Clustering

```
import pandas as pd
import numpy as np
# allow plots to appear in the notebook
%matplotlib notebook
import matplotlib.pyplot as plt
import seaborn
from mpl_toolkits.mplot3d import Axes3D
plt.rcParams['font.size'] = 14
plt.rcParams['figure.figsize'] = (8.0, 5.0)
```

1. DBSCAN

Using DBSCAN iterate (for-loop) through different values of min_samples (1 to 10) and epsilon (.05 to .5, in steps of .01) to find clusters in the road-data used in the Lesson and calculate the Silohouette Coeff for min_samples and epsilon . Plot **one** line plot with the multiple lines generated from the min_samples and epsilon values. Use a 2D array to store the SilCoeff values, one dimension represents min samples , the other represents epsilon.

Expecting a plot of epsilon vs sil score.

```
In [85]:
          X = pd.read csv('../data/3D spatial network.txt.gz', header=None, names=['osm', 'lat'
          X = X.drop(['osm'], axis=1).sample(1000)
          X.head()
Out[85]:
                        lat
                                 lon
                                           alt
          393597
                  8.291569 56.878087 12.596548
          342317
                  9.796822 56.814117 22.395665
          157827
                  8.781154 56.738636 32.078124
          175178 10.137708 56.809133 31.997393
          222729
                  9.718259 57.379248
                                     9.278766
In [14]:
          XX = X.copy()
          XX['alt'] = (X.alt - X.alt.mean())/X.alt.std()
          XX['lat'] = (X.lat - X.lat.mean())/X.lat.std()
          XX['lon'] = (X.lon - X.lon.mean())/X.lon.std()
          XX.head()
```

```
Out[14]:
                       lat
                                          alt
                                lon
            2118 -0.440213 -1.572362
                                    0.895279
          153569 -1.377963 -1.484812 -0.287326
          291441 -1.278020 -1.631540
                                     1.537482
          197666 0.124493 1.146735
                                     0.008990
          434214 0.259403 -0.250058 -0.605039
In [15]:
          from sklearn.cluster import DBSCAN
          from sklearn import metrics
In [59]:
          min_samples = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
          epsilons = np.arange(0.05, 0.51, 0.01)
          all scores = []
          for ms in min_samples:
               scores = []
               for e in epsilons:
                   dbscan = DBSCAN(eps = e, min_samples = ms)
                   labels = dbscan.fit_predict(XX[['lon', 'lat', 'alt']])
                   # calculate silouette score here
                   try:
                       score = metrics.silhouette_score(XX[['lon', 'lat', 'alt']], labels)
                   except ValueError:
                       print("NULL")
                   scores.append(score)
               all_scores.append(scores)
         NULL
         NULL
         NULL
         NULL
         NULL
In [60]:
          all_scores
```

[[0.1429720480594681, Out[60]: 0.16493398993073244, 0.18167158925613786, 0.21946115674989006, 0.24125681795192971, 0.2560401432362994, 0.2718365966283104, 0.27736756410885904, 0.26663790753468647, 0.2667010625915522, 0.26214836426437715, 0.2632335909395823, 0.23459406301582109, 0.1759506977603093, 0.15169241414735007, 0.15343934814415836, 0.07124840442716374, 0.039476478074380636, 0.037329477557041316, -0.0019096687056215705, -0.11684568709343082, -0.1804782769848567, -0.19025316630128303, -0.19928344843170775, -0.2965500194707005, -0.4138574328848015, -0.41740241738588807, -0.46757139418864224, -0.49454121981402993, -0.5070445970393045, -0.5124416284678023, -0.35938581738852826, -0.27643054929061645, -0.2766729619400737, -0.26709237507525496, -0.2544243326163745, -0.25274810881003573, -0.236966706674665, -0.18748196339398301, -0.18698023641887535, -0.1905148354397641, -0.1905148354397641, -0.1905148354397641, -0.1905148354397641, -0.1905148354397641, -0.1808746219797845], [-0.44585713404639715,-0.377692820717411, -0.3235998731921976, -0.23572703548598098, -0.14653327271516622,

-0.07511576236360597, -0.03171131449508599, 0.007831435002657653, 0.03818362806584487, 0.06984019296069453, 0.0988357102207119, 0.13823361360900926, 0.14927330769040603, 0.13128345343424444,

