Data-Driven Optimal Control: An Inverse Optimization Model and Algorithm

Long, Youyuan

Supervisor: Peyman Mohajerin Esfahani

Daily Supervisors: Tolga Ok

Pedro Zattoni Scroccaro

Contents

- Introduction of Inverse Optimization (IO)
- Kernel Inverse Optimization Machine (KIOM)
- Sequential Selection Optimization (SSO)
- Conclusion and Future Study

Introduction of Inverse Optimization (IO)

Introduction of Inverse Optimization

In Inverse Optimization (IO), it is hypothesized that experts, when making decisions, implicitly engage in solving an optimization problem. If we can reconstruct this optimization problem using the decision data $\{(\hat{s}_i, \hat{u}_i)\}_{i=1}^N$ of the expert, then the behavior of the expert can be imitated.

Introduction of Inverse Optimization

In Inverse Optimization (IO), it is hypothesized that experts, when making decisions, implicitly engage in solving an optimization problem. If we can reconstruct this optimization problem using the decision data $\{(\hat{s}_i, \hat{u}_i)\}_{i=1}^N$ of the expert, then the behavior of the expert can be imitated.

The three crucial components in data-driven IO:

- Forward Optimization Problem/Model
- Loss Function
- Inverse Optimization Problem and Algorithm

Learning for Control: An Inverse Optimization Model ¹

J

Learning for Control: An Inverse Optimization Model ¹

A quadratic forward model

$$f(s, u, \theta) := \begin{bmatrix} s \\ u \end{bmatrix}^{T} \theta \begin{bmatrix} s \\ u \end{bmatrix}$$
 (1)

$$FOP(s \mid \theta) := \min_{u} f(s, u, \theta)$$
s.t. $M(s)u \le W(s)$, (2)

where $s \in \mathbb{R}^m$, $u \in \mathbb{R}^n$, $M(s) \in \mathbb{R}^{d \times m}$ and $W(s) \in \mathbb{R}^d$.

5

Learning for Control: An Inverse Optimization Model ¹

A quadratic forward model

$$f(s, u, \theta) := \begin{bmatrix} s \\ u \end{bmatrix}^T \theta \begin{bmatrix} s \\ u \end{bmatrix}$$
 (1)

$$FOP(s \mid \theta) := \min_{u} f(s, u, \theta)$$
s.t. $M(s)u \le W(s)$, (2)

where $s \in R^m$, $u \in R^n$, $M(s) \in R^{d \times m}$ and $W(s) \in R^d$. To ensure the convexity of the FOP, extra constraints should be imposed on the range of values for θ :

$$\theta \in \Theta ,$$

$$\text{where } \Theta = \left\{ \theta = \begin{bmatrix} 0 & \theta_{su} \\ * & \theta_{uu} \end{bmatrix} \middle| \theta_{uu} \succeq I_n \right\}. \tag{3}$$

¹S. A. Akhtar, A. S. Kolarijani, and P. M. Esfahani (2021). "Learning for control: An inverse optimization approach". In: *IEEE Control Systems Letters* 6, pp. 187–192

Suboptimality loss function

$$\ell_{sub}(\hat{s}_i, \hat{u}_i) := f(\hat{s}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} f(\hat{s}_i, u, \theta)$$
where, $U(\hat{s}_i) = \{ u \in R^n \mid M(\hat{s}_i)u \leq W(\hat{s}_i) \}.$

$$(4)$$

$$\ell_{sub}(\hat{s}_i, \hat{u}_i) := f(\hat{s}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} f(\hat{s}_i, u, \theta)$$
where, $U(\hat{s}_i) = \{u \in R^n \mid M(\hat{s}_i)u \leq W(\hat{s}_i)\}.$

$$(4)$$

²The dataset is assumed to be consistent with its feasible set, i.e., $M(\hat{s}_i)\hat{u}_i \leq W(\hat{s}_i)$.

$$\ell_{sub}(\hat{s}_i, \hat{u}_i) := f(\hat{s}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} f(\hat{s}_i, u, \theta)$$
where, $U(\hat{s}_i) = \{u \in R^n \mid M(\hat{s}_i)u \leq W(\hat{s}_i)\}.$

$$(4)$$

Inverse optimization problem

⁶

$$\ell_{sub}(\hat{s}_i, \hat{u}_i) := f(\hat{s}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} f(\hat{s}_i, u, \theta)$$
where, $U(\hat{s}_i) = \{u \in R^n \mid M(\hat{s}_i)u \leq W(\hat{s}_i)\}.$

$$(4)$$

Inverse optimization problem

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left\{ f(\hat{\mathbf{s}}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{\mathbf{s}}_i)} f(\hat{\mathbf{s}}_i, u, \theta) \right\}$$
s.t. $\theta \in \Theta$ in (3).

⁶

$$\ell_{sub}(\hat{s}_i, \hat{u}_i) := f(\hat{s}_i, \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} f(\hat{s}_i, u, \theta)$$
where, $U(\hat{s}_i) = \{u \in R^n \mid M(\hat{s}_i)u \leq W(\hat{s}_i)\}.$

$$(4)$$

Inverse optimization problem

$$\min_{\theta} \frac{1}{N} \sum_{i=1}^{N} \left\{ f(\hat{\mathbf{s}}_i, \hat{\mathbf{u}}_i, \theta) - \min_{\mathbf{u} \in U(\hat{\mathbf{s}}_i)} f(\hat{\mathbf{s}}_i, \mathbf{u}, \theta) \right\}$$

s.t. $\theta \in \Theta$ in (3). (5)

The inverse optimization problem (5) is convex as the objective function is a pointwise maximum of infinitely many linear functions and the constraint is a Linear Matrix Inequality (LMI).

6

Theorem 1 (LMI Reformulation ³)

For the quadratic hypothesis function (1) and the constraints (3) on θ , the inverse optimization problem (5) is equivalent to

$$\min_{\boldsymbol{\theta}_{uu}, \boldsymbol{\theta}_{su}, \boldsymbol{\lambda}_{i}, \boldsymbol{\gamma}_{i}} \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \boldsymbol{\theta}_{uu} \hat{u}_{i} + 2\hat{s}_{i}^{T} \boldsymbol{\theta}_{su} \hat{u}_{i} + \frac{1}{4} \boldsymbol{\gamma}_{i} + W(\hat{s}_{i})^{T} \boldsymbol{\lambda}_{i} \right) \\
\text{s.t.} \quad \boldsymbol{\theta}_{uu} \succeq I_{n}, \ \boldsymbol{\lambda}_{i} \in R_{+}^{d}, \ \boldsymbol{\gamma}_{i} \in R, \quad \forall i \leq N \\
\left[\begin{array}{c} \boldsymbol{\theta}_{uu} & M(\hat{s}_{i})^{T} \boldsymbol{\lambda}_{i} + 2\boldsymbol{\theta}_{su}^{T} \hat{s}_{i} \\ * & \boldsymbol{\gamma}_{i} \end{array} \right] \succeq 0, \quad \forall i \leq N,$$
(6)

where λ_i is the Lagrange multiplier and γ_i is the slack variable.

7

Analysis of the model's limitations

Analysis of the model's limitations

To enhance the model's capacity, a mapping function, $\phi(\cdot): R^m \mapsto R^l$, is utilized to map the state s into a higher-dimensional feature space $\phi(s)$.

Analysis of the model's limitations

To enhance the model's capacity, a mapping function, $\phi(\cdot): R^m \mapsto R^l$, is utilized to map the state s into a higher-dimensional feature space $\phi(s)$.

