Integration of object motion across apertures during tracking eye movements: perceptual and oculomotor measures

David Souto*, Dirk Kerzel* and Alan Johnston†

*University of Geneva †University College London

Background

We showed previously that the integration of local motion signals leading to the perception of global motion is more effective during fixation than during pursuit eye movements [1]. Here, in a new experiment, we sought to relate psychophysical performance to ocular behavior as a way to exclude stabilization errors (retinal slip) as a determining factor.

Perception

opposite slope

pursuit:

S4

opposite

same

0.2 0.4 0.6 0.8

8.0

propo

fixation

pursuit: opposite-direction global motion (opposite) pursuit: same-direction global motion (same) fixation

Stimulus & task

Signal

global motion

local motion

Fixation

Noise

Pursuit

Multiple-aperture display introduced by Amano et al. [2] and analogue real-life situation.

Perceptual task

Oculomotor task

during 2 s

Motion duration: 200 ms

retinal slip [deg/sec] 0% signal 100% signal retinal slip [deg/sec] pursuit: same Track or fixate the display retinal slip [deg/sec] fixation

100

time [ms]

200 300

pursuit: same thresholds

horizontal retinal slip (S4)

pursuit: opposite

Retinal slip

pursuit: same slope

8.0

We calculated the ability to discriminate the signal horizontal direction based on horizontal retinal slip distributions (175-225 ms average) for a given signal level and the 100% noise baseline (oculometric ROC analysis [see 3]).

Vertical velocity could not solve the motion discrimination task.

Perception & retinal slip

Higher perceptual thresholds for opposite vs. same conditions are not a simple consequence of larger retinal slip. Tracking global motion may help direction discrimination [4].

Bottom line

Motion signals across apertures do not integrate as well for motion opposite to the pursuit direction as compared to same-direction motion (ECVP 2011). The reduced performance is not a simple consequence of higher retinal slip.

There is a systematically larger ocular drift (ocular following) in the opposite condition, contrary to what is found in the literature on the influence of background motion during pursuit [e.g. 5], suggesting that the segregation of object and background motion signals determines the strength of this response.

- [1] Souto and Johnston (2011). *ECVP*. [2] Amano et al. (2009): *JoV*.
- [3] Gegenfurtner et al. (2003). *JoV.* [4] Spering et al. (2011). *J of* Neurophysiol. [5] Lindner & Ilg (2006) Vis Res.

Support: SNSF grant UN7845 100014-135374 (DS & DK). **PDF:** www.soutod.com