(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平11-264381

(43)公開日 平成11年(1999) 9月28日

(51) Int. Cl. 6

F04C 2/10

識別記号

321

FΙ

F04C 2/10

321

審査請求 未請求 請求項の数4 〇L (全8頁)

(21)出願番号

特願平10-96433

(22)出願日

平成10年(1998) 4月8日

(31) 優先権主張番号 特願平9-94235

(32)優先日

平9(1997)4月11日

(33)優先権主張国

日本(JP)

(31) 優先権主張番号 特願平9-94236

(32)優先日

平9(1997)4月11日

(33)優先権主張国

日本 (JP)

(31) 優先権主張番号 特願平10-6116

(32)優先日

平10(1998) 1月14日

(33)優先権主張国

日本 (JP)

(71)出願人 000006264

三菱マテリアル株式会社

東京都千代田区大手町1丁目5番1号

(72)発明者 細野 克明

新潟県新潟市小金町三番地1 三菱マテリ

アル株式会社新潟製作所内

(74)代理人 弁理士 志賀 正武 (外9名)

(54) 【発明の名称】オイルポンプロータ

(57)【要約】

【課題】 作動流体の圧力脈動、両ロータの歯面間の摺 動抵抗の増大から、ポンプの運転音が発生しそれに伴っ てポンプ性能や機械効率の低下が起こり得る。

【解決手段】 基礎円B,上を転がる第1外転円E,によ って創成される外転サイクロイド曲線を歯先、基礎円B ,上を転がる第1内転円H,に創成される内転サイクロイ ド曲線を歯溝として歯数n枚のインナーロータ10を形 成し、基礎円B。上を転がる第2外転円E。によって創成 される外転サイクロイド曲線を歯溝、基礎円B。上を転 がる第2内転円H。に創成される内転サイクロイド曲線 を歯先として歯数 n + 1 枚のアウターロータ 2 0 を形成 するものとし、E₁、H₁、E₈、H₈の直径をD₁、d₁、 D。、d。とするとき、

 $D_0 > D_1$, $d_1 > d_0$

を満たして各ロータを構成する。

【特許請求の範囲】

【請求項1】 n (nは自然数) 枚の外歯が形成されたインナーロータと、該外歯と噛み合う n + 1 枚の内歯が形成されたアウターロータと、流体が吸入される吸入ポートおよび流体が吐出される吐出ポートが形成されたケーシングとを備え、両ロータが噛み合って回転するときに両ロータの歯面間に形成されるセルの容積変化により流体を吸入、吐出することによって流体を搬送するオイルポンプに用いられるオイルポンプロータにおいて、

インナーロータが、その基礎円に外接してすべりなく転 10 がる第1外転円によって創成される外転サイクロイド曲線を歯先の歯形とし、基礎円に内接してすべりなく転がる第1内転円によって創成される内転サイクロイド曲線を歯溝の歯形として形成され、アウターロータが、その基礎円に外接してすべりなく転がる第2外転円によって創成される外転サイクロイド曲線を歯溝の歯形とし、基礎円に内接してすべりなく転がる第2内転円によって創成される内転サイクロイド曲線を歯先の歯形として形成される内転サイクロイド曲線を歯先の歯形として形成されており、

インナーロータの基礎円の直径を b_i 、第 1 外転円の直径を D_i 、第 1 内転円の直径を d_i 、アウターロータの基礎円の直径を b_s 、第 2 外転円の直径を D_s 、第 2 内転円の直径を d_s 、インナーロータとアウターロータとの偏心量を e とするとき、

 $b_1 = n \cdot (D_1 + d_1)$, $b_0 = (n+1) \cdot (D_0 + d_0)$

 $D_i + d_i = D_o + d_o = 2 e^{-1}$

 $(n+1) \cdot b_i = n \cdot b_o$

かつ、

 $D_0 > D_i$, $d_i > d_0$

を満たしてインナーロータとアウターロータとが構成されていることを特徴とするオイルポンプロータ。

【請求項2】 請求項1記載のオイルポンプロータにおいて、

インナーロータの歯先とアウターロータの歯先との間隙の大きさをt ($\neq 0$) とするとき、

 $D_1 + t/2 = D_0$, $d_1 - t/2 = d_0$

を満たしてインナーロータとアウターロータとが構成されていることを特徴とするオイルポンプロータ。

【請求項3】 請求項2記載のオイルポンプロータにお 40 いて、

0. 03mm≤t≤0. 25mm (mm:ミリメート ル)

