强化训练

A 组 夯实基础

1. (2024 • 河北邢台模拟)

当 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ 时,函数 $y = \cos x$ 与函数 $y = \tan x$ 的图象的交点个数为(

- A. 0
- B. 1
- C. 2
- D. 4
- 1. C

解析: 如图, 当 $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ 时, $y = \cos x$ 与 $y = \tan x$ 的图象的交点个数为 2.

2. (2024 · 黑龙江哈尔滨期末)

函数 $y = 2\tan x + a$ 在 $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ 上的最大值为 4,则实数 a 的值为_____.

2. 2

解析: 函数 $y = 2 \tan x + a$ 在 $\left[\frac{\pi}{6}, \frac{\pi}{4}\right]$ 上 \nearrow ,所以当 $x = \frac{\pi}{4}$

时,该函数取得最大值 $2 \tan \frac{\pi}{4} + a = 2 + a$,

由题意, 2+a=4, 所以 a=2.

3. (2024 • 云南大理模拟)

借助函数 $y = \tan x$ 的图象,可知不等式 $\tan x \ge -1$, $x \in \left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right)$ 的解集为_____.

3. $\left[0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{4},\pi\right]$

解析: 函数 $y = \tan x$ 在 $\left[0, \frac{\pi}{2}\right] \cup \left(\frac{\pi}{2}, \pi\right)$ 上的图象如图,

由图可知 $\tan x \ge -1$ 的解集为 $\left[0, \frac{\pi}{2}\right] \cup \left[\frac{3\pi}{4}, \pi\right]$.

4. (2024 • 天津滨海新区模拟)

函数 $f(x) = 2\tan\left(2x - \frac{\pi}{4}\right)$ 的定义域是_____; 最小正周期是_____.

4.
$$\left\{ x \middle| x \neq \frac{k\pi}{2} + \frac{3}{8}\pi, k \in \mathbb{Z} \right\}; \frac{\pi}{2}$$

解析:由 $2x - \frac{\pi}{4} \neq k\pi + \frac{\pi}{2}$ 得 $x \neq \frac{k\pi}{2} + \frac{3\pi}{8}$,所以 f(x) 的定义域是 $\left\{x \middle| x \neq \frac{k\pi}{2} + \frac{3\pi}{8}, k \in \mathbf{Z}\right\}$, f(x) 的最小正周期 $T = \frac{\pi}{|\omega|} = \frac{\pi}{2}$.

B组 强化能力

5. (2024 • 江苏模拟)

函数 $f(x) = x \tan x$ (-1 < x < 1) 的图象可能是(

5. B

解析:观察发现选项 A、C 关于原点对称, B、D 关于y 轴对称, 故可通过判断奇偶性排除两个选项,

因为 $f(-x) = -x \tan(-x) = -x(-\tan x) = x \tan x = f(x)$,

所以 f(x) 为偶函数, 其图象关于 y 轴对称, 排除 A、C;

观察 B、D 可发现, B 项的函数在 (0,1) 上函数值恒为正, D 项则有正有负, 故可通过判断函数值的正负确定选谁,

当 $x \in (0,1)$ 时, x > 0 , $\tan x > 0$, 所以 $f(x) = x \tan x > 0$,

从而排除 D, 故选 B.

6. (2024•吉林长春期末)

函数 $y = \lg(1 + \tan x)$ 的定义域为 .

6.
$$\left(-\frac{\pi}{4}+k\pi,\frac{\pi}{2}+k\pi\right),k\in\mathbf{Z}$$

解析: 由题意, $1 + \tan x > 0$, 所以 $\tan x > -1$ ①,

正切函数有周期, 所以该不等式的解集也有周期, 可画图在一个周期内解该不等式, 再加上周期的整数倍即可,

如图,当且仅当 $k\pi - \frac{\pi}{4} < x < k\pi + \frac{\pi}{2}$ 时,不等式①成立,

故所给函数的定义域是 $\left\{x \middle| k\pi - \frac{\pi}{4} < x < k\pi + \frac{\pi}{2}, k \in \mathbf{Z}\right\}$.

7. (2024 · 福建莆田模拟)

函数
$$y = \tan^2 x + 4 \tan x - 1$$
, $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$ 的值域为_____.

7. [-4,4]

当
$$x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
时, $u = \tan x$,所以 $u_{\min} = \tan\left(-\frac{\pi}{4}\right)$

$$=-\tan\frac{\pi}{4}=-1$$
, $u_{\max}=\tan\frac{\pi}{4}=1$, $total u\in[-1,1]$,

如图,
$$y=u^2+4u-1$$
在[-1,1]上 \nearrow , 所以当 $u=-1$ 时,

$$y$$
取得最小值 $(-1)^2 + 4 \times (-1) - 1 = -4$,

当
$$u = 1$$
 时, y 取得最大值 $1^2 + 4 \times 1 - 1 = 4$,

故所求值域为[-4,4].

