Linear

Algebra

R(a) = [cosa -sind]

Sind cosd]

dim KerA + dim Im A = dim

A: L → M

$$\frac{2.100}{0.2.1}$$

$$\frac{3.100}{0.2.1}$$

$$\vec{a} = \begin{pmatrix} x \\ y \end{pmatrix} \mapsto b_0 + b_1 x + b_2 x^2 = f(x)$$

dim M, + dim M2 = dim (M,+M2) + dim (M11M2)

Зміст

1	Лінійні простори					
	1.1	Основні означення лінійних просторів	4			
	1.2	Лінійні підпростори	5			
	1.3	Лінійна залежність/незалежність	5			
	1.4	Лінійні оболонки	8			
	1.5	Підпорядковані та еквівалентні системи	8			
	1.6		10			
	1.7		12			
2	Дiï	з лінійними просторами	16			
	2.1		16			
	2.2	Арифметичні дії з лінійними операторами	17			
	2.3		19			
	2.4	, , , ,	21			
	2.5		23			
	2.6		23			
	2.7		24			
	2.8	Матриця лінійного функціоналу				
	2.9		25			
	2.9	пряма сума операторів	20			
3	Teo	рія матриць	26			
•	3.1	Основні властивості				
	3.2	n-лінійні функціонали				
	3.3	Трошки про перестановки та єдиність кососиметричного функціоналу				
	3.4		31			
	3.5	± ' ' ' ' '	35			
	3.6		37			
	3.7	• • •	38			
	3.8		38			
	3.9		эс 40			
	5.5	Системи лининих али сорагчних ривнинь	ŧU			
	0.11	D' 'C ''				
	2.11	Різні базиси в лінійному просторі, матриця оператора переходу від одного базису до	42			
	0.10					
			43			
			44			
	2.14	Матриця оператора в базисі, розширенному з базису в інваріантному просторі	45			
1	Нов	а ера з матрицями	17			
-	4.1		47			
	4.2	•	±1 48			
	4.3		50			
	4.4		51			
	4.5		54			
	4.6		59			
	4.7	Застосування жорданової форми: функції від операторів, матриць	61			
5	Epv	лідові простори та інше	33			
9	5.1		53			
	$5.1 \\ 5.2$					
	$\frac{5.2}{5.3}$		64			
			$\frac{65}{27}$			
	5.4		$\frac{67}{27}$			
	5.5		$\frac{67}{20}$			
	5.6		70			
	5.7		71			
	5.8		74			
	5.9	Унітарний оператор	75			

6	Ква	адратичні форми	,
	6.1	Білінійні форми	
	6.2	Квадратичні форми	
	6.3	Зведення квадратичної форми до суми квадратів	
	6.4	Закон інерції квадратичних форм	
	6.5	Квадратичні форми в евклідовому просторі	
	6.6	Зведення кривих та поверхень другого порядку до канонічного вигляду	

1 Лінійні простори

1.1 Основні означення лінійних просторів

Definition 1.1.1 Лінійним простором називається множина L, на якій задані дві операції:

- 1. $\forall x,y \in L : \exists!z \in L : z = x + y$ операція додавання
- 2. $\forall x \in L, \forall \lambda \in \mathbb{R} : \exists! w \in L : w = \lambda x$ операція множення на скаляр

та які задовільняють наступним аксіомам:

- 1) $\forall x, y \in L : x + y = y + x$
- 2) $\forall x, y, z \in L : (x + y) + z = x + (y + z)$
- 3) $\exists 0 \in L : \forall x \in L : x + 0 = x$
- 4) $\forall x \in L : \exists \tilde{x} \in L : x + \tilde{x} = 0$
- 5) $\forall \alpha, \beta \in \mathbb{R} : \forall x \in L : (\alpha + \beta)x = \alpha x + \beta x$
- 6) $\forall \alpha \in \mathbb{R} : \forall x, y \in L : \alpha(x+y) = \alpha x + \alpha y$
- 7) $\forall \alpha, \beta \in \mathbb{R} : \forall x \in L : \alpha(\beta x) = (\alpha \beta)x$
- 8) $\forall x \in L : 1 \cdot x = x$

Remark 1.1.2 Якщо $\alpha, \beta \in \mathbb{R}$, то лінійний простір називається **дійсним**. При \mathbb{C} - **комплексним**. (я далі лише буду вказувати множину \mathbb{R} , для \mathbb{C} теж можна.)

Example 1.1.3 Розглянемо прості приклади лінійних просторів:

- 1) $L = \mathbb{R}^3$ вектори в просторі;
- 2) $L = \mathbb{R}[x]$ многочлени з дійсними коефіцієнтами;
- 3) L = C(A) неперервні функції на множині A.

Example 1.1.4 Задамо множину $L = \mathbb{R}_{>0}$, на якій задаються операції таким чином:

$$x + y = x \cdot y$$
 $\lambda x = x^{\lambda}$.

- 1) $x + y = x \cdot y = y \cdot x = y + x$
- 2) $(x + y) + z = (x \cdot y) + z = (x \cdot y) \cdot z = x \cdot (y \cdot z) = x + (y \cdot z) = x + (y + z)$
- 3) Існує елемент 0=1, для якого $x+0=x\cdot 0=x\cdot 1=x$. Тут 0 не число, а символ спеціальний
- 4) Існує елемент $\tilde{x}=\frac{1}{x}$, для якого $x+\tilde{x}=x\cdot \tilde{x}=x\cdot \frac{1}{x}=1=0$
- 5) $(\alpha + \beta)x = x^{\alpha + \beta} = x^{\alpha}x^{\beta} = \alpha x + \beta x$
- 6) $\alpha(x+y) = (x+y)^{\alpha} = (xy)^{\alpha} = x^{\alpha}y^{\alpha} = \alpha x + \alpha y$
- 7) $\alpha(\beta x) = \alpha x^{\beta} = (x^{\beta})^{\alpha} = x^{\alpha\beta} = (\alpha\beta)x$
- 8) $1 \cdot x = x^1 = x$

Всі вісім аксіом виконані. Отже, L - лінійний простір.

Proposition 1.1.5 Властивості лінійних просторів

3адано L - лінійний простір. Тоді виконуються такі пункти:

- 1) $\exists !0 \in L : \forall x \in L : x + 0 = x;$
- $2) \ \forall x \in L: \exists ! x: x + \tilde{x} = 0;$
- $3) \ \underset{\in \mathbb{R}}{0} \cdot x = \underset{\in L}{0};$
- 4) $\tilde{x} = (-1) \cdot x = -x$.

Proof.

- 1) !Припустимо, що $\exists \tilde{0} \in L : x + \tilde{0} = x$ ще один нуль. Тоді $\tilde{0} = 0 + \tilde{0} = 0$. Суперечність! Отже, елемент єдиний.
- 2) !Припустимо, що $\exists \tilde{\tilde{x}} \in L : x + \tilde{\tilde{x}} = 0$ ще один обернений елемент. Тоді $\tilde{\tilde{x}} = 0 + \tilde{\tilde{x}} = (\tilde{x} + x) + \tilde{\tilde{x}} = \tilde{x} + (x + \tilde{\tilde{x}}) = \tilde{x} + 0 = \tilde{x}$. Суперечність!

Отже, елемент - єдиний.

3) $0 \cdot x = (0+0)x = 0 \cdot x + 0 \cdot x \Rightarrow 0 \cdot x = 0$.

У нас остання рівність каже, що до елементу $0 \cdot x$ додається щось, що дорівнює $0 \cdot x$. І ось це щось буде рівне 0.

4)
$$x + (-x) = 1 \cdot x + (-1) \cdot x = (1 + (-1))x = 0 \cdot x = 0.$$

Remark 1.1.6 У разі якщо принаймні один з пунктів не буде виконаним, то L більше не буде лінійним простором.

Example 1.1.7 Задамо множину $L = \mathbb{R}^2$, на якій задаються операції таким чином:

$$\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} \qquad \lambda \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ 0 \end{pmatrix}.$$

 $\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} + \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix} \qquad \lambda \begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} \lambda x_1 \\ 0 \end{pmatrix}.$ Можемо зауважити, що $(-1)\begin{pmatrix} x_1 \\ y_1 \end{pmatrix} = \begin{pmatrix} -x_1 \\ 0 \end{pmatrix} \neq \begin{pmatrix} -x_1 \\ -y_1 \end{pmatrix} = -\begin{pmatrix} x_1 \\ y_1 \end{pmatrix}.$ Точніше кажучи, рівність

1.2 Лінійні підпростори

Definition 1.2.1 Підмножина M лінійного простору L називається лінійним підпростором, якщо

- 1) $\forall x, y \in M : x + y \in M$ 2) $\forall x \in M : \forall \lambda \in \mathbb{R} : \lambda x \in M$

Тобто M - замкнена відносно операцій на L.

Theorem 1.2.2 Задані L - лінійний простір та M - лінійний підпростір. Тоді M - лінійний простір.

Proof.

На множині M вже задані операції за означенням із простору L. Перевіримо всі 8 аксіом: $\forall x, y, z \in M \Rightarrow x, y, z \in L : \forall \alpha, \beta \in \mathbb{R} \implies$

- 1) x + y = y + x
- 2) x + (y + z) = (x + y) + z
- 3) $0 \cdot x \in M \Rightarrow 0 \cdot x = 0 \in L \Rightarrow x + 0 = x$. Other, $\exists 0 = 0 \cdot x \in M$
- 4) $\tilde{x} = (-1) \cdot x \in M \Rightarrow \tilde{x} = (-1) \cdot x \in L \Rightarrow x + \tilde{x} = 0 \Rightarrow \exists \tilde{x} = (-1) \cdot x \in M$
- 5) $(\alpha + \beta)x = \alpha x + \beta x$
- 6) $\alpha(x+y) = \alpha x + \alpha y$
- 7) $(\alpha \beta)x = \alpha(\beta x)$
- 8) $1 \cdot x = 1$

Отже, M - лінійний простір.

Example 1.2.3 $M = \mathbb{R}_n[x]$ - многочлен степені $\leq n$ - лінійний підпростір лінійного просторі L = $\mathbb{R}[x]$. А тому є й лінійним простором.

Лінійна залежність/незалежність

Definition 1.3.1 Задано L - лінійний простір.

Система елементів $\{x_1, ..., x_n\} \subset L$ називається:

- **лінійно незалежною**, якщо з рівності $\alpha_1x_1+\cdots+\alpha_nx_n=0$, де $\alpha_1,\ldots,\alpha_n\in\mathbb{R}$, випливає $\alpha_1 = \cdots = \alpha_n = 0.$
- лінійно залежною, якщо $\exists \alpha_1, \dots, \alpha_n \in \mathbb{R} : |\alpha_1| + \dots + |\alpha_n| \neq 0 : \alpha_1 x_1 + \dots + \alpha_n x_n = 0.$

Definition 1.3.2 Вираз $\gamma_1 y_1 + \cdots + \gamma_n y_n$, де $\gamma_1, \ldots, \gamma_n \in \mathbb{R}$, називається лінійною комбінацією.

Example 1.3.3 Будь-які вектори $\{\vec{a}, \vec{b}\}$ - л.н.з. в $\mathbb{R}^2 \iff$ вони не колінеарні.

Example 1.3.4 Задано лінійний простір $L = \mathbb{R}^4$ і система векторів $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$, де

$$\vec{x}_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \\ 3 \end{pmatrix}, \, \vec{x}_2 = \begin{pmatrix} 4 \\ -1 \\ 2 \\ 1 \end{pmatrix}, \, \vec{x}_3 = \begin{pmatrix} 2 \\ 1 \\ -1 \\ 3 \end{pmatrix}, \, \vec{x}_4 = \begin{pmatrix} 1 \\ -2 \\ 1 \\ -5 \end{pmatrix}.$$

Перевіримо, чи будуть вони л.н.з. Розпишемо їхню лінійну комбінацію:

 $\alpha_1 \vec{x}_1 + \alpha_2 \vec{x}_2 + \alpha_3 \vec{x}_3 + \alpha_4 \vec{x}_4 = 0.$

$$\alpha_{1}x_{1} + \alpha_{2}x_{2} + \alpha_{3}x_{3} + \alpha_{4}x_{4} = 0.$$

$$\alpha_{1}\begin{pmatrix} 1\\0\\2\\3 \end{pmatrix} + \alpha_{2}\begin{pmatrix} 4\\-1\\2\\1 \end{pmatrix} + \alpha_{3}\begin{pmatrix} 2\\1\\-1\\3 \end{pmatrix} + \alpha_{4}\begin{pmatrix} 1\\-2\\1\\-5 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}$$

$$\begin{cases} (1): \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0 \\ (2): -\alpha_2 + \alpha_3 - 2\alpha_4 = 0 \\ (3): 2\alpha_1 + 2\alpha_2 - \alpha_3 + \alpha_4 = 0 \\ (4): 3\alpha_1 + \alpha_2 + 3\alpha_3 - 5\alpha_4 = 0 \end{cases} \Longrightarrow \begin{cases} (1): & \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0 \\ (2): & \alpha_2 - \alpha_3 + 2\alpha_4 = 0 \\ (3) - 2(1): & 6\alpha_2 + 5\alpha_3 + \alpha_4 = 0 \\ (4) - 3(1): & 11\alpha_2 + 3\alpha_3 + 8\alpha_4 = 0 \end{cases}$$

$$\Longrightarrow \begin{cases} (1): & \alpha_1 + 4\alpha_2 + 2\alpha_3 + \alpha_4 = 0 \\ (2): & \alpha_2 - \alpha_3 + 2\alpha_4 = 0 \\ -6(2) + (3): & 11\alpha_3 - 11\alpha_4 = 0 \\ -11(4) + (4): & 14\alpha_3 - 14\alpha_4 = 0 \end{cases} \Longrightarrow \begin{cases} \alpha_1 = 9\alpha_4 \\ \alpha_2 = -3\alpha_4 \\ \alpha_3 = \alpha_4 \end{cases}$$

Звісно, є нульовий розв'язок, але такий розв'язок не буде єдиним. Можна взяти (9, -3, 1, 1), щоб наша лінійна комбінація була нулевою.

Отже, $\{\vec{x}_1, \vec{x}_2, \vec{x}_3, \vec{x}_4\}$ - л.з.

Example 1.3.5 Перевіримо, чи буде система $\{\sin x, \cos x, \cos 2x\}$ - л.н.з.

Remark 1.3.6 Тут не можна використовувати цю тотожність: $\cos 2x = \cos^2 x - \sin^2 x$. Тому що тут фігурує "квадрат": нема множення в лінійному просторі (лише на скаляр), $\cos^2 x$ або

 $\alpha_1 \sin x + \alpha_2 \cos x + \alpha_3 \cos 2x = 0(x)$, причому $\forall x \in \mathbb{R}$. Тут типу $0(x) = 0 \ \forall x \in \mathbb{R}$.

Якщо ця рівність виконується для довільних x, то зокрема має виконуватись й для конкретних.

При
$$x = 0$$
: $\alpha_2 + \alpha_3 = 0$.
При $x = \frac{\pi}{2}$: $\alpha_1 - \alpha_3 = 0$.

При
$$x = \frac{\pi}{4} : \frac{\sqrt{2}}{2}\alpha_1 + \frac{\sqrt{2}}{2}\alpha_2 = 0.$$
 Отже, виникає система:

 $\sin^2 x$ - це вже абсолютно інший елемент.

$$\begin{cases} \alpha_2 + \alpha_3 = 0 \\ \alpha_1 - \alpha_3 = 0 \\ \alpha_1 + \alpha_2 = 0 \end{cases} \implies \begin{cases} \alpha_2 = -\alpha_3 \\ \alpha_1 = \alpha_3 \end{cases}$$

Тут вже можуть виникати думки, що це - л.з. система, але... Візьмемо ще один $x=\frac{\pi}{2}$:

$$\frac{\sqrt{3}}{2}\alpha_1 + \frac{1}{2}\alpha_2 + \frac{1}{2}\alpha_3 = 0.$$

У це рівняння підставимо отримані α_1, α_2 :

$$\sqrt{3}\alpha_3 - \alpha_3 + \alpha_3 = 0 \Rightarrow \alpha_3 = 0$$
. А отже, $\alpha_1 = \alpha_2 = 0$.

Якщо підставляти абсолютно інші $x \in \mathbb{R}$, то ми отримаємо деяке рівняння, яке автоматично виконано в силу того, що $\alpha_1, \alpha_2, \alpha_3 = 0$.

Остаточно: $\{\sin x, \cos x, \cos 2x\}$ - л.н.з.

Proposition 1.3.7 Властивості л.н.з. та л.з. систем

- 1) Якщо система $\{x_1 \dots, x_n\}$ містить л.з. підсистему $\{x_{j_1} \dots, x_{j_k}\}$, то вся система л.з.;
- 2) Якщо система $\{x_1,\ldots,x_n\}$ л.н.з., то будь-яка підсистема теж л.н.з.;
- 3) Якщо $\{x_1 \dots, x_n\}$ містить принаймні один нульовий елемент, то ця система л.з.;
- 4) Система $\{x_1 \dots, x_n\}$ л.з. \iff існує елемент, який можна виразити як лінійну комбінацію від
- 5) Задано систему $\{x_1, \dots, x_n\}$ і елемент y, що є лінійною комбінацією елементів системи. $\{x_1,\ldots,x_n\}$ - л.н.з. \iff розклад елемента y ϵ ϵ диним.

1) $\{x_{j_1}\dots,x_{j_k}\}$ - л.з., тобто $\exists \alpha_1,\dots,\alpha_k$ ненулеві: $\alpha_1x_{j_1}+\dots+\alpha_kx_{j_k}=0$. Звідси випливає, що: $0x_1+0x_2+\dots+0x_{j_1-1}+\alpha_1x_{j_1}+0x_{j_1+1}+\dots+\alpha_kx_{j_k}+\dots+0x_n=0$.

При цьому більшість коефіцієнтів в новій лінійнії комбінації - ненулеві. Отже, $\{x_1 \dots, x_n\}$ - л.з.

2) наслідок 1).

3)
$$\alpha_1 x_1 + \dots + \alpha_j x_j + \alpha_n x_n = 0.$$

Можна взяти $\alpha_1 = \cdots = \alpha_n = 0$, але $\alpha_j = 1$. Тому наша система буде л.з.

4) В обидва боки доведення.

 \Longrightarrow Дано: $\{x_1,\dots,x_n\}$ - л.з., тобто $\exists \beta_1,\dots,\beta_n$ не всі нулеві: $\beta_1x_1+\dots+\beta_nx_n=0$. Не всі нулеві, тобто $\exists \beta_j \neq 0$. Тоді $\beta_jx_j=-\beta_1x_1-\dots-\beta_{j-1}x_{j-1}-\beta_{j+1}x_{j+1}-\dots-\beta_nx_n$. $x_j=\frac{-\beta_1}{\beta_j}x_1-\dots-\frac{-\beta_n}{\beta_j}x_n$. А це є розклад в лінійну комбінацію інших.

 \sqsubseteq Дано: $\exists x_j : \exists \alpha_1, \dots, \alpha_{j-1}, \alpha_{j+1}, \dots, \alpha_n : x_j = \alpha_1 x_1 + \dots + \alpha_{j-1} x_{j-1} + \alpha_{j+1} x_{j+1} + \dots + \alpha_n x_n$. $\Rightarrow \alpha_1 x_1 + \dots + \alpha_{j-1} x_{j-1} + (-1) x_j + \alpha_{j+1} x_{j+1} + \dots + \alpha_n x_n = 0$. Коефіцієнти не всі нулеві. Отже, $\{x_1, \dots, x_n\}$ - л.з.

5) В обидва боки доведення.

 \Rightarrow Дано: $\{x_1,\ldots,x_n\}$ - л.н.з.

!Припустимо, що розклад не є єдиним. Тобто існує ще одна лінійна комбінація для елемента y, тобто: $y = \beta_1 x_1 + \dots + \beta_n x_n$. Тоді:

$$0 = y - y = (\alpha_1 - \beta_1)x_1 + \dots + (\alpha_n - \beta_n)x_n.$$

Але з умови л.н.з випливає, що $\alpha_1 = \beta_1, \dots, \alpha_n = \beta_n$. Суперечність!

Отже, в лінійну комбінацію елементу y розкладається єдиним чином.

 \models Дано: $\exists ! \alpha_1, \dots, \alpha_n : y = \alpha_1 x_1 + \dots + \alpha_n x_n$. Перевіримо систему $\{x_1, \dots, x_n\}$ на л.н.з. $\gamma_1 x_1 + \dots + \gamma_n x_n = 0$. $y = y + 0 = (\alpha_1 + \gamma_1) x_1 + \dots + (\alpha_n + \gamma_n) x_n$ Але за умовою розклад єдиний, тому $\alpha + \gamma_1 = \alpha_1, \dots, \alpha_n + \gamma_n = \alpha_n \implies \gamma_1 = \dots = \gamma_n = 0$ Отже, л.н.з.

Елементарні перетворення л.н.з. та л.з. систем

Задано лінійни простір L та систему $\{x_1,\ldots,x_n\}$. Її можна трохи видозмінити: І. $P_{j\leftrightarrow k}:\{x_1,\ldots,x_j,\ldots,x_k,\ldots,x_n\} \to \{x_1,\ldots,x_k,\ldots,x_j,\ldots,x_n\}$ - j-ий та k-ий елементи зміняться місцями.

II.
$$P_{j\to\lambda j}:\{x_1,\ldots,x_j,\ldots,x_n\}\to\{x_1,\ldots,\lambda x_j,\ldots,x_n\}$$
 - до j -го елементу множимо скаляр $\lambda\neq 0$.

III.
$$P_{j\to j+k}:\{x_1,\ldots,x_j,\ldots,x_k,\ldots,x_n\}\to\{x_1,\ldots,x_j,\ldots,x_k+x_j,\ldots,x_n\}$$
 - до j -го елементу додаємо k -ий елемент.

Proposition 1.3.8 Перетворення I, II та III зберігають властивість лінійної залежності/незалежності.

Proof.

Доведемо спочатку випадок л.н.з. Маємо початкову систему $\{x_1,\ldots,x_n\}$ - л.н.з. Розглянемо кожне перетворення:

I.
$$P_{j\leftrightarrow k}\{x_1,\ldots,x_j,\ldots,x_k\ldots,x_n\} = \{x_1,\ldots,x_k,\ldots,x_j\ldots,x_n\}.$$

 $\alpha_1x_1+\cdots+\alpha_jx_k+\cdots+\alpha_kx_j+\cdots+\alpha_nx_n=0 \stackrel{\text{novatkoba}}{\Longrightarrow} \stackrel{\text{n.H.3.}}{\Longrightarrow} \alpha_1=\cdots=\alpha_n=0.$

II.
$$P_{j \to \lambda j}\{x_1,\ldots,x_j,\ldots,x_n\}=\{x_1,\ldots,\lambda x_j,\ldots,x_n\}.$$
 $\alpha_1x_1+\cdots+\alpha_j\lambda x_j+\cdots+\alpha_nx_n=0$ початкова $\alpha_1x_1+\cdots+\alpha_j\lambda x_j+\cdots+\alpha_nx_n=0$ лочатковано $\alpha_j=0$. Але оскільки $\lambda\neq 0$, то гарантовано $\alpha_j=0$.

III.
$$P_{j \to j+k}\{x_1, \dots, x_j, \dots, x_k, \dots, x_n\} = \{x_1, \dots, x_j, \dots, x_k + x_j, \dots, x_n\}.$$
 $\alpha_1 x_1 + \dots + \alpha_j x_j + \dots + \alpha_k (x_k + x_j) + \dots + \alpha_n x_n = 0 \Rightarrow$ $\alpha_1 x_1 + \dots + (\alpha_k + \alpha_j) x_j + \dots + \alpha_k x_k + \dots + \alpha_n x_n = 0 \stackrel{\text{початкова}}{\Longrightarrow}^{\text{- л.н.з.}}$ $\alpha_1 = \alpha_j + \alpha_k = \dots = \alpha_k = \dots = \alpha_n = 0.$ Тоді $\alpha_j = 0.$

Отже, л.н.з. система після будь-якого елементарного перетворення залишається л.н.з.

Лишилось довести випадок л.з. Мамемо початкову систему $\{x_1, \dots, x_n\}$ - л.з.

!Припустимо, що л.з. система після будь-якого з трьох перетворень -

 $P_{\text{будь-яке}}\{x_1,\dots,x_n\}$ - стане л.н.з. Тоді якщо зробити зворотнє перетворення, тобто:

І. $\{x_1,\ldots,x_k,\ldots,x_j,\ldots,x_n\}$ - змінити ще раз j-ий,k-ий елементи місцями;

II.
$$\{x_1,\ldots,\lambda x_j,\ldots,x_n\}$$
 - помножити на $\frac{1}{\lambda}$ j -ий елемент;

III. $\{x_1,\ldots,x_j,\ldots,x_k+x_j,\ldots,x_n\}$ - помножити на (-1) елемент x_j , додати j-ий елемент до елементу

 $x_k + x_j$, а потім помножити на (-1) елемент $(-x_j)$;

- то початкова система має стати л.н.з. А ми маємо л.з. за умовою. Тому суперечність! Отже, л.з. система після елементарного перетворення залишається л.з.

Example 1.3.9 Задано систему векторів $\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$. Перевірити, чи буде вона л.н.з., де

$$\vec{x}_1 = \begin{pmatrix} 14 \\ -27 \\ -49 \\ 113 \end{pmatrix}, \ \vec{x}_2 = \begin{pmatrix} 43 \\ -82 \\ -145 \\ 340 \end{pmatrix}, \ \vec{x}_3 = \begin{pmatrix} 85 \\ -163 \\ -293 \\ 677 \end{pmatrix}.$$

Зробимо ось такі перетворення над системою: $\{\vec{x}_1, \vec{x}_2 - 3\vec{x}_1, \vec{x}_3 - 6\vec{x}_1\}$. Позначу їх як $\{\vec{x_1^*}, \vec{x_2^*}, \vec{x_3^*}\}$, де

$$\vec{x_1^*} = \vec{x}_1 = \begin{pmatrix} 14 \\ -27 \\ -49 \\ 113 \end{pmatrix}, \ \vec{x_2^*} = \vec{x}_2 - 3\vec{x}_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 1 \end{pmatrix}, \ \vec{x_3^*} = \vec{x}_3 - 6\vec{x}_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix}.$$

Розпишемо їхню лінійну комбінацію - отримаємо:

$$\alpha_1 \vec{x_1^*} + \alpha_2 \vec{x_2^*} + \alpha_3 \vec{x_3^*} = \vec{0} \implies \begin{cases} 14\alpha_1 + \alpha_2 + \alpha_3 = 0 \\ -27\alpha_1 - \alpha_2 - \alpha_3 = 0 \end{cases} \implies \alpha_1 = 0, \alpha_2 = 0, \alpha_3 = 0.$$

$$113\alpha_1 + \alpha_2 - \alpha_3 = 0$$

Таким чином, $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ - л.н.з., а тому початкова система $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ - л.н.з.

1.4 Лінійні оболонки

Definition 1.4.1 Задано L - лінійний простір і система $\{x_1, \ldots, x_n\} \subset L$. Лінійною оболонкою цієї системи називають множину всіх лінійних комбінацій:

$$span\{x_1,\ldots,x_n\} \stackrel{\text{a6o}}{=} \text{n.o.}\{x_1,\ldots,x_n\} = \{\alpha_1x_1 + \cdots + \alpha_nx_n | \alpha_1,\ldots,\alpha_n \in \mathbb{R}\}$$

Якщо взяти довільну множину $M \subset L$, то тут множина задається таким чином:

$$spanM \stackrel{\text{afo}}{=} n.o.M = \{\alpha_1 x_1 + \dots + \alpha_j x_j | j \geq 1 : x_1, \dots, x_j \in M : \alpha_1, \dots, \alpha_j \in \mathbb{R} \}$$

Proposition 1.4.2 Лінійна оболонка є лінійним підпростором лінійного простороу L.

Proof

Доведення за означенням. Нехай є $span\{x_1,\ldots,x_n\}$. Маємо, що $\forall w_1,w_2\in span\{x_1,\ldots,x_n\}$, тобто: $w_1=\alpha_1x_1+\cdots+\alpha_nx_n$

$$w_2 = \beta_1 x_1 + \dots + \beta_n x_n$$

$$\implies w_1 + w_2 = (\alpha_1 + \beta_1)x_1 + \dots + (\alpha_n + \beta_n)x_n \implies w_1 + x_2 \in span\{x_1, \dots, x_n\}$$

 $\lambda w_1 = \lambda \alpha_1 x_1 + \dots + \lambda \alpha_n x_n \implies \lambda w_1 \in span\{x_1, \dots, x_n\}.$

Отже, $span\{x_1,\ldots,x_n\}$ - підпростір L.

Випадок для *spanM* є аналогічним.

Proposition 1.4.3 $span\{x_1,\ldots,x_n\}$ - найменший підпростір, що містить $x_1,\ldots,x_n\in L$.

Математично кажучи, припустимо, що M - лінійний підпростір, що містить x_1, \ldots, x_n та при цьому $M \subset span\{x_1, \ldots, x_n\}$. Тоді $M = span\{x_1, \ldots, x_n\}$.

Вказівка: показати, що $w \in span\{x_1, \ldots, x_n\} \iff w \in M$.

Example 1.4.4 Задано $L = \mathbb{R}^3$ і система з трьох векторів $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$, де:

$$\vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \vec{e_3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Довести, що $span\{\vec{e_1},\vec{e_2},\vec{e_3}\} = \mathbb{R}^3$.

 $span\{\vec{e_1}, \vec{e_2}, \vec{e_3}\} \stackrel{\text{def}}{=} \{\alpha_1 \vec{e_1} + \alpha_2 \vec{e_2} + \alpha_3 \vec{e_3} | \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \{(\alpha_1, \alpha_2, \alpha_3)^T | \alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}\} = \mathbb{R}^3.$

1.5 Підпорядковані та еквівалентні системи

Definition 1.5.1 Задано L - лінійний простір.

Система $\{y_1,\ldots,y_n\}\subset L$ називається підпорядкованою системою під $\{x_1,\ldots,x_m\}\subset L$, якщо:

$$\forall y_j : \exists \alpha_1^j, \dots, \alpha_m^j : y_j = \alpha_1^j x_1 + \dots + \alpha_m^j x_m$$

Позначення: $\{y_1, \ldots, y_n\} \prec \{x_1, \ldots, x_m\}$.

Для випадку з множиною Y, яка підпорядкована X, маємо:

$$\forall y \in Y : \exists x_1, \dots, x_n \in X : \exists \alpha_1, \dots, \alpha_n \in \mathbb{R} : y = \alpha_1 x_1 + \dots + \alpha_n x_n$$

Позначення: $Y \prec X$.

Proposition 1.5.2 Задано L - лінійний простір та системи $\{x_1, \ldots, x_m\}, \{y_1, \ldots, y_n\} \subset L$. $\{y_1, \ldots, y_n\} \prec \{x_1, \ldots, x_m\} \iff span\{y_1, \ldots, y_n\} \subset span\{x_1, \ldots, x_m\}$.

${f Proof.}$

Proposition 1.5.3 Властивості підпорядкованих систем

Підпорядкована система ϵ рефлексивною, антисиметричною і транзитивною. Тобто це ϵ відношенням порядку.

Випливає частково з попереднього твердження.

Example 1.5.4 Нехай задано систему векторів $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ та $\{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$ з \mathbb{R}^3 , де:

$$\vec{y_1} = (0,0,1)$$
 $\vec{x_1} = (1,0,0)$
 $\vec{y_2} = (0,1,0)$ $\vec{x_2} = (1,1,0)$
 $\vec{y_3} = (1,0,0)$ $\vec{x_3} = (1,1,1)$

Перевірити, чи можна вважати, що $\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \prec \{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ та одночасно $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} \prec \{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$. Розв'яжемо задачу на основі доведеного твердження:

Ми вже знаємо, що $span\{\vec{y_1},\vec{y_2},\vec{y_3}\} \stackrel{\mathbf{Ex. 13.4.3.}}{=} \mathbb{R}^3.$

 $span\{\vec{x_1},\vec{x_2},\vec{x_3}\} = \{\beta_1\vec{x_1} + \beta_2\vec{x_2} + \beta_3\vec{x_3}|\beta_1,\beta_2,\beta_3 \in \mathbb{R}\} = \{(\beta_1 + \beta_2 + \beta_3,\beta_2 + \beta_3,\beta_3)|\beta_1,\beta_2,\beta_3 \in \mathbb{R}\} \stackrel{?}{=} \{(a,b,c)|a,b,c \in \mathbb{R}\} = \mathbb{R}^3.$

Пояснення: в рівності зі знаком питання ми вирішили ствердити, що так теж можна записати. Перевіримо, чи ϵ довільними взагалі a,b,c.

$$\begin{cases} a = \beta_1 + \beta_2 + \beta_3 \\ b = \beta_2 + \beta_3 \\ c = \beta_3 \end{cases} \iff \begin{cases} \beta_1 = a - b \\ \beta_2 = b - c \\ \beta_3 = c \end{cases}$$

Отже, отримали, що $span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} = span\{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$, або інакше $\begin{cases} span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} \subset span\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \\ span\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \subset span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} \end{cases}$ Отже, $\{\vec{y_1}, \vec{y_2}, \vec{y_3}\} \prec \{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ та $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} \prec \{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$.

Theorem 1.5.5 Задано L - лінійний простір та системи, наведені нижче. Відомо, що $\{y_1,\ldots,y_n\}$ $\prec \{x_1,\ldots,x_m\}$. Тоді $n\leq m$.

Proof.

!Припустимо, що все ж таки n>m. Оскільки $\{y_1,\ldots,y_n\}$ - л.н.з., то звідси всі вони ненулеві. Розглянемо елемент y_1 . За умовою теореми, $y_1=\alpha_1x_1+\cdots+\alpha_mx_m\neq 0$. Через неможливість рівності нуля, можна твердити, що знайдеться принаймні один ненульовий коефіцієнт.

Тоді, не втрачаючи загальності, нехай $\alpha_1 \neq 0$. Виразимо тепер x_1 , маємо:

$$x_1 = \alpha_1^{-1} y_1 - \alpha_1^{-1} \alpha_2 x_2 - \dots - \alpha_1^{-1} \alpha_m x_m$$
. З цього рівняння випливає, що $\{x_1, x_2, \dots, x_m\} \prec \{y_1, x_2, \dots, x_m\}$. За транзитивністю, $\{y_1, y_2, \dots, y_n\} \prec \{y_1, x_2, \dots, x_m\}$.

Розглянемо елемент y_2 . За щойно отриманою умовою, $y_2 = \beta_1 y_1 + \beta_2 x_2 + \dots + \beta_m x_m \neq 0$. Аналогічно має існувати принаймні один ненульовий коефіцієнт.

Не втрачаючи загальності знову, $\beta_2 \neq 0$. Виражаємо x_2 :

$$x_2=eta_2^{-1}y_2-eta_2^{-1}eta_1y_1-\cdots-eta_2^{-1}eta_mx_m$$
. З цього рівняння випливає, що $\{y_1,x_2,\ldots,x_m\}$ $\prec \{y_1,y_2,\ldots,x_m\}$. За транзитивністю, $\{y_1,y_2,y_3,\ldots,y_n\}$ $\prec \{y_1,y_2,x_3,\ldots,x_m\}$.

:

I так можемо продовжувати допоки не дістанемося до $\{y_1,\ldots,y_{m-1},x_m\} \prec \{y_1,\ldots,y_m\}.$

Остаточно: $\{y_1,\ldots,y_m\} \prec \{y_1,\ldots,y_n\}$ - суперечність! Тому що принаймні y_{m+1} має виражатися через лінійну комбінацію $\{y_1,\ldots,y_n\}$, що л.н.з.

Висновок: $n \leq m$.

Example 1.5.6 Приклад того, що зворотнє твердження не є вірним. Саме $\{\vec{i}\} \not < \{\vec{k}, \vec{j}\}$, де $\vec{i}, \vec{j}, \vec{k}$ одиничні вектори простору.

Definition 1.5.7 Задано L - лінійний простір.

Системи $\{y_1, \ldots, y_n\} \subset L$ та $\{x_1, \ldots, x_m\} \subset L$ називаються **еквівалентними**, якщо:

$$\{y_1, \dots, y_n\} \prec \{x_1, \dots, x_m\}$$
$$\{x_1, \dots, x_m\} \prec \{y_1, \dots, y_n\}$$

Позначення: $\{y_1, \dots, y_n\} \sim \{x_1, \dots, x_m\}$.

Proposition 1.5.8 Задано L - лінійний простір та системи $\{x_1, \ldots, x_m\}, \{y_1, \ldots, y_n\} \subset L$. $\{y_1, \ldots, y_n\} \sim \{x_1, \ldots, x_m\} \iff span\{y_1, \ldots, y_n\} = span\{x_1, \ldots, x_m\}$. Випливае з **Prp. 1.5.2**

Proposition 1.5.9 Властивості еквівалентних систем

Еквівалентна система ϵ рефлексивною, симетричною і транзитивною. Тобто це ϵ відношенням еквівалентності.

Випливає з Ргр. 1.5.3

Theorem 1.5.10 Якщо $\{y_1,\ldots,y_n\}$ $\sim \{x_1,\ldots,x_m\}$, то n=m. Випливае з **Th. 1.5.5**

Example 1.5.11 Приклад того, що зворотнє твердження не є вірним. Саме $\{\vec{i}, \vec{j}, \vec{k}\} \not\sim \{\vec{i} - \vec{j}, \vec{j} - \vec{k}, \vec{k}\}$ Це знову одиничні вектори простору.

1.6 База та ранг. Базиси та розмірності

Definition 1.6.1 Задано L - лінійний простір.

Підсистема $\{x_{j_1},\ldots,x_{j_k}\}$ системи $\{x_1,\ldots,x_m\}\subset L$ називається **повною**, якщо

$$\forall x_t \in \{x_1, \dots, x_m\} : x_t \in span\{x_{j_1}, \dots, x_{j_k}\}$$

Definition 1.6.2 Задано L - лінійний простір.

Підсистема $\{x_{j_1},\ldots,x_{j_k}\}$ системи $\{x_1,\ldots,x_m\}\subset L$ називається **тах. лінійно незалежною**, якщо

$$\forall x_t \in \{x_1, \dots, x_m\} : \{x_{i_1}, \dots, x_{i_t}, x_t\}$$
 - лінійно залежна

Proposition 1.6.3 Підсистема є повною л.н.з. \iff вона є тах. л.н.з.

Proof.

 \leftarrow Дано: $\{x_{j_1}, \dots, x_{j_k}\}$ - тах л.н.з.

Звідси $\forall x_t \in \{x_1, \dots, x_m\}$ система $\{x_{j_1}, \dots, x_{j_k}, x_t\}$ - л.з. Тоді кожний елемент виражається як лінійна комбінація інших. Зокрема $x_t = \beta_1 x_{j_1} + \dots + \beta_k x_{j_k}$.

Оскільки для довільних x_t , то звідси $\{x_{j_1},\ldots,x_{j_k}\}$ - повна л.н.з.

 \Rightarrow Дано: $\{x_{j_1},\ldots,x_{j_k}\}$ - повна л.н.з. Тоді $\forall x_t \in \{x_1,\ldots,x_m\}: \exists \alpha_t^1,\ldots,\alpha_t^k: x_t=\alpha_t^1x_{j_1}+\cdots+\alpha_t^kx_{j_k} \implies \alpha_t^1x_{j_1}+\cdots+\alpha_t^kx_{j_k}+(-1)x_t=0,$ коефіцієнти не всі нулі. Тому $\{x_{j_1},\ldots,x_{j_k},x_t\}$ - л.з., що й доводить тах. л.н.з.

Definition 1.6.4 Задано L - лінійний простір.

Базою системи $\{x_1,\ldots,x_m\}\subset L$ називається тах. л.н.з. (або повна л.н.з.) підсистема.

Example 1.6.5 Задано систему $\{\vec{i}, \vec{j}, \vec{i}+2\vec{j}, \vec{i}-3\vec{j}\}$, де \vec{i}, \vec{j} - одиничні вектори на площині. Тут є такі бази: $\{\vec{i}, \vec{j}\}$ або $\{\vec{i}+2\vec{j}, \vec{i}-3\vec{j}\}$. (в принципі, зрозуміло чому). Перелічив не всі бази, які тут можуть бути.

Theorem 1.6.6 Задано L - лінійний простір та систему $\{x_1, \ldots, x_m\} \subset L$, для якої є база $\{x_{p_1}, \ldots, x_{p_s}\}$. Тоді $\{x_1, \ldots, x_m\} \sim \{x_{p_1}, \ldots, x_{p_s}\}$.

Proof

Зрозуміло, що $\{x_{p_1},\ldots,x_{p_s}\}$ \prec $\{x_1,\ldots,x_m\}$. Дійсно, $\{x_{p_1},\ldots,x_{p_s}\}$ - max. л.н.з., тоді $\{x_1,\ldots,x_{p_1},\ldots,x_{p_s},\ldots,x_m\}$ - л.з. Тоді $\forall x_{p_j},j=1,\ldots,s$ виражається через лінійну комбінацію інших.

Перевіримо, що навпаки теж працює:

$$\forall x_t \in \{x_1 \dots, x_m\} : \exists \alpha_t^1, \dots, \alpha_t^s : x_t = \alpha_t^1 x_{p_1} + \dots + \alpha_t^s x_{p_s}.$$
 Тоді за означенням, $\{x_1, \dots, x_m\} \prec \{x_{p_1}, \dots, x_{p_s}\}.$ Отже, $\{x_1, \dots, x_m\} \sim \{x_{p_1}, \dots, x_{p_s}\}.$

Theorem 1.6.7 Задано L - лінійний простір та систему $\{x_1, \ldots, x_m\} \subset L$, для якої є дві бази: $\{x_{p_1}, \ldots, x_{p_s}\}$ та $\{x_{t_1}, \ldots, x_{t_l}\}$. Тоді $\{x_{p_1}, \ldots, x_{p_s}\} \sim \{x_{t_1}, \ldots, x_{t_l}\}$. Випливає з **Th. 1.6.6** та властивості транзитивності.

Definition 1.6.8 Задано L - лінійний простір.

Рангом системи $\{x_1, \dots, x_m\} \subset L$ називається кількість елементів в (будь-якій) її базі. Позначення: $rank\{x_1, \dots, x_m\}$.

Example 1.6.9 Задано систему $\{f_1,f_2,f_3,f_4\}\subset\mathbb{R}_2[x]$, для якої треба знайти ранг, де: $f_1(t)=t^2-3t+2$ $f_2(t)=2t^2+3t-5$ $f_3(t)=-t^2-t+2$ $f_4(t)=-2t^2+5t-3$

Загальна побудова: почергово додаємо елемент, допоки не дійдемо до л.з. А потім досліджуємо всі комбінації (раптом там виявиться л.н.з.).

 $\{f_1\}$ - л.н.з.? Зрозуміло, що тут л.н.з.

 $\{f_1, f_2\}$ - л.н.з.?

 $\alpha f_1 + \beta f_2 = 0 \iff f_1 = -\frac{\beta}{\alpha} f_2$. Але коефіцієнти не є пропорційними, тому $\{f_1, f_2\}$ - л.н.з. $\{f_1, f_2, f_3\}$ - л.н.з.?

$$\alpha_1 f_1 + \alpha_2 f_2 + \alpha_3 f_3 = 0 \iff \begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 = 0 \\ -3\alpha_1 + 3\alpha_2 - \alpha_3 = 0 \\ 2\alpha_1 - 5\alpha_2 + 2\alpha_3 = 0 \end{cases} \iff \begin{cases} \alpha_1 + 2\alpha_2 - \alpha_3 = 0 \\ 9\alpha_2 - 4\alpha_3 = 0 \end{cases}$$

Отже, можна отримати ненульовий розв'язок. Отже, $\{f_1, f_2, f_3\}$ - л.з.

Решта систем із 3-х елементів (треба перевіряти) також ϵ л.з.

Тому $\{f_1, f_2\}$ - max. л.н.з. - база, а остаточно $rank\{f_1, f_2, f_3, f_4\} = 2$.

Definition 1.6.10 Задано L - лінійний простір.

Базисом лінійного простору називають його базу.

Theorem 1.6.11 Задано L - лінійний простір.

$$\{x_1,\ldots,x_n\}$$
 - базис простору $L\iff \forall y\in L:\exists!\alpha_1,\ldots,\alpha_n:y=\alpha_1x_1+\cdots+\alpha_nx_n.$

Proof.

 \Rightarrow Дано: $\{x_1,\ldots,x_n\}$ - базис.

Тоді за означенням, вона є базою, а тому є тах л.н.з. системою. А тому $\forall y \in L$: система $\{x_1, \dots, x_n, y\}$ - л.з., звідси $y = \alpha_1 x_1 + \dots + \alpha_n x_n$. У силу л.н.з. системи $\{x_1, \dots, x_n\}$ заданий розклад єдиний.

Corollary 1.6.12 Задано L - лінійний простір та $\{x_1,\ldots,x_n\}$ - базис. Тоді $L=span\{x_1,\ldots,x_n\}$.

Definition 1.6.13 Задано L - лініний простір.

Розмірністю лінійного простору називають кількість елементів в базисі.

Позначення: $\dim L$.

Remark 1.6.14 Перевірити систему на базис можна трьома варіантами: перевірка на тах л.н.з.; перевірка на повну л.н.з.; перевірка на єдиний розклад системи.

Example 1.6.15 Задано $L = \mathbb{R}_n[x]$. Розглянемо систему $\{1, x, x^2, \dots, x^n\}$ та перевіримо, що це базис. І дійсно, за критерієм,

$$\forall f(x) \in \mathbb{R}_n[x] : \exists ! a_0, a_1, \dots, a_n \in \mathbb{R} : f(x) = a_0 + a_1 x + \dots + a_n x^n \implies \{1, x, \dots, x^n\}$$
 - базис $\mathbb{R}_n[x]$ dim $\mathbb{R}_n[x] = n + 1$.

Remark 1.6.16 Надалі працюємо з лінійними просторами, в яких скінченна (!) кількість елементів в базисі.

Example 1.6.17 Задано $L = \{ \vec{a} \in \mathbb{R}^4 : a_1 - a_2 + a_3 - 5a_4 = 0 \}$. Знайдемо базис цього простору.

$$\forall \vec{a} \in L : \vec{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_2 - a_3 + 5a_4 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = a_2 \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + a_3 \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} + a_4 \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Тому
$$\left\{ \vec{x_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \vec{x_3} = \begin{pmatrix} 5 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$
 - базис, dim $L = 3$.

Можна знайти також інший базис:

 $\begin{aligned} a_3 &= -a_1 + a_2 + 5a_4 \\ \forall \vec{a} \in L : \vec{a} &= \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ -a_1 + a_2 + 5a_4 \end{pmatrix} = a_1 \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix} + a_2 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + a_4 \begin{pmatrix} 0 \\ 0 \\ 5 \\ 1 \end{pmatrix} \\ \text{Тому} \left\{ \vec{x_1} &= \begin{pmatrix} 1 \\ 0 \\ -1 \\ 0 \end{pmatrix}, \vec{x_2} &= \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix}, \vec{x_4} &= \begin{pmatrix} 0 \\ 0 \\ 5 \\ 1 \end{pmatrix} \right\} - \text{базис, dim } L = 3. \end{aligned}$

Example 1.6.18 Знайдемо базис та розмірність простору $span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$. В цьому випадку

$$\vec{x_1} = \begin{pmatrix} 1 \\ -4 \\ -3 \end{pmatrix}, \vec{x_2} = \begin{pmatrix} -3 \\ 6 \\ 7 \end{pmatrix}, \vec{x_3} = \begin{pmatrix} -4 \\ -2 \\ 6 \end{pmatrix}.$$

За щойно доведеною теоремою, нам необхідно знайти базу $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$. Зрозуміло, що $\{\vec{x_1}\}$ - л.н.з. та $\{\vec{x_1}, \vec{x_2}\}$ - л.н.з. (не колінеарні вектори). Тоді перевіряємо $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ на л.н.з.

$$\alpha_{1}\vec{x_{1}} + \alpha_{2}\vec{x_{2}} + \alpha_{3}\vec{x_{3}} = \vec{0} \implies \begin{cases} \alpha_{1} - 3\alpha_{2} - 4\alpha_{3} = 0 \\ -4\alpha_{1} + 6\alpha_{2} - 2\alpha_{3} = 0 \\ -3\alpha_{1} + 7\alpha_{2} + 6\alpha_{3} = 0 \end{cases} \implies \cdots \implies \begin{cases} \alpha_{1} - 3\alpha_{2} - 4\alpha_{3} = 0 \\ \alpha_{2} + 3\alpha_{3} = 0 \end{cases} - \text{Mac}$$

безліч розв'язків. Отже, $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ - л.з.

Тоді $\{\vec{x_1}, \vec{x_2}\}$ - тах. л.н.з., а отже, є базою, а отже, є базисом $span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} = span\{\vec{x_1}, \vec{x_2}\}$. Нарешті, dim $span\{\vec{x_1}, \vec{x_2}, \vec{x_3}\} = 2$.

Proposition 1.6.19 Задано M - підпростір лінійного простору L. Тоді $\dim M \leq \dim L$.

