Econ 219B Psychology and Economics: Applications (Lecture 11)

Stefano DellaVigna

April 4, 2018

Outline

- Menu Effects: Preference for Salient
- Menu Effects: Confusion
- Ohoice of Dominated Options
- Mental Accounting
- Persuasion
- Emotions: Mood
- Emotions: Arousal

Section 1

Menu Effects: Preference for Salient

- What happens with large set of options if decision-maker uninformed?
- Possibly use of irrelevant, but salient, information to choose
- Ho-Imai (2004). Order of candidates on a ballot
 - Exploit randomization of ballot order in California
 - Years: 1978-2002, Data: 80 Assembly Districts
- Notice: Similar studies go back to Bain-Hecock (1957)

Areas of randomization

• Use of randomized alphabet to determine first candidate on ballot

Year Election	Ra	nd	om	ize	d A	lpl	ab	et																		
1982 Primary	S	С	Х	D	Q	G	W	R	V	Y	U	Α	Ν	Η	L	Ρ	В	К	J	Ι	Е	Т	О	Μ	F	Z
General	L	\mathbf{S}	Ν	D	Х	Α	Μ	W	V	Т	О	F	Ι	В	К	Υ	U	Ρ	Е	Q	$^{\rm C}$	J	\mathbf{Z}	Η	R	G
1983 Consolidated	L	$^{\rm C}$	Ρ	$_{\rm K}$	Ι	Α	U	\mathbf{G}	\mathbf{Z}	О	Ν	В	Х	D	W	Η	Е	Μ	F	V	\mathbf{R}	S	Т	Υ	Q	J
1984 Primary	W	Μ	F	В	Q	Υ	Т	D	J	U	О	V	Ι	Κ	\mathbf{R}	Η	$_{\rm S}$	Ν	Р	$^{\rm C}$	Α	Е	L	Z	G	Χ
General	V	W	Ι	Η	\mathbf{R}	Q	\mathbf{G}	J	О	М	Т	\mathbf{S}	Υ	$^{\rm C}$	Α	F	U	Х	Κ	В	Ρ	Е	Ζ	Ν	D	L
1986 General	Q	Ν	Η	U	В	J	Е	\mathbf{G}	Μ	V	$_{\rm L}$	\mathbf{W}	Х	$^{\rm C}$	К	О	F	D	Ζ	\mathbf{R}	Υ	Ι	Т	$_{\rm S}$	Ρ	Α
1988 Primary	W	О	Κ	Ν	Q	Α	V	Т	Η	J	F	\mathbf{Z}	$_{\rm L}$	В	U	D	Υ	Μ	Ι	${\bf R}$	\mathbf{G}	С	Е	S	Х	Ρ
General	$_{\rm S}$	W	F	Μ	К	J	U	Υ	Α	Т	V	$_{\mathrm{G}}$	О	Ν	Q	В	D	Е	Ρ	$_{\rm L}$	\mathbf{Z}	$^{\rm C}$	Ι	Χ	R	Η
1990 Primary	Ε	J	В	Υ	Q	F	К	Μ	О	V	Х	$_{\rm L}$	Ν	\mathbf{Z}	$^{\rm C}$	\mathbf{W}	Α	Ρ	R	${\rm D}$	\mathbf{G}	Τ	Η	Ι	S	U
General	W	F	$^{\rm C}$	$_{\rm L}$	D	Ι	Ν	J	Η	V	Κ	О	\mathbf{S}	Α	\mathbf{R}	Е	Q	В	Τ	Μ	Υ	U	$^{\mathrm{G}}$	Ζ	Х	Ρ
1992 Primary	U	\mathbf{R}	F	Α	J	$^{\rm C}$	\mathbf{D}	Ν	Μ	К	Ρ	\mathbf{Z}	Υ	Х	\mathbf{G}	\mathbf{W}	О	Η	Е	В	Ι	S	V	L	Q	Τ
General	F	Y	U	Α	J	$_{\rm S}$	В	\mathbf{Z}	\mathbf{G}	О	\mathbf{E}	Q	${\rm R}$	L	Ι	Μ	Η	V	Ν	Τ	Ρ	D	К	Χ	C'	W
1994 Primary	Κ	J	Η	\mathbf{G}	Α	$_{ m M}$	Ι	Q	U	Ν	$^{\rm C}$	\mathbf{Z}	\mathbf{S}	W	V	\mathbf{R}	Ρ	Υ	В	$_{\rm L}$	О	Τ	${\rm D}$	F	Е	Χ
General	V	Ι	Α	Е	Μ	$_{\rm S}$	О	Κ	$_{\rm L}$	В	\mathbf{G}	Ν	W	Υ	D	Ρ	U	F	Ζ	Q	J	Х	$^{\rm C}$	R	Η	T
1996 Primary	G	\mathbf{E}	F	$^{\rm C}$	Υ	Ρ	\mathbf{D}	В	Ζ	Ι	V	Α	U	\mathbf{S}	Μ	L	Η	Κ	Ν	Τ	О	J	Q	R	X '	W
General	J	Y	\mathbf{E}	Ρ	Α	U	$_{\rm S}$	Q	В	Η	Τ	${\rm R}$	$_{\rm K}$	Ν	$_{\rm L}$	Х	F	\mathbf{D}	О	\mathbf{G}	Μ	W	Ι	Z	C	V
1998 Primary	L	W	U	J	Х	Κ	$^{\rm C}$	Ν	D	О	Q	Α	Ρ	Т	\mathbf{Z}	\mathbf{R}	Υ	F	Е	V	В	Η	\mathbf{G}	Ι.	Μ	S
General	W	Κ	D	Ν	V	Α	\mathbf{G}	Ρ	Υ	$^{\rm C}$	\mathbf{Z}	Ι	\mathbf{S}	Т	L	J	Х	Q	О	F	Η	\mathbf{R}	В	U :	Μ	Ε
2000 Primary	О	Ρ	$^{\rm C}$	Υ	Ι	Η	Х	\mathbf{Z}	V	\mathbf{R}	$_{\rm S}$	Q	\mathbf{E}	$_{\rm K}$	$_{\rm L}$	G	\mathbf{D}	W	J	U	Τ	Μ	В	F	Α	Ν
General	Ι	Т	F	\mathbf{G}	J	$_{\rm S}$	W	\mathbf{R}	Ν	М	Κ	U	Υ	L	D	$^{\rm C}$	Q	Α	Η	Х	О	Е	В	V	Ρ	\mathbf{z}
2002 Primary	W	Ι	Ζ	$^{\rm C}$	О	$_{ m M}$	Α	Q	\mathbf{U}	Κ	Х	\mathbf{E}	В	Υ	Ν	Ρ	Т	\mathbf{R}	${\bf L}$	V	$_{\rm S}$	J	Η	D	F	G
General	Η	Μ	V	Ρ	\mathbf{E}	В	Q	U	G	Ν	\mathbf{D}	Κ	Х	\mathbf{Z}	J	Α	W	Y	\mathbf{C}	$^{\rm O}$	$_{\rm S}$	F	Ι	Τ	R	L
2003 Recall	R	W	Q	О	J	М	V	Α	Η	В	S	G	Z	Х	Ν	Т	$^{\rm C}$	I	Е	Κ	U	Ρ	D	Υ	F	L

Table 1: Randomized Alphabets Used for the California Statewide Elections Since 1982.

- Observe each candidate in different orders in different districts
- Compute absolute vote (Y) gain

$$E[Y(i = 1) - Y(i \neq 1)]$$

and percentage vote gain

$$E[Y(i = 1) - Y(i \neq 1)]/E[Y(i \neq 1)]$$

- Result:
 - Small to no effect for major candidates
 - Large effects on minor candidates

Primary Elections, 1998 & 2000

		Ger	ıeral		Primary					
	Abso	olute	Rela	tive	Abso	lute	Rela	tive		
	ATE	SE	ATE	SE	ATE	$_{ m SE}$	ATE	SE		
Democratic	0.05	0.46	0.25	0.90	1.89	0.32	43.58	5.53		
Republican	-0.06	0.53	-0.43	1.29	2.16	0.46	33.62	5.91		
American Independent	0.16	0.02	20.83	1.39	2.33	0.15	26.76	3.55		
Green	0.56	0.17	21.18	5.82	3.15	1.16	6.24	3.54		
Libertarian	0.23	0.02	14.56	1.03	6.59	1.42	71.92	13.55		
Natural Law	0.31	0.06	26.13	2.85	0.40	0.08	44.78	5.45		
Peace and Freedom	0.28	0.03	25.49	2.15	6.31	0.53	14.75	1.43		
Reform	0.26	0.07	19.57	2.23	4.11	1.56	48.45	9.66		
Nonpartisan	1.95	0.30	9.21	3.31	3.44	0.78	19.42	4.05		

Table 3: Party-Specific Average Causal Effects of Being Listed in First Position on Ballots Using All Races from 1978 to 2002. ATE and SE represent the average causal effects and their standard errors, respectively. For general and primary elections, the left two columns present the estimates of average absolute gains in terms of the total or party vote, respectively, while the right two columns show those of average relative gains. Each candidate-specific effect is averaged over different races to obtain the overall average effect for each party. In general elections, only minor party and nonpartisan candidates are affected by the ballot order. In primaries, however, the candidates of all parties are affected. The largest effects are found for nonpartisan candidates.

