Dirac-Fock Calculations of X-ray Scattering Factors and Contributions to the Mean Inner Potential for Electron Scattering

By David Rez

Pennine House, Pennine Drive, London NW2 1PA, England

PETER REZ

Department of Physics and Center for Solid State Science, Arizona State University, Tempe, AZ 85287-1704, USA

AND IAN GRANT

Mathematical Institute, 24/29 St Giles, Oxford OX1 3LB, England

(Received 30 July 1993; accepted 24 January 1994)

Abstract

Tables of X-ray scattering factors for naturally occurring elements and ions have been calculated using a multiconfiguration Dirac–Fock code. The complete data set takes up about 250 kbytes of space. For accurate values, it is preferable to interpolate directly. For consistency with previous work, parametric fits are also presented with error estimates and a range of validity. The limiting values of the electron scattering factor as $\sin\theta/\lambda$ tends to zero, which are needed to calculate the mean inner potential for electron scattering, are also tabulated. The results show that the mean inner potential can be very sensitive to ionization state.

Introduction

Accurate tables of atomic X-ray and electron scattering factors are essential for structure refinement, diffraction-theory calculations and image simulation. The earliest tables were based on Thomas-Fermi-Dirac models of the atom or on the Hartree-Fock-Slater program of Herman & Skillman (1963). Later calculations (Cromer & Waber, 1965) used the Dirac-Slater program of Liberman, Cromer & Waber (1971). All these results assumed the Slater function of average charge density for the exchange term. The most sophisticated, and probably most quoted, results are those of Doyle & Turner (1968), who used a relativistic-Hartree-Fock program. Unfortunately, they did not completely cover the Periodic Table and the recent edition of Volume C of International Tables for Crystallography (Maslen, Fox & O'Keefe, 1992) used their values, as well as some from Cromer & Waber, to give a complete set.

We have used the multiconfiguration Dirac-Fock package of Grant, McKenzie, Norrington, Mayers & Pyper (1980) to calculate charge densities for all naturally occurring elements and many of the most common ionization states. Positive ions can be calculated directly with appropriate input configurations. Negative ions are not only unstable in nature but, also, attempts to calculate charge densities using any of the single-configuration Hartree-Fock programs lead to lack of convergence. A common practice when performing calculations for negative ions is to surround the ion by a sphere of positive charge (Watson, 1958). This simulates the effects of neighbouring ions in a crystal. The resulting charge densities are sensitive to the radius of the Watson sphere and we have selected the published ionic radii for our calculations.

Of course, all atomic calculations (including those presented here) neglect the redistribution of charge caused by bonding. The correct procedure would be to use one of the band-theory computational methods to solve for the ground-state charge density in the solid. This is not practical except in a few limited cases. It is not legitimate to separate the atomic valence charge density and scale it in some simple manner. For some materials, the replacement of atoms by ions is an attempt to approximate the actual solid-state charge density. In a more refined calculation, the potential would be recalculated for each arrangement of ions. Our use of the Watson sphere is an aproximation to model ions that are independent of structure.

Abbreviated atomic X-ray scattering-factor tables that use the same grid as Doyle & Turner (1968) are given in the results section. There is very little difference (less than 0.1%) between our results and

those of Doyle & Turner (1968) except for some heavy elements at high values of $\sin \theta / \lambda$. A more complete set of results, tabulated on a grid of spacing $\sin \theta / \lambda = 0.05 \text{ Å}^{-1}$, was used for parameterization. We have chosen a fit of four Gaussians to be consistent with Doyle & Turner but have not included a constant because, although it might give better agreement up to a value of 2.0 Å⁻¹, it is intrinsically unphysical. A table of parameters is given along with the value of $f_x(0)$, the χ^2 of the fit and the range of applicability. We have decided to give two tables, one that represents a high-accuracy fit over a range of 0.0 to 2.0 Å^{-1} and another that gives a loweraccuracy fit over an extended range to 6.0 Å^{-1} . In general, we recommend that the original tables are used with cubic spline or even linear interpolation. The space taken by the complete tables is less than 250 kbytes, which is small by the standards of computers today.

Separate electron scattering-factor tables have not been given as we believe it is preferable to use the Mott formula to calculate electron scattering factors from X-ray scattering factors. Recently, there has been a renewed interest in $f_{\rm el}(0)$, from which the mean inner potential, V_{000} , can be calculated. The mean inner potential can now be measured with an accuracy of 0.3 V using electron holography (Gajdardziska-Josifovska, McCartney, de Ruijter, Smith, Weiss & Zuo, 1993) and it is very significant for interpretation of holographic phase imaging and Fresnel fringe contrast (Shih & Stobbs, 1990; Ross & Stobbs, 1991). A table of values for $f_{\rm el}(0)$ is presented and we show that the mean inner potential is sensitive to ionization state.

X-ray scattering factors

Complete details of the atomic multiconfiguration Dirac-Fock package are given by Grant et al. (1980). The N-electron wave function is constructed from central-field Dirac orbitals that form an orthonormal set. Configuration state functions are formed by taking linear combinations of these orbitals so as to obtain eigenfunctions of the total angularmomentum operator J^2 and J_z with eigenvalues J(J+1) and M, respectively. The configuration state functions are denoted by a function $\Phi(\gamma, J, M)$, where γ gives all the information about orbital occupation, coupling etc. Atomic state functions can now be constructed as linear combinations of configuration state functions that have the same J and M but might have different orbital occupations, as denoted by γ . An eigenvalue equation is solved for the energies of the atomic state functions, derived from the requirement that the energy is stationary for small variations in the mixing coefficients. We take the

Table 1. Watson-sphere radii used for negative ions

Ion	Watson-sphere radius (Å)
O ^{2 -}	1.40
F-	1.36
Cl-	1.81
Br-	1.95
I -	2.16

lowest-energy ground-state charge density that is tabulated on an exponential grid as the input to another program that calculates the X-ray scattering factors according to

$$f_x(s) = 4\pi \int_0^\infty r^2 \rho(r) [\sin(4\pi s r)/(4\pi s r)] dr,$$
 (1)

where $s = \sin \theta / \lambda$.

All the computations were performed on a VAX system. We input the electrons into the lowest shells available following the table in *The Theory of Atomic* Structure and Spectra, pp. 117–119 (Cowan, 1981). The Dirac-Fock equations were then solved using the extended average level (EAL) model (Grant et al., 1980), with no restrictions on J for all cases except Gd, Sm3+ and Eu3+. For these elements and ions, too many configurations were generated and we restricted the calculation to the lowest value of J. Comparison of such a calculation with a calculation for all configurations gave a difference of less than 10⁻⁵ in the scattering factor for Gd³⁺, so we feel this approximation is justified. For the positive ions we used the ionized elemental configurations and for the negative ions we modified the program to give a Watson sphere as discussed above. Values for the Watson-sphere radii are given in Table 1.

The complete results are tabulated in Table 2 for $\sin \theta/\lambda$ up to 6.0 Å⁻¹. The differences between these results and those of Doyle & Turner (1968) are less than 0.1% in practically all cases. The greatest difference is for a heavy element such as Au for s=4.0 Å⁻¹ and is about 0.7%. A plot showing the Yb scattering factor, which is typical for a heavy element, is given as Fig. 1. The ionized scattering factors are the same as the neutral-atom factors for s greater than about 1.0 Å⁻¹, as can be seen in the comparison between Mg and Mg²⁺, given as Fig. 2(a), and between O and O²⁻, given as Fig. 2(b).

Parameterization

We have parameterized the X-ray scattering factors as a sum of four Gaussians using the Marquardt-Levenberg procedure given in *Numerical Recipes* by Press, Flannery, Teukolsky & Vetterling (1989),

$$f_x(s) = \sum_j a_j \exp(-b_j s^2).$$
 (2)

tables
-factor
ittering
Sco
<i>ج</i> ز
Table

	许	10.0000 9.7338 9.0157	8.0324	5.9712 5.0878	4.3430	3.2389	2.8461	1.9475	1.7312	1.5872	1.3236	1.1856	1.0530	0.9262	0.5625	0.3881	0.2695	0.1895	0.0547	់	18.0000	17.3013	13.8027	12.0125	10.5850	9.5215	8.1595	7.6978	7.3049	5.9222	5.2511	4.6109	4.0258	2.4062	1.9685	1.6870	1.5030	1.0687	0.9154	0.7721	0.5387	0.5040
	Ľ.	9.0000 8.8152 8.3011	7.5588 6.7080	5.8499	4.3515	3.2691	2.8738	1.9565	1.7347	1.5881	1.3239	1.1868	1.0549	0.9284	0.5643	0.3894	0.2703	0.1902	0.0552	ប	17.0000	16.5099	13.5939	11.9887	10.6318	9.5758	8.1821	7.7076	7.3065	5.9169	5.2473	4.6085	4.0243	2.4054	1.9678	1.6864	1.5026	1.2408	0.9156	0.7730	0.5378	0.0000
	05-	10.0000 9.5884 8.5345	7.2188 5.9558	4.8934	3.4190	2.5720	2.2963	1.7085	1.5678	1.4644	1.2191	1.0668	0.9215	0.7881	0.4404	0.2907	0.1951	0.1332	0.0351	S	16.0000	15.4828	12.5781	11.1041	9.9239	9.0382	7.8573	7.4190	7.0194	5.5071	4.7914	4.1395	3.5712	2.1332	1.7791	1.5572	1.4110	1.1827	0.8501	0.7045	0.4759	0.5140
	0	8.0000 7.7974 7.2439	6.4706 5.6215	4.8064 4.0872	3.4873	2.6279	2.3371	1.7144	1.5682	1.4635	1.2214	1.0707	0.9261	0.6739	0.4434	0.2926	0.1963	0.1345	0.0368	<u>a</u>	15.0000	14.45/5	11.6278	10.3254	9.3341	8.5998	7.5483	7.1055	6.6765	5.0215	4.2854	3.6501	3.1232	1.9033	1.6264	1.4531	1.3339	0.9428	0.7780	0.6315	0.4139	0.2033
	z	7.0000 6.7765 6.1810	5.3866 4.5648	3.8268	2.7475	2.1322	1.9418	1.5510	1.4451	1.3533	1.0900	0.9218	0.7691	0.6367	0.3246	0.2044	0.1324	0.0883	0.0427	Si	14.0000	13.4381	10.7741	9.6741	8.8586	8.2310	7.0987	6.7208	6.2422	5.3146	3.7520	3.1653	2.7030	2.0765	1.5053	1.3677	1.2648	1.0559	0.6997	0.5551	0.3529	0.2195
ctor tables	ပ	6.0000 5.7518 5.1153	4.3222 3.5698	2.9558 2.4977	2.1734	1.7949	1.6851	1.4258	1.3224	1.218/	0.9141	0.7367	0.5884	0.3736	0.2160	0.1296	0.0810	0.0526	0.0128	Al3+	10.0000	9.9336	9.7383	9.0137	8.5239	7.9800	7.4053	6.2450	5.6916	4.6905	3.2040	2.7018	2.3260	1.842/	1.4102	1.2931	1.1955	0.9776	0.6128	0.4770	0.2890	0.1789
Scattering-factor tables	В	5.0000 4.7246 4.0603	3.3166 2.6994	2.2632 1.9793	1.7992	1.5960	1.5267	1.2761	1.1475	0.9007	0.6906	0.5247	0.3984	0.2335	0.1258	0.0719	0.0434	0.0275	0.0063	ΙV	13.0000	12.4386	10.0502	9.1587	8.4658	7.8743	7.3172	6.2243	5.6943	4.7142	3.2220	2.7127	2.3311	1.841/	1.4085	1.2926	1.1961	0.9799	0.6160	0.4769	0.2936	0.1772
Fable 2. Sc	Be ²⁺	2.0000 1.9915 1.9663	1.9254	1.8032	1.6413	1.4584	1.3644	1.0075	0.8530	0.6031	0.4248	0.3012	0.2162	0.13/4	0.0584	0.0318	0.0186	0.0115	0.0025	Mg ²⁺	10.0000	9.9139	9.0023	8.7523	8.1571	7.5149	6.8576	5.5968	5.0268	4.0480	2.7248	2.3160	2.0234	1.6621	1.3265	1.2185	1.1198	0.8902	0.5260	0.3998	0.2336	0.1409
I	Be	4.0000 3.7069 3.0657	2.4631 2.0602	1.8279	1.5998	1.4429	1.3626	1.0303	0.8768	0.7403	0.4389	0.3112	0.2233	0.1625	0.0603	0.0328	0.0192	0.0119	0.0026	Mg	12.0000	11.5076	0.4/31	8.7364	8.0787	7.4479	6.8183	5.5970	5.0354	4.0603	2.7296	2.3174	2.0228	1.6601	1.3261	1.2190	1.1210	0.8921	0.6912	0.3990	0.2372	0.1394
	<u>.</u> ;	2.0000 1.9837 1.9361	1.8607	1.6482	1.3946	1.1418	1.0242	0.6435	0.5069	0.3999	0.2025	0.1330	0.0898	0.0623	0.0207	0.0108	0.0061	0.0037	0.0008	Na+	10.0000	9.8832	9.5463	8.3746	7.6475	6.8961	6.1614	4.8464	4.2917	3.3965	2.3058	1.9978	1.7852	1.5246	1.2464	1.1371	1.0325	0.7909	0.5912	0.3247	0.1827	0.1074
	בי	3.0000 2.7077 2.2153	1.9038	1.6262	1.3934	1.1493	1.0330	0.6508	0.5127	0.4045	0.2048	0.1345	0.0908	0.0630	0.0209	0.0109	0.0062	0.0037	0.000.0	Na	11.0000	10.5680	9.7607	8.3364	7.6196	6.8826	6.1572	4.8491	4.2949	3.3989	2.3059	1.9975	1.7846	1.5241	1.3671	1.1375	1.0330	0.7917	0.5920	0.3234	0.1844	0.1067
	He	2.0000 1.9572 1.8373	1.6628	1.2545	0.8877	0.6134	0.5093	0.3532	0.1774	0.1290	0.0546	0.0331	0.0210	0.0139	0.0042	0.0021	0.0012	0.0007	0.0001	S	10.0000	9.8303	9.3519	7.8062	6.9291	6.0809	5.3039	4.0308	3.5365	2.7912	1.9720	1.7572	1.6098	1.4180	1.2808	1.0416	0.9292	0.6808	0.4896	0.2540	0.1377	0.0787
	s (Å-¹)	0.00 0.05 0.10	0.15	0.25	0.35	0.40	0.50	0.60	0.80	0.90	1.20	1.40	1.60	1.80	2.50	3.00	3.50	4.00	5.00 6.00	s (Å -1)	0.00	0.05	0.10	0.13	0.25	0.30	0.35	0.45	0.50	0.60	0.70	0.90	1.00	1.20	04.1	1.80	2.00	2.50	3.00	4.00	5.00	9.00

