THE SCIENCE SCIENCE

MACHINE LEARNING E DATA MINING

BIG DATA SCIENCE ESTATÍSTICA APLICADA – PARTE 2 ANÁLISE DE REGRESSÃO

DIÓGENES JUSTO

REVISÃO DA LISTA DE EXERCÍCIOS


```
MÉDIA, DESVIO PADRÃO SÃO MÉTRICAS RICAS?
           mean(anscombe$x1)
           mean(anscombe$x4)
           mean(anscombe$y1)
           sd(anscombe$x1)
           cor(anscombe$x1, anscombe$y1)
```



```
· · ·
```

MÉDIA, DESVIO PADRÃO SÃO MÉTRICAS RICAS?

```
par(mfrow=c(2,2))
plot(anscombe$x1, anscombe$y1)
plot(anscombe$x2, anscombe$y2)
plot(anscombe$x3, anscombe$y3)
plot(anscombe$x4, anscombe$y4)
par(mfrow=c(1,1))
```


MÉDIA, DESVIO PADRÃO SÃO MÉTRICAS RICAS?

pairs(anscombe)

4 6 8 10 12 14 8 10 12 14 16 18 3 4 5 6 7 8 9 6 8 10 12 x1 x2 x3 x4 000 000 00 00 y1 y2 y3 y4 4 5 6 7 8 9 11 4 6 8 10 12 14 4 6 8 10 12 14 6 8 10 12

• •

+ • □

•

•

= :..

LISTA DE EXERCÍCIOS

Média, Mediana, Moda

Score Z

Variância e Desvio Padrão

COVARIÂNCIA

CORRELAÇÃO

- Ex.1:

R – mtcars, mpg x wt (peso do carro x consumo) cor(mtcars\$mpg, mtcars\$wt) plot(mtcars\$mpg, mtcars\$wt)

Β---

+

CORRELAÇÃO

Ex. 2: Excel, calcule a correlação linear do conjunto abaixo.

i	У	X
1	1	5
2	2	4
3	3	3
4	4	2
5	5	1

+

 \times \times

CORRELAÇÃO

Ex. 3: Excel, calcule a correlação linear do índice iBovespa x dólar

=GoogleFinance("IBOV","price", DATE(2004, 1, 1),

DATE(2013, 12, 31), "WEEKLY")

=GoogleFinance("USDBRL","price", DATE (2003, 12, 27), DATE(2013,

12, =31),"WEEKLY")

Coloque (1) ambas séries na mesma base, faça (2) gráficos de linha, (3) linha em escalas diferentes, (4) dispersão e calcule a (5) correlação linear.

Qual a relação entre o índice iBovespa e a cotação USD x REAL?

Qual a relação entre o índice iBovespa e a cotação USD x REAL?

Qual a relação entre o índice iBovespa e a cotação USD x REAL?

p~-0,9

DATA ANALYSIS

- Define the QUESTION
- Define the IDEAL DATA SET
- Determine WHAT DATA you can access
- OBTAIN the data
- CLEAN the data
- Exploratory DATA ANALYSIS
- Statistical PREDICTION/MODELING
- INTERPRET Results
- CHALLENGE results
- Synthesize/WRITE UP results
- Create reproducible CODE

Prever o PIB

Mensal / Anual, etc, como explicar?

PIB (público),

Tráfego (ABCR) PIB (Site Itau),

Tráfego (Site ABCR)

Gráficos, Estatística descritiva

Análise de regressão

OBTENDO DADOS

google -> pib itau mensal https://www.itau.com.br/itaubba-pt/analises-e conomicas/nossas-series-economicas/pib-me nsal-itau-unibanco

google -> tráfego abcr download http://www.abcr.org.br/Download.ashx?arquiv o=IndiceABCR.xls

ANÁLISE EXPLORATÓRIA

- Verificar se os DADOS ESTÃO COMPLETOS
- GRÁFICOS
- ESTATÍSTICA descritiva
- CORRELAÇÃO É ALTA?

45697056

. . .

REGRESSÃO LINEAR

Chamaremos de modelo de regressão linear uma aplicação, com equação no seguinte formato:

$$y = \alpha . x + \beta$$

A reta será uma aproximação, portanto, para cada ponto há uma diferença entre o ponto real e o ponto expressado por esta equação, Incluiremos, portanto, este fator de erro.

$$y_i = \alpha . x_i + \beta + \epsilon_i$$

$$y_i = \alpha . x_i + \beta + \varepsilon_i$$

Obs 1: alfa será o mesmo para todos valores. Utilizamos a notação indicial, pois posteriormente incluiremos outros fatores alfa.

