

Embedded and Real-Time Systems

Spring 2021

Hamed Farbeh

farbeh@aut.ac.ir

Department of Computer Engineering

Amirkabir University of Technology

Lecture 11

Copyright Notice

This lecture is adopted from IN4343 Real-Time Systems Course 2018 – 2019, Mitra Nasri, Delft University of Technology

Non-preemptive Scheduling

Paper 1:

Mitra Nasri and Gerhard Fohler, "Non-Work-Conserving Non-preemptive Scheduling: Motivations, Challenges, and Potential Solutions," in the Proceedings of the Euromicro Conference on Real-Time Systems (ECRTS),2016, pp.165-175.

Paper 2:

Mitra Nasri and Björn B. Brandenburg, "An Exact and Sustainable Analysis of Non-Preemptive Scheduling", in the Proceedings of the Real-Time Systems Symposium (RTSS), 2017, pp. 1-12

Disclaimer: Afew slides have been taken from Giorgio Buttazzo's website:

http://retis.sssup.it/~giorgio/rts-MECS.html

Buttazzo's book, chapter 4, 8

Agenda

- EDF schedulability analysis
 - Optimality of EDF for periodic tasks
 - EDF response-time analysis
- Non-preemptive scheduling
 - Why non-preemptive execution?
 - Existing schedulability analysis for NP-FP and NP-EDF
 - Behind the scenes!

Things you need to know about work-conserving NP scheduling!

Book: chapter 4

Book: chapter 8

Book: chapter 8

Paper 1, 2

What is the hyperperiod of 5, 10, 20?

20

What is the hyperperiod of 5, 10, 21?

210

EDF

Optimality

The proof comes from Dertouzos 1974

Schedulability test

Liu and Layland 1973

A task set τ is schedulable by EDF if and only if:

$$\sum_{i=1}^{n} \frac{C_i}{T_i} \le 1$$

Assumptions:

- Fully preemptive
- Independent tasks
- No self-suspension
- No scheduling overhead
- $\forall i, D_i = T_i$

EDF schedulability analysis for **D** < **T**

Processor Demand Criterion [Baruah '90]

In any interval of length L, the computational demand g(0, L) of the task set must be no greater than L.

$$\forall L > 0, \qquad g(0,L) \leq L$$

Applicable to periodic tasks with $\forall i, \phi_i = 0$

Understanding the processor demand (g function)

• The demand in $[t_1, t_2]$ is the computation time of those tasks arrived at or after t_1 with deadline less than or equal to t_2 :

$$g(t_1, t_2) = \sum_{\forall J_{k,j}, t_1 \le a_{k,j} < d_{k,j} \le t_2} C_k$$

Demand of a periodic task set

$$g_i(0, L) = \max \left\{ 0, \left\lfloor \frac{L - D_i + T_i}{T_i} \right\rfloor \cdot C_i \right\}$$

$$g_i(0, L) = \max \left\{ 0, \left[\frac{L - D_i}{T_i} + 1 \right] \cdot C_i \right\}$$

$$g_i(0, \mathbf{L}) = \max \left\{ 0, \left(\left\lfloor \frac{\mathbf{L} - D_i}{T_i} \right\rfloor + 1 \right) \cdot C_i \right\}$$

$$g(0, L) = \sum_{i=1}^{n} g_i(0, L)$$

Examples

$$g_i(0, \mathbf{L}) = \max \left\{ 0, \left[\frac{\mathbf{L} - D_i}{T_i} + 1 \right] \cdot C_i \right\}$$

