MAN110 – LABORATÓRIO

AULA 1 – Conhecendo o MATLAB

Operações	s básicas:
Oporações	o badicad.

Operações	Matlab
soma:a+b	a+b
subtração:a-b	a-b
multiplicação:a.b	a*b
divisão:	a/b
potenciação:a ^b	a^b
raiz quadrada:a	sqrt(a)
módulo de x	abs(x)
e ^x	exp(x)
In(x)	log(x)
log(x)	log10(x
seno(x)	sin(x)
cosseno(x)	cos(x)
tangente(x)	tan(x)
cotangente(x)	cot(x)
arcseno(x)	asin(x)
resto da divisão de x por y	rem(x,y)

Operações envolvendo funções:

Operações	Matlab
definir uma função: $f(x) = e^x + sen(3x)$	syms x; f=exp(x)+sin(3*x)
a=2;f(a)	a=2; subs(f,a)
$\lim_{x\to 3} \frac{\sqrt{x}-\sqrt{3}}{x-3}$	syms x; limit((sqrt(x)-sqrt(3))/(x-3),x,3)
$\lim_{x\to-\infty}\frac{2x^3+1}{x^4+2x+3}$	syms x; limit((2*x^3+1)/(x^4+2*x+3),x,-inf)
((sen(x)+cos(x)) ³)'	syms x; diff((sin(x)+cos(x))^3)
$\int \frac{1}{x^2+1} dx$	syms x; int(1/(x^2+1))
$\int_0^1 \frac{1}{x^2 + 1} dx$	syms x; int(1/(x^2+1),0,1)
para esboçar o gráfico de f(x)=x ² +6x+9	x=-5:1:5;f=x.^2+6.*x+9; plot(x,f,'b')
para esboçar dois gráficos: f(x)=x²+6x+9 e g(x)=2/x	x=-4:1:4;f=x.^2+6.*x+9;g=2./x; plot(x,f,'b',x,g,'k')

Calcular, no matlab, o valor numérico da seguinte expressão:

$$A = \frac{3 + \sqrt{5} - sen\frac{\pi}{2} + (-2)^4}{\ln 3 + 4e^{-2}} + \sqrt[4]{32 \times \left|\log 0, 2\right|}$$

(resp.: 14,5141)

Operações envolvendo matrizes:

(Matrizes A e B e número real c)

Operações	Matlab
soma escalar de c a cada elemento da matriz A	A+c
cada elemento da matriz A multiplicado por c	A*c
soma de matrizes A e B	A+B
produto de matrizes A e B	A*B
divisão de matrizes (A*B-1)	A/B
matriz transposta de A	A'
matriz inversa de A	inv(A)
produto escalar de A e B	A.*B
divisão escalar de A e B	A./B

Criando uma matriz:

Exemplo: matriz $A = \begin{bmatrix} 1 & 5 & -7 \\ 4 & -2 & 0 \end{bmatrix}$ Comando no matlab: $A = \begin{bmatrix} 1,5,-7;4,-2,0 \end{bmatrix}$

Calcular o determinante e a inversa da matriz que decorre da operação

$$\begin{pmatrix} -1 & 5 & \frac{2}{3} \\ \cos \frac{3\pi}{2} & \log 4^{-5} & \sqrt{7} \end{pmatrix} \times 3 \begin{pmatrix} \sqrt[3]{2} & tg \, 2\pi \\ -1,2 & 1 \\ 0 & 4 \end{pmatrix}$$

(resp.: det. = -744,0480)

```
% EXEMPLOS PARA O MATLAB
figure (1)
x=-10:1:10;
f=x.^2+6.*x+9;
plot(x,f,'b')
title('Gráfico f(x)=x^2+6^*x+9')
xlabel('Eixo x')
ylabel('Eixo y')
grid
figure (2)
x=-10:1:10;
g=2./x;
plot(x,g,'g')
title('Gráfico g(x)=2/x')
xlabel('Eixo x')
ylabel('Eixo y')
grid
r = solve('x^2+6*x+9')
syms x
11=limit((sqrt(x)-sqrt(3))/(x-3),x,3)
12=limit((2*x^3+1)/(x^4+2*x+3),x,-inf)
d1=diff(2*x+6)
d2=diff((sin(x)+cos(x))^3)
d3=diff(sqrt(x^2+3),2)
d4=simplify(d3)
11=int(1/(x^2+1))
12=int(1/(x^2+1),0,1)
```