

Wirtschaftsmathematik

Prof. Dr. Stefan Böcker, FRM

9. September 2025

Wirgeben Impulse

Outline

- 1 Organisatorisches
- 2 Einführung in die Finanzmathematik
- 3 Funktionen
- 4 Lineare Gleichungssysteme
- 5 Lineare Optimierung

Vorstellung und Kontaktdetails

Prof. Dr. Stefan Böcker

- Professur für Wirtschaftsinformatik, Datenbanken und mobile Technologien
- aktuell Studiendekan und Prüfungsausschussvorsitzender des Fachbereichs Technische Betriebswirtschaft
- Vorlesung
- Email: boecker.stefan@fh-swf.de

Dipl.-Math. Silke Beckmann

- Übungen zur Vorlesung Wirtschaftsmathematik
- Email: beckmann.silke@fh-swf.de

Formalia

Klausur

- deckt den Stoff des Semesters ab
- Dauer: 90 Minuten (Regelfall)
- Erlaubte Hilfsmittel: Nicht-Programmierbarer Taschenrechner

Unterlagen / Voraussetzungen

Unterlagen und Informationen zum Modul Wirtschaftsmathematik

■ Es gibt einen Moodle-Kurs zu Modul Wirtschaftsmathematik https://profboecker.eu

Outline

- 1 Organisatorisches
- 2 Einführung in die Finanzmathematik
- 3 Funktionen
- 4 Lineare Gleichungssysteme
- 5 Lineare Optimierung

Leitgedanken der Finanzmathematik

- Der Wert einer Zahlung ist **abhängig vom Zeitpunkt**, zu dem diese zu leisten ist.
- Es gilt stets das Äquivalenzprinzip.
- Das Gerüst der klassischen Finanzmathematik wird aus **ganz wenigen Formeln** gebildet.
- In der klassischen Finanzmathematik gibt es einfache, mittelschwere und relativ kompliziert zu lösende Probleme. Die größte Schwierigkeit ist in der Regel die **Modellierung**.
- Ein grafisches Schema bringt fast immer Klarheit.
- Das wichtigste Konzept ist das der **Rendite**, auch **Effektiv- oder Realzins** genannt.
- Die klassische Finanzmathematik läßt sich klar umreißen. Das wichtigste Konzept ist das des Zinssatzes.

Begriffe

Laufzeit Dauer der Überlassung/Anlage

Zinsen Vergütung für die Kapitalüberlassung innerhalb einer Zinsperiode

Zinsperiode er vereinbarten Verzinsung zugrunde liegender Zeitrahmen; meist ein Jahr, oftmals kürzer (Monat, Quartal, Halbjahr), selten länger

Zinssatz insbetrag in Geldeinheiten (GE), der für ein Kapital von 100 GE in

einer Zinsperiode zu zahlen ist; auch Zinsfuß genannt.

Zeitwert der von der Zeit abhängige Wert des Kapitals

Kapital Geldbetrag, der angelegt bzw. jemand anderem überlassen wird.

Notation

Folgende Notation wird (in der Regel) im folgenden benutzt:

Kapital K_t ist das Kapital zum Zeitpunkt t

Zinssatz $i = \frac{p}{100}$, wobei p der Zinssatz/Zinsfuss in Prozent ist

Aufzinsungsfaktor
$$q = (1 + i) = (1 + \frac{p}{100})$$

Zinsen Z_t Zinsen für den Zeitraum t.

Damit gelten folgende Zusammenhänge:

arric gerteri forgeride Zusarrimennang			
	р	i	q
р	р	100i	100(q - 1)
i	<u>р</u> 100	i	q – 1
9	$1 + \frac{p}{100}$	1 + i	q

9

Lineare Verzinsung

Zinsformel Zinsen hängen proportional vom Kapital K, der Laufzeit t und dem Zinssatz i ab:

$$Z_t = K \cdot i \cdot t$$

Laufzeit In Deutschland wird meist das Jahr zu 360 Tagen und der Monat zu 30 Zinstagen gerechnet. Daher kann man meist $t = \frac{T}{360}$ setzen, wobei T die Anzahl an Tagen ist.

$$Z_T = K \cdot i \cdot \frac{T}{360}$$

Beispiele (1/3)

Frage Welche Zinsen fallen an, wenn ein Kapital von 3500 € vom 3. März bis zum 18. August eines Jahres bei einem Zinssatz von 3.25 % p.a. angelegt wird?

