ESO 201A: Thermodynamics 2016-2017-L semester

Properties: part 2

Dr. Jayant K. Singh
Department of Chemical Engineering
Faculty Building 469,
Telephone: 512-259-6141
E-Mail: jayantks@iitk.ac.in

home.iitk.ac.in/~jayantks/ESO201/index.htm

Learning objective

- 1. Introduce the concept of a pure substance.
- 2. Discuss the physics of phase change processes.
- 3. Illustrate the P-v, T-v and P-T property diagram, and P-v-T surfaces of pure substances.
- 4. Obtaining thermodynamic properties of a pure substance from a property table.
- 5. Define Ideal gas equation of state and demonstrate its use.
- 6. Introduce to compressibility.
- 7. Present the commonly used equation of states.

Property diagram for phase change process

• The variations of properties during phase-change processes are best studied and understood with the help of property diagrams such as the *T-v*, *P-v*, and *P-T* diagrams for pure substances.

T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures (numerical values are for water).

Property diagram for phase change process

- saturated liquid line
- saturated vapor line
- · compressed liquid region
- · superheated vapor region
- saturated liquid-vapor mixture region (wet region)

Critical point

Compressed Liquid Region

Saturated Liquid-Vapor Region

Saturated Region

Saturated Region

Saturated Region

T-v diagram of a pure substance.

Critical point: The point at which the saturated liquid and saturated vapor states

P-v diagram

P-v diagram of a pure substance.

device can be reduced by reducing the weight of the piston.

5

Thermodynamic surface

 The state of a simple compressible fluid represented by two independent intensive variables

• Any equation with two variables, z=z(x,y), represents a surface

P-v-T surface of a substance that expands on freezing

Gas

Solid

Liquid

Critical point

Critical point

Solid Critical point Liquid Point V Gas S Vapor V Temperature

Thermodynamic surface

The *P-v-T* surfaces present a great deal of information at

once, but in a thermodynamic analysis it is more convenient to work with twodimensional diagrams, such as the P-v and T-v diagrams.

P-v-T surface of a substance that contracts on freezing

Extending P-v diagrams to include solid phase

P-v diagram of a substance that contracts on freezing.

P-v diagram of a substance that expands on freezing (such as water).

P-T diagram of pure substances

Phase transformation

Solid phase

Vaporization line

Vapor phase

Triple point

Sublimation

Temperature

VAPOR

At low pressures (below the triple-point value), solids evaporate without melting first (*sublimation*).

For water, $T_{tp} = 0.01$ °C $P_{tp} = 0.6117$ kPa At triple-point pressure and temperature, a substance exists in three phases in equilibrium.

19.37.

- Sublimation line: solid-vapor coexistence
- Fusion line: solid-liquid coexistence
- Vaporization line: liquid-vapor coexistence
- Triple point: All the three phases at equilibrium
- Above critical point no distinction between vapor and liquid phases

Latent heat

- Latent heat: The amount of energy absorbed or released during a phase-change process
 - Latent heat of fusion
 - Latent heat of vaporization
 - Latent heat of sublimation
- The magnitudes of the latent heats depend on the temperature or pressure at which the phase change occurs.
 - At 1 atm pressure, the latent heat of fusion of water is 333.7 kJ/kg and the latent heat of vaporization is 2256.5 kJ/kg.

TABLE 3-2

Variation of the standard atmospheric pressure and the boiling (saturation) temperature of water with altitude

Elevation, m	Atmospheric pressure, kPa	Boiling tempera- ture, °C
0	101.33	100.0
1,000	89.55	96.5
2,000	79.50	93.3
5,000	54.05	83.3
10,000	26.50	66.3
20,000	5.53	34.7

CO₂ phase diagram

- Triple point pressure is greater than the normal atmospheric pressure
- Thus at atmospheric pressure the phase transition is sublimation
- Referred as dry ice.

Allotropes: carbon phase diagram

A pure substance can have a number of triple points, but only one triple point has a solid, liquid, and vapor equilibrium.

Ice structures

Hexagonal close-packing a-b-a-b..

Ordinary ice Ih

Layers of atoms are stacked in the crystal, which gives snowflakes their six-fold geometry

Cubic close-packing

Cubic Ic

a-b-c-a-b-c..

Ice XI has been found in Antarctic ice that's 100 to 10,000 years old. This ice is ferroelectric, meaning that it spontaneously become electrically polarized, just like a ferromagnet spontaneously magnetizes.

Regelation properties

- Regelation is the phenomenon of melting under pressure and freezing again when the pressure is reduced
- Regelation occurs only for substances, such as ice, that have the property
 of expanding upon freezing, for the melting points of those substances
 decrease with increasing external pressure.
- The melting point of ice falls by 0.0072 °C for each additional atm of pressure applied. For example, a pressure of 500 atmospheres is needed for ice to melt at -4 °C

Regelation properties

Is it really ice melting which allows skates to slide on ice!

Typical skater weight: 50 kg Area of skate blade: 3mmx 200mm

Pressure=F/A=816666.67 Pa=8.056 atm

Next lecture

- 1. Introduce the concept of a pure substance.
- 2. Discuss the physics of phase change processes.
- 3. Illustrate the P-v, T-v and P-T property diagram, and P-v-T surfaces of pure substances.
- 4. Obtaining thermodynamic properties of a pure substance from a property table.
- 5. Define Ideal gas equation of state and demonstrate its use.
- 6. Introduce to compressibility.
- 7. Present the commonly used equation of states.