

# 计算机组成与结构 —运算方法1

计算机科学与技术学院



#### 温故 —关于数制表示

- 56的8421格式BCD码是?
- 0101 0110
- 简述ASCII码的特性?
- 7bit (存入1Byte),编码128个字符(32个控制字符+94个可打印符号)
- 只覆盖了英语字符
- 简述Unicode的特性?
- 全面性:覆盖了世界上几乎所有的字符系统
- 唯一性: 给每一个字符一个唯一编码,不论语言、平台、程序
- 扩展性: 设计了多种编码方案 (如UTF-8、UTF-16、UTF-32)
- 兼容性: 兼性现有编码系统,例如,它的前128个字符与ASCII码一致



#### 温故 —关于数制表示

• 简单奇偶校验原理?

• 通过计算数据中"1"的个数是奇数还是偶数来判断数据的正确性

• "1110111"在奇/偶校验编码时,如何设置校验位?

• 奇校验: **1**1110111

• 偶校验: 01110111

• 简述海明码原理?

• 核心基于奇偶校验,将每位数据的分配在不同的校验组合中

• 海明码通过计算校验位数值来确定错误的位置。

| Bit positi  | on     | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
|-------------|--------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|
| Encoded dat | a bits | р1 | p2 | d1 | p4 | d2 | d3 | d4 | р8 | d5 | d6 | d7 | d8 | d9 | d10 | d11 | p16 | d12 | d13 | d14 | d15 |
|             | р1     | ×  |    | ×  |    | ×  |    | ×  |    | ×  |    | ×  |    | ×  |     | ×   |     | ×   |     | ×   |     |
| Parity      | p2     |    | ×  | X  |    |    | ×  | ×  |    |    | ×  | ×  |    |    | ×   | ×   |     |     | ×   | ×   |     |
| bit         | p4     |    |    |    | ×  | ×  | ×  | ×  |    |    |    |    | ×  | ×  | ×   | ×   |     |     |     |     | ×   |
| coverage    | p8     |    |    |    |    |    |    |    | ×  | X  | X  | x  | x  | X  | X   | X   |     |     |     |     |     |
|             | p16    |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     | X   | X   | X   | X   | X   |

- 当海明码校验位输出为0101时,如何解读?
- 第5位出错



#### 几个小练习

- 2024的IEEE 754 32位浮点如何表示?
- 用奇 and 偶校验编码原码2024?
- 用海明码编码原码2024?
- 用CRC(10011)编码原码2024?



#### 2024的IEEE 754 32位浮点如何表示?

- 1为符号+8为阶码+31尾数
  - 尾数用原码表示,但小数点前隐含一个1
  - 阶码有移码表示,但移码使用非常规的 $+2^n-1$ 格式
    - 在常规的移码计算之后,额外-1

2024= 011111101000=+1.1111101×2<sup>10</sup>

符号位0

阶码10+127=10001001

32位浮点数为: 44FD0000



#### 用奇 and 偶校验编码原码2024

2024= 0111 1110 1000

奇校验 0 0111 1110 1000

偶校验 1 0111 1110 1000



#### 采用偶校验,用海明码编码原码2024

2024= 0111 1110 1000

**0X11111110X100X0XX** 

0X1111110X100X0X0

**0X1111110X100X01**0

**0X11111110X1001**010

**0X**111111001001010

**00**1111111001001010

#### 0 0111 1110 0100 1010=7E4A

| Bit positi  | on      | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 13 | 14  | 15  | 16  | 17  | 18  | 19  | 20  |  |
|-------------|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|-----|-----|--|
| Encoded dat | ta bits | р1 | p2 | d1 | p4 | d2 | d3 | d4 | p8 | d5 | d6 | d7 | d8 | d9 | d10 | d11 | p16 | d12 | d13 | d14 | d15 |  |
|             | p1      | ×  |    | ×  |    | ×  |    | x  |    | x  |    | ×  |    | x  |     | X   |     | X   |     | X   |     |  |
| Parity      | p2      |    | x  | X  |    |    | X  | X  |    |    | ×  | x  |    |    | X   | X   |     |     | X   | X   |     |  |
| bit         | p4      |    |    |    | x  | ×  | x  | x  |    |    |    |    | ×  | x  | X   | X   |     |     |     |     | X   |  |
| coverage    | р8      |    |    |    |    |    |    |    | ×  | X  | X  | x  | x  | X  | X   | X   |     |     |     |     |     |  |
|             | p16     |    |    |    |    |    |    |    |    |    |    |    |    |    |     |     | X   | X   | X   | X   | X   |  |