Antwort Da 165 = 27 + 30 + 30 + 30 + 30 + 18 Zinstage zugrunde zu legen sind, ergibt sich aus der Zinsformel

$$Z_{165} = 3500 \epsilon \cdot \frac{3.25}{100} \frac{165}{360} = 52.135416667 \epsilon \approx 52.14 \epsilon$$

Beispiele (2/3)

Frage Wie hoch ist ein Kredit, für den in einem halben Jahr bei 8 % Jahreszinsen 657.44 € Zinsen zu zahlen sind?

Antwort Durch Umstellen der Zinsformel ermittelt man:

$$K = Z_T \frac{100}{p} \frac{360}{T} = 657.44 \in \frac{100}{8} \frac{360}{180} = 16436 \in$$

Beispiele (3/3)

Frage Ein Wertpapier über 5000 €, das mit einem Kupon (Nominalzins) von 6.25 % ausgestattet ist, wurde einige Zeit nach dem Emissionsdatum erworben. Es sind Stückzinsen in Höhe von 36.46 € zu zahlen. Wieviele Zinstage wurden dabei berechnet?

Antwort Umstellen der Zinsformel führt auf

$$T = \frac{Z_T \cdot 100 \cdot 360}{K \cdot p} = \frac{36.46 \cdot 100 \cdot 360}{5000 \cdot 6.25} = 42 \text{ (Tage)}$$

Zeitwert

Zeitwert Da sich das Kapital K_t zum Zeitpunkt t aus dem Anfangskapital K_0 zuzüglich der im Zeitraum t angefallenen Zinsen Z_t ergibt, also

$$$$$
 $K_{t} = K_{0} + Z_{t}$

\$\$

gilt, folgt aus der Zinsformel eine sehr wichtige Formel der Finanzmathematik, die **Endwertformel bei linearer Verzinsung**

$$K_t = K_0 + Z_t = K_0 + K_0 \cdot i \cdot t = K_0 (1 + i \cdot t) = K_0 \left(1 + \frac{p}{100} \cdot t\right)$$

Barwert : Man kann durch Umstellen der Endwertformel auch den Barwert K_0 einer zukünftigen Zahlung K_t berechnen

$$K_0 = \frac{K_t}{1 + i \cdot t}$$

Beispiele

Frage In einem halben Jahr ist eine Forderung von 8000 € fällig. Wie viel ist bei einer Sofortzahlung zu leisten, wenn mit einem kalkulatorischen Zins von i= 5 % gerechnet wird?

Antwort Aus der Barwertformel ergibt sich

$$K_0 = \frac{8000}{1 + 0.05 \cdot \frac{1}{2}} \in = 7804.88 \in$$

Äquivalenzprinzip und Barwert

Äquivalenzprinzip

Das Äquivalenzprinzip nutzt man in der Finanzmathematik meist in der Form eines Barwert-Vergleichs, indem die Barwerte von Zahlungen, die zu verschiedenen Zeitpunkten geleistet werden, berechnet werden.

Beispiel: Äquivalenzprinzip und Barwert (1/2)

Aufgabe Beim Verkauf einer Maschine werden dem Käufer zwei Angebote gemacht: Entweder 9000 € in 30 Tagen oder 9085 € in 90 Tagen.

Welches Angebot ist günstiger, wenn jährlich mit 6 % bzw. mit 3 % verzinst wird? Bei welchem Zinssatz ergibt sich Gleichheit?

