МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №4

по дисциплине «Качество и метрология программного обеспечения»

Тема: Построение операционной графовой модели программы (ОГМП)

и расчёт характеристик эффективности её выполнения методом

эквивалентных преобразований

Студент гр. 7304	 Есиков О.И.
Преподаватель	Ефремов М.А.

Санкт-Петербург

Цель работы.

Изучить возможности построения операционной графовой модели программы (ОГМП) и расчёта характеристик эффективности её выполнения методом эквивалентных преобразований.

Ход выполнения.

Для программы из предыдущих лабораторных работ был построен управляющий граф, представленный на рисунке 1. Исходный код этой программы представлен в Приложении А.

Рисунок 1 – Управляющий граф программы

На основе этой программы была подготовлена программа для профилирования с использованием SAMPLER. Исходный код программы для профилирования представлен в Приложении Б. Результат профилирования представлен на рисунке 2.

Ися	.П	[03.	при	1eM	.Поз.	Общее время(мкс)	Кол-во прох.	Среднее время(мкс)
1	:	18	1	:	20	20.95	1	20.95
1	:	20	1	:	22	115.66	1	115.66
1	:	22	1	:	24	0.00	1	0.00
1	:	24	1	:	27	0.00	1	0.00
1	:	27	1	:	29	12.57	68	0.18
1	:	29	1	:	30	39.39	68	0.58
1	-	30 30	1	-	32 43	15724.37 150.86	5372 68	2.93 2.22
1		32 32	1		41 35	0.00 10634.61	3581 1791	0.00 5.94
1	:	35	1	:	37	25073.33	1791	14.00
1	:	37	1	:	39	27895.20	1791	15.58
1	:	39	1	:	41	0.00	1791	0.00
1	:	41	1	:	30	0.00	5372	0.00
1	-	43 43	1	-	27 45	109.79 1.68	67 1	1.64 1.68
1	:	45	1	:	58	2.51	1	2.51
1	:	56	1	:	18	2.51	1	2.51

Рисунок 2 – Результат профилирования программы

На основании полученных данных с помощью SAMPLER был выполнен расчёт вероятностей и затрат ресурсов для дуг управляющего графа. Результат представлен в таблице 1.

Дуга	Номера строк	Количество проходов	Расчёт вероятности	Затраты ресурсов (среднее время), мкс
L1-L2	56:18	1	1	2.51
L2-L3	18:20	1	1	20.95
L3-L4	20:22	1	1	115.66
L4-L5	24:27	1	1	0.0
L5-L6	27:29	68	1	0.18
L6-L7	30:32	5372	$\frac{5372}{5372+68} = 0.9875$	2.93
L6-L11	30:43	68	1 - 0.9875 = 0.0125	2.22
L7-L6	32:41	3581	$\frac{3581}{3581 + 1791} = 0.6666$	0.0
L7-L8	32:35	1791	1 - 0.6666 = 0.3334	5.94
L8-L9	35:37	1791	1	14.0
L9-L10	37:39	1791	1	15.58

L10-L6	41:30	5372	1	0.0
L11-L5	43:27	67	$\frac{67}{67+1} = 0.9853$	1.64
L11-L12	43:35	1	1 - 0.9853 = 0.0147	1.68

Таблица 1 – Расчёт вероятностей и затрат ресурсов

На основании произведённых расчётов было выполнено построение операционной графовой модели программы. Результат представлен на рисунке 3.

Рисунок 3 – Операционная графовая модель программы

По построенной операционной графовой модели программы был создан XML-файл. Этот файл представлен в Приложении В. Графическое представление модели представлено на рисунке 4.

Рисунок 4 – Графическое представление модели

Результат вычисления математического ожидания и дисперсии времени выполнения функции *sort* представлен на рисунке 5.

t1>t12: Objects::AMC::Link		
Name	Value	
name	t1>t12	
probability	0.9999999999947	
intensity	79802.9063945536	
deviation	6348349586.58157	

Рисунок 5 – Расчёт с помощью CSAIII

Выводы.

В ходе выполнения лабораторной работы были изучены возможности построения операционной графовой модели программы (ОГМП) и расчёта характеристик эффективности её выполнения методом эквивалентных преобразований. С помощью пакета CSAIII были получены следующие результаты: дисперсия — 6348349586.58 и математическое ожидание — 79802.91, что соответствует результатам, полученным с помощью SAMPLER — 79783.43.

