

Geometry

Ed Angel Professor Emeritus of Computer Science University of New Mexico

Objectives

- Introduce the elements of geometry
 - Scalars
 - Vectors
 - Points
- Develop mathematical operations among them in a coordinate-free manner
- Define basic primitives
 - Line segments
 - Polygons

Basic Elements

- Geometry is the study of the relationships among objects in an n-dimensional space
 - In computer graphics, we are interested in objects that exist in three dimensions
- Want a minimum set of primitives from which we can build more sophisticated objects
- We will need three basic elements
 - Scalars
 - Vectors
 - Points

The University of New Mexico

Coordinate-Free Geometry

- When we learned simple geometry, most of us started with a Cartesian approach
 - Points were at locations in space $\mathbf{p} = (x,y,z)$
 - We derived results by algebraic manipulations involving these coordinates
- This approach was nonphysical
 - Physically, points exist regardless of the location of an arbitrary coordinate system
 - Most geometric results are independent of the coordinate system
 - Example Euclidean geometry: two triangles are identical if two corresponding sides and the angle between them are identical

Scalars

- Need three basic elements in geometry
 - Scalars, Vectors, Points
- Scalars can be defined as members of sets which can be combined by two operations (addition and multiplication) obeying some fundamental axioms (associativity, commutivity, inverses)
- Examples include the real and complex number systems under the ordinary rules with which we are familiar
- Scalars alone have no geometric properties

Vectors

- Physical definition: a vector is a quantity with two attributes
 - Direction
 - Magnitude
- Examples include
 - Force
 - Velocity
 - Directed line segments
 - Most important example for graphics
 - Can map to other types

Vector Operations

- Every vector has an inverse
 - Same magnitude but points in opposite direction
- Every vector can be multiplied by a scalar
- There is a zero vector
 - Zero magnitude, undefined orientation
- The sum of any two vectors is a vector
 - Use head-to-tail axiom

Linear Vector Spaces

- Mathematical system for manipulating vectors
- Operations
 - Scalar-vector multiplication $u=\alpha v$
 - Vector-vector addition: w=u+v
- Expressions such as

$$v=u+2w-3r$$

Make sense in a vector space

Vectors Lack Position

- These vectors are identical
 - Same direction and magnitude

- Vectors spaces insufficient for geometry
 - Need points

Points

- Location in space
- Operations allowed between points and vectors
 - Point-point subtraction yields a vector
 - Equivalent to point-vector addition

Affine Spaces

- Point + a vector space
- Operations
 - Vector-vector addition
 - Scalar-vector multiplication
 - Point-vector addition
 - Scalar-scalar operations
 - Scalar-point operations
- For any point define
 - $1 \cdot P = P$
 - $0 \cdot P = 0$ (zero vector)

Lines

- Consider all points of the form
 - $P(\alpha)=P_0+\alpha d$
 - Set of all points that pass through P₀ in the direction of the vector **d**

Parametric Form

- This form is known as the parametric form of the line
 - More robust and general than other forms
 - Extends to curves and surfaces
- Two-dimensional forms
 - Explicit: y = mx + h
 - Implicit: ax + by + c = 0
 - Parametric:

$$x(\alpha) = \alpha x_0 + (1-\alpha)x_1$$

$$y(\alpha) = \alpha y_0 + (1-\alpha)y_1$$

Rays and Line Segments

• If $\alpha >= 0$, then $P(\alpha)$ is the *ray* leaving P_0 in the direction **d**

If we use two points to define v, then

$$P(\alpha) = Q + \alpha (R-Q) = Q + \alpha v$$
$$= \alpha R + (1-\alpha)Q$$

For $0 <= \alpha <= 1$ we get all the points on the *line segment* joining R and Q

Convexity

 An object is convex iff for any two points in the object all points on the line segment between these points are also in the object

Affine Sums

Consider the "sum"

$$P = \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$$

Can show by induction that this sum makes sense iff

$$\alpha_1 + \alpha_2 + \dots + \alpha_n = 1$$

in which case we have the *affine sum* of the points $P_1,P_2,....P_n$

• If, in addition, $\alpha_i >= 0$, we have the *convex* hull of $P_1, P_2, \dots P_n$

Convex Hull

- Smallest convex object containing P₁,P₂,.....P_n
- Formed by "shrink wrapping" points

Curves and Surfaces

- Curves are one parameter entities of the form $P(\alpha)$ where the function is nonlinear
- Surfaces are formed from two-parameter functions $P(\alpha, \beta)$
 - Linear functions give planes and polygons

Planes

 A plane can be defined by a point and two vectors or by three points

$$P(\alpha,\beta)=R+\alpha u+\beta v$$

$$P(\alpha,\beta)=R+\alpha(Q-R)+\beta(P-Q)$$

Triangles

for $0 <= \alpha, \beta <= 1$, we get all points in triangle

Barycentric Coordinates

Triangle is convex so any point inside can be represented as an affine sum

$$P(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 P + \alpha_2 Q + \alpha_3 R$$
 where
$$\alpha_1 + \alpha_2 + \alpha_3 = 1$$

 $\alpha_i > = 0$

The representation is called the **barycentric coordinate** representation of P

Normals

- Every plane has a vector n normal (perpendicular, orthogonal) to it
- From point-two vector form $P(\alpha,\beta)=R+\alpha u+\beta v$, we know we can use the cross product to find $n=u\times v$ and the equivalent form

 $(P(\alpha)-P) \cdot n=0$

