



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

### AD-A173 808



AFGL-TR-86-0046

Carbon Dioxide Line Positions in the 2.8 and 4.3 Micron Regions at 800 Kelvin

Mark P. Esplin Hajime Sakai Laurence S. Rothman George A. Vanasse William M. Barowy Ronald J. Huppi



Stewart Radiance Laboratory Utah State University 139 The Great Road Bedford, MA 01730

19 February 1986

Scientific Report No. 16

FILE COP

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AIR FORCE GEOPHYSICS LABORATORY
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
HANSCOM AIR FORCE BASE, MASSACHUSETTS 01731

"This technical report has been reviewed and is approved for publication"

(Signature)

FRANK ROBERT Contract Manager (Signature

FLOYD COOK Branch Chief

FOR THE COMMANDER

(**Signature**)
Randall Murphy

Division Director

This report has been reviewed by the ESD Public Affairs Office (PA) and is releasable to the National Technical Information Service (NTIS).

Qualified requestors may obtain additional copies from the Defense Technical Information Center. All others should apply to the National Technical Information Service.

If your address has changed, or if you wish to be removed from the mailing list, or if the addressee is no longer employed by your organization, please notify AFGL/DAA, Hanscom AFB, MA 01731. This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific document requires that it be returned.

|                                                                                |          | REPORT DOCUM                          | MENTATION                       | PAGE                         |            |                      |                                    |  |  |
|--------------------------------------------------------------------------------|----------|---------------------------------------|---------------------------------|------------------------------|------------|----------------------|------------------------------------|--|--|
| 1a. REPORT SECURITY CLASSIFICATION Unclassified                                |          |                                       | 16. RESTRICTIVE                 | MARKINGS                     |            |                      |                                    |  |  |
| 2a. SECURITY CLASSIFICATION AUTHORITY                                          |          | 3 DISTRIBUTION AVAILABILITY OF REPORT |                                 |                              |            |                      |                                    |  |  |
| 2b. DECLASSIFICATION / DOWNGRADING                                             | SCHEDU   | LĒ                                    |                                 | or public re<br>on unlimited |            | e <b>;</b>           |                                    |  |  |
| 4. PERFORMING ORGANIZATION REPORT                                              | NUMBE    | R(S)                                  | 5. MONITORING                   | ORGANIZATION RI              | PORT       | NUMBERIS             | ,                                  |  |  |
|                                                                                |          |                                       |                                 | AFGL-TR-86-0                 |            |                      |                                    |  |  |
| 6a. NAME OF PERFORMING ORGANIZATI                                              | ON       | 6b. OFFICE SYMBOL                     | 7a. NAME OF M                   | ONITORING ORGA               | NIZATIO    | ON                   |                                    |  |  |
| Stewart Radiance Laboratory Utah State University  (If applicable)             |          |                                       | Air Force Geophysics Laboratory |                              |            |                      |                                    |  |  |
| 6c. ADDRESS (City, State, and ZIP Code)                                        |          |                                       | 76 ADDRESS (Cit                 | y, State, and ZIP            | Code)      |                      |                                    |  |  |
| 139 The Great Road                                                             |          |                                       | Hanscom AFB                     |                              |            |                      |                                    |  |  |
| Bedford, MA 01730                                                              |          |                                       | Massachuset                     | ts 01731                     |            |                      |                                    |  |  |
| 8a. NAME OF FUNDING/SPONSORING ORGANIZATION                                    | •        | 8b. OFFICE SYMBOL (If applicable)     | 9 PROCUREMEN                    | T INSTRUMENT ID              | ENTIFIC    | ATION NU             | MBER                               |  |  |
|                                                                                |          |                                       |                                 | F19628-83-C-                 | 0056       |                      |                                    |  |  |
| 8c. ADDRESS (City, State, and ZIP Code)                                        |          |                                       |                                 | UNDING NUMBER                | S          |                      |                                    |  |  |
|                                                                                |          |                                       | PROGRAM ELEMENT NO              | PROJECT<br>NO                | TASK<br>NO |                      | WORK UNIT<br>ACCESSION NO.         |  |  |
|                                                                                |          |                                       | 62101F                          | 7670                         | 10         |                      | AK                                 |  |  |
| Regions at 800 Kelvin  12 PERSONAL AUTHOR(S) Mark P. William M. Barowy, Ronald | Esp1     | in, Hajime Sakai<br>uppi              | , Laurence                      | S. Rothman,                  | Geor       | ge A. V              | anasse,                            |  |  |
|                                                                                | TIME CO  |                                       |                                 | ORT (Year, Month,            | Day)       | 15. PAGE             |                                    |  |  |
| Scientific Report #16 FR                                                       | ом       | 10                                    | 1986 Feb                        | ruary 19                     |            | 32                   | 8                                  |  |  |
|                                                                                |          |                                       |                                 |                              |            |                      |                                    |  |  |
| 17. COSATI CODES                                                               |          | 18. SUBJECT TERMS (C                  | ontinue on revers               | e if necessary and           | l identi   | ify by block         | k number)                          |  |  |
| FIELD GROUP SUB-GRO                                                            | OUP      | CO <sub>2</sub> line positi           | ons; High r                     | esolution in                 | terf       | erometr              | y; CO <sub>2</sub>                 |  |  |
|                                                                                |          | molecular const                       | m aa11                          |                              | r pr       | ogram; 1             | High temper-                       |  |  |
| 19. ABSTRACT (Continue on reverse if m                                         | ecessary | and identify by block n               | umber) Mis ro                   | m 1 (1)                      |            |                      |                                    |  |  |
| A urgu resolution interier                                                     | omere    | r was used to me                      | asure the s                     | pectra of se                 | vera       | l differ             | rent                               |  |  |
| sotopically enriched carbo                                                     | n dio    | xide samples hea                      | ited to 800 1                   | K in a high                  | temp       | erature              | absorption                         |  |  |
| ell. An interactive line                                                       | assig    | nment computer p                      | rogram was                      | developed an                 | d us       | ed to id             | dentify, in                        |  |  |
| the two wavelength regions vibration bands. In the 4                           | , a to   | otal of over 800<br>region 19 bands   | 0 lines belo<br>were ident:     | onging to $73$ ified to $12$ | dif:       | ferent i<br>, 15 foi | rotation-<br>r 13,16,              |  |  |
| 5 bands each for 121618                                                        | 12       | 18, and 13,16                         | 18, and one                     | e band for 1                 | 3/16/      | 17. It               | n the 2                            |  |  |
| 2.8 mm region 11 bands wer                                                     | e ide    | ntified for $12^{7}_{ m C}$           | 6, 10 for                       | 12,16,18 <sub>0</sub> ,      | and :      | 2 for 12             | 2 <sub>.</sub> 18 <sub>0</sub> New |  |  |
| molecular constants were o                                                     | btain    | ed for each band                      | from a leas                     | st-squares-f                 | it to      | o the ol             | oserved                            |  |  |
| line positions. The new m<br>within an accuracy of appr                        | юlecu:   | lar constants re                      | produce the                     | position of                  | spe        | ctral li             | lnes to                            |  |  |
|                                                                                |          | · .                                   | `<br>                           |                              |            |                      |                                    |  |  |
| 20. DISTRIBUTION / AVAILABILITY OF AB  DUNCLASSIFIED/UNLIMITED SA              |          | RPT. DTIC USERS                       | 21 ABSTRACT SE<br>Unclass:      | CURITY CLASSIFIC             | ATION      |                      |                                    |  |  |
| 22a. NAME OF RESPONSIBLE INDIVIDUA                                             |          | " FI OUR OSEKS                        |                                 | (Include Area Code           | ) 22c      | OFFICE SY            | MBOL                               |  |  |
| Frank Robert                                                                   |          |                                       | ]                               | ,                            |            | FCT /T SP            |                                    |  |  |

#### ACKNOWLEDGEMENTS

We would like to thank the many people who have played a part in this study, and in the preparation of this report. We would like to thank Fred Volz for measuring the transmission and reflection of the KBr beamsplitter. We thank Martin Reisfeld and Herbert Flicker of Los Alamos National Laboratory for providing the isotopic CO<sub>2</sub> samples. James H. Andrus provided engineering support. Vaughn Griffiths assisted in performing data processing and in the operation of the spectrometer. Gloria Foss helped in the preparation of the manuscript. Charles P. Dolan Jr. and Diane Plosia prepared the figures.

This research was sponsored by the Air Force Office of Scientific Research under the Atmospheric Sciences Project 2310.



| Accesio            | n For                       |   |  |  |  |  |  |  |
|--------------------|-----------------------------|---|--|--|--|--|--|--|
| NTIS<br>DTIC       | TAB                         | Ä |  |  |  |  |  |  |
|                    | Unannounced   Justification |   |  |  |  |  |  |  |
| By<br>Distrib      | By Distribution /           |   |  |  |  |  |  |  |
| Availability Codes |                             |   |  |  |  |  |  |  |
| Olet               | Avail and<br>Speci          |   |  |  |  |  |  |  |
| A-1                |                             |   |  |  |  |  |  |  |

### TABLE OF CONTENTS

| Acknowled | lgement            | .s     |                | •             | •          | •    | •            | •     | •    | •     |    | •          | •   | •   | • | • | • | • | • | • | 3   |
|-----------|--------------------|--------|----------------|---------------|------------|------|--------------|-------|------|-------|----|------------|-----|-----|---|---|---|---|---|---|-----|
| Chapter   |                    |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   |     |
| I.        | INTRO              | DUC    | 1017           | V             | •          | •    | •            | •     |      | •     | •  | •          |     | •   | • | • | • | • | • | • | 9   |
| II.       | HISTO              | RY (   | OF A           | 4.3           | } μ        | m    | СО           | 2     | ΜE   | AS    | UR | EM         | 1EN | ITS | 3 | • | • | • | • | • | 15  |
| III.      | co <sub>2</sub> T  | HEO    | RET            | ICA           | L          | BA   | CK           | GR    | OU   | IND   | )  | •          | •   | •   | • |   | • | • | • | • | 21  |
|           | Vibra              | tior   | ı .            |               |            |      | •            |       |      |       |    |            | •   |     |   |   |   |   |   | • | 23  |
|           | Rotat              | ion    |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   | 35  |
|           | Inten              | siti   |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   | 38  |
|           | 2.00               |        |                | •             | •          |      | •            | •     | •    | •     | •  | •          | •   | •   | • | • | • | • | • |   | 5   |
| IV.       | EXPER              | RIME   | ATA            | i, S          | SET        | 'U P | •            |       | •    | •     | •  | •          |     | •   | • |   | • | • | • | • | 45  |
|           | Overv              | riou   | o f            | r.            | , n o      | ni   | <b>m</b> 0   | · ~ + | 1 د  |       | +  |            |     |     |   |   |   |   |   |   | 46  |
|           |                    |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   | • | 48  |
|           | High               |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   |     |
|           | Fouri              |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   | • | 51  |
|           | The A              |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   | • | 68  |
|           | Modif              | 'i ca  | tion           | n c           | f          | Ιn   | te           | rf    | er   | on    | et | er         | •   | •   | • | ٠ | • | • | • | • | 87  |
| v.        | DATA               | ANAI   | LYS            | IS            | •          | •    |              | •     | •    | •     | •  | •          | •   | •   |   | • | • | • | • |   | 107 |
|           | Phase              | Co     | rrec           | eti           | .on        |      |              |       |      |       |    |            |     |     |   |   |   | _ |   |   | 110 |
|           | Large              |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   | • |   | 113 |
|           | Spect              |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   | 116 |
|           | -                  |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   | • |   | 121 |
|           | Assig              |        |                |               |            |      |              |       |      | ) I [ |    |            |     |     |   |   |   | • | • |   |     |
|           | Least              | ,-Sq:  | uare           | es-           | -r 1       | T    | •            | •     | •    | •     | •  | •          | •   | •   | • | • | • | • | • |   | 143 |
| VI.       | RESUL              | TS .   | AND            | D I           | sc         | បទ   | SSI          | ON    | i .  | •     | •  |            | •   | •   | • | • | • |   | • |   | 147 |
| VII.      | CONCL              | JUSI   | ON             | •             |            |      | •            |       |      | •     | •  |            |     |     |   |   |   | • | • |   | 177 |
| LIST OF   | REFERE             | ENCE   | s .            | •             | •          |      |              |       |      | •     | •  | •          |     |     | • |   | • |   | • |   | 181 |
| APPENDIX  | (ES                |        |                | •             | •          | •    |              |       |      | •     |    | •          |     |     | • | • | • |   | • |   | 185 |
| ۸ ۵۱      | gh Tem             | ine n  | a <del>f</del> | n e           | CO         | 1    | C.           |       | .+ = | .,.~  | ,  |            |     |     |   |   |   |   |   |   | 187 |
| Z + 11.1  | .gh Tem<br>.nes Us | ipar o |                |               |            | 2,   | υμ<br>······ |       |      | uii.  |    | •          | •   | •   | • | • | • | • | • |   |     |
| D. L.I    | nes us             | eu :   |                | . <del></del> | ι χ<br>ι γ | - 2  | oqu          | ar    | es   | , – r | ΙĆ | <i>,</i> 3 | •   | •   | • | • | • | • | • |   | 199 |
|           |                    |        |                |               |            |      |              |       |      |       |    |            |     |     |   |   |   |   |   |   |     |

### LIST OF FIGURES

| 1.  | The three normal modes of vibration of the CO <sub>2</sub> molecule                       | 26 |
|-----|-------------------------------------------------------------------------------------------|----|
| 2.  | Vibrational energy levels for CO <sub>2</sub>                                             | 34 |
| 3.  | Simplified schematic of the overall experimental setup                                    | 47 |
| 4.  | Schematic of the high temperature absorption cell                                         | 49 |
| 5.  | Simplified schematic of a Michelson interferometer                                        | 53 |
| 6.  | Two sampled cosine functions that appear identical                                        | 59 |
| 7.  | Schematic of a Michelson interferometer showing finite beamsplitter thickness             | 66 |
| 8.  | Beamsplitter compensation using an additional compensator plate                           | 67 |
| 9.  | Beamsplitter compensation using opposite faces of the same substrate plate                | 69 |
| 10. | The optical layout of a cat's eye retro-reflector                                         | 71 |
| 11. | Photograph of the AFGL high resolution interferometer                                     | 73 |
| 12. | Schematic of AFGL high resolution interferometer .                                        | 74 |
| 13. | Laser reference signal demonstrating the stepping and holding modes of the interferometer | 78 |
| 14. | Data acquisition and stepping control electronics                                         | 80 |
| 15. | Flow chart of interferometer control and data acquisition program                         | 84 |
| 16. | The laser reference signal showing a stepping error and its correction                    | 86 |
| 17. | The pattern of germanium coatings on the beamsplitter                                     | 90 |

| 18. | Transmission and reflection of the beamsplitter for a) the heavy coating used for the infrared b) the lighter coating used for the laser | •   |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | reference                                                                                                                                | 91  |
| 19. | The mount used for the KBr beamsplitter                                                                                                  | 93  |
| 20. | Optical layout with KBr beamsplitter and copper doped germanium detectors                                                                | 96  |
| 21. | Detector preamplifier and filter design                                                                                                  | 99  |
| 22. | Kadel liquid helium dewar                                                                                                                | 100 |
| 23. | Spectrum of 100 torr of $CO_2$ broadened by 660 torr of $N_2$ in a 10 cm cell                                                            | 104 |
| 24. | HDO - H <sub>2</sub> O spectrum                                                                                                          | 106 |
| 25. | Major steps in the data analysis process                                                                                                 | 108 |
| 26. | Parameters that were determined for each absorption feature                                                                              | 119 |
| 27. | The band head of the $\nu_3$ fundamental                                                                                                 | 123 |
| 28. | The $v_3$ fundamental overlapped by the high frequency end of the R branch of the 01111 + 01101 band of ${}^{12}C^{10}O_2$               | 124 |
| 29. | Complex appearance of the CO <sub>2</sub> spectrum when several bands overlap                                                            | 125 |
| 30. | A large number of overlapping bands cause the spectrum to appear random                                                                  | 126 |
| 31. | The range of J values and lower state energies for which spectral lines should be visible                                                | 129 |
| 32. | The number of vibrational states with lower state energy less than or equal to a given energy                                            | 130 |
|     | Loomis-Wood diagram for a hypothetical band of CO2                                                                                       |     |
| 34. | Part of the extended information Loomis-Wood diagram for the 00011 + 00001 band of 120160.                                               | 137 |

ないない。 おもないと、「こくらんなんな。」というとうないとの「こくらんなく」「こうらんないない。」からないないと、「こうらんないない。」 ない

| 35. | Extended information Loomis-Wood diagram for the 02211e + 02201e band of ${}^{12}C^{10}O_2$                                                       | 138 |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 36. | Extended information Loomis-Wood diagram for the 13312 $\leftarrow$ 13302 band of $^{12}C^{16}O_2$                                                | 139 |
| 37. | Rotation-vibration bands for which molecular constants were obtained in the 4.3 $\mu m$ region 1                                                  | 154 |
| 38. | Rotation-vibration bands for which molecular constants were obtained in the 2.8 $\mu m$ region 1                                                  | 55  |
| 39. | Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1978) constants for the 01111e + 01101e band of C1002 | 64  |
| 40. | Comparison for the 01111f + 01101f band of 12002                                                                                                  | 165 |
| 41. | Comparison for the 10012 + 10002 band of ${}^{12}c^{16}O_2$ . 1                                                                                   | 66  |
| 42. | Comparison for the 10011 + 10001 band of ${}^{12}c^{16}O_2$ . 1                                                                                   | 167 |
| 43. | Comparison for the 21111e + 11101e band of 120102                                                                                                 |     |
| 44. | Comparison for the 11112e + 01101e band of 12c10180                                                                                               | 169 |
| 45. | Comparison for the 10012 + 00001 band of ${}^{12}c^{18}o_2$ . 1                                                                                   | 170 |
| 46. | Comparison for the 01121f + 01111f band of 13c1602                                                                                                | 171 |
| 47. | Comparison for the 10012 + 10002 band of 13c160180                                                                                                | 172 |
| 48. | Comparison for the 00011 + 00001 band                                                                                                             | 172 |

### LIST OF TABLES

| 1.  | Amount of mixing of energy levels                                                        | • | 30  |
|-----|------------------------------------------------------------------------------------------|---|-----|
| 2.  | Comparison between Herzberg and AFGL notations .                                         |   | 33  |
| 3.  | The CO <sub>2</sub> vibration partition sum                                              | • | 42  |
| 4.  | Comparison between no apodization and triangular apodization                             | • | 57  |
| 5.  | Copper doped germanium detector performance and test specifications                      | • | 97  |
| 6.  | Identification codes used to identify rotation-vibration bands                           | • | 136 |
| 7.  | Table of experimental line properties for the 02211e + 02201e band of ${}^{12}C^{16}O_2$ | • | 140 |
| 8.  | Isotopic composition of CO <sub>2</sub> samples used in this study                       | • | 149 |
| 9.  | Summery of experimental conditions for measured spectra                                  | • | 150 |
| 10. | Observed CO lines used to check calibration of spectrometer                              | • | 151 |
| 11. | Bands for which molecular constants were obtained in the 4.3 $\mu m$ region              |   | 156 |
| 12. | Bands for which molecular constants were obtained in the 2.8 $\mu m$ region              |   | 157 |
| 13. | Molecular constants resulting from the least-squares-fits in the 4.3 $\mu m$ region      | • | 158 |
| 14. | Molecular constants resulting from the least-                                            |   | 160 |

## CHAPTER I

The  $\mathrm{CO}_2$  molecule is one of the most important atmospheric molecules because of the vital role it plays in the heat balance of our atmosphere. The  $\mathrm{CO}_2$  concentration in the earth's atmosphere has dramatically increased over the last 100 years. The predicted global temperature increase as a result of this  $\mathrm{CO}_2$  build-up in the atmosphere is a problem of international concern which will have to be faced in the near future. Aside from the atmospheric concerns, the  $\mathrm{CO}_2$  molecule is a subject of interest from the molecular physics point of view.

はなる。 とうしょう こうかんしょう こうかんかん こうかんかん しゅうかん しゅうしゅう

One of the goals of molecular physics is to describe the energy states of a molecule from first principles, that is by solving the Schrödinger equation for the electrons and the nuclei making up the molecule. Although in principle such a calculation is possible on a digital computer, in practice, such a massive calculation involving so many degrees of freedom would be extremely difficult on any existing computer or any of the near future. At present, the computational problem is made manageable through the use of a number of approximations, the most important of which is the Born-Oppenheimer approximation. In this approximation the rapid motions of the electrons are considered separable from the much slower

motions of the massive nuclei. The "cloud" of electrons, assumed to readjust rapidly to each new configuration of the nuclei, provides the molecular potential that "glues" the molecule together. The shape of this potential "well", or potential function, is generally determined by working backward from the measured spectrum of the molecule. This method provides far better accuracy than does calculating directly the effect of the electrons as a function of the nuclear configuration.

The energy due to the rotational and vibrational motions of a linear molecule can be specified in terms of the molecular constants G, B, D, and H. For diatomic molecules these molecular constants have been successfully related to the molecular potential function. However, for more complex polyatomic molecules such as CO2, it is still somewhat uncertain how well the molecular constants G, B, D, and H can be related to the molecular potential. One of the reasons why this uncertainty still exists, in spite of previous experimental work, is the difficulty of obtaining experimental data on large numbers of rotation-vibration levels, particularly on the higher energy levels. For the present study, these experimental difficulties were overcome by heating the  ${\rm CO}_{2}$  sample to excite large numbers of lines, using a high resolution Fourier spectrometer and making extensive use of the computer for data analysis. The necent study consisted of determining for a number of different isotopic species the molecular constants G, B, D, and H for as many vibrational states as possible. These molecular constants were then compared to molecular constants determined by other researchers. It is particularly interesting to compare these molecular constants with those calculated by Chedin, since in his work he makes a single global determination of the CO<sub>2</sub> potential function, instead of fitting each band or groups of bands individually.

In order to extend the observable range of rotation-vibration energy levels, the  $\mathrm{CO}_2$  sample was heated to 800K. Although heating the  $\mathrm{CO}_2$  sample makes it possible to obtain information on many rotation-vibration levels, the resulting additional spectral lines greatly increase the difficulty of analyzing the spectrum. The spectrum of hot  $\mathrm{CO}_2$  stretches across hundreds of wavenumbers and consists of thousands of lines. As an example, see Appendix A, where the 4.3  $\mu$ m region of the spectrum of a sample of  $\mathrm{CO}_2$  with natural isotopic abundance is plotted. In order to obtain meaningful information from experimental spectra, individual rotation-vibration lines must be resolved.

The spectral measurements were made using the Air Force Geophysics Laboratory (AFGL) high resolution interferometer at resolutions of 0.007 cm $^{-1}$  for the 4.3  $\mu m$  region and 0.006 cm $^{-1}$  for the 2.8  $\mu m$  region. This study

was supported by the Air Force, since an increased understanding of the high temperature spectrum of  ${\rm CO}_2$  relates to the problem of detecting the  ${\rm CO}_2$  in the exhaust plumes of rocket and jet engines.

Huge quantities of data are associated with the high resolution broad band coverage of a complex spectrum. Handling these data was made practical through the extensive use of computers. Although some of the computer programs (software) had been developed previously, a substantial portion of the effort associated with the present study was spent in upgrading the existing software and developing and implementing new techniques. The major contributions made to the software development include:

- 1. Adding diagnostic and automatic error correction capabilities to the interferometer control software.
- 2. Working out the procedure to perform arbitrarily large Fourier transformations using a fixed memory size.
- Developing an interactive semi-automatic rotationvibration line assignment procedure.

This report on the study of high temperature  ${\rm CO}_2$  is composed of three main sections. The first section, comprising the first three chapters, is introductory in nature. Chapter I is the introduction, Chapter II gives a brief history of previous studies of the  ${\rm CO}_2$  spectrum in the 4.3  $\mu$ m region, and Chapter III is a review of the notation and theoretical concepts used to describe the  ${\rm CO}_2$  molecule.

The second section, consisting of Chapters IV and V, gives detailed information on how the study was carried out.

Chapter IV describes the experimental setup, and Chapter V, the data handling procedure. In the third section, Chapters VI and VII, the results and conclusions are presented. The results are discussed in Chapter VI. The conclusions and recommendations for future work are given in Chapter VII.

THE CONTROL PRODUCT CONTROL OF THE PRODUCT OF THE P

## CHAPTER II HISTORY

The spectral study of high temperature  ${\rm CO}_2$  is not new. What is new with the present study is using a spectrometer with both high resolution and wide spectral coverage so that the complete high temperature rotation-vibration band structures at 4.3  $\mu$ m and 2.8  $\mu$ m could be observed with sufficient spectral resolution to resolve most of the individual rotation-vibration lines. These new data make accurate line position determination for thousands of lines possible, including many lines originating from highly excited rotational states.

In 1910, A. Trowbridge and R. W. Wood<sup>3</sup> used one of their recently developed blazed gratings to study a Bunsen burner flame. They observed peaks in the spectrum due to CO<sub>2</sub> at 4.2 µm, 4.4 µm and 4.5 µm. Somewhat later (1922), E. F. Barker<sup>4</sup> realized by looking at both a room temperature CO<sub>2</sub> sample and a Bunsen burner flame that the third peak observed by Trowbridge and Wood was an artifact of observing a hot Bunsen burner flame through the cold CO<sub>2</sub> in the atmosphere. He observed that the band centered at 4.3 µm was a doublet consisting of two distinct absorption features (the unresolved P and R branches). By the 1950's infrared spectrometers with sufficient spectral resolution had been developed to start observing the individual

rotation-vibration lines. E. K. Pyler et al.  $^5$  used a grating to make measurements on the  $^4.3$  µm spectrum of  $^{6}$ CO<sub>2</sub> both in emission and in absorption. The emission measurements were made by observing the flame from a glassblower's torch. They used a grating spectrometer with a spectral resolution of 0.2 to 0.3 cm $^{-1}$  to obtain a wavenumber accuracy of about 0.02 cm $^{-1}$ .

In 1968 a joint measurement was carried out on room temperature CO<sub>2</sub> samples in the 4.3 µm region by two groups, R. Oberly and K. N. Rao of Ohio State University and Y. H. Hahn and T. K. McCubbin Jr., of Pennsylvania State University, using grating spectrometers with moderate spectral resolution. The spectral accuracy of their combined measurement was approximately 0.004 cm<sup>-1</sup>. In addition to observing transitions originating from the ground vibrational state, they also observed several hot bands with transitions originating from lower lying vibrational excited states.

During the 1970's the use of better infrared spectrometers and a variety of infrared sources made possible an increase in knowledge of the  ${\rm CO_2}$  molecule, particularly of vibrationally excited states. In 1974, T. K. McCubbin et al. used a grating spectrometer to observe the  ${\rm CO_2}$  emission from an electrical discharge in a low pressure  ${\rm CO_2-N_2-He}$  mixture. An electrical discharge can raise the vibrational temperature of a molecule to

extremely high values while leaving the rotational temperature at approximately room temperature. By varying the components of the mixture and the electrical current of the discharge, different vibrational series were observed. In 1978, D. Bailly et al. used a SISAM spectrometer with a resolution of 0.25 - 0.30 cm<sup>-1</sup> to observe additional hot bands in an electrical discharge. At about the same time, A. Baldacci et al. used a grating spectrometer with a resolution of 0.02 - 0.03 cm<sup>-1</sup> and a wavenumber accuracy of about 0.003 cm<sup>-1</sup> to observe a low pressure CO<sub>2</sub> sample in a 24 meter absorption cell. The long path length made possible the observation of lines originating from excited rotation-vibration states.

During the last several years, high resolution Michelson interferometers and tunable lasers have made possible very accurate measurements of the CO<sub>2</sub> spectrum. In 1980, G. Guelachvili<sup>10</sup> used a high-resolution Michelson interferometer to observe in absorption the Doppler limited spectrum (approximately 0.002 cm<sup>-1</sup> resolution) of a low pressure room temperature CO<sub>2</sub> sample. He measured the position of rotation-vibration lines of the vibrational fundamental and several other hot bands with an accuracy of about 0.0001 cm<sup>-1</sup>. Since this spectral measurement was made using a room temperature sample, lines originating from high rotational states were not observed.

In order to observe higher rotational lines, A. S. Pine 11 used a tunable laser difference-frequency spectrometer to observe a CO<sub>2</sub> sample heated to 985 K in a high temperature absorption cell. He made measurements on the R-branch head of the vibrational fundamental and combined his data with the room temperature measurements of Guelachvili. Pine showed that the molecular constants obtained from Guelachvili's very accurate room temperature measurements do not accurately predict the position of spectral lines at high temperatures.

The present study addresses the problem of obtaining information on highly excited rotational transitions for a large number of vibrational states of several different isotopically substituted species of CO2. A total of over 8000 lines belonging to 6 different isotopic species have been identified in the observed spectra. The positions of these lines were measured with an accuracy of up to 0.0004 cm<sup>-1</sup> for well isolated lines. Molecular constants for 73 rotation-vibration bands have been determined from these observed lines. The partial results of this continuing study have been published when they have become available. The  $^{12}\text{C}^{16}\text{O}_{2}$  4.3  $\mu\text{m}$  results were presented at the 1980 Topical Meeting on Spectroscopy in Support of Atmospheric Measurements 12 and were used as the basis of the Ph.D. dissertation of M. P. Esplin. 13 These results were also incorporated into the AFGL 1980 compilation. 14

The molecular constants and line positions for transitions in the 4.3 µm region originating from the five lowest vibrational states of  $^{13}\text{c}^{16}\text{o}_2$ ,  $^{12}\text{c}^{18}\text{o}_2$ , and  $^{12}\text{c}^{16}\text{o}^{18}\text{o}$  and the  $\nu_3$  fundamental of  $^{13}\text{c}^{16}\text{o}^{17}\text{o}$  were published in the Journal of Molecular Spectroscopy. These line positions were included in the AFGL 1982 compilation. To be published in the Journal of Molecular Spectroscopy are the molecular constants for additional transitions in the 4.5 µm region originating from higher vibrational states of  $^{13}\text{c}^{16}\text{o}_2$  and  $^{13}\text{c}^{16}\text{o}^{18}\text{o}$  and from the  $\nu_3$  fundamental of  $^{13}\text{c}^{16}\text{o}^{17}\text{o}$ . This article also includes molecular constants for transitions in the 2.8 µm region of  $^{12}\text{c}^{16}\text{o}_2$ ,  $^{12}\text{c}^{16}\text{o}^{18}\text{o}$  and  $^{12}\text{c}^{18}\text{o}_2$ .

In 1983, D. Bailly 18 completed her Ph.D. dissertation on the CO<sub>2</sub> spectrum observed in an electrical discharge with an extremely high resolution Michelson interferometer. She was able to determine the position of spectral lines with an accuracy of approximately 0.0001 cm<sup>-1</sup>. An electrical discharge is an effective technique for achieving excitation of very high vibrational levels, but not high rotational levels. Since Bailly's measurements included only a portion of the bands reported in the present work, and do not include high rotational lines, her measurements do not supersede those of the present study, except for spectral lines originating from low rotational

states of some of the vibrational bands.

Many other spectroscopic techniques have recently been employed to provide access to energy levels of carbon dioxide not observed before at high resolution. Among these approaches have been the heterodyne frequency measurements of laser-sequence band transitions 19a (these have achieved very high accuracy, but not high rotational levels) and the long path room temperature absorption measurements conducted at the solar facility at Kitt Peak National Observatory 19b (these measurements provide information on transitions that are weak even at elevated temperatures).

# CHAPTER III CO2 THEORETICAL BACKGROUND

から、国際では、アンドン・国際ではないのでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日

■このできるとは見ているのでは**見なわなりのは**■とのどうには、動きないないのは、■できなでものでは、更大にななられ

Carbon dioxide is a linear molecule with the two oxygen atoms located on either side of the central carbon atom. The oxygen and carbon atoms can be modeled as hard spheres and the forces between them as springs. This model helps in visualizing what will happen when energy is added to the molecule. The molecule will vibrate in a number of different ways as well as rotate as a whole. The same motions occur for the real CO<sub>2</sub> molecule, but unlike the case of the spheres and spring model where a continuum of vibrations and rotations are possible, quantum mechanics tells us that only certain discrete values of vibration and rotation are possible. The purpose of this chapter is to demonstrate how these discrete values of vibration and rotation (or energy levels) are calculated. The transition between the energy levels will also be examined.

In addition to the energy levels that arise from vibrational and rotational motions of the nuclei, there are also energy levels associated with the configuration of the electrons. However, at the temperatures used in the present study and using infrared radiation to probe the molecule, sufficient energy is not available to raise the molecule from the lowest electronic state. Even when excited electronic states are not involved, the electronic

configuration of the lowest state or ground electronic state may play an important role in determining the rotation-vibration energy levels of a molecule, since the orbital or spin angular momentum of the electrons can couple with the motion of the nuclei. The ground electronic state of the  ${\rm CO_2}$  molecule is a  $^1\Sigma^+_{\bf g}$  state so the net orbital and spin angular momentum of the electrons is zero. Hence, there is no net electronic angular momentum to couple with the angular momentum due to the vibration and rotation of the nuclei.

The motion of the electrons, the vibration of the nuclei, and the rotation of the molecule as a whole are usually considered separately. The total energy of the  ${\rm CO}_2$  molecule is then given by

$$E = E_e + E_v + E_r , \qquad (1)$$

where  $\mathbf{E}_{e}$  is the electronic energy,  $\mathbf{E}_{v}$  is the vibrational energy, and  $\mathbf{E}_{r}$  is the rotational energy. This is usually a good approximation, but it is possible that it is starting to break down and is contributing to the discrepancies observed (see Chapter VI) between the experimental line positions and the line positions predicted using the molecular constants Chedin<sup>2</sup> calculated from an empirically determined potential function.

The spectroscopic technique can not be used to obtain information directly about the energy levels of a molecule,

instead information on the transitions between levels is obtained, from which information on the energy levels can be inferred. Lines in the absorption spectrum occur when a CO<sub>2</sub> molecule in a lower energy state absorbs a quantum of energy and is raised to a higher energy state. Electronic transitions are usually found in the visible portion of the electromagnetic spectrum, while pure rotational transitions are found in the microwave region. These transitions were not observed as part of the present work and so will not be considered further. Only the infrared transitions involving changes in both vibration and rotational energies are considered in the present study.

#### Vibration

The complex vibrational motions of a molecule can be reduced to a set of normal modes if the system is considered as being made up of small amplitude coupled oscillators. Small amplitude motion implies that the potential function is basically quadratic. The vibrational motion of each normal mode is then that of a one dimensional simple harmonic oscillator.

Simple Harmonic Oscillator. The present discussion of the harmonic oscillator follows that given by  $Herzberg.^{20}$  The

potential energy of a one dimensional harmonic oscillator ís

 $V = \frac{1}{2}kx^2.$ (2)

where k is the force constant, and x is the distance from the equilibrium position. The energy levels and the eigenfunctions of a mass,  $\mu$ , moving in a harmonic oscillator potential can be determined from the one dimensional Schrödinger equation

$$-\frac{\hbar^2}{2\mu}\frac{d^2\Psi}{dx^2} + \frac{1}{2}kx^2\Psi = E\Psi .$$
 (3)

The resulting energy eigenvalues are

$$E_{v} = \hbar \sqrt{\frac{k}{\mu}}$$
  $(v + \frac{1}{2}) = hv (v + \frac{1}{2})$ , (4)

where v is the vibrational quantum number and v is the classical vibration frequency

$$v = \frac{1}{2\pi} \sqrt{(\frac{k}{\mu})} . \tag{5}$$

In spectroscopy it is convenient to define the energy term value G, as

$$G_{v} = \frac{E_{v}}{hc} = \frac{v}{c} (v + \frac{1}{2}) = \omega (v + \frac{1}{2})$$
 (6)

The vibrational frequency  $\omega$  is measured in units of cm<sup>-1</sup>.

The orthonormal eigenfunctions for the harmonic oscillator are

$$\Psi_{n}(x) = N_{n} H_{n}(\alpha x) e^{-\frac{1}{2}\alpha^{2}x^{2}},$$
 (7)

where  $H_n$  is the Hermite polynomial of order n.

一般のなななな。までなってなるなどでいている。

normalization constant for each eigenfunction is

$$N_{n} = (\frac{\alpha}{\sqrt{\pi \ 2^{n} \ n!}})^{\frac{1}{2}}, \qquad (8)$$

where

$$\alpha = 2\pi / (\frac{\mu \nu}{h}) . (9)$$

The Normal Modes of CO2. The number of degrees of internal freedom or number of normal modes of vibration for a linear molecule is 3N - 5.21 Since  $CO_2$  is composed of three atoms, the number of normal modes is 4. However, since the two bending modes are degenerate, there are only three modes with distinct energies. The normal vibrational modes of the  $CO_2$  molecule are illustrated in Figure 1. The  $v_1$ mode is a symmetric stretch mode with an energy of  $\omega_1$  = 1336 cm<sup>-1</sup>. The two orthogonal bending vibrations  $v_{2x}$  and  $v_{2v}$  have an energy of 667 cm<sup>-1</sup>. The asymmetric stretch, mode  $v_3$ , has an energy of  $w_3 = 2362 \text{ cm}^{-1}$ . Instead of designating the state of the molecule using the degenerate  $v_{2x}$  and  $v_{2y}$  vibration quantum numbers, it is usually preferable to use the quantum numbers  $\mathbf{v}_2$  and  $\mathbf{l}$ , where  $\mathbf{v}_2$  is the number of quanta of bending vibrational energy and l is the vibrational angular momentum about the internuclear axis. The allowed values of  $\ell$  are  $v_2$ ,  $v_2$ -2, . . . ,2- $v_2$ , -v<sub>2</sub>.

The energy of the  ${\rm CO}_2$  molecule is the sum of the energies in each normal mode. In the harmonic oscillator



### SYMMETRIC STRETCH



### BENDING MODE



### ASYMMETRIC STRETCH



Figure 1. The three normal modes of vibration of the  ${\rm CO}_2$  molecule.

approximation, the vibrational energy (neglecting the zero point energy) of the  ${\rm CO}_2$  molecule in a given vibrational state characterized by  ${\bf v}_1$ ,  ${\bf v}_2$ ,  ${\bf v}_3$  and  ${\bf \ell}$ , is given by

$$G_{v} = \omega_{1}v_{1} + \omega_{2}v_{2} + \omega_{3}v_{3}$$
 (10)

Note, that in the harmonic oscillator approximation the energy of a molecule is independent of £.

So far this discussion has assumed a quadratic potential function with no cross terms, which is not the case for the real CO<sub>2</sub> molecule. Since the effective potential includes nonquadratic terms and cross terms, the concept of normal modes breaks down somewhat, although it is still useful. However, correction terms must be added, and the effects of interactions between vibrational states must be considered.

If the interactions between states are not too strong, then by adding higher order powers of  $v_1$ ,  $v_2$ ,  $v_3$  and  $\ell^2$  to Equation (10) as correction terms, energy levels which agree with experiment can be obtained. This expansion including terms up to the third power of the quantum numbers is:

$$G_{\mathbf{v}} = \sum_{i} \omega_{i} \mathbf{v}_{i} + \sum_{i,j} \mathbf{x}_{i,j} \mathbf{v}_{i} \mathbf{v}_{j} + \mathbf{x}_{\ell \ell} \ell^{2} + \sum_{i,j,k} \mathbf{y}_{i,j,k} \mathbf{v}_{i} \mathbf{v}_{j} \mathbf{v}_{k}$$

$$+ \sum_{i} \mathbf{y}_{i,\ell,\ell} \mathbf{v}_{i,\ell}^{2} \cdot . \tag{11}$$

Interaction Between Levels. There are CO<sub>2</sub> levels for which the interactions between levels are so strong that using an expansion like Equation (11) fails. In such cases a full Hamiltonian matrix is generated, Equation (11) can be used to generate the diagonal elements and then the strong interactions between levels are included as off diagonal elements of the matrix. Alternatively, the cross terms can be removed from Equation (11) before using it to create the diagonal elements, then all interactions, not just the strong interactions, would be included in the off diagonal elements of the matrix. The energy levels are obtained by diagonalizing the Hamiltonian matrix. For CO<sub>2</sub> the main interactions are Fermi, Coriolis, and 1-type doubling.

The amount that the energy levels will be effected by the presence of interactions between states depends not only on the strength of the interaction term but also on how close in energy the unperturbed levels would have been.

To illustrate this effect consider a two state system with energies  ${\rm E}_1$  and  ${\rm E}_2$  and an interaction between them of W. The new energy eigenvalues, taking into account the interaction between the two states, will be

$$\lambda = \frac{E_1 + E_2 + [(E_1 + E_2)^2 - 4(E_1 E_2 - W^2)]^{\frac{1}{2}}}{2}.$$
 (12)

Let the new energy levels be represented by  $\lambda^+$  and  $\lambda^-$ , where  $\lambda^+$  is the energy levels using the (+) sign in Equation (12) and  $\lambda^-$  is the energy level when the (-) sign

is used. Each of the original energy levels will be shifted by an amount  $\Delta$ . The level  $E_2$  is assumed to have an energy greater than or equal to  $E_1$ , so that

and 
$$\lambda^{+} = E_{2} + \Delta$$
 
$$\lambda^{-} = E_{1} - \Delta . \tag{13}$$

The difference between the two new energy eigenvalues is

$$\lambda^{+} - \lambda^{-} = E_{2} - E_{1} + 2\Delta$$
 (14)

From Equation (12) it can be seen that,

$$\lambda^{+} - \lambda^{-} = [(E_1 + E_2)^2 - 4(E_1 E_2 - W^2)]^{\frac{1}{2}}.$$
 (15)

Combining Equation (14) and (15) and solving for  $\Delta/W$  results in

$$\frac{\Delta}{W} = \frac{1}{2} (\sqrt{(x^2 + 4) - x})$$
 (16)

where  $x = (E_2 - E_1)/W$ . The value of  $\Delta/W$  is tabulated as a function of x in Table 1. Equation (16) or Table 1 provide a means by which energy shifts caused by a perturbing levels can quickly be determined.

In order to determine the mixing between states it is necessary to calculate the eigenvectors. The eigenvectors for a two level system are calculated by substituting the eigenvalues given in Equation (13) back into the Hamiltonian matrix of a two level system with interaction

Table 1. The amount the energy levels are perturbed and the amount of mixing of states as a function of x, where  $x = (E_2 - E_1)/W$ .

| x                 | $\frac{\Delta}{W}$ | 100b <sup>2</sup> (% mixing from perturbing state |
|-------------------|--------------------|---------------------------------------------------|
| 0                 | 1                  | 50                                                |
| 0.01              | 0.995              | 49.8                                              |
| 0.02              | 0.990              | 49.5                                              |
| 0.04              | 0.980              | 49.0                                              |
| 0.08              | 0.961              | 48.0                                              |
| 0.1               | 0.951              | 47.5                                              |
| 0.2               | 0.905              | 45.0                                              |
| 0.4               | 0.820              | 40.2                                              |
| 0.8               | 0.677              | 31.4                                              |
| 1                 | 0.618<br>0.414     | 27.6<br>14.6                                      |
| 2<br>4<br>8<br>10 | 0.414              | 5.3                                               |
| 0                 | 0.230              | 1.5                                               |
| 10                | 0.123              | 1.0                                               |
| 20                | 0.050              | 0.2                                               |
| 40                | 0.025              | 0.1                                               |
| 80                | 0.012              | 0.0                                               |
| 100               | 0.010              | 0.0                                               |

term W. The resulting normalized eigenvectors are:

$$\begin{pmatrix} a \\ b \end{pmatrix}$$
 and  $\begin{pmatrix} b \\ -a \end{pmatrix}$ , (17)

where

THE RESIDENCE TO SECURE ASSESSED ASSESSED. TO SECURE ASSESSED TO SECUR ASSESSED TO SECURE ASSESSED TO SECURE

a = 
$$\frac{1}{\left(\frac{\Delta}{M}\right)^{2} + 1}$$
 and b =  $\frac{\frac{\Delta}{W}}{\left(\frac{\Delta}{M}\right)^{2} + 1}$ . (18)

Each new state consists of a contribution from the original state plus a contribution from the perturbing state. The

percent mixing from the perturbing state, given by 100b<sup>2</sup>, is also tabulated in Table 1. If the percent mixing is 50% then the original state is equally mixed with the perturbing state.

It can readily be seen from Equations (16) and (17) or Table 1 that for the same size of off-diagonal term W, the amount the energy levels will be perturbed, as well as the amount of mixing of states depends on the energy separation of the original energy levels.

The strongest interactions between CO<sub>2</sub> states are caused by Fermi resonance. Cross terms in the potential function result in nonzero off-diagonal elements in the Hamiltonian matrix. Fermi resonance only occurs when there is a common & (common symmetry type) for the interacting states. It arises due to the interaction between the symmetric stretch  $v_1$  and the bending mode  $v_2$ ; it occurs between states of the form  $(v_1, v_2+2, v_3)$  and  $(v_1+1, v_2, v_3)$ . The mixing between affected states is particularly strong since the energy of the symmetric stretch  $\omega_1 = 1336 \text{ cm}^{-1}$  is approximately equal to  $2\omega_2 = 1334 \text{ cm}^{-1}$ . For example the interaction term W between the state with  $v_1 = 1$ ,  $v_2 = 0$ , and  $v_3 = 0$  and the state with  $v_1 = 0$ ,  $v_2 = 2$ , and  $v_3 = 0$  is approximately 50 cm<sup>-1</sup>, so x would be (1336 - 1334)/50 =0.04. From Table 1 it can be seen that each state will be perturbed by 0.98W and that the states are nearly uniformly mixed (49% mixing).

This large amount of mixing of states makes the identification of states by the quantum numbers  $v_1$ ,  $v_2$ ,  $v_3$ , and & ambiguous. To minimize this ambiguity instead of using the usual Herzberg notation for triatomic molecules, in which the vibrational states of a molecule are given as  $v_1v_2^{\ell}v_3$ , a notation developed by W. S. Benedict, <sup>22</sup> known as the AFGL notation was used. In the AFGL notation the vibrational states are identified by  $v_1v_2lv_3r$ , where "r" is the ranking index assigned to each member of a Fermi resonating group of levels. When a state is not involved in Fermi resonance, r = 1 and the AFGL notion is essentially the same as the Herzberg notation. For example, the state 01 10 in Herzberg notation is 01101 in AFGL notation. When Fermi resonance is present the ranking index, r, is appended to the quantum numbers of the interacting state with the highest  $\mathbf{v_1}$ . For example the AFGL notation for the two states  $10^{0}$ 0 and  $02^{0}$ 0, which are highly mixed by Fermi resonance, is 10001 and 10002. AFGL notation is compared to the Herzberg notation in Table 2. To illustrate the position of the different vibrational 1s an energy level diagram for  $^{12}C^{16}O_{2}$  is given in Figure 2.

In classical mechanics the apparent tangential force on an object as it moves radially in a rotating coordinate system is called the Coriolis force. A similar effect is

Table 2. Comparison between Herzberg and AFGL notations

| Herzberg                                                | AFGL<br>(V <sub>1</sub> V <sub>2</sub> lV <sub>3</sub> r) |
|---------------------------------------------------------|-----------------------------------------------------------|
| 00 <sup>0</sup> 0                                       | 00001                                                     |
| 01 1 0                                                  | 01101                                                     |
| 10 <sup>0</sup> 0, 02 <sup>0</sup> 0                    | 10002, 10001                                              |
| 02 <sup>2</sup> 0                                       | 02201                                                     |
| 11 <sup>1</sup> 0, 03 <sup>1</sup> 0                    | 11102, 11101                                              |
| 03 <sup>3</sup> 0                                       | 03301                                                     |
| 00 <sup>0</sup> 1                                       | 00011                                                     |
| 20 <sup>0</sup> 0, 12 <sup>0</sup> 0, 04 <sup>0</sup> 0 | 20003, 20002, 20001                                       |
| 12 <sup>2</sup> 0, 04 <sup>2</sup> 0                    | 12202, 12201                                              |
| 0440                                                    | 04401                                                     |
| 01 <sup>1</sup> 1                                       | 01111                                                     |
| 21 <sup>1</sup> 0, 13 <sup>1</sup> 0, 05 <sup>1</sup> 0 | 21103, 21102, 21101                                       |
| 13 <sup>3</sup> 0, 05 <sup>3</sup> 0                    | 13302, 13301                                              |
| 05 <sup>5</sup> 0                                       | 05501                                                     |
| 10 <sup>0</sup> 1, 02 <sup>0</sup> 1                    | 10012, 10011                                              |
| 02 <sup>2</sup> 1                                       | 02211                                                     |



Figure 2. Vibrational energy levels for  $^{12}C^{16}O_2$ .

observed for the  ${\rm CO}_2$  molecule. As the molecule rotates, the radial vibrations  $v_1$  and  $v_3$  become coupled with the bending mode  $v_2$ . This interaction, called Coriolis interaction, takes place between states of the form  $(v_1,v_2,v_3)$  and  $(v_1-1,v_2-1,v_3+1)$ . As in all molecular interactions, if the effects are to be strong, the energies of the interacting states must be approximately equal.

The  $\ell$ -type doubling interaction occurs for non- $\Sigma$  type vibrational levels ( $\ell \neq 0$ ). Each vibration-rotation energy level splits into two levels under the influence of  $\ell$  -type doubling, an "e" level with a symmetric wave function, and a "f" level with an antisymmetric wave function. The degeneracy of the e and the f energy levels is removed by the rotation of the molecule. More information about  $\ell$ -type doubling will be given in the next section of this report.

## Rotation

In addition to internal vibration, the CO<sub>2</sub> molecule rotates. The effects of rotation, assuming the molecule is completely rigid (rigid rotator), will first be considered. Then the assumption of rigid rotation will be relaxed and the effect on the energy levels will be investigated.

Rigid Rotator. If a molecule is only to rotate, the potential energy is a constant. The Schrödinger equation has solutions 23 which are single-valued, finite, and continuous when

$$E = \frac{\aleph^2 J(J+1)}{2I} , \qquad (19)$$

where I is the moment of inertia of the molecule about an axis perpendicular to the internuclear axis. The moment of inertia of a linear polyatomic molecule is

$$I = \sum_{i}^{N} m_{i} r_{i}^{2}, \qquad (20)$$

where  $m_i$  is the mass of the i<sup>th</sup> nucleus and  $r_i$  is the distance from the center of mass. In spectroscopy it is convenient to give energy in terms of the rotational term value defined as F(J) = E/hc, given by

$$F(J) = \frac{h}{8\pi^2 cI} J(J+1) = B J(J+1) , \qquad (21)$$

where the rotational constant B is defined as

ないでは、世界のなかないは、一般のないのない。「これのないないない。」では、これのないないないないない。「これのないないないないないないないないない。「これのないないない」というというというという。

$$B = \frac{h}{8\pi^2 c I} . \tag{22}$$

The average moment of inertia of a molecule is a function of the vibrational quantum numbers. Hence, the rigid rotator B in Equations (21) and (22) must be replaced by B,, which is a function of vibration.

Nonrigid Rotator. The  ${\rm CO_2}$  molecule is not totally rigid, as it rotates it also deforms. The largest of these deformations is a centrifugal stretch. This stretch increases the moment of inertia or decreases  ${\rm B_v}$ . The effects of the molecular stretch as well as other distortions are taken into account by adding higher order terms with coefficients  ${\rm D_v}$  and  ${\rm H_v}$  to the expression for the rotational energy (Equation (21)). The rotational term value becomes

$$F(v,J) = B_{v} J(J + 1) - D_{v} \{J(J + 1)\}^{2} + H_{v} \{J(J + 1)\}^{3}.$$
 (23)

When these distortion terms are included, the rotational energy of the molecule can be expressed with the same accuracy that is observed experimentally.

For non- $\Sigma$  type levels ( $\ell^2 > 0$ ), each energy level is split into two levels under the influence of rotation. The effects of this  $\ell$ -type doubling can be taken into account by using two sets of rotational constants, one for the elevels and the other for the flevels. The interdependence between these two sets of rotational constants is a function of  $\ell$ . When  $\ell=1$ , the vibrational term values  $G_e$  and  $G_f$  are equal. When  $\ell=2$ , in addition to having  $G_e$  equal to  $G_f$ , the rotational constants  $B_e$  and  $B_f$  are equal. When  $\ell=3$ , then  $G_e=G_f$ ,  $B_e=B_f$ , and  $D_e=D_f$ . When  $\ell\geq 4$ ,  $H_e$  and  $H_f$  are also equal.

#### Intensities

The absorption,  $\mathbf{A}_{\nu},$  of a gas at frequency  $\nu$  is defined as

$$A_{v} = 1 - \frac{I_{v}}{I_{v}^{o}} , \qquad (24)$$

where  $I_{\nu}^{o}$  is the intensity of the light at frequency  $\nu$  before it enters the gas sample and  $I_{\nu}$  is the intensity after exiting the sample. If we assume a gas sample of uniform density and in thermal equilibrium along the optical path, the absorption is given by

$$A_{v} = 1 - e^{-k_{v} l}$$
, (25)

where  $\mathbf{k}_{\nu}$  is the absorption coefficient for a given spectral line and 1 is the optical path through the gas sample. When N spectral lines are present the absorption at frequency  $\nu$  is given by

$$A_{v} = 1 - e^{-\sum_{i}^{N} k_{v}^{i} 1}, \qquad (26)$$

where  $k_{\nu}^{i}$  is the absorption coefficient for the  $i^{th}$  spectral feature at frequency  $\nu$ . The integrated intensity, S, is given by

$$S = \int_{0}^{\infty} k_{v} dv , \qquad (27)$$

and is related to the molecular parameters as follows:

$$S = N_m B_{mn} h v_{mn} \left\{ 1 - e^{-\frac{v_{mn} hc}{kT}} \right\},$$
 (28)

where  $N_m$  is the number of molecules in the lower state m,  $B_{mn}$  is the Einstein transition probability of a molecule going from state m to state n, and  $h\nu_{mn}$  is the energy of the absorbed photon. The first two factors of Equation (28),  $N_m$  and  $B_{mn}$ , will be discussed in more detail in the next two sections of this report. The factor in brackets is due to stimulated emission. Stimulated emission has the effect of reducing S. However, in the 4.3  $\mu$ m region at temperatures less than or equal to 800 K, the stimulated emission term differs from 1 by not more than 0.015.

Number of Molecules in a Given State. The first factor in Equation (28), the number of molecules in states of energy E, will now be considered in more detail. It is this term in the expression of the intensity that explains why heating a gas sample makes possible the observation of thousands of additional spectral lines.

The probability that a molecule in thermal equilibrium will have a given energy E is proportional to the degeneracy of that level and to the Boltzmann factor  $e^{-E/kT}$ . If the energy of a state is large compared to the available thermal energy, kT, the probability of finding the molecule in that state is small. As the temperature is

increased the number of molecules in higher energy states will increase. The fraction of molecules with a given energy E is obtained by dividing by the partition sum, which is approximately equal to the product of the vibration and rotation partition sums. The number of molecules in a state m is then given by

$$N_{m} = \frac{N g(v,J)}{Q_{r}Q_{v}} e^{-\frac{E(v,J)}{kT}}, \qquad (29)$$

where: N = total number of molecules

degeneracy of states

E = energy of the given level

 $Q_r = rotation partition sum$ 

Q" = vibration partition sum.

The rotation partition sum is obtained by summing over all rotational energy states of the molecule. Each term in this sum is weighted by the degeneracy of the given energy level. The degeneracy of a rotational state with J quanta of angular momentum is 2J+1. When the energy is approximated by BJ(J+1)hc, (the first term in Equation (23) times hc) the expression for the rotation partition sum becomes

$$Q_{r} = \sum_{J=0}^{\infty} (2J+1) e^{-\frac{hc}{kT}} BJ(J+1) .$$
 (30)

This sum can be approximated by an integral to yield an approximate value for the rotation partition sum,

$$Q_{\mathbf{r}} = \frac{kT}{hcB} . \tag{31}$$

Replacing the sum by an integral is a very good approximation, particularly for the higher temperatures.

A good approximation to the vibration partition sum,  $Q_v$ , is obtained by summing over the energy levels which result from the harmonic oscillator approximation. Each term in the sum must be weighted by its degeneracy. The degeneracy of the  $v_1$  and  $v_3$  vibrational levels is unity. In the harmonic oscillator approximation all states with a common  $v_2$  but different & have the same energy, therefore the degeneracy of the  $v_2$  levels is  $v_2+1$ . For example if  $v_2=5$ , possible values of & are 5, 3, 1, -1, -3, -5 making 6 states in all. Remembering that the energy in cm<sup>-1</sup> of each of the three normal modes are respectively  $w_1$ ,  $w_2$ , and  $w_3$ , the vibrational partition sum is given by

$$Q_{v} = \sum_{v_{1}=0}^{\infty} \sum_{v_{2}=0}^{\infty} \sum_{v_{3}=0}^{\infty} (v_{2}+1) e^{-\frac{hc\omega_{1}v_{1}}{kT}} e^{-\frac{hc\omega_{2}v_{2}}{kT}} e^{-\frac{hc\omega_{3}v_{3}}{kT}}.$$
(32)

The sums on  $\mathbf{v}_1$  and  $\mathbf{v}_3$  are simply geometric series and can be readily summed. The sum on  $\mathbf{v}_2$  is slightly more complicated but can also be summed. After combining the sums from the three fundamental modes, the vibration partition sum becomes:

$$Q_{\mathbf{v}} = \left(\frac{1}{1 - e^{-\frac{\omega_1 h c}{kt}}}\right) \quad \left(\frac{1}{1 - e^{-\frac{\omega_2 h c}{kt}}}\right)^2 \quad \left(\frac{1}{1 - e^{-\frac{\omega_3 h c}{kt}}}\right). \tag{33}$$

Numerical values of Equation (33) are tabulated in Table 3. If instead of using the harmonic oscillator energy levels to calculate the vibration partition sum, experimental energy levels were used, the resulting value of the vibration partition sum would probably be more accurate. Gray and Young have done such a calculation, 25 but their values for the vibration partition sum do not differ by more than 0.01 from those given in Table 3.

Table 3. The CO vibration partition sum,  $Q_{\gamma}$ , as a function of T using the harmonic oscillator approximation.

| Temperature | Q <sub>V</sub> |  |
|-------------|----------------|--|
| 100         | 1.00           |  |
| 200         | 1.02           |  |
| 300         | 1.09           |  |
| 400         | 1.22           |  |
| 500         | 1.40           |  |
| 600         | 1.64           |  |
| 700         | 1.93           |  |
| 800         | 2.28           |  |
| 900         | 2.70           |  |
| 1000        | 3.18           |  |

Einstein Absorption Coefficients. The Einstein absorption coefficient,  $B_{mn}$ , which is the second factor in Equation (28), measures the rate at which molecules make the transition from the lower state m to the higher state n by

absorbing a photon of energy  $h\nu_{mn}$ . The coefficient  $B_{mn}$  is equal to a constant times the square of the matrix element of the electric dipole moment  $R^{mn}$ ,

$$B_{mn} = \frac{8\pi^3}{3h^2c} |R^{mn}|^2 . (34)$$

It is instructive to calculate  $R^{mn}$  for the case of a simple harmonic oscillator potential. Let the lower vibrational state be designated by v" and the higher by v', then

$$R^{V^{\dagger}V^{\dagger}} = \int \Psi_{V^{\dagger}}^{*}(x) M(x) \Psi_{V^{\dagger}}(x) dx$$
, (35)

where M(x) is the electric dipole moment of the molecule. Expanding the electric dipole moment about the equilibrium position and dropping higher order terms, yields

$$R^{V''V'} \sim M(0) \int \Psi_{V''}^{*}(x) \Psi_{V'}(x) dx + \frac{dM}{dx}(0) \int \Psi_{V''}^{*}(x) x \Psi_{V'}(x) dx$$
 (36)

The first integral vanishes since the harmonic oscillator eigenfunctions are orthogonal. The second also vanishes except when  $\mathbf{v'} = \mathbf{v''} + 1$ . The transition moment then becomes

$$R^{\mathbf{v''v'}} = \frac{dM}{dx}(0) \frac{1}{2\alpha} \left( \frac{N_{\mathbf{v''}}}{N_{\mathbf{v''}+1}} \right) = \frac{1}{\alpha} \frac{dM}{dx}(0) \sqrt{\left( \frac{\mathbf{v''}+1}{2} \right)} . \tag{37}$$

Since the intensity of the electric dipole transition is

proportional to the square of the transition matrix element  $R^{V''V'}$ , the intensity is proportional to the consecutive integers 1, 2, 3, . . . for the vibrational transitions 0 + 1, 1 + 2, 2 + 3, and so forth.

The potential function for each normal mode of the real  ${\rm CO}_2$  molecule is of course not that of a simple harmonic oscillator, but the general harmonic oscillator behavior is still present.

# CHAPTER IV EXPERIMENTAL SETUP

The  $\mathrm{CO}_2$  sample used in this study was heated to make possible the observation of spectral lines originating from high rotation-vibration states. The sample was placed in a stainless steel absorption cell which was heated using an electric furnace to temperatures up to 800 K. Heating the  $\mathrm{CO}_2$  sample excited so many rotation-vibration lines in the  $\mathrm{CO}_2$  spectrum that the use of a high resolution spectrometer was essential to resolve individual lines. Furthermore, since entire rotation-vibration bands were to be observed, broad spectral converage was also necessary.

Although there were a number of spectroscopic techniques that could have been used, a Michelson interferometer was the most suitable candidate for providing the required high resolution broad band coverage. Some of the other commonly used spectroscopic techniques are: tunable laser, fixed frequency laser heterodyne, and scanning grating. Tunable lasers and fixed frequency laser heterodyne techniques provide more than sufficient resolution, but do not provide the required broad spectral coverage. A scanning spectrometer using an extremely large grating could conceivably have been used to make the measurement, but since a grating is much less efficient than an interferometer in making use of the energy supplied

by the source, a scanning grating spectrometer was not considered a viable alternative. It can be argued that making effective use of the energy supplied by the source is not necessary for absorption spectroscopy, since the source can be made arbitrarily bright. However, a practical limit for source brightness is soon reached, making the efficient use of the source's energy important. A further advantage of using a Michelson interferometer in making line position measurements is the ease of accurately calibrating the wavenumber scale.

# Overview of Experimental Setup

A simplified schematic of the overall experimental setup is given in Figure 3. A Nernst glower was used as the source of the infrared radiation. A Nernst glower 26 is a small cylinder made of rare-earth oxides, which when heated by passing an electrical current through it, has a color temperature of roughly 1600 K. The energy from the Nernst glower is first focused down so as to enter the high temperature absorption cell. This absorption cell will be discussed briefly in the next section. After exiting the absorption cell the energy is again focused to an image, where it is chopped using a Bulova vibrating reed chopper. The chopped beam then passes through an infrared filter which limits the energy in the beam to a spectral region of interest. After passing through the infrared filter, the

Second secretic massesse accepted appropriations

Simplified schematic of the overall experimental setup. Figure 3.

energy is collimated in preparation for entering into the Michelson interferometer. The interferometer will be described in detail in a subsequent section of this report. The entire optical path is maintained under a vacuum, except for a small (5 cm) section between the high temperature absorption cell and the interferometer enclosure, which is purged with dry nitrogen.

# High Temperature Absorption Cell

The design and fabrication of high temperature optical systems are beset with many technical difficulties. A major problem is finding optical materials for windows and mirrors that maintain their mechanical and optical properties at high temperatures. In addition, the large thermal expansion the optical components experience when being heated from room temperature to 800 K makes it difficult to maintain optical alignment while avoiding stressing the optical components. Since the high temperature absorption cell used in this work has been described in other publications 27 only a brief description of the cell will be given here.

The absorption cell was constructed using rhodium coated fused silica mirrors in the Pfund configuration (Figure 4). J. H. Taylor has demonstrated that a Pfund cell can be used affectively to study high temperature gases. <sup>28</sup> The absorption cell mirrors could be aligned at



いた。日本のできたのできた。日本のでは、日本ののは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本のでは、日本ので

Schematic of the high temperature absorption cell. Figure 4.

room temperature and then the cell heated to 800 K without realigning the cell, due to the Pfund configuration's high tolerance to mirror motion. An additional reason for using a triple pass Pfund configuration cell instead of a multitraversal cell such as a White<sup>29</sup> cell was the low reflectivity of the rhodium mirrors. After the rhodium coated mirrors had been operated for any length of time at temperatures above 600 K, their reflectivity was substantially reduced.

One disadvantage of the absorption cell used was the nonuniform temperature of the gas sample. Due to the difficulty of maintaining vacuum seals at high temperatures, the CaF<sub>2</sub> windows were maintained near room temperature, while the temperature of the central one-meter region of the cell was maintained within + 2 K of 800 K. The absorption path therefore consisted of three meters of uniform 800 K temperature and two sections of 1/4 meter each in which the temperature rapidly drops from 800 K to near room temperature. Since the objective of the present study was to measure the position of spectral lines, and the position of spectral lines is unaffected by temperature, using an absorption cell with a nonuniform gas temperature was not a problem. However, if the scope of the study had been broadened to include making intensity measurements of spectral lines, the present absorption cell would have caused serious problems. Although it is

possible to determine the intensities of spectral lines in an absorption cell with a nonuniform temperature profile, it is a complicated process for which the temperature profile of the gas sample must be known. Determining the temperature profile of a 'ow pressure gas sample is not simple, particularly since the temperature profile of the gas is not necessarily the same as that of the cell walls due to the likelihood of convective gas currents within the cell.

### Fourier Spectroscopy

A Fourier spectrometer, unlike a conventional dispersive spectrometer which records the spectrum directly, encodes the spectrum making necessary the use of a Fourier transformation to recover the spectrum. A Fourier spectrometer uses the energy supplied by the source very efficiently. The two main light gathering advantages of a Fourier spectrometer over a conventional dispersive spectrometer are, a multiplex, or Fellgett 30 advantage, and a throughput, or Jacquinot 31 advantage. Unlike a grating spectrometer, which scans each spectral element in sequence, an interferometer is continually gathering information on all spectral elements. This is the multiplex advantage. The throughput advantage will be discussed in a later section.

Principle of Operation of a Michelson Interferometer. A schematic that illustrates the principle of operation of a Michelson interferometer is given in Figure 5. A collimated beam of light from the source falls on the beamsplitter (B. S.) and is divided into two parts. One is reflected off the beamsplitter and is sent to mirror  $M_1$ , the other goes through the beamsplitter and splitter and is reflected off the moveable mirror  $M_2$ . Both beams of light recombine at the beamsplitter where they interfere; part of the light is sent to the detector, while the remainder is reflected back to the source. The amount of light reaching the detector is a function of the position of the moveable mirror  $M_2$ .

Let an incoming plane wave of amplitude A be represented by A  $e^{i(2\pi\sigma x - \omega t)}$  where  $\omega$  is the angular frequency, and  $\sigma$  is the wavenumber of the light. If the amplitude of the wave transmitted through the beamsplitter is t and the amplitude of the reflected wave is r, the intensity at the detector is

Int = 
$$|\text{rt A e}^{i(2\pi\sigma x_1 - \omega t)} + \text{tr A e}^{i(2\pi\sigma x_2 - \omega t)}|^2$$
, (38)

where  $x_1$  is the round trip distance the light travels in going from the beamsplitter to mirror  $M_1$  and back again. The corresponding distance for  $M_2$  is  $x_2$ . By rearranging Equation (38) and letting  $x = x_1 - x_2$ , we find that the



Figure 5. Simplified schematic of a Michelson interferometer.

intensity is given by

Int = 
$$2 A^2 |tr|^2 (1 + \cos(2\pi\sigma x))$$
. (39)

The beamsplitter efficiency is  $|tr|^2$ . For a polychromatic source of intensity  $B(\sigma) = A^2$ , the intensity at the detector is

Int = 
$$0^{\infty} 2 B(\sigma) |tr|^2 (1 + \cos(2\pi\sigma x)) d\sigma$$
. (40)

The part of Equation (40) that varies with optical path difference, x, is defined as the interferogram, I(x).

$$I(x) = 2 |tr|^2 \int_0^\infty B(\sigma) \cos(2\pi\sigma x) d\sigma. \qquad (41)$$

The spectrum,  $B(\mathfrak{o})$ , is obtained by taking the Fourier transformation of the interferogram.

The Fourier transformation can be defined as

$$B(\sigma) = \int_{-\infty}^{\infty} I(x) e^{2\pi i \sigma x} dx , \qquad (42a)$$

and the inverse transformation as

$$I(x) = \int_{-\infty}^{\infty} B(\sigma) e^{-2\pi i \sigma x} d\sigma . \qquad (42b)$$

When the input function is real and even, its Fourier transformation reduces to the cosine transform.

$$B(\sigma) = 2 \int_{0}^{\infty} I(x) \cos(2\pi\sigma x) dx$$
 (43)

Apodization. The interferogram produced by a real Michelson interferometer can not cover the entire range of x, from -- to +-, as was implied in Equations (41 and 42), but is limited to the finite range -L to +L. Limiting the range of x to a finite range broadens the instrument function of the interferometer. Any spectrometer provides a spectral signal given by the true spectrum convolved with the instrument function. A spectrometer with infinite resolution generates no spectral distortion, so its instrument function is a Dirac delta function. Real spectrometers, however, provide a finite spectral resolution.

If the input signal to a Michelson interferometer is a monochromatic beam of light, the resulting interferogram is a cosine function truncated at the maximum optical path difference L. The resulting spectrum, i. e., the Fourier transform of the interferogram, is

$$\operatorname{sinc}(2L_0) = \frac{\sin(2\pi L_0)}{2\pi L_0} . \tag{44}$$

Hence the instrument function for an interferometer, if no other distortion is present in the measured interferogram, is a sinc function with its first zero at 1/(2L). Hence, the resolution,  $\Delta\sigma$ , of a Michelson interferometer is

$$\Delta\sigma = \frac{1}{2L} \quad . \tag{45}$$

The sinc instrument function has a serious disadvantage, in that it converges to zero very slowly. An instrument function which exhibits faster convergence to zero than the sinc function is created by removing the sharp edges at the end of the interferogram by multiplying the interferogram by various functions. This process is called apodization.

The function used to apodize the interferograms for this work was the triangular function T given by

$$T(x) = 1 - \frac{|x|}{L} \quad \text{for} \quad |x| \le L$$

$$T(x) = 0 \quad |x| > L \quad . \tag{46}$$

Application of the triangular function T for apodization results in the following instrument function:

$$\operatorname{sinc}^{2}(L\sigma) = \left\{ \frac{\sin(\pi L\sigma)}{\pi L\sigma} \right\}^{2} . \tag{47}$$

The instrument function with no apodization and using a triangular function for apodization are compared in Table 4. Note that with no apodization the central feature of the instrument function is sharper, while with apodization the side lobes converge to zero much faster. The disadvantage of all functions used for apodization is their degradation of spectral resolution caused by the broadening of the instrument function.

Table 4. Comparison between no apodization (sinc) and triangular apodization (sinc<sup>2</sup>).

| x                        | sinc(x)                     | $\operatorname{sinc}^2\left(\frac{x}{2}\right)$ |  |
|--------------------------|-----------------------------|-------------------------------------------------|--|
| 0.0                      | 1.0000                      | 1.0000                                          |  |
| 1.0<br>1.5<br>2.0<br>2.5 | -0.2122<br>0<br>0.1273      | 0.4053<br>0.0901<br>0<br>0.0324                 |  |
| 3.0<br>3.5<br>4.0<br>4.5 | 0<br>-0.0909<br>0<br>0.0707 | 0.0450<br>0.0165<br>0<br>0.0100                 |  |
| 5.0<br>5.5<br>6.0        | -0.0579<br>0                | 0.0162<br>0.0067<br>.0                          |  |
| 6.5<br>7.0<br>7.5<br>8.0 | 0.0490<br>0<br>-0.0424<br>0 | 0.0048<br>0.0083<br>0.0036<br>0                 |  |
| 8.5<br>9.0<br>9.5<br>0.0 | 0.0374<br>0<br>-0.0335<br>0 | 0.0028<br>0.0050<br>0.0022<br>0                 |  |

Sampling the Interferogram. In practice the interferogram produced by a Michelson interferometer is not a continuous function of x, but is a function which is sampled at equidistant intervals separated by  $\Delta x$ . These sampling locations are determined from the interferogram of a single frequency HeNe laser, which is coaligned with the infrared

beam. The movable mirror  $M_2$  can either be stepped or scanned continuously. In the stepping mode, the interferometer is maintained at a fixed optical path difference,  $x_i$ , while the energy falling on the detector,  $I(x_i)$ , is measured. Mirror  $M_2$  is then stepped to its next position, and the next interferogram data point  $I(x_{i+1})$  is collected.

The spectrum is recovered from the sampled interferogram by means of a discrete Fourier transformation. The discrete Fourier transformation is obtained from the continuous Fourier transformation (Equation (42)) by replacing x by  $j\Delta x$ ,  $\sigma$  by  $k\Delta \sigma$ , and the integral with a summation over the total number of data points N. Since the range of the interferogram is from -L to +L the interval  $\Delta x$  is given by

$$\Delta x = \frac{2L}{N} \quad . \tag{48}$$

Similarly the spectral interval  $\Delta\sigma$  is

$$\Delta \sigma = \frac{2 \left(\sigma_{\text{max}} - \sigma_{\text{min}}\right)}{N} , \qquad (49)$$

where  $\sigma_{min}$  is the lowest wavenumber in the signal bandpass and  $\sigma_{max}$  is the highest. It can clearly be seen from Figure 6, where two sampled cosine waves with different periods appear identical, there must be a restriction on the value that  $\Delta x$  can assume. This proper sampling



Research Control Contr

Two sampled cosine functions that appear identical for a sampling interval of  $\Delta x \ = \ 1$  . Figure 6.

interval,  $\Delta x$ , for a given spectral bandpass, is given by 32.33

$$\Delta x = \frac{1}{2 (\sigma_{\text{max}} - \sigma_{\text{min}})} . \tag{50}$$

Combining Equations (49) and (50) gives the following important relation

$$\Delta \mathbf{x} \Delta \sigma = \frac{1}{\mathbf{N}} \tag{51}$$

This relation is then used to write down the discrete Fourier transformation

$$B(k) = \sum_{j=0}^{N-1} I(j) e^{\frac{2\pi i k j}{N}},$$
 (52a)

and its inverse

$$I(j) = \frac{1}{N} \sum_{k=0}^{N-1} B(k) e^{-\frac{2\pi i k j}{N}}.$$
 (52b)

There is a certain amount of arbitrariness in the definition of the discrete Fourier transformation. An alternative definition which is more consistent with the continuous Fourier transformation defined in Equation (42) is

$$B(k) = \Delta x \sum_{j=0}^{N-1} I(j) e^{\frac{2\pi i k j}{N}}, \qquad (53a)$$

and the inverse

$$I(j) = \Delta \sigma \sum_{k=0}^{N-1} B(k) e^{-\frac{2\pi i k j}{N}}$$
 (53b)

However, Equation (52) is the definition of more standard usage  $^{34,35}$  and so will be used for the remainder of the present work.

Finite Field of View. A complication that arises with Fourier spectrometers is that both the source and the detector are finite in size. Therefore the light going through the interferometer is comprised of rays with a range of finite angular extent. The optical path differs by a factor of  $\cos\alpha$  for off-axis rays compared to on-axis rays, where  $\alpha$  is the off-axis angle. When a detector of finite size is used, the interferogram, Equation (41), has to be modified by integrating over the solid angle,  $\Omega$ , subtended by the detector.

$$I(x,\Omega) = 2 |tr|^2 \int_{-\infty}^{\infty} B(\sigma) \int_{\Omega} \cos(2\pi\sigma x \cos\alpha) d\sigma d\Omega'.$$
 (54)

When the small angle approximation is used, and a circular detector assumed,  $\Omega$  is equal to  $\pi\alpha^2$ . After integrating over  $\Omega'$ , Equation (54) becomes

$$I(x,\Omega) = 2 |tr|^2 \int_{-\infty}^{\infty} B(\sigma) \Omega \operatorname{sinc}(\frac{\sigma x \Omega}{2\pi}) \cos(2\pi x \sigma(1 - \frac{\Omega}{4\pi})) d\sigma.$$
(55)

It can be seen that a finite detector introduces two effects; the amplitude of the interferogram is modulated by a sinc function, and the positions of spectral features are

shifted from their true position by

いる。これのないのは、プログラのの、これのないない。

$$\frac{\delta\sigma}{\sigma} = -\frac{\Omega}{4\pi} . \tag{56}$$

The decrease in amplitude of the interferogram caused by the multiplying sinc function can be reduced to an acceptable level by limiting the solid angle  $\Omega$ . The solid angle is conventionally limited so that the argument of the sinc is always less than or equal to 1/2.

$$\Omega \leq \frac{\pi}{\sigma_{\text{max}} L} , \qquad (57)$$

where  $\sigma_{max}$  is the highest optical frequency and L is the maximum optical path difference in the interferogram. Alternatively the off-axis angle  $\alpha$  for the detector must be specified by

$$\alpha \leq \left(\frac{1}{\sigma_{\max} L}\right)^{\frac{1}{2}}.$$
 (58)

When this criterion is used, the amplitude of the interferogram is attenuated by less than a factor of 0.64, even at the highest optical frequency.

Throughput Advantage. The throughput, E, or étendue, of an optical system is defined as

$$E = A\Omega , \qquad (59)$$

where A is the area of the collecting optics, and  $\Omega$  is the solid angle accepted by the system.

The throughput advantage of a Michelson interferometer over a grating spectrometer is demonstrated by comparing the throughput of the two systems. The throughput of a Michelson interferometer,  $E_{\rm m}$ , is the area of the interferometer optics, A, times the solid angle accepted by the interferometer (Equation (57)),

$$E_{\rm m} = \frac{A\pi}{\sigma L} . \tag{60}$$

The resolving power of a spectrometer is defined as

$$R = \frac{\sigma}{\Delta \sigma} .$$
(61)

Combining Equations (60), (61) and (45) gives the throughput of a Michelson interferometer in terms of the resolving power R as

$$E_{\rm m} = \frac{2\pi A}{R} . \tag{62}$$

The throughput of a grating spectrometer,  $^{36}$  E $_{g}$ , is

$$E_{g} = \frac{1A}{fR} , \qquad (63)$$

where 1 is the length of the grating spectrometer slit, and f is the collimator focal length. The throughput advantage of a Michelson interferometer is then

$$\frac{E_{m}}{E_{g}} = \frac{2\pi}{1/f} . \tag{64}$$

It is very difficult to construct a grating spectrometer for which the slit length, 1, is not considerably shorter than the collimator focal length, f. Even when compared to a very fast grating spectrometer, the ratio,  $\rm E_m/\rm E_g$ , is on the order of 200.  $^{36}$ 

Wavenumber Calibration. Aligning the infrared beam to be parallel with the laser reference beam does not insure accurate wavenumber calibration unless the solid angle subtended by the two beams is identical. In practice, the solid angle of the laser reference beam is generally much smaller than that of the infrared beam. The wavenumber shift factor, Equation (56), depends on the solid angle subtended by the detector,  $\Omega$ , so it is necessary to introduce a small correction to the wavenumber scale of the recovered spectrum. It is possible to measure the field of view of the infrared beam and the reference laser beam very accurately, and then calculate this wavenumber correction. However, in practice, it is usually easier to calibrate the wavenumber scale of the recovered spectrum using the position of a few very accurately measured lines. Since Fourier spectrometers intrinsically provide broad spectral coverage, it is not difficult to find a few lines of CO,  ${\rm CO}_2$ , or lines of some other molecule that have been as accurately measured to serve as an internal wavenumber standard.

Beamsplitter Compensation. Beamsplitters used in the infrared region of the spectrum are usually constructed using a thin dielectric film deposited on a substrate material which is transparent in the infrared. A schematic of a Michelson interferometer showing the finite thickness of the beamsplitter substrate is given in Figure 7. The part of the beam that is reflected to mirror  $M_1$  and back to the beamsplitter does not pass through the beamsplitter substrate while the part of the beam which is transmitted through the beamsplitter and subsequently reflected from mirror Mo must traverse the beamsplitter substrate twice. Since the optical thickness of the beamsplitter substrate is a function of wavenumber, the position of zero path difference for optical signals of each wavenumber is shifted by an amount  $\delta(\sigma)$ . The interferogram, I'(x), which including the effects of dispersion in the beamsplitter substrate is

$$I'(x) = \int_{-\infty}^{\infty} B(\sigma) e^{-2\pi i \sigma [x - \delta(\sigma)]} d\sigma . \qquad (65)$$

There is now no clear position of zero path difference, since the phase of each cosine wave comprising the interferogram is different. To minimize this phase difference, a compensator plate made of the same substrate material as the beamsplitter is usually placed in front of the beamsplitter to equalize the dispersion between the two paths of the interferometer (Figure 8). In the case



Figure 7. Schematic of a Michelson interferometer showing finite beamsplitter thickness.



Figure 8. Beamsplitter compensation using an additional compensator plate.

of a cat's eye interferometer, such as the AFGL Two-meter Interferometer, the input and output beams are physically displaced. This physical displacement makes possible beamsplitter compensation by depositing the beamsplitter coatings on opposite faces of the same substrate plate (Figure 9).

いるに連邦なられるのと

#### The AFGL Two-Meter Interferometer

The interferometer that was used for the present study was built by Idealab for the Air Force. It is located at the Air Force Geophysics Lab (AFGL) on the Hanscom Air Force Base in Bedford, Massachusetts. Although the interferometer was designed to achieve a maximum optical path difference of two meters, for the present study a maximum optical path of only 83 cm was used. The interferometer is of the step and hold type, where the interferogram is sampled at a fixed optical path difference, the interferometer is then stepped to the next holding location and the next data point of the interferogram sampled. A Digital Equipment PDP-8/E minicomputer is used to provide the commands which control the interferometer stepping. The PDP-8/E is also used to record the interferogram data. The interferometer has been used previously by Hajime Sakai to record the spectra of several atmospheric molecules  $^{37,38}$  and has been described in previous publications. $^{39,40}$  During the course of the



Figure 9. Beamsplitter compensation using opposite faces of the same substrate plate.

ないなったと言葉というのでは、「アイドラストは、「「アイトラスト」というというには、「アイトラスト」というというという。

present study the reliability of the interferometer stepping has been markedly improved by upgrading the PDP-8/E stepping control software. This enhanced stepping software provides detailed diagnostic information on all stepping peculiarities and provides automatic self correction for the more commonly occurring stepping errors.

Overview of Interferometer. The AFGL interferometer uses cat's eye retroreflectors instead of flat mirrors. A cat's eye retroreflector consists of a small convex mirror mounted at the focal point of a large concave mirror as illustrated in Figure 10. The outgoing beam from a cat's eye retroreflector stays parallel to the incident beam, even when the incident beam is tilted with respect to the optical axis of the cat's eye. There are two main advantages that a cat's eye interferometer has over a conventional flat mirror interferometer. First, due to the property that the outgoing beam is parallel to the incoming beam, the use of a cat's eye retroreflector relaxes the required parallelism of the interferometer drive mechanism and makes the interferometer alignment very stable. AFGL two-meter interferometer will stay in alignment for over a year at a time. The second advantage of a cat's eye system is that the incident and the reflected beams are laterally displaced allowing the use of two complementary detectors. The resulting interferogram is the difference

CONTROL PROPERTY OF THE PROPER



Figure 10. The optical layout of a cat's eye retroreflector. Note that for either an on-axis ray (a) or an off-axis ray (b) the outgoing ray is parallel to the incident ray.

between these two complementary channels. Use of two detectors helps minimize the effects of source fluctuations and instrumental drifts. The two detectors and their preamplifiers are matched, making the measured interferogram insensitive to any perturbing effect which influences both channels equally.

A photograph of the AFGL interferometer is given in Figure 11 and a detailed schematic in Figure 12. The infrared energy enters the interferometer from the bottom in the photograph and from the left in the schematic. infrared beam first passes above mirror  $\mathbf{M}_{\mathrm{H}}$  and strikes the upper half of the beamsplitter, BS, where it is divided into two beams. One beam is sent to the stationary cat's eye,  $CE_1$ , and the other to the moveable cat's eye,  $CE_2$ . Since the cat's eyes introduce a shear, the returning beams strike the lower half of the beamsplitter. One output beam goes to detector D, by means of folding mirrors M, and M, and collecting mirror  $M_2$ . The second output beam goes to detector  ${\rm D_2}$  by means of folding mirrors  ${\rm M_H}$  and  ${\rm M_5}$  and collecting mirror  $M_6$ . The beam from the HeNe reference laser follows a path similar to that of the infrared energy. Mirror  $M_7$  directs the laser beam to the beamsplitter where the laser beam is split into two beams. After recombining again at the beamsplitter, one output beam is directed to the laser detector  $D_2$  by means of folding mirror  $M_8$  and the other goes directly to detector  $D_{\mu}$ .



Figure 11. Photograph of the AFGL high resolution interferometer



Figure 12. Schematic of AFGL high resolution interferometer. See text for further explanation.

The interferometer is housed in a vacuum enclosure. There are three main advantages of operating an interferometer in a vacuum. First, evacuating the interferometer avoids the problem of atmospheric lines in the spectrum arising in the instrument instead of from the source to be observed. This is particularly important when the observed source contains CO2. Second, no wavenumber correction for the index of air need be made to the spectrum. The index of refraction of air is not constant for the laser reference frequency and the different infrared frequencies. Therefore, when an interferometer is operated in air, a non-linear correction term must be applied to the measured spectrum. Finally, operating in a vacuum, eliminates acoustic vibrations transmitted through the air which can disrupt the interferometer stepping. To further reduce vibrations, the interferometer enclosure is mounted on a set of air filled vibration isolators.

The Interferometer Drive. The interferometer drive mechanism provides a path length stability of approximately 0.01 µm at each holding position, yet can be stepped to provide more than a meter of optical path difference. This represents a range of motion covering 8 orders of magnitude. Three sources of change in optical path difference are used, each with its own range of motion. These are shown in the schematic of Figure 12, they are: 1)

a dc motor which drives a lead screw,  $S_1$ ; 2) a linear magnetic motor,  $S_2$ ; and 3) a piezoelectric transducer,  $S_3$ . Large, but not very accurate, changes in optical path difference are provide by the dc motor turning the lead screw. The lead screw is coupled to the movable cat's eye by a linear electric motor with a range of motion of about 1 cm. Very delicate adjustments in path length are provided by mounting the small mirror of the fixed cat's eye on a stack of piezoelectric barium titanate crystals. The piezoelectric stack is driven with up to 100 volts to produce small (about 0.2  $\mu$ m) but fast changes in path length.

Considerable care must be taken in the design of an interferometer to ensure that the moveable cat's eye will translate smoothly, while minimizing vibration and mechanical stresses. Thus, the movable cat's eye is mounted on a cart that rides on a set of precision bearings. These bearings ride on two very accurately aligned parallel stainless steel rails called ways. Also attached to the cart are two oil-filled dashpots to help damp out oscillations. In order to avoid vibration and possible mechanical stress, the cart is coupled to the lead screw only through the magnetic induction of the linear electric motor.

The three sources of motion are coupled together into a single servo system to provide large, yet very accurate,

changes in optical path difference. An inductive type position sensor is used for the source of feedback for the lead screw motor. The feedback signal for both the linear motor and the piezoelectric stack is supplied by the laser reference signal. For a cat's eye interferometer, the laser reference signal is the difference in signal between the two complementary detectors. An example of the laser reference signal is given in Figure 13. When the signal is maximum, constructive interference is occurring at one detector and destructive interference at the other. When the signal is minimum, the role of the two detectors has been reversed. During the holding mode the interferometer is maintained at a position where the signals from the two complementary detectors are equal. At this position the reference signal is the most sensitive to changes in path length.

In the holding mode both the linear electric motor and the piezoelectric stack are used to maintain a fixed value of the optical path length. To carry out a one laser wavelength step, the hold servos are turned off and the linear motor drives the mirror to the next holding position, where the hold servos are again turned on. When the linear motor moves a short distance from the center of its working range, the dc motor drives the lead screw to recenter it.



Figure 13. Laser reference signal demonstrating the stepping and holding modes of the interferometer.

<u>Data Acquisition.</u> The data acquisition system is a hybrid system in which part of the processing is done with dedicated electronics and part with a PDP-8/E minicomputer. In addition to data acquisition, the PDP-8/E minicomputer also controls interferometer stepping. Analog electronics are used to difference the signals from the two complementary infrared detectors, while synchronous demodulation and signal averaging is performed with the minicomputer.

A block diagram of the data acquisition and stepping control electronics is given in Figure 14. The signals from the two infrared detectors are slightly rounded 100 Hz square waves, since the infrared beam is chopped at 400 Hz by a vibrating-reed chopper before entering the interferometer. The signals from the two complementary detectors are first amplified using separate preamplifiers. Next, since the signals from the two infrared detectors are not precisely matched, one of the signals is sent through a variable gain amplifier in order to match the two signals. The two signals are then differenced. Since the signal from the infrared detectors are complementary, this process doubles the interferogram signal while canceling the signal from the background. The interferogram signal is next matched to the range of the ADC (+1 volt) with a variable gain amplifier. The interferogram signal then enters the analog multiplexer of the PDP-8/E data acquisition system.



KROCKI DODODOV CONTOKNIO ENGINEM INGOMBO. MERCERIA INGOMBO. DOSOBON. BEDDOVI. REKESSE - ZZZEKEL PEROS Ke

Data acquisition and stepping control electronics. Figure 14.

To assist in the demodulation of the chopped signal, the inverse interferogram signal is also fed into a channel of the analog multiplexer.

とは、これがないとないと、一人のなののなから、「ないのではない」というというないないとなっていたと

Synchronous demodulation is accomplished digitally. The computer is programmed to monitor the chopper reference signal to determine the state of the chopper. As soon as the chopper opens the Digital Equipment 10 bit ADC converter samples the signal repeatedly and sums the samples into a double precision PDP-8/E 24-bit word. the chopper closes, the resulting background signal is subtracted by switching the analog multiplexer to the inverse interferogram signal and again sampling repeatedly and summing to the same double precision 24-bit word. interferometer is typically maintained in the same holding position for 12 chopper cycles, and the interferogram sampled 24 times each chopper cycle, making a total of 288 samples per holding position. Summing 288 10-bit samples together improves the precision of the signal by a factor of the square root of 288 or about 17, making the precision of the data slightly more than 14 bits. After 640 points of the interferogram have been sampled, averaged, and stored in a buffer, they are then written on magnetic tape. The buffer is filled repeatedly until the entire interferogram has been recorded. The typical recording time for a 10<sup>6</sup> point interferogram is 15 hours.

Computer Control of the Interferometer. The PDP-8/E computer stepping and holding control software was upgraded during the course of the present study. In this upgraded software system, in addition to generating the commands causing the interferometer to step, the computer monitors the quality of each stepping and holding period. quality of each stepping or holding motion is determined from the characteristic of the laser reference signal. The computer records detailed information about any stepping or holding peculiarities that arise. The computer has also been programmed to take, if necessary, corrective action for the most commonly occurring errors. Making the system partially self-correcting has increased the reliability of the interferometer, but the most significant benefit has been the improved diagnostic capability. Before the computerized diagnostic feature was implemented, it was almost impossible to determine the nature of infrequently occurring errors. When errors occur at rates as low as one in 10,000 steps, or lower, it is almost impossible to "catch" the interferometer in the "act" of a misstep without implementing some sort of automatic error detection method. When the nature of stepping errors are known, the servo parameters can usually be adjusted to eliminate the errors.

A flow chart illustrating the main features of the

interferometer control and data acquisition computer program is given in Figure 15. A listing of the assembly language program CONTST (CONtrol and stepping TeST) is given in Appendix C. The program was written with the goal of multiplexing efficiently several tasks at once. For example while the ADC converter is in the process of performing a conversion, the computer is processing the results from the previous conversion. The analog multiplexer on the Digital Equipment data acquisition system makes it possible to sample the infrared interferogram signals as well as to monitor the laser reference signal with one ADC. The laser reference signal is monitored only while the signal from the infrared detectors would not be valid interferogram data. times occur when the interferometer is stepping, when the interferometer is settling down after a step, and when the chopper is in transition from open to closed, or from closed to open. Since the natural frequencies of the interferometer drive are lower than the chopper frequency, the interferometer motion can be adequately monitored at chopper cycle intervals.

The most common type of stepping error occurs in the transition period between the turning off of the holding servos and the turning on of the step drive. If a vibration of sufficient amplitude and the right phase is present during this transition period, the movable mirror



Figure 15. Flow chart of interferometer control and data acquisition program.

can be pushed backward a considerable distance. After being forced backward, the interferometer starts driving forward again. The laser reference signal soon matches the preset level where the interferometer servo controller interprets the step as having been completed. The holding servos are again turned on, but instead of completing a step, the interferometer has returned to its original position. The laser reference signal that results when this type of false step occurs is represented in Figure 16. The computer, monitoring the laser reference signal, detects the lack of a positive peak as a stepping error. The stepping software corrects this type of error by causing the interferometer to step again.

ATT TOTAL PROPERTY SECRETARY BUILDING TOTAL

The laser reference signal is monitored during the holding mode as well as during the stepping mode. The control software detects when the interferometer is not holding properly (within about 0.05  $\mu m$ ). When this happens the computer stops taking data until the interferometer has settled down, then retakes the affected interferogram data point.

If a mechanical vibration of the interferometer mirrors cause the optical path length to change by more than half a laser wavelength (0.3  $\mu m$ ), the hold servos will no longer provide negative feedback and so will not be able to bring the interferometer back to the proper holding position. This condition is monitored by the control



Figure 16. The laser reference signal showing a stepping error and its correction.

software and diagnostic information is recorded, but corrective action is not taken. Using the air-filled vibration isolators and operating in a vacuum make these irrecoverable errors uncommon. However, the acoustic vibrations from a thunder shower will sometimes couple through the interferometer enclosure sufficiently to cause irrecoverable errors.

## Modification of Interferometer

In addition to the CO  $_2$  bands in the 4.3 and 2.8  $\mu m$ regions which were analyzed in the present study, there are important  $CO_2$  bands in the 15  $\mu m$  region which could not be observed without modification of the interferometer. To meet this need, and to make the interferometer more flexible for future observations, the spectral coverage of the interferometer was extended to over 20  $\mu m$  by replacing the CaF<sub>2</sub> beamsplitter and gold doped germanium detectors with a KBr beamsplitter and copper doped germanium detectors. The upgraded interferometer was then used to take preliminary  $CO_2$  data in the 15  $\mu m$  region and HDO data in the 7.3 µm region. It would have been possible to take some HDO measurement without upgrading the interferometer, but it would have been difficult, since the response of the interferometer before the upgrade was so low at the longer wavelengths.

KBr Beamsplitter. The optical properties of KBr make it a good material to use for infrared beamsplitters. It has a low index of refraction and transmits from the visible to beyond 25 µm. However, since KBr is soft and hydroscopic, it is difficult to work with. We had on hand a KBr beamsplitter with a germanium coating that had been in storage for a number of years. Since KBr has a tendency to cold flow, there was considerable risk that the beamsplitter would not be sufficiently flat to be still usable. In addition, even though the beamsplitter had been stored with a desiccant in an airtight container, there could have been subtle damage to the beamsplitter or the coating. To insure that the beamsplitter had not been damaged by this long storage, several tests were performed on it before it was mounted. Special care was taken in the design and fabrication of the mount for the KBr beamsplitter, since even a small amount of stress on the beamsplitter would have distorted it. As the mount was being tightened on the beamsplitter, the flatness of the beamsplitter was monitored to insure that it was not being stressed.

Since the input and output beams for the AFGL High
Resolution Interferometer are physically displaced it is
not necessary to use two KBr plates, one for the
beamsplitter and the other for the compensator. Instead a

single KBr plate with coatings covering part of each face of the plate is used (Figure 9). The energy coming into the interferometer is split into the two components using the coating on the front of the KBr plate and then recombined at the coating on the back surface of the KBr plate. The germanium coatings on each face of the KBr plate consist of two separate regions of coating, a heavier germanium coating for the infrared signal and a lighter germanium coating for the visible reference laser. The pattern of coatings for the beamsplitter is given in Figure 17.

The flatness of the beamsplitter was tested by placing an optical flat in contact with the beamsplitter and then observing the fringes produced from a helium lamp. The beamsplitter was flat to within two fringes (1/10 fringe at  $10\mu m$ ), except for three areas near the edge where the nonflatness was greater than 10 waves. These areas appear to have been damaged by a previous mounting of the beamsplitter, possibly when the beamsplitter was being fabricated. It was possible to orient the beamsplitter in the mount so that these damaged areas of the beamsplitter would not be used.

THE PASSESSE AND DESCRIPTION OF THE PROPERTY O

The optical properties of the beamsplitter were verified by measuring the transmission and reflectance of the beamsplitter. Spectral traces (Figure 18) were obtained from regions of the beamsplitter with both types of coating, the light coating used for the reference laser



germanium coatings on the beamsplitter. The pattern of Figure 17.

REPORTED TO THE PROPERTY OF TH



DESTRUCTION OF SECURITY PRODUCTION OF SECURITY SECURITY

Figure 18. Transmission and reflection of the beamsplitter for a) the heavy coating used for the infrared, and b) the lighter coating used for the laser reference.

and the heavy coating used for the infrared signal. The spectral traces were measured by Fred Volz on a Perkin-Elmer 180 spectrometer. Due to the configuration of his optical setup, the transmission measurement was performed at normal incidence and the reflection measurement at 10° incidence. Since the beamsplitter was to be used at an angle of 30°, these measurements could not be used directly to determine the expected efficiency of the interferometer, but they did show there were no major problems with the beamsplitter.

A diagram of the mount that was used for the KBr beamsplitter is given in Figure 19. The beamsplitter is held by spring pressure against three pads. The tension in the springs was adjusted such that the pressure from the pads on the beamsplitter was 20 psi (well below KBr's elastic limit of approximately 160 psi). Additional radial support for the beamsplitter was provided at three locations by using a nylon screw to hold a support against the edge of the beamsplitter at each of the three locations. If no precautions were taken, even the small excursions of temperature expected in a laboratory environment would cause sufficient differential expansion between the aluminum mount and the KBr substrate to stress the KBr. To minimize this problem, instead of mounting the KBr beamsplitter directly against the three mounting pads, two plastic shims were placed between each pad and the



property percent processes designed

a assessment encourse.

earmened of personal production in the second



Figure 19. The mount used for the KBr beamsplitter: 1) KBr beamsplitter mount, 2) Rotating pin, 3) Location pin, 4) Pressure pin, 5) Pressure pin locking screw, 6) Pressure pin pedestal, 7) Compression spring, 8) Socket head cap screw, 9) KBr beamsplitter.

beamsplitter. The differential expansion between the beamsplitter and the mount is compensated by these plastic shims slipping past each other.

To insure that the mounting process was not distorting the beamsplitter as the mounts were being tightened, an optical flat was placed in contact with the beamsplitter and the fringes observed as the loading on the beamsplitter was slowly applied.

The Detectors. Copper doped germanium detectors were used, because of their high detectivity over a broad spectral range, to extend the wavelength coverage of the interferometer. A disadvantage of Cu:Ge detectors is that they will not operate at liquid nitrogen temperatures, but must instead be operated at liquid helium temperatures. Not only is liquid helium much more expensive than liquid nitrogen, it is also much more difficult to work with, partly due to the colder temperatures involved, and partly due to the low heat of vaporization of liquid helium. AFGL High Resolution Interferometer uses two detectors instead of the more conventional single detector. In the upgraded interferometer both detectors were placed in a single liquid helium dewar. By placing both detectors in a single liquid helium dewar the complexity of filling and maintaining two dewars was avoided. Having a single dewar also reduces the quantity of liquid helium consumed. In

addition, having both detectors in the same dewar helps keep the environmental conditions for the two detectors matched, so that proper common mode rejection can take place. It was however necessary to reroute the optical beams of the interferometer. The new optical configuration is shown in Figure 20.

The size of the detectors and the way they were mounted simplifies future modifications to the interferometer. The 0.5 mm diameter detectors are mounted behind interchangeable cold stops. Provisions were also made for cold filters in front of the detectors. The cold stops and cold filters are used to minimize photon noise. At present, the cold stops are set at 7.2° full angle and no cold filters are being used. The cold stop angle was set at 7.2° since the interferometer is currently operating with f/8 collection optics. The 0.5 mm diameter detectors are smaller than needed for f/8 collection optics, but will be well suited for future reductions in the f-number of the interferometer collection optics.

The Cu:Ge detectors were obtained from SBRC (The Santa Barbara Research Center). The detectors were tested at SBRC by illuminating them with a calibrated blackbody source. The results and conditions of the test are summarized in Table 5.

The preamplifiers that were used to amplify the signal from the detectors incorporated low noise FET-input op-amps



いった。日本のできないとのできません。

Optical layout with KBr beamsplitter and copper doped germanium detectors. Figure 20.

CARBON DIOXIDE LINE POSITIONS IN THE 28 AND 43 MICRON REGIONS AT 800 KELY. (U) UTAH STATE UNIV BEDFORD MA STEMART RADIANCE LAB M P ESPLIN ET AL. 19 FEB 86 SCIENTIFIC-16 AFGL-TR-86-8046 F/G 7/4 2/4 AD-A173 808 NL UNCLASSIFIED . 4



E PROGRAM BESSELLE RECESSES FORCES DANS

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

Table 5. Copper doped germanium detector test specifications and detector performance.

## TEST SPECIFICATIONS

Filtering: KRS-5 window Irradiance: 1.26  $\mu$ w-cm<sup>-2</sup>

Blackbody Temperature: 500°K Bandwidth: 10Hz

Chopping Frequency: 400Hz Load Resistance: 2.5 megohms

Operating Temperature: 10°K Amplifier: G=100

Background:  $8 \times 10^{15} \text{ ph cm}^{-2} \text{ s}^{-1}$ 

| DETECTOR INFORMATION                 | Detector<br>E278-1 |      | units                                        |
|--------------------------------------|--------------------|------|----------------------------------------------|
| Detector Diameter:                   | 0.5                | 0.5  | mm                                           |
| Spectral Response:                   | 2-27               | 2-27 | μm                                           |
| Detector Resistance:                 | 18                 | 15   | megohms                                      |
| Signal:                              | 59                 | 63   | $10^{-3}$ volts                              |
| Noise:                               | 0.9                | 1.0  | 10 <sup>-4</sup> volts                       |
| Signal-to-Noise Ratio:               | 656                | 630  |                                              |
| NEP (λ):                             | 6.2                | 6.21 | $10^{-13} \text{ WHz}^{-1/2}$                |
| D* (λ pk):                           | 7.42               | 7.13 | $10^{10} \text{ cm Hz}^{1/2} \text{ W}^{-1}$ |
| Responsivity $\lambda$ (in circuit): | 2.4                | 2.4  | A/W                                          |
| λ <sub>pk</sub> :                    | 25                 | 25   | μm                                           |
| Applied Voltage:                     | 45                 | 60   | volts                                        |
|                                      |                    |      |                                              |

used in the transimpedance mode. After the detector signals have been amplified the signals are filtered. A schematic of the design used for the preamplifiers and filters is given in Figure 21. The bandwidth of the signal was left at a relatively high 10 khz, since further filtering is done digitally. The rest of the signal processing is identical to that used with the Au:Ge detectors and was described previously (see Figure 14).

The requirements on the liquid helium dewar were that it have at least a 24 hour hold time, and that it could be filled without opening the interferometer enclosure. A print of the dewar, which was custom manufactured by Kadel Engineering Corp., is given in Figure 22. The 21 liter liquid helium dewar has a hold time of approximately 30 hours. A liquid helium dewar must be much larger than a nitrogen dewar to obtain the same hold time, even though the thermal resistance of helium dewars is typically higher than liquid nitrogen dewars. When the Kadel dewar is filled with liquid nitrogen, it has a hold time of about 30 days. To make it possible to fill the liquid helium dewar without opening up the interferometer, transfer lines leading from the dewar to the outside of the interferometer enclosure were necessary. These transfer lines are six feet long. The heat loss through these long transfer lines is not excessive, since during normal operation of the



Figure 21. Detector preamplifier and filter design.



Figure 22. Kadel liquid helium dewar.

interferometer a vacuum is maintained in the interferometer enclosure.

The most troubling problem that we have experienced in connection with the liquid helium dewar was acoustic oscillations in the transfer lines. These vibrations were a problem both during the filling process and during the entire time that the dewar contained liquid helium. Acoustic oscillations in tubes connected with a liquid helium dewar are called Taconis vibrations. 41 These oscillations are standing waves in the tubes driven by large temperature gradients. Since they transfer heat from the warm outside into the cold dewar, they decrease the hold time of the liquid helium dewar. These vibrations are most intense when a tube that is closed on the room temperature end opens into a liquid helium dewar and there is a large temperature gradient at the midpoint of the tube. 42 It should be possible to minimize these oscillations by making the transfer tube a less effective resonator or decreasing the temperature gradient of the tube. During the filling process it was found helpful not to vent the helium directly to the atmosphere, but instead vent the helium through a length of tubing packed with steel wool. During the time when the dewar was holding helium it was found that placing low pressure check valves on both the fill and vent lines was effective in dampening out vibrations.

Testing the Modified Interferometer. After overcoming a few problems, the interferometer was used to take preliminary data. The most troubling problem was with the germanium coating on the portion of the beamsplitter used for the laser reference beam. A workable solution to this problem was arrived at by modifying the laser detector electronics. There was also a problem due to channel spectrum caused by the ZnSe windows on the dewar. The channel spectrum was removed by replacing the flat windows with wedged windows.

The problem with the portion of the beamsplitter used for the laser reference beam arose because of the high absorption of visible light by germanium. The problem was not with insufficient energy transmitted through the beamsplitter, since the coating is very thin, but with the phase of the transmitted and reflected beams. Since the AFGL High Resolution Interferometer uses cat's eye retroreflectors, both output beams of the interferometer are accessible. For a dielectric beamsplitter, the phase of these two output beams is complementary and the interferogram is taken as the difference of the signals from the two detectors. In this subtraction process, all perturbing influences which affect both channels equally are subtracted out. However, when a metallic beamsplitter is used, the signals from the two detectors are in phase 43

and so cannot be subtracted. Since germanium absorbs so strongly in the visible, the germanium coating acts almost like a metallic coating resulting in the two outputs from the laser reference beam being nearly in phase. To get around the problem, the electronics for the laser reference signal was modified to use only one detector. A new beamsplitter that will not use germanium for the laser reference beam has been ordered, but for the present, modi. Ing the electronics to use only one detector has proved quite satisfactory.

The first spectra to be taken with the interferometer after the modification were  $\mathrm{CO}_2$  broadened with  $\mathrm{N}_2$ . These spectra was taken at moderate resolution (maximum optical path difference of 8 cm). An example of one of these experimental spectra is given in Figure 23 for 100 torr of  $\mathrm{CO}_2$  broadened with 660 torr of  $\mathrm{N}_2$ . It was while doing these  $\mathrm{CO}_2$  measurements that the severity of the channel spectrum due to the ZnSe detector windows was discovered. Most of the small structure in Figure 23 around 620 wavenumbers is due to channel spectrum. The flat ZnSe windows have since been replaced with windows that are wedged 12 arc minutes. Future plans include remeasuring the  $\mathrm{CO}_2$  spectrum using the wedged window.

Measurements of HDO have also been performed using the modified interferometer. These measurements were made at



660 torr of Spectrum of 100 torr of  ${\rm CO}_2$  broadened by cell.

high resolution (maximum optical path of 83 cm) using the wedged ZnSe windows. The HDO is formed by mixing  $\rm H_2O$  and  $\rm D_2O$  and letting the hydrogen and deuterium exchange to form a mixture of  $\rm H_2O$ , HDO, and  $\rm D_2O$ . The experimental spectrum in Figure 24 is of a room temperature sample of a mixture of  $\rm H_2O$ , HDO, and  $\rm D_2O$  in a 10 cm long cell. In the future, additional measurements will be made at elevated temperatures.



Figure 24. HDO -  $H_2$ O spectrum.

# C H A P T E R V DATA ANALYSIS

A considerable amount of effort was required to obtain molecular parameters from the raw interferogram data. Performing spectroscopy using high resolution broadband spectral coverage inherently means a large amount of data. The interferograms for the present work consisted of over a million data points and the resulting spectra contained thousands of lines. The only reasonable way to make use of these large quantities of data was through the extensive use of computers. The raw interferogram data were recorded using a PDP-8/E computer and all subsequent processing of the data was performed using a Control Data mainframe computer.

The block diagram of Figure 25 shows the steps that were necessary in obtaining molecular parameters from the raw interferogram. The first step in the data analysis was to perform the appropriate masking and shifting operation to map the 24 bit double precision PDP-8/E words into 60 bit CDC words. Next, a phase correction was performed on the interferograms to correct incomplete beamsplitter compensation and nonsymmetric sampling of the interferograms. A numerical filtering technique was included as part of the phase correction process to eliminate all frequencies from the interferograms with the



Figure 25. Major steps in the data analysis process.

exception of a region of interest. This process typically reduced the size of the required Fourier transformation by a factor of 10. The filtered interferograms, consisting of 131072 data points, were then transformed using the FFT algorithm. Even though a large scale computer was used, insufficient memory was available to routinely process the interferograms without the use of a special "large FFT" algorithm. After the spectral recovery was completed by applying the Fourier transformation to the data, the position of each spectral line was determined and recorded on a disk file for subsequent use. In addition to line position, other parameters, such as intensities and width of spectral lines, were also determined. The next step in the data analysis was assigning the absorption features to the proper molecular transitions. This step proved to be the most difficult and most time consuming of the data analysis process. The computer program that assisted in performing this step was written to display graphically the data relevant to a given rotation-vibration band. The pattern recognition capability of a human operator was then utilized to make a tentative assignment of the observed spectral lines. A least-squares-error fitting procedure was then applied to the tentatively assigned spectral lines resulting in new molecular constants. This procedure was iterated until a good fit was obtained for most of the

observed lines of each rotation-vibration band. The final step was a weighted least-squares fit resulting in new molecular constants. The major steps: phase correction, large FFT, spectral lines location, identification of spectral lines, and weighted least-squares fitting will be considered in the following sections of this chapter.

### Phase Correction

There are two major causes of phase errors in interferograms produced by a Michelson interferometer, 1) nonsymmetrical sampling of the interferogram, and 2) incomplete beamsplitter compensation (see Chapter IV).

Nonsymmetrical sampling of the interferogram gives rise to a linear phase error and incomplete beamsplitter compensation results in a nonlinear phase error. Both linear and nonlinear phase error can be corrected by convolving a correction function with the interferogram.

A numerical filter can also be incorporated into the same function used for phase correction to reduce the spectral coverage of the interferogram to a region of interest. The spectrum is then recovered from the symmetrized and filtered interferogram by applying a cosine transformation.

The interferogram, I'(x), when phase error is present was given in Chapter IV as Equation (65). This equation

can be rewritten as

$$I'(x) = \int_{-\infty}^{\infty} B(\sigma) e^{2\pi i \sigma \delta(\sigma)} e^{-2\pi i \sigma x} d\sigma , \qquad (66)$$

where  $B(\sigma)$  is the optical input to the interferometer, and  $\delta(\sigma)$  is the phase error. In the case of linear phase error,  $\delta(\sigma)$  is simply a constant. Taking the Fourier transformation of both sides of Equation (66) yields

$$B'(\sigma) = e^{2\pi i \sigma \delta(\sigma)} B(\sigma) . \qquad (67)$$

The Fourier transform of the uncorrected interferogram,  $B'(\sigma)$ , is then the desired spectrum  $B(\sigma)$  multiplied by a phase factor. This phase factor can be isolated from  $B'(\sigma)$  by dividing by the magnitude of  $B'(\sigma)$ , that is:

$$e^{2\pi i\sigma\delta(\sigma)} = \frac{B'(\sigma)}{|B'(\sigma)|}.$$
 (68)

The desired spectrum,  $B(\sigma)$ , can be recovered by multiplying the transform of the uncorrected interferogram,  $B'(\sigma)$ , by the complex conjugate of the phase factor. Multiplying two functions together in the spectral domain is equivalent to convolving their transforms in the interferogram domain. The function  $\phi(x)$  with which the original interferogram is convolved is then

$$\phi(x) = \int_{-\infty}^{\infty} e^{-2\pi i \delta(\sigma)} e^{2\pi i \sigma x} d\sigma. \qquad (69)$$

Numerical convolution is extremely computationally intensive and is not usually very practical except when one of the functions to be convolved has small nonzero extent. The phase error  $\delta(\sigma)$  is a slowly varying function of  $\sigma$ , making  $\phi(x)$  essentially equal to zero except for a small region around zero spatial frequency. For a typical  $10^6$  point interferogram, 128 nonzero points were sufficient to adequately express  $\phi(x)$ .

Numerical Filtering. When the interferogram is sampled every 6328 A (the wavelength of the HeNe reference laser), the free spectral range of the resulting spectrum is 7899 cm<sup>-1</sup>. It is often advantageous to limit the wavenumber coverage to a much narrower region of interest. By limiting the spectral bandwidth of the measured interferogram it is possible to decrease the number of data points required to express the interferogram and consequently the size of the Fourier transformation needed for a given resolution. Either an optical filter or a numerical filter can be used to reduce the spectral bandwidth. Both have their advantages, an optical filter also reduces photon noise, while a numerical filter is much more flexible. For this work, an optical filter was used to limit the spectral coverage to a rough area of interest which was then refined with a numerical filter. function used for numerical filtering,  $f(\sigma)$ , can be

incorporated into the phase correction function  $\phi(x)$  as

SECTION SECTIONS ASSESSED ASSESSED

$$\phi'(x) = \int_{-\infty}^{\infty} f(\sigma) e^{-2\pi i \delta(\sigma)} e^{2\pi i \sigma x} d\sigma . \qquad (70)$$

Both phase correction and filtering are now accomplished by convolving  $\phi'(x)$  with the original interferogram. A significant reduction in the size of the Fourier transformation is obtained by this technique.

A typical raw interferogram for this work consisted of 1,150,000 points. The phase-corrected and filtered interferogram consisted of 131,072 points with a spectral coverage of 1755 cm $^{-1}$  to 2633 cm $^{-1}$ . Since the numerical filter did not provide an infinitely sharp cutoff, the usable portion of the spectrum was roughly 1800 cm $^{-1}$  to 2600 cm $^{-1}$ .

## Large FFT

The development of the Fast Fourier Transform (FFT) algorithm by Cooley-Tukey 44, in 1965, was crucial to the development of the technique of Fourier spectroscopy. Without the dramatic increase in computation speed provided by the FFT algorithm, recovering the spectrum from an interferogram would have remained impractical. Even though there exists an extensive amount of published information about the FFT algorithm, including computer programs, there are very few programs available to perform Fourier

transformations on data sizes larger than those fitting into the central memory of a computer. The large FFT programs that do exist are very machine-dependent and require features which are not supported by FORTRAN. If an in-memory algorithm is used with a virtual memory system, the number of calls to mass storage can be extremely large, since data processed in the FFT algorithm can come from widely scattered locations. The need existed for a general program that would run on a small computer or run under the limited memory allowed under the time-share environment of a large computer. The program written to fill this need is nearly machine independent. It is an extension of a program developed by Hajime Sakai. 40 The only nonstandard FORTRAN feature needed to execute the program is the ability to access blocks of data randomly on a mass storage device under FORTRAN control. This is no problem on most systems because of the uniform block size used in this program. The program is capable of performing Fourier transformations of arbitrary size, limited only by the size of mass storage available. The flexibility of the program, which was developed using the CDC Cyber 175 computer at the University of Massachusetts, was verified by its successful implementation on a PDP-11 minicomputer with only minor modifications.

In the large FFT, the set of interferogram data points

is divided into blocks. Only two of these blocks of data reside in the central memory of the computer at a given time. The rest of the blocks of data reside on a random access mass storage device. The input data must first be sorted into a particular order, an in-memory FFT is then applied to each block of data, and finally the data from the various blocks are combined to form the Fourier transformation of the entire data set. The manner in which the data are sorted into the appropriate blocks and the way the data from the blocks are combined into the Fourier transformation of the entire data set is analogous to the standard FFT.

In the standard FFT, the input data may be considered as a linear array of data points. The output array is also an array of the same number of elements. The output array is obtained from the input array by successive passes through the data. For each iteration two elements which are separated by a fixed offset are combined to give two elements of the next iteration. The offset between the two processed elements is doubled each pass. The entire transformation is completed after N log<sub>2</sub>N passes through the data, where N is the number of data points.

RECECCES SANDARDO DE PROPERSO PROPERSO DE CONTRA DE PROPERSO DE CONTRA DE CO

In the large FFT the sorting and combining operations mentioned above are performed in an analogous way to the standard FFT. In this analogy, blocks of data correspond to the individual elements of the standard FFT and an array

of data blocks on the mass storage device corresponds to the linear array.

Both the FFT algorithm and its extension, the large FFT, are applied to arbitrary complex data sets. It is inefficient to use a general complex Fourier transformation on a phase-corrected interferogram which is real and even. A real even function can be uniquely expressed using 1/4 of the storage required for an arbitrary complex function, since the imaginary part is zero and the negative part is identical to the positive part. In order to make the Fourier transformation of the phase corrected interferogram more efficient, a technique for transforming real even functions was used. $^{35}$  The technique preprocesses the interferogram into a new complex function containing the same number of unique elements as the original function. Fourier transformation was performed on this complex function, and finally a postprocessing step completes the Fourier transformation of the phase-corrected (even and real) interferogram.

### Spectral Line Positions

であるというと表現なられると、なるなるなができたとして、 関係なるななななども関係などというとは、「なるなななながを表現している。」とは、「ないでは、「ないできない」というというです。

For this work only the position of spectral lines has been reported, but a complete set of parameters was determined for each absorption feature. These additional parameters were very useful in making the line assignments and in determining the quantity of line merging present.

Line merging occurs when spectral lines fall so close together that they are not resolved. In order to determine the line positions, as well as the other parameters, it was necessary to interpolate between the discrete points which resulted from the large FFT.

Interpolating the Discrete Spectrum. A sinc interpolating function was used for this interpolation. The interpolation process consisted of convolving the set of discrete spectral points with a sinc function that was sampled with a spacing 16 times finer than the spectrum. Computationally this was most easily done by transforming to the spatial domain, adding zeroes to the interferogram, then transforming back to the spectral domain. Strictly speaking the entire spectrum should be retransformed, or the zeroes should have been added to the interferogram before the interferogram was originally transformed. However, in order to facilitate the computation, the spectrum was broken up into sections. A section of the spectrum was transformed into the spatial domain, zeroes added, and then transformed back into the spectral domain. This method makes the size of the transform required much more manageable, while giving good results except near the edges of each section of spectrum so transformed. minimize edge effects, each section of the spectrum was overlapped with the next section so that no spectral data

was used within 50 points of the end of a section. Using this method, errors in the interpolating function do not occur before the interpolating sinc function has dropped to approximately one fiftieth of its central value.

Determined Line Parameters. In addition to line positions, several other line parameters were also determined. The other parameters were: width, asymmetry, intensity, transmission at the line center position, and height of each absorption feature. Since the only purpose of these additional parameters was to assist in making line assignments and to determine the expected uncertainties of line positions, nonstandard definitions of parameters could be used. The definitions that were used are described in the remainder of this section and illustrated in Figure 26.

The line positions were determined by simply taking the local minimum of the interpolated spectrum as the line position. A more precise method of determining line positions would have been used if the random variations in the positions of experimental lines had been less. The primary cause of these random variation was line merging. Nearly all of the spectral lines showed some symptoms of line merging. Line merging would have been only slightly reduced if the resolution of the interferometer was infinite, since the resolution of the spectrometer is approaching the Doppler limited resolution.

■ションションは、Michael 1991年のことのことがないできない。これには、1981年のこれのできないできないというないない。 Production で、1981年のこれでは、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のこれには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、1981年のには、19



ure 26. Parameters that were determined for each absorption feature: the line position, a line width, asymmetry, intensity, transmission and line Figure 26. height.

The line asymmetry was determined by using an alternative method for finding the line position and comparing the results to the local minimum method. This second method of finding the line position used the center of a chord drawn across the absorption line a small distance up from the minimum as the line center. For symmetric lines, the center of this chord coincides with the line position found from the local minimum method. This chord drawn across the absorption line was also used to determine the line width, since the line width is proportional to the length of the chord.

Due to the existence of thermal gradients in the absorption cell, no attempt to make a careful measurement of line intensities was made. However, approximate line intensities were found to be very helpful in the band identification process. In order for the line intensities to be obtained, an estimate of the background was necessary. A simple linearly sloping background obtained from a visual inspection of the spectrum was used for the 4.3 µm  $^{12}\text{C}^{16}\text{O}_2$  data. For the other experimental spectra the background was determined by measuring the spectrum of the high temperature absorbtion cell with no gas in the cell. This empty cell spectrum was smoothed using a 13 point running average before it was used as the background. The line intensity was considered to be the area between

the spectral trace and the background (the shaded area of Figure 26). The area was obtained using Simpson's rule to integrate from the point (a) on the left side of the spectral line where the slope was zero to the corresponding point (b) on the right-hand side. Any line that had an intensity below a predetermined minimum value was considered to be noise and was dropped. The height of the absorption feature was taken to be the difference between the absorptance at the line center and the absorptance at point (a) or point (b), whichever was the minimum.

After parameters for each line had been determined, they were stored on a random access disk file. Since the identification and fitting programs required a number of iterations, reading the spectral line data from a random access disk file resulted in considerable saving in computer time and increased convenience over what would have been possible, if the identification and fitting programs would have read and interpolated the spectrum directly.

## Assignment of Spectral Lines

Probably the most difficult aspect of the work on high temperature  ${\rm CO}_2$  was assigning the correct rotation-vibration transitions to each absorption feature in the experimental spectrum, but through the use of computeraided dentification techniques, over 10000 lines belonging

to 73 different rotation-vibration bands were identified. The degree of difficulty involved in identification of lines belonging to a particular rotation-vibration band depended on the amount of overlapping of bands and on how well the molecular constant for each band could be estimated from previous work. It was very easy to make the identification when the line density was low, since the lines of a band of a linear molecule such as CO<sub>2</sub> form a set of lines of nearly equal spacing. As the CO<sub>2</sub> temperature increased, the appearance of the spectrum became very complicated. High temperature greatly increased the problems due to line merging and fragmentary hot bands.

The appearance of the experimental spectrum is demonstrated in Figures 27 through 30. These figures show portions of the spectrum where overlapping of bands is not a problem, as well as regions of the spectrum where overlapping of bands is very serious. The band head at the high frequency end of the R branch of the  $\nu_3$  fundamental of  $^{12}\text{C}^{16}\text{O}_2$  is clearly visible in Figure 27. The high frequency end of the R branch of the transition 01111 + 01101 originating from the next excited state of  $^{12}\text{C}^{16}\text{O}_2$  is also quite easily seen (Figure 28), since it is only overlapped by one band, the  $\nu_3$  fundamental. However, lines belonging to transitions originating from higher vibrational bands are so overlapped that they are difficult to identify (Figure 29). Figure 30 illustrates how complex



The band head of the  $v_3$  fundamental of  $^{12}c^{16}0_2$ . Figure 27.



The  $v_3$  fundamental overlapped by the high frequency end of the branch of the 01111 + 01101 band of  $^{12}{\rm C}^{16}{\rm O}_2$  . Figure 28.



The band head of the  $v_3$  fundamental of  ${}^{12}c^{16}0_2$ . Figure 27.



œ The  $v_3$  fundamental overlapped by the high frequency end of the branch of the 01111 + 01101 band of  $^{12}{\rm C}^{16}{\rm O}_2$  . Figure 28.



TOTAL TOTAL PROPERTY AND THE PROPERTY SECTION

のなるなど 自じい ひいかいこう 関系なんたん から かいかい かいかい はいいいいかい

Complex appearance of the  ${\rm CO}_2$  spectrum when several bands overlap. Figure 29.



SOUTH CONTROL OF THE STATE OF T

Figure 30. A large number of overlapping bands mask the regular structure of each of the  ${\rm CO}_2$  rotation-vibration bands and cause the spectrum to appear random.

the high temperature  $CO_2$  spectrum can appear even though each band is still composed of a set of lines with nearly equal spacing.

Lines Visible in High Temperature Spectrum. Due to the many problems associated with identifying fragmentary bands, little effort was expended in attempting to identify lines belonging to extremely highly excited vibrational states. As the temperature of CO2 is increased, there is an ever increasing density of excited vibrational energy levels. Bands originating from very high vibrational energy levels yield a low number of lines that are intense enough to be visible. The result is a large number of bands with so few lines visible that identification is extremely difficult and subject to misidentification. additional problem in identifying these bands is that the intensity is not sufficiently strong to see the distinctive pattern of lines formed at the band center. However, lines from these unidentified bands complicated the identification of the other bands.

Insight into how the number of lines visible in an experimental spectra change with temperature is gained by considering the 4.3 µm bands of  $^{12}C^{16}O_2$ . Assume that the transition probabilities for all these  $\Delta v_3$  = 1 bands are equal except for the Boltzmann factor. This approximation is reasonably good since the changes in intensity due to

THE CONTRACTOR OF THE PROPERTY OF THE CONTRACTOR OF THE CONTRACTOR

changes in the Boltzmann factors are large compared to changes in intensity due to other factors for this class of similar  $\Delta v_3$  = 1 bands. Figure 31 illustrates, for different temperatures, the approximate range of J values for which experimental lines should just be visible. The curve marked 800 K is for 6 Torr of  $\rm CO_2$  at 800 K in a 3.5 meter path hot cell. Other curves correspond to the same quantity of gas at different temperatures. The region enclosed between the curve and the axis corresponds to the range of lower vibrational state energies and J values for which spectral lines should be visible. For example, for a lower state energy of 2000 cm<sup>-1</sup> the range of J values for which lines should be visible is J = 2 to J = 32 for a temperature of 300 K and J = 0 to J = 106 for a temperature of 800 K.

The reason for the large number of fragmentary bands is illustrated by using the harmonic oscillator approximation to estimate the number of vibrational states with a given lower state energy. A plot of the number of vibrational states with energy lower than or equal to a given lower state energy is given in Figure 32. The total number of states available to a molecule is the product of the number of rotational states times the number of vibrational states. From Figures 31 and 32 it can be seen that a large proportion of the lines visible in the spectrum belong to bands with high lower state energies



Figure 31. The range of J values and lower state energies for which spectral lines should be visible.



Figure 32. The number of vibrational states with lower state energy less than or equal to a given energy.

where the range of J values is low.

A high temperature absorption cell is very effective for making measurements on high rotational states of a molecule, but for studying high vibrational bands an electrical discharge gas cell or some other non-thermal equilibrium technique is probably better. In an electric discharge, the effective vibrational temperature is very high, while the rotational temperature remains at approximately room temperature. In an electric discharge the range of J values in the spectrum of a "hot" band is approximately the same as for the fundamental. Referring to Figure 31, the range of lines visible for the fundamental at room temperature is about J = 0 to J = 82. Roughly the same range of lines will be visible in a hot cell heated to 800 K if the lower state vibrational energy is about  $3500 \text{ cm}^{-1}$ . Since a 800 K hot cell loses its advantage for lower state energies above about 3500 cm<sup>-1</sup>. it was not considered worth putting much effort into identifying bands with a lower state energy above 3500 cm<sup>-1</sup>. For this work, the highest vibrational state identified had a lower state energy of 3659 cm<sup>-1</sup>.

Philosophy of Identification Programs. The programs that accomplished line identification and fitting were made interactive in an attempt to minimize the total overall effort involved with the identification process. Doing the

identification totally by hand seems nearly impossible when one realizes the amount of data involved. The  $\Delta v_2 = 1$  $^{12}\mathrm{C}^{16}\mathrm{O}_{2}$  spectral region stretches from about 2100 cm $^{-1}$  to 2400 cm<sup>-1</sup>. If this region was plotted with sufficient resolution that line positions could be obtained from the plot, to the accuracy of the experimental data (about  $0.0004 \text{ cm}^{-1}$ ), the plot would be 310 feet long and consist of over 5000 distinct absorption features. This is assuming a plotting accuracy of 0.005 inches; if the accuracy of the plotter was less, the plot would have to be even longer. On the other hand, to make a program that could handle the intricacies of the total identification process would also be extremely difficult. The challenge was to use the computer to gather and store information on thousands of lines and present small amounts of that data in such a way that it could be meaningfully considered by the operator. The programs written to meet this challenge consisted of several steps with a large amount of operator interaction throughout. An attempt was made to make use of the inherent ability of a human operator to do pattern recognition and make subjective judgments, while minimizing operator confusion by having the computer sort through large amounts of data and present only that data which might be directly relevant.

Loomis-Wood Diagram. A Loomis-Wood diagram proved extremely helpful in picking out the lines that belong to one band in the presence of lines belonging to other bands and lines belonging to other isotopes of CO2. The original Loomis-Wood procedure  $^{45}$  relies on the assumption that lines comprising a band are nearly equally spaced. If no prior knowledge is known about the band the line spacing can usually be obtained from observing a series of a few lines that appear to form the band. This uniform line spacing assumption is used to calculate the position of all lines in the band. For each line in the band, the difference between the calculated position and the close-by experimental lines is plotted. If the spacing between the experimental lines exactly matches the spacing used to calculate line positions, the resulting pattern will be a vertical line in the center of the diagram. Deviation from equal spacing results in curvature of the displayed pattern. Lines belonging to other bands cross the diagram at such a high angle they do not usually form a recognizable pattern. An example of a Loomis-Wood diagram with a line spacing of  $1.56 \text{ cm}^{-1}$  for a hypothetical band of CO<sub>2</sub> is given in Figure 33. Listed at the left of the diagram are the position and the identity of each calculated line.

からかい はて、これられてきないが、これのもないのでも、これがなったのかのからなっていていないがないができます。

The Loomis-Wood procedure used in this work contained several extensions to the usual Loomis-Wood procedure.



Figure 33. Loomis-Wood diagram for a hypothetical band of  $^{\rm CO}_2$ 

Since some prior knowledge about the spectroscopic constants for each band of CO2 was known either from theory or from other experimental measurements, it was not necessary to assume equally spaced lines. This knowledge of the approximate spectroscopic constants could be used to narrow the search to a small region around each calculated line position. Using a computer to implement the procedure made readily possible inclusion of a great deal of information on each line. For example, lines that had already been identified were indicated by a one-character identifier code (Table 6). If more than one line had already been associated with a single absorption feature, the line was indicated as being merged by a "M". An asterisk "\*" signified that the line had not yet been identified. In the diagrams, the width of each line is indicated by the number of adjacent symbols. For example "MMMM" indicates a merged line of twice the width of an unknown line "\*\*". The width of each line gives an estimate of the quality of the position measurement for that line. Wide lines are either saturated, making the peak position determination sensitive to noise, or merged with some other line.

Figures 34-36 give the extended information Loomis-Wood diagrams for several bands of  ${}^{12}C^{16}O_2$ . In each case the total wavenumber spread across the diagram is 0.2 cm $^{-1}$ . If an experimental line is 0.1 cm $^{-1}$  lower in frequency than

Table 6. One character identification codes used to identify rotation-vibration bands of 12C1602.

スカスを重要のスタススのと、これによっているのとなっているというと

| Band                           | Identification code |
|--------------------------------|---------------------|
| 00011 + 00001                  | A                   |
| 01111 + 01101                  | В                   |
| 10012 + 10002                  | С                   |
| 02211 + 02201                  | D                   |
| 10011 + 10001                  | E                   |
| 11112 + 11102                  | F                   |
| 03311 + 03301                  | G                   |
| 11111 + 11101                  | Н                   |
| 20013 + 20003                  | J                   |
| 04411 + 04401                  | L                   |
| 20012 + 20002                  | N                   |
| 00021 + 00011                  | P                   |
| 20011 + 20001                  | Q                   |
| 12211 + 12201                  | 0                   |
| 01121 + 01111                  | Y                   |
| 10022 + 10012<br>02221 + 02211 | 3<br>11             |
| 05511 + 05501                  | 3<br>4<br>5<br>6    |
| 13311 + 13301                  | ,<br>6              |
| 13312 + 13302                  | 7                   |

the calculated wavenumber value, it will fall at the far left of the diagram; if the line is 0.1 cm<sup>-1</sup> higher than the calculated value, it will fall on the far right.

<u>Data Table</u>. Another useful tool in making line assignments was a table giving detailed information on the closest experimental line to each calculated line position. Table 7 is an example of a data tables for the 02211e + 02201e band of  $^{12}C^{16}O_2$ . The first column gives the observed line

```
MMM DDDDDD MMM
                               **AAAAAAAAA **
          4GGGGGGGGGGGG
       AAAAAAAAAAAAAAAGGGGGGGGGGGG
                HH MMMMMMMMMMMMMPPPPPPPPPPPPPPP*****
***** MMMMMMM
                                                   DD
         10BBB
12
14
        MMM
             AAAA
AAAAA
AAAAA
         444
                               AAAA
                              AAAA
        MMMM
                               MMM
                              MMM
                       BBB
                               AAA
             BB
                               AAA
             BB
              BB
                                            BBB
                               AAA
                              AA
AAA
                               AAA
                               AAA
                               AA
AAA
                               AAA
                               AA
                               AA
                               AA
                               AA
                               AA
                               AA
AA
AA
```

Figure 34. Part of the extended information Loomis-Wood diagram for the 00011  $\leftarrow$  00001 band of  $^{12}C^{16}O_2$ .



Figure 35. Extended information Loomis-Wood diagram for the 02211e + 02201e band of  $^{12}\mathrm{C}^{16}\mathrm{O}_2$ .



