https://attendance.lincoln.ac.uk

Access Code: 280562

CMP9794M Advanced Artificial Intelligence

Heriberto Cuayahuitl

School of Computer Science

AAI Delivery Team

• Dr. Heriberto Cuayahuitl hcuayahuitl@lincoln.ac.uk

office: INB3108

office: INB3121

About Me

- British computer scientist (born in Mexico),
- PhD from the University of Edinburgh in 2009,
- Areas of interest: conversational AI & robot learning.

Recommendations

- Record your attendance in every session:
 - online https://attendance.lincoln.ac.uk
 - paper-based register (when online system is off)
- Check Blackboard and your email frequently for updates and notifications
- Mute your mobile phone during lectures
- If you want to ask/say something, raise your hand or just interrupt your lecturer (that's okay)

Lectures and Workshops

- Lectures: Monday 9-11am in MB0302
- Workshops: Monday 11am-1pm in INB1102

Main Topics in this Module

- Quantifying uncertainty
 - Introduction to probability theory
- Probabilistic reasoning
 - Bayesian Nets (BNs), Gaussian Processes (GPs)
- Reasoning over time
 - Dynamic BNs, Hidden Markov Models (HMMs)
- Making complex decisions
 - Markov Decision Processes (MDPs)
 - Reinforcement learning (without neural nets)

Agenda

Week	Commencing on	Topic	Delivered by
1	23/09/2024	Introduction to module	Heriberto Cuayahuitl
2	30/09/2024	Bayesian nets w/exact inference	Heriberto Cuayahuitl
3	07/10/2024	Structure learning	Heriberto Cuayahuitl
4	14/10/2024	Bayesian nets w/approx. inference	Heriberto Cuayahuitl
5	21/10/2024	Gaussian Bayesian networks	Heriberto Cuayahuitl
6	28/10/2024	Reading week (no lectures/workshops)	
7	04/11/2024	Gaussian processes	Heriberto Cuayahuitl
8	11/11/2024	Probabilistic reasoning over time I	Ricardo Polvara
9	18/11/2024	Probabilistic reasoning over time II	Ricardo Polvara
10	25/11/2024	Introduction to complex decision making	Ricardo Polvara
11	02/12/2024	Markov decision processes	Ricardo Polvara
12	09/12/2024	Reinforcement learning	Ricardo Polvara
13-15		Christmas break	
16	06/01/2025	Present and Future of AI: Discussion	Riccardo and guests

Learning Objectives

LO1. Critically appraise a range of AI techniques for knowledge representation, reasoning and decision-making **under uncertainty**, identifying their strengths and weaknesses, and selecting appropriate methods to serve particular roles

LO2. Design and develop software algorithms for solving complex (non-trivial) Al problems in an application domain of interest.

Assessments*

- Assignment (50%):
 - Bayesian Networks (BNs)
 - Gaussian BNs
 - Gaussian Processes

- In-class test (50%):
 - Mock-test (last workshop)
 - Test (see Hand-in deadlines and your timetable)

*You should **READ** the Assessment docs in Blackboard

What is AI?

Many definitions. Example "the science and engineering for equipping machines/robots to acquire their own behaviour".

Thinking humanly	Thinking rationally
Acting humanly	Acting rationally

Thinking Humanly: Cognitive Modelling

- We must have a way of determining how humans think:
 - Introspection (catching our own thoughts as they happen)
 - Psychological experiments (observing a person in action)
 - Brain imaging (observing brain in action)
- Cognitive science brings multiple fields together to try
 to construct precise and testable theories of the
 workings of the human mind.

Biology

Computer

Science

Artificial Intelligence

Philosophy

Language

Science

Cognitive Science

Linguistics

Acting Humanly: The Turing Test (1950)

- Turing (1950) "Computing machinery and intelligence"
- Can machines behave intelligently?
- Summary of Alan Turing's paper (1950)

Thinking Rationally: Laws of Thought

 Several Greek scholars developed various forms of logic: notation and rules for thoughts

- AI hopes to create intelligent systems using logic programming (e.g., Prolog).
- However, it is not easy to represent informal knowledge using logical notation, particularly when knowledge is not 100% certain.