Lösung (1/2)

Bei einer Verzinsung von 6 % ergeben sich folgende Barwerte:

$$K_0^{30} = \frac{9000}{1 + 0.06 \cdot \frac{30}{360}} = 8955.22$$
 $K_0^{90} = \frac{9085}{1 + 0.06 \cdot \frac{90}{360}} = 8950.74$

Das zweite Angebot ist also bei 6 % günstiger.

Bei einer Verzinsung von 3 % ergeben sich folgende Barwerte:

$$K_0^{30} = \frac{9000}{1 + 0.03 \cdot \frac{30}{360}} = 8977.55$$
 $K_0^{90} = \frac{9085}{1 + 0.03 \cdot \frac{90}{360}} = 9017.37$

Das erste Angebot ist also bei 3 % günstiger.

Beispiel: Äquivalenzprinzip und Barwert (2/2)

Lösung (2/2) Gleichheit der Angebote

Gleichwertigkeit beider Angebote bedeutet Gleichheit der Barwerte und führt so auf die Gleichung

$$\frac{9000}{1+i\cdot\frac{30}{360}} = \frac{9085}{1+i\cdot\frac{90}{360}} \Leftrightarrow 9000\cdot\left(1+i\frac{1}{4}\right) = 9085\left(1+i\frac{1}{12}\right)$$

Daraus folgt i = 0.0569 = 5.69%

Berechnung von Zinssatz und Laufzeit

Zinssatz- und Laufzeitberechnung

Man kann aus der Endwertformel bei linearer Verzinsung sowohl den Zinssatz als auch die Laufzeit berechnen:

$$i = \frac{1}{t} \left(\frac{K_t}{K_0} - 1 \right)$$
 $t = \frac{1}{i} \left(\frac{K_t}{K_0} - 1 \right)$

Beispiel

Frage In welcher Zeit wächst eine Spareinlage von 1200 € bei 2.8 % jährlicher Verzinsung auf 1225.20 € an?

Antwort

$$t = \frac{1}{0.028} \left(\frac{1225.20}{1200} - 1 \right) = 0.75 = \frac{3}{4}$$

Mehrfache konstante Zahlungen - vorschüssig

Frage Welcher Endbetrag ergibt sich am Ende eines Jahres, wenn monatlich am Anfang eines Monats (vorschüssig) ein stets gleichbleibender Betrag r bei einem Zinssatz von i angelegt wird?

Antwort Die erste Zahlung wird 12 Monate lang verzinst, wächst also mit dem Faktor $1+i\frac{12}{12}$, die zweite nur 11 Monate, wächst also mit dem Faktor $1+i\frac{11}{12}$ usw. Alle Zahlungen gemeinsam ergeben damit die Gesamtsumme¹

$$R = r \left(1 + i \frac{12}{12} + 1 + i \frac{11}{12} + 1 + i \frac{10}{12} + \dots + 1 + i \frac{1}{12} \right)$$

$$= r \left(12 + \frac{i}{12} \left(12 + 11 + 10 + \dots + 1 \right) \right)$$

$$= r \left(12 + \frac{i}{12} \frac{13 \cdot 12}{2} \right) = r \left(12 + 6.5i \right)$$

¹Darin kommt die Gaußsche Summenformel vor, vielleicht erinnern Sie sich?

Mehrfache konstante Zahlungen - nachschüssig

Frage Welcher Endbetrag ergibt sich am Ende eines Jahres, wenn monatlich am *Ende* eines Monats (*nachschüssig*) ein stets gleichbleibender Betrag *r* bei einem Zinssatz von *i* angelegt wird?

Antwort Die erste Zahlung wird 11 Monate lang verzinst, wächst also mit dem Faktor $1+i\frac{11}{12}$, die zweite nur 10 Monate, wächst also mit dem Faktor $1+i\frac{10}{12}$ usw. Alle Zahlungen gemeinsam ergeben damit die Gesamtsumme²

$$R = r \left(1 + i \frac{11}{12} + 1 + i \frac{10}{12} + 1 + i \frac{9}{12} + \dots + 1 + i \frac{0}{12} \right)$$

$$= r \left(12 + \frac{i}{12} \left(11 + 10 + \dots + 0 \right) \right)$$

$$= r \left(12 + \frac{i}{12} \frac{12 \cdot 11}{2} \right) = r \left(12 + 5.5i \right)$$

²Darin kommt wieder die Gaußsche Summenformel, diesmal nur mit Indexverschiebung, vor!

