Shusen Wang

Multi-Class Classification

Multi-Class Classification

Tasks

Methods

Algorithms

Multi-Class Classification

Example 1: face recognition.

• #classes = #people

Multi-Class Classification

Example 2: hand-written digit recognition.

#classes = 10

One-Hot Encoding

- #Class = 10 (e.g., in digit recognition).
- One-hot encode of y = 3:

$$\mathbf{y} = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$$

Softmax Function

- $\phi \in \mathbb{R}^K$
- $\mathbf{p} = \operatorname{SoftMax}(\mathbf{\phi}) \in \mathbb{R}^K$; its entries are

$$p_k = \frac{\exp(\phi_k)}{\sum_{i=1}^K \exp(\phi_i)}$$
, for $k = 1, \dots, K$.

Cross-Entropy

• The vectors **y** and **p** are both *K*-dim.

$$y_1 + \dots + y_K = 1$$
 and $p_1 + \dots + p_K = 1$.

• Cross-entropy between **y** and **p** :

$$H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^{K} y_k \log p_k.$$

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples d: #features K: #classes

Remark: If the given labels are scalars $y_1, \dots, y_n \in \{0, 1, \dots, K-1\}$, turn them to K-dim vectors $\mathbf{y}_1, \dots, \mathbf{y}_n \in \{0, 1\}^K$ using one-hot encoding.

Example: One-hot encode of y = 3 (where K=10):

 $\mathbf{y} = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]^T \in \{1, 0\}^{10}$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples d: #features K: #classes

- $\mathbf{\phi}_i = \mathbf{W}\mathbf{x}_i \in \mathbb{R}^K$
- $\phi_{i,k}$ (the k-th entry of ϕ_i) indicates how likely \mathbf{x}_i is in the k-th class.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples d: #features K: #classes

- $\mathbf{\phi}_i = \mathbf{W}\mathbf{x}_i \in \mathbb{R}^K$
- $\phi_{i,k}$ (the k-th entry of ϕ_i) indicates how likely \mathbf{x}_i is in the k-th class.
- Softmax function: $p_{i,k} = \frac{\exp(\phi_{i,k})}{\sum_{i=1}^{K} \exp(\phi_{i,i})}$.
 - $p_{i,1} + \cdots + p_{i,K} = 1$.
 - Thus $\mathbf{p}_i = \left[p_{i,1}, \cdots, p_{i,K}\right] \in \mathbb{R}^K$ is a distribution.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

n: #samples d: #features K: #classes

- $\mathbf{\phi}_i = \mathbf{W}\mathbf{x}_i \in \mathbb{R}^K$
- $\phi_{i,k}$ (the k-th entry of ϕ_i) indicates how likely \mathbf{x}_i is in the k-th class.
- Softmax function: $p_{i,k} = \frac{\exp(\phi_{i,k})}{\sum_{j=1}^{K} \exp(\phi_{i,j})}$.
- Cross-entropy loss: $H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log p_{i,k}$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\max_{\mathbf{y}_i} \sum_{i=1}^n H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K, \qquad p_{i,q} = \frac{e^{\phi_{i,q}}}{\sum_{k=1}^K e^{\phi_{i,k}}}, \quad \text{and} \quad H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k}).$$

Cross-entropy loss

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\max_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K, \qquad p_{i,q} = \frac{e^{\phi_{i,q}}}{\sum_{k=1}^K e^{\phi_{i,k}}}, \quad \text{and} \quad H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k}).$$

Tasks

Methods

Softmax

KNN

Neural Networks

Algorithms

Gradient Descent (GD)

Accelerated GD

Stochastic GD

Binary Classification

Multi-Class Classification

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\max_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K, \qquad p_{i,q} = \frac{e^{\phi_{i,q}}}{\sum_{k=1}^K e^{\phi_{i,k}}}, \quad \text{and} \quad H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k}).$$

Tasks

Methods

Algorithms

Binary Classification

Multi-Class Classification

Softmax

KNN

Neural Networks

Gradient Descent (GD)

Accelerated GD

Stochastic GD

Gradient of the Objective Function

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\mathbf{\Phi}q}}{\sum_{k=1}^K e^{\mathbf{\Phi}_k}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^K y_k \log(p_k).$$

• Leave out the subscript i.

