Übungen zu Lineare Algebra II

Jendrik Stelzner

24. Juni 2016

Übung 1.

Ein Endomorphismus $f\colon V\to V$ eines K-Vektorraums V heißt lokal nilpotent, falls es für jedes $v\in V$ ein $n\in\mathbb{N}$ mit $f^n(v)=0$ gibt.

- 1. Zeigen Sie, dass jeder nilpotente Endomorphismus auch lokal nilpotent ist.
- 2. Zeige Sie, dass 0 der einzige mögliche Eigenwert eines lokal nilpotenten Endomorphismus ist.
- 3. Geben Sie ein Beispiel für einen Vektorraum V und einen Endomorphismus $f \colon V \to V$ an, so dass f zwar lokal nilpotent, nicht aber nilpotent ist.
- 4. Zeigen Sie, dass jeder lokal nilpotente Endomorphismus eines endlichdimensionalen Vektorraums bereits nilpotent ist.

Übung 2.

Es sei V ein K-Vektorraum und $f \colon V \to V$ ein Endomorphismus. Zeigen Sie:

- 1. Ist $f^2 = f$, so ist $V = \operatorname{im} f \oplus \ker f$, und es gilt im $f = V_1(f)$ und $\ker f = V_0(f)$.
- 2. Ist $f^2=\operatorname{id}_V$ und char $K\neq 2$, so ist f diagonalisierbar mit (möglichen) Eigenwerten 1 und -1.
- 3. Sind $\lambda, \mu \in K$ mit $\lambda \neq \mu$ und $(f \lambda)(f \mu) = 0$, so ist f diagonalisierbar mit (möglichen) Eigenwerten λ und μ . Inwiefern sind die vorherigen beiden Aufgabenteile Sonderfälle hiervon?

Übung 3.

Zeigen Sie im folgenden jeweils, dass der Vektorraum V die direkte Summe der Untervektorräume U_1 und U_2 ist, indem sie einen idempotenten Endomorphisus $e\colon V\to V$ mit $U_1=\operatorname{im} e$ und $U_2=\ker e$ angeben.

1. Es sei char $K \neq 2$, $V := M_n(K)$ der Vektorraum der $(n \times n)$ -Matrizen über K,

$$U_1 := \{ A \in \mathcal{M}_n(K) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen, und

$$U_2 := \{ A \in \mathcal{M}_n(K) \mid A^T = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen.

2. Es sei $V \coloneqq \{f \mid f \colon \mathbb{R} \to \mathbb{R}\}$ der Vektorraum der reellwertigen Folgen auf \mathbb{R} , sowie

$$U_1 := \{ f \in V \mid f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der geraden Funktionen und

$$U_2 := \{ f \in V \mid f(x) = f(-x) \text{ für alle } x \in \mathbb{R} \}$$

der Untervektorraum der ungeraden Funktionen.

3. Die Ebene $V=\mathbb{R}^2$ und als Untervektorräume die beiden Geraden

$$U_1 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \quad \text{und} \quad U_2 \coloneqq \mathbb{R} \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

4. Für char $K \neq 2$ und einen Vektorraum W sei

$$V := \{b \colon W \times W \to K \mid b \text{ ist bilinear}\}\$$

der Vektorraum der Bilinearformen auf W. Es sei

$$U_1 := \{ s \in V \mid s \text{ ist symmetrisch} \}$$

der Untervektorraum der symmetrischen Bilinearformen, und

$$U_2 := \{a \in V \mid a \text{ ist alternierend}\}$$

der Untervektorraum der alternierenden Bilinearformen.

5. Der Vektorraum $V:=\mathbb{C}(I,\mathbb{R})$ der stetigen reellwertigen Funktionen auf dem Einheitsintervall I=[0,1] mit den Untervektorräumen

$$U_1 := \{ f \in V \mid f(0) = 0 \} U_2 := \{ f \in V \mid f \text{ ist konstant} \}.$$

6. Es sei erneut $V\coloneqq\mathbb{C}(I,\mathbb{R})$ der Vektorraum der stetigen reellwertigen Funktionen auf dem Einheitsintervall I=[0,1]. Es sei nun

$$U_1 := \{ f \in V \mid f(0) = f(1) = 0 \}$$

der Untervektorraum der Funktion mit Nullrandwerten, und

$$U_2 := \{h_{x,y} \mid x, y \in \mathbb{R}\}\$$

der Untervektorraum der affin-linearen Funktionen, wobei

$$h_{x,y}: I \to \mathbb{R}, \quad t \mapsto (1-t)x + ty = x + t(y-x)$$

die affin lineare Funktion mit den Randwerten x und y ist. (*Hinweis*: Es hilft, sich diese Zerlegung anschaulich vorzustellen.)

7. Für einen Körper mit char $K \nmid n$ die Zerlegung von $V \coloneqq \mathsf{M}_n(K)$ in die Untervektorräume

$$U_1 := \mathfrak{sl}(K) = \{ A \in \mathcal{M}_n(K) \mid \operatorname{tr} A = 0 \} \quad \text{und} \quad U_2 := KI = \{ \lambda I \mid \lambda \in K \}$$

der spurlosen Matrizen und der Skalarmatrizen.

8. Es sei V ein diagonalisierbarer Endomorphismus mit zwei verschiedenen Eigenwerten $\lambda, \mu \in K$ und $U_1 := V_{\lambda}(f)$ und $U_2 := V_{\mu}(f)$.

Übung 4.

Es sei V ein K-Vektorraum und $f \colon V \to V$ ein Endomorphismus.

- 1. Zeigen Sie für char $K \neq 2$, dass f diagonalisierbar mit möglichen Eigenwerten 1 und -1 ist
- 2. Zeigen Sie, dass die Aussage für char K=2 nicht mehr gelten muss.

Übung 5.

Es seien V und W zwei K-Vektorräume, und $f\colon V\to W$ eine lineare Abbildung, die ein Rechtsinverses $g\colon W\to V$ besitzt. Zeigen Sie, dass

$$V = \ker f \oplus \operatorname{im} g$$

auf die folgenden beiden Weisen:

- 1. Durch explizites Nachrechnen, dass $V = \ker f + \operatorname{im} g$ und $\ker f \cap \operatorname{im} g = 0$.
- 2. Mithilfe des Endomorphismus $gf: V \to V$.

Übung 6.

Es sei V ein K-Vektorraum. Zeigen Sie, dass die folgenden Aussagen allgemein gelten, oder geben Sie jeweils ein Gegenbeispiel an.

