КЗ-свойства языков. МҒА, атрибутные грамматики и типизация

N.

Теория формальных языков $2022 \ z$.

Кодирование LZ

- Встретилось слово из одной буквы ⇒ добавляем его в словарь и создаём на него ссылку.
- Встретилось слово, максимально длинное и такое, что его префикс без последней буквы уже в словаре ⇒ добавляем его вместе с последней буквой в словарь и создаём на него ссылку.

В отличие от кодов Хаффмана, не разбираются с помощью конечных автоматов. Необходимо понятие обратных ссылок (backreferences) — актуальное в современных REGEX библиотеках.

Языки с backref (Shmidt, 2014)

Специальные символы — $[i,]i, x_i$. Вхождения x_i и скобки с индексом i не могут встречаться внутри $[i, \ldots]i$, однако разные скобочные блоки могут быть перепутаны:

$$[{}_{1}\alpha[{}_{2}b]{}_{1}x_{1}]{}_{2}x_{2}$$

Memory Finite Automata (MFA)

k-MFA $\mathscr A$ имеет функцию перехода из $Q \times \Sigma \cup \{\epsilon\} \cup \{1,\dots,k\}$ в подмножество $Q \times \langle o,c,\diamond \rangle^k$, где:

- с «закрыть» ячейку памяти;
- о «открыть» ячейку памяти;
- — не менять состояние ячейки.

Из состояния $\langle q, \nu \omega, \langle u_i, r_i \rangle \rangle$ в состояние $\langle q', \omega, \langle u_i', r_i' \rangle \rangle$ $\langle u_i \in \Sigma^*, r_i \in \{o, c\} \rangle$ переходит по правилу $\delta(q, b) \rightarrow \rangle q', s_1, \ldots, s_k \rangle$ следующим образом:

- если $b \in \Sigma \cup \{\epsilon\}$, то $\nu = b$;
- ullet если $b \in \{1, \ldots, k\}$ и $r_k = c$, то $v = u_b$;
- $\mathbf{r}_{\mathbf{i}}' = \mathbf{r}_{\mathbf{i}}$, если $\mathbf{s}_{\mathbf{i}} = \diamond$, и $\mathbf{s}_{\mathbf{i}}$ в противном случае;
- $\mathfrak{u}_i' = \mathfrak{u}_i \nu$, если $\mathfrak{r}_i' = \mathfrak{r}_i = \mathfrak{o}$; $\mathfrak{u}_i' = \nu$, если $\mathfrak{r}_i' = \mathfrak{o}$ и $\mathfrak{r}_i = \mathfrak{c}$; и не меняется, если $\mathfrak{r}_i' = \mathfrak{c}$.

DMFA и Jumping Lemma

k-MFA детерминированный, если в нём нет ϵ -переходов и $\forall q \in Q, b \in \Sigma(|\bigcup_{i=1}^k \delta(q,i)| + |\delta(q,b)| \leqslant 1)$. DMFL — такой язык, для которого существует DMFA.

- $[_x(a|b)^*]_x$ сх определяет DFML;
- $([_xy]_x[_yxa]_y)^*$ определяет DFML;
- $1^+[_x0^*]_x(1^+x)^*1^+$ тоже DFML (эквивалентен регулярке $1(1^+|0[_x0^*]_x1^+(0x1^+)^*)$).

DMFA и Jumping Lemma

k-MFA детерминированный, если в нём нет ϵ -переходов и $\forall q \in Q, b \in \Sigma(|\bigcup_{i=1}^k \delta(q,i)| + |\delta(q,b)| \leqslant 1)$. DMFL — такой язык, для которого существует DMFA.

Язык $\mathscr{L} \in$ REGEX детерминированный, если либо он является регулярным, либо \forall m \exists n, p_n , v_n такие, что $n \geqslant m$, p_n , $v_n \in \Sigma^+$, причём:

- $|v_n| = n$;
- ν_n подслово p_n ;
- $p_n v_n$ префикс какого-то слова из \mathscr{L} ;
- $\forall \mathfrak{u} \in \Sigma^+(\mathfrak{p}_n \mathfrak{u} \in \mathscr{L} \Rightarrow \mathfrak{v}_n$ префикс \mathfrak{u}).