Figure 36. Extended information Loomis-Wood diagram for the 13312 + 13302 band of  $^{12}c^{16}o_2$ .

| Band         O-C         Intensity         Absorptance         Height         Width         Asymmetry           b         .00004         3.9231         40.0004         3.9231         100.7481         .0002           b         .00012         4.9284         426.1855         197.1147         .0023         .0000           b         .00012         1.9284         426.1859         197.1147         .0022         .0000           c         .00014         6.0219         367.3237         326.7659         .00018         .0000           c         .00014         6.0219         367.3237         326.7757         .0018         .0000           c         .0002         1.2586         275.0882         2845.8769         .0019         .0000           c         .0002         1.2586         275.0882         2845.8769         .0019         .0000           c         .0002         1.2586         1.553         3845.8769         .0019         .0000           c         .0001         2.221.488         31.4843         .0017         .0000           c         .0002         2.221.488         31.4843         .0017         .0000           c         .0002         2 |                                         |                                        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                          |                                         | 7                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|-----------------------------------------|
| D .00094 3.9231 500 0769 100 7481 .0028 .0003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>o</b>                                | Band                                   | 1                                       | Intensity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ei                                                       | •                                       | Asymmetry                               |
| D - 0003 14.6463 141.2526 385.8036 .0019 .0024 13.4066 126.8862 333.0091 .0028 .0009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         | 06400000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000 | 00000000000000000000000000000000000000                   | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *************************************** | 0000F000000040E0X                      | 000000000000000000000000000000000000000 | 4 WOM COUNTY COU | 4 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 67044746798686747988670999999999999999999999999999999999 | -0000000000000000000000000000000000000  |                                         |

position. Each line is then identified by its branch (P or R), and J quantum number. If an asterisk appears by the J quantum number, the line will be used in the least-squares fit. In the next column, indicated by one character identifier codes (see Table 6) are all previously identified bands that could be contributing to the observed absorption feature. Next comes the difference between the observed and the calculated line position (0 - C), approximate strength, maximum absorptance at the line center position, height of the absorption feature, line width, and finally the line asymmetry. The definitions of these parameters were illustrated in the previous section of this report. The line positions, width, and asymmetry are given in units of cm<sup>-1</sup>. The absorptance and line height are given in units where 1000 represents an absorptance of 1. The intensity is given in these units times cm<sup>-1</sup>.

とは、こととととと、これではなく、これでは、これではないとは、ないないなくは、これではないが、これなくなくなく、こととととと、これではないと

The Identification Procedure. The first step in the identification was to make a Loomis-Wood diagram and a table of data for each rotation-vibration band. Which procedure was applied next depended on the individual rotation-vibration band. For well known bands, such as the 00011 + 00001 band of  $^{12}C^{16}O_2$  (Figure 34), it was possible to make the identification of the experimental lines as simply the line closest to the position calculated

using existing spectroscopic constants. The lines belonging to the better know bands were identified first; hence, as the identification worked toward the more difficult bands, many of the lines would already have been identified. For other bands, such as the 02211 + 02201 band of  $^{12}C^{16}O_{2}$ (Figure 35), the positions of lines for low J have been well measured, but not for high J. In these cases, the line positions were again calculated and the experimental lines identified, starting at low J and moving to higher J, until there were no lines close (within about 0.01 cm<sup>-1</sup>) to the calculated values. The band was then refit and new constants obtained. This process was iterated until no further extension to higher J was possible. Existing molecular constants for some bands such as the 13312 + 13302 band of  ${}^{12}C^{16}O_2$  (Figure 36), were so inaccurate that identifications could not be made by taking the experimental line closest to the calculated line position even for low J. For these bands a different iterative procedure was used. A Loomis-Wood diagram and a table of data were produced for each attempted fit. From this information, the operator determined possible alternative lines to be used in the next iteration of the fit. The significance of the various displayed information such as randomness of residuals, patterns of the intensity, width, asymmetry, and so forth were considered subjectively by the operator. Although it was sometimes difficult to decide

which lines belonged in the fit of a given band, it was generally possible to determine when the proper lines had finally been found, since the quality of the fit increased quite dramatically. That is, the resulting residuals were small and randomly orientated and such parameters as line intensity and width followed a smooth pattern over the entire range of J for which the particular band should have been observable.

It would have been possible to increase the automation of the identification process, but it would have been very doubtful if it could have been done without first identifying most of the bands by hand, due to the difficulty of determining a priori the significance of the various parameters such as randomness of residuals, and the patterns of intensity and width for each type of band.

## Least-Squares Fit

After the spectral lines belonging to each band were identified in the experimental spectrum, a weighted least-squares fit was used to obtain new molecular constants. Although over 10000 lines were identified in the experimental spectrum, only about 8000 were used in the least-squares fits, due to line merging problems. Many of the remaining lines were slightly affected by the presence of close-by spectral lines. These slightly merged lines were included in the least-squares fit, but with reduced

weighting. Each band was fit independently without making any attempt to combine the information from the various bands into a single global self consistent set of energy levels for the CO<sub>2</sub> molecule.

There were several constraints placed on the spectroscopic constants. These constraints depended on the statistical significance of the various constants, and on the value of the vibrational angular momentum 1. Each band was fit twice, once using H's, and once without. The spectroscopic constants H' and H" were included in the final least-squares fit only when their inclusion markedly improved the quality of the fit (a reduction in the rms error of more than 20%) and the uncertainties in H were smaller than the value of H for both the upper and the lower states. Occasionally, an exception was made for bands where 1-type doubling was present (bands where  $\ell > 0$ ). For example, if the e levels indicated the need of an H and the f levels did not, for consistency H's were sometimes used for both sets of levels. The two sets of spectroscopic constants that occur for bands where 1-type doubling occurs are not independent, as was discussed in Chapter III. For these bands, several of the spectroscopic constants for the e and the f set of levels were constrained to be equal.

In order that this weighted least-squares fitting

procedure could be used, it was necessary that an estimate of the uncertainty of each experimental line be made. The weight assigned each spectral line was the reciprocal of the expected uncertainty squared. The factors that went into calculating the expected uncertainty of each line were: the random experimental noise in the spectrum, line asymmetry, abnormal width of spectral lines, and inconsistencies of line positions compared to other lines in the same band. The total uncertainty for each line was defined as the square root of the sum of squares of the individual uncertainties.

The individual uncertainties were determined from the experimental spectra. An estimate of 0.0003 cm $^{-1}$  for the uncertainty due to random experimental noise was determined by examining the residuals to the fit of the lines at the high frequency end of the  $\nu_3$  fundamental R branch. These lines are known to not be merged with lines of any other band. In order to estimate the uncertainty due to asymmetry and abnormal line width, a chord was drawn across each absorption feature a small distance up from the bottom. This procedure was described in a previous section of this chapter. The uncertainty due to asymmetry was defined as being proportional to the total amount of asymmetry. The uncertainty due to abnormal width was defined as being proportional to the magnitude of the measured width minus a standard width. By looking at the

distribution of the residuals to the fit in Appendix B, it can be seen that the weights that were chosen are quite good.

If it would have seemed necessary, a more rigorous determination of the weighting of spectral lines could have been incorporated into the same basic framework. The various proportionality constants can be thought of as the leading terms in a Taylor series expansion of the true weighting function. One method for obtaining more precise values of these proportionality constants would be to synthesize a large number of line profiles with random spacings and intensities, and then use a least-squares fit to obtain the best values for the various constants. Higher order terms in the Taylor series expansion of the weighting function could have been obtained in the same manner.

The most noticeable effect of using a weight for each spectral line was to substantially reduce the uncertainty in the spectroscopic constants as predicted by the least-squares fitting program. However, the spectral line positions calculated using the resulting constants were found to be quite insensitive to the values of the weights chosen. This indicates that the effects of line merging on the position of spectral lines were essentially random for the high temperature CO<sub>2</sub> spectra considered in this study.

## C H A P T E R V I RESULTS AND DISCUSSION

なる。ことととなっている。これではないない。ことによっているとのでは、これがなるのでは、こと

The more than 8000 lines which were not seriously merged with other spectral lines, were used to obtain new molecular constants for 50 bands of  $CO_2$  in the 4.3  $\mu m$ region and 23 bands in the 2.8 µm region. The results of the present study, in addition to being a useful source of information on line positions of transitions originating from highly excited rotational states, demonstrate other interesting principles. Extrapolating the position of high temperature lines from room temperature measurements is not very effective, even when the positions of the room temperature lines are known with a great deal of precision. The molecular constants obtained from a more theoretical approach such as Chedin<sup>2</sup> has done, while giving a good qualitative fit to the experimental data, do not predict the position of spectral lines to within the experimental accuracy. However, Chedin's molecular constants are a big help in the identification of the experimental lines, since they serve as an excellent starting point from which to begin the search for the lines of each band in the experimental spectra. His molecular constants are particularly helpful for those bands that have not been observed previously.

Several checks were made on the data to insure its

high quality. The wavenumber calibration of the interferometer and the correct functioning of the computer program that determined line positions were verified by measuring the position of some very well know lines and comparing the positions obtained to those reported by other workers. As a check that the identification procedure was working correctly, the new molecular constants determined for the 4.3  $\mu m$   $^{12} \mbox{C}^{16} \mbox{O}_2$  bands were used to synthesize an artificial spectrum which was then compared point by point to the experimental spectrum.

For the present study, the spectra of three CO2 samples having different isotopic composition were measured using a variety of different temperatures and pressures. Taking data under different experimental conditions assists in the identification process and maximizes the number of spectral lines measured under optimal conditions. The isotopic composition of the three different  ${\rm CO}_2$  samples is given in Table 8. A summary of the experimental condition for the different spectra is given in Table 9. Typical measurement times for each spectrum were 15 hours. The spectra in the 4.3 µm region were taken at a resolution of 0.007  $\mbox{cm}^{-1}$  and the spectra in the 2.8  $\mu m$  region at a resolution of 0.006 cm<sup>-1</sup>. When several spectra were taken under identical experimental conditions the spectra were coadded to improve the signal to noise. The line positions and expected uncertainties for each line were then

Table 8. Isotopic composition of different  $\operatorname{CO}_2$  samples used in this study.

Natural sample:  $^{12}c^{16}0_{2} = 0.984$  $12c^{16}0^{18}0 = 0.004$  $^{12}c^{16}0^{17}0 = 0.001$  $^{13}c^{16}o_{2} = 0.011$ C-13 sample: <sup>12</sup>c<sup>16</sup>0<sub>2</sub>  $^{13}c^{16}o_2 = 0.880$ = 0.005  $13c^{16}0^{\overline{18}}0 = 0.106$  $13c^{16}0^{17}0 = 0.004$ 0-18 sample:  $^{12}c^{16}0^{18}0 = 0.465$  $^{12}c^{16}o_2 = 0.355$ 12<sub>0</sub>18<sub>02</sub> = 0.167

determined as explained in Chapter V. The line positions and expected uncertainties determined from the spectra measured at different temperatures and pressures were combined into a single data set. Least-squares fits to obtain new molecular constants were then performed.

The calibration of the interferometer in the 4.3  $\mu m$  region was checked but no wavenumber correction was made since the indicated correction would have been less than 0.0001 cm<sup>-1</sup>. The check was performed by observing lines of the 1 + 0 band of  $^{12}C^{16}O$  and the  $v_3$  fundamental of  $^{12}C^{16}O_2$ 

Table 9. Summary of experimental conditions for measured spectra.

| Region                   | Isotopic                             | Temperature                     | Pressure              | Number of             |
|--------------------------|--------------------------------------|---------------------------------|-----------------------|-----------------------|
| (µm)                     | Sample                               | ( <sup>O</sup> K)               | (Torr)                | Spectra               |
| 4.3                      | Natural                              | 800                             | 6                     | 2                     |
| 4.3                      | C-13                                 | 600                             | 6                     | 2                     |
| 4.3                      | C-13                                 | 800                             | 3                     | 2                     |
| 4.3                      | C-13                                 | 800                             | 6                     | 2                     |
| 4.3<br>4.3<br>4.3<br>4.3 | 0-18<br>0-18<br>0-18<br>0-18<br>0-18 | 300<br>300<br>500<br>800<br>800 | 3<br>6<br>3<br>3<br>6 | 1<br>2<br>2<br>2<br>3 |
| 2.8                      | 0-18                                 | 300                             | 2                     | 3                     |
| 2.8                      | 0-18                                 | 600                             | 3                     | 3                     |
| 2.8                      | 0-18                                 | 800                             | 4                     | 3                     |
| 2.8                      | 0-18                                 | 800                             | 15                    | 1                     |
|                          |                                      |                                 | Tota                  | al = 28               |

and comparing the measured line positions to those reported by other workers. The small amount of CO that was present in the high temperature  $\mathrm{CO}_2$  gas sample, possibly arose from a catalytic decomposition of the  $\mathrm{CO}_2$  on the walls of the absorption cell. These CO lines have been measured by G. Guelachvili 47 with a claimed error of less than  $0.0001~\mathrm{cm}^{-1}$ . Table 10 compares the CO lines observed in the present experimental spectra with those measured by Guelachvili. The measured CO lines are  $0.00014~\mathrm{cm}^{-1}$  higher

Table 10. Observed CO lines used to check calibration of spectrometer.

| <del></del>                                                                                                                              |                                                                                                                                                                                           |                                      |                                    |                                   |                                                                                                                      |                                                                                                                                                                                                                       |                                                                             |                                     | <br> |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|------|--|
| J                                                                                                                                        | Р                                                                                                                                                                                         | OBS                                  | 0-C                                | UNC                               | R                                                                                                                    | OBS                                                                                                                                                                                                                   | 0-C                                                                         | UNC                                 |      |  |
| 0<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 2135<br>2137<br>2123<br>21123<br>21123<br>2115<br>21115<br>2107<br>2099<br>20986<br>2077<br>20684<br>2055<br>2041<br>2002<br>2018<br>2003<br>2018<br>2003<br>2018<br>2003<br>2003<br>2003 | 99033375973392537299333117355044<br> | 3324604265310145155255244211261052 | 443595547434437444535444445454545 | 2154<br>2158<br>2158<br>21669<br>2176<br>2176<br>2186<br>2199<br>2199<br>2199<br>2199<br>2199<br>2199<br>2199<br>219 | 8187428624624624612531<br>81874298246246137888663113788866311378886744612531<br>81874298463113788866744738584674612531<br>818742984612531<br>818742984612531<br>818742984612531<br>818742984612531<br>818742984612531 | 22307-1128-622300637-278-1604-2<br>-1728-1728-1728-1728-1728-1728-1728-1728 | 335496677485507745550384865795945 9 |      |  |
| 35                                                                                                                                       |                                                                                                                                                                                           | .9148                                | 2                                  | 5                                 | 2257                                                                                                                 | .2383                                                                                                                                                                                                                 | -20                                                                         | 13                                  |      |  |

Observed minus calculated values (0-C) and the expected uncertainties (UNC) are in units of 10  $^{-1}\,$  cm  $^{-1}$  .

on the average than the positions reported by Guelachvili. The only  $\operatorname{CO}_2$  band that has been observed previously at both high resolution and high temperature is the  $\nu_{\mbox{\scriptsize 3}}$  fundamental of <sup>12</sup>C<sup>16</sup>O<sub>2</sub>. A. Pine and G. Guelachvili <sup>11</sup> have made a joint measurement in which Pine used a tunable laser differencefrequency spectrometer to observe a CO2 sample heated to 985 K and combined his data with a room temperature CO2 spectrum measured by Guelachvili. The wavenumber calibration of this joint measurement was determined from Guelachvili's data. The line positions determined in the present work for this band were  $0.00017 \text{ cm}^{-1}$  lower on the average than Pine and Guelachvili's reported values. The rms line position scatter was 0.0003  ${\rm cm}^{-1}$  for the CO lines and 0.0005  $\mathrm{cm}^{-1}$  for the  ${}^{12}\mathrm{C}^{16}\mathrm{O}_2$  lines. The scatter in the positions of the CO lines was less than that of the CO2 lines since the CO lines were in a region of the spectra where line merging was minimal.

In the 2.8  $\mu m$  region, the experimental spectra were calibrated by adjusting the wavenumber scale of the experimental spectra to match, on the average, the positions of the low J lines of the 10011 + 00001 and 10012 + 00001 bands of  $^{12}c^{16}O_2$  as reported in the 1982 line compilation. These  $CO_2$  line positions are also indirectly tied to Guelachvili's line positions.

Recent work by other researchers 49,50 has shown that there are systematic errors in the line positions reported

by Guelachvili. His values are 0.0002 cm<sup>-1</sup> to 0.0004 cm<sup>-1</sup> too high. This implies that the line positions presented in this report are also too high by the same amount. No wavenumber correction was made, because the exact correction was still somewhat unclear, and a correction on the order of 0.0003 cm<sup>-1</sup> would have been of questionable value, since the line positions of the present work are not accurate to more than 0.0004 cm<sup>-1</sup> due to random noise in the experimental spectrum.

The 19  $^{12}\text{C}^{16}\text{O}_{2}$  bands that were identified in the 4.3  $\mu m$ region are indicated on the energy level diagram of figure 37 and the 11  $^{12}C^{16}O_2$  bands in the 2.8  $\mu m$  region on figure 38. There were fewer bands identified of the other isotopic variants of CO2, primarily due to the increased difficulty in identifying these bands. A complete listing of the experimental lines used to obtain new molecular constants is given in Appendix B along with the expected uncertainties and the difference between the observed line positions and the positions calculated using the new molecular constants. Information on the least-squares fit for each band is given in Table 11 for the 4.3  $\mu m$  bands and in Table 12 for the 2.8 µm bands. This information includes the range of J values, total number of lines, and the standard deviation. The new molecular constants are given in Table 13 and Table 14 for the 4.3 and 2.8 µm bands, respectively.



Figure 37. Rotation-vibration bands for which molecular constants were obtained in the 4.3 µm region.



Figure 38. Rotation-vibration bands for which molecular constants were obtained in the 2.8 µm region.

Table 11. Bands for which molecular constants were obtained in the 4.3  $\mu m$  region.

|                                                                                                                                                                                                                                                                                                                                                                       |                                                 | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                            |                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|
| Transition                                                                                                                                                                                                                                                                                                                                                            | Isotope                                         | Band Center (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Range of<br>Measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number of<br>Lines                         | RMS Error<br>(10 <sup>-4</sup> cm <sup>-1</sup> ) |
| *13311 13301 *13312 13302 *04411 04401 02221e 02211e 02221f 02211f 12211e 12201e 12211f 12201f 10022 10012 20011 20001 20013 20003 20012 20002 *03311 03301 01121e 01111e 01121f 01111f 11111e 11101e 11111f 11101f 11112e 11102e 11112f 11102f 02211e 02201e 02211f 02201e 02211f 02201f 00021 00011 10011 10001 10012 10002 01111e 01101e 01111f 01101f 00011 00001 | \\ \frac{12c^{16}0}{2}                          | 2288.3903<br>2290.62141<br>22999.2395<br>22999.2395<br>2301.05399<br>2301.05399<br>2302.3737<br>2305.52568<br>2311.7008<br>2311.7008<br>2311.7008<br>2311.77026<br>2311.77026<br>2311.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.5.2350<br>231.                                                    | P(68)-R(715) P(89)-R(76) P(89)-R(76) P(788)-R(76) P(788)-R(76) P(788)-R(76) P(788)-R(76) P(889)-R(76) P(889)-R(76) P(889)-R(76) P(889)-R(76) P(889)-R(76) P(889)-R(10) P(889)-R(10) P(889)-R(10) P(889)-R(10) P(100)-R(10) P(100)-R(10) P(100)-R(10) P(100)-R(10) P(1114)-R(1126) P(1126)-R(1126) P(1126)-R(11 | 780344435431455646886886566<br>197         | 65666867556595566644654433                        |
| *04411 04401 02221e 02211e 02221f 02211f 12201e 12201f 12201f 12201f 20013 20002 03311e 03301e 03311f 03301f 01121e 01111e 01121f 01111e 11111e 11101e 11111f 11111e 11101f 11112f 11102f 02211e 02201e 02211f 02201e 02211f 02201f 00021 00011 10012 10001 01111e 01101e 01111f 01101f 00011 00001                                                                   | 13c <sup>16</sup> 0 <sub>2</sub>                | 2236.6790<br>2236.6790<br>2238.5706<br>2238.5706<br>2238.5706<br>2238.57368<br>22442.33567<br>22248.35618<br>22248.3618<br>22248.3618<br>22250.60501<br>22260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0500<br>2260.0 | P(90)-R(95) P(61)-R(55) P(61)-R(55) P(62)-R(60) P(88)-R(77) P(88)-R(962) P(882)-R(962) P(98)-R(962) P(98)-R(101) P(100)-R(101) P(100)-R(101) P(100)-R(1002) P(100)-R(1002) P(100)-R(1002) P(100)-R(1002) P(110)-R(1002)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1023445477646668888990388                  | 5329977466675443544333                            |
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001                                                                                                                                                                                                                                                         | 13 <sub>C</sub> 16 <sub>O</sub> 18 <sub>O</sub> | 2242.8075<br>2242.8075<br>2245.2726<br>2245.4960<br>2254.3803<br>2254.3803<br>2254.3803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | P(86)-R(75) P(77)-R(74) P(83)-R(81) P(84)-R(80) P(94)-R(94) P(99)-R(101) P(106)-R(100)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 101<br>90<br>95<br>94<br>128<br>128<br>181 | 7566764                                           |

<sup>\*</sup> Separate e and f constants were not determined.

| Transition                                                                                                    | Isotope                                         | Band Center (cm <sup>-1</sup> )                                                                      | Range of<br>Measurement                                                                                      | Number of<br>Lines                            | RMS Error<br>(10 <sup>-4</sup> cm <sup>-1</sup> ) |
|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001 | 12 <sub>C</sub> 18 <sub>02</sub>                | 2289.5689<br>2289.5689<br>2299.5720<br>2294.8795<br>2301.7996<br>2301.7996<br>2314.0489              | P(94)-R(72)<br>P(101)-R(69)<br>P(98)-R(54)<br>P(98)-R(88)<br>P(111)-R(101)<br>P(122)-R(102)<br>P(128)-R(106) | 60<br>70<br>65<br>64<br>88<br>92<br>102       | 4657544                                           |
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001 | 12 <sub>C</sub> 16 <sub>O</sub> 18 <sub>O</sub> | 2307.3830<br>2307.3830<br>2309.2898<br>2311.7151<br>2319.7380<br>2319.7380<br>2332.1127<br>2274.0884 | P(100)-R(92) P(96)-R(98) P(100)-R(98) P(103)-R(92) P(113)-R(113) P(111)-R(105) P(119)-R(117) P(73)-R(80)     | 136<br>135<br>125<br>144<br>157<br>159<br>213 | 9754543 6                                         |

Table 12. Bands for which molecular constants were obtained in the 2.8  $\mu m$  region.

|                                                                                                                                                                                                              |                                                 | Band Center                                                                                                                                                                                       |                                                                                                                                                                                                             |                                                                  | RMS Error                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|
| Transition                                                                                                                                                                                                   | Isotope                                         | (cm <sup>-1</sup> )                                                                                                                                                                               | Range of<br>Measurement                                                                                                                                                                                     | Number of<br>Lines                                               | $(10^{-4} \text{cm}^{-1})$ |
| 12212e 02201e 12212f 02201f 20013 10002 11112e 01101e 11112f 01101f 20012 10001 10012 00001 20012 10001 21111e 11101e 21111f 11101f 10011 00001 11111e 01101e 11111f 01101f 12211e 02201e 12211f 02201f      | ) 12 <sub>C</sub> 16 <sub>02</sub>              | 3552.8568<br>3552.8568<br>35580.3265<br>35580.3265<br>35580.3265<br>35580.6526<br>3612.4278<br>37113.7218<br>37113.7218<br>37113.7218<br>37113.7218<br>37123.2501<br>3726.6475                    | P( 46)-R( 50) P( 46)-R( 65) P( 41)-R( 65) P( 45)-R( 65) P( 57)-R( 586) P( 57)-R( 586) P( 582)-R( 865) P( 682)-R( 865) P( 682)-R( 77)-R( 77)-R( 77) P( 884)-R( 77)-R( 77)-R( 57) P( 53)-R( 57) P( 53)-R( 57) | 09685341999912635<br>4245648542287644                            | LAB4 നത്ഥന4 നമ്മ 5 നത്തഥ 6 |
| *12212 02201<br>20013 10002<br>11112e 01101e<br>11112f 01101f<br>20012 10001<br>10012 00001<br>20012 10002<br>10011 00001<br>20011 10001<br>11111e 01101e<br>11111f 01101f<br>12211e 02201e<br>12211f 02201f | 12 <sub>C</sub> 16 <sub>O</sub> 18 <sub>O</sub> | 3511.4117<br>3531.8352<br>3538.7785<br>35538.7785<br>35538.7785<br>355371.1409<br>356475.4356<br>356475.4356<br>366783.8136<br>36887.4754<br>36887.4754<br>35687.4754<br>35687.4754<br>35687.4754 | P( 33)-R( 598) P( 564)-R( 668) P( 674)-R( 633) P( 673)-R( 573) P( 823)-R( 577) P( 823)-R( 566) P( 748)-R( 666) P( 651)-R( 568) P( 62)-R( 74) P( 62)-R( 74) P( 78)-R( 74)                                    | 50<br>920<br>120<br>17528<br>14528<br>1463<br>103<br>1770<br>660 | 5543734364489 33           |

<sup>\*</sup> Separate e and f constants were not determined.

Molecular constants resulting from the least-squares-fits in the 4.3  $\mu m$  region. (cm  $^{-1}$  ) Table 13.

| Transition                                                                      | Isotope | "D - "D                                                             | B,                                                                | D' 10 <sup>-7</sup> H'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10_13                                                                           | Вп                                                                                      | D" 10 <sup>-7</sup>                                                 | H" 10 <sup>-13</sup>              |
|---------------------------------------------------------------------------------|---------|---------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------|
| 3311 13301<br>3312 13302<br>4411 04401<br>2221e 02211                           |         | 288.390<br>290.680<br>299.214<br>299.239                            | 3892401<br>3897189<br>3901079<br>3855886                          | 3158<br>5020<br>4053<br>2786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                 | 3922092<br>3926618<br>3930769<br>3886178                                                | 3662<br>5131<br>2963<br>2963                                        |                                   |
| 2211e 1                                                                         |         | 301.053<br>301.053<br>302.053<br>373                                | 3885276<br>3885276<br>3845076                                     | .53830<br>.53830<br>.53830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 193<br>377                                                                      | 3915521<br>3915521<br>3874835                                                           | JWW.<br>JW - W.<br>JW O O I                                         | -14.793<br>3.542                  |
| 0013 20003<br>0012 20003<br>3311 03301                                          | 12.16.  | 2305.256<br>2305.256<br>2311.6682                                   | 3867291<br>38651916<br>3865291<br>3893788                         | 2000<br>2000<br>2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 146                                                                             | 3389<br>3389<br>3989<br>3989<br>3989<br>3989<br>3989<br>3989                            | 2325<br>4143                                                        | 6.131                             |
| 1121e 01111<br>1121f 01111<br>111e 11101                                        | <u></u> | 2311.700<br>2311.700<br>2313.772                                    | 3845618<br>3851291<br>3873622                                     | 337<br>237<br>231<br>231<br>231<br>231<br>231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | J -                                                                             | 3876058<br>3881910<br>3904069                                                           | .2573<br>.2574<br>.2589<br>.2589                                    |                                   |
| 11126<br>11126<br>122116<br>22116<br>0                                          |         | 3225<br>325<br>325<br>325<br>325<br>325<br>325<br>325<br>325<br>325 | 30000000000000000000000000000000000000                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 733<br>558<br>376<br>376                                                        | 3916866<br>3916866<br>3916866<br>3916680                                                | 3330<br>330<br>330<br>340<br>340<br>340<br>340<br>340<br>340<br>340 | -2.554<br>1.026<br>-2.802<br>.345 |
| 00021 00011<br>10011 10002<br>011112 011016<br>01111f 01101f                    |         | 22222222222222222222222222222222222222                              | .38406877<br>.384756262<br>.3887587450<br>.388788765<br>.38718583 | 1.5446<br>1.546626<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.356636<br>1.366636<br>1.366636<br>1.366636<br>1.366636<br>1.366636<br>1.366636<br>1.366636<br>1.366 | 196<br>022                                                                      | .38718<br>.38718<br>.390048838<br>.390048336<br>.390153<br>.391293<br>.391293<br>.39139 | 1.35497<br>1.354870<br>1.35620<br>1.35620<br>1.335620               | 2.182                             |
| 04411 04401<br>02221e 02211e<br>02221f 02211f<br>12211e 12201e<br>12211f 12201f | 13,160  | 2236.6789<br>2236.6790<br>2236.6790<br>2238.5706<br>2238.5706       | 390011145<br>3885778409<br>3882578409<br>58825778409              | .39479<br>.31278 -6.<br>.51164 31.<br>.95409                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 628<br>110                                                                      | 38869363<br>38869363<br>38869363<br>391115785<br>39115785                               | 1.28826<br>1.28826<br>1.48371<br>1.01674<br>1.26190                 | -12.271<br>25.389                 |
| 33116 033<br>33117 033<br>11216 011                                             |         | 20000000000000000000000000000000000000                              | 8898888<br>898888<br>898989<br>888888<br>8888<br>8888             | 1706<br>1706<br>1706<br>12.<br>95075<br>11.<br>6520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>15<br>1 | 896956<br>922799<br>922799<br>876914<br>8836914                                         |                                                                     | -2.435<br>-1.720<br>5.086<br>.213 |

| H" 10 <sup>-13</sup> | -4.125<br>226<br>226<br>2.302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 873<br>2.207                                                                                      |                                                                            | .91                           | 2.163<br>497<br>412                                           |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------|
| D" 10 <sup>-7</sup>  | 11111111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.22527<br>1.22527<br>1.329252<br>1.37904<br>1.19941                                              | 1.15254<br>1.093700<br>1.15742<br>1.07024<br>1.07696                       | .2685<br>.2244<br>.0091       | 1.36902<br>1.21930<br>1.19722<br>1.18479<br>1.24224           |
| B"                   | 390006111<br>390006111<br>39000616<br>39000616<br>390000616<br>39000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36949255<br>36800325<br>36853033<br>36853033<br>368174681<br>368174681                            | 34812574<br>.34812574<br>.34740102<br>.34651747<br>.34723371<br>.34681253  | 3695636<br>3695636<br>3685049 | .36812023<br>.36861755<br>.36913822<br>.36818157              |
| H' 10-13             | 4.231<br>-3.917<br>146<br>1.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -1.278<br>3.887                                                                                   |                                                                            | .58                           |                                                               |
| D' 10 <sup>-7</sup>  | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.21848<br>1.224022<br>1.38700<br>1.19559<br>1.20041                                              | 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00                                    | .2573<br>.2197<br>.0005       | 1.37934<br>1.21711<br>1.19384<br>1.18182<br>1.23942           |
| B                    | 3.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 36657444<br>36657744<br>366577474<br>366582733<br>56382733<br>365782733<br>365782733<br>365782733 |                                                                            | 3667070<br>3667070<br>3655662 | .36530654<br>.36574752<br>.36625229<br>.36528386              |
| "9 – "9              | 22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250<br>22250 | 2242.8075<br>2242.8075<br>2245.2726<br>2245.4960<br>2254.3803<br>2254.3803                        | 2289.5689<br>2289.5689<br>2290.9720<br>2294.8795<br>2301.7996<br>2301.7996 | 307.383<br>307.383<br>309.289 | 2311.7151<br>2319.7380<br>2319.7380<br>2332.1127<br>2274.0884 |
| Isotope              | 13c16o2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13c160180                                                                                         | 12C1802                                                                    | 12 16 18                      | 13c16o17o                                                     |
| ition                | 111016<br>022016<br>022016<br>00001<br>100002<br>011016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 022016<br>022016<br>10001<br>10002<br>011016                                                      | 02201¢<br>02201f<br>10001<br>10002<br>01101¢<br>00001                      | 022                           | 10002<br>011016<br>01101f<br>00001                            |
| Transition           | 0022116<br>0022116<br>0022116<br>00021<br>00012<br>0011116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 022116<br>02211f<br>10011<br>10012<br>0111116<br>00011                                            | 022116<br>022111<br>10011<br>10012<br>0111116<br>00011                     | 221<br>221<br>001             | 10012<br>011116<br>011111<br>00011                            |

Molecular constants resulting from the least-squares-fits in the 2.8  $\mu m$  region. (cm  $^{-1}$  ) Table 14.

A CONTROL OF THE STATE OF THE S

| -13                 | 20 20 20 20 20 20 20 20 20 20 20 20 20 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | T 0 66                                                                                               |                                  |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------|
| н" 10               | 11.78<br>8.19.65.65.65.67.19.17.66.1.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76.17.76 | -1.730<br>-1.730<br>-18.799                                                                          |                                  |
| D" 10 <sup>-7</sup> | 7.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.32384<br>1.307384<br>1.219373<br>1.219373<br>1.36008<br>1.36006<br>1.221793<br>1.221795<br>1.26451 | 1.04159                          |
| B"                  | 38 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 36991117<br>369990000000000000000000000000000000000                                                  | .34681349<br>.34681474           |
| H' 10-13            | 50.499<br>31.082<br>12.861<br>1.384<br>6.946<br>3.352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2343.583<br>.284<br>-19.574<br>-10.450                                                               |                                  |
| D' 10 <sup>-7</sup> | 2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.200.000.000.000.000.000.000.000.000.00                                                             | 1.16084                          |
| B                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      | .34385368<br>.34464872           |
| "D - "D             | 33.50 September 2011     | 330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330<br>330                                   | 3525.2048<br>3638.0657           |
| Isotope             | 1201602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12 <sub>C</sub> 16 <sub>0</sub> 18 <sub>0</sub>                                                      | 12 <sub>C</sub> 18 <sub>02</sub> |
| ltion               | 02201<br>02201<br>010201<br>0110000<br>011001<br>02201<br>02201<br>02201<br>02201<br>02201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 02201<br>10002<br>011016<br>10001<br>10000<br>10001<br>00001<br>011016<br>022016                     | 00001                            |
| Transition          | ** 122126 202127 20137 201126 20012 20012 201116 1221116 122116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *12212<br>20013<br>111126<br>20012<br>20012<br>10012<br>10011<br>111116<br>122116                    | 10012                            |

\* Coriolis perturbed level.

The constants reported in Tables 13 and 14 are effective molecular constants and so should not be expected to accurately represent the internal structure of the CO<sub>2</sub> molecule. The purpose of these effective constants is to provide a means of reproducing within the experimental accuracy the position of spectral lines over the range of J values covered by the measurements. For the CO2 molecule there are a great many interactions between different vibrational states. The effects of these interactions are accounted for by allowing the different effective molecular constants to float freely in the leastsquares fit of each band. Molecular constants obtained in this manner are not self-consistent. For example, the molecular constants obtained (see Table 13) for the vibrational state 00011 of  ${}^{12}C^{16}O_2$  from the 00011  $\leftarrow$  00001 band are not consistent with those obtained from the 00021 + 00011 band. Molecular constants which are self-consistent and predict the position of spectral lines with nearly the accuracy of the experimental lines have also been determined, 48 but not as part of the present study.

The  $^{12}\text{C}^{16}\text{O}_2$  pressure in the high temperature absorption cell was too high for making accurate measurements of low J lines of the  $v_3$  fundamental, as the purpose of the present study was to observe lines originating from high rotation-vibration states. Hence only lines originating from states with J > 40 were used in

the least-squares fit for this band. Notice that since low J lines were not used in the least-squares fit for the  $v_3$  fundamental of  $^{12}\text{C}^{16}\text{O}_2$  the resulting band center was too high by 0.0013 cm $^{-1}$ . If the  $v_3$  fundamental had not already been well measured  $^{10,11}$  it would have been beneficial to make an additional measurement with less  $^{12}\text{C}^{16}\text{O}_2$  in the high temperature absorption cell.

There was one band, the 05511 + 05501 of \$^{12}C^{16}O\_2\$, where the P branch was readily visible, but the R branch was not located. For CO2 there are some bands such at the 11101 + 00001 band where one branch has a much stronger intensity than the other branch. This nonsymmetric intensity pattern would not however be expected for a parallel band such as the 05511 + 05501 band, unless some unusual perturbation was occurring. Since there is a possibility that the lines attributed to the P branch of this band are misidentified, the 05511 + 05501 band is not included in Tables 11 as one of the bands successfully identified. However, lines from the P branch are included with the other observed lines in Appendix B.

There were a considerable number of lines in the experimental spectrum that were not identified. As was explained in Chapter V, little effort was expended in attempting to identify bands having a lower state vibrational energy greater than 3500 cm<sup>-1</sup>, since the resulting bands would have been so fragmentary.

The observed line positions for a number of the bands of the present study are compared to the line positions calculated using the molecular constants obtained by other workers on the residual plots of Figures 39 to 48. When comparing different plots, note that the scale on the residuals plots vary by more than a factor of ten. The range of the residuals vary from  $\pm 0.03$  cm<sup>-1</sup> to  $\pm 0.5$  cm<sup>-1</sup>.

Guelachvili $^{10}$  has previously measured several of these bands using a room temperature gas sample with more precision than the present work for low J lines. It is interesting to note how poorly these constants predict the position of high J lines (Figures 39 to 42). Notice the large discrepancies (Figures 39 and 40) between the line positions predicted using Guelachvili's molecular constants and the experimental line positions when J > 80 for the 01111  $\leftarrow$  01101 band of  $^{12}c^{16}O_{2}$ . Guelachvili's measurements extended from about P(64) to R(64). Also note the 10011 + 10001 band of  ${}^{12}C^{16}O_{2}$  (Figure 42) where the range of J's was P(40) to R(44). These large discrepancies could not have resulted from the wavenumber calibration problems present in Guelachvili's data that was mentioned earlier. since his calibration errors resulted in only a simple offset to the data. It appears to be a general principle that the molecular constants  $G_v$ ,  $B_v$ ,  $D_v$ , and  $H_v$  obtained using low J lines do not successfully predict the position of high J lines.



Figure 39. Comparison of measured line positions with those computed using Guelachvili's and the AFGL (1978) constants for the 01111e + 01101e band of  $^{12}\mathrm{C}^{16}\mathrm{O}_2$ 



Figure 40. Comparison for the 01111f + 01101f band of  ${}^{12}c^{16}o_2$ 



Figure 41. Comparison for the 10012 + 10002 band of  ${}^{12}c^{16}O_2$ 



Figure 42. Comparison for the 10011 + 10001 band of  ${}^{12}c^{16}O_2$ 



Figure 43. Comparison for the 21111e + 11101e band of  ${}^{12}C^{16}O_2$ 



Figure 44. Comparison for the 11112e + 01101e band of  $^{12}c^{16}0^{18}0$ 



Figure 45. Comparison for the 10012 + 00001 band of  ${}^{12}c^{18}O_2$ 



Figure 46. Comparison for the 01121f + 01111f band of  ${}^{13}c^{16}O_2$ 



Figure 47. Comparison for the 10012  $\leftarrow$  10002 band of  $^{13}c^{16}0^{18}0$ 



Figure 48. Comparison for the 00011 + 00001 band of  ${}^{13}c^{16}0^{17}0$ 

For the asymmetric  $CO_2$  molecules  ${}^{12}C^{16}O^{18}O$ ,  $^{13}\mathrm{C}^{16}\mathrm{O}^{18}\mathrm{O}$ , etc., each P and R branch is split into two branches by  $\ell$ -type doubling when  $\ell > 0$ . The e and f lines are so closely spaced for some values of J they were not resolved experimentally. The J dependence of this splitting result in the e and f lines always being very closely spaced near the band origin. For some bands, the difference between the e and f lines becomes very small at locations in the P and R branches other than at low J as well. In the 01111 + 01101 band of  ${}^{12}C^{16}O^{18}$ , the e and f series cross at about R(65). Since  $B_0 = B_f$  for the 02211 + 02201 band of  ${}^{12}C^{16}O^{18}O$ , the e and f lines were not resolved until about J = 60 of the P branch and J = 70 of the R branch. Having merged lines adversely effects the quality of the least-squares fits since the effects of line merging were not modeled. Unresolved lines were particularly a problem when the spacing between component lines of the spectral feature was just slightly less than the experimental resolution.

The range of rotational levels measured for the 12212 + 02201 band of  $12C^{16}O^{18}O$  did not cover the wings of the band where the e and f sublevels had sufficient separation to determine unique constants. In addition the strong Coriolis resonance of the upper state with the level 23301 caused the unusually large higher order distortion constants for this band at 3511 cm<sup>-1</sup> as given in Table 14.

The constants for this band are only given to reproduce the lines observed in the present experiment. Similar caution should be exercised with the 12212 + 02201 band of  $^{12}\text{C}^{16}\text{O}_2$  for which a similar resonance exists.

Chedin's model using an empirically determined potential function predicts the position of spectral lines within an accuracy of about 0.01 cm<sup>-1</sup> for low J lines for most bands. This is about 25 times worse than the experimental determined line positions. How much of this inaccuracy is due to improper modeling of the CO2 molecule and how much is due to inconsistencies in the data used to obtain the empirically determined potential function is still unclear. However, Chedin has recently rerun his model using improved experimental data, 51 including a preliminary version of the  ${}^{12}C^{16}O_2$  data presented in this report. 12 The improvement for the bands considered in this report was minimal, implying that his model in its present form is approaching its limits. However, Chedin's model predicts the positions of spectral lines more accurately than previous models, such as the model used to calculate (for lines that have not been measured experimentally) the position of spectral lines for the AFGL line compilation.<sup>22</sup>

The AFGL 1978 line compilation<sup>52</sup> was based on lower temperature or lower resolution data, or both, than the

present work. The AFGL 1980 and 1982 line compilations were not compared with the 4.3  $\mu m$   $^{12}\text{C}^{16}\text{O}_2$  data of the present work, since they incorporated the data here presented.

# C H A P T E R V I 1 CONCLUSION

By heating the CO<sub>2</sub> gas sample and using a high resolution Fourier transform spectrometer it has been possible to observe 73 bands of CO2 and measure the position of spectral lines with a wavenumber accuracy of  $0.0004 \text{ cm}^{-1}$ , including lines originating from high rotational energy levels. This represents an improvement in the knowledge of the position of spectral lines, at least for the high J lines, for all the observed bands except the  $v_3$  fundamental of  ${}^{12}C^{16}O_2$ . The spectrum of high temperature  ${\rm CO}_{2}$  is so rich in lines that the high resolution of the AFGL two meter path difference interferometer was needed to separate individual spectral lines from the many other overlapping bands. The large number of overlapping bands made the identification of the various bands very difficult. To overcome this problem a system of interactive computer programs was written incorporating, among other features, an automated Loomis-Wood diagram and an iterated least-squares fit to the data.

This improved knowledge of the position of  ${\rm CO}_2$  spectral lines can be used to further several different areas of research. Since the  ${\rm CO}_2$  molecule is one of the most important infrared absorbing molecules in the atmosphere and plays a fundamental role in the heat balance

of our atmosphere, this knowledge of the energy levels will be important to atmospheric studies. These improved spectroscopic constants will be particularly useful for problems that deal with high temperature  $\mathrm{CO}_2$ . Data obtained on spectral lines originating from high energy levels and form different isotopic species provide information that is helpful in determining the shape of the  $\mathrm{CO}_2$  potential function. Studies of the  $\mathrm{CO}_2$  molecule of a more fundamental nature and studies of the general formulation of triatomic theory will also be benefited by these very accurate high temperature measurements of different isotopic species of  $\mathrm{CO}_2$ .

In addition to the detailed information on the positions of spectral lines, this study demonstrated several more general principles. When the molecular constants  $G_v$ ,  $B_v$ ,  $D_v$ , and  $H_v$  are determined band by band, as they were in the present work, there is a great deal of interdependence among the different constants, particularly between the  $D_v$  and  $H_v$  constants. Extrapolating the position of high J lines from low J lines can quickly lead to large errors. The errors in the predicted line positions typically increased by an order of magnitude for every 10 J's of extrapolation. Existing global models of the  $CO_2$  molecule do not predict the position of spectral lines as accurately as they can be measured experimentally, even for low J lines. Chedin's  $^2$  model predicted the

position of spectral lines with an accuracy of about  $0.01~{\rm cm}^{-1}$  where the experimental accuracy was closer to  $0.0004~{\rm cm}^{-1}$ .

Recommendations for Future Work. There remains a great deal of work to be done on the CO<sub>2</sub> molecule, both theoretical and experimental. Experimental measurements need to be made on additional rotation-vibration bands in different regions of the spectrum, particularly in the 15 µm region where much additional information is available. It would also be useful to obtain information on still higher rotational and vibrational energy levels. This data could then be incorporated into a global model of the CO<sub>2</sub> molecule. If a model of CO<sub>2</sub> that could predict the position of spectral lines within the accuracy of the experimental spectrum could be developed, it would not be necessary to measure as many rotation-vibration bands, but at present the only way to determine line positions accurately is to measure them experimentally.

IN THE SECOND FOR THE SECOND S

#### LIST OF REFERENCES

- 1. M. Born and R. Oppenheimer, Ann. Physik. 84, 457 (1927).
- 2. A. Chedin, J. Mol. Spectrosc. 76, 430 (1979).
- 3. A. Trowbridge and R. W. Wood, Philosophical Magazine, Series 6, 20, 898 (1910).
- 4. E. F. Barker, Astrophys. Journ. 55, 391 (1922).
- 5. E. K. Pyler, L. R. Blaine, and E. D. Tidwell, J. Research Natl. Bur. Standards 55, 183 (1955).
- 6. R. Oberly, K. N. Rao, Y. H. Hahn, and T. K. McCubbin Jr., J. Mol. Spectrosc. 25, 138 (1968).
- 7. T. K. McCubbin Jr., J. Pliva, R. Pulfrey, W. Telfair, and T. Todd, J. Mol. Spectrosc. 49, 136 (1974).
- 8. D. Bailly, R. Farrenq, and C. Rossetti, J. Mol. Spectrosc. 70, 124 (1978).
- 9. A. Baldacci, V. M. Devi, D. Chen, and K. N. Rao, J. Mol. Spectrosc. 70, 143 (1978).
- 10. G. Guelachvili, J. Mol. Spectrosc. 79, 72 (1980).
- 11. A. S. Pine and G. Guelachvili, J. Mol. Spectrosc. 79, 84 (1980).
- 12. M. P. Esplin and H. Sakai, "High Temperature Absorption Spectrum of 4.3 Micron CO<sub>2</sub>," Procedings of "Spectroscopy in Support of Atmospheric Measurements," WP11 (1980).
- 13. M. P. Esplin PhD Thesis, University of Massachusetts, May 1985.
- 14. L. S. Rothman and L. D. G. Young, J. Quant. Spectrosc. Radiat. Transfer <u>25</u>, 505 (1981).
- M. P. Esplin and L. S. Rothman, J. Mol. Spectrosc. 100, 193 (1983).
- 16. L. S. Rothman, R. R. Gamache, A. Barbe, A. Goldman, J. R. Gillis, L. R. Brown, R. A. Toth, J.-M. Flaud, and C. Camy-Peyret, Appl. Opt. 22, 2247 (1983).

- 17. M. P. Esplin and L. S. Rothman, J. Mol. Spectrosc., in press (1986).
- 18. D. Bailly, PhD Thesis, Universite de Paris-Sud, (1983); also see D. Bailly, R. Farrenq, G. Guelachvili, and C. Rossetti, J. Mol Spectrosc 90, 74 (1981); D. Bailly and C. Rossetti, J. Mol Spectrosc 102, 392 (1983).
- 19a. K. J. Siemsen and B. G. Whitford, Opt. Commun. 22, 11 (1977); K. J. Siemsen Opt. Commun. 34, 447 (1980).
- 19b. V. M. Devi, C. P. Rinsland, and D. C. Benner, Appl. Opt. 23, 4067 (1984); R. A. Toth, Appl. Opt. 24, 261 (1985); C. P. Rinsland, D. C. Benner, and V. M. Devi, Appl. Opt. 24, 1644 (1985).
- 20. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. I, "Spectra of Diatomic Molecules," Van Nostrand Reinhold Company (1950).
- 21. G. Herzberg, Molecular Spectra and Molecular Structure, Vol. II, "Infrared and Raman Spectra of Polyatomic Molecules," Van Nostrand Reinhold Company (1950).
- 22. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman and J. S. Garing, "AFCRL Atmospheric Absorption Line Parameters Compilation," AFCRL-TR-73-0096 (1973). AD762904
- 23. M. W. Hanna, Quantum Mechanics in Chemistry, W. A. Benjamin, Inc. (1969).
- 24. M. P. Esplin, R. J. Huppi, H. Sakai, G. A. Vanasse, L. S. Rothman, "Absorption Measurements of CO<sub>2</sub> and H<sub>2</sub>O at High Resolution and Elevated Temperatures," AFGL<sup>2</sup>TR-82-0057 (1982). ADA113824
- 25. L. D. Gray and A. T. Young, J. Quant. Spectrosc. Radiat. Transfer 9, 569 (1969).

- 26. The Infrared Handbook, prepared by: The Infrared Information and Analysis Center (IRIA), Environmental Research Institute of Michigan for the Office of Naval Research, Department of the Navy (1978).
- 27. W. S. Dalton and H. Sakai, Appl. Opt. 19, 2413 (1980).
- 28. J. H. Taylor, PhD Thesis, The Johns Hopkings University, Baltimore Maryland (1952).

- 29. J. U. White, J. Opt. Soc. Am. 32, 285 (1942).
- 30. P. Fellgett, PhD Thesis, University of Cambridge (1951).
- 31. P. Jacquinot and C. Dufour, J. Rech. du C.N.R.S.  $\underline{6}$ , 91 (1948).
- 32. J. Connes, Rev. Opt. 40, 45 (1961).

- 33. G. A. Vanasse and H. Sakai, "Fourier Spectroscopy," in <a href="Progress in Optics Vol. 16">Progress in Optics Vol. 16</a>, Ed. E. Wolf, North-Holland Publishing Company (1967).
- 34. R. N. Bracewell, The Fourier Transform and Its Application, McGraw-Hill (1965).
- 35. J. Connes, "Computing Problems in Fourier Spectroscopy," proceeding of "Aspen international Conference on Fourier Spectroscopy," AFCRL-TR-71-0019 (1971). AD724100
- 36. E. V. Loewenstein, "Fourier Spectroscopy: An Introduction," proceeding of "Aspen international Conference on Fourier Spectroscopy," AFCRL-TR-71-0019 (1971). AD724100
- 37. H. Sakai and G. A. Vanasse, "High Resolution Spectra of CO<sub>2</sub> in the 3500 to 3770 cm Region at 625 K,"

  AFGL-TR-77-0039 (1977). ADA040746
- 38. H. Sakai, "High-Resolution Spectra of CH<sub>11</sub> in the 2700 to 3200 cm Region," AFGL-TR-76-0280 (1976). ADA036331
- H. Sakai, "High-Resolution Fourier Spectroscopy,"
   AFCRL-TR-74-0571 (1974). ADA006688
- 40. H. Sakai, "High Resolving Power Fourier Spectroscopy," in Spectrometric Techniques, Vol. 1, Ed. G. A. Vanasse, Academic Press (1977).
- 41. K. W. Taconis, J. J. M. Beenakker, A. O. C. Nier and L. t. Aldrich, Physica 15, 733 (1949).
- 42. T. Yazaki, A. Tominaga, and Y. Narahara, J. Low Temperature Physics, <u>41</u>, 45 (1980).
- 43. L. Mertz, <u>Transformations in Optics</u>, John Wiley, New York (1965).

- 44. J. W. Cooley and J. W. Tukey, Math. Comput. 19, 296 (1965).
- 45. F. W. Loomis and R. W. Wood, Phys. Rev. <u>32</u>, 223 (1928).
- 46. Philip R. Bevington, <u>Data Reduction and Error Analysis</u> for the <u>Physical Sciences</u>, <u>McGraw-Hill</u>, <u>Inc.</u> (1969).
- 47. G. Guelachvili, J. Mol. Spectrosc. <u>75</u>, 251 (1979).
- 48. L. S. Rothman and M. P. Esplin, "Self-Consistent Analysis for Line Positions of Carbon Dioxide," Symposium on Molecular Spectroscopy, The Ohio State University, Columbus, Ohio (1982).
- 49. C. R. Pollock, F. R. Petersen, D. E. Jennings, and J. S. Wells, and A. G. Maki, J. Mol. Spectrosc. 99, 357 (1983).
- 50. L. R. Brown and R. A. Toth, J. Opt. Soc. Am. B.  $\underline{2}$ , 842 (1985).
- 51. A. Chedin and J.-L. Teffo, J. Mol. Spectrosc. <u>107</u>, 333 (1984).
- 52. L. S. Rothman, Appl. Opt. 17, 3517 (1978).

APPENDIXES

## APPENDIX A

 ${\tt High\ Temperature\ CO}_2\ {\tt Spectrum} \\$ 

#### EXPERIMENTAL CONDITIONS:

Temperature:

800 K

Absorption Path Length: 3.5 m

Pressure:

6 Torr

Isotopic Composition: Natural Abundance







| AD-A173 888 CARBON DIOXIDE LINE POSITIONS IN THE 28 AND 43 MICRON 3/4 REGIONS AT 880 KELV. (U) UTAH STATE UNIV BEDFORD MA STEMART RADIANCE LAB N P ESPLIN ET AL. 19 FEB 86 |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----------------|--|-----|-----|----|--|
| UNCLASSIFIED                                                                                                                                                               | SCIENTIF | IC-16 AFGL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TR-86-( | 1946           |  | F/0 | 7/4 | ML |  |
|                                                                                                                                                                            |          | TO THE STATE OF TH |         | 17. A<br>17. A |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |
|                                                                                                                                                                            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |         |                |  |     |     |    |  |



MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A











STATE CONTROL STATES STATES STATES (STATES)











### APPENDIX B

Lines Used in Least-Squares Fits

Observed line positions (Obs) are in cm<sup>-1</sup>. Observed minus calculated values (O-C) and expected uncertainties (Unc) are in units of  $10^{-4}$  cm<sup>-1</sup>. Isotope codes are:  $626 = {}^{12}c^{16}O_2$ ,  $636 = {}^{13}c^{16}O_2$ ,  $628 = {}^{12}c^{16}O^{18}O$ , etc.

ショ 単語のならなる 関係のないのと 国際など

The 4.3 µm Bands Included in Line Listing

| <del> </del>                                                                                                                                                                                                                                                                                                                                                                    | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                          | <del></del>                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transition                                                                                                                                                                                                                                                                                                                                                                      | Isotope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Band Center (cm <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                    | Range of<br>Measurement                                                                                                                                                                                                                                                                                                                                  | Page                                                                                                                                                                               |
| 05511 05501 13311 13301 13312 13302 04411 04401 02221e 02211e 02221f 02211f 12211e 12201e 12211f 12201f 10022 10012 20011 20001 20013 20003 20012 20002 03311 03301 01121e 01111e 01121f 01111f 11111e 11101e 11111f 11101e 11112f 11102e 11112f 11102e 11112f 11102f 02211e 02201e 02211f 02201f 00021 00011 10012 10002 01111e 01101e 01111f 01101e 01111f 01101f 00011 00001 | \right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right\right | 2286.753<br>2288.3903<br>2290.6806<br>2299.2141<br>2299.2395<br>2301.0539<br>2301.0539<br>2302.3735<br>2302.5227<br>2305.2568<br>2306.6920<br>2311.6681<br>2311.7008<br>2311.7008<br>2311.7008<br>2313.7726<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350<br>2315.2350 | P( 85)- P( 68)-R( 63) P( 80)-R( 71) P( 89)-R( 75) P( 79)-R( 71) P( 78)-R( 76) P( 88)-R( 60) P( 88)-R( 60) P( 89)-R( 73) P( 80)-R( 78) P( 80)-R( 74) P( 62)-R( 56) P( 90)-R( 85) P( 86)-R( 60) P( 89)-R( 89) P( 92)-R( 88) P( 61)-R( 61) P( 98)-R( 88) P( 102)-R(104) P(107)-R(103) P( 99)-R( 79) P(108)-R(106) P(114)-R(115) P(114)-R(110) P(126)-R(118) | 221<br>219<br>219<br>221<br>213<br>215<br>207<br>206<br>205<br>207<br>208<br>211<br>211<br>211<br>213<br>207<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208<br>208 |
| 04411 04401<br>02221e 02211e<br>02221f 02211f<br>12211e 12201e<br>12211f 12201f<br>20013 20003<br>20012 20002<br>03311e 03301e<br>03311f 03301f<br>01121e 01111e<br>01121f 01111f<br>11111e 11101e                                                                                                                                                                              | \rangle 13c1602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2236.6789<br>2236.6790<br>2236.6790<br>2238.5706<br>2238.5706<br>2240.5362<br>2242.3238<br>2248.3567<br>2248.3567<br>2248.3618<br>2248.3618<br>2250.6054                                                                                                                                                                                                                                                                                                           | P( 90)-R( 95) P( 61)-R( 55) P( 72)-R( 60) P( 88)-R( 40) P( 89)-R( 77) P( 88)-R( 90) P( 82)-R( 62) P( 95)-R( 93) P( 98)-R( 96) P(100)-R( 92) P( 87)-R( 71) P( 97)-R( 83) P(100)-R( 84)                                                                                                                                                                    | 250<br>248<br>248<br>248<br>244<br>250<br>255<br>255<br>245<br>245<br>245                                                                                                          |

という。「「「「「「「「「「「」」」というという。「「「」」というという。「「「」」というという。「「「」」というという。「「「」」というという。「「」というという。「「」「「」というという。「「」「

| Transition                                                                                                                                    | Isotope                                         | Band Center (cm <sup>-1</sup> )                                                                                   | Range of<br>Measurement                                                                                                     | Page                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 11112f 11102f<br>02211e 02201e<br>02211f 02201f<br>00021 00011<br>10012 10002<br>10011 10001<br>01111e 01101e<br>01111f 01101f<br>00011 00001 | 13c <sup>16</sup> 0 <sub>2</sub>                | 2250.6931<br>2260.0500<br>2260.0500<br>2260.0617<br>2261.9102<br>2262.8486<br>2271.7604<br>2271.7604<br>2283.4874 | P(98)-R(78) P(106)-R(104) P(103)-R(101) P(105)-R(103) P(104)-R(104) P(102)-R(102) P(113)-R(107) P(116)-R(112) P(122)-R(122) | 247<br>231<br>231<br>243<br>228<br>229<br>225<br>225<br>224 |
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001                                 | 13 <sub>c</sub> 16 <sub>0</sub> 18 <sub>0</sub> | 2242.8075<br>2242.8075<br>2245.2726<br>2245.4960<br>2254.3803<br>2254.3803<br>2265.9719                           | P( 86)-R( 75)<br>P( 77)-R( 74)<br>P( 83)-R( 81)<br>P( 84)-R( 80)<br>P( 94)-R( 94)<br>P( 99)-R(101)<br>P(106)-R(100)         | 257<br>257<br>253<br>253<br>255<br>255<br>255<br>233        |
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001                                 | ) 12 <sub>c</sub> 18 <sub>02</sub>              | 2289.5689<br>2289.5689<br>2290.9720<br>2294.8795<br>2301.7996<br>2301.7996<br>2314.0489                           | P(94)-R(72)<br>P(101)-R(69)<br>P(98)-R(54)<br>P(98)-R(88)<br>P(111)-R(101)<br>P(122)-R(102)<br>P(128)-R(106)                | 231<br>231<br>229<br>228<br>225<br>225<br>224               |
| 02211e 02201e<br>02211f 02201f<br>10011 10001<br>10012 10002<br>01111e 01101e<br>01111f 01101f<br>00011 00001                                 | <sup>12</sup> c <sup>16</sup> o <sup>18</sup> o | 2307.3830<br>2307.3830<br>2309.2898<br>2311.7151<br>2319.7380<br>2319.7380<br>2332.1127                           | P(100)-R(92) P(96)-R(98) P(100)-R(98) P(103)-R(92) P(113)-R(113) P(111)-R(105) P(119)-R(117)                                | 240<br>240<br>238<br>238<br>236<br>236<br>233               |
| 00011 00001                                                                                                                                   | 13 <sub>c</sub> 16 <sub>0</sub> 17 <sub>0</sub> | 2274.0884                                                                                                         | P( 73)-R( 80)                                                                                                               | 259                                                         |

