | TN      |
| 3     | р     | 0.78 | Negative   | FN      |
| 4     | р     | 0.66 | Negative   | FN      |
| 5     | n     | 0.60 | Negative   | TN      |
| 6     | р     | 0.55 | Negative   | FN      |
| 7     | n     | 0.53 | Negative   | TN      |
| 8     | n     | 0.52 | Negative   | TN      |
| 9     | n     | 0.51 | Negative   | TN      |
| 10    | р     | 0.40 | Negative   | FN      |

C.

- d. TP = 1, FP = 0, TN = 5, FN = 4
- e. TPR (Sensitivity) = TP / (TP + FN) = 1 / (1 + 4) = 0.2
- f. TNR (Specificity) = TN / (TN + FP) = 5 / (5 + 0) = 1
- g. FPR = 1 TNR = 0
- 2. Threshold = 0.8
  - a. Prediction rule: Probabilities ≥ 0.8 are classified as Positive.
  - b. Tuples 1 (p), 2 (n) are classified as Positive.

| Tuple | Class | Prob | Prediction | Outcome |
|-------|-------|------|------------|---------|
| 1     | р     | 0.95 | Positive   | TP      |
| 2     | n     | 0.85 | Positive   | FP      |
| 3     | р     | 0.78 | Negative   | FN      |
| 4     | р     | 0.66 | Negative   | FN      |
| 5     | n     | 0.60 | Negative   | TN      |
| 6     | р     | 0.55 | Negative   | FN      |
| 7     | n     | 0.53 | Negative   | TN      |
| 8     | n     | 0.52 | Negative   | TN      |
| 9     | n     | 0.51 | Negative   | TN      |
| 10    | р     | 0.40 | Negative   | FN      |

C.

- d. TP = 1, FP = 1, TN = 4, FN = 4
- e. TPR = 0.2, TNR = 4 / (4 + 1) = 0.8, FPR = 0.2
- 3. Threshold = 0.7
  - a. Prediction rule: Probabilities ≥ 0.7 are classified as Positive.
  - b. Tuples 1 (p), 2 (n), 3 (p) are classified as Positive.

| Tuple | Class | Prob | Prediction | Outcome |
|-------|-------|------|------------|---------|
| 1     | р     | 0.95 | Positive   | TP      |
| 2     | n     | 0.85 | Positive   | FP      |
| 3     | р     | 0.78 | Positive   | TP      |
| 4     | р     | 0.66 | Negative   | FN      |
| 5     | n     | 0.60 | Negative   | TN      |
| 6     | р     | 0.55 | Negative   | FN      |
| 7     | n     | 0.53 | Negative   | TN      |
| 8     | n     | 0.52 | Negative   | TN      |
| 9     | n     | 0.51 | Negative   | TN      |
| 10    | р     | 0.40 | Negative   | FN      |

C.

- d. TP = 2, FP = 1, TN = 4, FN = 3
- e. TPR = 2 / (2 + 3) = 0.4, TNR = 0.8, FPR = 0.2
- 4. Threshold = 0.65

- a. Prediction rule: Probabilities ≥ 0.65 are classified as Positive.
- b. Tuples 1 (p), 2 (n), 3 (p), 4 (p) are classified as Positive.

| Tuple | Class | Prob | Prediction | Outcome |
|-------|-------|------|------------|---------|
| 1     | р     | 0.95 | Positive   | ТР      |
| 2     | n     | 0.85 | Positive   | FP      |
| 3     | р     | 0.78 | Positive   | ТР      |
| 4     | р     | 0.66 | Positive   | ТР      |
| 5     | n     | 0.60 | Negative   | TN      |
| 6     | р     | 0.55 | Negative   | FN      |
| 7     | n     | 0.53 | Negative   | TN      |
| 8     | n     | 0.52 | Negative   | TN      |
| 9     | n     | 0.51 | Negative   | TN      |
| 10    | р     | 0.40 | Negative   | FN      |

C.

- d. TP = 3, FP = 1, TN = 4, FN = 2
- e. TPR = 3 / (3 + 2) = 0.6, TNR = 0.8, FPR = 0.2
- 5. Threshold = 0.6
  - a. Prediction rule: Probabilities ≥ 0.6 are classified as Positive.
  - b. Tuples 1 (p), 2 (n), 3 (p), 4 (p), 5 (n) are classified as Positive.

