## 두산 Rokey Boot Camp

## 스터디 주간 활동 보고서

| 팀명    | Robo:Loop                                                                                                                                                                                                                                                                                      | 제출자<br>성명 | 홍송은 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----|
| 참여 명단 | 전효재, 홍송은, 김사웅                                                                                                                                                                                                                                                                                  |           |     |
| 모임 일시 | 2025 년 06 월 07 일 21 시 00 분 ~ 22 시 00 분                                                                                                                                                                                                                                                         |           |     |
| 장소    | 온라인 구글 미팅                                                                                                                                                                                                                                                                                      | 출석 인원     | 3   |
| 학습목표  | <ul> <li>AI 정기 평가를 대비하여 AI 응용 과목 1 차시부터 14 차시까지의 범위를 기반으로, 주요 개념과 혼동되기 쉬운 내용을 중심으로 문제를 구성하고 이를 통해 개념의 정확한 이해를 달성한다.</li> <li>각자 작성한 문제를 사전 풀이하며 정답과 해설의 타당성을 검토하고, 풀이 중 모호한 부분을 공유하여 명확히 정리한다.</li> <li>문제 풀이 과정에서 발생한 질문, 어려웠던 개념 등을 중심으로 자유롭게 질의응답 및 토론을 진행하며 개념의 연결성과 응용력을 강화한다.</li> </ul> |           |     |
| 학습내용  | <ul> <li>홍송은</li> <li>11 주차 스터디 문제 풀이 보완</li> <li>LSTM 구조 및 파라미터 계산</li> <li>LSTM 은 4 개의 게이트(i, f, o, g)로 구성</li> <li>각 게이트마다 입력 xtx_txt 와 이전 hidden state ht-1h_{t-1}ht-1를 처리하는 weight 존재</li> <li>파라미터 수 공식:</li> <li>4 × (input_dim × hidden + hidden × hidden + 2 × hidden)</li> </ul>     |           |     |

- o OpenCV 중심 좌표 추출
  - grayscale → Canny → contours → moments 활용
  - 가장 큰 contour 기준 중심 좌표 반환
- 。 CamShift 추적 알고리즘
  - HSV 변환 → 역투영 → CamShift 실행
- HSV 색공간 장점
  - 조명 변화에 덜 민감
  - 사람의 색 인식 방식에 근접
  - 색상 기반 객체 추적에 유리
  - cv2.cvtColor 로 변환 가능
- o Gram Matrix 특징
  - 채널 간 상관관계 표현
  - Flatten 후 계산
  - 정방행렬 형태
  - 스타일 손실에 사용
- 。 CAM 시각화 요건
  - 마지막 conv layer + GAP + FC 구조 필요
- 전효재
  - 색상
    - RGB
      - **0-255**
      - 0,0,0: 검은색 255,255,255 흰색색
      - HSV
        - H(Hue): 색상 (0°~360°)
        - S(Saturation): 채도 (0%~100%)
        - V(Value): 명도 (0%~100%)
  - 필터
    - 엣지검출
      - 소벨 필터
    - 노이즈 제거
      - 가우시안 필터
  - Lucas-Kanade method
    - $v = (A^{T}A)^{-1}A^{T}b$

