

Final Thesis Suitability of Modern Wi-Fi for Wireless Infield-Communication

Karl Lautenschläger

Agenda

- Motivation Final Thesis
- Physical Layer Technologies
- Field Measurements
- Simulation Experiments

Motivation Final Thesis

FIRST REPORT AND ORDER, FURTHER NOTICE OF PROPOSED RULEMAKING, AND ORDER OF PROPOSED MODIFICATION

Adopted: November 18, 2020 Released: November 20, 2020

Comment Date: 30 days after Federal Register publication

Reply Comment Date: 60 days after Federal Register publication

By the Commission: Chairman Pai and Commissioners O'Rielly and Carr issuing separate statements; Commissioners Rosenworcel and Starks concurring.

TABLE OF CONTENTS

ph #
1
5
13
14
15
26

Modern Wi-Fi

	IEEE 802.11ac (Wi-Fi 5)	IEEE 802.11ax (Wi-Fi 6)
Spectrum	5 GHz	2.4 GHz, 5 GHz
Bandwidth	Up to 160 MHz	Up to 40 Mhz (2.4 GHz), 160 Mhz at 5 GHz
OFDM Guard Interval	0.4 or 0.8 μs	0.8, 1.6 or 3.2 μs
Maximal Data Rate	6.9 Gbit/s	9.6 Gbit/s
Max Modulation Coding Scheme	256-QAM	1024-QAM
Multi-User Technology	MU-MIMO	MU-MIMO, OFDMA
Multi-User Transmission Direction	Downlink	Downlink und Uplink

Physical Layer Technologies

OFDM Guard Interval

Wi-Fi Standard	OFDM Guard Interval	Bandwidth attenuation = 100 * T _{FFT} / T [%]
Wi-Fi 4 & 5	400 ns	89 %
Wi-Fi 4 & 5	800 ns	80 %
Wi-Fi 6	800 ns	94 %
Wi-Fi 6	1600 ns	89 %
Wi-Fi 6	3200 ns	80 %

Dual Carrier Modulation (DCM)

Multiple Input Multiple Output (MIMO)

Space-Time-Block-Codes

- Increases robustness
- Decreases data date

Extended Range Mode

- Available for 802.11ax, 802.11bd
- Preamble power-boosting up to 3 db

8 μs	8 μs	4 μs	4 μs	8 µs	4 μs	Variable	e du	rations per	HE-LTF symbol	
L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF	•••	HE-LTF	DATA	PE

HE SU PPDU Format

8 μs	8 μs	4 μs	4 μs	16 μs	4 μs	Variat	ole d	urations pe	r HE-LTF symbol	
L-STF	L-LTF	L-SIG	RL-SIG	HE-SIG-A	HE-STF	HE-LTF	•••	HE-LTF	DATA	PE

HE Extended Range SU PPDU Format

Bandwidth in 5 GHz Frequency Range

Wi-Fi Standard	Bandwidth	Transmission Power Extend for transmission power CSX
802.11 p, 802.11bd	10 MHz	33 dbm 802.11p, 802.11bd
802.11 bd, 802.11ax, 802.11ac	20 MHz	33 dbm 802.11bd 30 dBm 802.11ax, ac 50 mW / MHz
802.11ax, 802.11ac	40 MHz	25 mW / MHz
802.11ax, 802.11ac	80 MHz	12.5 mW / MHz
802.11ax	80 + 80 MHz	6.25 mW / MHz
802.11ax	160 MHz	6.25 mW / MHz

Field Measurements

From F. Klingler, J. Blobel, and F. Dressler, "Agriculture meets IEEE 802.11p: A Feasibility Study," DOI: 10.1109/ISWCS.2018.8491239.

Field Measurements Equipment

- Wi-Fi 6E Chips Intel AX210
- Universal Software Radio Peripheral B 200
- Industrial Router Milesight UR75

Field Experiments

Network Simulation

SimulationHarvest Platooning Service

Simulation

Agricultural Platooning Service in Leader-Follower-Scenario

Summary

- Analyzing Telemetry data of Use Cases
 - required latency
 - required data Rate
 - required communication distance
- Field measurements
 - communication range
 - received signal strength in agricultural scenarios
 - Latency
- Simulation
 - Leader-Follower-Scenario
 - Harvest-Platoon-Scenario

Thanks!