Regelungstechnik 2

FS 24 Prof. Dr. Lukas Ortmann

Autoren:

Simone Stitz, Laurin Heitzer

Version: 1.0.20240530

https://github.com/P4ntomime/regelungstechnik-2

Inhaltsverzeichnis

Implementierung digitaler Regler		2	2	Anhang	2
1.1	Aufbau digitale Regler	2		2.1 Bodediagramm eines Integrators	2
1.2	Signale in digitalem Regler	2			
	Entwurfsverfahren	2		2.2 Bodediagramm mit Nullstelle bei omega = 0	2
1 4	Vorgehen: Diskretisjerung eines Reglers	2		2.3 Z-Transformation	2

1 Implementierung digitaler Regler

1.1 Aufbau digitale Regler

1.2 Signale in digitalem Regler

1.3 Entwurfsverfahren

1.3.1 Approximationen

1.4 Vorgehen: Diskretisierung eines Reglers

Beispiel: PI-Regler diskretisieren

1.4.1 Optimierung des Speicherplatzes

2 Anhang

2.1 Bodediagramm eines Integrators

Ein Integrator mit $G(s)=\frac{K}{s}$ hat seine Polstelle bei der Frequenz $\omega=0$. Im Bodediagramm wird der Integrator so dargestellt, dass bei Frequenz $\omega=1$ die Verstärkung $20\,\mathrm{dB}\cdot\log_{10}(K)$ erreicht ist.

2.2 Bodediagramm mit Nullstelle bei $\omega = 0$

Ein System mit $G(s)=K\cdot s$ wird im Bodediagramm so dargestellt, dass bei bei Frequenz $\omega=0$ die Verstärkung $20\,\mathrm{dB}\cdot\log_{10}(K)$ erreicht ist. Im Gegensatz zu Abschnitt 2.1 beträgt die Steigung der Amplitude $+20\,\mathrm{dB/Dek}$ und die Phase ist konstant bei $\varphi=\frac{\pi}{2}$

2.3 Z-Transformation