

Welcome to:

Introduction to Artificial Intelligence

Unit objectives

After completing this unit, you should be able to:

- Understand the importance of Artificial Intelligence
- Gain knowledge on the basics of Artificial Intelligence
- Learn about the relationship between cognitive science and Artificial Intelligence
- Understand the role of Artificial Intelligence in solving societal problems

History of artificial intelligence

The birth of artificial intelligence

The IBM 702: a computer used by the first generation of AI researchers.

Source: A Third Survey of Domestic Electronic Digital Computing Systems from the BRL at Aberdeen Proving Ground

History of Al

- 1943: McCulloch & Pitts: Boolean circuit model of brain
- 1950: Turing's "Computing Machinery and Intelligence"
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted
- 1952-69: Look, Ma. no hands!
- 1950s: Early AI programs, including Samuel's checkers program, Newell & Simon's Logic Theorist, Gelernter's Geometry Engine
- 1965: Robinson's complete algorithm for logical reasoning
- 1966-73: Al discovers computational complexity, Neural network research almost disappears
- 1969-79: Early development of knowledge-based systems
- 1980: Al becomes an industry
- 1986: Neural networks return to popularity
- 1987: Al becomes a science
- 1995: The emergence of intelligent agents

AI winters

Garry Kasparov & IBM's Deep Blue

Todays' Al

Historical milestones in the development of Al

IBM ICE (Innovation Centre for Education)

1950

TURING TEST

Computer scientist Alan Turing proposes a intelligence' is coined test for machine intelligence. If a machine can trick humans into thinking it and engineering of is human, then it has intelligence

1955

A.I. BORN

Term 'artificial by computer scientist, John McCarthy to describe "the science making intelligent machines"

1961

UNIMATE

First industrial robot, Unimate, goes to work at GM replacing assembly line

1964

ELIZA

Pioneering chatbot developed by Joseph Weizenbaum at MIT holds conversations with humans

1966

SHAKEY

The 'first electronic person' from Stanford. Shakey is a generalpurpose mobile robot that reasons about its own actions

A.I.

WINTER

Many false starts and dead-ends leave A.I. out 1997

DEEP BLUE

Deep Blue, a chessplaying computer from IBM defeats world chess emotionally intelligent champion Garry Kasparov

1998

KISMET

Cynthia Breazeal at MIT introduces KISmet, an robot insofar as it detects and responds to people's feelings

1999

AIBO

Sony launches first consumer robot pet dog autonomous robotic AiBO (Al robot) with skills and personality that develop over time

2002

ROOMBA

First mass produced vacuum cleaner from iRobot learns to navigate interface, into the and clean homes

2011

Apple integrates Siri, an intelligent virtual assistant with a voice iPhone 4S

2011

WATSON

IBM's question Watson wins first place on popular \$1M prize television quiz show Jeopardy

2014

Eugene Goostman, a chatbot passes the Turing Test with a third of judges believing Eugene is human

2014

Amazon launches Alexa, Microsoft's chatbot Tay an intelligent virtual assistant with a voice interface that completes inflammatory and shopping tasks

2016

goes rogue on social media making offensive racist comments

2017

ALPHAGO

Google's A.I. AlphaGo beats world champion Ke Jie in the complex board game of Go. notable for its vast possible positions

Development of Artificial Intelligence (Courtesy: Digital Intelligence Today)

Alan Turing

John McCarthy

Marvin Minsky

People who have influenced Al

Differences between strong Al and weak Al

- Strong Al
 - Claims that computers can be made to think on a level (at least) equal to humans and possibly even be conscious of themselves
- Weak Al
 - States that some "thinking-like" features can be added to computers to make them more useful tools

Artificial Intelligence definitions

- Systems that think like humans
- Systems that act like humans
- Systems that think rationally
- Systems that act rationally

Emergence of AI – Technological advances

Machine learning → Deep learning → Al

Functions of Al

- Industrial Automation
- Machine Learning
- Deep Learning
- Machine Vision
- Natural Language Processing

