

टी.सी.एस. 5

दूरसंचार में सिगनलिंग

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद-500017

टी.सी.एस. 5 दूरसंचार में सिगनलिंग

दर्शन: इरिसेट को अंतर्राष्ट्रीय प्रसिद्धि का संस्थान बनाना, जो कि अपने

मानक व निर्देशचिह्न स्वयं तय करे.

लक्ष्य : प्रशिक्षण के माध्यम से सिगनल एवं दूरसंचार कर्मियों की

गुणवत्ता में सुधार तथा उनकी उत्पादक क्षमता में वृद्धि लाना.

इस इरिसेट नोट्स में उपलब्ध की गई सामग्री केवल मार्गदर्शन के लिए प्रस्तुत की गयी है. इस नियमावली या रेलवे बोर्ड के अनुदेशों में निहित प्रावधानों को निकालना या परिवर्तित करना मना है.

भारतीय रेल सिगनल इंजीनियरी और दूरसंचार संस्थान सिकंदराबाद - 500 017

टी.सी.एस. 5 दूरसंचार में सिगनलिंग

विषय - सूची

अनु. क्र.	अध्याय का नाम	पृष्ठ संख्या
1.	परिचय - दूरसंचार में सिगनल व्यवस्था	1
2.	सिगनलिंग सिस्टम-7 (एस.एस7)	19
3.	एस.एस७ की संरचना	31
4.	एस.एस7 प्रोटोकॉल समूह	38
5.	एस.एस7 उच्च परतों (हाइयर लेयर) के कार्य	48

- 1. पृष्ठों की संख्या 30
- 2. जारी करने की तारीख मई 2015
- 3. हिंदी और अंग्रेजी संस्करण में कोई विसंगति या विरोधाभास होने पर इस विषय का अंग्रेजी संस्करण ही मान्य होगा.

© IRISET

"यह केवल भारतीय रेलों के प्रयोगार्थ बौद्धिक संपत्ति है. इस प्रकाशन के किसी भी भाग को इरिसेट, सिकंदराबाद, भारत के पूर्व करार और लिखित अनुमित के बिना न केवल फोटो कॉपी, फोटो ग्रॉफ, मेग्नेटिक, ऑप्टिकल या अन्य रिकार्ड तक सीमित नहीं, बल्कि पुन: प्राप्त की जाने वाली प्रणाली में संग्रहित, प्रसारित या प्रतिकृति तैयार नहीं किया जाए."

http://www.iriset.indianrailways.gov.in

अध्याय 1

दूरसंचार में सिगनल व्यवस्था

1.0 परिचय

सभी टेलीकॉम नेटवर्क, उपभोक्ता लाइन तथा इंटर-एक्सचेंज ट्रंक से प्राप्त निर्देशों के अनुसार अस्थायी रूप से कनेक्शनों को स्थापित तथा मुक्त करते हैं, इसीलिए एक्सचेंज और इसके बाहरी वातावरण के बीच सूचना का आदान-प्रदान आवश्यक है, जैसा कि उपभोक्ता लाइन और एक्सचेंज के बीच, और विभिन्न एक्सचेंजों के बीच, हांलािक ये सिगनल व्यापक रूप से लागू करने के लिये भिन्न-भिन्न हो सकते हैं, इन्हें सामूहिक रूप से टेलीफ़ोन सिगनलों के रूप में जाना जाता है.

सिगनल प्रणाली, एक भाषा का प्रयोग कर, दो स्विचिंग उपस्करों में कॉल की स्थापना के प्रयोजन के लिए उन्हें सक्षम बनाती है. अन्य भाषाओं की तरह, यह परिवर्तनीय आकार तथा परिवर्तनीय सटीक-शब्दावली का प्रयोग करती है, जैसा कि सिगनलों की सूची, जिसमें साइज में बदलाव किये जा सकते हैं तथा "सिन्टेक्स" के रूप में कम या ज्यादा, जिटल नियमों के समूह के रूप में इन सिगनलों को एकत्रित कर के उनका संचालन करती है.

इस अध्याय में हम सिगनलिंग सिस्टम का विकास तथा विभिन्न प्रकार के सिगनलिंग कोड्स का अध्ययन करेंगे, जो कि भारतीय टेलिकॉम क्षेत्र में प्रयोग किये जाते हैं.

1.1 सिगनलिंग सूचना के प्रकार

- 1.1.1 सिगनलिंग सूचना को म्ख्यतया 4 श्रेणियों में विभाजित किया जा सकता है.
 - कॉल अनुरोध तथा समाप्ति (कॉल-रिक्वेस्ट और कॉल-रिलीज़) सूचना
 - II. चयन (एड्रेस सिलेक्शन) सूचना
 - III. चयन समाप्ति की सूचना
 - IV. पर्यवेक्षी(सुपरवाइजरी) सूचना
- 1.1.2 कॉल अनुरोध तथा समाप्ति (रिलीज़) सूचना
 - I. कॉल अनुरोध सूचना: अर्थात् उपभोक्ता द्वारा टेलीफ़ोन उठाना(ऑफ-हुक), या इन-किमंग ट्रंक लाइन में सीजर सिगनल आदि, एक नया कॉल को दर्शाते हैं. इन सिगनलों या सूचनाओं की प्राप्ति पर एक्सचेंज एक उपयुक्त उपकरण को जोड़ता है जिससे एड्रेस की जानकारी प्राप्त होती है.
- II. रिलीज सूचना: उपभोक्ता द्वारा टेलीफ़ोन रख दिया जाना(ऑन-हुक) या ट्रंक लाइन पर रिलीज सिगनल का आना कॉल समाप्ति को दर्शाता है. एक्सचेंज उन सभी उपकरणों को मुक्त कर देता है, जिन्हें कॉल स्थापन के लिए किया गया था तथा कॉल स्थापित करने और कॉल होल्ड करने के लिये उपयोग की गई सूचनाओं को हटा देता है.
- 1.1.3 सिलेक्शन (एड्रेस) सूचना : जब एक्सचेंज एड्रेस सूचनाओं को प्राप्त करने के लिए तैयार होता है, तब एक्सचेंज एक अनुरोध(रिक्वेस्ट) सिगनल भेजता है, ट्रंक लाइन पर इसे "प्रोसीड-टु-सेंड" सिगनल के रूप में जाना जाता है तथा उपभोक्ता सिगनलिंग में इसे "डॉयलटोन" कहते है.

एड्रेस सूचना, मूलतः पूर्ण या आंशिक रूप से, कॉल किए गये उपभोक्ता का नंबर तथा कुछ अतिरिक्त सर्विस डॉटा का समावेश करती है.

- 1.1.4 चयन समाप्ति की सूचना (एंड-ऑफ-सिलेक्शन इन्फर्मेशन): यह सूचना कॉल किये गये उपभोक्ता की लाइन की स्थिति को दर्शाता है या कॉल के प्रयास का पूरा न होने का कारण बताता है. मूलतः यह कॉल किये गये उपभोक्ता लाइन की 'फ्री' या व्यस्त(बिज़ी) स्थिति बताती है.
- 1.1.5 पर्यवेक्षी सूचना (सुपरवाइजरी इन्फर्मेशन): कॉल स्थापित होने के बाद कॉल किये गये उपभोक्ता के 'ऑन-ह्क' और 'ऑफ-ह्क' की स्थित को दर्शाता है.
- मॉल िकये गये उपभोक्ता द्वारा टेलीफ़ोन उठाना(ऑफ़-हुक)
 कॉल िकये गये उपभोक्ता ने टेलीफ़ोन उठा िलया है और अब कॉल प्रभार(चार्ज़िंग) आरंभ िकया जाए,
 इसकी सूचना देता है।
- II. कॉल िकये गये उपभोक्ता द्वारा टेलीफ़ोन रख दिया जाना(ऑन-हुक) कॉल िकये गये उपभोक्ता ने कॉल समाप्त करने के िलये फोन रख दिया है और यदि कॉल करने वाला उपभोक्ता फोन न रखे तो कुछ समय पश्चात कॉल अपने आप समाप्त हो जाता है। कॉल करने वाले उपभोक्ता की ऑन-हुक/ऑफ-हुक की स्थिति, कॉल अनुरोध तथा समाप्ति की सूचना के दायरे में आती है.
- 1.2 **कॉल कनेक्शन**: सिगनलिंग सूचनाओं के आदान-प्रदान को एक क्रमबद्ध कॉल कनैक्शन प्रक्रिया की सहायता से दर्शाया जा सकता है. चित्र 1.1 के सर्किल्ड नंबर नीचे दिये गये क्रम को दर्शाता है.
 - जब कॉल करने वाला उपभोक्ता हैंड-सेट उठाता है, तब कॉल प्रारंभ का अनुरोध एक्सचेंज को भेजा जाता है।
 - डॉयलिंग आरंभ करने लिए एक्सचेंज डॉयल करने वाले ग्राहक को डॉयल टोन भेजता है.
 - III. जब कॉलर नंबर डॉयल करता है, तो कॉल्ड नंबर एक्सचेंज को भेज दिया जाता है.
 - IV. यदि कॉल्ड नंबर फ्री हो तो एक्सचेंज उसमें एक रिंगिंग करंट भेज देता है.
 - V. कॉलर को एक्सचेंज द्वारा प्रति-उत्तर भेज दिया जाता है,
 - VI. जैसे रिंग-बैक टोन, यदि कॉल्ड सब्सक्राइबर फ्री हो. (चित्र 1)
- VII. या बिजी टोन, यदि कॉल्ड सब्सक्राइबर व्यस्त हो.(चित्र में नहीं दर्शाया गया)
- VIII. अगर प्रावधान हो तो रिकॉर्ड किया हुआ संदेश सुनाया जा सकता है कि किसी अन्य कारण के लिए जिसके लिये कॉल पूर्ण न हुआ हो।
 - IX. कॉल्ड सब्सक्राइबर हैंड-सेट उठाकर आने वाली कॉल को स्वीकृत करता है।
 - X. एक्सचेंज इस स्वीकृति की पहचान कर रिंगिंग करंट तथा रिंग बैक टोन को समाप्त करता है तथा कॉलिंग और कॉल्ड सब्सक्राइबर के मध्य कनैक्शन बनाता है.
 - XI. यदि दोनों में से कोई भी उपभोक्ता हैंड-सेट नीचे रखता है तो कनैक्शन समाप्त हो जाता है. जब कॉल किया सब्सक्राइबर दूसरे एक्सचेंज में होता है तब कॉल लगाने से पहले निम्नलिखित इंटर- एक्सचेंज ट्रंक सिगनल क्रमबद्ध तरीके से कार्य करता है.
- XII. कॉल प्रारंभ करने वाला एक्सचेंज सर्वप्रथम एक अव्यस्त(आइडल) इंटर-एक्सचेंज ट्रंक को हासिल करता है, उसके बाद ऑफ-हुक सिगनल ट्रंक पर भेजता है और टर्मिनेटिंग एक्सचेंज को, डिजिट रज़िस्टर आवंटन का अन्रोध करता है.

- XIII. डिजिट रजिस्टर का अनुरोध प्राप्त करने के बाद टेर्मिनेटिंग एक्सचेंज एक "विंक" नामक सिगनल (जो कि ऑन/ऑफ हुक सिगनल का समीकरण होता है) को ओरीजिनेटिंग एक्सचेंज की तरफ़ भेजता है। इस् माध्यम से टर्मिनेटिंग एक्सचेंज, ओरिजिनेटिंग एक्सचेंज को यह सूचना देता है कि डिजिट रजिस्टर का कार्य चल रहा है और टर्मिनेटिंग एक्सचेंज डॉयल डिजिट स्वीकार करने के लिए तैयार है.
- XIV. अब ओरिजिनेटिंग एक्सचेंज डिजिट्स भेजना शुरू कर देता है. डिजिट्स प्राप्त करने के बाद कॉल कनैक्ट करने हेत् क्रम नंबर iv से viii तक का पालन किया जात है.

चित्र 1.1 - एक संपूर्ण कॉल पर सिगनल व्यवस्था

1.3 सिगनलिंग: टेलीफोनी का आविष्कार मेगनेटो टेलीफ़ोन से हुआ था, जिसमें मेगनेटो के माध्यम से रिंगिंग करंट पैदा की जाती थी और इसी एक मात्र सिगनल को दो ग्राहकों के बीच बिछी हुई एक समर्पित लाइन पर भेजी जाती थी।

मेनुअल स्विचिंग के अविष्कार के बाद और अधिक सिगनलों की आवश्यकता महसूस होने लगी. फलस्वरूप दो अतिरिक्त सिगनलों को उपलब्ध कराया गया, जिनका कार्य कॉल रिक्वेस्ट(कॉल करने का निवेदन) और कॉल रिलीज (कॉल समाप्त) होने का संकेत देना था। ईलेक्ट्रो-मेकानिकल ऑटोमेटिक एक्सचेंज के आविष्कार के बाद सिगनलों के दायरे में वृद्धि हुई और एस.पी.सी. (SPC) इलेक्ट्रॉनिक एक्सचेंज के आने के बाद यह और तेजी से बढ़ रहा है.

1.4 सब्सक्राइबर लाइन सिगनलिंग

1.4.1 कॉलिंग सब्सक्राइबर लाइन सिगनलिंग

ऑटोमेटिक एक्सचेंज में उपभोक्ता लूप पर वोल्टेज का आवंटन एक्सचेंज में लगी सेंट्रालाइज़्ड बैटरी द्वारा किया जाता है, साधारणतया - 48 वोल्ट होता है. इस वोल्टेज का वितरण निरंतर किया जाता रहता है, चाहे उपभोक्ता की स्थिति व्यस्त हो, फ़्री हो या बात कर रहा हो.

1.4.2 कॉल निवेदन (रिक्वेस्ट)

निष्क्रिय स्थिति में उपभोक्ता "लाइन इंपिडेंस" अधिक होता है। उपभोक्ता के हैंड-सेट उठाते ही लाइन इंपिडेंस में गिरावट आती है और लाइन करंट में वृद्धि होती है। इसे लाइन करंट में नयी वृद्धि के तौर पर सूचित किया जाता है, इस नई सूचना को एक्सचेंज नये कॉल के तौर पर लेता है और सभी उचित उपकरणों को कनैक्ट और एड्रेस सूचना प्राप्त करने के लिये तैयार करने के बाद उपभोक्ता को डॉयल टोन सिगनल भेजता है।

1.4.3 एड्रेस सिगनल

डॉयल टोन सिगनल के प्राप्त होने के बाद सब्सक्राइबर एड्रेस डिजिट डॉयल करता है। डिजिट्स को पल्स/डिकेडिक डॉयलिंग अथवा मल्टी-फ्रीक्वेंसी प्श-बटन डॉयलिंग द्वारा भेजा जाता है।

1. डिकेडिक डॉयिलंग: डिकेडिक डॉयिलंग में एड्रेस डिजिट का ट्रांसिमशन रोटरी डॉयल (घुमाने वाला डॉयल) अथवा डिकेडिक प्श-बटन की-पैड द्वारा DC लूप में क्रमवार रुकावट(इंट्रप्शन) देकर किया जाता है.

चित्र 1.2 - डिकेडिंग डॉयलर

रुकावट की संख्या (लूप-ब्रेक) डॉयल डिजिट्स की सूचना देती है सिवाय शून्य के जिसकी रुकावट की संख्या (लूप-ब्रेक) 10 होती है. रुकावट की दर 1 प्रति सेकेंड होती है और लूप-मेक और लूप-ब्रेक का अनुपात 1:2 होता है. दो डॉयल डिजिट के बीच में अंतर रखने के लिए इंटर-डिजिटल अवकाश(पॉस) कुछ 100 मि.सेकंड का होना चाहिए. यह प्रक्रिया इन कारणों से बहुत धीमी होती है और सिगनलों का संचारण, संभाषण के दौरान नहीं किया जा सकता है.

चित्र 1.3 - डॉयल पल्स

2. मल्टी-फ्रीक्वेंसी पुश-बटन डॉयिलंग: इस विधि द्वारा डिकेडिक डॉयिलंग से होने वाले अवरोध को हटाया जाता है. इस विधि में 4 अलग-अलग वॉइस फ्रीक्वेंसी के दो समूहों का प्रयोग किया जाता है. की-पैड से डॉयल करने के बाद एक सिगनल निर्मित होता है, जो कि दो फ्रीक्वेंसी को मिलाकर बनाया जाता है, प्रत्येक समूह से एक-एक फ्रीक्वेंसी का उपयोग किया जाता है. इसिलए इसे ड्युअल टोन मल्टी-फ्रीक्वेंसी (डी.टी.एम.एफ.) डॉयिलंग कहते हैं. जितनी देर की-पैड को दबाया जाता है उतनी देर तक सिगनल ट्रांसिमट होता है. यह विधि हमें 16 विभिन्न मिश्रण प्रदान करती है. जैसा कि चित्र 1.4 में दर्शाया गया

है, वर्तमान में अधिकतम फ्रीक्वेंसी, जो कि 1633Hz है, का प्रयोग नहीं किया जाता है और सिर्फ 7 फ्रीक्वेंसियों का प्रयोग होता है, क्योंकि डॉयलिंग के लिये सिर्फ 10 अंक तक ही उपलब्ध हैं.

चित्र 1.4 - डी.टी.एम.एफ. की-पैड और फ्रीक्वेंसियां

इस विधि के द्वारा अंक डॉयिलंग में लगने वाले समय में कमी आती है और 10 अंकों को 1सेकंड में भेजा जा सकता है. चूंकि उपयोग में लायी गई फ्रीक्वेंसी, स्पीच-बैंड के अंदर की होती है इसिलये सूचनाओं का आदान-प्रदान संभाषण के दौरान भी किया जा सकता है. डी.टी.एम.एफ़./DTMF टेलीफ़ोन उपकरण का प्रयोग एक्सेस टर्मिनल के तौर पर विभिन्न सिस्टमों के साथ जैसे, कंप्यूटर आदि के साथ किया जा सकता है। इन डी.टी.एम.एफ़. टोन्स का चयन इस प्रकार किया जाता है, जिससे हॉरमोनिक इंटरिफ़यरेंस कम हो और किसी मानवीय आवाज के साथ संभावित मेल ना खाती हो.

1.4.4 एंड ऑफ़ सिलेक्शन सिगनल:

पूर्ण एड्रेस की प्राप्ति के बाद एड्रेस-रिसीवर को हटा लिया जाता है. कॉल स्थापित करने के बाद अथवा कॉल के स्थापना होने पर एक्सचेंज निम्नलिखित से कोई एक सिगनल भेजता है.

- 1. कॉल लाइन मुक्त होने की अवस्था में कॉल करने वाले उपभोक्ता टेलीफ़ोन पर रिंग-बैक टोन और कॉल किए गये उपभोक्ता टेलीफ़ोन पर रिंगिंग-करंट भेजी जाती है.
- 2. कॉल की गई लाइन यदि व्यस्त हो अथवा किसी कारणवश कॉल ना लगने की अवस्था में हो तो कॉल करने वाले उपभोक्ता को बिज़ी/व्यस्त टोन भेजा जाता है.
- 3. कॉल विफल होने के स्थिति में, कॉल करने वाले उपभोक्ता को, अगर प्रावधान हो तो, यदि कॉल की गई लाइन ट्यस्त न होने पर, रिकॉर्ड किया हुआ उद्धोषणा संदेश भेजा जाता है.

रिंग-बैक टोन और रिंगिंग-करंट, कॉल करने वाले उपभोक्ता के लोकल एक्सचेंज से भेजी जाती है. बिज़ी-टोन और रिकॉर्ड की हुई उद्धोषणा कॉल करने वाले उपभोक्ता के निकटतम एक्सचेंज से भेजी जाती है, जिससे अनावश्यक रूप से उपकरणों और टूंक लाइनों का व्यस्त होना रोका जा सके.

1.4.5 आन्सर बैक सिगनल:

फोन की घंटी बजने के बाद, जैसे ही उपभोक्ता टेलीफ़ोन हैंड-सेट उठाता है, बैटरी-रिवर्सल सिगनल, कॉल करने वाले उपभोक्ता लाइन पर भेजा जाता है. इस सिगनल का उपयोग कॉल किये गये उपभोक्ता से जुड़े विशेष उपस्कर को परिचालित करने के लिए किया जाता है. उदाहरणार्थ कॉइन-स्लॉट में सही सिक्का डालने तक CCB के ट्रांसमीटर का शॉर्ट-सर्किट होना.

1.4.6 रिलीज सिगनल:

जैसे ही कॉल करने वाला उपभोक्ता कॉल समाप्त करता है और फोन को ऑन-हुक रखता है, लाइन इंपीडेंस बढ़ जाती है. एक्सचेंज इस संकेत को समझ कर उस कॉल से जुड़े सारे उपकरणों को मुक्त कर देता है. यह सिगनल समान्यतः 500 मि.से. या उससे ज्यादा समय का होता है.

1.4.7 पर्मनेंट लाइन सिगनल (पर्मनेंट ग्लो)

यह सिगनल कॉल करने वाले उपभोक्ता को भेजा जाता है, जहां वह कॉल को मुक्त नहीं कर पाता है, जबिक कॉल किये गये उपभोक्ता ने अपना फोन ऑन-हुक रख दिया हो और कुछ समय के बाद कॉल समाप्त कर दिया गया हो. यह सिगनल तब भी भेजा जा सकता है जब उपभोक्ता नंबर डॉयल करने में अधिक समय ले. यह सामान्यतः बिजी-टोन के रूप में होता है.

1.5 कॉल्ड सब्सक्राइबर लाइन सिगनल: कॉल किये गये उपभोक्ता टेलीफ़ोन पर निम्नलिखित तीन प्रक्रियाएं होती हैं.

रिंग सिगनल

जब उपभोक्ता-लाइन पर कॉल आने वाला होता है तब एक्सचेंज द्वारा उस लाइन पर रिंगिंग करंट भेजा जाता है. यह करंट विशेष रूप से 25 or 50Hz उपयुक्त इंटरप्शन के साथ होता है. टर्मिनेटिंग एक्सचेंज, कॉल करने वाले उपभोक्ता को रिंग बैक टोन भेजता है.

II. ऑन्सर सिगनल

जब कॉल किये गये उपभोक्ता टेलीफ़ोन की घंटी बजने के बाद फोन उठाता है तब लाइन इंपिडेंस कम हो जाता है। एक्सचेंज इसे पहचान कर रिंगिंग करंट और रिंग बैक टोन को काट देता है।

III. रिलीज सिगनल

वार्तालाप की समाप्ति होने के बाद अगर कॉलिंग उपभोक्ता से पहले कॉल्ड उपभोक्ता फोन को 'ऑन-हुक' रख देता है, इस प्रक्रिया से लाइन इंपिडेंस ज्यादा हो जाता है. अगर कुछ समय के बाद भी कॉल करने वाला उपभोक्ता, लाइन को रिक्त नहीं करता है, तो एक निर्धारित समय विलंब के पश्चात एक्सचेंज कॉलिंग उपभोक्ता को पर्मनेंट लाइन सिगनल भेज कर कॉल को मृक्त कर देता है.

1.6 रजिस्टर री-कॉल सिगनल

यह सिगनल, वार्तालाप के दौरान ही दिया जाता है. DTMF टेलीफ़ोन के प्रयोग से सेवाओं को बढ़ाना संभव हो पाया है, जैसा कि चल रहे कॉल को होल्ड पर रख कर दूसरा नंबर मिलाना और तीसरे उपभोक्ता से कॉल स्थापित करना, पहले वाले कॉल को होल्ड से निकालना तथा तीनों उपभोक्ताओं के बीच वार्तालाप स्थापित करना. इस प्रक्रिया को 3-वे कॉन्फ्रेंस कहते हैं. वार्ता के दौरान डॉयल कर पाने वाली अवस्था वाले इस सिगनल को रजिस्टर री-कॉल सिगनल कहते हैं. यह सिगनल कॉलिंग सब्सक्राइबर लूप को थोड़ी देर के लिए अवरोधित कर देता है जो कि रिलीज सिगनल की अविध (लगभग 500 मि.से.) से कम होता है. यह 200 से 320 मि.से. अविध का हो सकता है।

1.7 इंटर-एक्सचेंज सिगनलिंग

इंटर-एक्सचेंज सिगनलिंग को अलग अलग इंटर-एक्सचेंज ट्रंक पर ट्रांसिट किया जा सकता है। इस सिगनल को स्पीच-सिगनल (इन-बैंड सिगनलिंग) वाली फ्रीक्वेंसी बैंड पर ट्रांसिट किया जा सकता है, अथवा ऑउट-ऑफ-बैंड सिगनलिंग (स्पीच फ्रीक्वेंसी-बैंड के बाहर) पर भी ट्रांसिट किया जा सकता है. यह सिगनलिंग निम्नलिखित प्रकार की हो सकती है.

1. पल्स सिगनलिंग:

सिगनल का ट्रांसिमशन पल्स के रूप में किया जाता है. 'आइडल' स्थिति से 'एक्टिव' स्थिति में कुछ निर्धारित समय के लिए बदलाव ही इस सिगनल की विशेषता है. उदाहरण के लिये: ऐड्रेस सूचना का भेजा जाना.

