

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

Изучение динамических систем с непрерывным временем

Студент 315 группы В. С. Терёшин

Преподаватель д.ф.-м.н., профессор А. С. Братусь

Содержание

1	Постановка задачи	3
2	Биологическая интерпретация системы	3
3	Ввод безразмерных параметров	4
4	Исследование непожвижных точек	4
	4.1 Точка $O(0,0)$	5
	4.2 Точка $P(1,0)$	5
	4.3 Точка $Q\left(\gamma, \frac{\alpha\gamma(1-\gamma)}{1+\gamma}\right)$	5
5	Параметрический и фазовые портреты	6
6	Бифуркация Андронова-Хопфа	10
\mathbf{C}_{1}	писок литературы	13

1 Постановка задачи

Дана непрерывная динамическая система, описывающая некую модель типа хищникжертва:

$$\begin{cases} \dot{x} = \frac{ax^2}{N+x} \left(\frac{K-x}{K}\right) - bxy, \\ \dot{y} = -cy + dxy, \end{cases}$$
 (1)

где $x, y \ge 0$, а a, b, c, d, N, K > 0. Необходимо выполнить:

- 1. Дать биологическую интерпретацию системе;
- 2. Ввести безразмерные переменные, максимально уменьшив число входящих параметров;
- 3. Найти неподвижные точки системы и исследовать их характер;
- 4. Построить параметрический портрет системы;
- 5. Для каждой области параметрического портрета построить фазовый портрет;
- 6. Если в системе возникает бифуркация Андронова-Хопфа, то вычислить первое Ляпуновское число;
- 7. Дать биологическое объяснение поведению системы при разных значениях параметров.

2 Биологическая интерпретация системы

Эта система является моделью хищник-жертва, где x — численность попопуляции жертв, а y — хищников. Жертвы в данной системе являются автотрофами, то есть питаются за счёт некоторого биологического ресурса за пределами данной системы, а хищники являются гетеротрофами и питаются жертвами. При отсутствии жертв (x=0) они очень быстро вымрут в силу уравнения $\dot{y}=-cy$. Отсюда видно, что параметр c обозначает скорость вымирания хищников при отсутствии жертв, а параметр d — какое влияние оказывают жертвы на рост популяции хищников. Параметр a обозначает скорость размножения жертв.

Параметр K обозначает биологическую ёмкость рассматриваемой системы. При достижении жертвами численности K их размножение прекращается. Параметр N характеризует резкое уменьшение скорости роста популяции при её численности $x \ll N$. b — скорость истребления жетрв хищниками. Кроме того, если жертв не очень много, то хищники съедают их со скоростью, зависящей и от их численности, и от численности жертв. Если же число жертв привосходит число хищников, то скорость поедания зависит только от числа хищников.

3 Ввод безразмерных параметров

Пусть $x = Au, y = Bv, t = T\tau$. Тогда система 1 принимает вид:

$$\begin{cases} \frac{A}{T}\dot{u} = \frac{aA^2u^2}{N + Au} \left(\frac{K - Au}{K}\right) - bABuv, \\ \frac{B}{T}\dot{v} = -cBv + dABuv. \end{cases}$$
 (2)

$$\begin{cases} \dot{u} = \frac{aTu^2}{\frac{N}{A} + u} \left(1 - \frac{A}{K}u \right) - bTBuv, \\ \dot{v} = -cBv + dTBuv. \end{cases}$$
(3)

Положим $bTB=1,\,dTA=1,\,\frac{N}{A}=1.$ Отсюда получаем:

$$\begin{cases}
A = N, \\
B = \frac{dN}{b}, \\
T = \frac{1}{dN}.
\end{cases}$$
(4)

Введём обозначения $\alpha = aT$, $\beta = \frac{B}{K}$, $\gamma = cT$ и получим систему:

$$\begin{cases} \dot{u} = \frac{\alpha u^2}{1+u} (1-\beta u) - uv, \\ \dot{v} = -\gamma v + uv. \end{cases}$$
(5)

Зафиксируем $\beta = 1$, вернёмся к прежним обозначениям и будем исследовать систему:

$$\begin{cases} \dot{x} = \frac{\alpha x^2}{1+x}(1-x) - xy, \\ \dot{y} = -\gamma y + xy. \end{cases}$$
(6)

4 Исследование непожвижных точек

Теорема 1 (Ляпунова-Пуанкаре). Пусть u^* — положение равновесия, а J(u) — матрица Якоби исследуемой динамической системы. Тогда если вещественные части всех собственных значений матрицы $J(u^*)$ отрицательны, тогда положение равновесия u^* ассимптотически устойчиво, а если есть хотя бы одно собственное значение с положительной вещественной частью, то положение равновесия u^* неустойчиво.