8. (2024 • 湖北开学考试(改))(多选)

已知
$$f(x) = -\sqrt{3} \tan \left(2x + \frac{\pi}{3}\right)$$
,则下列说法正确的有(

A.
$$f(x)$$
 的图象对称中心为 $\left(-\frac{\pi}{6} + \frac{k\pi}{2}, 0\right)(k \in \mathbb{Z})$

B.
$$f(x)$$
 的最小正周期为 $\frac{\pi}{2}$

C.
$$f(x)$$
的减区间为 $\left(-\frac{5\pi}{12} + \frac{k\pi}{2}, \frac{\pi}{12} + \frac{k\pi}{2}\right)(k \in \mathbf{Z})$

D. 若
$$f(x) \ge 1$$
, 则 $x \in \left(-\frac{5\pi}{12} + \frac{k\pi}{2}, -\frac{\pi}{4} + \frac{k\pi}{2}\right] (k \in \mathbf{Z})$

8. BCD

解析: A 项, 令
$$2x + \frac{\pi}{3} = \frac{k\pi}{2}$$
 可得 $x = \frac{k\pi}{4} - \frac{\pi}{6}$,所以 $f(x)$ 图象的对称中心是 $\left(\frac{k\pi}{4} - \frac{\pi}{6}, 0\right)(k \in \mathbb{Z})$,故 A 项错误;

B 项,
$$f(x)$$
 的最小正周期 $T = \frac{\pi}{2}$, 故 B 项正确;

C 项,解析式中
$$\tan\left(2x+\frac{\pi}{3}\right)$$
的系数 $-\sqrt{3}<0$,故要求 $f(x)$ 的减区间,只需求 $y=\tan\left(2x+\frac{\pi}{3}\right)$ 的增区间,

$$\Rightarrow k\pi - \frac{\pi}{2} < 2x + \frac{\pi}{3} < k\pi + \frac{\pi}{2} \notin \frac{k\pi}{2} - \frac{5\pi}{12} < x < \frac{k\pi}{2} + \frac{\pi}{12}$$

所以 f(x) 的单调递减区间是 $\left(\frac{k\pi}{2} - \frac{5\pi}{12}, \frac{k\pi}{2} + \frac{\pi}{12}\right) (k \in \mathbb{Z})$,

故 C 项正确;

D 项,
$$f(x) \ge 1 \Leftrightarrow -\sqrt{3} \tan \left(2x + \frac{\pi}{3}\right) \ge 1$$

$$\Leftrightarrow \tan\left(2x + \frac{\pi}{3}\right) \le -\frac{\sqrt{3}}{3}$$
 (1),

令
$$u = 2x + \frac{\pi}{3}$$
 ,则不等式①即为 $\tan u \le -\frac{\sqrt{3}}{3}$ ②,

如图,不等式②的解为
$$k\pi - \frac{\pi}{2} < u \le k\pi - \frac{\pi}{6}$$

所以
$$k\pi - \frac{\pi}{2} < 2x + \frac{\pi}{3} \le k\pi - \frac{\pi}{6}$$
 , 故 $\frac{k\pi}{2} - \frac{5\pi}{12} < x \le \frac{k\pi}{2} - \frac{\pi}{4}$,

其中 $k \in \mathbb{Z}$,故D项正确.

9. (2024 · 湖北模拟)

已知函数
$$f(x) = \tan(2x + \varphi) \left(0 < \varphi < \frac{\pi}{2}\right)$$
 的图象关于点 $\left(-\frac{\pi}{8}, 0\right)$ 对称.

- (1) 求 φ ;
- (2) 求 f(x) 的单调递增区间.

9. **解:** (1) 因为
$$f(x)$$
 的图象关于点 $\left(-\frac{\pi}{8},0\right)$ 对称,

所以
$$2 \times \left(-\frac{\pi}{8}\right) + \varphi = \frac{k\pi}{2}$$
, 故 $\varphi = \frac{k\pi}{2} + \frac{\pi}{4} (k \in \mathbf{Z})$,

又
$$0 < \varphi < \frac{\pi}{2}$$
,所以 $k = 0$, $\varphi = \frac{\pi}{4}$.

