Theoretische Info	ormatik: Selbststudium - Blatt 1
As	Abgabe bis 23. Oktober 2015 ssistent: Sascha Krug, CHN D 42

Linus Fessler, Markus Hauptner, Philipp Schimmelfennig

Aufgabe S1

(a) Vermutung: $L(G_1) = \{avawa \mid v \in \{b\}^+, w \in \{ab\}^*\}$

Beweis: Die Grammatik beginnt im Startsymbol S, für das es nur eine Ableitungsregel gibt: $S \to aXaYa$. Da das Wort aXaYa immer noch die Nichtterminale X und Y enthält, müssen wir weiter ableiten. Es gibt in P_1 keine Ableitungsregel $QaR \to_{G_1} S$ für beliebige $Q, R, S \in (\Sigma_N \cup \Sigma_T)^*$, womit jedes Wort in der von der Grammatik erzeugten Sprache die Form avawa aufweisen muss, für noch zu bestimmende v und v.

Im Folgenden beweisen wir, dass $v \in \{b\}^+$ und $w \in \{ab\}^*$.

- 1. $v \in \{b\}^+$: Wir haben aXaYa gegeben. Die Ableitungsregeln, die X betreffen, sind $\{X \to bX, X \to b\}$. Wir zeigen mit Induktion, dass man mit X und den beiden Ableitungsregel für X ausschliesslich die Wörter $v \in \{b\}^+ = \{b^i \mid i \in \mathbb{N}\}$ generieren kann. Sei n die Anzahl angewandter Ableitungsregeln.
 - (i) Induktions an fang: Sei n = 1. Man kann mit einer Ableitung aus X entweder das Wort bX oder b herleiten (nicht aber λ).
 - (ii) Induktionsschritt:

 $n \to n+1$: Es gibt zwei Fälle:

Das Wort endet auf X: Man kann wieder bX oder b herleiten.

Das Wort endet auf b: Das Wort kann nicht mehr weiter abgeleitet werden und man erhält nach dem n-ten Ableitungsschritt das Wort b^n .

- 2. $w \in \{ab\}^*$: Wir haben aXaYa gegeben. Die Ableitungsregeln, die Y betreffen, sind $\{Y \to abY, Y \to ab, Y \to ab, Y \to \lambda\}$. Mit Induktion kann man analog zu 1. beweisen, dass man mit Y und den drei Ableitungsregel für Y ausschliesslich die Wörter $w \in \{ab\}^* = \{(ab)^i \mid i \in \mathbb{N}_0\}$ generieren kann. Der einzige Unterschied ist, dass man durch die dritte Ableitungsregel $Y \to \lambda$ auch das leere Wort herleiten kann.
- (b) Man beginnt in S. Für S gibt es nur eine Ableitungsregel $S \to 0X0$. Wir gehen also von 0X0 aus. Für X gibt es nun die drei Ableitungsregeln $\{X \to AX, X \to BX, X \to Y\}$. Nun können wir beliebig viele A oder B vor das X schreiben, bevor wir X durch Y ersetzen.

Damit erhalten wir das Wort 0WY0 für $W \in \{A, B\}^*$.

Jetzt können wir sukzessive die Ableitungsregeln $\{AY \to Y0, BY \to Y1\}$ anwenden, bis keine A oder B mehr im Wort enthalten sind.

Dann können wir noch einmal die letzte Ableitungsregel $\{0Y \to 0\}$ anwenden.

So entsteht das Wort 0w0 für $w \in \{0,1\}^*$, denn die Anwendung von $\{AY \to Y0, BY \to Y1\}$ bewirkt schlussendlich, dass jedes A durch eine 0 und jedes B durch eine 1 ersetzt wird und $\{0Y \to 0\}$ löscht das Y am Ende.

Eine äquivalente reguläre Grammatik ist $G'_2 = (\{S, X\}, \{0, 1\}, P'_2, S)$ mit

$$P_2' = \{S \to 0X0, X \to \lambda, X \to 0, X \to 1, X \to X0, X \to X1\}.$$

Der Entwurf ist praktisch selbsterklärend. Wir starten in S, gehen über zu 0X0 und können dann wählen, ob wir X zu λ , 0 oder 1 ableiten oder 0 bzw. 1 schreiben und danach weiter Buchstaben aus $\{\lambda,0,1\}$ hinzufügen wollen oder nicht (indem wir Regel $X \to X0$ oder $X \to X1$ anwenden). Damit generiert die Grammatik G'_2 auch die Wörter 0w0 für $w \in \{0,1\}^*$.

Aufgabe S2

- (a)
- (b)

Aufgabe S3

- (a)
- (b)