$11a_{49} (K11a_{49})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 9.01751 \times 10^{36} u^{59} + 5.15573 \times 10^{37} u^{58} + \dots + 2.98614 \times 10^{35} b - 6.79357 \times 10^{36}, \\ & 8.91336 \times 10^{36} u^{59} + 4.98175 \times 10^{37} u^{58} + \dots + 2.98614 \times 10^{35} a - 5.40121 \times 10^{36}, \ u^{60} + 7u^{59} + \dots - 6u - 1 \\ I_2^u &= \langle -a^2 + b - 2a - 1, \ a^4 + 3a^3 + 4a^2 + 3a + 2, \ u - 1 \rangle \\ I_3^u &= \langle b, \ a^2 + au + 2a + 3u + 5, \ u^2 + u - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 68 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I.} \\ I_1^u = \langle 9.02 \times 10^{36} u^{59} + 5.16 \times 10^{37} u^{58} + \dots + 2.99 \times 10^{35} b - 6.79 \times 10^{36}, \ 8.91 \times \\ 10^{36} u^{59} + 4.98 \times 10^{37} u^{58} + \dots + 2.99 \times 10^{35} a - 5.40 \times 10^{36}, \ u^{60} + 7u^{59} + \dots - 6u - 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -29.8491u^{59} - 166.829u^{58} + \dots + 129.411u + 18.0876 \\ -30.1979u^{59} - 172.655u^{58} + \dots + 122.504u + 22.7504 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -38.7260u^{59} - 215.837u^{58} + \dots + 161.430u + 23.9641 \\ -40.2858u^{59} - 229.747u^{58} + \dots + 160.391u + 30.0045 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -35.9915u^{59} - 204.169u^{58} + \dots + 147.701u + 26.5908 \\ -36.2977u^{59} - 209.779u^{58} + \dots + 151.862u + 29.1133 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -37.1833u^{59} - 206.920u^{58} + \dots + 154.103u + 23.9174 \\ -41.6797u^{59} - 236.581u^{58} + \dots + 163.204u + 30.6805 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -25.6472u^{59} - 153.577u^{58} + \dots + 126.598u + 23.1246 \\ -25.9534u^{59} - 159.186u^{58} + \dots + 130.758u + 25.6472 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -23.4754u^{59} - 130.115u^{58} + \dots + 100.960u + 15.9285 \\ -27.6129u^{59} - 156.128u^{58} + \dots + 107.032u + 20.4621 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -23.4754u^{59} - 130.115u^{58} + \dots + 100.960u + 15.9285 \\ -27.6129u^{59} - 156.128u^{58} + \dots + 107.032u + 20.4621 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -23.4754u^{59} - 130.115u^{58} + \dots + 100.960u + 15.9285 \\ -27.6129u^{59} - 156.128u^{58} + \dots + 107.032u + 20.4621 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $50.7022u^{59} + 278.914u^{58} + \cdots 202.739u 39.8944$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{60} + 4u^{59} + \dots + 6u + 1$
c_2, c_5	$u^{60} + 20u^{59} + \dots - 82u + 1$
c_3, c_7	$u^{60} - 2u^{59} + \dots - 16u + 16$
c_6, c_9	$u^{60} + 3u^{59} + \dots - 24u - 16$
c_8, c_{10}, c_{11}	$u^{60} - 7u^{59} + \dots + 6u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{60} + 20y^{59} + \dots - 82y + 1$
c_2, c_5	$y^{60} + 44y^{59} + \dots - 7010y + 1$
