

অধ্যায় ১২

বিদ্যুতের চৌম্বক ক্রিয়া

MAIN TOPIC

চুম্বক

যে সকল বস্তুর আকর্ষণ ও দিক নির্দেশক ধর্ম আছে তাদেরকে চুম্বক বলে। চুম্বকের আকর্ষণ ও বিকর্ষণের ধর্মকে চুম্বকত্ব বলে।

চুম্বকের ধর্ম

সমমেরু পরস্পরকে বিকর্ষণ করে এবং বিপরীত মেরু পরস্পরকে আকর্ষণ করে।

যেসকল পদার্থকে চুম্বক আকর্ষণ করে এবং যাদেরকে চুম্বকে পরিণত করা যায় তাদেরকে চৌম্বক বলে। যেমন: লোহা, নিকেল, কোবাল্ট।

চিত্ৰ: চৌম্বক পদাৰ্থ

বিদ্যুতের চৌম্বক ক্রিয়া

কোন পরিবাহীর মধ্য দিয়ে তড়িৎ প্রবাহিত হলে এর চারপাশে একটি চুম্বক ক্ষেত্র সৃষ্টি হয়। একে বিদ্যুতের চৌম্বক ক্রিয়া বলে। ১৮২০ সালে ওয়েরস্টেড এটি আবিষ্কার করেন।

এই যে, চৌম্বক ক্ষেত্র সৃষ্টি হয় তা কোন দিকে ক্রিয়া করবে তার জন্য তারা একটি সূত্র মেনে চলে। সূত্রটি হল ম্যাক্সওয়েলের কর্ক-ক্ষু সূত্র।

ম্যাক্সওয়েলের কর্ক-স্কু সূত্র

পরিবাহীর যেদিকে কারেন্ট প্রবাহিত হয়, সে দিকে ডান হাতে কর্ক-স্ক্রুকে ঘুরালে বৃদ্ধাঙ্গুলি যেদিকে ঘুরে সেদিকে চুম্বক বলরেখার দিক নির্দেশ করবে।

এটিকে সহজ করার জন্য ফ্লেমিং <mark>আ</mark>রেকটি সূত্র দিয়েছেন।

ফ্রেমিং-এর ডান হস্ত নিয়ম

একটি বিদ্যুৎবাহী তারকে বিদ্যুৎ প্রবাহের দিকে বৃদ্ধাঙ্গুলি রেখে দক্ষিণ হস্তে ধরলে অন্য আঙ্গুলগুলি চৌম্বক ক্ষেত্রের দিক নির্দেশ করে।

সলিনয়েড

কাছাকাছি বা ঘন সন্নিবিষ্ট প্যাঁচযুক্ত লম্বা বেলনাকার কয়েল বা তারকা কুন্ডলীকে সলিনয়েড বলে।

সৃষ্ট চৌমুক ক্ষেত্রের দিক নির্ণয়

এর ক্ষেত্রেও ফ্লেমিং-এর ডান হস্ত <mark>নিয়</mark>ম প্রযোজ্য।

চিত্র: লুপের ভেতর দিয়ে বিদ্যুং প্রবাহের কারণে তৈরী চৌম্বকক্ষেত্র

চিত্র: লুপের ভেতর দিয়ে বিদ্যুং প্রবাহ করলে ডান হাতের নিয়ম ব্যবহার করে।

সলিনয়েডের ব্যবহার

- i) বৈদ্যুতিক ঘণ্টা।
- ii) দেয়াল ঘড়ির রিল।
- iii) বৈদ্যুতিক মোটর ইত্যাদি।

তড়িৎপ্রবাহী তারের উপর চুম্বকের প্রভাব

তড়িৎবাহী তার নিজস্ব একটি চুম্বক ক্ষেত্রের সৃষ্টি করে। আবার চুম্বকের নিজের একটি শক্তিশালী চৌম্বকক্ষেত্র রয়েছে। ফলে যখন একটি তড়িৎবাহী তারকে চুম্বকের মধ্যে রাখা হয় তখন তাদের চৌম্বকক্ষেত্রের মধ্যে ক্রিয়া-প্রতিক্রিয়া ঘটে। এ ক্রিয়া প্রতিক্রিয়ার ফলে তারটি কোনো সময় উপরে উঠে যায় আবার কোনো সময় নিচেনেমে যায়। যখন তার এবং চুম্বকের চৌম্বকক্ষেত্রের দিক একই হবে তখন তার উপরে উঠে যায় আর বিভিন্ন হলে নিচে নেমে যায়।

মোটর

মোটর হলো একটি কৌশল যার মাধ্যমে বৈদ্যুতিক শক্তিকে যান্ত্রিক শক্তিতে রূপান্তর করা হয়।

- □ মোটর প্রধানত ২ প্রকার । যথা:
- i) এসি মোটর
- ii) ডিসি মোটর

এসি মোটর ও ডিসি মোটরের গঠন প্রায় একই। তবে কাজ ভিন্ন। নিচে ডিসি মোটরের গঠন ব্যাখ্যা করা হল-

চিত্র: বৈদ্যুতিক মোটর

মোটর গঠনের জন্য দুটি বিপরীত মেরুর চুম্বকের মাঝখানে একটি তড়িৎ পরিবাহী তার বা কুণ্ডলী রাখা হয়। এই তারকে আর্মেচার বলে।

আর্মেচার কুণ্ডলী যে অক্ষে ঘোরে সেই অক্ষদন্ডের গায়ে সমান দুখণ্ড করা একটি ধাতব আংটা (স্প্লিট্রিং ক্ম্যুটেটর) অন্তরিতভাবে চেপে আঁটা থাকে। আর্মেচার কুণ্ডলীর দুটি প্রান্ত ক্ম্যুটেটরের দুখন্ডের সঙ্গে যোগ করা থাকে। ক্ম্যুটেটরের দুখন্ডের গায়ে আংটার এক ব্যাস বরাবর দুটি কার্বন ব্রাশ দিয়ে তড়িৎ প্রবাহ সরবরাহ লাইন বা ব্যাটারি থেকে কুণ্ডলীতে প্রবেশ করে। এর ফলে, ফ্লেমিং-এর বামহস্ত নিয়ম অনুযায়ী কুণ্ডলী একই পাকে ক্রমাগত ঘুরে চলে।

চুম্বকের শক্তি বাড়িয়ে, তড়িৎ প্রবাহের মাত্রা বাড়িয়ে কিংবা কুণ্ডলীতে পাকসংখ্যা বাড়িয়ে মোটরের শক্তি বাড়ানো যায়।

মোটরের ব্যবহার

- i) বৈদ্যুতিক ট্রেন
- ii) ট্রাম
- iii) পাখা
- iv) রোলিং মিল
- v) পাম্প

তড়িৎ চৌম্বক আবেশ

এমন একটি গতিশীল চুম্বক বা তড়িৎবাহী বর্তনীর তড়িৎ প্রবাহের পরিবর্তনে সাহায্য অন্য একটি বর্তনীতে ক্ষণস্থায়ী ভোল্টেজ ও তড়িৎ প্রবাহ উৎপন্ন করার পদ্ধতিকে তড়িৎ চৌম্বক আবেশ বলে। এই আবেশের ফলে সৃষ্ট ভোল্টেজকে আবিষ্ট ভোল্টেজ এবং বিদ্যুৎ প্রবাহ কে আবিষ্ট বিদ্যুৎ প্রবাহ বলে।

মনে রাখতে হবে, চৌম্বকক্ষেত্র পরিবর্তন হলেই কেবলমাত্র বিদ্যুৎ উৎপন্ন হয়। কয়েলের মাঝখানে শক্তিশালী চুম্বক রেখে দিল চৌম্বকক্ষেত্র তৈরি হবে ঠিকই কিন্তু বিদ্যুৎ উৎপন্ন হবে না কারণ আমরা চৌম্বক ক্ষেত্রের পরিবর্তন ঘটায়নি।

যে তড়িৎযন্ত্রে যান্ত্রিক শক্তিকে তাপশক্তিতে রূপান্তরিত করা হয় তাকে জেনারেটর বলে। তাড়িতচৌম্বক আবেশের উপর ভিত্তি করে এই যন্ত্রের মূল নীতি প্রতিষ্ঠিত। জেনারেটর দৃই প্রকার হতে পারে। যথা:

- ১। এসি জেনারেটর।
- ২। ডিসি জেনারেটর।

এসি জেনারেটর

এসি জেনারেটর অধিক প্রচলিত বিধায় এর গঠন ও কার্যপ্রণালী সম্পর্কে নিম্নে আলোচনা করা হলো -

গঠন -

এতে একটি চুম্বক থাকে। চুম্বকের মধ্যবর্তী স্থানে একটি কাচা লোহার পাতের উপর একটি তারের আয়তাকার কুণ্ডলী থাকে। কাচা লোহার পাতটিকে আর্মেচার বলে। আর্মেচারটিকে চুম্বকের দুই মেরুর মধ্যবর্তী স্থানে যান্ত্রিক উপায়ে সমদ্রুতিতে ঘুরানো হয়। আয়তাকার কুণ্ডলীর দুই প্রান্ত দুইটি স্লিপ রিং এর সাথে সংযুক্ত থাকে। স্লিপ রিং দুইটি আর্মেচারের একই অক্ষ বরাবর ঘুরতে পারে। দুইটি কার্বন নির্মিত ব্রাশ এমনভাবে স্থাপন করা হয় যেন তারা যখন আর্মেচার ঘুরতে থাকে তখন স্লিপ রিং দুইটিকে স্পর্শ করে থাকে। ব্রাশ দুইটির সাথে বহিবর্তনীর রোধ R সংযুক্ত থাকে।

কার্যপ্রণালি: যখন আর্মেচারটিকে ঘুরানো হয় তখন আর্মেচার কুণ্ডলী চৌম্বকক্ষেত্রের বলরেখাণ্ডলোকে ছেদ করে এবং তাড়িতচৌম্বক আবেশের নিয়মানুযায়ী কুণ্ডলীতে তড়িচ্চালক শক্তি আবিষ্ট হয়। কুণ্ডলীর একবার ঘূর্ণনের মধ্যে আবিষ্ট তড়িৎপ্রবাহের অভিমুখও একবার পরিবর্তিত হয়। এখন কুণ্ডলীটির দুই প্রান্ত বহিবর্তনীর সাথে সংযুক্ত থাকায় বর্তনীতে পর্যায়বৃত্ত তড়িৎপ্রবাহের উৎপত্তি হয়। আবিস্ট তড়িৎপ্রবাহের মান প্রধানত চৌম্বকক্ষেত্রের সবলতা ও ঘূর্ণনের বেগের উপর নির্ভর করে। এভাবে যান্ত্রিক শক্তি থেকে পর্যায়বৃত্ত প্রবাহ উৎপন্ন হয়।

জেনারেটরকে মোটরের বিপরীত যন্ত্র বলা হয় কেন ?

উত্তর : জেনারেটর যান্ত্রিক শক্তিকে তড়িৎ শক্তিতে রূপান্তর করে। জেনারেটরের মূলনীতি তড়িৎ চৌম্বকের আবেশের উপর ভিত্তি করে প্রতিষ্ঠিত অপরদিকে তড়িৎ মোটর তড়িৎ শক্তিতে যান্ত্রিক শক্তিকে রূপান্তর করে। তাই জেনারেটরকে মোটরের বিপরীত যন্ত্র বলা হয়।

ট্রান্সফর্মার

যে যন্ত্রের সাহায্যে পর্যায়বৃত্ত উচ্চ বিভবকে নিম্ন বিভবে বা পর্যায়বৃত্ত নিম্ন বিভবকে উচ্চ বিভবে রূপান্তর করা হয়, তাকে ট্রান্সফর্মার বলে। তড়িৎ চৌম্বকের আবেশের উপর ভিত্তি করে এই যন্ত্র তৈরি করা হয়।

ট্রান্সফর্মারের প্রকারভেদ

ট্রান্সফর্মার ২ প্রকার। যথা -

i) আরোহী বা স্টেপ আপ ট্রান্সফর্মার :

যে ট্রান্সফর্মারের মূখ্য কুণ্ডলীর চেয়ে গৌণ কুন্ডলীতে তারের পাকসংখ্যা বেশি থাকে আরোহী বা স্টেপ আপ ট্রান্সফর্মার বলে।

i) অবরোহী বা স্টেপ ডাউন ট্রান্সফর্মার:

যে ট্রান্সফর্মারের মূখ্য কুণ্ডলীর চেয়ে গৌণ কুন্ডলীতে তারের পাকসংখ্যা কম থাকে অবরোহী বা স্টেপ ডাউন ট্রান্সফর্মার বলে।

চিত্র: স্টেপ ডাউন ট্রান্সফর্মার

ট্রান্সফর্মারের গঠন ও কার্যপ্রণালি

একটি আয়তাকার লোহার মজ্জা নেওয়া হয়। একে কোর বলে। এই কোরের দুই পাশে অপরিবাহী আন্তরণ যুক্ত তার প্যাঁচানো হয়। কোরের এক পাশে (সাধারণত বাম পাশে) একটি এসি ভোল্টেজ এর উৎস লাগানো হয়। এ উৎস যে কুন্তুলীতে প্রয়োগ করে তাকে মুখ্য কুন্তুলীর বলে। আর এ কুন্তুলীতে তডিৎ প্রবাহ দেওয়ার ফলে এটি একটি শক্তিশালী চৌম্বক ক্ষেত্র তৈরি করবে (যেহেতু কুণ্ডলীর ভেতর একটি লোহার কোর আছে)।যেহেতু এসি ভোল্টেজ এর উৎস থেকে তড়িৎ প্রবাহ দেওয়া হয়েছিল তাই এ চৌম্বক ক্ষেত্রের পরিবর্তন হয়। ফলে অপরদিকে কুন্ডলীতে তডিৎ চৌম্বক আবেশ এর মাধ্যমে তডিচ্চালক শক্তি তৈরি হবে। কোরের মধ্যে যে কুণ্ডলী আবিষ্ট হয় তাকে গৌণ কন্ডলী বলে।

lacktriangle মুখ্য কুণ্ডলীর পাকসংখ্যা n_s , গৌণ কুণ্ডলীর পাকসংখ্যা n_s , মুখ্য কুণ্ডলীর ভোল্টেজ V_p , গৌণ কুণ্ডলীর ভোল্টেজ 🗸 হলে,

$$\frac{n_p}{n_s} = \frac{V_p}{V_s} \quad (i)$$

আবার, মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ I_p , গৌণ কুণ্ডলীর তড়িৎ প্রবাহ I_s হলে,

(i) ও (ii) হতে,

$$\frac{n_p}{n_s} = \frac{I_s}{I_P} \qquad \text{(ii)}$$

$$\frac{n_p}{n_s} = \frac{V_p}{V_s} = \frac{I_s}{I_P}$$

$$\frac{n_p}{n_s} = \frac{V_p}{V_s} = \frac{I_s}{I_P}$$

মনে রাখতে হবে, উক্ত ভোল্টেজ AC হতে DC হলে ট্রান্সফর্মার কাজ করবে না।

🛘 একটি ট্রান্সফর্মারের গৌণ কুণ্ডলীর পাকসংখ্যা মুখ্য কুণ্ডলীর পাকসংখ্যার 5 গুণ হলে প্রবাহমাত্রার কী পরিবর্তন হবে ?

উত্তর: নিজে করো।

□ তড়িৎ পরিবহনে ট্রান্সফর্মার ব্যবহার করা হয়় কেন ?

উত্তর: তড়িৎ পরিবহনে ট্রান্সফর্মার ব্যবহার করা হয় কারণ কম বিভবের উচ্চ মানের তড়িৎ তারের মধ্য দিয়ে প্রবাহিত করলে তাপ উৎপন্ন হয়। যা তারের রোধ বাড়িয়ে দেয়। এতে বিদ্যুতের অপচয় হয়। এই অপচয় রোধের জন্য উচ্চ বিভবের নিম্ন মানের তড়িৎ প্রবাহ রূপে দূর-দূরান্তে ট্রাঙ্গফর্মারের সাহায্যে প্রেরণ করা হয়।

ট্রান্সফর্মারের কাজ

- i) তড়িৎ প্রবাহের মানকে হ্রাস-বৃদ্ধি করা।
- ii) দূরবর্তী স্থানে তড়িৎ প্রেরণ করা।
- iii) বৈদ্যুতিক শক্তির প্রেরণ ও বণ্টন ব্যবস্থা নিয়ন্ত্রণ করা।
- iv) বৈদ্যুতিক চুল্লি, টেলিভিশন, রেডিও ইত্যাদিতেও ট্রান্সফর্মার ব্যবহার করা হয়।

জ্ঞানমূলক প্রশ্নোত্তর

১) সলিনয়েড কী?

উত্তর: সলিনয়েড হচ্ছে কাছাকাছি বা ঘন সন্নিবিষ্ট অনেকগুলো প্যাঁচযুক্ত লম্বা বেলনাকার কয়েল বা তার কুন্ডলী।

২) তাড়িতচৌম্বক আবেশ কাকে বলে?

উত্তর: একটি গতিশীল চুম্বক বা তড়িৎবাহী বর্তনীর সাহায্যে অথবা একটি স্থির তড়িৎবাহী বর্তনীর তড়িৎ প্রবাহের পরিমাণ কম বেশি করে অন্য একটি সংবদ্ধ বর্তনীতে ক্ষণস্থায়ী তড়িচ্চালক বল ও তড়িৎ প্রবাহ উৎপন্ন হওয়ার পদ্ধতিকে তাড়িতচৌম্বক আবেশ বলে।

৩) জেনারেটর কাকে বলে?

উত্তর: যে তড়িৎ যন্ত্রে যান্ত্রিক শক্তিকে তড়িৎ শক্তিতে রূপান্তরিত করা হয়, তাকে জেনারেটর বলে।

8) তড়িৎ চুম্বক কাকে বলে?

উত্তর: সলিনয়েড়ের ভিতর কো<mark>নো</mark> কাচা লোহা বা ইস্পাতের দন্ড ঢুকিয়ে সলিনয়েডে তড়িৎ প্রবাহ চালালে দন্ডটি চুম্বকত্ব লাভ করে। এ ধর<mark>নের চু</mark>ম্বককে তড়িৎ চুম্বক বলে।

৫) চৌম্বক ক্ষেত্রের তীব্রতা কিসের উপর নির্ভর করে?

উত্তর: চৌম্বক ক্ষেত্রে তীব্রতা তড়িৎ প্রবাহ এবং দূরত্বের উপর নির্ভর করে।

৬) তড়িৎ মোটর কাকে বলে?

