1. Wann heißt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ in einem Punkt x_0 differenzierbar? Wie lässt sich die Ableitung geometisch interpretieren?

Answer: If the $\lim_{x\to x_0} \frac{f(x_0+h)-f(x_0)}{h}$ exists, then we call the function f differentiable in the x_0 point. We call the value of $\lim_{x\to x_0} \frac{f(x_0+h)-f(x_0)}{h}$ the derivative of the function f in point x_0 and we denote it with $f'(x_0)$. Whenever the derivative of a function exists, it's unique.

The value of the $f'(x_0)$ is the coefficient of x in the best linear approximation of f at point x_0 , and it's the slope of the tangent line drawn to the function at the point $(x_0, f(x_0))$.

- 2. Gib Beispiele für Funtionen $f: \mathbb{R} \to \mathbb{R}$ an, die
 - (a) stetig, aber in $x_0 = 0$ nicht differenzierbar;
 - (b) differenzierbar, aber nicht gleichmäßig stetig;
 - (c) differenzierbar, aber in $x_0 = 0$ nicht stetig differenzierbar sind

Answer:

- (a) f(x) = |x|
- (b) $f(x) = x^2$

(c)
$$f(x) = \begin{cases} x^2 \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

3. Was bedeuten die Landau-Symbole $\mathcal{O}(h)$, $\mathcal{O}(h^2)$ und $\mathcal{O}(1)$? Wie lassen sich Stetigkeit und Differenzierbarkeit mit ihrer Hilfe ausdrücken?

Answer:

(a)
$$f(h) = \mathcal{O}(h) \Leftrightarrow \lim_{h \to 0} \frac{f(h)}{h} = 0$$

(b)
$$f(h) = \mathcal{O}(h^2) \Leftrightarrow \limsup_{h \to 0} \left| \frac{f(h)}{h^2} \right| < \infty$$

(c)
$$f(h) = \mathcal{O}(1) \Leftrightarrow \lim_{h \to 0} f(h) = 0$$

If there is a number $\alpha \in \mathbb{R}$ such that $f(x_0 + h) = f(x_0) + \alpha h + \mathcal{O}(h)$, then we say that the function f is differentiable in the x_0 point.

We say that f is continuous in x_0 if $f(x_0 + h) = f(x_0) + O(1)$

4. Für welche reellen α ist $|x|^{\alpha}$ in x=0 reell differenzierbar?

Answer:

5. Wie lautet die Produktregel für Ableitungen? Warum gilt sie (Beweis)?

Answer:

Consider two functions f and g that are both differentiable in some x_0 point of their domain. Then the fg function is also differentiable in x_0 and $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$ Proof:

$$\lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x_0)g(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{f(x_0 + h)g(x_0 + h) - f(x)g(x_0 + h) + f(x)g(x_0 + h) - f(x_0)g(x_0)}{h}$$

$$= \lim_{h \to 0} \frac{(f(x_0 + h) - f(x))g(x_0 + h) + f(x)(g(x_0 + h) - g(x_0))}{h}$$

Since g is continuous in x_0 and the $\lim_{h\to 0} \frac{f(x_0+h)-f(x)}{h}$ and $\lim_{h\to 0} \frac{g(x_0+h)-g(x)}{h}$ exist, thus the above limit also exists and

$$= \lim_{h \to 0} \frac{f(x_0 + h) - f(x)}{h} g(x_0 + h) + f(x) \frac{g(x_0 + h) - g(x)}{h}$$
$$= f'(x_0)g(x_0) + f(x_0)g'(x_0)$$

6. Wie lauten Quotienten- und Kettenregel für Ableitungen?

Answer:

Division: Suppose that both f and g functions are differentiable in x_0 and furthermore suppose that $g(x_0) \neq 0$. Then the function $\frac{f}{g}$ is also differentiable in x_0 and $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g^2(x_0)}$

Chain rule: Suppose that g is differentiable in some x_0 point and f is differentiable in $y_0 = f(x_0)$. Then $f \circ g$ is also differentiable in x_0 and $(f \circ g)'(x_0) = f'(g(x_0))g'(x_0)$

7. Was sind die Ableitungen folgender Funktionen nach x?

$$e^x \sin x$$
 $\frac{\sin x}{\cos x}$ $\exp(-x^2)$ $\log \frac{1+x}{1-x}$ x^x

Answer:

- (a) $(e^x \sin x)' = e^x \sin x + e^x \cos x$ from the product rule because $\exp' = \exp$ and $\sin' = \cos$
- (b) Suppose that $x \neq k\pi$ $(k \in \mathbb{Z})$. Then $\frac{\sin x}{\cos x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$ from the rule of division
- (c) $(\exp(-x^2))' = -2x \exp(-x^2)$ from the chain rule
- (d) For x > 1: $(\log \frac{1+x}{1-x})' = \frac{1}{\frac{1+x}{1-x}} (\frac{1+x}{1-x})' = \frac{1-x}{1+x} \frac{(1-x)+(1+x)}{(1-x)^2} = \frac{2}{1-x^2}$
- (e) For x > 0: $(x^x)' = (\exp(x \log x))' = x^x (\log x + x \frac{1}{x}) = x^x (\log x + 1)$
- 8. Wann besitzt eine Funktion $f: \mathbb{R} \to \mathbb{R}$ eine differenzierbare Umkehrfunktion f^{-1} ?

Answer: (VERIFY) Suppose that f is differentiable everywhere and either strict monotone increasing or decreasing on \mathbb{R} . Then f is continuous (from the differentiability) and its inverse exists (because it's continuous and strict monotone increasing).

The inverse function f^{-1} will be differentiable in some $y_0 = f(x_0)$ point if $f'(x_0) \neq 0$ and in this case $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$

9. Wie lautet der Mittelwertsatz (der Differentialrechnung)? Wie lautet der Satz von Rolle?

Answer:

Mean Value Theorem: Consider some continuous function $f:[a,b]\to\mathbb{R}$ which is differentiable on (a,b). Then $\exists c\in(a,b)\colon \frac{f(b)-f(a)}{b-a}=f'(c)$

Rolle: Consider some continuous function $f:[a,b]\to\mathbb{R}$ which is differentiable on (a,b), and suppose that f(a)=f(b). Then $\exists c\in(a,b)\colon f'(c)=0$

10. Warum gilt der Satz von Rolle (Beweisskizze)?

Answer: TODO

11. Wie lauten die Regeln von de l'Hôpital?

Answer: CHECK Consider two functions f,g that are differentiable in some x_0 point. If $f(x_0) = g(x_0) = 0$ and $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ exists, then $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ exists as well and $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$

12.	Welche	Werte	haben	die stetigen	Fortsetzungen	folgender	Funktionen	in $x = 0$)?

 $\frac{\sin x}{x}$ $\frac{\cos x - 1}{x^2}$ $\frac{\log(1+x)}{x}$ e^x

Answer:

13. Berechne

$$\lim_{x \to +\infty} \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Answer:

14. Wie lauten die Ungleichungen von Young und Hölder?

Answer:

15. Skizziere die Funktionen $\sin x$ und $\cos x$, beschreibe ihre Nullstellen, Ableitungen, Monotonie, Konvexität und Konkavität, und erläutere unsere Definition von π .

Answer:

16. Sei $f: \mathbb{R} \to \mathbb{R}$ eine zweimal differenzierbare Funktion. Welche (notwendige) Bedingung ist erfüllt, wenn f an der Stelle x_0 ein lokales Maximum besitzt? Unter welcher (hinreichenden) Bedingung besitzt f an der Stelle x_0 ein lokales Maximum?

Answer:

17. Wann heißt eine Funktion $f:(a,b)\to\mathbb{R}$ konvex? Wann heißt sie strikt konvex?

Answer:

18. Die Funktion $f:(a,b) \to \mathbb{R}$ sei zweimal diferenzierbar. Wie lassen sich Konvexität und strikte Konvexität durch Bedingungen an die zweite Ableitung ausdrücken?

Answer:

19. Wieviele Minima bzw. Maxima kann eine strikt konvexe Funktion $f:[a,b] \to \mathbb{R}$ haben? (Gib alle möglichen Zahlen an.)

Answer:

20. Wo sind (reelle) Potenzreihen differenzierbar? Wie lautet die Ableitung?

Answer:

21. Wie ist der Raum $\mathcal{BC}^1(\mathbb{R},\mathbb{R})$ definiert? Was bedeutet seine Vollständigkeit für die Vertauschbarkeit von Differentiation und Grenzwertbildung einer Funktionenfolge $f_n \colon \mathbb{R} \to \mathbb{R}$?

Answer:

22. Wie lautet das n-te Taylor-Polynom? Wie kann das Restglied ausgedrückt werden?

Answer:

23. Wann (und wo) wird eine reelle Funktion durch ihre Taylor-Reihe dargestellt? Gib ein Beispiel und ein Gegenbeispiel.

Answer:

24. Wie lauten die Taylor-Reihen folgender Funktionen in $x_0 = 0$?

$$e^x$$
, $\sin x$, $\arctan x$, $(1+x)^{\alpha}$, $\log(1+x)$

Answer: