

Learning

Summary

Methods,
Parameters,
and Evaluation

Learning from 10K Feet

- Hypothesis (model) space
- Objective function
- Optimization algorithm

Hypothesis Space

- What are we searching for
 - Parameters
 - Structure
- Imposing constraints
 - For computational efficiency
 - To reduce model capacity
 - To incorporate prior knowledge

Objective Function

- Penalized likelihood
 - $-\underbrace{\ell((G,\theta_G):D)+R(G,\theta_G)}$
 - Parameter prior (MRFs Lz or L,) (Ms Dirichlet)
 - Structure complexity penalty
- · Bayesian score (integrating parameter)
 - $-\log P(G \mid D)$
 - = log P(D | G) + log P(G) + Const

Daphne Koller

Optimization Algorithm

- Continuous
 - Closed form BNs with multinomial
 - Gradient ascent < messing date
 - EM learning with missing data
- Discrete
 - Max spanning tree
 - Hill-climbing add, diderenove
- · Discrete + continuous computationally expensive

Hyperparameters

- Model hyperparameters
 - Equivalent sample size for parameter prior
 - Regularization strength for L1 or L2
 - Stopping criterion for EM
 - Strength of structure penalty
 - Set of features
 - # of values of latent variable
- · Optimize on validation set evaluate an validation set

Model Evaluation Criteria

- Log-likelihood on test set
- · Task-specific objective segmentation according were
- · "Match" with prior knowledge

Troubleshooting: Underfitting

- Training & test performance both low
- Solutions
 - Decrease regularization
 - Reduce structure penalties
 - Add features via error analysis

Troubleshooting: Overfitting

- Training performance high, test performance low
- Solutions:
 - Increase regularization
 - Impose capacity constraints
 - Reduce feature set

Troubleshooting: Optimization

- Optimization may not be converging to good / global optimum
 - Can happen even if problem is convex
- Compare different learning rates, different random initializations

Troubleshooting: Objective Mismatch

Objective($\underline{M_1}$) >> Objective($\underline{M_2}$) × Performance($\underline{M_1}$) << Performance($\underline{M_2}$)

 Need to redesign <u>objective</u> to match desired performance criterion

Typical Learning Loop

- Design model "template"
- · Select hyperparameters via CV on training set
- Train on training set with chosen hyperparams
- Evaluate performance on held-out set
- Error analysis & model redesign
- Report results on separate test set