

Automated and Connected Driving Challenges

Section 3 – Object Fusion and Tracking

Object Prediction

Bastian Lampe

Institute for Automotive Engineering

Mathematical Notation

Type

(.) Estimate of the true value of (.)

 $(.)^T$ Transpose of (.)

Indices

G Results from a global fusion algorithm /

global environment model

S Originates from sensor S

RWTHAACHEN UNIVERSITY

Object state vector

 $\boldsymbol{O}_i = (\widehat{\boldsymbol{x}} \ \boldsymbol{P})^T$ (object)

 $\hat{x} = (x \ y \ z \ v_x \ v_y \ a_x \ a_y \ l \ w \ h)^T$ (estimated object state vector)

 $\mathbf{P} = cov(\widehat{\mathbf{x}}_{err}, \widehat{\mathbf{x}}_{err})$ (uncertainty of object state; described by

its error covariance matrix)

x, y, z (bounding box center position)

 v_x , v_y , a_x , a_y (velocities and accelerations)

l, w, h (bounding box length, width, height)

 \hat{x}_S measured state vector ("S"=sensor)

 \widehat{x}_G global/fused state vector ("G"=global)

Object state vector

 $\mathbf{O}_i = (\widehat{\mathbf{x}} \ \mathbf{P})^T$ (object)

 $\hat{x} = (x \ y \ z \ v_x \ v_y \ a_x \ a_y \ l \ w \ h)^T$ (estimated object state vector)

 $P = cov(\widehat{x}_{err}, \widehat{x}_{err})$ (uncertainty of object state; described by its error *covariance* matrix)

x, y, z (bounding box center position)

 v_x, v_y, a_x, a_y (velocities and accelerations)

l,w,h (bounding box length, width, height)

 \widehat{x}_S measured state vector ("S"=sensor)

 \widehat{x}_G global/fused state vector ("G"=global)

Object state vector error covariance

 $P = cov(\widehat{x}_{err}, \widehat{x}_{err})$ (uncertainty of object state; described by its error **covariance** matrix)

 \rightarrow A small **P** means that the error in \hat{x} is small!

RWTHAACHEN UNIVERSITY

Object state vector error covariance

$$P = cov(\widehat{x}_{err}, \widehat{x}_{err})$$
 (uncertainty of object state; described by its error **covariance** matrix)

 \rightarrow A small P means that the error in \hat{x} is small!

Visualization:

- Boundary of green ellipse shows one standard deviation of the error
- (variances are squared standard deviations)

In this example:

- Variance P_{xx} of estimated x rather small, e.g. 0.2m
- Variance P_{yy} of estimated y rather *large*, e.g. 2.5m
- \rightarrow Estimate \hat{x} is more certain in x-direction

In the code, we also consider variances for velocities, accelerations etc.

RWTHAACHEN UNIVERSITY

Prediction

- Kalman filter prediction step
- Reason: comparison of objects only makes sense if valid at the same time stamp
- \rightarrow Predict older object from t_{k-1} to the newer time stamp t_k
 - The older object is the "global" object G from the previous algorithm run (e.g. 50ms ago)
 - The newer object is the measured object S ("sensor-level") that e.g. the lidar system has just detected

Prediction

 $\widehat{x}_G := F \widehat{x}_G$ (predict estimated object state)

with

F Motion model matrix:

Describes e.g. constant velocity or constant acceleration assumption.

RWTHAACHEN UNIVERSITY

Prediction

$$\widehat{\boldsymbol{x}}_{G} \coloneqq \boldsymbol{F} \widehat{\boldsymbol{x}}_{G}$$

(predict estimated object state)

with

F

Motion model matrix:

Describes e.g. constant velocity or constant acceleration assumption.

$$\Delta t = t_k - t_{k-1}$$
 "Prediction gap" between currently

measured object and already existing global object (see previous slide).

Prediction

$$P_G := FP_GF^T + Q$$
 (predict estimated object state error covariance)

with

F Motion model matrix:

Describes e.g. constant velocity or constant acceleration assumption.

Q Motion noise matrix:

Inaccuracy of the motion model assumption. Also "process noise".

 $\Delta t = t_k - t_{k-1}$ "Prediction gap" between currently measured object and already

existing global object (see previous

slide).

Prediction

$$P_G := FP_GF^T + Q$$
 (predict estimated object state error covariance)

with

F Motion model matrix:

Describes e.g. constant velocity or constant acceleration assumption.

Q Motion noise matrix:

Inaccuracy of the motion model assumption. Also "process noise".

 $\Delta t = t_k - t_{k-1}$ "Prediction gap" between currently measured object and already

existing global object (see previous

slide).