

VS7805F Three-terminal positive voltage regulator

FEATURES

Maximum output current

I_{OM}: 1.5 A

Output voltage

V₀: 5V

Continuous total dissipation

P_D: 1.5 W (T_a= 25 °C)

ABSOLUTE MAXIMUM RATINGS (Operating temperature range applies unless otherwise specified)

Parameter	Symbol	Value	Unit
Input Voltage	V _i	35	V
Thermal Resistance from Junction to Ambient	R _{0JA}	66.7	°C/W
Operating Junction Temperature Range	T _{OPR}	-40~+125	℃
Storage Temperature Range	T _{STG}	-65~+150	℃

 $\textbf{ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE} \\ (\text{Vi=}10\text{V}, \text{Io=}500\text{mA}, \text{Ci=}0.33\mu\text{F}, \text{Co=}0.1\mu\text{F}, \text{unless otherwise specified }) \\ \textbf{ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE} \\ (\text{Vi=}10\text{V}, \text{Io=}500\text{mA}, \text{Ci=}0.33\mu\text{F}, \text{Co=}0.1\mu\text{F}, \text{unless otherwise specified }) \\ \textbf{ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE} \\ \textbf{ELECTRICAL CHARACTERISTICS AT SPECIFIED VIRTUAL JINCTION TEMPERATURE \\ \textbf{ELECTRIC$

Parameter	Symbol	Test conditions	Min	Тур	Max	Unit
Output voltage	Vo	T _J =25°C	4.85	5.0	5.15	V
		7V≤V _i ≤20V, lo=5mA-1A	4.75	5.00	5.25	V
Load Regulation	△Vo	lo=5mA-1.5A,T _J =25°C		9	100	mV
		Io=250mA-750mA,T _J =25°C		4	50	mV
Line regulation	△Vo	7V≤V _i ≤25V,T _J =25°C		4	100	mV
		8V≤V _i ≤12V,T _J =25°C		1.6	50	mV
Quiescent Current	lq	T _J =25°C		5	8	mA
Quiescent Current Change	∆lq	7V≤V _i ≤25V		0.3	1.3	mA
		5mA≤l _O ≤1A		0.03	0.5	mA
Output Noise Voltage	V _N	10Hz≤f≤100KHz ,T _J =25°C		42		μV/Vo
Output voltage drift	△Vo/△T	I _O =5mA		-1.1		mV/℃
Ripple Rejection	RR	8V≤V _i ≤18V,f=120Hz	62	73		dB
Dropout Voltage	Vd	lo=1A ,T _J =25°C		2		V
Output resistance	Ro	f=1KH _Z ,T _J =25°C		10		mΩ
Short Circuit Current	Isc	$T_J=25^{\circ}C$		230		mA
Peak Current	lpk	T _J =25°C		2.2		Α

^{*} Pulse test.

TYPICAL APPLICATION

Note: Bypass capacitors are recommended for optimum stability and transient response and should be located as close as possible to the regulators.