2. कंटिंन्य्अस सिगनलिंग:

यह सिगनल एक स्थिति से दूसरी स्थिति में बदलाव को दर्शाता है. स्थिर अवस्था किसी भी सिगनल की विशेषता को सूचित नहीं करती है.

3. कंपेल्ड सिगनलिंग:

यह 'पल्स मोड' के जैसा ही होता है, परंतु ट्रांसिमशन किसी निश्चित समय के लिये नहीं होता बल्कि तब तक चलता रहता है, जब तक रिसीविंग यूनिट पर सिगनल प्राप्ति की सूचना सेन्डिंग यूनिट को नहीं भेजी जाती है. सिगनल ट्रांसिमशन का यह एक बहुत ही विश्वसनीय तरीका है और इसके द्वारा जिटल सिगनलों का ट्रांसिमशन भी किया जा सकता है.

1.7.2 लाइन सिगनलिंग

डी.सी. सिगनलिंग, ट्रंक पर सिगनलिंग का सब से आसान, सस्ता एवं विश्वसनीय तरीका होता था जिसे मेटालिक लूप सिगनलिंग भी कहते हैं, जो कि उपभोक्ता एवं एक्सचेंज के बीच होने वाली सिगनलिंग के समान होती है, जैसा कि,

- सर्किट सीजर/रिलीज, उपभोक्ता के ऑन-ह्क/ऑफ-ह्क होने के अनुसार
- डिकेडिक पल्स के रूप मे ऐड्रेस सूचना.

1.7.3 'इन-बैंड' और 'ऑउट-ऑफ-बैंड' सिगनल:

अत्यधिक दूरी पर स्थापित एक्सचेंजों किसी भी प्रकार की डी.सी. लाइन सिगनलिंग का प्रयोग नहीं कर सकते हैं. ज्यादा दूरी तक सिगनल को ले जाने के लिए उचित/अनुकूल इंटरफ़ेस लगाने पड़ते हैं, तािक सिगनल को एक खास फ्रीक्वेंसी में बदला जा सके. सिर्फ एक फ्रिक्वेन्सी का उपयोग कर के ऑन-हुक या ऑफ-हुक सूचना को ले जाया जा सकता है. इन्हीं 'टोन-ऑन/टोन-ऑफ़' स्थितियों को पल्स के रूप में उपयोग करके पल्स डॉयलिंग की जा सकती है. सिगनल बहुत ही कम मात्रा मे होते हैं और इन्हें इन-बैंड और ऑउट-ऑफ-बैंड में संचारित किया जा सकता है. इसमें शामिल टोन-ऑन/टोन-ऑफ़ स्थितियां नीचे टेबल 1.1 में दर्शायी गयी हैं.

टेबल 1.1 - सिंगल फ्रीक्वेंसी सिगनलिंग स्टेट

State	Outgoing	Incoming
Tone-off	Seizure	ldle/busy
Tone-on	ldle	Ringing

इन-बैंड सिगनलिंग के लिए टोन फ्रीक्वेंसी 2600Hz या फिर 2400Hz चयनित होती है. क्योंकि यह फ्रीक्वेंसी स्पीच बैंड के अंदर आती है इसीलिये किसी आवाज के द्वारा टोन-ऑन सिगनल का आना, जो कि एक्सचेंज़ द्वारा ना दिया गया हो तो, समय से पहले फोन कॉल कट जाने की संभावना रहती है और ऐसा होने से बचना जरूरी हो जाता है. ऑउट-ऑफ-बैंड सिगनलिंग में, स्पीच-बैंड से बाहर की 3825Hz टोन फ्रीक्वेंसी का प्रयोग करके स्पीच द्वारा "टोन-ऑन कंडिशन इमिटेशन" ('टोन ऑन' की नकल वाली आवाज) की कठिनाई को हटाया जा सकता है. हालांकि इससे हार्डवेयर की कीमत भी बढ़ जाती है.

चित्र 1.5 - एस.एफ.(सिगनल फ्रीक्वेंसी) सिगनलिंग(ए) इन-बैंड, (बी) आउट-ऑफ़-बैंड

1.7.4 ई एंड एम सिगनल

ई एंड एम इन दो अलग-अलग तारों(लीड) को, हर ट्रंक के लिये स्वतंत्र रूप से सिगनलिंग के लिये उपयोग किया जाता है. ट्रंक सर्किट में एक अतिरिक्त सर्किट भी आरक्षित किया जाता है, जिस पर ये ई एंड एम तार जोड़े जाते हैं या यूँ कहें कि सिगनलिंग के लिये एक पेयर ई एंड एम आरक्षित किया जाता है जिसका 'एम' लीड, फॉरवर्ड सिगनल (M वायर ट्रांसिमट) को समर्पित किया जाता है जो कि कॉल किये गये गंतव्य(डेस्टिनेशन) एक्सचेंज के रिसीव लीड के समान होता है. दूसरा 'ई' लीड जो की बैक-वर्ड सिगनल (E वायर रिसीव) के लिए समर्पित होता है, गंतव्य(डेस्टिनेशन) एक्सचेंज के ट्रांसिमट तार के समान होता है. सिगनलिंग की स्थितियां नीचे दिये गये टेबल 1.2 में दर्शायी गई हैं.

State From Switching System (M-lead) To Switching System (E-lead)
On hook Earth Open
Off hook -48V Earth

टेबल 1.2 - ई एंड एम सिगनलिंग स्टेट

इस तरह की सिगनलिंग के ट्रांसिमशन के लिये एक अनुकूल इंटरफ़ेस का उपयोग किया जाता है जो इन 'ई' और 'एम' सिगनल को फ्रीक्वेंसी सिगनल में बदल देता है जिन्हें स्पीच के साथ ही ले जाया जा सके.

1.7.5 रजिस्टर सिगनल:

समय के साथ यह भी महसूस किया गया कि ट्रंक रजिस्टर, जो कि सामान्यत: एक एड्रेस डिजिट रिसीवर होता है, के बिना ट्रंक सर्विसेस को ठीक ढ़ंग से चला पाना संभव नहीं है. दो एक्सचेंज के बीच की सिगनलिंग को दो श्रेणियों में विभाजित किया गया हैं.

- 1) लाइन सिगनलिंग: लाइन सिगनलिंग में, पूरे कॉल के दौरान सिगनल कार्यशील रहते हैं.
- 2) रजिस्टर सिगनलिंग: कॉल स्थापित करने के लिये आवश्यक एड्रेस सूचना भेजते समय इन रजिस्टर सिगनल का उपयोग किया जाता है, जो कि बह्त ही कम समय के लिये होती है.

जब एक्सचेंज़ में 'ट्रंक सीझर' सिगनल मिलता है और कॉल स्थापना के लिये स्विचिंग सिस्टम को तैयार कर लेता है इस दौरान दोनों छोर के एक्सचेंज़ के बीच स्थित ट्रंक-रजिस्टर, इन रजिस्टर सिगनलों का आदान-प्रदान कर लेते हैं. ये सिगनल, PTS (प्रोसीड-टु-सेंड) सिगनल, एड्रेस सिगनल और कॉल करने के प्रयास का परिणाम प्रदर्शित करते हैं.

रजिस्टर सिगनलों को इन-बैंड अथवा ऑउट-ऑफ-बैंड में भेजा जा सकता है. हांलािक आउट-ऑफ़-बैंड सिगनल में सिगनलिंग धीमी होती है और एक सीमित प्रकार के सिगनल ही उपयोग हो पाते हैं. उदा: एक ऑउट-ऑफ-बैंड फ्रीक्वेंसी सिगनल का चयन करके सिगनलिंग सूचना को पल्स के रूप में भेजा जा सकता है.

'इन-बैंड' ट्रांसिमशन सरलता पूर्वक प्रयोग किया जा सकता है क्योंकि इसमें स्पीच सिगनल पर बाहरी व्यवधान होने की संभावना कम होती है.

ट्रांसिमशन समय को घटाने और विश्वसनीयता को बढ़ाने के लिये, अलग-अलग फ्रीक्वेंसी को समूहों में उपयोग किया जाता है. सामान्यतः छह फ्रीक्वेंसी में से दो फ्रीक्वेंसी का ही प्रयोग किया जाता है. सिस्टम को और अधिक विश्वसनीय बनाने के लिए कंपेल्ड अनुक्रम का उपयोग किया जाता है. इसलिए इस सिस्टम को CSMF (कंपेल्ड सीक्वेंस मल्टी-फ्रीक्वेंसी) सिगनलिंग कहा जाता है. जैसे चित्र - 1.6 में दर्शाया गया है. सी.सी.आई.टी.टी. की शब्दावली में इसे R2 सिगनलिंग सिस्टम कहते हैं.

चित्र - 1.6 कंपेल्ड सीक्वेंस मल्टी-फ्रीक्वेंसी सिगनलिंग प्रक्रिया

चूंकि पूरी जानकारी भेजने के लिये इन फ्रीक्वेंसियों को बहुत ही कम समय में भेजा जाता है, परिणाम स्वरूप डॉयलिंग के बाद होने वाली देरी कम की जा सकती है.

1.7.6 जब दो से अधिक एक्सचेंज़ कॉल स्थापन के लिये एकत्र होते हैं तब उनके बीच होने वाली सिगनलिंग दो प्रकार से की जा सकती है.

- I. एंड-टु-एंड सिगनलिंग: जैसे-जैसे कॉल स्थापित होने की प्रक्रिया आगे बढ़ती है, वैसे ही उसके लिये निर्धारित सिगनलिंग भी एक छोर से दूसरे छोर तक यानि दोनों छोर के आखिरी उपकरणों तक सिगनलिंग भेजी जाती है. जैसे मान लिया जाए कि तीन एक्सचेंज A, B, C हैं, शुरुवात में A और B के बीच में सिगनलिंग होती है फ़िर B और C के बीच और अंत में A और C के बीच सिगनलिंग होती है, तब जाकर A और C दोनों छोर के उपभोक्ताओं के बीच कॉल स्थापित होता है.
- II. लिक से लिंक सिगनलिंग: लिंक से लिंक सिगनलिंग, दो लिंक के बीच में सीमित होती है, तथापि शुरुवात में A और B के बीच में, फिर B और C के बीच में लिंक संचारित होता है. लिंक से लिंक सिगनलिंग में साधारणतया यह आवश्यक है कि A और C पर स्थित उपभोक्ताओं की सुपरवाइजरी सिगनलिंग (लाइन सिगनलिंग) और उपभोक्ता सिगनलिंग जैसे एड्रेस सिगनलिंग या रजिस्टर रीकॉल सिगनलिंग आदि ही भेजे जाते हैं. इन सूचनाओं को 'एंड-टु-एंड' तक सिगनलिंग या दो लिंक, A से B और B से C लिंक से लिंक तक कैसे भेजा जाये, यह नेटवर्क के निर्धारण पर निर्भर रहता है.

1.7.7 R2 सिगनलिंग: सी.सी.आइ.टी.टी. ने इस R2 सिगनलिंग सिस्टम का राष्ट्रीय और अंतर्राष्ट्रीय स्तर पर मानकीकरण किया है, जबिक हमारे भारत देश में हमें कुछ ही प्रकार के सिगनलों की आवश्यक्ता है, इसलिए हमारे परिवेश में R2 के सुधारित रूप को उपयोग में लाया गया है.

अंतर्राष्ट्रीय स्तर पर, R2 सिगनलिंग सिस्टम में, 15 मिश्रित सिगनल, फ़ॉरवर्ड सिगनल और 15 मिश्रित सिगनल, बैक-वर्ड सिगनल के लिये प्रावधान है. फ़ॉरवर्ड दिशा में कुल छह फ्रीक्वेंसी हैं. इनमें से किन्हीं दो फ्रीक्वेंसी को मिलाकर एक सिगनल तैयार किया जाता है. जिन्हें फ़ॉरवर्ड सिगनल कहा जाता है. ये फ़ॉरवर्ड फ्रीक्वेंसी निम्न प्रकार से हैं, 1380, 1560, 1620, 1740, 1860 और 1980 Hz. इन्हें फ़ॉरवर्ड ग्रुप फ्रीक्वेंसी भी कहते हैं. इसी तरह बैक-वर्ड दिशा में भी छह फ्रीक्वेंसी हैं. इनमें से किन्ही दो फ्रीक्वेंसी को मिलाकर एक सिगनल तैयार किया जाता है, जिसे बैक-वर्ड सिगनल कहा जाता है. ये बैकवर्ड फ्रीक्वेंसी निम्न प्रकार से हैं, 1140, 1020, 900, 780, 660 और 540 Hz. इन्हें बैक-वर्ड ग्रुप फ्रीक्वेंसी भी कहते हैं. भारत में फॉरवर्ड ग्रुप की सबसे अधिक फ्रीक्वेंसी 1980 Hz और बैक-वर्ड ग्रुप की सबसे कम फ्रीक्वेंसी 540Hz का उपयोग नहीं करते हैं, इस प्रकार दोनों दिशाओं में सिर्फ़ 10 मिश्रित सिगनल ही संभव हैं.

इन मिश्रित सिगनलों का एक 'वेइट-कोड'(weight-code) बनाया गया है जिसे टेबल 1.3 में दर्शाया गया है और प्रत्येक सिगनल टेबल 1.4 & 1.5 में दर्शाया गया है.

सिगनल फ्रीक्वेंसी (Hz)					
फॉरवर्ड	1380	1500	1620	1740	1860
बैक-वर्ड	1140	1020	900	780	660
इंडेक्स	f 0	f 1	f 2	f 3	f 4
वेइट-कोड	0	1	2	4	7

टेबल 1.3 सिगनल फ्रीक्वेंसी इंडेक्स और वेइट-कोड (Weight Code)

टेबल 1.4. फ़ॉरवर्ड सिगनल

सिगनल	वेइट-कोड	ग्रुप- ।	ग्रुप- ॥
1	0+1	डिजिट 1	साधारण सब्सक्राइबर
2	0+2	डिजिट 2	प्रियॉरिटी वाले सब्सक्राइबर
3	1+2	डिजिट 3	टेस्ट/मेंटनेंस उपस्कर
4	0+4	डिजिट 4	एस.टी.डी. कॉइन-बॉक्स
5	1+4	डिजिट 5	ऑपरेटर
6	2+4	डिजिट 6	स्पेयर
7	0+7	डिजिट 7	स्पेयर
8	1+7	डिजिट 8	स्पेयर
9	2+7	डिजिट 9	स्पेयर
10	4+7	डिजिट 0	स्पेयर

टेबल 1.5 बैक-वर्ड सिगनल

C4(1.0 44) 45 ((Helici				
सिगनल नंबर	वेइट-कोड	ग्रुप - A	ग्रुप - B	
1	0+1	अगला डिजिट भेजें. Send next digit	स्पेयर	
2	0+2	रि-स्टार्ट. Restart	बदला गया नंबर	
3	1+2	एड्रेस कंप्लीट, ग्रुप Bसिगनलों को प्राप्त करने के	कॉल की गई लाइन व्यस्त	
		लिए चेंज-ओवर	है.	
4	0+4	मेलेसियस-कॉल के लिए कॉलिंग लाइन की	कंजेशन	
		पहचान		
5	1+4	कॉलिंग सब्सक्राइबर की श्रेणी भेजें.	नंबर-अनऑबटेनेबल	
6	2+4	स्पीच कनेक्शन का सेट-अप	कॉल्ड-लाइन फ़्री है, मीटरिंग	
			के साथ.	
7	0+7	आखरी डिजिट भेजें, पर आखरी 3 डिजिट	स्पेयर	
8	1+7	आखरी डिजिट भेजें, पर आखरी 2 डिजिट	स्पेयर	
9	2+7	आखरी डिजिट भेजें, पर आखरी 1 डिजिट	स्पेयर	
10	4+7	स्पेयर	स्पेयर	

नोट: सिगनल A2, और A6 से A9 तक सभी का उपयोग 'टाइम्ड फंक्शन' के लिये किया जाता है.

जैसा कि उपरोक्त टेबल से यह देखा जा सकता है;

- I. फॉरवर्ड सिगनलों का उपयोग कॉल किये गऐ उपभोक्ता की एड्रेस सूचनाओं को भेजने के लिये किया जाता है, और कॉल करने वाले उपभोक्ता की एड्रेस सूचना और कोटी की जानकारी भेजने के लिए उपयोग किया जाता है.
- II. बैक-वर्ड सिगनलों का उपयोग, कॉल करने वाले उपभोक्ता कोटी की मांग तथा कॉल किये गये उपभोक्ता लाइन स्थिति और कोटी की स्थिति भेजने के लिये किया जाता है.

R2 सिगनल प्रणाली, फ़ॉरवर्ड और बैकवर्ड संकेतों के आदान-प्रदान के लिये पूरी तरह से बाध्य है यानि हर एक फ़ॉरवर्ड सिगनल के लिये एक बैक-वर्ड सिगनल रिसीट/पावती (संदेश मिल गया) के रूप में दिया जाता है. इससे सूचनाओं का आदान-प्रदान तेज गित से होता है और कॉल स्थापना कम से कम समय में किया जा सकता है. हालांकि, सेटेलाईट सिगनिंग एक अपवाद हैं और सेमी कंपेल्ड योजना के द्वारा सिगनिंग भेजी जा सकती है, क्योंकि लंबी दूरी पर संचारण समय, जिसे 'प्रोपॅगेशन टाईम' कहा जाता है, ज्यादा होता है.

रजिस्टर सिगनलों को एंड-टु-एंड सिगनलिंग के आधार पर संचारित किया जाता है. इस सिस्टम में किसी भी खराबी की जांच स्वतः ही हो जाती है. हर एक फ़ॉरवर्ड सिगनल के पहुँचने के बाद रिसीवर छोर से एक बैक-वर्ड सिगनल 'संदेश मिला' का संकेत दूसरे छोर पर भेजा जाता है, जिससे रिसीवर यह जाँच कर लेता है कि फ़ॉरवर्ड सिगनल की 2 फ्रीक्वेंसी जो कि कुल पाँच फ्रीक्वेंसियों में से दो फ्रीक्वेंसी हैं, उपस्थित हैं या प्राप्त हुई हैं.

1.7.8 दो एक्सचेंजों के बीच सी.एस.एम.एफ़. (CSMF) सिगनलिंग एक उदाहरण, विशेष मामले पर विचार करते हुये विस्तार से दिया जा सकता है. डी.सी. सिगनलिंग का उपयोग कर सर्किट के द्वारा विभिन्न सिगनलों का आदान-प्रदान इस प्रकार है.

- जिस तरफ़ से कॉल किया जा रहा है वह एक्सचेंज पहला डॉयल अंक भेजता है.
- II. डॉयल अंकों की प्राप्ति के बाद, टर्मिनेटिंग एक्सचेंज A5 सिगनल भेज कर, डॉयल अंक मिलने की पुष्टि करता है (यहां A5 सिगनल, फोन करने वाले की कोटी की मांग का सिगनल है)
- III. A5 सिगनल जब कॉल करने वाले एक्सचेंज में प्राप्त होता है तब कॉल करने वाला एक्सचेंज फ़ॉरवर्ड गुप II की 1 से 5 तक की कोई एक सूचना कॉल प्राप्त करने वाले एक्सचेंज को भेजता है.
- IV. कॉल प्राप्त करने वाला एक्सचेंज A1 सिगनल (अगला डॉयल डिजिट/अंक भेजने की मांग) भेजकर इसकी पृष्टि करता है.
- V. कॉल करने वाला एक्सचेंज A1 सिगनल की प्राप्ति की पुष्टि कर, फ़ॉरवर्ड ग्रुप II की 1 से 10 तक की कोई सूचना कॉल प्राप्त करने वाले एक्सचेंज को भेजता है.
- VI. इस तरह एक के बाद एक डॉयल अंक भेजे जाते हैं. (यहाँ A1 सिगनल और फ़ॉरवर्ड ग्रुप II के 1 से 10 तक डॉयल अंकों का आदान-प्रदान होता है)
- VII. सभी डॉयल अंक प्राप्त हो जाने के बाद, कॉल प्राप्त करने वाला एक्सचेंज इन डॉयल अंकों का एक ग्रुप बनाता है और उस लाइन का चयन करता है जिसके लिये ये अंक प्राप्त हुए हैं तथा A3 सिगनल को, कॉल करने वाले एक्सचेंज में भेजता है, जो ये निर्दिष्ट करता है कि अब 'बैकवर्ड ग्रुप बी' की तरफ़ स्विचिंग की जा रही है.
- VIII. इस A3 सिगनल की पुष्टि कॉल करने वाला एक्सचेंज कॉल प्राप्त करने वाले एक्सचेंज को भेज देता है और साथ ही कॉल करने वाले उपभोक्ता की लाइन कोटी भी दोबारा भेजता है.
- IX. अब कॉल प्राप्त करने वाला एक्सचेंज इसके जवाब में, कॉल किये गये उपभोक्ता की लाइन स्थिति, बैक-वर्ड ग्रुप B की B2 से B6 तक की कोई स्थिति को कॉल करने वाले एक्सचेंज में भेज देता है.
- X. अगर कॉल करने वाले एक्सचेंज को B6 सिगनल (B6 सिगनल ये दर्शाता है कि कॉल किया गया उपभोक्ता कॉल लेने में समर्थ है) प्राप्त होता है तो वह स्पीच-पाथ को स्विचिंग द्वारा जोड़ता है तथा सभी रजिस्टरों को मुक्त कर देता है. या अगर B2 से B5 तक का कोई सिगनल प्राप्त हुआ है तो रिजिस्टरों को मुक्त करके एक विशिष्ट टोन, कॉल करने वाले उपभोक्ता को भेजा जाता है.

1.8 डिज़ीटल सिगनलिंग:

अब तक हमनें जो सिगनलिंग सिस्टम पढ़े हैं, साधारणतया सभी में यह पाया कि वे प्रत्येक लाइन या प्रत्येक ट्रंक आधारित होते हैं क्योंकि वे अपनी-अपनी सिगनलिंग उसी लाइन या ट्रंक पर ले जाते हैं. पी.सी.एम. प्रणालियों के उद्भव के साथ, यह संभव हुआ कि सिगनलिंग चैनल को स्पीच चैनल से अलग किया जा सके.

दो एक्सचेंजों के बीच सिगनलिंग का संचारण सीधे तौर पर संलग्न स्पीच चैनल पर किया जा सकता है, चैनल असोसिएटेड सिगनलिंग (CAS), या बहुत सारी चैनलों के लिये एक समर्पित लिंक पर, कॉमन चैनल सिगनलिंग (CCS). कॉल सेट-अप और कॉल रिलीज करने के लिए प्रेषित जानकारी दोनों ही सिगनलिंग सिस्टम में एक जैसी ही है. चैनल एसोसिएटेड सिगनलिंग में यह आवश्यक है कि एक्सचेंज किसी सेंट्रलाइज़्ड उपस्कर से होकर हर एक ट्रंक को एक्सेस कर सके, जबिक कॉमन-चैनल में डी-सेंट्रलाइज़्ड किया जा सकता है, जो उपकरण के माध्यम से एक ट्रंक के लिए उपयोग करने हेतु, एक्सचेंजों की आवश्यकता है.

1.9 चैनल असोसिएटेड सिगनलिंग

पी.सी.एम. सिस्टम में एक विशिष्ट चैनल द्वारा सिगनलिंग की जानकारी बताई जाती है यह चैनल पूरी तरह से स्पीच चैनल के साथ संलग्न होती है, इसीलिये इस विधि को चैनल असोसिएटेड सिगनलिंग (CAS) कहते हैं. जबिक स्पीच का सैंप्लिंग रेट 8kHz है और जिस गित से स्पीच की सैंप्लिंग की जाती है उतनी गित से सिगनलिंग तत्वों की सैंप्लिंग नहीं होती, इसीलिये 500 Hz की कम रेट वाली सैंप्लिंग पर्याप्त होती है. इस सिद्धांत के आधार पर एक पी.सी.एम. फ़्रेम, जिसका सैंप्लिंग रेट 125 माइक्रो-सेकंड होता है, उसके TS16 का उपयोग दो स्पीच चैनलों की सिगनलिंग, प्रत्येक चैनल के लिये 4 बिट्स, भेजने के लिये किया जात है.

इसिलए, एक 30 चैनल पी.सी.एम प्रणाली के लिए, सभी सिगनलों को ले जाने के लिए 15 फ़्रेम आवश्यक हैं. 2 मिली सेकंड के मल्टी-फ़्रेम के लिये 16 फ़्रेम की जरूरत होती है. F0 से F15 तक फ़्रेम होता है. F0 फ़्रेम के TS16 को मल्टी-फ़्रेम के सिंक्रोनाइजेशन के लिये उपयोग किया जाता है. F1 फ़्रेम के TS16 में, चैनल 1(TS1) और चैनल 16 (TS17) की सिगनलिंग जानकारी होती है. इसी तरह से F2 फ़्रेम के TS16 में चैनल 2 (TS2) और चैनल 17 (TS18) की सिगनलिंग जानकारी होती है. इसी तरह आगे की चैनलों की सिगनल जानकारियां क्रमवार फ़्रेमों में भेजी जाती हैं. इस विधि द्वारा (चित्र 1.7) लाइन सिगनल और एड्रेस जानकारियां भेजी जा सकती हैं या अवगत कराया जा सकता है.

