ECON 6090 - TA Section 1

Feiyu Wang & Yuxuan Ma* August 30, 2024

Exercises

Rational Preference Relations

- 1. Suppose \succeq is a rational preference relation on a set X. Let x and y be elements of X. We define equivalence, denoted $x \sim y$, by $x \succeq y$ and $y \succeq x$. Is \sim transitive?
- 2. Are the following preference relations \geq rational?
 - (a) Let \succeq be defined on \mathbb{R} by: $y \succeq x$ iff $y \succeq x + \varepsilon, \varepsilon$ is a positive number.
 - (b) Let \succeq be defined on \mathbb{R} by: $y \succeq x$ iff $y \succeq x \varepsilon, \varepsilon$ is a positive number.
 - (c) $X = \{a, b, c\}.C^*(\{a, b\}, \succeq) = \{b\}.C^*(\{b, c\}, \succeq) = \{c\}.C^*(\{a, b, c\}, \succeq$
 - (d) Agents 1 and 2 are facing the same choice set X. Agent 1 has a rational preference relation \succeq_1 , consumer 2 's preference relation is given by $\succeq_2 := \succ_1$. Is consumer 2 's preference rational?
 - (e) Consider the lexicographic preference relation \succeq on \mathbb{R}^2_+ : $(x_1, x_2) \succeq (y_1, y_2)$ if and only if $x_1 > y_1$ or $x_1 = y_1$ and $x_2 \ge y_2$. Is \succeq a rational preference relation?

3. (2022 Q)

- (a) Consider a finite set of alternatives $A = \{a_1, a_2, \dots, a_N\}$ and a decision maker with rational preferences \succeq on A. An alternative $a^* \in A$ is said to be a best alternative if $a^* \succeq a_i$ for all $a_i \in A$. Show that a best alternative exists for this decision maker and this set of alternatives A.
- (b) Consider the set of alternatives $A' = \{a_1, a_2, \dots, a_{N-1}\}$; A with the alternative a_N deleted. Let a' be a best alternative in the set A' for the decision maker from part (a) with preferences \succeq . Show that $a^* \succeq a'$. We can interpret this result as showing that deleting an alternative from a finite set of alternatives cannot make a decision maker with rational preferences better off.

^{*}We appreciate the efforts of Jaden Chen and Tianli Xia, Deborah Doukas and Yujie Feng, and all the other TAs who contributed to the past section notes.

Choice rules

- 1. (2008 Final) Let the set of alternatives be $X = \{a, b, c, d\}$ and let B be the set of all nonempty subsets of X. Suppose we have a choice function such that $C(\{a, b, d\}) = \{a, b\}$ and $C(\{a, b, c\}) = \{b\}$. Is there a rational preference relation \succeq on X such that $C(\cdot) = C^*(\cdot, \succeq)$ for all elements in B and $C^*(\cdot, \succeq)$ is consistent with the information given about $C(\cdot)$? Explain briefly.
- 2. Suppose instead of the data above, we have a choice function such that $C(\{a,b,c\}) = \{a,b\}, C(\{b,c\}) = \{b\}, C(\{c,d\}) = \{c\} \text{ and } C(\{a,d\}) = \{a,d\}.$ Is there a rational preference relation \succeq on X such that $C(\cdot) = C^*(\cdot, \succeq)$ for all elements in B and $C^*(\cdot, \succeq)$ is consistent with the information given about $C(\cdot)$? Explain briefly.