উত্তর: যে তড়িৎ যন্ত্র তড়িৎ শক্তিকে যান্ত্রিক শক্তিতে রূপান্তরিত করে, তাকে তড়িৎ মোটর বলে।

৭) নিম্নধাপী ট্রান্সফর্মার কাকে বলে?

উত্তর: যে ট্রান্সফর্মার অধিক বিভবের অল্প তড়িৎ প্রবাহকে অল্প বিভবের অধিক তড়িৎ প্রবাহে রূপান্তরিত করে তাকে অবরোহী বা নিম্নধাপী ট্রান্সফর্মার বলে।

৮) কোন তত্ত্বের উপর ভিত্তি করে ট্রান্সফর্মার তৈরি করা হয়?

উত্তর: তড়িৎ চুম্বক আবেশের উপর ভিত্তি করে ট্রান্সফর্মার তৈরি করা হয়।

৯) চৌম্বক মেরু কাকে বলে?

উত্তর: কোনো চুম্বকের দু প্রান্তের কাছাকাছি যে সংকীর্ণ অঞ্চলে আকর্ষণ বা বিকর্ষণ ক্ষমতা সবচেয়ে বেশি, তাদেরকে চুম্বকের মেরু বা চৌম্বক মেরু বলে।

১০) ট্রান্সফর্মার কাকে বলে?

উত্তর: যে যন্ত্রের সাহায্যে পর্যায়বৃত্ত উচ্চ বিভবকে নিম্ন বিভবে বা পর্যায়বৃত্ত নিম্ন বিভবকে উচ্চ বিভবে রূপান্তরিত করা যায়, তাকে ট্রান্সফর্মার বলে।

১১) জেনারেটর কোন শক্তিকে কোন শক্তিতে রূপান্তর করে?

উত্তর: জেনারেটর যান্ত্রিক শক্তিকে তড়িৎ শক্তিতে রূপান্তর করে।

১২) জেনারেটরের মূলনীতি কী?

উত্তর: জেনারেটরের মূলনীতি তাড়িতচৌম্বক আবেশ।

১৩) ইলেকট্রিক ঘড়িতে কী ধরনের ট্রান্সফর্মার ব্যবহৃত হয় ?

উত্তর: ইলেকট্রিক ঘড়িতে অবরোহী ট্রান্সফর্মার ব্যবহৃত হয়।

১৪) রেডিওতে কোন ধরনের ট্রান্সফর্মার ব্যবহৃত হয়?

উত্তর: রেডিওতে নিম্নধাপী বা অবরোহী ট্রান্সফর্মার ব্যবহৃত হয়।

16 MINUTE SCHOOL

অনুধাবনমূলক প্রশ্নোত্তর

১) ট্রান্সফর্মারের ক্ষমতা ধ্রুব থাকে কেন?

উত্তর: সংজ্ঞানুযায়ী ট্রান্সফর্মারের ক্ষমতা, N = VI

জানা আছে,
$$\frac{V_p}{V_s} = \frac{I_s}{I_P}$$
 ; অর্থাৎ $V_p I_p = V_S I_S$

$$\therefore P_{in} = V_p I_p$$
 এবং $P_{out} = V_s I_s$

$$P_{in} = P_{out}$$

সূতরাং, ট্রান্সফর্মার যে হারে ভোল্টেজ বৃদ্ধি করে সেই একই হারে কারেন্ট হ্রাস করে, ফলে ক্ষমতা ধ্রুব থাকে।

২) একটি আরোহী ট্রান্সফর্মারকে কিভাবে অবরোহী ট্রান্সফর্মারে রূপান্তর করা যায় - ব্যাখ্যা কর।

উত্তর: আরোহী ট্রান্সফর্মারে মুখ্য কুণ্ডলীর চেয়ে গৌণ কুণ্ডলীতে পাকসংখ্যা বেশি থাকে। আর অবরোহী ট্রান্সফর্মারে গৌণকুণ্ডলীর চেয়ে মুখ্য কুণ্ডলীতে পাকসংখ্যা বেশি থাকে। তাই আরোহী ট্রান্সফর্মারে মুখ্য কুণ্ডলীর পাকসংখ্যা গৌণ কুণ্ডলীর চেয়ে বাড়িয়ে দিলে তা অবরোহী ট্রান্সফর্মারে পরিণত হয়। আরোহী ট্রান্সফর্মারকে 180° কোণে ঘুরিয়ে দিলেও তা অবরোহী ট্রান্সফর্মারে পরিণত হবে।

উচ্চধাপী ট্রান্সফর্মারের ২টি বৈশিষ্ট্য লিখ।

উত্তর: উচ্চধাপী ট্রান্সফর্মারের দটি বৈশিষ্ট্য -

- i) এটি অল্প বিভবের অধিক তড়িৎ প্রবাহকে অধিক বিভবের অল্প তড়িৎ প্রবাহে রূপান্তরিত করে।
- ii) উচ্চধাপী ট্রান্সফর্মারে মুখ্য কুণ্ডলীর চেয়ে গৌণ কুণ্ডলীতে তারের পাকসংখা বেশি থাকে।

8) ট্রান্সফর্মার শুধুমাত্র পর্যাবৃত্ত ভোল্টেজ পরিবর্তন করে - ব্যাখ্যা কর।

উত্তর: আমরা জানি, ট্রান্সফর্মারে মুখ্য কুণ্ডলী ও গৌণ কুণ্ডলী থাকে। বিভব প্রয়োগ করা হলে মুখ্য কুণ্ডলী থেকে ভোল্টেজ পর্যাবৃত্ত পরিবর্তনের মাধ্যমে গৌণ কুণ্ডলীতে স্থানান্তরিত হয় যা ডিসি ভোল্টেজের ক্ষেত্রে ঘটে না। তাই বলা হয়, ট্রান্সফর্মার শুধুমাত্র পর্যাবৃত্ত ভোল্টেজ পরিবর্তন করে।

৫) সলিনয়েডের সাহায়্যে কিভাবে তড়িৎ চৌম্বক সৃষ্টি করা যায়—ব্যাখ্যা কর।

উত্তর: সলিনয়েডের মধ্য দিয়ে তড়িৎ প্রবাহিত করলে অধিকাংশ বলরেখা কয়েলের কেন্দ্রে ঘনীভূত হয় এবং সলিনয়েডের চৌম্বকক্ষেত্র দণ্ড চুম্বকের চৌম্বকক্ষেত্রের মতো হয়। সলিনয়েডের মধ্য দিয়ে তড়িৎ প্রবাহের ফলে যে চুম্বকত্বের সৃষ্টি হয় তাই তাড়িতচুম্বক। সলিনয়েডে তড়িৎ প্রবাহ বন্ধ করলে তাড়িতচুম্বক পদার্থটির চুম্বকত্ব আর থাকে না।

৬) তড়িৎবাহী তারের ওপর চুম্বকের প্রভাব বর্ণনা কর।

উত্তর: আমরা জানি, তড়িৎবাহী তার নিজস্ব একটি চৌম্বকক্ষেত্রের সৃষ্টি করে। শক্তিশালী চুম্বকের বিপরীতে মেরুদ্বয়ের মধ্যে সৃষ্ট চৌম্বকক্ষেত্র এবং তড়িৎবাহী তারের চৌম্বকক্ষেত্রের মধ্যে ক্রিয়া-প্রতিক্রিয়া ঘটে। ফলে তারটি উপরের দিকে লাফিয়ে উঠে। তড়িৎ প্রবাহের দিক পরিবর্তন করলে আবার নিচের দিকে নামে।

৭) সলিনয়েডে সৃষ্ট চৌম্বকক্ষেত্রের প্রাবল্য কী কী উপায়ে বৃদ্ধি করা যায়?

উত্তর: সলিনয়েডে সৃষ্ট এ চৌম্বকক্ষেত্রের প্রাবল্য বৃদ্ধি করা যায় বিভিন্নভাবে। যেমন -

- i) সলিনয়েডে তড়িৎ প্রবাহের মান বাড়িয়ে চৌম্বক ক্ষেত্রের প্রাবল্য বৃদ্ধি করা যায়।
- ii) প্রতি একক সংখ্যার দৈর্ঘ্য বা পাক বাড়ালে চৌম্বক ক্ষেত্রের প্রাবল্য বাড়ে।
- iii) লোহার দণ্ড বা পেরেককে U অক্ষরের মতো বাঁকিয়ে মেরুর কাছাকাছি এনে প্রাবল্য বৃদ্ধি।

TOPICWISE MATH

১) একটি ট্রান্সফর্মারের মুখ্য ও গৌণ কুণ্ডলীর পাকসংখ্যা যথাক্রমে 100 এবং 200 ; মুখ্য কুণ্ডলীতে ভোল্টেজ 220 V হলে গৌণ কুণ্ডলীতে কী পরিমাণ ভোল্টেজ সৃষ্টি হবে?

সমাধান: আমরা জানি,

$$rac{V_p}{V_S} = rac{n_p}{n_S}$$

বা, $V_S = rac{n_S}{n_p} imes V_p$
 $= rac{200}{100} imes 220 \ V$
 $= 440 \ V$

এখানে,

মুখ্য কুণুলীর পাকসংখ্যা, $n_p=100$ মুখ্য কুণুলীর ভোল্টেজ, $V_p=220V$ গৌণ কুণুলীর পাকসংখ্যা, $n_S=200$ গৌণ কুণুলীর ভোল্টেজ, $V_S=?$

∴ গৌণ কুণ্ডলীর ভোল্টেজ 440 V।

২) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর পাকসংখ্যা যথাক্রমে 50, ভোল্টেজ 210 V। গৌণ কুণ্ডলীর পাকসংখ্যা 100 হলে ভোল্টেজ কত?

