

Ejercicio 3.6

[71.14] Modelos y Optimización I Curso 4 2 C 2021

Alumno:	Grassano, Bruno
Número de padrón:	103855
Email:	bgrassano@fi.uba.ar

$\mathbf{\acute{I}ndice}$

1.	Enunciado	2
2.	Análisis de la situación problemática	3
3.	Objetivo	4
4.	Hipótesis y supuestos	4
5.	Definición de variables	4
6.	Modelo de programación lineal6.1. Funcional6.2. Restricciones	4 4 5
7.	Resolución por software	6
8.	Informe de la solución óptima	9

1. Enunciado

Una empresa produce aceite comestible mediante la refinación de aceite crudos y su posterior mezcla. El producto final se vende a 150 \$/ton.

Los aceites A y B requieren una línea de producción de refinado distinta de la de los aceites C, D y E. Las capacidades de refinación de cada línea son respectivamente, 200 ton/mes y 250 ton/mes.

Hay una restricción tecnológica de dureza del aceite comestible. Esta debe encontrarse entre 3 y 6 (en unidades de dureza). Se asume que la dureza de aceite comestible es una combinación lineal de las durezas de los aceite crudos.

Además se desean imponer las siguientes condiciones adicionales:

- ➤ El aceite comestible no debe contener más de 3 aceites crudos.
- ➤ Si se usa un tipo de aceite crudo, deben usarse 20 ton., como mínimo.
- Si se usan el aceite A o el B entonces el aceite C debe también usarse.

En la siguiente tabla, se detalla el precio de cada tipo de aceite crudo (en \$/ton) y su correspondiente nivel de dureza.

Tipo	Precio	Dureza	
A	110	8,8	
В	120	6,1	
C	130	2,0	
D	110	4,2	
E	115	5,0	

Refinar los aceites crudos lleva X min/ton. El costo de mantenimiento de la máquina de refinado varía según la cantidad de horas que funciona, como se detalla a continuación:

Horas	Costo de Mantenimiento	
Menos de 100	\$5000	
Entre 100 y 200	\$8000	
Más de 200 y menos de 500	\$9500	
500 ó más	\$10000	

2. Análisis de la situación problemática

- Tenemos lineas de entrada distintas.
- Nos dan condiciones respecto del aceite, estas serian bivalentes.
- $\bullet\,$ Tenemos un problema de mezcla con la dureza.
- El siguiente es un esquema:

3. Objetivo

Determinar las cantidades de aceites crudos a refinar y mezclar para producir aceite comestible buscando maximizar la ganancia final durante un mes.

4. Hipótesis y supuestos

- 1. Los precios de los aceites son estables.
- 2. Las durezas son exactas.
- 3. Todo lo producido se vende.
- 4. Los aceites no tienen desperfectos en la entrada o salida.
- 5. Es posible realizar el aceite con solamente un aceite crudo.
- 6. Los costos de mantenimiento son exactos.
- 7. No hay pedidos mínimos ni máximos de los aceites crudos. (no es necesario comprar de a 20 toneladas o algo por el estilo)
- 8. La maquina no se rompe.
- 9. El tiempo de mantenimiento es despreciable.
- 10. No se tienen restricciones de mano de obra.
- 11. No hay desperdicio en la mezcla de los aceites.
- 12. No puedo cambiar la producción de aceite en el medio.

5. Definición de variables

*Con tipos y unidades

- Y_i : Indica si uso el aceite i. Donde i = A, B, C, D, E (1 se esta usando, 0 caso contrario) (Bivalente)
- CA_i : Cantidad de aceite i usado. Donde i = A, B, C, D, E (ton/mes) (Continua)
- YH_i : Indica que costo de mantenimiento se tiene. Donde $i=1\dots 4$ (Bivalente)

6. Modelo de programación lineal

*Indicando en cada restricción o grupo de restricciones la función que cumplen.

