CS/B.TECH (CSE)/SEM-3/CS-303/08/(09)

3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 COMPUTER ORGANIZATION

SEMESTER - 3

Time: 3 Hours [Full M	<i>l</i> larks	:
------------------------	----------------	---

GROUP - A

(Multiple Choice Type Questions)

Cho	ose the correct alternatives for t	he following	g:	$10 \times 1 = 10$
1)	When signed numbers are usefollowing notations would have			vhich one of the
. ,	a) Sign magnitude	b)	1's Complement	
	c) 2's Complement	d)	None of these.	
ii)	The logic circuitry in ALU is			
	a) entirely combinational	· · · · · · · · · · · · · · · · · · ·		
	b) entirely sequential			
	c) combinational cum seque	ential		
	d) none of these.			
iii)	In a micro-processor, the acstored in	ldress of th	ne next instruction to	be executed, i
	a) Stack pointer			
	b) Address latch			· · · · · · · · · · · · · · · · · · ·
	c) Program counter			
	d) General purpose register	r.		
iv)	The technique of placing softw	are in a RO	M semiconductor chip	is called
. • .	a) PROM	b)	EPROM	
	c) FIRMWARE	d)	Micro-Processor.	

v)	Cac	he Memory .		
	b)	increases performance	b)	increases machine cycle
	c)	reduces performance	d)	none of these.
vi)	Ass	ociative memory is a		
	a)	very cheap memory	b)	pointer addressable memory
	c)	content addressable memory	d)	slow memory.
vii)	A si	ngle bus structure is primarily f	ound	in
	a)	main frames	b)	super computers
	c)	high performance machines	d)	mini and micro-computers.
viii)	and	I/O devices is used for	•	r the allocation of address to me
	a)	small system	b)	large system
	c)	both large and small systems	d)	very large system.
ix)	The	convertion of (FAFAFA) $_{16}$ into	octal	l form is
	a)	76767676	b)	76575372
	c)	76737672	d)	76727672.
x)	Whi	ch of the following addressing n	nodes	is used in the instruction PUSH I
	a)	Immediate	b)	Register
	c)	Direct	d)	Register Indirect.
,				
		GROUI	P – B	
		(Short Answer T	уре Д	uestions)
		Answer any three	of the	e following. 3 ×

What do you mean by instruction cycle, machine cycles and T states?

What is virtual memory? Why is it called virtual? Write the advantage of virtual

33501 (10/12)

memory.

3.

2 + 1 + 2

CS/B.TECH (CSE)/SEM-3/CS-303/08/(09)

5. What are the advantages of microprogramming control over hardwared control? What is the role of operating system?

5

6. What are the different types of interrupt? Give examples. What is programmed I/O technique?

GROUP - C

(Long Answer Type Questions)

Answer any three of the following questions.

 $3 \times 15 = 45$

- 7. a) What are Von Neumann concept and its bottleneck?
 - b) Represent the decimal value 7.5 in IEEE 754 single precision floating-point format.
 - c) Compare parallel adder with serial adder.
 - d) What is the necessity of guard bits?
 - e) Explain and draw the 4-bit binary decrementer circuit.
- 4 + 3 + 4 + 1 + 3
- 8. a) Draw the internal cell diagram of PROM and explain its functionality.
 - b) What is cache memory? How does it increase the performance of a computer?
 What is hit ratio?
 - c) A three level memory system having cache access time of 5 nsec and disk access time of 40 nsec, has a cache hit ratio of 0.96 and main memory hit ratio of 0.9. What should be the main memory access time to achieve an overall access time of 16 nsec,?
 - d) Define: (i) rotational latency, (ii) seek time.

- 4 + 4 + 5 + 2
- 9. a) What is instruction cycle? Draw the time diagram for memory write operation.
 - b) Explain the basic DMA operations for transfer of data between memory and Peripherals.
 - c) Evaluate the arithmetic statement X = (A * B) / (C + D) in one, two and three address machines. 1 + 4 + 5 + 5

33501 (10/12)

6

10. a) Given the following, determine the size of the sub-fields in the address for direct mapping, associative mapping and set-associative mapping cache schemes:

Main memory size

512 MB

Cache memory size

1 MB

Address space of processor

512 MB

Block size

128 B

8 blocks in cache set.

b) Differentiate between memory mapped I/O and I/O mapped I/O.

10 + 5

1. Write short notes on any three of the following:

 3×5

- a) Magnetic recording
- b) Cache replacement policies
- c) Non-restoring division method
- d) Addressing modes
- e) Booth's algorithm.

END