

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開2003-277661

(P2003-277661A)

(43)公開日 平成15年10月2日 (2003.10.2)

(51) Int.Cl. ⁷	識別記号	F I	テマコト ⁸ (参考)
C 0 9 D 11/00		C 0 9 D 11/00	2 C 0 5 6
B 4 1 J 2/01		B 4 1 M 5/00	E 2 H 0 8 6
B 4 1 M 5/00		C 0 7 D 403/04	4 C 0 6 3
C 0 7 D 403/04		403/14	4 J 0 3 9
403/14		413/14	

審査請求 未請求 請求項の数 3 O L (全 24 頁) 最終頁に続く

(21)出願番号	特願2002-124832(P2002-124832)	(71)出願人	000005201 富士写真フィルム株式会社 神奈川県南足柄市中沼210番地
(22)出願日	平成14年4月25日(2002.4.25)	(72)発明者	原田 徹 神奈川県南足柄市中沼210番地 富士写真 フィルム株式会社内
(31)優先権主張番号	特願2002-6726(P2002-6726)	(72)発明者	矢吹 嘉治 神奈川県南足柄市中沼210番地 富士写真 フィルム株式会社内
(32)優先日	平成14年1月15日(2002.1.15)	(74)代理人	100076439 弁理士 飯田 敏三
(33)優先権主張国	日本 (JP)		

最終頁に続く

(54)【発明の名称】 化合物、インク及びインクジェット記録方法

(57)【要約】

【課題】 良好な色相を有し、各種使用条件、環境条件下に於いて堅牢性の高い画像を形成可能なインクを提供する。

【解決手段】 少なくとも一種の下記一般式(1)で表される色素を含有してなるインク。

【化1】

一般式(1)

(式中、R¹、R² およびR³ は、それぞれ独立して水素原子または一価の基を示し、R¹、R² およびR³ の1つはアゾ基が置換したヘテロ環基を有する置換基を示し、Zは、窒素原子、または水素原子もしくは一価の基が結合した炭素原子を示す。)

(2)

2

【特許請求の範囲】

【請求項1】少なくとも一種の下記一般式(1)で表される色素を含有してなることを特徴とするインク。

【化1】

一般式(1)

(式中、R¹、R²およびR³は、それぞれ独立して水素原子または一価の基を示し、R¹、R²およびR³の1つはアゾ基が置換したヘテロ環基を有する置換基を示し、Zは、窒素原子、または水素原子もしくは一価の基が結合した炭素原子を示す。)

【請求項2】支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、請求項1に記載のインクを用いて画像形成することを特徴とするインクジェット記録方法。

【請求項3】下記一般式(3)で表される化合物。

【化2】

一般式(3)

(式中、R¹⁰は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表し、R¹¹およびR¹²はそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ基、スルホ基、ヘテロ環基を表し、Hetは芳香族ヘテロ環基を表し、それぞれの置換基はさらに置換基を有していてもよい。)

【発明の詳細な説明】

【0001】

【発明の属する技術分野】本発明は、アゾ色素、該色素を含むインク及びインクジェット記録方法、感熱記録材料、カラートナー、カラーフィルターに関する。

【0002】

【従来の技術】近年、画像記録材料としては、特にカラー画像を形成するための材料が主流であり、具体的には、インクジェット方式の記録材料、感熱転写方式の記録材料、電子写真方式の記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等が盛んに利用されている。また、撮影機器ではCCDなどの撮像素子において、ディスプレーではLCDやPDPにおいて、カラー画像を記録・再現するためにカラーフィルターが使用されている。これらのカラー画像記録材料やカラーフィルターでは、フルカラー画像を表示あるいは記録する為に、いわゆる加法混色法や減法混色法の3原色の色素（染料や顔

料）が使用されているが、好ましい色再現域を実現出来る吸収特性を有し、且つさまざまな使用条件、環境条件に耐えうる堅牢な色素がないのが実状であり、改善が強く望まれている。

【0003】インクジェット記録方法は、材料費が安価であること、高速記録が可能であること、記録時の騒音が少ないとこと、更にカラー記録が容易であることから、急速に普及し、更に発展しつつある。インクジェット記録方法には、連続的に液滴を飛翔させるコンティニュアス方式と画像情報信号に応じて液滴を飛翔させるオンデマンド方式があり、その吐出方式にはピエゾ素子により圧力を加えて液滴を吐出させる方式、熱によりインク中に気泡を発生させて液滴を吐出させる方式、超音波を用いた方式、あるいは静電力により液滴を吸引吐出させる方式がある。また、インクジェット記録用インクとしては、水性インク、油性インク、あるいは固体（溶融型）インクが用いられる。

【0004】このようなインクジェット記録用インクに用いられる色素に対しては、溶剤に対する溶解性あるいは分散性が良好なこと、高濃度記録が可能であること、色相が良好であること、光、熱、環境中の活性ガス（NO_x、オゾン等の酸化性ガスの他SO_xなど）に対して堅牢であること、水や薬品に対する堅牢性に優れていること、受像材料に対して定着性が良く滲みにくいこと、インクとしての保存性に優れていますこと、毒性がないこと、純度が高いこと、更には、安価に入手できることが要求されている。しかしながら、これらの要求を高いレベルで満たす色素を提供することは、極めて難しい。特に、良好なイエロー色相を有し、光、湿度、熱に対して堅牢な色素であること、中でも多孔質の白色無機顔料粒子を含有するインク受容層を有する受像材料上に印字する際には環境中のオゾンなどの酸化性ガスに対して堅牢であることが強く望まれている。

【0005】電子写真方式を利用したカラーコピア、カラーレーザープリンターにおいては、一般に樹脂粒子中に着色材を分散させたトナーが広く用いられている。カラートナーに要求される性能として、好ましい色再現域を実現出来る吸収特性、特にOver Head Projector (以下OHP) で使用される際に問題となる高い透過性（透明性）、及び使用される環境条件下における各種堅牢性が挙げられる。顔料を着色材として粒子に分散させたトナーが特開昭62-157051号、同62-255956号及び特開平6-118715号に開示されているが、これらのトナーは耐光性には優れるが、不溶性であるため凝集しやすく、透明性の低下や透過色の色相変化が問題となる。一方、染料を着色材として使用したトナーが特開平3-276161号、同7-209912号、同8-123085号に開示されているが、これらのトナーは逆に透明性が高く、色相変化はないものの、耐光性に問題がある。

(3)

3

【0006】感熱転写記録は、装置が小型で低コスト化が可能のこと、操作や保守が容易であること、更にランニングコストが安いこと等の利点を有している。感熱転写記録で使用される色素に要求される性能として、好ましい色再現域を実現出来る吸収特性、熱移行性と転写後の定着性の両立、熱安定性、得られた画像の各種堅牢性が挙げられるが、従来知られていた色素ではこれらの性能をすべて満足するものはない。例えば定着性と耐光性を改良する目的から、熱拡散性色素を予め受像材料中に添加した遷移金属イオンによってキレート形成させる感熱転写記録材料及び画像形成方法が特開昭60-2398号等で提案されているが、形成されるキレート色素の吸収特性は不満足なレベルであり、遷移金属を使用することによる環境上の問題もある。

【0007】カラーフィルタは高い透明性が必要とされるために、染料を用いて着色する染色法と呼ばれる方法が行われてきた。たとえば、被染色性のフォトレジストをパターン露光、現像することによりパターンを形成し、次いでフィルタ色の染料で染色する方法を全フィルタ色について順次繰り返すことにより、カラーフィルタを製造することができる。染色法の他にも米国特許4,808,501号や特開平6-35182号などに記載されたポジ型レジストを用いる方法によてもカラーフィルターを製造する事ができる。これらの方法は染料を使用するために透過率が高く、カラーフィルタの光学特性は優れているが、耐光性や耐熱性等に限界があり、諸耐性に優れかつ透明性の高い色素が望まれていた。一方、染料の代わりに耐光性や耐熱性が優れる有機顔料を用いる方法が広く知られているが、顔料を用いたカラーフィルタでは染料のような光学特性を得ることは困難であった。

【0008】上記の各用途で使用する色素には、共通して次のような性質を具备している必要がある。即ち、色再現性上好ましい吸収特性を有すること、使用される環境条件下における堅牢性、例えば耐光性、耐熱性、耐湿性、オゾンなどの酸化性ガスに対する耐性、その他亜硫酸ガスなどの耐薬品堅牢性が良好であること等である。特に、良好なイエロー色相を有し、光、湿熱及び環境中の活性ガス、中でもオゾンなどの酸化性ガスに対して堅牢な色素が強く望まれている。インクジェット記録用インクに用いられるイエローの色素骨格としてはアゾ色素が代表的である。

【0009】前記代表的なアゾ色素としては、特開昭57-5770および58-147470号記載のアミノピラゾールアゾ色素およびピラゾロンアゾキレート色素、特開昭57-642775号記載のピラゾロンアゾ色素、特開平6-184481号記載のピリドンアゾ色素、特開平5-255625号および5-331396号記載のスチルベンアゾ色素および特開昭57-65757号記載のビスアゾ染料などを挙げることができる。また、特開平2-24191号には熱転写用チアジアン

4

ルーアゾーピラゾール色素が開示されている。さらに、J.Soc.Dye & Colourists 102, 176-181(1986)にはトリアジニルピラゾール骨格を有する色素が記載されているがインクジェット用インク、感熱転写用インクシート、カラートナーおよびカラーフィルターでの使用は記載されていない。

【0010】これらの色素は、昨今環境問題として取りあげられることの多い酸化窒素ガスやオゾン等の酸化性ガスによって変色及び消色し、同時に印字濃度も低下してしまう。また、耐光性も必ずしも満足できない色素が多い。今後、使用分野が拡大して、広告等の展示物に広く使用されると、光、熱、湿度や環境中の活性ガスに曝される場合が多くなるため、特に良好な色相を有し、光堅牢性、湿熱堅牢性および環境中の活性ガス(NO_x 、オゾン等の酸化性ガスの他 SO_x など)に対する堅牢性に優れた色素及びインク組成物がますます強く望まれるようになる。しかしながら、これらの要求を高いレベルで満たすアゾ色素及びイエローインクを捜し求めることは、極めて難しい。