Investors with Limited Attention

- Barber-Odean (2008). Investor with limited attention
 - Stocks in portfolio: Monitor continuously
 - Other stocks: Monitor extreme deviations (salience)
- Which stocks to purchase? High-attention (salient) stocks. On days of high attention, stocks have demand increase
- Market interaction: Small investors are:
 - Net buyers of high-attention stocks
 - Net sellers of low-attention stocks.
- Measure of net buying is Buy-Sell Imbalance:

$$BSI_t = 100 * rac{\sum_{i} NetB \text{ uy }_{i,t} - \sum_{i} NetSelI_{i,t}}{\sum_{i} NetB \text{ uy }_{i,t} + \sum_{i} NetSelI_{i,t}}$$

Methodology: Bins

- Measures of attention:
 - same-day (abnormal) volume V_t
 - previous-day return r_{t-1}
 - stock in the news (Using Dow Jones news service)
- Use of sorting methodology
 - Sort variable (V_t, r_{t-1}) and separate into equal-sized bins (in this case, deciles)
 - Example: $V_t^1, V_t^2, V_t^3, \dots, V_t^{10a}, V_t^{10b}$
 - (Finer sorting at the top to capture top 5 percent)

Results: Abnormal Volume

• Effect of same-day (abnormal) volume V_t monotonic (Volume captures 'attention')

Results: Previous Returns

• Effect of previous-day return r_{t-1} U-shaped (Large returns—positive or negative—attract attention)

Results: Robustness

- Notice: Pattern is consistent across different data sets of investor trading
- Figures 2a and 2b a

Comparison

Patterns are the opposite for institutional investors (Fund managers)

Section 2

Menu Effects: Confusion

- Previous heuristics reflect preference to avoid difficult choices or for salient options
- Confusion is simply an error in the implementation of the preferences
- Different from most behavioral phenomena which are directional biases
- How common is it?
- Application 1. Shue-Luttmer (2009)
 - Choice of a political candidate among those in a ballot
 - California voters in the 2003 recall elections
- Do people vote for the candidate they did not mean to vote for?

Sample Ballots

Candidates to succeed GRAY DAVIS as Governor if he is recalled: Vote for One

	NATHAN WHITECLOUD WALTO			JOEL BRITTON	
	Student	Independent	_	Retired Meat Packer	Indepen
	MAURICE WALKER			AUDIE BOCK	
_	Real Estate Appraiser	Green	_	Educator/Small Businesswoman	Democ
	CHUCK WALKER			VIK S. BAJWA	Demo
_	Business intelligence Analyst	Republican	_	Businessman/Father/Entrepreneur	
	LINGEL H. WINTERS		-0	BADI BADIOZAMANI	
	Consumer Business Attorney	Democratic	_	Entrepreneur/Author/Executive	Indeper
	C.T. WEBER		\circ	VIP BHOLA	
	Labor Official/Analyst Peace	and Freedom		Attorney/Businessowner	Repub
	JIM WEIR			JOHN W. BEARD	
	Community College Teacher	Democratic		Businessman	Repub
\bigcirc	BRYAN QUINN			ED BEYER	
_	Businessman	Republican		Chief Operations Officer	Repub
	MICHAEL JACKSON			JOHN CHRISTOPHER BURTON	
	Satellite Project Manager	- Republican		Civil Rights Lawyer	Indepen
	JOHN 'JACK' MORTENSEN		-0	CRUZ M. BUSTAMANTE	
_	Contractor/Businessman	Democratic		Lieutenant Governor	Democ
\circ	DARRYL L MOBLEY		0	CHERYL BLY-CHESTER	Repub
_	Businessman/Entrepreneur	Independent	_	Businesswoman/Environmental En	gineer
\circ	JEFFREY L. MOCK			B.E. SMITH	
_	Business Owner	Republican		Lecturer	Indeper
	BRUCE MARGOLIN			DAVID RONALD SAMS	
	Marijuana Legalization Attorney	Democratic		Businesamen/Producer/Writer	Repub
	GINO MARTORANA			JAMIE ROSEMARY SAFFORD	
_	Restaurant Owner	Republican		Business Owner	Repub
	PAUL MARIANO			LAWRENCE STEVEN STRAUSS	
	Attorney	Democratic		Lawyer/Businessperson/Student	Democ
	ROBERT C. MANNHEIM			ARNOLD SCHWARZENEGGER	
	Retired Businessperson	Democratic		Actor/Businessman	Repub
	FRANK A. MACALUSO, JR.			GEORGE B. SCHWARTZMAN	
	Physician/Medical Doctor	Democratic	_	Businessman	Indepen
	PAUL 'CHIP' MAILANDER			MIKE SCHMIER	

	S. ISSA	
_	Engineer	Republica
\Box	BOB LYNN EDWARDS	
_	Attorney	Democrati
\bigcirc	ERIC KOREVAAR	
_	Scientist/Businessman	Democrati
\bigcirc	STEPHEN L. KNAPP	
_	Engineer	Republica
\bigcirc	KELLY P. KIMBALL	
	Business Executive	Democrati
\bigcirc	D.E. KESSINGER	
_	Paralegal/Property Manager	Democrati
\bigcirc	EDWARD 'ED' KENNEDY	
_	Businessman/Educator	Democrati
\circ	TREK THUNDER KELLY	
_	Business Executive/Artist	Independer
\circ	JERRY KUNZMAN	
_	Chief Executive Officer	Independer
\bigcirc	PETER V. UEBERROTH	
_	Businessman/Olympics Advisor	Republica
\cup	BILL PRADY	
_	Television Writer/Producer	Democrati
\circ	DARIN PRICE	
_	University Chemistry Instructor	Netural La
\cup	GREGORY J. PAWLIK	
_	Realtor/Businessman	Republica
\cup	LEONARD PADILLA	
_	Law School President	Independer
\bigcirc	RONALD JASON PALMIERI	
_	Gay Rights Attorney	Democrati
\cup	CHARLES 'CHUCK' PINEDA, JR.	-
_	State Hearing Officer	Democrati

County of Sacramento Statewide Special Election

7 100	Candidates Continued / Candidatos Continúa
54	ANGELYNE, Independent Entertainer/Artista
55	DOUGLAS ANDERSON, Republican Mortgage Broken/Agente hipotecario
56	IRIS ADAM, Natural Law Business Analyst/Analista empresarial
57	BROOKE ADAMS, Independent Business Executive/Ejecutiva de empresa
-58	ALEX-ST. JAMES, Republican Public Policy Strategist/Estratega de política pública
59	JIM HOFFMANN, Republican Teacher/Maestro
60	KEN HAMIDI, Libertarian State Tax OfficesFuncionario impositivo estatal
61	SARA ANN HANLON, independent Businesswoman/Muler de negocios
62	IVAN A. HALL, Green Custom Denture Manufactures/Febricante de dentaduras postizas a medida
63	JOHN J. "JACK" HICKEY, Libertarian Healthcare District Director/Director de distrito de atención de la salud
64	RALPH A. HERNANDEZ, Democratio District Aftorner Inspector/Inspector de fiscalia
65	C. STEPHEN HENDERSON, Independent Teacher/Misestro
66	ARIANNA HUFFINGTON, Independent Author/Columnist/Mother/Escritora/columnista/madre
67	- ART BROWN, Democratic Film Writer/Director/Guionista y director de cine
68	JOEL BRITTON, Independent Retired Meat Packer/Empacador de pame jubilado
69	AUDIE BOCK, Democratic Educator/Small Businesswomar/Educadors/propietaria de pequeña empresa
70	VIK S, BAJWA, Democratic Businessman/Father/Entrepreneur/Hombre de negocios/padre/empresario
71	BADI BADIOZAMANI, Independent Entrepreneur/Author/Executive/Empresario/escritorlejecutivo
72	VIP BHOLA, Republican Aftomey/Businessowner/Abogado/propietario de empresa
73	JOHN W. BEARD, Republican Businesman/Hombre de negocios
74	ED BEYER, Republican Chief Operations Officen/Funcionario principal de operaciones
75	JOHN CHRISTOPHER BURTON, Independent Christights Lawyer/Abogado de derechos civiles
76	CRUZ M. BUSTAMANTE, Democratic Lieutenant Governort/Jicegobernador
77	CHERYL BLY-CHESTER, Regublican Businesswoman/Environmental Engineer/Mujor de negocios/ingeniera ambiental
78	B.E. SMITH, independent Lecturer/Conferencists

