Project Overview

Working backwards, from "what does my customer need"

The requirement from (our simulated) customer:

- · Launching new data-driven campaign
- Main advertising channel: YouTube
- Initial questions to answer:
 - "how to categorise videos, based on their comments and statistics"
 - "What factors affect how popular a YouTube video will be"

Why YouTube?

Top three most-visited websites (monthly)

Google: 92.5 billion

YouTube: 34.6 billion

Facebook: 25.5 billion

Goals and Success Criteria

How my customer will measure success?

Data Ingestion

Ingest data, one-offs and incrementally

Data Lake

Design and build a new
Data Lake architecture

AWS Cloud

AWS as the cloud provider

ETL Design

Extract, transform and load data efficiently

Scalability

The data architecture should scale efficiently

Reporting

Build a Business Intelligence tier, incl. Dashboards

What you will learn in this course

 To build a data lake from scratch in Amazon S3

Joining semi-structured and structured data

Lake House architecture design

Best practices —> cost and performance.

Data Lake vs. Data Warehouse

What is Big Data

Big data is a term for:

- massive data sets, with varied and complex structure
- with the difficulties of storing and analysing
- visualizing for further processes or results.

Source: Big data: A review. IEEE, 2013, DOI: 10.1109/CTS.2013.6567202

Timely decisions require new data in minutes

Source: Perishable insights, Mike Gualtieri, Forrester

Challenges working with data

Our dataset from YouTube

- · Top trending videos
- What is "Trending"?

YouTube uses factors, including users interactions e.g. number of views, shares, comments and likes.

Not the most-viewed videos overall for the calendar year

 Source: Kaggle. Data collected using YouTube API

What is an on-premise data centre

- You / your company has its own hardware
- You will need to maintain it;
 e.g.
 - Purchase, fix and upgrade hardware
 - Install and maintain Operating Systems and other software

What is the cloud?

- Applications delivered as services over the Internet
- Hardware and systems software in data centres, that provide those services

Source: "A view of cloud computing"; doi.acm.org/10.1145/1721654.1721672

Why the cloud is being so disruptive

"A 10-node cluster running for 10 hours costs the same, as a 100-node cluster running for one hour"

On-premise, extra-hardware for a cluster means...

- · Procurement, approval, licensing
- Shipping, installation, electricity, cooling systems,...
- Underutilized vs overutilized
- · Pay even when nobody is using the hardware
- Sustainability issues

[Cont.] Why the cloud is being so disruptive

- 81% of enterprises have, at least, one application in the cloud
- 13% of +1k employees enterprises have migrated their entire IT environment to the cloud.

Steps to get our data

- Download from kaggle.com/datasnaek/youtube-new
- Create an Amazon S3 bucket, for our landing bucket e.g.

```
s3://company-raw-awsregion-awsaccountID-
env/source/source_region/tablename/year=yyyy/
month=mm/day=dd/table_<yearmonthday>.<file_format>
env = dev, test, prod
source = name or indicator of source
source_region = region of data source
```

Copy the data to S3, using our AWS CLI

Agenda

- Basics of Lake House architecture
- What is the AWS Glue Data Catalog
- Catalog our YouTube data

What is a Lake House architecture

Key elements:

- Scalable Data Lakes
- Purpose-built Data Services
- Seamless Data Movement
- Unified Governance
- · Performant and Cost-effective

What is the AWS Glue Catalog

What is the AWS Glue Catalog

Source: aws.amazon.com/blogs/big-data/harmonize-query-and-visualize-data-from-various-providers-using-aws-glue-amazon-athena-and-amazon-quicksight/

