Algorithms – Chapter 13 Red-Black Trees

Juinn-Dar Huang Professor jdhuang@mail.nctu.edu.tw

October 2007

Rev. '08, '11, '12, '15, '16, '18, '19, '20, '21

Red-Black Trees

- A red-black tree
 - is a binary tree with colored nodes
 - no such path is more than twice as long as any other from the root to a leaf
 - is approximately balanced

Properties of Red-Black Trees

Property

- 1) every node is either red or black
- 2) the root is black
- 3) every leaf (NIL) is black
- 4) if a node is red, its 2 children are black (if any)
- 5) for each node, all paths from the node to descendant leaves contain the same number of black nodes

Example (1/3)

Example (2/3)

idhuang @mail.nctu.edu

Example (3/3)

Use the simplified representation later

Black-Height

- The number of black nodes on any path from, but not including, a node x down to a leaf is defined as the black-height of the node x
 - denoted as bh(x)

Tree Height (1/2)

 A red-black tree with n internal nodes has height at most 2lg(n+1)

```
- \text{ or h} \leq 2 \lg(n+1)
```

Proof

```
prove 2^{bh(root)} - 1 \le the \# of nodes n by induction if bh(root) = 0, empty tree \Rightarrow 2^0 - 1 \le 0 assume 2^k - 1 \le n holds for bh(root) = k for bh(root) = k+1: bh of 2 children \Rightarrow k+1 or k
```

- → at least 2^k-1 nodes for each subtree
- \rightarrow at least 2^{k+1} -1 nodes in the tree

Tree Height (2/2)

Let h be the height of the tree

- → at least half the nodes on any simple path from the root to a leaf, not including the root, must be black
- \rightarrow bh(root) \geq h/2
- → $n \ge 2^{bh(root)} 1 \ge 2^{h/2} 1$
- \rightarrow h \leq 2lg(n+1)
- That is, h = O(Ign)
- How to do insertion and deletion?

Fixes to Preserve the Properties

- Use TREE-INSERT & TREE-DELETE (described in Chap 12) in a red-black tree
 - time complexity: O(lgn)
 - after operations, the tree may violate the properties of red-black tree → some fixes are required
- Fixes
 - do rotations
 - change the colors of some nodes

Rotations

Left Rotations

```
LEFT-ROTATE(T, x)
```

```
1 y \leftarrow right[x] // assume y is not nil
2 right[x] \leftarrow left[y]
```

- 3 **if** $left[y] \neq nil[T]$
- 4 then $p[left[y]] \leftarrow x$
- 5 $p[y] \leftarrow p[x]$
 - 6 **if** p[x] = nil[T]
 - 7 then $root[T] \leftarrow y$
 - 8 **else if** x = left[p[x]]
- 9 then $left[p[x]] \leftarrow y$
- 10 **else** $right[p[x]] \leftarrow y$
- 11 $left[y] \leftarrow x$
- 12 $p[x] \leftarrow y$

Time Complexity: O(1)

Example

Insertions in Red-Black Tree (1/2)

```
RB-INSERT(T, z)
```

8 $p[\mathbf{z}] \leftarrow \mathbf{y}$

```
1 y \leftarrow nil[T]

2 x \leftarrow root[T]

3 while x \neq nil[T]

4 do y \leftarrow x

5 if key[z] < key[x]

6 then x \leftarrow left[x]

7 else x \leftarrow right[x]
```

Insertions in Red-Black Tree (2/2)

```
9 if y = nil[T]

10 then root[T] \leftarrow z

11 else if key[z] < key[y]

12 then left[y] \leftarrow z

13 else right[y] \leftarrow z
```

- 14 $left[z] \leftarrow nil[T]$
- 15 $right[z] \leftarrow nil[T]$
- 16 $color[z] \leftarrow RED$
- 17 RB-INSERT-FIXUP(T, z)

Compare with TREE-INSERT (Chap 12, p. 11)

า-Dar Huang 🧼 jdhuang @mail.nctu.eง

INSERT-FIXUP (1/2)

RB-INSERT-FIXUP(T, z)

```
1 while color[p[z]] = RED
2 do if p[z] = left[p[p[z]]]
```

3 **then** $y \leftarrow right[p[p[z]]]$

4 **if** color[y] = RED

5 then $color[p[z]] \leftarrow BLACK$ Case 1

 $color[y] \leftarrow BLACK \qquad \textbf{Case 1}$

7 $color[p[p[z]]] \leftarrow RED$ Case 1

 $z \leftarrow p[p[z]]$ Case 1

INSERT-FIXUP (2/2)

