Нижего	РОДСКИЙ	государст	ГВЕННЫЙ	УНИВЕР	СИТЕТ	ИМЕНИ	Н.И.	Лобач	EBCK	ОΓО
	Радиофи	ЗИЧЕСКИЙ	ФАКУЛЬТ	ет. Каф	ЕДРА З	Электр	ОДИНА	мики.		

Отчет по лабораторной работе N27

Определение коэффициента направленного действия рупорной антенны

Выполнили студенты 430 группы Виноградов И.Д., Шиков А.П.

Цель работы: Нахождение коэффициента направленного действия пирамидальной рупорной антенны с помощью зеркального метода (метод Парселла), сравнение с теоретическими значениями.

1. Теоритическая часть

Антенна — устройство, предназначенное для излучения или приема волн (в нашем случае — электромагнитных). Одна из важнейших функций антенны состоит в формировании излучения с определенными направленными свойствами. Основными характеристиками направленности антенны являются диаграмма направленности (ДН) по амплитуде или по мощности, коэффициент направленного действия (КНД) и коэффициент усиления (КУ).

Диаграмма направленности по мощности есть угловое распределение мощности излучения в единицу телесного угла

$$P(\theta, \varphi) = r^2 S_r(r, \theta, \varphi),$$

где S_r — радиальная компонента вектора Пойнтинга на большом расстоянии r от антенны. Диаграмма направленности антенны, характерный размер l излучающей апертуры которой порядка или больше длины излучаемой волны λ , окончательно формируется в зоне Фраунгофера, определяемой соотношением

$$r >> \frac{l^2}{\lambda} \tag{1}$$

Коэффициент направленного действия D характеризует выигрыш по мощности в направлении максимального излучения вследствие направленности антенны. Он равен отношению мощности, излучаемой в единицу телесного угла в направлении максимума диаграммы направленности $P(\theta_m, \varphi_m)$, к средней мощности $P_{cp} = P_{\text{изл}}/(4\pi)$, излучаемой антенной по всем направлениям:

$$D = \frac{4\pi P(\theta_m, \varphi_m)}{\int_0^\pi d\varphi \int P(\theta, \varphi) \sin\theta d\theta}$$
 (2)

 $Koэффициент усиления G определяется как произведение КНД на коэффициент полезного действия (КПД) антенны <math>\eta$ (или, точнее, всего антенного тракта):

$$G = D\eta \tag{3}$$

Рис. 1: Диаграмма направленности

Этот последний коэффициент в свою очередь есть отношение полной мощности $P_{\text{изл}}$, излучаемой антенной, к полной мощности $P_{\text{подв}}$, подводимой к антенне, т.е.

$$\eta = \frac{P_{\text{\tiny H3J}}}{P_{\text{\tiny HOJB}}} = \frac{\int_0^{2\pi} d\varphi \int_0^{\pi} P(\theta, \varphi) \sin \theta d\theta}{P_{\text{\tiny HOJB}}} \tag{4}$$

В силу принципа взаимности ДН и КНД антенны при ее работе в режиме передачи и в режиме приема совпадают.

Для адекватного описания npuemhoй антенны вводятся некоторые дополнительные характеристики. Одна из основных таких характеристик — эффективная площадь приема антенны A.

Эффективная площадь приема A определяется как отношение полной принимаемой антенной мощности $P_{\rm np}$ к плотности потока падающего излучения S_n в месте расположения антенны:

$$A = \frac{P_{np}}{S_n} \tag{5}$$

Величины А и D связаны соотношением

$$A = \frac{\lambda^2}{4\pi}D. (6)$$

Цель настоящей работы заключается в экспериментальном определении КНД пирамидальной рупорной антенны с помощью так называемого зеркального метода (метода Парселла) и сравнении измеренного значения с рассчитанным теоретически. Зеркальный

метод опирается на использование идеально (зеркально) отражающей плоской поверхности, расположенной в зоне Фраунгофера и ориентированной параллельно излучающей апертуре.

Согласно методу изображений отыскание отраженного поля, поступающего в антенну, сводится к нахождению поля, принимаемого от аналогичной зеркальной относительно отражающей плоскости излучающей антенны. В результате последовательного пересчета имеем: мощность, излучаемая гипотетической зеркальной антенной в единицу телесного угла в направлении на реальную антенну, равна $P_n = DP_{\text{изл}}/4\pi$, откуда плотность потока энергии в месте приема $S_n = P_n/4X^2 = DP_{\text{изл}}/(16\pi X^2)$, где X — расстояние между антенной и отражающей плоскостью; наконец, мощность, принимаемая антенной, равна $P_{np} = AS_n = ADP_{\text{изл}}/(16\pi X^2)$. С учетом 6 окончательно получаем

$$\frac{P_{np}}{P_{\text{\tiny H3JI}}} = \frac{D^2 \lambda^2}{64\pi^2 X^2} \tag{7}$$

отсюда интересующая нас величина D представляется в виде

$$D = \frac{8\pi X}{\lambda} \sqrt{\frac{P_{np}}{P_{\text{\tiny W3,II}}}} \tag{8}$$

Таким образом, экспериментальное определение КНД требует нахождения отношения принимаемой зеркально отраженной мощности к мощности, излучаемой пирамидальной рупорной антенной.

Рис. 2: Блок-схема установки: Схема установки: 1 – генератор, 2 – измерительная линия, 3 – амперметр, 4 – согласующее устройство, 5 – рупорная антенна, 6 - поглощающий щит, 7 – отражающий щит

Измерительная установка включает генератор СВЧ диапазона (длина излучаемой волны $\lambda \approx 3~{\rm cm}$) с отдельным блоком питания, волноводный тракт с измерительной линией

и амперметром к ней, пирамидальный рупор, отражающий щит, щит с поглощающим покрытием. Блок-схема установки на рис. 2. Установка позволяет контролируемо менять расстояние $X + \Delta X$ между антенной и отражательным щитом в пределах $\Delta X \approx 100$ см.

Работа будет производиться в несогласованном режиме, когда специальной процедуры согласования не проводится. Учитывая отражения от конца подводящего тракта поле на оси волновода, отнормированное на амплитуду падающей волны, для некоторого фиксированного положения рупора запишется в виде

$$E = 1e^{-ihx} + \Gamma_{\kappa}e^{i\varphi_{\kappa}}e^{ihx} + \Gamma e^{e\varphi}e^{ihx} \tag{9}$$

Смещение антенны на величину ΔX приведет к появлению в последнем члене дополнительного множителя $e^{ik_02\Delta X}$, связанного с дополнительным набегом фазы в свободном пространстве. Поскольку Γ_{κ} и Γ достаточно малы, то квадратичными величинами в первом приближении можно пренебречь. В результате для $|E|^2$ будем иметь

$$|E|^2 \approx 1 + 2\Gamma_\kappa \cos(2hx + \varphi_\kappa) + 2\Gamma \cos(2hx + \varphi + k_0 2\Delta X)$$
(10)

Из уравнения выше и экспериментальных данных можно найти коэффициент Γ , тогда мы сможем определить интересующаю нас величину D:

$$D = \frac{8\pi X}{\lambda} \Gamma. \tag{11}$$

Теоретический расчет КНД:

В работе использовался рупор с размером апертуры $l_1 \times l_2 = 9.2 \times 13.7~cm$, подсоединенный к волноводу размером $2.9 \times 1.02~cm$.

Чтобы рассчитать КНД рупорной антенны в зоне Фраунгофера, будем пользоваться интегралом Кирхгофа-Гюйгенса. Значение компоненты поля в точке P, выражая через интеграл Кирхгофа :

$$\Psi(P) = \frac{1}{4\pi} \oint_{S} (\Psi \frac{\partial G}{\partial n} - G \frac{\partial \Psi}{\partial n}) dS \tag{12}$$

где P - точка наблюдения, S - замкнутая поверхность, содержащая точку P,n - внутренняя нормаль к S,G - функция Грина свободного пространства

$$G = \frac{1}{r}e^{ikr}.$$

Поверхность S выбираем так, чтобы она проходила через апертуру аннтены, а в отстальном пространстве удаляется на бесконечность. Рассматривая малые отклонения от центральной оси (т.е. в положении максимума), интеграл приводится к виду

$$\Psi(P) = \frac{\Psi_0 \ exp(ikz_0)}{z_0 \lambda i} \iint_{\Sigma} \ exp(\frac{ik}{2z_0} (x^2 + y^2)) dx dy \tag{13}$$

где Σ - площадь апертуры. Интегралы Френеля, появляющиеся при дальнейшем решении не считаются аналитически, при этом численный расчет показал, что интеграл дает значение, приблизительно равное площади апертуры (Итегралы Френеля в первом приближении дают значение площади апертуры). Таким образом, компонента поля в точке наблюдения:

$$\Psi(P) \simeq \frac{\Psi_0}{z_0 \lambda i} S e^{ikz_0} \tag{14}$$

Зная компоненту поля в максимуме, можно выразить плотность потока энергии:

$$S_{max} = \frac{c}{8\pi} \frac{\Psi_0^2 S^2}{r^2 \lambda^2} \tag{15}$$

Для расчета КНД, также необходима плотность потока энергии во всех направлениях. Для эквивалентного источника имеем:

$$S_r = \frac{c}{8\pi} \frac{\Psi_0^2 S}{r^2 \lambda^2} \frac{1}{4\pi} \tag{16}$$

Подставляя это в выражение для КНД, получаем:

$$D = \frac{S_{max}}{S_r} = \frac{S}{\lambda^2} 4 \ pi \simeq 156 \tag{17}$$

Однако, как мы увидим дальше, выражение (17) дает завышенный КНД, что связано с неоднородностью распределения поля на апертуре рупора.

