Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2023-24

Οργάνωση Υπολογιστών (ΙΙ)

(κύρια και κρυφή μνήμη)

http://mixstef.github.io/courses/csintro/

Μ.Στεφανιδάκης

Η μνήμη

- Βασικό τμήμα του υπολογιστή
 - Αποθήκευση εντολών και δεδομένων
- Πρόκειται για μια ιεραρχία υποσυστημάτων
 - Κρυφές μνήμες (caches), κύρια μνήμη
 - Για να καλυφθεί το κενό απόδοσης μεταξύ γρήγορου επεξεργαστή και αργής κύριας μνήμης

Αποθήκευση στη μνήμη

- Μνήμη = διαδοχικές θέσεις αποθήκευσης
 - Σε κάθε θέση αποθηκεύεται μια ποσότητα των n bits (συνήθως 1 byte)
- Διευθύνσεις στη μνήμη
 - Σε κάθε θέση αποθήκευσης αντιστοιχεί μία μοναδική διεύθυνση (address)
 - μη προσημασμένος δυαδικός αριθμός
 - με m bits επιλέγουμε μεταξύ 2^m διευθύνσεων
 - Χώρος διευθύνσεων μνήμης: 0...2^m 1
 - Συνολική χωρητικότητα μνήμης:
 - $2^m \times n$ bits

Μοντέλο λειτουργίας μνήμης

Ανάγνωση από μνήμη

Ακόμα κι αν το πρόγραμμά μας μπορεί να διαβάσει ή να γράψει μεμονωμένα bytes, η φυσική επικοινωνία με τη μνήμη γίνεται στην πραγματικότητα σε «λέξεις» (πολλαπλά bytes)

Εγγραφή στη μνήμη

Sneak Preview: Εικονική μνήμη

- Κάθε πρόγραμμα βλέπει λογικές διευθύνσεις μνήμης
 - Από το 0 έως τη μέγιστη που υποστηρίζει το λειτουργικό σύστημα
- Μετάφραση σε φυσικές διευθύνσεις μνήμης
 - Από το σύστημα διαχείρισης μνήμης (memory management unit MMU)
 που συνοδεύει την ΚΜΕ
- Εικονική Μνήμη (virtual memory)
 - (θα την δούμε σε μεγαλύτερο εξάμηνο)

Μονάδες μέτρησης χωρητικότητας μνήμης

- 1 Byte = 8 bits
- 1 KiloByte (KB) = 2^{10} Bytes
 - <u>1.024</u> Bytes
- 1 MegaByte (MB) = 2^{10} KB = 2^{20} Bytes
 - 1.048.576 Bytes
- 1 GigaByte (GB) = 2^{10} MB = 2^{20} KB = 2^{30} bytes
 - 1.073.741.824 Bytes
- Κλπ...

Προσοχή! Μόνο η χωρητικότητα της μνήμης μετράται σε δυνάμεις του 2

Τεχνολογίες μνημών

- Μνήμη "τυχαίας προσπέλασης"
 - Random Access Memory (RAM)
 - Ανάγνωση-Εγγραφή
 - Στατική (SRAM) και δυναμική (DRAM)
 - Διαφορετική μέθοδος υλοποίησης «κελιών» (cell, ο χώρος αποθήκευση ενός bit) μνήμης
 - SRAM: πολύ γρήγορη μικρότερη ολοκλήρωση (χρήση: κρυφή μνήμη)
 - DRAM: αργότερη μεγάλη ολοκλήρωση (χρήση: κύρια μνήμη)
 - Απαιτείται περιοδική ανανέωση των δεδομένων κάθε 16 έως 128 ms (DRAM refresh)
 - Και στις δύο χάνονται τα δεδομένα με τη διακοπή της τροφοδοσίας