Proof

Виділимо базис $\{f_1,\ldots,f_k\}\subset L$ в M, тоді $\dim M=k$. Звідси в L система $\{f_1,\ldots,f_k\}$ є л.н.з. Тоді ми можемо доповнити цю систему елементами $g_1,\ldots,g_n\in L$, щоб утворити базис $\{f_1,\ldots,f_k,g_1,\ldots,g_n\}$. А отже, $\dim L=k+n=\dim M+n\implies \dim M\leq \dim L$.

Proposition 1.6.20 Задано L - лінійний простір та M - такий лінійний підпростір, що $M \subset L$ та додатково $\dim M = \dim L$. Тоді L = M.

Proof.

Нехай $\{f_1,\ldots,f_n\}$ - базис в M. Тоді $\{f_1,\ldots,f_n\}$ - л.н.з. в L, але оскільки $\dim M=\dim L$, то $\{f_1,\ldots,f_n\}$ - базис в L. А тому $\forall y\in L:y=\alpha_1x_1+\cdots+\alpha_nx_n\Longrightarrow y\in M$. Тобто маємо, що $L\subset M$. За умовою $M\subset L$. Отже, L=M.

1.7 Сума, перетин, пряма сума лінійних просторів

Definition 1.7.1 Задано L - лінійний простір та M_1, M_2 - підпростори.

- Перетином підпросторів називається множина:

$$M_1 \cap M_2 = \{x \in L | x \in M_1, x \in M_2\}$$

- Сумою підпросторів називається множина:

$$M_1 + M_2 = \{z \in L : z = x + y | x \in M_1, y \in M_2\}$$

Lemma 1.7.2 $M_1 + M_2 = span\{M_1, M_2\}.$

Proof.

 $\{z \in L : z = x + y : x \in M_1, y \in M_2\} \subset span\{M_1, M_2\}$ - випливає з означення л.о. Перевіримо, що $span\{M_1,M_2\}\subset\{z\in L:z=x+y:x\in M_1,y\in M_2\}.$ Справді, $\forall w \in span\{M_1, M_2\} : w = \alpha_1 x_1 + \dots + \alpha_n x_n + \beta_1 y_1 + \dots + \beta_m y_m$ $x_1,\ldots,x_m\in M_1;y_1,\ldots,y_m\in M_2$ $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in \mathbb{R}$ $w = (\alpha_1 x_1 + \dots + \alpha_n x_n) + (\beta_1 y_1 + \dots + \beta_m y_m) \implies w = x + y \in \{z \in L : z = x + y : x \in M_1, y \in M_2\}.$ $= x \in M_1 \qquad = y \in M_2$ Отже, $span\{M_1, M_2\} = \{z \in L : z = x + y : x \in M_1, y \in M_2\} = M_1 + M_2.$

Theorem 1.7.3 $M_1 \cap M_2$ та $M_1 + M_2$ - лінійні підпростори лінійного простору L.

Proof.

1) $M_1 \cap M_2$ - лінійний підпростір?

$$\forall t_1, t_2 \in M_1 \cap M_2 : \forall \alpha_1, \alpha_2 \in \mathbb{R} : \begin{cases} t_1, t_2 \in M_1 \\ t_1, t_2 \in M_2 \end{cases} \Rightarrow \begin{cases} \alpha_1 t_1 + \alpha_2 t_2 \in M_1 \\ \alpha_1 t_1 + \alpha_2 t_2 \in M_2 \end{cases} \implies \alpha_1 t_1 + \alpha_2 t_2 \in M_1 \cap M_2$$
- лінійний підпростір.

2) $M_1 + M_2$ - лінійний підпростір?

$$\forall z_1, z_2 \in M_1 + M_2 : \forall \alpha_1, \alpha_2 \in \mathbb{R} : \begin{cases} z_1 = x_1 + y_1 \\ z_2 = x_2 + y_2 \end{cases}$$
 $x_1, x_2 \in M_1; y_1, y_2 \in M_2$ $\Rightarrow \alpha_1 z_1 + \alpha_2 z_2 = (\alpha_1 x_1 + \alpha_2 x_2) + (\alpha_1 y_1 + \alpha_2 y_2) \in M_1 + M_2 -$ лінійний підпростір.

Example 1.7.4 Задамо лінійний простір $L = \mathbb{R}^2$ та підпростори $M_1 = OX, M_2 = OY$. $M_1 \cap M_2 = (0,0).$ $\vec{z} \in M_1 + M_2 : \vec{z} = \vec{x} + \vec{y} = \alpha \vec{i} + \beta \vec{j}$. Таким чином, $M_1 + M_2 = \mathbb{R}^2 = XOY$.

Remark 1.7.5 $M_1 \cup M_2 \neq XOY$. Ця множина описує вектори, які мають принаймні одну нульову координату. Водночас $M_1 + M_2 = XOY$ - абсолютно довільний вектор площини.

Theorem 1.7.6 Задано L - лінійний простір та M_1, M_2 - підпростори. Тоді $\dim M_1 + \dim M_2 = \dim(M_1 + M_2) + \dim(M_1 \cap M_2).$

Proof.

Нехай $\{h_1,\ldots,h_k\}$ буде базисом для $M_1\cap M_2$. Оскільки $M_1\cap M_2$ - підпростір M_1 , то за щойно доведеною лемою, $\dim(M_1 \cap M_2) \leq \dim M_1$. Тоді базисом в M_1 буде система $\{h_1, \ldots, h_k, g_1, \ldots, g_m\}$. Аналогічними міркуваннями для M_2 отримаємо базис $\{h_1, \ldots, h_k, f_1, \ldots, f_n\}$. Покажемо, що $\{h_1,\ldots,h_k,f_1,\ldots,f_n,g_1,\ldots,g_m\}$ - базис M_1+M_2 .

I. Перевіримо на л.н.з.

$$\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n + \gamma_1 g_1 + \dots + \gamma_m g_m = 0$$

$$\Longrightarrow (\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n) = (-\gamma_1 g_1 - \dots - \gamma_m g_m)(*).$$

Елемент справа належить $M_1 \cap M_2$, оскільки сам належить M_1 , а лівий елемент належить M_2 . Тому правий елемент можна розкласти за базисом $M_1 \cap M_2$:

$$\begin{aligned} &(-\gamma_1 g_1 - \dots - \gamma_m g_m) = \tau_1 h_1 + \dots + \tau_k h_k. \\ &\Longrightarrow \tau_1 h_1 + \dots + \tau_k h_k + \gamma_1 g_1 + \dots + \gamma_m g_m = 0. \\ &\text{Оскільки } \{h_1, \dots, h_k, g_1, \dots, g_m\} \text{ - базис, то звідси } \tau_1 = \dots = \tau_k = \gamma_1 = \dots = \gamma_m = 0. \\ &\text{Отже, рівнняння } (*) \text{ матиме вигляд:} \\ &\alpha_1 h_1 + \dots + \alpha_k h_k + \beta_1 f_2 + \dots + \beta_n f_n = 0. \end{aligned}$$

Оскільки $\{h_1, \dots, h_k, f_1, \dots, f_k\}$ - базис, то звідси $\alpha_1 = \dots = \alpha_k = \beta_1 = \dots = \beta_n = 0.$ Всі коефіцієнти в нас нульові, тоді $\{h_1,\ldots,h_k,f_1,\ldots,f_n,g_1,\ldots,g_m\}$ - л.н.з.

II. Перевіримо на повноту.

$$\forall z \in M_1 + M_2 : z = x + y,$$

$$x = x_1 h_1 + \dots + x_k h_k + \tilde{x_1} g_1 + \dots + \tilde{x_m} g_m \in M_1$$

$$y = y_1 h_1 + \dots + y_k h_k + \tilde{y_1} f_1 + \dots + \tilde{y_n} f_n \in M_2$$

$$\Rightarrow z = (x_1 + y_1) h_1 + \dots + (x_k + y_k) h_k + \tilde{x_1} g_1 + \dots + \tilde{x_m} g_m + \tilde{y_1} f_1 + \dots + \tilde{y_n} f_n$$

Тобто система ϵ повною.

Остаточно $\{h_1,\dots,h_k,f_1,\dots,f_n,g_1,\dots,g_m\}$ - базис M_1+M_2 . Залишилось показати рівність розмірностей: $\dim (M_1+M_2)=k+m+n \quad \dim (M_1\cap M_2)=k$ $\dim M_1=k+m \quad \dim M_2=k+n$ $\Longrightarrow \dim M_1+\dim M_2=\dim (M_1+M_2)+\dim (M_1\cap M_2)$.

Example 1.7.7 Нехай задані такі простори:

$$L_{1} = span \left\{ \vec{x_{1}} = \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix}, \vec{x_{2}} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \vec{x_{3}} = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} \right\}$$

$$L_{2} = span \left\{ \vec{y_{1}} = \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix}, \vec{y_{2}} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}, \vec{y_{3}} = \begin{pmatrix} 3 \\ 7 \\ -4 \end{pmatrix} \right\}$$

Маємо $\{\vec{x_1}, \vec{x_2}, \vec{x_3}\}$ - л.з., але водночас $\{\vec{x_1}, \vec{x_2}\}$ - л.н.з. Також $\{\vec{y_1}, \vec{y_2}, \vec{y_3}\}$ - л.з., але $\{\vec{y_1}, \vec{y_2}\}$ - л.н.з. Тому в лінійній оболонці лишаємо лише їх. Отже:

 $L_1 = span \{\vec{x_1}, \vec{x_2}\}\$ $L_2 = span \{\vec{y_1}, \vec{y_2}\}\$

 $L_1 + L_2 = span\{L_1, L_2\} = span\{\vec{x_1}, \vec{x_2}, \vec{y_1}, \vec{y_2}\}.$

Оскільки наші вектори з простору \mathbb{R}^3 , то max. л.н.з. система містить не більше 3 елементів. Можна переконатись самостійно, що $\{\vec{x_1}, \vec{x_2}, \vec{y_1}\}$ - л.н.з. Отже, $L_1 + L_2 = span\{\vec{x_1}, \vec{x_2}, \vec{y_1}\}$. Оскільки $\dim(L_1 + L_2) = 3$ та $L_1 + L_2 \subset \mathbb{R}^3$, то $L_1 + L_2 = \mathbb{R}^3$ за **Prp. 1.6.19**.

Скористаємось зв'язком між розмірностями:

$$\dim L_1 + \dim L_2 = \dim(L_1 + L_2) + \dim(L_1 \cap L_2) \implies \dim(L_1 \cap L_2) = 1.$$

=2 =2 Тоді $L_1 \cap L_2 = span\{\vec{z}\}$

Якщо $\vec{z} \in L_1$, то $\vec{z} = \alpha_1 \vec{x_1} + \alpha_2 \vec{x_2}$

Якщо $\vec{z} \in L_2$, то $\vec{z} = \beta_1 \vec{y_1} + \beta_2 \vec{y_2}$

 $\vec{z} \in L_1 \cap L_2$, то $\alpha_1 \vec{x_1} + \alpha_2 \vec{x_2} = \beta_1 \vec{y_1} + \beta_2 \vec{y_2}$.

$$\alpha_{1} \begin{pmatrix} 3 \\ 2 \\ -1 \end{pmatrix} + \alpha_{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \beta_{1} \begin{pmatrix} 1 \\ 3 \\ -2 \end{pmatrix} + \beta_{2} \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix} \implies \begin{cases} 3\alpha_{1} + \alpha_{2} = \beta_{1} + 2\beta_{2} \\ 2\alpha_{1} + \alpha_{2} = 3\beta_{1} + 4\beta_{2} \\ -\alpha_{1} = -2\beta_{1} - 2\beta_{2} \end{cases}$$

Розв'язуючи систему, ми отримаємо:

$$\alpha_{1} = 2\beta_{1} + 2\beta_{2}$$

$$\alpha_{2} = -\beta_{1} \implies \beta_{1} = -\beta_{2}. \text{ Тоді } \vec{z} = \beta_{1}\vec{y_{1}} - \beta_{1}\vec{y_{2}} = \beta_{1} \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}.$$

$$\alpha_{2} = -5\beta_{1} - 4\beta_{2}$$

Остаточно
$$L_1 \cap L_2 = span \left\{ \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix} \right\}.$$

Definition 1.7.8 Задано L - лінійний простір та M_1, M_2 - підпростори. **Прямою сумою** називають множину:

$$M_1 + M_2 = \{ z \in L | \exists ! x \in M_1, \exists ! y \in M_2 : z = x + y \}$$

Lemma 1.7.9 Критерій прямої суми

 $M_1 + M_2$ є прямою сумою $\iff M_1 \cap M_2 = \{0\}.$

Proof.

 \Rightarrow Дано: $M_1 \dot{+} M_2$, тобто пряма сума

Нехай
$$z\in M_1\cap M_2\Rightarrow \begin{cases}z\in M_1\\z\in M_2\end{cases}\Rightarrow \begin{cases}z=0\\M_1\\M_2\end{cases}$$

За умовою розклад z - єдиний, тому $z=0+z=z+0 \Rightarrow z=0$

 \leftarrow Дано: $M_1 \cap M_2 = \{0\}$

!Припустимо, що z має не один розклад, тобто $\begin{cases} z=z_1+y_1\\ z=z_2+y_2 \end{cases},\; x_1,x_2\in M_1,\; y_1,y_2\in M_2$

$$\Longrightarrow 0 = z - z = (x_1 - x_2) + (y_1 - y_2) \implies x_2 - x_1 = y_1 - y_2.$$
 Тому $x_1 - x_2 \in M_1, M_2$, та $y_1 - y_2 \in M_2, M_1 \Rightarrow x_2 - x_1 \in M_1 \cap M_2, y_2 - y_1 \in M_1 \cap M_2.$ Отже, $x_1 = x_2, y_1 = y_2$. Суперечність!

Таким чином, $\forall z \in M_1 + M_2 : \exists ! x \in M_1, \exists ! t \in M_2 : z = x + y,$ тобто пряма сума.

Corollary 1.7.10 dim $(M_1 + M_2)$ = dim M_1 + dim M_2 .

Example 1.7.11 Перевірити, чи буде $\mathbb{R}^4 = L_1 \dot{+} L_2$, якщо задані відповідні підпростори: $L_1 = \{ \vec{x} \in \mathbb{R}^4 : 3x_1 - x_2 + x_3 - 5x_4 = 0 \};$ $L_2 = \{ \vec{x} \in \mathbb{R}^4 : x_1 = x_2 = x_3 = x_4 \}.$

$$L_2 = \{x \in \mathbb{R} : x_1 = x_2 = x_3 = x_4\}.$$
Якщо $\vec{x} \in L_1$, то $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 3 \\ 0 \\ 0 \end{pmatrix} + x_3 \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 0 \\ -5 \\ 0 \\ 1 \end{pmatrix}.$ Отримаємо базис з трьох векторів, $\dim L_1 = 3$.

3 трьох векторів,
$$\dim L_1 = 3$$
.
Якщо $\vec{x} \in L_2$, то $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_1 \\ x_1 \\ x_1 \end{pmatrix} = x_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$. Отримаємо базис з одного вектора, $\dim L_2 = 1$.
Тоді $L_1 + L_2 = snan\{L_1, L_2\}$ - якщо обережно перевірити, то отримані 4 вектори будуть дін здот

Тоді $L_1 + L_2 = span\{L_1, L_2\}$ - якщо обережно перевірити, то отримані 4 вектори будуть л.н.з., отже, $\dim(L_1+L_2)=4$ За формулою про зв'язок між розмірностями, маємо, що $\dim(L_1\cap L_2)=0.$ Тобто

Таким чином, $L_1 + L_2$ є прямою сумою. І нарешті, за **Prp. 1.6.20**, dim $(L_1 \dotplus L_2) = \dim \mathbb{R}^4$ та $L_1 \dotplus L_2 \subset \mathbb{R}^4 \implies L_1 \dotplus L_2 = \mathbb{R}^4$.

$\mathbf{2}$ Дії з лінійними просторами

2.1Лінійні оператори

Definition 2.1.1 Задані L, M - лінійні простори.

Відображення $A: L \to M$, тобто: $\forall x \in L: Ax = y \in M$, називається **лінійним оператором**, якщо виконані наступні умови:

1)
$$\forall x_1, x_2 \in L : A(x_1 + x_2) = Ax_1 + Ax_2$$

2) $\forall \lambda \in \mathbb{R} : A(\lambda x) = \lambda Ax$

2)
$$\forall \lambda \in \mathbb{R} : A(\lambda x) = \lambda Ax$$

Proposition 2.1.2 Властивості лінійних операторів

- 1) Якщо A лінійний оператор, то A(0) = 0;
- 2) A лінійний оператор $\iff \forall x_1, x_2 \in L : \forall \alpha_1, \alpha_2 \in \mathbb{R} : A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2;$

3)
$$\forall x_1, \ldots, x_n \in L : \forall \alpha_1, \ldots, \alpha_n \in \mathbb{R} : A(\alpha_1 x_1 + \cdots + \alpha_n x_n) = \alpha_1 A x_1 + \cdots + \alpha_n A x_n.$$

Proof.

1)
$$A(0) = A(x - x) = Ax + A(-x) = Ax - Ax = 0$$

- 2) Доведення в обидві боки
- \Rightarrow Дано: A лінійний оператор

$$\overline{\text{Тодi}}\ \forall x_1, x_2 \in L: \forall \alpha_1, \alpha_2 \in \mathbb{R}: A(\alpha_1 x_1 + \alpha_2 x_2) = A(\alpha_1 x_1) + A(\alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2$$

$$\models$$
 Дано: $\forall x_1, x_2 \in L : \forall \alpha_1, \alpha_2 \in \mathbb{R} : A(\alpha_1 x_1 + \alpha_2 x_2) = \alpha_1 A x_1 + \alpha_2 A x_2$. Тоді:

- 1)) $\alpha_1 = \alpha_2 = 1 \Rightarrow A(x_1 + x_2) = Ax_1 + Ax_2;$
- 2)) $\alpha_1 = 0 \Rightarrow A(\alpha_1 x_1) = \alpha_1 A x_1$.
- Ці умови і показують, що A лінійний оператор.
- 3) випливає з другого, доведення за MI за кількістю x.

Example 2.1.3 Нехай задано оператор
$$A: \mathbb{R}^2 \to \mathbb{R}^2_{=L}$$
, де $A\vec{x} = \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix}$.

Example 2.1.3 Нехай задано оператор
$$A: \mathbb{R}^2 \to \mathbb{R}^2$$
, де $A\vec{x} = \begin{pmatrix} x_1 & 2x_2 \\ 3x_2 + x_1 \end{pmatrix}$. Перевіримо, що такий оператор є лінійним $\vec{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}, \vec{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} \implies \vec{x} + \vec{y} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \end{pmatrix}$ $\implies A(\vec{x} + \vec{y}) = \begin{pmatrix} (x_1 + y_1) - 2(x_2 + y_2) \\ 3(x_2 + y_2) + (x_1 + y_1) \end{pmatrix} = \cdots = \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix} + \begin{pmatrix} y_1 - 2y_2 \\ 3y_2 + y_1 \end{pmatrix} = A\vec{x} + A\vec{y}$ $\alpha \vec{x} = \begin{pmatrix} \alpha x_1 \\ \alpha x_2 \end{pmatrix}$ $\implies A(\alpha \vec{x}) = \begin{pmatrix} (\alpha x_1) - 2(\alpha x_2) \\ 3(\alpha x_2) + (\alpha x_1) \end{pmatrix} = \cdots = \alpha \begin{pmatrix} x_1 - 2x_2 \\ 3x_2 + x_1 \end{pmatrix} = \alpha A\vec{x}$

Отже, A - лінійний оператор

Example 2.1.4 Нехай задано оператор $A: \mathbb{R}_n[t] \to \mathbb{R}_n[t]$ так, що =L = M

$$(Af)(t) = f(t+1) - g(t), \text{ ge } g(t) \not\equiv 0.$$

Маємо $(A0)(x) = 0(t+1) - g(t) \equiv -g(t) \not\equiv 0$. Отже, за першою властивістю, A - НЕ лінійний оператор.

Example 2.1.5 Важливий

Нехай задано оператор $A: \mathbb{R}^n \to \mathbb{R}^m$ таким чином:

$$A\vec{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix}$$

Пехам задано оператор A . \mathbb{R} A \mathbb{R} A \mathbb{R} A \mathbb{R} \mathbb{R}

$$A\vec{x} = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \mathbb{A}\vec{x}.$$

Цей оператор є лінійним, оскільки $A(\alpha \vec{x} + \beta \vec{y}) = \mathbb{A}(\alpha \vec{x} + \beta \vec{y}) + \alpha \mathbb{A}\vec{x} + \beta \mathbb{A}\vec{y} = \alpha A\vec{x} + \beta A\vec{y}$. **Висновок**: матриці задають лінійні оператори в \mathbb{R}^n або \mathbb{C}^n .

Поставимо обернену задачу: $A: \mathbb{R}^n \to \mathbb{R}^m$ - лінійний оператор. З'ясуємо, чи буде існувати матриця, яка задає цей оператор.

Нехай $\{\vec{e_1},\dots,\vec{e_n}\}$ - базис в $\mathbb{R}^n \implies \vec{x} = x_1\vec{e_1}+\dots+x_n\vec{e_n}$. Подіємо цим вектором на оператор: $A\vec{x} = A(x_1\vec{e_1} + \dots + x_n\vec{e_n}) = x_1A\vec{e_1} + \dots + x_nA\vec{e_n}$

Отримали деякі вектори $A\vec{e}_1,\dots,A\vec{e}_n\in\mathbb{R}^m$, що мають якісь координати:

Отримали деякі вектори
$$A\vec{e}_1,\dots,A\vec{e}_n\in\mathbb{R}^m,$$
 що мають якісь координати:
$$A\vec{e}_1=\begin{pmatrix} a_{11}\\ \dots\\ a_{m1} \end{pmatrix} \qquad \dots \qquad A\vec{e}_n=\begin{pmatrix} a_{1n}\\ \dots\\ a_{mn} \end{pmatrix}$$

$$\equiv x_1\begin{pmatrix} a_{11}\\ \dots\\ a_{m1} \end{pmatrix}+\dots+x_n\begin{pmatrix} a_{1n}\\ \dots\\ a_{mn} \end{pmatrix}=\begin{pmatrix} a_{11}x_1+\dots+a_{1n}x_n\\ \dots\\ a_{m1}x_1+\dots+a_{mn}x_n \end{pmatrix}=\begin{pmatrix} a_{11}&\dots&a_{1n}\\ \vdots&\ddots&\vdots\\ a_{m1}&\dots&a_{mn} \end{pmatrix}\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}=\mathbb{A}\vec{x}.$$

Матриця \mathbb{A} складається із стовичиків дії A на базиси елементів $A\vec{e_1}$ стовичик, тобто $\mathbb{A} = (A\vec{e_1} \cdots A\vec{e_n}).$

Висновок: на заданому відображені наш лінійний оператор можна представити через матрицю.

Останнє питання полягає в тому, чи буде така матриця єдиною.

!Припустимо, що $\exists \mathbb{B} \in Mat(m \times n) : \mathbb{A}\vec{x} = \mathbb{B}\vec{x}$, але $\mathbb{A} \neq \mathbb{B}$ - ще одна якась матриця.

Тоді
$$\forall j=1,\ldots,n: \mathbb{A} \vec{e_j}=\mathbb{B} \vec{e_j} \implies \begin{pmatrix} a_{1j} \\ \vdots \\ a_{mj} \end{pmatrix} = \begin{pmatrix} b_{1j} \\ \vdots \\ b_{mj} \end{pmatrix} \implies \forall j=1,\ldots,n: \forall i=1,\ldots,m: a_{ij}=b_{ij}.$$

Але ж $\mathbb{A} \neq \mathbb{B}$. Суперечність!

Висновок: матриця лінійного оператора задається єдиним чином.

Definition 2.1.6 Задано L - лінійний простір.

Лінійним функціоналом на L називається лінійний оператор $\varphi:L\to\mathbb{R}$.

Example 2.1.7
$$L = \mathbb{R}^4$$
, $\varphi : \mathbb{R}^4 \to \mathbb{R}$: $\varphi(\vec{x}) = x_1 + 3x_2 - \pi x_3 + \sqrt{17}x_4$

2.2Арифметичні дії з лінійними операторами

Definition 2.2.1 Задані лінійні оператори $A, B: L \to M$.

Сумою лінійних операторів називають відображення $A + B : L \to M$, яке задається правилом:

$$\forall x \in L : (A+B)x = Ax + Bx$$

Множення константи на лінійний оператор називають відображення $\alpha A: L \to M$, яке задається правилом:

$$\forall x \in L : (\alpha A)(x) = \alpha(Ax)$$

Definition 2.2.2 Оператор $I:L\to L$ називають **одиничним**, якщо

$$\forall x \in L : Ix = x$$

Lemma 2.2.3 Задані лінійні оператори $A, B: L \to M$. Тоді $A+B, \alpha A, \alpha \in \mathbb{R}$ - лінійні оператори.

Proof.

 $\forall x_1, x_2 \in L; \forall \alpha, \beta \in \mathbb{R}:$

1.1)
$$(A + B)(x_1 + x_2) = A(x_1 + x_2) + B(x_1 + x_2) = Ax_1 + Bx_1 + Ax_2 + Bx_2 = (A + B)x_1 + (A + B)x_2$$

1.2) $(A + B)(\beta x_1) = A(\beta x_1) + B(\beta x_1) = \beta(Ax_1 + Bx_1) = \beta(A + B)x_1$

2.1)
$$(\alpha A)(x_1 + x_2) = \alpha(A(x_1 + x_2)) = \alpha(Ax_1 + Ax_2) = \alpha Ax_1 + \alpha Ax_2 = (\alpha A)x_1 + (\alpha A)x_2$$

2.2) $(\alpha A)(\beta x_1) = \alpha A(\beta x) = \beta(\alpha Ax) = \beta(\alpha A)x$

Remark 2.2.4 Одиничний оператор I - зрозуміло, що лінійний.

Remark 2.2.5 Множину всіх лінійних операторів $A: L \to M$ позначають $\mathcal{L}(L, M)$ і є лінійним простором.

Вказівка: перевірити 8 аксіом

Definition 2.2.6 Задані лінійні оператори $A: L \to M, B: M \to N$.

Добутком лінійних операторів називають відображення $B \cdot A : L \to N$, яке визначено правилом:

$$\forall x \in L : (BA)x = B(Ax)$$

Lemma 2.2.7 Задані лінійні оператори $A:L\to M,B:M\to N.$ Тоді BA - лінійний оператор.

Proof.

 $\forall x_1, x_2 \in L; \forall \alpha \in \mathbb{R}:$

1)
$$(BA)(x_1 + x_2) = B(A(x_1 + x_2)) = B(Ax_1 + Ax_2) = B(Ax_1) + B(Ax_2) = (BA)x_1 + (BA)x_2$$

2) $(BA)(\alpha x_1) = B(A(\alpha x_1)) = B(\alpha Ax_1) = \alpha B(Ax_1) = \alpha (BA)x_1$

Remark 2.2.8 Якщо $A, B: L \to L$ та задані $BA, AB: L \to L$, то взагалі $BA \neq AB$.

Example 2.2.9 Задамо лінійні оператори $A: \mathbb{R}^2 \to \mathbb{R}^2, \, B: \mathbb{R}^2 \to \mathbb{R}^2$ таким чином:

$$A\vec{x} = \begin{pmatrix} 2x_1 + x_2 \\ 3x_1 + x_2 \end{pmatrix}$$
 $B\vec{x} = \begin{pmatrix} -x_1 \\ x_1 + x_2 \end{pmatrix}$ $B\vec{x} = \begin{pmatrix} -2x_1 - x_2 \\ 2x_1 + x_2 + 3x_1 + x_2 \end{pmatrix} = \begin{pmatrix} -2x_1 - x_2 \\ 5x_1 + 2x_2 \end{pmatrix}$ $AB\vec{x} = A\begin{pmatrix} -x_1 \\ x_1 + x_2 \end{pmatrix} = \begin{pmatrix} -2x_1 + x_1 + x_2 \\ -3x_1 + x_1 + x_2 \end{pmatrix} = \begin{pmatrix} -x_1 + x_2 \\ -2x_1 + x_2 \end{pmatrix}$ Зрозуміло, що $BA \neq AB$.

Theorem 2.2.10 Властивості

Задані $A,B,C:L \to L$ - лінійні оператори. Тоді

- 1) $(A \cdot B) \cdot C = A \cdot (B \cdot C)$;
- 2) $A \cdot I = I \cdot A$;
- 3) $A \cdot (B+C) = A \cdot B + A \cdot C$ $(A+B) \cdot C = A \cdot C + B \cdot C$.

Proof.

1) З одного та іншого боків маємо:

$$((A \cdot B) \cdot C)x = (A \cdot B) \cdot (Cx) = A \cdot (B \cdot (Cx))$$

$$(A \cdot (B \cdot C))x = A \cdot ((B \cdot C)x) = A \cdot (B \cdot (Cx))$$

Таким чином, $(A \cdot B) \cdot C = A \cdot (B \cdot C)$.

2)
$$(A\cdot I)x=A\cdot (Ix)=Ax=I\cdot (Ax)=(I\cdot A)x$$
 Таким чином, $A\cdot I=I\cdot A$.

3.1)
$$[A \cdot (B+C)]x = A \cdot [(B+C)x] = A \cdot (Bx+Cx) = A(Bx) + A(Cx) = (A \cdot B)x + (A \cdot C)x = (A \cdot B + A \cdot C)x$$
 3.2) $[(A+B) \cdot C]x = (A+B) \cdot (Cx) = A(Cx) + B(Cx) = (A \cdot C)x + (B \cdot C)x = (A \cdot C + B \cdot C)x$ Таким чином, $A \cdot (B+C) = A \cdot B + A \cdot C$ $(A+B) \cdot C = A \cdot C + B \cdot C$.

Remark 2.2.11 Множина $\mathcal{L}(L,L)$ є кільцем.

Example 2.2.12 Важливий

Задані два лінійних оператори $A:\mathbb{R}^n \to \mathbb{R}^m$ та $B:\mathbb{R}^m \to \mathbb{R}^k.$

За **Ex. 2.1.5**, першому оператору відповідає матриця \mathbb{A} , а другому - матриця \mathbb{B} , тобто $A\vec{x} = \mathbb{A}x$, $B\vec{x} = \mathbb{B}x$

Знайдемо добуток операторів:

 $BA:\mathbb{R}^n \to \mathbb{R}^k$, тут їй теж буде відповідати матриця (якась інша)

$$(BA)\vec{x} = B(A\vec{x}) = B(A\vec{x}) = \mathbb{B}(A\vec{x})$$

$$\mathbb{A} = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots \dots \vdots \\ a_{m1} \dots a_{mn} \end{pmatrix}, \mathbb{A}\vec{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} = \begin{pmatrix} y_1 \\ \dots \\ y_m \end{pmatrix} = \vec{y}$$

$$\mathbb{B} = \begin{pmatrix} b_{11} \dots b_{1m} \\ \vdots \dots \vdots \\ b_{k1} \dots b_{km} \end{pmatrix}, \mathbb{B}\vec{y} = \begin{pmatrix} b_{11}y_1 + \dots + b_{1m}y_m \\ \dots \\ b_{k1}y_1 + \dots + b_{km}y_m \end{pmatrix}$$

Таким чином, ми навчились множити матриці, але головне отримали: $(BA)\vec{x} = (\mathbb{BA})\vec{x}$.

2.3Ядро, образ

Definition 2.3.1 Задано лінійний оператор $A:L \to M$. **Ядром** лінійного оператора A називають таку множину:

$$\ker A = \{x \in L : Ax = 0\}$$

Образом лінійного оператора A називають таку множину:

$$\operatorname{Im} A = \{ y \in M : \exists x \in L : y = Ax \}$$

Theorem 2.3.2 Задано лінійний оператор $A: L \to M$.

Тоді ker A та $\operatorname{Im} A$ - лінійні підпростори відповідно лінійним просторам L та M.

Proof.

I. $\ker A$

 $\forall x_1, x_2 \in \ker A : \forall \lambda \in \mathbb{R} :$

 $A(x_1 + x_2) = Ax_1 + Ax_2 = 0 + 0 = 0 \Rightarrow x_1 + x_2 \in \ker A$

 $A(\lambda x_1) = \lambda A x_1 = 0 \Rightarrow \lambda x_1 \in \ker A$

Тому це ϵ підпростором лінійного простора L.

II. $\operatorname{Im} A$

 $\forall y_1, y_2 \in \operatorname{Im} A \Rightarrow \forall y_1, y_2 \in M : \exists x_1, x_2 \in L : y_1 = Ax_1, y_2 = Ax_2, \forall \lambda \in \mathbb{R} :$

 $y_1 + y_2 = Ax_1 + Ax_2 = A(x_1 + x_2) \Rightarrow y_1 + y_2 \in \text{Im } A$

 $\lambda y_1 = \lambda A x_1 = A(\lambda x_1) \Rightarrow \lambda y_1 \in \operatorname{Im} A$

Тому це ϵ підпростором лінійного простора M.

Example 2.3.3 Задано $A: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$ - такий лінійний оператор:

(Af)(x) = f'(x) (те, що він лінійний, в цілому зрозуміло).

Знайдемо ядро та образ:

I. $f \in \text{Ker A} \Rightarrow (Af)(x) = 0 \Rightarrow f'(x) \equiv 0 \Rightarrow f(x) = const.$

Отже, $\ker A = \{f(x) = const\} \stackrel{\text{afo}}{=} \mathbb{R}_0[x].$

Отже, $\ker A = \{f(x) = const\} \stackrel{\text{a6o}}{=} \mathbb{R}_0[x]$. II. $g \in \operatorname{Im} A$, тобто $\exists f : g(f) = (Af)(x) \Rightarrow g(x) = f'(x)$

Отже, $\operatorname{Im} A = \mathbb{R}_{n-1}[x]$.

Проте це найпростіший випадок знаходження. Необхідні більш цікаві результати для спрощення.

Lemma 2.3.4 Структура образа

Задано лінійний оператор $A: L \to M$, нехай $\{e_1, \ldots, e_n\}$ - базис L. Тоді $\operatorname{Im} A = \operatorname{span} \{Ae_1, \ldots, Ae_n\}$.

Proof.

Нехай $y \in \operatorname{Im} A \implies \exists x \in L : y = Ax$. Тоді маємо:

$$y=Ax\stackrel{\text{за базисом}}{=}A(x_1e_1+\cdots+x_ne_n)=x_1Ae_1+\cdots+x_nAe_n \implies y\in span\{Ae_1,\ldots,Ae_n\}.$$
 Нехай тепер $y\in span\{Ae_1,\ldots,Ae_n\}.$ Тоді $y=\alpha_1Ae_1+\cdots+\alpha_nAe_n=A(\alpha_1e_1+\cdots+\alpha_ne_n).$ Звідси $\exists x=\alpha_1e_1+\cdots+\alpha_ne_n$, для якого виконано $y=Ax\implies y\in \mathrm{Im}\,A.$

Отже, $\operatorname{Im} A = \operatorname{span} \{Ae_1, \dots, Ae_n\}.$

Звісно, тут деякі елементи з лінійних оболонок можуть закреслитися, але в даному випадку це не суттєва помилка.

Theorem 2.3.5 Зв'язок розмірностей ядра та образа

Задано лінійний оператор $A: L \to M$. Тоді dim ker $A + \dim \operatorname{Im} A = \dim L$.

Нехай $\{f_1,\ldots,f_n\}$ - базис $\ker A$ та $\{g_1,\ldots,g_m\}$ - базис $\operatorname{Im} A$. У нас тут $\dim \ker A=n,\dim \operatorname{Im} A=m$. $\forall j = 1, \dots, m : g_j \in \operatorname{Im} A \implies \exists h_j \in L : Ah_j = g_j.$ Перевіримо, що $\{f_1, \ldots, f_n, h_1, \ldots, h_m\}$ - базис L.

I. Перевіримо на л.н.з.

$$\alpha_1 f_1 + \dots + \alpha_n f_n + \beta_1 h_1 + \dots + \beta_m h_m = 0$$
 (*)

Подіємо оператором на всю комбінацію:

$$A(\alpha_1 f_1 + \dots + \alpha_n f_n + \beta_1 h_1 + \dots + \beta_m h_m) = A(0)$$

$$\alpha_1 A f_1 + \dots + \alpha_n A f_n + \beta_1 A h_1 + \dots + \beta_m A h_m = 0$$

$$0+\cdots+0+\beta_1g_1+\cdots+\beta_ng_n=0 \stackrel{\text{базис}}{\Longrightarrow} \beta_1=\cdots=\beta_n=0.$$

Підставимо отримане в (*):

$$\alpha_1 f_1 + \dots + \alpha_n f_n = 0 \stackrel{\text{базис}}{\Rightarrow} \alpha_1 = \dots = \alpha_n = 0$$

 $\alpha_1 f_1 + \dots + \alpha_n f_n = 0 \stackrel{\text{базис}}{\Rightarrow} \alpha_1 = \dots = \alpha_n = 0$ Отже, з наших міркувань $\alpha_1 = \dots = \alpha_n = \beta_1 = \dots = \beta_n = 0$. Таким чином, довели л.н.з.

II. Перевіримо на повноту.

$$\forall z \in L : Az \in \operatorname{Im} A \implies Az = \gamma_1 g_1 + \dots + \gamma_m g_m.$$

Розглянемо такий елемент $w \in L$, таким чином, що: $w = z - (\gamma_1 h_1 + \dots + \gamma_m h_m)$. Перевіримо, що $w \in \ker A$.

$$Aw=A(z-(\gamma_1h_1+\cdots+\gamma_mh_m))=Az-\gamma_1Ah_1-\cdots-\gamma_mAh_m=Az-\gamma_1g_1-\cdots-\gamma_mg_m=0\implies w\in\ker A.$$
 Тоді $\exists au_1,\dots, au_n\in\mathbb{R}: w= au_1f_1+\cdots+ au_nf_n$ - розклад за базисом. Отримали:

$$\tau_1 f_1 + \dots + \tau_n f_n = z - (\gamma_1 h_1 + \dots + \gamma_m h_m) \implies z = \tau_1 f_1 + \dots + \tau_n f_n + \gamma_1 h_1 + \dots + \gamma_m h_m.$$

Таким чином, маємо повну л.н.з. систему.

Разом отримали, що $\{f_1,\ldots,f_n,h_1,\ldots,h_m\}$ - базис L, а отже, $\dim L=m+n$ \implies dim $L = \dim \ker A + \dim \operatorname{Im} A$.

Example 2.3.6 Задано $A: \mathbb{R}^3 \to \mathbb{R}^3$ - такий лінійний оператор:

$$A ec{x} = egin{pmatrix} x_1 - x_2 + x_3 \\ 2x_1 + x_2 - 3x_3 \\ x_1 + 2x_2 - 4x_3 \end{pmatrix}$$
 Знайдемо ядро:

I.
$$\vec{x} \in \ker A \iff A\vec{x} = \vec{0} \iff \begin{cases} x_1 - x_2 + x_3 = 0 \\ 2x_1 + x_2 - 3x_3 = 0 \\ x_1 + 2x_2 - 4x_3 = 0 \end{cases} \iff \begin{cases} x_1 - x_2 + x_3 = 0 \\ 3x_2 - 5x_3 = 0 \end{cases}$$

$$\begin{cases} x_1 = \frac{2}{3}x_3 \\ x_2 = \frac{5}{3}x_3 \end{cases} \iff \vec{x} = \begin{pmatrix} \frac{2}{3}x_3 \\ \frac{5}{3}x_3 \\ x_3 \end{pmatrix} = \frac{1}{3}x_3 \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix}$$

Отже, Кег
$$A = span \left\{ \begin{pmatrix} 2 \\ 5 \\ 3 \end{pmatrix} \right\}$$

Тепер знайдемо образ

зафіксуємо базис
$$\{\vec{e_1},\vec{e_2},\vec{e_3}\}$$
 - одиничні вектори. Звідси $A\vec{e_1}=\begin{pmatrix}1\\2\\1\end{pmatrix}$, $A\vec{e_2}=\begin{pmatrix}-1\\1\\2\end{pmatrix}$, $A\vec{e_3}=\begin{pmatrix}1\\-3\\-4\end{pmatrix}$.

Тоді за лемою,
$$\operatorname{Im} A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ -3 \\ -4 \end{pmatrix} \right\}.$$

Але за теоремою, маємо dim $\operatorname{Im} A = \dim \mathbb{R}^3$ – dim $\ker A = 2$. Тоді варто писати $\operatorname{Im} A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 2 \end{pmatrix} \right\}$.

2.4Обернений оператор, одиничний оператор

Definition 2.4.1 Задано $A: L \to M$ - деякий оператор.

Оператор A називають **оборотним**, якщо існує деякий оператор $B: M \to L$, для якого виконано:

$$\forall x \in L : BAx = x$$
$$\forall y \in M : ABy = y$$

Можна переписати умову інакше:

$$BA = I_L, I_L : L \to L$$
$$AB = I_M, I_M : M \to M$$

Водночас оператор B називають **оберненим** до A.

Позначення: $B = A^{-1}$.

Example 2.4.2 Задано $A: \mathbb{R}_3[x] \to Mat(2 \times 2)$ - такий лінійний оператор:

$$f(x) = a + bx + cx^{2} + dx^{3}$$
$$(Af)(x) = \begin{pmatrix} a+b & a-2c \\ d & b-d \end{pmatrix}$$

$$(Af)(x) = \left(\begin{array}{cc} d & b-d \end{array} \right)$$

Визначимо оператор $B:Mat(2\times 2)\to \mathbb{R}_3[x]$ таким чином, що:

$$\mathbb{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

$$BA = (a - c - d) + (c + d)x + \frac{1}{2}(a - b - c - d)x^{2} + cx^{2}$$

$$B\mathbb{A} = (a-c-d) + (c+d)x + \frac{1}{2}(a-b-c-d)x^2 + cx^3$$
 Перевіримо, що B - обернений оператор зліва та справа. Справді:
$$\forall f \in \mathbb{R}_3[x]: (BAf)(x) = B(Af(x)) = B(A(a+bx+cx^2+dx^3)) = B\begin{pmatrix} a+b & a-2c \\ d & b-d \end{pmatrix} = [a+b-d-(b-d)] + [d+(b-d)]x + \frac{1}{2}[(a+b)-(a-2c)-d-(b-d)] + dx^3 = a+bx+cx^2+dx^3 = f(x).$$

$$\begin{split} \forall \mathbb{A} \in Mat(2 \times 2) : AB\mathbb{A} &= A(B\mathbb{A}) = A\left(B\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = A\left[(a-c-d) + (c+d)x + \frac{1}{2}(a-b-c-d)x^2 + cx^3\right] = \\ &= \begin{pmatrix} (a-c-d) + (c+d) & (a-c-d) - 2\frac{1}{2}(a-b-c-d) \\ c & (c+d) - c \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \mathbb{A}. \end{split}$$

Отримали: (BAf)(x) = f(x) та $AB\mathbb{A} = \mathbb{A}$. Отже, B - обернений оператор до A, або $B = A^{-1}$.

Example 2.4.3 Задано $A: \mathbb{R}^2 \to \mathbb{R}^2$ - такий лінійний оператор

$$A\vec{x} = \begin{pmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 \end{pmatrix}$$

$$A\vec{x} = \vec{y} \implies \begin{cases} x_1 + x_2 = y_1 \\ 2x_1 + 2x_2 = y_2 \end{cases}$$

Відносно x_1, x_2 система не містить розв'язків. Отже, не існує оберненого оператора.

Proposition 2.4.4 Задано $A:L \to M$ - лінійний та оборотний оператор. Тоді обернений оператор A^{-1} - лінійний.

Proof.

$$\forall y_1,y_2\in M\implies y_1=AA^{-1}y_1,y_2=AA^{-1}y_2:\forall \alpha_1,\alpha_2\in\mathbb{R}:\\A^{-1}(\alpha_1y_1+\alpha_2y_2)=A^{-1}(\alpha_1AA^{-1}y_1+\alpha_2AA^{-1}y_2)=A^{-1}[A(\alpha_1A^{-1}y_1+\alpha_2A^{-1}y_2)]=\\=A^{-1}A(\alpha_1A^{-1}y_1+\alpha_2A^{-1}y_2))=\alpha_1A^{-1}y_1+\alpha_2A^{-1}y_2.$$
 Отже, A^{-1} - лінійний оператор.

Proposition 2.4.5 Задано $A:L\to M$ - оборотний оператор. Тоді обернений оператор A^{-1} задається єдиним чином.

За умовою, ми маємо зворотний оператор A_1^{-1} . !Припустимо, що існує також A_2^{-1} . Тоді $\forall y \in M$: $A_1^{-1}y = A_1^{-1}I_My = A_1^{-1}AA_2^{-1}y = (A_1^{-1}A)(A_2^{-1}y) = I_L(A_2^{-1}y) = A_2^{-1}y$ $\implies A_1^{-1} = A_2^{-1}$. Суперечність!

Proposition 2.4.6 Задано $A: L \to M$ - оборотний оператор. Тоді $A^{-1}: M \to L$ теж є оборотним, а для її оберненого оператору справедлива рівність $(A^{-1})^{-1} = A$.

Якщо A - оборотний, то $\exists A^{-1}$, для якого $AA^{-1} = I_M$, $A^{-1}A = I_L$. Ну й ба більше, цей оператор -

Створимо якийсь обернений оператор $T: L \to M$, щоб $A^{-1}T = I_L$, $TA^{-1} = I_M$.

Тоді: $I_L = A^{-1}A = A^{-1}T$ та $I_M = AA^{-1} = TA^{-1}$.

Звідси T = A. Отже, A^{-1} зворотний до $A = (A^{-1})^{-1}$.

Lemma 2.4.7 Задано $A: L \to M$ - лінійний оператор.

A - оборотний \iff A має бієктивне відображення.

 \Rightarrow Дано: A - оборотний, тобто $\exists A^{-1}$.

Доведемо сюр'єктивність:

Зафіксуємо будь-який $y \in M$. Встановимо $x = A^{-1}y$. Тоді маємо, що $Ax = AA^{1}y = y$. Отже, оператор є сюр'єктивним.

Доведемо ін'єктивність:

!Припустимо, що $\forall x_1, x_2 \in L: x_1 \neq x_2 \implies Ax_1 = Ax_2$. Тоді звідси $Ax_1 - Ax_2 = A(x_1 - x_2) = 0 =$ $AA^{-1}0 \implies x_1 - x_2 = 0$. Суперечність!

Отже, $\forall x_1, x_2 \in L : x_1 \neq x_2 \implies Ax_1 \neq Ax_2$. Тобто є ін'єктивним.

Остаточно: сюр'єктивний + ін'єктивний = бієктивний.

 $\overline{\text{Побудуємо}}$ оператор $B:M\to L$, такий, що $\forall y\in M:x=By\in L$ Тоді:

 $\forall y \in M : ABy = Ax = y;$

 $\forall x \in L : BAx = By = x.$

Тому $B = A^{-1}$, а наш оператор A - оборотний.

Theorem 2.4.8 Задано $A: L \to M$ - лінійний оператор.

$$A$$
 - оборотний $\iff \begin{cases} \ker A = \{0\} \\ \operatorname{Im} A = M \end{cases}$

Proposition 2.4.9 Властивості

Задано $A:L \to M$ та $B:L \to M$ - оборотні оператори. Тоді:

- $\begin{array}{l} 1) \ I^{-1} = I; \\ 2) \ (A \cdot B)^{-1} = B^{-1}A^{-1}; \end{array}$
- 3) $(\alpha A)^{-1} = \alpha^{-1}A^{-1}$.

Зрозуміло.

Proof.

 \Rightarrow Дано: A - оборотний.

1) $x \in \ker A \implies x \in L$. Togi $x = A^{-1}Ax = A^{-1}(0) = 0$. Tomy $\ker A = \{0\}$.

2) $\forall y \in M: y = A(A^{-1}y) \in \operatorname{Im} A$ Тому $M \subset \operatorname{Im} A$. За означенням образу, $\operatorname{Im} A \subset M$. Отже, $\operatorname{Im} A = M$.

Дано:
$$\begin{cases} \ker A = \{0\} \\ \operatorname{Im} A = M \end{cases}$$
 . Треба знайти обернений оператор A^{-1} .

 $\operatorname{Im} A = M \implies \forall y \in M : \exists x \in L : y = Ax.$

!Припустимо, що $\exists \tilde{x} \in L : y = A\tilde{x}$. Тоді $0 = y - y = Ax - A\tilde{x} = A(x - \tilde{x}) \Rightarrow x - \tilde{x} \in \ker A$.

Отже, $x - \tilde{x} = 0$, тобто $x = \tilde{x}$. Суперечність!

Таким чином, ми маємо: $\forall y \in M : \exists ! x \in L : y = Ax$. Тоді маємо бієкцію $\implies A$ - оборотний.

Corollary 2.4.10
$$A:L \to L$$
 - оборотний $\iff \begin{bmatrix} \ker A = \{0\} \\ \operatorname{Im} A = L \end{bmatrix}$

Вказівка: зв'язок розмірностей ядра та образо

2.5Ізоморфні лінійні простори, ізоморфізм

Definition 2.5.1 Лінійні простори L, M називаються **ізоморфними**, якщо

$$\exists A:L o M$$
 - оборотний

В цьому випадоку оператор A називають **ізоморфізмом**.

Позначення: $L \cong M$.

Theorem 2.5.2 Задано
$$A:L\to M$$
 - лінійний оператор. A - ізоморфізм \iff якщо $\{f_1,\dots,f_n\}$ - базис в L , то $\{\stackrel{=g_1}{A}f_1,\dots,\stackrel{=g_n}{A}f_n\}$ - базис в M .

Proof.

 \implies Дано: $L\cong M$, або A:L o M - ізоморфізм. Також в нас відомий базис $\{f_1,\ldots,f_n\}$ в L. Перевіримо, що $\{g_1, \ldots, g_n\}$ - базис.

I дійсно, $\forall y \in M : y = Ax = A(\alpha_1 f_1 + \dots + \alpha_n f_n) = \alpha_1 A f_1 + \dots + \alpha_n A f_n = \alpha_1 g_1 + \dots + \alpha_n g_n$. Отримали розклад єдиним чином. Отже, $\{g_1, \dots, g_n\}$ - базис в M.

Тобто маємо, що $Ax = A(\alpha_1 f_1 + \dots + \alpha_n f_n) = \alpha_1 A f_1 + \dots + \alpha_n A f_n = y$.

Покажемо, що цей оператор ϵ оборотним.

Із щойно 'маємо' отримали, що $\forall y \in M : y \in \operatorname{Im} A \implies M \subset \operatorname{Im} A$ За означенням образа, $\operatorname{Im} A \subset M$. Тоді $\operatorname{Im} A = M \implies \dim(\ker A) = 0 \implies \ker A = \{0\}.$

Отже, A - зворотний, а тому - ізоморфізм.

Theorem 2.5.3 $L \cong M \iff \dim L = \dim M$.

Випливає під час доведення попередньої теореми.

Corollary 2.5.4 Будь-який простір розмірності n є ізоморфним арифметичному простору. Або коротко: $L \cong \mathbb{R}^n$.

Example 2.5.5 $\mathbb{R}_2[x] \cong \mathbb{R}^3$, оскільки $\dim(\mathbb{R}_2[x]) = \dim(\mathbb{R}^3) = 3$.

$$\forall f \in \mathbb{R}_2[x] : f(x) = ax^2 + bx + c \leftrightarrow \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \vec{x} \in \mathbb{R}^3.$$

2.6 Матриця лінійного оператора, що побудована за лінійним оператором

Задані L, M - лінійні простори, $A: L \to M$ - лінійний оператор. За щойно отриманим наслідком, буде у нас наступна картина:

 $L\cong\mathbb{R}^n\implies \{f_1,\ldots,f_n\}$ - базис в L переводить в $\{ec{e_1},\ldots,ec{e_n}\}$ - базис в $\mathbb{R}^n.$

A оператор $J_f:L o\mathbb{R}^n$ такий, що $J_f(f_j)=ec{e_j}$ - ізоморфізм.

 $M\cong \mathbb{R}^m \implies \{g_1,\ldots,g_n\}$ - базис в M переводить в $\{\vec{e_1},\ldots,\vec{e_m}\}$ - базис в \mathbb{R}^m .

A оператор $J_g:M \to \mathbb{R}^m$ такий, що $J_g(g_k)=\vec{e_k}$ - ізоморфізм.

Але ми знаємо, що відображення $\mathbb{R}^n \to \mathbb{R}^m$ задає матрицю \mathbb{A} . Якраз її треба знайти.

Коротше, у нас виникне така картина:

$$\begin{array}{ccc} L & \xrightarrow{A} & M \\ \downarrow^{J_f} & & \downarrow^{J_g} \\ \mathbb{R}^n & \xrightarrow{\mathbb{A}} & \mathbb{R}^m \end{array}$$

Матрицю із діаграми можна наступним чином: $\mathbb{A}\vec{x} = J_q(A(J_f^{-1}\vec{x})).$

спочатку із \mathbb{R}^n переводимось в L, далі в M і згодом в \mathbb{R}^m

Тобто ми побудували оператор: $\mathbb{A} = J_q A J_f^{-1}$.

А тепер дізнаємось, яким чином будується матриця:

 $\forall \vec{x} \in \mathbb{R}^n : \vec{x} = x_1 \vec{e_1} + \dots + x_n \vec{e_n}$ Оскільки $J_f^{-1} \vec{e_j} = f_j$, то звідси $J_f^{-1} \vec{x} = x_1 f_1 + \dots + x_n f_n$.

A TOMY $A(J_f^{-1}\vec{x}) = x_1 A f_1 + \dots + x_n A f_n$.

 $\forall j=1,\ldots,\mathring{n}:Af_j\in M$ - розкладається за базисом $\{g_1,\ldots,g_m\}$ в M, тобто

 $Af_1 = a_{11}g_1 + \dots + a_{m1}g_m$

$$Af_{n} = a_{1n}g_{1} + \dots + a_{mn}g_{m}$$

$$J_{g}(A(J_{f}^{-1}\vec{x})) = J_{g}(x_{1}Af_{1} + \dots + x_{n}Af_{n}) = J_{g}\left(x_{1}\sum_{k=1}^{m}a_{k1}g_{k} + \dots + x_{n}\sum_{k=1}^{m}a_{kn}g_{k}\right) =$$

$$= J_{g}\left(\sum_{k=1}^{m}(a_{k1}x_{1} + \dots + a_{kn}x_{n})g_{k}\right) = \begin{pmatrix} a_{11}x_{1} + \dots + a_{1n}x_{n} \\ \dots \\ a_{m1}x_{1} + \dots + a_{mn}x_{n} \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \mathbb{A}\vec{x}$$

Та сама шукана матриця. Тепер можемо записати словесний алгоритм знаходження.

Алгоритм побудови матриці оператора

Оператором A діємо на:

- 1-й базисний вектор з L, результат розкладаємо за базисом M. Коефіцієнти розкладу утворюють 1-й стовпчик матриці \mathbb{A} ;
- 2-й базисний вектор з L, результат розкладаємо за базисом M. Коефіцієнти розкладу утворюють 2-й стовичик матриці \mathbb{A} ;

. - n-й базисний вектор з L, результат розкладаємо за базисом M. Коефіцієнти розкладу утворюють n-й стовичик матриці \mathbb{A} .

Example 2.6.1 Задано $A: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$ - такий лінійний оператор (Af)(x) = f(x+1)

Розглянемо для обох просторів базис $\{1, x, x^2\}$. Знайдемо матрицю оператора.

Маємо ось таку діаграму:

$$\mathbb{R}_2[x] \xrightarrow{A} \mathbb{R}_2[x]$$

$$\downarrow^J \qquad \downarrow^J$$

$$\mathbb{R}^3 \xrightarrow{\mathbb{A}} \mathbb{R}^3$$
Позначу $f_0(x) = 1$ $f_1(x) = x$ $f_2(x) = x^2$.
$$(Af_0)(x) = f_0(x+1) = 1 = 1 + 0x + 0x^2$$

$$(Af_1)(x) = f_1(x+1) = x + 1 = 1 + x + 0x^2$$

$$(Af_2)(x) = f_2(x+1) = (x+1)^2 = 1 + 2x + x^2$$
Отже, $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$.

Remark 2.6.2 Порядок базису тепер є важливим. Якщо змінити елементи місцями, то відповідно може змінитись матриця.

2.7 Матриця добутку операторів

Задані $A:L\to M,\, B:M\to K$ - лінійні оператори.

Також є базиси $\{f_1, \ldots, f_n\}, \{g_1, \ldots, g_m\}, \{h_1, \ldots, h_k\}$ відповідно для L, M, K.

BA:L o K - добуток.

 \mathbb{A} - матриця A в базисі $\{f_1,\ldots,f_n\}$, що знайдена попереднім алгоритмом.

 \mathbb{B} - матриця B в базисі $\{g_1,\ldots,g_m\}$, що знайдена попереднім алгоритмом.

Хочемо з'ясувати, чому дорівнює матриця для оператора BA.

$$L \xrightarrow{A} M \xrightarrow{B} K$$

$$\downarrow^{J_f} \qquad \downarrow^{J_g} \qquad \downarrow^{J_h}$$

$$\mathbb{R}^n \xrightarrow{\mathbb{A}} \mathbb{R}^m \xrightarrow{\mathbb{B}} \mathbb{R}^k$$

 $Mat(BA)\vec{x} = J_h(BA(J_f^{-1}\vec{x})) = J_h(BJ_g^{-1}J_gA(J_f^{-1}\vec{x})) = (J_hBJ_g^{-1})(J_gAJ_f^{-1})\vec{x} = \mathbb{B}\mathbb{A}\vec{x}.$

Example 2.7.1 Задано $A: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$, де (Af)(x) = f(x+1), а також $B: \mathbb{R}_2[x] \to \mathbb{R}_1[x]$, де (Bf)(x) = f'(x).

Для $\mathbb{R}_2[x]$ буде базис $\{1,x,x^2\}$ та для $\mathbb{R}_1[x]$ буде базис $\{1,x\}$.

Із попереднього прикладу, $\mathbb{A} = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$. Самостійно можна отримати $\mathbb{B} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$. Тоді

матриця BA задається ось так:

$$Mat(BA) = \mathbb{BA} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}.$$

2.8 Матриця лінійного функціоналу

Задано $\varphi: L \to \mathbb{R}$ - лінійний функціонал. Також є базиси $\{f_1, \dots, f_n\}, \{1\}$ відповідно для L, \mathbb{R} . Хочемо знайти матрицю Φ .

$$\begin{array}{ccc} L & \stackrel{\varphi}{\longrightarrow} & \mathbb{R} \\ \downarrow_J & & \downarrow_I \\ \mathbb{R}^n & \stackrel{\Phi}{\longrightarrow} & \mathbb{R} \end{array}$$

Отримати матрицю можна вже за готовим алгоритмом (п. 2.7)

$$\varphi(f_1) = a_1 = a_1 \cdot 1$$

$$\varphi(f_2) = a_2 = a_2 \cdot 1$$

.

 $\varphi(f_n) = a_n = a_n \cdot 1$

 $\Longrightarrow \Phi = \begin{pmatrix} a_1 & a_2 & \dots & a_n \end{pmatrix}$ - цю матрицю лінійного функціоналу ще називають **ковектором**.

2.9 Пряма сума операторів

Definition 2.9.1 Задано L - лінійний простір, що розкладається на пряму суму $L = L_1 \dotplus L_2$. Задано M - лінійний простір, що розкладається на пряму суму $M = M_1 \dotplus M_2$. Також нехай існують такі оператори $A_1: L_1 \to M_1, \ A_2: L_2 \to M_2$.

Прямою сумою операторів A_1 та A_2 називають оператор $A_1 \dotplus A_2 : L_1 \dotplus L_2 \to M_1 \dotplus M_2$ - таке відобржання, яке визначено за правилом:

$$\forall x_1 \in L_1, x_2 \in L_2, x_1 + x_2 \in L_1 \dotplus L_2 : (A_1 \dotplus A_2)(x_1 + x_2) = A_1 x_1 + A_2 x_2 \in M_1 \dotplus M_2$$

Proposition 2.9.2 Якщо A_1, A_2 - лінійні оператори, то тоді $A_1 \dotplus A_2$ - лінійний оператор.

Proof

$$\forall x \in L_1 + L_2 : \exists ! x_1 \in L_1, \exists ! x_2 \in L_2$$

$$\forall y \in L_1 + L_2 : \exists ! y_1 \in L_1, \exists ! y_2 \in L_2$$

$$\forall \alpha, \beta \in \mathbb{R}$$

$$(A_1 \dotplus A_2)(\alpha x + \beta y) = (A_1 \dotplus A_2)((\alpha x_1 + \beta y_1) + (\alpha x_2 + \beta y_2)) =$$

$$= A_1(\alpha x_1 + \beta y_1) + A_2(\alpha x_2 + \beta y_2) = \alpha A_1 x_1 + \beta A_1 y_1 + \alpha A_2 x_2 \beta A_2 y_2 =$$

$$= \alpha (A_1 x_1 + A_2 x_2) + \beta (A_1 y_1 + A_2 y_2) = \alpha (A_1 \dotplus A_2)(x_1 + x_2) + \beta (A_1 \dotplus A_2)(y_1 + y_2) =$$

$$= \alpha (A_1 \dotplus A_2)x + \beta (A_1 \dotplus A_2)y$$

Навіщо це все, дізнаємось скоро. А зараз буде невеличкий відступ, до операторів ми ще повернемось.

3 Теорія матриць

3.1 Основні властивості

Згадаємо **Ex. 2.1.5**. Задано $A: \mathbb{R}^n \to \mathbb{R}^m$ - лінійний оператор. Нехай $\{\vec{e}_1, \dots, \vec{e}_n\}$ - базис \mathbb{R}^n .

Definition 3.1.1 Матрицею лінійного оператора називають таблицю, що містить розклад кожного елементу $A\vec{e}_1, \ldots, A\vec{e}_n$.

$$\mathbb{A} = \begin{pmatrix} A\vec{e}_1 & \dots & A\vec{e}_n \end{pmatrix} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

Надалі ми будемо називати просто матрицею як прямокутний набір чисел.

А тепер розглянемо одиничний оператор $I:\mathbb{R}^n \to \mathbb{R}^n$ та зафіксуємо $\{\vec{e}_1,\dots,\vec{e}_n\}$ - базис.

$$I\vec{x} = I \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} 1 \cdot x_1 + \dots + 0 \cdot x_n \\ \vdots \\ 0 \cdot x_1 + \dots + 1 \cdot x_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} \vec{x} = \mathbb{I}\vec{x}$$

Отримали квадратну одиничну матрицю:

$$\mathbb{I} = \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix}$$

I нарешті, розглянемо нульовий оператор $O:\mathbb{R}^n \to \mathbb{R}^n$ та зафіксуємо $\{\vec{e}_1,\dots,\vec{e}_n\}$ - базис. $O\vec{x}=\vec{0}$

Маємо в цьому випадку нульову матрицю:

$$\mathbb{O} = \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix}$$

Ми вже задали основні арифметичні дії з лінійними операторами: це додавання та множення на скаляр. Через них ми зможемо отримати арифметичні дії з матрицями.

Задані $A, B: \mathbb{R}^n \to \mathbb{R}^m$ - лінійні оператори та їхні матриці \mathbb{A}, \mathbb{B} .

Створимо $A+B:\mathbb{R}^n\to\mathbb{R}^m$, тоді

$$(A+B)\vec{x} = A\vec{x} + B\vec{x} = A\vec{x} + B\vec{x} = \begin{pmatrix} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{pmatrix} + \begin{pmatrix} b_{11}x_1 + \dots + b_{1n}x_n \\ \vdots \\ b_{m1}x_1 + \dots + b_{mn}x_n \end{pmatrix} = \begin{pmatrix} (a_{11}+b_{11})x_1 + \dots + (a_{1n}+b_{1n})x_n \\ \vdots \\ (a_{m1}+b_{m1})x_1 + \dots + (a_{mn}+b_{mn})x_n \end{pmatrix} = \begin{pmatrix} a_{11}+b_{11} & \dots & a_{1n}+b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1}+b_{m1} & \dots & a_{mn}+b_{mn} \end{pmatrix} \vec{x}$$

Створимо $\lambda A: \mathbb{R}^n \to \mathbb{R}^m$, тоді

$$(\lambda A)\vec{x} = \lambda A\vec{x} = \lambda \mathbb{A}\vec{x} = \lambda \left(\begin{array}{c} a_{11}x_1 + \dots + a_{1n}x_n \\ \vdots \\ a_{m1}x_1 + \dots + a_{mn}x_n \end{array} \right) = \left(\begin{array}{c} \lambda a_{11}x_1 + \dots + \lambda a_{1n}x_n \\ \vdots \\ \lambda a_{m1}x_1 + \dots + \lambda a_{mn}x_n \end{array} \right) = \left(\begin{array}{c} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{array} \right) \vec{x}$$

Таким чином, ми нарешті змогли створити лінійний простір $Mat(m \times n)$, в якому задано:

1. Операція додавання

$$\forall \mathbb{A}, \mathbb{B} \in Mat(m \times n) : \mathbb{A} + \mathbb{B} \in Mat(m \times n)$$

$$\mathbb{A} + \mathbb{B} = \begin{pmatrix} a_{11} + b_{11} & \dots & a_{1n} + b_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & \dots & a_{mn} + b_{mn} \end{pmatrix}$$

2. Операція множення на скаляр

$$\forall \mathbb{A} \in Mat(n \times m) : \forall \lambda \in \mathbb{R} : \lambda \mathbb{A} \in Mat(m \times n)$$

$$\lambda \mathbb{A} = \begin{pmatrix} \lambda a_{11} & \dots & \lambda a_{1n} \\ \vdots & \ddots & \vdots \\ \lambda a_{m1} & \dots & \lambda a_{mn} \end{pmatrix}$$

I виконуються всі 8 аксіом - там, в принципі, все зрозуміло.

Отже, $Mat(n \times m)$ утворює лінійний простір.

Ба більше, в Ех. 2.2.12 ми змогли визначити множення двох матриць таким чином:

 $\forall \mathbb{B} \in Mat(k \times m), \forall \mathbb{A} \in Mat(m \times n) : \mathbb{B} \cdot \mathbb{A} \in Mat(k \times n)$

$$\mathbb{B} \cdot \mathbb{A} = \begin{pmatrix} b_{11}a_{11} + \dots + b_{1m}a_{m1} & \dots & b_{11}a_{1n} + \dots + b_{1m}a_{mn} \\ \vdots & \ddots & \vdots \\ b_{k1}a_{11} + \dots + b_{km}a_{m1} & \dots & b_{k1}a_{1n} + \dots + b_{km}a_{mn} \end{pmatrix}$$
 Для множення матриці виконуються такі самі властивості як в лінійному операторі.

Proposition 3.1.2 Лінійний простір $Mat(n \times m)$ утворює базис $\{E_{11}, \ldots, E_{1n}, \ldots, E_{m1}, \ldots, E_{mn}\}$, де E_{ij} - матриця з одиницею в i рядку, j стовпчику та всюди нулі. Причому $\dim Mat(n \times m) = n \cdot m$.

$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix} = a_{11} \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} + \dots + a_{1n} \begin{pmatrix} 0 & \dots & 1 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 0 \end{pmatrix} + \dots + a_{m1} \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 1 & \dots & 0 \end{pmatrix} + \dots + a_{mn} \begin{pmatrix} 0 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = a_{11} E_{11} + \dots + a_{1n} E_{1n} + \dots + a_{m1} E_{m1} + \dots + a_{mn} E_{mn}$$

Definition 3.1.3 Задано матрицю $\mathbb{A} \in Mat(m \times n)$.

Транспонованою матрицею називають матрицю $\mathbb{D} \in Mat(n \times m)$, яка була створена таким чином:

$$d_{ij} = a_{ji}$$

Позначення: $\mathbb{D} = \mathbb{A}^T$.

Proposition 3.1.4 Властивості

- 1. $(\mathbb{A}^T)^T = \mathbb{A}$; 2. $(\lambda \mathbb{A})^T = \lambda \mathbb{A}^T$; 3. $(\mathbb{A} + \mathbb{B})^T = \mathbb{A}^T + \mathbb{B}^T$; 4. $(\mathbb{A}\mathbb{B})^T = \mathbb{B}^T \mathbb{A}^T$.

Proof.

- (1), (2), (3) відносно зрозуміло.
- 4) Позначимо $\mathbb{AB} = \mathbb{C}$ та $\mathbb{B}^T \mathbb{A}^T = \mathbb{D}$.

Тут
$$c_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj}$$
. Таким чином, $c_{ji} = a_{j1}b_{1i} + \dots + a_{jn}b_{ni} = b_{i1}^T a_{1j}^T + \dots + b_{in}^T a_{nj}^T = d_{ij}$.

п-лінійні функціонали 3.2

Definition 3.2.1 Задано L - лінійний простір.

n-лінійним функціоналом на L називають відображення: $F: L \times L \times \ldots \times L \to \mathbb{R}$, для якого виконані властивості:

$$\forall j = \overline{1, n} : \forall x_1, \dots, x_{j-1}, x_{j+1}, \dots, x_n \in L : \forall x_j^1, x_j^2 \in L : \forall \alpha, \beta \in \mathbb{R} :$$

$$F(x_1, \dots, x_{j-1}, \alpha x_j^1 + \beta x_j^2, x_{j+1}, \dots, x_n) =$$

$$= \alpha F(x_1, \dots, x_{j-1}, x_j^1, x_{j+1}, \dots, x_n) + \beta F(x_1, \dots, x_{j-1}, x_j^2, x_{j+1}, \dots, x_n)$$

Тобто за кожним аргументом виконується лінійність.

Example 3.2.2 Розглянемо декілька прикладів:

1.
$$L = \mathbb{R}^3$$
, $F(\vec{x}, \vec{y}, \vec{z}) = (\vec{x}, \vec{y}, \vec{z})$

2.
$$L = \mathbb{R}_n[x], F(f_0, f_1, \dots, f_n) = \int_{\sqrt{e}}^{\pi^{17}} f_0(0) f_1(1) \dots f_n(n) dx$$

Definition 3.2.3 Задано $F:L^n\to\mathbb{R}$ - n-лінійний функціонал.

Він називається симетричним, якщо виконується властивість:

$$\forall x_1 \dots, x_n \in L : \forall j, k = \overline{1, n}$$
$$F(x_1, \dots, x_i, \dots, x_k, \dots, x_n) = F(x_1, \dots, x_k, \dots, x_i, \dots, x_n)$$

Він називається кососиметричним, якщо виконується властивість:

$$\forall x_1 \dots, x_n \in L : \forall j, k = \overline{1, n}$$
$$F(x_1, \dots, x_j, \dots, x_k, \dots, x_n) = -F(x_1, \dots, x_k, \dots, x_j, \dots, x_n)$$

Тобто якщо переставити 2 аргументи, то це значення буде однаковим зі знаком мінус.

Example 3.2.4 $F(\vec{x}, \vec{y}, \vec{z}) = (\vec{x}, \vec{y}, \vec{z})$ - кососиметричний (властивість мішаного добутку).

Theorem 3.2.5 Задано $F:L^n\to\mathbb{R}$ - n-лінійний функціонал.

$$F$$
 - кососиметричний $\iff \forall x_1 \dots, x_{j-1}, x_{j+1}, \dots, x_{k-1}, x_{k+1}, \dots, x_n \in L : \forall y \in L : F(x_1, \dots, x_{j-1}, y, x_{j+1}, \dots, x_{k-1}, y, x_{k+1}, \dots, x_n) = 0.$

Proof.

¬ чисто за означенням

 \sqsubseteq Дано: права умова. Нехай $y = x_i + x_k$. Тоді за лінійністю:

$$0 = F(x_1, \dots, x_{j-1}, x_j + x_k, x_{j+1}, \dots, x_{k-1}, x_j + x_k, x_{k+1}, \dots, x_n) \stackrel{\text{по першому } x_j + x_k}{=} F(x_1, \dots, x_{j-1}, x_j, x_{j+1}, \dots, x_{k-1}, x_j + x_k, x_{k+1}, \dots, x_n) +$$

$$= F(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_{k-1}, x_i + x_k, x_{k+1}, \dots, x_n) -$$

$$+F(x_1,\ldots,x_{j-1},x_k,x_{j+1},\ldots,x_{k-1},x_j,x_{k+1},\ldots,x_n)+\underbrace{F(x_1,\ldots,x_{j-1},x_k,x_{j+1},\ldots,x_{k-1},x_k,x_{k+1},\ldots,x_n)}_{=0}$$

$$\Longrightarrow F(x_1,\ldots,x_j,\ldots,x_k,\ldots,x_n) = -F(x_1,\ldots,x_k,\ldots,x_j,\ldots,x_n)$$

Отже, функціонал - кососиметричний.

3.3 Трошки про перестановки та єдиність кососиметричного функціоналу

Definition 3.3.1 Розглядаємо перші n натуральних чисел $\{1, 2, \ldots, n\}$. Перестановками назвемо наступні таблиці:

$$\tau = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$$

де $j_1, j_2, \ldots, j_n = \overline{1, n}$ - всі вони різні.

Remark 3.3.2 Стовичики переставляти ми можемо, нема від цього різниці.

Тотожня перестановка:
$$\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix} = id$$

Обернена перестановка:
$$\begin{pmatrix} j_1 & j_2 & \cdots & j_n \\ 1 & 2 & \cdots & n \end{pmatrix} = \tau^{-1}$$

Композиція (множення): нехай
$$\tau_1 = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}, \ \tau_2 = \begin{pmatrix} 1 & 2 & \dots & n \\ k_1 & k_2 & \dots & k_n \end{pmatrix}$$

Переставимо стовпчики в au_2 таким чином, щоб $au_2 = \begin{pmatrix} j_1 & j_2 & \dots & j_n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix}$. Тоді можемо множити:

$$\tau_1 \tau_2 = \begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix} \begin{pmatrix} j_1 & j_2 & \dots & j_n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix} = \begin{pmatrix} 1 & 2 & \dots & n \\ k_{j_1} & k_{j_2} & \dots & k_{j_n} \end{pmatrix}$$

Із властивостей композиції відображень маємо:

$$(\tau_1 \tau_2) \tau_3 = \tau_1(\tau_2 \tau_3)$$

$$\tau \cdot id = id \cdot \tau = \tau$$

$$\tau \tau^{-1} = id$$

Таким чином, множина перестановок утворює групу S_n .

Definition 3.3.3 Транспозицією називають перестановку двох елементів:

$$\sigma_{j,k} \begin{pmatrix} 1 & \dots & j & \dots & k & \dots & n \\ 1 & \dots & k & \dots & j & \dots & n \end{pmatrix}$$

Можна перевірити швидко таку властивість: $\sigma_{j,k}^2 = id$.

Theorem 3.3.4 Факт

Кожна перестановка τ може бути розкладена в добуток транспозиції (транспозицій сусідів). Цей розклад не є однозначним, але в усіх розкладах зберігається парність/непарність кількості множників. Без доведення.

$$\begin{array}{l} \textbf{Example 3.3.5} \ \tau = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 4 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} \sigma_{3,4} \\ = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 3 & 1 \end{pmatrix} \sigma_{3,4} = \sigma_{2,4}\sigma_{1,4}\sigma_{3,4} \\ \end{array}$$

Definition 3.3.6 Перестановка називається **парною** (**непарною**), якщо в її розкладі в добуток транспозиції кількість множників парна (непарна).

Функція парності на перестановках: $l: S_n \to \{0, 1\}$

$$l(\tau) = \begin{cases} 0, \tau$$
- парна $1, \tau$ - непарна

Definition 3.3.7 Задано $F:L^n\to \mathbb{R}$ - n-лінійний функціонал, $\dim L=n$. Також задано $\tau=\begin{pmatrix} 1 & 2 & \dots & n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}\in S_n$ - перестановка.

Дія перестановки на функціонал визначається так:

$$\tau F(x_1,\ldots,x_n) = F(x_{j_1},\ldots,x_{j_n})$$

Lemma 3.3.8 Задано $F:L^n\to\mathbb{R}$ - n-лінійний кососиметричний функціонал, $\dim L=n$. Також задано $\tau=\begin{pmatrix}1&2&\dots&n\\j_1&j_2&\dots&j_n\end{pmatrix}\in S_n$ - перестановка. Тоді $\tau F(x_1,\dots,x_n)=(-1)^{l(\tau)}F(x_1,\dots,x_n)$.

Proof

Маємо факт: $\tau = \sigma_1 \dots \sigma_k$ - розклад в добуток транспозицій. Розглянемо, як діє одна транспозиція на функціонал:

$$=-F(x_1,\ldots,x_{j-1},x_j,x_{j+1},\ldots,x_{k-1},x_k,x_{k+1},\ldots,x_n).$$
 Тоді якщо діяти по черзі, отримаємо бажану формулу: $\tau F(x_1,\ldots,x_n)=\sigma_1\ldots\sigma_k F(x_1,\ldots,x_n)=(-1)^{l(\tau)}F(x_1,\ldots,x_n).$

Theorem 3.3.9 $\[\in \]$ диність n-лінійного кососиметричного функціоналу

Задано $F,\Phi:L^n\to\mathbb{R}$ - n-лінійні кососиметричні функціонали, де $F,\Phi\not\equiv 0$ та $\dim L=n$. Тоді $\exists c\in\mathbb{R}:F(x_1,\ldots,x_n)\equiv c\Phi(x_1,\ldots,x_n).$

Remark 3.3.10 Константа c не залежить від x_1, \ldots, x_n .

Proof.

Нехай n=2 і задано базис $\{e_1,e_2\}$. Тоді:

 $\forall x_1 \in L : x_1 = x_{11}e_1 + x_{21}e_2$

 $\forall x_2 \in L : x_2 = x_{12}e_1 + x_{22}e_2$

$$\implies F(x_1, x_2) = F(x_{11}e_1 + x_{21}e_2, x_{12}e_1 + x_{22}e_2)$$

Скористаємось лінійністю за кожним аргументом

Так само
$$\Phi(x_1,x_2)=\cdots=\Phi(e_1,e_2)(x_{11}x_{22}-x_{21}x_{12}).$$
 Оберемо $c=\frac{F(e_1,e_2)}{\Phi(e_1,e_2)}.$ Тоді $\frac{F(x_1,x_2)}{\Phi(x_1,x_2)}=\frac{F(e_1,e_2)(x_{11}x_{22}-x_{12}x_{21})}{\Phi(e_1,e_2)(x_{11}x_{22}-x_{12}x_{21})}=c$

Для інших n це аналогічно, тобто ми довели, але зробимо ту саму справу для n=3.

Нехай n=3 і задано базис $\{e_1,e_2,e_3\}$. Тоді

$$\forall x_1 \in L : x_1 = \sum_{j_1=1}^3 x_{j_1 1} e_{j_1} \qquad \forall x_2 \in L : x_2 = \sum_{j_2=1}^3 x_{j_2 2} e_{j_2} \qquad \forall x_3 \in L : x_3 = \sum_{j_3=1}^3 x_{j_3 3} e_{j_3}$$

$$\Longrightarrow F(x_1, x_2, x_3) = F\left(\sum_{j_1=1}^3 x_{j_1 1} e_{j_1}, \sum_{j_2=1}^3 x_{j_2 2} e_{j_2}, \sum_{j_3=1}^3 x_{j_3 3} e_{j_3}\right) = \sum_{j_1=1}^3 \sum_{j_2=1}^3 \sum_{j_3=1}^3 x_{j_1 1} x_{j_2 2} x_{j_3 3} F(e_{j_1}, e_{j_2}, e_{j_3})$$

Залишуться лише 6 доданків, де в F стоять різні елементи за базис

$$= x_{11}x_{22}x_{33}F(e_1, e_2, e_3) + x_{11}x_{23}x_{32}F(e_1, e_3, e_2) + x_{12}x_{21}x_{33}F(e_2, e_1, e_3) + x_{12}x_{23}x_{31}F(e_2, e_3, e_1) + x_{13}x_{21}x_{32}F(e_3, e_1, e_2) + x_{13}x_{22}x_{31}F(e_3, e_2, e_1) =$$

Змінимо в усіх функціоналах порядок елементів базису на e_1, e_2, e_3 та винесемо за дужки.

$$= F(e_1, e_2, e_3) \cdot (x_{11}x_{22}x_{33} - x_{11}x_{23}x_{32} - x_{12}x_{21}x_{33} + x_{12}x_{23}x_{31} + x_{13}x_{21}x_{32} - x_{13}x_{22}x_{31})$$

схожий на визначник 3 порядку

Ну а далі абсолютно аналогічні міркування, тут нам треба було акцентувати увагу на останній вираз.

I нарешті, загальний випадок, $\dim L = n$.

$$\forall k = 1, \dots, n : \forall x_k \in L : x_k = \sum_{j_k=1}^n x_{j_k k} e_{j_k}$$

$$\implies F(x_1, \dots, x_n) = F\left(\sum_{j_1=1}^n x_{j_1 1} e_{j_1}, \dots, \sum_{j_n=1}^n x_{j_n n} e_{j_n}\right) = \sum_{j_1=1}^n \dots \sum_{j_n=1}^n x_{1 j_1} \dots x_{n j_n} F(e_{j_1}, \dots, e_{j_n}) = 1$$

Знову ж таки, зникають доданки, де принаймні 2 елементи однакові. Якщо математично:

$$\exists j_k = j_l \implies F(e_1, \dots, e_{j_k}, \dots, e_{j_l}, \dots, e_n) = 0.$$

Тоді залишаються доданки, де $j_k \neq j_l$ - різні. Тому буде перестановка.

$$\boxed{\equiv} \sum_{\tau \in S} x_{j_1 1} x_{j_2 2} \dots x_{j_n n} F(e_{j_1}, e_{j_2} \dots, e_{j_n}) \boxed{\equiv}$$

I переставимо елементи базису в природному порядку, завдяки Lm. 3.3.8

$$=\sum_{r \in S} x_{j_1 1} x_{j_2 2} \dots x_{j_n n} \tau F(e_1, e_2 \dots, e_n) =$$

$$= \sum_{\tau \in S_n} x_{j_1 1} x_{j_2 2} \dots x_{j_n n} (-1)^{l(\tau)} F(e_1, e_2 \dots, e_n) = F(e_1, \dots, e_n) \sum_{\tau \in S_n} (-1)^{l(\tau)} x_{j_1 1} x_{j_2 2} \dots x_{j_n n}.$$

Позначимо
$$A(x_1,\ldots,x_n)=\sum_{\tau\in S_n}(-1)^{l(\tau)}x_{j_11}x_{j_22}\ldots x_{j_nn}$$

$$\implies F(x_1, \dots, x_n) = F(e_1, \dots, e_n) A(x_1, \dots, x_n).$$
 I далі все абсолютно аналогічно.

Remark 3.3.11 Якщо $\dim L = n$, але тепер F - (n+1)-лінійний кососиметричний функціонал, то $F \equiv 0$.

Corollary 3.3.12 Задано $F:L^n \to \mathbb{R}$ - n-лінійний функціонал та $\{e_1,\ldots,e_n\}$ - базис L. Тоді

$$F(x_1, \dots, x_n) = \sum_{j_1, \dots, j_n = 1}^n x_{j_1 1} \dots x_{j_n n} F(e_{j_1}, \dots, e_{j_n}).$$

3.4 Визначники п-го порядку

Definition 3.4.1 Визначником n-го порядку називають відображення $\det: Mat(n \times n) \to \mathbb{R}$, який визначений таким чином:

 $F:\mathbb{R}^n imes \cdots imes \mathbb{R}^n o \mathbb{R}$ - n-лінійний кососиметричний функціонал.

 $\forall \mathbb{A} \in Mat(n \times n) : \mathbb{A} = (\vec{a_1}, \dots, \vec{a_n}) \implies \det \mathbb{A} = F(\vec{a_1}, \dots, \vec{a_n}).$

Додаткова умова на F: ми розглядаємо базис одиничних векторів $\{\vec{e_1},\dots,\vec{e_n}\}$, тоді $F(\vec{e_1},\dots,\vec{e_n})=1$, або $\det \mathbb{I}=1$.

Це робиться для того, щоб детермінант можна було б знайти однозначним чином.

Remark 3.4.2 Із доведення попередньої теореми випливає, що

$$\det \mathbb{A} = \sum_{\tau \in S_n} (-1)^{l(\tau)} a_{j_1 1} \dots a_{j_n n}$$

де
$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} = (\vec{a_1}, \dots, \vec{a_n}).$$

Властивості

- 1) Нехай $\mathbb{A}_b=(\vec{a}_1,\ldots,\vec{b},\ldots,\vec{a}_n),\ \mathbb{A}_c=(\vec{a}_1,\ldots,\vec{c},\ldots,\vec{a}_n)$ та $\mathbb{A}_{b+c}=(\vec{a}_1,\ldots,\vec{b}+\vec{c},\ldots,\vec{a}_n)$. Тоді $\det\mathbb{A}_{b+c}=\det\mathbb{A}_b+\det\mathbb{A}_c$.
- 2) Нехай $\mathbb{A}_{\lambda}=(\vec{a}_1,\dots,\lambda\vec{a}_j,\dots,\vec{a}_n)$. Тоді $\det\mathbb{A}_{\lambda}=\lambda\det\mathbb{A}$.
- 3) Нехай $\mathbb{A}_{jk}=(\vec{a}_1,\ldots,\vec{a}_j,\ldots,\vec{a}_k,\ldots,\vec{a}_n)$. Тоді $\det\mathbb{A}_{jk}=-\det\mathbb{A}_{kj}$.

Всі щойно перелічені властивості випливають з означення детермінанта - п-лінійний кососиметричний функціонал.

4) Нехай $\mathbb{A}_{j+\lambda k}=(\vec{a_1},\ldots,\vec{a_j}+\lambda\vec{a_k},\ldots,\vec{a_n}),$ де $j\neq k.$ Тоді $\det(\mathbb{A}_{j+\lambda k})=\det\mathbb{A}.$

Випливає з властивостей 1,2,3

5)
$$\det \mathbb{A}^T = \det \mathbb{A}$$

Proof.

Маємо $\det \mathbb{A} = \sum_{\tau \in S_n} (-1)^{l(\tau)} a_{\tau(1)1} \dots a_{\tau(n)n}$. Тобто в кожному стовпчику обираємо елемент з цього

рядка, який ми ще не брали.

Із таких міркувань випливає, що
$$\det \mathbb{A}^T = \sum_{\sigma \in S_n} (-1)^{l(\sigma)} a_{1\sigma(1)} \dots a_{n\sigma(n)}.$$

Переставимо множники таким чином, щоб другий індекс йшов нумерацією 1, 2, ..., n. Що відбувається тим часом з перестановкою σ : перший рядок переставляється, а другий групується. Тобто ми отримаємо σ^{-1} .

Також зазначу, що $l(\sigma)=l(\sigma^{-1})$, оскільки якщо $\sigma=\tau_1\tau_2\dots\tau_n$ - добуток транспозицій, то звідси $\sigma^{-1}=\tau_n\dots\tau_2\tau_1.$

$$\sigma^{-1} = \tau_n \dots \tau_2 \tau_1.$$
Тож $\det \mathbb{A}^T = \sum_{\sigma^{-1} \in S_n} (-1)^{l(\sigma^{-1})} a_{\sigma^{-1}(1)1} \dots a_{\sigma^{(-1)}(n)n} \stackrel{\sigma^{-1} = \tau}{=} \det \mathbb{A}.$

Обчислення - розкриття за рядком

Definition 3.4.3 Задано матрицю $\mathbb{A} \in Mat(n \times n)$.

Мінором матриці \mathbb{A} називається визначник M_{jk} , який був отриманий в результаті викреслення рядка j та стовпчика k.

6) Розкриття за
$$j$$
-им рядком: $\det \mathbb{A} = \sum_{k=1}^{n} (-1)^{k+j} a_{jk} M_{jk}$.

Proof.

Доведемо розкриття за 1-м рядком. Для решти аналогічно.

Скористаємось теоремою про єдиність п-лінійного кососиметричного функціоналу. Для цього ми розглянемо два функціонала:

1)
$$F(\vec{a_1}, \dots, \vec{a_n}) = \det \mathbb{A}$$

2)
$$\Phi(\vec{a_1}, \dots, \vec{a_n}) = \sum_{k=1}^{n} (-1)^{k+1} a_{1k} M_{1k} =$$

$$= a_{11} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} - a_{12} \det \begin{pmatrix} a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} + \dots + (-1)^{n+1} a_{1n} \det \begin{pmatrix} a_{21} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots \end{pmatrix}$$

Перевіримо на лінійність за 1-м аргументом: $\vec{a_1} = \vec{b} + \alpha \vec{c}$. Тоді

$$\Phi(\vec{b} + \alpha \vec{c}, \dots, \vec{a_n}) =$$

$$= (b_1 + \alpha c_1) \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} - a_{12} \det \begin{pmatrix} b_2 + \alpha c_2 & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ b_n + \alpha c_n & \dots & a_{nn} \end{pmatrix} + \dots + (-1)^{n+1} a_{1n} \det \begin{pmatrix} b_2 + \alpha c_2 & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ b_n + \alpha c_n & a_{n2} & \dots \end{pmatrix} = \prod_{n=1}^{n} a_{nn} \det \begin{pmatrix} a_{2n} & a_{2n} & a_{2n} & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{nn} & a_{nn} & a_{nn} & \vdots \end{pmatrix}$$

Починаючи з другого доданку, ми використаємо властивості детермінанту

$$= b_{1} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} + \alpha c_{1} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} -$$

$$- a_{12} \det \begin{pmatrix} b_{2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ b_{n} & \dots & a_{nn} \end{pmatrix} - \alpha a_{12} \det \begin{pmatrix} c_{2} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ c_{n} & \dots & a_{nn} \end{pmatrix} + \dots +$$

$$+ (-1)^{n+1} a_{1n} \det \begin{pmatrix} b_{2} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ b_{n} & a_{n2} & \dots \end{pmatrix} + (-1)^{n+1} \alpha a_{1n} \det \begin{pmatrix} c_{2} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ c_{n} & a_{n2} & \dots \end{pmatrix} =$$
Hereuriti grouphing normalization primary depends on the properties.

Перший стовичик доданків відповідає першому функціоналу, а другий - другому $=\Phi(\vec{b},\ldots,\vec{a_n})+\alpha\Phi(\vec{c},\ldots,\vec{a_n})$

Отже, лінійний за 1-м аргументом. Для інших аргументів все аналогічно.

Перевіримо на кососиметричність для 1-го та 2-го аргументу:

$$\Phi(\vec{a_2}, \vec{a_1}, \dots, \vec{a_n}) =$$

$$=a_{12}\det\begin{pmatrix}a_{21}&\dots&a_{2n}\\\vdots&\ddots&\vdots\\a_{n1}&\dots&a_{nn}\end{pmatrix}-a_{11}\det\begin{pmatrix}a_{22}&\dots&a_{2n}\\\vdots&\ddots&\vdots\\a_{n2}&\dots&a_{nn}\end{pmatrix}+\dots+(-1)^{n+1}a_{1n}\det\begin{pmatrix}a_{22}&a_{21}&\dots\\\vdots&\ddots&\vdots\\a_{n2}&a_{n1}&\dots\end{pmatrix}=$$
 Перші два доданки ми змінимо місцями. А для решти за властивістю детермінанта, ми змінимо

перший та другий стовпчики, зі знаком мінус

$$= -a_{11} \det \begin{pmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n2} & \dots & a_{nn} \end{pmatrix} + a_{12} \det \begin{pmatrix} a_{21} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} - \dots - (-1)^{n+1} a_{1n} \det \begin{pmatrix} a_{21} & a_{22} & \dots \\ \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots \end{pmatrix} =$$

$$= -\Phi(\vec{a_1}, \vec{a_2}, \dots, \vec{a_n})$$

Отже, кососиметричний за 1-м та 2-м аргументом. Для інших все аналогічно.

Таким чином, за теоремою про єдиність, обидві функціонали відрізняються на константу. Знайдемо $\Phi(\mathbb{I})$ та $F(\mathbb{I})$. За визначенням, $F(\mathbb{I}) = 1$. $\Phi(\mathbb{I}) =$

Залишиться лише єдиний доданок, оскільки решта мають множення на нуль.

$$= 1 \det \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = 1$$

Оскільки $F(\mathbb{I}) = C \cdot \Phi(\mathbb{I})$, то C = 1.

Остаточно, $F(\mathbb{A}) = \Phi(\mathbb{A})$.

$$(a_{11} \quad a_{12} \quad \dots \quad a_{1n})$$
 $\vdots \quad \vdots \quad \ddots \quad \vdots$ $\vdots \quad \vdots \quad b_1 \quad b_2 \quad \dots \quad b_n$ $\vdots \quad \vdots \quad \ddots \quad \vdots$ $\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots$

7) "Фальшиве" розкриття за
$$j$$
-им рядком:
$$\sum_{k=1}^n (-1)^{k+j} a_{mk} M_{jk} = \begin{bmatrix} 0, m \neq j \\ \det \mathbb{A}, m = j \end{bmatrix}$$

Proof.

Випадок m=j - це "правдиве" розкриття за j-им рядком за 5). Випадок $m\neq j$ маємо:

$$\sum_{k=1}^{n} (-1)^{k+j} a_{mk} M_{jk} \stackrel{6)}{=} \det \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{j1} & a_{j2} & \dots & a_{jn} \\ = a_{m1} & = a_{m2} & & = a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \stackrel{(*)}{=} 0$$

- (*) За властивістю 5), ми можемо транспонувати матрицю. А за критерієм кососиметричного фукнціоналу, це має бути рівним нулю через два однакових стовпчика.
- 8) Розкладати детермінант можна за елементами за стовпчиком.

9) "Фальшиве" розкриття за
$$j$$
-им стовпчиком:
$$\sum_{j=1}^{n} (-1)^{j+k} a_{jm} M_{jk} = \begin{bmatrix} 0, m \neq k \\ \det \mathbb{A}, m = k \end{bmatrix}$$

Використання методу Гауса для обчислення детермінанту

$$\det \mathbb{A} = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{pmatrix} =$$

Варто змінити рядки місцями, щоб діагональні елементи були ненульовими. А далі мета - зробити перетворення, щоб під діагональними елементами всі вони були нулевими

$$= (-1)^{?} \det \begin{pmatrix} a_{11}^{\tilde{1}} & a_{12}^{\tilde{1}} & a_{13}^{\tilde{1}} & \dots & a_{1n}^{\tilde{1}} \\ 0 & a_{22}^{\tilde{2}} & a_{23}^{\tilde{2}} & \dots & a_{2n}^{\tilde{2}} \\ 0 & 0 & a_{33}^{\tilde{2}} & \dots & a_{3n}^{\tilde{2}} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & a_{nn}^{\tilde{2}} \end{pmatrix} =$$

Якщо розкрити за першим стовпчиком, то ми отримаємо добуток діагональних елементів = $(-1)^2 \tilde{a_{11}} \tilde{a_{22}} \tilde{a_{33}} \dots \tilde{a_{nn}}$

$$10)\,\det \begin{pmatrix} \mathbb{A} & | & \mathbb{C} \\ \mathbb{O} & | & \mathbb{B} \end{pmatrix} = \det \mathbb{A} \det \mathbb{B},\, \mathrm{ge}\,\, \mathbb{A} \in Mat(n\times n),\, \mathbb{B} \in Mat(k\times k),\, \mathbb{C} \in Mat(n\times k).$$

Proof.

В розгорнутому виді
$$\det \begin{pmatrix} \mathbb{A} & \mathbb{C} \\ \mathbb{O} & \mathbb{B} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & c_{11} & c_{12} & \dots & c_{1k} \\ a_{21} & a_{22} & \dots & a_{2n} & c_{21} & c_{22} & \dots & c_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & c_{n1} & c_{n2} & \dots & c_{nk} \\ 0 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1k} \\ 0 & 0 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & b_{k1} & b_{k2} & \dots & b_{kk} \end{pmatrix}$$

$$= \begin{vmatrix} \tilde{a_{11}} & \tilde{a_{12}} & \dots & \tilde{a_{1n}} & \tilde{c_{11}} & \tilde{c_{12}} & \dots & \tilde{c_{1k}} \\ 0 & \tilde{a_{22}} & \dots & \tilde{a_{2n}} & \tilde{c_{21}} & \tilde{c_{22}} & \dots & \tilde{c_{2k}} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \tilde{a_{nn}} & \tilde{c_{n1}} & \tilde{c_{n2}} & \dots & \tilde{c_{nk}} \\ 0 & 0 & \dots & 0 & \tilde{b_{11}} & \tilde{b_{12}} & \dots & \tilde{b_{1k}} \\ 0 & 0 & \dots & 0 & 0 & \tilde{b_{22}} & \dots & \tilde{b_{2k}} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & 0 & 0 & \dots & \tilde{b_{kk}} \end{vmatrix} = \tilde{a_{11}} \tilde{a_{22}} \dots \tilde{a_{nn}} \cdot \tilde{b_{11}} \tilde{b_{22}} \dots \tilde{b_{kk}} = \det \mathbb{A} \det \mathbb{B}$$

11) $\det AB = \det A \det B$

Proof.

Розглянемо матриці $\mathbb{N}_1 = \begin{pmatrix} \mathbb{A} & \mathbb{O} \\ -\mathbb{I} & \mathbb{B} \end{pmatrix}$ та $\mathbb{N}_2 = \begin{pmatrix} \mathbb{A} & \mathbb{C} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix}$, де матриця $\mathbb{C} = \mathbb{A}\mathbb{B}$. За формулою 10),

$$\begin{array}{l} \text{MaeMo:} \\ \det \mathbb{N}_1 = \begin{pmatrix} \mathbb{A} & \mathbb{O} \\ -\mathbb{I} & \mathbb{B} \end{pmatrix} = \begin{pmatrix} \mathbb{B} & -\mathbb{I} \\ -\mathbb{O} & \mathbb{A} \end{pmatrix} = \det \mathbb{A} \det \mathbb{B} \\ \det \mathbb{N}_2 = \det \begin{pmatrix} \mathbb{A} & \mathbb{C} \\ -\mathbb{I} & \mathbb{O} \end{pmatrix} = (-1)^n \begin{pmatrix} \mathbb{C} & \mathbb{A} \\ \mathbb{O} & -\mathbb{I} \end{pmatrix} = \det \mathbb{C}. \end{array}$$

Ми хочемо довести, що $\det \mathbb{N}_1 = \det \mathbb{N}_2$.

Будемо рахувати таким чином:

- до n+1-го стовпчика \mathbb{N}_1 додаємо 1-ий, що помножений на $b_{11},$ 2-ий, що помножений на $b_{21},$..., n-ий, що помножений на b_{n1}
- до n+2-го стовпчика \mathbb{N}_1 додаємо 1-ий, що помножений на $b_{12},$ 2-ий, що помножений на $b_{22},$..., n-ий, що помножений на b_{n2}

:

- до 2n-го стовпчика \mathbb{N}_1 додаємо 1-ий, що помножений на $b_{1n},$ 2-ий, що помножений на $b_{2n},$..., n-ий, що помножений на b_{nn}

Визначник від цього не зміниться. Тоді отримаємо:

$$\det \mathbb{N}_1 = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1k} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & b_{k1} & b_{k2} & \dots & b_{kk} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} & c_{11} & c_{12} & \dots & c_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} & c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & c_{n1} & c_{n2} & \dots & c_{nn} \\ -1 & 0 & \dots & 0 & 0 & 0 & \dots & 0 \\ 0 & -1 & \dots & 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & 0 & 0 & \dots & 0 \end{vmatrix} \det \mathbb{N}_2.$$

$$\mathbf{O}_{\mathsf{TXE}}, \det \mathbb{AB} = \det \mathbb{A} \det \mathbb{B}.$$

Example 3.4.4
$$\begin{vmatrix} 1 & 1 & 2021 & 2022 \\ 2 & 5 & 2023 & 2024 \\ 0 & 0 & 3 & 4 \\ 0 & 0 & 3 & 6 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 5 \end{vmatrix} \cdot \begin{vmatrix} 3 & 4 \\ 3 & 6 \end{vmatrix} = 3 \cdot 6 = 18.$$

Example 3.4.5 Обчислити визначник Вандермонда
$$\Delta(x_1,x_2,\dots,x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{vmatrix}.$$

Будемо обчислювати таким чином:

- від n-го рядка віднімаємо n-1-ий, помножений на x_1
- від n-1-го рядка віднімаємо n-2-ий, помножений на x_1

- від 2-го рядка віднімаємо 1-ий, помножений на x_1

Оскільки від цього визначник не змінюється, то ми отримаємо:

Оскільки від цього визначник не змінюється, то ми отримаємо:
$$\Delta(x_1,x_2,\dots,x_n) = \begin{vmatrix} 1 & 1 & \dots & 1 \\ 0 & x_2-x_1 & \dots & x_n-x_1 \\ 0 & x_2(x_2-x_1) & \dots & x_n(x_n-x_1) \\ \vdots & \vdots & \ddots & \vdots \\ 0 & x_2^{n-2}(x_2-x_1) & \dots & x_n^{n-2}(x_n-x_1) \end{vmatrix} \overset{\text{розкриття за 1 стовичиком}}{=} \overset{\text{стовичиком}}{=}$$

$$= \begin{vmatrix} x_2-x_1 & x_3-x_1 & \dots & x_n-x_1 \\ x_2(x_2-x_1) & x_3(x_3-x_1) & \dots & x_n(x_n-x_1) \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-2}(x_2-x_1) & x_3^{n-2}(x_3-x_1) & \dots & x_n^{n-2}(x_n-x_1) \end{vmatrix} = (x_2-x_1)(x_3-x_1)\dots(x_n-x_1) \begin{vmatrix} 1 & 1 & \dots & 1 \\ x_2 & x_3 & \dots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_2^{n-2} & x_3^{n-2} & \dots & x_n^{n-2} \end{vmatrix} = \prod_{i=1}^n (x_i-x_1)\Delta(x_2,x_3,\dots,x_n).$$

 $\overline{i=2}$ Отримали визначник Вандермонда $\Delta(x_2,x_3,\ldots,x_n)$ розмірністю на один менше. Аналогічним чином n

ми отримаємо, що
$$\Delta(x_2, x_3, \dots, x_n) = \prod_{i=3}^n (x_i - x_2) \Delta(x_3, x_4, \dots, x_n)$$

ми отримаємо, що
$$\Delta(x_2,x_3,\ldots,x_n)=\prod_{j=3}^n(x_i-x_2)\Delta(x_3,x_4,\ldots,x_n).$$
 Тому $\Delta(x_1,x_2,\ldots,x_n)=\prod_{i=2}^n(x_i-x_1)\prod_{j=3}^n(x_j-x_2)\Delta(x_3,x_4,\ldots,x_n).$ Якщо продовжувати до кінця, то остаточно отримаємо таку формулу:

$$\Delta(x_1, x_2, \dots, x_n) = \prod_{1 \le i < j \le n} (x_j - x_i).$$

3.5 Обернена матриця

Definition 3.5.1 Матрицю A називають оборотною, якщо існує матриця B, для якого виконано:

$$AB = I$$
 $BA = I$

Водночас матрицю \mathbb{B} називають **оберненою** до \mathbb{A} . Позначення: $\mathbb{B} = \mathbb{A}^{-1}$.

Theorem 3.5.2 Матриця \mathbb{A} - оборотна \iff det $\mathbb{A} \neq 0$.

Remark 3.5.3 Матрицю \mathbb{A} ще називають **виродженою**, якщо $\det \mathbb{A} = 0$.

 \sqsubseteq Дано: det $\mathbb{A} \neq 0$. Спробуємо сконструювати обернену матрицю \mathbb{A}^{-1} .

Для цього розглянемо матрицю
$$\tilde{\mathbb{A}} = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \dots & A_{nn} \end{pmatrix}^T$$
 - приєднана матриця.

Головною мотивацією цієї побудови слугує властивість визначника 7), використання цієї формули.

Щоб це зробити, нам необхідно розглянути добуток таких матриць:
$$\mathbb{A} \cdot \tilde{\mathbb{A}} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} = \begin{pmatrix} \det \mathbb{A} & 0 & \dots & 0 \\ 0 & \det \mathbb{A} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \det \mathbb{A} \end{pmatrix} = \mathbb{I} \cdot \det \mathbb{A}$$

$$\mathbb{A} \cdot \frac{\hat{\mathbb{A}}}{\det \mathbb{A}} = \mathbb{I}$$

Якщо встановити
$$\mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}} \tilde{\mathbb{A}}$$
, то отримаємо $\mathbb{A}\mathbb{A}^{-1} = \mathbb{I}$.

Corollary 3.5.4 Якщо матриця \mathbb{A} є невиродженою, то можна знайти обернену за формулою $\mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}} \tilde{\mathbb{A}}$, де $\tilde{\mathbb{A}}$ - приєднана матриця.

Example 3.5.5 Знайти обернену матрицю від матриці $\mathbb{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$.

$$\det \mathbb{A} = \begin{vmatrix} 4 & 3 \\ 3 & 2 \end{vmatrix} = 8 - 9 = -1 \neq 0$$
. Отже, можна знайти обернену:

$$\det \mathbb{A} = \begin{vmatrix} 4 & 3 \\ 3 & 2 \end{vmatrix} = 8 - 9 = -1 \neq 0. \text{ Отже, можна знайти обернену:}$$

$$\mathbb{A}^{-1} = \frac{1}{\det \mathbb{A}} \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}^T, \text{ в нашому випадку } A_{11} = 2, A_{12} = -3, A_{21} = -3, A_{22} = 4.$$

Oстаточно
$$\mathbb{A} = \begin{pmatrix} 21 & 22 \\ -2 & 3 \\ 3 & -4 \end{pmatrix}$$
.

Proposition 3.5.6 Властивості

- 0) $\det \mathbb{A}^{-1} = (\det \mathbb{A})^{-1}$;
- 1) Існуюча обернена матриця є єдиною;
- 2) $\mathbb{I}^{-1} = \mathbb{I}$;
- 3) $(\mathbb{A}^{-1})^{-1} = \mathbb{A};$
- 5) $(\mathbb{A}^{-1})^{-1} = \mathbb{A};$ 4) $(\mathbb{A} \cdot \mathbb{B})^{-1} = \mathbb{B}^{-1} \cdot \mathbb{A}^{-1};$ 5) $(\alpha \mathbb{A})^{-1} = \alpha^{-1} \mathbb{A}^{-1};$ 6) $(\mathbb{A}^{-1})^k = (\mathbb{A}^k)^{-1};$ 7) $(\mathbb{A}^T)^{-1} = (\mathbb{A}^{-1})^T;$

8) Якщо
$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$
, то $\mathbb{A}^{-1} = \begin{pmatrix} a_{11}^{-1} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn}^{-1} \end{pmatrix}$, причому $a_{11}, \dots, a_{nn} \neq 0$.

- 0) отримано під час доведення теореми. 1)-5) випливають з властивостей обернених операторів.
- 6) наслідок 4), 7),8) зрозуміло.

Побудова оберненої матриці методом Гауса

Definition 3.5.7 Елементарною матрицею назвемо матрицю **E**, якщо її можна отримати із одиничної матриці I наступними шляхами:

- зміною рядків місцями позначу $\mathbb{E}_{i \leftrightarrow i}$;
- множенню рядка на скаляр позначу $\mathbb{E}_{i o \lambda i};$
- додаванню одного рядка на друге, що помножене на число позначу $\mathbb{E}_{i \to i + \lambda j}$ (хоча можна просто й додавати).

Example 3.5.8 У нас є матриця $\mathbb{I} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. Наступні перелічені матриці будуть елементарними:

- 1. $\mathbb{E}_{1\leftrightarrow 2} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, ми змінили перший та другий рядки місяцми.
- $2. \ \mathbb{E}_{1 o '3' \cdot 1} = egin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, перший рядок помножили на скаляр 3.

$$3. \ \mathbb{E}_{2 \to 2+'2' \cdot 3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix}$$
, до другого рядка додали третій рядок, помножений на 2.

Proposition 3.5.9 Задано матрицю А. Тоді:

- 1. $\mathbb{E}_{i \leftrightarrow j} \mathbb{A}$ матриця, для якої рядки i та j змінились місцями;
- 2. $\mathbb{E}_{i \to \lambda i} \mathbb{A}$ матриця, для якої *i*-ий рядок помножиться на скаляр $\lambda \neq 0$;
- $3. \mathbb{E}_{i \to i + \lambda j} \mathbb{A}$ матриця, для якої до *i*-ого рядка додасться рядок j, помножений на скаляр λ . Вказівка: перемножити дві матриці та побачити результат.

Нехай в нас є матриця
$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$$
 (*)

У рівняння (*) домножимо обидві частині рівності на перетворення T_1, T_2, \ldots, T_n , де кожна T_i описує одне з трьох вище перетворень. Беремо такі перетворення, щоб утворити таку матрицю:

$$T_n \dots T_2 T_1 \mathbb{A} = \begin{pmatrix} \tilde{a_{11}} & \tilde{a_{12}} & \dots & \tilde{a_{1n}} \\ 0 & \tilde{a_{22}} & \dots & \tilde{a_{2n}} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \tilde{a_{nn}} \end{pmatrix} (**)$$

У рівняння (**) домножимо обидві частині рівності на перетворення $T_{n+1}, T_{n+2}, \ldots, T_m$, щоб праворуч виникла одинична матриця:

$$T_m \dots T_{n+2} T_{n+1} T_n \dots T_2 T_1 \mathbb{A} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix} = \mathbb{I}$$

Тоді звідси випливає, що для матриці \mathbb{A} існує обернена матриця $\mathbb{A}^{-1} = T_m \dots T_{n+2} T_{n+1} T_n \dots T_2 T_1 \mathbb{I}$.

Висновок: під час пошуку оберненої матриці ми беремо матрицю А та матрицю І, одночасно діємо на однакові перетворення до рівняння (*), а згодом до рівняння (**).

Це можна записати через розширені матриці таким чином:

$$(\mathbb{A} \mid \mathbb{I}) \longrightarrow (T_n \dots T_2 T_1 \mathbb{A} \mid T_n \dots T_2 T_1 \mathbb{I}) \longrightarrow (\mathbb{I} \mathbb{A}^{-1}).$$

Example 3.5.10 Обчислити обернену матрицю $\mathbb{A} = \begin{pmatrix} 4 & 3 \\ 3 & 2 \end{pmatrix}$ методом Гауса.

3.6 Матричні алгебраїчні рівняння

Розглядаються такі рівняння:

- 1) $\mathbb{A}X = \mathbb{D}_1$;
- 2) $X\mathbb{B} = \mathbb{D}_2$;
- 3) $\mathbb{A}X\mathbb{B}=\mathbb{D}_3$.

Вважаємо, що $\mathbb{A} \in Mat(n \times n)$ та $\mathbb{B} \in Mat(m \times m)$ - обидва оборотні.

Також $\mathbb{D}_1 \in Mat(n \times k), \mathbb{D}_2 \in Mat(k \times m), \mathbb{D}_3 \in Mat(n \times m).$

Отримаємо такі розв'язки:

- 1) $\mathbb{A}^{-1}\mathbb{A}X = \mathbb{A}^{-1}\mathbb{D}_1 \implies X = \mathbb{A}^{-1}\mathbb{D}_1;$ 2) $X\mathbb{B}\mathbb{B}^{-1} = \mathbb{D}_2\mathbb{B}^{-1} \implies X = \mathbb{D}_2\mathbb{B}^{-1};$
- 3) Комбінація 1) та 2) $\Longrightarrow X = \mathbb{A}^{-1} \mathbb{D}_2 \mathbb{B}^{-1}$.

Особливий випадок:

$$\mathbb{A}\vec{x} = \vec{b}$$

Ми вважали, що $\mathbb{A} \in Mat(n \times n)$ - оборотна. Тоді $\vec{x} = \mathbb{A}^{-1}\vec{b}.$

Розпишемо це покоординатно:

$$\begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \frac{1}{\det \mathbb{A}} \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{pmatrix}$$

Зауважимо, що
$$A_{11}b_1 + A_{21}b_2 + \dots + A_{n1}b_n \stackrel{6),8)}{=} \det \begin{pmatrix} b_1 & a_{12} & \dots & a_{1n} \\ b_2 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_n & a_{n2} & \dots & a_{nn} \end{pmatrix} \stackrel{\text{позн.}}{=} \Delta_1$$

$$A_{12}b_1 + A_{22}b_2 + \dots + A_{n2}b_n \stackrel{6),8)}{=} \det \begin{pmatrix} a_{11} & b_1 & \dots & a_{1n} \\ a_{21} & b_2 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & b_n & \dots & a_{nn} \end{pmatrix} \stackrel{\text{позн.}}{=} \Delta_2$$

$$A_{1n}b_1 + A_{2n}b_2 + \dots + A_{nn}b_n \stackrel{6),8)}{=} \det \begin{pmatrix} a_{11} & a_{12} & \dots & b_1 \\ a_{21} & a_{22} & \dots & b_2 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & b_n \end{pmatrix} \stackrel{\text{\tiny IIO3H.}}{=} \Delta_n$$

Отримали ось що:

Theorem 3.6.1 Метод Крамера

Розв'язком рівняння $\mathbb{A}\vec{x}=\vec{b}$ є такі вирази: $x_1=\frac{\Delta_1}{\det\mathbb{A}},\dots,x_n=\frac{\Delta_n}{\det\mathbb{A}},$ якщо матриця \mathbb{A} - оборотна.

3.7 Інші теореми

Theorem 3.7.1 Задано матрицю $\mathbb{A} = (\vec{a}_1, \dots, \vec{a}_n)$. Система $\{\vec{a}_1,\ldots,\vec{a}_n\}$ є л.н.з. $\iff \det \mathbb{A} \neq 0$.

Proof.

$$\{\vec{a}_1,\ldots,\vec{a}_n\}$$
 - л.н.з. \iff $\{\vec{a}_1,\ldots,\vec{a}_n\}$ - базис в \mathbb{R}^n \iff $\mathbb{A}=(\vec{a}_1,\ldots,\vec{a}_n)$ задає ізоморфізм $A:\mathbb{R}^n\to\mathbb{R}^n$ \iff має обернений A^{-1} \iff $\det\mathbb{A}\neq0$.

Ранг 3.8

Definition 3.8.1 Задано $A:L\to M$ - лінійний оператор

Рангом оператора A називають значення:

$$\operatorname{rank} A = \dim \operatorname{Im} A$$

Випадок матриці

Маємо $A: \mathbb{R}^n \to \mathbb{R}^m$. За лемою, $\operatorname{Im} A = \operatorname{span}\{A\vec{e}_1, \ldots, A\vec{e}_n\} = \operatorname{span}\{\vec{a}_1, \ldots, \vec{a}_n\}$. Маємо такі означення:

Definition 3.8.2 Стовпчиковим рангом матриці А називають ранг системи стовпчиків:

$$\operatorname{rank_{col}} \mathbb{A} = \operatorname{span} \{ \vec{a}_1, \dots, \vec{a}_n \}$$

Definition 3.8.3 Рядковим рангом матриці А називають ранг системи рядків:

Definition 3.8.4 Задано матрицю $\mathbb{A} \in Mat(n \times m)$.

Мінором матриці А називається її визначник, яка складається з елементів, які стоять на перехресті i_1,\dots,i_m рядків та j_1,\dots,j_k стовпчиків (інше означення мінору). Позначення: $M^{i_1,\dots,i_m}_{j_1,\dots,j_k}$.

Definition 3.8.5 Мінорним рангом матриці А називається розмірність максимального за розмірністю ненульового мінора.

Позначення: $\operatorname{rank}_{\operatorname{minor}} \mathbb{A}$.

Example 3.8.6 Маємо матрицю $\mathbb{A} = \begin{pmatrix} 1 & 2 & -1 & 7 \\ 2 & 4 & -2 & 5 \\ 1 & 2 & -1 & 7 \end{pmatrix}$. Тоді маємо такий мінор:

$$M_{14}^{12} = \begin{vmatrix} 1 & 7 \\ 2 & 5 \end{vmatrix} \neq 0.$$

Також $\operatorname{rank}_{minor} \mathbb{A} = 2$, оскільки існує $M_{14}^{12} \neq 0$, а решта $M_{i_1 i_2 i_3}^{123} = 0$.

Lemma 3.8.7 Про базисний мінор

Задано матрицю $\mathbb{A}\in Mat(n\times m).$ Відомо, що існує $M^{i_1,...,i_k}_{j_1,...,j_k}\neq 0,$ але $\forall t=\overline{1,n}, \forall s=\overline{1,m}: M^{i_1,\ldots,i_k,s}_{j_1,\ldots,j_k,t}=0.$ Тоді $\{\vec{a}_{j_1},\ldots,\vec{a}_{j_k}\}$ - база системи стовпчиків матриці $\mathbb A.$

Із одного боку, ми маємо, що $M_{j_1,...j_k,t}^{i_1,...i_k,t}$

А з іншого боку,
$$M^{i_1,\dots i_k,s}_{j_1,\dots j_k,t} = \begin{vmatrix} a_{i_1j_1} & \dots & a_{i_1j_k} & a_{i_1t} \\ \vdots & \ddots & \vdots & \vdots \\ a_{i_kj_1} & \dots & a_{i_kj_k} & a_{i_kt} \\ a_{sj_1} & \dots & a_{sj_k} & a_{st} \end{vmatrix}$$

Цей визначник ми розкриємо за останнім рядком. $= (-1)^{k+1+1}a_{sj_1}M_{j_2,\ldots,j_kt}^{i_1,\ldots,i_k}+(-1)^{k+1+2}a_{sj_2}M_{j_1,j_3,\ldots,j_kt}^{i_1,\ldots,i_k}+\cdots+(-1)^{k+1+k}a_{sj_k}M_{j_1,\ldots,j_{k-1}t}^{i_1,\ldots,i_k}+(-1)^{k+1+k+1}a_{st}M_{j_2,\ldots,j_k}^{i_1,\ldots,i_k}$ За умовою, ми маємо $M_{j_2,\ldots,j_k}^{i_1,\ldots,i_k}\neq 0$, а тому поділимо обидві частини рівності на цей мінор. А далі виразимо a_{st} - отримаємо:

Биражно
$$a_{gt}$$
 отримеско.
$$(-1)^{k+1+k+1}a_{st} = (-1)^{k+1+1}a_{sj_1}\frac{M^{i_1,\dots,i_k}_{j_2,\dots,j_kt}}{M^{i_1,\dots,i_k}_{j_2,\dots,j_k}} + (-1)^{k+1+2}a_{sj_2}\frac{M^{i_1,\dots,i_k}_{j_1,j_3,\dots,j_kt}}{M^{i_1,\dots,i_k}_{j_2,\dots,j_k}} + \dots + (-1)^{k+1+k}a_{sj_k}\frac{M^{i_1,\dots,i_k}_{j_1,\dots,j_{k-1}t}}{M^{i_1,\dots,i_k}_{j_2,\dots,j_k}}$$
 I множимо на (-1) , якщо це потрібно. Кожну дріб для простоти я позначу відповідно $\Gamma_{j_1},\Gamma_{j_2},\dots,\Gamma_{j_k}$

- всі ці коефіцієнти не залежать від $s = \overline{1, m}$. Тоді виникне: $a_{st} = \Gamma_{i_1} a_{si_1} + \cdots + \Gamma_{i_k} a_{si_k}$, виконана рівність $\forall s = \overline{1, m}$.

A тому якщо розглянути вектор $\vec{a_t} = \begin{pmatrix} a_{1t} \\ \vdots \\ a_{-1} \end{pmatrix}$, то $\vec{a_t}$ буде розписана як лінійна комбінація $\vec{a_{j_1}}, \dots, \vec{a_{j_k}}$

$$\vec{a_t} = \Gamma_{i_1} \vec{a_{i_1}} + \cdots + \Gamma_{i_k} \vec{a_{i_k}}$$
.

 $\vec{a_t} = \Gamma_{j_1} \vec{a_{j_1}} + \dots + \Gamma_{j_k} \vec{a_{j_k}}$. Отже, $\{\vec{a_{j_1}}, \dots, \vec{a_{j_k}}, \vec{a_t}\}$ - повна система. Лишилось довести л.н.з. !Припустимо, що $\{\vec{a_{j_1}}, \dots, \vec{a_{j_k}}\}$ - л.з., тобто $\exists l: \vec{a_{j_l}} = \alpha_1 \vec{a_{j_1}} + \dots + \alpha_{k-1} \vec{a_{j_k}}$, де не всі коефіцієнти

нульові. Цей вектор, а точніше його координати, підставимо в мінор $M^{i_1,\dots,i_k}_{j_1,\dots,j_k}$ - отримаємо:

 $M^{i_1,\dots,i_k}_{j_1,\dots,j_k}=0$, бо на l-ий стовпчик виражається через інші. Суперечність! Таким чином, $\{\vec{a_{j_1}},\dots,\vec{a_{j_k}}\}$ - л.н.з., а тому ми довели базу.

Corollary 3.8.8 $\operatorname{rank}_{\operatorname{col}} \mathbb{A} = \operatorname{rank}_{\operatorname{minor}} \mathbb{A} = \operatorname{rank}_{\operatorname{row}} \mathbb{A}$

Proof.

Ліва безпосередньо випливає з попередньої теореми. Права рівність отримується так: $\operatorname{rank_{row}} \mathbb{A} = \operatorname{rank_{col}} \mathbb{A}^T = \operatorname{rank_{min}} \mathbb{A}^T = \operatorname{rank_{min}} \mathbb{A} = \operatorname{rank_{col}} \mathbb{A}$

Remark 3.8.9 Надалі ми можемо позначати ранг матриці як rank A.

Remark 3.8.10 Для чого так багато рангів, ось стисла відповідь:

rank_{minor} A - для деяких теоретичних доведень;

 $\operatorname{rank_{row}} \mathbb{A}$ - для системи рівнянь;

 $\operatorname{rank_{col}} \mathbb{A}$ - просто з нього все починалось.

Метод обвідних мінорів

Задано матрицю $\mathbb{A} \in Mat(n \times m)$. Наша мета: знайти rank \mathbb{A} . Знайдемо ненульовий мінор порядку 2. Нехай це мінор $M_{1.i_1}^{1,i_1}$. Шукаємо для нього ненульовий обвідний мінор $M_{1,j_1,j_2}^{1,i_1,i_2}$, тобто той мінор, що містить минулий ненульовий мінор:

- якщо для всіх цих таких мінорів буде 0, то тоді $\operatorname{rank} \mathbb{A} = 2;$
- якщо знайдеться такий мінор, що не буде 0, то розглядаємо $M_{1,j_1,j_2,j_3}^{1,i_1,i_2,i_3}$. І робимо все знову за двома пунктами.

Чому не порядку 1, тому що зазвичай там мінор ненульовий, тобто зазвичай $\operatorname{rank} \mathbb{A} \geq 1$. $\operatorname{rank} \mathbb{A} = 0$ лише тоді, коли $\mathbb{A} = \mathbb{O}$.

Example 3.8.11 Знайдемо ранг матриці
$$\mathbb{A} = \begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 2 & 6 & 1 & -2 \end{pmatrix}$$
 методом обвідних мінорів.

Можемо уже зауважити, що $\operatorname{rank} \mathbb{A} \geq 1$.

Розглядуємо мінори порядку 2. Бачимо, що $M_{23}^{12}=\begin{vmatrix} 3 & 3 \\ 0 & 1 \end{vmatrix} \neq 0.$ Отже, rank $\mathbb{A}\geq 2.$

Розглядуємо мінори порядку 3, що обводить наш попередній мінор порядку 2. Їх всього 2: $M_{234}^{123}, M_{123}^{123}$.

$$M_{234}^{123} = \begin{vmatrix} 3 & 3 & 4 \\ 0 & 1 & 2 \\ 6 & 1 & -2 \end{vmatrix} = -6 + 36 - 24 - 6 = 0 \qquad \qquad M_{123}^{123} = \begin{vmatrix} 1 & 3 & 3 \\ 0 & 0 & 1 \\ 2 & 6 & 1 \end{vmatrix} = 6 - 6 = 0.$$

Всі обвідни мінори нульові. Тому остаточно $\operatorname{rank} \mathbb{A} = 2$.

Метод Гауса

Задано матрицю $\mathbb{A} \in Mat(n \times m)$. Наша мета: знайти rank \mathbb{A} .

Ми будемо зводити матрицю \mathbb{A} до ступінчатого вигляду елементарними перетвореннями. Елементарні перетворення не змінюють (!) ранг. А далі $\operatorname{rank} \mathbb{A}$ отримується беспосереьдно через $\operatorname{rank}_{\operatorname{row}} \mathbb{A}$.

Example 3.8.12 Знайдемо ранг матриці
$$\mathbb{A} = \begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 2 & 6 & 1 & -2 \end{pmatrix}$$
 методом Гауса.
$$\begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 2 & 6 & 1 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 3 & 4 \\ 2 & 6 & 1 & -2 \\ 0 & 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 5 & 10 \\ 0 & 0 & 1 & 2 \end{pmatrix} \sim \begin{pmatrix} 1 & 3 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 Легко побачити, що гапк $\mathbb{A} = 2$ як рядковий ранг.

3.9 Системи лінійних алгебраїчних рівнянь

Однорідні рівняння

Розглянемо таке рівняння:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases} \iff \mathbb{A}\vec{x} = \vec{0}, \text{ де } \mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ Ta } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Proposition 3.9.1 Множину розв'язків $\mathbb{A}\vec{x} = \vec{0}$ утворює лінійний простір $\ker \mathbb{A}$ Випливає із означення $\ker \mathbb{A}$.

Definition 3.9.2 Фундаментальною системою розв'язків називають базис лінійного простору розв'язків $\{\vec{f}_1,\dots,\vec{f}_k\}$.

Методом Гауса матрицю А перетворимо в матрицю ступінчатого вигляду. Далі переписуємо оновлену систему та проходимось знизу і догори.

Якщо кількість рівнянь k стане меншою за кількість невідомих n, то тоді обираємо вільні змінні, яких буде n-k штук. Причому ми обираємо, як це необіхдно буде нам.

Example 3.9.3 Знайти фундаментальну систему розв'язків:
$$\begin{cases} x_1+3x_2-x_3+2x_4-4x_5=0\\ 2x_1+6x_2+5x_3-x_4+7x_5=0\\ 2x_1+6x_2+5x_3-x_4-2x_5=0 \end{cases}$$
 Маємо матрицю $\mathbb{A}=\begin{pmatrix} 1&3&-1&2&-4\\ 2&6&5&-1&7\\ 2&6&5&-1&-2 \end{pmatrix} \sim \begin{pmatrix} 1&3&-1&2&-4\\ 0&0&-7&5&-15\\ 0&0&-7&5&-6 \end{pmatrix} \sim \begin{pmatrix} 1&3&-1&2&-4\\ 0&0&-7&5&-15\\ 0&0&0&0&-9 \end{pmatrix}$

Прийшли до матриці ступінчатого вигляду. Тепер розпишемо оновлену систему:

$$\begin{cases} x_1 + 3x_2 - x_3 + 2x_4 - 4x_5 = 0 \\ -7x_3 + 5x_4 - 15x_5 = 0 \\ -9x_5 = 0 \end{cases} \implies \begin{cases} x_1 = -\frac{9}{7}x_4 - 3x_2 \\ x_3 = \frac{5}{7}x_4 \\ x_5 = 0 \\ x_2, x_4 \in \mathbb{R} \end{cases}$$

Отже, розв'язок можна записати в вигляді

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -3x_2 - \frac{9}{7}x_4 \\ x_2 \\ \frac{5}{7}x_4 \\ x_4 \\ 0 \end{pmatrix} = x_2 \begin{pmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + \frac{x_4}{7} \begin{pmatrix} -9 \\ 0 \\ 5 \\ 1 \\ 0 \end{pmatrix} = x_2 \vec{f_1} + \frac{x_4}{7} \vec{f_2}.$$

Отже, ми знайшли $\{\vec{f_1}, \vec{f_2}\}$ - фундаментальну систему розв'язків.

Неоднорідні рівняння

Розглянемо таке рівняння:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases} \iff \mathbb{A}\vec{x} = \vec{b}, \text{ де}$$

$$\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ Ta } \vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, \vec{b} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Theorem 3.9.4 Структура розв'язків

Всі розв'язки системи вище мають такий вигляд: $\vec{x}_{g,inhom} = \vec{x}_{part} + \vec{x}_{g,hom}$, де

 $\vec{x}_{g,hom}$ - загальний розв'язок однорідного рівняння, тобто замість \vec{b} ми пишемо $\vec{0}$ для нашої системи; \vec{x}_{part} - частковий розв'язок нашої системи;

 $ec{x}_{g,inhom}$ - загальний розв'язок неоднорідного рівняння, що задана формулою вище.

Proof.

Спочатку покажемо, що $\vec{x}_{part} + \vec{x}_{g,hom}$ є розв'язком нашого неоднорідного рівняння. Дійсно, $\mathbb{A}(\vec{x}_{part} + \vec{x}_{g,hom}) = \mathbb{A}\vec{x}_{part} + \mathbb{A}\vec{x}_{g,hom} = \vec{b} + \vec{0} = \vec{b}$.

Далі покажемо, чому будь-який розв'язок неоднорідного рівняння має саме такий вигляд.

Нехай \vec{x}^* - будь-який розв'язок системи $\mathbb{A}\vec{x} = \vec{b}$. Тоді $\mathbb{A}(\vec{x}^* - \vec{x}_{part}) = \mathbb{A}\vec{x}^* - \mathbb{A}\vec{x}_{part} = \vec{b} - \vec{b} = \vec{0}$.

Отже, $\vec{x}^* - \vec{x}_{part}$ - розв'язок однорідного рівняння, що має таку фундаментальну систему: $\{\vec{f}_1, \dots, \vec{f}_k\}$.

Tomy
$$\vec{x}^* - \vec{x}_{part} = C_1 \vec{f}_1 + \dots + C_n \vec{f}_k = \vec{x}_{g,hom} \implies \vec{x}^* = \vec{x}_{part} + \vec{x}_{g,hom}.$$

Theorem 3.9.5 Теорема Кронекера-Капеллі

 $\mathbb{A}\vec{x} = \vec{b}$ є сумісною \iff rank $\mathbb{A} = \operatorname{rank}(\mathbb{A}|\vec{b})$.

Proof.

Варто пояснити перехід $\stackrel{(*)}{\Longleftrightarrow}$.

⇒ Зрозуміло.

 \leftarrow Дано: $\dim span\{\vec{a_1},\ldots,\vec{a_n}\} = \dim span\{\vec{a_1},\ldots,\vec{a_n},\vec{b}\}.$

Зрозуміло, що $span\{\vec{a_1},\ldots,\vec{a_n}\}\subset span\{\vec{a_1},\ldots,\vec{a_n},\vec{b}\}$. Тоді ще за **Prp. 1.6.19**, маємо $span\{\vec{a_1},\ldots,\vec{a_n}\}=span\{\vec{a_1},\ldots,\vec{a_n},\vec{b}\}$.

Повертаємось до розділу 2

Різні базиси в лінійному просторі, матриця оператора переходу від одного базису до іншого

Задано L - лінійний простір, в якому два різних базиси: $\{g_1,\ldots,g_n\},\,\{f_1,\ldots,f_n\}.$ Мета: перейти з першого базису до іншого.

Будь-який елемент $x \in L$ можна розкласти двома шляхами:

$$x = a_1 f_1 + \dots + a_n f_n;$$

$$x = b_1 g_1 + \dots + b_n g_n.$$

Вже відомо, що $L\cong\mathbb{R}^n_q$, а з іншого боку, $L\cong\mathbb{R}^n_f$. Візьмемо канонічні базиси $\{\vec{e_1},\ldots,\vec{e_n}\}_q$ та

Тут лінійні оператори працюють наступним чином:

$$J_f x = a_1 J_f f_1 + \dots + a_n J_f f_n = a_1 \vec{e_1} + \dots + a_n \vec{e_n} = \begin{pmatrix} a_1 \\ \dots \\ a_n \end{pmatrix} = \vec{x}_f$$

$$J_g x = b_1 J_g g_1 + \dots + a_n J_g g_n = b_1 \vec{e_1} + \dots + b_n \vec{e_n} = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix} = \vec{x}_g$$

Спробуємо знайти зв'язок. Для цього побудуємо матрицю оператора \mathbb{U} : (тут U - це якийсь оператор):

$$U\vec{x}_g = U(b_1\vec{e_1} + \dots + b_n\vec{e_n}) = b_1U\vec{e_1} + \dots + b_nU\vec{e_n} = 0$$

$$e^{-ig} = b_1 J_f J_g^{-1} e^{-if} + \cdots + b_1 J_f J_g^{-1} e^{-if} = b_1 J_f g_1 + \cdots + b_n J_f g_n$$
Розкладемо g_1, \dots, g_n за базисом $\{f_1, \dots, f_n\}$:

$$g_1 = u_{11}f_1 + \dots + u_{n1}f_n;$$

$$g_n = u_{1n}f_1 + \dots + u_{nn}f_n.$$

$$\boxed{ = \sum_{k=1}^{n} b_k J_f g_k = \sum_{k=1}^{n} b_k J_f \left(\sum_{j=1}^{n} u_{jk} f_j \right) = \sum_{k=1}^{n} \sum_{j=1}^{n} b_k u_{jk} \vec{e_j} = \sum_{j=1}^{n} \left(\sum_{k=1}^{n} u_{jk} b_k \right) \vec{e_j} = \left(\sum_{k=1}^{n} u_{1k} b_k \right) = \mathbb{U} \vec{x_g}, }$$

де
$$\mathbb{U} = \begin{pmatrix} u_{11} & \dots & u_{1n} \\ \vdots & \ddots & \vdots \\ u_{n1} & \dots & u_{nn} \end{pmatrix}$$
.

Алгоритм побудови матриці оператора переходу з одного базису в інший

- розкладаємо g_1, \dots, g_n за базисом $\{f_1, \dots, f_n\};$
- коефіцієнти записуємо в матрицю $\mathbb{U}_{q \to f}$ в стовпчик.

Example 2.11.1 Задано лінійний простір $L = \mathbb{R}^3$. Знайдемо матрицю переходу з базису $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$ в базис $\{\vec{e_1}, \vec{e_2}, \vec{e_3}\}$, де

$$\vec{f_1} = \begin{pmatrix} 3 \\ -1 \\ 1 \end{pmatrix}, \vec{f_2} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \vec{f_3} = \begin{pmatrix} 2 \\ -2 \\ -2 \end{pmatrix}.$$

$$\vec{f_1} = 3\vec{e_1} - \vec{e_2} + \vec{e_2}$$

$$\vec{f}_2 = \vec{e_1} + 2\vec{e_2} + 3\vec{e_3}$$

$$\vec{f}_0 = 2\vec{e_1} - 2\vec{e_2} - 2\vec{e_3}$$

$$\vec{f_1} = 3\vec{e_1} - \vec{e_2} + \vec{e_3}$$

$$\vec{f_2} = \vec{e_1} + 2\vec{e_2} + 3\vec{e_3}$$

$$\vec{f_3} = 2\vec{e_1} - 2\vec{e_2} - 2\vec{e_3}$$

$$\implies \mathbb{U}_{f \to e} = \begin{pmatrix} 3 & 1 & 2 \\ -1 & 2 & -2 \\ 1 & 3 & -2 \end{pmatrix}.$$

А тепер знайдемо вектор \vec{x}_f в старому базисі, якщо в новому базисі $\vec{x}_e = \begin{pmatrix} 0 \\ 1 \\ 7 \end{pmatrix}$

Ясно, що $\vec{x}_e = \mathbb{U}_{f \to e} \vec{x}_f$. Звідси випливає, що $\vec{x}_f = \mathbb{U}_{f \to e}^{-1} \vec{x}_e = \mathbb{U}_{e \to f} \vec{x}_e$. Декілька магій обчислень для одержання оберненої матриці:

$$\mathbb{U}_{e \to f} = \frac{1}{8} \begin{pmatrix} -2 & -8 & 6 \\ 4 & 8 & -4 \\ 5 & 8 & -7 \end{pmatrix}$$
 Тоді, додавши ще магії, отримаємо $\vec{x}_f = \begin{pmatrix} 3 \\ 0 \\ -2 \end{pmatrix}$

Remark 2.11.2 Знаходження матриці дужа схожа з випадком із пункту 2.7. Якщо тут встановити одиничний оператор $I:L_f\to L_g$, в якому для першого старий базис, а в другому відповідно новий, то отримаємо наш поточний випадок.

Матриця лінійного оператору в різних базисах

Задано $A: L \to M$ - лінійний оператор.

В L задані два базиси: $\{f_1, \ldots, f_n\}, \{g_1, \ldots, g_n\}.$

В M задані два базиси: $\{h_1, \ldots, h_k\}, \{p_1, \ldots, p_k\}.$

Маємо більш складну картину:

Із малюнку можемо виділити таке співвідношення між операторами:

$$\mathbb{A}_{g,p}\vec{x}_g = J_p(A(J_g^{-1}\vec{x}_g)) = J_p(J_h^{-1}\mathbb{A}_{f,h}J_f)(J_g^{-1}\vec{x}_g) = (J_pJ_h^{-1})\mathbb{A}_{f,h}(J_fJ_g^{-1})\vec{x}_g = \mathbb{U}_{h\to p}\mathbb{A}_{f,h}\mathbb{U}_{g\to f}\vec{x}_g.$$
 Таким чином, маємо зв'язок:

$$\mathbb{A}_{g,p} = \mathbb{U}_{h \to p} \mathbb{A}_{f,h} \mathbb{U}_{g \to f}.$$

Example 2.12.1 Нехай задано оператор $A: \mathbb{R}_2[x] \to \mathbb{R}_2[x]$

$$(Af)(x) = x(f(x+1) - f(x))$$

В обох просторах розглядаємо базис $\{g_0, g_1, g_2, g_2\}$. Знайти матрицю лінійного оператора. Для цього ми розглянемо в обох просторах інший базис: $\{f_0, f_1, f_2\}$. Наш випадок на діаграмі: $\begin{cases} f_0, f_1, f_2 \end{cases}$.

Наша задача зводиться до знаходження матриці \mathbb{A}_q . Спочатку знайдемо \mathbb{A}_f , а далі $\mathbb{U}_{q \to f}$.

$$Af_0 = 0 = 0f_0 + 0f_1 + 0f_2$$

$$Af_1 = x = 0f_0 + 1f_1 + 0f_2 \implies A_f = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

$$Af_2 = 2x^2 + x = 0f_0 + 1f_1 + 2f_2$$

$$g_{0} = x^{2} + x - 1 = -1f_{0} + 1f_{1} + 1f_{2}$$

$$g_{1} = x^{2} - 3x + 2 = 2f_{0} - 3f_{1} + 1f_{2} \implies \mathbb{U}_{g \to f} = \begin{pmatrix} -1 & 2 & 1 \\ 1 & -3 & -2 \\ 1 & 1 & 1 \end{pmatrix}$$

$$g_{2} = x^{2} - 2x + 1 = 1f_{0} - 2f_{1} + 1f_{2}$$

$$\implies \mathbb{A}_{g} = \mathbb{U}_{g \to f}^{-1} \mathbb{A}_{f} \mathbb{U}_{g \to f} = \dots = \begin{pmatrix} 4 & 0 & 1 \\ 6 & -2 & 0 \\ -8 & 4 & 1 \end{pmatrix}$$

Remark 2.12.2 Чому не знайти цю матрицю як в п. 2.7.? Тому що базис є взагалі неприємним для розкладання. Враховуючи вигляд оператора, ми отримуємо подвійний біль.

Якщо скористатись методикою цього пункту, то ми використовуємо метод Гауса лише один раз для обчислення оберненої матриці. А при класичному методі треба буде застосувати метод Гауса тричі для розкладання за базисом.

Example 2.12.3 Нехай задано функціонал $\varphi: \mathbb{R}^4 \to \mathbb{R}$ такий, що $\varphi(\vec{x}) = x_1 - 3x_2 + x_3 - x_4.$

Знайти матрицю функціонала, якщо $\{\vec{f_1},\vec{f_2},\vec{f_3},\vec{f_4}\}$ - базис в \mathbb{R}^4 та $\{h_1\}$ - базис в \mathbb{R} , де

$$\vec{f_1} = \begin{pmatrix} 1 \\ 2 \\ -1 \\ 1 \end{pmatrix}, \vec{f_2} = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}, \vec{f_3} = \begin{pmatrix} 0 \\ -1 \\ 2 \\ 0 \end{pmatrix}, \vec{f_4} = \begin{pmatrix} 1 \\ 3 \\ -3 \\ 2 \end{pmatrix},$$
а також $h_1 = \sqrt{\frac{\pi}{e}}$.

В просторі \mathbb{R}^4 ми розглянемо канонічний базис $\{\vec{e_1},\vec{e_2},\vec{e_3},\vec{e_4}\}$, а в просторі \mathbb{R} буде інший канонічний базис {1}. Наш випадок на діаграмі:

$$\mathbb{R}_{f}^{4} \xrightarrow{\Phi_{f,h}} \mathbb{R}_{h}$$

$$\mathbb{U}_{f \to e} \downarrow \qquad \mathbb{R}^{4} \xrightarrow{\varphi} \mathbb{R} \downarrow \mathbb{U}_{h \to 1}$$

$$\mathbb{R}_{e}^{4} \xrightarrow{\Phi_{e,1}} \mathbb{R}_{1}$$

Наша задача зводиться до знаходження матриці $\Phi_{f,h}$. Спочатку знайдемо $\Phi_{e,1}$, а далі $\mathbb{U}_{f,e}$ та $\mathbb{U}_{h,1}$. Все практично моментально:

$$\begin{split} &\Phi_{e,1} = \begin{pmatrix} 1 & -3 & 1 & -1 \end{pmatrix}, \qquad \mathbb{U}_{f \to e} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & -1 & 3 \\ -1 & 2 & 2 & -3 \\ 1 & 1 & 0 & 2 \end{pmatrix}, \qquad \mathbb{U}_{h \to 1} = \left(\sqrt{\frac{\pi}{e}}\right) \end{split}$$
 Тоді $\Phi_{f,h} = \mathbb{U}_{1 \to h} \Phi_{e,1} \mathbb{U}_{f \to e} = \cdots = \left(-\frac{7\sqrt{\pi}}{e} & -\frac{\sqrt{\pi}}{e} & \frac{5\sqrt{\pi}}{e} & -\frac{13\sqrt{\pi}}{e}\right) \end{split}$

2.13Інваріантні підпростори

Definition 2.13.1 Задано $A: L \to L$ - лінійний оператор.

Підпростір L_1 називається **інваріантним** для оператора A, якщо

$$\forall x \in L_1 : Ax \in L_1$$

або зазвичай пишуть ось так:

$$AL_1 \subset L_1$$

Example 2.13.2 Розглянемо такі приклади інваріантних підпросторів:

- 1. $L_1 = \ker A$, тому що $\forall x \in \ker A : Ax = 0 \in \ker A$.
- 2. $L_1 = \operatorname{Im} A$, тому що $\forall y \in \operatorname{Im} A : Ay \in \operatorname{Im} A$.

Example 2.13.3 Задано лінійний оператор $A: \mathbb{R}_n[x] \to \mathbb{R}_n[x]$, де Af = f'.

Тоді $\mathbb{R}_0[x], \mathbb{R}_1[x], \ldots, \mathbb{R}_n[x]$ - всі вони будуть інваріантними підпросторами для оператора A.

Definition 2.13.4 Задано $A:L \to L$ - лінійний оператор та L_1 - інваріантний підпростір. **Звуженням** оператора A на підпросторі L_1 називається лінійний оператор: $A|_{L_1}:L_1\to L_1$

$$\forall x \in L_1 : A|_{L_1} x = Ax$$

Remark 2.13.5 От паралель. Припустимо, що ϵ дві функції:

- $f(x) = \sin x, x \in \mathbb{R}$
- $g(x) = \sin x, x \in [0, 2\pi]$

Функції є різними в силу області визначення, хоча закон однаковий. Але навіть не в цьому суть: можна привести 'криву паралель', що f(x) - це A, в той час g(x) - це $A|_{L_1}$.

Lemma 2.13.6 Задано $A: L \to L$ - лінійний оператор та L_1, L_2 - інваріантні підпростори. Тоді $L_1 \cap L_2$ та $L_1 + L_2$ - обидва інваріантні підпростори.

Proof.

1)
$$\forall x \in L_1 \cap L_2 \Rightarrow \begin{cases} x \in L_1 \\ x \in L_2 \end{cases} \Rightarrow \begin{cases} Ax \in L_1 \\ Ax \in L_2 \end{cases} \Rightarrow Ax \in L_1 \cap L_2.$$

2)
$$\forall x \in L_1 + L_2 \Rightarrow x = \overset{\in L_1}{x_1} + \overset{\in L_2}{x_2} \Rightarrow Ax = \overset{\in L_1}{Ax_1} + \overset{\in L_2}{Ax_2} \Rightarrow Ax \in L_1 + L_2.$$

Proposition 2.13.7 Задано $A:L \to L$ - лінійний оператор та $L=L_1\dot{+}L_2$, де L_1,L_2 - інваріантні підпростори. Тоді $A = A|_{L_1} + A|_{L_2}$.

$$\forall x \in L : \exists ! x_1 \in L_1, \exists ! x_2 \in L_2 : x = x_1 + x_2$$

$$Ax = Ax_1 + Ax_2 = A|_{L_1}x_1 + A|_{L_2}x_2 = (A|_{L_1} + A|_{L_2})(x_1 + x_2) = (A|_{L_1} + A|_{L_2})x$$

Матриця оператора в базисі, розширенному з базису в інваріантному 2.14 просторі

Задано $A: L \to L$ - лінійний оператор та L_1 - інваріантний підпростір, в якому є базис $\{f_1, \dots, f_k\}$. Продовжимо його до базису L, маємо $\{f_1,\ldots,f_k,f_{k+1},\ldots,f_n\}$. Мета: знайти матрицю для розширеного

$$Af_1 \in L_1 \Rightarrow Af_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{k1}f_k$$

$$\vdots$$

$$Af_k \in L_1 \Rightarrow Af_k = a_{1k}f_1 + a_{2k}f_2 + \dots + a_{kk}f_k$$

$$Af_{k+1} \in L, \text{ alle } Af_{k+1} \not\in L_1 \implies$$

$$Af_{k+1} = a_{1,k+1}f_1 + a_{2,k+1}f_2 + \dots + a_{k,k+1}f_k + a_{k+1,k+1}f_{k+1} + \dots + a_{n,k+1}f_n$$

$$\vdots$$

 $Af_n \in L$, але $Af_n \not\in L_1 \implies$

 $Af_n = a_{1,n}f_1 + a_{2,n}f_2 + \dots + a_{k,n}f_k + a_{k+1,n}f_{k+1} + \dots + a_{n,n}f_n$

Тоді матимемо наступний вигляд:

$$\mathbb{A}_{f} = \begin{pmatrix} a_{11} & \dots & a_{1,k} & a_{1,k+1} & \dots & a_{1,n} \\ a_{21} & \dots & a_{2,k} & a_{2,k+1} & \dots & a_{2,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} & a_{k,k+1} & \dots & a_{k,n} \\ \hline 0 & \dots & 0 & a_{k+1,k+1} & \dots & a_{k+1,n} \\ 0 & \dots & 0 & a_{k+2,k+1} & \dots & a_{k+2,n} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & a_{n,k+1} & \dots & a_{n,n} \end{pmatrix}$$

Тепер розглянемо звужений оператор $A|_{L_1}$ в базисі $\{f_1,\ldots,f_k\}$.

