Base de Datos (75.15/95.05/TA044)

Evaluación Parcial - Primera Oportunidad

\mathbf{TEMA}	SQL					Fecha: 8 de mayo de 2024
2024111	AR/MOD					Padrón:
	DR					Apellido:
Corrigió:	I					Nombre:
Nota:				Cantidad de hojas:		
\square Aprobado \square Insuficiente						

Criterio de aprobación: El examen está compuesto por 7 ítems, cada uno de los cuales se corrige como B/B-/Reg/Reg-/M. El examen se aprueba con nota mayor o igual a 4(cuatro) y la condición de aprobación es desarrollar al menos un ítem bien (B/B-) en cada uno de los 3 grupos (SQL, álgebra relacional/modelado, diseño relacional). Adicionalmente, no deberá haber más de dos ítems mal o no desarrollados.

- 1. (SQL) Considere los siguientes esquemas de relación que almacenan información sobre el Campeonato Mundial de Formula 1 de 2023:
 - EQUIPOS(cod_equipo, nombre, veces_campeon)

('MER', 'Mercedes', 7)

('RED', 'Red Bull Racing', 4)

■ PILOTOS(cod_equipo, nro_piloto, nombre, apellido, nacionalidad, carreras_ganadas)

('RED', 1, 'Max', 'Verstappen', 'Holandes', 55)

('MER', 44, 'Lewis', 'Hamilton', 'Britanico', 103)

- CIRCUITOS(id_circuito, nombre_circuito, pais, vueltas, longitud_km)
 - (1, 'Circuito de Mónaco', 'Mónaco', 78, 3.337)
 - (2, 'Circuito de Bakú', 'Azerbaiyán', 51, 6.003)
- CARRERAS(<u>id_carrera</u>, fecha, id_circuito, cod_equipo, nro_piloto, posicion, vueltas_finalizadas, ms_mejor_vuelta, puntos_ganados)
 - (1, '2022-05-23', 1, 'RED', 1, 1, 1, 78, 18549, 26)
 - (2, '2023-06-06', 2, 'MER', 44, 3, 1, 51, 43243, 15)
 - a) Escriba una única consulta SQL que dé cumplimiento al siguiente requerimiento.

Encontrar todos los pilotos que finalizaron todas sus carreras en la posición 1 2 o 3 y que el tiempo de su mejor vuelta es mayor a un minuto en todas sus carreras (ms_mejor_vuelta: en milisegundos). Mostrando el nombre del piloto, la nacionalidad, nombre de equipo, nombre del circuito, y la cantidad de carreras que cumplen la condición

Tip: NO se necesita utilizar WITH

b) Dadas las tablas de PILOTOS y de CARRERAS ilustradas a continuación, se quiere armar una tabla como la Tabla 3, 'top_3_promedio_de_puntos' en donde se muestran los 3 pilotos con mayor promedio de puntos, ordenados de forma descendente y cuyo promedio de puntos sea mayor o igual 10 puntos. Mostrando el nombre completo del piloto y su promedio de puntos.

Escriba una única consulta SQL que devuelva los datos de la Tabla 3 en base a los de las tablas de PILOTOS y de CARRERAS.

Nota: los datos son aproximados, para dar una idea de la información contenida en cada tabla

id_carrera	fecha	id_circuito	cod_equipo	nro_piloto	posicion	vueltas_ finalizadas	ms_mejor _vuelta	puntos_ganados
1	'2022-04-30'	2	'RED'	1	2	51	1234	18
1	'2022-04-30'	2	'FER'	55	5	51	1234	10
1	'2022-04-30'	2	'MER'	44	6	51	1234	8
2	'2023-05-07'	3	$^{\prime}\mathrm{RED}^{\prime}$	1	1	57	43243	26
2	'2023-05-07'	3	'FER'	55	5	57	43243	10
2	'2023-05-07'	3	'MER'	44	6	57	43243	8
7	'2023-06-04'	1	'RED'	1	1	66	43243	26
7	'2023-06-04'	1	'MER'	44	2	66	43243	18

Tabla 1: CARRERAS

cod_equipo	nro_piloto	nombre	apellido	nacionalidad	carreras_ganadas
'RED'	1	'Max'	'Verstappen'	'Holandes'	55
'FER'	55	'Carlos'	'Sainz'	'Español'	3
'MER'	44	'Lewis'	'Hamilton'	'Britanico'	103
'RED'	11	'Sergio'	'Perez'	'Mexicano'	6

Tabla 2: PILOTOS

nombre_piloto	promedio_puntos
'Max Verstappen'	25.14
'Sergio Pérez'	12.95
'Lewis Hamilton'	10.63

Tabla 3: top_3_promedio_de_puntos

2. (Álgebra relacional) Dados los mismos esquemas del ejercicio 1.a) y utilizando la siguiente notación para representar las operaciones del álgebra relacional: $\pi, \sigma, \rho, \times, \cup, -, \cap, \bowtie, \div$, resuelva la siguiente consulta:

Encontrar cuánto tardó la/las vuelta/s más corta/s (rápida) (utilizar solo los microsegundos) y quien fue su piloto (nombre, apellido y número).

3. (Modelado) Para el siguiente diagrama Entidad-Interrelación, realice el pasaje al modelo relacional indicando para cada relación cuáles son las claves primarias, claves candidatas, claves foráneas y atributos descriptivos.

- 4. (Diseño relacional)
 - a) Sea la relación R(A, B, C, D, E, G, H) con el siguiente conjunto minimal de dependencias funcionales $F = \{AB \to C, C \to D, EG \to H, H \to D, D \to B, B \to E, D \to G\}$. Suponga que se realiza la siguiente descomposición:
 - $R_1(A, B, C)$, $F_1 CC_1$
 - $R_2(A, C, D, E)$, F_2 CC_2
 - $R_3(E, G, H)$, F_3 CC_3

Obtenga los conjuntos F_i y CC_i para las tres relaciones de la descomposición e indique en qué forma normal se encuentran. Recuerde proyectar tanto las dependencias explícitas como las implícitas.

- b) Sea la relación R(A,B,C,D,E) con el siguiente conjunto minimal de dependencias funcionales $F = \{A \to C, B \to D, E \to C, AD \to E, C \to A, \}$ con el siguiente conjunto de claves candidatas: $CC = \{AB, BC, BE\}$. Aplique el algoritmo de descomposición en 3FN visto en clase, muestre los pasos intermedios y señale el resultado final.
- c) Se tiene un esquema de relación Persona, con los siguientes datos: DNI, Nombre, Dirección, Localidad, Código Postal, Nombre Hijo, Edad Hijo, Nombre de la escuela donde vota, Dirección Escuela, Localidad Escuela, Código Postal Escuela.

Sabemos que los códigos postales se generan por localidad y a su vez cada localidad tiene su propio código postal. Para encontrar la dirección de la escuela donde vota debo saber el nombre de la escuela y la localidad donde vive la persona. Si deseo conocer la edad de su hijo (uno por persona) debo conocer el nombre del hijo y el DNI de la persona.

Especifique un grupo de cuatro dependencias funcionales no triviales, sin redundancias.

Padrón:	Apellido y nombre: