LDA Objective

- The objective of LDA is to perform dimensionality reduction ...
 - So what, PCA does this ⊗...
- However, we want to preserve as much of the class discriminatory information as possible.
 - OK, that's new, let dwell deeper ◎ ...

Recall ... PCA

- In PCA, the main idea to re-express the available dataset to extract the relevant information by reducing the redundancy and minimize the noise.
- We didn't care about whether this dataset represent features from one or more classes, i.e. the <u>discrimination power was not taken into consideration</u> while we were talking about PCA.
- In PCA, we had a dataset matrix \mathbf{X} with dimensions $m \times n$, where columns represent different data samples.
- We first started by subtracting the mean to have a zero mean dataset, then we computed the covariance matrix $S_x = XX^T$.
- Eigen values and eigen vectors were then computed for S_x . Hence the new basis vectors are those eigen vectors with highest eigen values, where the number of those vectors was our choice.
- Thus, using the new basis, we can project the dataset onto a less dimensional space with more powerful data representation.

Now ... LDA

- Consider a pattern classification problem, where we have C-classes, e.g. seabass, tuna, salmon ...
- Each class has N_i *m*-dimensional samples, where i = 1, 2, ..., C.
- Hence we have a set of *m*-dimensional samples $\{\mathbf{x^1, x^2, ..., x^{Ni}}\}$ belong to class ω_i .
- Stacking these samples from different classes into one big fat matrix **X** such that each column represents one sample.
- We seek to obtain a transformation of X to Y through projecting the samples in X onto a hyperplane with dimension *C-1*.
- Let's see what does this mean?

This line succeeded in separating

dimensionality of our problem from two features $(\mathbf{x_1}, \mathbf{x_2})$ to only a

the two classes and in the

meantime reducing the

scalar value y.

- Assume we have *m*-dimensional samples $\{\mathbf{x^1}, \mathbf{x^2}, \dots, \mathbf{x^N}\}$, N_1 of which belong to ω_1 and N_2 belong to ω_2 .
- We seek to obtain a scalar y by projecting the samples x onto a line (C-1 space, C = 2).

$$y = w^{T}x$$
 where $x = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix}$ and $w = \begin{bmatrix} w_{1} \\ \vdots \\ w_{m} \end{bmatrix}$

- where w is the projection vectors used to project x to y.
- Of all the possible lines we would like to select the one that maximizes the separability of the scalars.

- In order to find a good projection vector, we need to <u>define a</u> measure of separation between the projections.
- The mean vector of each class in **x** and **y** feature space is:

$$\mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x \quad and \quad \widetilde{\mu}_{i} = \frac{1}{N_{i}} \sum_{y \in \omega_{i}} y = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} w^{T} x$$

$$= w^T \frac{1}{N_i} \sum_{x \in \omega_i} x = w^T \mu_i$$

- i.e. projecting \mathbf{x} to \mathbf{y} will lead to projecting the mean of \mathbf{y} .
- We could then choose the <u>distance between the projected means</u> as our objective function

$$J(w) = \left| \widetilde{\mu}_{1} - \widetilde{\mu}_{2} \right| = \left| w^{T} \mu_{1} - w^{T} \mu_{2} \right| = \left| w^{T} \left(\mu_{1} - \mu_{2} \right) \right|$$

• However, the distance between the projected means is <u>not a very</u> good measure since it does not take into account the standard deviation within the classes.

This axis yields better class separability

This axis has a larger distance between means

- The solution proposed by Fisher is to <u>maximize a function that</u> represents the difference between the means, normalized by a measure of the within-class variability, or the so-called *scatter*.
- For each class we define the **scatter**, an equivalent of the variance, as; (sum of square differences between the projected samples and their class mean).

$$\widetilde{s}_i^2 = \sum_{y \in \omega_i} (y - \widetilde{\mu}_i)^2$$

- \widetilde{S}_i^2 measures the variability within class ω_i after projecting it on the y-space.
- Thus $\widetilde{S}_1^2 + \widetilde{S}_2^2$ measures the variability within the two classes at hand after projection, hence it is called *within-class scatter* of the projected samples.

• The Fisher linear discriminant is defined as the linear function $\mathbf{w}^{T}\mathbf{x}$ that maximizes the criterion function: (the distance between the projected means normalized by the within-class scatter of the projected samples.

$$J(w) = \frac{\left|\widetilde{\mu}_{1} - \widetilde{\mu}_{2}\right|^{2}}{\widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2}}$$

• Therefore, we will be looking for a projection where examples from the same class are projected very close to each other and, at the same time, the projected means are as farther apart as possible

- In order to find the optimum projection w^* , we need to express J(w) as an explicit function of w.
- We will define a measure of the scatter in multivariate feature space **x** which are denoted as *scatter matrices*;

$$S_i = \sum_{i=1}^{\infty} (x - \mu_i)(x - \mu_i)^T$$

$$J(w) = \frac{\left|\widetilde{\mu}_1 - \widetilde{\mu}_2\right|^2}{\widetilde{s}_1^2 + \widetilde{s}_2^2}$$

$$S_w = S_1 + S_2$$

• Where S_i is the <u>covariance matrix</u> of class ω_i , and S_w is called the *within-class scatter matrix*.

• Now, the scatter of the projection y can then be expressed as a function of the scatter matrix in feature space x.

the scatter matrix in feature space
$$\mathbf{x}$$
.
$$\widetilde{S}_{i}^{2} = \sum_{y \in \omega_{i}} (y - \widetilde{\mu}_{i})^{2} = \sum_{x \in \omega_{i}} (w^{T}x - w^{T}\mu_{i})^{2}$$

$$= \sum_{x \in \omega_{i}} w^{T} (x - \mu_{i})(x - \mu_{i})^{T} w$$

$$= w^{T} \left(\sum_{x \in \omega_{i}} (x - \mu_{i})(x - \mu_{i})^{T} \right) w = w^{T} S_{i} w$$

$$\widetilde{S}_{1}^{2} + \widetilde{S}_{2}^{2} = w^{T} S_{1} w + w^{T} S_{2} w = w^{T} (S_{1} + S_{2}) w = w^{T} S_{W} w = \widetilde{S}_{W}$$

Where \widetilde{S}_{w} is the <u>within-class scatter matrix</u> of the projected samples y.

• Similarly, the difference between the projected means (in y-space) can be expressed in terms of the means in the original feature space (x-space).

$$(\widetilde{\mu}_{1} - \widetilde{\mu}_{2})^{2} = (w^{T} \mu_{1} - w^{T} \mu_{2})^{2}$$

$$= w^{T} (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T} w$$

$$= w^{T} S_{B} w = \widetilde{S}_{B}$$

$$J(w) = \frac{|\widetilde{\mu}_{1} - \widetilde{\mu}_{2}|^{2}}{\widetilde{s}_{1}^{2} + \widetilde{s}_{2}^{2}}$$

- The matrix S_B is called the <u>between-class scatter</u> of the original samples/feature vectors, while \widetilde{S}_B is the between-class scatter of the projected samples y.
- Since S_B is the outer product of two vectors, its rank is at most one.

• We can finally express the Fisher criterion in terms of S_W and S_B as:

$$J(w) = \frac{\left|\widetilde{\mu}_{_{1}} - \widetilde{\mu}_{_{2}}\right|^{2}}{\widetilde{S}_{_{1}}^{2} + \widetilde{S}_{_{2}}^{2}} = \frac{w^{T}S_{_{B}}w}{w^{T}S_{_{W}}w}$$

• Hence J(w) is a measure of the difference between class means (encoded in the between-class scatter matrix) normalized by a measure of the within-class scatter matrix.

