CMP 694 Graph Theory Hacettepe University

Lecture 7: Vertex Coloring and Upper Bounds

Lecturer: Lale Özkahya

Resources:

"Introduction to Graph Theory" by Douglas B. West

Outline

1 Vertex Coloring and Upper Bounds

2 Edge Coloring

k-coloring of a graph *G*: A labeling $f: V(G) \implies S$, where |S| = k. The vertices of the same color form a color class.

k-coloring of a graph *G*: A labeling $f:V(G) \Longrightarrow S$, where |S|=k. The vertices of the same color form a color class.

proper coloring: A coloring, where any two neighboring vertices have different colors

k-coloring of a graph G: A labeling $f:V(G) \Longrightarrow S$, where |S|=k. The vertices of the same color form a color class.

proper coloring: A coloring, where any two neighboring vertices have different colors

k-colorable: A graph is k-colorable if it has a proper k-coloring.

k-coloring of a graph G: A labeling $f: V(G) \implies S$, where |S| = k. The vertices of the same color form a color class.

proper coloring: A coloring, where any two neighboring vertices have different colors

k-colorable: A graph is k-colorable if it has a proper k-coloring.

chromatic number of a graph G, $\chi(G)$: The least k such that G is k-colorable.

k-coloring of a graph *G*: A labeling $f:V(G) \Longrightarrow S$, where |S|=k. The vertices of the same color form a color class.

proper coloring: A coloring, where any two neighboring vertices have different colors

k-colorable: A graph is k-colorable if it has a proper k-coloring.

chromatic number of a graph G, $\chi(G)$: The least k such that G is k-colorable.

Examples: bipartite graphs have chromatic number 2, odd cycles, Petersen graph have chromatic number 3. Why? What is the chromatic number of Q_n ?

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph G, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities?

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G = C_{2r+1} \vee K_s$. $\omega(G) = s+2$ and $\chi(G) \geq s+3$.

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G = C_{2r+1} \vee K_s$. $\omega(G) = s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the disjoint union of two graphs:

$$\chi(G+H) = \max(\chi(G), \chi(H)).$$

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G = C_{2r+1} \vee K_s$. $\omega(G) = s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the *disjoint union* of two graphs:

$$\chi(G+H) = \max(\chi(G), \chi(H)).$$

The chromatic number of the *join* of two graphs:

$$\chi(G \vee H) = \chi(G) + \chi(H).$$

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- $2 v = v' \text{ and } uu' \in E(G).$

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- u = u' and $vv' \in E(H)$, or
- $2 v = v' \text{ and } uu' \in E(G).$

Can you draw the cartesian product of two paths, say $P_3 \square P_4$?

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- u = u' and $vv' \in E(H)$, or
- v = v' and $uu' \in E(G)$.

Can you draw the cartesian product of two paths, say $P_3 \square P_4$?

The chromatic number of the *cartesian product* of two graphs (Vizing, 1963, Aberth, 1964):

$$\chi(G \square H) = \max\{\chi(G), \chi(H)\}.$$

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$, then

$$\chi(G) \leq 1 + \max_{i} \min\{d_i, i-1\}.$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$, then

$$\chi(G) \leq 1 + \max_{i} \min\{d_i, i-1\}.$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Note: Every graph has some vertex ordering for which greedy coloring uses exactly $\chi(G)$ colors. (Exercise 33)

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$\chi(G) \leq 1 + \max_{H \subset G} \delta(H).$$

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$\chi(G) \leq 1 + \max_{H \subseteq G} \delta(H).$$

Proof idea: Let H' be a k-critical subgraph of G.

$$\chi(G) - 1 = \chi(H') - 1 \le \delta(H') \le \max_{H \subseteq G} \delta(H).$$

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k = \Delta(G)$. For $k \ge 3$, trivial for k = 1, 2.

• Case 1: G is not k-regular. Let $\deg(v_n) < k$, construct a spanning tree of G using BFS starting at v_n , label the vertices v_i with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k = \Delta(G)$. For $k \ge 3$, trivial for k = 1, 2.

- Case 1: G is not k-regular. Let $deg(v_n) < k$, construct a spanning tree of G using BFS starting at v_n , label the vertices v_i with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.
- Case 2: G is k-regular and has a cut-vertex: Say x is a cut-vertex and H₁ is a component of G x and H₂ = G {x} H₁.
 Color H₁ ∪ {x} and H₂cup{x} separately. Permute colors in both colorings such that x has the same color in both. Done.

• Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G - \{v_1, v_2\}$ is connected. (We show later, that this is always true.)

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_1, v_2, v_n .

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_1, v_2, v_n .

Proof: Since G is not complete, there are two vertices of distance 2, say v_1 and v_2 . We let the common neighbor of them be v_n .

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1, \ldots, v_n\}$, a new graph G' is obtained by adding vertices $U = \{u_1, \ldots, u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w) = U.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

• U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most k+1 colors are sufficient.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1, \ldots, v_n\}$, a new graph G' is obtained by adding vertices $U = \{u_1, \ldots, u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w) = U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most k+1 colors are sufficient.
- Also, at least k+1 colors are needed. To show that start with a proper coloring of G' and obtain a proper coloring of G using less colors

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G = C_{2r+1} \vee K_s$. $\omega(G) = s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the disjoint union of two graphs:

$$\chi(G+H) = \max(\chi(G), \chi(H)).$$

Relation of $\chi(G)$ to other graph parameters

Clique number, $\omega(G)$: maximum order of a clique (complete subgraph) in G.

Proposition

For every graph
$$G$$
, $\chi(G) \ge \omega(G)$ and $\chi(G) \ge \frac{n(G)}{\alpha(G)}$.

Remark: Can you find examples, for which equalities do not hold in the above inequalities? When $G = C_{2r+1} \vee K_s$. $\omega(G) = s+2$ and $\chi(G) \geq s+3$.

The chromatic number of the *disjoint union* of two graphs:

$$\chi(G+H) = \max(\chi(G), \chi(H)).$$

The chromatic number of the *join* of two graphs:

$$\chi(G \vee H) = \chi(G) + \chi(H).$$

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- $v = v' \text{ and } uu' \in E(G).$

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- u = u' and $vv' \in E(H)$, or
- $2 v = v' \text{ and } uu' \in E(G).$

Can you draw the cartesian product of two paths, say $P_3 \square P_4$?

Another Product of Graphs: Cartesian product

The cartesian product of G and H, $G \square H$, is the graph with vertex set $V(G) \times V(H)$ specified by putting an edge between the vertices uv and u'v' iff

- u = u' and $vv' \in E(H)$, or
- v = v' and $uu' \in E(G)$.

Can you draw the cartesian product of two paths, say $P_3 \square P_4$?

The chromatic number of the *cartesian product* of two graphs (Vizing, 1963, Aberth, 1964):

$$\chi(G \square H) = \max\{\chi(G), \chi(H)\}.$$

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$, then

$$\chi(G) \leq 1 + \max_{i} \min\{d_i, i-1\}.$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Upper Bounds

Proposition

$$\chi(G) \leq \Delta(G) + 1$$
.

Proposition (Welsh-Powell, 1967)

If a graph G has a degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$, then

$$\chi(G) \leq 1 + \max_i \min\{d_i, i-1\}.$$

Proof idea: Apply greedy coloring to the vertices ordered with nonincreasing degrees.

Note: Every graph has some vertex ordering for which greedy coloring uses exactly $\chi(G)$ colors. (Exercise 33)

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k-1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$\chi(G) \leq 1 + \max_{H \subseteq G} \delta(H).$$

If $\chi(H) < \chi(G) = k$ for every proper subgraph $H \subset G$, then G is called k-critical (or color-critical).

Example: Every odd cycle is a 2-critical graph, any K_n is n-critical.

Lemma

If H is a k-critical graph, then $\delta(H) \geq k - 1$.

Proof idea: Assume, there is a vertex with degree k-2 or less, find a contradiction.

Theorem (Szekeres-Wilf, 1968)

For any graph G,

$$\chi(G) \leq 1 + \max_{H \subseteq G} \delta(H).$$

Proof idea: Let H' be a k-critical subgraph of G.

$$\chi(G) - 1 = \chi(H') - 1 \le \delta(H') \le \max_{H \subseteq G} \delta(H).$$

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k = \Delta(G)$. For $k \ge 3$, trivial for k = 1, 2.

• Case 1: G is not k-regular. Let $\deg(v_n) < k$, construct a spanning tree of G using BFS starting at v_n , label the vertices v_i with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.

Theorem (Brooks, 1941)

If G is a connected graph other than a complete graph or an odd cycle, then $\chi(G) \leq \Delta(G)$.

Sketch of the proof: Let $k = \Delta(G)$. For $k \ge 3$, trivial for k = 1, 2.