#### ■ 循环冗余校验:

Cyclic Redundancy Check, 简称 CRC。

- 通过某种数学运算建立数据和校验位之间的约定关系。
- 编码及译码:
  - 发送端:
    - 被校验数据除以生成多项式;
    - 被校验数据拼接余数,结果作为发送数据。
  - 接收端:接收数据除以生成多项式。
    - 可以除尽,编码正确;
    - 除不尽,余数指明出错位所在的位置。



#### ■ 采用模2算术运算:

- 通过模2减法实现模2除法;
- 以模2加法将所得余数拼接在被校验数据的后面,形成能除尽的被校验数据。
- 生成多项式应满足的要求:
  - 任何一位发生错误都应使余数不为0;
  - 不同位发生错误应当使余数不同;
  - 应满足余数循环规律。
- 生成多项式的表示:

如,生成多项式G=10112,表示生成多项式为

$$G(X) = X^3 + X + 1$$



#### 符号及约定:

- 被校验数据(被除数)为F(X);
- 约定的生成多项式(除数)为G(X);
  - 发送方和接收方使用同一个生成多项式G(X)
  - G(X)的首位和最后一位的系数必须为1
- 所产生的余数为R(X)。



#### 发送端, CRC的编码方法:

- ① 将被校验数据(共k位)的有效信息F(X)左移 r位,得到  $F(X) \times X'$ 。
- ② 选取一个 r+1 位的生成多项式**G**(**X**), 对**F**(**X**)\***X**'作模**2**除法:

$$F(X) \times X'/G(X) = Q(X) + R(X)/G(X)$$

③ 将F(X)与R(X)相拼接。

$$F(X)\times X^r + R(X) = F(X)\times X^r - R(X) = Q(X)\times G(X)$$

拼接了校验码的数据必定能被约定的**G(X)**所除尽。



#### 接收端, CRC的译码方法:

将接收到的编码字除以约定的生成多项式G(X):

- 余数为0,则传输没有错误。
- ■余数不为0,则某一位出错。
  - 余数代码与出错位序号之间有唯一的对应关系: 根据余数找到出错位;
  - 将出错位取反即可纠错。



#### 【例】

- ① 假设信息字节为 F=1001010<sub>2</sub>;
- ② 选取**G**=1011<sub>2</sub>;
- ③ 将F左移*l*-1位, 形成 F'=1001010000<sub>2</sub>;
- 4 用 F'做被除数、G 做除数, 进行模2除法。忽略商,余数为R=111,。



- ⑤ 把余数加到 F'中,组成要发送的信息M: 1001010000<sub>2</sub>+111<sub>2</sub>=1001010111<sub>2</sub>。 111
- ⑥ 接收器采用相反的过程对接收的信息 M 进行解码和校验。M 应该可以被 G 严格整除。



接收器:解码校验

(正确的情况)

【例】

 接收器:解码校验(1位出错的情况)



#### (7, 4)循环码编码、余数与出错位置的关系

| $C(\mathbf{V})$ — | 编码举               | <b>叁例1</b> | 编码2                 | 举例2        | /     | 1117年 |
|-------------------|-------------------|------------|---------------------|------------|-------|-------|
| $G(X) = 1011_2$   | 数据位<br>6543       | 校验位<br>210 | 数据位<br>6543         | 校验位<br>210 | 余数    | 出错 位置 |
| 正确                | 1001              | 110        | 1100                | 010        | 0 0 0 | 无     |
|                   | 1001              | 111        | 1100                | 011        | 0 0 1 | 0     |
|                   | 1001              | 100        | 1100                | 000        | 0 1 0 | 1     |
|                   | 1001              | 010        | 1100                | 110        | 1 0 0 | 2     |
| 错误                | 1000              | 110        | 1101                | 010        | 0 1 1 | 3     |
|                   | 1011              | 110        | 11 <mark>1</mark> 0 | 010        | 1 1 0 | 4     |
|                   | 1101 110 1000 010 |            | 010                 | 1 1 1      | 5     |       |
|                   | 0001              | 110        | 0100                | 010        | 1 0 1 | 6     |