সমাধান: আমরা জানি,

$$\frac{V_p}{V_S} = \frac{n_p}{n_S}$$
বা, $V_S = \frac{n_S}{n_p} \times V_p$

$$= \frac{100}{50} \times 210 V$$

$$= 420 V$$

এখানে,

মুখ্য কুণ্ডলীর পাকসংখ্যা, $n_p=50$ মুখ্য কুণ্ডলীর ভোল্টেজ, $V_p=210V$ গৌণ কুণ্ডলীর পাকসংখ্যা, $n_S=100$ গৌণ কুণ্ডলীর ভোল্টেজ, $V_S=?$

∴ নির্ণেয় ভোল্টেজ 420 V।

৩) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীতে ভোল্টেজ 10 V এবং প্রবাহ 6 A। হলে গৌণ কুণ্ডলীর ভোল্টেজ 20 V হলে, গৌণ কুণ্ডলীর প্রবাহ নির্ণয় কর।

সমাধান: আমরা জানি,

$$\frac{V_p}{V_S} = \frac{I_S}{I_P}$$

বা, $I_S = \frac{V_P}{V_S} \times I_p$
 $= \frac{10 \text{ V}}{20 \text{ V}} \times 6 \text{ A}$
 $= 3 \text{ A}$

∴ নির্ণেয় প্রবাহ 3 A ।

এখানে, মুখ্য কুণুলীর ভোল্টেজ, $V_p=10\ V$ মুখ্য কুণুলীর প্রবাহ, $I_p=6\ A$ গৌণ কুণুলীর ভোল্টেজ, $V_S=20\ V$ গৌণ কুণুলীর প্রবাহ, $I_S=?$

MINUIE

8) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর পাকসংখ্যা 15 এবং গৌণ কুণ্ডলীর পাকসংখ্যা 90। মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ 5 A হলে গৌণ কুণ্ডলীর প্রবাহ কত?

সমাধান: আমরা জানি,

$$\frac{I_S}{I_P} = \frac{n_p}{n_S}$$

বা, $I_S = \frac{n_P}{n_S} \times I_p$
 $= \frac{15}{90} \times 5 A$
 $= \frac{5}{6} A$

 \therefore নির্ণেয় প্রবাহ $\frac{5}{6}$ A ।

এখানে, মুখ্য কুণুলীর পাকসংখ্যা, $n_p=15$ মুখ্য কুণুলীর প্রবাহ, $I_p=5A$ গৌণ কুণুলীর পাকসংখ্যা, $n_S=90$ গৌণ কুণুলীর প্রবাহ, $I_S=?$

৫) একটি স্টেপ-আপ (আরোহী) ট্রান্সফর্মারে 220**V** সরবরাহ করে 3 A প্রবাহ পাওয়া গেল। এর মুখ্য ও গৌণ কুন্ডলির পাক সংখ্যার অনুপাত 1 : 25 হলে গৌণ কুন্ডলীতে প্রাপ্ত ভোল্টেজ, মুখ্য কুন্ডলীর প্রবাহ ও ট্রান্সফর্মারের বহিঃক্ষমতা বের কর।

সমাধান: এখানে মুখ্য ও গৌণ কুন্ডলির পাক সংখ্যার অনুপাত,

$$\frac{n_P}{n_S}=\frac{1}{25}$$
 বা, $\frac{n_S}{n_P}=25$

আমরা জানি,

$$\frac{V_p}{V_S} = \frac{n_p}{n_S}$$

বা, $V_S = \frac{n_S}{n_p} \times V_p$
 $= 25 \times 220 V$
 $= 5500 V$

মুখ্য কুণ্ডলীর ভোল্টেজ, $\mathit{V}_p = 220\mathit{V}$ গৌণ কুণ্ডলীর প্রবাহ, $\mathit{I}_S = 3\,\mathit{A}$

আবার,

$$rac{V_p}{V_S}=rac{I_S}{I_P}$$

বা, $rac{220\,V}{5500\,V}=rac{3\,A}{I_P}$

ক্ষমতা,
$$P = V_S \times I_S$$

= 5500 $V \times 3 A$
= 16500 W

অতএব, গৌণ কুণ্ডলীতে প্রাপ্ত ভোল্টেজ 5500 V, মুখ্য কুণ্ডলীর প্রবাহ 75 A এবং ট্রান্সফরমারের বহিঃক্ষমতা 16500 W।

৬) একটি ট্রান্সফর্মারের গৌণ কুণ্ডলীর ভোল্টেজ 10 V এবং প্রবাহ 1.5 A। মুখ্য কুণ্ডলীর প্রবাহ 3 A হলে মুখ্য কুণ্ডলীর ভোল্টেজ নির্ণয় কর।

সমাধান: আমরা জানি.

$$\frac{V_p}{V_S} = \frac{I_S}{I_P}$$
বা, $V_p = \frac{I_S}{I_P} \times V_S$

$$= \frac{1.5 A}{3 A} \times 10 V$$

$$= 5 V$$

গৌণ কুণ্ডলীর ভোল্টেজ, $V_S=10\ V$ গৌণ কুণ্ডলীর প্রবাহ, $I_S=1.5\ A$ মুখ্য কুণ্ডলীর প্রবাহ, $I_p=3\ A$ মুখ্য কুণ্ডলীর ভোল্টেজ, $V_p=?$

∴ মুখ্য কুণ্ডলীর ভোল্টেজ 5 V।

৭) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীতে ভোল্টেজ 10 V এবং প্রবাহ 6 A। হলে গৌণ কুণ্ডলীর ভোল্টেজ 20 V रल, भौग कुछनीत প্রবাহ निर्णेय कत।

সমাধান: আমরা জানি.

$$\frac{V_p}{V_s} = \frac{I_s}{I_p}$$

$$\exists I, I_s = \frac{V_p}{V_s} \times I_p$$

$$= \frac{10 V}{20 V} \times 6 A$$

$$= 3 A$$

প্রাণে, $\dfrac{V_p}{V_S}=\dfrac{I_S}{I_P}$ এখানে, $\chi_S=\dfrac{V_P}{V_S} imes I_p$ এখানে, $\chi_S=\dfrac{V_P}{V_S} imes I_p$ এখানে, $\chi_S=\dfrac{I_S}{I_S} imes I_P=10V$ মুখ্য কুণ্ডলীর প্রবাহ, $\chi_S=10V$ গৌণ কুণ্ডলীর ভোল্টেজ, $\chi_S=10V$ গৌণ কুণ্ডলীর প্রবাহ, $\chi_S=10V$

∴ নির্ণেয় প্রবাহ 3 A।

৮) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর পাকসংখ্যা 30 এবং প্রবাহ 10 A। গৌণ কুণ্ডলীর পাকসংখ্যা 180 হলে প্রবাহ কত?

সমাধান: আমরা জানি,

$$\frac{I_S}{I_P} = \frac{n_p}{n_S}$$

বা, $I_S = \frac{n_P}{n_S} \times I_p$
 $= \frac{30}{180} \times 10 A$
 $= 1.667 A$

মুখ্য কুণ্ডলীর পাকসংখ্যা, $n_p=30$ মুখ্য কুণ্ডলীর প্রবাহ, $\,I_p=10\,A\,$ গৌণ কুণ্ডলীর পাকসংখ্যা, $\,n_{_S}=180\,$ গৌণ কুণ্ডলীর প্রবাহ, $I_{\scriptscriptstyle S}=?$

∴ নির্ণেয় প্রবাহ 1.667 A।

৯) একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর পাকসংখ্যা 27 এবং গৌণ কুণ্ডলীর পাকসংখ্যা 90। মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ 10 A হলে গৌণ কুণ্ডলীর প্রবাহ কত?

সমাধান: আমরা জানি,

$$rac{I_S}{I_P} = rac{n_p}{n_S}$$

বা, $I_S = rac{n_P}{n_S} \times I_p$
 $= rac{27}{90} \times 10~A$
 $= 3~A$

এখানে, $\mathbf{n}_{p}=27$ মুখ্য কুণ্ডলীর পাকসংখ্যা, $n_{p}=27$ মুখ্য কুণ্ডলীর প্রবাহ, $I_{p}=5\,A$ গৌণ কুণ্ডলীর পাকসংখ্যা, $n_{s}=90$ গৌণ কুণ্ডলীর প্রবাহ, $I_{s}=?$

∴ নির্ণেয় প্রবাহ 3 A।

16 MINUTE SCHOOL

SOLVED CQ

প্রশ্ন নং: ১

- ক. অর্ধায়ু বলতে কী বুঝায়?
- খ. আন্ট্রাসনোগ্রাফিকে নিরাপদ রোগ নির্ণয় পদ্ধতি বলা হয় কেন?
- গ, ট্রান্সফর্মারটির মুখ্য কুণ্ডলীর প্রবাহমাত্রা নির্ণয় কর।
- ঘ. উক্ত ট্রান্সফর্মারটি দ্বারা 60 W এর একটি বৈদ্যুতিক পাখা চালানো সম্ভব হবে কি না গাণিতিকভাবে বিশ্লেষণ কর।

