Supplementary S1. Pseudo Code

```
sel_p <- 10 #leading partners number
### Regions ####
#Importations
[Function_raw.R]
row_regions_diff_Imp(path2, sel_p) \rightarrow
[Functions 2.R]
extract_regions_diff_Imp(file_name, path1)-> nn_reg <-extract_reg_n(file_name, path1, sel_p)</pre>
return(nn_reg)
[Functions 1.R]
extract_reg_n<-test_upload_data1(file_name, path, sel_p)</pre>
[Functions 2.R]
← max_imp_regions(t_temp, sel_p) #order the Importations table by decreasing
← window_regions_Imp(t_e, sel_p)# extract the sel_p elements except element one ->world
← window_extract_Unspecified(t_window) # eliminate the "Unspecified" elements
# 

miss_regions_Imp(t_window)missMDA by method Kfold and imputePCA
[Functions 2.R]
n_East_Asia_Pacific ← network(t_window, loop=T) # Each country table into Network with loops
[Function_raw.R]
n ← Networks(n_East_Asia_Pacific,...) # Joint the 160 countries and regions into Multi-Network
[Functions 3.R]
#Modeling analysis
← fit_n1 <-modeling_edges(n_r_Imp)
  n_mod_Tar_r_cov <-modeling_covariate(n_r_Tar)</pre>
  n mod Tar r names <-modeling names(n r Tar)
  n_mod_Tar_r_e <-modeling_residuals(fit_n1)</pre>
  n_mod_Tar_r_g <-mod_goodness(fit_n1)</pre>
#Comparative Modeling Edges-analysis
← comparative_mod(n_mod_Imp_r_e, n_mod_Tar_r_e, sel_p)
← Compare_Dist_Degrees_sel_p (net_r_Imp, net_r_Tar, sel_p, path2)
[main.R]
#Plotting each network in comparative by 10 Region-Partners Imp and Tariff
n r Imp \leftarrow row regiones diff Imp(path2)
#plot(n r Imp, displaylabels=F)
#Plotting Multi-ERG Importations by Degree Analysis
net r Imp<- graph analysis n Imp(n r Imp, path2)
net <- net r Imp #object net igraph
#Graph Cumulative Freq vs Degree, and Multi-ERG Importations by Diameter/Edges Analysis
graph_analysis_2(net_r_Imp, file_name, path2, sel_p)#_1.png & _2.png
#Multi-ERG Importations by Hub and Authorities Analyses
graph_analysis_3(net_r_Imp, file_name, path2) #_3_1 & 3_2.png
#Distances Multi-ERGM Network Analyses
graph_analysis_4(net_r_Imp, file_name, path2) #_4.png
#Distances Multi-ERGM Network Analyses
graph analysis 5(net r Imp, file name, path2) # 5 1, 5 2 & 5 3.png
#K-core decomposition Analysis
graph_analysis_6_0(net_r_Imp, file_name, path2) #_7_1.png
#Cliques&Cocitation Analyses, Dendrograms, Clustering Analyses
graph analysis 6 1(net r Imp, file name, path2) # 7 2, 8 1, 8 2, 9- 12.png
#Tariffs
```

```
[main.R]
n r Tar = row regiones Tar(sel p)
[Function_raw.R]
row regiones Tar →
[Functions 1.R]
extract_reg_t<-test_upload_data1(file_name, path, sel_p)</pre>
← max_tariff_regions(t_temp, sel_p) #order the Tariffs table by decreasing
← window_regions_tariff(t_e, sel_p) # extract the sel_p elements except element one ->world
← window_extract_Unspecified(t_window) # eliminate the "Unspecified" elements
# ← miss_regions_Imp(t_window)missMDA by method Kfold and imputePCA
[Functions_2.R]
n East Asia Pacific <- network(t window, loop=T) # Each country table into Network with loops
[Function raw.R]
n<- Networks(n East Asia Pacific,...) # Joint the 160 countries and regions into Multi-Network
### Countries####
#Importations
[main.R]
n c Imp <- row countries diff Imp(path2, sel p)
net_c_Imp = graph_analysis_c_Imp(n_c_Imp, path2)
net <- net_c_Imp#object_net_igraph</pre>
graph_analysis_2_c(net_c_Imp, file_name, path2)#_1.png & _2.png
graph_analysis_3(net_c_Imp, file_name, path2)
#Tariffs
n_c_Tar = row_countries_Tar( sel_p)
net_c_Tar = graph_analysis_c_Tar(n_c_Tar, path2)
net <- net c Tar#object net igraph
graph_analysis_2_c(net_c_Tar, file_name, path2)
Supplementary S1.1. Pseudo Code by Functions
[Functions 2.R]
# Fundamental Parameter Multi-ERGM Network Analyses
← graph_analysis_2{
#Density
 #Method 1: Calculating density
 #vertices count
 vcount(net)
 #edges count
 ecount(net)
 edge_density(net, loops=F)
 #Method 2: Calculating density
 ecount(net)/(vcount(net)*vcount(net)-1)
 #Reciprocity
 # Method1: Calculating reciprocity
 reciprocity(net)
 # Mutual, asymmetric, and null node pairs
 dyad_census(net)
 # Method2: Calculating reciprocity
 2*dyad_census(net)$mut/ecount(net)
 #Transitivity
```

```
transitivity(net, type="global") # net is treated as an undirected network
 transitivity(as undirected(net, mode="collapse")) # same as above
 t <-transitivity(net, type="local")
 triad census(net) # for directed networks
 #Diameters
 diameter(net, directed=F, weights=NA)
 diameter(net, directed=F)
 diam <- get_diameter(net, directed=T)</pre>
 diam
 as.vector(diam)
#Node Degrees
 deg <- degree(net, mode="all")</pre>
 plot(net, vertex.size=deg*3)
 hist(deg, breaks=1:vcount(net)-1, main="Histogram of node degree")
#Degree (number of ties)
 # which.max(d)
 # which(d==1)
 d <- degree(net, mode="in")</pre>
 d_in <-centr_degree(net, mode="in", normalized=T)</pre>
 d in
 # Closeness (centrality based on distance to others in the graph)
 #Inverse of the node's average geodesic distance to others in the network.
 c <- closeness(net, mode="all", weights=NA)
 c clo <- centr clo(net, mode="all", normalized=T)
 #Eigenvector (centrality proportional to the sum of connection centralities)
 #Values of the first eigenvector of the graph matrix.
 c_e <- eigen_centrality(net, directed=T, weights=NA)
 centr_eigen(net, directed=T, normalized=T)
 #Betweenness (centrality based on a broker position connecting others)
 #Number of geodesics that pass through the node or the edge.
 b <- betweenness(net, directed=T, weights=NA)
 edge betweenness(net, directed=T, weights=NA)
 centr betw(net, directed=T, normalized=T)
[Functions_2.R]
miss_regions_Imp(t_window)#missMDA by method Kfold and imputePCA
{
 library(missMDA)
 names(t_window)<-NULL
 nb <- estim_ncpPCA(t_window[3], method.cv = "Kfold", verbose = FALSE)</pre>
 nb$ncp #2
 #plot(0:5, nb$criterion, xlab = "nb dim", ylab = "MSEP")
 res.comp <- imputePCA(t_window[3], ncp = nb$ncp) # iterativePCA algorithm
 res.comp$completeObs
 t window[3]<-res.comp$completeObs
 colnames(t window)<-c("ID","Country","Import")</pre>
```

```
return(t_window)
[Functions_2.R]
# by Mutual(cliques&Cocitation), k-core, clustering
graph_analysis_6_1{
 #Matrix, which.max(co)
 #length(co), rownames(co)
 co <- cocitation(net)</pre>
 #as.undirected mutual, collapse, each
 net.sym <- as.undirected(net, mode= "mutual",</pre>
                 edge.attr.comb=list(weight="sum", "ignore"))
 #list, length(cli)
 cliques(net.sym) # list of cliques
 cli <- sapply(cliques(net.sym), length) # clique sizes</pre>
 #max(unlist(cli))
 #names(unlist(cli))
 largest_cliques(net.sym) # cliques with max number of nodes
}
```

