근로자 표준 대조집단 구축 및 건강위험 선별 프로그램 개발

연구기간 2021년 5월 ~ 2021년 11월

핵심단어

표준대조집단, 건강위험도, 표준화발병비

연구배경

- 산업보건 분야의 데이터 축적 및 기술의 발달
 - 다양한 연구기관, 학계 등에서 특정 위험 노출 근로자 집단의 발병위험도 종적 역학연구가 수행되고 있으며 산업안전보거연구원에서는 2017년도부터 산업보건데이터를 활용하여 코호트를 구축하고 업종 건강위험도를 산출하고자 노력해왔다.
- 직업성 질환의 질병위험도 평가를 위한 표준화된 대조집단정보의 부재
 - 특정집단의 발병위험도 분석은 새로운 직업성 질환의 업무 관련성을 평가하는데 중요하지만 어떠한 집단을 대조집단 즉, 특정 집단의 건강 위험도를 나타낼 때 기준이 되는 집단을 어떠한 집단으로 정의하느냐에 따라 상대지표인 표준화발병비¹⁾ 결과는 차이가 발생하게 되며 분석 결과의 신뢰도에 큰 영향을 줄 수 있다.
- 산업보건데이터를 활용한 표준 대조집단 구축
 - 이번 연구에서는 우리나라 국민건강보험공단을 활용하여 근로자 집단의 정의 및 역학적 설계모형에 따른 대조집단을 구축하고 구축된 표준대조집단을 활용하여 건강위험 선별프로그램으로의 활용방안을 제시하고자 하였다.

주요연구내용

연구결과

- 표준 대조집단 설계 및 개발
 - 기준집단의 경제적, 사회적 수준이 높아 건강한 집단이 기준 값으로 사용되면 분석 집단의 위험도가 과대평가 될 수 있고, 반대의 경우 기준집단의 건강수준이 안좋아서 분석집단의 건강위험도가 과소평가의 위험이 존재한다. 따라서 대조집단의 특성에 따라 비교할 수 있도록 전체 근로자 집단과 공무원 집단을 이용하여 두표준대조집단을 구축하였다.
- 역학적 설계모형에 따른 대상자 추출조건
 - 전체근로자 대조집단을 예시로 모형에 따라 대상자 추출 조건은 〈표 1〉과 같다.

¹⁾ 간접표준화발병(사망)비= 표준집단의 성·연령 층화 발생률을 코호트 집단에 적용했을 때 기대되는 발생자수 대비 실제로 코호트 집단에서 발생한 수의 비

<표 1> 역학적 설계 유형별 대상자 등록 및 추적 범위

코호트 모형	① 시작시점(Baseline) 모형	② 역동적(Dynamic) 모형	③ 고정업종(Fixed) 모형						
등록조건	2005년 기준 국민건강보험 직장가입자	2005-2012년 동안 특정 업종에 종사하는 국민건강보험 직장가입자 추적종결시점 전까지 업종이 바뀔 경우, 이전 등록 여부와 상관없이 추가 등록	2005-2012년 사이에 동일 업종에서 국민건강보험 직장가입자 + 연속적으로 3년 이상 직장가입상태 유지						
휴식기 [‡]	등록시점 이후 12개월								
탈락조건	1):	1) 추적기간 동안 업종이 바뀌는 경우 2) 휴식기 동안 질환발생							
추적시작	휴식기이후								
추적종결	2015년 12월 31일 이전에 발생한 사망 또는 목표 질환의 발생시점 이 외 2015년 12월 31일								

[†] 코호트는 공통적인 특성을 가진 사람들의 집단을 뜻하며, 코호트연구는 일반적으로 공통적 특성을 갖는 사람들을 종적으로 추적하여 경과를 관찰·비교 분석하는 연구 설계를 의미 ‡ 미상의 노출요인에 의한 지연효과가 나타날 수 있는 기간에 발생한 질병을 가진 환자를 코호트에서 제거

- 대조집단의 유형별 역학적 모형 설계에 따른 전체 악성신생물의 발생 현황은 〈표 2〉 와 같다. 추적 인년은 종적 역학연구 설계에서 각 개인의 추적기간의 합을 의미한다.