- Case 1: G is not k-regular. Let $\deg(v_n) < k$, construct a spanning tree of G using BFS starting at v_n , label the vertices v_i with decreasing index i as they are added to the tree. Greedy algorithm uses at most k colors.
- Case 2: G is k-regular and has a cut-vertex: Say x is a cut-vertex and H₁ is a component of G x and H₂ = G {x} H₁.
 Color H₁ ∪ {x} and H₂cup{x} separately. Permute colors in both colorings such that x has the same color in both. Done.

• Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G - \{v_1, v_2\}$ is connected. (We show later, that this is always true.)

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_1, v_2, v_n .

- Case 3: G is k-regular and 2-connected: Assume some vertex v_n has neighbors v_1 and v_2 , that are not adjacent, and $G \{v_1, v_2\}$ is connected. (We show later, that this is always true.)
- Use either BFS or DFS to find a spanning tree of $G \{v_1, v_2\}$ rooted at v_n such that vertex indices increase along the paths to the root.
- Color greedily v_1, v_2, \ldots, v_n by coloring v_1 and v_2 the same. Done.

Claim

Every k-regular 2-connected graph has a triple as v_1, v_2, v_n .

Proof: Since G is not complete, there are two vertices of distance 2, say v_1 and v_2 . We let the common neighbor of them be v_n .

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

• U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G = K_2$ and $G = C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most k+1 colors are sufficient.

Construction (Mycielski's construction)

For an input graph G with vertices $\{v_1,\ldots,v_n\}$, a new graph G' is obtained by adding vertices $U=\{u_1,\ldots,u_n\}$ and another vertex w. The edge set og G' contains E(G), the edges between u_i and $N_G(v_i)$ for all i. Moreover, let N(w)=U.

Remark: This construction obtains a k+1-chromatic graph, when the input graph is k-chromatic. Examples: $G=K_2$ and $G=C_5$.

Theorem (Mycielski, 1955)

From a k-chromatic triangle-free graph G, Mycielski's construction produces a k+1-chromatic triangle-free graph.

- U is an independent set. So, triangles could be induced by some u_i and neighbors in $N(v_i)$, contradiction, because G has no triangle.
- We can easily extend a k-coloring of G to color U. Then, color w with an extra color. So, at most k+1 colors are sufficient.
- Also, at least k+1 colors are needed. To show that start with a proper coloring of G' and obtain a proper coloring of G using less colors.

Outline

Vertex Coloring and Upper Bounds

2 Edge Coloring

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A coloring is called proper if incident edges have different colors.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A coloring is called proper if incident edges have different colors.

A graph is k-edge-colorable if it has a proper k-edge coloring.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A coloring is called proper if incident edges have different colors.

A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of G, $\chi'(G)$, is the least k such that K is K-edge-colorable.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A coloring is called proper if incident edges have different colors.

A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of G, $\chi'(G)$, is the least k such that K is K-edge-colorable.

Observation: $\chi'(G) \geq \Delta(G)$ for all graphs.

A k-edge coloring of a graph G is a coloring (labeling) of the edges of G using k colors.

A coloring is called proper if incident edges have different colors.

A graph is k-edge-colorable if it has a proper k-edge coloring. The edge chromatic number of G, $\chi'(G)$, is the least k such that K is K-edge-colorable.

Observation: $\chi'(G) \geq \Delta(G)$ for all graphs.

Example: Edge-coloring of K_{2n} is a modeling of scheduling problem.

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

• Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.

Theorem (König, $\overline{1916}$)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G' one by one and let every one factor be the edges of one color class.

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G' one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$ -coloring of G' and G.

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G' one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$ -coloring of G' and G.

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G' one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$ -coloring of G' and G.

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then $\chi'(G) \leq \Delta(G) + 1$.

Theorem (König, 1916)

If G is bipartite, then $\chi'(G) = \Delta(G)$.

- Note that every bipartite graph is contained in a $\Delta(G)$ -regular bipartite graph, call this larger graph G'.
- Every regular bipartite graph has a 1-factor.
- Remove 1-factors of G' one by one and let every one factor be the edges of one color class.
- This yields a proper $\Delta(G)$ -coloring of G' and G.

Observation:

The chromatic number of Petersen graph is 4. (Note that if 3 colors were enough, then every color class would contain exactly five edges. Remove one matching and discuss the remaining graph.)

Theorem (Vizing, 1964)

If G is a simple graph, then $\chi'(G) \leq \Delta(G) + 1$.

Thus, there are two types of graphs: the ones that have edge-chromatic number $\Delta(G)$ or $\Delta(G) + 1$.