Análise Assintótica Parte II

Prof. Felipe Oliveira felipe.oliveira@ifba.edu.br

Eficiência de Algoritmos

 Algoritmos criados para resolver um mesmo problema podem diferenciar de forma quanto a sua eficiência

\overline{n}	BubbleSort Tradicional	QuickSort	HeapSort	ShellSort	InsertionSort	SelectionSort	MergeSort
100	0	0.002	0	0	0	0	0
200	0.002	0.002	0.001	0	0	0.001	0
300	0.004	0.001	0.001	0.001	0.001	0.002	0.001
400	0.007	0.002	0.001	0	0.002	0.003	0.001
500	0.01	0.003	0.001	0	0.003	0.004	0.001
600	0.015	0.003	0.002	0	0.003	0.007	0.001
700	0.02	0.002	0.001	0.001	0.005	0.009	0.002
800	0.028	0.003	0.002	0.001	0.007	0.011	0.003
900	0.033	0.002	0.002	0.002	0.01	0.015	0.003
1000	0.042	0.003	0.002	0.001	0.011	0.018	0.003
2000	0.173	0.003	0.006	0.003	0.055	0.075	0.007
3000	0.449	0.006	0.009	0.006	0.095	0.155	0.01
4000	0.739	0.007	0.013	0.008	0.167	0.271	0.014
5000	1.18	0.009	0.016	0.009	0.26	0.423	0.017
7000	2.395	0.011	0.024	0.015	0.508	0.826	0.024
8000	3.17	0.012	0.028	0.017	0.658	1.075	0.027
9000	4.058	0.014	0.032	0.019	0.836	1.359	0.032
10000	5.052	0.016	0.036	0.022	1.034	1.677	0.035
20000	21.139	0.033	0.077	0.05	4.053	6.689	0.073
25000	33.122	0.041	0.099	0.065	6.306	10.446	0.092
30000	48.01	0.05	0.121	0.079	9.175	15.037	0.114
40000	86.402	0.068	0.167	0.108	16.101	26.712	0.152

- Possíveis técnica de análise
 - Experimentação
 - Análise assintótica

- Existem vários componentes que precisamos definir antes de descrever uma metodologia de análise de algoritmos baseada em funções matemáticas
 - Uma linguagem para descrição de algoritmos
 - Um modelo computacional para execução de algoritmos
 - Uma métrica para medir o tempo de execução de algoritmos

Melhor Caso de Execução: entrada em ordem crescente

```
vetor = \{1, 2, 3, 4, 5\}
int menor(int vetor[], int n){
  int menor = MAX INT; —
  para i=1 ate n faça —
                                                x n
     se (vetor[i] < menor) ——
        menor = vetor[i]; —
  retorna(menor); ——
          Número de Instruções: 1 + 1*n + 1 + 1 = n + 3
```

Pior Caso de Execução: entrada em ordem decrescente

```
vetor = {5, 4, 3, 2, 1}
int menor(int vetor[], int n){
  int menor = MAX INT; —
  para i=1 ate n faça –
     se (vetor[i] < menor) —
                                                  x n
        menor = vetor[i];
   retorna(menor); —
           Número de Instruções: 1 + 2*n + 1 = 2n + 2
```

Comportamento de uma função linear

n+3
2n+2
n

Melhor Caso

Pior Caso

Comportamento de uma função linear

n+3
2n+2
n

Melhor Caso

Pior Caso

Funções com comportamento linear

	n+1
•	n+3
•	2n + 2
•	3n + 6
•	n

Funções com comportamento linear

	n+1
•	n+3
•	2n + 2
•	3n + 6
•	n

Funções com comportamento quadrático

$2n^2 + 1$
$2n^2 + n + 1$
$6n^2 + 3n + 5$
n^2

Funções com comportamento quadrático

Comparando o crescimento das funções

Comparando o crescimento das funções

Comparando o crescimento das funções

Lineares

- \blacksquare Ex.: n + 1; n + 3; 2n + 2; 3n + 6
- Podem ser representadas por n

Quadráticas

- \blacksquare Ex.: $2n^2 + 1$; $2n^2 + n + 1$; $6n^2 + 3n + 5$
- Podem ser representadas por n²

