Roadmap

- ☐ Getting rid of the first restriction imposed by perfect security
 - Encrypting long messages using short keys
- Pseudorandom generators
 - Various equivalent definitions

Encrypting Long Messages Using Short Keys: The Basic Idea

A computationally unbounded adversary cannot distinguish whether c is an encryption of m_0 or m_1 , since the pad k is a uniformly random L-bit string

Encrypting Long Messages Using Short Keys: The Basic Idea

A computationally bounded adversary cannot distinguish between G(s) and a uniformly random string from $\{0,1\}^L$

A computationally bounded adversary cannot distinguish whether c is an encryption of m_0 or m_1

Pseudorandom Generator (PRG)

- \square Requirements from algorithm G:
 - G should be an efficient algorithm
 - \Leftrightarrow Expansion : $L > \ell$
 - Pseudo randomness (informal): no efficient statistical test should significantly separate apart an output of G from the output of an L-bit truly random generator (TRG)

Indistinguishability Based Definition of PRG

- \square The output behavior of G and G' should be almost identical
- \square No efficient algorithm (distinguisher) should be able to distinguish apart a random sample generated by G, from a random sample generated by G', with a significant probability
 - Modeled as an indistinguishability game

PRG Indistinguishability Game

lacktriangle Algorithm G is a PRG, if for every PPT distinguisher $\mathcal D$ participating in the above experiment:

$$Pr(\mathcal{D} \text{ outputs } b' = b) \leq 1/2 + negl(n)$$

 \approx

lacktriangle Algorithm G is a PRG, if for every PPT distinguisher $\mathcal D$ participating in the above experiment:

$$\Pr[\mathcal{D} \text{ outputs } b'=1 \mid b=0], \qquad -\Pr[\mathcal{D} \text{ outputs } b'=1 \mid b=1]_j \mid \leq \operatorname{negl}(n)$$

Prob. of \mathcal{D} labeling y as outcome of PRG, given that y is generated by TRG

Prob. of \mathcal{D} labeling y as outcome of PRG, given that y is generated by PRG

PRG: An Example

$$S \in_r \{0,1\}^{\ell} \longrightarrow G(s) = ss'$$

$$s' \stackrel{\text{def}}{=} s_1 \oplus s_2 \oplus ... \oplus s_\ell$$

- Does there exist an efficient statistical test to distinguish a random sample of G, from a uniformly random $(\ell+1)$ -bit length string, with a significant probability?
 - For any $y = (y_1, ..., y_{\ell+1})$ where $y = G(s), y_{\ell+1} = y_1 \oplus ... \oplus y_{\ell}$ always holds
 - For any $y \in_r \{0,1\}^{\ell+1}$, $y_{\ell+1} = y_1 \oplus ... \oplus y_{\ell}$ holds with probability ½

$$b \leftarrow \{0, 1\}$$

 \Box b=1: y=G(s), where $s \in_r \{0,1\}^{\ell}$

$$y = (y_1, ..., y_{\ell+1})$$
(How I generated it?)

$$b' = 1$$
, iff $y_{\ell+1} = y_1 \oplus ... \oplus y_{\ell}$

Pr[
$$\mathcal{D}$$
 outputs $b'=1 \mid b=0$] = $\frac{1}{2}$
Pr[\mathcal{D} outputs $b'=1 \mid b=1$] = 1

| Pr[
$$\mathcal{D}$$
 outputs $b'=1$ | $b=0$] - Pr[\mathcal{D} outputs $b'=1$ | $b=1$] |
$$= \frac{1}{2} = \text{non-negl}(n)$$

PRG Can be Always Distinguished by a Brute force Distinguisher

- Any PRG has to deterministically expand its input
 - Consequence: output of PRG is far away from a uniformly random string

- lacktriangle Most strings of length 2n do not occur in the range of G
 - * Range of G --- a proper subset of $\{0,1\}^{2n}$ of size atmost 2^n
 - Prob. that a uniformly random 2n-bit string occurs in the range of G is atmost $2^n/2^{2n} = 2^{-n}$

PRG Can be Always Distinguished by a Brute force Distinguisher

$$\Box b = 0 : y \in_r \{0, 1\}^{2n}$$

 $y = (y_1, ..., y_{2n})$ (How y is generated?)

Distinguisher $\mathcal D$

b = 1: y = G(s), where $s \in_r \{0, 1\}^n$

$$b' = 1$$
, iff $y = G(s)$, for some $s \in \{0, 1\}^n$

 \square Running time of $\mathcal{D} = \mathcal{O}(2^n)$ --- inefficient

 $|\Pr[\mathcal{D} \text{ outputs } b'=1 \mid b=0] - \Pr[\mathcal{D} \text{ outputs } b'=1 \mid b=1]| = 1 - 2^{-n}$

PRG: An Alternate Definition

TRG
$$G'$$

For $i = 1, ..., L$

Generate $y_i \in_r \{0, 1\}$

Output $y = (y_1, ..., y_L)$

Partial output

 $(y_1, ..., y_i)$

Partial output

 \mathcal{A}

Pr[$\mathcal{A}(y_1, ..., y_i) = y_{i+1}$] $\leq \frac{1}{2}$

- For any $i \in \{1, ..., L-1\}$, given the output bits $y_1, ..., y_i$ of y, no algorithm can predict the next output bit y_{i+1} , with probability better than ½
- PRG alternate definition (Next-bit predictor test): the above should also hold for a PRG

Publicly known
$$G: \{0,1\}^\ell \Rightarrow \{0,1\}^L$$
 Experiment Next-Bit $_{\mathcal{A}}^G$
$$\underbrace{s \in_r \{0,1\}^\ell}_{G \text{ is called unpredictable if}} \underbrace{y = (y_1, \dots, y_L)}_{(y_1, \dots, y_i)} \underbrace{i \in \{1, \dots, L-1\}}_{(y_1, \dots, y_i)}$$

$$\underbrace{b \in \{0,1\}}_{PPT \mathcal{A}}$$