चित्र 1.7 30 चैनल पी.सी.एम. सिस्टम

हर एक चैनल की सिगनलिंग के लिये चार बिट्स उपलब्ध हैं परंतु केवल दो ही बिट्स का उपयोग किया जाता है. क्योंकि फ़ॉरवर्ड दिशा और बैक-वर्ड दिशा दोनों के लिये संचारण अलग-अलग है इसीलिये फ़ॉरवर्ड लिंक के सिगनलों को af और bf कहा जाता है तथा बैक-वर्ड लिंक के सिगनलों को ab और bb कहा जाता है. इन बिट्स के मान टेबल 1.6 में दर्शाए गये हैं.

चूंकि डॉयलिंग पल्स भी इन्हीं स्थितियों के द्वारा भेजे जाते हैं इसीलिये लाइन स्थिति की पहचान का समय उसकी तय सीमा से अधिक है. Bf बिट का मान 0 (शून्य) रखा गया है और af बिट का मान 1(एक) रखा गया है.

टेबल-1.6. डिजिटल सिगनल में बिट मान

स्थिति	बिट मान				
स्यात	फ़ॉरवर्ड लिंक में		बैक-वर्ड लिंक में		
	af	bf	Ab	bb	
आइडल	1	0	1	0	
सीझर	0	0	1	0	
सीझर की पुष्टि	0	0	1	1	
आनसर्ड/उत्तर मिला	0	0	0	1	
फॉरवर्ड क्लियर	1	0	0/1	0	
बैकवर्ड क्लियर	0	0	1	1	
ब्लॉक्ड/अवरोधित	1	0	1	1	

हांलािक हर एक स्पीच चैनल के लिये इस तरह के समर्पित सिगनिलंग चैनल का उपयोग बहुत ही अक्षम है क्योंिक वार्तालाप के दौरान यह सिगनिलंग चैनल क्रियाशील नहीं रहती, खाली रहती है. इसीिलये कॉमन चैनल सिगनिलंग सिस्टम को विकसित किया गया है.

1.10 सिगनल पर नंबरिंग के प्रभाव:

नंबिरंग-स्कीम, किसी टेलिफ़ोन का नंबर निर्धारण और उस नंबर का उपयोग, सिगनिलंग और स्विचिंग सिस्टम दोनों को प्रभावित करता है. सामान्यतया समान/यूनिफ़ॉर्म और असमान/नॉन-यूनिफ़ॉर्म नंबिरंग होती हैं. प्रश्न यह है कि कैसे यह नंबिरंग, सिगनिलंग सिस्टम पर असर डालती हैं? यूनिफ़ॉर्म नंबिरंग, सिगनल प्रणाली को आसान बनाती है. वैसे तो यूनिफ़ॉर्म नंबिरंग छह अंको पर आधारित है पर नॉन-टोल (बिना कॉल दर या फ़्री कॉल) या लोकल एरिया वाले नेटवर्क में ज्यादातर यूनिफ़ॉर्म नंबिरंग सिस्टम सात अंकों पर आधारित होता है. टेलीफ़ोन नंबर के अंतिम चार अंक उपभोक्ता नंबर की पहचान है. पहले तीन अंक (या छह अंकों वाली प्रणाली के मामलों में पहले के दो अंक) एक्सचेंज की पहचान बताते हैं. इस नंबिरंग विधि से एक्सचेंज और ट्रांजिट-एक्सचेंज दोनों यह जान पाते हैं कि कॉल स्थापन के लिये सारे अंक प्राप्त हो गये हैं. इस योजना के निम्नलिखित दो फायदे हैं:

- 1. जब पूरे डॉयल अंक प्राप्त हो जाते हैं तब स्विचिंग सिस्टम कॉल स्थापन की प्रक्रिया शुरू कर देता है क्योंकि वह जान पाता है कि आखरी अंक (छठवाँ या सातवाँ) प्राप्त हो गया है.
- 2. इस विधि से ये एक्सचेंज यह जान पाता है कि जितने अंक प्राप्त होने चाहिए थे वे प्राप्त हो चुके हैं. यह प्रक्रिया एक एरर-कंट्रोल की व्यवस्था प्रदान करती है. इसकी मदद से 'टाइम-आउट' सिगनल भेजकर इस अधूरी कॉल को समाप्त कर दिया जाता है.

नॉन-यूनिफ़ॉर्म नंबिरंग के लिये, खासकर जब सीधे लंबी दूरी का अंतर्राष्ट्रीय कॉल किया जाता है, तब उस कॉल को आगे बढ़ाने के लिये स्विचिंग सिस्टम का अपेक्षाकृत ज्यादा सक्षम होना आवश्यक है. नियमानुसार कम से कम यह तो निश्चित हो ही जाता है कि पहला अंक या पहले कुछ अंक ये बताते हैं कि कुल कितने अंक एक्सचेंज में आयेंगे. परन्तु नॉन-यूनिफ़ॉर्म नंबिरंग वाले लोकल एक्सचेंज या राष्ट्रीय स्तर एक्सचेंजों के, कॉल प्रारंभ करने वाले रिजस्टरों में कोई तरीका नहीं होता कि वे ये पता कर सकें कि कुल नंबर का अंतिम नंबर प्राप्त हो गया है. कुछ राष्ट्रीय स्तर के एक्सचेंजों में यह अपवाद है कि वे यह जान पाते हैं कि कुल अधिकतम अंक कितने आयेंगे. नॉन-यूनिफ़ॉर्म नंबिरंग में, अधूरे डॉयल अंक, पूरे नेटवर्क में जहाँ तक कॉल भेजा गया है एक अनुपयोगी कॉल सेट-अप पैदा करते हैं और यह अनुपयोगी कॉल सेट-अप थोड़ी देर बाद मुक्त किया जाता है जब तक कि 'टाइम आउट' सिगनल नहीं मिल जाता जिसका अपना एक समय निश्चित होता है. यह स्पष्ट है कि राष्ट्रीय एवं अंतर्राष्ट्रीय स्तर के नॉन-यूनिफ़ॉर्म नंबिरंग सिस्टम, उन सिगनलिंग सिस्टम्स के साथ ज्यादा अनुकूल सिद्ध होते हैं, जहाँ 'एंड-टु-एंड' तक अच्छे वैशिष्ट्यपूर्ण बैक-वर्ड सूचनाओं के आदान-प्रदान की सुविधा प्रदान की गई हो. जैसे कि R2 सिस्टम में होता है.

1.11 आई.एस.डी.एन. Q इंटरफ़ेस सिगनलिंग प्रोटोकॉल Q.931

किसी भी संगठन के लिये, प्राइवेट ब्रांच एक्सचेंज बहुत ही महत्वपूर्ण संचार सधन होते हैं. जैसे जैसे संगठन बढ़ता है और अन्य जगहों पर विस्तिरत होता है तब यह आवश्यक हो जाता है कि उन संगठनों को आपस में जोड़े रखने के लिये बहुत सारे प्राइवेट ब्रांच एक्सचेंज स्थापित किये जाएं. इन पी.बी.एक्स. को चलायमान रखने की प्राथमिक चुनौती है कि इन्हें इस तरह जोड़ा जाये, ताकि ये एक "एकल-पहचान" (सिंगल-आइडेंटिटी) के रूप में कार्य कर सकें और उपभोक्ता का अनुभव एक समान हो चाहे वह किसी भी

स्थान पर हो. जैसे उदाहरण के लिये किसी वॉइस-मेल सिस्टम को एक मुख्यालय में स्थापित किया जाये और जरूरत पड़ने पर संगठन के कर्मचारी अलग अलग स्थानों से वॉइस-मेल की सुविधा ले सकें, जैसे उन्हें लगे कि यह सुविधा वे लोकल एक्सचेंज से ले रहे हैं. इस तरह के ऑपरेशन को प्राप्त करने के लिए, सभी PBXs को चित्र 1.8 अनुसार जोड़ा जान चाहिए.

चित्र - 1.8 आई.एस.डी.एन. Q इंटरफ़ेस सिगनलिंग

QSIG एक प्रोटोकॉल है जिसका उपयोग किसी संगठन के लिये, पीबीएक्स सिस्टम्स को आपस में जोड़कर अनुपूरक सेवाएं प्रदान करने के लिये किया जाता है. इस प्रोटोकॉल को इस तरह अभिकल्पित किया गया है कि यह स्वयं अपने संचालन तंत्र से स्वतंत्र है और क्यू-सिगनलिंग का उपयोग करके स्थापित किये गये वॉइस कॉल्स और डॉटा कॉल्स के लिये उपयोग किये गये किसी भी माध्यम से स्वतंत्र है. उदाहरण के लिये प्राइमरी-रेट लीज़्ड लाइन का विन्यास (कॉन्फ़िगरेशन), जिसमें 24 (T1) या 30 (E1) में से एक 64-kbps चैनल का उपयोग सिगनलिंग के लिये किया जाता है और बाकी की बेरर चैनल्स स्पीच या डॉटा भेजने के लिये होती है. QSIG प्रोटोकॉल, आई.एस.डी.एन. 'D' चैनल के विभिन्न रूपों में वॉइस सिगनलिंग का कार्य करता है जो कि आई.एस.डी.एन. Q.921 और Q.931 मानकों पर आधारित है और सभी पी.बी.एक्स. सिस्टमों को आपस में जोड़ने का विश्व-ट्यापी मानक बन गया है.

1.11.1 QSIG अवलोकन

QSIG एक अंतर्राष्ट्रीय मानकीकृत सिगनलिंग प्रोटोकॉल है जिसका उपयोग, कॉरपोरेट और छोटे उद्योगों के लिये वॉइस और एकत्रीकृत(इंटिग्रेटेड) सेवाएं प्रदान करने के लिये किया जाता है. इसे साधारणतया विभिन्न पी.बी.एक्स. सिस्टमों के बीच नियोजित किया जाता है और QSIG प्रोटोकॉल का उपयोग करके, कॉल-स्थापन तथा कॉल-मुक्त (प्राथमिक सेवाएं) करने के लिये किया जाता है साथ ही विभिन्न पी.बी.एक्स. के बीच अनुपूरक (सप्लिमेंट्री) सेवाएं भी प्रबंधित की जाती हैं.

एक बुनियादी QSIG कॉल में, एक उपभोक्ता किसी पीबीएक्स से दूसरे पीबीएक्स पर दूसरे उपभोक्ता को कॉल कर सकता है. जब कोई उपभोक्ता कॉल करता है और दूसरे उपभोक्ता के पास घंटी बजती है तब कॉल करने वाले उपभोक्ता के टेलीफ़ोन डिस्प्ले पर, कॉल किये गये उपभोक्ता का नाम और नंबर दिखाई देता है और कॉल किये गये उपभोक्ता के पास डिस्प्ले पर कॉल करने वाले उपभोक्ता का नाम और नंबर दिखाई देता है. इसके साथ-साथ QSIG प्रोटोकॉल, अनुपूरक सेवाएं और कुछ अतिरिक्त नेटवर्क विशिष्टता प्रदान करने में मदद करता है, यानि जब दोनों उपभोक्ताओं के बीच कॉल चलते रहता है और QSIG सपोर्ट मिलता रहता है.

निम्नलिखित QSIG अन्पूरक सेवाएं, जो कि हर पी.बी.एक्स. में होती हैं.

प्रतिबंध

✓ एक से अधिक टेलीफ़ोन नंबर

लाइन

√ कॉल वेटिंग

√ कॉलिंग लाइन आइडेंटिफिकेशन प्रस्तुति (CLIP)

आइडेंटिफिकेशन

√ कॉलिंग (CLIR)

√ कनेक्टेड लाइन आइडेंटिफिकेशन प्रस्तुति (COLP)

√ कनेक्टेड लाइन पहचान प्रतिबंध (COLR)

🗸 दुर्भावनापूर्ण (मॅलेसियस) कॉल की पहचान

√ कॉल होल्ड

√ कॉल दर लागू करने की सलाह

🗸 3-वे कॉन्फ्रेंस

✓ कॉल मार्ग परिवर्तन(डायवर्जन)

✓ CFU प्रक सेवा

√ पाथ रिप्लेसमेंट (ANF- PR)

√ कॉल ट्रांसफ़र बाय ज्वाइन (SS-CT)

 ✓ व्यस्त सब्सक्राइबर को कॉल पूर्ण का संदेश (CCBS)

√ स्पष्ट कॉल ट्रांसफर

1.12 इंटेलिजेंट नेटवर्क

'इंटेलिजेंट नेटवर्क' जिसे आमतौर पर उसके संक्षिप्त रूप IN से जाना जाता है, एक नेटवर्क संरचना है जिसे स्थाई टेलीफ़ोन नेटवर्क और मोबाइल नेटवर्क दोनों के लिये बनाया गया है. इंटेलिजेंट नेटवर्क विभिन्न सर्विस प्रदाताओं को यह अनुमत करता है कि वे मानक टेलीकॉम सेवाएं जैसे PSTN, ISDN और मोबाइल फ़ोन पर GSM सेवाओं के साथ-साथ अति-विशिष्ट सेवाएं भी प्रदान कर सकें.

इंटेलिजेंट नेटवर्क में, इंटेलिजेंस प्रदान करने का कार्य नेटवर्क नोड्स द्वारा किया जाता है, जो कि किसी टेलीकॉम ऑपरेटर के अधीन होते हैं. इसके विपरीत, साधारण नेटवर्क में टेलीफ़ोन उपकरण द्वारा इंटेलिजेंस प्रदान की जाती है या फ़िर इंटरनेट सर्वर द्वारा इंटेलिजेंस प्रदान की जाती है. इंटेलिजेंट नेटवर्क, सिगनलिंग सिस्ट्म (SS7) प्रोटोकॉल पर आधारित है, जो टेलिफोन नेटवर्क स्विट्चिंग सेंटर और अन्य नेटवर्क नोड्स के बीच होता है. नेटवर्क नोड्स, नेटवर्क ऑपरेटर के अधीन होते हैं.

इस तरह की सेवाओं के उदाहरण निम्न प्रकार है, जैसे टेली-वोटिंग, कॉल स्क्रीनिंग, टेलीफ़ोन नंबर पोर्टबिलिटी, टोल-फ़्री कॉल/फ़्री कॉल, प्री-पेड कॉलिंग, अकाऊंट कार्ड कॉलिंग, वर्चुअल प्राइवेट नेटवर्क (उदा. परिवार/मित्र/ग्रुप कॉलिंग), सेंट्रेक्स सर्विस(वर्चुअल पीबीएक्स) आदि.

इंटेलिजेंट नेटवर्क की संकल्पना, संरचना और प्रोटोकॉल का विकास आरंभ में आइ.टी.यू.(टी) द्वारा किया गया. जो कि इंटरनेशनल टेलीकम्यूनिकेशन यूनियन की एक मानकीकरण किमटी है. इसके पहले विभिन्न टेलीकम्यूनिकेशन प्रदाताओं द्वारा इंटेलिजेंट नेटवर्क प्रदान किये जाते थे और उन पर मालिकाना अधिकार होता था. इंटेलिजेंट नेटवर्क का प्राथमिक उद्देश्य यह था कि परंपरागत टेली-कम्यूनिकेशन नेटवर्क द्वारा वर्तमान मूल टेलीफ़ोनी सेवाओं में वृद्धी की जा सके जो कि सिर्फ़ वॉइस कॉलिंग या कॉल डाइवर्ट करने तक ही सीमित थे. और आगे जाकर यही मूल सेवाएं एक आधार प्रदान करें, जिसपर टेलीकॉम ऑपरेटर कुछ और अतिरिक्त सेवाएं जो कि वर्तमान टेलीफ़ोन एक्सचेंज में मौजूद हैं, को और बढ़ा सकें.

इंटेलिजेंट नेटवर्क का पूर्ण विवरण, आइ.टी.यू.(टी) मानक Q.1210 से Q.1219 में उभर कर आया है. इन मानकों द्वारा, संपूर्ण संरचना, जिसमें संरचना का विचार, मशीनरी,व्यावहारिक रूप में लागू करने और प्रोटोकॉल आदि परिभाषित किया गया है. इन्हें विश्व-स्तर पर सभी टेलीकॉम ऑपरेटरों और सप्लायरों द्वारा स्वीकार किया गया. यद्धिप अन्य तरह के इंटेलिजेंट नेटवर्क विश्व के अलग-अलग भागों में विकसित किये गये.

वस्त्निष्ठः रिक्त स्थान भरोः

- 1. सिगनलिंग सिस्टम, दो स्विचिंग उपस्करों के बीच संवाद करने के लिए एक भाषा का उपयोग करते हैं जिसका उद्देश्य एक <u>कॉल सेट-अप</u> करना होता है.
- 2. QSIG एक अंतर्राष्ट्रीय मानक सिगनलिंग प्रोटोकॉल है जिसका उपयोग, कॉर्पोरेट और इंटरप्राइज़ के लिए <u>वॉइस और इंटिग्रेटेड सर्विसेस</u> नेटवर्क के लिए किया जाता है.
- 3. जब एक्सचेंज, एड्रेस इन्फर्मेशन लेने के लिए तैयार होता है, तब एक्सचेंज द्वारा सब्सक्राइबर सिगनलिंग में <u>डॉयल-टोन</u> भेजी जाती है.
- 4. घंटी बजने के बाद, जैसे ही कॉल्ड-सब्सक्राइबर हैंड-सेट उठाता है, कॉलिंग-सब्सक्राइबर की लाइन पर <u>बैटरी-रिवर्सल</u> सिगनल ट्रांसमिट किया जाता है.
- 5. <u>पर्मनेंट-लाइन सिगनल</u>, कॉलिंग सब्सक्राइबर को तब भेजा जाता है, जब वह कॉल-रिलीज करने में असफल होता है, जबिक कॉल्ड सब्सक्राइबर पहले ही 'ऑन-हुक' जा चुका होता है और कुछ टाइम-डिले के बाद कॉल रिलीज हो जाती है.

विषय-निष्ठ:

- 1. टेलकम्यूनिकेशन नेटवर्क में किस-किस प्रकार की विभिन्न सिगनलिंग सूचनाएं ले जाई जाती हैं?
- 2. इंटर-एक्सचेंज सिगनलिंग के लिए उपयोग की जाने वाली विभिन्न पद्धतियां क्या हैं?
- 3. निम्नलिखित पर लघ्-टिप्पणीं लिखें:
 - a. इ&एम सिगनलिंग.
 - b. इन-बैंड और आउट-ऑफ-बैंड सिगनलिंग.
- 4. चैनल असोसिएटेड सिअगन्लिंग क्या है? पी.डी.एच. फ्रेम फॉरमेट में इसे कैसे लागू किया जाता है? समझाएं.
- 5. 'Q' सिगनलिंग क्या है? उसकी क्या-क्या विशेषताएं हैं?

अध्याय-2

सिगनलिंग सिस्टम -7 (एस.एस.-7)

2.0 एस.एस.-7 का विकास:

ए.टी. & टी. (AT&T) द्वारा सन् 1975 में एस.एस.-7 प्रोटोकॉल का निर्माण किया गया और सन् 1981 में आइ.टी.यू.(टी) की मान्यताओं के अनुसार Q.7XX सीरीज बनाई गई. एस.एस.-7 से पहले सिगनलिंग सिस्टम-5, सिगनलिंग सिस्टम-6 और R2 (रजिस्टर्ड सिगनल आर-2) सिगनलिंग सिस्टम ह्आ करते थे, उनको हटाकर एस.एस-7 सिगनलिंग सिस्टम को लागू किया गया. पहले वाले सिगनलिंग सिस्टम अंतर्राष्ट्रीय स्तर पर उपयोग किये जाते थे, अब एस.एस-7 सिग्नलिंग सिस्टम उपयोग किया जाता है. एस.एस.-7, धीरे-धीरे एस.एस5 और एस.एस6 की जगह लेते गये, लेकिन R2 सिगनलिंग सिस्टम बाद में हटाया गया क्योंकि उस समय तक क्छ देशों में R2 सिगनलिंग सिस्टम अस्तित्व में था. एस.एस. 5 और पहले के सभी सिगनलिंग सिस्टम इन-बैंड सिगनलिंग का प्रयोग करते थे जिसमें कॉल सेट-अप की जानकारी एक खास तरह की टोन्स के द्वारा टेलीफ़ोन लाइन पर भेजी जाती थीं. टेलीफ़ोनी भाषा में इन्हें बेयरर चैनल कहा जाता है. इन सिगनलिंग सिस्टम्स में स्रक्षा की कमियां थीं, जैसा कि कुछ टेलीफ़ोन स्विचिंग सिस्टम्स में टेलीफ़ोन हैंड-सेट से (माइक्रो-फ़ोन से) यदि बनावटी टोन्स भेजी गईं तब उन्हे भी स्विचिंग सिस्टम द्वारा पहचान लिया गया, जबिक ये टोन्स केवल टेलीफ़ोन के की-पैड से "स्पेशल-की" द्वारा ही भेजी जानी चाहिये और सिस्टम द्वारा पहचानी जानी चाहिए. फ़लिभूत कुछ उपभोक्ताओं ने अपने ख्द के छोटे इलेक्ट्रॉनिक एक्सचेंज़ों से ये टोन्स भेजकर इसका गलत उपयोग किया. लेकिन अब, आध्निक डिजाइन के टेलीफ़ोन सिस्टम में 'इन-बैंड' सिगनलिंग का ही उपयोग होता है, पर स्पीच-पाथ और सिगनलिंग-पाथ दोनों को अलग-अलग कर दिया गया है ताकि उपभोक्ता द्वारा किसी भी तरह की MF टोन्स को स्पीच-पाथ पर भेजने की संभावना ही ना रहे और चोरी-छिपे की गई इस "ब्ल्यू-बॉक्स" तकनीक से बचा जा सके.

एस.एस.7/SS7 सिगनलिंग हमें इस दौर में ले आई है, जहां सिगनलिंग-सूचनाओं को आउट-ऑफ़-बैंड सिगनलिंग के माध्यम से अलग चैनल द्वारा ले जाया जाता है. इससे सुरक्षा की समस्या भी हल हो गयी, क्योंकि अब उपभोक्ता, सिगनलिंग चैनलों के सीधे संपर्क में नहीं आते. एस.एस6 और एस.एस7 सिगनलिंग सिस्टम्स को "कॉमन चैनल इंटर-ऑफ़िस सिगनलिंग सिस्टम" कहा जाता है या साधारणतया "कॉमन चैनल सिगनलिंग" भी कहा जाता है, क्योंकि सभी बेयरर चैनलों की सिगनलिंग एक ही चैनल पर भेजी जाती है.

- 2.1 परिचय: 'आउट-ऑफ़-बैंड' सिगनलिंग पर कार्य करने वाले इस एस.एस.7 सिगनलिंग सिस्टम से कॉल स्थापन, बिलिंग, रूटिंग, अन्य जानकारियां और "पब्लिक स्विच्ड् सिस्टम नेटवर्क" को सहयोग मिलता है. एस.एस.7, यह सिगनलिंग सिस्टम नेटवर्क द्वारा किये जाने वाले कार्य को तथा उसके कार्यनिष्पादन के लिए प्रोटोकॉल को निश्चित करता है.
- 2.2 एस.एस.7 की भूमिका: इस अध्याय का उद्देश्य, एस.एस.-7 सिगनलिंग सिस्टम से अवगत कराना है और यह भी अवगत कराना है कि कैसे यह सिगनलिंग सिस्टम विश्व के दो बिलियन लोगों के जीवन पर प्रभाव डालता है. अध्याय की शुरुआत एस.एस.-7 सिगनलिंग द्वारा दी जाने वाली मुख्य सुविधाएं तथा वह प्रोटोकॉल, जो अभी तक मिलने वाली और आगे भी निरंतर मिलती रहने वाली टेली-कम्यूनिकेशन की सुविधाओं से अवगत कराता है, और अध्याय का समापन इस विश्लेषण से होता है कि क्यों यह

एस.एस.-7 सिगनलिंग सिस्टम, कम्यूनिकेशन सिस्टम के बदलते स्वरूप का पहला स्तंभ है. एस.एस.7/C7 एक प्रोटोकॉल-सूट है जिसे सारे टेली-कम्यूनिकेशन नेटवर्क पर सिगनलिंग प्रदान करने के लिये विश्व स्तर पर अपनाया गया है. यह एक प्राईवेट पैकेट स्विच्ड नेटवर्क है जो कि पर्दे के पीछे काम करता है और एक सर्विस प्लेटफ़ॉर्म भी है. चूंकि यह एक सिगनलिंग प्रोटोकॉल है, इसलिये एक मैकनिज़म प्रदान करता है, जिससे सारे टेली-कम्यूनिकेशन नेटवर्क से जुड़े हुये एक्सचेंज़ आपस में कंट्रोल सूचनाओं का आदान-प्रदान कर सकते हैं.

