Step-1

Let us consider the network shown below.

In the above figure, number shown along with the path represents the length of the path.

Step-2

Let us find the shortest path between s and t.

For the shortest path, select the path from $\mathbf{4} - \mathbf{t}$ (with length 4), instead of $\mathbf{9} - \mathbf{t}$ (with length 4).

And to reach the node 4, we can select either s-1-4 or s-2-4

Therefore, the shortest path from $s-t_{is}$ $s-1-4-t_{or}$ $s-2-4-t_{or}$

Step-3

The minimum spanning tree of the network is shown below.