১ নং প্রশ্নের উত্তর

- ক) যে সময়ে কোনো তেজস্ক্রিয় পদার্থের মোট পরমাণুর ঠিক অর্ধেক পরিমাণ ক্ষয়প্রাপ্ত হয় তাই ঐ তেজস্ক্রিয় পদার্থের অর্ধায়ু। একে T_1 দ্বারা প্রকাশ করা হয়।
- খ) আল্টাসনোগ্রাফিকে নিরাপদ রোগ নির্ণয় পদ্ধতি বলা হয়। কারণ আল্টাসনোগ্রাফি হলো এমন একটি প্রক্রিয়া যা উচ্চ কম্পাঙ্কের শব্দ। প্রতিফলিত করে শরীরের গভীরের কোনো অঙ্গ বা পেশির প্রতিবিম্ব মনিটরের পর্দায় গঠন করে। কিন্তু অন্যান্য রোগ নির্ণয় পদ্ধতিতে যেমনএক্সরে করতে তড়িতচৌম্বক বিকিরণ এবং বিভিন্ন পরীক্ষায় তেজন্ক্রিয় রিশ্ম ব্যবহৃত হয়। এসব তেজন্ক্রিয় রিশ্ম আমাদের শরীরের জন্য ক্ষতিকর। যেহেতু আন্ট্রাসনোগ্রাফিতে কোনো ক্ষতিকর প্রভাব নেই তাই একে নিরাপদ রোগ নির্ণয় পদ্ধতি বলা হয়।

(গ) দেওয়া আছে, মুখ্য কুণ্ডলীর পাকসংখ্যা $n_P=200$ গৌণ কুণ্ডলীর পাকসংখ্যা $n_S=5$ গৌণ কুণ্ডলীর প্রবাহমাত্রা, $I_S=\Delta A$ মুখ্য কুণ্ডলীর প্রবাহমাত্রা, $I_D=9$

আমরা জানি,

$$\frac{n_{P}}{n_{s}} = \frac{I_{s}}{I_{p}}$$

বা,
$$I_p = \frac{n_s I_s}{n_P} = \frac{5 \times 4 \text{ A}}{200} = 0.1 \text{ A}$$

অতএব, ট্রান্সফরমারটির মুখ্যকুণ্ডলীর প্রবাহমাত্র 0.1 A

্ঘ) দেওয়া আছে, ট্রান্সফর্মারটির মুখ্যকুগুলীর ভোল্টেজ $E_p=220\,\mathrm{V}$ মুখ্যকুগুলীর পাকসংখ্যা $n_p=200$ গৌণকুগুলীর প্রবাহমাত্রা $I_s=4A$ গৌণকুগুলীর পাকসংখ্যা $n_s=5$

আমরা জানি.

$$\frac{E_{P}}{E_{s}} = \frac{n_{P}}{n_{s}}$$

বা,
$$E_s = \frac{n_s E_p}{n_B} = \frac{200 \text{ V} \times 5}{200} = 5.5 \text{ V}$$

ট্রান্সফরমাটির আউটপুট ক্ষমতা, $P_s=E_sI_s=5.5~V imes4~A=22~W$

এখানে, $P_{s} < 60~W$ । অতএব, উদ্দীপকের ট্রাঙ্গফরমাটি আরা 60~W এর বৈদ্যুতিক পাখা চালানো সম্ভব নয়।

প্রশ্ন নং: ২

রাজশাহী সরকারি বালিকা উচ্চ বিদ্যালয়, রাজশাহী

একটি ট্রান্সফর্মারের মুখ্য ও গৌণ কুণ্ডলীর পাকসংখ্যা যথাক্রমে 100 ও 500 এবং গৌণ কুণ্ডলীর ভোল্টেজ 1100 V এবং প্রবাহ 5 A।।

- ক, সলিনয়েড কী?
- খ. এনজিওগ্রাম করার সময় কেন ডাই ব্যবহার করা হয়?
- গ. মুখ্য কুণ্ডলীর ভোল্টেজ নির্ণয় কর।
- ঘ, ট্রান্সফর্সারটি যে হারে ভোল্টেজ পরিবর্তন করে একই হারে প্রবাহ পরিবর্তন করে কি? যুক্তিসহ মতামত দাও।

২ নং প্রশ্নের উত্তর

- ক) সলিনয়েডে হচ্ছে কাছাকাছি বা ঘন সন্নিবিষ্ট অনেকগুলোপ্যাচযুক্ত লম্বা বেলনাকার কয়েল বা তার কুণ্ডলী।
- খ) এনজিওগ্রাফি হলো এমন একটি প্রতিবিম্ব তৈরির পরীক্ষা যেখানে শরীরের রক্তনালিকা দেখার জন্য এক্স-রে ব্যবহার করা হয়। কিন্তু এক্স-রে মানবদেহের চামড়া এবং রক্তনালি ভেদ করে যেতে পারে। এজন্য রক্তনালি এক্স-রের মাধ্যমে দেখার জন্য রক্তনালির ভেতর ডাই নামক এক ধরনের তরল পদার্থ ব্যবহার করা হয়। এক্স-রে ডাই ভেদ করে যেতে পারে না ফলে রক্ত নালিকাসমূহ এক্স-রের মাধ্যমে দৃশ্যমান । হয়। এজন্য এনজিওগ্রাফিতে ডাই ব্যবহার করা হয়।

(গ) দেওয়া আছে, ট্রান্সফর্মারটির গৌণকুণ্ডলীর ভোল্টেজ $\mathrm{E}_{\scriptscriptstyle S}=1100~\mathrm{V}$

মুখ্যকুণ্ডলীর পাকসংখ্যা
$$n_p=100$$

গৌণকুণ্ডলীর প্রবাহমাত্রা
$$I_s=4A$$

মুখ্যকুণ্ডলীর ভোল্টেজ
$$E_p=?$$

আমরা জানি,

$$\frac{E_{P}}{E_{S}} = \frac{n_{P}}{n_{S}}$$

$$\overrightarrow{\text{Al}}, \quad E_{P} = \frac{n_{P}E_{S}}{n_{S}} = \frac{1100 \text{ V} \times 100}{500} = 220 \text{ V}$$

∴ মুখ্যকুণ্ডলীর ভোল্টেজ 220 V

 $m{
abla}_{p}$ 'গ' হতে পাই, মুখ্যকুণ্ড<mark>লীর ভো</mark>ল্টেজ $E_{P}=220~V$ মুখ্যকুণ্ডলীর প্রবাহমাত্রা I_{P} হয় তবে,

$$\frac{I_{P}}{I_{S}} = \frac{n_{S}}{n_{P}}$$

$$\overline{A}, \quad I_P = \frac{n_S I_S}{n_P} = \frac{500 \times 5 \text{ A}}{100} = 25 \text{ A}$$

ট্রান্সফরমাটির ভোল্টেজের পরিবর্তন, $\frac{E_s}{E_P} = \frac{1100}{220} = 5$

$$E_s: E_P = 5:1$$

ট্রান্সফরমাটির প্রবাহ পরিবর্তন, $\frac{\mathrm{I}_{\mathrm{P}}}{\mathrm{I}_{\mathrm{S}}}=\frac{25}{5}=5$

$$I_P: I_S = 5:1$$

সুতরাং ট্রান্সফর্মারটি যে হারে ভোল্টেজ বৃদ্ধি করে একই হারে প্রবাহ হ্রাস করে। তাই বলা যায় ট্রান্সফর্মারে একই হারে ভোল্টেজ এবং তড়িৎ প্রবাহের পরিবর্তন হয়।

দেওয়া আছে, গৌণকুণুলীর ভোল্টেজ ${\rm E}_s=1100~{
m V}$ মুখ্যকুণুলীর পাকসংখ্যা ${\rm n}_{
m p}=100$ গৌণকুণুলীর প্রবাহমাত্রা ${\rm I}_{
m s}=5~{
m A}$ গৌণকুন্ডুলীর পাকসংখ্যা ${\rm n}_{
m s}=500$

প্রশ্ন নং: ৩

त्रः श्रुत जिला कुल, त्रः श्रुत

একটি ট্রান্সফর্মারে $220\,V$ সরবরাহ করে $5\,A$ প্রবাহ পাওয়া গেল। এর মুখ্য ও গৌণ কুণ্ডলীর পাক সংখ্যার অনুপাত 1:15।

- ক. শূন্য বিভব কাকে বলে?
- খ. রোধের প্রস্থচ্ছেদের সূত্রটি বিবৃত ও ব্যাখ্যা কর।
- গ, ট্রান্সফর্মারটির ক্ষমতা নির্ণয় কর।
- ঘ, উদ্দীপকের ট্রান্সফর্মারটির দ্বারা সিস্টেম লস কমানো সম্ভব কি না? যুক্তিসহ বিশ্লেষণ কর।

৩ নং প্রশ্নের উত্তর

- ক) কোনো আধানহীন পরিবাহকের বিভব বা ভূ-সংযুক্ত কোনো আহিত পরিবাহীর বিভবই শূন্য বিভব।
- খ) রোধের প্রস্থচ্ছেদের সূত্রটি হল :

নির্দিষ্ট তাপমাত্রায় নির্দিষ্ট উপাদানের পরিবাহীর দৈর্ঘ্য স্থির থাকলে পরিবাহীর রোধ এর প্রস্থচ্ছেদের ক্ষেত্রফলের ব্যস্তানুপাতিক।

অর্থাৎ $R \propto \frac{1}{A}$ (যখন তাপমাত্রা, উপাদান এবং L ধ্রুবক থাকে)

প্রস্থচ্ছেদের ক্ষেত্রফল বাড়লে পরিবাহীর রোধ কমে এবং প্রস্থচ্ছেদের ক্ষেত্রফল কমলে রোধ বাড়ে।

