FINAL PROJECT FOR COURSE MACHINE LEARNING

Establishment of neural network model and analysis of Radar Traffic Data

Students:

Linxue Lai, Weicheng He

Professor:

Christophe Cerisara

Dec. 14th ,2020

Contents

1 Introduction	3
2 Data analysis and processing	3
2.1 Data description	3
2.2 Exploratory data analysis	4
3 Models	7
3.1 LSTM	7
3.2 GRU	10
3.3 Comparison	13
4 Conclusion	13
5 References	14
Annexes 1: map visualization	15
Annexes 2: main.py	16

1 Introduction

This report is about our final project for the course Machine Learning [1]. We worked in a team of two members. Our task is to build a deep learning model that predicts the traffic volume. The data that should be analyzed is called "Radar Traffic Data", which can be download in Kaggle [2]. The traffic data is collected from radar sensors deployed by the city of Austin.

This report is developed by the following parts: data analysis and processing, model construction and parameter setting, experimental process and conclusions.

The following is our work plan:

Duration	task
16/11/2020 - 23/11/2020	 Start the project: create a github project for our co-work, create a shared Google doc and a shared kaggle notebook for sharing ideas or articles referring to our project. Conduct preliminary data analysis and read related papers
24/11/2020 - 01/12/2020	- Chose the appropriate time series analysis model: LSTM, GRU
02/12/2020 - 08/12/2020	(Weicheng HE) Construction of model LSTM and improve model. (Linxue LAI) Construction of model GRU and improve model.
09/12/2020 - 13/12/2020	Improve codes, summarize experimental results, write report

2 Data analysis and processing

In order to facilitate data visualization and data analysis, we use the shareable notebook of the kaggle platform for data analysis and processing.

2.1 Data description

Traffic data collected from the several Wavetronix radar sensors deployed by the City of Austin. Dataset is augmented with geo coordinates from sensor location dataset.

The following is an overview of some of the data:

	location_name	location_latitude	location_longitude	Year	Month	Day	Day of Week	Hour	Minute	Time Bin	Direction	Volume
0	2021 BLK KINNEY AVE (NW 300ft NW of Lamar)	30.248691	-97.770409	2018	1	23	2	22	15	22:15	None	4
1	CAPITAL OF TEXAS HWY / LAKEWOOD DR	30.371674	-97.785660	2017	12	16	6	19	45	19:45	NB	103
2	400 BLK AZIE MORTON RD (South of Barton Spring	30.264245	-97.765802	2018	1	23	2	21	45	21:45	SB	44
3	400 BLK AZIE MORTON RD (South of Barton Spring	30.264245	-97.765802	2018	1	23	2	21	45	21:45	NB	13
4	2021 BLK KINNEY AVE (NW 300ft NW of Lamar)	30.248691	-97.770409	2018	1	23	2	22	15	22:15	None	0
5	BURNET RD / PALM WAY (IBM DRIVEWAY)	30.402286	-97.717606	2018	1	23	2	22	15	22:15	SB	26
6	BURNET RD / PALM WAY (IBM DRIVEWAY)	30.402286	-97.717606	2018	1	23	2	22	15	22:15	SB	31
7	BURNET RD / PALM WAY (IBM DRIVEWAY)	30.402286	-97.717606	2018	1	23	2	22	15	22:15	SB	12
8	BURNET RD / PALM WAY (IBM DRIVEWAY)	30.402286	-97.717606	2018	1	23	2	22	15	22:15	NB	48
9	BURNET RD / PALM WAY (IBM DRIVEWAY)	30.402286	-97.717606	2018	1	23	2	22	15	22:15	NB	40

Figure 1: Overview of dataset

2.2 Exploratory data analysis

As traffic flow data has obvious periodic change characteristics, we consider using the commonly used LSTM model and GRU model for time series analysis.

There is a question to consider: Is it necessary to consider both time and space factors?

In order to simplify the problem and make it easier to understand, we first consider the changes of traffic volume at a single location over time. By looking at the data of a certain location in a certain period of time, we found that the data has an obvious cycle nature of daily changes. For example:

Figure 2: Location 1 - 3201 BLK S LAMAR BLVD (BROKEN SPOKE)

Figure 3: Location 2 - 100 BLK S CONGRESS AVE (Congress Bridge)

The number of locations: 23 different locations by location_name; according to actual latitude and longitude: 18 different locations.

CAPITAL OF TEXAS HWY / WALSH TARLTON LN	446285	location lat
100 BLK S CONGRESS AVE (Congress Bridge)	387083	
CAPITAL OF TEXAS HWY / LAKEWOOD DR	383244	30.257986
700 BLK E CESAR CHAVEZ ST	328270	30.259791
BURNET RD / PALM WAY (IBM DRIVEWAY)	301900	30.371674
BURNET RD / RUTLAND DR	299305	30.261476
LAMAR BLVD / SANDRA MURAIDA WAY (Lamar Bridge)	274962	30.402286
LAMAR BLVD / SHOAL CREEK BLVD	268291	30.383427
1000 BLK W CESAR CHAVEZ ST (H&B Trail Underpass)	263236	
LAMAR BLVD / MANCHACA RD	256531	30.266800
1612 BLK S LAMAR BLVD (Collier)	219204	30.292767
LAMAR BLVD / N LAMAR SB TO W 15TH RAMP	218095	30.268652
CONGRESS AVE / JOHANNA ST (Fulmore Middle School)	209784	30.243875
3201 BLK S LAMAR BLVD (BROKEN SPOKE)	207636	30.250802
LAMAR BLVD / ZENNIA ST	190724	30.279604
CAPITAL OF TEXAS HWY / CEDAR ST	182919	
400 BLK AZIE MORTON RD (South of Barton Springs Rd)		30.244513
2021 BLK KINNEY AVE (NW 300ft NW of Lamar)	54432	30.240471
LAMAR BLVD / SANDRA MURAIDA WAY (Lamar Bridge)	2	30.319905
LAMAR BLVD / N LAMAR SB TO W 15TH RAMP	1	30.339468
LAMAR BLVD / SHOAL CREEK BLVD	1	30.264245
CAPITAL OF TEXAS HWY / CEDAR ST	1	
LAMAR BLVD / MANCHACA RD	1	30.248691
Name: location_name, dtype: int64		dtype: int64

location_latitude	location_longitude	
30.257986	-97.812248	446285
30.259791	-97.746034	387083
30.371674	-97.785660	383244
30.261476	-97.737262	328278
30.402286	-97.717606	301900
30.383427	-97.724075	299305
30.266800	-97.756051	274964
30.292767	-97.747198	268292
30.268652	-97.759929	263236
30.243875	-97.781705	256532
30.250802	-97.765746	219204
30.279604	-97.750472	218096
30.244513	-97.751737	209784
30.240471	-97.786667	207636
30.319905	-97.730292	198724
30.339468	-97.803558	182928
30.264245	-97.765802	111954
30.248691	-97.770409	54432
dtype: int64		

Figure 4: Location names

The following is a map-based visualization (see the codes in annexes 1):

Figure 5: location visualization

We use the process_data method in the code data/data.py for data processing:

First, take the data of *location* = '100 BLK S CONGRESS AVE (Congress Bridge)' from March to June 2018 as the training set. The July data will be used as the test set.

Second, we use the training set data to implement a standardized object *scaler*, and then use the *scaler* to standardize the training set.

Since the time series prediction task needs to use historical data to predict future data, we use the time lag variable *lags* to divide the data, and finally obtain a data set of (*samples*, *lags*).

The divided data set still has timing characteristics in the arrangement order. Although *keras* can choose to shuffle the data during training, the execution order is to sample the data first and then shuffle, and the sampling process is still in order. of. Therefore, we use the method *np.random.shuffle* to shuffle the data and disrupt the order of the data.

```
Training set
    df_street_1836=df_street[(df_street['Year']==2018)&(df_street['Month']<7)]</pre>
.copy()
    # sum of volume by time bin
    grb_datetime_flow_sum=df_street_1836.groupby('datetime')['Volume'].sum()
    train=pd.DataFrame({'datetime':grb_datetime_flow_sum.index,'volume':grb_da
tetime_flow_sum})
    # Normalization of training set
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    scaler = MinMaxScaler(feature_range=(0, 1)).fit(train['volume'].values.res
hape(-1, 1))
    result=scaler.transform(train['volume'].values.reshape(-
1, 1)).reshape(1, -1)[0]
    train=[]
    for i in range(lags, len(result)):
        train.append(result[i - lags: i + 1])
    train = np.array(train)
    np.random.shuffle(train)
    X_train = train[:, :-1]
    y train = train[:, -1]
    X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
```