Тоді $A|_{L_1}f_1 = Af_1, \dots, A|_{L_1}f_k = Af_k.$

Матриця матиме вигляд:

$$\mathbb{A}_{|L_1f} = \begin{pmatrix} a_{11} & \dots & a_{1,k} \\ a_{21} & \dots & a_{2,k} \\ \vdots & \ddots & \vdots \\ a_{k,1} & \dots & a_{k,k} \end{pmatrix}$$

Можна тоді сказати, що $\mathbb{A}_f = \begin{pmatrix} \mathbb{A}_{|L_1f} & | & * \\ \mathbb{O} & | & * \end{pmatrix}$ - остаточна матриця.

Example 2.14.1 Розглянемо лінійний оператор $A: \mathbb{R}^2 \to \mathbb{R}^2$, що описує поворот вектора на 180°. Матрица цього оператора має вигляд $\mathbb{A} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Розглянемо простір $L_1=\{\vec{t}\in\mathbb{R}^2:$ лежить на прямій $y=2x\}.$ Заданий простір є A-інваріантним підпростром простора \mathbb{R}^2 , оскільки

$$\forall \vec{t} \in L_1 \implies \vec{t} = \begin{pmatrix} x \\ 2x \end{pmatrix} \implies A\vec{t} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ 2x \end{pmatrix} = \begin{pmatrix} -x \\ -2x \end{pmatrix} = (-1) \begin{pmatrix} x \\ 2x \end{pmatrix} \in L_1.$$

Тоді можемо записати звужений оператор $A|_{L_1}:L_1\to L_1$, де $A|_{L_1}\vec{t}=A\vec{t}\iff A|_{L_1}x=-x$, а матриця записується таким чином:

$$\mathbb{A}|_{L_1} = (-1).$$

Залишається питання, що буде, якщо є 2 інваріантних підпростори.

Задано $A: L \to L$ - лінійний оператор та $L = L_1 \dot{+} L_2$, де L_1, L_2 - інваріантні підпростори.

$$\{f_1,\ldots,f_k\}$$
 - базис L_1 .

 $\{f_{k+1},\ldots,f_n\}$ - базис L_2 .

Якщо виникне випадок $L = L_1 \dot{+} L_2 \dot{+} L_3$, то

$$\mathbb{A}_f \begin{pmatrix} \mathbb{A}_{|L_1} & \mathbb{O} & \mathbb{O} \\ \mathbb{O} & \mathbb{A}_{|L_2} & \mathbb{O} \\ \mathbb{O} & \mathbb{O} & \mathbb{A}_{|L_3} \end{pmatrix}$$

За MI (або за аналогічними міркуваннями) можна довести і для прямої суми із n підпросторів.

А тепер розглянемо $L = L_1 + L_2$ - уже не пряма сума. Позначу $L_1 \cap L_2 = L_{12}$, який є інваріантним. Нехай $\{h_1,\ldots,h_n\}$ - базис L_{12} . Продовжимо його до базисів L_1 та L_2 :

$$L_1: \{f_1, \dots, f_s, h_1, \dots, h_n\};$$

 $L_2: \{g_1, \dots, g_t, h_1, \dots, h_n\}.$

$$L_2:\{g_1,\ldots,g_t,h_1,\ldots,h_n\}.$$

Тоді матриця матиме такаий вигляд:

$$\mathbb{A} = \left(\begin{array}{c|c} * & \mathbb{O} & \mathbb{O} \\ * & \mathbb{A}_{|L_{12}} & * \\ \mathbb{O} & \mathbb{O} & * \end{array} \right)$$

Перший квадрат відповідає матриці $\mathbb{A}_{|L_1}$, а другий квадрат - $\mathbb{A}_{|L_2}$.

4 Нова ера з матрицями

4.1 Власні числа та власні вектори

Definition 4.1.1 Задано $A:L\to L$ - лінійний оператор.

Власним вектором оператора A називається такий ненульовий елемент $f \in L$, для якого

$$\exists \lambda \in \mathbb{R} : Af = \lambda f$$

Водночає число λ називається власним числом оператора A.

Remark 4.1.2 Із означення випливає, що власному вектору відповідає <u>єдине</u> власне число в силу лінійності оператора. А власному числу може відповідати безліч власних векторів (див. нижче властивість 1).

Example 4.1.3 Знайдемо власні значення та власні вектори для оператора $A: \mathbb{R}^3 \to \mathbb{R}^3$, що заданий $A\vec{x} = [\vec{x}, \vec{a}]$. Тут \vec{a} - якийсь фіксований вектор.

За означенням маємо:

$$A\vec{f} = \lambda \vec{f} \Rightarrow [\vec{f}, \vec{a}] = \lambda \vec{f}.$$

Ліворуч маємо вектор, що перпендикулярний до \vec{f} , але водночає він дорівнює цьому ж вектору \vec{f} , який є домноженим на скаляр. Тоді звідси маємо єдиний випадок рівності, якщо $\lambda=0$.

Знайдемо власні вектори:

$$A\vec{f} = [\vec{f}, \vec{a}] = \vec{0} \Rightarrow \vec{f} | \vec{a}.$$

Таким чином, власні вектори - це вектори \vec{f} , що колінеарні \vec{a} , з власним числом $\lambda = 0$.

Proposition 4.1.4 Властивості власних чисел та векторів

- 1. Нехай L_{λ} множина всіх власних векторів з цим власним числом λ , який також містить 0. Тоді L_{λ} лінійний підпростір;
- 2. Нехай f_1,\dots,f_k власні вектори з попарно різними власними числами. Тоді $\{f_1,\dots,f_k\}$ л.н.з.;
- 3. f власний вектор оператора A з власним числом $\lambda \iff f$ власний вектор оператора $(A-\mu I)$ з власним числом $(\lambda-\mu)$;
- 4. f власний вектор з числом $\lambda \iff f \in \ker(A \lambda I)$. Як наслідок, $L_{\lambda} = \ker(A \lambda I)$;
- 5. Нехай $\{g_1,\dots,g_n\}$ базис L, також \mathbb{A}_g матриця A для нашого базису.

Тоді λ - власне число $A \iff \lambda$ - власне число \mathbb{A}_g

f - власний вектор A з власним числом $\lambda \iff \check{J}_g f$ - власний вектор $\mathbb{A}_g;$

6. Нехай $\mathbb{A} \in Mat(n \times n)$. Тоді λ - власне число оператора $\mathbb{A} \iff \det(\mathbb{A} - \lambda \mathbb{I}) = 0$.

Proof.

1.
$$\forall f_1, f_2 \in L_\lambda \implies Af_1 = \lambda f_1; Af_2 = \lambda f_2; \forall \alpha_1, \alpha_2 \in \mathbb{R}$$
: $A(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 Af_1 + \alpha_2 Af_2 = \alpha_1 \lambda f_1 + \alpha_2 \lambda f_2 = \lambda(\alpha_1 f_1 + \alpha_2 f_2)$ Тобто $\alpha_1 f_1 + \alpha_2 f_2 \in L_\lambda$. Отже, L_λ - це є лінійний підпростір.

2. Доведення за МІ.

База індукції: при k=1 маємо $\{f_1\}$ - л.н.з. автоматично.

Крок індукції: припустимо, що $\{f_1,\ldots,f_k\}$ - л.н.з. Перевіримо тоді, що система $\{f_1,\ldots,f_k,f_{k+1}\}$ буде л.н.з.

$$\alpha_1 f_1 + \dots + \alpha_k f_k + \alpha_{k+1} f_{k+1} = 0$$
 (*)

Подіємо оператором на обидві частини рівності (*). Матимемо:

$$A(\alpha_1 f_1 + \dots + \alpha_k f_k + \alpha_{k+1} f_{k+1}) = \alpha_1 A f_1 + \dots + \alpha_k A f_k + \alpha_{k+1} A f_{k+1} = \alpha_1 A f_1 + \dots + \alpha_k A f_k + \alpha_{k+1} A f_{k+1}$$

 $= \alpha_1 \lambda_1 f_1 + \dots + \alpha_k \lambda_k f_k + \alpha_{k+1} \lambda_{k+1} f_{k+1}$ - ліва частина. Тоді:

$$\alpha_1 \lambda_1 f_1 + \dots + \alpha_k \lambda_k f_k + \alpha_{k+1} \lambda_{k+1} f_{k+1} = 0 \ (**)$$

Із рівняння (*) маємо: $\alpha_{k+1}f_{k+1} = -\alpha_1f_1 - \cdots - \alpha_kf_k$. Його підставимо в рівняння (**), тоді отримаємо:

$$\alpha_{1}(\lambda_{1} - \lambda_{k+1})f_{1} + \dots + \alpha_{k}(\lambda_{k} - \lambda_{k+1})f_{k} = 0 \stackrel{\text{n.H.3.}}{\Longrightarrow} \alpha_{1}(\lambda_{1} - \lambda_{k+1}) = 0, \dots, \alpha_{k}(\lambda_{k} - \lambda_{k+1}) = 0.$$

Оскільки власні числа попарно різні, то звідси $\alpha_1 = \cdots = \alpha_k = 0$.

Підставимо отримані значення в рівняння (*). Автоматично отримаємо $\alpha_{k+1} = 0$.

Остаточно, $\{f_1, \ldots, f_k, f_{k+1}\}$ - л.н.з.

MI доведено.

3.
$$f$$
 - власний вектор A з власним числом $\lambda \iff Af = \lambda f \iff Af - \mu f = \lambda f - \mu f \iff Af - \mu If = (\lambda - \mu)f \iff (A - \mu I)f = (\lambda - \mu)f \iff f$ - власний вектор $(A - \mu I)$ з власним

число $(\lambda - \mu)$.

4.
$$Af = \lambda f \iff Af - \lambda f = 0 \iff Af - \lambda If = 0 \iff (A - \lambda I)f = 0 \iff f \in \ker(A - \lambda I).$$

5. Маємо наступну картину:

$$\begin{array}{ccc}
L & \xrightarrow{A} & L \\
\downarrow^{J_g} & & \downarrow^{J_g} \\
\mathbb{R}^n & \xrightarrow{\mathbb{A}_g} & \mathbb{R}^n
\end{array}$$

Тоді $Af=J_g^{-1}\mathbb{A}_gJ_gf=\lambda f.$ Обидві частини множимо на $J_g.$ $\Longrightarrow \mathbb{A}_g(J_gf)=\lambda(J_gf).$

6.
$$\lambda$$
 - власне число для $\mathbb{A} \iff \exists \vec{f} \neq 0 : A\vec{f} = \lambda \vec{f} \iff \vec{f} \in \ker(A - \lambda I) \iff \ker(A - \lambda I) \neq \{0\} \iff \exists (\mathbb{A} - \lambda \mathbb{I})^{-1} \iff \det(\mathbb{A} - \lambda \mathbb{I}) = 0.$

Remark 4.1.5 В англомовній літературі $L_{\lambda} = \ker(A - \lambda I)$ називають eigenspace.

4.2 Про характеристичний многочлен

Definition 4.2.1 Вираз $\det(\mathbb{A} - \lambda \mathbb{I})$ називається **характеристичним многочленом**, а саме рівняння називається характеристичним рівнянням.

Remark 4.2.2 За властивістю 6, ми із рівняння $\det(\mathbb{A} - \lambda \mathbb{I}) = 0$ знаходимо власні числа. А власні вектори - як розв'язок рівняння $(\mathbb{A} - \lambda \mathbb{I})\vec{f} = \vec{0}$.

Example 4.2.3 Задано матрицю
$$\mathbb{A} = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$$
. Знайдемо всі власні числа та власні вектори.
$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det \begin{pmatrix} 4 - \lambda & -1 & -2 \\ 2 & 1 - \lambda & -2 \\ 1 & -1 & 1 - \lambda \end{pmatrix} = (4 - \lambda)(1 - \lambda)(1 - \lambda) + 2 + 2 + 2(1 - \lambda) - 2(4 - \lambda) + 2(1 - \lambda) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6 - 0 \implies (\lambda - 1)(\lambda - 2)(\lambda - 3) = 0$$

Розглянемо кожне власне число окремо для знаходження власних векторів:

$$\lambda_1 = 1$$

$$(\mathbb{A} - \lambda_1 \mathbb{I})\vec{f} = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & -2 \\ 1 & -1 & 0 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_1 - 2f_3 = 0 \\ f_1 - f_2 = 0 \end{cases} \Rightarrow f_1 = f_2 = f_3$$

$$\vec{f} = f_1 \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
. Можемо обрати власний вектор $\vec{f_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$.

$$\lambda_2 = 2$$

$$(\mathbb{A} - \lambda_2 \mathbb{I}) \vec{f} = \begin{pmatrix} 2 & -1 & -2 \\ 2 & -1 & -2 \\ 1 & -1 & -1 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_1 - f_2 - 2f_3 = 0 \\ f_1 - f_2 - f_3 = 0 \end{cases} \Rightarrow \begin{cases} f_1 = f_3 \\ f_2 = 0 \end{cases}$$

$$\vec{f} = f_1 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$
 Можемо обрати власний вектор $\vec{f_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

$$\lambda_3 = 3$$

$$(\mathbb{A} - \lambda_3 \mathbb{I}) \vec{f} = \begin{pmatrix} 1 & -1 & -2 \\ 2 & -2 & -2 \\ 1 & -1 & -2 \end{pmatrix} \vec{f} = \vec{0} \Rightarrow \begin{cases} 2f_1 - 2f_2 - 2f_3 = 0 \\ f_1 - f_2 - 2f_3 = 0 \end{cases} \Rightarrow \begin{cases} f_1 = f_2 \\ f_3 = 0 \end{cases}$$

$$\vec{f} = f_1 \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
. Можемо обрати власний вектор $\vec{f_3} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

Proposition 4.2.4 Задано $A:L \to L$ - лінійний оператор та матриці $\mathbb{A}_f,\mathbb{A}_q$ в різних базисах. Тоді $\det(\mathbb{A}_f - \lambda \mathbb{I}) = \det(\mathbb{A}_q - \lambda \mathbb{I}).$

Тобто неважливо, який там базис в просторі L, характеристичний поліном той самий.

Proof.

Матриці \mathbb{A}_f , \mathbb{A}_g пов'язані тотожністю (п. 2.12):

$$\mathbb{A}_f = U \mathbb{A}_g \mathring{U}^{-1}$$

$$\Longrightarrow \det(\mathbb{A}_f - \lambda I) = \det(U\mathbb{A}_g U^{-1} - \lambda I) = \det(U\mathbb{A}_g U^{-1} - \lambda I) = \det(U\mathbb{A}_g U^{-1} - \lambda U U^{-1}) = \det(U(\mathbb{A}_g - \lambda I)U^{-1}) = \det(U\mathbb{A}_g - \lambda I) = \det(\mathbb{A}_g - \lambda I).$$

Proposition 4.2.5 Характеристичний многочлен має таку формулу:

$$\det(\mathbb{A} - \lambda \mathbb{I}) = (-1)^n \lambda^n + \sum_{k=1}^{n-1} \left(\sum_{1 \le j_1 < j_2 < \dots < j_k \le n} (-1)^{n-k} M_{j_1 \dots j_n}^{j_1 \dots j_n} \right) \lambda^{n-k} + \det \mathbb{A}.$$

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{pmatrix} = \lambda^2 - (a_{11} + a_{22})\lambda + \det \mathbb{A}.$$

Далі - матриця
$$\mathbb{A}$$
 розмірності 3×3 , аналогічно для повного розуміння.
$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det\begin{pmatrix} a_{11} - \lambda & a_{12} & a_{13} \\ a_{21} & a_{22} - \lambda & a_{23} \\ a_{31} & a_{32} & a_{33} - \lambda \end{pmatrix} = -\lambda^3 + (a_{11} + a_{22} + a_{33})\lambda^2 - \left(\det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} - \det\begin{pmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{pmatrix} + \det\begin{pmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{pmatrix}\right)\lambda + \det\mathbb{A}$$

Зауважимо, що коефіцієнт при λ є сумою головних мінорів (тобто тих мінорів, де номера рядка та стовичиків співпадають).

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} =$$

- доданок при λ^n отримується при множенні тільки елементів головної діагоналі, тобто маємо

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

- доданок при λ^{n-1} отримується при множенні всіх елементів головної діагоналі, крім, можливо,

$$\begin{pmatrix} (-1)^{n-1}a_{11} + (-1)^{n-1}a_{22} + \dots + (-1)^{n-1}a_{nn} = (-1)^{n-1}(a_{11} + a_{22} + \dots + a_{nn}): \\ \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} + \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix} + \dots + \begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

двох, по черзі.

Наприклад, розглянемо один із доданків, в якому множимо елементи головної діагоналі з номерами

$$3,4,\ldots,n$$
, при множенні цих елементів обираємо λ^{n-2} , залишається цей вираз помножити на $\det \begin{pmatrix} a_{11}-\lambda & a_{12} \\ a_{21} & a_{22}-\lambda \end{pmatrix} = \lambda^2 - (a_{11}+a_{22})\lambda + \det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$.

Оскільки нам потрібна степінь n-2, то ми обираємо останній доданок, що є M_{12}^{12} .

Для інших випадків все аналогічно.

Загалом маємо коефіцієнт при λ^{n-2} :

Загалом маємо коефіцієнт при
$$\lambda^{n-2}$$
:
$$(-1)^{n-2}(M_{12}^{12}+M_{13}^{13}+\cdots+M_{1n}^{1n}+M_{23}^{23}+\cdots+M_{2n}^{2n}+\cdots+M_{n-1,n}^{n-1,n}+M_{nn}^{nn})= = (-1)^{n-2}\sum_{1\leq j< m\leq n}M_{jm}^{jm}$$
- сума всіх головних мінорів 2-го порядку.

- все аналогічно для λ^{n-3} , коефіцієнт:

 $(-1)^{n-3} \sum M_{jmp}^{jmp}$ - сума всіх головних мінорів 3-го порядку.

- коефіцієнт вільного доданку: det A:

$$\begin{pmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{pmatrix}$$

$$\det(\mathbb{A} - \lambda \mathbb{I}) = (-1)^n \lambda^n + (-1)^{n-1} (a_{11} + a_{22} + \dots + a_{nn}) \lambda^{n-1} + (-1)^{n-2} \sum_{1 \le j < m \le n} M_{jm}^{jm} \lambda^{n-2} + (-1)^{n-3} \sum_{1 \le j < m \le n} M_{jm}^{jm} \lambda^{n-2}$$

$$+ (-1)^{n-3} \sum_{1 \le j < m < p \le n} M_{jmp}^{jmp} \lambda^{n-3} + \dots + \det \mathbb{A} =$$

$$+ (-1)^{n-3} \sum_{1 \le j < m < p \le n} M_{jmp}^{jmp} \lambda^{n-3} + \dots + \det \mathbb{A} =$$

$$= (-1)^n \lambda^n + \sum_{k=1}^{n-1} (-1)^{n-k} \left(\sum_{1 \le j_1 < j_2 < \dots < j_k} M_{j_1 j_2 \dots j_k}^{j_1 j_2 \dots j_k} \lambda^{n-k} \right) + \det \mathbb{A}$$

Example 4.2.6 За щойно доведеною формулою знайдемо характеристичний многочлен для той

самої матриці $\mathbb{A} = \begin{pmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{pmatrix}$.

$$\det(\mathbb{A} - \lambda \mathbb{I}) = -\lambda^3 + (4+1+1)\lambda^2 - \left(\begin{vmatrix} 4 & -1 \\ 2 & 1 \end{vmatrix} + \begin{vmatrix} 4 & -2 \\ 1 & 1 \end{vmatrix} + \begin{vmatrix} 1 & -2 \\ -1 & 1 \end{vmatrix} \right) \lambda + \begin{vmatrix} 4 & -1 & -2 \\ 2 & 1 & -2 \\ 1 & -1 & 1 \end{vmatrix} = -\lambda^3 + 6\lambda^2 - (6+6-1)\lambda + (4+2+4+2-8+2) = -\lambda^3 + 6\lambda^2 - 11\lambda + 6.$$

Діагоналізація матриці

Definition 4.3.1 Задано $A: L \to L$ - лінійний оператор та базис $\{f_1, \ldots, f_n\}$.

Оператор A називають **діагоналізовним**, якщо матриця оператора в заданому базисі ϵ діагоналізованою, тобто

$$\mathbb{A}_f = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$$

Theorem 4.3.2 Задано $A: L \to L$ - лінійний оператор та базис $\{f_1, \dots, f_n\}$. Оператор A - діагоналізовний $\iff \{f_1,\ldots,f_n\}$ - базис власних векторів оператора A. Proof.

$$\Rightarrow$$
 Дано: A - діагоналізований, тоді для заданого базису матриця оператору $\mathbb{A}_f = \begin{pmatrix} a_{11} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{nn} \end{pmatrix}$.

Звідси випливає, що:

$$Af_1 = a_{11}f_1 + 0f_2 + \dots + 0f_n = a_{11}f_1$$

:

$$Af_n = 0f_1 + 0f_2 + \dots + a_{nn}f_n = a_{nn}f_n$$

Тоді з цих рівностей можна твердити, що f_1, \ldots, f_n - власні вектори. Тому ми маємо базис $\{f_1, \ldots, f_n\}$ саме з власних векторів.

 \sqsubseteq Дано: $\{f_1,\ldots,f_n\}$ - базис власних векторів. Кожний з власних векторів має своє власне число. Побудуємо тоді матрицю за п. 2.7.:

$$Af_1 = \lambda_1 f_1 = \lambda_1 f_1 + 0 f_2 + \dots + 0 f_n;$$

$$Af_2 = \lambda_2 f_2 = 0f_1 + \lambda_2 f_2 + \dots + 0f_n$$

:

$$Af_n = \lambda_n f_n = 0f_1 + 0f_2 + \dots + \lambda_n f_n.$$

Тоді матриця оператора A в базисі власних векторів має вигляд:

Годі матриця оператора
$$A$$
 .
$$\mathbb{A}_f = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}$$

В **Ех. 4.2.3** мали 3 власних числа: $\lambda_1=1, \lambda_2=2, \lambda_3=3.$

I також ми мали власні вектори: $\vec{f_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \vec{f_2} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \vec{f_3} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ - утворюють базис в \mathbb{R}^3 .

Тому має діагоналізовану матрицю $\mathbb{A}_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$.

Remark 4.3.3 Головне зауважу, що в діагоналізованій матриці не обов'язково, щоб власні числа відрізнялись.

Example 4.3.4 Зокрема для матриці $\mathbb{A} = \begin{pmatrix} 2 & 0 & 0 \\ 4 & 2 & 2 \\ -2 & 0 & 1 \end{pmatrix}$ характеристичний многочлен $\det(\mathbb{A} - \lambda \mathbb{I}) = 0$

 $(\lambda-1)(\lambda-2)^2$. Бачимо, що для матриці 3×3 ми маємо лише два власних числа.

При
$$\lambda=1$$
 маємо $\vec{f}\in span\left\{\begin{pmatrix}0\\-2\\1\end{pmatrix}\right\}$, а ось при $\lambda=2$ маємо $\vec{f}\in span\left\{\begin{pmatrix}-1\\0\\2\end{pmatrix},\begin{pmatrix}0\\1\\0\end{pmatrix}\right\}$. Всі ці три

вектори вони утворюють базис $\{\vec{f_1}, \vec{f_2}, \vec{f_3}\}$, останні два з яких мають однакові власні числа. Тому

можна записати діагоналізовану матрицю
$$\mathbb{A}_f = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

4.4 Приєднаний власний вектор

Remark 4.4.1 Надалі ми будемо враховувати комплексні корені з характеристичного полінома, щоб ми мали змогу завжди знайти власні числа.

Розглянемо особливий випадок, коли $A:L\to L$ має єдиний (взагалі єдиний л.н.з.) власний вектор f, що відповідає власному числу λ . При цьому $\dim L=n$. Це один з випадків, де оператор A не може бути діагоналізованим.

Наведемо декілька лем:

Lemma 4.4.2 $\ker(A - \lambda I), \operatorname{Im}(A - \lambda I)$ - інваріантні підпростори відносно оператора A.

Proof.

За вимогою, $\ker(A - \lambda I) = L_{\lambda} = span\{f\}.$

Тоді $\forall g \in span\{f\}: g = \alpha f \implies Ag = A(\alpha f) = \alpha Af = (\alpha \lambda)f \implies Ag \in span\{f\}$. Або теж саме, що $\forall g \in (\ker(A - \lambda I)) \implies Ag \in \ker(A - \lambda I)$.

Тоді $\forall y \in \text{Im}(A - \lambda I) : \exists x \in L : y = (A - \lambda I)x \Longrightarrow Ay = A(A - \lambda I)x = (A^2 - \lambda A)x = (A - \lambda I)(Ax) \in \text{Im}(A - \lambda I).$ Отже, $\ker(A - \lambda I)$ та $\text{Im}(A - \lambda I)$ - два інваріантних підпростори.

Definition 4.4.3 Задано $A: L \to L$ - лінійний оператор, в якому f - власний вектор з власним числом λ .

Елемент $h \in L$ називається **приєднаним вектором** до власного вектора f (висоти 1), якщо

$$(A - \lambda I)h = f$$

Lemma 4.4.4 Для f існує приєднаний власний вектор h.

Proof.

За вимогою, $\dim(\ker(A-\lambda I))=\dim L_{\lambda}=1$. Отже, за рівністю про зв'язок з ядром та образом, $\dim(\operatorname{Im}(A-\lambda I))=n-1$.

Задамо таку множину $M = \ker(A - \lambda I) \cap \operatorname{Im}(A - \lambda I)$. Оскільки $M \subset \ker(A - \lambda I)$, то за одною лемою, $\dim M \leq \dim(\ker(A - \lambda I)) = 1$. Тоді звідси або $\dim M = 0$, або $\dim M = 1$.

Розглянемо випадок dim M=0. Звідси маємо $M=\ker(A-\lambda I)\cap\operatorname{Im}(A-\lambda I)=\{0\}.$

Розглянемо $A|_{\ker(A-\lambda I)}: \ker(A-\lambda I) \to \ker(A-\lambda I)$ - звужений оператор. У нього є власний вектор f, оскільки $f \in \ker(A-\lambda I)$.

Також розглянемо $A|_{\mathrm{Im}(A-\lambda I)}:\mathrm{Im}(A-\lambda I)\to\mathrm{Im}(A-\lambda I)$ - звужений оператор. У цього оператора є власне число μ та власний вектор g (згідно з першим зауваженням цього підрозділу):

 $Ag = A|_{\operatorname{Im}(A - \lambda I)}g = \mu g$

Таким чином, $f \in \ker(A - \lambda I)$ та $g \in \operatorname{Im}(A - \lambda I)$. Оскільки $\ker(A - \lambda I) \cap \operatorname{Im}(A - \lambda I) = \{0\}$, то вони утворюють пряму суму, а водночас $\{f,g\}$ - л.н.з. і є власними векторами для A - суперечність. Отже, $\dim M \neq 0$.

Залишається єдиний випадок - це $\dim M = 1$.

$$\begin{cases} M \subset \ker(A - \lambda I) \\ \dim(\ker(A - \lambda I)) = 1 \end{cases} \implies M = \ker(A - \lambda I).$$

Тоді як можна побачити, $\ker(A - \lambda I) = \ker(A - \lambda I) \cap \operatorname{Im}(A - \lambda I)$, тобто $\ker(A - \lambda I) \subset \operatorname{Im}(A - \lambda I)$. $f \in \ker(A - \lambda I) \implies f \in \operatorname{Im}(A - \lambda I)$.

Тоді $\exists h \in L : f = (A - \lambda I)h$, тобто знайшли приєднаний вектор.

Corollary 4.4.5 Виділю окремо отриманий результат: $\ker(A - \lambda I) \subset \operatorname{Im}(A - \lambda I)$.

Definition 4.4.6 Задано $A:L\to L$ - лінійний оператор, в якому f - власний вектор з власним числом $\lambda.$

Елемент $h^{(k)} \in L$ називається **приєднаним вектором** до власного вектора f **висоти** k, якщо

$$(A - \lambda I)h^{(k)} = h^{(k-1)}$$

Remark 4.4.7 Буду позначати $h^{(1)} = h$.

Remark 4.4.8 Рівняння для приєднаного висоти k можна записати таким чином:

$$(A - \lambda I)f = 0 (A - \lambda I)h^{(1)} = f \implies (A - \lambda I)^2 h^{(1)} = 0 (A - \lambda I)h^{(2)} = h \implies (A - \lambda I)^3 h^{(2)} = 0 \vdots (A - \lambda I)^{k+1} h^{(k)} = 0$$

Остаточно отримаємо таку форму:

$$(A - \lambda I)^{k+1} h^{(k)} = 0$$

Взагалі-то кажучи, можна це проілюструвати ось так:

$$0 \underset{A-\lambda I}{\longleftarrow} f \underset{A-\lambda I}{\longleftarrow} h^{(1)} \underset{A-\lambda I}{\longleftarrow} h^{(2)} \underset{A-\lambda I}{\longleftarrow} \dots \underset{A-\lambda I}{\longleftarrow} h^{(k)}$$

Lemma 4.4.9 Нехай $\{f, h, h^{(2)}, \dots, h^{(k)}\}$ - ланцюг власного та приєднаних до нього векторів. Тоді $\{f, h, h^{(2)}, \dots, h^{(k)}\}$ - л.н.з.

Proof.

$$\begin{array}{l} \alpha_0 f + \alpha_1 h^{(1)} + \dots + \alpha_k h^{(k)} = 0. \\ \Pi \text{ Одіємо оператором } (A - \lambda I) \text{ покроково } k \text{ разів:} \\ (A - \lambda I) \big(\alpha_0 f + \alpha_1 h^{(1)} + \dots + \alpha_k h^{(k)} \big) = 0 \\ \alpha_1 f + \alpha_2 h^{(1)} + \dots + \alpha_k h^{(k-1)} = 0 \\ \alpha_2 f + \dots + \alpha_k h^{(k-2)} = 0 \\ \vdots \\ \alpha_{k-1} f + \alpha_k h^{(1)} = 0 \\ \alpha_k f = 0 \\ \Rightarrow \alpha_k = 0 \Rightarrow \alpha_{k-1} = 0 \Rightarrow \dots \Rightarrow \alpha_2 = 0 \Rightarrow \alpha_1 = 0 \Rightarrow \alpha_0 = 0. \\ \text{Отже, система } \left\{ f, h, h^{(2)}, \dots, h^{(k)} \right\} \text{- Л.Н.3.} \end{array}$$

Theorem 4.4.10 Задано $A: L \to L$ - лінійний оператор, в якому f - єдиний л.н.з. власний вектор, dim L = n. Тоді для власного вектора f знайдеться ланцюг власного та приєднаних до нього векторів $\{f, h, h^{(2)}, \ldots, h^{(n-1)}\}$.

Proof.

Спочатку доведемо лему:

Lemma 4.4.11 Позначимо $L_k = \operatorname{Im}(A - \lambda I)^k$. Тоді $L \supset L_1 \supset L_2 \supset \cdots \supset L_{n-1} \supset \{0\}$.

Proof.

Розглянемо оператор $A_1 = A|_{L_1}: L_1 \to L_1$ (L_1 - інваріантний за лемою). У нього єдиний л.н.з. власний вектор f, оскільки $\ker(A - \lambda I) \subset L_1 \subset L$. Тоді $\ker(A_1 - \lambda I) = \ker(A - \lambda I) = span\{f\}$. Тому $\dim(\ker(A_1 - \lambda I)) = 1 \implies \dim(\operatorname{Im}(A_1 - \lambda I)) = (n-1) - 1 = n-2$. $\operatorname{Im}(A_1 - \lambda I)$ - інваріантний підпростір для A_1 , а отже, й для A за лемою. Зауважимо, що $\forall y \in L_2: \exists z \in L_1: y = (A_1 - \lambda I)z = (A - \lambda I)z$ $z \in L_1 = \operatorname{Im}(A - \lambda I) \Rightarrow \exists x \in L: z = (A - \lambda I)x$ $z \in L_1 = \operatorname{Im}(A - \lambda I)^2 x$. Отримали, що $\operatorname{Im}(A_1 - \lambda I) = \operatorname{Im}(A - \lambda I)^2 = L_2$, $\dim L_2 = n-2$.

Розглянемо оператор $A_2 = A|_{L_2} : L_2 \to L_2$.

 ${\bf y}$ нього єдиний л.н.з. власний вектор f за аналогічними міркуваннями.

Тоді $\ker(A_2 - \lambda I) = \ker(A - \lambda I) = \operatorname{span}\{f\}$

Tomy dim(ker $(A_2 - \lambda I)$) = 1 \implies dim(Im $(A_2 - \lambda I)$) = (n-2) - 1 = n-3.

 $\operatorname{Im}(A_2 - \lambda I)$ - інваріантний підпростір для A_2 , а отже, й для A. Отримаємо, що $\dim(A_2 - \lambda I) = \dim(A - \lambda I)^3$. І знову теж саме...

Тоді остаточно,
$$L\supset L_1\supset L_2\supset \cdots\supset L_{n-1}\supset \{0\}.$$

Додатково зауважимо, що
$$\begin{cases} \dim(\operatorname{Im}(A-\lambda I)^{n-1})=1\\ \dim(\ker(A-\lambda I))=1\\ \ker(A-\lambda I)\subset \operatorname{Im}(A-\lambda I)^{n-1} \end{cases} \implies \operatorname{Im}(A-\lambda I)^{n-1}=\ker(A-\lambda I).$$

Знайдемо ланцюг власного та приєднаного векторів довжини n.

Маємо f - власний вектор.

$$f \in L_{n-1} \implies f \in L_1 \Rightarrow \exists h^{(1)} \in L_1 \Rightarrow h^{(1)} \in L : (A - \lambda I)h = f$$

$$f \in L_{n-1} \implies f \in L_2 \Rightarrow \exists h^{(2)} \in L_2 \Rightarrow h^{(2)} \in L : (A - \lambda I)^2 h^{(2)} = f$$

 $f \in L_{n-1} \implies \exists h^{(n-1)} \in L_{n-1} \Rightarrow h^{(n-1)} \in L : (A - \lambda I)^{(n-1)} h^{(n-1)} = f.$

Таким чином, ми знайшли ланцюг $0 \xleftarrow{A-\lambda I} f \xleftarrow{A-\lambda I} h^{(1)} \xleftarrow{A-\lambda I} h^{(2)} \xleftarrow{A-\lambda I} \dots \xleftarrow{A-\lambda I} h^{(n-1)}$.

Theorem 4.4.12 Задано $A:L\to L$ - лінійний оператор, в якому f - єдиний власний вектор з власним числом λ та нехай $\dim L=n$. Відомо, що $\{f,h,h^{(2)},\ldots,h^{(n-1)}\}$ - ланцюг власного та приєднаних до нього векторів. Тоді $\{f,h,\ldots,h^{(n-1)}\}$ - базис в просторі L. Зрозуміло.

Тоді можемо отримати матрицю оператора $A:L\to L$ в базисі $\{f,h,h^{(2)},\dots,h^{(n-1)}\}$. $(A-\lambda I)f=0$ $(A-\lambda I)h=f=f+0h+\dots+0h^{(k)}$ $(A-\lambda I)h^{(2)}=h=0f+h+\dots+0h^{(k)}$: $(A-\lambda I)h^{(n-1)}=h^{(n-2)}=0f+0h+\dots+h^{(n-2)}+0h^{(n-1)}$

$$(\mathbb{A} - \lambda \mathbb{I})h^{(n-1)} = h^{(n-2)} = 0f + 0h + \dots + h^{(n-2)} + 0h^{(n-2)}$$

$$(\mathbb{A} - \lambda \mathbb{I}) = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Hy а звідси випливає, що $\mathbb{A} = (\mathbb{A} - \lambda \mathbb{I}) + \lambda \mathbb{I}$. Тут $\lambda \mathbb{I} = \begin{pmatrix} \lambda & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & \lambda \end{pmatrix}$.

$$\Longrightarrow \mathbb{A} = \begin{pmatrix} \lambda & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & \lambda \end{pmatrix} \overset{\text{позн.}}{=} J(\lambda)$$
 - так звана **клітина Жордана**.

4.5 Теорема Жордана

Theorem 4.5.1 Теорема Жордана

Задано $A:L\to L$ - лінійний оператор. Тоді в L є базис з власних та приєднаних векторів: $\{f_1,h_1^1,\dots,h_1^{k_1},\qquad f_2,h_2^1,\dots,h_2^{k_2},\qquad \dots \qquad f_m,h_m^1,\dots,h_m^{k_m}\}.$

Proof.

Доведення за індукцією за $\dim L$. Але перед цим маємо оператор $A:L\to L$ - у нього існує деяке власне число λ . Тому в подальшому розглядатимемо оператор $B=A-\lambda I:L\to L$. База індукції: $\dim L=1$.

Тоді $L = span\{f\}, Af \in L \implies Af = \alpha f \implies f$ - власний вектор.

Ще одна база індуції: $\dim L = 2$.

Тоді $\exists f_1 : Af = \lambda f_1$. А ось далі є два варіанти:

- 1) $\exists f_2$ другий власний вектор, щоб $\{f_1,f_2\}$ були л.н.з. Тоді $\{f_1,f_2\}$ базис одразу.
- 2) f_1 єдиний л.н.з. власний вектор, тоді за попередньою теоремою, існує приєднаний вектор h_1 . Тоді $\{f, h_1\}$ базис.

Крок індукції: нехай твердження виконується для $\dim L < n$.

Доведемо існування базису для випадку $\dim L = n$.

Оскільки для оператора B існує власне число λ , то звідси $\ker B \neq \{0\}$, а тому

 $\dim \operatorname{Im} B = \dim L - \dim \ker B < n.$

Зауважимо, що ${\rm Im}\, B$ - інваріантний відносно оператора B (уже доводили). А тому розглянемо звужений оператор $B|_{{\rm Im}\, B}: {\rm Im}\, B \to {\rm Im}\, B.$

За припущенням індукції, в $\operatorname{Im} B$ існує базис з власних та приєднаних, оскільки $\dim \operatorname{Im} B < n$.

$$\lambda: \begin{cases} 0 \leftarrow_{\overline{B}} f_1 \leftarrow_{\overline{B}} h_1^1 \leftarrow_{\overline{B}} \dots \leftarrow_{\overline{B}} h_1^{k_1} \\ \vdots \\ 0 \leftarrow_{\overline{B}} f_s \leftarrow_{\overline{B}} h_s^1 \leftarrow_{\overline{B}} \dots \leftarrow_{\overline{B}} h_s^{k_s} \end{cases}$$

$$\lambda_{s+1}: f_{s+1}, h^1_{s+1}, \dots, h^{k_{s+1}}_{s+1}$$
:

 $\lambda_m: f_m, h_m^1, \dots, h_m^{k_m}$

Це все - базис в Im B. Важливо, що в $\lambda_{s+1}, \ldots, \lambda_m$ власні числа можуть співпадати, але жодна з цих не дорівнює λ . Також зауважу, що може навіть таке бути, що нема ланцюга, що відповідає λ , або абсолютно всі башти відповідають власному числу λ .

Тепер нам необхідно розширити до базису L, але яким чином це відбувається, зараз дізнаємось. Заздалегідь позначу $L_j = span\{f_j, h_i^1, \dots, h_i^{k_j}\}$, де $j = \overline{1,s} \cup \overline{s+1,m}$.

Lemma 4.5.2 L_j - інваріантні підпростори відносно B.

Proof.

Позначу
$$x = \alpha_j^0 f_j + \alpha_j^1 h_j^1 + \dots + \alpha_j^{k_j} h_j^{k_j}$$
. При $j = \overline{1,s}$ якщо $x \in L_j$, то звідси $Bx = (A - \lambda I)x = \alpha_j^1 f_j + \alpha_j^2 h_j^1 + \dots + \alpha_j^{k_j} h_j^{k_j-1} \implies Bx \in L_j$. При $j = \overline{s+1,m}$ маємо $Bf_j = (A - \lambda I)f_j = Af_j - \lambda f_j = (\lambda_j - \lambda)f_j$; $Bh_j^1 = (A - \lambda I)h_j^1 = (A - \lambda_j I + \lambda_j I - \lambda I)h_j^1 = (A - \lambda_j I)h_j^1 + (\lambda_j I - \lambda I)h_j^1 = f_j + (\lambda_j - \lambda)h_j^1$; \vdots $Bh_j^{k_j} = (A - \lambda I)h_j^{k_j} = (A - \lambda_j I + \lambda_j I - \lambda I)h_j^{k_j} = (A - \lambda_j I)h_j^{k_j} + (\lambda_j I - \lambda I)h_j^{k_j} = h_j^{k_j-1} + (\lambda_j - \lambda)h_j^{k_j}$. Отримані $Bf_j, Bh_j^1, \dots, B_j^{k_j} \in L_j$, а тому отримаємо: $Bx = \alpha_j^0 Bf_j + \alpha_j^1 Bh_j^1 + \dots + \alpha_j^{k_j} Bh_j^{k_j} \implies Bx \in L_j$. Все, ми довели інваріантність L_j відносно B .

Lemma 4.5.3 Ланцюги, що відповідають власному числу λ , будуть подовженими на один новий приєднаний вектор із простору L. А ланцюги, що відповідають власному числу $\lambda_2, \ldots, \lambda_m$, не будуть подовженими.

Proof.

А тепер розглянемо звужений оператор $B|_{L_j}:L_j\to L_j$. Знову розіб'ємо на два випадки. При $j=\overline{1,s}$ зауважимо, що оскільки $B|_{L_j}f_j=0$, то звідси $\ker B|_{L_j}\neq\{0\}$. Отже, оператор $B|_{L_j}$ не має оберненого. Тоді елемент $h_j^{k_j}$ не є прообразом жодного елементу в просторі L_j (!) Інакше якщо припустити, що $h_j^{k_j}$ е прообразом деякого елемента $x\in L_j$, тобто щоб $B|_{L_j}h_j^{k_j}=x$, то ми прийдемо факту, що $\{f_j,h_j^1,\ldots,h_j^{k_j}\}$ буде л.з. що суперечить попередньому підрозділу. Оскільки $h_j^{k_j}\in \operatorname{Im} B$, просто тому що $L_j\subset \operatorname{Im} B$, то ми можемо знайти елемент $h_j^{k_j+1}$, що лежить за межами L_j , власне $h_j^{k_j+1}\in L$, щоб $Bh_j^{k_j+1}=h_j^{k_j}$. Тобто ми змогли подовжити ланцюг. Чи можемо ми подовжити один ланцюг на два нових приеднаних або більше? Ні. Можна припустити, що $Bh_j^{k_j+2}=h_j^{k_j+1}$, тобто е друге подовження, але тоді $h_j^{k_j+1}\in \operatorname{Im} B$, ми швиденько прийдемо до суперечності.

При $j=\overline{s+1,m}$ спробуемо довести, що $\ker B|_{L_j}=\{0\}$. Якщо $x\in\ker B|_{L_j}$, то звідси $B|_{L_j}x=0$. Але оскільки $\ker B|_{L_j}\subset L_j$, то звідси $x\in L_j\Longrightarrow x=\alpha_j^0f_j+\alpha_j^1h_j^1+\cdots+\alpha_j^{k_j}h_j^{k_j}$. $B|_{L_j}x=\alpha_j^0B|_{L_j}f_j+\alpha_j^1B|_{L_j}h_j^1+\cdots+\alpha_j^{k_j}B|_{L_j}h_j^{k_j}=0$ (*). Нагадаю з попередньої леми, що в цьому випадку $B|_{L_j}f_j=(\lambda_j-\lambda)f_j,\ B|_{L_j}h_j^1=f_j+(\lambda_j-\lambda)h_j^1,$ $\dots B|_{L_j}h_j^{k_j}=h_j^{k_j-1}+(\lambda_j-\lambda)h_j^{k_j}$. Я позначу $\lambda-\lambda_j=\mu_j\neq 0$. Підставимо це все в наш вираз (*): $\alpha_j^0\mu_jf_j+\alpha_j^1(f_j+\mu_jh_j^1)+\cdots+\alpha_j^{k_j}(h_j^{k_j-1}+\mu_jh_j^{k_j})=$ $=(\alpha_j^0\mu_j+\alpha_j^1)f_j+(\alpha_j^1\mu_j+\alpha_j^2)h_j^1+\cdots+(\alpha_j^{k_j-1}\mu_j+\alpha_j^{k_j})h_j^{k_j-1}+\alpha_j^{k_j}\mu_jh_j^{k_j}=0$. У силу л.н.з. системи з L_j ми маємо $\alpha_j^{k_j}=0\Longrightarrow \alpha_j^{k_j-1}=0\Longrightarrow \cdots\Longrightarrow \alpha_j^0=0$. Підставимо ці коефіцієнти в x та отримаємо x=0. Отже, $\ker B|_{L_j}=\{0\}$. Це означає, що існує $(B|_{L_j})^{-1}$. А тому будь-який елемент L_j при дії $B|_{L_j}$ має прообраз з L_j . А це означає, що $h_{s+1}^{k_{s+1}},\dots,h_m^{k_m}$ не мають продовження за межами L_j .

Додатково до цього ми маємо таку штуку. Оскільки $\ker B|_{\operatorname{Im} B} = \operatorname{span}\{f_1,\ldots,f_s\}$ та $\ker B \supset \ker B|_{\operatorname{Im} B}$, то система $\{f_1,\ldots,f_s\}$ в просторі $\ker B \in \operatorname{л.н.з.}$, тому розширимо до базису $\{f_1,\ldots,f_s,g_1,\ldots,g_r\}$.

Навіщо нам ці g_1, \ldots, g_r ? Це ті власні вектори, що відповідають власному числу λ , але вони не потрапили до ${\rm Im}\, B$. Бо в базисі ${\rm Im}\, B$, нагадаю, може й не бути ланцюга з власним числом λ .

Таким чином, ми розширили систему в лінійному просторі L до такой системи:

$$\lambda: \begin{cases} 0 \leftarrow_{B} & f_{1} \leftarrow_{B} & h_{1}^{1} \leftarrow_{B} & \dots \leftarrow_{B} & h_{1}^{k_{1}} \leftarrow_{B} & h_{1}^{k_{1}+1} \\ \vdots & & & & \\ 0 \leftarrow_{B} & f_{s} \leftarrow_{B} & h_{s}^{1} \leftarrow_{B} & \dots \leftarrow_{B} & h_{s}^{k_{s}} \leftarrow_{B} & h_{s}^{k_{s}+1} \\ 0 \leftarrow_{B} & g_{1} & \dots & 0 \leftarrow_{B} & g_{r} \end{cases}$$

 $\lambda_{s+1}: f_{s+1}, h_{s+1}^1, \dots, h_{s+1}^{\kappa_s}$

 $\lambda_m: f_m, h_m^1, \dots, h_m^{k_m}.$

Нарешті, лишилось довести таку лему:

Lemma 4.5.4 Система $\{f_1, h_1^1, \dots, h_1^{k_1}, h_1^{k_1+1}, \dots, f_s, h_s^1, \dots, h_s^{k_s}, h_s^{k_s+1}, \dots \}$ $f_{s+1}, h_{s+1}^1, \dots, h_{s+1}^{k_{s+1}}$... $f_m, h_m^1, \dots, h_m^{k_m}, q_1, \dots, q_r$ } утворює базис в лінійному просторі L.

Proof.