	ა ე	24.0000	21.7816	20.0093	18.2458	14.9559	13.5062	12.2233	11.1160	8 7563	7 7919	7.1190	6.6079	6.1738	7.5/4/	3 8762	3.2459	2.7289	1.8894	1.4795	1.2677	1.12/8	0.7225		Zu	30.0000	27.9278	26.1254	24.2858	20.7240	19.0308	17.4253	14.5630	12.2384	0 1102	8.1340	7.4186	6.4553	5.7766	4 6113	4.0649	2.9091	2.1359	1.6785	1.1430	0.9627
	۸۶+	18.0000	17.3667	16.6314	15.69/2	13.5342	12.4456	11.4239	10.5016	9.0948	7 5440	6.9153	6.4253	5.9961	3.1/91	3 6468	3.0259	2.5317	1.7647	1.4060	1.2171	1.0865	0.6768		Cu ²⁺	27.0000	25.9390	24.7325	23.2323	19.8471	18.1582	15.0844	13.7542	11.5420	9.8830	7.8059	7.1691	6.2865	5.6193	4 4158	3.8582	2.7231	2.0025	1.5916	1.1052	.9290
	>	23.0000	20.4716	18.6538	16.9942	14.0197	12.7015	11.5283	10.5147	9.0004	7 5074	6.8937	6.4075	5.9736	5.1415	3 6056	2.9928	2.5076	1.7569	1.4051	1.2192	1.0851	0.6747		Cu	29.0000	26.8682	25.0479	23.2132	19.6997	18.0447	16.4863	13.7414	11.5528	1/68.6	7.8107	7.1702	6.2854	5.6198	3.0093	3.8621	2.7255	2.0033	1.5922	1.1079	0.9276
	Ti4+	18.0000	17.2595	16.4123	15.3561	13.0027	11.8707	10.8432	9.9465	9.18/0	7 2584	6.6881	6.2136	5.7709	4.9000	3 3407	2.7531	2.3043	1.6412	1.3390	1.1706	1.0435	0.8208		Ni ² +	26.0000	24.9200	23.6992	22.1919	18.8345	17.1829	15.6340	12.9597	10.8946	9.31/1	7.5168	6.9452	6.1205	5.4519	4.6161	3.6447	2.5421	1.8783	1.5130	1.0697	0.8921
	ī	22.0000	19.4075	17.6297	16.03/4	13.1953	11.9477	10.8520	9.9208	9.1491	7 2418	6.6778	6.2017	5.7538	4.8739	4.0403	2.7353	2.2921	1.6379	1.3392	1.1729	1.0415	0.6250		ž	28.0000	25.8062	23.9710	22.1461	18.6911	17.0791	15.5728	12.9543	10.9081	9.3915	7.5201	6.9453	6.1196	5.4530	4.8212	3.6486	2.5440	1.8789	1.5136	1.0726	.8907
nt.)	Sc3+	18.0000	17.1207	16.1347	14.9363	12.3961	11.2429	10.2375	9.3935	8.7028	7.0027	6.4665	5.9840	5.5128	4.5843	3.7359	2.4923	2.0959	1.5350	1.2798	1.1250	0.9979	0.765		Co2+	25.0000	23.9018	22.6685	21.1575	17.8382	16.2299	14.7378	12.2037	10.2914	8.9165	7.2573	6.7399	5.9527	5.2703	3 0865	3.4223	2.3658	1.7634	1.4418	1.0334	.8533
Table 2 (cont.)	Sc	21.0000	18.3542	16.6416	15.1315	12.7302	11.2449	10.2274	9.3793	8.6891	6 9989	6.4614	5.9767	5.5029	4.5719	3.7244	2.0239	2.0914	1.5340	1.2804	1.1273	0.9954	0.7747		ပ	27.0000	24.7418	22.8954	21.0862	17.7011	16.1376	14.6884	12.2052	10.3067	8.9295	7.2592	6.7393	5.9521	5.2720	3 0005	3.4259	2.3674	1.7638	1.4424	1.0365	0.8518
	Ca2+	18.0000	16.9355	15.7755	14.4144	13.0188	10.5766	9.6304	8.8685	8.2640	7,5906	6.2323	5.7203	5.2113	4.2338	3.3916	2.7329	1.9102	1.4446	1.2259	1.0782	0.9487	0.7150		Fe ² +	24.0000	22.8850	21.6418	20.1310	16.8616	15.3031	13.8740	11.4899	9.7347	8.4999	7.0233	6.5478	5.7770	5.0703	3 7500	3.1936	2.1969	1.6584	1.3776	0.9957	0.8123
	C	20.0000	17.3321	15.7245	14.3063	11.7074	10.5924	9.6518	8.8869	8.2766	6.7633	6.2295	5.7186	5.2108	4.2348	3.3920	2.2503	1.9098	1.4446	1.2266	1.0806	0.9458	0.7189		Fe	26.0000	23.6752	21.8228	20.0362	16.7335	15.2239	13.8370	11.4977	9.7511	8.5114	7.0239	6.5466	5.7769	5.0727	4.3899	3.1969	2.1980	1.6587	1.3785	0.9990	0.8108
	¥	18.0000	16.6780	15.2987	13.7618	10.9744	9.9031	9.0572	8.4007	7.8879	6 5251	5.9639	5.4077	4.8603	3.8560	3.046/	2.0333	1.7497	1.3677	1.1746	1.0286	0.8951	0.6578		Mn ²⁺	23.0000	21.8713	20.6222	19.1174	15.9114	14.4095	13.0493	10.8237	9.2275	8.1275	6 8093	6.3618	5.5870	4.8485	3 5038	2.9619	2.0377	1.5639	1.3196	0.9560	0.7691
	¥	19.0000	16.7341	15.2444	13.7301	10.9786	6606.6	9.0631	8.4047	7.8900	6 5243	5.9632	5.4073	4.8603	3.8562	3.0468	2.0330	1.7494	1.3682	1.1751	1.0301	0.8933	0.6390		M	25.0000	22.6079	20.7569	19.0021	15.7955	14.3450	13.0251	10.8369	9.2441	8.1372	6.8088	6.3604	5.5876	4.8515	4.1456	2.9647	2.0384	1.5640	1.3205	0.9596	0.7675
	Ar	18.0000	16.2988	14.6489	12.9510	10.2179	9.2736	8.5592	8.0124	7.5766	0.8/02	5.6409	5.0373	4.4615	3.4631	2.7138	1 8450	1.6145	1.3011	1.1230	0.9747	0.8364	0.5987		Cr4+	20.0000	19.2278	18.3389	17.2207	14.6743	13.4121	12.2370	10.2635	8.8244	7.8281	6.136	6.1804	5.3927	4.6260	3.9033	2.7470	1.8962	1.4808	1.2666	0.9136	0.7240
	(Å ')	0.00	0.03	0.15	0.20	0.25	0.35	0.40	0.45	0.50	0.60	0.70	06.0	1.00	1.20	1.40	00.1	2.00	2.50	3.00	3.50	4.00	5.00	0.00	، (۲)	0.00	0.03	0.15	0.20	0.25	0.35	0.40	0.43	09.0	0.70	08.0	1.00	1.20	1.40	1.60	2.00	2.50	3.00	3.50	4.00 5.00	6.00

	Sr ²⁺	36.0000 35.5244	34.1987	30.2827	27.8951	25.8641	24.0680	21.3033	19.9017	17.7048	15.7119	13.8798	10.2340	8.6409	7.2508	6.3773	5.7868	5.3258	4.3218	2.4020	2.1034	1.4939	1.2191	Pd2+	•	44.0000	41.9203	39.6620	37.0068	34.2499	29.1962	27.0761	25.2484	21.2079	19.3046	17.7118	16.2674	12 3552	10.1885	8.5066	7.2939	6.4526	5.2480	3.7448	3.0859	2.1119	1.5758
	Sr	38.0000 36.8020	34.4593	32.1735	27.8666	25.8782	24.0939	21.1448	19.9063	17.7003	15.7065	13.8767	10.8092	8.6421	7.2514	6.3773	5.7864	5.3255	4.3226	2.4031	2.0997	1.4971	1.2175	Pd	1	46.0000	43.1745	40.3623	37.2935	31.5351	29.0909	26.9749	25.1674	21.1909	19.3096	17.7246	16.2803	12 3581	10.1885	8.5063	7.2940	6.4531	5.2480	3.7434	3.0839	2.1125	1.5744
	Rb+	36.0000 35.4350	33.8921	31.7428	27.1507	25.1533	23.4277	20.6066	19.3948	17.1733	15.1322	13.2768	11.0484	8.2536	6.9989	6.2107	5.6577	5.2026	4.1699	2.5078	1.9938	1.4378	1.1852	Rh		45.0000	41.8292	39.0068	36.0779	30.2014	28.3726	26.3703	24.6504	20.8122	18.9462	17.3404	15.8603	11.8813	9.7570	8.1601	7.0380	6.2701	5.1451	3.6205	2.9588	2.0221	1.5183
	Rb	37.0000 35.9484	33.9087	31.6830	27.1511	25.1616	23.4359	20 6090	19.3949	17.1717	15.1308	13.2761	11.0484	8.2539	6.9990	6.2107	5.6574	5.2025	3 2407	2.5093	1.9919	1.4387	1.1846	Ru		44.0000	40.7608	37.9441	35.0716	29.8603	27.6625	25.7551	24.1162	20.4174	18.5663	16.9372	13.4200	11.3990	9.3358	7.8339	6.8034	6.1041	5.0425	3.4910	2.8324	1.9341	1.4659
	Kr	36.0000 35.3038	33.4680	31.0571	26.3670	24.4566	22.8233	20.0912	18.8743	16.5982	14.5087	12.6484	9 7549	7.8998	6.7748	6.0582	5.5301	5.0729	4.0083	2.3699	1.8901	1.3870	1.1521	Mo6+	1	36.0000	34.8924	33.6192	32.0207	28 3933	26.5960	24.9125	23.3776	19.6517	17.6970	15.9714	14.3877	10.9249	8.5386	7.2495	6.3962	5.8148	4.8361	3.2277	2.5888	1.7692	1.3745
ont.)	Вг	36.0000	32.8997	27 7224	25.5933	23.8069	22.2614	19.5616	18.3160	15.9688	13.8454	12.0066	9.2641	7.5819	6.5754	5.9152	5.4001		ĸοσ	2.2371		1.3411	1.1196	Š		42.0000	38.6363	35.8788	33.1680	28.3712	26.3651	24.6217	23.1140	19.6028	-17.7382	16.0416	14.4521	10 4315	8.5434	7.2520	6.3978	5.8146	4.8292	3.2194	2.5796	1.7703	1.3713
Table 2 (cont.)	Br	35.0000	32.4403	27.7379	25.6513	23.8558	22.2903	19.5647	18.3139	15.9640	13.8419	12.004/	9.2639	7.5820	6.5755	5.9151	5.4000	4.9339	3.83//	2.2365	1.7929	1.3395	1.1206	N _b S+		36.0000	34.7678	33.3687	31.6391	27.8277	25.9977	24.3159	22.8054	19.1717	17.2345	15.4935	13.8873	9 9512	8.1784	8966.9	6.2230	5.6864	7.7201	3.0840	2.4620	1.6928	1.3318
	Se	34.0000	31.4297	26.9425	24.9905	23.2853	20.7351	18.9851	17.6907	15.2755	13.1490	0.000	8.8097	7.2999	6.3964	5.7766	5.2639	4./842	3.0398	2.1095	1.7027	1.2957	1.0895	Š		41.0000	37.5864	34.8912	32.2861	27.6941	25.7682	24.0893	22.6298	19.1696	17.2814	15.5464	13.9277	9 9574	8.1797	0866.9	6.2238	5.6858	4./14/	3.0789	2.4549	1.6952	1.3288
	As	33.0000	30.4571	26.2223	24.3806	22.7252	19 7329	18.3345	16.9962	14.5405	12.4453	10.7432	8.3978	7.0512	6.2325	5.6379	5.1188	3.4760	2.4700	1.9898	1.6199	1.2550	1.0587	Zr4+		36.0000	34.6175	33.0723	31.1988	27.2149	25.3701	23.7081	22.2352	18.6922	16.7552	14.9882	13.3602	9 4962	7.8417	6.7679	6.0657	5.5643	4.5964	2.9389	2.3383	1.6214	1.2919
	g	32.0000	29.5273	25.5599	23.7894	22.1389	19 0537	17.6054	16.2338	13.7752	11.7485	10.1535	8.0294	6.8312	6.0781	5.4949	4.9627	4.4480	2.2003	1.8779	1.5442	1.2165	1.0275	Zr		40.0000	36.3512	33.7519	31.3591	27.0987	25.2531	23.6176	22.1783	18.7048	16.7791	15.0092	13.3745	9 4987	7.8429	6.7686	6.0658	5.5635	4.5938	2.9382	2.3328	1.6256	1.2888
	Ga	31.0000	28.6670	24.9346	23.1771	21.4860	19.8519	16.7987	15.4150	12.9999	11.0765	9.6066	7.7041	6.6346	5.9279	5.3440	4.7937	4.2624	2.0960	1.7741	1.4755	1.1793	.9957	γ3+		36.0000	34.4325	32.7166	30.6877	26.5575	24.7221	23.0999	21.6751	18.2066	16.2506	14.4510	12.8078	9 0571	7.5319	6.5621	5.9215	5.4452	4.4639	2.7937	2.2185	1.5551	1.2545
	Zn^{2+}	28.0000 27.7315	26.9584	24 2770	22.6094	20.8731	19.1526	15.9778	14.5836	12.2309	10.4315	9.0992	7 4164	6.4563	5.7767	5.1801	4.6080	4.0610	2.9064	1.6778	1.4150	1.1406	0.9641	>		39.0000	35.3631	32.9037	30.6344	26.4923	24.6836	23.0821	21.6711	18.2155	16.2580	14.4558	12.8108	9.0582	7.5326	6.5623	5.9212	5.4446	4.4631	2.7950	2.2139	1.5593	1.2519
	s (Å-¹)	0.00	0.10	0.15	0.25	0.30	0.35	0.40	0.50	09.0	0.70	0.80	0.90	1.20	1.40	1.60	1.80	2.00	2.50	3.50	4.00	5.00	00.9	s (Å -1)		0.00	0.10	0.15	0.20	0.30	0.35	0.40	0.45	0.00	0.70	0.80	0.90	1.00	1.40	1.60	1.80	2.00	2.50	3.50	4.00	5.00	00.9

