

Non Intrusive Reduced Basis method applied to wind turbine simulation

Elise Grosjean, joint work with Yvon Maday

Laboratoire Jacques-Louis Lions, Sorbonne Université, CNRS UMR 7598

Main goal

In an industrial context, parameter dependant PDEs may have to be solved numerically several times, and it can lead to very large computing times, for instance for:

- optimization paramaters fitting
- complex systems with uncertain scenarios

Non Intrusive Reduced Basis method (NIRB) is a quickly emerging field in applied mathematics and computational science. They enable high fidelity real-time simulations and **reduce the computational costs** thanks to the small Kolmogorov n-width [2]. These methods are decomposed in two stages: one **offline**, costly in time, and one **online**, much faster.

Industrial context

Code_Saturne is a free computer simulation software in fluid mechanics developed by EDF, using Finite Volumes method. One of the applications of Code_Saturne aims to obtain an optimal energy production by wind-farm. To do so, a specific velocity positioned upstream of a wind turbine is computed using a Reynolds Averaged Navier-Stokes (RANS) Equation for a given input velocity (uref). To further reduce calculation times, non intrusive reduced basis methods are suitable such as the two-grid method. RANS method gives mean quantities in time, and comes from the averaged Navier-Stokes equations:

$$\operatorname{div} \overline{\mathbf{u}} = 0, \tag{1}$$

$$\frac{\overline{u}_i}{\partial t} + \sum_{j=1}^{3} \overline{u}_j \frac{\partial \overline{u}_i}{\partial x_j} = \overline{f}_i - \frac{1}{\rho} \frac{\partial \overline{p}}{\partial x_i} + \sum_{j=1}^{3} \left[\nu \frac{\partial^2 \overline{u}_i}{\partial x_j \partial x_j} - \frac{\partial \overline{u}_i' \overline{u}_j'}{\partial x_j} \right], \tag{2}$$

deduced from the continuity and the momentum equations and the decomposition: $u_i = \overline{u}_i + u'_i$. Here, $\mathbf{u} = (u_1, u_2, u_3)$ is the velocity, ρ is the fluid density, p its pressure, ν the viscosity.

Two-grid method

The goal is to find a good approximation of the velocity on a fine mesh Ω_h using a velocity on a coarse mesh Ω_H .

To successfully apply reduced basis method, the Kolmogorov n-width must be very small. It means that the solution manifold $\mathcal{M}_h = \{\mathbf{u}_h(uref) \in X_h|uref \in \mathbb{R}^{Ntrain}\}$ for discrete solutions $\mathbf{u}_h(uref)$ of the RANS model on a fine mesh (of size h), may be approximated by a finite set of well-chosen solutions.

High-fidelity model (RANS)

Get snaphots

1. Run Code_Saturne as a **black-box** (no need to modify the code) to get discrete solutions for several parameters uref well chosen.

Output:
$$X = (\mathbf{u}_h^1, \dots, \mathbf{u}_h^{Ntrain}) \in \mathbb{R}^{\mathcal{N} \times Ntrain}$$

Greedy algorithm, POD, PGD,...

Build a reduced basis by POD

- **2.** Set the correlation Matrix $C_{i,j} = \int_{\Omega_h} \mathbf{u}_h^i \cdot \mathbf{u}_h^j$,
- **3.** Solve eigenvalues problem: $C\Psi_h^i = \lambda_i \Psi_h^i$, where $\Psi_h^i \in \mathbb{R}^{Ntrain}$.
- **4.** For N ordered proper values $(\lambda_1 > \cdots > \lambda_N)$, calculate N functions

$$\boldsymbol{\phi}_h^k = \sum_{j=1}^{Nrain} \boldsymbol{\Psi}_h^{k,j} \mathbf{u}_h^k \ \forall k = 1,...,N,$$

5. Normalize: $\boldsymbol{\phi}_h^k = \frac{\boldsymbol{\phi}_h^k}{\sqrt{\lambda_k}}$.

Output: $(\boldsymbol{\phi}_h^k)_{k=1,...N}$

NIRB

Reconstruct a fine approximation for a new parameter uref

6. A coarse mesh Ω_H is involved for the RANS resolution with H >> h the size of the mesh. Consequently, the time cost to obtain $\mathbf{u}_H(uref)$ is low. From the following estimates [1]: $\left\| \mathbf{u}(\mathbf{x}, uref) - \sum_{k=1}^{N} (\mathbf{u}_H(uref), \boldsymbol{\phi}_h^k)_{L^2} \boldsymbol{\phi}_h^k \right\|_{H^1} \leq C_1 h + C_2 H^2 + C(N) \varepsilon \sim o(h) \text{ if } H^2 \sim h,$ where C_1, C_2 , and C are constants independent of h and h, we deduce that $\mathbf{u}_H^N = \sum_{k=1}^{N} (\mathbf{u}_H(uref), \boldsymbol{\phi}_h^k)_{L^2} \boldsymbol{\phi}_h^k$ is a good approximation.

Application

Output: $\mathbf{u}_H^N \in X_h^N = Span\{\mathbf{u}_h^1, \dots, \mathbf{u}_h^N\}$

- ➤ 2D mesh with 6500 cells, thinner around the wind turbine.
- ► Characteristic length D: 126m, corresponds to the rotor diameter.
- ► Hub height: 95.6m.
- ► Wind turbine rotor is represented in the movement equation by adding a source term.
- \blacktriangleright Boundary Condition: uref at the inlet.
- \blacktriangleright Initial Condition: uref set in the domain.

Results on one 2D wind turbine

Figure 2: Decrease of the eigenvalues of the POD

Figure 3: L^{∞} errors of the velocity on the interest area

- For k=3, $I(k)=\frac{\sum_{j=1}^k \lambda_j}{\sum_{j=1}^{Ntrain} \lambda_j}\simeq 1$, which means that the eigenvalues of POD decrease enough to perform NIRB method.
- After k = 5, the decay is slowed down (Figure 2), so the error of the POD increases slightly (Figure 3).
- The relative error of $\|\mathbf{u}_{h/10} \mathbf{u}_H^N\|_{L^{\infty}}$ is closer to the one given by $\|\mathbf{u}_{h/10} \mathbf{u}_h\|_{L^{\infty}}$ rather than the one with \mathbf{u}_H (Figure 3).

Conclusions and perspectives

- We deduce from these results that the two-grid method may be applied to this case of application.
- An analysis on the size H of the coarse mesh should provide the adequate size to obtain the best approximation.
- We plan to extend this method to the case of several wind-turbines.

References

- [1] R. Chakir, Y. Maday, A two-grid nite-element/reduced basis scheme for the approximation of the solution of parameter dependent P.D.E, 2009. hal-00387405f.
- [2] A. Buffa1, Y. Maday, A.T. Patera, C. Prudhomme and G. Turinici, *A priori convergence of the greedy algorithm for the parametrized reduced basis*, 2012. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 46 (3), pp.595-603.