(গ) দেওয়া আছে,

গৌণকুণ্ডলীর প্রবাহমাত্রা
$$I_s=5~A$$
 মুখ্যকুণ্ডলীর ভোল্টেজ $E_p=220~V$

$$n_P: n_S = 1:15$$

বা,
$$\frac{n_P}{n_S} = \frac{1}{15}$$

আমরা জানি,
$$\frac{I_P}{I_S} = \frac{n_S}{n_P}$$

বা,
$$I_P = \frac{n_S}{n_P} \times I_S = 15 \times 5 A = 75 A$$

ট্রান্সফরমাটির ক্ষমতা, = $E_PI_P = 220 \text{ V} \times 75 \text{ A} = 16500 \text{ W}$

্<mark>ঘ</mark>) আমরা জানি, পরিবাহীর রোধের কারণে শক্তির যে অপচয় হয় তাই সিস্টেম লস। শক্তির এ অপচয় তড়িৎ প্রবাহের বর্গের সমানুপাতিক। অর্থাৎ, সিস্টেম লস ৫ তড়িৎ প্রবাহ²

উপরোক্ত সম্পর্ক থেকে একটি স্পষ্ট যে তড়িৎ প্রবাহ যত কমবে সিস্টেম লস তার বর্গের সমানুপাত কমবে। যেমন তড়িৎ প্রবাহ এক-তৃতীয়াংশ হলে সিস্টেম লস এক-নৰমাংশে নেমে যাবে।

এখন,
$$\frac{I_P}{I_S} = \frac{n_S}{n_P}$$

বা,
$$I_S = \frac{n_P}{n_S} \times I_P = \frac{1}{15} \times I_P$$

অর্থাৎ, উদ্দীপকের ট্রান্সফর্মারটিতে গৌণকুণ্ডলীতে তড়িৎপ্রবাহ মুখ্য কুণ্ডলীর তড়িৎ প্রবাহের $\frac{1}{15}$ অংশ। ফলে উদ্দীপকের ট্রান্সফর্মারটি ব্যবহারে সিস্টেম লস পূর্বের সিস্টেম লসের $\left(\frac{1}{15}\right)^2 = \frac{1}{225}$ অংশে নেমে যাবে।

অতএব, উদ্দীপকের ট্রান্সফর্মারটির দ্বারা সিস্টেম লস কমানো সম্ভব।

প্রশ্ন নং: 8

রংপুর সরকারি বালিকা উচ্চ বিদ্যালয়, রংপুর

একটি ট্রান্সফর্মারের মুখ্য কুন্ডলীর পাকসংখ্যা x টি এবং গৌণকুন্ডলীর পাকসংখ্যা $\frac{x}{7}$ টি। ট্রান্সফর্মারটির মুখ্য কুন্ডলীতে 1001~V প্রয়োগ করা হল।

- ক. তডিৎ জেনারেটর কী?
- খ. তড়িৎ মোটরের আর্মেচারে কাঁচা লোহা ব্যবহার করা হয় কেন?
- গ. গৌণ কুন্ডলীর বিভব নির্ণয় কর।
- ঘ, ট্রান্সফর্মারটির কোন কুন্ডলীতে অপেক্ষাকৃত মোটা তার ব্যবহার করতে হবে? যুক্তিসহ আলোচনা কর।

৪ নং প্রশ্নের উত্তর

- ক) যে তড়িৎ যন্ত্রে যান্ত্রিক শক্তিকে তড়িৎ শক্তিতে রূপান্তরিত করা হয় তাকে তড়িৎ জেনারেটর বলে।
- খ) কাঁচা লোহা চৌম্বক পদার্থ, ফলে একে তাড়িত চৌম্বক আবেশ প্রক্রিয়ায় সহজে চুম্বকে পরিণত করা যায়। তাই চুম্বকত্ব বৃদ্ধি করার জন্য আর্মেচারে কাচা লোহা ব্যবহার করা হয়।
- গ্) আমরা জানি,

$$\frac{E_{P}}{E_{s}} = \frac{n_{P}}{n_{s}}$$

$$\overline{4}, \quad \frac{1001}{E_s} = \frac{x}{\frac{x}{7}}$$

দেওয়া আছে,
$$n_P=x$$
 টি $n_S=rac{x}{7}$ টি $E_P=1001\, ext{V}$ $E_S=?$

$$\boxed{1, \quad \frac{1001}{E_{S}} = 7}$$

ৰা.
$$1001 = 7E_s$$

বা,
$$E_s = \frac{1001}{7}$$

বা,
$$E_s = 143 \text{ V}$$

$$\frac{n_{P}}{n_{S}} = \frac{1}{I}$$

বা,
$$\frac{x}{\frac{x}{7}} = \frac{I_S}{I_P}$$

বা,
$$I_S = 7 I_P$$

এখানে, গৌণ কুণ্ডলীর তড়িৎপ্রবাহ, মুখ্য কুণ্ডলীর সাত গুণ।

তাই গৌণ কুণ্ডলীতে অপেক্ষাকৃত মোটা তার ব্যবহার করতে হবে, তা না হলে গৌণ কুণ্ডলীর তার অতিরিক্ত তড়িৎপ্রবাহের কারণে পুড়ে যেতে পারে।

প্রশ্ন নং: ৫

সিলেট সরকারি পাইলট উচ্চ বিদ্যালয়, সিলেট

নিচের চিত্রের আলোকে প্রশ্নগুলোর উত্তর দাও:

- ক. তাড়িত চৌম্বক আবেশ কাকে বলে?
- খ. কোনো পরিবাহী তারের মধ্য দিয়ে তড়িৎ প্রবাহিত করলে কী ঘটবে? ব্যাখ্যা কর।
- গ. গৌণ কুণুলীতে দ্বিশুণ ভোল্টেজ পেতে হলে মুখ্য অথবা গৌণ কুণুলীর পাক সংখ্যার কী পরিবর্তন ঘটাতে হবে? নির্ণয় কর।
- ঘ. উক্ত ট্রান্সফর্মার দ্বারা বিদ্যুৎ শক্তির অপচয় কম না বেশি হবে? উত্তরের সপক্ষে যুক্তি উপস্থাপন কর।

৫ নং প্রশ্নের উত্তর

- ক) একটি গতিশীল চুম্বক বা তড়িৎবাহী বর্তনীর সাহায্যে অথবা একটি স্থির তড়িৎবাহী বর্তনীর তড়িৎ প্রবাহের পরিমাণ কম বেশি করে অন্য একটি সংবদ্ধ বর্তনীতে ক্ষণস্থায়ী তড়িচ্চালক বল ও তড়িৎ প্রবাহ উৎপন্ন হওয়ার পদ্ধতিকে তাড়িতচৌম্বক আবেশ বলে।
- খ) পরিবাহী তারের মধ্য দিয়ে তড়িৎ প্রবাহিত করলে ইলেকট্রন স্থানান্তরিত হবে। দুটি ভিন্ন বিভবের বস্তুকে যখন পরিবাহী তার দ্বারা সংযুক্ত করা হয়, তখন নিম্ন বিভবের বস্তু থেকে উচ্চ বিভবের বস্তুতে ইলেকট্রন প্রবাহিত হয়। বস্তুদ্বয়ের বিভব পার্থক্য শূন্য না হওয়া পর্যন্ত এ প্রবাহ বজায় থাকে। বস্তুদ্বয়ের বিভব পার্থক্য বজায় রাখার জন্য ইলেকট্রন প্রবাহ নিরববিচ্ছিন্নভাবে চলতে থাকে। অতএব, তড়িৎ প্রবাহের ফলে ইলেকট্রনের নিরবচ্ছিন্ন প্রবাহ ঘটবে।

(গ) উদ্দীপক অনুসারে পাই,

মুখ্যকুণ্ডলীর ভোল্টেজ $E_p=\ 200\ V$

মুখ্যকুণ্ডলীর পাকসংখ্যা $n_p=30$

গৌণকুণ্ডলীর ভোল্টেজ $E_S=2{ imes}E_p=2{ imes}200~V=400~V$

আমরা জানি,

$$\frac{E_{P}}{E_{s}} = \frac{n_{P}}{n_{s}}$$

বা,
$$n_s = \frac{E_s \times n_p}{E_P} = \frac{400 \text{ V} \times 30}{200 \text{ V}} = 60$$

$$n_s = 60 = 2 \times 30$$

$$n_s = 2 n_P$$

অতএব, গৌণ কুণ্ডলীতে দ্বি<mark>গুণ</mark> ভোল্টেজ পেতে হলে গৌণ কুণ্ডলীর পাকসংখ্যা দ্বিগুণ করতে হবে।

(ঘ) এখানে,

মুখ্যকুণ্ডলীর পাকসংখ্যা $n_{
m p}=30$

গৌণকুণ্ডলীর পাকসংখ্যা $n_{
m S}=500$

মুখ্য ও গৌণকুণ্ডলীর ভোল্টেজ এবং তড়িৎ প্রবাহ যথাক্রমে $\mathrm{E_P}$ ও $\mathrm{E_s}$ এবং $\mathrm{I_P}$ ও $\mathrm{I_s}$ হলে,

$$\frac{E_{P}}{E_{s}} = \frac{n_{P}}{n_{s}}$$

$$\therefore E_{P} = \frac{3E_{s}}{50}$$

আবার,
$$\frac{I_S}{I_P} = \frac{n_P}{n_S}$$

$$\boxed{4}, \quad I_{P} = \frac{300}{500} = \frac{3}{50}$$

$$\therefore I_{P} = \frac{50I_{S}}{3}$$

ট্রান্সফরমাটির মুখ্যকুণ্ডলীর ক্ষমতা, $P_P=E_PI_P=rac{3E_S}{50} imesrac{50I_S}{3}=E_SI_S=P_S$