I. Перевіримо на л.н.з.

$$\left(\alpha_1^0 f_1 + \alpha_1^1 h_1^1 + \dots + \alpha_1^{k_1} h_1^{k_1} + \alpha_1^{k_1+1} h_1^{k_1+1}\right) + \dots + \left(\alpha_s^0 f_s + \alpha_s^1 h_s^1 + \dots + \alpha_s^{k_s} h_s^{k_s} + \alpha_s^{k_s+1} h_s^{k_s+1}\right) + \\ + \left(\alpha_{s+1}^0 f_{s+1} + \alpha_{s+1}^1 h_{s+1}^1 + \dots + \alpha_{s+1}^{k_{s+1}} h_{s+1}^{k_{s+1}}\right) + \dots + \left(\alpha_m^0 f_m + \alpha_m^1 h_m^1 + \dots + \alpha_m^{k_m} h_m^{k_m}\right) + \\ + \beta_1 g_1 + \dots + \beta_r g_r = 0$$

Подіємо ще чудо оператором
$$B=A-\lambda I$$
 - отримаємо:
$$\left(\alpha_1^00+\alpha_1^1f_1+\dots+\alpha_1^{k_1}h_1^{k_1-1}+\alpha_1^{k_1+1}h_1^{k_1}\right)+\dots+\left(\alpha_s^00+\alpha_s^1f_1+\dots+\alpha_s^{k_s}h_s^{k_s-1}+\alpha_s^{k_s+1}h_s^{k_s}\right)+B\left(\alpha_{s+1}^0f_{s+1}+\alpha_{s+1}^1h_{s+1}^1+\dots+\alpha_{s+1}^{k_{s+1}}h_{s+1}^{k_{s+1}}\right)+\dots+B\left(\alpha_m^0f_m+\alpha_m^1h_m^1+\dots+\alpha_m^{k_m}h_m^k\right)+$$

 $+B(\rho_1g_1+\cdots+\rho_rg_r)$ — о У нас $B\left(\alpha_{s+1}^0f_{s+1}+\alpha_{s+1}^1h_{s+1}^1+\cdots+\alpha_{s+1}^{k_{s+1}}h_{s+1}^{k_{s+1}}\right)\in L_{s+1}$, звідси можна розкласти за базисом в

$$B\left(\alpha_{s+1}^{0}f_{s+1} + \alpha_{s+1}^{1}h_{s+1}^{1} + \dots + \alpha_{s+1}^{k_{s+1}}h_{s+1}^{k_{s+1}}\right) = \widetilde{\alpha_{s+1}^{0}}f_{s+1} + \widetilde{\alpha_{s+1}^{1}}f_{s+1}^{1} + \dots + \widetilde{\alpha_{s+1}^{k_{s+1}}}h_{s+1}^{k_{s+1}};$$

. У нас $B\left(\alpha_m^0 f_m + \alpha_m^1 h_m^1 + \dots + \alpha_m^{k_m} h_m^{k_m}\right) \in L_m$, звідси можна розкласти за базисом в L_m , тобто $B\left(\alpha_m^0f_m+\alpha_m^1h_m^1+\cdots+\alpha_m^{k_m}h_m^{k_m}\right)=\widetilde{\alpha_m^0}f_m+\widetilde{\alpha_m^1}f_m^1+\cdots+\widetilde{\alpha_m^{k+1}}h_m^{k_m}.$ Нарешті, $B(\beta_1g_1+\cdots+\beta_rg_r)=0$, оскільки $g_1,\ldots,g_r\in\ker B.$

Отже, матимемо таке рівняння:

$$\left(\alpha_{1}^{0}0 + \alpha_{1}^{1}f_{1} + \dots + \alpha_{1}^{k_{1}}h_{1}^{k_{1}-1} + \alpha_{1}^{k_{1}+1}h_{1}^{k_{1}}\right) + \dots + \left(\alpha_{s}^{0}0 + \alpha_{s}^{1}f_{1} + \dots + \alpha_{s}^{k_{s}}h_{s}^{k_{s}-1} + \alpha_{s}^{k_{s}+1}h_{s}^{k_{s}}\right) + \left(\widetilde{\alpha_{s+1}^{0}}f_{s+1} + \widetilde{\alpha_{s+1}^{1}}f_{s+1}^{1} + \dots + \widetilde{\alpha_{s+1}^{k_{s+1}}}h_{s+1}^{k_{s+1}}\right) + \dots + \left(\widetilde{\alpha_{m}^{0}}f_{m} + \widetilde{\alpha_{m}^{1}}f_{m}^{1} + \dots + \widetilde{\alpha_{m}^{k+1}}h_{m}^{k_{m}}\right) + 0 = 0.$$

Оскільки $\{f_1,h_1^1,\ldots,h_1^{k_1},\quad f_2,h_2^1,\ldots,h_2^{k_2},\quad\ldots\quad f_m,h_m^1,\ldots,h_m^{k_m}\}$ - базиси $\mathrm{Im}\, B$, то вона л.н.з. в просторі L, звідси

просторі
$$L$$
, звідси $\alpha_1^1=\cdots=\alpha_{s+1}^{k_1}=\alpha_1^{k_1+1}=\cdots=\alpha_s^1=\cdots=\alpha_s^{k_s}=\alpha_s^{k_s+1}=$ $=\widetilde{\alpha_{s+1}^0}=\widetilde{\alpha_{s+1}^1}=\cdots=\widetilde{\alpha_{s+1}^0}=\widetilde{\alpha_{s+1}^1}=\cdots=\widetilde{\alpha_m^0}=\widetilde{\alpha_m^1}=\cdots=\widetilde{\alpha_m^{k_m}}=0$ Підставимо ці коефіцієнти в початкове рівняння - отримаємо:

 $\alpha_1^0 f_1 + \dots + \alpha_s^0 f_s + \beta_1 g_1 + \dots + \beta_r g_r = 0.$ А оскільки $\{f_1, \dots, f_s, g_1, \dots, g_r\}$ - базис $\ker B$, тоді вона л.н.з. в просторі L, тоді миттєво $\alpha_1^0 = \dots = \alpha_s^0 = \beta_1 = \dots = \beta_r = 0.$

Отже, наша початкова система - л.н.з.

II. Перевіримо на повноту.

 $\forall z \in L : Bz \in \operatorname{Im} B \implies$

$$Bz = \alpha_1^0 f_1 + \alpha_1^1 h_1^1 + \dots + \alpha_1^{k_1} h_1^{k_1} + \dots + \alpha_s^0 f_s + \alpha_s^1 h_s^1 + \dots + \alpha_s^{k_s} h_s^{k_s} + \alpha_{s+1}^0 f_{s+1} + \alpha_{s+1}^1 h_{s+1}^1 + \dots + \alpha_s^{k_{s+1}} h_{s+1}^{k_{s+1}} + \dots + \alpha_m^0 f_m + \alpha_m^1 h_m^1 + \dots + \alpha_m^{k_m} h_m^{k_m}$$

Розглянемо елемент $w \in L$, що має таку формулу:

$$w = \alpha_1^0 h_1^1 + \alpha_1^1 h_1^2 + \dots + \alpha_1^{k_1} h_1^{k_1 + 1} + \dots + \alpha_s^0 h_s^1 + \alpha_s^1 h_s^2 + \dots + \alpha_s^{k_s} h_s^{k_s + 1} + \dots$$

$$+\alpha_{s+1}^{0}f_{s+1}+\alpha_{s+1}^{1}h_{s+1}^{1}+\cdots+\alpha_{s+1}^{k_{s+1}}h_{s+1}^{k_{s+1}}+\cdots+\alpha_{m}^{0}f_{m}+\alpha_{m}^{1}h_{m}^{1}+\cdots+\alpha_{m}^{k_{m}}h_{m}^{k_{m}}$$

 $+\widetilde{\alpha_{s+1}^0}f_{s+1}+\widetilde{\alpha_{s+1}^1}h_{s+1}^1+\cdots+\widetilde{\alpha_{s+1}^k}h_{s+1}^{k_{s+1}}+\cdots+\widetilde{\alpha_m^0}f_m+\widetilde{\alpha_m^1}h_m^1+\cdots+\widetilde{\alpha_m^k}h_m^k.$ Спеціально ми так підібрали, щоб подіявши оператором B, ми могли отримати елемент z.

Тут $\tilde{\alpha}$ підібрані так, що:

$$B(\widetilde{\alpha_j^0}f_j+\cdots+\widetilde{\alpha_j^{k_j}}h_j^{k_j})=\alpha_j^0f_j+\cdots+\alpha_j^{k_j}h_j^{k_j}, j=\{s+1,\ldots,m\}.$$

$$\Longrightarrow B(z-w)=Bz-Bw=0, \text{ отже, } z-w\in\ker B.$$

$$\Longrightarrow z=w+ au_1f_1+\cdots+ au_sf_s+\gamma_1g_1+\cdots+\gamma_rg_r.$$
Завершальний етап - підставити w в наш вираз:

$$z = \left(\tau_1 f_1 + \alpha_1^0 h_1^1 + \alpha_1^1 h_1^2 + \dots + \alpha_{s+1}^{k_1} h_1^{k_1+1}\right) + \dots + \left(\tau_s f_s + \alpha_s^0 h_s^1 + \alpha_s^1 h_s^2 + \dots + \alpha_s^{k_s} h_s^{k_s+1}\right) + \left(\widetilde{\alpha_{s+1}^0} f_{s+1} + \widetilde{\alpha_{s+1}^1} h_{s+1}^1 + \dots + \widetilde{\alpha_{s+1}^k} h_{s+1}^{k_{s+1}}\right) + \dots + \left(\widetilde{\alpha_m^0} f_m + \widetilde{\alpha_m^1} h_m^1 + \dots + \widetilde{\alpha_m^k} h_m^k\right) + \gamma_1 g_1 + \dots + \gamma_r g_r.$$

Тобто будь-який елемент $z \in L$ розклався як лінійна комбінація нашої системи.

Остаточно: наша початкова система утворює базис в L.

Після доведення останньої леми, ми можемо стверджувати, що для випадку $\dim L = n$ знайшовся базис власних та приєднаних векторів.

МІ доведено (нарешті).

Remark 4.5.5 Доведення повноти досить неприємна штука. Можна цього кроку уникнути таким чином.

Із самого початку ми мали $\dim\operatorname{Im} B\stackrel{\operatorname{позн}}{=} r < n$. За МІ, там є r елементів, що описують власні та приєднані до них вектори. Зауважимо, що dim $\operatorname{Im} B|_{L_i}=k_j$, якщо $j=\overline{1,s}$, а також dim $\operatorname{Im} B|_{L_i}=k_j$ k_j+1 , якщо $j=\overline{s+1,m}$. Простори ${\rm Im}\, B_{L_1},\ldots, {\rm Im}\, B_{L_m}$ утворюють пряму суму, а тому ${\rm dim}\, B|_{{\rm Im}\, B}=k_1+\cdots+k_s+(k_{s+1}+1)+\cdots+(k_m+1)=(k_1+1)+\cdots+(k_s+1)+(k_{s+1}+1)+\cdots+(k_m+1)-s=r-s.$ Таким чином, $\dim \ker B|_{\operatorname{Im} B} = s$, та $\ker B|_{\operatorname{Im} B} \subset \ker B$ має базис $\{f_1, \ldots, f_s\}$, тому розширяється ця система до $\{f_1, \dots, f_s, g_1, \dots, g_p\}$, де число p = n - r - s.

Потім доводиться подовження деяких ланцюгів на одну висоту.

Сумарна кількість: $(k_1+2)+\cdots+(k_s+2)+(k_{s+1}+1)+\cdots+(k_m+1)+p=s+r+(n-r-s)=n$. Оскільки $\dim L = n$, то нам достатньо довести л.н.з.

Theorem 4.5.6 Задано $A:L\to L$ - лінійний оператор, маємо базис власних та приєднаних $\{f_1,h_1^1,\ldots,h_1^{k_1}, \qquad f_2,h_2^1,\ldots,h_2^{k_2}, \qquad \qquad f_m,h_m^1,\ldots,h_m^{k_m}\}.$ Позначимо $L_j=span\{f_j,h_j^1,\ldots,h_j^{k_j}\}.$ Тоді L_j - інваріантні відносно A та $L=L_1\dotplus L_2\dotplus \ldots \dotplus L_m.$

Proof.

Нагадаю, що L_j - інваріантний відносно оператору $B = A - \lambda I$, де λ - деяке власне число. Але зрозуміло, що L_j - інваріантний відносно A, оскільки

 $\forall x \in L_j : Bx \in L_j \implies Ax = (A - \lambda I)x + \lambda Ix = Bx + \lambda x \in L_j.$

$$\forall x \in L_j: Bx \in L_j \Longrightarrow Ax = (A - \lambda I)x + \lambda Ix = Bx + \lambda x \in L_j.$$
 Покажемо, що $L_j \cap L_i = \{0\}, j \neq i$. Справді, $z \in L_j \cap L_i \Rightarrow z = \begin{bmatrix} z_j^0 f_j + z_j^1 h_j^1 + \dots + z_j^{k_j} h_j^{k_j} \\ z_i^0 f_i + z_i^1 h_i^1 + \dots + z_i^{k_i} h_i^{k_i} \end{bmatrix}$ $\Rightarrow z_j^0 f_j + z_j^1 h_j^1 + \dots + z_j^{k_j} h_j^{k_j} + (-z_i^0) f_i + (-z_i^1) h_i^1 + \dots + (-z_i^{k_i}) h_i^{k_i} = 0$ За побудовою, $\{L_j, L_i\}$ - елементи з базису, тому є л.н.з. $\Rightarrow z_j^0 = z_j^1 = \dots = z_j^{k_j} = z_i^0 = z_i^1 = \dots = z_i^{k_i} = 0$ Отже, $z = 0$, а тому $L_j \cap L_i = \{0\}$.

$$\implies z_j^0 f_j + z_j^1 h_j^1 + \dots + z_j^{k_j} h_j^{k_j} + (-z_i^0) f_i + (-z_i^1) h_i^1 + \dots + (-z_i^{k_i}) h_i^{k_i} = 0$$

$$\implies z_i^0 = z_i^1 = \dots = z_i^{k_j} = z_i^0 = z_i^1 = \dots = z_i^{k_i} = 0$$

Таким чином, отримали, що $L = L_1 \dotplus L_2 \dotplus \dots \dotplus L_m$.

А тепер знову задамо A:L o L - лінійний оператор. За теоремою Жордана, в просторі L є базис з власних приєднаних до них векторів.

$$\{f_1,h_1^1,\dots,h_1^{k_1},\qquad f_2,h_2^1,\dots,h_2^{k_2},\qquad \dots \qquad f_m,h_m^1,\dots,h_m^{k_m}\}$$
 Щойно довели, що $L=L_1\dot{+}\dots+\dot{+}L_m$. Тому матриця оператора A в цьому базисі має вигляд:

$$\mathbb{A}_{J} = \begin{pmatrix} \begin{bmatrix} \mathbb{A}_{|L_{1}} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \mathbb{A}_{|L_{2}} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \mathbb{A}_{|L_{m}} \end{pmatrix}$$

Розглянемо матриці звужених операторів $A|_{L_i},\,j=1,\ldots,m$ в силу інваріантності.

 $L_j = span\{f_j, h_j^1, \dots, h_j^{k_j}\}$ - базис з одного власного вектора та приєднаних до нього. Тоді матриця $A|_{L_j}$ в цьому базисі мариляд: $A|_{L_j} = J(\lambda_j)$ - клітина Жордана.

Остаточний вигляд матриці:

$$\mathbb{A}_J = \left(egin{array}{cccc} oxed{J(\lambda_1)} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & oxed{J(\lambda_2)} & \dots & \mathbb{O} \\ dots & dots & \ddots & dots \\ \mathbb{O} & \mathbb{O} & \dots & oxed{J(\lambda_m)} \end{array}
ight)$$
 - Жорданова форма матриці.

Зв'язок матриці оператора $A:L\to L$ в деякому базисі та жордановою формою.

Розглядаємо базисні елементи жорданового базису. Будуємо матрицю $\mathbb U$ оператора переходу від одного базису до іншого. Отримаємо зв'язок: $\mathbb A_e = \mathbb U \mathbb A_J \mathbb U^{-1}$.

Example 4.5.7 Задано матрицю оператора
$$\mathbb{A} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ -2 & 2 & 1 & 0 \\ 0 & 1 & 0 & -1 \end{pmatrix}$$
. Знайдемо жорданову форму.

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \dots = (\lambda - 1)^3 (\lambda + 1) = 0.$$

$$\lambda = -1$$
:

$$(\mathbb{A} - \lambda \mathbb{I})\vec{f} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ -2 & 2 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \vec{f} = \vec{0}$$

$$\begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 3 & 0 & 0 \\ -2 & 2 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 4 & 2 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\vec{f} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ f_4 \end{pmatrix} = f_1 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \implies \vec{f} \in span \left\{ \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

Можемо взяти власний вектор $\vec{f_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

$$\lambda = 1$$

$$(\mathbb{A} - \lambda \mathbb{I})\vec{f} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \vec{f} = \vec{0}$$

$$\begin{pmatrix}
-1 & 1 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
-2 & 2 & 0 & 0 \\
0 & 1 & 0 & -2
\end{pmatrix} \sim \begin{pmatrix}
-1 & 1 & 0 & 0 \\
0 & 1 & 0 & -2 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\vec{f} = \begin{pmatrix}
f_2 \\
f_2 \\
f_3 \\
\frac{f_2}{2}
\end{pmatrix} = f_2 \begin{pmatrix}
1 \\
0 \\
\frac{1}{2}
\end{pmatrix} + f_3 \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix} = f_2 \begin{pmatrix}
2 \\
0 \\
1 \\
0
\end{pmatrix} + f_3 \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix} \implies \vec{f} \in span \left\{\begin{pmatrix}
2 \\
2 \\
0 \\
1
\end{pmatrix}, \begin{pmatrix}
0 \\
0 \\
1 \\
0
\end{pmatrix}\right\}.$$

векторів недостатня для базису. Тому має існувати приєднаний:

Кількість л.н.з. векторів недостатня для оазису. Тому має існувати приєднании.
$$(\mathbb{A} - \lambda \mathbb{I}) \vec{h} = \begin{pmatrix} -1 & 1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ -2 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 \end{pmatrix} \vec{h} = \vec{f}$$

$$\begin{pmatrix} -1 & 1 & 0 & 0 & | & f_1 \\ -1 & 1 & 0 & 0 & | & f_2 \\ -2 & 2 & 0 & 0 & | & f_3 \\ 0 & 1 & 0 & -2 & | & f_4 \end{pmatrix} \sim \begin{pmatrix} -1 & 1 & 0 & 0 & | & f_1 \\ 0 & 1 & 0 & -2 & | & f_4 \\ 0 & 0 & 0 & 0 & | & f_2 - f_1 \\ 0 & 0 & 0 & 0 & | & f_3 - 2f_1 \end{pmatrix}$$
 ІЩоб система була сумісною, ми вимагатимемо
$$\begin{cases} f_2 - f_1 = 0 \\ f_3 - 2f_1 = 0 \end{cases} \implies \begin{cases} f_1 = f_2 \\ f_3 = 2f_1 \end{cases} .$$

Під такі умови можемо взяти власний вектор $\vec{f_2} = \begin{pmatrix} 2 \\ 2 \\ 4 \end{pmatrix}$. Тоді для нього знайдуться такі приєднані

$$\vec{h} = \begin{pmatrix} -1 + 2h_4 \\ 1 + 2h_4 \\ h_3 \\ h_4 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix} + h_3 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + h_4 \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix} \implies \vec{h} \in span \left\{ \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Оберемо $\vec{h_2} = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. Далі вже продовження не буде.

Також візьмемо $\vec{f}_3 = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$, який не має продовження.

Таким чином, ми отримаємо таку форму:

$$\mathbb{A}_J = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Властивості жорданової форми матриці

Задано $A:L\to L$ - лінійний оператор.

1. Кількість клітин Жордана, що відповідають власному числу λ_0 , дорівнює кількості л.н.з. власних векторів з власним числом λ_0 .

Proof.

Кожна клітина Жордана задається ланцюгом $\{f, h^1, \dots, h^k\}$ з базису власних та приєднаних. Тому кількість клітин = кількість л.н.з. власних для λ_0 . Цю кількість описує значення dim(ker($A - \lambda_0 I$)).

2. Кількість клітин Жордана для власного числа λ_0 , розмірність матриці якої не менше за $m \times m$, дорівноює $r_m = \dim(\ker(A - \lambda_0 I)^m) - \dim(\ker(A - \lambda_0 I)^{m-1}).$

Proof.

Кількість клітин Жордана розміра не менше 1×1 відповідала кількість л.н.з. власних векторів ->

приєднаний л.н.з висоти m.

Відповідно, кількість клітин Жордана розміра не менше $m \times m$ відповідає кількість приєднаних л.н.з. висоти m-1.

 $\dim(\ker(A-\lambda_0 I)^m)$ відповідає за кількість л.н.з. приєднаних висоти 0, приєднаних висоти $1,\ldots,$ приєднаних висоти m-1. Водночає $\dim(\ker(A-\lambda_0 I)^{m-1})$ відповідає за кількість л.н.з. приєднаних висоти 0, приєднаних висоти $1,\ldots,$ приєднаних висоти m-2.

Звідси
$$r_m=\dim(\ker(A-\lambda_0I)^m)-\dim(\ker(A-\lambda_0I)^{m-1})$$
 - наша бажана відповідь.

3. Кількість клітин Жордана для власного числа λ_0 , розмірність якої рівно $m \times m$, дорівнює $R_m = r_m - r_{m+1}$.

Proof.

 r_m - кількість клітин Жордана, розмірність якої не менше $m \times m$.

 r_{m+1} - кількість клітин Жордана, розмірність якої не менше $m+1\times m+1$.

Отже,
$$R_m = r_m - r_{m+1}$$
 - наша бажана відповідь.

Example 4.6.1 До прикладу візьмемо оператор $A: \mathbb{R}^8 \to \mathbb{R}^8$ з відповідною матрицею (також заспойлерю його жорданову нормальну форму):

$$\mathbb{A} = \begin{pmatrix} 2 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 & -9 & 0 & 0 \\ 2 & 0 & 1 & 0 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

$$\mathbb{A}_{J} = \begin{pmatrix} 2 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{pmatrix}$$

Під час пошуку власних чисел, ми отримаємо $\lambda = 2$ - кратність 6, $\lambda = 4$ - кратність 2.

Якщо закрити руками другу матрицю, то може виникнути питання: скільки клітин Жордана буде для $\lambda=2$?

Записуємо матрицю
$$\mathbb{A}-2\mathbb{I}=\begin{pmatrix} 0&0&1&0&-1&0&0&0\\ 0&0&0&0&0&0&0&0\\ 0&0&-1&0&1&0&0&0\\ 0&0&0&3&0&-9&0&0\\ 2&0&1&0&1&0&0&0&0\\ 0&0&0&1&0&-3&0&0\\ 0&0&0&0&0&0&0&2&4\\ 0&0&0&0&0&0&0&0&2 \end{pmatrix}.$$

Спочатку треба знайти ранг матриці, одразу дам: $\operatorname{rank}(\mathbb{A}-2\mathbb{I})=5$, звідси $\dim\operatorname{Im}(A-2I)=5$, а отже, $\dim\ker(A-2I)=3$.

Відповідь: всього 3 клітин Жордана (що й демонструє розклад).

Інше питання: скільки всього клітин Жордана буде для $\lambda=2$, розмірність матриць яких не менше 2×2 ?

Tyr rank $(\mathbb{A} - 2\mathbb{I})^2 = 3$, rooto dim Im $(A - 2I)^2 = 3 \implies \dim \ker (A - 2I)^2 = 5$.

Відповідь: всього $\dim \ker (A-2I)^2 - \dim \ker A - 2I = 5 - 3 = 2$ клітин.

Скільки вього клітин Жордана, розмірність якої 2×2 ? Відповідь: $R_2 = r_1 - r_2 = 3 - 2 = 1$.

4. Нехай λ_0 - власне число.

Сумарна розмірність клітин Жордана дорівнює кратності власних чисел як кореня характеристичного полінома $\det(\mathbb{A} - \lambda \mathbb{I})$.

Proof.

Зв'язок матриці оператора $A:L\to L$ в деякому базисі та жордановою формою має таку формулу:

$$\mathbb{A} = \mathbb{U}\mathbb{A}_{J}\mathbb{U}^{-1}. \text{ Todi sa } \mathbf{Prp. } \mathbf{4.2.4}, \det(\mathbb{A} - \lambda \mathbb{I}) = \det(\mathbb{A}_{J} - \lambda \mathbb{I}).$$

$$\det(\mathbb{A} - \lambda \mathbb{I}) = \det(\mathbb{A}_{J} - \lambda \mathbb{I}) = \det\begin{pmatrix} J(\lambda_{1}) - \lambda \mathbb{I} & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & J(\lambda_{p}) - \lambda \mathbb{I} \end{pmatrix} =$$

$$= \det(J(\lambda_{1}) - \lambda \mathbb{I}) \det(J(\lambda_{2}) - \lambda \mathbb{I}) \dots \det(J(\lambda_{m}) - \lambda \mathbb{I}) =$$

$$J(\lambda_{j}) - \lambda \mathbb{I} = \begin{pmatrix} \lambda_{j} & 1 & 0 & \dots & 0 \\ 0 & \lambda_{j} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{j} \end{pmatrix} - \lambda \begin{pmatrix} 1 & \dots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} \lambda_{j} - \lambda & 1 & 0 & \dots & 0 \\ 0 & \lambda_{j} - \lambda & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & \lambda_{j} - \lambda \end{pmatrix}^{k_{j}} \text{ refers its properties.}$$
Springer graphs are provided to the problem of the probl

Звідси якщо розмірність клітин $J(\lambda_j)$ дорівнює $k_j \times k_j$, то $\det(J(\lambda_j) - \lambda I) = (\lambda_j - \lambda)^{k_j}$, тобто k_j - кратність кореня.

$$= (\lambda_1 - \lambda)^{k_1} (\lambda_2 - \lambda)^{k_2} \dots (\lambda_m - \lambda)^{k_m}.$$

Theorem 4.6.2 Єдиність форми Жордана

Жорданова форма оператора $A:L\to L$ визначена єдиним чином із точністю до перестановок клітин Жордана.

Тобто форма Жордана не залежить від обраного базису власних та приєднаних векторів.

Proof.

Кількість клітин для кожного власного числа та заданою розмірністю $k \times k$ визначається числом R_k . Отже, для A це визначається однозначно.

Наостанок: переставленню клітин у Жорданової формі відповідає переставлення ланцюжків з власного та башти приєднаних до нього векторів. ■

4.7 Застосування жорданової форми: функції від операторів, матриць

Definition 4.7.1 Задано $A: L \to L$ - лінійний оператор та многочлен $f(x) = a_n x^n + \dots + a_1 x + a_0$. **Многочленом від оператора** A називають такий вираз:

$$f(A) = a_n A^n + \dots + a_1 A + a_o I$$

Аналогічно можна визначити не для оператора, а для матриці А.

Обчислення заданого многочлену:

Відомо, що $\mathbb{A} = \mathbb{U} \mathbb{A}_J \mathbb{U}^{-1}$. Тоді можемо отримати такий результат:

$$\mathbb{A}^2 = (\mathbb{U}\mathbb{A}_J\mathbb{U}^{-1})(\mathbb{U}\mathbb{A}_J\mathbb{U}^{-1}) = \mathbb{U}\mathbb{A}_J^2\mathbb{U}^{-1}$$

:

$$\mathbb{A}^k = \mathbb{U} \mathbb{A}^k_J \mathbb{U}^{-1}, \forall k \geq 1$$

За цим результатом обчислимо многочлен від матриці:

$$f(\mathbb{A}) = f\left(\mathbb{U}\mathbb{A}_J\mathbb{U}^{-1}\right) = a_n\mathbb{U}\mathbb{A}^n\mathbb{U}^{-1} + \dots + a_1\mathbb{U}\mathbb{A}\mathbb{U}^{-1} + a_o\mathbb{I} = \mathbb{U}(a_n\mathbb{A}_J^n + \dots + a_1\mathbb{A}_J + a_o\mathbb{I})\mathbb{U}^{-1} = \mathbb{U}f(\mathbb{A}_J)\mathbb{U}^{-1}$$

Ми вже знаємо, що
$$\mathbb{A}_J=\left(\begin{array}{cccc} \boxed{J(\lambda_1)} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \boxed{J(\lambda_2)} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \boxed{J(\lambda_m)} \end{array}\right)$$

Тоді
$$\mathbb{A}^k_J = \left(egin{array}{cccc} J^k(\lambda_1) & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & J^k(\lambda_2) & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & J^k(\lambda_m) \end{array} \right), orall k \geq 1$$

Таким чином,
$$f(\mathbb{A}_J) = a_n \mathbb{A}_J^n + \dots + a_1 \mathbb{A}_J + a_0 \mathbb{I} = \dots = \begin{pmatrix} \boxed{f(J(\lambda_1))} & \mathbb{O} & \dots & \mathbb{O} \\ \mathbb{O} & \boxed{f(J(\lambda_2))} & \dots & \mathbb{O} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbb{O} & \mathbb{O} & \dots & \boxed{f(J(\lambda_m))} \end{pmatrix}$$

I це ще не все, оскільки ми можемо знайти $f(J(\lambda_i))$.

Нашу початкову функцію ще можна записати через формулу Тейлора:

$$f(x)=f(\lambda_j)+\frac{f'(\lambda_j)}{1!}(x-\lambda_j)+\cdots+\frac{f^{(n)}(\lambda_j)}{n!}(x-\lambda_j)^n.$$
 Саме таким розкладом ми знайдемо бажане:

Саме таким розкладом ми знайдемо бажане:
$$f(J(\lambda_j)) = f(\lambda_j)I + \frac{f'(\lambda_j)}{1!}(J(\lambda_j) - \lambda_j I) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}(J(\lambda_j) - \lambda_j I)^n \boxed{\equiv}$$

$$\text{Тут } J(\lambda_j) - \lambda_j I = \begin{pmatrix} \lambda_j - \lambda_j & 1 & 0 & 0 & \dots & 0 \\ 0 & \lambda_j - \lambda_j & 1 & 0 & \dots & 0 \\ 0 & 0 & \lambda_j - \lambda_j & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 \\ 0 & 0 & 0 & 0 & \dots & 1 \end{pmatrix} = J(0)$$

$$= f(\lambda_j)I + \frac{f'(\lambda_j)}{1!}J(0) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}J^n(0)$$

Знайдемо $J^k(0)$ тепер (або просто згадаю д/з).

Збільшуючи степінь, ми зсуваємо діагональ з одиничок. А там буде степінь, починаючи з якого, всі матриці будуть нулевими.

А далі в формулі два випадки:

$$k \ge n$$
: $\Longrightarrow f(J(\lambda_j)) = f(\lambda_j)J(0) + \dots + \frac{f^{(k-1)}(\lambda_j)}{(k-1)!}J^{k-1}(0)$

$$k < n : \implies f(J(\lambda_j)) = f(\lambda_j)J(0) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}J^n(0)$$

 $k < n: \implies f(J(\lambda_j)) = f(\lambda_j)J(0) + \dots + \frac{f^{(n)}(\lambda_j)}{n!}J^n(0)$ Але в цьому випадку $f^{(n+1)}(\lambda_j) = \dots = f^{(k)}(\lambda_j) = 0$. Все одно буде матриця той самої форми, як в першому випадку.

$$\Rightarrow f(J(\lambda_{j})) = \begin{pmatrix} f(\lambda_{j}) & \frac{f'(\lambda_{j})}{1!} & \frac{f''(\lambda_{j})}{2!} & \cdots & \frac{f^{(k-1)}(\lambda_{j})}{(k-1)!} \\ 0 & f(\lambda_{j}) & \frac{f'(\lambda_{j})}{1!} & \cdots & \frac{f^{(k-2)}(\lambda_{j})}{(k-2)!} \\ 0 & 0 & f(\lambda_{j}) & \cdots & \frac{f^{(k-3)}(\lambda_{j})}{(k-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & f(\lambda_{j}) \end{pmatrix}$$

Особлива увага до функції $f \in C^{\infty}(\mathbb{R})$. Виникає питання, як знайти f(A). Сама процедура аналогічна, а функція f розкладається за Тейлором. Але існує єдина проблема - збіжність. Про збіжність буду (напевно, колись) порушувати питання на функані.

Розділ завершу одним цікавим фактом:

Theorem 4.7.2 Теорема Гамільтона-Келі

Задано $A:L\to L$ - лінійний оператор. Позначу характеристичний многочлен $\chi(\lambda)=\det(A-\lambda I)$. Тоді $\chi(A) = O$, де O - нульовий оператор. Без доведення.

5 Евклідові простори та інше

5.1 Евклідові простори

Definition 5.1.1 Задано L - лінійний простір над \mathbb{C} .

Відображення $\varphi: L \times L \to \mathbb{C}$ називається півторалінійним функціоналом, якщо для нього виконано такі властивості:

- 1) $\forall x, y, z \in L : \forall \alpha, \beta \in \mathbb{C} : \varphi(\alpha x + \beta y, z) = \alpha \varphi(x, z) + \beta \varphi(y, z)$
- 2) $\forall x, y, z \in L : \forall \alpha, \beta \in \mathbb{C} : \varphi(x, \alpha y + \beta z) = \overline{\alpha} \varphi(x, y) + \overline{\beta} \varphi(x, z)$

Якщо поле \mathbb{R} , то відображення називають білінійним функціоналом та в 2) $\overline{\alpha}, \overline{\beta}$ замінюються на α, β .

Example 5.1.2 Розглянемо приклади білінійних функціоналів:

- 1) $L = \mathbb{R}^3$ $\varphi(\vec{x}, \vec{y}) = (\vec{x}, \vec{y});$ 2) $L = \mathbb{R}_n[x]$ $\varphi(f, g) = \int_a^b f(x)g(x) \, dx;$ 3) $L = Mat(n \times n)$ $\varphi(A, B) = tr(AB).$

Example 5.1.3 Розглянемо приклади півторалінійних функціоналів:

- 1) $L = \mathbb{C}^2$ $\varphi(\vec{z}, \vec{w}) = z_1 \overline{w_1} + z_2 \overline{w_2};$
- 2) $L = \mathbb{C}_n[x]$ $\varphi(f,g) = \int_a^b f(x)\overline{g}(x) dx;$
- $L = Mat(n \times n) \quad \varphi(A, B) = \operatorname{tr}(A\overline{B}^T).$

Definition 5.1.4 Евклідовим простором називають лінійний простір *E*, на якому задано півторалінійний (білінійний) функціонал $(\cdot,\cdot): E \times E \to \mathbb{C}$, для якого виконуються такі властивості:

- $\begin{array}{ll} 1) & \forall x \in E: (x,x) \in \mathbb{R} \text{ Ta } (x,x) \geq 0 \\ 2) & (x,x) = 0 \iff x = 0 \\ 3) & \forall x,y \in E: (x,y) = \overline{(y,x)} \end{array}$

Якщо поле \mathbb{R} , то 1) не обов'язково вказувати, що $(x,x) \in \mathbb{R}$ та 2) $\overline{(y,x)}$ замінюється на (y,x). Такий функціонал називають скалярним добутком.

Example 5.1.5 Приклади 1),2) в **Ex. 5.1.2**, **Ex. 5.1.3** лінійні простори є евклідовими, а задані функціонали - це скалярні добутки.

Доведу лише для 1) Ех. 5.1.3. Перевіряємо всі властивості:

- 1) $\varphi(\vec{z}, \vec{z}) = z_1 \overline{z_1} + z_2 \overline{z_2} = |z_1|^2 + |z_2|^2 \in \mathbb{R} \text{ Ta } \varphi(\vec{z}, \vec{z}) \ge 0;$
- 2) $\varphi(\vec{z}, \vec{z}) = 0 \iff |z_1|^2 + |z_2|^2 = 0 \iff \begin{cases} z_1 = 0 \\ z_2 = 0 \end{cases} \iff \vec{z} = \vec{0};$
- 3) $\varphi(\vec{z}, \vec{w}) = z_1 \overline{w_1} + z_2 \overline{w_2} = \overline{z_1} \overline{w_1} + \overline{z_2} \overline{w_2} = \overline{\varphi(\vec{w}, \vec{w})}$ Отже, $z_1\overline{w_1} + z_2\overline{w_2} = (\vec{z}, \vec{w}).$

Remark 5.1.6 Варто зазначити, що для евклідового простору може бути визначено декілька скалярних добутків.

Example 5.1.7 Зокрема для $E = \mathbb{R}_n[x]$ ми маємо такі скалярні добутки:

$$(f,g) = \int_a^b f(x)g(x) dx;$$

 $(f,g)=a_0b_0+a_1b_1+\cdots+a_nb_n$, де a_i,b_i - відповідно коефіцієнти f,g; $(f,g)=f(t_0)g(t_0)+f(t_1)g(t_1)+\cdots+f(t_n)g(t_n)$, де $t_i\in\mathbb{R}$

$$(f,g) = f(t_0)g(t_0) + f(t_1)g(t_1) + \cdots + f(t_n)g(t_n), \text{ ge } t_i \in \mathbb{R}.$$

Theorem 5.1.8 Нерівність Коші-Буняковського

Задано $(E, (\cdot, \cdot))$ - евклідів простір. Тоді $\forall x, y \in E : |(x, y)|^2 \le (x, x)(y, y)$.

Proof.

I. Випалок \mathbb{R} .

Розглянемо вираз $(x+ty, x+ty) \ge 0$, виконано $\forall t \in \mathbb{R}$.

Розпишемо ліву частини за властивостями функціоналу - отримаємо:

$$(x,x)+t(x,y)+t(y,x)+t^2(y,y)=t^2(y,y)+2t(x,y)+(x,x)\geq 0$$
 $D=4(x,y)^2-4(x,x)(y,y)\leq 0,$ оскільки нерівність завжди виконана. $\Longrightarrow (x,y)^2\leq (x,x)(y,y).$

II. Випадок С.

Зафіксуємо елементи $x,y \in E$. Тоді ми маємо $(x,y) = |(x,y)|e^{i\varphi}$, де кут $\varphi = \arg(x,y)$.

Розглянемо вираз $(x + te^{i\varphi}y + x + te^{i\varphi}y) \ge 0$, виконано $\forall t \in \mathbb{R}$.

Розпишемо ліву частини за властивостями функціоналу - отримаємо:

$$(x,x)+(x,te^{i\varphi}y)+(te^{i\varphi}y,x)+(te^{i\varphi}y,te^{i\varphi}y)=(x,x)+\overline{te^{i\varphi}}(x,y)+te^{i\varphi}(y,x)+te^{i\varphi}\overline{te^{i\varphi}}(y,y)$$
 Вауважимо, що $\overline{e^{i\varphi}}=e^{-i\varphi}$.

$$\boxed{=}(x,x) + te^{-i\varphi}(x,y) + te^{i\varphi}(y,x) + t^2(y,y)\boxed{=}$$

 $\overline{\mathcal{A}}$ алі оскільки $(x,y)=|(x,y)|e^{iarphi}$, то звідси $\overline{e^{-iarphi}}(x,y)=|(x,y)|.$

A також $e^{i\varphi}(y,x) = \overline{e^{-i\varphi}(x,y)} = \overline{|(x,y)|} = |(x,y)|.$

 $= (x, x) + 2t|(x, y)| + t^2(y, y) \ge 0.$

 $D=4|(x,y)|^2-4(x,x)(y,y)\leq 0,$ оскільки нерівність завжди виконана.

 $\implies |(x,y)|^2 \le (x,x)(y,y).$

Remark 5.1.9 $|(x,y)|^2 = (x,x)(y,y) \iff y = \alpha x$, де число $\alpha \in \mathbb{C}$ або \mathbb{R} .

Example 5.1.10 Зокрема маємо скалярний добуток $(f,g) = \int_{-b}^{b} f(x)g(x) \, dx$. За нерівністю Коші-Буняковського, $\int_{a}^{b} f(x)g(x) dx \le \int_{a}^{b} f^{2}(x) dx \int_{a}^{b} g^{2}(x) dx.$

Нормований простір та інші поняття

Definition 5.2.1 Нормованим простором називають лінійний простір N із заданою на ньому функцією $\|\cdot\|: N \to \mathbb{R}$, для якого виконуються такі властивості:

- 1) $\forall x \in E : ||x|| \ge 0$
- 2) $||x|| = 0 \Leftrightarrow x = 0$ 3) $\forall x \in E : \forall \lambda \in \mathbb{R}(\mathbb{C}) : ||\lambda x|| = |\lambda| \cdot ||x||$ 4) $\forall x, y \in E : ||x + y|| \le ||x|| + ||y||$

Така функція називається нормою.

Example 5.2.2 Розглянемо декілька прикладів нормованих просторів:

1.
$$N = \mathbb{R}^n$$
, $||\vec{x}|| = \sum_{j=1}^n |x_j|$.
2. $N = \mathbb{C}^n$, $||\vec{z}|| = \sqrt[p]{\sum_{j=1}^n |z_j|^p}, p > 1$.
3. $N = C([a, b]), \quad ||f|| = \max_{[a, b]} |f(x)|$.

Proposition 5.2.3 Задано $(E, (\cdot, \cdot))$ - евклідовий простір. Тоді простір є нормованим, а сама норма задається формулою: $||x|| = \sqrt{(x,x)}$.

Proof.

Перевіримо $||x|| = \sqrt{(x,x)}$ на 4 аксіоми:

- 1) $||x|| \ge 0$, оскільки $\sqrt{(x,x)} \ge 0$;
- 2) $||x|| = 0 \iff \sqrt{(x,x)} = 0 \iff (x,x) = 0 \iff x = 0;$ 3) $||\lambda x|| = \sqrt{(\lambda x, \lambda x)} = \sqrt{|\lambda|^2(x,x)} = |\lambda|\sqrt{(x,x)} = |\lambda| \cdot ||x||;$

4)
$$||x+y|| = \sqrt{(x+y,x+y)} = \sqrt{(x,x)+(x,y)+(y,x)+(y,y)} = \sqrt{(x,x)+(x,y)+(x,y)+(y,y)} = \sqrt{(x,x)+(x,y)+(x,y)+(y,y)} = \sqrt{(x,x)+2\operatorname{Re}(x,y)+(y,y)} \le ||x+y|| = \sqrt{(x,x)+2\operatorname{Re}(x,y)+(y,y)} \le ||x+y|| = \sqrt{(x,x)+2\operatorname{Re}(x,y)+(y,y)} \le ||x+y|| = \sqrt{(x,x)+2\operatorname{Re}(x,y)+(y,y)} = \sqrt{(x,x)+2\operatorname{Re}$$

Зауважимо, що
$$2\operatorname{Re}(x,y) \leq 2|(x,y)|$$
 - факт з комплексного числення
$$\leq \sqrt{(x,x)+2|(x,y)|+(y,y)} \stackrel{\text{нер-ть K-B}}{\leq} \sqrt{(x,x)+2\sqrt{(x,x)}\sqrt{(y,y)}+(y,y)} = \sqrt{\left(\sqrt{(x,x)}+\sqrt{(y,y)}\right)^2} =$$

$$= \sqrt{(x,x)} + \sqrt{(y,y)} = ||x|| + ||y||.$$

Отже, евклідовий простір є нормованим простором та $||x|| = \sqrt{(x,x)}$.

Definition 5.2.4 Метричним простором називають множину X із заданою на ньому функцією $\rho: X \times X \to \mathbb{R}$, для якого виконуються такі властивості:

- 1) $\forall x, y \in X : \rho(x, y) \ge 0$
- 2) $\rho(x,y) = 0 \iff x = y$
- 3) $\forall x, y \in X : \rho(x, y) = \rho(y, x)$
- 4) $\forall x, y, z \in X : \rho(x, y) \le \rho(x, z) + \rho(z, x)$

Така функція називається відстанню.

Proposition 5.2.5 Задано N - нормований простір. Тоді вона є метричним простором, а відстань задається формулою: $\rho(x,y) = ||x-y||$.

Proof.

Перевіримо $\rho(x,y) = ||x-y||$ на 4 аксіоми:

- 1) $\rho(x,y) \ge 0$, оскільки $||x-y|| \ge 0$;
- 2) $\rho(x,y) = 0 \iff ||x-y|| = 0 \iff x-y = 0 \iff x = y;$
- 3) $\rho(x,y) = \|x-y\| = \|-(y-x)\| = |-1|\|y-x\| = \rho(y,x);$ 4) $\rho(x,y) = \|x-y\| = \|x-z+z-y\| \le \|x-z\| + \|z-y\| = \rho(x,z) + \rho(z,y).$

Отже, нормований простір є метричним простором та $\rho(x,y) = ||x-y||$.

Definition 5.2.6 Задано $(E, (\cdot, \cdot))$ - дійсний(!) евклідовий простір.

Косінусом кута між x, y називається число:

$$\cos \alpha = \frac{(x,y)}{\|x\| \|y\|}$$

Remark 5.2.7 Означення косінуса - коректне. Дійсно,
$$|\cos\alpha| = \left|\frac{(x,y)}{\|x\|\|y\|}\right| = \frac{(x,y)}{\|x\|\|y\|} \overset{\text{нер-ть K-B}}{\leq} \frac{\|x\|\|y\|}{\|x\|\|y\|} = 1.$$

Ортогональні системи, процес Грама-Шмідта

Definition 5.3.1 Задано $(E, (\cdot, \cdot))$ - евклідовий простір.

Елементи $x, y \in E$ називаються **ортогональними**, якщо

$$(x,y) = 0$$

Позначення: $x \perp y$.

Definition 5.3.2 Задано E - евклідовий простір.

Система елементів $\{x_1, \dots, x_n\}$ називається **ортогональною**, якщо

$$\forall j \neq k : x_i \perp x_k$$

Система елементів $\{x_1, \dots, x_n\}$ називається **нормованою**, якщо

$$\forall j : ||x_j|| = 1$$

Система, що є ортогональною та нормованою, називають ортонормованою.

Proposition 5.3.3 Задано $(E, (\cdot, \cdot))$ - евклідовий простір. Відомо, що система $\{x_1, \dots, x_m\}$ - ортогональна та $||x_j|| \neq 0, \forall j$. Тоді вона - л.н.з.

Proof.

$$\alpha_1 x_1 + \dots + \alpha_m x_m = 0.$$

Запишемо скалярний добуток $(\alpha_1 x_1 + \cdots + \alpha_n x_n, x_j)$, де елемент x_j - довільний з системи.

Із одного боку, $(\alpha_1 x_1 + \dots + \alpha_n x_n, x_j) = (0, x_j) = 0$. Із іншого,

$$(\alpha_1 x_1 + \dots + \alpha_n x_n, x_j) = \alpha_1(x_1, x_j) + \dots + \alpha_j(x_j, x_j) + \dots + \alpha_m(x_m, x_j).$$

Таким чином, маємо:

$$\alpha_1(x_1, x_j) + \dots + \alpha_j(x_j, x_j) + \dots + \alpha_m(x_m, x_j) = 0.$$

У силу ортогональности маємо $(x_j, x_k) = 0$, виконано $\forall j \neq k$. Тоді маємо:

$$\alpha_{i}(x_{i}, x_{i}) = 0 \implies \alpha_{i} = 0$$
. I це виконано $\forall j$. Отже, $\{x_{1}, \dots, x_{m}\}$ л.н.з.

Proposition 5.3.4 Задано $(E,(\cdot,\cdot))$ - евклідовий простір. Відомо, що система $\{x_1,\dots,x_m\}$ - ортогональна та $\|x_j\| \neq 0, \forall j$. Тоді система $\{e_1,\dots,e_m\}$, де $e_j = \frac{x_j}{\|x_j\|}$ - ортонормована. Зрозуміло.

Corollary 5.3.5 Ортонормована система - л.н.з.

Процес ортогоналізації Грама-Шмідта

Задано $(E, (\cdot, \cdot))$ - евклідовий простір. Нехай є довільна система $\{x_1, \dots, x_m\}$ та $\|x_j\| \neq 0, \forall j$. Побудуємо еквівалентну їй ортонормовану систему $\{\tilde{e_1}, \dots, \tilde{e_m}\}$.

0)
$$\tilde{e_1} = x_1$$

1)
$$\tilde{e_2} = x_2 - \alpha_{21}\tilde{e_1}$$

Знайдемо α_{21} з умови $\tilde{e_2} \perp \tilde{e_1}$.

$$0 = (\tilde{e_2}, \tilde{e_1}) = (x_2 - \alpha_{21}\tilde{e_1}, \tilde{e_1}) = (x_2, \tilde{e_1}) - \alpha_{21}(\tilde{e_1}, \tilde{e_1}) \implies \alpha_{21} = \frac{(x_2, \tilde{e_1})}{(\tilde{e_1}, \tilde{e_1})}.$$

2)
$$\tilde{e_3} = x_3 - \alpha_{31}\tilde{e_1} - \alpha_{32}\tilde{e_2}$$

Знайдемо α_{31}, α_{32} з умов $\tilde{e_3} \perp \tilde{e_1}, \tilde{e_2} \perp \tilde{e_1}$

$$\begin{cases} (\tilde{e_3},\tilde{e_1})=0\\ (\tilde{e_3},\tilde{e_2})=0 \end{cases} \implies$$
 аналогічним чином отримаємо:

$$\alpha_{31} = \frac{(x_3, \tilde{e_1})}{(\tilde{e_1}, \tilde{e_1})}$$
 $\alpha_{32} = \frac{(x_3, \tilde{e_2})}{(\tilde{e_2}, \tilde{e_2})}$

:

Узагальнюючи, отримаємо наступне:

$$\tilde{e_k} = x_k - \alpha_{k1}\tilde{e_1} - \dots - \alpha_{kk-1}\tilde{e_{k-1}} = x_k - \sum_{s=1}^{k=1} \alpha_{ks}\tilde{e_s}$$

$$\alpha_{ks} = \frac{(x_k, \tilde{e_s})}{(\tilde{e_s}, \tilde{e_s})}$$
, де число $s = \overline{1, k-1}$. Більш того, зрозуміло, що $\{x_1, \dots, x_k\} \sim \{\tilde{e_1}, \dots, \tilde{e_k}\}$.

Оці всі дослідження справедливі $\forall k = \overline{1, m}$.

На кожному кроці якщо система $\{x_1,\ldots,x_k\}$ була л.н.з., то оскільки $\{x_1,\ldots,x_k\}\sim \{\tilde{e_1},\ldots,\tilde{e_k}\}$ та $\{\tilde{e_1},\ldots,\tilde{e_k}\}$ - л.н.з., то $\tilde{e_j}\neq 0$.

