Math 104 Worksheet 15

UC Berkeley, Summer 2021 Thursday, July 29

1.	Let (f_n) be a sequence	e of continuous	functions	on $[a, b]$	which	converge	pointwise	to 0
i.e.	$f_n(x) \to 0$ for each $x \in$	$\in [a,b].$						

- (a) Find an example to show that (f_n) does not necessarily converge uniformly to 0.
- (b) Now suppose that for each $x \in [a, b]$, the sequence $(f_n(x))$ is nonincreasing, i.e. $f_{n+1}(x) \le f_n(x)$ for each $n \in \mathbb{N}$. Prove that $f_n \to 0$ uniformly by following the outline below.

Proof. (Contradiction) Suppose that (f_n) does not converge uniformly to 0. Then there exists $\varepsilon > 0$ such that for each $N \in \mathbb{N}$,

Then there exists a subsequence (f_{n_k}) of (f_n) such that for each $k \in \mathbb{N}$, there exists $x_k \in [a, b]$ such that

Now $(x_k)_{k\in\mathbb{N}}$ is a sequence in [a,b], so by Bolzano-Weierstrass there exists a subsequence (x_{k_j}) of (x_k) such that $x_{k_j} \to x^*$ for some $x^* \in [a,b]$. Fix $p \in \mathbb{N}$. Since $(f_{n_k}(x))$ is nonincreasing for each $x \in [a,b]$, for j > p we have the inequality

$$f_{n_{k_p}}(x_{k_j}) \ge \underline{\qquad} \ge \underline{\qquad}.$$

(Complete the proof by using continuity of $f_{n_{k_p}}$, followed by convergence of (f_n) to find a contradiction.)

(c) Apply part (b) to prove **Dini's Theorem**: If (f_n) is a sequence of continuous functions on [a, b] such that $(f_n(x))$ is nondecreasing for each $x \in [a, b]$ and $f_n \to f$ pointwise for some continuous function f, then $f_n \to f$ uniformly on [a, b].

(d) Find an example to show that the conclusion in part (c) does not necessarily hold if f is not assumed to be continuous.

2. Abel's Theorem

Lemma. If $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence 1 and the series converges at x = 1, then f is continuous on [0, 1].

You may use the preceding lemma without proof (yet) for the following exercises.

(a) Use the lemma to show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R with $0 < R < \infty$ and the series converges at x = R, then f is continuous at R. (*Hint:* Consider the function g(x) = f(Rx).)

(b) Use the result of part (a) to show that if $f(x) = \sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R with $0 < R < \infty$ and the series converges at x = -R, then f is continuous at x = -R. (*Hint*: Consider the function h(x) = f(-x).)