Solution série 4 du TD logique mathématique

Promotion : 2^{eme} année LMD

Année 2022/2023

Exercice 1 Solution:

Premièrement, il faut spécifier le vocabulaire utilisé (l'univers du discours). Dans notre cas, on va utiliser le vocabulaire suivant :

Les constantes:

log : c'est la constante qui représente la logique.

Les variables:

x et y.

Les prédicats unaires (d'arité 1):

Etud(x) : signifie que "x" est un étudiant.

Mat(y) : signifie que "y" est une matière.

Les prédicats binaires :

aime(x,y): signifie que "x" aime "y".

bnote(x,y) : signifie que "x" a eu une bonne note en "y".

Meilleur(x,y): signifie que "x" est meilleur que "y".

Maintenant on va modéliser les phrases :

- 1- $\forall x (Etud(x) \longrightarrow aime(x, log))$
- $2 \forall x \exists y ((etud(x) \land Mat(y)) \longrightarrow \neg aime(x, y))$
- 3- $\forall x \forall y ((Etud(x) \land bnote(x, log) \land Etud(y)) \longrightarrow Meilleur(x, y))$

Exercice 2 Solution:

1- Les prédicats sont :

homme(x) et mortel(x).

- 2- les phrases en logique des prédicats sont :
- $a \forall x (homme(x) \longrightarrow mortel(x)).$
- b- mortel(Socrate).
- c- homme(Socrate).

3-Oui on peut déduire l'énoncé "b" à partir de "a" et "c".

Preuve:

Intuitivement, "Socrate" est une instance de "x" et comme "Socrate" est un homme (homme(Socrate)= vrai) et $\forall x (homme(x) \longrightarrow mortel(x)) = vrai$ donc "Socrate" est mortel c'est à dire mortel(Socrate) = vrai.

On peut aussi démontrer ça en utilisant la théorie de la preuve c'est à dire il faut prouver que :

 $\forall x (homme(x) \longrightarrow mortel(x)), homme(Socrate) \vdash mortel(Socrate).$

La preuve est comme suit :

- $1- \vdash \forall x (homme(x) \longrightarrow mortel(x))$ hyp1
- $2-\vdash homme(Socrate)$ hyp2
- $3- \vdash \forall x (homme(x) \longrightarrow mortel(x)) \longrightarrow (homme(Socrate) \longrightarrow mortel(Socrate))$ sch \forall
- $4-\vdash homme(Socrate) \longrightarrow mortel(Socrate)$ mp 1,3
- $5- \vdash mortel(Socrate)$ mp 2,4

Exercice 3 Solution:

1- $\forall x(grippe(x) \longrightarrow prendre(x, Tamiflu))$

2- $\forall x ((fivre(x) \land tousse(x)) \longrightarrow grippe(x))$

 $3- \forall x \forall t ((temp(x,t) \land sup(t,38)) \longrightarrow fivre(x))$

4- $tousse(Mohamed) \land \exists t(temp(Mohamed, t) \land sup(t, 38))$

5- prendre(Mohamed, Tamiflu)

Exercice 4 Solution:

Pour répondre à cette question, il faut faire les arbres syntaxiques de chaque formule. Après la numérotation des variables on trouve :

Promotion : 2^{eme} année LMD

Année 2022/2023

 $F_1: \forall x_4 \exists y_3 (\forall y_1 P(x_4, y_1) \to \exists x_2 Q(x_2, y_3)) \Rightarrow F_1: \forall 4 \exists 3 (\forall 1 P(4, 1) \to \exists 2 Q(2, 3))$

 $F_2: \forall v_4 \exists z_3 (\forall u_1 P(z_3, u_1) \to \exists u_2 Q(u_2, v_4)) \Rightarrow F_2: \forall 4 \exists 3 (\forall 1 P(3, 1) \to \exists 2 Q(2, 4))$

 $F_4: \forall z_4 \exists x_3 (\forall x_1 P(z_4, x_1) \to \exists z_2 Q(z_2, x_3)) \Rightarrow F_4: \forall 4 \exists 3 (\forall 1 P(4, 1) \to \exists 2 Q(2, 3))$

Selon les résultats, on remarque que F_1 et F_3 sont congrues.