- 0.11900395452545344,
- 0.14246538707409676,
- 0.07063375066415437,
- 0.06229309461323855,
- 0.06124748234974148,
- 0.023559952594499278,
- -0.1016933247874809,
- -0.1581388669749202,
- -0.13481270198629092,
- -0.12362097595509036,
- -0.2106467182295879,
- -0.3487246958625422
- -0.34196312380510324,
- -0.3852790143370273,
- -0.4038232213408012,
- -0.407372510125861,
- -0.33497723693796183,
- -0.12766900226493813,
- -0.12803318649128,
- -0.1285980981643968,
- -0.1288249047054631,
- -0.12675767546911856,
- -0.12171713888299927,
- -0.12184678193706391,
- -0.12810274138721764,
- -0.12695567414159836,
- -0.12996049189439052,
- 0.12330043103433032
- -0.12996049189439052,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.1257275241275713],
- [-0.4636398080178269,
- -0.4566156302435946,
- -0.44718628791674625,
- -0.40937282363588023,
- -0.35951411229785823,
- -0.30040626117162916,
- -0.26261440641814116,
- -0.2130594388205667,
- -0.16999579001397905,
- -0.11183527182306065,
- -0.07688263216884902,
- -0.04077558766489591,
- 0.003999340170026871,
- -0.0029367745797238484,
- 0.00038258962345594493,
- 0.03375612181606558,
- 0.05575012181000558,
- -0.008098696865707208
- 0.004067303819267396,
- 0.012838115038890386,
- -0.03358044209222803, -0.13920810222799962,
- -0.1855673114640855,
- -0.1476917458411725,
- -0.11874128779573073,
- -0.18217733608044062,
- -0.3028084879397919,
- -0.2765569522763602,
- -0.30821910829947263,

- -0.31680702373977865,
- -0.31459497322138863,
- -0.171805572898192,
- -0.13069742079832838,
- -0.13085804665920198,
- -0.13121129378105706,
- -0.13115705582581139,
- -0.12851719708002216,
- -0.12320056458858104,
- -0.12327609444517719,
- -0.12909300720987216,
- -0.1282248720722851,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.12996049189439052,
- -0.1257275241275713],
- [-0.3429829080980562,
- -0.38836336213151035,
- -0.42258340155405044,
- -0.4455374973931988,
- -0.4105790024705078,
- -0.38181693260192723,
- -0.35839313636898634,
- -0.3225349893029172,
- -0.28481974351038253,
- -0.2509277251323321,
- -0.20332563215152868,
- -0.15833890399779124,
- -0.10842152373685678,
- -0.11942895177278062,
- -0.1085528149613384,
- -0.0829938403767965,
- -0.08829863699058295,
- -0.03946499024961483, -0.02128782169338406,
- -0.06853355073598177,
- -0.16701797181396905,
- -0.22432860569909036,
- -0.17244542856381997,
- -0.13821146520284702,
- -0.2037263342184978,
- -0.323407665845563,
- -0.2777310923053042,
- -0.261454257396005,
- -0.29926923927045856,
- -0.29950483555419455,
- -0.13483206631513606,
- -0.08463905867794225,
- -0.08318265326346738,
- -0.07016264343808157,
- -0.07007087428898003,
- -0.11229481543157573,
- -0.10690516597358127,
- -0.10904356802329888,
- -0.10904356802329888,
- -0.10907742284205373, -0.1104777239283307,
- -0.1104777239283307,

- -0.12436112599422791,
- -0.12438034766145381,
- -0.12438034766145381,
- -0.11409640731467675],
- [-0.346121037489257,
 - -0.3148746948378042,
 - -0.3146/403463/6042,
- -0.31384408219770904,
- -0.3017992824627466,
- -0.28115606583317865,
- -0.3141066402164979,
- -0.2848780359364851,
- -0.2570006112085126,
- -0.2922966498573396,
- -0.3011132543960506,
- -0.2731400139587545,
- -0.2/3140013930/343,
- -0.2198359541115795,
- -0.20484198595623304,
- -0.1865334089666986,
- -0.15288025296494223,
- -0.12811402557049686,
- -0.11183700097405727,
- -0.1157689445347473,
- -0.0770907374850573,
- -0.07043475614343687,
- -0.12399960925894629,
- -0.1334417549609433,
- -0.18144774219099902,
- -0.16813820863485762,
- -0.15274903660709027,
- -0.18816112507584962,
- -0.16067049095509417,
- -0.13763162083123606,
- -0.2731156776924738,
- -0.2751150770524750,
- -0.2712927512091043,
- -0.12688814734335402,
- -0.12490833170871636,
- 0.037649640369429,
- 0.04069072361484621,
- 0.043409748791549914,
- 0.04636574937522271,
- 0.049161072352750544,
- -0.0761251528622603,
- -0.07665618427513374,
- -0.10904356802329888,
- -0.1104629605154662,
- -0.1104629605154662,
- -0.1104777239283307,
- -0.11055523914473786,
- -0.11055523914473786,
- -0.1112896809946638],
- [0.03494165406147326,
- -0.24142937905465334,
- -0.2643847045385302,
- -0.2933873024971091,
- -0.2734042970342209,
- -0.2734042970342209, -0.2885928647886776,
- -0.27550548298493954
- -0.26870503227106185,
- -0.25247996728232813,
- -0.2288743608115638,
- localhost:8888/nbconvert/html/08/masamitsu-week8-asnmt.ipynb?download=false