AT&T ने सन् 1975 में SS7/C7 को स्थापित किया और "इंटर-नेशनल टेलीग्राफ़ और टेलीफ़ोन कंसल्टेटिव कमिटी" ने सन् 1981 में इसे विश्व-स्तर पर अपनाया. पिछले 25 सालों में इसमें कई बदलाव किये गये और दिनोदिन उपयोग में आने वाली स्विधओं को निरंतर इसके साथ जोड़ा जा रहा है.

एस.एस-7 (SS7/C7) की मदद से ही पब्लिक स्विच्ड टेलीफ़ोन नेटवर्क (PSTN), आई.एस.डी.एन. (ISDN), इंटेलिजेंट नेटवर्क (INs), और पब्लिक लैंड-मोबाईल नेटवर्क (PLMNs) को आपस में जोड़ा जा सका है.

जब कभी भी आप किसी दूरस्थ एक्सचेंज़ के उपभोक्ता को कॉल करते हैं या बातचीत के बाद कॉल समाप्त करते हैं, उस समय यही SS7/C7 सिगनलिंग सिस्टम, आपके कॉल को 'डेडिकेटेड नेटवर्क रिसोर्स' (ट्रंक) पर जोड़ने या खत्म करने में अपनी भूमिका अदा करता है. कॉल खत्म होने के बाद SS7/C7 खास प्रक्रिया के द्वारा नेटवर्क रिसोर्स को दोबारा अगले कॉल के लिये रिलीज कर देता है.

एक ही एक्सचेंज़ में दो उपभोक्ताओं के बीच लगने वाले कॉल के लिये SS7/C7 की आवश्यकता नहीं होती. इन्हें साधारणतया इंट्रा-ऑफ़िस, इंट्रा-एक्सचेंज़ या लाइन-टु-लाइन कॉल कहते हैं.

जब कभी भी सेल्यूलर फ़ोन "ऑन" किया जाता है तब उस फ़ोन की, SS7/C7 आधारित ट्रांजेक्शन पहचान और प्रामाणिकता दोनों रजिस्टर कर लिये जाते हैं. साथ ही कॉल स्थापित करने से पहले यह सुनिश्चित कर लिया जाता है कि वह सेल्यूलर फोन चोरी का तो नहीं है (नेटवर्क डिपेंडेंट ऑप्शन) और क्या उस फ़ोन द्वारा कॉल करने की अनुमित है, जैसे उदाहरण के लिये अगर उपभोक्ता को अंतर्राष्ट्रीय कॉल करने की अनुमित नहीं है, तो SS7/C7 इस कॉल को आगे नहीं बढ़ायेगा. इसके साथ-साथ SS7/C7 नेटवर्क यह भी खोज कर लेता है कि जिस फ़ोन पर कॉल भेजना है वह पूरे नेटवर्क में कहाँ पर है और कॉल स्थापित होने के बाद उसे निरंतर चालू रखता है जबिक उपभोक्ता एक जगह से दूसरी जगह स्थान बदलता रहता है. साधारणतया सभी लोग इस SS7/C7 का उपयोग करते हैं पर इसके बारे में कम को ही जानकारी होती है क्योंकि यह तकनीक पर्दे के पीछे रह कर काम करती है, परंतु पारदर्शी होती है, जैसे कि आइ.पी. नेटवर्क पारदर्शी होते हैं. पारदर्शी होने का एक और कारण यह भी है कि यह तकनीक अत्यधिक विश्वसनीय और संवेदनशील होती है. जैसे कि उदा. के लिये, SS7/C7 के उपकरण कैरियर-ग्रेड-क्वालिटी के होने चाहिये जो कि 99.999% उपलब्ध रहें. इस प्रोटोकॉल के द्वारा विश्वसनीय मैसेज डिलीवरी, स्वयंमोपचार (सेल्फ़-हीलिंग) की क्षमता, और अत्याधुनिक इंजीनियरिंग से सुसज्जित भौतिक(फ़िज़ीकल) नेटवर्क, ये तीन मुख्य चीजें इसे एक मजबूत रूप देते हैं.

औसतन, इसमें उपयोग में लाई जाने वाली लिंक जो कि नेटवर्क बनातीं हैं, 20-40 प्रतिशत ही भरी जाती हैं और पूर्णतया एक-समान नेटवर्क घटकों का प्रयोग करती हैं. आज के परिवेश में SS7/C7 ही एक मजबूत और विश्वसनीय सिगनलिंग सिस्टम है.

क्वालिटी सर्विस, SS7/C7 का एक महत्वपूर्ण घटक है जो कि हर एक उपभोक्ता द्वारा उपयोग किया जाता है.

आज के दौर में QoS, विभिन्न सेवा प्रदान करने वाली कंपनियों के बीच स्पर्धा और उनमें आपसी फ़र्क करने का कारण बनता जा रहा है. खराब कवरेज, कॉल लगने में विलंब, कॉल कट जाना, अनुचित बिल, सेवाओं में अनियमितता और अन्य खराबियों की वजह से कई उपभोक्ता, (QoS) अच्छी सेवाएं देने वाली कंपनी की तरफ़ आकर्षित हो रहे हैं. अगर गलत ढंग से किसी नेटवर्क 'नोड'(Node) में कुछ भी बदलाव किया जाता है तो उपभोक्ता की सुविधाओं पर सीधा असर पड़ता है जैसे कि उपभोक्ता की अंतर्राष्ट्रीय रोमिंग सुविधा या एस.एम.एस. सुविधा का बन्द हो जाना. एस.एस.-7 की एक अकेली लिंक के बंद होने पर बड़ी संख्या में कॉल्स बंद हो जाती हैं. इसी कारण एस.एस.-7 को मजबूत और विश्वसनीय बनाया गया है.

2.3 एस.एस.७ में आई खराबी के प्रभाव:

एक बार, जनवरी 1990 में, एस.एस.7 में आई खराबी और उसके जटिल स्वरूप को देखा गया, जब AT&T स्विचिंग नोड के एस.एस.7 सॉफ़्टवेयर में गड़बड़ी पैदा हुई और करीब 100 ऐसे स्विचिंग 'नोड' में फ़ैल गई. इस कारण सारा नेटवर्क नौ घंटे तक बंद रहा, 60,000 के करीब लोग इससे प्रभावित हुए और AT&T को लगभग 60 मिलियन डॉलर राशि का नुकसान उठाना पड़ा.

2.4 एस.एस.७ का कार्य निष्पादन

- विभिन्न इंटरफ़ेसेस को संभालना, 'प्रॉमिस्ड-सर्विसेस' को प्रदान करना, कंज़ेशन को नियंत्रित करना तथा कॉल में विलंब को नियंत्रित करना आदि जरूरी कार्य करना.
- एस.एस.-7 (SS7) प्रोटोकॉल एक 'कंज़ेशन कंट्रोल स्कीम' प्रदान करता है, जिससे लिंक की निगरानी, ट्राफ़िक का मार्ग परिवर्तन, लिंक को दोबारा चालू करना/बन्द करना संभव होता है.

सिगनल पॉइंट और सिगनल ट्रांसफ़र पॉइंट पर होने वाला विलंब आई.टी.यू. (टी) मानक Q.706, Q.716 और Q.766 में सुझाई गई सीमा के अंदर होना चाहिये.

2.5 एस.एस.-7 से खास तरह की सुविधाएं ली जाती हैं.

कॉल सेट-अप और कॉल रिलीज़ करने के अलावा एस.एस.-7 से और भी कई टेली-कम्यूनिकेशन की सेवाएं ली जाती हैं, जो निम्न प्रकार हैं.

- 🗸 टेली-मार्केटिंग नंबर, जैसे टोल-फ़्री और फ़्री फ़ोन की सुविधा
- √ टेली-वोटिंग (बह्त सारे नंबरों को एक साथ कॉल करना)
- 🗸 टेलीफ़ोन निर्देशिका के लिये सारे नेटवर्क का एक ही नंबर प्रदान करना (सिंगल डायरेक्टरी नंबर)
- ✓ इन्हेंस्ड 911 (आक्सिमिक घटनाओं में मदद के लिये इमरजेंसी नंबर)- जो कि अमेरिका में उपयोग होता है.
- अतिरिक्त सेवाएं
- √ कस्टम लोकल एरिया सिगनलिंग सर्विस (CLASS)
- √ कॉलर- नेम- कॉल करने वाले व्यक्ति का नाम (CNAM)
- 🗸 लाइन इन्फर्मेशन डॉटा-बेस (एल.आई.डी.बी.)
- √ लोकल नंबर पोर्टबिलिटी की स्विधा (LNP)
- 🗸 सेल्यूलर नेटवर्क मोबिलिटी मैनेजमेंट और रोमिंग की सुविधा

- ✓ एस.एम.एस. सिक्षिप्त संदेश सेवा (SMS)
- 🗸 इन्हेंस्ड मैसेज़ सर्विसेस (EMS)— रिंग टोन, कंपनी का 'लोगो' और सेल्यूलर गेम की सुविधा
- √ लोकल एक्सचेंज़ कैरियर (LEC) प्रयुक्त प्राईवेट वर्च्अल नेटवर्क (PVNs)
- 🗸 डू-नॉट-कॉल की सुविधा
- 2.6 उपरोक्त टेली-कम्यूनिकेशन सेवाओं का वर्णन निम्नलिखित अनुभागों में किया गया है.

2.6.1 टेली-मार्केटिंग नंबर

साधारणतया उपयोग होने वाले सभी टेली-मार्केटिंग नंबर टोल-फ़्री होते हैं यानि इन नंबरों को कॉल करने पर कोई पैसा नहीं लगता, ये नंबर '800 कॉलिंग' या यूनाइटेड किंगडम (यू.के.) में 0800 फ़्री-फ़ोन के नाम से जाना जाता है. चूंकि सभी कॉल्स फ़्री होते हैं इसलिए इन नंबरों का उपयोग ज्यादा व्यापार बढ़ाने और ग्राहकों का ध्यान आकर्षित करने के लिये किया जाता है. कुछ टेली-मार्केटिंग नंबर प्रीमियर रेट पर भी उपलब्ध हैं, जिसमें ग्राहकों से किसी खास वांछित विषय-वस्तु की जानकारी के लिये कॉल का प्रीमियम रेट लिया जाता है.

वयस्क-सेवाएं और सटीक रोड-रिपोर्ट जैसे उदाहरण दिये जा सकते हैं. ये सेवाएं सर्वप्रथम बेल-सिस्टम ने शुरू कीं ताकि ग्राहकों को टोल-फ़्री सुविधा मिल सके और प्राइवेट कंपनियों का डॉटा-बेस उपयोग कर सकें.

'800' सेवाएं, दो तरह के प्लान के द्वारा दी जाती हैं.

- > 800 NXX प्लान: इस प्लान में 800 सेवा कॉल के पहले छह अंक, इंटर-एक्सचेंज़ कैरियर का चुनाव करने के लिये किया जाता है.
- > 800 डॉटा-बेस प्लान: कॉल को डॉटा-बेस से निश्चित किया जाता है कि कॉल को किस कैरियर और रूट पर भेजा जाये.

एक और लोकप्रिय टेली-मार्केटिंग नंबर है लोकल कॉल, जिसमें लोकल कॉल के बराबर पैसे देने पड़ते हैं चाहे वह कॉल देश के किसी भी कोने में किया गया हो. हाल ही के वर्षों में यू.के. में टेली-मार्केटिंग नंबरों के भौगोलिक स्थानों की जानकारी को छुपाने का एक तरीका अपनाया गया जिसमें, लोकल नंबर यह अन्मत करता है कि असली नंबर और विज्ञापन नंबर अलग-अलग किए जा सकें.

2.6.2 टेली-वोटिंग:

किसी काल्पनिक विषय पर जनमत जानने के लिये एक आसान तरीके के रूप में टेली-वोटिंग का उपयोग किया जाता है. जैसे "कौन बनेगा करोड़पति" का उद्घोषक जनता से प्रश्न करता है और जनता अपने टेलीफ़ोन से उस प्रश्न का उत्तर चुनकर एक अंक डायल करती है, इसे जनता के वोट के रूप में संग्रहित कर लिया जाता है. इसमें एक ऑटोमैटिक वॉइस रिसपॉन्स के द्वारा स्वागत किया जाता है और वोट करने के बाद "वोट करने के लिये धन्यवाद" पर समाप्त हो जाता है. आजकल इस टेली-वोटिंग के लिये एस.एम.एस. का भी उपयोग किया जाता है जिसमें टेली-वोटिंग एस.एम.एस. (SMS) द्वारा की जाती है. टेली-वोटिंग का उपयोग किसी खास व्यक्ति या संस्था के लिये चंदा जमा करने और टेलीफ़ोन आधारित प्रतियोगिताओं के लिये किया जाता है. टेली-वोटिंग के परिणाम स्वरूप एक ही रात में 15 मिलियन 'कॉल्स' तक किये जा सकते हैं. आज के टेलीफ़ोन नेटवर्क में टेली-वोटिंग, एक सर्वाधिक मांग वाली और लाभप्रद सेवा है. जैसे - जैसे जनता इस सेवा का अधिकाधिक उपयोग करेगी वैसे-वैसे इस क्षेत्र में आमदनी भी बढेगी.

2.6.3 सिंगल डायरेक्टरी नंबर

सिंगल डायरेक्टरी भी एक सेवा है, जो एस.एस.-7 सिस्टम का उपयोग करती है और हाल ही के वर्षों में इसे उपयोग में लाया गया है. यह सेवा बड़ी कंपनियों के अलग-अलग जगहों पर स्थित कार्यालयों या स्टोर्स लोकेशन के लिये एक सिंगल डायरेक्टरी नंबर प्रदान करती है. कॉल की गई पार्टी के नंबर को परखने के बाद स्विच सिस्टम द्वारा उस कार्यालय या स्टोर्स लोकेशन तक कॉल को भेज दिया जाता है.

2.6.4 टच-स्टार सेवाएं

इन्हें साधारणतया "क्लास ऑफ़ सर्विस" कहा जाता है और ये स्विच सिस्टम द्वारा नियंत्रित की जाती हैं.

- 🕨 कॉल बैक की सुविधा
- कॉल फ़ॉरवर्ड की सुविधा
- 🗲 ऑटोमॅटिक री-डायलिंग की सुविधा
- 🕨 कॉल ब्लॉक करने की स्विधा
- कॉल ट्रेसिंग की सुविधा
- 🕨 कॉलर आई.डी. (कॉलर के नंबर की पहचान) की स्विधा

2.6.5 बिलिंग सेवा का विकल्प

यह सेवा उपभोक्ता को अधिकार देती है कि वह किसी भी टेलीफ़ोन से कॉल कर सके और अपने मनचाहे निजी नंबर पर सारे कॉल्स की बिलिंग कर सके (किसी तीसरे व्यक्ति का नंबर, कॉलिंग कार्ड या कलेक्ट कार्ड पर)

2.6.6 इन्हेंस्ड 911

इन्हेंस्ड E911 सेवा को संयुक्त राज्य अमेरिका के कुछ राज्यों में लागू किया गया है. इसमें भी एस.एस.-7 सिगनलिंग सिस्टम का उपयोग किया गया है. जिससे कॉल करने वाले उपभोक्ता का नंबर, डॉटा-बेस में उसका पता देखकर उस कॉल को "आपातकाल डिस्पैच ऑपरेटर" को भेज दिया जाता है तािक आपात स्थिति से निपटने के लिये तुरंत निर्णय लिया जा सके. यह भी संभव है कि E911 के द्वारा और भी सूचनाएं जैसे कि नजदीक के अग्निशमन-स्टेशन का नंबर और पता, कॉल करने वाले व्यक्ति की व्यक्तिगत मेडिकल रिपोर्ट आदि भी भेजी जा सकती है.

फ़ेडेरल कम्यूनिकेशन कमीशन" के द्वारा भी एक सेल्यूलर E911 प्रोग्राम शुरू किया जाने वाला है. इस प्रोग्राम में उपरोक्त सभी सूचनाओं के अलावा यह जानकारी भी भेजी जा सकेगी कि कॉल करने वाला व्यक्ति उस समय किस नजदीकी एंटीना से जुड़ा है ताकि सटीक पता चल सके कि मदद किस जगह पहुँचानी है. अन्य सटीक सूचनाओं के लिये आगे कार्रवाई जारी है.

2.6.7 अतिरिक्त सेवाएं:

पहले के "प्लेन ओल्ड टेलीफ़ोनी सर्विस" सिस्टम में मिलने वाली सेवाओं के अलावा कुछ अतिरिक्त सेवाएं, आज के नये टेलीफ़ोनी सिस्टम में प्रदान की गई हैं. इन अतिरिक्त सेवाओं को प्राप्त करने के लिये पुराने टेलीफ़ोन को बदलने की आवश्यकता नहीं है. प्रचलित अतिरिक्त सेवाओं में, थ्री-वे कॉलिंग, कॉल करने वाले का नंबर दिखाना, प्रतीक्षारत कॉल (कॉल-वेटिंग) और कॉल फ़ॉरवर्ड शामिल हैं. अलग-अलग देशों और ऑपरेटरों में इनके नाम अलग-अलग हो सकते हैं. पहले 'कॉल-मिनट' यूनिट दर में कमी देखी जाती थी, पर इन अतिरिक्त सेवाओं की मदद से सेवा प्रदान करने वाले ऑपरेटरों की आमदनी भी बढ़ गई है. वैसे तो इन अतिरिक्त सेवाओं को पाने के लिये उपभोक्ता को एक निश्चित मासिक/ तिमाही राशि फ़ीस के रूप में देनी पड़ती है.

2.6.8 कस्टम लोकल एरिया सिगनलिंग सेवाएं: (CLASS)

कस्टम लोकल एरिया सिगनलिंग **सर्विसेस**, अतिरिक्त सेवाओं का ही एक विस्तारित रूप है, जिसमें एक से ज्यादा एक्सचेंज एक ही भौगोलिक एरिया में जोड़े गये हैं और एस.एस.-7 सिस्टम का ही उपयोग करते हैं. एस.एस.-7 पर भेजी जाने वाली सूचनाएं, जैसे कॉल करने वाले व्यक्ति की नंबर पहचान या कॉल किए गये उपभोक्ता की स्थिति आदि अन्य सेवाएं देने के लिये सर्विस-प्रदाता को अधिकृत करती है. 'क्लास' (CLASS) के निम्नलिखित उदाहरण दिये जा सकते हैं.

- > कॉल-ब्लॉक: इस सेवा के द्वारा किन्हीं अनचाहे व्यक्ति से आने वाले कॉलों को रोका जा सकता है.
- विशिष्ट रिंगिंग: इस सेवा के द्वारा किन्हीं विशिष्ट व्यक्तियों के नंबर से, जिसकी पहले से सूची बना ली गई है, अगर कॉल करते हैं, तो अलग-अलग रिंगिंग प्रदान की जा सकती हैं. यह सुविधा घरेलू और बच्चों के लिये बह्त ही लाभदायक है.
- प्रियॉरिटी रिंगिंग: इस सेवा के द्वारा कॉल करने वाले व्यक्तियों के लिये अलग-अलग रिंग टोन का उपयोग किया जा सकता है. अगर कॉल प्राप्त करने वाला व्यक्ति कॉल में व्यस्त है और कॉल वेटिंग की सुविधा से युक्त है तो एक विशिष्ट तरह की टोन सुनाई देगी और उपभोक्ता को पता चल जाता है कि कॉल करने वाला व्यक्ति प्रियॉरिटी लिस्ट का है या नहीं, इससे प्रियॉरिटी कॉल का चुनाव करने में आसानी होती है.
- ► व्यस्त उपभोक्ता के साथ कॉल पूर्णता: (CCBS) इस सेवा से युक्त उपभोक्ता यदि किसी को कॉल करता है और अगर वह उपभोक्ता किसी और के साथ बातचीत में व्यस्त हो, तो एक विशिष्ट कोड डॉयल करके टेलीफ़ोन रख देता है. जैसे ही वह व्यक्ति कॉल लेने की स्थिति में आ जाता है तब उसकी टेलीफ़ोन रिंग बजती है और टेलीफ़ोन उठाने पर, कॉल करने वाले उपभोक्ता के टेलीफ़ोन पर भी रिंग बजती है, जब टेलीफ़ोन उठा लिया जाता है तब दोनों उपभोक्ताओं के बीच बातचीत शुरू हो जाती है. इस सेवा से, व्यस्त टेलीफ़ोन को बार-बार डॉयल करके देखने की आवश्यकता नहीं होती और समय भी बच जाता है. इन सेवाओं के नाम अलग-अलग देशों और सेवा-प्रदाताओं के बीच अलग-अलग हो सकते हैं. उत्तरी अमेरिका के बाहर इस "CLASS" शब्द का उपयोग नहीं किया जाता.

2.6.9 कॉलर-नेम - कॉल करने वाले उपभोक्ता के नाम की पहचान (CNAM): यह सेवा डॉटा-बेस पर आधारित, तेजी से बढ़ती लोकप्रिय सेवा है जो कि अभी सिर्फ़ संयुक्त राज्य अमेरीका में ही उपलब्ध है. इस सेवा से, कॉल करने वाले उपभोक्ता के नंबर के साथ उसका नाम भी प्राप्त होता है. इस सेवा को प्राप्त करने के लिये कॉल पाने वाले उपभोक्ता के पास अनुकूल डिस्प्ले बॉक्स होना जरूरी है. यह CNAM सूचना, क्षेत्रीय टेली-कम्यूनिकेशन डॉटा-बेस में संचयित रहती है. SS7/C7 सिस्टम, डॉटा-बेस से नाम और नंबर की जानकारी प्राप्त करता है और कॉल किये गये उपभोक्ता के स्थानीय स्विच को भेज देता है.

2.6.10 लाइन इन्फर्मेशन डॉटा-बेस (LIDB)

किसी उपभोक्त के लिये संग्रहित विशिष्ट सेवाओं की महत्वपूर्ण जानकारी के लिये लाइन इनफ़ॉरमेशन डॉटा-बेस बनाया जाता है जो कि एक बहु-उद्देशीय डॉटा-बेस कहलाता है और अभी सिर्फ़ संयुक्त राज्य अमेरीका में ही उपलब्ध है. इसमें ऐसी सूचनाएं जैसे, उपभोक्ता का वर्णन, नाम, पता और बिलिंग व्हैलिडेशन डॉटा-बेस' शामिल हैं. उदाहरण के लिये उपभोक्ता का नाम और पता, CNAM जानने के लिये काम आता है. 'बिलिंग व्हैलिडेशन डॉटा-बेस' का उपयोग वैकल्पिक बिलिंग सेवा जैसे, कॉलिंग कार्ड, कलेक्ट कार्ड या किसी तीसरे व्यक्ति के टेलीफ़ोन पर बिलिंग के लिये किया जाता है. इस वैकल्पिक बिलिंग सेवा के लिये जरूरी नहीं कि उपभोक्ता का मूल नंबर उस टेलीफ़ोन से संबंधित हो जिससे वह

कॉल कर रहा है. जैसा कि उदाहरण के लिये, कॉल का बिल कॉलिंग कार्ड से दिया जा सकता है. इस कार्ड का नंबर बिल चुकाने के लिये LIDB (लाइन इनफर्मेशन डॉटा-बेस) में पहले ही संग्रहित कर लिया जाता है. एस.एस.-7 इस बात के लिये भी जिम्मेदार होता है कि कॉल करने से पहले रियल-टाईम में यह पता कर सकें कि कॉलिंग कार्ड वैध है और कॉल किया जा सकता है.

2.6.11 लोकल नंबर पोर्टबिलिटी (Local Number Portability) (LNP)

लोकल नंबर पोर्टबिलिटी सेवा से उपभोक्ता को यह सुविधा मिल जाती है कि अगर वह चाहे तो अपना 'टेलीफ़ोन सेवा-प्रदाता', किसी भी समय बदल सकता है लेकिन उसका टेलीफ़ोन नंबर पहले वाला ही रहेगा. नंबर बदलने की आवश्यकता नहीं होगी. इस सेवा को तीन विशिष्ट स्थितियों में प्राप्त किया जा सकता है,

- > सर्विस- प्रोवाइडर पोर्टबिलिटी
- > सर्विस पोर्टबिलिटी
- लोकेशन पोर्टबिलिटी

FCC दूर-संचार अधिनियम 1996 के अनुसार संयुक्त अमेरीका में यह अनिवार्य किया गया कि जो उपभोक्ता स्थायी-लाइन से जुड़े हैं, उन्हें यह सुविधा दी जाये और उसी वर्ष के दौरान, इस धारा में यह भी स्पष्ट किया गया कि यह सेवा 'सेल्यूलर-कैरियर' को भी कवर करे. एलएनपी (LNP) का प्राथमिक उद्देश्य यह था कि उपभोक्ता जब अपना सेवा-प्रदाता बदलना चाहे तब व्यक्तिगत नंबर बदलने की जरूरत ना हो. उदाहरण के लिये, कुछ व्यापारी और सामान्य व्यक्ति अपने टेलीफ़ोन नंबरों को अपने बिज़नेस कार्ड, लेटर-हेड या और भी कई पत्र-व्यवहार करने वाली चीजों पर छपवाते हैं जिसमें उनका काफ़ी पैसा खर्च होता है, इस सेवा की मदद से उन्हें अपना नंबर कहीं भी नहीं बदलना पड़ता. अगर ऐसा ना होता तो उन्हें हर बार नयी स्टेशनरी छपवानी पड़ती, सेवा-प्रदाता बदलने में कठिनाई होती और नंबर बदले जाने पर अधिक नुकसान होता.

चूंकि सारे टेलीफ़ोन नेटवर्क, सेवा-प्रदाता और उसके भौगोलिक नंबर प्लान के आधार पर कॉल को नियत रूट पर भेजते हैं, तब एस.एस.-7 के लिये यह तय करना अनिवार्य हो जाता है कि कॉल लगाने से पहले अतिरिक्त सिगनलिंग की मदद से उस कॉल को उपभोक्ता तक उसके टर्मिनेटिंग स्विच तक पहुँचाया जाये. यह प्रक्रिया एक-दो सेकंड में पूरी हो जाती है जबिक यह एक जिटल चुनौतिपूर्ण तकनीकी नेटवर्क बदलाव है और एस.एस.-7 द्वारा कॉल स्थापित करने का काम, पर्दे के पीछे से होता है.

सेल्यूलर नेटवर्क में भी इसी तरह की प्रक्रिया की जाती है, फ़र्क इतना ही है कि एस.एस.-7 की सिगनलिंग में नेटवर्क पर और ज्यादा सिगनल भेजने की आवश्यकता होती है क्योंकि सेल्यूलर उपभोक्ता एक ही जगह पर मौजूद नहीं रहता और अपना स्थान बदलता रहता है. सेल्यूलर नेटवर्क जैसे 2G (जी.एस.एम. / GSM, ए.एन.एस.आई.-41 / ANSI-41, और PDC, जो कि जापान में उपयोग होता है) से लेकर 3G (यू.एम.टी.एस. / UMTS और सी.डी.एम.ए.2000 / cdma2000) तक सभी, एस.एस.-7 का उपयोग कॉल भेजने, अतिरिक्त सेवाएं देने, रोमिंग सुविधा, मोबिलिटी मैनेजमेंट, प्री-पेड सेवाएं तथा उपभोक्ता प्रमाणीकरण के लिये करते हैं.

2.6.12 एस.एम.एस. (SMS)

एस.एम.एस. सेवा, जी.एस.एम.(GSM) विनिर्देशों का एक हिस्सा बनाती है और दो जी.एस.एम. उपभोक्ताओं के बीच टू-वे अक्षरांकीय मूलशब्द (alphanumeric text) को ट्रांसमिट करता है. इस समय यह सेवा सारे विश्व में व्यास है और सेवा-प्रदाताओं को अकल्पनीय एवं ज्यादा आमदनी का जिरया बन गयी है. पहले-पहले एस.एम.एस. सिर्फ़ 160 अक्षरांकीय शब्द तक सीमित थे, पर अब नये हैंड-सेट के द्वारा 459 शब्दों का एस.एम.एस. भेजा जा सकता है. (जैसे कि ई.एम.एस. में भेजे जाते हैं, जिसका वर्णन नीचे दिया गया है). उपभोक्ताओं को अलग-अलग तरह की सेवाओं के बारे में अवगत कराने, जैसे कि वॉइस-मेल में आये संदेश, नेटवर्क सेवाओं की जानकारी, उन्हें कैसे उपयोग में लाया जाये, उपभोक्ता के रोमिंग में स्थान बदलने की जानकारी, सेवा-प्रदाता बदल जाने की जानकारी देने के लिये एस.एम.एस. सेवा का उपयोग किया जाता है. कई सहयोगी कंपनियां जो कि सेवा-प्रदाता से संलग्न होती हैं, वे भी अतिरिक्त सेवाएं प्रदान करती हैं जैसे कि एस.एम.एस. से फ़ैक्स पर, फ़ैक्स से एस.एम.एस. पर, एस.एम.एस. से ई-मेल पर, ई-मेल से एस.एम.एस. पर, एस.एम.एस. से वेब (इंटरनेट), वेब (इंटरनेट) से एस.एम.एस. और नये ई-मेल मिलने पर एस.एम.एस. भेजते हैं.

कुछ यूरोपीयन देश (स्पेन, आयरलैंड, जर्मनी) और एशियायी देश (फ़िलीपाइंस) इस एस.एम.एस. सेवा को लैंड-लाइन टेलीफ़ोन पर भी दे रहे हैं जिससे लैंड-लाइन फ़ोन से सेल्यूलर फ़ोन और सेल्यूलर फ़ोन से लैंड-लाइन फ़ोन पर एस.एम.एस. भेजे जा सकते हैं और साथ ही साथ दूसरे लैंड-लाइन नेटवर्क पर, फ़ैक्स मशीनों पर, ई-मेल पर तथा खास तरह के वेब-पृष्ठ (इंटरनेट पेज) पर भेजे जा सकते हैं. कुछ यूरोपीयन देशों ने एस.एम.एस. सेवा को वॉइस-मेल से जोड़ रखा है तािक अगर लैंड-लाइन फ़ोन पर कोई एस.एम.एस. आता है और उस फ़ोन पर एस.एम.एस. ग्रहण करने की सुविधा न दी गई हो तो उसे वॉइस-मेल बॉक्स पर भेजकर उपभोक्ता को आवाज के रूप में सुनाने की व्यवस्था की गई है. लैंड-लाइन फ़िक्स फ़ोन पर एस.एम.एस. पाने के लिये अन्कूल टेलीफ़ोन उपकरण बाजार में आसानी से उपलब्ध हैं.

एस.एम.एस. सेवा को एस.एस.-7 नेटवर्क पर भेजा जाता है और जरूरी सिगनलिंग प्रक्रिया भी एस.एस.-7 द्वारा प्रदान की जाती है.

2.6.13 इन्हेंस्ड मैसेज़ सर्विस (EMS)

इन्हेंस्ड मैसेज़ सर्विस, आज की एस.एम.एस. सेवा को नया आयाम देती है, जैसे कि तस्वीर भेजना, सजीव चल-चित्र, रिकॉर्ड की गई आवाज भेजना और फ़ॉरमेटेड टेक्स्ट आदि भेजे जाते हैं. ई.एम.एस. (EMS) भी एस.एम.एस. (SMS) के आधारभूत संरचना का ही उपयोग करता है और एस.एम.एस. के हेडर (header) बदल कर ई.एम.एस. भेजता है. चूंकि EMS सेवा, SMS सेवा का ही सुधारित आधुनिक रूप है, यह भी एस.एस.-7 सिगनलिंग सिस्टम का उपयोग करके जरूरी सिगनल प्रक्रिया प्रदान करता है.

इस सेवा के द्वारा उपभोक्ता अपने सेल-फ़ोन के लिये रिंग-टोन, स्क्रीन-सेवर, तस्वीरें और सजीव चल-चित्र आदि अपने मित्रों के साथ बाँट सकता है या ऑन-लाइन खरीद सकता है. हाल ही में सभी सेवा-प्रदाताओं ने EMS सेवा द्वारा उपभोक्ताओं को "ऑन-लाइन गेम्स डाउनलोड" करने की सुविधा भी दे रखी है यानि, सेवा-प्रदाता की इंटरनेट-साइट से सीधे खरीदा जा सकता है.

प्राइवेट वर्चुअल नेटवर्क (PVN): प्राईवेट वर्चुअल नेटवर्क कोई नया विषय नहीं है, इसमें भी एस.एस.-7 का ही उपयोग किया गया है और लोकल एक्सचेंज़ कैरियर पर सभी सेवाओं को प्रदान करने की सुविधा देता है. इस सेवा से उपभोक्ता को PVNs की सुविधा मिल जाती है जो कि लीज-लाइन सेवा के जैसे ही

है, फर्क सिर्फ़ इतना ही है कि नेटवर्क द्वारा और कोई अतिरिक्त उपकरण उपलब्ध नहीं कराये जाते. लेकिन एस.एस.-7 द्वारा इस "प्राइवेट कस्टमर" की लाइन की निगरानी निरंतर की जाती है. उपभोक्ता को लीज-लाइन के साथ-साथ कुछ अतिरिक्त सेवाएं उपलब्ध करायी जाती हैं, जैसा कि कुछ सेवाओं को चालू करने की विनित करना और उस सेवा के लिये कम से कम खर्च वाली इंटर-एक्सचेंज़ कैरियर लाइन, दिन के किसी निश्चित समय के लिये, किसी निश्चित दिन या पूरे हफ़्ते के लिये और दो उपभोक्ताओं के बीच की दूरी आदि का चुनाव करने की सुविधा मिलती है.

इ-नॉट-कॉल की सुविधा: इ-नॉट-कॉल लिस्ट (108) को सारे संयुक्त अमेरिका के, फ़ेडेरल और स्टेट कानून में लागू करना अनिवार्य कर दिया गया है. इन कानूनों की मदद से टेली-मार्केटिंग जैसी संस्थाओं को बिना उपभोक्ता की अनुमित के कॉल करना प्रतिबंधित किया गया है. इन कानूनों को अमल में लाने के लिये एस.एस.-7 में खास व्यवस्था की गई है जिसमें फ़ेडेरल और स्टेट से प्राप्त इ-नॉट-कॉल की सूची एक डॉटा-बेस में संचयित की जाती है और जब कभी भी कोई टेली-मार्केटिंग कंपनी किसी को कॉल करती है तब उसे डॉटा-बेस में जाँच लिया जाता है कि वह नंबर इ्-नॉट-कॉल सूची में है या नहीं, अगर नंबर सूची में है तो उस उपभोक्ता को कॉल नहीं किया जा सकता या कॉल रोक दिया जाता है और टेली-मार्केटिंग कंपनी को एक उचित वॉइस-संदेश भेजा जाता है.

2.7 कॉमन चैनल सिगनलिंग:

चैनल असोसिएटेड सिगनलिंग (CAS) में इन-बैंड सिगनलिंग होती है, हर चैनल की सुपरवाईजरी (लाइन) सिगनलिंग और एड्रेस (रजिस्टर्ड) सिगनलिंग दोनों को चैनल के साथ ही भेजा जाता है.

"स्टोर्ड प्रोग्राम कंट्रोल" पर आधारित एक्सचेंज़ के अस्तित्व में आने से, जिसमें एक केन्द्रीकृत प्रोसेसर का उपयोग करते हैं, यह संभव हो पाया है कि कॉल-सेटअप बहुत तेज गित से होता है और इसके लिये उसी तरह का तेज गिती से चलने वाला, विश्वसनीय तथा कुशल सिगनलिंग सिस्टम का भी होना जरूरी था, जिसके परिणाम-स्वरूप आज हम सेंट्रलाइज़्ड प्रोसेसर पर आधारित कॉमन चैनल सिगनलिंग (आउट-ऑफ़-बैंड) का उपयोग कर रहे हैं.

अगर प्रोसेसर अपेक्षित क्षमता वाला हो तो स्विचिंग कंट्रोल और कॉमन चैनल सिगनलिंग कंट्रोल दोनों एक ही सेंट्रलाइज़्ड प्रोसेसर द्वारा संभाले जाते हैं या फ़िर अलग-अलग हिस्सों में बाँटे गये कंट्रोल प्रोसेसर और सिगनलिंग प्रोसेसर द्वारा किया जाता है.

अगर सिगनलिंग का कार्य अलग प्रोसेसर द्वारा किया जाता हो, तब इसका लाभ यह है कि स्पीच और सिगनलिंग दोनों को अलग कर लिया जाता है और एक अलग डॉटा-लिंक द्वारा विभिन्न एक्स्चेंजों के बीच अलग-अलग तरह के सिगनलिंग कार्य (कॉल सेट-अप, कॉल होल्ड और कॉल रिलीज) किये जाते हैं. इस प्रकार से कॉमन चैनल सिगनलिंग द्वारा स्पीच और सिगनलिंग दोनों को अलग-अलग कर दिया जाता है और सिगनलिंग सूचना को एक 'स्पीच चैनल ग्रुप' या कई 'स्पीच चैनल ग्रुप' के लिये अलग से समर्पित सिगनलिंग चैनल द्वारा भेजा जाता है.

टेलीफ़ोन नेटवर्क पर सिगनलिंग बाइनरी प्रकार की होती है यानि दो संभावित स्तिथियां जैसे 'ऑन-हुक' या 'ऑफ़-हुक' / आइडल (खाली) या व्यस्त आदि. कॉमन चैनल सिगनलिंग पर सिगनलिंग की सूचनाएं बाइनरी फ़ॉरमैट में ट्रांसिमट की जाती हैं.

हर सिगनलिंग लिंक में एक डॉटा लिंक होती है जो दोनों छोर के टर्मिनल उपकरणों से जुड़ी होती है और सिगनलिंग सूचना को सही आवश्यक क्रम में प्रसारित करती है जैसे, ऐरर-कंट्रोल(दोष नियंत्रण), अलग-अलग चैनलों से संलग्न सिगनलिंग सूचना की पहचान आदि. सी.सी.आई.टी.टी.-6(CCITT No. 6) सिस्टम द्वारा सृजित 2.4 kbps डॉटा लिंक को इस तरह बनाया गया है कि उससे 2048 एनलॉग ट्रंक लाइन को संभाला जा सके. किसी विशेष ट्रंक की लाइन सिगनलिंग और रजिस्टर्ड सिगनलिंग सूचनाओं को 28 बिट-पैकेट (20 बिट में सूचना और 8 बिट में दोष परीक्षण) में ट्रांसमिट किया जाता है. किसी ट्रंक के लिये सिगनल पैकेट में पहला पैकेट, उस पूरे सिगनल सूचना में पैकटों की संख्या और विशेष चैनल की पहचान ट्रांसमिट करता है. पारंपरिक सिगनलिंग सिस्टम में स्पीच और सिगनल एक ही चैनल में साथ-साथ ट्रांसमिट किये जाते हैं. चूंकि कॉल सेट-अप करने से पहले सिगनलिंग प्रक्रिया होना तय है और बाद में स्पीच होना है तब स्पीच पाथ निरंतर बना रहेगा यह सुनिधित हो जाता है. लेकिन कॉमन चैनल सिगनलिंग में स्पीच और सिगनलिंग दोनों अलग-अलग होते हैं इसिलिये कॉल सेट-अप करने से पहले स्पीच पाथ की निरंतरता बनी रहे, इसके लिये अलग उपायों द्वारा इसकी निगरानी की जाती है.

सी.सी.आई.टी.टी.-7 सिगनलिंग सिस्टम का विकास डिज़िटल वातावरण में 64 Kbps की डॉटा-लिंक का उपयोग करने के लिये किया गया है. यह सिगनलिंग सिस्टम एनलॉग वातावरण में कम सिगनल-रेट क्षमता के लिये भी अन्कूल है.

कॉमन चैनल सिगनलिंग की मूल विशेषताएं और लाभ निम्नप्रकार हैं:

- सिगनलिंग नेटवर्क और स्पीच नेटवर्क के बीच पृथक/वियोजन होना.
- II. पारंपिरक सिगनलिंग सिस्टम की तुलना में तेज गित से सिगनिलंग प्रक्रिया तथा डायिलंग के बाद की देरी, स्विचिंग उपकरण और सर्किट को होल्ड रखने का समय, दोनों से बचा जा सकता है.
- III. एक ही समय में दोनों छोर से सिगनलिंग का आदान-प्रदान संभव है.
- IV. सिगनलिंग क्षमता, डॉटा-लिंक की गति और प्रोसेसर की क्षमता पर निर्भर करती है.
- V. सी.सी.एस. (CCS) का विकास विशेष रूप से आई.एस.डी.एन. (ISDN) और इंटेलीजेंट नेटवर्क(IN) के लिये किया गया है.
- VI. बड़े नेटवर्क के लिये सी.ए.एस. (CAS) चैनल एसोसिएटेड सिगनलिंग लाभदायक नहीं हैं, विशेष कर आई.एस.डी.एन. नेटवर्क के लिये.
- VII. आई.एस.डी.एन. नेटवर्क के लिये सी.ए.एस (CAS) या 'इन-चैनल' सिगनलिंग (जैसे कि पी.सी.एम. (PCM) में) परिपूर्ण नहीं है.
- VIII. आई.एस.डी.एन. नेटवर्क के लिये जरूरी आंतरिक कंट्रोल तथा बुद्धीपरक नेटवर्क प्रदान करने के लिये सी.सी.एस. (CCS) आवश्यक है.
 - IX. एस.एस.-7 सिस्टम को, सी.ए.एस. से सी.सी.एस. के रूप में विकसित किया गया है.
 - X. उपभोक्ता सिगनिलंग और नेटवर्क सिगनिलंग के बीच होने वाली सिगनिलंग के विकास से (जो कि एस.एस.-7 से जुड़े होते हैं), बी.आर.आई. / पी.आर.आई. इंटरफ़ेस के बीच एंड-टु-एंड तक सुचारू रूप से सिगनिलंग के लिये एक्सेस-कंट्रोल प्रदान करना.

2.8 एस.एस.-७ की विशेषताएं:

1. डिज़िटल टेलीकॉम नेटवर्क में, "स्टोर्ड प्रोग्राम कंट्रोल" एक्सचेंजों को आपस में E0/E1/T1 आधार पर जोड़ने के लिये अन्कूल होना.

- 2. कॉल कंट्रोल, दूरस्थ स्थान से कंट्रोल (रिमोट कंट्रोल), व्यवस्थापन और अनुरक्षण कार्य करने के लिये जरूरी सूचनाओं को ट्रांसफ़र करने में सहयोग देना.
- 3. बिना न्कसान और ड्रप्लिकेशन के सही क्रम में विस्वसनीय तरीके से सूचनाओं को ट्रांसफ़र करना.
- 4. एस.एस.-7 सिस्टम, 64 kbps से नीचे के डॉटा-रेट को भी सहयोग करता है इसिलिये एनलॉग चैनलों पर भी काम कर सकता है.
- 5. 'एंड-ट्-एंड' टेरेस्ट्रियल लिंक / सेटेलाइट लिंक के लिये अन्कूल होना.
- 6. सेल्यूलर नेटवर्क (GSM) के लिये अनुकूल होना.

2.9 तीन अत्यावश्यक सिद्धांत:

- > सिगनलिंग पैकेट का सिद्धांत
- > ओवर-लेड नेटवर्क का सिद्धांत
- स्विधानुसार कार्य करने के लिये निर्धारित करना.

2.9.1 सिगनलिंग पैकेट का सिद्धांत:

सिगनलिंग के लिये एक कॉमन चैनल जो पैकेट के रुप में संदेश लेकर जाता है, को "सिगनलिंग पैकेट" कहते हैं. इन "सिगनलिंग पैकटों" में कॉल मैनेजमेंट संदेश (जैसे कॉल सेट-अप संदेश, अनुरक्षण के लिये संदेश, कॉल समाप्ति के संदेश) और नेटवर्क मैनेजमेंट संदेश (जैसे लिंक संदेश, रूट-मैनेजमेंट) होते हैं.

2.9.2 'ओवर-लेड' नेटवर्क का सिद्धांत:

- > "सर्किट स्विचिंग" आधारित नेटवर्क का नियंत्रण
- > "सर्किट स्विच्ड नेटवर्क" पर "पैकेट स्विच्ड नेटवर्क" का आवरण के रूप में उपयोग

चित्र 2.1 'ओवर-लेड' सिगनलिंग नेटवर्क

वस्तु-निष्ठः

पारंपिरक सिगनिलंग में, स्पीच-पाथ और सिगनिलंग-पाथ एक ही चैनल पर भेजे जाते हैं.()
 कॉमन चैनिलंग सिस्टम्स में, सिगनिलंग नेटवर्क और स्पीच नेटवर्क अलग-अलग होते हैं.()
 एस.एम.एस. सुविधा, अल्फ़ान्यूमेरिक टेक्स्ट को, दो जी.एस.एम. उपभोक्ताओं के बीच टू-वे ट्रांसिमशन अनुमत करता है. ()
 लोकल नंबर पोर्टबिलिटी, उपभोक्ताओं को बिना टेलीफ़ोन नंबर बदले, अपना सर्विस प्रोवाइडर बदलने का विकल्प प्रदान करता है. ()

विषय-निष्ठ:

- 1. एस.एस.७ सिगनलिंग सिस्टम के द्वारा किन विशेष सेवाओं को प्राप्त किया जा सकता है?
- 2. कॉमन चैनल सिगनलिंग की मूल विशेषताएं और लाभ क्या हैं?
- 3. एस.एस.७ की मुख्य विशेषताएं क्या हैं?

अध्याय - 3 एस.एस.७ की संरचना

3.0 एस.एस.७ की संरचना:

किसी भी दूर-संचार नेटवर्क में, बहुत सारे स्विच और एप्लिकेशन प्रोसेसर, ट्रांसिमशन सर्किटों के द्वारा आपस में जुड़े होते हैं। दूर-संचार नेटवर्क में ही एस.एस.7 नेटवर्क मौजूद रहता है और उसे नियंत्रित भी करता है। एस.एस.7 सिस्टम, इस कंट्रोल को प्राप्त करने के लिये, एक कॉल प्रक्रिया, कॉल ट्रांसफ़रिंग प्रक्रिया, नेटवर्क मैनेज़मेंट तथा नेटवर्क के विभिन्न घटकों का अन्रक्षण, आदि का निर्माण करता है।

- 3.1 एस.एस. 7 के सिगनलिंग पॉइंट्स: एस.एस. 7 के तीन मुख्य घटक निम्न प्रकार के हैं.
 - ✓ सर्विस स्विचिंग पॉइंट
 - ✓ सिगनल ट्रांसफ़र पॉइंट
 - ✓ सर्विस कंट्रोल पॉइंट

इन घटकों को साधारणतया "नोड" या "सिगनलिंग पॉइंट" कहा जाता है और आपस में डॉटा लिंक के द्वारा जोड़े जाते हैं। इन्हें चित्र के द्वारा निम्नप्रकार से दर्शाया गया है.

चित्र 3.1 सिगनलिंग पॉइंट्स

3.1.1 एस.पी. (SP) या एस.एस.पी. (SSP) पॉइंट्स:

यह, कंट्रोल संदेशों के लिये सबसे आखिरी सिगनल पॉइंट है. यह सभी एस.एस. 7 कंट्रोल संदेशों को संभालता है, लेकिन उन संदेशों को नहीं संभालता, जो इसके लिए नहीं होते हैं.

3.1.2 सिगनल ट्रांसफ़र पॉइंट / एस.टी.पी. (STP)

यह, आने वाली सिगनलिंग सूचनाओं/जानकारियों को संसाधित (Processed) करता है और अगले वांछित एस.टी.पी./ एस.एस.पी. के लिये सिगनलिंग पैकेट के वांछित रूट का चुनाव करता है. यह सिगनल ट्रांसफ़र पॉइंट कुछ खास तरह के रूटिंग कार्य भी करता है.

3.1.3 सिगनल कंट्रोल पॉइंट / एस.सी.पी. (SCP)

एस.सी.पी. में सारा डॉटा-बेस संजोया जाता है और यह कॉल संसाधित क्षमता के लिये जरूरी सूचना संदेश प्रदान करता है. सिगनलिंग सूचना और रूट-सूचनाओं को इसमें संचयित किया जाता है. सिगनल ट्रांसफ़र पॉइंट (एसटी), सिगनलिंग कंट्रोल पॉइंट से सिगनल सूचनाएं लेता है.

3.1.4 सिगनल लिंक (एस.एल./SL)

यह लिंक, सिगनल पॉइंट और सिगनल ट्रांसफ़र पॉइंट को जोड़ता है.

3.2 एस.एस. 7 लिंक के प्रकार

3.2.1 एक्सेस लिंक (A लिंक)

एक्सेस लिंक (A लिंक), जो चित्र 3.2 में दर्शायी गई, नेटवर्क के लिये एक्सेस प्रदान करती है. यह लिंक बाहरी "सिगनल पॉईंट्स" (एस.एस.पी. या एस.सी.पी.) को सिगनल ट्रांसफ़र पॉईंट्स से जोड़ती हैं. एस.एस.पी. और एस.सी.पी. को उनके समकक्ष सेवारत एस.टी.पी. या एस.टी.पी. जोड़ियों के साथ जोड़ने के लिये भी A लिंक का ही उपयोग होता है.

