SIEMENS EDA

Algorithmic C (AC) Math Library Reference Manual

Software Version v3.7.1 August 2024

Copyright 2024 Siemens

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

See the License for the specific language governing permissions and limitations under the License.

Chapter 1:	Introduction to ac_math	2
1.1.1.	Using the ac_math library	2
1.2. Sun	nmary of Functions	2
1.2.1.	Basic Math Functions	2
1.2.2.	AC Matrix Class	4
1.2.3.	Linear Algebra Functions	5
1.3. Typ	es of Approximations	5
1.3.1.	Piecewise Linear	5
1.3.2.	Lookup Table (LUT)	7
1.3.3.	CORDIC	7
1.3.4.	Miscellaneous Math Functions	7
1.4. Inst	alling the ac_math library	7
Chapter 2:	Piecewise Linear Functions	14
2.1. Log	arithm (ac_log_pwl / ac_log2_pwl)	15
2.1.1.	The ac_log2_pwl Implementation	16
2.1.1.	The ac_log_pwl Implementation	17
2.1.2.	Function Prototypes	17
2.1.3.	Example Function Calls	19
2.2. Pow	ver (ac_exp_pwl / ac_pow2_pwl / ac_pow_pwl)	20
2.2.1.	The ac_pow2_pwl Implementation	20
2.2.2.	The ac_exp_pwl Implementation	21
2.2.3.	The ac_pow_pwl Implementation	22
2.2.4.	Function Prototypes	22
2.2.5.	Example Function Calls	25
2.3. Red	iprocal (ac_reciprocal_pwl)	26
2.3.1.	The ac_reciprocal_pwl Implementation	26
2.3.2.	Function Templates	27
2.3.3.	Example Function Calls	29
2.4. High	n-accuracy Reciprocal (ac_reciprocal_pwl_ha)	29
2.5. Very	y High-accuracy Reciprocal (ac_reciprocal_pwl_vha)	30
2.6. Squ	are Root (ac_sqrt_pwl)	30
2.6.1.	The ac_sqrt_pwl Implementation	30
2.6.2.	Function Templates	31
2.6.3.	Example Function Calls	33
2.7. Inve	erse Square Root (ac_inverse_sqrt_pwl)	33

2.7.1. The ac_inverse_sqrt_pwl Implementation	34
2.7.2. Function Templates	35
2.7.3. Example Function Calls	36
2.8. Very High-Accuracy Inv Sqrt (ac_inverse_sqrt_pwl_vha)	37
2.9. Tangent (ac_tan_pwl)	37
2.9.1. The ac_tan_pwl Implementation	37
2.9.2. Function Templates	38
2.9.3. Example Function Calls	40
2.10. Arctangent (ac_atan_pwl)	40
2.10.1. The ac_atan_pwl Implementation	40
2.10.2. Function Templates	41
2.10.3. Example Function Calls	42
2.11. High-accuracy Arctangent (ac_atan_pwl_ha)	43
2.12. Very High-accuracy Arctangent (ac_atan_pwl_vha)	43
2.13. Sigmoid (ac_sigmoid_pwl)	43
2.13.1. Function Templates	44
2.13.2. Example Function Calls	45
2.14. Hyperbolic Tangent (ac_tanh_pwl)	45
2.14.1. Function Templates	46
2.14.2. Example Function Calls	47
2.15. Softmax (ac_softmax_pwl)	47
2.15.1. Function Templates	48
2.15.2. Example Function Calls	49
2.16. Softplus (ac_softplus_pwl)	49
2.16.1. Function Templates	50
2.16.2. Example Function Calls	50
2.17. Softsign (ac_softsign_pwl)	51
2.17.1. Function Templates	51
2.17.2. Example Function Calls	51
2.18. Elu (ac_elu_pwl)	52
2.18.1. Function Templates	52
2.18.2. Example Function Calls	53
2.19. Selu (ac_selu_pwl)	53
2.19.1. Function Templates	53
2.19.2. Example Function Calls	54
2.20. Gelu (ac_gelu_pwl)	54
2.20.1. Function Templates	54
2.20.2. Example Function Calls	55
Chapter 3: CORDIC Math Functions	56

3.1. Sine/Cosine (ac_sin_cordic/ ac_cos_cordic)	56
3.2. Arcsin/Arccos (ac_arcsin_cordic/ ac_arccos_cordic)	58
3.3. Arctangent (ac_atan2_cordic)	59
3.4. Exponential (ac_exp_cordic/ ac_exp2_cordic)	59
3.4.1. Function Declarations	59
3.4.2. NaN Handling	61
3.5. Logarithm (ac_log_cordic/ ac_log2_cordic)	61
3.5.1. Function Declarations	61
3.5.2. NaN Handling	62
3.6. Power (ac_pow_cordic)	63
3.6.1. Function Declarations	63
Chapter 4: Lookup Table (LUT) Functions	65
4.1. Sine/Cosine (ac_sincos_lut)	65
4.1.1. The ac_sincos_lut Implementation	65
4.1.2. Example Function Call	66
4.1.3. Increasing look up table entries	67
Chapter 5: Linear Algebra Functions	68
5.1. Cholesky Decomposition (ac_chol_d)	68
5.1.1. The ac_chol_d Implementation	68
5.1.2. Function Prototypes	70
5.1.3. C++ Compiler	73
5.1.4. Example Function Calls	73
5.2. Cholesky Inverse (ac_cholinv)	74
5.2.1. The ac_cholinv Implementation	74
5.2.2. Function Prototypes	75
5.2.3. C++ Compiler	75
5.2.4. Example Function Calls	76
5.3. Determinant (ac_determinant)	77
5.3.1. The ac_determinant Implementation	77
5.3.2. Function headers	77
5.3.3. C++ Compiler	79
5.3.4. Example Function Call	79
5.4. Matrix Multiplication (ac_matrixmul)	80
5.4.1. The ac_matrixmul Implementation	80
5.4.2. Example Function Call	82
5.4.3. Debug	83
5.5. QR Decomposition (ac_qrd)	83
5.5.1. The ac_qrd Implementation	83
5.5.2. Function prototypes	84

5.5.3.	Example Function Calls	85
Chapter 6:	Miscellaneous Functions	87
6.1. Abs	olute Value (ac_abs)	87
6.2. Divi	sion (ac_div)	88
6.2.1.	Integer Division	88
6.2.2.	Fixed-point Division	89
6.2.3.	Float Division	90
6.2.4.	Complex Division	90
6.2.5.	Output Saturation for Zero Inputs	90
6.3. Squ	ıare Root (ac_sqrt)	90
6.3.1.	Integer square root	91
6.3.2.	Fixed-point square root	91
6.3.3.	Floating-point square root	91
6.3.4.	Special input handling	92
6.4. Shir	fts (ac_shift_left/ac_shift_right)	93
6.4.1.	Bidirectional shifts	93
6.4.2.	Unidirectional shifts	93
6.4.3.	Complex shifts	94
6.5. Bar	rel Shift (ac_barrel_shift)	94
6.5.1.	Generic Block Diagram	94
6.5.2.	Implementation Details	95
6.5.3.	Using ac_barrel_shift	96
6.5.4.	Output	96
6.6. Pad	lded Division (ac_div_v2)	97
6.6.1.	Design Arguments	97
6.6.2.	Design Parameters	97
6.7. Lea	kyReLU (ac_leakyrelu)	99
6.7.1.	Function Templates	99
6.7.2.	Example Function Calls	99
6.8. Rel	.U (ac_relu)	100
6.8.1.	Function Templates	100
6.8.2.	Example Function Calls	100
6.9. PR	eLU (ac_prelu)	101
6.9.1.	Function Templates	101
6.9.2.	Example Function Calls	101
6.10. AC	CFloat Adder Tree Functions (add_tree / add_tree_ptr / block_add_tree / block_add_tre	e_ptr)102
6.10.1	1. Adder Tree	102
6.10.2	2. Block Adder Tree	105
6.10.3	3. Using ac_shift_left	109

6.11. Standard Floating-Point (ac_std_float) Fused Adder Tree Functions (fadd_tree / fadd_tree_	_ptr)110
6.11.1. Function Outline	110
6.11.2. Special Values	111
6.11.3. Accuracy of the result	112
6.11.4. Usage Example	112
6.11.5. Fused Addition Accuracy and Area	113
6.12. Optimized AC Float Multiplication (ac_flfx_mul)	115
6.12.1. Operation ac_float * ac_fixed = ac_float	116
6.12.2. Operation ac_float * ac_fixed = ac_fixed	118
6.12.3. Operation ac float * ac float = ac fixed	119

Chapter 1: Introduction to ac_math

The Algorithmic C Math Library (*ac_math*) contains synthesizable C++ functions commonly used in Digital Signal Processing applications. The functions use the Algorithmic C data types and are meant to serve as examples on how to write parameterized models and to facilitate migrating an algorithm from using floating-point to fixed-point arithmetic where the math functions either need to be computed dynamically or via lookup tables or piecewise linear approximations.

The input and output arguments of the math functions are parameterized so that arithmetic may be performed at the desired fixed point precision and provide a high degree of flexibility on the area/performance trade-off of hardware implementations obtained during Catapult synthesis.

The hardware implementations produced by Catapult on the math functions are bit accurate. Simulation of the RTL can thus be easily compared to the C++ simulation of the algorithm. The following sections provide a summary of the *ac_math* library:

- Summary of Functions
- Types of Approximations
- Installing the ac math library

1.1.1. Using the ac_math library

In order to utilize any of the math functions, add the following include line to the source:

#include <ac math.h>

1.2. Summary of Functions

The following sections summarize the functions and classes currently supported in the ac_math library. A discussion of the approximation methods follows.

1.2.1. Basic Math Functions

Function Type/Call	Approx. Method	Supported Data Types			
		ac_fixed	ac_float	ac_complex	Other float*
Absolute Value (ac_abs())	N/A	Yes	Yes	Yes	No
Division (ac_div())	N/A	Yes	Yes	Yes	No
Normalization (ac_normalize())	N/A	Yes	No	Yes	No
Reciprocal (ac_reciprocal_pwl())	PWL	Yes	Yes	Yes	Yes
Reciprocal (ac_reciprocal_pwl_ha())	PWL	Yes	Yes	Yes	Yes
Reciprocal (ac_reciprocal_pwl_vha())	PWL	Yes	Yes	Yes	Yes

Function Type/Call	Approx. Method	Supported Data Types			
		ac_fixed	ac_float	ac_complex	Other float*
Logarithm Base e (ac_log_pwl())	PWL	Yes	Yes	No	Yes
Logarithm Base e (ac_log_cordic())	CORDIC	Yes	Yes	No	Yes
Logarithm Base 2 (ac_log2_pwl())	PWL	Yes	Yes	No	Yes
Logarithm Base 2 (ac_log2_cordic())	CORDIC	Yes	Yes	No	Yes
Exponent Base e (ac_exp_pwl())	PWL	Yes	Yes	No	Yes
Exponent Base e (ac_exp_cordic())	CORDIC	Yes	Yes	No	Yes
Exponent Base 2 (ac_pow2_pwl)	PWL	Yes	Yes	No	Yes
Exponent Base 2 (ac_exp2_cordic())	CORDIC	Yes	Yes	No	Yes
Generic Exponent (ac_pow_pwl())	PWL	Yes	No	No	No
Generic Exponent (ac_pow_cordic())	CORDIC	Yes	Yes	No	Yes
Square Root (ac_sqrt_pwl())	PWL	Yes	Yes	Yes	Yes
Square Root (ac_sqrt())	N/A	Yes	Yes	No	Yes
Inverse Square Root (ac_inverse_sqrt_pwl())	PWL	Yes	Yes	Yes	Yes
Inverse Square Root (ac_inverse_sqrt_pwl_vha())	PWL	Yes	Yes	Yes	Yes
Sine/Cosine (ac_sincos_lut())	LUT	Yes	No	No	No
Sine/Cosine (ac_sincos_cordic())	CORDIC	Yes	Yes	No	Yes
Cosine (ac_cos_cordic())	CORDIC	Yes	Yes	No	Yes
Sine (ac_sin_cordic())	CORDIC	Yes	Yes	No	Yes
Tangent (ac_tan_pwl())	PWL	Yes	Yes	No	Yes
Arctangent (ac_atan_pwl())	PWL	Yes	Yes	No	Yes
Arctangent (ac_atan_pwl_ha())	PWL	Yes	Yes	No	Yes
Arctangent (ac_atan_pwl_vha())	PWL	Yes	Yes	Yes	Yes
Arctangent (ac_arctan_cordic())	CORDIC	Yes	No	No	No
Arccosine (ac_arccos_cordic())	CORDIC	Yes	Yes	No	Yes
Arcsine (ac_arcsin_cordic())	CORDIC	Yes	Yes	No	Yes
Shift Left (ac_shift_left())	N/A	Yes	No	Yes	No
Shift Right (ac_shift_right())	N/A	Yes	No	Yes	No
Hyperbolic Tangent (ac_tanh_pwl())	PWL	Yes	Yes	No	Yes
Sigmoid (ac_sigmoid_pwl())	PWL	Yes	Yes	No	Yes
Softmax (ac_softmax_pwl())	PWL	Yes	No	No	No
Softplus (ac_softplus_pwl())	PWL	Yes	No	No	No
Softsign (ac_softsign_pwl())	PWL	Yes	No	No	No

Function Type/Call	Approx. Method	Supported Data Types			
		ac_fixed	ac_float	ac_complex	Other float*
Elu (ac_elu_pwl())	PWL	Yes	No	No	No
Selu (ac_selu_pwl())	PWL	Yes	No	No	No
Gelu (ac_gelu_pwl())	PWL	Yes	No	No	No
LeakyReLU (ac_leakyrelu())	N/A	Yes	No	No	No
ReLU (ac_relu())	N/A	Yes	No	No	No
PReLU (ac_prelu())	N/A	Yes	No	No	No
AC Float Adder Tree (add_tree(), add_tree_ptr)	N/A	No	Yes	No	No
AC Float Block Adder Tree (block_add_tree(), block_add_tree_ptr())	N/A	No	Yes	No	No
Optimized ac_fixed*ac_float Multiplication (ac_flfx_mul())	N/A	Yes	Yes	No	No
Barrel Shift (ac_barrel_shift())	N/A	*ac_int support only			
Padded Divison (ac_div_v2())	N/A	*Currently ac_int support only			

^{*} Note: "Other float" represents ac_ieee_float and ac_std_float support.

1.2.2. AC Matrix Class

The class ac_matrix implements a 2-D container class with a template parameter to specify the data type of the internal storage.

The class has member functions to implement some common operations including

- Assignment: operator=()
- Read-Only and Read-Write Element Access: *this(<row>,<col>)
- Comparison: operator!=(), operator==()
- Piecewise Addition: operator+(), operator+=()
- Piecewise Subtraction: operator-(), operator-=()
- Piecewise Multiplication: pwisemult()
- Matrix Multiplication (nested loops): operator*()
- Matrix Transpose: transpose()

- Sum All Elements: sum()
- Scale All Elements: scale(value)
- Formatted Stream Output: ostream &operator<<()

When using the computational functions with AC Datatypes, the form that returns a value is designed in such a way as to determine the full precision required in the output type in order to preserve accuracy during the operation. So using operator+ between two 10 bit ac_fixed matrices will return an 11 bit ac_fixed matrix. If you wish to prevent the bit growth and accept the truncation, you can use the compound operators +=,-=, etc. so that the target object receives the truncated values.

In addition to the built-in member functions, the ac_math library also includes stand-alone functions for more complicated linear algebra operations as described in the next section.

1.2.3. Linear Algebra Functions

The ac_math library includes several linear algebra functions that operate on either ac_matrix or plain C-style arrays. These functions, when used with AC Datatypes, are designed to give the user greater control over the bit precision of internal variables and the return value.

- Matrix Multiplication
- Matrix Determinant
- Cholesky Decomposition
- · Cholesky Inverse
- QR Decomposition

1.3. Types of Approximations

The following sections discuss the calculation methods used by the functions in the ac_math library and the trade-offs of using one method over another in your design.

- Piecewise Linear
- Lookup Table (LUT)
- CORDIC
- Miscellaneous Math Functions

1.3.1. Piecewise Linear

Some of the functions available in the ac_math library are implemented as piecewise linear (PWL) approximations.

A PWL approximation of a function essentially attempts to replicate a function as a set of line segments that are the closest fit to the actual function curve.

Illustration 1: Reciprocal PWL approximation

An example of a PWL approximation would be the *ac_reciprocal_pwl()* function, for the interval of [0.5, 1). A graphical depiction is given above. The interval is divided into 6 segments. As is evident from the graph and the close nature of the fit, where the red line (PWL output) is virtually indistinguishable from the green one (Accurate output), the approximate output is very close to the accurate output.

Constructing the PWL Lookup Table

In order to construct the PWL approximation, we need information on the accurate function output for the end points of each segment. Once that information is obtained, we calculated the slope and intercept value for that segment based on the input and output values corresponding to the segment end points. The segments are then shifted slightly in the direction opposite to the direction of concavity of the function in the interval of a particular segment, in order to further optimize the fit obtained. This is done by appropriately changing the intercept values for that segment. The slope and intercept values are then stored in separate lookup tables.

The errors obtained are generally small and tolerable for approximate applications. For instance, the reciprocal PWL approximation just mentioned has a maximum absolute error of 0.005511 over the interval of [0.5, 1), which corresponds to at least 7 error-free fractional bits in case of a fixed-point PWL output.

Pitfalls

However, it is important to note that if PWL function calls are cascaded, this error can build up and exceed tolerances. Such a situation is encountered, for instance, if the PWL functions are used for linear algebra functions that operate on matrices. Hence, the user must be aware of this pitfall and take steps to avoid it if necessary.

C++ Compiler

The PWL functions use default template arguments. In order to use a C++ compiler that supports this functionality, the user must use C++11 as the standard for their compilation, or a later standard, failing which a compile-time error is thrown.

Rounding Mode for PWL Output

The internal variable to store the PWL output for all the functions is set to have rounding turned off by default (*AC_TRN*). This is because the default bitwidth of the PWL output operates at full precision, and no rounding is required. If, however, the user wishes to reduce the number of bits and use another rounding mode, they can pass it as a template argument. For an example on how to pass this argument for all the PWL functions that are implemented, please refer to the "Function Prototypes" and "Example Function Calls" sections for the various functions as explained later in the documentation.

1.3.2. Lookup Table (LUT)

Some of the functions can be efficiently implemented as a lookup table. For example, the sine and cosine functions can be defined as a lookup table where the symmetry of the functions can be exploited to minimize the size of the table. In most cases the table is described using literal values expressed as C++ double precision values. The context in which the function is then used (determined by the fixed-point output precision) will determine the amount of error in the function.

1.3.3. CORDIC

Some of the hyperbolic and trigonometric functions have implementations based on the CORDIC algorithm. These implementations use an iterative approach that typically converges with one digit per iteration. The iterations may involve addition, subtraction, bit shifts and table lookups. Given the iterative nature of these implementations the resulting hardware will be larger and/or slower than the PWL or LUT implementations but offer the best accuracy.

1.3.4. Miscellaneous Math Functions

A number of math functions that do not fall in the categories listed above are also provided. These are the absolute value, division, square root and shifting functions. These functions give an exact or very accurate output.

1.4. Installing the ac_math library

The library consists of three directories, shown here:

```
|-- include

| |-- ac_math

| | |-- ac_abs.h

| | |-- ac_arccos_cordic.h

| | |-- ac_arcsin_cordic.h

| | |-- ac_atan2_cordic.h
```

```
| | |-- ac_atan_pwl_vha.h
| | |-- ac_barrel_shift.h
| | |-- ac_cholinv.h
| | |-- ac_determinant.h
| | |-- ac_hcordic.h
| | |-- ac_matrixmul.h
| | |-- ac_normalize.h
| | |-- ac_random.h
| | |-- ac_reciprocal_pwl.h
| | |-- ac_sigmoid_pwl.h
| | |-- ac_sincos_lut.h
```

```
| | |-- ac_softmax_pwl.h
| | |-- ac_tanh_pwl.h
| | |-- ac_softplus_pwl.h
| | |-- ac_softsign_pwl.h
| | |-- ac_selu_pwl.h
| | |-- ac_gelu_pwl.h
| | |-- ac_leakyrelu.h
| | |-- ac_flfx_mul.h
| | `-- ac_prelu.h
| |-- ac_float_add_tree.h
| |-- ac_math.h
| `-- ac_matrix.h
|-- lutgen
| |-- ac_atan_pwl_lutgen.cpp
| |-- ac_atan_pwl_ha_lutgen.cpp
| |-- ac_atan_pwl_vha_lutgen.cpp
| |-- ac_inverse_sqrt_pwl_lutgen.cpp
| |-- ac_inverse_sqrt_pwl_vha_lutgen.cpp
| |-- ac_log_pwl_lutgen.cpp
```

- | |-- ac_pow_pwl_lutgen.cpp
- | |-- ac_reciprocal_pwl_lutgen.cpp
- | |-- ac_reciprocal_pwl_ha_lutgen.cpp
- | |-- ac_reciprocal_pwl_vha_lutgen.cpp
- | |-- ac_sigmoid_pwl_lutgen.cpp
- | |-- ac_sincos_lut_lutgen.cpp
- | |-- ac_sqrt_pwl_lutgen.cpp
- | |-- ac_tan_pwl_lutgen.cpp
- | |-- ac_tanh_pwl_lutgen.cpp
- | `-- helper_functions.h
- |-- pdfdocs
- | `-- ac_math_ref.pdf
- `-- tests
 - |-- Makefile
 - |-- rtest_ac_abs.cpp
 - |-- rtest_ac_arccos_cordic.cpp
 - |-- rtest_ac_arcsin_cordic.cpp
 - |-- rtest_ac_atan2_cordic.cpp
 - |-- rtest_ac_atan_pwl.cpp
 - |-- rtest_ac_atan_pwl_ha.cpp
 - |-- rtest_ac_atan_pwl_vha.cpp
 - |-- rtest_ac_chol_d.cpp
 - |-- rtest_ac_cholinv.cpp
 - |-- rtest_ac_determinant.cpp

- |-- rtest_ac_div.cpp
- |-- rtest_ac_exp2_cordic.cpp
- |-- rtest_ac_exp_cordic.cpp
- |-- rtest_ac_exp_pwl.cpp
- |-- rtest_ac_inverse_sqrt_pwl.cpp
- |-- rtest_ac_inverse_sqrt_pwl_vha.cpp
- |-- rtest_ac_log2_cordic.cpp
- |-- rtest_ac_log2_pwl.cpp
- |-- rtest_ac_log_cordic.cpp
- |-- rtest_ac_log_pwl.cpp
- |-- rtest_ac_matrix.cpp
- |-- rtest_ac_matrixmul.cpp
- |-- rtest_ac_normalize.cpp
- |-- rtest_ac_pow2_pwl.cpp
- |-- rtest_ac_pow_cordic.cpp
- |-- rtest_ac_pow_pwl.cpp
- |-- rtest_ac_qrd.cpp
- |-- rtest_ac_reciprocal_pwl.cpp
- |-- rtest_ac_reciprocal_pwl_ha.cpp
- |-- rtest_ac_reciprocal_pwl_vha.cpp
- |-- rtest_ac_shift.cpp
- |-- rtest_ac_sigmoid_pwl.cpp
- |-- rtest_ac_sincos_cordic.cpp
- |-- rtest_ac_sincos_lut.cpp

```
|-- rtest ac softmax pwl.cpp
|-- rtest ac sqrt.cpp
|-- rtest ac sqrt pwl.cpp
|-- rtest_ac_tan_pwl.cpp
|-- rtest ac tanh pwl.cpp
|-- rtest ac softplus pwl.cpp
|-- rtest ac softsign pwl.cpp
|-- rtest_ac_elu_pwl.cpp
|-- rtest_ac_selu_pwl.cpp
|-- rtest_ac_gelu_pwl.cpp
|-- rtest ac leakyrelu.cpp
|-- rtest_ac_relu.cpp
|-- rtest ac prelu.cpp
|-- rtest ac flfx mul.cpp
`-- rtest ac float add tree.cpp
```

In order to utilize this library you must have the AC Datatypes package installed and configure your software environment to provide the path to the AC Datatypes "include" directory as part of your C++ compilation arguments.