- CRC的生成多项式的阶数越高,误判的概率就越小。
- 常用的4个标准多项式:
  - CRC-12:

$$G(X) = X^{12} + X^{11} + X^3 + X^2 + X + 1$$

• CRC-16 (ANSI):

$$G(X) = X^{16} + X^{15} + X^2 + 1$$

• CRC-CCITT (ITU-T):

$$G(X) = X^{16} + X^{12} + X^{5} + 1$$

• CRC-32:

$$\begin{split} \mathbf{G}\left(\mathbf{X}\right) = & \mathbf{X}^{32} + \mathbf{X}^{26} + \mathbf{X}^{23} + \mathbf{X}^{22} + \mathbf{X}^{16} + \mathbf{X}^{12} + \mathbf{X}^{11} \\ & + \mathbf{X}^{10} + \mathbf{X}^{8} + \mathbf{X}^{7} + \mathbf{X}^{5} + \mathbf{X}^{4} + \mathbf{X}^{2} + \mathbf{X} + \mathbf{1} \end{split}$$



#### 几个小练习

- 520的IEEE 754浮点如何表示?
- 用奇 and 偶校验编码原码520?
- 用海明码编码原码520?
- 用CRC(10011)编码原码520?



#### 用CRC(10011)编码原码2024?

2024= 111 1110 1000

CRC编码结果:

**111 1110 1000 0011** 



### 本节学习要点

- 定点数 (整数、纯小数) 的四则运算
  - 加减法
- 算数逻辑部分
  - 单元电路
  - 算法逻辑单元ALU
  - 运算器的结构
- 定点数乘法
  - 原码乘法 (一位/二位乘法)





• 无符号加法很简单,只需注意进位...



- 无符号加法很简单,只需注意进位...
- 减法比较麻烦(包括加负数)



错误!



- 无符号加法很简单,只需注意进位...
- 减法比较麻烦 (包括 加负数)
- 如何简化减法?
  - 对减数预处理
    - 方案一: 反码减法

| 原   | 码 | 咸 | 去, | 13-7=6 |    |  |  |  |  |  |
|-----|---|---|----|--------|----|--|--|--|--|--|
| 0   | 1 | 1 | 0  | 1      | 13 |  |  |  |  |  |
| - 0 | 0 | 1 | 1  | 1      | 7  |  |  |  |  |  |
|     | 0 | 1 | 1  | 0      | 6  |  |  |  |  |  |

| 反码减法    | , 13-7=6 |
|---------|----------|
| 0 1 1 ( | 0 1   13 |
| +110    | 0 0 8    |
| 0 0 1 ( | 0 1 5    |
| +       | 1 1      |
| 0 0 1   | 1 0 6    |

-7的反码

反码结果需+1



- 无符号加法很简单,只需注意进位...
- 减法比较麻烦 (包括 加负数)
- 如何简化减法?
  - 对减数预处理

• 方案一: 反码减法

• 方案二: 补码减法

| 原   | 码 | 咸流 | 去, | 13- | 7=6 |
|-----|---|----|----|-----|-----|
| 0   | 1 | 1  | 13 |     |     |
| - 0 | 0 | 1  | 1  | 1   | 7   |
|     | 0 | 1  | 1  | 0   | 6   |

-7的补码



- 无符号加法很简单,只需注意进位...
- 减法比较麻烦 (包括 加负数)
- 如何简化减法?
  - 对减数预处理

• 方案一: 反码减法

• 方案二: 补码减法

- 补码加法统一加减法
  - $[X + Y] \stackrel{?}{h} = [X] \stackrel{?}{h} + [Y] \stackrel{?}{h}$
  - $[X Y] \stackrel{?}{=} [X] \stackrel{?}{=} + [-Y] \stackrel{?}{=}$

| 原   | 码 | 咸 | 去, | 13 | -7=6 |
|-----|---|---|----|----|------|
| 0   | 1 | 1 | 0  | 1  | 13   |
| - 0 | 0 | 1 | 1  | 1  | 7    |
|     | 0 | 1 | 1  | 0  | 6    |

7的补码



- 补码加减法统一运算规则:
  - 都用补码表示
  - 减法变成加负数
  - 符号也参与运算
- 结果就是和/差的补码

- 例,用补码计算:
  - 63 + 35
  - $\bullet$  -63 + (-35)
  - 63 35

• 解:

$$[-63]$$
 = 11000001

$$[35]$$
\* = 00100011

$$[-35]$$
 = 11011101

这多出来的1怎么搞?

这多出来的1怎么搞?



- 除了补码,移码也能加减
- 运算规则:
  - 都用移码表示
  - 减法变为加负数
  - 符号也参与计算
  - 运算结果符号位取反
- 结果就是和/差的移码

- 例,用移码计算:
  - 63 + 35
  - $\bullet$  -63 + (-35)
  - 63 35

• 解:

[63]移 = 10111111

[-63]移 = 01000001

[35]移 = 10100011

[-35]移 = 01011101



• 溢出导致两个问题:

| 63 + 85 |   |   |   |   |   |   |    |    |   |   |   | 63 | } + | 6 | 7 |   |    |
|---------|---|---|---|---|---|---|----|----|---|---|---|----|-----|---|---|---|----|
| 0       | 1 | 1 | 1 | 1 | 1 | 1 | 63 |    | 0 | 1 | 0 | 0  | 0   | 0 | 0 | 1 | 65 |
| 1       | 0 | 1 | 0 | 1 | 0 | 1 | 85 | +/ | 0 | 1 | 0 | 0  | 0   | 0 | 1 | 1 | 67 |

-101

- 数据部分是否越界? +
- 符号如何确定?
- 粗暴解决方案:
  - 扩大数值位数
- 实用解决方案:
  - 判断是否溢出

• 溢出判断方法:

1 0 0 1 0 1 0 0

- 双符号位(变形补码)
- 进位判别法
- 符号位与进位标志判别法



001000001

65 + 67

#### 双符号位

正溢出

负溢出

| • | 双 | 符 | 号 | 立 | 法 |
|---|---|---|---|---|---|
|---|---|---|---|---|---|

- "一个符号不够,两个来凑"
- ・符号位 S 变成 S<sub>2</sub>S<sub>1</sub>
  - 正数->00
  - 负数->11
- 溢出判断条件: *OF* = *S*1 ⊕ *S*2

$$S_1S_2 = 00$$
, Non-Overflow

$$S_1S_2 = 11$$
, Non-Overflow

$$S_1S_2 = 10$$
, Negative Overflow

$$S_1S_2 = 01$$
, Positive Overflow

#### 正溢出

-65 + -67

65 + 16

#### 63 + 85

| 65 | 0 0 |   |   |   |   |   |   |   |    |
|----|-----|---|---|---|---|---|---|---|----|
| 67 | +00 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 85 |
| 溢出 | 0 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 溢出 |

-65 + -85

| 5  | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | -65 |
|----|---|---|---|---|---|---|---|---|---|-----|
| 7_ |   |   |   |   |   |   |   |   |   | -85 |
| 出  | 1 | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 溢出  |

-65 + -5-65

11 0 1 1 1 0 1 0

无溢出

无溢出



- 进位判别法
- •"其实就是双符号位法的变形"一
- •设C<sub>n-1</sub>为高最高数值位向

#### 符号位的进位

Cn为符号位向更高位的进位

#### 则溢出判断条件:

$$OF = C_{n-1} \oplus C_n$$

 $C_{n-1}$   $C_n = 00$ , Non-Overflow

 $C_{n-1}$   $C_n = 11$ , Non-Overflow

 $C_{n-1}$   $C_n = 10$ , Negative Overflow

 $C_{n-1}$   $C_n = 01$ , Positive Overflow

|   |     |   |   |    |     |    |              | 63 | 3 +      | 8 | 5 |   |          |   |    |     |     |        |         |     |
|---|-----|---|---|----|-----|----|--------------|----|----------|---|---|---|----------|---|----|-----|-----|--------|---------|-----|
|   | 0   | 1 | 0 | 0  | 0   | 0  | 0            | 1  | 65       |   |   | 0 | 0        | 1 | 1  | 1   | 1   | 1      | 1       | 63  |
| + | 0   | 1 | 0 | 0  | 0   | 0  | 1            | 1  | 67       | + |   | 0 | 1        | 0 | 1  | 0   | 1   | 0      | 1       | 85  |
|   | 0 1 | 0 | 0 | 0  | 0   | 1  | 0            | 0  | 溢出       |   | 0 | 1 | 0        | 0 | 1  | 0   | 1   | 0      | 0       | 溢出  |
|   | V   |   |   |    |     |    |              |    | ·        |   | V | 1 |          | 1 |    |     | K   |        |         | _   |
|   | 0 1 | 1 |   |    |     | C  | n-1          |    |          |   | 0 | 1 | ı        |   |    | Ī   | Ei  | #<br>E | Ľ       |     |
|   |     |   | • | 65 | 5 + | -6 | <b>67</b>    |    |          |   |   |   |          |   | 65 | 5 + | 8   | 35     |         |     |
|   | 1 1 | 0 | 1 | 1  | 1   | 1  | 1            | 1  | -65      |   | 1 | 1 | 0        | 1 | 1  | 1   | 1   | 1      | 1       | -65 |
| + | 1 1 | 0 | 1 | 1  | 1   | 1  | 0            | 1  | -67      | + | 1 | 1 | 0        | 1 | 0  | 1   | 0   | 1      | 1       | -85 |
|   | 1 0 | 0 | 1 | 1  | 1   | 1  | 0            | 0  | 溢出       |   | 1 | 0 | 1        | 1 | 0  | 1   | 0   | 1      | 0       | 溢出  |
|   | V   |   |   |    |     |    |              |    | <u>'</u> |   | 1 |   |          |   |    |     |     |        |         |     |
|   | 1   | 0 |   | 65 | 5 + | 1  | 6            |    | 负溢出      |   | 1 |   | )        |   | -6 | 5 - | + - | 5      |         |     |
|   | 0 0 | 1 | 0 | 0  | 0   | 0  | 0            | 1  | 65       |   | 1 | 1 | 0        | 1 | 1  | 1   | 1   | 1      | 1       | -65 |
| + | 0 0 | 0 | 0 | 0  | 1   | 0  | 0            | 0  | 16       | + | 1 | 1 | 1        | 1 | 1  | 1   | 0   | 1      | 1       | -5  |
|   | 0 0 | 1 | 0 | 0  | 1   | 0  | 0            | 1  | 溢出       |   | 1 | 1 | 0        | 1 | 1  | 1   | 0   | 1      | 0       | 无溢  |
|   |     |   |   |    |     |    |              |    |          |   |   | 1 | <b>/</b> |   |    |     |     |        |         |     |
|   | 0   | 0 |   |    |     | =: | <del>送</del> |    |          |   | 1 | • | 1        |   |    | 5   |     |        | H       |     |
|   |     |   |   |    |     |    |              |    |          |   |   |   |          |   |    | 304 |     | 00000  | 250.518 |     |



