Seguridad Informática

Fundamentos Matemáticos de la Criptografía

Ramón Hermoso y Matteo Vasirani

Universidad Rey Juan Carlos

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- El problema del logaritmo discreto (DLP)
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- 4 El problema del logaritmo discreto (DLP
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

Divisibilidad I

- Sea Z el conjunto de los números enteros
- Se dice que a|b (a divide a b) si $\exists c: b = a \cdot c$
- Si a > 0, $a \ne 1$, $a \ne b$, decimos que a es factor de b
- Un número b es primo si no tiene factores, es decir, sus únicos divisores son 1 y b
- Si un número no es primo, se llama compuesto

Divisibilidad II

Teorema de la división

$$\forall a,b>0, \;\; \exists \; q,r \; \text{únicos tales que:}$$
 $a=b\cdot q+r \; \text{con} \; 0\leq r\leq b$

donde q se denomina cociente y r resto

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- El problema del logaritmo discreto (DLP)
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

Aritmética modular I

• Sea $a \in \mathbb{Z}$ y n > 0

 $a \bmod n \equiv \text{resto al dividir } a \text{ entre } n$

Definición: $a \equiv b \mod n$ si $[a \mod n] = [b \mod n]$ $a \equiv b \mod n \Leftrightarrow n \mid (b-a) \Leftrightarrow \exists \ k : \ b-a = k \cdot n$

Operaciones: suma y producto

$$[a+b \bmod n] = [a \bmod n] + [b \bmod n]$$
$$[a \cdot b \bmod n] = [a \bmod n] \cdot [b \bmod n]$$

Aritmética modular II

Congruencias

Cierto número *a* es **congruente** con otro cierto número *b* módulo *n*, si y solo si se obtiene el mismo resto al hacer ambas divisiones. Se denota mediante:

$$a = b \mod n$$

Aritmética modular III

Operaciones: división

- a/b mod n (si la división es entera no hay problema)
- La división se define como la multiplicación con el inverso
- El inverso de un número es otro número que multiplicado por el primero sea igual a 1
- Si dado b, $\exists c$ tal que $b \cdot c = 1 \pmod{n}$, decimos que b tiene inverso $c = b^{-1}$
- Por lo tanto, definimos $a/b = a \cdot b^{-1} \pmod{n}$

Aritmética modular IV

- Inversos mod n
 - **Teorema**: b es invertible mod n si y sólo si mcd(b,n) = 1

Ejemplo

- $3 \cdot 11 = 33 = 1 \pmod{16} \Rightarrow 3$ es invertible y $3^{-1} = 11$
- En la igualdad $6 = 22 \mod 16$ podemos dividir entre 3:

$$6/3 = 22/3 = 22 \cdot 11 = 242 = 2 \mod 16$$

Ejercicio: Dividir por 5 la siguiente congruencia: $27 = 10 \mod 17$. Hacer lo mismo para $27 = 61 \mod 17$

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- 4 El problema del logaritmo discreto (DLP)
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

Grupos I

 Un grupo es un conjunto G de elementos y de una operación binaria interna ∘ que cumple:

- $a \circ (b \circ c) = (a \circ b) \circ c$ (Asociativa)
- $\exists e : a \circ e = e \circ a = a$ (Elem. neutro)
- $\forall g \ \exists h : g \circ h = h \circ g = e \ (Elem. \ Inverso)$
- Si $a \circ b = b \circ a$ (Conmutativa), entonces G es un grupo abeliano
- Un subgrupo es un grupo contenido dentro de otro

Grupos II

- Notación aditiva: g+h
 - Elemento neutro: 0
 - El elemento inverso de g se denota -g

$$g+g+\ldots+g=m\cdot g$$

- Notación multiplicativa: g · h
 - Elemento neutro: 1
 - El elemento inverso de g es g^{-1}
 - $g \cdot g \cdot \dots \cdot g = g^m$
 - Por convenio: $g^0 = 1$ y $g^{-m} = (g^{-1})^m$

Grupos III

- El orden de un grupo finito es el número de elementos que lo compone
- **Teorema**: G es un grupo de orden m ⇒ $\forall g \in G$: $g^m = 1 \mod N$
- Corolario: $\forall g : g^i = g^{[i \mod m]}$
- Corolario: e > 0 con $MCD(e, m) = 1 \Rightarrow$
 - ① $f_e: g \rightarrow g^e$ es una **permutación** de G
 - ② Si $d = e^{-1} \mod m \Rightarrow f_d$ es la **inversa** de f_e

Permutaciones

Permutación e inversión permiten cifrar y descifrar!!!