	ပိ	55.0000	53.5275	50.6045	47 7939	43 8925	40 7172	37 0086	37.3000	35.4450	33.2468	31.2421	29.3879	26.0776	23 3074	21.02.64	10.010	19.5144	17.9046	15.6811	13.7647	11.9595	10.3053	8 8850	6 5051	10000	5.3343	4.6546	4.0861	3.0451	2.2346		,	ES	62.0000	60.5238	57.4542	54.1415	50 7554	17 3681	47.3081	44.1392	41.1801	38.3199	30.1341	20.97.88	30.2043	24.9530	21.02.42	20.22	17 5285	15.6181	14.0114	12.5038	11.0693	8 0996	6.2692	5.2797	4.6690	3.7303	2.8719
	X	54.0000	52.9174	50.1274	46 5916	43.0923	39 9713	37.7550	71.4077	34.8333	32.6763	30.6621	28.7902	25.4753	22 7624	20 6227	10.07	10.7471	17.5958	15.3954	13.4365	11.5954	9.9431	8 5580	6 2160	6010.0	5.2313	4.5682	3.9916	2.9402	2 1475		:	+cPN	57,0000	56.3229	54.4257	51.6549	48 4381	15.151	101.04	47.0444	39.2312	30.7274	24.4939	32.4640	25.9330	12.7334	71 7583	10 5444	17.0142	15 1438	13.5046	11.9481	10.4884	7 6117	\$ 9599	5.0838	4.5140	3.5446	2.6899
	<u>.</u>	54.0000	52.6917	49.4904	45 7384	42.2683	39 2689	36 6461	24.0401	34.2700	32.0858	30.0459	28.1560	24.8611	22 2326	20102	10 4030	10.0020	17.2967	15.0952	13.0870	11.2178	9.5794	8 2415	0771.9	01110	5.1340	4.4811	3.8901	2.8357	2 0626		;	PX	00000	58.4678	55.3361	52 0094	48 6423	45 3150	47.3130	42.1662	39.3384	36.8334	24.5797	32.3404	75 8007	23.6992	71.7106	10 5183	17.0083	15 1422	13.4990	11.9381	10.4769	7 6061	5.9600	5.0874	4.5105	3.5473	2.6870
	1	53.0000	51.9010	49.1172	45 6730	42.3198	39 3266	36.6705	24.000	34.2893	32.0868	30.0415	28.1497	24.8559	22 22 88	20100	100701	10.0071	17.2973	15.0958	13.0871	11.2176	9.5790	8 2412	21770	0.1430	5.1339	4.4805	3.8911	2.8337	2 0635		,	Pr3+	26 0000	55.3130	53 3936	50 6058	47 3936	1071.74	44.1401	41.0903	38.3483	35.91/9	33.7341	31.8012	26.3000	23.4113	20.9190	10 2116	16.7540	14 8940	13.2308	11.6484	10.1818	7 3735	5 8177	4.9933	4.4336	3.4493	2.5977
	Te	52.0000	50.8883	48.1289	44 8001	41 5956	38 7068	36.7008	30.0943	33.6881	31.4509	29.3780	27.4798	24 2418	21 72/3	C+7/:17	19.1933	18.2/24	17.0016	14.7768	12.7166	10.8294	9 2 1 7 6	7 0254	4006.7	5.9845	5.0398	4.3896	3.7862	2 7271	1 0827	1707.1		Pr	20 000	57 4382	54 2770	20.0485	77.5092	2000	44.3098	41.2424	38.4833	36.0314	33.8403	31.8562	28.35/0	22.27.58	71/8.77	6979.07	16.1809	14 0036	13 2236	11 6370	10.1696	7 3684	5 8183	4.9971	4.4299	3.4519	2.5948
cont.)	Sb	51.0000	49.8946	47.2023	44.0113	40 0327	28 0005	26.077	33.4777	33.0324	30.7599	28.6744	26.7913	23 6475	71.7535	10.4240	19.4249	17.9610	16.7013	14.4345	12.3259	10 4346	8 8 6 7 8	2700.0	7.0443	5.8383	4.9476	4.2945	3.6772	2 6207	1 0056	0000:1		Ce4+	54 0000	53 3668	51.5804	48 0868	46.7606	40.40.64	42.8023	39.9415	37.3090	34.9788	52.9109	31.0496	21.7.05	24.9423	22.2330	10.03390	16.5044	10.5044	12 9548	11 3537	9 8865	7 1505	5 6840	4.9042	4.3511	3.3527	2.5076
Table 2 (cont.)	Sn	20.0000	48.9156	46 3221	13 2760	40.2007	27 4684	77.4004	34.8082	32.3186	30.0236	27.9472	26.1019	23 0824	20.00	20.0103	19.0/20	17.6499	16.3888	14.0673	11.9180	10 0372	8 5178	0.17.0	2,000.7	5.7037	4.8558	4.1948	3.5643	2 5151	1 8321	1769:1		ප	28 0000	56 3817	53 0372	70.5682	75.005	1777.04	43.0430	40.1091	37.4796	35.1444	33.0550	31.1580	21.1939	24.9044	20.41.20	10 0054	16.0034	14 6267	12 9438	11 3375	0 8699	7.00.7	5 6851	4.9085	4.3466	3.3558	2.5032
	In	49.0000	47.9647	45 5096	17 5011	30 6417	26 7026	34.066	34.0093	31.5467	29.2542	27.2140	25.4287	22 5545	20.4100	20.4109	18.7401	17.3337	16.0577	13.6747	11.4959	9 6413	2 1 2 5 7	1000	0711.7	26/5.5	4.7628	4.0900	3.4482	2 4107	1 7623	1.1023	•	La3+	24 0000	53 2043	51 3352	3000.10	46.3240	43.3397	42.1738	39.2581	36.6704	34.3902	32.35/3	30.5112	7877.17	24.4049	22.03/3	0711.07	18.3037	10.2307	12 6402	11.0137	0 5520	2766.4	6.5488	4.8202	4.2671	3.2515	2.4154
	Cd2+	46.0000	45.4712	43.9718	71716	30 0455	26.1069	30.1900	33.4061	30.8169	28.5035	26.4884	24.7604	22 0344	20.00	7710.07	16.4052	17.0089	15.7104	13.2626	11.0651	9 2509	7 8600	0.0007	0.0132	5.4031	4.6664	3.9777	3.3298	2 3049	1 6090	00.0.1		La	57 0000	55 3401	51 0740	18 5150	7006 31	43.2097	42.0811	39.2184	36.6666	34.4042	32.3764	30.5284	27.7357	24.4055	22.0355	20.1103	18.3047	14 2665	12.5033	11.0141	0.5524	4700.4	6.9224	4 8230	4.2621	3 2558	2.4126
	క	48.0000	47.0851	44 7986	41 0260	38 0340	36.0133	20.0122	33.2302	30.7306	28.4735	26.4964	24.7886	27 0675	2000	20.0314	18.4094	17.0043	15.7025	13.2570	11.0637	0 2514	7 2605	2,000.7	0.075	5.4079	4.6673	3.9797	3.3294	2 3084	1 6061	1020:1	•	Ba ² +	24 0000	53 2034	51.0255	77 0851	1006.14	44.0344	41.4507	38.5716	36.0447	33.8134	31.8045	29.9611	26.6648	23.85/9	21.5494	19.7024	18.2204	13.93.9	12 3084	10.5635	0 2172	7/17.6	6.7038	4 7368	4.1796	3 1486	2.3244
	Ag ²⁺	45.0000	44.4625	42 9447	40.6920	38 0185	36.0103	33.4113	32.4900	29.9888	27.7716	25.8514	24 2098	21 6145	610.12	19.0004	18.00/0	16.6506	15.3178	12.8169	10.6261	8 8714	7 5713	2110.1	0.0333	5.3333	4.5683	3.8640	3.2091	2 2070	1 6251	1000.1		Ва	0000	54 3440	51.1240	77 8417	140.74	44.3901	41.4604	38.6026	36.0686	33.8234	31.8034	29.9543	26.65/9	23.8560	1155.12	1607.61	18.2280	13.9380	12.0730	10.5632	0 2172	2117.6	6.7008	4 7398	4.1755	3.1514	2.3232
	Ag	47.0000	46.1395	43 0655	41 1604	30 1506	36.1360	35.1971	32.4213	29.9147	27.7116	25.8099	24.1850	21.1030	0110.17	19.0022	18.0/32	16.6556	15.3210	12.8178	10 6263	8 8716	2 5716	01/0/	0.0357	5.3533	4.5682	3.8643	3 2075	2 2088	1 2335	1.0333		CS+	0000	34.0000	50.6267	30.0307	47.0463	43.9014	40.7076	37.8982	35.4392	33.2455	31.2436	29.3904	26.0795	23.3077	21.0758	19.3136	17.9041	13.0812	13.7030	10.3057	0.3037	0.00.0	6.3042	4 6531	4.0880	3.0446	2.2350
	s (Å - 1)	0.00	0.05	010	21.0	0.0	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.50	0.00	0.70	0.80	06.0	1.00	1.20	1.40	1 60	00.1	1.00	7.00	2.50	3.00	3.50	4 00	00.8	00.0	00.0		s (Å -¹)	000	0.00	0.0	0.10	0.13	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	00.1	07.1	1.40	00.1	7.00	2.60	2.50	2.50	4 00	00.4	6.00