Testing and Error Calculation

The ac_math library includes a series of unit tests that exercise each of the approximation functions across various fixed-point bit widths to ensure that the accuracy of the approximation is within a certain tolerance of the standard C++ math library equivalent (under the same input and output bit-width constraints). To exercise these tests from a Linux shell, use the following GNU make command line:

```
gmake all AC_TYPES_INC=<path to AC Datatypes include directory>
```

where the variable AC_TYPES_INC specifies the path to the install location of the AC Datatypes package. The results of the tests look something like this:

```
TEST: ac_inverse_sqrt_pwl() INPUT: ac_float< 5, 3, 3, AC_RND> OUTPUT: ac_float<64,32,10, AC_RND> RESULT: PASSED , max error (0.083916)
```

```
TEST: ac inverse sqrt pwl()
                             INPUT: ac float< 5, 1, 3, AC RND>
                                                                 OUTPUT:
ac float<64,32,10, AC RND>
                             RESULT: PASSED , max error (0.083916)
                             INPUT: ac float< 5, 0, 3, AC RND> OUTPUT:
TEST: ac inverse sqrt pwl()
                             RESULT: PASSED , max error (0.083916)
ac float<64,32,10, AC RND>
TEST: ac inverse sgrt pwl()
                             INPUT: ac float < 5,-2, 3, AC RND > OUTPUT:
                             RESULT: PASSED , max error (0.083916)
ac float<64,32,10, AC RND>
TEST: ac inverse sqrt pwl()
                             INPUT: ac float< 5, 9, 3, AC RND> OUTPUT:
ac float<60,30,11, AC RND>
                             RESULT: PASSED, max error (0.083916)
```

The output shows the function under test, the input and output bit-widths and the maximum error observed over the tested range of minimum and maximum values expressible in the input type stepping by the smallest value expressible in the input type.

In addition to the PWL approximations, the LUT and CORDIC implementations are also subject to error calculations on their output, in order to evaluate whether the error is tolerable.

For comparison, the input to the function being tested is converted to a double value (or ac_complex<double>, in case of complex inputs), and this double value is passed to the equivalent C++ math library function. The output, which is a double (or ac_complex<double>, in case of complex outputs), is subject to quantization according the output type of the function being tested.

It is this quantized output that is compared to the output of the function being tested. The comparison is done either in terms of relative error or absolute error. For real outputs, the relative/absolute error between the accurate (C++ math library) output and approximate output is calculated, based upon whether the accurate output lies above or below a pre-defined threshold; if the accurate output lies above the threshold, the relative error is calculated, if it lies below the threshold, the absolute error is calculated. For complex outputs, the error is calculated in a manner similar to the real output, with the differences being that (a) the quantization is carried out on the real and imaginary parts of the accurate output with respect to the type of the real and imaginary parts of the output of the function being tested and (b) the magnitude of the relative/absolute error is what is reported. This approach for comparison is followed for all the ac_math functions except for the:

- ac_log_pwl, ac_log2_pwl, ac_log_cordic, ac_log2_cordic, ac_atan_pwl, ac_atan_pwl_ha, ac_atan_pwl_vha, ac_tanh_pwl, ac_sigmoid_pwl, ac_sincos_lut and ac_softmax_pwl functions where only the absolute error is calculated.
- ac_abs, ac_shift_left, ac_shift_right, ac_barrel_shift and ac_normalize and ac_flfx_mul functions, which return an exact value at the output. The testing for these functions involves making sure that the expected values are the same as the corresponding actual values that the design returns.

Chapter 2: Piecewise Linear Functions

The *ac_math* package includes the following piecewise linear functions:

- Logarithm (ac log pwl / ac log2 pwl)
- Power (ac exp pwl / ac pow2 pwl / ac pow pwl)
- Reciprocal (ac reciprocal pwl)
- High-accuracy Reciprocal (ac_reciprocal_pwl_ha)
- Very High-accuracy Reciprocal (ac_reciprocal_pwl_vha)
- Square Root (ac_sqrt_pwl)
- 2.7<u>Inverse Square Root (ac inverse sqrt pwl)</u>
- Very High-Accuracy Inv Sqrt (ac inverse sqrt pwl vha)
- <u>Tangent (ac_tan_pwl)</u>
- Arctangent (ac atan pwl)
- High-accuracy Arctangent (ac atan pwl ha)
- Very High-accuracy Arctangent (ac_atan_pwl_vha)
- <u>Sigmoid (ac_sigmoid_pwl)</u>
- Hyperbolic Tangent (ac tanh pwl)
- Softmax (ac softmax pwl)
- Softplus (ac_softplus_pwl)
- Softsign (ac_softsign_pwl)
- Elu (ac_elu_pwl)
- Selu (ac_selu_pwl)
- Gelu (ac gelu pwl)

Every function above, except for the softmax, softplus, softsign and elu functions, contains its own unique PWL implementation.

Every function normalizes the function input to a value that is within the domain of the PWL approximation. The PWL approximation produces an output for this normalized value, and then applies a sort of "denormalization" that cancels out the effect of the previous normalization on the PWL output. This gives us an approximate output for the input that was supplied to the function. For each PWL approximation except for the softmax operation, the details are given in the table below:

PWL Function	Domain	Segments	Max. Abs. Error	Min. No. of Error-free Fractional Bits
Logarithm	[0.5, 1)	8	0.001251	9
Power	[0, 1)	4	0.003718	8
Reciprocal	[0.5, 1)	8	0.003274	8
High-accuracy Reciprocal	[0.5, 1)	32	0.000236429	12
Very High-accuracy Reciprocal	[0.5, 1)	64	6.33158e-05	13
Square Root	[0.5, 1)	4	0.000582	10
Inverse Square Root	[0.5, 1)	8	0.000893	10
Very High-accuracy Inv. Sqrt.	[0.5, 1)	32	6.56307e-05	13
Tangent	[0, π/4)	8	0.002300	8
Arctangent	[0, 1)	4	0.002885	8
High-accuracy Arctangent	[0, 1)	32	8.9351e-05	13
Very high-accuracy Arctangent	[0, 1)	64	4.59311e-05	14
Sigmoid	[0, 5)	8	0.002755	10
Softmax	N/A	N/A	N/A	N/A
Softplus	N/A	N/A	N/A	N/A
Softsign	N/A	N/A	N/A	N/A
Elu	N/A	N/A	N/A	N/A
Selu	N/A	N/A	N/A	N/A
Gelu	N/A	N/A	N/A	N/A

The following subsections describes the implementation and usage of these functions in more detail.

2.1. Logarithm (ac_log_pwl / ac_log2_pwl)

The ac_log_pwl library provides a piecewise linear implementation for the base 2 and base e logarithmic functions, optimized to provide high performance with quick results. The following datatypes are supported by this IP design: (a) ac_fixed (b) ac_float (c) ac_std_float (d) ac_ieee_float. The ac_fixed version of the ac_log2_pwl function is the one that performs the actual PWL computation. The natural logarithm is computed using the log2 output and the change of base property.

2.1.1. The ac_log2_pwl Implementation

The fixed point *ac_log2_pwl* implementation normalizes the function input to the PWL domain, and performs a PWL approximation to find log2 of the normalized input. This normalized value is then denormalized to produce the final output.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the actual, accurate implementation of the base 2 logarithm function, the following graph compares the PWL output against the accurate function output, where the red line (PWL output) is virtually indistinguishable from the green one (Accurate output):

Illustration 2: PWL Output vs. Accurate Output for Base2 Logarithm

Floating Point Support

The design supports ac_float, ac_std_float and ac_ieee_float datatypes. The ac_float version uses the ac_fixed version to compute log2 of the fixed point input mantissa. The corresponding output is denormalized by taking into account the input exponent and integer width of the input mantissa.

It should be noted that, since the input to the fixed point version (i.e. the input mantissa) is already normalized, the fixed point version does not need to perform a normalization on the input. Therefore, to avoid unnecessary hardware, floating point version uses the default *call_normalize* parameter. For more details on this default parameter, refer to Function Prototypes.

The ac_std_float and ac_ieee_float versions are essentially wrappers around the ac_float version that perform a conversion between ac_std_float/ac_ieee_float and the intermediate ac_float values that are passed to the ac_float implementation.

Handling Zero and Negative Inputs

A macro-enabled *AC_ASSERT* is provided to alert the user if a zero input is passed to the PWL function. In addition, functionality is also provided to ensure that the ac_log2_pwl function passes the minimum negative value that can be represented with the output type when a zero input is encountered, to mimic an output of negative infinity.

Similarly, a macro-enabled AC_ASSERT is also provided with the floating point implementation to alert the user if a negative input is passed to the PWL function.

2.1.1. The ac_log_pwl Implementation

In order to calculate the natural logarithm of *ac_fixed* inputs, we rely upon the *ac_log2_pwl* implementation. As mentioned earlier, the change of base property is used. It can be represented by the following equation

```
\log(x) = \log^2(x) * \log(2)
```

The output of the *ac_log2_pwl* implementation is multiplied by log(2), a constant value. The product is the output of the *ac_log_pwl* function.

Floating Point Support

The interaction between floating point and fixed point ac_log_pwl functions is the same as that outlined in for the corresponding ac_log2_pwl functions, with the exception being that an additional multiplication is required to perform a change of base as explained above, for ac_log_pwl functions.

2.1.2. Function Prototypes

The following code shows the template prototypes for the different implementations:

The default *call_normalize* argument shown above allows the user to selectively call the *ac_normalize* function. As mentioned earlier, the floating point function calls to the fixed point *ac_log2_pwl* version set *call_normalize* to false in order to bypass the usage of *ac_normalize* and the generation of normalization hardware.

Bear in mind that to completely bypass the usage of *ac_normalize*, the *call_normalize* argument must stay false for every function call. This is done by passing a constant boolean parameter for call_normalize, as can be seen in Bypassing Normalization.

```
template <ac_q_mode pwlQ = AC_TRN,
```

Note that the fixed point functions only accept unsigned inputs, which corresponds to the behavior of the actual logarithm function, which only accepts positive values for its domain. This is different than the behavior of the C math library logarithm functions, which use signed double datatypes for their inputs.

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_log2_pwl(
  const ac_std_float<W, E> &input,
  ac_std_float<outW, outE> &output
)
```

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_log_pwl(
  const ac_std_float<W, E> &input,
  ac_std_float<outW, outE> &output
)
```

Returning by Value

The ac_log2_pwl and ac_log_pwl functions can return their output by value as well as by reference. In order to return the output by value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the Example Function Calls section below. The prototypes for the function call to return by value for both functions is shown below:

2.1.3. Example Function Calls

An example of a function call to store the value of the base 2 and base e logarithms of a sample *ac_fixed* variable *x* in the variables y log2 and y log is shown below:

```
ac_fixed<20, 11, false, AC_RND, AC_SAT> x = 2.875;
typedef ac_fixed<30, 15, true, AC_RND, AC_SAT> output_type;
output_type y_log, y_log2;
```

```
ac_log2_pwl(x, y_log2); // Approximates y_log2 = log2(x)
ac_log_pwl(x, y_log); // Approximates y_log = log(x)
```

Returning by Value

In order to have the function return by value, the user must pass the output type information as a template parameter. This is done as follows, for the base 2 and base e logarithmic functions:

```
y = ac_log2_pwl<output_type>(x);
y = ac_log_pwl<output_type>(x);
```

If the user wants to change the default template parameters, e. g. they want to round the output of the PWL implementation, they can do so by using the following function calls as guidelines:

```
y = ac_log2_pwl<output_type, AC_RND>(x);
y = ac_log_pwl<output_type, AC_RND>(x);
```

Bypassing Normalization

As mentioned earlier in Function Prototypes, the calls to *ac_normalize* and hence the synthesis of normalization hardware can be bypassed by changing the *call_normalize* argument. An example on how to do so, for *ac_fixed* inputs that are already normalized, is shown below:

```
ac_fixed<16, 5, false> x = 3.5;
ac_fixed<18, 2, true> y;
const bool call_normalize = false;
ac log2 pwl(x, y, call normalize);
```

2.2. Power (ac_exp_pwl / ac_pow2_pwl / ac_pow_pwl)

The *ac_pow_pwl* library is designed to provide a quick approximation of the base 2, natural exponentials and generic power functions for real numbers using a piecewise linear (PWL) implementation of the base 2 exponential function with 5 points/4 segments along with the ac_log2_pwl function for the generic power function. This frees us of the burden of having to calculate the output using methods such as Taylor series expansion, which requires loop unrolling, a large number of adders and hence a comparatively large area, to give 100% throughput. By contrast, the ac_pow_pwl function can give 100% throughput by merely pipelining it with an II of 1, which results in a lower area for the hardware.

2.2.1. The ac_pow2_pwl Implementation

The <code>ac_pow_pwl</code> library provides three functions, one which calculates the base 2 exponential, one which calculates the natural exponential, and one more that calculates the generic power function (a^b). The natural exponential version (henceforth called the <code>ac_exp_pwl</code> implementation) depends upon the base 2 exponential version (henceforth called the <code>ac_pow2_pwl</code> implementation) for its computation, as will be explained later. The generic power function (henceforth called the <code>ac_pow_pwl</code> implementation) also depends on the <code>ac_pow2_pwl</code> implementation, in addition to the <code>ac_log2_pwl</code> function. All three functions only accept <code>real</code>, <code>ac_fixed</code> inputs and calculate <code>ac_fixed</code> outputs.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the actual, accurate implementation of the base 2 exponential function, the following graph compares the PWL output against the accurate function output:

Illustration 3: PWL Output vs. Accurate Output for Base 2 Exponential

Floating Point Support

There are ac_pow2_pwl implementations designed to also supports ac_float, ac_std_float and ac_ieee_float datatypes. The ac_float version of ac_pow2_pwl converts the floating point input to a fixed point input, the fractional part of which is then passed to the fixed point implementation. The output corresponding to the fractional part is then denormalized with the integer part of the input to produce the final output.

The ac_std_float and ac_ieee_float versions are essentially wrappers around the ac_float version that perform a conversion between ac_std_float/ac_ieee_float and the intermediate ac_float values that are passed to the ac_float implementation. If the AC_POW_PWL_NAN_SUPPORTED macro is defined, ac_std_float and ac_ieee_float versions will produce a nan output when supplied with a nan input.

2.2.2. The ac_exp_pwl Implementation

In order to calculate the natural exponential of ac_fixed inputs, we rely upon the *ac_pow2_pwl* implementation. The following relation is used:

$$\exp(x) = 2 ^ (x * log2(e))$$

Hence, all that needs to be done is to multiply the input by log2(e), store the product in a temporary variable, and then pass that to the ac_pow2_pwl implementation.

Changing Intermediate Type

The fixed-point ac_exp_pwl function has a default template parameter called n_f_b which can adjust the minimum number of fractional bits in the variable used for storing the multiplication of the input and log2(e). To enable this adjustment, the user must define the macro AC_POW_PWL_CHANGE_FRAC_BITS. If that macro is defined, the function sets the number of fractional bits in the intermediate type to n_f_b or the number of fractional bits in the input, whichever one is greater. If the macro is not defined, the minimum number of fractional bits will be 12 or the number of fractional bits in the input, whichever one is greater.

Even if the macro is not defined, n_f will still be present in the template parameter-list but not actually used in the function itself, so as to preserve backward compatibility with calls to previous versions of the fixed-point ac_exp_pwl function, which always used the template parameter.

Refer to Function Prototypes for the prototype and template parameter-list of the ac exp pwl functions.

Floating Point Support

The floating point support for ac_exp_pwl is almost identical to that provided for the ac_pow2_pwl implementation. The only difference is that the input mantissa is multiplied by log2(e) before converting to a fixed point input and passing that to the fixed point implementation.

2.2.3. The ac_pow_pwl Implementation

In order to calculate the generic power function output for ac_fixed inputs, we use a relation similar to that used in the *ac_exp_pwl* implementation, namely

```
a^x = 2 ^ (x * log2(a))
```

The difference being that in this case, the base, i.e. a, is a dynamic input received from the user, hence we cannot use a constant value to represent log2(a). We instead use the ac_log2_pwl function to calculate this value, and multiply the calculated value with the exponent, i.e. x. The product of this multiplication is passed to the ac_pow2_pwl implementation.

Floating Point Support

The ac_pow_pwl library does not have floating point support, due to difficulties involved in bounding the output error for floating point inputs. The user is invited to use the generic cordic exponential function instead, i.e. ac_pow_cordic.

2.2.4. Function Prototypes

The following code shows the function prototypes for the different implementations:

```
const ac_fixed<W, I, S, Q, O> &input,
  ac_fixed<outW, outI, false, outQ, outO> &output
)
```

```
template <ac_q_mode pwl_Q = AC_TRN,
    int W, int I, int E, ac_q_mode Q,
    int outW, int outI, int outE, ac_q_mode outQ>
```

```
void ac_exp_pwl(
  const ac_float<W, I, E, Q> input,
  ac_float<outW, outI, outE, outQ> &output
)
```

Note that the function only accepts unsigned ac_fixed datatypes for the output and base (in case of the ac_pow_pwl implementation). This corresponds to the behavior of the actual power functions, which have a range that covers only all positive real values, and whose base only covers the domain of positive real values. The behavior of our PWL functions in this sense is different than the behavior of the standard C math library functions, which accept signed doubles for both the input(s) and the output.

Returning by Value

All the power functions can return their output by value as well as by reference. In order to return the output by value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the *Example Function Calls* section below. The prototypes for the function call to return by value for both functions is shown below:

Since the ac_fixed ac_exp_pwl has an additional template parameter, i.e. n_f_b , the prototype for the return-by-value version of it is different than the generic version shown above:

```
template<class T_out, ac_q_mode pwl_Q = AC_TRN, class T_in_base, class T_in_ex-
pon>
T_out ac_pow_pwl(
   const T_in_base &base,
   const T_in_expon &expon
)
```

2.2.5. Example Function Calls

An example of a function call to store the value of the natural exponential of a sample *ac_fixed* variable *x* in a variable *y* is shown below:

```
typedef ac_fixed<21, 12, false, AC_RND, AC_SAT> base_type;
typedef ac_fixed<20, 11, true, AC_RND, AC_SAT> exp_type;
typedef ac_fixed<30, 15, false, AC_RND, AC_SAT> output_type;

base_type a = 2.5;
exp_type x = 2.875;
output_type y_exp, y_pow2, y_pow;
ac_pow2_pwl(x, y_pow2); //Approximates y_pow2 = pow(2, x.to_double())
ac_exp_pwl(x, y_exp); //Approximates y_exp = exp(x)
ac_pow_pwl(a, x, y_pow); //Approximates y_pow = pow(a, x)
```

The variable y hereafter contains the approximate value of the natural exponential of x.

Returning by Value

In order to have the function return by value, the user must pass the output type information as a template parameter. This is done as follows, for the base 2 and base e exponential functions:

```
y_pow2 = ac_pow2_pwl<output_type>(x);
y_exp = ac_exp_pwl<output_type>(x);
y_pow = ac_pow_pwl<output_type>(a, x);
```

2.3. Reciprocal (ac_reciprocal_pwl)

The ac_reciprocal_pwl function is designed to provide a quick approximation of the reciprocal of real and complex numbers using a Piecewise Linear (PWL) implementation with 9 points/8 segments. Many hardware division operations are calculated indirectly by first obtaining the value of the reciprocal of the denominator, and then multiplying that with the numerator. The calculation of the reciprocal can be done using PWL approximation, which is faster and requires lesser area than actual division hardware.

2.3.1. The ac_reciprocal_pwl Implementation

The ac_reciprocal_pwl library provides four overloaded functions for the calculation of the reciprocal of real and complex inputs. Each overloaded function handles a different input datatype. The six datatypes hence handled are (a) ac_fixed, (b) ac_float, (c) ac_complex<ac_fixed>,(d) ac_complex<ac_float>, (e) ac_std_float and (f) ac_ieee_float. It is the ac_fixed function that actually contains the code required for the PWL implementation. All the other functions rely upon the ac_fixed PWL implementation.

Handling Zero Input

The ac_reciprocal_pwl library provides a macro-enabled AC_ASSERT which will produce a run-time assert when a zero input is encountered. If this assert fails to kick in, additional functionality is provided that ensures output saturation when a zero input is encountered.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the actual, accurate implementation of the reciprocal function, the following graph compares the PWL output against the accurate function output:

Illustration 4: PWL Output vs. Accurate Output for Reciprocal

ac std float and ac ieee float Support

The functions for <code>ac_std_float</code> and <code>ac_ieee_float</code> support serve as wrappers around the <code>ac_float</code> reciprocal designs, which perform conversions between the <code>ac_std_float/ac_ieee_float</code> float inputs/outputs and the intermediate <code>ac_float</code> variables that are passed to the <code>ac_float</code> design.