Acting Rationally

- Rational behaviour: doing the right thing
- The right thing: which is expected to maximise goal achievement given the available information to the AI.
- Rational Agent is one that achieve the best outcome or, when there is uncertainty, the best expected outcome.

Birth of Al

- The Dartmouth Conference (1956) brought together researchers in a variety of topics:
 - complexity theory, language simulation, neuron nets, abstraction of content from sensory inputs, relationship of randomness to creative thinking, learning machines

John MacCarthy

Marvin Minsky

Claude Shannon

Ray Solomonoff

Alan Newell

Herbert Simon

Arthur Samuel

Oliver Selfridge

Nathaniel Rochester

Trenchard More

Picture from https://www.scienceabc.com

Pillars of Al

Major Areas in Al

History of Al in a Nutshell – part 1

A.I. TIMELINE

1950

TURING TEST

Computer scientist Alan Turing proposes a intelligence' is coined test for machine intelligence. If a machine can trick is human, then it has intelligence

1955 A.I. BORN

Term 'artificial by computer scientist, John McCarthy to describe "the science

making intelligent

machines"

1961

UNIMATE First industrial robot. Unimate, goes to work at GM replacing humans on the assembly line

1964

Pioneering chatbot developed by Joseph Weizenbaum at MIT holds conversations

1966

SHAKEY The 'first electronic person' from Stanford, Shakey is a generalpurpose mobile robot that reasons about its own actions

A.I.

WINTER

Many false starts and dead-ends leave A.I. out 1997

DEEP BLUE

Deep Blue, a chessplaying computer from IBM defeats world chess emotionally intelligent champion Garry Kasparov

1998

Cynthia Breazeal at MIT introduces KISmet, an robot insofar as it to people's feelings

1999

AIBO

Sony launches first consumer robot pet dog autonomous robotic AiBO (Al robot) with skills and personality that develop over time

2002

ROOMBA

First mass produced vacuum cleaner from iRobot learns to navigate interface, into the and clean homes

2011

Apple integrates Siri, an intelligent virtual assistant with a voice iPhone 4S

2011

answering computer Watson wins first place on popular \$1M prize television quiz show Jeopardy

2014

Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human

2014

an intelligent virtual assistant with a voice interface that completes

shopping tasks

2016

Amazon launches Alexa, Microsoft's chatbot Tay goes roque on social media making inflammatory and offensive racist

2017

ALPHAGO

Google's A.I. AlphaGo beats world champion Ke Jie in the complex board game of Go, notable for its vast number (2170) of possible positions

History of Alin a Nutshell – part 2

Al Agents

perceives its environment via its sensors,
makes decisions using AI techniques, &
executes decisions using its actuators.

Properties of Task Environments

- Fully-observable vs. partially observable
- Single-agent vs. multi-agent
- Deterministic vs. stochastic
- Episodic vs. sequential
- Static vs. dynamic
- Discrete vs. continuous
- Known vs. unknown

More details of those properties in Russell and Norvig Chapter 2.

Hardest case (in red)

Example1: Autonomous cars driving on unfamiliar roads.

Example 2: Robots cooking food in a changing/dynamic kitchen.

Recent Major Developments in Al

Recent Major Developments in Al

ChatGPT received around 1.8 billion visitors in Aprill 2024, with ~100 million active users.

OpenAl's ChatGPT, a 175B parameter neural net, learns to chat on 570GB of text in 34 days, 2022

AI: Economic Impact

Al: Economic Impact

The Market will Grow At the CAGR of:

36.8%

The forecasted market size for 2032 in USD:

\$2745B

Ethics in Al

<u>Understanding Artificial Intelligence ethics and safety</u>

Data ethics and AI guidance landscape

Break

(Discrete) Random Variables

 The events we are interested in have a set of possible values. Examples of random variables:

```
Coin toss (C): {heads, tails}
Roll a die (D): {1, 2, 3, 4, 5, 6}
Weather (W): {snowy, sunny, rainy, foggy}
Measles (M): {true, false}
```

 For each event, a random variable takes a value from the associated set. Then we have:

```
P(C = tails) or P(tails)
P(D = 1) or P(1)
P(W = sunny) or P(sunny)
P(M = true) or P(measles)

CMP9794M Advanced AI
```

Discrete Probability Distribution

 A probability distribution is a listing of probabilities for every possible value of a single random variable

Probability distributions can be estimated from data

Continuous Probability Distribution

 The distribution of a continuous random variable is represented by a probability density function (PDF)

• Due to the infinite number of possible values of a continuous variable (e.g., speed, temperature, time, ...)

