On primes p for which d divides $\operatorname{ord}_p(g)$

Pieter Moree

Abstract

Let $N_g(d)$ be the set of primes p such that the order of g modulo p, $\operatorname{ord}_p(g)$, is divisible by a prescribed integer d. Wiertelak showed that this set has a natural density, $\delta_g(d)$, with $\delta_g(d) \in \mathbb{Q}_{>0}$. Let $N_g(d)(x)$ be the number of primes $p \leq x$ that are in $N_g(d)$. A simple identity for $N_g(d)(x)$ is established. It is used to derive a more compact expression for $\delta_g(d)$ than known hitherto.

1 Introduction

Let g be a rational number such that $g \notin \{-1,0,1\}$ (this assumption on g will be maintained throughout this note). Let $N_g(d)$ denote the set of primes p such that the order of $g \pmod{p}$ is divisible by d (throughout the letter p will also be used to indicate primes). Let $N_g(d)(x)$ denote the number of primes in $N_g(d)$ not exceeding x. The quantity $N_g(d)(x)$ (and some variations of it) has been the subject of various publications [1, 3, 4, 7, 9, 11-19]. Hasse showed that $N_g(d)$ has a Dirichlet density in case d is an odd prime [3], respectively d=2 [4]. The latter case is of additional interest since $N_g(2)$ is the set of prime divisors of the sequence $\{g^k+1\}_{k=1}^{\infty}$. (One says that an integer divides a sequence if it divides at least one term of the sequence.) Wiertelak [12] established that $N_g(d)$ has a natural density $\delta_g(d)$ (around the same time Odoni [9] did so in the case d is a prime). In a later paper Wiertelak [15] proved, using sophisticated analytic tools, the following result (with Li(x) the logarithmic integral and with $\omega(d) = \sum_{p|d} 1$), which gives the best known error term to date.

Theorem 1 [15]. We have

$$N_g(d)(x) = \delta_g(d)\operatorname{Li}(x) + O_{d,g}\left(\frac{x}{\log^3 x}(\log\log x)^{\omega(d)+1}\right).$$

Wiertelak also gave a formula for $\delta_g(d)$ which shows that this is always a positive rational number. A simpler formula for $\delta_g(d)$ (in case g > 0) has only recently been given by Pappalardi [10]. With some effort Pappalardi's and Wiertelak's

expressions can be shown to be equivalent.

In this note a simple identity for $N_g(d)(x)$ will be established (given in Proposition 1). From this it is then inferred that $N_g(d)$ has a natural density $\delta_g(d)$ that is given by (4), which seems to be the simplest expression involving field degrees known for $\delta_g(d)$. This expression is then readily evaluated.

In order to state Theorem 2 some notation is needed. Write $g = \pm g_0^h$, where g_0 is positive and not an exact power of a rational and h as large as possible. Let $D(g_0)$ denote the discriminant of the field $\mathbb{Q}(\sqrt{g_0})$. The greatest common divisor of a and b respectively the lowest common multiple of a and b will be denoted by (a,b), respectively [a,b]. Given an integer d, we denote by d^{∞} the supernatural number (sometimes called Steinitz number), $\prod_{p|d} p^{\infty}$. Note that $(v,d^{\infty}) = \prod_{p|d} p^{\nu_p(v)}$.

Definition. Let d be even and let $\epsilon_g(d)$ be defined as in Table 1 with $\gamma = \max\{0, \nu_2(D(g_0)/dh)\}.$

Table 1: $\epsilon_q(d)$

$g \backslash \gamma$	$\gamma = 0$	$\gamma = 1$	$\gamma = 2$
g > 0	-1/2	1/4	1/16
g < 0	1/4	-1/2	1/16

Note that $\gamma \leq 2$. Also note that $\epsilon_g(d) = (-1/2)^{2^{\gamma}}$ if g > 0.

Theorem 2 We have

$$\delta_g(d) = \frac{\epsilon_1}{d(h, d^{\infty})} \prod_{p|d} \frac{p^2}{p^2 - 1},$$

with

$$\epsilon_{1} = \begin{cases} 1 & \text{if } 2 \nmid d; \\ 1 + 3(1 - \operatorname{sgn}(g))(2^{\nu_{2}(h)} - 1)/4 & \text{if } 2||d \text{ and } D(g_{0}) \nmid 4d; \\ 1 + 3(1 - \operatorname{sgn}(g))(2^{\nu_{2}(h)} - 1)/4 + \epsilon_{g}(d) & \text{if } 2||d \text{ and } D(g_{0})| 4d; \\ 1 & \text{if } 4|d, D(g_{0}) \nmid 4d; \\ 1 + \epsilon_{|g|}(d) & \text{if } 4|d, D(g_{0})| 4d. \end{cases}$$

In particular, if q > 0, then

$$\epsilon_{1} = \begin{cases} 1 + (-1/2)^{2^{\max\{0,\nu_{2}(D(g_{0})/dh)\}}} & \text{if } 2|d \text{ and } D(g_{0})|4d; \\ 1 & \text{otherwise,} \end{cases}$$

and if h is odd, then

$$\epsilon_1 = \begin{cases} 1 + (-1/2)^{2^{\max\{0,\nu_2(D(g)/dh)\}}} & \text{if } 2|d \text{ and } D(g)|4d; \\ 1 & \text{otherwise,} \end{cases}$$

Using Proposition 1 of Section 2 it is also very easy to infer the following result, valid under the assumption of the Generalized Riemann Hypothesis (GRH).

Theorem 3 Under GRH we have

$$N_g(d)(x) = \delta_g(d)\operatorname{Li}(x) + O_{d,g}(\sqrt{x}\log^{\omega(d)+1}x),$$

where the implied constant depends at most on d and q.

In Tables 2 and 3 (Section 6) a numerical demonstration of Theorem 2 is given.

2 The key identity

Let $\pi_L(x)$ denote the number of unramified primes $p \leq x$ that split completely in the number field L. For integers r|s let $K_{s,r} = \mathbb{Q}(\zeta_s, g^{1/r})$.

The starting point of the proof of Theorem 2 is the following proposition. By $r_p(g)$ the residual index of g modulo p is denoted (we have $r_g(p) = [\mathbb{F}_p : \langle g \rangle]$). Note that $\operatorname{ord}_p(g)r_p(g) = p - 1$.

Proposition 1 We have $N_g(d)(x) = \sum_{v|d^{\infty}} \sum_{\alpha|d} \mu(\alpha) \pi_{K_{dv,\alpha v}}(x)$.

Proof. Let us consider the quantity $\sum_{\alpha|d} \mu(\alpha) \pi_{K_{dv,\alpha v}}(x)$. A prime p counted by this quantity satisfies $p \leq x$, $p \equiv 1 \pmod{dv}$ and $r_p(g) = vw$ for some integer w. Write $w = w_1 w_2$, with $w_1 = (w, d)$. Then the contribution of p to $\sum_{\alpha|d} \mu(\alpha) \pi_{K_{dv,\alpha v}}(x)$ is $\sum_{\alpha|w_1} \mu(\alpha)$. We conclude that

$$\sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{dv,\alpha v}}(x) =$$

$$\#\{p \le x : p \equiv 1 \pmod{dv}, \ v|r_p(g) \text{ and } (\frac{r_p(g)}{v}, d) = 1\}.$$
 (1)

It suffices to show that

$$N_g(d)(x) = \sum_{v|d^{\infty}} \#\{p \le x : p \equiv 1 \pmod{dv}, \ v|r_p(g) \text{ and } (\frac{r_p(g)}{v}, d) = 1\}.$$

Let p be a prime counted on the right hand side. Note that it is counted only once, namely for $v = (r_p(g), d^{\infty})$. From $\operatorname{ord}_p(g)r_p(g) = p-1$ it is then inferred that $d|\operatorname{ord}_p(g)$. Hence every prime counted on the right hand side is counted on the left hand side as well. Next consider a prime p counted by $N_g(d)(x)$. It satisfies $p \equiv 1 \pmod{d}$. Note there is a (unique) integer v such that $v|d^{\infty}$, $p \equiv 1 \pmod{dv}$ and $(r_p(g)/v, d) = 1$. Thus p is also counted on the right hand side.

Remark 1. From (1) and Chebotarev's density theorem it follows that

$$0 \le \sum_{\alpha|d} \frac{\mu(\alpha)}{[K_{dv,\alpha v} : \mathbb{Q}]} \le \frac{1}{[K_{dv,v} : \mathbb{Q}]}.$$
 (2)

3 Analytic consequences

Using Proposition 1 it is rather straightforward to establish that $N_g(d)$ has a natural density $\delta_q(d)$.

Lemma 1 Write $g = g_1/g_2$ with g_1 and g_2 integers. Then

$$N_g(d)(x) = \left(\delta_g(d) + O_{d,g}\left(\frac{(\log\log x)^{\omega(d)}}{\log^{1/8} x}\right)\right) \operatorname{Li}(x),\tag{3}$$

where the implied constant depends at most on d and g and

$$\delta_g(d) = \sum_{v|d^{\infty}} \sum_{\alpha|d} \frac{\mu(\alpha)}{[K_{dv,\alpha v} : \mathbb{Q}]}.$$
(4)

Corollary 1 The set $N_g(d)$ has a natural density $\delta_g(d)$.

The proof of Lemma 1 makes use of the following consequence of the Brun-Titchmarsh inequality.

Lemma 2 Let $\pi(x; l, k) = \sum_{p \le x, p \equiv l \pmod{k}} 1$. Then

$$\sum_{\substack{v>z\\v|d^{\infty}}} \pi(x; dv, 1) = O_d\left(\frac{x}{\log x} \frac{(\log z)^{\omega(d)}}{z}\right),\,$$

uniformly for $3 \le z \le \sqrt{x}$.

Proof. On noting that $M_d(x) := \#\{v \leq x : v | d^{\infty}\} \leq (\log x)^{\omega(d)} / \log 2$, it straightforwardly follows that

$$\sum_{\substack{v>z\\v\mid d^{\infty}}}\frac{1}{v}=\int_{z}^{\infty}\frac{dM_{d}(z)}{z}\ll_{d}\frac{(\log z)^{\omega(d)}}{z}.$$

By the Brun-Titchmarsh inequality we have $\pi(x; w, 1) \ll x/(\varphi(w) \log(x/w))$, where the implied constant is absolute and w < x. Thus

$$\sum_{\substack{z < v, \ dv \le x^{2/3} \\ v \mid d^{\infty}}} \pi(x; dv, 1) \ll \frac{x}{\varphi(d) \log x} \sum_{\substack{v > z \\ v \mid d^{\infty}}} \frac{1}{v} \ll_d \frac{x}{\log x} \frac{(\log z)^{\omega(d)}}{z}.$$
 (5)

Using the trivial estimate $\pi(x; d, 1) \leq x/d$ we see that

$$\sum_{\substack{dv > x^{2/3} \\ d|v^{\infty}}} \pi(x; dv, 1) \le \sum_{\substack{dv > x^{2/3} \\ v|d^{\infty}}} \frac{x}{dv} \le \sum_{\substack{w > x^{2/3} \\ w|d^{\infty}}} \frac{x}{w} \ll_d x^{1/3} (\log x)^{\omega(d)}.$$
 (6)

On combining (5) and (6) the proof is readily completed.

Proof of Lemma 1. From [10, Lemma 2.1] we recall that there exist absolute constants A and B such that if $v \leq B(\log x)^{1/8}/d$, then

$$\pi_{K_{dv,\alpha v}}(x) = \frac{\operatorname{Li}(x)}{[K_{dv,\alpha v} : \mathbb{Q}]} + O_g(xe^{-\frac{A}{dv}\sqrt{\log x}}). \tag{7}$$

Let $y = B(\log x)^{1/8}/d$. From the proof of Proposition 1 we see that

$$N_g(d)(x) = \sum_{\substack{v \mid d^{\infty} \\ v \leq y}} \sum_{\alpha \mid d} \mu(\alpha) \pi_{K_{dv,\alpha v}}(x) + O\left(\sum_{\substack{v > y \\ v \mid d^{\infty}}} \pi(x; dv, 1)\right) = I_1 + O(I_2),$$

say. By Lemma 2 we obtain that $I_2 = O(x(\log \log x)^{\omega(d)} \log^{-9/8} x)$. Now, by (7), we obtain

$$I_1 = \sum_{\substack{v \mid d^{\infty} \\ v < y}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{[K_{dv,\alpha v} : \mathbb{Q}]} + O_{d,g}(y \frac{x}{\log^{5/4} x}).$$

Denote the latter double sum by I_3 . Keeping in mind Remark 1 we obtain

$$I_3 = \delta_g(d) + O\left(\sum_{\substack{v \mid d^{\infty} \\ v > y}} \sum_{\alpha \mid d} \frac{\mu(\alpha)}{[K_{dv,\alpha v} : \mathbb{Q}]}\right).$$

Using (2) and Lemma 3 it follows that

$$\sum_{\substack{v|d^{\infty}\\v>y}} \sum_{\alpha|d} \frac{\mu(\alpha)}{[K_{dv,\alpha v}:\mathbb{Q}]} = O\left(\sum_{\substack{v|d^{\infty}\\v>y}} \frac{1}{[K_{dv,v}:\mathbb{Q}]}\right) = O\left(\frac{1}{\varphi(d)} \sum_{\substack{v|d^{\infty}\\v>y}} \frac{h}{v^2}\right)$$
$$= O_d\left(\frac{h(\log y)^{\omega(d)}}{y}\right) = O_{d,g}\left(\frac{(\log y)^{\omega(d)}}{y}\right),$$

and hence

$$I_3 = \delta_g(d) + O_{d,g}\left(\frac{(\log y)^{\omega(d)}}{y}\right).$$

The result follows on collecting the various estimates.

4 The evaluation of the density $\delta_q(d)$

A crucial ingredient in the evaluation of $\delta_q(d)$ is the following lemma.

Lemma 3 [6]. Write $g = \pm g_0^h$, where g_0 is positive and not an exact power of a rational. Let $D(g_0)$ denote the discriminant of the field $\mathbb{Q}(\sqrt{g_0})$. Put $m = D(g_0)/2$ if $\nu_2(h) = 0$ and $D(g_0) \equiv 4 \pmod{8}$ or $\nu_2(h) = 1$ and $D(g_0) \equiv 0 \pmod{8}$, and $m = [2^{\nu_2(h)+2}, D(g_0)]$ otherwise. Put

$$n_r = \begin{cases} m & \text{if } g < 0 \text{ and } r \text{ is odd;} \\ [2^{\nu_2(hr)+1}, D(g_0)] & \text{otherwise.} \end{cases}$$

We have

$$[K_{kr,k}:\mathbb{Q}]=[\mathbb{Q}(\zeta_{kr},g^{1/k}):\mathbb{Q}]=\frac{\varphi(kr)k}{\epsilon(kr,k)(k,h)},$$

where, for g > 0 or g < 0 and r even we have

$$\epsilon(kr,k) = \begin{cases} 2 & \text{if } n_r | kr; \\ 1 & \text{if } n_r \nmid kr, \end{cases}$$

and for g < 0 and r odd we have

$$\epsilon(kr,k) = \begin{cases} 2 & \text{if } n_r | kr; \\ \frac{1}{2} & \text{if } 2 | k \text{ and } 2^{\nu_2(h)+1} \nmid k; \\ 1 & \text{otherwise.} \end{cases}$$

Remark. Note that if h is odd, then $n_r = [2^{\nu_2(r)+1}, D(g)]$. Note that $n_r = n_{\nu_2(r)}$.

The 'generic' degree of $[K_{dv,\alpha v}:\mathbb{Q}]$ equals $\varphi(dv)\alpha v/(\alpha v,h)$ and on substituting this value in (4) we obtain the quantity S_1 which is evaluated in the following lemma.

Lemma 4 We have

$$S_1 := \sum_{v|d^{\infty}} \sum_{\alpha|d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(dv)\alpha v} = S(d, h),$$

where

$$S(d,h) := \frac{1}{d(h,d^{\infty})} \prod_{p|d} \frac{p^2}{p^2 - 1}.$$

Proof. Since for $v|d^{\infty}$ we have $\varphi(dv) = v\varphi(d)$, we can write

$$S_1 = \frac{1}{\varphi(d)} \sum_{v \mid d^{\infty}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha v^2} = \frac{1}{\varphi(d)} \sum_{v \mid d^{\infty}} \frac{(v, h)}{v^2} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)}.$$

The expression in the inner sum is multiplicative in α and hence

$$\sum_{\alpha|d} \frac{\mu(\alpha)(\alpha v, h)}{\alpha(v, h)} = \prod_{p|d} \left(1 - \frac{(pv, h)}{p(v, h)} \right) = \begin{cases} \frac{\varphi(d)}{d} & \text{if } (h, d^{\infty}) | (v, d^{\infty}); \\ 0 & \text{otherwise.} \end{cases}$$

On noting that $(v,h)/v^2$ is multiplicative in v and that for $k \geq \nu_p(h)$

$$\sum_{r=k}^{\infty} \frac{(p^r, h)}{p^{2r}} = \frac{p^{\nu_p(h)+2-2k}}{p^2 - 1},$$

one concludes that

$$S_1 = \frac{1}{d} \sum_{\substack{v \mid d^{\infty} \\ (h, d^{\infty}) \mid v}} \frac{(v, h)}{v^2} = \frac{1}{d} \prod_{p \mid d} \sum_{r \geq \nu_p(h)} \frac{(p^r, h)}{p^{2r}} = \frac{1}{d} \prod_{p \mid d} \frac{p^{2-\nu_p(h)}}{p^2 - 1} = S(d, h).$$

This completes the proof.