の範囲に設定されたうえでインナーロータとアウターロータとが構成されていることを特徴とするオイルポンプロータ。

【請求項4】 請求項1または2記載のオイルポンプロータにおいて、

0. $850 \le D_1 / D_0 \le 0.995$

を満たしてインナーロータとアウターロータとが構成さ 50 夕)の歯先および内歯リングギヤ(アウターロータ)の

れていることを特徴とするオイルポンプロータ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インナーロータと アウターロータとの間に形成されるセルの容積変化によって流体を吸入、吐出するオイルポンプロータに関する ものである。

[0002]

【従来の技術】従来のオイルポンプは、n(nは自然数)枚の外歯が形成されたインナーロータと、この外歯に噛み合うn+1枚の内歯が形成されたアウターロータと、流体が吸入される吸入ポートおよび流体が吐出される吐出ポートが形成されたケーシングとを備えており、インナーロータを回転させることによって外歯が内歯に噛み合ってアウターロータを回転させ、両ロータ間に形成される複数のセルの容積変化によって流体を吸入、吐出するようになっている。

【0003】セルは、その回転方向前側と後側で、インナーロータの外歯とアウターロータの内歯とがそれぞれ20 接触することによって個別に仕切られ、かつ両側面をケーシングによって仕切られており、これによって独立した流体搬送室を構成している。そして、各セルは外歯と内歯との噛み合いの過程の途中において容積が最小となった後、吸入ポートに沿って移動するときに容積を拡大させて流体を吸入し、容積が最大となった後、吐出ポートに沿って移動するときに容積を減少させて流体を吐出する。

【0004】上記のような構成を有するオイルポンプは、小型で構造が簡単であるため自動車の潤滑油用ポンプや自動変速機用オイルポンプ等として広範囲に利用されている。自動車に搭載される場合、オイルポンプの駆動手段としてはエンジンのクランク軸にインナーロータが直結されてエンジンの回転によって駆動されるクランク軸直結駆動がある。

【0005】上記のようなオイルポンプについては、ポンプが発する雑音の低減とそれに伴う機械効率の向上を目的として、インナーロータとアウターロータとを組み合わせた状態で噛み合い位置から180°回転した位置におけるインナーロータの歯先とアウターロータの歯先との間に適切な大きさのチップクリアランスが設定されている。

【0006】チップクリアランスを確保する手段としては、アウターロータの歯形について均等追い込みを行うことで両ロータの歯面間にそれぞれクリアランスを設け、噛み合い状態において両ロータの歯先間にチップクリアランスを確保するもの、サイクロイド曲線の平坦化によるもの等が挙げられる。

【0007】例えば、特開平5-256268号公報に 開示されたオイルポンプは、ピニオン(インナーロー タ)の複集および内板リングギャ(アウターロータ)の

歯溝が、ピニオンおよび内歯リングギヤのピッチ円上の第1のサイクロイド生成円が回転することにより生成される外サイクロイド形状を有し、ピニオンの歯溝および内歯リングギヤの歯先が、ピニオンおよび内歯リングギヤのピッチ円上の第2のサイクロイド生成円が回転することにより生成される内サイクロイド形状を有する(第1のサイクロイド生成円の半径は第2のサイクロイドポンプである。このオイルポンプにおいては、ピニオンの歯先および内歯リングギヤの歯溝が同じ第1のサイクロイド生成円によって生成され、ピニオンの歯溝および内歯リングギヤの歯先が第2のサイクロイド生成円によって生成されるというように、2つの転円を用いてピニオンおよび内歯リングギヤの歯形が形成されている。

【0008】上記公報に開示されたポンプにおいては、ポンプが発する雑音の低減とそれに伴う機械効率の向上を目的として、内歯リングギヤとピニオンとが最も深く噛合する点に対向する領域における歯先間において必要な半径方向クリアランスに相当し、かつピニオンと内歯リングギヤとが互いに最も深く噛合する点におけるクリ20アランスが大幅に小さくなる程度にまで2つのサイクロイド曲線を平坦化し、これによって流体の送出流脈動を大幅に低減して雑音の発生と機械効率の向上及び寿命の延命を図る手段が採用されている。

