Al- Project

Concept document

Rishabh Manoj Suryateja

International Institute of Information Technology Bangalore

March 30, 2017

Outline

- Introduction
- 2 Goal Statement
- Gap Analysis
- Technology and Architecture
- Milestones
- 6 References

Introduction

Human robot collaboration in industrial settings

- Robotics in industry
- Full Automation vs Intelligent automation (Collaboration)
- What is a robot model?
- A robot model primarily refers to the software framework for controlling the robot.

Goal Statement

- Formulating and Implementing a Behaviour Dependant and Collaborative robot model for robots in industrial settings.
- Behavior dependence refers to the adaptation of the robot to the human co-worker's behavior.
- Collaborative model refers to the robot models that consist of collaboration skills needed for effective team work as mentioned in [1]

CAIO Architecture[2]

CAIO Architecture[2]

- In CAIO architecture BIGRE model is used to decide the complex emotion that Emotional Appraisal module is supposed to output
- $\bullet \ \{\mathsf{Belief}, \ \mathsf{Ideal}, \ \mathsf{Goal}, \ \mathsf{Responsible}\} \to \{\mathsf{Complex} \ \mathsf{Emotion}\}$
- This model can output 12 emotions
- Example
- This Architecture has been implmented in python and has been tested on Nao Robot communicating using SWI-Prolog interface

The following are some essential skills for the robot to work with a worker collaboratively[1]:

Joint attention

- Joint attention
- Action observation

- Joint attention
- Action observation
- Co-representation

- Joint attention
- Action observation
- Co-representation
- Emergent coordination

- Joint attention
- Action observation
- Co-representation
- Emergent coordination
- Planned coordination

Our Architecture

Technology

- The models have been implemented already in Python
- We will implement our architecture mostly in Python using SciKit, OpenCV etc.
- To render the actions into a robot, either Robot Studio or SWI-prolog will be used.

Milestones

Schedule Planning	
Date	Expected Work
24 th January, 2017	Implementation of Multimodal Perception in
	Python
1 st February, 2017	Implementation of Intention Predic-
	tion/Evaluation in Python
15 th February, 2017	Implementation of Planner in Python
21 st February, 2017	Implementation of Action Renderer in Python
10 th March, 2017	Rendering actions using ROS/SWI-Prolog/Robot
	Studio for a simple task
17 th March, 2017	First Draft Submission

References

Sandra Devin, Grégoire Milliez, Michelangelo Fiore, Aurélie Clodic, and Rachid Alami.

Some essential skills and their combination in an architecture for a cognitive and interactive robot.

arXiv preprint arXiv:1603.00583, 2016.

Sylvie Pesty.

Social human-robot interaction: A new cognitive and affective interaction-oriented architecture.

In Social Robotics: 8th International Conference, ICSR 2016, Kansas City, MO, USA, November 1-3, 2016 Proceedings, volume 9979, page 253. Springer, 2016.