

Quad Low Power, Precision Comparator

CMP04

FEATURES

High Gain: 200 V/mV typ

Single or Dual Supply Operation
Input Voltage Range Includes Ground

Low Power Consumption (1.5 mW/Comparator)

Low Input Bias Current: 100 nA max Low Input Ottset Current: 10 nA max

Low Offset Voltage: 1 mV max

Low Output Saturation Voltage: 250 mV @ 4 mA

Logic Output Compatible with TTL, DTL, ECL, MOS and

CMOS

Directly Replaces LM139/239/339 Comparators

Available in Die Form

GENERAL DESCRIPTION

Four precision independent comparators comprise the CMP04. Performance highlights include a very low offset voltage, low output saturation voltage and high gain in a single supply design. The input voltage range includes ground for single supply operation and V- for split supplies. A low power supply current of 2 mA, which is independent of supply voltage, makes this the preferred comparator for precision applications requiring minimal power consumption. M aximum logic interface flexibility is offered by the open-collector TTL output.

PIN CONNECTIONS

14-Pin Hermetic DIP (Y Suffix) 14-Pin E poxy DIP (P Suffix) 14-Pin SO (S Suffix)

SIMPLIFIED SCHEMATIC (1/4 CMP-04)

TYPICAL INTERFACE Driving CMOS

Driving TTL

CMP04- SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ V+ = +5 V, T_A = +25°C, unless otherwise noted.)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_S = 0 \Omega$, $R_L = 5.1 k\Omega$, $V_O = 1.4 V^1$		0.4	1	mV
Input Offset Current	los	$I_{IN}(+) - I_{IN}(-), R_L = 5.1 \text{ k}\Omega$ $V_{\Omega} = 1.4 \text{ V}$		2	10	nA
Input Bias Current	l _B	$I_{IN}(+)$ or $I_{IN}(-)$		25	100	nA
Voltage G ain	A _V	$R_L \ge 15 \text{ k}\Omega, V + = 15 V^5$	80	200		V/mV
Large-Signal Response Time	t _r	$V_{IN} = TTL Logic Swing, V_{REF} = 1.4 V^4$				
		$V_{RL} = 5 \text{ V}, R_{L} = 5.1 \text{ k}\Omega$		300		ns
Small-Signal Response Time	l t _r	$V_{IN} = 100 \text{ mV Step}^4$, 5 mV Overdrive				
		$V_{RL} = 5 V, R_{L} = 5.1 k\Omega$		1.3		μs
Input Voltage Range	CMVR	(N ote 2)	0		V+-1.5	V
Common-Mode Rejection Ratio	CMRR	(Notes 3, 5)	80	100		dB
Power Supply Rejection Ratio	PSRR	$V + = +5 V \text{ to } +18 V^5$	80	100		dB
Saturation Voltage	VoL	$V_{IN}(-) \ge 1 \text{ V}, V_{IN}(+) = 0, I_{SINK} \le 4 \text{ mA}$		250	400	mV
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V}, V_{IN}(+) = 0, V_{O} \le 1.5 \text{ V}$	6	16		mA
Output Leakage Current	I _{LEAK}	$V_{IN}(+) \ge 1 \text{ V}, V_{IN}(-) = 0, V_{O} = 30 \text{ V}$		0.1	100	nA
Supply Current	I+	$R_L = \infty$, All Comps, $V + = 30 \text{ V}$		8.0	2.0	mA

NOTES

Specifications subject to change without notice

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage
Differential Input Voltage 36 Vdc
Input Voltage0.3 V to +36 V
Operating Temperature Range
CM P04FY40°C to +85°C
CM P04BY55°C to +125°C
CM P04FP, FS40°C to +85°C
Junction T emperature (T_1)65°C to +150°C
Storage T emperature Range65°C to +150°C
(P Suffix)65°C to +125°C
Input Current (V _{IN} < -3.0 V)
Output Short-Circuit to GNDContinuous
Lead Temperature (Soldering, 60 sec) 300°C

Package Type	θ_{JA}^2	θ _{JC}	Units
14-Pin Hermetic DIP (Y) 14-Pin Plastic DIP (P)	94 83	10 39	°C /W
14-Pin SO (S)	120	36	°C/W

NOTES

ORDERING GUIDE

Model	T _A = +25°C	Temperature	Package	Package
	V _{OS}	Range	Descriptions	Options
C M P 04BY /883C	1 mV	-55°C to +125°C	14-C ontact LCC	Q-14
C M P 04F P	1 mV	-40°C to +85°C	14-Pin P-DIP	N-14
CMP04FS	1 mV	-40°C to +85°C	14-Pin SO	SO-14

^{*}Burn-in is available on commercial and industrial temperature range parts in Cerdip and plastic DIP packages.