IBM

Characteristics of artificial intelligence

- Al automates repetitive learning and discovery through data
- Al adds intelligence
- Al adapts through progressive learning algorithms
- Al analyzes more and deeper data
- Al achieves incredible accuracy
- Al gets the most out of data

Applications of Al

- Healthcare
- Manufacturing
- Education
- Business
- Finance
- Society
- Law

Al in health care

Al Applications That Could Change Health Care

INDUSTRY 4.0

AUTONOMOUS ROBOTS

SIMULATION

SOFTWARE INTEGRATION

INDUSTRIAL INTERNET

CYBER SECURITY

CLOUD

ADDITIVE MANUFACTURING

AUGMENTED REALITY

BIG DATA & ANALYTICS

Al in manufacturing

Al in education sector

The Automation of Administrative Tasks

Smart Tutors and Personalization

The Addition of Smart Content

Virtual Lecturers and Learning Environment

Connecting the World of Academia

Al in business

Banking and Finance – fraud detection

Retail – online customer support

Security

Product recommendations and purchase predictions

Predictive customer service

IBM ICE (Innovation Centre for Education)

Al in finance sector

- Risk Assessment
- Fraud Detection and Management
- Financial Advisory Services
- Trading
- Managing Finance

Face Recognition, Fraud identification, Fake news identification, Weaponization, Fire-fighting, Crowd Management etc.

Al in society

- Increase in productivity
- Increase in quality of life
- More efficient inter-human transactions by fixing trust deficit
- Removal of the need to do menial ,stressful or repetitive jobs.
- Better public-policy implementation, civil administration, democracy.
 - Using AI to run societies and countries would bring in significant transparency in administration; and therefore expose the prevalent hypocrisy of governments and politicians
- Reduction in crime, more social conformity
- Better international integration
 - Al agents can impart language skills on demand, translate on demand, enable familiarity with other cultures by showcasing experiences

Cognitive science and Al

- The (interdisciplinary) study of mind and The study of mind and intelligence intelligence.
- The study of cognitive processes involved in the acquisition, representation and use of human knowledge.
- The scientific study of the mind, the brain, and intelligent behavior, whether in humans, animals, machines or the abstract.
- A discipline in the process of construction.

Mind or Machines Cognitive Science Changing Artificial Intelligence

Cognition and process of cognition

- Cognition: from Latin base cognitio "know together"
- The collection of mental processes and activities used in perceiving, learning, thinking, understanding and remembering.
- Cognition Process steps are enumerated below.

Disciplines in cognitive science

- Philosophy
- Computer Science Artificial Intelligence
- Psychology Cognitive Psychology
- Linguistics
- Neuroscience
- Anthropology, Psychiatry, Biology, Education, ...

Multidisciplinary subject

- Computer science and cognitive psychology have been dominant.
- Neuroscience had a big impact on the growth.
- Still, only 30-50% of the work are multidisciplinary
- Nature of multidisciplinary collaborations differ
- (Von Eckardt, 2001)
 - Localist view: A field is multidisciplinary if each individual research in it is multidisciplinary.
 - Holist view: A field is multidisciplinary if multiple disciplines contribute to its research program (a set of goals directed at the main goal).

Linguistics

- Major Components of Analysis
 - Phonology
 - Morphology
 - Syntax
 - Semantics
 - Discourse and pragmatics

IBM ICE (Innovation Centre for Education)

Artificial intelligence as cognitive science

- Study of intelligent behavior
- Automation of intelligent behavior
- Machines acting and reacting adaptively
- How to make computers do things which humans do better
- Study and construction of rational (goal and belief-directed) agents

Methods in cognitive science

- Building theories vs. acquiring data
- Philosophical background: Setting up the domain of discourse / Logical argumentation
- Formalization and mathematical modeling
- Computational modeling
- Hypothesis formation

Watson

- IBM's Artificial Intelligence computer system
- Capable of answering questions in natural language
- Competed against champions on Jeopardy and won

Figure: High-Level Architecture used in Watson

Source: DeepQA.svg