Lista 3

Ítallo Silva - 118110718 | |

Questão 1

Questão 2

Questão 3

Questão 4

Questão 5

Questão 6

Questão 7

Seja p a proporção de mulheres, então p = 0, 30.

Pelo TLC, sabemos que $\hat{p} \sim N(p; \frac{p(1-p)}{n})$, substituindo $p \in n$, temos que $\hat{p} \sim N(0, 3; 0, 021)$.

A probabilidade que buscamos é dada por $P(|\hat{p}-p|<0,01)=P(-0,01<\hat{p}-p<0,01)$. Somando p na igualdade temos $P(|\hat{p}-p|<0,01)=P(0,29<\hat{p}<0,31)$.

Padronizando, temos: $P(0,29 < \hat{p} < 0,31) = P(\frac{0.29 - 0.30}{\sqrt{0.021}} < Z < \frac{0.31 - 0.30}{\sqrt{0.021}}) = P(-0.07 < Z < 0.07) = P(Z < 0.07) - P(Z < -0.07) = 0.5279 - 0.4721 = 0.056.$

Assim $P(|\hat{p} - p| < 0, 01) = 0,056$.

Questão 8

a)

Temos que $S_n \sim Bin(8; 0, 20)$, assim:

```
rownames(dist) <- c("n", "$P(S_n = n)$")
dist %>% knitr::kable(digits = 3, col.names = rep("", 9))
```

n	0	1	2	3	4	5	6	7	8
$P(S_n = n)$	$0,\!168$	$0,\!336$	$0,\!294$	0,147	0,046	0,009	0,001	0,000	0,000

b)

Temos que 25% de peças defeituosas corresponde a 25% \cdot 8 = 2 peças. Assim, desejamos obter $P(S_n \le 2)$. Usando R:

Assim, $P(S_n \le 2) = 0.7969$.

c)

Pelo TCL, temos que $S_n \sim N(np; npq)$, onde n = 8, p = 0, 20 e q = 0, 80, assim $S_n \sim N(1, 6; 1, 28)$. Agora, calculemos $P(S_n \le 2)$, correspondente a no máximo 25% de peças com defeito:

$$P(S_n \le 2) \to P(Z \le \frac{2-1.6}{\sqrt{1.28}}) = P(Z \le 0.35).$$

Usando a tabela temos que $P(Z \le 0.35) = 0.6368$. Calculando no R, temos:

Logo $P(Z \le 0, 35) = 0,6368$. A probabilidade foi bem diferente, isso se deve ao fato do n ser pequeno e $n \cdot p < 5$, assim fazendo a aproximação não ser muito boa.

d)

Considerando um sorteio de 30 peças. Temos que $25\% \cdot 30 = 7.5$.

Usando a distribuição binomial (item b), temos:

```
pb <- pbinom(7, 30, 0.20) # Como a variável é discreta 7, pode ser usando ao invés de 7,5
```

Usando a aproximação pela Normal (item c), temos:

 $S_n \sim N(np; npq) \rightarrow S_n \sim N(6; 4, 8)$, assim calculando no R:

```
pn <- pnorm(7.5, mean = 6, sd = sqrt(4.8))
```

Pela binomial temos $P(S_n \le 7.5) = 0.7608$ e pela normal temos $P(S_n \le 7.5) = 0.7532$. Com n = 30, temos uma aproximação bem mais próxima do que as calculadas com n = 5, nos itens b e c.

e)

Representação do item a

Distribuição da probabilidade

Representação do item b e c

```
f <- function(x) { dnorm(x, mean = 1.6, sd = sqrt(1.28)) }
barplot(dbinom(seq(0, 8), 8, 0.2), ylim = c(0, .4), space = 0, xlab = "n", ylab = "Densidade")
curve(f, from = 0, to = 8, add = TRUE)
axis(1)
axis(2)</pre>
```


Representação do item d

```
f <- function(x) { dnorm(x, mean = 6, sd = sqrt(4.8)) }
barplot(dbinom(seq(0, 30), 30, 0.2), ylim = c(0, .2), axes = FALSE, space = 0, xlab = "n", ylab = "Dens curve(f, from = 0, to = 30, add = TRUE)
axis(1)
axis(2)</pre>
```


Questão 9

A parada é desnecessária caso o processo ainda esteja dentro da margem de 10% itens defeituosos. No pior caso, sendo o próprio 10%.

Sendo assim, o número Y de peças defeituosas no sorteio de 20 peças tem distribuição $Y \sim Bin(20;0,1)$ e a proporção de peças com defeito \hat{p} tem distribuição aproximadamente $N(0,1;\frac{0,1\cdot0,9}{20})=N(0,1;0,0045)$.

Queremos $P(\hat{p}>0,15) \rightarrow P(Z>0,75) = 1-P(Z<0,75) = 1-0,7734 = 0,2266$. Assim a probabilidade de uma parada desnecessária é 22,66%.

Questão 10

a)

Considerando a questão anterior, temos que a proporção \hat{p} de peças em uma caixa de 100 unidades tem distribuição aproxida por N(0,1;0,0009). E queremos $P(\hat{p}>0,1)$, assim:

$$P(\hat{p} > 0, 1) = P\left(Z > \frac{0, 1 - 0, 1}{\sqrt{0,0009}}\right) = P(Z > 0) = 50\%.$$

b)

Queremos $P(\hat{p}=0)$, sendo assim não é recomendado utilizar a distribuição normal já que queremos uma probabilidade pontual, mas podemos utilizar a distribuição binomial $\hat{p} \sim Bin(100;0.1)$. Sendo assim, $P(\hat{p}=0) \approx 2,65 \times 10^{-5} \approx 0$.

 $\mathbf{c})$

```
f <- function(x) { dnorm(x, mean = 10, sd = 3) }
barplot(dbinom(seq(0, 100), 100, 0.1), space = 0, ylim = c(0, .15), axes = FALSE, xlab = "n", ylab = "D
curve(f, add = TRUE)
axis(1)
axis(2)</pre>
```