-2- REV. B

 $^{^{1}}$ At output switch point, $V_0 = 1.4 \text{ V}$, $R_S = 0 \Omega$ with V+ from 5 V; and over the full input common-mode range (0 V to V+ - 1.5 V).

²The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V + – 1.5 V, but either or both inputs can go to +30 V without damage.

 $^{{}^3}R_L \ge 15 \text{ k}\Omega, V + = 15 \text{ V}, V_{CM} = 1.5 \text{ V} \text{ to } 13.5 \text{ V}.$

⁴Sample tested.

⁵Guaranteed by design.

¹Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

 $^{^2\}theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for C erdip and Plastic DTP packages; θ_{JA} is specified for device soldered to printed circuit board for SO package.

ELECTRICAL CHARACTERISTICS (@ V+ = +5 V, -55°C \leq T_A \leq +125°C for CMP04BY, -40°C \leq T_A \leq +85°C for CMP04FY/FP/FS, unless otherwise noted.)

				CMP04B/F	1	
Parameter	Symbol	Conditions	Min	Тур	Max	Units
Input Offset Voltage	Vos	$R_S = 0 \Omega, R_L = 5.1 \text{ k}\Omega$ $V_0 = 1.4 \text{ V}^2$		1 1	2 2	mV mV
Input Offset Current	l _{os}	$I_{IN}(+) - I_{IN}(-)$ $R_L = 5.1 \text{ k}\Omega$ $V_0 = 1.4 \text{ V}$		4 4 4	20 20 20	nA nA nA
Input Bias Current	I _B	I _{IN} (+) or I _{IN} (-)		40	200	nA
Voltage G ain	A _V	$R_{L} \ge 15 \text{ k}\Omega, V + = 15 V^{3}$	70	125		V/mV
Large-Signal Response Time	t _r	$\begin{aligned} &V_{\text{IN}} = TTL \text{ Logic Swing} \\ &V_{\text{REF}} = 1.4 \text{ V}^4 \\ &V_{\text{RL}} = 5 \text{ V}, \text{ R}_L = 5.1 \text{ k}\Omega \end{aligned}$		300 300 300		ns ns ns
Small-Signal Response Time	t _r	$V_{IN} = 100 \text{ mV Step}^4$ 5 mV Overdrive $V_{RL} = 5 \text{ V}, R_L = 5.1 \text{ k}\Omega$		1.3 1.3 1.3		μs μs μs
Input Voltage Range	CMVR	(N ote 5)	0		V+-1.5	V
Common-Mode Rejection Ratio	CMRR	(Notes 1, 3)	60	100		dB
Power Supply Rejection Ratio	PSRR	V+ = +5 V to 18 V	80	100		dB
Saturation Voltage	VoL	$V_{IN}(-) \ge 1 \text{ V, } V_{IN}(+) = 0,$ $I_{SINK} \le 4 \text{ mA}$		250 250	700 700	mV mV
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V},$ $V_{IN}(+) = 0, V_0 \le 1.5 \text{ V}$	5 5	16 16		mA mA
Output Leakage Current	I _{LEAK}	$V_{IN}(+) \ge 1 \text{ V},$ $V_{IN}(-) = 0, V_0 = 30 \text{ V}$		0.1 0.1	200 200	nA nA
Supply Current	I+	$R_L = \infty$, All Comps V+ = 30 V		1.2 1.2	3.0 3.0	mA mA

NOTES

 ${}^{1}R_{L} \ge 15 \text{ k}\Omega$, V+ = 15 V, V_{CM} = 1.5 V to 13.5 V.

At output switch point, $V_0 = 1.4 \text{ V}$, $R_S = 0 \Omega$ with V+ from 5 V; and over the full input common-mode range (0 V to V+ -1.5 V).

³ Guaranteed by design.

⁴ Sample tested.

Specifications subject to change without notice.

BURN-IN CIRCUIT

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the CM P04 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. B -3-

⁵The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+-1.5 V, but either or both inputs can go to +30 V without damage.

