Probabilistic Reactive Obstacle Avoidance

Pete Florence¹, John Carter¹, and Russ Tedrake¹

MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA peteflo,jcarter,russt@csail.mit.edu

Abstract. The abstract text goes here.

1 Introduction

Here is the text of your introduction.

1.1 And I can have second-order titles too

$$\alpha = \sqrt{\beta} \tag{1}$$

1.2 Subsection Heading Here

Write your subsection text here.

Fig. 1. Simulation Results

2 Conclusion

Write your conclusion here.

3 Fixed-Period Problems: The Sublinear Case

With this chapter, the preliminaries are over, and we begin the search for periodic solutions \dots

3.1 Autonomous Systems

In this section we will consider the case when the Hamiltonian H(x) ...

The General Case: Nontriviality. We assume that H is (A_{∞}, B_{∞}) -subquadratic at infinity, for some constant . . .

Notes and Comments. The first results on subharmonics were ...

Proposition 1. Assume H?(0) = 0 and H(0) = 0. Set ...

Proof (of proposition). Condition (8) means that, for every δ ? $> \delta$, there is some $\varepsilon > 0$ such that . . . \Box

Example 1 ((External forcing)). Consider the system . . .

Corollary 1. Assume H is C^2 and (a_{∞}, b_{∞}) -subquadratic at infinity. Let ...

Lemma 1. Assume that H is C^2 on $\mathbb{R}^{2n}\setminus\{0\}$ and that H??(x) is ...

Theorem 1 ((Ghoussoub-Preiss)). Let X be a Banach Space and $\Phi: X \to \mathbb{R} \dots 14$ LATEX2? Class for Lecture Notes in Computer Science

Definition 1. We shall say that a C^1 function $\Phi: X \to \mathbb{R}$ satisfies . . .