本节主题

运算指令的 控制信号

这部分重在理解,考过大题,也可作为选择题考查需熟练掌握每个运算指令对应的控制信号

北京大学。暴课

计算机组成

制作人:医俊称

不同维度的指令分类

	addu rd, rs, rt subu rd, rs, rt	ori rt,rs,imm16	
访存指令		lw rt, imm16(rs) sw rt, imm16(rs)	
分支指令		beq rs, rt, imm16	
	R型指令	I型指令	J型指令

加法指令的操作步骤

- addu rd, rs, rt
 - 1 MEM[PC]
 - ② R[rd]=R[rs]+R[rt] **指令指定的操作**
 - \bigcirc PC=PC + 4

从指令存储器中取回指令 指令指定的操作 计算下一条指令的地址

	6-bit opcode			5-bit		5-bit		Į	5-bit		5-k	oit		6-bit	
R			opcode rs			rt		rd		shamt		funct			
	31	26	25	21	20	1	6	15		11	10	6	5		0

加法指令的操作步骤(1)

- Instruction = MEM[PC] Instruction Fetch Unit, IFU
 - 。从指令存储器中取回指令
 - 。所有指令均有此步骤

加法指令的操作步骤(1)

- Instruction = MEM[PC] Instruction Fetch Unit, IFU
 - 。从指令存储器中取回指令
 - 。所有指令均有此步骤

加法指令的操作步骤(2)

加法指令的操作步骤(2)

加法指令的操作步骤(2)

加法指令的操作步骤(3)

- \bigcirc PC=PC + 4
 - 。除了分支指令,均有此步骤

Instruction Fetch Unit, IFU

不同维度的指令分类

运算指令	addu rd, rs, rt subu rd, rs, rt	ori rt,rs,imm16	
访存指令		lw rt, imm16(rs) sw rt, imm16(rs)	
分支指令		beq rs, rt, imm16	
	R型指令	I型指令	J型指令

ori指令的操作步骤

- ori rt, rs, imm16
 - ① MEM [PC] **从指令存储器中取回指令**
 - ② R[rt]=R[rs] | ZeroExt[imm16] 指令指定的操作
 - ③ PC=PC + 4 **计算下一条指令的地址**

	6-bit opcode		5	-bit	Ę	5-bit			16-bit	
I			opcode rs			rt			immediate	
	31	26	25	21	20		16	15		<u> </u>

ori指令的操作步骤(2)

 $R[rt] = R[rs] \mid ZeroExt[imm16]$

ori指令的操作步骤(2)

 $R[rt] = R[rs] \mid ZeroExt[imm16]$

ori指令的操作步骤(2)

 $R[rt] = R[rs] \mid ZeroExt[imm16]$

本节小结

运算指令的 控制信号

北京大学。嘉课

计算机组成

制作人:随後都