Supplementary S2. Density distributions and leading partners selection

Figure S1. Comparing density distributions; both have asymmetric distributions with the maximum frequency on degree=1, followed by frequencies on degree=16; both have *10 leading partners* by layer.

Figure S2. Comparing density distributions; both have asymmetric distributions with the maximum frequency on degree=1, followed by frequencies on degree=26; both have 20 *leading partners* by layer.

Figure S3. Comparing density distributions, both have asymmetric distributions, with the maximum frequency on values less than 10 degrees, followed by a frequency of 56 degrees and *50 leading partners* by layer.

Table S1. Multi-ERGMs: Sensitive-Model-Specifications

sel_p value	ERGMs: Sensitive-Model-Speci Formula = n ~ edges							
Importations → 10	Network attributes:							
1111portations → 10	vertices = 64							
	array.max: 128							
	MCMC.scale: 1							
	MCMC.effectiveSize.damp: 10							
	Maximum Likelihood Results:							
	Andrian Zinciniood Reduid.							
	Estimate Std. Error MCMC % z value Pr(> z)							
	edges -2.0990 <mark>0.1403</mark> 0 -14.96 <1e-04	***						
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
	Null Deviance: 723.6 on 522 degrees of fr	reedom						
	Residual Deviance: 360.0 on 521 degrees of							
	AIC: 362 BIC: 366.3 (Smaller is better. MC S	Std. Err. = 0)						
	\$`Fitted values`	\$`Pearson residuals`						
	edges	edges						
	Min. :7.610	Min. :-0.20405						
	1st Qu.:7.860	1st Qu.:-0.07180						
	Median :7.950	Median : 0.01871						
	Mean :8.033	Mean :-0.01132						
	3rd Qu.:8.215	3rd Qu.: 0.05033						
	Max. :8.520	Max. : 0.14905						
	17tax. 10.020	11dA 0.14505						
Tariffs → 10	Network attributes:							
	vertices = 63							
	array.max: 128							
	MCMC.scale: 1							
	MCMC.effectiveSize.damp: 10							
	Maximum Likelihaad Paculter							
	Maximum Likelihood Results:							
	Estimate Std. Error MCMC % z value Pr(> z)							
	edges -2.0794	1 1/2						
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1							
	Null Deviance: 698.7 on 504 degrees of freedom							
	Residual Deviance: 351.6 on 503 degrees of freedom							
	AIC: 353.6 BIC: 357.8 (Smaller is better. MC Std. Err. = 0)							
	\$`Fitted values`	\$`Pearson residuals`						
	edges	edges						
	Min. :7.470	Min. :-0.100259						
	1st Qu.:7.915	1st Qu.:-0.063873						
	Median :8.000	Median: 0.000000						
	Mean :7.989	Mean : 0.006603						
	3rd Qu.:8.170	3rd Qu.: 0.033604						
	Max. :8.280	Max. : 0.207015						
	101200	1.22.1						
Importations 20	Network attributes:							
Importations \rightarrow 20	vertices = 133							
	array.max: 128							
	MCMC.scale: 1							
	MCMC.scale: 1 MCMC.effectiveSize.damp: 10							
	iviolvio.elicenveoize.danip. 10							

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|) edges -2.89037 0.09153 0 -31.58 <1e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Null Deviance: 3318.8 on 2394 degrees of freedom Residual Deviance: 987.2 on 2393 degrees of freedom

AIC: 989.2 BIC: 995 (Smaller is better. MC Std. Err. = 0)

\$`Fitted values`	\$`Pearson residuals`
edges	edges
Min. :17.38	Min. :-0.15444
1st Qu.:17.71	1st Qu.: 0.02005
Median :17.83	Median: 0.03932
Mean :17.87	Mean : 0.03010
3rd Qu.:17.92	3rd Qu.: 0.06485
Max. :18.62	Max. : 0.15601

$Tariffs \rightarrow 20$

Network attributes:

vertices = 133 array.max: 128 MCMC.scale: 1

MCMC.effectiveSize.damp: 10

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|) edges -2.89037 0.09153 0 -31.58 <1e-04 ****