c_3, c_7	$y^{60} + 30y^{59} + \dots + 1408y + 256$
c_6, c_9	$y^{60} - 33y^{59} + \dots - 576y + 256$
c_8, c_{10}, c_{11}	$y^{60} - 57y^{59} + \dots - 48y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.318501 + 0.946527I		
a = 0.673424 - 0.443134I	3.14485 - 10.38850I	0
b = 0.628475 + 1.190740I		
u = 0.318501 - 0.946527I		
a = 0.673424 + 0.443134I	3.14485 + 10.38850I	0
b = 0.628475 - 1.190740I		
u = 0.260347 + 0.914658I		
a = -0.502988 + 0.479081I	4.15844 - 4.56410I	0
b = -0.548192 - 1.199390I		
u = 0.260347 - 0.914658I		
a = -0.502988 - 0.479081I	4.15844 + 4.56410I	0
b = -0.548192 + 1.199390I		
u = 1.050240 + 0.110830I		
a = 2.93202 - 0.13396I	-1.44417 + 1.61127I	0
b = 0.514724 - 0.182101I		
u = 1.050240 - 0.110830I		
a = 2.93202 + 0.13396I	-1.44417 - 1.61127I	0
b = 0.514724 + 0.182101I		
u = 0.636405 + 0.600822I		
a = 0.0733025 - 0.0078478I	-3.26453 + 0.03248I	-13.91224 + 0.I
b = 0.618612 - 0.670882I		
u = 0.636405 - 0.600822I		
a = 0.0733025 + 0.0078478I	-3.26453 - 0.03248I	-13.91224 + 0.I
b = 0.618612 + 0.670882I		
u = 1.119040 + 0.184637I		
a = 1.292300 - 0.042199I	-1.23369 - 0.89939I	0
b = 0.213622 + 0.675044I		
u = 1.119040 - 0.184637I		
a = 1.292300 + 0.042199I	-1.23369 + 0.89939I	0
b = 0.213622 - 0.675044I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.387799 + 0.734072I		
a = 0.750801 - 1.082130I	-2.46678 - 4.55995I	-10.63324 + 6.84099I
b = 0.543968 + 0.934007I		
u = 0.387799 - 0.734072I		
a = 0.750801 + 1.082130I	-2.46678 + 4.55995I	-10.63324 - 6.84099I
b = 0.543968 - 0.934007I		
u = -1.182510 + 0.025488I		
a = -0.149815 + 0.792334I	4.58752 + 3.28588I	0
b = -0.08319 + 1.71273I		
u = -1.182510 - 0.025488I		
a = -0.149815 - 0.792334I	4.58752 - 3.28588I	0
b = -0.08319 - 1.71273I		
u = 0.960690 + 0.700258I		
a = -0.170467 - 0.529914I	1.22350 + 4.74489I	0
b = 0.429578 - 1.064780I		
u = 0.960690 - 0.700258I		
a = -0.170467 + 0.529914I	1.22350 - 4.74489I	0
b = 0.429578 + 1.064780I		
u = 1.022220 + 0.626579I		
a = 0.346636 + 0.523779I	1.87463 - 0.78688I	0
b = -0.299489 + 1.056400I		
u = 1.022220 - 0.626579I		
a = 0.346636 - 0.523779I	1.87463 + 0.78688I	0
b = -0.299489 - 1.056400I		
u = 1.216360 + 0.116183I		
a = -2.34185 + 0.37415I	-1.99576 - 3.02877I	0
b = -0.685889 + 0.406589I		
u = 1.216360 - 0.116183I		
a = -2.34185 - 0.37415I	-1.99576 + 3.02877I	0
b = -0.685889 - 0.406589I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.307636 + 0.644850I		
a = 1.144270 + 0.031313I	6.42634 - 1.17254I	-0.566200 + 1.294911I
b = 0.165753 - 1.304350I		
u = -0.307636 - 0.644850I		
a = 1.144270 - 0.031313I	6.42634 + 1.17254I	-0.566200 - 1.294911I
b = 0.165753 + 1.304350I		
u = 0.250540 + 0.658416I		
a = 0.582040 + 0.468015I	0.56981 - 4.60985I	-6.69053 + 5.91571I
b = 0.960204 - 0.362556I		
u = 0.250540 - 0.658416I		
a = 0.582040 - 0.468015I	0.56981 + 4.60985I	-6.69053 - 5.91571I
b = 0.960204 + 0.362556I		
