CS 6501 Natural Language Processing

Probabilistic Context-Free Grammars

Yangfeng Ji

September 19, 2018

Department of Computer Science University of Virginia

Overview

- 1. About Group Project Proposal
- 2. Introduction
- 3. Context-Free Grammars
- 4. Ambiguity
- 5. Probabilistic CFGs
- - 6. Penn Treebank

 Based on slides from [Collins, 2017, Smith, 2018]

About Group Project Proposal

Goal of the Group Project

An opportunity to work on a larger NLP system on a topic of your choice

Proposal Outline

1. Problem definition

- ▶ What is the problem? Input and Output?
- ► Why it is interesting/challenging?
- ► Is this relevant to your own research project? What is the connection?

2. Related work

- Any existing work on this topic?
- ▶ What is the difference?

3. Data

- ► What data you will use?
- What is the data size, in terms of the number of words/sentences/documents?

Proposal Outline (Cont.)

4. Proposed method(s)

- ► What method/model/algorithm are you planning to use?
- Does this involve some existing implementations/packages? How?

5. Evaluation plan

- ► How will you evaluate your results? What evaluation metrics that you will use?
- ▶ What are your criteria of success?

Requirements

- ▶ No more than two pages, including references
- Proposal due on Oct. 7th, 11:59PM
- Proposal template: the last NIPS submission template
 - include all the group members in the author list
 - please do not modify the template

Proposal Presentation

- ► Each group: 5-minute presentation and 3-minute QA
- ► About 5-page slides
 - one section per slide

Example Projects

In addition to the projects I suggested before

- 1. NLP techniques on social media
- 2. Conversational modeling
- 3. Question answering

NLP techniques on Social Media

http://www.cs.cmu.edu/~ark/TweetNLP/

Example projects

- 1. POS tagger/syntactic parser on tweets
- 2. Word embeddings on tweets and its application on sentiment classification

Conversational Modeling

- 1. Build non-goal-oriented dialogue systems
- 2. Build a conversational model that can generate diverse responses

Question Answering

Dataset	Multi turn	Text- based	Dialog Acts	Simple Evaluation	Unanswerable Questions	Asker Can't See Evidence
⁴ QuAC	V	· /	V	V	· /	V
CoQA (Reddy et al., 2018)	V	V	Х	V	V	Х
CSQA (Saha et al., 2018)	V	X	X	Х	V	X
CQA (Talmor and Berant, 2018)	V	V	X	V	X	✓
SQA (Iyyer et al., 2017)	V	Х	X	V	Х	X
NarrativeQA (Kociský et al., 2017)	X	V	X	X	X	V
TriviaQA (Joshi et al., 2017)	X	V	X	V	X	V
SQuAD 2.0 (Rajpurkar et al., 2018)	X	V	X	V	V	X
MS Marco (Nguyen et al., 2016)	Х	V	X	X	V	V
NewsQA (Trischler et al., 2016)	Х	V	×	V	V	V

[Choi et al., 2018]

Further Comments

Two ways to evaluate your project by yourself

- Practical values
 - ► How it helps me get some experience of using NLP tools?
 - How it helps me get some experience of training DL models?
 - Is it worth to put it on my resume when I am looking for a job/internship?

Further Comments

Two ways to evaluate your project by yourself

- Practical values
 - ► How it helps me get some experience of using NLP tools?
 - How it helps me get some experience of training DL models?
 - ► Is it worth to put it on my resume when I am looking for a job/internship?
- Research values
 - ► How this project is relevant to my research?
 - ► How this project help me understand resolving some real problems using NLP techniques?
 - Will this eventually lead to an academic paper?

Introduction

Parsing

- Input: UVa is located in Charlottesville
- Output:

Information Conveyed by Parse Trees

Part of speech for each word

Information Conveyed by Parse Trees (II)

Phrase

- ► PP: *in Charlottesville*
- ▶ VP: located in Charlottesville

Information Conveyed by Parse Trees (III)

Useful relationships

Relationship between UVa and Charlottesville

An Example Application

Question answering: what is the location of UVa?

Context-Free Grammars

Formal Definition

A context free grammar $G = (N, \Sigma, R, S)$ where

- ► *N*: a set of non-terminal symbols
- ► $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols
- ► R: a set of rules of the form $X \to Y_1 Y_2 \cdots Y_n$ for $n \ge 0, X \in N, Y_i \in N \cup \Sigma$

A Context-Free Grammar for English

- ► *N* = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}
- \triangleright S = S
- Σ = {sleeps, saw, man, woman, telescope, the, with, in}
- \triangleright R

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

(Left-Most) Derivations

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

► Left-most derivation: always pick the left-most non-terminal symbol for replacement

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$VP \rightarrow Vi$
the man Vi	

S	\rightarrow	NP	VP
VP	\rightarrow	Vi	
VP	\rightarrow	Vt	NP
VP	\rightarrow	VP	PP
NP	\rightarrow	DT	NN
NP	\rightarrow	NP	PP
PP	\rightarrow	IN	NP

Vi	\rightarrow	sleeps
Vt	\rightarrow	saw
NN	\rightarrow	man
NN	\rightarrow	woman
NN	\rightarrow	telescope
DT	\rightarrow	the
IN	\rightarrow	with
IN	\rightarrow	in

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$VP \rightarrow Vi$
the man Vi	$Vi \rightarrow sleeps$
the man sleeps	

From Derivations to Parse Tree

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$VP \rightarrow Vi$
the man Vi	$Vi \rightarrow sleeps$
the man sleeps	

