Alternating Series and Conditional Convergence

Avinash Iyer

Occidental College

July 17, 2024

Table of Contents

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

Contents

Alternating Harmonic Series: An Analysis

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

Consider the following series:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \cdots$$

This series appears to be related to the harmonic series, but also very different:

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$

Harmonic Series

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$
$$\ge 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

$$\geq 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \cdots$$

$$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$$

$$= \infty$$

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

 $s_1 = 1$

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

$$s_3 = \frac{5}{6}$$

$$s_n = \sum_{k=1}^n \frac{(-1)^{n+1}}{n}$$

$$s_1 = 1$$

$$s_2 = \frac{1}{2}$$

$$s_3 = \frac{5}{6}$$

$$s_4 = \frac{7}{12}$$

$$\vdots$$

Convergence?

Clearly, this sequence does not grow without bound — it is bounded above by 1, and doesn't seem to dip below $\frac{1}{2}$.

Convergence?

Clearly, this sequence does not grow without bound — it is bounded above by 1, and doesn't seem to dip below $\frac{1}{2}$.

Convergence? cont'd

The alternating harmonic does converge. Courtesy of Wolfram MathWorld, we know that the series converges to the following:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

Convergence? cont'd

The alternating harmonic does converge. Courtesy of Wolfram MathWorld, we know that the series converges to the following:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \ln 2$$

...or does it?

Rearranging the Alternating Harmonic Series

Rearrange the series as follows:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots$$

Rearranging the Alternating Harmonic Series

Rearrange the series as follows:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots$$
$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots$$

Rearranging the Alternating Harmonic Series

Rearrange the series as follows:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \left(1 - \frac{1}{2}\right) - \frac{1}{4} + \left(\frac{1}{3} - \frac{1}{6}\right) - \frac{1}{8} + \dots$$

$$= \frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} + \dots$$

$$= \frac{1}{2} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

$$= \frac{1}{2} \ln 2$$

Contents

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

Introduction to Conditional Convergence

► We saw that our alternating harmonic series converges to ln 2, but should it not converge to ln 2 all the time?

Introduction to Conditional Convergence

- ► We saw that our alternating harmonic series converges to ln 2, but should it not converge to ln 2 all the time?
- ► For example, no matter how we arrange

$$\sum_{n=0}^{\infty} \frac{1}{2^n},$$

The sum should always equal 1.

Introduction to Conditional Convergence

- ► We saw that our alternating harmonic series converges to ln 2, but should it not converge to ln 2 all the time?
- ► For example, no matter how we arrange

$$\sum_{n=0}^{\infty} \frac{1}{2^n},$$

The sum should always equal 1.

► Maybe we should redefine convergence?

Alternating Series

► The answer is that the alternating harmonic series is *conditionally* convergent.

Alternating Series

- ► The answer is that the alternating harmonic series is conditionally convergent.
- ► We can always rearrange the terms of the alternating harmonic series to form whatever sum we want.

Alternating Series

- ► The answer is that the alternating harmonic series is conditionally convergent.
- ► We can always rearrange the terms of the alternating harmonic series to form whatever sum we want.
- ▶ In general, alternating series, of the form

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

can be convergent, while at the same time

$$\sum_{n=1}^{\infty} a_n$$

Alternating Series Test

► In general, we can find if an alternating series is *conditionally* convergent as follows:

Alternating Series Test

- ► In general, we can find if an alternating series is *conditionally* convergent as follows:
 - ► The (absolute value) series terms are strictly positive and decreasing.

$$0 < a_{n+1} < a_n$$

Alternating Series Test

- ► In general, we can find if an alternating series is *conditionally* convergent as follows:
 - ► The (absolute value) series terms are strictly positive and decreasing.

$$0 < a_{n+1} < a_n$$

► The series terms tend to zero:

$$\lim_{n\to\infty}a_n=0$$

In the alternating harmonic series, we see that

In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

and

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

In the alternating harmonic series, we see that

$$0<\frac{1}{n+1}<\frac{1}{n},$$

and

$$\lim_{n\to\infty}\frac{1}{n}=0.$$

So the series is conditionally convergent.

Contents

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

What is Absolute Convergence?

We know two facts:

What is Absolute Convergence?

We know two facts:

- ▶ The alternating harmonic series converges conditionally
- ► The harmonic series diverges

What is Absolute Convergence?

We know two facts:

- ▶ The alternating harmonic series converges conditionally
- ► The harmonic series diverges

We need a stronger term for series convergence — absolute convergence — when a series converges to a single value.

Finding Absolute Convergence

If the absolute value of the terms in the series converges, then the series converges absolutely.

Finding Absolute Convergence

If the absolute value of the terms in the series converges, then the series converges absolutely.

Finding Absolute Convergence, cont'd

Absolutely Convergent Alternating Series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

converges absolutely. Why?

Finding Absolute Convergence, cont'd

Absolutely Convergent Alternating Series

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2^n}$$

converges absolutely. Why? By the geometric series,

$$\sum_{n=0}^{\infty} \left| \frac{(-1)^n}{2^n} \right| = \sum_{n=0}^{\infty} \frac{1}{2^n}$$

converges.

Contents

Alternating Harmonic Series: An Analysis

Conditional Convergence

Absolute Convergence

Recap

What We Have Learned

► The same series can converge to different values depending on the arrangement of terms — known as *conditional convergence*

What We Have Learned

- ► The same series can converge to different values depending on the arrangement of terms — known as *conditional convergence*
- ► We can use the alternating series test to find if a series converges conditionally.

What We Have Learned

- ► The same series can converge to different values depending on the arrangement of terms — known as *conditional convergence*
- We can use the alternating series test to find if a series converges conditionally.
- ► However, we would need to use other tools to find if a series is absolutely convergent.

Questions?

Thank you for listening. Any questions?