Note per il corso di Geometria e algebra lineare 2016-17 Laurea in Ing.Inform. e Com., Ing.Info.Gest.Imp., Informatica

5 Determinante

5.1 Definizione

Il determinante di una matrice quadrata ha un'importanza soprattutto di carattere teorico, dovuta al suo legame con il concetto di indipendenza lineare delle n-uple. Consideriamo per esempio il caso bidimensionale.

Esempio. La matrice

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

è invertibile esattamente quando lo scalare D=ad-bc è non nullo. Infatti, se $D\neq 0$, la matrice inversa di A esiste, ed è uguale a

$$A^{-1} = \frac{1}{D} \left[\begin{array}{cc} d & -b \\ -c & a \end{array} \right].$$

Viceversa, se D=0, si ha ad=bc da cui se $c\neq 0, d\neq 0$, a/c=b/d=t e dunque (a,b)=t(c,d) e le due righe sono dipendenti (lo stesso si ottiene se c=0 o d=0). Dunque $D\neq 0 \Leftrightarrow rg(A)=2$.

Il determinante ha anche un significato geometrico, legato all'area e al volume. Nel caso bidimensionale, il determinante della matrice con righe i vettori v=(a,b) e w=(c,d) è uguale, in valore assoluto, all'area del parallelogramma di lati v e w. Il segno dipende dall'orientazione dei due vettori nel piano: se w segue v in senso antiorario, il determinante è positivo, altrimenti è negativo.

Nel caso tridimensionale, il determinante della matrice con righe i vettori u, v e w è uguale, in valore assoluto, al volume del parallelepipedo di lati u, v, w. Il segno dipende ancora dall'orientazione dei vettori nello spazio.

Definizione 1. Il determinante di una matrice quadrata $n \times n$ A è lo scalare det A definito ricorsivamente nel modo seguente: se n=1 poniamo det $A=a_{11}$; se n>1, poniamo

$$\det A = \sum_{i=1}^{n} a_{i1} (-1)^{i+1} \det A_{i1}$$

dove A_{ij} è la matrice di ordine n-1 ottenuta da A cancellando la i-esima riga e la j-esima colonna. Lo scalare $a'_{ij}=(-1)^{i+j}\det A_{ij}$ è detto complemento algebrico dell'elemento a_{ij} .

Esempi. (1) Nel caso n=2 si ritrova la formula dell'esempio precedente: $\det A=D=ad-bc$.

(2) Calcoliamo un determinante di ordine 3:

$$\det \begin{bmatrix} 2 & -1 & 0 \\ 3 & 0 & -1 \\ 0 & 2 & 1 \end{bmatrix} = 2 \det \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix} - 3 \det \begin{bmatrix} -1 & 0 \\ 2 & 1 \end{bmatrix} = 2 \cdot 2 - 3 \cdot (-1) = 7.$$

(3) Se A è triangolare alta, $a_{i1}=0$ per $i\neq 1$ e la matrice A_{11} è ancora triangolare alta. Quindi

$$\det A = a_{11}a'_{11} = a_{11}a_{22}a'_{22} = \dots = a_{11}a_{22}\dots a_{nn}.$$

In particolare, $\det I_n = 1$ e $\det S = 0$ se S è a scalini con rango minore di n.

5.2 Proprietà del determinante

- (1) Se B è ottenuta da A scambiando due righe di A, allora $\det B = -\det A$.
- (2) Se B è ottenuta da A moltiplicando una riga di A per uno scalare c, allora $\det B = c \det A$.
- (3) Se B è ottenuta da A sommando un multiplo di una riga di A ad un'altra riga di A, allora $\det B = \det A$.

Esempio.

$$\det\begin{bmatrix} -3 & 1 & 1 & 0 \\ -1 & 2 & 0 & -2 \\ 0 & 0 & 2 & 2 \\ 2 & 0 & 4 & 2 \end{bmatrix} = 2 \cdot 2 \cdot \det\begin{bmatrix} -3 & 1 & 1 & 0 \\ -1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 2 & 1 \end{bmatrix} = -4 \det\begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 1 \\ -3 & 1 & 1 & 0 \end{bmatrix}$$

$$= -4 \det\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 2 & -1 \\ 0 & 0 & 1 & 1 \\ -3 & 1 & 1 & 0 \end{bmatrix} = -4 \det\begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 2 & 2 & -1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 7 & 3 \end{bmatrix} = -4 \det\begin{bmatrix} 2 & 2 & -1 \\ 0 & 1 & 1 \\ 1 & 7 & 3 \end{bmatrix}$$

$$= 4 \det\begin{bmatrix} 1 & 7 & 3 \\ 0 & 1 & 1 \\ 2 & 2 & -1 \end{bmatrix} = 4 \det\begin{bmatrix} 1 & 7 & 3 \\ 0 & 1 & 1 \\ 0 & -12 & -7 \end{bmatrix} = 4 \det\begin{bmatrix} 1 & 1 \\ -12 & -7 \end{bmatrix} = 4 \cdot 5 = 20.$$

Dalle proprietà precedenti, che si possono dimostrare per induzione a partire dalla definizione del determinante, si ottengono altre utili proprietà:

- (4) Se una matrice A ha due righe uguali, allora $\det A = 0$. (Dalla (1) si ha, scambiando le due righe uguali, $\det A = -\det A$)
- (5) Se A ha una riga di zeri, $\det A = 0$. (Dalla (2), moltiplicando la riga per 0, si ha $\det A = 0 \cdot \det A = 0$)
- (6) Se A ha ordine n, $det(kA) = k^n det A$. In particolare $det(-A) = (-1)^n det A$.