Joint Probabilities

Joint probabilities represent the whole joint probability distribution

S1=1st	S2=1st	Probability
TRUE	TRUE	0.2
TRUE	FALSE	0.1
FALSE	TRUE	0.1
FALSE	FALSE	0.6

$$\sum_{e \in S} P(e) = 1$$

Joint Probability Distribution

Sometimes a joint probability distribution looks like the one below, which has the same information as the table on the previous slide.

	S2 =1st	¬(S2 =1st)
S1=1st	0.2	0.1
¬(S1=1st)	0.1	0.6

Marginal Probabilities

	S2 =1st	¬(S2 =1st)
S1=1st	0.2	0.1
¬(S1=1st)	0.1	0.6

Marginalisation => summing up the probabilities of the other variables—i.e. $P(X) = \sum_{y} P(X, Y = y)$

Example: What is the probability of S1 getting a 1st?

$$P(S1=1st) = P(S1=1st \land S2=1st) + P(S1=1st \land \neg(S2=1st))$$

= 0.2 + 0.1 = 0.3

Marginal Probabilities

	S2 =1 st	¬(S2 =1st)
S1=1st	0.2	0.1
¬(S1=1st)	0.1	0.6

$$P(S1=1st) = P(S1=1st \land S2=1st) + P(S1=1st \land \neg(S2=1st))$$

= 0.2 + 0.1 = 0.3

$$P(\neg(S1=1st)) = P(\neg(S1=1st) \land S2=1st) + P(\neg(S1=1st) \land \neg(S2=1st))$$

= 0.1 + 0.6 = 0.7

Note that $P(S1=1st) + P(\neg(S1=1st)) = 0.3 + 0.7 = 1$

Marginal Probabilities

$$P(S2=1st) = P(S1=1st \land S2=1st) + P(\neg(S1=1st) \land S2=1st)$$

= 0.2 + 0.1 = 0.3

$$P(\neg(S2=1st)) = P(S1=1st \land \neg(S2=1st)) + P(\neg(S1=1st) \land \neg(S2=1st))$$

= 0.1 + 0.6 = 0.7

Note that
$$P(S2=1st) + P(\neg(S2=1st)) = 0.3 + 0.7 = 1$$

Conditional probabilities answer the question:
 Given that some event B happened, what is the probability of A happening too?

A conditional probability is defined as:

$$P(A \mid B) = P(A \land B) / P(B)$$
, where $P(B) \neq 0$

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Chain Rule for Probabilities

• P(A ∧ B)= P(A | B) * P(B)

•
$$P(A_1 \land A_2 \land \cdots \land A_n) = P(A_n | A_{n-1} \land \cdots \land A_1) *$$

• $P(A_{n-1} | A_{n-2} \land \cdots \land A_1) * \cdots * P(A_2 | A_1) * P(A_1)$

	S2=1st	¬(S2=1 st)	
S1=1st	0.2	0.1	
¬(S1=1 st)	0.1	0.6	

- P(S2=1st | S1=1st)? = P(S2=1st, S1=1st) / P(S1=1st) = P(A | B) = P(A | B) / P(B)• = 0.2 / 0.3 = 0.66666666 Substituting A with S1=1st

$$P(A \mid B) = P(A \land B) / P(B)$$

If the first student has a 1st, the second has a 66% chance of having a 1st too!

	S2=1st	¬(S2=1 st)	
S1=1st	0.2	0.1	
¬(S1=1 st)	0.1	0.6	

•
$$P(\neg(S2=1st) \mid S1=1st)$$
?
• $P(A \mid B) = P(A \land B) / P(B)$
• $P(\neg(S2=1st), S1=1st) / P(S1=1st)$ Substituting A with $\neg(S2=1st)$

$$\bullet$$
 = 0.1 / 0.3 = 0.3333333

$$P(A \mid B) = P(A \land B) / P(B)$$

Substituting B with S1=1st

If the first student (S1) has a 1st, the second has a 33% chance of not getting a 1st.