1. Ist $V=V_1\oplus V_2$ für Untervektorräume $V_1,V_2\subseteq V$, so gilt für jeden Untervektorraum $U\subseteq V$ die Zerlegung

$$U=(U\cap V_1)\oplus (U\cap V_2).$$

2. Ist $V = U_1 \oplus W_1 = U_2 \oplus W_2$ mit $W_1 \supseteq W_2$, so ist

$$W_1 = (U_2 \cap W_1) \oplus W_2.$$

- 3. Ist $f\colon V\to V$ ein Endomorphismus und $U\subseteq V$ ein f-invarinter Untervektorraum, so gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.
- 4. Für alle Untervektorräume $W, U_1, U_2 \subseteq V$ mit $U_1 \subseteq U_2$ gilt

$$(U_1 + W) \cap U_2 = U_1 + (W \cap U_2).$$

- 5. Ist $\mathcal{E} \subseteq V$ ein Erzeugendensystem und $U \subseteq V$ ein Untervektorraum, so ist die Einschränkung $\mathcal{E}' \coloneqq \mathcal{E} \cap U$ ein Erzeugendensystem von U.
- 6. Ist $(U_i)_{i\in I}$ eine Famlie von Untervektorräumen $U_i\subseteq V$ mit $V=\sum_{i\in I}U_i$ und $U_i\cap U_j=0$ für $i\neq j$, so ist $V=\bigoplus_{i\in I}U_i$.

Übung 7.

Ein Endomorphismus $f \colon V \to V$ eines K-Vektorraums V heißt algebraisch (über K), falls es ein Polynom $P \in K[T]$ mit $P \neq 0$ gibt, so dass P(f) = 0 gilt.

- 1. Zeigen Sie, dass jeder Endomorphismus eines endlichdimensionalen Vektorraums algebraisch ist.
- 2. Geben Sie ein Beispiel für einen K-Vektorraum V und einen Endomorphismus $f\colon V\to V$ an, der nicht algebraisch ist.

Übung 8.

Es sei V ein Vektorraum und $f\colon V\to V$ ein Endomorphismus. Es sei $(U_i)_{i\in I}$ eine Familie von f-invarianten Untervektorräumen, und $U\subseteq V$ ein f-invarianter Untervektorraum. Zeigen Sie:

- 1. Auch der Schnitt $\bigcap_{i \in I} U_i$ ist f-invariant.
- 2. Auch die Summe $\sum_{i \in i} U_i$ ist f-invariant.
- 3. f induziert eine lineare Abbildung

$$\bar{f} \colon V/U \to V/U, \quad [x] \mapsto [f(x)].$$

Übung 9.

Es sei Vein K-Vektorraum und $U\subseteq V$ ein K-Untervektorraum. Konstruieren Sie für den Annihilator

$$U^{\circ} = \{ \varphi \in V^* \mid \varphi|_U = 0 \}$$

einen Isomorphismus $F \colon U^{\circ} \to (V/U)^*$.

Übung 10.

Es sei V ein K-Vektorraum mit zwei Untervektorräumen $U_1,U_2\subseteq V$. Zeigen Sie die folgenden beiden Isomorphiesätze:

1. Die Inklusion $U_1 \rightarrow U_1 + U_2, x \mapsto x$ induziert einen isomorphismus

$$U_1/(U_1\cap U_2)\to (U_1+U_2)/U_2,\quad [x]\mapsto [x]\quad \text{für alle }x\in V.$$

2. Ist $U_1 \subseteq U_2$, so ist U_2/U_1 ein Untervektorraum von V/U_1 , und die Abbildung

$$(V/U_1)/(U_2/U_1) \to V/U_2$$
, $[[x]] \mapsto [x]$ für alle $x \in V$.

ist ein wohldefinierter Isomorphismus.

Übung 11.

Es sei K ein algebraisch abgeschlossener Körper und $f\colon V\to V$ ein Endomorphismus eines endlichdimensionalen K-Vektorraums V. Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

- 1. f ist diagonalisierbar.
- 2. Für jeden f-invarianten Untervektorraum $U\subseteq V$ gibt es einen f-invarianten Untervektorraum $W\subseteq V$ mit $V=U\oplus W$.

Übung 12.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es sei $\pi\colon V\to V/U, v\mapsto [v]$ die kanonische Projektion.

- 1. Es sei $(b_i)_{i \in I}$ eine Basis von V, und für eine Teilmenge $J \subseteq I$ sei $(b_j)_{j \in J}$ eine Basis von U. Zeigen Sie, dass $([b_i])_{i \in I \setminus J}$ eine Basis von V/U ist.
- 2. Es sei $(b_i)_{i\in I}$ eine Basis von U und $(c_j)_{j\in J}$ eine Basis von V/U, wobei $I\cap J=\emptyset$. Für $j\in J$ sei $b_j\in V$ mit $\pi(b_j)=c_j$. Zeigen Sie, dass $(b_l)_{l\in L}$ für $L\coloneqq I\cap J$ ist eine Basis von V ist.

Übung 13.

Es seien V und W zwei K-Vektorräume und $f: V \to W$ eine lineare Abbildung.

1. Es sei $U\subseteq V$ ein Untervektorraum mit $f|_U=0$. Zeigen Sie, dass V eine lineare Abbildung

$$\bar{f}: V/U \to W, \quad [v] \mapsto f(u)$$

induziert.

2. Zeigen Sie, dass im $\bar{f}=\inf f$. Folgern Sie, dass \bar{f} genau dann surjektiv ist, wenn f surjektiv ist.

- 3. Zeigen Sie, dass $U\subseteq \ker f$, und dass $\ker \bar{f}=(\ker f)/U$. Folgern Sie, dass \bar{f} genau dann injektiv ist, wenn bereits $U=\ker f$ gilt.
- 4. Folgern Sie, dass f einen Isomorphismus

$$V/(\ker f) \to \operatorname{im} f, \quad [v] \mapsto f(v)$$

induziert.

Übung 14.

Es sei V ein K-Vektorraum mit Erzeugendensystem $E\subseteq V$. Es sei W ein K-Vektorraum mit Basis $\{b_e\}_{e\in E}\subseteq W$. Konstruieren Sie einen Isomorphismus $V/U\to W$ für einen passenden Untervektorraum $U\subseteq W$.

Übung 15.

Es sei V ein K-Vektorraum und $U\subseteq V$ ein Untervektorraum. Es seien $f\colon V\to V$ ein Endomorphismus, so dass U invariant unter f ist (d.h. es ist $f(U)\subseteq U$).

1. Zeigen Sie, dass f einen Endomorphismus

$$\bar{f} \colon V/U \to V/U, \quad [v] \mapsto [f(v)]$$

induziert.

Es sei nun $g\colon V\to V$ ein weiterer Endomorphismus, so dass U invariant unter g ist, und es sei $\bar g\colon V/U\to V/U$ der induzierte Endomorphismus.

2. Es seien $f|_U=g|_U$ und $\bar{f}=\bar{g}$. Beweisen oder widerlegen Sie, dass bereits f=g gelten muss.

Übung 16.

Es sei V ein \mathbb{R} -Vektorraum und W ein \mathbb{C} -Vektorraum. Zeigen Sie:

1. Für jede $\mathbb R$ -lineare Abbildung $f\colon V\to W$ gibt genau eine $\mathbb C$ -lineare Abbildung $f_\mathbb C\colon V_\mathbb C\to W_\mathbb C$, die das folgende Diagram kommutieren lässt:

2. Für je zwei $\mathbb C$ -lineare Abbildungen $g_1,g_2\colon V_{\mathbb C}\to W$ die Äquivalenz

$$g_1 = g_2 \iff g_1 \circ \iota = g_2 \circ \iota$$

gilt.