Exercice 5 Solution:

-1 Faux, 2- Faux, 3- Vrai, 4- Faux, 5- Vrai, 6- Vrai, 7- Vrai, 8- Faux.

Pour la justification exemple pour la première $Q(c1) = Vrai donc \neg Q(c1) = Faux$, $Q(c2) = Vrai donc \neg Q(c2) = Faux$ et $Q(c3) = Vrai donc \neg Q(c3) = Faux$. $I(\forall x \neg Q(x)) = I(\neg Q(c1) \land \neg Q(c2) \land \neg Q(c3)) = F \land F \land F = F$. On fait la même chose pour les autres formules.

Exercice 6 Solution:

- a) La table de vérité de la première formule $\forall x (P(x) \longrightarrow \exists x Q(x))$ sachant que le domaine $D = \{1, 2\}.$
 - On va représenter le prédicat P(x) par la fonction f(x),
 - Le prédicat Q(x) va être représenté par la fonction g(x).

La table de vérité pour P(x) est comme suit :

x P(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
1	V	V	F	F
2	V	F	V	F

La table de vérité pour Q(x) est comme suit :

x Q(x)	$g_1(x)$	$g_2(x)$	$g_3(x)$	$g_4(x)$
1	V	V	F	F
2	V	F	V	F

Comme il n'y a pas de variables libres dans la formule, donc la table de vérité globale est la suivante :

Interprétation	P(x)	Q(x)	Formule
I_1	f_1	g_1	V
I_2	f_1	g_2	V
I_3	f_1	g_3	V
I_4	f_1	g_4	F
I_4 I_5	f_2	g_1	V
I_6 I_7	f_2 f_2	g_2	V
I_7	f_2	g_3	V
I_8	f_2 f_3	g_4	F
I_9	f_3	g_1	V
I_{10}	f_3	g_2	V
I_{11}	f_3	g_3	V
I_{12}	f_3	g_4	F V
I_{13}	f_4	g_1	V
I_{14}	f_4	g_2	V
I_{15}	f_4	g_3	V
I_{16}	f_4	g_4	V

Pour donner les valeurs de vérités de chaque interprétation il faut suivre la méthode suivante:

$$I_1 \text{ (V) } \forall x \{ et_{x=2(V)f_1(2)(V) \to \exists x(V) \{ ou_{x=2g_1(2)(V)}^{x=1g_1(1)(V)} \\ x=2(V)f_1(2)(V) \to \exists x(V) \{ ou_{x=2g_1(2)(V)}^{x=1g_1(1)(V)} \} }$$

$$\begin{array}{l} newline \\ I_2 \text{ (V) } \forall x \{et_{x=2(V)f_1(2)(V) \to \exists x(V) \{ou_{x=2g_2(2)(F)}^{x=1g_2(1)(V)} \\ x=2(V)f_1(2)(V) \to \exists x(V) \{ou_{x=2g_2(2)(F)}^{x=1g_2(1)(V)} \end{array}$$

newline

$$I_4$$
 (F) $\forall x \{ et_{x=2(F)f_1(2)(V) \to \exists x(F) \{ ou_{x=2g_4(2)(F)}^{x=1g_4(1)(F)} \} }^{x=1(F)f_1(2)(V) \to \exists x(F) \{ ou_{x=2g_4(2)(F)}^{x=1g_4(1)(F)} \} }$

newline

$$I_{8} \text{ (F) } \forall x \{ et_{x=2(V)f_{2}(2)(F) \to \exists x(F) \{ ou_{x=2g_{4}(2)(F)}^{x=1g_{4}(1)(F)} \} \\ x=2(V)f_{2}(2)(F) \to \exists x(F) \{ ou_{x=2g_{4}(2)(F)}^{x=1g_{4}(1)(F)} \} }$$

- b) La table de vérité de la deuxième formule $\forall x (P(x,y) \land \exists x P(x))$. Dans ce cas, on a deux prédicats et une variable libre y.
 - On va représenter le prédicat P(x) par la fonction f(x),
 - Le prédicat P(x,y) va être représenté par la fonction g(x).