	Ē	0000.89	66.6733	63.7975	60.5752	57.2080	53.7436	10.3211	47.0718	44.0036	38 8140	34 4197	30.6840	77 4067	24.8012	22.00.12	19 22 47	16 9839	15.3339	13.9343	12.6242	9,6291	7.3791	5.9866	5.1711	4.2184	3.4100	Os	76 0000	74.7965	71.7854	68.0292	64.1803	60.4695	56.9574	53.6614	20.2877	45.7340	40.3643	36.2633	32.6662	29.5013	26.7342	22.3147	19.1957	17.0419	15.4878	14.2430	11.5466	9.1449	1.2922 6.0581	4 7909	4.0368
	Ho3+	64.0000	63.3904	61.6554	59.0453	55.8879	52.5019	15.1301	43.9408	40.2007	37 8077	33.6448	30.0346	26.0340	24 3376	22.5515	18 9352	16.7561	15.1280	13.7223	12,3948	9.3832	7.1814	5.8517	5.0842	4.1390	3.3262	Re	75.0000	73.7747	70.7529	67.0504	63.2949	59.6735	56.2253	52.9666	49.9103	44.4172	39.6856	35.5856	32.0033	28.8701	26.1509	21.8581	18.8669	16.8054	15.2972	14.0608	11.3241	8.9152	4.1004	7108	3.9649
	Но	67.0000	65.6500	62.7419	59.5015	56.1257	32.0639	49.2030	40.0332	2000	37 9591	14 6604	30.025	202020	24 3027	22.222	18 9207	16.7534	15.1279	13.7199	12.3892	9.3762	7.1784	5.8534	5.0811	4.1425	3.3234	*	74.0000	72.7531	69.7292	0960.99	62.4409	58.9024	55.5036	52.2664	49.2130	43 7157	38.9817	34.8920	31.3348	28.2426	25.5787	21.4203	18.5553	16.5789	15.1086	13.8743	11.0950	8.6861	5 8027	4 6495	3.8913
	Dy3+	63.0000	62.3810	60.6227	57.9867	54.8135	31.4303	40.0004	44.9404	200024	37.0605	32 0147	20.2147	26.3538	23.8550	22.222	18.6398	16.5281	14.9184	13.5003	12.1512	9.1281	6.9857	5.7245	4.9975	4.0613	3.2381	Ta	73.0000	71.7325	68.7190	65.1726	61.6216	58.1530	54.7836	51.5500	48.4920	42 9816	38.2540	34,1862	30,6650	27.6225	25.0204	21.0019	18.2599	16.3609	14.9202	13.6825	10.8598	8.4585	5 6841	4 5705	3.8158
	Dy	0000.99	64.6261	61.6854	58.4275	55.0446	51.5922	48.21/9	45.0497	47.1409	39.3127	37.1210	36.9370	26.3643	73.8103	27.6173	18 6265	16 5261	14 9181	13.4970	12.1447	9.1210	6.9831	5.7266	4.9944	4.0648	3.2353	HŁ	72 0000	70.7142	67.7292	64.2897	60.8392	57.4176	54.0517	50.8033	47.7299	47 2125	37.5056	33,4733	29.9986	27.0137	24.4787	20.6033	17.9796	16.1494	14.7305	13.4844	10.6191	8.2332	5 5712	4 5092	3.7384
nt.)	Tb3+	62.0000	61.3715	59.5896	56.9281	53.7406	50.3633	47.0487	45.9458	70 5571	36.3301	37 2030	32.2030	75 9407	23.3872	21.36.12	18 3532	16 3020	14.7037	13.2690	11.8979	8.8717	6.7960	5.6037	4.9135	3.9815	3.1488	Lu3+	68 0000	67.4255	65.7802	63.2748	60.1919	56.8177	53.3885	50.0676	40.9407	41.0011	36.7398	32,7584	29,3403	26.4192	23.9545	20.2227	17.7116	15.9420	14.5376	13.2787	10.3723	8.0097	5 4676	4 4336	3.6621
Table 2 (cont.)	đ	65.0000	63.6014	60.6278	57.3534	53.9653	50.5231	47.1763	44.0363	160714	36.0333	32 2230	22.2230	25.01399	23.3500	23.3367	18 3414	16 3004	14.7029	13.2648	11.8905	8.8646	6.7939	5.6061	4.9104	3.9848	3.1459	Ľı	71 0000	69.7019	66.7748	63.4617	60.0931	56.6809	53.2868	50.0073	40.9103	41.4085	36.7420	32.7595	29.3407	26.4198	23.9558	20.2247	17.7131	15.9429	14.5382	13.2794	10.3737	8.0113	5 4640	4 4382	3.6592
	Gd3+	61.0000	60.3620	58.5568	55.8711	52.6723	49.3049	40.0220	42.9094	37 7036	35.7020	31 5171	1717.10	20.11.02	22.229	20 0220	18 0759	16.0763	14.4823	13.0274	11.6346	8.6151	6.6132	5.4889	4.8317	3.8993	3.0583	Yb3+	0000 29	66.4170	64.7499	62.2183	59.1154	55.7352	52.3177	49.0250	43.9448	40.5008	35.9411	32.0527	28.7188	25.8759	23.4853	19.8837	17.4639	15.7396	14.3426	13.0703	10.1313	7.7974	5 3655	4 3618	3.5808
	В	64.0000	62.5491	59.4001	55.9669	52.5515	49.1785	45.9388	42.9233	40.1003	37.6998	31.4331	31.3229	26.1790	22.3303	20.023	18 0770	16.0771	14 4831	13 0284	11.6358	8,6166	6.6145	5.4914	4.8274	3.9038	3.0554	Yb	0000 02	68.7180	62.9029	62.7213	59.3750	55.9081	52.4503	49.1335	46.0364	45.1632	35 9718	32.0525	28.6969	25.8444	23.4538	19.8656	17.4588	15.7396	14.3421	13.0671	10.1248	7.7936	6.77.13	7.3023	3.5781
	Eu3+	60.0000	59.3525	57.5246	54.8164	51.6092	48.2557	45.0099	42.0102	39.3010	36.8690	30.04.0	30.8468	27.3699	24.01/0	205.00	17 8031	15 8480	14 2530	12.7750	11.3615	8.3593	6.4376	5.3800	4.7515	3.8146	2.9668	Tm3+	0000	65.4083	63.7190	61.1611	58.0390	54.6548	51.2515	47.9901	44.9556	30 6737	35.0232	31.3634	28.1130	25.3479	23.0307	19.5565	17.2229	15.5372	14.1425	12.8539	9.8856	7.5880	0.1248	0.2070	3.4976
	Eu	63.0000	61.5502	58.5106	55.2064	51.8152	48.4051	45.1332	42.1164	39.3922	36.9432	30.0570	50.65/9	6/06/7	24.7600	2104:77	17 7945	15 8483	14 2510	12.7689	11.3527	8.3528	6.4364	5.3829	4.7483	3.8177	2.9640	Tm	0000	67.6959	64.8521	61.6485	58.2912	54.8245	51.3829	48.0981	45.0451	30 6855	35 1873	31.3604	28.0888	25.3151	22.9990	19.5395	17.2186	15.5374	14.1414	12.8500	9.8789	7.5845	0.1200	7.5047	3.4949
	Sm ³⁺	29.0000	58.3428	56.4916	53.7612	50.5476	47.2117	44.00/0	41.0650	38.4213	36.0553	33.9230	30.1967	0770.77	24.3224	20.2264	17 5367	15.6180	14 0145	12,5113	11.0791	8.1060	6.2700	5.2765	4.6723	3.7273	2.8748	Er3+	65 0000	64.3994	62.6875	0	56.9631	53.5769	50.1908	46.9637	43.9739	18 7573	34 3930	30.6906	27.5231	24.8352	22.5906	19.2405	16.9873	15.3338	13.9361	12.6289	9.6360	7.3824	5.9831	7.1.7	3.4127
	s (Å-1)	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.00	0.00	0.0	00.0	0.00	1.20	1.40	1.40		200	2.50	3.00	3.50	4.00	5.00	00.9	s (Å -1)	0 0	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	2.50	0.50	0.70	0.80	0.90	1.00	1.20	1.40	1.60	1.80	2.00	2.50	3.00	0.50 A 00	90.	6.00

In addition, Doyle & Turner (1968) gave a fit of four Gaussians to the electron scattering factor, though it should be mentioned that this is unphysical at large angles and prone to error. Weickenmeier & Kohl (1991) also published an electron scattering-factor parameterization. However, their scheme is equivalent to using the Doyle-Turner X-ray parameters

Fig. 1. Atomic X-ray scattering factor for ytterbium.

with $Z = \sum a_j$. As such, it is a better physical representation than the four Gaussians used by Doyle & Turner, though it should be mentioned that fitting the electron scattering factor can hide large errors in the X-ray scattering factor, especially at large angles. We feel that there is no need to present a separate parameterization for the electron scattering factors as they can be calculated using the Mott formula,

$$f_{\rm el}(s) = (me^2/2h^2)\{[Z - f_x(s)]/s^2\}. \tag{3}$$

The Numerical Recipes routine was slightly modified to constrain the exponents to be positive numbers less than 200.0. Cases in which any of the constants, a_j , are determined to be negative numbers should also be used with caution. Rather than add an unphysical constant, we have decided to vary the range of the fit to give an acceptable value of χ^2 as defined by

$$\chi^{2} = \sum_{i} \left[f(s_{i}) - \sum_{j} a_{j} \exp\left(-b_{j} s_{i}^{2}\right) \right]^{2}, \tag{4}$$

which acts as a merit function that measures the

goodness of fit. Generally, we require that χ^2 be less than 0.1 and that $\sum a_j$ be within 0.1 of Z. The fitting does not give unique values of the parameters, which can vary depending on the starting values assumed. This is indicative of a large number of closely spaced local minima with similar χ^2 values. In Table 3, we give a parameterization using four Gaussians up to 2.0 Å⁻¹ starting the fit from the published values of Maslen *et al.* (1992). The summary of $\sum a_j$, the range of fit and χ^2 are given in Table 4.

The limitations of the restricted range of the Doyle & Turner (1968) parameters have been recognised by Fox, O'Keefe & Tabbernor (1989). They published an extended parameterization based on a linear fit of a second-order polynomial to $\ln f_x(s)$ in the range 2.0 to 6.0. We have decided to present another table of parameters, this time generated using separate parameterizations in terms of two Gaussians in an inner and an outer region. The parameters of the four Gaussians are then refined together. The parameters are given in Table 5, and Table 6 shows χ^2 and $\sum a_i$ values. Examination of the results of Tables 4 and 6 reveals that some elements or ions are very difficult to fit. Particularly bad cases are light elements such as lithium and beryllium and their ions, ions such as potassium and calcium, secondrow transition elements such as silver and some of the heavier elements close to lead and bismuth. Similar problems have been found by Doyle & Turner.

Fig. 2. (a) Atomic X-ray scattering factor for magnesium. The lower line is for Mg²⁺. (b) Atomic X-ray scattering factor for oxygen. The higher line is for O²⁻.

In general, we recommend direct use of the tables of scattering factors, rather than use of any parameterization. The complete tables take up less than 250 kbytes, a negligible amount of space on computers today, and one could use either a cubic spline or linear interpolation.

Electron scattering factors

As mentioned above, electron scattering factors can be calculated using the Mott formula. This does not help in evaluating $f_{\rm el}(0)$, which has recently become of considerable interest owing to advances in holography and the use of Fresnel imaging to characterize interfaces. We have calculated atomic or ionic values by taking the limit of (3) as s tends to zero. This is done by calculating the coefficient of s^2 that fits the charge density near s=0. The values of $f_{\rm el}(0)$ are tabulated as Table 7 and are shown graphically for neutral atoms as a function of Z in Fig. 3. The mean inner potential for a finite crystal can be derived from $f_{\rm el}(0)$ using the expression

$$V_{000} = (\hbar^2 \pi / 2\varepsilon_0 me V_c) \sum_i n_j f_{\text{el}}^j(0), \tag{5}$$

where V_c is the unit-cell size and the n_i are the occupation numbers for atoms of type j, with the assumption that there is no charge overlap between atoms. The mean inner potential is a measure of the average value of r^2 (Ibers, 1958) and as such is very sensitive to charge redistribution. These effects of charge redistribution and surface dipole layers on V_{000} are discussed by O'Keeffe & Spence (1994). The above V_{000} is the mean of the electrostatic or Coulomb potential (including the nuclear contribution) and so should be distinguished from the much smaller mean inner potential of surface physics, which usually refers to pseudopotentials or valence-electron potentials. Using the values given in Table 7, we have calculated mean inner potentials for elements and compounds where accurate values have been measured recently by electron holography (Gajdardziska-Josifovska et al., 1993). The results are shown in Table 8. Particularly striking is the

Fig. 3. Variation of neutral-atom electron scattering factor with atomic number.

Table 3. Parameterization over range up to 2.0 $\mbox{\normale}^{-1}$

He	2	.9293	8.6243	.6200	2.8879	.3318	22.3531	.1188	.6748
Li Li+	3	1.3569 1.3211	3.3246 3.8304	.5338 .6282	.6856 .7630	.4316 .1267	66.4053 73.7337	.6778 0735	149.9503 199.4269
Be	4		42.3109	1.2628	1.7276	.6125	97.9345	.6004	.4090
Be ²⁺	4		67.7350	1.3494	1.8375	.0703	124.1407	.5661	0.3875
B C	5 6	2.0730 2.6158	23.3127 11.3632	1.2077 .2279	1.0718 3.0830	1.0773 1.5983	60.7133 .3787	.6411 1.5602	0.2699 49.7088
N	7	.4743	.1041	2.9082	9.1890	2.2778	27.0869	1.3332	0.4612
O O ² -	8		11.9964	1.8289	4.7941	1.7198	.2372	.9790	31.9917
F	8 9	3.8364	16.4438 9.8148	2.2263 2.3728	5.2614 3.8835	1.7313 1.7299	.2415 .1904	1.7412 1.0600	49.7371 25.9693
F-	9	4.1803	10.9872	2.5253	4.0129	1.7360	.1923	1.5564	33.0471
Ne Na	10 11	4.2156 4.1946	8.1154 2.8601	2.9030 3.8961	3.1648 7.9204	1.7341 1.7637	.1553 .1346	1.1463 1.1391	21.5835 125.7209
Na+	11	4.4278	5.2355	2.4274	2.2658	1.7182	.1272	1.4258	12.6031
Mg	12	4.5028	2.3277	2.2123	77.7413	1.7687	.1146	3.5049	5.9035
Mg ² + Al	12	4.3643 6.9497	2.1618 2.4785	3.9083 1.9692	5.9459 .1286	1.6872 1.1904	.0879 12.5062	0.0382 2.8774	.0000 66.1402
Al ³⁺	13	4.0707	1.7260	4.1517	4.2883	1.7051	.0859	.0706	32.8254
Si	14	7.1620	1.9861	.9286	13.9567	1.8869	.0966	4.0099	51.3981
P S	15 16	7.1583 7.1301	1.7276 1.4247	3.4832 5.0712	23.7455 21.7545	2.0781 2.0611	.1140 .0994	2.2770 1.7369	57.1173 54.2128
Cl	17	1.9223	.0722	7.1697	1.1600	6.1830	18.3275	1.7250	46.8148
Cl- Ar	17 18	1.8908 1.7760	.0682 .0484	7.2032 7.2215	1.1532 .9567	6.1851 7.3061	18.8805 15.6234	2.7190 1.6972	51:3334 41.1982
K	19	8.3113	9.9767	8.0220	.3899	1.1654	166.1394	1.4898	36.3604
K+	19		12.8738	7.9831	.7329	.8931	.0000	.4937	54.3035
Ca Ca ²⁺	20 20	7.5005 8.4026	7.3264 10.2488	7.8568 7.7343	.4028 .6274	2.8393 1.0077	29.2324 .0000	1.8036 .8573	142.0442 25.4419
Sc	21	8.6967	6.0531	7.6978	.3439	2.0208	133.3668	2.5917	31.1311
Sc3+	21 22	8.7769	8.6343	7.6660	.5467	.5349	28.8159	1.0211	.0000
Ti Ti ⁴⁺	22	8.2824 9.1121	5.9317 6.0140	7.8778 7.8109	.3228 .2649	3.4763	15.7854 21.0441	2.3563	102.1476 108.4904
V	23	9.4200	5.6518	7.9252	.2790	3.5777	19.8076	2.0762	106.9938
ν5+ C=	23 24	7.9780 2.1592	5.9050 1.7563	7.0702 7.5070	.4154 .2563	1.3997 11.5180	11.2548 7.6002	1.5534 2.7799	.0454 58.4816
Cr Cr ⁴⁺	24	9.4679	4.7481	7.8807	.2349	2.5940	13.4095	.0610	99.5152
Mn	25	4.6706	3.2004	7.8910	.2479	9.3545	7.8654	3.0602	64.8640
Mn ²⁺ Fe	⁻ 25 26	9.2787 8.7267	4.4959 3.8443	8.0358 8.0070	.2537 .2319	5.4444 6.4440	12.3213 9.4874	.2410 2.8058	56.4882 65.8373
Fe ²⁺	26	9.9708	4.1647	8.0590	.2340	5.6730	10.8269	.2955	39.6599
Co	27	10.4470	3.7376	8.0361	.2146	5.8114	9.9259	2.6910	64.0058
Co ²⁺ Ni	.27	10.8328 11.5224	3.8579 3.5052	8.0675 8.0427	.2159 .1984	5.7728 5.7846	10.1789 9.7491	.3248 2.6363	31.3142 61.2607
Ni ²⁺	28	11.6115	3.5609	8.0660	.1994	5.9757	9.6026	.3446	27.4704
Cu	29	12.4034	3.2588	8.0407	.1838	5.9379	9.3595	2.6040	58.4193
Cu ²⁺	29	12.2599 13.1577	3.2668 3.0177	8.0489 8.0333	.1840 .1706	6.3163 6.2005	8.9438 8.8438	.3720 2.5942	18.5527 55.4451
Zn Zn2+	30	13.0154	3.0266	8.0424	.1707	6.5544	8.4540	.3850	22.8068
Ga Ge	31 32	14.4553 15.3565	2.8296 2.6125	8.0236 7.9946	.1584 .1468	5.3320 4.5606	8.9052 8.5906	3.1660 4.0649	58.7737 51.2258
As	33	16.2740	2.4201	7.9707	.1365	3.8167	8.9871	4.9167	44.1949
Se Br	34 35	17.0384 17.4960	2.2387 2.0529	7.9488 4.2115	.1273 13.0028	3.5070 7.9096	10.5104 .1185	5.4877 5.3711	39.2994 36.6126
Br-	35	17.6056	2.0529	4.9704	15.1006	7.9344	.1193	5.4763	45.3025
Kr	36	17.7085	1.8641	5.9137	14.7862	7.8321	.1092	4.5393	35.6792
Rb Rb+	37 37	17.8838 17.7741	1.7076 1.6811	9.7227 7.1450	16.9358 14.1155	7.7948 7.7094	.1022 .0992	1.5830 3.3697	160.2323 29.2349
Sr	38	17.7741	1.5272	9.8506	13.9829	7.6087	.0909	2.6842	131.9738
Sr ²⁺	38	17.8275	1.5184	8.8646	13.3203	7.5690	.0896	1.7393	27.4135
Y Y3+	39 39	17.9239 17.9540	1.3862 1.3676	10.2998 10.4284	12.7104 12.3604	7.4713 7.3322	.0821 .0767	3.2877 .2810	104.2218 43.2583
Žr	40	18.0241	1.2627	10.4284	11.8383	7.3288	.0739	3.6934	87.5310
Zr^{4+}		17.9264		10.7051	10.8094	7.2110	.0700	.1594	38.4892
Nb Nb5+	41 + 41	18.1801 17.9918	1.1578 1.1230	11.9696 10.9034	11.6375 9.4967	7.1992 6.9753	.0666 .0596	3.6219 .1308	69.8068 35.6515
Mo	42	6.9981	.0579	18.2939	1.0546	12.8488	10.9149	3.8270	61.7489
Mo6-		6.4551	.0465	18.2451	1.0042	11.1601	8.2190	.1377	16.2605
Ru Rh	44 45	20.3021 19.8137	.4099 .2815	6.7634 12.9693	2.5572 3.6398	13.6174 11.9072	11.2459 14.2137	3.2945 .3117	59.7656 .1072
Pd	46	20.1415		12.6027	4.1475	11.5709	14.8191	.6406	.0000