Le proprietà (1),(2),(3) possono essere interpretate in termini di matrici elementari:

- (i) $\det(S_{ii}A) = -\det A$
- (ii) $\det(D_i(c)A) = c \det A$
- (iii) $\det(E_{ij}(c)A) = \det A$.

Scegliendo $A=I_n$, da (i), (ii) e (iii) si ottengono i valori dei determinanti delle matrici elementari:

- (i) $\det S_{ii} = -1$
- (ii) $\det D_i(c) = c$
- (iii) $\det E_{ii}(c) = 1$.

Si deduce anche l'uguaglianza det(EA) = det E det A per ogni matrice elementare E, che applicata k volte si estende nel modo seguente.

Proposizione 1. Sia $A' = (E_k \cdots E_2 E_1)A$, con E_1, \ldots, E_k matrici elementari. Si ha $\det(A') = \det E_k \cdots \det E_2 \det E_1 \det A$.

Dalla proposizione precedente, quando A'=S è a scalini, si ottiene che det $A\neq 0$ equivale a det $S\neq 0$ e quindi a rg(A)=n. Quindi vale la seguente fondamentale proprietà del determinante:

5.3 Aree e volumi 3

(7) $\det A \neq 0 \Leftrightarrow rg(A) = n \Leftrightarrow A \text{ è invertibile.}$

Esempio. La matrice $A_t = \begin{bmatrix} 1 & t & 2 \\ 1 & 2t & 2 \\ t & 1 & 1 \end{bmatrix}$ ha determinante t(1-2t) e dunque è invertibile per $t \neq 0, 1/2$.

Teorema 1. (Teorema di Binet) Siano A, B matrici di ordine n. Vale l'uguaglianza: det(AB) = det A det B.

Corollario. Se A è invertibile, $det(A^{-1}) = 1/\det A$.

Attenzione: in generale, $det(A + B) \neq det A + det B$.

Conseguenza del teorema di Binet è anche l'importante teorema che permette di affermare che tutte le proprietà del determinante che sussistono per le righe valgono anche per le colonne.

Teorema 2. Per ogni matrice quadrata A, si ha $\det A = \det(A^T)$.

Applicando le proprietà viste sopra, si può mostrare che il determinante di A si ottiene sviluppando secondo una linea (riga o colonna) qualunque.

Teorema 3. (Teorema di Laplace) Sia A una matrice di ordine n. Vale la proprietà: per ogni coppia di indici i, j,

$$\sum_{i=1}^{n} a_{ij} a'_{ij} = \sum_{i=1}^{n} a_{ij} a'_{ij} = \det A.$$

Dunque il determinante di A si può calcolare "sviluppando" secondo una riga o una colonna qualunque.

5.3 Aree e volumi

Dati due vettori geometrici dello spazio $v=(v_1,v_2,v_3)$ e $w=(w_1,w_2,w_3)$, il prodotto vettoriale $v\times w=(v_2w_3-v_3w_2,v_3w_1-v_1w_3,v_1w_2-v_2w_1)$ può essere calcolato sviluppando rispetto alla prima riga il determinante

$$\det \begin{bmatrix} \overrightarrow{i} & \overrightarrow{J} & \overrightarrow{k} \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix}.$$

Si è visto in §1.5 che il valore assoluto del *prodotto misto u* \cdot $(v \times w)$ di tre vettori dello spazio è uguale al volume V del parallelepipedo di lati u, v, w. Dunque

$$V = |u_1(v_2w_3 - v_3w_2) + u_2(v_3w_1 - v_1w_3) + u_3(v_1w_2 - v_2w_1)| = \left| \det \begin{bmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{bmatrix} \right|.$$

Siano $v=(v_1,v_2)$ e $w=(w_1,w_2)$ due vettori del piano. Si è visto in §1.5 che il parallelogramma di lati v e w ha area A il cui quadrato è uguale a

$$A^2 = (v_1 w_2 - v_2 w_1)^2 \Rightarrow A = \left| \det \begin{bmatrix} v_1 & v_2 \\ w_1 & w_2 \end{bmatrix} \right| = \left| \det \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} \right|.$$

5.4 Determinante e sistemi lineari

Un sistema lineare di n equazioni in n incognite Ax = b ammette un'unica soluzione se e solo se A è invertibile, cioè se e solo se $\det A \neq 0$.