[00091

【発明が解決しようとする課題】上記公報に開示されたポンプにおいては、平坦化されたサイクロイド曲線の開始点および終点と、ピッチ円上の未平坦化サイクロイド曲線の開始点および終点を直線で結ぶことで閉じたサイクロイド曲線を生成しているが、サイクロイド曲線のかかが生まれることでピニオンと内歯リングギャとの噛み合いが円滑に行われなくなる恐れがある。例えば、ピニオンと内歯リングギャとの噛み合い位置から、ピニオンの歯先が内歯リングギャの歯溝面を滑って移動する過程において、ピニオンの歯先が曲線部分から直線部分に移行するとき、ピニオンの歯先が直線部分から曲線部分に移行するときにブレを生じる等して噛み合いの円滑な進行を妨げることが予想されるからである。

【0010】本発明は上記の事情に鑑みてなされたものであり、両ロータが噛み合う過程でのインナーロータの40 歯先とアウターロータの歯溝との間隙を適切な大きさに設定し、両ロータの歯面間の摺動抵抗を低減することでオイルポンプのポンプ性能および機械効率の向上を図ることを目的としている。

[0011]

【課題を解決するための手段】上記の課題を解決するための手段として、請求項1記載のオイルボンプロータは、インナーロータが、その基礎円に外接してすべりなく転がる第1外転円によって創成される外転サイクロイド曲線を歯先の歯形とし、基礎円に内接してすべりなく 50

転がる第1内転円によって創成される内転サイクロイド曲線を歯溝の歯形として形成され、アウターロータが、その基礎円に外接してすべりなく転がる第2外転円によって創成される外転サイクロイド曲線を歯溝の歯形とし、基礎円に内接してすべりなく転がる第2内転円によって創成される内転サイクロイド曲線を歯先の歯形として形成されており、インナーロータの基礎円の直径をb、第1外転円の直径をb、第1外転円の直径をb、第2外転円の直径をb、第2内転円の直径をb、第2内転円の直径をb、第2内転円の直径をb、第2内転円の直径をb0、第2内転円の直径

 $b_i = n \cdot (D_i + d_i)$, $b_o = (n+1) \cdot (D_o + d_o)$

 $D_1 + d_1 = D_0 + d_0 = 2 e$ $(n+1) \cdot b_1 = n \cdot b_0$ かつ、

 $D_{\bullet}>D_{i}$, $d_{i}>d_{\bullet}$

を満たしてインナーロータとアウターロータとが構成されている。

0 【0012】請求項2記載のオイルポンプロータは、請求項1記載のオイルポンプロータにおいて、インナーロータの歯先とアウターロータの歯先との間隙の大きさをt(≠0)とするとき、

 $D_1 + t/2 = D_0$, $d_1 - t/2 = d_0$

を満たしてインナーロータとアウターロータとが構成さ れている。

【0013】請求項3記載のオイルポンプロータは、請求項2記載のオイルポンプロータにおけるtの値が、0.03mm $\leq t \leq 0$.25mm (mm: $\leq t \leq 0$. $t \leq 0$)

の範囲に設定されたうえでインナーロータとアウターロータとが構成されている。

【0014】請求項4記載のオイルポンプロータは、請求項1または2記載のオイルポンプロータにおいて、

0. $850 \le D_1/D_0 \le 0.995$

を満たしてインナーロータとアウターロータとが構成されている。

【0015】インナーロータおよびアウターロータの歯形を決定するために必要な条件とは、まず、インナーロータについて、第1外転円および第1内転円の転がり距離が1周で閉じなければならない、つまり第1外転円および第1内転円の転がり距離がインナーロータの基礎円の円周に等しくなければならないことから、

 $b_1 = n \cdot (D_1 + d_1)$

同様に、アウターロータについて、第2外転円および第2内転円の転がり距離がアウターロータの基礎円の円周に等しくなければならないことから、

 $b_{\circ} = (n+1) \cdot (D_{\circ} + d_{\circ})$

次に、インナーロータとアウターロータとが噛み合うこ とから、

D₁ + d₁ = D₂ + d₂ = 2 e 上記の各式から、

 $(n+1) \cdot b_i = n \cdot b_i$

となり、インナーロータおよびアウターロータの歯形は これらの条件を満たして構成される。

【0016】ここで、上記の各条件を満たして構成されるオイルポンプロータについて、

 $D_i > D_i$, $d_i > d$.

