Práctica 8

- 1. Sea \mathcal{A} una una familia no vacía de subconjuntos de X cerrada por complementos y por uniones numerables. Probar que \mathcal{A} es cerrada por intersecciones numerables y que $\emptyset, X \in \mathcal{A}$.
- **2.** Sea \mathcal{A} una σ -álgebra de conjuntos de X.
 - (a) Si $A, B \in \mathcal{A}$ entonces $A \setminus B \in \mathcal{A}$ y $A \triangle B \in \mathcal{A}$.
 - (b) Sea $f: X \to Y$ una función. Probar que $\mathcal{B} = \{B \subseteq Y: f^{-1}(B) \in \mathcal{A}\}$ es una σ -álgebra de conjuntos de Y.
- 3. Sean \mathcal{A}_1 y \mathcal{A}_2 dos σ -álgebras de conjuntos de X. Probar que $\mathcal{A}_1 \cap \mathcal{A}_2$ es una σ -álgebra de conjuntos de X.
- 4. Probar que todo subconjunto numerable de \mathbb{R} es nulo.
- **5.** Probar que para todos $a, b \in \mathbb{R}$ los intervalos [a, b), [a, b], $[a, +\infty)$ son medibles Lebesgue, y calcular su medida.
- **6.** Calcular la medida de Lebesgue de \mathbb{Q} y la de los irracionales del [0,1]. ¿Por qué son medibles estos conjuntos?

En lo que sigue \mathcal{M} será la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue.

- 7. Probar que todo conjunto acotado de \mathcal{M} tiene medida finita. Mostrar un conjunto de \mathcal{M} que tenga medida de Lebesgue finita pero que no sea acotado.
- **8.** (a) Si $A, B \in \mathcal{M}, A \subseteq B \text{ y } \mu(A) < \infty \text{ entonces } \mu(B \setminus A) = \mu(B) \mu(A).$
 - (b) Si $A, B \in \mathcal{M}$ entonces $\mu(A \cup B) + \mu(A \cap B) = \mu(A) + \mu(B)$.
- **9.** Para cada $\lambda > 0$ y cada conjunto $A \subseteq \mathbb{R}$ notamos λA al conjunto

$$\lambda A = {\lambda x : x \in A}.$$

Probar que si $A \in \mathcal{M}$ entonces $\lambda A \in \mathcal{M}$ y $\mu(\lambda A) = \lambda \mu(A)$.

- **10.** Probar que un conjunto acotado $A \subseteq \mathbb{R}$ es medible Lebesgue si y sólo si $\forall \varepsilon > 0$ existen conjuntos G abierto y F cerrado tales que $F \subseteq A \subseteq G$ y $\mu(G \setminus F) < \varepsilon$.
- 11. Sea $A \in \mathcal{M}$. Probar que si $\mu(A) = 0$ entonces $A^{\circ} = \emptyset$. ¿Vale la vuelta?
- 12. Sea $A \subseteq [0,1]$ un conjunto medible Lebesgue tal que $\mu(A) = 1$. Probar que A es denso en [0,1].
- 13. Sea $\mathcal{M}(I)$ la σ -álgebra de los conjuntos medibles en I = [0,1] y μ la medida de Lebesgue. Sea $(A_n)_{n \in \mathbb{N}} \subseteq \mathcal{M}(I)$ y $B \in \mathcal{M}(I)$ tales que $\lim_{n \to \infty} \mu(A_n \triangle B) = 0$. Probar que $\lim_{n \to \infty} \mu(A_n) = \mu(B)$.