DICE CHARACTERISTICS

1. OUTPUT (2)
2. OUTPUT (1)
3. POSITIVE SUPPLY
4. INVERTING INPUT (1)
5. NONINVERTING INPUT (1)
8. INVERTING INPUT (3)
9. NONINVERTING INPUT (4)
10. INVERTING INPUT (4)
11. NONINVERTING INPUT (4)
12. GROUND (SUBSTRATE)

6. INVERTING INPUT (2) 13. OUTPUT (4) 7. NONINVERTING INPUT (2) 14. OUTPUT (3)

DIE SIZE 0.058 X 0.055 inch, 3190 sq. mils (1.47 X 1.40 mm, 2.058 sq. mm)

WAFER TEST LIMITS (@ V+ = +5 V, $T_A = 25$ °C, unless otherwise noted.)

Parameter	Symbol	Conditions	CMP04N Limit	CMP04G Limit	Units
Input Offset Voltage	Vos	$R_S = 0 \Omega, R_L = 5.1 k\Omega$ $V_0 = 1.4 V^1$	1	2	mV max
Input Offset Current	I _{os}	$I_{IN}(+) - I_{IN}(-)$ $R_L = 5.1 \text{ k}\Omega$ $V_0 = 1.4 \text{ V}$	10	25	nA max
Input Bias Current	I _B	$I_{IN}(+)$ or $I_{IN}(-)^1$	100	100	nA max
Voltage G ain	A _V	$R_L \ge 15 \text{ k}\Omega, V + = 15 V^3$	80	50	V/mV min
Input Voltage Range	CMVR	(N otes 2, 3)	V+-1.5	V+-1.5	V max
Common-M ode Rejection Ratio	CMRR	(Note 4)	80	80	dB min
Power Supply Rejection Ratio	PSRR	V+=5 V to +18 V	80	80	dB min
Saturation Voltage	V _{OL}	$V_{IN}(-) \ge 1 \text{ V, } V_{IN}(+) = 0,$ $I_{SINK} \le 4 \text{ mA}$	400	400	mV max
Output Sink Current	I _{SINK}	$V_{IN}(-) \ge 1 \text{ V},$ $V_{IN}(+) = 0, \text{ V}_0 \le 1.5 \text{ V}$	6	6	mA min
Output L eakage Current	I _{LEAK}	$V_{IN}(+) \ge 1 \text{ V},$ $V_{IN}(-) = 0, V_{O} = 30 \text{ V}$	100	100	nA max
Supply Current	I+	$R_L = \infty$, All Comps V+=30 V	2	2	mA max

NOTES

Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TYPICAL ELECTRICAL CHARACTERISTICS (@ V+ = +5 V, unless otherwise noted.)

Parameter	Symbol	Conditions	CMP04N Typical	CMP04G Typical	Units
Large-Signal Response Time	t _r	$\begin{split} &V_{\text{IN}} = \text{TTL Logic Swing} \\ &V_{\text{REF}} = 1.4 \text{ V}^5 \\ &V_{\text{RL}} = 5 \text{ V}, \text{ R}_{\text{L}} = 5.1 \text{ k}\Omega \end{split}$	600	600	ns
Small-Signal Response Time	t _r	$V_{IN} = 100 \text{ mV Step}^5$ 5 mV Overdrive $V_{RL} = 5 \text{ V}, R_L = 5.1 \text{ k}\Omega$	1.3	1.3	นร

-4-

NOTES

 $^{^1\!}At$ output switch point, V $_0=1.4$ V, R $_S=0~\Omega$ with V + from 5 V; and over the full input common-mode range (0 V to V + -1.5 V).

²T he input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the

common-mode voltage range is V+ -1.5 V, but either or both inputs can go to +30 V without damage.

³Guaranteed by design.

 $^{{}^4}R_L \ge 15 \text{ k}\Omega. \text{ V}_{\text{CM}} = 1.5 \text{ V to } 13.5 \text{ V}.$

⁵Sample tested.

TYPICAL PERFORMANCE CHARACTERISTICS

Offset Voltage vs. Temperature

Input Bias Current vs. V+ and Temperature

Input Offset Current vs. Temperature

Voltage Gain vs. Temperature

Supply Current vs. Supply Voltage

Output Voltage vs. Output Current and Temperature

Response Time for Various Input Overdrives—Negative Transition

Response Time for Various Input Overdrives—Positive Transition

REV. B -5-

TYPICAL APPLICATIONS

Output Strobing

Limit Comparator

Noninverting Comparator with Hysteresis

Inverting Comparator with Hysteresis

Squarewave Oscillator

Comparing Input Voltages of Opposite Polarity

-6- REV. B

One-Shot Multivibrator

Pulse Generator

One-Shot Multivibrator with Input Lock Out

REV. B -7-

TYPICAL APPLICATIONS

Time Delay Generator

-8-