- 符号位与进位标志判别法 CPU符号标志SF
  - CPU的处理器状态字 (Processor State Word, PSW) 描述众多运算状态, 如溢出标志(Overflow Flag, OF), 进位 标志(Carrier Flag, CF), 符号标志(Sign Flag)等...
  - 当运算发生进位时,CF置1
  - "把CF, SF纳入计算"
  - 溢出判断条件: *OF* = *CF* ⊕ *SF*

CFSF = 00, Non-Overflow

**CFSF** = 11, Non-Overflow

**CFSF** = 10, Negative Overflow

**CFSF** = 01, Positive Overflow

| SE | 65 + 67 |   |   |   |   |   |   |   | 65 + 85 |   |   |   |   |   |   |   |   |   |   |    |
|----|---------|---|---|---|---|---|---|---|---------|---|---|---|---|---|---|---|---|---|---|----|
| 4  | 0       | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 65      |   |   | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 63 |
| +  | 0       | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 67      | + |   | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 85 |
| Ç  | 1       | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 溢出      |   | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 溢出 |

#### CPU进位标志CF

#### 正溢出

| -65 + -67 |     |   |   |   | -65 + -85 |   |   |   |     |   |   |   |   |   |   |   |   |   |     |
|-----------|-----|---|---|---|-----------|---|---|---|-----|---|---|---|---|---|---|---|---|---|-----|
|           | 1   | 0 | 1 | 1 | 1         | 1 | 1 | 1 | -65 |   | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | -65 |
| +         | 1   | 0 | 1 | 1 | 1         | 1 | 0 | 1 | -67 | + | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | -85 |
| •         | 1 0 | 0 | 1 | 1 | 1         | 1 | 0 | 0 | 溢出  |   | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 溢出  |

#### 负溢出

|   | 65 + 16 |   |   |   |   |   |   |   | -65 - 5 |   |   |   |   |   |   |   |   |   |     |
|---|---------|---|---|---|---|---|---|---|---------|---|---|---|---|---|---|---|---|---|-----|
|   | 0       | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 65      |   | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | -65 |
| + | 0       | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 16      | + | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | -5  |
|   | 0 0     | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 81      | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | -70 |

#### 无溢出



- 那么CPU实际是怎么做的?
  - SF和CF输入组合逻辑电路判断出来的~
- Then ?
  - 溢出标志OF = On
  - [maybe]产生溢出中断



3个全加器级联





- 加法器
  - 一位加法器
    - 半加器(Half Adder)
    - 全加器(Full Adder)
  - 多位加法器
    - 行波加法器 (RCA)
    - 先行进位加法器 (CLA)
  - BCD加法器



