Programming Languages and Computation

Week 11: Undecidability and Reductions

- * 1. (Trick question.) Is it decidable whether God exists?
- ** 2. Show that if $f: U \lesssim V$ and $g: V \lesssim W$ then $g \circ f: U \lesssim W$.
- *** 3. Prove that the set

$$\mathsf{ZERO} = \{ \, \lceil S \rceil \, | \, [\![S]\!]_x \, (0) \downarrow \}$$

is undecidable by reduction from HALT.

- *** 4. Prove that the predicate ZERO is undecidable, but using Rice's theorem instead.
- **** 5. Show that the predicate

$$U = \{ \langle \lceil S \rceil, \lceil T \rceil \rangle \mid \llbracket S \rrbracket_{\mathtt{x}}(0) \simeq \llbracket T \rrbracket_{\mathtt{x}}(0) \}$$

is undecidable, by reduction from HALT.

- **** 6. Is it possible to prove that the predicate *U* from the previous exercise is undecidable using Rice's theorem? If so, prove it. If not, discuss why.
- **** 7. [Trick question.] Is the predicate

$$V = \{ \lceil S \rceil \mid \forall n \in \mathbb{N}. [\![S]\!]_{x}(n) \downarrow \}$$

from the last lecture semi-decidable? Why or why not? Discuss only, do not prove.