An algorithm to be analyzed

Pseudocode 1

We modify the famous greedy algorithm for the set-covering problem to give the following algorithm, called ALG, for the minimum paired-dominating set problem.

- 1: $\mathcal{D} \leftarrow \emptyset$;
- 2: while $\bigcup_{v \in \mathcal{D}} N[v] \neq V$ do
- Among the edges in E not having an endpoint in \mathcal{D} , pick an edge (a,b) that maximizes $|(N[a] \cup N[b]) \cap (V \setminus \bigcup_{v \in \mathcal{D}} N[v])|$, breaking ties arbitrarily;
- $\mathcal{D} \leftarrow \mathcal{D} \cup \{a,b\};$
- 5: end while
- 6: return \mathcal{D} ;

Lemma 1. Whenever line 3 of A is executed,

$$\left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right| > 0.$$

Proof. To be written.

Let D^* be a smallest dominating set of G = (V, E).

Lemma 2. Whenever line 3 of A is executed, there exists $u \in D^* \setminus \mathcal{D}$ satisfying

$$\left| N[u] \cap \left(V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right) \right| \ge \frac{1}{|D^*|} \cdot \left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right|$$

and that $N(u) \not\subseteq \mathcal{D}$.

Proof. To be written.

Lemma 3. Right after each execution of line 3 of A,

$$\left| (N[a] \cup N[b]) \cap \left(V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right) \right| \geq \frac{1}{|D^*|} \cdot \left| V \setminus \bigcup_{v \in \mathcal{D}} N[v] \right|.$$

Proof. To be written.