2.3.2. Function Templates

The following are the overloaded function prototypes for the *ac_reciprocal_pwl* function for different datatypes:

```
);
```

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_reciprocal_pwl(
  const ac_std_float<W, E> &input,
  ac_std_float<outW, outE> &output
);
```

Returning by Value

The ac_reciprocal_pwl functions can return their output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the Example Function Calls section below. The prototype for the function call to return by value is shown below:

2.3.3. Example Function Calls

An example of a function call to store the value of the reciprocal of a sample *ac_fixed* variable *x* in a variable *y* is shown below:

```
typedef ac_fixed<20, 11, true, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 15, true, AC_RND, AC_SAT> output_type;
input_type x = -1.75;
output_type y;
ac_reciprocal_pwl(x, y); //Approximates y = 1 / x
```

The variable y hereafter stores the approximate value of the reciprocal of *x*.

Returning by Value

As mentioned earlier, the *ac_reciprocal_pwl* functions can also return by value. In order to do so, the type information for the output must be passed explicitly to function as shown below.

```
y = ac_reciprocal_pwl<output_type>(x);
```

If the user also wishes to change the rounding mode for the temporary variable and have the function return by value, they can call the function as follows:

```
y = ac_reciprocal_pwl<output_type, AC_RND>(x);
```

2.4. High-accuracy Reciprocal (ac_reciprocal_pwl_ha)

The high-accuracy reciprocal library is designed to be a higher-accuracy version of the ac_reciprocal_pwl function. The implementation, function prototypes and example function calls for the ac_reciprocal_pwl_ha library are almost the same as that for the ac_reciprocal_pwl library, with the only two major differences being as follows:

- The function name is different; the high-accuracy reciprocal library has the suffix _ha attached to denote that it is a high-accuracy implementation.
- The high-accuracy version uses 32 segments to enable a higher-accuracy output, as compared to 8 segments for the original implementation. Hence, the high-accuracy version will consume more area in hardware. The 32-element LUTs for the high-accuracy version might be too big to be mapped to a register bank, and hence be mapped to memories instead. The user might want to consider changing the memory mapping threshold if they do not wish for this to happen.

Keeping these differences in mind, The user can consult the documentation for *ac_reciprocal_pwl* for more details on the working of the high-accuracy version.

2.5. Very High-accuracy Reciprocal (ac_reciprocal_pwl_vha)

For applications where an ever higher accuracy output is desired, the user can utilize the ac_reciprocal_pwl_vha library, which uses a 64-segment PWL. Like its high-accuracy reciprocal counterpart, this library is also very similar to the ac_reciprocal_pwl library, with the only major differences being the name and the number of segments used. This library is designed to have a percentage relative error below 0.005%.

2.6. Square Root (ac_sqrt_pwl)

The ac_sqrt_pwl function is a piecewise linear implementation of a square root function that has been optimized to provide a fast, low-area implementation with minimal error, making it useful as a basic building block in high speed IP blocks.

2.6.1. The ac_sqrt_pwl Implementation

The ac_sqrt_pwl library provides three overloaded functions for the calculation of the square root of real and complex inputs, each handling a different input datatype. The three datatypes hence handled are (a) ac_fixed, (b) ac_float (c) ac_std_float (d) ac_ieee_float and (e) ac_complex<ac_fixed>. It is the ac_fixed implementation that actually contains the code required for the PWL approximation.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the accurate implementation of the square root function, the following graph is provided:

Illustration 5: PWL Output vs. Accurate Output for Square Root

Floating Point Support

The functions for ac_std_float and ac_ieee_float support serve as a wrapper around the ac_float square root design, and perform conversions between the ac_std_float/ac_ieee_float inputs/outputs and the intermediate ac_float variables that are passed to the ac_float design.

Handling Negative Inputs

A macro-enabled *AC_ASSERT* is provided in the *ac_float* implementation to alert the user to negative values that may accidentally be passed to the design.

Toggling Normalization

The floating point functions use the *ac_fixed* implementation to calculate the square root of the input mantissa. As the mantissa is already normalized, the fixed point function call is configured such that ac_normalize is not called and the generation of normalization hardware is bypassed. This is done by changing the value passed for the default *call_normalize* argument in the fixed point function interface. The interface, along with the *call_normalize* argument, is displayed in Function Templates. Refer to Example Function Calls for a usage example.

2.6.2. Function Templates

The following are the overloaded function prototypes for the ac sqrt pwl function for different datatypes:

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_sqrt_pwl(
  const ac_std_float<W, E> &input,
  ac_std_float<outW, outE> &output
);
```

The *ac_sqrt_pwl* functions can return their output by value as well as by reference. To return the value, the user must pass the information of the output type to the function as a template argument. Refer to Example Function Calls for a usage example. The prototype for the function call to return by value is shown below:

```
template<class T_out, ac_q_mode pwlQ = AC_TRN, class T_in>
T_out ac_sqrt_pwl(
   const T_in &input
);
```

2.6.3. Example Function Calls

An example of a function call to store the value of the square root of a sample *ac_fixed* variable *x* in a variable *y*, by using both return by reference and return by value, is shown below. A line of code that illustrates the method to change the rounding mode of the intermediate PWL variable is also included.

```
typedef ac_fixed<20, 11, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 15, false, AC_RND, AC_SAT> output_type;
input_type x = 1.75;
output_type y;

// Returns y = sqrt(x), and returns by reference.
ac_sqrt_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND ac_sqrt_pwl<AC_RND> (x, y);

// The following line, returns by value instead of by reference.
y = ac_sqrt_pwl <output_type> (x);
```

If the input to the ac_fixed function is already normalized, the user can bypass normalization and save on hardware that way. To do so, they can pass *false* for the *call_normalize* argument, as shown below:

```
const bool call_normalize = false;
ac_sqrt_pwl(x, y, false);
```

2.7. Inverse Square Root (ac_inverse_sqrt_pwl)

The ac_inverse_sqrt_pwl function is a piecewise linear implementation of the inverse square root function (1/sqrt(x)) that has been optimized to provide a high-performance implementation with minimal error, making it useful as a basic building block in high speed IP blocks. This function is implemented as an overloaded function for the different datatypes it supports. It provides a more accurate and lower-area output as compared to using the square root and reciprocal PWL approximations together to calculate the inverse square root of a number.

2.7.1. The ac_inverse_sqrt_pwl Implementation

The ac_inverse_sqrt_pwl library provides four overloaded functions for the calculation of the inverse square root of real and complex inputs. Each overloaded function handles a different input datatype. The five datatypes hence handled are (a) ac_fixed, (b) ac_float (c) ac_std_float, (d) ac_ieee_float and (e) ac_complex<ac_fixed>. It is the ac_fixed function that actually contains the code required for the PWL implementation. All the other functions rely upon the ac_fixed PWL implementation.

Handling Invalid Inputs

The ac_inverse_sqrt_pwl library provides a macro-enabled AC_ASSERT which will produce a run-time assert when a zero input is encountered. If this assert fails to kick in, additional functionality is provided that ensures output saturation when a zero input is encountered.

A macro-enabled AC_ASSERT is also provided that is triggered in case of a negative floating point input.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the accurate implementation of the inverse square root function, the following graph is provided:

Illustration 6: PWL Output vs. Accurate Output for Inverse Square Root

Floating Point Support

The functions for ac_std_float and ac_ieee_float support serves as a wrapper around the ac_float inverse square root design, which performs conversions between the standard/IEEE float inputs/outputs and the intermediate ac_float variables that are passed to the ac_float design.

Toggling Normalization

The floating point functions use the *ac_fixed* implementation to calculate the square root of the input mantissa. As the mantissa is already normalized, the fixed point function call is configured such that ac_normalize is not called and the generation of normalization hardware is bypassed. This is done by changing the value passed for the default *call_normalize* argument in the fixed point function interface. The interface, along with the *call_normalize* argument, is displayed in Function Templates. Refer to Example Function Calls for a usage example.

2.7.2. Function Templates

The following are the overloaded function prototypes for the *ac_inverse_sqrt_pwl* function for different datatypes:

```
template <ac_q_mode q_mode_temp = AC_TRN, int W1, int E1, int W2, int E2>
void ac_inverse_sqrt_pwl(
    const ac_std_float<W1, E1> &input,
    ac_std_float<W2, E2> &output
);
```

```
const ac_ieee_float<Format> input,
  ac_ieee_float<outFormat> &output
);
```

The ac_inverse_sqrt_pwl functions can return their output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the Example Function Calls section below. The prototype for the function call to return by value is as follows:

```
template<class T_out, ac_q_mode q_mode_temp = AC_TRN, class T_in>
T_out ac_inverse_sqrt_pwl(
   const T_in &input
)
```

2.7.3. Example Function Calls

An example of a function call to store the value of the inverse square root of a sample *ac_fixed* variable *x* in a variable *y*, by using both return by reference and return by value, is shown below.

```
typedef ac_fixed<20, 11, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 15, false, AC_RND, AC_SAT> output_type;

input_type x = 1.75;
output_type y;

// Returns y = 1/sqrt(x), and returns by reference.
ac_inverse_sqrt_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND ac_inverse_sqrt_pwl<AC_RND> (x, y);

// The following line, returns by value instead of by reference.
y = ac inverse sqrt_pwl <output type> (x);
```

If the input to the ac_fixed function is already normalized, the user can bypass normalization and save on hardware that way. To do so, they can pass *false* for the *call_normalize* argument, as shown below:

```
const bool call_normalize = false;
ac_inverse_sqrt_pwl(x, y, false);
```

2.8. Very High-Accuracy Inv Sqrt (ac_inverse_sqrt_pwl_vha)

The very high-accuracy inverse square root library is designed to be a higher-accuracy version of the <code>ac_inverse_sqrt_pwl</code> function. The implementation, function prototypes and example function calls for the <code>ac_inverse_sqrt_pwl_vha</code> library are almost the same as that for the <code>ac_inverse_sqrt_pwl_vha</code> library, with the two major differences being as follows:

- The function name is different; the very high-accuracy inverse square root library has the suffix _vha attached to denote that it is a very high-accuracy implementation.
- The VHA version uses 64 segments to enable a higher-accuracy output, as compared to 8 segments for the original implementation. Hence, the high-accuracy version will consume more area in hardware. The 64-element LUTs for the high-accuracy version might be too big to be mapped to a register bank, and hence be mapped to memories instead. The user might want to consider changing the memory mapping threshold if they do not wish for this to happen.

Keeping these differences in mind, The user can consult the documentation for *ac_inverse_sqrt_pwl* for more details on the working of the very high-accuracy version.

2.9. Tangent (ac_tan_pwl)

The ac_tan_pwl library provides a fast, PWL implementation of the tangent function of first-quadrant angles with minimal inaccuracy. The implementation is faster than other algorithms such as the CORDIC algorithm, which require a significant number of iterations and stored table values to reach an acceptable accuracy in the output. The tangent PWL library supports (a) ac_fixed (b) ac_float (c) ac_std_float and (d) ac_ieee_float datatypes.

2.9.1. The ac_tan_pwl Implementation

Each supported datatype is handled separately through overloaded functions. The *ac_fixed* implementation contains the actual PWL implementation, and the *ac_float* implementation depends on the *ac_fixed* implementation to perform the PWL calculation.

Normalization

The actual tangent PWL implementation only covers the domain of $[0, \pi/4)$. In order to cover a larger range of first-quadrant angle values, i. e. in order to extend the domain of the *ac_tan_pwl* function to $[\pi/4, \pi/2)$, the input angle in radians is halved using a shift operation, and the following equation is used:

$$tan(x) = 2 * tan(x/2) * (1 / (1 - tan(x/2)^2))$$

In order to calculate the $1/(1 - \tan(x/2)^2)$ factor in the above equation, we use the *ac_reciprocal_pwl* library for ac_fixed inputs and outputs. Hence, the user must keep in mind that any changes made to that library will also affect the accuracy of the tangent approximation for values that equal or exceed $\pi/4$.

Saturation

It is important to note that the output will saturate to the maximum possible value once the input has crossed the value of 1.556640625 radians, which is roughly 89.2 degrees.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the accurate implementation of the tangent function, the following graph is provided for the domain $[0, \pi/4)$:

Illustration 7: PWL Output vs. Accurate Output for Tangent

Floating Point Support

The floating point designs use the ac_shift_left library to convert the values of input mantissa and exponent into a fixed point value that can be passed to the ac_fixed implementation. The bitwidth of the intermediate fixed point value can be reduced due to the fact that the input cannot exceed $\pi/2$ and because the ac_fixed PWL function truncates inputs that exceed a certain number of fractional bits.

The ac_std_float and ac_ieee_float functions serves as a wrapper around the ac_float function that converts ac std float and ac_ieee_float inputs/outputs to/from their equivalent ac_float representations.

Handling Invalid Inputs

Macro-enabled $AC_ASSERTs$ are provided to alert the users to inputs that exceed $\pi/2$ or, in case of floating point implementations, negative inputs.

2.9.2. Function Templates

The following are the function prototypes for the ac tan pwl function for different datatypes:

```
template<ac_q_mode pwl_Q = AC_TRN,
int W, int I, ac_q_mode Q, ac_o_mode O,
```

```
int outW, int outI, ac_q_mode outQ, ac_o_mode outO>
void ac_tan_pwl(
  const ac_fixed<W, I, false, Q, O> &input,
  ac_fixed<outW, outI, false, outQ, outO> &output
);
```

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_sqrt_pwl(
  const ac_std_float<W, E> &input,
  ac_std_float<outW, outE> &output
);
```

The ac_tan_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the Example Function Calls section below. The prototype for the function call to return by value is shown below:

```
template<class T_out, ac_q_mode pwl_Q = AC_TRN, class T_in>
T_out ac_tan_pwl(const T_in &input);
```

2.9.3. Example Function Calls

An example of a function call to store the value of the tangent of a sample *ac_fixed* variable *x* in a variable *y*, by using both return by reference and return by value, is shown below.

```
typedef ac_fixed<20, 11, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 15, false, AC_RND, AC_SAT> output_type;
input_type x = 0.25;
output_type y;

// Returns y = tan(x), and returns by reference.
ac_tan_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND ac_tan_pwl<AC_RND> (x, y);

// The following line, returns by value instead of by reference.
y = ac tan pwl <output type> (x);
```

2.10. Arctangent (ac_atan_pwl)

The ac_atan_pwl library provides a PWL based approximation of the arctangent function for positive (a) ac fixed (b) ac float (c) ac std float and (d) ac ieee float inputs.

2.10.1. The ac_atan_pwl Implementation

The ac_atan_pwl has overloaded functions to support the different datatypes listed earlier. The ac_fixed version is the one that contains the actual PWL implementation, and the floating point versions depend on it for their functioning.

Normalization

The actual arctangent PWL implementation only covers the domain of [0, 1). This is done not only because the domain from $[1, \infty)$ can be covered with the reciprocal function, but because attempting to cover a larger domain with saturation for input values that cross a certain limit means that:

- It's harder to obtain an adequate fit to the actual arctangent function, due to the nature of the function curve, necessitating more segments and a larger area to store LUT values.
- A comparator must be used for saturation, resulting in a further increase in area.

The formula used for any values that exceed unity is as follows:

```
atan(x) = \pi/2 - atan(1/x)
```

Where the value of 1/x is obtained using the reciprocal PWL function.

An input of unity is handled by storing it in a variable which saturates to a value slightly less than unity, hence ensuring that the normalized input value is still within the domain of the PWL function.

Floating Point Support

The functions for ac_std_float and ac_ieee_float support serves as a wrapper around the ac_float inverse square root design, which performs conversions between the standard/IEEE float inputs/outputs and the intermediate ac_float variables that are passed to the ac_float design.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the accurate implementation of the arctangent function, the following graph is provided for the domain [0, 1):

Illustration 8: PWL vs Accurate Output for Arctangent

2.10.2. Function Templates

The following is the function prototype for the ac atan pwl function for different datatypes:

```
template<ac_q_mode pwl_Q = AC_TRN,
    int W, int I, int E, ac_q_mode Q,
    int outW, int outI, int outE, ac q mode outQ>
```

```
void ac_atan_pwl(
  const ac_float<W, I, E, Q> &input,
  ac_float<outW, outI, outE, outQ> &output
);
```

```
template <ac_q_mode pwl_Q = AC_TRN, int W, int E, int outW, int outE>
void ac_atan_pwl(
    const ac_std_float<W, E> &input,
    ac_std_float<outW, outE> &output
);
```

The ac_atan_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the Example Function Calls section below. The prototype for the function call to return by value is shown below:

2.10.3. Example Function Calls

An example function call for ac_fixed variables is given below.

```
typedef ac_fixed<20, 11, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 15, false, AC_RND, AC_SAT> output_type;
input_type x = 0.5;
output_type y;

// Returns y = atan(x), and returns by reference.
ac_atan_pwl (x, y);
```

```
// Change the rounding mode for intermediate PWL variable to AC_RND
ac_atan_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_atan_pwl <output_type> (x);
```

2.11. High-accuracy Arctangent (ac_atan_pwl_ha)

The high-accuracy arctangent library is designed to be a higher-accuracy version of the *ac_atan_pwl* function. The implementation, function prototypes and example function calls for the *ac_atan_pwl_ha* library are almost the same as that for the *ac_atan_pwl* library, with the only three major differences being as follows:

- The function name is different; the high-accuracy arctangent library has the suffix _ha attached to denote that it is a high-accuracy implementation.
- The high-accuracy version uses 32 segments to enable a higher-accuracy output, as compared to 4 segments for the original implementation. Hence, the high-accuracy version will consume more area in hardware. The 32-element LUTs for the high-accuracy version might be too big to be mapped to a register bank, and hence be mapped to memories instead. The user might want to consider changing the memory mapping threshold if they do not wish for this to happen.
- The high-accuracy reciprocal PWL is called to enable the calculation of atan(1/x).

Keeping this differences in mind, the user can consult the documentation for *ac_atan_pwl* for more details on the working of the high-accuracy version.

2.12. Very High-accuracy Arctangent (ac_atan_pwl_vha)

For applications where an ever higher accuracy output is desired, the user can utilize the <code>ac_atan_pwl_vha</code> library, which uses a 64-segment PWL. Like its high-accuracy arctangent counterpart, this library is also very similar to the <code>ac_atan_pwl</code> library, with the only major differences being the name, the number of segments used, and the reciprocal PWL library called (<code>ac_reciprocal_pwl_vha</code>). This library is designed to have an absolute error below 5e-5.

2.13. Sigmoid (ac sigmoid pwl)

The *ac_sigmoid_pwl* library provides a PWL based approximation of the sigmoid function for *ac_fixed* inputs with minimal inaccuracy.

Normalization

The actual sigmoid PWL implementation only covers the domain of [0, 5). This pwl domain was selected because attempting to cover a larger domain makes it harder to obtain an adequate fit to the actual sigmoid

function necessitating more segments and a larger area to store LUT values. As the input approaches infinity, the sigmoid function saturates and thus for inputs greater than 5, the output is saturated to the maximum possible pwl output. For negative inputs, the output will simply be 1 - the output of its positive conterpart taking advantage of the symmetry of the sigmoid function.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the "real thing", i.e. the accurate implementation of the sigmoid function, the following graph is provided for the domain [0, 5):

Illustration 9: PWL Output vs. Accurate Output for Sigmoid

2.13.1. Function Templates

The following is the function prototype for the ac sigmoid pwl function for ac fixed datatypes:

The ac_sigmoid_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the 2.13.2Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.13.2. Example Function Calls

An example of a function call to store the value of sigmoid of a sample *ac_fixed* variable *x* in a variable *y*, by using both return by reference and return by value, is shown below.

```
typedef ac_fixed<15, 7, true, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 3, false, AC_RND, AC_SAT> output_type;
input_type x = 2.5;
output_type y;

// Returns y = sigmoid(x), and returns by reference.
ac_sigmoid_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND ac_sigmoid_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_sigmoid_pwl <output_type> (x);
```

2.14. Hyperbolic Tangent (ac_tanh_pwl)

The *ac_tanh_pwl* library provides a PWL based approximation of the hyperbolic tangent function for *ac_fixed* inputs with minimal inaccuracy.

Normalization

The actual hyperbolic tangent PWL implementation only covers the domain of [0, 3). This pwl domain was selected because it gives a good fit to the actual hyperbolic tangent function. As the input approaches infinity, the hyperbolic tangent function saturates and thus for inputs greater than 3, the output is saturated to the maximum possible pwl output. For negative inputs, the output will simply be the negation of the output of its positive conterpart taking advantage of the symmetry of the hyperbolic tangent function.

PWL Approximation Graph

To explain the closeness of the PWL approximation to the accurate implementation of the hyperbolic tangent function, the following graph is provided for the domain [0, 3):

Illustration 10: PWL Output vs. Accurate Output for Hyperbolic Tangent

2.14.1. Function Templates

The following is the function prototype for the *ac_tanh_pwl* function for *ac_fixed* datatypes:

The ac_tanh_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the 2.13.2Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.14.2. Example Function Calls

An example of a function call to store the value of hyperbolic tan of a sample *ac_fixed* variable *x* in a variable *y*, by using both return by reference and return by value, is shown below.

```
typedef ac_fixed<15, 7, true, AC_RND, AC_SAT> input_type;
typedef ac_fixed<30, 3, false, AC_RND, AC_SAT> output_type;
input_type x = 2.5;
output_type y;

// Returns y = tanh(x), and returns by reference.
ac_tanh_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND
ac_tanh_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_tanh_pwl <output_type> (x);
```

2.15. Softmax (ac_softmax_pwl)

The ac_softmax_pwl library provides a PWL based approximation of the softmax function for an array of ac_fixed inputs with minimal inaccuracy.

Intermediate Datatypes

Three intermediate datatypes are important for the computation of the softmax output:

• *T_exp*: Determines the precision for the exponent values of each input, calculated through the *ac_exp_pwl* function. Depends on the input bitwidth, by default. The default derived bitwidth, specifically the derived integer bitwidth, can be very large, hence a *static_assert* is provided in the function to alert the user if it exceeds 64 bits, at compile time and thereby limit the area.

- T sum: Determines the precision for the sum of exponent values. Depends on the bitwidth of T exp.
- *T_recip*: Determines the precision of the reciprocal of the sum above, calculated through the ac_reciprocal_pwl function. Depends on the bitwidth of *T_sum*, by default.

All the above datatypes are unsigned, fixed-point datatypes.

Loops and Architectural Exploration

The function contains three loops with the following labels:

- CALC_EXP_LOOP: Loops through all input array elements and calculates exponent value of each.
- SUM_EXP_LOOP: Loops through all exponent values calculated above and finds their sum.
- CALC_SOFTMAX_LOOP: Finds final softmax value by multiplying the exponent values of each input with the reciprocal of their sum.

All these loops can be pipelined and/or unrolled, contingent upon other factors like clock constraints and datatypes involved. If the main function as well as all loops in the design are pipelined with an II of 1, one can achieve a throughput of 2K clock cycles, where K is the length of the input/output vector. If the main function is pipelined with an II of 1 and all loops fully unrolled, a throughput of one clock cycle can be achieved. Care should be taken in doing the latter, especially in unrolling the $CALC_SOFTMAX_LOOP$. Doing means that the design now uses K multipliers which may be very large, depending on the size of T_recip and T_exp . If the area is very large, the user is advised to either consider partially or completely rolling $CALC_SOFTMAX_LOOP$, or to use template parameters to override and reduce the default T_recip and T_exp bitwidths and hence reduce the area. Refer to the Changing Intermediate Bitwidths section below, for more details.

2.15.1. Function Templates

The following is the function prototype for the ac softmax pwl function for ac fixed datatypes:

Changing Intermediate Bitwidths

As mentioned above, the user might want to modify the bitwidths of T_{exp} or T_{recip} . To do so, they must set the or_{e} (for T_{exp}) or or_{r} (for T_{recip}) parameters to true, and assign values to the template parameters with the suffix of $_{e}$ (for T_{exp}) or the suffix of $_{r}$ (for T_{recip}). Please refer to the Example Function Calls section for an example.

2.15.2. Example Function Calls

The following code snippet shows the user how to call the *ac_softmax_pwl* function in various different configurations, for an array of 4 inputs/outputs.