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Null Deviance: 3318.8 on 2394 degrees of freedom Residual Deviance: 987.2 on 2393 degrees of freedom

AIC: 989.2 BIC: 995 (Smaller is better. MC Std. Err. = 0)

\$`Fitted values`	\$`Pearson residuals`
edges	edges
Min. :17.76	Min. :-0.16328
1st Qu.:18.11	1st Qu.:-0.09834
Median :18.20	Median :-0.04310
Mean :18.23	Mean :-0.05685
3rd Qu.:18.39	3rd Qu.:-0.02651
Max. :18.64	Max. : 0.05812

Importations \rightarrow 50

Network attributes:

vertices = 343 array.max: 128 MCMC.scale: 1

MCMC.effectiveSize.damp: 10

Maximum Likelihood Results:

Estimate Std. Error MCMC % z value Pr(>|z|) edges -3.87120 0.05512 0 -70.23 <1e-04 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Null Deviance: 22824 on 16464 degrees of freedom

	D 11 1D 1 2000 46400 1 66 1						
	Residual Deviance: 3280 on 16463 degrees of freedom						
	AIC, 2202 DIC, 2200 (Smaller is better MC Std Fry = 0)						
	AIC: 3282 BIC: 3290 (Smaller is better. MC Std. Err. = 0)						
	\$`Fitted values`	\$`Pearson residuals`					
	edges	edges					
	Min. :47.76	Min. :-1.682e-01					
	1st Qu.:48.00	1st Qu.:-3.039e-02					
	Median :48.08	Median :-1.285e-02					
	Mean :48.20	Mean :-2.837e-02					
	3rd Qu.:48.23	3rd Qu.: 6.722e-05					
	Max. :49.12	Max. : 4.314e-02					
Tariffs → 50	Network attributes:						
1a11115 → 50	vertices = 343						
	array.max: 128						
	MCMC.scale: 1						
	MCMC.effectiveSize.damp: 10						
	monochecuveoize.dump. 10						
	Maximum Likelihood Results:						
	Estimate Std. Error MCMC % z value Pr(>						
	edges -3.87120 0.05512 0 -70.23 <1e-04	***					
	Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '	.'0.1''1					
	N. II D	C 1					
	Null Deviance: 22824 on 16464 degrees of freedom						
	Residual Deviance: 3280 on 16463 degrees of freedom						
	AIC: 3282 BIC: 3290 (Smaller is better. MC Std. Err. = 0)						
	\$`Fitted values` \$`Pearson residuals`						
	edges	edges					
	Min. :46.86	Min. :-0.29612					
	1st Qu.:47.26	1st Qu.:-0.15399					
	Median :48.12	Median :-0.01746					
	Mean :48.23	Mean :-0.03447					
	3rd Qu.:49.02	3rd Qu.: 0.11542					
	Max. :50.10	Max. : 0.14943					
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					

Supplementary S2.1 Convergence of Models and Pearson Residual Distributions # sel_p = 10-leading-partners

Figure S4. Comparison of convergence of the models: the upper graph shows the fitted edge values from Multi-ERGM RPI, and the lower graph shows the fitted edge values from Multi-ERGM RPT in *the 10 leading partners* by layer. Both models converge at 8 (see Table S1 for more details).

sel_p = 20-leading-partners

Figure S5. Comparison of convergence of the models: the upper graph shows the fitted edge values from Multi-ERGM RPI, and the lower graph shows the fitted edge values from Multi-ERGM RPT in *the 20 leading partners* by layer. Both models converge at 18 (see Table S1 for more details).

sel_p = 50-leading-partners

Figure S6. Comparison of convergence of the models: the upper graph shows the fitted edge values from Multi-ERGM RPI, and the lower graph shows the fitted edge values from Multi-ERGM RPT in *the 50 leading partners* by layer. Both models converge at 48 (see Table S1 for more details).

Table S2. Multi-ERGMs Covariance-Model-Parameters

p_sel=10	Formula = n ~ edges + nodecov(".NetworkName")					
Importations	Maximum Likelihood Results:					
	Estimate Std. Error MCMC % z value Pr(> z) edges -2.060412 0.316312 0 -6.514 <1e-04 *** nodecovNetworkName -0.004757 0.035090 0 -0.136 0.892 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1 Null Deviance: 723.6 on 522 degrees of freedom Residual Deviance: 360.0 on 520 degrees of freedom AIC: 364 BIC: 372.5 (Smaller is better. MC Std. Err. = 0)					

Tariffs	Maximum Likelihood Results:				
	Estimate Std. Error MCMC % z value Pr(> z) edges -2.079e+00 3.169e-01 0 -6.561 <1e-04 *** nodecovNetworkName 1.416e-16 3.543e-02 0 0.000 1 Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1				
	Null Deviance: 698.7 on 504 degrees of freedom Residual Deviance: 351.6 on 502 degrees of freedom AIC: 355.6 BIC: 364.1 (Smaller is better. MC Std. Err. = 0)				

Appendix S2.2. Relation of the Models by vertex.names # Formula = n~edges+ nodefactor("vertex.names")

Multi-ERGM RPI Maximum Likelihood Results:

	Estimate Std. Er	ror MCMC % z	value	Pr(> z)
edges	-3.662508	2.144725	0	-1.708
0.0877				
nodefactor.vertex.names.Canada 0.9962	0.007135	1.502319	0	0.005
nodefactor.vertex.names.China	0.043021	1.147250	Θ	0.037
0.9701 nodefactor.vertex.names.East Asia & Pacific	0.922427	1.119893	0	0.824
0.4101	0.922421	1.119093	U	
<pre>nodefactor.vertex.names.Europe & Central Asia 0.4101</pre>	0.922427	1.119893	0	0.824
nodefactor.vertex.names.France 0.7907	0.398116	1.500388	0	0.265
nodefactor.vertex.names.Germany	0.122771	1.245745	0	0.099
0.9215 nodefactor.vertex.names.India	-0.058576	1.304855	0	-0.045
0.9642 nodefactor.vertex.names.Italy	0.398116	1.500388	Θ	0.265
0.7907	0.000220	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		01200
nodefactor.vertex.names.Japan 0.8578	0.268233	1.497432	0	0.179
nodefactor.vertex.names.Korea, Rep.	0.128459	1.326917	0	0.097
0.9229 nodefactor.vertex.names.Latin America & Carib	bean 2.285095	1.202875	0	1.900
0.0575 .			•	
nodefactor.vertex.names.Mexico 0.9962	0.007135	1.502319	0	0.005
nodefactor.vertex.names.Middle East & North A 0.2474	frica 1.303674	1.127170	Θ	1.157
nodefactor.vertex.names.Netherlands	0.398116	1.500388	0	0.265
0.7907 nodefactor.vertex.names.North America	1.049428	1.125465	0	0.932
0.3511 nodefactor.vertex.names.Other Asia, nes	0.268233	1.497432	0	0.179
0.8578		_, ., ., ., .	-	
nodefactor.vertex.names.Saudi Arabia 0.9203	-0.149482	1.494677	0	-0.100
nodefactor.vertex.names.South Africa 0.9964	-0.006787	1.500842	0	-0.005
nodefactor.vertex.names.South Asia	1.660781	1.132134	0	1.467
0.1424				

```
      nodefactor.vertex.names.Sub-Saharan Africa
      1.504454
      1.136185
      0
      1.324

      0.1855
      nodefactor.vertex.names.United Arab Emirates
      -0.080979
      1.304114
      0
      -0.062

      0.9505
      nodefactor.vertex.names.United States
      0.051622
      1.159111
      0
      0.045

      0.9645
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 723.6 on 522 degrees of freedom Residual Deviance: 323.6 on 499 degrees of freedom

AIC: 369.6 BIC: 467.5 (Smaller is better. MC Std. Err. = 0)

Multi-ERGM RPT

Maximum Likelihood Results:

Maximum Liketinood Resutts:		MCMC 0/ -	1	N=7 1=1N
	Estimate Std. Err			
edges	-3.678e+00	2.077e+00	0	-1.771
0.0766				
nodefactor.vertex.names.China	9.420e-02	1.115e+00	0	0.084
0.9327				
nodefactor.vertex.names.East Asia & Pacific	9.499e-01	1.086e+00	0	0.875
0.3816				
nodefactor.vertex.names.Europe & Central Asi	a 9.499e-01	1.086e+00	0	0.875
0.3816				
nodefactor.vertex.names.Germany	2.210e-01	1.470e+00	0	0.150
0.8804			-	
nodefactor.vertex.names.India	1.727e-01	1.271e+00	Θ	0.136
0.8919	1.7270 01	1.2710100	U	0.130
nodefactor.vertex.names.Japan	1.307e-01	1.466e+00	0	0.089
	1.3076-01	1.4000+00	U	0.009
0.9289	11 4 460 .00	4 000 .00	•	4 063
nodefactor.vertex.names.Latin America & Cari	bbean 1.168e+00	1.098e+00	0	1.063
0.2877				
nodefactor.vertex.names.Middle East & North	Africa 1.036e+00	1.091e+00	0	0.950
0.3423				
nodefactor.vertex.names.North America	9.499e-01	1.086e+00	0	0.875
0.3816				
nodefactor.vertex.names.South Africa	1.033e-01	1.466e+00	0	0.070
0.9439				
nodefactor.vertex.names.South Asia	9.499e-01	1.086e+00	0	0.875
0.3816			-	
nodefactor.vertex.names.Spain	2.210e-01	1.470e+00	0	0.150
0.8804	2.2100 01	1.4700100	· ·	0.130
nodefactor.vertex.names.Sub-Saharan Africa	1.313e+00	1.107e+00	0	1.186
0.2357	1.3136+00	1.1076+00	U	1.100
	2 475- 04	1 16000	•	0.460
nodefactor.vertex.names.Turkey	2.475e-01	1.469e+00	0	0.168
0.8662				
nodefactor.vertex.names.United Kingdom	-2.756e-15	1.464e+00	0	0.000
1.0000				
nodefactor.vertex.names.United States	1.425e-01	1.159e+00	0	0.123
0.9021				
	0 0 5 6 1 0 4 6 1 4			

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Null Deviance: 698.7 on 504 degrees of freedom Residual Deviance: 337.2 on 487 degrees of freedom

AIC: 371.2 BIC: 443 (Smaller is better. MC Std. Err. = 0)

Appendix S2.3. Relation of the Goodness-of-fit Models

#Tables of Goodness-of-fit
Table S3 Multi-FRGMs Goodness-of-fit for in-degree

Table S3. Multi-ERGMs Goodness-of-fit for in-degree								
Importations	Goodness-	of-fi	it fo	or in-	degree	5		
_								
						MC p-value		
	idegree0	57	0	0.02	1	0.00		
	idegree1	0	0	0.31	3	1.00		
	idegree2	0	0	1.43	5	0.54		
	idegree3	0	0	3.37	8	0.04		
	idegree4	0	1	5.94	11	0.00		
	idegree5	0	3	8.91	19	0.00		
	idegree6	0		10.33	19 18	0.00 0.00		
	idegree7 idegree8	0 6	3	10.34 8.59	16	0.42		
	idegree9	1	2	6.22	11	0.42		
	idegree10	0	0	4.19	10	0.00		
	idegree11	0	0	2.25	7	0.20		
	idegree12	0	0	1.14	4	0.66		
	idegree13	0	0	0.54	3	1.00		
	idegree14	0	0	0.28	3	1.00		
	idegree15	0	0	0.06	1	1.00		
	idegree16	0	0	0.04	1	1.00		
	idegree17	0	0	0.02	1	1.00		
	idegree18	0	0	0.01	1	1.00		
	idegree20	0	0	0.01	1	1.00		
	Goodness-c	of-fi	t fo	r out-	degre	е		
			min	mean	max	MC p-value		
	odegree0	7	0	0.05	1	0.00		
	odegree1	57	0	0.49	3	0.00		
	odegree2	0	0	1.28	5	0.42		
	odegree3	0	0	3.39	9	0.02		
	odegree4	0	1	6.39	13	0.00		
	odegree5	0	2	8.42	16	0.00		
	odegree6	0		10.34	19	0.00		
	odegree7	0		10.01	17 15	0.00		
	odegree8	0	1	8.52 6.27	15 12	0.00		
	odegree9	0	2	4.36	12 11	0.00		
	odegree10 odegree11	0 0	0 0	2.34	7	0.02 0.12		
	odegree12	0	0	1.16	4	0.64		
	odegree13	0	0	0.62	3	1.00		
	odegree14	0	0	0.02	2	1.00		
	odegree15	0	0	0.09	1	1.00		
	odegree16	0	0	0.04	1	1.00		
	odegree17	0	0	0.01	1	1.00		
	odegree18	0	0	0.01	1	1.00		
	Goodness-c	of-fi	t fo	r edge	wise	shared partner		
		obs 1	min	mean	max l	MC p-value		
	esp.OTP0			09.57		0.0		
	esp.OTP1			53.63		0.0		
	esp.OTP2	0		55.37	80	0.0		
	esp.OTP3	0		13.02	28	0.0		
	esp.OTP4	0	0	2.31	13	0.3	 	