とすると、第2外転円D。によって形成されるアウターロータの歯溝の形状に対する第1外転円D」によって形成されるインナーロータの歯先の形状、および第1内転円d」によって形成されるインナーロータの歯溝の形状に対する第2内転円d。によって形成されるアウターロータの歯先の形状が、噛み合いの過程で両ロータの歯面間に設けられるバックラッシュを従来に比べて大きく確保できるようになる。バックラッシュとは、噛み合いの過程においてインナーロータの荷重のかかる歯面とは反対側の歯面とアウターロータの歯面との間にできる間隙である。

【0017】上記の各関係式は、チップクリアランスを 20 設けて両ロータの歯形を形成した場合も成立しなければ ならない。そこで、必要とされるチップクリアランス t を両ロータの噛み合い位置と両ロータの歯先の突き合い 位置(チップクリアランスが設けられる位置)に等分し (以下、クリアランスとする)、各位置におけるロータの歯面間にそれぞれ振り分けるものとする。このクリアランスは、次の関係式を用いることで確保することができる。

 $D_1 + t/2 = D_0$, $d_1 - t/2 = d_0$

両ロータの噛み合い位置および両ロータの歯先の突き合 30 い位置にそれぞれ設けられたクリアランス (t/2) は、両ロータが組み合わせた状態とすることにより両ロータの歯先の突き合い位置に移行して併合され、チップクリアランス t として作用する。

【0018】本発明のオイルポンプロータにおいては、インナーロータの歯先の歯形がアウターロータの歯溝の歯形よりも僅かに小さく、かつインナーロータの歯溝の歯形がアウターロータの歯先の歯形よりも僅かに大きくなるようにインナーロータ、アウターロータが構成されるので、バックラッシュが適切な大きさに設定されるともにチップクリアランスが適切な大きさに設定され、これによってチップクリアランスを小さく維持したままでパックラッシュを従来に比べて大きく確保できるようになり、流体の圧力脈動が生じ難くなるとともに両ロータの歯面間の摺動抵抗が低減される。

[0019]

【発明の実施の形態】本発明に係るオイルポンプロータの第1の実施形態を図に示して説明する。図1に示すオイルポンプは、n(nは自然数、本実施形態においてはn=10)枚の外歯が形成されたインナーロータ10

と、各外歯と噛み合うn+1枚の内歯が形成されたアウターロータ20とを備え、これらインナーロータ10とアウターロータ20とがケーシング30の内部に収納されている。

【0021】インナーロータ10は、回転軸に取り付けられて軸心Oiを中心として回転可能に支持されており、インナーロータ10の基礎円Biに外接してすべりなく転がる第1外転円Eiによって創成される外転サイクロイド曲線を歯先の歯形とし、基礎円Biに内接してすべりなく転がる第1内転円Hiによって創成される内転サイクロイド曲線を歯溝の歯形として形成されている。

【0022】アウターロータ20は、軸心O。をインナーロータ10の軸心O。に対して偏心(偏心量:e)させて配置され、軸心O。を中心としてケーシング30の内部に回転可能に支持されており、アウターロータ20の基礎円B。に外接してすべりなく転がる第2外転円E。によって創成される外転サイクロイド曲線を歯溝の歯形とし、基礎円B。に内接してすべりなく転がる第2内転円H。によって創成される内転サイクロイド曲線を歯先の歯形として形成されている。

【0023】ここで、インナーロータ10の基礎円B,の直径をb,、第1外転円E,の直径をD,、第1内転円H,の直径をd,、アウターロータ20の基礎円B。の直径をbo、第2外転円E。の直径をD。、第2内転円H。の直径をd。とするとき、インナーロータ10とアウターロータ20との間には次の関係式が成り立つ。なお、ここでは寸法単位をmm(ミリメートが)とする。

〇 【0024】まず、インナーロータ10について、第1 外転円E,および第1内転円H,の転がり距離が1周で閉 じなければならない、つまり第1外転円E,および第1 内転円H,の転がり距離が基礎円B,の円周に等しくなければならないことから、