Candidate listing continues on next page /
La lista de candidatos continúa en la página siguiente →

1 2	27	53 □	79 	105	131	157	183	209	235	261	28
							184	210	236	262	28
3	29	55	81	107	133	159	185	211	237	263	28
å	30	56	82	108	134	160	186	212	238	264	29
5	31	57	83	109	135	161	187	213	239	265	29
6	32	58	84	110	136	162	188	214	240	266	29
2	33	59	85	111	137	163	189	215	241	267	29
8	34	60	86	112	138	164	190	216	242	268	29
9	35	61	87	113	139	165	191	217	243	269	29
10	36	62	88	114	140	166	192	218	244	270	29
11	37	63	89	115	141	167	193	219	245	271	29
12	38	64	90	116	142	168	194	220	246	272	29
13	39	65	91	117	143	169	195	221	247	273	29
14	40	66	92	118	144	170	196	222	248	274	30
15	41	67	93	119	145	171	197	223	249	275	30
16	42	68	94	120	146	172	198	224	250	276	30:
17	43	69	95	121	147	173	199	225	251	277	303
18	44	70	96	122	148	174	200	226	252	278	304
19	45	71	97	123	149	175	201	227	253	279	308
20	46	72	98	124	150	176	202	228	254	280	300
21	47	73	99	125	151	177	203	229	255	281	30
22	48	74	100	126	152	178	204	230	256	282	308
23	49	75	101	127	153	179	205	231	257	283	309

Design

- Design:
 - Exploit closeness on ballot
 - Exploit specific features of closeness
 - Exploit random variation in placement of candidates on the ballot (as in Ho-Imai)
- First evidence: Can this matter?
- If so, it should affect most minor party candidates

Vote Share for Minor Candidate

Model

- Share β_1 of voters meaning to vote for major candidate j vote for neighboring candidate i
- Estimate β_1 by comparing voting for i when close to j and when far from j
- Notice: The impact depends on vote share of j
- Specification:

$$VoteShare_i = \beta_0 + \beta_1 * VSAdjacent_j + Controls + \varepsilon$$

• Rich set of fixed effects, so identify off changes in order

Results

Table 2: Primary Results

Dependent Variable: Voteshare = (votes / total votes)×100	(1)	(2)	(3)
Adjacent	0.104** (0.018)		
Adjacent × Schwarzenegger Adjacent × Bustamante Adjacent × McClintock		0.088** (0.025) 0.143** (0.025) 0.107* (0.045)	
Adjacent Dummy			0.037** (0.006)
Observations R-Squared	1,817,904 0.8676	1,817,904 0.8676	1,817,904 0.8676

- 1 in 1,000 voters vote for adjacent candidate
- Difference in error rate by candidate (see below)
- Notice: Each candidate has 2.5 adjacent candidates \rightarrow Total misvoting is 1 in 400 voters

Possible Interpretations

- Limited Attention: Candidates near major candidate get reminded in my memory
- Trembling Hand: Pure error
- To distinguish, go back to structure of ballot.
 - Much more likely to fill-in the bubble on right side than on left side if (2)
 - No difference if (1)

Investigate Interpretations

Dependent Variable

Table 3: Robustnes	ss Checks
--------------------	-----------

Voteshare = (votes / total votes)×100	(1)	(2)	(3)	(4)	(5)	(6)
Adjacent	0.082** (0.027)			0.104** (0.018)	0.113** (0.018)	
Adjacent Dummy	0.010 (0.007)					
Adjacent Dummy × CA Voteshare		0.112** (0.019)				
North Adjacent			0.082** (0.022)			0.082** (0.022)
South Adjacent			0.111** (0.033)			0.111** (0.033)
East Adjacent			0.143** (0.035)			
West Adjacent			0.038** (0.011)			
Diagonally Adjacent				0.002 (0.003)		
Punchcard Adjacent					0.030+ (0.018)	
Horizontally Adjacent						0.031** (0.008)
Horizontally Adjacent × Confusing Side						0.123** (0.038)
Observations	1,817,904	1,817,904	1,817,904	1,817,904	1,817,904	1,817,904
R-Squared	0.8676	0.8676	0.8677	0.8676	0.8677	0.8677

Interpretation and Additional Results

Effect is mostly due to Trembling hand / Confusion

Additional results:

 Spill-over of votes larger for more confusing voting methods (such as punch-cards)

Table 7: Interactions with Voting Technology

Dependent Variable: Voteshare = (votes / total votes)×100	(1)	(2)	(3)	(4)	
Adjacent × punch card	0.197**	0.200**			
	(0.020)	(0.019)			
Adjacent × optical scan	0.100**	0.108**			
	(0.020)	(0.019)			
Adjacent × touch screen	0.065**	0.067**			
	(0.016)	(0.015)			

Additional Results

Spill-over of votes larger for precincts with a larger share of lower-education demographics → more likely to make errors when faced with large number of options

Table 4: Overall Effect of Precinct Demographic Ch								
Dependent Variable:								
Voteshare =	(1)	(2)	(3)					
(votes / total votes)×100								
Adjacent	0.6368**	0.0544**	0.3353**					
	(0.1012)	(0.0162)	(0.0467)					
Adjacent × % HS Graduates	-0.0062**							
	(0.0013)							
Adjacent × % College Graduates	-0.0056**							

• This implies (small) aggregate effect: confusion has a different prevalence among the voters of different major candidates

(0.0010)

Confusion in Investor Choice

- Rashes (JF, 2001) Similar issue of confusion for investor choice
- Two companies:
 - Major telephone company MCI (Ticker MCIC)
 - Small investment company (ticker MCI)
 - Investors may confuse them
 - ullet MCIC is much bigger o this affects trading of company MCI

Summary Statistics

Daily return and volume information is shown for Massmutual Corporate Investors fund (MCI), MCI Communications (MCIC), and AT&T (T) for the sample period 11/21/94-11/13/97. The return for security j is expressed in percentages and defined as $\text{Log}[(P_{j,t+1} + D_{j,t+1})/P_{j,t}]$, where $P_{j,t}$ and $D_{j,t}$ are the price and dividend, respectively, for security j on day t.

	Mean (Return)	SD (Return)	Mean (Volume)	SD (Volume)	Mean (Price)
MCI MCIC	0.078 0.087	0.7136 2.3645	$4,155$ 4.154×10^{6}	$4,497$ 4.713×10^{6}	36.14 28.07
T	0.055	1.6440	$4.810 imes 10^6$	2.837×10^{6}	38.64

Correlation of Volume

- Check correlation of volume (Table III)
 - High correlation
 - What if two stocks have similar underlying fundamentals?
 - No correlation of MCI with another telephone company (AT&T)

Table III

Daily Volume Correlation Coefficient Matrices

This table presents the correlation of daily volumes between Massmutual Corporate Investors fund (MCI), MCI Communications (MCIC), AT&T (T) and the New York Stock Exchange Composite Index (NYSE). The pairwise Pearson product-moment correlations are shown with the standard error of these coefficients in parentheses.

