1. Ecuación de Bernoulli

Uno puede reducir un tipo de ecuación diferencial no lineal a una ecuación diferencial lineal y proceder como hemos resuelto los sistemas anteriores. Considere la ecuación diferencial

$$y' + p(x)y = q(x)y^n$$

- 1. Muestre que el siguiente cambio de variable $v = y^{1-n}$, la convierte en en una ecuación lineal.
- 2. Considere el caso particular de la ecuación de Verhulst o también conocida como ecuación logística (el caso n=2 con $p(x)=\alpha=const$) con la condición inicial $y(0)=y_0>0$.
 - a) Suponga que $\lim_{x\to\infty} \exp(\alpha x) \int_0^x dx \, q(x) \exp(-\alpha x) = L$ existe y encuentre la solución $\lim_{x\to\infty} y(x)$
 - b) Suponga ahora, que q(x) es una función discontínua, vale decir

$$q(x) = \begin{cases} x & 0 \le x \le 1\\ x^2 & x > 1 \end{cases}$$

y considere otra vez la condición inicial $y(0) = y_0 > 0$ y encuentre la solución para $0 \le x \le 2$

- c) Considere la evolución demográfica de Colombia¹, ajuste los parámetros para las descripciones maltusiana o verhulstiana y recuerde la historia para ver como puede justificar el ajuste.
- d) Suponga ahora, que $q(x) = \epsilon << 1$, y considere que la ecuación la ecuación de Verhulst se puede expresar como $y' = \tilde{p}(x)y + \epsilon y^2$ con lo cual el término cuadrático puede representar una perturbación a la solución de la ecuación lineal. Haga un mapa de la solución gráfica de la ecuación y muestre en el rango $0 \le x \le 2$ el comportamiento de la solución para $\epsilon = 0.1$ $\epsilon = 0.01$ $\epsilon = 0.001$

2. Sistemas autónomos

Una de las clases de ecuaciones diferenciales más comunes o utilizadas la constituyen los sistemas autónomos del tipo y' = f(y). Claramente las ecuaciones de Malthus y Verhulst (o logística) constituyen casos particulares de este tipo de sistemas para $f_M(y) = ky$ y $f_V(y) = ky(1 - \frac{y}{K})$, respectivamente (con k la constante malthusiana de crecimiento intrínseco) que son fundamentales en dinámica de poblaciones².

- 1. Considere la ecuación logística $y' = ky(1 \frac{y}{K})$
 - a) Encuentre la solución gráfica para la familia de soluciones de la ecuación con k = 1/3 y K = 6.
 - b) Suponga una solución particular para la ecuación con y(0) = 2 y encuentre el valor de x para el cual la población inicial se duplicó
 - c) Suponga que $y(0)/K = \alpha$ y encuentre el valor de X, tal que $y(X)/K = \beta$, para $\alpha > 0$ y $\beta < 1$. Note que $X \to \infty$ cuando $\alpha \to 0$ o $\beta \to 1$ Encuentre el valor de X para k = 0.025, $\alpha = 0.1$ y $\beta = 0.9$
- 2. Los sistemas autónomos y' = f(y) admiten un estudio cualitativo interesante a partir del comportamiento de la función f(y). Los ceros de f(y) = 0 representan soluciones de equilibrio y de sus máximos y mínimos también podemos extraer información sin resolver la ecuación.

¹Puede consultar http://www.populstat.info/Americas/colombic.htm o cualquier otra fuente confiable que puede citar ²https://en.wikipedia.org/wiki/Population_ecology

- a) Considere otra vez la ecuación logística $y' = ky(1 \frac{y}{K})$, encuentre las dos soluciones de equilibrio y discuta por qué una de ellas se considera como de equilibrio inestable y otra de equilibrio asintótico. Ilustre esas afirmaciones para el caso k = 1/3 y K = 6,
- b) Considere ahora una variante de la ecuación logística $y' = -ky(1 \frac{y}{T})(1 \frac{y}{K})$, con 0 < T < K y k > 0. Esta ecuación se utilizó para describir el crecimiento y extinción en norteamérica de la Paloma Migratoria o Paloma de la Carolina³.
 - 1) a partir del análisis de las soluciones críticas discuta el significado de las constantes T y K y de las soluciones en las regiones 0 < y < T, T < y < K y y > K.
 - 2) discuta el significado de los máximos y los mínimos de $f(y) = -ky(1 \frac{y}{T})(1 \frac{y}{K})$ y muestre cómo están relacionados con el comportamiento de las soluciones y(x)
 - 3) Encuentre las solución gráfica para el caso k = 1/3, T = 2 y K = 6 e ilustre sus afirmaciones. En particular asocie el comportamiento de la función f(y) con la familia de soluciones para este caso.
- c) Finalmente considere la ecuación de Gompertz⁴ $y' = -ky \ln(\frac{K}{y})$ con K y k constantes positivas
 - 1) Encuentre las soluciones críticas y discuta cuáles corresponden a soluciones estables o inestables
 - 2) Resuelva la ecuación de Gompertz para k = 1/3 y K = 6 y compárela con la ecuación de Verhulst. ¿Cómo se compara el crecimiento de poblaciones descrito por cada una de estas ecuaciones?

 $^{^3 \}verb|https://en.wikipedia.org/wiki/Passenger_pigeon|$

⁴https://en.wikipedia.org/wiki/Gompertz_function