3. Für jeden \mathbb{C} -Vektorraum W' gilt für jede \mathbb{R} -lineare Abbildung $f\colon V\to W$ und jede \mathbb{C} -lineare Abbildung $g\colon W\to W'$ die Gleichheit

$$(g \circ f)_{\mathbb{C}} = g \circ f_{\mathbb{C}}.$$

Übung 17.

1. Zeigen Sie, dass für jedes \mathbb{R} -Vektorraum V und \mathbb{C} -Vektorraum W die Abbildung

$$\Phi_{V,W} \colon \operatorname{Hom}_{\mathbb{R}}(V,W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W), \quad f \mapsto f_{\mathbb{C}}$$

ein Isomorphismus von \mathbb{R} -Vektorräumen ist. Geben Sie auch $\Phi_{V.W}^{-1}$ an.

2. Es seien vier K-Vektorräume V, V', W, W' und zwei K-lineare Abbildungen $f: V \to V'$ und $g: W \to W'$ gegeben. Zeigen Sie, dass die beidseitige Komposition

$$g \circ - \circ f \colon \operatorname{Hom}_K(V, W) \to \operatorname{Hom}_K(V', W'), \quad h \mapsto g \circ h \circ f$$

eine K-lineare Abbildung ist.

3. Zeigen Sie, dass die Isomorphismen $\Phi_{V,W}$ in dem folgenden Sinne $nat \ddot{u}rlich$ sind: Es seien V und V' zwei \mathbb{R} -Vektorräume und es sei $f\colon V\to V'$ eine \mathbb{R} -lineare Abbildung. Es seien W und W' zwei \mathbb{C} -Vektorräume und es sei $g\colon W\to W'$ eine \mathbb{C} -lineare Abbildung. Dann kommutiert das folgende Diagram von \mathbb{R} -Vektorräumen und \mathbb{R} -linearen Abbildungen:

Übung 18.

Zeigen Sie, dass die \mathbb{R} -lineare Inklusion $\mathbb{R} \to \mathbb{C}$, $x \mapsto x$ einen Isomorphismus $\mathbb{R}_{\mathbb{C}} \to \mathbb{C}$ von \mathbb{C} -Vektorräumen induziert.

Übung 19.

Es seien V und W zwei \mathbb{R} -Vektorräume. Zeigen Sie, dass die \mathbb{R} -lineare Abbildung

$$\varphi \colon \operatorname{Hom}_{\mathbb{R}}(V, W) \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}}, W_{\mathbb{C}}), \quad f \mapsto f_{\mathbb{C}}$$

einen Isomorphismus von \mathbb{C} -Vektorräumen

$$\Phi \colon \operatorname{Hom}_{\mathbb{R}}(V,W)_{\mathbb{C}} \to \operatorname{Hom}_{\mathbb{C}}(V_{\mathbb{C}},W_{\mathbb{C}})$$

induziert. ($\mathit{Hinweis}$: Beachten Sie, dass V und W nicht notwendigerweise endlichdimensional sind.)

Übung 20.

Es sei V ein \mathbb{R} -Vektorraum. Konstruieren Sie einen Isomorphismus $(V^*)_{\mathbb{C}} \to (V_{\mathbb{C}})^*$. (*Hinweis*: Beachten Sie, dass V ist nicht notwendigerweise endlichdimensional ist.)

Übung 21.

Es sei V ein reeller Vektorraum und $(U_i)_{i \in I}$ eine Familie von Untervektorräumen $U_i \subseteq V$. Zeigen Sie:

1. Es gilt

$$\left(\bigcap_{i\in I} U_i\right)_{\mathbb{C}} = \bigcap_{i\in I} (U_i)_{\mathbb{C}}$$

2. Es gilt

$$\left(\sum_{i\in I} U_i\right)_{\mathbb{C}} = \sum_{i\in I} (U_i)_{\mathbb{C}}.$$

3. Folgern Sie, dass genau dann $V=\bigoplus_{i\in I}U_i$, wenn $V_{\mathbb C}=\bigoplus_{i\in I}(U_i)_{\mathbb C}.$

Übung 22.

Es seien V und W zwei reelle Vektorräume, und $f \colon V \to W$ sei \mathbb{R} -linear.

- 1. Zeigen Sie, dass $\ker(f_{\mathbb{C}}) = (\ker f)_{\mathbb{C}}$.
- 2. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann injektiv ist, wenn f injektiv ist.
- 3. Folgern Sie ferner, dass $(V_{\mathbb{C}})_{\lambda}(f_{\mathbb{C}}) = V_{\lambda}(f)_{\mathbb{C}}$ für jedes $\lambda \in \mathbb{R}$.
- 4. Zeigen Sie, dass $\operatorname{im}(f_{\mathbb{C}}) = (\operatorname{im} f)_{\mathbb{C}}$.
- 5. Folgern Sie, dass $f_{\mathbb{C}}$ genau dann surjektiv ist, wenn f surjektiv ist.

Übung 23.

Es sei V ein reeller Vektorraum und $f\colon V\to V$ ein Endomorphismus. Zeigen Sie, dass f genau dann diagonalisierbar ist, wenn $f_{\mathbb C}$ diagonalisierbar mit reellen Eigenwerten ist.

Übung 24

Zeigen Sie, dass die kanonische Inklusion $\iota\colon\mathbb{R}[X]\to\mathbb{C}[X],\,x\mapsto x$ \mathbb{R} -linear ist, und einen Isomorphismus $\mathbb{R}[X]_{\mathbb{C}}\to\mathbb{C}[X]$ von \mathbb{C} -Vektorräumen induziert.

Übung 25

Es sei V ein K-Vektorraum, wobei $V \neq 0$ und K algebraisch abgeschlossen ist. Es seien $f_1, \ldots, f_n \colon V \to V$ paarweise kommutierende Endomorphismen. Zeigen Sie, dass die Endomorphismen f_1, \ldots, f_n einen gemeinsamen Eigenvektor besitzen, d.h. dass es ein $v \in V$ gibt, das für jedes f_i eine Eigenvektor ist.

Übung 26.

Es sei V ein K-Vektorraum. Für alle Endomorphismen $f_1,\ldots,f_n\in \mathrm{End}(V)$ und Skalare $\lambda_1,\ldots,\lambda_n\in K$ sei

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) := \{v \in V \mid f_i(v) = \lambda_i v \text{ für alle } i = 1, \dots, n\}$$

der gemeinsame Eigenraum der Endomorphismen f_1, \ldots, f_n zu den Eigenwerten $\lambda_1, \ldots, \lambda_n$.

1. Zeigen Sie, dass

$$V(f_1, \lambda_1; \dots; f_n, \lambda_n) = \bigcap_{i=1}^n V(f_i, \lambda_i)$$

für alle Endomorphismen $f_1, \ldots, f_n \in \text{End}(V)$ und Eigenwerte $\lambda_1, \ldots, \lambda_n \in K$.

- 2. Es seien $f_1, \ldots, f_n, g \in \operatorname{End}(V)$ Endomorphismen, so dass g mit jedem f_i kommutiert. Zeigen sie, dass der gemeinsame Eigenraum $V(f_1, \lambda_1; \ldots; f_n, \lambda_n)$ für alle $\lambda_1, \ldots, \lambda_n \in K$ invariant unter g ist.
- 3. Zeigen Sie: Sind die Endomorphismen $f_1, \ldots, f_n \in \operatorname{End}(V)$ diagonalisierbar (d.h. es ist $V = \bigoplus_{\lambda \in K} V(f_i, \lambda)$ für alle $i = 1, \ldots, n$) und paarweise kommutierend, so sind die Endomorphismen simultan diagonalisierbar, d.h. es ist

$$V = \bigoplus_{\lambda_1, \dots, \lambda_n \in K} V(f_1, \lambda_1; \dots; f_n, \lambda_n).$$

4. Es sei nun V endlichdimensional und $H\subseteq \operatorname{End}(V)$ ein Untervektorraum aus diagonalisierbaren und paarweise kommutierenden Endomorphismen. Zeigen Sie, dass es eine Basis $\mathcal B$ von V gibt, so dass $\operatorname{M}_{\mathcal B}(f)$ für jedes $f\in H$ eine Diagonalmatrix ist.

Übung 27.

Es sei $A \in M_2(\mathbb{R})$ mit trA = 0 und tr $A^2 = -2$. Bestimmen Sie det A.

Übung 28

Zeigen Sie, dass es für $A\in \mathrm{GL}_n(K)$ ein Polynom $P\in K[T]$ mit deg $P\leq n-1$ gibt, so dass $A^{-1}=P(A)$.

Übung 29.

Es sei K ein algebraisch abgeschlossener Körper mit char $K \notin \{2,3\}$. Zeigen Sie, dass

$$\det A = \frac{1}{6}(\operatorname{tr} A)^3 - \frac{1}{2}(\operatorname{tr} A^2)(\operatorname{tr} A) + \frac{1}{3}(\operatorname{tr} A^3) \quad \text{für jedes } A \in \operatorname{M}_3(K).$$

(Hinweis: Wenn die Rechnungen zu kompliziert werden, dann macht man es falsch.)

Übung 30.

Es sei V ein endlichdimensionaler \mathbb{C} -Vektorraum.

1. Es sei $n\colon V\to V$ ein nilpotenter Endomorphismus. Zeigen Sie, dass der Endomorphismus id $_V+n$ invertierbar ist.

Ein Endomorphismus $u \colon V \to V$ heißt *unipotent*, falls $u - \mathrm{id}_V$ nilpotent it.

2. Folgern Sie, dass jeder unipotente Endomorphismus von V invertierbar ist.

Auf dem fünften Übungszettel wurde gezeigt, dass es für jeden Endomorphismus $f\colon V\to V$ eindeutige Endomorphismen $d,n\colon V\to V$ gibt, so dass

- f = d + n,
- d ist diagonalisierbar und n ist nilpotent, und
- d und n kommutieren.

Folgern Sie aus dieser additiven Jordanzerlegung von $\operatorname{End}(V)$ die folgende multiplikative Jordanzerlegung von $\operatorname{GL}(V)$.

- 3. Zeigen Sie, dass es für jedes $s \in \mathrm{GL}(V)$ eindeutige $d, u \in \mathrm{GL}(V)$ gibt, so dass
 - $s = d \cdot u$,
 - d ist diagonalisierbar und u ist unipotent, und
 - d und u kommutieren.

Übung 31.

Für alle $\lambda_1,\ldots,\lambda_n\in\mathbb{C}$ sei

$$\operatorname{diag}(\lambda_1,\ldots,\lambda_n)\coloneqq \begin{pmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \in \operatorname{M}_n(\mathbb{C}).$$

Es sei

$$D_n(\mathbb{C}) := \left\{ S \operatorname{diag}(\lambda_1, \dots, \lambda_n) S^{-1} \mid S \in \operatorname{GL}_n(\mathbb{C}), \lambda_1, \dots, \lambda \in \mathbb{C} \right\} \subseteq \operatorname{M}_n(\mathbb{C})$$

die Menge der diagonalisierbaren komplexen $n \times n$ -Matrizen. Wir zeigen, dass $D_n(\mathbb{C}) \subseteq M_n(\mathbb{C})$ dicht ist, d.h. dass es für jede Matrix $A \in M_n(\mathbb{C})$ und jedes $\varepsilon > 0$ eine diagonalisierbare Matrix $D \in D_n(\mathbb{C})$ mit $\|A - D\| < \varepsilon$ gibt.

bare Matrix $D \in D_n(\mathbb{C})$ mit $||A - D|| < \varepsilon$ gibt. Es sei $S \in GL_n(\mathbb{C})$, so dass SAS^{-1} eine obere Dreiecksmatrix mit Diagonaleinträgen $\lambda_1, \ldots, \lambda_n$ ist, also

$$SAS^{-1} = \begin{pmatrix} \lambda_1 & * & \cdots & * \\ & \ddots & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_n \end{pmatrix}.$$

Es seien $z_1, \ldots, z_n \in \mathbb{C}$ paarweise verschieden und

$$B(t) := A + tS \operatorname{diag}(z_1, \dots, z_n) S^{-1}$$
 für alle $t \in \mathbb{R}$.

1. Zeigen Sie, dass $\mu_1(t), \ldots, \mu_n(t) \in \mathbb{C}$ mit

$$\mu_i(t) \coloneqq \lambda_i + tz_i \quad \text{für } i = 1, \dots, n$$

die Eigenwerte von B(t) ist.

- 2. Zeigen Sie, dass die Zahlen $\mu_1(t),\ldots,\mu_n(t)$ für fast alle $t\in\mathbb{R}$ paarweise verschieden sind.
- 3. Folgern Sie, dass B(t) für fast alle $t \in \mathbb{R}$ diagonalisierbar ist.
- 4. Folgern Sie, dass es für alle $\varepsilon > 0$ ein $D \in D_n(\mathbb{C})$ mit $||A D|| < \varepsilon$ gibt.

Wir wollen die Dichtheit von $\mathrm{D}_n(\mathbb{C})\subseteq\mathrm{M}_n(\mathbb{C})$ nutzen, um den Satz von Cayley-Hamilton zu zeigen:

5. Zeigen Sie, dass die Abbildung

$$F: M_n(\mathbb{C}) \to M_n(\mathbb{C}), A \mapsto \chi_A(A)$$

stetig ist, wobei $\chi_A(T) \in \mathbb{C}[T]$ das charakteristische Polynom von A ist.