 $\pi \cdot b_i = n \cdot \pi \cdot (D_i + d_i)$

すなわち b, = n・(D, + d,) … (I a) 同様に、アウターロータ20について、第2外転円E。および第2内転円H。の転がり距離が基礎円B。の円周に等しくなければならないことから、

 $\pi \cdot b_{\circ} = (n+1) \cdot \pi \cdot (D_{\circ} + d_{\circ})$

すなわち $b_0 = (n+1) \cdot (D_0 + d_0) \cdots (Ib)$ 次に、インナーロータ10とアウターロータ20とが噛 み合うことから、

 $D_i + d_i = D_o + d_o = 2 e \cdots (11)$ 上記の式 (la) 、 (lb) 、 (ll) から、 $(n+1) \cdot b_i = n \cdot b_i \cdots (III)$ の関係を満たしている。

【0025】さらに、両ロータ10、20の噛み合い位 置から半回転進んだ位置において外歯11の歯先と内歯 21の歯先とが対峙するときに両歯先間に設けられる間 10 隙、すなわちチップクリアランスの大きさを t とすると き、

 $D_1 + t / 2 = D_0 + \cdots (IV)$ $d_1 - t / 2 = d_0 \quad \cdots \quad (V)$

 $(D_{\bullet}>D_{\bullet}, d_{\bullet}>d_{\bullet})$ の関係を満たし、かつ t の値が 0: $0.3 \, \text{mm} \le t \le 0$. $2.5 \, \text{mm} \cdots (VI)$ の範囲に設定されたうえでインナーロータ10およびア ウターロータ20が構成されている。 (図1はD_i= 2. 9865 mm, $d_1 = 4$. 6585 mm, t = 0. 12mmとして構成されたインナーロータ10およびア 20 ウターロータ20を示す。)

【0026】ケーシング30には、両ロータ10、20 の歯面間に形成されるセルCのうち、容積が増大過程に あるセルCに沿って円弧状の吸入ポート (図示せず) が 形成されているとともに、容積が減少過程にあるセルC に沿って円弧状の吐出ポート (図示せず) が形成されて いる。

【0027】セルCは、外歯11と内歯21との噛み合 いの過程の途中において容積が最小となった後、吸入ポ ートに沿って移動するときに容積を拡大させて流体を吸 30 入し、容積が最大となった後、吐出ポートに沿って移動 するときに容積を減少させて流体を吐出するようになっ ている。

【0028】ところで、上記のように構成されたオイル ポンプロータにおいては、上記式 (IV) 、 (V) の関係 を満たすことにより、インナーロータ10の歯先の歯形 がアウターロータ20の歯溝の歯形よりも僅かに小さ く、かつインナーロータ10の歯溝の歯形がアウターロ **一夕20の歯先の歯形よりも僅かに大きくなるようにイ** ンナーロータ10、アウターロータ20が構成されてい 40 る。これにより、バックラッシュが適切な大きさに設定 されるとともにチップクリアランスが適切な大きさに設 定され、チップクリアランスを小さく維持したままでバ ックラッシュが従来に比べて大きく確保されており、流 体の圧力脈動が生じ難くなるとともに両ロータの歯面間 の摺動抵抗が低減されている。

【0029】そこで、このことをふまえたうえで、 $t < 0.03 mm \cdots (\gamma II)$

の範囲を満たして t の値を設定しインナーロータ 1 0 と

アランスが狭過ぎるために、容積が減少過程にあるセル Cから絞り出される流体に圧力脈動が生じてキャビテー ション雑音が発生しポンプの運転音が大きくなるととも に、圧力脈動によって両ロータの回転が円滑に行われな くなってしまう。

【0030】しかも、両ロータが噛み合う過程では、外 歯11の荷重のかかる歯面の後方に位置する反対側の歯 面と内歯21の歯面との間にできる間隙、すなわちバッ クラッシュが狭過ぎるために、両ロータの噛み合い点以 外でも歯面間に摺動抵抗を生じるようになるため、イン ナーロータ10がアウターロータ20を回転させるため の駆動トルクが増大してオイルポンプ自体の機械効率が 低下してしまうばかりか、両ロータの歯面の摩耗が激し くなって耐久性の低下が起こり得る。

【0031】一方、

t>0. 25mm ··· (YIII)

