Álgebra Moderna Ejercicios Clase 1

Tomás Ricardo Basile Álvarez 316617194

21 de septiembre de 2020

Ejercicio 1.9: Sea n un entero positivo.

a) Escribe las clases de congruencia módulo 12:

Como dice en el texto y se prueba en la parte b), las clases de congruencia son solamente $\overline{0}, \overline{1}, \overline{2}, ... \overline{12-1}$. Que en este caso son:

b) Prueba que $\mathbb{Z}_n = \{\overline{0}, \overline{1}, ... \overline{n-1}\}$

 \subset) : Sea $\overline{a} \in \mathbb{Z}_n$ con $a \in \mathbb{Z}$. Entonces, por definición de la clase de equivalencia tenemos que:

$$\overline{a} = \{b \in \mathbb{Z} : a \equiv b\}$$
$$= \{b \in \mathbb{Z} : n | (a - b)\} \text{ Por la definición de } a \equiv b$$

Luego, n|(a-b) sii $\exists k \in \mathbb{Z}$ tal que kn = a - b sii $\mathbf{b} = \mathbf{a} + \mathbf{kn}$ Y así, el conjunto \overline{a} se ve como: $\overline{a} = \{a + kn : k \in \mathbb{Z}\}$ (1) Luego, usamos el algoritmo de la división para a entre n y nos asegura que existen $r, q \in \mathbb{Z}$ tales que a = qn + r y $0 \le r < n$. Entonces, r = a - qn y por tanto:

$$\overline{r} = \{r + k'n : k' \in \mathbb{Z}\}$$
 por el mismo argumento con el se llega a (1)
 $= \{a - qn + k'n : k' \in \mathbb{Z}\}$
 $= \{a + (k' - q)n : k' \in \mathbb{Z}\}$
 $= \{a + kn : k \in \mathbb{Z}\} = \overline{a}$ por (1)

El anteúltimo paso se justifica porque k'-q varía sobre los enteros porque $k',q\in\mathbb{Z}$ y entonces se puede reemplazar por simplemente k que varíe sobre los enteros.

Así, $\overline{a} = \overline{r}$ para una r con $0 \le r < n$ (por el algoritmo de la división) lo que prueba que \overline{a} es uno de los elementos en $\{\overline{0}, \overline{1}, \overline{2}, ... \overline{n-1}\}$ y entonces $\mathbb{Z}_n \subset \{\overline{0}, \overline{1}, \overline{2}, ... \overline{n-1}\}$.

Por otro lado, si $\overline{r} \in \{\overline{0}, \overline{1}, \overline{2}, ... \overline{n-1}\}$, entonces es \overline{r} es una clase de equivalencia módulo n y entonces pertenece a \mathbb{Z}_n . Por lo que $\{\overline{0}, \overline{1}, \overline{2}, ... \overline{n-1}\} \subset \mathbb{Z}_n$. Y finalmente concluimos que estos dos conjuntos son iguales.

c) ¿Cuál es la clase de congruencia de 10^k módulo 3?

 10^k se puede escribir como $9\times 10^{k-1}+9\times 10^{k-2}+...+9\times 10^1+9+1=3\times (3\times 10^{k-1}+3\times 10^{k-2}+...+3\times 10^1+3)+1$

Es decir, se puede escribir como un entero multiplicado por 3 más 1. Entonces, 10^k tiene un residuo de 1 al dividirlo por 3 y por tanto es congruente a 1 módulo 3. Entonces, la clase de equivalencia de 10^k es igual a la clase de equivalencia de 1.

d) Pruebe que si $a=a_0+a_1\cdot 10+a_2\cdot 10^2+\ldots+a_k\cdot 10^k$, entonces la clase de congruencia de a módulo 9 es $\overline{a_0+a_1+\ldots+a_k}$

Tenemos que probar que a y $a_0 + a_1 + a_2 + ... + a_k$ son congruentes módulo 9 para probar que entonces pertenecen a la misma clase de congruencia que se puede representar como $\overline{a_0 + a_1 + a_2 + ... + a_k}$.