```
ac_fixed<20, 4, true> input[4];
ac_fixed<17, 1, false> output[4];
// Initialize input array.
input[0] = 0.5;
input[1] = -2.4;
input[2] = 3.2;
input[3] = -1.9;
// Call ac_softmax_pwl function with default configuration
ac_softmax_pwl(input, output);
// Call ac_softmax_pwl function, with AC_RND as the rounding type for the PWL output,
// ac_fixed<32, 16, false, AC_TRN, AC_SAT> as the type for T_exp and the default
// T_recip type.
ac_softmax_pwl<AC_RND, true, 32, 16, AC_TRN, AC_SAT>(input, output);
```

2.16. Softplus (ac_softplus_pwl)

The ac_softplus_pwl library provides a PWL based approximation of the softplus function for ac_fixed inputs with minimal inaccuracy.

Intermediate Datatypes

Two intermediate datatypes are important for the computation of the softplus output:

- out_pow_type: Datatype for the output coming out after calling the ac_exp_pwl function.
- inp log type: Datatype for the input going to the ac log pwl function.

All the above datatypes are unsigned, fixed-point datatypes.

2.16.1. Function Templates

The following is the function prototype for the *ac_softplus_pwl* function for *ac_fixed* datatypes:

Returning by Value

The ac_softplus_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section. The prototype for the function which returns by value is shown below:

2.16.2. Example Function Calls

The following code snippet shows the user how to call the ac softplus pwl function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
input_type x = 2.5;
output_type y;

// Returns y = softplus(x), and returns by reference.
ac_softplus_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND
ac_softplus_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_softplus_pwl <output_type> (x);
```

2.17. Softsign (ac_softsign_pwl)

The ac_softsign_pwl library provides a PWL based approximation of the softsign function for ac_fixed inputs with minimal inaccuracy.

Intermediate Datatypes

Two intermediate datatypes are important for the computation of the softsign output:

- rec_inp_type: Datatype for the input to the ac_reciprocal_pwl function.
- rec_out_type: Datatype for the output to the ac_reciprocal_pwl function.

All the above datatypes are unsigned, fixed-point datatypes.

2.17.1. Function Templates

The following is the function prototype for the *ac_softsign_pwl* function for *ac_fixed* datatypes:

Returning by Value

The ac_softsign_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.17.2. Example Function Calls

The following code snippet shows the user how to call the ac_softsign_pwl function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
input type x = 2.5;
```

```
output_type y;

// Returns y = softsign(x), and returns by reference.
ac_softsign_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND
ac_softsign_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_softsign_pwl <output_type> (x);
```

2.18. Elu (ac_elu_pwl)

The ac_elu_pwl library provides a PWL based approximation of the elu function for ac_fixed inputs with minimal inaccuracy.

Intermediate Datatypes

There is one intermediate datatype which is important for the computation of the elu output:

• out_pow_type: Datatype for the output to the ac_pow_pwl function.

The above datatype is an unsigned, fixed-point datatype.

2.18.1. Function Templates

The following is the function prototype for the ac_elu_pwl function for ac_fixed datatypes:

Returning by Value

The *ac_elu_pwl* function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.18.2. Example Function Calls

The following code snippet shows the user how to call the ac elu pwl function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
typedef ac_fixed<10, 3, false> alpha_type;
input_type x = 2.5;
output_type y;
alpha_type alpha;

// Returns y = elu(x), and returns by reference.
ac_elu_pwl (x, y, alpha);

// Change the rounding mode for intermediate PWL variable to AC_RND
ac_elu_pwl<AC_RND> (x, y, alpha);

// The following line returns by value instead of by reference.
y = ac_elu_pwl <output_type> (x, alpha);
```

2.19. Selu (ac_selu_pwl)

The ac_selu_pwl library provides a PWL based approximation of the selu function for ac_fixed inputs with minimal inaccuracy.

2.19.1. Function Templates

The following is the function prototype for the *ac_selu_pwl* function for *ac_fixed* datatypes:

The *ac_selu_pwl* function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.19.2. Example Function Calls

The following code snippet shows the user how to call the ac selu pwl function.

2.20. Gelu (ac_gelu_pwl)

The *ac_gelu_pwl* library provides a PWL based approximation of the gelu function for *ac_fixed* inputs with minimal inaccuracy.

2.20.1. Function Templates

The following is the function prototype for the ac gelu pwl function for ac fixed datatypes:

)

Returning by Value

The ac_gelu_pwl function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

2.20.2. Example Function Calls

The following code snippet shows the user how to call the ac_selu_pwl function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
input_type x = 2.5;
output_type y;

// Returns y = gelu(x), and returns by reference.
ac_gelu_pwl (x, y);

// Change the rounding mode for intermediate PWL variable to AC_RND
ac_gelu_pwl<AC_RND> (x, y);

// The following line returns by value instead of by reference.
y = ac_gelu_pwl <output_type> (x);
```

2.21.

Chapter 3: CORDIC Math Functions

The CORDIC-based functions in the *ac_math* library include the following operations:

- Sine/Cosine (ac_sin_cordic/ ac_cos_cordic)
- Arcsin/Arccos (ac arcsin cordic/ ac arccos cordic)
- Arctangent (ac_atan2_cordic)
- Exponential (ac exp cordic/ ac exp2 cordic)
- Logarithm (ac log cordic/ ac log2 cordic)
- Power (ac pow cordic)

3.1. Sine/Cosine (ac_sin_cordic/ ac_cos_cordic)

There are algorithms that require the computation of the <code>ac_sin_cordic()</code> and/or <code>ac_cos_cordic()</code> functions for dynamic angles (as opposed to a set of predefined angles as in FFTs which are best implemented as a table lookup). In such cases, the CORDIC algorithm is often used as a way to compute the <code>ac_sin_cordic()</code> or <code>ac_cos_cordic()</code> functions. The math library contains a sample CORDIC implementation using fixed-point data types. The available functional interfaces compute sin, cos or both scaled sin and cos with one call (more efficient hardware than having separate calls to sin and cos).

The first argument is the angle scaled by (1/PI). The advantage of the prescaled angle is that it makes the quadrant computation inside the CORDIC algorithm trivial and it also simplifies the complexity of the caller as in most cases the calls to sin and cos are made with angles that are multiples of PI.

```
AC: ac fixed
void ac sin cordic (
  ac fixed<AW, AI, true, AQ, AO> angle over pi,
  ac fixed<OW,OI,true,OQ,OO> &sin
void ac cos cordic (
  ac fixed<AW, AI, true, AQ, AO> angle over pi,
  ac fixed<OW,OI,true,OQ,OO> &cos
void ac sincos cordic (
  ac fixed<AW, AI, true, AQ, AO> angle over pi,
  ac fixed<OW,OI,true,OQ,OO> C,
  ac fixed<OW,OI,true,OQ,OO> &sin,
  ac fixed<OW,OI,true,OQ,OO> &cos
                               SystemC: sc_fixed
void ac sin cordic (
  sc fixed<AW, AI, AQ, AO> angle over pi,
  sc fixed<OW,OI,OQ,OO> &sin
void ac cos cordic (
  sc fixed<AW, AI, AQ, AO> angle over pi,
  sc fixed<OW,OI,OQ,OO> &cos
void ac sincos cordic (
 sc fixed<AW, AI, AQ, AO> angle over pi,
  sc fixed<OW,OI,OQ,OO> C,
  sc fixed<OW,OI,OQ,OO> &sin,
  sc fixed<OW,OI,OQ,OO> &cos
```

Table 1: Functions for Sine, Cosine and Combined Sine and Cosine with Amplitude

Note that the interface that computes both *sine* and *cosine*, the data types for *C*, *sin*, *cos* parameters must be identical.

3.2. Arcsin/Arccos (ac_arcsin_cordic/ac_arccos_cordic)

The *ac_math* library contains sample CORDIC implementation using fixed-point data types. The available functional interfaces compute the inverse trigonometric functions arcsin and arccos.

The result of these functions is scaled by (1/PI), which is often the case in practice, maintaining consistency with the sin/cos implementations.

Illustration 11: Graph of scaled arcsin and arccos functions

```
AC: ac_fixed

void ac_arccos_cordic(
    ac_fixed<AW,AI,true,AQ,AO> x,
    ac_fixed<OW,OI,false,OQ,OO> &arccos_x_over_pi
);

void ac_arcsin_cordic(
    ac_fixed<AW,AI,true,AQ,AO> x,
    ac_fixed<OW,OI,true,OQ,OO> &arcsin_x_over_pi
);

SystemC: sc_fixed*

void ac_arccos_cordic(
    sc_fixed<AW,AI,AQ,AO> x,
    sc_ufixed<OW,OI,OQ,OO> &arccos_x_over_pi
);
```

```
void ac_arcsin_cordic(
   sc_fixed<AW,AI,AQ,AO> x,
   sc_fixed<OW,OI,OQ,OO> &arcsin_x_over_pi
);
*Note: only supports up to 20 fractional bits, i.e., AW - AI <= 20.</pre>
```

3.3. Arctangent (ac_atan2_cordic)

The *ac_atan2_cordic* function is a fixed-point CORDIC implementation of the functionality of the corresponding *ac_math.h* function. It takes two signed fixed-point arguments called *y* and *x* and it returns the arc tangent in the range *-PI* to *PI*. The accuracy of the computation is directly dependent on the precision of the fixed-point *atan* variable passed to the function.

AC: ac_fixed	SystemC: sc_fixed
<pre>void ac_atan2_cordic(ac_fixed<yw,yi,true,yq,yo> y, ac_fixed<xw,xi,true,xq,xo> x, ac_fixed<ow,oi,true,oq,oo> &atan</ow,oi,true,oq,oo></xw,xi,true,xq,xo></yw,yi,true,yq,yo></pre>	<pre>void ac_atan2_cordic(sc_fixed<yw,yi,yq,yo> y, sc_fixed<xw,xi,xq,xo> x, sc_fixed<ow,oi,oq,oo> &atan</ow,oi,oq,oo></xw,xi,xq,xo></yw,yi,yq,yo></pre>

Table 2: Functions for Atan2

The behavior when one or both of the arguments is zero is identical with that of the ac_atan2_cordic in ac_math.h:

- 0 when x == 0 and y == 0
- -PI/2 when x == 0 and y < 0
- +PI/2 when x == 0 and y > 0

3.4. Exponential (ac_exp_cordic/ ac_exp2_cordic)

The ac_math library contains sample CORDIC implementations of exponentials. The exp function evaluates the exponential of an argument x, i.e., the transcendental number 'e' raised to the power of x. The exp2 function evaluates the number 2 raised to the power of an argument x. The input and argument arguments can be ac_fixed , ac_float , ac_std_float or ac_ieee_float variables.

3.4.1. Function Declarations

The following code shows the function declarations for the AC Numerical Datatypes. There are no SystemC variants.

```
template <bool OR_TF = false, int TF_ = 32, ac_q_mode TQ = AC_TRN,
```

```
int AW, int AI, bool AS, ac q mode AQ, ac o mode AV,
          int ZW, int ZI, ac q mode ZQ, ac o mode ZV>
void ac exp cordic(
  const ac fixed<AW, AI, AS, AQ, AV> &x,
  ac fixed<ZW,ZI,false,ZQ,ZV> &z
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, bool AS, ac q mode AQ, ac o mode AV,
          int ZW, int ZI, ac q mode ZQ, ac o mode ZV>
void ac exp2 cordic(
  const ac fixed<AW,AI,AS,AQ,AV> &x,
  ac fixed<ZW,ZI,false,ZQ,ZV> &z
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, int AE, ac q mode AQ,
          int ZW, int ZI, int ZE, ac q mode ZQ>
void ac exp cordic(const ac float<AW,AI,AE,AQ> &x, ac float<ZW,ZI,ZE,ZQ> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, int AE, ac q mode AQ,
          int ZW, int ZI, int ZE, ac q mode ZQ>
void ac exp2 cordic(const ac float<AW,AI,AE,AQ> &x, ac float<ZW,ZI,ZE,ZQ> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AE, int ZW, int ZE>
void ac exp cordic(const ac std float<AW, AE> &x, ac std float<ZW, ZE> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AE, int ZW, int ZE>
void ac exp2 cordic(const ac std float<AW, AE> &x, ac std float<ZW, ZE> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          ac ieee float format Format, ac ieee float format outFormat>
void ac exp cordic(const ac ieee float<Format> &x, ac ieee float<outFormat> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          ac ieee float format Format, ac ieee float format outFormat>
void ac exp2 cordic(const ac ieee float<Format> &x,ac ieee float<outFormat> &z)
```

The OR_TF, TF_ and TQ parameters influence the type of certain intermediate fixed point variables. In particular, OR_TF and TF_ are important for implementations that may have large input or output fractional bitwidths, because they prevent the intermediate variables passed to the internal functions from becoming too big in size and hence triggering compiler errors, which can happen if the input or output have a very large

bitwidth. The TQ parameter influences the rounding mode of some of the intermediate variables. The purpose of each of the variables can be summarized as follows:

- OR_TF: Overrides default fractional bitwidth of some intermediate variables if set to true. Set to false by default.
- TF: Defines the bitwidth to override with. Set to 32 by default.
- TQ: Defines the rounding mode for some intermediate variables. Set to AC_TRN by default.

3.4.2. NaN Handling

The ac_std_float and ac_ieee_float versions of the exponential cordic libraries can also produce NaN outputs. If the AC_HCORDIC_NAN_SUPPORTED macro is defined, these versions will output nan values for nan inputs.

3.5. Logarithm (ac_log_cordic/ ac_log2_cordic)

The *ac_math* library contains sample CORDIC implementations of logarithms. The 'log' function evaluates the natural logarithm of a fixed point argument x, i.e., the logarithm with transcendental number 'e' as its base. The log2 function evaluates the base 2 logarithm of argument x.

3.5.1. Function Declarations

The following code shows the function declarations for the AC Numerical Datatypes. There are no SystemC variants.

```
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, ac q mode AQ, ac o mode AV,
          int ZW, int ZI, bool ZS, ac q mode ZQ, ac o mode ZV>
void ac log cordic(
  const ac fixed<AW, AI, false, AQ, AV> &x,
 ac fixed<ZW,ZI,ZS,ZQ,ZV> &z
);
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, ac q mode AQ, ac o mode AV,
          int ZW, int ZI, bool ZS, ac q mode ZQ, ac o mode ZV>
void ac log2 cordic(
 const ac fixed<AW, AI, false, AQ, AV> &x,
 ac fixed<ZW,ZI,ZS,ZQ,ZV> &z
);
template <bool OR_TF = false, int TF_ = 32, ac_q_mode TQ = AC_TRN,
          int AW, int AI, int AE, ac q mode AQ,
          int ZW, int ZI, int ZE, ac q mode ZQ>
```

```
void ac log cordic(const ac float<AW,AI,AE,AQ> &x, ac float<ZW,ZI,ZE,ZQ> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
         int AW, int AI, int AE, ac q mode AQ,
         int ZW, int ZI, int ZE, ac q mode ZQ>
void ac log2 cordic(const ac float<AW,AI,AE,AQ> &x, ac float<ZW,ZI,ZE,ZQ> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AE, int ZW, int ZE>
void ac log cordic(const ac std float<AW, AE> &x, ac std float<ZW, ZE> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AE, int ZW, int ZE>
void ac log2 cordic(const ac std float<AW, AE> &x, ac std float<ZW, ZE> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          ac ieee float format Format, ac ieee float format outFormat>
void ac log cordic(const ac ieee float<Format> &x, ac ieee float<outFormat> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          ac ieee float format Format, ac ieee float format outFormat>
void ac log2 cordic(const ac ieee float<Format> &x,ac ieee float<outFormat> &z)
```

The OR_TF, TF_ and TQ parameters influence the type of certain intermediate fixed point variables. In particular, OR_TF and TF_ are important for implementations that may have a large input/output bitwidth, because they prevent the intermediate variables passed to the internal functions from becoming too big in size and hence triggering compiler errors, which can happen if the input or output have a very large bitwidth. The TQ parameter influences the rounding mode of one of the intermediate variables, i.e. the one which stores the normalized input value. The purpose of each of the variables can be summarized as follows:

- OR_TF: Overrides default fractional bitwidth of some intermediate variables if set to true. Set to false by default.
- TF: Defines the bitwidth to override with. Set to 32 by default.
- TQ: Defines the rounding mode for an intermediate variable. Set to AC_TRN by default.

3.5.2. NaN Handling

The ac_std_float and ac_ieee_float versions of the logarithmic cordic libraries can also produce NaN outputs. If the AC_HCORDIC_NAN_SUPPORTED macro is defined, these versions will output nan values for nan and negative inputs.

3.6. Power (ac_pow_cordic)

The ac_pow_cordic function evaluates the result of raising a variable a to the power of another variable b. The supported variable types are ac_fixed, ac_float, ac_std_float and ac_ieee_float.

3.6.1. Function Declarations

The following code shows the function declarations for the AC Numerical Datatypes supported. There are no SystemC variants.

```
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, ac q mode AQ, ac o mode AV,
          int BW, int BI, bool BS, ac q mode BQ, ac o mode BV,
          int ZW, int ZI, ac q mode ZQ, ac o mode ZV>
void ac pow cordic(const ac fixed<AW, AI, AS, AQ, AO> &a,
                   const ac fixed<BW,BI,BS,BQ,BO> &b,
                   ac fixed<ZW,ZI,false,ZQ,ZV> &z);
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AI, int AE, ac q mode AQ,
          int BW, int BI, int BE, ac q mode BQ,
          int ZW, int ZI, int ZE, ac q mode ZQ>
void ac pow cordic(const ac float<AW, AI, AE, AQ> &a,
                   const ac float<BW, BI, BE, BQ> &b,
                   ac float<ZW, ZI, ZE, ZQ> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          int AW, int AE, int BW, int BE, int ZW, int ZE>
void ac pow cordic(const ac std float<AW, AE> &a,
                   const ac std float<BW, BE> &b,
                   ac std float<ZW, ZE> &z)
template <bool OR TF = false, int TF = 32, ac q mode TQ = AC TRN,
          ac ieee float format aFormat, ac ieee float format bFormat,
          ac ieee float format outFormat>
void ac pow cordic(const ac ieee float<aFormat> &a,
                   const ac ieee float < b Format > &b,
                   ac ieee float<outFormat> &z)
```

The OR_TF, TF_ and TQ parameters influence the type of certain intermediate fixed point variables. In particular, OR_TF and TF_ are important for implementations that may have a large input/output bitwidth, because they prevent the intermediate variables passed to the internal functions from becoming too big in size and hence triggering compiler errors, which can happen if the input or output have a very large bitwidth. The TQ parameter influences the rounding mode of some of the intermediate variables. The purpose of each of the variables can be summarized as follows:

- OR_TF: Overrides default fractional bitwidth of some intermediate variables if set to true. Set to false by default.
- TF_: Defines the bitwidth to override with. Set to 32 by default.
- TQ: Defines the rounding mode for some intermediate variables. Set to AC TRN by default.

Note: The fixed point logarithm and exponential cordic functions have limitations on the types they can accept for their input/output. The logarithm functions will only accept unsigned inputs, as the actual logarithm functions operate on the positive real-valued domain, while the exponential functions only accept unsigned types for the output, as they output values in the range of positive real values. This is different than the standard C math functions for logarithm and exponential functions, which accept signed doubles at their input and output.

Chapter 4: Lookup Table (LUT) Functions

The *ac_math* package includes the following Lookup Table based functions:

Sine/Cosine (ac sincos lut)

The following subsections describes the implementation and usage of these functions in more detail.

4.1. Sine/Cosine (ac_sincos_lut)

The ac_sincos_lut function is designed to provide the sine and cosine values using a lookup table (LUT).

4.1.1. The ac_sincos_lut Implementation

The ac_sincos_lut function accepts ac_fixed datatypes as input. The domain for the input is (0,1) radians/2PI. The function returns an ac_complex<ac_fixed> variable where the real part represents the cosine value and the imaginary part represents the sine value. The number of table entries is 512 values. A prototype of the ac_sincos_lut function is shown below:

```
template<class T_in, class T_out>
void ac_sincos_lut(const T_in &input, ac_complex<T_out> &output)
```

In the above prototype, the class T_i represents the datatype of the input which should be an ac_i datatype. The class T_i represents the datatype of the output which should also be an ac_i datatype. Here, input represents the input to the ac_i function, the output is an ac_i variable whose real part is the output cosine value and whose imaginary part is the output sine value.

Algorithm

All the entries for the sine and cosine lookup tables were generated using the C++ math library sin() and cos() functions and the values are represented as constant doubles. The table contains only those values for the range of angles from (0-Pl/4] radians and symmetry is used to adjust the output accordingly. By leveraging the symmetry the table can have more entries for greater precision while still covering the full range of angle inputs. To compute the index into the table, the first 3 bits are extracted from the MSB side of the input to determine in which octant the input lies. The octants can be defined as:

Input Angle (1/2PI radians)	Octant	π/2
[0.000 – 0.125)	0	3π/4 2 1
[0.125 – 0.250)	1	3 0
[0.250 – 0.375)	2	п 0
[0.375 – 0.500)	3	5 6
[0.500 – 0.625)	4	5π/4 7π/4
[0.625 – 0.750)	5	3π/2
[0.750 – 0.875)	6	
[0.875 – 1.000)	7	

The look up table index in this implementation uses the input bits (MSB-3: LSB). When the input bitwidth is exactly 12 bits, this results in 512 possible indexes. If the input bitwidth is greater than 12 bits, then the closest table entry is found. If the input bitwidth is less than 12 bits, then a stride is implemented.

Handling negative inputs

If the input angle is a negative value (for example -0.125) it would be represented in 2's complement form as 1.1110 0000. Ignoring the integer portion of the result, the fractional portion is 0.875 which is identical to -0.125.

Returning by Value

The implementations of the ac_sincos_lut() function can return the output by value as well as by reference. See the sample code below for examples of each form. The prototype for the function to return by value is shown below:

```
template<class T_out, class T_in>
T_out ac_sincos_lut(const T_in &input);
```

4.1.2. Example Function Call

An example of a function call is as follows where x represents the input angle and y represents a complex variable whose real part is the cos value and imaginary part is the sin value:

```
typedef ac_fixed<12, 1, true, AC_RND, AC_SAT> input_type;
typedef ac_complex<ac_fixed<23, 1, true, AC_RND, AC_SAT> > output_type;
input_type x = 0.37;
output_type y;

// returning value by reference
ac_sincos_lut(x, y);
cout << "Sine: " << y.i() << endl;
cout << "Cosine: " << y.r() << endl;</pre>
```

```
// returning by value
y = ac_sincos_lut<output_type>(x);
```

4.1.3. Increasing look up table entries

In the current implementation, the number of lookup table entries for the sine and cosine lookup tables is 512. This means that the implementation gives an accurate output for the cases when input bitwidth is less than or equal to 12 bits. So for cases when input bitwidth is greater than 12 bits, the closest table entry is found (as mentioned above) which might incur some error (maximum error is approximately equal to the largest difference between consecutive lookup table entries) and therefore if a more accurate implementation is desired, then the current lookup table entries can be replaced. The formula for the number of lookup table entries for sine and cosine is as follows:-

Number of lookup table entries = 2 ^ (input bitwidth - 3)

For example, the number of lookup table entries to get an accurate output for the following input bitwidths are:-

- 13 bits 1024
- 4 bits 2048
- 15 bits 4096

The *lutgensincos.cpp* file under the .../src/examples/Math/ac_sincos_lut directory can be referred for generating lookup table entries. Also the ac_sincos_lut.h library header file has to be accordingly modified if the number of lookup table entries are changed.

Synthesizing the ac_sincos_lut function

In High Level Synthesis, the *ac_sincos_lut* function can be completely pipelined as there are no data dependencies thus ensuring high throughput and low latency.

Chapter 5: Linear Algebra Functions

The *ac_math* package includes the following linear algebra functions:

- Cholesky Decomposition (ac chol d)
- Cholesky Inverse (ac choliny)
- Determinant (ac determinant)
- Matrix Multiplication (ac matrixmul)
- QR Decomposition (ac grd)

The following subsections describes the implementation and usage of these functions in more detail.

5.1. Cholesky Decomposition (ac_chol_d)

The ac_chol_d library is designed to provide a Cholesky Decomposition of a square, positive definite input matrix using the Cholesky-Crout algorithm. The user can utilize either accurate math functions or the piecewise linear (pwl) math library for the internal calculations involved. Cholesky Decomposition is an important linear algebra operation that has applications in solving linear equations.

5.1.1. The ac_chol_d Implementation

The ac_chol_d library provides ten overloaded functions for computing the Cholesky Decomposition of real and complex matrices, and returns the lower triangular matrix result of the Cholesky Decomposition. Combined, the ten functions handle five datatypes, which are (a) ac_fixed (b) ac_float (c) ac_std_float (d) ac_ieee_float and (e) ac_complex<ac_fixed>. The matrix of data elements of each type can either be passed as standard two-dimensional C++ arrays, or can be packaged in the ac_matrix class.

Algorithm

As discussed earlier, the Cholesky-Crout algorithm is used to compute the Cholesky Decomposition. The computation for this algorithm is done in a column-wise manner. We first compute the diagonal element for each matrix either using the accurate or the approximate (PWL) *sqrt* function. After we calculate the diagonal element, we store its inverse in a separate variable, which is then reused for the computation of the non-diagonal elements below the diagonal. This inverse square root value can be calculated using the accurate ac_div function, or the approximate PWL version from the $ac_inverse_sqrt_pwl$ library.

The Cholesky-Crout algorithm is used due to its simplicity and the reusability of the reciprocal value in calculating the non-diagonal elements.

Accurate Math Functions vs. PWL Approximations

The user has the option of being able to choose the accurate versions of the reciprocal and the sqrt functions, or their PWL approximations, as mentioned earlier, depending upon how much accuracy they may desire. Both have their advantages and disadvantages. The accurate math functions, while providing high precision, can also add a lot of overhead in terms of throughput/area. The PWL functions, while providing higher throughput at a lesser cost in area, are also imprecise.

To use PWL approximations, the user has to override a default template parameter (*use_pwl*) for the *ac_chol_d* function call. An example of doing so is giving in the Example Function Calls section.

Floating Point Implementations

As mentioned earlier, the library provides support for ac_float, ac_std_float and ac_ieee_float intermediate variables. The ac_std_float and ac_ieee_float implementations serve as a wrapper around and depend on the ac_float implementation for the actual calculations, with temporary arrays provided in both these wrapper implementations to allow for interfacing with the ac_float implementation.

Type of Intermediate Variables

Intermediate variables are used within the function to store the result of repeated subtractions in the process of calculating each element, as well as the reciprocal of diagonal elements. The default precision of these intermediate variables is set to be equal to the precision of the output variables. However, the user can choose to add any number of bits to these default precision values (in case of complex intermediate variables, these extra bits are used for the real/imaginary parts). The precision can be changed by overriding the default *delta_** template parameters. The two possible sets of *delta_** parameters are given as follows:

- For real/complex fixed point variables: *delta_w* and *delta_i* (added to word and integer width of fixed point intermediate variables, respectively).
- For real floating point variables: delta_w, delta_i and delta_e (added to word, integer and exponent width of the *ac float* intermediate variables, respectively)

The user can also choose the rounding mode of the intermediate variables used for both fixed and floating point intermediate variables by overriding the *imd_Q* default template parameter (set to *AC_RND* by default). Similarly, the *imd_O* template parameter (set to *AC_SAT* by default) can be overridden to change the saturation mode of fixed-point intermediate types.

Note that, because the *ac_std_float* and *ac_ieee_float* implementations are a wrapper around the *ac_float* implementation, any information passed through the *delta_** and *imd_** template parameters for either is in turn passed to the *ac_float* implementation.

Examples on how to override these parameters are given in the Example Function Calls section below.

Input Checking

As explained earlier, the input matrix must be positive definite. While calculating the values for the diagonal elements of the matrix, a square root operation is performed, either using a PWL approximation or the accurate math function. If the input to the *sqrt* function is negative/zero for any value, that means that the input matrix is not positive definite, and a macro-enabled *AC_ASSERT* is provided that will throw a run-time error in such a case. In case the *AC_ASSERT* does not kick in, additional, synthesizable functionality is also provided to output a matrix of zeros.

For certain input matrices when the PWL implementations are used for calculation, the inaccuracy incurred during computations might be large enough to result in the input matrix being wrongly perceived as not positive definite even when it is such. This particularly occurs when the diagonal values of the output matrix are very small and hence, as a result, even a small absolute error in the calculation of the reciprocal value of this diagonal quickly blows up and results in a large error when the remaining elements of that column are calculated. As this error builds up during the calculation of the value for the next diagonal element, the value calculated as the input to the square root function can turn out to be negative, hence resulting in the input checking failing for this particular case even though the input matrix is positive definite.

5.1.2. Function Prototypes

The following are the overloaded function prototypes for the *ac_chol_d* function to handle different datatypes:

```
template<bool use_pwl = false,
    int delta_w = 0, int delta_i = 0,
    ac_q_mode imd_Q = AC_RND, ac_o_mode imd_O = AC_SAT,
    int W, int I, bool S, ac_q_mode Q, ac_o_mode O,
    int outW, int outI, bool outS, ac_q_mode outQ, ac_o_mode outO,
    unsigned M>
```

```
void ac_chol_d(
  const ac_matrix<ac_fixed<W, I, S, Q, O>, M, M> &A,
  ac_matrix<ac_fixed<outW, outI, outS, outQ, outO>, M, M> &L
)
```

5.1.3. C++ Compiler

The functions use default template arguments. This requires using a C++ compiler that supports the C++11 standard. Failing to use such a compiler will result in compilation errors.

5.1.4. Example Function Calls

An example of a function call to store the lower triangular Cholesky Decomposition matrix of a sample 8x8 fixed point, positive definite matrix A in a matrix L is shown below:

```
typedef ac_matrix<ac_fixed<20,11,true,AC_RND,AC_SAT>,8,8> i_type;
typedef ac_matrix<ac_fixed<30,15,true,AC_RND,AC_SAT>,8,8> o_type;
i_type A;
o_type L;
//Hypothetical function that generates a positive definite matrix
//and stores the output in A.
gen_pos_def_matrix(A);
ac_chol_d(A, L);
```

The ac matrix L hereafter stores the lower triangular matrix result of the Cholesky decomposition.

Choosing PWL approximation

By default, accurate math functions are used for the calculation of internal variables. However, as mentioned earlier, the user can override the default. They can use PWL approximation functions by giving a Boolean template argument, as follows:

```
ac_chol_d<true>(A, L);
```

Configuring the Type for Temporary Variables

The user can add extra bits to the default precision of the temporary variables in the function, by overriding the default template parameters. They can also add other rounding and saturation modes for the temporary variables for fixed point variables. They can do it as follows:

```
ac chol d<false, 10, 5, AC TRN, AC WRAP>(A, L);
```

By doing this, the user will add 10 bits to the default value for the temporary variable word width, 5 bits to the default value for the temporary variable integer width and switch off rounding and saturation for the temporary variables. Note that the user must also explicitly specify whether they want to use PWL approximation or the accurate math functions in such a case. (In this case, the user specifies that they want to use the accurate math functions)

Similarly, the user can also subtract bits from the default precision values. To do so, they merely need to pass negative parameters for the same. If the user wants to subtract 3 bits from word width and 2 bits from integer width, they can pass the following template parameters:

```
ac_chol_d<false, -3, -2>(A, L);
```

An example function call where the user changes the type configuration for floating point intermediate variables is shown below:

```
ac_chol_d<false, 10, 5, 2, AC_TRN>
```

Doing so will add 10 bits to the bitwidth, 5 bits to the integer width and 2 bits to the exponent width of temporary variables while setting their rounding type to AC TRN and using accurate math functions.

5.2. Cholesky Inverse (ac_cholinv)

The *ac_cholinv* function provides matrix inversion of a positive definite matrix using forward substitution and Cholesky Decomposition which uses the Cholesky-Crout algorithm. The user can utilize either accurate math functions or the PWL math library for the internal calculations involved.

5.2.1. The ac_cholinv Implementation

The *ac_cholinv* library provides two overloaded functions for computing the inverse of input matrices and returns the inverted matrix. Each overloaded function handles a different input datatype. The two datatypes hence handled are *ac_fixed* and *ac_complex<ac_fixed>*. The matrix of data elements of each type are packaged in the *ac_matrix* class.

Algorithm

As mentioned earlier, the Cholesky-Crout algorithm is used to compute the Cholesky Decomposition which is done in the *ac_chol_d.h* library and it returns a lower triangular matrix. Please refer to the documentation of the library *ac_chol_d.h* for Cholesky Decomposition. Then the inverse of the lower triangular matrix is computed using forward substitution and then this inverse is multiplied with its conjugate transpose to obtain the inverse matrix.

Accurate Math Functions vs. PWL Approximations

The user has the option of being able to choose the accurate versions of the reciprocal and the *sqrt* functions, or their PWL approximations, as mentioned earlier, depending upon how much accuracy they may desire. Both have their advantages and disadvantages. The accurate math functions, while accurate, can also add a lot of overhead in terms of throughput/area. The PWL functions, while providing higher throughput, are a bit imprecise.

To use the pwl functions, the user has to override a default template parameter (*use_pwl1*) for the *ac_chol_d* function call in the *ac_cholinv* function and (use_pwl2) for the *ac_cholinv* function call. An example of doing so is giving in the *Example Function Calls* section.

Type of Intermediate Variables

Intermediate variables are used within the function to store the result of repeated additions in the process of calculating each element, as well as the reciprocal of diagonal elements. The default precision of these temporary variables is set to be equal to the precision of the output variables. However, the user can choose to add any number of bits to these default values for word width as well as the integer width of the temporary variables (in case of complex temporary variables, these extra bits are used for the real/imaginary parts). They can do this by overriding the default template parameters (add2w and add2i for word and integer width, respectively). Furthermore, the user can also choose the rounding and saturation modes for the temporary variables by overriding the appropriate template parameters (temp_Q for rounding mode and temp_O for saturation). An example of how to do so is giving in the Example Function Calls section.

5.2.2. Function Prototypes

The following are the overloaded function prototypes for the ac_chol_d function to handle different datatypes:

```
template<bool use pwl1 = false,
       bool use pwl2 = false,
        int add2w = 0,
        int add2i = 0,
        ac q mode temp Q = AC RND,
        ac o mode temp O = AC SAT,
        unsigned M,
        class T in,
         class T out>
void ac chol d(
 const ac matrix<T in, M, M> &A,
 ac matrix<T out, M, M> &L
template<bool use pwl1 = false, bool use pwl2 = false, int add2w = 0, int
add2i = 0, ac q mode temp Q = AC RND, ac o mode temp O = AC SAT, unsigned M,
class T in, class T out>
void ac chol d(
 const ac matrix<ac complex<T in>, M, M> &A,
 ac matrix<ac complex<T out>, M, M> &L
```

5.2.3. C++ Compiler

The functions use default template arguments. In order to use a C++ compiler that supports this functionality, the user must use C++11 or a later standard as the standard for their compilation, failing which a compile-time error is thrown.

5.2.4. Example Function Calls

An example of a function call to store the lower triangular Cholesky Decomposition matrix of a sample 8x8 positive definite matrix A in a matrix L is shown below:

```
typedef ac_matrix<ac_fixed<20,11,true,AC_RND,AC_SAT>,8,8> i_type;
typedef ac_matrix<ac_fixed<30,15,true,AC_RND,AC_SAT>,8,8> o_type;
i_type A;
o_type Ainv;
//Hypothetical function that generates a positive definite matrix
//and stores the output in A.
gen_pos_def_matrix(A);
ac_cholinv(A, Ainv);
```

Choosing PWL approximation

By default, accurate math functions are used for the calculation of internal variables. However, as mentioned earlier, the user can override the default. The first Boolean template parameter if true uses PWL approximation functions for calculation of internal variables and if false uses accurate math functions in the ac_chol_d library and similarly if the second Boolean template parameter if true uses PWL approximation functions for calculation of internal variables and if false uses accurate math functions in the ac_cholinv library.

 If the user wants to use the PWL approximation functions for both the ac_chol_d and ac_chol_inv libraries, then the following is the way the function should be called

```
ac chol inv<true, true>(A, L);
```

2. If the user wants to use the PWL approximation functions for the ac_chol_d library and accurate math functions for the ac_chol_inv library, then the following is the way the function should be called.

```
ac chol inv<true, false>(A, L);
```

Note: If the user wants to specify the template parameter for choosing the PWL approximation functions only for the ac_cholinv library, then the user has to explicitly specify whether they want to use PWL approximation or the accurate math functions for the ac_chol_d library as well.

Configuring the Type For Temporary Variables

The user can add extra bits to the default precision of the temporary variables in the function, by overriding the default template parameters. They can also add their own quantization and overflow modes for the temporary variables. For example, they can do it as follows:

```
ac_chol_inv<false, false, 10, 5, AC_RND, AC_SAT>(A, Ainv);
```

By doing this, the user will add 10 bits to the default value for the temporary variable word width, 5 bits to the default value for the temporary variable integer width and switch on rounding and saturation for the temporary variables. Note that the user must also explicitly specify whether they want to use PWL approximation or the

accurate math functions in such a case. (In this case, the user specifies that they want to use the accurate math functions)

Similarly, the user can also subtract bits from the default precision values. To do so, they merely need to pass negative parameters for the same. If the user wants to subtract 3 bits from word width and 2 bits from integer width, they can pass the following template parameters:

```
ac chol d<false, false, -3, -2>(A, Ainv);
```

5.3. Determinant (ac_determinant)

The *ac_determinant* library implementation is a fully parallelized and scalable implementation for determinant computation using template recursion functionality, with the user being able to choose between using an internally determined datatype or adding their own parameters for intermediate type precision, signedness, rounding and saturation.

5.3.1. The ac_determinant Implementation

The ac_determinant library provides four overloaded functions for computing the determinant of real and complex matrices. Combined, the four functions handle two datatypes, which are (a) ac_fixed and (b) ac_complex<ac_fixed>. The matrix of data elements of each type can either be passed as standard two-dimensional C++ arrays, or can be packaged in the ac_matrix class.

Algorithm

Determinant computation is a recursive process. This implementation leverages the recursive tendency of this function to design a hardware-efficient implementation that is scalable and is highly parallelizable. Hence, higher order matrices are reduced to 2x2 matrices by computing minors recursively on them, with each recursion reducing the row and column size by 1. A specialization is also defined for a 1x1 matrix, in which case, we just return the sole value stored in the matrix.

In order to implement a fully parallelizable and synthesizable architecture, template recursion is used, with the 2x2 matrix being the specialized case for recursion.

Internal Precision Adjustment

The ac_determinant implementation is such that it maintains full internal precision. To make sure that it does that, bitwidths are computed at every step of the coding.

Using full internal precision can result in a very large bitwidth, however. In case full internal precision might not be required, the user can set their own internal precision by overriding the default template parameters and providing their own internal types.

5.3.2. Function headers

The following are the overloaded function prototypes for the ac_determinant function to handle different datatypes:

```
template <bool override = false,
```

```
int internal_width = 16, int internal_int = 8,
    bool internal_sign = true, ac_q_mode internal_rnd = AC_RND,
    ac_o_mode internal_sat = AC_SAT,
    unsigned M,
    int W1, int I1, bool S1, ac_q_mode q1, ac_o_mode o1,
    int W2, int I2, ac_q_mode q2, ac_o_mode o2>
void ac_determinant(
    ac_matrix <ac_fixed <W1, I1, S1, q1, o1>, M, M> &input,
    ac_fixed<W2, I2, true, q2, o2> &result
)
```

```
template <bool override = false,
    int internal_width = 16, int internal_int = 8,
    bool internal_sign = true, ac_q_mode internal_rnd = AC_RND,
    ac_o_mode internal_sat = AC_SAT,
    unsigned M,</pre>
```

The library also provides the following two functions to allow the user to return by value.

5.3.3. C++ Compiler

The functions use default template arguments. This requires using a C++ compiler that supports the C++11 standard, or a later standard. Failing to use such a compiler will result in compilation errors.

5.3.4. Example Function Call

The following give examples of using the determinant function with both ac_matrix and C style array inputs.

```
// Using the ac_matrix wrapper class
ac_matrix <ac_fixed <8, 5, true, AC_RND, AC_SAT>, 2, 2> input;
typedef ac_fixed <27, 18, true, AC_RND, AC_SAT> output_type;
output_type output;
// Assign elements to input
input(0, 0) = 1;
input(0, 1) = 1.5;
input(1, 0) = 0.5;
input(1, 1) = 1.75;
ac_determinant (input, output);
```

```
// The above function call can also be replaced by:
output = ac_determinant <output_type> (input);
```

```
// Using C-style arrays
ac_fixed <8, 5, true, AC_RND, AC_SAT> input[2][2];
typedef ac_fixed <27, 18, true, AC_RND, AC_SAT> output_type;
output_type output;
// Assign elements to input
input[0][0] = 1;
input[0][1] = 1.5;
input[1][0] = 0.5;
input[1][1] = 1.75;
ac_determinant (input, output);
// The above function call can also be replaced by:
output = ac_determinant <output_type> (input);
```

5.4. Matrix Multiplication (ac_matrixmul)

The ac_matrixmul function is designed to provide the multiplication of two matrices with full precision by default and if user wants to specify his own precision then a provision is provided for this purpose.

5.4.1. The ac_matrixmul Implementation

The ac_matrixmul library provides implementation for ac_fixed and ac_complex<ac_fixed> datatypes. There is one generalized function which handles the computation for both the datatypes. A prototype of the ac_matrixmul function is shown below:

Definition of matrices:

In the above prototype, ac_matrix is a container class that helps to define two dimensional matrices. The following is the way to define a matrix using the ac_matrix class for the ac_fixed datatype:

```
ac_matrix<ac_fixed<20, 10, true, AC_RND, AC_SAT>, M, N> A;
```

In the definition above, A is a matrix of dimension M x N where its elements are of ac_fixed datatype.

Similarly, the following is the way to define a matrix using the ac_matrix class for the ac_complex<ac_fixed> datatype:

```
ac_matrix<ac_complex<ac_fixed<40, 20, true, AC_RND, AC_SAT> >, M, N> A;
```

In the definition above, A is a matrix of dimension M x N where its elements are of ac fixed datatype.

Default Template Arguments:

By default, the internal variables have full precision turned on. There are two internal variables mult and sum used in the computation of matrix multiplication. The code snippet where the sum and mult variables are used in the matrix multiplication block is as follows:

```
for (unsigned i=0; i<M; i++) {
   for (unsigned j=0; j<P; j++) {
      mult = 0;
      sum = 0;
      for (unsigned k=0; k<N; k++) {
            mult = A(i,k) * B(k,j);
            sum = sum + mult;
      }
      C(i,j) = sum;
   }
}</pre>
```

The default template arguments in the order which they have been mentioned in the list of template parameters in the function prototype for this block are:

- Width of the mult variable mw
- Integer width of the mult variable mi
- Quantization mode of the mult variable mq
- Overflow mode of the mult variable mo
- Width of the sum variable sw
- Integer width of the sum variable si
- Quantization mode of the sum variable sq

Overflow mode of the sum variable - so

For the ac_fixed datatype

From the above code snippet, in order to achieve full precision for the mult variable its width and integer width is calculated as the sum of the widths and the sum of the integer widths of the elements of A and B matrices respectively. For the sum variable, the full precision is dependent on the number of times it is accumulated by the mult variable which is in turn decided by the number of iterations in the for loop in which it is accumulated. As the number of iterations are N in this for loop, the width and the integer width for the sum variable is calculated as the width of the mult variable + log2_ceil(N) and the integer width of the mult variable + log2_ceil(N) respectively. The default quantization and overflow modes for the mult and the sum variables are defined as AC_RND and AC_SAT respectively.

For the ac_complex<ac_fixed> datatype

Everything above applies for the ac_complex<ac_fixed> datatype except that the width and integer of the mult variable is calculated as the sum of the widths + 1 and the sum of the integer widths + 1 of the elements of A and B matrices respectively. This is because when two complex numbers are multiplied for example:

```
(a1+b1i) \times (a2+b2i) = a1a2 - b1b2 + (a1b2 + a2b1)i
```

The computation of the real part and the imaginary part involves an extra addition or subtraction and thus 1 is added. The user must keep in mind that in order to allow the usage of default template arguments for functions, they must use a version of C++ that allows this usage, such as C++ 11, in case they wish to compile and execute the code for the matrixmul library, failing which an error will be thrown by the compiler.

If the user wants to specify his/her own precision for the internal variables instead of the default, then please refer to the "Example Function Calls" section below for the same.

Wrong Datatypes

If any of the two inputs and the output have different datatypes from each other, then a static assert is thrown stating that 'Both arguments need to be of the same datatype' in case of C++11 version of the compiler and in versions prior to that a compiler error is generated.

5.4.2. Example Function Call

An example of a function call to store the result matrix of the two input matrices A and B who have elements of ac_fixed datatype is shown below:

```
typedef ac_matrix<ac_fixed<20, 10, true, AC_RND, AC_SAT>, M, N> input_type1;
typedef ac_matrix<ac_fixed<20, 10, true, AC_RND, AC_SAT>, N, P> input_type2;
typedef ac_matrix<ac_fixed<61, 31, true, AC_RND, AC_SAT>, M, P> output_type;
input_type1 A;
input_type2 B;
output_type C;
ac matrixmul(A, B, C); //Function call
```

The two input matrices here are A and B and the output matrix here is C.

Changing default template parameters through function call:

• If the user wants a different precision from the default precision, then the default

template parameters have to be modified. If the user wants to modify all the template parameters then the user has to modify the above function call in the following way:

```
ac matrixmul<mw, mi, mq, mo, sw, si, sq, so> (A, B, C);
```

The above order in which the template arguments are specified has to be maintained.

• Suppose the user only wants to modify the width of the mult variable i.e mw and keep all the other template arguments as it is, then the function call can be written as:

```
ac_matrixmul<mw> (A, B, C);
```

 But if the user wants to modify only sw for instance, then in order to do this the user has to make a function call like this:

```
ac matrixmul<mw, mi, mq, mo, sw> (A, B, C);
```

5.4.3. **Debug**

Here is a provision to enable debug mode in the ac_matrixmul.h file. It can be done by defining the macro as

```
#define MATRIXMUL DEBUG
```

5.5. QR Decomposition (ac_qrd)

The *ac_qrd* function provides QR decomposition of square input matrix A. In linear algebra, QR decomposition is a decomposition of matrix A into product A = QR where Q is an orthogonal matrix and R is an upper triangular matrix.

This function uses systolic array based implementation where each iteration performs a Given's rotation algorithm to convert given matrix into Q and R matrices. Note that this function uses ac_matrix container class and input and output matrices are either supplied in the form of ac_matrix objects or via standard AC datatype 2D arrays. This QR decomposition implementation supports ac_fixed and ac_complex<ac_fixed> datatypes. If the function is called with other datatypes, compilation error is thrown.

5.5.1. The ac_qrd Implementation

The ac_qrd implementation used Givens rotation algorithm to convert any given matrix into an upper triangular matrix which is R. Computation of Q requires same set of sequence of rotations and can be computed simultaneously. Givens rotation has the property of implementing the QRD decomposition in systolic manner, which makes it possible to synthesize parallel architecture and simplify the design.

The process of QR decomposition can be divided into two different functions (processing elements) that are called as off-diagonal and diagonal processing elements (PEs). Diagonal PEs are used to compute rotational parameters, whereas off-diagonal PEs are used to apply them to the rows and compute the new values of the rows in the final R and Q matrices.

Systolic Array Structure of QRD

QRD can be massively parallelized if only it performs rotation on two different set of rows.

The process of applying rotations and computing rotational parameters c and s can be divided into two different functions (processing elements) that are called as off-diagonal and diagonal processing elements (PEs). Diagonal PEs are used to compute c and s, where as off-diagonal PEs are used to apply them to the rows and compute the new values of the rows in the final R matrix.

- **Diagonal Processing Elements** are expressed in the form of function, diagonal_PE which takes element to be zeroed (b) and element in the row just above that in the same column (a) as inputs and returns the rotational matrix parameters. It also takes the default Boolean parameter ispwl, which allows user to do architectural exploration by switching between PWL functions and accurate ac_math functions. By default, PWL functions are used to make sure that the error is minimum, although this increases the area of the Diagonal Processing elements.
- Off-Diagonal Processing Elements are expressed using function offdiagonal_PE, which applies
 Givens rotation to the relevant rows of the Q and R matrices.
 Givens rotation for complex matrices produces a complex output for the bottom right portion of
 the R matrix by default. However, certain applications might require the R matrix to have real
 elements throughout to enable operations such as matrix inversion during downstream
 processing. The user can obtain such outputs by toggling the real_diag template parameter to
 "true". The calculation of the parameters required to do this final rotation can be done through
 PWL functions or accurate ac_math functions. This choice is determined via the "ispwl"
 template parameter.

5.5.2. Function prototypes

For ac_matrix of ac_fixed:

```
template<
  bool ispwl = true, unsigned M,
  int W1, int I1, ac_q_mode q1, ac_o_mode o1,
  int W2, int I2, ac_q_mode q2, ac_o_mode o2
>
void ac_qrd(
  ac_matrix<ac_fixed <W1, I1, true, q1, o1>, M, M> &A,
  ac_matrix<ac_fixed <W2, I2, true, q2, o2>, M, M> &Q,
  ac_matrix<ac_fixed <W2, I2, true, q2, o2>, M, M> &R
)
```

For ac_matrix of ac_complex<ac_fixed>:

```
template<
```

```
bool real_diag = false, bool ispwl = true, unsigned M,
int W1, int I1, ac_q_mode q1, ac_o_mode o1,
int W2, int I2, ac_q_mode q2, ac_o_mode o2
>
void ac_qrd(
   ac_matrix<ac_complex<ac_fixed<W1, I1, true, q1, o1> >, M, M> &A,
   ac_matrix<ac_complex<ac_fixed<W2, I2, true, q2, o2> >, M, M> &Q,
   ac_matrix<ac_complex<ac_fixed<W2, I2, true, q2, o2> >, M, M> &R
)
```

For C++ ac_fixed array:

```
template<
  bool ispwl = true, unsigned M,
  int W1, int I1, ac_q_mode q1, ac_o_mode o1,
  int W2, int I2, ac_q_mode q2, ac_o_mode o2
>
void ac_qrd(
  ac_fixed <W1, I1, true, q1, o1> A[M][M],
  ac_fixed <W2, I2, true, q2, o2> Q[M][M],
  ac_fixed <W2, I2, true, q2, o2> R[M][M]
```

For C++ ac_complex<ac_fixed> array:

```
template<
  bool real_diag = false, bool ispwl = true, unsigned M,
  int W1, int I1, ac_q_mode q1, ac_o_mode o1,
  int W2, int I2, ac_q_mode q2, ac_o_mode o2
>
void ac_qrd(
  ac_complex<ac_fixed <W1, I1, true, q1, o1> > A[M][M],
  ac_complex<ac_fixed <W2, I2, true, q2, o2> > Q[M][M],
  ac_complex<ac_fixed <W2, I2, true, q2, o2> > R[M][M]
```

5.5.3. Example Function Calls

An example function call to calculate the QR decomposition of a 3x3 complex ac_matrix object is given below:

```
ac_matrix<ac_complex<ac_fixed<16, 8,false,AC_TRN,AC_WRAP> >, 3, 3> A;
ac_matrix<ac_complex<ac_fixed<32,16,false,AC_TRN,AC_WRAP> >, 3, 3> Q, R;
// Hypothetical function that initializes matrix "A"
init_matrix(A);
```

```
ac_qrd(A, Q, R);
```

An example of the same function, but for a 3x3 complex 2D C++ array is given below:

```
ac_complex<ac_fixed<16, 8, false, AC_TRN, AC_WRAP> A[3][3];
ac_complex<ac_fixed<32,16, false, AC_TRN, AC_WRAP> Q[3][3], R[3][3];
// Hypothetical function that initializes matrix A
init_matrix(A);
ac_qrd(A, Q, R);
```

By default, the design does not perform the final rotation to obtain a real bottom-right element. To make the design do that, set the "real_diag" template parameter to "true", as shown below:

```
ac_qrd<true>(A, Q, R);
```

The design also uses PWL functions by default. To enable the use of accurate ac_math functions, set the "ispwl" template parameter to "false", as shown below:

```
ac qrd<true, false>(A, Q, R);
```

Chapter 6: Miscellaneous Functions

The *ac_math* package also provides the following functions, in addition to the PWL, LUT and CORDIC functions:

- Absolute Value (ac abs)
- <u>Division (ac_div)</u>
- Square Root (ac sqrt)
- Shifts (ac shift left/ac shift right)
- Barrel Shift (ac barrel shift)
- Padded Division (ac div v2)
- <u>LeakyReLU (ac_leakyrelu)</u>
- ReLU (ac relu)
- PReLU (ac prelu)
- AC Float Adder Tree Functions (add_tree / add_tree ptr / block_add_tree / block_add_tree_ptr)
- Standard Floating-Point (ac std float) Fused Adder Tree Functions (fadd tree / fadd tree ptr)
- Optimized AC Float Multiplication (ac flfx mul)

The following subsections describes the implementation and usage of these functions in more detail.

6.1. Absolute Value (ac_abs)

The absolute value (ac_abs) operation produces a positive result by negating values less than zero.

Integer Signed

```
void ac_abs(ac_int<XW,true> x, ac_int<YW,false> &y)
void ac_abs(ac_int<XW,true> x, ac_int<YW,true> &y)
```

Fixed Point Signed

```
void ac_abs(ac_fixed<XW,XI,true,XQ,XO> x, ac_fixed<YW,YI,false,YQ,YO> &y)
void ac abs(ac fixed<XW,XI,true,XQ,XO> x, ac fixed<YW,YI,true,YQ,YO> &y)
```

Float

```
void ac_abs(ac_float<XW,XI,XE,XQ> x, ac_float<YW,YI,YE,YQ> &y)
```

6.2. Division (ac_div)

The division functions are supported for integer, fixed-point, complex, and float data types. The division functions takes two inputs: dividend and divisor and computes the quotient. If the inputs are integer there is a version of the function that also computes the remainder of the division. In all cases the div function returns true if the computed remainder is nonzero.

NOTE: Division by zero triggers an assertion failure during simulation if the ASSERT_ON_INVALID_INPUT macro is defined.

6.2.1. Integer Division

There are several integer division functions defined. Some of the functions compute just the quotient, some compute both the quotient and the remainder. All return a bool flag to indicate whether the remainder is non zero.

The first argument is the dividend (or numerator), the second is the divider (or denominator), the third is the quotient (output argument) and the fourth (optional) argument is the remainder (output argument). All the arguments are either all signed or all unsigned. The computed quotient is equivalent to the resulted computed by the operator '/':

```
ac_int<8, false> n;
ac_int<5, false> d;
ac_int<6, false> q;
ac_div(n, d, q);
ac_int<6, false> q1 = n/d;  // q == q1
```

While the behavior of the last two lines is identical, Catapult will produce different hardware for each case. Catapult will allocate a component from the library for the '/' whereas calling the div function will inline the function.

```
bool ac div(
                                            bool ac div(
  ac int<NW, false> dividend,
                                              ac int<NW, true> dividend,
  ac int<DW, false> divisor,
                                              ac int<DW, true> divisor,
  ac int<QW, false> &quotient,
                                              ac int<QW, true> &quotient,
  ac int<RW, false> &remainder
                                              ac int<RW,true> &remainder
);
                                            );
bool ac div(
                                            bool ac div(
  ac int<NW, false> dividend,
                                              ac int<NW, true> dividend,
                                              ac int<DW, true> divisor,
  ac int<DW, false> divisor,
  ac int<QW, false> &quotient
                                              ac int<QW,true> &quotient
                                            );
```

Table 3: Functions for Integer Division that Return Remainder != 0

For the div functions, dividend == divisor*quotient + remainder provided that both the quotient and the remainder have sufficient precision so that they don't overflow.

6.2.2. Fixed-point Division

There are several fixed-point division functions defined. Each function returns a *bool* flag to indicate whether the remainder is non zero (assumes that the quotient has enough precision that it does not overflow).

The first argument is the *dividend* (or numerator), the second is the *divider* (or denominator), the third is the *quotient* (output argument). All the arguments are either all signed or all unsigned. The computed quotient takes into account the target bitwidth, integer bitwidth, quantization and overflow modes. All quantization modes work correctly since they are based on the computation of the remainder. The operator '/', on the other hand, is forced to truncate the result without knowing the data type of the target. For example, the operator '/' for *ac_fixed* returns a result that is dependent on the type of both dividend and divisor and the bits (possibly infinite bits) to the right of the result are truncated before the quantization mode of the target is known.

The hardware produced by Catapult for a call to the '/' and '/=' operators and for a call to the div function are different. In the first case, Catapult allocates a component from the library, whereas in the second case the div function is inlined.

```
bool ac_div(
   ac_fixed<NW,NI,false,NQ,NO> divi-
   dend,
   ac_fixed<DW,DI,false,DQ,DO> divisor,
   ac_fixed<QW,QI,false,QQ,QO> &quo-
tient
);
bool ac_div(
   ac_fixed<NW,NI,true,NQ,NO> dividend,
   ac_fixed<DW,DI,true,DQ,DO> divisor,
   ac_fixed<QW,QI,true,QQ,QO> &quo-
);

tient
);
```

Table 4: Functions for Fixed-Point Division that Return Remainder != 0

The *div* functions return the *bool* value remainder != 0 which is equivalent to (divisor*quotient != dividend, provided that the quotient does not overflow) and may be dependent on the width and integer width of the quotient. For example:

```
ac_fixed<3,3,false> q; ac_fixed<4,3> q2;
ac_fixed<2,2,false> a = 3; ac_fixed<2,2,false> b = 2;
bool nonzero_rem = ac_div(a, b, q); // nonzero_rem == true, q == 1
bool nonzero_rem2 = ac_div(a, b, q2); // nonzero_rem2 == false, q2 == 1.5
```

6.2.3. Float Division

Inlined *ac_float* division is implemented using *ac_fixed* division and has an equivalent return value. The quotient may lose precision as neither the dividend or divisor are normalized. The resulting quotient will overflow if the result of division cannot be represented in the quotient type, otherwise the result is representable and normalized.

```
bool ac_div(
   ac_float<NW,NI,NE,NQ> dividend,
   ac_float<DW,DI,DE,DQ> divisor,
   ac_float<QW,QI,QE,QQ> &quotient
);
```

6.2.4. Complex Division

The *ac_div* library also provides for the division of complex inputs.

```
void ac_div(
   ac_complex<NT> dividend,
   ac_complex<DT> divisor,
   ac_complex<QT> &quotient
)
```

6.2.5. Output Saturation for Zero Inputs

By default, the hardware synthesized for ac_div saturates the output if the input is zero. This may result in coverage holes if no zero inputs are supplied, in addition to the extra logic the output saturation requires. If this is undesirable, the user may define the AC_DIV_DISABLE_SATURATION_IF_INPUT_IS_ZERO macro, which will eliminate the saturation logic. The user must take into account the fact that defining this macro will disable output saturation for all calls to ac_div.

6.3. Square Root (ac_sqrt)

The square root function has only input argument and one output argument both of which are unsigned. Integral, fixed-point and floating-point versions are provided.

6.3.1. Integer square root

The integer square root computes the largest integer value such that when squared it is equal or less than the argument. The prototype of the function is given as follows:

```
void ac_sqrt(
  ac_int<XW,false> x,
  ac_int<OW,false> &sqrt
)
```

6.3.2. Fixed-point square root

The fixed-point *ac_sqrt* function allows for full flexibility on both the input and the output precision. The bitwidth, integer bitwidth, quantization and overflow modes of the target (second argument) determine the bits of precision for computing the square root and the quantization and overflow that is performed on the result. All quantization modes are computed exactly based on the remainder of the square root computation. The prototype of the function is given as follows:

```
void ac_sqrt(
   ac_fixed<XW,XI,false,XQ,XO> x,
   ac_fixed<OW,OI,false,OQ,OO> &sqrt
)
```

An example of how the square root functions is used, consider the case where the input value is $ac_fixed < 4,4$, false > (4 bit unsigned integer), and the required precision for the result is $ac_fixed < 8,3$, false > (3 bit integral, 5 fractional: xxx.xxxxx), the call code would look like:

```
ac_fixed<4,4,false> x = 13;
ac_fixed<8,3,false> sqrt_x;
ac sqrt(x, sqrt x); // sqrt x == (ac fixed<8,3,false>) sqrt(x.to double());
```

6.3.3. Floating-point square root

The ac_sqrt function also allows for ac_float, ac_std_float and ac_ieee_float inputs and outputs. The ac_std_float and ac_ieee_float implementations are a wrapper around the ac_float implementation, with temporary variables present to ensure compatibility with the ac_float implementation. The ac_float implementation calculates the square root of the input mantissa, stores it in a temporary variable and then factors in the input exponent value to calculate the final output, in accordance to the equations below:

For odd exponent values, we can still use $2^{(exp>1)}$ to factor in $2^{(exp/2)}$, provided that we left-shift the mantissa by 1 first. For instance, consider an input with exp = 9.

```
= sqrt((mantissa<<1) *2^8)
= sqrt(mantissa<<1) * 2^(8>>1)
= sqrt(mantissa<<1) * 2^(9>>1)
    (Since 8>>1 = 9>>1 = 4)
```

The *ac_fixed* temporary variable used to store the value of sqrt(mantissa) (or, in the case of odd exponents, sqrt(mantissa<<1)) bases its fractional bits and rounding mode on default template parameters, as seen in the prototype:

If the OR_TF variable is set to false (default value), the temporary variables use the same fractional bitwidth as the output mantissa, if not, they use the fractional bitwidth supplied by the TF_ parameter (32 by default). The rounding mode for temp variables is set to that supplied by the TQ parameter (AC_TRN by default). An example ac_float function call that uses a temporary variable with 16 fractional bits and AC_RND as the rounding mode is given below:

```
ac_float<25, 2, 8> input, output;
ac_sqrt<true, 16, AC_RND>(input, output);
```

The ac_std_float and ac_ieee_float implementations use the same default template parameters, which they in turn supply to the ac_float implementation. The prototypes are given below:

6.3.4. Special input handling

The ac std float and ac ieee float implementations can also handle negative and NaN inputs:

	۳		oa a.oo	nana.c nega	 	apa.co
Г						
		Input		Output		
		IIIput		Output		

-0.0	-0.0
Negative non-zero	-nan
+nan	+nan
-nan	-nan

This handling mirrors that provided by the sqrt() function in the math.h standard C++ library. While negative zero handling is provided by default, the AC_SQRT_NAN_SUPPORTED macro must be defined to enable NaN output generation (for negative non-zero and +/-nan inputs).

6.4. Shifts (ac_shift_left/ac_shift_right)

The *ac_shift* functions allow the specification of precision and quantization and overflow modes of the target. This gives a simple way to get around the issue of the fixed-point shift operations >> and << for *ac_fixed* returning the type of the first operand. The shifting provided by these functions is "arithmetic" in nature, that is, these functions provide the same result as multiplying the input by 2^(shift_count), all the while keeping in mind the quantization and overflow modes of the target. In this sense, they allow for saturation and rounding, something that is not provided by the >> and << operators.

6.4.1. Bidirectional shifts

For ac_fixed data-types, both the right shift >> and the left shift << operators shift in the opposite direction when the shift value is negative. The equivalent functionality is provided by the following functions:

```
void ac shift right(
                                          void ac shift right(
  ac fixed<XW,XI,false,XQ,XO> x,
                                           ac fixed<XW,XI,true,XQ,XO> x,
  int n,
                                           int n,
                                           ac fixed<OW,OI,true,OQ,OO> &sr
  ac fixed<OW,OI,false,OQ,OO> &sr
void ac shift left(
                                         void ac shift left(
  ac fixed<XW,XI,false,XQ,XO> x,
                                           ac fixed<XW,XI,true,XQ,XO> x,
  int n,
                                           int n,
  ac fixed<OW,OI,false,OQ,OO> &sl
                                           ac fixed<OW,OI,true,OQ,OO> &sl
```

Table 5: Functions for Fixed-Point Bidirectional Shifts

6.4.2. Unidirectional shifts

If the shift value is know to be non-negative, it is best to cast it to (unsigned int) so that the following functions are inlined. These functions will deliver better quality of results during Catapult synthesis.

```
void ac shift right (
                                          void ac shift right (
  ac fixed<XW,XI,false,XQ,XO> x,
                                            ac fixed<XW,XI,true,XQ,XO> x,
  unsigned int n,
                                            unsigned int n,
  ac fixed<OW,OI,false,OQ,OO> &sr
                                            ac fixed<OW,OI,true,OQ,OO> &sr
void ac shift left(
                                          void ac shift left(
  ac fixed<XW,XI,false,XQ,XO> x,
                                            ac fixed<XW,XI,true,XQ,XO> x,
  unsigned int n,
                                            unsigned int n,
  ac fixed<OW,OI,false,OQ,OO> &sl
                                            ac fixed<OW,OI,true,OQ,OO> &sl
```

Table 6: Functions for Fixed-Point Unidirectional Shift

6.4.3. Complex shifts

Wrapper functions for the unidirectional *ac_shift_left* and *ac_shift_right* are provided for complex types to perform the corresponding shift for the real and imaginary parts of the underlying type.

```
void ac_shift_right(
   ac_complex<XT> x,
   unsigned int n,
   ac_complex<OT> &sr
)
void ac_shift_left(
   ac_complex<XT> x,
   unsigned int n,
   ac_complex<OT> &sl
)
```

Table 7: Functions for Complex Unidirectional Shift

6.5. Barrel Shift (ac_barrel_shift)

Barrel shifter is a digital circuit that can shift a data word by a specified number of bits without the use of any sequential logic, only pure combinational logic, i.e. it inherently provides a binary operation. The way barrel shifter implemented here is as a sequence of multiplexers where the output of one multiplexer is connected to the input of the next multiplexer in a way that depends on the shift distance. A barrel shifter is often used to shift and rotate n-bits in modern microprocessors, typically within a single clock cycle.

6.5.1. Generic Block Diagram

Block diagram below show the mux based implementation of 4 bit barrel shifter for example, take a four-bit number inputs (MSB)ABCD(LSB) table below show rotation in each stage of 4 bit barrel shift. Shifting in various stages based on control bits are illustrated in table below.

SHIFT	Shift = 0		Shif	t = 1	= 1 Shift = 2		Shift = 3	
INPUT	C1=0	C0=0	C1=0	C0=1	C1=1	C0=0	C1=0	C0=0
Α	Α	Α	Α	D	С	С	С	В
В	В	В	В	Α	D	D	D	С
С	С	С	С	В	Α	Α	Α	D

D	D	D	D	C	R	R	R	Δ
				•	ן ט		ן ט	<i>,</i> ,

Illustration 1 Mux 2:1 based implementation for 4 bit Barrel Shifter

6.5.2. Implementation Details

Barrel shifter implemented in ac_math.h. Barrel shifter is can be used as combo C-Core or a top design based on user requirements.

Architectural Details

We need to reduce clock overhead to 0 which make sure use of complete cycle for the combo logic. Directive below is to be used set clock overhead.

