1 Определения, свойства, способы задания бинарных отношений

1.1 Определения

Непустое множество M — дискретное множество, если у каждого его элемента существует окрестность, не содержащая других элементов множества M.

$$M \neq \varnothing$$
 — дискретное множество, если $\forall m \in M \ \exists \theta_{\epsilon}(m) : \forall n \in M, n \notin \theta_{\epsilon}(m)$

Бинарным отношением f на множестве M называется отображение, которое действует из декартова квадрата M в булево множество $\mathbb B$.

$$f: M^2 \to \mathbb{B} := \{0, 1\}$$

Декартов квадрат множества M - множество упорядоченных пар элементов из M.

$$M^2 = M \times M := \{(m_1, m_2) | m_1, m_2 \in M\}$$

Примеры:

1. $M = \{\phi a \mu u \mu u u\}$

$$\left\{ egin{array}{l} f(m,n)=1,m,n \ \mbox{начинаются на одну букву} \\ f(m,n)=0, \ \mbox{иначе} \end{array}
ight.$$

 $2.\ M=\mathbb{N}$

$$\begin{cases} f(m,n) = 1, m & : n \\ f(m,n) = 0, \text{ иначе} \end{cases}$$

1.2 Способы задания бинарных отношений:

Аналитический (по определению).

Матрица смежности $M = \{m_1, ..., m_n\}$ – таблица размерности $n \times n$, элементы которой определяются следующим образом: $a_{ij} = 1$ если $f(m_i, m_j) = 1$

1.3 Свойства бинарных отношений

$$M \neq \emptyset, f: M^2 \to \mathbb{B}$$

- 1. Рефлексивность. $\forall m \in M \ f(m,m) = 1$
- 2. (A-)Антирефлексивность. $\forall m \in M \ f(m,m) = 0$
- 3. Симметричность. $\forall m, n \in M \ f(m,n) = 1 \Rightarrow f(n,m) = 1$
- 4. Антисимметричность. $\forall m,n\in M \left\{ \begin{array}{l} f(m,n)=1\\ f(n,m)=1 \end{array} \right. \Rightarrow m=n$
- 5. Асимметричность. $\forall m, n \in M \ f(m,n) = 1 \Rightarrow f(n,m) = 0$

6. Транзитивность.
$$\forall m,n,p\in M \left\{ \begin{array}{l} f(m,p)=1\\ f(p,n)=1 \end{array} \right. \Rightarrow f(m,n)=1$$

Определение свойства бинарного отношения по матрице

- 1. Рефлексивность. На главной диагонали все элементы являются единицами.
- 2. (А-)Антирефлексивность. На главной диагонали все элементы являются нулями.
- 3. $\mathit{Симметричность}$. Матрица равна транспонированной матрице. $A=A^T$
- 4. *Антисимметричность*. При транспонировании матрицы все единицы заменятся на нули. Возможны единицы на главной диагонали.
- 5. *Асимметричность*. При транспонировании матрицы все единицы заменятся на нули. Главная диагональ содержит только нули.
- 6. *Транзитивность*. При возведении матрицы в квадрат не появляется новых ненулевых элементов.

Граф, вершинами которого будут элементы множества $M = \{m_{\underline{1}}, ..., m_n\}$.

Определение свойства бинарного отношения по графу

- 1. Рефлексивность. У каждой вершины графа есть петля.
- 2. (А-)Антирефлексивность. Ни одна вершина графа не имеет петли.
- 3. Симметричность. Все ребра графа двунаправленные.
- 4. Антисимметричность. Нет двунаправленных ребер. Допускаются петли.
- 5. Асимметричность. Нет двунаправленных ребер и петель.
- 6. Транзитивность. Если между двумя вершинами существует путь через третью, то существует и ребро.

1.4 Типы бинарных отношений

1. Отношение эквивалентности — рефлексивно, симметрично и транзитивно.

Классом эквивалентности $[m] \subset M$ элемента $m \in M$ называется подмножество элементов, эквивалентных m. Множество классов эквивалентности по заданному отношению является разбиением множества. Два класса эквивалентности либо равны, либо не перескаются. Объединение всех классов эквивалентности дает исходное множество.

```
Пример:  \begin{split} & M = \{\text{крот, обезьяна, заяц, корова, зебра, мышь, змея, крокодил, осел} \} \\ & \left\{ \begin{array}{l} f(m,n) = 1, m, n \text{ начинаются на одну букву} \\ f(m,n) = 0, \text{ иначе} \end{array} \right. \\ & \left. \begin{array}{l} \text{Классы эквивалентности:} \\ [\kappa pom] = \{\text{крот, крокодил, корова}\} \\ [\kappa oposa] = \{\text{крот, крокодил, корова}\} \end{split}
```

```
[крокодил] = \{крот, крокодил, корова\}
[заяц] = \{заяц, зебра, змея\}
[зебра] = \{заяц, зебра, змея\}
[змея] = \{заяц, зебра, змея\}
[обезъяна] = \{обезъяна, осел\}
[ocen] = \{обезъяна, осел\}
[мышь] = \{мышь\}
```

2. Отношение порядка:

- Отношение строгого порядка асимметрично и транзитивно;
- Отношение частичного (нестрогого) порядка рефлексивно, симметрично и транзитивно.
- Отношение линейного порядка отношение частичного порядка с условием, что $\forall m, n \in M$ выполнено f(m,n)=1 и(или) f(n,m)=1.

