Introduction: The data provided is a typical bookkeeping data set held by a population update based on Region by considering the sample sex, Race and getting the insights of the income, Income of the family members according to size.

Here In document, I consider few categorical variable (HAVING_HEALTHPLAN, MARSTAT_KEY, SAMPLE_SEX, COUNTRY_OF_BIRTH) and numerical variable (NET_WORTH_, INCOME_, YEAR_OF_BIRTH). These numerical and categorical data used describe the complete parameter and statistics of the given data.

After loading the dataset, we perform the cleaning step. It comprises of primarily removing data records which have irrelevant data (this could include incompatible data types, outliers, extreme values). For these values if found in dataset we replace them with the mean of the dataset.

The first section of analysis is descriptive statistics. Descriptive tables for dataset considering categorical variables, numerical variable and exploratory data analysis are shown followed by inferential analysis using histogram, boxplots and scatterplots.

ANALYSIS:

1.DESCRIPTIVE STATISTICS

1.1 Statistic descriptive table:

Table 1: Summary stats of Dataset - Analyzed data using below data fields.

DATASET

	N	Mean	Max	Min	SD
ID	10251	5862.31 0409	12679	2	3463.71 3809
YEAR	10251	1990	1990	1990	0
YEAR_OF_BIRTH	10251	60.5631 6457	64	57	2.23274 6333
COUNTRY_OF_BIRT H*	10251	2.93473 8074	3	1	0.24739 418
SAMPLE_RACE*	10251	2.31109 1601	3	1	0.85909 3617
SAMPLE_SEX*	10251	1.48990 3424	2	1	0.49992 2433

C1DOB_Y*	10251	25.0097 5515	47	1	12.7368 4505
HAVING_HEALTHPLA N*	10251	3.78802 0681	4	1	0.41371 2394
FAMSIZE_	10251	3.09989 2693	15	1	1.65425 4231
TNFI_	10251	27048.7 2198	146942	-3	26287.0 4635
POVSTATUS_*	10251	1.96488 1475	3	1	0.53294 9211
REGION_*	10251	3.60540 4351	5	1	1.00199 1217
MARSTAT_KEY_*	10251	2.93766 4618	6	1	0.89590 7644
URBAN_RURAL_*	10251	3.77689 9815	4	1	0.44269 3516
JOBSNUM_	10251	7.65222 9051	43	-3	4.61606 1002
NUMCH_	10251	1.08477 2217	7	0	1.21804 8537
EVER_IN_POVERTY*	10251	1.66969 0762	2	1	0.47034 7346
WHEN_IN_POVERTY*	10251	2.16261 8281	4	1	1.35379 9183
INCOME_	10251	15215.9 7717	74283	-3	14427.9 6114
INCOME_MAX	10251	51172.5 1771	343830	0	56767.4 2853
EVER_EDU_LOAN*	5152	2.37577 6398	3	1	0.50246 8551
EVER_DIVORCED_*	10251	2.15861 8671	3	1	0.37612 7384
EVER_UNEMPLOYED _*	10251	1.58716 2228	2	1	0.49236 815

EMP_STATUS_*	10251	1.44083 504	4	1	0.83338 0799
AGE	10251	1929.43 6835	1933	1926	2.23274 6333
Black	10251	0.26182 8114	1	0	0.43965 1008

Table: 2 - Statistic for Female with birthplace in US.

	N	Mean	Max	Min	SD
ID	490 1	5710.04 2644	12667	3	3406.27 3611
YEAR	490 1	1990	1990	1990	0
YEAR_OF_BIRTH	490 1	60.4931 6466	64	57	2.23364 9024
COUNTRY_OF_BIRTH*	490 1	1	1	1	0
SAMPLE_RACE*	490 1	2.33442 1547	3	1	0.86883 4909
SAMPLE_SEX*	490 1	1	1	1	0
C1DOB_Y*	490 1	19.4452 1526	40	1	11.1272 4676
HAVING_HEALTHPLAN *	490 1	3.83493 1647	4	1	0.37565 1734
FAMSIZE_	490 1	3.26463 9869	15	1	1.61850 0319
TNFI_	490 1	26703.1 1243	146942	-3	25765.3 4932
POVSTATUS_*	490 1	2.01713 9359	3	1	0.54894 3381
REGION_*	490 1	3.58967 5576	5	1	0.97183 1595
MARSTAT_KEY_*	490 1	2.03468 6799	5	1	0.92516 9951

