Kinetic Energy 11SCI - Mechanics

Finn LeSueur

2019

Starter (2016 Exam)

Rhiana is riding a horse along New Brighton Beach. **Each** of the horse's hooves have a surface area of $0.0044m^2$ which sink into the sand when the horse stops. The horse exerts a pressure of 200155Pa.

Calculate the weight of the horse.

Answer

A horse has four hooves, so the total surface area that the horse is exerting pressure through is:

$$A = 0.0044 \times 4 = 0.0176m^2$$

Recall that weight is a force, so we can rearrange $P = \frac{F}{A}$ for F.

$$F = P \times A$$

$$F = 200155 \times 0.0176 = 3522.728N$$

Kinetic Energy

What is Kinetic Energy?

Kinetic energy is the energy that an object possesses due to its velocity!

What Other Types of Energy Are There?

There are many types of energy in the universe:

- Gravitational potential energy
- Heat energy
- Sound energy
- Light energy
- Elastic potential energy
- Electrical energy

What do they have in common?

- All energy is measured in **Joules** (J).
- A change in energy is called **work** (measured in Joules).

Conservation of Energy

- Energy cannot be created or destroyed, only transformed.
- This means that gravitational potential energy can be transformed into kinetic energy, and kinetic energy into other forms of energy. It is always *taken* from somewhere, never created from nothing.

Calculating Kinetic Energy

Kinetic energy depends on the mass and velocity of an object.

$$E_k = \frac{1}{2} \times m \times v^2$$

What does v^2 mean?

- It means $v \times v$
- This means we can also write the equation like this, if you find it easier:

$$E_k = \frac{1}{2} \times m \times v \times v$$

Example 1

Mr LeSueur rides his bike to work at 32km/h (8.89 ms^{-1}). Both he and his bike have a combined mass of 80kg. Calculate his kinetic energy.

Answer We know m = 80kg and $v = 8.89ms^{-1}$, and we are looking for E_k .

$$E_k = \frac{1}{2} \times 80 \times 8.89^2$$
$$E_k = 3161.284J$$

Example 2

Sophie is skiing down Upper Fascination at Mt Hutt, and is trying to go really fast. Her combined mass is 60kg and she is moving at 60km/h ($16.67ms^{-1}$). Calculate her kinetic energy.

Answer We know m = 60kg and $v = 16.67ms^{-1}$, and we are looking for E_k .

$$E_k = \frac{1}{2} \times 60 \times 16.67^2$$

$$E_k = 8336.667J$$

Extra Work

- Homework: Education Perfect due Monday 29th 11:25am
- sciPAD Page 46