NEURONS GD / SGD For Linear Neuron (Linear activation)

GD	SGD
(X, d)	(\boldsymbol{x}_p, d_p)
$J = \frac{1}{2} \sum_{p=1}^{P} (d_p - y_p)^2$	$J = \frac{1}{2} \left(d_p - y_p \right)^2$
$y = u = Xw + b1_P$	$y_p = u_p = \boldsymbol{x}_p{}^T \boldsymbol{w} + b$
$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \boldsymbol{X}^T (\boldsymbol{d} - \boldsymbol{y})$	$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha (d_p - y_p) \boldsymbol{x}_p$
$b \leftarrow b + \alpha 1_P{}^T (\boldsymbol{d} - \boldsymbol{y})$	$b \leftarrow b + \alpha (d_p - y_p)$

GD / SGD For Perceptron (Sigmoid activation)

SGD
(x_p, d_p)
$J = \frac{1}{2} \left(d_p - y_p \right)^2$
$u_p = \boldsymbol{x}_p^T \boldsymbol{w} + b$
$y_p = f(u_p)$
$\mathbf{w} = \mathbf{w} + \alpha (d_p - y_p) f'(u_p) \mathbf{x}_p$
$b = b + \alpha (d_p - y_p) f'(u_p)$

GD / SGD For Logistic Regression Neuron (Sigmoid Activation)

GD	SGD
(X, d)	(x_p, d_p)
$J = -\sum_{p=1}^{p} d_p \log \left(f(u_p) \right) + (1 - d_p) \log \left(1 - f(u_p) \right)$	$J_p = -d_p log \left(f(u_p) \right) - (1 - d_p) log \left(1 - f(u_p) \right)$
$\boldsymbol{u} = \boldsymbol{X}\boldsymbol{w} + b\boldsymbol{1}_P$	$u_p = \boldsymbol{w}^T \boldsymbol{x}_p + b$
$f(\boldsymbol{u}) = \frac{1}{1 + e^{-\boldsymbol{u}}}$	$f(u_p) = \frac{1}{1 + e^{-u_p}}$
y = 1(f(u) > 0.5)	$y_p = 1(f(u_p) > 0.5)$
$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \boldsymbol{X}^T (\boldsymbol{d} - f(\boldsymbol{u}))$	$\boldsymbol{w} \leftarrow \boldsymbol{w} + \alpha \left(d_p - f(u_p) \right) \boldsymbol{x}_p$
$b \leftarrow b + \alpha 1_{P}^{T} (\boldsymbol{d} - f(\boldsymbol{u}))$	$b \leftarrow b + \alpha \left(d_p - f(u_p) \right)$

LAYERS

SGD / GD For a Single layer of neurons

Learning a layer of neurons	
SGD	$W = W - \alpha x (\nabla_{u} J)^{T}$ $b = b - \alpha \nabla_{u} J$
GD	$W = W - \alpha X^T \nabla_U J$ $b = b - \alpha (\nabla_U J)^T 1_P$

GD / SGD For a perceptron (sigmoid activation) layer - compare Perceptron!

3D 7 33D 1 31 a perception (significant activation) layer - compare 1 creeptions		
GD	SGD	
(X, D)	(x,d)	
U = XW + B	$u = W^T x + b$	
Y = f(U)	y = f(u)	
$\nabla_{\boldsymbol{U}}J = -(\boldsymbol{D} - \boldsymbol{Y}) \cdot f'(\boldsymbol{U})$	$\nabla_{\boldsymbol{u}} J = -(\boldsymbol{d} - \boldsymbol{y}) \cdot f'(\boldsymbol{u})$	
$\boldsymbol{W} = \boldsymbol{W} - \alpha \boldsymbol{X}^T \nabla_{\boldsymbol{U}} \boldsymbol{J}$	$\mathbf{W} = \mathbf{W} - \alpha \mathbf{x} (\nabla_{\mathbf{u}} J)^T$	
$\boldsymbol{b} = \boldsymbol{b} - \alpha (\nabla_{\boldsymbol{U}} J)^T 1_P$	$\boldsymbol{b} = \boldsymbol{b} - \alpha \nabla_{\boldsymbol{u}} J$	

GD / SGD For Softmax Layer - Compare Logistic Regression (discrete output at end)

at enu)	
GD	SGD
(X,D)	(x,d)
U = XW + B	$u = W^T x + b$
$f(\boldsymbol{U}) = \frac{e^{\boldsymbol{U}}}{\sum_{k'=1}^{K} e^{\boldsymbol{U}_{k'}}}$	$f(\boldsymbol{u}) = \frac{e^{u_k}}{\sum_{k'=1}^K e^{u_{k'}}}$
$y = \underset{k}{\operatorname{argmax}} f(U)$	$y = \operatorname*{argmax}_{k} f(\boldsymbol{u})$
$\nabla_{\boldsymbol{U}}J = -\big(\boldsymbol{K} - f(\boldsymbol{U})\big)$	$\nabla_{\mathbf{u}}J = -(1(\mathbf{k} = d) - f(\mathbf{u}))$
$\boldsymbol{W} = \boldsymbol{W} - \alpha \boldsymbol{X}^T \ \nabla_{\boldsymbol{U}} \boldsymbol{J}$	$\boldsymbol{W} = \boldsymbol{W} - \alpha \boldsymbol{x} (\nabla_{\boldsymbol{u}} \boldsymbol{J})^T$
$\boldsymbol{b} = \boldsymbol{b} - \alpha (\nabla_{\boldsymbol{U}} J)^T 1_P$	$\boldsymbol{b} = \boldsymbol{b} - \alpha \nabla_{\boldsymbol{u}} J$