Mehrfache konstante Zahlungen - beliebige Zahlungsfrequenz - Jahresersatzrate

Wird allgemein ein Jahr in m kürzere Perioden der Länge $\frac{1}{m}$ aufgeteilt und zu jedem Zeitpunkt $\frac{k}{m}$ mit $k = 0, 1, \dots, m-1$, also vorschüssig eine Zahlung r geleistet, so ergibt sich am Ende des Jahres ein Betrag von

$$R^{\text{vor}} = r \left(\sum_{k=0}^{m-1} 1 + i \cdot \frac{k+1}{m} \right) = r \left(\sum_{k=1}^{m} 1 + i \cdot \frac{k}{m} \right) = r \left(m + \frac{m+1}{2} \underbrace{\frac{p}{100}}_{=i} \right)$$

Werden die Zahlungen zu den Zeitpunkten $\frac{k}{m}$ mit k = 1, 2, ..., m, also nachschüssig geleistet, so gilt

$$R^{\text{nach}} = r \left(\sum_{k=0}^{m-1} 1 + i \cdot \frac{k}{m} \right) = r \left(m + \frac{m-1}{2} \underbrace{\frac{p}{100}}_{:} \right)$$

Die Beträge R^{vor} und R^{nach} heißen vorschüssige bzw. nachschüssige Jahresersatzrate. Sie geben den Wert einer jährlichen Zahlung an, die den m vorbzw. nachschüssigen $\frac{1}{m}$ -periodischen Zahlungen r äquivalent ist.

Jahresersatzrate - Beispiel

Frage Ein Student schließt einen Sparplan über die Laufzeit von einem Jahr mit folgenden Konditionen ab: Einzahlungen von 75 € jeweils zu Monatsbeginn (Monatsende), Verzinsung mit 4 % p.a., Bonus am Jahresende in Höhe von 1 % aller Einzahlungen. Über welche Summe kann der Student am Ende des Jahres verfügen?

Antwort In der Formel für die Jahresersatzrate ist hier m = 12 und damit für den Endwert E der Zahlungen ohne Bonus

 $E^{\text{vor}} = 75 \cdot (12 + 6.5 \cdot 0.04) = 919.50$ bei vorschüssiger Zahlung am Monatsanfang $E^{\text{nach}} = 75 \cdot (12 + 5.5 \cdot 0.04) = 916.50$ bei nachschüssiger Zahlung am Monatsende

Die Bonuszahlung beträgt $12 \cdot 75 \cdot 0.01 = 9.00$, woraus sich die Gesamtbeträge

 $E_{\rm gesamt}^{\rm vor}$ = 919.50 + 9.00 = 928.50 bei vorschüssiger Zahlung am Monatsanfang $E_{\rm gesamt}^{\rm nach}$ = 916.50 + 9.00 = 925.50 bei nachschüssiger Zahlung am Monatsende

Skonto(abzug)

Bei sofortiger Bezahlung von Waren bzw. Dienstleistungen vor dem Fälligkeitstermin der Rechnung wird oft ein Nachlass (**Skonto**) gewährt. Bezeichnet *s* die Größe des Skontos, *R* den Rechnungsbetrag und *T* die Differenztage der Zahlungsziele, so zahlt man also bei Sofortbezahlung nur den Betrag

$$(1 - s) R$$

Den zugehörigen **Effektivzinssatz** $i_{\rm eff}$ kann man dann mit Hilfe der Barwertformel berechnen

$$(1-s)R = \frac{R}{1+i_{\text{eff}} \cdot \frac{T}{360}} \qquad \Leftrightarrow \qquad i = \frac{s}{1-s} \cdot \frac{360}{T}$$

Skonto(abzug) - Beispiel

Auf einer Handwerkerrechnung über die Summe R lauten die Zahlungsbedingungen: Bei Zahlung innerhalb von 10 Tagen gewähren wir 2 % Skonto. Zahlung innerhalb von 30 Tagen ohne Abzug.