La table de vérité pour P(x) est comme suit :

x P(x)	$f_1(x)$	$f_2(x)$	$f_3(x)$	$f_4(x)$
1	V	V	F	F
2	V	F	V	F

La table de vérité pour P(x,y) est comme suit :

Promotion : 2^{eme} année LMD

Année 2022/2023

X	у	$g_1(x,y)$	$g_2(x,y)$	$g_3(x,y)$	$g_4(x,y)$	$g_5(x,y)$	$g_6(x,y)$	$g_7(x,y)$	$g_8(x,y)$	$g_9(x,y)$
1	1	V	V	V	V	V	V	V	V	F
1	2	V	V	V	V	F	F	F	F	V
2	1	V	V	F	F	V	V	F	F	V
2	2	V	F	V	F	V	F	V	F	V

Promotion : 2^{eme} année LMD

Année 2022/2023

$g_{10}(x,y)$	$g_{11}(x,y)$	$g_{12}(x,y)$	$g_{13}(x,y)$	$g_{14}(x,y)$	$g_{15}(x,y)$	$g_{16}(x,y)$
F	F	F	F	F	F	F
V	V	V	F	F	F	F
V	F	F	V	V	F	F
F	V	F	V	F	V	F

La table de vérité globale est comme suit :

Interprétation	P(x)	P(x,y)	у	Formule
I_1	f_1	g_1	1	V
I_2	f_1	g_1	2	
I_3	f_1	g_2	1	
	•	•	٠	•
	•	•	٠	•
	•			
	f_1	g_{16}	1	
	f_1	g_{16}	2	
	•	•	٠	•
	•			
	•	•		
I_{98}	f_4	g_1	2	F
	•	•	٠	•
	•			

Pour donner les valeurs de vérités de chaque interprétation il faut suivre la méthode suivante:

$$I_1 \text{ (V) } \forall x \{ et_{x=2(V)g_1(2,1)(V) \wedge \exists x(V) \{ ou_{x=2f_1(2)(V)}^{x=1f_1(1)(V)} \} \\ x=2(V)g_1(2,1)(V) \wedge \exists x(V) \{ ou_{x=2f_1(2)(V)}^{x=1f_1(1)(V)} \} }$$

$$I_{98} \text{ (F) } \forall x \{ et_{x=2(F)g_1(2,2)(V) \wedge \exists x(F) \{ ou_{x=2f_4(2)(F)}^{x=1f_4(1)(F)} \}}^{x=1f_4(1)(F)} \\ \times = 2(F)g_1(2,2)(V) \wedge \exists x(F) \{ ou_{x=2f_4(2)(F)}^{x=1f_4(1)(F)} \}}$$

Exercice 7 Solution:

a)