The processing of the test set is similar to the above process:

```
#Test set
   df_street_1807=df_street[(df_street['Year']==2018) & (df_street['Month']==
7)]
```



```
grb_datetime_flow_sum=df_street_1807.groupby('datetime')['Volume'].sum()
    validation=pd.DataFrame({'datetime':grb datetime flow sum.index,'volume':g
rb_datetime_flow_sum})
    # Normalization of test set
    from sklearn.preprocessing import StandardScaler, MinMaxScaler
    scaler = MinMaxScaler(feature_range=(0, 1)).fit(validation['volume'].value
s.reshape(-1, 1))
    result=scaler.transform(validation['volume'].values.reshape(-
1, 1)).reshape(1, -1)[0]
    test=[]
    for i in range(lags, len(result)):
        test.append(result[i - lags: i + 1])
    test = np.array(test)
    np.random.shuffle(test)
    X_test = test[:, :-1]
   y_test = test[:, -1]
    X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
    y_test = scaler.inverse_transform(y_test.reshape(-1, 1)).reshape(1, -1)[0]
```

3 Models

According to data analysis results, on a certain location, traffic flow has a significantly periodic nature. So, we decided to simplify the problem by only considering time information and traffic flow.

Recurrent neural networks are a generalization of feedforward neural networks, which have been devised for handling temporal and predictive problems. We built two types of recurrent neural networks: an LSTM model and a GRU model. Each model was trained and tested traffic flow data at a certain location. At the end, the performances of two models were compared.

3.1 LSTM

3.1.1 Introduction to LSTM

Long short-term memory (LSTM) is a particular kind of RNN, which have been explicitly designed to avoid the long-term dependency issue, like vanishing-gradient problem encountered in normal RNNs. Since it is widely used to process and predict events with time series, LSTM easily became the first model that we considered for this case.

3.1.2 Structure of LSTM model

The capability of learning long-term dependencies is due to the structure of the LSTM unit, which is composed of a cell, an input gate, an output gate and a forget gate. The cell remembers values over arbitrary time intervals and the three gates regulate the flow of information into and out of the cell.

The advantage of an LSTM cell compared to a common recurrent unit is its cell memory unit. The cell vector has the ability to encapsulate the notion of forgetting part of its previously stored memory, as well as to add part of the new information.

Figure 6: LSTM network schematic diagram

In this case, we choose to implement a two hidden layer LSTM model. The intuition is that the deep LSTM network is able to learn the temporal dependencies of the aggregate traffic flow: the LSTM unit of each layer extract a fixed number of features which are passed to the next layer. The depth of the network is to increase the accuracy of the prediction. In this case, we consider that two-layer LSTM is adequate.

Then the LSTM layer is accompanied by a Dropout layer, which help to prevent overfitting by ignoring randomly selected neurons during training, and hence reduces the sensitivity to the specific weights of individual neurons. 20% is set as a good compromise between retaining model accuracy and preventing overfitting.

In the data process step, we calculated the aggregate traffic flow measurements for every 15 minutes. Then a time lag of one hour was set for dataset preparation. In other words, we used a input which is aggregate traffic flow measurements during one hour and an output that represents traffic flow volume after one hour to train the model.

Figure 7: 2 hidden-layer LSTM model structure

The implementation of this LSTM model is done in Python, using Keras and Tensorflow, as backend. The chosen hyper-parameters are reported in Table 1. They were tuned in order to get a good tradeoff between the prediction accuracy and the training time.

Hyperparameters	Value			
Initial Learning Rate	0.001			
Num. of Epochs	600			
LSTM layer neuron size	64, 64			
Batch size	32			
Optimization Algorithm	rmsprop			
Loss Function	MSE			

Table 1: Training Hyperparameters

3.1.3 Results of LSTM model

We evaluate the prediction error by serval assessment indicator as shown in the Table 2.