- -0.28617061340067057,
- -0.2335655759102645,
- -0.23768937374606974,
- -0.24848777985737144,
- -0.21065198494572143,
- -0.19351277675025083,
- -0.1800691945156537,
- -0.13228008997887183,
- -0.13220000337007103
- -0.12424355912622635,
- -0.07104693397540401,
- -0.13381763210360623,
- -0.1083669310766594,
- -0.05402884721812087,
- -0.033332034997206085,
- 0.0031551119159365947,
- -0.14098129845826807,
- -0.13097879797513798,
- -0.12667048401368258,
- -0.15540703187857452,
- -0.254708728341456,
- -0.24925948662260133,
- -0.24775394824618877,
- -0.23939159017734848,
- -0.2211006595265945,
- -0.22196141501038716,
- -0.22200202556812118,
- 0.04913387532233257,
- 0.050392148080013015,
- 0.05026505392565656,
- 0.05026505392565656,
- 0.045849056906699416,
- 0.043649030900099410,
- 0.045849056906699416,
- 0.04784996013785795,
- 0.04784996013785795, 0.05019390110469622,
- 0.04730601177323088],
- [0.01880993583879694,
- 0.027646334300340003
- 0.027616324390340993,
- -0.2750325830356104,
- -0.2506355746004277,
- -0.21611403570836724,
- -0.27190324868182053,
- -0.26245221807147473,
- -0.24454960705801915,
- -0.23526173027733677,
- -0.22814753123736198,
- -0.24518093595990154,
- -0.2290361302693935,
- -0.18070744113093168,
- -0.18156188454215436,
- -0.2511975271669084,
- -0.23033725471244051,
- -0.20788457780879355,
- -0.17746210085272912,
- -0.16335658172636466,
- -0.12449704902373031,
- -0.126092020654594,
- -0.1891800826813939, -0.16662151087722105,
- -0.10101761604334483,
- localhost:8888/nbconvert/html/08/masamitsu-week8-asnmt.ipynb?download=false

- -0.04344910570538677,
- -0.15309596988944582,
- -0.14122242411273508,
- -0.1382545549481973,
- -0.12602703061882908
- -0.11204180679201806,
- -0.15964226479676644,
- -0.15996708983777141,
- -0.11771894693785213,
- 0.01194346503340349,
- 0.012531063769395206,
- 0.018206731031354687,
- 0.03092875314021777,
- 0.039891288265107926,
- 0.042986175313764745,
- 0.042986175313764745,
- 0.04174334314148857,
- 0.043353917443931245
- 0.046231213301419334,
- 0.04784996013785795,
- 0.04784996013785795,
- 0.04730601177323088],
- [0.01880993583879694,
- 0.01880993583879694,
- 0.03107316244436622,
- 0.03913693253592997,
- 0.004555337103453274,
- -0.24108121451300968,
- -0.25467158891868485,
- -0.24267179001539285,
- -0.22711818102050985,
- -0.21635874195421156,
- -0.2087307053849957,
- -0.29360163577322235,
- -0.22602677150042927,
- -0.23314478517219378,
- -0.19618968993963187,
- -0.21907674137495892,
- -0.19695193918163595,
- -0.19041561571469356,
- -0.1689806060669074,
- -0.15961807909467382,
- -0.14888003387925347,
- -0.11757263534908428,
- -0.09226091527458676,
- -0.0493297434919437,
- -0.03265386254331351,
- -0.037055098390725814,
- -0.09128027315117561,
- -0.10748826532634034,
- -0.1148369125383745,
- -0.13607783169866655,
- -0.07411501030700414,
- -0.21624519761152874,
- -0.20649762486862164,
- -0.1559100001747144,
- -0.15408622643149494, 0.013454259989108944,
- 0.012465862660999407,
- 0.0329854192093857,

