Topics in Machine Learning Midterm 2

2017-04-11

- Convex optimization: minimize $f_0(x)$ subject to $f_i(x) \leq 0$ and $h_i(x) = 0$
 - \circ f_0 is the **objective function** and *convex*. The problem is *quasiconvex* if f_0 is *quasiconvex*.
 - \circ f_i are inequality constraint functions and *convex*.
 - \circ h_i are equality constraint functions and affine.
- x is a feasible point if $x \in D = f_0 \cap (\bigcap_i f_i) \cap (\bigcap_i h_i)$.
- The optimization problem is said to be **feasible** if there exists at least one feasible point \boldsymbol{x} , and **infeasible** otherwise, i.e. $\boldsymbol{D} = \emptyset$.
- Optimal value p^* : $p^* = \infty$ if the problem is *infeasible*. $p^* = -\infty$ if the problem is *unbounded below*.
- x^* is optimal if $f_0(x^*) = p^*$.
- x is **locally optimal** if $\exists R > 0$ such that $f_0(z) \ge f_0(x)$ for all feasible z satisfying $||z x||_2 \le R$, i.e. x is optimal within that 12-norm ball of radius R.
- If there exists an optimum x^* , then the optimal value is *attained* or *achieved*, and the problem is solvable. If the **optimal set** (the set of optimum) is empty, then the optimal value is not attained or not achieved.
- Examples of optimal and locally optimal points:
 - $f_0(x) = 1/x$: $p^* = 0$ but not achievable.
 - $f_0(x) = -\log(x)$: $p^* = -\infty$, i.e. unbounded below.
 - $f_0(x) = x \log(x)$: $p^* = -1/e$ is achieved at x = 1/e.
 - $f_0(x) = x^3 3x$: $p^* = -\infty$, i.e. unbounded below, but a local optimum at x = 1.
- Implicit v.s. explicit constraint: a problem is unconstrained if it has no explicit constraints.
- Feasibility problem:
 - Find a point that satisfies all of the constraints.
 - A special case of convex optimization, where $f_0(x) = 0$.
 - $p^* = 0$ if constraints are *feasible*; any feasible x is optimal.
 - $p^* = \infty$ if constraints are *infeasible*.
- Any locally optimal point of a convex problem is (*globally*) optimal!
 - Proof by contradiction: suppose x is locally optimal, but there exists a feasible y with $f_0(y) < f_0(x)$...

- Optimality condition for differentiable f_0 : x is optimal iff
 - $\circ \
 abla f_0(x)^{\mathrm{T}}(y-x) \geq 0$ for all feasible y
 - Unconstrained problem: $\nabla f_0(x) = 0$
 - \circ Equality constrained problem (subject to Ax=b): there exists a ν such that $\nabla f_0(x) + A^{\mathrm{T}}\nu = 0$, i.e. $\nabla f_0(x)$ is the *row space* of A, or the *column space* of A^{T}
 - Minimization over nonnegative orthant, i.e. subject to $x\succeq 0$: $\nabla f_0(x)_i\geq 0$ if $x_i=0$, or $\nabla f_0(x)_i=0$ if $x_i>0$.
- Equivalent convex problems:
 - Eliminating equality constraints
 - Introducing equality constraints
 - Introducing slack variables for linear inequalities
 - Epigraph form
 - Minimizing over some variables

2017-04-18

- Linear program (LP): minimize $c^{\mathrm{T}}x+d$ subject to $Fx \preceq g$ and Ax=b
 - *Affine* objective + *Affine* constraints, i.e. feasible set is a polyhedron.
 - \circ Diet problem: minimize $c^{\mathrm{T}}x$ subject to $Ax\succeq b$ and $x\succeq 0$
 - \circ Piecewise-linear minimization: minimize t subject to $a_i^{\mathrm{T}}x+b_i\leq t$, where $i=1,\ldots,m$
 - \circ Chebyshev center of a polyhedron: maximize r subject to $a_i^{
 m T}x_c+r\|a_i\|_2\leq b_i$, where $i=1,\ldots,m$
- Quadratic program (QP): minimize $\frac{1}{2}x^{\mathrm{T}}Px+q^{\mathrm{T}}x+r$ subject to $Gx\preceq h$ and Ax=b
 - *Quadratic* objective + *Affine* constraints, i.e. feasible set is a polyhedron.
 - Least-squares: minimize $||Ax b||_2^2$
 - \circ Linear program with random cost: minimize $\mathbf{E}(c^{\mathrm{T}}x) + \gamma \mathrm{var}(c^{\mathrm{T}}x)$ subject to $Gx \preceq h$ and Ax = b
- Quadratically constrained quadratic program (QCQP): minimize $\frac{1}{2}x^{\mathrm{T}}P_0x+q_0^{\mathrm{T}}x+r_0$ subject to $\frac{1}{2}x^{\mathrm{T}}P_ix+q_i^{\mathrm{T}}x+r_i\leq 0$ and Ax=b, where $i=1,\ldots,m$
 - *Quadratic* objective + *Quadratic* inequality constraints + *Affine* equality constraints, i.e. feasible set is intersection of *m* ellipsoids and an affine set.
- Second-order cone programming (SOCP): minimize $f^{\mathrm{T}}x$ subject to $\|A_ix+b_i\|_2 \leq c_i^{\mathrm{T}}x+d_i$ and Fx=g, where $i=1,\ldots,m$
 - *Affine* objective + *Second-order cone* inequality constraints + *Affine* equality constraints, i.e. feasible set is intersection of *m* second-order cones and an affine set.