(2)
$$\diamondsuit k\pi - \frac{\pi}{2} < 2x + \frac{\pi}{4} < k\pi + \frac{\pi}{2} \not = \frac{k\pi}{2} - \frac{3\pi}{8} < x < \frac{k\pi}{2} + \frac{\pi}{8}$$

所以
$$f(x)$$
 的单调递增区间是 $\left(\frac{k\pi}{2} - \frac{3\pi}{8}, \frac{k\pi}{2} + \frac{\pi}{8}\right) (k \in \mathbb{Z})$.

10. (2024 • 江西南昌模拟)

设函数
$$f(x) = \tan\left(\frac{x}{2} - \frac{\pi}{3}\right)$$
.

- (1) 求 f(x) 的定义域、最小正周期及对称中心;
- (2) 解不等式 $f(x) \le \sqrt{3}$.

10. **M**: (1)
$$\pm \frac{x}{2} - \frac{\pi}{3} \neq k\pi + \frac{\pi}{2} \exists \exists x \neq 2k\pi + \frac{5\pi}{3}$$

所以
$$f(x)$$
 的定义域是 $\left\{x \middle| x \neq 2k\pi + \frac{5\pi}{3}, k \in \mathbb{Z}\right\}$,

(再看周期, 可直接代公式
$$T = \frac{\pi}{|\omega|}$$
 计算)

f(x) 的最小正周期 $T = \frac{\pi}{\frac{1}{2}} = 2\pi$,

$$\Rightarrow \frac{x}{2} - \frac{\pi}{3} = \frac{k\pi}{2}$$
 可得 $x = k\pi + \frac{2\pi}{3}$,

所以 f(x) 的对称中心是 $\left(k\pi + \frac{2\pi}{3}, 0\right)(k \in \mathbb{Z})$.

(2) (解正切不等式, 常考虑结合图象来看, 直接画 f(x) 的图象不方便, 可将 $\frac{x}{2} - \frac{\pi}{3}$ 换元成u, 转为画 $y = \tan u$ 的图象来分析)

令
$$u = \frac{x}{2} - \frac{\pi}{3}$$
 ,则 $f(x) = \tan u$,所以 $f(x) \le \sqrt{3}$ 即为 $\tan u \le \sqrt{3}$,

函数 $y = \tan u$ 的部分图象如图,

由图可知, $\tan u \le \sqrt{3} \Leftrightarrow k\pi - \frac{\pi}{2} < u \le k\pi + \frac{\pi}{3}$,

所以
$$k\pi - \frac{\pi}{2} < \frac{x}{2} - \frac{\pi}{3} \le k\pi + \frac{\pi}{3}$$
,解得: $2k\pi - \frac{\pi}{3} < x \le 2k\pi + \frac{4\pi}{3}$,

故所求不等式的解集是 $\left\{x \middle| 2k\pi - \frac{\pi}{3} < x \le 2k\pi + \frac{4\pi}{3}, k \in \mathbb{Z}\right\}$.

C 组 拓展提升

11. (2024 • 河南许昌模拟)

已知函数 $f(x) = A \tan(\omega x + \varphi)$, $\omega > 0$, $|\varphi| < \frac{\pi}{2}$, y = f(x) 的部分图象如图,则 $f\left(\frac{7\pi}{24}\right) = \underline{\hspace{1cm}}$

11.
$$-\frac{\sqrt{3}}{3}$$

解析: 求 $f\left(\frac{7\pi}{24}\right)$ 需要 A, ω , φ , 观察发现图上 $\frac{\pi}{8}$ 和 $\frac{3\pi}{8}$ 之间那段是半个周期,故能推断周期,进而求出 ω ,

由所给图象可知,
$$T=2\times\left(\frac{3\pi}{8}-\frac{\pi}{8}\right)=\frac{\pi}{2}$$
,

又
$$T = \frac{\pi}{\omega}$$
, 所以 $\frac{\pi}{\omega} = \frac{\pi}{2}$, 故 $\omega = 2$, $f(x) = A \tan(2x + \varphi)$,

还差 φ 和A, 先看 φ , 我们发现 $x = \frac{\pi}{8}$ 处没有定义, 可由此建立方程求 φ ,

由所给图象可知 $2 \times \frac{\pi}{8} + \varphi = k\pi + \frac{\pi}{2}$, 故 $\varphi = k\pi + \frac{\pi}{4} (k \in \mathbb{Z})$,

又
$$|\varphi| < \frac{\pi}{2}$$
,所以 $k = 0$, $\varphi = \frac{\pi}{4}$, $f(x) = A \tan\left(2x + \frac{\pi}{4}\right)$,

只剩A不知道了,图中y轴上专门标了个1,故可将该点代入解析式求A,

由所给图象可知 $f(0) = A \tan \frac{\pi}{4} = A = 1$,

所以
$$f(x) = \tan\left(2x + \frac{\pi}{4}\right)$$
,

故
$$f\left(\frac{7\pi}{24}\right) = \tan\left(2 \times \frac{7\pi}{24} + \frac{\pi}{4}\right) = \tan\frac{5\pi}{6} = -\frac{\sqrt{3}}{3}$$
.