- 0.03540282688373866,
- 0.03761310739180322,
- 0.04343742110630606,
- 0.04318154432880078,
- 0.0444484070682789,
- 0.0444484070682789,
- 0.045849056906699416,
- 0.045134892876576245],
- [0.045134892876576245,
- 0.045134892876576245,
- 0.017084037683563008,
- 0.03913693253592997,
- 0.04884998947926799,
- 0.003991491854499655,
- -0.22982649819550605,
- -0.28430794126877945,
- -0.24360505511895653,
- -0.21976304217353448,
- -0.21631462018681338,
- -0.27356276618924874,
- -0.21954732297174073,
- -0.24589449838828256,
- -0.2228667943105415,
- -0.19629042301445895,
- -0.15341176965585418,
- -0.20373197635882948,
- -0.1834550073912677,
- -0.11825088765510637,
- -0.14629561555141532,
- -0.1192012525794607,
- -0.12590702467103346,
- -0.11333755178598157,
- -0.060207092552693825,
- -0.017679994979973048,
- -0.08369203419126402,
- -0.1732882590241293,
- -0.13162111283546318,
- -0.08198719745127574,
- 0.00726779271145872,
- 0.020193726040761858,
- 0.030717046513128173,
- -0.02486690636905354,
- -0.14867403870000817,
- -0.07381450453468952,
- 0.02971144808694271,
- 0.019148422603736094,
- 0.026647598283072782,
- 0.03204998209017488,
- 0.043550230825837824,
- 0.04430527857027793,
- 0.04430527857027793,
- 0.04430527857027793,
- 0.04592112265721499,
- 0.04295461763112808],
- [0.04295461763112808,
- 0.04295461763112808, 0.04295461763112808,
- 0.020172982078140868,
- 0.045391093436643604,
- 0.001924665762453822,

```
-0.23580724989579263,
            -0.23128441885458909,
            -0.21239409586094213,
            -0.24487236506716328,
            -0.21053392589652103,
            -0.21233630244128643,
            -0.26349774364854023,
            -0.22781225819831818,
            -0.25710833318847665,
            -0.215984855117687,
            -0.191427861939241,
            -0.13556217045248622,
            -0.17748049869385635,
            -0.14046649100229477,
            -0.13830121447268,
            -0.09592912843484529,
            -0.08863672441228826,
            -0.1161864031209964,
            -0.10031421536759015,
            -0.07669204557211574,
            -0.04944283753748759,
            0.010528996914505144,
            -0.04695404687808589,
            -0.03632720048455556,
            -0.07927231924863967,
            -0.05325001277137058,
            -0.016659460486898914,
            0.0291405813632043,
            -0.132039737094006,
            -0.12476895844254701,
            -0.12009666696176252,
            0.025360273727905256,
            0.010168655323542523,
            0.017246264001192887,
            0.025630828798847545,
            0.025474395540269618,
            0.03675722527057428,
            0.03675722527057428,
            0.04175573636606895,
            0.041289376470531346]]
In [61]:
          sc df = pd.DataFrame(all scores, columns = epsilons).T
          sc_df.columns = ["one", "two", "three", "four", "five", "six", "seven", "eight", "nin
In [62]:
          sc df
```

Out[62]:

	one	two	three	four	five	six	seven	eight	nine
0.05	0.142972	-0.445857	-0.463640	-0.342983	-0.346121	0.034942	0.018810	0.018810	0.045135
0.06	0.164934	-0.377693	-0.456616	-0.388363	-0.314875	-0.241429	0.027616	0.018810	0.045135
0.07	0.181672	-0.323600	-0.447186	-0.422583	-0.313844	-0.264385	-0.275033	0.031073	0.017084
0.08	0.219461	-0.235727	-0.409373	-0.445537	-0.301799	-0.293387	-0.250636	0.039137	0.039137
0.09	0.241257	-0.146533	-0.359514	-0.410579	-0.281156	-0.273404	-0.216114	0.004555	0.048850
0.10	0.256040	-0.075116	-0.300406	-0.381817	-0.314107	-0.288593	-0.271903	-0.241081	0.003991
0.11	0.271837	-0.031711	-0.262614	-0.358393	-0.284878	-0.275505	-0.262452	-0.254672	-0.229826
0.12	0.277368	0.007831	-0.213059	-0.322535	-0.257001	-0.268705	-0.244550	-0.242672	-0.284308
0.13	0.266638	0.038184	-0.169996	-0.284820	-0.292297	-0.252480	-0.235262	-0.227118	-0.243605
0.14	0.266701	0.069840	-0.111835	-0.250928	-0.301113	-0.228874	-0.228148	-0.216359	-0.219763
0.15	0.262148	0.098836	-0.076883	-0.203326	-0.273140	-0.286171	-0.245181	-0.208731	-0.216315
0.16	0.263234	0.138234	-0.040776	-0.158339	-0.219836	-0.233566	-0.229036	-0.293602	-0.273563
0.17	0.234594	0.149273	0.003999	-0.108422	-0.204842	-0.237689	-0.180707	-0.226027	-0.219547
0.18	0.175951	0.131283	-0.002937	-0.119429	-0.186533	-0.248488	-0.181562	-0.233145	-0.245894
0.19	0.151692	0.119004	0.000383	-0.108553	-0.152880	-0.210652	-0.251198	-0.196190	-0.222867
0.20	0.153439	0.142465	0.033756	-0.082994	-0.128114	-0.193513	-0.230337	-0.219077	-0.196290
0.21	0.071248	0.070634	-0.008099	-0.088299	-0.111837	-0.180069	-0.207885	-0.196952	-0.153412
0.22	0.039476	0.062293	0.004067	-0.039465	-0.115769	-0.132280	-0.177462	-0.190416	-0.203732
0.23	0.037329	0.061247	0.012838	-0.021288	-0.077091	-0.124244	-0.163357	-0.168981	-0.183455
0.24	-0.001910	0.023560	-0.033580	-0.068534	-0.070435	-0.071047	-0.124497	-0.159618	-0.118251
0.25	-0.116846	-0.101693	-0.139208	-0.167018	-0.124000	-0.133818	-0.126092	-0.148880	-0.146296
0.26	-0.180478	-0.158139	-0.185567	-0.224329	-0.133442	-0.108367	-0.189180	-0.117573	-0.119201
0.27	-0.190253	-0.134813	-0.147692	-0.172445	-0.181448	-0.054029	-0.166622	-0.092261	-0.125907
0.28	-0.199283	-0.123621	-0.118741	-0.138211	-0.168138	-0.033332	-0.101018	-0.049330	-0.113338
0.29	-0.296550	-0.210647	-0.182177	-0.203726	-0.152749	0.003155	-0.043449	-0.032654	-0.060207
0.30	-0.413857	-0.348725	-0.302808	-0.323408	-0.188161	-0.140981	-0.153096	-0.037055	-0.017680
0.31	-0.417402	-0.341963	-0.276557	-0.277731	-0.160670	-0.130979	-0.141222	-0.091280	-0.083692
0.32	-0.467571	-0.385279	-0.308219	-0.261454	-0.137632	-0.126670	-0.138255	-0.107488	-0.173288
0.33	-0.494541	-0.403823	-0.316807	-0.299269	-0.273116	-0.155407	-0.126027	-0.114837	-0.131621
0.34	-0.507045	-0.407373	-0.314595	-0.299505	-0.271293	-0.254709	-0.112042	-0.136078	-0.081987
0.35	-0.512442	-0.334977	-0.171806	-0.134832	-0.126888	-0.249259	-0.159642	-0.074115	0.007268
0.36	-0.359386	-0.127669	-0.130697	-0.084639	-0.124908	-0.247754	-0.159967	-0.216245	0.020194
0.37	-0.276431	-0.128033	-0.130858	-0.083183	0.037650	-0.239392	-0.117719	-0.206498	0.030717

