SoftSpokenOT: Communication–Computation Tradeoffs in OT Extension

Crypto 2022 · https://ia.cr/2022/192

Lawrence Roy July 3, 2022 Presented by Hongrui Cui

^{*} Some acknowledgments?

Introduction

- Improving IKNP-style OTe
- Advantages: Minicrypt construction

of OTs

small (\sim 100)

medium ($\sim 1,000$)

large ($\sim 1,000,000$)

Assumptions

LWE/DDH

PRG/CRHF

LPN*

Advantages

None

Light Comp Heavy Comm Heavy Comp Light Comm

Performance

	Semi-honest Security					Malicious Security		
Protocol	Communication		Time (ms)			Time (ms)		
	KB	$\mathrm{bits}/\mathrm{OT}$	localhost	LAN	WAN	localhost	LAN	WAN
IKNP [IKNP03] / KOS [KOS15]	160010	128	391	1725	15525	443	1802	15662
SoftSpoken $(k=1)$	160009	128	243	1590	15420	<u>298</u>	1637	15648
SoftSpoken $(k=2)$	80009	64	210	815	7730	255	893	7985
SoftSpoken $(k=3)$	53759	43	<u>223</u>	568	5208	322	677	5419
SoftSpoken $(k=4)$	40008	32	261	$\underline{433}$	3995	311	$\underline{530}$	4114
SoftSpoken $(k = 5)$	32510	26	337	348	3271	454	465	3447
SoftSpoken $(k=6)$	27509	22	471	488	2811	588	613	2985
SoftSpoken $(k=7)$	23760	19	777	843	2380	899	966	2554
SoftSpoken $(k = 8)$	20008	16	1259	1314	<u>1916</u>	1293	1322	2130
SoftSpoken $(k=9)$	18759	15	2302	2338	2439	2460	2457	2590
SoftSpoken $(k = 10)$	16259	13	3984	3983	4097	4126	4132	4223
Ferret [YWL ⁺ 20]	2976	2.38	2156	2160	2825	2240	2242	3108
Silent (Quasi-cyclic) [BCG ⁺ 19a]	127	0.10	7735	7736	8049			
Silent (Silver, weight 5) [CRR21]	<u>127</u>	0.10	613	613	746			

Table 1: Time and communication required to generate 10⁷ OTs, averaged over 50 runs. The best entry in each column is **bolded**, and the second best is <u>underlined</u>. Communication costs for maliciously secure versions are within 10 KB of the semi-honest ones. The setup costs are included.

Main Techniques

Revisiting IKNP

Outputs $U, V := W' \oplus C \cdot \operatorname{diag}(\Delta)$

 $C := U \oplus U'$

■ Main overhead: sending C $|C| = \#OT * \kappa$

Revisiting IKNP

Hash Correlated-OT to Random-OT

$$oxed{ egin{array}{c|c} oldsymbol{\mathsf{V}} &= oxed{ egin{array}{c|c} oxed{\mathsf{W}} &- oxed{ oxed{\mathsf{u}}} & imes oxed{\mathsf{Rep}(\kappa)} imes oxed{\Delta_1} \ \dot{\ddots} \ \Delta_{\kappa} \end{array} }$$

$$egin{aligned} y_0 &:= H(W - 0 \cdot ec{\Delta}) \ y_1 &:= H(W - 1 \cdot ec{\Delta}) \end{aligned}$$

$$y_u := H(W - u \cdot \vec{\Delta})$$

Recall $\mathbf{u} := \mathbf{m}_0 \oplus \mathbf{m}_1$

Sender's Security:
 H-preimage κ-hamming distance

Receiver's Security: PRG and Base-OT security

Reducing Derandomization Complexity using PPRF

Repeat $\lceil \kappa/k \rceil$ times

 κ -bit entropy

Step 1: From Base-OT to \mathbb{F}_{2^k} -VOLE

■ Use punctured PRF to get $(2^k - 1)$ -out-of- 2^k OT

Step 1: Consistency Checks

- Secure against malicious P_B
- \blacksquare Malicious P_A may launch selective failure attack.

$$P_A$$
 $s := \sum_{x} s_x$
 $\tau := H(F_{000}, ..., F_{111})$

Recovers s_{x^*} from sChecks $\tau := H(F_{000}^*, ..., F_{111}^*)$

Simulator can extract F, L from \mathbf{t} , τ , s

Step 1: Building Small Field VOLE

$$P_{A} \qquad P_{B}$$

$$F : \mathbb{F}_{2^{k}} \to \{0,1\}^{\kappa} \longrightarrow \mathbb{F}_{2^{k}} \to \mathbb{F}_{2^{k}}, F^{*} : F \setminus \{x^{*}\}$$

$$PRG : \mathbb{F}_{2}^{\kappa} \to \mathbb{F}_{2}^{\ell}$$

$$\mathbf{u} := \sum_{x} PRG(F(x)) \qquad \Delta := x^{*}$$

$$\mathbf{v} := \sum_{x} -x \cdot PRG(F(x)) \qquad \mathbf{w} := \sum_{x} (\Delta - x) PRG(F(x))$$

