Stress tensors

강의명: 소성가공이론 (AMB2022)

정영웅

창원대학교 신소재공학부

YJEONG@CHANGWON.AC.KR

연구실: #52-212 전화: 055-213-3694

HOMEPAGE: http://youngung.github.lo

응력, 변형률, 물질의 성질

- ■물질의 기계적 성질은, 기계적 자극을 주어 기계적 반응을 살피고, 그 둘의 관계를 정량화하여 얻을 수 있다.
- ■기계적 자극과 반응은 세기 물리량인 응력과 변형률로 표현된다.
 - 크기 물리량인 힘과 길이 변화등은 적절하지 않다. (질량 보다는 '밀도'가 물질의 성질을 설명하는데 더 적절하듯이)

Tensile stress acting on a plane

앞으로 우리는 힘 평형 상태를 이루고 있는 물체만을 대상으로 논의하겠다. 외부의 힘이 작용하는 한 구조체가 힘 평형 상태라면, 그 구조체 내부의 어떠한 임의의 면에서도 힘 평형상태를 이루어야 한다.

응력은 한 면에 작용하는 힘과 그 면의 특성 (방향, 면적)으로 정의됨을 기억하자.

Recap: Compressive stress acting on a plane

Normal (인장+ 혹은 압축-)

Shear (+, -)

3차원 공간에서는 오직 3면에서의 수직, 전단 응력 성분을 알기만 하면 되겠다.

속도의예(벡터와비교)

- ■한 물체의 속도를 정확히 알기위해서는 서로 독립적인 세 방향에서의 속도 성분을 알면 된다.
- ■그러한 세 방향을 체계적으로 나타내기 위해 직각 좌표계(x,y,z축)를 활용할 수 있다.
 - 속도 벡터 v의 x,y,z 성분을 알려주고, 해당 좌표계를 명기하여 정확한 속도를 알려줄 수 있다.
- ■응력의 경우도 비슷하다.
 - 응력을 정확하게 알기 위해서는 서로 독립적인 세방향이 필요하다.
 - 다만, 응력과 관계된 힘의 세방향, 그리고 그 힘이 작용할 수 있는 서로 독립적인 3면이 필요.

stress state (응력상태)

- ■따라서, 응력상태는 총 9개의 구성 성분으로 표현될 수 있다.
 - 그 9개의 구성성분 중 3가지는 수직성분(normal components)이고, 나머지 6가지는 전단 성분(shear components)이다.
- A vector (1st rank tensor) consists of three components in the 3D space.
 - Example in 2D
 - 2차원 평면 동서남북 좌표계에서 영희가 동쪽으로 10m/s , 북쪽으로 5m/s 로 이동중이라면?
 - Example in 3D
 - 우주에서 유영하고 있는 우주인의 속도는 어떻게 나타내나? (기준 좌표계가 필요) 해당 좌표계의 basis axes (basis vectors)들과 평행한 성분들로 '분해'하여 표현.
- ■만약, 구조체가 힘 평형 상태라면 언급된 9개의 응력 구성성분 중 오직 6개만 독립성분으로 남는다. (응력 텐서의 대칭성)
 - Static condition
 - Quasi-static condition

Recap.

- ■본 강의는 **힘평형(force equilibrium)** 조건에 해당하는 문제들로 국한하여 다룬다.
- ■응력상태를 구성하는 성분 두가지는:
 - Normal: tensile(+) or compression(-)
 - Shear: forward shear (+) and backward shear (-) (전단의 방향 구분을 'sense'로 일컫는다)
- ■응력상태를 표현하기 위해서는 두가지 방향이 필요하다. 그리고 각 방향은 벡터의 성분처럼 projection을 통해 '값(value)'으로 표현이 가능하다. 2nd rank 텐서의 경우, 이 값들은 '두' 방향이 좌표계에 projection되어 얻어진 '세기'.
- ■벡터는 최소한 세개의 독립적인 값(component value)으로 이루어져있다. 2nd rank 텐서의 경우에도 최소한의 독립적인 값의 개수가 정해져있다:
 - 벡터로 표현되는 힘과 다르게 응력 텐서는 두 종류 (normal, shear)가 있었고 이는 두 독립적인 방향사이의 관계 (수직이냐, 평형이냐)에 따라 나뉘었다.
 - 그렇다면, 응력텐서를 구성하는 최소한의 독립적인 값의 개수는 무엇일까?