Table 3 (cont.)

_									
Pd ²⁺	46	16.1822	4.3496	20.0860	.3223	6.9823	17.1340	.7390	50.2893
Ag	47	21.1966	.3532	5.3046	2.3773	17.2072	9.1072	3.2655	48.9088
Ag ²⁺	47	19.5768	.3374	12.3058	3.4367	12.7143	13.6319	.4101	.0000
Cď	48	14.5758	4.1905	21.0830	.3158	10.4040	15.0058	1.9299	77.0010
Cd ²⁺	48	12.4737	3.1756	19.8570	.2840	14.1977	13.2315	5169	143.9014
In	49	20.6912	.2776	16.4798	3.9721	10.0509	17.6620	1.7346	77.0257
Sn	50	17.9200	3.2798	19.7597	.2388	9.4954	17.6874	2.8286	79.0376
Sb	51	16.4937	3.3219	20.2786	.2406	9.6340	11.6278	4.5839	61.6158
Te	52	18.5053	3.8099	21.5711	.2659	5.1871	12.5504	6.7321	54.3996
Ī	53	17.2389	3.0732	20.6465	.2293	7.9860	8.3218	7.0956	29.2052
I-	53	18.1749	3.1761	20.7046	.2302	7.9271	10.9205	7.1573	39.0555
Xe	54	19.5398	3.1997	20.9701	.2253	7.0143	13.8671	6.4594	28.5326
Cs	55	20.6321	3.1994	21.2392	.2210	11.1858	21.4501	1.9196	162.2653
Cs+	55	20.8999	3.0687	20.8074	.1884	11.5422	21.2422	.7355	114.7388
Ba	56	20.5353	2.9691	21.1736	.2098	11.3434	18.6103	2.9339	153.0169
Ba ²⁺	56	20.5981	2.9632	21.1416	.2090	11.6447	19.1679	.6058	23.2442
La	57	20.7434	2.7935	21.1245	.1995	11.6063	17.7161	3.5099	125.7274
La ³⁺	57	20.5986	2.7704	21.0931	.1989	11.9651	17.3313	.3382	50.8389
Ce	58	21.2963	2.6974	21.1410	.1911	12.0325	16.8378	3.5137	121.6763
Ce ⁴⁺	58	20.5950	2.5854	21.0107	.1888	12.2608	15.6874	.1319	75.7027
Pr	59	22.1528	2.6599	21.2189	.1843	12.6707	16.1512	2.9420	137.7915
Pr3+									
	59	21.7820	2.5911	21.1240	.1827	12.7803	15.7833	.3081	33.6002
Nd	60	22.7714	2.5670	21.2153	.1766	13.0452	15.3993	2.9515	133.2029
Nd ³⁺	60	22.2780	2.4905	21.1058	.1749	11.8492	14.0760	1.7687	27.0830
Sm	62	24.0711	2.3917	21.1887	.1623	13.7362	14.0288	2.9846	124.2208
Sm ³⁺		23.8814	2.1944	20.3552	.1414	14.2543	13.0766	.4986	106.9538
Eu 34	63	24.7357	2.3078	21.1681	.1557	14.0669	13.4144	3.0084	119.8020
Eu3+	63	24.3908	2.2549	21.0594	.1540	14.0814	12.9944	.4599	20.7019
Gd	64	25.1591	2.1888	21.0662	.1483	14.0582	12.5610	3.6924	99.2170
Gd ³⁺	64	25.0280	2.1736	21.0264	.1477	14.3312	12.2977	.6055	26.5919
Tb	65	26.1301	2.1547	21.1263	.1437	14.6682	12.2899	3.0512	111.7726
Tb3+	65	25.7586	2.0985	20.9680	.1411	14.6912	11.8161	.5715	17.2401
Dy	66	26.8408	2.0825	21.1052	.1382	14.9523	11.7814	3.0755	107.9034
Dy^{3+}	66	26.4722	2.0192	20.8747	.1341	14.9981	11.2512	.6429	15.2869
Ho	67	27.5569	2.0136	21.0861	.1331	15.2280	11.3052	3.1009	104.1453
Ho3+	67	26.5512	1.9230	20.8447	.1299	11.2764	8.7474	5.3265	17.5901
Er	68	28.2815	1.9485	21.0719	.1283	15.4941	10.8670	3.1227	100.8027
Er3+	68		1.8540	20.7960	.1247	11.3136	8.2221	5.7187	16.8295
		27.1701							
Tm	69	29.0083	1.8865	21.0624	.1239	15.7519	10.4545	3.1460	97.4986
Tm ³⁺	69	27.7854	1.7880	20.7472	.1198	11.3841	7.7420	6.0813	16.1400
Yb	70	29.7372	1.8277	21.0586	.1197	16.0018	10.0678	3.1692	94.3403
Yb3+	70	28.4011	1.7251	11.5159	7.3150	20.6991	.1152	6.3815	15.5395
Lu	71	30.1535	1.7412	15.9083	9.3789	20.9541	.1146	3.9485	80.2529
Lu ³⁺									
		29.0169	1.6654	11.6805	6.9293	20.6528	.1108	6.6470	14.9929
Hf	72	30.6276	1.6628	15.8438	8.9350	20.8615	.1098	4.6278	68.4901
Ta	73	31.1117	1.5895	15.8592	8.6359	20.7732	.1054	5.2133	59.9094
W	74	31.5764	1.5194	15.9855	8.4277	20.6846	.1011	5.7081	53.5131
Re	75	32.0060	1.4520	16.2421	8.2768	20.5922	.0971	6.1127	48.6201
Os	76	32.3895	1.3864	16.6370	8.1544	20.4917	.0932	6.4338	44.7634
Ir	77	32.7046	1.3211	17.2579	8.0409	20.3732	.0892	6.6160	41.6406
Pt	78	33.0384	1.2529	18.1877	8.0552	20.1682	.0845	6.5607	35.7778
Au	79	20.4657	.0868	19.0318	8.0375	33.0170	1.2144	6.4440	34.2724
Hg	80	20.5235	.0856	33.0365	1.1646	19.7804	7.7629	6.6155	35.7598
TI	81	21.0729	.0903	32.8891	1.1444	21.0487	7.7029	5.9110	45.0760
Pb	82	33.4861	1.0481	21.9052	7.2688	20.0114	.0752	6.5187	47.3250
Bi	83	19.8360	.0718	22.2914	6.7590	33.4300	.9928	7.3714	46.5293
Po	84	25.2534	.1335	21.3651	6.7141	29.3111	1.1521	8.0167	45.9357
At	85	34.3560	.2268	23.2498	1.6437	18.5641	7.0127	8.7901	42.2189
Rn	86	37.9584	.2565	22.4154	1.9675	16.0144	7.2076	9.5697	37.2747
Fr	87	44.7473	.3309	26.8048	3.4800	12.8901	20.8008	2.5239	128.5198
Ra	88	38.4087	.2379	27.6504	2.1955	16.2526	11.9072	5.5831	80.4273
Ac	89	33.5966	.1825	28.1785	1.5549	18.8469	8.2662	8.2096	59.0710
Th	90	28.0936	.1293	29.7756	1.1087	21.3586	6.2033	10.5524	47.6686
		29.6569	.1379	29.7730	1.1586	21.7312	6.6084	9.9984	45.4293
Pa	91								
U	92	31.1742	.1454	28.9718	1.2121	21.9075	6.8891	9.7265	45.5549

large difference between ionic and atomic MgO. Changing the Watson sphere radius for the O²⁻ ion by 1 Å can change the ionic mean inner potential by 0.7 V. The accuracy of holographic measurements of

mean inner potential is about 0.3 V (Gajdardziska-Josifovska *et al.*, 1993). In this system, one might be able to measure a transfer of 0.06 e from one atom to another. It would be interesting to see if this could be

