

Data Driven Engineering I: Machine Learning for Dynamical Systems

Analysis of Dynamical Datasets II: Time Series

Institute of Thermal Turbomachinery Prof. Dr.-Ing. Hans-Jörg Bauer

Dynamical Datasets I: Time Series

- * Time Series : Overview
- * Statistical Models for time series
- \star State space models ⇒ DDE I
- Machine Learning Part I
- * Machine Learning Part II

Typial	STLF	LTLF
Horizon	1hr-2 days	> 1 months
Granularity	~hr	~hr—day
History Range	~2 years	~), 5 years
Accuracy	€5% eror	< 25% esnor
Forecasting freq.	-hr to day	> month

how can we use ML algorithms?

- \	time	Load) u(t)
V	0	321	by the
	1	316	1
	2	314	J
	3	318	
	9 1	510	

how can we use ML algorithms?

colab

Recurrent Neural Networks

Data
$$\rightarrow$$
 N.N. \rightarrow Rules $\begin{cases} No \\ inherent \\ seq. arch. \end{cases}$

how can we design a temporal graph s

fibonacci Sequence

1 1 2

3

8

21

34

55 ..

(° √7

73

X₇

•

V

Rules:

 $X_n = X_{n-1} + X_{n-2}$

Recurrent Neural Networks

Fibonacci Sequence:

Recurrent Neural Networks

Recurrent Neural Wetworks

$$f \Rightarrow tanh$$
;

$$y_t = g(x_t, x_{t-1}, x_{t-2}, \dots, x_o)$$
"memory"

Feeding a RNN

One-to-many // vector-to-seq.

may-to-may // seq-to-seq.

Feature extraction:

$$\begin{bmatrix} X \end{bmatrix} \xrightarrow{\text{info I}} \text{info II}$$

$$\text{Exp} \qquad \qquad \text{info II}$$

Sequence

NLP // Machine Translation

$$\left[t_0-t_5\rightarrow t_6-t_{10}\right]$$

Sentiment
Analysis $[x] \rightarrow (\checkmark) \parallel \begin{pmatrix} 2 \\ 2 \\ 3 \\ 4 \end{pmatrix}$

Training Your RNN

- Back prop. th. time -> unroll the nodes in time
- * tanh/sigmoids >> vanishing grad.

Test with Rell (?)

4 Using LSTM & GRU

G Tune hyperparameters

Multivariate Pine Series Forecasting

$[X] \rightarrow load$	temp.	1	median (w)	std (w)	Temp.	Load
	,,,	. —	- NaN : [- NaN	50	2500)
			NaNI	NaN	51	2004
			NaN I NaN I NaN	NaN	1 50	2302
			23001	200	54	2280
			w=4			

- how many previous steps will you pass
- I how many future steps will you predict at once

Graphical architecture

Multivariate Time Series Forecasting

Other Important issues:

 \blacksquare Data Scaling \Rightarrow [-1,1]; mean = 0.0

past -> min, max, std _____? how valid & make sure that it is large enough.

Data Processing => Use indices a lot of Time stamp management with sliding windows

You should not leak info. about future.

past to next step

Important issues:

* Training & Predicting with TF = Initialization = Stateful Stateless

you must fix the batch size.

Batch, __ Batch 2

Train it to predict 32 somples at once.

Batch _ Batch _

Other Important issues:

Sample $1 \rightarrow (x', x^2, x^3, x', x^5) \rightarrow y_p$ Sample $2 \rightarrow (x', x', x^3) \rightarrow y_p$

(history)

colab

* Long Short Term Memory

Recurrance formula is more complex state (c) > Long Term

(What information should I keep (forget)?

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, X_t] + b_f\right)$$

- how much we keep

2) How much of the new information should I add?

$$\underbrace{n_{t-1}}_{N_{t-1}}\underbrace{n_{t-1}}_{C_t}$$

$$\hat{l}_{t} = O\left(W_{i} \cdot (h_{t-1}, X_{t}] + b_{i}\right)$$

$$[0,1] \rightarrow fraction to keep$$

Candidate information:
$$\widetilde{C}_{t} = g(W_{c} \cdot [h_{t-1}, X_{t}] + b_{c})$$

3 What should I give as the suspert (h)?

$$O_{t} = \sigma\left(W_{o} \cdot [h_{t-1}, X_{t}] + b_{o}\right)$$

$$(o, 1) \Rightarrow probability of past passing to future$$

$$\begin{array}{c|c} (i) & C_{t-1} & C_{t} \\ \hline \\ h_{t-1} & 0_{t} & y_{g} \\ \hline \\ \chi_{t} & h_{t} \\ \end{array}$$

colab

Gated Recurrent Unit (GRU):

* Semplified LSTM -> h only (no c)

- 2 > update gate > nout
- * Forget } update gate * Pexet } how much falle past is needed?
- (=) Probability of passing to

$$\widehat{\mathbf{I}} \qquad \mathbf{2}_{t} = \sigma \left(\mathbf{W}_{xz}^{\mathsf{T}} \cdot \mathbf{X}_{t} + \mathbf{W}_{hz}^{\mathsf{T}} \mathbf{h}_{t-1} + \mathbf{b}_{z} \right)$$

(ii)
$$r_t = \sigma \left(W_{xr}^T X_t + W_{hr}^T h_{t-1} + b_r \right)$$

(iii)
$$g_t = \tanh \left(W_{xg}^T X_t + W_{ng}^T (r_t \cdot h_{t-1}) + b_g \right)$$

23

colab

Encoding ...

Encoding ...

Decoding ...

Additional Notes