	one	two	three	four	five	six	seven	eight	nine
0.38	-0.276673	-0.128598	-0.131211	-0.070163	0.040691	-0.221101	0.011943	-0.155910	-0.024867
0.39	-0.267092	-0.128825	-0.131157	-0.070071	0.043410	-0.221961	0.012531	-0.154086	-0.148674
0.40	-0.254424	-0.126758	-0.128517	-0.112295	0.046366	-0.222002	0.018207	0.013454	-0.073815
0.41	-0.252748	-0.121717	-0.123201	-0.106905	0.049161	0.049134	0.030929	0.012466	0.029711
0.42	-0.236967	-0.121847	-0.123276	-0.109044	-0.076125	0.050392	0.039891	0.032985	0.019148
0.43	-0.187482	-0.128103	-0.129093	-0.109044	-0.076656	0.050265	0.042986	0.035403	0.026648
0.44	-0.186980	-0.126956	-0.128225	-0.109077	-0.109044	0.050265	0.042986	0.037613	0.032050
0.45	-0.190515	-0.129960	-0.129960	-0.110478	-0.110463	0.045849	0.041743	0.043437	0.043550
0.46	-0.190515	-0.129960	-0.129960	-0.110478	-0.110463	0.045849	0.043354	0.043182	0.044305
0.47	-0.190515	-0.129960	-0.129960	-0.124361	-0.110478	0.047850	0.046231	0.044448	0.044305
0.48	-0.190515	-0.129960	-0.129960	-0.124380	-0.110555	0.047850	0.047850	0.044448	0.044305
0.49	-0.190515	-0.129960	-0.129960	-0.124380	-0.110555	0.050194	0.047850	0.045849	0.045921
0.50	-0.180875	-0.125728	-0.125728	-0.114096	-0.111290	0.047306	0.047306	0.045135	0.042955

```
In [63]:
          plt.figure()
          plt.plot(sc_df["one"])
          plt.plot(sc df["two"])
          plt.plot(sc_df["three"])
          plt.plot(sc_df["four"])
          plt.plot(sc_df["five"])
          plt.plot(sc_df["six"])
          plt.plot(sc_df["seven"])
          plt.plot(sc_df["eight"])
          plt.plot(sc_df["nine"])
          plt.plot(sc_df["ten"])
          plt.legend(sc_df, bbox_to_anchor=(1, 1), loc='upper left', fontsize = "8")
          plt.xlabel('Epsilon (0.05 - 0.50)')
          plt.ylabel('Silhouette Coefficient')
          plt.grid(True)
          plt.show()
```


2. Clustering your own data

Using your own data, find relevant clusters/groups within your data (repeat the above). If your data is labeled with a class that you are attempting to predict, be sure to not use it in training and clustering.

You may use the labels to compare with predictions to show how well the clustering performed using one of the clustering metrics (http://scikit-

learn.org/stable/modules/clustering.html#clustering-performance-evaluation).

If you don't have labels, use the silhouette coefficient to show performance. Find the optimal fit for your data but you don't need to be as exhaustive as above.

Additionally, show the clusters in 2D or 3D plots.

As a bonus, try using PCA first to condense your data from N columns to less than N.

Two items are expected:

- Metric Evaluation Plot (like in 1.)
- Plots of the clustered data

```
wine = pd.read_csv('../data/WineQT.csv', names=['fixedacid', 'volatileacid','citricac
wine = wine.iloc[1: , :]
wine
```

Out[75]:		fixedacid	volatileacid	citricacid	residualsugar	chlorides	freesulfurdio	totalsulfurdio	density
	1	7.4	0.7	0	1.9	0.076	11	34	0.9978
	2	7.8	0.88	0	2.6	0.098	25	67	0.9968
	3	7.8	0.76	0.04	2.3	0.092	15	54	0.997
	4	11.2	0.28	0.56	1.9	0.075	17	60	0.998
	5	7.4	0.7	0	1.9	0.076	11	34	0.9978
	•••								
	1138	5.4	0.74	0.09	1.7	0.089	16	26	0.99402
	1139	6.3	0.51	0.13	2.3	0.076	29	40	0.99574
	1140	6.8	0.62	0.08	1.9	0.068	28	38	0.99651
	1141	6.2	0.6	0.08	2	0.09	32	44	0.9949
	1142	5.9	0.55	0.1	2.2	0.062	39	51	0.99512

1142 rows × 12 columns

```
In [76]:
          wine.dtypes
         fixedacid
                           object
Out[76]:
         volatileacid
                            object
         citricacid
                           object
         residualsugar
                           object
         chlorides
                           object
         freesulfurdio
                           object
         totalsulfurdio
                            object
                            object
         density
         рΗ
                            object
         sulphates
                            object
         alcohol
                            object
         quality
                            object
         dtype: object
In [77]:
          wine["fixedacid"] = pd.to numeric(wine.fixedacid, errors='coerce')
          wine["volatileacid"] = pd.to numeric(wine.volatileacid, errors='coerce')
          wine["citricacid"] = pd.to_numeric(wine.citricacid, errors='coerce')
          wine["residualsugar"] = pd.to numeric(wine.residualsugar, errors='coerce')
          wine["chlorides"] = pd.to_numeric(wine.chlorides, errors='coerce')
          wine["freesulfurdio"] = pd.to numeric(wine.freesulfurdio, errors='coerce')
          wine["totalsulfurdio"] = pd.to numeric(wine.totalsulfurdio, errors='coerce')
          wine["density"] = pd.to_numeric(wine.density, errors='coerce')
          wine["pH"] = pd.to_numeric(wine.pH, errors='coerce')
          wine["sulphates"] = pd.to numeric(wine.sulphates, errors='coerce')
          wine["alcohol"] = pd.to numeric(wine.alcohol, errors='coerce')
          wine["quality"] = pd.to numeric(wine.quality, errors='coerce')
In [78]:
          wine.dtypes
```

Out[78]:

fixedacid

float64

```
volatileacid
                            float64
          citricacid
                            float64
          residualsugar
                            float64
          chlorides
                            float64
          freesulfurdio
                            float64
          totalsulfurdio
                            float64
                            float64
          density
                            float64
          рΗ
          sulphates
                            float64
          alcohol
                            float64
          quality
                               int64
          dtype: object
In [79]:
          wine x = wine.copy()
          wine x['fixedacid'] = (wine.fixedacid - wine.fixedacid.mean())/wine.fixedacid.std()
          wine x['volatileacid'] = (wine.volatileacid - wine.volatileacid.mean())/wine.volatile
          wine_x['citricacid'] = (wine.citricacid - wine.citricacid.mean())/wine.citricacid.std
          wine x['residualsugar'] = (wine.residualsugar - wine.residualsugar.mean())/wine.resid
          wine x['chlorides'] = (wine.chlorides - wine.chlorides.mean())/wine.chlorides.std()
          wine x['freesulfurdio'] = (wine.freesulfurdio - wine.freesulfurdio.mean())/wine.frees
          wine_x['totalsulfurdio'] = (wine.totalsulfurdio - wine.totalsulfurdio.mean())/wine.to
          wine x['density'] = (wine.density - wine.density.mean())/wine.density.std()
          wine x['pH'] = (wine.pH - wine.pH.mean())/wine.pH.std()
          wine_x['sulphates'] = (wine.sulphates - wine.sulphates.mean())/wine.sulphates.std()
          wine x['alcohol'] = (wine.alcohol - wine.alcohol.mean())/wine.alcohol.std()
          wine_x['quality'] = (wine.quality - wine.quality.mean())/wine.quality.std()
          wine x.head()
Out[79]:
             fixedacid volatileacid
                                 citricacid residualsugar
                                                        chlorides freesulfurdio totalsulfurdio
                                                                                            density
          1 -0.522767
                         0.939229
                                 -1.364832
                                              -0.466388
                                                        -0.231420
                                                                     -0.449177
                                                                                  -0.363344 0.554899
          2 -0.293790
                         1.941008 -1.364832
                                               0.049676
                                                                                   0.642863 0.035567
                                                        0.233827
                                                                     0.917545
          3 -0.293790
                         1.273155 -1.161501
                                              -0.171494
                                                        0.106942
                                                                     -0.058685
                                                                                   0.246479 0.139433
            1.652513
                        -1.398256
                                  1.481810
                                              -0.466388
                                                        -0.252567
                                                                     0.136561
                                                                                   0.429425 0.658766
          5 -0.522767
                                              -0.466388 -0.231420
                                                                                  -0.363344 0.554899
                         0.939229 -1.364832
                                                                     -0.449177
In [82]:
           min_samples = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
           epsilons = np.arange(0.05, 0.51, 0.01)
           all scores = []
          for ms in min samples:
               scores = []
               for e in epsilons:
                   dbscan = DBSCAN(eps = e, min samples = ms)
                   labels = dbscan.fit_predict(wine_x[['fixedacid', 'volatileacid','citricacid',
                   # calculate silouette score here
                   try:
                       score = metrics.silhouette score(wine x[['fixedacid', 'volatileacid','cit
                   except ValueError:
                       pass
                   scores.append(score)
```

all_scores.append(scores)

