SISTEMA DE APOYO A LA DECISIÓN EN OPERACIONES DE TRENES DE SEPARACIÓN

Julián García Sánchez

ÍNDICE

- 1. Motivación y Alcance
- 2. El experto
- 3. Elementos del sistema
- 4. Diagrama de flujo
- 5. Demo

MOTIVACIÓN Y ALCANCE

• Las operaciones de separación son operaciones frecuentes en el día a día de cualquier refinería.

- ¿En qué consisten?
- La importancia del orden.
- Máximo de cuatro componentes.

EL EXPERTO

Fco. José Durán Prieto • 2°

Graduado en Ingeniería Química por la UCLM, Ciudad Real
Air Liquide • UCLM Facultad de Ciudad Real
Ciudad Real y alrededores, España • 55 &

Conectar

Mensajes InMail

Más...

Durante los 4 años de carrera se me ha capacitado de forma versátil para puestos de trabajos muy diversos, pudiendo cumplir las exigencias del grado alcanzando correctamente las competencias exigid...

ELEMENTOS DEL SISTEMA

- Componente problemático
- Componente más volátil
- Componente mayoritario
- Compuesto final

SI(naranja) final_3=C final_4=D - & No(Naranja final_3=D final_4=C Si(amarillo) final_3=C final_4=D & No(amarillo) final_3=D final_4=C Si (verde) final_1=D final_3=A final_4=C && No (verde) final_1=A final_3=D final_4=C Si(azul) final_3=C final_4=A D2 Si(Azul) final_1=D final_2=B No(Azul) final_1=B final_2=D S1 (marron) final_1=B final_2=A No (Azul) final_1=D final_3=C final_4=A No (naranja) ntador_pFinal final_1=A final_2=D final_3=C final_4=B SI (amarillo) mayoritario=i final_1=C final_2=A final_3=B final_4=D Si (verde) mayoritario=i final_2=C final_3=A final_4=D SI (marron) final_3=C final_4=D NO (marron final_3=D final_4=C No(marron) final_1=A final_2=C final_3=D final_4=B Si (marron) final_1=D final_2=A final_3=C final_4=D No (marron) final_1=A final_2=D Si (verde ') && No (verde '') ontador_pFinal final_3=C final_4=B Si (verde) final_1=D final_2=B final_3=A final_4=C 88 No (verde) final_1=B final_2=D final_3=A final_4=C Si (verde ') final_1=D final_2=C final_3=A final_4=B 8& No (verde ') final_1=C final_2=D final_3=A final_4=B No (verde) final_1=B final_2=A final_3=D final_4=C No (verde ") final_1=D final_2=A && No (verde ') final_1=C final_2=A final_3=D final_4=B Si (verde ') final_2=D final_3=A final_4=B && No (verde ') final_2=A final_3=D final_4=B Si (verde ') final_1=D final_3=A final_4=B 88 No (verde ') final_1=A final_3=D final_4=B

DIAGRAMA DE FLUJO

DEMO

• Caso 1:

- Agua -> mayoritario
- Metano -> volátil
- Butano -> producto final
- Ácido sulfhídrico -> más problemático

• Caso 2:

- Fósforo -> producto final
- Monóxido de carbono -> volátil
- Cal -> más problemático
- Sílice -> mayoritario

