DH Parameters of JacoR&D

Version 1.1.5

August 27, 2013

Warning

The information contained in this document is the property of Kinova. Except as specifically authorized in writing by Kinova, the holder of this document shall keep the information contained here confidential and shall protect same in whole or in part from disclosure and dissemination to third parties and use same for evaluation, operation and maintenance purposes only. This document is not an engagement of Kinova to develop, implement or design the product or techniques described here.

Revisions

Version	Primary Author(s)	Description of Version	Date Completed
1.0.1	LJ Caron	First Draft	08-07-2010
1.0.2	LJ Caron	Added Cartesian to angular functions	15-08-2011
1.0.3	LJ Caron	Added angular directions of joints	29-08-2011
1.0.4	A Lecours	Added inertial parameters	27-11-2012
1.1.0	A Lecours	DH parameters review	28-03-2013
1.1.1	P Fauteux	Added 2D drawing with dimensions	04-06-2013
1.1.2	A Lecours	Added frame position	04-06-2013
1.1.3	A Lecours	Changed hand frame position	25-07-2013
1.1.4	A Lecours	Changed D1 Length on figure	06-08-2013
1.1.5	A Lecours	Added joint limits	27-08-2013
1.1.6	A Lecours	Reset position and torque zero	18-10-2013

Review & Approval

Requirements Specification Approval History

Approving Party	Version Approved	Signature	Date
LJ. Caron			

Requirements Specification Review History

Reviewer	Version Reviewed	Signature	Date
C. Deguire			

Contents

REVISIONS	
REVIEW & APPROVAL	II
CONTENTS	
1 Introduction	1
1.1 DH PARAMETERS OF JACO	1
1.1.1 Classic DH Parameters	4
1.1.2 Modified DH Parameters (Craig)	
1.2 DIRECTIONS OF EACH JOINTS IN ANGULAR SPACE	E7
1.3 INERTIAL PARAMETERS	8
1 A TOINT LIMITE	۵

Introduction

1.1 DH Parameters of Jaco

Theses following parameters are all necessary DH values for kinematics of Jaco.

Robot lenght values (meters)			
D1	0.2755	Base to elbow	
D2	0.4100	Arm lengh	
D3	0.2073	Front arm lengh	
D4	0.0743	First wrist lengh	
D5	0.0743	Second wrist lengh	
D6	0.1687	Wrist to center of the hand	
e2	0.0098	Joint 3-4 lateral offset	

Alternate parameters		
aa	((11.0*PI)/72.0)	
ca	(cos(aa))	
sa	(sin(aa))	
c2a	(cos(2*aa))	
s2a	(sin(2*aa))	
d4b	(D3 + sa/s2a *D4)	
d5b	(sa/s2a*D4 + sa/s2a *D5)	
d6b	(sa/s2a*D5 + D6)	

Figure 1 : Robot length values

Figure 2 : Robot length values (units in mm)

Angular position: [270, 180, 180, 0, 0, 0]

1.1.1 Classic DH Parameters

DH Parameters				
i	alpha(i-1)	a(i-1)	di	teta1
1	pi/2	0	D1	q1
2	pi	D2	0	q2
3	pi/2	0	-e2	q3
4	2*aa	0	-d4b	q4
5	2*aa	0	-d5b	q5
6	pi	0	-d6b	q6

Equations for transformation from DH algorithm to Jaco physical angles
Q1(Jaco) = -Q1(DH Algo)
Q2(Jaco) = Q2(DH Algo) + 90
Q3(Jaco) = Q3(DH Algo) - 90
Q4(Jaco) = Q4(DH Algo)
Q5(Jaco) = Q5(DH Algo) + 180
Q6(Jaco) = Q6(DH Algo) - (180 - 80)

Figure 3 : Classic DH parameters frame position

Angular position is: [180, 270, 90, 180, 180, 350]

1.1.2 Modified DH Parameters (Craig)

DH Parameters				
i	alpha(i-1)	a(i-1)	di	teta1
1	0	0	D1	q1
2	-pi/2	0	0	q2
3	0	D2	e2	q3
4	-pi/2	0	d4b	q4
5	2*aa	0	d5b	q5
6	2*aa	0	d6b	q6

Equations for transformation from DH algorithm to Jaco physical angles
Q1(Jaco) = -Q1(DH Algo) + 180
Q2(Jaco) = Q2(DH Algo) + 270
Q3(Jaco) = -Q3(DH Algo) + 90
Q4(Jaco) = -Q4(DH Algo) + 180
Q5(Jaco) = -Q5(DH Algo) + 180
Q6(Jaco) = -Q6(DH Algo) + (180 + 80)

1.2 Directions of each joints in angular space

Figure 4: Directions of each joint in the angular space of the robot

Figure 5: Inertial parameters

Inertial parameters			
m0	0.63 kg		
m1	0.64 kg		
m2	0.64 kg		
m3	0.64 kg		
m4	0.39 kg		
m5	0.39 kg		
m6	0.39 kg		
mΗ	0.93 kg		

From Joint 6 to center of mass of the hand: ~8 cm

1.4 Joint limits

Joint	Minimum (degrees)	Maximum (degrees)
1	-10 000	10 000
2	47	313
3	19	341
4	-10 000	10 000
5	-10 000	10 000
6	-10 000	10 000

1.5 Zero Position

Figure 6 : Reset position

Angular position is: [180, 180, 180, 180, 180, 180]