From Derivations to Parse Tree

Derivation	Rules used
S	$S \rightarrow NP VP$
NP VP	$NP \rightarrow DT NN$
DT NN VP	$DT \rightarrow the$
the NN VP	$NN \rightarrow man$
the man VP	$VP \rightarrow Vi$
the man Vi	$Vi \rightarrow sleeps$
the man sleeps	

Properties of CFGs

- ► A CFG defines a set of possible derivations
- ▶ A string $s \in \Sigma^*$ is in the language defined by the CFG if there is at least one derivation that yield s
- Each string in the language generated by the CFG may have more than one derivation ("ambiguity")

Ambiguity

An Example of Ambiguity

Sentence: We saw the kid with the telescope

An Example of Ambiguity (II)

Sentence: We saw the kid with the telescope

Problem with Parsing: Ambiguity

Sentence: *She announced a program to promote safety in trucks and vans*

Sources of Ambiguity (I)

Part-of-Speech ambiguity

- ▶ $NN \rightarrow duck$
- ightharpoonup Vi
 ightharpoonup duck

Sources of Ambiguity (II)

Noun premodifiers

Sources of Ambiguity (III)

Noun premodifiers

Probabilistic CFGs

A Probabilistic Context-Free Grammar (PCFG)

- ► *N*: a set of non-terminal symbols
- ► $S \in N$: a distinguished start symbol
- \triangleright Σ : a set of terminal symbols

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Probability of a Tree

The probability of a tree t with rules

$$\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \ldots, \alpha_n \to \beta_n$$

is

$$P(t) = \prod_{i=1}^{n} P(\alpha_i \to \beta_i)$$
 (1)

where $P(\alpha \to \beta)$ is the rule of $\alpha \to \beta$

An Example

S	\Rightarrow	NP	VP	1.0
VP	\Rightarrow	Vi		0.4
VP	\Rightarrow	Vt	NP	0.4
VP	\Rightarrow	VP	PP	0.2
NP	\Rightarrow	DT	NN	0.3
NP	\Rightarrow	NP	PP	0.7
PP	\Rightarrow	Р	NP	1.0

Vi	\Rightarrow	sleeps	1.0
Vt	\Rightarrow	saw	1.0
NN	\Rightarrow	man	0.7
NN	\Rightarrow	woman	0.2
NN	\Rightarrow	telescope	0.1
DT	\Rightarrow	the	1.0
IN	\Rightarrow	with	0.5
IN	\Rightarrow	in	0.5

Properties of PCFGs

- Assigns a probability to each derivation, or parse-tree, allowed by the underlying CFG
- ► If one sentence has more than one derivations, we can rank them based on their probabilities
- ► The most likely parse tree for a sentence is

$$\arg\max_{t\in\mathcal{T}(s)}P(t)\tag{2}$$

Deriving a PCFG from a Corpus

 Given a set of example trees (a treebank), the underlying CFG can simply be all rules seen in the corpus

Maximum likelihood estimates:

$$P(\alpha \to \beta) \approx \frac{c(\alpha \to \beta)}{c(\alpha)}$$
 (3)

Penn Treebank

Penn Treebank

- 50,000 sentences with associated trees
- Usual setup: 40,000 training sentences, 2,400 test sentences

Some Penn Treebank Rules with Counts

```
40717 \text{ PP} \rightarrow \text{IN NP}
                                                   100 \text{ VP} \rightarrow \text{VBD PP-PRD}
33803 S \rightarrow NP-SBJ VP
                                                   100 PRN \rightarrow : NP :
22513 NP-SBJ → -NONE-
                                                  100 NP \rightarrow DT JJS
21877 \text{ NP} \rightarrow \text{NP} \text{ PP}
                                                   100 NP-CLR \rightarrow NN
20740 NP \rightarrow DT NN
                                                   99 NP-SB I-1 \rightarrow DT NNP
14153 S \rightarrow NP-SBJ VP.
                                                   98 VP → VBN NP PP-DIR
12922 VP \rightarrow TO VP
                                                   98 VP → VBD PP-TMP
11881 PP-I OC \rightarrow IN NP
                                                   98 PP-TMP → VBG NP
11467 NP-SB I \rightarrow PRP
                                                   97 \text{ VP} \rightarrow \text{VBD ADVP-TMP VP}
11378 NP → -NONE-
11291 NP \rightarrow NN
                                                   10 WHNP-1 \rightarrow WRB JJ
                                                   10 VP \rightarrow VP CC VP PP-TMP
989 VP \rightarrow VBG S
                                                   10 VP \rightarrow VP CC VP ADVP-MNR
985 NP-SBJ \rightarrow NN
                                                   10 VP \rightarrow VBZ S . SBAR-ADV
983 PP-MNR \rightarrow IN NP
                                                   10 VP \rightarrow VBZ S ADVP-TMP
```

Penn Treebank Rules: Statistics

Summary

- 1. About Group Project Proposal
- 2. Introduction
- 3. Context-Free Grammars
- 4. Ambiguity
- 5. Probabilistic CFGs
- 6. Penn Treebank

Reference

Choi, E., He, H., Iyyer, M., Yatskar, M., Yih, W.-t., Choi, Y., Liang, P., and Zettlemoyer, L. (2018). Quac: Question answering in context. arXiv preprint arXiv:1808.07036.

Collins, M. (2017).

Natural language processing: Lecture notes.

Smith, N. A. (2018).

 $Natural\ language\ processing:\ Lecture\ notes.$