Entonces, debemos de demostrar que $a \equiv (a_0 + a_1 + a_2 + ... + a_k)$ módulo 9, o lo que es lo mismo, probar que $9|a - (a_0 + a_1 + a_2 + ... + a_k)$

Pero
$$a - (a_0 + a_1 + a_2 + ... + a_k) = a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + ... + a_k \cdot 10^k - (a_0 + a_1 + a_2 + ... + a_k) = 9a_1 + 99a_2 + 999a_3 + ... + 99 ... 99a_k = 9(a_1 + 11a_2 + 111a_3 + ... + 11 ... 11a_k)$$

Este último número es claramente un múltiplo de 9, por lo que $a - (a_0 + a_1 + a_2 + ... + a_k)$ es un múltiplo de 9 y queda probado que $9|a - (a_0 + a_1 + a_2 + ... + a_k)$.

e) Sea n = mk. Prueba que $\overline{m} \cdot \overline{k} = \overline{0}$ en \mathbb{Z}_n

Por como se define el producto en \mathbb{Z}_n , tenemos que:

$$\overline{m} \cdot \overline{k} = \overline{mk}$$

$$= \overline{n}$$

$$= \overline{0}$$

En el último paso, probar que $\overline{n} = \overline{0}$ es fácil, pues $n \equiv 0$ módulo n ya que claramente n|(n-0). Luego, como n es congruente con 0 entonces $n \in \overline{0}$ pero por reflexividad de la relación de congruencia, se tiene también que $n \in \overline{n}$. Y como dos clases de equivalencia o son disjuntas o son iguales, concluimos que éstas son iguales y entonces $\overline{0} = \overline{n}$.

f) Pruebe que \mathbb{Z}_n es un anillo:

Primero probamos un resultado preliminar: para $x,x'\in\mathbb{Z}$, se cumple que $\overline{x}=\overline{x'}$ sii x'=x+kn para k entero.

Pues si $\bar{x} = \bar{x'}$ entonces como $x \in \{x + qn : q \in \mathbb{Z}\} = \bar{x} = \bar{x'} = \{x' + kn : k \in \mathbb{Z}\}$ entonces x = x' + kn para algún k entero.

Por otro lado, si x' = x + kn, entonces como $n|kn \Rightarrow n|(x'-x) \Rightarrow x' \equiv x$. Pero entonces, x pertenece a la clase de equivalencia $\bar{x'}$ pero también pertenece a su propia clase de equivalencia por reflexividad. Como dos clases de equivalencia o son disjuntas o son iguales, concluimos que son iguales concluimos que $\bar{x} = \bar{x'}$

Suma (como se define en el texto):

1) Probar que está bien definida: Sea $\overline{a} = \overline{a'}$ y $\overline{b} = \overline{b'}$, para $a, a', b, b' \in \mathbb{Z}$ entonces, por el resultado preliminar, existen k, q enteros tales que: a = nk + a' y b = nq + b' y luego:

$$\overline{a} + \overline{b} = \overline{a + b} = \overline{(nk + a') + (nq + b')} = \overline{n(k + q) + (a' + b')} = \overline{a' + b'} = \overline{a'} + \overline{b'}$$

Donde en el penúltimo paso se usó también el resultado preliminar.

2) Asociativa:

$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a + b} + \overline{c} = \overline{(a + b) + c} = \overline{a + (b + c)} = \overline{a} + \overline{b + c} = \overline{a} + (\overline{b} + \overline{c})$$

3) Conmutatividad:

$$\overline{a} + \overline{b} = \overline{a+b} = \overline{b+a} = \overline{b} + \overline{a}$$

4) Neutro: El neutro aditivo es $\overline{0}$ pues:

$$\overline{a} + \overline{0} = \overline{a + 0} = \overline{a}$$

5) Inverso: Para $\overline{a} \in \mathbb{Z}_n$, su inverso es $\overline{-a} \in \mathbb{Z}_n$ pues:

$$\overline{a} + \overline{-a} = \overline{a + (-a)} = \overline{0}$$

Producto:

1) Probar que está bien definida: Sea $\overline{a}=\overline{a'}$ y $\overline{b}=\overline{b'}$, para $a,a',b,b'\in\mathbb{Z}$ entonces, existen k,q tales que:

$$\overline{a} \cdot \overline{b} = \overline{a \cdot b} = \overline{(nk + a')(nq + b')} = \overline{n(nkq + kb' + qa') + a'b'} = \overline{a'b'} = \overline{a'} \cdot overlineb'$$

Donde se usó múltiples veces el resultado preliminar de la misma forma que en la suma.