Table 4. Summary of range, $\sum a_j$ and χ^2 for Table 3

	Z	Range	$\sum a_j$	χ^2		Z	Range	$\sum a_j$	χ^2
He	2	2.0	2.00	1.4780e-05	Ru	44	1.2	43.98	7.0410e-03
Li	3	2.0	3.00	1.2550e-03	Rh	45	1.6	45.00	6.4770e+01
Li ⁺	3	1.8	2.00	2.2810e-03	Pd Pd ²⁺	46	1.6	44.96	3.1350e+00
Be Be ²⁺	4	2.0 2.6	4.00	3.1040e-04	Ag	46 47	1.8 1.4	43.99 46.97	3.4550e+00 8.6180e-02
B	4 5	2.0	2.00 5.00	1.6190e-02 2.6870e-05	Ag ² +	47	1.8	45.01	5.0170e+00
č	6	2.0	6.00	1.1680e-01	Cď	48	1.8	47.99	1.0220e+00
N	7	5.0	6.99	1.4400e-03	Cd ²⁺	48	2.0	46.01	2.8840e+00
0	8	2.0	8.00	2.5230e-03	In	49	1.8	48.96	2.9330e+00
O ²⁻ F	8 9	2.0 2.0	10.00 9.00	3.5060e-03 5.2300e-04	Sn Sb	50 51	2.0 2.0	50.00 50.99	5.9320e+00 2.4110e+00
r F-	9	2.0	10.00	7.4700e-04	Te	52	1.8	52.00	9.0360e-01
Ne	10	2.0	10.00	4.2920e-04	Ī	53	2.0	52.97	7.8090e+00
Na	11	2.0	10.99	9.4310e-04	I-	53	2.0	53.96	3.6060e+00
Na+	11	2.0	10.00	2.0760e-05	Xe	54	2.0	53.98	3.4120e+00
Mg Mg ²⁺	12 12	2.0 2.0	11.99 10.00	1.2900e-03 2.3170e-01	Cs Cs+	55 55	2.0	54.98 53.99	1.4310e-01
Al	13	2.0	12.99	1.3220e-02	Ba	55 56	2.0 2.0	55.99	1.3150e+01 6.5530e-02
A13+	13	2.6	10.00	1.6690e-02	Ba ²⁺	56	2.0	53.99	2.3980e-01
Si	14	2.5	13.99	6.8750e-02	La	57	2.0	56.98	3.0910e-02
P	15	2.0	15.00	2.0970e-03	La ³⁺	57	2.0	54.00	3.0060e-02
S Cl	16 17	2.0 2.4	16.00 17.00	3.7070e-04 7.8720e-04	Ce	58	2.0	57.98	1.8660e-02
CI-	17	2.6	18.00	1.5540e-03	Ce ⁴⁺ Pr	58 59	2.0 2.0	54.00 58.98	1.1060e-02
Ār	18	2.0	18.00	1.1140e-03	Pr ³ +	59 59	2.0	55.99	1.5510e-02 2.4710e-02
K	19	1.6	18.99	6.5930e+00	Nd	60	2.0	59.98	1.1380e-02
K+	19	1.6	17.98	9.5280e-01	Nd ³⁺	60	2.0	57.00	4.7110e-03
Ca Ca ²⁺	20 20	1.8 2.0	20.00 18.00	3.7730e-01 7.5580e-01	Sm	62	2.0	61.98	9.6460e-03
Sc	21	2.0	21.01	1.0000e+00	Sm ³⁺	62	2.0	58.99	1.7260e+00
Sc ³⁺	21	2.2	18.00	6.7720e-01	Eu	63	2.0	62.98	1.0480e-02
Ti	22	2.0	21.99	3.7870e-01	Eu ³⁺ Gd	63 64	2.0 2.0	59.99 63.98	8.7270e-02 9.6490e-03
Ti ⁴⁺	22	2.0	18.02	5.7870e+00	Gd ³ +	64	2.0	60.99	5.4740e-02
٧	23	2.0	23.00	8.4800e-01	Tb	65	2.0	64.98	1.3910e-02
V5+	23	1.8 2.0	18.00 23.96	7.8270e-01	Тъ ³⁺	65	2.0	61.99	1.7010e-01
Cr Cr ⁴⁺	24 24	2.0	20.00	3.4280e-02 2.6070e+00	Dy	66	2.0	65.97	1.6240e-02
Mn	25	2.0	24.98	2.3450e-02	Dy ³⁺	66	2.0	62.99	2.6650e-01
Mn ²⁺	25	2.0	23.00	6.7330e-02	Ho	67	2.0	66.97	1.8840e-02
Fe	26	2.0	25.98	1.3970e-02	Ho ³⁺ Er	67 68	2.0 2.0	64.00 67.97	7.7740e-05 2.1660e-02
Fe ²⁺	26	2.0	24.00	1.7990e-02	Er ³⁺	68	2.0	65.00	5.0680e-05
Co Co ²⁺	27	2.0	26.99	8.1720e-03	Tm	69	2.0	68.97	2.4760e-02
Ni	27 28	2.0 2.0	25.00 27.99	1.9420e-02 5.3970e-03	Tm ³⁺	69	2.0	66.00	7.3600e-05
Ni ²⁺	28	2.0	26.00	1.8350e-02	Yb	70	2.0	69.97	2.7860e-02
Cu	29	2.0	28.99	4.2320e-03	Yb ³⁺	70	2.0	67.00	1.0480e-04
Cu ²⁺	29	2.0	27.00	4.6550e-02	Lu Lu ³⁺	71 71	2.0 2.0	70.96 68.00	2.4770e-02 2.0860e-04
Zn	30	2.0	29.99	3.9060e-03	Hf	72	2.0	71.96	2.5390e-02
Zn ²⁺	30	2.0	28.00	1.9900e-02	Ta	73	2.0	72.96	2.6990e-02
Ga Ge	31 32	2.0 2.0	30.98 31.98	6.7310e-03 6.9310e-03	W Re	74 75	2.0	73.95	2.8560e-02
As	33	2.0	32.98	6.8840e-03	Os	76	2.0 2.0	74.95 75.95	2.9570e-02 3.0120e-02
Se	34	2.0	33.98	6.0920e-03	Ir	77	2.0	76.95	2.9790e-02
Br	35	2.0	34.99	4.0350e-03	Pt	78	2.0	77.96	2.3850e-02
B⊏ Kr	35 36	2.0 2.0	35.99 35.99	5.5470e-03 1.7240e-03	Au	79 80	1.8	78.96 79.96	1.9790e-02
Rb	37	2.0	36.98	7.4330e-03	Hg Tl	81	1.8 1.8	80.92	2.4030e-02 5.8630e-02
Rb+	37	2.0	36.00	2.4820e-04	Pb	82	2.0	81.92	7.0110e-02
Sr	38	2.0	37.99	2.1930e-03	Bi	83	2.0	82.93	6.2750e-02
Sr ²⁺ Y	38 39	2.0 2.0	36.00 38.98	5.4980e-05	Po At	84 85	1.6 1.4	83.95 84.96	3.7440e-02 2.0890e-02
Y3+	39 39	2.0	36.00	3.6610e-03 3.3040e-03	Rn	86	1.2	85.96	5.2570e-01
Zr	40	2.0	39.98	5.9080e-03	Fr	87	1.2	86.97	3.2630e-02
Zr^{4+}	40	2.0	36.00	2.3410e-03	Ra Ac	88 89	1.6 1.8	87.89 88.83	2.7130e-01 4.5320e-01
Nb	41	2.0	40.97	9.2790e-03	Th	90	2.0	89.78	5.9250e-01
Nb ⁵⁺	41	2.0	36.00	1.0530e-03	Pa	91	2.0	90.76	6.3950e-01
Mo Mo ⁶⁺	42 42	2.0 2.0	41.97 36.00	1.1090e-02 3.7600e-01	U	92	2.0	91.78	6.2400e-01
1410 -	72	2.0	2,0.00	3.7000C-01					

Table 5. Parameterization over range up to $6.0~\mbox{\AA}^{-1}$

He Li	2	.9642 1.4093	8.2337 3.1474	.5874 .4692	2.6488 .6160	.3519 .3313	21.9356 56.9003	.0961 .7903	.5921 137.29
Li+	3	.4707	6.7143	8101	.4681	1.1574	2.4978	1.1819	.4903
Be	4	.8232	30.1555	1.4326	1.4665	1.3491	71.9798	.3929	.2888
Be ²⁺	4	.0307	.0327	.2364	6.0628	1.1969	1.5873	.5328	.4564
B C	5	1.6847	20.1203	1.4201	.8912	1.5004 1.3245	52.2289	.3918	.1803 .1488
N	6 7	1.7401 .4743	38.1927 .1041	2.4357 2.9082	13.7125 9.1890	2.2778	.6520 27.0869	.4960 1.3332	.4612
0	8	3.5531	6.8702	2.6162	21.0743	1.2120	.3871	.6107	.0960
O ² -	8	4.0627	31.7973	4.0629	7.7817	1.2299	.4065	.6247	.0965
F ₋	9	3.1620	16.2253	4.0183	5.0974	1.2647	.2885	.5433	.0685
F- Ne	9 10	3.5691 3.5800	21.4312 13.1434	4.5619 4.5889	5.6541 4.0251	1.1716 1.1999	.3285 .2466	.6780 .6167	.0805 .0606
Nä	11	1.5468	70.9392	7.1834	4.6170	1.0440	.4927	1.1717	.0767
Na+	11	7.4010	4.5309	.4787	43.9221	.9428	.3435	1.1356	.0754
Mg	12	7.1773	3.5565	2.5089	63.2541	1.0098	.4906	1.2662	.0688
Mg ²⁺ Al	12 13	1.1002 3.4553	16.6083 54.4948	6.6744 7.1181	3.2353 2.8378	.9324 1.0330	.3778 .5062	1.2525 1.3472	.0686 .0621
Al ³⁺	13	3.5632	4.8494	4.6573	1.8876	1.0703	.1459	.7038	.0396
Si	14	4.4794	43.2573	7.0199	2.2811	1.0516	.4950	1.4002	.0557
P S	15	5.5289	34.2841	6.9083	1.8577 1.5353	1.0702	.4743 .4580	1.4395 1.4747	.0500 .0452
S Cl	16 17	6.5881 7.7055	27.6154 22.3647	6.7734 7.1936	1.3333	1.1051 .7594	.1885	1.4747	.0432
Cl-	17	8.5770	25.5594	7.1869	1.2286	.7985	.2157	1.3288	.0365
Ar	18	8.7309	18.8014	6.6457	1.0670	1.0425	.3810	1.5076	.0367
K K+	19	9.3143	16.3323	6.8249	.9278	1.6199 6.1602	.0357 .7240	.8062	.2976
Ca	19 20	8.8588 9.8335	14.4381 15.1591	1.2845 5.5728	1.4519 .9519	1.8247	.0369	1.6526 2.0799	.0381
Ca ²⁺	20	9.0581	11.3375	4.2886	.7810	2.9800	.5783	1.6410	.0341
Sc	21	10.9222	13.2580	6.7601	.7123	1.6516	.0287	.9302	.2098
Sc3+	21	6.9714	10.3241	2.2388	5.2961	7.0999	.6016	1.6601	.0316
Ti Ti ⁴⁺	22 22	4.7939 9.2375	25.4898 7.5947	7.2348 .0841	7.3826 35.8416	7.8591 7.0609	.5846 .5233	1.6990 1.6186	.0293 .0271
V	23	11.9445	11.4230	.5501	1.5124	7.7024	.5619	2.0564	.0388
v5+	23	9.4907	6.3917	.5520	1.2279	6.2476	.4171	1.6924	.0265
Cr	24	13.6852	9.2123	.7821	.0000	7.2815	.5517	1.5997	.0967
Cr ⁴⁺ Mn	24 25	7.6562 14.2140	7.5449 8.5904	3.4733 .7519	4.8525 1.6230	7.2003 7.3544	.4341 .4327	1.6410 1.7816	.0234 .0250
Mn ²⁺		7.6888	5.9716	6.0578	8.7513	7.2130	.4234	1.7974	.0268
Fe	26	15.2456	7.6240	1.0394	.0000	7.2502	.4810	1.5785	.1017
Fe ²⁺	26	9.2568	4.3145	6.2209	10.8026	6.8432	.3454	1.6267	.0200
Co	27	4.0297	41.6879	14.2511	4.9187	7.0022	.3260	1.6448	.0186
Co ²⁺ Ni	27 28	4.4550 4.2213	11.1211 37.2296	11.9578 15.0617	4.4875 4.4844	6.9272 6.9819	.3201 .2999	1.6193 1.6518	.0180 .0174
Ni ²⁺	28	3.9701	13.4440	13.4941	4.1236	6.9074	.2940	1.6207	.0167
Cu	29	4.4189	33.3559	15.8641	4.1015	6.9608	.2770	1.6609	.0164
Cu ²⁺	29	4.3975	12.2564	14.0954	3.7432	6.8794	.2701	1.6178	.0155
Zn Zn ²⁺	30 30	4.6165 14.6954	30.0488 3.4107	16.6623 4.8261	3.7653 11.2241	6.9356 6.8522	.2573 .2490	1.6787 1.6140	.0158 .0144
Ga	31	4.9552	34.5383	17.3270	3.4280	6.9107	.2381	1.6831	.0144
Ge	32	5.6938	34.7231	17.6620	3.0728	6.8586	.2191	1.6771	.0139
As	33	20.6740 7.6260	4.3699 29.0738	.8757 17.9310	.0000 2.4432	7.1331 6.7671	.3114 .1822	2.3157 1.5845	.0643 .0105
Se Br	34 35	8.6899	25.8428	17.9310	2.4432	6.7300	.1659	1.5205	.0087
Br-	35	9.5044	29.5231	18.0951	2.2072	6.7400	.1673	1.5412	.0090
Kr	36	9.7841	22.9658	17.9894	1.9594	6.7141	.1504	1.4294	.0064
Rb Rb ⁺	37 37	10.3402 10.0470	21.3340 18.4947	18.1665 17.9002	1.7963 1.7491	6.7107 6.7603	.1393 .1338	1.3887 1.2411	.0051
Sr	38	10.8557	20.8810	18.4417	1.6734	6.6905	.1318	1.4186	.0054
Sr ²⁺	38	10.2747	15.2738	17.8345	1.5644	6.7740	.1175	1.0784	.0000
Y	39	11.6721	20.2317	18.6197	1.5493	6.6650	.1240	1.4264	.0053
Y ³⁺ Zr	39 40	10.5873	12.7800	17.4857	1.4209 1.4279	6.8869 6.6475	.1104 .1157	1.0122 1.4006	.0000 .0045
zr Zr4+	40	12.6121 10.1933	19.1188 11.7534	18.7164 13.0407	1.4279	6.0546	.7428	6.7084	.0646
Nb	41	13.8863	17.3651	18.6686	1.2944	6.7223	.1036	1.1946	.0004
Nb5+	41	10.7405	9.8271	17.7219	1.1881	6.1471	.0947	1.3873	.0103
Mo	42	-0.5335	.1503	13.8022	18.0808	19.3549	1.2497	8.5288	.0914

Table 5 (cont.)

Mo6+	42	10.0471	8.4888	18.1673	1.1430	4.4638	.1275	3.2409	.0255
Ru	44	17.4492	13.7038	16.1683	1.1046	4.7256	.2453	5.0909	.0380
Rh Pd	45 46	18.1565 19.5358	12.7117 11.5978	4.0808 18.5378	.0298 .8609	18.6671 5.6868	.9224 .0793	3.5577 1.8561	.1104
Pd ²⁺	46	18.3818	9.8735	-9.3923	.8350	27.7999	.8146	7.0317	.0117
Ag	47	20.3106	10.8851	18.4263	.8146	5.3383	.0846		.0309
Ag ² +	47	19.6756	9.0682	-8.7103	.6998	27.0629	.7277		.0449
Cď	48	21.1359	10.2153	18.5320	.7619	5.5077	.0743		.0141
Cd ²⁺	48	20.7330	8.5338	-9.2791	.6669	27.5694	.6752	6.7691	.0430
In	49	21.7709	9.6786	18.4687	.7285	4.0382	.0937	3.7334	.0243
Sn	50	22.5247	9.1608	1.0443	.0105	18.7391	.6779	6.4719	.0580
Sb Te	51 52	6.4346 7.4566	48.0462 43.6783	20.0969 20.1616	5.8287 5.3336	17.8000	.5467 .5172	6.6281	.0366 .0356
I	53	8.6191	38.5578	20.1618	4.8469	17.6778 17.5864	.4834	6.6699 6.6000	.0334
Î-	53	4.3633	91.1901	23.0389	6.3113	18.2650	.5024	6.6951	.0341
Xe	54	9.8156	34.2058	20.1178	4.4184	17.4902	.4534	6.5479	.0316
Cs	55	4.4687	56.0653	23.3078	5.8031	18.7438	.4597	6.7143	.0315
Cs ⁺	55	5.1679	52.7785	22.0885	5.7789	18.8128	.4609	6.7191	.0316
Ba	56	10.6045	34.1617	21.2072	3.9127	17.7637	.3884	6.0052	.0228
Ba ²⁺	56	10.3729	23.6162	19.8569	3.7060	17.3077	.4019	6.4702	.0286
La . La ³⁺	57	11.3144	33.9508	21.4338	3.7166	17.5797	.3777	6.2639	.0252
La- ⁻ Ce	57 58	10.5829 11.6706	20.3557 31.6855	19.7768	3,4197 3,5454	17.2374	.3788 .3571	6.4196	.0270
Ce ⁴⁺	58	10.7722	17.8107	22.1380 19.7126	3.1661	17.5765 17.1748	.3573	6.1848 6.3634	.0234
Pr	59	11.6506	28.2975	23.0290	3.4642	17.4261	.3498	6.4301	.0250
Pr ³⁺	59	11.4023	18.2377	21.0979	3.1246	17.1725	.3410	6.3375	.0243
Nd	60	11.9758	26.6197	23.7533	3.3107	17.3930	.3328	6.3962	.0237
Nd ³⁺	60	11.7652	17.3350	21.8081	2.9920	17.1424	.3239	6.2913	.0230
Sm	62	12.5808	23.7524	25.2547	3.0305	17.3293	.3018	6.3196	.0214
Sm ³⁺	62	12.4419	15.7504	23.2835	2.7491	17.0873	.2928	6.1874	.0205
Eu Eu ³⁺	63	12.8794	22.5220	26.0120	2.9011	17.3003	.2876	6.2771	.0203
Gd .	63 64	12.7665 13.1663	15.0459 22.9855	24.0378 26.7602	2.6372 2.7813	17.0629 17.2983	.2786	6.1291	.0193
Gd ³ +	64	13.0945	14.3909	24.7894	2.5298	17.2963	.2746 .2653	6.2370 6.0670	.0193
Tb	65	13.4219	20.3272	27.5856	2.6664	17.2455	.2618	6.1835	.0182
Tb3+	65	13.4004	13.7797	25.5644	2.4305	17.0235	.2527	6.0000	.0170
Dy	66	13.9049	18.9990	28.4442	2.5072	17.6410	.2346	5.4181	.0109
Dy ³⁺	66	13.7016	13.2073	26.3450	2.3347	17.0083	.2408	5.9294	.0159
Ho Ho ³⁺	67	14.0474	18.3051	29.1991	2.4342	17.3447	.2328	5.8088	.0141
Ho ^J T	67 68	14.0008 14.2414	12.6695	27.1278	2.2437	16.9973	.2295	5.8541	.0148
Er ³⁺	68	14.2414	17.5723 12.1636	29.9762 27.9117	2.3520 2.1573	17.2146	.2269	5.9565	.0147
Tm	69	14.5077	16.7820	30.7710	2.1373	16.9904 17.2020	.2189 .2169	5.7744 5.8924	.0137 .0138
Tm ³⁺	69	14.5962	11.6865	28.6960	2.0752	16.9882	.2089	5.6904	.0126
Yb	70	14.7438	16.0821	31.5613	2.1771	17.1483	.2090	5.9061	.0134
Yb3+	70	14.8939	11.2354	29.4796	1.9972	16.9907	.1994	5.6017	.0115
Lu	71	14.7680	16.6802	32.5059	2.1102	17.1721	.2013	5.8792	.0127
Lu ³⁺	71	15.1919	10.8089	30.2626	1.9231	16.9981	.1903	5.5083	.0105
Hf Ta	72 73	15.1022 15.6912	17.0254 16.9875	33.2289 33.7761	2.0291 1.9352	17.1739 17.2119	.1932 .1834	5.8327	.0120
w	74	16.4071	16.7085	34.1624	1.8441	17.1371	.1762	5.6780 5.6710	.0105 .0102
Re	75	17.2631	16.1902	34.4590	1.7492	17.1138	.1676	5.5558	.0092
Os	76	18.2027	15.5503	34.6842	1.6565	17.0958	.1591	5.4184	.0081
Ir D	77	19.2410	14.7568	34.8269	1.5657	17.0846	.1506	5.2556	.0069
Pt Au	78 79	20.7882 21.909 7	13.4703 12.7452	34.6716 34.7505	1.4567 1.3764	17.0825	.1401	4.9448	.0049
Hg	80	22.5800	12.7452	35.0588	1.3704	17.1147 17.1486	.1320 .1265	4.7183 4.6216	.0034
ΤΪ	81	23.1403	12.0702	35.3335	1.2691	17.1758	.1205	4.5398	.0020
Pb	82	23.6202	11.8888	35.6786	1.2275	17.1696	.1180	4.5592	.0020
Bi	83	24.0197	11.8672	36.0709	1.1957	17.0953	.1162	4.7286	.0028
Po	84	24.3714	11.9587	36.4725	1.1713	16.9209	.1164	5.0776	.0045
At Rn	85 86	24.7639 37.1227	12.1368 1.1421	36.8392 25.1332	1.1530 12.3717	16.5994 16.0681	.1190 .1254	5.6662 6.6038	.0073
Fr	87	8.7590	.0189	25.2084	12.3929	36.9843	1.1436	14.7208	
Ra	88	25.3995	12.4247	37.1106	1.1325	14.6082	.1526	9.3365	.0200
Ac	89	14.2009	30.5812	26.3130	3.6535	31.6265	.5949	16.3369	
Th Pa	90 91	14.3941 14.9246	32.3516 28.6636	26.5082 26.3076	3.6866 3.6981	32.1473	.5887	16.4889	
Ü	92	29.8398	10.3246	37.5857	.9066	32.6541 15.2780	.5806 .1074	16.6101 7.3550	
-	-			2	.,,,,,,	10.2700	.10/7	,,,,,,,,,	.0132

Table 6. Summary of range, $\sum a_j$ and χ^2 for Table 5

	Z	Range	$\sum a_j$	χ^2		Z	Range	$\sum a_j$	χ^2
He	2	6.0	2.00	9.3750e-05	Ru	44	6.0	43.43	3.6570e+00
Li	3	6.0	3.00	4.4170e-03	Rh	45	6.0	44.46	3.2170e+00
Li+	3	3.0	2.00	2.4740e-03	Pd	46	5.8	45.62	1.3240e+00
Be	4	6.0	4.00	4.9070e-03	Pd ²⁺	46	4.8	43.82	3.5150e-01
Be ²⁺	4	5.0	2.00	3.4520e-03	Ag	47	5.8	46.45	1.9380e+00
В	5	6.0	5.00 6.00	3.9200e-03 7.2670e-04	Ag ²⁺ Cd	47 48	5.8 5.8	44.79 47.26	1.3670e+00 3.0570e+00
C N	6 7	4.0 6.0	6.99	3.3310e-03	Cd ² +	48	5.8	45.79	7.5990e-01
ö	8	4.4	7.99	1.8640e-03	In	49	5.8	48.01	4.8170e+00
O ² -	8	4.8	9.98	5.9140e-03	Sn	50	6.0	48.78	9.0120e+00
F	9	5.8	8.99	2.8820e-03	Sь	51	6.0	50.96	2.7480e-01
F-	9	5.0	9.98	5.8750e-03	Te I	52 53	5.0 5.0	51.97 52.97	2.2490e-01 2.6140e-01
Ne Na	10 11	5.8 6.0	9.99 10.95	3.9390e-03 9.8470e-02	I-	53	4.6	52.36	1.0350e+01
Na+	11	5.8	9.96	2.3900e-01	Xe	54	6.0	53.97	3.0940e-01
Mg	12	6.0	11.96	6.9050e-02	Cs	55	5.4	53.23	9.7570e+00
Mg ²⁺	12	5.4	9.96	2.5850e-01	Cs+	55	5.2	52.79	1.1190e+01
Al	13	6.0	12.95	5.7290e-02	Ba	56	4.2	55.58	9.6830e-01
Al ³⁺	13	5.8	9.99	7.8060e-04	Ba ²⁺	56 57	5.8 4.8	54.01 56.59	3.8260e-01 1.1490e+00
Si P	14 15	6.0	13.95 14.95	4.4830e-02 3.7790e-02	La La ³⁺	57 57	5.8	54.02	4.2260e-01
S	16	6.0 5.9	15.94	3.6510e-02	Ce	58	4.8	57.57	1.2190e+00
Cl	17	6.0	16.93	4.8670e-02	Ce ⁴⁺	58	5.8	54.02	4.5840e-01
Cl-	17	5.9	17.89	1.1230e-01	Pr	59	6.0	58.54	1.2770e+00
Ar	18	6.0	17.93	4.8530e-02	Pr ³⁺	59	5.8	56.01	4.3140e-01
K	19	6.0	18.57	7.0960e-01	Nd	60	6.0	59.52	1.3410e+00
K+	19 20	4.8 5.8	17.96 19.31	5.0510e-02 2.0760e+00	Nd ³⁺	60	5.8	57.01	4.3150e-01
Ca Ca ²⁺	20	4.8	17.97	2.3780e-02	Sm Sm ³⁺	62 62	6.0 5.8	61.48 59.00	1.4610e+00 4.2210e-01
Sc	21	5.8	20.26	3.5910e+00	Eu	63	6.0	62.47	1.5200e+00
Sc3+	21	4.8	17.97	2.4100e-01	Eu ³⁺	63	5.8	60.00	4.1290e-01
Ti	22	5.8	21.59	3.9000e+00	Gd	64	6.0	63.46	1.7690e+00
Ti ⁴⁺	22	5.8	18.00	1.2450e-02	Gd ³⁺	64	5.8	60.99	4.0060e-01
V	23	5.4	22.25	6.7060e+00	Tb	65	6.0	64.44	1.6320e+00
V ⁵⁺	23 24	5.8 5.4	17.98 23.35	6.3790e-01 2.8030e+00	Tb ³⁺	65	5.8	61.99	3.8720e-01
Cr Cr ⁴⁺	24	5.8	19.97	1.7010e-01	Dy Dy ³ +	66	4.8	65.41 62.98	1.5770e+00 3.7220e-01
Mn	25	6.0	24.10	3.7890e+00	Ho	66 67	5.8 5.4	62.98 66.40	1.6920e+00
Mn ²⁺	25	4.6	22.76	3.3990e-01	Ho ³⁺	67	5.8	63.98	3.5620e-01
Fe	26	5.8	25.11	6.4740e+00	Er	68	5.8	67.39	1.7930e+00
Fe ²⁺	26	4.6	23.95	4.4840e-02	Er ³⁺	68	5.8	64.98	3.3960e-01
Co	27	6.0	26.93	6.8160e-02	Tm	69	5.8	68.37	1.8520e+00
Co ²⁺ Ni	27 28	5.8 6.0	24.96 27.92	9.9490e-02 8.7510e-02	Tm ³⁺	69	5.8	65.97	3.2300e-01
Ni ²⁺	28	5.8	25.99	6.5680e-03	Yb Yb ³⁺	70 70	6.0	69.36	1.9250e+00 3.0760e-01
Cu	29	6.0	28.90	1.1050e-01	Lu	70 71	5.8 6.0	66.97 70.33	2.4360e+00
Cu ²⁺	29	5.8	26.99	6.6100e-03	Lu ³⁺	71	5.8	67.96	2.9110e-01
Zn	30	5.8	29.89	1.3700e-01	Hf	72	6.0	71.34	2.6850e+00
Zn^{2+}	30	5.8	27.99	6.8830e-03	Ta	73	5.8	72.36	2.7880e+00
Ga	31	6.0 5.8	30.88 31.89	1.8260e-01 1.6530e-01	W Re	74 75	6.0 6.0	73.38 74.39	2.8340e+00 2.8410e+00
Ge As	32 33	5.8 5.8	31.00	2.1140e+01	Os	76	6.0	75.40	2.8380e+00
Se	34	5.8	33.91	1.0950e-01	Ir	77	6.0	76.41	2.8120e+00
Br	35	6.0	34.91	9.0860e-02	Pt	78	6.0	77.49	2.1970e+00
Вr	35	5.8	35.88	1.5800e-01	Au Hg	79 80	6.0 6.0	78.49 79.41	2.1670e+00 2.8020e+00
Kr	36 37	6.0 6.0	35.92 36.61	7.9860e-02 5.0630e-01	TI	81	6.0	80.19	3.9990e+00
Rb Rb+	37	5.8	35.95	3.9370e-02	Pb	82	6.0	81.03	5.6250e+00
Sr	38	6.0	37.41	1.3630e+00	Bi	83	6.0	81.91	7.4980e+00
Sr ²⁺	38	5.8	35.96	1.2360e-01	Po At	84 85	6.0 6.0	82.84 83.87	9.4760e+00 1.0790e+01
Y	39	6.0	38.38	1.7140e+00	Rn	86	6.0	84.93	1.1790e+01
Y3+	39	5.8	35.97	4.8750e-01	Fr	87	5.8	85.67	1.3230e+01
Zr	40	6.0	39.38	1.9100e+00	Ra	88	6.0	86.45	1.5540e+01
Zr ⁴⁺ Nb	40 41	4.8 6.0	36.00 40.47	6.4970e-01 1.4470e+00	Ac Th	89 90	6.0 6.0	88.48 89.54	1.2340e+01 1.0740e+01
Nb ⁵ +	41	4.8	36.00	1.2340e-01	Pa	90 91	6.0	90.50	9.4760e+00
Mo	42	6.0	41.15	4.1250e+01	Ü	92	6.0	90.06	2.1770e+01
Mo ⁶⁺	42	4.8	35.92	1.8600e+00					