2. Экспериментальная часть

Оборудование:

- Генератор
- Измерительные линейки
- Амперметр квадратичного детектора
- Рупорная антенна (апертура $l_1 \times l_2 = 9.2 \times 13.7 \ cm$)
- Поглощающий щит
- Отражающий щит

Начальное расстояние от отражающего щита до раскрыва рупора $X=280\ cm$.

Подготовка

Для правильности проведения эксперимента, неоюходимо удостовериться, что экран находится в зоне Фраунгофера, т.е.:

$$X = 280 \ cm \ >> \frac{maxl_1, l_2}{\lambda} \simeq 63 \ cm \tag{18}$$

2.1. Задание 1

Перед антенной помещается щит с поглощающим покрытием, позволяя не учитывать отраженную от металлического щита часть поля. Была снята зависимость интенсивности электрического поля $|E|^2$ от координаты внтури волновода x. Полученная зависимость приведена на рис. 3.

При отсутствии отраженной компоненты, уравнение (10) упрощается к виду

$$|E|^2 \approx 1 + 2\Gamma_\kappa \cos(2hx + \varphi_\kappa) \tag{19}$$

Отсюда, по полученной зависимости $|E|^2(x)$ можно определить коэффициент Γ_{κ} :

$$\Gamma_{\kappa} = \frac{|E_{max}|^2 - |E_{min}|^2}{2(|E_{max}|^2 + |E_{min}|^2)} \approx 0.026 \tag{20}$$

Длина волны в волноводе $\lambda_{\scriptscriptstyle B}$ составила:

$$\lambda_{\scriptscriptstyle B} \simeq 4.5 \ cm$$
 (21)

Зная $\lambda_{\rm B}$, можно найти λ в свободном пространстве:

$$h^2 + \varkappa^2 = k^2 \Rightarrow \lambda = \frac{\lambda_{\rm B}^2 4a^2}{4a^2 + \lambda_{\rm B}^2} \simeq 3.21 \ cm$$
 (22)

где $a = 2.29 \ cm$ - ширина волновода.

Рис. 3: Зависимость интенсивности $|E|^2$ от координаты х

2.2. Задание 2

Найдя такое положение, что $\cos(2hx+\varphi_{\kappa})=0$ и зафиксировав его $(x=2.6\ cm)$, был убран отражающий щит и снималась зависимость $|E|^2(\Delta X)$, где ΔX - смещение относительно металлического экрана. Полученная зависимоть приведена на рис. 4.

Коэффициента отражения Г вычисляется аналогично первому заданию

$$\Gamma = \frac{|E_{max}|^2 - |E_{min}|^2}{2(|E_{max}|^2 + |E_{min}|^2)} \approx 0.05$$
(23)

Тогда КНД, исходя и формулы (11)

$$D = \Gamma \frac{8\pi X}{\lambda} \simeq 109.6 \tag{24}$$

2.3. Задание 3

Меняя положение $X + \Delta X$ относительно отражающего щита, были измерены $|E_{max}|^2$ и $|E_{min}|^2$ и вычислен КБВ в волноводе $\kappa = E_{min}/E_{max}$. Также был рассчитан коэффициент

Рис. 4: Зависимость интенсивности $|E|^2$ от координаты смещения ΔX

 $\tilde{\Gamma} \colon$

$$\tilde{\Gamma}(\Delta X) = \frac{1 - \kappa(\Delta X)}{1 + \kappa(\Delta X)} = \frac{1 - \sqrt{K(\Delta X)}}{1 + \sqrt{K(\Delta X)}}$$
(25)

Полученная зависимость приведена на рис. 5.

Из полученного значения $\tilde{\Gamma}_{max} \simeq 0.064$ можно получить значение $\Gamma \simeq \tilde{\Gamma}_{max} - \Gamma_{\kappa} \simeq 0.04,$ откуда значение D:

$$D \simeq 87.69$$

Проверка предположения малости

Ранее мы пренебрегли значениями $\Gamma^2_{\kappa},\ \Gamma^2,\ \Gamma_{\kappa}\Gamma.$ Теперь, зная их, мы можем убедиться в их малости:

$$\Gamma_{\kappa}^{2} \simeq 0.026^{2} \simeq 6.76 \cdot 10^{-4}$$

$$\Gamma^{2} \simeq 0.05^{2} \simeq 2.5 \cdot 10^{-3}$$

$$\Gamma_{\kappa}\Gamma \simeq 0.026 \cdot 0.05 \simeq 1.3 \cdot 10^{-3}$$

Рис. 5: Зависимость $\tilde{\Gamma}(\Delta X)$

2.4. Вывод

В результате двух экспериментов были получены значения $D_1=109.6,\ D_2=87.7,$ а также рассчитано теоретическое значение $D_t=156.$ Расхождение экспериментальных значений связано с погрешностью измерений величин E_{min} и E_{max} . Расхождение же с теоретическим расчетом, связано с неоднородностью поля на апертуре рупора.