



# Chapter 8: Subnetting IP Networks

**CCNA** Routing and Switching

Introduction to Networks v6.0



# Chapter 8 - Sections & Objectives

- 8.1 Subnetting an IPv4 Network
  - Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to medium-sized business network.
  - Explain how subnetting segments a network to enable better communication.
  - Explain how to calculate IPv4 subnets for a /24 prefix.
  - Explain how to calculate IPv4 subnets for a /16 and /8 prefix.
  - Given a set of requirements for subnetting, implement an IPv4 addressing scheme.
  - Explain how to create a flexible addressing scheme using variable length subnet masking (VLSM).
- 8.2 Addressing Schemes
  - Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end users in a small to medium-sized network.
  - Implement a VLSM addressing scheme.



# Chapter 8 - Sections & Objectives (Cont.)

- 8.3 Address Schemes
  - Explain design considerations for implementing IPv6 in a business network.
  - Explain how to implement IPv6 address assignments in a business network.





### **Network Segmentation**

### **Broadcast Domains**

- Devices use broadcasts in an Ethernet LAN to locate:
  - Other devices Address Resolution Protocol (ARP) which sends Layer 2 broadcasts to a known IPv4
    address on the local network to discover the associated MAC address.
  - Services Dynamic Host Configuration Protocol (DHCP) which sends broadcasts on the local network to locate a DHCP server.
- Switches propagate broadcasts out all interfaces except the interface on which it was received.



### **Network Segmentation**

### Problems with Large Broadcast Domains

- Hosts can generate excessive broadcasts and negatively affect the network.
  - Slow network operations due to the significant amount of traffic it can cause.
  - Slow device operations because a device must accept and process each broadcast packet.
- Solution: Reduce the size of the network to create smaller broadcast domains. These smaller network spaces are called *subnets*.







### **Network Segmentation**

# Reasons for Subnetting

Reduces overall network traffic and improves network performance.

Enables an administrator to implement security policies such as which subnets are allowed or not



### Octet Boundaries

Networks are most easily subnetted at the octet boundary of /8, /16, and /24

| Prefix<br>Length | Subnet Mask   | Subnet Mask in Binary<br>(n = network, h = host)                        | # of hosts |
|------------------|---------------|-------------------------------------------------------------------------|------------|
| /8               | 255.0.0.0     | nnnnnnn.hhhhhhhh.hhhhhhh.hhhhhhh<br>1111111.00000000.00000000.00000000  | 16,777,214 |
| /16              | 255.255.0.0   | nnnnnnn.nnnnnnn.hhhhhhh.hhhhhhh<br>11111111.11111111.00000000.00000000  | 65,534     |
| /24              | 255.255.255.0 | nnnnnnn.nnnnnnnn.nnnnnnn.hhhhhhh<br>11111111.11111111.11111111.00000000 | 254        |

- Prefix length and the subnet mask are different ways of identifying the network portion of an address.
- Subnets are created by borrowing host bits for network bits.
- More host bits borrowed, the more subnets that can be defined.

# Subnetting on the Octet Boundary

| Subnet Address         | Host Range                                  | Broadcast            |
|------------------------|---------------------------------------------|----------------------|
| (256 Possible Subnets) | (65,534 possible hosts per subnet)          |                      |
| <u>10.0</u> .0.0/16    | <u>10.0</u> .0.1 - <u>10.0</u> .255.254     | <u>10.0</u> .255.255 |
| <u>10.1</u> .0.0/16    | <u>10.1</u> .0.1 - <u>10.1</u> .255.254     | <u>10.1</u> .255.255 |
| <u>10.2</u> .0.0/16    | <u>10.2</u> .0.1 - <u>10.2</u> .255.254     | 10.2.255.255         |
| <u>10.3</u> .0.0/16    | <u>10.3</u> .0.1 - <u>10.3</u> .255.254     | <u>10.3</u> .255.255 |
| <u>10.4</u> .0.0/16    | <u>10.4</u> .0.1 - <u>10.4</u> .255.254     | <u>10.4</u> .255.255 |
| <u>10.5</u> .0.0/16    | <u>10.5</u> .0.1 - <u>10.5</u> .255.254     | <u>10.5</u> .255.255 |
| <u>10.6</u> .0.0/16    | <u>10.6</u> .0.1 - <u>10.6</u> .255.254     | <u>10.6</u> .255.255 |
| <u>10.7</u> .0.0/16    | <u>10.7</u> .0.1 - <u>10.7</u> .255.254     | <u>10.7</u> .255.255 |
|                        |                                             |                      |
| <u>10.255</u> .0.0/16  | <u>10.255</u> .0.1 - <u>10.255</u> .255.254 | 10.255.255.255       |