```
directive set /barrel_shift<1000>::run/core -CLOCK_OVERHEAD 0.000000
```

As design is divided into combinational ccore to reduce the runtime catapult will synthesize each stage in the barrel shifter.

Port Descriptions

Barrel Shifter interface for N bits input is input port N bit along with a select input of width [log2(N)] bits and similarly output port of N bit. Illustration below shows ports for N =1000 bits.I.

6.5.3. Using ac_barrel_shift

3. To instantiate barrel shifter in design user have include ac math.h and follow the below steps.

```
#include<ac_math.h>
```

4. Call of ac_barrel_shifter providing number of bits as template parameter

```
data ot = ac barrel shift<1000>(data in, ctrl in) ;
```

as ac_barrel_shift only provide ability to rotate right with the value on control port i.e. if control port have value of 1 that impose input LSB become output MSB and rest change accordingly. User can modify control input or input itself to match the output as rotate left. Create variables for input output and control ports.

```
const CTL_BITS = CTRL_BITS ac::nbits<NUM_BITS-1>::val;
ac_int<NUM_BITS,false> data_in;
ac_int<CRL_BITS,false> ctrl_in;
ac_int<NUM_BITS,false> data_ot;
```

5. After assigning the data and control bit, user can run the barrel shifter instance by calling. Is the top interface as well for shifter. data_ot will collect the output data.

6.5.4. Output

Output of the core is right rotated version of input word. Design is feed forward makes F-max only lemmatized by the technology library used.

Design limitation

- Core is designed to rotate right as rotate left can be derived from rotate right itself.
- Design is tested under 1024 bits.

Scheduling, Resource and Area Reports

Below are the RTL synthesis results of Barrel shifter of 1000 bits based on 45nm lib area is 30630.7 µm2

6.6. Padded Division (ac_div_v2)

This division functions is supported for unsigned and signed integer data types only. Functions takes two inputs: dividend and divisor and computes the outputs: quotient and remainder. The range of values for the divisor and the accuracy of computing the quotient depends on the parameter value of PADDING_WIDTH (PW).

NOTE: Division by zero and with a value that is not supported in the range allowed triggers an assertion failure with description during simulation.

6.6.1. Design Arguments

The first argument is the dividend (or numerator), the second is the divisor (or denominator), the third is the quotient (output argument) and the fourth argument is the remainder (output argument). All the arguments can be signed or unsigned, however make sure to keep all argument types consistent. The width of each of the argument is defined by the template parameters passed to the design.

For Unisgned input/outputs

For signed Input/Outputs

```
ac_int<NW, false> dividend,
ac_int<DW, false> divisor,
ac_int<QW, false> &quotient,
ac_int<RW, false> &remainder
ac_int<NW, true> dividend,
ac_int<DW, true> divisor,
ac_int<QW, true> &quotient,
ac_int<RW, true> &remainder
```

6.6.2. Design Parameters

The following table describes the design parameters:

PARAMETER	Description
Numerator Width (NW)	Width of the numerator to be supplied
Denominator Width (NW)	Width of the denominator to be supplied
Quotient Width (NW)	Width of the output quotient expected
Remainder Width (NW)	Width of the output remainder expected
Padding Width (PW)	Number of bits to be padded to the Numerator, so we could increase the range of divisor supported while controlling QofR of the design.
	NOTE : PW should be withing 1 to DW for Unisgned Or 2 to DW for Signed input

Table 8: Parameter description of the design

Padding width bits are zero value bits that get padded to the numerator, such that the resulting quotient could accommodate all value from the division, with best accuracy. This parameter helps us set the range of divisor value allowed to be passed as the divisor, for example in case of unsigned numbers, if padding value is 1 and the divisor width (DW) is 5, the design supports only values 16 and above up-till 32 (maximum) for the divisor,

and if padding value is 5, than divisor can be all possible values from 1 to 32. Similarly for signed values, if the DW is 5 and PW is 2, supported values for divisor excludes values from -9 to 8, and if the PW=DW, than all the values supported by Divisor bit width from -16 to +15 are supported by the synthesized design. This padding parameter, gives the user an option to optimize the design for area and latency against the range of values supported for design.

Architectural Constraints

The AC_DIV_CORE_LOOP loop in the ac_div_v2 function determines the QofR of the design. By default, this loop is set to be unrolled, which reduces the latency of the design. However, for an area efficient design (at the cost of latency cycles), you could disable the unrolling of this loop by setting the UNROLL directive to no on the AC_DIV_CORE_LOOP loop:

To disable the core loop unrolling,

```
directive set /rtest_ac_div/core/AC_DIV_CORE_LOOP -UNROLL_no
```

To Enable the core loop unrolling,

```
directive set /rtest ac div/core/AC DIV CORE LOOP -UNROLL yes
```

Thus you could efficiently use the unrolling options and the padding parameter to set the range of value and constrain the design for required QofR.

Usage Example For Unsigned Values

1. To Instantiate *ac_div_v2* in the design user have to include *ac_math/ac_div_v2.h* and follow the below steps.

```
#include <ac math/ac div v2.h>
```

2. Define the Numerator, Denominator, Quotient and Remainder(if required) widths along with suitable Padding width to set the range of values supported

3. Provide the input values for numerator and denominator.

```
typedef ac_int<MAX_NW,false> num_type; // Unsigned division
typedef ac_int<MAX_DW,false> den_type;
typedef ac_int<QUO_W,false> quo_type;
```

```
typedef ac_int<REM_W, false> rem_type

num_type num = 32;
den_type den = 6;
quo_type quo;
rem_type rem;
```

4. Call the *ac_div_v2* function with variable widths as template parameters,, and check for the results in the Quotient and Remainder variables.

```
ac_div<NW,DW,QW,RW,PW>(num, den, quo, rem);
```

For the div functions, dividend == divisor*quotient + remainder provided that both the quotient and the remainder have sufficient precision so that they don't overflow.

6.7. LeakyReLU (ac_leakyrelu)

The *ac_leakyrelu* library provides an implementation of the LeakyReLU activation function for *ac_fixed* inputs with minimal inaccuracy.

6.7.1. Function Templates

The following is the function prototype for the ac leakyrelu function for ac fixed datatypes:

Returning by Value

The *ac_leakyrelu* function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

6.7.2. Example Function Calls

The following code snippet shows the user how to call the ac leakyrelu function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
typedef ac_fixed <15, 2, false> alpha_type;

input_type x = 2.5;
output_type y;
alpha_type alpha;

// Returns y = leakyrelu(x), and returns by reference.
ac_leakyrelu (x, y, alpha);

// The following line returns by value instead of by reference.
y = ac leakyrelu <output_type> (x, alpha);
```

6.8. ReLU (ac_relu)

The *ac_relu* library provides an implementation of the ReLU activation function for *ac_fixed* inputs with minimal inaccuracy.

6.8.1. Function Templates

The following is the function prototype for the ac relu function for ac fixed datatypes:

Returning by Value

The *ac_relu* function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

6.8.2. Example Function Calls

The following code snippet shows the user how to call the ac relu function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
typedef ac_fixed<64, 32, false, AC_RND, AC_SAT> output_type;
input_type x = 2.5;
output_type y;

// Returns y = relu(x), and returns by reference.
ac_relu (x, y);

// The following line returns by value instead of by reference.
y = ac_relu <output_type> (x);
```

6.9. PReLU (ac_prelu)

The *ac_prelu* library provides an implementation of the PReLU activation function for *ac_fixed* inputs with minimal inaccuracy.

6.9.1. Function Templates

The following is the function prototype for the ac prelu function for ac fixed datatypes:

Returning by Value

The *ac_prelu* function can return its output by value as well as by reference. In order to return the value, the user must pass the information of the output type to the function as a template argument. For an example of how to do this, please refer to the following Example Function Calls section below. The prototype for the function which returns by value is shown below:

6.9.2. Example Function Calls

The following code snippet shows the user how to call the *ac prelu* function.

```
typedef ac_fixed<9, 4, false, AC_RND, AC_SAT> input_type;
```

```
typedef ac_fixed<64, 8, false, AC_RND, AC_SAT> output_type;
typedef ac_fixed <15, 2, false> alpha_type;

input_type x = 2.5;
output_type y;
alpha_type alpha;

// Returns y = prelu(x), and returns by reference.
ac_prelu (x, y, alpha);

// The following line returns by value instead of by reference.
y = ac_prelu <output_type> (x, alpha);
```

6.10. AC Float Adder Tree Functions (add_tree / add_tree_ptr / block_add_tree / block_add_tree_ptr)

The AC Float adder tree functions provide an implementation for an arbitrary floating point adder tree which doesn't do intermediate normalization and hence saves on hardware. All the functions accept an array of ac_float inputs, and produce either ac_fixed or ac_float outputs, depending on the implementation selected. All the implementations are contained in the header file ac_float_add_tree.h.

6.10.1. Adder Tree

The input array for the adder tree functions can be passed by reference or by degrading them to a pointer. Both variants support ac_fixed and ac_float outputs.

```
// Passing by reference, ac_fixed output:
template<
  int AccExtraLSBs = 0,
  bool use_ac_sl = true,
  int WA, int IA, bool SA, ac_q_mode QA, ac_o_mode OA,
  int WE, int IE, int EE, ac_q_mode QE,
  int N_ELEMS
>
void add_tree(
  const ac_float<WE,IE,EE,QE> (&x)[N_ELEMS],
  ac_fixed<WA,IA,SA,QA,OA> &acc
)

// Passing by reference, ac_float output:
template<
  int AccExtraLSBs = 0,
  int WA, int IA, int EA, ac_q mode QA,</pre>
```

```
int WE, int IE, int EE, ac q mode QE,
  int N ELEMS
>
void add tree(
 const ac float<WE, IE, EE, QE> (&x) [N ELEMS],
 ac float<WA, IA, EA, QA> &acc
// Passing by pointer, ac fixed output:
template<
 int N ELEMS,
 int AccExtraLSBs = 0,
 bool use ac sl = true,
  int WA, int IA, bool SA, ac q mode QA, ac_o_mode OA,
 int WE, int IE, int EE, ac q mode QE
>
void add tree ptr(
 const ac float<WE, IE, EE, QE> x[N ELEMS],
 ac fixed<WA, IA, SA, QA, OA> &acc
)
// Passing by pointer, ac float output:
template<
 int N ELEMS,
 int AccExtraLSBs = 0,
 int WA, int IA, int EA, ac q mode QA,
  int WE, int IE, int EE, ac q mode QE
void add tree ptr(
 const ac float<WE, IE, EE, QE> x[N ELEMS],
  ac float<WA, IA, EA, QA> &acc
```

The core implementation for all these variants uses recursive templates to add all the inputs, and the recursive templates model the different stages of the adder tree. For every pairwise addition, the mantissa of the input with the lower exponent value is right-shifted to align it with the other input's mantissa. Due to the right-shifting that happens during this alignment, some precision might be lost. If both inputs have the same exponent, no shifting takes place. If a zero input is added with a non-zero input, the former's exponent value is ignored and neither of the inputs are right-shifted.

The pass-by-pointer adder tree functions have the suffix "_ptr" attached to their names to clearly differentiate them from the pass-by-reference functions and avoid any ambiguity between the variants.

Since the passing the array as a pointer involves a loss of information regarding the array dimension, the user must explicitly specify N_ELEMS template parameter while calling the pass-by-pointer functions. The pass-by-reference functions can infer the dimension values, and the N_ELEMS parameter need not be explicitly specified in such a case.

To reduce the loss of precision that may happen during the mantissa alignment, the user may pad extra LSBs to the accumulator variable via the AccExtraLSBs template parameter. This parameter is set to zero by default, meaning no extra LSBs are added by default.

The use_ac_sl template parameter specifies whether to use the ac_shift_left function in ac_shift.h, when using the functions with a fixed-point output. More details on this parameter are given in Using ac_shift_left. By default, this parameter is set to true, i.e. ac_shift_left is used.

Usage examples for these functions are provided below:

```
// foo default: Uses default template parameters.
// foo odefault fxpt: Overrides all default template parameters for the adder
// tree implementation with fixed-point outputs.
// foo odefault flpt: Overrides all default template parameters for the adder
// tree implementation with floating-point outputs.
// Since the input array used in all the functions mentioned above will
// undergone pointer decay, we must call add tree ptr() and explicitly specify
// N ELEMS for the function call.
template <int N ELEMS, class T1, class T2>
void foo default(const T1 in arr[N ELEMS], const T2 &out) {
 ac math::add tree ptr<N ELEMS>(in arr, out);
template <int N ELEMS, int AccExtraLSBs, bool use ac sl, class T1, class T2>
foo odefault fxpt(const T1 in arr[N ELEMS], const T2 &out) {
 ac math::add tree ptr<N ELEMS, AccExtraLSBs, use ac sl>(in arr, out);
template <int N ELEMS, int AccExtraLSBs, class T1, class T2>
foo odefault flpt(const T1 in arr[N ELEMS], const T2 &out) {
  ac math::add tree ptr<N ELEMS, AccExtraLSBs>(in arr, out);
void foo() {
  constexpr int N ELEMS = 16;
  constexpr int AccExtraLSBs = 8;
 constexpr bool use ac sl = false;
 ac float<25, 2, 8> in arr[N ELEMS];
 // Code to initialize in arr.
 typedef ac float<25, 2, 9> T out fl;
 typedef ac fixed<64, 32, true, AC TRN, AC SAT> T out fx;
 // Using the pass-by-reference functions first. N ELEMS will be inferred.
```

```
// Using default template parameters.
T out fl out fl;
ac math::add tree(in arr, out fl);
// Overriding defaults for fixed point output functions.
T out fx out fx;
ac math::add tree<AccExtraLSBs, use ac sl>(in arr, out fx);
// Overriding defaults for floating point output functions.
T out fl out fl2;
ac math::add tree<AccExtraLSBs>(in arr, out fl2);
// Using the pass-by-pointer versions now. N ELEMS is explicitly specified.
// Using default template parameters.
T out fl out fl3;
foo default<N ELEMS>(in arr, out fl3);
// Overriding defaults for fixed point output functions.
T out fx out fx2;
foo odefault fxpt<N ELEMS, AccExtraLSBs, use ac sl>(in arr, out fx2);
// Overriding defaults for floating point output functions.
T out fl out fl4;
foo odefault flpt<N ELEMS, AccExtraLSBs>(in arr, out fl4);
```

6.10.2. Block Adder Tree

The input array for the block adder tree functions can also be passed by reference or by degrading them to a pointer. Both variants support ac_fixed and ac_float outputs.

```
// Passing by reference, ac_fixed output:
template<
  int AccExtraLSBs = 0,
  bool ZeroHandling = true,
  bool use_ac_sl = true,
  int WA, int IA, bool SA, ac_q_mode QA, ac_o_mode OA,
  int WE, int IE, int EE, ac_q_mode QE,
  int N_ELEMS
>
void block_add_tree(
  const ac_float<WE,IE,EE,QE> (&x)[N_ELEMS],
  ac_fixed<WA,IA,SA,QA,OA> &acc
)
```

```
// Passing by reference, ac float output:
template<
  int AccExtraLSBs = 0,
  bool ZeroHandling = true,
  bool norm = true,
  int WA, int IA, int EA, ac q mode QA,
  int WE, int IE, int EE, ac q mode QE,
  int N ELEMS
void block add tree(
 const ac_float<WE, IE, EE, QE> (&x) [N_ELEMS],
 ac float<WA, IA, EA, QA> &acc
// Passing by pointer, ac fixed output:
template<
  int N ELEMS,
 int AccExtraLSBs = 0,
  bool ZeroHandling = true,
 bool use ac sl = true,
  int WA, int IA, bool SA, ac q mode QA, ac o mode OA,
  int WE, int IE, int EE, ac q mode QE
void block add tree ptr(
 const ac float<WE, IE, EE, QE> x[N ELEMS],
  ac fixed<WA, IA, SA, QA, OA> &acc
)
// Passing by pointer, ac float output:
template<
  int N ELEMS,
  int AccExtraLSBs = 0,
 bool ZeroHandling = true,
  bool norm = true,
  int WA, int IA, int EA, ac q mode QA,
  int WE, int IE, int EE, ac q mode QE
>
void block add tree ptr(
 const ac float<WE, IE, EE, QE> x[N ELEMS],
  ac float<WA, IA, EA, QA> &acc
```

The core implementation for all these variants finds the maximum exponent and aligns all the input mantissas at the very start with regard to the maximum exponent value. Once the values are aligned, all the mantissas are added in an unrolled for loop, which is synthesized as an adder tree. The output of the adder tree is then

combined with the maximum exponent value obtained earlier to produce the final output. This means that the adder tree itself operates purely on fixed point values, without requiring the extra hardware needed to do intermediate alignments. This bypasses the use of MUXes and other alignment-related hardware in the datapath of the adder tree, resulting in more area savings and a shorter critical path. However, the use of the block adder tree may also result in some precision being sacrificed, due to the absence of intermediate alignment stages.

Like with the adder tree functions mentioned in Adder Tree, the pass-by-pointer functions have the suffix "_ptr" attached to their names to clearly differentiate them from the pass-by-reference functions and avoid any ambiguity between the variants. The pass-by-pointer functions for the adder tree must also have the N ELEMS template parameter explicitly specified in the function call.

To reduce the loss of precision that may happen during the mantissa alignment, the user may pad extra LSBs to the accumulator variable via the AccExtraLSBs template parameter. This parameter is set to zero by default, meaning no extra LSBs are added by default.

The ZeroHandling template parameter specifies whether zero-handling logic is incorporated in the design. The block adder tree includes special handling for zero inputs to make sure that their exponent does not override that of small, non-zero inputs and result in unwanted precision loss while right-shifting. This results in bit-masking logic to set the exponent values for zero inputs to the minimum value (-2^(E-1)) where E is the number of exponent bits) while doing comparisons to find the maximum exponent. If the user decides that the potential precision loss is tolerable and wants to avoid the extra logic involved in zero-handling, they can set the ZeroHandling template parameter to false. By default, this parameter is set to true, i.e. zero handling logic is incorporated in the design.

The use_ac_sl template parameter specifies whether to use the ac_shift_left function in ac_shift.h, when using the functions with a fixed-point output. More details on this parameter are given in Using ac_shift_left. By default, this parameter is set to true, i.e. ac_shift_left is used.

The norm template parameter is used in the final stage of the floating-point output functions, where the output of the adder tree is combined with the maximum exponent value to produce the final output of the block add tree function. For the floating-point output functions, this is done via an ac float constructor:

```
acc = ac_float<WA, IA, EA, QA>(acc_fx, max_exp, norm);
```

acc is the final floating point output, acc_fx is the output of the fixed-point adder tree, max_exp is the maximum exponent value, and norm is the aforementioned template parameter. If norm is set to true--as is the default--extra normalization hardware will be used to normalize the output mantissa. To avoid this hardware, the user can set the norm template parameter to false.

Usage examples for the block adder tree functions are provided below:

```
// foo_default: Uses default template parameters.
// foo_odefault_fxpt: Overrides all default template parameters for the
// fixed-point output implementation.
// foo_odefault_flpt: Overrides all default template parameters for the
// floating-point output implementation..
// Since the input array used in all the functions mentioned above will
// undergone pointer decay, we must call add_tree_ptr() and explicitly specify
// N ELEMS for the function call.
```

```
template <int N ELEMS, class T1, class T2>
void foo default(const T1 in arr[N ELEMS], const T2 &out) {
 ac math::block add tree ptr<N ELEMS>(in arr, out);
template <int N ELEMS, int AccExtraLSBs, bool ZeroHandling, bool use ac sl,
 class T1, class T2>
foo odefault fxpt(const T1 in arr[N ELEMS], const T2 &out) {
 ac math::block add tree ptr<N ELEMS, AccExtraLSBs, ZeroHandling,
use ac sl>(in arr, out);
template <int N ELEMS, int AccExtraLSBs, bool ZeroHandling, bool norm,
 class T1, class T2>
foo odefault flpt(const T1 in arr[N ELEMS], const T2 &out) {
 ac math::block add tree ptr<N ELEMS, AccExtraLSBs, ZeroHandling,
norm>(in arr, out);
void foo() {
 constexpr int N ELEMS = 16;
 constexpr int AccExtraLSBs = 8;
 constexpr bool use ac sl = false;
 constexpr bool ZeroHandling = false;
 constexpr bool norm = false;
 ac float<25, 2, 8> in arr[N ELEMS];
 // Code to initialize in arr.
 typedef ac float<25, 2, 9> T out fl;
 typedef ac fixed<64, 32, true, AC TRN, AC SAT> T out fx;
 // Using the pass-by-reference functions first. N ELEMS will be inferred.
 // Using default template parameters.
 T out fl out fl;
 ac math::block add tree(in arr, out fl);
 // Overriding defaults for fixed point output functions.
 T out fx out fx;
 ac math::block add tree<AccExtraLSBs, ZeroHandling, use ac sl>(in arr,
out_fx);
 // Overriding defaults for floating point output functions.
```

```
T_out_fl out_fl2;
ac_math::block_add_tree<AccExtraLSBs, ZeroHandling, norm>(in_arr, out_fl2);

// Using the pass-by-pointer versions now. N_ELEMS is explicitly specified.