Since P(S2=1st | S1=1st) = P(S2=1st, S1=1st) / P(S1=1st)
=
$$0.2 / 0.3 = 0.6666666$$

and P(¬(S2=1st) | S1=1st) = P(¬(S2=1st), S1=1st) / P(S1=1st)
= $0.1 / 0.3 = 0.3333333$
Then P(S2=1st | S1=1st) + P(¬(S2=1st) | S1=1st) = 1

More on Joint Probabilities

Given a joint probability table, we have all the information we need about the domain. We can calculate the probability of any logical formula.

$$P(S1=first \lor S2=first) = 0.2 + 0.1 + 0.1 = 0.4$$

	S2 =1st	¬(S2 =1st)	
S1=1st		O. 1	
¬(S1=1st)	0.1	0.6	

Bayes Rule

- $P(A \wedge B) = P(B \wedge A)$
- P(A | B)*P(B) = P(B | A)*P(A)
- P(A | B) = (P(B | A)*P(A)) / P(B)
- P(B | A) = (P(A | B)*P(B)) / P(A)

Bayes Rule

•
$$P(A \wedge B) = P(B \wedge A)$$

•
$$P(A \mid B)*P(B) = P(B \mid A)*P(A)$$

Thomas Bayes (1701-1761)

Bayes Rule for Classification

Given inputs X and outputs Y, the Bayes rule can be written as

$$P(Y = y_k | X = x_i) = \frac{P(X = x_i | Y = y_k)P(Y = y_k)}{\sum_j P(X = x_i | Y = y_j)P(Y = y_j)}$$

where

 y_k is the possible value for Y x_i is the possible vector value for X

• Use training data to estimate P(X|Y) and P(Y).

Difficulty in Unbiased Bayesian Classifiers

- Accurately estimating P(X|Y) requires a set of parameters such as $\theta_{ij} = P(X = x_i | Y = y_j)$, where index j refers to 2 possible values index i refers to 2^n possible values
- This requires 2^{n+1} parameters or probabilities.
- A vector X with 30 Boolean inputs requires 2.15B parameters

Naïve Bayes Classifier

- Conditional independence: $P(X_1 ... X_n | Y) = \prod_{i=1}^n P(X_i | Y)$
- Thus

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k)P(X_1 ... X_n | Y = y_k)}{\sum_j P(Y = y_j)P(X_1 ... X_n | Y = y_j)}$$

can be rewritten as

$$P(Y = y_k | X_1 ... X_n) = \frac{P(Y = y_k) \prod_i P(X_i | Y = y_k)}{\sum_j P(Y = y_j) \prod_i P(X_i | Y = y_j)}$$

Naïve Bayes Classifier

• Given a new instance/example $X^{new} = < X_1 ... X_n >$, the most probable value of Y can be obtained with

$$Y = \arg \max_{y_k} \frac{P(Y = y_k) \prod_{i} P(X_i | Y = y_k)}{\sum_{j} P(Y = y_j) \prod_{i} P(X_i | Y = y_j)}$$

• Since the denominator does not depend on y_k , the equation can be simplified as

$$Y = \underset{y_k}{\operatorname{argmax}} P(Y = y_k) \prod_{i} P(X_i | Y = y_k)$$

Naïve Bayes for Discrete Inputs

Estimate two sets of parameters:

$$\frac{\theta_{ijk}}{\pi_k} = P(X = x_{ij} | Y = y_k)$$

$$\pi_k = P(Y = y_k)$$

According to

$$\theta_{ijk} = P(X = x_{ij} | Y = y_k) = \frac{\#D\{X_i = x_{ij} \land Y = y_k\} + lJ}{\#D\{Y = y_k\} + lJ}$$

$$\pi_k = P(Y = y_k) = \frac{\#D\{Y = y_k\}}{|D|}$$

where J is the number of unique values in X_i , l (e.g., l=1) avoids zero estimates, and |D| is the num. of elements in the training set.