| Tuple | Class | Prob | Prediction | Outcome |
|-------|-------|------|------------|---------|
| 1     | р     | 0.95 | Positive   | ТР      |
| 2     | n     | 0.85 | Positive   | FP      |
| 3     | р     | 0.78 | Positive   | ТР      |
| 4     | р     | 0.66 | Positive   | ТР      |
| 5     | n     | 0.60 | Positive   | FP      |
| 6     | р     | 0.55 | Negative   | FN      |
| 7     | n     | 0.53 | Negative   | TN      |
| 8     | n     | 0.52 | Negative   | TN      |
| 9     | n     | 0.51 | Negative   | TN      |
| 10    | р     | 0.40 | Negative   | FN      |

d. 
$$TP = 3$$
,  $FP = 2$ ,  $TN = 3$ ,  $FN = 2$ 

e. 
$$TPR = 0.6$$
,  $TNR = 3 / (3 + 2) = 0.6$ ,  $FPR = 0.4$ 

6. Threshold = 0.55

7. Threshold = 0.5

8. Threshold = 0.4

| Threshold | ТР | FP | TN | FN | TPR (Sensitivity) | TNR (Specificity) | FPR  |
|-----------|----|----|----|----|-------------------|-------------------|------|
| 0.9       | 1  | 0  | 3  | 1  | 0.20              | 1.00              | 0    |
| 0.8       | 1  | 1  | 2  | 1  | 0.20              | 0.67              | 0.33 |
| 0.7       | 2  | 1  | 2  | 0  | 0.40              | 0.67              | 0.33 |
| 0.65      | 3  | 1  | 2  | 0  | 0.60              | 0.67              | 0.33 |
| 0.6       | 3  | 2  | 1  | 0  | 0.60              | 0.33              | 0.67 |
| 0.55      | 4  | 2  | 1  | 0  | 0.80              | 0.33              | 0.67 |
| 0.5       | 4  | 3  | 0  | 0  | 0.80              | 0.00              | 1.00 |
| 0.4       | 4  | 3  | 0  | 0  | 0.80              | 0.00              | 1.00 |

# v. b. ROC curve

i. We can plot the ROC curve based on the calculated TPR (Sensitivity) and FPR values for each threshold. The red line in the plot represents a random classifier, where the classifier's performance would be equal to random guessing.

| ROC Curve Data Points (FPR vs TPR for each threshold): |     |     |  |  |  |  |
|--------------------------------------------------------|-----|-----|--|--|--|--|
| Threshold                                              | TPR | FPR |  |  |  |  |
| 0.9                                                    | 0.2 | 0   |  |  |  |  |
| 0.8                                                    | 0.2 | 0.2 |  |  |  |  |
| 0.7                                                    | 0.4 | 0.2 |  |  |  |  |
| 0.65                                                   | 0.6 | 0.2 |  |  |  |  |
| 0.6                                                    | 0.6 | 0.4 |  |  |  |  |
| 0.55                                                   | 0.8 | 0.4 |  |  |  |  |
| 0.5                                                    | 0.8 | 0.6 |  |  |  |  |
| 0.4                                                    | 0.8 | 1   |  |  |  |  |

ii.

# c. AUC

- a. Maximum AUC value: The maximum AUC value is 1, which represents a perfect classifier
- b. For a classifier with a poor performance like this, the AUC value would likely be close to 0.5 (the diagonal line), suggesting the classifier isn't significantly better than random guessing.



3. Steps:

a. Calculate prior probabilities

a.

$$P(+) = rac{ ext{Number of} + ext{records}}{ ext{Total records}} = rac{5}{10} = 0.5$$
 $P(-) = rac{ ext{Number of} - ext{records}}{ ext{Total records}} = rac{5}{10} = 0.5$ 

b. Calculate conditional probabilities

For A=0, given class + and class -:

$$P(A=0|+) = rac{ ext{Number of } A=0 ext{ in } +}{ ext{Total number of } +} = rac{3}{5} = 0.6$$

$$P(A=0|-) = rac{ ext{Number of } A=0 ext{ in } -}{ ext{Total number of } -} = rac{3}{5} = 0.6$$

i.

i.

For B=1, given class + and class -:

$$P(B=1|+)=rac{3}{5}=0.6$$

$$P(B=1|-)=rac{3}{5}=0.6$$

ii.

For C=0, given class + and class -:

$$P(C=0|+)=rac{2}{5}=0.4$$

$$P(C=0|-)=rac{2}{5}=0.4$$

iii.

c. Calculate posterior probabilities

For class +:

$$P(+|A=0,B=1,C=0) = P(A=0|+)P(B=1|+)P(C=0|+)P(+)$$
  
=  $0.6 \times 0.6 \times 0.4 \times 0.5 = 0.072$ 

For class —:

$$P(-|A=0,B=1,C=0) = P(A=0|-)P(B=1|-)P(C=0|-)P(-)$$
  
=  $0.6 \times 0.6 \times 0.4 \times 0.5 = 0.072$ 

i.