u = -0.397265 + 0.581288I		
a = -1.344430 + 0.129900I	6.05175 + 4.76483I	-1.11123 - 4.56468I
b = -0.284219 + 1.305220I		
u = -0.397265 - 0.581288I		
a = -1.344430 - 0.129900I	6.05175 - 4.76483I	-1.11123 + 4.56468I
b = -0.284219 - 1.305220I		
u = 0.166593 + 0.624695I		
a = 0.134377 + 1.238880I	1.53389 - 2.11161I	-1.83843 + 4.55656I
b = -0.262438 - 0.985240I		
u = 0.166593 - 0.624695I		
a = 0.134377 - 1.238880I	1.53389 + 2.11161I	-1.83843 - 4.55656I
b = -0.262438 + 0.985240I		
u = 1.360300 + 0.086702I		
a = -1.78259 - 0.56257I	-4.90942 - 2.39733I	0
b = -0.611650 - 0.809721I		
u = 1.360300 - 0.086702I		
a = -1.78259 + 0.56257I	-4.90942 + 2.39733I	0
b = -0.611650 + 0.809721I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.370480 + 0.211215I		
a = -1.42173 - 0.57455I	-3.80109 + 2.07837I	0
b = -1.254690 - 0.485726I		
u = -1.370480 - 0.211215I		
a = -1.42173 + 0.57455I	-3.80109 - 2.07837I	0
b = -1.254690 + 0.485726I		
u = -1.372610 + 0.240045I		
a = -1.206450 + 0.088768I	-3.38098 + 5.24726I	0
b = -0.536814 + 1.263550I		
u = -1.372610 - 0.240045I		
a = -1.206450 - 0.088768I	-3.38098 - 5.24726I	0
b = -0.536814 - 1.263550I		
u = -1.401420 + 0.163779I		
a = 1.005320 + 0.195931I	-6.11056 + 0.33405I	0
b = 0.406771 - 1.172380I		
u = -1.401420 - 0.163779I		
a = 1.005320 - 0.195931I	-6.11056 - 0.33405I	0
b = 0.406771 + 1.172380I		
u = -1.40212 + 0.25943I		
a = 1.38067 + 0.69174I	-4.71228 + 7.96352I	0
b = 1.225810 + 0.584729I		
u = -1.40212 - 0.25943I		
a = 1.38067 - 0.69174I	-4.71228 - 7.96352I	0
b = 1.225810 - 0.584729I		
u = 0.153691 + 0.545787I		
a = -0.556917 - 0.791426I	1.086080 + 0.692045I	-4.81030 + 0.29508I
b = -0.921325 + 0.199362I		
u = 0.153691 - 0.545787I		
a = -0.556917 + 0.791426I	1.086080 - 0.692045I	-4.81030 - 0.29508I
b = -0.921325 - 0.199362I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.40946 + 0.27587I		
a = 1.41078 + 0.77344I	0.95728 - 2.24717I	0
b = 0.461649 + 1.079170I		
u = 1.40946 - 0.27587I		
a = 1.41078 - 0.77344I	0.95728 + 2.24717I	0
b = 0.461649 - 1.079170I		
u = -1.45673		
a = -1.09429	-7.21613	0
b = -0.967879		
u = -1.43351 + 0.37170I		
a = -1.60294 + 0.24999I	-1.23187 + 9.17979I	0
b = -0.76178 + 1.26721I		
u = -1.43351 - 0.37170I		
a = -1.60294 - 0.24999I	-1.23187 - 9.17979I	0
b = -0.76178 - 1.26721I		
u = 1.46184 + 0.24029I		
a = -1.51788 - 0.84748I	0.04969 - 7.86068I	0
b = -0.558703 - 1.096040I		
u = 1.46184 - 0.24029I		
a = -1.51788 + 0.84748I	0.04969 + 7.86068I	0
b = -0.558703 + 1.096040I		
u = -1.45691 + 0.27854I		
a = 1.51683 + 0.01897I	-8.38340 + 8.24100I	0
b = 0.657430 - 1.153890I		
u = -1.45691 - 0.27854I		
a = 1.51683 - 0.01897I	-8.38340 - 8.24100I	0
b = 0.657430 + 1.153890I		
u = 0.489956		
a = 0.405505	-0.859418	-11.8180
b = -0.332522		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.46811 + 0.38180I		
a = 1.69029 - 0.23279I	-2.5536 + 15.1714I	0