In [83]: all_scores

[[0.21272127210230227, Out[83]: 0.2144390455007918, 0.2144390455007918, 0.2144390455007918, 0.2144390455007918, 0.2144390455007918, 0.2144390455007918, 0.21507165852514076, 0.21672910173248144, 0.21672910173248144, 0.21794795189864422, 0.2195543546701948, 0.2200695182149805, 0.22207203606217346, 0.22207203606217346, 0.22561999660070883, 0.22561999660070883, 0.22561999660070883, 0.22714046003858346, 0.22714046003858346, 0.22913451854823905, 0.23029653139098655, 0.23029653139098655, 0.23029653139098655, 0.23029653139098655, 0.23057587092650975, 0.23057587092650975, 0.23057587092650975, 0.23057587092650975, 0.23287132019419382, 0.2339771563263904, 0.23568617916048804, 0.23568617916048804, 0.23680220526740262, 0.23680220526740262, 0.2360164156184699, 0.2360164156184699, 0.2360164156184699, 0.23627875838148096, 0.23735040780830594, 0.23735040780830594, 0.23670474178742704, 0.23670474178742704, 0.23670474178742704, 0.23696162457060416, 0.23943760512627024], [-0.2615586699278065, -0.25850218095017874, -0.25850218095017874, -0.25850218095017874, -0.25850218095017874, -0.25850218095017874, -0.25850218095017874, -0.2567797624938396, -0.25442443068735837, -0.25442443068735837, -0.2526202664460744, -0.250254623459601, -0.24887638660526823, -0.24427566060469633,

- -0.24427566060469633,
- -0.2386974198421971,
- -0.2386974198421971,
- -0.2386974198421971,
- -0.23626897075478226,
- -0.23626897075478226,
- -0.2333338265613444,
- -0.2310029426359906,
- -0.2310029426359906
- -0.2310029426359906,
- -0.2310029426359906,
- -0.22988929826208165,
- -0.22988929826208165,
- -0.22988929826208165,
- -0.22988929826208165,
- -0.22581520034821426, -0.22400845548691295,
- 0 040050040004000
- -0.21885324389313962,
- -0.21885324389313962,
- -0.2164116699226785,
- -0.2164116699226785,
- -0.21582798608060363,
- -0.21582798608060363,
- -0.21582798608060363,
- -0.21467925834843346,
- -0.21101849937897624,
- -0.21101849937897624,
- -0.2104932548789519,
- -0.2104932548789519,
- -0.2104932548789519,
- -0.20803308995542233,
- -0.20373917375515516],
- [-0.37609789719591663,
- -0.37609789719591663,
- -0.37609789719591663,
- -0.37609789719591663,
- -0.37609789719591663,
- -0.37609789719591663,
- -0.37609789719591663,
- -0.37695871660169544,
- -0.37695871660169544,
- -0.37695871660169544,
- -0.37695871660169544,
- -0.37695871660169544,
- -0.3830043403858295,
- -0.3830043403858295,
- -0.3830043403858295,
- -0.3817324253828289,
- -0.3817324253828289,
- -0.3817324253828289,
- 0.3017324233020203
- -0.3817324253828289, -0.3817324253828289,
- -0.38411916661139034,
- -0.38411916661139034,
- -0.38411916661139034,
- -0.38411916661139034,
- -0.38411916661139034,
- -0.3876665581011336, -0.3876665581011336,
- -0.3876665581011336,
- localhost:8888/nbconvert/html/08/masamitsu-week8-asnmt.ipynb?download=false

- -0.3876665581011336,
- -0.3876665581011336,
- -0.3876665581011336,
- -0.38700482620993554,
- -0.38700482620993554,
- -0.38700482620993554,
- -0.38700482620993554,
- -0.38412243865865275,
- -0.38412243865865275,
- -0.38412243865865275,
- -0.39925476516457814,
- -0.39925476516457814,
- -0.39925476516457814,
- -0.39968884804077376,
- -0.39968884804077376,
- -0.39968884804077376,
- -0.40004803977699394,
- -0.40074149155016425],
- [-0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.25737106653123987,
- -0.28886599390756734,
- -0.28886599390756734,
- -0.28886599390756734,
- -0.28886599390756734,
- -0.28886599390756734,
- -0.28886599390756734,
- -0.30532997477543233,

- -0.30532997477543233, -0.30532997477543233, -0.30532997477543233, -0.30532997477543233], [-0.30532997477543233,-0.30532997477543233, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364], [-0.12266326478526364,-0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364,
- -0.12266326478526364,