Gradient of the Objective Function

$$\mathbf{\Phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K, \qquad p_q = \frac{e^{\Phi_q}}{\sum_{k=1}^K e^{\Phi_k}}, \qquad \text{and} \qquad H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^K y_k \log(p_k).$$

•
$$H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^{K} (y_k \phi_k) + \log(\sum_{j=1}^{K} e^{\phi_j}) \cdot \sum_{k=1}^{K} y_k.$$

Gradient of the Objective Function

$$\mathbf{\phi} = \mathbf{W}\mathbf{x} \in \mathbb{R}^K \text{ and } H(\mathbf{y}, \mathbf{p}) = -\sum_{k=1}^K (y_k \phi_k) + \log(\sum_{j=1}^K e^{\phi_j}) \cdot \sum_{k=1}^K y_k.$$

$$\bullet \frac{\partial H}{\partial \phi_k} = -y_k + \frac{\sum_{k=1}^K y_k}{\sum_{k=1}^K e^{\phi_j}} \cdot e^{\phi_k} = -y_k + p_k.$$

•
$$\frac{\partial \phi_k}{\partial \mathbf{w}_{j:}} = \frac{\partial \mathbf{w}_{k:}^T \mathbf{x}}{\partial \mathbf{w}_{j:}} = \begin{cases} \mathbf{x}, & \text{if } k = q; \\ \mathbf{0}, \text{ otherwise.} \end{cases}$$
 (Here $\mathbf{w}_{j:}$ is the j -th row of \mathbf{W} .)

•
$$\rightarrow \frac{\partial H}{\partial \mathbf{w}_{i}} = \sum_{k=1}^{K} \frac{\partial \phi_{k}}{\partial \mathbf{w}_{i}} \cdot \frac{\partial H}{\partial \phi_{k}} = (p_{j} - y_{j}) \mathbf{x} \in \mathbb{R}^{d}.$$

$$\bullet \rightarrow \frac{\partial H}{\partial \mathbf{w}} = (\mathbf{p} - \mathbf{y}) \cdot \mathbf{x}^T \in \mathbb{R}^{K \times d}.$$

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \dots, \mathbf{y}_n \in \mathbb{R}^K$.

• Softmax classifier: $\max_{\mathbf{W}} \sum_{i=1}^{n} H(\mathbf{y}_i, \mathbf{p}_i)$

$$\mathbf{\phi}_i = \mathbf{W} \mathbf{x}_i \in \mathbb{R}^K, \qquad p_{i,q} = \frac{e^{\phi_{i,q}}}{\sum_{k=1}^K e^{\phi_{i,k}}}, \quad \text{ and } \quad H(\mathbf{y}_i, \mathbf{p}_i) = -\sum_{k=1}^K y_{i,k} \log(p_{i,k}).$$

• The gradient is $\sum_{i=1}^K \frac{\partial H(\mathbf{y}_i, \mathbf{p}_i)}{\partial \mathbf{w}} = \sum_{i=1}^K (\mathbf{p}_i - \mathbf{y}_i) \cdot \mathbf{x}_i^T \in \mathbb{R}^{K \times d}$.

Softmax Classifier: Train and Test

- Train (given feature vectors $\mathbf{x}_1, \cdots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $\mathbf{y}_1, \cdots, \mathbf{y}_n \in \mathbb{R}^K$)
 - Compute $\mathbf{W}^* = \underset{\mathbf{W}}{\operatorname{argmin}} \sum_{i=1}^n -H(\mathbf{y}_i, \mathbf{p}_i)$ by some algorithm, e.g., AGD, SGD, etc.
- Test (for a sample $\mathbf{x}' \in \mathbb{R}^d$)
 - $\phi' = \mathbf{W}^* \mathbf{x}' \in \mathbb{R}^K$.
 - Return the index of the largest entry of ϕ' .

Multi-Label Problem

Multi-Class and Multi-Label

- Multi-label
 - Return the classes (e.g. top 5 classes) with the highest predicted probabilities.

Evaluate Multi-Label Classification

- Prediction:
 - $\phi' = \mathbf{W}\mathbf{x}' \in \mathbb{R}^K$.
 - Return the classes (e.g. top 5 classes) with the highest predicted probabilities.
- Evaluation
 - Top-1 classification error: the test label y' is not the top 1 class.
 - Top-5 classification error: the test label y' is not in the top 5 classes.