Optimisation convexe

17 janvier 2015

Table des matières

Ι	Ensembles convexes	2
1	Définitions et premières propriétés	2
2	Enveloppe affine et enveloppe convexe	2
3	Propriétés topologiques des convexes 3.1 Ouverture et fermeture des convexes	
4	Opérations sur les ensembles convexes 4.1 Projection sur un convexe fermé 4.2 Séparation des ensembles convexes 4.3 Enveloppe convexe fermée	2
5	Cônes convexes5.1 Cône normal5.2 Cône dual	3 4 4
6	Hyperplan d'appui	5
7	Lemme de Farkas	5
II	Fonctions convexes	6
1	Définitions et propriétés	6
2	Fonctions d'appui	8

Première partie

Ensembles convexes

- 1 Définitions et premières propriétés
- 2 Enveloppe affine et enveloppe convexe
- 3 Propriétés topologiques des convexes
- 3.1 Ouverture et fermeture des convexes
- 3.2 Intérieur relatif
- 4 Opérations sur les ensembles convexes
- 4.1 Projection sur un convexe fermé
- 4.2 Séparation des ensembles convexes
- 4.3 Enveloppe convexe fermée

L'enveloppe convexe d'un fermé n'est pas nécessairement fermée. Exemple : Dans \mathbb{R}^2 , $C = \{xy \ge 1\} \cup \{0\}$: fermé. $\operatorname{conv}(C) = \{x > 0, y > 0\} \cup \{0\}$: non fermé.

♦ Définition:

 $A \subset E$. On définit l'enveloppe convexe fermée, noté $\overline{conv}(A)$, comme l'intersection de tous les convexes fermés contenant A.

I Propriété:

$$-A_1 \subset A_2 \Rightarrow \overline{conv}(A_1) \subset \overline{conv}(A_2) -A \subset conv(A) \subset conv(\bar{A}) \subset \overline{conv}(A) \text{ et } \overline{conv}(A) = \overline{conv}(\bar{A}) = \overline{conv}(\bar{A})$$

♦ Définition:

Soit H un Hilbert.

Un demi-espace fermé de H est un ensemble de la forme :

$$H^{-}(\xi,\alpha) = \{x \in H; (x,\xi) \le \alpha\}$$

où $\xi \in H \neq \{0\}$ et $\alpha \in \mathbb{R}$

1 Proposition:

 $\overline{conv}(A)$ est l'intersection de tous les demi-espaces fermés contenant A.

⇔ Corollaire:

Soit C un ensemble convexe.

Alors l'intersection de tous les demi-espaces fermés contenant C est \overline{C} .

⇔ Corollaire:

C convexe fermés $\Leftrightarrow C$ est l'intersection de tous les demi-espaces fermés contenant C.

⇔ Théorème:

Soient H de dimension finie et A un compact de H. Alors conv(A) est compact.

5 Cônes convexes

A Définition: Cône

Un ensemble C est un cône si $\lambda \in \mathbb{R}_+, \, \forall x \in C, \, \lambda x \in C$

❖ Définition: Enveloppe conique

Soit $A \subset E$. L'enveloppe conique A, notée cone(A), est l'intersection de tous les coônes convexes contenant A.

♣ Définition: Combinaison conique

On appelle combinaison conique d'élements de A un point x tel que $x=\sum_{i=1}^n \lambda_i x_i,\ \lambda_i\geq 0,\ x_i\in A$

1 Proposition:

— C est un cône convexe si et seulement s'il contient toutes les combinaisons coniques de ses éléments.

$$cone(A) = \left\{ \sum_{i=1}^{n} \lambda_i x_i, n \in \mathbb{N}^*, \lambda_i \ge {}^{\circ}, x_i \in A \right\}$$

🔩 Définition: Enveloppe conique fermée

On définit l'enveloppe conique fermée de A, notée $\overline{cone}A$, comme étant l'intersection de tous les cônes convexes

I Propriété:

- $\begin{array}{l} --A \subset B \Rightarrow \overline{cone}(A) \subset \overline{cone}(B) \\ --A \subset cone(A) \subset cone(\bar{A}) \subset \overline{cone}(A) \text{ et } \overline{cone}(A) = \overline{cone}(\bar{A}) = \overline{cone}(A) \end{array}$

5.1 Cône normal

Soient H de Hilbert, $C \subset H$, $x \in C$.

On définit le cône normal à C en x, noté $\mathcal{N}_x C$ ou $\mathcal{N}_C(x)$ par :

$$\mathcal{N}_C(x) = \{ d \in H; (d, y - x) \le 0 \forall y \in C \}$$

Les éléments de $\mathscr{N}_x C$ sont appelés les normales à C en x.

1 Proposition:

Soit H de Hilbert de dimension fnie.

Si $C \subset H$ et $x \in \partial C$, alors $\mathcal{N}_x C$ contient au moins un élément non nul.

Remarque : Le résultat reste vrai en dimension infini si \mathring{C} est non vide.

5.2Cône dual

♣ Définition: Cône dual, bidual, polaire

Soit $P \subset H$. On appelle cône dual de P, noté P^* , l'ensemble :

$$P^* = \{x \in H; (x, y) \ge 0 \ \forall y \in P\}$$

On appelle cône bidual de $P: P^{**} = (P^*)^*$

On appelle cône polaire (ou dual négatif) P^- l'ensemble

$$P^{-} = \{x \in H; (x, y) \le 0 \ \forall y \in P\} = -P^{*}$$

1 Proposition:

 P^* est un cône convexe fermé non vide.

