

powered by: python

by M. Behzadi

What is Tensorflow?

- Open-source
- Library
- Created by Google Brain Team
- Numerical Computation
- Machine Learning
- Deep Learning
- ✓ High Performance (c++)
- Convenient front-end API
 (Python, JavaScript, C++, Java, Go, C# and Julia)
- CPU/GPU/TPU Support

History

- Created by Google Brain Team
- Was part of a Google Product named DistBelief
- ✓ Open Sourced in late 2015
- Under Apache License (Use, Modify, Redistribute, Sell)
- ✓ First Stable version in 2017
- ✓ Latest Release: Tensorflow 1.13.2
- ✓ TensorFlow 2.0 RC released on Aug 23

Who is using Tensorflow?

- Researchers
- Data Scientists
- Programmers

Where can Tensorflow run?

Development Phase (Training)

- Your Desktop or laptop
- Multiple machines

✓ Run Phase (Test)

- Desktop running Windows, macOS or Linux
- Cloud as a web service
- Mobile devices like iOS and Android

Language Support

- ✓ C++ as TF core
- Python 2.7/3.4-3.7
- JavaScript (tensorflow.js)
- ✓ Rust
- ✓ R
- **✓** Golang
- ✓ Java
- ✓ C#
- Julia

Other Rivals

Deep Learning Framework Power Scores (2018)

- Kaggle Kernel
- ✓ Article

Jeff Hale

@discdiver

Into #DataScience, #MachineLearning, #AI, #cloud. Cofounder @RebelDesk. (he/him)

528 Following 604 Followers

Not followed by anyone you're following

Deep Learning Framework Power Scores 2018

KDnuggets Usage Survey

Google Search Volume

Online Job Listings

Which Deep Learning Framework is Growing Fastest? (2019)

- Kaggle Kernel
- ✓ Article

Jeff Hale

@discdiver

Into #DataScience, #MachineLearning, #AI, #cloud. Cofounder @RebelDesk. (he/him)

528 Following 604 Followers

Not followed by anyone you're following

GitHub Activity

New GitHub Activity

Online Job Listing Growth

Deep Learning Framework Six-Month Growth Scores 2019

Comparison (2014-2019)

Why Tensorflow?

Easy model building

Build and train ML models easily using intuitive high-level APIs like Keras with eager execution, which makes for immediate model iteration and easy debugging.

Robust ML production anywhere

Easily train and deploy models in the cloud, onprem, in the browser, or on-device no matter what language you use.

Powerful experimentation for research

A simple and flexible architecture to take new ideas from concept to code, to state-of-the-art models, and to publication faster.

Features of Tensorflow

- ✓ Open source
- ✓ Easy Model Building
- ✓ Popularity
- ✓ Good support of ML and DL concepts
- Multiple CPU/GPU computing
- ✓ High Scalability
- ✓ Fast Compile
- ✓ Documentation
- ✓ Tensorboard for Visualization
- ✓ Data and model parallelism
- ✓ Multi-Language Support
- ✓ Large Community
- ✓ Production ready

- Only supports Nvidia GPUs
- Static computational graph (in comparison with PyTorch)
- Debugging (in comparison with PyTorch)
- Steep Learning Curve (in comparison with PyTorch)
- ✓ Speed (in comparison with PyTorch)

Applications of Tensorflow

Negative

Neutral

Positive

How to Install/Use Tensorflow?

✓ Install Tensorflow Manually

- Ubuntu 16.04 or later
- macOS 10.12.6 (Sierra) or later (no GPU support)
- Windows 7 or later
- Raspbian 9.0 or later

Run a Tensorflow Container

Tensorflow Docker Images in Docker Hub

✓ Google Colab

Tensorflow Requirements

✓ Hardware requirements for CPU

- Starting with TensorFlow 1.6
- binaries use AVX instructions which may not run on older CPUs.

