Подбор параметров в алгоритмах детектирования аномалий

Смоляков Дмитрий

МФТИ, ИППИ РАН

Конференция МФТИ 2014

Пример аномалии

Аномалия – измерение, которое не соответствует некоторому ожидаемому поведению.

Области применения

- Поиск мошенничества на основе необычной активности
- В медицине необычные результаты обследований могут свидетельствовать о потенциальных проблемах со здоровьем
- Аномальные значения могут быть результатом ошибок в измерении
- Раннее обнаружение аномальной работы двигателя может предотвратить неожиданную поломку

Hawkins-Outlier

- ullet Пусть Q некоторый механизм порождения данных
- \bullet $X_1 \dots X_n$ порождены механизмом Q
- $\tilde{X}_1 \dots \tilde{X}_m$ отличаются от измерений X_1, \dots, X_n , настолько, что можно предположить, что они порождены другим механизмом.

Постановка задачи

- ullet X_1,\ldots,X_N $X_i\in S$ не размеченная выборка
- ullet Хотим построить $f\colon \mathcal{S} o \{-1,1\}$
- $f(X_i) = -1$, если X_i аномалия
- $f(X_i) = 1, если X_i нормальное измерение$

Support Vector Data Description

$$\begin{cases} R + \frac{1}{N\nu} \sum_{i=1}^{N} \xi_i \to \min_{R, x, \xi} \\ \|\phi(x_i) - x\|^2 \leqslant R + \xi_i & i = 1, \dots, N \\ \xi_i \geqslant 0 & i = 1, \dots, N \\ R \geqslant 0 & \end{cases}$$

- Non Support Vector
 - Unbounded Support Vector
 - Bounded Support Vector
- X Centre of circle
- R Radius of circle
- ξ Slack variable

Двойственная задача

Обычно решают двойственную задачу:

$$\begin{cases} \sum\limits_{i=1}^{N} \alpha_{i} \phi(x_{i}) \cdot \phi(x_{i}) - \sum\limits_{i,j=1}^{N} \alpha_{i} \alpha_{j} \phi(x_{i}) \cdot \phi(x_{j}) \rightarrow \max_{\alpha} \\ \sum\limits_{i=1}^{N} \alpha_{i} = 1 \\ 0 \leqslant \alpha_{i} \leqslant \frac{1}{N_{\nu}} \quad i = 1, \dots, N \end{cases}$$

Достаточно знать скалярное произведение.

$$K(x_i, x_j) = \phi(x_i) \cdot \phi(x_j)$$

Kernel Trick

Необязательно знать явный вид спрямляющего пространства, чтобы использовать K(x, y). Достаточно потребовать:

- K(x,y) = K(y,x) симметричность
- ullet $\int_X \int_X K(x,x')g(x)g(x')\mathrm{d}x\mathrm{d}x' \ orall g(x)\colon X o\mathbb{R}$ положительная определённость

Тогда K(x,y) – скалярное произведение в некотором пространстве.

Примеры ядер

Название	Формула	Параметры
Линейное	$x \cdot y$	_
Полиномиальное	$(\gamma x \cdot y + d)^k$	γ , d , k
Гауссово	$\exp(-\gamma \ x - y\ ^2)$	γ
Сигмоидное	$th(\gamma x \cdot y + d)$	γ , d

Выбор ядрерной функции

Параметры ядра могут существенно влиять на результат

Хочется получить функцию риска для эффективного подбора параметров ядра.

Оптимизация количества опорных векторов и аномалий Оптимизация ядерной матрицы Обнаружение уровня плотности Генерация тестовой выборки

В приложениях часто пытаются достигнуть границы значений количества аномалий и опорных векторов $^{\mathrm{1}}$

- $f_{anomaly}$ доля объектов отмеченных, как аномалии
- $f_{support}$ доля объектов используемых, как опорные векторы

$$r = (\nu - f_{anomaly})^2 + (\nu - f_{support})^2$$

Оптимизация функции от ядерной матрицы

Мерой риска может послужить отношение квадрата стандартного отклонения к среднему значению 2

$$r = \frac{s^2}{\bar{k} + \varepsilon}$$

$$ar{k} = rac{\sum\limits_{i=1}^{N}\sum\limits_{j=i}^{N}K(x_i,x_j)}{N(N-1)}; \quad s^2 = rac{\sum\limits_{i=1}^{N}\sum\limits_{j=i}^{N}(K(x_i,x_j)-ar{k})^2}{N(N-1)-1}$$

²Evangelista P. F., Embrechts M. J., Szymanski B. K. Some properties of the Gaussian kernel for one class learning

Обнаружение уровня плотности

Функция риска может в явном виде учитывать распределения аномальных точек³:

$$r = \frac{1}{(1+\rho)|S|} \sum_{i \in S} I(1, sign(f(x_i))) + \frac{\rho}{1+\rho} \mathbb{E}_{\mu} I(-1, sign(f(x_i)))$$

$$I(y,t) = \max\{0,1-yt\}; \quad \mu$$
 — распределение аномалий

Здесь ho подбирается из априорных соображений.

³Steinwart I., Hush D. R., Scovel C. A classification framework for anomaly detection

Генерация тестовой выборки

Искусственно сгенерируем примеры аномальных и нормальных точек.

- Аномалии генерируются из равномерного распределения
- Нормальные данные генерируются на основе тестовой выборки, например при помощи SMOTE (Synthetic Minority Over-sampling Technique)

$$r = \frac{1}{|X_{Normal}|} \sum_{x_i \in X_{Normal}} [f(x_i) = -1] + \frac{1}{|X_{Anomaly}|} \sum_{x_i \in X_{Anomaly}} [f(x_i) == 1]$$

Synthetic Minority Over-sampling Technique

Постановка эксперимента

- Нормальные данные генерируются из стандартного многомерного нормального распределения
- Аномалии генерируются из равномерного распределения, причем границы подбираются так, чтобы все нормальные данные попали в заданные границы.
- Получившиеся данные делятся на обучающую и тестовую выборку. На первой происходит подбор параметров и обучение модели, на второй проверка результата.

Оптимизация количества аномалий и опорных векторов

Учет распределения аномалий

Оптимизация ядерной матрицы

Случайная генерация тестовой выборки

Выводы

- Только в методе оптимизации ядерной матрицы существует единственный минимум
- Критерий оптимальности может быть различным в зависимости от важности ошибки на нормальных и аномальных данных
- Только критерий на основе случайной генерации тестовой выборки способен учитывать различиях ошибок

Спасибо за внимание