CORRIGENDUM TO "LOCALLY DEFINABLE GROUPS IN O-MINIMAL STRUCTURES"

ELÍAS BARO 1 AND MÁRIO J. EDMUNDO 2

In [3], the second author develops the theory of locally definable groups. In particular, using the notion of connectedness given by Definition 3.7 in [3], he studies the connected locally definable subgroups of a locally definable group obtaining similar results as in the definable case (see Section 3.1 in [3]). However, we show that this definition of connectedness is not correct for the category of locally definable groups. Moreover, we show that with this definition some results in [3] are false.

Counterexample (to Proposition 3.9 in [3]). Let R be an \aleph_1 -saturated real closed field and consider the definable sets $Z_n = (-n, -\frac{1}{n}) \cup (\frac{1}{n}, n)$ for $n \in \mathbb{N}$, n > 1. Then $\mathcal{Z} = \bigcup_{n>1} Z_n$ is a connected locally definable group with the multiplicative operation of R. Intuitively, we see that \mathcal{Z} is the disjoint union of $\bigcup_{n>1}(\frac{1}{n},n)$ and $\bigcup_{n>1}(-n,-\frac{1}{n})$, but neither of these sets is definable. Consider also the locally definable subgroup $\mathcal{H} = \bigcup_{n>1}(\frac{1}{n},n)$ of \mathcal{Z} . Both \mathcal{Z} and \mathcal{H} are compatible, connected, normal and $dim(\mathcal{Z}) = dim(\mathcal{H})$, which is a contradiction with Proposition 3.9 in [3].

The flaw in the proof of Proposition 3.9 in [3] comes from the following incorrect statement: given a locally definable group \mathcal{Z} , a connected compatible locally definable normal subgroup of \mathcal{Z} with the same dimension contains all connected locally definable subgroups of \mathcal{Z} .

Inspired by the theory of locally semi-algebraic spaces from [1], Definition 3.7 must be replaced by the following.

Definition. Let \mathcal{Z} be a locally definable group. We say that a set $Z \subset \mathcal{Z}$ is **connected** if there is no subset $U \subset \mathcal{Z}$ such that (i) the intersection of U with every definable subset of \mathcal{Z} is definable and (ii) $U \cap \mathcal{Z}$ is a non-empty proper subset of \mathcal{Z} which is closed and open in the topology induced on Z by \mathcal{Z} .

Observe that every definable subset of a locally definable group satisfies condition (i) above and that therefore the new notion of connectedness is stronger than Definition 3.7 in [3]. Also note that, using the notation of

Date: April 5, 2008

 $Mathematics\ Subject\ Classification\ 2000{:}03{\tt C64},\ 20{\tt E99}.$

¹Partially supported by GEOR MTM2005-02568.

²Partially supported by FEDER and FCT-Plurianual 2007.

[2], clearly a subset of a locally definable group satisfying (i) above is a compatible locally definable subset (see Definition 2.8 in [2]).

With this new definition, we can prove a correct version of Proposition 3.9 in [3] just following its proof.

Proposition 1. Let \mathcal{Z} be a locally definable group. Then there is a unique connected compatible locally definable subgroup \mathcal{Z}^0 of \mathcal{Z} with dimension dim \mathcal{Z} . Moreover, the following hold:

- (i) \mathcal{Z}^0 contains all connected locally definable subgroups of \mathcal{Z} ;
- (ii) \mathcal{Z}^0 is the smallest compatible locally definable subgroup of \mathcal{Z} such that
- $(\mathcal{Z}:\mathcal{Z}^0) < \aleph_1$, and
- (iii) \mathcal{Z}^{0} is normal.

Proposition 3.9 in [3] (compare with Proposition 2.18 in [2]) is used extensively in both papers [3] and [2]. Therefore in both papers the definition of connectedness must be replace by the new one, in which case all the results remain true.

In spite of Definition 3.7 in [3] is not correct for the category of locally definable groups, it still makes sense and therefore we will call it "weakly connected". The next proposition gives us a relation between the notions of connectedness and weakly connectedness.

Proposition 2. Let \mathcal{Z} be a locally definable group which is not weakly connected. Then \mathcal{Z}^0 (that of Proposition 1) is definable and contains all weakly connected locally definable subgroups of \mathcal{Z} .

Proof. Let U be a definable subset of \mathcal{Z} such that U is both open and closed. By Corollary 3.6 in [3] there exist a locally definable subset $\{z_r : r \in S\}$ of \mathcal{Z} such that $\mathcal{Z} = \bigcup_{r \in S} z_r \mathcal{Z}^0$. Since \mathcal{Z}^0 is connected it is easy to prove that if $z_r \mathcal{Z}^0 \cap U \neq \emptyset$ then $z_r \mathcal{Z}^0 \subset U$. Therefore $U = \bigcup_{r \in S'} z_r \mathcal{Z}^0$ for some $S' \subset S$. Since U is definable, by saturation we deduce that S' is finite and $z_r \mathcal{Z}^0$ is definable for each $r \in S'$. Hence \mathcal{Z}^0 is definable and it is closed and open. Suppose \mathcal{H} is a weakly connected locally definable subgroup of \mathcal{Z} . Since \mathcal{Z}^0 is definable, open, closed and $\mathcal{H} \cap \mathcal{Z}^0 \neq \emptyset$ we deduce that $\mathcal{H} \cap \mathcal{Z}^0 = \mathcal{H}$, i.e, \mathcal{H} is contained in \mathcal{Z}^0 .

Corollary. Let \mathcal{Z} be a locally definable group. Then there exists a unique weakly connected locally definable subgroup of \mathcal{Z} which contains all weakly connected locally definable subgroups of \mathcal{Z} . Moreover, this weakly connected locally definable subgroup equals \mathcal{Z} or \mathcal{Z}^0 (so in particular is compatible).

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD AUTÓNOMA DE MADRID, 28049, MADRID, SPAIN.

E-mail address: elias.baro@uam.es

CMAF UNIVERSIDADE DE LISBOA, AV. PROF. GAMA PINTO 2, 1649-003 LISBOA, PORTUGAL.

 $E ext{-}mail\ address: edmundo@cii.fc.ul.pt}$

References

- [1] H. Delfs and M. Knebusch, Locally Semi-Algebraic Spaces, Springer-Verlag, 1985.
- [2] M. Edmundo, Covers of groups definable in o-minimal structures, Illinois J. Math. 49 (1) (2005), 99-120.
- [3] M. Edmundo, Locally definable groups in o-minimal structures, J. Algebra 301 (1) (2006), 194-223.