2) Asociativa:

$$(\overline{a} \cdot \overline{b}) \cdot \overline{c} = \overline{a \cdot b} \cdot \overline{c} = \overline{(a \cdot b) \cdot c} = \overline{a(bc)} = \overline{a} \cdot \overline{bc} = \overline{a} \cdot (\overline{b} \cdot \overline{c})$$

3. Neutro: El neutro multiplicativo es $\overline{1}$ pues:

$$\overline{a} \cdot \overline{1} = \overline{a \cdot 1} = \overline{a} = \overline{1} \cdot \overline{a} = \overline{a}$$

4. Conmutatividad (si se quiere probar que es un anillo conmutativo):

$$\overline{a} \cdot \overline{b} = \overline{ab} = \overline{ba} = \overline{b} \cdot \overline{a}$$

Distributividad:

$$\overline{a} \cdot (\overline{b} + \overline{c}) = \overline{a} \cdot \overline{(b+c)} = \overline{a(b+c)} = \overline{ab+ac} = \overline{ab} + \overline{ac} = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c} \\ (\overline{b} + \overline{c}) \cdot \overline{a} = \overline{(b+c)} \cdot \overline{a} = \overline{(b+c)a} = \overline{ba+ca} = \overline{ba} + \overline{ca} = \overline{b} \cdot \overline{a} + \overline{c} \cdot \overline{a}$$

.

g) Muestra un ejemplo donde \mathbb{Z}_n no es un campo:

El ejemplo que daré es \mathbb{Z}_4 . Para ser un campo, todos los elementos tienen que tener un inverso multiplicativo. Pero $\overline{2} \in \mathbb{Z}_4$ no lo tiene. Podemos ver esto al ir probando con todos los elementos de \mathbb{Z}_4 :

- a) $\overline{0}$ no es el inverso de $\overline{2}$ pues: $\overline{0} \cdot \overline{2} = \overline{0 \cdot 2} = \overline{0} \neq \overline{1}$
- b) $\overline{1}$ no es el inverso de $\overline{2}$ pues: $\overline{1} \cdot \overline{2} = \overline{1 \cdot 2} = \overline{2} \neq \overline{1}$
- c) $\overline{2}$ no es el inverso de $\overline{2}$ pues: $\overline{2} \cdot \overline{2} = \overline{2 \cdot 2} = \overline{4} = \overline{0} \neq \overline{1}$
- d) $\overline{3}$ no es el inverso de $\overline{2}$ pues: $\overline{3} \cdot \overline{2} = \overline{3 \cdot 2} = \overline{6} = \overline{2} \neq \overline{1}$

h) Muestra un ejemplo donde \mathbb{Z}_n es un campo

Lo probaré para \mathbb{Z}_2 . En la parte f) ya se probó que en \mathbb{Z}_n la suma es conmutativa, asociativa, con neutro y con inverso, que el producto es conmutativo, asociativo, y con neutro y que las operaciones son distributivas.

Ya solo falta probar que los elementos distintos al cero (que en este caso es $\overline{0}$) tienen inverso multiplicativo. El único elemento de \mathbb{Z}_n distinto de $\overline{0}$ es $\overline{1}$ y su inverso es $\overline{1}$ pues: $\overline{1} \cdot \overline{1} = \overline{1} \cdot \overline{1} = \overline{1}$

i) Un entero m es primo relativo de n si (n,m)=1. Muestra que m es primo relativo a n si y sólo si \overline{m} es invertible en Z_n :

Ida) Por la identidad de Bezout, existen enteros x, y tales que:

$$nx + my = (m, n)$$

Luego, por hipótesis tenemos que nx + my = 1. Por lo tanto:

$$\overline{nx + my} = \overline{1}$$

$$\Rightarrow \overline{my} = \overline{1}$$

Esto es porque $\overline{nx+my} = \overline{my}$. Pues $\overline{my} = \{my+kn : k \in \mathbb{Z}\} = \{my+nx+(k-x)n : k \in \mathbb{Z}\} = \{my+nx+k'n : k' \in \mathbb{Z}\}.$

Donde definimos k' = k - x y notamos que si k varía en \mathbb{Z} entonces k - x = k' también varía en \mathbb{Z} porque $x \in \mathbb{Z}$.

Luego, este último conjunto es $\{my + nx + k'n : k' \in \mathbb{Z}\} = \overline{my + nx}$.