JSON SerDe Libraries and Support

Goal: Data Cleansing Create our light ETL: JSON to Apache Parquet

```
"kind": "youtube#videoCategoryListResponse",
"atag": "\"ld9biNPKjAjgjV7EZ4EKeEGrhao/lv2mrzYSYG6onNLt2qTj13hkQZk\"",
"items": [
"kind": "youtube#videoCategory",
"etag": "\"ld9biNPKjAjgjV7EZ4EKeEGrhao/XY1m84_yLrHy_BmKmP8ggty2mZQ\"",
"id": "1",
"snippet": {
"channelid": "UCBR8-68-B28hp2BmDPdntcQ",
"title": "Film & Animation",
"assignable": true
}

{
"kind": "youtube#videoCategory",
"etag": "\"la9oiNPkjAjgjV7EZ4EKeEGrhao/UZloLIIz2dxIn045ZTFRSa3NyTA\"",
"id": "2",
"snippet": {
"channelid": "UCBR8-68-B28hp2BmDPdntcQ",
"itile": "2",
"snippet": {
"channelid": "UCBR8-68-B28hp2BmDPdntcQ",
"title": "Autos & Vehicles",
"assignable": true
}

CA_category_id.jso
```


a 🔻	b 🕶	c v	🔻	zf 🔻
a1	b1	c1	***	zf1
a2	b2	c2	***	zf2
a3	b3	c3	***	zf3
a4	b4	c4	***	zf4
a5	b5	c5	***	zf5
a6	b6	с6	***	zf6
a7	b7	c7	***	zf7

Data Cleansing Semi-structured data to Structured pipeline

Data Wrangler: aws-data-wrangler.readthedocs.io/en/stable/what.html

Why Lambda to process our JSON payload?

- One of the AWS compute services
- Serverless
- · High available and scalable
- Limits at this moment:
 - Deployment package is 50MB
 - You can use /tmp or mount EFS volumes: more storage and share it across executions
 - 10 GB for memory
 - 6 vCPUs
 - 15 min timeout

Comparing the different data storage options

This table compares the characteristics of these four different data storage options for Lambda:

	Amazon S3	/tmp	Lambda Layers	Amazon EFS
Maximum size	Elastic	512 MB	50 MB (direct upload; larger if from S3).	Elastic
Persistence	Durable	Ephemeral	Durable	Durable
Content	Dynamic	Dynamic	Static	Dynamic
Storage type	Object	File system	Archive	File system
Lambda event source integration	Native	N/A	N/A	N/A
Operations supported	Atomic with versioning	Any file system operation	Immutable	Any file system operation
Object tagging	Υ	N	N	N
Object metadata	Y	N	N	N
Pricing model	Storage + requests + data transfer	Included in Lambda	Included in Lambda	Storage + data transfer + throughput
Sharing/permissions model	IAM	Function-only	IAM	IAM + NFS
Source for AWS Glue	Y	N	N	N
Source for Amazon QuickSight	Y	N	N	N
Relative data access speed from Lambda	Fast	Fastest	Fastest	Very fast

Source: aws.amazon.com/blogs/compute/choosing-between-aws-lambda-data-storage-options-in-web-apps/

^{*} Not all target services will be used

Lambda layers

- convenient way to package libraries and other dependencies
- reduces the size of uploaded deployment, so it's faster to deploy your code
- promote code sharing and separation of responsibilities
 - Simpler iterations, so faster on writing business logic.

Steps

- Try changing the data type in the data catalog!
 - · Error? See next slide

Apache Parquet

Metadata

There are three types of metadata: file metadata, column (chunk) metadata and page header metadata.

Apache Parquet files have headers!

Steps

- Keep the data type change in the data catalogue
- Delete our testing JSON file
- Confirm APPEND in Lambda
- Run Test event in Lambda
- Copy again our data, from our laptops (AWSCLI)
- 6. Add the S3 Trigger to Lambda

^{*} Not all target services will be

Cleansed vs Analytics layer

Using Cleansed Layer


```
1 SELECT ref.snippet_title, stats.title, stats.title
2 FROM raw_statistics stats
3 INNER JOIN cleansed_statistics_reference_data ref on (stats.category_id = ref.id)
4 WHERE ref.id=2
```

Using Reporting Layer

- 1 SELECT snippet_title, title, title
- 2 FROM rpt_youtube_statistics_categories
- 3 WHERE id=2

Agenda

 Business Intelligence, using Amazon QuickSight

Our Data architecture

^{*} Not all target services will be

