Revisiting the Classics: Online RL in the Programmable Dataplane

Kyle A. Simpson, Dimitrios P. Pezaros

♠ FelixMcFelix
♠ https://mcfelix.me

Scottish Autonomous Networked Systems Event 12th December, 2022

University of Glasgow

Data-driven networking: RL in networks

Data-driven networking: Automate control, optimisation, configuration of the network.

- · Flow performance optimisation.
- · Resource allocation.
- · Adaptive response to load, intrusions, etc.
- Feedback loop-like.

Why programmable data-planes?

Figure 1: Asynchronous RL delays and state slippage (policy updates omitted).

- In data-driven, want to minimise time to act.
- RL assumes that action & policy update are zero-cost.
 - Not so in real deployments!
 - State drift, etc.
- Controller contact time, serialisation, ...
- In other ML, often need line rate inference.
- Programmable network hardware fills this niche. 3/17

Recent Programmable Trends in Data-Driven Networks

- ML acceleration, line-rate packet classification.
- How? Train model off-NIC, convert to binary neural network¹, or decision tree².
- Bespoke architectures like *Taurus*³.
- Limits? No online training, cost of backprop algo (expensive!), vast data needs.
- · What if we need online learning?
 - Can't offload to controller: PCIe access times $\mathcal{O}(\mu s)$ (10 × for intra-VM).

¹Siracusano et al., 'Running Neural Networks on the NIC'.

²Xiong and Zilberman, 'Do Switches Dream of Machine Learning?: Toward In-Network Classification'.

³Swamy et al., 'Taurus: An Intelligent Data Plane'.

How do we bring online, in-NIC RL?

Device Cores/Area allocated to P4

Spare Device Cores/Area

- Classical RL built on tile-coding—online.
- Fixed-point arithmetic.
- · Async wrt. datapath.
- Dynamic selection of last reward, trace info.
- Runtime configurable (policy, size, application) from data/control-plane. Task independent.

Background and Design

A primer on the Netronome NFP

- · PCIe NIC @ 40-100 Gbit/s.
- · NPU-type device—many weak cores.
- One program per core, cooperative scheduling between HW threads.
- · Programming Model:
 - (P4) -> μ C -> Proprietary ASM.
 - Explicit locality of compute & memory.

Single-step (classical) RL—Sarsa

A simple explanation:

How to select an action? Pick largest from list: $\hat{\mathbf{q}}(S_t,\cdot,\mathbf{w}_t)$

How should we adjust the value of selected items?

New target value:
Reward+some of the next action's value
$$\delta_t = \overbrace{R_{t+1} + \gamma \, \hat{\mathbf{q}}(S_{t+1}, A_{t+1}, \mathbf{w}_t)}^{\text{New target value:}} - \underbrace{\hat{\mathbf{q}}(S_t, A_t, \mathbf{w}_t)}_{\text{Current value estimate}},$$

Policy parameter update:

Move a little bit of
$$\delta_t$$
 along...
$$\mathbf{W}_{t+1} = \mathbf{W}_t + \overbrace{\alpha \delta_t} \nabla \hat{\mathbf{q}}(S_t, A_t, \mathbf{W}_t).$$
...the policy's gradient

Design implications?

Tile Coding

$$s = \begin{pmatrix} 0.7 \\ 0.3 \end{pmatrix} \qquad \begin{array}{c} \text{Tiling 1} \\ 1 \\ \text{Tiling 2} \end{array}$$

$$x(s, \cdot) = \begin{cases} T_{1,9}, \\ T_{2,5}, \\ T_{bias} \end{cases} \qquad \begin{array}{c} S \\ \text{Tiling 2} \end{array}$$

- Operations? $+, -, \times, \div$
 - PoT tile width? ÷ replaced w/ shift.
- Tiling set: identical dimensions, different shifts
- Gradient for RL?
 - · List of hit tiles.
- · Can be more complex...

Tile Coding: Parallelism

Tile Coding: Parallelism (ii)

Designs: How to exploit on-NIC parallelism?

