Math 260 HW # 2

Mario L. Gutierrez Abed

Section 1.3

(8) Determine whether the following sets are subspaces of \mathbb{R}^3 under the operations of addition and scalar multiplication defined on \mathbb{R}^3 . Justify your answers.

a)
$$W_1 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : a_1 = 3 \ a_2 \text{ and } a_3 = -a_2\}$$

Solution:

 \rightarrow Given two arbitrary vectors $\vec{a} = (3 \ a_2, \ a_2, \ -a_2)$ and $\vec{b} = (3 \ b_2, \ b_2, \ -b_2)$ for $\vec{a}, \ \vec{b} \in W_1$, and an arbitrary scalar $c \in \mathbb{R}$, we test for closure under addition and scalar multiplication:

•
$$(3 a_2, a_2, -a_2) + (3 b_2, b_2, -b_2) = (3 a_2 + 3 b_2, a_2 + b_2, -a_2 + (-b_2))$$

= $(3 (a_2 + b_2), a_2 + b_2, -(a_2 + b_2))$

Hence $\vec{a} + \vec{b} \in W_1$. (closure under addition)

•
$$c(3 a_2, a_2, -a_2) = (3 c a_2, c a_2, -c a_2)$$

 $c \vec{a} \in W_1$ (closed under scalar multiplication) \checkmark

→ Now we need to check whether the zero vector of \mathbb{R}^3 lies in W_1 . We let $a_2 = 0$, then $a_1 = 3 \cdot (0) = 0$ and $a_3 = -0 = 0$. Hence $(a_1, a_2, a_3) = (0, 0, 0) = \vec{0} \in W_1$. ✓

Thus we conclude that W_1 is a subspace of \mathbb{R}^3 over the field \mathbb{R} .

f)
$$W_6 = \{(a_1, a_2, a_3) \in \mathbb{R}^3 : 5 a_1^2 - 3 a_2^2 + 6 a_3^2 = 0\}$$

Solution:

From the given information we can see that W_6 is the subset of \mathbb{R}^3 that satisfies

$$(a_1, a_2, a_3) = \left(\sqrt{\frac{3 a_2^2 - 6 a_3^2}{5}}, \sqrt{\frac{5 a_1^2 + 6 a_3^2}{3}}, \sqrt{\frac{3 a_2^2 - 5 a_1^2}{6}} \right).$$

 \rightarrow Clearly the zero vector of \mathbb{R}^3 lies in W_6 , since by letting $(a_1, a_2, a_3) = (0, 0, 0)$ we get the zero vector $\vec{0}$.

- → Now we need to test for closure under addition and scalar multiplication.
- We choose two arbitrary vectors $\vec{a} = (a_1, a_2, a_3)$ and $\vec{b} = (b_1, b_2, b_3)$ in W_6 and add them under the operations of addition defined on \mathbb{R}^3 :

$$\left(\sqrt{\frac{3\,a_2^2 - 6\,a_3^2}{5}}, \sqrt{\frac{5\,a_1^2 + 6\,a_3^2}{3}}, \sqrt{\frac{3\,a_2^2 - 5\,a_1^2}{6}}\right) + \left(\sqrt{\frac{3\,b_2^2 - 6\,b_3^2}{5}}, \sqrt{\frac{5\,b_1^2 + 6\,b_3^2}{3}}, \sqrt{\frac{3\,b_2^2 - 5\,b_1^2}{6}}\right) \\
= \left(\sqrt{\frac{3\,a_2^2 - 6\,a_3^2}{5}} + \sqrt{\frac{3\,b_2^2 - 6\,b_3^2}{5}}, \sqrt{\frac{5\,a_1^2 + 6\,a_3^2}{3}} + \sqrt{\frac{5\,b_1^2 + 6\,b_3^2}{3}}, \sqrt{\frac{3\,a_2^2 - 5\,a_1^2}{6}} + \sqrt{\frac{3\,b_2^2 - 5\,b_1^2}{6}}\right)$$

This addition is not closed in W_6 . (No closure under addition)

For instance let (a_1, a_2, a_3) take on the values $\left(\sqrt{3}, \sqrt{\frac{9}{5}}, 0\right)$ and (b_1, b_2, b_3) take on the same values $\left(\sqrt{3}, \sqrt{\frac{9}{5}}, 0\right)$. We can check that both \vec{a} and \vec{b} are in W_6 with these values, however their sum $\left(\sqrt{3} + \sqrt{3}, \sqrt{\frac{9}{5}} + \sqrt{\frac{9}{5}}, 0 + 0\right)$ does not satisfy the conditions on W_6 .