Step 2: From \mathbb{F}_{2^k} -VOLE to Subspace VOLE

Goal:

Step 2-1: Sending Syndrome for Correction

Step 2-2: Consistency Checking

 \blacksquare P_A may send incorrect C, so P_B samples $R: \mathbb{F}_{2^k}^{\ell} \to \mathbb{F}_{2^k}^m$ for checking

- Define $[U\bar{C}] := U'T_{C}^{-1} [0C]$
- $lackbox{\black} ar{m{U}} := m{R}m{U} rack{ ilde{V}}, ar{m{V}} := m{R}m{\nabla} rack{ ilde{V}}$
- check $\iff \bar{V} + [\bar{U} \ R\bar{C}] \operatorname{diag}(\vec{\Delta}) = 0$
- Let $||[\bar{U} R\bar{C}]||_0 = t$, P_B aborts with probability $2^{-k \cdot t}$
- We only consider small t
- The value of \bar{U} is limited to a small set \mathcal{W}_{pre}

Step 2-2: Defining Functionality

Pre-commitment witness Ū

$\mathcal{F}_{VOLE}^{p,q,\mathcal{C},\ell,\mathcal{L}}$ if P_S is corrupted: recv. $U \in \mathbb{F}_p^{\ell \times k_{\mathcal{C}}}, V \in \mathbb{F}_q^{\ell \times n_{\mathcal{C}}}$ from \mathcal{A} else: $U \stackrel{\$}{\leftarrow} \mathbb{F}_p^{\ell \times k_{\mathcal{C}}}, V \stackrel{\$}{\leftarrow} \mathbb{F}_q^{\ell \times n_{\mathcal{C}}}$ if P_R is corrupted: recv. $\tilde{\Delta} \in \mathbb{F}_q^{n_{\mathcal{C}}}, W \in \mathbb{F}_q^{\ell \times n_{\mathcal{C}}}$ from \mathcal{A} $V := -UG_{\mathcal{C}}\operatorname{diag}(\bar{\Delta}) + W$ else: $\Delta \leftarrow \mathbb{F}_a^{n_{\mathcal{C}}}$ $W := UG_{\mathcal{C}}\operatorname{diag}(\bar{\Delta}) + V$ send U, V to P_S Send/Abort($\bar{\Delta}, W, \mathcal{L}$)

```
\mathcal{F}_{\mathsf{VOLE-pre}}^{p,q,\mathcal{C},\ell,\mathcal{L},M}
if P_S is malicious:
      recv. W_{\text{pre}} \subseteq \{0,1\}^* \text{ from } A
     recv. U_{\text{pre}} \colon \mathcal{W}_{\text{pre}} \to \mathbb{F}_{p}^{\ell \times k_{\mathcal{C}}} from \mathcal{A}
     recv. V_{\text{pre}} \colon \mathcal{W}_{\text{pre}} \times \mathbb{F}_q^{n_{\mathcal{C}}} \to \mathbb{F}_q^{\ell \times n_{\mathcal{C}}} from \mathcal{A}
      recv. L_{\text{pre}} : \mathcal{W}_{\text{pre}} \to \mathcal{L} \text{ from } \mathcal{A}
send "commit" to P_R
run \mathcal{F}_{VOLF}^{p,q,\mathcal{C},\ell,\mathcal{L}}
instead of Send/Abort:
      if P_S is malicious:
           recv. w_{\text{pre}} \in \mathcal{W}_{\text{pre}}, \bar{L}_{\text{off}} \in \mathbb{F}_q^{n_{\mathcal{C}}} from \mathcal{A}
           if U \neq U_{\text{pre}}(w_{\text{pre}}) \vee \underline{V} \neq V_{\text{pre}}(w_{\text{pre}}, \dot{\Delta}) \vee \dot{\Delta} + \dot{L}_{\text{off}} \notin L_{\text{pre}}(w_{\text{pre}})
                  send "check failed" to P_R
                  abort
      send \bar{\Delta}, W to P_R
```