• To find the maximum of J(w), we differentiate and equate to zero. $\frac{d}{dw}J(w) = \frac{d}{dw}\left(\frac{w^TS_Bw}{w^TS_{\cdots}w}\right) = 0$

$$dw \qquad dw (w^{T} S_{W} w)$$

$$\Rightarrow (w^{T} S_{W} w) \frac{d}{dw} (w^{T} S_{B} w) - (w^{T} S_{B} w) \frac{d}{dw} (w^{T} S_{W} w) = 0$$

$$\Rightarrow (w^{T} S_{W} w) 2S_{B} w - (w^{T} S_{B} w) 2S_{W} w = 0$$

Dividing by $2w^T S_w w$:

$$\Rightarrow \left(\frac{w^{T} S_{W} w}{w^{T} S_{W} w}\right) S_{B} w - \left(\frac{w^{T} S_{B} w}{w^{T} S_{W} w}\right) S_{W} w = 0$$

$$\Rightarrow S_{B} w - J(w) S_{W} w = 0$$

$$\Rightarrow S_{W}^{-1} S_{B} w - J(w) w = 0$$

• Solving the generalized eigen value problem

yields

$$S_W^{-1}S_B w = \lambda w$$
 where $\lambda = J(w) = scalar$

$$w^* = \underset{w}{\operatorname{arg max}} J(w) = \underset{w}{\operatorname{arg max}} \left(\frac{w^T S_B w}{w^T S_W w} \right) = S_W^{-1} (\mu_1 - \mu_2)$$

- This is known as Fisher's Linear Discriminant, although it is not a discriminant but rather a specific choice of direction for the projection of the data down to one dimension.
- Using the same notation as PCA, the solution will be the eigen vector(s) of $S_X = S_W^{-1} S_R$

- Compute the Linear Discriminant projection for the following twodimensional dataset.
 - Samples for class ω_1 : $\mathbf{X}_1 = (x_1, x_2) = \{(4,2), (2,4), (2,3), (3,6), (4,4)\}$
 - Sample for class ω_2 : $\mathbf{X}_2 = (x_1, x_2) = \{(9,10), (6,8), (9,5), (8,7), (10,8)\}$

 \mathbf{x}_{1}

• The classes mean are:

$$\mu_{1} = \frac{1}{N_{1}} \sum_{x \in \omega_{1}} x = \frac{1}{5} \left[\binom{4}{2} + \binom{2}{4} + \binom{2}{3} + \binom{3}{6} + \binom{4}{4} \right] = \binom{3}{3.8}$$

$$\mu_{2} = \frac{1}{N_{2}} \sum_{x \in \omega_{2}} x = \frac{1}{5} \left[\binom{9}{10} + \binom{6}{8} + \binom{9}{5} + \binom{8}{7} + \binom{10}{8} \right] = \binom{8.4}{7.6}$$

```
% class means
Mu1 = mean(X1)';
Mu2 = mean(X2)';
```

• Covariance matrix of the first class:

$$S_{1} = \sum_{x \in \omega_{1}} (x - \mu_{1})(x - \mu_{1})^{T} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 3 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 3.8 \end{bmatrix}^{2} + \begin{bmatrix} 4 \\ 4 \end{bmatrix} - \begin{bmatrix} 4 \\ 4$$

% covariance matrix of the first class S1 = cov(X1);

• Covariance matrix of the second class:

$$S_{2} = \sum_{x \in \omega_{2}} (x - \mu_{2})(x - \mu_{2})^{T} = \left[\begin{pmatrix} 9 \\ 10 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 6 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 9 \\ 5 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 8 \\ 7 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 10 \\ 8 \end{pmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{pmatrix} \right]^{2} + \left[\begin{pmatrix} 2.3 \\ -0.05 \\ 3.3 \end{pmatrix} \right]^{2}$$

% covariance matrix of the first class S2 = cov(X2);

Within-class scatter matrix:

$$S_{w} = S_{1} + S_{2} = \begin{pmatrix} 1 & -0.25 \\ -0.25 & 2.2 \end{pmatrix} + \begin{pmatrix} 2.3 & -0.05 \\ -0.05 & 3.3 \end{pmatrix}$$
$$= \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}$$

```
% within-class scatter matrix 
Sw = S1 + S2 ;
```

Between-class scatter matrix:

$$S_{B} = (\mu_{1} - \mu_{2})(\mu_{1} - \mu_{2})^{T}$$

$$= \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix} \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}^{T}$$

$$= \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix} (-5.4 \quad -3.8)$$

$$= \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix}$$
 % between-class scatter matrix SB = (Mu1-Mu2)*(Mu1-Mu2)';