- Increasing computational burden
- Challenges of feature engineering

Kernel Inverse Optimization Machine (KIOM)

Theoretical derivation

Theoretical derivation

Modified IO problem

$$\min_{\theta} k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left\{ f(\phi(\hat{s}_{i}), \hat{u}_{i}, \theta) - \min_{u \in U(\hat{s}_{i})} f(\phi(\hat{s}_{i}), u, \theta) \right\}
\text{s.t. } \theta \in \Theta \text{ in (3)}.$$
(7)

Theoretical derivation

Modified IO problem

TuDelft

$$\min_{\theta} k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left\{ f(\phi(\hat{s}_{i}), \hat{u}_{i}, \theta) - \min_{u \in U(\hat{s}_{i})} f(\phi(\hat{s}_{i}), u, \theta) \right\} \\
\text{s.t. } \theta \in \Theta \text{ in (3)}.$$
(7)

Modified LMI reformulation⁴

$$\min_{\boldsymbol{\theta}_{uu}, \boldsymbol{\theta}_{su}, \lambda_{i}, \gamma_{i}} \frac{k \|\boldsymbol{\theta}_{uu}\|_{F}^{2} + k \|\boldsymbol{\theta}_{su}\|_{F}^{2}}{+ \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \boldsymbol{\theta}_{uu} \hat{u}_{i} + 2 \boldsymbol{\phi}(\hat{\mathbf{s}}_{i})^{T} \boldsymbol{\theta}_{su} \hat{u}_{i} + \frac{1}{4} \gamma_{i} + W(\hat{\mathbf{s}}_{i})^{T} \lambda_{i} \right)}{\text{s.t.}}$$

$$\boldsymbol{\theta}_{uu} \succeq I_{n}, \ \lambda_{i} \in R_{+}^{d}, \ \gamma_{i} \in R, \quad \forall i \leq N \\
\begin{bmatrix} \boldsymbol{\theta}_{uu} & M(\hat{\mathbf{s}}_{i})^{T} \lambda_{i} + 2 \boldsymbol{\theta}_{su}^{T} \boldsymbol{\phi}(\hat{\mathbf{s}}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N.$$

$$10$$

⁴The derivation of (8) follows the same procedure as that of Theorem 1.

Theorem 2 (Kernel Inverse Optimization Machine)

For the quadratic hypothesis function (1) and the constraints (3) on θ , the modified inverse optimization problem (8) can be reformulated as

$$\min_{P,\Lambda_{i},\Gamma_{i}} \frac{1}{4k} \left\| \left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i} \right) - P \right\|_{F}^{2} + \frac{1}{k} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right] (K \otimes I_{n}) \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right]^{T} - \text{Tr}(P) \tag{9}$$

$$\min_{P,\Lambda_{i},\Gamma_{i}} \frac{1}{4k} \left\| \left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i} \right) - P \right\|_{F}^{2} + \frac{1}{k} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right] (K \otimes I_{n}) \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right]^{T} - \text{Tr}(P) \\
\text{s.t.} \quad P \succeq 0, \quad \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i}) \Gamma_{i} \succeq 0, \quad \forall i \leq N \\
\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \succeq 0, \quad \forall i \leq N,
\end{cases} \tag{9}$$

where $m_i := \frac{\hat{u}_i^T}{N} - 2\Gamma_i^T$ for $i \in \{1, ..., N\}$. K is the Gram matrix with respect to $\hat{s}_1, ..., \hat{s}_N$, so $K \in \mathbb{R}^{N \times N}$ and $K_{ij} = \kappa(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_i)$ which is the inner product of the augmented states, and decision variables $P, \Lambda_i \in \mathbb{R}^{n \times n}, \Gamma_i \in \mathbb{R}^n$ for $i \in \{1, ..., N\}$.

$$\begin{bmatrix} x_i & 1 \\ * & \frac{1}{4N} \end{bmatrix} \succeq 0, \quad \forall i \leq N,$$
 where $m_i := \frac{\hat{u}_i^T}{N} - 2\Gamma_i^T$ for $i \in \{1, ..., N\}$. K is the Gram matrix with respect to $\hat{s}_1, ..., \hat{s}_N$, so $K \in R^{N \times N}$ and $K_{ij} = K(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_j)$ which is the inner product of the augmented states, and decision variables P , $\Lambda_i \in R^{n \times n}$, $\Gamma_i \in R^n$ for $i \in \{1, ..., N\}$. The expressions of matrix θ_{uu} and θ_{su} are

 $\theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k},$ where the weight θ_{su} is a linear combination of the augmented states.

Modified IO problem (Primal problem):

$$\begin{aligned} & \underset{\boldsymbol{\theta}_{uu}, \boldsymbol{\theta}_{su}, \lambda_{i}, \gamma_{i}}{\min} & & & & & & & & & & & \\ & \boldsymbol{\theta}_{uu}, \boldsymbol{\theta}_{su}, \lambda_{i}, \gamma_{i} & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & &$$

Modified IO problem (Primal problem):

$$\min_{\substack{\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i}\\ \text{s.t.} }} \frac{k\|\theta_{uu}\|_{F}^{2} + k\|\theta_{su}\|_{F}^{2} + \frac{1}{N}\sum_{i=1}^{N} \left(\hat{u}_{i}^{T}\theta_{uu}\hat{u}_{i} + 2\phi(\hat{s}_{i})^{T}\theta_{su}\hat{u}_{i} + \frac{1}{4}\gamma_{i} + W(\hat{s}_{i})^{T}\lambda_{i}\right) }{\theta_{uu} \succeq I_{n}, ---P}$$

$$\lambda_{i} \in R_{+}^{d}, \quad \forall i \leq N - ---\tilde{\lambda}_{i}$$

$$\left[\begin{array}{ccc} \theta_{uu} & M(\hat{s}_{i})^{T}\lambda_{i} + 2\theta_{su}^{T}\phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{array}\right] \succeq 0, \quad \forall i \leq N - ---\left[\begin{array}{ccc} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{array}\right].$$

Lagrangian function:

$$L(\theta_{uu}, \theta_{su}, \lambda_i, \gamma_i, P, \tilde{\lambda}_i, \Lambda_i, \Gamma_i, \alpha_i) = k \|\theta_{uu}\|_F^2 + k \|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{u}_i^T \theta_{uu} \hat{u}_i + 2 \hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i + W^T \lambda_i \right) - \text{Tr}\left(P(\theta_{uu} - I_n)\right) + \sum_{i=1}^N \tilde{\lambda}_i^T (-\lambda_i) + \sum_{i=1}^N - \text{Tr}\left(\left[\begin{array}{cc} \Lambda_i & \Gamma_i \\ * & \alpha_i \end{array}\right] \begin{bmatrix} \theta_{uu} & M^T \lambda_i + 2 \theta_{su}^T \phi(\hat{s}_i) \end{bmatrix} \right).$$

Modified IO problem (Primal problem):

$$\min_{\substack{\theta_{uu}, \theta_{su}, \lambda_{i}, \gamma_{i} \\ \text{s.t.} }} k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \theta_{uu} \hat{u}_{i} + 2\phi(\hat{s}_{i})^{T} \theta_{su} \hat{u}_{i} + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{T} \lambda_{i}\right)$$

$$\theta_{uu} \succeq I_{n}, \quad ---P$$

$$\lambda_{i} \in R_{+}^{d}, \quad \forall i \leq N - --- \tilde{\lambda}_{i}$$

$$\left[\begin{array}{ccc} \theta_{uu} & M(\hat{s}_{i})^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ & \gamma_{i} \end{array} \right] \succeq 0, \quad \forall i \leq N - --- \left[\begin{array}{ccc} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{array} \right].$$

Lagrangian function:

Lagrangian function.
$$L(\theta_{uu}, \theta_{su}, \lambda_i, \gamma_i, P, \tilde{\lambda}_i, \Lambda_i, \Gamma_i, \alpha_i) = k \|\theta_{uu}\|_F^2 + k \|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{u}_i^T \theta_{uu} \hat{u}_i + 2 \hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i + W^T \lambda_i \right) - \text{Tr}\left(P(\theta_{uu} - I_n)\right) + \sum_{i=1}^N \tilde{\lambda}_i^T (-\lambda_i) + \sum_{i=1}^N - \text{Tr}\left(\left[\frac{\Lambda_i}{*} \quad \frac{\Gamma_i}{\alpha_i}\right] \begin{bmatrix} \theta_{uu} & M^T \lambda_i + 2 \theta_{su}^T \phi(\hat{s}_i) \\ * & \gamma_i \end{bmatrix}\right).$$