```
esp.OTP5
                                   0
                                       0
                                           0.26
                                                   3
                                                             1.0
                       esp.OTP6
                                   0
                                           0.02
                                                             1.0
                                       0
                                                   1
                       Goodness-of-fit for minimum geodesic distance
                                  min
                                          mean
                                                max MC p-value
                       1
                              57
                                  385 434.18
                                                481
                       2
                              0 1581 1860.42 2102
                                                              0
                       3
                               0 1383 1616.55 1788
                                                              0
                                                              0
                       4
                                   20
                                       115.03
                                                236
                       5
                              0
                                    0
                                         1.41
                                                 13
                                                              1
                       Inf 3975
                                    0
                                         4.41
                                                 63
                                                              0
                       Goodness-of-fit for model statistics
                               obs
                                           min
                                                                  max MC p-value
                                                      mean
                             57.00
                                        385.00
                                                   434.18
                                                               481.00
                                                                             0.00
                       Goodness-of-fit for in-degree
Tariffs
                                   obs min mean max MC p-value
                       idegree0
                                        0 0.02
                                                  1
                                                          0.00
                                        0 0.22
                                                          1.00
                       idegree1
                                    0
                                                  2
                                                          0.44
                       idegree2
                                        0 1.26
                                                  5
                                    0
                                                  7
                       idegree3
                                        0 3.11
                                                          0.06
                                    0
                       idegree4
                                    0
                                        2 5.80
                                                 13
                                                          0.00
                       idegree5
                                    0
                                        2 8.32
                                                 16
                                                          0.00
                       idegree6
                                        4 9.92
                                                          0.00
                                    0
                                                 21
                       idegree7
                                    0
                                        4 9.96
                                                 21
                                                          0.00
                       idegree8
                                        3 8.50
                                                          0.76
                                    7
                                                 16
                       idegree9
                                    0
                                        2 6.73
                                                 15
                                                          0.00
                       idegree10
                                        0 4.11
                                                  9
                                                          0.04
                                    0
                       idegree11
                                    0
                                        0 2.75
                                                  8
                                                          0.02
                                                          0.50
                       idegree12
                                    0
                                        0 1.43
                                                  4
                       idegree13
                                        0 0.53
                                                  3
                                                          1.00
                                    0
                       idegree14
                                    0
                                        0 0.22
                                                  2
                                                          1.00
                       idegree15
                                        0 0.07
                                                          1.00
                                    0
                                                  1
                       idegree16
                                        0 0.02
                                                          1.00
                                    0
                                                  1
                       idegree17
                                        0 0.03
                                                          1.00
                                    0
                                                  1
                       Goodness-of-fit for out-degree
                                   obs min mean max MC p-value
                       odegree0
                                    7
                                        0
                                           0.04
                                                   1
                                                           0.00
                                                            0.00
                       odegree1
                                   56
                                        0
                                           0.23
                                                   2
                                                           0.40
                       odegree2
                                    0
                                        0
                                           1.46
                                                   5
                       odegree3
                                           2.87
                                                   7
                                                           0.04
                                    0
                                        0
                       odegree4
                                        1
                                           5.39
                                                  12
                                                           0.00
                                    0
                       odegree5
                                        4
                                           8.48
                                                  13
                                                           0.00
                                    0
                                                           0.00
                       odegree6
                                    0
                                        5 10.41
                                                  18
                       odegree7
                                    0
                                        5
                                           9.96
                                                  16
                                                           0.00
                       odegree8
                                    0
                                        2
                                           8.34
                                                  15
                                                           0.00
                                                           0.00
                       odegree9
                                        2
                                           6.65
                                    0
                                                  12
                       odegree10
                                                           0.02
                                    0
                                        0
                                           4.21
                                                  10
                       odegree11
                                    0
                                        0
                                           2.62
                                                   9
                                                           0.14
                       odegree12
                                    0
                                        0
                                           1.37
                                                   7
                                                           0.48
                       odegree13
                                        0
                                           0.58
                                                           1.00
                                    0
                                                   3
                       odegree14
                                    0
                                        0
                                           0.25
                                                   2
                                                           1.00
                       odegree15
                                        0
                                           0.09
                                                           1.00
                                    0
                                                   1
                       odegree16
                                    0
                                        0
                                           0.04
                                                   1
                                                            1.00
```


#Figures of Goodness-of-fit

Goodness-of-fit diagnostics

Figure S7. Goodness-of-fit for model statistics of Multi-ERGM RPI, the upper graph shows the proportion of nodes vs out-degree and proportion of nodes vs in-degree; and the lower graph shows the proportion of edges vs edge-wise shared partners and proportion of dyads vs minimum geodesic distance.

Goodness-of-fit diagnostics

Figure S8. Goodness-of-fit for model statistics of Multi-ERGM RPT, the upper graph shows the proportion of nodes vs out-degree and proportion of nodes vs in-degree; and the lower graph shows the proportion of edges vs edge-wise shared partners and proportion of dyads vs minimum geodesic distance.

Supplementary S3. Saturated Figures

B)Tariffs & Latin America Distances

Figure S9. Comparison of the network's distances and the visual analyses of the networks. Both have *20 leading partners* by layer; the graphs are saturated, making it impossible to follow the arrow connections, as the node shapes overlap and their labels as well.

A)Importations & Latin America Distances

B)Tariffs & Latin America Distances

Figure S10. Comparison of the network's distances and the visual analyses of the networks. Both have 50 *leading partners* by layer; the graphs are saturated, with the nodes' shapes overlapping and their labels as well.

Figure S11. Comparison of the network's distances and the visual analyses of the networks. Both have 10 *leading partners* by layer; the graphs look neat and polished. It is easy to decode them.

Figure S12. Comparison of the density edges by countries and the visual analyses of the networks. Both have *10 leading partners*; both graphs appear saturated, with node shapes overlapping and their labels as well. It is impossible to follow the connections of the arrows and hard to decode them at a glance.

Supplementary S4. Network lists

[6] North America

#Importations, sel_p=10 networklist \$`East Asia & Pacific` + 15/63 edges from 968044d (vertex names): [1] East Asia & Pacific ->East Asia & Pacific ->East Asia & Pacific [2] China [3] East Asia & Pacific ->Europe & Central Asia [4] Europe & Central Asia ->East Asia & Pacific [5] East Asia & Pacific ->Middle East & North Africa [6] Middle East & North Africa->East Asia & Pacific [7] East Asia & Pacific ->North America [8] North America ->East Asia & Pacific [9] United States ->East Asia & Pacific [10] Other Asia, nes ->East Asia & Pacific + ... omitted several edges \$China + 7/63 edges from 968044d (vertex names): [1] China->East Asia & Pacific China->Europe & Central Asia [3] China->Middle East & North Africa China->North America [5] China->Latin America & Caribbean China->South Asia [7] China->Sub-Saharan Africa \$`Europe & Central Asia` + 15/63 edges from 968044d (vertex names): [1] Europe & Central Asia->East Asia & Pacific [2] East Asia & Pacific ->Europe & Central Asia [3] China ->Europe & Central Asia [4] Europe & Central Asia->Europe & Central Asia [5] Europe & Central Asia->Middle East & North Africa [6] Europe & Central Asia->North America [7] North America ->Europe & Central Asia [8] United States ->Europe & Central Asia [9] Germany ->Europe & Central Asia [10] Netherlands ->Europe & Central Asia + ... omitted several edges \$`Middle East & North Africa` + 12/63 edges from 968044d (vertex names): [1] Middle East & North Africa->East Asia & Pacific [2] East Asia & Pacific ->Middle East & North Africa ->Middle East & North Africa [3] China [4] Europe & Central Asia ->Middle East & North Africa [5] Middle East & North Africa->Middle East & North Africa [6] North America ->Middle East & North Africa [7] United States ->Middle East & North Africa [8] Middle East & North Africa->South Asia ->Middle East & North Africa [9] South Asia ->Middle East & North Africa [10] India + ... omitted several edges \$`North America` + 14/63 edges from 968044d (vertex names): ->East Asia & Pacific [1] North America [2] East Asia & Pacific ->North America [3] China ->North America [4] North America ->Europe & Central Asia [5] Europe & Central Asia ->North America

->Middle East & North Africa

```
[7] North America
                              ->North America
                              ->North America
 [8] United States
 [9] Germany
                              ->North America
[10] North America
                              ->Latin America & Caribbean
+ ... omitted several edges
$`United States`
+ 6/63 edges from 968044d (vertex names):
[1] United States->East Asia & Pacific
                                              United States->Europe & Central Asia
[3] United States->Middle East & North Africa United States->North America
[5] United States->Latin America & Caribbean United States->South Asia
$`Other Asia, nes`
+ 1/63 edge from 968044d (vertex names):
[1] Other Asia, nes->East Asia & Pacific
$`Korea, Rep.`
+ 2/63 edges from 968044d (vertex names):
[1] Korea, Rep.->East Asia & Pacific
                                           Korea, Rep.->Latin America & Caribbean
$Japan
+ 1/63 edge from 968044d (vertex names):
[1] Japan->East Asia & Pacific
$Germany
+ 3/63 edges from 968044d (vertex names):
[1] Germany->Europe & Central Asia
                                    Germany->North America
[3] Germany->Latin America & Caribbean
$Netherlands
+ 1/63 edge from 968044d (vertex names):
[1] Netherlands->Europe & Central Asia
$France
+ 1/63 edge from 968044d (vertex names):
[1] France->Europe & Central Asia
$Italv
+ 1/63 edge from 968044d (vertex names):
[1] Italy->Europe & Central Asia
$`Latin America & Caribbean`
+ 10/63 edges from 968044d (vertex names):
 [1] East Asia & Pacific
                             ->Latin America & Caribbean
 [2] China
                              ->Latin America & Caribbean
 [3] Europe & Central Asia
                              ->Latin America & Caribbean
 [4] Latin America & Caribbean->North America
 [5] North America
                              ->Latin America & Caribbean
 [6] United States
                              ->Latin America & Caribbean
 [7] Korea, Rep.
                              ->Latin America & Caribbean
 [8] Germany
                              ->Latin America & Caribbean
 [9] Latin America & Caribbean->Latin America & Caribbean
[10] Brazil
                              ->Latin America & Caribbean
$Brazil
+ 1/63 edge from 968044d (vertex names):
[1] Brazil->Latin America & Caribbean
$`South Asia`
+ 11/63 edges from 968044d (vertex names):
```

