MATEMATIK 2 - OPVARMNING 4

Hvilke test kan bruges til at afgøre konvergens af tølgende rækker?

a)
$$\sum_{m=3}^{\infty} \frac{1}{m^2 + 2m + 4}$$

a)
$$\sum_{n=3}^{\infty} \frac{1}{n^2 + 2n + 4}$$
 Sammenlighing $\sum_{n=3}^{\infty} \frac{1}{n^2 + 2n + 4} \leq \sum_{n=3}^{\infty} \frac{1}{n^2}$

b)
$$\sum_{n=3}^{\infty} \frac{1}{n^2 - 2n + 4}$$

b)
$$\sum_{n=-2n+4}^{\infty} \frac{A + 2n+4}{bn} = \frac{n^2 - 2n+4}{n^2 + 2n+4} \rightarrow 1$$
 for $n \rightarrow \infty$

NB:
$$an = \frac{1}{n^2 + 2n + 4}$$
, $bn = \frac{1}{n^2 - 2n + 4}$

c)
$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$
 Absoluty

c)
$$\sum_{n=3}^{\infty} \frac{\sin(n)}{n^2} \xrightarrow{Absolut}$$
 $\sum_{n=3}^{\infty} \left| \frac{\sin(n)}{n^2} \right| \leq \sum_{n=3}^{\infty} \frac{1}{n^2}$

d)
$$\sum_{n=3}^{\infty} \frac{\sin(n)}{n}$$

d) $\sum_{n=3}^{\infty} \frac{\sin(n)}{n}$ knower en anden test end de mulige

(Dirichlet test)

e)
$$\sum_{n=3}^{\infty} \frac{(-1)^n}{n^4} \frac{\text{Leibniz}}{\text{Absolut}} \text{ eller}$$
 $\sum_{n=3}^{\infty} \frac{(-1)^n}{n^4} \leq \sum_{n=3}^{\infty} \frac{1}{n^2}$

$$\sum_{n=3}^{\infty} \left| \frac{(-1)^n}{n^{4}} \right| \leq \sum_{n=3}^{\infty} \frac{1}{n^2}$$