The 2.8 µm Bands Included in Line Listing

| Transition                                                                                                                                                          | Isotope                                                  | Band Center (cm <sup>-1</sup> )                                                                                                                                                                              | Range of<br>Measurement                                                                                                                                                                                                         | Page                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| 12212e 02201 12212f 02201 20013 10002 11112e 01101 11112f 01101 20012 10001 20012 10002 20011 10001 21111e 11101 10011 00001 11111e 01101 11111f 01101 12211e 02201 | $ \begin{array}{c}                                     $ | 3552.8568<br>3552.8568<br>3568.2165<br>3580.3265<br>3580.3265<br>3589.6520<br>3612.8416<br>3692.4278<br>3711.4776<br>3713.7218<br>3713.7218<br>3714.7825<br>3723.2501<br>3723.2501<br>3726.6475<br>3726.6475 | P( 46)-R( 50) P( 41)-R( 43) P( 56)-R( 60) P( 57)-R( 65) P( 70)-R( 74) P( 56)-R( 52) P( 82)-R( 86) P( 62)-R( 64) P( 56)-R( 58) P( 39)-R( 35) P( 40)-R( 40) P( 84)-R( 86) P( 77)-R( 75) P( 70)-R( 70) P( 52)-R( 56) P( 53)-R( 57) | 276<br>276<br>273<br>274<br>274<br>272<br>273<br>274<br>277<br>277<br>277<br>272<br>274<br>276<br>276 |
| 12212 02201 20013 10002 11112e 01101 11112f 01101 20012 10001 10012 00001 20012 10002 10011 00001 20011 10001 11111e 01101 112211e 02201                            | 12 <sub>C</sub> 16 <sub>O</sub> 18 <sub>O</sub>          | 3511.4117<br>3531.8352<br>3538.7785<br>3538.7785<br>3539.0176<br>3571.1409<br>3645.4356<br>3675.1337<br>3676.7399<br>3683.8136<br>3683.8136<br>3687.4754                                                     | P( 33)-R( 28) P( 56)-R( 59) P( 64)-R( 68) P( 67)-R( 66) P( 53)-R( 53) P( 82)-R( 82) P( 53)-R( 53) P( 77)-R( 77) P( 48)-R( 50) P( 66)-R( 66) P( 65)-R( 66) P( 51)-R( 52) P( 50)-R( 53)                                           | 270<br>263<br>265<br>265<br>261<br>263<br>261<br>264<br>267<br>267<br>268<br>268                      |
| 10012 00001<br>10011 00001                                                                                                                                          | ' L 10 12                                                | 3525.2048<br>3638.0657                                                                                                                                                                                       | P( 62)-R( 74)<br>P( 78)-R( 74)                                                                                                                                                                                                  | 271<br>271                                                                                            |

|       | Unc          | 00-01-01-0-0-000000000-4-04-04-04-04-04-04-04-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9     | ე <u>-</u> 0 | 1<br>10-00-00-00-00-00-00-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 929   | ops          | TOORDANGERON TEORNING RESTREEM TOORS TO |
| 00001 | ~            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1   | Unc          | 040000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18    | 0            | 101- 1- 1- 1- 1- 1- 1- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0- 0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | ops          | 4 84 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | ۵,           | 3 30 81 000281 0 0 0 0000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       | 2            | 02000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| 1      | !<br>!      | ٦           | 00±000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02779                                                        | 00074<br>0000                          | 2888<br>2888                                                | 30000<br>20000                            | 739               | \$000<br>\$000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20001                        | 2024                                 | 280                                                         | V=7.00                                                                                 | 000m                         | ç           |
|--------|-------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-------------|
| 1      | į           |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                              |                                        |                                                             |                                           |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                      | · · ·                                                       |                                                                                        | 2200                         | _           |
| !      | 1           | Unc         | 20<br>19<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                              | -22 <u>-</u> -                         |                                                             | <u> </u>                                  | 55                | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                            | 720                                  | ى<br>ئەتد                                                   | တ္ဆလ                                                                                   | 04 <i>4</i>                  |             |
| - !    | 1           | ၁-၀         | 04000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 999                                                          | 1-10A                                  | 0<br>0<br>0                                                 | 7 7 0 7<br>1 1 1                          | က္စ               | NONA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                              | 2-4-                                 | -65.                                                        | <u>11</u> 0                                                                            | φ-0-                         |             |
|        | 626         | sq0         | 3721<br>9030<br>4062<br>8857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9553                                                         | 00000000000000000000000000000000000000 | 797<br>1907                                                 | 9537<br>0548<br>1300<br>1817              | 205<br>180        | 1281<br>0518<br>9491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -<br>N                       | 500                                  | ころろう                                                        | 7322<br>7322                                                                           | 8366<br>3518<br>8406         |             |
| 1      | 10001       | æ           | 22322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>23322<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>2332<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>232<br>23<br>23 | - 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20<br>- 20 | 00000000000000000000000000000000000000 | 1 A A                                                       | 23557<br>23557<br>23552<br>23552          | 355.<br>356.      | 23.55<br>23.55<br>23.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55<br>25.55 | . 600                        | 999                                  | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 300                                                                                    | 2368.<br>2369.<br>2369.      |             |
| į      | -           | Unc         | 94-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1<br>10                                                      | 7-500                                  | <u>Σ</u> ∞                                                  | 01-01-0                                   | שימים             | <u>စည်</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                           | 18                                   | <u>₹</u>                                                    | 15                                                                                     | 255                          | 2           |
| 1      | 1001        | ပ<br>-<br>0 | 0<br>4<br>4<br>8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 406-1                                                      |                                        | <b>∩</b> ←                                                  | w-hor                                     | ~no               | 965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 97                           | 12                                   | 100                                                         | -110                                                                                   | 1533                         |             |
| 1 1    | 1           | P Obs       | 04.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3631<br>3631<br>3631                                         | 000-0                                  | 36.                                                         | 27.27.27.27.27.27.27.27.27.27.27.27.27.2  | 246               | .981<br>.797                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.3570                       | 6.5128<br>4.1830                     | 9.4476                                                      | .1690                                                                                  | 6740<br>1282<br>15549        | . 200       |
| 1      | 1           |             | 2222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2000000<br>200000000000000000000000000000                    | -000c                                  | 20                                                          | 000 #000<br>000 000<br>000 000<br>000 000 | 3888<br>7888      | 28<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2273<br>2271                 | 226                                  | 2259                                                        | 2252<br>2249                                                                           | 2224<br>2224<br>2233<br>2233 | Š           |
| 1      | 1           | Unc         | 11127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100<br>100<br>100                                            | 20                                     | 14<br>10                                                    | F.80                                      |                   | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50 ,                         | - <del>1</del> 25                    | <u> </u>                                                    | ≃ດານ∝                                                                                  |                              | 4           |
| į      |             | ပ           | 11.<br>20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1210                                                         | -13                                    | NOM                                                         | wru=1                                     |                   | 965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              | 80                                   |                                                             | -502=                                                                                  | 700                          | >           |
|        | 626         | sq0         | 2074<br>7383<br>2474<br>7327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6304<br>0429<br>4302<br>7945                                 | 4525<br>7415                           | 4737<br>6685<br>8395                                        | 107<br>205<br>277                         | 220               | 3247<br>2747<br>2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 78-                          | 23.5                                 | 5 6                                                         | 37 ± 0<br>37 ± 0<br>37 ± 0                                                             | 104                          | 7           |
| 1      | 10002       | æ           | 23328<br>23328<br>23339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23337<br>23337<br>23337<br>2339                              | 2342.<br>2343.                         | 2347<br>2348<br>2348.                                       | SAMA<br>SAMA                              | $\frac{200}{200}$ | 2323<br>2323<br>2365<br>406<br>406<br>406<br>406<br>406<br>406<br>406<br>406<br>406<br>406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36                           | າ ຕາເ                                |                                                             | 220<br>230<br>230<br>200<br>200<br>200<br>200<br>200<br>200<br>200                     | 333                          | 3(7         |
| j<br>! | 2 -         | Unc         | 230<br>14<br>14<br>14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25-000                                                       | 2010v                                  | . ωπο                                                       | ည်စည်က                                    | 2004              | 76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 566                          | -∞~•                                 | <u>5</u>                                                    | 29<br>29<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20 | 22                           | Ω           |
| į      | 1001        | ပ<br>ပ      | 1,835                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 79-1-0-                                                      | -046-                                  | -980                                                        | σοφηί                                     | -0°               | 5-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | JO 04-                       | 777                                  | <u>5</u> .                                                  | -25<br>18                                                                              | - ,                          | Ω<br>-      |
| 1      | ,<br>,<br>, | obs.        | 863<br>6555<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1286<br>1286<br>1286<br>1286<br>1286<br>1286<br>1286<br>1286 | 0000<br>0000<br>0000<br>0000           | 320<br>420<br>504<br>506                                    | 1909<br>1909<br>1909<br>1909<br>1909      | 857<br>995        | 163<br>006<br>206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4070<br>4070<br>4070<br>4070 | 5000<br>5000<br>5000<br>5000         | 2 - 6                                                       | 1946<br>7861<br>3575                                                                   | 24                           | <b>めりめり</b> |
| 1      | <br>        | ۵           | 325<br>3224<br>3224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1000000<br>100000000000000000000000000000                    | 2000<br>2000<br>2000<br>2000           | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 20000                                     | 2857.<br>2857.    | 281.<br>279.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2274<br>2272                 | 267.                                 | 260.                                                        | 2253.<br>2253.<br>2251.                                                                | 246.                         | 2238.       |
| j      | i           | ה           | 00200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50450                                                        | 2500°                                  | 3000<br>3000<br>3000                                        | # 080 0                                   | 739               | 200°=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20001                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 282                                                         | 74.50<br>74.50                                                                         | 0007<br>-0000                | Q<br>Q      |

| 80000000000000000000000000000000000000                                                  |           | ſ       | するの数のようの数のはその数のようの数のもとのとしてとりとうとうというというというというというというというというというというといいといい                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------|-----------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21-12<br>24-10<br>13 15 12 23<br>23 23 23 23 23 23 23 23 23 23 23 23 23 2               |           | -C Une  | 11 05 wo 0505 5 wo 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2370.7413<br>2371.15281<br>2371.5381<br>2371.8997<br>2372.8287<br>2373.3176             | 20002 626 | R Obs O | 2316.2667 - 2319.0070 - 2320.3387 - 2322.9326 2322.9326 2322.9326 23327.8245 23337.3823 23337.3823 2339.2333 - 2330.2333 - 2340.1231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| νο ν <u>υ</u> ρωω ω<br>ον ν 2000 π                                                      | 0012 -    | 0-C Unc | で 5000mm-0rg w -0400 84<br>5 5700 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2234.3428<br>2231.7000<br>2226.3439<br>2220.8312<br>2218.1337<br>2215.5383<br>2206.8525 |           | P Obs   | 2305.1282<br>23001.9275<br>22301.9275<br>22301.9275<br>22296.9447<br>22296.9447<br>22296.9447<br>22296.9477<br>22296.9477<br>22296.9477<br>22296.9477<br>22296.9477<br>22296.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>22266.7429<br>2 |
| 0 1 1 0<br>1 1 3 4 1 0                                                                  |           | 0-C Unc | 121<br>121<br>123<br>123<br>123<br>124<br>125<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127<br>127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2373.4850<br>2373.8846<br>2374.2596<br>2374.6082<br>2375.2305                           | 20003 626 | R Obs   | 2307.5681<br>2309.0784<br>2310.5679<br>2312.0347<br>2314.8927<br>2316.2905<br>2325.3892<br>2327.7755<br>2328.9335<br>2336.3674<br>2336.3674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2 60 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                | 0013 -    | 0-C Unc | $     \begin{array}{ccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2236.2914 - 2228.4524 - 2228.4524 - 2228.4524 - 2228.4031 - 2211.0834 - 2211.9338       | 2         | P Obs O | 2302.0932<br>2300.4765<br>2298.8364<br>2292.0441 -<br>2288.7106<br>2284.8856<br>2284.8856<br>2277.3600<br>2277.4612<br>2277.4612<br>2273.4612<br>2273.4612<br>2277.4004<br>2267.4415<br>2267.4415                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80749807498<br>8066660000                                                               |           | 5       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| 00000000000000000000000000000000000000 |              |                                                                            |                        |  |  |  |  |  |
|----------------------------------------|--------------|----------------------------------------------------------------------------|------------------------|--|--|--|--|--|
| σo.                                    |              |                                                                            |                        |  |  |  |  |  |
| ~                                      |              |                                                                            |                        |  |  |  |  |  |
| 12                                     |              |                                                                            |                        |  |  |  |  |  |
| 2340.9881 12 18                        |              |                                                                            |                        |  |  |  |  |  |
| 10                                     | 7            |                                                                            |                        |  |  |  |  |  |
| 20<br>20                               | -1 7         |                                                                            |                        |  |  |  |  |  |
| 2253.8233 2 10<br>2251.5927 20 17      | 2247.0557    |                                                                            |                        |  |  |  |  |  |
| 801                                    | 10           | 6<br>25<br>25                                                              |                        |  |  |  |  |  |
| £. 1<br>4±.                            | 8 10         | -20<br>-27                                                                 |                        |  |  |  |  |  |
| 2340.0816 -5 8<br>2340.9505 -4 10      | 2342.6165    | 2345.6540<br>2346.3500<br>2347.0234                                        |                        |  |  |  |  |  |
|                                        | 6 6          | ∞νο∞≠μ                                                                     | 23                     |  |  |  |  |  |
|                                        | 6-           | 272027                                                                     | -8 21<br>-5 23         |  |  |  |  |  |
|                                        | 2245.9136 -9 | 2241.3402<br>2239.0204<br>2236.6793<br>2234.3160<br>2231.9264<br>2229.5204 | 2224.6339<br>2222.1593 |  |  |  |  |  |

|       | Unc | 12 18 5                                 | 122                                                         | 34554                                     | 9 7                          |
|-------|-----|-----------------------------------------|-------------------------------------------------------------|-------------------------------------------|------------------------------|
| 9     | ပ   | 11<br>-17<br>-3                         | 110                                                         | 1200                                      | 5 5                          |
| 929   | ops | 3364<br>2718<br>1118                    | 4887<br>7727<br>0269                                        | 00000<br>00000<br>00000<br>00000<br>00000 | 1813                         |
| 20001 | ~   | 2306.3<br>2309.2<br>2312.3              | 2317.1<br>2318.1<br>2320.0                                  | 2322<br>2322<br>23223<br>23224<br>23225   | 2329.                        |
| -     | Unc | 7 7 7 7 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 | 100                                                         | -wr-w=0                                   | v 4646                       |
| 2001  | ပ   | 6<br>4<br>15<br>15                      | <u>1</u><br>64                                              | 60-1-1                                    | 11.150                       |
|       | 0bs | 7 420<br>4333<br>7 400<br>0238          | 5125<br>7230                                                | 000000<br>000000<br>000000<br>000000      | 98007                        |
|       | ۵   | 12.                                     | 2287.<br>2285.                                              | 22278<br>22276<br>22274<br>22272          | 2002<br>2002<br>2002<br>2002 |
|       | J   | 004080040                               | 2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>2555<br>255 | 0000<br>0000<br>0000<br>0000              | 000208<br>24444              |

| 21        | 777                    | 084       | 205              | 925                |           |
|-----------|------------------------|-----------|------------------|--------------------|-----------|
| 12        | 17                     | 000       | 0 <del>-</del> 0 | £-£                | -         |
| 2334.0849 | 2336.7223<br>2337.5535 | 884       | 341.995          | 2343.2736          | 044.440   |
| ≉         | 23                     | 16        | 125              | 22                 | 10        |
| 3         | -21<br>17              | 17        | 977              | 1325               | 1-        |
| 2253.7237 | 2249.2817<br>2247.0293 | 2240.1152 |                  | 228.107<br>225.631 | 2220.6121 |
| 00-       | 1000                   | N=V       | တ္ထင္            | ومحب               | 00        |

|               | ה            | -wr-0                               | - <u>w</u> r;                                                | 256                                                                                              | 322          | 265                                                           | - 2002<br>- 2002                    |           | 1 4 4<br>- Wr |
|---------------|--------------|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------|-------------------------------------|-----------|---------------|
|               | Unc          | 17                                  | 12 15                                                        | 76                                                                                               | 6            | 16                                                            |                                     | 14        |               |
|               | ე-0          | 13 17                               | 12                                                           | 000                                                                                              | 7            | =                                                             |                                     | 10 14     |               |
| 10012 626     |              | 2308.3599                           | 2313.9620                                                    | 2316.6178 2317.9114                                                                              | 2320.4228    | 2322.8368                                                     |                                     | 2328.4527 |               |
| 0022 -        | Unc          |                                     | 222                                                          | 23                                                                                               | 25           | - ⇒                                                           | 955                                 | ·~        | 11            |
| 1002          | 0-C Unc      | -12                                 | - 28<br>- 28<br>- 28<br>- 28<br>- 28<br>- 28<br>- 28<br>- 28 | -26<br>-15                                                                                       | 25           | <b>VO</b>                                                     | - w <del>[</del>                    | <b>=</b>  | -11<br>26     |
|               | P Obs        | 4380<br>1833                        | 3.5197<br>1.8331                                             | 2286.6328<br>2284.8533                                                                           | 2281.2253    | 7:4977                                                        | 3.6788                              |           | 3.7226        |
|               |              | 229                                 | 2293<br>2291                                                 | 228                                                                                              | 228          | 227                                                           | 2273.67                             | 226       | 2263          |
|               | Unc          | 21<br>28<br>22                      | 625                                                          | 7000                                                                                             | √ <b>%</b> = | r∞c                                                           | 242                                 | <u>ب</u>  | 2 =           |
|               | ၁ <u>-</u> ၀ | 18<br>-30<br>17                     | ≠φ(                                                          | 1<br>50<br>mc                                                                                    | omo          | ) <del> </del>                                                | 200                                 | · C       | 10            |
| 626           | R Obs        | 2325.7140<br>2327.2147<br>2330.1564 | 731                                                          | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                      | 146          | 53.50<br>53.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.5 | 937                                 | .0776     | 2353.1000     |
| ! !<br>! !    | æ            | 2325.714<br>2327.214<br>2330.156    | 2334                                                         | -<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 233          | 2344                                                          | 2347                                | 2350      | 2353          |
| 00021 - 00011 | 0-C Unc      | <u>α τ. τ. ς</u>                    | 760                                                          | 20                                                                                               | 91           | -•α<br>-                                                      | -<br>-<br>-<br>-<br>-<br>-          | 13        | 17            |
|               | ပ            | ¥0r9                                | 00#+<br>1                                                    | -25                                                                                              | 750          | مئر                                                           | 75-27                               | -10       | <b>=</b>      |
|               | P Obs        | 2320.2496<br>2318.6341<br>2316.9932 | 2000<br>200-0                                                | 308.4                                                                                            | 2302.9900    | 2299.2440                                                     | 2295.4047<br>2293.4456<br>2291.4661 | 2289.4594 | 2285.3785     |
|               | J            | -wn-0                               |                                                              |                                                                                                  |              |                                                               |                                     |           | _             |

| ははころうららららてててての後後後ののののののできます。                                                                                                                                                                                                  |           | 5     | −0m2r00r00                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------|-------------------------------------------------------------------------------------------------------------------------|
| 7 42 42                                                                                                                                                                                                                       |           | Unc   | 200                                                                                                                     |
| 132 - 20                                                                                                                                                                                                                      | 9         | 2     | 16<br>114<br>1                                                                                                          |
| 2335.2835<br>2340.1854<br>2342.2989<br>2342.99559                                                                                                                                                                             | 01111 626 | R Obs | 2314.7467<br>2315.4862<br>2316.2290<br>2316.9568                                                                        |
| 128 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                     |           | Unc   | 21<br>18<br>23                                                                                                          |
| 1 20 0 905                                                                                                                                                                                                                    | 0112      | 2-0   | 43<br>1-14<br>1-14                                                                                                      |
| 2255.3396<br>2253.1885<br>2242.0797<br>2237.4757<br>2227.9941<br>2225.5664                                                                                                                                                    |           | P Obs | 2310.1486<br>2307.7555<br>2305.3291<br>2304.4929                                                                        |
| 23 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -                                                                                                                                                                                      |           | Unc   | 2 23-4-495<br>2 33-4-495                                                                                                |
| 0 5 min + 10-41 0                                                                                                                                                                                                             |           | 0-0   | 1 1 1 1 1 1                                                                                                             |
| 9                                                                                                                                                                                                                             | 1 626     | 008   | .1093<br>1093<br>1092<br>1092<br>1093<br>1093                                                                           |
| 2 2000 0 0000 0 00000 0 00000 0 00000 0 0000                                                                                                                                                                                  | 0110      | _ i   | 22 22 22 22 22 22 22 22 22 22 22 22 22                                                                                  |
| 707 7 84010203010 6 97 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                 | =         | Unc   | 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                 |
| 111 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                       | 011       | - :   | 11 2000 11                                                                                                              |
| 22281.1989<br>2276.935<br>2276.935<br>2276.9235<br>2265.9235<br>2265.9214<br>2226.5135<br>22249.2216<br>22249.22135<br>22249.22135<br>22249.23173<br>22249.23173<br>22249.23173<br>2225 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |           | P Obs | 2335<br>23334<br>23334<br>23334<br>23336<br>23331<br>23331<br>23331<br>23331<br>23331<br>23331<br>23331<br>2329<br>3813 |
| ## 1010101010101010101010101010101010101                                                                                                                                                                                      |           | ה     | −0m25001                                                                                                                |

|       | 6        | 16                      | 25<br>55<br>5              | <u>∞</u> 20          |               | 221<br>281<br>1                                                                               | 22                 | 5                    | 12                           | 555                                                          |                              | 25       |                      | 200                                  | 7                |              |
|-------|----------|-------------------------|----------------------------|----------------------|---------------|-----------------------------------------------------------------------------------------------|--------------------|----------------------|------------------------------|--------------------------------------------------------------|------------------------------|----------|----------------------|--------------------------------------|------------------|--------------|
|       | ₽        | -12<br>-3               | 35<br>9                    | 777                  | :             | 227                                                                                           | -23                | 9-                   | 1<br>ه سم                    | P<br>N<br>T                                                  |                              | 17       | 114                  | 100                                  | ī                |              |
|       | 1.9261   | 3.2867                  | 5.2729<br>5.9383<br>6.5698 | 8433                 |               | 1.5220<br>2.1326<br>2.6963                                                                    | 4.972              | 7.1525               | ထထင                          | 9.40<br>9.75<br>7.75<br>7.75<br>7.75<br>7.75<br>7.75<br>7.75 | 0.742                        | 1.7092   | 3.559                | 1.4483<br>4.8727                     | 6.1512           |              |
|       | 232      | 232                     | 232<br>232<br>232          | 232                  | ń             | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                   | · ~                | 233                  | 2333                         | S                                                            | ראור                         | 234      | (r)(r)               | 2334                                 | 234              |              |
|       | 22       |                         | 16<br>25                   | 5 <sub>8</sub>       | 500           | 200                                                                                           |                    | 2 <u>6</u> 75        | 55                           | Ξ                                                            | 12                           | <b>=</b> | ± 50                 | 10<br>32<br>3                        | 134              |              |
|       | -20      | 200                     | 322                        | 213                  | 2007          |                                                                                               | 100-               | 194                  | 120                          | 6                                                            | ا<br>ا                       | 8        | -16<br>4             | 965                                  |                  |              |
|       | 301.1294 | 299.413<br>298.571      | 2000                       | 293.2460<br>292.3035 | 222           | 286.710<br>286.710                                                                            | 282.865<br>281.949 | 279                  | 275.9798<br>274.8862         | 272.8318                                                     | 270.7514                     | 68.649   | 265.5507<br>264.3722 | 262.1984<br>261.2166<br>259.9992     | 59.011<br>57.775 |              |
|       | 2        | NNN                     | 10101                      | 00                   | ~~~           | 1010                                                                                          | 000                | 1000                 | ~~                           | 2                                                            | ~~                           | C)       | 20                   | 000                                  | 00               |              |
| 16    |          | 272                     | 18                         | 29                   | 22            | 2232                                                                                          |                    | 222                  |                              |                                                              |                              |          |                      | - mo≠                                |                  | 00           |
| 2     | 7-       | JW.                     | 2                          | 1-                   | <b>≒</b> -    | 5-<br>2000                                                                                    | /=4                | 078                  |                              | 15.                                                          |                              | 7-       | 0.4 c                | JÕRV                                 | 2                | αm           |
| .5322 | .928     | 3027                    | 6449.                      | .5474                | .7975         | 223<br>223<br>233<br>235<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>250<br>25 | 866.               |                      | 2000<br>0000<br>0000<br>0000 | , 6, 4<br>7, 0, 1                                            | 2.0.3<br>7.0.3               | . 405    | .344<br>.791         |                                      | .007             | 2495         |
| 2345  | 77       | 23.48<br>23.48<br>23.48 | 2351                       | 2353                 | 2354          | 2357<br>2357<br>2357                                                                          | J.<br>V.           | 2361<br>2361<br>2362 | 2000                         | 390                                                          | 300                          | 36       | 999                  | 2369                                 | 37               | 2371         |
| 20    | 25       | 21<br>29                |                            |                      |               | 797-04                                                                                        |                    | 202                  |                              | 9                                                            | <del>1</del> 50              |          |                      | $\sqrt{\omega}$                      |                  | 20           |
| 9     | 12       | 15                      | who                        |                      |               | runk                                                                                          |                    |                      | <u>ν</u>                     | 97                                                           |                              |          | 1-0-                 | -192                                 | Ŋ                | -10<br>4     |
| .7052 | .0036    | .2756                   | . 450<br>. 821             | 000.                 | 3005          | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                   | .652<br>652<br>610 | 6256<br>6965<br>6205 | 589                          | .581                                                         | 1.00<br>1.00<br>1.00<br>1.00 | 282      | 900                  |                                      | .481             | .2253        |
| 2327  | 2326     | 2324<br>2323            | 333                        | <u> </u>             | - <del></del> | 20000<br>20000<br>200000                                                                      | 2000               | 2304<br>2303<br>2302 | ನ್ಗಿದ್ದ                      | 29                                                           | 295                          | 29       | 7000<br>7000<br>7000 | 2286<br>2286<br>2285<br>2285<br>2284 | 28               | 2281<br>2280 |

| 0-0446                                | ]<br> <br> | ٦          | ととしてののおようられまでしてももししししししししてもらってってってってってってっている。                                                         |
|---------------------------------------|------------|------------|-------------------------------------------------------------------------------------------------------|
| ;<br>;<br>;                           |            | Unc        | 4E & 02100 0000 20000                                                                                 |
|                                       |            | ပ<br>၀     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                 |
|                                       | 01 626     | R Obs      | 600 20 20 20 20 20 20 20 20 20 20 20 20 2                                                             |
|                                       | =          |            | an a nanana ananan ananan<br>mamma mammam mammam ananan<br>anananan mammam anananan anananan anananan |
| į                                     | =          | Unc        | 02 0 5545 000 1 1 1000 000000                                                                         |
|                                       | =          | ပ<br>ပ     | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                 |
|                                       |            | P Obs      | 90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90<br>90                                              |
|                                       |            |            |                                                                                                       |
| 15<br>16<br>27                        |            | Unc        | 2 2 1 10 11 10 1 2 2 3 8 4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                        |
| 12<br>24<br>24                        |            | 3-0<br>0-0 | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                               |
| .0587<br>.1805                        | 2 626      | ops        | 0.00                                                                                                  |
| 2384<br>2384<br>2385<br>2385<br>2385  | 1110       | E .        | 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3                                                               |
| <u>৩</u> ৯৯ ত                         | 2 -        | Unc        | 11 401000010 00 10000 10010010000000000                                                               |
| ~0 <del>0</del> ∞−                    | 1111       | ပ<br>ပ     | 00 2000-10-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                          |
| 3.5386<br>1.7118<br>0.6651<br>08.8145 |            | P Obs      | 64 - 100 00 00 00 00 00 00 00 00 00 00 00 00                                                          |
| 221<br>221<br>221<br>220              |            |            |                                                                                                       |
| 0-022                                 |            |            | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                |

|                        | 7- <del>7</del>                     |           | 52-0                                             | 18                                  | 9                                   |                    |           |            | 9                      | m                   | 29<br>19  | - 12      | 17                 | ကထ်ထဲ ရ                             | ~                  | 2         | 1.7       | _         |
|------------------------|-------------------------------------|-----------|--------------------------------------------------|-------------------------------------|-------------------------------------|--------------------|-----------|------------|------------------------|---------------------|-----------|-----------|--------------------|-------------------------------------|--------------------|-----------|-----------|-----------|
|                        | <u> </u>                            |           | 1.00 W.3                                         | 13                                  |                                     |                    |           |            |                        | 7                   | 740       |           |                    | 744                                 | 700                | 0         | ,         | _         |
| 337.244                | 2338.9073                           |           | 2342.0645<br>2342.5374<br>2343.0664<br>2343.5226 | ⇉                                   | 2345.9265<br>2346.3215              |                    |           |            | 2349.6989<br>2350.1973 | 351.236             | 2351.7320 | 352.672   | 353.354<br>353.850 | 2354 0061<br>2354 5033<br>2354 6372 | 355.239            | 34).666   | 256 881   | 0         |
|                        | 107                                 | 28        | ≠ mo                                             | ~9e=                                | 20                                  | 13                 | 12        | œ۳         | 1.0rc                  | <b>1</b> 4          | 19        | 21        |                    | ₩ <u>-6</u>                         | <b>4</b> € ⊓       | 0         | 5         | 7         |
|                        | <u>√</u> 6.2                        | 27        | 0.0±                                             | -0m                                 | 23                                  | ∞                  | 7         |            | 15                     | 15                  | -26       | -28       | 1 I V              | w-5                                 |                    | 7         | -5        | -2        |
| 283.705<br>282.844     | 2280.8545<br>2279.7036<br>2278.8432 | 2276.8076 | 273.517<br>272.660<br>271.407                    | 2270.5514<br>2269.2724<br>2268.4195 | 266.266<br>266.266                  | 2262.7249          | 2260.4939 | 258.237    | 2255.9594<br>2255.1366 | 2252.8394 2251.3286 | 2248.9771 | 246.602   | 243.423            | 2241.7855<br>2241.0117<br>2239.3406 | 236.870<br>236.870 | 011.007   | 2231.8602 | 2229.3203 |
| œ                      | 20 80                               |           | യയയു                                             | 8 9                                 | 17                                  | , ,                |           | ſΛ≃ŧ       | 09=                    | r                   | 2         | 7         | 9                  | 5                                   |                    | ∞         | ٣         |           |
| 7                      | £ -£                                | - 1       | -27                                              | 2 -12                               | ===                                 | -16                | -         | 21         | 06-                    | -                   | 4         | 9         | -                  | -                                   |                    | -10       | 7         |           |
| 2338.8655              | 2340.5110                           | 346.109   | 2344.2512<br>2344.2512<br>2344.7270<br>2345.2527 | 345.721<br>346.690                  | 2348.1190<br>2348.5601              | 349 45             |           | 350.758    | 2351.5909<br>2352.0078 | 3,76.3,50           | 2353.9345 | 2354.6665 | 2355.3729          | 2356.7122                           |                    | 2357.9509 | 2358.5343 |           |
| 19                     | 13                                  | 17        | 16<br>15<br>27                                   | 16                                  | 0 F 8                               |                    | 2,        | ₩4         | ومرخ                   |                     | 2         | 12        | 5                  |                                     | 15                 | 7         |           |           |
| 8-                     | 990                                 | יטע       | -17<br>15<br>-25                                 | mφ                                  | -4<br>-6<br>27                      |                    |           | <b>⇒</b> " | 777                    | ς, æ                | -3        | -12       | 3                  |                                     | -19                | 7         |           |           |
| 2285.2752<br>2284.3850 | 2282.4063<br>2281.3036<br>2280.4050 | 278.380   | 2276.3305<br>2275.1737<br>2274.2593              | 2270.9682<br>2270.0517              | 2267.9135<br>2266.6702<br>2265.7553 | 264.489<br>264.489 | 262.283   | 260.052    | 2257.7991              | 253.227             | 2250.9047 | 2248.5598 | 2246.1944          |                                     | 2238.9551          | 2236.4994 |           |           |
|                        |                                     |           |                                                  |                                     |                                     |                    |           |            |                        |                     |           |           |                    |                                     |                    |           |           |           |

| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                         |           | 20    | でででいるでしてしてしている。<br>ではまでしてののではない。<br>ではまでしてののでは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------|-----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7 22<br>1 28<br>1 22                                                                                 |           | C Unc | 29 28<br>-7 112<br>-7 112<br>-1 14<br>-1 1 |
| 17                                                                                                   | 191       | 9     | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2357.9204<br>2358.3996<br>2358.3247<br>2358.8599                                                     | 02211 62  | R Obs | 2305.2420<br>2305.9614<br>2307.3885<br>2310.8516<br>2312.8483<br>2314.1578<br>2314.8027<br>2315.4364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22<br>24<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20               | -         | Unc   | 12<br>12<br>12<br>13<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21 1<br>20 0<br>20 0<br>20 0<br>20 0                                                                 | i i ki i  | 0     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2226.7541<br>2223.4847<br>2221.5596<br>2220.8912<br>2216.2676<br>2216.2676                           |           | P Obs | 2295.2933<br>2294.4814<br>2293.6708<br>2290.3571<br>2285.2049<br>2282.5478<br>2280.7465<br>2279.8388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 0                                                                                                  |           | Unc   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10 10                                                                                                |           | با م  | 0- 0 W2 W2-01-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2359.6237                                                                                            | 02201 626 | R 0bs | 22 22 22 22 22 22 22 22 22 22 22 22 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 11<br>10<br>6<br>8<br>8<br>17                                                                        | -         |       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 13 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                           | 0221      |       | 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2228.9910<br>2226.4410<br>2223.8718<br>2221.2788<br>2218.6631<br>2216.0278<br>2213.3682<br>2210.6873 |           | P 0b  | 2321.7742<br>2320.97742<br>23314.3424<br>23314.3424<br>23310.00226<br>23306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.11-693<br>2306.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$                         |           | 2 00  | 02000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 226                    | 366                                     | www.<br>≠∽w≈           | 1001<br>1000<br>1000   | -<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                   | 222       | 1 1 1<br>J 1 1     | 4<br>4<br>4<br>7<br>8<br>9<br>8 | * rv rv rv<br>* O – ' 0 (           | ひひ<br>ひか<br>ひか                                   | 75<br>70<br>70<br>70<br>70<br>70 | 966<br>966   | 000                                        | 665             | -000<br>-000<br>-000<br>-000<br>-000<br>-000<br>-000<br>-00 | 22.25                               | ~~.<br>~~.                       | -    |
|------------------------|-----------------------------------------|------------------------|------------------------|-------------------------------------------------------------|-----------|--------------------|---------------------------------|-------------------------------------|--------------------------------------------------|----------------------------------|--------------|--------------------------------------------|-----------------|-------------------------------------------------------------|-------------------------------------|----------------------------------|------|
| 17                     | 5                                       | 9                      | 12                     | 13                                                          | 6         | 10                 | 5                               | <del>1</del> 97                     | <del>1</del> 25 <del>4</del> ±                   | 40                               | 6            | 25                                         | 18              | 17                                                          | 2                                   | 2                                |      |
| ī                      | m                                       | L-                     | 203                    | -17                                                         | -12       | ⋾                  | 9                               | 29                                  | <del>1</del> -                                   | <u>ω</u>                         | -3           | 14                                         | 80              | 10                                                          | 3                                   | 7-                               |      |
| 2317.9244              | 319.72                                  | 2320.8966              | 2323.1644<br>2323.7139 | 2325.3310                                                   | 2326.3790 | 2328.4016          | 2329.8429                       | 2330.7766<br>2331.2474<br>2331.6877 | 2333.0223<br>2333.4345                           | 2334.2699                        | 35.4         | 2336.6277                                  | 2337.3630       | 2338.0741                                                   | 2339.1350                           | 2340.0553                        |      |
| 0 t                    | 7 ===================================== | ე<br>ე                 | 84                     | 10                                                          | 7         | 80                 | 16                              | ,<br>0<br>0<br>0<br>0<br>0          | ษณ≠๛                                             | mo                               | 77           | 14                                         | <b>=</b>        |                                                             | -50<br>-1-                          |                                  |      |
| 1 -                    |                                         | 79                     | 9                      | -12                                                         | 0         | 9-                 | -13<br>-13                      | 25.51                               | 79-1-                                            | -9-                              | 24           | 13                                         | <b>=</b>        |                                                             | 147<br>147                          |                                  | _    |
| 2276.1384              | 273.303                                 | 2272.3447<br>2271.3808 | 267.469                | 5.4                                                         | 2261.4213 | 2259.3576          | 2256.2222<br>2255.1600          | 253.025<br>251.956<br>250.870       | 2249.7877<br>2248.6900<br>2247.5968<br>2246.4853 | 2244.2576<br>2243.1435           | .88          | 238.599                                    | 2236.2914       | 232.768                                                     | 2229.2320<br>2228.0320<br>2228.0121 | 225.5950<br>225.5950<br>226.2950 | 2001 |
| <u>0</u> 44            | <u> </u>                                | <u>-</u> 9-            | <u>r</u> c             | 9 م                                                         | 023       | 26                 | <b>₹</b>                        | -500                                | 21                                               | <del>ل</del> ه                   | ∞ <i>⊱</i> ч |                                            | 1973            | -62                                                         | نو                                  | <del></del>                      | r    |
| 000                    |                                         | 970                    | <b>u</b> (             | , <sup>2</sup>                                              | T=        | J.W                | C-#                             | 4 rv − s                            | 12                                               | -12                              | ط ⊷ u        | ı —                                        | -20<br>14<br>14 | 700                                                         | W.                                  |                                  | -    |
| 2342.9907<br>2343.6008 | 344.808<br>345.402                      | 346.573                | 741.11                 | Ų. Ų. Ų. Ų. Ų. Ų. Ų. Į. | 2351.5286 | 352.561<br>353.073 | 354.069<br>355.069              | 2355.9894<br>2356.4489<br>2356.4189 | 358.244                                          | 359.101<br>359.938               | 2360.3569    | 361.928                                    | 362.290         | 2363.4019<br>2363.4019<br>2363.7384                         | 2364.7784                           | 365.083                          | 7    |
| 890                    | ντω                                     | 5 <u>7-</u> 55         | <u>1</u> 06-4          | ە-<br>د                                                     | 2-7       |                    | ಹರ <u>ಿ</u> ಲೇ                  | 5~=~                                | <b>ო</b> ლე                                      |                                  | 77           | يمولا                                      | 20.             | - &                                                         | o (~∞)                              | 96                               |      |
| ₹ <u></u> u            | <u></u> 0                               | 0000                   | J.W                    | - <del></del>                                               | 7-0'      | 905                |                                 | nγφ⊷                                | 1 ww                                             | -1 <sub>0</sub>                  |              | 1 1 0<br>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                 | ٠ ٧٠                                                        | -22                                 | L 1                              |      |
| 816                    | 976                                     | 056                    | 1502                   | 33.4                                                        | -000      | 992                | 30.8945<br>77353<br>77353       | 5000                                | 73.2670<br>72.1542<br>71.0523                    | 9.924<br>8.815                   | 6.553        | <b>→</b> ₩                                 | 0.780<br>9.628  | 8.435<br>6.066                                              | 3.6756                              | 1.260<br>0.074                   |      |
| 888                    | 222                                     | 2222                   | 2000                   | 2000                                                        | 322       | 222                | 3222                            | 2222                                | 227<br>227<br>227                                | 22                               | 22           | 226<br>226<br>226                          | 222             | 22 22                                                       | 225                                 | 22                               |      |
| φr-α                   | 200                                     | ~ UM=                  | 1001                   | ~დ თ                                                        | o-0'      | M ± €              | 95-00                           | グローク                                | 00 tem                                           | <b>~</b> ∞6                      | 0-0          | 7mx                                        | 590             | <u>~</u> ∞60                                                | $\sim \sim$                         | MH C                             | `    |

| 77             | <b>よの与れをごしてもらりららららららららららいしょうとしているのしのこのでのららららららららららららららららららららららららららららららららいにっているのしょしょい。</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                                                             |       |                                  |                                           |           |  |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------|-------|----------------------------------|-------------------------------------------|-----------|--|--|--|
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 19             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 9-             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 6699           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 2340.6659      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                                                             |       |                                  |                                           |           |  |  |  |
| -6<br>25<br>25 | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 9626           | 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 2221.          | 2219.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      |                                                             |       |                                  |                                           |           |  |  |  |
| 14             | 22<br>พอพราท                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 51                 | wrn                                                         | 4     | 1000                             | 117 25 20                                 |           |  |  |  |
| 11             | 12727                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 2                  | 198                                                         | ī     | -m-m                             | £-00                                      |           |  |  |  |
| .0540          | 9107<br>2300<br>4727<br>7795<br>0067                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .5169                | 4602<br>7339<br>8946                                        | 8     | 9396<br>0447<br>2924             | 6883<br>9223<br>9696<br>2006              |           |  |  |  |
| 2366.<br>2366. | 2366.<br>2367.<br>2367.<br>2367.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2368.<br>2369.       | 2369<br>2369<br>2369                                        | 270   | 23370                            | 2371<br>2371<br>2372<br>2372              |           |  |  |  |
| 27             | ៰៓៙៰៰៰៸៴ឨ៸                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ນດື່ສ ເ              | moōono                                                      | ≉     | 121                              | 18<br>12<br>12                            | 29        |  |  |  |
| 1.2            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -to .                | 11<br>1007<br>1007                                          | T     | 14<br>14<br>15                   | TUO EL                                    | 5         |  |  |  |
| 3614           | -8-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17-19-0<br>-8-17- | 2914<br>2914<br>0639 | 1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>1100<br>110 | 9209  | 9400<br>4958<br>2469<br>7834     | 0481<br>7989<br>2910                      | 7098      |  |  |  |
| 246            | 222222<br>222222<br>222222<br>23222<br>2322<br>2322<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 350%                 | 2234.<br>22231.<br>2229.<br>2228.                           | 2224. | 2221.<br>2220.<br>2219.<br>2217. | 2215.<br>2213.                            | 2206.7098 |  |  |  |
| 77             | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                             |       |                                  | 00000<br>00000000000000000000000000000000 | 106       |  |  |  |

| 12201 626 | R Obs O-C Un | 2303.3659 -10 2<br>2304.1254 -4 2<br>2305.6233 -21 1<br>2306.3653 -8 2                      |
|-----------|--------------|---------------------------------------------------------------------------------------------|
| 12211     | n<br>O       | 0-∞-=                                                                                       |
|           | P Obs        | 2296.2638<br>2295.4457<br>2295.4457                                                         |
| ı         |              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 |

| 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 5         | 2                  | 13                                               | 123                                 | 15                         | <u>σ</u>  | -         | 25<br>22<br>22<br>22          |           | 16                     | 167                                              | 29                 | 28                                  |
|---------------------------------------------------------------------------------|-----------|--------------------|--------------------------------------------------|-------------------------------------|----------------------------|-----------|-----------|-------------------------------|-----------|------------------------|--------------------------------------------------|--------------------|-------------------------------------|
| 36<br>36                                                                        | -1        | 8-                 | -                                                | - 1-8                               | 7                          | ⇒ 7.0 α   |           | 26<br>19<br>21                |           | 9 1                    | 1111                                             | 19                 | -18                                 |
| 2309.2718<br>2309.9803<br>2310.6863                                             | 2312.7588 | 2314.1118          | 316.747                                          | 2319.6336<br>2319.9026<br>2320.5157 | 2321.7231<br>2322.3191     | 2325.1971 | 560.304   | 2327.9325 2328.4527 2328.9812 | 330.002   | 331.005                | 2332.4460<br>2332.4460<br>2332.9319<br>2333.3822 | 2334.7654          | 2336.4955                           |
| 10                                                                              | 23        |                    | დდნო                                             | 4<br>1<br>1<br>1<br>8               |                            | 6         | 13        | ωſΛ                           | =         | 11                     | 14<br>25<br>21                                   | יסיט               | 30                                  |
| 15                                                                              | 75        |                    | 2001                                             | φιν.                                | nux<br>nux                 | Ī         | 6         | 11                            | -13       | 23                     | 11<br>-24<br>-22                                 | 400                | 26<br>28<br>28                      |
| 2292.1073<br>2290.4023                                                          | 2287.8034 | 286.036<br>285.145 | 2283.3434<br>2282.4348<br>2281.5187<br>2280.5992 | 2278.7386<br>2277.7978<br>2276.8561 | 274.94<br>273.98<br>273.01 | 2269.0862 | 2267.0862 | 2264.0294<br>2263.0129        | 2260.9417 | 2258.8500<br>2257.7757 | 2255.6417<br>2254.5942<br>2253.4839<br>2252.4285 | 250.245<br>249.106 | 2248.0379<br>2246.8837<br>2245.8102 |

| 13                                  | •                          |                        | 14                                                            | ~                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | <br>      | Unc    | rvæç               | 200=                    | <b>7</b> C | ν         |
|-------------------------------------|----------------------------|------------------------|---------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|--------|--------------------|-------------------------|------------|-----------|
| 12<br>26                            | 5                          | <u> </u>               | -10                                                           | c                                                | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                  | 9         | ပ<br>ပ | 1 ←<br>2 ∞ °       | J <del></del> C         | u a        | )         |
| 2336.8897<br>2337.3304              | ć                          | 333.666                | 2341.4083                                                     | Toco ellec                                       | 344.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                  | 03301 626 |        | 314.746<br>315.500 | 2316.9932<br>2317.72932 | 310.400    | 306.616   |
| ω <u>†</u> ∞                        | 20                         | 21                     | 0.800                                                         | -07-8                                            | 27<br>26<br>26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 300<br>14<br>23                                  | -         | Unc    | 13                 | 25                      | 5          | Ξ         |
| <u>4</u> 6                          | -25<br>-16                 | <b>1</b> 1 −           | 76040                                                         | 9579                                             | 1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255<br>1,255 | 941<br>974<br>8                                  | 0331      | ပ      | Ξ                  | -13<br>-13              | 7-         | -         |
| 2244.6326<br>2243.5558<br>2242.3618 | 2240.0646<br>2238.9803     | 2236.6609<br>2235.4096 | 2233.0459<br>2231.9565<br>2230.6596<br>2229.5719<br>2228.2502 | 2225.8187<br>2224.7348<br>2223.3625<br>2222.2853 | 2219.8153<br>2218.3848<br>2217.3168<br>2215.8625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2212.2705<br>2210.7530<br>2209.7122<br>2208.1591 |           | P Obs  | 2308.4942          | 2306.8717               | 2304.3891  | 2302.7063 |
| 000                                 | 2000<br>700 <del>2</del> 1 | 0.000<br>0.000         | 000-05                                                        | 1297-80                                          | ~000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 000000<br>000000                                 | ) '<br>   | 7      | w= u               | no~                     |            | 2=        |

| 11 26                                        | 25<br>119<br>6<br>10<br>6<br>8<br>9                                         | ۶-8<br>م                            | 28                                        | 218                    | 170                    | 25<br>10                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49                     | 7                      | <b>=</b>  | 5         | 7          |
|----------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------|-------------------------------------------|------------------------|------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------|-----------|-----------|------------|
| 0 -                                          | 21.01.                                                                      | 79 20                               | -24<br>-5                                 | 142                    | 1                      | W=T                     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | αm                     | -25                    | -         | m         | .5         |
| 2321.3214                                    | 2324.7661<br>2325.4332<br>2326.09732<br>2326.7560<br>2327.4072<br>2028.0534 | 2329.3269<br>2329.9555<br>2331.1926 | 332.999<br>333.5999                       | 2336.4570<br>2337.0127 | 2338.1025<br>2338.6382 | 2340.2101<br>2340.7211  | 2342.2202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2343.1882<br>2343.6632 | 2344.5948<br>2345.0505 | 2346.3835 | 2347.2414 | 2348.4810  |
|                                              | <u> </u>                                                                    | _ပ <u>ပ</u> ထင်                     | , r o r o r o                             | 10720                  |                        |                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25                     |                        | 6         | <b>44</b> | 2<br>10    |
| w-ù~i                                        | - 1 - 1<br>700- W= 60                                                       | 1 -wc                               | 19240-1                                   | - <del>1</del> -20     |                        |                         | -12<br>-20<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -21                    |                        | -1        | w+.       | 75         |
| 0000<br>0000<br>0000<br>0000<br>0000<br>0000 | 0                                                                           | 1800 -1-<br>1800 -1-<br>1800 -1-    | # N.  | -000                   |                        | 3.583<br>1.510<br>0.466 | 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × 200 × | 5.2278                 | 2.986                  | 9.6941    | 6.3511    | 2.094      |
| ന്ന്ന്ഡ്                                     | 70000000000000000000000000000000000000                                      | ひろん ひとん                             | 8888888<br>777777777777777777777777777777 | เกิดเกิด               |                        | 0 00                    | ana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2000                   | ίÑ                     | 225       | 225       | ふふ         |
| $\alpha = \alpha$                            | 0~~~0                                                                       | n=1000                              | - 01 m                                    | +1010                  | <u> </u>               | -0.00-10                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | · ~ ~ -                | - 0.00-                |           |           | $\sim$ $-$ |

| 6 +                                 | বৰ         | <b>⊅</b> 9             | mo                     |                        | 22                                       |                 |           | 700          |                                     |           |
|-------------------------------------|------------|------------------------|------------------------|------------------------|------------------------------------------|-----------------|-----------|--------------|-------------------------------------|-----------|
| <u>-7</u>                           | TT         | ī                      | <u> </u>               |                        | -23                                      |                 |           | Οď           | 2                                   |           |
| 349.277                             | 50.049     | 350.79<br>351.16       | 2351.8705<br>2352.2166 |                        | 2353.8504                                |                 |           | 2356.1501    |                                     |           |
| ₹ <u>0</u>                          | 7          | €.                     | 987                    | - <del> </del>         | $\overline{\delta}$                      | <b>=</b>        | 12        | 15           | 11 20 20                            | ~         |
| -10<br>-70                          | ٥          | 77                     |                        | <u> </u>               |                                          | 7               | =         | 15           | 213                                 | 80        |
| 2251.8116<br>2250.6615<br>2249.5069 | 248.347    | 2246.0086<br>2244.8309 | 242.458<br>241.265     | 2238.8585<br>2237.6436 | 233.020<br>233.020<br>233.020<br>233.020 | 2230.2553       | 2227.7459 | 2225.2177    | 2222.6619<br>2221.3776<br>2220.0894 | 2217.4901 |
| 000                                 | 665<br>665 | <b>6</b> 867           | 325                    | 773                    | 24.45                                    | 200<br>200<br>1 | - 02 c    | ე <u>ლ</u> დ | 000000<br>000000                    | 98        |

| 1                 | י                           | W4700F800-01                                                                                                    |
|-------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------|
|                   | 0-C Unc                     | -24 27<br>-21 23<br>16 21<br>-10 11                                                                             |
| 13311 - 13301 626 | P Obs O-C Unc R Obs O-C Unc | 2291.4661 -24 27<br>2292.2211 -21 23<br>2293.7164 16 21<br>2295.1833 8 9<br>2295.9064 -10 11<br>2296.6279 16 17 |
| -                 | Unc                         | 26<br>7<br>7<br>5<br>14                                                                                         |
| 1331              | ပ                           | 26<br>-3<br>-15                                                                                                 |
|                   | P Obs                       | 2281.9497 7 9 2281.1169 -3 7 2280.2795 -15 14                                                                   |
| 13312 - 13302 626 | P Obs O-C Unc R Obs O-C Unc | 2296.7506 -4 6<br>2297.4825 -7 8<br>2298.2111 16 18<br>2299.6428 -16 19<br>2300.3526 -3 6                       |
| - 5               | Unc                         | 6<br>118<br>17<br>4                                                                                             |
| 133               | ပ<br>-                      | 111 3                                                                                                           |
|                   |                             | 2285.8808 3 6<br>2283.4024 12 12<br>2282.5620 -11 18<br>2281.7175 -16 17<br>2280.0137 1 4                       |
| į                 | ٦                           | w4rv0r800-nu                                                                                                    |

|                                                  | 000          | NUUUU                               | IUUUK                               | ാനസസസസ                                                     | אנאונאני  | v)=1==                                                             | 777       | T = = =  | raaa                                                         | ചഥവ                    | יונטוני  | יערטעי    | יעיער     | יוניוני      | n W W       | 900                    |
|--------------------------------------------------|--------------|-------------------------------------|-------------------------------------|------------------------------------------------------------|-----------|--------------------------------------------------------------------|-----------|----------|--------------------------------------------------------------|------------------------|----------|-----------|-----------|--------------|-------------|------------------------|
| മ<br>സന്മ                                        | 2 500        | 13                                  | <b>~</b> #                          | 45                                                         |           |                                                                    | <b>7</b>  | 2        |                                                              | 12                     | 512      | ,w=       | <u>-</u>  | 20           | 2           | 10                     |
| 200                                              | - 25         | -7                                  | rv c                                | 20 00                                                      |           |                                                                    | -5        | -3       | ~                                                            | 100                    | <u> </u> | 100       | 0         | ç            | Ĵ           | 6                      |
| 8151<br>4918                                     | 87           | 6930                                | 1517                                | 588                                                        |           |                                                                    | 4772      | 5146     | Ū                                                            | 0035                   | 28       | 3454      | r<br>-    | 001          | r           | 1865                   |
| 2300.8<br>2301.                                  | 303.<br>304. | 2306.                               | 2309                                | 312.                                                       |           |                                                                    | 2316.     | 2317.    | 210                                                          | 2320.                  | 321      | 2322      | )66.      | ÷            | · r >C      | 2326.1                 |
| ōα                                               |              | ∞ดีเ <del>ก⊐</del>                  | 27                                  | <b>a</b> 6                                                 | 2,58      | -o=                                                                | г         | 13       | 10<br>30<br>130                                              |                        |          | ωv        | 00        | 00           | 22          | 2                      |
| <del>-</del>                                     |              | »0                                  | 27                                  | m ø                                                        | 21.0      | ⊃ທ≁                                                                | -         | 12       | 65-                                                          | ma                     | 25       | 120       | 3,6       | -7           | <u> </u>    | -5                     |
| 276.0015<br>275.1294                             | 72.47        | 268.8531<br>267.9345<br>267.0087    | 263.2506                            | 261.3330                                                   | 255.4509  | 555<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255<br>255 |           | 248.3242 | 246.2367<br>245.1808                                         | 43.064<br>41.993       | 39.839   | 237.6603  | 35.461    | 33.239       |             | 228.7294               |
| 29<br>115<br>20<br>20                            | 24           | ๛≠                                  | 116<br>17<br>17                     | 30-4-68                                                    | 17 2      | 10                                                                 | 14        | 10 2     | 0550<br>0550                                                 |                        | NO       | 5         | 26 2      | 5            | 7 2         | 2                      |
| 11.28                                            | 13           | ωm                                  |                                     | 286057                                                     | <b>4</b>  | 6                                                                  | 1.4       |          | 167ª                                                         | •                      |          | 13        | -26       | 0            | 9           |                        |
| 2301.7550<br>2302.4422<br>2303.1290<br>2303.8053 | 2305.8087    | 2307.7555<br>2308.3921              | 310.268<br>310.882                  | 2312.6830<br>2314.6830<br>2314.85735<br>5314.85735<br>6032 | 2316.1311 | 2317.7737                                                          | 2318.8388 | 319.878  | 2320<br>2320<br>2321<br>2321<br>2321<br>2321<br>2323<br>2333 | 351.001                |          | 2324.7188 | 2325.6123 | 2326.4865    | 2327.3344   |                        |
| ∞                                                | 9            | 27<br>19                            | 768<br>708<br>708                   | 2000 C                                                     | 8-        | <b>⊉</b> ເບ ເ                                                      | റന        | ωĥ       | _<br>∪0-∓                                                    | 10                     | 0        | 21        |           | <u>υ</u> ∞ : | <u>√</u> ∞= | ± 57 €                 |
| ∞                                                | 7            | -28<br>-16                          |                                     | 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-                     | i,        | - Ω-                                                               |           |          | _<br>∪ <b></b>                                               | ωm,                    | 0        | 20        | ٥٣١       |              | 750         | nmo                    |
| 2279.1529                                        | 2273.8613    | 2271.1339<br>2270.2174<br>2269.2900 | 2267.4235<br>2266.4785<br>2265.5339 | 263.617<br>263.617<br>261.678                              | 256.736   | 2255.7300                                                          | 252.677   | 250.613  | 2248.5280<br>2247.4759                                       | 2245.3562<br>2244.2869 | 243.213  | 239.957   | 237.754   | 235.532      | 233.287     | 2231.0203<br>2229.8786 |
|                                                  |              |                                     |                                     |                                                            |           |                                                                    |           |          |                                                              |                        |          |           |           |              |             |                        |

I RECESSES OF REPORTED FOR STANKED BESTER MESSES BESTERVE BESTERVE STANKED FOR STANKED BESTERVE BESTER

| 87777777<br>80087657<br>80087657<br>80087657                                                                      |             | 2          | 4000000-000000000000000000000000000000                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------|-------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                   | . 05501 626 | 1          |                                                                                                                                             |
| 26 25 25                                                                                                          | 1-1-1-1     | Unc        | rn 40 40                                                                                                                                    |
| 22 293                                                                                                            | 055         | 0          | 6                                                                                                                                           |
| 2226.4410<br>2225.2918<br>2222.9695<br>2221.7969                                                                  |             | P Obs      | 2279.4793<br>2278.6398<br>2276.0844<br>2275.2227<br>2272.5970<br>2271.7102                                                                  |
| 27 27 27                                                                                                          |             | Unc        | 9 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                     |
| 21 21                                                                                                             |             | ပ<br> <br> | 0 100 0 -040 10 4                                                                                                                           |
| 2330.8448                                                                                                         | 04401 626   | R Obs      | 2303.8053<br>2306.0234<br>2306.7503<br>2306.7503<br>2309.5961<br>2312.3474<br>2313.0178<br>2313.0032<br>2315.0032<br>2315.0032<br>2315.0032 |
| 15<br>11<br>11<br>11<br>11<br>13<br>13<br>13<br>13<br>13                                                          | -           | Unc        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                       |
| 7111 11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                           | 0441        | 10-0       | 1 010 0-11 -0 - 1<br>0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0 -0                                                                               |
| 2228.7294<br>2225.4180<br>2225.2537<br>2222.9097<br>2220.5405<br>2216.3485<br>2216.9464<br>2214.5212<br>2214.5212 |             | P 0bs (    | 2294 4078 2292 1568 2291 9248 2291 9248 2291 9248 2288 3916 2288 3916 2288 1916 2288 19569 2288 19626 2288 19626 2278 1751                  |
| 8777777770987657                                                                                                  |             | 5          | 2000000-000000000000000000000000000000                                                                                                      |

| 5 2                                 | - rv ==                                                   | <b>₹</b>                                 | 232                                      | - 77                                | 240<br>240<br>240                                |                    | 11                                  |                        | 21<br>20<br>20<br>20             | 1250 ca                                          | vr-40                                                              |
|-------------------------------------|-----------------------------------------------------------|------------------------------------------|------------------------------------------|-------------------------------------|--------------------------------------------------|--------------------|-------------------------------------|------------------------|----------------------------------|--------------------------------------------------|--------------------------------------------------------------------|
| -11                                 | <u>. 1</u> .                                              | 7                                        | -11<br>20<br>50                          |                                     | -w646                                            |                    | =-                                  |                        |                                  | 7 - 79                                           |                                                                    |
| 2263.4732                           | 258.698<br>258.763                                        | 2251.7727<br>2250.7595                   | 2246.6548<br>2245.6177<br>2244.5698      | 240.330                             | 2238.1776<br>2237.0915<br>2236.0030<br>2234.9078 | 233.802            | 2230.4675<br>2229.3429              | 225.938                | 2223.640<br>2223.484<br>2221.324 | 2220.1568<br>2218.9845<br>2217.8090<br>2216.6225 | 213<br>213<br>213<br>213<br>213<br>213<br>213<br>213<br>213<br>213 |
| 17<br>10                            | 114                                                       | 15<br>10                                 | 0                                        |                                     | 4, 0 <u>6</u>                                    | 25                 | 17                                  | 15                     | 10<br>15                         | 7.                                               | 22                                                                 |
| 1-12                                | 120                                                       | e me                                     | 9-                                       | 1 .                                 | 15 12                                            | -17                | 18                                  | 16                     | -15                              | -17                                              | -24                                                                |
| 2318.1855<br>2318.8061<br>2319.4167 | 2322.3902<br>2322.9686<br>2323.5390                       | 324.103<br>325.213<br>325.759            | 2328.4016                                | 330.406                             | 2333.2324<br>2333.6840                           | mm                 | 36.256                              | 2337.0646 2337.4605    | 2338.2323                        | 2340.0553                                        | 2340.7425<br>2341.4083                                             |
| 91                                  | 91119                                                     | 22<br>4<br>17                            | 152 = 15                                 | 283<br>10                           | 300                                              | 76                 | 27-1                                | σκ                     | 6 -                              | 4004                                             | n ∞                                                                |
| 6 9-                                | 95959                                                     | 22<br>-1<br>-2                           |                                          | -21                                 | 940                                              | 7                  | 6-6                                 | 7-                     |                                  | 7697                                             |                                                                    |
| 2276.8561                           | 2. 2.1019<br>22 1339<br>22 1580<br>226. 1799<br>2268.1939 | 266.206<br>265.201<br>263.176<br>262.157 | 261.132<br>260.100<br>259.060<br>258.020 | 2254.8545<br>2253.7861<br>2252.7156 | 250.556<br>249.465<br>248.371                    | 246.165<br>245.055 | 2242.8125<br>2241.6842<br>2240.5488 | 2238.2634<br>2237.1129 | 234.792                          | 2231.2735<br>2231.2735<br>2228.0870<br>2228.8968 | 225.291                                                            |

## 

| 223<br>234<br>2953                               | 28        |
|--------------------------------------------------|-----------|
| 21,00                                            | -2        |
| 2208.1901<br>2206.9639<br>2205.7318<br>2204.4943 | 2199.4965 |

776 2222.8611 -5 7 778 2221.6362 -17 19 779 2219.1741 -3 7 880 2217.63828 -7 12 881 2215.4365 -1 8 883 2214.1780 -16 26 884 2212.9192 19 20 885 2211.6507 11 12 886 2210.3759 -1 12 887 2209.1877 30 28 887 2207.8172 37 29

|              | J                    | その多り作さのあり作さのあり作さのあり作さのあり作さのあり作さのあり作さいののようとしょうというらららららららいでは、作作作作を全を全てできてしましましましま。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | Unc                  | <ul><li>たのものののでした</li><li>たらもののものでもまた</li><li>なるののので</li><li>なるのので</li><li>なるのので</li><li>なるののので</li><li>なるのののので</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるののののの</li><li>なるのののののの</li><li>なるのののののの</li><li>なるののののの</li><li>なるのののののの</li><li>なるのののののの</li><li>なるののののののの</li><li>なるののののののの</li><li>なるのののののののののの</li><li>なるのののののののののののののののののののののののののののののののののののの</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|              | 0-0                  | <u>αμιραπατιλιτού</u> δοβομο-ώμεο 20μ-ο- πισ-10-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 828          | 0bs                  | りサンドのの りょっぱい りょうしょうしょう いりょうけんしょう とうちょうしょう いいしょう しょう いいいい いいいい いいいいい いいいいい いいいいい いいいいい いり しょう しょう しょう しょう しょう しょうしょう しょうしょう とりしょう しょうしょう しょう |
| 00001        | æ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0            | Unc                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 00011        | ၁ <u>-</u> ၀         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ŏ            | 0bs                  | るよのトーナムトドラクラジを1−至のそのような「ありしてらく」となるとでいるとしてのなのよく なってもならとと しんけんともなるというなるとしているのうしょ マヤー会らると ともちゅうもの とり あおりをららしまり できょう しょくしょう しょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|              | ۵                    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <br>         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|              | E I                  | MWMWMWM FW FWM GWA GAA BULLAHA GWA GAA GAA BAA BAA BAA BAA BAA BAA BAA BA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|              | - :                  | aama maaaaa-ama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| !<br>!       | ) D-0                | 4 2 1 1 2 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 636          | 입                    | 75-00-00-00-00-00-00-00-00-00-00-00-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9 1          | ၁-0 ဧ                | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 00001 636  | c R Obs O-C          | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 - 00001 6 | R Obs 0-C            | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9 1          | -C Unc R Obs O-C     | 228427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 11 - 00001 6 | bs O-C Unc R Obs O-C | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L.                                         | -0wzro-000-0u                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 26 17<br>26 17<br>7 11<br>39 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | O-C Unc                                    | 6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                |
| 234.7446 -5 6 2352.8297<br>234.7446 -5 6 2353.2591<br>230.1059 23 30 2354.0417<br>225.3797 -8 6 2354.7406<br>225.3850 -22 28<br>220.5690 -22 28<br>2355.6111<br>213.2046 2 4<br>213.2046 2 1<br>213.2046 2 1<br>213.2047 2 1<br>214.2046 2 1<br>215.2057 2 1<br>216.2057 2 1<br>216.2057 2 1<br>217.2067 2 1<br>218.2067 2 | 01111 - 01101 828<br>P Obs O-C Unc R Obs O | 2303.1721<br>299.7002 2 5 2304.5229<br>298.9829 -24 36 2305.1964<br>298.2740 7 22 2305.1964<br>296.88244 -6 4 2307.1601<br>296.0839 -3 12 2307.1601<br>295.3548 -3 7 2308.4457<br>293.8635 -20 28 2309.0904<br>293.8635 -2 4 2309.0907 |
| 84 2195.0603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | J P Obs 0-C Unc R Obs 0-C Unc              | 2273.3068 16 11<br>2270.1896 1 3 2274.0727 3 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                     |