WKSUEMP_PCY_	490 1	1.80350 9488	52	-3	6.21544 7833
URBAN_RURAL_*	490 1	2.77800 4489	3	1	0.41758 9996
JOBSNUM_	490 1	7.18526 8313	38	-3	4.36273 1226
NUMCH_	490 1	1.35237 7066	7	0	1.24428 8569
AGE_1STCHILD*	490 1	17.0455 0092	37	1	10.7006 0892
EVER_IN_POVERTY*	490 1	1.69414 4052	2	1	0.46081 6032
WHEN_IN_POVERTY*	490 1	2.07896 3477	4	1	1.33603 4426
INCOME_	490 1	11233.9 2349	74283	-3	11713.8 2602
INCOME_MAX	490 1	38663.5 7539	343830	0	39992.4 5627
EVER_EDU_LOAN*	252 3	2.38208 482	3	1	0.50283 5037
EDU_DEGREE*	490 1	5.23403 3871	10	1	2.00949 5985
EVER_DIVORCED_*	490 1	2.19322 5872	3	1	0.40305 3422
EVER_UNEMPLOYED_*	490 1	1.57763 7217	2	1	0.49398 6086
HOURS_WORKED_PER _WEEK_	490 1	8.61252 8055	138	-4	23.9966 8851
MAJOR_1_	490 1	585.786 7782	9996	-4	1058.74 8712
MAJOR_2_	490 1	0.84941 8486	2104	-4	81.7874 3588
EDU_MAJOR	490 1	671.979 596	9996	-4	1160.40 1754

AMT_EDU_LOAN_	490 1	94.2511 7323	75000	- 4	1375.22 8647
TOTAL_EDU_LOAN	490 1	2302.62 4362	99999	-5	7171.04 5721
CAL_YEAR_JOBS_	490 1	1.71454 8051	7	0	1.04194 2135
NET_WORTH_	490 1	38268.1 7017	841832	-89000 0	120339. 5699
EMP_STATUS_*	490 1	1.56437 4617	4	1	0.87795 4465
AGE	490 1	1929.50 6835	1933	1926	2.23364 9024

From above table we can see the Sample sex- Female in Country of birth – IN THE US $\,$

2 Liner model

2.1 Boxplot for Net_Worth: The plot displayed below help determine to get Net_worth

Boxplot for NET_WORTH_

Observation: Most of the values are <50,000 only few values are >50,000 which shown as an outlier in a plot.

Formula: Q1-1.5*IQR - LOWER OUTLIER

Q3+1.5*IQR – HIGHER OUTLIER (Data point is a outlier more than 1.5 above third quantile below first quantile)

2.2 BOXPLOT- Diffeent Boxplots for Income Vs Year Of Birth

Different boxplots for INCOME VS Year Of Birth

Observation: The plot displayed above shows that as year of the birth increases Income significantly decreases. More of the income varies between (0 - 30,000) and the average income for all year of birth is <20,000.

Observation: An observation we have found is that as Fam size increases Employment decreases we can clearly observe that Fam size > 6 has less employment. Here, TNFI is Total no. of Family.

2.4 BARPLOT: Barplot for When in Poverty

Observation: Count of samples by the time they were in poverty. 5300 people were in poverty only as an Adult, 3500 people were under poverty line both as a child and Adult, 400 people under poverty line as a Child only and 3200 people were never under poverty line.

Milestone: Project 2

Introduction: The data provided is a typical bookkeeping data set held by a population update based on Region by considering the sample sex, Race and getting the insights of the income, Income of the family members according to size.

Here In document, I consider few categorical variable (HAVING_HEALTHPLAN, MARSTAT_KEY, SAMPLE_RACE) and numerical variable (NET_WORTH_, INCOME_, YEAR_OF_BIRTH). These numerical and categorical data used describe the complete parameter and statistics of the given data.

After loading the dataset, we perform the cleaning step. It comprises of primarily removing data records which have irrelevant data (this could include incompatible data types, outliers, extreme values). For these values if found in dataset we replace them with the mean of the dataset.

