

战术级单轴 MEMS

陀螺仪传感器

FSS-G200P产品手册

特性

战术级 MEMS 陀螺仪

- 3.0°/h 零偏稳定性
- 优于 1.0°/s 零偏重复性
- 0.08°/s 的超低输出噪声

•

高强度工况耐受

- 超强冲击耐受: 2000g(0.5ms, 半正弦, 3轴)
- 超强振动耐受: 10g(10~2KHz, 3轴)
- 全温环境稳定工作: -40℃~85℃
- 100%磁屏蔽
- IP67 防水
- 专用抗弯折线缆

实时而灵活的数字接口、体积小巧

- 高达 400Hz 的可配置输出采样率
- 支持 RS232、CAN 主流农机控制器接口
- 45*45*23mm, 重量<100g

产品概述

FSS-G200P 是原极为精准农机自动驾驶前轮转角测量打造的单自由度 MEMS 陀螺仪模块。模块自带前轮转角估计算法,客户只需接入 RTK 板卡的一路串口,即可输出高精度无漂移的前轮转角值。

该模块具有零偏重复性高,零偏稳定性 好,抗振动抗冲击性能好的特点。可在振 动环境下测量车轮转角大,让每个模块都 能在各种极限工况下稳定发挥,同时保证 所有产品性能高度一致。

应用领域

- 农机自动驾驶
- 工程车

在标准性能及输出参数的基础上,原极也为您的特殊需求提供定制化软件及 LOGO 定制服务,在产品上助您一臂之力!

1. 性能参数

1.1 陀螺仪关键指标

表 1 陀螺仪关键指标

7 1 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4									
参数	测试条件/备注	最小值	典型值	最大值	单位				
测量范围			±500		°/s				
零偏稳定性1	@25°C, 1σ		3.0		°/hr				
零偏重复性	@25°C, 1σ		1.0		°/s				
g值敏感误差			0.05		°/s/g				
内部低通截止频率	软件可调整	1.0	15	47	Hz				
ODR ²		1	100	400	Hz				
测量延时				5.0	ms				
随机游走	Allan variance@25°C, 1σ		0.3		°/√hr				
输出噪声 3	rms@30Hz cf		0.08		°/s				
刻度系数误差			$\pm 0.6\%$ o						
刻度系数非线性			0.05%						

¹ IEEE 标准,在静态 25℃环境下 Allan 方差曲线给出

²最大输出更新率不大于 200Hz@115200bps

³静态 25℃环境,截止频率 15Hz 条件下的 RMS 指标

2. 外形结构

图 1 外形结构及尺寸 (单位: mm)

3. 电气特性

表 2 电气特性

参数	符号	接口类型	最小	最大	单位
电源输入	VCC		4.5	5.5	V
电源地	GND				
电流	I		90	110	mA
温度范围	T		-40	85	°C

备注: 标配 RS232 和 CAN 总线接口

表 3 管脚定义

参数	线色	备注
电源输入	红色	5V直流输入
电源地	黑色	
RS232_TX	黄色	DC222 中亚
RS232_RX	白色	RS232 电平
CAN_L	棕色	
CAN_H	绿色	

备注: CAN 通信波特率为 250k,内置匹配电阻 120 欧

4. 软件配置使用方法

4.1 输入配置

控制器通过 CAN 总线向 G200 发送车辆轴距和 RTK 双天线的安装方式。建议 1hz 发送。

- 轴距为 uint16 数据类型,单位是 mm。
- RTK 双天线的安装方式有 0, 1, 2, 3 共计四个选项。数据类型为 uint8。描述如下:

图 2 双天线安装方式设置示意图

表 4 输入配置帧格式

CAN-ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0x101 标准帧	轴距高8位	轴距低8位	RTK 双天 线安装方式	预留,设置 为 0	预留,设置 为 0	预留,设置 为0	预留,设置 为0	预留,设置 为0

4.2 输出数据格式

控制器通过 CAN 总线获取前轮转角值.转角值单位是度, 左打轮为正值, 右打轮为负值。

表 5 输出数据帧格式

CAN-ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
0x110 标准帧	前轮角 度,float 类型的 0-7 数据位	前轮角 度,float 类型的 8- 15 数据位	前轮角 度,float 类型的 16- 23 数据位	前轮角 度,float 类型的 24- 31 数据位	帧计数	预留	预留	前轮有效 标志位, uint8 类 型。1 为有 效,0 为无

				l ⊽∀

4.3 测试及状态数据

模块以 1hz 更新率发送状态信息,用于指示 RTK 数据的连接状态,以及从控制器获取到的车辆轴距,天线安装类型等数据。

表 6 状态数据帧格式

CAN-ID	Data[0]	Data[1]	Data[2]	Data[3]	Data[4]	Data[5]	Data[6]	Data[7]
CAN-ID 0x116 标准帧	Data[0] RTK 定位 状态 0-no gps,1- single,5- float,4-fix	Data[1] 双向规模	Data[2] 是否拿到 控制器发 送的轴距 和天线类 型	Data[3] rtk 天线安 装类型	Data[4] 轴距低 8 位,单位 mm	Data[5] 轴距高 8 位,单位 mm	Data[6] 帧计数	Data[7] 预留
		true)						