#36 860 3156

29

6

226

```
26
12
4
                                                                                                                                                                                             5556
S
                                                 7200
                                                                                                                                                                                                                                                                                                                35
                                                337.1446
337.4434
337.7363
                                                                                                          2339.1182
2339.3731
2339.6343
2391
5630
                        2126
5298
                                                                                          5817
                                                                                                                                                                                             4681
6529
8722
0424
2501
                                                                                                                                                                                                                                                                                                                8164
8963
                                                                                                                                                            5964
                                                                                                                                           2340.1267
                                                                                                                                                                                                                                                                               343.256
                                                                                          2338.
                                                                                                                                                                                             343
                        2336.
2335.
                                                  mmm
                        でうりてりょうりょ しゅうしんりょう
                                                                                                                                                                                    84-048048-8-62
                                                                                                                                                                                     44-7-1011 - 20 1--
1010 - 20 1--
0m -0mmm-m040--000m0-
                                                                                                                                                                                                                                                                                                                                         NON
                                                                                                                                                                                                                                                                                                                                                                                   7 mo.
                                                                                                                                                                                    2222. 4240
22221. 4546
22219. 1414
22217. 7846
22217. 7846
22217. 7846
22217. 7866
22217. 7866
22217. 7866
22217. 7866
22217. 7866
22207. 2579
22207. 3679
22207. 3679
22207. 3679
22207. 3679
22207. 3679
22207. 3679
22207. 3679
                      222443
222443
222443
222443
222443
222443
222443
222443
222443
222443
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
222243
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
22224
                                                                                                                                                                                                                                                                                                                                         2200.8909
2199.8945
2198.3967
                                                                                                                                                                                                                                                                                                                                                                                  8795
3424
3424
7866
                                                                                                                                                                                                                                                                                                                                                                                   4600
2246.
2245.
                                                                                                                                                                                                                                                                                                                                                        24 7 7 7 5 5 5 5 10
 onnumum an um ma munumum mthumumumatumomat a
$1-00-00
                                                            00
                                                                                          -12
                                                                                                                   9
                                                                                                                                                                                                      -600ww-woo-bows
                                                                                          2313.7649
2314.0535
                                                                                                                                                                                                   2320.7689
2321.0377
2321.0200
                                                                 12.7400
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.729
0.720
0.720
0.720
0.720
0.720
0.720
0.720
0.720
                                                                                                                   .6736
                                                                                                                                            6030
8402
1677
3864
7070
9085
350
                                                                 231
                                                                                                                   231
231
9315
9468
6207
2209.
2208.
2207.
```

| 2009<br>2009<br>2009                             | 2                 | @@FNO@@FNO@@FNO@ <b>@PFNO@@PFNO</b><br>@@@N@@PFFFMMMMMNNNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                  | nuc               | £ 22 # 80°04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | υ-o               | 2 2 2 1 1 1 2 2 8 2 1 4 2 6 7 2 8 2 1 2 2 8 2 1 2 2 8 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                  | 0002 828<br>R 0bs | 2295.5680<br>2300.8743<br>2303.4033<br>2308.1966<br>2309.3417<br>2316.4658<br>2315.7537<br>2319.5949<br>2321.3871<br>2322.2475<br>2323.3052<br>2323.7002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 36<br>28<br>45<br>36                             | - 10<br>Unc       | ## ### ### ### ### ### ### ### ########                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 20<br>-7<br>-9<br>-6                             | 012<br>0-C        | 1-01 1-1-1 1 11-1-1 5 7 1-1-1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2188.2111<br>2185.6105<br>2180.3533<br>2177.6958 | 101<br>P 0bs      | 2293.04877<br>22992.0737<br>22992.0737<br>22992.0737<br>22881.15911<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.15117<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881.1517<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881<br>22881 |
|                                                  | Unc               | שסים בשבבים בישבבים היש היש היש בישר היש היש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                  | υ<br>-0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                  | 002 636<br>R 0bs  | 222 222 222 222 222 222 222 222 222 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 26                                               | - 100<br>Unc      | הששששששש סשרשסת השששששתררשרם                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 21                                               | 018<br>0-C        | 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2142,5435                                        | 101<br>P 0bs      | 22255555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2210987127                                       | ٦                 | BOTHO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                             | ٦                                                | 0220080450                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2243.9492 -6 13<br>2241.9274 -1 6 2327.6634 7 20<br>2233.6846 2 5 2328.3472 -6 12<br>2235.7354 -5 3 2329.0114 6 8<br>2235.7354 -5 3 2329.0114 6 8<br>2235.7354 0 5<br>2221.4371 -4 14<br>2225.7910 -16 13 2331.9899 -10 17<br>2225.7910 -16 13 2333.0257 -6 13<br>2213.7499 0 16 2334.8248 -22 8<br>2206.7518 7 11 | 10011 - 10001 828<br>P Obs 0-C Unc R Obs 0-C Unc | 767 -2 7 2293.0236 2 3<br>600 -2 1 22295.6817 3 13<br>774 7 7 2298.2501 -10 32<br>721 3 5 2299.5060 32 13<br>721 -2 2 2300.7318 -6 6<br>961 -2 2 2300.7318 -6 6<br>190 -2 3 2305.43248 -3 5<br>2304.2868 -14 20<br>2305.4324 33 33<br>831 -1 4 2306.5477 -1 4 |
| 66 2202.7036                                                                                                                                                                                                                                                                                                       | J P Obs 0-C Unc R Obs 0-C Unc                    | 2259.6951 1 3 2265.1508 -1 4 2258.0825 2 3 2266.6552 -7 9 2258.0825 2 3 2269.5934 -3 4 2251.0243 -22 16 2259.1018 7 6 2272.4351 -1 4 2251.3935 5 2272.4351 -1 4 2280.3808 -2 4 2240.6463 3 4 2281.6195 -1 9                                                   |

| 1                |       | 5           | w⇒ı                        | ᡣ           | <b>~</b> ∞ | 90                                                                                            | =2         | <u></u>      | 100   | 2          | <u>6</u>   | 20     | 22         | 233   | 27.0        | <u>26</u>  | 28             | 56       | 0.               | 32-        | ლ.<br>ლ⊐       | 13C)       | 36<br>7    | -<br>\<br>\<br>\ | W <sub>4</sub> | <del>-</del> 2                          | 14.<br>14. | ##<br>22          |
|------------------|-------|-------------|----------------------------|-------------|------------|-----------------------------------------------------------------------------------------------|------------|--------------|-------|------------|------------|--------|------------|-------|-------------|------------|----------------|----------|------------------|------------|----------------|------------|------------|------------------|----------------|-----------------------------------------|------------|-------------------|
|                  | Unc   | 28          | <b>a</b> (                 | <u>~</u>    | ar r∪      | 26<br>15                                                                                      |            | 110          |       | 5          | •          | 2      |            | rU:   | <b>⇒</b> (^ | <b>=</b>   | _<br>⊅ ℃       |          | 2<br>2<br>2<br>1 | <b>/</b> = | ς.             | 19         | ~          | ากา              | 09             | ·                                       | -m         | 24                |
|                  | 0-0   | 32          | w.                         | 5           | ι          | -58<br>50<br>50<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 |            | 8,0          |       | m          | -          | -      |            |       | γφ          |            |                |          | 50<br>- 40       |            | -              | 16         | ו          | 10               | <u>-</u>       | <b>≠</b> 5                              | <u> </u>   | -20               |
| 828              | قانا  | 1.6285      | 2.9696                     | .034        | .945       | 6.2321                                                                                        |            | 8.7493       | .974  | 1.1789     | 2098 61    |        |            | .658  | 5.7742      | 324        | , 804.<br>1080 | 942      | 972              | 510        | .022           | 1.0314     | 11 14      | 500              | . 453          | 3,9207                                  | 841        | 5.7356            |
| 2201             | -     | 2291        | 229                        | 2           | 23         | 229                                                                                           |            | 2298         | 200   | 2301       |            | ว      |            | 30    | 200         | 300        | 200            | 30       | 200              | 30         | 3              | 231        | 7          | 5                | 2              |                                         | 31         | 231               |
| 20               | Unc   | 1           | c                          | »۲-         |            | 754                                                                                           | 2          | 25           | - r   |            | 5          | 23     | ন          | m:    | 4 M         | Ήı         | ٧٣             | <b>\</b> | mu               | m          | ſΩ⊐            |            | 37         | - <b>ञ</b> ।     | 2              | mn                                      | سار        | <b>4</b> ₩        |
| 2211             |       |             | =                          | 1 [         |            | 40                                                                                            | 2          | 100          | -2    |            | Ŋ          | 25     | ī          | ~-    | 7           |            | 7 7            | <b>=</b> | 00               | 7          | ſΩ             | 10         | Σ          | 200              | 2              | 77                                      | 14         | <b>↑</b>          |
| Ö                | P Obs | i<br>1<br>1 | Č                          | 5.3335      | )          | 3.1090                                                                                        | .614       |              | 561   | ,          | 6.2162     | 4.6276 | .821       | 2.199 | 1.3802      | 9.725      | 8.050          | 7.203    | ก.<br>253<br>253 | 4.635      | 3.767<br>2.867 | 2.017      | 1.138      | 9.355            | 8.453          | .64                                     | 80.<br>10. | 3.885/            |
| !<br>!<br>!<br>! | 1     | <br>        | (                          | 228         |            | 228<br>228<br>288<br>288                                                                      | $\sim$     | 228          | 27    |            | 227        | 227    | N          | Q (   | 227         | Ñ          | งดั            | 2        | $\sim$           | ĪŌΙ        | ุกก            | ĺΩ         | ふり         | S                | Ñ              | 25                                      | 25         | 225               |
|                  | Unc   | 5           | 23                         | <b>1)(1</b> | വവ         | <del>_</del> 2∞                                                                               | ۰,         | √2=          | 100   | <b>√</b> = | ωţ         | 2=     | ᡣᠬ         | י ר   | mæ          | <b>)</b>   | ۰۳             | )        | ഗച               | m          | <b>⇒</b> ~     | സ          | 22         | 7                |                | ιΩα                                     | സ          | mα                |
|                  | 0-0   | -5          | ωO,                        | 77          | <u>,</u>   | 11                                                                                            | <b>∞</b> C | 77.0         | vo,   |            | 0,         | 7      | <b>←</b> C | •     |             |            | ٥<br>-         | . 1      | Ļα               | )W)        | ~~             | 1<br>1     | -19        | 9-               |                | <del>در ا</del>                         | ľ          | ۳۳<br>ا           |
| 636              | قاد   | 1.79        | . 1250<br>. 8785<br>. 8785 | 95<br>96    | 105<br>836 | 82                                                                                            | 993        | 102          | 786   | 22         | 819        | 29     | 007        |       | 3577        | 983        | 215            |          | 4228             | 9          | 189<br>760     | 38         | 70         | .0187            |                | 64                                      | 50,        | 24                |
| 2201             | 1 i   | 26          | 2263<br>2263<br>2263       | 26<br>26    | 26         | 26                                                                                            | 26         | 200          | 721   | 77         | 27         | 27     | 27         | - !   | 2277        | 27.        | 282            | ) (      | 2281<br>2281     | 282        | 28<br>28<br>28 | 287        | 28         | 2286             |                | 200                                     | 380        | 2289              |
|                  | Unc   |             | <u>-</u> ∞,                | ν <u></u>   | 6          | <b>4</b> 4                                                                                    | <b>⊅</b> ~ | റസ്          | 25.   | ± 7.       | Mr         | -m     | <b>⇒</b>   | 20    |             | ιΩ         | ~9             | 00       | M                | ٠ ،        | ⇒ 0            | 70         | ∞≂         | <b>(</b> ()      | <u>1</u>       | ლ                                       | ٠ ١        | em                |
| 2211             |       |             | -11                        | → T         | 130        | <u></u>                                                                                       | 77         |              | אלי   | <u>ი</u> ნ |            | 1      | -          | -19   |             | <b>=</b> ( | יטט            | ထု       | 0-               | -          | - 20           | 24         |            | -0               | 20             | ו ה<br>ו ו ו                            | , ,        | 77                |
|                  | sq0   | -           | 8811<br>111                | 264         | <b>111</b> | .9560                                                                                         | 114        | 417          | 969   | 946        | .063       | 282    | .383       | .5660 | .653        | 5          | . 8685<br>9285 | 982      | 32               | 2          | 146            | 193        | <u>0</u> - | 220              | $\frac{1}{2}$  | 1968                                    | - 6        | .1223             |
| 1                | i a   | 1           | 2257                       | 252         | 25         | 2252<br>2251                                                                                  | 251        | 200          | 240   | 245        | 252        | 57     | 24         | 2240  | 23          | 23         | 2236           | 3        | 23               | Ĵ          | 23             | 55         | 22         | 22               | 22             | 2223                                    | j          | 2220              |
| -                | 15    | 2           | ₩                          | ഹ           | <b>~</b> @ | 90                                                                                            | =:         | <del>ر</del> | ± 10, | 12         | <b>∞</b> c | 20     | 55         | 123   | 25          | 56         | 28             | 53       | 9<br>1           | 32         | بري<br>ست      | 110<br>(2) | 36         | -86              | 23<br>20<br>20 | ======================================= | 12         | # #<br># 2<br># 2 |

|                  | ~ 414        | 161616     | . 14 14 14                                                                     |           | 100          | <b>~~</b>                                      |                |                     | D(-(-                |          |                                                                                  | -(-,-          | - ( - 60 | wwu      | J.W.       | , w w | ,ww c           |               | 0.0.0                                                              |
|------------------|--------------|------------|--------------------------------------------------------------------------------|-----------|--------------|------------------------------------------------|----------------|---------------------|----------------------|----------|----------------------------------------------------------------------------------|----------------|----------|----------|------------|-------|-----------------|---------------|--------------------------------------------------------------------|
| ∞∞               | 110          |            | 17                                                                             | œ         |              |                                                | 7.<br>7~       | ,<br>5<br>5         | Ξ                    | <b>a</b> |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
| 9-               | 139          |            | 55                                                                             | 12        |              | 5<br>1<br>2<br>3<br>3<br>3<br>4<br>5<br>7<br>8 |                | φφ                  | 0                    | -5       |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
| 7.7              | 4661<br>8900 | 500        | 9017                                                                           | 0435      | <b>75</b>    | 289                                            | 744            | 4894<br>4894<br>694 | 5                    | 7149     |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
| 16.              |              | <u> </u>   | 319.                                                                           | 321.      | 21.          | 225                                            | က်က်ငှ         |                     | 24.                  | 325.     |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
|                  | 1000         |            | 8                                                                              | 8         |              |                                                |                | iùùi                |                      | 'n       |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
| 77               | വസവ          | v~5,       | -∞∞ (                                                                          | 2~5       | <u>_</u><br> |                                                | - 22<br>233    |                     | 222                  |          | 202                                                                              |                | 2,5      |          | Oπ         | 29    |                 | 2<br>م        |                                                                    |
| 15               |              |            | 1-1-2×                                                                         | 977       | 1 1          | 97                                             |                | - 1 -               | -19<br>-25<br>-49    |          | <b>0</b> √π                                                                      |                | 104      |          | 9+         | -16-  | ī               | 1,00          |                                                                    |
| 27.0             | 2000<br>2010 | 900 C      | 800<br>807<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | -02<br>73 | 385          | 980                                            | アサク            | 32.                 | 0521<br>0184<br>0557 | 3        | 7798<br>7335<br>6116                                                             | 533            | 2116     | 11       | 55         | 3776  | 82              | 5244          | 75<br>97                                                           |
| %+°              | 9000         | -0i0-      | 1 mm.                                                                          | -00       | ,<br>,<br>,  | ė'n.                                           | <del>-</del>   | ; 0                 | 000                  | •        | 23.7                                                                             | ं              | 200      | r∪≃      | 5-         | -08   | 000             | 04.5          | , <del>.</del>                                                     |
| 222              | 222          | 3556       | 2000                                                                           | 200       | 556          | 222                                            | 222            | 22 5                | 222                  |          | 222                                                                              |                | 225      |          | 22         | 220   | 22              | 22            |                                                                    |
|                  |              |            |                                                                                |           |              |                                                |                |                     |                      |          |                                                                                  |                |          |          |            |       |                 |               |                                                                    |
| 33               | 22           | φm         | 5 2                                                                            | 27        | <b>∪</b> ≠ Γ | ma.                                            | <sub>د</sub> م | 0 <b>₩</b>          | m =                  | r        | ~~ <u>4</u> -                                                                    |                |          |          | <b>⊅</b> α | 20    | <b>4</b>        | 8             | <b>€</b>                                                           |
| 428              | -23          | ≠ 0.5      |                                                                                | 4         | -09          |                                                | 7 5            | -1-2                | ۰ ت                  | 4        | -446                                                                             |                |          |          | 0,0        | 12    | -5              | 10            | 75                                                                 |
| 365              | 105          | 485<br>049 | 71                                                                             | 47        | 97.0         | 155                                            | 60 6           | 646                 | 15                   | Ç        | 976                                                                              | ひせな            | N C      |          |            | 95    | 062<br>127      | 868           | 412<br>116                                                         |
| 0.2              | 1.7          | - ww       | •                                                                              | •         | 100          |                                                | •              | -4<br>0             | •                    | •        | ~- ~                                                                             | ง่าง           | 'n       |          | ı,         | งเง   | 6.3             | 6.7           | 7.2                                                                |
| 229              | 229          | 229        | 29                                                                             | 29        | 220          | 29                                             | 29             | 223                 | $\sim$               | <b>n</b> | 2000                                                                             | <b>37(3)(4</b> | n        |          | $\sim$     | 230   | 230<br>230      | 230           | 230                                                                |
| m==              | ւատո         | טעטטי      | ەرسە                                                                           | ∞~°       | mor          | <i>к</i> -с                                    | <b>⇒</b> 4     | Jow                 | <b>~</b> ==          | 1 #      | <u>-</u> ~~,                                                                     | 39             | ωñ       | <u>,</u> | <i>.</i> . | ∩=+   | <del>1</del> 91 | 232           | 2529                                                               |
| w <del>-</del> c | 779          |            | 20-5                                                                           | 900       | νφο          | 77                                             | 9 4            | -<br>- 6-           | 35.                  | 1 4      | ر <u>ا</u>                                                                       | -17            |          | 1-90     |            | -1-   |                 |               | 110                                                                |
| 400              | $\sim$       | くりりん       | 137                                                                            | $\circ$   | ဝမထ          | ∞                                              | 0 4            | とせたの                | Φωα                  | ગ~       | 844<br>844<br>836<br>836<br>836<br>836<br>836<br>836<br>836<br>836<br>836<br>836 | $\infty$       | 27       | 121      | - 6        | 955   | - ক ক চ         | - <del></del> | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 |
| 0.00             | بصصد         | -منن       | 200°                                                                           | ∴         | $\omega$     | 9.7                                            | ώ c            | -√∞c                | riw-                 | -6       | .00°                                                                             | -6.            | ric      | 000      | υ, c       | 7.0   | 400             | ٥ښ-           | 0-0                                                                |
| 222              |              | 7222       | 2202                                                                           | 000       | 000          | 00                                             | 5 5            | 200                 | <u> </u>             | 70       | 2000                                                                             | 200            | 18       | 2178     | 1 -        | 2171  | 16              | 064           | 2222                                                               |

| 00000000000000000000000000000000000000              |      | ٦           | 0-01440-000-01440-000-01460-0                                                                                                                                                                                                                            |
|-----------------------------------------------------|------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                     |      | Unc         | 40Wと400と50mu=-5000450450mu=4500                                                                                                                                                                                                                          |
|                                                     |      | ၁<br>0      | 00 NUCAUCA-40WWW-N-N-NOW-44W                                                                                                                                                                                                                             |
|                                                     | 638  | å           | 74 000000000000000000000000000000000000                                                                                                                                                                                                                  |
|                                                     | 1000 | æ           | ######################################                                                                                                                                                                                                                   |
| 26<br>16                                            | 00   | Unc         | 0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0<br>0 0 0 0 0<br>0 0 0 0 0 0<br>0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0<br>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| -25                                                 | 011  | ပ<br>ပ      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                    |
| 97.4023                                             | 00   | P Obs       | でするがのようののです。                                                                                                                                                                                                                                             |
| 219                                                 |      |             | をおけばれている。<br>などなどなどなどなどなどなどなどなどなどなどなどないないないないないないないな                                                                                                                                                                                                     |
| 4r0r 5                                              |      | Unc         | コトゥでは 000 000 000 000 000 000 000 000 000 0                                                                                                                                                                                                              |
| 04 may 0                                            |      | ပ           | 01400000 0000000 0000000000000000000000                                                                                                                                                                                                                  |
| 08.3285<br>08.4542<br>08.7022<br>08.8081<br>09.3745 | 628  | R Obs       | 0.000000000000000000000000000000000000                                                                                                                                                                                                                   |
| 2 230<br>230<br>230<br>230<br>230                   | 0001 |             | ุตุตุตุตุตุตุตุตุตุตุตุตุตุตุตุตุตุตุต                                                                                                                                                                                                                   |
| ±0,000 − 00 − 0                                     | Ö    | Unc         | wrwng ramatzazaoannasorrzr                                                                                                                                                                                                                               |
| 1 Lu-noonas 4                                       | 0011 | ပ<br>-<br>- | 4m4-m 1024-mot-4r000-0420-84                                                                                                                                                                                                                             |
| 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0             | 00   | Obs         | 2004428047804<br>004424780479<br>004424790479<br>004424790479<br>00444790479<br>00444790479<br>00444790479<br>00444790479<br>00444790479                                                                                                                 |
| 22222222222222222222222222222222222222              |      | Ы           | 2000000 200000000000000000000000000000                                                                                                                                                                                                                   |
| 00000000000000000000000000000000000000              |      | ٦,          | 0-0m4m0-000-0m4m0-000-0m4m0-0                                                                                                                                                                                                                            |

```
2228887.
2228887.
2228887.
2228887.
2228887.
22289.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
22297.
2284,8885
                           2286.0186
 59 56
                                                                                                                                                                                                                                                                                                                2240.5653
2239.6595
                                                                                 .8242
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                2195.
                                                                                 2237.
  Oφ
                                                                                                                                                                                                                                                                                                    361.9217
                                                                                                                                                                                                                                                                                                                                           10V FUNCTOR OU TWO TO BE TO THE TETETETETETETETETEM TWO TO BE 10V TO BE TO THE THE TO THE TO
```

| ### ### ### ### ### ### ### ### ### ##                                                 |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|--|--|
|                                                                                        |                                                                                             | · • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | , , <del>,</del>                                   |  |  |  |  |  |  |  |
| യയയ്ല് യ ച                                                                             | - 40 400 4L-0L                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |  |  |  |  |  |  |  |
| 12 0 - 12 - 0 - 1                                                                      | 00 00 00 00 00 0                                                                            | r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                    |  |  |  |  |  |  |  |
| 2306.2907<br>2306.8482<br>2306.8482<br>2307.1166<br>2307.8938                          | 308.846<br>309.070<br>309.070<br>309.906<br>310.290<br>310.620                              | 2311.1476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |  |  |  |  |  |  |  |
| 1000 mm                                                                                | 20mmmの2mmmの1mmm2mmmmmmmmmmmmmmmmmmmmmmmm                                                    | ω <sub>4</sub> ο                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                    |  |  |  |  |  |  |  |
| 710 110                                                                                | 141-00wataurra                                                                              | <u>6</u> 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |  |  |  |
| 080<br>080<br>000<br>000<br>000<br>000<br>000                                          | 70007-700 E-70 - WG                                                                         | . 9395<br>. 6580<br>. 4674                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                    |  |  |  |  |  |  |  |
| <u> </u>                                                                               | 22222222222222222222222222222222222222                                                      | 2163<br>2162<br>2157                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                    |  |  |  |  |  |  |  |
|                                                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    |  |  |  |  |  |  |  |
| 0<br>000444000000                                                                      |                                                                                             | 13034 O <b>0</b> 3033                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W-004                                              |  |  |  |  |  |  |  |
| 11 -11<br>01-010                                                                       | 40-10 -444400-1-                                                                            | 1111<br>040 N N-6N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 00,400                                             |  |  |  |  |  |  |  |
| 72724<br>72724<br>72724<br>72726<br>72716<br>72717<br>72717<br>72717<br>72717<br>72717 | 00000000000000000000000000000000000000                                                      | 00-00<br>00-00<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00-000<br>00 | 25000<br>                                          |  |  |  |  |  |  |  |
| 22222222222222222222222222222222222222                                                 | #### #################################                                                      | 11110 0 00000<br>11111 1 11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 333333<br>34444<br>44444                           |  |  |  |  |  |  |  |
| 70 448-67                                                                              | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 72 67 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 25 1 26<br>26 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |  |  |  |  |  |  |  |
| -1 21 10<br>00 W177-10                                                                 | 1 ± 2007 - 2007 to 00                                                                       | 1211111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 20mon 0                                          |  |  |  |  |  |  |  |
| 0.000000000000000000000000000000000000                                                 | 1 14700 70000000000000000000000000000000                                                    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3266<br>8314<br>6534<br>6533                       |  |  |  |  |  |  |  |
| 22557.<br>22552.<br>22252.<br>22253.<br>2249.                                          | * FUGAU -025506-1<br>0 WWWWW FEEFE<br>0 00000 000000                                        | -08 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2214.<br>2208.<br>2208.<br>2206.<br>2206.          |  |  |  |  |  |  |  |
| 20000000000000000000000000000000000000                                                 | 00000000000000000000000000000000000000                                                      | 20-000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7111111<br>000000                                  |  |  |  |  |  |  |  |

| 1     | 5          | -0mzrvo-                                                                                                                                                                                                        | 2-UMZ                         | 797-0                               | 202                                                                        | 35             | 8765<br>8765<br>8765                                                                                                 | 330<br>340<br>340<br>340<br>340                                                         | 00000<br>000±1                                                             | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,                                            | 000<br>000       | <u>+</u> | 123                |
|-------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|----------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------------|----------|--------------------|
|       | Unc        | 01000000000000000000000000000000000000                                                                                                                                                                          | 17                            |                                     | 101                                                                        | =              | ი დ ნ დ დ                                                                                                            | 732<br>988                                                                              | /W <del>2</del>                                                            | <b>-</b>                                                                        | 25               | 18<br>35 |                    |
|       | ၁<br> <br> | 111111<br>1111111<br>11111111111111111111111                                                                                                                                                                    | -17                           | 9-7-                                | 06                                                                         | -1             | ww==================================                                                                                 | -20<br>12<br>3                                                                          | ) <del>-</del> 0                                                           | 00                                                                              | 17               | 70       |                    |
| 628   | 0bs        | 8-1-1-0<br>8-1-1-1-0<br>8-1-1-1-1-0<br>8-1-1-1-1-0<br>8-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                   | 8076                          | 36                                  | 2876<br>9050                                                               | 1189           | 83118<br>62693<br>62657<br>62657                                                                                     | 4900                                                                                    | 87                                                                         | 4902                                                                            | 506              | 5006     | 69                 |
| 101F  | <u>د</u> ا | 0001 = -000<br>0000 00000<br>000000000000000000000                                                                                                                                                              | 2328<br>2328<br>2328          | 23                                  | MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM<br>MM | 2335           | 88-400<br>989999<br>989999<br>989999                                                                                 | 333<br>333<br>345<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360<br>360 | , <del>1</del>                                                             | 2343<br>2343                                                                    | 344              | 2345     | 346                |
| - 0   | Unc        | 36<br>36                                                                                                                                                                                                        | 27                            | or <u>∓</u> ≃                       | Фил                                                                        | ) <del> </del> | -೧೨೨೧೨                                                                                                               | w <u>≠</u>                                                                              | 200<br>200<br>300<br>300<br>300                                            | こせてら                                                                            | / <del>⊐</del> π | m        | 27                 |
| 116   | 0-0        | 17<br>20<br>22                                                                                                                                                                                                  |                               | 7000                                |                                                                            | , <u>, ,</u>   | 14000                                                                                                                |                                                                                         | 27-4                                                                       | 00 <u>1</u> =                                                                   | · • •            |          |                    |
| 011   | P Obs      | 2318.2574<br>2317.5078<br>2316.7525                                                                                                                                                                             | 309<br>308<br>808<br>87<br>87 | 306-23                              | 304.72                                                                     | 302.16         | 22900-14300<br>22990-14300<br>22990-14300<br>22990-14300<br>22990-14300<br>22900-14300<br>22000-14300<br>22000-14300 | 295.99<br>295.09<br>294.18                                                              | 293.26                                                                     | 2890<br>2890<br>2890<br>2890<br>200<br>200<br>200<br>200                        | 286.69           | 284.76   | 282.81<br>281.83   |
|       | Unc        | 25000<br>00000                                                                                                                                                                                                  | 69<br>44                      | 16                                  | 217                                                                        | 7              | -04r-8                                                                                                               | 22                                                                                      | .യവവം                                                                      | # <b>~</b> #                                                                    | 24               | m        | ω <u>0</u>         |
|       | ပ<br> <br> | 2007<br>2007<br>2007<br>2007                                                                                                                                                                                    | 23<br>30                      | œ                                   | Log                                                                        |                | 2-365                                                                                                                | 44                                                                                      | 1007                                                                       |                                                                                 | 7                | 0        | -2                 |
| 628   | 0 ps       | 0919<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>03119<br>0319<br>03 | 4575<br>1091                  | 0246                                | 2747<br>8895<br>5016                                                       | 70             | 2963<br>4639<br>0389<br>077                                                                                          | 730                                                                                     | 8295<br>3695<br>9041                                                       | 433<br>472<br>081                                                               | 491              | 4833     | 4529<br>9300       |
| 1101e | <u>م</u>   | 23322<br>23322<br>23222<br>23222                                                                                                                                                                                | 2329.<br>2330.                | 2332.                               | 2233<br>2333<br>2333                                                       | က်             | 88466<br>88388<br>88388<br>88466                                                                                     | 333                                                                                     | 2335<br>234<br>244<br>244<br>244<br>244<br>244<br>244<br>244<br>244<br>244 | 342                                                                             | 37               | 2345.    | 2346.              |
| 0     | Unc        | 36662                                                                                                                                                                                                           | 51                            | νο <b>-</b> ι                       | , ww                                                                       | ~ <del>=</del> | . 000 <del>4</del>                                                                                                   | 0                                                                                       |                                                                            | ≠w50                                                                            | , <del>-</del> = | 202      |                    |
| 11e   | ပ          | 21-1-1-22-24                                                                                                                                                                                                    | 盘 •                           | -01 <sub>u</sub>                    | 200                                                                        | <b>1</b> ⊂     | 0 0 m 0 =                                                                                                            | 4                                                                                       | ,7                                                                         | how                                                                             | 76               |          | -17                |
| 011   | P Obs      | 2318.2574<br>2317.5078<br>2316.9525<br>2315.2258<br>2315.2258                                                                                                                                                   | 309.707                       | 2307.2554<br>2306.4260<br>2306.4260 | 303.906                                                                    | 2302.1980      | 299.593.2298.7133.2296.937                                                                                           | 866,496                                                                                 | 293.315<br>292.396<br>291.471                                              | 2290.5404<br>2289.6044<br>2288.6628                                             | 286.761          | 284.839  | 282.893<br>281.911 |
|       | 5          | -0wzrvor-00c                                                                                                                                                                                                    |                               | <u>√</u> 0.00                       | 200                                                                        | 35-            | 8~9~5                                                                                                                | 333                                                                                     | 00000<br>0000                                                              | 24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>24<br>2 | 000<br>000       | ===      | 123                |

|                                                                   |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        |                                                                           | Jwwwa                                                                                       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                          | J&WO101                                                            | 010101                        |
|-------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------|
| $\varpi_{\mathcal{U}} - \varpi_{\mathcal{U}} \varpi_{\Xi} \varpi$ | 23<br>42<br>42                         | 32<br>26<br>11<br>11<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 24<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                        | 26                                                                        | <u>-</u> ∞∞                                                                                 | 9                                                                                                | rvov⊐                                                              | 25                            |
| 2111000000                                                        | -51<br>-31<br>-31                      | 21111<br>241111<br>741111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -3                   | 107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | 17                                                                        | ထတထ                                                                                         | 06                                                                                               | 7997                                                               | 15                            |
| 347.4159349.2349.2349.2349.2349.2349.2349.2349.                   | 351.3768<br>351.7833<br>352.1906       | 353.3694<br>353.7513<br>354.1279<br>354.4970<br>354.8604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.570               | 356.2581<br>356.5911<br>356.9170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                        | 359.8689                                                                  | 360.3862<br>360.6361<br>360.8804                                                            | 361.3499<br>361.5764                                                                             | 362.0106<br>362.2188<br>362.4206<br>362.6168                       | 99                            |
| กดกดกดกด                                                          | 000                                    | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                    | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | 8                                                                         | 000                                                                                         | 00                                                                                               | 0000                                                               | 00                            |
| 1 C 3 8 3 C C                                                     | " HOW                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | ~\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\times_\ | W<br>2007-1001-12                                                                                      |                                                                           | 14000                                                                                       | 96 4                                                                                             | 2007                                                               | 133                           |
| 0 ± ww = 0                                                        | 77970                                  | 1 0 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0-                  | wore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0000±0                                                                                                | <u>⊬</u> 1<br>₩                                                           | 10tb                                                                                        |                                                                                                  | 17-1-15                                                            | -25<br>-21<br>10              |
| 80.8473<br>78.8524<br>77.8451<br>76.8160<br>74.7937<br>73.7637    | 1000-<br>1000-                         | -0124<br>00-00<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100<br>-0100 | 000<br>000<br>7000   | 25.25<br>25.25<br>25.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.1550<br>52.01750<br>520.8733<br>499.7191<br>48.5618                                                 | 3.879<br>3.879                                                            | 240.3090<br>339.3090<br>20087                                                               | 6.692                                                                                            | 788<br>748<br>747                                                  | 28.0506<br>26.7951<br>25.5369 |
| SSSSSS SS                                                         | 20000                                  | 0000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SON                  | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | 200                                                                       | 3555C                                                                                       | 1 O                                                                                              | 222                                                                | 222                           |
| 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7                           |                                        | 35<br>126<br>126<br>126<br>126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                    | 24<br>38<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32                                                                                                     | 21                                                                        | 12                                                                                          | rv⇒=                                                                                             | ±=€~~ <u>~</u>                                                     | )                             |
| 21 0 250                                                          | 8 = 8                                  | 123331<br>14351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                   | 10<br>-8<br>-37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -27                                                                                                    | 9                                                                         | 10                                                                                          |                                                                                                  | 27750                                                              |                               |
| 3983<br>8636<br>7754<br>0977<br>0977                              | 783<br>585                             | 3694<br>1279<br>4970<br>8604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                   | 2581<br>5911<br>9170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5580                                                                                                   | 8827                                                                      | 4036<br>9017                                                                                | 376                                                                                              | 647040<br>647040<br>647040<br>647040<br>647040                     | ii.                           |
| 2347.<br>2347.<br>2348.<br>2350.                                  | 35                                     | 20000<br>20000<br>200000<br>200000<br>200000<br>200000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                   | 2356.<br>2356.<br>2356.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2357.                                                                                                  | 2359.                                                                     | 2360.<br>2360.                                                                              | 361                                                                                              | 2000<br>2000<br>2000<br>2000<br>2000<br>2000                       | ,                             |
| w<br>←woovoru≃r                                                   | 75767                                  | しょうりょく                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | υ <b>⊏</b> ω         | ית סת                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>เ</del><br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ<br>เ | 07-94                                                                     | 2000<br>1000                                                                                |                                                                                                  | 2 19<br>2 7 19                                                     | 600                           |
|                                                                   | 15 0 27                                | 7111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 000                  | 0 &-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        | - ~ t a                                                                   | 1220                                                                                        | 77.77                                                                                            | -25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25<br>-25 | -8                            |
| 00000000000000000000000000000000000000                            | 77777777777777777777777777777777777777 | .000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.000<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -019<br>-013<br>-013 | 803<br>569<br>1112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3103<br>1740<br>0311<br>57310<br>57310                                                                 | 2038<br>2038<br>2008<br>2008                                              | 3001<br>3001<br>3001                                                                        | 6827                                                                                             | 7.73<br>0.40<br>7.73<br>7.33<br>7.33<br>7.33                       | 033<br>776                    |
| 2000 1000 1000 1000 1000 1000 1000 1000                           | 20071<br>20071<br>20071<br>20071       | ,000 <del>1</del> 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 260-<br>2582-        | 257<br>255<br>255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 222523<br>222533<br>222533<br>222533<br>222533<br>222533                                               | 2555<br>2555<br>2555<br>2555<br>2555                                      | 2000<br>0000<br>0000                                                                        | 2000                                                                                             | 00000                                                              | 22                            |
| ユエロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロロ                            | ころうううらっぱん                              | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900                  | 69<br>69<br>69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27232                                                                                                  | -24<br>-28<br>-28<br>-28<br>-28<br>-28<br>-28<br>-28<br>-28<br>-28<br>-28 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 3<br>2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 98899<br>98999                                                     | 922                           |

| 995<br>987<br>897      | 00000000000000000000000000000000000000                                                               |          |       | O−0m4500000−0m450000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|------------------------------------------------------------------------------------------------------|----------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>~</b> ⊘             | 00000 0−<br>0000 000<br>0000 00                                                                      |          | C Unc | O NIVEWON-EWM-OW FUM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1 1                    | 1 7                                                                                                  |          | 0     | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        | 2363.9699<br>2364.1126<br>2364.3785<br>2364.3785<br>2364.7314                                        | 0001 628 | R Obs | 23310<br>23310<br>233110<br>233110<br>233110<br>233110<br>233110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>23110<br>2 |
| 23                     | 16<br>22<br>15<br>15<br>16                                                                           | -        | Unc   | ۲۵ ععدت عع∞<br>معدد ععداً                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20                     | 24 173 42 5                                                                                          | 0011     | ပ္ပ   | 24 GARO E RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2224.2711              | 2217.8514<br>2215.5549<br>2213.9395<br>2212.6208<br>2208.6446                                        | 100      | P Obs | 2306.3075<br>2305.5475<br>2303.2296<br>2302.4460<br>2302.4460<br>2301.6567<br>2298.4377<br>2296.7946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 9                      | 22 2                                                                                                 |          | Unc   | 4 rv 8 8 tumo 0 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| m                      | 1 1 1 6000 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                             |          | 0-0   | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2363.5568              | 2364.1695<br>2364.3095<br>2364.3095<br>2364.4606<br>2364.5687<br>2365.0174<br>2365.2065<br>2365.2889 | 0002 628 | R Obs | 2313.8900<br>2315.3119<br>2316.7117<br>2318.0866<br>2320.1089<br>2320.1089<br>2322.7734<br>2322.7259<br>2322.7259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 91                     | 3 4 1 1 3 3 4 5 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5                                                      |          | Unc   | พื−อ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1-1-                   | 7 2 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 2 3 1 1 1 1                                                    | 012      | 1     | 114 0001001002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2223.2462<br>2221.9722 | 2216.8267<br>2214.2224<br>2212.9089<br>2211.5942<br>2210.2705<br>2208.9455<br>2206.2712              | 10       | P Obs | 23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>22303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303<br>23303  |
| Ñŏ∽∞                   | 000-00400-0000-00                                                                                    |          | 2     | ○−2m45m6~800−2m45m6~80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

\$\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\rightarrown\righ

| 7777                                                               | 720         | -86°         | 8 <del>&amp;</del> % | 8<br>8<br>8<br>8 | 88<br>60 | 00000<br>00000                                               | 2000<br>-005    | 900   | 25886<br>55886   | 200      | 103      |   | 1     | ٦      | บพ <del>ร</del> เกษ                  |
|--------------------------------------------------------------------|-------------|--------------|----------------------|------------------|----------|--------------------------------------------------------------|-----------------|-------|------------------|----------|----------|---|-------|--------|--------------------------------------|
| 90                                                                 | 23          | 13           | 80                   | <b>4</b> 0       | 10       | 6                                                            | <del>1</del>    | 7     | 23<br>14         |          |          |   |       | Unc    | 8-048<br>340-                        |
| 9                                                                  | 19          | 6-           | ∞                    | 001              | 9        | - 1 1                                                        | 0 [ -           | 7     | ± 19 −           |          |          |   |       | 0-0    | 2000                                 |
| 7827<br>0857                                                       | 2387        | 7758         | 5423                 | .0213            | 9969     | 16                                                           | 6993            | 3957  | 8519             |          |          |   | 628   | 0bs    | 3666<br>9982<br>39982<br>39933<br>4  |
| 2346.<br>2347.                                                     | 2348.       | 2348.        | 2349.                | 2350.            | 2350.    | 35                                                           | 2351.           | 2352. | 2352<br>2352     |          |          |   | 201f  | æ      | 2000<br>2000<br>2000<br>2000<br>2000 |
| £ 5 2 4                                                            | 7           | <b>49</b>    | 000                  | <u>_</u>         | 10       | 771                                                          | 24              | 38    | 12               |          |          |   | - 02  | Unc    | 7507                                 |
| σινων                                                              | 10          | ₩            |                      | -2-              | <b>-</b> | 14826                                                        |                 | 17    | 2.1              | _        |          |   | 211£  | ပ      | w-00                                 |
| 5237<br>3764<br>2240<br>0655                                       | .7329       | .3764        | 62.                  | 387              | .9539    | . 25604<br>. 25604<br>. 0160<br>. 7697                       | .51¥            | .4482 |                  | 306.     |          |   | 025   | ops    |                                      |
| 22 42<br>22 41<br>22 40<br>22 40<br>22 39                          | 2236        | 2234<br>2233 | 23                   | 2228             | 2225     | 2223<br>2222<br>2221<br>2221                                 | 21              | 2213  | 2208             | 2        |          |   |       | ۵۰     | 2305<br>2304<br>2304<br>2303         |
| 22<br>1<br>14<br>16<br>16                                          | യ്ക്ക<br>വസ | t            | ~ U                  | വഹ               | ער       | <u></u>                                                      | 56<br>26        |       |                  |          |          |   |       | Unc    | 47 4 4 3 4 4 3                       |
| 1273                                                               | 292         | 4            | p 4                  | nα               | 7        | -∞                                                           | <del>-</del> 49 |       |                  |          |          |   |       | ပ-     | 7                                    |
| 300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300<br>300 | 233         | r            | 52                   | 1013             | 215      | 200                                                          | 8879<br>0833    |       |                  |          |          |   | 628   | 0bs    | 3699266<br>3993246<br>3933046        |
| 22350<br>2350<br>2550<br>2550                                      | 32          | L            | ל נ                  | 2353.            | 253      | ) LC                                                         | 2354<br>2355    |       |                  |          |          |   | 2201e | æ      | 22330<br>23300<br>23310<br>23110     |
| اري ح<br>ادي ع                                                     | φ 4         | 29           | 9                    | 9                | 6        | 84<br>94<br>95                                               | 22<br>27        | 13    | 32<br>14<br>22   | 35       | 23       |   | Ö     | Unc    | 7467                                 |
| m 0                                                                | m           | - 2          | 15                   | 3                | 0        | 0004                                                         | 18<br>-24       | -     | 15<br>-14<br>-27 | 17       | -22      |   | 211e  | ပ<br>ပ | w <b>⊢</b> 00                        |
|                                                                    |             |              | _                    | 10               | -        | M400                                                         | র তু            | 85    | 33               | 8        | 7        | Ì | 022   | 6      | 2017<br>2017<br>2017<br>2017         |
| .4986                                                              | .07         | - / / ·      | .094(                | .7205            | .3261    | 0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40<br>0.40 | .529            | .028  | 533              | .392     | .799     |   |       | 9      | 40,000                               |
| 2244.4986                                                          | 241.079     | 2236.4429    | 2234.0940            | <u></u>          | 32       | 2409                                                         | 5.              | 02    | 53<br>953<br>953 | 2209.392 | 2206.799 |   |       | ا م    | 2673<br>2673<br>2673<br>2673         |

OU FEND → OO BAON TEND → OO BAON TE

| してもらりもららららららららしてしているのとしてしているのとととは、これをとしてものののもののののとととしているののとととは、これをとしてものののととは、これをといるののととは、これをといるののとは、これをといるののととは、これをといるののとは、これをといるののとは、これをといるののとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとは、これをいるとものものものものものものものものものものものものものものものものものものもの |                                                 |                                  |                                        |                                         |                                                                    |           |                   |             |              |                      |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------------------|-----------|-------------------|-------------|--------------|----------------------|------|
| 118<br>11<br>16<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 |                                  | 340                                    | 124                                     | 22                                                                 |           | n←<br>300         | 14          |              | 15                   | I    |
| 12<br>22<br>28<br>40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                                               |                                  | 23                                     | 81.                                     | 22                                                                 | 23        | 1 1<br>4 - 4      | 11          |              | 1-                   |      |
| 3884<br>7868<br>5646<br>3196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ;                                               | 896                              | 3469<br>4629<br>24629                  | 7700<br>0401<br>3026                    | י סו                                                               | 75        | 74747             | 5941        |              | 8470                 |      |
| 340.3<br>341.5<br>341.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | :                                               | 3 4 5<br>2 0 7                   | 24.0<br>24.0<br>24.0<br>24.0<br>24.0   | 348<br>348<br>88<br>88<br>88            | <u> </u>                                                           | <u>,</u>  | 34.0              | 350.        |              | 351.                 |      |
| 00 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                               | aa a                             | NO                                     | ana                                     | 10/ (                                                              | u c       | V (V              | 2           | _            | 8                    |      |
| 17<br>26<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8<br>200<br>9                                   | <b>~</b> 0∞0                     | 24 - K                                 |                                         |                                                                    |           | 1084              | ~~          | 29           | 13                   |      |
| 10<br>24<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92077                                           | 112                              | JO ON COL                              | 1-18-7                                  |                                                                    |           | 161               | -5          | ī            | 7                    |      |
| 311<br>730<br>594<br>594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7899967<br>7575<br>7575<br>7575<br>7575<br>7575 | いるので                             |                                        | 2000<br>2000<br>2000<br>2000<br>2000    | 200                                                                | J (       | 763<br>568<br>314 | 281<br>1822 | 3758         | 1483                 |      |
| 5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85-00-1<br>00-100                               | 0000                             | ง<br>การเการ                           |                                         | ,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | ຳ ກໍ      | 700<br>700        | 5.8         | 3.3          | 0.8                  |      |
| 22 55<br>22 55<br>22 55<br>22 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 22222<br>22222<br>22222                         | 222                              | NONNA<br>NONNA<br>NONNA                | 3000c                                   | 2225                                                               | א ל       | 222<br>222<br>222 | 221<br>221  | 221          | 221                  |      |
| 1010 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (4(4(4)44                                       | (01010)                          |                                        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                            |           | •                 | (4,4        | •••          | ••                   |      |
| 18<br>11<br>16<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43<br>233<br>20                                 | 5-2t                             |                                        | <b>4</b> 0                              |                                                                    | 21        | 9                 | 12          |              |                      |      |
| -36<br>-36<br>-34<br>-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12<br>12                                        | ころとと                             | 1                                      | 89                                      | •                                                                  | _         | <u>.</u>          | 9-          |              |                      |      |
| 3884<br>7868<br>5646<br>3196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0555<br>1097<br>4483                            | 805<br>2310<br>170<br>170<br>170 | 562                                    | 210<br>947                              | i                                                                  | 0837      | 258               | 110         |              |                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 -7                                            | するろろ                             | Ö                                      | 7.5                                     |                                                                    | o.<br>0   | 0.2               | 8.0         |              |                      |      |
| 2340<br>2340<br>2341<br>2341<br>2342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | न न न न<br>स                                    | 2222<br>2222<br>2222             | <b>₩</b>                               | 234                                     | -                                                                  | 234       | 2350              | 2350        |              |                      |      |
| <i>ര</i> ഫ്                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ≖യ ≖ന∞                                          | ပိုကစင်                          | ± π~ π°                                | 13                                      | 11                                                                 |           | d                 |             | 540          | စ်ဆ ဝ                | 2 th |
| 6ω <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 | 2809                             | യയ്ട്ട<br>സ്കൂട്ട                      |                                         | 9                                                                  | 7         | ţ                 |             | 0°5          | ± €                  | 33   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                  |                                        |                                         | •                                                                  | •         | Ì                 |             | t            | 1 1                  | T    |
| 0483<br>9744<br>8934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 25.7                                            | 7007                             | 00000000000000000000000000000000000000 | 69                                      | 45                                                                 | 7532      | 2                 | 4 t         | 1699         | 9532<br>6832<br>4102 | 8481 |
| 5.00<br>0-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 22<br>200 202                                | コココの                             | %~~<br>~~~~~~                          | $\circ$                                 | 228.                                                               | 25.       |                   | _ ,         | <u></u>      | 210.<br>209.<br>208. | 205. |
| 222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200 00                                          | 2000                             | 22222                                  | v ~                                     |                                                                    | 222       |                   |             | 22           | 22                   | 22   |
| 000000<br>0000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000000<br>0000000000000000000000000000000       | 22                               | 12743                                  | -2-<br>-80<br>-80<br>-80                | - 22 C                                                             | ∞<br>2.τυ | 88888<br>97886    | 3288        | 2000<br>2010 | 9999<br>1967-8       | 99   |

| 1              |       | 9         | c         | y <del>4</del> 6       | 2                      | <b>≠</b> €                    | സസ                              | 3-4                                                                                            | 14<br>25                            | <b>#</b>   | <b>4</b> 0         | റന്നത്രത                            | rvw5                          | _<br>∞ω≠ <i>⊱</i> ω                                           | ور<br>د   | -          |
|----------------|-------|-----------|-----------|------------------------|------------------------|-------------------------------|---------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------|------------|--------------------|-------------------------------------|-------------------------------|---------------------------------------------------------------|-----------|------------|
|                | 18    | 7         |           | -04                    | 0                      | 57                            | -26                             | 3.4                                                                                            | 1.<br>3.8                           | 7-         | <b>⊅</b> (         | 7-65                                | 117                           | 0&£                                                           | 1287      |            |
| 21 - 00011 636 | R Obs | 2261.5929 | שונט אאכ  | 2267.4808<br>2268.8949 | 2272.9875              | 2276.8661<br>2278.1113        | 2280.5301<br>2281.7022          | 2283.9764<br>2285.0763                                                                         | 2288.2320<br>2289.2380              | 2291.1718  | 293.010            | 2294.7505<br>2295.5850<br>2296.3946 | 297.938<br>298.674<br>299.385 | 2300.0747<br>2300.7356<br>2301.3734<br>2301.9875<br>2302.5752 | 2303.6780 | 304.00     |
|                | 15    | 12        | 6         | 43                     | 00                     | ~9vs                          | y<br>mm,                        | _ <del></del>                                                                                  | raaa ç                              | _<br>7 rv= | 15                 | 200°                                | ~= ~                          | -<br>7<br>2<br>2                                              | 9         | 2          |
| 000            | 12    | 15        | 7         | ယက်                    | <u></u> 0              | \$\$ P                        |                                 | 1<br>20000                                                                                     | 3000                                | 77         | <u>1</u><br>کھ     | ₹.<br>140.                          | -252                          | 00000                                                         | 20        | 3          |
|                | P 0bs | i αο      | 2256.1297 | 2252.8782<br>2251.2161 | 2247.8247<br>2246.0915 | 242.556<br>240.754<br>238.929 | 235.208-<br>235.208-<br>233.312 | 2231.<br>2229.<br>2227.<br>227.<br>231.<br>231.<br>231.<br>231.<br>231.<br>231.<br>231.<br>231 | 2223.4854<br>2221.4504<br>2219.3929 | 215.206    | 213.080<br>210.928 | 206.560<br>204.342<br>202.097       | 197.544<br>195.236<br>196.901 | 2190.5494<br>2188.1688<br>2185.7677<br>2183.3443<br>2180.8971 | 2175.9357 | 2168, 3255 |
| 1              | 15    |           | nn.       |                        |                        |                               |                                 |                                                                                                |                                     |            |                    |                                     |                               | -6226                                                         |           |            |

91 2165.7441 -1 4 2305.5920 15 9 93 2163.1427 25 21 2306.0037 -29 19 95 2160.5145 7 9 2306.7649 3 8 97 2155.1941 1 7 2307.4249 15 28 103 2147.0462 -11 18

|                                         | J     | この89F2089F2089F2089F20<br>そりららららられれれれれををををそることのことととしませた。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20        |
|-----------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                         | Unc   | - ECM TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ح         |
| 636                                     | ၁-0   | 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ر<br>د    |
| - 20002 6                               | R Obs | 2244.6258<br>2253.3295<br>2253.3295<br>2255.0449<br>2256.0449<br>2258.6692<br>2267.1282<br>2267.1282<br>2270.4027<br>2272.4702<br>2277.2339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2279.8150 |
| 1 2                                     | Unc   | מ שת שפר של משר משר מד מש                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |
| 2001                                    | 0-0   | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |           |
| 1                                       | P Obs | 2237.5615<br>2237.5615<br>2235.9289<br>22230.8946<br>22227.6572<br>2222.0530<br>2222.0530<br>22214.5713<br>2214.5713<br>2214.5713<br>2210.7000<br>2204.7201<br>2204.7201<br>2198.5440<br>2196.4417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |
| !<br>}                                  | Unc   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |           |
| 9                                       | 2-0   | 23 176 020 2 4 500 2 4 050 2 4 050 2 4 050 2 4 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
| 20003 636                               | R Obs | 22242.8513<br>22242.8693<br>22245.36693<br>22247.3328<br>22554.3416<br>22554.3416<br>22555.967373<br>2265.6390<br>2265.6390<br>22765.6390<br>22765.6390<br>22765.71577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
| 13 -                                    | Unc   | $\infty$ $\pm n n \omega$ $\pm \infty$ $\infty$ $\pm n \omega \omega$ $\pm n \omega \omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$ $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ~         |
| 2001                                    | 1 3-0 | . 4000 W 3 3 -n- 0 n4004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x         |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | P Obs | 2235.7532<br>2227.3295<br>2223.8028<br>2223.8028<br>2218.3477<br>2214.6023<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427<br>2206.8427                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Σ.        |
| 1 1                                     | J.    | ○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○000年N○0000年N○000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○0000年N○000 |           |

| 08642086420864<br>9888884444666                                                                                   | -                   | - 0 wa roo - 0 0 - 0 wa roo - 0 co |
|-------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------|
|                                                                                                                   | Unc                 | 200 200 200 400 80                                                     |
|                                                                                                                   | 0-0                 | 1 11 0-                                                                |
|                                                                                                                   | - 01111 63<br>R Obs | 200 000 000 000 000 000 000 000 000 000                                |
| 0r 0000110                                                                                                        | 21<br>Unc           | 5000 ±80 € ± ± €€€€                                                    |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                             | 15 5                |                                                                        |
| 2181.1028<br>2178.8265<br>2171.8590<br>2167.1084<br>2167.7024<br>2162.2743<br>2159.8240                           | P Obs               | 0 004 00 40 0 0 C 5000000000000000000000                               |
| 23 8 # 7                                                                                                          | Unc                 | פס מ שבר בשר בער סת שעת סס                                             |
| 7 0 0                                                                                                             | 0                   | i 1100- 1- 1 11 -1                                                     |
| 81.4894<br>82.9222<br>84.2611                                                                                     | 101<br>R Ob         | 666 66 666 666 667 67 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2            |
| 22 22 25 25 25 25 25 25 25 25 25 25 25 2                                                                          | -                   |                                                                        |
| φωωσ σ νωνν-φω                                                                                                    | - In                | 1                                                                      |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                             | 0-0                 | 1 1 10 11-11 1                                                         |
| 2179.2285<br>2174.6574<br>2172.3412<br>2167.6411<br>2162.8602<br>2162.8602<br>2157.9937<br>2155.5310<br>2155.5310 | P Obs               | 0 10 2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                |
| 080420864<br>9888847777666                                                                                        | 7                   | - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0                                |

| 33266                                                                  | JUMMY.                              | nmmmm                                                         | 0-0m<br>======         | 24445<br>1000-000                   | 4 IV I    | טולטונטן<br>- מאביי    | טוטק<br>1 ונילק |                                     | 35000                                                        | 960       | 9696               | 207.                   | 7676                                             |
|------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------|------------------------|-------------------------------------|-----------|------------------------|-----------------|-------------------------------------|--------------------------------------------------------------|-----------|--------------------|------------------------|--------------------------------------------------|
| 7                                                                      | 492                                 | စင်္ထာလ                                                       | 43                     | £00                                 | 7         | 20                     |                 | 25.                                 | 5                                                            | 3         | 6                  | <b>4</b>               | ע                                                |
| 12                                                                     | 240                                 | 177<br>10000                                                  | -12                    | 122                                 | 0         | -21                    |                 | 29                                  | 7                                                            | 0         | 13                 | 000                    | עב                                               |
| 2267.7019                                                              | 2270.6432<br>2271.2380<br>2271.7870 | 2272.9062<br>2273.4721<br>2273.9983<br>2274.5556              | 2276.1179<br>2276.6477 | 2278.1400<br>2278.6452<br>2279.1162 | 2280.0664 | 2280.9914              |                 | 2283.2144<br>2283.6300              | 2285.6597                                                    | 2286.4271 | 2287.5445          | 2288.2534<br>2288.5826 | 200.940                                          |
| £<br>€24 ∞                                                             | w55.                                | <u>√</u> 4 0                                                  | 9                      | 4 €£                                | 25        | 3                      | 16              | 100                                 | -40w                                                         | 1         | 12                 | ==                     | r-520                                            |
| -12<br>-11                                                             | 27-50                               | 200                                                           | 7                      | 010                                 | -7        | 20                     | -22             |                                     | -197-                                                        | 1         | 10                 | 00                     | -20<br>-20<br>14                                 |
| 2225, 3333<br>2224, 4490<br>2222, 5659                                 | 2220.6617<br>2219.6395<br>2218.7360 | 216.7%<br>215.7.0<br>20.7.0                                   | 2209.6879              | 2206.6851<br>2205.5446<br>2204.5989 | 2202,4853 | 2200.3544<br>2199.1591 | 2196.9825       | 194.786<br>193.814<br>192.569       | 2180<br>2180<br>2188<br>2188<br>2188<br>2188<br>2188<br>2188 | * /0 * /0 | 2183.4599          | 2180.1311              | 2176.3925<br>2175.3867<br>2173.9903<br>2172.9858 |
| 000<br>000<br>000                                                      | ᠬᠤᡗᡆᠳ                               | ယ်စ္သ∓ဂ်ာပ်                                                   | <b>₹</b> 0             | ತ್ತು ಬ್                             | <u> </u>  | י סי                   | ، م             | 18                                  | ω=                                                           | 8         | <b>⇒</b> (         | 57                     | 7 - 12                                           |
| 77<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | $v - u \frac{1}{u^2}$               | 0504F                                                         |                        | #®ന്                                | <u> </u>  |                        | <u>ر</u> د      | -15                                 | 44                                                           | 7         | 7 8                | 25                     | 12                                               |
| 270.068<br>270.680<br>271.281<br>271.877                               | 2773.051<br>273.051<br>274.1999     | 2275-3286<br>2275-3286<br>2275-8963<br>2276-4297<br>2276-9930 | 277.505<br>278.062     | 2280.5930<br>2281.1341<br>2281.5733 | 282.107   | 283.460                | 2204.3019       | 286.108                             | 2287.7548<br>2288.2753                                       | 2289.0613 | 289.823            | 2290.5638<br>2291.2761 | 2292.6344<br>2292.7409                           |
| ~ww+.                                                                  | Joow                                | 0 mm 6                                                        | ωι                     | 1 <del>4</del> 00 4                 | =         | 565                    | טוע             | <b>ღ</b> დე                         | <b>4</b> 040                                                 | 000       | non                | mm                     | 0<br>0<br>0<br>0<br>0<br>0<br>0                  |
|                                                                        | <u>1 1</u><br>4 wow                 | 040 N                                                         | νo                     | 1 92                                | 24        | 27:                    | -2              | 102                                 | 01-99                                                        |           | urbo               | 35                     | -18<br>-20<br>-14<br>-13                         |
| 2227.5019<br>2226.4770<br>2225.6236                                    | 222.757<br>222.651<br>220.797       | 218:736<br>217:879<br>215:885                                 | 211.831                | 2209.7706<br>2208.5353<br>2206.4244 | 2204.2937 | 2202.1350<br>2201.3002 | 199.124         | 2196.9267<br>2195.5288<br>2194.7065 | 2192.4656<br>2191.0071<br>2190.2011                          | 187.916   | 185.606<br>184.055 | 2181.6925<br>2180.9235 | 2178.5472<br>2176.8960<br>2176.1517<br>2174.4653 |
| <b>~</b> ∞60+                                                          | - am=r                              | വരം ~കവ                                                       | O-0m=                  | 10/01/00                            | 70-       | - 01 ma                | t inv           | 0000                                | 2-01m=                                                       | t inv     | 20-00              | DO-0                   | vim=tiovo                                        |

| 747<br>788<br>780<br>780<br>780<br>780                                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000<br>00-00         | 2000<br>W4 12/6                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                    | 100       |
|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|-----------|
| 8 10 01                                                                                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7                      |                                     |                                                                                             |           |
| -11 20 1                                                                                 | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1-                     |                                     |                                                                                             |           |
| 2290.8517 -11<br>2291.4443 20 1<br>2292.0064 -12 1                                       | 5491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2294.0279              |                                     |                                                                                             |           |
| 2290.<br>2291.<br>2292.                                                                  | 2292.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2294.<br>2294.         |                                     |                                                                                             |           |
| <u> </u>                                                                                 | 239671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7                      | 22                                  |                                                                                             | 19        |
| 05-870                                                                                   | 27777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.3                    | 7                                   |                                                                                             | 3 1       |
|                                                                                          | 2164.1606<br>2163.1429<br>2161.6457<br>2150.6286<br>2159.1072<br>2158.0935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2155.5310<br>2152.9506 | 2150.3453                           |                                                                                             | 2142,4033 |
| 2293.3557 2 4<br>2293.8922 -15 6<br>2293.9447 -7 8<br>2294.4906 19 22<br>2294.5128 21 25 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                        |                                     |                                                                                             |           |
| യം<br>നയവം                                                                               | 04 W4 500 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 200                    | <u> </u>                            | 19                                                                                          | 7         |
| ပ်ဝင်ပဂ                                                                                  | ± 0,0 − 0, − 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 502                    | 22                                  | 34                                                                                          | 18 14     |
| 2173.7331<br>2172.0123<br>2171.2919<br>2169.5356<br>2168.8302                            | 22166.3<br>22164.3<br>22164.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163.3<br>22163. | 2156.8114<br>2156.1914 | 2153.5970<br>2151.5648<br>2150.9839 | 2148.3490                                                                                   | 2143.5274 |
| 77<br>79<br>80<br>82<br>82                                                               | 0000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 929                    | 0000<br>W <del>4</del> NA           | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 000       |

|       | Unc          | 80               | 7        | <b>.</b> 0∨         | -     |       | -0<br>40,0     | า๙า   | 5            |
|-------|--------------|------------------|----------|---------------------|-------|-------|----------------|-------|--------------|
| 636   | ပ-၀          | 11               | 9        | <del>ر</del> ا<br>س | 13    |       | 128            |       | -50          |
| 02f   | R Obs        | 6.0214           | 8.937    | 0.3597              | 464.4 | 5.824 | 8.4124<br>6757 | 0.912 | 2.124        |
| - 111 |              | 225              | $\sim$   | 226<br>226          | 2     | O,C   | 220            | Ś     | Ò            |
| 12f   | Unc          |                  | <b>₩</b> | ωm                  | mc    | m     | <u>+</u> ~     | רטר   | mm           |
| 1111  | ၁ <u>-</u> ၀ |                  | Oru      | - <b>7</b>          | 99    | -2    | 133            |       |              |
|       | Obs          |                  | 939      | 90                  | 4603  | 23    | 295            | 3     | .6860        |
|       | ۵.           |                  | 22       | 35                  | 2237  | 23    | 23             | 55    | 2224<br>2222 |
|       | ٦            | 0 <del>7</del> 0 | ထင္      |                     |       |       | ンサく            |       |              |

| ∞         | 12                                     | <b>~</b> =             | ıπm                    | วีเบออ                                                        | 1       | സസ                     | m         |                                     |                        |                        |
|-----------|----------------------------------------|------------------------|------------------------|---------------------------------------------------------------|---------|------------------------|-----------|-------------------------------------|------------------------|------------------------|
| ~         | -18                                    | 25                     | 7# O                   | 1 L                                                           | 7       | <u>1</u> w             | 7         |                                     |                        |                        |
| 2274.4845 | 276.745                                | 280.991                | 2282.9713<br>2283.9253 | 2286.6454<br>2287.5065<br>2288.3431<br>2289.1536              | 290.708 | 2292.1663<br>2292.8604 | 2294.1764 |                                     |                        |                        |
|           | 0 w≠                                   | 26<br>12               | ⇒ 5 w                  | യ⇔സയസ                                                         | സസ      | ± സസവ                  | V         | ± 0.c                               | 17                     | 25                     |
|           | -24                                    | 90                     | 7200                   | <u> </u>                                                      | 000     | nood                   | >         | 1-1-<br>6-1-4-0                     | 56                     | ωņ                     |
|           | 2218.8728<br>2216.8902<br>2214.8847    | 2210.8074<br>2208.7351 | 202.3863               | 2195.0416<br>2195.8358<br>2191.6094<br>2191.3594<br>2189.0904 | 186 796 | 179.787<br>177.407     | 175.000   | 2167.6717<br>2165.1854<br>2162.6782 | 2157.6009<br>2155.0292 | 2149.8240<br>2147.1902 |
| 34        | 00000000000000000000000000000000000000 | 139a                   | 1000<br>1000<br>1000   | 20000<br>20000                                                | 986     | 2222                   | 2000      | 20200                               | 888                    | 2,68<br>1,086          |

| Ì                 | ם                           | om± п                           | noi            | .~                            |
|-------------------|-----------------------------|---------------------------------|----------------|-------------------------------|
| 1                 | Jnc                         | നഃ                              | - 1            |                               |
|                   | 0-C                         | -22                             | <u>.</u>       | 35                            |
| 929               | Obs                         | #9Z#                            | 5555           | 6916                          |
| 02221 - 02211 636 | P Obs O-C Unc R Obs O-C Unc | 22-40-4764 -22                  | - 1 + 22       | 2242.6916 32                  |
| -                 | Unc                         |                                 | νων            | စထ                            |
| 0222              | ე-0                         | ,                               | 36-            | -18<br>-18                    |
| 1                 | ops                         | 7 1 6                           | 9240           | 1178<br>2955                  |
|                   | a.                          |                                 | 2231.          | 2231.1178 25<br>2230.2955 -18 |
|                   |                             |                                 |                |                               |
|                   | Unc                         | 7                               | ≉              |                               |
| 0                 | ე <u>-</u> 0                | 6-0                             | -5             |                               |
| 93                | Obs                         | 8819<br>6419                    | 8841           |                               |
| 12211 - 12201 636 | P Obs O-C Unc R Obs O-C Unc | 2240.8819 -9 7<br>2241.6419 0 7 | 2243.8841 -2 4 |                               |
| -<br>-            | Unc                         | 15<br>24                        | 12             | 18                            |
| 1221              | ပ<br>၂-                     | 124                             | 22             | -17                           |
|                   | Obs                         | 2077                            | 7920           | 1482                          |
|                   | ۵                           | 2235.4054 -12 24                | 2233.          | 2232.1482 -17 18              |
|                   | J                           | 0 WZ I                          | رص             | ~~                            |

| 00-00 <del>-</del>                                                     | .00                           |            | .82 <i>%</i> | 23        | 922<br>002<br>002                   | 7867<br>7887           | ಜ್ಞ       | പധസ്<br>- ഗസ്                       | 993<br>992 | 33<br>23<br>28 | 000 H                  | - 1 - 1 - 1<br>- 1 - 1 - 1 | 100<br>100 | ~<br>**** | 2000                   | יהיהיה<br>היהיה        | 22        |
|------------------------------------------------------------------------|-------------------------------|------------|--------------|-----------|-------------------------------------|------------------------|-----------|-------------------------------------|------------|----------------|------------------------|----------------------------|------------|-----------|------------------------|------------------------|-----------|
| Ŋ                                                                      | rνω                           | 07         | . 0          | `         | <u>-~</u>                           | 0                      | 12        | 22<br>5                             |            | 9              | 17                     | `                          | Ξ          | 9         | 80                     | 19                     | 6         |
| 21                                                                     | ==                            | ω <u>.</u> |              | -         | 278                                 | -23                    | œ         | 22                                  |            | ~              | 4-1                    | ?                          | 16         | 17        | <b>₹</b>               | -22                    | 1         |
| 2245.5549                                                              | 2248.3246<br>2249.0023        | 2250.3397  | 52 043       | (         | 2254.2136<br>2254.8380<br>2255.4593 | 257.276                | 2257.8715 | 2259.0471<br>2259.6249              |            | 2261.8756      | 2263.4958              |                            | 2266.5881  | 2268.0575 | 2269.4616              | 2270.8221              | 272.124   |
| 2                                                                      |                               | 9          | ∞ <i>⊡=</i>  | r         | 6                                   | 9                      | ,         | νı                                  | mo         | 9              |                        | 6                          | 22         | 21        | m                      | აონი                   | 137       |
| 37                                                                     |                               | -10        | 222          |           | 9                                   | ا<br>بر                | ١         | <b>4</b> - 1                        | -0-        | -              |                        | 10                         | 15         | -24       | w                      | -006                   | -24       |
| 2229.4771                                                              |                               | 2221.7979  | 2220.0277    | 757.017   | 2216.4236                           | 2211,7832              | •         | 207.969                             | 2206.0281  | 204.064        |                        | 2199.0562                  | 2195.9769  | 192.85    | 188.60                 | 2186-1500<br>2185-3649 | 183.17    |
| 20<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>1 | -5%                           |            | <b>c</b>     | <u>-</u>  | 7                                   | <b>⇒</b> 0⊦            | - (       | ~~~;                                | 2          |                | 10                     |                            |            |           | ন                      |                        | 6         |
| 24,624                                                                 |                               |            | 90           | 97-       | 5                                   | 87,1                   | - (       | 124<br>134<br>133                   |            |                | -20<br>17              |                            |            |           | 9-                     |                        | -2        |
| 2246.7941<br>2247.5039<br>2248.2117<br>2248.2117                       | 250.297<br>250.980<br>250.980 |            | - L          | 2724.9275 | 2256.2403                           | 2258.1130<br>2258.7291 | (())      | 2260.5303<br>2261.1241<br>2261.7042 | 606.50     |                | 2265.0794<br>2265.6440 |                            |            |           | 2271.2053              |                        | 2273.9505 |
| 7-91-6                                                                 | 6                             | m :        | <b>=</b> (   | אעכ       | 1 con                               | - m                    | സ         | at €                                | 11         | 5              | uw <del>u</del> o      | nom                        | 15         | m         | ω∞                     | 12                     | <b>#</b>  |
| 1<br>20<br>20<br>20<br>20                                              | ₹                             |            | <u> </u>     | 24        | ) <del>- </del> (                   | 5,                     | ~∞        | 134                                 | 15         | -23            | 7200                   | 725                        | -23        | •         | -13                    | 21<br>14               | 7         |
| 2231.3198<br>2230.4865<br>2229.6478<br>2228.8011                       | 2225.3609                     | 224.484    | 222.717      | 2220.0277 | 218.201                             | 214.486                | 595       | 10.6                                | 2207.7651  | 789            | 2203.7974              | 7.70                       | 2197.6775  | 2195.5957 | 2191.3588<br>2190.3011 | 2188.1433<br>2187.0368 | 2184,8396 |

TO A SECURITY OF THE VALUE OF THE PROPERTY OF

| 6000                    | 00000000000000000000000000000000000000 | 22.73                     |                                                                    | დდდα<br>Ω W≃t π                      | 000000<br>0000000            |   | !<br>!<br>! |              | M= 12∙01                                     | ~80°C                                                                                           |
|-------------------------|----------------------------------------|---------------------------|--------------------------------------------------------------------|--------------------------------------|------------------------------|---|-------------|--------------|----------------------------------------------|-------------------------------------------------------------------------------------------------|
| 7 19                    |                                        |                           |                                                                    |                                      |                              |   |             | C Unc        | υ<br>υπ<br>π                                 | 980±<br>∞∞±                                                                                     |
| 37                      |                                        |                           |                                                                    |                                      |                              |   | 36          | Ŏ            |                                              | T T 1                                                                                           |
| 2272.9686               |                                        |                           |                                                                    |                                      |                              |   | 01 6        | 0bs          | .2753<br>.0211                               | 4951<br>2233<br>9476                                                                            |
| 2272                    |                                        |                           |                                                                    |                                      |                              |   | )††O -      | <u>c</u>     | 2241<br>2242                                 | 2243<br>2244<br>2244<br>2244                                                                    |
| 16                      | 7                                      | m &                       |                                                                    |                                      |                              | } | 1           | Unc          | 12                                           | <b>ω</b> ≠≠∞                                                                                    |
| -7-                     | -                                      | -2<br>17                  |                                                                    |                                      |                              |   | 110         | υ <u>-</u> 0 | -20                                          | 0447                                                                                            |
| .9628<br>.8423<br>.7274 | .3252                                  | .3859                     |                                                                    |                                      |                              |   |             | ops 0        | .6905                                        | .2326<br>.4011<br>.5641<br>.7217                                                                |
| 2180<br>2179<br>2178    | 2175                                   | 2168                      |                                                                    |                                      |                              |   | i<br> <br>  | <u>α</u> ,   | 2232                                         | 2230<br>2229<br>2228<br>2228<br>2227                                                            |
|                         |                                        |                           |                                                                    |                                      |                              | 1 | !           | 0            |                                              |                                                                                                 |
|                         | m                                      |                           | m m                                                                |                                      |                              |   |             | į 5          | i 0:                                         |                                                                                                 |
|                         | -16                                    |                           | - 9                                                                |                                      |                              |   | 36          | 0-0          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      | これました                                                                                           |
|                         | 4823                                   |                           | 9163<br>5734                                                       |                                      |                              |   | 9           | Obs          | 6843<br>6843<br>6843<br>6843<br>6843<br>6843 | 447<br>447<br>888<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32<br>32 |
|                         | 2276.482                               |                           | 2280.                                                              |                                      |                              |   | - 03301     | :            | 1 00000<br>1 000001                          | 22555.<br>22555.<br>22556.<br>2256.                                                             |
| 2 %                     | เบราดดเบซ                              | 468                       | 27-07-EGE                                                          | 22                                   | 10<br>17<br>17               |   | 1=          | Unc          | 20                                           | =                                                                                               |
| 10                      | 1-00-1                                 | 01-6                      | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | 99                                   | ₩<br>000                     |   | 033         | 0-c          | -23                                          |                                                                                                 |
| .6229                   | 1193<br>0174<br>8369<br>7300<br>4176   | 0882<br>8529<br>7337      | 2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500       | 3005<br>1827                         | 6863<br>2785<br>1690<br>7369 |   | !<br>!<br>! | ops          | 1816                                         | <u> </u>                                                                                        |
| 2182.                   | 2178                                   | 2170.0<br>2168.0<br>2167. | 22222222222222222222222222222222222222                             | 2154.<br>2153.                       | 2150                         |   | !<br>!      | )<br>d.      | 2245.                                        | . 242                                                                                           |
| 60<br>61<br>61          | 00000000000000000000000000000000000000 | 52.723<br>50.725          | 277777<br>27000000000000000000000000000000                         | χ<br>χ<br>χ<br>χ<br>χ<br>χ<br>χ<br>χ | 888<br>008-490               |   | !           | ,            | പ്രവേജന                                      | -86 <u>0</u> 1                                                                                  |

-OGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGGAOGIAMOLOGAOGIAMOLOGAOGIAMOL

- ○ らのタークライミア - ○ ののよりられまた - ○ ののようらっての のようというのもようというというというとととととととととといっている としょしし

970-0

4664 4896 5052 5143 5199

2218. 2217. 2216. 2215. Lon-

5118 5007 4814 4583

2212.5 2211.5 2210.1 2209.4 3 ± 3 1 0 - - 1 ± 10 0 - 1

22067.39 22066.33544 22066.33544 22061.25084.25081 21999.99582 21986.99582 2196.99582 2196.99583 2196.99583 2196.99583 mo-0