- Subnetting Network 10.x.0.0/16
- Define up to 256 subnets with each subnet capable of connecting 65,534 hosts.
- First two octets identify the network portion while the last two octets are for host IP addresses.



# Subnetting on the Octet Boundary (Cont.)

| Subnet Address<br>(65,536 Possible Subnets) | Host Range<br>(254 possible hosts per subnet) | Broadcast              |
|---------------------------------------------|-----------------------------------------------|------------------------|
| 10.0.0.0/24                                 | <u>10.0.0</u> .1 - <u>10.0.0</u> .254         | <u>10.0.0</u> .255     |
| 10.0.1.0/24                                 | <u>10.0.1</u> .1 - <u>10.0.1</u> .254         | <u>10.0.1</u> .255     |
| 10.0.2.0/24                                 | <u>10.0.2</u> .1 - <u>10.0.2</u> .254         | 10.0.1.255             |
|                                             |                                               |                        |
| 10.0.255.0/24                               | <u>10.0.255</u> .1 - <u>10.0.255</u> .254     | 10.0.255.255           |
| <u>10.1.0</u> .0/24                         | <u>10.1.0</u> .1 - <u>10.1.0</u> .254         | <u>10.1.0</u> .255     |
| <u>10.1.1</u> .0/24                         | <u>10.1.1</u> .1 - <u>10.1.1</u> .254         | <u>1.1.1.0</u> .255    |
| 10.1.2.0/24                                 | <u>10.1.2</u> .1 - <u>10.1.2</u> .254         | 10.1.2.0.255           |
|                                             |                                               |                        |
| <u>10.100.0</u> .0/24                       | <u>10.100.0</u> .1 - <u>10.100.0</u> .254     | <u>10.100.0</u> .255   |
|                                             |                                               |                        |
| 10.255.255.0/24                             | <u>10.255.255</u> .1 - <u>10.255.255</u> .254 | <u>10.255.255</u> .255 |

- Subnetting Network 10.x.x.0/24
- Define 65,536 subnets each capable of connecting 254 hosts.
- /24 boundary is very popular in subnetting because of number of hosts.



# Classless Subnetting

### Subnetting a /24 Network

| Prefix<br>Length | Subnet Mask     | Subnet Mask in Binary<br>(n = network, h = host)         | # of<br>subnets | # of<br>hosts |
|------------------|-----------------|----------------------------------------------------------|-----------------|---------------|
| /25              | 255.255.255.128 | nnnnnnn.nnnnnnnn.nnnnnnn.nhhhhhh<br>11111111.1111111111  | 2               | 126           |
| /26              | 255.255.255.192 | nnnnnnn.nnnnnnnn.nnnnnnn.nnhhhhh<br>11111111.1111111111  | 4               | 62            |
| /27              | 255.255.255.224 | nnnnnnn.nnnnnnnn.nnnnnnn.nnnhhhhh<br>11111111.1111111111 | 8               | 30            |
| /28              | 255.255.255.240 | nnnnnnn.nnnnnnnn.nnnnnnn.nnnnhhhh<br>11111111.1111111111 | 16              | 14            |
| /29              | 255.255.255.248 | nnnnnnn.nnnnnnnn.nnnnnnn.nnnnnhhh<br>11111111.1111111111 | 32              | 6             |
| /30              | 255.255.252     | nnnnnnn.nnnnnnnn.nnnnnnn.nnnnnnhh<br>11111111.1111111111 | 64              | 2             |

Subnets can borrow bits from any host bit position to create other masks.