6.1. Functional

Buscamos maximizar la ganancia, para esto tenemos el precio de venta y los costos.

$$\max(150\frac{\$}{ton}(CA_A + CA_B + CA_C + CA_D + CA_E) - 110CA_A - 120CA_B - 130CA_C - 110CA_D - 115CA_E - 5000YH_1 - 8000YH_2 - 9500YH_3 - 10000YH_4)$$

6.2. Restricciones

Empezamos planteando la cantidad máxima de aceites que podemos tener.

• $1 \le \sum_{i=A}^{E} Y_i \le 3$

Cada aceite crudo debe de tener por lo menos 20 toneladas. (Vinculo la bivalente con la continua)

- El mínimo posible: $CA_i \geq 20tonY_i$
- El máximo que pueden tener: $CA_i \leq 250Y_i$ (Con 200 alcanza para A y B)
- Donde $i = A \dots E$

Si se usa el aceite A o B entonces debe usarse C.

• $Y_A + Y_B \le 2Y_C$

Están las capacidades de refinación de cada linea:

- $CA_A + CA_B \le 200$
- $CA_C + CA_D + CA_E \le 250$

Los costos de mantenimiento de la maquina de refinación depende del uso :

•
$$\frac{X_{\frac{min}{ton}}}{60\frac{min}{m}}(CA_A + CA_B + CA_C + CA_D + CA_E) \le (100hs - m)YH_1 + M(1 - YH_1)$$

- $100hsYH_2 \le \frac{X}{60}(CA_A + CA_B + CA_C + CA_D + CA_E) \le 200hsYH_2 + M(1 YH_2)$
- $\bullet \ (200 h s + m) Y H_3 \leq \tfrac{X}{60} (C A_A + C A_B + C A_C + C A_D + C A_E) \leq (500 h s m) Y H_3 + M (1 Y H_3) + M (1 Y$
- $500hsYH_4 \le \frac{X}{60}(CA_A + CA_B + CA_C + CA_D + CA_E)$
- \bullet Solo puede estar habilitado un rango horario: $\sum_{i=1}^4 Y H_i = 1$

Nos queda plantear la mezcla (combinación lineal con las durezas):

- $3(CA_A + CA_B + CA_C + CA_D + CA_E) \le 8,8CA_A + 6,1CA_B + 2,0CA_C + 4,2CA_D + 5,0CA_E$
- $8,8CA_A+6,1CA_B+2,0CA_C+4,2CA_D+5,0CA_E \le 6(CA_A+CA_B+CA_C+CA_D+CA_E)$

7. Resolución por software

El modelo: set Aceites; set Horas; param CostoAceite{i in Aceites}; param Dureza{i in Aceites}; param CostoHoras{i in Horas}; param X; var Y{i in Aceites} >=0 binary; var YH{i in Horas} >=0 binary; var CA{i in Aceites} >=0; maximize z: (sum{i in Aceites} CA[i]) * 150 - sum{i in Aceites} CA[i] * CostoAceite[i] - sum{i in Horas} YH[i] * CostoHoras[i]; s.t. cantAceites: sum{i in Aceites} Y[i] <= 3;</pre> s.t. cantAceites2: sum{i in Aceites} Y[i] >= 1; s.t. minTonA: CA[1] >= 20 * Y[1];s.t. $maxTonA: CA[1] \le 200 * Y[1];$ s.t. minTonB: CA[2] >= 20 * Y[2];s.t. $maxTonB: CA[2] \le 200 * Y[2];$ s.t. minTonC: CA[3] >= 20 * Y[3];s.t. $maxTonC: CA[3] \le 250 * Y[3];$ s.t. minTonD: CA[4] >= 20 * Y[4];s.t. maxTonD: $CA[4] \le 250 * Y[4];$ s.t. minTonE: CA[5] >= 20 * Y[5];s.t. $maxTonE: CA[5] \le 250 * Y[5];$ s.t. debeUsarseC: Y[1] + Y[2] <= 2 * Y[3];</pre> s.t. capacidadRef1: CA[1] + CA[2] <= 200;</pre> s.t. capacidadRef2: CA[3] + CA[4] + CA[5] <= 250;</pre> s.t. horas1: $(X / 60) * (sum{i in Aceites} CA[i]) \le 99.99 * YH[1] + 2000 * (1 - YH[1]);$ s.t. horas2: $(X / 60) * (sum{i in Aceites} CA[i]) \le 200 * YH[2] + 2000 * (1 - YH[2]);$ s.t. horas2min: $100 * YH[2] \le (X / 60) * (sum{i in Aceites} CA[i]);$ s.t. horas3: $(X / 60) * (sum{i in Aceites} CA[i]) <= 499.99 * YH[3] + 2000 * (1 - YH[3]);$ s.t. horas3min: $200.01 * YH[3] \le (X / 60) * (sum{i in Aceites} CA[i]);$ s.t. horas4: $500 * YH[4] \leftarrow (X / 60) * (sum{i in Aceites} CA[i]);$ s.t. rangosHorarios: sum{i in Horas} YH[i] = 1; s.t. mezclaMin: (sum{i in Aceites} CA[i]) * 3 <= sum{i in Aceites} CA[i] * Dureza[i];

```
s.t. mezclaMax: sum{i in Aceites} CA[i] * Dureza[i] <= (sum{i in Aceites} CA[i]) * 6;</pre>
data;
param X := 30;
set Aceites := 1 2 3 4 5;
param CostoAceite :=
1 110
2 120
3 130
4 110
5 115;
param Dureza :=
1 8.8
2 6.1
3 2.0
4 4.2
5 5.0;
set Horas := 1 2 3 4;
param CostoHoras :=
1 5000
2 8000
3 9500
4 10000;
end;
```