-0.12266326478526364,

- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12200320478320304
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- 0.12200320470320304
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- 0.12200320470320304
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12200320476320304
- -0.12266326478526364, -0.12266326478526364,
- -0.12266326478526364],
- [-0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364, -0.12266326478526364,
- -0.12266326478526364,
- localhost:8888/nbconvert/html/08/masamitsu-week8-asnmt.ipynb?download=false

- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12200320478320304
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12200320470320304
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364],
- [-0.12266326478526364,
- [-0.12200320478320304,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12200320476320304
- -0.12266326478526364, -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,
- -0.12266326478526364,

- -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364, -0.12266326478526364], [-0.12266326478526364,-0.12266326478526364, -0.12266326478526364], [-0.12266326478526364,-0.12266326478526364, -0.12266326478526364, -0.12266326478526364,
- localhost:8888/nbconvert/html/08/masamitsu-week8-asnmt.ipynb?download=false

-0.12266326478526364, -0.12266326478526364,

```
-0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364,
            -0.12266326478526364]]
In [88]:
          wine sc df = pd.DataFrame(all scores, columns = epsilons).T
          wine_sc_df.columns = ["one", "two", "three", "four", "five", "six", "seven", "eight",
In [89]:
          wine sc df
```

2, 6:43 PM			masamitsu-week8-asnmt										
Out[89]:		one	two	three	four	five	six	seven	eight	nine			
	0.05	0.212721	-0.261559	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.06	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.07	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.08	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.09	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.10	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.11	0.214439	-0.258502	-0.376098	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.12	0.215072	-0.256780	-0.376959	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.13	0.216729	-0.254424	-0.376959	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.14	0.216729	-0.254424	-0.376959	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.15	0.217948	-0.252620	-0.376959	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.16	0.219554	-0.250255	-0.376959	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.17	0.220070	-0.248876	-0.383004	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.18	0.222072	-0.244276	-0.383004	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.19	0.222072	-0.244276	-0.383004	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.20	0.225620	-0.238697	-0.381732	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.21	0.225620	-0.238697	-0.381732	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.22	0.225620	-0.238697	-0.381732	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.23	0.227140	-0.236269	-0.381732	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.24	0.227140	-0.236269	-0.381732	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.25	0.229135	-0.233334	-0.384119	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.26	0.230297	-0.231003	-0.384119	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.27	0.230297	-0.231003	-0.384119	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.28	0.230297	-0.231003	-0.384119	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.29	0.230297	-0.231003	-0.384119	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.30	0.230576	-0.229889	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.31	0.230576	-0.229889	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.32	0.230576	-0.229889	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.33	0.230576	-0.229889	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.34	0.232871	-0.225815	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.35	0.233977	-0.224008	-0.387667	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			
	0.36	0.235686	-0.218853	-0.387005	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663			

0.37 0.235686 -0.218853 -0.387005 -0.257371 -0.305330 -0.122663 -0.122663 -0.122663 -0.122663

	one	two	three	four	five	six	seven	eight	nine
0.38	0.236802	-0.216412	-0.387005	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663
0.39	0.236802	-0.216412	-0.387005	-0.257371	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663
0.40	0.236016	-0.215828	-0.384122	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.41	0.236016	-0.215828	-0.384122	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.42	0.236016	-0.215828	-0.384122	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.43	0.236279	-0.214679	-0.399255	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.44	0.237350	-0.211018	-0.399255	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.45	0.237350	-0.211018	-0.399255	-0.288866	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.46	0.236705	-0.210493	-0.399689	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.47	0.236705	-0.210493	-0.399689	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.48	0.236705	-0.210493	-0.399689	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.49	0.236962	-0.208033	-0.400048	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663
0.50	0.239438	-0.203739	-0.400741	-0.305330	-0.122663	-0.122663	-0.122663	-0.122663	-0.122663

```
In [90]:
          plt.figure()
          plt.plot(wine_sc_df["one"])
          plt.plot(wine sc df["two"])
          plt.plot(wine_sc_df["three"])
          plt.plot(wine_sc_df["four"])
          plt.plot(wine_sc_df["five"])
          plt.plot(wine_sc_df["six"])
          plt.plot(wine_sc_df["seven"])
          plt.plot(wine_sc_df["eight"])
          plt.plot(wine_sc_df["nine"])
          plt.plot(wine_sc_df["ten"])
          plt.legend(wine_sc_df, bbox_to_anchor=(1, 1), loc='upper left', fontsize = "8")
          plt.xlabel('Epsilon (0.05 - 0.50)')
          plt.ylabel('Silhouette Coefficient')
          plt.grid(True)
          plt.show()
```


My dataset contains the make up of just over 1,100 different wines. In the code above, I did a dbscan to cluster the wines into 10 different clusters. However, the last 5 clusters are all identical. This makes sense as wines can be very similar. For that reason, this dataset would probably best fit into 4 or 5 clusters. Regardless, I have graphed each cluster's epsilon and silhouette coeffiient above. Because the final 5 clusters are identical, they are all represented by the same line.

In []:	