<표 2> 표준대조집단의 설계 유형별 전체 악성신생물 발병현황

전체 악성신생물	나이	전체근로자				교육직공무원					
			남자		여자			남자		여자	
		대상자 (명)	발생 (명)	관찰 인년 (십만)	발생 (명)	관찰 인년 (십만)	대상자 (명)	발생 (명)	관찰 인년 (십만)	발생 (명)	관찰 인년 (십만)
시작시점 (Baseline) 모형	25-29	1,771,255	3,329	60.9	10,235	60.1	71,891	61	1.1	626	3.9
	30-34	1,851,817	7,303	82.2	12,311	44.8	109,872	257	2.6	1,419	5.0
	35-39	1,886,765	12,488	90.8	15,308	38.6	111,216	400	3.3	1,896	4.4
	40-44	1,665,436	16,315	79.4	17,425	35.1	110,963	838	3.9	2,162	3.8
	45-49	1,460,743	23,202	70.1	17,539	30.3	113,099	1,634	4.6	2,089	3.2
	50-54	1,119,706	29,291	55.0	13,091	21.3	89,510	2,411	4.4	1,245	1.8
	55-59	638,734	25,691	31.7	7,264	11.5	52,697	2,160	2.7	707	0.9
	60-64	358,533	21,321	18.1	4,159	5.8	15,597	890	0.8	219	0.3
역동적 (Dynamic) 모형	25-29	1,852,072	3,377	63.3	10,294	60.8	71,913	61	1.1	626	3.9
	30-34	1,905,171	7,361	83.9	12,369	45.3	109,897	257	2.6	1,419	5.0
	35-39	1,922,063	12,528	91.9	15,368	38.9	111,263	400	3.3	1,896	4.4
	40-44	1,692,651	16,389	80.2	17,554	35.4	110,997	838	3.9	2,162	3.8
	45-49	1,488,037	23,353	70.8	17,678	30.6	113,119	1,634	4.6	2,089	3.2
	50-54	1,140,974	29,459	55.6	13,185	21.7	89,532	2,412	4.4	1,245	1.8
	55-59	651,976	25,864	32.1	7,317	11.6	52,707	2,160	2.7	707	0.9
	60-64	364,089	21,411	18.2	4,181	5.9	15,599	890	0.8	219	0.3
고정업종 (Fixed) 모형	25-29	1,403,672	3339	62.8	7961	52.0	66,147	45	1.0	437	3.7
	30-34	1,454,934	6900	83.1	8914	37.3	100,811	160	2.4	952	4.7
	35-39	1,518,826	11139	92.2	10863	33.7	102,943	265	3.1	1243	4.2
	40-44	1,289,577	13740	76.7	11619	29.8	102,556	554	3.7	1375	3.5
	45-49	1,167,189	20275	69.9	11363	26.3	103,583	1072	4.3	1262	2.9
	50-54	803,978	21894	48.8	7509	16.6	80,456	1550	4.1	736	1.6
	55-59	414,103	16986	25.4	3866	8.2	40,281	1102	2.0	389	0.8
	60-64	207,337	12782	13.3	1919	3.7	6,164	231	0.3	67	0.1

98

시사점

- 전체 근로자 집단은 국민건강보험공단 직장가입자를 포함하며 규모가 크다는 점에서 장점이 있다. 전체 근로자 집단을 기준집단으로 하여 표준화발병비를 분석할 경우, 우리나라 전체 근로자의 평균 질병 발생보다 해당 업종의 위험성이 높다고 해석할 수 있으므로 우선 관리 업종과 직업병을 선정하는데 기초적인 자료로 활용될 수있다.
- 한편, 특정 직종이나 업종의 건강 영향을 평가하기 위해서는 건강관리가 비교적 잘되는 근로자와 비교할 필요가 있다는 점에서 공무원 집단으로 개발된 표준집단을 활용할 수 있다.

연구활용방안

활용방안

- 근로자 집단의 발병위험도 평가에 활용
 - 개발된 표준근로자집단의 성·연령별 분포에 따른 발병현황 자료를 기준으로 특정 집단에서의 질환 발병률에 대한 위험도를 비교 평가하거나 서로 다른 기관 및 근로자 코호트 사이의 질병위험도 평가하는데 표준화 지표로 활용 할 수 있다.

연락처

연구책임자 | 연세대학교 윤진하 교수

연구상대역 | 산업안전보건연구원 직업건강연구실 중부권역학조사팀 이경은

연락처 | 032-510-0753

e-mail | kyeong85@kosha.or.kr