Χρονοπρογραμματισμός ΚΜΕ, Διεργασίες και Αποκλεισμοί

Εισηγητής: Χρήστος Δαλαμάγκας

cdalamagkas@gmail.com

Άδεια χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται στη διεθνή άδεια χρήσης Creative Commons Attribution-ShareAlike 4.0 (https://creativecommons.org/licenses/by-sa/4.0/).

Διεργασίες

Διεργασίες

- Πρόγραμμα: Κώδικας μηχανής που περιγράφει συγκεκριμένες εντολές προς εκτέλεση από τη CPU.
- Διεργασία (process): Αντίγραφο ενός προγράμματος (instance), το οποίο έχει φορτωθεί στη RAM και εκτελείται από τη CPU.

Καταστάσεις διεργασιών

- New: Η διεργασία έχει δημιουργηθεί και είναι έτοιμη για χρονοπρογραμματισμό
- Ready: Η διεργασία έχει φορτωθεί στη RAM και έχει εισέλθει σε ειδική ουρά για να εκτελεστεί από τον χρονοπρογραμματιστή
- Αποστολέας (Dispatcher): Το τμήμα (module) του ΛΣ που δίνει τον έλεγχο στη
 CPU για την εκτέλεση μιας διεργασίας
- Running: Η διεργασία έχει επιλεγεί από την CPU και εκτελείται
- Wait: Η διεργασία έχει «παγώσει» και περιμένει εντολή από την CPU για να συνεχίσει (πχ περιμένει την απόκριση από μια συσκευή Ε/Ε)
- Διακοπή (interrupt): Σήμα που στέλνεται από τη CPU και προκαλεί διακοπή

Διεργασίες

- Μια διεργασία αποτελείται (ή της ανήκουν) τα εξής:
 - Ο Κώδικας μηχανής που συσχετίζεται με το τι κάνει το πρόγραμμα
 - Ο Ένα τμήμα της μνήμης που έχει δεσμευτεί για τη διεργασία
 - Περιγραφείς (descriptors) που «δείχνουν» σε υπολογιστικούς πόρους
 - Χαρακτηριστικά ασφαλείας, όπως ο ιδιοκτήτης της διεργασίας, τι δικαιώματα έχει κλπ
 - Η κατάσταση της διεργασίας (βλ σχήμα πριν)
- Πληροφορίες για κάθε διεργασία αποθηκεύονται από το ΛΣ σε δομές δεδομένων που ονομάζονται Process Control Blocks (PCB).

Διεργασίες και νήματα

- Σε μια δεδομένη στιγμή, η CPU εκτελεί μια διεργασία
- Ψευδοπαράλληλα, η CPU μπορεί να εκτελεί πολλές διεργασίες
- Κάθε διεργασία έχει τον δικό της κώδικα και τον δικό της χώρο στη μνήμη
- Νήμα: Η «σειρά εντολών» που πρέπει να εκτελεστεί από τη CPU. Η οντότητα μέσα στη διεργασία που στην ουσία εκτελείται από τη CPU.
- Μια διεργασία έχει τουλάχιστον ένα νήμα
- Μια διεργασία μπορεί να έχει πολλά νήματα
 - Ο επεξεργαστής κειμένου έχει πολλά νήματα, ενώ γράφετε γίνεται ορθογραφικός έλεγχος, αλλάζει η μπάρα κατάτασης κλπ.
- Τα νήματα μιας διεργασίας μοιράζονται την ίδια μνήμη

Διεργασίες και νήματα

- Τα νήματα θεωρούνται «ελαφρές διεργασίες»
- Πλεονεκτήματα νημάτων:
 - Καλύτερη αξιοποίηση των πόρων: Τα νήματα μπορούν να ανατεθούν σε πολλαπλούς επεξεργαστές για παράλληλη εκτέλεση.
 - Διαμοίραση πόρων: Είναι πιο εύκολη η διαμοίραση πόρων μεταξύ νημάτων στην ίδια διεργασία.
 - ο Επικοινωνία: Πιο εύκολη και πιο γρήγορη η επικοινωνία μεταξύ των νημάτων.
 - Μεγαλύτερη διεκπεραιωτικότητα: Η παραλληλοποίηση μπορεί να αυξήσει την διεκπεραιωτικότητα (throughput) του συστήματος.
 - Ελαφρύτερα: Λιγότερη κατανάλωση πόρων
 - Ο Γρηγορα: Εναλλαγή μεταξύ των νημάτων δεν απαιτεί την εκτέλεση κλήσεων συστήματος

Διεργασίες και νήματα

- Μειονεκτήματα νημάτων:
 - Ο Δύσκολος ο συντονισμός μεταξύ των νημάτων και του πυρήνα ΛΣ
 - Ο Χρειάζονται εξειδικευμένες γνώσεις πολυνηματικού προγραμματισμού
 - Ο Το ΛΣ πρέπει να είναι πολυνηματικό για να μην μπλοκάρει μια διεργασία με πολλά νήματα
 - Ο Χρησιμοποιούνται ειδικές βιβλιοθήκες/ΑΡΙ για την υλοποίηση των νημάτων στον κώδικα
- Αντί για πολλά νήματα, θα μπορούσε κάποιος να χρησιμοποιήσει πολλαπλές
 διεργασίες
 - ο Πιο εύκολο να δημιουργήσουμε διεργασίες, αλλά καναλώνουν περισσότερους πόρους.
- Δίλλημα: Multiprocess ή Multithreading;

