Stationary social learning in a changing environment

Raphaël Lévy (HEC Paris), Marcin Pęski (Toronto), Nicolas Vieille (HEC Paris)

June 22, 2023

Introduction

- Social learning literature:
 - two sources of information: private and social learning,
 - permanent state
- Changing state
 - natural assumption in many settings
 - rare and rapid political transitions: Arab Spring, 1830 liberal revolutions, carnival of Solidarity August 1980 - December 1981
- Why changing state matters?
 - Grossman-Stiglitz paradox makes stopping learning (i.e., informational cascade) not possible.

Introduction

Questions and results

Question	Result
learning efficiency + welfare	no asymptotic learning,
	even with slowly changing state
is more social learning better?	it can be worse
behavior and beliefs	uniformity under slowly changing state,
	rare, rapid transitions

- Most striking results are when state is (very) persistent, but not permanent.
- Related lit: Moscarini Ottaviani Smith (98), Dasaratha Golub Hak (20), Kabos Meyer (21)

Model

- Markov-changing state $\theta_t \in \{0,1\}$.
 - $\lambda = P(\theta_{t+1} \neq \theta | \theta_t = \theta)$,
 - neither independent $(\lambda = \frac{1}{2})$, nor permanent $(\lambda = 0)$,
 - slow transitions ($\lambda \to 0$)
- Social learning: in each period, continuum of short-lived agents
 - random sample of n actions from the previous period(s),
 - private signal at cost $c \ge 0$,
 - action $a \in \{0, 1\}$,
 - utility $u(a, \theta_t) = \mathbf{1}(a = \theta_t)$.
- ullet Stationary equilibrium $\mu \in \Delta (X \times \{0,1\})$, where
 - $x \in X = [0,1]$ if the fraction of population playing 1.

Model

- Assumption: private signal is
 - either costly c > 0, or
 - free but with bounded precision,
- p private belief about the state
 - u(p) expected payoff from optimal action
 - $v(p) \ge u(p)$ expected payoff from optimally using information and then taking action

Model

• Assumption implies that v(p) = u(p) for extreme beliefs.

Welfare n = 0

• each generation is identical and can only learn from private signal

Welfare

Permanent state

- Permanent state ($\lambda = 0$)
 - n = 0: no social learning
 - n = 1: some social learning but herding (Banerjee 92, Bikchandani et al 92)
 - n = 2: asymptotic full learning (Banerjee Fudenberg 2004)
- If state is permanent, social learning helps!

Welfare n = 1

- $p_0, p_1 \in [1 \hat{p}, \hat{p}]$ and if $\lambda \leq \lambda^*$, then $p_1 = \hat{p} = 1 p_0$.
 - p_k belief after observing k agents (out of n sample) playing 1.

Welfare n = 2

• Theorem: $p_0, p_1, p_2 \in [1 - \hat{p}, \hat{p}]$ and if $\lambda \leq \lambda^*$, then $p_2 = \hat{p} = 1 - p_0$.

(ㅁㅏㅓ@ㅏㅓㅌㅏㅓㅌㅏ ㅌ 쒸٩)

Welfare n=2

Proof sketch

- Suppose $p_2 > \hat{p}$: non-confused agents don't buy information.
 - ϕ_{θ} the probability that an agent with interim beliefs $p_1 = \frac{1}{2}$ (who thus acquires info) plays action 1 in state θ .
 - ullet x_t the fraction of agents playing action 1 at date t

$$x_{t+1} = x_t^2 + 2x_t(1-x_t)\phi_{\theta_{t+1}} =: g_{\theta_t}(x_t).$$

◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶
◆□▶</

Welfare n=2

Proof sketch

$$x_{t+1} = x_t^2 + 2x_t(1-x_t)\phi_{\theta_{t+1}} =: g_{\theta_t}(x_t).$$

- Sooner or later, x_t will be close to 0.
- Around 0,

$$\ln x_{t+1} \simeq \ln x_t + \ln 2\phi_{\theta_{t+1}}$$

- : 'random walk' with drift.
 - Since $4\phi_1(1-\phi_1) < 1$, $\ln 2\phi_1 < -\ln 2\phi_0$: the drift is negative.
 - \Rightarrow lim $x_t \in \{0,1\}$, a.s.
 - ⇒ Samples are uninformative

Welfare $n \ge 2$

- For n > 2, we need some assumptions:
 - persistent (but not permanent) state: $\lambda \to 0$
 - precise signals: $n^2\phi_1(1-\phi_1) < 1$,
 - example: perfect signals
 - regular equilibrium: $p_{n-1} \ge \frac{1}{2}$.

Theorem

Under the above assumptions, in equilibrium, $\lim_{\lambda \to 0} p_n^\lambda = \hat{p} = 1 - \lim p_0^\lambda$.

Welfare $n \ge 2$

Behavior: Consensus

• Let $\mu_{\lambda} \in \Delta(X \times \{0,1\})$ be the stationary equilibrium.

Theorem

If $n \ge 2$, then, for each $\varepsilon > 0$

$$\lim_{\lambda \to 0} \mu_{\lambda} \left\{ \varepsilon \le x \le 1 - \varepsilon \right\} = 0.$$

- uniform behavior, most of the time,
- together with previous result, uniform beliefs

Behavior: Consensus

Proof sketch

- Each agent observes random sample $(a_1, ..., a_n)$
 - a_1 is λ -close to optimal action,
 - a_2 cannot add too much information if λ is small,
 - $\Rightarrow a_1 = a_2$, most likely.

Theorem

There exists a constant $K < \infty$ such that

$$\int x(1-x)\,d\mu^{\lambda}(x,\theta)\leq K\lambda.$$

Behavior: Rapid transitions

Behavior: Rapid transitions

Comments: $n \to \infty$

- Continuum time version <- we can compute equilibria.
- Binary signals

Comments: continuum actions

- Suppose $n \ge 2$, and
 - A = [0,1] and $u(a,\theta) = -(a-\theta)^2$,
 - perfect signals
- With permanent state ($\lambda=0$) -> asymptotic learning and welfare = 1.
- With persistent state $(\lambda > 0)$ -> there are stationary equilibria with welfare <1.

Conclusions

- Social learning with changing state
- Even when state is very persistent (but not permanent):
 - no asymptotic learning, uniformly bounded welfare
- Additionally, when state is persistent
 - behavior and beliefs exhibit consensus,
 - rare and rapid transitions.