Lesson Menu

Five-Minute Check (over Lesson 9–5)

Mathematical Practices

Then/Now

New Vocabulary

Theorem 9.12

Example 1: Use Intersecting Chords or Secants

Theorem 9.13

Example 2: Use Intersecting Secants and Tangents

Theorem 9.14

Example 3: Use Tangents and Secants That Intersect Outside a Circle

Example 4: Real-World Example: Apply Properties of Intersecting Secants

Concept Summary: Circle and Angle Relationships

5-Minute Check

Over Lesson 9-5

1 Determine whether \overline{BC} is tangent to the given circle.

A. yes

B. no

5-Minute Check

Over Lesson 9-5

2 Determine whether \overline{QR} is tangent to the given circle.

A. yes

B. no

5-Minute Check

Over Lesson 9-5

Find x. Assume that segments that appear to be tangent are tangent.

A. 10

B. 11

C. 12

D. 13

5-Minute Check

Over Lesson 9-5

4 Find x. Assume that segments that appear to be tangent are tangent.

A.
$$17\sqrt{2}$$

B.
$$18\sqrt{3}$$

→ D. 20√5

5-Minute Check

Over Lesson 9-5

 \overline{SL} and \overline{SK} are tangent to the circle. Find x.

A. 1

B. 5/2

C. 5

Mathematical Practices

G.C.2 Identify and describe relationships among inscribed angles, radii, and chords.

Then

You found measures of segments formed by tangents to a circle.

Now

- Find measures of angles formed by lines intersecting on or inside a circle.
- Find measures of angles formed by lines intersecting outside the circle.

New Vocabulary

secant

Theorem 9-12

Words

If two secants or chords intersect in the interior of a circle, then the measure of an angle formed is one half the *sum* of the measure of the arcs intercepted by the angle and its vertical angle.

Example
$$m \angle 1 = \frac{1}{2}(m\overrightarrow{AB} + m\overrightarrow{CD})$$
 and $m \angle 2 = \frac{1}{2}(m\overrightarrow{DA} + m\overrightarrow{BC})$

Proof

Given: \overrightarrow{HK} and \overrightarrow{JL} intersect at M.

Prove: $m \angle 1 = \frac{1}{2} (m \widehat{JH} + m \widehat{LK})$

Proof:

Statements

- 1. \overrightarrow{HK} and \overrightarrow{JL} intersect at M.
- 2. $m\angle 1 = m\angle MJK + m\angle MKJ$
- 3. $m \angle MJK = \frac{1}{2}m\widehat{LK}, m \angle MKJ = \frac{1}{2}m\widehat{JH}$
- **4.** $m \angle 1 = \frac{1}{2}m\widehat{LK} + \frac{1}{2}m\widehat{JH}$
- **5.** $m \angle 1 = \frac{1}{2} (m \widehat{JH} + m \widehat{LK})$

Reasons

- 1. Given
- Exterior Angle Theorem
- The measure of an inscribed ∠ equals half the measure of the intercepted arc.
- 4. Substitution
- **5.** Distributive Property

Example 1

Use Intersecting Chords or Secants

A. Find x.

$$m \angle FIG = \frac{1}{2} \left(mFG + mEH \right)$$
 Theorem 10.12

$$m \angle FIG = \frac{1}{2} (88 + 76)$$

Substitution

$$m \angle FIG = \frac{1}{2}(164)$$
 or 82

Simplify.

Answer: x = 82

Example 1

Use Intersecting Chords or Secants

B. Find x.

Step 1 Find $m \angle VZW$.

$$m \angle VZW = \frac{1}{2} \left(m \widehat{VW} + m \widehat{XY} \right)$$

Theorem 10.12

$$m\angle VZW = \frac{1}{2}(96+62)$$

Substitution

$$m \angle VZW = \frac{1}{2}(158)$$
 or 79

Simplify.

Example 1

Use Intersecting Chords or Secants

Step 2 Find $m \angle WZX$.

$$m \angle WZX = 180 - m \angle VZW$$
 Definition of supplementary angles

$$x = 180 - 79$$
 Substitution

$$x = 101$$
 Simplify.

Answer: x = 101

Example 1

Use Intersecting Chords or Secants

C. Find x.

$$m \angle JNK = \frac{1}{2} \left(m \widehat{JK} + m \widehat{LM} \right)$$
 Theorem 10.12

$$60=\frac{1}{2}\big(x+25\big)$$

Substitution

$$120 = x + 25$$

Multiply each side by 2.

$$95 = x$$

Subtract 25 from each side.

Answer: x = 95

Example 1

Guided Practice

A. Find x.

A. 92

B. 95

98

D. 104

Example 1

Guided Practice

B. Find x.

A. 92

B. 95

C. 97

D. 102

Example 1

Guided Practice

C. Find x.

A. 96

B. 99

C. 101

104

Theorem 9-13

Words If a secant and a tangent intersect at the

point of tangency, then the measure of

each angle formed is one half the measure

of its intercepted arc.

Example $m\angle 1 = \frac{1}{2} \overrightarrow{mAB}$ and $m\angle 2 = \frac{1}{2} \overrightarrow{mACB}$

Example 2

Use Intersecting Secants and Tangents

A. Find $m \angle QPS$.

$$m\angle QPS = \frac{1}{2}m\widehat{PTS}$$

Theorem 10.13

$$=\frac{1}{2}(250)$$
 or 125

 $=\frac{1}{2}(250)$ or 125 Substitute and simplify.

Answer: $m \angle QPS = 125$

Example 2

Use Intersecting Secants and Tangents

B. Find mBCD.

Theorem 10.13

$$108 = \frac{1}{2}m\widehat{DB}$$

Substitution

$$216 = m\widehat{DB}$$

Multiply each side by 2.

$$\widehat{mBCD} = 360 - \widehat{mDB} = 360 - 216$$
 or 144

Answer: $\widehat{mBCD} = 144$

Example 2

Guided Practice

A. Find $m \angle FGI$.

- A. 98
- **B.** 108
- 112.5
 - D. 118.5

Example 2

Guided Practice

B. Find \widehat{mUVW} .

A. 99

B. 148.5

162

D. 198

Theorem 9.14

Words If two secants, a secant and a tangent, or two tangents intersect in the exterior of a circle, then the measure of the angle formed is one half the *difference* of the measures of the intercepted arcs.

Examples

Two Secants

$$m\angle A = \frac{1}{2}(\overrightarrow{mDE} - \overrightarrow{mBC})$$

Secant-Tangent

$$m\angle A = \frac{1}{2}(\widehat{mDC} - \widehat{mBC})$$

Two Tangents

$$m\angle A = \frac{1}{2}(\widehat{\mathbf{mBDC}} - \widehat{\mathbf{mBC}})$$

Example 3 Use Tangents and Secants That Intersect Outside a Circle

A. Find \widehat{mBC} .

$$m\angle AED = \frac{1}{2} \left(\widehat{mAD} - \widehat{mBC} \right)$$
 Theorem 10.14

$$62 = \frac{1}{2} \left(141 - m\widehat{BC} \right)$$
 Substitution

$$124 = \left(141 - m\widehat{BC}\right)$$
 Multiply each side by 2.

Example 3 Use Tangents and Secants That Intersect Outside a Circle

$$-17 = -m\widehat{BC}$$

Subtract 141 from each side.

$$17 = m\widehat{BC}$$

Multiply each side by −1.

Answer: $\widehat{mBC} = 17$

Example 3 Use Tangents and Secants That Intersect Outside a Circle

B. Find \widehat{mXYZ} .

$$m \angle W = \frac{1}{2} \left(m \widehat{XYZ} - m \widehat{ZX} \right)$$
 Theorem 10.14 Y

$$40 = \frac{1}{2} \left(m \widehat{XYZ} - 140 \right)$$
 Substitution

$$80 = \left(\widehat{mXYZ} - 140\right)$$
 Multiply each side by 2.

Example 3 Use Tangents and Secants That Intersect Outside a Circle

$$220 = m\widehat{XYZ}$$

Add 140 to each side.

Answer: mXYZ = 220

Example 3

Guided Practice

A. Find mQS.

B. 26

C. 29

D. 32

Example 3

Guided Practice

B. Find mFIH.

- A. 194
- **B.** 202
- **C.** 210
- 230

Real-World Example 4 Apply Properties of Intersecting Secants

PHYSICS The diagram shows the path of a light ray as it hits a cut diamond. The ray is bent, or refracted, at points A, B, and C. If $\widehat{mAC} = 96^{\circ}$ and $\widehat{m} \angle S = 35^{\circ}$, what is \widehat{mRBT} ?

$$m \angle S = \frac{1}{2} \left(m\widehat{AC} - m\widehat{RBT} \right)$$
 Theorem 10.14

$$35 = \frac{1}{2} \left(96 - m\widehat{RBT} \right)$$
 Substitution

Real-World Example 4 Apply Properties of Intersecting Secants

$$70 = \left(96 - m\widehat{RBT}\right)$$

$$-26 = -m\widehat{RBT}$$

$$26 = m\widehat{RBT}$$

Multiply each side by -1.

Answer: $\widehat{mRBT} = 26$

Real-World Example 4

Guided Practice

PHYSICS The diagram shows the path of a light ray as it hits a cut crystal. The ray is bent, or refracted, at points X, Y, and W. If $\widehat{mXW} = 100^{\circ}$ and $m \angle T = 30^{\circ}$, what is \widehat{mVYU} ?

- A. 25
- **B.** 35
- **(C.)** 40
 - D. 45

KeyConcept Circle and Angle Relationships		
Vertex of Angle	Model(s)	Angle Measure
on the circle	x°	one half the measure of the intercepted arc $m \angle 1 = \frac{1}{2}x$
inside the circle	x° 1 y°	one half the measure of the sum of the intercepted arc $m \angle 1 = \frac{1}{2}(x + y)$
outside the circle	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	one half the measure of the difference of the intercepted arcs $m \angle 1 = \frac{1}{2}(x - y)$