CSDS 440: Machine Learning

Soumya Ray (he/him, sray@case.edu)
Olin 516
Office hours T, Th 11:15-11:45 or by appointment
Zoom link

Today

Foundations of machine Learning

Supervised Learning

• Examples *E* are annotated with target concept's output by a teacher/oracle

 Learning system must find a concept that matches annotations (P)

Example: learn to recognize animals

Supervised Learning

tiger

cow

elephant

Note: Annotation received

be correct!!

by learner does not need to

Other Learning Paradigms

- Unsupervised Learning
- Semi-supervised Learning
- Active Learning
- Transductive Learning
- Transfer Learning
- Structured Prediction
- Reinforcement Learning
- Preference Learning (Ranking)
- "Few-shot" learning

Example Representation

What is the *internal representation* of an example in a learning system?

 Representation choice affects reasoning and the choice of hypothesis space, and the cost of learning

Feature Vector Representation

- Examples are attribute-value pairs (note "feature"=="attribute")
- Number of attributes are fixed
- Can be written as an n-by-m matrix

	Attribute ₁	Attribute ₂	Attribute ₃	
Example ₁	Value ₁₁	Value ₁₂	Value ₁₃	
Example ₂	Value ₂₁	Value ₂₂	Value ₂₃	Feature Vectors
Example ₃	Value ₃₁	Value ₃₂	Value ₃₃	

	Has-fur?	Long-Teeth?	Scary?
Animal ₁	Yes	No	No
Animal ₂	No	Yes	Yes
Animal ₃	Yes	Yes	Yes

Types of Features

Discrete, Nominal

Continuous

Discrete, Ordered

Hierarchical

- Color ∈ (red, blue, green)
- Height

- Size ∈ (small, medium, large)
- $Shape \in closed$ polygon continuous

 square triangle circle ellipse

Feature Space

We can think of examples embedded in an n dimensional vector space

Other Example Representations

- Relational representation
- Multiple-instance representation
- Sequential representation
- Multi-view representation

The Binary Classification Problem

Simplest supervised learning problem

 Target concept assigns one of two labels ("positive" or "negative") to all examples---the class label

 Can extend to "multiclass", "regression", "multi-label" problems

	X			— <i>Y</i> —	
	Has-fur?	Long-Teeth?	Scary?	Lion?	
Animal ₁	Yes	No (<i>x</i> _{ij})	No	No	(x_i, y_i)
Animal ₂	No	Yes	Yes	No	
Animal ₃	Yes	Yes	Yes	Yes	

Example in Feature Space

The Learning Problem

Given: A binary classification problem

 Do: Produce a "classifier" (concept) that assigns a label to a new example

Binary Classifier Concept Geometry

• (Union of) N-dimensional volume(s) in feature space (possibly a disjoint collection)

Decision Tree Induction (Ch 3, Mitchell)

 A "classical" (1980s) family of machine learning algorithms for classification

 Widely used and extremely popular, available in nearly all ML toolkits

What is a Decision Tree?

 Tree: directed acyclic graph, each node has at most one parent

Internal nodes: Tests on attributes

Leaves: Class labels

	Has-fur?	Long-Teeth?	Scary?	Lion?
Animal ₁	Yes	No	No	No
Animal ₂	No	Yes	Yes	No
Animal ₃	Yes	Yes	Yes	Yes

Classification with a decision tree

- Suppose we are given a tree and a new example
- Starting at the root, check each attribute test
- This identifies a path through the tree, follow this until we reach a leaf
- Assign the class label in the leaf

Decision Tree Induction

- Given a set of examples, produce a decision tree
- Decision tree induction works using the idea of recursive partitioning
 - At each step, the algorithm will choose an attribute test
 - If no attribute looks good, return
 - The chosen test will partition the examples into disjoint partitions
 - The algorithm will then recursively call itself on each partition until
 - a partition only has data from one class (pure node) OR
 - it runs out of attributes

	Has-fur?	Long- Teeth?	Scary?	Lion?
Animal ₁	Yes	No	No	No
Animal ₂	No	Yes	Yes	No
Animal ₃	Yes	Yes	Yes	Yes

Choosing an Attribute

- Which attribute should we choose to test first?
 - Ideally, the one that is "most predictive" of the class label
 - i.e., the one that gives us the "most information" about what the label should be

 This idea is captured by the "(Shannon) entropy" of a random variable

Entropy of a Random Variable

• Suppose a random variable X has density p(x). Its (Shannon) "entropy" is defined by:

$$H(X) = E(-\log_2(p(X)))$$
$$= -\sum p(X = x)\log_2(p(X = x))$$

• Note: $0\log(0) = 0$.

- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.5, p(\theta)=0.5$
 - Then H(X)=?
- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.99, p(\theta)=0.01$
 - Then H(X)=?

0.081

- Suppose X has two values, θ and θ , and pdf $p(\theta)=0.01$, $p(\theta)=0.99$
 - Then H(X)=?

Entropy of a Bernoulli r.v.

What is entropy?

Measure of "information content" in a distribution

- Suppose we wanted to describe an r.v. X with n values and distribution p(X=x)
 - Shortest lossless description takes $-log_2(p(x))$ bits for each x
 - So entropy is the expected length of the shortest lossless description of the r.v.

Claude Shannon 1948

What's the connection?

 Entropy measures the information content of a random variable

• Suppose we treat the class variable, Y, as a random variable and measure its entropy

• Then we measure its entropy after partitioning the examples with an attribute \boldsymbol{X}

The Entropy Connection

• The difference will be a measure of the "information gained" about Y by partitioning the examples with X

 So if we can choose the attribute X that maximizes this "information gain", we have found what we needed