

The Network Layer IP addressing

Lecture given by Emmanuel Lochin

ISAE-SUPAERO

Original slides from A. Carzaniga (Univ. Lugano)
Extended/modified by E. Lochin (ISAE-SUPAERO) with author permission

123 .1.2

23.1.2

123.1.1.4

101.0.1.2

101.0.1.

Interconnection of Networks

Textbook Chap, #4 Sections 4.4.2, 4.4.4

111.3.3.1

subnet 111.3.3.-

3.3.2

11.3.3.3

ecture given by Emmanuel Lochin **IPv4 Addressing**

IPv6

32-bits addresses

extensions

IPv4 Addressing

network addresses

► classless interdomain routing address allocation and routing

motivations and design goals

► longest-prefix matching

 datagram format comparison with IPv4

Written in "dotted quad" notation i.e. four 8-bits numbers separated by dots e.g a.b.c.d where $\{a, b, c, d\}$ are 2^8 numbers

ISAE-SUPAERO 2/20

- Addresses are allocated in blocks called prefixes ⇒ a prefix (denoted L) corresponds to a subnet
- You have then 2^{32-L} hosts addresses for a given prefix and is denoted a.b.c.d/L
 - ► For historical reason you should use 2^{32-L} 2 addresses only (first is the network itself, last the broadcast address)
- The prefix is called netmask when written in "dotted guad" notation as shown below for L = 24:

ISAE-SUPAERO 4/20 **IPv4 Addressing** Netmask

- Network addresses, mask notation : address/mask
- A prefix of length p corresponds to a mask

$$M = \overbrace{11 \cdots 1}^{p \text{ times}} \underbrace{32 - p \text{ times}}_{\text{two}}$$

- e.g., 128.138.207.160/27=128.138.207.160/255.255.254
- ▶ 127.0.0.1/8=?
- 192.168.0.3/24=?
- 135.176.181.11/16=?

- An IP address is associated with an interface, not a host
 - ▶ a host with more than one interface may have more than one IP $address \Rightarrow we then talk about IP alias$
- The assignment of addresses over an Internet topology is crucial to limit the complexity of routing and forwarding
 - ► This assignment is managed by non-profit companies such as AFNIC for France
- The key idea is to assign addresses with the same prefix to interfaces that are on the same subnet

Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	5/20	Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	6/20
Lecture given by Emmander Locilin	The Network Layer	ISAL-SUFALINO	3/20	Lecture given by Emmanuer Locilin	The Network Layer	ISAL-SUFALIO	0/20
Classless Interdomain R	louting			Examples			

- All interfaces in the same subnet share the same address prefix
 - e.g., in the previous example we have 123.1.1.—, 123.1.2.—, 101.0.1.—, and 111.3.3.—
- Network addresses prefix-length notation: address/prefix-length
 - ► e.g., 123.1.1.0/24, 123.1.1.0/24, 101.0.1.0/24, and 111.3.3.0/24
 - 123.1.1.0/24 means that all the addresses share the same leftmost 24 bits with address 123.1.1.0
- This addressing scheme is not limited to entire bytes. For example, a network address might be 128.138.207.160/27

- Network address 128.138.207.160/27
 - 10000000 10001010 11001111 10100000_{two}

Question: does these addresses belong to the same subnet?

128.138.207.185?

10000000 10001010 11001111 10111001_{two}

128.138.207.98?

10000000 10001010 11001111 01100010_{two}

128.138.207.194?

10000000 10001010 11001111 11000010_{two}

ISAE-SUPAERO

Ranges Ranges

• What is the range of addresses in 128.138.207.160/27?

What is the range of addresses in 128.138.207.160/27?

Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	9/20	Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	9/20
Ranges				Ranges			

What is the range of addresses in 128.138.207.160/27?

10000000 10001010 11001111 101 00000 # subnets 23

• What is the range of addresses in 128.138.207.160/27?