• The LDA projection is then obtained as the solution of the generalized eigen value problem $\mathbf{C}^{-1}\mathbf{C}$... 2...

$$S_{W}^{-1}S_{B}W = \lambda W$$

$$\Rightarrow \begin{vmatrix} S_{W}^{-1}S_{B} - \lambda I \end{vmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{vmatrix}^{-1} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{vmatrix} \begin{pmatrix} 29.16 & 20.52 \\ 20.52 & 14.44 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 0$$

$$\Rightarrow \begin{vmatrix} 9.2213 - \lambda & 6.489 \\ 4.2339 & 2.9794 - \lambda \end{vmatrix}$$

$$= (9.2213 - \lambda)(2.9794 - \lambda) - 6.489 \times 4.2339 = 0$$

$$\Rightarrow \lambda^{2} - 12.2007\lambda = 0 \Rightarrow \lambda(\lambda - 12.2007) = 0$$

$$\Rightarrow \lambda_{1} = 0, \lambda_{2} = 12.2007$$

• Hence

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_1 = 0 \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

and

$$\begin{pmatrix} 9.2213 & 6.489 \\ 4.2339 & 2.9794 \end{pmatrix} w_2 = \underbrace{12.2007}_{\lambda_2} \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

% computing the LDA projection
invSw = inv(Sw);

invSw_by_SB = invSw * SB;

% getting the projection vector
[V,D] = eig(invSw_by_SB)

% the projection vector
W = V(:,1);

Thus;

$$w_1 = \begin{pmatrix} -0.5755 \\ 0.8178 \end{pmatrix}$$
 and $w_2 = \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix} = w^*$

• The optimal projection is the one that given maximum $\lambda = I(w)$

Or directly;

$$w^* = S_W^{-1}(\mu_1 - \mu_2) = \begin{pmatrix} 3.3 & -0.3 \\ -0.3 & 5.5 \end{pmatrix}^{-1} \begin{bmatrix} 3 \\ 3.8 \end{bmatrix} - \begin{pmatrix} 8.4 \\ 7.6 \end{bmatrix}$$

$$= \begin{pmatrix} 0.3045 & 0.0166 \\ 0.0166 & 0.1827 \end{pmatrix} \begin{pmatrix} -5.4 \\ -3.8 \end{pmatrix}$$

$$= \begin{pmatrix} 0.9088 \\ 0.4173 \end{pmatrix}$$

LDA - Projection

LDA - Projection

LDA ... C-Classes

- Now, we have *C*-classes instead of just two.
- We are now seeking (C-1) projections $[y_1, y_2, ..., y_{C-1}]$ by means of (C-1) projection vectors $\mathbf{w_i}$.
- $\mathbf{w_i}$ can be arranged by *columns* into a projection matrix $\mathbf{W} = [\mathbf{w_1} | \mathbf{w_2} | \dots | \mathbf{w_{C-1}}]$ such that:

$$y_{i} = w_{i}^{T} x \qquad \Rightarrow \qquad y = W^{T} x$$

$$where \quad x_{m \times 1} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{m} \end{bmatrix} \qquad , \quad y_{C-1 \times 1} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{C-1} \end{bmatrix}$$

and
$$W_{m \times C-1} = [w_1 \mid w_2 \mid \dots \mid w_{C-1}]$$

LDA ... C-Classes

• If we have *n*-feature vectors, we can stack them into one matrix as follows;

$$Y = W^T X$$

$$where \quad X_{m \times n} = \begin{bmatrix} x_1^1 & x_1^2 & . & x_1^n \\ . & . & . & . \\ . & . & . & . \\ x_m^1 & x_m^2 & . & x_m^n \end{bmatrix} \quad , \quad Y_{C-1 \times n} = \begin{bmatrix} y_1^1 & y_1^2 & . & y_1^n \\ . & . & . & . \\ . & . & . & . \\ y_{C-1}^1 & y_{C-1}^2 & . & y_{C-1}^n \end{bmatrix}$$

$$and \quad W_{m \times C-1} = \begin{bmatrix} w_1 & w_2 & . & . & | w_{C-1} \end{bmatrix}$$

• Recall the two classes case, the within-class scatter was computed as:

$$S_w = S_1 + S_2$$

• This can be generalized in the *C*-classes case as:

$$S_W = \sum_{i=1}^C S_i$$

where
$$S_i = \sum_{x \in \omega} (x - \mu_i)(x - \mu_i)^T$$

and $\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$

Example of two-dimensional features (m = 2), with three classes C = 3.