- 6. Zeigen Sie, dass F(D)=0 für jede Diagonalmatrix $D\in \mathrm{M}_n(\mathbb{C})$.
- 7. Zeigen Sie, dass $P(SAS^{-1}) = SP(A)S^{-1}$ für alle $P \in \mathbb{C}[T]$, $A \in M_n(\mathbb{C})$ und $S \in GL_n(\mathbb{C})$. Folgern Sie, dass F(D) = 0 für jede Matrix $D \in D_n(\mathbb{C})$.
- 8. Folgern Sie, dass F(A) = 0 für alle $A \in M_n(\mathbb{C})$.

Übung 32.

Es seien V und W zwei \mathbb{K} -Skalarprodukträume und $f\colon V\to W$ eine lineare Abbildung. Es sei $\mathcal{B}=(b_1,\ldots,b_n)$ eine Orthonormalbasis von V und $\mathcal{C}=(c_1,\ldots,c_m)$ eine Orthonormalbasis von W. Zeigen Sie die Gleichheit

$$M_{\mathcal{B},\mathcal{C}}(f^*) = M_{\mathcal{C},\mathcal{B}}(f)^*.$$

Übung 33.

Es sei V ein endlichdimensionaler unitärer Vektorraum und $f\colon V\to V$ ein normaler Endomorphismus. Zeigen Sie:

- 1. f ist genau dann unitär, wenn alle Eigenwerte von f Betrag 1 haben.
- 2. f ist genau dann selbstadjungiert, wenn alle Eigenwerte von f reell sind.
- 3. f ist genau dann antiselbstadjungiert, wenn alle Eigenweret von f rein imaginär sind.

4. f ist genau dann eine Orthogonalprojektion, wenn 0 und 1 die einzigen Eigenwerte von f sind.

Übung 34.

Es seien V und W zwei endlichdimensionale euklidische Vektorräume. Ferner sei $f\colon V\to W$ eine $\mathbb R$ -lineare Abbildung.

1. Zeigen Sie, dass die Abbildung

$$\Phi_V \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein \mathbb{R} -linearer Isomorphismus ist.

- 2. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an. Zeigen Sie, dass f^* \mathbb{R} -linear ist.
- 3. Zeigen Sie, dass die Abbildung $g := \Phi_V^{-1} \circ f^* \circ \Phi_W$ \mathbb{R} -linear ist, und dass

$$\langle f(v), w \rangle = \langle v, g(w) \rangle$$
 für alle $v \in V, w \in W$.

4. Inwiefern ändern sich die obigen Resultate für denn fall $\mathbb{K}=\mathbb{C}$, wenn also V und W endlichdimensionale unitäre Vektorräume sind?

Übung 35.

Es sei V ein endlichdimensionale \mathbb{K} -Vektorraum und $f:V\to V$ ein Endomorphismus.

- 1. Zeigen Sie für denn Fall $\mathbb{K}=\mathbb{R}$, dass f genau dann diagonalisierbar ist, wenn es ein Skalarprodukt auf V gibt, bezüglich dessen f selbstadjungiert ist.
- 2. Zeigen oder widerlegen Sie die analoge Aussage für $\mathbb{K} = \mathbb{C}$.

Übung 36.

Es sei $V := \mathcal{C}([0,1],\mathbb{R})$ der Raum der stetigen Funktionen $[0,1] \to \mathbb{R}$, und es sei

$$U := \{ f \in V \mid f(0) = 0 \}.$$

- 1. Zeigen Sie, dass U ein Untervektorraum von V ist.
- 2. Zeigen Sie, dass

$$\langle f,g\rangle\coloneqq\int_0^1f(t)g(t)\,\mathrm{d}t\quad\text{für alle }f,g\in V$$

ein Skalarprodukt auf V definiert.

- 3. Zeigen Sie, dass $U^\perp=0$. Folgern Sie, dass $V\neq U\oplus U^\perp$. (*Hinweis*: Betrachten Sie für $g\in U^\perp$ die Funktion $h\colon [0,1]\to \mathbb{R}$ mit $h(t)=t^2g(t)$.)
- 4. Zeigen Sie ferner, dass V/U eindimensional ist.

Übung 37.

Es sei

$$W = \{(a_n)_{n \in \mathbb{Z}} \mid a_n \in \mathbb{R} \text{ für alle } n \in \mathbb{Z}\}$$

der Vektorraum der beidseitigen reellwertigen Folgen. Wir betrachten den Untervektorraum

$$V := \left\{ (a_n)_{n \in \mathbb{Z}} \in W \left| \sum_{n \in \mathbb{Z}} |a_n|^2 < \infty \right. \right\}$$

der quadratsummierbaren Folgen.

- 1. Zeigen Sie, dass V ein Untervektorraum von W ist.
- 2. Zeigen Sie für alle $(a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$, dass

$$\sum_{n\in\mathbb{Z}}a_nb_n<\infty.$$

(*Hinweis*: Zeigen sie zunächst, dass $ab \leq (a^2 + b^2)/2$ für alle $a, b \in \mathbb{R}$.)

3. Zeigen sie, dass

$$\langle (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\rangle \coloneqq \sum_{n\in\mathbb{Z}} a_n b_n \quad \text{für alle } (a_n)_{n\in\mathbb{Z}}, (b_n)_{n\in\mathbb{Z}}\in V$$

ein Skalarprodukt auf V definiert.

4. Es sei

$$R: V \to V, \quad (a_n)_{n \in \mathbb{Z}} \mapsto (a_{n-1})_{n \in \mathbb{Z}}$$

der Rechtsshift-Operator. Zeigen Sie, dass R ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 5. Zeigen Sie, dass R keine Eigenwerte besitzt.
- 6. Es sei

$$S \colon V \to V, \quad (a_n)_{n \in \mathbb{N}} \mapsto (a_{-n})_{n \in \mathbb{N}}.$$

Zeigen Sie, dass S ein Adjungiertes besitzt, und entscheiden Sie, ob R selbstadjungiert, orthogonal, bzw. normal ist.

- 7. Zeigen Sie, dass S diagonalisierbar ist.
- 8. Es sei

$$U := \{(a_n)_{n \in \mathbb{Z}} \in V \mid a_n = 0 \text{ für fast alle } n \in \mathbb{Z}\}.$$

Bestimmen Sie U^{\perp} und entscheiden Sie, ob $V = U \oplus U^{\perp}$.

9. Bestimmen Sie eine Orthonormalbasis von U.

Übung 38.

1. Zeigen Sie, dass durch

$$\sigma(A,B) \coloneqq \operatorname{tr}\left(A^TB\right) \quad \text{für alle } A,B \in \operatorname{M}_n(\mathbb{R})$$

ein Skalarprodukt auf $\mathrm{M}_n(\mathbb{R})$ definiert wird.