Пояснение для отношения линейного порядка

Для того, чтобы отношение можно было считать отношением линейного порядка необходимо, чтобы между всеми элементами множества существовала связь (либо в одну, либо в другую сторону).

2 Топологическая сортировка

Связность графа — существование пути между любыми двумя вершинами графа. Ориентированный граф называется **сильно-связным**, если в нём существует (ориентированный) путь из любой вершины в любую другую, или, что эквивалентно, граф содержит ровно одну сильно связную компоненту.

Ориентированный граф называется **слабо-связным**, если является связным неориентированным графом, полученным из него заменой ориентированных рёбер неориентированными.

Алгоритм topsort

 Bxod : ориентированный ациклический невзвешенный граф $\to \mathit{Buxod}$: линейный порядок на вершинах.

Нумерация вершин — каждое ребро ведет из вершины с меньшим номером в вершину с большим номером.

- 1. Начиная с произвольной вершины запускаем поиск в глубину.
- 2. Вершины, для которых поиск завершен помещаются в стек.
- 3. После того, как в стеке окажутся все вершины они нумеруются в порядке извлечения из стека.

Пусть дан следующий граф:

Запускаем поиск в глубину с вершины А.

Вершина Е помещается в стек, мы возвращаемся в вершину D.

Так как из ${f D}$ больше некуда идти, добавляем вершину в стек. Возвращаемся в вершину ${f B}$ и продолжаем поиск в глубину — помечаем вершину ${f C}$. Вид графа и стека после выполнения шага:

Вид графа и стека после того, как все вершины были просмотрены:

Вершины нумеруются в порядке извлечения из стека (начиная с верхней вершины):

 $\begin{array}{c|c} & A.1 \\ \hline B.2 \\ \hline C.3 \\ \hline D.4 \\ \hline E.5 \\ \end{array}$

Для того, чтобы определить линейный порядок на вершинах, достраиваем недостающие ребра из вершин с меньшим номером в вершины с большим номером:

3 Замыкание бинарных отношений относительно свойства \star

$$M \neq \varnothing, f: M^2 \to \mathbb{B},$$

 f^{\star} — замыкание бинарного отношения относительно свойства \star , если:

- 1. $\forall m, n \in M \ f(m, n) = 1 \Rightarrow f^{\star}(m, n) = 1;$
- 2. f^* обладает свойством *;
- 3. f^{\star} минимальное из бинарных отношений, обладающих свойством \star .

3.1 Рефлексивное замыкание:

- Добавление недостающих единиц на главную диагональ.
- Добавление петель тем вершинам, у которых петля отсутсвует.

3.2 Симметричное замыкание:

- Добавление единиц по принципу: $a_{ij}=1 \Rightarrow a_{ji}=1$.
- Превращение всех неориентированных ребер в ориентированные.

3.3 Транзитивное замыкание:

Пусть |M| = n, A — матрица смежности для бинарного отношения f.

Чтобы построить транзитивное замыкание, матрицу A необходимо возводить в степень от 2 до n, пока в матрице не перестанут появлятся новые ненулевые элементы.

Сложность возведения матрицы $n \times n$ в степень $n = O(n^4)$.

Алгоритм Уоршелла для построения транзитивного замыкания:

Сложность алгоритма для матрицы $n \times n = O(n^3)$.

Шаг 1. Выбираем первый диагональный элемент и ассоциированные с ним строку и столбец, достраивая проекции на элементы матрицы. Нулевые элементы, проекции столбца и строки на которые являются единицами, заменяются единицами.

Шаг 2. Переходим к следующему диагональному элементу и повторяем шаг 1.

Алгоритм заканчивает работу, когда мы дошли до последнего диагонального элемента (или все элементы матрицы на каком-то шаге стали единицами).

Пример: Пусть дана матрица:

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

Выделяем строку и столбец, ассоциированные с первым диагональным элементом и проверяем, для каких элементов проекции на строку и столбец являются единицами:

$$\begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0
\end{pmatrix}$$

На следующем шаге выбираем второй диагональный элемент:

$$\begin{pmatrix} 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Аналогично для остальных элементов матрицы:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$

Матрица транзитивного замыкания:

$$\begin{pmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix}$$