- Convex problem with **generalized inequality constraints**: minimize $f_0(x)$ subject to $f_i(x) \leq_{K_i} 0$ and Ax = b, where $i = 1, \ldots, m$
 - Convex objective + Generalized convex inequality constraints + Affine equality constraints.
- Conic form problem: minimize $c^{\mathrm{T}}x+d$ subject to $Fx\preceq_K g$ and Ax=b
 - *Affine* objective + *Generalized affine* constraints, i.e. feasible set is a non-polyhedral cone.
- Semidefinite program (SDP): minimize $c^Tx + d$ subject to $\sum_{i=1}^n F_ix_i + G \preceq_K 0$ and Ax = b, where F and G are semidefinite.
 - Affine objective + Linear matrix inequality (LMI) constraints + Affine equality constraints.
 - SDP is more general than LP and SOCP.
 - Eigenvalue minimization: minimize $\lambda_{\max}(A(x))$, where

$$A(x) = A_0 + x_1A_1 + \cdots + x_nA_n$$

- \circ Matrix norm minimization: minimize $\|A(x)\|_2=\lambda_{\max}(A(x)^{\mathrm{T}}A(x))^{1/2}$, where $A(x)=A_0+x_1A_1+\cdots+x_nA_n$
- Vector optimization problem: vector objective $f_0: \mathbb{R}^n \to \mathbb{R}^q$ minimized w.r.t. proper cone $K \in \mathbb{R}^q$, i.e. f_0 is K-convex.
- Optimal and Pareto optimal points:
 - Feasible x is *optimal* if $f_0(x)$ is the minimum value.
 - Feasible x is *Pareto optimal* if $f_0(x)$ is a minimal value.
- Multi-objective optimization:
 - If there exists an *optimal* point, the objectives are noncompeting.
 - If there are multiple *Pareto optimal* values, there is a trade-off between the objectives.
 - Regularized least-squares: minimize $(\|Ax b\|_2^2, \|x\|_2^2)$
- Lagrangian form of an optimization problem:

$$\circ~~L(x,\lambda,
u) = f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p
u_i h_i(x)$$

- $\circ \ L:\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^p\to\mathbb{R}$
- λ : Lagrange multiplier associated with $f(x) \leq 0$
- ν : Lagrange multiplier associated with h(x) = 0
- Lagrange dual function:

$$egin{array}{l} \circ & g(\lambda,
u) = \inf_x L(x,\lambda,
u) = \inf_x (f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{i=1}^p
u_i h_i(x)) \end{array}$$

- $\circ g: \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$
- *q* is *concave* no matter the original problem is convex or not.
- Lower bound property: if $\lambda \succeq 0$, then $p^* \geq g(\lambda, \nu)$.
- [x] Homework: 4.3, 4.11, 4.23
- Solutions: <u>Solutions3.pdf</u>

• Lagrange dual and conjugate function: minimize $f_0(x)$ subject to $Ax \leq b$, Cx = d

$$\circ \ \ g(\lambda,
u) = -f_0^*(-A^{
m T}\lambda - C^{
m T}
u) - b^{
m T}\lambda - d^{
m T}
u$$