Remark. Note that the condition $(h, d^{\infty})|(v, d^{\infty})$ is equivalent with $\nu_p(v) \geq \nu_p(h)$ for all primes p dividing d.

By a minor modification of the proof of the latter result we infer:

Lemma 5 Let $k \ge 0$ be an integer. Then

$$S_2(k) := \sum_{\substack{v \mid d^{\infty} \\ \nu_2(v) \ge \nu_2(h) + k}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(dv)\alpha v} = 4^{-k} S(d, h).$$

The next lemma gives an evaluation of yet another variant of S_1 .

Lemma 6 Let D be a fundamental discrimant. Then

$$S_3(D) := \sum_{\substack{v \mid d^{\infty} \\ S^{2/2}(hd/\alpha)+1 \text{ Dildy}}} \sum_{\alpha \mid d} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(dv)\alpha v} = \begin{cases} 4^{-\gamma}S(d, h) & \text{if } 2 \mid d, \ D \mid 4d \ and \ \gamma \geq 1; \\ -\frac{S(d, h)}{2} & \text{if } 2 \mid d, \ D \mid 4d \ and \ \gamma = 0; \\ 0 & \text{otherwise,} \end{cases}$$

where $\gamma = \max\{0, \nu_2(D/dh)\}.$

Proof. The integer $[2^{\nu_2(hd/\alpha)+1},D]$ is even and is required to divide d^{∞} , hence $S_3(D)=0$ if d is odd. Assume that d is even. If D has an odd prime divisor not divinding d, then $D \nmid d^{\infty}$ and hence $S_3(D)=0$. On noting that $\nu_2(D) \leq \nu_2(4d)$ and that the odd part of D is squarefree, it follows that if $S_3(D) \neq 0$, then D|4d. So assume that 2|d and D|4d. Note that the condition $[2^{\nu_2(hd/\alpha)+1},D]|dv$ is equivalent with $\nu_2(v) \geq \nu_2(h) + \max\{1,\nu_2(D/dh)\}$ for the α that are odd, and $\nu_2(v) \geq \nu_2(h) + \gamma$ for the even α . Thus if $\gamma \geq 1$ the condition $[2^{\nu_2(hd/\alpha)+1},D]|dv$ is equivalent with $\nu_2(v) \geq \nu_2(h) + \gamma$ and then, by Lemma 5, $S_3(D) = S_2(\gamma) = 4^{-\gamma}S(d,h)$. If $\gamma = 0$ then

$$S_3(D) = S_2(0) - \sum_{\substack{v \mid d^{\infty} \\ \nu_2(v) = \nu_2(h) \\ 2 \nmid \alpha}} \sum_{\substack{\alpha \mid d \\ 2 \nmid \alpha}} \frac{\mu(\alpha)(\alpha v, h)}{\varphi(dv)\alpha v}.$$

By Lemma 5 it follows that $S_2(0) = S(d, h)$. A variation of Lemma 4 yields that the latter double sum equals 3S(d, h)/2.

Remark. Put

$$\epsilon_2(D) = \begin{cases} (-1/2)^{2^{\max\{0,\nu_2(D/dh)\}}} & \text{if } 2|d \text{ and } D|4d; \\ 0 & \text{otherwise.} \end{cases}$$

Note that Lemma 6 can be rephrased as stating that if D is a fundamental discriminant, then $S_3(D) = \epsilon_2(D)S(d,h)$.

Let g > 0. It turns out that $\operatorname{ord}_p(g)$ is very closely related to $\operatorname{ord}_p(-g)$ and this can be used to express $N_{-g}(d)(x)$ in terms of $N_g(*)(x)$. From this $\delta_{-g}(d)$ is then easily evaluated, once one has evaluated $\delta_g(d)$.