The first section of analysis is descriptive statistics. Descriptive tables for dataset considering categorical variables, numerical variable and exploratory data analysis are shown followed by inferential analysis using histogram, boxplots and scatterplots. Datasets are easy to manipulate, model and visualize. It important to clean, messy dataset and perform the analysis (Wickham 2014).

ANALYSIS

1.DESCRIPTIVE STATISTICS

1.1 Statistic descriptive table:

Table 1: Summary stats of Dataset - Analyzed data using below data fields.

DATASET

		21111011			
	N	Mean	Max	Min	SD
ID	10251	5862.310409	12679	2	3463.713809
YEAR	10251	1990	1990	1990	0
YEAR_OF_BIRTH	10251	60.56316457	64	57	2.232746333
COUNTRY_OF_BIRT H*	10251	2.934738074	3	1	0.24739418
SAMPLE_RACE*	10251	2.311091601	3	1	0.859093617
SAMPLE_SEX*	10251	1.489903424	2	1	0.499922433
C1DOB_Y*	10251	25.00975515	47	1	12.73684505
HAVING_HEALTHPL AN*	10251	3.788020681	4	1	0.413712394
FAMSIZE_	10251	3.099892693	15	1	1.654254231
TNFI_	10251	27048.72198	14694 2	-3	26287.04635

POVSTATUS_*	10251	1.964881475	3	1	0.532949211
REGION_*	10251	3.605404351	5	1	1.001991217
MARSTAT_KEY_*	10251	2.937664618	6	1	0.895907644
URBAN_RURAL_*	10251	3.776899815	4	1	0.442693516
JOBSNUM_	10251	7.652229051	43	-3	4.616061002
NUMCH_	10251	1.084772217	7	0	1.218048537
EVER_IN_POVERTY*	10251	1.669690762	2	1	0.470347346
WHEN_IN_POVERTY*	10251	2.162618281	4	1	1.353799183
INCOME_	10251	15215.97717	74283	-3	14427.96114
INCOME_MAX	10251	51172.51771	34383 0	0	56767.42853
EVER_EDU_LOAN*	5152	2.375776398	3	1	0.502468551
EVER_DIVORCED_*	10251	2.158618671	3	1	0.376127384
EVER_UNEMPLOYED _*	10251	1.587162228	2	1	0.49236815
EMP_STATUS_*	10251	1.44083504	4	1	0.833380799
AGE	10251	1929.436835	1933	1926	2.232746333
Black	10251	0.261828114	1	0	0.439651008

Data planning is not just a first step; it must be replicated several times during the analysis as new problems occur or new data is gathered. Conducted test statistics for the difference of the two-sample means. When independent sample are large Null hypothesis

Null Hypothesis: H0: $\mu 1 - \mu 2 = \mu 0$

Alternative Hypothesis: $H1: \mu 1 - \mu 2 \neq \mu 0$

When independent sample are less of the two-sample means $\mu 0$ = the hypothesized difference usually 0.

Question 1: Do people who have health plan or not have the same family?

Different boxplots per healthplan choice

Observation: having health family not plan are same. Two Sample sample test two mean

result and two sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

mean

T-value	df	P-value	95% CI	Mean of x.	Mean of y
-22.869	2975	< 2.2e-16	-0.1254170 -0.1254170	3.134842	3.17

By comparing mean of having health plan(x) and mean of not having health plan(y) to see any significant difference in family size

We test if mean of x – mean of y = 3.13 - 3.17 = 0

Therefore, there is no difference between mean.

Here, P-value: < 2.2e-16 is less significant than alpha = 0.05 it rejects the null hypothesis (area based rejection)

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05

In the above t.test statistic value t = -22.869

Degree of freedom df = 2975

P - value for alternative hypothesis is not equal to 1

Confidence interval of the mean at 95% (conf.int = (low: -0.1254170, high -0.0523264)

sample estimates: mean of having health plan(x) = 3.134842mean of not having health plan(y) = 3.171387

Question 2: The maximum income of 30% population is more than 10000.

