Entrepreneurship, Savings and Credit Constraints

Bertel Schjernin University of Copenhagen

Dynamic

Aspects

Empirical Fact

Savings Exit/entry Income

The Model

Numerical Results
Basic Model

Conclusion

Future Resear

Related Work

Tables

Entrepreneurship, Savings and Credit Constraints

Preliminary

Bertel Schjerning University of Copenhagen

Maryland, September 2009

The model

Entrepreneurship. Savings and Credit Constraints

The Model

Building blocks

- Model of entrepreneurship with credit constraints (Evans and Jovanovic (JPE, 1989))
- Intertemporal saving and consumption (Deaton (Econometrica, 1991))
- Human capital accumulation (Keane and Wolpin (JPE, 1997))
- Investment under uncertainty

In sum

- Households maximizes expected utility over a finite horizon
- Occupational choice: Each period choosing between entrepreneurship and wage work
- Saving Decision: Dividing resources between consumption, savings and transition costs

Intertemporal Problem

The model

Entrepreneurship. Savings and Credit Constraints

The Model

The individual's problem

$$\max_{c_{t}>0,\ i_{t+1}\in\left\{ w,e\right\} }E_{t}\left(\sum_{\tau=t}^{T}\left(1+\delta\right)^{t-\tau}u\left(c_{\tau}\right)\right),\ t=0,1,...,\ T$$

$$a_{t+1}=\left(1+r\right)\left(a_{t}+y_{t}-c_{t}-\phi_{t}\right)$$

$$a_{t}\geq0,\quad\forall\ t$$

- Discrete Time: 1 period = 1 year
- Finite time horizon:
 - Age in first period is 25.
 - Agents retire exogenously at age 65 and live on retirement until they die (using empirical mortality rates)
- Fixed cost at entry (wage -> entrepreneurship), i.e. $\phi_{\star} = \phi^{entry}$
- Liquid wealth can never fall below zero $a_t > 0$, $\forall t$

Entrepreneurship, Savings and Credit Constraints

Earnings Opportunities - Workers The model

Entrepreneurship, Savings and Credit Constraints

Bertel Schjernin University of Copenhagen

Introduction

Dynamic

Aspects

Empirical Fac Savings Exit/entry

The Model

Basic Model Human Capit Conclusion

Future Research

Related Work

Tables

Wage income

$$\begin{array}{rcl} \mathbf{y}_{w,t} & = & \omega H_{w,t} \boldsymbol{\varepsilon}_{w,t} \\ & & \text{where} \\ H_{w,t} & = & \exp\left(\beta_{w1} \mathbf{x}_{w,t} + \beta_{w2} \mathbf{x}_{w,t}^2 + \beta_{e1} \mathbf{x}_{e,t} + \beta_{e2} \mathbf{x}_{e,t}^2\right) \\ \ln\left(\boldsymbol{\varepsilon}_{w,t}\right) & \sim & N\left(-\frac{1}{2}\sigma_w^2, \sigma_w^2\right) \text{ such that } E\left(\boldsymbol{\varepsilon}_{w,t}\right) = 1. \end{array}$$

- Human capital, $H_{W,t}$ (Occupational specific):
 - Function of work experience, x_{w,t} and entrepreneurial experience, x_{e,t}:
- \bullet $\varepsilon_{w,t}$: Uncertainty in wage income
 - observed after occupational choice, but before savings decision

Earnings Opportunities - Entrepreneurs The model

Entrepreneurship. Savings and Credit Constraints

The Model

Profits

$$\begin{array}{lcl} y_{e,t} & = & \theta H_{e,t} \left(k_t^* \right)^{\alpha} \varepsilon_{e,t} - r k_t^* \\ & & \text{where} \\ H_{e,t} & = & \exp \left(\gamma_{w1} x_{w,t} + \gamma_{w2} x_{w,t}^2 + \gamma_{e1} x_{e,t} + \gamma_{e2} x_{e,t}^2 \right) \\ \ln \left(\varepsilon_{e,t} \right) & \sim & \mathcal{N} \left(-\frac{1}{2} \sigma_{e}^2, \sigma_{e}^2 \right) \text{ such that } E \left(\varepsilon_{e,t} \right) = 1. \end{array}$$

• k_t^* is chosen to maximize expected profits in the next period

$$k_t^* = \arg\max_{k_t \leq \lambda a_t} E_t \left(H_{e,t} k_t^{\alpha} \varepsilon_t^e - r k_t \right)$$

- If credit constrained, entrepreneurial earnings depend on individual wealth $(k_t^* = \lambda a_t)$
- $\varepsilon_{e,t}$: Uncertainty in production
 - observed after occupational choice and investment decision

Solution Method

The model

Entrepreneurship. Savings and Credit Constraints

The Model

Starting point: Carroll's Method of Endogenous Gridpoints

- Treats consumption as continuous, but avoid solving continuous optimization problem.
- I implement this for mixed discrete and continuous choices

Idea

- Conditional on next period occupation, the consumption-savings choice is solved using Carroll's method of endogenous gridpoints
- Q Given the optimal consumption decision for each occupational choice, $c_t (m_t, d_{t+1} = we)$ and $c_t (m_t, d_{t+1} = e)$.
- I then compute value functions associated with each occupation $(v_t (m_t, d_{t+1} = we) \text{ and } v_t (m_t, d_{t+1} = e))$
- \bullet I then derive the threshold value of cash on hand, m^* , that solves $v_t (m_t, d_{t+1} = we) = v_t (m_t, d_{t+1} = e)$
- **5** For $m < m^*$, we have $d_t = we$, $c_t = c_t^{we}$ and $V_t = v_t^{we}$ and vice versa

This is very robust and very precise!

Savings and Credit Constraints, Age = 25Basic model, with Credit Constraints

Entrepreneurship. Savings and Credit Constraints

Savings and Credit Constraints, Age = 60Basic model, with Credit Constraints

Entrepreneurship. Savings and Credit Constraints

Savings and Credit Constraints, Age = 64 Basic model, with Credit Constraints

Entrepreneurship, Savings and Credit Constraints

Bertel Schjerning University of Copenhagen

Dynamic Aspects

Empirical Fac Savings Exit/entry

The Mod

Numerical Results

Basic Model

Human Capital

Conclusion

Future Research

Related W

Tables

Basic Model - Credit Constraints and Entry Cost,

Age = 25Policy Functions

Entrepreneurship. Savings and Credit Constraints

Basic Model - Credit Constraints and Entry Cost, Age = 60

Entrepreneurship. Savings and Credit Constraints

Policy Functions

Basic Model - Credit Constraints and Entry Cost, Age = 64

Entrepreneurship. Savings and Credit Constraints

Policy Functions