【0011】

【発明が解決しようとする課題】本発明は、前記従来における問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、1) 三原色の色素として色再現性に優れた吸収特性を有し、且つ光、熱、湿度および環境中の活性ガスに対して十分な堅牢性を有する新規な色素を提供し、2) 色相と堅牢性に優れた着色画像や着色材料を与える、インクジェットなどの印刷用のインク、感熱記録材料におけるインクシート、電子写真用のカラートナー、LCD、PDPなどのディスプレイやCCDなどの撮像素子で用いられるカラーフィルターなどの各種着色組成物を提供し、3) 特に、該色素の使用により良好な色相を有し、光、湿熱及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することができるインク及びインクジェット記録方法を提供し、4) 工業・農業・医療・学術などに用いる有用な有機化合物あるいはその中間体となり得る特定の構造の新規な色素誘導体を提供することを目的とする。

【0012】

【課題を解決するための手段】本発明者らは、良好な色相を有し、且つ光、オゾンおよび湿熱に対する堅牢性の高い色素を目指してピラゾリルアゾ色素誘導体を詳細に検討したところ、従来知られていない特定の色素構造の下記一般式(1)で表される化合物により、前記課題を解決することができることを見出し、本発明を完成するに至った。前記課題を解決するための手段は、以下の通りである。即ち、本発明は、

1. 少なくとも一種の下記一般式(1)で表される色素を含有してなることを特徴とするインク、

【0013】

【化3】

(4)

5

一般式(1)

【0014】(式中、R¹、R²およびR³は、それぞれ独立して水素原子または一価の基を示し、R¹、R²およびR³の1つはアゾ基が置換したヘテロ環基を有する置換基を示し、Zは窒素原子または水素原子もしくは一価の基が結合した炭素原子を示す。)

2. 前記一般式(1)で表される色素が下記一般式

(2)で表される色素であることを特徴とする前記1項に記載のインク、

【0015】

【化4】

一般式(2)

【0016】(式中、R⁴は、一価の基を表し、R⁵は-OR⁸または-NHR⁹を表し、R⁸およびR⁹は水素原子または一価の基を表し、R⁶およびR⁷はそれぞれ独立して水素原子または一価の基を表し、Arはアリール基またはヘテロ環基を表す。)

3. 前記一般式(2)で表される色素が下記一般式

(3)で表される色素であることを特徴とする前記1項に記載のインク、

【0017】

【化5】

一般式(3)

【0018】(式中、R¹⁰は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表し、R¹¹およびR¹²はそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ基、スルホ基、ヘテロ環基を表し、Hetは芳香族ヘテロ環基を表し、それぞれの置換基はさらに置換基を有していてもよい。)

4. 支持体上に白色無機顔料粒子を含有するインク受容層を有する受像材料上に、前記1～3のいずれか1項に記載のインクを用いて画像形成することを特徴とするインクジェット記録方法、

5. 前記1～3のいずれか1項に記載の前記一般式

(1)～(3)で表される色素を含むことを特徴とする

6

インクシート、

6. 前記1～3のいずれか1項に記載の前記一般式

(1)～(3)で表される色素を含むことを特徴とするカラートナー、

7. 前記1～3のいずれか1項に記載の前記一般式

(1)～(3)で表される色素を含むことを特徴とするカラーフィルター、

8. 前記一般式(3)で表される化合物、及び

9. 下記一般式(4)で表される化合物

10. 【0019】

【化6】

一般式(4)

【0020】(式中、R¹⁰は、水素原子、アルキル基、シクロアルキル基、アラルキル基、アルコキシ基またはアリール基を表し、R¹¹およびR¹²はそれぞれ独立して水素原子、ハロゲン原子、ヒドロキシル基、アルコキシ基、アミノ基、スルホ基、ヘテロ環基を表し、XおよびYの一方は窒素原子を表し、他方は-C(-R¹³)=を表す。R¹³は、水素原子、ハロゲン原子、シアノ基、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基、アルキルオキシカルボニル基、カルバモイル基、アルコキシ基、アリール基、アリールチオ基、アリールスルホニル基、アリールスルフィニル基、アリールオキシ基またはアシルアミノ基を表す。そ

れぞれの置換基はさらに置換基を有していてもよい。)を提供するものである。

【0021】

【発明の実施の形態】以下、本発明について詳細に説明する。

【アゾ色素】本発明におけるアゾ色素は前記一般式

(1)で表される。以下、一般式(1)について詳細に説明する。本発明において一価の基は、後述するアリール基が有する置換基と同じである。アゾ基を有するヘテロ環基は一般式(2)のArと同じであり、ピラゾールが好ましい。

【0022】より好ましくは、一般式(2)で表されるアゾ色素である。Arで表されるアリール基は後述するアリール基と同じである。Arで表されるヘテロ環基としては、5員または6員環のものが好ましく、それらは更に縮環していてもよい。また、芳香族ヘテロ環であっても非芳香族ヘテロ環であっても良い。例えば、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、キノリン、イソキノリン、キナゾリン、シンノリン、フタラジン、キノキサリン、ピロール、インドール、フラン、ベンゾフラン、チオフェン、ベンゾチオフェン、ピラゾ

(5)

7

ール、イミダゾール、ベンズイミダゾール、トリアゾール、オキサゾール、ベンズオキサゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾール、イソオキサゾール、ベンズイソオキサゾール、ピロリジン、ピペリジン、ピペラジン、イミダゾリジン、チアゾリンなどが挙げられる。中では芳香族ヘテロ環基が好ましく、その好ましい例を先と同様に例示すると、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾールが挙げられる。チアジアゾールが最も好ましい。それらは置換基を有していても良く、置換基の例としては、後述するアリール基の置換基と同じである。

【0023】さらに好ましくは、一般式(3)で表される色素である。一般式(3)について詳細に説明する。R¹⁰で表されるアルキル基は、置換もしくは無置換のアルキル基が含まれる。置換または無置換のアルキル基は、炭素原子数が1～30のアルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。中でも、ヒドロキシル基、アルコキシ基、シアノ基、およびハロゲン原子、スルホ基(塩の形でもよい)およびカルボキシル基(塩の形でもよい)が好ましい。前記アルキル基の例には、メチル、エチル、ブチル、t-ブチル、n-オクチル、エイコシル、2-クロロエチル、ヒドロキシエチル、シアノエチルおよび4-スルホブチルを挙げることが出来る。

【0024】R¹⁰で表されるシクロアルキル基は、置換もしくは無置換のシクロアルキル基が含まれる。置換基または無置換のシクロアルキル基は、炭素原子数が5～30のシクロアルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記シクロアルキル基の例にはシクロヘキシル、シクロペンチル、4-n-ドデシルシクロヘキシルを挙げることが出来る。

【0025】R¹⁰で表されるアラルキル基は、置換もしくは無置換のアラルキル基が含まれる。置換もしくは無置換のアラルキル基としては、炭素原子数が7～30のアラルキル基が好ましい。置換基の例としては、後述のアリール基の置換基と同じものが挙げられる。前記アラルキル基の例にはベンジルおよび2-フェネチルを挙げることが出来る。

【0026】R¹⁰で表されるアルコキシ基は置換もしくは無置換のアルコキシ基が含まれる。置換もしくは無置換のアルコキシ基としては、炭素原子数が1乃至30のアルコキシ基が好ましい。置換基の例としては、後述するアリール基の置換基と同じものが挙げられる。前記アルコキシ基の例には、メトキシ、エトキシ、イソプロポキシ、n-オクチルオキシ、メトキシエトキシ、ヒドロキシ、2-メチルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェノキシ、2-テトラデカノイルア

(5)

8

シエトキシおよび3-カルボキシプロポキシなどを挙げることが出来る。

【0027】R¹⁰で表されるアリール基は、置換もしくは無置換のアリール基が含まれる。置換もしくは無置換のアリール基としては、炭素数6から30のアリール基が好ましい。R¹⁰で表されるアリール基の置換基の例としては、ハロゲン原子、アルキル基、シクロアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、ヘテロ環基、シアノ基、ヒドロキシル基、ニトロ基、カルボキシル基、アルコキシ基、アリールオキシ基、シリルオキシ基、ヘテロ環オキシ基、アシルオキシ基、カルバモイルオキシ基、アルコキシカルボニルオキシ基、アリールオキシカルボニルオキシ基、アミノ基(アニリノ基を含む)、アシルアミノ基、アミノカルボニルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルファモイルアミノ基、アルキルもしくはアリールスルホニルアミノ基、メルカプト基、アルキルチオ基、アリールチオ基、ヘテロ環チオ基、スルファモイル基、スルホ基、アルキルもしくはアリールスルフィニル基、アルキルもしくはアリールスルホニル基、アシル基、アリールオキシカルボニル基、アルコキシカルボニル基、カルバモイル基、イミド基、ホスフィノ基、ホスフィニル基、ホスフィニルオキシ基、ホスフィニルアミノ基またはシリル基が例として挙げられる。

【0028】R¹⁰で表されるアリール基について以下に詳しく説明する。ハロゲン原子は、塩素原子、臭素原子、ヨウ素原子等を表し、アルキル基、アルコキシ基、シクロアルキル基およびアラルキル基は、前述と同義である。アルケニル基は、直鎖、分岐、環状の置換もしくは無置換のアルケニル基を表す。それらは、炭素数2から30の置換または無置換のアルケニル基、例えば、ビニル、アリル、ブレニル、グラニル、オレイル、2-シクロペンテン-1-イル、2-シクロヘキセン-1-イルを挙げることが出来る。アルキニル基は、炭素数2から30の置換または無置換のアルキニル基であり、例えば、エチニル、プロパルギルを挙げることが出来る。アリール基は炭素数6から30の置換もしくは無置換のアリール基、例えばフェニル、p-トリル、ナフチル、m-クロロフェニル、o-ヘキサデカノイルアミノフェニルである。ヘテロ環基は5または6員の置換もしくは無置換の、芳香族もしくは非芳香族のヘテロ環化合物から一個の水素原子を取り除いた一価の基であり、更に好ましくは、炭素数3から30の5もしくは6員の芳香族のヘテロ環基である。例えば、2-フリル、2-チエニル、2-ピリミジニル、2-ベンゾチアゾリルである。

【0029】アリールオキシ基は、炭素数6から30の置換もしくは無置換のアリールオキシ基、例えば、フェノキシ、2-メチルフェノキシ、4-t-ブチルフェノキシ、3-ニトロフェノキシ、2-テトラデカノイルア

(6)