Step 2-2: The Simulator

$\mathcal{S}_{\mathsf{sub-VOLE-mal-R}}^{p,q,\mathcal{C},\ell}$

recv. $\bar{\Delta} \in \mathbb{F}_q^{n_{\mathcal{C}}}, W' \in \mathbb{F}_q^{\ell \times n_{\mathcal{C}}}$ from \mathcal{A} send $\bar{\Delta}, W'$ to P_R $C \stackrel{\$}{\leftarrow} \mathbb{F}_{n}^{\ell \times (n_{\mathcal{C}} - k_{\mathcal{C}})}$ send C to P_R $W := W' - [0 \ C] T_{\mathcal{C}} \operatorname{diag}(\bar{\Delta})$ send $\Delta, W_{[h]}$ to $\mathcal{F}_{VOI}^{p,q,\mathcal{C},h,\mathcal{L},M}$ recv. $R \in \mathcal{R}$ from P_R $U_{\$} \stackrel{\$}{\leftarrow} \mathbb{F}_{q}^{\ell \times k_{\mathcal{C}}}$ $\widetilde{U} := RU_{\mathfrak{R}}$ $\widetilde{V} := RW - \widetilde{U}G_{\mathcal{C}}\operatorname{diag}(\overline{\Delta})$ send \widetilde{U} , \widetilde{V} to P_R

$\mathsf{Precom}(\bar{C},R,R^{-1})$: $|\overline{\mathcal{W}_{\text{pre}}} := \{ \bar{U} \in \mathbb{F}_{q}^{m \times k_{\mathcal{C}}} \mid t \ge || [\bar{U} \ R\bar{C}] T_{\mathcal{C}} ||_{0} \}|$ $|U_{\mathrm{pre}}^{\star}(\bar{U}) := U - R^{-1}\bar{U}$ $V_{\mathrm{pre}}^{\star}(\bar{U},\bar{\Delta}) := V + R^{-1}[\bar{U} \ R\bar{C}]T_{\mathcal{C}}\operatorname{diag}(\bar{\Delta})$ $|L_0':=L'-ar{\Delta}_0 ext{ for some } ar{\Delta}_0 \in L'$ $L_{\mathrm{pre}}(\bar{U}) := L'_0 \cap \{ \overleftarrow{\Delta} \mid 0 = [\bar{U} \mid R\bar{C}]T_{\mathcal{C}}\operatorname{diag}(\overleftarrow{\Delta}) \}$ $|\text{return } \mathcal{W}_{\text{pre}}, U_{\text{pre}}^{\star}, V_{\text{pre}}^{\star}, L_{\text{pre}}|$

$\mathcal{S}^{p,q,\mathcal{C},\ell}_{\mathsf{sub-VOLE-mal-S}}$ recv. $U' \in \mathbb{F}_p^{\ell \times n_{\mathcal{C}}}, V \in \mathbb{F}_q^{\ell \times n_{\mathcal{C}}}$ from \mathcal{A} send U', V to P_S recv. $L' \in \mathcal{L}$ from P_S : recv. $C \in \mathbb{F}_p^{\ell \times (n_{\mathcal{C}} - k_{\mathcal{C}})}$ from P_S $[U \ \bar{C}] := U'T_{\mathcal{C}}^{-1} - [0 \ C]$ $R \stackrel{\$}{\leftarrow} \mathcal{R}$ abort if $\operatorname{rank}(R\bar{C}) < \operatorname{rank}(\bar{C})$ find $R^{-1} \in \mathbb{F}_q^{\ell \times m}$ s.t. $\underline{R^{-1}R\bar{C}} = \bar{C}$ $\mathcal{W}_{\mathrm{pre}}, U_{\mathrm{pre}}^{\star}, V_{\mathrm{pre}}^{\star}, L_{\mathrm{pre}} := \mathsf{Precom}(\bar{C}, R, R^{-1})$ send $\mathcal{W}_{\text{pre}}, U_{\text{pre}}^{\star}, V_{\text{pre}}^{\star}, L_{\text{pre}}$ to $\mathcal{F}_{\text{VOI F-pre}}^{p,q,\mathcal{C},h,\mathcal{L},M}$ send R to P_S recv. $\widetilde{U} \in \mathbb{F}_q^{m \times k_{\mathcal{C}}}, \widetilde{V} \in \mathbb{F}_q^{m \times n_{\mathcal{C}}}$ from P_S $\bar{U} := RU - \tilde{U}; \quad U^{\star} := U_{\text{pre}}^{\star}(\bar{U})$ $\bar{V} := RV - \tilde{V}; \quad V^* := V - R^{-1}\bar{V}$ send $U^{\star}_{[h]}$, $V^{\star}_{[h]}$ to $\mathcal{F}^{p,q,\mathcal{C},h,\mathcal{L},M}_{VOI}$ find $\bar{L}_{\text{off}} \in -L' \text{ s.t. } \bar{V} = [\bar{U} \ R\bar{C}]T_{\mathcal{C}} \operatorname{diag}(\bar{L}_{\text{off}})$ abort if none exist send $\bar{U}, \bar{L}_{\text{off}}$ to $\mathcal{F}_{\text{VOLE-pre}}^{p,q,\mathcal{C},h,\mathcal{L},M}$

