Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 ${\bf Experimento}~{\bf 4} \\ 28/11/2024$

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274 Victor Rizzi Wagner - 231012817

1 Introdução

Serão analisados circuitos elétricos de primeira e segunda ordem em experimentos realizados com alimentação por uma fonte de corrente alternada (AC), para que seja possível observar o efeito da mudança de tensão continuamente, em vez de em apenas um instante. Circuitos de primeira ordem, compostos por resistores e capacitores (RC) ou resistores e indutores (RL), apresentam respostas dinâmicas caracterizadas por uma única constante de tempo, enquanto circuitos de segunda ordem, como os RLC, possuem respostas mais complexas, que podem ser oscilatórias ou amortecidas, dependendo de seus parâmetros.

O objetivo do experimento foi investigar o comportamento desses circuitos quando submetidos a uma mudança brusca de tensão, analisando aspectos como amplitude, fase e frequência das grandezas elétricas envolvidas. Através da montagem prática dos circuitos e da medição das tensões e correntes em diferentes componentes, buscou-se validar os modelos teóricos e compreender os fenômenos de ressonância, amortecimento e mudanças de fase.

2 Materiais

- National Instruments Elvis II
- 1 capacitor de 47nC
- 1 indutor de 1 m H
- 1 resistor de $1k\Omega$
- 1 resistor de 47Ω

3 Procedimento

O National Instruments Elvis é usado como fonte, protoboard, e multímetro. Usa-se a função de multímetro para checar as resistências, capacitância e indutância dos componentes, que são marcadas na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
С	47nF	46,58 nF	
L	1mH	0,8694 mH	
R_1	$1 \mathrm{k}\Omega$	$0.986 \mathrm{k}\Omega$	
R_2	47Ω	$46,424\Omega$	

Tabela 1: Componentes

Em seguida, é montado o circuito da Figura 1, usando $R_1 = 1k\Omega$.

Figura 1: Circuito de primeira ordem

 τ é calculado usando a fórmula $\tau = R \cdot C,$ o que resulta no valor $4,935 \cdot 10^{-5} s.$

Com isso, podem ser usados os cursores do software do Elvis para fazer a medição em momentos específicos como $t=\tau, t=2\tau, t=3\tau$ e $t=10\tau$ e preencher essas informações na Tabela 2, enquanto a forma da resposta da tensão V_1 pode ser vista no Gráfico 1 (A onda quadrada em preto mais escuro é a tensão V_0 e a que está em um cinza mais claro é V_1).

Gráfico 1: Resposta do circuito RC

Tensão	Valor nominal (V)	Valor medido (V)	Erro (%)
$V_1(0)$		-976,53 mV	
$V_1(au)$		$281,\!17 \text{mV}$	
$V_1(2\tau)$		$700,\!40 { m mV}$	
$V_1(3\tau)$		$910,\!00 { m mV}$	
$V_1(10\tau)$		1,04V	

Tabela 2: Tensões para circuito RC

Tensão	Valor nominal (V)	Valor medido (V)	Erro (%)
$V_1(0)$		-976,53mV	
$V_1(au_1)$		197,32mV	
$V_1(2\tau_1)$		$700,40 { m mV}$	
$V_1(3\tau_1)$		910,02 mV	
$V_1(10\tau_1)$		1,04V	

Tabela 3: Tensões para circuito RLC

4 Conclusão

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.

Grandeza	Valor nominal	Valor medido	Erro (%)
Tempo para V_1 atingir seu valor		$23,\!20\mu s$	
máximo a partir de uma borda			
de subida da onda quadrada			
Valor máximo de V_1		1,41V	

Tabela 4: Circuito RLC com resistência menor