 N_i : number of data samples in class ω_i .

• Recall the two classes case, the *between-class scatter* was computed as:

$$S_B = (\mu_1 - \mu_2)(\mu_1 - \mu_2)^T$$

• For *C*-classes case, we will measure the between-class scatter with respect to the mean of all classes as follows:

$$S_B = \sum_{i=1}^{C} N_i (\mu_i - \mu) (\mu_i - \mu)^T$$

where
$$\mu = \frac{1}{N} \sum_{\forall x} x = \frac{1}{N} \sum_{\forall x} N_i \mu_i$$

and
$$\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$$

Example of two-dimensional features (m = 2), with three classes C = 3.

ightharpoonup N: number of all data .

 N_i : number of data samples in class ω_i .

- Similarly,
 - We can define the mean vectors for the projected samples y as:

$$\widetilde{\mu}_i = \frac{1}{N_i} \sum_{y \in \omega_i} y$$
 and $\widetilde{\mu} = \frac{1}{N} \sum_{\forall y} y$

- While the scatter matrices for the projected samples y will be:

$$\widetilde{S}_{W} = \sum_{i=1}^{C} \widetilde{S}_{i} = \sum_{i=1}^{C} \sum_{y \in \omega_{i}} (y - \widetilde{\mu}_{i}) (y - \widetilde{\mu}_{i})^{T}$$

$$\widetilde{S}_{B} = \sum_{i=1}^{C} N_{i} (\widetilde{\mu}_{i} - \widetilde{\mu}) (\widetilde{\mu}_{i} - \widetilde{\mu})^{T}$$

• Recall in two-classes case, we have expressed the scatter matrices of the projected samples in terms of those of the original samples as:

$$\widetilde{S}_W = W^T S_W W$$

$$\widetilde{S}_R = W^T S_R W$$
 This still hold in *C*-classes case.

- Recall that we are looking for a projection that maximizes the ratio of between-class to within-class scatter.
- Since the projection is no longer a scalar (it has *C-1* dimensions), we then use the determinant of the scatter matrices to obtain a scalar objective function:

$$J(W) = \frac{\left|\widetilde{S}_{B}\right|}{\left|\widetilde{S}_{W}\right|} = \frac{\left|W^{T}S_{B}W\right|}{\left|W^{T}S_{W}W\right|}$$

• And we will seek the projection \mathbf{W}^* that maximizes this ratio.

- To find the maximum of J(W), we differentiate with respect to **W** and equate to zero.
- Recall in two-classes case, we solved the eigen value problem.

$$S_W^{-1}S_Bw = \lambda w$$
 where $\lambda = J(w) = scalar$

• For *C*-classes case, we have *C-1* projection vectors, hence the eigen value problem can be generalized to the *C*-classes case as:

$$S_W^{-1}S_Bw_i = \lambda_i w_i$$
 where $\lambda_i = J(w_i) = scalar$ and $i = 1, 2, ... C - 1$

• Thus, It can be shown that the optimal projection matrix \mathbf{W}^* is the one whose columns are the eigenvectors corresponding to the largest eigen values of the following generalized eigen value problem:

$$S_W^{-1}S_BW^* = \lambda W^*$$

where $\lambda = J(W^*) = scalar$ and $W^* = [w_1^* \mid w_2^* \mid \dots \mid w_{C-1}^*]$

Illustration – 3 Classes

- Let's generate a dataset for each class to simulate the three classes shown
- For each class do the following,
 - Use the random number generator to generate a uniform stream of 500 samples that follows U(0,1).
 - Using the Box-Muller approach, convert the generated uniform stream to N(0,1).

