Analisi II - seconda parte

Operazioni con serie (termini generici)

• Combinazione lineare di due serie Se $\sum a_n$ e $\sum b_n$ sono due serie date e $\alpha, \beta \in \mathbb{R}$ allora $\sum c_n$, dove $c_n = \alpha \cdot a_n + \beta \cdot b_n \forall n \in \mathbb{N}^+$ si dice **combinazione lineare** delle due serie

NB:

- $\alpha=\beta=1$ Serie somma
- lpha
 eq 0, eta = 0 Serie prodotto per una costante

Teorema

Se
$$\sum a_n=A\in\mathbb{R}$$
 e $\sum b_n=B\in\mathbb{R}$ allora $\sum (lpha a_n+eta b_n)$, con $lpha,eta\in\mathbb{R}$ converge a $lpha A+eta B$

Dimostrazione

$$orall n$$
, $c_n=lpha a_n+eta b_n$

Serie con termini di segno misto

Si tratta di serie aventi infiniti termini positivi e infiniti termini negativi

Serie assolutamente convergenti e semplicemente convergenti

- ullet Si dice che $\sum a_n$ è assolutamente convergente (AC) se $\sum |a_n|$ è convergente
- Si dice che $\sum a_n$ è **semplicemente convergente** (SC) se è convergente MA $\sum |a_n|$ diverge

Teorema

$$\sum a_n$$
 è AC $\Leftrightarrow \sum a_n$ è convergente

Dimostrazione

Utilizzando il criterio generale di Cauchy Poichè $\sum |a_n|$ è convergente, vale Cauchy, cioè

$$\begin{array}{l} (\forall \varepsilon>0)(\exists \bar{n})(\forall n)(\forall p)(n>\bar{n}\Rightarrow ||a_{n+1}|+|a_{n+2}|+...+|a_{n+p}||<\varepsilon)\\ \text{Si ha } |a_{n+1}+...+a_{n+p}|\leq ||a_{n+1}|+|a_{n+2}|+...+|a_{n+p}||<\varepsilon\\ \text{Quindi } \sum a_n \text{ verifica la condizione di Cauchy e quindi converge} \end{array}$$

Serie a termini di segno alternato

Sia $(a_n)_n$ una successione in $\mathbb R$ t.c. $a_n>0 \forall n\in\mathbb N^+$ La serie $\sum a_n\cdot (-1)^n$ si dice serie a termini di segno alternato

Criterio di Leibniz

Sia una successione $(a_n)_n$ t.c.

- $a_n > 0 \forall n \in \mathbb{N}^+$
- $a_{n+1} \leq a_n$, non crescente Si ha che $\sum a_n \cdot (-1)^n$ converge se e solo se $\lim_n a_n = 0$ Inoltre vale la stime d'errore $|s-s_n| < a_n+1$

Idea

n dispari \Rightarrow aggiungo/tolgo sempre meno \Rightarrow convergo

Dimostrazione

• Convergenza $orall k \in \mathbb{N}^+$ si ha

$$\circ \ \ s_{2k+1} = s_{2k} - a_{2k+1} = s_{2k-1} + a_{2k} - a_{2k+1} \geq s_{2k+1} \geq ... \geq s_1$$

$$\circ \ \ s_{2k} = s_{2k-1} + a_{2k} = s_{2k-2} + a_{2k-1} + a_{2k} \leq s_{2k-2} \leq ... \leq s_2$$

$$\circ \ \ s_1 \leq s_{2k+1} \leq s_{2k+2} \leq s_{2k} \leq ... \leq s_2$$

La successione $(s_{2k+1})_k$ è non decrescente, limitata superiormente da s_2 Quindi per il teorema del limite della successione monotona esiste finito $\lim_{n \to 2n+1} s = s' \in \mathbb{R}$

$$s_{2k+1}=s_{2k}-a_{2k+1}$$
, se $k o +\infty$ si ha: $s'=s''-0$ $\lim s_{2k}=\lim s_{2k+1}=s(=s'=s'')$

due sottosuccessioni pari e dispari tendono allo stesso limite \Rightarrow la serie originale converge in quanto le due sottosuccessioni comprendono tutti gli elementi della serie originale

Stima d'errore

Supponiamo che
$$s=\sup_k s_{2k+1}$$
, $s=\sup_k s_{2k}$ e quindi $s_{2k+1}\leq s\leq s_{2n} orall n, k\in \mathbb{N}^+$ Risulta $|s-s_n|=$

- $ullet s-s_{2k+1} \leq s_{2k+2}-s_{2k+1} = a_{2k+2}, \, n=2k+1$
- $egin{aligned} ullet & s_{2k}-s \leq s_{2k}-s_{2k+1}=a_{2k+1}=a_{n+1} \ & ext{cioè} \ |s-s_n|=\leq a_{n+1} orall n \in \mathbb{N}^+ \end{aligned}$

Vale la proprietà

Sia $(a_n)_n$ in \mathbb{C} , $a_n=lpha_n+ieta_n$, dove $lpha_n,eta_N\in\mathbb{R} orall n\in\mathbb{N}^+$ e sia a=lpha+ieta con $lpha,eta\in\mathbb{R}$

Teorema

$$\lim_n a_n = a \Leftrightarrow \lim_n lpha_n = lpha$$
 e $\lim_n eta_n = eta$

Dimostrazione

Basta osservare che $a_n o a\Leftrightarrow lpha_n o lpha$ e $eta_n o eta$ per $n o +\infty$

Serie in $\mathbb C$

Sia $(a_n)_n$ una successione in $\mathbb C$ poniamo $s_n=a_1+...+a_n$. La coppia $((a_n)_n,(s_n)_n)$ si dice serie di numeri complessi e si indica con $\sum a_n$

- ullet si dice che $\sum a_n$ converge con somma $s\in\mathbb{C}$ se esiste $\lim_n s_n=s$
- si dice che $\sum a_n$ è AC se la serie dei moduli $\sum |a_n|$ è convergente
- Sia $a_n=lpha_n+ieta_n$ e $s_n=A_n+iB_n$, $s_n=a_1+...+a_n$, $A_n=A_1+...+A_n$, $B_n=B_1+...+B_n orall n\in \mathbb{N}^+$

Teorema

Si ha che $\sum a_n$ converge con somma $s\Leftrightarrow$ convergono $\sum \alpha_n$ e $\sum \beta_n$. Inoltre, posto $s=\lim_n s_n A=\lim_n A_n$, $B=\lim_n B_n$ si ha che s=A+iB

Teorema

Se $\sum a_n$ è AC, allora è convergente

Dimostrazione

Basta osservare che $|a_n|>|\alpha_n|$ e $>|\beta_n|$ $|\alpha_n|$ e $|\beta_n|$ convergono \Rightarrow convergono anche α_n e $|\beta_n|$ convergono \Rightarrow convergono anche α_n e $|\beta_n|$