Example: Training Data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D 1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

Data from: Mitchell, T. "Machine Learning", McGraw Hill, 1997.

Example: Estimated Parameters

$$P(PlayTennis = yes) = \frac{9}{14} = 0.643$$

 $P(PlayTennis = no) = \frac{5}{14} = 0.357$

$$P(Outlook = sunny|PlayTennis = yes) = 2/9 = 0.222$$

 $P(Outlook = sunny|PlayTennis = no) = 3/5 = 0.60$
 $P(Outlook = overcast|PlayTennis = yes) = 4/9 = 0.444$
 $P(Outlook = overcast|PlayTennis = no) = 0/5 = 0.0$
 $P(Outlook = rain|PlayTennis = yes) = 3/9 = 0.333$
 $P(Outlook = rain|PlayTennis = no) = 2/5 = 0.4$

. . .

We want to avoid zero probabilities

Example: Estimated Parameters

```
P(Temperature = hot | PlayTennis = yes) = 2/9 = 0.222
  P(Temperature = hot | PlayTennis = no) = 2/5 = 0.4
P(Temperature = mild|PlayTennis = yes) = 4/9 = 0.444
 P(Temperature = mild|PlayTennis = no) = 2/5 = 0.4
P(Temperature = cool|PlayTennis = yes) = 3/9 = 0.333
 P(Temperature = cool|PlayTennis = no) = 1/5 = 0.2
 P(Humidity = high|PlayTennis = yes) = 3/9 = 0.333
   P(Humidity = high|PlayTennis = no) = 4/5 = 0.8
P(Humidity = normal|PlayTennis = yes) = 6/9 = 0.666
  P(Humidity = normal|PlayTennis = no) = 1/5 = 0.2
  P(Wind = strong | PlayTennis = yes) = 3/9 = 0.333
    P(Wind = strong | PlayTennis = no) = 3/5 = 0.6
   P(Wind = weak | PlayTennis = yes) = 6/9 = 0.666
     P(Wind = weak | PlayTennis = no) = 2/5 = 0.4
```

Example: Classifying a New Instance

```
P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) =
= 0.643 * 0.222 * 0.333 * 0.333 * 0.333 = 0.0053
P(no)P(sunny|no)P(cool|no)P(high|no)P(strong|no) =
= 0.357 * 0.60 * 0.2 * 0.8 * 0.6 = 0.0206
```


$$P(PlayTennis = yes | evidence) = \frac{0.0053}{0.0053 + 0.0206} = 0.205$$

$$P(PlayTennis = no | evidence) = \frac{0.0053}{0.0053 + 0.0206} = 0.795$$
Outlook=sunny
Temperature=cool
Humidity=high
Wind=strong

Same example with Log Probabilities

$$P(yes)P(sunny|yes)P(cool|yes)P(high|yes)P(strong|yes) = (-0.442) + (-1.504) + (-1.098) + (-1.098) + (-1.098) + (-1.098) = -5,242$$

$$P(no)P(sunny|no)P(cool|no)P(high|no)P(strong|no) = (-1.029) + (-0.51) + (-1.609) + (-0.223) + (-0.51) = -3.883$$

$$P(PlayTennis = yes|evidence) = \frac{e^{-5,242}}{e^{-5,242} + e^{-3.883}} = 0.205$$

$$P(PlayTennis = no|evidence) = \frac{e^{-5,242} + e^{-3.883}}{e^{-5,242} + e^{-3.883}} = 0.795$$

Today

- Elaborated on the term `Artificial Intelligence'
- Some recent major developments in Al
- Introduction to probability theory
- Probabilistic reasoning with Naïve Bayes

Readings:

Russell & Norvig 2016. <u>Chapters 1, 2, 13</u> Mitchell, T. 2017; 2nd Ed. <u>Chapter 3</u>

This and Next Week

Workshop (today):

Exercises on probability theory Python programs for Bayesian classifiers

Lecture (next week):

Bayesian Networks with Exact Inference Readings: Russell & Norvig 2016. Chapters 13-14.4

Questions?