b = 0.80501 - 1.23713I		
u = -1.46811 - 0.38180I		
a = 1.69029 + 0.23279I	-2.5536 - 15.1714I	0
b = 0.80501 + 1.23713I		
u = -1.53424 + 0.14331I	10 47400 + 0 550707	0
a = 0.949094 + 0.550926I	-10.47490 + 2.55878I	0
$\frac{b = 0.848905 + 0.481246I}{u = -1.53424 - 0.14331I}$		
a = -0.949094 - 0.550926I $a = 0.949094 - 0.550926I$	$\begin{bmatrix} -10.47490 - 2.55878I \end{bmatrix}$	0
a = 0.949094 - 0.330920I $b = 0.848905 - 0.481246I$	-10.41490 - 2.556161	U
$\frac{b = 0.848905 - 0.481240I}{u = 0.320933 + 0.297553I}$		
a = 0.20033 + 0.237939I $a = 0.20023 - 3.24402I$	$\begin{bmatrix} -0.66653 + 1.65828I \end{bmatrix}$	$\begin{bmatrix} -3.28323 + 3.22527I \end{bmatrix}$
b = 0.180899 + 0.609146I	0.00000 1.000201	3.20323 3.223211
u = 0.320933 - 0.297553I		
a = 0.20023 + 3.24402I	-0.66653 - 1.65828I	-3.28323 - 3.22527I
b = 0.180899 - 0.609146I		
u = -1.68096 + 0.03245I		
a = 0.170430 + 0.699797I	-8.49817 - 2.35434I	0
b = 0.154472 + 0.628288I		
u = -1.68096 - 0.03245I		
a = 0.170430 - 0.699797I	-8.49817 + 2.35434I	0
b = 0.154472 - 0.628288I		
u = -0.1037940 + 0.0707771I		
a = -5.31036 + 0.40793I	-0.33181 + 1.48905I	-3.19515 - 4.46795I
b = -0.357301 + 0.551894I		
u = -0.1037940 - 0.0707771I		
a = -5.31036 - 0.40793I	-0.33181 - 1.48905I	-3.19515 + 4.46795I
b = -0.357301 - 0.551894I		

II.
$$I_2^u = \langle -a^2 + b - 2a - 1, \ a^4 + 3a^3 + 4a^2 + 3a + 2, \ u - 1 \rangle$$

(i) Arc colorings

a) Are colorings
$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ a^2 + 2a + 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} a^2 + 3a + 1 \\ a^2 + 2a + 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -a^3 - 2a^2 - a + 1 \\ -a^3 - 2a^2 - a + 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -a^3 - 4a^2 - 5a - 3 \\ -a^3 - 3a^2 - 4a - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -a^3 - 2a^2 - a + 1 \\ -a^3 - 2a^2 - a + 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -a - 2 \\ -a - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-3a^3 12a^2 7a 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^4 - u^3 + u^2 + 1$
c_2, c_5, c_7	$u^4 + u^3 + 3u^2 + 2u + 1$
c_3	$u^4 - u^3 + 3u^2 - 2u + 1$
c_4	$u^4 + u^3 + u^2 + 1$
c_6, c_9	u^4
c ₈	$(u-1)^4$
c_{10}, c_{11}	$(u+1)^4$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^4 + y^3 + 3y^2 + 2y + 1$
c_2, c_3, c_5 c_7	$y^4 + 5y^3 + 7y^2 + 2y + 1$
c_6, c_9	y^4
c_8, c_{10}, c_{11}	$(y-1)^4$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -0.148192 + 0.911292I	5.14581 + 3.16396I	-0.358581 - 1.047693I
b = -0.10488 + 1.55249I		
u = 1.00000		
a = -0.148192 - 0.911292I	5.14581 - 3.16396I	-0.358581 + 1.047693I
b = -0.10488 - 1.55249I		
u = 1.00000		
a = -1.35181 + 0.72034I	-1.85594 - 1.41510I	-15.1414 + 7.6022I
b = -0.395123 - 0.506844I		
u = 1.00000		
a = -1.35181 - 0.72034I	-1.85594 + 1.41510I	-15.1414 - 7.6022I
b = -0.395123 + 0.506844I		

III.