Для нахождения неподвижных точек режим систему:

$$\begin{cases} \frac{\alpha x^2}{1+x}(1-x) - xy = 0, \\ -\gamma y + xy = 0. \end{cases}$$
 (7)

Точки O(0,0) и P(1,0), очевидно, являются неподвижными для любых значений параметров. При $\gamma \in (0,1)$ также существует неподвижная точка $Q\left(\gamma, \frac{\alpha\gamma(1-\gamma)}{1+\gamma}\right)$.

Матрица Якоби для данной системы:

$$J(x,y) = \begin{bmatrix} -2\alpha x \frac{x^2 + x - 1}{(x+1)^2} & -x \\ y & x - \gamma \end{bmatrix}$$

4.1 Точка O(0,0)

Подставим в матрицу Якоби неподвижную точку O(0,0):

$$J(0,0) = \left[\begin{array}{cc} 0 & 0 \\ 0 & -\gamma \end{array} \right]$$

 $\lambda_1 = \lambda_2 = 0$, а значит, в данном случае мы не можем применить теорему Ляпунова-Пуанкаре для анализа этой неподвижной точки.

4.2 Точка P(1,0)

Подставим в матрицу Якоби неподвижную точку P(1,0):

$$J(1,0) = \begin{bmatrix} -\frac{\alpha}{2} & 0\\ 0 & 1-\gamma \end{bmatrix}$$

В данном случае получаем собственные значения $\lambda_1 = -\frac{\alpha}{2}$ и $\lambda_2 = 1 - \gamma$. При этом $\lambda_1 < 0$ при любых допустимых значениях параметра. Таким образом, характер неподвижной точки P(1,0) зависит только от λ_2 :

- 1. $\gamma \in (0,1) \Rightarrow \lambda_2 > 0$ в этом случае точка P является седлом.
- 2. $\gamma > 1 \Rightarrow \lambda_2 < 0$ в этом случае точка P является устойчивым узлом.
- 3. $\gamma = 0 \Rightarrow \lambda_2 = 0$ в этом случае происходит бифуркация типа седло-узел.

4.3 Точка $Q\left(\gamma, \frac{\alpha\gamma(1-\gamma)}{1+\gamma}\right)$

Матрица Якоби в точке Q:

$$J(Q) = \begin{bmatrix} \frac{\alpha\gamma(-\gamma^2 - 2\gamma + 1)}{(\gamma + 1)^2} & -\gamma \\ \frac{\alpha\gamma(1 - \gamma)}{1 + \gamma} & 0 \end{bmatrix}$$

Рассмотрим след и определитель получившейся матрицы:

$$\operatorname{Tr} J = -\frac{\alpha \gamma (\gamma^2 + 2\gamma - 1)}{(\gamma + 1)^2},$$
$$\det J = \frac{\alpha \gamma^2 (1 - \gamma)}{1 + \gamma},$$
$$\lambda_{1,2} = \frac{1}{2} \left(\operatorname{Tr} J \pm \sqrt{(\operatorname{Tr} J)^2 - 4 \det J} \right).$$

Исследуем знак подкоренного выражения:

$$D = (\operatorname{Tr} J)^{2} - 4 \det J = \frac{\alpha^{2} \gamma^{2}}{\gamma + 1}^{3} (\gamma^{2} + 2\gamma - 1)^{2} - \frac{4\alpha \gamma^{2} (1 - \gamma)}{1 + \gamma} =$$

$$= \frac{\alpha \gamma^{2}}{\gamma + 1} \left(\alpha \frac{(\gamma^{2} + 2\gamma - 1)^{2}}{(\gamma + 1)^{3}} - 4(1 - \gamma) \right),$$

$$D > 0 \Rightarrow \alpha \frac{(\gamma^{2} + 2\gamma - 1)^{2}}{(\gamma + 1)^{3}} - 4(1 - \gamma > 0) \Rightarrow \alpha > \frac{4(1 - \gamma)(\gamma + 1)^{3}}{(\gamma^{2} + 2\gamma - 1)^{2}},$$

$$D < 0 \Rightarrow \alpha < \frac{4(1 - \gamma)(\gamma + 1)^{3}}{(\gamma^{2} + 2\gamma - 1)^{2}}.$$

Исследуем знак ${\rm Tr}\,J$. Так как параметры положительны, то знак зависит только от знака выражения $\gamma^2+2\gamma-1$. Значит, ${\rm Tr}\,J>0$ при $\gamma\in(0,-1+\sqrt{2})$ и ${\rm Tr}\,J<0$ если $\gamma\in(-1+\sqrt{2},1)$.

