- \bullet Taylor Polynom P(x,...,y) mit mehreren Variablen
 - nähert f(x,...,y) für die ersten Ableitungen gut an
 - $\ \underline{a_{n_1 n_2}} = \frac{1}{n_1! n_2!} \frac{\partial^{n_1 + n_2} f}{\partial x^{n_1} \partial y^{n_2}} (0, \underline{0})$

- Multinomialkoeffizient

 - $\binom{n}{n_1,...,n_p} = \frac{n!}{n_1!...n_p!}$ Parameteranzahl in zweiter Zeile = n
 - Binomialkoeffizient $\binom{n}{k} = \binom{n}{k,n-k}$
- Multinomialer Lehrsatz

Satz von Taylor

- $U \subseteq \mathbb{R}^p$ offen
- $\bullet\,$ liegen x_0 und x_0+h samt Verbindungsstrecke in U
- $\bullet \ ==> f(x_0+h) = \textstyle \sum_{v=0}^n (\frac{1}{v!}(h_1\tfrac{\partial}{\partial x_1}+\ldots+h_p\tfrac{\partial}{\partial x_p})f|_{x_0}) + \frac{1}{(n+1)!}(h_1\tfrac{\partial}{\partial x_1}+\ldots+h_p\tfrac{\partial}{\partial x_p})f|_{x_0+\theta h}$
 - 1. Term Taylor-Polynom
 - 2. Term Rest

Extremwerte für Funktionen $\mathbb{R}^2 -> \mathbb{R}$

- im eindimensionalen
 - Extremstelle, wenn f'(x)=0
 - Min/Max, wen f''(x)>/< 0
- mehrdimensionalen
 - Extremstelle, wenn Gradient von f(x) = 0
 - Max, wenn Hessematrix im Punkt negativ definit

- Min, wenn Hessematrix im Punkt positiv definit
- kein Extremum, wenn indefinit
 - * sondern Sattelpunkt
- semidefinit ==> keine Aussagekraft
- Definitheit

* quadratische Form $Q_A(x)$

- * positiv definit <==> $Q_A(x) > 0 \forall x \neq 0$
- * negativ definit <==> $Q_A(x) < 0 \forall x \neq 0$
- * positiv semidefinit $<==> Q_A(x) \ge 0 \forall x \ne 0$
- * negativ semidefinit <==> $Q_A(x) \le 0 \forall x \ne 0$
- * ansonsten indefinit

• Rechnerische Bestimmung von Extrema im mehrdimensionalen

- Vorzeichen von Unterdeterminanten
 - $\ast\,$ positiv
 def. <==> positives Vorzeichen
 - * negativ def. <==> alternierendes Vorzeichen

- Aussagekraft der Δ_i
 - *eins der $\Delta=0==>$ keine Aussagekraft
 - * alle $\Delta > 0 ==> Min$

- *ungerade $\Delta<0,$ gerade $\Delta>0==>$ Max
- *ein gerades $\Delta < 0 ==>$ Sattelpunkt

 $[[{\bf Mehr dimensionale\ Differential rechnung}]]$