Reference

[Kaggle] ICR - Identifying Age-Related Conditions

Label Encoder: 'EJ' column 결측치 처리: KNNImputer() Scaler: StandardScaler() Data Imbalacne: OverSampling

SMOTE(Synthetic Minority Over-Sampling Technique)

OverSampling 결과

변수 선택: 일반(default), PCA, VIF

PCA와 VIF 비교 결과 PCA(주성분 분석)

VIF(Variance Inflation Factors, 분산팽창요인)

Cross Validation: StratifiedKFold

KFold, StratifiedKFold, MultilabelstratifiedKFold 비교 결과

KFold

StratifiedKFold

Multi-label Classification Ensemble : CV Stacking Hyperparameter tuning

[Kaggle] ICR - Identifying Age-Related Conditions

Label Encoder: 'EJ' column

- EJ 컬럼의 unique 값 A, B를 각각 0과 1로 변환
 - o scikit-learn 의 preprocessing 함수 중 LabelEncoder() 사용 가능
- 그 외 'Id' 및 'Class' column 을 제외한 나머지 feature들은 모두 numeric한 값

결측치 처리: KNNImputer()

- 각 컬럼의 데이터는 익명화된 건강 특성을 의미하고, 이것이 숫자로 변환된 상태
- 따라서 각각의 숫자가 단순한 숫자가 아닌 특성을 나타내는 의미가 있기 때문에, 결측치를 보간하는 방법을 숫자의 특성이 반영될 수 있는 방법으로 사용하고자 함
- KNNImputer는 KNN(K-Nearest Neighbor)알고리즘을 사용하여 결측치를 보간하는 방식으로, 숫자의 거리에 따라 특성이 반영 된다고 추측, 이를 통해 결측치를 보간하였음
 - 。 scikit-learn의 패키지 중 하나로 결측치를 채우는 방법
 - 。 어떻게 채워야할 지 아이디어가 없을 때 주로 사용
- KNNImputer는 데이터에 문자열이 존재하지 않아야 하는데 유일한 string data였던 EJ 컬럼도 변환을 하였으므로, 모든 데이터가 numerical하게 되어 사용함
 - 。 고유값을 나타내는 변수 제거와 가변수화가 선행되어야 함

결측치 조치

모델링 전에 결측치 조치는 필수이다.

V https://velog.io/@songjeongwoo/결측치-조치-aq300kcu

Scaler: StandardScaler()

- 범주형 데이터인 EJ 컬럼을 제외하고 스케일링 진행
 - 。 EJ 컬럼의 A, B는 숫자의 의미가 아닌, 구분이 되는 특정 값으로 고정되어야 하기 때문
- scikit-learn 패키지의 StandardScaler를 사용해서 X train, X test 모두 스케일링
- StandardScaler는 평균이 0, 분산이 1인 정규분포를 띄도록 데이터를 표준화함

왜, 언제 스케일링(standardization, min-max)를 수행해야 할까?

머신러닝, 회귀 등 모델링을 수행할 때 스케일링(scaling)은 중요한 과정 중 하나임을 우리는 알고 있다. 스케일링은 범위를 재정의하는 것을 의미한다. 여기서, 표준화는 스케일링 방법 중 하나이며 우리는 이것이 언제 필요한지는 모른채 무작정 표준화를 수행하는 것이 대부분일 것이다. 본 포스팅에서는 어떻게, 왜, 언제 스케

