Nama: Cinde Prawitro P

NIM : L20017010

Kelas: E

KEGIATAN

1. Persiapkan file Cuaca.arff:

```
@relation Cuaca
    @attribute Cuaca {Cerah, Mendung, Hujan}
 4 @attribute Suhu real
 5 @attribute Kelembaban Udara real
 6 @attribute Berangin {YA, TIDAK}
 7 @attribute Bermain Tenis {YA, TIDAK}
 9 @data
10 Cerah, 85, 85, TIDAK, TIDAK
11 Cerah, 80, 90, YA, TIDAK
12 Mendung, 83, 86, TIDAK, YA
13 Hujan, 70, 96, TIDAK, YA
14 Hujan, 68, 80, TIDAK, YA
15 Hujan, 65, 70, YA, TIDAK
16 Mendung, 64, 65, YA, YA
17 Cerah, 72, 95, TIDAK, TIDAK
18 Cerah, 69, 70, TIDAK, YA
19 Hujan, 75, 80, TIDAK, YA
20 Cerah, 75, 70, YA, YA
21 Mendung, 72, 90, YA, YA
22 Mendung, 81, 75, TIDAK, YA
23 Hujan, 71, 91, YA, TIDAK
```

2. Buatlah seperti pada gambar dan save dengan nama CuacaTesting.arff:

```
File Edit Format View Help

@relation Cuaca

@attribute Cuaca {Cerah, Mendung, Hujan}
@attribute Suhu real
@attribute Kelembaban_Udara real
@attribute Berangin {YA, TIDAK}
@attribute Bermain_Tenis {YA, TIDAK}

@data
Cerah,75,65,TIDAK,?
Cerah,80,68,YA,?
Cerah,83,87,YA,?
Mendung,70,96,TIDAK,?
Mendung,70,96,TIDAK,?
Hujan,65,75,YA,?
Hujan,64,85,YA,?
```

3. Buka kembali file Cuaca.arff dengan menggunakkan Weka Explorer. Buka Weka Explorer – Klik Open File – Pilih Cuaca.arff

- 4. Masih pada Weka Explorer, pilih tab Classify
- **5.** Sehingga akan muncul jendela Weka Explorer pada tab Classify, pada kotak **Classifer** klik tombol **Choose** untuk memilih metode/algoritma **Naïve Bayes**
- 6. Klik tombol Set untuk menentukan file ARFF sebagai data uji
- 7. Sehingga akan muncul jendela Test Instance, klik **Open file**

- 8. Pilih file CuacaTesting.arff
- 9. Kemudian klik Close
- 10. Klik Start untuk memulai proses naïve bayes
- 11. Klik kanan pada hasil proses dalam kotak result list. Pilih Visual classifier errors

12. Klik Save. Simpan dengan nama file HasilPrediksi.arff

13. Tutup semua jendela termasuk Weka Explorer dan kembali ke Weka GUI Chooser. Pilih menu **Tools-ArffViewer**

14. Buka menu File-Open. Tunjukkan pada file HasilPrediksi.arff yang telah Anda simpan

Implementasi Naïve Bayes dengan RapidMiner

- 1. Persiapkan file Tabel_Cuaca.xls yang terdiri dari 2 sheet.
- 2. **Tabel data training** pada Sheet1

3. Tabel data uji pada Sheet2 tanpa ada variabel Bermain Tenis

À	Α	В	C	D	
1 Cuaca		Suhu	Kelembapan_udara	Berangin	
2	Cerah	75	65	TIDAK	
3	Cerah	80	68	YA	
4	Cerah	83	87	YA	
5	Mendung	70	96	TIDAK	
6	Mendung	68	81	TIDAK	
7	Hujan	65	75	YA	
8	Hujan	64	85	YA	
Į.	< >	Training	Testing (+)		

- 4. Buka aplikasi Rapid Miner
- 5. Klik **Import Data**. Arahkan direktori tempat penyimpanan file pada langkah **Select data location**,kemudian pilih file yang akan digunakan dan klik **Next**.
- 6. Pastikan sel Excel sesuai di langkah Select the cells to import.