// Using default template parameters.
T_out_fl out_fl3;
foo_default<N_ELEMS>(in_arr, out_fl3);

// Overriding defaults for fixed point output functions.
T_out_fx out_fx2;
foo_odefault_fxpt<N_ELEMS, AccExtraLSBs, ZeroHandling, use_ac_sl>(in_arr, out_fx2);

// Overriding defaults for floating point output functions.
T_out_fl out_fl4;
foo_odefault_flpt<N_ELEMS, AccExtraLSBs, ZeroHandling, norm>(in_arr, out_fl4);
}
```

6.10.3. Using ac_shift_left

All the adder tree functions internally produce a mantissa and exponent value which is combined to produce the final output. The fixed-point output functions must convert these two values to the final output by left-shifting the mantissa by the exponent value. Since floating-point types can typically be used to store a larger range of values than their fixed-point counterparts, this conversion stage must accommodate different quantization and overflow modes to store data that's outside the range supported by the fixed-point output as accurately as possible. There are two ways to do this:

- 1. Using the ac shift left function mentioned here.
- 2. Carrying out the shifting on a large enough type to store all left-shifted values regardless of what the exponent value is.

The bitwidth of the intermediate type used in the second solution increases exponentially as the width of the exponent field increases. This can result in a very large shifter being synthesized to enable the conversion. On the other hand, the bitwidth of the intermediate type used in the first solution does not see any such exponential increase. However, the first solution requires extra masking hardware to support saturation and rounding (if enabled), and may actually result in a larger area cost for smaller exponent fields, as compared to the second solution.

By default, the first solution is picked by setting the use_ac_sl template parameter to true. The user can use the second solution by setting this template parameter to false.

For either solution, the quantization and overflow handling implemented depends on the quantization and overflow modes of the output fixed point type.

6.11. Standard Floating-Point (ac_std_float) Fused Adder Tree Functions (fadd_tree / fadd_tree_ptr)

The fused adder tree functions for standard floating-point datatypes provide an implementation for a floating-point adder that receives an arbitrary number of inputs and generates the result in the same datatype as the inputs. The inputs are provided as an array of elements which can be passed either as a pointer or an array of references depending on the implementation selected. All the implementations are contained in the header file $ac_std_float_add_tree.h$.

6.11.1. Function Outline

The fused adder can be called either by the <code>fadd_tree</code> function, which takes an array of references as an input or the <code>fadd_tree_ptr</code> function that takes a pointer as an input. Both functions are implemented for all datatypes supported by the <code>ac_std_float.h</code> library, namely <code>ac_std_float</code>, <code>ac_ieee_float</code> and <code>ac::bfloat16</code>. All these different versions are implemented as overload functions which share the same core implementation. The available versions along with their parameters are summarized in Table 1.

Table 9: Summary of the fused addition tree function

Code

template< ac_q_mode QR, bool No_SubNormals, int AccExtraLSBs, int W, int E, int N_ELEMS > void fadd tree (

template< ac_q_mode QR, bool No_SubNormals, int AccExtraLSBs, ac_ieee_float_format Format, int N_ELEMS > void fadd_tree (const ac_ieee_float<Format> (&x)[N_ELEMS], ac_ieee_float<Format> &acc)

const ac std float<W,E> (&x)[N ELEMS],

ac std float<W,E> &acc)

```
template< ac_q_mode QR, bool No_SubNormals,
  int AccExtraLSBs,
  int N_ELEMS
> void fadd_tree (
  const ac::bfloat16 (&x)[N_ELEMS],
  ac::bfloat16 &acc )
```

```
template<int N_ELEMS,
   ac_q_mode QR, bool No_SubNormals,
   int AccExtraLSBs,</pre>
```

Description

W, **E** define the width and exponent width of the ac_std_float datatype. The values are being inferred from the input datatype.

Format defines the ac_ieee_float format. Valid values: binary16, binary32, binary64m binary128, binary256. The value is inferred from the input datatype.

N_ELEMS defines the number of input operands. This parameter is only required in the pointer version.

QR is the rounding mode. Currently the supported modes are the ones supported by the rest of ac_std_float operators:

```
AC_RND_CONV (default),
AC_TRN_ZERO (default for
ac::bfloat16),
AC_RND_INF,
AC_RND_CONV_ODD
```

If **No_SubNormals** == true then subnormal operands/result are flushed to zero. The default value is false.

AccExtraLSBs is used to define the number

Code

Description

of extra LSBs that will be used. This value affects the accuracy of the result. The default value is AccExtraLSBs =3.

```
int W, int E
> void fadd_tree_ptr (
  const ac_std_float<W,E> x[N_ELEMS],
  ac_std_float<W,E> &acc )
```

```
template< int N_ELEMS,
   ac_q_mode QR, bool No_SubNormals,
   int AccExtraLSBs,
   ac_ieee_float_format Format
> void fadd_tree_ptr (
   const ac_ieee_float<Format> x[N_ELEMS],
   ac_ieee_float<Format> &acc )
```

```
template< int N_ELEMS,
   ac_q_mode QR, bool No_SubNormals,
   int AccExtraLSBs
> void fadd_tree_ptr (
   const ac::bfloat16 x[N_ELEMS],
   ac::bfloat16 &acc )
```

The core implementation of the fused addition performs a single parallel alignment to all the input operands and the addition of the mantissas is implemented in a tree structure. By skipping intermediate normalizations and having a single rounding step at the end, the function aims to save both area and latency.

Here the overall architecture of the fused addition operator is summarized. First the special values and the {sign, exponent, mantissa} part of each input operand are getting extracted. Then, the maximum value of the exponents is selected, using a recursive template implementation. For each input's exponent, the difference to the maximum value is computed and this result is used to align the mantissas. The aligned mantissas are converted to two's complement representation, and they get accumulated. The accumulation is designed as a tree structure of fixed-point additions. The result of the addition gets normalized and rounded, and finally the result is packed again as an ac_std_float datatype.

6.11.2. Special Values

As part of the ac_std_float library, the inputs and the outputs of the fused addition operator support special values as defined in the IEEE-754 standard. An input operand can have one of the following values: Infinite (positive or negative), not-a-number, Subnormal or Normal value. The output result can also have one of these values, which derive from the following scenarios:

- If one or more inputs are positive Infinite (+Inf), the result is also positive infinite (+Inf)
- If one or more inputs are negative infinite (-Inf), the result is also negative infinite (-Inf)
- If the is no infinite input, but the exponent is overflowed to the maximum value, the result is also infinite, having the sign of the computed result.

In the case of rounding mode AC_TRN_ZERO, this value is saturated to the maximum normal number

- If there are both positive (+Inf) and negative (-Inf) infinite inputs, the result is not-a-number.
- If one or more inputs is not-a-number, the result is also a not-a-number.
- In the case of No SubNormals==true, all subnormal values for inputs and output are flushed to zero.

In any other case, the result can be any normal or subnormal value.

6.11.3. Accuracy of the result

The template parameter "AccExtraLSBs" is used to define the number of LSBs that will be preserved during the addition and the rounding.

In floating-point addition, when two operands get aligned, the smaller one is shifted towards right according to the difference of their exponents, thus discarding the LSB part of that number. To maintain the accuracy of the result, the 3 most significant bits of the discarded part of the number are preserved and form the Guard, Round and Sticky (GRS) bits. While Guard and Round are the last two bits of the number that were shifted out, the sticky bit is the result of an OR operation between the rest of the bits that have been discarded due to right shifting. By default, the value of AccExtraLSBs is 3 to represent the GRS bits.

Changing the number of bits that will be preserved, the accuracy of the result as well as the area requirements for the operator are affected, as the bit width of the operands is changed. Selecting bigger "AccExtraLSBs" values, both the accuracy of the result and the area of the hardware are increased. Table 10 shows how the different values of the "AccExtraLSBs" parameter affect the preserved bits of the operator.

For this example, we assume that the number

```
1010101100110101
1010101100110101
```

must be shifted 6 bits to the right.

Table 10: Example of how the operand changes for different values of the parameter "AccExtraLSBs"

	Aligned part	ExtraLSBs	Discarded bits	Final Size of the operand
1010101100110	101			
GRSBits=3	0000001010101100	11 1	0101	19 bits
GRSBits=0	000000101010110 1	-	110101	16 bits
GRSBits=1	0000001010101100	1	10101	17 bits
GRSBits=5	0000001010101100	1101 1	1	21 bits
GRSBits=6	0000001010101100	110101	-	22 bits

6.11.4. Usage Example

Here are some examples of using the fadd_tree and the fadd_tree_ptr functions with the default or overridden template parameters and for different datatypes.

```
#include <ac_std_float_add_tree.h>
typedef ac std float<32,8> std flt;
typedef ac_ieee_float<binary32> ieee_flt;
typedef ac::bfloat16 b flt;
void foo () (
 const int N = 8;
 const ac q mode ROUND = AC TRN ZERO;
 const bool NO SUBNORMALS - true;
 const int AccExtraLSBs = 1;
 std flt in0[INPUTS]:
 ieee flt in1[INPUTS];
 b flt in2[INPUTS];
 // code to initialize arrays
 std_flt default_out0, ovrd_out0;
 ieee flt default out1, ovrd out1;
 b flt default out2, ovrd out2;
// Example call for ac_std_float datatype
 // Using the default template parameters
 ac math::fadd tree(in0, default out0);
 ac math::fadd tree ptr<N>(in0, default out0);
 // Overriding the template parameters
 ac_math::fadd_tree<ROUND, NO_SUBNORMALS, AccExtraLSBs>(in0, ovrd_out0);
 ac math::fadd tree ptr<N, ROUND, NO SUBNORMALS, AccExtraLSBs>(in0,
ovrd out0);
// Example call for ac ieee float datatype
 // Using the default template parameters
 ac_math::fadd_tree(in1, default_out1);
 // Overriding the template parameters
 ac_math::fadd_tree<ROUND, NO_SUBNORMALS, AccExtraLSBs>(in1, ovrd_out1);
// Example call for ac ieee float datatype
 // Using the default template parameters
 ac_math::fadd_tree(in2, default_out2);
 // Overriding the template parameters
 ac_math::fadd_tree<ROUND, NO_SUBNORMALS, AccExtraLSBs>(in2, ovrd_out2);
```

6.11.5. Fused Addition Accuracy and Area

The fadd_tree function is a many-term floating-point addition operation that follows a fused architecture to improve latency and area. As a fused operation, the output of this function may differ from a value that has been computed using multiple add operations that are compliant to the standard.

Here is an example of a 3-operand addition with a rounding-to-nearest-even mode:

```
typedef ac_std_float<32,8> flt;

flt in[3] = {-3.281355e-37, -0.000983646, -0.03996174};

//A: Using 2 input standard add operations

flt a = in[0] + in[1];

// the value of a is -0.000983646 because in[0] has been completely shifted out

flt r0 = a + in[2];

the value of r0 is -0.040945385

//B: Using a 3-input fused addition

flt r1;

ac_math::fadd_tree<3>(in, r1);

// the value of r1 is -0.04094539
```

The two results are different because in the first case, the sticky bit that was produced by the shifting of the "in[0]" operand could not affect the rounding during the addition of "in[0]" and "in[1]". Additionally, in the addition of "a" with "in[2]", the "in[2]" operand is shifted towards right, generating a round and a sticky bit, again not affecting the rounding. In the second case, however, the sticky bit of "in[0]" and the round and sticky bits of "in[2]" lead to the generation of a guard bit, that affects the rounding by adding +1 to the result. This proves that the result of a fused addition is not equal to the one generated by sequential use of standard add operations, however, the result of the fused addition is closer to the real value of the addition.

The default extra number of bits that participate in the computation and are used for accuracy during the normalization and rounding is 3, the guard, round, and sticky bits. The template parameter "AccExtraLSBs" offers the ability to change the number of LSBs that will be preserved to improve the accuracy of the result. Preserving more LSBs increases the number of operands in the accumulation and subsequently in the shifting operations.

The following illustration presents the accuracy of the fused addition for different number of inputs and for arbitrary number of extra LSBs. The accuracy is compared to the accurate result of the addition computed using the full precision of the operands during the addition and with a single rounding at the end of the operation. Each bar shows the number of tests (in percentage) that may have an error only at the LSB, meaning that the rest of the number's bits are completely equal to the accurate result. The darker part of each bar represents the percentage of the results that are completely equivalent to the accurate value.

Figure 1: Accuracy of the fused addition compared to full precision addition

The dark colored bars show the percentage of test that were completely accurate. The light-colored part of the bars shows the percentage of tests that have an error only at the LSB. The combined bars show the percentage of tests that may only have an error at the LSB.

The previous illustration indicates that using 2 or 3 extra LSBs (3 is the default number of extra LSBs of the operator), the result can be very accurate, with less than 1% possibility to have an error in a higher order bit than the LSB. For a 16-input addition the accuracy is slightly degraded which is normal, due to the increased number of inputs. In general, when the number of input operands is highly increase, more extra LSBs are required to maintain high accuracy of the result.

Figure 2: Area versus accuracy curves that prove the optimal number of extra LSBs for the 4- and 8-input operand fused addition

The previous illustration shows the accuracy versus normalized area tradeoff for the 4- and the 8-input operand fused addition. For the 4-input adder, using more than 1 extra LSBs has a bigger impact on the area with minimal increase in the accuracy of the result. A similar point for the 8-input fused adder would be at the 2 extra LSBs.

6.12. Optimized AC Float Multiplication (ac_flfx_mul)

The ac_fifx_mul() functions enable the instantiation of multiplication operations with mixed ac_fixed and ac_float datatypes. The purpose of these functions is to alleviate the overhead of converting between ac_fixed and ac_float datatypes when mixed datatype designs require multiplications between those two datatypes.

These functions support the following three implementations:

- Operation ac float * ac fixed = ac float
- Operation ac float * ac fixed = ac fixed
- Operation ac float * ac float = ac fixed

These three variations are implemented by the templatized function $ac_flflx_mul()$. The function has different implementations with different template parameters that allow the use of the appropriate variation depending on the input and output datatypes. For each variation of the function, there are code examples that show how the function is being called.

6.12.1. Operation ac_float * ac_fixed = ac_float

The function receives an *ac_fixed* and an *ac_float* input and returns an *ac_float* output. The user can interchange the order of the fixed- and floating-point inputs in the function call. Both functions should give the same output values and result in the same hardware.

```
template <
 bool subn support = false,
 int W1, int I1, int E1, ac q mode Q1,
 int W2, int I2, bool S, ac q mode Q2, ac o mode O,
 int outW, int outI, int outE, ac q mode outQ
 >
void ac flfx mul(
 const ac float<W1, I1, E1, Q1> &in1,
 const ac fixed<W2, I2, S, Q2, O> &in2,
 ac float<outW, outI, outE, outQ> &out
template <
 bool subn support = false,
 int W1, int I1, bool S, ac q mode Q1, ac o mode O,
 int W2, int I2, int E2, ac q mode Q2,
 int outW, int outI, int outE, ac q mode outQ
 >
void ac flfx mul(
  const ac fixed<W1, I1, S, Q1, O> &in1,
 const ac float<W2, I2, E2, Q2> &in2,
 ac float<outW, outI, outE, outQ> &out
```

The *subn_support* template parameter determines whether subnormal floating point inputs/outputs are supported. Please refer to Subnormal Support for more details.

Only outputs where outQ = AC TRN are supported.

Since the target output precision is known via template deduction, it can be fully leveraged during the computation of the output mantissa, output exponent (including all the necessary masking+saturation logic) and the final conversion to the floating point input via an ac_float constructor, all to produce optimal hardware.

Subnormal Support

By default, subnormal inputs are not handled. This means that if the floating point input and/or the expected output is subnormal, the actual output will be zero. Assuming that the floating point input and output are of type $ac_float<14$, 2, 6> and the fixed point input is of type $ac_fixed<10$, 2, true>, the expected and actual outputs for four different combinations of input values are given in the table below.

Float Input	Fixed Input	Expected Output	Actual Output	Reason for Actual Output
0.75e2-32	1.75	1.3125e2-32	0e2+0	ac_float input is subnormal. Actual output is

				hence zero.
1e2-32	0.75	.75e2-32	0e2+0	Expected output is subnormal. Actual output is hence zero.
.75e2-32	0.75	.5625e2-32	0e2+0	Both <i>ac_float</i> input and expected output are subnormal. Actual output is hence zero.
1.75e2-32	0.75	1.3125e2-32	1.3125e2-32	Both <i>ac_float</i> input and expected output are normal. Actual and expected outputs are hence the same.

Not having subnormal support can lead to discrepancies like those seen between the first and last rows, where the actual output differs despite the expected output being the same. This is because only floating point values can be subnormal. If this discrepancy is tolerable and the user decides to use $subn_support = false$, they can avail of the reduction in normalization hardware as we only need to fully normalize the fixed point input. This normalized fixed point value gets multiplied directly with the floating point input mantissa to generate the "mantissa product", or "mprod". At this stage, since the ac_float input mantissa and normalized ac_fixed input are both assumed to be normal (with the exception of zero inputs), mprod is mostly normalized and we only need to calculate the $leading_sign()$ output by traversing 3 or 2 MSBs of mprod if the fixed point input is signed or unsigned, respectively. This results in a smaller $leading_sign$ operation for this stage and a smaller shifter, as the value to be shifted by is at most 2 or 1 for signed or unsigned ac_fixed inputs, respectively. In addition to this, we do not have to right-shift the output mantissa for subnormal outputs, which also saves on a shifter and further reduces area.

If, however, the discrepancy is not tolerable, the user can choose to make the actual and expected outputs always match by setting *subn_support* to *true*. In this case, the *ac_float* input mantissa is directly multiplied with the *ac_fixed* input and all of *mprod* is treated as not normalized. The *leading_sign()* operator and shifter required to normalize *mprod* are hence significantly bigger. In addition to that, an extra shifter is needed to right-shift the output mantissa for subnormal outputs, further increasing area.

Note: Regardless of whether subn_support is true or false, the design will output zero if one or both of the inputs are zero, as one would expect of a multiplier.

Example Function Calls

The snippet below has example function calls for a few possible use cases.

```
// Define input and output types.
typedef ac_float<14, 2, 6> fl_in_type, out_type,
typedef ac_fixed<10, 2, true> fx_in_type;

// Initialize input variables.
fl_in_type fl_in = 1.5;
fx_in_type fx_in = 0.5;
// Declare output variables.
out_type out1, out2, out3, out4;

// ac_float input first, subn_support = false (default).
ac_math::ac_flfx_mul(fl_in, fx_in, out1); // out1 = 1.5e2-1
// ac_fixed_output_first, subn_support = false_(default).
```

```
ac_math::ac_flfx_mul(fx_in, fl_in, out2); // out2 = 1.5e2-1

// ac_float input first, subn_support = true.
ac_math::ac_flfx_mul<true>(fl_in, fx_in, out3); // out3 = 1.5e2-1

// ac_fixed output first, subn_support = true.
ac_math::ac_flfx_mul<true>(fx_in, fl_in, out4); // out4 = 1.5e2-1
```

The floating point input and output are both big enough to be expressed as normalized values so there's no difference in the output value produced when *subn_support* = *true* and *subn_support* = *false*. However, a detailed explanation of how subnormal inputs/outputs are handled is given in Subnormal Support.

6.12.2. Operation ac_float * ac_fixed = ac_fixed

The function receives an *ac_fixed* and an *ac_float* input and returns an *ac_fixed* output. The user can interchange the order of the fixed- and floating-point inputs in the function call. Both functions should give the same output values and result in the same hardware.

```
template <
 bool subn support = false,
 int W1, int I1, int E1, ac q mode Q1,
 int W2, int I2, bool S2, ac q mode Q2, ac o mode O2,
 int outW, int outI, bool outS, ac q mode outQ, ac o mode outO
 >
void ac flfx mul(
 const ac float<W1, I1, E1, Q1> &in1,
 const ac fixed<W2, I2, S2, Q2, O2> &in2,
 ac fixed<outW, outI, outS, outQ, outO> &out
template <
 bool subn support = false,
 int W1, int I1, bool S1, ac q mode Q1, ac o mode O1,
 int W2, int I2, int E2, ac q mode Q2,
 int outW, int outI, bool outS, ac q mode outQ, ac o mode outO
void ac flfx mul(
 const ac fixed<W1, I1, S1, Q1, O1> &in1,
 const ac float<W2, I2, E2, Q2> &in2,
 ac fixed<outW, outI, outS, outQ, outO> &out
```

The *subn_support* template parameter determines whether subnormal floating-point inputs are supported. Like the previous case, the default value is *false*. A detailed explanation of how subnormal inputs/outputs are handled is given in Subnormal Support.

Note: In this case, only the input can be subnormal as the output is a fixed-point datatype. This means that when subn_support = false, the operator has increased area as it utilizes extra gates to identify a subnormal input and drive the result to a zero value.

Example Function Calls

The snippet below has example function calls for a few possible use cases.

```
// Define input and output types.
typedef ac float<14, 2, 6> fl in type;
typedef ac fixed<10, 2, true> fx in type;
typedef ac fixed<87,35,true> out type;
// Initialize input variables.
fl in type fl in = 1.5;
fx in type fx in = 0.5;
// Declare output variables.
out type out1, out2, out3, out4;
// ac float input first, subn support = false (default).
ac math::ac flfx mul(fl in, fx in, out1); // out1 = 0.75
// ac fixed input first, subn support = false (default).
ac math::ac flfx mul(fx in, fl in, out2); // out2 = 0.75
// ac float input first, subn support = true.
ac math::ac flfx mul<true>(fl in, fx in, out3); // out3 = 0.75
// ac fixed input first, subn support = true.
ac math::ac flfx mul<true>(fx in, fl in, out4); // out4 = 0.75
```

6.12.3. Operation ac_float * ac_float = ac_fixed

The function receives two ac float inputs and returns an ac fixed output.

```
template <
  bool subn_support = false,
  int W1, int I1, int E1, ac_q_mode Q1,
  int W2, int I2, int E2, ac_q_mode Q2,
  int outW, int outI, bool outS, ac_q_mode outQ, ac_o_mode outO
  >

void ac_flfx_mul(
  const ac_float<W1, I1, E1, Q1> &in1,
  const ac_float<W2, I2, E2, Q2> &in2,
  ac_fixed<outW, outI, outS, outQ, outO> &out
)
```

The function performs an *ac_float* multiplication "*". The datatype of the product is in full data width precision so that there will be no normalization. The product of the mantissas is then shifted according to exponent value and the result is casted to the output fixed-point datatype. If the value is shifted more than the available bit width, the value gets saturated.

The *subn_support* template parameter is also available in this implementation. Like the *ac_fixed* * *ac_fixed* * *ac_fixed* case, *subn_support* = *false* result in increase hardware due to the extra logic to identify a subnormal value. A detailed explanation of how subnormal inputs/outputs are handled is given in Subnormal Support.

Example Function Calls

The snippet below has example function calls for a few possible use cases.

```
// Define input and output types.
typedef ac_float<14, 2, 6> fl_in1_type;
typedef ac_float<6, 2, 3> fl_in2_type;
typedef ac_fixed<90,38,true> out_type;

// Initialize input variables.
fl_in1_type fl_in = 1.5;
fl_in2_type fx_in = 0.5;
// Declare output variables.
out_type out1, out2;

// subn_support = false (default).
ac_math::ac_flfx_mul(fl_in, fx_in, out1); // out1 = 0.75

// subn_support = true.
ac_math::ac_flfx_mul<true>(fl_in, fx_in, out2); // out2 = 0.75
```