	MCI	MCIC	T	NYSE					
Panel A: Sample Period 11/21/94-11/13/97									
MCI	1								
MCIC	0.5592	1							
	(0.0302)								
T	0.0291	0.1566	1						
	(0.0364)	(0.0360)							
NYSE	0.1162	0.2817	0.3397	1					
	(0.0362)	(0.0350)	(0.0343)						

Predict Returns

- Predict returns of smaller company with bigger company (Table IV)
- Returns Regression:

$$r_{MCI,t} = \alpha_0 + \alpha_1 r_{MCIC,t} + \beta X_t + \varepsilon_t$$

Constant	MCIC Return	(MCIC Return) * dummy (MCIC return <0)	T Return	S&P 500 Return	S&P Smallcap Return Residual	Lehman Long Bond Index Return	R^{2}
		Panel A: S	ample Perio	od 11/22/94	-11/13/97		
0.0956				0.0372	0.1011	0.0932	0.0286
(2.6223)				(0.9370)	(1.9233)	(2.3438)	0.0247
0.0954	0.0862			0.0128	0.1068	0.0905	0.0353
(2.6243)	(2.2779)			(0.3128)	(2.0356)	(2.2818)	0.0301
0.0957	0.0851		0.0171	0.0052	0.1077	0.0907	0.0355
(2.6306)	(2.2430)		(0.4190)	(0.1166)	(2.0501)	(2.2862)	0.0290
0.0721	0.1205	-0.0722		0.0149	0.1070	0.0913	0.0360
(1.5202)	(2.0557)	(-0.7664)		(0.3630)	(2.0375)	(2.3015)	0.0296

Results: Correlation

- Positive correlation $\alpha_1 \to \text{The swings in volume have some impact on prices.}$
- Difference between reaction to positive and negative news:

$$r_{MCI,t} = \alpha_0 + \alpha_1 r_{MCIC,t} + \alpha_2 r_{MCIC,t} * \mathbf{1} (r_{MCIC,t} < 0) + \beta X_t + \varepsilon_t$$

- Negative α_2 . Effect of arbitrage \rightarrow It is much easier to buy by mistake than to short a stock by mistake
- Size of confusion? Use relation in volume.
 - We would like to know the result (as in Luttmer-Shue) of

$$V_{MCI,t} = \alpha + \beta V_{MCIC,t} + \varepsilon_t$$

• Remember: $\beta = Cov(V_{MCI,t}, V_{MCIC,t})/Var(V_{MCIC,t})$

Results: Error Rate

We know (Table I)

$$.5595 = \rho_{MCI,MCIC} = \frac{Cov(V_{MCI,t}, V_{MCIC,t})}{\sqrt{Var(V_{MCI,t})Var(V_{MCIC,t})}} =$$

$$= \beta * \frac{\sqrt{Var(V_{MCIC,t})}}{\sqrt{Var(V_{MCI,t})}}$$

- Hence, $\beta = .5595 * \sqrt{Var(V_{MCI,t})} / \sqrt{Var(V_{MCIC,t})} = .5595 * 10^{-3} = 5 * 10^{-4}$
- \bullet Hence, the error rate is approximately $5*10^{-4}$, that is, 1 in 2000

Conclusion

- Deviation from standard model: confusion.
- Can have an aggregate impact, albeit a small one
- Can be moderately large for error from common choice to rare choice

Section 3

Choice of Dominated Options

Dominated Choice

- An especially strong case of non-standard decision making is the choice of a dominated option
- Bhargava, Loewenstein, and Sydnor (QJE 2017)
- Examine choice of health plans for employees of a large company
- Plans are such that the high-deductible plans tend to dominate the low-deductible plans

Bhargava, Loewenstein, Sydnor

Bhargava, Loewenstein, Sydnor

Large costs of picking the wrong plan

1340 QUARTERLY JOURNAL OF ECONOMICS

Bhargava, Loewenstein, Sydnor

• Incidence of errors is much larger for low-income people

Bhargava, Loewenstein, Sydnor

Large costs of picking the wrong plan for the poor

Other papers

- Are behavioral biases disproportionately hurting the poor (Mullainathan and Shafir)?
- Key variables in determining implications of behavioral economics for redistribution and inequality
- Two forces:
 - Poor are likely less educated -> More bias
 - Poor have lower cost of time -> Can in principle search harder
- In literature:
 - Bhargava et al. (2017): first force clearly dominates
 - Lacetera, Pope, and Sydnor: also similar results for limited attention to odometer, much smaller magnitude
 - Madrian and Shea (2001) default effects larger for lower income
 - Other papers?
- Incidence of behavioral biases is key emerging theme

Section 4

Mental Accounting

Introduction

- Thaler (1981): Mental Accounting is tendency of individuals to form special accounts for different expenditures, and keep inflows and outflow separated across accounts
 - Example: \$200/wk food budget and \$100/wk entertaiment budget
- Deviates from standard model with just one budget
- Why use mental accounting?
 - Self control problems
 - Simplicity
- What is the evidence for this?
- Until recently, quite weak. Rare component in Thaler agenda without too much support

Gas Prices

Hastings and Shapiro (QJE 2013)

- Assume a mental account for gasoline
- Choice at the pump for regular gas, or premium (usually 10c more expensive)
- Mental accounting: Price of gasoline goes up -> switch to regular gasoline (from premium) to try to stay more in account
- Notice: Proportional thinking makes opposite prediction
- Standard model:
 - Makes same prediction based on income effect, but much smaller impact
 - Can also look at 2009 when price of gasoline went down

Gas Prices, Data

- Gas price and purchase of regular gasoline clearly move together
- Notice: Also true in 2009 when income effects go the other way

Gas Prices, Model Fit

• Simple mental accounting model does good job of fit

- Hastings and Shapiro (AER forthcoming)
- What happens when food stamps come in?
 - Large majority of individuals spend more on food than food stamp amount
 - Standard model: Increase in food expenditure should equal the marginal propensity to consume on food from income shocks (about 0.1)
 - Mental accounting: MPCF from food stamps will be high, since same account
- Use data from a retailer where can observe is spend with food stamps
 - Three empirical strategies:
 - 1 Individuals enter food stamp program
 - 2 Exit from program most likely after 6, 12, 18... months
 - Legislative changes in food stamp magnitude

- Strategy 1: Identify entry into SNAP as 6 months of SNAP spending, after 6 months of no SNAP
- MPC of about 0.5/0.6

Figure 6: Participation, benefits, and spending over the six-month SNAP clock

Panel A: SNAP use

- Strategy 2: Identify exit from SNAP every 6 months
- MPC of about 0.5/0.6

• Strategy 3: Identify from legislative changes in levels of benefits

Table 1: Estimated marginal propensities to consume

Tuble 1. Estimated marginar propensities to consume							
(1)	(2)	(3)	(4)				
SNAP-eligible	SNAP-eligible	SNAP-eligible	SNAP-ineligib				
spending	spending	spending	spending				
0.5891	0.5495	0.5884	0.0230				
(0.0074)	(0.0360)	(0.0073)	(0.0043)				
-0.0019	-0.0013	-0.0020	0.0421				
(0.0494)	(0.0494)	(0.0494)	(0.0688)				
0.0000	0.0000	0.0000	0.7764				
Yes	Yes	Yes	Yes				
Yes	No	Yes	Yes				
No	Yes	Yes	Yes				
2005392	2005392	2005392	2005392				
24456	24456	24456	24456				
	(1) SNAP-eligible spending 0.5891 (0.0074) -0.0019 (0.0494) 0.0000 Yes Yes No 2005392	(1) (2) SNAP-eligible spending 0.5891 0.5495 (0.0074) (0.0360) -0.0019 -0.0013 (0.0494) (0.0494) 0.0000 0.0000 Yes Yes Yes No No Yes 2005392 2005392	(1) (2) (3) SNAP-eligible spending SNAP-eligible spending SNAP-eligible spending 0.5891 0.5495 0.5884 (0.0074) (0.0360) (0.0073) -0.0019 -0.0013 -0.0020 (0.0494) (0.0494) (0.0494) 0.0000 0.0000 0.0000 Yes Yes Yes No Yes No Yes Yes 2005392 2005392 2005392				

- Estimated MPCF stable across the three strategies around 0.6
- Estimated MPCF from other income skocks (gas prices) much smaller

Section 5

Persuasion

Introduction

- Persuasion: Change in opinion/action beyond prediction of Bayesian model
- Persuasion: Sender attempts to convince Receiver with words/images to take an action
 - Rational persuasion through Bayesian updating
 - Non-rational persuasion, i.e.: neglect of incentives of person presenting information
 - Effect of persuasion directly on utility function (advertising/emotions)
- Compare to Social Pressure: Presence of Sender exerts pressure to take an action