Grupos IV

• Ejemplos:

- $\mathbb{Z}_N = \{0, 1, ..., N-1\}$, donde $\circ = \text{'+'} mod \ N$ es un grupo. ORDEN: N (**GRUPO ADITIVO** \oplus)
- $\mathbb{Z}_N^* = \{a \in \{1,...,N-1\}\} : MCD(a,N) = 1 \text{ con } \circ = \cdot \mod N \text{ es }$ un grupo. ORDEN $\phi(N)$ (GRUPO MULTIPLICATIVO \odot) (función de Euler)

Función de Euler

- Si p es primo $\Rightarrow \phi(p) = p 1$
- Si p,q son primos $\Rightarrow \phi(p \cdot q) = (p-1) \cdot (q-1)$

• En general:

- $\phi(ab) = \phi(a) \cdot \phi(b)$ si a y b no tienen factores primos comunes
- $\phi(p^e) = p^{e-1} \cdot (p-1)$

Grupos cíclicos I

- Sea G un grupo finito de orden m y $g \in G$
- \bullet < g >= $\{g^0, g^1, g^2, ...\}$ (subgrupo generado por g)
- Orden de g: menor i tal que $g^i = 1 \mod N$

Grupos cíclicos II

• Si g tiene orden $m \Rightarrow \langle g \rangle = G$ y decimos que G es cíclico, es decir,

$$G = \{g^0, g^1, g^2, ..., g^{m-1}\}$$

y g recibe el nombre de **generador** de G

- Si g tiene orden i entonces i | m
- Consecuencia: si G tiene orden primo p entonces G es cíclico y todos los elementos de G menos el 1 son generadores

Grupos cíclicos III

Ejemplos

- \mathbb{Z}_N es cíclico para todo N
- \mathbb{Z}_p^* es cíclico si p es primo
- $\bullet \ \ \text{En} \ \mathbb{Z}_{15} \to 2 \ \text{es generador, 3 no}$
- Z₈ no es cíclico
- ullet \mathbb{Z}_{10}^* es cíclico
- En $\mathbb{Z}_7^* \to 3$ es generador, 2 no

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- 4 El problema del logaritmo discreto (DLP)
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

El problema del logaritmo discreto (DLP) I

- $G = \langle g \rangle$ de orden q
- Dado $h \in G$ existe un único $x \in \mathbb{Z}_q$ tal que $g^x = h$
- Decimos que $x = log_g(h)$
- Ejemplo:

$$\mathbb{Z}_{11}^* = <7> log_7(4) =?$$

Solución: 6

El problema del logaritmo discreto (DLP) II

El problema del logaritmo discreto (DLP)

- Consiste en obtener el valor de y en $x = a^y \mod n$
- Equivalente a $y = log_a(x)$
- Problema "duro" o difícil si ningún adversario PPT A lo resuelve con probabilidad no despreciable
- Especialmente en los grupos \mathbb{Z}_p^* con p primo (y suficientemente grande)
- Se usa comúnmente en criptosistemas de clave pública (p. ej. en el de Diffie-Hellman o en el de ElGamal)

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- 4 El problema del logaritmo discreto (DLP
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

Notas: Intercambio de claves Diffie-Hellman I

- Problemas Diffie-Hellman:
 - ① Diffie-Hellman computacional (CDH):
 - Dados $h, k \in G$ encontrar $l \in G$ tal que cumpla que:

si
$$h = g^x, k = g^y$$
 entonces $l = g^{xy}$

- ② Diffie-Hellman decisional (DDH):
 - Distinguir entre

$$(g^x, g^y, g^z)$$
 VS. (g^x, g^y, g^{xy})

donde x, y, z se eligen al azar

Relación de resolución de problemas:

Resolver DLP → **Resolver CDH** → **Resolver DDH**

El problema de factorizar I

- Se eligen x,y enteros de n bits al azar
- ② Se calcula $N = x \cdot y$
- 3 El adversario A recibe N y devuelve x', y'
- Si $x' \cdot y' = N$ entonces se dice que Succ(A, n) = 1

El problema de factorizar II

- No parece muy complicado. Por ejemplo, podemos inferir que, con probabilidad del 75 % N es par
- También es fácil si x o y tienen factores primos pequeños
- Esto sugiere elegir x,y primos
- Se cree que, de esta forma, el problema de factorizar es difícil

- 1 Divisibilidad
- 2 Artimética modular
- 3 Grupos
- 4 El problema del logaritmo discreto (DLP
- 5 Notas: Diffie-Hellman
- 6 Notas: RSA

El problema RSA

- ① Se generan p,q primos de n bits al azar
- Se genera e tal que $mcd(e, \phi(N)) = 1$
- Se elige $y \in \mathbb{Z}_N^*$ al azar
- **5** El adversario A recibe (e, y); devuelve x
- Si $x^e = y$ entonces decimos que Succ(A) = 1

Relación de RSA con factorizar I

Teorema

Si se sabe factorizar N se puede resolver RSA

- Se calcula $\phi(N) = (p-1) \cdot (q-1)$
- Se calcula $d = e^{-1} \mod \phi(N)$
- Solución: y^d porque $(y^d)^e = y^{de} = y \mod N$

Relación de RSA con factorizar II

- Por lo tanto, RSA podría ser tan difícil como factorizar o algo más fácil
- No se conoce respuesta a esta conjetura

Generando primos al azar

- Para producir instancias de RSA o DLP hemos visto que se necesita generar números primos, a veces cumpliendo ciertas condiciones
- ¿Cómo se hace? Se generan números al azar a los que se pasa un test de primalidad

Pruebas de primalidad

- En la década de los 70 aparece el primer test de primalidad eficiente (probabilístico)
- Los más eficientes (por ejemplo el Miller-Rabin) son probabilísticos:
 - Entrada primo devuelve "primo" siempre
 - Entrada número factorizable devuelve "compuesto" excepto con pequeña probabilidad (falsos positivos)