Some Examples

May 29, 2016

- Suppose we want to generate *n* random points in the circle of radius 1 centered at the origin, conditional on the event that no two points are within a distance *d* of each other, where β = P(no two points are within d of each other) is assumed to be a small positive number.
- We generate the points with Gibbs sampling.

Algorithm:

- Generate n points in the circle randomly.
- Generate a random number U, and let I = int(nU) + 1,
- Generate a random point in the circle.
- If this point is not within d of any other n-1 points excluding x_l , then replace x_l by this point; otherwise, generate a new point and repeat the process.

• Let X_i , i = 1, 2, 3, 4, 5, be independent exponential random variables, with X_i having mean i, and suppose we are interested in using simulation to estimate

$$\beta = P\{\prod_{i=1}^{5} X_i > 120 | \sum_{i=1}^{5} X_i = 15\}$$

• Suppose X and Y are independent exponentials with respective rates λ and μ , where $\mu < \lambda$. The conditional distribution of X given X + Y = a is:

$$f_{X|X+Y}(x|a) = C_1 f_{X,Y}(x, a-x),$$

= $C_2 e^{-\lambda x} e^{-\mu(a-x)},$
= $C_3 e^{-(\lambda-\mu)x}, 0 < x < a$

Algorithm:

- Start with $(x_1, x_2, x_3, x_4, x_5)$ with $x_1 + x_2 + x_3 + x_4 + x_5 = 15$.
- Randomly choose two elements from $\{1, 2, 3, 4, 5\}$, say I = 2, J = 5.
- Generate the random variables x_2 , x_5 with mean 2 and 5, given their sum $x_2 + x_5 = 15 x_1 x_3 x_4$. This is generated by generating the value of an exponential with rate 1/2 1/5 = 3/10, and set x_2 equal to that value and reset x_5 to make $x_1 + x_2 + x_3 + x_4 + x_5 = 15$.
- Repeat the process and the proportion of $\Pi_{i=1}^5 X_i > 120$ is the estimate of β .

Bayesian Model Selection

	Covariate1	Covariate2	 Covariate100	
<i>A</i> 1	2	2	 1	
<i>A</i> 2	1	1	 2	
<i>A</i> 3	1	2	 1	
<i>A</i> 4	3	1	 2	
<i>B</i> 1	2	2	 2	
<i>B</i> 2	3	1	 1	
<i>B</i> 3	1	2	 2	
<i>B</i> 4	3	1	 1	

Define indicators $I = (I_1, I_2, \dots, I_{100})$. I_i means covariate i from H_1 , $I_i = 2$ means covariate i from H_2 .

$$P(data|I) = \prod_{i=1}^{N_{covariate}} P(covariate_i|I_i)$$
 $P(covariate_i|I_i = 1) = P(covariate_i|H_1)$
 $P(covariate_i|I_i = 2) = P(covariate_i|H_2)$
 $P(I) = \prod_{i=1}^{N_{covariate}} P(I_i)$
 $P(I|data) \propto P(I)P(data|I) = \prod_{i=1}^{N_{covariate}} P(I_i)P(covariate_i|I_i)$

- H₁: A and B come from two different distributions.
- H_2 : A and B are from the same distribution.
- H₃: Two covariates are dependent, but A's and B's are from different distributions.
- H₄: Two covariates are dependent, but A's and B's are from the same distributions.

Algorithm:

- Randomly assign I a starting value x₀.
- Propose: randomly choose one l_i , and change it to other values with equal probabilities, the new l is y.
- Evaluate: $q(x_t, y) = q(y, x_t) = 1/3$. $\alpha = \min\{1, \frac{P(I_t = y | data)}{P(I_t = x_t | data)}\}$
- Generate $U \sim U[0, 1]$, if $\alpha < U$, accept y, otherwise, reject y.
- If $t \geq N$, stop.

Linkage problem

• 197 animals are distributed into 4 categories $Y = (Y_1, Y_2, Y_3, Y_4)$ according to the genetic Linkage model: $p_1 = (2 + \phi)/4, p_2 = (1 - \phi)/4, p_3 = (1 - \phi)/4, p_4 = \phi/4$

- $(Y_1, Y_2, Y_3, Y_4) \sim multinomial(n = 197, p_1, p_2, p_3, p_4)$
- Under the prior: $\phi \sim beta(a, b)$, find the posterior mode.