4366 3226 2059 0829

993.7

0000

2762 3267 3689 4066

2223.2 2222.3 2221.3 2220.1

20

2226.0934 2225.1600

σ

2238,563

0410000-4

| 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | , money                             | 201-74<br>201-74                                 | 7777<br>7479<br>7479<br>7479        | 8698<br>8098                                                       | -000000<br>-000000                               | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 3829                   | ,000<br>1604 | 999<br>965 | 98        |
|--------------------------------------------------------------------|-------------------------------------|--------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------|------------------------|--------------|------------|-----------|
| ⋾                                                                  | യഹ                                  |                                                  | ω                                   | <b>4</b>                                                           | กับเคร                                           | <b>t</b>                                       | 5                                                                  | রব                     |              | 19         |           |
| 6                                                                  | 69                                  |                                                  | -5                                  | -                                                                  | φ/v∞r                                            | î                                              | 8                                                                  | 70                     |              | L-         |           |
| 2274.6106                                                          | 2275.8429<br>2276.2427              |                                                  | 2279.5760                           | 2281.2245                                                          | 2281.8423<br>2282.1439<br>2282.4392              | 17)                                            | 2283.5593                                                          | 2284.0845<br>2284.3384 |              | 2285.2957  |           |
| <b>4</b>                                                           |                                     | - σοντο                                          | 0                                   | 12                                                                 | 13                                               | 14                                             | Ξ                                                                  | 50                     |              |            |           |
| 94                                                                 | 2 2                                 | 11 1-                                            | 322                                 | -14<br>9                                                           | 72                                               | -20                                            | -5                                                                 | -23                    |              |            |           |
| 2176.2243                                                          | 72.801                              | 2168.3301<br>2168.1621<br>2166.9902<br>2165.8104 | 623                                 | 2158.6262<br>2156.1918                                             | 2153.7335                                        | 2148.7520                                      | 2146.2326                                                          | 2143.6890              |              |            |           |
| 2                                                                  | 8 wg                                | 205                                              | യഗഫ്ച                               | . wo                                                               | 25                                               | 26                                             | 6                                                                  | m                      | 16           | 20         |           |
| 9                                                                  | -1<br>-23                           | w±w-                                             | 12-22                               | 7                                                                  | -15                                              | 23                                             | 6                                                                  | ī                      | 1            | 2          |           |
| 2286.4467                                                          | 2287.2490<br>2287.6410<br>2288.0247 | 2288.7822<br>2289.1535<br>2289.5134<br>2289.8706 | 2290.5642<br>2290.9047<br>2291.2397 | 1 (04)                                                             | 688                                              | 2293.9679                                      | 2294.7744                                                          | 2295.5218              | 2295.9931    | 2296.6564  |           |
| 273                                                                | 0W7 6~                              | ၀ယ္သားကတ်၊                                       | nmo =                               | 2 ± 101                                                            | <b>Ն</b> ∞ωΩ                                     | <b>℃</b> -                                     | 4 W.C                                                              | יססי                   | -<br>-<br>-  | 10         | 13        |
| 17                                                                 | 11 •                                | 2775                                             | 11 1                                |                                                                    | 2-18                                             |                                                |                                                                    | ဝက္ကက                  | 7 '          | 7          | 6         |
| 887                                                                | င်တွင်<br>စိတ်ဆိုက်<br>စိတ်ဆိုက်    | 2186.0049<br>2179.7238<br>2178.5470<br>2177.3589 | 734                                 | 168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168<br>168 | 2166.4652<br>2165.2247<br>2163.9853<br>2162.7361 | 9                                              | ກີເກີ                                                              | 2155.1308<br>2153.8490 | ບູບັຊ        | 3          | 2144.6971 |
| 63                                                                 | 0000<br>0000                        | 7238                                             | 22505                               | -829<br>-829<br>-809                                               | - 000 de                                         | ထိုင္သ<br>၁                                    | ~<br>&<br>&                                                        | 989<br>982             | 2000<br>7004 | 1882       | 98        |

| !          | J     | 0-0m=u                              | no ⊱o                  | 000-0                  | —— t<br>1₩= f          |                        | 200                | 328         | 200<br>200 | 100        | 250       | 2000                   | ,— «       | ww.<br>Iw⇒ n              | 100<br>100           | - <u></u><br>-<br>-<br>-<br>-<br>-                                                          | ਸ਼ੁਬੂ<br>20←0          | 4 4<br>7 W |
|------------|-------|-------------------------------------|------------------------|------------------------|------------------------|------------------------|--------------------|-------------|------------|------------|-----------|------------------------|------------|---------------------------|----------------------|---------------------------------------------------------------------------------------------|------------------------|------------|
|            | Unc   | <b>=</b> 1                          | ~∞ (                   | 29                     | 17                     | nm ı                   | ٠                  | 24          | 22         | 14         | ٣         | 2                      | ~          | 200                       | ¥                    | کرم                                                                                         |                        |            |
| 00         | 0-c   |                                     |                        | -21                    | -17                    | بار<br>م               | ×                  | 22          | 20         | -20        | 8         | ∞                      | ï          | nqm                       | C                    | m/c                                                                                         | 55                     |            |
| - 10001 63 | R Obs | 2248,8678                           | 250.266                | 2252.9922              | 255.63                 | 256.916                | 2258.1787          | 2260.0298   | 2261,2342  | 2262.4119  | 2263.5729 | 2264.7095              | 266,369    | 2266.9115<br>2267.4484    | 000                  | 2269.5372                                                                                   | 270.545                |            |
| 1=         | Unc   |                                     |                        | 8 4                    | 4                      | 00#                    | 0,0                | ∩∞ <i>=</i> | vot        | , o        | 10        |                        | 19         | ~ <del>~</del> ~~         | 15                   | 12                                                                                          |                        |            |
| 100        | 0-0   |                                     |                        | -21                    |                        | 72-7                   | 17                 |             | - 2-2-     | - ;        | 10        |                        | 20         | -24                       | 7 <del>1</del><br>78 | 17                                                                                          | -16<br>12              |            |
|            | P Obs |                                     |                        | 2238.4429              | 234.453                | 2232.8178<br>2231.9918 | 230.324            | 228.630     | 2226.9157  | 224 302    | 2223.4214 |                        | 219.835    | 2218.0061                 | 215.229              | 2213.3469                                                                                   | 2211.4392<br>2210.4815 |            |
|            | Unc   | 27.                                 | - 21                   | 1 4                    |                        | 612                    |                    | 1,4         | ∿≕         | <b>⇒</b> " | 1         | <b>⇒</b> ′             | <u>,</u> ∞ | ωo                        | <b>=</b>             | 16                                                                                          | 17                     | 80         |
|            | 2-0   | -∞⇒ι<br>-                           | <u>c</u> 6             | -19                    |                        | -12                    | 14                 | 9-          | <b>τ</b> Υ | 21         |           | 202                    | J 🕶        | 8+                        | 7                    | 23                                                                                          |                        | 12         |
| 10002 638  | R Obs | 2247.6747<br>2248.3910<br>2249.1006 | 251.199                | 2253.9162              |                        |                        | 258.467<br>259.097 | 260.33      | 2261.5556  | 2262.7521  | 263.928   | 2265.0794              | 266.208    | 2267.3167<br>2267.8634    | 2268.9383            | 2269.9937                                                                                   | 271.024                | 2272.5281  |
| 2          | Unc   | 2 (                                 | _ <del>_</del> ~ ~     | 17                     | 95                     | 3                      | ω                  | <b>=</b> (  | 200        | 19         | ,         | ทกส                    | - Wr       | ) <del>==</del> 1         | nmc                  | ,                                                                                           | œ                      |            |
| 1001       | 0-0   | <br>                                | ν <del>-</del> ω       | rort.                  | <u>δ</u> .             | 7                      | -13                |             | 7=         | -20        | (         | ၁ဂုၤ                   | <b>√</b> α | \ \\ -                    | 7 <del>-</del> - c   | <u> </u>                                                                                    | -5                     |            |
| 1          | P Obs | 244.759                             | 2240.9928<br>2240.2236 | 2238.6688<br>2237.8822 | 2235.4929<br>2234.6872 | 2232.2334              | 2230.5699          | 28.88       | -œ         | 2225.4542  | 900       | 2221.9392<br>2221.9392 | 220.149    | 217.424                   | 2215.5813            | 6.4.055                                                                                     | 2211.8314              |            |
|            | 2     | 0-0m=1                              | 00 M                   | 000-0                  | <u></u>                | 747                    | ∞<br>©             | 328         | 23.V       | 527        | 22        | 320                    | 32.6       | 10000<br>100 <del>1</del> | 300<br>100           | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | 22<br>22<br>22<br>23   | 3 <u>4</u> |

| #####################################                     |            |                    |                                          |                                     |                                     |                  |                        |            |            |                     |                      |                      |
|-----------------------------------------------------------|------------|--------------------|------------------------------------------|-------------------------------------|-------------------------------------|------------------|------------------------|------------|------------|---------------------|----------------------|----------------------|
| . <del>β</del> ε                                          | 9 1        | 7                  | 25<br>8                                  | ഗസ                                  | 5                                   | 178              | œ                      | , ω,       | ० र        | 2 92                | 27                   |                      |
| 100                                                       | 1          | ~                  | 21 -6                                    | 44                                  | 9                                   | 128              | ,                      | -14        | 1.6        | - ~                 | 1-14                 |                      |
| 9685<br>4363                                              | .2499      | 1204               | .5950                                    | 3743<br>7551                        | 5000                                | 5734<br>9200     |                        | · 65       | 7.1        | 341                 | 886                  |                      |
| 2272.                                                     | 2275.      | 2276.1             | 2277.                                    | 2279.                               | 2280.                               | 2281.            | 20                     | 283.       | 283<br>284 | 2000                | 285                  |                      |
| ~~~~<br>2-73<br>2007                                      | 48         | <b>ㅋ</b> ㅋ         | ~~~~~                                    |                                     | ν~<br>ν~==                          | 5.4              | 90                     | <u>た</u> む | 91         |                     | , 20                 | 30                   |
| 7577                                                      | <u>1</u> 9 | നന                 | 100                                      | 125                                 | 220                                 | 78               | 71-                    | 100        | 00         | 120                 | 04                   | -∼                   |
| 2207.<br>2206.5818<br>2205.5924<br>2204.5989<br>2203.6016 | 2201.5848  | 198.521<br>197.489 | 2195.4085<br>2194.3577<br>2193.3043      | 191.17                              | 2189.0284<br>2187.9504<br>2186.8610 | 183.567          | 81.341                 | 2179.0928  | 174.53     | 2172.2218 2171.0597 | 167.53<br>166.33     | 165.159              |
| നനന                                                       | m          | 9                  | 8                                        | しなな                                 | စ္စတ <del>ွ</del> ်                 | 9                | 138                    |            | 9          |                     | 14                   |                      |
| ₹F0                                                       | 2          | -5                 | 7                                        | 197                                 | 125<br>1976                         | 10               | -15                    |            | 10         |                     | -28                  |                      |
| 2273.5018<br>2273.9814<br>2274.4552                       | 2275.8432  | 2277.1801          | 2278.4677                                | 2279.7045<br>2280.1058<br>2280.5002 | 830                                 | 2282,3950        | 2283.1131<br>2283.4608 |            | 2285.1300  |                     | 2286.9396            |                      |
| 928 7                                                     | <b>x</b> 0 | 21                 | -62-                                     | .m o                                | ~w5                                 | <b>3</b> 0       | 16                     | 2~         | 9          | 14                  | 12                   | 27                   |
| 122 - 123                                                 | -1         | -21                | -16<br>-25                               | .2 5                                | 7 60                                | <b>1</b> 0       | -21                    | 120        | 9          | -11                 | 86                   | -26<br>2             |
| 7.9967<br>7.0279<br>16.0486<br>14.0793                    | .085       | 98.042             | 997-02020<br>945-98866<br>95553<br>12553 | 92.870<br>90.766                    | 89.7035<br>88.6383<br>87.5688       | 86.490<br>85.410 | 83.228                 | 179.9243   | 177.6931   | 173.1680            | 169.7216<br>168.5623 | 166.2266<br>165.0548 |
| 2207<br>2207<br>2206<br>2206                              | 2          | 22                 | 7222                                     | 10 V                                | 222                                 | 'n'n             | 0 6                    | 25         | ,          | 21                  | 22                   | 'n'n                 |

| !       | J.           | +0m=         | tivo         | <b>~</b> ∞6     | 0+°      | 1 <u>~</u> - | 15/07                                | <u>-</u> ∞0.6                                | 328      | 535        | 522         | 26<br>27        | 200              | 8<br>0+0    | 7000<br>700 <del>2</del>   | JUWU<br>PUN       | 337<br>84                                                          | 62<br>62   | -25<br>-25<br>-25<br>-25 |
|---------|--------------|--------------|--------------|-----------------|----------|--------------|--------------------------------------|----------------------------------------------|----------|------------|-------------|-----------------|------------------|-------------|----------------------------|-------------------|--------------------------------------------------------------------|------------|--------------------------|
|         | Unc          | 18           | no :         | 72              | 20       |              |                                      | ω <u></u> Ο ο                                |          | -=:        |             | om              | w≠               | 13          | ~4                         | ر<br>مع تر        | 6                                                                  | =          | #                        |
|         | ပ <u>-</u> ၀ |              |              | -25             | -26      |              |                                      | 1.00                                         |          | -79        | 138         | o∓<br>1         | NΜ               | 1           | ſΩĽ                        | 72,               | -12                                                                | 10         | <b>∞</b>                 |
| 01f 638 | R Obs        | 57.2         | 58.691       | 60.0834         | 262.8023 |              |                                      | 67.3465                                      | 00.093   | 50         | 71.614      | 72.203 $72.784$ | 73.360<br>73.931 | 75.0560     | 76.156                     | 77                | 78.8085                                                            | 279.8326   | 2281.3228                |
| 0110    |              | 22           | uci i        | 22              | 22       |              |                                      | 222                                          | 77       | 222        | 222         | 22              | 22               | 22          |                            | 222               |                                                                    | 22         | 22                       |
|         | L            | 700          | n            |                 |          | -            | -645                                 | -                                            | U        | 9          | -           |                 | -                |             | <b>←</b> ∨                 | <b>!</b> —        | _                                                                  |            | ≠ WO                     |
| 111     | 0-0          | 8 <u>-</u> - |              |                 |          | 11           | J                                    | •                                            | 2<br>•   | -7         | 18          |                 | 15               | <b>~</b> ω, | - 5.2                      | 1 <del>-</del> 1  | 125                                                                | ←₩         | mΟφ                      |
| 011     | 008          | 9003         | . 295        |                 |          | .349         | 9000<br>9000<br>9000<br>9000<br>9000 |                                              | . 5030   | 90000      | .267        | 508<br>888      | . 620            | 926         | -04                        | 258<br>326        | 388                                                                | 549        | .5912<br>.6274<br>.6577  |
|         | - A          | 2252<br>2252 | Û            |                 |          | 242          | 2242<br>2242<br>2242                 | , (                                          | 7230     | 2236       | 23          | 233             | 23               | 222         | 200                        | 222               | 22                                                                 | 22         | 2219<br>2218<br>2217     |
|         | Unc          | 100          |              |                 | 7 1      | 2            | 25                                   | Ç                                            | 23       |            | 24          | ഹര              | <b>#</b> #       | 7           | <b>⊅</b> (                 | ≠ <u>6</u>        | <del>2</del> 8                                                     | <b>-</b> 4 | 5                        |
|         | 2-0          | 328          |              |                 | 7        | 7            | 85                                   | <b>J</b>                                     | 23       | <u>-</u> - | <del></del> | 12              | 75               | 6-          | 00                         | 70                | -22<br>11                                                          |            | 5                        |
| 638     | eq0          | 5577         |              |                 | 1616     | 0            | 9646                                 | Ď                                            | 1967     | 93         | 5997        | 186<br>768<br>9 | NN               | .0355       | 37                         | 2159              | 93                                                                 | 70         | .3065                    |
| 1101e   |              | 2256<br>2257 |              |                 | 2263     | 5603         | 2266                                 | 9                                            | 2269     | 269        | 55          | 272             | 273<br>273       | 7           | 27                         | 2277              | 278<br>278                                                         | 279        | 2281,                    |
| 0       | Unc          | 7            | 17           |                 | 13       | œ            | 2 (C)                                | <u>-</u> 6                                   | νω       | <b>=</b>   | <b>⇒</b> ₪  | സസ              | <b>ω</b> ~       | സ്യ         | ᠗᠘                         | 101               | ==                                                                 | 75         | ഗയസ                      |
| 11e     | 0-0          | ŗ            | 128          |                 | 9-       | 1            | -17                                  |                                              | <u>ა</u> | <b>⇔</b>   | 10          | ₩               | <b>-</b> =       | <b>4</b>    | 1<br>1<br>1<br>1<br>1<br>1 | 150               | <del>7</del> 7                                                     |            | ₩ <u>7</u> ~             |
| 011     | sq0          | .9003        | 6384         |                 | ,9684    | .3693        | 745<br>924<br>924                    | 2007<br>2007<br>2007<br>2007<br>2007<br>2007 | 747      | 035        | 304         | 429<br>549      | 199<br>147       | 878<br>977  | ~₩<br>₩                    | 317<br>386<br>386 | 200<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 567<br>620 | 7370                     |
| į       | ٩            | 2252.        | 2250<br>2249 |                 | 2245.    | 2244.        | 242                                  | 2000                                         | 237      | 236        | 23,7        | 233<br>232      | 231              | 223         | 222                        | 225               | 223<br>222                                                         | 221<br>220 | 2219<br>2218<br>2217     |
|         | J.           | -am=         | 4 N/O        | <del>-</del> ∞6 | 212      | ر<br>ا       | 100                                  | <u>~∞</u> 66                                 | 323      | 535        | 22.5        | 26<br>27        | 338              | 333         | 2000<br>2002               | 322               | 333                                                                | £32        | #4#<br>#2#               |

| 7-1-66                                                                     | 22<br>1 4                                           | 001                                                      |                                                                            | 17                                       | ~mm '                                                         | 9 6                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------|---------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 1 - 1<br>2 - 100                                                         | -24<br>-22                                          |                                                          | 2398                                                                       | 21<br>10<br>8                            | 0 L 1                                                         | 0 7                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2281.8066<br>2282.2865.<br>2282.7628<br>2283.2291                          | 2288.0038<br>2288.4040                              | 289.188<br>289.571<br>289.948                            | 2291.0487<br>2291.4020<br>2291.7508                                        | 293.406<br>294.027<br>294.330            | 294.625<br>294.916<br>295.201                                 | 2296.0230<br>2296.7923              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44 60 004<br>44 60 004                                                     | <u>υ</u> – ≄                                        | 2020-46<br>0-40-46                                       | อินดีณ∞ิณ                                                                  | พดีดดน                                   | ωωσίδ                                                         | 946-                                | 1-804 -6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2-<br>11<br>7-<br>10                                                       | 177                                                 | 0.000                                                    | - 1- 51<br>Euchoti                                                         | 1 <del>-</del> 1<br>4 0 1 0 4            | 111<br>00000                                                  | <b>400</b> 4                        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2215.6844<br>2215.7042<br>2213.7298<br>2212.7320<br>2209.7123<br>2208.6948 | 2204.5700<br>2203.5240<br>2201.4208                 | 199.293<br>198.220<br>197.148<br>196.063                 | 2193.88<br>2192.78<br>2192.78<br>21890.5739<br>2330.5739<br>23557<br>23557 | 187.213<br>186.083<br>184.946<br>183.807 | 2180.3520<br>2179.1894<br>2178.0208<br>2176.8475              | 174.488<br>173.298<br>172.105       | 2169.6995<br>2168.4924<br>2166.05762<br>2166.0555<br>2163.5998<br>2163.3998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8<br>6<br>23<br>17                                                         | 15<br>14<br>14                                      | 980 8                                                    | 194                                                                        | 99                                       | ~ £3 - £                                                      | <b>40</b> 0                         | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 13 12 13                                                                | -22<br>34<br>26                                     |                                                          | -253                                                                       |                                          | 7 179                                                         | 12                                  | 12 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2281.7932<br>2283.2724<br>2283.2149<br>2283.6807<br>2285.0375              | 2286.3376<br>2288.0038<br>2288.4040                 | 289.188<br>289.571<br>289.948<br>290.685                 | 2291.0487<br>2291.4020<br>2292.0980                                        | 294.042<br>294.348                       | 2294.6444<br>2294.9380<br>2295.2247<br>2295.7805              | 2296.3153<br>2296.5752<br>2297.0745 | 298.221<br>298.221                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 202<br>202<br>71                                                           | r-w≠m ∞                                             | ≠ - m - m - =                                            | <del>-</del> = √∞∞                                                         |                                          | <del>6</del> 27 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~         |                                     | T 800 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| -10<br>-14<br>-25<br>-25                                                   | 6406 6                                              | 0=====                                                   | 175-1-                                                                     |                                          | <u> </u>                                                      |                                     | 120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-120-1-1 |
| 2216.7640<br>2214.8047<br>2214.8047<br>2213.8219<br>2212.8217<br>2209.8138 | 206.750<br>205.720<br>204.684<br>203.642<br>201.544 | 200.486<br>1999.422<br>1987.355<br>1967.2825<br>202.2825 | 2194.0294<br>2192.9343<br>2191.8326<br>2190.7291<br>2189.6173              | 187.378<br>186.254<br>182.842            | 2181.6925<br>2180.5412<br>2179.3857<br>2178.2202<br>2177.0501 | 175.878<br>173.513<br>172.323       | 2169.9302<br>2168.7222<br>2167.5104<br>2166.2952<br>2165.0728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

サンプングラー かいこうてき 一般のなかなから しゅうじゅう はい かんかん はいしゅう ファ

| 9999999000<br>100988000                          |             | 7            | กพ <del>ร</del> เกษษณ                                         | 20-04-100                                                                       | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200 | ユタS F35                                                         | 330<br>330<br>340<br>340<br>340<br>340<br>340<br>340<br>340<br>340 |
|--------------------------------------------------|-------------|--------------|---------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| 21                                               |             | Unc          | ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽                         | 2000<br>12000                                                                   | 6                                                                  | - 20                                                            | 28                                                                 |
| 12                                               | 8<br>8<br>8 | ပ            | 0±writ                                                        | 086-                                                                            | 12                                                                 | 10<br>12<br>19                                                  | 25                                                                 |
| 2299.3459                                        | 201f 638    | R Obs        | 2246.4199<br>2247.1258<br>2247.8266<br>2248.5217<br>2249.2102 | 2251.2458<br>2251.9134<br>2252.5726<br>2253.2312                                | 2255.8018                                                          | 2258.8867<br>2259.4886<br>2260.0833<br>2260.6740                | 2262.4110<br>2263.5373                                             |
| 288<br>101<br>988                                | - 02        | Unc          | ≠ £<br>€000                                                   | ± 5π∞25                                                                         | ব্যব্                                                              | 70 F F F 6                                                      |                                                                    |
| 20 52                                            | 1=          | ည <u>-</u> ၀ | 0 77 9                                                        | 8 91111                                                                         | <b>-</b> 80                                                        | 75 - 19-37<br>10-10-10-10-10-10-10-10-10-10-10-10-10-1          | nn-0                                                               |
| 2159.8754<br>2158.6250<br>2156.1043<br>2154.8337 | 022         | P Obs        | 2239.8186<br>2238.2929<br>2237.5195<br>2236.7429              | 2235.1726<br>2233.5787<br>2231.9627<br>2231.1470<br>2230.3246                   | 227.830<br>226.987<br>226.139                                      | 2225.2853<br>2224.4264<br>2223.5644<br>2221.6921<br>2221.8170   | 220.049<br>219.157<br>218.261<br>217.359                           |
| 6                                                |             | Unc          | <u> </u>                                                      | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 | 6                                                                  | -2-46                                                           | 28<br>14                                                           |
| -                                                | i<br>!<br>! | 2-0          | 0-200                                                         | 0000-                                                                           | Ξ                                                                  | 2010                                                            | 21                                                                 |
| 2298.8416                                        | 201e 638    | R Obs        | 2246.4199<br>2247.1258<br>2247.8266<br>2248.5217              | 2251.2458<br>2251.9134<br>2252.5726<br>2253.2312                                | 2255.8018                                                          | 2258.8867<br>2259.4886<br>2260.0833<br>2260.6740                | 2262.4110<br>2263.5373                                             |
| 27                                               | 05          | Unc          | = \( \tilde{\nu} \nu \nu \nu \)                               | <u> </u>                                                                        | <b>ਕ</b> ਕ ਕ                                                       | 70 F F F 6                                                      | -4040<br>1                                                         |
| 16                                               | 116         | )-O          | 0 7-26                                                        | 8 9-111-                                                                        | -20                                                                | 7-9-65                                                          | 11 I<br>12 4 0 W                                                   |
| 2161.3804                                        | 0221        | P Obs        | 2239.8186<br>2238.2929<br>2237.5195<br>2236.7429              | 2235.1726<br>2233.5787<br>2232.7730<br>2231.9627<br>2231.1470<br>2230.3246      | 227.83<br>226.98<br>226.13                                         | 2225.2853<br>22224.4264<br>22223.5614<br>2222.6921<br>2221.8170 | 220.04<br>219.15<br>218.26<br>217.35                               |
| 200000000<br>400000000                           |             | ,            | เกษาเกษา-๛                                                    | <u> </u>                                                                        | 14<br>20<br>20<br>21<br>20                                         | 1802 E305                                                       | 33655                                                              |

| 6              | -6-               | \c         | . 22   |                                                              | 997                                                                             | ٧      |     | <b>~</b> 0 | $\sim$                               |                   | พฑ                | 2   | 2          | 6               |            |                   |
|----------------|-------------------|------------|--------|--------------------------------------------------------------|---------------------------------------------------------------------------------|--------|-----|------------|--------------------------------------|-------------------|-------------------|-----|------------|-----------------|------------|-------------------|
| _              | 950               | 7 1        | - 24-  |                                                              | 24-01                                                                           |        |     | 99         | 0                                    | ,                 | - 2               | 6   | 6 1        | 5 1             |            |                   |
| -              | -01               | ı          | 1.1    |                                                              | +                                                                               |        |     | 1 7        | ī                                    |                   | 20                |     | ł          | 7-              |            |                   |
| 947            | 907<br>310<br>613 | 293<br>421 | 24     |                                                              | 919<br>476<br>973                                                               | $\sim$ |     | 613<br>765 | 930                                  | :                 | 045<br>752        | 813 | 505        | 950             |            |                   |
| 0.             | -60               | ω, κ       | ر سرمن |                                                              | 0-12                                                                            | 0      |     | ۲.         | 6                                    | •                 | mo.               | 0.  | ۲.         | Ţ               |            |                   |
| 264            | 265<br>265<br>266 | 267        | 26     |                                                              | 272<br>273<br>273                                                               | 27     |     | 275        | 276                                  | 1                 | 279<br>279        | 281 | 281        | 282             |            |                   |
| 2              | 000               | 00         | 1 00   |                                                              | 000                                                                             | ~      |     | 20         | 2                                    | •                 | ~~                | 7   | ζī         | 2               |            |                   |
| ∞,⊐            | φ <del>τ</del>    | )          | ± 95   | 400 rV r                                                     | 2967                                                                            |        | 16  | 150        | 16                                   | 13                | 16                |     |            |                 | 22<br>14   |                   |
| 51             |                   |            |        |                                                              | なって                                                                             |        | 77  | U 00       |                                      | -16<br>-1         | 80                |     |            |                 | 23         |                   |
| 517            | -00 -             |            | 920    | 2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007<br>2007 | ± 00 0 ≠                                                                        |        | mò  | 1347       | UrU                                  | 255<br>546<br>760 | 112               |     |            |                 | 362<br>878 |                   |
| ٠<br>تا تا     | «                 | •          | 00-    |                                                              |                                                                                 |        | 0   | 000        | نن                                   | 7.0.              |                   |     |            |                 | 20         |                   |
| 216            |                   |            | 202    | 2002<br>2003<br>2003<br>2003                                 | 20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>2 |        | 9   | 193        | <u>√</u> ∞                           | 186<br>185<br>184 | 181               |     |            |                 | 171        |                   |
| $^{\circ}$     | 10 0              | I          | 2000   | $\sim$                                                       | NOON                                                                            |        | 20  | וממנ       | <i>1</i> 0                           | 200               | 2                 |     |            |                 | 20         |                   |
|                |                   |            |        |                                                              |                                                                                 |        |     |            |                                      |                   |                   |     |            |                 |            |                   |
| 6              | 11 27             | <b>⊢</b> α | 000    |                                                              | 994                                                                             | 6      |     | 20         | $\omega_{\infty}$                    |                   |                   | 7   | 18         | <del>-</del> α  | 5          |                   |
| 9              | 11<br>20<br>-15   | <u> </u>   | 89     |                                                              | úw=                                                                             | 13     |     | 11         | 26<br>-8                             |                   |                   | -8  | -22        | -10             | <b>n</b>   |                   |
| 240            | 2007              | 93         | N-0    |                                                              | 176                                                                             | 2      |     | 65         | 020                                  |                   |                   | 638 | 363        | 744             | ν .        |                   |
| • 00           | 233               | .82        | . ww   |                                                              | 59                                                                              | 0.     |     | .76        | .389                                 |                   |                   | 0.  | .72        | win             | •          |                   |
| 264            | 265<br>265<br>266 | 267        | فو د   |                                                              | 272<br>273<br>273                                                               | _      |     | 275<br>276 | 276<br>277                           |                   |                   | 281 | 281        | 282             | 2          |                   |
| 8              | 2000              | 200        |        |                                                              | 200                                                                             |        |     | 20         | 200                                  |                   |                   | 2   | 0          | 200             |            |                   |
| ∞-             | , w               | 2          | ± 60.  | <b>≠∞</b> ∞₩                                                 | νοσ                                                                             | 16     | 2   | 15         | -1 <del>6</del>                      |                   | 24<br>13<br>13    |     | 90,        |                 | 9          | 26<br>24<br>13    |
| 9              | 710 0             | ı          |        |                                                              | Jr                                                                              | -20    | j   |            | 377                                  | νīο               | -25<br>-34<br>-4  |     | -24        |                 | 1-1-       | -25<br>-25<br>24  |
| 6              | - 03 t            | -          | 950    | - 0000;                                                      | 4 (V (O                                                                         | 38     | ה ס | しまうご       | 7200                                 | שית               | 47<br>191<br>22   | 7   | ر<br>105   | $\omega \alpha$ | 27         | 6025              |
| 55.            | nio a             |            | 00-    |                                                              |                                                                                 | 114    |     | 000        | કું જૂંછ                             | ~~                | 239               | 9   | 25.0       | 0.₹             | .06        | .58               |
| <del>-</del> - |                   | -          | 000    | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200  | 200                                                                             | 196    |     |            | 2.00<br>2.00<br>2.00<br>1.00<br>1.00 |                   | 182<br>181<br>180 |     | 175<br>175 |                 | 171        | 167<br>166<br>165 |
|                | , w               |            |        | 35555                                                        |                                                                                 | Ċ      | , i | ióói       | nyn                                  | NN                | らんら               | N   | NN         | NN              | 99         | ろろろ               |

2159.5043

2164.2484 2163.0724 2161.8868

|           |       | 1                      |        |                |        |                                     |                  |                        |         |                        |         |                                 |                |           |           |
|-----------|-------|------------------------|--------|----------------|--------|-------------------------------------|------------------|------------------------|---------|------------------------|---------|---------------------------------|----------------|-----------|-----------|
|           | Unc   | 99                     |        | 9              |        | េះ                                  | <b>4</b> 6       | ן<br>-תי≕ ת            | 74      | ≠∞.                    | -==     | -21                             |                | #         | 12        |
| 7         | ပ     | ထထု                    |        |                |        | w-u                                 | ± 4              | 2700                   |         | 4 C.                   |         | 100                             |                | 7         | -20       |
| 00001 637 | R Obs | 2275.5864<br>2276.3248 |        | 2279.9393      |        | 2282.7265<br>2283.4087<br>2284.0848 | 285.421          | 2286.7337<br>2287.3809 | 288.658 | 2289.9128<br>2290.5330 | 291.751 | 292.946<br>293.535              | 294.122        | 2295.2707 | 2296.3949 |
| 011 -     | c Unc | 7 22                   | 3 4    | 3 592<br>3 282 | 8      | C                                   | 20<br>20         | 2 28                   |         | ე— ഗ<br>იഹസ            | 1 3     | 22<br>4<br>4<br>4               | _              | -         |           |
| 00        | 0     | 7                      | ï      | T              | -      |                                     | v.               | 1 m                    | 1       | <del>-</del> 1         | ·       | ÷Τ                              |                |           |           |
|           | P Obs | 2.5665                 | 1.0247 | 9.4595         | 7.0682 | 90                                  | 2.1286<br>2.1286 | 0.4354<br>9.5853       | .855    | 5.2244                 | 3.4420  | 1.6377                          | 806<br>88<br>5 | 950       | 120       |
|           |       | 2278                   | 2271   | 226<br>226     | 2267   | ý                                   | 226              | 226(                   | 25      | 2256                   | 225     | 2251                            | オマス            | 22        | . 5       |
|           | J     | 0-01                   | n⊒ π   | no r-o         | စတင့်  | 2-0m                                | 1 TO V           | <u>~~~</u>             | 28,     | 335                    | 20°     | 250<br>287<br>287<br>287<br>287 | 33             | 35.5      | )<br>(C)  |

| <u>م</u> مود                                     | സസ                                  |                        | <b>크</b> #             | സസ                     | w± rv                               | ± w6                                | 12        | - <del>-</del> - <del>-</del> -     |                                         |                        | 12-75-12-13-13-13-13-13-13-13-13-13-13-13-13-13-                                                    |
|--------------------------------------------------|-------------------------------------|------------------------|------------------------|------------------------|-------------------------------------|-------------------------------------|-----------|-------------------------------------|-----------------------------------------|------------------------|-----------------------------------------------------------------------------------------------------|
| 9529                                             | 40 mg                               |                        | <u></u>                | -2                     | 77                                  | -20                                 | 23        | 12-5                                | ~= \u00e4\u00e40                        | 1736                   | 110011                                                                                              |
| 2297.5005<br>2298.0423<br>2298.5773<br>2299.1096 | 2300.1552<br>2300.6685<br>2301.1758 | 302.172                | 2303.6256<br>2304.0982 | 2305.0255<br>2305.4801 | 2306.3719<br>2306.8087<br>2307.2404 | 2308.0845<br>2308.4979<br>2308.9033 | 2309.7048 | 2310.4749<br>2310.8541<br>2311.2258 | 3312.952<br>112.952<br>12.952<br>12.952 |                        | 2314<br>2315<br>2315<br>2315<br>2315<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>2009<br>200 |
| <b>⇒</b> ₹₹₹                                     |                                     | 26                     | moo                    | 6                      | 20                                  | 04                                  | 9 0       | n c                                 | 27                                      | <b>4</b> 8             |                                                                                                     |
| 7906                                             |                                     | 17                     | 17                     | 7                      | 23                                  | 5-15                                |           | , <del>-</del>                      | 12                                      | 10                     |                                                                                                     |
| 2243.2318<br>2242.2696<br>2241.3005              | 239.350                             | 2235.3778<br>2234.3733 | 2232.3403<br>2231.3187 | 2229.2534              | 2226.1171<br>2225.0593              | 2219.6885                           | 216 307   | 210.331                             | 2210.8074                               | 2205.0756<br>2203.9142 |                                                                                                     |
|                                                  |                                     |                        |                        |                        |                                     |                                     |           |                                     |                                         |                        |                                                                                                     |

|       | 5            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Unc          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | ၁ <u>-</u> ၀ | -040 Wago-4aama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 628   | Obs          | 00m0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100   | 2            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 100   | Unc          | いしょうのしょうしょりょうとうとうというというというというというとしょうしょうしょうしょうしょうしょうしょうしょうしょう こっぱん しょうしゅうしゅ こうしゅうしゅう しゅうしゅう しゅう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 011   | 12-0         | WWOOWWOOLALILLOLALITATAN TWOWWOOTHWHAN-N-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10    | P Obs        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | Unc          | ರಾವ ಗುವವವವವರು ಕಾರ್ವವವವರ ಮುಂದು ಕಾರ್ವವಾಗಿ ಕಾರ್ವವಾಗಿ ಕಾರ್ಯವಾಗಿ ಕಾರ್ವವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರದವಾಗಿ ಕಾರ್ದವಾಗಿ ಕಾರ್ದವಾಗ |
|       | 1 2-0        | am mma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1 628 | R Obs        | 99999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0000  |              | กับกับกับกับกับกับกับกับกับกับกับกับกับก                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | un o         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0012  |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1     | 008          | 100-1-00000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | ۵.           | AO-10000-100 FAO-100 F |
|       |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| #####################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul><li></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 041-404-4040 04001-041-404 111 1-1-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\omega$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Manual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| GON GWG-GGG-GGGGCGGGCGGGGGGGGGGGGGGGGGGGGGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 000-40 0-000040400000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Manawawawawawawawawawawawawawawawawawawa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| שטרי שס שסמסססססס מטבעבבבבמשטטטסססססססס בי ביניט<br>איזיד ביניט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00-200mm0-m-6002 chon-m-60mm602 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 33<br>33<br>33<br>34<br>35<br>35<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| น้า แนว แนว กับ นา กับ กับ นา กับ น นา กับ น |
| 0-040-w-40-4-0-000wn40-w00w04 &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ないのののようとしょうしゅうりゅうりゅうしゅうしょうこうこうこうこうしゅうしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくしょくし                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| !    | ר           | 0-0m=r                                             | 00-00-00-10-10-10-10-10-10-10-10-10-10-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                              | 2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38400<br>38400                                                                                   | 0-0mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | പ്രധസ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000<br>000<br>-                  | n<br>ಗ<br>ಗ<br>ಗ<br>ಗ<br>ಗ                   |
|------|-------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------|
|      | Unc         | 20<br>21<br>27                                     | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | വയയ                                          | ᡊᡢᢍᢆᢇ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                  | &&&& <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9 <del>1</del> 2                 | 16                                           |
|      | ပ<br>-<br>0 | -8<br>-21                                          | 6001w050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>-1</u>                                    | 0-024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -44-                                                                                             | W4 WOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 062                              | -11                                          |
| 628  | 0 ps        | 8876<br>6065<br>3129                               | 0887<br>10378<br>10378<br>10530<br>10530<br>10530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5667<br>1792<br>7837                         | F-04-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0. | φ α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .5500<br>0219<br>4905            | .8509                                        |
| 0005 | æ           | 3646.<br>3647.<br>3648.                            | AND FORM NOT A CONTROL OF THE CONTRO | 3655<br>3655<br>3658<br>3658                 | 6660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | #MM/M                                                                                            | 100000<br>00000<br>000000<br>000000<br>00000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3669<br>3670<br>3670             | 3671                                         |
| - 10 | Unc         |                                                    | ころちらはりりてり                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9696-                                        | 24-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0×20                                                                                             | ν σωι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ¥550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | שע                               | <u>0</u>                                     |
| 012  | 0-0         |                                                    | 0440-mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - no no                                      | m0%-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99 to                                                                                            | , ± ων                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1m-6+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -=                               | 1<br>1                                       |
| 20   | 0 bs        | 451<br>687                                         | 03349479<br>60347494<br>60347497<br>60347886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 252-100<br>252-100                           | 6081<br>7357<br>8574<br>9726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1843<br>2803<br>3722<br>4550                                                                     | 670<br>728<br>782                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8299<br>8709<br>9066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 99<br>20<br>20<br>20<br>20<br>20 | 9923<br>9930                                 |
|      | <u>.</u>    | 1 79                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 3628<br>3627<br>3627<br>3625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3623<br>3623<br>5623<br>5623<br>5623                                                             | 618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000<br>2000<br>2000<br>2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 617                              | 3608<br>3607                                 |
|      | 0           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                              | 010105-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ~~~                                                                                              | 10 10=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | v                                | ~6K                                          |
|      | nn          | 13                                                 | 1000 N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                            | ວເບໄປ ເ~∞ ເ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 <del>-</del>                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . <u>e ti</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                | _                                            |
|      | 0-0         | 1 2 7                                              | 11<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>140<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I <del></del> I                              | ししいまで                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ī                                                                                                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u>1</u><br>∞ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1                              | -11-                                         |
| 628  | 0 ps        | 7342                                               | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 969<br>973<br>973<br>973<br>973<br>973       | - 00 - 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000<br>0000                                                                                     | 279<br>858<br>858<br>005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23333<br>23333<br>2350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 27<br>17<br>19                   | 9040<br>4212<br>9331                         |
| 0002 | ~           | 3534<br>3535                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</i> | PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHON<br>PANCHO | とうろうりょう                                                                                          | 552<br>552<br>552<br>554<br>554                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vocación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>icación<br>ica<br>ica<br>icación<br>ica<br>ica<br>ica<br>ica<br>ica<br>ica<br>ica<br>ica<br>ica<br>ica | 21 21 Z                          | 2000<br>2000<br>2000<br>2000<br>2000<br>2000 |
| 10-  | Unc         | 24<br>15<br>16                                     | 910887-7-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23 40                                        | のものでら                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ~000                                                                                             | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | £000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u></u> 27€0                     | о ro                                         |
| 013  | o-0         | 9-7-7<br>7-1-7                                     | 1024-1-401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ου <del>ώ</del> -ι                           | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0=00                                                                                             | 7-380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1 1 L                            | 1 E                                          |
| 20   | Obs         | 00<br>30<br>30<br>80<br>10<br>80<br>10<br>80<br>10 | 8642089<br>984469<br>9866993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 960<br>960<br>960<br>960<br>960<br>960       | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MOON -                                                                                           | 6920<br>8133<br>9289<br>0400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5220<br>6041<br>68041<br>7540    | 20<br>38                                     |
|      | <u>a</u>    | 3531<br>3530<br>3529<br>3529                       | ໃນເປັນໃນໃນໃນ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 520<br>519<br>517<br>517                     | 2000000<br>200000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5172                                                                                             | 3507<br>3506<br>3505<br>3505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 503<br>502<br>501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0000<br>0000<br>0000<br>0000     | <b>*</b>                                     |
|      | 5           | 0-00-0                                             | ~~~∞~ <u>0−~~</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 245-86                                       | 22222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58-782<br>58-782                                                                                 | ,04-06 <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2007<br>2007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 865±                             | 2 T T T                                      |

| サルサル ちょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょうしょ                                                                                                                                                                                          |                   | ٦                           | 0-04470-000-04470-000-044400-000-044400-000-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 605.9738 -9 12 3672.2935 -8 9<br>603.9336 -2 12 3674.0047 -9 20<br>601.8687 -16 22 3674.0047 7 8<br>599.7850 6 16 3674.4158 -10 14<br>599.7851 -11 27 3675.6205 3 9                                                                     | 20011 - 10001 628 | P Obs O-C Unc R Obs O-C Unc | 3678.9243 19 17 3672.2467 2 14 3689.95243 19 17 3681.0525 19 19 17 3681.0525 19 15 10 3681.7549 19 17 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3560.4417 5 8 12 3561.4380 -10 17 3561.4380 -10 17 3561.4380 -10 17 3561.9295 -1 144 8 12 3562.4138 -9 12 3562.4138 -9 12 3562.8958 16 26 3 487.2064 4 15 3563.8364 -1 9 3 485.2180 0 13 3565.2077 -14 17 484.2200 0 13 3566.9563 18 22 | 20012 - 10001 628 | P Obs O-C Unc R Obs O-C Unc | 538.2807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000-000-00000000000000000000000000000                                                                                                                                                                                                  |                   | 2                           | 0-0mmmのようでは<br>のこのでは<br>のこのでは<br>のこのでは<br>のこのでは<br>のこのでは<br>のこのでは<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこので<br>のこの<br>のこの |

| プレークのののようなませたするとしてのののようない。<br>プレークのののようなはない。<br>プロン・ロール・ファット・ファット・ファット・ファット・ファット・ファット・ファット・ファット |                                |                                                       |                                             |                            |                        |                   |                                                                        |                                        |   | ٦               | -24             | אינו בר                  | °~∞e5±                                                      |                                                                                                           |
|-------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------|---------------------------------------------|----------------------------|------------------------|-------------------|------------------------------------------------------------------------|----------------------------------------|---|-----------------|-----------------|--------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|                                                                                                 | n<br>NOV                       | 00000u                                                | )—≃t<br>                                    |                            | -                      | 2000<br>2000      | - C-                                                                   |                                        |   |                 | C Unc           | 7 1                      | -<br>1 നന                                                   | ນ∸ ဃတ်တယ်<br>၁≃ ယယ်ဝ် ယ                                                                                   |
| 1                                                                                               | ١ -                            |                                                       | 11                                          |                            | ī                      |                   |                                                                        |                                        |   |                 | 0               |                          |                                                             | 111151                                                                                                    |
| 695, 444                                                                                        | 696.044                        | 697-869<br>698-3968<br>698-3968<br>699-5449           | 700.673                                     |                            | 70K K20                | 706.0495          | 707.574<br>708.074                                                     |                                        |   | 01f 6           | R Obs           | 540.23                   | 543.096<br>543.096                                          | 3544.<br>3544.<br>3545.<br>3546.<br>3546.<br>3546.<br>3546.<br>3546.                                      |
| (*                                                                                              | )(*)(*)(*                      | ന്ന്ന്ന്ന                                             |                                             |                            |                        | بالناب            |                                                                        |                                        |   | 011             |                 |                          |                                                             |                                                                                                           |
|                                                                                                 |                                |                                                       | 2527                                        | <b></b>                    | 24                     | 17                |                                                                        |                                        |   | 1               |                 | ~-                       |                                                             | -                                                                                                         |
|                                                                                                 |                                | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2               | 153.3 m                                     | <b>1</b> I                 | 5-1                    | ₩                 | <b>व</b>                                                               |                                        |   | 112f            | Ó               |                          | اء س                                                        | -27                                                                                                       |
|                                                                                                 |                                | 985<br>985<br>985                                     | 7 E W C - C - C - C - C - C - C - C - C - C | 689                        | 8354<br>8995           | 0187              | 110                                                                    |                                        |   | -               | ကြွ             | 96                       | 7938<br>0336                                                | 4980<br>7208                                                                                              |
|                                                                                                 |                                | 0000<br>0000<br>0000                                  | 00000000000000000000000000000000000000      | 643                        | 3640.<br>3639.         | 3638.             | 90                                                                     |                                        |   |                 | ۵.              | 723 I                    | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 3533<br>3533<br>3533                                                                                      |
|                                                                                                 |                                |                                                       |                                             |                            | _                      |                   |                                                                        |                                        |   |                 | ပ္              |                          |                                                             |                                                                                                           |
| 20<br>18                                                                                        | 23                             | ∞0∞ <del>1</del>                                      | 12                                          | $\frac{1}{\sqrt{2}}$       | 17                     | 13                | 13<br>14<br>14<br>14                                                   | 17                                     |   |                 | ដ               | 16                       | 23                                                          | യഗഗഗ                                                                                                      |
| 18                                                                                              | 50                             | ## <b>0</b>                                           | -8                                          | -19                        | 9                      | =                 | Om#m                                                                   | -5                                     |   |                 | 0-0             | 17                       | -7                                                          | Luhou                                                                                                     |
| 5956<br>1331                                                                                    | 1851<br>6992                   | 7075<br>1994<br>6856<br>1619                          | 501<br>976                                  | 692<br>951                 | 240                    | 986               | 9939                                                                   | 38                                     | İ | <u>φ</u>        | í               | i ທ←                     | 5                                                           | 389<br>389<br>389<br>389                                                                                  |
|                                                                                                 |                                |                                                       | rυσ                                         | $\infty \sim$              | -                      | 30                | 24 FC                                                                  | 80                                     | ļ | 62              | 0 bs            | 223                      | 377                                                         | 460<br>100<br>170<br>170                                                                                  |
| 3555<br>3556                                                                                    | 3557.<br>3557.                 | 33558<br>33558<br>35558<br>35558                      | 3561.5<br>3561.9                            | 3562.8<br>3563.2           |                        |                   | 3566.05<br>3566.42<br>3566.78<br>3567.12                               |                                        |   | 101e 6          | R Ob            | I WL                     | ~                                                           | <b>4000</b>                                                                                               |
| 55<br>55                                                                                        | 557<br>557                     | 550                                                   | 561.                                        | 3562.8<br>2 3563.2         | , 3564.1<br>3          | 565.3             | 3566.0<br>3566.4<br>3566.4<br>3567.1                                   | 3 3567.8                               |   | 01e 6           | R Ob            | 3540.23<br>5 3540.95     | 3 3542.37                                                   | 544<br>544<br>545<br>545<br>545<br>545<br>545<br>545<br>545<br>545                                        |
| 8 355<br>5 355                                                                                  | 3557<br>3557                   | 8 3558<br>6 3559<br>9 3559                            | 9 3561.<br>2 3561.                          | 5<br>6 3562.8<br>12 3563.2 | 9 12<br>1 13<br>3564.1 | 5 3565.3          | 3566.0<br>0 23 3566.0<br>3 9566.4<br>5 28 3566.7                       | 13<br>22 3567.8                        |   | 12e - 01101e 6  | C Unc R Ob      | 3540.23<br>19 25 3540.95 | 3 3542.37                                                   | 2544.46<br>3545.15<br>3545.83<br>8 3546.50<br>7 3547.17                                                   |
| 3939 1 8 355<br>4733 -4 15 355                                                                  | 6690 -4 9 3557                 | 7640 7 18 3559.<br>8279 0 16 3559.<br>8487 -5 9 3560. | 8694 3 15 19 3561.                          | 8234 4 6 3562.8            | 6598 11 13 3564.1      | 5339 15 25 3565.3 | 2898 20 23 3566.4<br>1912 -3 9 3566.4<br>0853 -25 28 3567.1            | 9776 8 13<br>8582 -1 22 3567.8         |   | 2e - 01101e 6   | s 0-C Unc R Ob  | 2964 -19 25 3540.95      | 7938 -13 13 3542.37<br>0336 -12 9 3542.37                   | 4980 10 7 3544.46<br>7208 13 15 3545.15<br>9374 12 12 3545.83<br>1491 20 28 3546.50<br>3522 -1 27 3547.17 |
| 939 1 8 355<br>733 -4 15 355                                                                    | 120 5 11 3557<br>690 -4 9 3557 | 640 7 18 3559.<br>279 0 16 3559.<br>487 -5 9 3560.    | 8694 3 15 19 3561.                          | 502.7929 -1 12 3562.8      | 499.6598 11 13 3564.1  | 339 15 25 3565.3  | 494.2898 20 23 3566.0<br>494.2898 20 23 3566.4<br>493.1912 -3 9 3566.7 | 490.9776 8 13<br>489.8582 -1 22 3567.8 |   | 112e - 01101e 6 | bs 0-C Unc R Ob | 537.2964 -19 25 3540.295 | 7938 -13 13 3542.37<br>0336 -12 9 3542.37                   | 980 10 7 3544,46<br>208 13 15 3545,15<br>374 12 12 3545,83<br>491 20 28 3546,50<br>522 -1 27 3547,17      |

```
tuanamuamumaamoo bnabnann roaab oomrom hooo-oopoo
 W-04-0-4--4W-46
                                                                                                                                                                                                4000-1-0 4500- C0000-
3558.4314
3559.0003
3550.1246
3560.6777
3561.2254
3561.3045
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       3357409

3357409

3357400

3357400

335740

335740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

345740

34
                                                                                                                                                                                                                                                                                                                3605
3790
4012
4052
                                                                                                                                                                                                                                                                                                                                                                                       33892
33737
3548
3555
7540
                                                                                                                                                                                                                                                                                                                35663
35663
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
35664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
36664
                                                                                                                                                                                                                                                                                                                                                                                     \frac{1}{2}
  31-10md-40m-woodwadaratton180-200 0050-w-88-2-6-4
3568.5837
35669.0109
35699.4309
35700.8471
3571.0550
                     33562.
33562.
33563.
33563.
33563.
4726
33564.
4530
4530
4153
4153
                                                                                                                                                                                                                                                                                                                                                                                                 3566.3540
3566.8116
3567.2643
3567.7101
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2038
5730
9374
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        aiaiai
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         555
  \sum_{n=0}^{\infty} \frac{n^2}{n^2} = \frac{
```

| \$4000000<br>\$4001<br>\$4001                                                        |                  | ٦       | - CMは CM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------|------------------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 23 38 25 4                                                                           | 1 1              | Unc     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0 825                                                                                | i i              | 2       | 001 11110-1 0-00-4-0-4-0-4-0-0-0-0-0-0-0-0-0-0-0-0-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| . 1974<br>. 9425<br>. 3063<br>. 6609                                                 |                  | 0<br>ps | 791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>791-7<br>79 |
| 3574<br>3575<br>3575<br>3575                                                         | 1101             | ~       | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 16<br>23<br>113<br>15                                                                |                  | Unc     | 0 $ 0$ $ 0$ $ 0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 70 70                                                                                | i <del>-</del> i | ٥<br>ا  | 1 1-0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2.8400<br>1.7628<br>0.6815<br>8.4964<br>7.3947                                       | =                | P Obs   | 01-00-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8884 KK                                                                              |                  | 1 1 1   | STATE STATE STATES TO THE TRANSPORT STATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7-17-1<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10 |                  | Unc     | т т т т т т т т т т т т т т т т т т т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 17 17 17 21                                                                          | ii               | 0       | 00 - 44-woodamwaode-a oo w- a 4 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6478<br>9917<br>3305<br>6607<br>3063                                                 | 628              | Obs     | 27 32 4 1 4 3 3 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3575<br>35773<br>35773<br>3575<br>3575                                               | 1101e            | ~       | 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 16<br>24<br>16                                                                       | 0                | Unc     | CUTOOUT OOMMENUMAINUMAINON MMMA 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -12<br>-26<br>-26                                                                    | 1=1              | 0-0     | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| . 1195<br>. 0238<br>. 9171                                                           | 1-1              | 0bs     | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3482<br>3481<br>3479                                                                 |                  | ٩       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0000000<br>000000000000000000000000000000                                            |                  | 2       | 作をとしての多人のうなれまでしての多人のよれまでしてもをとれてってっているのとなっているとしましました。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| 2000<br>2000<br>2000<br>2000              | - CA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 144 (V)(V)(V)<br>-2000-010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UUUUUUUU<br>VA MO MO                                        | 10000<br>10000                                                     | 900                                                                              |        |          | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                | ~∞ <i>∞</i> ,                                                      |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------|--------|----------|------------------------------------------------------|--------------------------------------------------------------------|
| 11 8/22                                   | 74728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -เกนัထ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 00000                                                       |                                                                    | 256                                                                              | !      | Unc      | <u> </u>                                             |                                                                    |
| m0∞ ←                                     | 1777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100pmm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100000±                                                     |                                                                    | 3200                                                                             |        | ပ        | 1- Lundi                                             |                                                                    |
| 06.9830<br>07.5325<br>08.0777<br>09.1513  | 11.233<br>12.253<br>12.253<br>12.253<br>12.253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0. | -0.7-7-6                                                    | 19.249                                                             | 20.9366<br>21.3470<br>21.7529                                                    | 1f 628 | R Obs    | 90.3787<br>91.0883<br>92.4952                        | 943.89.99.99.99.99.99.99.99.99.99.99.99.99.                        |
| 37<br>37<br>37                            | സസസസസ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | സസസസസ                                                       | m m                                                                | 377                                                                              | 0220   | 0        | mmmn<br>mmmn                                         | റസസ                                                                |
| νυποσο                                    | <u>υ - τυπ</u> ε                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>                                                     | 1 <del>10</del>                                                    | 13                                                                               | 1      | 15       | 22<br>10                                             | CC                                                                 |
| <b>304→30</b>                             | o nu±1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mmo in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -114mo=                                                     |                                                                    | 9-                                                                               | 211£   | 0-0      | 52.                                                  | ± ~~                                                               |
| 2653<br>21335<br>21335<br>2827<br>3507    | 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 777788<br>68339<br>768379                                   | 669<br>669<br>669<br>669<br>669<br>669<br>669<br>669<br>669<br>669 | .5376                                                                            | 12%    | sq0      | 4838<br>7251<br>9581                                 | 4082<br>6262<br>8375                                               |
| 24 60 60 60 60 60 60 60 60 60 60 60 60 60 | 0 0000<br>0 0000<br>0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                             | 7860-<br>6660-                                                     | 3625                                                                             |        | <u>.</u> | 336<br>368<br>368<br>368<br>37<br>34                 | 3681<br>3680<br>3679                                               |
|                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                             |                                                                    |                                                                                  |        | 0        |                                                      |                                                                    |
| <u> </u>                                  | ± 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 02-06-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2000 WWD                                                    | 15                                                                 | 22                                                                               |        | LE:      | 865                                                  | 740                                                                |
| £214 2                                    | -1 6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24-t-wuw                                                    | 0 -                                                                | 18<br>27                                                                         |        | 0-0      | 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1             |                                                                    |
| 38 22660                                  | 98 7 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>2002<br>200 | 58                                                                 | 5818<br>3114                                                                     | 628    | 0bs      | 1 2 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5          | 878<br>564                                                         |
| 5555 5                                    | 7097                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1333<br>1333<br>1333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WWWWWWWWYYZZZZZZZZZZZZZZZZZZZZZZZZZZZZ                      | 7                                                                  | 3719.<br>3720.                                                                   | 2201e  |          | 3690<br>3690<br>3690<br>3690<br>3690<br>3690<br>3690 | 600<br>600<br>700<br>700<br>700<br>700<br>700<br>700<br>700<br>700 |
| <u> </u>                                  | 3490 <u>c</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 50 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                             |                                                                    | 20<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40<br>40 | Ö      | nc<br>nc | 855                                                  | 122                                                                |
| 400104                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41 <u>1</u> 1 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 11 •                                                      | 90                                                                 | 7                                                                                | 211e   | 16       | 12-                                                  | 400                                                                |
| . 7286<br>. 7286<br>. 8461<br>. 8977      | 00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00 | 1122<br>1122<br>1037<br>0920<br>0749                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 050<br>021<br>084<br>949                                    | . 607<br>1.607                                                     | 2803<br>2803                                                                     | 120    | 0bs      | .4838<br>.7251<br>.9581                              | .4082<br>.6262<br>.8375                                            |
| 20000000000000000000000000000000000000    | 00000<br>2222<br>2000<br>00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ද අත අත                                                     | 622                                                                | 3625<br>3624<br>3624<br>3623                                                     |        |          | 3682<br>3682<br>3682                                 | 3681<br>3680<br>3679                                               |
| ₩₩₩₩<br>1000000                           | -0m=100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~860~N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | W4 W9 M                                                     | 200-000<br>200-000                                                 | 5000<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>50               |        | 5        | 0m2100                                               | ~∞⊙                                                                |

| らろうられれたれたれたなどををををとっているのもようというののもようとはもこしているというというというというというというとはなっている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                               |                                                                                             |                                          |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|--|--|--|--|--|--|
| 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 2 2 2 2 2 3 3 3 3 3 3                                       | 2140                                                                                        | 20 18 7                                  |  |  |  |  |  |  |
| 1 000 # H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                               | 21<br>17<br>20<br>20                                                                        | 4 + 4                                    |  |  |  |  |  |  |
| 33 20 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 708.780<br>709.331<br>710.420<br>710.955<br>711.487           | 3713.0459<br>3713.5563<br>3714.0577<br>3714.5579                                            | 3716.9692<br>3717.8976<br>3719.2492      |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                               | 25 7 7 16 21                                                                                | φ <sub>ε</sub> α                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 0222-<br>2022-                                              | 0 ± 00 3                                                                                    | ω m                                      |  |  |  |  |  |  |
| 6479.0439393677677767767767767767767767767767767767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.51                                                          | 3654.6307<br>3652.7264<br>3651.7677<br>3649.8352<br>3647.8818                               | 3645.9096<br>3643.9157                   |  |  |  |  |  |  |
| ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 26<br>22<br>22<br>27<br>10                                    | 120<br>130<br>130<br>130                                                                    | 21<br>28<br>17                           |  |  |  |  |  |  |
| - 1 1 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1                                                                                                                                                                                                                                                                                                               | 22<br>-10<br>-17<br>-26<br>-9                                 | 111<br>228<br>240                                                                           | 1 W-<br>0 W0                             |  |  |  |  |  |  |
| 38699<br>386997<br>386997<br>386997<br>386997<br>386997<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>3869999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>3869999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>3869999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>3869999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>3869999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>386999<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>386999<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>38699<br>3869<br>386 | 3707.6508<br>3708.2097<br>3708.7655<br>3709.8636<br>3710.3985 | 3713.0119<br>3713.5152<br>3714.0141<br>3714.5903<br>3714.9978                               | 3716.8893<br>3717.3519<br>3717.8027      |  |  |  |  |  |  |
| 7621-68 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 230                                                           | 25 65 67 C                                                                                  |                                          |  |  |  |  |  |  |
| 20000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                               | 121 22 131                                                                                  | 30 30                                    |  |  |  |  |  |  |
| 3679.0435<br>3677.4394<br>3677.6299<br>3675.8126<br>3675.8126<br>3673.3327<br>3673.3327<br>3669.9506<br>3669.9506<br>3666.4814<br>3665.5989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3662.927<br>3662.026<br>3660.200<br>3659.283<br>3655.552      | 3651<br>3652<br>3652<br>3652<br>3664<br>3664<br>3664<br>3664<br>3664<br>3664<br>3664<br>366 | 3645.846<br>3642.839<br>3642.828         |  |  |  |  |  |  |
| -00400-000-00400-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                               | 700 T T T T T T T T T T T T T T T T T T                                                     | \$ 5000000000000000000000000000000000000 |  |  |  |  |  |  |

| 1    | 1           |                                                              |
|------|-------------|--------------------------------------------------------------|
|      | Unc         | NW- N- 10000000000000000000000000000000000                   |
|      | ပ           |                                                              |
| 628  | <b>8</b> 00 | 004 00 0000000000000000000000000000000                       |
| 201  | æ           | 2000 2000 2000 2000 2000 2000 2000 200                       |
| - 02 |             | 00 4m-84mm-0mm-8nn-nsqueno 44                                |
| 2212 | ပ<br>- ၀    | 00 00 ww- 2000 wanner 2000 000 000 000 000 000 000 000 000 0 |
| 12   | ops         | ### 108/16/20/20/20/20/20/20/20/20/20/20/20/20/20/           |
| 1    | d.          |                                                              |
| <br> | J.          | <br>  UWJ ROF-@QO-UWJ ROF-@QO-UWJ ROF-@QO-UW                 |

| 1         | J            | 80±0080±0080±0080±0080±0080±0080±00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | Unc          | LOCALINARIA DOSTALATION ONGUMBOST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|           | ე <b>-</b> 0 | 00001-4-1-00-W 00-00-W0000- 4-00-00-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00001 828 | 0bs          | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           | æ            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 00 -      | Unc          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0011      | ပ <u>-</u> ၀ | 0000-1-20-0-0000-1-1-1-00-10 180000 00-1 WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 10        | Obs          | 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|           | ۵.           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ļ<br>!    | 0            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| !         | S.           | - 0<br>い                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|           | ၁ <u>-</u> ၀ | 0-44000-00-00000-004004-00 -000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 828       | Obs          | 000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 00001     | ~            | acass sount the color of the co |
| Ĭ         | Unc          | コカラカオオオオオカイトトトのとのよのシャナトのら                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0012      | S-0          | -04-000-W04444004040-44-084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 17        | 008          | 90-101000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|           | ٩            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1         | i            | I നന്നനനനനനനനനനനനനനനനനനനനനനനനനനന                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 1     | J            |                                                     |
|-------|--------------|-----------------------------------------------------|
|       | Unc          |                                                     |
|       | ၁ <u>-</u> ၀ | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1               |
| 626   | 0bs          | 00000000000000000000000000000000000000              |
| 0001  | <b>E</b>     | WOMMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMOMO             |
| )00 - | Unc          | 0000-00-00-00-00-00-00-00-00-00-00-00-0             |
| 0011  | 0-0          | 1 -24000-0-8040-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1- |
| 10    | P Obs        | MANAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWAWA            |
| 1     | Unc          | 0444                                                |
| 1     | 2-0          | 10m0-0400440-060-04-04040-04-0400                   |
| 626   | قن           | 0-0-0010000000000000000000000000000000              |
| 0001  | 2            | ■ 2000 では、これでは、これでは、これでは、これでは、これでは、これでは、これでは、これ     |
| 00    | Unc          |                                                     |
| 210   |              | -w-n-n-1-1-000000-1-1-1-00000-1-1-1 000000          |
| 10    | bs           | 00000000000000000000000000000000000000              |
|       | ۵            |                                                     |
| į     | 1            |                                                     |