Overview on Persuasion

- DellaVigna and Gentzkow (2010):
 - Persuading consumers: Marketing
 - Persuading voters: Political Communication
 - Persuading donors: Fund-raising
 - Persuading investors: Financial releases
- First problem: How to measure when persuasion occurs?
- Treatment group *T*, control group *C*, *Persuasion Rate* is

$$f = 100 * \frac{y_T - y_C}{e_T - e_C} \frac{1}{1 - y_0},$$

- e_i is the share of group i receiving the message,
- y_i is the share of group i adopting the behavior of interest,
- y_0 is the share that would adopt if there were no message

TABLE 1, PART A
PERSUASION RATES: SUMMARY OF STUDIES

Paper	Treatment	Control	Variable t	Time Horizon	Treatment		Exposure rate e_T - e_C	
	(1)	(2)	(4)	(7)	(9)	(10)	(11)	(12)
Persuading Consumers								
Simester et al. (2007) (NE)	17 clothing catalogs sent	12 catalogs	Share Purchasing >= 1 item	1 year	36.7% 69.1%	33.9% 66.8%	100%* 100%*	4.2% 6.9%
Bertrand, Karlan, Mullainathan,	Mailer with female photo	Mailer no photo	Applied for loan	1 month	9.1%	8.5%	100%*	0.7%
Shafir, and Zinman (2010) (FE) Persuading Voters	Mailer with 4.5% interest rate	Mailer 6.5% i.r.			9.1%	8.5%	100%*	0.7%
Gosnell (1926)	Card reminding of registration	No card	Registration	Few days	42.0%	33.0%	100.0%	13.4%
Gerber and Green (2000) (FE)	Door-to-Door GOTV Canvassing GOTV Mailing of 1-3 Cards	No GOTV No GOTV	Turnout	Few days	47.2% 42.8%	44.8% 42.2%	27.9% 100%*	15.6% 1.0%
Green, Gerber, and Nickerson (2003) (FE)	Door-to-Door Canvassing	No GOTV	Turnout	Few days	31.0%	28.6%	29.3%	11.5%
Green and Gerber (2001) (FE)	Phone Calls By Youth Vote	No GOTV	Turnout	Few days	71.1%	66.0%	73.7%	20.4%
	Phone Calls 18-30 Year-Olds	No GOTV	Turnout		41.6%	40.5%	41.4%	4.5%
DellaVigna and Kaplan (2007) (NE)	Availab. of Fox News Via Cable	No F.N. via cable	Rep. Vote Share	0-4 years	56.4%	56.0%	3.7%	11.6%+
Enikolopov, Petrova, and Zhuravskaya (2010) (NE)	Availability of independent anti- Putin TV station (NTV)	No NTV	Vote Share of anti-Putin parties	3 months	17.0%	10.7%	47.0%	7.7%+
Knight and Chiang (2010) (NE)	Unsurprising Dem. Endors. (NYT)	No endors.	Support for Gore	Few	75.5%	75.0%	100.0%	2.0%
Gerber, Karlan, and Bergan (2009)	Surprising Dem. Endors. (Denver) Free 10-week subscription to	No endors.	Dem. Vote Share	weeks	55.1%	52.0%	100.0%	6.5%
(FE)	Washington Post	No Subscr.	(stated in survey)	2 months	67.2%	56.0%	94.0%	19.5%+
Gentzkow (2006) (NE)	Exposure to Television	No Television	Turnout	10 years	54.5%	56.5%	80.0%	4.4%
Gentzkow and Shapiro (2009) (NE)	Read Local Newspaper	No local paper	Turnout	0-4 years	70.0%	69.0%	25.0%	12.9%

TABLE 1, PART B

	Persuasion R	ATES: SUMMAR	Y OF STUDIES					
Paper	Treatment	Control	Variable t	Time	Treatment	Control	Exposure	Persuasion
				Horizon	group t_T	group t _C	rate e T-e C	rate f
	(1)	(2)	(4)	(7)	(9)	(10)	(11)	(12)
Persuading Donors								
List and Lucking-Reiley	Fund-raiser mailer with low seed	No mailer	Share	1-3 weeks	3.7%	0%	100%*	3.7%
(2002) (FE)	Fund-raiser mailer with high seed	No mailer	Giving Money		8.2%	0%	100%*	8.2%
Landry, Lange, List, Price,	Door-To-Door Fund-raising	No visit	Share	immediate	10.8%	0%	36.3%	29.7%
and Rupp (2006) (FE)	Campaign for University Center		Giving Money					
DellaVigna, List, and Malmendier	Door-To-Door Fund-raising	No visit	Share	immediate	4.6%	0%	41.7%	11.0%
(2009) (FE)	Campaign for Out-of-State Charity		Giving Money					
Falk (2007) (FE)	Fund-raiser mailer with no gift	No mailer	Share	1-3 weeks	12.2%	0%	100%*	12.2%
	Mailer with gift (4 post-cards)	No mailer	Giving Money		20.6%	0%	100%*	20.6%
Persuading Investors								
Engelberg and Parsons (2009) (NE)	Coverage of Earnings News in Local Paper	No coverage	Trading of Shares of Stock in News		0.023%	0.017%	60.0%	0.010%

Notes: Calculations of persuasion rates by the authors. The list of papers indicates whether the study is a natural experiment ("NE") or a field experiment ("FE"). Columns (9) and (10) report the value of the behavior studied (Column (4)) for the Treatment and Control group. Column (11) reports the Exposure Rate, that is, the difference between the Treatment and the Control group in the share of people exposed to the Treatment. Column (12) computes the estimated persuasion rate f 100*((T-tC)((cT-eC)*(1-tC)). The persuasion rate denotes the share of the audience that was not previously convinced and that is convinced by the message. The studies where the exposure rate (Column (11) is denoted by "100%*" are cases in which the data on the differential exposure rate between treatment and control is not available. In these case, we assume eT-eC=100%, which implies that the persuasion rate is a lower bound for the actual persuasion rate. In the studies on "Persuading Donors", even in cases in which an explicit control group with no mailer or no visit was not run, we assume that such a control would have yielded 1C=0%, since these behaviors are very rare in absence of a fund-raiser. For studies

 Persuasion rate helps reconcile seemingly very different results, e.g. persuading voters

More in Detail

- More in detail: DellaVigna-Kaplan (QJE, 2007), Fox News natural experiment
 - Fast expansion of Fox News in cable markets
 - October 1996: Launch of 24-hour cable channel
 - June 2000: 17 percent of US population listens regularly to Fox News (Scarborough Research, 2000)
 - Geographical differentiation in expansion
 - Cable markets: Town-level variation in exposure to Fox News
 - 9,256 towns with variation even within a county
 - Conservative content
 - Unique right-wing TV channel (Groseclose and Milyo, 2004)

Empirical Results

• **Selection.** In which towns does Fox News select? (Table 3):

$$d_{k,2000}^{FOX} = \alpha + \beta v_{k,1996}^{R, \text{ Pres}} + \beta Contr_{k,1996}^{R} + \Gamma_{2000} X_{k,2000} + \Gamma_{00-90} X_{k,00-90} + \Gamma_{C} C_{k,2000} + \varepsilon_{k}.$$

- Controls X
 - Cable controls (Number of channels and potential subscribers)
 - US House district or county fixed effects
- Conditional on X, Fox News availability is orthogonal to
 - political variables
 - demographic variables

Fox News Availability

 ${\bf TABLE~III}$ Determinants of Fox News Availability, Linear Probability Model

			Availabilit	y of Fox News via	cable in 2000
Dep. var.	(1)	(2)	(3)	(4)	(5)
Pres. republican vote share in	0.1436	0.6363	0.3902	-0.0343	-0.0442
1996	(0.1549)	(0.2101)***	(0.1566)**	(0.0937)	(0.1024)
Pres. log turnout in 1996	0.1101	0.0909	0.0656	0.0139	-0.0053
	(0.0557)**	(0.0348)***	(0.0278)**	(0.0124)	(0.0173)
Pres. Rep. vote share change 1998–1992					
Control variables					
Census controls: 1990 and 2000	_	X	X	X	X
Cable system controls	_	_	X	X	X
U. S. House district fixed effects	_	_	_	X	_
County fixed effects	_	_	_	_	X
7-test: Census controls = 0		F = 3.54***	F = 2.73***	F = 1.11	F = 1.28
7-test: Cable controls = 0			F = 18.08***	F = 21.09***	F = 18.61*
\mathbb{R}^2	0.0281	0.0902	0.4093	0.6698	0.7683
V	N = 9.256	N = 9.256	N = 9.256	N = 9.256	N = 9.256