Lagrangian dual problem:

$$\begin{array}{ll} \max & \inf_{P,\tilde{\lambda}_{i},\Lambda_{i},\Gamma_{i},\alpha_{i}} \ \ \lim_{\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i}} L\left(\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i},P,\tilde{\lambda}_{i},\Lambda_{i},\Gamma_{i},\alpha_{i}\right) \\ \mathrm{s.t.} & P\succeq 0,\ \tilde{\lambda}_{i}\in R^{d}_{+},\left[\begin{array}{cc} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{array}\right]\succeq 0, \quad \forall i\leq N. \end{array}$$

Modified IO problem (Primal problem):

$$\begin{aligned} & \underset{\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i}}{\min} & & k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \theta_{uu} \hat{u}_{i} + 2\phi(\hat{s}_{i})^{T} \theta_{su} \hat{u}_{i} + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{T} \lambda_{i}\right) \\ & & s.t. & \theta_{uu} \succeq I_{n}, \; ---P \\ & & \lambda_{i} \in R_{+}^{d}, \quad \forall i \leq N \; ----\tilde{\lambda}_{i} \\ & & \left[\begin{array}{cc} \theta_{uu} & M(\hat{s}_{i})^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ & \gamma_{i} \end{array}\right] \succeq 0, \quad \forall i \leq N \; ----\left[\begin{array}{cc} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{array}\right]. \end{aligned}$$

Lagrangian function:

L(
$$\theta_{uu}$$
, θ_{su} , λ_i , γ_i , P , $\tilde{\lambda}_i$, Λ_i , Γ_i , α_i) = $k \|\theta_{uu}\|_F^2 + k \|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{u}_i^T \theta_{uu} \hat{u}_i + 2 \hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i + W^T \lambda_i \right) - \text{Tr}(P(\theta_{uu} - I_n)) + \sum_{i=1}^N \tilde{\lambda}_i^T (-\lambda_i) + \sum_{i=1}^N - \text{Tr}\left(\left[\frac{\Lambda_i}{*} \quad \frac{\Gamma_i}{\alpha_i} \right] \left[\frac{\theta_{uu}}{*} \quad M^T \lambda_i + 2 \theta_{su}^T \phi(\hat{s}_i) \right] \right).$

Lagrangian dual problem:

$$\begin{array}{ll} \max \limits_{P,\tilde{\lambda}_{i},\Lambda_{i},\Gamma_{i},\alpha_{i}} & \inf \limits_{\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i}} L\left(\theta_{uu},\theta_{su},\lambda_{i},\gamma_{i},P,\tilde{\lambda}_{i},\Lambda_{i},\Gamma_{i},\alpha_{i}\right) \\ \mathrm{s.t.} & P \succeq 0, \; \tilde{\lambda}_{i} \in R^{d}_{\perp}, \left[\begin{array}{cc} \Lambda_{i} & \Gamma_{i} \\ * & \Omega_{i} \end{array}\right] \succeq 0, \;\; \forall i \leq N. \end{array} \qquad \frac{\partial L}{\partial \theta_{uu}}, \; \frac{\partial L}{\partial \theta_{su}}, \; \frac{\partial L}{\partial \lambda_{i}}, \; \frac{\partial L}{\partial \gamma_{i}} = 0$$

$$L(\theta_{uu}, \theta_{su}, \lambda_i, \gamma_i, P, \tilde{\lambda}_i, \Lambda_i, \Gamma_i, \alpha_i) = k \|\theta_{uu}\|_F^2 + k \|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{u}_i^T \theta_{uu} \hat{u}_i + 2\hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i\right)$$

$$+W^{\mathsf{T}}\lambda_{i}) - \operatorname{Tr}\left(P(\theta_{uu} - I_{n})\right) + \sum_{i=1}^{N} \tilde{\lambda}_{i}^{\mathsf{T}}(-\lambda_{i}) + \sum_{i=1}^{N} - \operatorname{Tr}\left(\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{bmatrix} \begin{bmatrix} \theta_{uu} & M^{\mathsf{T}}\lambda_{i} + 2\theta_{su}^{\mathsf{T}}\phi(\hat{s}_{i}) \end{bmatrix}\right).$$

$$+W^{\mathsf{T}}\lambda_{i}\Big) - \mathsf{Tr}\left(P(\theta_{uu} - I_{n})\right) + \sum_{i=1}^{N} \tilde{\lambda}_{i}^{\mathsf{T}}(-\lambda_{i}) + \sum_{i=1}^{N} -\mathsf{Tr}\left(\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{bmatrix}\begin{bmatrix} \theta_{uu} & M^{\mathsf{T}}\lambda_{i} + 2\theta_{su}^{\mathsf{T}}\phi(\hat{s}_{i}) \end{bmatrix}\right).$$

$$L(\theta_{uu}, \theta_{su}, \lambda_i, \gamma_i, P, \tilde{\lambda}_i, \Lambda_i, \Gamma_i, \alpha_i) = k \|\theta_{uu}\|_F^2 + k \|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(\hat{u}_i^T \theta_{uu} \hat{u}_i + 2\hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i\right)$$

$$+W^{\mathsf{T}}\lambda_{i}\Big) - \mathsf{Tr}\left(P(\theta_{uu} - I_{n})\right) + \sum_{i=1}^{N} \tilde{\lambda_{i}}^{\mathsf{T}}(-\lambda_{i}) + \sum_{i=1}^{N} -\mathsf{Tr}\left(\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{bmatrix}\begin{bmatrix} \theta_{uu} & M^{\mathsf{T}}\lambda_{i} + 2\theta_{su}^{\mathsf{T}}\phi(\hat{s}_{i}) \end{bmatrix}\right).$$

$$\frac{\partial L}{\partial \theta_{uu}} = 2k\theta_{uu} + \frac{1}{N} \sum_{i=1}^{N} \hat{u}_i \hat{u}_i^T - P + \sum_{i=1}^{N} -\Lambda_i = 0 \Rightarrow \theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_i \hat{u}_i^T}{N} - \Lambda_i\right) - P}{2k}$$

$$\frac{\partial L}{\partial \theta_{su}} = 2k\theta_{su} + 2\sum_{i=1}^{N} \phi(\hat{s}_i) (\frac{\hat{u}_i^T}{N} - 2\Gamma_i^T) = 0 \Rightarrow \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_i) (\frac{\hat{u}_i^T}{N} - 2\Gamma_i^T)}{k}$$
$$\frac{\partial L}{\partial \lambda_i} = \frac{W}{N} - \tilde{\lambda}_i - 2M\Gamma_i = 0 \Rightarrow \tilde{\lambda}_i = \frac{W}{N} - 2M\Gamma_i$$

$$\frac{W}{N} - \tilde{\lambda}_i - 2M\Gamma_i = 0 \Rightarrow \tilde{\lambda}_i = \frac{W}{N} - 2M\Gamma_i$$

$$\frac{\partial L}{\partial \gamma_i} = \frac{1}{4N} - \alpha_i = 0 \Rightarrow \alpha_i = \frac{1}{4N}$$

$$L(\theta_{uu}, \theta_{su}, \lambda_{i}, \gamma_{i}, P, \tilde{\lambda}_{i}, \Lambda_{i}, \Gamma_{i}, \alpha_{i}) = k \|\theta_{uu}\|_{F}^{2} + k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(\hat{u}_{i}^{T} \theta_{uu} \hat{u}_{i} + 2\hat{u}_{i}^{T} \theta_{su}^{T} \phi(\hat{s}_{i}) + \frac{1}{4} \gamma_{i} + W^{T} \lambda_{i}\right) - \text{Tr}\left(P(\theta_{uu} - I_{n})\right) + \sum_{i=1}^{N} \tilde{\lambda}_{i}^{T}(-\lambda_{i}) + \sum_{i=1}^{N} -\text{Tr}\left(\left[\begin{array}{cc} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i} \end{array}\right] \left[\begin{array}{cc} \theta_{uu} & M^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ \gamma_{i} \end{array}\right]\right).$$

$$+W^{T}\lambda_{i} - \text{Tr}(P(\theta_{uu} - I_{n})) + \sum_{i=1}^{N} \tilde{\lambda}_{i}^{T}(-\lambda_{i}) + \sum_{i=1}^{N} -\text{Tr}\left(\left[\begin{array}{c} \Lambda_{i} & \Gamma_{i} \\ * & \alpha_{i}^{T} \end{array}\right] \left[\begin{array}{c} \theta_{uu} & M^{T}\lambda_{i} + 2\theta_{su}^{T}Q_{su}^$$

By substituting the expressions for θ_{uu} , θ_{su} , $\tilde{\lambda}_i$ and α_i into the Lagrange dual problem and simplifying it, we obtain Theorem 2.

Theorem 2 (Kernel Inverse Optimization Machine)

For the quadratic hypothesis function (1) and the constraints (3) on θ , the modified inverse optimization problem (8) can be reformulated as

$$\min_{P,\Lambda_{i},\Gamma_{i}} \frac{1}{4k} \left\| \left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i} \right) - P \right\|_{F}^{2} + \frac{1}{k} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right] (K \otimes I_{n}) \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right]^{T} - \text{Tr}(P) \tag{9}$$

$$\min_{P,\Lambda_{i},\Gamma_{i}} \frac{1}{4k} \left\| \left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i} \right) - P \right\|_{F}^{2} + \frac{1}{k} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right] (K \otimes I_{n}) \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right]^{T} - \text{Tr}(P) \\
\text{s.t.} \quad P \succeq 0, \quad \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i}) \Gamma_{i} \succeq 0, \quad \forall i \leq N \\
\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \succeq 0, \quad \forall i \leq N,
\end{cases} \tag{9}$$

where $m_i := \frac{\hat{u}_i^T}{N} - 2\Gamma_i^T$ for $i \in \{1, ..., N\}$. K is the Gram matrix with respect to $\hat{s}_1, ..., \hat{s}_N$, so $K \in \mathbb{R}^{N \times N}$ and $K_{ij} = \kappa(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_i)$ which is the inner product of the augmented states, and decision variables $P, \Lambda_i \in \mathbb{R}^{n \times n}, \Gamma_i \in \mathbb{R}^n$ for $i \in \{1, ..., N\}$.

$$\begin{bmatrix} x_i & 1 \\ * & \frac{1}{4N} \end{bmatrix} \succeq 0, \quad \forall i \leq N,$$
 where $m_i := \frac{\hat{u}_i^T}{N} - 2\Gamma_i^T$ for $i \in \{1, ..., N\}$. K is the Gram matrix with respect to $\hat{s}_1, ..., \hat{s}_N$, so $K \in R^{N \times N}$ and $K_{ij} = K(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_j)$ which is the inner product of the augmented states, and decision variables P , $\Lambda_i \in R^{n \times n}$, $\Gamma_i \in R^n$ for $i \in \{1, ..., N\}$. The expressions of matrix θ_{uu} and θ_{su} are

 $\theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k},$ where the weight θ_{su} is a linear combination of the augmented states.

After solving the KIOM problem (9), we can obtain the optimal variables $P^*, \Lambda_i^*, \Gamma_i^*$ and then use these optimal variables to recover θ_{iii}^* and θ_{sii}^* :

$$\theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k}.$$

After solving the KIOM problem (9), we can obtain the optimal variables $P^*, \Lambda_i^*, \Gamma_i^*$ and then use these optimal variables to recover θ_{iii}^* and θ_{sii}^* :

$$\theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k}.$$

Then, when confronted with a new state s_{new} , solving following FOP (10) and execute the optimal action u^* allows the agent to imitate the behavior of the expert:

$$\min_{M(s_{new})u \leq W(s_{new})} u^T \theta_{uu}^* u + 2\phi^T(s_{new}) \theta_{su}^* u.$$
 (10)

After solving the KIOM problem (9), we can obtain the optimal variables $P^*, \Lambda_i^*, \Gamma_i^*$ and then use these optimal variables to recover θ_{uu}^* and θ_{su}^* :

$$\theta_{uu} = -\frac{\left(\sum_{i=1}^{N} \frac{\hat{u}_{i} \hat{u}_{i}^{T}}{N} - \Lambda_{i}\right) - P}{2k} \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{s}_{i}) \left(\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}\right)}{k}.$$

Then, when confronted with a new state s_{new} , solving following FOP (10) and execute the optimal action u^* allows the agent to imitate the behavior of the expert:

$$\min_{M(s_{new})u \leq W(s_{new})} u^T \theta_{uu}^* u + 2\phi^T(s_{new}) \theta_{su}^* u.$$
 (10)

Explicitly calculating θ_{su}^* may be infeasible. However, that is unnecessary. We only need to compute $\phi^T(s_{new})\theta_{su}^* = -\frac{1}{k}\sum_{i=1}^N \kappa(s_{new}, \hat{s}_i)(\frac{\hat{u}_i}{N} - 2\Gamma_i^*)^T$.

TUDelft

Does the KIOM model address the two deficiencies mentioned before?

Does the KIOM model address the two deficiencies mentioned before?

- Increasing computational burden
- Challenges of feature engineering

Does the KIOM model address the two deficiencies mentioned before?

- Increasing computational burden
- Challenges of feature engineering

In KIOM model, θ_{uu} is an $n \times n$ decision variable. However, in many experimental tests, we observed that the ultimately solved θ_{uu} is an identity matrix, which means the trained agent applies the same penalty coefficient to each dimension of the action.

In KIOM model, θ_{uu} is an $n \times n$ decision variable. However, in many experimental tests, we observed that the ultimately solved θ_{uu} is an identity matrix, which means the trained agent applies the same penalty coefficient to each dimension of the action.

Reason:

In KIOM model, θ_{uu} is an $n \times n$ decision variable. However, in many experimental tests, we observed that the ultimately solved θ_{uu} is an identity matrix, which means the trained agent applies the same penalty coefficient to each dimension of the action.

How to incorporate the prior knowledge of θ_{uu} into KIOM model?

Corollary 1 (A simpler model)

With the assumption $\theta_{uu} = I_n$, the KIOM model (9) can be simplified to

$$\min_{\substack{\Lambda_{i}, \Gamma_{i} \\ s.t.}} \begin{bmatrix} m_{1} & m_{2} & \dots & m_{N} \end{bmatrix} \frac{K \otimes I}{k} \begin{bmatrix} m_{1} & m_{2} & \dots & m_{N} \end{bmatrix}^{T} + \sum_{i=1}^{N} \operatorname{Tr}(\Lambda_{i}) \\
s.t. & \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \leq N \\
\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \geq 0, \quad \forall i \leq N,$$
(11)

where $m_i = \frac{\hat{u}_i^T}{N} - 2\Gamma_i^T$ for $i \in \{1, ..., N\}$, and K is the Gram matrix with respect to $\hat{s}_1, ..., \hat{s}_N$, so $K \in R^{N \times N}$ and $K_{ij} = \kappa(\hat{s}_i, \hat{s}_j) = \phi(\hat{s}_i)^T \phi(\hat{s}_j)$. The expressions of matrix θ_{su} is

$$\theta_{su} = -\frac{\sum_{i=1}^{N} \phi(\hat{\mathbf{s}}_i) \left(\frac{\hat{\mathbf{u}}_i^T}{N} - 2\mathbf{\Gamma}_i^T\right)}{k}.$$

Variant 2: An extension with ASL 5

⁵P. Zattoni Scroccaro, B. Atasoy, and P. Mohajerin Esfahani (2023). "Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms". In: *arXiv e-prints*, arXiv=2305

Variant 2: An extension with ASL ⁵

Considering the quadratic objective function (1), the Augmented Suboptimality Loss (ALS) is defined as

$$\ell_{ASL}(\phi(\hat{s}_i), \hat{u}_i) = f(\phi(\hat{s}_i), \hat{u}_i, \theta) - \min_{u \in U(\hat{s}_i)} \{ f(\phi(\hat{s}_i), u, \theta) - ||\hat{u}_i - u||_{\infty} \},$$
(12)

where $U(\hat{s}_i)$ is defined in (4). Note that in ASL, an additional penalty term, $\|\hat{u}_i - u\|_{\infty}$, for action divergence has been introduced.

⁵P. Zattoni Scroccaro, B. Atasoy, and P. Mohajerin Esfahani (2023). "Learning in Inverse Optimization: Incenter Cost, Augmented Suboptimality Loss, and Algorithms". In: arXiv e-prints, arXiv-2305

Corollary 2 (An extension with ASL)

With ASL (12), the extended KIOM model is

$$\min_{\substack{\boldsymbol{\lambda}_{ij}, \boldsymbol{\Lambda}_{ij}, \boldsymbol{\Gamma}_{ij}}} \frac{1}{4k} \operatorname{Tr} \left(\sum_{i=1}^{N} \sum_{j=1}^{2n} (\boldsymbol{\lambda}_{ij} \hat{u}_i \hat{u}_i^T - \boldsymbol{\Lambda}_{ij}) \sum_{i=1}^{N} \sum_{j=1}^{2n} (\boldsymbol{\lambda}_{ij} \hat{u}_i \hat{u}_i^T - \boldsymbol{\Lambda}_{ij}) \right)$$

$$\lambda_{ij}, \Lambda_{ij}, \Gamma_{ij}$$

$$\downarrow 1 \quad \Gamma_{ij} \quad \Gamma_{ij}$$

$$-\sum_{i=1}^{N}\sum_{j=1}^{2n}\sum_{k=1}^{N}\sum_{l=1}^{2n}\sum_{j=1}^{N}\sum_{k=1}^{2n}\sum_{j=1}^{2n}\hat{y}_{i}^{T}\hat{y}_{i}+\sum_{j=1}^{N}\sum_{k=1}^{2n}\sum_{j=1}^{2n}\sum_{j=1}^{2n}\hat{y}_{i}$$

$$-\sum_{i=1}\sum_{j=1}^{n} \lambda_{ij} \hat{\mathbf{y}}_{j}^{T} \hat{\mathbf{u}}_{i} + \sum_{i=1}^{n} \sum_{j=1}^{n} 2 \Gamma_{ij}^{T} \hat{\mathbf{y}}_{j}$$

$$-\sum_{i=1}^{n}\sum_{j=1}^{n}\lambda_{ij}y_{j}^{*}u_{i}+\sum_{i=1}^{n}\sum_{j=1}^{n}\sum_{j=1}^{n}y_{j}^{*}y_{j}$$
s.t.
$$\lambda_{ij}W(\hat{s}_{i})-2M(\hat{s}_{i})\Gamma_{ij} \geq 0. \quad \frac{1}{n}$$

s.t.
$$\lambda_{ij}W(\hat{s}_i) - 2M(\hat{s}_i)\Gamma_{ij} \ge 0, \quad \frac{1}{N} - \sum_{i=1}^{2n} \lambda_{ij} \ge 0, \quad \lambda_{ij} \in R_+ \qquad \forall (i,j) \in [N] \times [2n]$$

$$\begin{bmatrix} \frac{\Lambda_{ij}}{*} & \frac{\Gamma_{ij}}{\lambda_{ij}/4} \end{bmatrix} \succeq 0$$

where $\kappa(\hat{s}_i, \hat{s}_i) = \phi(\hat{s}_i)^T \phi(\hat{s}_i)$, and $\Lambda_{ii} \in R^{n \times n}$, $\Gamma_{ii} \in R^n$, and $\lambda_{ii} \in R$ are the decision variables. The matrices θ_{uu} and θ_{su} can be written as $\theta_{uu} = -\frac{\sum_{i=1}^{N} \sum_{j=1}^{2n} (\boldsymbol{\lambda}_{ij} \hat{\boldsymbol{u}}_{i} \hat{\boldsymbol{u}}_{i}^{T} - \boldsymbol{\Lambda}_{ij})}{2k}, \quad \theta_{su} = -\frac{\sum_{i=1}^{N} \sum_{j=1}^{2n} \phi(\hat{\boldsymbol{s}}_{i}) (\boldsymbol{\lambda}_{ij} \hat{\boldsymbol{u}}_{i}^{T} - 2\boldsymbol{\Gamma}_{ij}^{T})}{\nu}.$

$$-\sum_{i=1}^{N}\sum_{j=1}^{2n}\frac{\lambda_{ij}\hat{y}_{j}^{T}\hat{u}_{i}+\sum_{i=1}^{N}\sum_{j=1}^{2n}2\Gamma_{ij}^{T}\hat{y}_{j}}{\sum_{j=1}^{N}\sum_{j=1}^{2n}2\Gamma_{ij}^{T}\hat{y}_{j}}$$

 $+rac{1}{2k}\operatorname{Tr}\left(\sum_{i=1}^{N}\sum_{j=1}^{2n}\sum_{k=1}^{N}\sum_{l=1}^{2n}\kappa(\hat{s}_{i},\hat{s}_{k})(\lambda_{ij}\hat{u}_{i}-2\Gamma_{ij})(\lambda_{kl}\hat{u}_{k}-2\Gamma_{kl})^{T}\right)$

 $\forall (i, i) \in [N] \times [2n],$

Experimental environment ⁶

⁶M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis (Mar. 2023). *Gymnasium*. poi: 10.5281/zenodo.8127026

Experimental environment ⁶

(a) Hopper (b) Walker 2d (c) Hallotteeta	ı) Hopper	(b)Walker2d	(c)HalfCheetah
--	-----------	-------------	----------------

Task	Action Dim	State Dim
Hopper	3	11
Walker2d	6	17
HalfCheetah	6	17

⁶M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão, A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, A. T. J. Shen, and O. G. Younis (Mar. 2023). *Gymnasium*. Doi: 10.5281/zenodo.8127026

Dataset ⁷

D4RL aims to provide standardized and diverse datasets that researchers can use to benchmark and evaluate their algorithms. We tested the algorithm on each task using both **Expert** and **Medium** datasets, resulting in a total of six datasets.

- Expert: Expert has 1M samples from a policy trained to completion with Soft Actor-Critic.
- Medium: Medium has 1M samples derived from a policy that is trained to achieve approximately 1/3 the performance of the expert.

Solver⁸

- Open-source
- Designed to tackle large-scale convex cone problems (linear/Quadratic/SOCP)
- Known for its speed and scalability
- Parallel processing

Results

⁹S. Fujimoto and S. S. Gu (2021). "A minimalist approach to offline reinforcement learning". In: *Advances in neural information processing systems* 34, pp. 20132–20145

¹⁰A. Kumar, A. Zhou, G. Tucker, and S. Levine (2020). "Conservative q-learning for offline reinforcement learning". In: *Advances in Neural Information Processing Systems* 33, pp. 1179–1191

Results

Task	KIOM	BC(TD3+BC) ⁹	BC(CQL) ¹⁰	Teacher agent
Hopper-expert	109.9 (5k)	111.5	109.0	108.5
Hopper-medium	50.2 (5k)	30.0	29.0	44.3
Walker2d-expert	108.5(10k)	56.0	125.7	107.1
Walker2d-medium	74.6 (5k)	11.4	6.6	62.1
Halfcheetah-expert	84.4(10k)	105.2	107.0	88.1
Halfcheetah-medium	39.0 (5k)	36.6	36.1	40.7

⁹S. Fujimoto and S. S. Gu (2021). "A minimalist approach to offline reinforcement learning". In: *Advances in neural information processing systems* 34, pp. 20132–20145

¹⁰A. Kumar, A. Zhou, G. Tucker, and S. Levine (2020). "Conservative q-learning for offline reinforcement learning". In: *Advances in Neural Information Processing Systems* 33, pp. 1179–1191

Sequential Selection Optimization (SSO)

Background of SSO¹¹

Background of SSO¹¹

Problem description

Data size	Memory (RAM)
5K	16GB
10K	64GB
15K	128GB
20K	256GB

Table: The relationship between the dataset size and the required memory on the Halfcheetah-expert task.

