知的システムIIデータ解析 第2回

データ解析に関する技術の初歩 李 吉屹

データ解析に関する技術

- 多種多様な技術
 - 機械学習、データマイニング、コンピュータビジョン、自然言語処理、可視化等
 - 五回の演習では全然足りない!本演習では初歩的事項を紹介して、 興味があったら、今後各自で勉強してください
 - データ解析プラットフォーム例
 - Kaggle (英語)
 - Signate (日本語)
- 本演習で扱う基礎技術
 - 分類
 - アンサンブル学習
 - 探索的データ解析
 - 回帰
 - クラスタリング

分類

データを複数のクラス(グループ)に分類すること

- 異なる分類アルゴリズムの比較
 - https://scikitlearn.org/stable/auto_examples/classification/plo t_classifier_comparison.html

分類

- データセット
 - Breast Cancer (乳がん)
 - https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_ breast_cancer.html
 - データ数: 569
 - 特徴: 30
 - 分類: 2
- コード例
 - da2_classification_ensemble.ipynbを参考してください

分類結果

方法	SVM (Default Hyperparameter)	SVM (kernel="linear", C=0.025)
精度	0.6418	0.9403

• [練習]

- 他の分類器とハイパーパラメータを選んで、精度 向上を試みる
- [Option] 交差検証を調査して、使ってください

アンサンブル学習

方法	SVM	SVM	Ensemble (Random
	(Default	(kernel="linear",	Forest, Default
	Hyperparameter)	C=0.025)	Hyperparameter)
精度	0.6418	0.9403	0.9478

• アンサンブル学習

- 単一の学習器ではなく、複数の学習器の結果を融合して 汎化性能を高める
- アンサンブル方法例
 - Bagging (例: Random Forest等)
 - Boosting (例: Adaboost等)

探索的データ解析

- 探索的データ解析 (Exploratory Data Analysis: EDA)は、 統計を用いて図を作成することで、データが何を伝えているかを理解するプロセスです
- データセット
 - Boston house prices (ボストン住宅価格) データセット
 - https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load_ boston.html
- コード例
 - da2_eda_regression.ipynbを参考してください

回帰

- Yが連続値の時にデータに Y = f(X) というモデルを当てはめる事
 - 参考:https://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90
- データセット
 - Boston house prices (ボストン住宅価格) データセット
 - https://scikitlearn.org/stable/modules/generated/sklearn.datasets.load boston.html
 - データ数: 506
 - 特徴X:13
 - 目標Y: MEDV (Median value of owner-occupied homes in 1000's)
- コード例
 - da2_eda_regression.ipynbを参考してください

回帰結果

方法	Linear Regression (Ridge, Default Hyperparameter)	SVR (Default Hyperparameter)
評価指標: RMSE	5.4930	8.8628

RMSE: Root Mean Square Error

• [練習]

- 他の回帰方法とハイパーパラメータを選んで、結果 の向上を試みる
- [Option] Ridge回帰の特性(ヒント:目的関数、正則化等)を調査してください

クラスタリング

- 教師なし
- 異なるクラスタリングアルゴリズムの比較

参考文献: https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html

クラスタリング

• [練習]

- 下記URLのコードを実行して、クラスタリングアルゴリズムの特性を了解する
- https://scikitlearn.org/stable/auto_examples/cluster/plot_clus ter_comparison.html

3回目~5回目

- 3回目~4回目
 - データ解析コンテスト練習
 - 時間が少ないため、早めに始めたほうが良いで す

- 5回目
 - レポート報告会

Special thanks:

• TA: 三島 大進

• TA: 小宮山 亮太

誤字・脱字などを見つけたら

• 口頭でもメールでも構いませんので、李まで連絡して下さい。