- Then use the method of eigen values and eigen vectors to manipulate the standard normal to have the required mean vector and covariance matrix.
- Estimate the mean and covariance matrix of the resulted dataset.

Dataset Generation

• By visual inspection of the figure, classes parameters (means and covariance matrices can be given as follows:

Overall mean
$$\mu = \begin{bmatrix} 5 \\ 5 \end{bmatrix}$$

$$\mu_1 = \mu + \begin{bmatrix} -3 \\ 7 \end{bmatrix}, \quad \mu_2 = \mu + \begin{bmatrix} -2.5 \\ -3.5 \end{bmatrix}, \quad \mu_3 = \mu + \begin{bmatrix} 7 \\ 5 \end{bmatrix}$$

$$S_1 = \begin{pmatrix} 5 & -1 \\ -3 & 3 \end{pmatrix}$$
 Negative covariance to lead to data samples distributed along the $y = -x$ line.

$$S_2 = \begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$
 Zero covariance to lead to data samples distributed *horizontally*.

$$S_3 = \begin{pmatrix} 3.5 & 1 \\ 3 & 2.5 \end{pmatrix}$$
 Positive covariance to lead to data samples distributed along the $y = x$ line.

In Matlab ©

```
% let the center of all classes be
Mu = [5;5];
%% for the first class
Mu1 = [Mu(1) - 3; Mu(2) + 7];
CovM1 = [5 -1; -3 3];
% Generating feature vectors using Box-Muller approach
% Generate a random variable following uniform(0,1) having two features and
% 1000 feature vectors
U = rand(2,1000);
% Extracting from the generated uniform random variable two independent
% uniform random variables
u1 = V(:,1:2:end);
u2 = V(:,2:2:end);
% Using u1 and u2, we will use Box-Muller method to generate the feature
% vectors to follow standard normal
X = sqrt((-2).*log(u1)) .* (cos(2*pi.*u2));
clear u1 u2 U:
% Now ... Manipulating the generated Features N(0,1) to following certain
% mean and covariance other than the standard normal
% First we will change its variance then we will change its mean
% Getting the eigen vectors and values of the covariance matrix
[V,D] = eig(CovM1); % D is the eigen values matrix and V is the eigen vectors
matrix
newX = X;
for j = 1 : size(X,2)
    newX(:,j) = V * sqrt(D) * X(:,j);
end
% changing its mean
newX = newX + repmat(Mu1,1,size(newX,2));
% now our dataset for the first class matrix will be
X1 = newX ; % each column is a feature vector, each row is a single feature
% ... do the same for the other two classes with difference means and
covariance matrices
```

It's Working ... ©

Computing LDA Projection Vectors

```
%% computing the LDA
% class means
Mu1 = mean(X1')':
Mu2 = mean(X2')';
Mu3 = mean(X3')':
% overall mean
Mu = (Mu1 + Mu2 + Mu3)./3;
% class covariance matrices
S1 = cov(X1');
S2 = cov(X2'):
s3 = cov(X3');
% within-class scatter matrix
Sw = S1 + S2 + S3;
% number of samples of each class
N1 = size(X1,2);
N2 = size(X2,2);
N3 = size(X3.2):
% between-class scatter matrix
SB1 = N1 .* (Mu1-Mu)*(Mu1-Mu)';
SB2 = N2 .* (Mu2-Mu)*(Mu2-Mu)';
SB3 = N3 .* (Mu3-Mu)*(Mu3-Mu)';
SB = SB1 + SB2 + SB3;
% computing the LDA projection
invSw = inv(Sw);
invSw by SB = invSw * SB;
% getting the projection vectors
%[V,D] = EIG(X) produces a diagonal matrix D of eigenvalues and a
%full matrix V whose columns are the corresponding eigenvectors
[V,D] = eig(invSw by SB);
% the projection vectors - we will have at most C-1 projection vectors,
% from which we can choose the most important ones ranked by their
% corresponding eigen values ... lets investigate the two projection
% vectors
W1 = V(:,1);
W2 = V(:,2);
```

