RESPONSE REPORT

"Development of an Algorithm Improving Label Arrangements in Offset Printing" by GEUN SOO JANG, TAEHYEONG KIM, HYUN-MIN KIM, KI MAN KONG, JEONG RYE PARK, JONG-HYEON SEO, SANG-HYUP SEO, AND SHIN WON YOON

We thank referees for their careful review and helpful comments, which improved clarity of our paper.

- (1) We fixed some small typos.
- (2) Page 5, after FIGURE 3.1: Add more detailed description of Figure 3.1
- (3) Page 5, after "We set the result as $Part_list$."

 For example, let k = 6 and num = 3, then $Part_list = Part(6,3) = \{[4,1,1],[3,2,1],[2,2,2]\}$. N is a printing number that expressed in (3.1).
- (4) Page 5, above Example 4.1 : In this section, we assume that k is equal to 4 \Longrightarrow For the next two examples, we assume that k is equal to 4
- (5) page 5, In Example 4.1 : $I = \{A, B, C\}, \ \pi = \{\{A, B\}, \{C\}\}, \ P_1 = \{A, B\}, P_2 = \{C\} \implies I = \{1, 2, 3\}, \ \pi = \{\{1, 2\}, \{3\}\}, \ P_1 = \{1, 2\}, P_2 = \{3\}$
- (6) fixed FIGURE 4.1 and FIGURE 4.2
- (7) page 6, In Example 4.2 : $I = \{A, B\}, \ \pi = \{\{A, B\}\}\}$ \Longrightarrow $I = \{1, 2\}, \ \pi = \{\{1, 2\}\}\}$
- (8) fixed FIGURE 4.3 and FIGURE 4.4
- (9) page 6, after FIGURE 4.4: Add the real problem and Example 4.3
- (10) For the minor comment: $\operatorname{Mat}_{\pi \times I}(\mathbf{Z})$ is the same as $\mathbf{Z}^{\pi \times I}$, i.e. $A \in \operatorname{Mat}_{\pi \times I}(\mathbf{Z})$ is a $|\pi| \times |I|$ integer matrix in the traditional perspective.