Comparando o crescimento das

- fucreson mento da função quadrática é maior do que o crescimento da função linear
 - n < n²
- Podemos indicar essa relação com a notação assintótica
- Nossos algoritmos serão descritos com essa notação, por exemplo:
 - \neg n+3 \rightarrow O(n)
 - □ 2n+2 → O(n)
 - $-2n^2 + n + 1 \rightarrow O(n^2)$

- A notação O indica um limite superior, ou seja, uma determinada função f(x) está limitada ao crescimento de uma função g(x)
 - $\Box f(x) = O(g(x))$
 - \square Assintoticamente, g(x) domina f(x)
 - g(x) apresenta um crescimento igual ou superior a f(x)
- Por isso, é relacionada ao pior caso de execução de um algoritmo

Comparando o crescimento das

- fucrescimento da função linear é menor do que o crescimento da função quadrática
 - $n^2 > n$
- Podemos indicar essa relação com a notação assintótica
- Nossos algoritmos também serão descritos com essa notação, por exemplo:
 - \neg n+3 $\rightarrow \Omega(n)$
 - □ 2n+2 $\rightarrow \Omega(n)$
 - $\square 2n^2 + n + 1 \rightarrow \Omega(n^2)$

- A notação Ω indica um limite inferior, ou seja, uma determinada função f(x) está inferiormente limitada ao crescimento de uma função g(x)
 - $\Box f(x) = \Omega(g(x))$
 - Assintoticamente, g(x) é dominada por f(x)
 - g(x) apresenta um crescimento igual ou inferior a f(x)
- Por isso, é relacionada ao melhor caso de execução de um algoritmo

Calcular melhor e pior caso

```
int menor(int vetor[], int n){
  int menor = MAX INT;
  para i=1 ate n faça
  se (vetor[i] < menor)
       menor = vetor[i];
 se menor < 0
          para i=1 ate
     n faca
             para j=1
       ate n faca
          vetor[i] = vetor[i]^{(i+j)};
  retorna(menor);
```

 Melhor caso: vetor em ordem crescente com elementos positivos (ou menor valor maior ou igual a zero)

```
vetor = \{1, 2, 3, 4, 5\}
int menor(int vetor[], int n){
 int menor = MAX_INT; ————— 1
 para i=1 ate n faça —
                                                x n
    se (vetor[i] < menor)
      menor = vetor[i]; _____
 se menor < 0
    para i=1 ate n faca
       para j=1 ate n faca
       vetor[i] =
         vetor[i]^(i+j);_____
 retorna(menor);
```

Pior caso: vetor em ordem decrescente e menor elemento negativo

vetor = {5, 4, 3, 2, -5}

```
int menor(int vetor[], int n){
  int menor = MAX INT; _____
  para i=1 ate n faça -
    se (vetor[i] < menor) —
                                                        x n
       menor = vetor[i]; ——
  se menor < 0
     para i=1 ate n faca
        para j=1 ate n faca
                                                           x n
                                                   x n
          vetor[i] = vetor[i]^{(i+j)}; \longrightarrow 1
  retorna(menor);
       Número de Instruções: 1 + 2*n + 1 + 1*n*n + 1 = n^2 + 2n + 3
```

- Melhor Caso
 - \Box 1 + 1*n + 1 + 1 + 1 = n + 4 (linear)
- Pior Caso
 - \Box 1 + 2*n + 1 + 1*n*n + 1 = n² + 2n + 3 (quadrático)
- A complexidade desse algoritmo pode ser descrita como: Ω(n) e O(n²)
 - Executa no mínimo com comportamento linear
 - Executa no máximo com comportamento quadrático

- A complexidade do algoritmo pode ser descrita como
 - \square $\Omega(n)$ \rightarrow limitante inferior
 - □ $O(n^2)$ → limitante superior

- A complexidade do algoritmo pode ser descrita como
 - \square $\Omega(n)$ \rightarrow limitante inferior
 - \bigcirc O(n²) \rightarrow limitante superior

- Um erro comum é utilizar a notação O para descrever os casos dos algoritmos. Exemplo:
 - Melhor caso é O(n)
 - □ Pior caso é O(n²)
- A notação O é um limitante superior, deixando aberto a interpretação para as execuções que estão abaixo desse limitante
 - Deve-se tomar cuidado
- Por isso, nesse caso, a complexidade do algoritmo é descrita como: Ω(n) e O(n²)