1)
$$\forall x \forall y A(x,y) \vdash A(x,y)$$

$$1 \vdash \forall x \forall y A(x, y)$$
 hvp1

$$1 \vdash \forall x \forall y A(x, y) \qquad \text{hyp1} 2 \vdash \forall x \forall y A(x, y) \longrightarrow \forall y A(x, y) \qquad \text{sch} \forall$$

```
3 \vdash \forall y A(x,y)
                                      mp 1,2
4 \vdash \forall y A(x, y) \longrightarrow A(x, y)
                                                     \operatorname{sch} \forall
5 \vdash A(x,y)
                                 mp 3.4
2) \forall x (P(x) \longrightarrow Q(x)), \forall x P(x) \vdash \forall x Q(x)
1 \vdash \forall x (P(x) \longrightarrow Q(x))
                                                     hyp1
2 \vdash \forall x P(x)
                                        hyp2
3 \vdash \forall x (P(x) \longrightarrow Q(x)) \longrightarrow (P(x) \longrightarrow Q(x))
                                                                                  \operatorname{sch} \forall
4 \vdash P(x) \longrightarrow Q(x)
                                                     mp 1,3
5 \vdash \forall x P(x) \longrightarrow P(x)
                                                     \operatorname{sch} \forall
6 \vdash P(x)
                                    mp 2.5
7 \vdash Q(x)
                                    mp 4,6
8 \vdash Q(x) \longrightarrow (\forall x P(x) \longrightarrow Q(x))
                                                                     sch 1a
9 \vdash \forall x P(x) \longrightarrow Q(x)
                                                     mp 7.8
10 \vdash \forall x P(x) \longrightarrow \forall x Q(x)
                                                            règle∀ depuis 9
11 \vdash \forall x Q(x)
                                          mp 2,10
3) P(a), \forall x (P(x) \longrightarrow Q(x)) \vdash Q(a)
1\vdash P(a)
                            hvp1
2 \vdash \forall x (P(x) \longrightarrow Q(x))
                                              hyp2
3 \vdash \forall x (P(x) \longrightarrow Q(x)) \longrightarrow (P(a) \longrightarrow Q(a))
                                                                                 \operatorname{sch} \forall
4 \vdash P(a) \longrightarrow Q(a)
                                             mp 2,3
5 \vdash Q(a)
                                   mp 1,4
4) \forall x S(x) \land \forall x R(x) \vdash \exists x (S(x) \land R(x))
1 \vdash \forall x S(x) \land \forall x R(x)
2 \vdash \forall x S(x) \land \forall x R(x) \rightarrow \forall x S(x)
                                                               sch 3a on a remplacé le A par \forall x S(x) et le B par
\forall x R(x)
3 \vdash \forall x S(x)
                             mp 1.2
4 \vdash \forall x S(x) \land \forall x R(x) \rightarrow \forall x R(x)
                                                              sch 3b on a remplacé le A par \forall x S(x) et le B par
\forall x R(x)
5 \vdash \forall x R(x)
                              mp 1.4
6 \vdash \forall x S(x) \rightarrow S(x)
                                           \operatorname{sch} \, \forall
7 \vdash S(x)
                         mp 3,6
8 \vdash \forall x R(x) \rightarrow R(x)
                                            \operatorname{sch} \forall
9 \vdash R(x)
                         mp 5.8
10 \vdash S(x) \to (R(x) \to S(x) \land R(x)) sch 2 on a remplacé le A par S(x) et le B par R(x)
11 \vdash R(x) \to S(x) \land R(x)
                                                      mp 7,10
                                        mp 9,11
12 \vdash S(x) \land R(x)
13 \vdash (S(x) \land R(x)) \rightarrow \exists x (S(x) \land R(x))
                                                                             sch ∃
14 \vdash \exists x (S(x) \land R(x))
                                               mp 12,13
b)
\vdash \forall x P(x) \longrightarrow \exists x P(x)
1 \vdash \forall x P(x) \longrightarrow P(x)
                                                 \operatorname{sch} \forall
2 \vdash (\forall x P(x) \to P(x)) \to ((\forall x P(x) \to (P(x) \to \exists x P(x))) \to (\forall x P(x) \to \exists x P(x)))
                                                                                                                                                  \operatorname{sch}
1b, on remplacé A par \forall x P(x), B par P(x) et C par \exists x P(x)
3 \vdash (\forall x P(x) \to (P(x) \to \exists x P(x))) \to (\forall x P(x) \to \exists x P(x))
                                                                                                         mp 1,2
```

Promotion : 2^{eme} année LMD

Année 2022/2023

```
\begin{array}{l} 4 \vdash P(x) \longrightarrow \exists x P(x) \qquad \text{sch} \\ 5 \vdash (P(x) \to \exists x P(x)) \to (\forall x P(x) \to (P(x) \to \exists x P(x))) \qquad \text{sch 1a on a remplacé le A par} \\ (P(x) \to \exists x P(x)) \text{ et le B par } \forall x P(x) \\ 6 \vdash (\forall x P(x) \to (P(x) \to \exists x P(x))) \qquad \text{mp 4,5} \\ 7 \vdash \forall x P(x) \longrightarrow \exists x P(x) \qquad \text{mp 3,6} \end{array}
```