Τεχνολογίες μνημών

- Μνήμες μόνιμης αποθήκευσης
 - Διατήρηση δεδομένων χωρίς τροφοδοσία
- Μόνο για ανάγνωση
 - Read Only Memory (ROM)
 - Ακολουθεί το κλασσικό μοντέλο μνήμης
 - Αποθήκευση κώδικα αρχικοποίησης υπολογιστή
- Αργή ανάγνωση-εγγραφή αλλά μαζική αποθήκευση
 - FLASH
 - Μοιάζει με δίσκο αποθήκευσης κι όχι με το κλασικό μοντέλο μνήμης
 - Ανάγνωση-εγγραφή μπλοκ δεδομένων

Παράδειγμα: οργάνωση μνήμης DRAM

Την «παλιά εποχή»: Απευθείας διασύνδεση ΚΜΕ – κύριας μνήμης

- Διεύθυνση
 - Προς/από ποια διεύθυνση γίνεται η προσπέλαση;
- Δεδομένα
 - Τα δεδομένα ανάγνωσης/εγγραφής
- Έλεγχος
 - Ανάγνωση ή εγγραφή; και συγχρονισμός μεταφοράς

Δίαυλος (bus): ομάδα αγωγών για τη μεταφορά πληροφορίας.

Η κύρια μνήμη σήμερα

- Υποσύστημα κύριας μνήμης
 - Μεγάλες χωρητικότητες (GBs)
 - Μεγάλο εύρος (bits) διαύλου μεταφοράς
 - Για την ικανοποίηση των αναγκών των ΚΜΕ
 - 64 και πλέον bits ανά μεταφορά
 - ≥400 MTransfers/sec, ≥3.2 GB/s
- Ελεγκτής κύριας μνήμης
 - Λόγω της πολυπλοκότητας της διασύνδεσης
 - Μια ΚΜΕ δεν συνδέεται απευθείας με τη μνήμη
 - Αλλά: παρεμβάλλεται ο ελεγκτής κύριας μνήμης
 - Το μοντέλο προσπέλασης δεν αλλάζει

Διασύνδεση με κύρια μνήμη

- Ελεγκτής κύριας μνήμης
 - Μετατρέπει τις αιτήσεις ανάγνωσης-εγγραφής της ΚΜΕ στα κατάλληλα σήματα (εντολές) προς τα τσιπ κύριας μνήμης (DRAM)

Ιεραρχία Μνήμης

- Προσέγγιση της ιδανικής μνήμης
 - Ο επεξεργαστής βλέπει "μνήμη"
 - Με την ταχύτητα του υψηλότερου επιπέδου
 - Και το μέγεθος του χαμηλότερου επιπέδου

Κρυφή μνήμη (cache memory)

- Μεταξύ ΚΜΕ και κύριας μνήμης
 - Περιέχει ένα μέρος μόνο των περιεχομένων της κύριας μνήμης
 - Διαφορετικές θέσεις κύριας μνήμης φορτώνονται στην ίδια θέση της κρυφής μνήμης
 - Γρηγορότερη από κύρια μνήμη
 - Εκμετάλλευση της τοπικότητας των προσπελάσεων
 - Διαχείριση από υλικό διαφανής στο λογισμικό!
 - Σήμερα: κρυφή μνήμη σε πολλά επίπεδα (L1, L2, L3)

Η αρχή της τοπικότητας

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
 - Π.χ. για εντολές ενός βρόχου (loop)

• Χωρική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Π.χ. συνεχόμενες εντολές προγραμμάτων
 - Ή δεδομένα σε πίνακες

Μπλοκ (γραμμές) κρυφής μνήμης

• Όταν πρέπει να μεταφερθεί μια λέξη στην κρυφή μνήμη, μεταφέρεται όλο το μπλοκ που την περιέχει (η λέξη και οι γειτονικές της)

• Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για μεταφορές μπλοκ

• Οι σύγχρονοι επεξεργαστές διαθέτουν κρυφές μνήμες με τυπικό μέγεθος μπλοκ ίσο με 64 bytes

Ανάγνωση μέσω της κρυφής μνήμης

Εγγραφή μέσω της κρυφής μνήμης