- 半加器(Half Adder)
  - 没有进位输入(Carry In)的加法器
  - S<sub>i</sub>为和, C<sub>i+1</sub>为进位
  - 电路逻辑为:
    - $S_i = A \oplus B$
    - $C_{i+1} = A \cdot B$



| Inp | uts | Outputs |   |  |  |  |  |  |
|-----|-----|---------|---|--|--|--|--|--|
| A   | В   | С       | S |  |  |  |  |  |
| 0   | 0   | 0       | 0 |  |  |  |  |  |
| 1   | 0   | 0       | 1 |  |  |  |  |  |
| 0   | 1   | 0       | 1 |  |  |  |  |  |
| 1   | 1   | 1       | 0 |  |  |  |  |  |

半加器真值表



- 全加器(Full Adder)
  - 包含进位输入(Carry In)的加法器
  - S<sub>i</sub>为和
  - C<sub>in</sub>为进位输入,C<sub>out</sub>为进位输出
  - 电路逻辑为:
    - $S_i = A \oplus B \oplus C$
    - $C_{out} = A \cdot B + (A \oplus B) \cdot C_{in}$





一位全加器

| l | npu | ts              | Outputs |   |  |  |  |  |
|---|-----|-----------------|---------|---|--|--|--|--|
| Α | В   | C <sub>in</sub> | Cout    | s |  |  |  |  |
| 0 | 0   | 0               | 0       | 0 |  |  |  |  |
| 0 | 0   | 1               | 0       | 1 |  |  |  |  |
| 0 | 1   | 0               | 0       | 1 |  |  |  |  |
| 0 | 1   | 1               | 1       | 0 |  |  |  |  |
| 1 | 0   | 0               | 0       | 1 |  |  |  |  |
| 1 | 0   | 1               | 1       | 0 |  |  |  |  |
| 1 | 1   | 0               | 1       | 0 |  |  |  |  |
| 1 | 1   | 1               | 1       | 1 |  |  |  |  |

全加器真值表



### 行波多位加法器(Ripple-Carry Adder, RCA)

- 自低位向高位,依次计算、进位,计算、进位…
  - so-called "ripple carry"
- RCA结构简单,但有明显缺点: 计算时延大, $n\Delta t$





### 先行进位加法器(Carry-Lookahead Adder, CLA)

回顾Let一下1位全加器的进位逻辑Ci+1

$$C_{i+1} = A \cdot B + (A \oplus B) \cdot C_i$$

$$Gi = A \cdot B$$

则: 
$$C_{i+1} = G_i + P_i \cdot C_i$$

$$C_1 = G_0 + P_0C_{in}$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_{in}$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_{in}$$

$$C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_{in}$$

所有进位C可以根据P序列和G序 列直接求得 C<sub>4</sub>与C<sub>3</sub>无关

C3与C2无关

C2与C1无关



### 先行进位加法器(Carry-Lookahead Adder, CLA)

回顾Let一下1位全加器的进位逻辑Ci+1

$$C_{i+1} = A \cdot B + (A \oplus B) \cdot C_i$$

$$Gi = A \cdot B$$

则: 
$$C_{i+1} = G_i + P_i \cdot C_i$$

$$C_1 = G_0 + P_0C_{in}$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_{in}$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_2$$

$$C_4 = G_3 + P_3C_3 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1$$

所有进位C可以根据P序列和G序 列直接求得



#### CLA 4位加法器



4bit 进位生成单元



BCD加法器



| 10进制<br>有进位 | 10D | 11D               | 12D | 13D | 14D | 15D |
|-------------|-----|-------------------|-----|-----|-----|-----|
| 16进制<br>无进位 | 0AH | 0BH               | 0CH | 0DH | 0EH | 0FH |
| +06H        | 06H | 06H               | 06H | 06H | 06H | 06H |
| 16进制<br>有进位 | 10H | 11H <sub>40</sub> | 12H | 13H | 14H | 15H |



### • BCD加法器

- 两个4bit加法器构成
  - 一个加法器算数值
  - 另一个加法器用来+06H ....





#### 现代的CPU用啥加法器?

- 五花八门...
  - 精确加法器
    - CLA / RCA
    - Kogge-Stone / Brent-Kung / Han-Carlson (CLA的高级形态)
  - 非精确加法器 Speculative Adder
    - Insight: "很少有很长的进位链,所以赌某段无进位,…"
    - 95%正确, 比最快的精确加速器快平均1.5x
    - 有额外电路快速检查结果是否正确 (只能判断正确)
- 取舍因素? 设计过程/性能/面积/延时/功耗....
- 区区一个加法器,直到2020年,还在不断地发展...





