Universidade Federal do Amazonas Bacharelado em Matemática

Laboratório de Física I Relatório II

Gabriel Bezerra de M. Armelin - 21550325 Jonas Miranda Cascais Júnior - 21553844 Fabrício Yuri Costa da Silva - 21454545

Introdução

Este relatório descreve e analisa o experimento realizado em sala de aula na disciplina Laboratório de Física I do curso de Bacharelado em Matemática.

Parte Experimental

O experimento consiste em estimar a constante de elasticidade de uma mola. Para isto, uma mola foi prendida a um suporte que a manteve na posição vertical sendo suspensa pela sua extremidade superior. Com a mola nesta posição, as seguintes etapas foram realizadas:

- 1) Medir o estado inicial da mola e suas expansões ao se adicionar, em sua extremidade inferior, objetos de masa 50g, 100g, 150g, 200g e 250g;
- 2) Estimar k (constante de elasticidade da mola) para todas as medidas de pesos de cada aluno e calcular a k médio dos k dos alunos;
- 3) Calcular o erro estimado.

Tratamento de Dados

Esta seção apresenta os dados e cálculos em cada atividade descrita na seção Parte Experimental.

1) Coleta das amostras

A primeira atividade diz respeito à coleta das amostras de expansões da mola após submetida a alguns objetos em sua parte inferior conforme a tabela abaixo:

Table 1: Amostras das expansões da mola.

	Inicial (mm)	50g (mm)	100g (mm)	150g (mm)	200g (mm)	250g (mm)
Aluno1	97	132	161	189	218	246
Aluno2	97	131	159	184	216	248
Aluno3	98	131	161	189	216	246

A próxima tabela apresenta a expansão relativa ao estado inicial da mola:

Table 2: Expansões da mola em relação a seu estado inicial.

	Inicial (mm)	50g (mm)	100g (mm)	150g (mm)	200g (mm)	250g (mm)
Aluno1	0	35	64	92	121	149
Aluno2	0	34	62	87	119	151
Aluno3	0	33	63	91	118	148

Os valores relativos serão utilizados nos próximos calculos deste relatório.

2) Estimativa da constante de elasticidade

A força aplicada na mola foi calculada a partir da seguinte fórmula:

$$F = m \times g \tag{1}$$

Onde:

F: intensidade da força aplicada (N);

m: massa do objeto pendurado na mola;

g: aceleração da gravidade. Para efeito de cálculo foi utilizado o valor $9.8~m/s^2$.

A tabela seguinte apresenta o resultado destes cálculos:

Table 3: Forças aplicadas na mola.

Inicial (N)	50g (N)	100g (N)	150g (N)	200g (N)	250g (N)
0	0.49	0.98	1.47	1.96	2.45

A relação entre expansão da mola e sua respectiva força aplicada é apresentada no gráfico seguinte:

Conforme observado, os três gráficos mostram que a relação entre as variáveis é praticamente linear crescente. Robert Hooke mostrou que a relação é realmente linear e a seguinte lei foi estabelecida, conhecida como Lei de Hooke:

$$F = k \times x \tag{2}$$

Onde:

F: intensidade da força aplicada (N);

k: constante de elasticidade da mola (N/mm);

x: expansão da mola (mm).

A próxima tabela apresenta os dados de k para a expansão obtida com o objeto de massa 250g em relação a mola sem objeto, valores aproximados também seriam obtidos se fizer calcular k para os demais objetos.

Table 4: Constante elástica para o objeto de 250g

	Aluno1	Aluno2	Aluno3	Média
k_{250g}	0.149	0.151	0.148	0.149

3) Erro estimado

FALTANDO

Conclusão

FALTANDO