Table 7. Electron scattering factors for s = 0 with error estimates

		Number of		Estimated	J		Number of		Estimated
	Z	electrons	$f_{\rm el}(0)$	error		Z	electrons	$f_{\rm el}(0)$	error
He	2	2.0	.4173	3.8916E-05	Ru	44	44.0	9.5521	3.1557E-03
Li	3	3.0	3.2556	2.8129E-03	Rh	45	45.0	9.2244	2.8416E-03
Li ⁺	3	2.0	.1569	5.2706E-06	Pd	46	46.0	7.5645	1.2037E-03
Be Be ²⁺	4	4.0	3.0383	1.3486E-03 1.4034E-06	Pd ²⁺	46 47	45.0 47.0	6.2132 8.6414	6.7643E-04 2.3620E-03
B	4 5	2.0 5.0	.0817 2.7850	8.4544E-04	Ag Ag2+	47	45.0	5.2211	4.1702E-04
C	6	6.0	2.4709	5.3145E-04	Cd	48	48.0	9.2024	2.5729E-03
N O	7	7.0	2.2034	3.5427E-04 2.4833E-04	Cd ²⁺	48	46.0	5.1324	3.8261E-04
O ² -	8 8	8.0 10.0	1.9839 4.0992	8.9507E-04	In Sn	49 50	49.0 50.0	10.5928 11.0376	4.0541E-03 3.8385E-03
F	ğ	9.0	1.8017	1.8092E-04	Sb	51	51.0	11.1772	3.4339E-03
F -	9	10.0	2.6159	3.7702E-04	Te	52	52.0	11.1747	3.0381E-03
Ne Na	10 11	10.0 11.0	1.6494 4.7387	1.3603E-04 3.7538E-03	I I-	53 53	53.0 54.0	10.9811 13.1951	2.6087E-03 3.8319E-03
Na ⁺	11	10.0	1.1285	5.7620E-05	Xe	54	54.0	10.7652	2.2614E-03
Mσ	12	12.0	5.1781	2.7491E-03	Cs	55	55.0	16.3483	1.5084E-02
Mg ²⁺	12	10.0	.8300	2.9536E-05	Cs+	55	54.0	9.0154	1.3983E-03
Al Al ³⁺	13	13.0 10.0	5.8665 .6392	2.9083E-03 1.6927E-05	Ba Ba ²⁺	56 56	56.0 54.0	18.1123 7.8000	1.4382E-02 9.6292E-04
Si	13 14	14.0	5.7535	2.1630E-03	Iа	57	57.0	17.7054	1.1768E-02
P	15	15.0	5.4738	1.5953E-03	La ³⁺	57	54.0	6.8841	7.0536E-04
S Cl	16 17	16.0 17.0	5.1640 4.8566	1.2010E-03 9.2179E-04	Ce	58	58.0	17.2940	1.1121E-02
Cl-	17	18.0	6.3858	1.5298E-03	Ce ⁴⁺ Pr	58 59	54.0 59.0	6.1598 16.8631	5.3826E-04 1.1987E-02
Ar	18	18.0	4.5712	7.2232E-04	Pr ³⁺	59	56.0	6.6906	6.2747E-04
K	19	19.0	8.8966	8.3276E-03	Nd	60	60.0	16.4897	1.1389E-02
K+ Ca	19 20	18.0 20.0	3.4300 9.8371	3.7103E-04 6.9986E-03	Nd ³⁺	60	57.0	6.5894	5.9248E-04
Ca ²⁺	20	18.0	2.7075	2.1868E-04	Sm Sm ³⁺	62 62	62.0 59.0	15.7949 6.3881	1.0344E-02 5.3018E-04
Sc Sc ³⁺	21	21.0	9.2502	5.6518E-03	Eu	63	63.0	15.4700	9.8674E-03
	21	18.0	2.2078	1.3993E-04	Eu ³⁺	63	60.0	6.2897	5.0251E-04
Ti Ti ⁴⁺	22	22.0	8.7270	4.7373E-03 9.4739E-05	Gd	64	64.0	15.2591	8.3286E-03
V V	22 23	18.0 23.0	1.8429 8.2633	4.0568E-03	Gd ³⁺ Tb	64 65	61.0 65.0	6.1954 14.8526	4.7726E-04
v5+	23	18.0	1.5658	6.6885E-05	Tb ³⁺	65	62.0	6.0994	9.0420E-03 4.5316E-04
Cr	24	24.0	6.9550	3.0578E-03	Dy	66	66.0	14.5577	8.6608E-03
Cr ⁴⁺ Mn	24 25	20.0 25.0	1.9167 7.4772	9.2242E-05 3.0987E-03	Dy Dy ³⁺	66	63.0	6.0041	4.3068E-04
Mn ²⁺	25 25	23.0	2.8554	2.1291E-04	Но Но ³⁺	67	67.0	14.2730	8.3015E-03
Fe	26	26.0	7.1403	2.7477E-03	Fr	67 68	64.0 68.0	5.9111 13.9978	4.0975E-04 7.9620E-03
Fe Fe ²⁺	26	24.0	2.8109	1.9600E-04	Er Er ³⁺	68	65.0	5.8204	3.9024E-04
Co Co ²⁺	27	27.0	6.8305	2.4537E-03	Tm Tm ³⁺	69	69.0	13.7312	7.6404E-03
Ni	27 28	25.0 28.0	2.7595 6.5466	1.7988E-04 2.2048E-03	Tm ³⁺	69 70	66.0 70.0	5.7320 13.4728	3.7202E-04 7.3350E-03
Ni ²⁺	28	26.0	2.7057	1.6514E-04	Yb Yb3+	70	67.0	5.6458	3.5498E-04
Cu	29	29.0	6.2851	1.9917E-03	Lu	71	71.0	13.4834	6.3382E-03
Cu ²⁺ Zn	29 30	27.0 30.0	2.6507 6.0434	1.5178E-04 1.8075E-03	Lu ³⁺	71	68.0	5.5618	3.3902E-04
Z_n^{2+}	30	28.0	2.5957	1.3972E-04	Hf Ta	72 73	72.0 73.0	13.2202 12.9316	5.3929E-03 4.6792E-03
Ga	31	31.0	7.1413	2.7662E-03	W	74	74.0	12.6434	4.1191E-03
Ge As	32 33	32.0 33.0	7.3741 7.3686	2.4313E-03 2.0464E-03	Re	75 76	75.0 76.0	12.3627 12.0917	3.6659E-03 3.2907E-03
Se	34	34.0	7.2661	1.7198E-03	Os Ir	77	77.0	11.7793	2.9537E-03
Br	35	35.0	7.0805	1.4342E-03	Pt	78	78.0	10.8225	2.2698E-03
Br- Kr	35 36	36.0 36.0	8.8736 6.8811	2.2562E-03 1.2090E-03	Au	79	79.0	10.5466	2.0467E-03
Rb	37	37.0	11.6690	1.0518E-02	Hg Tl	80 81	80.0 81.0	10.9356 12.8045	2.2127E-03 4.5944E-03
Rb+	37	36.0	5.5344	6.9338E-04	Pb	82	82.0	13.5344	4.6469E-03
Sr Sr ²⁺	38	38.0	13.0052	9.5547E-03	Bi Po	83 84	83.0 84.0	13.8911 14.0629	4.3559E-03 4.0044E-03
Y Y	38 39	36.0 39.0	4.6353 12.5953	4.4984E-04 7.6528E-03	At	85	85.0	13.7529	3.3840E-03
Y3+	39	36.0	3.9802	3.1337E-04	Rn	86	86.0	13.4546	2.9122E-03
Zr	40	40.0	12.1094	6.3672E-03	Fr Ra	87 88	87.0 88.0	18.5513 20.3926	1.4183E-02 1.4190E-02
Zr ⁴⁺ Nb	40 41	36.0 41.0	3.4772 10.6991	2.2891E-04 4.6565E-03	Ac	89	89.0	20.4678	1.2092E-02
Nb5+	41	36.0	3.0772	4.6365E-03 1.7305E-04	Th	90	90.0	20.2022	1.0261E-02
Mo	42	42.0	10.2830	4.0237E-03	Pa U	91 92	91.0 92.0	19.6404 19.2909	1.0418E-02 9.8434E-03
Mo6+	42	36.0	2.7508	1.3430E-04	J	, -	22.0	17.2707	,

Table 8. Mean inner potentials in V calculated using Doyle-Turner electron scattering factors, the Herman-Skillman Hartree-Slater program and the Grant et al. (1980) Dirac-Fock program

	Doyle-Turner	Herman-Skillman	Dirac-Fock
Aluminium	17.10	15.59	17.04
Silicon	14.02	13.42	13.84
Copper	22.06	21.51	24.35
Germanium	15.58	14.64	15.57
Silver	24.44	23.24	24.36
Gold	29.80	27.90	29.73
SiO ₂ neutral	6.87	10.16	6.89
MgO neutral	18.34	17.45	18.40
MgO ions		11.48	12.64
GaAs	15.19	14.41	15.40

applied to other systems, such as intermetallics, and how the results would compare with measurements from energy-loss fine structure.

Concluding remarks

We have presented X-ray scattering-factor tables for a complete range of elements and ions calculated using a multiconfiguration Dirac-Fock computer code. The results are within less than 1% of the relativistic Hartree-Fock results of Doyle & Turner (1968). We have also given two parameterizations in terms of four Gaussians, one of higher accuracy over a range of about 2.0 Å⁻¹ and the other of lower accuracy over an extended range of 6.0 Å⁻¹. In general, we recommend direct use of the tables rather than use of the parameterizations. The electron scattering factors can be calculated from the X-ray scattering factors using the Mott formula. The limiting case of $f_{\rm el}(0)$ has been tabulated directly and can be used to calculate the mean inner potential. We show that the mean inner potential can be very sensitive to charge transfer and we give estimates for a number of compounds for which measurements are available. Information on how to obtain the complete tables is available from DR at the address given above.

The multiconfiguration Dirac-Fock calculations that form the basis of this paper were performed on a VAX system at the Cavendish Laboratory, Cambridge. We acknowledge Professors A. Howie and L. M. Brown for providing access to these facilities and Dr A. Bleloch for his help. We also acknowledge useful discussions with Drs J. M. Zuo, J. C. H. Spence, M. A. O'Keefe and A. G. Fox.

References

COWAN, R. D. (1981). The Theory of Atomic Structure and Spectra. Berkeley: Univ. of California Press.

CROMER, D. T. & WABER, J. T. (1965). *Acta Cryst.* **18**, 105–109. DOYLE, P. A. & TURNER, P. S. (1968). *Acta Cryst.* A**24**, 390–397. Fox, A. G., O'Keefe, M. A. & TABBERNOR, M. A. (1989). *Acta*

Cryst. A45, 786–793.

GAJDARDZISKA-JOSIFOVSKA, M., MCCARTNEY, M. R., DE RUIJTER, W. J. SMITH, D. J. WEISE, L. K. & ZUO, J. M. (1003).

W. J., SMITH, D. J., WEISS, J. K. & ZUO, J. M. (1993). *Ultramicroscopy*, **50**, 285–299. GRANT, I. P., MCKENZIE, B. J., NORRINGTON, P. H., MAYERS,

D. F. & Pyper, N. C. (1980). *Comput. Phys. Commun.* 21, 207–231.

Herman, F. & Skillman, S. (1963). Atomic Structure Calculations. Englewood Cliffs, NJ: Prentice Hall.

IBERS, J. A. (1958). Acta Cryst. 11, p. 178.

LIBERMAN, D. A., CROMER, D. T. & WABER, J. T. (1971). Comput. Phys. Commun. 2, 107-113.

MASLEN, E. N., FOX, A. G. & O'KEEFE, M. A. (1992). International Tables for Crystallography, Vol. C, edited by A. J. C. WILSON, Section 6.1.1, pp. 476-511. Dordrecht: Kluwer Academic Publishers.

O'KEEFFE, M. & SPENCE, J. C. H. (1994). Acta Cryst. A50, 33–45. PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, J. A. & VETTERLING, W. T. (1989). Numerical Recipes. Cambridge Univ. Press.

Ross, F. M. & Stobbs, W. M. (1991). *Philos. Mag.* A**63**, 1–36. Shih, W. C. & Stobbs, W. M. (1990). *Ultramicroscopy*, **32**, 219–239.

WATSON, R. E. (1958). Phys. Rev. 111, 1108-1110.

WEICKENMEIER, A. & KOHL, H. (1991). Acta Cryst. A47, 590-597.

Acta Cryst. (1994). A50, 497-503

Use of Tilted Bragg Reflections in X-ray Standing-Wave Experiments and X-ray Optics Applications

BY A. TACCOEN, C. MALGRANGE, Y. L. ZHENG, J. C. BOULLIARD AND B. CAPELLE

Laboratoire de Minéralogie et Cristallographie, Universités Paris 6 et 7, CNRS URA 09, 4 place Jussieu, 75252 Paris CEDEX 05, France

(Received 5 November 1993; accepted 11 March 1994)

Abstract

This paper studies in detail 'tilted reflections', which are defined here as Bragg reflections where the inci-

dent vector $\mathbf{k}_o^{(a)}$, the diffraction vector \mathbf{h} and the normal \mathbf{n} to the surface are not coplanar. Such reflections are especially useful when it is necessary to work in Bragg geometry with reflecting planes