चित्र 3.2 एक्सेस लिंक्स

3.2.2 क्रॉस लिंक्स (सी लिंक्स / C Links)

क्रॉस लिंक्स (नीचे दर्शाये गये चित्र में) के द्वारा दो एस.टी.पी. को जोड़कर उनकी एक जोड़ी और दूसरी एक और एस.टी.पी. जोड़ी के बीच लिंक स्थापित करने के लिए की जाती है, जब कोई एक जोड़ी कार्य करने में असमर्थ हो जाती है तब दूसरी जोड़ी सारा लोड अपने ऊपर ले लेती है. जब वांछित गंतव्य स्थान तक उपभोक्ता यातायात को पहुंचाने के लिये कोई वैकल्पिक रूट ना बचा हो तब 'एम.टी.पी.(MTP) उपभोक्ता यातायात' को ले जाने के लिये 'C लिंक्स' का उपयोग किया जाता है. साधारण परिस्थितियों में इन लिंक का उपयोग नेटवर्क मैनेज़मेंट संदेशों को भेजने के लिये किया जाता है.

चित्र 3.3 क्रॉस लिंक्स

3.2.3 ब्रिज लिंक्स (बी लिंक्स / B Links)

विभिन्न क्षेत्रों में, किसी नेटवर्क के भीतर एक समान वर्गीकृत स्तरों पर एस.टी.पी. जोड़ियों को आपस में जोड़ने के लिये ब्रिज लिंक्स का उपयोग किया जाता है. ये 'बी लिंक्स', एस.एस.7 नेटवर्क कड़ियों की शृंखला बनाती है. लिंक क्वॉड कॉन्फ़िगरेशन (configuration) में एस.टी.पी. जोड़ियों के बीच समान कार्य करने की क्षमता के लिये B लिंक्स का उपयोग किया जाता है. चित्र 3.4 में, दो 'बी-लिंक' जोड़ियों के दो सेट्स को दर्शाया गया है.

चित्र 3.4 ब्रिज लिंक्स

3.2.4 डायगोनल लिंक्स (विकर्ण लिंक्स) (डी लिंक्स / D Links)

डायगोनल लिंक्स (विकर्ण लिंक्स), चित्र 3.5 में दर्शाये अनुसार, बी-लिंक्स के समान ही होती हैं और एस.टी.पी. जोड़ियों को आपस में जोड़ती हैं. फ़र्क सिर्फ़ इतना ही है कि इन लिंक्स में एस.टी.पी.जोड़ियाँ अलग-अलग वर्गीकृत स्तरों पर अलग अलग क्षेत्रों के नेटवर्क को एक साथ जोड़ती हैं. जैसा कि उदाहरण के लिये, डी-लिंक्स द्वारा इंटर-एक्सचेंज कैरियर एस.टी.पी.-जोड़ी से लोकल एक्सचेंज़ कैरियर एस.टी.पी.-जोड़ी को जोड़ना या सेल्यूलर क्षेत्रीय एस.टी.पी.-जोड़ी को सेल्यूलर मेट्रो एस.टी.पी.-जोड़ी से जोड़ना.

चित्र 3.5 डायगोनल लिंक्स (विकर्ण लिंक्स)

3.2.5 विस्तारित लिंक्स (एक्सटेंडेड ई-लिंक्स / E-Links)

चित्र 3.6 में दर्शाए अनुसार, सारे एस.एस.पी. और एस.सी.पी. को एस.टी.पी.-जोड़ी के साथ जोड़ने के लिये ई-लिंक्स का उपयोग किया जाता है, जैसा कि A-लिंक्स में होता है. फ़र्क इतना ही है कि जिस एस.टी.पी.-जोड़ी से एस.एस.पी. और एस.सी.पी. को जोड़ा जाता है वह एस.टी.पी.-जोड़ी, घरेलू नेटवर्क में नहीं होती बल्कि वह बाहरी नेटवर्क में होती हैं. इन्हें "अल्टरनेट एक्सेस लिंक्स" (AA links) भी कहा जाता है. अतिरिक्त विश्वसनीयता पाने के लिये भी E-लिंक्स का उपयोग किया जाता है या कुछ मामलों में जहाँ "अत्याधिक ट्राफ़िक कॉरीडोर" होता है वहाँ घरेलू एस.टी.पी. जोड़ियों पर सिगनलिंग ट्राफ़िक को कम करने के लिये भी इन लिंक्स का उपयोग किया जाता है. जैसा कि उदाहरण के लिये, कोई एस.एस.पी. (SSP) किसी राष्ट्रीय-सरकारी एजेंसी के लिये सेवारत हो या आपातकालीन सेवाओं के लिये सेवारत हो, इन E-लिंक्स का उपयोग कर सकता है ताकि इन सेवाओं के लिये वैकल्पिक मार्ग (रूट) पाया जा सके, क्योंकि ये सेवाएं ज्यादा महत्वपूर्ण होती हैं.

चित्र 3.6 विस्तारित लिंक्स (एक्सटेंडेड लिंक्स)

3.2.6 पूर्ण-संलग्न लिंक्स (Fully-Associated Links) (एफ़-लिंक्स / F-Links)

चित्र 3.7 में दर्शाये अनुसार, पूर्ण-संलग्न लिंक्स का उपयोग, बिना एस.टी.पी. के, सारे नेटवर्क एस.एस.पी. और/या एस.सी.पी. को सीधे जोड़ने के लिये किया जाता है. इस तरह की लिंक्स का प्रयोग ज्यादातर महानगरों में किया जाता है. F-लिंक द्वारा पूरे नेटवर्क एरिया में स्थित सभी स्विचों के बीच ट्रंक- सिगनलिंग और "कस्टम लोकल एरिया सिगनलिंग सर्विस" प्रदान करने के लिये सीधे जोड़ा जा सकता है या इन लिंक के द्वारा सभी स्विचों को उनके अनुकूल एस.सी.पी. के साथ जोड़ा जा सकता है.

चित्र 3.7 पूर्ण-संलग्न लिंक्स(Fully-Associated Links)

चित्र 3.8, एक एस.एस.७ नेटवर्क हिस्से को दर्शाता है. वास्तविकता में, किसी एस.एस.७ नेटवर्क में एस.टी.पी. से ज्यादा एस.एस.पी. हो सकते हैं.

चित्र 3.8 एस.एस.-७ नेटवर्क हिस्सा

3.3 बेसिक कॉल सेट-अप

एक बेसिक कॉल सेट-अप नीचे चित्र में दर्शाया गया है. चित्र के अनुसार, स्विच A, डायल किये गये अंकों को परखता है और निर्धारित करता है कि कॉल को स्विच B पर भेजना है। तब स्विच A और स्विच B के बीच एक खाली ट्रंक लाइन का चुनाव किया जाता है। तत्पश्चात एक 'इनिशियल एड्रेस मैसेज' (initial address message, IAM) निरूपित किया जाता है जिसमें कॉल शुरू करने वाले स्विच A, कॉल पाने वाले स्विच B, कॉल के लिये चुने गये ट्रंक, जिस पर कॉल भेजा जाना है, कॉल करने वाले के नंबर और कॉल प्राप्त करने वाले के नंबर की पूरी जानकारी होती है.

इस संदेश को एस.टी.पी. (डब्ल्यू) [STP (W)] द्वारा प्राप्त किया जाता है. अपनी रूटिंग-टेबल में इस संदेश का निरीक्षण करके यह निश्चित करता है कि इस कॉल को स्विच B पर रूट करना है. इस संदेश को BW लिंक पर भेज दिया जाता है और स्विच B इस कॉल संदेश को कॉल किये गये उपभोक्ता नंबर तक पहुँचा देता है. स्विच B पर भी 'एड्रेस कंपलीट मैसेज़' (ACM) निरूपित किया जाता है, जिसमें "आई.ए.एम." के गंतव्य स्थान की जानकारी, जो कि स्विच A से प्राप्त हुआ था, का समावेश होता है, स्विच B की जानकारी और कॉल किये गये ट्रंक की जानकारी होती है. इस जानकारी के आधार पर स्विच A पर रिंग-बैक-टोन और कॉल किये गये नंबर पर रिंगिंग करंट भेजा जाता है. कॉल पाने वाला उपभोक्ता टेलीफ़ोन उठा लेता है तब स्विच B से एक 'आनसर मैसेज़' निरूपित किया जाता है. स्विच A, स्विच B और ट्रंक लाइन पर एक संदेश स्विच B से स्विच A की ओर भेजा जाता है.

जब कॉल समाप्त होता है तब स्विच A द्वारा "रिलीज संदेश" (REL) स्विच B को भेजा जाता है और स्विच B, जुड़ी हुई लिंक को काट देता है.

प्रति-उत्तर में स्विच B द्वारा "रिलीज कंपलीट" संदेश (RLC) स्विच A को भेजा जाता है और स्विच A, उस ट्रंक लाइन को रिलीज कर देता है जिस पर कॉल लगाई गई थी.

चित्र 3.9 बेसिक कॉल सेट-अप

- ✓ IAM इनिशियल एड्रेस मैसेज़ (आरंभिक-पता संदेश)
- ----- उपभोक्ता लाइन
- ✓ ACM एड्रेस कंपलीट मैसेज़
- ----- वॉइस ट्रंक

इरिसेट

✓ ANM - उत्तर संदेश

एस.एस.-७ की संरचना

- ✓ ----- सिगनलिंग लिंक
- ✓ REL रिलीज संदेश
- ✓ RLC रिलीज कंप्लीट संदेश

3.4 एस.एस.७ स्थिति-अनुरूप कार्यों का निर्धारण:

ओवर-लेड पैकेट-स्विच्ड नेटवर्क द्वारा किये जाने वाले कार्यों को एस.एस.7 द्वारा पिरभाषित किया जाता है. इसमें किसी भी हाईवेयर उपस्कर को उल्लेखित नहीं किया जाता और विभिन्न कार्यों को करने के लिये स्थित अनुरूप निर्धारण किया जाता है. एस.एस.7 सिगनलिंग सिस्टम में यह क्षमता होती है कि वह, संबद्ध (असोसिऐटेड) या असंबद्ध (डिसोसिऐटेड) तरीके से कार्य कर सकता है. संबद्ध तरीके से कार्य करते समय, सिकंट स्विच नोड, एस.एस.-7 के सभी कार्य अतिरिक्त कार्य के जैसे कर सकता है. एस.एस.-7 का उपयोग असंबद्ध तरीके से कार्य करते समय अलग स्विचिंग पॉइंट के द्वारा सिर्फ़ सिगनलिंग पैकेटों को भेजा जाता है और सिकंट स्विच शामिल नहीं होता. चित्र 3.10 देखें.

स्विचिंग पॉईंट (स्पीच)

—— स्पीच लिंक

----- सिगनलिंग लिंक

एस.एस.-७ की संरचना

वस्तु-निष्ठ प्रश्न:

- 1. कंट्रोल मैसेज़ेस का आखरी पॉइंट, एस.एस.पी. होता है.
- 2. एस.टी.पी. द्वारा कुछ खास तरह के रूटिंग फ़ंक्शन किए जाते हैं.
- 3. <u>एस.सी.पी.</u> एक डॉटा-बेस है, जो एड्वांस कॉल प्रोसेसिंग क्षमताओं के लिए सूचना-संदेश प्रदान करता है.

विषय-निष्ठ प्रश्न:

1. एस.एस.७ नेटवर्क के विभिन्न सिगनलिंग पॉइंट क्या हैं? समझाएं.

अध्याय-4 एसएस-7 प्रोटोकॉल समूह

4.0 एस एस-7 प्रोटोकॉल समूह

संभावित प्रोटोकॉल के मिश्रित रूप काफ़ी बढ़ गये हैं. यह इस पर भी निर्भर होता है कि एसएस-7 सिगनिलंग सिस्टम का उपयोग सेल्यूलर-विशेष सेवाओं या इंटेलिजेंट नेटवर्क सेवाओं के लिये किया जायेगा या फिर आइ.पी. नेटवर्क पर ट्रांसमिट किया जायेगा या फिर टाइम डिवीजन मल्टीप्लेक्सिंग नेटवर्क के बदले, ब्रॉड-बैंड ए.टी.एम. को नियंत्रित करेगा या कुछ और तरह के नेटवर्क के लिये कार्य करेगा. इन सभी संभावित प्रोटोकॉल्स के लिये हमें पारंपरिक एसएस-7 को एक नये नाम से जानना होगा, जिसमें प्रोटोकॉल्स के मिश्रित रूप, व्यापक ढंग से सन् 1980 से लेकर आज के दिन तक उपयोग किये जा रहे हैं.

- मैसेज ट्रांसफ़र पार्ट (MTP 1, 2, और 3)
- > सिगनल कनेक्शन कंट्रोल पार्ट (SCCP)
- » ट्रांजेक्शन केपेबिलिटी एप्लिकेशन पार्ट (TCAP)
- > टेलीफ़ोनी यूजर पार्ट (TUP)
- > आइ.एस.डी.एन. यूजर पार्ट (ISUP)

चित्र 4.0 एस.एस.-7 प्रोटोकॉल समूह का लेयर-मॉडल

4.1 मैसेज ट्रांसफ़र पोर्ट (MTP)

अब तक हमने यह तथ्य स्थापित किया कि कॉल सेट-अप के लिये सिगनलिंग का उपयोग किया जाता है और इस प्रक्रिया के लिये कुछ मानक संदेश-सेट्स(स्टैंडर्ड मैसेज सेट्स) हैं, जिनका आदान-प्रदान कॉल सेट-अप के समय किया जाता है. इन संदेशों को एक नेटवर्क एलीमेंट से दूसरे नेटवर्क एलीमेंट तक पहुँचाने की जिम्मेदारी जिस भाग की होती है उसे "मैसेज ट्रांसफ़र पार्ट" (MTP) कहते हैं. सारी एसएस-7 सिगनल प्रणाली इसी एम.टी.पी. पर आधारित है, जिसकी तीन उप-परतें(सब-लेयर) हैं.

- ✓ सबसे निचली लेयर यानी एम.टी.पी. लेयर-1: (फिजीकल कनेक्शन, जिसपर वास्तविक उपकरणों को जोड़ने की व्यवस्था होती है) सभी भौतिक एवं इलेक्ट्रिकल गुण को दर्शाती है.
- ✓ एम.टी.पी. लेयर-2 (डॉटा लिंक कंट्रोल): इसकी मदद से दो नेटवर्क घटकों के बीच दोष-मुक्त सिगनलिंग संदेशों को ट्रांसिमट किया जाता है.
- ✓ एम.टी.पी. लेयर-3 (नेटवर्क लेयर): एक ही सिगनलिंग नेटवर्क में दो नेटवर्क घटकों के बीच संदेशों को लाने-ले जाने की जवाबदेही इस लेयर-3 की होती है.

4.1.1 एम.टी.पी. लेयर-1 का कार्य (फ़िजीकल लेयर)

यह लेयर-1, एसएस-7 नेटवर्क की सिगनलिंग लिंक के भौतिक और इलेक्ट्रिकल गुणों को निर्धारित करती है.

- √ एसएस-7, यातायात को समर्पित पूर्ण दो-तरफ़ा डॉटा संयोजन प्रदान करती है.
- √ E0 (64 kbps) / E1 (2.048 Mbps) / T1 (1.544 Mbps) डॉटा-रेट की क्षमता
- √ 64 kbps से कम के डाँटा-रेट को भी सहयोग करना
- ✓ एनलॉग चैनलों का मोडेम के साथ उपयोग करना

4.1.2 एम.टी.पी. लेयर-2 का कार्य (डॉटा लिंक लेयर)

- √ एम.टी.पी. लेयर-2, यह सुनिश्वित कर देती है कि दोनों अंतिम छोर के उपकरणों के बीच सिगनलिंग संदेशों का आदान-प्रदान, सिगनलिंग लिंक **द्वारा** विश्वसनीयता के साथ किया जा सके.
- ✓ इस लेयर में, लिंक-दोष को जाँचना, भेजने वाले उपकरण से डॉटा के अति-बहाव (over flow) को नियंत्रित करना, ताकि बफ़र-ओवर-फ़्लो को रोका जा सके और क्रम-बद्ध डॉटा की जाँच आदि की क्षमता सम्मिलित है, जिससे कि एक विश्वसनीय डॉटा लिंक प्रदान की जा सके.
- √ इसमें 'नोड' से 'नोड' का आरंभिक और अंतिम पता रहता है.
- ✓ सभी डॉटा-ब्लॉक्स, जो कि नेटवर्क पर भेजे जाने हैं, उन्हें हानि-रिहत या प्रतिलिपीकरण (डूप्लिकेशन) के बिना भेजा जा सके.

4.2 एसएस-7 लेयर-2 (एम.टी.पी. लेवल-2) डॉटा-ब्लॉक्स

सिगनलिंग लिंक पर, सिगनलिंग सूचनाएं, संदेशों के द्वारा, भेजी जाती हैं, जिन्हें सिगनलिंग यूनिट्स (SUs) कहा जाता है, इनमें ही डॉटा-ब्लॉक्स संभाले जाते हैं.

तीन तरह के सिगनलिंग यूनिट्स होते हैं, जिनका अपना खुद का एक अलग फ़ॉरमैट होता है.

- 1. 'फ़िल-इन' (fill-in) सिगनल यूनिट (FISU),
- 2. लिंक-स्टेटस सिगनल यूनिट (LSSU)
- 3. मैसेज सिगनल यूनिट (MSU).

एक सेवारत सिगनलिंग लिंक, इन सभी सिगनल यूनिटों को अविरत रूप से दोनों दिशाओं में आदान-प्रदान करवाती है.

एफ़.आई.एस.यू. और एल.एस.एस.यू. का उपयोग, केवल एम.टी.पी. लेवल-2 के कार्य-संपादन के लिये किया जात है. मैसेज सिगनल यूनिट में भी समान एम.टी.पी. लेवल-2 जैसे ही फील्ड होते हैं, परंतु इसमें दो अतिरिक्त फील्ड होते हैं, जिनमें एम.टी.पी. लेवल-3 और एम.टी.पी. लेवल-4 के उपभोक्ताओं से प्राप्त सूचनाएं भरी होती हैं और वास्तविक सिगनलिंग तत्व संलग्न होते हैं. इस अध्याय में, एम.टी.पी. लेवल-2 के फील्ड और उनके द्वारा किये जाने वाले कार्यों का वर्णन किया गया है. निम्नलिखित सिगनल यूनिट फ़ॉरमैट के वर्णन से इसकी शुरूआत करें.

4.2.1 'फ़िल-इन' सिगनल यूनिट्स(एफ.आइ.एस.यू.)

'फ़िल-इन' सिगनल यूनिट्स मूलभूत सिगनल यूनिट्स हैं और केवल एम.टी.पी. लेवल-2 की सूचनाएं ही ले जाते हैं. इन एफ़.आइ.एस.यू. को तभी भेजा जाता है जब एल.एस.एस.यू. या एम.एस.यू. नहीं भेजे जाने होते हैं, क्योंकि सिगनलिंग लिंक को खाली नहीं रखा जा सकता. एफ़.आई.एस.यू. को सिगनलिंग लिंक पर भेजा जाना यह सुनिश्चित कर देता है कि सिगनलिंग लिंक पूरे कार्य-समय में शत-प्रतिशत भरी

हुई है. हर एक एफ़.एस.आई.यू. के लिये एक साइक्लिक रिडंडेन्सी चैक-चैकसम आकलन किया जाता है और सिगनलिंग लिंक के दोनों छोर के अंतिम सिगनलिंग पॉइंट को यह अनुमत करता कि सिगनलिंग लिंक की क्वालिटी, लगातार जाँची जा सके. इस जाँच से खराब लिंक पहचानी जा सकती है और सर्विस से हटा दी जाती है ताकि ट्राफ़िक को दूसरी वैकल्पिक लिंक पर अंतरित किया जा सके. इससे यह मदद मिल जाती है कि एस.एस.-7 सिस्टम्स हर समय उपलब्ध रहने की जरूरत पूरी की जा सके, क्योंकि एम.टी.पी. लेवल-2 एक पॉइंट-टू-पॉइंट प्रोटोकॉल है और दो सिगनलिंग पॉइंट के बीच एफ़.आइ.एस.यू. (FISU) का आदान-प्रदान केवल एम.टी.पी. लेवल-2 द्वारा ही होता है.

सात फील्ड, जो कि एफ़.आइ.एस.यू. को बनाते हैं, नीचे चित्र 4.1 में दर्शाये गये हैं. ये एफ़आईएस.यू., एल.एस.एस.यू. और एमएस.यू. में भी होते हैं. एम.टी.पी. लेवल-2 आरंभिक सिगनलिंग पॉइंट पर कुछ फील्ड जोड़ देता है और गंतव्य सिगनलिंग पॉइंट पर उन फ़ील्ड को निकाल देता है (संलग्न सिगनलिंग पॉइंट).

चित्र 4.1 एफ़.आइ.एस.यू. में स्थित फील्ड

4.2.2 लिंक स्टेटस सिगनल यूनिट्स

दो सिगनलिंग पॉइंट्स के बीच, एल.एस.एस.यू. फ़्रेम की एक या दो ऑक्टेट (8 बिट के फील्ड) जिसमें लिंक की अवस्था-सूचना एल.एस.एस.यू. द्वारा ले जायी जाती है. लिंक स्टेटस के द्वारा, लिंक को पंक्तिबद्ध नियंत्रित करना, लिंक की अवस्था दर्शाना और एक छोर के सिगनलिंग पॉइंट की अवस्था, दूरस्थ सिगनलिंग पॉइंट को दर्शाना आदि कार्य किये जाते हैं. सिगनलिंग लिंक पर किसी समय एल.एस.एस.यू. की उपस्थित, लिंक पंक्तिबद्धता को छोड़कर, यह दर्शाती है कि दूरस्थ प्रोसेसर में खराबी है या फिर अस्वीकार्य अधिकतम दोषयुक्त बिट-रेट(अन-एक्सेप्टेबल हाइ बिट-एरर रेट) जो ट्राफ़िक क्षमता को प्रभावित करता है.

किसी निश्चित लिंक अवस्था को दर्शाने वाले संलग्न समयपाल (टाइमर), ट्रांसिमशन अंतराल को संचालित करते हैं. जब लिंक दोष-मुक्त हो जाती है तब एल.एस.एस.यू. का ट्रांसिमशन भी बंद हो जाता है और ट्राफ़िक सामान्य रूप से शुरू हो जाता है. जैसे एफ.आइ.एस.यू. में होता है, वैसे ही दो सिगनलिंग पॉइंट्स के बीच के एम.टी.पी. लेवल-2 में भी एल.एस.एस.यू. का आदान-प्रदान होता है. एल.एस.एस.यू. और एफ.आई.एस.यू. दोनों एक-समान होते हैं. इसके अलावा एल.एस.एस.यू. फ़्रेम में अतिरिक्त फील्ड भी होता है जिसे स्टेटस-फ़ील्ड (एसएफ / SF) कहा जाता है.

चित्र 4.2, एल.एस.एस.यू. के 8 फील्ड दर्शाता है.

चित्र 4.2 एल.एस.एस.यू. के 8 फील्ड

वर्तमान में केवल एक ही ऑक्टेट (8 बिट/ 16 बिट) का स्टेटस फ़ील्ड (एसएफ़/SF) उपयोग किया जा रहा है जबिक दो ऑक्टेट, एस.एफ़. उपयोग करने की अनुमित निर्धारित है. एक ऑक्टेट के पहले 3 बिट्स को ही परिभाषित किया गया है. इन बिट्स के आधार पर लिंक-स्टेट्स की जानकारी निम्नलिखित टेबल 4.1 में दी गई है.

टेबल 4.1. स्टेटस-फ़ील्ड में मानक-मूल्य (Values in the Status Field)

С	В	Α	स्थिति लक्षण	स्थिति का लघु- रूप	अर्थ
0	0	0	O: लिंक का अलाइनमेंट में ना होना.	SIO	लिंक अलाइन नहीं है; अलाइनमेंट की कोशिश की जा रही है.
0	0	1	N: लिंक अलाइनमेंट में है.	SIN	लिंक अलाइनमेंट में है.
0	1	0	E: आपातकाल लिंक अलाइनमेंट	SIE	लिंक अलाइनमेंट में है.
0	1	1	OS: लिंक सेवा में नहीं है	SIOS	लिंक, सेवा में नहीं है; अलाइनमेंट दोष-युक्त
1	0	0	PO: प्रोसेसर बंद है	SIPO	एम.टी.पी2 की पहुंच एम.टी.पी3 तक नहीं है.
1	0	1	B: लिंक व्यस्त	SIB	एम.टी.पी2 पर अत्याधिक भीड़ (कंजेशन स्थिति)

4.2.3 मैसेज सिगनल यूनिट्स

जैसा कि चित्र 4.3 में दिखाया गया है, एम.एस.यू. में भी एफ़.आई.एस.यू. के समान ही फील्ड होते हैं और दो अतिरिक्त फील्ड भी होते हैं, जिन्हें क्रमशः सिगनलिंग इन्फर्मेशन फ़ील्ड (SIF) और सर्विस इन्फर्मेशन ऑक्टेट (SIO) कहा जाता है.