- Lagrange dual problem: maximize $g(\lambda, \nu)$ subject to $\lambda \succeq 0$
 - Finds best lower bound on **p*** obtained from Lagrange dual function.
 - Optimal value is denoted as d*
- Weak duality: $d^* \leq p^*$
 - Always holds (for convex and nonconvex problems)
- Strong duality: $d^* = p^*$
 - Does not hold in general.
 - Conditions that guarantee strong duality in convex problems are called constraint qualifications.
- **Slater's condition (constraint qualification)** implies *strong duality* for convex problems:
 - The problem is *strictly feasible*, i.e. \boldsymbol{x} is in the *interior* of \boldsymbol{D} .
 - Linear inequalities do not need to hold with strict inequality.
- ullet Least-norm solution of linear equations: minimize $oldsymbol{x^T}oldsymbol{x}$ subject to $oldsymbol{A}oldsymbol{x}=oldsymbol{b}$

• Maximize
$$g(\nu) = -\frac{1}{4} \nu^{\mathrm{T}} A A^{\mathrm{T}} \nu - b^{\mathrm{T}} \nu$$

ullet Standard form LP: minimize $c^{\mathrm{T}}x$ subject to $Ax=b,x\succeq 0$

$$\circ \;\; g(\lambda,
u) = egin{cases} -b^{
m T}
u ext{ if } A^{
m T}
u - \lambda + c = 0 \ -\infty ext{ otherwise} \end{cases}$$

- Maximize $-b^{\mathrm{T}}\nu$ subject to $A^{\mathrm{T}}\nu+c\succeq 0$
- ullet Inequality form LP: minimize $c^{\mathrm{T}}x$ subject to $Ax\preceq b$

$$egin{aligned} \circ & g(\lambda) = egin{cases} -b^{ ext{T}} \lambda ext{ if } A^{ ext{T}} \lambda + c = 0 \ -\infty ext{ otherwise} \end{cases}$$

- \circ Maximize $-b^{\mathrm{T}}\lambda$ subject to $A^{\mathrm{T}}\lambda+c=0, \lambda\succeq 0$
- Quadratic program: minimize $\pmb{x^{\mathrm{T}}} \pmb{P} \pmb{x}$ subject to $\pmb{A} \pmb{x} \preceq \pmb{b}$

$$\circ$$
 Maximize $g(\lambda) = -rac{1}{4}\lambda^{\mathrm{T}}AP^{-1}A^{\mathrm{T}}\lambda - b^{\mathrm{T}}\lambda$ subject to $\lambda \succeq 0$

- Geometric interpretation:
 - Strong duality holds if there is a non-vertical supporting hyperplane to A at $(0, p^*)$
 - \circ For convex problem, \pmb{A} is convex, hence has supporting hyperplane at $(\pmb{0}, \pmb{p}^*)$
 - *Slater's condition*: if there exist $(u',t') \in A$ with u' < 0, then supporting hyperplanes at $(0,p^*)$ must be non-vertical.
- Complementary slackness:
 - Assume strong duality holds, x^* is primal optimal, (λ^*, ν^*) is dual optimal.
 - x^* minimizes $L(x, \lambda^*, \nu^*)$

$$\circ ~~\lambda_i^*f_i(x^*)=0~ ext{for}~i=1,\ldots,m$$
, i.e. $\left\{egin{aligned} \lambda_i^*>0 o f_i(x^*)=0\ f_i(x^*)<0 o \lambda_i^*=0 \end{aligned}
ight.$

- Karush-Kuhn-Tucker (KKT) conditions:
 - \circ Primal constraints: $f_i(x) \leq 0, i = 1, \ldots, m, h_i(x) = 0, i = 1, \ldots, p$
 - Dual constraints: $\lambda \succeq 0$
 - \circ Complementary slackness: $\lambda_i f_i(x) = 0, i = 1, \ldots, m$
 - Gradient of Lagrangian with respect to **x** is 0.
- For all problems:
 - x^*, λ^*, ν^* are optimal and strong duality holds \rightarrow KKT conditions are satisfied.
- For convex problems:
 - x^*, λ^*, ν^* are optimal and strong duality holds \leftrightarrow KKT conditions are satisfied.
 - Slater's condition is satisfied \rightarrow (x^* is optimal \leftrightarrow there exist λ^* , ν^* that satisfy KKT conditions).