の範囲を満たして t の値を設定しインナーロータ10と アウターロータ20とを構成したとすると、チップクリ アランスが広くなって流体の圧力脈動が生じなくなり運 転音が低減するとともに、バックラッシュが広がって摺 動抵抗が減少し機械効率が向上するが、その反面、チッ プクリアランスが広くなることで個々のセルCにおける 液密性が損われてしまい、ポンプ性能、特に容積効率を 悪化させてしまう。しかも、正確な噛み合い位置での駆 動トルクの伝達が行われなくなり回転の損失が大きくな るためにやはり機械効率が低下してしまう。

【0032】図2は、tの値と、ポンプの機械効率なお よび容積効率ηとの関係を示すグラフである。このグラ フによると、上記式(VII)を満たす範囲では、容積効 率nは高く安定するものの、tが小さくなるほど機械効 率なが非常に低い値を示すことが解る。また、上記式

(VIII) を満たす範囲では、tが大きくなるほど機械効 率ζ、容積効率ηともに低い値を示すことが解る。さら にグラフから、より好適な t の値は、

0. $0.5 \, \text{mm} \le t \le 0.20 \, \text{mm}$

を満たす範囲に含まれ、最も好適な t の値は 0. 12付 近であることが解る。ることが解る。

【0033】したがって、グラフからも解るように上記 式(VI)を満たしてインナーロータ10とアウターロー タ20とを構成すれば、バックラッシュが適切な大きさ に設定されるとともにチップクリアランスが適切な大き さに設定され、チップクリアランスを小さく維持したま までパックラッシュを従来に比べて大きく確保すること ができ、流体の圧力脈動が生じ難くなるとともに両ロー 夕の歯面間の摺動抵抗が低減されるので、ポンプの運転 音を低く抑えつつ、容積効率が高くポンプ性能に優れ、 かつ駆動トルクが小さく機械効率に優れたオイルポンプ を実現することができる。

【0034】次に、本発明に係るオイルポンプロータの アウターロータ20とを構成したとすると、チップクリ 50 第2の実施形態を図に示して説明する。図3に示すオイ

ルポンプは、m (mは自然数、本実施形態においてmは 10) 枚の外歯111が形成されたインナーロータ110と、各外歯と噛み合うm+1枚の内歯121が形成されたアウターロータ120とを備え、これらインナーロータ110とアウターロータ120とがケーシング130の内部に収納されている。

【0035】ここで、第1の実施形態と同様に、インナーロータ110の軸心O,に対するアウターロータ120の軸心O。の偏心量をe、インナーロータ110の基礎円B,の直径をb,、第1外転円E,の直径をD,、第1内転円H,の直径をd,、アウターロータ120の基礎円B。の直径をb。、第2外転円E。の直径をD。、第2内転円H。の直径をd。としたとき、インナーロータ110とアウターロータ120との間には次の関係式が成り立つ。

【0036】まず、インナーロータ110について、b₁=m・(D₁+d₁) ····(IXa) 同様に、アウターロータ120について、b₂=(m+1)・(D₂+d₂) ····(IXb) 次に、インナーロータ110とアウターロータ120と 20

が噛み合うことから、 D₁ + d₁ = D₂ + d₃ = 2 e ··· (X) 上記の式 (IX a) 、 (IX b) 、 (X) から、

 $(m+1) \cdot b_i = m \cdot b_o \cdots (XI)$

【0037】さらにインナーロータ110およびアウターロータ120は、第2外転円E。の直径D。に対する第1外転円E、の直径D、の比を示す値が、

0.850≦D₁/D。≦0.995 ··· (XII) 0.95≦D₁/
の範囲を満して構成されている。 (図4はD₁/D。の値 の範囲に含まれ、
を0.95として構成されたインナーロータ110およ 30 あることが解る。
びアウターロータ120を示す。) [0044]した

【0038】上記のように構成されたオイルポンプロータにおいては、両ロータの噛み合いの関係を考慮して、インナーロータ110の歯先の歯形がアウターロータ120の歯溝の歯形よりも大きくなる、すなわち D_1/D_0 の値が1以上となることはなく、 D_1/D_0 の値が1よりも小さい値をとるように設計されている。

【0039】そこで、このことをふまえたうえで、 D₁/D₀>0.995 ··· (XIII)