Stress at a material point

$$\sigma = \frac{F}{A}$$

특정한 크기를 가진 면에 작용하는 힘을 이용하여 적당한 크기를 가진 면에 '균일'하게 작용하는 응력을 표현; Within the area (denoted as A), the force is homogeneous.

비균질한 재료의 경우, 응력이 재료의 각 점마다 다른 값을 가지며 '분포' 되어 있다. 이를 표현하기 위해서, 각 '점' 마다의 응력 상태를 표현할 수 있어야 한다. 따라서 매우 작은 점의 응력은 '균일'하다 할 수 있다. 이를 수학적으로 표현하자면

$$\sigma = \lim_{A \to 0} \frac{F}{A}$$

앞으로는 가상의 '면'이 한 물질점(material point)에 귀속되어 있다고 가정한다. 그리고 무한소 큐브를 이용한 응력 상태를 표현하는 방법 (응력 텐서)를 알아보자.

Coordinate system and basis vectors

- ■앞으로 좌표계를 설명할때 좌표계의 근간이 되는 방향들을 normal vector (즉 크기가 1인 벡터)로 표현.
- ■Cartesian coordinate system은 orthonormal coordinate system
- ■서로 수직한 세 normal vector로 표현이 가능하다.

그 세 normal vector들을 basis vector로 칭하겠다. 그리고 각각 e_1 , e_2 , e_3 로 나타내겠다.

앞으로 다루게 될 응력과 변형률 텐서의 성분(component)을 표현할때 쓰이는 subscript 인덱스 (1,2,3)는 각각 e_1,e_2,e_3 벡터들을 뜻한다.

Cauchy stress tensor

응력 텐서는 무한소 큐브의 3면에 작용하는 성분들은 총 '두'가지 방향에 의존한다:

- 1) 작용하는 면의 수직방향 (normal)
- 2) 작용하는 힘의 방향 (normal or shear)

3차원 직교좌표계 (Cartesian coordinate)에서 <u>총 9개의</u> 조합이 가능하다. 즉 9개의 성분으로 표현가능. 하지만 힘의 평형 상태에서는 몇몇의 shear 성분들이 서로 같은 값을 가져야 한다(추후에 다루자). 그에 따라 총 6개의 '독립'적인 성분(component)들만 남게 된다.

위의 무한소 큐브는 무한히 작은 물질점을 대표한다.

즉, 주어진 좌표계에서 6개의 독립적인 성분 (component)들만 안다면 해당 물질 무한소(material infinitesimal point)의 응력 상태(stress state)를 완벽히나타낼수있다.

Cauchy stress tensor

응력 텐서는 무한소 큐브의 3면에 작용하는 성분들은 총 '두'가지 방향에 의존한다:

- 1) 작용하는 면의 수직방향 (normal)
- 2) 작용하는 힘의 방향 (normal or shear)

3차원 직교좌표계 (Cartesian coordinate)에서 <u>총 9개의</u> 조합이 가능하다. 즉 9개의 성분으로 표현가능. 하지만 힘의 평형 상태에서는 몇몇의 shear 성분들이 서로 같은 값을 가져야 한다(추후에 다루자). 그에 따라 총 6개의 '독립'적인 성분(component)들만 남게 된다.

위의 무한소 큐브는 무한히 작은 물질점을 대표한다.

즉, 주어진 좌표계에서 6개의 독립적인 성분 (component)들만 안다면 해당 물질 무한소(material infinitesimal point)의 응력 상태(stress state)를 완벽히나타낼수있다.