9	else if $z = right[p[z]]$	
10	then $z \leftarrow p[z]$	Case 2
11	LEFT-ROTATE (T, z)	Case 2
12	$color[p[z]] \leftarrow \text{BLACK}$	Case 3
13	$color[p[p[z]]] \leftarrow \text{RED}$	Case 3
14	RIGHT-ROTATE $(T, p[p[z]])$	Case 3
15	else (same as then (Line 3) clause	
	with "right" and "left" ex	changed)
16	$color[root[T]] \leftarrow \texttt{BLACK}$	

Case 1 in RB-INSERT-FIXUP

Case 1: z's uncle y is red

Ked-Black Trees

Case 2 & 3 in RB-INSERT-FIXUP

Case 2: z's uncle y is black and z is a right child

Case 3: z's uncle y is black and z is a left child

Red-Black Trees

Fixup Example (1/2)

idhuana@mail nctu edu t

Fixup Example (2/2)

Time Complexity

RB-INSERT-FIXUP takes O(lgn)

 RB-INSERT-FIXUP never performs more than two rotations, since the while loop terminates if Case 2 or Case 3 is executed

The overall time for RB-INSERT is O(Ign)

Copyright © 2007-2021

21

Deletions in Red-Black Tree (1/2)

RB-DELETE(T, z)

- 1 **if** left[z] = nil[T] or right[z] = nil[T]
- 2 then $y \leftarrow z$
- 3 **else** $y \leftarrow \text{TREE-SUCCESSOR}(z)$
- 4 **if** $left[y] \neq nil[T]$
- 5 then $x \leftarrow left[y]$
- 6 **else** $x \leftarrow right[y]$
- $7 p[x] \leftarrow p[y]$

Deletions in Red-Black Tree (2/2)

```
if p[y] = nil[T]
                                       Compare with TREE-DELETE
9
        then root[T] \leftarrow x
                                       (Chap 12, p. 13)
        else if y = left[p[y]]
10
11
                then left[p[y]] \leftarrow x
12
                else right[p[y]] \leftarrow x
13
    if y \neq z
14
        then key[z] \leftarrow key[y]
              copy y's satellite data into z
15
16 if color[y] = BLACK
        then RB-DELETE-FIXUP(T, x)
18 return y
```

Color of Deleted Node (1/2)

- The deleted node y is red
 - no black-height in the tree have changed
 - no red nodes have been made adjacent
 - the deleted node cannot be the root
 - → the root remains black
 - so, no fix-up is required!

Color of Deleted Node (2/2)

- The deleted node y is black
 - if the deleted node is the root and its red child becomes the new root → violate Property 2
 - if both x and p[y] are red → violate Property 4
 - the black-height decreases 1 for paths passing through the deleted node y → violate Property 5
 - so, fix-ups are definitely required!

Juinn-Dar

DELETE-FIXUP (1/3)

RB-DELETE-FIXUP(T, x)

```
1 while x \neq root[T] and color[x] = BLACK

2 do if x = left[p[x]]

3 then w \leftarrow right[p[x]]

4 if color[w] = RED

5 then color[w] \leftarrow BLACK Case1

6 color[p[x]] = RED Case1

7 LEFT-ROTATE(T, p[x]) Case1

8 w \leftarrow right[p[x]] Case1
```

idhuang@mail nctu edu tw

DELETE-FIXUP (2/3)

9	if $color[left[w]] = BLACK$ and	
	color[right[w]] = BLACK	
10	then $color[w] \leftarrow RED$	Case2
11	$x \leftarrow p[x]$	Case2
12	else if $color[right[w]] = BLACK$	
13	then $color[left[w]] \leftarrow BLACK$	Case3
14	$color[w] \leftarrow \text{RED}$	Case3
15	RIGHT-ROTATE(T , w)	Case3
16	$w \leftarrow right[p[x]]$	Case3

DELETE-FIXUP (3/3)

17	$color[w] \leftarrow color[p[x]]$	Case4
18	$color[p[x]] \leftarrow \text{BLACK}$	Case4
19	$color[right[w]] \leftarrow BLACK$	Case4
20	LEFT-ROTATE $(T, p[x])$	Case4
21	$x \leftarrow root[T]$	Case4
else	(same as then (Line 3) clause	with "right"
	and "left" exchanged))
23 $color[x] \leftarrow BI$	LACK	

Case 1 & 2 in RB-DELETE-FIXUP

x is y's single black child initially; x has one "extra black" w is x's sibling and must exist

w's 2 children are both black

In Case 2/3/4, w must have two children

Case 3 & 4 in RB-DELETE-FIXUP

Copyright © 2007-2021 30

Time Complexity

- RB-DELETE-FIXUP takes O(lgn) time and performs at most three rotations
- The overall time for RB-DELETE is O(lgn)