tttps://syj9700.tistory.com/56

Data Imbalacne: OverSampling

- 데이터에서 각 클래스(주로 범주형 반응 변수)가 갖고 있는 데이터의 양에 차이가 큰 경우, 클래스 불균형이 있다고 말한다.
 - 데이터 클래스 비율이 너무 차이가 나면(Highly-imbalanced Data) 단순히 우세한 클래스를 택하는 모형의 정확도가 높아지므로 모형의 성능판별이 어려워진다.
 - 。 즉, 정확도(accuracy)가 높아도 데이터 개수가 적은 클래스의 재현율(recall-rate)이 급격히 작아지는 현상이 발생한다.
- 불균형 데이터의 처리방법에는 '가중치 균형방법(Weighted Balancing)', 'Undersampling', 'Oversampling' 방법이 있다.
- 이 중 이번 프로젝트는 Oversampling 으로 데이터 불균형을 처리한다.
 - Oversampling 은 소수 클래스의 복사본을 만들어, 대표클래스의 수만큼 데이터를 만들어 준다. 똑같은 데이터를 그대로 복사하는 것이기 때문에 새로운 데이터는 기존 데이터와 같은 성질을 갖는다.
 - 。 정보가 손실되지 않는다는 장점이 있으나, 과적합(over-fitting)을 초래할 수 있음
- 제공된 학습 데이터의 길이가 617개로 짧기 때문에, 정보의 손실을 방지하기 위해 Oversampling 을 사용한다.

SMOTE(Synthetic Minority Over-Sampling Technique)

- oversampling 기법 중 SMOTE 사용
 - 。 낮은 비율로 존재하는 클래스의 데이터를 최근접 이웃(K-NN) 알고리즘을 활용하여 새롭게 생성하는 방법
 - 。 알고리즘을 기반으로 데이터를 생성하므로 과적합 발생 가능성이 단순 무작위 방법보다 적음. 따라서 과적합 발생 가능성을 가장 낮추기 위해 'SMOTE' 기법을 사용함
 - 。 동작 방식
 - 1. 소수 클래스의 데이터 중 특정 벡터(샘플)와 가장 가까운 k개의 이웃 벡터를 선정
 - 2. 기준 벡터와 선정한 벡터 사이를 선분으로 이음
 - 3. 선분 위의 임의의 점이 새로운 벡터
 - 。 제공된 데이터 중 학습 데이터에 적용할 수 있는 greeks 테이블의 'Alpha' column 을 기준으로 Oversampling 진행
 - Greeks: Alpha
 - 주어진 데이터셋 중 Greeks 데이터셋의 Alpha 컬럼은 연령 관련 조건의 유형을 식별하는 컬럼으로, 값은 A, B, D, G 총 4가지가 존재함
 - A는 나이와 관련된 조건은 없고, 클래스 0에 해당됨
 - B, D, G는 나이와 관련된 세 가지 조건, 클래스 1에 해당됨
 - Greeks의 데이터 중 Alpha 컬럼의 값들 만이 유일하게 Class(target)와 직접 연관이 있는 컬럼으로, 클래스 0에 해당하는 A 값이 데이터의 대부분을 차지하여 치중되어 있는 상태임

• 따라서 0과 1을 구분하는 이진분류 시행 시, 클래스 비율을 맞춰주지 않으면 모델 학습이 잘 이뤄지지 않을 것으로 생각하여, Alpha 컬럼 데이터를 기준으로 oversampling하여 진행함

OverSampling 결과

오버샘플링 전 shape 체크: (617,) → 오버샘플링 후 shape 체크: (2036,)

변수 선택: 일반(default), PCA, VIF

- 전처리 후 컬럼을 그대로 사용했을 때 총 56개의 컬럼인 상태
 - 데이터 탐색(EDA) 를 통해 독립변수(feature)간 상관관계가 높아 다중공선성이이 의심되는 feature 를 확인

- 다중공선성을 제거하여 모델이 데이터를 더 적합하게 학습하도록 PCA, VIF를 적용하여 변수를 제거하지 않았을 때와, PCA 및 VIF 를 적용하여 차원을 축소하였을 때의 Loss 값을 비교
 - 。 Loss Function 은 대회에서 제시한 함수로 이하 'balanced_log_loss'로 표현
- 결과: PCA와 VIF를 적용하지 않은 일반(default)로 진행했을 때 결과 값이 가장 좋았음 ⇒ 따라서 PCA, VIF 적용 배제하였음

PCA와 VIF 비교 결과

	XGB	LGBM	CatBoost	RandomForest
일반(Defult)	1.000901	0.670095	0.890632	0.636166
VIF	0.924561	0.678577	0.966972	0.814292
PCA	1.246885	0.992418	1.348672	1.272332

PCA(주성분 분석)