- Netronome SmartNICs very multi-core (NFP-6480).
 - · NetFPGAs also allow creating separate, effectively async functional units.
- Two ways to take advantage:
 - Available threads process Independently. (data parallel)
 - Available threads CoOperate on each inference or learning task. (model parallel)
- Basic algorithm:
 - · (Parallel) action compute.
 - · Output action.
 - · Check for trace in progress for this input.
 - If found: compute δ , do (parallel) policy update.

Designs: CoOp (on NFP)

Evaluation

Metrics of interest

Versus commodity hosts...

- State-Action/Update latency
- Online/Offline throughput
- Impact on cross-traffic
- Device resource use, task scheduling performance, reconfigurability... <SEE PAPER>

On large-ish policies (20D state, 10 actions, bias+ $(7\times1D, 8\times2D, 1\times4D)$).

Latency

Datatype	Machine/FW	State-A	Action Laten	cy (µs)	State-Update Time (µs)			
		Median	Median 99 th 99.99 th		Median	99 th	99.99 th	
Float	Collector	515.94	606.06	725.03	606.06	636.82	833.99	
	MidServer	1069.07	1125.1	1508.0	1260.04	1605.99	1719.864	
Int32	OPaL-Ind	185.133	185.533	186.213	230.840	231.347	232.227	
	OPaL-CoOp	34.347	34.520	34.573	62.000	62.440	63.120	

Lower latency with just one (slower) core.

One NFP island \implies 15 × median S \rightarrow A speedup.

Far tighter tail than host offload!

Latency—Core Count

Figure 2: OPaL action and update latencies based on worker count (crossover at 3-core, 8-core).

Throughput

Datatype	Machine/FW	Workers	Throughput (I	k actions/s)	Throughput/core (k actions/s)		
			Offline	Online	Offline	Online	
Float	Collector	4	7.673(49)	1.627(31)	1.918(12)	_	
	MidServer	6	5.584(30)	0.791(12)	0.931(5)	_	
Int32	OPaL-Ind	32	172.875(229)	4.333(5)	5.402(7)	_	
	OPaL- <i>CoOp</i>	32	29.166(173)	16.141(73)	0.911(5)	0.504(2)	

In-NIC and quantised offers higher throughput per core.

Parallel Sarsa key to maximising online throughput.

Impact on cross-traffic

Figure 3: Effects on tail latency of cross-traffic—typically sub-78 ns.

Takeaways:

Online in-NIC RL is possible!

Order-of-magnitude latency improvement over offloading, higher online throughput.

Platform-specific, but similar design for SmartNIC hardware class.

Future work: use-cases (AQM, DDoS prevention & accuracy), NetFPGA, transfer learning.

Questions?

Examining Tail Latencies

Figure 4: Cumulative state-action latency plots for OPaL and host-based execution.

Network deployment/configurability

• *Ind*: 27 μs

• *CoOp*: 54–238 μs

New policy data? Just memcopies.

· Only design, bit depth, max policy sizes need recompile.

 Can mix and match agent types in the network, export learned policy over control plane.

Feasibility on other architectures?

- · Tofino etc.? Unlikely.
- Taurus?⁴ Exec model almost right, but read-only.
- FPGA? Probably an effective match to this model + algorithm.
- · Research gap: hardware architectures built to collate and apply batches of samples, gradient updates?

⁴Swamy et al., 'Taurus: An Intelligent Data Plane'.

Latency—Bit Depth

Figure 5: OPaL action and update latencies based on work size (crossover at 3-dim, 10-dim).

Scheduler performance

Figure 6: Action/update compute times in a 32 bit CoOp agent under different work schedulers.

Per-worker throughput

Figure 7: Throughput per added worker in a CoOp agent.