Lemma 7 Let g > 0. Then

$$N_{-g}(d)(x) = \begin{cases} N_g(\frac{d}{2})(x) + N_g(2d)(x) - N_g(d)(x) + O(1) & if \ d \equiv 2 \pmod{4}; \\ N_g(d)(x) + O(1) & otherwise. \end{cases}$$

In particular,

$$\delta_{-g}(d) = \begin{cases} \delta_g(\frac{d}{2}) + \delta_g(2d) - \delta_g(d) & \text{if } d \equiv 2 \pmod{4}; \\ \delta_g(d) & \text{otherwise.} \end{cases}$$

The proof of this lemma is a consequence of Corollary 1 and the following observation.

Lemma 8 Let p be odd and $g \neq 0$ be a rational number. Suppose that $\nu_p(g) = 0$. Then

$$\operatorname{ord}_p(-g) = \begin{cases} 2\operatorname{ord}_p(g) & \text{if } 2 \nmid \operatorname{ord}_p(g); \\ \operatorname{ord}_p(g)/2 & \text{if } \operatorname{ord}_p(g) \equiv 2(\operatorname{mod } 4); \\ \operatorname{ord}_n(g) & \text{if } 4|\operatorname{ord}_n(g). \end{cases}$$

Proof. Left to the reader.

Remark. It is of course also possible to evaluate $\delta_g(d)$ for negative g using the expression (4) and Lemma 3, however, this turns out to be rather more cumbersome than proceeding as above.

5 The proofs of Theorems 2 and 3

Proof of Theorem 2. By Lemma 1 it suffices to show that

$$\sum_{v|d^{\infty}} \sum_{\alpha|d} \frac{\mu(\alpha)}{[K_{dv,\alpha v} : \mathbb{Q}]} = \epsilon_1 S(d,h)$$

If g > 0, then it follows by Lemma 3 that $\delta_g(d) = S_1 + S_3(D(g_0))$ and by Lemmas 4 and 6 (with $D = D(g_0)$), the claimed evaluation then results in this case. If h is odd, then similarly, $\delta_g(d) = S_1 + S_3(D(g))$ (cf. the remark following Lemma 3) and, again by Lemma 4 and 6, the claimed evaluation then is deduced in this case. If g < 0, the result follows after some computation on invoking Lemma 7 and the result for g > 0.

Proof of Theorem 3. Recall that $\pi_L(x)$ denotes the number of unramified primes $p \leq x$ that split completely in the number field L. Under GRH it is known, cf. [5], that

$$\pi_L(x) = \frac{\operatorname{Li}(x)}{[L:\mathbb{Q}]} + O\left(\frac{\sqrt{x}}{[L:\mathbb{Q}]}\log(d_L x^{[L:\mathbb{Q}]})\right),\,$$

where d_L denotes the absolute discriminant of L. From this it follows on using the estimate $\log |d_{K_{dv_1,\alpha v}}| \leq dv(\log(dv) + \log |g_1g_2|)$ from [6] that, uniformly in v,

$$\pi_{K_{dv,\alpha v}}(x) = \frac{\operatorname{Li}(x)}{[K_{dv,\alpha v} : \mathbb{Q}]} + O_{d,g}(\sqrt{x} \log x),$$

where α is an arbitrary divisor of d. On noting that in Proposition 1 we can restrict to those integers v satisfying $dv \leq x$ and hence the number of non-zero terms in Proposition 1 is bounded above by $2^{\omega(d)}(\log x)^{\omega(d)}$, the result easily follows.

6 Some examples

In this section we provide some numerical demonstration of our results.

The numbers in the column 'experimental' arose on counting how many primes $p \le p_{10^8} = 2038074743$ with $\nu_p(g) = 0$, satisfy $d|\operatorname{ord}_p(g)$.

g	g_0	h	$D(g_0)$	d	ϵ_1	$\delta_g(d)$	numerical	experimental
2	2	1	8	2	17/16	17/24	$0.70833333\cdots$	0.70831919
2	2	1	8	4	5/4	5/12	$0.41666666 \cdots$	0.41667021
2	2	1	8	8	1/2	1/12	$0.08333333\cdots$	0.08333144
3	3	1	12	11	1	11/120	$0.09166666 \cdots$	0.09165950
3	3	1	12	12	1/2	1/16	$0.06250000 \cdots$	0.06249098
4	2	2	8	5	1	5/24	$0.20833333\cdots$	0.20833328
4	2	2	8	6	5/4	5/32	$0.15625000 \cdots$	0.15625824