10000000 10001010 11001111 101
$$\underbrace{00000}_{\text{\# hosts } 2^5 - 2}$$

Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	9/20	Lecture given by Emmanuel Lochin	The Network Layer	ISAE-SUPAERO	9/20
Ranges				Classless Interdomain	Routing		

• What is the range of addresses in 128.138.207.160/27?

	subnet		
10000000	10001010	11001111	101 00000 _{two}
10000000	10001010	11001111	10100000 _{two}
10000000	10001010	11001111	10100001 _{two}
10000000	10001010	11001111	10100010 _{two}
10000000	10001010	11001111	10100011 _{two}
		:	
10000000	10001010	11001111	10111111 _{two}

128.138.207.160-128.138.207.191

- This any-length prefix scheme is also called classless interdomain routing (CIDR)
 - ► as opposed to the original scheme which divided the address space in "classes"

-1					
address class	prefix length				
Α	8				
В	16				
C	2/				

- Why is the idea of the common prefix so important?
- Routers outside a (sub)network can ignore the specifics of each address within the network
 - ► there might be some 64 thousands hosts in 128.138.0.0/16, but they all appear as one address from the outside

Lecture given by Emmanuel Lochin **Example: Bad Address Allocation**

Example: Good Address Allocation

Special Addresses

- In choosing where to forward a datagram, a router chooses the entry that matches the destination address with the longest prefix E.g.,
 - ► 123.4.1.69→?
 - ► 68.142.226.44→?
 - ▶ 98.7.2.71→?
 - ► 200.100.2.1→?
 - ► 128.138.207.167→?
 - ► 123.4.20.11→?
 - ► 123.4.21.10→?

forwarding table			
network	port		
123.4.0.0/16	1		
98.7.1.0/16	2		
123.4.20.0/24	2		
128.0.0.0/1	3		
66.249.0.0/16	3		
0.0.0.0/1	4		
128.138.0.0/16	4		

IPv4 defines a number of special addresses or address blocks

- "Private," non-routable address blocks 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16
- Default route 0.0.0.0/0
- Loopback (a.k.a., localhost) 127.0.0.0/8
- IP Multicast 224.0.0.0/4
- Broadcast 255.255.255.255/32

and there are many more (RFC5735)			IPv6
Address Block	Present Use	Reference	"New-generation IP"
0.0.0.0/8	"This" Network	RFC 1122, Section 3.2.1.3	·
10.0.0.0/8	Private-Use Networks	RFC 1918	- 14/1 0
127.0.0.0/8	Loopback	RFC 1122, Section 3.2.1.3	Why?
169.254.0.0/16	Link Local	RFC 3927	
172.16.0.0/12	Private-Use Networks	RFC 1918	 the IPv4 address space is too small
192.0.0.0/24	IETF Protocol Assignments	RFC 5736	
192.0.2.0/24	TEST-NET-1	RFC 5737	
192.88.99.0/24	6to4 Relay Anycast	RFC 3068	a Civen the obvious difficulty of replacing IDv4, the short term
192.168.0.0/16	Private-Use Networks	RFC 1918	 Given the obvious difficulty of replacing IPv4, the short-term
198.18.0.0/15	Network Interconnect		benefits of IPv6 are debatable
	Device Benchmark Testing	RFC 2544	
198.51.100.0/24	TEST-NET-2	RFC 5737	
203.0.113.0/24	TEST-NET-3	RFC 5737	 Nobody questions the long-term vision
224.0.0.0/4	Multicast	RFC 3171	
240.0.0.0/4	Reserved for Future Use	RFC 1112, Section 4	
255.255.255.255/32	Limited Broadcast	RFC 919, Section 7	 Also, IPv6 improves various design aspects of IPv4
		RFC 922, Section 7	

Lecture given by Emmanuel Lochin The Network Layer ISAE-SUPAERO 17/20 Lecture given by Emmanuel Lochin The Network Layer What is Missing from IPv4? Higher-Level Protocol and Extensions

- Fragmentation
 - ► IPv6 pushes fragmentation onto the end-systems
 - efficiency
- Header checksum
 - efficiency
 - ★ how does the checksum in IPv4 behave with respect to the time-to-live field?
 - the checksum must be recomputed at every hop, so IPv6 avoids that by getting rid of the checksum altogether
 - avoid redundancy: both link-layer protocols and transport protocols already provide error-detection features
- Options
 - efficiency : a fixed-length header is easier to process
 - better modularity for extensions and options

vers. traffic class flow label
payload length hop limit

source and destination addresses

40B