9

ミノフェノキシである。シリルオキシ基は、炭素数3から20のシリルオキシ基、例えば、トリメチルシリルオキシ、t-ブチルジメチルシリルオキシである。ヘテロ環オキシ基は、炭素数2から30の置換もしくは無置換のヘテロ環オキシ基、例えば、1-フェニルテトラゾール-5-オキシ、2-テトラヒドロピラニルオキシである。アシルオキシ基はホルミルオキシ基、炭素数2から30の置換もしくは無置換のアルキルカルボニルオキシ基、炭素数6から30の置換もしくは無置換のアリールカルボニルオキシ基、例えば、ホルミルオキシ、アセチルオキシ、ピバロイルオキシ、ステアロイルオキシ、ベンゾイルオキシ、p-メトキシフェニルカルボニルオキシである。カルバモイルオキシ基は、炭素数1から30の置換もしくは無置換のカルバモイルオキシ基、例えば、N,N-ジメチルカルバモイルオキシ、N,N-ジエチルカルバモイルオキシ、モルホリノカルボニルオキシ、N,N-ジ-n-オクチルアミノカルボニルオキシ、N-n-オクチルカルバモイルオキシである。アルコキシカルボニルオキシ基は、炭素数2から30の置換もしくは無置換アルコキシカルボニルオキシ基、例えばメトキシカルボニルオキシ、エトキシカルボニルオキシ、t-ブトキシカルボニルオキシ、n-オクチルカルボニルオキシである。アリールオキシカルボニルオキシ基は、炭素数7から30の置換もしくは無置換のアリールオキシカルボニルオキシ基、例えば、フェノキシカルボニルオキシ、p-メトキシフェノキシカルボニルオキシ、p-n-ヘキサデシルオキシフェノキシカルボニルオキシである。

【0030】アミノ基は、炭素数1から30の置換もしくは無置換のアルキルアミノ基、炭素数6から30の置換もしくは無置換のアミニノ基、例えば、アミノ、メチルアミノ、ジメチルアミノ、アミニノ、N-メチルアミニノ、ジフェニルアミノである。アシルアミノ基は、ホルミルアミノ基、炭素数1から30の置換もしくは無置換のアルキルカルボニルアミノ基、炭素数6から30の置換もしくは無置換のアリールカルボニルアミノ基、例えば、ホルミルアミノ、アセチルアミノ、ピバロイルアミノ、ラウロイルアミノ、ベンゾイルアミノ、3,4,5-トリ-n-オクチルオキシフェニルカルボニルアミノである。アミノカルボニルアミノ基は、炭素数1から30の置換もしくは無置換のアミノカルボニルアミノ、例えば、カルバモイルアミノ、N,N-ジメチルアミノカルボニルアミノ、N,N-ジエチルアミノカルボニルアミノ、モルホリノカルボニルアミノである。アルコキシカルボニルアミノ基は炭素数2から30の置換もしくは無置換アルコキシカルボニルアミノ基、例えば、メトキシカルボニルアミノ、エトキシカルボニルアミノ、t-ブトキシカルボニルアミノ、n-オクタデシルオキシカルボニルアミノ、N-メチルメトキシカルボニルアミノである。アリールオキシカルボニルアミノ基は、炭

10

素数7から30の置換もしくは無置換のアリールオキシカルボニルアミノ基、例えば、フェノキシカルボニルアミノ、p-クロロフェノキシカルボニルアミノ、m-n-オクチルオキシフェノキシカルボニルアミノである。スルファモイルアミノ基は、炭素数0から30の置換もしくは無置換のスルファモイルアミノ基、例えば、スルファモイルアミノ、N,N-ジメチルアミノスルホニルアミノ、N-n-オクチルアミノスルホニルアミノである。アルキルもしくはアリールスルホニルアミノ基は炭素数

10 1から30の置換もしくは無置換のアルキルスルホニルアミノ、炭素数6から30の置換もしくは無置換のアリールスルホニルアミノ、例えば、メチルスルホニルアミノ、ブチルスルホニルアミノ、フェニルスルホニルアミノ、2,3,5-トリクロロフェニルスルホニルアミノ、p-メチルフェニルスルホニルアミノである。

【0031】アルキルチオ基は、炭素数1から30の置換もしくは無置換のアルキルチオ基、例えばメチルチオ、エチルチオ、n-ヘキサデシルチオである。アリールチオ基は炭素数6から30の置換もしくは無置換のアリールチオ、例えば、フェニルチオ、p-クロロフェニルチオ、m-メトキシフェニルチオである。ヘテロ環チオ基は炭素数2から30の置換または無置換のヘテロ環チオ基、例えば、2-ベンゾチアゾリルチオ、1-フェニルテトラゾール-5-イルチオである。

【0032】スルファモイル基は炭素数0から30の置換もしくは無置換のスルファモイル基、例えば、N-エチルスルファモイル、N-(3-ドデシルオキシプロピル)スルファモイル、N,N-ジメチルスルファモイル、N-アセチルスルファモイル、N-ベンゾイルスル

30 ファモイル、N-(N'-フェニルガルバモイル)スルファモイル)である。アルキルもしくはアリールスルフィニル基は、炭素数1から30の置換または無置換のアルキルスルフィニル基、6から30の置換または無置換のアリールスルフィニル基、例えれば、メチルスルフィニル、エチルスルフィニル、フェニルスルフィニル、p-メチルフェニルスルフィニルである。アルキルまたはアリールスルホニル基は、炭素数1から30の置換または無置換のアルキルスルホニル基、6から30の置換または無置換のアリールスルホニル基、例えれば、メチルスルホニル、エチルスルホニル、フェニルスルホニル、p-

40 メチルフェニルスルホニルである。

【0033】アシル基はホルミル基、炭素数2から30の置換または無置換のアルキルカルボニル基、炭素数7から30の置換もしくは無置換のアリールカルボニル基、炭素数4から30の置換もしくは無置換の炭素原子でカルボニル基と結合しているヘテロ環カルボニル基、例えば、アセチル、ピバロイル、2-クロロアセチル、ステアロイル、ベンゾイル、p-n-オクチルオキシフェニルカルボニル、2-ピリジルカルボニル、2-フリカルボニルである。

(7)

11

【0034】アリールオキシカルボニル基は、炭素数7から30の置換もしくは無置換のアリールオキシカルボニル基、例えば、フェノキシカルボニル、o-クロロフェノキシカルボニル、m-ニトロフェノキシカルボニル、p-t-ブチルフェノキシカルボニルである。アルコキシカルボニル基は、炭素数2から30の置換もしくは無置換アルコキシカルボニル基、例えば、メトキシカルボニル、エトキシカルボニル、t-ブキシカルボニル、n-オクタデシルオキシカルボニルである。カルバモイル基は、炭素数1から30の置換もしくは無置換のカルバモイル、例えば、カルバモイル、N-メチルカルバモイル、N,N-ジメチルカルバモイル、N,N-ジエトキシカルバモイル、N-(メチルスルホニル)カルバモイルである。

【0035】ホスフィノ基は、炭素数2から30の置換もしくは無置換のホスフィノ基、例えば、ジメチルホスフィノ、ジフェニルホスフィノ、メチルフェノキシホスフィノである。ホスフィニル基は、炭素数2から30の置換もしくは無置換のホスフィニル基、例えば、ホスフィニル、ジオクチルオキシホスフィニル、ジエトキシホスフィニルである。ホスフィニルオキシ基は、炭素数2から30の置換もしくは無置換のホスフィニルオキシ基、例えば、ジフェノキシホスフィニルオキシ、ジオクチルオキシホスフィニルオキシである。ホスフィニルアミノ基は、炭素数2から30の置換もしくは無置換のホスフィニルアミノ基、例えば、ジメトキシホスフィニルアミノ、ジメチルアミノホスフィニルアミノである。シリル基は、炭素数3から30の置換もしくは無置換のシリル基、例えば、トリメチルシリル、t-ブチルジメチルシリル、フェニルジメチルシリルである。

【0036】上記R¹⁰で表されるアリール基の置換基の中で、水素原子を有するものは、これを取り去り更に上記の基で置換されていても良い。そのような置換基の例としては、アルキルカルボニルアミノスルホニル基、アリールカルボニルアミノスルホニル基、アルキルスルホニルアミノカルボニル基、アリールスルホニルアミノカルボニル基が挙げられる。より具体的には、メチルスル

(7)

12

ホニルアミノカルボニル、p-メチルフェニルスルホニアミノカルボニル、アセチルアミノスルホニル、ベンゾイルアミノスルホニル基が挙げられる。

【0037】R¹¹およびR¹²で表されるハロゲン原子、アルコキシ基、アミノ基は前述のアリール基の置換基とおなじである。R¹¹およびR¹²で表されるヘテロ環基は、一般式(2)のArで表されるヘテロ環と同じである。R¹⁰はアルキル基が好ましく、R¹¹及びR¹²はアミノ基が好ましい。

【0038】H e tは芳香族ヘテロ環基を表し、その好ましい例を先と同様に例示すると、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、ピラゾール、イミダゾール、ベンズイミダゾール、トリアゾール、チアゾール、ベンゾチアゾール、イソチアゾール、ベンズイソチアゾール、チアジアゾールが挙げられる。チアジアゾールが最も好ましい。それらは置換基を有していても良く、置換基の例としては、前述のアリール基の置換基と同じである。

【0039】特に好ましい色素は、一般式(4)で表される化合物である。XおよびYの一方は、窒素原子であり、他方は-C(-R¹³)=である。Xが-C(=R¹³)=、Yが窒素原子であることがさらに好ましい。R¹³で表される、ハロゲン原子、アルキル基、アルキルチオ基、アルキルスルホニル基、アルキルスルフィニル基、アルコキシカルボニル、カルバモイル基、アルコキシ基、アリール基、アリールチオ基、アリールスルホニル基、アリールオキシ基およびアシルアミノ基は前述のアリールの置換基と同じである。R¹³は水素原子、アルキル基、アルキルチオ基、アリール基が好ましい。

【0040】前記一般式(1)、(2)、(3)または(4)で表される色素の具体例(例示色素1~61)を以下に示すが、本発明に用いられる色素は、下記の例に限定されるものではない。なお、具体例中、Meはメチルを、EtはエチルをPhはフェニルを、それぞれ意味する。

【0041】

【化7】

(8)

13

14

色素	R
1	-NHC ₂ H ₄ COOK
2	-NHC ₂ H ₄ SO ₃ Na
3	-NH-C ₆ H ₄ -COOK
4	-NH-C ₆ H ₄ -SO ₃ K
5	-NH-C ₆ H ₄ -SO ₃ K
6	-N-(CH ₂ COONa) ₂
7	-NH-C ₆ H ₄ -COOK
8	-NH-C ₆ H ₄ -SO ₃ Na
9	-NHC ₆ H ₅
10	-N(C ₆ H ₅) ₂