7. Pada langkah **Format your colums** ubah kolom **Bermain_Tenis** dengan tipe data **binomial** karena hanya ada dua keputusan (YA dan TIDAK)

8. Ubah pula sebagai label pada Change Role

- 9. Simpan dengan nama DataCuaca Training dilanjutkan klik tombol Finish
- 10. Hasil import file **Tabel Cuaca.xls** pada Sheet1 akan di tampilkan.

11. Kembali ke jendela Design Perspective dengan shortcut tombol F8

12. Lakukan hal yang sama untuk data testing yang diambil dari **Tabel_Cuaca.xls** pada Sheet2(Testing) dengan mengulang dari langkah 5

	Select the cells to import.								
Sheet: Testing ▼ Cell range: A:D Select All ✓ Define header row: 1 ‡									
	A	В	С	D					
1	Cuaca	Suhu	Kelembaban_Udara	Berangin					
2	Cerah	75.000	65.000	TIDAK					
3	Cerah	80.000	68.000	YA					
4	Cerah	83.000	87.000	YA					
5	Mendung	70.000	96.000	TIDAK					
6	Mendung	68.000	81.000	TIDAK					
7	Hujan	65.000	75.000	YA					
8	Hujan	64.000	85.000	YA					

13. Simpan dengan nama DataCuaca Testing.

14. Drag DataCuaca_Training dan DataCuaca_Testing kedalam jendela Process View

15. Masukkan juga operator **Naive Bayes** dan **Apply Model** ke dalam Proces View. Hubungkan konektor masing-masing data terhadap operator seperti gambar :

- 16. Jalankan proses naive bayes dengan menekan tombol **Run** (atau menekan tombol F11).
- 17. Perhatikan hasil proses klasifikasi naive bayes. Pada tab **Data**, dapat dilihat hail prediksi serta tingkat confidence nilai kelas pada masing-masing data.

Row No.	prediction(B	confidence(confidence(Cuaca	Suhu	Kelembaban	Berangin
1	YA	0.154	0.846	Cerah	75	65	TIDAK
2	YA	0.498	0.502	Cerah	80	68	YA
3	TIDAK	0.856	0.144	Cerah	83	87	YA
4	YA	0.019	0.981	Mendung	70	96	TIDAK
5	YA	0.007	0.993	Mendung	68	81	TIDAK
6	YA	0.371	0.629	Hujan	65	75	YA
7	TIDAK	0.568	0.432	Hujan	64	85	YA

Pada tab **Statistics**, dapat dilihat bahwa distribusi nilai kelas pada variabel Y (Bermain_Tenis) rerata nilai confidence sebesar 0,353 untuk nilai TIDAK, dan 0,647 untuk nilai YA

		Name		Туре	Missing	Statistics	Filter (7 / 7 attributes):	Search for Attributes ▼ ▼
Data	~	Prediction prediction(Bermain_Tenis)		Binominal	0	Least TIDAK (2)	Most YA (5)	YA (5), TIDAK (2)
Σ Statistics	~	Confidence_TIDAK confidence(TIDAK)		Real	0	Min 0.007	Мах 0.856	Average 0.353
	~	Confidence_YA confidence(YA)		Real	0	Min 0.144	Max 0.993	Average 0.647
Visualizations	~	Cuaca		Polynominal	0	Least Mendung (2)	Most Cerah (3)	Values Cerah (3), Hujan (2),[1
	~	Suhu		Integer	0	Min 64	Max 83	Average 72.143
Annotations	~	Kelembaban_Udara		Integer	0	Min 65	Мах 96	Average 79.571
	~	Berangin		Polynominal	0	Least TIDAK (3)	Most YA (4)	YA (4), TIDAK (3)