Problem Chosen

 \mathbf{E}

$\begin{array}{c} 2020 \\ \text{MCM/ICM} \\ \text{Summary Sheet} \end{array}$

Team Control Number

2002121

title

Summary

 $\textbf{Keywords}: \ keyword1, keyword2, keyword3$

Team # 2002121 Page 1 of 3

title February 15, 2020

Contents

1	section 1	2
	1.1 1.1	2
	1.1.1	2
2	section 2	2
	2.1 2.1	2
Appendices		3

Team # 2002121 Page 2 of 3

1 section 1

1.1 1.1

1.1.1 1.1.1

Proof.

2 section 2

2.1 2.1

```
Algorithm 1: the name of algorithm

Input: input
Output: output
r \leftarrow t;
\Delta B^* \leftarrow -\infty;
while \Delta B \leq \Delta B^* and r \leq T do
Q \leftarrow \arg \max_{Q \geq 0} \Delta B_{t,r}^Q(I_{t-1}, B_{t-1});
\Delta B \leftarrow \Delta B_{t,r}^Q(I_{t-1}, B_{t-1})/(r-t+1);
if \Delta B \geq \Delta B^* then
Q^* \leftarrow Q;
\Delta B^* \leftarrow \Delta B;
end
r \leftarrow r + 1;
end
```

111 [1]

Table 1: tablename

_

References

[1] WWF, Solving Plastic Pollution Through Accountability, 2019.

Team # 2002121 Page 3 of 3

Appendices

algorithm1

print("hello world")