Characteristics – Hand Geometry

- Based on a number of measurements taken from the human hand including
 - Shape, size of palm, lengths and widths of the fingers
- Commercial authentication systems based on hand geometry are available and highly used
- Advantage: simple, easy to use, inexpensive, not prone to environmental factors such as dry wheather
- Disadvantages
 - Hand geometry not very distinctive
 - Do not scale for systems requiring identification in large populations
 - Limitation of dexterity (e.g. from arthritis) cause problems
 - Physical size of the hand makes it inapplicable in certain applications e.g. laptop access

Characteristics – Palmprint

- Palms contain pattern of ridges and alleys much like fingerprints
- Area of palm much larger and more distinctive than fingerprints
- Palmprint scanners are bulkier than fingerprint scanners
- Using a high-resolution palmprint scanner would allow to use all features of the hand simultaneously
 - Hand geometry, palmprint, fingerprints, principle lines and wrinkles
 - Higher accuracy

Characteristics - Iris

- Annular region bounded by the pupil and the sclera
- Visual texture of the iris is formed during fetal development and stabilizes during the first two years of life
- Texture carries very distinctive information
 - Can be used for identification
 - Accuracy and speed very promising to support large-scale identification systems
- Irises of identical twins are different
- Requires considerable user participation
- Typically have low false accept rates compared to other biometric traits but rather high false reject rates

Characteristics Keystroke

- Hypothesized that each person types on a keyboard in a characteristic way
- Not expected to be unique to each individual
- Expected to be sufficiently discriminatory to permit authentication
- Behavioral biometrics, large intra-class variations expected due to
 - Changes in emotional state, position of user with respect to the keyboard, type of keyboard used etc.
- Acquiring could be done unobtrusively as person keys in information
- Permits "continuous authentication" during a session e.g. after a user logged on

Characteristics - Signature

- Way a person signs his name
- Requires contact and effort from the user
- Widely accepted in governmental, legal, commercial transactions
- Behavioral biometric that
 - Changes over a period of time
 - Is influenced by physical and emotional conditions
- High intra-class variations for some people
- Professional forgers are very good at reproducing signatures

Characteristics - Voice

- Combination of physical and behavioral biometric
- Physical features based on shape and size of appendages
 - Vocal tracts, mouth, nasal cavities, lips
- Physical characteristics are invariant for each individual
- Behavioral aspects change over time due to
 - Age, medical conditions, emotional state
- Not very distinctive
 - Not usable for identification in large populations
- Sensitive to background noises
- Nevertheless sometimes the only usable biometrics
 - E.g. authentication over the phone

Characteristics - Gait

- Manner in which a person walks
- Can be used to recognize people at a distance
- Very appropriate for surveillance scenarios
 - Identity of an individual could be surreptitiously established
 - Tracking could be possible
- Algorithms attempt to extract human silhouette in order to derive spatio-temporal attributes
- Gait is affected by several factors including
 - Footwear, nature of clothing, affliction of legs, walking surface etc.

NA LA

Multimodal Biometrics

 Increases matching performance, increases population coverage, deters spoofing (?)

Biometrics Market

AFIS = Automated Fingerprint Identification Systems

Potential Vulnerabilities of Systems

Circumvention

 Attacker gains access to protected resources by a technical measure to subvert the system e.g. by replacing database templates, overriding matcher decisions,...

Covert acquisition

- Attacker uses biometric information captured from legitimate users, e.g. capture and playback of voice passwords, lifting latent fingerprints
- Collusion and coercion
 - Attacker collides or collaborates with legitimate user (willingly: collusion, unwillingly: coercion)
- Denial of Service
 - Attacker prevents legitimate use e.g. by enrolling many noisy samples -> decreases threshold, increases false acceptance rate
- Repudiation
 - Attacker / user may claim not to have accessed a protected resource by claiming that his data was stolen

Biometric Vulnerabilities Faced by Users

- Biometrics are not secret
 - Technology for taking facial images, fingerprints, scanning irises and recording voice is available to anyone – even without consent of the user
 - Biometrics cannot be used in the same way as passwords or security tokens
- Biometrics cannot be revoked
 - Biometrical features are permanently associated with an individual and cannot be revoked if they are misused
- Biometrics have secondary uses
 - If the same biometrical feature is used by different applications then the user can be tracked if the organizations share the data
- Biometric features can carry private information such as indicating genetic disease, use of medication, etc.
- Automatic identification and profiling constitutes a potential privacy threat

Attacks Against Biometric Systems (1)

- Attacks against data acquisition: spoofing
 - Attacker presents faked biometric sample to the sensor
 - Attacker's goal is either to
 - Avoid detection (identification) or
 - Masquerade as another individual
 - Avoiding detection is typically simpler
 - Change makeup, facial hair, wearing glasses, rotating the head etc.
- Attacks against sensors
 - Subvert or replace sensor hardware
- Segmentation
 - Escape surveillance by failing the system to detect the presence of the appropriate feature
 - E.g. cover one eye such that system that expects user's to have two eyes from detecting the presence of a human being