Отделение семантики и синтаксиса

- Все предыдущие примеры КЗ-языков выражали семантические свойства (повторения, синхронизации по аргументам, и т.д.) посредством синтаксических конструкций. В большинстве случаев это даёт выигрыш в скорости их проверки за счёт локальности алгоритмов (см. МFA или автоматы Треллиса). Но ограничивает в выразительных свойствах.
- Универсальный способ проверки семантических свойств обход того же самого синтаксического дерева с дополнительными действиями.

6/12

Атрибутные грамматики

Пусть $A_0 \to A_1 \dots A_n$ — правило КС-грамматики. Припишем к нему конечное число атрибутных свойств.

- Синтетические атрибуты вычисляются для A_0 по атрибутам A_1, \ldots, A_n ;
- Наследуемые атрибуты вычисляются для A_i по атрибутам $A_0, \ldots, A_{i-1}, A_{i+1}, \ldots, A_n$. Обычно по атрибутам A_0 и A_1, \ldots, A_{i-1} (левосторонние атрибутные грамматики).

Повторные нетерминалы при присвоении атрибутов индексируются по вхождениям в правило слева направо. Т.е., например, если дано правило $N \to N-N$, тогда уравнение на атрибуты $N_0.attr=N_1.attr-N_2.attr$ будет означать, что атрибут родителя есть атрибут левого потомка минус атрибут правого потомка, помеченных нетерминалами N. Неповторные нетерминалы в уравнениях на атрибуты обычно не индексируются.

Пример А Γ для $\{a^nb^nc^n\}$

Атрибут нетерминала iter семантически означает число итераций. Чтобы не смешивать синтетические и наследуемые атрибуты, введём также атрибут inh_iter, означающий то же самое, но наследуемый сверху вниз по дереву разбора, а не снизу вверх. Здесь == — предикат; := — операция присваивания.

 $S \to AT \hspace{0.5cm} ; \hspace{0.5cm} T.iter == A.iter$

 $A \rightarrow \alpha A$; $A_0.iter := A_1.iter + 1$

Синтетический вариант: $A \to \epsilon$; A.iter := 0

 $T \rightarrow bTc \quad ; \quad T_0.iter := T_1.iter + 1$

 $T \rightarrow \epsilon \qquad ; \quad T.iter := 0$

Вариант с наследованием:

 $S \to AT \hspace{5mm} ; \hspace{5mm} B.inh_iter := A.iter$

 $A \rightarrow \alpha A \quad \; ; \quad A_0.iter := A_1.iter + 1$

 $A \to \epsilon \qquad ; \quad A.iter := 0$

 $T \rightarrow bTc$; $T_1.inh_iter := T_0.inh_iter - 1$

 $T \rightarrow \epsilon \hspace{1cm} ; \hspace{1cm} T.inh_iter == 0$

Определение типа

Понятие типа ограничивает возможные операции над его сущностями \Rightarrow исключает парадоксы (неожиданное/неприемлемое поведение программ).

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Определение типа

Система типов — гибко управляемый синтаксический метод доказательства отсутствия в программе определенных видов поведения при помощи классификации выражений языка по разновидностям вычисляемых ими значений.

Б.Пирс

Описание утверждения о типах — *логическая спецификация*.

Записывается: $\Gamma \vdash M$: σ , где Γ — это перечисление x_i : τ_i — ака контекст.

Читается: «в контексте Γ терм M имеет тип σ ». Понимается: «если придать переменным κ_i типы τ_i , тогда можно установить, что тип выражения M есть σ ».

Таблица связывания

КЗ-свойства имён вынуждают использовать таблицы связывания (имён и функций) с двумя базовыми операциями:

- bind :: ([таблица], [имя], [тип]) → [таблица];
- lookup :: ([таблица], [имя]) ightarrow [тип].

- Сорта (простые типы): Bool, Int.
- Операторы: =, +, условный, вызов функции.

```
• Синтаксис:
```

```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] 

[F] ::= [TypeId] ([TIds]) = [Exp] 

[Exps] ::= [Exp] | [Exp], [Exps] 

[TypeId] ::= (Bool | Int) id [TIds] ::= [TypeId], [TIds] | [TypeId] 

[Exp] ::= num | id | [Exp] + [Exp] | [Exp] = [Exp] | id ([Exps]) 

| if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```



```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] 

[F] ::= [TypeId] ([TIds]) = [Exp] 

[Exps] ::= [Exp] | [Exp], [Exps] 

[TypeId] ::= (Bool | Int) id [TIds] ::= [TypeId], [TIds] | [TypeId] 

[Exp] ::= num | id | [Exp] + [Exp] | [Exp] = [Exp] | id ([Exps]) 

| if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```



```
[Prog] ::= [Fs] [Fs] ::= [F] | [Fs] | [Fs] | [Fs] ::= [TypeId] ([TIds]) = [Exp] | [Exps] ::= [Exp] | [Exp], [Exps] | [TypeId] ::= [TypeId], [TIds] | [TypeId] | [Exp] ::= num | id | [Exp] + [Exp] | [Exp] = [Exp] | id ([Exps]) | if [Exp] then [Exp] else [Exp] | let id = [Exp] in [Exp]
```

tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	l otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$ t_1 \neq \text{int } t_2 \neq \text{int = err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

tchExp(Exp, vtable, ftable) = case Exp of

num	int
id	t == undef = err; int
	l otherwise = t
	where $t = lookup(vtable, id)$
Exp ₁ +Exp ₂	$ t_1 \neq \text{int } t_2 \neq \text{int = err; int}$
	otherwise = int
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)
Exp ₁ =Exp ₂	$ t_1 == t_2 = bool$
	l otherwise = err; bool
	where t_1 =tchExp(Exp ₁ ,vtable,ftable),
	t_2 =tchExp(Exp ₂ ,vtable,ftable)

Правила типизации в форме вывода

$$\frac{\Gamma \vdash \mathbf{t}_1 : \mathrm{int}, \Gamma \vdash \mathbf{t}_2 : \mathrm{int}}{\Gamma \vdash \mathbf{t}_1 + \mathbf{t}_2 : \mathrm{int}}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \sigma, \Gamma \vdash \mathbf{t}_2 : \sigma}{\Gamma \vdash \mathbf{t}_1 : \sigma, \Gamma \vdash \mathbf{t}_2 : \sigma}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \mathsf{bool}, \Gamma \vdash \mathbf{t}_2 : \sigma}{\Gamma \vdash \mathsf{if} : \mathsf{t}_1 : \mathsf{bool}}$$

$$\frac{\Gamma \vdash \mathbf{t}_1 : \mathsf{bool}, \Gamma \vdash \mathbf{t}_2 : \sigma, \Gamma \vdash \mathbf{t}_3 : \sigma}{\Gamma \vdash \mathsf{if} : \mathsf{t}_1 : \mathsf{then} : \mathbf{t}_2 : \mathsf{else} : \mathbf{t}_3 : \sigma}$$

$$\frac{\Gamma, \mathbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash \mathbf{t}_i : \tau_i}{\Gamma, \mathbf{f_id} : (\tau_1, \dots, \tau_n) \to \tau_0 \vdash \mathbf{f_id}(\mathbf{t}_1, \dots, \mathbf{t}_n) : \tau_0}$$

$$\frac{\Gamma, \mathbf{id} : \tau \vdash \mathbf{s} : \sigma, \Gamma \vdash \mathbf{t} : \tau}{\Gamma \vdash M, \mathsf{let} : \mathsf{id} = \mathsf{t} : \mathsf{int}}$$