TILASTO

Erään erikoisen kaupungin kaikki asukkaat asuvat yhden rengaskadun varrella. Asukkaiden talot sijaitsevat vierekkäin tien varrella siten, että ne on numeroitu järjestyksessä 1...N. Koska katu muodostaa silmukan, ovat talot N ja 2 talon 1 naapureita. Kaupungin johto haluaa tutkia, miten talojen asukkaiden varallisuusjakaumat vaihtelevat kadun eri naapurustoissa. Naapurusto tarkoittaa yhtenäistä M vierekkäisen talon ketjua. Naapurustoja on N kappaletta. Naapurusto numero i koostuu M peräkkäisestä talosta niin, että ensimmäinen talo on i. Tämä tarkoittaa taloja i, ..., i + M - 1, jos $i + M - 1 \le N$, ja muuten taloja i, ..., N sekä 1, ..., M - N + i - 1 (jälkimmäisessä tapauksessa rengaskadun talojen numeroinnin siirtymäkohta $N \to 1$ sijaitsee naapuruston sisällä).

Tehtävänäsi on laskea jokaisen N naapuruston osalta siihen kuuluvien talojen varallisuuksien K-kvantiilit, kun kunkin talon varallisuus tiedetään. M lukua sisältävän joukon A K-kvantiilit ovat ne K lukuarvoa, joiden järjestysnumerot ovat M/K, 2M/K, 3M/K, ..., KM/K, kun joukon A luvut on järjestetty kasvavaan järjestykseen. Yksittäisen naapuruston i K-kvantiilit voidaan siis määrittää esim. seuraavasti:

- 1. Järjestetään naapurustoon i kuuluvien talojen varallisuudet kasvavaan järjestykseen.
- 2.Lasketaan askeleen pituus L = M/K.
- 3.Poimitaan kohdan 1 järjestetystä joukosta järjestysnumerot **L**, **2L**, **3L**, ..., **KL** omaavat **K** alkiota. Huomaa, että tässä joukon pienin alkio omaa järjestysnumeron **1** ja suurin alkio järjestysnumeron **KL** = **M**.

Esimerkiksi jos M=12, K=3 ja tarkasteltavan naapuruston varallisuudet ovat 1, 6, 8, 3, 7, 11, 5, 3, 10, 4, 7, 4, on joukko kasvavassa järjestyksessä 1, 3, 3, $\frac{4}{5}$, 4, 5, 6, $\frac{7}{5}$, 7, 8, 10, $\frac{11}{5}$. Askeleen pituus on L=M/K=4. K-kvantiilit saadaan poimimalla järjestetystä joukosta järjestysnumerot L=4, 2L=8 ja 3L=12 omaavat alkiot eli arvot 4, 7 ja 11, jotka oli alleviivattu edellisessä järjestetyssä listassa.

SYÖTE

Sötetiedoston **tilasto.in** ensimmäisellä rivillä on arvot **N**, **M** ja **K** toisistaan välilyönnein eroteltuina. Tätä seuraa **N** riviä, joista kullakin on yksi ei-negatiivinen kokonaisluku. Rivin **1+i** luku ilmoittaa talon numero **i** varallisuuden. Kukin syötetiedoston rivi päättyy rivinvaihtoon.

TULOSTE

Vastaus kirjoitetaan tiedostoon **tilasto.out** siten, että ratkaisuarvo ilmoitetaan tiedoston ensimmäisellä ja ainoalla rivillä. Rivin tulee päättyä rivinvaihtoon. Tulostiedostoon ei tule kirjoittaa mitään ylimääräistä, kuten välilyöntejä, ylimääräisiä rivinvaihtoja tms.

Tehtävän ratkaisuarvo ilmaistaan kaikkien **N** naapuruston **K**-kvantiilien XOR-tarkistussummana, jolloin vastaus on yksi kokonaisluku (XOR-summa ei johda ylivuotoihin). C/C++ -kielissä XOR-summaoperaattori on ^. XOR-summa voidaan laskea soveltamalla operaattoria lukuihin missä tahansa järjestyksessä. Esim. lukujen **a**, **b** ja **c** XOR-summa **a** ^ **b** ^ **c** voidaan laskea järjestyksessä (**a**^**b**)^**c** tai **a**^(**b**^**c**). Voit käyttää tehtävässä int-muuttujia varallisuusarvojen sekä niiden XOR-summan laskennassa.

RAJOITTEET

 $100 \le N \le 50000$

 $5 \le K \le 100$

M = KL, missä L on jokin positiivinen kokonaisluku.

M < N

Kukin varallisuusarvo on ei-negatiivinen kokonaisluku ja ≤ 10 000 000.

ESIMERKKI

tilasto.in

tilasto.out

8	6	3		
9				
9				
0				
8				
5				
1				
3				
6				

Esimerkin naapurustot sekä niiden K-kvantiilit:

Naapuruston numero	Naapuruston varallisuudet (suluissa: järjestettynä)								vnä)	Naapuruston K-kvantiilit					
1	9,	9,	Ο,	8,	5,	1	(0,	1,	5,	8,	9,	9)	1,	8,	9
2	9,	0,	8,	5,	1,	3	(0,	1,	3,	5,	8,	9)	1,	5,	9
3	0,	8,	5,	1,	3,	6	(0,	1,	3,	5,	6,	8)	1,	5,	8
4	8,	5,	1,	3,	6,	9	(1,	3,	5,	6,	8,	9)	3,	6,	9
5	5,	1,	3,	6,	9,	9	(1,	3,	5,	6,	9,	9)	3,	6,	9
6	1,	3,	6,	9,	9,	0	(0,	1,	3,	6,	9,	9)	1,	6,	9
7	3,	6,	9,	9,	0,	8	(0,	3,	6,	8,	9,	9)	3,	8,	9
8	6,	9,	9,	0,	8,	5	(0,	5,	6,	8,	9,	9)	5,	8,	9

Ratkaisuarvo 9 on oikeanpuoleisimmassa sarakkeessa näytettyjen **K**-kvantiilien XOR-summa eli:

1 ^ 8 ^ 9 ^ 1 ^ 5 ^ 9 ^ 1 ^ 5 ^ 8 ^ 3 ^ 6 ^ 9 ^ 3 ^ 6 ^ 9 ^ 1 ^ 6 ^ 9 ^ 3 ^ 8 ^ 9 ^ 5 ^ 8 ^ 9 = 9