EM method

• Multinomial distribution:

$$P(X_1 = n_1, \dots, X_k = n_k) = \frac{n!}{n_1! n_2! \dots n_k!} p_1^{n_1} \dots p_k^{n_k}, \quad \sum_{i=1}^k n_i = n$$

• The observed data vector of frequencies:

$$y = (y_1, y_2, y_3, y_4)^T$$
.

 Suppose the data are generated from a multinomial distribution with probabilities:

$$\frac{1}{2} + \frac{1}{4}\phi, \frac{1}{4}(1-\phi), \frac{1}{4}(1-\phi), \frac{1}{4}\phi$$

• Use MLE to estimate ϕ .

• The probability function is:

$$L(\phi; y) = \frac{n!}{y_1! y_2! y_3! y_4!} (\frac{1}{2} + \frac{1}{4}\phi)^{y_1} (\frac{1}{4}(1-\phi))^{y_2} (\frac{1}{4}(1-\phi))^{y_3} (\frac{1}{4}\phi)^{y_4}$$

• The log likelihood function apart from an additive term not involving ϕ is:

$$\log L(\phi) = y_1 \log(2 + \phi) + (y_2 + y_3) \log(1 - \phi) + y_4 \log \phi$$

$$\frac{\partial \log L(\phi)}{\partial \phi} = \frac{y_1}{2 + \phi} - \frac{y_2 + y_3}{1 - \phi} + \frac{y_4}{\phi}$$

$$I(\phi; y) = -\partial^2 \log L(\phi) / \partial \phi^2 = \frac{y_1}{(2 + \phi)^2} + \frac{y_2 + y_3}{(1 - \phi)^2} + \frac{y_4}{\phi^2}$$

- Suppose $y_1 = y_{11} + y_{12}$, where y_{11} and y_{12} have probabilities $\frac{1}{2}$ and $\frac{1}{4}\phi$.
- Suppose y₁₁, y₁₂ are unobservable, we only observe their sum y₁.
 Then the observed vector of frequencies y is viewed as being incomplete and the complete-data vector is taken to be

$$x = (y_{11}, y_{12}, y_2, y_3, y_4)^T.$$

They are assumed to arise from a multinomial distribution with probabilities

$$\frac{1}{2}, \frac{1}{4}\phi, \frac{1}{4}(1-\phi), \frac{1}{4}(1-\phi), \frac{1}{4}\phi$$

The log likelihood for the complete-data is:

$$\log L_c(\phi) = (y_{12} + y_4) \log \phi + (y_2 + y_3) \log(1 - \phi)$$

- Use MLE, we will get $\phi = \frac{y_{12} + y_4}{y_{12} + y_2 + y_3 + y_4}$.
- Since the frequency y_{12} is unobservable, we are unable to estimate ϕ .
- We can use an iterative method to estimate ϕ .
- For unobserved data, we fill in by averaging the complete-data log likelihood over its conditional distribution given the observed data y.

• Given a specified value of ϕ^0 , the conditional expectation of $\log L_c(\phi)$ can be written as:

$$Q(\phi;\phi^0) = E_{\phi^0}\{\log L_c(\phi)|y\}$$

- As $\log L_c(\phi)$ is a linear function of y_{11} , y_{12} , we can replace y_{12} by its current conditional expectation given the observed data y.
- The random variable Y_{11} corresponding to y_{11} has a binomial distribution with sample size y_1 and probability parameter $\frac{1}{2}/(\frac{1}{2}+\frac{1}{2}\phi^0)$.

$$E_{\phi^0}(Y_{11}|y_1) = y_{11}^0 = \frac{1}{2}y_1/(\frac{1}{2} + \frac{1}{4}\phi^0)$$
$$y_{12}^0 = y_1 - y_{11}^0 = \frac{1}{4}y_1\phi^0/(\frac{1}{2} + \frac{1}{4}\phi^0)$$

M-step: Maximization Q, we get

$$\phi^1 = \frac{y_{12}^0 + y_4}{y_{12}^0 + y_2 + y_3 + y_4}$$

Iteration steps:

$$\phi^{k+1} = (y_{12}^k + y_4)/(n - y_{11}^k)$$

where

$$y_{11}^{k} = \frac{1}{2}y_{1}/(\frac{1}{2} + \frac{1}{2}\phi^{k})$$

$$y_{12}^k = y_1 - y_{11}^k$$