Latency—All OPaL

Datatype	Machine/FW	State-	Action Laten	cy (µs)	State-Update Time (µs)				
		Median	99 th	99.99 th	Median	99 th	99.99 th		
Float	Collector	515.94	15.94 606.06 725		606.06	636.82	833.99		
	MidServer	1069.07 1125.1		1508.0	1508.0 1260.04		1719.864		
Int32	OPaL-Ind	185.133	185.533	186.213	230.840	231.347	232.227		
	OPaL-CoOp	34.347	34.520	34.573	62.000	62.440	63.120		
Int16	OPaL-Ind	193.427	193.787	194.587	240.333	240.840	241.560		
	OPaL-CoOp	36.147	36.240	36.280	64.667	65.080	65.973		
Int8	OPaL-Ind	194.520	194.840	195.240	241.173	241.707	242.760		
	OPaL-CoOp	36.227	36.307	36.347	64.333	64.867	65.693		

Throughput—All OPaL

Datatype	Machine/FW	Workers	Throughput (k actions/s)	Throughput/core (k actions/s)		
			Offline	Online	Offline	Online	
Float	Collector	4	7.673(49)	1.627(31)	1.918(12)	_	
	MidServer	6	5.584(30)	0.791(12)	0.931(5)	_	
Int32	OPaL-Ind	32	172.875(229)	4.333(5)	5.402(7)	_	
	OPaL-CoOp	32	29.166(173)	16.141(73)	0.911(5)	0.504(2)	
Int16	OPaL-Ind	32	165.437(118)	4.161(4)	5.170(4)	_	
	OPaL-CoOp	32	27.664(36)	15.471(54)	0.865(1)	0.483(2)	
Int8	OPaL-Ind	32	164.524(142)	4.147(5)	5.141(4)	_	
	OPaL-CoOp	32	27.631(101)	15.552(68)	0.863(3)	0.486(2)	

Resource Use

Firmware	EMEM		EMEM Cache		IMEM		i5.CLS		i5.CTM	
	MiB	%	KiB	%	KiB	%	KiB	%	KiB	%
Base P4	6776.67	88.24	268.52	2.91	858.28	10.48	0.00	0.00	0.00	0.00
<i>Ind</i> (1)	6780.21	88.28	2541.08	27.57	1263.28	15.42	24.75	38.67	94.25	36.82
Ind(4)	6780.22	88.28	2545.33	27.62	1263.28	15.42	51.18	79.97	107.00	41.80
CoOp(1)	6779.12	88.27	1773.59	19.24	1263.28	15.42	22.41	35.01	90.00	35.16
CoOp(4)	6779.12	88.27	1769.84	19.20	1263.28	15.42	52.16	81.49	90.00	35.16

References i

Cziva, Richard and Dimitrios P. Pezaros. 'Container Network Functions: Bringing NFV to the Network Edge'. In: IEEE Commun. Mag. 55.6 (2017), pp. 24–31. DOI: 10.1109/MCOM.2017.1601039. URL: https://doi.org/10.1109/MCOM.2017.1601039.

Neugebauer, Rolf, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio López-Buedo and Andrew W. Moore. 'Understanding PCIe performance for end host networking'. In: *Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018.* Ed. by Sergey Gorinsky and János Tapolcai. ACM, 2018, pp. 327–341. DOI: 10.1145/3230543.3230560. URL: https://doi.org/10.1145/3230543.3230560.

References ii

Swamy, Tushar, Alexander Rucker, Muhammad Shahbaz and Kunle Olukotun. 'Taurus: An Intelligent Data Plane'. In: *CoRR* abs/2002.08987 (2020). arXiv: 2002.08987. URL: https://arxiv.org/abs/2002.08987.

References iii

Xiong, Zhaoqi and Noa Zilberman. 'Do Switches Dream of Machine Learning?: Toward In-Network Classification'. In: *Proceedings of the 18th ACM Workshop on Hot Topics in Networks, HotNets 2019, Princeton, NJ, USA, November 13-15, 2019.* ACM, 2019, pp. 25–33. ISBN: 978-1-4503-7020-2. DOI:

10.1145/3365609.3365864. URL:

https://doi.org/10.1145/3365609.3365864.