/

Congratulations! You passed!

Next Item

1/1 point

T. Given the following contour plot,

Which starting points (from 1 to 5) are likely to converge to the global minimum (shown by the mobile phone) when using a steepest descent algorithm?

6/6 points (100%)

Optirfrisation scenarios
Quiz, 6 questiviascase, the algorithm descends smoothly down the slope.

	Starting point 2				
Un-selected is correct					
	Starting point 3				
Correct In this case, the algorithm descends smoothly down the slope.					
	Starting point 4				
Correct In this case, the algorithm descends smoothly down the slope.					
	Starting point 5				
Un-s	elected is correct				
	None of the above				

1/1 point

Un-selected is correct

2.

Again, which starting points converge to the global minimum? $Optimisation\ scenarios$

6/6 points (100%)

Starting point 1

Un-selected is correct

Starting point 2

Un-selected is correct

Starting point 3

Correct

This should converge to the global minimum.

Quiz, 6 questions **Correct**

This should converge to the global minimum.

Starting point 5

This should converge to the global minimum.

None of the above

Un-selected is correct

1/1 point

3.

Starting point 1

Un-selected is correct

Starting point 2

Correct

From here, the algorithm will descend the hill to the global minimum.

Starting point 3

Un-selected is correct

None of the above

Un-selected is correct

1/1 point

4

What's happening in this gradient descent?

The algorithm is getting stuck near saddle points.

Optimisation of the second pieces of the second pie

Quiz, 6 questions

The global minimum is in a wide and flat basin, so convergence is slow.

Correct

This could be improved by increasing the aggression.

None of the other options.

1/1 point

5.

What is happening here?

6/6 points (100%)

Quiz, 6 question he algorithm is passing either side of a saddle point.

Correct

	The algorithm is	passing either	side of a loca	l minimum.
--	------------------	----------------	----------------	------------

There is noise in the system.

The algorithm is passing either side of a local maximum.

1/1 point

6.

What is happening here? Optimisation scenarios

- None of the other options.
- The marked points are saddle points.
- There is noise in the system
- The Jacobian at the starting point is very large.

Correct

This is causing the algorithm to overshoot. In one case into a different basin.