- Por exemplo
 - □ Melhor caso é O(n)
 - □ Pior caso é O(n²)

- Por exemplo
 - Melhor caso é O(n)
 - □ Pior caso é O(n²)

- Por exemplo
 - □ Melhor caso é O(n)
 - □ Pior caso é O(n²)

- A complexidade do algoritmo é descrita como
 - \square $\Omega(n)$ \rightarrow limitante inferior
 - \bigcirc O(n²) \rightarrow limitante superior

- Um erro comum é utilizar a notação O para descrever os casos dos algoritmos. Exemplo:
 - Melhor caso é O(n)
 - □ Pior caso é O(n²)
- Existem outras notações que podem ser usadas nesse caso. Por exemplo, a notação θ indica um limite restrito e seria correto dizer
 - Melhor caso é θ(n)
 - Pior caso é θ(n²)

- No caso do θ(n)
 - Restrito por funções de comportamento linear

- No caso do θ(n)
 - Restrito por funções de comportamento linear

- No caso do θ(n²)
 - Restrito por funções de comportamento quadrático

- No caso do θ(n²)
 - Restrito por funções de comportamento quadrático

- Notações mais utilizadas
 - O: define um limite superior
 - Ω: define um limite inferior
 - Θ: define um limite restrito

 Veremos os detalhes dessa notações nas próximas aulas

Apresentação adaptada (ver referências)

- f(n) = O(1)
 - O uso do algoritmo independe do tamanho de n
 - As instruções do algoritmo são executadas um número fixo de vezes
- O que significa um algoritmo ser O(2) ou O(5)?

- $f(n) = O(\log n)$
 - Ocorre tipicamente em algoritmos que resolvem um problema transformando-o em problemas menores.
 - Nestes casos, o tempo de execução pode ser considerado como sendo menor do que uma constante grande.
- Supondo que a base do logaritmo seja 2:
 - Para n = 1 000, log(n) é aproximadamente 10.
 - Para n = 1 000 000, log(n) é aproximadamente 20.
- Exemplo:
 - Algoritmo de pesquisa binária.

- f(n) = O(n)
 - Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
 - Esta é a melhor situação possível para um algoritmo que tem que processar/produzir n elementos de entrada/saída
 - Cada vez que n dobra de tamanho, o tempo de execução também dobra
- Exemplos:
 - Algoritmo de pesquisa seqüencial

- $f(n) = O(n \log n)$
 - Este tempo de execução ocorre tipicamente em algoritmos que resolvem um problema quebrando-o em problemas menores, resolvendo cada um deles independentemente e depois agrupando as soluções.
 - Caso típico dos algoritmos baseados no paradigma divisão-e-conquista.
- Supondo que a base do logaritmo seja 2:
 - □ Para n = 1.000, n log n é aproximadamente 10.000
 - Para n = 1.000.000, n log n é aproximadamente 20.000.000
- Exemplo:
 - Algoritmo de ordenação Merge Sort

- $f(n) = O(n^2)$
 - Algoritmos desta ordem de complexidade ocorrem quando os itens de dados são processados aos pares
 - Para n = 1000, o número de operações é da ordem de 1000000
 - Sempre que n dobra o tempo de execução é multiplicado por 4
 - Algoritmos deste tipo são úteis para resolver problemas de tamanhos relativamente pequenos.

Exemplos:

Algoritmos de ordenação simples como seleção e inserção

- $f(n) = O(n^3)$
 - Algoritmos desta ordem de complexidade geralmente são úteis apenas para resolver problemas relativamente pequenos
 - Para n = 100, o número de operações é da ordem de 1.000.000
 - Sempre que n dobra o tempo de execução é multiplicado por 8.
- Exemplo:
 - Algoritmo para multiplicação de matrizes

- $f(n) = O(2^n)$
 - Algoritmos desta ordem de complexidade não são úteis sob o ponto de vista prático
 - Eles ocorrem na solução de problemas quando se usa a força bruta para resolvê-los
 - Para n = 20, o tempo de execução é cerca de 1 000 000
 - Sempre que n dobra o tempo de execução fica elevado ao quadrado

Exemplo

Algoritmo do Caixeiro Viajante

- f(n) = O(n!)
 - Um algoritmo de complexidade O(n!) é dito ter complexidade exponencial
 - Apesar de ter comportamento pior do que O(2ⁿ)
 - Geralmente ocorrem quando se usa força bruta na solução do problema
- Considerando:
 - n = 20, temos que 20! =
 2432902008176640000,
 um número com 19 dígitos
 - □ n = 40 temos um número com 48 dígitos

