DPP 8 INTRODUCTION OF CONTINUITY, EXISTENCE OF CONTINUITY

- In order that the function $f(x) = (x+1)^{\cot x}$ is continuous at x = 0, f(0) must be defined as 13.
 - (A) $f(0) = \frac{1}{e}$

- The function $f(x) = \sin |x|$ is 14.
 - (\mathcal{A}) Continuous for all x
- f(0) = 0 (D) None of these Lin (1+x) f(0) = e (D) None of these (B) Continuous only at certain points
- (C) Differentiable at all points
- (D) None of these
- 15. If f(x) = |x|, then f(x) is
 - (A) Continuous for all x
- (B) Differentiable at x = 0
- (C) Neither continuous nor differentiable at x = 0
- (D) None of these

1	2	3	4	5
D	С	D	В	Α
6	7	8	9	10
В	С	Α	В	AB
11	12	13	14	15
С	Α	С	Α	Α

DPP 9 CONTINUITY IN OPEN AND CLOSE INTERVAL

 $\frac{1-px}{1}$, $-1 \le x < 0$ is continuous in the interval [-1,1] then p equals - $0 \le x < 1$ $1 \le x < \sqrt{2}$ is continuous in the interval $(0, \infty)$ then values of a $(0, \infty)$ $\sqrt{2} \le x < \infty$ $\sqrt{2} \ge x < \infty$ $\sqrt{2} < x < \infty$ $\sqrt{$ (D) None of these (B) $-1, 1+\sqrt{2}$ (A) 1,-1 Which of the following function is not continuous in the interval $(0, \pi)$. 3. (C) tan x (A) $x \sin \frac{1}{x}$ (D) None of these Graph of a function f(x) is given. Which of the following statements is not correct: 2.46= Lim flut = 2 4+1+ (A) f(x) is continuous on (1, 3) (B) f(x) is continuous on (1, 3] (c) f(x) is continuous on [1, 3] (D) none of these If $f(x) = \begin{cases} x^2, & \text{when } x \neq 1 \\ 2, & \text{when } x = 1 \end{cases}$ then (A) $\lim_{x \to a} f(x) = 2$ (B) f(x) is continuous at x = 1(C) f(x) is discontinuous at x=1(D) None of these If $f(x) = \begin{cases} 1 + x, \text{ when } x \le 2 \\ 5 - x, \text{ when } x > 2 \end{cases}$, then (X) f(x) is continuous at x=2f(x) is discontinuous at x = 0(C) f(x) is continuous at x = 3(D) None of these (B) f(x) is continuous at $x = \pi$ (D) f(x) is discontinuous at $x = \frac{3\pi}{4}$ (A) f(x) is discontinuous at $x = \pi/2$ (C) f(x) is continuous at x = 0(D) None of these a, when x = 0, is continuous at x = 0, then the value of 'a' will be None of these $x^2 - b$, when $0 \le x < 1$ is continuous at x = 1, then the most suitable value of a, b x + 1, when $1 < x \le 2$ (D) None of these $ax^2 - b$, when $0 \le x < 1$ 10. are

1	2	3	4	5
D	С	С	С	С
6	7	8	9	10
AB	С	Α	Α	D
11	12	13	14	15
В	С	С	D	С

DPP 10 TYPES OF DISCONTINUITY

14.	If $f(x) = \frac{x^2}{x^2}$	$\frac{-10x+25}{-7x+10}$ fo	$\mathbf{r} \times \neq 5$ and	f is contin	mous at $x = 5$, the	n f(5) =
	(A) 0		(B) 5		(C) 10	- 9
1	2	3	4	5		
В	С	В	С	С		
6	7	8	9	10		
С	С	С	В	Α		
11	12	13	14			
С	Α	С	Α			

A = -1B = 1 (D) A = -1B = 0

(D) 25

DPP 11 THEOREMS ON CONTINUITY, PROBLEMS ON CONTINUITY

- (A) f is continuous at all points except x = 0
- (B) f is continuous at every point but not differentiable (C) f is differentiable at every point
- (D) f is differentiable only at the origin
- If f(x) is continuous function and g(x) is discontinuous function, then correct statement is 12.
 - (A) f(x) + g(x) is a continuous function (B) f(x) g(x) is a continuous function
- 13. If function is f(x) = |x| + |x-1| + |x-2|, then it is -
 - (A) discontinuous at x = 0
- (B) discontinuous at x = 0, 1
- (C) discontinuous at x = 0, 1, 2
- (d) everywhere continuous
- Function f(x) = |x-2| -2| |x-4| is discontinuous at
 - (A) x = 2, 4
- (B) x = 2
- Nowhere (D) Except x = 2, 4
- Function $f(x) = |\sin x| + |\cos x| + |x|$ is discontinuous at-15.
 - (A) x = 0

- (B) $x = \pi/2$ (C) $x = \pi$ (D) No where

1	2	3	4	5
D	С	С	В	Α
6	7	8	9	10
D	Α	С	В	В
11	12	13	14	15
В	С	D	С	D