Numerical Analysis MATH50003 (2023–24) Problem Sheet 4

Problem 1 Suppose x = 1.25 and consider 16-bit floating point arithmetic (F_{16}) . What is the error in approximating x by the nearest float point number fl(x)? What is the error in approximating 2x, x/2, x+2 and x-2 by $2 \otimes x$, $x \otimes 2$, $x \oplus 2$ and $x \ominus 2$?

SOLUTION None of these computations have errors since they are all exactly representable as floating point numbers. **END**

Problem 2 Show that $1/5 = 2^{-3}(1.1001100110011...)_2$. What are the exact bits for $1 \oslash 5$, $1 \oslash 5 \oplus 1$ computed using half-precision arithmetic $(F_{16} := F_{15,5,10})$ (using default rounding)?

SOLUTION

For the first part we use Geometric series:

$$2^{-3}(1.10011001100110011\dots)_2 = 2^{-3} \left(\sum_{k=0}^{\infty} \frac{1}{2^{4k}} + \frac{1}{2} \sum_{k=0}^{\infty} \frac{1}{2^{4k}} \right)$$
$$= \frac{3}{2^4} \frac{1}{1 - 1/2^4} = \frac{3}{2^4 - 1} = \frac{1}{5}$$

Write -3 = 12 - 15 hence we have $q = 12 = (01100)_2$. Since 1/5 is below the midpoint (the midpoint would have been the first magenta bit was 1 and all other bits are 0) we round down and hence have the bits:

0 01100 1001100110

Adding 1 we get:

$$1 + 2^{-3} * (1.1001100110)_2 = (1.001100110011)_2 \approx (1.0011001101)_2$$

Here we write the exponent as 0 = 15 - 15 where $q = 15 = (01111)_2$. Thus we have the bits:

END

Problem 3 Prove the following bounds on the *absolute error* of a floating point calculation in idealised floating-point arithmetic $F_{\infty,S}$ (i.e., you may assume all operations involve normal floating point numbers):

$$(fl(1.1) \otimes fl(1.2)) \oplus fl(1.3) = 2.62 + \varepsilon_1$$
$$(fl(1.1) \ominus 1) \oslash fl(0.1) = 1 + \varepsilon_2$$

such that $|\varepsilon_1| \leq 11\epsilon_m$ and $|\varepsilon_2| \leq 40\epsilon_m$, where ϵ_m is machine epsilon.

SOLUTION

The first problem is very similar to what we saw in lecture. Write

$$(f(1.1) \otimes f(1.2)) \oplus f(1.3) = (1.1(1+\delta_1)1.2(1+\delta_2)(1+\delta_3)+1.3(1+\delta_4))(1+\delta_5)$$

where we have $|\delta_1|, \ldots, |\delta_5| \leq \epsilon_m/2$. We first write

$$1.1(1 + \delta_1)1.2(1 + \delta_2)(1 + \delta_3) = 1.32(1 + \varepsilon_1)$$

where, using the bounds:

$$|\delta_1 \delta_2|, |\delta_1 \delta_3|, |\delta_2 \delta_3| \le \epsilon_{\rm m}/4, |\delta_1 \delta_2 \delta_3| \le \epsilon_{\rm m}/8$$

we find that

$$|\varepsilon_1| \le |\delta_1| + |\delta_2| + |\delta_3| + |\delta_1\delta_2| + |\delta_1\delta_3| + |\delta_2\delta_3| + |\delta_1\delta_2\delta_3| \le (3/2 + 3/4 + 1/8) \le 5/2\epsilon_{\rm m}$$

Then we have

$$1.32(1+\varepsilon_1) + 1.3(1+\delta_4) = 2.62 + \underbrace{1.32\varepsilon_1 + 1.3\delta_4}_{\varepsilon_2}$$

where

$$|\varepsilon_2| < (15/4 + 3/4)\epsilon_m < 5\epsilon_m$$
.

