Importing Libraries

```
In [1]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    sns.set()
```

About Data ¶

Customers are asked to rate the store out of 10 i.e. **"satisfaction" point** given by the customers to the store. Using an algorithm, store gives **"Loyalty points"** to customers based on the no. of items purchased by them in the last year + the amount of money spent by them in the store.

Loading Data

```
In [2]: data = pd.read_csv(r'C:\Users\vamsi\Desktop\ML\15.DB Scan Clustering\market_data.
```

Data Exploration

```
In [3]: data.head()
```

Out[3]:

	Satisfaction	Loyalty
0	4	-1.33
1	6	-0.28
2	5	-0.99
3	7	-0.29
4	4	1.06

```
In [4]: data.info()
```

In [5]: data.describe()

Out[5]:

	Satisfaction	Loyalty
count	30.000000	30.000000
mean	6.400000	0.001000
std	2.620871	1.016476
min	1.000000	-1.690000
25%	4.250000	-0.967500
50%	7.000000	0.150000
75%	8.750000	0.947500
max	10.000000	1.380000

Let's plot

```
In [6]: plt.scatter(data['Satisfaction'], data['Loyalty'])
    plt.xlabel('Satisfaction')
    plt.ylabel('Loyalty')
```

Out[6]: Text(0, 0.5, 'Loyalty')

Preparing input data

```
In [7]: from sklearn import preprocessing
        data scaled = data.copy()
        data_scaled = preprocessing.scale(data)
        data scaled
Out[7]: array([[-0.93138063, -1.3318111],
               [-0.15523011, -0.28117124],
               [-0.54330537, -0.99160391],
               [0.23284516, -0.29117733],
               [-0.93138063, 1.05964534],
               [-2.09560642, -1.6620122],
               [ 1.39707095, -0.97159172],
               [ 0.62092042, -0.32119561],
               [ 0.62092042, 1.01962097],
               [0.62092042, 0.67941378],
               [ 1.39707095, -0.3412078 ],
               [-0.54330537, 0.38923705],
               [-0.54330537, -1.69203048],
               [-1.70753116, 0.66940768],
               [ 0.23284516, 0.26916393],
               [ 1.00899568, 1.35982816],
               [ 0.62092042, 1.37984035],
               [ 0.23284516, 1.35982816],
               [ 0.23284516, -0.3412078 ],
               [ 1.00899568, 0.66940768],
               [ 1.39707095, 1.17971847],
               [-1.31945589, -1.69203048],
               [-0.93138063, 1.03963316],
               [-1.31945589, -0.96158562],
               [-0.15523011, 1.02962706],
               [ 1.00899568, -0.99160391],
               [ 1.39707095, 0.36922486],
               [ 1.00899568, 0.02901767],
               [-1.31945589, -1.36182938],
               [-0.54330537, 0.72944425]])
```

Elbow Method

```
In [8]: from sklearn.cluster import KMeans

wcss = []
for i in range (1, 8):
    kmeans = KMeans(n_clusters = i, random_state = 0)
    kmeans.fit(data_scaled)
    wcss.append(kmeans.inertia_)
```

```
In [9]: plt.plot(range(1, 8), wcss)
    plt.xlim( 0, 8)
    plt.title('Elbow Graph')
    plt.xlabel('Number of clusters')
    plt.ylabel('WCSS')
    plt.show()
```


K-Means

Training Model

Clustering Labels

In [14]: cluster_data

Out[14]:

	Satisfaction	Loyalty	cluster_pred
0	4	-1.33	0
1	6	-0.28	1
2	5	-0.99	-1
3	7	-0.29	1
4	4	1.06	2
5	1	-1.66	-1
6	10	-0.97	3
7	8	-0.32	1
8	8	1.02	4
9	8	0.68	4
10	10	-0.34	-1
11	5	0.39	2
12	5	-1.69	-1
13	2	0.67	-1
14	7	0.27	-1
15	9	1.36	4
16	8	1.38	4
17	7	1.36	4
18	7	-0.34	1
19	9	0.67	4
20	10	1.18	4
21	3	-1.69	0
22	4	1.04	2
23	3	-0.96	0
24	6	1.03	2
25	9	-0.99	3
26	10	0.37	4
27	9	0.03	-1
28	3	-1.36	0
29	5	0.73	2

Visualisation

```
In [15]: plt.scatter(data['Satisfaction'], data['Loyalty'], c = cluster_data['cluster_pred
plt.xlabel('Satisfaction')
plt.ylabel('Loyalty')
```

Out[15]: Text(0, 0.5, 'Loyalty')

