Open Methods

Algorithm:

Initial guess of the root estimate

Repeat until condition

- 1. Use *Local* gradient of the curve
- 2. Determine next root estimate
- May converge or may diverge
- Much <u>much</u> faster than bracketing

 relation to Taylor series &
 minimizing residual error

Open methods...

Computation Engineering course, IIT Tirupati - Dr. Kalidas Yeturu

Open Methods

- Simple Fixed point method
- The Newton-Raphson method
- The secant method
- Error convergence rates linear and quadratic
- Comparison with bracketing algorithms

Simple Fixed Point method

• Example 1

•
$$x^2 - 2x + 3 = 0$$

$$\bullet \Rightarrow x = \frac{x^2 + 3}{2}$$

• Example 2

•
$$sin(x) = 0 \Rightarrow x = sin(x) + x$$

In general

- Rearrange terms such that f(x) = 0
- $\bullet \Rightarrow x = g(x)$
- Or Simply x = f(x) + x

Strategy...

$$\bullet \ x_1 = g(x_0)$$

•
$$x_2 = g(x_1)$$

• • •

$$\bullet \ x_{i+1} = g(x_i)$$

Error estimates –

$$\varepsilon_{\rm a} = \left| \frac{x_{i+1} - x_i}{x_{i+1}} \right| * 100\%$$

Simple fixed point method (2/6)

• Find roots of: $f(x) = e^{-x} - x$

- Re-arranging
 - $\bullet \ f(x) = 0$
 - $\Rightarrow x = e^{-x}$
 - $\Rightarrow x_{i+1} = e^{-x_i}$
- Analytically solving it, true root = 0.56714329

Iterations

i	X i	$arepsilon_{m{a}}$ (%)	۠ (%)
0	0		100.0
1	1.000000	100.0	76.3
2	0.367879	1 <i>7</i> 1.8	35.1
3	0.692201	46.9	22.1
4	0.500473	38.3	11.8
5	0.606244	17.4	6.89
6	0.545396	11.2	3.83
7	0.579612	5.90	2.20
8	0.560115	3.48	1.24
9	0.571143	1.93	0.705
10	0.564879	1.11	0.399

Simple fixed point method (3/6)

- $\bullet \ x_{i+1} = e^{-x_i}$
 - $f_1(x) = x$
 - $f_2(x) = e^{-x}$
- Intersection point is the root
- Understanding the iterations
 - $x_{i+1} = g(x_i)$
 - Start with x_0 (step 1)
 - Determine $g(x_0)$ (step 2)
 - Project onto y_1 line (step 3)
 - Project onto X axis $\rightarrow x_1$ (step 4)
 - Repeat from step 1

Simple fixed point method (4/6)

- Simple fixed point method can
 - Converge (figures a and b)
 or
 - Diverge (figures *c* and *d*)
- Depends on the initial guess
- Depends on the <u>nature</u> of the curve
 - Informally, observe that
 - Inclination of the curve < the diagonal line → Converges
 - Inclination of the curve > the diagonal line → Diverges

Simple fixed point method (5/6)

- $1. \quad x_{i+1} = g(x_i)$
- 2. At the root $x_r = g(x_r)$
- 3. $[1] [2] \rightarrow x_r x_{i+1} = g(x_r) g(x_i)$
- 4. Mean value theorem $g'(\varepsilon) = \frac{g(b) g(a)}{b a}$ To explain on board
- 5. $g(x_r) g(x_i) = (x_r x_i)g'(\varepsilon)$
- 6. $[5] [3] \rightarrow x_r x_{i+1} = (x_r x_i)g'(\varepsilon)$
- 7. Let *true* error at ith iteration be

$$E_{t,i} = x_r - x_i$$

- 4. [6] \rightarrow $E_{t,i+1} = g'(\varepsilon) * E_{t,i}$
- Observations
 - Diverges if $|g'(\varepsilon)| > 1$
 - Converges if $|g'(\varepsilon)| < 1$ and further
 - Flip flops/Oscillates about the root if $g'(\varepsilon) < 0$
 - Monotonically converges if $g'(\varepsilon) > 0$

Simple fixed point method (6/6)

- Note that only single starting point is provided
- g() is a function which is invoked in the pseudo code
- Exercise:
 - Trace the pseudo code for 4 iterations
 - x0 = 0
 - $g(x) = x^2 2x + 3 = 0$

```
FUNCTION Fixpt(x0, es, imax, iter, ea)
  xr = x0
  iter = 0
  D0
    xrold = xr
    xr = g(xrold)
    iter = iter + 1
    IF xr \neq 0 THEN
      ea = \left| \frac{xr - xrold}{xr} \right| \cdot 100
    END IF
    IF ea < es OR iter ≥ imax EXIT
  END DO
  Fixpt = xr
END Fixpt
```