Table 2: The case g > 0

Table 3: The case q < 0

g	g_0	h	$D(g_0)$	d	ϵ_1	$\delta_g(d)$	numerical	experimental
-2	3	1	8	2	17/16	17/24	$0.70833333\cdots$	0.70835101
-2	2	1	8	4	5/4	5/12	$0.41666666 \cdots$	0.41667021
-2	2	1	8	6	17/16	17/64	$0.26562500 \cdots$	0.26562628
-3	3	1	12	5	1	5/24	$0.20833333\cdots$	0.20834107
-3	3	1	12	12	1/2	1/16	$0.06250000 \cdots$	0.06249098
-4	2	2	8	2	2	2/3	$0.66666666 \cdots$	0.66666122
-4	2	2	8	4	1/2	1/8	$0.08333333\cdots$	0.08333144
-9	3	2	12	2	5/2	5/6	$0.83333333 \cdots$	0.83333215
-9	3	2	12	6	11/4	11/32	$0.34375000 \cdots$	0.34375638

Acknowledgement. I like to thank Francesco Pappalardi for sending me his paper [10]. Theorem 1.3 in that paper made me realize that a relatively simple formula for $\delta_g(d)$ exists. The data in the tables are produced by a C^{++} program kindly written by Yves Gallot.

References

- [1] C. Ballot, Density of prime divisors of linear recurrences, *Mem. Amer. Math. Soc.* **115** (1995), no. 551, viii+102 pp..
- [2] K. Chinen and L. Murata, On a distribution property of the residual order of $a \pmod{p}$. I, J. Number Theory 105 (2004), 60–81.
- [3] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von durch eine vorgegebene Primzahl $l \neq 2$ teilbarer bzw. unteilbarer Ordnung mod. p ist, Math. Ann. 162 (1965/1966), 74–76.
- [4] H. Hasse, Über die Dichte der Primzahlen p, für die eine vorgegebene ganzrationale Zahl $a \neq 0$ von gerader bzw.ungerader Ordnung mod. p ist, Math. Ann. 166 (1966), 19–23.
- [5] S. Lang, On the zeta function of number fields, *Invent. Math.* 12 (1971), 337–345.
- [6] P. Moree, On the distribution of the order and index of g(mod p) over residue classes I, arXiv:math.NT/0211259, J. Number Theory, to appear.
- [7] P. Moree, Asymptotically exact heuristics for prime divisors of the sequence $\{a^k+b^k\}_{k=1}^{\infty}$, arXiv:math.NT/0311483, submitted.
- [8] L. Murata and K. Chinen, On a distribution property of the residual order of $a \pmod{p}$. II, J. Number Theory 105 (2004), 82–100.
- [9] R. W. K. Odoni, A conjecture of Krishnamurthy on decimal periods and some allied problems, *J. Number Theory* **13** (1981), 303–319.
- [10] F. Pappalardi, Square free values of the order function, New York J. Math. 9 (2003), 331-344.

- [11] K. Wiertelak, On the density of some sets of primes. I, Acta Arith. 34 (1977/78), 183–196.
- [12] K. Wiertelak, On the density of some sets of primes. II, Acta Arith. 34 (1977/78), 197–210.
- [13] K. Wiertelak, On the density of some sets of primes. III, Funct. Approx. Comment. Math. 10 (1981), 93–103.
- [14] K. Wiertelak, On the density of some sets of primes. III. Studies in pure mathematics, 761–773, Birkhäuser, Basel, 1983.
- [15] K. Wiertelak, On the density of some sets of primes. IV, Acta Arith. 43 (1984), 177–190.
- [16] K. Wiertelak, On the density of some sets of integers, Funct. Approx. Comment. Math. 19 (1990), 71–76.
- [17] K. Wiertelak, On the density of some sets of primes p, for which $(\operatorname{ord}_p b, n) = d$, Funct. Approx. Comment. Math. 21 (1992), 69–73.
- [18] K. Wiertelak, On the distribution of the smallest natural numbers having order mod p not coprime with a given integer, Acta Math. Hungar. 80 (1998), 271–284.
- [19] K. Wiertelak, On the density of some sets of primes p, for which $n|\operatorname{ord}_p a$, Funct. Approx. Comment. Math. 28 (2000), 237–241.

Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany. e-mail: moree@mpim-bonn.mpg.de