|          | ٦            | するの数のようの数のようの数のようの数のようの数のようの<br>のののうらっとしません。<br>でしまっているのもっとしまっている。                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Unc          | 10 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ၁-0          | 0500- 4-60mor 000000 -woe to w -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 0002 626 | R Obs        | 36994<br>36996<br>376996<br>376996<br>3700<br>3700<br>3700<br>3700<br>3711<br>3711<br>3711<br>3711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10       | Unc          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 012      | ე-0          | 0 100 LW-W1-40 4 8000 -4400 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 500      | P Obs        | 3669<br>3668<br>36688<br>36688<br>36688<br>36688<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>366845<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36685<br>36               |
|          | Unc          | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | ၁-၀          | ων-ωωονι-υοφινώ τω τ± 0ν ± 6ι α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0002 626 | R Obs        | 350 6. 7 36 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 10     | Unc          | たなし<br>ではしている ですでしる でししるな あで な                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0013     | ၁ <u>-</u> ၀ | 201-460 -0-0410 0-W084 We o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20       | P Obs        | 35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35523<br>35 |
| İ        | 5            | サンの後のよどの後のよどの後のよどの後のよどの後のようのからなって かららららららられた ちゃんちんをとところこうしょしょしょ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| į                                       |           | ٦          | 0N=      | 1080                          | 7 <del>7</del> 7 7 7              | 7<br>7<br>7<br>7<br>7<br>7<br>7<br>7      | 0000<br>0000                                                 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                               | # 9 8<br># # #                      | 200<br>200<br>200                                                  | 2007      |           | ٦      | -am                                     | φΩ±                                 |
|-----------------------------------------|-----------|------------|----------|-------------------------------|-----------------------------------|-------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|-----------|-----------|--------|-----------------------------------------|-------------------------------------|
|                                         |           | -C Unc     | 6        | <del></del>                   | -                                 | 100-                                      |                                                              |                                                                                             | - <i></i> =                                                                                      | _                                   | 77<br>770                                                          | - 0       |           | -C U   | 8979<br>00-0                            | پر — ∸<br>_                         |
|                                         | 10001 626 | nc R Obs O | 3712.253 | 716.7888719.719.706           | 3721.132<br>3722.5337<br>3723.920 | 3 3726.6216<br>3 3727.9411<br>5 3729.2398 | 3731.055<br>3733.005                                         | 735.412                                                                                     | 3738.866                                                                                         | 3741.068<br>3742.136<br>3743.187    | 744.217745.228                                                     | 748.146   | 01101 626 | c R Ob | 3724.7932<br>6 3725.5614<br>5 3725.3096 | 727.800<br>728.558                  |
| 1                                       | 011 -     | 0-c        | l -      | 9 ww                          |                                   |                                           |                                                              | വസസ                                                                                         | 2000<br>1000                                                                                     | -                                   | 17 2                                                               | -         | 111 -     | i ī i  | -=                                      | 35                                  |
|                                         | 200       | P Obs      |          | 3705.0850<br>3703.4328        | 700.064<br>698.349                | 3694.8534 -<br>3693.0758<br>3691.2765     | 687.615<br>685.753                                           | 3681.<br>3681.<br>3682.<br>3682.                                                            | 676.140<br>676.140<br>674.161                                                                    | 672.158<br>670.138                  | 3663.9635                                                          | 3659.7513 |           | l i    | . 6789                                  | 3719.2781<br>3718.4643              |
|                                         | 1         | 0-C Unc    | ,        | 6 10                          | -14<br>14<br>135<br>7             |                                           | -5 6<br>17 17                                                |                                                                                             | غربر⊷<br>⊷                                                                                       | -18 25<br>4 10<br>21 11             |                                                                    |           |           | Ď      | 2 18<br>10 19<br>19                     |                                     |
|                                         | 001 626   | R Obs      |          | 3596.3466                     | 3600.4792<br>3601.7943            | 605.571                                   | 3609.0756<br>3610.1855                                       | 612.30                                                                                      | 615.26<br>615.26<br>186.18                                                                       | 3617.0732<br>3617.9346<br>3618.7617 |                                                                    |           | 101 626   | R Obs  | 3581.8721<br>3582.6435<br>3583.3935     | 584.894<br>585.661                  |
| 1                                       | - 10      | Unc        | <br>     | 7000                          | ~o~o                              | 06-7:                                     | -01-0                                                        | 133                                                                                         | ~27                                                                                              | 25<br>16                            |                                                                    | 28        | - 01      | Unc    | 10                                      | o∙o-∓                               |
| i                                       | 0012      | 0-0        |          | 1 wi                          |                                   | - mm                                      | 0 - M=                                                       | 1234                                                                                        | par                                                                                              | 7                                   | <br>0                                                              | -35       | 1112      | ပ<br>ပ | # C1                                    | -24                                 |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2(        | P Obs      |          | 584.859<br>583.204<br>581.518 | 5789.804<br>578.064<br>576.2891   | 3572.6554<br>3570.7951<br>3568.9060       | 0000<br>0000<br>0000<br>0000                                 | 5559                                                                                        | 552.716<br>550.716<br>550.716                                                                    | 546.147                             | .305                                                               | 3534.5843 | 1         | P Obs  | 578.756<br>577.965                      | 3576.3628<br>3576.3628<br>3575.5549 |
| į                                       | į         | 7          | 00-      | 1080                          | 0. <del>2</del> 0.8               | 2555                                      | 6.30<br>6.30<br>6.30<br>6.30<br>6.30<br>6.30<br>6.30<br>6.30 | 0000<br>1200                                                                                | 2<br>2<br>2<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | 798<br>777                          | 500<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | 2007      |           | ٦      | ~0m                                     | 4 N/O                               |

| <del> </del>                               |                                                             | 10000                                                       | 00000                                                         | <i>വ</i> സസസ                              | നസസസ                                 | ന്ന്ച്ച                                      | वे वे वे वे व                   | <b>ា</b> ភភភ័                                                   | ນິດໃດໄດ້ແລະ                                   | אנט |
|--------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------|--------------------------------------|----------------------------------------------|---------------------------------|-----------------------------------------------------------------|-----------------------------------------------|-----|
| พพ <del>ม</del> พ <del>ม</del> พม          | ひせせせん                                                       | ****                                                        | mate re                                                       | ≠∞ wwi                                    | ひコココロ                                | 99-20                                        | ~=±@v/c                         | n <del>a</del> o mo                                             | 102 m                                         | ∞   |
| 0404524                                    | -00-m-n                                                     | บนด์ดก                                                      | これは                                                           | N940-0                                    | ∞≃ wwo                               | 205-6                                        | 2020                            | 72←±1                                                           | 24.44.                                        | 1   |
| 0002-000<br>000000000000000000000000000000 | 74949999999999999999999999999999999999                      | 2000<br>2000<br>3000<br>3000                                | 74030<br>74030<br>74030                                       | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | ~609%<br>2009%                       | 100                                          | 24.00°                          | 2233<br>2233<br>224<br>200<br>200<br>200                        | 04-05-07-07-07-07-07-07-07-07-07-07-07-07-07- | 7   |
| 27777777777777777777777777777777777777     | 777777<br>777777<br>777777                                  | 2444                                                        | 7777                                                          | 7777<br>7777<br>7777<br>7777              | 8446<br>4444<br>4444                 | 749                                          | 757<br>752<br>752<br>752<br>752 | 77777<br>77777<br>7777                                          | 777777<br>7777777<br>7470777                  | 75  |
| <b>ヰwiwiuw</b> 。                           | าพ๑๕๛๛                                                      | _== mm                                                      | ow=wr                                                         | ひコココ                                      | <del>ರ</del> ೧೧ ವ ವ                  | സഹച ഗ:                                       | 3233U                           | ບ⇒ດບແ                                                           | പറയയ്                                         |     |
| 0-03                                       | -0m-0=c                                                     | 2777                                                        | 00#-                                                          | 0                                         | 0-rvy                                | 9000                                         |                                 | 1111                                                            | 02-                                           |     |
| 256000000000000000000000000000000000000    | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | 00000<br>0470<br>1440<br>1400<br>1400<br>1400<br>1400<br>1400 | 2010                                      | 2005<br>2040<br>3048<br>3048<br>3048 | 100000<br>100000<br>100000000000000000000000 | 272<br>272<br>210<br>703        | 00000000000000000000000000000000000000                          | 201<br>7201<br>5701<br>570                    |     |
|                                            | 70007                                                       | 7700                                                        | 7007<br>699<br>1009                                           | 69677<br>69677<br>695                     | 6934<br>6934<br>6974                 | 6889<br>6887<br>6877<br>6877                 | 00000<br>00000<br>000000        | -062-0<br>24440<br>2440<br>2440<br>2440<br>2440<br>2440<br>2440 | 66475<br>6775<br>7775<br>7775                 |     |
| <del>ച</del> സനസസസസസ                       | <u>ാസസസസ</u> =                                              | പസന                                                         | ≠≠mm:                                                         | ತೆ ೧೧ತೆ ಪ್ರಕ                              | ココラフト                                | ~4∞±                                         | ⇒ സയയാ                          | 406-46                                                          | -w~∞∽=                                        | 91  |
| 777-70-0                                   | 34-0-E                                                      | J-010                                                       | U= 100                                                        | wo-L                                      | ωηα <del>-</del> =                   |                                              | ココトト                            | 764                                                             | 9786-                                         | -∞  |
| 0000000<br>000000000000000000000000000000  | 144004<br>144044<br>144004                                  | 357<br>353<br>357<br>357                                    | 7225                                                          | 2743<br>243<br>243                        | 00000<br>000000                      | 787<br>823<br>921<br>900                     | 935<br>975<br>975<br>975        | 00000<br>000000<br>000000                                       | 00000000000000000000000000000000000000        | 83  |
|                                            | _<br>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                   | 7000<br>7000<br>7000                                        | 00000<br>00000<br>00000                                       | 602<br>602<br>603                         | 00000<br>00000<br>0000               | 606<br>606<br>607<br>607                     | 6000<br>6000<br>6000<br>6000    | -07-6                                                           | こくり けらら                                       | 96  |
| とろではははん                                    |                                                             |                                                             |                                                               |                                           |                                      |                                              |                                 |                                                                 |                                               |     |
|                                            | -<br>- (+)(+)(+)(+) <del>-1</del> (                         | 11.                                                         | wwo 51                                                        | ഗരഗ                                       | アイコトコ                                | r 61                                         | 45/20                           | ששש                                                             | <b>~</b> 04€                                  | ∞   |
| 2                                          | -                                                           |                                                             | 1.00 m                                                        |                                           |                                      | -                                            | 1    <br>m40n;<br>4n/00         |                                                                 | 20<br>10<br>10<br>10<br>10<br>10              | -2  |
|                                            | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200 | .9129 -20 1                                                 | 0841 -3<br>3250 1<br>2315 6<br>4871 -19 1                     | .3546<br>.6321 -2<br>.4554 1              |                                      | .9970 6<br>.0353 7<br>.6134 7 1              | ๛๚๛เกเ                          | . 9721 -4                                                       | 0-36<br>0-34                                  |     |

| <b>シェレン しりゅうりゅうりゅうううこう ちょうしょうしゅうしゅうしゅうしゅうしょうしょうしょうしょうしょう しょうしょう いんしゅう いんしゅう いんしゅう いんしゅう しょうしょう しょうしゅう しょうしゅう しょうしゅう しゅうしゅう しゅうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうりゅう しょうしゅう しょうしゅう しゅうしゅう しょうしゅう しゅうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうりゅう しょうしゅう しょうしゅう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうりょう しょうしょう しょうしゅう しゅうしゃ しょうしょう しょうしゃ しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょうしょう しょう </b> | ٦                                              | できませるできなりでできませんできませんできません。<br>これは、これでは、これでは、これでは、これでは、これでは、これでは、これでは、こ                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 21-01-6000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -C Unc                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 668.4829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12211 - 02201 626<br>P Obs O-C Unc R Obs O     | 22. 6687 6 11 3731.2156<br>20.20346 22 15 3731.2156<br>20.2039 -13 12 3733.4139<br>18.5312 -8 9 3733.4139<br>18.5312 -8 9 3733.4139<br>11.2394 -8 3735.5574<br>12.4802 3 6 3737.6416<br>11.5902 8 19 3737.6416<br>11.5902 8 19 3737.6416<br>11.5902 8 19 3739.0004<br>12.4802 3 6 3739.0004<br>12.4802 3 6 3739.0004<br>12.4802 3 6 3739.0004<br>12.4802 3 6 3739.0004<br>12.4802 3 6 3739.0004<br>13.5502 7 7 3741.6404<br>07.9683 -3 6 3742.9529 |
| 3526.46531 -2 8 3615.6210 2 8 3 3526.4011 2 7 3616.4741 2 11 3 3524.2203 12 19 3618.0111 6 9 3 3617.2999 -19 30 3 3522.0138 -6 7 3618.8868 -5 10 3 3519.7869 4 10 3619.7386 -5 11 3 3517.5362 8 15 3620.5667 10 19 3 3515.2616 9 17 3621.3661 -8 25 3 3 3523.6140 -7 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12212 - 02201 626<br>P Obs 0-C Unc R Obs 0-C U | 3555.9345 -9 29 33 35 35 35 35 35 35 35 35 35 35 35 35                                                                                                                                                                                                                                                                                                                                                                                             |
| 77777700000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ,                                            | UW4000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                            |

| 200                                 | 25.0              | 1886<br>1886 | -00°             | יטטטע<br>זייז זייל                  | )<br>()<br>()<br>() | 0<br>0<br>0<br>0       | <u> </u>           | <u></u>  | 3<br>3<br>5<br>5 | 7<br>7<br>7<br>7                       | -00<br>-12<br>-12<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13<br>-13 | , <sub>0</sub> , <sub>1</sub> | - 00 LD II<br>- 00 LD II<br>- 00 LD II       | 50        |
|-------------------------------------|-------------------|--------------|------------------|-------------------------------------|---------------------|------------------------|--------------------|----------|------------------|----------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|-----------|
| 01                                  | ۰ <del>-</del> -۲ | ,-u          | -∞ο              | νινω                                | €0                  | νωα                    | 000                | 3,       | ==               | 00                                     | ,0 <del>1</del>                                                                         |                               | -922                                         | 13        |
| 8 9                                 | ւիռ               | /L)←-        | -13-             | -rv                                 | 212                 |                        | - ٻ                | စ        | ဝင်္ဂ            | m=                                     | · ~ C                                                                                   | 9 4                           | 27-0                                         | -1        |
| 4.180<br>5.410                      | 6.025             | 3747.2213    |                  | 0.082                               | .75                 | 3752.8251              | , w                | 89       | ~~<br>~~<br>~~   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 250                                                                                     |                               | 3759.0887<br>3759.6344<br>3759.9622          | 3760.8077 |
| <b>⊅</b> 0℃                         | , ,               |              | οω               | 55.                                 |                     | ەسر                    |                    | -        |                  | -                                      | - <del></del>                                                                           | -                             | 17                                           |           |
| സ്ഥ                                 | - ?               | ihod         | 7                | 977                                 | · c                 | אטע                    |                    |          | <u>1</u> 1       | , ,                                    | 10°                                                                                     | •                             | <u>+</u> + + + + + + + + + + + + + + + + + + |           |
| 3706.1212<br>3705.1924<br>3704.2485 | 702.35            | 3701.4006    | 698.48           | 3696.5101<br>3695.5323<br>3691.5120 | 101                 | 3691.5002<br>3691.5002 | 200                | 87.372   | 86.283<br>85.273 | 15 28                                  | 3682.0187                                                                               | •                             | 3677.6581<br>3676.6460                       |           |
| 7                                   | - 4               | 500          |                  | <u>σες</u>                          |                     | 000                    | ر<br>د د           | Ĵ        |                  | 15                                     | 12                                                                                      | 12                            |                                              |           |
| φ "                                 |                   | - 1<br>- 1   |                  | 750                                 | ^ <b>←</b> ¢        | ڪي <i>ا</i> ره         | ט ע                | 1        |                  | -1                                     | -                                                                                       | -                             |                                              |           |
| 3570.6578                           | 573               | 3573.7975    |                  | 3576.8248<br>3577.3888              | 578.541             | 579.671<br>579.671     | 700.203<br>581 365 | 5        |                  | 3583.5015                              | 3584.5363                                                                               | 3585.5469                     |                                              |           |
| <u> </u>                            | 72                | <b>4</b> -7  | 5 <del>4</del> 0 | 1<br>28<br>7                        | -∞;                 | -0                     | 60                 | <b>n</b> | 51               | 12                                     |                                                                                         |                               |                                              |           |
| 170                                 | 0                 | ωζι          | <del>1</del> 5   | -6-                                 | - m                 | <b>→</b>               | 12                 |          | 10               | -5                                     |                                                                                         |                               |                                              |           |
| 3532.5593                           | 529.797           | 3527.9334    | 525.112          | 3523.1954<br>3522.2094              | 20.25               | . 28<br>. 28<br>. 28   | 3516.2963          | •        | 3513.3068        | 3511.2625                              |                                                                                         |                               |                                              |           |

|       | 5     |           | 54                         | 233     | <b>~</b> |
|-------|-------|-----------|----------------------------|---------|----------|
| į     | 9     |           | 7                          | 7.5     | -1       |
| 1 626 | sq0   | 3716.0369 | 3717.5534                  | <b></b> | 550      |
| -     | Ω ⊃-0 | , ,       | 0<br>0<br>0<br>0<br>1<br>0 | 200<br> | =        |
|       | Sqo   |           | 710.558                    |         | 100.129  |
| ,     | J     | -00       | Y)≠T                       | voi     | ∞        |

| 12        |                        | -096 <del>0</del>                   | -22                    |            | 7-1-a                  |           |                        | 280       | 9         | 16                                  |
|-----------|------------------------|-------------------------------------|------------------------|------------|------------------------|-----------|------------------------|-----------|-----------|-------------------------------------|
| 5         |                        | 2179                                |                        | 9          | 91.5                   |           | , 4u                   | 10        | m         | -13                                 |
| 3721.1999 | 724.809                | 3726.1942<br>3726.1942<br>3727.5611 | 728.901                | 730.656    | 3731.9118 3732.7998    | 734.056   | 735.531                | 3736.6922 | 3738.8663 | 3741.1419                           |
|           | 27                     | 2<br>1<br>2<br>1<br>4<br>8          | 29<br>26               |            | 522                    | 15        | 21                     | 28        |           | 272                                 |
|           | 22                     | 120                                 | ĥα                     | <b>⊅</b> ( | υ <del>ω</del> ω       | 6-        | -12<br>-7              | -12       | 9-        | 100                                 |
|           | 3703.1057<br>3702.2730 | 3700.5512<br>3699.6325<br>3698.8096 | 3697.0434<br>3696.0694 | 694.252    | 3692.4121<br>3691.6245 | 3689.7740 | 3687.9039<br>3686.7476 | 3684.1020 | 680.877   | 3680.2194<br>3678.8765<br>3678.2458 |
| 00-0      | u m⇒ru                 | <u>~~~</u>                          |                        |            |                        |           | 122                    |           |           |                                     |

## APPENDIX C

PERSONAL MERCECOLO ESPECIAS ESPECIAS ANNO MESONAL ESPECIAS (

Computer Program Listings

## Software Listings

| CONTST | - | Performs control and data acquisition for the AFGL High Resolution Interferometer                                                           | 281 |
|--------|---|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
| FILFIX | - | Performs phase correction and numerical filtering on a single sided interferogram                                                           | 293 |
| BIGFFT | - | A Fast Fourier Transform (FFT) program which can be used to transform a data set larger than will fit into the central memory of a computer | 307 |
| REGFIT | - | An interactive rotation-vibration line                                                                                                      | 317 |

```
/CONTST
              /PROGRAM FOR DIGITAL CONTROL OF INTERFEROMETER.
                 9/18/80
              /EXTERNAL SUBROUTINES NEEDED: LABSC, PLOT, PLTRTE,
              /MTHLE, MAXCKB, LABSE, WERI, PRISUB.
       6007
              CAF=6007
       6732
              MCAF=6732
       7443
              DAD=7443
       7445
              DST=7445
       7621
              CAM = 7621
       7763
              DLD=7763
        7765
              DDZ=7765
       7431
              SWAB=7431
       7415
              ASR=7415
       0010
              *10
00010
       0000
              ERRPOI,0
       0200
              *200
00200
       7000
              NOP
00201
       4777' JMS START
       4776' CONT1, JMS INITL
00202
00203
       4775' CONT2, JMS SETCR
00204
       7000
              NOP
00205
       4774' JMS STEP
       4773' BUFWR, JMS AREAD
00206
00207
       4772'
              JMS BUFWRT
       2771'
00210
              ISZ WCC
00211
       5203
              JMP CONT2
00212
       7300
              DUMP, CLL CLA
00213
       4632
              JMS I POUT
00214
       2000
              2000
00215
       7777
              7777
       4631
00216
              JMS I MTWRT
00217
       5400
              5400
00220
       4633
              JMS I PLOTB
       2770'
00221
              ISZ RCNTR
00222
       5224
              JMP R1
00223
       5227
              JMP R2
00224
       7300
              R1, CLA CLL
00225
       4767'
              JMS CHKB
              JMP CONT1
00226
       5202
00227
       4766'
              R2, JMS FINISH
00230
       7402
              HLT
00231
        4431
              MTWRT, 4431
00232
        5021
              POUT, 5021
00233
       1600
              PLOTB, 1600
```

/SUBROUTINE WRERR
/WRITES INFORMATION TO FIELD TWO WHEN AN
/ERROR OCCURES.
/NOTE ERRPOI IS AUTO INCREMENT
/STORED IN THIS ORDER
/RECORD, STEP, STEP MAX, STEP MIN,
/HOLD MAX, LENGTH OF STEP, HOLD MIN.

```
00234
       0000
              WRERR, O
00235
       7300
              CLA CLL
00236
       2273
              ISZ ECOUNT
              JMP WRE2
00237
       5245
00240
       1365
              TAD (2777
00241
       3010
              DCA ERRPOI
00242
       2274
              ISZ EPAGE
00243
       1364
              TAD (-555
00244
        3273
              DCA ECOUNT
        1763' WRE2, TAD RCNR
00245
00246
        7041
              CIA
00247
       7001
              IAC
00250
       1770' TAD RCNTR
00251
        6221
              6221
00252
       3410
              DCA I ERRPOI
00253
       1275
              TAD NUMSTP
00254
        3410
              DCA I ERRPOI
00255
        1276
              TAD STPMAX
00256
        3410
              DCA I ERRPOI
00257
       1277
              TAD STPMIN
00260
       3410
              DCA I ERRPOI
00261
       1300
              TAD STPLEN
00262
        3410
              DCA I ERRPOI
00263
        1301
              TAD HLDMAX
00264
        3410
              DCA I ERRFOI
00265
        1302
              TAD HLDMIN
00266
        3410
              DCA I ERRPOI
00267
              6201
        6201
00270
        3301
              DCA HLDMAX
              DCA HLDMIN
00271
        3302
              JMP I WRERR
00272
        5634
00273
       0000
              ECOUNT.O
00274
        0000
              EPAGE, O
00275
        0000
              NUMSTP, 0
00276
        0000
              STPMAX, 0
00277
        0000
              STPMIN, 0
00300
        0000
              STPLEN, 0
00301
        0000
              HLDMAX,0
00302
       0000
              HLDMIN, 0
```

## 0400 \*400

### /ROUTINE STERR

```
00400
       7300
              STERR, CLA CLL
00401
       1377
              TAD (-240
00402
       1776' TAD STPLEN
00403
       7700
              SMA CLA
00404
       5227
              JMP TOOLG
              TAD (300
00405
       1376
       1775'
             TAD STPMIN
00406
       7700
00407
              SMA CLA
              JMP NONRE
00410
       5225
00411
       1374
              TAD (-300
       1773' TAD STPMAX
00412
00413
       7500
              SMA
00414
       5225
              JMP NONRE
00415
       7300
              RECOV, CLA CLL
                              /RECOVERABLE STEP ERROR
00416
       1372
              TAD (777
              DCA HLDMAX
                              /TO SHOW RECOVERED
00417
       3771'
       4770' JMS WRERR
00420
       7040
00421
              CMA
       1767' TAD NUMSTP
00422
00423
       3767' DCA NUMSTP
00424
       5766'
              JMP STEP2
00425
       4770' NONRE, JMS WRERR / NON RECOVERABLE
00426
       5765' JMP BUFWR
       7300
              TOOLG, CLA CLL
                                 /TOOK TOO LONG TO STEP
00427
00430
       1776'
              TAD STPLEN
                           /CHECK TO SEE IF IT WAS 2777
00431
       1364
              TAD (-2777
       7440
00432
              SZA
00433
       5225
              JMP NONRE
00434
              JMP RECOV
       5215
00435
       0000
              AREAD, O
00436
        4763' AREAD2, JMS CLRSUM
00437
        1311
              TAD CHPCNT
00440
        3312
              DCA WWC
00441
        4714
              JMS I RADCK
00442
        0000
              7500
00443
        7500
00444
        0350
              350
00445
        57621
              JMP HOLER
00446
        7300
              C1, CLA CLL
00447
        6007
              CAF
00450
        4716
              JMS I CLIO2
00451
        4713
              JMS I PINAD
00452
        0000
00453
        4000
              4000
00454
        57621
              JMP HOLER
00455
        4717
              JMS I MICRO
00456
        7770
              7770
```

```
00457
       4715
              JMS I POUT2
00460
       1000
              1000
00461
       7776
              7776
00462
        4761'
              JMS ADSUM
00463
       0001
              1
00464
       7750
              7750
00465
       4715
              JMS I POUT2
00466
       1000
              1000
00467
       7776
              7776
00470
       4714
              JMS I RADCK
00471
       0000
00472
       7756
              7756
00473
       0150
              150
00474
       5762'
              JMP HOLER
00475
       4715
              JMS I POUT2
00476
       1000
              1000
00477
       7777
              7777
       4761'
00500
              JMS ADSUM
00501
       0002
              2
00502
       7750
              7750
00503
       4715
              JMS I POUT2
00504
       1000
              1000
00505
       7776
              7776
00506
       2312
              ISZ WWC
00507
       5246
              JMP C1
00510
       5635
              JMP I AREAD
00511
       7764
              CHPCNT,7764
00512
       0000
              WWC.0
00513
       5132
              PINAD, 5132
00514
       5301
              RADCK, 5301
00515
       5021
              POUT2,5021
00516
       5056
              CLI02.5056
00517
       5045
              MICRO,5045
00520
       5065
              ADREA,5065
00561
       1025
00562
       0303
00563
       1056
00564
       5001
00565
       0206
00566
       0677
00567
       0275
00570
       0234
00571
       0301
00572
       0777
00573
       0276
00574
        7500
00575
       0277
00576
       0300
00577
       7540
```

```
0600
               *600
00600
        0000
               INITS, 0
00601
        7300
               CLA CLL
00602
        3215
               DCA PNTR
00603
        1214
               TAD WC2
00604
        3216
               DCA CNTR
00605
        6221
               6221
        3615
00606
               DCA I PNTR
00607
        6201
               6201
00610
        2215
               ISZ PNTR
00611
        2216
               ISZ CNTR
00612
        5205
               JMP
                   .-5
00613
        5600
               JMP I INITS
00614
        5400
               WC2,5400
00615
        0000
               PNTR, 0
00616
        0000
               CNTR, 0
00617
        0000
               START, 0
00620
        7300
               CLA CLL
00621
        6032
               KCC
00622
        6031
               K5F
00623
        5222
               JMP
00624
        6036
               KRB
00625
        6046
               TLS
00626
        6041
               TSF
00627
        5226
               JMP
00630
        7300
               CLA CLL
00631
        6732
               MCAF
00632
        4646
               JMS I REWIND
00633
        7300
               CLA CLL
00634
        1377
               TAD (2777
00635
        3010
               DCA ERRPOI
00636
        1376
               TAD (-555
        3775 1 1247
               DCA ECOUNT
00637
00640
               TAD RCNR
00641
        3245
               DCA RCNTR
00642
        3250
               DCA CKK
00643
        3651
               DCA I ERCOUN
00644
        5617
               JMP I START
00645
        0000
               RCNTR, 0
00646
        4506
               REWIND, 4506
00647
        4000
               RCNR, 4000
00650
        0000
               CKK, 0
00651
        4453
               ERCOUN, 4453
00652
        0000
               INITL, O
00653
        7300
               CLA CLL
00654
        3774'
               DCA B2PNTR
        3773'
00655
               DCA NUMSTP
00656
        1372
               TAD (6600
00657
        3263
               DCA WCC
```





MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

```
00660
       4200
              JMS INITS
00661
        4267
              JMS CLIO
00662
       5652
              JMP I INITL
00663
       0000
              WCC, 0
       0000
00664
              SETCR, 0
       7200
00665
              CLA
00666
       5664
              JMP I SETCR
       0000
00667
              CLIO, 0
00670
       7300
              CLA CLL
        7040
00671
              CMA
00672
       6503
              6503
00673
       6505
              6505
00674
       6500
              6500
00675
       5667
              JMP I CLIO
00676
       0000
              STEP, 0
00677
       7300
              STEP2, CLA CLL
00700
       2773' ISZ NUMSTP
        4744
              JMS I POUT3
00701
       4000
              4000
00702
00703
       7740
              7740
       4267
00704
              JMS CLIO
00705
       4745
              JMS I PNADM
00706
       0000
00707
       2000
              2000
       0000
00710
              A1,0
00711
        0000
              A2,0
00712
        0000
              NUM, 0
00713
        7300
              CLA CLL
00714
        1312
              TAD NUM
00715
        3771'
              DCA STPLEN
00716
        1310
              TAD A1
00717
        3770' DCA STPMAX
00720
        1311
              TAD A2
00721
        3767' DCA STPMIN
00722
        1310
              TAD A1
00723
        7041
              CIA
00724
        1346
              TAD MAXA
        7700
00725
              SMA CLA
00726
        5342
              JMP STPERR /NO MAX
00727
        1347
              TAD MINA
00730
        7041
              CIA
00731
        1311
              TAD A2
00732
        7700
              SMA CLA
00733
        5342
               JMP STPERR /NO MIN
00734
        1350
              TAD MAXNUM
00735
        7041
              CIA
00736
        1312
              TAD NUM
00737
        7700
               SMA CLA
00740
        5342
               JMP STPERR /TOOK TOO LONG
```

THE RESIDENCE PROPERTY PROJECTION OF THE PROPERTY AND THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROP

```
00741
       5676
              JMP I STEP
00742
       57661
              STPERR, JMP STERR
00743
       5676
              JMP I STEP
00744
       5021
              POUT3,5021
00745
       5200
              PNADM, 5200
00746
       0200
              MAXA,200
00747
       7550
              MINA,7550
00750
       1000
              MAXNUM, 1000
00766
       0400
00767
       0277
00770
       0276
00771
       0300
00772
       6600
00773
       0275
00774
        1076
00775
       0273
00776
       7223
00777
        2777
              *1000
        1000
01000
       0000
              FINISH, 0
01001
        7300
              CLA CLL
01002
        4606
              JMS I WRTEOF
              CLA CLL
01003
        7300
01004
        1777' TAD RCNTR
        5600
              JMP I FINISH
01005
01006
        4517
              WRTEOF, 4517
01007
        0000
              CHKB,0
01010
        6036
              KRB
01011
        1215
              TAD NEGS
        7440
01012
              SZA
        5216
               JMP RR
01013
01014
        57761
              JMP R2
01015
        7455
              NEGS,7455
01016
        7300
              RR, CLA CLL
        4624
01017
               JMS I ADREDD
01020
        0004
               0004
01021
        0000
               IIC,0
01022
        7300
               CLA CLL
01023
        5607
               JMP I CHKB
01024
        5065
               ADREDD,5065
               /SUBROUTINE ADSUM
               /READS DATA FROM A/D CHANAL ARG1 AND SUMS
               /DOUBLE PRECISION TO AAM.
               /ARG2 IS WORD COUNT (TWO'S COMPLEMENT)
01025
        0000
               ADSUM, 0
01026
        1625
               TAD I ADSUM
```

```
01027
       6531
              6531
              6532
01030
       6532
       2225
              ISZ ADSUM
01031
        1625
              TAD I ADSUM
01032
              DCA WBC
01033
        3253
              ISZ ADSUM
01034
        2225
        7431
              SWAB
01035
01036
        6534
              CKAD,6534
        5236
6533
              JMP CKAD
01037
              6533
6532
01040
        6532
01041
01042
        7415
              ASR
        0014
              14
01043
01044
        7443
              DAD
        1054
               AAM
01045
01046
        7445
               DST
        1054
01047
               AAM
        2253
               ISZ WBC
01050
               JMP CKAD
        5236
01051
               JMP I ADSUM
        5625
01052
        0000
               WBC,0
01053
               AAM, O
01054
        0000
               AAM2,0
        0000
01055
               /SUBROUTINE CLHSUM
               /CLEARS DOUBLE PRECISION AAM.
        0000
               CLRSUM, 0
01056
               SWAB
01057
        7431
01060
        7765
               DDZ
        1054
               AAM
01061
        5656
               JMP I CLRSUM
01062
               /SUBROUTINE BUFWRT
               /WRITES AAM TO BUFFER
               BUFWRT, G
        0000
01063
               CLA CLL
        7300
01064
               TAD AAM2
01065
        1255
        6221
               6221
01066
               DCA I B2PNTR
        3676
01067
               ISZ B2PNTR
        2276
01070
               TAD AAM
01071
         1254
               DCA I B2PNTR
         3676
 01072
         2276
               ISZ B2PNTR
 01073
         6201
               6201
 01074
         5663
                JMP I BUFWRT
 01075
 01076
         0000
                B2PNTR,0
         0227
 01176
         0645
 01177
```

/LAB8C

SECURIO PERSONAL ALLEGACIO DE LA LUCIO DE LA LUCIO DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DEL LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DEL LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DEL LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACIÓN DE LA LOCACI

/SUBROUTINE PNADM (READ A/D AND FIND MAX

/AND MIN WHILE WAITING FOR A FLAG)

```
/ARG1 IS A/D CHANAL, ARG2 IS WHICH FLAG
              /ARG3 IS MAX, ARG4 IS MIN, ARG5 IS LENGTH
       5200
              *5200
05200
       0000
              PNADM, O
05201
       7300
              CLA CLL
       1600
05202
              TAD I PNADM
              6531
05203
       6531
05204
       6532
              6532
              ISZ PNADM
05205
       2200
05206
       1600
              TAD I PNADM
05207
       3277
              DCA PIN
05210
       2200
              ISZ PNADM
              TAD (2000
05211
       1377
       3275
05212
              DCA MIN
05213
       1376
              TAD (-2000
05214
       3274
              DCA MAX
05215
       3276
              DCA LENGTH
05216
       6502
              PINCK,6502
05217
       5240
              JMP ADCK
05220
       6504
              6504
05221
       6503
              6503
05222
       0277
              AND PIN
05223
       7450
              SNA
05224
       5240
              JMP ADCK
05225
       7300
              RET, CLA CLL / RETURN
05226
       1274
              TAD MAX
05227
       3600
              DCA I PNADM
05230
       2200
              ISZ PNADM
05231
       1275
              TAD MIN
       3600
05232
              DCA I PNADM
05233
       2200
              ISZ PNADM
05234
       1276
              TAD LENGTH
05235
       3600
              DCA I PNADM
05236
       2200
              ISZ PNADM
              JMP I PNADM
05237
       5600
05240
       6534
              ADCK, 6534
05241
       5216
              JMP PINCK
05242
       6533
              6533
05243
       3300
              DCA POINT
05244
       6532
              6532
                            /START A/D AGAIN
05245
       2276
              ISZ LENGTH
05246
       5253
              JMP .+5
              CLA CLL
05247
       7300
```

```
05250
       1375
              TAD (2777
05251
       3276
              DCA LENGTH
05252
       5225
              JMP RET
05253
       1274
              TAD MAX
05254
       7041
              CIA
05255
       1300
              TAD POINT
05256
       7700
              SMA CLA
05257
       5266
              JMP LAR
       1275
              TS, TAD MIN
05260
       7041
              CIA
05261
05262
       1300
              TAD POINT
05263
       7710
              SPA CLA
05264
       5271
              JMP SML
       5216
              JMP PINCK
05265
05266
       1300
              LAR, TAD POINT
05267
       3274
              DCA MAX
05270
       5260
              JMP TS
05271
       1300
              SML, TAD POINT
05272
       3275
              DCA MIN
       5216
              JMP PINCK
05273
05274
       0000
              MAX.0
05275
       0000
              MIN,0
       0000
05276
              LENGTH, 0
       0000
05277
              PIN, O
05300
       0000
              POINT, 0
              /SUBROUTINE RADCK (READ A/D AND CHECK
              /FOR ERRORS)
              /ARG1 IS A/D CHANAL
              /ARG2 IS WORD COUNT (TWO'S COMPLEMENT)
              /ARG3 IS MAX ALLOWED DIFFERENCE
              /RETURN AT ARG3+1 IF A/D VALUE OUTSIDE
              /OF RANGE.
              /RETURN AT ARG3+2 NORMAL RETURN
05301
       0000
              RADCK.O
        7300
05302
              CLA CLL
        1701
05303
              TAD I RADCK
05304
        6531
              6531
05305
        6532
              6532
05306
        2301
              ISZ RADCK
05307
        1701
              TAD I RADCK
05310
        3340
              DCA COUNT
05311
        2301
              ISZ RADCK
05312
        1701
              TAD I RADCK
05313
        3341
              DCA MAXR
05314
        2301
              ISZ RADCK
        1341
05315
              TAD MAXR
        7041
05316
              CIA
05317
        3342
              DCA NMAX
```

```
6534
05320
              CKAD.6534
05321
       5320
              JMP CKAD
05322
       6533 - 6533
              6532
05323
       6532
       1342
05324
              TAD NMAX
05325
       7500
              SMA
05326
       5337
              JMP ERR /TOO LARGE
       1341
              TAD MAXR
05327
05330
       1341
              TAD MAXR
05331
       7510
              SPA
05332
       5337
              JMP ERR /TOO SMALL
05333
       2340
              ISZ COUNT
05334
       5320
              JMP CKAD
05335
       2301
              ISZ RADCK
05336
       5701
              JMP I RADCK
05337
       5701
              ERR, JMP I RADCK
05340
       0000
              COUNT, 0
05341
       0000
              MAXR, O
05342 0000
05375 2777
       0000
              NMAX, O
05376
       6000
05377
       2000
```

### PROGRAM FILFIX

```
PROGRAM FILFIX(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPU 1TAPE1,TAPE2,TAPE9)
DIMENSION A(4096),B(512),OUT(512),S(512)
DIMENSION IB(512),DBUF(256)
COMMON BUF(640),INV(512)
EQUIVALENCE (BUF(1),S(1)),(INV(1),DBUF(1))
EQUIVALENCE (IA,A),(IB,B)
THIS PROGRAM CAN BE USED WITH EITHER A NORMAL OR AN INVERTED INTERFEROGRAM.
DATA DOL/"$"/
L=4096
NE=8
NEG=0
      This program is used for phase correction and numerical filtering.
                  PROGRAM FILFIX(INPUT, OUTPUT, TAPE5-INPUT, TAPE6-OUTPUT,
                  NEG-0
WRITE(6,104)
FORMAT(* ENTER M, )
'5,*) M,N,LASER
  200
                                                                           N, LASER*,/)
                  M34=M4-M
M21=M2+1
                  WAVMAX-7899.000598/LASER
M-NUMBER OF REAL POINTS IN CORRECTION FUNCTION (ONE SIDE)
N-NUMBER OF POINTS IN EVEN INTERFEROGRAM
L-NUMBER OF INTERFEROGRAM POINTS HELD IN MEMORY.
                 WRITE(6,105)
FORMAT(* ENTER NUMBER OF PIECES, WHICH PIECE *,/)
READ(5,*) NF,NP
THE FREE SPECTRAL RANGE IS DIVIDED INTO "NF" EQUAL PIECES.
ONLY THE "NP" PIECE IS PROCESSED.
ALL SPECTRAL FREQUENCIES WHICH ARE NOT IN THE "NP" PIECE MUST BE
FILTERED OUT OR ALIASING WILL OCCUR.
CCCC
                                            (see reference 32 page 85)
                  WRITE(6,106)
FORMAT(* ENTER FILTER ON, OFF*,/)
READ(5,*) ON, OFF
IONM=2*IFIX(M*ON/WAVMAX+.5)
MWID=2*IFIX(M*OFF/WAVMAX+.5)-IONM+2
40
106
                 WFI=WAYMAX/M2
FON=WFI*IONM
FOFF=WFI*(IONM+MWID-2)
WRITE(6,120) FON,FOFF
FORMAT(* FILTER FROM*,F8.2,* TO*,F8.2,* ENTER 1 TO CONTINUE*,/)
READ(5,*) ICON
IF(ICON.NE.1) GO TO 40
WRITE(6,100) M, N, L
FORMAT(* M=*,15,* N=*,17,* L=*,15)
TM=FLOAT(L)/FLOAT(M)
IF((TM-FLOAT(L/M)).NE.0) GO TO 50
IF(M.LT.16) GO TO 53
IF(L.LE.M2) GO TO 54
WRITE(6,501)
FORMAT(* ENTER TITLE*,/)
READ(5,502) TITLE
FORMAT(A7)
AE=0.
                   WFI-WAVMAX/M2
120
501
502
                   AE=O.
                   NUM=N/NF
                   IREV=1+(-1)**NP
                  STEP=WAVMAX/N
STARTO=0
                  IF(NP.NE.1) STARTO-WAVMAX*(NP-1)/FLOAT(NF)+STEP WRITE(2,500) DOL,TITLE,NUM,IREV,AE,STEP,STARTO FORMAT(A1,A7,218,3E18.11) CALL RTADEC(A,BUF,DBUF,1,1,1,L,IUNIT) IF(IUNIT.NE.-1) GO TO 115
500
```

```
SUM-0.
                     AMAX=-1.0E+30
DO 30 I=1,L
X=A(I)
                     SUM-SUM+X
                      IF(X.LT.AMAX) GO TO 30
                      AMÀX-X
                      IMAX-I
                      CONTINUE
30
                     NME-M2
AV-SUM/L
                    AV=SUM/L
NE2=NE*2
IF((NME*NE2).GT.L) NME=L/NE2
MOVE MAX TO MIDDLE OF NME
J=IMAX-NME/2
DO 32 I=1,NME
A(I)=A(J)-AV
J=J+1
CALL EXPAND(A,S,INV,NME,NE)
NNE=NME*NE
CALL XMXMN(A,XMAX,IMX,XMIN,IMN,NNE)
IF(XMAX.GT.(ABS(XMIN))) GO TO 34
NEG=1
C
32
                    IF(XMAX.GT.(ABS(XMIN))) GU TU 34
NEG=1
IMX=IMN
PM=IMAX-NME/2+FLOAT(IMX-1)/NE
IMAX=PM+.5
AMAX=A(IMX)
WRITE(6,102) AMAX,PM,AV
FORMAT(//,* MAX IS *,F10.3,* AT *,F10.3,*
CALL RTADEC(A,BUF,DBUF,1,1,1,L,IUNIT)
IF(IUNIT.NE.-1) GO TO 115
J=IMAX-M
DO 1 I=1,M2
34
                                                                                                                                                                                        AV=*,F10.3,//)
                     DO 1 I=1 M2
A(I)=A(J)-AV
                   A(I)=A(J)-AV
J=J+1
IF(NEG.LE.O) GO TO 18
DO 13 I=1,M2
A(I)=-A(I)
PREPARE FOR TRANSFORM
CALL APTD(A,M)
CALL PREHAR(A,M2)
MH=LOG2(M2)
CALL HARMID(A,MH,INV,S,1,IER)
IF(IER.NE.O) WRITE(6,110) IER
WRITE(9,103) (A(I),I=1,M2)
FORMAT(/,* ERROR CONDITION*,I3,//)
GET CORRECTION AND FILTER IT
ISO=IONM
   1
13
C
18
c110
                      ISO-IONM
                     ISU-IONM
CALL ZERO(A, ISA, ISO)
ISA-ISO+1
ISO-ISO+MWID
CALL MHER(A, ISA, ISO)
ISA-ISO+1
ISO-M2+2
CALL ZERO(A, ISA, ISO)
NEGATIVE PART
I-ML-1
C
                     J=M4-1
DO 4 I=3,M2,2
A(J)=A(I)
A(J+1)=-A(I+1)
                     TRANSFORM BACK TO INTERFEROGRAM DOMAIN WRITE(9,103) (A(I),I=1,M2)
DO 15 I=1,M2,2
                     I2=I+1
IB(I)=0
IF(ABS(A(I)).LT.1.E-3) GO TO 15
```

TO THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERT

```
IB(1)=572.958*ATAN(A(I2)/A(I))+.5
CONTINUE
15
C
              WRITE OUT PHASE FUNCTION
WRITE(9,101) (IB(I), I=1, M2, 2)
FORMAT(1615)
101
              CALL HARMID(A, MH, INV, S, -2, IER)
IF(IER.NE.O) WRITE(6,110) IER
PULL OUT AND REVERSE REAL PART
J=M2+1
C
              MT=M+1
DO 5 I=1,MT
B(I)=A(J)
5
              J=M4-1
              MT-MT+1
              DO 6 IJ=MT,M2
B(IJ)=A(J)
             B(IJ)=A(J)
J=J-2
CALL APTD(B,M)
SCALE B SO THAT THE MAX IS ABOUT 100,000
BSCAL=100000./ABS(AMAX)
CALL BNORM(B,M2,BAV,BSCAL)
READ IN INTERFEROGRAM
CALL RTADE C(A,BUF,DBUF,1,1,1,L,IUNIT)
IF(IUNIT.NE.-1) GO TO 115
DO 7 I=1,L
A(I)=A(I)-AV
IF(NEG.LE.0) GO TO 78
DO 73 I=1,L
A(I)=A(I)
NS-POINT AT WHICH TO START CONVOLUTING
  6
C
  7
73
C
78
C
              NS-POINT AT WHICH TO START CONVOLUTING
              NCOUN-NUMBER OF POINTS CONVOLUTED
              N COUN=0
C
              NM=NUMBER OF POINTS OUTPUTED
              NM=N/NF
C
              IOUTBU TELLS HOW MANY POINTS IN OUT BUFF-1
              IOUTBU=1
             CALL CONVOL(A,B,OUT,IOUTBU,M,L,NS,NF,NCOUN)
IF(NCOUN.GE.NM) GO TO 9
CALL REFILL(A,IA,M,NM,L,NF,AV,NEG,NCOUN)
GO TO 8
IF(IOUTBU.EQ.1) STOP
IOUTBU=IOUTBU-1
WRITE(2,103) (OUT(I),I=1,IOUTBU)
FORMAT(8F10.3)
  8
  9
  103
              STOP
             WRITE(6,111)
FORMAT(//,* INCOMPATIBLE L, M: M SHOULD BE A FACTOR OF L*)
GO TO 200
WRITE(6,116)
FORMAT(* BAD TAPE1 *)
  50
  111
115
116
              STOP
              WRITE(6,113)
FORMAT(* M MUST BE GREATER THAN OR EQUAL TO 16*)
GO TO 200
WRITE(6,114)
FORMAT(* L MUST BE LARGER THAN 2 TIMES M *)
   114
              GO TO 200
END
C
              SUBROUTINE BNORM(A, N, AV, BS CAL)
DIMENSION A(1)
              SUM=0.
DO 1 I=1,N
SUM=SUM+A(I)
1
              R = N
              AV=SUM/R
```

```
DO 2 I=1, N
A(I)=BSCAL*(A(I)-AV)
RETURN
2
                 END
C
                SUBROUTINE ZERO(A, ISA, ISO)
DIMENSION A(1)
IF(ISA.GE.ISO) RETURN
DO 1 I=ISA, ISO
A(1)=0.
RETURN
  1
                 END
C
                SUBROUTINE MHER(A, ISA, ISO)
DIMENSION A(1)
IF(ISA.GE.ISO) RETURN
DO 1 I=ISA, ISO, 2
                AMOD=SQRT(A(I)**2+A(I1)**2)
IF(AMOD.LE.1.E-6) GO TO 1
A(I)=A(I)/AMOD
A(I1)=-A(I1)/AMOD
CONTINUE
DETURN
  1
                 RETURN
                 END
C
                SUBROUTINE REFILL(A, IA, M, NM, L, NF, AV, NEG, NCOUN) THIS ROUTINE REFILLS THE INPUT BUFFER. DIMENSION A(1), IA(1) COMMON BUF(640), DBUF(512)
С
                 M2=2*M
                NCOUN-NUMBER OF POINTS CONVOLUTED

IF AT END FILLS WITH ZEROS

NREAD-NUMBER OF POINTS LEFT TO READ + M2

NOTE THERE IS ALREADY M POINTS LOADED WHEN REFILL IS CALLED

NREAD-(NM-NCOUN+1)*NF+M

ONLY PEAD NEW OF THAN N PACE TERM
CCCC
                COULD READ NF-1 POINTS MORE THAN N PAST ZERO PATH DIFFERENCE.
LEREAD IS LAST POINT TO BE READ
LEREAD-L
C
Č
                IF(LEREAD.GT.NREAD) LEREAD-NREAD
SHIFT UNCONVOLUTED PART TO LEFT
C
                 J=L-M2
                DO 1 I=1,M2
J=J+1
                A(I)=A(J)
FIL A(I)
                MS-M2+1
IF(LEREAD.LT.MS) GO TO 3
IF(IOF.NE.1) GO TO 12
                 LEREAD-MS
                GO TO 3
CALL RTADEC(A, BUF, DBUF, 1, 0, MS, LEREAD, IUNIT)
IF(IUNIT) 15, 16, 17
12
               IOF=1
LEREAD=I
IF(NEG.GT.O) GO TO 10
DO 2 I-MS, LEREAD
A(I)=A(I)-AV
GO TO 30
INVERTED INTERFEROGRAM
DO 20 I-MS, LEREAD
A(I)=-A(I)+AV
IF(LEREAD.GE.L) RETURN
FILL REST OF WAY WITH ZERO'S
NI=LEREAD
DO 4 I=NI, L
A(I)=0.
16
15
  2
10
20
30
C
  3
  4
```

```
RETURN
                 WRITE(6,110) NCOUN
FORMAT(* PARITY ERROR AT*,110)
17
110
                 STOP
                 END
C
                SUBROUTINE CONVOL(A,B,OUT,IOUTBU,M,L,NS,NF,NCOUN)
DIMENSION A(1),B(1),OUT(1)
NS-NUMBER TO START CONVOLUTION
NF-REDUCTION IN SIZE FROM INPUT TO OUTPUT
NM-NUMBER OF POINTS ON OUTPUT OF CONVOLUTION
NCOUN-NUMBER OF POINTS CONVOLUTED
NCON-NUMBER OF POINTS TO CONVOLUTE
NCON-(L-NS-M)/NF+1
ICON-NS-M-NF
DO 3 IC-1.NCON
                 DO 3 IC-1, NCON
IS-FIRST ADDRESS IN A(I) WHEN EACH POINT IS CONVOLUTED
IS-ICON+IC*NF
C
C
                 CONVOLUTE POINT
                 SUM=0
M2=2*M
                J=IS
DO 1 I=1,M2
SUM=A(J)*B(I)+SUM
               SUM=A(J)*B(I)+SUM

J=J+1

OUT(IOUTBU)=SUM

OUTPUT 512 POINTS AT A TIME

IF(IOUTBU.LT.512) GO TO 2

WRITE(2,103) (OUT(IO),IO=1,512)

FORMAT(8F10.3)
  1
  103
                 IOUTBU-0
                 IOUTBU-IOUTBU+1
                 CONTINUE
                NOUN=NOUN+NON
NS=IS+NF+3*M-L
RETURN
                 END
C
                SUBROUTINE APTD(B,M)
DIMENSION B(1)
DOUBLE SIDED TRIANGULAR APODIZATION
ZERO PATH DIFFERENCE IS AT M+1
                 M2=2*M
                 DEL=1./FLOAT(M)
                WH=0.
DO 15 I=1.M
B(I)=WH*B(I)
                WH=WH+DEL

MT=M+1

DO 16 I=MT,M2

B(I)=WH*B(I)

WH=WH-DEL

RETURN
15
16
                 END
C
                SUBROUTINE EXPAND(A,S,INV,N,NE)
DIMENSION A(1),S(1),INV(1)
THIS ROUTINE INTERPOLATES "A" BY "NE" TIMES
N IS THE NUMBER OF POINTS TO START WITH
SPACE NEEDED MUST BE TWICE THE SIZE OF NEW N
THE SIZE OF S AND INV IS A/8
N2=2*N
NNEW=N*NE
                 NNH=NNEW/2

CALL PREHAR(A,N)

MH=LOG2(N)

CALL HARMID(A,MH,INV,S,1,IER)
```

and recovering therefore properties speciment states and

```
MS=N+1
             MZ=2*NNEW-N
              J-MZ
              DO 10 I-MS, N2
              J=J+1
             J=J+1
A(J)=A(I)
DO 20 I=MS,MZ
A(I)=0.
MB=MH+LOG2(NE)
CALL HARMID(A,MB,INV,S,-1,IER)
10
20
              I-NNEW
             J=NNEW-1
DO 30 ID=1,NNH
A(I)=A(J)*NE
              I=I-1
J=J-2
30
             J=NNEW+1
DO 40 I=1 NNH
A(I)=A(J)*NE
40
              J=J+2
RETURN
              END
C
             FUNCTION LOG2(N)
LOG2-ALOG(FLOAT(N))/.693147+.5
RETURN
              END
C
             SUBROUTINE PREHAR(A,M2)
DIMENSION A(1)
THIS ROUTINE GETS A REAL DOUBLE SIDED INPUT READY
FOR HARMID.
              M2 IS THE NUMBER OF REAL POINTS M=M2/2
              J=M2+1
DO 2 I=1,M
A(J)=A(I)
A(J+1)=0
  2
               J≖J+2
              MT=M+1
             J=1
D0 3 IJ=MT,M2
A(J)=A(IJ)
A(J+1)=0
J=J+2
RETURN
  3
              END
С
             SUBROUTINE XMXMN(A, XMAX, IMAX, XMIN, IMIN, N)
DIMENSION A(1)
XMAX=-1.0E+30
XMIN=1.0E+30
DO 20 I=1, N
IF(A(I).LT.XMAX) GO TO 10
XMAX=A(I)
IMAY=I
              XMAX=A(1)
IMAX=I
GO TO 20
IF(A(I).GT.XMIN) GO TO 20
XMIN=A(I)
IMIN=I
CONTINUE
RETURN
FUND
10
20
              END
C
              SUBROUTINE RTADEC(A,B,D,ITAP,IFUN,ISTR,IEND,IUNIT)
DIMENSION A(1),B(640),D(256)
THIS ROUTINE READS DATA FROM TAPE UNIT "ITAP"
AND PUTS IT IN ARRAY "A" BEGINING AT "ISTR" AND COING TO
C
```

```
"IEND."

IF "IFUN" = 0 NO REWIND WILL OCCUR, IF "IFUN" IS NOT EQUAL TO ZERO A REWIND WILL OCCUR BEFORE THE READ.

IUINT-UNIT(ITAP)

FULL BUFFERS OF INFORMATION WILL BE PASSED DIRECTLY TO "A"

PARTIAL BUFFERS WILL BE TEMPORARILY STORED IN B

COMMON /RTABUF/ IBUFP

DATA IBUFP, NBD, NAD/0,256,640/

IRD=ISTR

IF(IFUN.EQ.0) GO TO 10

REWIND ITAP

IBUFP-0

IF(IBUFP.EQ.0) GO TO 40

BUFFER HAS AT LEAST PART OF NEEDED DATA

IQUIT-IEND

IF(IQUIT-IRD).GT.(NAD-IBUFP)) IQUIT=IRD+NAD-IBUFP

IF(IRD.GT.IQUIT) GO TO 30

A(IRD)=B(IBUFP)

IBUFP=IBUFP+1

IRD=IRD+1

IGO TO 20

IF(IBUFP.GT.NAD) IBUFP=0

IF(IBUFP.GT.NAD) RETURN

NEED MORE POINTS

BUFFER IN (ITAP,1) (D(1),D(NBD))

IUNIT-UNIT(ITAP)

IF(IUNIT.NE.-1) RETURN

IF((IEND-IRD+1).GE.NAD) GO TO 50

REFILL BUFFER

CALL TPDCODE(D,B)

IBUFF=1

GO TO 15

READ DIRECTLY INTO A

CALL TPDCODE(D,A(IRD))

IRD=IRD+NAD

GO TO 40

END

SUBROUTINE TPDCODE(D,F)

INDET 18 255 LORGE IN D
10
C
15
20
30
C
40
C
50
C
                                IXX=40000000B
L=1
J=1
DO 11 I=1.128
IX=D(L).AND.IA(1)
IB(1)=SHIFT(IX,-36)
IX=D(L).AND.IA(2)
IB(2)=SHIFT(IX,-12)
IX=D(L).AND.IA(3)
IY=D(L+1).AND.IA(4)
IZZ=SHIFT(IY,-48)
IZ=SHIFT(IY,-48)
IZ=IZZ.AND.IA(3)
IZX=IZ.OR.IZZ
IB(3)=IZ+IZZ
IX=D(L+1).AND.IA(5)
IB(4)=SHIFT(IX,-24)
IB(5)=D(L+1).AND.IA(6)
L=L+2
                                      L=L+2
DO 12 II=1,5
IF(IB(II).GF.IXX) IB(II)=IB(II)-(2*IXX)
F(J)=IB(II)
J=J+1
```

SASSAIR PROPERTY. SASSAIRS REZULTERA RESIDENCE RE

Paragram in a service of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control

```
12 CONTINUE
11 CONTINUE
     RETURN
     END
```

SUBROUTINE HARMID(A,M,INV,S,IFSET, IFERR)

SUBROUTINE HARMID

**PURPOSE** PERFORMS DISCRETE COMPLEX FOURIER TRANSFORMS ON A COMPLEX THREE DIMENSIONAL ARRAY

CALL HARMID(A.M. INV.S. IFSET, IFERR)

DESCRIPTION OF PARAMETERS

A - AS INPUT, A CONTAINS THE COMPLEX, 1-DIMENSIONAL ARRAY TO BE TRANSFORMED. THE REAL PART OF A(I1) IS STORED IN VECTOR FASHION IN A CELL WITH INDEX 2\*(I1) + 1 WHERE

NI = 2\*\*MI AND I1 = 0,1,...,N1-1 ETC.
THE IMAGINARY PART IS IN THE CELL IMMEDIATELY FOLLOWING.

NI = 2\*\*MI AND I1 = 0,1,..., The IMAGINARY PART IS IN THE CELL IMMEDIATELY FOLLOWING.

THE NUMBER OF CORE LOCATIONS OF ARRAY A IS 2\*(N1)

M - A ONE CELL VECTOR WHICH DETERMINES THE SIZES OF THE DIMENSIONS OF THE ARRAY A. THE SIZE, NI, OF THE DIMENSION OF A IS 2\*\*MI

INV - A VECTOR WORK AREA FOR BIT AND INDEX MANIPULATION OF DIMENSION ONE EIGHTH THE NUMBER OF CORE LOCATIONS OF A, VIZ., (1/8)\*2\*N1

S - A VECTOR WORK AREA FOR SINE TABLES WITH DIMENSION THE SAME AS INV

IFSET - AN OPTION PARAMETER WITH THE FOLLOWING SETTINGS O SET UP SINE AND INV TABLES ONLY AND CALCULATE FOURIER TRANSFORM

-1 SET UP SINE AND INV TABLES ONLY AND CALCULATE INVERSE FOURIER TRANSFORM (FOR THE MEANING OF INVERSE SEE THE EQUATIONS UNDER METHOD BELOW)

2 CALCULATE INVERSE FOURIER TRANSFORM ONLY (ASSUME SINE AND INV TABLES EXIST)

-2 CALCULATE INVERSE FOURIER TRANSFORM ONLY (ASSUME SINE AND INV TABLES EXIST)

1FERR - ERROR INDICATOR. WHEN IFSET IS 0,+1,-1, IFERR = 1 MEANS THE MAXIMUM M(I) IS LESS THAN 3 OR GREATER THAN 20, I=1,2,3 WHEN IFSET IS 1+2,-2, IFERR = 1 MEANS THAT THE SINE AND INV TABLES ARE NOT LARGE ENOUGH OR HAVE NOT BEEN COMPUTED, IF ON RETURN IFERR =0 THEN NONE OF THE ABOVE CONDITIONS ARE PRESENT

REMARKS THIS SUBROUTINE IS TO BE USED FOR COMPLEX, 1-DIMENSIONAL ARRAYS IN WHICH EACH DIMENSION IS A POWER OF 2. THE MAXIMUM MI MUST NOT BE LESS THAN 3 OR GREATER THAN 20.

SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED

THIS IS A 1-DIMENSIONAL MODIFICATION BY MARK ESPLIN OF THE ORIGINAL 3-DIMENSIONAL HARM.

```
SEE J.W. COOLEY AND J.W. TUKEY, "AN ALGORITHM FOR THE MACHINE CALCULATION OF COMPLEX FOURIER SERIES", MATHEMATICS OF COMPUTATIONS, VOL. 19 (APR. 1965), P. 297.
CCCCCC
              Dimension A(1), inv(1), S(1), W(2), W2(2), W3(2)
IF( IABS(IFSET) - 1) 900, 900, 12
MTT=M-2
ROOT2 = SQRT(2.)
IF (MTT-MT) 14,14,13
IFERR=1
RETURN
        13
                 RETURN
       14 IFERR-0
M1-M
N1-2**M1
16 IF(IFSET) 18,18,20
    16 IF(IFSE1,

18 NX= N1

FN = NX

DO 19 I = 1,NX

A(2*I-1) = A(2*I-1)/FN

19 A(2*I) = -A(2*I)/FN

20 NP=N1*2

IL=0
        30 IDIF=NP
KBIT=NP
MEV = 2*(MI/2)
IF (MI - MEV )60,60,40
        M IS ODD. DO L=1 CASE
40 KBIT=KBIT/2
KLAST=KBIT-1
DO 50 K=1,KLAST,2
KD=K+KBIT
                DO ONE STEP WITH L=1,J=0
A(K)=A(K)+A(KD)
A(KD)=A(K)-A(KD)
                 T=A(KD)
A(KD)=A(K)-T
A(K)=A(K)+T
T=A(KD+1)
       A(KD+1)=A(K+1)-T
50 A(K+1)=A(K+1)+T
52 LFIRST =3
CC
                 DEF - JLAST = 2**(L-2) -1
JLAST=1
GO TO 70
       M IS EVEN

60 LFIRST = 2
   JLAST=0

70 DO 240 L=LFIRST,MI,2
   JJDIF=KBIT
   KBIT=KBIT/4
   KL=KBIT-2
                DO FOR J=0
DO 80 I=1, IL1, IDIF
KLAST=I+KL
DO 80 K=I, KLAST, 2
K1=K+KBIT
K2=K1+KBIT
                 K3=K2+KBIT
```

```
0000000000000
                         DO TWO STEPS WITH J=0
A(K)=A(K)+A(K2)
A(K2)=A(K)-A(K2)
A(K1)=A(K1)+A(K3)
A(K3)=A(K1)-A(K3)
                         A(K)=A(K)+A(K1)
A(K1)=A(K)-A(K1)
A(K2)=A(K2)+A(K3)*I
A(K3)=A(K2)-A(K3)*I
                         T=A(K2)
A(K2)=A(K)-T
A(K)=A(K)+T
T=A(K2+1)
A(K2+1)=A(K+1)-T
A(K+1)=A(K+1)+T
 C
                         T=A(K3)
A(K3)=A(K1)-T
A(K1)=A(K1)+T
T=A(K3+1)
A(K3+1)=A(K1+1)-T
A(K1+1)=A(K1+1)+T
 C
                         T=A(K1)
A(K1)=A(K)-T
A(K)=A(K)+T
T=A(K1+1)
A(K1+1)=A(K+1)-T
A(K+1)=A(K+1)+T
 С
           R=-A(K3+1)

T = A(K3)

A(K3)=A(K2)-R

A(K2)=A(K2)+R

A(K3+1)=A(K2+1)-T

80 A(K2+1)=A(K2+1)+T

IF (JLAST) 235,235,82

82 JJ=JJDIF +1
                        DO FOR J=1
ILAST= IL +JJ
DO 85 I = JJ, ILAST, IDIF
KLAST = KL+I
DO 85 K=I, KLAST, 2
K1 = K+KBIT
K2 = K1+KBIT
K3 = K2+KBIT
0000000000000
                         LETTING W=(1+1)/ROOT2,W3=(-1+1)/ROOT2,W2=I,
A(K)=A(K)+A(K2)*I
A(K2)=A(K)-A(K2)*I
A(K1)=A(K1)*W+A(K3)*W3
A(K3)=A(K1)*W-A(K3)*W3
                         A(K)=A(K)+A(K1)
A(K1)=A(K)-A(K1)
A(K2)=A(K2)+A(K3)*I
A(K3)=A(K2)-A(K3)*I
                         R =-A(K2+1)

T = A(K2)

A(K2) = A(K)-R

A(K) = A(K)+R

A(K2+1)=A(K+1)-T

A(K+1)=A(K+1)+T
```

```
AWR-A(K1)-A(K1+1)

AWI = A(K1+1)+A(K1)

R=-A(K3)-A(K3+1)

T=A(K3)-A(K3+1)

A(K3)=(AWR-R)/ROOT2

A(K3+1)=(AWI-T)/ROOT2

A(K1)=(AWI+T)/ROOT2

A(K1+1)=(AWI+T)/ROOT2

T=A(K1)

A(K1)-A(K)-T

T=A(K1+1)

A(K1)-A(K)+T

T=A(K1+1)

A(K1+1)-A(K+1)-T

A(K+1)-A(K+1)-T

A(K+1)-A(K+1)-T

R=-A(K3+1)

T=A(K3)

A(K3)-A(K2)-R

A(K2)-A(K2)+R

A(K2)-A(K2)+R

A(K2)-A(K2+1)-T

IF(JLAST-1) 235,235,90

90 JJ= JJ + JJDIF
C
CC
                        NOW DO THE REMAINING J'S DO 230 J=2, JLAST
                     FETCH W'S
DEF- W=W**INV(J), W2=W**2, W3=W**3
I=INV(J+1)
IC=NT-I
W(1)=S(IC)
W(2)=S(I)
I2=2*I
I2C=NT-I2
IF(I2C)120,110,100
     2*I IS IN FIRST QUADRANT
100 W2(1)=S(I2C)
W2(2)=S(I2)
GO TO 130
110 W2(1)=0.
W2(2)=1.
GO TO 130
     2*I IS IN SECOND QUADRANT
120 I2CC = I2C+NT
I2C=-I2C
W2(1)=-S(I2C)
W2(2)=S(I2CC)
130 I3=I+I2
I3C=NT-I3
IF(I3C)160,150,140
     13 IN FIRST QUADRANT
140 W3(1)=S(13C)
W3(2)=S(13)
GO TO 200
150 W3(1)=0.
W3(2)=1.
GO TO 200
      160 I3CC=I3C+NT
IF(I3CC)190,180,170
     13 IN SECOND QUADRANT
13C=-13C
W3(1)=-S(13C)
```

```
W3(2)=S(I3CC)
GO TO 200
180 W3(1)=-1.
W3(2)=0.
GO TO 200
                        3*I IN THIRD QUADRANT
I3CCC=NT+I3CC
I3CC = -I3CC
W3(1)=-S(I3CCC)
W3(2)=-S(I3CC)
ILAST=IL+JJ
DO 220 I=JJ, ILAST, IDIF
KLAST=KL+I
DO 220 K=I, KLAST, 2
K1=K+KBIT
K2=K1+KBIT
K3=K2+KBIT
          190
                           K3-K2+KBIT
                         DO TWO STEPS WITH J NOT 0
A(K)=A(K)+A(K2)*W2
A(K2)=A(K)-A(K2)*W2
A(K1)=A(K1)*W+A(K3)*W3
A(K3)=A(K1)*W-A(K3)*W3
                         A(K)=A(K)+A(K1)
A(K1)=A(K)-A(K1)
A(K2)=A(K2)+A(K3)*I
A(K3)=A(K2)-A(K3)*I
                         R=A(K2)*W2(1)-A(K2+1)*W2(2)
T=A(K2)*W2(2)+A(K2+1)*W2(1)
A(K2)=A(K)-R
A(K)=A(K)+R
A(K2+1)=A(K+1)-T
A(K+1)=A(K+1)+T
                      A(K+1)=A(K+1)+T

R=A(K3)*W3(1)-A(K3+1)*W3(2)
T=A(K3)*W3(2)+A(K3+1)*W3(1)
AWR=A(K1)*W(1)-A(K1+1)*W(2)
AWI=A(K1)*W(2)+A(K1+1)*W(1)
A(K3)=AWR-R
A(K3+1)=AWI-T
A(K1)=AWR+R
A(K1+1)=AWI+T
T=A(K1)
A(K1)=A(K)-T
A(K)=A(K)+T
T=A(K1+1)
A(K1+1)=A(K+1)-T
A(K+1)=A(K+1)+T
R=-A(K3+1)
T=A(K3)
A(K3)=A(K2)-R
A(K3+1)=A(K2+1)-T
A(K2+1)=A(K2+1)+T
END OF I AND K LOOPS

LI=LIDIF+-LI
C
       230 JJ=JJDIF+JJ
END OF J-LOOP
                      JLAST=4*JLAST+3
CONTINUE
END OF L LOOP
                        WE NOW HAVE THE COMPLEX FOURIER SUMS BUT THEIR ADDRESSES A BIT-REVERSED. THE FOLLOWING ROUTINE PUTS THEM IN ORDER
```

aldi deserte viviliado ededeco serviva esperant circules addidad paravariamentariam apparam icasis

```
N1 VNT=N1 /NT
JJD1=N1 /(N1 VNT*N1 VNT)
    J=1
800 JJ1=1
    800 JJ1=1
D0 860 JPP1=1,N1VNT
IPP1=INV(JJ1)
D0 850 JP1=1,NT
810 IP1=INV(JP1)*N1VNT
830 I=2*(IPP1+IP1)+1
IF (J-I) 840,845,845
840 T=A(I)
A(I)=A(J)
A(J)=T
T=A(I+1)
A(I+1)=A(J+1)
A(J+1)=T
845 CONTINUE
    845 ÖNTINUE
850 J=J+2
860 JJ1=JJ1+
               J=J+2
JJ1=JJ1+JJD1
END OF JPP1 AND JP2
    890 IF(IFSET)891,895,895
891 DO 892 I = 1,NX
892 A(2*I) = -A(2*I)
895 RETURN
                THE FOLLOWING PROGRAM COMPUTES THE SIN AND INV TABLES.
900
    MI=M-2

MT = MAXO(2,MT)

904 IF (MT-20)906,906,905

905 IFERR = 1

GO TO 895

906 IFERR=0

NT=2**MT

NTV2=NT/2
    SET UP SIN TABLE
THETA=PIE/2**(L+1) FOR L=1
910 THETA=.7853981634
CC
                 JSTEP=2**(MT-L+1) FOR L=1
                 JSTEP=NT
                JDIF=2**(MT-L) FOR L=1
JDIF=2**(MT-L) FOR L=1
    JDIF=2**(MT-L) FOR L=1
JDIF=NTV2
S(JDIF)=SIN(THETA)
DO 950 L=2,MT
THETA=THETA/2.
JSTEP2=JSTEP
JSTEP=JDIF
JDIF=JSTEP/2
S(JDIF)=SIN(THETA)
JC1=NT-JDIF
S(JC1)=COS(THETA)
JLAST=NT-JSTEP2
IF(JLAST - JSTEP) 950,920,920
920 DO 940 J=JSTEP,JLAST,JSTEP
JC=NT-J
JD=J+JDIF
     JD=J+JDIF
940 S(JD)=S(J)*S(JC1)+S(JDIF)*S(JC)
950 CONTINUE
                 SET UP INV(J) TABLE
     960 MTLEXP=NTV2
```

recognistical accessions because the reserved to the second process of the contract of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of

# Program for performing large FFT

The large FFT program was broken up into four separate programs to conserve memory space. They are EVEFT, SORTFT, RECFFT, ERECOV. The large FFT is performed by running the four programs in sequence.

Part of the programming was performed by Steve Walker.

```
PROGRAM EVEFT(OUTPUT=104B, TAPE3=104B, TAPE4, TAPE6=OUTPUT
              2, TAPE2)
THIS PROGRAM CONVERTS A REAL EVEN FUNCTION INTO A NEW COMPLEX FUNCTION WITH NO REDUNDANCY.
DIMENSION A(4096), B(4096), S(4096), C(2048), SINE(16)
DIMENSION COSINE(16), SC(4098), MASTIX(300)
EQUIVALENCE (SC(3), S(1)), (S(2049), C(1))
IBLKSZ=4096
IBLKSZ=1BLKSZ/2
BEWIND 2
                 REWIND 2
REWIND 3
READ(2,500) TYPE, TITLE, NUM, IREV, AE, STEP, STARTO
WRITE(3,500) TYPE, TITLE, NUM, IREV, AE, STEP, STARTO
FORMAT(A1, A7, 218, 3E18.11)
NBLK=NUM/IBLKSZ
500
                 NBLK1 = NBLK+1
                 IFORM=FLOAT(NBLK)/8.+0.9999
NBLK3=NBLK+IFORM+2
CALL OPENMS(4,MASTIX,150,0)
                PREPARE 180 DEGREE SINE-COSINE TABLE S(IBLKSZ)=0.
S(IBLKSZ-1)=-1.
CALL SCTABL(SC, DELT, IBLKSZ)
CALL WRITMS(4, S, IBLKSZ, NBLK3)
CALL WRITMS(4, SC, IBLKSZ, NBLK1)
WRITE(6,520) NUM
FORMAT(* N=*,18)
                 TRIANGULAR APODIZATION
               TRIANGOLIIII

AP=1.

APT=1./FLOAT(NUM)

DO 30 IBLK=1,NBLK

READ(2,540) (B(I),I=1,IBLKSZ)

FORMAT(8F10.3)

DO 10 I=1,IBLKSZ

A(I)=B(I)*AP

AP=AP-APT
540
10
                          CALL WRITMS(4, A, IBLKSZ, IBLK)
CONTINUE
Ğ0
                PREPARE TAPE4 FOR REAL TRANSFORM
CALL HERMFC(IBLKSZ, A, B, NBLK)
NPASS=LOG2(NBLK)
THETA=3.14159265359/FLOAT(IBLKSZ)
CALL SINGEN(THETA, NPASS, SINE, COSINE)
CALL TRPREP(IBLKSZ, NBLK, NPASS, A, B, S, C, SINE, COSINE)
STOP
END
C
                  END
C
                  SUBROUTINE HERMFC(IBLKSZ, A, B, NBLK)
                  CREATES ONE HALF OF A HERMITION FUNCTION. READS AND WRITES USING TAPE4
                          A,B= WORK SPACE
NBLK= NO. BLOCKS OF INPUT
IBLKSZ= BLOCK SIZE
```

```
DIMENSION A(1),B(1)
CALL READMS(4,Å,IBLKSZ,NBLK)
N2=IBLKSZ+2
N2M=IBLKSZ-2
DO 70 I COUNT=2,NBLK,2
IBLK=NBLK-I COUNT+2
DO 40 I=2,N2M,2
II=N2-I
A(II)=(A(II)-A(II-2))/2.
CONTINUE
IBLK1=IBLK-1
40
                   UNITINGE

IBLK1=IBLK-1

CALL READMS(4,B,IBLKSZ,IBLK1)

A(2)=(A(2)-B(IBLKSZ))/2.

CALL WRITMS(4,A,IBLKSZ,IBLK,1)

DO 50 I=2,N2M,2

II=N2-I

B(II)=(B(II)-B(II-2))/2.

CONTINUE
                           CONTINUE
50
                    IF(IBLK.EQ.2) GO TO 60
IBLK2=IBLK-2
                          CALL READMS(4, A, IBLKSZ, IBLK2)
B(2)=(B(2)-A(IBLKSZ))/2.
CALL WRITMS(4, B, IBLKSZ, IBLK1, 1)
CONTINUE
60
70
                    CONTINUE
             B(2)=0.
CALL WRITMS(4,B,IBLKSZ,1,1)
             RETURN
END
C
             SUBROUTINE SINGEN(THETA, NPASS, SINE, COSINE)
             GENERATES SINES AND COSINES FOR HALF ANGLES USED WITH SUBROUTINE EXPSCT
THETA= FIRST ANGLE
NPASS= NO. OF SINES GENERATED
SINE= ARRAY FOR SINE STORAGE
COSINE= ARRAY FOR COSINE STORAGE
             DIMENSION SINE(1), COSINE(1)
             DO 100 I=1,NPASS
SINE(I)=SIN(THETA)
COSINE(I)=COS(THETA)
THETA=THETA/2.
100
                     CONTINUE
              RETURN
             END
C
             SUBROUTINE TRPREP(IBLKSZ.NBLK.NPASS.A.B.S.C.SINE.COSINE)
             PREPARES TAPE4 FOR REAL TRANSFORM
                    A, B= WORK SPACE
C= SPACE FOR EXPANDED SIN-COS TABLE
                    SINE, COSINE - ARRAYS OF HALF ANGLE SINES AND COSINES
USED IN THE ANGLE ADDITION EQNS IN EXPSCT
NBLK, IBLKSZ - NO. BLOCKS AND BLOCK SIZE
NPASS - NUMBER OF TIMES S-C TABLE MUST BE EXPANDED BY 2
             DIMENSION A(1),B(1),C(1),S(1),SINE(1),COSINE(1)
NBLK2=NBLK/2
              IBLKS2=IBLKSZ/2
             MK=1
             IC=IBLKS2+1
CALL READMS(4, A, IBLKSZ, 1)
              T=A(1)
              A(1)=A(2)+A(1)
```

```
A(2)=T-A(2)
WORK FROM BOTH ENDS
DO 200 K1=1,NBLK2
K2=NBLK+1-K1
C
                CALL READMS(4,B,IBLKSZ,K2)
IEND=IBLKSZ-1
DO 170 IL=3,IEND,2
IF(IC.LT.IBLKS2) GO TO 160
                           CALL EXPSCT(S, C, MK, IBLKS2, NPASS, SINE, COSINE)
                           IC-1
CONTINUE
160
                      J=IBLKSZ-IL+2
                      IP=IL+1
                      JP=J+1
                     CALL EVESET(A(IL),A(IP),B(J),B(JP),C(IC),C(IC+1))
IC=IC+2
CONTINUE
170
                CALL WRITMS(4, A, IBLKSZ, K1, 1)
IF(K1.EQ.NBLK2) GO TO 180
                      IBLK-K1+1
                CALL READMS(4, A, IBLKSZ, IBLK)
GO TO 190
CONTINUE
180
                     A(1)=B(1)
A(2)=B(2)
190
                CONTINUE
                CALL EVESET(A(1),A(2),B(1),B(2),C(IC),C(IC+1))
                IC=IC+2
                CALL WRITMS(4, B, IBLKSZ, K2, 1)
CONTINUE
200
          RETURN
          END
C
          SUBROUTINE EXPSCT(S,C,MK,IBLKSZ,NPASS,SINE,COSINE)
          THIS ROUTINE EXPANDS A SINE-COSINE TABLE, START AT THE SUBSCRIPT MK, 2**(NPASS) TIMES IBLKSZ-NO. OF POINTS IN C AFTER EXPANSION
          DIMENSION S(1), C(1), SINE(1), COSINE(1)
          IEND=IBLKSZ-1
ISTEP=2**(NPASS+1)
           ISTART=ISTEP-1
               SPACE APPROPRIATE VALUES FROM S INTO C.
DO 40 J=ISTART, IEND, ISTEP
C(J)=S(MK+1)
C(J+1)=S(MK)
                      MK=MK+2
                CONTINUE
PREPARE FOR EXPANSION
KLEAP-ISTEP
40
                KSTART = IBLKSZ - KLEAP - 1
                KEND=KLEAP-1
                KSTEP=2*KLEAP
DO 90 IK=1,NPASS
KLEAP=KLEAP/2
KSTEP=KSTEP/2
                      KEND=KEND-KLEAP
KSTART=KSTART+KLEAP
IMT=IBLKSZ/KSTEP
C
                     DO 80 ICOUNT=KEND, KSTART, KSTEP

MTO=IBLKSZ-ICOUNT-2

C(MTO)=COSINE(IK)*C(KSTEP*IMT-1)-SINE(IK)*C(KSTEP*IMT)

C(MTO+1)=COSINE(IK)*C(KSTEP*IMT)+SINE(IK)*C(KSTEP*IMT-1)
                      IMT-IMT-1
```

```
80
90
                                                   CONTINUE
                                            CONTINUE
                      RETURN
                     END
CC
                     SUBROUTINE EVESET(A1, A2, B1, B2, SN, CS)
CCCC
                     TO BE USED ONLY WITH ROUTINE TRPREP PERFORMS A SPECIAL OPERATION ON THE PARAMETERS
                      SN=O-SN
                      CS=0-CS
                      AP=A1+B1
                      AM-A1-B1
                     APP=A2+B2
APM=A2+B2
APM=A2-B2
SAC=SN*AM+CS*APP
CAS=SN*APP-CS*AM
                      A1-AP+SAC
                     A2=APM+CAS
B1=AP-SAC
B2=CAS-APM
                      RETURN
                      END
                    SUBROUTINE SCTABL(S,DELT,IBLKSZ)
DIMENSION S(2)
THIS ROUTINE GENERATES A SIN-COS TABLE
FROM THETA EQUAL ZERO TO 180 DEGREES
IBLKS2=IBLKSZ/2
IBLKS4=IBLKSZ/4
DELT=3.14159265359/FLOAT(IBLKS2)
ROOT2=1./SQRT(2.)
THA-DELT
IAD2=IBLKS2+3
                     THA=DELT
IAD2=IBLKS2+3
IAD3=IBLKSZ+3
S(1)=1.
S(2)=0.
S(IBLKS2+1)=0.
S(IBLKS2+2)=1.
DO 10 I=3,IBLKS4,2
I2=I+1
                    DO 10 I=3, IBLKS4, 2
I2=I+1
COST=COS(THA)
SINT=SIN(THA)
S(I)=COST
S(I2)=SINT
S(IAD2-I2)=SINT
S(IAD2-I)=COST
S(I+IBLKS2)=-SINT
S(I2+IBLKS2)=-COST
S(IAD3-I2)=-COST
S(IBLKS2+I)=-COT2
S(IBLKS3+1)=-ROOT2
S(IBLKS3+1)=-ROOT2
RETURN
10
                      RETURN
                      END
                     PROGRAM SORTFT(TAPE4, TAPE3=104B)
DIMENSION A(4096), B(4096), MASTIX(300), S(512), INV(512)
EQUIVALENCE(B(1), S(1)), (B(2048), INV(1))
```

```
THIS PROGRAM SORTS THE BLOCKS THEN TRANSFORMS THEM THE PROGRAM ALSO GENERATES THE SIN-COS TABLE
                     IBLKSZ=4096
                     CALL OPENMS (4, MASTIX, 150, 0)
                   REWIND 3
READ(3,500) TYPE,TITLE,N,IREV,AE,STEP,STARTO
FORMAT(A1,A7,218,3E18.11)
NBLK=N/IBLKSZ
500
                   CALL SORTFF(A,B,NBLK,IBLKSZ)
CALL FFTBLK(A,S,INV,NBLK,IBLKSZ)
STOP
                    END
C
                   SUBROUTINE SORTFF(A,B,NBLK,IBLKSZ)

COMPLEX A(1),B(1),H

THIS SUBROUTINE SORTS DATA TO GET READY FOR A FFT.

EVERY NBLK'TH POINT IS SORTED OUT INTO A SEPARATE BLOCK

THEN THE BLOCKS ARE PUT IN BIT INVERTED ORDER.

NOTE MEMORY REQUIRED FOR A COMPLEX ARRAY IS TWICE THAT OF
NOTE MEMORY REQUIRED FOR A COMPLEX ARRAY IS IN ICE THAT OF A REAL ARRAY.

THE INPUT DATA IS IN THE FIRST NBLK BLOCKS OF TAPE4, WHICH IS A RANDOM ACCESS DISK FILE.

THE TOTAL NUMBER OF DISK BLOCKS IS = NBLK+NBLK/8+1

THE DATA IS ALWAYS REWRITTEN IN PLACE

IBLKSZ = NUMBER OF STORAGE LOCATIONS IN A BLOCK

ICOMSZ = IBLKSZ/2 = NUMBER OF COMPLEX POINTS

NBLK = NUMBER OF BLOCKS OF DATA

ICSUBZ = SIZE OF SUBBLOCKS (COMPLEX) WHICH IS ICOMSZ/NBLK

AT THE BEGINNING.

NPASS = NUMBER OF PASSES OVER THE DATA
                     NPASS - NUMBER OF PASSES OVER THE DATA
                   THIS SECTION OF CODE SORTS OUT EVERY NBLK'TH POINT IN A BLOCK AND PUTS THE SUBBLOCKS IN BIT INVERTED ORDER.

I COMSZ = IBLKSZ /2
I CSUBZ = I COMSZ / NBLK
NPASS = LOG2(NBLK)
DO 20 IBLK = 1, NBLK
CALL READMS(4, A, IBLKSZ, IBLK)
DO 10 ISUB = 1, NBLK
IP = ISUB - NBLK
IP = ISUB - NBLK
IB = INVER((ISIB = 1) NPASS ) * ICSIB 7
                    B(IB+I)=A(IP)
CALL WRITMS(4,B,IBLKSZ,IBLK,1)
                    THIS SECTION OF CODE SORTS THE BLOCKS
NSUB = NUMBER OF SUBBLOCKS
NBB = NUMBER OF BLOCKS IN EACH BUTTERFLY
NBUTTE = NUMBER OF BUTTERFLYS
IBU = WHICH BLOCK IN BUTTERFLY
IBUTT = WHICH BUTTERFLY
IBA = BLOCK A
IBB = BLOCK B
NSUB-NBIK
                      NSUB-NELK
                      NBB-1
                     NBB=1
DO 50 IPAS=1,NPASS
NBUTTE=NSUB/2
NBB2=NBB*2
ICSUB2=ICSUBZ*2
DO 40 IBU=1,NBB
IBA=IBU-NBB2
                      DO 40 IBUTT-1, NBUTTE
                      IBA=IBA+NBB2
IBB=IP NBB
                     OPERATL ON BLOCK A AND BLOCK B
CALL READMS(4, A, IBLKSZ, IBA)
CALL READMS(4, B, IBLKSZ, IBB)
  С
```

PERSONAL MANIETEE SESSION MANIETEE BENINGE MANIETEE SESSIONS

```
J=-ICSUB2
DO 30 ISUB=1,NSUB,2
J=J+ICSUB2
                JI=J
                DO 30 I=1,ICSUBZ
JI=JI+1
                JI2=JI+ICSUBZ
              H=A(JI2)
A(JI2)=B(JI)
B(JI)=H
CALL WRITMS(4,A,IBLKSZ,IBA,1)
CALL WRITMS(4,B,IBLKSZ,IBB,1)
30
40
               NBB=NBB2
I CSUBZ=I CSUB2
NSUB=NSUB/2
50
                RETURN
                END
C
č
              FUNCTION INVER(IVER, N)
THIS FUNCTION TAKES "IVER" AND INVERTS THE BITS
N IS THE NUMBER OF BITS IN THE WORD
THE VALUES OF IVER AND N ARE UNCHANGED
THIS FUNCTION WILL NOT WORK FOR NEGATIVE NUMBERS
THIS FUNCTION WORKS ONLY ON A CDC COMPUTER.
CCCCC
                IVE=IVER
                INV=0
               DO 10 I=1,N
INV=OR(SHIFT(INV,1),AND(IVE,1))
IVE=SHIFT(IVE,-1)
10
                INVER-INV
               RETURN
C
               SUBROUTINE FFTBLK(A,S,INV,NBLK,IBLKSZ)
THIS ROUTINE DOES AN FFT OF EACH BLOCK WITH THE USE
CC
              THIS ROUTINE DOES AN FET OF EA
OF HARMID.
DIMENSION A(1),S(1),INV(1)
M=LOG2(IBLKSZ)-1
SET UP SIN AND INV TABLES
CALL HARMID(A,M,INV,S,O,IFERR)
TRANSFORM BLOCKS
C
C
               DO 10 I=1, NBLK
CALL READMS(4, A, IBLKSZ, I)
CALL HARMID(A, M, INV, S, 2, IERR)
CALL WRITMS(4, A, IBLKSZ, I, 1)
CONTINUE
10
                RETURN
                END
               PROGRAM RECFFT(TAPE4, TAPE3=104B)
DIMENSION A(4096), B(4096), S(4096), MASTIX(300)
THIS PROGRAM RECONSTRUCTS THE BLOCKS THAT HAVE BEEN TRANSFORMED
IBLKSZ=4096
C
               REWIND 3
READ(3,500) TYPE, TITLE, N, IREV, AE, STEP, STARTO FORMAT(A1, A7, 218, 3E18.11)
NBLK-N/IBLKSZ
500
               DELTHA=3.14159265359/FLOAT(IBLKSZ)
CALL OPENMS(4,MASTIX,150,0)
DELTHA=DELTHA*2.
CALL RECONS(A,B,S,NBLK,IBLKSZ,DELTHA)
                STOP
                END
C
```

```
SUBROUTINE RECONS(A, B, S, NBLK, IBLKSZ, DELTHA)
COMPLEX A(2), B(2), S(2)
THIS ROUTINE RECONSTRUCTS THE BLOCKS THAT HAVE ALREADY BEEN
                      TRANSFORMED.

SEE SUBROUTINE SORTFF FOR DEFINITIONS OF TERMS.

INPUT IS IN THE FIRST "NBLK" BLOCKS ON TAPE4

BLOCK NBLK+1 MUST CONTAIN A COS-SIN TABLE

NSIN= NUMBER OF TIMES THE COS-SIN TABLE NEEDS TO BE READ.

NBLSIN= NUMBER OF BLOCKS IN THE COS-SIN TABLE WHEN IT IS

FULLY FILLED OUT.

ISIN= WHICH COS-SIN BLOCK TO READ.

ISRE= ISIN-NBLK

ICOMSZ=IBLKSZ/2

NPASS=LOG2(NBLK)

DELT=DELTHA

NBB=1

NBUTTE=NBLK/2

NBLSIN=NBLK/8

IF(NBLSIN.LE.O) NBLSIN=1

DO 50 IPASS=1,NPASS

TAKE CARE OF COS-SIN TABLE

NB4B=NBB/4

NSIN=NB48

IF(NBLBIR-LE-O) NBLSI-1
                         TRANSFORMED
                         NSIN=NB4B
                        IF(NB4B.LE.O) NB4B=1
NOFSIN=NBLSIN/NB4B
NOFSI2=NOFSIN/2
                       NOFSI2=NOFSIN/2
ISIN=NBLK+1-NOFSIN
DO 40 ISRE=1,NSIN
ISIN=ISIN+NOFSIN
CALL READMS(4,S,IBLKSZ,ISIN)
IF(IPASS.EQ.NPASS) GO TO 10
GET TABLE FOR NEXT PASS
DELTHA=DELTHA/2
CALL EXPAN(A,B,S,DELTHA,IBLKSZ)
CALL WRITMS(4,A,IBLKSZ,ISIN,1)
FOR THE FIRST TWO PASSES YOU CAN PUT ALL THE INFORMATION IN
THE COS-SIN TABLE IN ONE BLOCK.
IF(NSIN.NE.NB4B) GO TO 10
ISIN2=ISIN+NOFSI2
  C
                          ISIN2=ISIN+NOFSI2
                        CALL WRITMS(4,B,IBLKSZ,ISIN2)
DETERMINE WHICH BLOCKS TO WORK ON.
THE FOLLOWING SHUFFLE MAKES IT SO ONLY ONE COS-SIN TABLE BLOCK
IS NEEDED TO WORK ON 8 DATA BLOCKS.
                         NBB2=NBB/2
  10
                          IBU-ISRE
                         CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
IF(IPASS.LE.1) GO TO 40
CALL ADDNIN(S,IBLKSZ)
IBU=IBU+NBB2
 20
                        IBU=IBU+NBB2
CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
IF(IPASS.LE.2) GO TO 40
CALL COMPNIN(S,IBLKSZ,DELT)
IBU=NBB2-ISRE+1
CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
CALL ADDNIN(S,IBLKSZ)
IBU=NBB-ISRE+1
CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
CALL HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE)
CONTINUE
 40
                          CONTINUE
                         NBB=NBB*2
DELT=DELT/2
 50
                         NBUTTE=NBUTTE/2
                         RETURN
                          END
· C
                        SUBROUTINE HERFFT(A,B,S,IBLKSZ,ICOMSZ,IBU,NBB,NBUTTE) THIS IS THE HEART OF THE EXTENDED FFT. SEE SORTFF FOR DEFINITION OF TERMS. COMPLEX A(1),B(1),S(1),H,T
```

```
NBB2=NBB*2
IBA=IBU-NBB2
DO 40 IBUTT=1,NBUTTE
IBA=IBA+NBB2
IBB=IBA+NBB
THIS SECTION OF CODE OPERATES ON TWO BLOCKS.
CALL READMS(4,A,IBLKSZ,IBA)
CALL READMS(4,B,IBLKSZ,IBB)
DO 30 I=1,ICOMSZ
H=A(I)
T=B(I)*S(I)
A(I)=H+T
B(I)=H-T
CALL WRITMS(4,A,IBLKSZ,IBA,1)
CALL WRITMS(4,B,IBLKSZ,IBB,1)
RETURN
END
                     NBB2=NBB*2
C
30
40
                     END
C
                    SUBROUTINE EXPAN(A,B,S,DELTHA,IBLKSZ)
DIMENSION A(1),B(1),S(1)
THIS ROUTINE EXPANDES THE SIN-COS TABLE BY A FACTOR OF
TWO BY DOUBLING THE RESOLUTION.
THE EXPANDED TABLE GOES INTO A AND B FROM THE ORIGINAL IN S.
COSD-COS(DELTHA)
SIND-SIN(DELTHA)
DO FIRST HALF
Č
C
                     DO 10 I=1, IBLKSZ, 4
                      J=J+2
                    J=J+2

J2=J+1

COSJ=S(J)

SINJ=S(J2)

A(I)=COSJ

A(I+1)=SINJ

A(I+2)=COSJ*COSD-SINJ*SIND

A(I+3)=COSJ*SIND+SINJ*COSD

CONTINUE

DO SECOND HALF
10
                     DO SECOND HALF
DO 20 I=1, IBLKSZ, 4
                    DO 20 1=1, IBLKSZ, 4

J=J+2

J2=J+1

COSJ=S(J)

SINJ=S(J2)

B(I)=COSJ

B(I+1)=SINJ

B(I+2)=COSJ*COSD-SINJ*SIND

B(I+3)=COSJ*SIND+SINJ*COSD

RETURN

FND
20
C
                    SUBROUTINE ADDNIN(S, IBLKSZ)
DIMENSION S(2)
THIS ROUTINE ADDS 90 DEGREES TO THE ANGLE IN THE COS-SIN BLOCK.
DO 10 I=1, IBLKSZ, 2
I2=I+1
T=S(I)
S(I)=-S(I2)
S(I2)=T
PETURN
C
10
                     ŘĚTŮŔN
END
C
                    SUBROUTINE COMPNIN(S, IBLKSZ, DELTHA)
DIMENSION S(4)
THIS ROUTINE SUBTRACTS 90 FROM THE ANGLE THEN TRANSFORMS THE
COS-SIN TABLE FROM THETA TO 90 MINUS THETA.
IBLKSZ2=IBLKSZ/2
IEND=IBLKSZ2+1
                     J2=IBLKSZ
```

```
DO 10 I=3,IBLKSZ2,2
I2=I+1
J=J2-1
T=S(I)
S(I)=-S(J)
S(J)=-T
T=S(I2)
S(J2)=T
J2=J2-2
S(IEND)=-S(IEND)
FIND COS-SIN FOR THE FIRST POINT (THE ONE NOT IN OLD BLOCK).
COSD=COS(DELTHA)
SIND=SIN(DELTHA)
S(1)=S(3)*COSD+S(4)*SIND
S(2)=S(4)*COSD-S(3)*SIND
ENTURN
END
                     DO 10 I=3, IBLKSZ2,2
10
C
                     END
                     PROGRAM ERECOV(OUTPUT=104B, TAPE3, TAPE4, TAPE6=OUTPUT)
CCCC
                     THIS PROGRAM RECOVERS THE SPECTRUM AFTER THE EVEN TRANSFORM IT SHOULD ONLY BE USED WITH EVEFFT
                   DIMENSION A(4096), B(4096), S(4096), C(2048), SINE(16)
DIMENSION COSINE(16), IB(4096), MASTIX(300)
EQUIVALENCE (S(2049), C(1)), (B(1), IB(1))
IBLKSZ=4096
REWIND 3
READ(3,500) TYPE, TITLE, NUM, IREV, AE, STEP, STARTO
FORMAT(A1, A7, 218, 3E18.11)
NBLK=NUM/IBLKSZ
NBLK=NUM/IBLKSZ
NBLK1=NBLK+1
IFORM=FLOAT(NBLK)/8.+0.9999
NBLK3=NBLK+IFORM+2
CALL OPENMS(4, MASTIX, 150, 0)
CALL READMS(4, S, IBLKSZ, NBLK3)
NPASS=LOG2(NBLK*2)
THETA=3.14159265359/FLOAT(IBLKSZ)
CALL SINGEN(THETA, NPASS, SINE, COSINE)
CALL RCSPEC(A, B, C, S, NPASS, NBLK, IBLKSZ, SINE, COSINE)
500
                    NORMALIZE SPECTRUM AND WRITE IT OUT.

XMAX=-1.0E30
DO 20 IBLK=1,NBLK
CALL READMS(4,A,IBLKSZ,IBLK)
DO 20 I=1,IBLKSZ
IF(A(I).LT.XMAX) GO TO 10
XMAX=A(I)
CONTINUE
10
20
                                           CONTINUE
                                CONTINUE
                    XNORM=1000./XMAX
IF(IREV.NE.0) GO TO 50
DO 40 IBLK=1,NBLK
CALL READMS(4,A,IBLKSZ,IBLK)
DO 30 I=1,IBLKSZ
IB(I)=XNORM*A(I)+.5
CONTINUE
IRLK1-IBLK1
30
                    IBLK1=IBLK+1
WRITE(3,590) (IB(J),J=1,IBLKSZ)
CONTINUE
GO TO 999
40
50
                      WNTINUE
                     DO 70 ICOUNT=1, NBLK
IBLK=NBLK-ICOUNT+1
```

```
CALL READMS(4, A, IBLKSZ, IBLK)
                     IK-IBLKSZ
                    DO 60 I=1, IBLKSZ
IB(I)=XNORM*A(IK)+.5
                    IK=IK-1
CONTINUE
WRITE(3,590) (IB(J),J=1,IBLKSZ)
CONTINUE
60
70
999
590
              CONTINUE
              FORMAT(1615)
             STOP
END
C
              SUBROUTINE RCSPEC(A,B,C,S,NPASS,NBLK,IBLKSZ,SINE,COSINE)
00000000
                    A,B= WORK SPACE
C= SPACE FOR EXPANDED SIN-COS TABLE
SINE, COSINE= ARRAYS OF HALF ANGLE SINES AND COSINES
USED IN THE ANGLE ADDITION EQNS IN EXPSCT
NBLK, IBLKSZ= NO. BLOCKS AND BLOCK SIZE
NPASS= NUMBER OF TIMES S-C TABLE MUST BE EXPANDED BY 2
              DIMENSION A(1),B(1),C(1),S(1),SINE(1),COSINE(1)
NBLK2=NBLK/2
IBLKS2=IBLKSZ/2
         C
                           CALL EXPSCT(S, C, MK, IBLKS)
IC=1
CONTINUE
JP=IBLKSZ-IP+2
SP=(A(IP)+B(JP))/2.
SM=(A(IP)-B(JP))/(2.*C(IC))
A(IP)=SP+SM
B(JP)=SP-SM
IC-IC+2
160
                            IC-IC+2
                    CONTINUE

CALL WRITMS(4,A,IBLKSZ,K1,1)

IF(K1.EQ.NBLK2) GO TO 180

IBLK=K1+1

CALL READMS(4,A,IBLKSZ,IBLK)

GO TO 190

CONTINUE

A(1)=B(1)

CONTINUE

SP=(A(1)+B(1))/(2.*C(IC))

A(1)=SP+SM

B(1)=SP-SM

IC=IC+2

CALL WRITMS(4,B,IBLKSZ,K2,1)

CONTINUE

FURN
170
180
190
200
              RETURN
END
```

```
This is the program that was used to make the spectral line assignments
                  PROGRAM REGFIT(INPUT,OUTPUT,TAPE5=INPUT,TAPE4
2,TAPE6=OUTPUT,TAPE2,TAPE7)
SPECTRAL_LINE_ASSIGNMENT PROGRAM
CC
                     SPECTRAL LINE ASSIGNMENT PROGRAM
MARK P. ESPLIN FTN4
COMMON /PAR/ TYP, LIN, MTAB, NUMT, ID, NBLK, IKIND, JP, JR
COMMON /BAND/ G, B1, D1, H1, B2, D2, H2
COMMON /DIREC/ SWAV(30)
COMMON /DIREC/ SWAV(30)
COMMON /DIRTAB/ IBLK, ILINE, DATAL(16, 300)
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /FITD/ X(300), Y(300), A(7), SIGMAA(7), R(7), JCON(7), JFIT(7)
SCAL(7)
                 2, SCAL(7)
COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
DIMENSION MASTIX(60), BAN(7), BOUT(7), COMKEY(13)
EQUIVALENCE (BAN(1),G)
DATA MTAB, NUMT, ID, NWP, NCOM/300, 4800, 30,6,13/
DATA NWP, NBST, ILIST, RANG, FRAML, FRAMR/6,3,1,0025,.2,.2/
DATA COMKEY/3HSTP, 3HFIT, 3HBAN, 3HCUS, 3HCOP, 3HCBT, 3HCBC
2, 3HWBC, 3HNEX, 3HBNT, 3HGRA, 3HNAM, 3HHLP/
DATA SCAL /1.,1.,1.E-7,1.E-13,1.,1.E-7,1.E-13/
CALL OPENMS(4, MASTIX, 30,0)
CALL READMS(4, SWAV, ID, 1)
NBLK=SWAV(1)
IBLK=2
                  2,SCAL(7)
COMMON
                      IBLK=2
                    ILINE=1
CALL READMS(4,DATAL,NUMT,IBLK)
WRITE(6,110)
FORMAT(* ENTER BAND,C OR D*,/)
READ(5,120) BAND,CORD
FORMAT(A1,A2)
CALL FNDBAN(BAND,CORD)
IF(G.EQ.0) CALL CHGBAN
WRITE(6,100)
FORMAT(* ENTER IKIND,L,JP,JR*,/)
READ(5,*) IKIND,L,JP,JR
CALL SETM(M,IKIND,L,JP,JR,NLBAN)
CALL SETWAY(WAY,M,NLBAN,G)
DO 30 I=1,NLBAN
                      ILINE=1
110
120
100
                    CALL SETWAV(WAV,M,NLBAN,G)
DO 30 I=1,NLBAN
IUSE(I)=0
WRITE(6,200)
FORMAT(/,* .*)
READ(5,201) COMD,COMA
FORMAT(A3,A1)
COMMAND PROCESSOR
DO 50 I=1,NCOM
IF(COMD.EQ.COMKEY(I)) GO TO 60
40
200
201
C
                      CONTINUE
50
                      I=NCOM+1
60
                      GO TO (210,220,230,240,250,260,270,280,20,300,350,400,900
                 2,1000), I
STOP
CALL FIT
GO TO 40
CALL WRTBAN
GO TO 40
CALL CHGUSE
210
220
230
240
                               TO 40
                     CALL CHOUPR
GO TO 40
GO TO 10
250
260
                      CALL CHĞBAN
GO TO 40
CALL WBANPR(NWP, BAND, CORD)
 270
 280
                      GO TO 40
CALL WRTOTL
 300
                      GO TO 40
CALL GRLIN4
 350
```

```
GO TO 40
CALL NAMLIN(BAND, COMA)
GO TO 40
WRITE(6,910) (COMKEY(I), I=1,NCOM)
FORMAT(10(7X,A3))
GO TO 40
WRITE(6,1005)
FORMAT(* ????*)
GO TO 40
END
 400
 900
 910
 1000
 1005
                        SUBROUTINE CHOUPR
CHANGE PROGRAM PARAMETERS
COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
DIMENSION IPAR(6), PAR(6)
EQUIVALENCE(IPAR(1), NWP)
EQUIVALENCE(IPAR, PAR)
WRITE(6,*) (IPAR(I), I=1,3), (PAR(I), I=4,6)
WRITE(6,100)
FORMAT(* NWP, NBST, ILIST, RANG, FRAML, FRAMR*,/)
READ(5,*) I, CORR
IF(I.EQ.0) GO TO 30
IF(I.GE.4) GO TO 20
IPAR(I)=CORR
GO TO 10
PAR(I)=CORR
GO TO 10
WRITE(6,*) (IPAR(I), I=1,3), (PAR(I), I=4,6)
RETURN
END
 C
 C
 100
20
 30
                          END
 C
                         SUBROUTINE FIT
PERFORM A TRIAL LEAST-SQUARES-FIT
COMMON /BAND/ BAN(7)
COMMON /DTATAB/ IBLK, ILINE, DATAL(16, 300)
COMMON /FITD/ X(300), Y(300), A(7), SIGMAA(7), R(7), JCON(7), JFIT(7)
                   COMMON /FITD/ X(300),Y(300),A(7),SIGMAA(7),R(7),JC
2,SCAL(7)
COMMON /BANDAT/ MX(300),WAV(300),IUSE(300),NLBAN
DIMENSION BOUT(7),YFIT(300)
DATA IM,MASK/15B,77B/
CONSTANT TERM NOT INCULDED SINCE IT IS ALWAYS FIT.
MOLECULAR CONSTANTS TO BE FIT MUST BE IN ORDER.
SIGLAS=0
WRITE(6,200)
FORMAT(* ENTER M, NUM*,/)
READ(5,*) M,NUM
WRITE(6,210)
FORMAT(* ENTER PARS OF FIT*,/)
READ(5,*) (JFIT(1), I=1, M)
FIND WHICH MOLECULAR CONSTANTS AREN'T TO BE FIT
JJ=1
30
200
210
C
                          JJ=1
                         J=1
DO 40 I=2.7
IF(JFIT(J).EQ.I) GO TO 37
JCON(JJ)=I
JJ=JJ+1
                          GO TO 40
                          J=J+1
37
                          WALTIMUE
                         N CON=6-M
IF(NUM.EQ.-1) CALL CHGBAN
SET UP FOR FIT
C
45
                          J=0
                         DO 50 I=1,NLBAN
CALL FINUSE(I,IUSF,WN)
IF(IUSF.EQ.O) GO TO 50
J=J+1
                          X(J) = MX(I)
```

```
Y(J) = WN - WAVN(X, J, NCON, JCON)
                   I(J)=WN-WAVN(X,J,NCON,JCON)
CONTINUE
NPTS=J
CALL REGRES(X,Y,SIGMAY,NPTS,M,JFIT,O,YFIT,AO,A,SIGMAO
2,SIGMAA,R,RMUL,CHISQR,FTEST)
BAN(1)=AO
DO 60 IF-1,M
I=M-IF+1
L-JETT(1)
50
                     I=M-IF+1
J=JFIT(I)
BAN(J)=A(I)
SIGMAA(J)=SIGMAA(I)/SCAL(J)
R(J)=R(I)
DO 65 I=1.7
BOUT(I)=BAN(I)/SCAL(I)
IF(NCON.EQ.0) GO TO 75
DO 70 I=1,NCON
J=JCON(I)
SIGMAA(J)=0.
R(J)=0.
60
65
                     SIGMAA(J)=0.
R(J)=0.
SIG=SQRT(CHISQR)
WRITE(6,215) SIG, RMUL, NPTS
FORMAT(2F12.8, I10)
FORMAT(3F12.6)
WRITE(6,220) BAN(1), SIGMAO
FORMAT(6F12.8)
WRITE(6,230) (BOUT(I), I=2,7)
WRITE(6,230) (SIGMAA(I), I=2,7)
WRITE(6,230) (R(I), I=2,7)
CALL SETWAV(WAV, MX, NLBAN, BAN)
DO 80 I=1, NLBAN
IF(IUSE(I).GT.0) IUSE(I)=0
CONTINUE
IF(SIG.EQ.SIGLAS) RETURN
NUM=NUM-1
IF(NUM.LE.0) RETURN
70
75
215
220
230
80
                       IF(NUM.LE.O) RETURN
SIGLAS=SIG
                       GO TO 45
                       END
 C
                       SUBROUTINE CHGBAN
CHANGE MOLECULAR CONSTANTS BY HAND.
COMMON /BAND/ BAN(7)
COMMON /FITD/ X(635), SCAL(7)
DIMENSION BOUT(7), JFIT(7)
 C
                     DIMENSION BOUT(7),JFIT(7)
DO 10 I=1,7
BOUT(1)=BAN(1)/SCAL(1)
WRITE(6,100) (BOUT(1),I=1,7)
FORMAT(F10.4,/.6F12.8)
WRITE(6,110)
FORMAT(* CHANGE BAND CONSTANTS*,/)
READ(5,*) I,CON
IF(I.LE.0) GO TO 30
IF(I.GT.7) GO TO 30
BOUT(1)=CON
BAN(1)=SCAL(1)*CON
GO TO 20
10
 100
 110
 20
                       WRITE(6,100) (BOUT(I),I=1,7)
RETURN
 30
                       END
 00000
                       SUBROUTINE WBANPR(NWP.BAND,CORD)
THIS ROUTINE WRITES MOLECULAR CONSTANTS ABOUT A BAND.
COMMON /BAND/ BAN(7)
 С
```

```
COMMON /FITD/ X(621), JCON(7), JFIT(7), SCAL(7)
COMMON /PAR/ TYP, LIN, MTAB, NUMT, ID, NBLK, IKIND, JP, JR
DIMENSION BOUT(7)
EQUIVALENCE (BOUT, JCON)
                        REWIND 2
READ(2,900) UP, TYP, XLOW, TYP, ISOTOP, GV1, GV2, STR, ZETA, BKEY
IF(EOF(2).NE.0) GO TO 20
READ(2,910) (BOUT(1), I=2,7)
IF(BKEY.NE.BAND) GO TO 10
IF(CORD.NE.TYP) GO TO 10
 10
                    IF(CORD.NE.TYP) GO TO 10
GO TO 25
WRITE(6,100)
FORMAT(* ENTER UP XLOW TYP*,/)
READ(5,110) UP, XLOW, TYP
FORMAT(2A10,A2)
WRITE(6,120)
FORMAT(* ENTER GV1, ISOTOP, STR, ZETA*,/)
READ(5,*) GV1, ISOTOP, STR, ZETA
DO 30 1=2,7
BOUT(1)=BAN(1)/SCAL(1)
GV2=GV1+BAN(1)
WRITE(NWP,900) UP, TYP, XLOW, TYP, ISOTOP, GV1, GV2, STR, ZETA, BAND
2, IKIND, JP, JR
WRITE(NWP,910) (BOUT(1), I=2,7)
FORMAT(2(A10,A2), I4, ZF10.4, F14.5, F6.3, 1X, A1, 315)
FORMAT(6F12.8)
RETURN
 20
 100
110
 120
25
30
900
                         RETURN
                       SUBROUTINE WRTBAN
WRITE A TABLE OF EXPERIMENTAL LINE PROPERTIES
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /DATALIN/POS(50), BANID(50), STR(50), Y0(50), YHIGHT(50)
2, XL(50), XR(50), HW(50), OFF(50), OMCA(50), IBES(20)
COMMON /DTATAB/ IBLK, ILINE, DATAL(16, 300)
COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
DATA IAST/ 47B/
WRITE(6, 130)
FORMAT(* ENTER RANGE*,/)
READ(5, 140) BST, JST, BSP, JSP
FORMAT(A1, I3, 1X, A1, I3)
CALL MFIND(MST, IFST, BST, JST)
CALL MFIND(MSTP, IFSP, BSP, JSP)
IF((IFST+IFSP), NE.0) GO TO 5
SUMSQ=0
 C
5
130
140
                        SUM=0
SUMSQ=0
IU=0
DO 40 I=1,NLBAN
IUSL=55B
CALL FINUSE(I,IUSF,WN)
IF((IUSF.EQ.0).AND.(ILIST.EQ.0)) GO TO 40
IF(M(I).GT.0) GO TO 10
J=-M(I)
                         TYP="P"
GO TO 20
J=M(I)-1
TYP="R"
10
                        IFE"R"

IF(WN.GT.O) GO TO 30

WRITE(NWP,100) WAV(I),TYP,J

GO TO 40

FORMAT(F10.4,1X,A1,I3,* NOT FOUND*)

OMC=WN-WAV(I)

IF(IUSF.EQ.O) GO TO 35
20
100
30
                         IUSL-IAST
IU-IU+1
                         SUM-SUM+OMC
                         SUMSQ=SUMSQ+OMC*OMC
HIGT=AMAX1(DATAL(7,ILINE),DATAL(10,ILINE))-DATAL(8,ILINE)
```

```
IF(M(I).LT.MST) GO TO 40
IF(M(I).GT.MSTP) GO TO 40
IF(IUSE(I).GE.1) GO TO 37
WRITE(NWP,110) WN, TYP, J, IUSL, DATAL(2, ILINE), OMC, DATAL(5, ILINE)
2, DATAL(8, ILINE), HIGT, DATAL(11, ILINE), DATAL(12, ILINE)
GO TO 40
II=IBES(IUSE(I))
WRITE(NWP,110) POS(II), TYP, J, IAST, BANID(II), OMCA(II), STR(II)
2, YO(II), YHIGHT(II), HW(II), OFF(II)
FORMAT(F10.4,1X,A1,I3,1X,R1,A10,6F10.4)
CONTINUE
37
110
40
                           CONTINUE
                         SIG=SQRT((SUMSQ-IU*AV*AV)/(IU-1))
WRITE(NWP,120) IU,AV,SIG
FORMAT(//,* N=*,I5,* AV=*,F8.4,* SIG=*,F8.4,//)
120
                           RETURN
                          END
                         SUBROUTINE MFIND(M, IFOUND, BRANCH, J)
THIS ROUTINE CALCULATES AN M VALUES
IF IFOUND = 1 BRANCH NAME NOT VALID
                                                                                                                                                                                  FROM A BRANCH AND J NUMBER.
                          DATA RB, PB/1HR, 1HP/
IFOUND=0
                           IF(BRANCH.NE.PB) GO TO 20
                               BRANCH
                         RETURN
IF (BRANCH.NE.RB) GO TO 30
R BRANCH
20
                         M=J+1
RETURN
IFOUND=1
                           RETURN
                       SUBROUTINE BESTLN(ILIN, NBSTL)
THIS ROUTINE FINDS AND SORTS INTO ORDER THE "NBST" LINES CLOSEST
TO THE CALCULATED LINE POSITION IN EACH FRAME.
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /DATALIN/ POS(50), X(400), OMC(50), IBES(20)
COMMON /OUTST/ NWP, NBST ILIST, RANG, FRAML, FRAMR
CALL LINFRM4(WAV(ILIN)-FRAML, WAV(ILIN)+FRAMR, NLIN)
NBSTL=MINO(NBST, NLIN)
IF(NBSTL.EQ.0) RETURN
DO 10 I=1, NLIN
OMC(I)=POS(I)-WAV(ILIN)
THIS STRANGE SORTING ALGORITHM IS USED SINCE THE ANTICIPATED
NUMBER OF PASSES IS VERY LOW.
DO 30 IPAS=1, NBSTL
OMCB=10000.
DO 20 I=1, NLIN
IF(ABS(OMC(I)).GE.OMCB) GO TO 20
OMCB=ABS(OMC(I))
IBES(IPAS)=I
CONTINUE
SO IT WON'T FIND THE SAME ONE AGAIN
OMC(IBES(IPAS))=20000.
RESTORE RIGHT OMC VALUE
DO 40 I=1, NBSTL
OMC(IBES(I))=POS(IBES(I))-WAV(ILIN)
RETURN
END
 C
 30
C
40
 C
                           SUBROUTINE LINFRM4(START, STOP, NLIN)
THIS ROUTINE FINDS ALL THE LINES IN A FRAME.
"NLIN" IS THE NUMBER OF LINES FOUND.
BLOCK "IBLK" MUST HAVE BEEN READ IN PREVIOUSLY.
COMMON /DATALIN/ POS(50), BANID(50), STR(50), YO(50), YHIGT(50)
```

なるのではなるのなどのできませんがあるというできません。

```
2,XL(50),XR(50),HW(50),OFF(50),OMC(50),IBES(20)
COMMON /DIREC/ SWAV(30)
COMMON /DIATAB/ IBLK,ILINE,DATAL(16,300)
COMMON /PAR/ TYP,LIN,MTAB,NUMT,ID,NBLK
DETERMINE WHICH BLOCK "START" IS IN
IBLKL-IBLK
                 IBLKL=IBLK
NLIN=0
IF(IBLK.GE.NBLK) GO TO 20
IF(SWAV(IBLK+1).GT.START) GO TO 20
IBLK=IBLK+1
GO TO 10
IF(SWAV(IBLK).LE.START) GO TO 25
IBLK=IBLK-1
IF(IRLK GE. 2) GO TO 20
10
20
                  IF(IBLK.GE.2) GO TO 20
NOT IN FILE
C
                  RETURN
                  FIND "START" IN BLOCK
IF(IBLK.EQ.IBLKL) GO TO 30
CALL READMS(4,DATAL,NUMT,IBLK)
ILINE=1
25
                   IF(START.LT.DATAL(6,ILINE)) ILINE-1
IF(START.LE.DATAL(9,ILINE)) GO TO 60
                   ILINE=ILINE+
                   IF(ILINE.LE.MTAB) GO TO 40 ILINE=1
                   IF(IBLK.EQ.NBLK) RETURN
                   IBLK-IBLK+1
                  CALL READMS(4, DATAL, NUMT, IBLK)
IF(STOP.LT.DATAL(6, ILINE)) RETURN
IF(DATAL(1, ILINE).NE.0) GO TO 70
60
                   ILINE=1
                 RETURN
LINE FOUND
NLIN=NLIN+1
IF(NLIN.GT.50) GO TO 90
POS(NLIN)=DATAL(1, ILINE)
XL(NLIN)=DATAL(6, ILINE)
XR(NLIN)=DATAL(9, ILINE)
HW(NLIN)=DATAL(11, ILINE)
OFF(NLIN)=DATAL(12, ILINE)
BANID(NLIN)=DATAL(2, ILINE)
STR(NLIN)=DATAL(5, ILINE)
YO(NLIN)=DATAL(8, ILINE)
YO(NLIN)=DATAL(8, ILINE)
YHIGT(NLIN)=AMAX1(DATAL(7, ILINE), DATAL(10, ILINE))-YO(NLIN)
ILINE=ILINE+1
                   RETURN
C
70
                   ILINE-ILINÉ+1
IF(ILINE.LE.MTAB) GO TO 60
ILINE-1
                   IF(IBLK.EQ.NBLK) RETURN IBLK-IBLK+1
                   CALL READMS(4, DATAL, NUMT, IBLK)
GO TO 60
WRITE(6,900)
FORMAT(* MORE THAN 50 LINES IN ONE FRAME*)
 90
 900
                   STOP
END
 C
                   SUBROUTINE FINUSE(ILIN, IUSF, WN)
THIS ROUTINE IS USED TO FIND THE LINES WHICH ARE
TO BE USED IN THE FIT.
COMMON/BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
COMMON /OATALIN/ POS(50), X(450), IBES(20)
IUSE+0
                   WN-POSL(WAV(ILIN),O)
DON'T USE NO MATTER WHAT
IF(IUSE(ILIN).LT.O) RETURN
USE IF IN RANGE
 C
 C
```

```
IF(ABS(WN-WAV(ILIN)).GT.RANG) RETURN IUSF-1
                       RETURN
                      USE ONE OF THE OTHER CHOICES CALL BESTLN(ILIN)
WN-POS(IBES(IUSE(ILIN)))
C
20
                       IUSF=1
                       RETURN
                      END
 C
                      SUBROUTINE CHGUSE
                     SUBROUTINE CHGUSE
THIS ROUTINE ALLOWS THE OPERATOR TO CHANGE WHICH LINES WILL
BE USED IN THE FIT.
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
DATA IR, IP/22B, 20B/
WRITE(6,100)
FORMAT(* CHANGE USAGE*,/)
READ(5,110) ITYP, J, IWHT
FORMAT(R1, I3, I2)
IF(ITYP, NE. IP) GO TO 20
P. BRANCH
100
110
C
                           BRANCH
                      MR=-J
GO TO 30
IF(ITYP.NE.IR) RETURN
20
C
                       R BRANCH
                      MR=J+1
                     II-IBINSC(M,NLBAN,MR)
IF(II.NE.O) GO TO 40
WRITE(6,120) MR
FORMAT(* M=*,16,* NOT FOUND*,/)
GO TO 10
IUSE(II)=IWHT
30
120
40
                      GO TO 10
END
 C
                 SUBROUTINE WRITOTL
THIS ROUTINE WRITES INFORMATION FOR THE "NBSTL" CLOSEST LINES TO EACH CALCULATED LINE POSITION.

COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /DATALIN/ POS(50), BANID(50), STR(50), YO(50), YHIGT(50)

2, XL(50), XR(50), HW(50), OFF(50), OMC(50), IBES(20)

DATA ASTR, BLANK /1H*, 1H /
WRITE(6,900)
FORMAT(* ENTER RANGE*,/)
READ(5,910) BST, JST, BSP, JSP
FORMAT(A1,13,1X,A1,13)

CALL MFIND(MST, IFST, BST, JST)
CALL MFIND(MSTP, IFSP, BSP, JSP)
IF((IFST+IFSP).NE.0) GO TO 5
IST=IBINSC(M, NLBAN, MST)
ISP=IBINSC(M, NLBAN, MSTP)
IF((IST.EQ.0).OR.(ISP.EQ.0)) GO TO 5
DO 70 I=IST, ISP
IF(M(1).GT.0) GO TO 10

J=-M(1)
TYP="P"
GO TO 20
L=M(1)-1
                      SUBROUTINE WRTOTL
900
910
                       GO TO 20
J=M(I)-1
TYP="R"
 10
                      WRITE(NWP,920) TYP,J
FORMAT(1X,A1,13)
CALL BESTLN(1,NBSTL)
IF(NBSTL.EQ.0) GO TO 70
 920
                      IPICK=0
IF(IUSE(I)) 50,30,40
IUSE(I)=0 USE FIRST CHOICE IF IN RANGE
IF(ABS(OMC(IBES(1))).LE.RANG) IPICK=1
C
30
```

```
GO TO 50
IUSE(I)= 1, 2, ... SET "IPICK" TO THAT ONE
IPICK=IUSE(I)
DO 60 IP=1,NBSTL
PICK=BLANK
IF(IP.EQ.IPICK) PICK=ASTR
WRITE(NWP,930) PICK,POS(IBES(IP)),BANID(IBES(IP)),OMC(IBES(IP))
2,STR(IBES(IP)),YO(IBES(IP)),YHIGT(IBES(IP)),HW(IBES(IP))
3,OFF(IBES(IP))
FORMAT(5X,A1,1X,F10.4,A10,6F10.4)
CONTINUE
RETURN
40
50
60
930
70
                             RETURN
                             END
                     SUBROUTINE GRLIN4
THIS ROUTINE MAKES AN EXTENDED INFORMATION LOOMIS-WOOD DIAGRAM.
COMMON /OUTST/ NWP, NBST, ILIST, RANG, FRAML, FRAMR
COMMON /BANDAT/ M(300), WAV(300), IUSE(300), NLBAN
COMMON /DATALIN/ POS(50), BANID(50), STR(50), YO(50), YHIGT(50)

2, XL(50), XR(50), HW(50), OFF(50), OMC(50), IBES(20)

DIMENSION GRA(100)

DATA BLANK, IBLAN, ASTR, XMERG, L/55B, 55B, 47B, 15B, 100/
SCAL=(L-1)/(FRAMR+FRAML)
WRITE(6,900)
FORMAT(* ENTER RANGE*,/)
READ(5,910) BST, JST, BSP, JSP
FORMAT(A1, I3, 1X, A1, I3)
CALL MFIND(MST, IFST, BST, JST)
CALL MFIND(MST, IFST, BST, JST)
IF((IFST+IFSP).NE.0) RETURN
IST=IBINSC(M, NLBAN, MST)
ISP=IBINSC(M, NLBAN, MSTP)
IF((IST.EQ.0).OR.(ISP.EQ.0)) GO TO 5
DO 100 ILIN=IST, ISP

J=1
 C
 C
900
910
                             J=1
IF(M(ILIN).GT.0) GO TO 10
                             LIN=-M(ILIN)
TYP="P"
                            GO TO 20
LIN=M(ILIN)-1
10
                             TYP="R"
                           TYP="R"
START=WAV(ILIN)-FRAML
CALL LINFRM4(START, WAV(ILIN)+FRAMR, NLIN)
IF(NLIN.LE.O) GO TO 80
DECIDE WHICH SYMBOL TO USE
DO 40 IL=1,NLIN
ITMP=AND(77B, BANID(IL))
IF(ITMP.NE.IBLAN) GO TO 30
LINE NOT IDENTIFIED
BANID(IL)=ASTR
GO TO 40
ITST=AND(77B, SHIFT(BANID(IL),-6))
IF(ITST.NE.IBLAN) BANID(IL)=XMERG
CONTINUE
SET "GRA" ARRAY
20
 C
 C
 30
 40
                           CONTINUE
SET "GRA" ARRAY
DO 70 IL=1,NLIN
TPOS=POS(IL)
SL=TPOS-HW(IL)
IF(SL.LT.XL(IL)) SL=XL(IL)
ISL=(SL-START)*SCAL+1.5
STL=TPOS+HW(IL)
IF(STI. GT YR(IL)) STI=Y
                                                                                                            SL=XL(IL)
                              IF(STL.GT.XR(IL)) STL=XR(
ISTL=(STL-START)*SCAL+1.5
                                                                                                                  STL=XR(IL)
                            BLANK BEFORE
IF(ISL.LE.J) GO TO 60
GRA(J)-BLANK
50
                             J=J+1
GO TO 50
```

```
IF(ISTL.LT.J) GO TO 70
IF(J.GT.L) GO TO 90
GRA(J)=BANID(IL)
J=J+1
GO TO 60
CONTINUE
IF(J.GT.L) GO TO 90
GRA(J)=BLANK
J=J+1
60
70
80
                   J=J+1
                  GO TO 80
WRITE(NWP,920) WAV(ILIN), TYP, LIN, (GRA(I), I=1, L)
FORMAT(F10.4, 1X, A1, I3, 100R1)
90
920
100
                  RETURN
END
C
                  FUNCTION WAVNUM(M)
CALCULATE A LINE POSITION GIVEN THE MOLECULAR CONSTANTS.
COMMON /BAND/ G,B1,D1,H1,B2,D2,H2
MP=M*(M+1)
MM=M*(M-1)
C
                   WAVNUM=G+MP*(B1-MP*(D1-MP*H1))-MM*(B2-MM*(D2-MM*H2))
                  RETURN
                  END
C
                  FUNCTION POSL(WN, IW)
THIS ROUTINE FINDS LINE "WN" ON RANDOM ACCESS DISK FILE TAPE4.

IF IW = 1 IT WILL WRITE OLD BLOCK OF DATA BACK OUT BEFORE
CCCCC
                  IF IW = 1 IT WILL WRITE OLD BLOCK OF DATA BACK (
IT READS A NEW ONE.
IF "POSL" = 0 LINE WAS NOT FOUND
NOTE THIS FUNCTION ALSO SETS "ILINE" AND "IBLK"
COMMON/DIREC/ SWAV(30)
COMMON /DTATAB/ IBLK, ILINE, DATAL(16, 300)
COMMON /PAR/ TYP, LIN, MTAB, NUMT, ID, NBLK
DETERMINE WHICH BLOCK "WN" IS IN
                DETERMINE WHICH BLOCK "WN" IS IN
IBLKL=IBLK
IF(IBLK.GE.NBLK) GO TO 20
IF(SWAV(IBLK+1).GT.WN) GO TO 20
IBLK=IBLK+1
GO TO 10
IF(SWAV(IBLK).LE.WN) GO TO 25
IBLK=IBLK-1
IF(IBLK.GE.2) GO TO 20
IBLK=IBLKL
GO TO 50
FIND WHICH POINT
IF(IBLK.EQ.IBLKL) GO TO 27
IF(IW.EQ.1) CALL WRITMS(4, DATAL, NUMT, IBLKL, 1)
CALL READMS(4, DATAL, NUMT, IBLK)
ILINE=1
C
10
20
25
                  ILINE=1
IF(WN.LE.DATAL(6,ILINE)) ILINE=1
IF(WN.LE.DATAL(9,ILINE)) GO TO 40
ILINE=ILINE+1
IF(ILINE.LE.MTAB) GO TO 30
ILINE=1
GO TO 50
IF(WN.GE.DATAL(6,ILINE)) GO TO 60
LINE NOT FOUND
POSL=0
30
40
                  POSL-O
RETURN
50
                  LINE FOUND
POSL=DATAL(1,ILINE)
RETURN
60
                   END
                  FUNCTION FCTN(X,I,J,JVAR)
DIMENSION X(1),JVAR(1)
THIS FUNCTION DETERMINES COEFFICIENTS OF FITTING PARAMETERS.
C
```

```
THIS ISN'T A VERY EFFICIENT WAY TO DO THINGS SINCE X*(X+1) AND X*(X-1) ARE CALCULTED EACH TIME, BUT IT FITS IN WITH REGRES EASIER.

ORDER OF TERMS 1 G, 2 BU, 3 DU, 4 HU, 5BL, 6 DL, 7 HU
GO TO (1,2,3,4,5,6,7), JVAR(J)
NOTE, REGRES NEVER USES CONSTANT TERM.
FCTN=1
RETURN
FCTN=X(I)*(X(I)+1)
CCCC
ĭ
2
               FCTN=X(I)*(X(I)+1)
               RETURN
              FCTN=-(X(I)*(X(I)+1))**2
RETURN
3
4
               FCTN=(X(I)*(X(I)+1))**3
               RETURN
5
               FCTN=-X(I)*(X(I)-1)
               RETURN
6
               FCTN=(X(I)*(X(I)-1))**2
               RETURN
              FCTN=-(X(I)*(X(I)-1))**3
RETURN
7
              END
C
              FUNCTION WAVN(X,I,M,JCON)
COMMON /BAND/ BAN(7)
DIMENSION JCON(1),X(1)
THIS ROUTINE CALCULATES THE WAVENUMBER POSITIONS OF A SPECTRAL
LINE WITH THE CONSTANTS GIVEN BY ARRAY "JCON."
THERE ARE "M" CONSTANTS
TERM-O
               TERM=0
               IF(M.EQ.0) GO TO 20
              DO 10 J=1,M
TERM=FCTN(X,I,J,JCON)*BAN(JCON(J))+TERM
WAVN=TERM
10
20
               RETURN
              END
C
              SUBROUTINE SETM(M, IKIND, L, JP, JR, N)
THIS ROUTINE SETS ALL THE M VALUES IN A BAND.
M=-J FOR THE P BRANCH, AND M=J+1 FOR THE R BRANCH.
IKIND=1 EVEN LINES ONLY, IKIND=2 ODD ONLY, IKIND=3 ALL LINES.
THE TOTAL NUMBER OF LINES IS RETURNED IN N.
               DIMENSION M(1)
               NL=-L
              NL=-L

MAX=JR+1

IF(IKIND-2) 10,20,30

MSTEP=2

MIN=-(JP/2)*2

MR=((L+1)/2)*2+1

GO TO 40

MSTEP=2

MIN=-((JP-1)/2)*2-1

MR=(L/2)*2+2

GO TO 40

MSTEP=1

MIN=-JP
10
20
30
              MIN=-JP
MR=L+1
40
               MT-MIN
               P BRANCH
50
               I=I+1
              M(I)=MT
MT=MT+MSTEP
IF(MT.LT.NL) GO TO 50
C
               R BRANCH
              MT=MR
I=I+1
M(I)=MT
60
               MT=MT+MSTEP
```

```
IF(MT.LE.MAX) GO TO 60
N=I
RETURN
                 END
             SUBROUTINE SETWAV(WAV,M,N,BAND)
THIS ROUTINE SETS THE WAVENUMBER POSITIONS IN "WAV" USING M VALUES IN "M".
BAND(1)=G, BAND(2)=BU, BAND(3)=DU, BAND(4)=HU
BAND(5)=BL, BAND(6)=DL, BAND(7)=HL.
DIMENSION WAV(1),M(1),BAND(7)
DO 10 I=1,N
MP=M(I)*(M(I)+1)
MM=M(I)*(M(I)+1)
MM=M(I)*(M(I)-1)
WAV(I)=BAND(1)+MP*(BAND(2)-MP*(BAND(3)-MP*BAND(4)))
2-MM*(BAND(5)-MM*(BAND(6)-MM*BAND(7)))
RETURN
10
                 RETURN
                 END
C
                 SUBROUTINE FNDBAN(BAND, CORD)
THIS ROUTINE FINDS A BAND ON TAPE2 AND LOADS THE MOLECULAR
                 CONSTANTS
                 COMMON /BAND/ BAN(7)
COMMON /FITD/ X(635),SCAL(7)
               COMMON /FITD/ X(635), SCAL(7)
REWIND 2
READ(2,900) UP, TYP, XLOW, TYP, RSOTOP, GV1, GV2, BKEY
IF(EOF(2).NE.O) GO TO 30
FORMAT(2(A10,A2),A4,2F10.4,21X,A1)
READ(2,910) (BAN(I),I=2,7)
FORMAT(6F12.8)
IF(BKEY.NE.BAND) GO TO 10
IF(CORD.NE.TYP) GO TO 10
BAN(1)=GV2-GV1
DO 20 I=3,7
BAN(I)=BAN(I)*SCAL(I)
RETURN
WRITE(6,100)
10
900
910
20
                WRITE(6,100)
FORMAT(* NOT FOUND*)
DO 40 I=1,7
BAN(I)=0
RETURN
100
40
               C
C
C
10
20
                 CONTINUE
```

```
GO TO 80
                GO TO 80
NAME
DO 70 IL=1,NLBAN
WN=POSL(WAV(IL),1)
IF(WN.EQ.O) GO TO 40
DATAL(2,ILINE)=OR(AND(SHIFT(DATAL(2,ILINE),6),MASK(60-6)),IBNR)
GO TO 70
LIST OUT UNFOUND LINES
DECIDE P OR R BRANCH
IF(M(IL):GT.O) GO TO 50
J=-M(IL)
TYP="P"
30
Č
40
                TYP="P"
GO TO 60
J=M(IL)-1
TYP="R"
WRITE(NWP,900) WAV(IL),TYP,J
FORMAT(F10.4,1X,A1,I3,* NOT FOUND*)
CONTINUE
                 TYP= "P"
50
60
900
70
80
                 CALL WRITMS(4, DATAL, NUMT, IBLK, 1)
RETURN
END
C
              SUBROUTINE REGRES(X,Y,SIGMAY,NPTS,NTERMS,M,MODE,YFIT, + AO,A,SIGMAO,SIGMAA,R,RMUL,CHISQR,FTEST)
THIS SUBROUTINE IS FROM BEVINGTON.
                                            (see reference 46)
C
                FUNCTION IBINSC(IA,N,ITAR)
THIS ROUTINE DOES A BINARY TREE SEARCH.
THE NUMBER OF COMPARISONS NEEDED IS LOG2(N) PLUS A COUPLE
FOR ROUND OFF.
THE ARRAY TO BE SEARCHED IS "IA". THE TARGET OF THE SEARCH
IS "ITAR".
THE POSITION OF THE TARGET IS RETURNED AS THE FUNCTION VALUES.
"IBINSC" = 0 MEANS NOT FOUND.
DIMENSION IA(1)
DATA MAYZER/5/
                 DATA MAXZER/S/
                 NZ=0
                  STEP=N/2.0
                 STEP-STEP
SET NEXT STEP
STEP-STEP/2
IF(STEP.GT.1.) GO TO 20
10
                 IF(SIER.GI.1.) GO TO 20
STEP=1.
NZ=NZ+1
IF(NZ.LE.MAXZER) GO TO 20
NOT FOUND
IBINSC=0
C
                 RETURN

J=RJ+.5

IF(ITAR-IA(J)) 30,50,40

RJ=RJ-STEP

GO TO 10

RJ=RJ+STEP

GO TO 10

IBINSC=J

RETURN
20
30
40
50
                  RETURN
                  END
```

THE STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE P

SPECIAL RECOLERAND RESERVE