12. (2024 • 河南模拟)

已知函数
$$f(x) = 2\tan\left(2x + \frac{\pi}{4}\right) + 1$$
.

(1) 求 f(x) 的定义域;

(2) 设
$$g(x) = [f(x)]^2 + mf(x) - 2m + \frac{9}{4}$$
, 对任意的 $x \in \left[-\frac{\pi}{4}, 0 \right]$, $g(x) \ge 0$ 恒成立, 求 m 的取值范围.

所以
$$f(x)$$
 的定义域是 $\left\{x \middle| x \neq \frac{k\pi}{2} + \frac{\pi}{8}, k \in \mathbb{Z}\right\}$.

(2) (观察发现 g(x) 含x 的部分以 f(x) 整体出现,考虑将 f(x) 换元成 t,将 g(x) 的解析式化简再做分析)

$$\Leftrightarrow t = f(x)$$
, $\emptyset g(x) = t^2 + mt - 2m + \frac{9}{4}$,

所以
$$g(x) \ge 0 \Leftrightarrow t^2 + mt - 2m + \frac{9}{4} \ge 0$$
 ①,

(接下来有两个考虑的方向,要么将参数m分离出来,要么直接求不等式①左侧的最小值,选哪一种呢?我们先来看看t的范围再决定)

$$\Leftrightarrow u = 2x + \frac{\pi}{4}$$
, $y = f(x) = 2\tan u + 1$, $y \in \left[-\frac{\pi}{4}, 0\right]$ $y \in \left[-\frac{\pi}{4}, 0\right]$

$$u \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$$
, 函数 $t = 2 \tan u + 1$ 在 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上单调递增,

所以
$$t_{\min} = 2 \tan \left(-\frac{\pi}{4} \right) + 1 = -2 \tan \frac{\pi}{4} + 1 = -1$$
,

$$t_{\text{max}} = 2 \tan \frac{\pi}{4} + 1 = 3$$
, $\exists t \in [-1,3]$,

(此时可发现t-2 不恒为正或恒为负,若将m分离出来,则需讨论t-2 的正负,且可以想象,分离后计算量也较大,于是我们直接求不等式①左侧的最小值,故讨论区间与对称轴的位置关系)

令
$$h(t) = t^2 + mt - 2m + \frac{9}{4}$$
,则 $h(t)$ 的对称轴是 $t = -\frac{m}{2}$,

(i) 当
$$-\frac{m}{2} < -1$$
,即 $m > 2$ 时,如图 1, $h(t)$ 在 $[-1,3]$ 上的最小值为 $h(-1) = (-1)^2 + m \cdot (-1) - 2m + \frac{9}{4} = -3m + \frac{13}{4}$,

所以不等式①恒成立
$$\Leftrightarrow -3m + \frac{13}{4} \ge 0$$
,即 $m \le \frac{13}{12}$,

与m > 2矛盾,舍去;

(ii) 当
$$-\frac{m}{2} > 3$$
 ,即 $m < -6$ 时,如图 2, $h(t)$ 在 $[-1,3]$ 上的最小值为 $h(3) = 3^2 + m \cdot 3 - 2m + \frac{9}{4} = m + \frac{45}{4}$,

所以不等式①恒成立
$$\Leftrightarrow m + \frac{45}{4} \ge 0$$
,即 $m \ge -\frac{45}{4}$,

结合
$$m < -6$$
 可得 $-\frac{45}{4} \le m < -6$;

(iii) 当
$$-1 \le -\frac{m}{2} \le 3$$
 ,即 $-6 \le m \le 2$ 时,如图 3, $h(t)$ 在 $[-1,3]$ 上的最小值为 $h\left(-\frac{m}{2}\right) = \left(-\frac{m}{2}\right)^2 + m\left(-\frac{m}{2}\right) - 2m + \frac{9}{4}$

$$= -\frac{m^2}{4} - 2m + \frac{9}{4},$$

所以不等式①恒成立 \Leftrightarrow $-\frac{m^2}{4} - 2m + \frac{9}{4} \ge 0$,故 $-9 \le m \le 1$,

结合 $-6 \le m \le 2$ 可得 $-6 \le m \le 1$;

综上所述,实数 m 的取值范围是 $\left[-\frac{45}{4},1\right]$.

一数•高中数学一本通