【0042】

【化8】

(9)

15

16

色素	Ar
11	
12	
13	
14	
15	
16	
17	
18	

【0043】

* * 【化9】

色素	R	R'
19	Ph	H
20	OC ₂ H ₅	C ₂ H ₅
21	CH ₃	H
22	t-C ₄ H ₉	H
23	t-C ₄ H ₉	-C ₂ H ₄ COOH

【0044】

【化10】

(10)

17

色素24

【0045】

【化11】

色素

R

色素	R
25	H
26	OCH ₃
27	OH
28	SO ₃ Na
29	F
30	-N+(CH ₃) ₂ -COO ⁻

【0046】

【化12】

色素

R¹ R² R³

色素	R ¹	R ²	R ³
31	Cl	Cl	Cl
32	Cl	Cl	F
33	Cl	-CONHPh	Cl

【0047】
【化13】

18

色素	R ¹	R ²	R ³
34	F	H	H
35	Cl	H	F

【0048】
【化14】

色素	R ¹	R ²	R ³
36	H	F	F
37	F	F	H

【0049】
【化15】

(11)

19

20

色素	R
3 8	H
3 9	CH ₃
4 0	Ph
4 1	SCH ₂ COONa
4 2	SC ₂ H ₅
4 3	SC ₄ H _{9-n}
4 4	SCH ₂ CHMe ₂
4 5	SCHMeEt
4 6	SC ₄ H _{9-t}
4 7	SC ₇ H _{15-n}
4 8	SC ₂ H ₄ OC ₂ H ₅
4 9	SC ₂ H ₄ OC ₄ H _{9-n}
5 0	SCH ₂ CF ₃

【0050】

【化16】

(12)

21

22

色素	R
5 1	$-\text{NHC}_2\text{H}_4\text{COOK}$
5 2	$-\text{NHC}_2\text{H}_4\text{SO}_3\text{Na}$
5 3	$\begin{array}{c} \text{COOK} \\ \\ -\text{NH}-\text{C}_6\text{H}_3\text{COOK} \end{array}$
5 4	$\begin{array}{c} \text{SO}_3\text{K} \\ \\ -\text{NH}-\text{C}_6\text{H}_3\text{SO}_3\text{K} \end{array}$
5 5	$\begin{array}{c} \text{SO}_3\text{Li} \\ \\ -\text{NH}-\text{C}_6\text{H}_3\text{SO}_3\text{Li} \end{array}$
5 6	$\begin{array}{c} \text{COO}^- \text{ NH}_4^+ \\ \\ -\text{NH}-\text{C}_6\text{H}_3\text{COO}^- \text{ NH}_4^+ \end{array}$
5 7	$-\text{NHC}_8\text{H}_{13}-\text{n}$
5 8	$-\text{N}(\text{C}_4\text{H}_9-\text{n})_2$
5 9	$-\text{N} \left(\text{CH}_2\text{COONa} \right)_2$
6 0	$-\text{NH}-\text{C}_6\text{H}_3\text{SO}_3^- \text{ NH}_4^+$
6 1	$\begin{array}{c} \text{COO}^- \\ \\ -\text{NH}-\text{C}_6\text{H}_3\text{COO}^- \end{array} \quad 2 \text{Et}_3\text{NH}^+$

【0051】本発明の色素は以下の方法により合成できる。代表例として色素2の合成法を記述する。

* [0052]
[化17]

【0053】〔合成例〕塩化シアヌル10gをアセトン150mlに溶解し、氷冷下でタウリン13.6gおよび炭酸ソーダ11.5gを含む水溶液160mlを15

50 °C以下で加え、室温で8時間攪拌した。アセトン200 mlを添加し、析出した結晶を濾過し、22gの(a)を得た。

(13)

23

(a) 8. 1 g を水 25 ml に溶解し、ヒドラジン 2 g を加え、70°Cで2時間加温し、濃縮後、析出した結晶を濾過し、5. 7 g の (b)を得た。

(b) 5. 7 g、ピバロイルアセトニトリル 1. 8 g、炭酸水素ナトリウム 3. 6 g、水 30 ml およびエタノール 30 ml の溶液を2時間加熱し、塩酸 8 ml を加え、さらに2時間加温した。濃縮後結晶を濾過し、5. 7 g の (c)を得た。

(c) 3. 4 g、メタノール 20 ml、酢酸 13 ml、酢酸ソーダ 5. 5 g の混合液を10°C以下に冷却した。別に5-アミノ-2, 4-チアジアゾール 0. 81 g を用いてジアゾ液を調合し、10°C以下で混合液に加え、室温で2時間攪拌した。析出した結晶を濾過した後、セファデックスを用いてカラムクロマトグラフィーを行い、1 g の色素2を得た。

$\lambda_{\max} 441.9 \text{ nm} (\text{H}_2\text{O})$, $\epsilon : 2.15 \times 10^4 (\text{dm}^3/\text{mol cm})$

【0054】他の色素も同様に合成することが出来る。代表色素の最大吸収波長 λ_{\max} を表1に示す。

【0055】

【表1】

表1

色素No	$\lambda_{\max} (\text{H}_2\text{O})$
1	442 nm
2	442 nm
3	444 nm
4	443 nm
5	443 nm
8	443 nm
11	443 nm
25	444 nm
38	428 nm
40	440 nm
41	445 nm
42	445 nm
43	444 nm
44	445 nm
45	445 nm
47	443 nm
48	444 nm
49	445 nm
50	443 nm

【0056】本発明の色素の用途としては、画像、特にカラー画像を形成するための画像記録材料が挙げられ、具体的には、以下に詳述するインクジェット方式記録材料を始めとして、感熱記録材料、感圧記録材料、電子写

24

真方式を用いる記録材料、転写式ハロゲン化銀感光材料、印刷インク、記録ペン等があり、好ましくはインクジェット方式記録材料、感熱記録材料、電子写真方式を用いる記録材料であり、更に好ましくはインクジェット方式記録材料である。また、CCDなどの固体撮像素子やLCD、PDP等のディスプレーで用いられるカラー画像を記録・再現するためのカラーフィルター、各種繊維の染色の為の染色液にも適用できる。本発明の色素は、その用途に適した溶解性、分散性、熱移動性などの物性を、置換基で調整して使用する。また、本発明の色素は、用いられる系に応じて溶解状態、乳化分散状態、さらには固体分散状態でも使用する事が出来る。

【0057】【インク】本発明のインクは、少なくとも一種以上の本発明の色素を含有するインクを意味する。本発明のインクは、媒体を含有させることができるが、媒体として溶媒を用いた場合は特にインクジェット記録用インクとして好適である。本発明のインクは、媒体として親油性媒体や水性媒体を用いて、それらの中に、本発明の色素を溶解及び／又は分散させることによって作製することができる。好ましくは、水性媒体を用いる場合である。本発明のインクには、媒体を除いたインク用組成物も含まれる。必要に応じてその他の添加剤を、本発明の効果を害しない範囲内において含有される。その他の添加剤としては、例えば、乾燥防止剤（湿潤剤）、褪色防止剤、乳化安定剤、浸透促進剤、紫外線吸収剤、防腐剤、防黴剤、pH調整剤、表面張力調整剤、消泡剤、粘度調整剤、分散剤、分散安定剤、防錆剤、キレート剤等の公知の添加剤が挙げられる。これらの各種添加剤は、水溶性インクの場合にはインク液に直接添加する。油溶性染料を分散物の形で用いる場合には、染料分散物の調製後分散物に添加するのが一般的であるが、調製時に油相または水相に添加してもよい。

【0058】前記乾燥防止剤はインクジェット記録方式に用いるノズルのインク噴射口において該インクジェット用インクが乾燥することによる目詰まりを防止する目的で好適に使用される。

【0059】前記乾燥防止剤としては、水より蒸気圧の低い水溶性有機溶剤が好ましい。具体的な例としてはエチレングリコール、プロピレングリコール、ジエチレン40グリコール、ポリエチレングリコール、チオジグリコール、ジチオジグリコール、2-メチル-1, 3-プロパンジオール、1, 2, 6-ヘキサントリオール、アセチレングリコール誘導体、グリセリン、トリメチロールプロパン等に代表される多価アルコール類、エチレングリコールモノメチル（又はエチル）エーテル、ジエチレングリコールモノメチル（又はエチル）エーテル、トリエチレングリコールモノエチル（又はブチル）エーテル等の多価アルコールの低級アルキルエーテル類、2-ピロリドン、N-メチル-2-ピロリドン、1, 3-ジメチル-2-イミダゾリジノン、N-エチルモルホリン等の

(14)

25

複素環類、スルホラン、ジメチルスルホキシド、3-スルホレン等の含硫黄化合物、ジアセトンアルコール、ジエタノールアミン等の多官能化合物、尿素誘導体が挙げられる。これらのうちグリセリン、ジエチレングリコール等の多価アルコールがより好ましい。また上記の乾燥防止剤は単独で用いても良いし2種以上併用しても良い。これらの乾燥防止剤はインク中に10～50質量%含有することが好ましい。

【0060】前記浸透促進剤は、インクジェット用インクを紙により良く浸透させる目的で好適に使用される。前記浸透促進剤としてはエタノール、イソプロパノール、ブタノール、ジ(トリ)エチレングリコールモノブチルエーテル、1, 2-ヘキサンジオール等のアルコール類やラウリル硫酸ナトリウム、オレイン酸ナトリウムやノニオン性界面活性剤等を用いることができる。これらはインク中に5～30質量%含有すれば通常充分な効果があり、印字の滲み、紙抜け(プリントスルー)を起こさない添加量の範囲で使用するのが好ましい。

【0061】前記紫外線吸収剤は、画像の保存性を向上させる目的で使用される。前記紫外線吸収剤としては特開昭58-185677号公報、同61-190537号公報、特開平2-782号公報、同5-197075号公報、同9-34057号公報等に記載されたベンゾトリアゾール系化合物、特開昭46-2784号公報、特開平5-194483号公報、米国特許第3214463号等に記載されたベンゾフェノン系化合物、特公昭48-30492号公報、同56-21141号公報、特開平10-88106号公報等に記載された桂皮酸系化合物、特開平4-298503号公報、同8-53427号公報、同8-239368号公報、同10-182621号公報、特表平8-501291号公報等に記載されたトリアジン系化合物、リサーチディスクロージャーNo. 24239号に記載された化合物やスチルベン系、ベンズオキサゾール系化合物に代表される紫外線を吸収して蛍光を発する化合物、いわゆる蛍光増白剤も用いることができる。