Obs 2: épslon tem índice i pois cada valor é independente, sendo correto incluir também o índice em y e x, portanto.

Obs 3: alfa, em geometria, é chamado de coeficiente angular e beta, coeficiente linear ou intercepto.

Obs 4: a variável x é dita independente e y dependente (depende de x). Ou ainda x exógena (exo=fora do modelo) e y endógena (endo=explicada dentro do modelo).

- •
- . (.)

PARA O MODELO:

$$y_i = \alpha . x_i + \beta + \varepsilon_i$$

PERG.: MAS COMO DETERMINAR OS COEFICIENTES ALFA E BETA, A PARTIR DOS DADOS?

Res.: Através de um método matemático chamado mínimos quadrados, onde procura-se minimizar os erros (epslon), daí o nome do método.

MÍNIMOS QUADRADOS

- DADO SEU RIGOR MATEMÁTICO acadêmico, a explicação do método foge do escopo da disciplina em nível de pós-graduação.
 Para maiores referências, sugere-se consultar:
 - http://livrommq.blogspot.com.br/
- Dentro do escopo da disciplina, utilizaremos o EXCEL como ferramenta de cálculo (que se utiliza do método em suas funções):
 - Suplemento ANÁLISE DE DADOS, Opção Regressão Linear
 - Funções: para beta, INTERCEPT (INTERCEPÇÃO) e; para alfa, SLOPE (INCLINAÇÃO)

9507595

45697056

+

PARA O MODELO:

$$y_i = a.x_i + b + e_i$$

Representação em formato de equação:

$$y_1 = a.x_1 + b + e_1$$

 $y_2 = a.x_2 + b + e_2$

$$y_n = a.x_n + b + e_n$$

PARA O MODELO:

$$y_i = a.x_i + b + e_i$$

Representação em formato tabular:

i	y _i	а	x _i	þ	ei
1	y ₁	а	x ₁	þ	e1
2	y ₂	а	\mathbf{x}_{2}	þ	e2
-	-		-		-
n	y _n	а	X _n	þ	en

Obs: como os coeficientes alfa e beta são constantes, em geral os omitimos no formato tabular.

PARA O MODELO:

$$y_i = a.x_i + b + s_i$$

Representação em formato tabular:

i	y _i	x _i	s _i
1	y ₁	X ₁	s ₁
2	y ₂	X ₂	s ₂
-	-	-	-
n	y _n	X _n	s _n

.

+ (

REGRESSÃO LINEAR MULTIPLA

Expandimos o modelo inserindo variáveis independentes adicionais:

$$y_i = a_1 \cdot x_{1i} + a_2 \cdot x_{2i} + b + s_i$$

$$y_i = a_1.x_{1i} + a_2.x_{2i} + ... + a_k.x_{ki} + b + s_i$$

Em um modelo múltiplo (ou multivariado) são tratadas duas ou mais variáveis independentes, explicativas, ou ainda, exógenas.

+

Um modelo AR utiliza a própria "história" de uma variável para criar uma "segunda dimensão", dessa forma;

$$y_i = a_1.y_{i-1} + a_2.y_{i-2} + b + s_i$$

No exemplo acima, criamos um modelo AR-2 (com duas variáveis). Abaixo, generalizamos para AR-K (modelo autoregressivo de ordem K):

$$y_i = a_1.y_{i-1} + a_2.y_{i-2} + ... + a_k.y_{i-k} + p + s_i$$

Obs: aparentemente o modelo pode parecer complexo, mas veremos que sua aplicação é bem simples, na verdade, utilizando a representação tabular.

CONSTRUÇÃO 1/2

Expandiremos o modelo abaixo, para um AR-3:

$$y_{i} = a.y_{i-1} + b + s_{i}$$

Representação em formato tabular:

i	y _i	y _{i-1}	У _{i-2}	y _{i-3}	s _i
1	y ₁				s ₁
2	y ₂	У ₁			S ₂
3	y ₃	y ₂	y ₁		s ₃
4	y ₄	y ₃	y ₂	y ₁	S ₄
n	y _n	y _{n-1}	У _{п-2}	y _{n-3}	s _n

• • [

+ (

CONSTRUÇÃO 2/2

Repare que a coluna y_{i-1} nada mais é do que a coluna y_i , deslocada uma linha para baixo. E y_{i-2} segue o mesmo comportamento, porém com deslocamento de duas linhas:

i	y _i	y _{i-1}	y _{i-2}	У _{i-3}	s _i
1	y ₁ .				s ₁
2	y ₂ .	y ₁			s ₂
3	y ₃ .	y ₂	y ₁		s ₃
4	y_4	y ₃	y ₂	y ₁	S ₄
n	y _n	y _{n-1}	y _{n-2}	y_{n-3}	s _n

+

.