```
->South Asia
 [2] China
 [3] Europe & Central Asia
                               ->South Asia
                               ->Middle East & North Africa
 [4] South Asia
 [5] Middle East & North Africa->South Asia
 [6] North America
                               ->South Asia
 [7] United States
                               ->South Asia
 [8] South Asia
                               ->Sub-Saharan Africa
 [9] Sub-Saharan Africa
                               ->South Asia
[10] United Arab Emirates
                               ->South Asia
+ ... omitted several edges
$India
+ 2/63 edges from 968044d (vertex names):
[1] India->Middle East & North Africa India->Sub-Saharan Africa
$`Sub-Saharan Africa`
+ 11/63 edges from 968044d (vertex names):
 [1] East Asia & Pacific
                               ->Sub-Saharan Africa
 [2] China
                               ->Sub-Saharan Africa
 [3] Europe & Central Asia
                               ->Sub-Saharan Africa
 [4] Sub-Saharan Africa
                               ->Middle East & North Africa
 [5] Middle East & North Africa->Sub-Saharan Africa
 [6] Sub-Saharan Africa
                               ->South Asia
 [7] South Asia
                               ->Sub-Saharan Africa
 [8] India
                               ->Sub-Saharan Africa
 [9] Sub-Saharan Africa
                               ->Sub-Saharan Africa
[10] United Arab Emirates
                               ->Sub-Saharan Africa
+ ... omitted several edges
$Mexico
+ 1/63 edge from 968044d (vertex names):
[1] Mexico->North America
$Canada
+ 1/63 edge from 968044d (vertex names):
[1] Canada->North America
$`United Arab Emirates`
+ 2/63 edges from 968044d (vertex names):
[1] United Arab Emirates->South Asia
                                             United Arab Emirates->Sub-Saharan Africa
$`Saudi Arabia`
+ 1/63 edge from 968044d (vertex names):
[1] Saudi Arabia->South Asia
$`South Africa`
+ 1/63 edge from 968044d (vertex names):
[1] South Africa->Sub-Saharan Africa
#Tariffs, sel_p=10
> networklist
$`Europe & Central Asia`
+ 15/63 edges from f1b1e39 (vertex names):
 [1] Europe & Central Asia
                               ->Europe & Central Asia
 [2] Europe & Central Asia
                               ->East Asia & Pacific
 [3] East Asia & Pacific
                               ->Europe & Central Asia
 [4] Europe & Central Asia
                               ->North America
 [5] North America
                               ->Europe & Central Asia
 [6] Europe & Central Asia
                               ->Latin America & Caribbean
```

->South Asia

[1] East Asia & Pacific

```
[7] Latin America & Caribbean ->Europe & Central Asia
 [8] Europe & Central Asia
                                ->South Asia
 [9] South Asia
                                ->Europe & Central Asia
[10] Europe & Central Asia
                                ->Middle East & North Africa
+ ... omitted several edges
$`East Asia & Pacific`
+ 15/63 edges from f1b1e39 (vertex names):
 [1] East Asia & Pacific
                                ->Europe & Central Asia
 [2] Europe & Central Asia
                                ->East Asia & Pacific
 [3] East Asia & Pacific
                                ->East Asia & Pacific
 [4] East Asia & Pacific
                                ->North America
 [5] North America
                                ->East Asia & Pacific
 [6] East Asia & Pacific
                                ->Latin America & Caribbean
 [7] Latin America & Caribbean ->East Asia & Pacific
 [8] East Asia & Pacific
                                ->South Asia
 [9] South Asia
                                ->East Asia & Pacific
[10] East Asia & Pacific
                                ->Middle East & North Africa
+ ... omitted several edges
$`North America`
+ 15/63 edges from f1b1e39 (vertex names):
 [1] North America
                                ->Europe & Central Asia
 [2] Europe & Central Asia
                                ->North America
 [3] North America
                                ->East Asia & Pacific
 [4] East Asia & Pacific
                                ->North America
 [5] North America
                                ->North America
 [6] North America
                                ->Latin America & Caribbean
 [7] Latin America & Caribbean ->North America
 [8] North America
                                ->South Asia
 [9] South Asia
                                ->North America
[10] North America
                                ->Middle East & North Africa
+ ... omitted several edges
$`Latin America & Caribbean`
+ 13/63 edges from f1b1e39 (vertex names):
 [1] Latin America & Caribbean->Europe & Central Asia
 [2] Europe & Central Asia
                              ->Latin America & Caribbean
 [3] Latin America & Caribbean->East Asia & Pacific
 [4] East Asia & Pacific
                               ->Latin America & Caribbean
 [5] Latin America & Caribbean->North America
 [6] North America
                               ->Latin America & Caribbean
 [7] Latin America & Caribbean->Latin America & Caribbean
 [8] Latin America & Caribbean->South Asia
 [9] South Asia
                               ->Latin America & Caribbean
[10] China
                               ->Latin America & Caribbean
+ ... omitted several edges
$`South Asia`
+ 15/63 edges from f1b1e39 (vertex names):
 [1] South Asia
                                ->Europe & Central Asia
 [2] Europe & Central Asia
                                ->South Asia
 [3] South Asia
                                ->East Asia & Pacific
 [4] East Asia & Pacific
                                ->South Asia
 [5] South Asia
                                ->North America
 [6] North America
                                ->South Asia
 [7] South Asia
                                ->Latin America & Caribbean
 [8] Latin America & Caribbean -> South Asia
 [9] South Asia
                                ->South Asia
[10] South Asia
                                ->Middle East & North Africa
```