Regola di Cramer

Sia Ax = b un sistema lineare di n equazioni in n incognite, con l'unica soluzione $x = A^{-1}b$ e sia $A_j(b)$ la matrice che si ottiene da A sostituendo alla j-esima colonna il vettore b. Per il Teorema di Binet, si ha

$$\frac{\det A_j(b)}{\det A} = \det(A^{-1}A_j(b)) = \det(A^{-1}(A^1 \cdots b \cdots A^n)) = \det(e_1 \cdots x \cdots e_n) = x_j.$$

Si ottiene così la *regola di Cramer*, che esprime le componenti della ennupla x_1, \ldots, x_n , soluzione del sistema, mediante rapporti di determinanti: per ogni componente x_i , si ha

$$x_j = \frac{\det A_j(b)}{\det A}.$$

Corollario. Sia $A \in M_n(\mathbb{K})$, con det $A \neq 0$. Allora,

$$A^{-1} = \frac{1}{\det A} [a'_{ij}]^T$$
.

Infatti, la i-esima colonna di A^{-1} è soluzione del sistema $Ax = e_i$. Per la regola di Cramer,

$$(A^{-1})_{ji} = \frac{\det A_j(e_i)}{\det A} = \frac{a'_{ij}}{\det A}.$$

Esempio.

Sia
$$A = \begin{bmatrix} 3 & 0 & -4 \\ 2 & 0 & 3 \\ -1 & 2 & 1 \end{bmatrix} \Rightarrow \det A = -2 \det \begin{bmatrix} 3 & -4 \\ 2 & 3 \end{bmatrix} = -2 \cdot 17 = -34.$$

$$A^{-1} = -\frac{1}{34} \begin{bmatrix} -6 & -5 & 4 \\ -8 & -1 & -6 \\ 0 & -17 & 0 \end{bmatrix}^{T} = \frac{1}{34} \begin{bmatrix} 6 & 8 & 0 \\ 5 & 1 & 17 \\ -4 & 6 & 0 \end{bmatrix}$$

Osservazione. Il numero delle operazioni da eseguire per calcolare un determinante attraverso la definizione cresce, all'aumentare dell'ordine n della matrice, come $n \cdot n!$, dove n! è il fattoriale di n. Quindi il calcolo del determinante attraverso la definizione è praticamente impossibile per matrici di grandi dimensioni, e per motivi analoghi non si usa la regola di Cramer. L'eliminazione gaussiana richiede un numero di operazioni che crescono come $\frac{2}{3}n^3$, e fornisce quindi un metodo più efficiente anche per il calcolo del determinante e della matrice inversa.

Esempio. Si consideri il seguente problema di *interpolazione*: dati tre punti (x_k, y_k) (k = 1, 2, 3) nel piano, si vuole trovare un polinomio di secondo grado il cui grafico passi per i tre punti. Sia $p(x) = a_0 + a_1 x + a_2 x^2 \in \mathbb{R}_2[x]$. Il grafico passa per (x_k, y_k) se

$$y_k = a_0 + a_1 x_k + a_2 x_k^2.$$

Si ottiene così un sistema di tre equazioni lineari in a_0 , a_1 , a_2 , con matrice dei coefficienti

$$V = \begin{bmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{bmatrix}$$
 (matrice di *Vandermonde*)

Si ha

$$\det V = \det \begin{bmatrix} 1 & x_1 & x_1^2 \\ 0 & x_2 - x_1 & x_2^2 - x_1^2 \\ 0 & x_3 - x_1 & x_3^2 - x_1^2 \end{bmatrix} = (x_2 - x_1)(x_3 - x_1) \det \begin{bmatrix} 1 & x_1 & x_1^2 \\ 0 & 1 & x_2 + x_1 \\ 0 & 1 & x_3 + x_1 \end{bmatrix}$$

$$= (x_2 - x_1)(x_3 - x_1) \det \begin{bmatrix} 1 & x_1 & x_1^2 \\ 0 & 1 & x_2 + x_1 \\ 0 & 0 & x_3 - x_2 \end{bmatrix} = (x_2 - x_1)(x_3 - x_1)(x_3 - x_2).$$

Dedurne che esiste un unico grafico con le proprietà richieste se, e solo se, le tre ascisse x_1, x_2, x_3 sono tutte distinte.

Per esempio, se i tre punti sono (2, 1), (4, 2), (5, 0), la matrice di Vandermonde è

$$V = \begin{bmatrix} 1 & 2 & 4 \\ 1 & 4 & 16 \\ 1 & 5 & 25 \end{bmatrix}$$

con determinante $\det V = (4-2)(5-2)(5-4) = 6$. Dalla formula di Cramer

$$a_0 = \frac{1}{6} \det \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 16 \\ 0 & 5 & 25 \end{bmatrix} = -\frac{40}{6} = -\frac{20}{3}.$$

$$a_1 = \frac{1}{6} \det \begin{bmatrix} 1 & 1 & 4 \\ 1 & 2 & 16 \\ 1 & 0 & 25 \end{bmatrix} = \frac{33}{6} = \frac{11}{2},$$

$$a_2 = \frac{1}{6} \det \begin{bmatrix} 1 & 2 & 1 \\ 1 & 4 & 2 \\ 1 & 5 & 0 \end{bmatrix} = -\frac{5}{6}.$$

Il polinomio cercato è $-\frac{20}{3} + \frac{11}{2}x - \frac{5}{6}x^2$.