✓ Hardware requirements for GPU

- NVIDIA® GPU card with CUDA® Compute Capability 3.5 or higher
- See the list of CUDA-enabled GPU cards

✓ Software requirements for GPU

- NVIDIA® GPU drivers —CUDA 10.0 requires 410.x or higher.
- CUDA® Toolkit —TensorFlow supports CUDA 10.0 (TensorFlow >= 1.13.0)
- CUPTI ships with the CUDA Toolkit.
- cuDNN SDK (>= 7.4.1)
- (Optional) TensorRT 5.0 to improve latency and throughput for inference on some models.

Tensorflow Basics

What is a Tensor?

- ✓ The basic data structure in Tensorflow
- ✓ A Mathematic (linear algebra) concept
- Generalization of vectors and matrices

- Typed
- Multidimensional array
- With additional operations
- Modeled in tensor object

Scalar Vector Matrix

1 1 2 3 4

Tensor

What is a Tensor?

Tensor Properties

Rank	Entity	Shape	Example						
0	Scalar	r1	4.5	shape-()	dtype=float32				
0	SCOLO	[]	'hi'	shape=()	dtype=string				
1	Vector	[D ₀]	[1,2,3]	shape=(3,)	dtype=int32				
2	Matrix	[D _o , D ₁]	[[1,2,3,4], [5,6,7,8]]	shape=(2, 4)	dtype=int32				
3	3-tensor	[D ₀ , D ₁ , D ₂]	[[[1,2],[3,4]],[[5,6],[7,8]]]	shape=(2, 2, 2)	dtype=int32				
n	n-tensor	[D ₀ , D ₁ ,, D _{n-1}]	•••	•••					

Tensor Properties

- ✓ Rank
- ✓ Shape
- ✓ Type

Tensor Data Types

Data type	Python type	Description
DT_FLOAT	tf.float32	32 bits floating point.
DT_DOUBLE	tf.float64	64 bits floating point.
DT_INT8	tf.int8	8 bits signed integer.
DT_INT16	tf.int16	16 bits signed integer.
DT_INT32	tf.int32	32 bits signed integer.
DT_INT64	tf.int64	64 bits signed integer.
DT_UINT8	tf.uint8	8 bits unsigned integer.
DT_STRING	tf.string	Variable length byte arrays. Each element of a tensor is a byte array.
DT_B00L	tf.bool	Boolean.

height

Tensors are Everywhere!

157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	6	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	71	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	95	234
190	216	116	149	236	187	85	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	95	50	2	109	249	215
187	196	235	75	1	81	47	٥	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
195	206	123	207	177	121	123	200	175	13	96	218

_	_	_	_		_		_	_	_		_
157	153	174	168	150	152	129	151	172	161	155	156
155	182	163	74	75	62	33	17	110	210	180	154
180	180	50	14	34	6	10	33	48	106	159	181
206	109	5	124	131	111	120	204	166	15	56	180
194	68	137	251	237	239	239	228	227	87	n	201
172	106	207	233	233	214	220	239	228	98	74	206
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	84	10	168	134	11	31	62	22	148
199	168	191	193	158	227	178	143	182	106	36	190
205	174	155	252	236	231	149	178	228	43	96	234
190	216	116	149	236	187	86	150	79	38	218	241
190	224	147	108	227	210	127	102	36	101	255	224
190	214	173	66	103	143	96	50	2	109	249	215
187	196	235	75	1	81	47	0	6	217	255	211
183	202	237	145	0	0	12	108	200	138	243	236
196	206	123	207	177	121	123	200	175	13	96	218

width width

height

color image is 3rd-order tensor

Operations or Ops

Anything you can do with a Tensor is an Operation

Computational Graph

- Composition of Operation nodes
- Every equation in linear algebra could be demonstrated as graph

$$y = f(g(x))$$

Computational Graph

Computational Graph

Complicated Computational Graph

Needs a powerful framework

- Algorithmic Optimization
- Parallel/Distributed Support
- Memory Efficient
- Multi-Device
- Fast Op Implementation
- Visualization