Frühjahr 14 Themennummer 3 Aufgabe 4 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Gegeben sei das Anfangswertproblem

$$\dot{x}_1 = -x_1 x_2,$$

$$x(0) = (1,0).$$

$$\dot{x}_2 = e^{x_1} (1 - x_2^2),$$

Zeigen Sie:

- (a) Das Anfangswertproblem hat eine eindeutige maximale Lösung $x: I \to \mathbb{R}$ auf einem offenen Intervall $I \subset \mathbb{R}$ mit $0 \in I$.
- (b) Für alle $t \in I$ gilt $-1 < x_2(t) < 1$.
- (c) $I = \mathbb{R}$.
- (d) $\lim_{t \to +\infty} x(t) = (0,1)$ und $\lim_{t \to -\infty} x(t) = (0,-1)$.

Lösungsvorschlag:

- (a) Die Strukturfunktion ist stetig differenzierbar und daher lokal lipschitzstetig. Die Aussage folgt nun direkt aus dem Satz von Picard-Lindelöf.
- (b) Sei $x(t) = (x_1(t), x_2(t))$ die Lösung des Anfangswertproblems, dann ist x_2 eine Lösung des Anfangswertproblems $y' = e^{x_1}(1 y^2), y(0) = 0$. Dieses besitzt genau die Ruhelagen ± 1 , die nicht geschnitten werden dürfen, weil die Strukturfunktion stetig differenzierbar, also lokal lipschitzstetig ist. Gäbe es ein $t_0 \in I$ mit $x_2(t_0) > 1$ oder ein $t_1 \in I$ mit $x_2(t_1) < -1$, so würde nach dem Zwischenwertsatz ein $t_2 \in I$ mit $x_2(t_2) = 1$ oder $x_2(t_2) = -1$ existieren, ein Widerspruch (zum Satz von Picard-Lindelöf, weil das Anfangswertproblem $z' = e^{x_1}(1 z^2), z(t_2) = \pm 1$ die zwei verschiedenen Lösungen x_2 und ± 1 besäße).
- (c) Die erste Gleichung können wir lösen, es ist $x_1(t) = \exp(-\int_0^t x_2(s))$ auf dem Definitionsbereich von x_2 . Aus (b) wissen wir, dass x_2 beschränkt bleibt, damit existiert x_2 global und folglich auch x_1 , woraus auch die globale Existenz von x, also $I = \mathbb{R}$ folgt.
- (d) Wegen (b) ist $\dot{x}_2 > 0$ und x_2 streng monoton wachsend auf \mathbb{R} , die Grenzwerte für x_2 existieren also und sie müssen im Intervall [-1,1] liegen. Außerdem ist $x_2 > 0$ auf $(0,\infty)$ und $x_2 < 0$ auf $(-\infty,0)$. (Monotonie und $x_2(0) = 0$.) Wir zeigen zunächst $\lim_{|t| \to \infty} x_1(t) = 0$. Für t > 1 ist $x_2(t) > x_2(1) > 0$, also

$$\int_0^t x_2(s) \, ds = \int_0^1 x_2(s) \, ds + \int_1^t x_2(s) \, ds \ge (t-1)x_2(1),$$

da $\int_0^1 x_2(s) ds \ge 0$ ist. Für $t \to \infty$ divergiert dies gegen ∞ und es folgt

 $\lim_{t\to\infty} \exp(-\int_0^t x_2(s) ds) = 0$. Analog gilt für t < -1, wegen $x_1(t) < x_1(-1) < 0$ auch

$$\int_0^t x_2(s) \, ds = -\int_t^0 x_2(s) \, ds = -\int_{-1}^0 x_2(s) \, ds - \int_t^{-1} x_2(s) \, ds \ge (1+t)x_2(-1),$$

was für $t \to -\infty$ wieder gegen ∞ divergiert. Genau wie zuvor folgt $\lim_{t \to -\infty} x_1(t) = 0$. Weil x_1 stetig ist, folgt daraus die Beschränktheit von x_1 auf \mathbb{R} , es gibt nämlich ein c > 0, sodass x_1 für $|t| \ge c$ der Ungleichung $|x_1(t)| \le 1$ genügt. Auf dem kompakten Intervall [-c, c] nimmt $|x_1|$ als stetige Funktion ein Maximum C an und x_1 ist beschränkt gegen $K := \max\{1, C\} > 0$.

Wegen der Monotonie von x_2 muss $\lim_{t\to\infty} x(t) > 0$ sein; angenommen er läge in (0,1). Sei x_0 der Limes, dann folgt für $t\in(0,\infty)$:

$$x_2(t) = \int_0^t \dot{x}_2(s) \, ds \ge \int_0^t e^{-K} (1 - x_0^2) \, ds = e^{-K} (1 - x_0^2)t,$$

was für $t \to \infty$ gegen ∞ divergiert und sich auf $x_2(t)$ überträgt. Dies steht im Widerspruch zu (b), weshalb $\lim_{t \to \infty} x_2(t) = 1$ folgt. Sehr ähnlich zeigt man $\lim_{t \to -\infty} x_2(t) = -1$, womit dann die Aussage folgt.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$