2. Zeigen Sie, dass die Standardbasis $(E_{ij})_{i,j=1,\dots,n}$ von $\mathrm{M}_n(\mathbb{R})$ mit

$$(E_{ij})_{kl} := \delta_{ik}\delta_{jl}$$
 für alle $1 \le i, j, k, l \le n$

eine Orthonormalbasis von $\mathrm{M}_n(\mathbb{R})$ bezüglich σ bilden.

3. Es sei

$$S_+ := \{ A \in \mathsf{M}_n(\mathbb{R}) \mid A^T = A \}$$

der Untervektorraum der symmetrischen Matrizen, und

$$S_{-} \coloneqq \{ A \in \mathrm{M}_{n}(\mathbb{R}) \mid A^{T} = -A \}$$

der Untervektorraum der schiefsymmetrischen Matrizen. Zeigen Sie, dass

$$M_n(\mathbb{R}) = S_+ \oplus S_-,$$

und dass die Summe orthogonal ist.

Übung 39.

Es sei V ein Skalarproduktraum und

$$O(V) := \{ f \in \text{End}(V) \mid ff^* = \text{id} \}.$$

Zeigen Sie, dass O(V) eine Untergruppe von $\operatorname{GL}(V)$ bildet.

Übung 40.

Zeigen sie, dass für eine Matrix $A\in \mathrm{M}_n(\mathbb{K})$ die folgenden Bedingungen äquivalent sind:

- 1. A ist invertierbar mit $A^{-1} = A^*$.
- 2. $AA^* = I$.
- 3. $A^*A = I$.
- 4. Die Spalten von A bilden eine Orthonormalbasis des \mathbb{K}^n .
- 5. Die Zeilen von A bilden eine Orthonormalbasis des \mathbb{K}^n .

Übung 41.

Es sei $A \in M_n(\mathbb{C})$.

- 1. Zeigen Sie, dass es eindeutige hermitsche Matrizen $B,C\in \mathrm{M}_n(\mathbb{C})$ mit A=B+iC gibt.
- 2. Zeigen Sie, dass A genau dann normal ist, wenn B und C kommutieren.

Übung 42.

Es sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$, und es sei $G \subseteq \mathrm{GL}(V)$ eine endliche Untergruppe.

1. Zeigen Sie, dass

$$\langle x,y\rangle_G \coloneqq \frac{1}{|G|} \sum_{\phi \in G} \langle \phi(x),\phi(y)\rangle \quad \text{für alle } x,y \in V$$

ein Skalarprodukt auf G definiert.

2. Zeigen Sie, dass $\langle \cdot, \cdot \rangle_G$ in dem Sinne G-invariant ist, dass

$$\langle \phi(x), \phi(y) \rangle = \langle x, y \rangle$$
 für alle $x, y \in V$ und $\phi \in G$.

- 3. Folgern Sie, dass es eine Basis \mathcal{B} von V gibt, so dass $M_{\mathcal{B}}(\phi)$ für alle $\phi \in G$ eine orthogonale Matrix ist.
- 4. Folgern Sie damit, dass es für $n=\dim V$ einen injektiven Gruppenhomomorphismus $\Phi\colon G\to O_n(\mathbb{R})$ gibt, G also isomorph zu der Untergruppe im Φ von $O_n(\mathbb{R})$ ist.

Übung 43.

Es sei V ein euklidischer Vektorraum. Für jedes $\alpha \in V$ mit $\alpha \neq 0$ sei

$$s_{\alpha} \colon V \to V$$
, mit $s_{\alpha}(x) \coloneqq x - 2 \frac{\langle x, \alpha \rangle}{\|\alpha\|^2} \alpha$.

Ferner seien

$$L_\alpha \coloneqq \mathbb{R}\alpha \quad \text{und} \quad H_\alpha \coloneqq L_\alpha^\perp = \alpha^\perp = \{v \in V \mid \langle v, \alpha \rangle = 0\}.$$

- 1. Zeigen Sie, dass $s_{\alpha}^2 = \mathrm{id}_V$, und dass $s_{\lambda\alpha} = s_{\alpha}$ für alle $\lambda \in \mathbb{R}^{\times}$.
- 2. Zeigen Sie, dass s_α diagonalisierbar ist, und dass

$$V_{-1}(s_{\alpha}) = L_{\alpha}$$
 und $V_{1}(s_{\alpha}) = H_{\alpha}$.

- 3. Interpretieren Sie ${\cal V}$ geometrisch anschaulich.
- 4. Es sei $s' \colon V \to V$ ein Endomorphismus mit $s'(\alpha) = -\alpha$ und s'(x) = x für alle $x \in H_{\alpha}$. Zeigen Sie, dass bereits $s' = s_{\alpha}$ gilt.

5. Zeigen Sie, dass für jeden orthogonalen Isomorphismus $t\colon V\to V$ die Identität

$$ts_{\alpha}t^{-1} = s_{t(\alpha)}$$

gilt.

Übung 44.

Es sei V ein endlichdimensionaler unitärer Vektorraum. Zeigen Sie, dass für eine lineare Abbildung $S\colon V\to V$ die folgenden Bedingungen äquivalent sind:

- 1. S ist normal.
- 2. V hat eine Orthonormalbasis aus Eigenvektoren von S.
- 3. Für jeden S-invarianten Untervektorraum $U\subseteq V$ ist auch das orthogonale Komplement U^\perp invariant unter S.

Übung 45.

Es sei V ein endlichdimensionaler Skalarproduktraum über \mathbb{K} . Zeigen Sie, dass

$$\langle f, g \rangle := \operatorname{tr}(f \circ g^*)$$

ein Skalarprodukt auf $\operatorname{End}_{\mathbb{K}}(V)$ definiert.

Übung 46.

Es sei det: $M_n(\mathbb{C}) \to \mathbb{C}^{\times}$ die Determinantenabbildung, wobei \mathbb{C}^{\times} die multiplikative Gruppe des Körpers bezeichnet.

- 1. Zeigen Sie, dass det ein surjektiver Gruppenhomomorphismus ist.
- 2. Bestimmen Sie den Kern von det.
- 3. Bestimmen Sie Bild und Kern der Einschränkung det $|_{\mathrm{GL}_n(\mathbb{R})}$.
- 4. Bestimmen Sie Bild und Kern der Einschränkung det $|_{U_n}$.
- 5. Bestimmen Sie Bild und Kern der Einschränkung det $|_{{\cal O}_n}.$

Übung 47.

Es sei

$$\Phi \colon SU_2 \to S^3, \quad \begin{pmatrix} a & b \\ c & \end{pmatrix} \mapsto \begin{pmatrix} a \\ b \end{pmatrix}$$

die Abbildung auf die erste Spalte, wobei

$$S^3 := \left\{ \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2 \, \middle| \, |z_1|^2 + |z_2|^2 = 1 \right\}.$$

1. Zeigen Sie, dass Φ wohldefiniert ist.

2. Zeigen Sie, dass Φ bijektiv ist.

Übung 48.

Zeigen Sie, dass die drei Gruppen SO_2 , S^1 und U_1 isomorph sind.