Baseline effect - Presidential races

• Effect on Presidential Republican vote share (Table 4):

$$v_{k,2000}^{R, \, \text{Pres}} - v_{k,1996}^{R, \, \text{Pres}} = \alpha + \beta_F d_{k,2000}^{FOX} + \Gamma_{2000} X_{k,2000} + \Gamma_{00-90} X_{k,00-90} + \Gamma_C C_{k,2000} + \varepsilon_k.$$

Results:

- Significant effect of Fox News with district (Column 3) and county fixed effects (Column 4)
- .4-.7 percentage point effect on Republican vote share in Pres. elections
- \bullet Similar effect on Senate elections \to Effect is on ideology, not person-specific
- Effect on turnout

Presidential Vote Share

 ${\rm TABLE\ IV}$ The Effect of Fox News on the 2000–1996 Presidential Vote Share Changi

	Rep	ublican two-pa	rty vote share	change betwe	en 2000 and
Dep. var.	(1)	(2)	(3)	(4)	(5)
Availability of Fox News via	-0.0025	0.0027	0.008	0.0042	0.0069
cable in 2000	(0.0037)	(0.0024)	(0.0026)***	(0.0015)***	(0.0014)***
Pres. Rep. vote share change 1988–1992					
Constant	0.0347	-0.028	-0.0255	0.0116	0.0253
	(0.0017)***	(0.0245)	(0.0236)	(0.0154)	(0.0185)
Control variables					
Census controls: 1990 and 2000	_	X	X	X	X
Cable system controls	_	_	X	X	X
U. S. House district fixed effects	_	_	_	X	_
County fixed effects	_	_	_	_	X
R^2	0.0007	0.5207	0.5573	0.7533	0.8119
N	N = 9,256	N = 9,256	N = 9,256	N = 9,256	N = 9,256

Generalizing the Effect

- Magnitude of effect: How do we generalize beyond Fox News?
- Estimate audience of Fox News in towns that have Fox News via cable (First stage)
 - Use Scarborough micro data on audience with Zip code of respondent
 - Fox News exposure via cable increases regular audience by 6 to 10 percentage points
 - How many people did Fox News convince?
 - Heuristic answer: Divide effect on voting (.4-.6 percentage point) by audience measure (.6 to .10)
- Result: Fox News convinced 3 to 8 percent of audience (Recall measure) or 11 to 28 percent (Diary measure)

Interpretation

- How do we interpret the results?
- Benchmark model:
 - **1** New media source with unknown bias β , with $\beta \sim N\left(\beta_0, \frac{1}{\gamma_\beta}\right)$
 - ② Media observes (differential) quality of Republican politician, $\theta_t \sim N\left(0, \frac{1}{\gamma_\theta}\right)$, i.i.d., in periods $1, 2, \ldots, T$
 - **Media broadcast:** $\psi_t = \theta_t + \beta$. Positive β implies pro-Republican media bias
 - **Voting in period** T. Voters vote Republican if $\widehat{\theta}_T + \alpha > 0$, with α ideological preference

- Signal extraction problem. New media (Fox News) says Republican politician (George W. Bush) is great
 - Is Bush great?
 - Or is Fox News pro-Republican?
- A bit of both, the audience thinks. Updated media bias after T periods:

$$\hat{\beta}_{T} = \frac{\gamma_{\beta}\beta_{0} + T\gamma_{\theta}\bar{\psi}_{T}}{\gamma_{\beta} + T\gamma_{\theta}}.$$

• Estimated quality of Republican politician:

$$\hat{\theta}_{T} = \frac{\gamma_{\theta} * 0 + W \left[\psi_{T} - \hat{\beta}_{T} \right]}{\gamma_{\theta} + W} = \frac{W \left[\psi_{T} - \hat{\beta}_{T} \right]}{\gamma_{\theta} + W}$$

• **Persuasion.** Voter with persuasion λ ($0 \le \lambda \le 1$) does not take into account enough media bias:

$$\hat{ heta}_{T}^{\lambda} = rac{W^{\lambda}[\psi_{T} - (1 - \lambda)\,\hat{eta}_{T}]}{\gamma_{ heta} + W^{\lambda}}$$

• Vote share for Republican candidate. $P(\alpha + \widehat{\theta}_{\tau}^{\lambda} > 0) = 1 - F(-\widehat{\theta}_{\tau}^{\lambda})$

$$P(\alpha + \widehat{\theta}_T^{\lambda} \ge 0) = 1 - F(-\widehat{\theta}_T^{\lambda})$$

- **Proposition 1.** Three results:
 - Short-Run I: Republican media bias increases Republican vote share: $\partial [1 - F(-\widehat{\theta}_{\tau}^{\lambda})]/\partial \beta > 0$.
 - **2** Short-Run II: Media bias effect higher if persuasion ($\lambda > 0$).
 - **3 Long-run** $(T \to \infty)$. Media bias effect \iff persuasion $\lambda > 0$.

Evidence for Persuasion Bias

- Cain-Loewenstein-Moore (JLegalStudies, 2005).
 Psychology Experiment
 - Pay subjects for precision of estimates of number of coins in a jar
 - Have to rely on the advice of second group of subjects: advisors
 - (Advisors inspect jar from close)
 - Two experimental treatments:
 - Aligned incentives. Advisors paid for closeness of subjects' guess
 - Mis-Aligned incentives, Common knowledge. Advisors paid for how high the subjects' guess is. Incentive common-knowledge
 - (Mis-Aligned incentives, Not Common knowledge.)

Payoffs

Table 1. Payoff Function for Advisors in Accurate Condition and for All Estimators

Range of Estimator's Estimate from True Value (\$)	Payoff (\$)
.0050	5.00
.51-1.00	4.50
1.01-1.50	4.00
1.51-2.00	3.50
2.01-2.50	3.00
2.51-3.00	2.50
3.01-3.50	2.00
3.51-4.00	1.50
4.01-4.50	1.00
4.51-5.00	.50

Table 2. Advisors' Payoff Function in Conflict-of-Interest Conditions

Range of Estimator's Estimate above True Value (\$)	Payoff (\$)
.50-1.00	1.00
1.01-1.50	1.90
1.51-2.00	2.70
2.01-2.50	3.40
2.51-3.00	4.00
3.01-3.50	4.50
3.51-4.00	4.90
4.01-4.50	5.20
4.51-5.00	5.40
5.01+	5.50

Result 1

- Advisors increase estimate in Mis-Aligned incentives treatment
 - Even more so when common knowledge

Result 2

Estimate of subjects is higher in Treatment with Mis-Aligned incentives

Table 6. Estimator Estimates of Jar Values

	Accurate (N = 27)	High/Undisclosed $(N = 26)$	$\begin{array}{l} \mbox{High/Disclosed} \\ (N=27) \end{array}$	Significance of Advisor Incentives (p) (Accurate versus High Conditions)	Significance of Disclosure (p) (Conflict-of-Interest Conditions)
Estimator estimate	14.21 (2.20)	16.81 (3.56)	18.14 (5.00)	<.001	.19
Estimator absolute error	5.25 (1.58)	5.14 (1.31)	6.69 (2.44)	<.363	<.01

- Subjects do not take sufficiently into account incentives of information provider
- \bullet Effect even stronger when incentives are known \to Advisors feel free(er) to increase estimate
- Applications to many settings

Application: Small Investors

- Application 1: Malmendier-Shanthikumar (JFE, 2007).
 - Field evidence that small investors suffer from similar bias
 - Examine recommendations by analysts to investors
 - Substantial upward distortion in recommendations (Buy=Sell, Hold=Sell, etc)

Panel A: Entire Sample	Sample size	Percentage within category				
		Strong				Strong
		Sell	Sell	Hold	Buy	Buy
All	121,130	1.72	2.86	36.84	32.90	25.67
Unaffiliated	112,664	1.79	2.96	37.68	32.40	25.17

 Higher distortion for analysis working in Inv. Bank affiliated with company they cover (through IPO/SEO)