#### 原码一位乘法就是模拟手工乘法:

• 符号 $S_m = S_A \oplus S_b$ ,数值 $|m| = |A| \times |B|$ 

例,[X]原=0.1101,[Y]原=1.1011,求积

解: 符号,  $S=0 \oplus 1=1$ ; 数值部分如下:

#### 模拟手工乘法





#### 原码一位乘法就是模拟手工乘法:

• 符号 $S_m = S_A \oplus S_b$ , 数值 $|m| = |A| \times |B|$ 

例,[X]原=0.1101,[Y]原=1.1011,求积

解: 符号,  $S=0 \oplus 1=1$ ; 数值部分如下:

#### 模拟手工乘法



·如何描述这一过程?

- 1. 设一临时变量D = 0
- **2**. 若Y末位为1, D = D + X
- 3. D右移一位; Y右移一位
- 4. 若Y有剩余位数,回到第2步
- 5. 结束



#### 原码一位乘法就是模拟手工乘法:

• 符号 $S_m = S_A \oplus S_b$ , 数值 $|m| = |A| \times |B|$ 

例,[X]原=0.1101,[Y]原=1.1011,求积

解: 符号,  $S=0 \oplus 1=1$ ; 数值部分如下:

#### 模拟手工乘法

|   |   |   |   | 1 | 1 | 0 | 1 |
|---|---|---|---|---|---|---|---|
| X |   |   |   | 1 | 0 | 1 | 1 |
|   |   |   |   | 1 | 1 | 0 | 1 |
|   |   |   | 1 | 1 | 0 | 1 |   |
|   |   | 0 | 0 | 0 | 0 |   |   |
|   | 1 | 1 | 0 | 1 |   | 4 | 4 |
|   | _ | _ |   |   |   |   |   |

- 1. 设一临时变量D=0
- 2. 若Y末位为1, D = D + X
- 3. D右移一位; Y右移一位
- 4. 若Y有剩余位数,回到第2步
- 5. 结束

|             |             |             |             |             |     |        | Υ      |       |                                                       |
|-------------|-------------|-------------|-------------|-------------|-----|--------|--------|-------|-------------------------------------------------------|
|             |             | ]           | D           |             |     | Ш      | A      | $A_0$ | 操作                                                    |
| 0+0         | 0           | 0<br>1      | 0           | 0           | 1   | 0      | 1      | 1     | $A_0=1, +X$                                           |
| 0           | 1           | 1           | 0           | 1           | 4.  | 1      | •      |       | • Loth VI.                                            |
| 0<br>+0     | 0           | 1           | 1<br>0      | 0<br>1      | 1   | 1      | 0      | 1     | →右移一次<br>A <sub>0</sub> =1,+X                         |
| 1<br>0<br>0 | 0<br>1<br>0 | 0<br>0<br>0 | 1<br>0<br>0 | 1<br>1<br>0 | 1   | 1<br>1 | 0 1    | 1 0   | →右移一次<br><b>A</b> <sub>0</sub> = <b>0</b> ,+ <b>0</b> |
| 0 0 + 0     | 1<br>0<br>1 | 0<br>1<br>1 | 0<br>0<br>0 | 1<br>0<br>1 | 1   | 1 1    | 1      | 0 1   | →右移一次<br>A <sub>0</sub> =1,+X                         |
| 1 0         | 0           | 0           | 0           | 1<br>0      | 1 1 | 1<br>1 | 1<br>1 | 1 1   | →右移一次                                                 |

#### 原码一位乘法运算过程

最终结果, [X]原x[Y]原=1.10001111



#### 练习,[X]原=0.110111,[Y]原=1.1001,求积 1.01 1110 1111

- **1.** 设一临时变量D = 0
- **2**. **若**Y**末位为1**, D = D + X
- 3. D右移一位; Y右移一位
- 4. 若Y有剩余位数,回到第2步
- 5. 结束

|    |   |   | ] | O |   |   | Y    |        |       |   | 操作                            |
|----|---|---|---|---|---|---|------|--------|-------|---|-------------------------------|
| 0  | 0 | 0 | 0 | 0 | 0 | 0 | 1    | 0      | 0     | 1 | $A_0=1, +X$                   |
| +0 | 1 | 1 | 0 | 1 | 1 | 1 |      |        | Comme | 1 |                               |
| 0  | 1 | 1 | 0 | 1 | 1 | 1 |      |        |       |   |                               |
| 0  | 0 | 1 | 1 | 0 | 1 | 1 | 1    | 1      | 0     | 0 | 右移一次                          |
| 0  | 0 | 0 | 1 | 1 | 0 | 1 | 1    | 1      | 1     | 0 | 右移一次                          |
| 0  | 0 | 0 | 0 | 1 | 1 | 0 | 1    | 1      | 1     | 1 | 右移一次<br>A <sub>0</sub> =1, +X |
| +0 | 1 | 1 | 0 | 1 | 1 | 1 | que. | Kerik. |       |   |                               |
| 0  | 1 | 1 | 1 | 1 | 0 | 1 | 1    | 1      | 1     | 1 |                               |
| 0  | 0 | 1 | 1 | 1 | 1 | 0 | 1    | 1      | 1     | 1 | 右移一次                          |