2017-05-09

- Duality and problem reformulations:
 - Introduce new variables and equality constraints.
 - Make explicit constraints implicit or vice-versa.
 - Transform objective or constraint functions.
- Unconstrained problem: minimize $f_0(Ax+b)$

$$egin{aligned} \circ & g(
u) = egin{cases} -f_0^*(
u) + b^{\mathrm{T}}
u & ext{if } A^{\mathrm{T}}
u = 0 \ -\infty & ext{otherwise} \end{cases}$$

- \circ Maximize $-f_0^*(
 u)+b^{
 m T}
 u$ subject to $A^{
 m T}
 u=0$
- Norm approximation problem: minimize ||Ax b||

$$egin{aligned} \circ & g(
u) = egin{cases} b^{ ext{T}}
u & ext{ if } A^{ ext{T}}
u = 0, \|
u\|_* \le 1 \ -\infty & ext{ otherwise} \end{cases} \ & \circ & ext{ Maximize } b^{ ext{T}}
u & ext{ subject to } A^{ ext{T}}
u = 0, \|
u\|_* \le 1 \end{aligned}$$

- ullet LP with box constraints: minimize $c^{\mathrm{T}}x$ subject to Ax=b and $-1\preceq x\preceq 1$
 - Reformulation: minimize $f_0(x) = \begin{cases} c^{\mathrm{T}}x \text{ if } -1 \leq x \leq 1 \\ \infty \text{ otherwise} \end{cases}$ subject to Ax = b.
 - $egin{aligned} \circ & g(
 u) = \inf_{-1 \prec x \prec 1} (c^{\mathrm{T}}x +
 u^{\mathrm{T}}(Ax b)) = -b^{\mathrm{T}}
 u \|A^{\mathrm{T}}
 u + c\|_1 \end{aligned}$
 - \circ Maximize $-b^{\mathrm{T}}
 u \|A^{\mathrm{T}}
 u + c\|_1$
- Problems with generalized inequalities: minimize $f_0(x)$ subject to $f_i(x) \leq_{K_i} 0$ and $h_i(x) = 0$
 - · Lagrange dual function, lower bound property, and Lagrange dual problem work in the same way.
- Semidefinite program: minimize $c^T x$ subject to $\sum_{i=1}^n F_i x_i + G \preceq_K 0$ and Ax = b, where F and

G are semidefinite.

- Lagrange multiplier is a matrix $Z \in S^k$
- \circ Lagrangian form $L(x,Z)=c^{\mathrm{T}}x+\mathrm{trace}(Z(x_1F_1+\cdots+x_nF_n-G))$
- $egin{aligned} \circ & g(Z) = \inf_x L(x,Z) = egin{cases} - ext{trace}(GZ) & ext{if } ext{trace}(F_iZ) + c_i = 0 \ -\infty & ext{otherwise} \end{cases}$
- Maximize $-\mathbf{trace}(GZ)$ subject to $Z\succeq 0$ and $\mathbf{trace}(F_iZ)+c_i=0$
- Maximum likelihood estimation: maximize $l(x) = \log p_x(y)$
 - **x** is a vector of unknown parameters to estimate.
 - **y** is a vector of observed value.
 - $l(x) = \log p_x(y)$ is called **log-likelihood function**.
- Linear measurements with IID noise:

$$egin{array}{l} \circ & p_x(y) = \prod_{i=1}^m p(y_i - a_i^{\mathrm{T}} x). \end{array}$$

- \circ Maximize $l(x) = \sum_{i=1}^m \log p(y_i a_i^{\mathrm{T}} x)$
- Gaussian noise:

$$p(z) = (2\pi\sigma^2)^{-1/2}e^{-z^2/(2\sigma^2)}$$

$$lacksquare Maximize \ l(x) = -rac{m}{2} \mathrm{log}(2\pi\sigma^2) - rac{1}{2\sigma^2} \sum_{i=1}^m (a_i^{\mathrm{T}}x - y_i)^2$$

- **x** is the least-square solution
- Laplacian noise:

$$p(z) = \frac{1}{2a} e^{-|z|/a}$$

$$lacksquare Maximize \ l(x) = -m \log(2a) - rac{1}{a} \sum_{i=1}^m |a_i^{
m T} x - y_i|$$

- \boldsymbol{x} is the l1-norm solution
- Uniform noise:

•
$$p(z) = 1/(2a)$$
, where $z \in [-a, a]$

$$lacksquare Maximize \ l(x) = -m \log(2a) \ ext{for all} \ |a_i^{ ext{T}} x - y_i| \leq a, i = 1, \ldots, m$$

- ullet $oldsymbol{x}$ is any solutions satisfying $|a_i^{
 m T} x y_i| \leq a, i = 1, \ldots, m$
- Logistic regression:

$$\circ \ p(y) = rac{\exp(a^{\mathrm{T}}u + b)}{1 + \exp(a^{\mathrm{T}}u + b)}$$
 , where $y \in \{0, 1\}$

$$\circ$$
 Maximzie $l(a,b) = \sum_{i=1}^k (a^{\mathrm{T}}u_i + b) - \sum_{i=1}^m \log(1 + \exp(a^{\mathrm{T}}u_i + b))$

