Домашнее задание по АиСД №9

Эмиль Гарипов М3138 2019-11-22

Задача №1

Задана последовательность a длины n, индексация с нуля.

Введем функцию dp_i — кол-во различных подпоследовательностей на префиксе длины i+1. Тогда:

$$dp_0 = 1$$

$$dp_i = \begin{cases} 2*dp_{i-1}+1, & \text{если элемент } a_i \text{ еще не встречался на префиксе длины } i+1; \\ 2*dp_{i-1}-dp_{j-1}, & \text{если элемент } a_i \text{ встречался на префиксе длины } i+1 \end{cases}$$

, где j — самая правая позиция(исключая i-ю позицию) на префиксе длины i+1, в которой стоит элемент a_i .

Коррестность

Рассмотрим пересчет значений. Для доказательства корректности пересчета, необходимо показать, что считаются все подпоследовательности на префиксе, и каждая считается ровно один раз.

В первом случае (когда элемент a_i еще не встречался на префиксе), мы просто берем все подпоследовательности, которые есть на префиксе (dp_{i-1}) , а так же добавляем к этим подпоследовательностям элемент a_i , (таких подпоследовательностей еще dp_{i-1}) и добавляем подпоследовательность, состоящую из одного элемента — элемента a_i . Таким образом, полагаясь на то, что значения динамики на префиксе посчитаны верно, мы посчитали все возможные подпоследовательности, причем каждую ровно 1 раз.

Во втором случае (когда элемент a_i встретился последний раз в позиции j), мы добавляем к значению dp_i кол-во последовательностей на префиксе длины i-1, так же добавляем к этим подпоследовательностям элемент a_i (таких подпоследовательностей еще dp_{i-1}). Но теперь некоторые подпоследовательности мы посчитали два раза. А именно те, к которым мы могли либо дописать элемент a_i , либо не дописать при подсчете динамики на префиксе. Их количество — dp_{j-1} . Итого, получаем формулу, написанную выше.

Реализация

На очередной итерации алгоритма будем обновлять самую правую позицию, в которой встречался элемент. Просто заведем массив pos, длиной n. При встрече элемента x обновим $pos_x := i$.

Это позволит нам реализовать алгоритм за $\mathcal{O}(n)$ сложений и вычитаний и $\mathcal{O}(n)$ других операций.

Задача №3

Для решения задачи будем строить НВП алгоритмом за $\mathcal{O}(n \log n)$. Таким же образом, только идя с конца, будем строить НУП(наибольшую убывающую подпоследовательность). Дополнительно при пересчете динамики, будем запоминать куда мы поставили i-й элемент(т.е. на какое место мы пытались поставить i-й элемент в НВП(НУП)). Получим два массива p1 и p2 - описанный массив для НВП на префиксе и НУП на суффиксе.

Построив массив, можно посчитать ответ. Если $p1_i + p2_i + 1 = n$ (индексация в НВП с нуля), то элемент a_i может стоять в НВП на позиции $p1_i$. Теперь, для каждой длины запомним, сколько элементов могут стоять на этой длине. Если для какой-то длины всего один такой элемент, то этот элемент входит во все НВП. Если не один, то входит хотя бы в одну.