Отметим, что при $\gamma \in (0,1)$ выполнено неравенство $\left|\sqrt{D}\right| < \left|\sqrt{{\rm Tr}\,J}\right|$. Поэтому возможны следующие случаи:

- 1. ${\rm Tr}\, J>0, D>0\Rightarrow$ оба собственных значения будут вещественными и положительными, а значит, неподвижная точка является неустойчивым узлом.
- 2. ${\rm Tr}\, J>0, D<0\Rightarrow$ оба собственных значения будут комплексыными с положительными вещественными частями, а значит, неподвижная точка является неустойчивым фокусом.
- 3. ${\rm Tr}\, J < 0, D > 0 \Rightarrow$ оба собственных значения будут вещественными и отрицательными, а значит, неподвижная точка является устойчивым узлом.
- 4. Tr $J < 0, D < 0 \Rightarrow$ оба собственных значения будут комплексыными с отрицательными вещественными частями, а значит, неподвижная точка является устойчивым фокусом.

5 Параметрический и фазовые портреты

На следующей иллюстрации изображён параметрический портрет системы:

В областях 1–4 существует 3 неподвижных точки и точка P(1,0) является седлом, а в области 5 две неподвижные точки и точка P(1,0) является устойчивым узлом. Рассмотрим каждую область и приведём примеры фазовых портретов:

1. В этой области $0<\gamma<\sqrt{2}-1,\ \alpha>\frac{4(1-\gamma)(\gamma+1)^3}{(\gamma^2+2\gamma-1)^2}.$ При этом D>0 и ${\rm Tr}\,J(Q)>0,$ то есть точка Q является неустойчивым узлом.

Пример с $\alpha = 20, \, \gamma = 0.2$:

2. В этой области $0<\gamma<\sqrt{2}-1,~\alpha<\frac{4(1-\gamma)(\gamma+1)^3}{(\gamma^2+2\gamma-1)^2},~D<0,~{\rm Tr}\,J(Q)>0,~{\rm то}$ есть Q неустойчивый фокус.

Пример с $\alpha = 10, \, \gamma = 0.2$:

3. В данном случае $\sqrt{2}-1<\gamma<1,~\alpha<\frac{4(1-\gamma)(\gamma+1)^3}{(\gamma^2+2\gamma-1)^2},~D<0,~{\rm Tr}\,J(Q)<0,$ значит, Q—

устойчивый фокус.

Пример с $\alpha=5,\,\gamma=0.5$:

4. В этом случае $\sqrt{2}-1<\gamma<1,\ \alpha>\frac{4(1-\gamma)(\gamma+1)^3}{(\gamma^2+2\gamma-1)^2},\ D>0,\ {\rm Tr}\,J(Q)<0,$ значит, Q устойчивый узел.

5. В этом случае $\gamma > 1$, то есть точка Q не существует. Например, $\alpha = 10, \ \gamma = 1.3$:

6 Бифуркация Андронова-Хопфа

Определение 1. Бифуркация положения равновесия, соответствующая появлению собственных чисел $\lambda_{1,2} = \pm i\omega_0$, где $\omega_0 > 0$, называется бифуркацией Пуанкаре-Андронова-Хопфа или бифуркацией рождения цикла.

Теорема 2. Любая двумерная однопараметрическая система $\dot{u}=f(u,\alpha)$, имеющая при достаточно малых $|\alpha|$ положение равновесия u=0 с собственными числами $\lambda_{1,2}=\mu(\alpha)\pm i\omega(\alpha)$, $\mu(0)=0$, $\omega(0)=\omega_0>0$ и удовлетворяющая условиям невырожденности

$$\frac{d}{d\alpha}\mu(\alpha) \neq 0,$$

$$l_1(0) \neq 0,$$
(8)

 $e \partial e$

$$l_1(0) = \frac{1}{2\omega_0} \operatorname{Re}(ig_{20}(0)g_{11}(0) + \omega_0 g_{21}(0)),$$