$$I_3^u = \langle b, \ a^2 + au + 2a + 3u + 5, \ u^2 + u - 1 \rangle$$

(i) Arc colorings

a) Arc colorings
$$a_8 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ -u+1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u \\ -u+1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} a \\ 0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 2au \\ 3au-2a \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_6 = \begin{pmatrix} u \\ u-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a+2u+2 \\ u-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} a+2u+2 \\ u-1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -5au a 3u 19

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1,c_2,c_5	$(u^2+u+1)^2$
c_3, c_7	u^4
C ₄	$(u^2 - u + 1)^2$
c_6, c_8	$(u^2+u-1)^2$
c_9, c_{10}, c_{11}	$(u^2 - u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_4 \ c_5$	$(y^2+y+1)^2$
c_3, c_7	y^4
c_6, c_8, c_9 c_{10}, c_{11}	$(y^2 - 3y + 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.618034		
a = -1.30902 + 2.26728I	-0.98696 + 2.02988I	-15.5000 - 9.2736I
b = 0		
u = 0.618034		
a = -1.30902 - 2.26728I	-0.98696 - 2.02988I	-15.5000 + 9.2736I
b = 0		
u = -1.61803		
a = -0.190983 + 0.330792I	-8.88264 + 2.02988I	-15.5000 + 2.3454I
b = 0		
u = -1.61803		
a = -0.190983 - 0.330792I	-8.88264 - 2.02988I	-15.5000 - 2.3454I
b = 0		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$((u^{2} + u + 1)^{2})(u^{4} - u^{3} + u^{2} + 1)(u^{60} + 4u^{59} + \dots + 6u + 1)$
c_2,c_5	$((u^{2} + u + 1)^{2})(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{60} + 20u^{59} + \dots - 82u + 1)$
c_3	$u^{4}(u^{4} - u^{3} + 3u^{2} - 2u + 1)(u^{60} - 2u^{59} + \dots - 16u + 16)$
c_4	$((u^2 - u + 1)^2)(u^4 + u^3 + u^2 + 1)(u^{60} + 4u^{59} + \dots + 6u + 1)$
c_6	$u^{4}(u^{2}+u-1)^{2}(u^{60}+3u^{59}+\cdots-24u-16)$
c_7	$u^{4}(u^{4} + u^{3} + 3u^{2} + 2u + 1)(u^{60} - 2u^{59} + \dots - 16u + 16)$
c_8	$((u-1)^4)(u^2+u-1)^2(u^{60}-7u^{59}+\cdots+6u-1)$
<i>C</i> 9	$u^{4}(u^{2}-u-1)^{2}(u^{60}+3u^{59}+\cdots-24u-16)$
c_{10}, c_{11}	$((u+1)^4)(u^2-u-1)^2(u^{60}-7u^{59}+\cdots+6u-1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	$((y^2 + y + 1)^2)(y^4 + y^3 + 3y^2 + 2y + 1)(y^{60} + 20y^{59} + \dots - 82y + 1)$
c_2,c_5	$((y^2 + y + 1)^2)(y^4 + 5y^3 + \dots + 2y + 1)(y^{60} + 44y^{59} + \dots - 7010y + 1)$
c_3, c_7	$y^4(y^4 + 5y^3 + \dots + 2y + 1)(y^{60} + 30y^{59} + \dots + 1408y + 256)$
c_6, c_9	$y^4(y^2 - 3y + 1)^2(y^{60} - 33y^{59} + \dots - 576y + 256)$
c_8, c_{10}, c_{11}	$((y-1)^4)(y^2-3y+1)^2(y^{60}-57y^{59}+\cdots-48y+1)$