## Claims

- 1. An agent for inhibiting an excessive effect of NAD(P)H oxidase, which comprises a compound that does not substantially inhibit the effect of leukocyte NADPH oxidase but inhibits the effect of NAD(P)H oxidase in a tissue other than leukocyte.
  - 2. The agent of claim 1, wherein the tissue other than leukocyte is a tissue of a vascular cell, the heart, the kidney, the retina, the microglia or a tumor cell.

10

- 3. The agent of claim 1 or 2, wherein the excessive effect of NAD(P)H oxidase is caused by diabetes, hypertension, hyperlipidemia, obesity, smoking, heart failure, cardiac hypertrophy, ischemic heart diseases, angioplasty or ischemiareperfusion in organ transplantation.
  - 4. The agent of claim 1 or 2, wherein the excessive effect of NAD(P)H oxidase is caused by cancer or dementia.
- 20 5. The agent of claim 1 or 2, wherein the excessive effect of NAD(P)H oxidase is caused by intake of chemicals.
- 6. The agent of any one of claims 1 to 5, wherein the compound that does not substantially affect leukocyte NADPH oxidase but inhibits an excessive effect of NAD(P)H oxidase in a tissue other than leukocyte is a bicyclic pyridazine compound represented by the following formulas (I) to (VIII) or a pharmacologically acceptable salt thereof:

## 30 formula (I)



wherein A is  $C_3-C_6$  alkyl,  $C_5-C_7$  cycloalkyl, or phenyl, thienyl, furyl, thiazolyl, phenoxy,  $C_7-C_9$  phenylalkyl, phenylthio, nitrogen-containing saturated ring group, pyridyl or imidazolyl, each optionally having one or more substituents selected from  $C_1-C_4$  alkyl,  $C_1-C_4$  alkoxy and halogen, B is -NH-D

[D is

wherein  $R^1$  is hydrogen or  $C_1-C_4$  alkyl, X is halogen,  $C_1-C_4$  alkyl or  $C_1-C_4$  alkoxy, and k is an integer of 0 to 3, when k is an integer of 2 or more, multiple Xs may be the same or different,

wherein  $R^2$  is hydrogen or  $C_1-C_4$  alkyl, Y is  $C_1-C_4$  alkyl or  $C_1-C_4$  alkoxy, and m is an integer of 0 to 6, when m is 2 or more, multiple Ys may be the same or different, and any two Ys may be joined to form optionally branched  $C_1-C_6$  alkylene,

wherein ring H is  $C_5-C_7$  cycloalkyl, and Y and m are as defined above,

-CHR3 R4

wherein  $R^3$  is  $C_1-C_5$  alkyl, and  $R^4$  is  $C_5-C_8$  cycloalkyl or thienyl,

or  $C_3-C_8$  alkyl)

wherein Z is  $C_1-C_4$  alkyl or phenyl, and n is an integer of 0 to 2, when n is 2, these Zs may be the same or different, and Q is a benzene ring, a furan ring or a thiophene ring optionally substituted by  $C_1-C_4$  alkyl,

formula (II)

10

wherein  $R^5$  and  $R^6$  are each independently hydrogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, cyano, nitro, amino, trifluoromethyl or carboxyl, and X' is  $-COOR^7$  ( $R^7$  is hydrogen or optionally substituted  $C_1$ - $C_6$  alkyl),  $-CONH_2$ , -CN,  $-COR^8$  ( $R^8$  is optionally substituted  $C_1$ - $C_6$  alkyl or optionally substituted aryl),  $-NH_2$ ,  $-NO_2$  or  $-OR^7$  ( $R^7$  is as defined above),

formula (III)

$$R^9$$
NH
(III)

wherein  $R^9$  and  $R^{10}$  are each independently hydrogen,  $C_1-C_6$  alkyl,  $C_1-C_6$  alkoxy, halogen, cyano, nitro, amino, trifluoromethyl or carboxyl,

formulas (IV) and (V)

$$R^{11}$$
 $R^{12}$ 
 $R^{11}$ 
 $R$ 

wherein  $R^{11}$  and  $R^{12}$  are each independently hydrogen,  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkoxy, halogen, cyano, nitro, amino, trifluoromethyl or 5 carboxyl, and X'' is  $-OR^{13}$  ( $R^{13}$  is hydrogen,  $C_1$ - $C_6$  alkyl or aryl) or  $-NR^{14}R^{15}$  ( $R^{14}$  and  $R^{15}$  are each independently hydrogen,  $C_1$ - $C_6$  alkyl or aryl,

formulas (VI), (VII) and (VIII)

10

15

wherein  $R^{16}$  and  $R^{17}$  are each independently hydrogen,  $C_1$ - $C_6$  alkyl, alkoxy, halogen, cyano, nitro, amino, trifluoromethyl or carboxyl,  $R^{18}$  and  $R^{19}$  are each independently hydrogen or  $C_1$ - $C_6$  alkyl, and Y' is oxygen or sulfur.

- 7. A pharmaceutical composition for the diseases caused by an excessive effect of NAD(P)H oxidase, which comprises the agent of any one of claims 1 to 6 as an active ingredient.
- 8. The pharmaceutical composition of claim 7, which is administered simultaneously with a hypolipidemic agent, an antihypertensive agent, a hypoglycemic agent, a vasodilator, an

antiplatelet agent, an anticoagulant, a brain protective agent, an anticancer agent, a diuretic agent, a cardiotonic agent, an analgesic agent, an antiedemic agent, a thrombolytic agent, an immunosuppressant, a steroid, a vitamin or an antioxidant, or administered separately therefrom, or administered sequentially therewith.