【0062】前記褪色防止剤は、画像の保存性を向上させる目的で使用される。前記褪色防止剤としては、各種の有機系及び金属錯体系の褪色防止剤を使用することができる。有機の褪色防止剤としてはハイドロキノン類、アルコキシフェノール類、ジアルコキシフェノール類、フェノール類、アニリン類、アミン類、インダン類、クロマニン類、アルコキシアニリン類、ヘテロ環類などがあり、金属錯体としてはニッケル錯体、亜鉛錯体などがある。より具体的にはリサーチディスクロージャーNo. 17643の第VIIのIないしJ項、同No. 15162、同No. 18716の650頁左欄、同No. 36544の527頁、同No. 307105の872頁、同No. 15162に引用された特許に記載された化合物や特開昭62-215272号公報の127頁～13

(14)

26

7頁に記載された代表的化合物の一般式及び化合物例に含まれる化合物を使用することができる。

【0063】前記防黴剤としてはデヒドロ酢酸ナトリウム、安息香酸ナトリウム、ナトリウムピリジンチオニン-1-オキシド、p-ヒドロキシ安息香酸エチルエステル、1, 2-ベンズイソチアゾリン-3-オノンおよびその塩等が挙げられる。これらはインク中に0.02～1.00質量%使用するのが好ましい。尚、これらの詳細については「防菌防黴剤事典」(日本防菌防黴学会事典編集委員会編)等に記載されている。

10 また、防錆剤としては、例えば、酸性亜硫酸塩、チオ硫酸ナトリウム、チオグリコール酸アンモン、ジイソプロピルアンモニウムニトライド、四硝酸ペンタエリスリトール、ジシクロヘキシルアンモニウムニトライド、ベンゾトリアゾール等が挙げられる。これらは、インク中に0.02～5.00質量%使用するのが好ましい。

【0064】前記pH調整剤としては前記中和剤(有機塩基、無機アルカリ)を用いることができる。前記pH調整剤はインクジェット用インクの保存安定性を向上させ10する目的で、該インクジェット用インクがpH 6～10となるように添加するのが好ましく、pH 7～10となるように添加するのがより好ましい。

【0065】前記表面張力調整剤としてはノニオン、カチオンあるいはアニオン界面活性剤が挙げられる。尚、本発明のインクジェット用インクの表面張力は20～60 mN/mが好ましい。さらに25～45 mN/mが好ましい。また本発明のインクジェット用インクの粘度は30 mPa·s以下が好ましい。更に20 mPa·s以下に調整することがより好ましい。界面活性剤の例としては、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、ジアルキルスルホカク酸塩、アルキルリン酸エステル塩、ナフタレンスルホン酸ホルマリン縮合物、ポリオキシエチレンアルキル硫酸エステル塩等のアニオン系界面活性剤や、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンアルキルアミン、グリセリン脂肪酸エ

40 ステル、オキシエチレンオキシプロピレンブロックコポリマー等のノニオン系界面活性剤が好ましい。また、アセチレン系ポリオキシエチレンオキシド界面活性剤であるSURFYNOLS (Air Products & Chemicals社) も好ましく用いられる。また、N,N-ジメチル-N-アルキルアミノキシドのようなアミノキシド型の両性界面活性剤等も好ましい。更に、特開昭59-157, 636号の第(37)～(38)頁、リサーチ・ディスクロージャーNo. 308119(1989年)記載の界面活性剤として挙げたものも使うことができる。

(15)

27

【0066】前記消泡剤としては、フッ素系、シリコン系化合物やEDTAに代表されるキレート剤等も必要に応じて使用することができる。

【0067】本発明の化合物を水性媒体に分散させる場合は、特開平11-286637号、特願平2000-78491号、同2000-80259号、同2000-62370号のように色素と油溶性ポリマーとを含有する着色微粒子を水性媒体に分散したり、特願平2000-78454号、同2000-78491号、同2000-203856号、同2000-203857号のように高沸点有機溶媒に溶解した本発明の色素を水性媒体中に分散することが好ましい。本発明の色素を水性媒体に分散させる場合の具体的な方法、使用する油溶性ポリマー、高沸点有機溶剤、添加剤及びそれらの使用量は、前記特許に記載されたものを好ましく使用することができる。あるいは、前記アゾ色素を固体のまま微粒子状態に分散してもよい。分散時には、分散剤や界面活性剤を使用することができる。分散装置としては、簡単なスターラーやインペラー攪拌方式、インライン攪拌方式、ミル方式（例えば、コロイドミル、ボールミル、サンドミル、アトライター、ロールミル、アジテーターミル等）、超音波方式、高圧乳化分散方式（高圧ホモジナイザー；具体的な市販装置としてはゴーリンホモジナイザー、マイクロフルイダイザー、DeBEE2000等）を使用することができる。上記のインクジェット記録用インクの調製方法については、先述の特許以外にも特開平5-148436号、同5-295312号、同7-97541号、同7-82515号、同7-118584号、特開平11-286637号、特願2000-87539号の各公報に詳細が記載されていて、本発明のインクジェット記録用インクの調製にも利用できる。

【0068】前記水性媒体は、水を主成分とし、所望により、水混和性有機溶剤を添加した混合物を用いることができる。前記水混和性有機溶剤の例には、アルコール（例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、sec-ブタノール、t-ブタノール、ペンタノール、ヘキサンノール、シクロヘキサンノール、ベンジルアルコール）、多価アルコール類（例えば、エチレングリコール、ジェチレングリコール、トリエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール）、グリコール誘導体（例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジェチレングリコールモノメチルエーテル、ジェチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、ジプロピレングリコールモノメチルエーテル、トリエチレン

28

グリコールモノメチルエーテル、エチレングリコールジアセテート、エチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、エチレングリコールモノフェニルエーテル）、アミン（例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、ポリエチレンイミン、テトラメチルプロピレンジアミン）及びその他の極性溶媒（例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、スルホラン、2-ピロリドン、N-メチル-2-ピロリドン、N-ビニル-2-ピロリドン、2-オキサゾリドン、1,3-ジメチル-2-イミダゾリジノン、アセトニトリル、アセトン）が含まれる。尚、前記水混和性有機溶剤は、二種類以上を併用してもよい。

【0069】本発明のインク100質量部中に、本発明の化合物を0.2質量部以上10質量部以下含有するのが好ましい。また、本発明のインクには、本発明の化合物とともに、他の色素を併用してもよい。2種類以上の色素を併用する場合は、色素化合物の含有量の合計が前記範囲となっているのが好ましい。

【0070】本発明のインクは、単色の画像形成のみならず、フルカラーの画像形成に用いることができる。フルカラー画像を形成するために、マゼンタ色調インク、シアン色調インク、及びイエロー色調インクを用いることができ、また、色調を整えるために、更にブラック色調インクを用いてもよい。

【0071】さらに、本発明におけるインクは、上記本発明における色素の他に別のイエロー染料を同時に用いることが出来る。適用できるイエロー染料としては、任意のものを使用する事が出来る。例えばカップリング成分（以降カプラー成分と呼ぶ）としてフェノール類、ナフトール類、アニリン類、ピラゾロンやピリドン等のようなヘテロ環類、開鎖型活性メチレン化合物類、などを有するアリールもしくはヘテリルアゾ染料；例えばカプラー成分として開鎖型活性メチレン化合物類などを有するアゾメチン染料；例えばベンジリデン染料やモノメチノキソノール染料等のようなメチン染料；例えばナフトキノン染料、アントラキノン染料等のようなキノン系染料などがあり、これ以外の染料種としてはキノフタロン染料、ニトロ・ニトロソ染料、アクリジン染料、アクリジノン染料等を挙げることができる。

【0072】適用できるマゼンタ染料としては、任意のものを使用する事が出来る。例えばカプラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリルアゾ染料；例えばカプラー成分としてピラゾロン類、ピラゾロトリアゾール類などを

(16)

29

有するアゾメチソニウム染料；例えばアリーリデン染料、スチリル染料、メロシアニン染料、シアニン染料、オキソノール染料などのようなメチソニウム染料；ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのようなカルボニウム染料、例えばナフトキノン、アントラキノン、アントラピリドンなどのキノン染料、例えばジオキサジン染料等の縮合多環染料等を挙げることができる。

【0073】適用できるシアン染料としては、任意のものを使用する事が出来る。例えばカブラー成分としてフェノール類、ナフトール類、アニリン類などを有するアリールもしくはヘテリアルゾ染料；例えばカブラー成分としてフェノール類、ナフトール類、ピロロトリアゾールのようなヘテロ環類などを有するアゾメチソニウム染料；シアニン染料、オキソノール染料、メロシアニン染料などのポリメチソニウム染料；ジフェニルメタン染料、トリフェニルメタン染料、キサンテン染料などのカルボニウム染料；フタロシアニン染料；アントラキノン染料；インジゴ・チオインジゴ染料などを挙げができる。

【0074】前記の各染料は、クロモフォアの一部が解離して初めてイエロー、マゼンタ、シアンの各色を呈するものであっても良く、その場合のカウンターカチオンはアルカリ金属や、アンモニウムのような無機のカチオンであってもよいし、ピリジニウム、4級アンモニウム塩のような有機のカチオンであってもよく、さらにはそれらを部分構造に有するポリマーカチオンであってもよい。適用できる黒色材としては、ジスアゾ、トリスアゾ、テトラアゾ染料のほか、カーボンブラックの分散体を挙げができる。

【0075】【インクジェット記録方法】本発明のインクジェット記録方法は、前記インクにエネルギーを供与して、公知の受像材料、例えば普通紙、樹脂コート紙、例えば特開平8-169172号公報、同8-27693号公報、同2-276670号公報、同7-276789号公報、同9-323475号公報、特開昭62-238783号公報、特開平10-153989号公報、同10-217473号公報、同10-235995号公報、同10-337947号公報、同10-217597号公報、同10-337947号公報等に記載されているインクジェット専用紙、フィルム、電子写真共用紙、布帛、ガラス、金属、陶磁器等に画像を形成するものである。

【0076】画像を形成する際に、光沢性や耐水性を与える耐候性を改善する目的からポリマー・ラテックス化合物を併用してもよい。ラテックス化合物を受像材料に付与する時期については、着色剤を付与する前であっても、後であっても、また同時であってもよく、したがつて添加する場所も受像紙中であっても、インク中であってもよく、あるいはポリマー・ラテックス単独の液状物と

30

して使用しても良い。具体的には、特願2000-363090、同2000-315231、同2000-354380、同2000-343944、同2000-268952、同2000-299465、同2000-297365に記載された方法を好ましく用いることができる。