Übung 49

Ist $\beta \colon V \times W \to K$ eine Bilinearform, so heißen eine Basis $\mathcal{B} = (v_i)_{i \in I}$ von V und eine Basis $\mathcal{C} = (w_i)_{i \in I}$ von W dual bezüglich β , falls

$$\beta(v_i, w_j) = \delta_{ij}$$
 für alle $i, j \in I$.

Es sei zunächst V ein K-Vektorraum.

1. Zeigen Sie, dass die Evaluation

$$e \colon V \times V^* \to K \quad \text{mit} \quad e(v, \varphi) = \varphi(e)$$

eine K-bilineare Abbildung ist.

2. Zeigen Sie im Falle der Endlichdimensionalität von V, dass es zu jeder Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V genau eine Basis \mathcal{C} von V^* gibt, die bezüglich e dual zu \mathcal{B} ist. Woher kennen Sie diese Basis?

Von nun an sei V ein endlichdimensionaler euklidischer Vektorraum mit Skalarprodukt $\langle \cdot, \cdot \rangle$.

3. Zeigen Sie, dass die Abbildung

$$\Phi \colon V \to V^*, \quad v \mapsto \langle -, v \rangle$$

ein Isomorphismus ist.

- 4. Folgern Sie, dass es für jede Basis $\mathcal{B}=(b_1,\ldots,b_n)$ von V genau eine Basis $\mathcal{B}^\circ=(b_1^\circ,\ldots,b_n^\circ)$ von V gibt, die bezüglich $\langle\cdot,\cdot\rangle$ dual zu \mathcal{B} ist. (*Hinweis*: Formulieren Sie die Aussage, dass \mathcal{C} dual zu \mathcal{B} ist, mithilfe von Φ um.)
- 5. Zeigen Sie, dass für jede Basis $\mathcal B$ von V die Gleichheit $(\mathcal B^\circ)^\circ=\mathcal B$ gilt. Folgern Sie, dass die Abbildung

$$\{\text{geordnete Basen von }V\} \to \{\text{geordenet Basen von }V\}\,,\quad \mathcal{B}\mapsto \mathcal{B}^\circ$$

bijektiv ist.

6. Unter welchen Namen kennen Sie Basen von V, die bezüglich $(-)^{\circ}$ selbstdual sind, die also $\mathcal{B}^{\circ} = \mathcal{B}$ erfüllen?

Übung 50.

Es sei V ein K-Vektorraum und $\beta \colon V \times V \to K$ eine symmetrische Bilinearform.

1. Zeigen Sie, dass

$$rad(\beta) := \{ v \in V \mid \beta(v, w) = 0 \text{ für alle } w \in V \}$$

ein Untervektorraum von V ist. (Man bezeichnet $rad(\beta)$ als das Radikal von β .)

2. Zeigen Sie, dass β eine symmetrische Bilinearform $\bar{\beta} \colon (V/U) \times (V/U) \to K$ mit

$$\bar{\beta}([v],[w]) \coloneqq \beta(v,w)$$
 für alle $v,w \in V$

induziert.

3. Zeigen Sie, dass $\bar{\beta}$ nicht entartet ist, d.h. dass für das Radikal

$$\operatorname{rad}(\bar{\beta}) := \{ x \in V/U \mid \bar{\beta}(x,y) = 0 \text{ für alle } y \in V/U \}$$

bereits $rad(\bar{\beta}) = 0$ gilt.

4. Inwiefern gelten die obigen Aussagen noch, wenn man U durch

$$W \coloneqq \{ v \in V \mid \beta(v, v) = 0 \}$$

ersetzt?

Übung 51.

Für je zwei K-Vektorräume V und W sei

$$Bil(V, W) := \{b \colon V \times W \to K \mid b \text{ ist bilinear}\}\$$

der Raum der Bilinearformen $V \times W \to K$.

1. Zeigen Sie, dass die Flipabbildung

$$F : Bil(V, W) \to Bil(W, V), \quad b \mapsto F(b) \quad mit \quad F(b)(w, v) = b(v, w)$$

ein Isomorphismus von K-Vektorräumen ist.

2. Es sei $b \in Bil(V, W)$ eine Bilinearform. Zeigen Sie, dass b ein lineare Abbildung

$$\Phi_{V,W}(b) \colon V \to W^*, \quad v \mapsto b(v,-)$$

induziert. Dabei ist

$$b(v, -): W \to K, \quad w \mapsto b(v, w).$$

3. Zeigen Sie, dass die Abbildung

$$\Phi_{V,W} \colon \operatorname{Bil}(V,W) \to \operatorname{Hom}(V,W^*), \quad b \mapsto \Phi_{V,W}(b)$$

ein Isomorphismus von K-Vektorräumen ist.

4. Geben Sie mithilfe der vorherigen Aufgabenteile explizit einen Isomorphismus

$$\operatorname{Hom}(V, W^*) \to \operatorname{Hom}(W, V^*)$$

an.

Wir betrachten nun den Fall $W = V^*$.

5. Zeigen Sie, dass die Evaluation

$$e: V \times V^* \to K, \quad (v, \varphi) \mapsto \varphi(v)$$

eine Bilinearform ist.

- 6. Nach den vorherigen Aufgabenteilen entspricht die Bilinearform e einer linearen Abbildung $V \to V^{**}$, sowie einer linearen Abbildung $V^* \to V^*$. Bestimmen Sie diese Abbildungen.
- 7. Woher kennen Sie diese Abbildung?

Übung 52

Es seien V und W zwei K-Vektorräume und $f \colon V \to W$ eine lineare Abbildung.

- 1. Geben Sie die Definition der dualen Abbildung $f^*\colon W^*\to V^*$ an, und zeigen Sie ihre Linearität.
- 2. Zeigen Sie für jeden K-Vektorraum U, dass die Abbildung

$$\langle\cdot,\cdot\rangle\colon U\times U^*\to K\quad\text{mit}\quad \langle v,\varphi\rangle=\varphi(v)\quad\text{für alle }v\in V,\varphi\in V^*$$

eine Bilinearform ist.

3. Zeigen Sie, dass

$$\langle f(v), \psi \rangle = \langle v, f^*(\psi) \rangle$$
 für alle $v \in V, \psi \in W^*$.

Übung 53.

1. Zeigen Sie, dass die Abbildung

$$\sigma \colon \mathrm{M}_n(K) \times \mathrm{M}_n(K) \to K \quad \mathrm{mit} \quad \sigma(A,B) \coloneqq \mathrm{tr}(AB)$$

eine symmetrische Bilinearform ist. Man bezeichnet diese als die Traceform.

2. Zeigen Sie, dass σ in dem Sinne assoziativ ist, dass

$$\sigma(AB,C)=\sigma(A,BC)\quad \text{für alle }A,B,C\in \mathrm{M}_n(K).$$

3. Zeigen sie, dass σ nicht entartet ist, d.h. dass es für jedes $A \in \mathrm{M}_n(K)$ mit $A \neq 0$ ein $B \in \mathrm{M}_n(K)$ mit $\sigma(A,B) \neq 0$ gibt.