приложения

Приложение A. Исходный код программы BubbleSort.cpp.

```
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <string.h>
#define max 80
void swap(double* p, double* q)
    double hold = *p;
    *p = *q;
    *q = hold;
double* sort(double* a, int n)
    double* result = (double*)malloc(sizeof(double) * n);
   memcpy(result, a, sizeof(double) * n);
    char no change;
    do
        no change = 1;
        for (int j = 0; j < n - 1; j++)
            if (result[j] > result[j + 1])
                swap(\&result[j], \&result[j + 1]);
                no change = 0;
        }
    } while (!no_change);
    return result;
}
int main()
    int n = max;
    double x[max];
    srand(time(NULL));
    for (int i = 0; i < n; i++)
       x[i] = rand() % 100;
    sort(x, n);
    return 0;
}
```

Приложение Б. Исходный код программы BubbleSort_sampler.cpp.

```
1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <time.h>
4 #include <string.h>
5 #include "Sampler.h"
6
7 #define max 80
8
9 void swap(double* p, double* q)
10 {
11 double hold = *p;
```

```
12
     *p = *q;
13
     *q = hold;
14 }
15
16 double* sort(double* a, int n)
17 {
18
     SAMPLE;
19
     double* result = (double*)malloc(sizeof(double) * n);
20
     SAMPLE;
21
     memcpy(result, a, sizeof(double) * n);
22
     SAMPLE;
23
     char no change;
24
     SAMPLE;
2.5
     do
26
     {
27
            SAMPLE;
28
            no_change = 1;
29
            SAMPLE;
30
            for (int j = 0; SAMPLE, j < n - 1; j++)
31
32
                  SAMPLE;
33
                  if (result[j] > result[j + 1])
34
35
                        SAMPLE;
36
                        swap(&result[j], &result[j + 1]);
37
                        SAMPLE;
38
                        no change = 0;
                        SAMPLE;
39
40
41
                  SAMPLE;
42
43
            SAMPLE;
44
      } while (!no change);
45
      SAMPLE;
46
     return result;
47 }
48
49 int main()
50 {
51
     int n = max;
52
     double x[max];
53
     srand(time(NULL));
54
     for (int i = 0; i < n; i++)
55
           x[i] = rand() % 100;
56
     SAMPLE;
57
     sort(x, n);
58
     SAMPLE;
59
     return 0;
60 }
```

Приложение В. Файл model.xml.

```
<node type = "Objects::AMC::Top" name = "t8"></node>
     <node type = "Objects::AMC::Top" name = "t9"></node>
     <node type = "Objects::AMC::Top" name = "t10"></node>
     <node type = "Objects::AMC::Top" name = "t11"></node>
     <node type = "Objects::AMC::Top" name = "t12"></node>
     <link type = "Objects::AMC::Link" name = "t1-->t2" probability = "1.0"
intensity = "2.51" deviation = "0.0" source = "t1" dest = "t2"></link>
     <link type = "Objects::AMC::Link" name = "t2-->t3" probability = "1.0"
intensity = "20.95" deviation = "0.0" source = "t2" dest = "t3"></link>
     <link type = "Objects::AMC::Link" name = "t3-->t4" probability = "1.0"
intensity = "115.66" deviation = "0.0" source = "t3" dest = "t4"></link>
     <link type = "Objects::AMC::Link" name = "t4-->t5" probability = "1.0"
intensity = "0.0" deviation = "0.0" source = "t4" dest = "t5"></link>
     <link type = "Objects::AMC::Link" name = "t5-->t6" probability = "1.0"
intensity = "0.18" deviation = "0.0" source = "t5" dest = "t6"></link>
     <link type = "Objects::AMC::Link" name = "t6-->t7" probability = "0.9875"
intensity = "2.93" deviation = "0.0" source = "t6" dest = "t7"></link>
     <link type = "Objects::AMC::Link" name = "t6-->t11" probability = "0.0125"
intensity = "2.22" deviation = "0.0" source = "t6" dest = "t11"></link>
     <link type = "Objects::AMC::Link" name = "t7-->t8" probability = "0.3334"
intensity = "5.94" deviation = "0.0" source = "t7" dest = "t8"></link>
     <link type = "Objects::AMC::Link" name = "t7-->t6" probability = "0.6666"
intensity = "0.0" deviation = "0.0" source = "t7" dest = "t6"></link>
     <link type = "Objects::AMC::Link" name = "t8-->t9" probability = "1.0"
intensity = "14.0" deviation = "0.0" source = "t8" dest = "t9"></link>
     <link type = "Objects::AMC::Link" name = "t9-->t10" probability = "1.0"
intensity = "15.58" deviation = "0.0" source = "t9" dest = "t10"></link>
     <link type = "Objects::AMC::Link" name = "t10-->t6" probability = "1.0"
intensity = "0.0" deviation = "0.0" source = "t10" dest = "t6"></link>
     <link type = "Objects::AMC::Link" name = "t11-->t5" probability = "0.9853"
intensity = "1.64" deviation = "0.0" source = "t11" dest = "t5"></link>
     <link type = "Objects::AMC::Link" name = "t11-->t12" probability = "0.0147"
intensity = "1.68" deviation = "0.0" source = "t11" dest = "t12"></link>
</model>
```