Analysis: By conducting one Sample test – One sample test runs with only one mean result and one sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

T-value	df	P-value	95% CI	Mean of x
101.08	4177	< 2.2e-16	37353.08 38830.75	38091.92

p-value is 2.2e-16 is less significant level alpha = 0.05 Since alpha value is less than alpha value it rejects the null hypothesis.

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05 In the above t.test statistic value t = 101.08

Degree of freedom df = 4177

P - value for alternative hypothesis is not equal to 1

Confidence interval of the mean at 95% (conf.int = (low: 37353.08, high - 38830.75) sample estimates:

mean of Max_Income(x) = 38091.92

Question 3: Do people who have or have not been ever divorced have different maximum income.

Different boxplots per history of divorce

Inferential Statistics: Based on the boxplot we can say that the maximum income for people who has never been divorced is 50000.

By conducting Two Sample test - Two sample test runs with only two mean result and two sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

-3.8585	2351.8	0.0001172	-3984.96	36105.39	38747.22
			-1298.68		

By comparing mean of people who were ever divorced and mean of people who were never divorced(y) to see any significant difference in Maximum income. We test if mean of x – mean of y = 38747.22- 36105.39 = 2641.83 Therefore, there is no difference between mean. Here, P-value: 0.0001172 is less significant than alpha = 0.05 it rejects the null hypothesis (area based rejection)

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05

In the above t.test statistic value t = -3.8585

Degree of freedom df = 2351.8

P - value for alternative hypothesis is not equal to 1

Confidence interval of the mean at 95% (conf.int = (low: -3984.96, high: -1298.68) sample estimates:

mean of people who were ever divorced (x) = 36105.39

mean of people who were never divorced (y) = 38747.22

Question 4: Does the number of jobs differ in URBAN or Rural area?

Different boxplots as per sample race

Inferential Statistics: Based on data we have we can infer that the maximum number of jobs for people belonging to Hispanic Race is more than people belonging to African American Race. By conducting Two Sample test - Two sample test runs with only two mean result and two sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

T-value	df	P-value	95% CI	Mean of x.	Mean of y
-9.8654	3102.2	2.2e-16	-0.6782587 -0.1217594	6.851409	7.251418

By comparing mean of people with sample race Black(x) and mean of people with sample race Hispanic(y) to see any significant difference in number of jobs.

We test if mean of x – mean of y = 38747.22-36105.39 = 2641.83

Therefore, there is no difference between mean.

Here, P-value: 0.0001172 is less significant than alpha = 0.05 it rejects the null hypothesis (area based rejection)

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05 In the above t.test statistic value t = -9.8654

Degree of freedom df = 3102.2

P - value for alternative hypothesis is not equal to 1

Confidence interval of the mean at 95% (conf.int = (low: -0.6782587, high: -0.6782587) sample estimates:

mean of people with sample race Black(x) = 6.851409mean of people with sample race Hispanic(y) = 7.251418

FINAL PROJECT

Introduction: By analysing the complete dataset and by considering milestone 1 and milestone 2 my observation on few variables is analysed in this report. Complete insights from above reports. In first section we will explore to few variable from milestone 1 and analyses the data. In second section will conduct hypothesis testing on different variables and get null and alternative hypothesis testing.

Questions:

Question 1: What is max net worth of 30% population is more than 35000?

Question 2: How year of birth is related to income?

Question 3: How is family size proportional to employment?

Analyses:

Question 1: What is max net worth of 30% population is more than 35000? Result:

Boxplot for NET_WORTH_

Analysis: By conducting one Sample test – One sample test runs with only one mean result and one sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

T-value	df	P-value	95% CI	Mean of x
29.277	9551	< 2.2e-16	30143.22 34469.33	32306.28

p-value is 2.2e-16 is less significant level alpha = 0.05 Since alpha value is less than alpha value it rejects the null hypothesis.

Question 2: How year of birth is related to income?

Inferential Statistics: The plot displayed above shows that as year of the birth increases Income significantly decreases. More of the income varies between (0 - 30,000) and the average income for all year of birth is <20,000, by this we can clear predict that young age people are getting more income.

