

PolypDINO: Adapting DINOv2 for domain generalized polyp segmentation

Mansoor Ali¹, Raneem Toman², Gilberto Ochoa Ruiz², Sharib Ali²

Tecnologico de Monterrey, Mexico¹, University of Leeds, UK²

WARNING

The following presentation contains sensitive content from real-life endoscopic images which some people might find disturbing or traumatizing.

Risks of today's ML models!

Most ML methods are developed under I.I.D hypothesis

Risks of today's ML models!

Risks are more critical in high-stake scenarios, such as endoscopic imaging

Goal- Learning a generalizable representation from a single source domain to perform better on multiple unseen target domains.

Approach

Oquab, M., Darcet, T., Moutakanni, T., Vo, H., Szafraniec, M., Khalidov, V., ... & Bojanowski, P. (2023). Dinov2: Learning robust visual features without supervision. arXiv preprint arXiv:2304.07193.

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., & Girdhar, R. (2022). Masked-attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

Goal- Learning a generalizable representation from a single source domain to perform better on multiple unseen target domains.

LoRA ain DINOv2 Approach Pc' Kvasir-SEG dataset Test Multi-center test set

How generalizable are the foundation models when applied to different demographics, cameras source settings?

LoRA * ain DINOv2 Approach Kvasir-SEG dataset Visual Foundation model

Traditional ML

Foundation Models

Individual models for tasks

Massive multi-tasking model

https://humanloop.com/blog/foundation-models

*Frozen layers *Learnable layers

- > Powerful self-supervised transformer
- ➤ No reliance on labels
- Datasets need to be curated.

- > Parameter efficient fine-tunning
- > To save time and computational resources.

*Frozen layers *Learnable layers

Approach

$$\mathcal{L}_{total} = \mathcal{L}_{ce} + \mathcal{L}_{dice} + \mathcal{L}_{abl}$$

Wang, C., Zhang, Y., Cui, M., Ren, P., Yang, Y., Xie, X., ... & Xu, W. (2022, June). Active boundary loss for semantic segmentation. In *Proceedings of the AAAI conference on artificial intelligence* (Vol. 36, No. 2, pp. 2397-2405).

Datasets and experiments

Training- 80% Validation – 20%

Approach

Datasets and experiments

Multi-center PolypGen dataset

Datasets and experiments

Comparison of normalized intensity histograms between training and out-of-distribution test sets

ſ	Training – Kvasir-SEG	Test set- PolypGen-C1			Test set- PolypGen-C1		
	Model	mloU	mDSC	F ₂	mloU	mDSC	F ₂
CNN backbone	DeepLabv3+	74.75	85.55	84.45	50.44	67.06	72.59
ackb \	IBN-Net	74.64	85.48	84.73	63.12	77.39	80.47
N P	RobustNet	75.99	86.36	86.5	64.56	78.46	83.12
CN	SAN-SAW	73	84.39	83.98	57.89	73.33	78
	TransNetR	65.38	72.04	72.69	66.08	72.32	73.66
	SNR	78.26	87.8	87.23	68.77	81.5	81
e	MLMI'24	79.54	88.61	87.59	69.73	82.17	81
cbon	SAMed	78.28	87.82	87.42	64.5	78.42	76
backbone	EVA-02	77.47	87.31	85.77	56.22	71.98	79.33
VFM	MaskDINO	67.08	80.31	73.74	37.5	54.55	44.71
>	PolypDINO (Ours)	79.5	88.58	91.07	66.5	79.88	76.63
Ĺ	PolypDINO (w/ ABL)	83.48	91	91.9	65.59	79.22	81.68

C1 – 4% loU

ſ	_	Training – Kvasir-SEG	Test set- PolypGen-C3		Test set- PolypGen-C4			
		Model	mloU	mDSC	F ₂	mloU	mDSC	F ₂
one		DeepLabv3+	78.5	87.95	87.34	30.84	47.14	37.32
backbone		IBN-Net	75.92	86.31	86.13	32.48	49.04	39.5
P P		RobustNet	77.08	87.06	87.86	38.45	55.54	48.05
CNN		SAN-SAW	74.26	85.23	85.3	41.07	58.23	66.3
	_	TransNetR	72.17	78.74	78.63	46.01	50.42	50.96
		SNR	79.16	88.37	89.43	36.44	53.42	45.34
e		MLMI'24	80.1	88.95	89.28	41.48	58.64	50.78
pod		SAMed	11.11	20	20.15	40.06	57.21	49.89
backbone		EVA-02	78.15	87.74	86.19	46.6	63.58	71.46
VFM		MaskDINO	11.17	20.08	18.17	22.11	36.2	26.83
>		PolypDINO (Ours)	78.91	88.21	89.1	45.19	62.25	65.13
	_	PolypDINO (w/ ABL)	82.39	90.34	92.65	48.76	65.56	71.9

C5 – 5% loU

C5 – 2% loU

_	Training – Kvasir-SEG	Test set- PolypGen-C5			Test set- PolypGen-C6		
	Model	mloU	mDSC	F ₂	mloU	mDSC	F ₂
backbone	DeepLabv3+	60.93	75.72	73.42	50.55	90.98	58.03
ackb	IBN-Net	56.78	72.44	68.2	58.58	73.88	67.39
Q Z	RobustNet	58.73	74	72.54	65.63	79.25	78.03
CNN	SAN-SAW	48.03	64.9	68.21	65.46	78.28	80.26
	TransNetR	35.97	42.14	42.32	63.35	69.17	68.03
	SNR	64.5	78.42	80.36	67	80.24	79.94
e	MLMI'24	60.73	75.57	74.01	67.11	80.32	79.19
backbone	SAMed	48.4	65.23	61.23	65.49	79.15	82.34
back	EVA-02	62.94	77.26	79.43	56.04	71.83	78.41
VFM	MaskDINO	38.06	55.12	46.98	53.35	69.61	60
>	PolypDINO (Ours)	66.52	79.89	84.88	66.14	79.62	79.08
	PolypDINO (w/ ABL)	69.55	82.04	82.31	69.78	82.2	88.79

C5 – 5% IoU C5 – 2% IoU

Ablations

Ablation-1 Impact of decoder type

Backbone	Decoder	mloU	mDSC	Recall	Precision	F_2
DINOv2	PSP	78.11	87.71	84.09	91.66	85.5
DINOv2	Deeplabv3+	82.72	90.54	91.42	89.69	91.06
DINOv2	FCN	79.22	88.12	86.72	92.34	86.94
DINOv2	Mask2former	85.43	91.3	94.8	93.25	94.66

Ablation-2 Impact of LoRA rank size

Rank Size	mloU	mDSC	Recall	Precision	F_2
1	84.93	90.75	93.68	92.58	93.46
4	85.37	91.22	94.59	93.37	94.52
8	85.43	91.3	94.81	93.25	94.66
16	85.25	91.04	94.62	93.03	94.21

Conclusion

Goal- The main objective of the work was to leverage visual foundation model to perform generalized polyp segmentation.

Approach – Used Dinov2 and performed efficient fine-tuning with LoRA. Also incorporated active boundary loss to enhance the polyp segmentation boundaries.

Result- We comprehensively performated comparisons with CNN and VFM backbone methods and tested the model on PolypGen, a six center Polyp dataset. Results indictate consistent improvement in generaliability performance.

Any detailed questions, or suggestions can be directed to – <u>ali.mansoor2024@gmail.com</u>