Metrics	MAE	MSE	RMSE	MAPE	R2	Explained variance score
LSTM	27.58	1289.14	35.90	12.66%	0.9636	0.9654

Table 2: LSTM Model assessment

3.2 GRU

3.2.1 Introduction to GRU

GRU (Gate Recurrent Unit) is a type of Recurrent Neural Network (RNN). Like LSTM (Long-Short Term Memory), it is also proposed to solve problems such as long-term memory and gradients in back propagation.

In many cases, GRU and LSTM are almost the same in actual performance, so why do we use the newcomer GRU (proposed in 2014).

"We choose to use Gated Recurrent Unit (GRU) (Cho et al., 2014) in our experiment since it performs similarly to LSTM (Hochreiter & Schmidhuber, 1997) but is comutationally cheaper." (R-NET: MACHINE READING COMPREHENSION WITH SELF-MATCHING NETWORKS (2017))

3.2.2 Structure of GRU model

The input and output structure of GRU is the same as that of ordinary RNN. There is a current input x^t and a hidden state h^{t-1} passed down from the previous node. This hidden state contains information about the previous node. Combining x^t and h^{t-1} , GRU will get the output y^t of the current hidden node and the hidden state ht passed to the next node.

Figure 8: (a) GRU input and output structure; (b) GRU network schematic diagram

We use a 2-hidden layer GRU structure, as shown below:

Figure 9: 2-hidden layer GRU structure

The model implementation code is as follows:

In the code *main.py*:

```
lags=4
units=[lags,64,64,1]
```

In the code model/model.py:

```
def get_gru(units):
    """GRU(Gated Recurrent Unit)
    Build GRU Model.
# Arguments
    units: List(int), number of input, output and hidden units.
# Returns
    model: Model, nn model.
"""

model = Sequential()
model.add(GRU(units[1], input_shape=(units[0], 1), return_sequences=True))
model.add(GRU(units[2]))
model.add(Dropout(0.2))
model.add(Dense(units[3], activation='sigmoid'))

return model
```


The experiment procedure (find code main.py in annexes 2):

One of the locations is selected, and a location in a certain period of time is selected for GRU training, and only time sequence is considered.

The data is at 15min intervals.

We run python main.py to do our whole experiment, the code will do firstly initialization of some important parameters in *Class predict_volume*:

```
def __init__(self,raw_data,location,units,lags,config):
    self.raw_data=raw_data
    self.location=location
    self.units=units
    self.lags=lags
    self.config=config
    self.X_train, self.y_train, self.X_test, self.y_test, self.scaler = pr
ocess_data(self.raw_data,self.location,self.lags)
```

Then train the gru_model for our prepared dataset.

3.2.3 Results of GRU model

Finally. We use the trained model to make predictions on the test set and evaluate the results.

Here use MAE, MSE, RMSE, MAPE, R2, explained_variance_score several indicators to evaluate the regression prediction results.

```
def MAIN():
    lags = 4
    config = {"batch": 256, "epochs": 600}
    raw_data = 'data/Radar_Traffic_Counts.csv'
    location='100 BLK S CONGRESS AVE (Congress Bridge)'
    units=[lags,64,64,1]
    pv=predict_volume(raw_data,location,units,lags,config)
    pv.training()
    pv.model_evaluation()
```

We evaluate the prediction error by serval assessment indicator as shown in the Table 3.

Metrics	MAE	MSE	RMSE	MAPE	R2	Explained variance score
GRU	26.00	1284.67	35.84	12.25%	0.9671	0.9671

Table 3: GRU Model assessment

3.3 Comparison

As shown in the Figure 5 below, the two types of RNN model have very similar performance. Both of them can achieve an accurate enough prediction results on traffic flow volume. By looking at the different model assessment indicators, we can get a more precise comparison. The two models have almost the same R squared value: around 0.96, which means 96% of the variance for the prediction target can be explained by the predictors in the deep learning model. In addition, GRU has a slightly lower MAPE, indicating that GRU shows a little better performance considering the percentage error.

Figure 10: prediction plot of two models

4 Conclusion

In this project we propose a LSTM model and a GRU model for traffic flow prediction. We compared the predictions of the LSTM and GRU models and found that in our research, the GRU NN model performed slightly better than the LSTM NN model. On average, the MAE and MSE of the GRU NN model are smaller than those of the LSTM NN model.

In future work, the influence of location factors can be considered. Combining the influence and relation of different locations and the factor of time, we can consider using methods such as Spatial-Temporal Graph Convolutional Networks for traffic flow prediction.

5 References

- [1] course link: https://members.loria.fr/CCerisara/#courses/machine_learning/
- $\label{lem:com_vinayshanbhag_radar-trafficdata} \end{com_vinayshanbhag_radar-trafficdata} at a ?select = Radar_Traffic_Counts.csv$
 - [3] Find codes of this project in github: https://github.com/LinxueLAI/FinalProject

Annexes 1: map visualization

```
import folium
import pandas as pd
df = pd.read_csv("/kaggle/input/radar-traffic-data/Radar_Traffic_Counts.csv")
# define the world map
world_map = folium.Map()
# display world map
world_map
lat_lon = pd.DataFrame(df,columns=['location_name','location_latitude','location_longitude'])
lat_lon.drop_duplicates(['location_name','location_latitude','location_longitude'], keep='first',
inplace=True)
print(lat_lon)
lat_lon.drop_duplicates(['location_latitude','location_longitude'], keep='first', inplace=True)
print(lat_lon)
print(len(lat_lon))
# get the data in map
limit = len(lat_lon)
data = lat_lon.iloc[0:limit, :]
latitude,longitude = lat_lon['location_latitude'][0],lat_lon['location_longitude'][0]
# Instantiate a feature group in the dataframe
index = folium.map.FeatureGroup()
# Loop through the data and add each to the feature group
for lat, lng, in zip(lat_lon.location_latitude, lat_lon.location_longitude):
     index.add_child(
          folium.CircleMarker(
               [lat, lng],
               radius=7, # define how big you want the circle markers to be
               color='yellow',
               fill=True,
               fill_color='red',
               fill_opacity=0.4
          )
     )
# Add to map
v_map = folium.Map(location=[latitude, longitude], zoom_start=12)
v_map.add_child(index)
```


Annexes 2: main.py

```
import numpy as np
import pandas as pd
from data.data import process_data
from evaluation import MAPE, eva_regress, plot_results
from model.model import get_lstm, get_gru
from train import train_model
from tensorflow.keras.models import Model,load_model
import matplotlib.pyplot as plt
class predict_volume():
  def __init__(self,raw_data,location,units,lags,config):
     self.raw_data=raw_data
     self.location=location
     self.units=units
     self.lags=lags
     self.config=config
     self.X_train, self.y_train, self.X_test, self.y_test, self.scaler = process_data(self.raw_data
,self.location,self.lags)
  def training(self):
     gru_model= get_gru(self.units)
     train_model(gru_model, self.X_train, self.y_train, 'GRU', self.config)
     lstm_model= get_lstm(self.units)
     train_model(lstm_model, self.X_train, self.y_train, 'LSTM', self.config)
  def model_evaluation(self):
     y_preds = []
     lstm = load_model('model/LSTM.h5')
     gru = load model('model/GRU.h5')
     models = [lstm, gru]
     names = ['LSTM', 'GRU']
     for name, model in zip(names, models):
       file = 'images/' + name + '.png'
       # plot_model(model, to_file=file, show_shapes=True) # pydotplus.graphviz.Invocatio
nException: GraphViz's executables not found
       predicted = model.predict(self.X_test)
       predicted = self.scaler.inverse_transform(predicted.reshape(-1, 1)).reshape(1, -1)[0]
       y_preds.append(predicted[:120])
       print(name)
       eva_regress(self.y_test, predicted)
```



```
plot_results(self.y_test[: 120], y_preds, names)

def MAIN():
    lags = 4
    config = {"batch": 256, "epochs": 600}
    raw_data = 'data/Radar_Traffic_Counts.csv'
    location='100 BLK S CONGRESS AVE (Congress Bridge)'
    units=[lags,64,64,1]
    pv=predict_volume(raw_data,location,units,lags,config)
    pv.training()
    pv.model_evaluation()

if __name__ == '__main__':
    MAIN()
```