Los resultados:

Problem: 3 Rows: 25

Columns: 14 (9 integer, 9 binary) Non-zeros: 97

Status: INTEGER OPTIMAL
Objective: z = 7600 (MAXimum)

No.	Row name	Activity	Lower bound	
1	Z	7600		
	cantAceites	3		3
3	cantAceites2	3	1	
4	minTonA	146.087	-0	
5	maxTonA	-33.913		-0
6	minTonB	0	-0	
7	maxTonB	0		-0
8	minTonC	0	-0	
9	maxTonC	-230		-0
10	minTonD	193.913	-0	
	maxTonD	-36.087		-0
	minTonE	0	-0	
	maxTonE	0		-0
	debeUsarseC	-1		-0
15	capacidadRef1			
4.0	. 1 15 60	166.087		200
16	capacidadRef2	022 012		050
17	h 1	233.913		250
	horas1 horas2	200 2000		2000 2000
	horas2min	-100		-0
	horas3	200		2000
	horas3min	-200		-0
	horas4	-200		-0
	rangosHorarios			-0
20	1411602110141101	. 1	1	=
24	mezclaMin	-1200	_	-0
	mezclaMax	0		-0
	Column name	Activity	Lower bound	Upper bound
1	Y[1] *	4 1	0	1
2	Y[2] *	0	0	1
3	Y[3] *	1	0	1
4	Y[4] *	1	0	1
5	Y[5] *	0	0	1
6	YH[1] *	0	0	1
	YH[2] *	1	0	1
	YH[3] *	0	0	1
	YH[4] *		0	1
	CA[1]	166.087	0	
	CA[2]	0	0	
12	CA[3]	20	0	

```
13 CA[4] 213.913 0
14 CA[5] 0 0
```

Integer feasibility conditions:

```
KKT.PE: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

```
KKT.PB: max.abs.err = 0.00e+00 on row 0
    max.rel.err = 0.00e+00 on row 0
    High quality
```

End of output

8. Informe de la solución óptima

Los resultados obtenidos consisten en:

- Utilizar 166,087 toneladas de aceite crudo A.
- Utilizar 20 toneladas de aceite crudo C.
- Utilizar 213,913 toneladas de aceite crudo D.
- No usar del resto de los aceites.
- El mantenimiento de la maquina entra en la segunda franja horaria (utilizando 200 horas)

De esta forma se estarían obteniendo 400 toneladas de aceite comestible, quedando una ganancia final de \$7600 mensualmente.