- PCA는 차원축소와 변수추출 기법으로 널리 쓰이고 있음
- 주성분: 전체 데이터(독립변수)들의 분산을 가장 잘 설명하는 성분
- 변수의 개수 = 차원의 개수
- 변수가 너무 많아 기존 변수를 조합해 새로운 변수를 가지고 모델링을 하려고 할 때 주로 PCA 사용
- PCA는 데이터를 1차원으로 축소하는 방법으로 정사영(projection)을 사용
 - 。 기존 2차원일 때는 거리를 두고 있던 점들이 차원이 축소되며 정사영 되면서 겹치게 되는 문제 발생 ⇒ 기존의 정보가 유실
 - 아마라서 새로운 축을 찾아서 분산이 최대로 보존될 수 있도록 해야 함 ⇒ 이 때 새로운 축이 PC(Principal Component, 주성분)
 - 。 PC를 찾기 위해 covariance matrix(공분산 행렬)의 eigen vector(고유 벡터) 값을 찾아야 하고, 이 값 중 가장 큰 값이 우리가 원하는 PC에 만족하는 값이 됨
- PCA의 변수 추출(Feature Extraction)은 기존 변수를 조합해 새로운 변수를 만드는 기법으로, 단순히 일부 중요 변수만을 빼내는 변수선택(Feature Selection)과는 대비되는 개념
 - PCA의 변수 추출은 기존 변수를 모두 사용하는 방식 ~ 기존 변수를 선형결합(linear combination)해 새로운 변수를 만들어 냄
- PCA 수행 과정
 - 1. mean centering
 - 2. SVD(Singular-value decomposition) 수행
 - 3. PC score 구하기
 - 4. PC score를 설명변수로 활용하여 분석을 진행
- 표준화
 - PCA를 하기 전에 데이터 스케일링을 하는 이유는 데이터의 스케일에 따라 주성분의 설명 가능한 분산량이 달라질 수 있기 때문 ~ StandardScaler
- PCA 코드

from sklearn.decomposition import PCA
pca = PCA(n_components=35)
pca.fit(X_train)
X_train = pca.transform(X_train)
X_test = pca.transform(X_test)
29번째까지 Explained Variance의 누적합이 0.861220

X_train.shape (2036, 29)

머신러닝 - PCA (Principal Component Analysis) 1. PCA(Principal Component Analysis) - 주성분 분석이란? 주성분이란 전체 데이터(독립변수들)의 분산을	2 3 4	-2.086426 -2.367950 -2.304197 -2.388777	-0.000400 -0.318477 -0.575368 0.674767
가장 잘 설명하는 성분을 말한다. 변수의 개수 = 차원의 개수 e.g.) iris 데이터에서, 4개의 독립변인들이 하나의 공간에 표현되	145	1.870522	0.382822
	146	1.558492	-0.905314
	147	1.520845	0.266795
https://velog.io/@swan9405/PCA	148	1 . 376391	1 . 01 6362
	149	0 . 959299	-0 . 022284

VIF(Variance Inflation Factors, 분산팽창요인)

- 다중회귀모델에서 독립 변수간 상관 관계가 있는지 측정하는 척도: 다중공선성
- VIF가 10이 넘으면 다중공선성이 있다고 판단, 5가 넘으면 주의할 필요가 있는 것으로 봄
 - 。 독립 변수 a와 b가 서로 상관 관계가 있을 때 두 변수 모두 VIF가 높음 ~ 서로 연관 있는 변수들 간 VIF가 높음
- VIF 코드

```
def check_vif(df):
    vifs = [variance_inflation_factor(df, i) for i in range(df.shape[1])]
    vif_df = pd.DataFrame({"features":df.columns, "VIF" : vifs})
    vif_df = vif_df.sort_values(by="VIF", ascending=False)
    remove_col = vif_df.iloc[0, 0]
    top_vif = vif_df.iloc[0, 1]
    return vif_df, remove_col, top_vif

top_vif = 100

while(top_vif > 5):
    vif_df, remove_col, top_vif = check_vif(X_train)
    print(vif_df)
    print(remove_col, top_vif)
    if top_vif < 5:
        break
    X_train = X_train.drop(columns=remove_col)
X_test = pd.DataFrame(data=X_test, columns=X_train.columns)</pre>
```

