1、已知
$$f(x-1) = x^2 + x + 1$$
,求 $f\left(\frac{1}{x-1}\right)$. (3分) 2、求极限 $\lim_{x \to 0} (1-x^2)^{\frac{1}{1-\cos x}}$. (4分)

3、设
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x > 0 \\ a + x^2, & x \le 0 \end{cases}$$
, 要使 $f(x)$ 在 $(-\infty, +\infty)$ 内连续,应如何选取数 a . (5分)

4、求函数
$$y = \arctan \frac{1+x}{1-x}$$
 的导数. (4 分) 5、求 $\int \frac{x^2}{a^6 - x^6} dx$. (5 分)

6、求
$$\int_0^{\pi} e^x \sin x dx$$
. (5分) 7、 $z = x^3 f\left(xy, \frac{y}{x}\right)$, 求 $\frac{\partial z}{\partial x}$. (5分)

8、计算
$$\iint_{D} (x+y) dx dy$$
, **D** 为由曲线 $y=x$ 与 $y=x^2$ 所围成的闭区域. (6分)

9、设
$$L$$
 是圆周 $x^2 + y^2 = 2x$ (按逆时针方向), 求 $I = \int_L x dy - y dx$. (5分)

10、求幂级数
$$\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$$
的收敛半径和收敛区间. (5分)

9、设
$$L$$
 是圆周 $x^2 + y^2 = 2x$ (按逆时针方向),求 $I = \int_L x dy - y dx$. (5分)
10、求幂级数 $\sum_{n=1}^{\infty} \frac{1}{3^n + (-2)^n} \frac{x^n}{n}$ 的收敛半径和收敛区间. (5分)
11、讨论级数 $\sum_{n=1}^{\infty} \frac{n!}{2^n}$ 的收敛性. (4分) 12、求方程 $y'' + \frac{1}{1-y} (y)^2 = 0$ 的通解. (5分)
13、求 $f(x) = x \arctan x - \ln \sqrt{2 + x^2}$ 的麦克劳林级数. (5分)

13、求
$$f(x) = x \arctan x - \ln \sqrt{2 + x^2}$$
 的麦克劳林级数. (5分)

14、证明: 当
$$x>0$$
时,有 $\ln(1+x)>\frac{x}{1+x}$. (6分)

15、计算行列式
$$\begin{vmatrix} a & b & 0 & 0 \\ 0 & c & 0 & 0 \\ d_1 & d_2 & d_3 & d_4 \\ c_1 & c_2 & c_3 & c_4 \end{vmatrix}$$
. (6分)

16、设矩阵
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 3 & 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 7 & -1 \\ 2 & 3 \\ 2 & 0 & 1 \end{pmatrix}$, 求 $(AB)^T$. $(4 分)$

17、设
$$A = \begin{pmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 \\ 5 & 3 \end{pmatrix}$, $C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{pmatrix}$, 求矩阵 X , 使它满足 $AXB = C$. (5分)

18、设矩阵
$$A = \begin{pmatrix} 1 & -2 & -1 & 0 & 2 \\ -2 & 4 & 2 & 6 & -6 \\ 2 & -1 & 0 & 2 & 3 \\ 3 & 3 & 3 & 3 & 4 \end{pmatrix}$$
,求 $R(A)$. (5分)

19、已知向量组 β_1 , β_2 , β_3 线性无关,试证向量组 $\alpha_1 = \beta_1 + \beta_2$, $\alpha_2 = \beta_2 + \beta_3$, $\alpha_3 = \beta_3 + \beta_1$ 也线性无关.

20、求解线性方程组
$$\begin{cases} x_1 - x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 + x_3 - 3x_4 = 2 \\ x_1 - x_2 - 2x_3 + 3x_4 = -1 \end{cases}$$
 (7分)