"In the name of God"

Tutorial of ECE 340 Course

Instructor: Professor Karim

Assignment Project Exam Help https://powcoder.com Add WeChat powcoder

Seyyed Mojtaba Pourjaafari

Winter 2020

- **4.1** Figure 1 shows a discrete-circuit amplifier. The input signal v_{sig} is coupled to the gate through a very large capacitor (shown as infinite). The transistor source is connected to ground at signal frequencies via a very large capacitor (shown as infinite). The output voltage signal that develops at the drain is coupled to a load resistance via a very large capacitor (shown as infinite). All capacitors behave as short circuits for signals and as open circuits for dc.
- (a) If the transistor has $V_t = 1V$, and $k_n = 4 \, mA/V^2$, verify that the bias circuit establishes $V_{GS} = 1.5 \, V$, $I_D = 0.5 \, mA$, and $V_D = +7 \, V$. That is, assume these values, and verify that they are consistent with the values of the circuit components and the device parameters.
- (b) Find g_m and r_o if $V_A = 100 V$.
- (c) Draw a complete small-signal equivalent circuit for the amplifier, assuming all capacitors behave as short circuits at signal frequencies.
- (d) Find R_{in} , $\frac{v_{gs}}{v_{sig}}$, $\frac{v_o}{v_{gs}}$, and $\frac{v_o}{v_{sig}}$.

Figure 1

- **4.2** The NMOS transistor in the CS amplifier shown in Figure 2 has $V_t = 0.7 V$ and $V_A = 50 V$.
- (a) Neglecting the Early effect, verify that the MOSFET is operating in saturation with $I_D = 0.5 \, mA$ and $V_{OV} = 0.3 \, V$. What must the MOSFET's k_n be? What is the dc voltage at the drain?
- (b) Find R_{in} and G_{v} .
- (c) If v_{sig} is a sinusoid with a peak amplitude $\widehat{v_{sig}}$, find the maximum allowable value of $\widehat{v_{sig}}$ for which the transistor remains in saturation. What is the corresponding amplitude of the output voltage?

Figure 2

4.3 The MOSFET in the circuit of Figure 3 hpV, = 0.8V, k, E and V, = 46V. lp

- (a) Find the values of R_S , R_D and R_G so that $I_D = 0.4$ mA, the largest possible value for R_D is used while a maximum signal swing at the drain of ± 0.8 V is possible, and the input resistance at the gate is $10 \ M\Omega$.
- (b) Find the values of ghttpshe bia powcoder.com
- (c) If terminal Z is grounded, terminal X is connected to a signal source having a resistance of 1 $M\Omega$, and terminal Y is connected to a load resistance of 10 $k\Omega$, find the voltage gain from signal source to load.
- (d) If terminal Y is grounded, find the voltage gain from Xto Z with Z open-circuited. What is the output resistance of the source follower?
- (e) if terminal X is grounded and terminal Z is connected to a current source delivering a signal current of $50 \,\mu A$ and having a resistance of $100 \,k\Omega$, find the voltage signal that can be measured at Y.

Figure 3