Practice Problems 1

Office Hours: Tuesdays, Thursdays from 4:30 to 5:30 at SS 7143.

E-mail: gabriel.martinez@wisc.edu

If you need help, reach out: your classmates, the TA, textbooks, or the Professor.

- Common Symbols

```
\forall: for all \in: element of >: grater than \Rightarrow: implies \equiv: equivalent to \land: and \lor: or \subset: subset \lor: union \cap: intersection \exists exists \exists! exists a unique \emptyset: empty set \neg P: not P A^c: complement of A
```

 $A \setminus B = A \cap B^c : A \text{ minus } B$ $\mathcal{P}(A) \equiv 2^A : \text{ the power set of } A$ $f(A)^{-1} : \text{ the pre-image of } A$

NEGATIONS

- 1. Negate the following:
 - (a) * Exists $x \in \mathbb{R}$ such that $\log x = 30$
 - (b) $\forall a \in \mathbb{Q}, \sqrt{a} \in \mathbb{Q}$
 - (c) * If you're Madisonian, then you were born in Wisconsin.
 - (d) A person can be happy while not loving spicy food.
 - (e) * $\forall \epsilon \in \mathbb{R}$ such that $\epsilon > 0$, $\exists N \in \mathbb{N}$ such that $\forall n \in \mathbb{N}$, satisfying $n \geq N$, $1/n < \epsilon$.
 - (f) Between any rational numbers, there exists another rational.

SETS

- 2. For any sets A, B, C, prove that:
 - (a) * $(A \cap B) \cap C = A \cap (B \cap C)$
 - (b) * $A \cup B = A \Leftrightarrow B \subseteq A$
 - (c) $(A \cup B)^c = A^c \cap B^c$
 - (d) $A \setminus B \subseteq A$
- 3. * Let Q be the statement 2x > 4 and P: 10x + 2 > 15. Show that $Q \implies P$ using:
 - (a) a direct proof
 - (b) contrapositive principle
 - (c) contradiction

FUNCTIONS

- 4. Let $f: S \to T$, $U_1, U_2 \subset S$ and $V_1, V_2 \subset T$.
 - (a) * Prove that $V_1 \subset V_2 \implies f^{-1}(V_1) \subset f^{-1}(V_2)$.
 - (b) Prove that $f(U_1 \cap U_2) \subset f(U_1) \cap f(U_2)$.
 - (c) $f^{-1}(V_1 \cup V_2) = f^{-1}(V_1) \cup f^{-1}(V_2)$.
- 5. Let $X = \{a, b, c\}$ and $Y = \{x, y, z\}$. Give an example of the following or show that it is impossible to do so:
 - (a) a function, $f: X \to Y$, that is neither injective nor surjective
 - (b) a one-to-one function, $f: X \to Y$, that is not onto
 - (c) a bijection, $f: X \to Y$
 - (d) a surjection , $f: X \to Y$, that is not one-to-one