Припустимо, що під час ортогоналізації в нас було $\{x_1,\ldots,x_k\}$ л.н.з., а потім рапотово $\{x_1,\ldots,x_k,x_{k+1}\}$ - л.з., тоді точно $x_{k+1}\in span\{x_1,\ldots,x_k\}\implies span\{x_1,\ldots,x_k\}=span\{x_1,\ldots,x_k,x_{k+1}\}$ $\Longrightarrow \{\tilde{e_1},\ldots,\tilde{e_k}\}\sim \{x_1,\ldots,x_k\}\sim \{x_1,\ldots,x_k,x_{k+1}\}\sim \{\tilde{e_1},\ldots,\tilde{e_k},\tilde{e_{k+1}}\}.$

Звідси $\operatorname{rank}\{\tilde{e_1},\ldots,\tilde{e_k},\tilde{e_{k+1}}\}=k$, тож звідси $\tilde{e_{k+1}}=0$ Бо інакше система стане л.н.з., а ранг системи збільшиться на одиничку.

У цьому випадку елемент x_{k+1} ми викидуємо та продовжуємо ортогоналізацію.

Остання дія - це ортонормуємо нашу систему за **Prp. 5.3.4** і отримаємо бажану систему $\{e_1, \dots, e_k\}$ - ортонормована система.

Процес ортогоналізації позначатиму далі так: $\{x_1,\ldots,x_m\} \stackrel{\text{Gram-Schmidt}}{\longrightarrow} \{e_1,\ldots,e_m\}.$

Example 5.3.6 Ортонормізувати систему $\{\vec{a_1}, \vec{a_2}, \vec{a_3}\}$ процесом Грама-Шмідта, де $\vec{a_1} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T \quad \vec{a_2} = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}^T \quad \vec{a_3} = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix}^T$

$$\vec{a_1} = \begin{pmatrix} 1 & 1 & 0 \end{pmatrix}^T$$
 $\vec{a_2} = \begin{pmatrix} 1 & 2 & 0 \end{pmatrix}^T$ $\vec{a_3}$ $\vec{e_1} = \vec{a_1} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$

$$\vec{e_2} = \vec{a_2} - \frac{(\vec{a_2}, \vec{e_1})}{(\vec{e_1}, \vec{e_1})} \vec{e_1} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix} - \frac{3}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \\ 0 \end{pmatrix}$$

$$\vec{e_3} = \vec{a_3} - \frac{(\vec{a_3}, \vec{e_1})}{(\vec{e_1}, \vec{e_1})} \vec{e_1} - \frac{(\vec{a_3}, \vec{e_2})}{(\vec{e_2}, \vec{e_2})} \vec{e_2} = \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} - \frac{0.5}{0.5} \begin{pmatrix} -0.5 \\ 0.5 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix}$$

А далі нормізуємо вектори:

$$\vec{f_1} = \frac{\vec{e_1}}{\sqrt{(\vec{e_1}, \vec{e_1})}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1\\0 \end{pmatrix} = \begin{pmatrix} \frac{\sqrt{2}}{2}\\\frac{\sqrt{2}}{2}\\0 \end{pmatrix}$$

$$\vec{f}_{2} = \frac{\vec{e_{2}}}{\sqrt{(\vec{e_{2}}, \vec{e_{2}})}} = \frac{1}{\frac{1}{\sqrt{2}}} \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{-\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix}$$
$$\vec{f}_{3} = \frac{\vec{e_{3}}}{\sqrt{(\vec{e_{3}}, \vec{e_{3}})}} = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

Lemma 5.3.7 Розклад Фур'є

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та $\{e_1,\ldots,e_n\}$ - ортонормований базис. Тоді $\forall x\in E: x=(x,e_1)e_1+\cdots+(x,e_n)e_n.$

Proof.

Нехай $x\in E$, тоді за базисом $x=\alpha_1e_1+\cdots+\alpha_ne_n$. Запишемо скалярний добуток (x,e_k) , де $k=\overline{1,n}$. Тоді $(x,e_k)=(\alpha_1e_1+\cdots+\alpha_ne_n),e_k)=\alpha_1(e_1,e_k)+\cdots+\alpha_k(e_k,e_k)+\cdots+\alpha_n(e_n,e_k)=\alpha_k$. Тобто $\alpha_k=(x,e_k)$, де $k=\overline{1,n}$. Таким чином, розклад має форму: $x=(x,e_1)e_1+\cdots+(x,e_n)e_n$.

5.4 Матриця Грама

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та довільний базис $\{f_1,\ldots,f_n\}$. Тоді елемент $x\in E$ розкладається за базисом:

$$x = \alpha_1 f_1 + \dots + \alpha_n f_n.$$

Мета: знайти коефіцієнти α_1,\dots,α_n , використовуючи скалярний добуток.

Маємо:

$$\begin{aligned} &(x,f_1) = (\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n, f_1) = \alpha_1 (f_1,f_1) + \alpha_2 (f_2,f_1) \dots + \alpha_n (f_1,f_n) \\ &(x,f_2) = (\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n, f_2) = \alpha_1 (f_1,f_2) + \alpha_2 (f_2,f_2) \dots + \alpha_n (f_2,f_n) \\ &\vdots \\ &(x,f_n) = (\alpha_1 f_1 + \alpha_2 f_2 + \dots + \alpha_n f_n, f_n) = \alpha_1 (f_1,f_n) + \alpha_2 (f_2,f_n) \dots + \alpha_n (f_n,f_n) \\ &\text{Таким чином, отримали СЛАУ:} \\ &\begin{cases} \alpha_1 (f_1,f_1) + \alpha_2 (f_2,f_1) \dots + \alpha_n (f_1,f_n) = (x,f_1) \\ \alpha_1 (f_1,f_2) + \alpha_2 (f_2,f_2) \dots + \alpha_n (f_2,f_n) = (x,f_2) \end{cases} \\ &\vdots \\ &\alpha_1 (f_1,f_n) + \alpha_2 (f_2,f_n) \dots + \alpha_n (f_n,f_n) = (x,f_n) \end{aligned}$$

Запишемо це в матричному вигляді:

$$\Gamma = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix} - \text{матриця } \Gamma \text{рама}, \qquad \vec{\alpha} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \qquad [\vec{x}] = \begin{pmatrix} (x, f_1) \\ (x, f_2) \\ \vdots \\ (x, f_n) \end{pmatrix}$$

Оскільки $\forall x \in E: \exists! \alpha_1, \dots, \alpha_n$ в силу базису, то система має єдиний розв'язок, тобто існує обернена матриця Γ^{-1}

$$\implies \vec{\alpha} = \Gamma^{-1}[\vec{x}].$$

5.5 Ортогональні підпростори, ортогональне доповнення

Definition 5.5.1 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та L_1,L_2 - підпростори. Підпростори L_1,L_2 називаються **ортогональними**, якщо

$$\forall x \in L_1, \forall y \in L_2 : x \perp y$$

Позначення: $L_1 \perp L_2$.

Example 5.5.2 Маємо $E = \mathbb{R}^3$ з класничним скалярним добутком. Маємо два підпростори $L_1 = XOY, L_2 = OZ$. Зрозуміло, що $L_1 \perp L_2$.

Proposition 5.5.3 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та підпростори L_1,L_2 . Відомо, що $L_1\perp L_2$. Тоді $L_1 \cap L_2 = \{0\}.$

Proof.
$$z \in L_1 \cap L_2 \implies \begin{cases} z \in L_1 \\ z \in L_2 \end{cases} \implies (z, z) = 0 \implies z = 0$$

Тобто з цього випливає, що ортогональні підпростори утворюють пряму суму.

Definition 5.5.4 Задано $(E, (\cdot, \cdot))$ - евклідовий простір та $L_1 \perp L_2$.

У цьому випадку пряму суму $L_1 \dot{+} L_2$ називають **ортогональною сумою**. Позначення: $L_1 \bigoplus L_2$.

Definition 5.5.5 Задано $(E, (\cdot, \cdot))$ - евклідовий простір та L - підпростір. Ортогональним доповненням до L називається множина

$$L^{\perp} = \{ y \in E : \forall x \in L : x \perp y \}$$

Proposition 5.5.6 Задано $(E, (\cdot, \cdot))$ - евклідовий простір та L - підпростір. Тоді L^{\perp} - теж лінійний підпростір.

$$\forall y_1, y_2 \in L^{\perp} : \forall \alpha, \beta \in \mathbb{R}(\mathbb{C}) :$$

$$\forall x \in L : (x, \alpha y_1 + \beta y_2) = \overline{\alpha}(x, y_1) + \overline{\beta}(x, y_2) = \overline{\alpha} \cdot 0 + \overline{\beta} \cdot 0 = 0 \implies x \perp \alpha y_1 + \beta y_2$$

$$\implies \alpha y_1 + \beta y_2 \in L^{\perp}.$$

Corollary 5.5.7 $L \perp L^{\perp}$, тобто вони утворюють пряму суму.

Theorem 5.5.8 Ортогональний розклад евклідового простору

Задано $(E, (\cdot, \cdot))$ - евклідовий простір та L - підпростір. Тоді $E = L \bigoplus L^{\perp}$.

Proof.

Нехай $\{e_1,\ldots,e_k\}$ - ортонормований базис простора L. Доповнимо його до $\{e_1,\ldots,e_k,f_{k+1},\ldots,f_n\}$

- до базису простору E. Не факт, що ця система ортонормована, тому застосуємо процес: $\{e_1,\dots,e_k,f_{k+1},f_n\} \stackrel{\text{Gram-Schmidt}}{\longrightarrow} \{e_1,\dots,e_k,e_{k+1},\dots,e_n\}$ - ортонормований базис E.

(перші k елементи взагалі не змінюються, це легко показати.)

Доведемо, що $\{e_{k+1}, \ldots, e_n\}$ - базис L^{\perp} .

І. Те, що вона л.н.з., це зрозуміло.

II. Нехай $y \in L^{\perp}$, тоді $y \in E \implies y = \alpha_1 e_1 + \dots + \alpha_k e_k + \alpha_{k+1} e_{k+1} + \dots + \alpha_n e_n$ - розклад єдиним

Обчислимо скалярні добутки (y, e_i) , де $j = \overline{1, k}$.

Із одного боку, оскільки $e_i \in L$, то звідси $(y, e_i) = 0$.

Із іншого боку, $(y, e_j) = (\alpha_1 e_1 + \dots + \alpha_j e_j + \dots + \alpha_k e_k + \alpha_{k+1} e_{k+1} + \dots + \alpha_n e_n, e_j) =$

 $= \alpha_1(e_1, e_j) + \dots + \alpha_j(e_j, e_j) + \dots + \alpha_k(e_k, e_j) + \alpha_{k+1}(e_{k+1}, e_j) + \dots + \alpha_n(e_n, e_j) = \alpha_j.$

Отже, $\alpha_j = 0$, де $j = \overline{1, k}$. Звідси отримуємо $y = \alpha_{k+1} e_{k+1} + \cdots + \alpha_n e_n$.

Отже, $\{e_{k+1}, \dots, e_n\}$ - базис L^{\perp} .

Лишилось довести рівність.

Маємо $\dim(L \dotplus L^{\perp}) = \dim L + \dim L^{\perp} = n = \dim E$, а також $L \dotplus L^{\perp} \subset E \implies E = L \dotplus L^{\perp}$.

Але оскільки L та L^{\perp} утворюють додатково ортогональну суму, то звідси $E=L\bigoplus L^{\perp}$.

Theorem 5.5.9 Єдиність ортогонального розкладу

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та L,M - підпростори. Відомо, що $E=L\bigoplus M$. Тоді $M=L^{\perp}$.

Proof.

За умовою, $M \perp L$, тож $M \subset L^{\perp}$. Також:

$$\begin{cases} \dim M = \dim E - \dim L \\ \dim L^{\perp} = \dim E - \dim L \end{cases} \implies \dim M = \dim L^{\perp}.$$

Тоді остаточно маємо $M=L^{\perp}$.

Remark 5.5.10 Інколи використовують позначення: $E\ominus L=L^{\perp}.$

Proposition 5.5.11 Властивості ортогонального доповнення

Задано $(E, (\cdot, \cdot))$ - евклідовий простір та L, L_1, L_2 - підпростори. Тоді:

$$0) E^{\perp} = \{0\} \qquad \{0\}^{\perp} = E;$$

1)
$$(L^{\perp})^{\perp} = L;$$

2)
$$L_1 \subset L_2 \implies L_2^{\perp} \subset L_1^{\perp}$$

2)
$$L_1 \subset L_2 \Longrightarrow L_2^{\perp} \subset L_1^{\perp};$$

3) $(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp};$
4) $(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}.$

4)
$$(L_1 \cap L_2)^{\perp} = L_1^{\perp} + L_2^{\perp}$$

Proof.

$$0)\;y\in E^\perp\implies \forall z\in E: (y,z)=0$$
 Зокрема для $z=y: (y,y)=0\implies y=0.$ $y\in E\implies (x,0)=0\implies x\in \{0\}^L.$

1)
$$E=L\bigoplus L^\perp$$

$$E=L^\perp\bigoplus (L^\perp)^\perp$$
 Із єдиності розкладу, маємо: $(L^\perp)^\perp=L.$

2)
$$\forall y \in L_2^{\perp}$$
 маємо:

$$\forall x \in L_1 \implies x \in L_2 : (y,x) = 0 \implies y \in L_1^{\perp}$$
. Отже, $L_2^{\perp} \subset L_1^{\perp}$.

3) Нехай
$$z \in (L_1 + L_2)^{\perp}$$
, тоді $\forall x \in L_1 + L_2 : (x,z) = 0$. Тут $x = x_1 + x_2$.

Оберемо
$$x_1 \in L_1, x_2 = 0$$
. Тоді $(x_1, z) = 0 \implies z \in L_1^\perp$

Оберемо
$$x_1 \in L_1, x_2 = 0$$
. Годі $(x_1, z) = 0 \implies z \in L_1^{\perp}$
Оберемо $x_1 = 0, x_2 \in L_2$. Тоді $(x_2, z) = 0 \implies z \in L_2^{\perp}$
Отже, $z \in L_1^{\perp} \cap L_2^{\perp} \implies (L_1 + L_2)^{\perp} \subset L_1^{\perp} \cap L_2^{\perp}$.
Нехай $z \in L_1^{\perp} \cap L_2^{\perp}$. Тоді $z \in L_1^{\perp} \implies \forall x_1 \in L_1 : (x_1, z) = 0$
 $z \in L_2^{\perp} \implies \forall x_2 \in L_2 : (x_2, z) = 0$

Отже,
$$z \in L_1^{\perp} \cap L_2^{\perp} \implies (L_1 + L_2)^{\perp} \subset L_1^{\perp} \cap L_2^{\perp}$$
.

Нехай
$$z \in L_1^{\perp} \cap L_2^{\perp}$$
. Тоді

$$z \in L_1^{\perp} \implies \forall x_1 \in L_1 : (x_1, z) = 0$$

$$z \in L_2^{\perp} \implies \forall x_2 \in L_2 : (x_2, z) = 0$$

Остаточно
$$(L_1 + L_2)^{\perp} = L_1^{\perp} \cap L_2^{\perp}$$
.

4) Позначимо
$$L_1^\perp = M_1, L_2^\perp = M_2.$$
 Тоді $L_1 = M_1^\perp, L_2 = M_2^\perp.$

Із властивості 3) маємо:

$$(M_1 + M_2)^{\perp} = M_1^{\perp} \cap M_2^{\perp} \Longrightarrow (L_1^{\perp} + L_2^{\perp})^{\perp} = L_1 \cap L_2$$

$$L_1^{\perp} + L_2^{\perp} = ((L_1^{\perp} + L_2^{\perp})^{\perp})^{\perp} = (L_1 \cap L_2)^{\perp}.$$

Ми вже з'ясували, що для евклідового простору $(E, (\cdot, \cdot))$ та підпростору L можна виписати ортогональний розклад $E = L \bigoplus L^{\perp}$.

A це означає, що $\forall z \in E \implies \forall z \in L + L^{\perp} : \exists ! x \in L : y \in L^{\perp} : z = x + y.$

Definition 5.5.12 Елемент x називають ортогональною проєкцією елемента z на L.

Позначення: $x = pr_L z$.

Елемент y називають **ортогональною складовою** елемента z відносно L.

Позначення: $y = ort_L z$.

Тобто наш елемент $z \in E$ розкладається як $z = pr_L z + ort_L z$ єдиним чином, де $pr_L z \in L$, $ort_L z \in L^{\perp}$.

Example 5.5.13 Задано $E=\mathbb{R}^4$, скалярний добуток $(\vec{x},\vec{y})=x_1y_1+x_2y_2+x_3y_3+x_4y_4$. Розглянемо підпростір $L = span\{\vec{a_1}, \vec{a_2}\}$, де $\vec{a_1} = \begin{pmatrix} -1 & 3 & 2 & -2 \end{pmatrix}^T$, $\vec{a_2} = \begin{pmatrix} -2 & -1 & 1 & 3 \end{pmatrix}^T$. Знайти ортогональну проєкцію та складову вектора $\vec{z} = \begin{pmatrix} 0 & 3 & 1 & -6 \end{pmatrix}^T$.

Маємо $\vec{z} = pr_L \vec{z} + ort_L \vec{z} \implies ort_L \vec{z} = \vec{z} - pr_L \vec{z}$.

Оскільки $pr_L\vec{z} \in L$, то звідси $pr_L\vec{z} = \alpha_1\vec{a_1} + \alpha_2\vec{a_2}$.

 $ort_L \vec{z} = \vec{z} - \alpha_1 \vec{a_1} - \alpha_2 \vec{a_2}.$

Оскільки
$$ort_L \vec{z} \in L^\perp$$
, то звідси
$$\begin{cases} (ort_L \vec{z}, \vec{a_1}) = 0 \\ (ort_L \vec{z}, \vec{a_2}) = 0 \end{cases}$$

Розпишемо кожний скалярний добуток:

$$(ort_L\vec{z}, \vec{a_1}) = (\vec{z} - \alpha_1\vec{a_1} - \alpha_2\vec{a_2}, \vec{a_1}) = (\vec{z}, \vec{a_1}) - \alpha_1(\vec{a_1}, \vec{a_1}) - \alpha_2(\vec{a_2}, \vec{a_1}) = 23 - 18\alpha_1 + 5\alpha_2 = 0$$

$$(ort_L\vec{z}, \vec{a_2}) = (\vec{z} - \alpha_1\vec{a_1} - \alpha_2\vec{a_2}, \vec{a_2}) = (\vec{z}, \vec{a_2}) - \alpha_1(\vec{a_1}, \vec{a_2}) - \alpha_2(\vec{a_2}, \vec{a_2}) = -20 + 5\alpha_1 - 15\alpha_2 = 0$$

$$\implies \begin{cases} -18\alpha_1 + 5\alpha_2 = -23 \\ 5\alpha_1 - 15\alpha_2 = 20 \end{cases} \implies \begin{cases} \alpha_1 = 1 \\ \alpha_2 = -1 \end{cases}$$

Отже, знайшли вектори:

$$pr_L \vec{z} = \vec{a_1} - \vec{a_2} = \begin{pmatrix} 1 & 4 & 1 & -5 \end{pmatrix}^T$$

 $ort_L \vec{z} = \vec{z} - pr_L \vec{z} = \begin{pmatrix} -1 & -1 & 0 & -1 \end{pmatrix}^T$

Загальний пошук проєкції та складової

Маємо $(E,(\cdot,\cdot))$ - евклідовий простір. Розглянемо $L=span\{a_1,\ldots,a_m\}$ - всі вектори всередині л.н.з.

$$z \in E \implies z = pr_L z + ort_L z$$

Оскільки $pr_Lz \in L$, то тоді $pr_Lz = \alpha_1a_1 + \cdots + \alpha_ma_m$.

 $ort_L z = z - pr_L z = z - \alpha_1 a_1 - \dots - \alpha_m a_m$.

Оскільки $ort_Lz \in L^{\perp}$, а елементи $a_1, \ldots, a_m \in L$, то звідси $z \perp a_1, \ldots, z$

Оскільки
$$ort_L z \in L^{\perp}$$
, а елементи $a_1, \ldots, a_m \in L$, то звідси $z \perp a_1, \ldots, z \perp a_m$.

$$\begin{cases}
(ort_L z, a_1) = 0 \\
\vdots \\
(ort_L z, a_m) = 0
\end{cases} \Rightarrow \begin{cases}
(z - \alpha_1 a_1 - \cdots - \alpha_m a_m, a_1) = 0 \\
\vdots \\
(z - \alpha_1 a_1 - \cdots - \alpha_m a_m, a_m) = 0
\end{cases} \Rightarrow \begin{cases}
\alpha_1(a_1, a_1) + \cdots + \alpha_m(a_m, a_1) + \cdots + \alpha_m(a_m, a_m) = (z, a_m) \\
\vdots \\
\alpha_1(a_1, a_m) + \cdots + \alpha_m(a_m, a_m) = (z, a_m)
\end{cases}$$
Матриця системи:
$$\begin{pmatrix}
(a_1, a_1) & \dots & (a_m, a_1) \\
\vdots & \ddots & \vdots \\
(a_1, a_m) & \dots & (a_m, a_m)
\end{pmatrix} = \Gamma$$
- матриця Грама.

Оскільки $\{a_1, \ldots, a_m\}$ - д.н.з., то $\exists \Gamma^{-1}$, а тому існує єдиний розв'язок.

Таким чином, ми зможемо отримати $pr_L z$ та $ort_L z$ після знаходження $\alpha_1, \ldots, \alpha_m$.

Definition 5.5.14 Задано $(E, (\cdot, \cdot))$ - евклідів простір та L - підпростір.

Відстанню від z до L називається таке число:

$$\rho(z, L) = \inf_{y \in L} ||z - y||$$

Theorem 5.5.15 Екстремальна властивість проєкції

Задано $(E, (\cdot, \cdot))$ - евклідів простір та L - підпростір.

Тоді $\rho(z,L) = \|ort_L z\|$ і ця відстань досягається на елементі $y = pr_L z$.

Proof.

Proof. Маємо
$$z=pr_Lz+ort_Lz$$
. Зафіксуємо будь-який $y\in L$. Оцінимо відстань: $\|z-y\|^2=\|pr_Lz+ort_Lz-y\|^2=(ort_Lz+[pr_Lz-y],ort_Lz+[pr_Lz-y])=$ $=(ort_Lz,ort_Lz)+(pr_Lz-y,ort_Lz)+(ort_Lz,pr_Lz-y)+(pr_Lz-y,pr_Lz-y)$ \equiv Зауважимо, що $ort_Lz\in L^\perp$, а $pr_Lz-y\in L$. Тому $(pr_Lz-y,ort_Lz)=(ort_Lz,pr_Lz-y)=0$. $\boxed{=}\|ort_Lz\|^2+\|pr_Lz-y\|^2\geq\|ort_Lz\|^2$. Таким чином, $\forall y\in L:\|ort_Lz\|\leq\|z-y\|\implies\|ort_Lz\|=\inf_{y\in L}\|z-y\|=\rho(z,L)$. Згідно з ланцюга нерівності, $\rho(z,L)$ досягається при $y=pr_Lz$.

Згідно з ланцюга нерівності, $\rho(z,L)$ досягається при $y=pr_Lz$.

5.6 Ізоморфізм евклідових просторів

Definition 5.6.1 Задано два евклідових простори $(E_1, (\cdot, \cdot)_1), (E_2, (\cdot, \cdot)_2)$.

Евклідові простори називаються **ізоморфними**, якщо $\exists U: E_1 \to E_2$ - лінійний оператор, для якого виконано:

1)
$$\operatorname{Im} U = E_2$$

1) Im
$$U = E_2$$

2) $\forall x, y \in E_1 : (Ux, Uy)_2 = (x, y)_1$

Водночає оператор U називається **ізоморфізмом евклідових просторів**.

Proposition 5.6.2 Задано два евклідових простори $(E_1, (\cdot, \cdot)_1), (E_2, (\cdot, \cdot)_2)$ та $U: E_1 \to E_2$ - ізоморфізм. Тоді $\ker U = \{0\}.$

Proof.

$$x \in \ker U \implies Ux = 0 \implies 0 = (Ux, Ux)_2 = (x, x)_1 \implies x = 0.$$

Corollary 5.6.3 Ізоморфізм має обернений оператор.

Theorem 5.6.4 Задано два евклідових простори $(E_1, (\cdot, \cdot)_1), (E_2, (\cdot, \cdot)_2)$. Вони ϵ ізоморфними \iff dim $E_1 = \dim E_2$.

Proof.

 \implies Дано: E_1, E_2 - ізоморфні, тобто $\exists U: E_1 \to E_2$ - ізоморфізм. Тоді $\exists U^{-1}$. А тому U - ізоморфізм лінійних просторів $\implies \dim E_1 = \dim E_2$.

 \leftarrow Дано: dim E_1 = dim E_2 .

Розглянемо $\{f_1,\ldots,f_n\}$ - ортонормований базис E_1 та $\{g_1,\ldots,g_n\}$ - ортонормований базис E_2 . Побудуемо ізоморфізм лінійних просторів $U:E_1\to E_2$ правилом $U(f_k)=g_k, k=\overline{1,n}$. Покажемо, що U - ізоморфізм евклідових просторів.

Оскільки ізоморфізм лінійний просторів має обернену, то автоматично ${\rm Im}\,U=E_2$. Лишилось перевірити другу умову:

```
\forall x \in E_1: x = x_1f_1 + \dots + x_nf_n; \qquad \forall y \in E_2: y = y_1f_1 + \dots + y_nf_n Ux = U(x_1f_1 + \dots + x_nf_n) = x_1g_1 + \dots + x_ng_n \qquad Uy = U(y_1f_1 + \dots + y_nf_n) = y_1g_1 + \dots + y_ng_n (Jx, Jy)_2 = (x_1g_1 + \dots + x_ng_n, y_1g_1 + \dots + y_ng_n)_2 = = x_1\overline{y_1}(g_1, g_1)_2 + \dots + x_1\overline{y_n}(g_1, g_n)_2 + \dots + x_n\overline{y_1}(g_n, g_1)_2 + \dots + x_n\overline{y_n}(g_n, g_n)_2 \boxed{\equiv} Оскільки базис ортонормований, то (g_j, g_k)_2 = 0 = (f_j, f_k)_1, j \neq k та (g_j, g_j)_2 = 1 = (f_j, f_j)_1, \forall j. \boxed{\equiv} x_1\overline{y_1}(f_1, f_1)_1 + \dots + x_1\overline{y_n}(f_1, f_n)_1 + \dots + x_n\overline{y_1}(f_n, f_1)_1 + \dots + x_n\overline{y_n}(f_n, f_n)_1 = = (x_1f_1 + \dots + x_nf_n, y_1f_1 + \dots + y_nf_n)_1 = (x, y)_1. Отже, J: E_1 \to E_2 - ізоморфізм евклідових просторів.
```

Remark 5.6.5 Не обов'язково брати саме ортонормований базис. Головне, щоб $(g_j, g_k)_2 = (f_k, f_m)_1$, тобто матриці Грама співпадали.

5.7 Спряжені оператори та матриці

Перед цим нам необхідно такі теореми:

Theorem 5.7.1 Теорема Ріса (для лінійних функціоналів)

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та будь-який лінійний функціонал $\varphi:E\to\mathbb{C}(\mathbb{R}).$ Тоді $\exists!f\in E: \forall x\in E: \varphi(x)=(x,f).$

Наведене доведення буде майже чесним, оскільки це спрацьовує лише для скінченновимірних просторів.

Proof.

І. Існування.

Якщо $\varphi \equiv 0$, то зрозуміло, що існує f = 0.

Якщо $\varphi \not\equiv 0$, то тоді зафіксуємо ортонормований базис $\{e_1, \dots, e_n\}$ в E.

Покладемо $f = \overline{\varphi(e_1)}e_1 + \cdots + \overline{\varphi(e_n)}e_n$. Тоді $\forall x \in L$:

$$\varphi(x) = \varphi(x_1e_1 + \dots + x_ne_n) = x_1\varphi(e_1) + \dots + x_n\varphi(e_n)$$

$$(x,f) = (x, \varphi(e_1)e_1 + \dots + \varphi(e_n)e_n) = \varphi(e_1)(x,e_1) + \dots + \varphi(e_n)(x,e_n) =$$

$$(x, e_j) = (x_1 e_1 + \dots + x_j e_j + \dots + x_n e_n, e_j) = x_1(e_1, e_j) + \dots + x_j(e_j, \overline{e_j}) + \dots + x_n(e_n, e_j) = x_j.$$

 $= x_1 \varphi(e_1) + \dots + x_n \varphi(e_n).$

Таким чином, $\varphi(x) = (x, f)$.

II. Єдиність.

!Припустимо, що
$$\exists \tilde{f} \in E : \varphi(x) = (x, \tilde{f})$$
, але при цьому $\tilde{f} \neq f$. Тоді $\forall x \in E : 0 = \varphi(x) - \varphi(x) = (x, f) - (x, \tilde{f}) = (x, f - \tilde{f})$. Отже, $f - \tilde{f} \in E^{\perp} = \{0\} \implies \tilde{f} = f$. Суперечність!

Theorem 5.7.2 Теорема Ріса (для півторалінійних функціоналів)

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та будь-який півторалінійний функціонал $\varphi: E \times E \to \mathbb{C}$. Тоді $\exists ! A: E \to E$ - лінійний оператор, для якого $\forall x,y \in E: \varphi(x,y) = (x,Ay)$.

Proof.

І. Існування.

Зафіксуємо $y \in E$, отримаємо $\varphi(x,y) = \psi_y(x)$, де $\psi_y : E \to \mathbb{C}(\mathbb{R})$ - лінійний функціонал.

Тоді за теоремою Ріса, $\exists ! f_y \in E : \forall x \in E : \psi_y(x) = (x, f_y).$

Ми сконструювали оператор $A: E \to E$ таким чином, що $Ay = f_y$.

Тобто звідси $\varphi(x,y) = (x,Ay)$.

Лишилось показати, що $A:E \to E$ - дійсно є лінійним оператором.

 $\forall y_1, y_2 \in E : \forall \alpha : \varphi(x, \alpha y_1 + y_2) = (x, A(\alpha y_1 + y_2)).$

Із іншого боку, $\varphi(x, \alpha y_1 + y_2) = \overline{\alpha}\varphi(x, y_1) + \varphi(x, y_2) = \overline{\alpha}(x, Ay_1) + (x, Ay_2) = (x, \alpha Ay_1 + Ay_2).$

Отже, $A(\alpha y_1 + y_2) = \alpha A y_1 + A y_2 \implies A$ - лінійний оператор.

II. Єдиність.

!Припустимо, що $\exists \tilde{A}: E \to E: \varphi(x,y) = (x,\tilde{A}y)$, але при цьому $\tilde{A} \neq A$. Тоді $\forall x,y \in E: 0 = \varphi(x,y) - \varphi(x,y) = (x,Ay) - (x,\tilde{A}y) = (x,(A-\tilde{A})y)$. Отже, $(A-\tilde{A})y \in E^{\perp} = \{0\} \implies \tilde{A} = A$. Суперечність!

Definition 5.7.3 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та $A:E\to E$ - лінійний опреатор. Оператор $B:E\to E$ називається **спряженим до** A, якщо

$$\forall x, y \in E : (Ax, y) = (x, By)$$

Позначення: A^* .

Remark 5.7.4 Англійською мовою це називається adjoint operator.

А тепер навіщо ці теореми Ріса були створені.

Позначу $\varphi(x,y)=(Ax,y)$ - це півторалінійний функціонал $\varphi:E\times E\to\mathbb{C}$. За щойно доведеною теоремою, існує єдиний лінійний оператор $B:E\to E$, для якого $\forall x,y\in E:\varphi(x,y)=(x,By)\Longrightarrow (Ax,y)=(x,By)$.

Тоді це означає, що для кожного лінійного оператора A в евклідовому просторі буде існувати єдиний спряжений оператор $B=A^*$.

Proposition 5.7.5 Властивості

- 0) $I^* = I$ $O^* = O$;
- 1) $(A+B)^* = A^* + B^*$;
- 2) $(\alpha A)^* = \overline{\alpha} A^*$;
- 3) $(AB)^* = B^*A^*$;
- 4) $(x, Ay) = (A^*x, y);$
- 5) $(A^*)^* = A$.

Proof

- 0) Із одного боку, $\forall x,y \in E: (Ix,y)=(x,y)=(x,Iy)$ Із іншого боку, $(Ix,y)=(x,I^*y)$. Отже $I=I^*$. Аналогічно доводиться для 0.
- 1) $(x, (A+B)^*y) = ((A+B)x, y) = (Ax+Bx, y) = (Ax, y) + (Bx, y) = (x, A^*y) + (x, B^*y) = (x, (A^*+B^*)y)$ $\implies (A+B)^* = A^* + B^*.$
- 2) аналогічно 1)
- 3) $(x, (AB)^*y) = (ABx, y) \stackrel{Bx=z}{=} (Az, y) = (z, A^*y) = (Bx, A^*y) \stackrel{A^*y=w}{=} (Bx, w) = (x, B^*w) = (x, B^*A^*y) \implies (AB)^* = B^*A^*$
- 4) $(x, Ay) = \overline{(Ay, x)} = \overline{(y, A^*x)} = (A^*x, y)$

5)
$$((A^*)^*x, y) = (x, A^*y) = (Ax, y) \implies (A^*)^* = A$$

Theorem 5.7.6 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та $A:E\to E$ - лінійний оператор. Тоді $E=\ker A^*\bigoplus \operatorname{Im} A,$ або $E=\ker A\bigoplus \operatorname{Im} A^*.$

Proof.

$$\forall x \in \ker A^* : A^*x = 0 \iff \forall y \in E : 0 = (A^*x, y) = (x, Ay) \iff x \in (\operatorname{Im} A)^{\perp} \\ \ker A^* = (\operatorname{Im} A)^{\perp} \implies E = \operatorname{Im} A \bigoplus (\operatorname{Im} A)^{\perp} = \ker A^* \bigoplus \operatorname{Im} A.$$

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та $\{f_1,\ldots,f_n\}$ - деякий базис. Нехай $x\in E$, тоді звідси $x=\alpha_1f_1+\cdots+\alpha_nf_n$.

Ми вже отримали факт, що $\Gamma \vec{\alpha} = [\vec{x}]$.

$$\Gamma = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix} \qquad \vec{\alpha} = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{pmatrix} \qquad [\vec{x}] = \begin{pmatrix} (x, f_1) \\ (x, f_2) \\ \vdots \\ (x, f_n) \end{pmatrix}$$

Розглянемо лінійний оператор $A: E \to E$. Побудуємо його матрицю в базисі $\{f_1, \dots, f_n\}$. $Af_1 = a_{11}f_1 + a_{21}f_2 + \dots + a_{n1}f_n$

Коефіцієнти $a_{11}, a_{21}, \dots, a_{n1}$ знаходяться за алгоритмом через матриці Грама.

Позначу
$$\vec{a_1} = \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n1} \end{pmatrix}$$
 та $[\vec{Af_1}] = \begin{pmatrix} (Af_1, f_1) \\ (Af_1, f_2) \\ \vdots \\ (Af_1, f_n) \end{pmatrix}$.

Тоді $a_{11}, a_{21}, \dots, a_{n1}$ знаходимо в рівнянні $\Gamma \vec{a_1} = [\vec{Af_1}] \implies \vec{a_1} = \Gamma^{-1}[\vec{Af_1}].$ Такі самі процедури для Af_2, \ldots, Af_n , де ми шукаэмо $\vec{a_2}, \ldots, \vec{a_n}$.

Тоді матриця має вигляд:

$$A = (\vec{a_1} \ \vec{a_2} \ \dots \ \vec{a_n}) = (\Gamma^{-1}[\vec{Af_1}] \ \Gamma^{-1}[\vec{Af_2}] \ \dots \ \Gamma^{-1}[\vec{Af_n}]) = \Gamma^{-1}[A].$$

$$Tyr [A] = ([\vec{Af_1}] \ [\vec{Af_2}] \ \dots \ [\vec{Af_n}]) = \begin{pmatrix} (Af_1, f_1) & (Af_2, f_1) & \dots & (Af_n, f_1) \\ (Af_1, f_2) & (Af_2, f_2) & \dots & (Af_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (Af_1, f_n) & (Af_2, f_n) & \dots & (Af_n, f_n) \end{pmatrix}.$$

Аналогічні побудови проведемо для спряженого оператора $A^*: E \to E$. Тоді $\mathbb{A}^* = \Gamma^{-1}[A^*]$, де

$$[A^*] = \begin{pmatrix} [\vec{A^*f_1}] & [\vec{A^*f_2}] & \dots & [\vec{A^*f_n}] \end{pmatrix} = \begin{pmatrix} (A^*f_1, f_1) & (A^*f_2, f_1) & \dots & (A^*f_n, f_1) \\ (A^*f_1, f_2) & (A^*f_2, f_2) & \dots & (A^*f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (A^*f_1, f_n) & (A^*f_2, f_n) & \dots & (A^*f_n, f_n) \end{pmatrix}$$

Пограємось з матрицею $[A^*]$ ним більш детально:

Пограємось з матрицею
$$[A^*]$$
 ним більш детально:
$$[A^*] = \begin{pmatrix} (A^*f_1, f_1) & (A^*f_2, f_1) & \dots & (A^*f_n, f_1) \\ (A^*f_1, f_2) & (A^*f_2, f_2) & \dots & (A^*f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (A^*f_1, f_n) & (A^*f_2, f_n) & \dots & (A^*f_n, f_n) \end{pmatrix} = \begin{pmatrix} (f_1, Af_1) & (f_2, Af_1) & \dots & (f_n, Af_1) \\ (f_1, Af_2) & (f_2, Af_2) & \dots & (f_n, Af_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, Af_n) & (f_2, Af_n) & \dots & (f_n, Af_n) \end{pmatrix} = \begin{pmatrix} (Af_1, f_1) & (Af_2, f_1) & \dots & (Af_n, f_1) \\ (Af_1, f_2) & (Af_2, f_2) & \dots & (Af_n, f_1) \\ (Af_1, f_2) & (Af_2, f_2) & \dots & (Af_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (Af_1, f_n) & (Af_2, f_n) & \dots & (Af_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (Af_1, f_1) & (Af_2, f_1) & \dots & (Af_n, f_1) \\ (Af_1, f_2) & (Af_2, f_2) & \dots & (Af_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (Af_1, f_n) & (Af_2, f_n) & \dots & (Af_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (Af_1, f_1) & (Af_2, f_1) & \dots & (Af_n, f_2) \\ (Af_1, f_n) & (Af_2, f_n) & \dots & (Af_n, f_n) \end{pmatrix}^T$$

Нарешті, зауважимо, що $\overline{\Gamma}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_n) \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_n) & \dots & (f_n, f_n) \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}^T = \begin{pmatrix} (f_1, f_1) & (f_2, f_n) & \dots & (f_n, f_n) \\ (f_1, f_n) &$

Нарешті, зауважимо, що
$$\overline{\Gamma}^T = \overline{\begin{pmatrix} (f_1, f_1) & (f_2, f_1) & \dots & (f_n, f_1) \\ (f_1, f_2) & (f_2, f_2) & \dots & (f_n, f_2) \\ \vdots & \vdots & \ddots & \vdots \\ (f_1, f_n) & (f_2, f_n) & \dots & (f_n, f_n) \end{pmatrix}}^T = \overline{\begin{pmatrix} \overline{(f_1, f_1)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_1)} \\ \overline{(f_1, f_2)} & \overline{(f_2, f_2)} & \dots & \overline{(f_n, f_2)} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \end{pmatrix}}^T = \overline{\begin{pmatrix} \overline{(f_1, f_1)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_1)} \\ \overline{(f_1, f_2)} & \overline{(f_2, f_2)} & \dots & \overline{(f_n, f_2)} \\ \vdots & \vdots & \ddots & \vdots \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \end{pmatrix}}^T = \overline{\begin{pmatrix} \overline{(f_1, f_1)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_1)} \\ \overline{(f_1, f_2)} & \overline{(f_2, f_2)} & \dots & \overline{(f_n, f_1)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \end{pmatrix}}^T = \overline{\begin{pmatrix} \overline{(f_1, f_1)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_1)} \\ \overline{(f_1, f_2)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \end{pmatrix}}^T = \overline{\begin{pmatrix} \overline{(f_1, f_1)} & \overline{(f_2, f_1)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_2, f_n)} & \dots & \overline{(f_n, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} \\ \overline{(f_1, f_n)} & \overline{(f_1, f_n)} & \overline{(f_1, f_n)} \\ \overline{(f_$$

$$= \begin{pmatrix} (f_1, f_1) & (f_1, f_2) & \dots & (f_1, f_n) \\ (f_2, f_1) & (f_2, f_2) & \dots & (f_2, f_n) \\ \vdots & \vdots & \ddots & \vdots \\ (f_n, f_1) & (f_n, f_2) & \dots & (f_n, f_n) \end{pmatrix}^T = \Gamma.$$

Таким чином, ми отримали:

- 1) $\overline{\Gamma}^T = \Gamma$;
- 2) $\mathbb{A}^* = \Gamma^{-1} \overline{\mathbb{A}}^T \Gamma$.

Remark 5.7.7 Тепер в евкілдовому просторі нехай $\{e_1, \ldots, e_n\}$ - ортонормований базис. Тоді $\Gamma = I$, а отже, $\mathbb{A}^* = \overline{\mathbb{A}}^T$.

5.8 Самоспряжений оператор

Definition 5.8.1 Задано $(E, (\cdot, \cdot))$ - евклідовий простір.

Лінійний оператор $A: E \to E$ називають **самоспряженим**, якщо

$$A^* = A$$

Proposition 5.8.2 Властивості

Задано $(E,(\cdot,\cdot))$ - евклідовий простір та A,B - самоспряжені оператори. Тоді:

- 0) I, 0 самоспряжені;
- 1) A+B самоспряжений $\forall \alpha \in \mathbb{R} : \alpha A$ самоспряжений;
- 2) AB самоспряжений, якщо AB = BA;
- 3) $\forall x, y : (Ax, y) = (x, Ay)$.

Всі вони випливають із властивостей спряжених операторів.

Theorem 5.8.3 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та $A:E \to E$ - самоспряжений.

Тоді $E = \ker A \bigoplus \operatorname{Im} A$.

Випливае з Тh. 5.7.6

Proposition 5.8.4 Властивості власних чисел та власних векторів

- 1. Якщо λ власне число A, тоді $\lambda \in \mathbb{R}$.
- 2. Якщо f_1, f_2 власні вектори з різними власними числами λ_1, λ_2 , то $f_1 \perp f_2$.

Proof.

1. Нехай f - власний вектор для власного числа λ , тобто $Af = \lambda f$.

Оскільки $f \neq 0$, то $(f,f) \neq 0 \implies \lambda(f,f) = (\lambda f,f) = (Af,f) = (f,Af) = (f,\lambda f) = \overline{\lambda}(f,f)$. $\Longrightarrow \lambda = \overline{\lambda} \implies \lambda \in \mathbb{R}$.

2.
$$\lambda_1(f_1, f_2) = (\lambda_1 f_1, f_2) = (Af_1, f_2) = (f_2, Af_1) = (f_1, \lambda_2 f_2) = \overline{\lambda_2}(f_1, f_2) = \lambda_2(f_1, f_2)$$

 $\implies (f_1, f_2) = 0$

Theorem 5.8.5 Спектральна теорема

Задано $(E, (\cdot, \cdot))$ - евклідовий простір та $A: E \to E$ - самоспряжений.

Тоді в E існує ортонормований базис із власних векторів A.

Proof.

Індукція за $\dim E$.

1. База індукції: $\dim E = 1$

Знайдеться власне число λ , якому відповідає власний вектор f. Встановимо $e=\frac{f}{\|f\|}$ - нормований.

Зрозуміло, що e - теж власний вектор власного числа λ .

Отже, ми побудували ортонормований базис $\{e\}$.

2. Крок індукції. Нехай для $\dim E < n$ теорема виконується.

Перевіримо для $\dim E = n$.

Нехай λ_0 - власне число A, розглянемо оператор $B=A-\lambda_0 I$ - теж самоспряжений за властивостями. Тоді за **Th. 5.8.3**, маємо $E=\ker B\bigoplus \operatorname{Im} B$.

- 1) Оскільки $\ker B \neq \{0\}$, то нехай $\{e_1, \dots, e_k\}$ ортонормований (уже застосували процес) базис $\ker B$. Всі вони є власними векторами власного числа λ_0 .
- 2) $\operatorname{Im} B$ є інваріантним для A. Дійсно:

 $\forall y \in \operatorname{Im} B : y = Bx = (A - \lambda_0 I)x \implies Ay = A(A - \lambda_0 I)x = (A - \lambda_0 I)(Ax) = B(Ax) \in \operatorname{Im} B.$

Тоді ми розглянемо $A|_{{
m Im}\, B}$ - звужений оператор - теж самоспряжений. Дійсно,

 $\forall y_1, y_2 \in \operatorname{Im} B : (A|_{\operatorname{Im} B} y_1, y_2) = (Ay_1, y_2) = (y_1, Ay_2) = (y_1, A|_{\operatorname{Im} B} y_2).$

Оскільки dim Im $B<\dim E=n$, то за припущенням індукції, існує $\{e_{k+1},\ldots,e_n\}$ - ортонормований базис власних векторів $A|_{{\rm Im}\,B}.$

Але $\lambda_j e_j = A|_{\operatorname{Im} B} e_j = A e_j$.

Отже, $\{e_{k+1},\ldots,e_n\}$ - ортонормований базис власних векторів A в ${\rm Im}\, B.$

Розглянемо $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$. Оскільки $E = \ker B \bigoplus \operatorname{Im} B$, то $\{e_1, \dots, e_k, e_{k+1}, \dots, e_n\}$ -

ортонормований базис в E та всі вони є власними векторами для A. МІ доведено.

Proposition 5.8.6 Задано $(E,(\cdot,\cdot))$ - комплексний (!) евклідовий простір та $B:E\to E$ лінійний оператор.

Тоді $\exists ! B_1, B_2$ - самоспряжені оператори, для яких $B = B_1 + iB_2$.

Proof.

1. Існування.

Розкладемо самоспряжений оператор B таким чином:

$$B = \frac{B + B^*}{2} + i\frac{B - B^*}{2i}.$$

$$B_1 = \frac{B + B^*}{2} \implies (B_1)^* = \left(\frac{B + B^*}{2}\right)^* = \frac{B + B^*}{2} = B_1$$

$$B_2 = \frac{B - B^*}{2i} \implies (B_2)^* = \left(\frac{B^* - B}{2i}\right)^* = \frac{B^* - B}{-2i} = \frac{B - B^*}{2i} = B_2$$

Тобто ми знайшли самоспряжені оператори, для яких $B = B_1 + iB_2$.

2. Єдиність.

!Припустимо, що $\exists B_3, B_4$ - самоспряжені: $B=B_3+iB_4$. При цьому $B_3\neq B_1, B_2\neq B_4$. Тоді $B_1+iB_2=B_3+iB_3\iff B_1-B_3=i(B_4-B_2)$. Водночас $B_1-B_3=(B_1-B_3)^*=(i(B_4-B_2))^*=-i(B_4-B_2)^*=-i(B_4-B_2)=-(B_1+B_3)$ $\implies B_1=B_3$, а тому $B_2=B_4$. Суперечність!

5.9 Унітарний оператор

Definition 5.9.1 Задано $(E,(\cdot,\cdot))$ - евклідовий простір.

Лінійний оператор $U:E \to E$ називають **унітарним**, якщо

$$\forall x, y \in E : (Ux, Uy) = (x, y)$$

Proposition 5.9.2 Властивості

- 1) $\ker U = \{0\}$ $\operatorname{Im} U = E;$
- 2) U унітарний $\iff U^* = U^{-1}$;
- 3) Якщо U унітарний, то U^* унітарний теж;
- $4)\ U$ ортонормований $\iff U$ переводить ортонормований базис в ортонормований.

Proof

$$\begin{array}{ll} 1) \ x \in \ker U \implies Ux = 0 \implies 0 = (Ux, Ux) = (x, x) \implies x = 0. \\ \dim(\operatorname{Im} U) = \dim E - \dim(\ker U) = \dim E. \\ \operatorname{Im} U \subset E \implies \operatorname{Im} U = E. \end{array}$$

$$(2)$$
 \Rightarrow Дано: U - унітарний.

$$\ker \overline{U} = \{0\}, \operatorname{Im} U = E \implies \exists U^{-1}.$$

Тоді
$$\forall x,y \in E: (Ix,y)=(x,y)=(Ux,Uy)=(U^*(Ux),y)=(U^*Ux,y)$$
 $\Longrightarrow U^*U=I \implies U^*=U^{-1}.$

$$= Дано: U^* = U^{-1}.$$

Тоді
$$\forall x,y \in E: (x,y)=(Ix,y)=(U^{-1}Ux,y)=(U^*Ux,y)=(Ux,Uy)$$
 $\Longrightarrow U$ - унітарний.