#### d. Conclusion

- Since the posterior probabilities for both classes + and are the same, the classifier may not be able to decisively classify the record based on this data alone.
- However, by convention or tie-breaking, you could choose either class, though additional data or information could be needed to make a better decision.
- 4. Gini index:

## Steps to Calculate Gini Index:

1. Calculate the Gini Index for the Parent Node: Gini Index is calculated as:

$$Gini = 1 - \sum (p_i^2)$$

where  $p_i$  is the proportion of samples in class i.

For the parent node (the root node, before splitting), we have:

- C0 has 10 instances
- C1 has 10 instances

The Gini for the root node is:

$$Gini( ext{Parent}) = 1 - \left( \left(rac{10}{20}
ight)^2 + \left(rac{10}{20}
ight)^2 
ight) = 1 - (0.25 + 0.25) = 0.5$$

- 2. Choose Splitting Attributes: We have three attributes to consider for splitting:
  - Gender
  - Car Type
  - Shirt Size
- 3. Calculate the Gini Index for each possible split: We will calculate the Gini Index for splitting by each attribute, and then choose the attrib with the highest Gini gain.
- b. Gini gain calculations:

a.

# 1. Split by Gender:

• For  $\mathrm{Gender} = M$ : 7 samples are C0, 3 samples are C1

$$Gini(\mathrm{M}) = 1 - \left(rac{7}{10}
ight)^2 - \left(rac{3}{10}
ight)^2 = 1 - 0.49 - 0.09 = 0.42$$

• For Gender = F: 3 samples are C0, 7 samples are C1

$$Gini({
m F}) = 1 - \left(rac{3}{10}
ight)^2 - \left(rac{7}{10}
ight)^2 = 1 - 0.09 - 0.49 = 0.42$$

The weighted Gini for Gender is:

$$Gini({
m Gender}) = rac{10}{20} imes 0.42 + rac{10}{20} imes 0.42 = 0.42$$

# 2. Split by Car Type:

• For Car Type = Family: 2 samples are C0, 3 samples are C1

$$Gini( ext{Family}) = 1 - \left(rac{2}{5}
ight)^2 - \left(rac{3}{5}
ight)^2 = 1 - 0.16 - 0.36 = 0.48$$

• For Car Type = Sports: 5 samples are C0, 0 samples are C1

$$Gini(\mathrm{Sports}) = 1 - \left(rac{5}{5}
ight)^2 - 0 = 0$$

• For  $Car\ Type = Luxury$ : 3 samples are C0, 7 samples are C1

$$Gini({
m Luxury}) = 1 - \left(rac{3}{10}
ight)^2 - \left(rac{7}{10}
ight)^2 = 0.42$$

The weighted Gini for Car Type is:

$$Gini({
m Car\ Type}) = rac{5}{20} imes 0.48 + rac{5}{20} imes 0 + rac{10}{20} imes 0.42 = 0.045 + 0 + 0.21 = 0.255$$

i.

### 3. Split by Shirt Size:

• For Shirt Size = Small: 3 samples are C0, 3 samples are C1

$$Gini( ext{Small}) = 1 - \left(rac{3}{6}
ight)^2 - \left(rac{3}{6}
ight)^2 = 1 - 0.25 - 0.25 = 0.5$$

• For Shirt Size = Medium: 3 samples are C0, 5 samples are C1

$$Gini( ext{Medium}) = 1 - \left(rac{3}{8}
ight)^2 - \left(rac{5}{8}
ight)^2 = 1 - 0.14 - 0.39 = 0.47$$

• For Shirt Size = Large: 1 sample is C0, 2 samples are C1

$$Gini(\mathrm{Large}) = 1 - \left(rac{1}{3}
ight)^2 - \left(rac{2}{3}
ight)^2 = 0.44$$

• For Shirt Size = Extra Large: 3 samples are C0, 0 samples are C1

$$Gini( ext{Extra Large}) = 1 - \left(rac{3}{3}
ight)^2 - 0 = 0$$

The weighted Gini for Shirt Size is:

$$Gini(\text{Shirt Size}) = \frac{6}{20} \times 0.5 + \frac{8}{20} \times 0.4 + \frac{3}{20} \times 0.44 + \frac{3}{20} \times 0 = 0.15 + 0.188 + 0.066 + 0 = 0.404$$

iii.

- iv. Best split:
  - a. Based on the Gini index calculations:
    - Car Type has the lowest Gini value (0.255), so it is the best attribute to split on first.
  - b. This means the first node of the decision tree should split on Car Type, and the tree can further split based on the remaining attributes.