Übung 54.

Es sei V ein endlichdimensionaler K-Vektorraum, $b: V \times V \to K$ eine Bilinearform, $\mathcal{B} = (b_1, \ldots, b_n)$ eine Basis von V, und $\mathcal{B}^* = (b_1^*, \ldots, b_n^*)$ die entsprechende duale Basis von V^* .

1. Zeigen Sie, dass die Abbildung

$$B \colon V \to V^*, \quad v \mapsto b(-, v)$$

K-linear ist.

2. Zeigen Sie die Gleihheit

$$M_{\mathcal{B}}(b) = M_{\mathcal{B},\mathcal{B}^*}(B).$$

(Beachten Sie, dass auf der linken Seite die darstellende Matrix einer Bilinearform steht, und auf der rechten Seite die darstellende Matrix einer linearen Abbildung.)

Übung 55.

Das Zentrum eines Rings R ist definiert als

$$Z(R) := \{r \in R \mid rs = sr \text{ für alle } s \in R.$$

Man bemerke, dass R genau dann kommutativ ist, wenn Z(R)=R. Wir werden $Z(\mathrm{M}_n(K))$ bestimmen. Hierfür sei

$$D_n(K) := KI = \{\lambda I \mid \lambda \in K\}$$

der Untervektorraum der Skalarmatrizen.

- 1. Zeigen Sie, dass $D_n(K) \subseteq Z(M_n(K))$.
- 2. Zeigen Sie für $A \in Z(M_n(K))$, dass A eine Diagonalmatrix ist. (*Hinweis*: Betrachten Sie die Matrizen E_{ii} für $1 \le i \le n$.)
- 3. Zeigen Sie ferner, dass alle Diagonaleinträge von A bereits gleich sind. (*Hinweis*: Betrachten Sie die Matrizen E_{ij} mit $1 \le i, j \le n$.)
- 4. Folgern Sie, dass $Z(M_n(K)) = D_n(K)$.

Übung 56.

Es sei V ein endlichdimensionaler \mathbb{C} -Vektorraum, und es seien $K,E\colon V\to V$ zwei Endomorphismen mit

K ist invertier bar und KE = 2EK.

1. Zeigen Sie, dass

$$(K - 2\lambda \operatorname{id}_V)^n E = 2^n E(K - \lambda \operatorname{id}_V)^n$$

für alle $n \in \mathbb{N}$.

2. Folgern Sie, dass $E(V_{\lambda}^{\sim}(K))\subseteq V_{2\lambda}^{\sim}(K)$ für alle $\lambda\in\mathbb{C}.$

3. Folgern Sie, dass E nilpotent ist.

Übung 57.

Es sei V ein K-Vektorraum und $m\colon V\times V\to V$ eine bilineare Abbildung. Eine lineare Abbildung $D\colon V\to V$ heißt m-Derivation, falls

$$D(m(x,y)) = m(D(x),y) + m(x,D(y))$$
 für alle $x,y \in V$.

Es sei

$$Der(m) := \{D : V \to V \mid D \text{ ist eine } m\text{-Derivation}\}.$$

1. Zeigen Sie für den Fall V = K[X] und die Multiplikation

$$m(p,q) := p \cdot q$$
 für alle $p, q \in K[X]$,

dass die Ableitung

$$D \colon K[X] \to K[X], \quad \sum_{d=0}^{n} a_d X^d \mapsto \sum_{d=1}^{n} a_d dX^{d-1}$$

eine m-Derivation ist. Unter welchem Namen ist dieser Umstand für gewöhnlich bekannt?

- 2. Zeigen Sie, dass $\mathrm{Der}(m)$ ein Untervektorraum von $\mathrm{End}(V)$ ist.
- 3. Zeigen Sie, dass Der(m) eine Lie-Unteralgebra von End(V) ist, d.h. dass für alle $D_1, D_2 \in Der(m)$ auch $[D_1, D_2] \in Der(m)$.

Übung 58.

Es sei V ein K-Vektorrraum und $[-,-]\colon V\times V\to V$ eine alternierend bilineare Abbildung. Für jedes $x\in V$ sei

$$\operatorname{ad}_x := [x, -] \colon V \to V, \quad y \mapsto [x, y].$$

Zeigen Sie, dass die folgenden beiden Aussagen äquivalent sind:

1. [-,-] erfüllt die Jacobi-Identität, d.h. es ist

$$[[x,y],z] + [[y,z],x] + [[z,y],x] = 0$$
 für alle $x,y,z \in V$.

2. Es gilt

$$\mathrm{ad}_x([y,z]) = [\mathrm{ad}_x(y),z] + [y,\mathrm{ad}_x(z)] \quad \text{für alle } x,y,z \in V.$$

(Für jedes $x \in V$ ist also ad_x eine Derivation bezüglich [-,-].)

Übung 59.

Es seien E und H zwei Endomorphismen eines \mathbb{C} -Vektorraums V, so dass [H, E] = 2E.

- 1. Zeigen Sie, dass $E(V_{\lambda}(H)) \subseteq V_{\lambda+2}(H)$ für alle $\lambda \in K$.
- 2. Folgern Sie: Ist V endlichdimensional und H diagonalisierbar, so ist E nilpotent.

Übung 60.

Für einen endlichdimensionalen \mathbb{K} -Vektorraum V und eine Bilinearform $\beta \colon V \times V \to \mathbb{K}$ sei

$$O(\beta) := \{ \phi \in GL(V) \mid \beta(\phi(x), \phi(y)) = \beta(x, y) \text{ für alle } x, y \in V \}$$

die Isometriegruppe von β , und

$$\mathfrak{g}(\beta) \coloneqq \{f \in \operatorname{End}(V) \mid \beta(f(x), y) = -\beta(x, f(y)) \text{ für alle } x, y \in V\}$$

die assoziierte Lie-Algebra.

- 1. Zeigen Sie, dass $O(\beta)$ eine Untergruppen von GL(V) ist.
- 2. Zeigen Sie, dass $\mathfrak{g}(\beta)$ eine Lie-Unteralgebra von $\mathfrak{gl}(V)$ ist, d.h. dass für alle $f,g\in\mathfrak{g}(\beta)$ auch $[f,g]\in\mathfrak{g}(\beta)$.
- 3. Zeigen Sie, dass $\exp(f) \in O(\beta)$ für alle $f \in \mathfrak{g}(\beta)$. (*Hinweis*: Die bilineare Abbildung β ist in beiden Argumenten stetig.)
- 4. Es sei $\mathbb{K} = \mathbb{R}$ und $\langle \cdot, \cdot \rangle$ ein Skalarprodukt auf V. Unter welchen Begriffen sind die Elemente aus $G(\langle \cdot, \cdot \rangle)$ und $\mathfrak{g}(\langle \cdot, \cdot \rangle)$ bekannt?