### Video Demonstration – The Subnet Mask

### Subnetting in Binary

- ANDING
  - Convert IP address and Subnet Mask to Binary (line up vertically like an addition problem)
  - Logically AND (1 and 1 = 1, all other combinations = 0)
  - Result is network address for original IP address
- Classful Subnetting
  - Class A /8 255.0.0.0
  - Class B /16 255.255.0.0
  - Class C /24 255.255.255.0



# Video Demonstration – The Subnet Mask (Cont.)

### Subnetting 192.168.1.0/24

| 192      | 168      | 1        | 0        |
|----------|----------|----------|----------|
| 255      | 255      | 255      | 128      |
| 11000000 | 10101000 | 00000001 | 00000000 |
| 11111111 | 11111111 | 11111111 | 10000000 |
| N        | N        | N        | Sn H     |
|          |          |          |          |

Subnet bits =  $2^1 = 2$ 

Host bits =  $2^7$  = 128-2 = 126

Subnetworks = 2

### Subnetting 192.168.1.0/24

| 192      | 192 168  |          | 68       |
|----------|----------|----------|----------|
| 255      | 255      | 255      | 128      |
| 11000000 | 10101000 | 00000001 | 01000100 |
| 11111111 | 11111111 | 11111111 | 10000000 |
| 11000000 | 10101000 | 00000001 | 00000000 |
| 192      | 168      | 1 .      | 0        |

192.168.1.0 /25 ----> 192.168.1.127 /25

192.168.1.128 /25 ----> 192.168.1.255 /25

# Video Demonstration – Subnetting with the Magic Number

- Magic number technique used to calculate subnets
- Magic number is simply the place value of the last one in the subnet mask
- /25 11111111.11111111.1111111.10000000 magic number = 128
- /26 11111111.11111111.11111111.11000000 magic number = 64
- /27 11111111.11111111.11111111.11100000 magic number = 32



### Video Demonstration – Subnetting with the Magic Number (Cont.)

# The Magic Number is the last 1 in Binary

| 192         | 168          | 1                                                                           | 0                |
|-------------|--------------|-----------------------------------------------------------------------------|------------------|
| 255         | 255          | 255                                                                         | 224              |
| 11000000    | 10101000     | 00000001                                                                    | 00000000         |
| 11111111    | 11111111     | 11111111                                                                    | 11100000         |
|             |              |                                                                             | Sn H             |
| The Magic N | umber is? 32 | 192.168.1.0 /27<br>192.168.1.32 /27<br>192.168.1.64 /27<br>192.168.1.96 /27 | 192.168.1.192/27 |

# Video Demonstration – Subnetting with the Magic Number (Cont.)

| 172                                                                        | 16       | 0         | 0        |  |  |
|----------------------------------------------------------------------------|----------|-----------|----------|--|--|
| 255                                                                        | 255      | 254       | 0        |  |  |
| 10101010                                                                   | 00010000 | 00000000  | 00000000 |  |  |
| 11111111                                                                   | 11111111 | 1111 1110 | 00000000 |  |  |
|                                                                            |          | Sn H      | Н        |  |  |
| /hat is the magic number? 2<br>72.16.0.0 172.16.1.255 /23<br>72.16.2.0 /23 |          |           |          |  |  |

# Classless Subnetting Example







# **Creating 2 Subnets**

/25 Subnetting Topology





# Video Demonstration – Creating Two Equal-sized Subnets (/25)

#### Create 2 Equal-sized Subnets from 192.168.1.0 /24

**Subnet Mask** - 111111111.11111111.11111111.10000000

| 27  | 2 <sup>6</sup> | <b>2</b> <sup>5</sup> | 24 | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |
|-----|----------------|-----------------------|----|-----------------------|-----------------------|-----------------------|-----------------------|
| 128 | 64             | 32                    | 16 | 8                     | 4                     | 2                     | 1                     |
| 1   | 0              | 0                     | 0  | 0                     | 0                     | 0                     | 0                     |

- Magic Number = 128
- 192.168.1.0 /25 (start at 0)
- 192.168.1.128 /25 (Add 128)





# Subnetting an IPv4 Network Subnetting Formulas

# Calculate Number of Subnets Formula



### Subnetting a /24 Network



# Subnetting an IPv4 Network Subnetting Formulas (Cont.)

# Calculate Number of Hosts Formula



### Calculating the Number of Hosts



# Creating 4 Subnets

/26 Subnetting Topology







# Creating 4 Subnets (Cont.)

/26 Subnetting Topology



# Creating 4 Subnets (Cont.)

/26 Subnetting Topology



# Video Demonstration – Creating Four Equal-sized Subnets (/26)

#### Create 4 Equal-sized Subnets from 192.168.1.0 /24

- Subnet Mask in Binary 111111111.11111111.1111111.111000000
- 2^2 = 4 Subnets
- Magic Number = 64
- **192.168.1.0 /26**
- **192.168.1.64/26**
- **192.168.1.128 /26**
- **192.168.1.192/26**



# Video Demonstration – Creating Eight Equal-sized Subnets (/27)

#### Create 8 Equal-sized Subnets from 192.168.1.0 /24

- Borrow 3 bits 111111111.11111111.11111111.11100000
- Magic Number = 32
- 192.168.1.0 /27 (Start at 0)
- 192.168.1.32 /27 (Add 32 to previous network)
- 192.168.1.64/27 (Add 32)
- 192.168.1.96 /27 (Add 32)
- 192.168.1.128 /27 (Add 32)
- 192.168.1.160 /27 (Add 32)
- 192.168.1.192 /27 (Add 32)
- 192.168.1.224 /27 (Add 32)





# Creating Subnets with a /16 prefix

### Subnetting a /16 Network

| Prefix<br>Length | Subnet Mask   | Network Address<br>(n = network, h = host)                                | # of<br>subnets | # of<br>hosts |
|------------------|---------------|---------------------------------------------------------------------------|-----------------|---------------|
| /17              | 255.255.128.0 | nnnnnnn.nnnnnnnn.nhhhhhhh.hhhhhhhh<br>11111111.111111111.10000000.0000000 | 2               | 32766         |
| /18              | 255.255.192.0 | nnnnnnn.nnnnnnnn.nnhhhhhh.hhhhhhhh<br>11111111.111111111.11000000.0000000 | 4               | 16382         |
| /19              | 255.255.224.0 | nnnnnnn.nnnnnnnn.nnnhhhhh.hhhhhhh<br>11111111.111111111.11100000.00000000 | 8               | 8190          |
| /20              | 255.255.240.0 | nnnnnnn.nnnnnnnn.nnnhhhh.hhhhhhh<br>11111111.111111111.11110000.00000000  | 16              | 4094          |
| /21              | 255.255.248.0 | nnnnnnn.nnnnnnnn.nnnnhhh.hhhhhhh<br>11111111.111111111.11111000.00000000  | 32              | 2046          |
| /22              | 255.255.252.0 | nnnnnnn.nnnnnnnn.nnnnnhh.hhhhhhhh<br>11111111.111111111.11111100.0000000  | 64              | 1022          |

# Creating 100 Subnets with a /16 prefix





# Calculating the Hosts





# Video Demonstration – Creating One Hundred Equal-sized Subnets

- An enterprise network requires 100 equal-sized subnets starting from 172.16.0.0/16
  - New Subnet Mask
    - 11111111.11111111.11111110.00000000
  - 2<sup>7</sup> = 128 Subnets
  - 2^9 = 512 hosts per subnet
  - Magic Number = 2
  - 172.16.0.0 /23
  - 172.16.**2**.0 /23
  - 172.16.**4**.0 /23
  - 172.16.6.0 /23
  - ..
  - 172.16.254.0 /23



# Creating 1000 Subnets with a /8 Network



# Creating 1000 Subnets with a /8 Network (Cont.)







# Video Demonstration – Subnetting Across Multiple Octets

| The Magic Number is the last 1 in Binary |          |       |          |          |  |  |
|------------------------------------------|----------|-------|----------|----------|--|--|
| 10                                       |          | 0 0 0 |          |          |  |  |
| 255                                      | 0        |       | 0        | 0        |  |  |
| 00001010                                 | 00000000 |       | 00000000 | 00000000 |  |  |
| 11111111                                 | 11100000 |       | 00000000 | 00000000 |  |  |
| SN H H H                                 |          |       |          |          |  |  |
| The Magic Number is? 32                  |          |       |          |          |  |  |

```
10.0.0.0/11 10.128.0.0/11
10.32.0.0/11 10.160.0.0/11
10.64.0.0/11 10.192.0.0-10.223.255.255/11
10.96.0.0/11 10.224.0.0/11
```