Für den Effektivzins ergibt sich hier:

$$i_{\text{eff}} = \frac{0.02}{0.98} \cdot \frac{360}{20} = 0,3673469388$$

Man sollte also von der Möglichkeit des Skontos Gebrauch machen, da dies einer Verzinsung des Kapitals mit 36.73 % entspricht.

Ratenzahlungen

Oft besteht die Möglichkeit, Zahlungen entweder direkt oder als Ratenzahlungen mit gewissen Aufschlägen zu leisten.

Beispielsweise können Autoversicherungen entweder am Jahresanfang oder in zwei Raten mit jeweils 5 % Aufschlag zum Jahresbeginn und nach einem halben Jahr gezahlt werden.

Für den Effektivzins gilt dann nach dem Äquivalenzprinzip:

$$R = \frac{1.05 \cdot R}{2} + \frac{1.05 \cdot R}{2} \frac{1}{1 + \frac{i}{2}}$$

Nach Kürzen von R und Auflösen nach dem Zinssatz i ergibt sich ein Wert von i = 0.210526, also 21.0526 %. Da dieser Zinssatz relativ hoch ist, sollte man sich für die Bezahlung am Jahresanfang entscheiden.

Zinseszinsrechnung

Outline

- 1 Organisatorisches
- 2 Einführung in die Finanzmathematik
- 3 Funktionen
- 4 Lineare Gleichungssysteme
- 5 Lineare Optimierung

Funktionsbegriff

Darstellung von Funktionen

Einige Beispiele

Eigenschaften von reellen Funktionen

Wichtige Funktionen

Ableitung einer Funktion

Outline

- 1 Organisatorisches
- 2 Einführung in die Finanzmathematik
- 3 Funktionen
- 4 Lineare Gleichungssysteme
- 5 Lineare Optimierung

Grundlagen zu linearen Gleichungssystemen

Gauß-Algorithmus

Matrizenrechnung

Outline

- 1 Organisatorisches
- 2 Einführung in die Finanzmathematik
- 3 Funktionen
- 4 Lineare Gleichungssysteme
- 5 Lineare Optimierung

Problemdarstellung und grafische Lösung

Simplex-Algorithmus

Allgemeines lineares Optimierungsproblem

Use \alert to highlight some text

Squared Paper

\squared{} (or \kariert{}) can be used to produce squared paper

Squared Paper

<pre> (or) can be used to produce lined paper</pre>							

Slide with R output

summary(cars)

```
## speed dist
## Min. : 4.0 Min. : 2
## 1st Qu.:12.0 1st Qu.: 26
## Median :15.0 Median : 36
## Mean :15.4 Mean : 43
## 3rd Qu.:19.0 3rd Qu.: 56
## Max. :25.0 Max. :120
```

Slide with mathematics

Quantile score for observation y. For 0 :

$$S(y_t, q_t(p)) = \begin{cases} p(y_t - q_t(p)) & \text{if } y_t \ge q_t(p) \\ (1 - p)(q_t(p) - y_t) & \text{if } y_t < q_t(p) \end{cases}$$

Average score over all percentiles gives the best distribution forecast:

QS =
$$\frac{1}{99T} \sum_{p=1}^{99} \sum_{t=1}^{T} S(q_t(p), y_t)$$

R Table

A simple knitr::kable example:

Tabelle 1: (Parts of) the mtcars dataset

	mpg	cyl	disp	hp	drat	wt	qsec
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02
Datsun 710	22.8	4	108	93	3.85	2.320	18.61
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44

Resources

For more information:

- See the RMarkdown repository for more on RMarkdown
- See the binb repository for more on binb
- See the binb vignettes for more examples.