【0077】以下に、本発明のインクを用いてインクジェットプリントをするのに用いられる記録紙及び記録フィルムについて説明する。記録紙及び記録フィルムにおける支持体は、LBKP、NBKP等の化学パルプ、G P、PGW、RMP、TMP、CTMP、CMP、CGP等の機械パルプ、DIP等の古紙パルプ等からなり、必要に応じて従来公知の顔料、バインダー、サイズ剤、定着剤、カチオン剤、紙力増強剤等の添加剤を混合し、長網抄紙機、円網抄紙機等の各種装置で製造されたもの等が使用可能である。これらの支持体の他に合成紙、プラスチックフィルムシートのいずれであってもよく、支持体の厚みは10～250μm、坪量は10～250g/m²が望ましい。支持体には、そのままインク受容層及びバックコート層を設けてもよいし、デンプン、ポリビニルアルコール等でサイズプレスやアンカーコート層

を設けた後、インク受容層及びバックコート層を設けてもよい。更に支持体には、マシンカレンダー、TGカレンダー、ソフトカレンダー等のカレンダー装置により平坦化処理を行ってもよい。本発明では支持体としては、両面をポリオレフィン（例えば、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリブテン及びそれらのコポリマー）でラミネートした紙及びプラスチックフィルムがより好ましく用いられる。ポリオレフィン中に、白色顔料（例えば、酸化チタン、酸化亜鉛）又は色味付け染料（例えば、コバルトブルー、群青、酸化ネオジウム）を添加することが好ましい。

【0078】支持体上に設けられるインク受容層には、顔料や水性バインダーが含有される。顔料としては、白色顔料が好ましく、白色顔料としては、炭酸カルシウム、カオリン、タルク、クレー、珪藻土、合成非晶質シリカ、珪酸アルミニウム、珪酸マグネシウム、珪酸カルシウム、水酸化アルミニウム、アルミナ、リトポン、ゼオライト、硫酸バリウム、硫酸カルシウム、二酸化チタン、硫化亜鉛、炭酸亜鉛等の白色無機顔料、スチレン系ピグメント、アクリル系ピグメント、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。インク受容層に含有される白色顔料としては、多孔性無機顔料が好ましく、特に細孔面積が大きい合成非晶質シリカ等が好適である。合成非晶質シリカは、乾式製造法によって得られる無水珪酸及び湿式製造法によって得られる含水珪酸のいずれも使用可能であるが、特に含水珪酸を使用することが望ましい。

【0079】インク受容層に含有される水性バインダーとしては、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチルセルロース、ヒド

(17)

31

ロキシエチルセルロース、ポリビニルピロリドン、ポリアルキレンオキサイド、ポリアルキレンオキサイド誘導体等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。これらの水性バインダーは単独又は2種以上併用して用いることができる。本発明においては、これらの中でも特にポリビニルアルコール、シラノール変性ポリビニルアルコールが顔料に対する付着性、インク受容層の耐剥離性の点で好適である。インク受容層は、顔料及び水性結合剤の他に媒染剤、耐水化剤、耐光性向上剤、界面活性剤、その他の添加剤を含有することができる。

【0080】インク受容層中に添加する媒染剤は、不動化されていることが好ましい。そのためには、ポリマー媒染剤が好ましく用いられる。ポリマー媒染剤については、特開昭48-28325号、同54-74430号、同54-124726号、同55-22766号、同55-142339号、同60-23850号、同60-23851号、同60-23852号、同60-23853号、同60-57836号、同60-60643号、同60-118834号、同60-122940号、同60-122941号、同60-122942号、同60-235134号、特開平1-161236号の各公報、米国特許2484430号、同2548564号、同3148061号、同3309690号、同4115124号、同4124386号、同4193800号、同4273853号、同4282305号、同4450224号の各明細書に記載がある。特開平1-161236号公報の212~215頁に記載のポリマー媒染剤を含有する受像材料が特に好ましい。同公報記載のポリマー媒染剤を用いると、優れた画質の画像が得られ、かつ画像の耐光性が改善される。

【0081】前記耐水化剤は、画像の耐水化に有効であり、これらの耐水化剤としては、特にカチオン樹脂が望ましい。このようなカチオン樹脂としては、ポリアミドポリアミンエピクロロヒドリン、ポリエチレンイミン、ポリアミンスルホン、ジメチルジアリルアンモニウムクロライド重合物、カチオンポリアクリルアミド、コロイダルシリカ等が挙げられ、これらのカチオン樹脂の中で特にポリアミドポリアミンエピクロロヒドリンが好適である。これらのカチオン樹脂の含有量は、インク受容層の全固形分に対して1~15質量%が好ましく、特に3~10質量%であることが好ましい。

【0082】前記耐光性向上剤としては、硫酸亜鉛、酸化亜鉛、ヒンダーアミン系酸化防止剤、ベンゾフェノン等のベンゾトリアゾール系の紫外線吸収剤等が挙げられる。これらの中で特に硫酸亜鉛が好適である。

【0083】前記界面活性剤は、塗布助剤、剥離性改良剤、スペリ性改良剤あるいは帯電防止剤として機能する。界面活性剤については、特開昭62-173463号、同62-183457号の各公報に記載がある。界

32

面活性剤の代わりに有機フルオロ化合物を用いてよい。有機フルオロ化合物は、疎水性であることが好ましい。有機フルオロ化合物の例には、フッ素系界面活性剤、オイル状フッ素系化合物（例えば、フッ素油）及び固体状フッ素化合物樹脂（例えば、四フッ化エチレン樹脂）が含まれる。有機フルオロ化合物については、特公昭57-9053号（第8~17欄）、特開昭61-20994号、同62-135826号の各公報に記載がある。その他のインク受容層に添加される添加剤としては、顔料分散剤、増粘剤、消泡剤、染料、蛍光増白剤、防腐剤、pH調整剤、マット剤、硬膜剤等が挙げられる。尚、インク受容層は1層でも2層でもよい。

【0084】記録紙及び記録フィルムには、バックコート層を設けることもでき、この層に添加可能な成分としては、白色顔料、水性バインダー、その他の成分が挙げられる。バックコート層に含有される白色顔料としては、例えば、軽質炭酸カルシウム、重質炭酸カルシウム、カオリン、タルク、硫酸カルシウム、硫酸バリウム、二酸化チタン、酸化亜鉛、硫化亜鉛、炭酸亜鉛、サチシホワイト、珪酸アルミニウム、ケイソウ土、珪酸カルシウム、珪酸マグネシウム、合成非晶質シリカ、コロイダルシリカ、コロイダルアルミナ、擬ベーマイト、水酸化アルミニウム、アルミナ、リトボン、ゼオライト、加水ハロサイト、炭酸マグネシウム、水酸化マグネシウム等の白色無機顔料、スチレン系プラスチックピグメント、アクリル系プラスチックピグメント、ポリエチレン、マイクロカプセル、尿素樹脂、メラミン樹脂等の有機顔料等が挙げられる。

【0085】バックコート層に含有される水性バインダーとしては、スチレン/マレイン酸塩共重合体、スチレン/アクリル酸塩共重合体、ポリビニルアルコール、シラノール変性ポリビニルアルコール、デンプン、カチオン化デンプン、カゼイン、ゼラチン、カルボキシメチセルロース、ヒドロキシエチルセルロース、ポリビニルピロリドン等の水溶性高分子、スチレンブタジエンラテックス、アクリルエマルジョン等の水分散性高分子等が挙げられる。バックコート層に含有されるその他の成分としては、消泡剤、抑泡剤、染料、蛍光増白剤、防腐剤、耐水化剤等が挙げられる。

【0086】インクジェット記録紙及び記録フィルムの構成層（バックコート層を含む）には、ポリマーラテックスを添加してもよい。ポリマーラテックスは、寸度安定化、カール防止、接着防止、膜のひび割れ防止のような膜物性改良の目的で使用される。ポリマーラテックスについては、特開昭62-245258号、同62-1316648号、同62-110066号の各公報に記載がある。ガラス転移温度が低い（40℃以下の）ポリマーラテックスを媒染剤を含む層に添加すると、層のひび割れやカールを防止することができる。また、ガラス転移温度が高いポリマーラテックスをバックコート層に

(18)

33

添加しても、カールを防止することができる。

【0087】本発明のインクはインクジェットの記録方式に制限はなく、公知の方式、例えば静電誘引力を利用してインクを吐出させる電荷制御方式、ピエゾ素子の振動圧力を利用するドロップオンデマンド方式（圧力パルス方式）、電気信号を音響ビームに変えインクに照射して、放射圧を利用してインクを吐出させる音響インクジェット方式、及びインクを加熱して気泡を形成し、生じた圧力を利用するサーマルインクジェット方式等に用いられる。インクジェット記録方式には、フォトインクと称する濃度の低いインクを小さい体積で多数射出する方式、実質的に同じ色相で濃度の異なる複数のインクを用いて画質を改良する方式や無色透明のインクを用いる方式が含まれる。

【0088】[カラートナー]本発明の色素を導入するカラートナー用バインダー樹脂としては一般に使用される全てのバインダーが使用出来る。例えば、スチレン系樹脂・アクリル系樹脂・スチレン/アクリル系樹脂・ポリエステル樹脂等が挙げられる。本発明の化合物は、特に制限されることなく、通常用いられる量で含有される。トナーに対して流動性向上、帶電制御等を目的として無機微粉末、有機微粒子を外部添加しても良い。表面をアルキル基含有のカップリング剤等で処理したシリカ微粒子、チタニア微粒子が好ましく用いられる。なお、これらは数平均一次粒子径が10～500nmのものが好ましく、さらにはトナー中に0.1～20質量%添加するのが好ましい。

【0089】離型剤としては、従来使用されている離型剤は全て使用することができる。具体的には、低分子量ポリプロピレン・低分子量ポリエチレン・エチレーン-プロピレン共重合体等のオレフィン類、マイクロクリスタリンワックス・カルナウバワックス・サゾールワックス・パラフィンワックス等があげられる。これらの添加量はトナー中に1～5質量%添加するのが好ましい。

【0090】荷電制御剤としては、必要に応じて添加しても良いが、発色性の点から無色のものが好ましい。例えば4級アンモニウム塩構造のもの、カリックスアレン構造を有するものなどがあげられる。

【0091】キャリアとしては、鉄・フェライト等の磁性材料粒子のみで構成される非被覆キャリア、磁性材料粒子表面を樹脂等によって被覆した樹脂被覆キャリアのいずれを使用してもよい。このキャリアの平均粒径は体積平均粒径で30～150μmが好ましい。