Recall ...

$$S_{W} = \sum_{i=1}^{C} S_{i}$$

$$where \qquad S_{i} = \sum_{x \in \omega_{i}} (x - \mu_{i})(x - \mu_{i})^{T}$$

$$and \qquad \mu_{i} = \frac{1}{N_{i}} \sum_{x \in \omega_{i}} x$$

$$S_B = \sum_{i=1}^{C} N_i (\mu_i - \mu)(\mu_i - \mu)^T$$

where
$$\mu = \frac{1}{N} \sum_{\forall x} x = \frac{1}{N} \sum_{\forall x} N_i \mu_i$$

and
$$\mu_i = \frac{1}{N_i} \sum_{x \in \omega_i} x$$

Let's visualize the projection vectors W

```
%% lets visualize them ...
% we will plot the scatter plot to better visualize the features
                                                                               25
hfig = figure;
axes1 = axes('Parent', hfig, 'FontWeight', 'bold', 'FontSize', 12);
hold('all');
                                                                               20
% Create xlabel
xlabel('X 1 - the first feature', 'FontWeight', 'bold', 'FontSize', 12,...
                                                                                15
    'FontName', 'Garamond');
                                                                         - the second feature
% Create vlabel
                                                                                10
ylabel('X 2 - the second feature', 'FontWeight', 'bold', 'FontSize', 12,
    'FontName', 'Garamond');
% the first class
scatter(X1(1,:),X1(2,:), 'r', 'LineWidth',2, 'Parent', axes1);
hold on
                                                                                 0
% class's mean
plot(Mu1 est(1),Mu1 est(2),'co','MarkerSize',8,'MarkerEdgeColor','c',...
    'Color', 'c', 'LineWidth', 2, 'MarkerFaceColor', 'c', 'Parent', axes1);
                                                                                -5
hold on
% the second class
                                                                               -10 <sup>t</sup>
scatter(X2(1,:),X2(2,:), 'g','LineWidth',2,'Parent',axes1);
                                                                                 -15
% class's mean
plot(Mu2_est(1),Mu2_est(2),'mo','MarkerSize',8,'MarkerEdgeColor','m',...
    'Color', 'm', 'LineWidth', 2, 'MarkerFaceColor', 'm', 'Parent', axes1);
hold on
% the third class
scatter(X3(1,:),X3(2,:), 'b','LineWidth',2,'Parent',axes1);
hold on
% class's mean
plot(Mu3_est(1), Mu3_est(2), 'yo', 'LineWidth', 2, 'MarkerSize', 8, 'MarkerEdgeColor',...
    'y', 'Color', 'y', 'MarkerFaceColor', 'y', 'Parent', axes1);
hold on
```

```
-10
           -5
                                  5
                                            10
                                                       15
                                                                  20
                     X<sub>4</sub> - the first feature
```

```
% drawing the projection vectors
% the first vector
t = -10:25;
line_x1 = t .* W1(1);
line_y1 = t .* W1(1);

% the second vector
t = -5:20;
line_x2 = t .* W2(1);
line_y2 = t .* W2(2);

plot(line_x1,line_y1,'k-','LineWidth',3);
hold on
plot(line_x2,line_y2,'m-','LineWidth',3);
grid on
```

Projection ... $y = W^Tx$

Along first projection vector

Projection ... $y = W^Tx$

Along second projection vector

Which is Better?!!!

 Apparently, the projection vector that has the highest eigen value provides higher discrimination power between classes

PCA vs LDA

0.3

0.2

0.1

Limitations of LDA ⁽²⁾

- LDA produces at most C-1 feature projections
 - If the classification error estimates establish that more features are needed, some other method must be employed to provide those additional features
- LDA is a parametric method since it assumes unimodal Gaussian likelihoods
 - If the distributions are significantly non-Gaussian, the LDA projections will not be able to preserve any complex structure of the data, which may be needed for classification.

Limitations of LDA [©]

• LDA will fail when the discriminatory information is not in the mean but rather in the variance of the data

