Geoffrey Parker - grp352 HW 5: 1.38-1.43, 1.45 M328K February 2nd, 2012

1.38 Theorem. Let a and b be integers. If (a,b) = 1, then there exist integers x and y such that ax + by = 1.

Proof. Let a and b be integers with (a,b)=1. Since (a,b)=1, it must be the case that a and b are not both 0. Therefore by theorem 1.40, there exist integers x and y such that 1=(a,b)=ax+by.

1.39 Theorem. Let a and b be integers. If there exist integers x and y with ax + by = 1, then (a, b) = 1.

Proof. Let a, b, x, and y be integers with ax + by = 1. We will show that (a, b) = 1. This is true by theorem 1.40.

1.40 Theorem. For any integers a and b not both 0, there are integers x and y such that

$$ax + by = (a, b).$$

Proof. Let a and b be integers not both 0. First, we will redifine the Euclidean Algorithm as a collection of sequences, with a couple of extensions. Call it the Extended Euclidean Algorithm. Let i, j, q, r, x, and y be sequences of integers, defined as follows: $i_k = j_{k-1}$, $j_k = r_{k-1}$, use the division algorithm to find q_k and r_k such that $i_k = j_k q_k + r_k$, $x_k = x_{k-2} - x_{k-1}$, and $y_k = y_{k-2} - y_{k-1}$. Now take these initial values: $i_2 = a$, $j_2 = b$, $x_0 = 1$, $y_0 = 0$, $x_1 = 0$, and $y_1 = 1$. Also let $r_1 = j_2$. In effect, by filling out these sequences until you find a k such that $r_k = 0$, you are performing the Euclidean Algorithm. In addition, we will use induction to prove that for any $k \geq 2$, $r_k = ax_k + by_k$.

As a base case, take k = 2. This gives us:

$$i_2 = j_2q_2 + r_2$$

$$r_2 = i_2 - q_2j_2$$

$$r_2 = a - q_2b$$

$$r_2 = (ax_0 + by_0) - q_2(ax_1 + by_1)$$

$$r_2 = a(x_0 - q_2x_1) + b(y_0 + q_2y_1)$$

$$r_2 = ax_2 + by_2$$

Our induction hypothesis is that there exists some integer $N \ge 3$ such that $r_N = ax_N + by_N$. We must now show that $r_{N+1} = ax_{N+1} + by_{N+1}$.

$$r_{N} = ax_{N} + by_{N}$$

$$i_{N+1} = j_{N}$$

$$j_{N+1} = r_{N}$$

$$i_{N+1} = q_{N+1}j_{N+1} + r_{N+1}$$

$$r_{N+1} = i_{N+1} - q_{N+1}j_{N+1}$$

$$r_{N+1} = r_{N-1} - q_{N+1}r_{N}$$

$$r_{N+1} = (ax_{N-1} + by_{N-1}) - q_{N+1}(ax_{N} + by_{N})$$

$$r_{N+1} = a(x_{N-1} - q_{N+1}x_{N}) + b(y_{N-1} - q_{N+1}y_{N})$$

$$r_{N+1} = ax_{N+1} + by_{N+1}$$

Now suppose we let M be an integer such that $r_M = 0$. Since this is the Euclidean Algorithm, this means that $(a, b) = j_M = r_{M-1} = ax_{M-1} + by_{M-1}$.

1.41 Theorem. Let a, b, and c be integers. If a|bc and (a,b) = 1, then a|c.

Proof. Let a, b, and c be integers with $a \mid bc$ and (a,b) = 1. We will show $a \mid c$. First, if a = 1, then $a \mid c$ because 1 divides all integers. And a can not be 0 because then (a,b) would be 0. Now consider the case of |a| > 1. Suppose by way of contradiction that $a \mid b$. Then $|a| \mid a$ and $|a| \mid b$, and because |a| > 1, |a| > (a,b), which is a contradiction. So $a \nmid b$. Therefore $a \mid c$

1.42 Theorem. Let a, b, and n be integers. If a|n, b|n and (a, b) = 1, then ab|n.

Proof. Let a, b, and n be integers with a|n, b|n and (a, b) = 1. We will show that ab|n. Consider the sets A of integers that a divides and B the integers that b divides. Let $S = A \cap B$. S is the set of all integers of the form abk. Since n is an element of S, ab|n.

1.43 Theorem. Let a, b, and n be integers. If (a, n) = 1 and (b, n) = 1, then (ab, n) = 1.

Proof. Let a, b, and n be integers with (a, n) = 1 and (b, n) = 1. We will show that (ab, n) = 1. Let d = (ab, n). Assume by way of contradiction that d > 1. However, since (a, n) = 1 and (b, n) = 1, it must be the case that $d \nmid a$ and $d \nmid b$. \square 1.45 Theorem. Let a, b, c and n be integers with n > 0. If $ac \equiv bc \pmod{n}$ and (c, n) = 1, then $a \equiv b \pmod{n}$.

Proof. Let a, b, c and n be integers with n > 0, $ac \equiv bc \pmod{n}$, and (c, n) = 1. We will show that $a \equiv b \pmod{n}$. First, by definition of congruence mod $n, n \mid (ac - bc)$, so $n \mid c(a - b)$. Since (n, c) = 1, then by theorem 1.41 $n \mid (a - b)$. Therefore by

definition of conguence mod n, $a \equiv b \pmod{n}$.