

Распараллеливание алгоритмов синтаксического анализа, основанных на матричных операциях

Автор: Сусанина Юлия Алексеевна, 344 группа **Научный руководитель:** к.ф.-м.н., доцент Григорьев С.В.

Санкт-Петербургский государственный университет Кафедра системного программирования

21 мая 2018г.

Предметная область

- Синтаксический анализ процесс определения принадлежности некоторой последовательности лексем языку, порождаемому грамматикой
- Область применения: биоинформатика

Биоинформатика

• Первичная структура

- Вторичная структура
 - Определение принадлежности организма семейству по вторичной структуре тРНК, 16s рРНК
 - Вид вторичной структуры можно задать с помощью контекстно-свободной грамматики
- Задача: поиск подстроки РНК, которая сворачивается во вторичную структуру определенного вида

Алгоритмы синтаксического анализа

- Вход:
 - ▶ $a_1...a_n$ строка
 - ▶ G КС-грамматика в нормальной форме Хомского
- Результат: матрица разбора, элементы которой отвечают за выводимость конкретной подстроки из стартового нетерминала $S(a_{i+1}...a_i \in L_G(S) \Leftrightarrow S \in T[i,j])$

Алгоритм А.С.Охотина

- Okhotin A. Parsing by matrix multiplication generalized to Boolean grammars
 - Разбиение исходной матрицы и перемножение подматриц меньшего размера

$$\mathcal{D} = \mathcal{D} + \mathcal{B} \times \mathcal{C}$$

$$\mathcal{D}' = \mathcal{D}' + \mathcal{B} \times \mathcal{C}$$

$$\mathcal{E} = \mathcal{E} + \mathcal{B} \times \mathcal{D}'$$

$$\mathcal{E} = \mathcal{E} + \mathcal{D} \times \mathcal{B}'$$

• Основной недостаток: сложность разделения на независимые потоки

Модификация

- Явейн А. Разработка алгоритма синтаксического анализа через перемножение матриц
 - Реорганизация вычислений
 - Возможность разбиения на слои подматриц
 - Использование параллелизма на уровне перемножения подматриц слоя
- Реализация отсутствует

Постановка задачи

Цель: исследование и реализация модифицированного алгоритма A.C.Охотина.

Для достижения данной цели были поставлены следующие задачи:

- Реализовать модифицированный алгоритм, а также исходный алгоритм А.С.Охотина
- Дать теоретическую оценку эффективности использования параллельных вычислений в модифицированном алгоритме
- Провести экспериментальное исследование модифицированного алгоритма

Детали практической реализации

- Представление матрицы разбора в виде нескольких булевых матриц
 - Матрица соответствующий нетерминал
 - ▶ $T[i,j] = \{A \in N | T_A[i,j] = true\}$
 - Умножения независимы

Используемые технологии

- Реализованы в рамках исследовательского проекта YaccConstructor
- .NET, F#
- The NVIDIA cuBLAS (basic linear algebra subroutines) library

Оценка сложности модифицированного алгоритма

Теорема (оценка сложности последовательной версии)

Модифицированный алгоритм строит таблицу разбора для грамматики G и строки длины n за время $O(|G| \cdot BMM(n) \cdot log(n))$.

Теорема (оценка сложности параллельной версии)

Параллельная версия модифицированного алгоритма строит таблицу разбора для грамматики G и строки длины n за время $O(|G| \cdot BMM(n))$.

• BMM(n) — количество операций необходимых для перемножения двух булевых матриц размера $n \times n$

Оценка эффективности использования параллелизма

- Количество процессоров: p = n 2
- Критерии:
 - ▶ Ускорение $S_p = \frac{T_0}{T_p} = log(n)$
 - ▶ Загруженность $E_p = \frac{S_p}{p} = \frac{log(n)}{p}$

Эксперименты: сравнительный анализ

• Сильно неоднозначная грамматика G1:

Результаты

- Реализованы алгоритм А.С.Охотина и его модифицированная версия на языке программирования F# с использованием библиотеки для параллельных вычислений cuBLAS в рамках исследовательского проекта YaccConstructor
- Получена теоретическая оценка эффективности использования параллельных вычислений в модифицированном алгоритме: ускорение параллельной версии в сравнении с последовательной составляет log(n), а загруженность $\frac{log(n)}{n-2}$
- Проведен сравнительный анализ алгоритма А.С.Охотина и модифицированной версии, который показал что модификация показывает лучшие результаты на строках большой длины