Crescimento das Funções

Crescimento de Funções

Notação Assintótica

Baseados nos gráficos, vemos que podemos classificar as funções em ordem crescente de tempo de execução

Esta ordem pode ser dada por:

Constante	O(c)
Logarítmica	log N
Linear	N
N log N	N log N
Quadrática	N^2
Cúbica	N_3
Exponencial	2N
Fatorial	NI

Função		Tamanho n
de custo	10	
n	0,00001 s	
n^2	0,0001 s	
n^3	0,001 s	
n^5	0,1 s	
2^n	0,001 s	
3^n	0,059 s	40

Função	Tamanho n					
de custo	10	20				
n	0,00001 s	0,00002 s				
n^2	0,0001 s	0,0004 s				
n^3	0,001 s	0,008 s				
n^5	0,1 s	3,2 s				
2^n	0,001 s	1 s				
3^n	0,059 s	58 min				

Função			Tama	nho n
de custo	10	20	30	
n	0,00001 s	0,00002 s	0,00003 s	
n^2	0,0001 s	0,0004 s	0,0009 s	
n^3	0,001 s	0,008 s	0,027 s	
n^5	0,1 s	3,2 s	24,3 s	
2^n	0,001 s	1 s	17,9 min	
3^n	0,059 s	58 min	6,5 anos	

Função		Tamanho n				
de custo	10	20	30	40		
n	0,00001	0,00002	0,00003	0,00004		
	s	s	s	s		
n^2	0,0001	0,0004	0,0009	0,0016		
	s	s	s	s		
n^3	0,001	0,008	0,027	0,64		
	s	s	s	s		
n^5	0,1	3,2	24,3	1,7		
	s	s	s	min		
2^n	0,001	1	17,9	12,7		
	s	s	min	dias		
3^n	0,059	58	6,5	3855		
	s	min	anos	séc.		

Função	Tamanho n					
de custo	10	20	30	40	50	
n	0,00001	0,00002	0,00003	0,00004	0,00005	
	s	s	s	s	s	
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	
	s	s	s	s	s	
n^3	0,001	0,008	0,027	0,64	0,125	
	s	s	s	s	s	
n^5	0,1	3,2	24,3	1,7	5,2	
	s	s	s	min	min	
2^n	0,001	1	17,9	12,7	35,7	
	s	s	min	dias	anos	
3^n	0,059	58	6,5	3855	10 ⁸	
	s	min	anos	séc.	séc.	

Função	Tamanho n							
de custo	10	20	30	40	50	60		
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006		
	s	s	s	s	s	s		
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036		
	s	s	s	s	s	s		
n^3	0,001	0,008	0,027	0,64	0,125	0.316		
	s	s	s	s	s	s		
n^5	0,1	3,2	24,3	1,7	5,2	13		
	s	s	s	min	min	min		
2^n	0,001	1	17,9	12,7	35,7	366		
	s	s	min	dias	anos	séc.		
3^n	0,059 s	58 min	6,5 anos	3855 séc.	10 ⁸ séc.	10 ¹³ séc.		

Referências Bibliográficas

- CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.;
 (2002). Algoritmos –Teoria e Prática. Tradução da 2ª edição americana. Rio de Janeiro. Editora Campus
- TAMASSIA, ROBERTO; GOODRICH, MICHAEL T. (2004). Projeto de Algoritmos -Fundamentos, Análise e Exemplos da Internet
- ZIVIANI, N. (2007). Projeto e Algoritmos com implementações em Java e C++. São Paulo. Editora Thomson
- http://www.ime.usp.br/~pf/analise_de_algorit mos/aulas/Oh.html

Referências de Material

- Adaptado do material de
 - Professor Alessandro L. Koerich da Pontificia Universidade Católica do Paraná (PUCPR)
 - Professor Humberto Brandão da Universidade Federal de Alfenas (Unifal-MG)
 - Professor Ricardo Linden da Faculdade Salesiana Maria Auxiliadora (FSMA)
 - Professor Antonio Alfredo Ferreira Loureiro da Universidade Federal de Minas Gerais (UFMG)