【0092】本発明のトナーが適用される画像形成方法としては、特に限定されるものではないが、例えば感光体上に繰り返しカラー画像を形成した後に転写を行い画像を形成する方法や、感光体に形成された画像を逐次中間転写体等へ転写し、カラー画像を中間転写体等に形成した後に紙等の画像形成部材へ転写しカラー画像を形成する方法等があげられる。

34

【0093】[感熱転写材料]感熱記録材料は、支持体上に本発明の色素をバインダーとともに塗設したインクシート、及び画像記録信号に従ってサーマルヘッドから加えられた熱エネルギーに対応して移行してきた色素を固定する受像シートから構成される。インクシートは、本発明の化合物をバインダーと共に溶剤中に溶解することによって、或いは溶媒中に微粒子状に分散させることによってインク液を調製し、該インクを支持体上に塗布して適宜に乾燥することにより形成することができる。本発明の化合物は、特に制限されることなく、通常用いられる量で含有される。用いる事のできる好ましいバインダー樹脂、インク溶媒、支持体、更には受像シートについては、特開平7-137466号に記載されたものを好ましく用いることができる。

【0094】該感熱記録材料をフルカラー画像記録が可能な感熱記録材料に適用するには、シアノ画像を形成することができる熱拡散性シアノ色素を含有するシアニンインクシート、マゼンタ画像を形成することができる熱拡散性マゼンタ色素を含有するマゼンタインクシート、イエロー画像を形成することができる熱拡散性イエロー色素を含有するイエローインクシートを支持体上に順次塗設して形成する事が好ましい。また、必要に応じて他に黒色画像形成物質を含むインクシートがさらに形成されても良い。

【0095】[カラーフィルター]カラーフィルターの形成方法としては、初めにフォトレジストによりパターンを形成し、次いで染色する方法、或いは特開平4-163552号、特開平4-128703号、特開平4-175753号公報で開示されているように色素を添加したフォトレジストによりパターンを形成する方法がある。本発明の色素をカラーフィルターに導入する場合に用いられる方法としては、これらのいずれの方法を用いても良いが、好ましい方法としては、特開平4-175753号や特開平6-35182号に記載されたところの、熱硬化性樹脂、キノンジアジド化合物、架橋剤、色素及び溶剤を含有してなるポジ型レジスト組成物、並びに、それを基体上に塗布後、マスクを通して露光し、該露光部を現像してポジ型レジストパターンを形成させ、上記ポジ型レジストパターンを全面露光し、次いで露光後のポジ型レジストパターンを硬化させることからなるカラーフィルターの形成方法を挙げる事ができる。又、常法に従いブラックマトリックスを形成させ、RGB原色あるいはY,M,C補色系カラーフィルターを得ることができる。

【0096】この際使用する熱硬化性樹脂、キノンジアジド化合物、架橋剤、及び溶剤とそれらの使用量については、前記特許に記載されているものを好ましく使用することができる。本発明の化合物は、特に制限されることなく、通常用いられる量で含有される。

【0097】

【実施例】以下、本発明を実施例に基づきさらに詳細に

50

(19)

35

説明するが、本発明はこれらの実施例に何ら限定されるものではない。

【0098】実施例1

下記の成分に脱イオン水を加え1リッターとした後、30~40°Cで加熱しながら1時時間攪拌した。その後KOH 10mol/LにてpH=9に調製し、平均孔径0.25μmのミクロフィルターで減圧濾過しエロー用インク液を調製した。

【0099】[インク液Aの組成]

本発明のイエロー色素 2	8.9g
ジエチレングリコール	20g
グリセリン 120g	
ジエチレングリコールモノブチルエーテル	230g
2-ピロリドン	80g
トリエタノールアミン	17.9g
ベンゾトリアゾール	0.06g
サーフィノールTG	8.5g
(商品名、エアープロダクツ社製)	
PROXEL XL2	1.8g
(商品名、ICI Co., Ltd. 製)	

【0100】前記色素を、下記表2に示すように変更した以外は、インク液Aの調製と同様にして、インク液BおよびCを作製した。この際に、比較用のインク液として表2中の比較色素AおよびBを用いてインク液101および102を作成した。色素を変更する場合は、色素の添加量がインク液Aに対して等モルとなるように使用した。

【0101】(画像記録及び評価) 以上の各実施例(インク液A~C)及び比較例(インク液101、102)のインクジェット用インクについて、下記評価を行った。その結果を表2に示した。なお、表2において、「色調」、「紙依存性」、「耐水性」、「耐光性」及び「耐オゾンガス性」は、各インクジェット用インクをカートリッジに充填し、インクジェットプリンター(EPS ON(株)社製;商品名 PM-700C)でフォト光沢紙(EPS ON社製PM写真紙<光沢>(商品名 KA420PSK、EPS ON)に画像を記録した後で評価したものである。

【0102】<色調>色調については、目視にてA(最良)、B(良好)及びC(不良)の3段階で評価した。*

*また、PM写真紙での反射スペクトルのλmaxの値を示した。

【0103】<紙依存性>上記プリンタの印刷濃度設定をトナーセーブにして、前記フォト光沢紙又はPPC用普通紙に印刷を行った。前記フォト光沢紙に形成した画像と、別途にPPC用普通紙に形成した画像との色調を比較し、両画像間の差が小さい場合をA(良好)、両画像間の差が大きい場合をB(不良)として、二段階で評価した。

【0104】<耐水性>前記画像を形成したフォト光沢紙を、1時間室温乾燥した後、10秒間脱イオン水に浸漬し、室温にて自然乾燥させ、滲みを観察した。滲みが少ないものをA、滲みが中程度のものをB、滲みが多いものをCとして、三段階で評価した。

【0105】<耐光性>前記画像を形成したフォト光沢紙に、ウェザーメーター(アトラスC. I 65(商品名))を用いて、キセノン光(85000lx)を7日間照射し、キセノン照射前後の画像濃度を反射濃度計(X-Rite社製、商品名 X-Rite 310TR)を用いて

測定し、色素残存率[(照射後濃度/照射前濃度)×100%]として評価した。なお、前記反射濃度は、照射前の画像濃度が1、1.5及び2.0の3点で測定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

【0106】<耐オゾン性>前記画像を形成したフォト光沢紙を、オゾンガス濃度が0.5±0.1ppm、室温、暗所に設定されたボックス内に7日間放置し、オゾンガス下放置前後の画像濃度を反射濃度計(X-Rite 3

10TR)を用いて測定し、色素残存率[(照射後濃度/照射前濃度)×100%]として評価した。なお、前記反射濃度は、照射前の画像濃度が1、1.5及び2.0の3点で測定した。ボックス内のオゾンガス濃度は、APPPLICS製オゾンガスモニター(モデル:OZG-E-M-01)を用いて設定した。何れの濃度でも色素残存率が70%以上の場合をA、1又は2点が70%未満をB、全ての濃度で70%未満の場合をCとして、三段階で評価した。

【0107】

【表2】

表2

試料	色素	色調(λmax)	紙依存性	耐水性	耐光性	耐オゾン性
A	2	A(452nm)	A	A	A	A
B	3	A(455nm)	A	A	A	A
C	4	A(453nm)	A	A	A	A
101	比較色素A	B(423nm)	B	A	A	C
102	比較色素B	C(471nm)	B	B	C	C

【0108】

【化18】

(20)

37

比較色素A

比較色素B

【0109】表2から明らかなように、本発明のインクジェット用インクは色調に優れ、紙依存性が小さく、耐水性、耐光性及び耐オゾン性に優れるものであった。特に耐光性、耐オゾン性等の画像保存性に優れることは明らかである。また、耐湿熱性にも優れていた。

【0110】実施例2

実施例1で作製した同じカートリッジを、実施例1の同機にて画像を富士写真フィルム製インクジェットペーパーフォト光沢紙EX（商品名）にプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0111】実施例3

実施例1で作製した同じインク液を、インクジェットプリンターBJ-F850（商品名、CANON社製）のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301（商品名）に画像をプリントし、実施例1と同様な評価を行ったところ、実施例1と同様な結果が得られた。

【0112】実施例4

（インク液Dの作製）本発明の色素9 3.75g、ジ*

表3

試料	色素	色調 (λ_{max})	紙依存性	耐水性	耐光性	耐オゾン性
D	9	A (450nm)	A	A	A	A
E	10	A (452nm)	A	A	A	A
103	比較色素C	B (430nm)	B	B	C	C

【0117】

【化20】

38

* オクチルスルホコハク酸ナトリウム7.04gを、下記高沸点有機溶媒(S-2)4.22g、下記高沸点有機溶媒(S-11)5.63g及び酢酸エチル50ml中に70°Cにて溶解させた。この溶液中に500mlの脱イオン水をマグネチックスターラーで攪拌しながら添加し、水中油滴型の粗粒分散物を作製した。次にこの粗粒分散物を、マイクロフュイダイザー(MICROFLUIDEX INC)にて600barの圧力で5回通過させることで微粒子化を行った。更にでき上がった乳化物をロータリーエバボレーターにて酢酸エチルの臭気が無くなるまで脱溶媒を行った。こうして得られた疎水性染料の微細乳化物に、ジエチレングリコール140g、グリセリン50g、SURFYNOL 465（商品名、Air Products & Chemicals社）7g、脱イオン水900mlを添加してインク液Dを作製した。

【0113】

【化19】

S-2

S-11

【0114】（インク液Eの作製）インク液Dについて、色素9を等モルの下記表3の色素に変更した以外は、インク液Dと同様にインク液Eおよび比較用インク液103を作製した。

【0115】（画像記録及び評価）インク液D、E及び比較用インク液103について下記評価を行った。その結果を下記表2に示す。尚、表3において、「色調(λ_{max})」、「紙依存性」、「耐水性」、「耐光性」、「耐オゾンガス性」の内容はそれぞれ実施例1で述べたものと同じである。

【0116】

【表3】

(21)

比較色素c

【0118】表3から明らかなように、本発明のインクジェット用インクは発色性、色調に優れ、紙依存性が小さく、耐水性、耐光性及び耐オゾン性に優れるものであった。

【0119】実施例5

実施例4で作製した同じカートリッジを、実施例4の同機にて画像を富士写真フィルム製インクジェットペーパーフォト光沢紙EXにプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が得られた。

【0120】実施例6

実施例4で作製した同じインクを、インクジェットプリンターBJ-F850(CANON社製)のカートリッジに詰め、同機にて同社のフォト光沢紙GP-301に画像をプリントし、実施例4と同様な評価を行ったところ、実施例4と同様な結果が得られた。

【0121】実施例7

本発明の色素9を3質量部、トナー用樹脂〔スチレン-アクリル酸エステル共重合体;商品名ハイマーTB-1000F(三洋化成製)〕100質量部をボールミルで混合粉碎後、150℃に加熱して熔融混和を行い、冷却後ハンマーミルを用いて粗粉碎し、次いでエアージェット方式による微粉碎機で微粉碎した。更に分級して1～20マイクロを選択し、トナーとした。このトナー10質量部に対しキャリヤー鉄粉(商品名EFV250/400;日本鉄粉製)900質量部を均一に混合し現像剤とした。同様に、表4に示す着色剤を染料は3質量部、顔料は6質量部使用した以外は同様にしてサンプルを調製した。これらの現像剤を用いて乾式普通紙電子写*

* 真複写機〔商品名NP-5000;キャノン(株)製〕で複写を行った。

【0122】評価テストは、本発明のカラートナーを用いた現像剤によって上記画像形成方法により紙およびOHP上に、それぞれ反射画像(紙上の画像)および透過画像(OHP画像)を作製し、以下に示す方法で行った。なお、トナー付着量は0.7±0.05(mg/cm²)の範囲で評価した。

【0123】得られた画像について、色相と光堅牢性を評価した。色相については、目視にて最良、良好及び不良の3段階で評価した。評価結果を下記表4に示す。下記表4中、○は色相が最良;△は良好であったことを示し、×は色相が不良であったことを示す。光堅牢性については、記録した直後の画像濃度C_iを測定した後、ウェザーメーター(アトラスC.165)を用いて、画像にキセノン光(8万5千ルクス)を5日間照射した後、再び画像濃度C_fを測定し、キセノン光照射前後の画像濃度の差から色素残存率((C_i-C_f)/C_i)×100%を算出し、評価した。画像濃度は反射濃度計(X-Rite310TR)を用いて測定した。評価結果を下記表4に示す。下記表4中、色素残存率が90%以上の場合を○、90～80%の場合を△、80%未満の場合を×として示した。

【0124】OHP画像の透明性については下記方法にて評価した。日立製作所製「330型自記分光光度計」(商品名)によりトナーが担持されていないOHP用シートをリファレンスとして画像の可視分光透過率を測定し、650nmでの分光透過率を求め、OHP画像の透明性の尺度とした。分光透過率が80%以上を○、70～80%を△、70%以下を×とした。以上の、結果を表4に示す。

【0125】

【表4】

表4

	着色剤 (色素番号)	色相	光堅牢性	透明性
本発明	9	○	○	○
本発明	10	○	○	○
比較例	C.I.Solvent. Yellow162	△	△	△

【0126】表4から明らかなように、本発明のカラートナーを用いることにより忠実な色再現と高いOHP品質を示すので、本発明のカラートナーはフルカラートナーとして使用するのに適している。さらに耐光性が良好なので長期にわたって保存ができる画像を提供することが可能である。

【0127】実施例8

熱転写色素供与層用塗料組成物：

色素21

※<熱転写色素供与材料の作成>支持体として裏面に耐熱滑性処理が施された厚さ6μmのポリエチレンテレフタレートフィルム(帝人製)を使用し、フィルムの表面上に下記組成の熱転写色素供与層用塗料組成物をワイヤーバーコーティングにより乾燥時の厚みが1.5μmとなるように塗布形成し、インクシートとして熱転写色素供与材料(5-1)を作成した。

※

10ミリモル

(22)

41		42
ポリビニルブチラール樹脂		3 g
(電気化学製 デンカブチラール5000-A (商品名))		
トルエン	40ml	
メチルエチルケトン	40ml	
ポリイソシアネート(武田薬品製		

次に上記色素21を表5に記載の他の色素に変えた以外は、上記と同様にして、本発明の熱転写色素供与材料及び比較用熱転写色素供与材料(5-2)、(5-3)をそれぞれ作成した。

【0128】(熱転写受像材料の作成)支持体として厚

10

み150μmの合成紙(王子油化製YUPO-FPG-*受像層用塗料組成物:

ポリエステル樹脂(東洋紡製 バイロン-280 (商品名))	22 g
ポリイソシアネート(大日本インキ化学製 KP-90 (商品名))	4 g
アミノ変性シリコーンオイル (信越シリコーン製 KF-857 (商品名))	0.5 g
メチルエチルケトン	85ml
トルエン	85ml
シクロヘキサン	15ml

【0129】上記のようにして得られた熱転写色素供与材料(5-1)～(5-3)と熱転写受像材料とを、熱転写色素供与層と受像層とが接するようにして重ね合わせ、熱転写色素供与材料の支持体側からサーマルヘッドを使用し、サーマルヘッドの出力0.25W/ドット、パルス巾0.15～1.5ミリ秒、ドット密度6ドット/mmの条件で印字を行い、受像材料の受像層にイエロー色の色素を像状に染着させた。得られた画像の最大発色濃度を表5に示す。本発明の熱転写色素供与材料(5-

1)、(5-2)では、転写むらのない鮮明な画像記録※

表5

熱転写色素供与材料	色素	最大濃度	光堅牢性	備考
5-1	21	1.8	91	本発明
5-2	22	1.7	89	本発明
5-3	比較染料d	1.8	52	比較用

【0131】

【化21】

比較染料d

【0132】上記のように本発明の色素は、比較用の染料と比較して光堅牢性にすぐれていた。又、色相も鮮であった。

【0133】実施例9

カラーフィルターの製造方法については、シリコンウェ

20※が得られた。次に、上記のようにして得られた記録済の各熱転写受像材料を5日間、Xeライト(17000ルクス)で照射し、色像の光安定性を調べた。ステータスA反射濃度1.0を示す部分の照射後のステータスA反射濃度を測定し、照射前の反射濃度1.0に対する残存率(百分率)でその安定度を評価した。結果を表5に記した。

【0130】

【表5】

ハニに熱硬化性樹脂、キノンジアジド化合物、架橋剤、色素及び溶剤を含むポジ型レジスト組成物をスピンドルトロトし、加熱により溶剤を蒸発させた後、マスクを通して露光を行い、キノンジアジド化合物を分解させた。必要40により、加熱後、現像してモザイクパターンを得た。露光は日立製作所(株)製i線露光ステッパーHITACHI LD-5010-i(NA=0.40)(商品名)により行った。又、現像液は住友化学工業(株)製SOPD又はSOPD-B(いずれも商品名)を用いた。

<ポジ型レジスト組成物の調製>m-クレゾール/p-クレゾール/ホルムアルデヒド(反応モル比=5/5/7.5)混合物から得られたクレゾールノボラック樹脂(ポリスチレン換算質量平均分子量4300)3.4質量部、下式

50 【0134】

(23)

43

【化22】

【0135】で示されるフェノール化合物を用いて製造されたo-ナフトキノンジアジド-5-スルホン酸エステル（平均2個の水酸基がエステル化されている）1.8質量部、ヘキサメトキシメチロール化メラミン0.8質量部、乳酸エチル20質量部及び表6に示す本発明の色素1質量部を混合してポジ型レジスト組成物を得た。

＜カラーフィルターの調製＞得られたポジ型レジスト組成物をシリコンウエハーにスピンドルコートした後、溶剤を蒸発させた。シリコンウエハーを露光後、100℃で加熱し、次いでアルカリ現像により露光部を除去して0.8μmの解像度を有するポジ型着色パターンを得た。これを全面露光後、150℃・15分加熱してイエローの補色系力

10

ラーフィルターを得た。

＜比較例＞上記実施例で用いた本発明のイエロー色素に代えて、住友化学工業（株）製オレオゾールイエロー2G（商品名）1質量部を混合してポジ型レジスト組成物を得た。このポジ型レジスト組成物をシリコンウエハーにスピンドルコートした後、溶剤を蒸発させた。シリコンウエハーを露光後、アルカリ現像して1μmの解像度を有するポジ型着色パターンを得た。これを全面露光後、150℃・10分加熱してイエローカラーフィルターを得た。

20

＜評価＞得られたイエローカラーフィルターの透過スペクトルを測定し、色再現上重要なスペクトルの短波側、長波側の切れを相対評価した。○は良好、△は許容できるレベル、×は許容できないレベルを表す。また、光堅牢性についてはウェザーメーター（アトラスC. I 65）を用いて、キセノン光（85000lx）を7日間照射し、キセノン照射前後の画像濃度を測定し、色素残存率〔（照射後濃度／照射前濃度）×100%〕として評価した。

【0136】

【表6】

表6

	色素No.	吸収特性	光堅牢性
本発明	21	○	98%
本発明	22	○	96%
比較例	オレオゾールID-ZG	△	60%

【0137】比較例と比べ本発明の色素はスペクトルの短波側、長波側の切れが急峻であり、色再現性に優れることがわかる。また、比較化合物に対し光堅牢性が優れている事が分かった。

【0138】

【発明の効果】本発明によれば、1) 三原色の色素として色再現性に優れた吸収特性を有し、且つ光、熱、湿度および環境中の活性ガスに対して十分な堅牢性を有する新規な色素を提供し、2) 色相と堅牢性に優れた着色画像や着色材料を与える、インクジェットなどの印刷用の

インク、感熱記録材料におけるインクシート、電子写真用のカラートナー、LCD、PDPなどのディスプレイやCCDなどの撮像素子で用いられるカラーフィルター、各種繊維の染色の為の染色液などの各種着色組成物を提供し、3) 特に、該色素の使用により良好な色相を有し、光及び環境中の活性ガス、特にオゾンガスに対して堅牢性の高い画像を形成することができるインクジェット記録用インク及びインクジェット記録方法を提供することができる。

フロントページの続き

(51) Int. Cl. 7

識別記号

C 0 7 D 413/14
417/14
C 0 9 B 29/48

F I

テーマコード（参考）

C 0 7 D 417/14
C 0 9 B 29/48
B 4 1 J 3/04

101Y

(72) 発明者 小川 学

静岡県富士宮市大中里200番地 富士写真
フィルム株式会社内

(24)

F ターム(参考) 2C056 EA13 FC02 FC06
2H086 BA15 BA33 BA55
4C063 AA01 AA03 BB02 BB09 CC29
CC43 CC52 CC67 DD22 EE10
4J039 BC40 BC51 BC52 BC54 BC56
BC72 BC73 BC77 BE02 BE12
CA03 EA17 EA35 EA37 EA38
GA24