L
$$g_2(0,L)$$
 L $g_2(0,L)$
4 $g_2(0,4) = \left[\frac{4-4}{6}+1\right] \cdot 2 = 2$ 9 $g_2(0,9) = \left[\frac{9-4}{6}+1\right] \cdot 2 = 2$
5 $g_2(0,5) = \left[\frac{5-4}{6}+1\right] \cdot 2 = 2$ 10 $g_2(0,10) = \left[\frac{10-4}{6}+1\right] \cdot 2 = 4$
6 $g_2(0,6) = \left[\frac{6-4}{6}+1\right] \cdot 2 = 2$ 11 $g_2(0,11) = \left[\frac{11-4}{6}+1\right] \cdot 2 = 4$
7 $g_2(0,7) = \left[\frac{7-4}{6}+1\right] \cdot 2 = 2$ 15 $g_2(0,15) = \left[\frac{15-4}{6}+1\right] \cdot 2 = 4$
8 $g_2(0,8) = \left[\frac{8-4}{6}+1\right] \cdot 2 = 2$ 16 $g_2(0,16) = \left[\frac{16-4}{6}+1\right] \cdot 2 = 6$

When does Demand Bound Function change?

$$\frac{\forall L > 0,}{g(0,L) \le L} \qquad g(0,\underline{L}) = \sum_{i=1}^{n} g_i(0,L) \qquad g_i(0,\underline{L})$$

$$g(0, \mathbf{L}) = \sum_{i=1}^{n} g_i(0, \mathbf{L}) \qquad g_i(0, \mathbf{L}) = \max \left\{ 0, \left\lfloor \frac{\mathbf{L} - D_i}{T_i} + 1 \right\rfloor \cdot C_i \right\}$$

Bounding complexity

- Since g(0, L) is a step function, we can check feasibility only at deadline points, where g changes.
- If tasks are synchronous and $U \le 1$, we can check the feasibility up to the hyperperiod H:

$$H = lcm(T_1, \ldots, T_n)$$

Bounding complexity: finding a safe upper bound for the analysis window

An upper bound on g

$$g(0,L) = \sum_{i=1}^{n} \left\lfloor \frac{L + T_i - D_i}{T_i} \right\rfloor \cdot C_i \leq G(0,L) = \sum_{i=1}^{n} \left(\frac{L + T_i - D_i}{T_i} \right) \cdot C_i$$

$$|x| \leq x$$

$$G(0,L) = \sum_{i=1}^{n} L \frac{C_i}{T_i} + \sum_{i=1}^{n} (T_i - D_i) \cdot \frac{C_i}{T_i}$$

$$=L\cdot U+\sum_{i=1}^{n}(T_{i}-D_{i})\cdot U_{i}$$

g(0,L) < G(0,L)

Limiting L

 $U \leq 1$

$$G(0,L) = L \cdot U + \sum_{i=1}^{n} (T_i - D_i) \cdot U_i$$

For any $L \ge L^*$, it is meaningless to check if $g(0,L) \le L$ because it will obviously be smaller! Hence, we can stop the search at L^* .

Processor Demand Test

$$\forall L \in D, \qquad g(0,L) \leq L$$

Where D is the set of deadline points for which g(0, L) must be calculated:

$$D = \{d_{i,j} \mid d_{i,j} \le \min\{H, L^*\}\}$$

$$H = lcm(T_1, ..., T_n)$$

$$L^* = \frac{\sum_{i=1}^{n} (T_i - D_i) \cdot U_i}{1 - II}$$

FP v.s. EDF

$ au_{l}$	C_i	T_i	D_i
$ au_1$	2	5	5
$ au_2$	4	10	8
$ au_3$	4	20	17

Context switches

How many preemptions?

3 preemptions in jobs $J_{2,1}, J_{3,1}, J_{2,2}$

How many preemptions?

1 preemption in job $J_{3,1}$

In average, FP has more context switches

What do you think will happen for FP if U>1?

