A. Archeologist's find

Ануар увлекается историей и в свободное время участвует в раскопках. Так, недавно он нашёл среди амфор и бус странный объект прямоугольной формы. Подняв устройство, Ануар увидел, что его передняя панель состоит из экрана и цифровой клавиатуры. Наверху была полустёртая надпись NOK_A. «Наверно, один из тех старых телефонов, о прочности которых слагали легенды!» - подумал он, тщетно пытаясь не выдать свою радость. Как и ожидалось, телефон работал; более того, на нём даже можно было сыграть в забытый всеми вариант «Змейки». Змейка здесь представлена одной точкой, в начале игры находящейся в центре координатной плоскости и направленной вправо. После того, как точка-змейка начала двигаться, можно поворачивать влево и вправо. Ануар понимает, что находку надо беречь, поэтому хочет дойти до цели, нажав при этом как можно меньше кнопок.

Ввод.

Два целых числа от -1000 до 1000 — координаты целевой точки

Вывод.

Одно целое неотрицательное число — минимальное количество поворотов, которое надо сделать, чтобы достичь целевой точки.

Пример.

1 1	
Ввод	Вывод
5 0	0
5 1	1
-4 0	3
0 0	0

Комментарий.

Обратите внимание, что на каждом шаге можно сделать не более одного поворота. В частности, нельзя разворачиваться на месте.

B. Board rotating

Азат расставил несколько шашек на квадратной доске 16×16 и дружелюбно показал вам расстановку. Затем он уже не так дружелюбно повернул доску на 90 градусов вокруг центра и совсем не дружелюбно не стал показывать, как стала выглядеть доска. Узнайте окончательную расстановку шашек.

Ввод.

Таблица 16×16 из символов 'R', 'L' и '.' — начальная расстановка. Пустые клетки обозначены точками, все клетки с шашками заменены на 'R', если доску нужно повернуть вправо (по часовой стрелке) или на 'L', если влево (против часовой стрелки). Гарантируется, что в таблице есть хотя бы один символ, отличный от '.'

Вывод.

Таблица 16×16 из символов 'R', 'L' и '.' — конечная расстановка.

Ввод	Вывод
	RRRRRRRR
	RRR
RRRRR	R.RR
RR.RR.RR	RRR
R.R.RRRR	RRRRRRRR
RRR.RR	
RRRRRRRR	RR
	R.R.RR.R.R.
	R.R.RR.R.R.
RRRRRRRR	RR
.R.RRR	
RRRRRRRR	RRRRR
RRRR	RR
RRRRR	RRRRRR
	RR
	RRRRRR

C. Counting pixels

У Валерия есть бесконечный лист с равномерной квадратной разметкой. Он проводит на нём отрезок, соединяющий центры двух клеток и закрашивает все клетки, у которых есть хотя бы одна внутренняя точка, принадлежащая проведённому отрезку. Нам, конечно же, интересно, откуда у него бесконечный лист и сколько клеток было закрашено. Ответьте на один из этих вопросов.

Ввод.

Четыре целых числа от 0 до $10^{18}-i_1,\ j_1,\ i_2,\ j_2,$ координаты клеток, центры которых образуют начало и конец отрезка. Гарантируется, что точки не совпадают.

Вывод.

Одно целое положительное число — количество закрашенных клеток.

Ввод	Вывод
6 0 0 10	15
5 3 7 7	7

D. Digits again

Так как Бекарыс уже научился находить четвёртые справа цифры факториалов, то теперь ему нужно более серьёзное испытание. Теперь он хочет найти три последние цифры числа

$$\left(a+\sqrt{b}\right)^n + \left(a-\sqrt{b}\right)^n$$

, или что почти то же самое, остаток от деления этого числа на 1000.

Ввод.

Даны три целых числа a, b, n от 1 до 10^{18} .

Вывод.

Одно целое положительное число — последние три цифры числа (без ведущих нулей).

Ввод	Вывод
1 1 1	2
1 3 10	168

E. Emirates

Ввод.

Одно целое число от 1 до 1024.

Ξ.	L L ·	
	Ввод	Вывод
	2	10
	3	10
	4	11

F. Finding battleships

Куат и Павел пытаются написать программу, играющую в модифицированный морской бой. Отличия от стандартных правил таковы:

- 1) корабли могут быть прямоугольниками произвольного размера;
- 2) корабли могут соприкасаться углами, но касание сторонами всё ещё запрещено;
- 3) поле может быть прямоугольником произвольного размера.

Пока у них не получается научить компьютер расставлять корабли. Посмотрите на их расстановку и попробуйте найти, сколько на ней легально расставленных кораблей. Более того, необходимо найти, сколько среди этих кораблей вертикальных (то есть, у которых высота больше ширина), горизонтальных (высота меньше ширины) и квадратных (высота равна ширине).

Ввод.

В первой строке даны два целых числа M,N от 1 до 100. На следующих M строках дана матрица $M\times N$ из символов 'X' и '.'. Пустые клетки обозначены точками, занятые — буквой 'X'.

Вывод.

Три целых числа через пробел — количество вертикальных, горизонтальных и квадратных кораблей.

Ввод	Вывод
6 6	1 2 3
XXXX	
X XX	
.XX.XX	
. XX	
XXX.	
. XX X	

G. Geometrying

Курса аналитической геометрии Таиру оказалось недостаточно, и он хочет большего. Помогите ему узнать, какая фигура получается, если пересечь куб $0 \le x, y, z \le a$ плоскостью, проходящей через точки с координатами (p,0,0), (0,q,0) и (0,0,r).

Ввод.

В первой строке дано число a от 1 до 1000. Во второй строке даны три целых числа p, q, r от 1 до 1000.

Вывод.

Одно целое неотрицательное число n — количество вершин многоугольника, полученного сечением. Если в сечении получается точка — вывести 1, если сечения нет — вывести 0.

Ввод	Вывод
2	3
1 1 1	
2	6
3 3 3	
2	5
2 3 4	

H. Highest and greatest only

Димитрий считает, что от жизни нужно брать только лучшее, а от чисел только их максимальные цифры. Вот он и выписал для каждого числа от L до R включительно его максимальную цифру. Какое число получится, если сложить все эти цифры?

Ввод.

Даны два целых числа L, R от 1 до 10^{18} , причем $L \leqslant R$.

Вывод.

Одно целое неотрицательное число — ответ на задачу по модулю $(10^9 + 7)$.

Ввод	Вывод
12 21	48

I. Into the mountains

Алан, как начинающий альпинист, решил ввести определение горы и в математике. Так, последовательность с нечётным количеством чисел он называет горой, если первая её половина вместе с центральным элементом упорядочена по возрастанию, а вторая (так же вместе с центральным элементом) — по убыванию. Найдите в данной последовательности максимальный подотрезок, являющийся горой.

Ввод.

В первой строке дано целое N от 1 до 10^5 . Во второй строке даны N целых чисел от -10^9 до 10^9 .

Вывод.

Два целых числа — левая и правая граница горы включительно. Если ответов несколько, вывести границы самой левой горы.

Пример.

Ввод	Вывод
10	4 8
5 3 1 2 5 9 7 1 3	2

Комментарий.

в данном примере горами длины больше 1 являются подотрезки (2, 5, 9, 7, 1), (5, 9, 7) и (1, 3, 2)