New Challenge Problem: Create over 300 Equal-sized Subnets of 20,000 Hosts each starting from 10.0.0.0/8

### Subnetting to Meet Requirements

# Subnetting Based on Host Requirements

| Prefix<br>Length | Subnet Mask     | Subnet Mask in Binary<br>(n = network, h = host)          | # of<br>subnets | # of<br>hosts |
|------------------|-----------------|-----------------------------------------------------------|-----------------|---------------|
| /25              | 255.255.255.128 | nnnnnnn.nnnnnnnn.nnnnnnnn.nhhhhhh<br>11111111.1111111111  | 2               | 126           |
| /26              | 255.255.255.192 | nnnnnnn.nnnnnnnn.nnnnnnnn.nnhhhhhh<br>11111111.1111111111 | 4               | 62            |
| /27              | 255.255.255.224 | nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhhh<br>11111111.1111111111 | 8               | 30            |
| /28              | 255.255.255.240 | nnnnnnn.nnnnnnnn.nnnnnnnn.nnnhhhh<br>11111111.1111111111  | 16              | 14            |



### Subnetting to Meet Requirements

# Subnetting Based On Network Requirements

Host devices used by employees in the Engineering department in one network and Management in a separate network.



### Subnetting to Meet Requirements

# Network Requirement Example







# Network Requirement Example (Cont.)



# Lab – Calculating IPv4 Subnets



Mind Wide Open"

#### Lab - Calculating IPv4 Subnets

#### Objectives

Part 1: Determine IPv4 Address Subnetting

Part 2: Calculate IPv4 Address Subnetting

#### Background / Scenario

The ability to work with IPv4 subnets and determine network and host information based on a given IP address and subnet mask is critical to understanding how IPv4 networks operate. The first part is designed to reinforce how to compute network IP address information from a given IP address and subnet mask. When given an IP address and subnet mask, you will be able to determine other information about the subnet.

#### Required Resources

- . 1 PC (Windows 7 or 8 with Internet access)
- Optional: IPv4 address calculator

#### Part 1: Determine IPv4 Address Subnetting

In Part 1, you will determine the network and broadcast addresses, as well as the number of hosts, given an IPv4 address and subnet mask.

REVIEW: To determine the network address, perform binary ANDing on the IPv4 address using the subnet mask provided. The result will be the network address. Hint: If the subnet mask has decimal value 255 in an octet, the result will ALWAYS be the original value of that octet. If the subnet mask has decimal value 0 in an octet, the result will ALWAYS be 0 for that octet.

#### Example:

IP Address 192.168.10.10
Subnet Mask 255.255.255.0
=========
Result (Network) 192.168.10.0

## Packet Tracer – Subnetting Scenario





### Lab – Designing and Implementing a Subnetted IPv4 Addressing Scheme



## Traditional Subnetting Wastes Addresses







# Variable Length Subnet Masks (VLSM)

#### Traditional



### Subnets of Varying Sizes



### Benefits of Variable Length Subnet Masking **Basic VLSM**

### **Basic Subnetting**





### Video Demonstration – VLSM Basics

- Basic VLSM
  - Subnets do not have to be equal sizes, as long as their address ranges do not overlap.
  - When creating subnets it is easier to work from larger to smaller.





### **VLSM** in Practice



```
R2(config)# interface gigabitethernet 0/0
R2(config-if)# ip address 192.168.20.33 255.255.255.224
R2(config-if)# exit
R2(config)# interface serial 0/0/0
R2(config-if)# ip address 192.168.20.226 255.255.252
R2(config-if)# exit
R2(config)# interface serial 0/0/1
R2(config)# ip address 192.168.20.229 255.255.252
R2(config)# ip address 192.168.20.229 255.255.252
R2(config-if)# end
R2#
```