FP under permanent overload starvation for low priority tasks

$$U = \frac{4}{8} + \frac{6}{12} + \frac{5}{20} = 1.25$$

$$\tau_{1}$$

$$\tau_{2}$$

$$\tau_{3}$$

$$\tau_{3}$$

$$\tau_{48} = \frac{4}{12} + \frac{6}{20} = 1.25$$

- High priority tasks execute at the proper rate
- Low priority tasks are completely blocked

EDF under permanent overload

$$U = \frac{4}{8} + \frac{6}{12} + \frac{5}{20} = 1.25$$

$$\tau_1$$

$$\tau_2$$

$$\tau_3$$

$$\tau_3$$

- All tasks execute at a slower rate
- No task is blocked

Schedulability analysis

	$\mathbf{D_i} = \mathbf{T_i}$	$D_i \le T_i$	
RM	Suff.: polynomial $O(n)$ LL: $\sum U_i \le n(2^{1/n}-1)$ HB: $\prod (U_i+1) \le 2$ Exact pseudo-polynomial RTA	$\begin{array}{ccc} & \textit{pseudo-polynomial} \\ & \text{Response Time Analysis} \\ & \forall i & R_i \leq D_i \\ \\ & R_i = & C_i + \sum_{k=1}^{i-1} \left \lceil \frac{R_i}{T_k} \right \rceil C_k \end{array}$	
EDF	polynomial: $O(n)$ $\sum U_i \leq 1$	$egin{aligned} & extit{pseudo-polynomial} \ & ext{Processor Demand Analysis} \ & orall L > 0, g(0,L) \leq \ L \end{aligned}$	

FP's response-time analysis is usually faster than EDF

EDF

- Higher schedulability
- Reduces context switches
- During overloads does not starve low-priority tasks

FP

- Simpler to implement
- Widely implemented in most operating systems
- More predictable during overloads

How does DM compare to EDF?

Agenda

- EDF schedulability analysis
 - Optimality of EDF for periodic tasks
 - EDF response-time analysis
- Non-preemptive scheduling
 - Why non-preemptive execution?
 - Existing schedulability analysis for NP-FP and NP-EDF
 - Behind the scenes!

Things you need to know about work-conserving NP scheduling!

1- Context switch cost

It is the time taken by the scheduler to suspend the running task, switch the context, and dispatch the new incoming task.

2- Cache-related preemption delay (CRPD)

It is the delay introduced by high-priority tasks that evict cache lines containing data used in the future:

2- Cache-related preemption delay (CRPD)

It is the delay introduced by high-priority tasks that evict cache lines containing data used in the future:

3- larger worst-case execution time

Preemptions cause CRPD which in turn increases the WCET of the task

The amount of CRPD depends on the number of preemptions a job suffers

Task experiencing preemptions by higher priority tasks:

4 Pipeline cost

time to flush the pipeline when a task is interrupted and to refill it when task is resumed.

5 Bus cost

time spent waiting for the bus due to additional conflicts with I/O devices, caused by extra accesses to the RAM for the extra cache misses.

A preemption may cause more preemptions

the extra execution time also increases the number of preemptions:

Preemption cost can be very large

 WCETs may increase up to 35% in the presence of preemptions (less efficiency)!

Advantages of NP scheduling

- It reduces context-switch overhead:
 - Making WCETs smaller and more predictable
- It simplifies the access to shared resources:
 - No semaphores are needed for critical sections
- It reduces <u>stack</u> size:
 - Task can share the same stack, since no more than one task can be in execution
- It allows achieving small I/O Jitter:
 - "finishing_time start_time" has a low variation

Advantages of NP scheduling

• In fixed-priority systems, non-preemptive execution can even improve schedulability (in some cases)

So, why preemptive execution?

Disadvantages of NP scheduling

• In general, NP scheduling reduces schedulability because of introducing blocking delays on the high-priority tasks

Disadvantages of NP scheduling

 The utilization bound under non-preemptive scheduling drops to zero

 $U_1 + U_2 \sim 0$

Infeasible! Despite having $U{\sim}0$

Disadvantages of NP scheduling

Anomalies

Anomaly is a situation in which a deadline miss happens when we don't expect it to happen!

Example: the task set is feasible on the current processor but when we use a faster one, it becomes unschedulable!