Lecture 22: Chi-Square Tests for Goodness-of-Fit

Chapter 6.3

Question for Today

Say we had n = 100 people picked as jurors, we expect the breakdown to be:

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	72	7	12	9	n = 100

Question for Today

Say we observe the following. Is there a bias? i.e. a non-random mechanism?

Race	White	Black	Hispanic	Other	Total
Registered Voters	72%	7%	12%	9%	100%
Representation	75	6	11	8	n = 100

Chi-Square Tests

Chi-square χ^2 tests allow us to compare

- Observed counts
- Expected counts

Chi-Square Tests

Chi-square χ^2 tests allow us to compare

- Observed counts
- Expected counts

i.e. What is the "goodness" of the fit of the observed counts to the expected counts?

The Data

Let's use n=275 people. Assuming the same proportions as above, we compute the expected counts. Ex: $198=275\times0.72$.

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275

The Data

Let's use n=275 people. Assuming the same proportions as above, we compute the expected counts. Ex: $198=275\times0.72$.

Race	White	Black	Hispanic	Other	Total
Expected Counts	198	19.25	33	24.75	275
Observed Counts	205	26	25	19	275

Hypothesis Test in General

Hypothesis Test in Our Case

To compute p-values we compare the computed test statistic to a null distribution: the distribution of the test statistic under H_0 .

1. means/proportions:

• test statistic: z-score of \overline{x}/\widehat{p}

null distribution: normal distribution

- 1. means/proportions:
 - ▶ test statistic: z-score of \overline{x}/\widehat{p}
 - ▶ null distribution: normal distribution
- 2. t-test:
 - test statistic: t-statistic
 - ▶ null distribution: t-distribution with df = n 1

- 1. means/proportions:
 - test statistic: z-score of \overline{x}/\widehat{p}
 - null distribution: normal distribution
- 2. t-test:
 - ▶ test statistic: *t*-statistic
 - ▶ null distribution: t-distribution with df = n 1
- 3. AVOVA:
 - ▶ test statistic: *F*-statistic
 - ▶ null distribution: F-distribution with $df_1 = k 1$ and $df_2 = n k$

- 1. means/proportions:
 - test statistic: z-score of \overline{x}/\widehat{p}
 - null distribution: normal distribution
- 2. t-test:
 - test statistic: t-statistic
 - ▶ null distribution: t-distribution with df = n 1
- 3. AVOVA:
 - ▶ test statistic: *F*-statistic
 - ▶ null distribution: F-distribution with $df_1 = k 1$ and $df_2 = n k$
- 4. Goodness-of-fit:
 - test statistic: χ^2 -statistic
 - ▶ null distribution: χ^2 distribution with df = k 1

Deviations

Deviations

Chi-Square Test Statistic

Chi-Square Test Statistic

p-values

We compare the test statistic to a χ^2 distribution with df=k-1 degrees of freedom.

Note: not df = n - 1 like with t-test.

p-values

The *p*-value is the area to the right of the test statistic. Use p.412:

Figure B.2: Areas in the chi-square table always refer to the right tail.

Upper	tail	0.3	0.2	0.1	0.05	0.02	0.01	0.005	0.001
df	2	2.41	3.22	4.61	5.99	7.82	9.21	10.60	13.82
	3	$\frac{3.66}{4.88}$	4.64	6.25	7.81	9.84	11.34	12.84	16.27
			5.99	7.78	9.49	11.67	13.28	14.86	18.47
	5	6.06	7.29	9.24	11.07	13.39	15.09	16.75	20.52

Hypothetical Scenarios

Say we have two hypothetical scenarios of observed counts:

Race	White	Black	Hispanic	Other	Total
Expected Counts		19.25	33	24.75	275
Observed Counts					275

Assumptions for Chi-Square Test

Next Time

We look at chi-square tests for two-way tables to test for independence. i.e. are two variables independent from each other?