Question

- Question: Do investors discount this bias?
 - Analyze Trade Imbalance (essentially, whether trade is initiated by Buyer)
 - Assume that
 - large investors do large trades
 - small investors do small trades
 - See how small and large investors respond to recommendations
- Examine separately for affiliated and unaffiliated analysts

Analyst Recommendations

All Recommendations

_	Large Trade	Small Trade	Difference S-L
Strong Sell	-0 103	-0 105	-0.002
Strong Sen	(0.040)	(0.050)	(0.064)
Sel1	-0.118	-0.139	-0.021
561	(0.034)	(0.046)	(0.057)
Hold	-0.091	0.007	0.099
	(0.011)	(0.014)	(0.018)
Buy	0.011	0.134	0.123
-	(0.012)	(0.013)	(0.017)
Strong Buy	0.112	0.243	0.131
	(0.013)	(0.014)	(0.019)
(Strong Sell)*Affiliation	-0.196	-0.838	-0.643
	(0.255)	(0.331)	(0.418)
(Sell)*Affiliation	0.094	-0.087	-0.180
	(0.254)	(0.272)	(0.372)
(Hold)*Affiliation	-0.001	0.005	0.006
	(0.044)	(0.056)	(0.072)
(Buy)*Affiliation	-0.068	0.013	0.081
	(0.034)	(0.039)	(0.052)
(Strong Buy)*Affiliation	-0.129	-0.023	0.106
	(0.036)	(0.041)	(0.055)
Sample size	86,961	86,961	
\mathbb{R}^2	0.0034	0.0085	

Results

- Results:
 - Small investor takes analyst recommendations literally (buy Buys, sell Sells)
 - Large investors discount for bias (hold Buys, sell Holds)
 - Difference is particularly large for affiliated analysts
 - Small investors do not respond to affiliation information
- Strong evidence of distortion induced by incentives

Section 6

Emotions: Mood

Emotions Matter

- Emotions play a role in several of the phenomena considered so far:
 - ullet Self-control problems o Temptation
 - ullet Projection bias in food consumption o Hunger
 - ullet Social preferences in giving o Empathy
 - Gneezy-List (2006) transient effect of gift \rightarrow Hot-Cold gift-exchange
- Psychology: Large literature on emotions (Loewenstein and Lerner, 2003)
 - Message 1: Emotions are very important
 - Message 1: Different emotions operate very differently: anger ≠ mood ≠ joy

- Consider two examples of emotions:
 - Mood
 - Arousal
- Psychology: even minor mood manipulations have a substantial impact on behavior and emotions
 - On sunnier days, subjects tip more at restaurants (Rind, 1996)
 - On sunnier days, subjects express higher levels of overall happiness (Schwarz and Clore, 1983)
- Should this impact economic decisions?

Field Evidence

- Field: Impact of mood fluctuations on stock returns:
 - Daily weather and Sport matches
 - No effect on fundamentals
 - However: If good mood leads to more optimistic expectations
 → Increase in stock prices
- Evidence:
 - Saunders (1993): Days with higher cloud cover in New York are associated with lower aggregate US stock returns
 - Hirshleifer and Shumway (2003) extend to 26 countries between 1982 and 1997
 - Use weather of the city where the stock market is located
 - Negative relationship between cloud cover (de-trended from seasonal averages) and aggregate stock returns in 18 of the 26 cities

Weather and Stock Returns

OLS Regression			n	Logit Model				
Location	Observations	β_{iC}	t-Statistic	γ_{iC}	χ^2	P-Value		
Amsterdam	3984	-0.007	-1.07	-0.024	2.76	0.0963		
Athens	2436	0.012	0.71	-0.014	0.53	0.4649		
Buenos Aires	2565	-0.030	-0.98	-0.019	1.60	0.2054		
Bangkok	3617	0.009	0.45	-0.014	0.24	0.6259		
Brussels	3997	-0.018*	-3.25	-0.036*	6.75	0.0094		
Copenhagen	4042	-0.002	-0.30	-0.002	0.02	0.8999		
Dublin	3963	-0.000	-0.02	-0.025	2.13	0.1445		
Helsinki	2725	-0.016	-1.67	-0.034*	4.01	0.0452		
Istanbul	2500	0.007	0.32	-0.001	0.00	0.9488		
Johannesburg	3999	0.004	0.47	-0.012	0.67	0.4124		
Kuala Lumpur	3863	0.014	0.26	-0.109	1.99	0.1586		
London	4003	-0.010	-1.52	-0.019	1.41	0.2355		
Madrid	3760	-0.011	-1.60	-0.015	1.41	0.2353		
Manila	2878	0.018	0.83	0.003	0.02	0.9023		
Melbourne	3674	-0.013	-1.45	-0.008	0.26	0.6116		
Milan	3961	-0.014*	-2.03	-0.021	3.69	0.0549		
New York	4013	-0.007	-1.28	-0.035*	8.64	0.0033		
Oslo	3877	-0.018	-1.92	-0.025	3.31	0.0688		
Paris	3879	-0.009	-1.27	-0.027*	3.93	0.0474		
Rio de Janeiro	2988	-0.057	-1.93	-0.016	0.96	0.3267		
Santiago	2636	0.000	0.05	-0.012	0.73	0.3935		
Singapore	3890	0.008	0.37	-0.002	0.00	0.9588		
Stockholm	3653	-0.014	-1.54	-0.025	2.89	0.0889		
Taipei	3784	-0.016	-0.97	-0.013	0.66	0.4164		
Vienna	3907	-0.013*	-2.14	-0.026*	4.11	0.0425		
Zurich	3851	-0.007	-1.28	-0.012	0.89	0.3465		
All Cities (naive)	92445	-0.011*	-4.42	-0.019*	41.30	0.0001		
All Cities (PCSE)	92445	-0.010*	-3.97	-	-	-		

Weather and Stock Returns

- Magnitude:
 - Days with completely covered skies have daily stock returns .11 percent lower than days with sunny skies
 - Five percent of a standard deviation
 - Small magnitude, but not negligible
- After controlling for cloud cover, other weather variables such as rain and snow are unrelated to returns
- Edmans-Garcia-Norli, 2007: Evidence from international soccer matches (39 countries, 1973-2004)
- Interpretations:
 - Mood impacts risk aversion or perception of volatility
 - Mood is projected to economic fundamentals

College Enrollment

- Simonsohn (2007): Subtle role of mood
 - Weather on the day of campus visit to a prestigious university (CMU)
 - Students visiting on days with more cloud cover are significantly more likely to enroll
 - Higher cloud cover induces the students to focus more on academic attributes versus social attributes of the school
 - Support from laboratory experiment

Enrollment and Weather

Table 2. Regressions of enrollment and admission decisions on cloudcover (OLS)

	(1)	(2)	(3)	(4)	(5)
Dependent variable (1-yes, 0-no)	Enrollment	Enrollment	Enrollment	Enrollment	Admission
	Baseline	Adds	Adds Average	Predicts	Same as (3)
		other weather	weather	with weather	but with admission
		variables	conditions	from two days	decision as
				prior to visit	dependent variable
ntercept	0.342***	0.180	-0.013	0.407***	0.538**
	(0.055)	(0.164)	(0.353)	(0.137)	(0.210)
Cloud Cover on day of visit	0.018**	0.027**	0.032***	-	0.004
(0-clear skies to 10-overcast)	(0.008)	(0.011)	(0.012)		(0.008)
Cloud Cover two days prior to visit	-		-	0.001	-
	-		-	(0.009)	_
Maximum Temperature (max)		0.004	0.003	0.000	0.000
	-	(0.004)	(0.004)	(0.004)	(0.003)
Minimum Temperature (min)		-0.002	-0.005	0.001	-0.002
	-	(0.004)	(0.005)	(0.004)	(0.003)
Wind Speed		-0.004	-0.005	0.002	-0.003
	-	(0.003)	(0.004)	(0.004)	(0.002)
Rain precipitation (in inches)		-0.056	-0.024	-0.076	0.026
	-	(0.091)	(0.119)	(0.144)	(0.078)
Snow precipitation (in inches)		0.008	0.009	0.002	0.007
	-	(0.008)	(0.009)	(0.008)	(0.006)
Average weather conditions for calendar date (DF=6)	No	No	Yes	No	Yes
Month dummies	No	No	Yes	No	Yes
Number of Observations	562	562	562	562	1284
R-square	0.0096	0.0146	0.0573	0.0018	0.0279