X_train.shape (2036, 51)

DATA - 20. 다중공선성(Multicollinearity)과 VIF(Variance Inflation Factors)

이번 시간에는 다중공선성과 VIF에 대해 알아보겠습니다. 독립 변수 X는 종속 변수 Y 하고만 상관 관계가 있어 야 하며, 독립 변수끼리 상관 관계가 있어서는 안 됩니다. 독립 변수간 상관 관계를 보이는 것을 다중공선성 (Multicollinearity)이라고 합니다. 다중공선성이 있으면 부정확한 회귀 결과가 도출됩니다. (X와 Y의 상관 관계

$$VIF_i = \frac{1}{1 - R_i^2}$$

🚺 https://bkshin.tistory.com/entry/DATA-20-다중공선성과-VIF

Cross Validation: StratifiedKFold

- 모든 데이터 셋을 평가에 활용하여 평가에 사용되는 데이터 편중을 막는다.
- 평가 결과에 따라 좀 더 일반화된 모델을 만들 수 있다.
 - 。 특정 케이스에 편중된 과적합 방지
- 모든 데이터 셋을 훈련에 활용하여 정확도를 향상시키고 데이터 부족으로 인한 underfitting 을 방지할 수 있다.

● 결과: Kfold 및 Multilabelstratifiedkfold를 적용했을 때보다 StratifiedKFold를 적용했을 때의 balanced_log_log 값이 더 좋았음 ⇒ 따라서 StratifiedKFold 사용

KFold, StratifiedKFold, MultilabelstratifiedKFold 비교 결과

	XGB	LGBM	CatBoost	RandomForest	최종
KFold	0.746435	0.661613	0.916079	1.195992	0.508489
StratifiedKFold	0.559826	0.585273	1.000901	1.128134	0.254244
MultilabelstratifiedKFold	0.661613	0.712506	1.119652	1.162062	0.677985

KFold

• 교차검증을 위해서 가장 일반적으로 사용되는 방식

StratifiedKFold

- 데이터셋을 학습/검증 셋으로 나눌 때 데이터셋의 class별 비율을 동일하게 가져가도록 하는 것
- Multi-class Classification(여러 개의 클래스 중 하나로 판별하는 문제)

Multi-label Classification

- 여러 개의 클래스를 함께 판별하는 문제
- multi-label을 갖는 데이터들의 비율을 일정하게 나눌 수 있음
- MultilabelstratifiedKFold greeks 테이블의 'Alpha', 'Beta', 'Gamma', 'Delta' columns 기준.
 - o (kf.split(X_train, greeks.iloc[:, 1:-1]))

[개발팁] 'MultilabelStrarifiedKFold': Multi-label classification 에 적용 가능한 strarification cross validator StratifiedKFold in scikit-learn 우리가 보통 이진분류 같은 문제를 풀기 위해서 제공된 데이터셋을 학습/검증 셋으로 나눌 때 데이터셋의 class별 비율을 동일하게 가져가서 학습한다. 이 때, 주로 사용하는 것이 scikit-learn의 'StratifiedKFold' 함수인 데 이것을 사용하면 K-fold 교차검증을 수행하면서 동시에 매 fold마다 데이터셋의 class 비율을 일정하게 나누어서 학습/검 https://cvml.tistory.com/25

Ensemble: CV Stacking

- 개별 모델이 예측한 데이터를 다시 training set으로 사용해서 학습
- 개별 모델: LGBMClassifier, CatBoostClassifier, HistGradientBoostingClassifier ,RandomForestClassifier
- 메타 모델: LGBMClassifier

원본 학습 데이터 Shape: (2036, 56) 원본 테스트 데이터 Shape: (5, 56)

→ Stacking 학습 데이터 Shape: (2036, 4) Stacking 테스트 데이터 Shape: (5, 4)

Hyperparameter tuning

• 개별 모델의 최적의 하이퍼파라미터를 찾기 위해 Optuna, Flaml을 사용하여 탐색함