の範囲を満たしてインナーロータ110とアウターロー 40 タ120とを構成したとすると、インナーロータ110 の歯先とアウターロータ120の歯先との間隙、チップ クリアランスが狭くなり過ぎ、容積が減少過程にあるセル Cから絞り出される流体に圧力脈動が生じてキャピテーション雑音が発生しポンプの運転音が大きくなるとともに、圧力脈動によって両ロータの回転が円滑に行われなくなってしまう。

【0040】しかも、両ロータが噛み合う過程では、外 歯111の荷重のかかる歯面の後方に位置する反対側の 歯面と内歯121の歯面との間にできる間隙、すなわち 50 バックラッシュが狭くなり過ぎ、両ロータの噛み合い点以外でも歯面間に摺動抵抗を生じるようになるため、インナーロータ110がアウターロータ120を回転させるための駆動トルクが増大してオイルポンプ自体の機械効率が低下してしまうばかりか、両ロータの歯面の摩耗が激しくなって耐久性の低下が起こり得る。

【0041】一方、

 $D_1/D_0 < 0.850$... (XIV)

の範囲を満たしてインナーロータ110とアウターロー 9120とを構成したとすると、チップクリアランスが 広くなって流体の圧力脈動が生じなくなり運転音が低減 するとともに、バックラッシュが広がって摺動抵抗が減 少し機械効率が向上するが、その反面、チップクリアラ ンスが広くなることで個々のセルCにおける液密性が損 われてしまい、ポンプ性能、特に容積効率を悪化させて しまう。

【0042】図4は、 D_1 / D_0 の値と、ロータを回転させるために必要な駆動トルクTおよびポンプの容積効率 nとの関係を示すグラフである。このグラフによると、上記式(XIII)の範囲では、容積効率 n は高く安定するものの、 D_1 / D_0 の値が大きくなるほど駆動トルクTが急激に増加することが解る。また、上記式(XIV)の範囲では、駆動トルクTは低く安定するものの、 D_1 / D_0 の値が小さくなるほど容積効率 n が急激に低下することが解る。

【0043】さらにグラフから、より好適な D_i/D_o の値は、

9.95≦D₁/D₂≤0.99
 の範囲に含まれ、最も好適なD₁/D₂の値は0.95で

【0044】したがって、グラフからも解るように上記式 (XII) を満してインナーロータ110とアウターロータ120とを構成すれば、バックラッシュが適切な大きさに設定されるとともにチップクリアランスが適切な大きさに設定され、チップクリアランスを小さく維持したままでバックラッシュを従来に比べて大きく確保することができ、流体の圧力脈動が生じ難くなるとともに両ロータの歯面間の摺動抵抗が低減されるので、ポンプの運転音を低く抑えつつ、容積効率が高くポンプ性能に優れ、かつ駆動トルクが小さく機械効率に優れたオイルボンプを実現することができる。

【0045】図5は、D₁/D₀の値を0.984として構成されたインナーロータ110およびアウターロータ120を備えるオイルポンプを示している(インナーロータ110の歯数mは11)。このオイルポンプロータにおいては、チップクリアランスおよびパックラッシュが小さめに設定されており、図4のグラフからも解るように、駆動トルクの低減よりも容積効率の向上に重点がおかれたものといえる。このようにD₁/D₀の値は、オイルポンプに求められる特性を十分考慮して適宜選択す

ることが望ましい。

[0046]

【発明の効果】以上説明したように、 請求項1記載のオ イルポンプロータによれば、インナーロータが、その基 礎円に外接してすべりなく転がる第1外転円によって創 成される外転サイクロイド曲線を歯先の歯形とし、基礎 円に内接してすべりなく転がる第1内転円によって創成 される内転サイクロイド曲線を歯溝の歯形として形成さ れ、アウターロータが、その基礎円に外接してすべりな く転がる第2外転円によって創成される外転サイクロイ 10 ド曲線を歯溝の歯形とし、基礎円に内接してすべりなく 転がる第2内転円によって創成される内転サイクロイド 曲線を歯先の歯形として形成されるものとし、インナー ロータの基礎円の直径をbi、第1外転円の直径をDi、 第1内転円の直径をd1、アウターロータの基礎円の直 径をb。、第2外転円の直径をD。、第2内転円の直径を d。、インナーロータとアウターロータとの偏心量をe とするとき、

 $b_1 = n \cdot (D_1 + d_1)$, $b_0 = (n+1) \cdot (D_0 + d_0)$

 $D_i + d_i = D_o + d_o = 2 e$ $(n+1) \cdot b_i = n \cdot b_o$

 $D_{\bullet}>D_{i}$, $d_{i}>d_{\bullet}$

の関係を満たしてインナーロータとアウターロータとを 構成することにより、インナーロータの歯先の歯形がア ウターロータの歯溝の歯形よりも僅かに小さく、かつイ ンナーロータの歯溝の歯形がアウターロータの歯先の歯 形よりも僅かに大きくなるようにインナーロータ、アウ ターロータが構成されるので、両ロータの噛み合いの関 係が良好に保たれて円滑な回転を得ることができる。

【0047】請求項2記載のオイルポンプロータによれば、チップクリアランスの大きさを t とするとき、 $D_1 + t / 2 = D_2$, $d_1 - t / 2 = d_2$

の関係を満たしてインナーロータとアウターロータとを 構成することにより、常に所定の大きさのチップクリア ランスを確保することができる。

【0048】請求項3記載のオイルポンプロータによれば、

0. $0.3 \, \text{mm} \le t \le 0.25 \, \text{mm}$

の範囲に設定したうえでインナーロータとアウターロー 40 タとを構成することにより、パックラッシュが適切な大きさに設定されるとともにチップクリアランスが適切な大きさに設定され、チップクリアランスを小さく維持したままでバックラッシュを従来に比べて大きく確保することができる。これにより、流体の圧力脈動が生じ難くなるとともに両ロータの歯面間の摺動抵抗が低減されるので、ポンプの運転音を低く抑えつつ、容積効率が高くポンプ性能に優れ、かつ駆動トルクが小さく機械効率に優れたオイルポンプを実現することができる。

【0049】 請求項4記載のオイルポンプロータによれ 50

ば、

0. $850 \le D_i / D_o \le 0.995$

を満たしてインナーロータとアウターロータとを構成することにより、バックラッシュが適切な大きさに設定されるとともにチップクリアランスが適切な大きさに設定され、チップクリアランスを小さく維持したままでバックラッシュを従来に比べて大きく確保することができる。これにより、流体の圧力脈動が生じ難くなるとともに両ロータの歯面間の摺動抵抗が低減されるので、ポンプの運転音を低く抑えつつ、容積効率が高くポンプ性能に優れ、かつ駆動トルクが小さく機械効率に優れたオイルポンプを実現することができる。

【図面の簡単な説明】

【図1】 本発明に係るオイルポンプロータの第1の実施形態を示す図であって、インナーロータとアウターロータとが、

 $D_1 + t / 2 = D_0$

 $d_1 - t / 2 = d_0$

の関係を満たし、さらにtの値が

20 t = 0.12 mm

に設定されて構成されたオイルポンプロータを備えるオイルポンプを示す平面図である。

【図2】 tの値を任意に選択した場合、その値を採用して構成されたインナーロータとアウターロータとを備えるオイルポンプの機械効率とおよびポンプの容積効率 ηを示すグラフである。

【図3】 本発明に係るオイルポンプロータの第2の実施形態を示す図であって、インナーロータとアウターロータとが、

30 0. $850 \le D_1/D_0 \le 0$. $995 (D_1/D_0 = 0$. 9 5)

を満たして構成されたオイルポンプロータを備えるオイルポンプを示す平面図である。

【図4】 D, /D. の値を任意に選択した場合、その値を採用して構成されたインナーロータとアウターロータとを備えるオイルポンプの駆動トルクTおよびポンプの容積効率 n を示すグラフである。

【図5】 本発明に係るオイルポンプロータの他の実施 形態を示す図であって、インナーロータとアウターロー タとが、

0. $850 \le D_1/D_0 \le 0$. $995 (D_1/D_0 = 0$. 984)

を満たして構成されたオイルポンプロータを備えるオイルポンプを示す平面図である。

【符号の説明】

10 インナーロータ

11 外歯

20 アウターロータ

21 内歯

30 ケーシング

E。 第2外転円

H。 第2内転円

t チップクリアランス

【図1】

B, インナーロータの基礎円

B。 アウターロータの基礎円

E: 第1外転円

H, 第1内転円

【図3】

[図5]

【図2】

[図4]

