HW8

DUE Friday, March 23.

Section 4.3: (29), 30, 32;

Section 4.4: 4, 8, (9), 12, 16, (18), 22, (23);

Section 4.5: 6, 8, 12, 14, 20, (25), (26), (32).

Section 4.3

Exercises: (29), 30, 32

4.3.29. (recommended)

Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a set of k vectors in \mathbb{R}^n , with k < n. Use a theorem from Section 1.4 to explain why S cannot be a basis for \mathbb{R}^n .

4.3.30. Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a set of k vectors in \mathbb{R}^n , with k > n. Use a theorem from Chapter 1 to explain why S cannot be a basis for \mathbb{R}^n .

Remark: Exercises 4.3.29 and 4.3.30 show that every basis for \mathbb{R}^n must contain exactly n vectors.

4.3.32. Suppose T is a one-to-one transformation. (Recall this means that, for all \mathbf{u} and \mathbf{v} , we have $T(\mathbf{u}) = T(\mathbf{v})$ implies $\mathbf{u} = \mathbf{v}$.) Show that if the set $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_p)\}$, of images is linearly dependent, then $\{\mathbf{v}_1, \dots, \mathbf{v}_p\}$ linearly dependent. (This fact shows that a one-to-one linear transformation maps a linearly independent set onto a linearly independent set, because in this case the set of images cannot be linearly dependent).

Section 4.4

Exercises: 4, 8, (9), 12, 16, (18), 22, (23)

4.4.4. Find the vector \mathbf{x} determined by the coordinate vector $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} -4 \\ 8 \\ -7 \end{bmatrix}$ and the basis

$$\mathcal{B} = \left\{ egin{bmatrix} -1 \ 2 \ 0 \end{bmatrix}, egin{bmatrix} 3 \ -5 \ 2 \end{bmatrix}, egin{bmatrix} 4 \ -7 \ 3 \end{bmatrix}
ight\}.$$

4.4.8. Find the coordinate vector $[\mathbf{x}]_{\mathcal{B}}$ of $\mathbf{x} = \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix}$ relative to the basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ 3 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 8 \end{bmatrix}, \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix} \right\}$.

4.4.9. (recommended)

Find the change-of-coordinates matrix from $\mathcal{B} = \left\{ \begin{bmatrix} 2 \\ -9 \end{bmatrix}, \begin{bmatrix} 1 \\ 8 \end{bmatrix} \right\}$ to the standard basis in \mathbb{R}^n .

4.4.12. Use an inverse matrix to find
$$[\mathbf{x}]_{\mathcal{B}}$$
 for $\mathbf{x} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ and $\mathcal{B} = \left\{ \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 6 \\ 7 \end{bmatrix} \right\}$.

4.4.16. Mark each statement True or False. Justify each answer. Unless stated otherwise, \mathcal{B} is a basis for a vector space V.

a. If \mathcal{B} is the standard basis for \mathbb{R}^n , then the \mathcal{B} -coordinate vector of an \mathbf{x} in \mathbb{R}^n is \mathbf{x} itself.

b. The correspondence $[\mathbf{x}]_{\mathcal{B}} \mapsto \mathbf{x}$ is called the coordinate mapping.

c. In some cases, a plane in \mathbb{R}^3 is isomorphic to \mathbb{R}^2 .

4.4.18. (recommended)

Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Explain why the \mathcal{B} -coordinate vectors of $\mathbf{b}_1, \dots, \mathbf{b}_n$ are the columns $\mathbf{e}_1, \dots, \mathbf{e}_n$ of the $n \times n$ identity matrix.

4.4.22. Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for \mathbb{R}^n . Describe an $n \times n$ matrix A that implements the coordinate mapping $\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$.

4.4.23. (recommended)

Show that the coordinate mapping is one-to-one. [*Hint*: Suppose $[\mathbf{u}]_{\mathcal{B}} = [\mathbf{w}]_{\mathcal{B}}$ for some \mathbf{u} and \mathbf{w} in V and show that $\mathbf{u} = \mathbf{w}$.]

Section 4.5

Exercises: 6, 8, 12, 14, 20, (25), (26), (32)

4.5.6. Let
$$V=\left\{egin{bmatrix} 3a+6b-c \\ 6a-2b-2c \\ -9a+5b+3c \\ -3a+b+c \end{bmatrix}:a,b,c ext{ in } \mathbb{R}
ight\}.$$
 Find the following:

a. a basis for V;

b. the dimension of V.

4.5.8. Let
$$V = \{(a, b, c, d) : a - 3b - +c = 0\}$$
. Find the following:

a. a basis for V;

b. the dimension of V.

4.5.12. Find the dimension of the subspace spanned by the vectors,
$$\begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$$
, $\begin{bmatrix} -3 \\ 4 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -8 \\ 6 \\ 5 \end{bmatrix}$, $\begin{bmatrix} -3 \\ 0 \\ 7 \end{bmatrix}$.

4.5.14. Determine the dimensions of $\operatorname{Nul} A$ and $\operatorname{Col} A$ for the matrix

$$A = egin{bmatrix} 1 & 3 & -4 & 2 & -1 & 6 \ 0 & 0 & 1 & -3 & 7 & 0 \ 0 & 0 & 0 & 1 & 4 & -3 \ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- **4.5.20.** Let V be a vector space. Mark each statement True or False. Justify each answer.
- **a.** \mathbb{R}^2 is a two-dimensional subspace of \mathbb{R}^3 .
- **b.** The number of variables in the equation $A\mathbf{x} = \mathbf{0}$ equals the dimension of Nul A.
- **c.** A vector space is infinite-dimensional if it is spanned by an infinite set.
- **d.** If dim V = n and if S spans V, then S is a basis of V.
- **e.** The only three-dimensional subspace of \mathbb{R}^3 is \mathbb{R}^3 itself.

4.5.25. (recommended)

Let S be a subset of an n-dimensional vector space V, and suppose S contains fewer than n vectors. Explain why S cannot span V.

4.5.26. (recommended)

Let H be an n-dimensional subspace of an n-dimensional vector space V. Show that H = V.

4.5.32. (recommended)

Let H be a nonzero subspace of V, and suppose T is a one-to-one linear transformation of V into W. Prove that $\dim T(H) = \dim H$. (If T happens to be a one-to-one mapping of V onto W, then $\dim V = \dim W$. Isomorphic finite-dimensional vector spaces have the same dimension.)