$$\frac{d}{du} sigmoid(u) = y(1 - y). \quad y = \frac{1}{1 + e^{-u}}$$

$$\frac{d}{du}tanh(u) = 1 - y^2, \ \ y = \frac{e^u - e^{-u}}{e^u + e^{-u}}$$

$$W_i \sim U(-a,a), \ a = gain \times \sqrt{\frac{6}{n_{in}+n_{out}}}$$

 $w_i \sim N(0, \frac{gain}{n}), n = num \text{ weights in neuron}$

Gain scale depending on the neuron activation function

activation	linear	sigmoid	Tanh	ReLU	Leaky ReLU
gain	1	1	5/3	√2	$\sqrt{\frac{1}{1 + slope^2}}$

GD / SGD in Two Layer FFN (two layers, V weights and c bias for second layer)

GD	SGD
(X, D)	(x, d)
Z = XW + B	$\boldsymbol{z} = \boldsymbol{W}^T \boldsymbol{x} + \boldsymbol{b}$
$H = g(\mathbf{Z})$	$\boldsymbol{h} = g(\mathbf{z})$
U = HV + C	$\boldsymbol{u} = \boldsymbol{V}^T \boldsymbol{h} + \boldsymbol{c}$
Y = f(U)	y = f(u)
$\nabla_{\boldsymbol{U}} J = \begin{cases} -(\boldsymbol{D} - \boldsymbol{Y}) \\ -(\boldsymbol{K} - f(\boldsymbol{U})) \end{cases}$	$\nabla_{\boldsymbol{u}} J = \begin{cases} -(\boldsymbol{d} - \boldsymbol{y}) \\ (1(\boldsymbol{k} = d) - f(\boldsymbol{u})) \end{cases}$
$\nabla_{\mathbf{Z}}J = (\nabla_{\mathbf{U}}J)\mathbf{V}^T \cdot g'(\mathbf{Z})$	$\nabla_{\mathbf{z}}J = \mathbf{V}\nabla_{\mathbf{u}}J \cdot g'(\mathbf{z})$
$\boldsymbol{W} \leftarrow \boldsymbol{W} - \alpha \boldsymbol{X}^T \ \nabla_{\boldsymbol{Z}} \boldsymbol{J}$	$\boldsymbol{W} \leftarrow \boldsymbol{W} - \alpha \boldsymbol{x} (\nabla_{\!\mathbf{z}} \boldsymbol{J})^T$
$\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha (\nabla_{\mathbf{Z}} J)^T 1_P$	$\boldsymbol{b} \leftarrow \boldsymbol{b} - \alpha \nabla_{\mathbf{z}} J$
$\mathbf{V} \leftarrow \mathbf{V} - \alpha \mathbf{H}^T \ \nabla_{\mathbf{U}} \mathbf{J}$	$\mathbf{V} \leftarrow \mathbf{V} - \alpha \mathbf{h} (\nabla_{\mathbf{u}} \mathbf{J})^T$
$\boldsymbol{c} \leftarrow \boldsymbol{c} - \alpha (\nabla_{\boldsymbol{U}} J)^T 1_P$	$c \leftarrow c - \alpha \nabla_{u} J$

Adam - Combines RMSprop and moment methods Suggested defaults alpha=0.001, rho1=0.9, rho2=0.999, eps=10^-8

Momentum term:

$$s \leftarrow \rho_1 s + (1 - \rho_1) \nabla_W J$$

$$r \leftarrow \rho_2 r + (1 - \rho_2) (\nabla_W J)^2$$

$$s \leftarrow \frac{s}{1 - \rho_1}$$

$$r \leftarrow \frac{r}{1 - \rho_2}$$

$$W \leftarrow W - \frac{\alpha}{\varepsilon + \sqrt{r}} \cdot s$$

Batch Normalization

$$\mu_j = \frac{1}{N} \sum_{i=1}^N x_{i,i}$$

Per-channel mean, shape is $1 \times D$

$$\sigma_j^2 = \frac{1}{N} \sum_{i=1}^{N} (x_{i,j} - \mu_j)^2$$

Per-channel variance, shape is $1 \times D$

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \epsilon}}$$

Normalize the values, shape is $N \times D$

$$y_{i,j} = \gamma_j \hat{x}_{i,j} + \beta_j$$

Scale and shift the normalized values to add flexibility, output shape is $N \times D$

Learnable parameters: γ and β , shape is $1 \times D$

LSTM Cell

Key of LSTM is "state"

- A persistent module called the cell-state
- "State" is a representation of past history
- It comprises a common thread through time

First Step

Calculate the Query, Key, and Value matrices.

Pack our embeddings into a matrix X, and multiplying it by the weight matrices we've trained (W^Q , W^K , W^V)

Second Step

Calculate the outputs of the self-attention layer. SoftMax is row-wise