VARIÁVEIS DUMMY

- Uma variável dummy (também chamada indicador ou VARIÁVEL DE CATEGORIA OU BOOLEANA) é aplicada utilizando valor 0 ou 1 para indicar o que se propõe.
- É aplicável para:
 - Categorizar OUTLIERS;
 - Criar CATEGORIAS (fumante/não fumante, masc./fem., etc)
- Sinalizar SAZONALIDADES em séries temporais
- ENTRE OUTRAS categorizações

9937595

45697056

VARIÁVEL DUMMY PARA OUTLIER

Basta criar uma nova variável e, quando foi identificado um outlier (ver teste z), assinalar com 1.

i	y _i	x _i	d _i	s _i
1	y ₁	x ₁	0	S ₁
2	y ₂	x_{2}	1	S ₂
3	y ₃	X_3	0	S_3
n	y _n	X _n	0	S _n

Obs: no exemplo acima, somente \boldsymbol{x}_2 foi identificado como outlier.

MODELO REGRESSIVO COM VARIÁVEL

DUMMY

Expandiremos o modelo abaixo:

$$y_i = a_1.x_{1i} + a_2.x_{2i} + b + s_i$$

Que ficará agora:

$$y_i = a_1.x_i + a_2.d_{1i} + b + s_i$$

Onde $d_{1i} = \begin{cases} 0, \text{ se } x_i \text{ não for outlier} \\ 1, \text{ se } x_i \text{ for outlier} \end{cases}$

Obs: utilizamos aqui a notação indicial d₁ propositalmente, pois é comum utilizarmos várias variáveis *dummies*

VARIÁVEL DUMMY PARA SAZONALIDADES

Para captar o efeito sazonal, incluiremos uma variável dummy para cada evento sazonal.

Para o caso de identificarmos, por exemplo, que a cada mês do ano há uma sazonalidade (isto é, janeiros são similares ao longo do anos, o mesmo ocorrendo para fevereiro e todos demais meses) as dummies serão:

$$D_{jan} = \begin{cases} 1 & se_for_m\^es_janeiro \\ 0 & caso_contr\'ario \end{cases}$$

$$D_{fev} = \begin{cases} 1 & se_for_m\^es_fevereiro \\ 0 & caso_contr\'ario \end{cases}$$

$$\vdots$$

$$D_{nov} = \begin{cases} 1 & se_for_m\^es_novembro \\ 0 & caso_contr\'ario \end{cases}$$

MODELO REGRESSIVO COM DUMMY SAZONAL Nosso modelo será expandido para: $y_i = a_1.x_i + a_2.d_{1i} + a_2.d_{2i} + ... + a_{12}.d_{12i} + b + s_i$ Pode parecer complexo a primeira vista, mas veremos no formato tabular que é simples.

MODELO REGRESSIVO COM DUMMY SAZONAL

Basta criar uma coluna para cada evento sazonal

i	y _i	x _i	d _i	d _i		d _i	s _i
1	y ₁	x ₁	1 \	0		0	s ₁
2	y ₂	X ₂	0	1 ,		0	S ₂
					*		
12	y ₁₂	X ₁₂	0	0		1	S ₁₂
13	y ₁₃	x ₁₃	1	0		0	S ₁₃
14	y ₁₄	X ₁₄	0	1		0	S ₁₄
n	y _n	\mathbf{x}_{n}	d _{1n}	d _{2n}		d _{12n}	s _n

•

•

+

0

+

Por onde andamos no nosso "PASSEIO"?

+ : :

DESAFIO

45697056

. . .

990/69

4569/U56

Obrigado

ProfDiogenes.Justo@fiap.com.br

Copyright © 2018 | Diógenes Justo

Todos os direitos reservados. Reprodução ou divulgação total ou parcial deste documento, é expressamente proibido sem consentimento formal, por escrito, do professor/autor.