Wydział Elektroniki i Technik Informacyjnych Politechnika Warszawska

Projektowanie układów sterowania (projekt grupowy)

Sprawozdanie z ćwiczenia laboratoryjnego nr 4

Radosław Pietkun, Jakub Gruszecki, Wojciech Rokicki

Spis treści

1.	Spra	wdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy
	1.1.	Przykładowe sterowanie wraz z odczytem pomiarów
		1.1.1. Implementacja
	1.2.	Punkt pracy
		1.2.1. Implementacja
2.	Mec	hanizm zabezpieczający przed uszkodzeniem stanowiska
3.	Imp	lementacja regulatora DMC MIMO oraz przygotowanie odpowiedzi skokowych
	3.1.	Implementacja DMC
	3.2.	Odpowiedzi skokowe
		3.2.1. Implementacja
4.	Pane	el operatora

1. Sprawdzenie możliwość sterowania i pomiaru oraz wyznaczenie punktu pracy

1.1. Przykładowe sterowanie wraz z odczytem pomiarów

1.1.1. Implementacja

Do przetestowania możliwości sterowania i pomiaru w komunikacji ze stanowiskiem użyto skryptu zad1_1.m.

1.2. Punkt pracy

1.2.1. Implementacja

Do wyznaczenia wartości temperatury, odczytanej z czujnika, wykorzystano skrypt zad1_2.m.

2. Mechanizm zabezpieczający przed uszkodzeniem stanowiska

3. Implementacja regulatora DMC MIMO oraz przygotowanie odpowiedzi skokowych

3.1. Implementacja DMC

Dla regulatora DMC 2×2 równania algorytmu przyjmą następującą postać:

$$y(k) = \begin{bmatrix} y_1(\mathbf{k}) \\ y_2(\mathbf{k}) \end{bmatrix} \tag{3.1}$$

$$y^{\text{zad}}(k) = \begin{bmatrix} y_1^{\text{zad}}(\mathbf{k}) \\ y_2^{\text{zad}}(\mathbf{k}) \end{bmatrix}$$
(3.2)

$$u(k) = \begin{bmatrix} u_1(\mathbf{k}) \\ u_2(\mathbf{k}) \end{bmatrix} \tag{3.3}$$

$$S_{l} = \begin{bmatrix} s_{l}^{11} & s_{l}^{12} \\ s_{l}^{21} & s_{l}^{22} \end{bmatrix}, l = 1...D$$
(3.4)

$$M = \begin{bmatrix} S_1 & 0 & \dots & 0 \\ S_2 & S_1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ S_N & S_{N-1} & \dots & S_{N-N_{\mathrm{u}}+1} \end{bmatrix}$$
(3.5)

$$M^{P} = \begin{bmatrix} S_{2} - S_{1} & S_{3} - S_{2} & \dots & S_{D} - S_{D-1} \\ S_{3} - S_{1} & S_{4} - S_{2} & \dots & S_{D+1} - S_{D-1} \\ \vdots & \vdots & \ddots & \vdots \\ S_{N+1} - S_{1} & S_{N+2} - S_{2} & \dots & S_{N+D-1} - S_{D-1} \end{bmatrix}$$
(3.6)

$$K = (M^{\mathrm{T}}M + \lambda I)^{-1}M^{\mathrm{T}}$$
(3.7)

$$Y^{0}(k) = Y(k) + M^{P} \Delta U^{P}(k)$$
 (3.8)

$$\Delta U(k) = K(Y^{\text{zad}}(k) - Y^{0}(k)) \tag{3.9}$$

3.2. Odpowiedzi skokowe

3.2.1. Implementacja

Do zrealizowania zadania zostały użyte skrypty zad2.m oraz odp_skok.m.

4. Panel operatora