- 1. For random variable *X* with probability density function $f(x) = \begin{cases} kx^b, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$ (b > 0, k > 0)and $P\{X > 1/2\} = 0.75$. Find the following values k =_____, b =_____
- 2. For random variable *X* with probability mass function

X	0	1	2
p	1/3	1/6	1/2

Find the corresponding cumulative distribution function F(x) =

- 3. For random variable $X \sim U(1,6)$, find the probability p that the roots for equation $x^2 + Xx + 1 = 0$ are real numbers. p=_____
- 4. We know that the probability density function of random variable *X* is $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$ Denote the number of occurrences of event $\{X \le 1/2\}$ in three independent trials as Y. Find the value of $P{Y = 2} =$
- 5. X, Y are two random variables with binomial distribution, $X \sim b(2, p)$, $Y \sim b(3, p)$. Given $P\{X \ge 1\} = 5/9$, find $P\{Y \ge 1\} =$ _____.
- 6. If the probability distribution function for random variable X is symmetric, i.e., f(x) = f(-x). Then, $P\{|X| > a\} = ($
 - (A) 2[1 F(a)]
- (B) 2F(a) 1 (C) 2 F(a)
- (D) 1 2F(a)
- 7. If the PDF of random variable *X* is given as $f(x) = \frac{1}{2\sqrt{\pi}}e^{-\frac{(x+3)^2}{4}}$ ($-\infty < x < +\infty$). Then, ($\sim N(0,1)$.
 - (A) $\frac{X+3}{2}$

- (B) $\frac{X+3}{\sqrt{2}}$ (C) $\frac{X-3}{2}$

- (D) $\frac{X-3}{\sqrt{2}}$
- 8. Given variables $X \sim \mathcal{N}(\mu, 4^2)$, $Y \sim \mathcal{N}(\mu, 5^2)$. If we define $P(X \le \mu 4) = p_1$, $P(Y \ge \mu + 5) = p_2$, which of the following statements is correct? (
- (A) For arbitrary value of μ , we have $p_1 = p_2$
- (B) For arbitrary value of μ , we have $p_1 < p_2$
- (C) For arbitrary value of μ , we have $p_1 > p_2$
- (D) For some specific values of μ , we have $p_1 = p_2$

- 9. Given that $F(x) = aF_1(x) bF_2(x)$ is a valid CDF, where $F_1(x)$ and $F_2(x)$ are the CDFs of random variables X_1 and X_2 , respectively. Determine the values of α and b (

- (A) $a = \frac{3}{5}, b = -\frac{2}{5}$ (B) $a = \frac{2}{3}, b = \frac{2}{3}$ (C) $a = -\frac{1}{2}, b = \frac{3}{2}$ (D) $a = \frac{1}{2}, b = \frac{3}{2}$
- 10. For random variable $X \sim \mathcal{N}(2, \sigma^2)$ satisfying $P\{2 < X < 4\} = 0.3$, find $P\{X < 0\} = (1, \sigma^2)$).
- (A) 0.5

(B) 0.7

(C) 0.3

- (D) 0.2
- 11. For random variable $X \sim \mathcal{N}(\mu, \sigma^2)$, the probability of $P\{|X \mu| \le \sigma\}$ () as σ increases.
- (A) increases
- (B) decreases
- (C) is unchanged
- (D) none of the above
- 12. Find the probability density function of $Y = e^X$ when $X \sim \mathcal{N}(\mu, \sigma^2)$.

13. In 10,000 independent tosses of a coin, we know that the number of coins landed on heads follow a normal distribution $\mathcal{N}(5000,2500)$. Given that the coin landed on heads 5800 times, is it reasonable to assume that the coin is not fair? Please explain your answer.