Shear stress (and its sign)

2D stress tensor representation using matrix

■주어진 (x-y) 좌표계가, 혹은 $(e_1 - e_2)$ 좌표계가 명확히 주어졌다면 '행렬'의 방식을 빌려 표현할 수 있다.

$$\sigma_{xx} = \frac{F_x}{A_x}$$

$$\sigma = \begin{bmatrix} \sigma_{xx} & \sigma_{xy} \\ \sigma_{yx} & \sigma_{yy} \end{bmatrix}$$

$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \ \sigma_{21} & \sigma_{22} \end{bmatrix}$$

$$\sigma = \begin{bmatrix} \sigma_{11} & \tau_{12} \\ \tau_{21} & \sigma_{22} \end{bmatrix}$$

이 표기법을 앞으로 사용하자 au (tau) 기호가 전단력을 normal stress component 와 구분하기 위해 종종 사용된다.

각 응력 성분에 붙인 첨자 형태의 수(1,2,3)은 해당 성분과 관련있는 basis vector(e_1 , e_2 , 혹은 e_3)를 의미한다.

Warning: a tensor is not a matrix. We just borrow the form of matrix to write down the tensor components.

There are cases where you cannot write down the tensor components to matrix;

Tensors can be in multi-dimension – like 6, or 9.

3D stress tensor represented by matrix

■2D 응력 텐서의 확장

파란색: normal of the plane

빨간색: direction of the force

The subscript number refers to the basis axis, with which the associated direction is parallel.

같은 가로줄에 놓인 성분들(열, 수평축)은 같은 <mark>면</mark>에 작용한다.

같은 세로축(기둥)에 놓인 성분들은, 관계있는 힘이 같은 <mark>방향</mark>(+/-)에 작용한다.

물리법칙과좌표계

- ■A: 오늘 내가 강의 끝나고 지우랑 12시 반에 만나서 봉림관에서 밥 먹기로 했어.
- ■B: 나 방금 지우가 내 오른쪽 방향으로 급히 달려가는 거 봤는데
- ■A: 아 그렇다면 내 왼손 방향과 정면 사이 방향으로 이동했구나...

- ■지우의 이동과 관련된 물리량: 속도
- ■A와 B의 대화에서 알 수 있는 것?
 - 동일한 물리 현상을 설명하는데 다양한 좌표계를 사용하여 설명 가능하다.
 - 한 좌표계에 설명된 물리량을 다른 좌표계로 옮겨 설명할 수 있다.
 - 두 좌표계간의 관계를 명확히 알아야 둘이 같은 얘기를 하고 있음을 인지 할 수 있다.

사용하여서 표현 가능

좌표계 (coordinate system) 변환은 좌표축 (coordinate axes) 변환으로도 불린다.

$$\vec{F} = [F_1 \quad F_2]$$

 F_1, F_2 는 주어진 좌표계 (e_1, e_2 basis vector로 이루어진)에서 표현된 Force vector F의 성분 (component)

앞으로 벡터위의 화살표는 생략하고, 대신 **굵은 글씨체** (bold face) 사용.

Vector를 나타내는 좌표계의 변한일 뿐, Force vector 자체의 물리량은 변환없다. 즉 시편에 작용하는 힘은 변화 없다.

$$\mathbf{F} = F_1 \mathbf{e}_1 + F_2 \mathbf{e}_2 = f_1 \mathbf{\acute{e}}_1 + f_2 \mathbf{\acute{e}}_2$$

Vector를 나타내는 좌표계의 변한일 뿐, I Force vector 자체의 물리량은 변환없다. I 즉 시편에 작용하는 힘은 변화 없다.

두 좌표계간의 '관계'를 안다면 F_1, F_2 를 바탕으로 \hat{F}_1, \hat{F}_2 로 '변환' 할 수 있다.

이때의 '변환'을 transformation, 즉 'form' (형태) 의 trans (바뀜)

Transformation은 각 basis vector간의 관계로 설명이 가능

 \mathbf{e}_1 과 $\mathbf{\acute{e}}_1$ 그리고 \mathbf{e}_1 과 $\mathbf{\acute{e}}_2$ \mathbf{e}_2 과 $\mathbf{\acute{e}}_1$ 그리고 \mathbf{e}_2 과 $\mathbf{\acute{e}}_2$

관계를 각 basis vector (좌표계의 축) 간 angle로 표현한다면?

2차원 좌표계 간의 관계

2차원 좌표계의 각 축간의 각도를 표현하려면?

한 좌표계에서 다른 좌표계로 '변환'을 시켜주는 direction cosine들의 모임을 '행렬'로 표현

```
Old co. sys. \begin{bmatrix} \mathbf{e_1} & \mathbf{e_2} \end{bmatrix} \begin{bmatrix} \mathbf{e_1} & \mathbf{a_{12}} \\ \mathbf{e_2} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} a_{ij} Old Co. Sys. 의 \mathbf{j} 번째 basis vector와 New Co. Sys의 \mathbf{i} 번째 basis vector사이의 direction cosine
```

direction cosine? 다음장에...

방위의 수학적 표현 방법

Quaternion (convenient mathematical notation for representing orientations)

Rodriguez (a vector and an angle; any arbitrary orientation; misorientation)

Euler angles (Bunge notation (ϕ_1,Φ,ϕ_2) is widely used – ZXZ convention)

Transformation matrix

두 축 (axes) 간의 방위 관계

위 그림에서는 x_1, x_2, x_3 로 이루어진 좌표계1과 x_1, x_2, x_3 로 이루어진 또 다른 좌표계2가 나타나있다. 좌표계 2의 x_2 basis vector와 좌표계 1의 각 basis vector들과의 관계를 a_{21} , a_{22} , a_{23} 의 direction cosine으로 표현했다.

Old co. sys.

Transformation matrix (not tensor)

A LaTeX script to generate below illustration:

https://youngung.github.io/euler/

서로 다른 두 좌표계(axes, coordinate)의 방위 관계가 하나의 transformation matrix로 표현됨.

Old coordinate system

 $F = \begin{bmatrix} 10N & 0N \end{bmatrix}$

10N의 힘이 작용

New coordinate system

$$\boldsymbol{F} = [?N ?N]$$

2차원 coordinate system간에 관계는 한 방향으로(시계반대반향ccw 기준)의 '각'회전 angular rotation으로 나타낼 수 있다.

따라서 $-\theta$ 로 Old Coordinate 를 CCW 회전하면 New Coordinate가 된다.

Old co. sys.

$$\begin{array}{c|cccc}
 & \mathbf{e}_1 & \mathbf{e}_2 \\
 & \mathbf{e}_1 \\
 & \mathbf{e}_2 \\
 & \mathbf{e}_2
\end{array}$$

$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \\ a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{22} & a_{23} \\ a_{24} & a_{22} \\ a_{24} & a_{22} \\ a_{25} & a_{25} \\ a_{26} & a_{26} \\ a_{26} &$$

$$a_{11} = \cos(-\theta) = \cos \theta$$

$$a_{21} = \cos(90^{\circ} - \theta) = \sin \theta$$

$$a_{12} = \cos(90^{\circ} + \theta) = -\sin \theta$$

$$a_{22} = \cos(\theta)$$

2차원 coordinate system간에 관계는 한 방향으로(시계반대반향ccw 기준)의 '각'회전 angular rotation으로 나타낼 수 있다.

따라서 $-\theta$ 로 Old Coordinate 를 CCW 회전하면 New Coordinate가 된다.

Old co. sys.

$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e} \\ \vdots \\ \mathbf{e}_1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$a_{11} = \cos \theta$$

$$a_{21} = \cos(90^{\circ} - \theta) = \sin \theta$$

$$a_{12} = \cos(90^{\circ} + \theta) = -\sin \theta$$

$$a_{22} = \cos \theta$$

$$\begin{aligned}
\dot{F}_1 &= \cos \theta_{11} \, F_1 + \cos \theta_{12} \, F_2 = a_{11} F_1 + a_{12} F_2 \\
\dot{F}_2 &= \cos \theta_{21} \, F_1 + \cos \theta_{22} \, F_2 = a_{21} F_1 + a_{22} F_2
\end{aligned}$$

$$\dot{F}_{1} = a_{11}F_{1} + a_{12}F_{2} = \sum_{j=1,2}^{j=1,2} a_{1j}F_{j}$$

$$\dot{F}_{2} = a_{21}F_{1} + a_{22}F_{2} = \sum_{j=1,2}^{j=1,2} a_{2j}F_{j}$$

Excel exercise #1

•Coordinate transformation in 2D.

transform	ation matri	ix	procedure			solution	
theta			cos(theta)	cos(90+theta)			
degree	radian		cos(90-theta)	cos(theta)			
45	0.785398						
90	1.570796						
			Transform follo	owing 2d Vecto	rs?		
		v1=	1		0.707107		
			0		0.71934		
		v2=	0				
			1				
		2-	٥٢				
		v3=	0.5				

$$\begin{split} \dot{F}_1 &= \cos \theta_{11} \, F_1 + \cos \theta_{12} \, F_2 = a_{11} F_1 + a_{12} F_2 \\ \dot{F}_2 &= \cos \theta_{21} \, F_1 + \cos \theta_{22} \, F_2 = a_{21} F_1 + a_{22} F_2 \end{split}$$

$$\begin{split} \dot{F}_1 &= a_{11}F_1 + a_{12}F_2 = \sum_{\substack{j = 1,2 \\ j=1,2 \\ j}}^{j=1,2} a_{1j}F_j \\ \dot{F}_2 &= a_{21}F_1 + a_{22}F_2 = \sum_{\substack{j = 1,3 \\ j=1,2 \\ j}}^{j=1,2} a_{2j}F_j \end{split}$$

$$\begin{split} \dot{F}_1 &= a_{11}F_1 + a_{12}F_2 + a_{13}F_3 = \sum_{\substack{j = 1,3 \\ j=1,3 \\ j=1,3 \\ j=1,3}} a_{2j}F_j \\ \dot{F}_3 &= a_{31}F_1 + a_{32}F_2 + a_{33}F_3 = \sum_{\substack{j = 1,3 \\ j=1,3 \\ j=1,3}}}^{j=1,3} a_{3j}F_j \end{split}$$

쉬워보이지만, 직접 연습해보면 생각보다 어려울 수 있습니다. 따라서, 혼자서 연습해보는 게 필요해요.

$$\dot{F}_1 = a_{11}F_1 + a_{12}F_2 + a_{13}F_3 = \sum_{j=3}^{3} a_{1j}F_j$$

$$\dot{F}_2 = a_{21}F_1 + a_{22}F_2 + a_{23}F_3 = \sum_{j=3}^{3} a_{2j}F_j$$

$$\dot{F}_3 = a_{31}F_1 + a_{32}F_2 + a_{33}F_3 = \sum_{j=3}^{3} a_{3j}F_j$$

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Transformation 'matrix'. 엄밀하게 얘기하면 tensor가 아니다. 앞을 더욱 축약하자면... 한 coordinate system ($\mathbf{e_i}$, i=1,2,3) 에서 표기된 벡터 vector \mathbf{F} 를 또 다른 coordinate system ($\mathbf{e_i}$, i=1,2,3) 으로 변환 (transformation) 하는 작업을 두 coordinate system을 '이어'주는 transformation matrix [a_{ij}] 를 사용하여 다음과 같이 축약하여 이용할 수 있다.

$$\hat{F}_{i} = \sum_{j}^{3} a_{ij} F_{j}$$
 (i = 1,2,3)

위를 더욱 더 축약하자면 ...

$$\acute{F}_{i} = a_{ij}F_{j}$$
 (i, j = 1,2,3)

각 좌우변에서 **반복되는** index에 대한 'summation'이 생략되었다.

반대로, 축약된 방식으로 표현된 tensor 'operation'을 보고 생략된 summation 기호를 파악해내어야 한다.

2차원 coordinate system간에 관계는 한 방향으로(시계반대반향ccw 기준)의 '각'회전 angular rotation으로 나타낼 수 있다.

따라서 $-\theta$ 로 Old Coordinate 를 CCW 회전하면 New Coordinate가 된다.

 $a_{11} = \cos \theta$

Old co. sys.
$$\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 \end{bmatrix}$$

$$\begin{bmatrix} \dot{\mathbf{e}}_1 \\ \dot{\mathbf{e}}_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

 $a_{21} = \cos(90^{\circ} - \theta) = \sin \theta$ $a_{12} = \cos(90^{\circ} + \theta) = -\sin \theta$ $a_{22} = \cos \theta$ $\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

따라서 θ 로 Old Coordinate 를 CCW 회전하면 New Coordinate가 된다.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

좌표전화: 2nd order 텐서

Vector의 경우 각 component에 basis vector가 '하나'씩 관련됨

2nd order tensor의 경우 2개의 basis vector가 관련됨 (힘의 방향과 면의 방향)

$$\mathbf{R} = egin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
 행렬의 \mathbf{R} 의 transpose operation은 ...

좌표전환 matrix의 transpose?

 R^{T} : transformation 행렬 R의 transpose; $(R_{ii})^{T} = R_{ii}$

 R^{T} : transformation 행렬 R의 transpose; $(R_{ii})^{T} = R^{-1}$

Excel exercise #2

•Coordinate transformation in 3D.

tr	transformation matrix		procedure			solution		
th	neta			cos(theta)	cos(90+theta)			
de	egree	radian		cos(90-theta)	cos(theta)			
	45	0.785398						
	90	1.570796						
				Transform foll	owing 2d Vecto	rs?		
			v1=	1		0.707107		
				0		0.71934		
			v2=	0				
				1				
			v3=	0.5				
				0.5				

Euler angle and transformation matrix

See subroutine EULER in VPSC code

Excel or Google spread sheets:

https://youngung.github.io/euler2ndtensor/

Transpose operation 예제

■다음과 같은 transformation matrix가 주어져 있다.

$$\mathbf{R} = \begin{bmatrix} 0.848 & -0.528 & 0.044 \\ 0.530 & 0.845 & -0.075 \\ 0.003 & 0.087 & 0.996 \end{bmatrix}$$

- ■위 transformation matrix를 활용하여, old coordinate system에서 [1,0,0]으로 표기되는 벡터가 좌표 변환 후 어떻게 바뀌는지 각 구성요소 [x,y,z]의 x,y,z 값을 구하시오.
- ■위 transformation matrix의 transpose 행렬을 구하고, 이를 활용하여 앞서 구한 x,y,z 벡터를 변환한 다음 [a,b,c]로 표기되는 벡터 값을 구하시오.

좌표계 변환의 의미

- ■물리학에서 좌표계는 단순히 관찰자의 편의에 의해 설정 된다. 하지만 어떠한 관찰자가 보더라도 물리적 의미와 법칙은 영향을 받지 않는다. 즉 물리량은 임의로 설정된 좌표계와 상관없이 일정하고, 물리 법칙은 관찰자의 좌표계에 무관하다.
- ■텐서의 형태로 표현되는 물리량 (혹은 물성) 들도 좌표계 전환에 의해서 바뀌는 것은 아니다.
- ■다만, 물리량을 표현하는 텐서의 표기법(약속)에 의해 텐서의 성분값들이 바뀌는 것일 뿐이다. 앞서 우리는 텐서라는 표기법(약속)에 따라 주어진 좌표계에서 또 다른 좌표계로 바뀌어 참조될때 텐서의 성분값들이 어떻게 변하는지 살펴보았다.
- ■텐서의 'rank'에 따라서 좌표계 전환법이 어떻게 바뀌는지 알아보았다.

Inner dot product

- ■Tensor 표기를 index에 함께 표기하지 않고 **bold-face** symbol로 표기하기도 함 예) σ_{ij} 대신 σ 로, F_i 대신 F로 표기.
- ■Inner dot product는 텐서와 텐서간의 여러 operation중에 하나로, 참여하는 텐서간의 '안쪽' index가 되풀이되어 더해지는(summed) 작업.
- ■앞서 보았던 벡터의 좌표변환 (coordinate transformation)을 **bold-face**로 바꿔 center dot을 사용하여 표기
 - F = R ⋅ F 로 표기
 - $f_i = R_{ij}F_j$ (matrix 형태를 빌려 index를 표기 하는 법)
- ■2nd order tensor의 좌표변환은...
 - $\bullet \dot{\sigma} = \mathbf{R} \cdot \boldsymbol{\sigma} \cdot \mathbf{R}^{\mathrm{T}}$
 - $\bullet \ \dot{\sigma}_{ij} = R_{ik}\sigma_{kl}(R^T)_{lj} = R_{ik}\sigma_{kl}R_{jl} = R_{ik}R_{jl}\sigma_{kl} = R_{jl}R_{ik}\sigma_{kl}$

Double Inner dot product (= tensor contraction)

Work done to an infinitesimal material point:

Work done =
$$\sigma_{ij}\epsilon_{ij} = \sum_{i}^{3} \sum_{j}^{3} \sigma_{ij}\epsilon_{ij}$$

Summation over a pair of indices

$$= \sigma_{11}\varepsilon_{11} + \sigma_{12}\varepsilon_{12} + \sigma_{13}\varepsilon_{13} + \sigma_{21}\varepsilon_{21} + \sigma_{22}\varepsilon_{22} + \sigma_{23}\varepsilon_{23} + \sigma_{31}\varepsilon_{31} + \sigma_{32}\varepsilon_{32} + \sigma_{33}\varepsilon_{33}$$

Colon 기호(:)로 double inner dot operation (=tensor contraction)을 나타낸다.

$$W = \sigma : \epsilon$$

Self-Consistent Crystal plasticity

Each grain is an elastic and/or plastic anisotropic ellipsoidal inclusion embedded in an elastic and/or plastic anisotropic Homogeneous Effective Medium (HEM). The crystal orientation inside the inclusion is accounted for

ESHELBY PROBLEM

Solving equilibrium equation for inclusion interacting with homogeneous medium:

$$\longrightarrow \sigma_{ij,j} = 0$$

→ Predicts uniform stress and strain rate in the inclusion

물리량 표기법

물리량은 대게 'Greek' alphabet을 기호로 사용하여, 기준이되는 좌표계에의 성분(component)값을 표현하는 index를 대개 subscript (간혹 superscript)로 덧붙여 나타낸다.

- ■<mark>Scalar를</mark> 표현하는 기호에는 인덱스가 <mark>없다</mark> 좌표계에 무관
 - 예: 질량 (m) 밀도 (ρ) , 온도(T)
- ▼vector에는 인덱스를 하나 붙인다
 - 예: 속도 (v_i) , 힘 (f_i) . 이때 각 index는 1,2,3 즉 세개의 구성성분 (component)가 존재.
- 2nd rank tensor에는 두개의 인덱스를 붙인다
 - 예: 응력 (σ_{ij}) 각각의 index i와 j는 1,2,3 세개의 구성성분을 가진다. 따라서 총 9개의 구성성분 (3x3)이 존재한다.
- ■3rd rank tensor는 세개의 인덱스 총 3x3x3 27개의 구성성분 필요
- ■4th rank tensor는 네개의 인덱스, 총 3x3x3x3, 81개의 구성성분 필요:
 - 탄성계수 (elastic modulus) 텐서
- ■벡터는 주로 [1x3] 혹은 [3x1]의 행렬 형태를 빌려 쓴다
- Scalar는 0th rank tensor, vector는 1st rank tensor

type	No. of Indices (=No. of transformation needed)	예시
Scalar	0	mass, density
Vector	1	velocity, force
2 nd rank tensor	2	stress, strain
3 rd rank tensor	3	Piezoelectric moduli
4 th rank tensor	4	Elastic moduli

참고: Moduli는 modulus의 복수형