### **VLSM Chart**



### Video Demonstration – VLSM Example

- Given the network 172.16.0.0 /23 creates subnets:
  - 1 network for 200 hosts 256
  - 1 network for 100 hosts 128
  - 1 network for 50 hosts 64
  - 1 network for 25 hosts 32
  - 1 network for 10 hosts 16
  - 4 point-to-point networks for 2 hosts each – 4x4 = 16

```
/23 = 2^9 hosts = 512
256+128+64+32+16+16 = 512 hosts needed
Address range 172.16.0.0 - 172.16.1.255
```

```
172.16.0.0 /23
172.16.0.0 /24 (256)
172.16.1.0 /24
                      172.16.1.0 /25 (128)
                       172.16.1.128 / 25 - 172.16.1.128 / 26 (64)
                                               <del>172.16.1.192 /26</del> -
                                                                      172.16.1.192 /27 (32)
        172.16.1.224 /28 (16)
        172 16 1 240 /28
                            172.16.1.240 /30 (4)
                            172.16.1.244 /30 (4)
                           172.16.1.248/30(4)
                           172.16.1.252 /30 (4)
```

# 8.2 Addressing Schemes



# **Network Address Planning**



### Planning to Address the Network



- Each host in an internetwork must have a unique address.
- Need proper planning & documentation.
- Must provide & control access to servers from internal hosts and external hosts.
- Layer 3 STATIC address assigned to a server can be used to control access to that server.
- Monitoring security and performance of hosts means network traffic is examined for source IP addresses that are generating or receiving excessive packets.

### Assigning Addresses to Devices

- Devices that require addresses:
  - End user clients
  - Can be set for DHCP to save time and manual errors.
  - A change in the subnetting scheme requires reconfiguration of DHCP server. IPv6 clients use DHCPv6/SLAAC.

#### Servers

- Configured with static addresses.
- Private addresses translated to public addresses if accessible from the Internet.

#### Intermediary devices

 Set with static addresses for remote management.

#### Gateway

• Router interface used to exit the network.

| Network: 192.168.1.0/24        |       |      |
|--------------------------------|-------|------|
| Use                            | First | Last |
| Host Devices                   | .1    | .229 |
| Servers                        | .230  | .239 |
| Printers                       | .240  | .249 |
| Intermediary Devices           | .250  | .253 |
| Gateway (router LAN interface) | .254  |      |

### Packet Tracer – Designing and Implementing a VLSM Addressing Scheme



Part 3: Assign IP Addresses to Devices and Verify Connectivity

### Lab – Designing and Implementing a VLSM Addressing Scheme



# 8.3 Design Considerations for IPv6



### The IPv6 Global Unicast Address

- IPv6 subnetting is not concerned with conserving address space.
- IPv6 subnetting is about building an addressing hierarchy based on the number of subnetworks needed.
- IPv6 link-local address is never subnetted.
- IPv6 global unicast address can be subnetted.
- IPv6 global unicast address normally consists of a /48 global routing prefix, a 16 bit subnet ID, and a 64 bit interface ID.

#### Structure



#### Global Routing Prefix

This is the prefix, or network, portion of the address that is assigned by the provider. Typically, Regional Internet Registries (RIRs) assign a /48 global routing prefix to ISPs and customers.

# Subnetting Using the Subnet ID



### **IPv6** Subnet Allocation



Address Block: 2001:0DB8:ACAD::/48

5 subnets allocated from 65,536 available subnets

2001:0DB8:ACAD:0000::/64
2001:0DB8:ACAD:0002::/64
2001:0DB8:ACAD:0003::/64
2001:0DB8:ACAD:0004::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0006::/64
2001:0DB8:ACAD:0008::/64



### Packet Tracer – Implementing a Subnetted IPv6 Addressing Scheme



# 8.4 Chapter Summary



#### Conclusion

## Packet Tracer - Skills Integration Challenge



#### Conclusion

## Chapter 8: Subnetting IP Networks

- Implement an IPv4 addressing scheme to enable end-to-end connectivity in a small to mediumsized business network.
- Given a set of requirements, implement a VLSM addressing scheme to provide connectivity to end
  users in a small to medium-sized network.
- Explain design considerations for implementing IPv6 in a business network.



#### Section 8.1–8.3

### **New Terms and Commands**

| octet boundary                 |  |
|--------------------------------|--|
| Variable Length Subnet Masking |  |
| (VLSM)                         |  |