Step 3: From Subspace VOLE to Random OT

Idea 1: Use the Leakage-resilience and Pseudorandomness of TCR

$$\begin{split} & \qquad \qquad \mathsf{TCR\text{-}real}^{H,p,q,\mathcal{C},\mathcal{L}} \\ & \stackrel{\bar{\Delta}}{\bar{\Delta}} \overset{\$}{\leftarrow} \mathbb{F}_q^{n_{\mathcal{C}}} \\ & \qquad \qquad \mathsf{QUERY}(\bar{x} \in \mathbb{F}_p^{k_{\mathcal{C}}} \setminus \{0\}, \bar{y} \in \mathbb{F}_q^{n_{\mathcal{C}}}, \tau \in \mathcal{T}): \\ & \qquad \qquad \mathsf{return} \ H(\bar{x}G_{\mathcal{C}} \odot \bar{\Delta} + \bar{y}, \tau) \\ & \qquad \qquad \mathsf{LEAK}(L \in \mathcal{L}): \\ & \qquad \qquad \mathsf{abort} \ \text{if} \ \bar{\Delta} \notin L \end{split}$$

 $\begin{array}{c} \mathsf{TCR}\text{-}\mathsf{ideal}^{H,p,q,\mathcal{C},\mathcal{L}} \\ \overline{\Delta} \overset{\$}{\leftarrow} \mathbb{F}_q^{n_\mathcal{C}} \\ \underline{\mathsf{QUERY}}(\bar{x} \in \mathbb{F}_p^{k_\mathcal{C}} \setminus \{0\}, \bar{y} \in \mathbb{F}_q^{n_\mathcal{C}}, \tau \in \mathcal{T})\text{:}} \\ \overline{z \overset{\$}{\leftarrow} \{0,1\}^{\lambda}} \\ \mathrm{return} \ z \\ \underline{\mathsf{LEAK}}(L \in \mathcal{L})\text{:} \\ \overline{\mathsf{abort}} \ \mathsf{if} \ \overline{\Delta} \notin L \end{array}$

(a) Real world.

(b) Ideal world.

Figure 6: Oracles for TCR definition. Calls to QUERY must not be repeated on the same input.

Idea 2: Use Uniform-hash to ensure input-uniqueness

Figure 11: $\binom{p^kc}{1}$ -OT extension protocol. Note that the parties for the base VOLE are swapped, with P_S (instead of P_R) getting Δ . If P_S receives "check failed" from the VOLE then the protocol is aborted immediately. For semi-honest security, the "commit" and R steps are skipped, and $\vec{r_i} := 0$.

Summary

- lacktriangle Improving IKNP using PPRF: κ -bit per OT $ightarrow \kappa/k$ -bit per OT
- Rectified security proof: fixing KOS, PSS, OOS errors
- The security proof seems a bit involved, albeit correct in general

■ Mysterious claim: $\log N \times \binom{2}{1}$ -OT $\equiv 1 \times \binom{N}{1}$ -OT

Finally, we hash the subspace VOLE using a correlation robust (CR) hash to build random $\binom{N}{1}$, a correlation (x, m_x) and (m_0, \ldots, m_{N-1}) where the m_y are all random. These may used directly, or to encode lookup tables representing multiple small-secret $\binom{2}{1}$ -OTs [KK13].

From [KK13]:

We evaluate performance improvements of Construction 1, and corresponding two- and multi-party SFE improvements. Recall that in the semi-honest model, a single instance of 1-out-of-n OT may be used to generate $\log n$ instances of 1-out-of-2 OT over slightly shorter strings with no additional cost. More precisely, the cost of $\operatorname{OT}_{\ell}^m$ is exactly equal to the cost of $\binom{n}{1}$ - $\operatorname{OT}_{\ell \log n}^{m/\log n}$. This observation will allow us to leverage our efficient construction of $\binom{n}{1}$ - $\operatorname{OT}_{\ell}^m$ to obtain improved efficiency for 1-out-of-2 OT, and consequently for secure computation.

Hongrui Cui · SoftSpokenOT