в окрестностях начала координат локально топологически эквивалентна одной из двух динамических систем:

$$\dot{v}_1 = \alpha v_1 - v_2 + \operatorname{sgn} l_1(0) v_1(v_1^2 + v_2^2), \\ \dot{v}_2 = v_1 - \alpha v_2 + \operatorname{sgn} l_1(0) v_2(v_1^2 + v_2^2).$$
(9)

В исследуемой системе появление чисто мнимых собственных значений возможно только для точки Q при $\gamma=\sqrt{2}-1$. Следовательно, точка Q имеент координаты

 $(\sqrt{2}-1,\alpha(\sqrt{2}-1)^2)$. Матрица Якоби имеет вид:

$$J(\sqrt{2}-1,\alpha(\sqrt{2}-1)^2) = \begin{bmatrix} 0 & 1-\sqrt{2} \\ \alpha(\sqrt{2}-1)^2 & 0 \end{bmatrix}.$$

Эта матрица имеет собственные значения $\lambda_{1,2}=\pm i\sqrt{\alpha(\sqrt{2}-1)^3}$. Проверим применимость теоремы 2. Проверим условие

$$\frac{d}{d\alpha}\mu(\alpha) \neq 0.$$

Из исследований устойчивости Q следует, что $\mu(\gamma) = \operatorname{Tr} J(Q) = -\frac{\alpha(\gamma^2 + 2\gamma - 1)}{(\gamma + 1)^2}$

$$\mu(\sqrt{2} - 1) = 0,$$

$$\frac{d}{d\gamma}\mu(\gamma) = \frac{\alpha(-1 + \gamma(5 + \gamma(3 + \gamma)))}{2(1 + \gamma)^3},$$

$$\frac{d}{d\gamma}\mu(\sqrt{2} - 1) = \alpha(\sqrt{2} - 2) \neq 0.$$

Найдём собственные векторы матриц J(Q) и $J^{T}(Q)$, соответствующие собственным значениям λ_1 и λ_2 :

$$p = \begin{bmatrix} i \frac{1}{\sqrt{\alpha(\sqrt{2}-1)}} \\ 1 \end{bmatrix},$$

$$q = \begin{bmatrix} i\sqrt{\alpha(\sqrt{2}-1)} \\ 1 \end{bmatrix}.$$

Представим $f(u,\gamma)$ в виде $J(Q)u+F(u,\gamma)$. Нормируем p и q так, чтобы $\langle p,q\rangle=1$ и $\langle \overline{p},q | = 0 \rangle$, для чего поделим p на 2. В данном случае $\langle p,q \rangle = \overline{p_1}q_1 + \overline{p_2}q_2$. Для того, чтобы найти первую ляпуновскую величину, введём комплекснозначную функцию:

$$G(z,\omega) = \langle p, F(zq_1 + \omega \overline{q_1}, zq_2 + \omega \overline{q_2}) \rangle$$
.

Вычислим некоторые её частные производные по z, ω при $z = \omega = 0$:

$$g_{20} = G_{zz},$$

$$g_{11} = G_{z\omega},$$

$$g_{21} = G_{zz\omega}.$$

Вычислим ляпуновскую величину по формуле:

$$l_1(0) = \frac{1}{\omega_0} \operatorname{Re}(ig_{20}(0)g_{11}(0) + \omega_0 g_{21}(0)),$$

где $\omega_0 = \sqrt{\alpha(\sqrt{2}-1)^3}$, и получим:

$$l_1(0) = -\frac{1}{4} \frac{\alpha^{3/2} (5\sqrt{2}\alpha - 7\alpha - 3\sqrt{2} + 4)}{(\sqrt{(2)} - 1)^{3/2}}.$$

Из полученной формулы следует, что $l_1(0)>0$ при $\alpha\in\left(0,\frac{3\sqrt{2}-4}{5\sqrt{2}-7}\right)$, и $l_1(0)<0$ при $\alpha>\frac{3\sqrt{2}-4}{5\sqrt{2}-7}\approx 3.414213562373090$. Тогда в зависимости от α бифуркация может иметь различный характер:

- 1. $l_1 > 0$. В этом случае имеет место суперкритическая бифуркация (мягкая) с рождением единственного устойчивого цикла.
- 2. В случае $l_1 < 0$ происходит субкритическая бифуркация (жёсткая), то есть система выбрасывается из окарестности неподвижной точки.

Пример возникновения бифуркации ($\alpha=1$):

Список литературы

[1] Братусь А. С., Новожилов А. С., Платонов А. П. Динамические системы и модели биологии. М.: Физмалит, 2010.