6 Hyperplan d'appui

♦ Définition:

Un hyperplan d'affine d'équation (s, x) = r est appelé hyperplan d'appui à C en \bar{x} si :

$$(s,x) \le r \ \forall x \in C$$

$$(s, \bar{x}) = r$$

⇔ Théorème:

Soit C un ensemble convexe d'un Hilbert H. On suppose soit que H est de dimension finie soit que $\mathring{C} \neq \emptyset$. Soit $\bar{x} \in \partial C$. Alors il existe un hyperplan d'appui à C en \bar{x} .

7 Lemme de Farkas

\Rightarrow Lemme:

Soient H un espace de Hilbert, $(\xi_j)_{j\in J}\subset H$ et $(\alpha_j)_{j\in J}\subset \mathbb{R}$. On suppoer que le système

$$(\xi_i, x) \le \alpha_i \ \forall j \in J$$

admet au moins une solution.

Soit $(s, \beta) \in H \times \mathbb{R}$. On a équivalence entre les 2 propositions :

1.

$$\forall x \in H, [\forall j \in J, (\xi_j, x) \le \alpha_j \Rightarrow (s, x) \le \beta]$$

2.

$$(s,\beta) \in \overline{cone} ((\xi_i,\alpha_i)_{i \in J} \cup (0,1)) \subset H \times \mathbb{R}$$

⇔ Corollaire:

Sous les mêmes hypothèses avec $\alpha_j = 0 \ \forall j \in J$. On a pour $s \in H$:

1.

$$\forall x \in H, [\forall j \in J, (\xi_j, x) \le 0 \Rightarrow (s, x) \le 0]$$

2.

$$s \in \overline{cone}\left((\xi_j)_{j \in J}\right)$$

⇔ Lemme:

Si C est un cône convexe fermé, alors $C^{**} = C$.

Deuxième partie

Fonctions convexes

1 Définitions et propriétés

$$f: H \to \overline{\mathbb{R}} = \mathbb{R} \bigcup \{+\infty\}$$

♦ Définition:

$$Dom(f) = \{x \in H; f(x) < +\infty\}$$

$$epi(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha \geq f(x)\}$$

$$epi_S(f) = \{(\alpha, x) \in \mathbb{R} \times H, \alpha > f(x)\}$$

On dit que f est propre si f n'est pas identiquement égal à $+\infty$.

On dit que f est convexe si epi(f) est convexe.

On dit que f est concave si -f est convexe.

1 Proposition:

Si f est convexe, alors Dom(f) est convexe.

De plus, f est convexe si et seulement si : $\forall x, y \in Dom(f), \, \forall \lambda \in [0, 1],$

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est strictement convexe si $\forall x,y \in Dom(f),\, x \neq y,\, \forall \lambda \in]0,1[$

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

♦ Définition:

On dit que f est fortement convexe de module α si $\forall x, y \in Dom(f), \forall \lambda \in]0,1[$

$$\frac{\alpha}{2}\lambda(1-\lambda)\|x-y\|^2 + f(\lambda x + (1-\lambda)y) < \lambda f(x) + (1-\lambda)f(y)$$

Il Propriété: opérations conservant la convexité

- 1. Pour $(f_i)_{i\in I}$ une famille quelconque de fonctions convexes, $\sup_{i\in I} f_i$ est convexe.
- 2. $\alpha \geq 0$, si f convexe, alors αf est convexe
- 3. Si f_1 et f_2 convexes, alors $f_1 + f_2$ convexes.

Définition:

Soit $f: H \to \overline{\mathbb{R}}$ et $\alpha \in \overline{\mathbb{R}}$.

On appelle sous ensemble de niveau de f au niveau α noté $\Gamma_{\alpha}(f)$ l'ensemble

$$\Gamma_{\alpha}(f) = \{x \in H; f(x) < \alpha\}$$

Remarque: f convexe $\Rightarrow \Gamma_{\alpha}(f)$ convexe $\forall \alpha \in \mathbb{R}$ Si $\Gamma_{\alpha}(f)$ est convexe $\forall \alpha \in \mathbb{R}$, alors on dit que f est quasi-convexe.

♦ Définition:

Soit $P\subset H.$ On appelle fonction indicatrice de P la fonction :

$$\mathbb{1}_P(x) = \begin{cases} 0 & \text{si} \quad x \in P \\ +\infty & \text{sinon} \end{cases}$$

Remarque : Si P convexe, alors $\mathbb{1}_P$ est convexe. Si $\alpha > 0$, $\alpha \in \mathbb{R}$, alors $\Gamma_{\alpha}(\mathbb{1}_P) = P$ donc $\mathbb{1}_P$ caractérise P.

2 Fonctions d'appui

♦ Définition:

Soit $S \subset H$.

On appelle fonction d'appui à S et on note σ_S la fonction définie par :

$$\sigma_S(d) = \sup_{s \in S} (s, d)$$

Remarque : σ_S est toujours convexe (même si S ne l'est pas).

⇔ Théorème:

Soit S un sous-ensemble non vide de H. Alors $s \in \overline{conv}(S)$ si et seulement si

$$\forall d \in H, (s, d) \le \sigma_S(d)$$

De plus, $\sigma_S = \sigma_{\overline{conv}(S)}$

Remarque : Soient S_1 et S_2 2 convexes fermés. $S_1 = S_2 \Leftrightarrow \sigma_{S_1} = \sigma_{S_2}$.

I Propriété:

Soient S_1 et S_2 deux sous-ensembles de H non vides.

- 1. $\sigma_{S_1+S_2} = \sigma_{S_1} + \sigma_{S_2}$
- 2. $\sigma_{S_1 \cup S_2} = \max{\{\sigma_{S_1}, \sigma_{S_2}\}}$