```
+ ... omitted several edges
$`Middle East & North Africa`
+ 14/63 edges from f1b1e39 (vertex names):
 [1] Middle East & North Africa->Europe & Central Asia
 [2] Europe & Central Asia ->Middle East & North Africa
 [3] Middle East & North Africa->East Asia & Pacific
 [4] East Asia & Pacific
                               ->Middle East & North Africa
 [5] Middle East & North Africa->North America
                               ->Middle East & North Africa
 [6] North America
 [7] Middle East & North Africa->South Asia
 [8] South Asia
                               ->Middle East & North Africa
 [9] Middle East & North Africa->Middle East & North Africa
                               ->Middle East & North Africa
[10] China
+ ... omitted several edges
$China
+ 7/63 edges from f1b1e39 (vertex names):
[1] China->Europe & Central Asia
                                     China->East Asia & Pacific
[3] China->North America
                                      China->Latin America & Caribbean
[5] China->South Asia
                                      China->Middle East & North Africa
[7] China->Sub-Saharan Africa
$`United States`
+ 4/63 edges from f1b1e39 (vertex names):
[1] United States->East Asia & Pacific
                                              United States->Latin America & Caribbean
[3] United States->South Asia
                                              United States->Middle East & North Africa
$Japan
+ 1/63 edge from f1b1e39 (vertex names):
[1] Japan->East Asia & Pacific
$`Sub-Saharan Africa`
+ 12/63 edges from f1b1e39 (vertex names):
 [1] Sub-Saharan Africa
                           ->Europe & Central Asia
 [2] Europe & Central Asia
                              ->Sub-Saharan Africa
 [3] East Asia & Pacific
                              ->Sub-Saharan Africa
 [4] Sub-Saharan Africa
                              ->North America
 [5] North America
                               ->Sub-Saharan Africa
                               ->South Asia
 [6] Sub-Saharan Africa
 [7] South Asia
                               ->Sub-Saharan Africa
 [8] Middle East & North Africa->Sub-Saharan Africa
 [9] China
                             ->Sub-Saharan Africa
[10] Sub-Saharan Africa
                              ->Sub-Saharan Africa
+ ... omitted several edges
$`United Kingdom`
+ 1/63 edge from f1b1e39 (vertex names):
[1] United Kingdom->Europe & Central Asia
$Germanv
+ 1/63 edge from f1b1e39 (vertex names):
[1] Germany->Latin America & Caribbean
$Spain
+ 1/63 edge from f1b1e39 (vertex names):
[1] Spain->Latin America & Caribbean
$Turkey
+ 1/63 edge from f1b1e39 (vertex names):
```

```
[1] Turkey->Middle East & North Africa
+ 2/63 edges from f1b1e39 (vertex names):
[1] India->Middle East & North Africa India->Sub-Saharan Africa
$Canada
+ 1/63 edge from f1b1e39 (vertex names):
[1] Canada->North America
$`South Africa`
+ 1/63 edge from f1b1e39 (vertex names):
[1] South Africa->Sub-Saharan Africa
Supplementary S4.1. Fundamental Parameter Multi-ERGM Network Analyses
#Importations, sel_p=10
vsize <- degree(net r, mode="all")</pre>
        East Asia & Pacific
                                                  China
                                                              Europe & Central Asia
Middle East & North Africa
                                         North America
                                                                     United States
                           13
                                                                                    6
            Other Asia, nes
                                            Korea, Rep.
                                                                               Japan
                                                        2
                            1
                                                                                    1
                     Germany
                                             Netherlands
                                                                              France
                        Italy
                              Latin America & Caribbean
                                                                               Brazil
                            1
                                                       11
                                                                                    1
                  South Asia
                                                   India
                                                                 Sub-Saharan Africa
                           11
                      Mexico
                                                  Canada
                                                                United Arab Emirates
                                                                                    2
                Saudi Arabia
                                            South Africa
centr_betw(net, directed=T, normalized=T)
#The first element correspond to the betweeness centrality name in this case the maximum
betweeness is the maximum value of 39.0
  East Asia & Pacific
                                            China
                                                        Europe & Central Asia
                         39.0
                                                      0.0
                                                                                 22.0
Middle East & North Africa
                                         North America
                                                                     United States
                                                     23.5
                                                                                  0.0
                         26.0
            Other Asia, nes
                                            Korea, Rep.
                                                                               Japan
                          0.0
                                                      0.0
                                                                                  0.0
                     Germany
                                             Netherlands
                                                                              France
                          0.0
                                                      0.0
                                                                                  0.0
                        Italy
                               Latin America & Caribbean
                                                                               Brazil
                          0.0
                                                      6.5
                                                                                  0.0
                                                   India
                                                                  Sub-Saharan Africa
                  South Asia
                         10.0
                                                      0.0
                                                                                  9.0
                      Mexico
                                                  Canada
                                                                United Arab Emirates
                          0.0
                                                      0.0
                                                                                  0.0
                Saudi Arabia
                                            South Africa
                          0.0
                                                      0.0
closeness(net, mode="all", weights=NA)
        East Asia & Pacific
                                                  China
                                                              Europe & Central Asia
                  0.03030303
                                              0.02702703
                                                                          0.03125000
Middle East & North Africa
                                                                     United States
                                         North America
                  0.02702703
                                                                          0.02564103
                                              0.02857143
            Other Asia, nes
                                            Korea, Rep.
                                                                               Japan
                  0.01851852
                                              0.01960784
                                                                          0.01851852
                                             Netherlands
                     Germany
                                                                              France
```


(A)Importations by Degree_Distribution

Figure S13. Multi-ERGM RPI shows a cumulative frequency of ties and degree analysis in Region-Partner by Importations analysis in 2022.

#Tariff, sel_p=10

VStZe		
Europe & Central Asia	East Asia & Pacific	North America
16	16	16
Latin America & Caribbean	South Asia Middle	East & North Africa
14	16	15
China	United States	Japan
7	4	1
Sub-Saharan Africa	United Kingdom	Germany
13	1	1
Spain	Turkey	India
1	1	2
Canada	South Africa	
1	1	

centr_betw(net, directed=T, normalized=T)

#The first element correspond to the betweeness centrality name in this case the maximum betweeness is the maximum value of 12.5

Europe & Central Asia	East Asia & Pacific	North America
10.285714	8.976190	10.285714
Latin America & Caribbean	South Asia Middle Eas	t & North Africa
12.500000	5.119048	9.904762
China	United States	Japan
0.00000	0.00000	0.000000
Sub-Saharan Africa	United Kingdom	Germany
7.928571	0.00000	0.000000
Spain	Turkey	India
0.00000	0.00000	0.000000
Canada	South Africa	

Figure S14. Multi-ERGM RPT shows a cumulative frequency of ties and degree analysis in Region-Partner by Importations analysis in 2022.