एम.टी.पी. लेवल-3 और एम.टी.पी. लेवल-4 उपभोक्ताओं के बीच सिगनलिंग सूचनाओं का आदान-प्रदान एम.एस.यू. द्वारा किया जाता है. ये संदेश, कॉल कंट्रोल के लिये, डॉटा-बेस पूछताछ के लिये और जवाबी संदेशों के लिये होते हैं. इसके अतिरिक्त, एम.टी.पी. लेवल-3 नेटवर्क-मैनेजमेंट सूचनाएं भी एम.एस.यू. द्वारा भेजी जाती हैं. ये सभी संदेश एम.एस.यू. के एस.आइ.एफ. फील्ड में रखे जाते हैं.

चित्र 4.3 मैसेज सिगनल यूनिट्स

टेबल 4.2 फील्ड विवरण				
फील्ड	बिट्स की लंबाई/संख्या	विवरण		
फ्लैग/Flag	8	एस.यू./ SU का शुरू और अंत बताने का 011111110 नमूना		
बी.एस.एन./BSN	7	बैक-वर्ड सीक्वेंस नंबर- यह दर्शाने के लिये कि आखरी एस.यू./SU सही प्राप्त हुआ है.		
बी.आइ.बी./BIB	1	बैक-वर्ड इंडिकेटर बिट- प्राप्त हुए एस.यू./ SU में दोष दर्शाता है.		
एफ़.एस.एन./FSN	7	फ़ॉरवर्ड सीक्वेंस नंबर- ट्रांसमिट किये गये हर एस.यू./SU को पहचानना.		
एफ़आइ.बी./FIB	1	फ़ॉरवर्ड इंडिकेटर बिट- रिमोट एस.पी. द्वारा भेजे गये दोष-युक्त हर एस.यू./SU का पुनः ट्रांसमिशन दर्शाता है.		
एल.आई./LI	6	लेंग्थ-इंडिकेटर- सी.आर.सी. फील्ड और स्वतः के बीच कितने ऑक्टेट रखे गये हैं यह सूचित करता है. एल.आई./LI फील्ड यह भी सूचित करता है कि सिगनल यूनिट का प्रकार क्या है. FISUs के लिये LI = 0, LSSUs के लिये LI = 1 या 2, और MSUs के लिये LI = 2 या उससे अधिक.		
एस.एफ़./SF	8 से 16	स्टेटस-फील्ड- केवल एल.एस.एस.यू. के स्टेटस मैसेजेस को बताता है.		
सी.के./CK	16	चैक-बिट्स - सीआरसी का उपयोग करके ट्रांसमिशन में दोष पहचानना.		
एस.आई.ओ./SIO	8	सर्विस इन्फर्मेशन ऑक्टेट- यह स्पष्टीकरण करना कि किस एम.टी.पी3 उपयोगकर्ता ने एस.आइ.एफ़. में संदेश रखे हैं.		
एस.आई.एफ़./SIF	16 से 2176	सिगनिलंग इन्फर्मेशन फील्ड- इसमें "असल" सिगनिलंग तत्व रहते हैं. एस.आई.एफ़./SIF- इसका संबंध, कॉल कंट्रोल से, नेटवर्क मैनेजमेंट से और डॉटा-बेस इंक्वाइरी से है.		

4.2.4 एम.एस.यू. और एल.एस.एस.यू. में अंतर

- √ एम.एस.यू. में दो यूजर-डॉटा-फ़ील्ड : एस.आई.ओ. (SIO) और एस.आई.एफ़. (SIF) होते हैं.
- √ एल.एस.एस.यू. में केवल एक यूजर-डॉटा-फ़ील्ड : एस.एफ़. / SF होता है.
- √ एम.एस.यू. द्वारा यूजर डॉटा को हायर- लेयर पर भेजा जाता है.
- √ भेजने वाले सिगनलिंग पॉइंट से लिंक स्थिति की सूचनाएं एल.एस.एस.यू. द्वारा दर्शायी जाती हैं.

4.3 एस.एस.-७ नेटवर्क में एड्रेसिंग स्कीम:

प्रत्येक नेटवर्क में, उस नेटवर्क का पता-निर्धारण करने की योजना अनिवार्य है और एस.एस.-7 सिगनलिंग सिस्टम्स में भी इस तरह की योजना होती है. नेटवर्क पता इसलिये भी जरूरी होते हैं ताकि सीधे एक 'नोड' से दूसरे 'नोड' तक सिगनलिंग सूचनाएं भेजी जा सके और उन नोड पर भी जो एक-दूसरे से सीधे ना भी जुड़े हों. एसएस-7 सिस्टम्स में, पता निर्धारण की योजना तीन वर्गीकृत स्तरों पर की जाती है. सिगनलिंग पॉइंट के समूहों में, हर एक सिगनल पॉइंट की अपनी अलग पहचान होती है. समूह के भीतर हर सिगनल पॉइंट को एक सदस्यता संख्या प्रदान की जाती है. और उसी तरह यह भी निर्धारित किया जाता है कि हर समूह, उस नेटवर्क का भाग है. अमेरिकन एस.एस.-7 नेटवर्क में, हर नेटवर्क के प्रत्येक 'नोड' का पता तीन स्तरों पर निर्धारित किया जाता है. जैसे कि

पहला स्तर - सदस्यता संख्या दूसरा स्तर - समूह संख्या तीसरा स्तर - नेटवर्क संख्या

इनमें हर संख्या, 8 बिट की संख्या होती है और उनका मानक-मूल्य 0 से 255 तक कोई संख्या हो सकती है. इस तीन-स्तरीय एड्रेस-स्कीम को सिगनलिंग पॉइंट का पॉइंट-कोड भी कहा जाता है. अमेरिकन एसएस7 नेटवर्क में एक पॉइंट कोड विशिष्ट रूप से एक सिगनलिंग पॉइंट कहलाता है और इन पॉइंट कोड का उपयोग तब किया जाता है जब किसी सिगनल पॉइंट की ओर संबोधन करना आवश्यक होता है.

कोई भी तटस्थ कंपनी अपनी नेटवर्क संख्या का निर्धारण राष्ट्रीय स्तर पर करता है. क्षेत्रीय बेल-ऑपरेटिंग कंपनियाँ, बड़ी स्वतंत्र टेलीफ़ोन कंपनियाँ और इंटर-एक्सचेंज कैरियर के पास अपने खुद की नेटवर्क संख्या पहले से निर्धारित की जा चुकी है, क्योंकि नेटवर्क संख्या मिलने के लिये तुलनात्मक संसाधन कम हैं, इसीलिये यह आशा की जाती है कि कंपनियों के नेटवर्क, आवश्यक साइज के लिये तैयार किए जाएं तािक नेटवर्क संख्या आसानी से प्रदान की जा सके. छोटे नेटवर्क के भीतर एक या दो समूह के लिये संख्या 1,2,3 और 4 निर्धारित की जा सकती है. सबसे छोटे नेटवर्क के लिये पॉइंट कोड, नेटवर्क संख्या '5' में निर्धारित की जाती है. छोटे-छोटे नेटवर्क जिस समूह में होते हैं, उनकी संख्या निर्धारण उनके राज्य के आधार पर की जाती है जिनमें वे स्थापित किये जाते हैं. नेटवर्क संख्या '0' किसी भी समूह या नेटवर्क के लिए निर्धारित नहीं है और नेटवर्क संख्या '255' को भविष्य के लिये स्रक्षित रखा गया है.

4.4 एस.एस 7 के एम.टी.पी. लेयर-3 के कार्य: (नेटवर्क लेयर)

एम.टी.पी. का लेवल-3 वाला हिस्सा, एम.टी.पी. लेवल-2 की कार्यात्मकता को और आगे बढ़ाकर नेटवर्क लेयर की कार्यात्मकता प्रदान करता है. यह, इसे भी सुनिश्चित कर देता है कि सिगनल संदेशों को सिगनलिंग पॉइंट के बीच पूरे एस.एस.-7 नेटवर्क पर पहुँचाया जा सके, बावजूद इसके कि वह सिगनलिंग पॉइंट एक दूसरे से सीधे ना भी जुड़े हों, तो भी सिगनल संदेश पहुँचाये जा सकें. नेटवर्क-लेयर में, नोड संबोधन, रूटिंग, वैकल्पिक रूटिंग और मात्रा से अधिक संदेशों की भीड़ पर नियंत्रण रखने आदि की क्षमताएं सिम्मिलित हैं.

- 4.4.1 नेटवर्क लेयर-3 के कार्यों को दो श्रेणी में बाँटा गया है.
- > सिगनलिंग संदेशों को संभालने (हैंडलिंग) का कार्य
 - ✓ सिगनलिंग संदेशों में अंतर पहचानना
 - √ रूटिंग करना
 - ✓ संदेशों का वितरण करना

- > सिगनलिंग नेटवर्क मैनेजमेंट कार्य
 - ✓ ट्राफ़िक मैनेजमेंट
 - ✓ लिंक मैनेजमेंट
 - √ रूट मैनेजमेंट

4.4.2 सिगनलिंग मैसेज हैंड्लिंग कार्य: संदेशों में अंतर पहचानना

- यह कार्य केवल एस.टी.पी. पर ही किया जाता है.
- यह निर्धारित किया जाता है कि संदेश अपने गंतव्य तक पहुँच गया है या फिर उस संदेश को किसी और 'नोड' पर भेजना है.
- एम.एस.यू. के रूटिगं-लेबल में संदेशों के गंतव्य कोड का परीक्षण करना और सेवा-विकल्प निर्धारित करना.

रूटिंग करना:

- संदेशों को आगे बढ़ाने के लिये सिगनलिंग लिंक का चुनाव निर्धारित करना, जिसपर संदेशों को भेजना है. (लोकल लेवल-4 से प्राप्त संदेश या संदेशों में अंतर पहचानने के कार्य के बाद प्राप्त ह्ये संदेश)
- एस.एल.एस. (सिगनलिंग लिंक सिलेक्शन) फील्ड के मूल्य के आधार पर रूटिंग का निर्णय करना.
- एस.एल.एस. फील्ड के 4 बिट्स उपयोग होते हैं यानि 16 संभावित रूट बनते हैं. (16 इंटरनल वर्चुअल सर्किट्स बनते हैं)
- साधारणतया एक कॉल से संबंधित सभी संदेश, उसी सिगनलिंग लिंक से जाते हैं. जब तक कि उस लिंक में कोई खराबी या दोष उत्पन्न न हो, लिंक बदली नहीं जाती.

संदेशों का वितरण:

- यूजर पार्ट का निर्धारण करना जिसके लिये संदेशों को भेजा जाना है.
- सर्विस इंडिकेटर पोर्शन (एस.आइ.ओ./SIO) की मदद से सेवा-विकल्प निर्धारित करना.

4.4.3 सिगनलिंग **नेटवर्क** मैनेजमेंट कार्य.

- √ नेटवर्क में स्थित सभी सिगनलिंग सब-सिस्टम्स के कार्य-निष्पादन की निगरानी करना, क्योंकि इनके खराब होने या कार्य-निष्पादित ना कर पाने करने का सीधा प्रभाव उपभोक्ताओं पर पड़ता है.
- ✓ सारे नेटवर्क अक्सर अंतर्राष्ट्रीय ट्राफ़िक को सपोर्ट करते हैं. किसी देश की सिगनलिंग सब-यूनिटों में खराबी का प्रभाव, उस देश की सीमाओं के बाहर भी दिखाई देता है.
- ✓ पुनः बहाली और पुनः स्थापन की क्रिया में कई सारे नेटवर्क सम्मिलित होते हैं (विभिन्न देशों के बीच). इसलिए दोष-निदान और अत्यधिक संदेशों के भीड़ से होने वाली असुविधा के उपाय भी शामिल करने होंगे.

सिगनलिंग नेटवर्क मैनेजमेंट कार्य का उद्देश्य:

- कार्य-निष्पादन का माप-दंड: लिंक की खराब स्थितियों को दूर करना (कंजेशन या फ़ेल्यूर स्थिति)
- उपलब्धता का माप-दंड: 99.998%
- अनुपलर्ब्धता की अनुमत सीमा: 0.002% या 10 मिनट प्रति-वर्ष

- I. सिगनलिंग ट्राफ़िक मैनेजमेंट का उपयोग निम्नलिखित रूप से किया जाता है.
- जब कोई सिगनलिंग लिंक कार्य-निष्पादन के लिये अनुपलब्ध हो तो सिगनलिंग ट्राफ़िक का बिना किसी नुकसान या ड्रिलकेशन के, दूसरी लिंक पर मार्ग परिवर्तन करें या अन्य वैकल्पिक सिगनलिंग लिंक या रूट पर मार्ग परिवर्तन करें.
- कंजेशन की स्थिति में ट्राफ़िक को कम कर देना.

सिगनलिंग पॉइंट्स के बीच लेवल-3 संदेशों के आदान-प्रदान के लिये सिगनलिंग ट्राफ़िक मैनेजमेंट कार्यों को किया जाता है. इन संदेशों को एमएस.यू. के एस.आई.एफ़./SIF फील्ड में भेजा जाता है.

टेबल 4.3 सिगनलिंग ट्राफ़िक मैनेजमेंट कार्य

कार्य का नाम	विवरण
एक लिंक से दूसरी लिंक में परिवर्तन करना	जब लिंक अनुपलब्ध हो तब ट्राफ़िक को एक या अधिक वैकल्पिक लिकों पर मार्ग परिवर्तन करता है.
	जो लिंक अनुपलब्ध हुई थी उसके ठीक हो जाने पर उस सिगनलिंग लिंक पर ट्राफ़िक को पुनः स्थापित करना.
फ़ोर्स् री-रूटिंग	जब कोई रूट उपलब्ध ना हो और वैकल्पिक रूट की व्यवस्था ना की गई हो, तो वैकल्पिक विकल्प रूट पर ट्राफ़िक का मार्ग परिवर्तन करना.
नियंत्रित री-रूटिंग	उस लिंक पर ट्राफ़िक का मार्ग परिवर्तन करना, जिसे ट्राफ़िक के लिये उपलब्ध कराया गया है.
सिगनलिंग पॉइंट को दोबारा शुरू करना	जब कोई दोष-युक्त सिगनलिंग पॉइंट ठीक होकर दोबारा उपलब्ध होता है और ट्राफ़िक को उस सिगनल पॉइंट पर मार्ग परिवर्तित किया जाता है, तब नेटवर्क रूटिंग स्थिति और नेटवर्क कंट्रोल को अप-डेट किया जाता है.
मैनेजमेंट के लिये लिंक को अवरुद्ध करना.	अनुरक्षण/जाँच के लिये लिंक को अनुपलब्ध करना.
सिगनलिंग ट्राफ़िक का फ़्लो-कंट्रोल करना.	नेटवर्क खराबी या कंजेशन की स्थिति में, जब सिगनलिंग नेटवर्क, यूजर ट्राफ़िक को ले जाने में सक्षम ना हो, तब सिगनलिंग ट्राफ़िक को मूल- स्रोत पर सीमित करना.

II. सिगनलिंग लिंक मैनेजमेंट कार्य

सिगनलिंग लिंक मैनेजमेंट का उपयोग निम्नलिखित के लिये किया जाता है.

- खराब हुई लिंक्स को दोबारा स्थापित करना.
- नई लिंक्स को सक्रिय करना.
- अलाइन्ड सिगनलिंग लिंक्स को निष्क्रिय करना.

टेबल 4.4 सिगनलिंग लिंक मैनेजमेंट कार्य

कार्य का नाम	विवरण
सिगनलिंग लिंक को सक्रिय करना, पुनः स्थापित करना और निष्क्रिय करना	नई लिंक्स को सक्रिय करना, दोष-मुक्त हुई लिंक्स को पुनः स्थापित करना और लिंक्स को निष्क्रिय करना.
लिंक सेट सक्रिय करना	एक लिंक सेट को सक्रिय करना जब वह लिंक सेवा में ना हो.
सिगनल टर्मिनलों और सिगनल डॉटा लिंक्स का अपने-आप निर्धारण करना.	लिंक के साथ टर्मिनलों को निर्धारित करना.

III. सिगनलिंग रूट मैनेजमेंट:

सिगनलिंग रूट मैनेजमेंट का उपयोग निम्नलिखित के लिये किया जाता है.

- सिगनलिंग रूट को ब्लॉक या अन-ब्लॉक करने वाली सिगनलिंग स्टेटस की जानकारी वितरित करना.
- सिगनलिंग लिंक पर जोड़े गये सिगनलिंग पॉइंट्स को नियंत्रित करना जो कि कंजेशन में चले गये हैं. (लेयर-2 द्वारा फ़्लो-कंट्रोल के साथ-साथ इसकी भी आवश्यकता होती है)

टेबल 4.5 सिगनलिंग रूट मेनेजमेंट कार्य

कार्यविधि	विवरण
ट्रांसफ़र-कंट्रोल्ड प्रोसीज़र	यह कार्य विधि, एस.टी.पी. में, लिंक कंजेशन के समय की जाती
	है. संदेश स्त्रोतों को संदेश भेजने से मना करना होता है क्योंकि
	लिंक कंजेशन का लेवल कंजेशन प्रियॉरिटी की तय सीमा से कम
	होता है.
ट्रांसफ़र- प्रोहिबिटेड प्रोसीज़र	यह कार्य विधि एस.टी.पी. पर की जाती है. इसके द्वारा नजदीकी
	एसपी/ SPs को यह सूचित किया जाता है कि वे अगले संदेश के
	मिलने तक इस एसटीपी पर कोई ट्राफ़िक रूट ना करें.
ट्रांसफ़र-अलाउड प्रोसीज़र	यह कार्य विधि से नजदीकी एस.पी. समूह को यह सूचित किया
	जाता है कि इस रूट पर, गंतव्यों तक भेजे जाने वाले संदेशों के
	लिये यह एस.टी.पी. सामान्य रूप से कार्य करने ले लिये तैयार है.
ट्रांसफ़र- रिस्ट्रिक्टेड प्रोसीज़र	अगर संभव हो, नजदीकी एस.पी. समूह अगले संदेश के मिलने
	तक इस एस.टी.पी. से किसी भी गंतव्य तक कोई भी संदेश रूट
	ना करें.
सिगनलिंग रूट - सेट-टेस्ट	किसी कारणवंश अगर सिगनलिंग रूट सूचनाएं एस.पी. को ना
प्रोसीज़र	मिल पाई हों तो, ट्रांसफ़र-प्रोहिबिटेड और ट्रांसफ़र- रिस्ट्रिक्टेड
	मैसेजेस की मदद से सिगनलिंग रूट सूचनाओं को प्राप्त करना.
	इसका उपयोग एस.पी. द्वारा किया जाता है.
सिगनलिंग रूट - सेट कंजेशन	किसी खास गंतव्य की ओर रूट किये गये कंजेशन स्थिति के
टेस्ट प्रोसीज़र	संदेशों को अप-डेट करना.

टेबल 4.6 सिगनलिंग रूट स्थिति

स्थिति	विवरण
	इस एसटीपी पर किसी खास गंतव्य तक सिगनलिंग ट्राफ़िक को
- उपलब्ध 	ट्रांसफ़र किया जा सकता है.
प्रतिबंधित	इस एसटीपी पर किसी खास गंतव्य तक सिगनलिंग ट्राफ़िक को
त्रातबायत	भेजने में कठिनाई है.
) 8	इस एसटीपी पर किसी खास गंतव्य तक सिगनलिंग ट्राफ़िक को
अनुपलब्ध	नहीं भेजा सकता. लिंक उपलब्ध नहीं है.

टेबल 4.7 सिगनलिंग रूट सेट स्थिति

स्थिति	विवरण
लिंक - कंजेस्टेड	यह दर्शाता है कि लिंक का बफ़र-ऑक्यूपेन्सी रेट तय सीमा से
	ज्यादा है.
लिंक - बिना - कंजेशन के	यह दर्शाता है कि लिंक का बफ़र-ऑक्यूपेन्सी रेट तय सीमा के
	अंदर है.

वस्तु-निष्ठः रिक्त स्थान भरोः

- 1. <u>एम.टी.पी. लेयर-1</u> फिजीकल और इलेक्ट्रिकल गुणों को परिभाषित करती है.
- 2. <u>एम.टी.पी. लेयर-2</u> परस्पर एलिमेंटों के बीच, सिगनलिंग मैसेजेस का, 'एरर-फ्री' ट्रांसिमशन करने में मदद करती है.
- 3. <u>एम.टी.पी. लेयर-3</u> एक ही नेटवर्क में स्थित, दो एलिमेंटों के बीच संदेशों के आदान-प्रदान की जवाबदारी संभालती है.
- 4. नेटवर्क का वह भाग, जो सिगनलिंग संदेशों को, एक एलिमेंट से दूसरे एलिमेंट तक पहुंचाता है, उसे <u>मैसेज-ट्रांसफर पार्ट</u> कहते हैं.

विषय-निष्ठ:

1. एस.एस.-7 प्रोटोकॉल-सूट की विभिन्न लेयर क्या हैं? संक्षिप्त में समझाएं.

अध्याय-5

एस.एस.7 की उच्च परतों (हाइयर लेयर) के कार्य

5.0 सिगनलिंग कनेक्शन कंट्रोल पार्ट: (SCCP)

सिगनलिंग कनेक्शन कंट्रोल पार्ट द्वारा दो प्रमुख कार्यों को किया जाता है, जो कि एम.टी.पी. में नहीं किये जाते. पहला कार्य यह है कि एस.सी.सी.पी. में, किसी सिगनलिंग पॉइंट के भीतर एप्लिकेशन्स के संबोधन की क्षमता होती है, जबकि एम.टी.पी. केवल 'नोड' से संदेश प्राप्त और भेज सकता है और किसी सॉफ़्टवेयर एप्लिकेशन्स के लिए काम नहीं करता.

जबिक एम.टी.पी. नेटवर्क मैनेजमेंट संदेश और बेसिक कॉल सेट-अप संदेश केवल एक नोड को ही संबोधित किये जाते हैं और बाकी के सारे संदेश जो कि अलग-अलग एप्लिकेशन्स के द्वारा उपयोग किये जाते हैं वे संदेश, 'नोड' के अंदर ही उपयोग किये जाते हैं, जिन्हें सब-सिस्टम्स कहा जाता है. सब-सिस्टम्स के उदाहरण: 800(टोल-फ़्री नंबर) सेवा, कॉल प्रक्रिया, कॉलिंग कार्ड प्रक्रिया, मॉडर्न इंटेलिजेंट नेटवर्क और 'कस्टम्ड लोकल एरिया सिगनलिंग सर्विसेस' (रिपीट डायलिंग, कॉल-बैक आदि). एस.सी.सी.पी. में ये सब-सिस्टम्स स्पष्टतया संबोधित किये गये हैं.

जी.टी.टी./GTT (ग्लोबल टाईटल ट्रांसलेशन): एस.सी.सी.पी. द्वारा दूसरा महत्वपूर्ण कार्य है, बढ़ते क्रम में रूटिंग करने के लिए उपलब्ध रहना, उस क्षमता का उपयोग करके, जिसे ग्लोबल टाईटल ट्रांसलेशन के नाम से जाना जाता है. सभी सिगनलिंग पॉइंट्स जिनसे संदेश भेजे गये हैं, उन सिगनल पॉइंट्स पर इन संदेशों को अलग-अलग गंतव्यों पर रूट किया गया है, इन्हें जानने के लिए सिगनल पॉइंट को फ़्री कर दिया जाता है और जी.टी.टी./GTT इस कार्य को करता है. एक स्विच, पूछताछ संदेश जारी कर सकती है और किसी एस.टी.पी. को संबोधित करते हुए जी.टी.टी. के लिए अनुरोध कर सकती है. जब यह संदेश एस.टी.पी. पर प्राप्त होता है तब उस संदेश का हिस्सा परखा जाता है, और उसका रूट निर्धारित करता है कि उस संदेश को किस एस.टी.पी. की तरफ़ रूट करना है.

एस.टी.पी./STP को अपना एक डॉटा-बेस बनाना पड़ता है जिसमें किसी भी प्राप्त हुये संदेश को गंतव्य तक रूट करने की निर्धारण क्षमता होती है.

जी.टी.टी./GTT प्रभावशाली रूप से समस्याओं को केंद्रीकृत करता है तथा इन संदेशों को नोड (एस.टी.पी.) में रखता है जिन्हें कि इस कार्य को करने के लिए खास-तौर से बनाया गया है. इस जी.टी.टी. कार्य को करने के लिए एस.टी.पी. को यह जानना जरूरी नहीं होता है कि संदेशों को किस सटीक गंतव्य तक ले जाना है. बल्कि जी.टी.टी. प्रक्रिया के द्वारा एक एस.टी.पी. अपने अंदर तैयार किये गये टेबल्स का उपयोग करके दूसरे एस.टी.पी. पर रूट करके गंतव्य तक पहुँचाया जाता है. जब संदेश दूसरे एस.टी.पी. पर पहुँचते हैं तब जी.टी.टी. प्रक्रिया के द्वारा इन संदेशों को उनके आखिरी गंतव्य तक भेज दिया जाता है. इस तरह बीच के एस.टी.पी. में जी.टी.टी. प्रक्रिया के द्वारा, दूरस्थ नोड्स की विस्तृत जानकारी रखने की आवश्यकता को भी कम कर दिया गया है. एस.टी.पी. पर जी.टी.टी. प्रक्रिया के उपयोग द्वारा दो समान स्वरूपों वाली एस.टी.पी. के बीच लोड-शेयर करके साधारण या खराबी की स्थिति में उपयोग कर सकते हैं. इन उपरोक्त अवस्थाओं में जहाँ आखरी जी.टी.टी. प्रक्रिया के लिए एस.टी.पी. पर आते हैं और डॉटा-बेस की ओर रूट किये जाते हैं, उस समय एस.टी.पी. के पास, अतिरिक्त उपलब्ध एस.सी.पी. का चुनाव करने की सुविधा होती है. एस.सी.पी. का चुनाव प्राथमिकता के आधार पर (प्राइमरी बैक-अप के रूप में संदर्भित) या सभी उपलब्ध एस.सी.पी. पर समान भार बाँटने के लिए किया जा सकता है.