Finally,

$$(2.62 + \varepsilon_2)(1 + \delta_5) = 2.62 + \underbrace{\varepsilon_2 + 2.62\delta_5 + \varepsilon_2\delta_5}_{\varepsilon_3}$$

where, using $|\varepsilon_2 \delta_5| \leq 3\epsilon_{\rm m}$ we get,

$$|\varepsilon_3| \le (5+3/2+3)\epsilon_{\rm m} \le 10\epsilon_{\rm m}.$$

For the second part, we do:

$$(\mathrm{fl}(1.1)\ominus 1)\oslash \mathrm{fl}(0.1) = \frac{(1.1(1+\delta_1)-1)(1+\delta_2)}{0.1(1+\delta_3)}(1+\delta_4)$$

where we have $|\delta_1|, \ldots, |\delta_4| \leq \epsilon_m/2$. Write

$$\frac{1}{1+\delta_3} = 1 + \varepsilon_1$$

where, using that $|\delta_3| \le \epsilon_m/2 \le 1/2$, we have

$$|\varepsilon_1| \le \left| \frac{\delta_3}{1 + \delta_3} \right| \le \frac{\epsilon_m}{2} \frac{1}{1 - 1/2} \le \epsilon_m.$$

Further write

$$(1+\varepsilon_1)(1+\delta_4) = 1+\varepsilon_2$$

where

$$|\varepsilon_2| \le |\varepsilon_1| + |\delta_4| + |\varepsilon_1| |\delta_4| \le (1 + 1/2 + 1/2)\epsilon_m = 2\epsilon_m$$

We also write

$$\frac{(1.1(1+\delta_1)-1)(1+\delta_2)}{0.1} = 1 + \underbrace{11\delta_1 + \delta_2 + 11\delta_1\delta_2}_{\varepsilon_3}$$

where

$$|\varepsilon_3| \le (11/2 + 1/2 + 11/4) \le 9\epsilon_{\rm m}$$

Then we get

$$(\mathrm{fl}(1.1)\ominus 1)\oslash \mathrm{fl}(0.1)=(1+\varepsilon_3)(1+\varepsilon_2)=1+\underbrace{\varepsilon_3+\varepsilon_2+\varepsilon_2\varepsilon_3}_{\varepsilon_4}$$

and the error is bounded by:

$$|\varepsilon_4| \le (9+2+18)\epsilon_{\rm m} \le 29\epsilon_{\rm m}.$$

END

Problem 4 Let $x \in [0,1] \cap F_{\infty,S}$. Assume that $f^{\text{FP}}: F_{\infty,S} \to F_{\infty,S}$ satisfies $f^{\text{FP}}(x) = f(x) + \delta_x$ where $|\delta_x| \leq c\epsilon_m$ for all $x \in [0,1]$. Show that

$$\frac{f^{\text{FP}}(x+h) \ominus f^{\text{FP}}(x-h)}{2h} = f'(x) + \varepsilon$$

where absolute error is bounded by

$$|\varepsilon| \le \frac{|f'(x)|}{2} \epsilon_{\rm m} + \frac{M}{3} h^2 + \frac{2c\epsilon_{\rm m}}{h},$$

where we assume that $h = 2^{-n}$ for $n \leq S$.

SOLUTION

In floating point we have

$$\frac{f^{\text{FP}}(x+h) \ominus f^{\text{FP}}(x-h)}{2h} = \frac{f(x+h) + \delta_{x+h} - f(x-h) - \delta_{x-h}}{2h} (1+\delta_1)$$
$$= \frac{f(x+h) - f(x-h)}{2h} (1+\delta_1) + \frac{\delta_{x+h} - \delta_{x-h}}{2h} (1+\delta_1)$$

Applying Taylor's theorem we get

$$(f^{\text{FP}}(x+h) \ominus f^{\text{FP}}(x-h))/(2h) = f'(x) + \underbrace{f'(x)\delta_1 + \delta_{x,h}^{\text{T}}(1+\delta_1) + \frac{\delta_{x+h} - \delta_{x-h}}{2h}(1+\delta_1)}_{\delta_{x,h}^{\text{CD}}}$$

where

$$|\delta_{x,h}^{\text{CD}}| \le \frac{|f'(x)|}{2} \epsilon_{\text{m}} + \frac{M}{3} h^2 + \frac{2c\epsilon_{\text{m}}}{h}$$

END

Problem 5 For intervals X = [a, b] and Y = [c, d] satisfying 0 < a < b and 0 < c < d, and n > 0 prove that

$$X/n = [a/n, b/n]$$
$$XY = [ac, bd]$$

Generalise (without proof) these formulæ to the case n < 0 and to where there are no restrictions on positivity of a, b, c, d. You may use the min or max functions.

SOLUTION

For X/n: if $x \in X$ then $a/n \le x/n \le b/n$ means $x \in [a/n, b/n]$. Similarly, if $z \in [a/n, b/n]$ then $a \le nz \le b$ hence $nz \in X$ and therefore $z \in X/n$.

For XY: if $x \in X$ and $y \in Y$ then $ac \le xy \le bd$ means $xy \in [ac, bd]$. Note $ac, bd \in XY$. To employ convexity we take logarithms. In particular if $z \in [ac, bd]$ then $\log a + \log c \le \log z \le \log b + \log d$. Hence write

$$\log z = (1-t)(\log a + \log c) + t(\log b + \log d) = \underbrace{(1-t)\log a + t\log b}_{\log x} + \underbrace{(1-t)\log c + t\log d}_{\log y}$$

i.e. we have z = xy where

$$x = \exp((1 - t)\log a + t\log b) = a^{1 - t}b^{t} \in X$$

$$y = \exp((1 - t)\log c + t\log d) = c^{1 - t}d^{t} \in Y.$$

The generalisation to negative cases proceeds by being a bit careful with the signs. Eg if n < 0 we need to swap the order hence we get:

$$A/n = \begin{cases} [a/n, b/n] & n > 0\\ [b/n, a/n] & n < 0 \end{cases}$$

For multiplication we just use min and max in a naive fashion:

$$AB = [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)].$$

END

Problem 6(a) Compute the following floating point interval arithmetic expression assuming half-precision F_{16} arithmetic:

$$[1,1] \ominus ([1,1] \oslash 6)$$

Hint: it might help to write $1 = (0.1111...)_2$ when doing subtraction.

SOLUTION Note that

$$\frac{1}{6} = \frac{1}{2} \frac{1}{3} = 2^{-3} (1.010101...)_2$$

Thus

$$[1,1] \oslash 6 = 2^{-3}[(1.0101010101)_2, (1.0101010110)_2]$$

And hence

END

Problem 6(b) Writing

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \delta_{x,2n+1}$$

Prove the bound $|\delta_{x,2n+1}| \leq 1/(2n+3)!$, assuming $x \in [0,1]$.

SOLUTION

We have from Taylor's theorem up to order x^{2n+2} :

$$\sin x = \sum_{k=0}^{n} \frac{(-1)^k x^{2k+1}}{(2k+1)!} + \underbrace{\frac{\sin^{2n+3}(t) x^{2n+3}}{(2n+3)!}}_{\delta_{x,2n+1}}.$$

The bound follows since all derivatives of sin are bounded by 1 and we have assumed $|x| \le 1$.

END

Problem 6(c) Combine the previous parts to prove that:

$$\sin 1 \in [(0.11010011000)_2, (0.11010111101)_2] = [0.82421875, 0.84228515625]$$

You may use without proof that $1/120 = 2^{-7}(1.000100010001...)_2$.

SOLUTION Using n = 1 we have

$$\sum_{k=0}^{1} \frac{(-1)^k x^{2k+1}}{(2k+1)!} = x - \frac{x^2}{3!} \in x \ominus ((x \otimes x) \oslash 6).$$

Noting that in floating point $1 \otimes 1 = 1$ (ie it is exact) we compute

$$\begin{split} \sin 1 &\in [1,1] \ominus [1,1] \oslash 6 \oplus [\mathrm{fl^{down}}(-1/120),\mathrm{fl^{up}}(1/120)] \\ &= [(0.11010101010)_2,(0.11010101011)_2] \oplus [-(0.0000001000100010)_2,(0.0000001000100110)_2] \\ &= [\mathrm{fl^{down}}(0.110100110001110111111\dots)_2,\mathrm{fl^{up}}(0.11010111100000101)_2] \\ &= [(0.11010011000)_2,(0.11010111101)_2] = [0.82421875,0.84228515625] \end{split}$$

END