CODE

ℓ_{dh} = development length in tension of deformed bar or deformed wire with a standard hook, measured from outside end of hook, point of tangency, toward critical section, mm

- ℓ_{dt} = development length in tension of headed deformed bar, measured from the bearing face of the head toward the critical section, mm
- ℓ_e = load bearing length of anchor for shear, mm
- ℓ_{ext} = straight extension at the end of a standard hook, mm
- ℓ_n = length of clear span measured face-to-face of supports, mm
- ℓ_o = length, measured from joint face along axis of member, over which special transverse reinforcement must be provided, mm
- ℓ_{sc} = compression lap splice length, mm
- ℓ_{st} = tension lap splice length, mm
- ℓ_t = span of member under load test, taken as the shorter span for two-way slab systems, mm. Span is the lesser of: (a) distance between centers of supports, and (b) clear distance between supports plus thickness h of member. Span for a cantilever shall be taken as twice the distance from face of support to cantilever end
- ℓ_{tr} = transfer length of prestressed reinforcement, mm
- ℓ_u = unsupported length of column or wall, mm
- ℓ_w = length of entire wall, or length of wall segment or wall pier considered in direction of shear force, mm
- ℓ_1 = length of span in direction that moments are being determined, measured center-to-center of supports, mm
- ℓ_2 = length of span in direction perpendicular to ℓ_1 , measured center-to-center of supports, mm
- L = effect of service live load
- L_r = effect of service roof live load
- M_a = maximum moment in member due to service loads at stage deflection is calculated, N·mm
- M_c = factored moment amplified for the effects of member curvature used for design of compression member, N·mm
- M_{cr} = cracking moment, N·mm
- M_{cre} = moment causing flexural cracking at section due to externally applied loads, N·mm
- M_{max} = maximum factored moment at section due to externally applied loads, N·mm
- M_n = nominal flexural strength at section, N·mm
- M_{nb} = nominal flexural strength of beam including slab where in tension, framing into joint, N·mm
- M_{nc} = nominal flexural strength of column framing into joint, calculated for factored axial force, consistent with the direction of lateral forces considered, resulting in lowest flexural strength, N·mm
- M_{pr} = probable flexural strength of members, with or without axial load, determined using the properties of the member at joint faces assuming a tensile

COMMENTARY

M =moment acting on anchor or anchor group, mm-N