- 거리, 유사도 계산
  - Manhattan distance t
    - 각 자리 차이의 절대값 합(공간에서 좌표간 거리합)
  - Euclidean distancet
    - 각 자리 차이의 제곱합의 제곱근(공간에서 좌표간 최단거리)
  - Cosine similarity
- 김사웅.
  - 토큰화(Tokenizing)는 문장을 단어 또는 형태소 단위로 나누는 전처리 작업이다.
  - Tokenizer + pad\_sequences 는 RNN 모델 입력을 위해
     시퀀스를 정수 인코딩하고 길이를 맞춘다.
  - CountVectorizer 는 단어 출현 빈도 기반의 벡터를
     생성하지만, 의미적 유사성은 반영하지 않는다.
  - TfidfVectorizer 는 단어의 중요도를 TF × IDF 방식으로 수치화하여 표현한다.
  - Embedding Layer 는 단어 인덱스를 밀집 벡터로 변환하며,
     학습을 통해 의미를 반영하는 표현을 학습한다.
  - SimpleRNN, LSTM, GRU 는 시퀀스 데이터를 처리하는 순환 신경망이며, LSTM 과 GRU 는 장기 의존성 문제를 개선한다.
  - o cosine\_similarity 는 두 벡터의 방향 차이를 기준으로 유사도를 측정하는 방식이다.
  - Word Cloud 는 단어의 출현 빈도에 따라 시각적으로 강조하여
     문서의 특징을 쉽게 파악할 수 있게 한다.
  - 자연어 처리 모델은 언어를 수치적 벡터로 바꾸고, 신경망으로 처리한 후 유사도 등을 계산하여 활용한다.
  - NLP 는 언어의 의미를 수학적으로 모델링하는 과정이며,
     전처리부터 모델 설계까지 단계별 이해가 중요하다.

## 활동평가

전효재

AI 응용 파트에서는 이미지 처리에 대한 내용이 많이 나옴. 이미지 색상과 정보 읽는 방법을 시작으로 이미지에서의 엣지같은 특징을 추출하는 방법을 공부함. 이러한 데이터를 이용해서 후반부에

|       |                                                                                                                                                                                                                                              | 모델과 코드에 대해 배우다 보니 난이도가 높음. 응용문제 초반부는<br>기본 개념과 원리를 후반부에는 모델 개념을 중점으로 문제를<br>구성함으로 스터디에서 공유하고 학습할 수 있었음.                                                                                                                                                                                          |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 송<br>송                                                                                                                                                                                                                                       | 모델의 파라미터 수, 피처맵 크기, 커널 사이즈 등 구조 관련 계산이 특히 어려웠기에 모델 summary 를 예측하고 스스로 분석하는 연습이 필요하며, LSTM 등 다양한 구조에 대한 계산 문제를 통해 반복 학습이 요구됨. 이번 정기평가는 이전보다 양과 난이도가 모두 높아져 꼼꼼한 복습이 필요했고, 다음 스터디에서는 다양한 선지를 구성해 응용력을 높이는 방향으로 문제를 구성할 예정임.                                                                         |
|       | 김사웅                                                                                                                                                                                                                                          | 자연어 처리(NLP)는 단순히 문장을 나누는 토큰화부터 시작해<br>벡터화, 유사도 계산, RNN 계열의 딥러닝 모델까지 이어지는<br>일련의 흐름이 하나의 완성된 시스템으로 구성됨. 또한<br>CountVectorizer, TfidfVectorizer, Embedding, cosine_similarity 등<br>다양한 기술이 언어의 통계적 특징과 의미적 관계를 수치화하려는<br>시도임. CountVectorizer 는 단어의 의미는 고려하지 않고 단순히<br>빈도만 본다는 점이 실제 응용 시 주의가 필요함. |
| 과제    | <ul> <li>A4 2 페이지 분량으로 컴퓨터비전 강의 전체 내용을 정리하여 개인별요약본 공유</li> <li>수업 중 이해가 어려웠거나 시험에서 혼동되었던 개념을 중심으로 재정리하되, 문제 유출 방지를 위해 출제 문제의 직접적 언급은 배제</li> <li>강의에서 다루지 않았으나 연관된 개념이나 심화된 내용을 자율적으로 확장</li> <li>주요 개념에 대한 보충 설명 또는 시각 자료 첨부를 권장</li> </ul> |                                                                                                                                                                                                                                                                                                  |
| 향후 계획 | <ul> <li>A4 2 페이지 분량으로 컴퓨터비전 강의 전체 내용을 정리하여 개인별<br/>요약본 공유</li> <li>수업 중 이해가 어려웠거나 시험에서 혼동되었던 개념을 중심으로<br/>재정리하되, 문제 유출 방지를 위해 출제 문제의 직접적 언급은 배제</li> </ul>                                                                                  |                                                                                                                                                                                                                                                                                                  |