Hence we conclude that W_6 is not a subspace of \mathbb{R}^3 over \mathbb{R} . *

(19) Let W_1 and W_2 be subspaces of a vector space V. Prove that $W_1 \cup W_2$ is a subspace of V if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Proof:

 (\Rightarrow)

Suppose that $W_1 \cup W_2$ is a subspace of V and $W_1 \not\subseteq W_2$. We will show that $W_2 \subseteq W_1$.

Let $x \in W_2$ and $y \in W_1$ with $y \notin W_2$. Then $x \in W_1 \cup W_2$ and $y \in W_1 \cup W_2$. Since $W_1 \cup W_2$ is a subspace, $x + y \in W_1 \cup W_2$. Then we have that $x + y \in W_1$ or $x + y \in W_2$. Since $x \in W_2$, $-x \in W_2$. Then $x + y + (-x) \in W_2 \Longrightarrow y \in W_2$. $(\Rightarrow \Leftarrow)$

This contradicts our choice of y. Thus, $x + y \in W_1$. Since $y \in W_1, -y \in W_1$. Then, $x + y + (-y) \in W_1 \Longrightarrow x \in W_1$. Thus, $W_2 \subseteq W_1$. (\Leftarrow)

Suppose $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. WLOG, suppose $W_1 \subseteq W_2$. We will show that $W_1 \bigcup W_2$ is a subspace. By subset properties, $W_1 \cup W_2 = W_2$, which is a subspace by assumption. Thus, $W_1 \cup W_2$ is a subspace of V.

- (23) Let W_1 and W_2 be subspaces of a vector space V.
- **Note** If S_1 and S_2 are nonempty subsets of a vector space V, then the sum of S_1 and S_2 , denoted $S_1 + S_2$, is the set $\{x + y : x \in S_1 \text{ and } y \in S_2\}$.
- a) Prove that W_1+W_2 is a subspace of V that contains both W_1 and W_2 .

Proof:

We have that $W_1 + W_2 = \{w_1 + w_2 : w_1 \in W_1 \text{ and } w_2 \in W_2\}$. Since both W_1 and W_2 are subspaces they contain the zero vector from V. Therefore $\vec{0} + \vec{0} = \vec{0} \in (W_1 + W_2)$.

Next we define two arbitrary a and b such that $a, b \in (W_1 + W_2)$. Then we have $a = w_{1a} + w_{2a}$ and $b = w_{1b} + w_{2b}$, for $w_{1a}, w_{2a} \in W_1$ and $w_{1b}, w_{2b} \in W_2$, and so $a + b = (w_{1a} + w_{2a}) + (w_{1b} + w_{2b}) = (w_{1a} + w_{1b}) + (w_{2a} + w_{2b}).$

Since W_1 and W_2 are subspaces, we have $(w_{1a} + w_{1b}) \in W_1$ and $(w_{2a} + w_{2b}) \in W_2$, and therefore $a + b \in (W_1 + W_2)$.

Now we consider a scalar $c \in \mathbb{F}$ such that $c = c(w_{1a} + w_{2a}) = (c w_{1a}) + (c w_{2a})$. Since W_1 and W_2 are subspaces we have that $c w_{1a} \in W_1$ and $c w_{2a} \in W_2$, and therefore $c \in (W_1 + W_2)$. Hence we conclude that $W_1 + W_2$ is a subspace. Now we only need to show that $W_1, W_2 \subseteq (W_1 + W_2)$. Let us consider an arbitrary element $w_1 \in W_1$. Since $\vec{0} \in W_2$, we can write

 $w_1 = w_1 + \vec{0} \in W_1 + W_2$. Hence we have proven that $W_1 \subseteq (W_1 + W_2)$. Since the zero vector also lies in W_1 , by a similar argument we conclude also that $W_2 \subseteq (W_1 + W_2)$.

b) Prove that any subspace of V that contains both W_1 and W_2 must also contain $W_1 + W_2$.

Proof:

Let W be some subspace of V containing W_1 and W_2 . Let $a \in (W_1 + W_2)$. Then $a = w_1 + w_2$ for $w_1 \in W_1$ and $w_2 \in W_2$. However both w_1 and w_2 are in the larger subspace W, and since W is a subspace and it's closed under addition, we have that $a \in W$. This proves that $W_1 + W_2 \subseteq W$.