Background of SSO¹¹

Problem description

Data size	Memory (RAM)
5K	16GB
10K	64GB
15K	128GB
20K	256GB

Table: The relationship between the dataset size and the required memory on the Halfcheetah-expert task.

• Idea SSO breaks the large SDP problem (11) into a series of smaller SDP problems and use the optimal solution of these small problem to recover the solution of original problem (11). This feature empowers SSO to efficiently address larger-scale optimization problems.

elft 26

¹¹The algorithm is inspired by the course "Networked and Distributed Control Systems", DCSC, TU Delft and algorithm "Sequential Minimal Optimization". John Platt.

We focus on the problem

min
$$f(x)$$

s.t. $x \in X$,

where $f: \mathbb{R}^n \to \mathbb{R}$ is a differentiable convex function and X is a Cartesian product of closed convex sets

$$X = X_1 \times X_2 \times \cdots \times X_m$$
,

where X_i is a subset of R^{n_i} .

We focus on the problem

min
$$f(x)$$

s.t. $x \in X$,

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a differentiable convex function and X is a Cartesian product of closed convex sets

$$X = X_1 \times X_2 \times \cdots \times X_m$$
,

where X_i is a subset of R^{n_i} . The vector x is partitioned as

$$x=(x^1,x^2,\cdots,x^m),$$

where each x^i is a "block component" of x that is constrained to be in X_i .

We focus on the problem

$$min f(x) \\
s.t. x \in X,$$

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a differentiable convex function and X is a Cartesian product of closed convex sets

$$X = X_1 \times X_2 \times \cdots \times X_m$$
,

where X_i is a subset of R^{n_i} . The vector x is partitioned as

$$x=(x^1,x^2,\cdots,x^m),$$

where each x^i is a "block component" of x that is constrained to be in X_i . The Block Coordinate Descent (BCD) method is defined as follow: given the current iterate $x_k = (x_k^1, x_k^2, \cdots, x_k^m)$, we generate the next iterate $x_{k+1} = (x_{k+1}^1, x_{k+1}^2, \cdots, x_{k+1}^m)$, according to

$$x_{k+1}^{i} \in \arg\min_{\xi \in X_{i}} f\left(x_{k+1}^{1}, \dots, x_{k+1}^{i-1}, \xi, x_{k}^{i+1}, \dots, x_{k}^{m}\right), \quad i = 1, \dots, m;$$
 (13)

where we assume that the preceding minimization has at least one optimal solution.

We focus on the problem

$$min f(x) \\
s.t. x \in X,$$

where $f: \mathbb{R}^n \mapsto \mathbb{R}$ is a differentiable convex function and X is a Cartesian product of closed convex sets

$$X = X_1 \times X_2 \times \cdots \times X_m$$
,

where X_i is a subset of R^{n_i} . The vector x is partitioned as

$$x=(x^1,x^2,\cdots,x^m),$$

where each x^i is a "block component" of x that is constrained to be in X_i . The Block Coordinate Descent (BCD) method is defined as follow: given the current iterate $x_k = (x_k^1, x_k^2, \cdots, x_k^m)$, we generate the next iterate $x_{k+1} = (x_{k+1}^1, x_{k+1}^2, \cdots, x_{k+1}^m)$, according to

$$x_{k+1}^{i} \in \arg\min_{\xi \in X_{i}} f\left(x_{k+1}^{1}, \dots, x_{k+1}^{i-1}, \xi, x_{k}^{i+1}, \dots, x_{k}^{m}\right), \quad i = 1, \dots, m;$$
 (13)

where we assume that the preceding minimization has at least one optimal solution.

Proximal BCD:
$$x_{k+1}^{i} \in \arg\min_{\xi \in X_{i}} \left\{ f\left(x_{k+1}^{1}, \dots, x_{k+1}^{i-1}, \xi, x_{k}^{i+1}, \dots, x_{k}^{m}\right) + \frac{1}{2c} \left\| \xi - x_{k}^{i} \right\|^{2} \right\}.$$

The problem focused on

min
$$f(x)$$

s.t. $x \in X$, where $X = X_1 \times X_2 \times \cdots \times X_m$.

The problem focused on

min
$$f(x)$$

s.t. $x \in X$, where $X = X_1 \times X_2 \times \cdots \times X_m$.

Simple version of KIOM

$$\min_{\substack{\Lambda_{i},\Gamma_{i} \\ N}} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right] \frac{K \otimes I}{k} \left[m_{1} \quad m_{2} \quad \dots \quad m_{N} \right]^{T} + \sum_{i=1}^{N} \operatorname{Tr}(\Lambda_{i})$$
s.t.
$$\frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad m_{i} = \frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}, \quad \forall i \leq N$$

$$\left[\frac{\Lambda_{i}}{*} \quad \frac{\Gamma_{i}}{4N} \right] \geq 0, \quad \forall i \leq N,$$

The problem focused on

min
$$f(x)$$

s.t. $x \in X$, where $X = X_1 \times X_2 \times \cdots \times X_m$.

Simple version of KIOM

$$\min_{\substack{\Lambda_{i},\Gamma_{i} \\ \text{s.t.}}} \begin{bmatrix} m_{1} & m_{2} & \dots & m_{N} \end{bmatrix} \frac{\kappa \otimes I}{k} \begin{bmatrix} m_{1} & m_{2} & \dots & m_{N} \end{bmatrix}^{T} + \sum_{i=1}^{N} \text{Tr}(\Lambda_{i}) \\
\text{s.t.} & \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad m_{i} = \frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}, \quad \forall i \leq N \\
\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \geq 0, \quad \forall i \leq N,$$

Definition of coordinate

coordinate_
$$i := \{ \Lambda_i, \Gamma_i \}$$
.

Heuristics for choosing which coordinates to optimize

Heuristics for choosing which coordinates to optimize

Given the current values of $\{\Lambda_i, \Gamma_i\}_{i=1}^N$ (not necessarily optimal), we choose p coordinates that satisfy the condition¹²

$$\frac{W(\hat{s}_i)}{N} - 2M(\hat{s}_i)\Gamma_i > 0 \tag{14}$$

and have the largest KKT violators which is defined as

$$KKT_violator(i) = \left| Tr \left(\begin{bmatrix} \Lambda_i & \Gamma_i \\ * & \frac{1}{4N} \end{bmatrix} \begin{bmatrix} I_n & 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i) \\ * & \|2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i)\|_2^2 \end{bmatrix} \right) \right|. \tag{15}$$

Heuristics for choosing which coordinates to optimize

Given the current values of $\{\Lambda_i, \Gamma_i\}_{i=1}^N$ (not necessarily optimal), we choose p coordinates that satisfy the condition¹²

$$\frac{W(\hat{\mathbf{s}}_i)}{N} - 2M(\hat{\mathbf{s}}_i)\Gamma_i > 0 \tag{14}$$

and have the largest KKT violators which is defined as

$$KKT_violator(i) = \left| Tr \left(\begin{bmatrix} \Lambda_i & \Gamma_i \\ * & \frac{1}{4N} \end{bmatrix} \begin{bmatrix} I_n & 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i) \\ * & \|2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i)\|_2^2 \end{bmatrix} \right) \right|. \tag{15}$$

The reason is because when the decision variables $\{\Lambda_i, \Gamma_i\}_{i=1,...,N}$ reach their optimum, based on KKT conditions, all the coordinates that satisfy (14) have KKT violators (15) of 0.

Stationarity:

KKT Conditions

$$\theta_{su} = -\frac{1}{k} \sum_{i=1}^{N} \phi(\hat{s}_i) \left(\frac{\hat{u}_i^T}{N} - 2\Gamma_i^T \right)$$
(16a)

$$\tilde{\lambda}_i = \frac{W}{N} - 2M\Gamma_i, \ \forall i \leq N$$
 (16b)

Complementary slackness: $\tilde{\lambda}_i^T \lambda_i = 0, \forall i < N$ (16c)

$$\phi(\hat{s}_i)$$

$$\operatorname{Tr}\left(\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \begin{bmatrix} I_{n} & M^{\mathsf{T}} \lambda_{i} + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix}\right)$$

$$= 0, \ \forall i \leq N$$

Primal feasibility:
$$\lambda_i \in R^d, \ \forall i \leq N$$
 (16e)

Proof

First, based on current values of $\{\Lambda_i, \Gamma_i\}_{i=1}^N$, we choose coordinate i such that

$$\frac{W}{N} - 2M\Gamma_i > 0.$$

Based on KKT condition (16b), we have $\tilde{\lambda}_i > 0$.

(18)Then, based on conditions (16c) and (16e), one can obtain $\lambda_i = 0$. (19)

(17)

Substituting the result (19) into condition (16d) yields
$$T_{i} \left\{ \begin{bmatrix} \Lambda_{i} & \Gamma_{i} \end{bmatrix} \begin{bmatrix} I_{2} & 2\theta^{T} \phi(\hat{s}_{i}) \end{bmatrix} \right\}$$

 $\operatorname{Tr}\left(\begin{bmatrix} \Lambda_i & \Gamma_i \\ * & \frac{1}{4!} \end{bmatrix} \begin{bmatrix} I_n & 2\theta_{su}^{\mathsf{T}} \boldsymbol{\phi}(\hat{s}_i) \end{bmatrix}\right) = 0,$ where γ_i is the decision variable of the primal problem (21).

Note: For ease of notation, we omit writing the dependency of the matrices M and W on \$i.

Proof

Then we derive the expression of γ_i based on the primal problem (21)

with the expression of
$$\gamma_{i}$$
 based on the primal problem (21)
$$\min_{\substack{\theta_{su}, \gamma_{i}, \lambda_{i} \\ \text{s.t.}}} k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{\mathsf{T}} \theta_{su}^{\mathsf{T}} \phi(\hat{s}_{i}) + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{\mathsf{T}} \lambda_{i} \right)$$

$$\mathrm{s.t.} \quad \lambda_{i} \in R_{+}^{d}, \ \gamma_{i} \in R, \quad \forall i \leq N$$

$$\begin{bmatrix} I_{n} & M(\hat{s}_{i})^{\mathsf{T}} \lambda_{i} + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N.$$
(21)

Proof

Then we derive the expression of γ_i based on the primal problem (21)

min
$$\theta_{su}, \gamma_{i}, \lambda_{i}$$
 $k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{T} \theta_{su}^{T} \phi(\hat{s}_{i}) + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{T} \lambda_{i} \right)$ s.t. $\lambda_{i} \in R_{+}^{d}, \ \gamma_{i} \in R, \quad \forall i \leq N$ (21)
$$\begin{bmatrix} I_{n} & M(\hat{s}_{i})^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N.$$
the Schur complement, we can prove

By utilizing the Schur complement, we can prove

$$\begin{bmatrix} I_n & M^{\mathsf{T}} \lambda_i + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i) \\ * & \gamma_i \end{bmatrix} \succeq 0 \Longleftrightarrow \gamma_i \geq \|M^{\mathsf{T}} \lambda_i + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i)\|_2^2.$$

Proof

Then we derive the expression of γ_i based on the primal problem (21)

min
$$_{\theta_{su},\gamma_{i},\lambda_{i}}$$
 $k\|\theta_{su}\|_{F}^{2} + \frac{1}{N}\sum_{i=1}^{N}\left(2\hat{u}_{i}^{T}\theta_{su}^{T}\phi(\hat{s}_{i}) + \frac{1}{4}\gamma_{i} + W(\hat{s}_{i})^{T}\lambda_{i}\right)$
s.t. $\lambda_{i} \in R_{+}^{d}, \ \gamma_{i} \in R, \quad \forall i \leq N$ (21)
$$\begin{bmatrix} I_{n} & M(\hat{s}_{i})^{T}\lambda_{i} + 2\theta_{su}^{T}\phi(\hat{s}_{i}) \\ * & \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N.$$

By utilizing the Schur complement, we can prove

$$\begin{bmatrix} I_n & M^{\mathsf{T}}\lambda_i + 2\theta_{su}^{\mathsf{T}}\phi(\hat{\mathbf{s}}_i) \\ * & \gamma_i \end{bmatrix} \succeq 0 \Longleftrightarrow \gamma_i \geq \|M^{\mathsf{T}}\lambda_i + 2\theta_{su}^{\mathsf{T}}\phi(\hat{\mathbf{s}}_i)\|_2^2.$$

Therefore, problem (21) can be equivalently expressed as

$$\min_{\substack{\theta_{su}, \boldsymbol{\gamma}_{i}, \lambda_{i} \\ \text{s.t.}}} k \|\boldsymbol{\theta}_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{\mathsf{T}} \boldsymbol{\theta}_{su}^{\mathsf{T}} \boldsymbol{\phi}(\hat{\mathbf{s}}_{i}) + \frac{1}{4} \boldsymbol{\gamma}_{i} + W(\hat{\mathbf{s}}_{i})^{\mathsf{T}} \lambda_{i} \right) \\ \text{s.t.} \quad \lambda_{i} \in R_{+}^{d}, \ \boldsymbol{\gamma}_{i} \in R, \ \boldsymbol{\gamma}_{i} \geq \|\boldsymbol{M}^{\mathsf{T}} \lambda_{i} + 2\boldsymbol{\theta}_{su}^{\mathsf{T}} \hat{\mathbf{s}}_{i}\|_{2}^{2}, \quad \forall i \leq N,$$

s.t.
$$\lambda_i \in R_+^d$$
, $\gamma_i \in R$, $\gamma_i \ge \|M^\top \lambda_i + 2\theta_{su}^\top \hat{s}_i\|_2^2$, $\forall i \le N$,

(22)

Proof

Then we derive the expression of γ_i based on the primal problem (21)

$$\min_{\theta_{su}, \gamma_{i}, \lambda_{i}} k \|\theta_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{T} \theta_{su}^{T} \phi(\hat{s}_{i}) + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{T} \lambda_{i}\right) \\
\text{s.t.} \quad \lambda_{i} \in R_{+}^{d}, \ \gamma_{i} \in R, \quad \forall i \leq N \\
\left[\begin{array}{c} I_{n} M(\hat{s}_{i})^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ \gamma_{i} \end{array}\right] \succeq 0, \quad \forall i \leq N.$$
the Sobus complement, we can prove

By utilizing the Schur complement, we can prove

$$\begin{bmatrix} I_n & M^{\mathsf{T}} \lambda_i + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i) \\ * & \gamma_i \end{bmatrix} \succeq 0 \Longleftrightarrow \gamma_i \geq \|M^{\mathsf{T}} \lambda_i + 2\theta_{su}^{\mathsf{T}} \phi(\hat{s}_i)\|_2^2.$$

Therefore, problem (21) can be equivalently expressed as

min
$$\theta_{su, \gamma_i, \lambda_i}$$
 $k\|\theta_{su}\|_F^2 + \frac{1}{N} \sum_{i=1}^N \left(2\hat{u}_i^T \theta_{su}^T \phi(\hat{s}_i) + \frac{1}{4} \gamma_i + W(\hat{s}_i)^T \lambda_i\right)$
s.t. $\lambda_i \in R_+^d$, $\gamma_i \in R$, $\gamma_i \geq \|M^T \lambda_i + 2\theta_{su}^T \hat{s}_i\|_2^2$, $\forall i \leq N$, (22)

When γ_i attain its optimal values, the equality in the last constraint should hold:

 $\gamma_i = \|M^T \lambda_i + 2\theta_{s_i}^T \phi(\hat{s}_i)\|_F^2$. Note that $\lambda_i = 0$ (19), then the expression of γ_i is

$$\gamma_i = \|2\theta_{\mathrm{su}}^{\mathsf{T}}\phi(\hat{\mathbf{s}}_i)\|_2^2. \tag{23}$$

Proof

Then we derive the expression of γ_i based on the primal problem (21)

