Time: 15 minutes

Problem 1. If f(1) = 3, f(2) = 4, g(1) = 2, g(3) = 2, what is $(f \circ g)(1) - (g \circ f)(1)$?

- (a) 2
- (b) -2 (c) 8 (d) 0
- (e) π

Problem 2. Which of the following graphs most closely resemble the curve $y = (x-1)^2 + 2$?

Problem 3. Which of the following functions has a graph which can be obtained from $y = x^3$ by shifting to the RIGHT 1 unit, then reflecting about the x-axis?

- (a) $y = -x^3 + 1$ (b) $y = -(x-1)^3$ (c) $y = (-x-1)^3$ (d) $y = -x^3 1$

Problem 4. Recall that the graphs of sin x and cos x are related by a horizontal shift, as you can see in the diagrams below. Which of the given identities is true?

(a)
$$\sin x = -\cos(x)$$

(b)
$$\sin x = \cos(x - \frac{\pi}{2})$$
 (c) $\sin x = \cos(x + \frac{\pi}{2})$

(c)
$$\sin x = \cos(x + \frac{\pi}{2})$$

(d)
$$\sin x = \cos(x - \pi)$$
 (e) $\sin x = \cos(x) - \pi$

(e)
$$\sin x = \cos(x) - \pi$$

Problem 5. Compute $\log_4(16)$.

Problem 6. Using the properties of logarithms

$$\log(a \cdot b) = \log a + \log b$$
 $c \cdot \log b = \log(b^c),$

$$c \cdot \log b = \log(b^c),$$

compute $\ln(e^e \cdot e^3) - e$.

(a)
$$3 - e$$

(b) 3 (c)
$$2e$$
 (d) $-e$

$$(d) - e$$

Problem 7. (BONUS) Compute $\log_8(2)$.

- (a) 2 (b) 1 (c) $\frac{1}{2}$ (d) $\frac{1}{3}$ (e) 3

Problem 8. Sketch the graph of the piecewise function:

$$f(x) = \begin{cases} 1 & x < -1 \\ x^2 & -1 \le x \le 1 \\ x & x > 1 \end{cases}$$

Problem 9. Sketch the graph of the piecewise function:

$$g(x) = \begin{cases} -1 & x < -1 \\ x^3 & -1 \le x \le 1 \\ -x & x > 1 \end{cases}$$