অর্থাৎ মুখ্য কুণ্ডলীর ক্ষমতা = গৌণ কুণ্ডলীর ক্ষমতা। অতএব, উক্ত ট্রান্সফর্মার দারা বিদ্যুৎ শক্তির অপচয় হয় না।

16 MINUTE SCHOOL

প্রশ্ন নং: ৬

উদয়ন মাধ্যমিক বিদ্যালয়, বরিশাল

একটি ট্রান্সফর্মারের মুখ্য কুণ্ডলীর ভোল্টেজ 1570 volt. পাকসংখ্যা 70 এবং গৌণ কুণ্ডলীর তড়িৎপ্রবাহ 5A। গৌণ কুণ্ডলার পাকসংখ্যা 35 ট্রান্সফর্মারটিকে 5 HP এর একটি বৈদ্যুতিক মোটর চালানোর জন্য নির্বাচন করা হলো।

- ক. তডিৎ চৌম্বক আবেশ কাকে বলে?
- খ, একটি আরোহী ট্রান্সফর্মারকে কিভাবে অবরোহী ট্রান্সফর্মারে রূপান্তর করা যায়- ব্যাখ্যা কর।
- গ. মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ নির্ণয় কর।
- ঘ, উদ্দীপকের মোটরটি চালানোর জন্য ট্রান্সফর্মারটি উপযুক্ত কি? বিশ্লেষণ কর।

৬ নং প্রশ্নের উত্তর

- ক) একটি গতিশীল চুম্বক বা তড়িৎবাহী বর্তনীর সাহায্যে অথবা একটি স্থির তড়িৎবাহী বর্তনীর তড়িৎ প্রবাহের পরিমাণ কম বেশি করে অন্য একটি সংবদ্ধ বর্তনীতে ক্ষণস্থায়ী তড়িচ্চালক বল ও তড়িৎ প্রবাহ উৎপন্ন হওয়ার পদ্ধতিকে তাড়িতচৌম্বক আবেশ বলে।
- খ) আরোহী ট্রান্সফর্মারে মুখ্য কুণুলীর চেয়ে গৌণ কুণুলীতে পাকসংখ্যা বেশি থাকে। আর অবরোহী ট্রান্সফর্মারে গৌণকুণুলীর চেয়ে মুখ্য কুণুলীতে পাকসংখ্যা বেশি থাকে। তাই আরোহী ট্রান্সফর্মারে মুখ্য কুণুলীর পাকসংখ্যা গৌণ কুণুলীর চেয়ে বাড়িয়ে দিলে তা অবরোহী ট্রান্সফর্মারে পরিণত হয়। আরোহী ট্রান্সফর্মারকে 180° কোণে ঘুরিয়ে দিলেও তা অবরোহী ট্রান্সফর্মারে পরিণত হবে।

আমরা জানি. (গ্)

$$\frac{I_{P}}{I_{S}} = \frac{n_{S}}{n_{P}}$$

$$\text{T}, \quad I_{P} = \frac{n_{S}I_{S}}{n_{P}} = \frac{35 \times 5 \text{ A}}{70} = 2.5 \text{ A}$$

∴ মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ 2.5 A.

মুখ্যকুণ্ডলীর পাকসংখ্যা $n_p=70$ গৌণকুণ্ডলীর তড়িৎপ্রবাহ $I_s=5\,A$ গৌণকুণ্ডলীর পাকসংখ্যা $n_s=35$ মুখ্যকুণ্ডলীর তড়িৎপ্রবাহ $I_P=?$

গৌণ কুণ্ডলীর বিভব, Es হলে, (ঘ)

$$\frac{I_{P}}{I_{s}} = \frac{E_{s}}{E_{P}}$$

বা,
$$E_s = \frac{I_P}{I_s} \times E_P = \frac{2.5 \text{ A}}{5 \text{ A}} \times 1570 \text{ V}$$

= 785 V

 $rac{I_P}{I_S}=rac{E_S}{E_P}$ দেওয়া আছে, মুখ্যকুণ্ডলীর বিভব $E_p=1570~V$ গৌণকুণ্ডলীর তড়িৎপ্রবাহ $I_S=5~A$ মুখ্যকুণ্ডলীর তড়িৎপ্রবাহ $I_P=2.5~A$ মোটরের ক্ষমতা, P=5~HP

$$\therefore$$
 গৌণকুণ্ডলীর ক্ষমতা, $P'=E_sI_s$
$$=(785{\times}5)W$$

$$=3925~W$$

$$=\frac{3925}{746}HP$$

এখানে, P' > P

সুতরাং উদ্দীপকের মোটরটি চালানোর জন্য ট্রান্সফর্মারটি উপযুক্ত।

= 5.26 HP

SOLVED MCQ

		. 🤝		<u>~</u>		
2	নচের	কোনাট্র	ানজস্ব	চোম্বকক্ষেত্ৰ	রয়েছে	?

- (ক) খাতা
- (খ) কলম
- (গ) পৃথিবী
- (ঘ) নিস্তড়িত তার

উত্তর: (গ) পৃথিবী

২. চুম্বকের ক্ষেত্রে নিচের কোনটি সঠিক ?

- (ক) সমমেরু পরস্পরকে আকর্ষণ করে
- (খ) বিপরীত মেরু পরস্পরকে আকর্ষণ করে
- (গ) বিপরীত মেরু পরস্পরকে বিকর্ষণ করে
- (ঘ) যেকোনো মেরু পরস্পরকে আকর্ষণ করে

উত্তর: (খ) বিপরীত মেরু পরস্পরকে আকর্ষণ করে

৩. কোনো দন্ড চুম্বককে মুক্তভা<mark>বে ঝুলি</mark>য়ে দিলে এর উত্তর মেরু পৃথিবীর -

(ক) উত্তর দিক বরাবর থাকবে

(খ) দক্ষিণ দিক বরাবর থাকবে

(গ) পূর্বদিক বরাবর থাকবে

(ঘ) পশ্চিম দিক বরাবর থাকবে

উত্তর: (ক) উত্তর দিক বরাবর থাকবে

8. কোনো পরিবাহী তারে তড়িৎ প্রবাহ বাড়ালে উৎপন্ন চৌম্বক ক্ষেত্রের কী হয় ?

(ক) শক্তি বৃদ্ধি পায়

(খ) শক্তি হ্রাস পায়

(গ) প্রাবল্য হ্রাস পায়

(ঘ) প্রাবল্যের দিক পরিবর্তন হয়

উত্তর: (ক) শক্তি বৃদ্ধি পায়

৫. সলিনয়েডের কোন প্রান্তে উত্তর মেরুর উদ্ভব হয় ?

- (ক) যে প্রান্তে তড়িৎ প্রবাহ ঘড়ির কাঁটার দিকে ঘোরে
- (খ) যে প্রান্তে তড়িৎ প্রবাহ ঘড়ির কাঁটার বিপরীত দিকে ঘোরে
- (গ) যে প্রান্তে তড়িৎ প্রবাহ সর্বোচ্চ হয়
- (ঘ) যে প্রান্তে তড়িৎ বিভব বেশি থাকে

উত্তর: (খ) যে প্রান্তে তড়িৎ প্রবাহ ঘড়ির কাঁটার বিপরীত দিকে ঘোরে

৬. চৌম্বক ক্ষেত্ৰকে কীভাবে	ব ঘনীভূত করা যায় ?						
(ক) বিদ্যুৎ প্রবাহ বন্ধ করে	1	(খ) অপরিবাহী তার পেঁচিয়ে					
(গ) পরিবাহী তার পেঁচিয়ে		(ঘ) সবগুলো					
উত্তর: (গ) পরিবাহী তার ে	পঁচিয়ে						
৭. সলিনয়েডের মাধ্যমে লোহার দন্ড চুম্বকে পরিণত হওয়াকে কী বলে ?							
(ক) কৃত্রিম চুম্বক	(খ) প্রাকৃতিক চুম্বক	(গ) তড়িৎ চুম্বক	(ঘ) কাঁচা লোহা				
উত্তর: (গ) তড়িৎ চুম্বক							
৮. নিচের কোন ক্ষেত্রে আ	ড়িতচুম্বকের প্রাবল্য বৃদ্ধি পা	বে ?					
(ক) তড়িৎ প্রবাহ বৃদ্ধি করলে		(খ) তড়িৎ প্রবাহ হ্রাস করলে					
(গ) সলিনয়েডের প্যাঁচের সংখ্যা কমালে		(ঘ) মেরু দুটিকে পরস্পর থেকে দূরে সরালে					
উত্তর: (ক) তড়িৎ প্রবাহ বৃদ্ধি কর <mark>লে</mark>							
৯. চোখের ভিতর লোহার গুঁড়া চুকলে তা বের করার জন্য কোনটি ব্যবহৃত হয় ?							
(ক) পানি	(খ) গ্যাস	(গ) তাড়িতচুম্বক	(ঘ) ফোটন বার				
উত্তর: (গ) তাড়িতচুম্বক							
১০. শক্তিশালী চুম্বকের বিপরীত মেরুদ্বয়ের মধ্যে সৃষ্ট চৌম্বক ক্ষেত্র এবং তড়িৎবাহী তারের চৌম্বক ক্ষেত্রের মধ্যে কি ঘটে ?							
(ক) আকর্ষণ		(খ) বিকর্ষণ					
(গ) ক্রিয়া-প্রতিক্রিয়া		(ঘ) ঘৰ্ষণ					
উত্তর: (গ) ক্রিয়া-প্রতিক্রিয়া							
১১. বলরেখাগুলো তারের উপর উর্ধ্বমুখী বল প্রয়োগ করে কেন ?							
(ক) তারা পরস্পর বিকর্ষণ	করে	(খ) তারা পরস্পরকে আকষ	র্ঘণ করে				
(গ) তারা পরস্পরকে টান টান রাখতে চায় (ঘ) তারা ওজনে হালকা হয়ে যায়							
উত্তর: (গ) তারা পরস্পরকে টান টান রাখতে চায়							