Then we derive the expression of
$$\gamma_{i}$$
 based on the primal problem (21)
$$\min_{\substack{\theta_{su},\gamma_{i},\lambda_{i}\\ s.t.}} k||\theta_{su}||_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{T} \theta_{su}^{T} \phi(\hat{s}_{i}) + \frac{1}{4} \gamma_{i} + W(\hat{s}_{i})^{T} \lambda_{i}\right)$$
s.t. $\lambda_{i} \in R_{+}^{d}$, $\gamma_{i} \in R$, $\forall i \leq N$

$$\begin{bmatrix} I_{n} & M(\hat{s}_{i})^{T} \lambda_{i} + 2\theta_{su}^{T} \phi(\hat{s}_{i}) \\ \gamma_{i} \end{bmatrix} \succeq 0, \quad \forall i \leq N.$$
By utilizing the Schur complement, we can prove

$$\begin{bmatrix} I_n & M^{\top} \lambda_i + 2\theta_{su}^{\top} \phi(\hat{\mathbf{s}}_i) \\ * & \gamma_i \end{bmatrix} \succeq 0 \Leftrightarrow \gamma_i \geq \|M^{\top} \lambda_i + 2\theta_{su}^{\top} \phi(\hat{\mathbf{s}}_i)\|_2^2.$$

Therefore, problem (21) can be equivalently expressed as

$$\min_{\substack{\theta_{su}, \boldsymbol{\gamma}_{i}, \lambda_{i} \\ \text{s.t.}}} k \|\boldsymbol{\theta}_{su}\|_{F}^{2} + \frac{1}{N} \sum_{i=1}^{N} \left(2\hat{u}_{i}^{T} \boldsymbol{\theta}_{su}^{T} \boldsymbol{\phi}(\hat{s}_{i}) + \frac{1}{4} \boldsymbol{\gamma}_{i} + W(\hat{s}_{i})^{T} \lambda_{i} \right)$$

$$\text{s.t.} \quad \lambda_{i} \in R_{+}^{d}, \ \boldsymbol{\gamma}_{i} \in R, \ \boldsymbol{\gamma}_{i} \geq \|\boldsymbol{M}^{T} \boldsymbol{\lambda}_{i} + 2\boldsymbol{\theta}_{su}^{T} \hat{s}_{i}\|_{2}^{2}, \quad \forall i \leq N,$$

When γ_i attain its optimal values, the equality in the last constraint should hold:

 $\gamma_i = ||M^T \lambda_i + 2\theta_{si}^T \phi(\hat{s}_i)||_F^2$. Note that $\lambda_i = 0$ (19), then the expression of γ_i is

$$\gamma_i = \|2 heta_{su}^{\mathsf{T}}\phi(\hat{\mathbf{s}}_i)\|_2^2.$$

Substituting (23) into (20), we obtain
$$\operatorname{Tr}\left(\begin{bmatrix} \Lambda_i & \Gamma_i \\ * & \frac{1}{4N} \end{bmatrix}\begin{bmatrix} I_n & 2\theta_{su}^{\mathsf{T}}\phi(\hat{s}_i) \\ * & \|2\theta_{su}^{\mathsf{T}}\phi(\hat{s}_i)\|_2^2 \end{bmatrix}\right) = 0.$$

(22)

(23)

First, we divide the *N* examples from the dataset into *n* datasets of *p* examples S_1, \ldots, S_n .

First, we divide the N examples from the dataset into n datasets of p examples S_1, \ldots, S_n . Directly solving the KIOM problem (11) involving N data points is unfeasible. However, we can rapidly solve a modified KIOM subproblem (29) restricted to only p data points:

$$subproblem(I) := \min_{\Lambda_{i}, \Gamma_{i}} \quad \frac{1}{k} \sum_{i \in S_{I}} \sum_{j \in S_{I}} \kappa_{ij} (\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}) (\frac{\hat{u}_{j}}{N} - 2\Gamma_{j}) + \sum_{i \in S_{I}} Tr(\Lambda_{i})$$

$$s.t. \quad \frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \in S_{I}$$

$$\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \geq 0, \quad \forall i \in S_{I}.$$

First, we divide the N examples from the dataset into n datasets of p examples S_1, \ldots, S_n . Directly solving the KIOM problem (11) involving N data points is unfeasible. However, we can rapidly solve a modified KIOM subproblem (29) restricted to only p data points:

$$subproblem(I) := \min_{\Lambda_{i}, \Gamma_{i}} \quad \frac{1}{k} \sum_{i \in S_{I}} \sum_{j \in S_{I}} \kappa_{ij} (\frac{\hat{u}_{i}^{T}}{N} - 2\Gamma_{i}^{T}) (\frac{\hat{u}_{i}}{N} - 2\Gamma_{j}) + \sum_{i \in S_{I}} Tr(\Lambda_{i})$$
s.t.
$$\frac{W(\hat{s}_{i})}{N} - 2M(\hat{s}_{i})\Gamma_{i} \geq 0, \quad \forall i \in S_{I}$$

$$\begin{bmatrix} \Lambda_{i} & \Gamma_{i} \\ * & \frac{1}{4N} \end{bmatrix} \geq 0, \quad \forall i \in S_{I}.$$

By solving n instances of such problems (l = 1, ..., n), we systematically traverse all N data points. Ultimately, we concatenate the optimal solutions of these n subproblems to form an initial estimate for the KIOM problem (11).

SSO Algorithm

SSO Algorithm

Algorithm 1 SSO

```
1: Initialize variable: \{\Lambda_i, \Gamma_i\}_{i=1,...,N} \leftarrow \text{WarmUp}(\{\hat{s}_i, \hat{a}_i\}_{i=1,...N})
```

2: **for** iteration = 1 to T **do**

```
3: \{\Lambda_{a_i}, \Gamma_{a_i}\}_{i=1,...,p} \leftarrow \text{HeuristicSelection}(\{\hat{s}_i, \hat{a}_i\}_{i=1,...N}, \{\Lambda_i, \Gamma_i\}_{i=1,...,N})
```

- 4: Update $\{\Lambda_{a_i}, \Gamma_{a_i}\}_{i=1,...,p}$ {Update selected coordinates}
- 5: end for

Performance evaluation¹³

¹³All experimental parameters are held constant and in the SSO algorithm, $\frac{N}{2}$ coordinates are updated at each iteration, meaning that each subproblem encompasses half of the dataset.

Performance evaluation¹³

Task	SCS		SS0	
	Obj Value	Score	Obj Value	Score
Hopper-expert	185.219	109.9	185.220	110.2
Hopper-medium	218.761	50.2	218.761	51.8
Walker2d-expert	140.121	108.5	140.121	109.2
Walker2d-medium	151.117	74.6	151.117	74.9
Halfcheetah-expert	165.041	84.4	165.041	83.8
Halfcheetah-medium	188.184	39.0	188.184	39.7

¹³All experimental parameters are held constant and in the SSO algorithm, $\frac{N}{2}$ coordinates are updated at each iteration, meaning that each subproblem encompasses half of the dataset.

Ablation studies¹⁴

¹⁴Tested on hopper-expert task. All experimental parameters are held constant and in the SSO algorithm, *N*/2 coordinates are updated at each iteration.

Ablation studies¹⁴

¹⁴Tested on hopper-expert task. All experimental parameters are held constant and in the SSO algorithm, *N*/2 coordinates are updated at each iteration.

Conclusion and Future Study

Conclusion

- Introduction of Inverse Optimization
 - Idea of IO
 - Learning for control: A IO model
- Kernel Inverse Optimization Machine
 - Theoretical derivation
 - Two varients
 - Numerical experiments
- Sequential Selection Optimization
 - Theoretical derivation
 - Numerical experiments

Future study

In this thesis, we demonstrate the convergence guarantee when employing the proximal block coordinate descent algorithm to optimize the simplified version of the KIOM model. However, we do not analyze the convergence of the SSO algorithm, as this requires additional consideration of KKT conditions, which would make the analysis relatively challenging. Therefore, we list this as a direction for future research.

Thank you for your attention

Long, Youyuan