Χρονοδρομολόγηση διεργασιών

Χρονοδρομολόγηση ΚΜΕ

- Χρονοδρομολόγηση (scheduling): Η διαδικασία επιλογής της διεργασίας που θα μετακινηθεί από την κατάσταση Ready στην κατάσταση Running.
- Σε μια δεδομένη στιγμή, μόνο μια διεργασία μπορεί να είναι σε κατάσταση running.
- Τρείς βασικοί αλγόριθμοι:
 - Με σειρά άφιξης (FIFO First Come First Served)
 - Επιλογή της μικρότερης διεργασίας (shortest job first)
 - Κυκλική επιλογή (round robin): Αποτρέπει τη λιμοκτονία κάποιας διεργασίας (starvation)

Χρονοδρομολόγηση ΚΜΕ

- Σύγχρονα ΛΣ: Συνδυασμός round robin με προτεραιότητες
 - Σε κάθε διεργασία γίνεται να ανατεθεί μια προτεραιότητα ώστε να προηγηθεί στην ανάθεση επεξεργαστικών πόρων
- Δυο βασικές κατηγορίες χρονοδρομολόγησης:
 - Προεκτοπιστική (preemptive): Η διεργασία μπορεί να μπλοκαριστεί προσωρινά για να εξυπηρετηθούν άλλες διεργασίες
 - Μη προεκτοπιστική (non-preemptive): Η CPU
 θα επιστραφεί μόνο όταν ολοκληρωθεί η εκτέλεση της διεργασίας

Παράδειγμα χρονοδρομολόγησης

- Πώς θα εκτελεστούν οι διεργασίες με βάση τους 3 βασικούς αλγορίθμους;
- Φτιαξτε το πλάνο χρονοδρομολόγησης

Process	Service time
p1	140
p2	75
р3	320
p4	280
p5	125

Κρίσιμα Τμήματα και Αδιέξοδα

Κρίσιμα τμήματα

- Ορισμός: Το κομμάτι μιας διεργασίας που προσπελαύνει θέσεις μνήμης που χρησιμοποιούνται ταυτόχρονα από πολλές διεργασίες
- Μόνο μια διεργασία θα εκτελεί κάθε στιγμή το κρίσιμο τμήμα
- Διαχείριση κρίσιμων τμημάτων:
 - Κλείδωμα (mutex): Μηχανισμός συντονισμού που εφαρμόζει αμοιβαίο αποκλεσμό (υλοποιείται ως μια μεταβλητή με τιμές 0 και 1)
 - **Σημαφόροι**: μεταβλητές που διαβάζονται από τις διεργασίες και δείχνουν αν ένας πόρος είναι προσπελάσιμος (γενίκευση των mutex).

Παραδείγματα χρήσης σημαφόρων

- Πολλά νήματα ή διεργασίες θέλουν να ανοίξουν ένα αρχείο
 - Ο Η σημαφόρος δείχνει αν το αρχείο είναι διαθέσιμο
- Πολλά νήματα διαβάζουν και γράφουν σε κοινές μεταβλητές
- Συγκεκριμένο πλήθος νημάτων επιτρέπειται να αποκτήσει πρόσβαση σε μια περιοχή της μνήμης
 - Η σημαφόρος μπορεί να μετράει τα νήματα αυτά
- Συντονισμός μεταξύ νημάτων

Αδιέξοδο (deadlock)

Ορισμός αδιεξόδου

- Μια κατάσταση ονομάζεται αδιέξοδη όταν συμβαίνουν ταυτόχρονα τα εξής (συνθήκες Coffman):
 - Αμοιβαίος αποκλεισμός (mutual exclusion): Μόνο μια διεργασία μπορεί να χρησιμοποιήσει έναν πόρο σε μια δεδομένη στιγμή.
 - Κατοχή και αναμονή (hold and wait): Η διεργασία κατέχει έναν ή περισσότερους πόρους και περιμένει να απελευθερωθούν άλλοι πόροι.
 - Μη προεκτοπισμός (no preemption): Μόνο η διεργασία μπορεί να αποδεσμεύσει έναν πόρο, όχι το ΛΣ.
 - Σ **Κυκλική αναμονή** (circular wait): Ένα πλήθος διεργασιών περιμένει η μια την άλλη σε κυκλική μορφή

Αντιμετώπιση αδιεξόδων

- Αγνόηση των αδιεξόδων (Linux, Windows)
- Εντοπισμός αδιεξόδων και τερματισμός διεργασιών που προκαλούν την κατάταση
- Περιορισμός μιας από τις 4 συνθήκες Coffman