- a and b are unknown parameters to estimate from m observations u and y.
- [x] Homework: 5.1(a)-(c), 5.7(a)-(b), 5.27
- Solutions: Solutions4.pdf

2017-05-16

• Robust linear discrimination:

- \circ Euclidean distance between hyperplanes $H_1=\{z|a^{
 m T}z+b=1\}$ and $H_2=\{z|a^{
 m T}z+b=-1\}$ is $2/\|a\|_2$
- \circ X_0 and X_1 are the data matrices classified as -1 and 1, respectively.
- Minimize $||a||_2/2$ subject to $X_0a + b \succeq 1$ and $X_1a + b \preceq -1$.
- Maximize $\mathbf{1}^T \lambda_0 + \mathbf{1}^T \lambda_1$ subject to $2\|\lambda_0^T X_0 \lambda_1^T X_1\|_2 \le 1$, $\mathbf{1}^T \lambda_0 = \mathbf{1}^T \lambda_1$, $\lambda_0 \succeq 0$, $\lambda_1 \succeq 0$.
- Optimal value is distance between convex hulls.
- Approximate linear discrimination:
 - Minimze $\mathbf{1}^{\mathrm{T}} \varepsilon_0 + \mathbf{1}^{\mathrm{T}} \varepsilon_1$ subject to $X_0 a + b \succeq 1 \varepsilon_0$ and $X_1 a + b \preceq -1 + \varepsilon_1$, where $\varepsilon_0 \succeq 0, \varepsilon_1 \succeq 0$.
 - A heuristic for minimizing #misclassified points.
- Support vector classifier:
 - Minimze $||a||_2/2 + 1^T \varepsilon_0 + 1^T \varepsilon_1$ subject to $X_0 a + b \succeq 1 \varepsilon_0$ and $X_1 a + b \preceq -1 + \varepsilon_1$, where $\varepsilon_0 \succeq 0, \varepsilon_1 \succeq 0$.
 - A trade-off curve between inverse of margin $2/\|a\|_2$ and classification error, measured by total slack $\mathbf{1}^T \varepsilon_0 + \mathbf{1}^T \varepsilon_1$.
- Nonlinear discrimination:
 - Separate two sets of points by a nonlinear function: $f(x) = \theta^T F(x)$ where F(x) are a set of basis functions.
 - Quadratic discrimination: $f(z) = z^{T}Pz + q^{T}z + r$
 - **Polynomial discrimination**: F(z) are all monomials up to a given degree.
- Support vector machine (SVM):
 - \circ Data matrix: $X=[arphi(x_1)^{\mathrm{T}},\ldots,arphi(x_n)^{\mathrm{T}}],y\in\{-1,1\}$, and arphi is a discrimination function.
 - Kernel tricks $K(x_i, x_j) = \varphi(x_i)^{\mathrm{T}} \varphi(x_j)$ avoids the explicit mapping from linear to nonlinear function. Let K denote XX^{T} .
 - Primal problem: minimize $\frac{1}{2}\omega^{\mathrm{T}}\omega$ subject to $\mathrm{diag}(y)(X\omega+b1)\succeq 1$
 - \circ The Lagrangian: $L(\omega,b,lpha)=rac{1}{2}\omega^{ ext{T}}\omega-lpha^{ ext{T}}(ext{diag}(y)(X\omega+b1)-1)$
 - $\quad \text{o Dual function: } \min_{\omega,b} L(\omega,b,\alpha) = \begin{cases} 1^{\mathrm{T}}\alpha \frac{1}{2}\alpha^{\mathrm{T}}\mathrm{diag}(y)K\mathrm{diag}(y)\alpha \text{ if } y^{\mathrm{T}}\alpha = 0 \\ -\infty \text{ otherwise} \end{cases}$
 - \circ Dual problem: maximize $1^{
 m T}lpha-rac{1}{2}lpha^{
 m T}{
 m diag}(y)K{
 m diag}(y)lpha$ subject to $y^{
 m T}lpha=0$ and $lpha\succeq 0$
 - Decision function: $Xw + b = K \operatorname{diag}(y)\alpha + b = 0$
- Soft margin SVM:
 - \circ Primal problem: minimize $rac{1}{2}\omega^{\mathrm{T}}\omega+C\mathbf{1}^{\mathrm{T}}\xi$ subject to $\mathrm{diag}(y)(X\omega+b\mathbf{1})\succeq \mathbf{1}-\xi$ and $\xi\succeq 0$