5.1 ट्रांजैक्शन कॅपेबिलटी एप्लिकेशन पार्ट (टी.सी.ए.पी./TCAP)

किन्हीं नोड में उपयुक्त सब-सिस्टम् द्वारा एप्लिकेशन्स के बीच आपस में कम्यूनिकेशन स्थापित होने पर संदेशों और प्रोटोकॉल्स का आदान-प्रदान होता है. इसका निर्धारण टी.सी.ए.पी./TCAP द्वारा किया जाता है. इसका उपयोग डॉटा सर्विसेस जैसे, कॉलिंग-कार्ड सेवा, 800 सेवा, ए.आई.एन.(AIN) और स्विच-टु-स्विच सेवा, जिसमें रिपीट डॉयलिंग और कॉल-बैक की सेवा भी सम्मिलित है. चूंकि टी.सी.ए.पी. के संदेश अपने स्वतः के नोड में उस विशेष एप्लिकेशन तक पहुँचाना आवश्यक होता है इसीलिए इन संदेशों के यातायात के लिए एस.सी.सी.पी. का उपयोग किया जाता है.

5.2 ऑपरेशन मेंटनेन्स और एड्मिनिस्ट्रेशन पार्ट (ओ.एम.ए.पी./OMAP)

एसएस-7 नेटवर्क के संचालन के लिए मददगार संदेश और प्रोटोकॉल का निर्धारण ओ.ए.एम.पी./OAMP द्वारा किया जाता है. आज की तारीख में सबसे ज्यादा उन्नत और नियुक्त की गई क्षमताओं में पहली क्षमता है, नेटवर्क रूटिंग टेबल्स को प्रमाणित करने की प्रक्रिया और दूसरी क्षमता है, लिंकों से संबंधित खराबियों का निदान करना. एम.टी.पी. और एस.सी.सी.पी. द्वारा उपयोग किये जाने वाले रूटिंग संदेश भी ओ.एम.ए.पी./OMAP में सम्मिलित होते हैं.

5.3 आई.एस.यू.पी./ISUP (आइ.एस.डी.एन./ISDN यूजर पार्ट)

पब्लिक स्विच्ड नेटवर्क में वॉइस-कॉल और डॉटा-कॉल्स को स्थापित करने और कॉल-रिलीज़ करने के लिए जिन संदेशों और प्रोटोकॉल्स की आवश्यकता होती है उनका निर्धारण आई.एस.यू.पी. द्वारा किया जाता है और उन ट्रंक नेटवर्क को भी संचालित करता है जिनपर ये संदेश भेजे जाने होते हैं. बावजूद इसके नाम के, आई.एस.यू.पी. का उपयोग आइ.एस.डी.एन. और नॉन-आइ.एस.डी.एन. कॉल्स दोनों के लिए किया जाता है. उत्तरी-अमेरीका के एस.एस.-7 संस्करण में आई.एस.यू.पी. संदेशों को नेटवर्क नोड्स के बीच केवल एम.टी.पी. पर ही प्रसारित किया जाता है.

- 5.3.1 आई.एस.य्.पी./ISUP के लिए निम्न्लिखत आवश्यक हैं.
- √ आई.एस.यू.पी. को एस.एस.-7 सिस्टम के 'नेटवर्क सर्विस पार्ट' पर निर्भर होना है.
- 🗸 भविष्य में आई.एस.डी.एन. सेवाओं में वृद्धि के लिए स्थिति-अनुरूप होना है.
- ✓ इसे यूजर नेटवर्क Q.931 'कॉल कंट्रोल प्रोटोकॉल' के साथ काम करने में सक्षम होना है. आई.एस.यू.पी. पर म्ख्य निरीक्षण
- ✓ आई.एस.डी.एन. उपभोक्ताओं द्वारा कॉमन चैनल सिगनलिंग आधारित कॉल कंट्रोल प्रोटोकॉल्स को, Q.931 की प्रक्रिया से निर्धारित करना, यानि कि एक आई.एस.डी.एन. उपभोक्ता, Q.931 प्रक्रिया द्वारा, संलग्न यूजर सुविधाओं के साथ (जो कि Q.931 में सहयोग करती हैं), दूसरे उपभोक्ता तक कॉल स्थापित कर सकता है.
- ✓ आई.एस.डी.एन. उपभोक्ता के लिए नेटवर्क द्वारा प्रदान की गईं सिगनलिंग सेवाओं को आई.एस.यू.पी./ISUP से जाना जाता है.
- आई.एस.यू.पी. के कार्यों का सार निम्न प्रकार है:
- ✓ कॉल कंट्रोल कार्य के लिए **Q.931** आधारित आई.एस.डी.एन. नेटवर्क, आई.एस.डी.एन. उपभोक्ताओं के बीच संचारण करता है.
- ✓ उपभोक्ता कॉल कंट्रोल आवेदन को नेटवर्क में लागू करने के लिए आई.एस.डी.एन. द्वारा आई.एस.यू.पी. का उपयोग किया जाता है.
- √ नेटवर्क के भीतर आई.एस.यू.पी. का आदान-प्रदान, एस.एस.-7 प्रोटोकॉल समूह के अन्सार होता है.

✓ आई.एस.यू.पी. में "यूजर" शब्द का अर्थ आई.एस.डी.एन. यूजर नहीं है. यह शब्द आई.एस.यू.पी. के लिए है जो यह दर्शाता है कि आई.एस.यू.पी., एसएस-7 की सबसे निचली लेयर का एक यूजर है.

5.3.2 आई.एस.यू.पी. मैसेजेस: इन्हें आठ श्रेणीयों में रखा गया है.

- फ़ॉरवर्ड सेट-अप मैसेजेस
- II. जनरल सेट-अप मैसेजेस
- III. बैकवर्ड सेट-अप मैसेजेस
- IV. कॉल स्परविज़न मैसेजेस
- V. सर्किट स्परविज़न मैसेजेस
- VI. सर्किट ग्र्प स्परविजन मैसेजेस
- VII. इन-कॉल मॉडिफिकेशन मैसेजेस
- VIII. एंड-ट्-एंड मैसेजेस.
- फ़ॉरवर्ड सेट-अप मैसेजेस का कार्य:
- 1. एक्सचेंज के अंतिम छोर पर स्थित टेलीफोन उपकरणों की पहचान कर, एक सर्किट स्थापित करना.
- 2. कॉल के लिए वांछित ग्णों को वर्णित करना.

ये संदेश केवल फ़ॉरवर्ड दिशा में, दो एक्सचेंजों के बीच जहाँ से कॉल शुरू होकर गंतव्य तक पहुँचती है, के लिए भेजे जाते हैं.

फ़ॉरवर्ड सेट-अप संदेशों के प्रकार:

- आरंभिक निवेदन संदेश(इनिशियल एड्रेस मैसेज): ये संदेश फ़ॉरवर्ड दिशा में भेजे जाते हैं, जिससे बाहर जाने वाले कॉल्स के लिए एक सर्किट को बंधित(सीज़) किया जा सके और उस पर आरम्भिक निवेदन तथा अन्य संलग्न सूचनाएं भेजी जा सकें.
- क्रमानुसार आने वाले निवेदन संदेश (सब्सिक्वेंट एड्रेस मैसेजेस): इन संदेशों को आरम्भिक निवेदन संदेशों के बाद, यदि आवश्यक हो तो कॉल करने वाले उपभोक्ता की अतिरिक्त जानकारी के लिए भेजा जा सकता है.

II. जनरल सेट-अप मैसेजेस:

- ✓ इन संदेशों का उपयोग कॉल सेट-अप के दौरान किया जाता है.
- ✓ कॉल सेट-अप के समय आवश्यक अतिरिक्त जानकारी भेजने का काम भी इन्हीं संदेशों द्वारा किया जाता है.
- ✓ इन संदेशों के द्वारा यह भी जाँच की जा सकती है कि अगर कोई आई.एस.डी.एन. सर्किट अन्य आई.एस.डी.एन. सर्किटों के साथ जुडा है तो वह सर्किट, आई.एस.डी.एन. नेटवर्क के वांछित गुणों से युक्त है या नहीं.
- जनरल सेट-अप मैसेजेस के प्रकार:
- ✓ जानकारी के लिए निवेदन: कॉल से संबंधित जानकारी के लिए निवेदन संदेश भेजा जाता है.
- ✓ जानकारी: कॉल से संबंधित अतिरिक्त जानकारी के लिए संदेश भेजा जाता है.
- निरंतरता: अंतर्राष्ट्रीय एक्सचेंजों के बीच कॉल सेट-अप के बाद स्पीच सर्किट का निरंतर बने रहना आवश्यक होता है, इसीलिए यह संदेश, फ़ॉरवर्ड दिशा में भेजा जाता है और यह सुनिश्चित कर लिया जाता है कि कॉल के दौरान सर्किट बना रहेगा.

- III. बैकवर्ड सेट-अप मैसेजेस: कॉल सेट-अप को सहयोग देता है, कॉल चार्जेस की प्रक्रिया शुरू करता है और दर की गणना करता है.
- > बैकवर्ड सेट-अप मैसेजेस के प्रकार:
- एड्रेस कंपलीट: कॉल किये जाने वाले उपभोक्ता तक कॉल को रूट करने के लिए आवश्यक जानकारी प्राप्त हो जाने पर यह संदेश भेजा जाता है.
- कनेक्ट: जब कॉल किया गया उपभोक्ता टेलीफ़ोन उठा लेता है या उत्तर देता है तब यह संदेश भेजा जाता है कि कॉल कनेक्ट हो गया है और उत्तर मिल गया है.
- कॉल प्रोग्रेस: यह दर्शाता है कि कॉल सेट-अप हो च्का है और निरंतर चल रहा है.
- IV. कॉल सुपरविज़न मैसेजेस: ये कुछ और अतिरिक्त संदेश होते हैं जो कि कॉल-स्थापना की प्रक्रिया में सहायक हो सकते हैं. इनसे यह दर्शाया जाता है कि कॉल का उत्तर दिया गया या नहीं और इनमें यह क्षमता होती है कि आई.एस.डी.एन. के बीच व्यक्तिगत रूप से कुछ हस्तक्षेप किया जाये ताकि जो आई.एस.डी.एन. राष्ट्रीय सीमा से बाहर जुड़ने वाले हैं उन्हें नियंत्रित किया जा सके.
- > कॉल स्परविज़न के लिए मैसेजेस के प्रकार:
- √ बैक-वर्ड दिशा में भेजे जाने वाले संदेश यह दर्शाने के लिए कि कॉल का प्रति-उत्तर दिया गया है.
- ✓ फ़ॉरवर्ड ट्रांसफ़र: जिस समय किसी अंतर्राष्ट्रीय एक्सचेंज से कॉल बाहर जाता है और ऑपरेटर को उस दूसरे एक्सचेंज के, (जिस पर कॉल भेजा गया है) ऑपरेटर से कोई मदद लेनी है, तब यह संदेश भेजा जाता है. यह संदेश केवल सेमी-ऑटोमैटिक कॉल्स के लिए फ़ॉरवर्ड दिशा में भेजा जाता है.
- ✓ रिलीज: जिस सिर्कट को संदेश भेजने के लिए प्रयुक्त किया गया था उसके रिलीज होने जाने पर यह संदेश भेजा जाता है.
- V. सर्किट सुपरविज़न मैसेजेस: ये संदेश पूर्ण रूप से स्थापित सर्किट से संबंधित होते हैं. इनसे तीन कार्यों को मदद मिलती है.
- ✓ सर्किट को रिलीज किया जा सकता है.
- ✓ सिकंट को निलंबित करके पुनः स्थापित किया जा सकता है.
- ✓ सिंकट को स्थापित किया जा सकता है.

सर्किट सुपरविजन मैसेजेस के प्रकार:

- ✓ विलंबता से रिलीज संदेश
- √ रिलीज पूरा हुआ संदेश
- ✓ निरंतरता की जाँच का निवेदन संदेश
- ✓ सर्किट री-सेट का संदेश
- ✓ लूप-बैक मिलने का संदेश
- ✓ ब्लॉकिंग करना
- ✓ ब्लॉकिंग निकालना
- ✓ जो सिकेट जोड़े नहीं गये, उनका 'पहचान कोड' के लिए संदेश

- 🗸 ब्लॉकिंग किया- पावती सूचना का संदेश
- √ ब्लॉिकंग निकाली गई- पावती सूचना का
 संदेश
- ✓ ओवर-लोड
- 🗸 निलंबन संदेश (सस्पेन्ड)
- 🗸 पुनः स्थापित-संदेश
- ✓ गड़बड़ को ना समझ पाने की स्थिति (कन्फ़्यूजन)
- VI. सर्किट ग्रुप सुपरविजन मैसेजेस: ये संदेश सर्किट निरिक्षण संदेश जैसे ही एक सर्किट ग्रुप के लिए कार्य करते हैं.

सर्किट ग्रुप सुपरविज़न मैसेजेस के प्रकार:

- ✓ सर्किट ग्र्प को ब्लॉक करना
- √ सर्किट ग्र्प को ब्लॉक से निकालना
- 🗸 सर्किट ग्रुप के ब्लॉक होने पर पावती भेजना
- 🗸 सर्किट ग्रुप के ब्लॉक से निकालने पर पावती भेजना
- √ सर्किट ग्रुप री-सेट करना
- √ री-सेट पावती
- ✓ ओवर-लोड का संदेश
- ✓ सर्किट ग्रुप का पूछताछ संदेश
- √ सर्किट ग्रुप पूछताछ का उत्तर संदेश

VII. इन-कॉल मॉडिफ़िकेशन मैसेज: चल रहे कॉल के लक्षणों में बदलाव या संलग्न नेटवर्क सुविधाओं में बदलाव के लिए संदेश

कॉल के दौरान बदलाव के संदेशों के प्रकार:

- √ कॉल में बदलाव के लिए निवेदन संदेश
- 🗸 सुविधाओं के निवेदन का संदेश
- 🗸 कॉल में बदलाव पूरे किये गये संदेश
- √ स्विधा स्वीकृति का संदेश

√ कॉल में बदलाव अस्वीकृत

√ सुविधा अस्वीकृति का संदेश

VIII. एंड-टु-एंड मैसेजेस: किसी बीच के एस.पी. (नोड) पर बाइ-पास के लिए या अंतिम एस.पी. (नोड) से अंतिम एस.पी. (नोड) तक के लिए संदेश सम्मिलित होते हैं.

- पास-अलॉगः दो एस.पी. के बीच सूचनाओं का आदान-प्रदान करना
- एंड-टु-एंड: कॉल कंट्रोल संदेशों से अलग, उपभोक्ता से उपभोक्ता के बीच सिगनलिंग सूचनाओं का आदान-प्रदान.

5.4 आई.एस.यू.पी. मैसेज फील्ड: आई.एस.यू.पी. में निम्नलिखित प्रकार के मैसेज फील्ड होते हैं

- > रूटिंग लेबल
 - √ एम.टी.पी. हेडर का एक हिस्सा
 - √ इसमें सोर्स कोड, गंतव्य कोड और एस.एल.एस. होते हैं
 - √ सर्किट पहचान कोड
 - √ सर्किट का निर्धारण जिसके लिए संदेश संबंधित होता है
- मैसेज टाइप
 - √ संदेश के प्रकार को पहचानना
- मेंडेटरी फिक्स्ड पार्ट
 - 🗸 स्थिति, लंबाई और संदेश के प्रकार पर आधारित मापदंड का क्रम
 - ✓ मेंडेटरी वेरियेबल पार्ट
- > पॉइंटर्स लोकेट पॅरामीटर्स
 - ✓ ऑप्शनल पार्ट
- > इन एच्छिक पॅरामीटर्स को भी 'पॉइंटर्स', स्थापित करते हैं

5.5 जी.एस.एम. नेटवर्क में एस.एस.-7 एप्लिकेशन

पी.एस.टी.एन. प्रोटोकॉल लेयर के साथ अतिरिक्त प्रोटोकॉल लेयर निम्नप्रकार हैं:

- ✓ बेस-स्टेशन सब सिस्टम एप्लिकेशन पार्ट (BSSAP)
- ✓ मोबाइल एप्लिकेशन पार्ट (MAP)
- ✓ ट्रांज़ेक्शन केपेबिलिटी एप्लिकेशन पार्ट

5.6 जी.एस.एम. तत्वों में एस.एस.-७ लेयर

एम.एस.सी. में प्रोटोकॉल्स का जमाव

चूंकि एम.टी.पी., एस.एस.-7 सिगनलिंग सिस्टम की नींव है, और हर एक जी.एस.एम. तत्वों में इनकी आवश्यकता पड़ती है जो कि एस.एस.-7 सिगनलिंग सिस्टम को संसाधित करते हैं. जी.एस.एम. नेटवर्क में एम.एस.सी./MSC एक तत्व है जो कॉल कंट्रोल के लिए उत्तरदायी है. टी.यू.पी./आइ.एस.पी., एम.टी.पी. के सबसे शीर्ष पर होते हैं. लोकेशन अप-डेट तथा बी.एस.सी. और एच.एल.आर. के साथ संबंध स्थापित करने का कार्य एम.एस.सी./वी.एल.आर. द्वारा किया जाता है. इस कारणवश इसमें बी.एस.एस.ए.पी./BSSAP और एम.ए.पी./MAP का भी होना जरूरी है जो कि एस.सी.सी.पी./SCCP के शीर्ष पर होते हैं. एम.एस.सी. में टी.सी.ए.पी. भी होते हैं जो एम.ए.पी./MAP के लिए सेवाएं प्रदान करते हैं. इन सब से ये जान पड़ता है कि एम.एस.सी./वी.एल.आर. में एस.एस.-7 के सभी प्रोटोकॉल्स लागू किये गये हैं.

चित्र 5.1 एम.एस.मी. में विभिन्न प्रोटोकॉल्स का जमाव

I. बी.एस.एस.ए.पी./BSSAP

बी.एस.ए.पी./BSSAP - जब कोई एम.एस.सी./MSC किसी बी.एस.सी./BSC और मोबाइल स्टेशन के साथ संबंध स्थापित करता है तब इस लेयर का उपयोग किया जाता है. क्योंकि किसी भी मोबाइल स्टेशन और एम.एस.सी. के बीच संबंध स्थापित करने के लिए बी.एस.सी. का सहयोग लिया जाता है, इसके लिए एक वर्चुअल कनेक्शन जरूरी है और एस.सी.सी.पी. की सेवाएं भी जरूरी हैं. बीएसएसएपी के मानक संदेश-सेटों द्वारा, प्रमाणीकरण/सत्यापन की प्रक्रिया और नये टी.एम.एस.आइ. का निर्धारण किया जाता है. एम.एस.सी. और बी.एस.सी. के बीच होने वाला संचार भी बी.एस.एस.ए.पी. प्रोटोकॉल लेयर का उपयोग करता है.

II. एम.ए.पी./MAP

जब किसी मोबाइल फ़ोन पर कॉल जोड़ा जाता है तब उस फ़ोन के एम.एस.आर.एन. (मोबाईल सब्सक्राइबर रोमिंग नंबर) के लिए एच.एल.आर. पर एक निवेदन भेजा जाता है, इस समय वास्तविक कॉल को एच.एल.आर. पर रूट नहीं किया जाता केवल निवेदन भेजा जाता है. इस प्रक्रिया को करने के

लिए एक और प्रोटोकॉल लेयर का एस.एस.-7 में समावेश किया जाता है जिसे मोबाइल एप्लिकेशन पार्ट कहा जाता है. एम.ए.पी. का उपयोग एन.एस.एस. तत्वों के बीच सिगनलिंग संचार के लिए किया जाता है.

III. ट्रांजेक्शन केपेबिलिटी एप्लिकेशन पार्ट (TCAP)

एम.ए.पी. सिगनलिंग में, एक एमएससी द्वारा एच.एल.आर. को संदेश भेजा जाता है और उस निवेदन संदेश को एक निश्चित परिणाम में बदल देता है. एच.एल.आर. द्वारा उस परिणाम संदेश को वापस एम.एस.सी. पर भेज दिया जाता है जो कि या तो अंतिम परिणाम हो सकता है या कोई और परिणाम हो सकता है या कोई और संदेश जिसके बाद और कोई संदेश भी आ सकता है जो कि आखिरी संदेश ना हो. एम.ए.पी. का उपयोग करके विभिन्न तत्वों के बीच इस तरह के संदेश और उनके परिणामों के आदान-प्रदान के लिए किसी ऐसी चीज की आवश्यकता पड़ती है जो ये आदान-प्रदान सम्हाल सके, इसके लिए टी.सी.ए.पी. की मदद ली जाती है. इस तरह जी.एस.एम. नेटवर्क में लगने वाले सभी एसएस-7 प्रोटोकॉल के जमाव और उनके कार्यों का अध्ययन पूरा होता है.

IV. भैसेज ट्रांसफ़र पार्ट (MTP)

अब तक हम यह स्थापित कर चुके हैं कि कॉल सेट-अप के लिए सिगनलिंग का उपयोग करते हैं और ये सिगनलिंग संदेश कुछ खास तरह के संदेशों के सेट होते हैं जिन्हें नेटवर्क में आदान-प्रदान कि लिए उपयोग किया जाता है, जिनसे कॉल सेट-अप होती है.

जो हिस्सा/पार्ट इन संदेशों को नेटवर्क तत्वों में एक स्थान से दूसरे स्थान तक आदान-प्रदान करता है उसे मैसेज ट्रांसफर पार्ट (MTP) कहते हैं. पूरी एस.एस.-7 सिगनलिंग सिस्टम, एम.टी.पी. की नींव पर बनाया गया है जिसमें तीन सब-लेयर होती हैं.

सबसे निचला स्तर, एम.टी.पी. लेयर-1(फ़िजीकल कनेक्शन) जो कि फ़िजीकल और इलेक्ट्रिकल गुणों को निर्धारित करती है. दूसरी लेयर, एम.टी.पी. लेयर-2 (डॉटा लिंक कंट्रोल) जो कि आपसी नेटवर्क तत्वों के बीच सिगनलिंग संदेशों का दोष-मुक्त संचारण करने में मदद करती है. तीसरी लेयर, एम.टी.पी.-3 (नेटवर्क लेयर), किसी सिगनलिंग नेटवर्क में स्थित सभी नेटवर्क तत्वों के बीच संदेशों का आदान-प्रदान सुचारु रूप से होने के लिए उत्तरदायी है.

वस्त्-निष्ठः

- 1. बी.एस.सी.और मोबाइल स्टेशनों का, एम.एस.सी. के साथ कम्यूनिकेशन बनाने के लिए <u>बी.एस.एस.ए.पी.</u> प्रोटोकॉल का उपयोग किया जाता है.
- 2. <u>एम.ए.पी.</u> का उपयोग एन.एस.एस. एलिमेंट के बीच सिगनलिंग-कम्यूनिकेशन के लिए किया जाता है.
- 3. एम.ए.पी. के ट्रांज़ेक्शनों को संभालने के लिए सेक्रेटरी को <u>टी.सी.ए.पी.</u> (ट्रांजेक्शन केपेबिलिटी एप्लिकेशन पार्ट) कहते हैं.
- 4. <u>ओ.ए.एम.पी.-</u> एस.एस.-7 नेटवर्क के प्रशासनिक कार्यों में मदद करने वाले संदेशों और प्रोटोकॉल्स को परिभाषित करता है.
- 5. <u>आइ.एस.यू.पी.</u> पब्लिक स्विच्ड नेटवर्क पर, <u>वॉइस और डॉटा</u> कॉल्स को स्थापित और समाप्त करने के लिए बनाए गये संदेशों और प्रोटोकॉल्स को परिभाषित करता है.

विषय-निष्ठः

- 1. एस.एस.-7 सूट के हाइयर लेवल प्रोटोकॉल्स क्या हैं? उनके कार्य समझाएं.
- 2. एस.एस.-7 सूट में, जी.एस.एम. नेटवर्क के सापेक्ष, अतिरिक्त प्रोटोकॉल्स क्या हैं? संक्षिप्त में समझाएं.