Units and Units Conversions

Note:

- Variables, parameters, and constants represent quantities with associated units.
- There are 2 widely used unit systems
 - ○British system ~ "ft & Ib"
 - SI "Systeme International d'Unites" ~ "m & kg"
 - Due mainly to worldwide popularity
 - SI units used in most of scientific work

Principle Units

Quantity	<u>Unit</u>	<u>Symbol</u>
Length	• meter	• m
Mass	gram	• g
Time	second	• s
 Computer Storage Capacity 	Byte	• B
Electrical current	Ampere	• A
Temperature	Kelvin	• K
Luminous intensity (brightness)	Candela	• cd
Amount of substance	• mole	• mol

Common Derived Units

<u>Quantity</u>	<u>Derived Unit</u>	Symbol & Unit
Velocity	distance time	$\frac{m}{s}$
Force	Newton	$N \sim \frac{kg.m}{s^2}$
Energy	Joule	$\int - \frac{kg.m^2}{s^2}$
Power	Watt	$ W \sim \frac{kg.m^2}{s^3} $
Frequency	Hertz	• hz ~ $\frac{1}{s}$
Pressure	Pascal	Pa ~ $\frac{N}{m^2}$

Prefixes for units

<u>Factor</u>	<u>Prefix</u>	<u>Symbol</u>
1 0 ¹²	Tera	• T
1 0 ⁹	Giga	• G
1 0 ⁶	Mega	M
■10 ³	• Kilo	• K
■10 ¹	deca	• D
10-1	• deci	•d
■ 10 ⁻³	• mili	•m
■ 10 ⁻⁶	micro	μ
1 0 ⁻⁹	nano	η
1 0 ⁻¹²	• pico	• p

Example:

- 256,000,000 bytes ~ 256 x 10⁶ bytes
 ~ 256 MB
- Ka-band frequency:
 - \bigcirc 25 Ghz ~ 25 x 10⁹ hz ~ 25,000,000,000 /s

Remarks:

- The prefix must precede the unit to indicate the factor. Otherwise it could infer another units.
- Ex: 2 microns = 2 μ m = 2 x 10⁻⁶ m 7 nanoseconds = 7 η s = 7 x 10⁻⁹ s

Unit Conversions

Ex: a) Convert 345m into miles:

b) Convert 5lbs into grams:

Ex:

Determine which of the following is heavier:

- a) £1.5 sterling pound of rice that costs \$10/25 lbs
- b) ¥2000 of petroleum that costs њ(French Francs)40/gallons

Homework (1-5 unit handouts)

Milk density ~ 1000 kg/m/m/m
Petroleum density ~ 777 kg/m/m/m
100p ~ 1 sterling pound