Attacks Against Biometric Systems (2)

Replay attacks:

- Attacker intercepts output flow of the sensor and puts previously intercepted genuine biometric information into the proper place in the processing chain
- Malware-based attacks:
 - E.g. attacker replaces original extractor or matcher with a fake one
- Attacks against feature extraction
 - If feature extraction algorithm is known to an attacker, attacker can try to construct special features that allow for impostor

Attacks Against Biometric Systems (3)

- Attacks against quality control
 - Attacker may e.g. try to pollute the template data base with lambs such that the threshold needs to go down and the false accept rate increases
- Data storage
 - Templates should be stored encrypted
 - Storage should be protected against inserting fake templates
 - Storage should be protected from unauthorized deletes
- Availability of templates in plaintext
 - Classical biometric systems require clear text access to templates
 - Differs from traditional computer security systems where passwords can be stored encrypted or hashed

Attack Motivations

Attacker wants to disguise his identity

- Attacker wants to gain privileges of a legitimate user
- An attacker may want to benefit from sharing a biometric
 - E.g. attacker creates new identity using artificial biometric, enrolls in a system, shares the fake identity with multiple people
- Most dangerous attacks: spoofing attacks
 - Presenting faked biometrics to the sensors

Approaches to Spoof Detection

- Spoof detection differentiating between a genuine biometric trait presented from the right live person versus some other source
- Approaches
 - Sensing vitality (liveness) signs such as pulse, sweat, temperature, etc
 - Acquiring several raw data samples
 - E.g. taking pictures of faces from several angles
 - Using challenge response techniques

Example: Spoof Attacks - Fingerprints

- Spoofing Fingerprints
 - Artificial fingers from soft material such as gelatin
 - Ink jet finger prints on transparencies
 - Latent prints on sensors can sometimes be reactivated by directing light onto the platen
- Detecting Spoofs of Fingerprints
 - Measuring perspiration of the skin surface
 - Use skin absorbance and reflection profiles
 - Measure temperature (can even detect foil between attacker's finger and the scanner)
 - Measure pulse in the finger tip
- Detailed example for spoofing fingerprints at the end of this chapter

Example: Spoof Attacks - Irises

Spoofing Iris images

- High-quality photograph of the eye
- Use contact lens on which an iris pattern is printed
- 3D artificial irises

Spoof detection

- Measuring the involuntary motions of the pupil at rest
- Measuring reaction to changing ambient light conditions
- Challenge-response: ask person under test to blink or move eyes in a certain direction

Without lens

Example: Spoof Attacks - Face

- Spoof attacks against 2D systems
 - Often already fooled by simple photographs
 - Sometimes even by line drawings
- Protection against spoofing
 - Detection of small involuntary movements of the head
 - Detection of blinking
 - Can be fooled by video sequences
 - Challenge-response more promising
- Spoof attacks against 3D systems
 - Artificial 3D faces, masks
- Protection against spoofing
 - Challenge-response asking the user to blink, smile etc

Conclusion

- Spoofing attacks become more complex
- Much research work hypotheses how attacks can be performed
- Unclear whether systems are adequately protected against yet unknown fake biometrics
- Unclear how resilient anti-spoofing approaches are against attacks that differ from the anticipated ones
- Further research needed to measure the performance of anti-spoofing measurements

Faking Fingerprints

- The Chaos Computer Club published a small "how to" on faking fingerprint in October 2004
- The fingerprints produced with the method can supposedly be used to fool fingerprint scanners
- The pictures on the following slides are taken from the CCC's web site
- We have NOT tested whether faking fingerprints this way works or not, however it sound convincing

Fingerprints: Fat and Sweat Residue

 Glasses, door knobs and glossy paper are good sources for fingerprints

Making Fingerprints Visible

 Standard method in forensics: sprinkle with colored powder that sticks to the fat

Alternative for Making Fingerprints Visible

 Cyanoacrylat poured into a bottle cap which is turned upside down and placed over the fingerprint

Print after Cyancrylate Processing

 Cyanoacrylat gasses out and reacts with the fat residue to a solid white substance

Scanning or Photographing the Result

Graphical Refurbishment

Printout on a Transparency Slide

 Toner forms a relief which is later used similar to letter press printing

Producing the Dummy

- Wood glue can be used to produce the dummy
 - Glycerin may be used to optimize humidity

Thin Glue Layer on the Printout

Hardened Glue

Cutting to Finger Size

Dummy ready to use

The New Identity is Ready

Theatrical glue can be used to glue the dummy onto the own finger

Fingerprint of Schaeuble

- March 2008: the Chaos Computer Club (CCC) impressively demonstrates how easy it is to obtain fingerprints
- The CCC Journal includes a transparency slide with Schaeuble's fingerprint
- The fingerprint originates from a glass the minister of interior (later finance, president of the Bundestag) used during a panel discussion
- The fingerprint is captured in the way described above