#### 原码二位乘法,

一次乘两位数字? 这个在十进制下很反人类啊..., 但在二进制下, 似乎还好...





#### 原码二位乘法,

一次乘两位数字?这个在十进制下很反人类啊...,但在二进制下,似乎还好...



### 规则似乎很直观:

$$\begin{cases} Y_{i+1}Yi = 00, +0 \\ Y_{i+1}Yi = 01, +|X| \\ Y_{i+1}Yi = 10, +2|X| \\ Y_{i+1}Yi = 11, +3|X| \end{cases}$$

### 规则还可以更进一步优化:

$$+3|X| = +4|X| - |X|$$

⇒先减|X|, 平移2步后+|X|





### 原码二位乘法

### 规则还可以更进一步优化:

$$+3|X| = +4|X| - |X|$$

⇒先减|X|,平移2步后+ |X|

### 标记是否要+4|X|







### 原码二位乘法

标记是否要+4|X|

|                  |                | <b>V</b> |                   |       |     |
|------------------|----------------|----------|-------------------|-------|-----|
| Y <sub>i+1</sub> | Y <sub>i</sub> | C        |                   | 操     | 作   |
| 0                | 0              | 0        | +0,               | 右移2次, | C=0 |
| 0                | 0              | 1        | + X ,             | 右移2次, | C=0 |
| 0                | 1              | 0        | + X ,             | 右移2次, | C=0 |
| 0                | 1              | 1        | +2 X ,            | 右移2次, | C=0 |
| 1                | 0              | 0        | +2 X ,            | 右移2次, | C=0 |
| 1                | 0              | 1        | $- \mathbf{X} $ , | 右移2次, | C=1 |
| 1                | 1              | 0        | - X ,             | 右移2次, | C=1 |
| 1                | 1              | 1        | +0,               | 右移2次, | C=1 |

例,[X]原=0.1001111,[Y]原=1.100111,求积

解: [2X]补=01.001110; [-X]补=1.011001

| hr/         | 符号位 D       |               |             |             |             |                                               |             |             |   |   |   | _ | +H //- |                         |  |  |
|-------------|-------------|---------------|-------------|-------------|-------------|-----------------------------------------------|-------------|-------------|---|---|---|---|--------|-------------------------|--|--|
| ſī.         | 一亏1         | $\mathcal{N}$ |             |             | L           | <u>,                                     </u> |             |             |   |   | 4 | A |        | 操作                      |  |  |
| 0<br>1      | 0<br>1      | 0<br>1        | 0           | 0<br>1      | 0<br>1      | 0<br>0                                        | 0           | 0<br>1      | 1 | 0 | 0 | 1 | 1 1    | C=0<br>-X               |  |  |
| 1<br>1<br>0 | 1<br>1<br>0 | 1<br>1<br>1   | 0<br>1<br>0 | 1<br>1<br>0 | 1<br>0<br>1 | 0<br>1<br>I                                   | 0<br>1<br>1 | 1<br>0<br>0 | 0 | 1 | 1 | 0 | 0 1    | C=1<br>→右移二次<br>C=1,+2X |  |  |
| 0<br>0<br>0 | 0<br>0<br>0 | 1<br>0<br>1   | 0<br>0<br>0 | 0<br>1<br>0 | 0<br>0<br>1 | 1<br>0<br>1                                   | 0<br>0<br>1 | 0<br>1<br>0 | 0 | 0 | 0 | 1 | 1_0    | C=0<br>→右移二次<br>C=0,+2X |  |  |
| 0           | 0           | 1             | 0           | 1           | 1           | 1                                             | 1<br>1      | 1           | 1 | 1 | 0 | 0 | 0 1    | C=0<br>→右移二次            |  |  |

图 3-9 例 3-12 的二位乘法的运算过程

最终结果, [X]原x[Y]原=1.010111110001



练习,[X]原=0.110110,[Y]原=1.101101,求积

解: [2X]补=01.101100; [-X]补=1.001010