Section 7

Emotions: Arousal

Separate impact of emotions: Arousal

- Josephson (1987): Arousal due to violent content
 - Control group exposed to non-violent clip
 - Treatment group exposed to violent clip
 - Treatment group more likely to display more aggressive behavior, such as aggressive play during a hockey game
 - Impact not due to imitation (violent movie did not involve sport scenes)
- Consistent finding from large set of experiments (Table 11)
- Dahl-DellaVigna (2009): Field evidence Exploit timing of release of blockbuster violent movies

Model

violent movie a^m , non-violent movie a^n , or alternative social activity a^s

• Consumer chooses between strongly violent movie a^{ν} , mildly

- ullet Utility depends on quality of movies o Demand functions $P(a^j)$
- Heterogeneity:
 - High taste for violence (Young): N_y consumers
 - Low taste for violence (Old): No consumers
 - Aggregate demand for group $i: N_i P(a_i^j)$
- Production function of violence V (not part of utility fct.) depends on a^v , a^m , a^n , and a_s :

$$\ln V = \sum_{i=v,o} \left[\sum_{j=v,m,n} \alpha_i^j N_i P(a_i^j) + \sigma_i N_i (1 - P(a_i^v) - P(a_i^m) - P(a_i^n)) \right]$$

• Estimate (A^{j} is total attendance to movie of type i)

$$\ln V = \beta_0 + \beta^{\nu} A^{\nu} + \beta^{m} A^{m} + \beta^{n} A^{n} + \varepsilon$$

• Estimated impact of exposure to violent movies β^{v} :

$$\beta^{\mathsf{v}} = \mathsf{x}^{\mathsf{v}}(\alpha_{\mathsf{y}}^{\mathsf{v}} - \sigma_{\mathsf{y}}) + (1 - \mathsf{x}^{\mathsf{v}})(\alpha_{\mathsf{o}}^{\mathsf{v}} - \sigma_{\mathsf{o}})$$

- First point Estimate of net effect
 - Direct effect: Increase in violent movie exposure $\rightarrow \alpha_i^{\rm v}$
 - Indirect effect: Decrease in Social Activity $\rightarrow \sigma_i$
- Second point Estimate on self-selected population:
 - Estimate parameters for group actually attending movies
 - Young over-represented: $x^{v} > N^{y}/(N^{y} + N^{o})$

- Comparison with Psychology experiments
 - Natural Experiment. Estimated impact of exposure to violent movies β^{v} :

$$\beta^{\mathsf{v}} = \mathsf{x}^{\mathsf{v}}(\alpha_{\mathsf{y}}^{\mathsf{v}} - \sigma_{\mathsf{y}}) + (1 - \mathsf{x}^{\mathsf{v}})(\alpha_{\mathsf{o}}^{\mathsf{v}} - \sigma_{\mathsf{o}})$$

 Psychology Experiments. Manipulate a directly, holding constant a^s out of equilibrium

$$\beta_{lab}^{\nu} = \frac{N_y}{N_y + N_o} \alpha_y^{\nu} + (1 - \frac{N_y}{N_y + N_o}) \alpha_o^{\nu}$$

- Two differences:
 - 'Shut down' alternative activity, and hence σ_i does not appear
 - Weights representative of (student) population, not of population that selects into violent movies

Data

Movie data

- Revenue data: Weekend (top 50) and Day (top 10) from The Numbers
- Violence Ratings from 0 to 10 from Kids In Mind (Appendix Table 1)
- Strong Violence Measure A_t^{y} : Audience with violence 8-10 (Figure 1a)
- Mild Violence Measure A_t^m : Audience with violence 5-7 (Figure 1b)

Assault data

- Source: National Incident-Based Reporting System (NIBRS)
- All incidents of aggravated assault, simple assault, and intimidation from 1995 to 2004
- ullet Sample: Agencies with no missing data on crime for > 7 days
- Sample: 1995-2004, days in weekend (Friday, Saturday, Sunday)

Movie Attendance

Log Assault Residuals

Regression and Results

• Regression Specification. (Table 3)

$$\log V_t = \beta^{\nu} A_t^{\nu} + \beta^{m} A_t^{m} + \beta^{n} A_t^{n} + \Gamma X_t + \varepsilon_t$$

- Coefficient β^{ν} is percent increase in assault for one million people watching strongly violent movies day t (A_t^{ν}) (Similarly β^m and β^n)
- Cluster standard errors by week

Results.

- No effect of movie exposure in morning or afternoon (Columns 1-2)
- Negative effect in the evening (Column 3)
- Stronger negative effect the night after (Column 4)

TABLE III THE EFFECT OF MOVIE VIOLENCE ON SAME-DAY ASSAULTS BY TIME OF DAY Panel A. Benchmark Results

Specification:	Instrumental Variable Regressions					
Dep. Var.:	Log (Number of Assaults in Day t in Time Window)					
	(1)	(2)	(3)	(4)		
Audience Of Strongly Violent Movies (in millions of people in Day t)	-0.0050 (0.0066)	-0.0030 (0.0050)	-0.0130 (0.0049)***	-0.0192 (0.0060)***		
Audience Of Mildly Violent Movies (in millions of people in Day t)	-0.0106 (0.0060)*	-0.0001 (0.0045)	-0.0109 (0.0040)***	-0.0205 (0.0052)***		
Audience Of Non-Violent Movies (in millions of people in Day t)	-0.0033 (0.0060)	0.0016 (0.0046)	-0.0063 (0.0043)	-0.0060 (0.0054)		
Time of Day	6AM-12PM	12PM-6PM	6PM-12AM	12AM-6AM next day		
Control Variables:						
Full Set of Controls	X	X	X	X		
Audience Instrumented With Predicted Audience Using Next Week's Audience	X	X	X	x		
N	N = 1563	N = 1563	N = 1563	N = 1562		

Summary of Findings

- Violent movies lower same-day violent crime in the evening (incapacitation)
- Violent movies lower violent crime in the night after exposure (less consumption of alcohol in bars)
- \odot No lagged effect of exposure in weeks following movie attendance \rightarrow No intertemporal substitution
- Strongly violent movies have slightly smaller impact compared to mildly violent movies in the night after exposure
 - Interpret Finding 4 in light of Lab-Field debate

Interpretation

Finding 4. Non-monotonicity in Violent Content

- Night hours: $\hat{\beta}^v = -0.0192$ versus $\hat{\beta}^m = -0.0205$
- Odd if more violent movies attract more potential criminals
- Model above → Can estimate direct effect of violent movies if can control for selection

$$\alpha^{\mathsf{v}} - \alpha = \beta^{\mathsf{v}} - \left(\beta^{\mathsf{n}} + \frac{x^{\mathsf{v}} - x^{\mathsf{n}}}{x^{\mathsf{m}} - x^{\mathsf{n}}} (\beta_{\mathsf{m}} - \beta_{\mathsf{n}})\right)$$

• Do not observe selection of criminals x^j , but observe selection of correlated demographics (young males)

- IMDB ratings data Share of young males among raters increases with movie violence (Figure 2) \rightarrow Use as estimate of χĴ
 - Compute $\alpha^{\nu} \alpha = .011$ (p = .08), about one third of total effect
 - Pattern consistent with arousal induced by strongly violent movies $(\alpha^{v} > \alpha^{m})$
- Bottom-line 1: Can reconcile with laboratory estimates
- Bottom-line 2: Can provide benchmark for size of arousal effect

Share of Young Males vs. Movie Violence

FIGURE II
Share of Young Males in Audience As Function of Movie Violence (Internet Movie Database Data)

The Arousal Effect

Lab vs. Field

- Differences from laboratory evidence (Levitt-List, 2007):
 Exposure to violent movies is
 - Less dangerous than alternative activity $(\alpha^{\nu} < \sigma)$ (Natural Experiment)
 - More dangerous than non-violent movies $(\alpha^{\nu} > \alpha^{n})$ (Laboratory Experiments and indirect evidence above)
- Both types of evidence are valid for different policy evaluations
 - Laboratory: Banning exposure to unexpected violence
 - Field: Banning temporarily violent movies

Section 8

Next Lecture

Next Lecture

- Market Response to Biases
 - Employees: Behavioral Labor
 - Investors: Behavioral Finance
 - Voters: Behavioral Political Economy