3)
$$\forall x, y \in E : (x, y) = (Ix, y) = (UU^{-1}x, y) = (UU^*x, y) = (U^*x, U^*y).$$

4)
$$\implies$$
 Дано: U - унітарний

 $\overline{\text{Hexaй}}\{f_1,\ldots,f_n\}$ - якийсь ортонормований базис. Система $\{g_1=Uf_1,\ldots,g_n=Uf_n\}$ - ортонормована. Дійсно,

$$(g_j, g_k) = (Uf_j, Uf_k) = (f_j, f_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$$

 \sqsubseteq Дано: $\{f_1,\ldots,f_n\},\ \{g_1,\ldots,g_n\}$ - два ортонормованих базиси, де $Uf_j=g_j$ - умова перевода з одного базису в інший.

$$\forall x \in E : x = \sum_{j=1}^{n} x_j f_j \qquad \forall y \in E : y = \sum_{k=1}^{n} y_k f_k \implies$$

$$Ux = U\left(\sum_{j=1}^{n} x_j f_j\right) = \sum_{j=1}^{n} x_j g_j \qquad Uy = U\left(\sum_{k=1}^{n} y_k f_k\right) = \sum_{k=1}^{n} y_k g_k \implies$$

$$(Ux, Uy) = \left(\sum_{j=1}^{n} x_j g_j, \sum_{k=1}^{n} y_k g_k\right) = \sum_{j=1}^{n} \sum_{k=1}^{n} x_j \overline{y_k} (g_j, g_k) = 1$$

Оскільки обидві базиси ортонормовані, то $(g_j, g_k) = (f_j, f_k) = \begin{cases} 1 & j = k \\ 0 & j \neq k \end{cases}$.

$$\boxed{\equiv} \sum_{j=1}^{n} \sum_{k=1}^{n} x_j \overline{y_k}(f_j, f_k) = \left(\sum_{j=1}^{n} x_j f_j, \sum_{k=1}^{n} y_k f_k\right) = (x, y).$$

Остаточно, U - унітарний оператор.

6 Квадратичні форми

6.1 Білінійні форми

Definition 6.1.1 Задано L - лінійний простір.

Білінійною формою будемо називати 2-вимірний лінійний функціонал $A: L \times L \to \mathbb{R}$.

Definition 6.1.2 Задано L - лінійний простір та A - білінійна форма.

Білінійна форма називається симетричною, якщо

$$A(x,y) = A(y,x)$$

Білінійна форма називається кососиметричною, якщо

$$A(x,y) = -A(y,x)$$

Proposition 6.1.3 Задано L - лінійний простір та A - симетрична та кососиметрична форма. Тоді $A \equiv 0$.

Proof.
$$A(x,y) \stackrel{skew}{=} -A(y,x) \stackrel{sym}{=} -A(x,y) \implies A(x,y) = 0.$$

Proposition 6.1.4 Задано L - лінійний простір та A - білінійна форма. Тоді A можна представити єдиним чином в вигляді суми симетричної та кососиметричної форми, тобто $A(x,y) = A_{sym}(x,y) + A_{skew}(x,y).$

Proof.

Встановимо такі форми:

$$A_{sym}(x,y) = \frac{1}{2} (A(x,y) + A(y,x))$$

$$A_{skew}(x,y) = \frac{1}{2} (A(x,y) - A(y,x))$$

Нескладно довести, що A_{sym} - симетрична, A_{skew} - кососиметрична, а також $A_{sym}(x,y) + A_{skew}(x,y) = A(x,y).$

!Припустимо, що $A(x,y) = \tilde{A}_{sym}(x,y) + \tilde{A}_{skew}(x,y)$, то є інший розклад. Тоді $0 = A(x,y) - A(x,y) = (A_{sym}(x,y) + A_{skew}(x,y)) - (\tilde{A}_{sym}(x,y) + \tilde{A}_{skew}(x,y))$

$$\implies A_{sym}(x,y) - \tilde{A}_{sym}(x,y) = \tilde{A}_{skew}(x,y) - A_{skew}(x,y).$$

Ліва частина є симетричною та кососиметричною одночасно, тоді $A_{sym}(x,y) - \tilde{A}_{sym}(x,y) = 0 \implies$ $\tilde{A}_{sym}(x,y) = A_{sym}(x,y)$. Значить, $\tilde{A}_{skew}(x,y) = A_{skew}(x,y)$. Суперечність!

Задамо L - лінійний простір, $\{f_1,\dots,f_n\}$ - базис та B - білінійна форма.

$$x \in L \implies x = \xi_1 f_1 + \dots + \xi_n f_n$$

$$y \in L \implies y = \eta_1 f_1 + \dots + \eta_n f_n$$

$$B(x,y) = B(\xi_1 f_1 + \dots + \xi_n f_n, \eta_1 f_1 + \dots + \eta_n f_n) = \sum_{i,j=1}^n \xi_i \eta_j b_{ij}, \text{ de } b_{ij} = B(f_i, f_j).$$

Таким чином, білінійну форму можна задати однозначно формулою:

$$B(x,y) = \sum_{i,j=1}^{n} \xi_i \eta_j b_{ij}$$

Оскільки $L\cong\mathbb{R}^n$, то формулу можна записати в матричному вигляді:

$$B(x,y) = \sum_{i,j=1}^{n} \xi_{i} \eta_{j} b_{ij} = \xi_{1} (\eta_{1} b_{11} + \eta_{2} b_{12} + \dots + \eta_{n} b_{1n}) + \dots + \xi_{n} (\eta_{1} b_{n1} + \eta_{2} b_{n2} + \dots + \eta_{n} b_{nn}) = 0$$

$$= (\xi_1 \quad \xi_2 \quad \dots \quad \xi_n) \begin{pmatrix} \eta_1 b_{11} + \eta_2 b_{12} + \dots + \eta_n b_{1n} \\ \eta_2 b_{12} + \eta_2 b_{22} + \dots + \eta_n b_{2n} \\ \vdots \\ \eta_1 b_{n1} + \eta_2 b_{n2} + \dots + \eta_n b_{nn} \end{pmatrix} = (\xi_1 \quad \xi_2 \quad \dots \quad \xi_n) \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \vdots \\ \eta_n \end{pmatrix}$$

Тоді отримаємо таку форму:

$$B(x,y) = \vec{x}^T \mathbb{B} \vec{y}$$

Відповімо на питання, чи є такий розклад єдиним. !Припускаємо, що існує деяка інша матриця 🗒, для якої $B(x,y) = \vec{x}^T \tilde{\mathbb{B}} \vec{y}$.

Тоді $\vec{x}^T \tilde{\mathbb{B}} \vec{y} = \vec{x}^T \mathbb{B} \vec{y}$, рівність виконана $\forall x, y \in L$. Підставимо тоді $e_i \mapsto \vec{e_1}$ та $e_j \mapsto \vec{e_j}$ - отримаємо $\tilde{b_{ij}} = b_{ij}$. Суперечність!

Висновок: будь-яку білінійну форму в деякому базисі можна представити матрицею єдиним чином.

Поставимо зворотнє питання: чи задають матриці білійні форми в заданому базисі?

Нехай
$$\{f_1,\ldots,f_n\}$$
 - базис L та матриця $\mathbb B$ задані. Встановимо форму $B(x,y)=\sum_{i,j=1}^n b_{ij}\xi_i\eta_j$.

Зрозуміло, що дана форма є білінійною.

Висновок: будь-яка матриця задає білійну форму в деякому базисі.

Remark 6.1.5 Розглянемо особливі випадки:

- при симетричній білінійній формі ми отримаємо $b_{ij} = b_{ji}$. Отримаємо **симетричну матрицю** \mathbb{B} .
- при кососиметричній білінійній формі ми отримаємо $\dot{b}_{ij} = -b_{ji}$. Отримаємо **кососиметричну**

Навпаки, якщо матриця була симетричною/кососиметричною, то буде білінійна симетрична/кососиметрична форма.

Proposition 6.1.6 Задано L - лінійний простір та B(x,y) - білінійний простір, що відповідає матриці \mathbb{B} . Тоді білінійній формі B(x,y) = B(y,x) відповідає матриці \mathbb{B}^T .

Proof.

Маємо $B(x,y)=\vec{x}^T\mathbb{B}\vec{y}$. Тоді $\tilde{B}(x,y)=B(y,x)=\vec{y}^T\mathbb{B}\vec{x}$. Перепишемо в зручному вигляді, щоб був

$$\tilde{B}(x,y) = \sum_{i,j=1}^{n} \eta_{i} \xi_{j} b_{ij} = \sum_{j,i=1}^{n} \xi_{j} \eta_{i} b_{ij} = \vec{x}^{T} \begin{pmatrix} b_{11} & b_{21} & \dots & b_{n1} \\ b_{12} & b_{22} & \dots & b_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ b_{1n} & b_{2n} & \dots & b_{nn} \end{pmatrix} \vec{y} = \vec{x}^{T} \mathbb{B}^{T} \vec{y} = B(y,x).$$

Corollary 6.1.7 Задано матрицю
$$\mathbb{A}\in Mat(n\times n).$$
 Тоді $\mathbb{A}=\frac{\mathbb{A}+\mathbb{A}^T}{2}+\frac{\mathbb{A}-\mathbb{A}^T}{2}.$

Proof.

Маємо
$$A$$
 - деяку білінійну форму, якій відповідає матриця \mathbb{A} . Тоді $A(x,y) = A_{sym}(x,y) + A_{skew}(x,y)$.
$$A_{sym}(x,y) = \frac{A(x,y) + A(y,x)}{2} = \frac{\vec{x}^T \mathbb{A} \vec{y} + \vec{x}^T \mathbb{A}^T \vec{y}}{2} = \vec{x}^T \left(\frac{\mathbb{A} + \mathbb{A}^T}{2}\right) \vec{y}$$

$$A_{skew}(x,y) = \frac{A(x,y) - A(y,x)}{2} = \frac{\vec{x}^T \mathbb{A} \vec{y} - \vec{x}^T \mathbb{A}^T \vec{y}}{2} = \vec{x}^T \left(\frac{\mathbb{A} - \mathbb{A}^T}{2}\right) \vec{y}$$

$$A(x,y) = \vec{x}^T \mathbb{A} \vec{y}$$

Таким чином, маємо $\mathbb{A} = \frac{\mathbb{A} + \mathbb{A}^T}{2} + \frac{\mathbb{A} - \mathbb{A}^T}{2}.$

Задамо L - лінійний простір, $\{f_1,\ldots,f_n\},\,\{g_1,\ldots,g_n\}$ - два різних базиса та B - білінійну форму.

У базисі $\{f_1,\ldots,f_n\}$ білінійна форма задається $B_1(x,y)=\vec{x}_f^T\mathbb{B}_f\vec{y}_f$.

У базисі $\{g_1,\ldots,g_n\}$ білінійна форма задається $B_2(x,y)=\vec{x}_g^T\mathbb{B}_g\vec{y}_g$. Але ми знаємо, що ми можемо побудувати матрицю переходу $\mathbb{U}_{f\to g}$, тоді $\mathbb{U}_{f\to g}\vec{x}_f=\vec{x}_g\implies$

Підставимо ці два значення в друге рівняння білінійної форми. Отримаємо:

$$B_2(x,y) = \vec{x}_q^T \mathbb{B}_q \vec{y}_q = \vec{x}_f^T \mathbb{U}_{f \to a}^T \mathbb{B}_q \mathbb{U}_{f \to q} \vec{y}_f \stackrel{*}{=} B_1(x,y).$$

 $B_2(x,y)=ec{x}_g^T\mathbb{B}_gec{y}_g=ec{x}_f^T\mathbb{U}_{f o g}^T\mathbb{B}_g\mathbb{U}_{f o g}ec{y}_f\stackrel{*}{=}B_1(x,y).$ У силу єдиного представлення форми через матрицю та рівності (*) отримаємо:

$$\mathbb{B}_f = \mathbb{U}_{f \to g}^T \mathbb{B}_g \mathbb{U}_{f \to g}$$

Example 6.1.8 Кончений приклад

Розглянемо білінійну форму $B(\vec{x}, \vec{y}) = 2x_1y_1 + 3x_1y_2 + y_1x_2$ в просторі \mathbb{R}^2 .

У канонічному базисі $\{\vec{e_1}, \vec{e_2}\}$ буде матриця $\mathbb{B}_e = \begin{pmatrix} 2 & 3 \\ 1 & 0 \end{pmatrix}$.

Розглянемо базис $\{\vec{f_1},\vec{f_1}\}$, де $\vec{f_1}=\begin{pmatrix}1\\2\end{pmatrix}$, $\vec{f_2}=\begin{pmatrix}-1\\3\end{pmatrix}$. Йому відповідає матриця \mathbb{B}_f , яку треба знайти.

Матриця
$$\mathbb{U}_{f
ightarrow e} = \begin{pmatrix} 1 & -1 \\ 2 & 3 \end{pmatrix}$$
. Тоді

$$\mathbb{B}_f = \mathbb{U}_{f \to e}^T \mathbb{B}_e \mathbb{U}_{f \to e} = \begin{pmatrix} 10 & 5 \\ -5 & -10 \end{pmatrix}$$

Corollary 6.1.9 rank $\mathbb{B}_f = \operatorname{rank} \mathbb{B}_q$.

6.2Квадратичні форми

Definition 6.2.1 Задано L - лінійний простір та B - білінійна функція.

Квадратичною формою називають функцію $A:L \to \mathbb{R}$, що приймає такий вигляд:

$$A(x) = B(x, x)$$

Example 6.2.2 Маємо білінійну форму $B(x,y) = x_1y_1 + 2x_1y_2 + 3x_2y_1 + 2x_2y_2$. Можемо поставити їй квадратичну форму:

$$A(x) = x_1^2 + 5x_1x_2 + 2x_2^2$$

Якщо візьмемо іншу білінійну форму $\tilde{B}(x,y) = x_1y_1 + x_1y_2 + 4x_2y_1 + 2x_2y_2$, то ми отримаємо ту саму квадратичну форму A(x).

Remark 6.2.3 Отже, приклад каже, що за квадратичною формою ми не зможемо однозначно поставити в відповідність білінійну форму.

Proposition 6.2.4 Поляризаційна формула

Задано L - лінійний простір та A = B(x, x) - симетрична квадратична форма від білінійної форми B. Тоді 2B(x,y) = A(x+y) - A(x) - A(y). Вказівка: розглянути A(x+y).

Theorem 6.2.5 Існує взаємно однозначна відповідність між симетричними білінійними формами та квадратичними функціями.

Маємо $B_{sym}(x,y)$ - симетрична. Підставимо y=x, то тоді $B_{sym}(x,x)=A(x)$ - отримали квадратичну

Маємо квадратичну форму A(x). Використовуючи поляризаційну формулу, ми отримаємо: $2B_{sym}(x,y) = A(x+y) - A(x) - A(y)$ - отримали симетричну білінійну форму.

Таким чином, ми побудували взаємну однозначність
$$A(x) \xleftarrow{\text{поляризаційна } \phi - \text{ла}} B_{sym}(x,y)$$

Remark 6.2.6 В означенні квадратичної форми тепер буде симетрична білійна форма.

Із означення випливає, що квадратична форма в базисі $\{f_1,\ldots,f_n\}$ простору L може бути записана

$$A(x) = \sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j$$

де $a_{ij} = B(f_i, b_j)$. Кожній квадратичній формі відповідає симетрична матриця

$$\mathbb{A} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Тоді квадратична форма записується і ось так:

$$A(x) = \vec{x}^T \mathbb{A} \vec{x}$$

Definition 6.2.7 Задано L - лінійний простір та A = B(x, x) - квадратична форма від симетричної білінійної форми В. Квадратична форма називається:

- додатно визначеною, якщо $\forall x \in L : x \neq 0 : A(x) > 0$
- від'ємно визначеною, якщо $\forall x \in L : x \neq 0 : A(x) < 0$

Ці дві форми називаються знаковизначеними.

Квадратична форма називається **знакозмінною**, якщо $\exists x,y \in L: A(x) > 0, A(y) < 0$ Квадратична форма називається **квазізнаковизначеною**, якщо $\forall x \in L : A(x) \ge 0$ (або $A(x) \le 0$), але при цьому $\exists x^* \in L : x^* \neq 0 : A(x^*) = 0.$

6.3 Зведення квадратичної форми до суми квадратів

Маємо квадратичну форму

$$A(x) = \sum_{i,j=1}^{n} a_{ij}\xi_{i}\xi_{j} = (a_{11}\xi_{1}^{2} + a_{12}\xi_{1}\xi_{2} + \dots + a_{1n}\xi_{1}\xi_{n}) + (a_{21}\xi_{2}\xi_{1} + a_{22}\xi_{2}^{2} + \dots + a_{2n}\xi_{2}\xi_{n}) + \dots + a_{2n}\xi_{n}\xi_{n}$$

 $+ (a_{n1}\xi_n\xi_1 + a_{n2}\xi_n\xi_2 + \dots + a_{nn}\xi_n^2)$. Вважаємо, що $A(x) \not\equiv 0$. Мета: звести квадратичну форму до вигляду $A(x) = \lambda_1\eta_1^2 + \lambda_2\eta_2^2 + \dots + \lambda_n\eta_n^2$.

Метод Лагранжа

Розглянемо дві можливі випадки:

I. $a_{11} = 0$. Не втрачаючи загальності, нехай $a_{12} \neq 0$. Тоді робимо таку заміну:

$$\xi_1 = \xi_1' - \xi_2', \ \xi_2 = \xi_1' + \xi_2', \ \xi_3 = \xi_3', \dots, \ \xi_n = \xi_n'.$$

1.
$$a_{11} = 0$$
. Не втрачаючи загальності, нехай $a_{12} \neq 0$. Тоді робимо таку заміну: $\xi_1 = \xi_1' - \xi_2', \, \xi_2 = \xi_1' + \xi_2', \, \xi_3 = \xi_3', \, \dots, \, \xi_n = \xi_n'.$

$$A(x) = 2a_{12}(\xi_1' - \xi_2')(\xi_1' + \xi_2') + 2a_{13}(\xi_1' - \xi_2')\xi_3' + \dots + 2a_{1n}(\xi_1' - \xi_2')\xi_n' + \dots + a_{22}\xi_2^2 + 2a_{23}(\xi_1' + \xi_2')\xi_3' + \dots + 2a_{2n}(\xi_1' + \xi_2')\xi_n + \sum_{i,j=3}^n a_{ij}\xi_i'\xi_j' = \dots = \sum_{i,j=1}^n a_{ij}'\xi_i'\xi_j'.$$

Коефіцієнт тепер при $\xi_1^{\prime 2}$, тобто $a_{11}^{\prime} = 2a_{12} \neq 0$.

II. $a_{11} \neq 0$. Тоді з квадратичної форми відокремлюємо групу доданків, що містять ξ_1 , тобто $a_{11}\xi_1^2 + 2a_{12}\xi_1\xi_2 + \dots + 2a_{1n}\xi_1\xi_n.$

Зробимо таке перетворення:

$$a_{11}\xi_{1}^{2} + 2a_{12}\xi_{1}\xi_{2} + \dots + 2a_{1n}\xi_{1}\xi_{n} =$$

$$= a_{11}\left(\xi_{1}^{2} + 2\xi_{1}\frac{1}{a_{11}}(a_{12}\xi_{2} + \dots + a_{1n}\xi_{n}) + \frac{1}{a_{11}^{2}}(a_{12}\xi_{2} + \dots + a_{1n}\xi_{n})^{2} - \frac{1}{a_{11}^{2}}(a_{12}\xi_{2} + \dots + a_{1n}\xi_{n})^{2} - \frac{1}{a_{11}^{2}}(a_{12}\xi_{2} + \dots + a_{1n}\xi_{n})^{2}\right) =$$

$$= a_{11}\left(\xi_{1} + \frac{a_{12}}{a_{11}}\xi_{2} + \dots + \frac{a_{1n}}{a_{11}}\xi_{n}\right)^{2} - \frac{1}{a_{11}}(a_{12}\xi_{2} + \dots + a_{1n}\xi_{n})^{2} =$$

$$= a_{11}\eta_1^2 - \frac{a_{12}^2}{a_{11}}\eta_2^2 - \dots - \frac{a_{1n}^2}{a_{11}}\eta_n^2 - 2\frac{a_{12}a_{13}}{a_{11}}\eta_2\eta_3 - \dots - 2\frac{a_{1n-1}a_{1n}}{a_{11}}\eta_{n-1}\eta_n$$

А потім розглядаємо квадратичну форму $A'(x) = \sum_{i,j=1}^n a_{ij}^* \eta_i \eta_j$ та робимо ті самі процедури, якщо

 $A'(x) \not\equiv 0$. При цьому координата η_1 не буде змінюватись. Кількість таких процедур буде скінченна, до n разів.

Тоді ми й отримаємо бажаний результат:

 $A(x) = \lambda_1 \eta_1^2 + \dots + \lambda_n \eta_n^2$. (не обов'язково всі $\lambda_i \neq 0$).

Example 6.3.1 Маємо квадратичну форму $A(\vec{x}) = x_1x_2 + x_2x_3 + x_3x_4 + x_4x_1$. Зведемо її до канонічного вигляду.

Маємо $a_{11}=0$, але $a_{12}\neq 0$, тому робимо заміну $x_1=x_1'-x_2', x_2=x_1'+x_2', x_3=x_3', x_4=x_4'$. $A(\vec{x})=(x_1'-x_2')(x_1'+x_2')+(x_1'+x_2')x_3'+x_3'x_4'+x_4'(x_1'-x_2')=x_1'^2-x_2'^2+x_1'x_3'+x_2'x_3'+x_3'x_4'+x_4'x_1'-x_4'x_2'$. Тепер коефіцієнт при ${x_1'}^2$ ненульовий, тому візьмемо всі доданки разом з x_1' та виділяємо квадрати:

$$\begin{aligned} x_1'^2 + x_1'x_3' + x_1'x_4' &= x_1'^2 + 2x_1' \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right) + \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right)^2 - \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right)^2 = \\ &= \left(x_1' + \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right)\right)^2 - \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right)^2 \boxed{\equiv} \\ \text{Заміна: } y_1 &= x_1' + \left(\frac{x_3'}{2} + \frac{x_4'}{2}\right), \ y_2 &= x_2', y_3 = x_3', y_4 = x_4' \\ \boxed{\equiv} y_1^2 - \frac{y_3^2}{4} - \frac{y_4^2}{4} - \frac{1}{2}y_3y_4. \end{aligned}$$

Разом отримаємо
$$A(\vec{x})=y_1^2-y_2^2+y_2y_3-y_2y_4-\frac{y_3^2}{4}-\frac{y_4^2}{4}+\frac{y_3y_4}{2}$$
. Коефіцієнт при y_2^2 ненульовий, тому збираємо всі доданки разом з y_2 та виділяємо квадрати:
$$-y_2^2+y_2y_3-y_2y_4=-\left(y_2^2+2y_2\left(-\frac{y_3}{2}+\frac{y_4}{2}\right)+\left(-\frac{y_3}{2}+\frac{y_4}{2}\right)^2-\left(-\frac{y_3}{2}+\frac{y_4}{2}\right)^2\right)=\\ =-\left(\left(y_2+\left(\frac{-y_3}{2}+\frac{y_4}{2}\right)\right)^2-\frac{y_3^2}{4}-\frac{y_4^2}{2}+\frac{y_3y_4}{2}\right)=-w_2^2+\frac{w_3^2}{4}+\frac{w_4^2}{4}-\frac{w_3w_4}{2}.$$
 Разом отримаємо $A(\vec{x})=w_1^2-w_2^2+\frac{w_3^2}{4}+\frac{w_4^2}{2}-\frac{w_3w_4}{2}-\frac{w_3^2}{2}-\frac{w_4^2}{4}+\frac{w_3w_4}{2}$

 $\implies A(\vec{x}) = w_1^2 - w_2^2$

ТОДО: навчитись розв'язувати ту саму задачу з використанням матриць.

Метод Якобі

Маємо квадратичну форму A(x) = B(x,x), що відповідає матриці $\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n-2} & a_{n-2} & a_{n-2} \end{pmatrix}$. Ми

введемо таке поняття як кутові мінори матриці А таким чином:

$$\Delta_{1} = \det(a_{11}), \ \Delta_{2} = \det\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \ \dots, \ \Delta_{n} = \det\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}.$$

Для методу Якобі вважаємо, що $\Delta_i \neq 0$ при $i = \overline{1, n-1}$. Побудуємо базис $\{f_1, \ldots, f_n\}$, таким дивним чином:

$$f_1 = e_1$$

$$f_2 = \alpha_{21}e_1 + e_2$$

$$\vdots$$

 $f_n = \alpha_{n1}e_1 + \alpha_{n2}e_2 + \dots + e_n$

 $\alpha_{n1},\alpha_{n2},\ldots,\alpha_{nn-1}$ - коефіцієнти-невідомі. Це дійсно базис, оскільки визначник коефіцієнтів ненулевий.

Будемо шукати коефіцієнти за умовою, щоб $A(f_i, f_j) = 0, i < j$, тобто ці умови, завдяки яким квадратична форма стане канонічною.

Розглянемо поки що деякий вектор $f_j, j=\overline{2,n}$. Розпишемо рівняння $A(f_i,f_j)=0$ для всіх можливих

$$\begin{array}{l} A(f_1,f_j) = A(e_1,f_j) = 0. \\ A(f_2,f_j) = A(\alpha_{21}e_1 + e_2,f_j) = \alpha_{21}A(e_1,f_j) + A(e_2,f_j) = A(e_1,f_j) = 0 \implies A(e_2,f_j) = 0. \\ A(f_3,f_j) = A(\alpha_{31}e_1 + \alpha_{32}e_2 + e_3,f_j) = \alpha_{31}A(e_1,f_j) + \alpha_{32}A(e_2,f_j) + A(e_3,f_j) = A(e_3,f_j) = 0 \implies A(e_3,f_j) = 0. \end{array}$$

$$A(e_3,f_j)=0$$

$$\vdots$$

$$A(f_{j-1},f_j)=A(\alpha_{j-1,1}e_1+\alpha_{j-1,2}e_2+\cdots+e_{j-1},f_j)=\alpha_{j-1,1}A(e_1,f_j)+\alpha_{j-1,2}A(e_2,f_j)+\cdots+A(e_{j-1},f_j)=$$

$$=\alpha_{j-1,1}A(f_1,f_j)+\alpha_{j-1,2}A(f_2,f_j)+\cdots+A(e_{j-1},f_j)=A(e_{j-1},f_j)=0 \implies A(e_{j-1},f_j)=0.$$

$$\begin{cases}A(e_1,f_j)=0\\A(e_2,f_j)=0\\\vdots\\A(e_{j-1},f_j)=0\end{cases} \implies \begin{cases}a_{11}\alpha_{j1}+a_{12}\alpha_{j2}+\cdots+a_{1,j-1}\alpha_{j,j-1}=-a_{1j}\\a_{21}\alpha_{j1}+a_{22}\alpha_{j2}+\cdots+a_{2,j-1}\alpha_{j,j-1}=-a_{2j}\\\vdots\\a_{j-1,1}\alpha_{j1}+a_{j-1,2}\alpha_{j2}+\cdots+a_{j-1,j-1}\alpha_{j,j-1}=-a_{j-1,j}\end{cases}$$
Заукажимо, ило система, мас слиний розв'язок, тому, ило ми масмо визначими коефіліснтів, який

Зауважимо, що система має єдиний розв'язок, тому що ми маємо визначник коефіцієнтів, який відповідає кутовому мінору $\Delta_{j-1} \neq 0$. Зроблю заздалегідь таке позначення:

 $\Delta_{i-1,i}^*$ - кутовий мінор, де замість i-го стовпчика буде стовпчик, що складається з чисел $a_{ij}, a_{2j}, \dots, a_{j-1,j}$. Але я хочу розписати стовпчики по порядку, тобто $1,2,\ldots,i-1,i+1,\ldots,j$, такий визначник я позначу за $\Delta_{j-1,i}$. Тоді $\Delta_{j-1,i}^*=(-1)^{j-i}\Delta_{j-1,i}=(-1)^{j+i}\Delta_{j-1,i}$. Далі, формулою Крамера отримаємо:

позначу за
$$\Delta_{j-1,i}$$
. Тоді $\Delta_{j-1,i}^* = (-1)^{j-i} \Delta_{j-1}$
$$\begin{cases} \alpha_{j1} = \frac{\Delta_{j-1,1}^*}{\Delta_{j-1}} = \frac{(-1)^{j+1} \Delta_{j-1,1}}{\Delta_{j-1}} \\ \alpha_{j2} = \frac{\Delta_{j-1,2}^*}{\Delta_{j-1}} = \frac{(-1)^{j+2} \Delta_{j-1,2}}{\Delta_{j-1}} \\ \vdots \\ \alpha_{j,j-1} = \frac{\Delta_{j-1,j-1}^*}{\Delta_{j-1}} = \frac{(-1)^{j+j-1} \Delta_{j-1,j-1}}{\Delta_{j-1}} \\ A даді просто робимо перехід до нового.$$

А далі просто робимо перехід до нового базису - і отримуємо квадратичну форму канонічного

$$A(x) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 + \dots + \lambda_n \eta_n^2$$

 $A(x) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 + \dots + \lambda_n \eta_n^2$. Лишилось на основі знайдених коефіцієнтів знайти, чому дорівнюють λ_j .

$$\lambda_j = A(f_j, f_j) = A(\alpha_{j1}e_1 + \alpha_{j2}e_2 + \dots + \alpha_{j,j-1}e_{j-1} + e_j, f_j) = A(e_j, f_j) = A(e_j, \alpha_{j1}e_1 + \alpha_{j2}e_2 + \dots + \alpha_{j,j-1}e_{j-1} + e_j) = \alpha_{j1}a_{j1} + \alpha_{j2}a_{j2} + \dots + \alpha_{j,j-1}a_{j,j-1} + \alpha_{j2}a_{j2} + \dots + \alpha_{j,j-1}a_{j2} +$$

$$= \frac{(-1)^{j+1}\Delta_{j-1,1}}{\Delta_{j-1}}a_{j1} + \frac{(-1)^{j+2}\Delta_{j-1,2}}{\Delta_{j-1}}a_{j2} + \dots + \frac{(-1)^{j+j-1}\Delta_{j-1,j-1}}{\Delta_{j-1}}a_{j,j-1} + a_{jj} = \frac{(-1)^{j+1}\Delta_{j-1,1}}{\Delta_{j-1}}a_{j1} + \frac{(-1)^{j+2}\Delta_{j-1,2}}{\Delta_{j-1}}a_{j2} + \dots + \frac{(-1)^{j+j-1}\Delta_{j-1,j-1}}{\Delta_{j-1}}a_{j,j-1} + a_{jj} = \frac{(-1)^{j+1}\Delta_{j-1,1}}{\Delta_{j-1}}a_{j1} + \frac{(-1)^{j+2}\Delta_{j-1,2}}{\Delta_{j-1}}a_{j2} + \dots + \frac{(-1)^{j+j-1}\Delta_{j-1,j-1}}{\Delta_{j-1}}a_{j,j-1} + a_{jj} = \frac{(-1)^{j+1}\Delta_{j-1,1}}{\Delta_{j-1}}a_{j1} + \frac{(-1)^{j+2}\Delta_{j-1,2}}{\Delta_{j-1}}a_{j2} + \dots + \frac{(-1)^{j+j-1}\Delta_{j-1,j-1}}{\Delta_{j-1}}a_{j2} + \dots + \frac{$$

Липпилось на основі знайдених коефіцентів знайти, чому дорівнюють
$$\lambda_j$$
.
$$\lambda_j = A(f_j, f_j) = A(\alpha_{j1}e_1 + \alpha_{j2}e_2 + \dots + \alpha_{j,j-1}e_{j-1} + e_j, f_j) = A(e_j, f_j) = \\ = A(e_j, \alpha_{j1}e_1 + \alpha_{j2}e_2 + \dots + \alpha_{j,j-1}e_{j-1} + e_j) = \alpha_{j1}a_{j1} + \alpha_{j2}a_{j2} + \dots + \alpha_{j,j-1}a_{j,j-1} + a_{jj} = \\ = \frac{(-1)^{j+1}\Delta_{j-1,1}}{\Delta_{j-1}}a_{j1} + \frac{(-1)^{j+2}\Delta_{j-1,2}}{\Delta_{j-1}}a_{j2} + \dots + \frac{(-1)^{j+j-1}\Delta_{j-1,j-1}}{\Delta_{j-1}}a_{j,j-1} + a_{jj} = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{jj}\Delta_{j-1}\right) = \\ = \frac{1}{\Delta_{j-1}}\left((-1)^{j+1}a_{j1}\Delta_{j-1,1} + (-1)^{j+2}a_{j2}\Delta_{j-1,2} + \dots + (-1)^{j+j-1}a_{j,j-1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{j1}\Delta_{j-1,j-1} + (-1)^{j+j}a_{j$$

Якщо уважно придивитись, то в дужках записано розклад визначника, а точніше кутового мінору Δ_j , за *j*-м рядком.

$$\equiv \frac{\Delta_j}{\Delta_{j-1}}$$
.

Отже, для
$$j = \overline{2,n}$$
 маємо $\lambda_j = \frac{\Delta_j}{\Delta_{j-1}}$.

Якщо
$$j=1$$
, то $\lambda_1=A(f_1,f_1)= \mathring{A}(e_1,e_1)=a_{11}=\Delta_1 \implies \lambda_1=\Delta_1.$

Таким чином, ми отримали ось такий розклад в канонічному вигляді:
$$A(x) = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2.$$

Example 6.3.2 Маємо квадратичну форму $A(\vec{x}) = x_1^2 + 6x_1x_2 + 5x_2^2 - 4x_1x_3 - 16x_2x_3 + 5x_3^2$. Зведемо

її до канонічного вигляду.
$$\text{Матриця } \mathbb{A} = \begin{pmatrix} 1 & 3 & -2 \\ 3 & 5 & -8 \\ -2 & -8 & 5 \end{pmatrix}, \text{ кутові мінори } \Delta_1 = 1, \Delta_2 = -4, \Delta_3 = -64.$$
 Таким чином, $q(\vec{y}) = y_1^2 - 4y_2^2 + 16y_3^2.$

Закон інерції квадратичних форм

Theorem 6.4.1 Задано A - нормальна канонічна квадратична форма. Тоді кількість доданків з від'ємними та додатними коефіцієнтами не залежить від способу зведення до цієї форми.

Proof.

Маємо базис $\{f_1,\ldots,f_n\}$ в L, що має таке представлення: $A(x)=\xi_1^2+\cdots+\xi_k^2-\xi_{k+1}^2-\cdots-\xi_{k+m}^2$. Маємо базис $\{g_1,\ldots,g_n\}$ в L, що має таке представлення: $A(x)=\eta_1^2+\cdots+\eta_p^2-\eta_{p+1}^2-\cdots-\eta_{k+m}^2$.

Хочемо довести, що k=p, m=q. Оскільки ранг матриці в першому базисі співпадає з рангом другої матриці, то загальна кількість доданків однакова. Тобто нам достатньо довести k=p, тобто кількість додатних доданків в двух формах однакво.

!Припустимо, що k>p. Ми розглянемо простори $P=span\{f_1,\ldots,f_k\}$ та $N=span\{g_{p+1},\ldots,g_n\}$. Ми знаємо, що $\dim P + \dim N = \dim(P+N) + \dim(P\cap N)$. N+P - це підпростір лінійного простору L (зрозуміло), тому $\dim(P+N) \leq \dim L = n$.

Отже, $k + (n - p) \le n + \dim(P \cap N) \implies \dim(P \cap N) = k - p > 0 \implies P \cap N \ne \{0\}.$

Значить, існує деякий елемент $x \in P \cap N$.

Якщо $x\in P$, то $x=\gamma_1f_1+\cdots+\gamma_kf_k \implies A(x)=\gamma_1^2+\cdots+\gamma_k^2>0.$ Якщо $x\in N$, то $x=\delta_{p+1}g_{p+1}+\cdots+\delta_ng_n \implies A(x)=-\delta_{p+1}-\cdots-\delta_{p+q}<0.$

Тобто одночасно A(x) > 0 та A(x) < 0. Суперечність!

Таким чином, $k \le p$. Аналогічно від супротивного можна довести, що $k \ge p$. Остаточно k = p.

Theorem 6.4.2 Задано L - лінійний простір, dim L=n та A - квадратична форма. Нехай p,q- відповідно кількість доданких з додатними, від'ємними коефіцієнтами к нормальній канонічній формі.

A - додатно визначена $\iff p = n$.

A - від'ємно визначена $\iff q = n$.

Proof.

 \Rightarrow Дано: A - додатно визначена, тобто A(x) > 0.

!Припустимо, що p < n. Тобто квадратична форма має вигляд $A(x) = \eta_1^2 + \dots + \eta_p^2 - \eta_{p+1}^2 - \dots - \eta_l^2$. Тоді існує елемент $x = 0f_1 + \dots + 0f_p + \beta_{p+1}f_{p+1} + \dots + \beta_n f_n$, для якого $A(x) = -\eta_{p+1}^2 - \dots - \eta_l^2 \le 0$. Суперечність!

 \sqsubseteq Дано: p=n, тобто квадратична форма має вигляд $A(x)=\eta_1^2+\cdots+\eta_n^2$. Зрозуміло, що $\forall x\in L: A(x)>0$, а $A(x)=0\iff \eta_i=0, i=\overline{1,n}$, тобто це можливо лише для x=0. Отже, A - додатно визначена.

Абсолютно аналогічні міркування для другого випадку теореми.

Theorem 6.4.3 Критерій Сільвестра

Задано L - лінійний простір та A - квадратична форма, яка має матрицю $\mathbb{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$.

A - додатно визначена $\iff \Delta_1>0, \Delta_2>0,\dots,\Delta_n>0.$ A - від'ємно визначена $\iff -\Delta_1>0, \Delta_2>0,\dots,(-1)^n\Delta_n>0.$

де $\Delta_1, \ldots, \Delta_n$ - кутові мінори матриці \mathbb{A} .

Proof.

🖈 Дано: А - додатно визначена. Розкладемо її за методом Якобі, але спочатку треба попіклуватись про те, що $\Delta_i \neq 0, i = \overline{1, n}$.

! Припустимо, що існує $\Delta_k=0$. Тоді система нижче має ненульовий розв'язок $\vec{\xi} \neq \vec{0}$:

$$\begin{cases} a_{11}\xi_1 + \dots + a_{1k}\xi_k = 0 | \cdot \xi_1 \\ \vdots \\ a_{k1}\xi_1 + \dots + a_{kk}\xi_k = 0 | \cdot \xi_k \end{cases} \implies \sum_{i,j=1}^k a_{ij}\xi_i\xi_j = 0.$$

$$A(x) = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2$$

Тоді якщо візьмемо елемент $x=\xi_1f_1+\cdots+\xi_kf_k\in L$, то звідси A(x)=0. Суперечність! Таким чином, $\forall i=\overline{1,n}:\Delta_i\neq 0$. А тепер запишемо квадратичну форму в канонічному вигляді: $A(x)=\Delta_1x_1^2+\frac{\Delta_2}{\Delta_1}x_2^2+\cdots+\frac{\Delta_n}{\Delta_{n-1}}x_n^2.$ Отже, за попередньою теоремою, всі коефіцієнти додатні, власне звідси $\Delta_1>0,\Delta_2>0,\ldots,\Delta_n>0$.

$$\overline{A(x)} = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2.$$

 $A(x) = \Delta_1 x_1^2 + \frac{\Delta_2}{\Delta_1} x_2^2 + \dots + \frac{\Delta_n}{\Delta_{n-1}} x_n^2.$ Оскільки всі коефіцієнти додатні, то за попередньою теоремою, A - додатно визначена.

6.5Квадратичні форми в евклідовому просторі

Theorem 6.5.1 Задано $(E,(\cdot,\cdot))$ - евклідовий простір та B(x,y) - симетрична білінійна форма. Тоді існує $\{e_1,\ldots,e_n\}$ - ортонормований базис, для якого квадратична форма A(x)=B(x,x) запишеться таким чином:

$$A(x) = \sum_{k=1}^{\infty} \lambda_k \xi_k^2$$
, де λ_k - власні числа.

Proof.

Оскільки B - білінійна форма, то за теоремою Ріса, $\exists A: E \to E$, для якого B(x,y) = (Ax,y). Причому A - самоспряжений оператор. За спектральною теоремою, існує ортонормований базис $\{e_1,\ldots,e_n\}$ із власних векторів оператора A.

Маємо $x \in E \implies x = \xi_1 e_1 + \dots + \xi_n e_n$. Тоді $Ax = \lambda_1 \xi_1 e_1 + \dots + \lambda_n \xi_n e_n$. Лишилось записати квадратичну форму

$$A(x) = (Ax, x) = (\lambda_1 \xi_1 e_1 + \dots + \lambda_n \xi_n e_n, \xi_1 e_1 + \dots + \xi_n e_n) = \lambda_1 \xi_1^2 + \dots + \lambda_n \xi_n^2 = \sum_{k=1}^n \lambda_k \xi_k^2.$$

6.6 Зведення кривих та поверхень другого порядку до канонічного вигляду

Маємо загальний вигляд кривої другого порядку:

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + b_1x + b_2y + c = 0$$

Розглянемо квадратну частину

гозглянемо квадратну частину.
$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} - \text{квадратична форма, а матриця } \mathbb{A} = \begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$$
- відповідно самоспряжена матриця.

Також маємо загальний вигляд поверхну другого порядку:

$$a_{11}x^2 + a_{22}y^2 + a_{33}z^2 + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + b_1x + b_2y + b_3z + c = 0$$

Аналогічно розглянемо квадратну частину:

Аналогічно розглянемо квадратну частину:
$$a_{11}x^2+a_{22}y^2+a_{33}z^2+2a_{12}xy+2a_{13}xz=\begin{pmatrix}\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{pmatrix}\begin{pmatrix}x\\y\\z\end{pmatrix},\begin{pmatrix}x\\y\\z\end{pmatrix}\end{pmatrix}-\text{ квадратична форма, зі самоспряженою матрицею }\mathbb{A}=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{12}&a_{22}&a_{23}\\a_{13}&a_{23}&a_{33}\end{pmatrix}.$$

Тоді рівняння кривої (випадок \mathbb{R}^2) та поверхні (випадок \mathbb{R}^3) другого порядку записується таким

$$(\vec{x}, A\vec{x}) + (\vec{b}, \vec{x}) + c = 0.$$

Це рівняння зведемо до канонічного вигляду:

1. Оскільки A - самоспряжений, то існує ортонормований базис із власних векторів A.

U - унітарна матриця переходу: $\mathbb{A} = U\mathbb{A}_{\mathrm{diag}}U^*.$ Тоді маємо:

$$(A\vec{x}, \vec{x}) = (UA_{\text{diag}}U^*\vec{x}, \vec{x}) = (A_{\text{diag}}U^*\vec{x}, U^*\vec{x}) = (A_{\text{diag}}\vec{y}, \vec{y}) = \begin{bmatrix} \lambda_1 y_1^2 + \lambda_2 y_2^2 \\ \lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 \end{bmatrix}$$

2.
$$(\vec{b}, \vec{x}) = (U^*\vec{b}, U^*\vec{x}) = (U^*\vec{b}, \vec{y})$$
. Знаходимо $\vec{\tilde{b}} = U^*\vec{b}$, тоді $(\vec{b}, \vec{x}) = (\vec{\tilde{b}}, \vec{y}) = \begin{bmatrix} \tilde{b_1}y_1 + \tilde{b_2}y_2 \\ \tilde{b_1}y_1 + \tilde{b_2}y_2 + \tilde{b_3}y_3 \end{bmatrix}$ Остаточно отримаємо:

$$\lambda_1 y_1^2 + \lambda_2 y_2^2 + \lambda_3 y_3^2 + \tilde{b_1} y_1 + \tilde{b_2} y_2 + \tilde{b_3} y_3 + c = 0.$$

Нехай
$$\lambda_1, \lambda_2, \lambda_3 \neq 0$$
. Тоді виділимо повні квадрати:
$$\lambda_1 \left(y_1 + \frac{\tilde{b_1}}{2\lambda_1} \right)^2 + \lambda_2 \left(y_2 + \frac{\tilde{b_2}}{2\lambda_2} \right)^2 + \lambda_3 \left(y_3 + \frac{\tilde{b_3}}{2\lambda_3} \right)^2 = -c + \frac{\tilde{b_1}^2}{4\lambda_1} + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$$

$$z_1 = y_1 + \frac{\tilde{b_1}}{2\lambda_1} \qquad z_2 = y_2 + \frac{\tilde{b_2}}{2\lambda_2} \qquad z_3 = y_3 + \frac{\tilde{b_3}}{2\lambda_3} \qquad \tilde{c} = -c + \frac{\tilde{b_1}^2}{4\lambda_1} + \frac{\tilde{b_2}^2}{4\lambda_2} + \frac{\tilde{b_3}^2}{4\lambda_3}$$
 Отримаємо:

$$\lambda_1 z_1^2 + \lambda_2 z_2^2 + \lambda_3 z_3^2 = \tilde{c}.$$

Випадок, коли лише
$$\lambda_1=0$$
. Тоді робимо ті самі процедури та отримаємо:
$$\lambda_2\left(y_2+\frac{\tilde{b_2}}{2\lambda_2}\right)^2+\lambda_3\left(y_3+\frac{\tilde{b_3}}{2\lambda_3}\right)^2+\tilde{b_1}y_1=-c+\frac{\tilde{b_1}^2}{4\lambda_1}+\frac{\tilde{b_2}^2}{4\lambda_2}+\frac{\tilde{b_3}^2}{4\lambda_3}$$
 Зробимо заміни:

$$z_{2} = y_{2} + \frac{\tilde{b_{2}}}{2\lambda_{2}} \qquad z_{3} = y_{3} + \frac{\tilde{b_{3}}}{2\lambda_{3}} \qquad \tilde{c} = -c + \frac{\tilde{b_{2}}^{2}}{4\lambda_{2}} + \frac{\tilde{b_{3}}^{2}}{4\lambda_{3}} \qquad z_{1} = y_{1} - \frac{\tilde{c}}{\tilde{b_{1}}}$$

 $\lambda_2 z_2^2 + \lambda_3 z_3^2 + \tilde{b_1} z_1 = 0$ - а це є параболоїдом. Випадок $b_1 = 0$: в \mathbb{R}^3 - циліндр, а в \mathbb{R}^2 - пара прямих.

Випадок, коли $\lambda_1 = \lambda_2 = 0$ (це вже лише для \mathbb{R}^3):

$$\lambda_3 y_3^2 + \tilde{b_1} y_1 + \tilde{b_2} y_2 + \tilde{b_3} y_3 + c = 0$$

Виникає одна мрія: $\tilde{b_1} = 0$

$$\vec{\tilde{b}} = U^* \vec{b}$$

$$U=(\vec{f_1},\vec{f_2},\vec{f_3})$$
, де $\vec{f_1},\vec{f_2}$ - власні числа для $\lambda_1=\lambda_2$, а $\vec{f_3}$ - для $\lambda_3 \neq 0$

$$U^*\vec{b} = \begin{pmatrix} \overleftarrow{f_1} \cdot \vec{b} \\ \overleftarrow{f_2} \cdot \vec{b} \\ \overleftarrow{f_3} \cdot \vec{b} \end{pmatrix} = \begin{pmatrix} (\vec{f_1}, \vec{b}) \\ (\vec{f_2}, \vec{b}) \\ (\vec{f_3}, \vec{b}) \end{pmatrix} = \begin{pmatrix} \widetilde{b_1} \\ \widetilde{b_2} \\ \widetilde{b_3} \end{pmatrix}$$

Щоб здійснити мрію, треба, щоб $(\vec{f_1}, \vec{b}) = 0$

Знаходимо $ec{f_3}$ - власний для λ_3

Тоді $span\{e_3\}^\perp$ - простір власних векторів для $\lambda_1=\lambda_2=0$

Тоді
$$\vec{f_1} = [\vec{f_3}, \vec{b}] \perp \vec{b} \Rightarrow \tilde{b_1} = 0$$

$$f_1$$
 - власний для $\lambda=0$ та $f_2=[\vec{f_1},\vec{f_3}]\perp \vec{f_1},\vec{f_3}$

Параметризуємо $\vec{f_1}, \vec{f_2}, \vec{f_3}$ - отримаємо ортонормований базис

$$U$$
 - матриця перехода $ec{ ilde{b}} = egin{pmatrix} 0 \ ilde{b_2} \ ilde{b_3} \end{pmatrix}$

$$\lambda_3 y_3^2 + \tilde{b_3} y_3 + \tilde{b_2} y_2 + c = 0$$

$$\lambda_3 \left(y_3 + \frac{\tilde{b_3}}{2\lambda_3} \right)^2 + \tilde{b_2} \left(y_2 + \frac{c - \frac{\tilde{b_3}^2}{4\lambda_3}}{\tilde{b_2}} \right) = 0$$

Зробимо заміни:

$$z_1 = y_1$$
 $z_2 = y_2 + \frac{c - \frac{\tilde{b_3}^2}{4\lambda_3}}{\tilde{b_2}}$ $z_3 = y_3 + \frac{\tilde{b_3}}{2\lambda_3}$

 $\lambda_3 z_3^2 + b_2 z_2 = 0$ - а це ϵ параболічним циліндром

При $b_2 = 0$ отримаємо пару площин.