Entonces, la igualdad a la que llegamos $\overline{my} = \overline{1}$ nos dice que $\overline{m} \cdot \overline{y} = \overline{1}$ y así, el inverso de \overline{m} es \overline{y} .

Regreso) Digamos que \overline{m} es invertible en \mathbb{Z}_n y esperando una contradicción, supongamos que n, m no son coprimos. Entonces, existe un d > 1 que es factor de tanto m como n. Es decir, existen a, b enteros tales que m = da (1) y n = db (2).

Pero como \overline{m} es invertible, existe su inverso \overline{p} tal que $\overline{mp} = \overline{1}$

Entonces, en particular $pm \equiv 1$ módulo n, lo que implica que n|(pm-1) y por tanto existe una $k \in \mathbb{Z}$ tal que $kn = (pm-1) \Rightarrow pm = kn + 1$

Entonces, usando (1) y (2) para reemplazar m y n tenemos que pda = kdb + 1Por tanto, d(pa - kb) = 1.

Como todas las cantidades aquí son enteras, esto implica que $d = \pm 1$ lo cual contradice la suposición inicial de que d era un factor mayor que 1 compartido por m y n.

Ejercicio 1.10: Sea n un entero positivo.

a) Prueba que la suma y el producto en \mathbb{Z}_n están bien definidos:

Ya lo probé en el inciso f de la pregunta anterior antes de probar que \mathbb{Z}_n es un anillo.

Prueba que \mathbb{Z}_n es un grupo abeliano con la suma:

En la pregunta anterior inciso f) ya probé que la suma es cerrada, asociativa, tiene neutro, inverso y es conmutativa, con lo que se prueba que $(\mathbb{Z}_n, +)$ es un grupo.

c) Prueba que $\mathbb{Z}_n - \{0\}$ es un grupo abeliano con el producto si n es primo.

En el inciso f de la pregunta anterior ya probé que el producto es cerrado, asociativo, tiene neutro y es conmutativo.

Solo falta probar que los elementos tienen inverso. Para esto, sea $\overline{m} \in \mathbb{Z}_n$.

Luego, como n es primo, se cumple uno de los siguientes casos:

- 1) m y n son coprimos: En este caso, se probó en el inciso i del ejercicio pasado que \overline{m} tiene inverso.
- 2) m es múltiplo de n: Es decir, m = kn para algún $k \in \mathbb{Z}$ en este caso, $\overline{m} = \overline{n}$, pero $\overline{n} = \overline{0}$. Entonces $\overline{m} = \overline{0}$. Pero entonces, esta \overline{m} no pertenece al conjunto, ya que el conjunto en cuestión es $\mathbb{Z}_n \{0\}$. Por lo que no hace falta buscarle un inverso multiplicativo (que no tiene) porque ni está en el conjunto.

d) Sea $\mathbb{Z}_n^*=\{\overline{a}\in\mathbb{Z}_n|(a,n)=1\}$. Prueba que \mathbb{Z}_n^* es un grupo abeliano con el producto.

Probamos primero que el producto es cerrado: Sea $\overline{a}, \overline{b} \in \mathbb{Z}_n^*$. Entonces, queremos probar que $\overline{ab} = \overline{ab}$ está también en \mathbb{Z}_n^* .

Para esto, tiene que cumplir la condición que (ab, n) = 1. Lo cual es una consecuencia directa de que (a, n) = 1 y (b, n) = 1.

Pues si (a, n) = 1 entonces a no comparte factores primos con los factores primos de n. Y similarmente como (b, n) = 1, b no comparte factores primos con los de n. Por tanto, como el producto ab tiene los factores primos de a y los de b, ninguno de estos está compartido con los de n y entonces ab no comparte factores primos con n y por tanto (ab, n) = 1.

e) Muestra que \mathbb{Z}_n no es un grupo con el producto si n > 1.

Consideremos $\overline{0} \in \mathbb{Z}_n$. Probamos que este elemento no tiene un inverso multiplicativo en \mathbb{Z}_n . Pues para todo $\overline{a} \in \mathbb{Z}_n$ se cumple que:

$$\overline{0}\overline{a} = \overline{0 \cdot a} = \overline{0} \neq \overline{1}$$

Usamos que n>1 al indicar que $\overline{0}\neq\overline{1}$ pues el conjunto tiene por lo menos estos dos elementos y son distintos entre sí.