The Newton-Raphson method

- The mechanism of selection of next root estimate changes
- Consider triangle ABC
- First derivative at B = Slope

$$\rightarrow$$

•
$$f'(x_i) = \frac{f(x)-0}{x_i-x_{i+1}}$$

$$\rightarrow$$

$$\bullet \ x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson... 2/7

The Newton-Raphson formula can be realized using Taylor series as well

• First order approximation

$$f(x_{i+1}) \cong f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

• We need to determine x_{i+1} where $f(x_{i+1})$ cuts X axis i.e. $f(x_{i+1}) = 0$

$$\rightarrow$$

$$0 = f(x_i) + f'(x_i)(x_{i+1} - x_i)$$

$$\Rightarrow x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

Newton-Raphson... 3/7

Consider the same function as earlier

•
$$f(x) = e^{-x} - x$$

•
$$f'(x) = -e^{-x} - 1$$

We know

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

$$x_{i+1} = x_i - \frac{e^{-x_i} - x_i}{-e^{-x_i} - 1}$$

Starting with $x_0 = 0$

Iterations

i	$\boldsymbol{x_i}$	ε _t (%)
0	0	100
1	0.500000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	< 10 ⁻⁸

Informally, observe that

- Converges rapidly
- Accuracy doubles after every iteration i.e. number of digits after the decimal

Newton-Raphson... 4/7

<u>Understanding the rapid convergence</u>

- Taylor series up to second order terms $f(x_{i+1})$ $= f(x_i) + f'(x_i)(x_{i+1} x_i) + \frac{f''(\xi)}{2!}(x_{i+1} x_i)^2$ where $\xi \in [x_i, x_{i+1}]$
- Recall that $0 = f(x_i) + f'(x_i)(x_{i+1} x_i)$ [Equation 1]
- Let x_r be the root $\rightarrow x_{i+1} = x_r$

 \rightarrow

• $0 = f(x_i) + f'(x_i)(x_r - x_i) + \frac{f''(\xi)}{2!}(x_r - x_i)^2$ [Equation 2]

[2] – [1] \rightarrow $0 = f'(x_i)(x_r - x_{i+1}) + \frac{f''(\xi)}{2!}(x_r - x_i)^2 \quad \text{[Equation 3]}$ Let true error at ith iteration be defined as $E_{t,i} = x_r - x_i$ Equation [3] \rightarrow

$$0 = f'(x_i) * E_{t,i+1} + \frac{f''(\xi)}{2!} * E^2(t,i)$$

At the root, $\xi \approx x_r$

Quadratic Convergence

$$\Rightarrow E_{t,i+1} = \frac{-f''(x_r)}{2f'(x_r)} E^2(t,i)$$

Newton-Raphson... 5/7

Consider the function: $f(x) = x^{10} - 1$

- Slow convergence
- Other problems

Criterion

- $\bullet \quad x_{i+1} = x_i \frac{f(x_i)}{f'(x_i)}$
- $|x_{i+1} x_i| < \delta$
- $\rightarrow |f(x_i)| < \delta |f'(x_i)|$
- $\rightarrow f'(x_i)$ is Large

Iterations

Iteration	x
0	0.5
1	51.65
2	46.485
3	41.8365
4	37.65285
5	33.887565
•	
∞	10000000

Newton-Raphson... 6/7

Newton-Raphson... 7/7

 Write pseudo code for the Newton-Raphson method NR

 Issue – We need f'() function

- Bounds
 - Number of iterations
 - Oscillation checks $\varepsilon_a \approx 0$
 - Slow convergence
 - Divergence checks
 - f'(x) = 0 check

```
FUNCTION NR (x0, es, imax, iter, ea)
 xr = x0
  iter = 0
 DO.
    xrold = xr
   xr = x_r - \frac{f(x_r)}{f'(x_r)}
    iter = iter + 1
    IF xr \neq 0 THFN
      ea = \left| \frac{xr - xrold}{xr} \right| \cdot 100
    END IF
    IF ea < es OR iter ≥ imax EXIT
  END DO
   NR = xr
END Fixpt
```

The Secant method

Newton-Raphson method

$$x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}$$

- It needs derivative it is difficult or inconvenient to evaluate
- Using backward finite difference

$$f'(x_i) \cong \frac{f(x_{i-1}) - f(x_i)}{x_{i-1} - x_i}$$

$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

Secant Method

Secant method Relationship with/against Regula Falsi method

Secant method update equation

•
$$x_{i+1} = x_i - \frac{f(x_i)(x_{i-1} - x_i)}{f(x_{i-1}) - f(x_i)}$$

$$\bullet \ x_r = x_u - \frac{f(x_u)(x_l - x_u)}{f(x_l) - f(x_u)}$$

Secant Method...

 Updates to coordinates are different between secant method and the regula falsi

 In a given iteration for (a) and (b) Third coordinate determined is same

 Continuing the iterations further, coordinate assignments change

Secant Method...

- For the function
 - $f(x) = \ln(x)$
 - $x_l = x_{i-1} = 0.5$
 - $x_u = x_i = 5.0$

- Issues we need x_{i-1} and x_i
- Introduce a δ term, but have a single variable as input

•
$$f(x) \cong \frac{f(x_i + \delta x_i) - f(x_i)}{\delta x_i}$$

- Issue choice of size of δ
 - Too small, will give round off errors
 - Too big, the method can diverge

Regula Falsi Method

Iteration	ΧĮ	Χυ	X _r
1	0.5	5.0	1.8546
2	0.5	1.8546	1.2163
3	0.5	1.2163	1.0585

Secant Method

Iteration	x_{i-1}	X i	x_{i+1}
1 2	0.5	5.0	1.8546
	5.0	1.8546	-0.10438

Convergence plot of different methods

