Corso di Laurea in Informatica - A.A. 2015 - 2016 Esame di Fisica - 02/02/2017

Esercizio 1

Siamo dati i vettori $\vec{a}=3\vec{i}+\vec{j}$ e $\vec{b}=2\vec{i}-6\vec{j}$. Calcolare il vettore somma $\vec{s}=\vec{a}+\vec{b}$, il vettore differenza $\vec{d}=\vec{a}-\vec{b}$ ed il prodotto scalare $\vec{s}\cdot\vec{d}$.

Esercizio 2

Consideriamo un sistema di assi cartesiani (x,y,z). Nel piano xz vi è una carica puntiforme q che ruota con velocità angolare costante ω su una circonferenza di raggio R con centro nel punto di coordinate (R,0,R). In tutto lo spazio vi è un campo magnetico uniforme $\vec{B}(t)=at^2\vec{j}+bt\vec{k}$. Calcolare:

- a) il vettore velocità della carica q quando essa si trova nel punto individuato dal vettore $\vec{r} = R\vec{k}$;
- b) il flusso del campo magnetico attraverso il cerchio sulla cui circonferenza ruota la carica;
- c) la forza (vettore) dovuta al campo magnetico che agisce sulla carica q quando essa si trova nel punto individuato dal vettore $\vec{r} = R\vec{i}$;
- d) la forza elettromotrice indotta presente sulla circonferenza su cui ruota la carica.

Esercizio 3

Si consideri il circuito mostrato in figura. Siano ε =48 V, C=150 μ F, R=2 k Ω , R' = 2R, e L=100 mH. Dopo essere stato a lungo aperto, l'interruttore T viene chiuso. Calcolare la corrente i' che percorre il resistore R', la carica presente sulle armature del condensatore C e la d.d.p. ai capi dell'induttore L nei seguenti istanti:

- a) immediatamente prima della chiusura dell'interruttore T;
- b) subito dopo la chiusura dell'interruttore T;
- c) quando si raggiunge la nuova condizione di stazionarietà.