By conducting Two Sample test - Two sample test runs with only two mean result and two sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

T-value	df	P-value	95% CI	Mean of x.	Mean of y

70.251	4177	2.2e-16	11398.95	11786.83485	60.66587
			12053.39		

Regression table1

	term	estimate	std.error	statistic	p.value
1	(Intercept)	37000.357304453	3215.4070293867	11.50720794173	1.93377315989296e-30
2	YEAR_OF_BIRTH	-389.722407242464	53.0502359620109	-7.34628979824978	2.20646487188139e-13

In Regression table we can see that there is a positive correlation between Year of birth and Income. Higher the year of birth, less is the income.

By comparing mean of people with sample race Black(x) and mean of people with sample race Hispanic(y) to see any significant difference in number of jobs.

We test if mean of x – mean of y = 11786.83-60.66587 = 11726.1

Therefore, there is no difference between mean.

Here, P-value: 2.2e-16 is less significant than alpha = 0.05 it rejects the null hypothesis (area based rejection)

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05 In the above t-test statistic value t = 70.251

Degree of freedom df = 4177

P - value for alternative hypothesis is not equal to 1

Confidence interval of the mean at 95% (conf.int = (low: -0.6782587, high: -0.6782587)

sample estimates:

mean of Income = 11786.83485 mean of Year of birth = 60.66587

Intercept = 3700.357

Question 3 : How is family size proportional to employment?

Analysing employment distribution per family size and the total net Family income.

Scatter Plot for FAMSIZE vs TNFI

Inferential Statistics: An observation we have found is that as Fam size increases Employment decreases, we can clearly observe that Fam size > 6 has less employment. Here, TNFI is Total no. of Family. We can predict that to increase employment Fam size should be less than 4.

By conducting Two Sample test - Two sample test runs with only two mean result and two sample t-test compares mean of predetermined value to get the significant level (>, =, or <).

Table: 2 sample t-test result

T-value	df	P-value	95% CI	Mean of x.	Mean of y
-58.633	4177	2.2e-16	-20356.35 -19039.01	3.41551	19701.09813

Regression table 2

	term	estimate	std.error	statistic	p.value	
1	(Intercept)	3.07843475792812	0.0247923066872352	124.168952762798	(7
2	TNFI_	2.59332650663745e-06	7.21949214087522e-07	3.59211763934833	0.000329666107244061	

In Regression table we can see that there is a positive correlation between family size and total number family . Higher the family size, less is the employment.

By comparing mean of people with sample race Black(x) and mean of people with sample race Hispanic(y) to see any significant difference in number of jobs.

We test if mean of x – mean of y = 11786.83- 60.66587 = 11726.1

Therefore, there is no difference between mean.

Here, P-value: 2.2e-16 is less significant than alpha = 0.05 it rejects the null hypothesis (area based rejection)

Interpretation of the result:

p-value is 2.2e-16 is less significant level alpha = 0.05 In the above t-test statistic value t = -58.633

Degree of freedom df = 4177
P - value for alternative hypothesis is not equal to 1
Confidence interval of the mean at 95% (conf.int = (low: -20356.35, high: -19039.01)
sample estimates:
mean of FAMSIZE_ = 3.41551
mean of TNFI = 19701.09813
Mean y - mean x = 19697.67

Intercept = 3.078

Conclusion: By analyzing the dataset, there are so many important insights. From descriptive Statistics table data using categorical variables and numerical variables. On exploratory data analysis reveals that there are more people were in people only as an Adult, Employment rate is decreasing on increasing the Family size and Income decreases on increasing the Age. Linear models used for prediction and linear models without removing outliner we can clearly observe the Net worth and Income.

After analyzing milestone 1 dataset and using various inferences, asking questions, and using hypothesis to draw conclusions and answer the questions it can be clearly said that hypothesis testing methods help us analyze data and answer important questions in order to make better sense of the data at hand and find hidden relationships among various parameters of the dataset and provides a framework for making determination related to the population.

References:

- 1.Northeastern University. (2021). Lesson 3-3 Steps of Hyporthesis Testing. Retrieved from Lesson3-3-Steps of Hyporthesis Testing: https://northeastern.instructure.com/courses/66653/pages/lesson-3-3-steps-of-hypothesis-testing?module_item_id=5390409.
- 2.Allan B (2015)- Elementary statistics, edition 7). Retrieved January 19th, 2018, from https://bmalone.weebly.com/uploads/2/2/3/9/22391186/bluman_statistics_book.pdf/