১২. মুক্ত অবস্থায় তড়িৎ	ংবাহী তার কোন দিকে লা	के <mark>र</mark> ा উঠে ?				
(ক) উপরের দিকে	(খ) নিচের দিকে	(গ) ডানদিকে	(ঘ) বামদিকে			
উত্তর: (ক) উপরের দিবে	₽					
১৩. বৈদ্যুতিক মোটরে ব	ব্যবহৃত তামার আয়তাকার	কুণ্ডলীকে কী বলে ?				
(ক) কম্যুটেটর	(খ) ট্রান্সফর্মার	(গ) জেনারেটর	(ঘ) আর্মেচার			
উত্তর: (ঘ) আর্মেচার						
১৪. তড়িৎ মোটরে ব্যবহৃত তামার বলয়কে কী বলা হয় ?						
(ক) আর্মেচার	(খ) কম্যুটেটর	(গ) ব্ৰাশ	(ঘ) বিবর্ধক			
উত্তর: (খ) কম্যুটেটর						
১৫. মোটরে কোনটি বিভক্ত বল্ম কয়েলের সাথে ঘুরে ?						
(ক) আর্মেচার	(খ) কাৰ্বন ৱাশ	(গ) কম্যুটেটর	(ঘ) লুপ			
উত্তর: (খ) কার্বন ব্রাশ						
১৬. বিভক্ত বলয়ের বাইরের প্রান্তটি কীসের সাথে যুক্ত থাকে ?						
(ক) আর্মেচার	(খ) তড়িৎ উৎস	(গ) জেনারেটর	(ঘ) সবগুলো			
উত্তর: (খ) তড়িৎ উৎস						
১৭. তাড়িতচৌম্বক আবে যুক্ত করা যায় ?	বশ পরীক্ষায় কুণ্ডলীতে তি	টুৎ প্রবাহের উপস্থিতি বোঝ	ার জন্য এর দুই প্রান্তের সাথে কি			
(ক) অ্যামিটার		(খ) মাল্টিমিটার				
(গ) গ্যালভানোমিটার		(ঘ) ভোল্টমিটার				
উত্তর: (গ) গ্যালভানোমিট	গর -					

১৮. ডায়নামোর সাহায্যে কি করা যায় ?

- (ক) যান্ত্রিক শক্তি থেকে তড়িৎ শক্তি উৎপন্ন করা হয়
- (খ) তডিৎ শক্তি থেকে যান্ত্রিক শক্তি উৎপন্ন করা হয়
- (গ) পর্যায়বত্ত তডিৎ প্রবাহকে একমুখী তডিৎ প্রবাহে রূপান্তর করা হয়
- (ঘ) তডিৎ শক্তির পরিমাপ করা হয়

উত্তর: (ক) যান্ত্রিক শক্তি থেকে তডিৎ শক্তি উৎপন্ন করা হয়

১৯. তড়িৎ চুম্বকের প্রাবল্য বাড়ানো যায় -

i) তড়িৎ প্রবাহ বাড়িয়ে

ii) সলিনয়েডের প্যাঁচের সংখ্যা বাড়িয়ে

- iii) তড়িৎ প্রবাহ বাড়িয়ে
- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i , ii ও iii

উত্তর: (ঘ) i , ii ও iii

২০. বৈদ্যুতিক মোটরে চৌম্বক ক্ষেত্রের প্রাবল্য বৃদ্ধি করা হয় -

i) ক্ষমতা কমানোর জন্য

ii) দ্রুতি বাড়ানোর জন্য

- iii) ক্ষমতা বাড়ানোর জন্য
- (ক) i ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i , ii ও iii

উত্তর: (গ) ii ও iii

২১. কোনটিতে তাড়িত চুম্বক ব্যবহার করা হয় ?

- (ক) বৈদ্যুতিক বাতিতে (খ) বৈদ্যুতিক পাখায় (গ) কম্পিউটারে
- (ঘ) বৈদ্যুতিক ঘণ্টায়

উত্তর: (ঘ) বৈদ্যুতিক ঘণ্টায়

২২, আবিষ্ট তড়িৎ প্রবাহের মান নির্ভর করে -

i) চৌম্বক ক্ষেত্রের প্রাবল্যের উপর

ii) চৌম্বক ক্ষেত্রের আকারের উপর

- iii) ঘূর্ণন বেগের উপর
- ii ও ii
- (খ) i ও iii
- (গ) ii ও iii
- (ঘ) i , ii ও iii

উত্তর: (খ) i ও iii

২৩. ভিসিপিতে ব্যবহার ক	২৩. ভিসিপিতে ব্যবহার করা হয় -						
i) স্টেপ ডাউন ট্রান্সফর্মার		ii) অবরোহী ট্রান্সফর্মার					
iii) আরোহী ট্রান্সফর্মার							
(季) i ଓ ii	(খ) i ও iii	(গ) ii ও iii	(ঘ) i , ii ও iii				
উত্তর: (ক) i ও ii							
🗖 নিচের তথ্যের ভিত্তিতে ২৪ ও ২৫ নং প্রশ্নের উত্তর দাও :							
একটি ট্রান্সফর্মারের মুখ্য কু	হুণ্ডলীতে ভোল্টেজ 5 V এবং	প্রবাহ 3 A। গৌণ কুণ্ডলীর।	ভোন্টেজ 10 V				
২৪. গৌণ কুণ্ডলীর প্রবাহ ব	? তব						
(季) 1 A	(খ) 1.5 A	(গ) 2 A	(되) 2.5 A				
উত্তর: (খ) 1.5 A							
২৫. উল্লিখিত ট্রান্সফর্মারের	ক্ষেত্র -						
i) ট্রান্সফর্মারটি উচ্চধাপী		ii) ট্রান্সফর্মারটি নিম্নধাপী					
iii) ট্রান্সফর্মারটি রেডিওতে	ব্যবহৃত হয়						
(ক) i	(켁) ii	(গ) iii	(ঘ) i , ii ও iii				
উত্তর: (ক) i							
২৬. তাড়িতচুম্বক ব্যবহার করা হয় কোনটিতে ?							
(ক) দরজার তালায়	(খ) ক্যালকুলেটর	(গ) ঘড়ি	(ঘ) কম্পিউটার				
উত্তর: (ক) দরজার তালায়							
২৭. তাড়িত চৌম্বক আবেশে উৎপন্ন আবিষ্ট তড়িৎ ও ভোল্টেজ -							
(ক) ক্ষণস্থায়ী	(খ) স্থায়ী	(গ) সর্বদা ক্রমবর্ধমান	(ঘ) সর্বদা ক্রমহ্রাসমান				
উত্তর: (ক) ক্ষণস্থায়ী							

🔲 নিচের চিত্রের আলোকে ২৮ ও ২৯ নং প্রশ্নের উত্তর দাও :

২৮. উপরের দেয়া তথ্য অনুযায়ী কোনটি সঠিক ?

- $(\overline{\Phi}) n_S > n_P$
- $(\forall) \ n_S = n_P \qquad \qquad (\forall) \ I_S > I_P \qquad \qquad (\forall) \ I_S = I_P$

উত্তর: (ক) $n_S > n_P$

২৯. যদি গৌণ কুণ্ডলীর তড়িৎ প্রবা<mark>হ 1</mark>1 A হয় তবে মুখ্য কুণ্ডলীর তড়িৎ প্রবাহ কত হবে ?

- (**क**) 0.29 A
- (খ) 3.64 A
- (গ) 35 A
- (ঘ) 14000 A

উত্তর: (গ) 35 A

🔲 চিত্রের আলোকে ৩০ – ৩২ নং প্রশ্নের উত্তর দাও :

৩০. চিত্রের বস্তুটি দ্বারা কি ধরনের তড়িৎ প্রবাহ পাওয়া যায় ?

- (ক) সমপ্রবাহ
- (খ) পর্যাবৃত্ত প্রবাহ (গ) অবিরত প্রবাহ
- (ঘ) সবগুলো

উত্তর: (খ) পর্যাবৃত্ত প্রবাহ

৩১. AB কিভাবে ঘুরে ?

(ক) অসমদ্রুতিতে (খ) সমদ্রুতিতে (গ) অসমত্বরণে (ঘ) সমত্বরণে

উত্তর: (খ) সমদ্রুতিতে

৩২. উপরোক্ত চিত্র থেকে পাই -

i) ইহা একটি এসি জেনারেটর

ii) AB অংশটি আর্মেচার

iii) AB অংশটি কাঁচা লোহার পাত দারা তৈরি

(ক) i ও ii (খ) i ও iii

(গ) ii ও iii (ঘ) i , ii ও iii

উত্তর: (গ) ii ও iii