TD tests de primalité probabilistes

12 janvier 2024

1 Test de Fermat

Le petit théorème de Fermat assure que, si n est un nombre premier alors pour tout a premier avec n (donc en particulier pour tout $a \in \{1, \dots n-1\}$ on a : $a^{n-1} \equiv 1 \mod n$.

On dit qu'un entier n passe le test de Fermat pour un entier $a \in \{1, \dots n-1\}$ si $a^{n-1} \equiv 1 \mod n$.

- 1. Redémontrer le petit théorème de Fermat.
- 2. Ecrire une fonction $expo_modulaire$ prenant en entrée trois entiers naturels x, n, p et calculant efficacement $x^n \mod p$. On justifiera que le nombre de produits modulaires effectués est en $O(\log n)$.
- 3. En exploitant le petit théorème de Fermat et en expliquant la démarche, concevoir un algorithme de type Monte Carlo à erreur unilatérale permettant de tester si un entier est premier. Ecrire une fonction est_premier_fermat implémentant cet algorithme qu'est le test de primalité de Fermat.

La réciproque du petit théorème de Fermat est fausse : il existe des entiers composés n tels que pour tout a premier avec n, $a^{n-1} \equiv 1 \mod n$: on les appelle les nombres de Carmichael. Ainsi, le test de primalité de Fermat ne permet pas de distinguer les nombres premiers et les nombres de Carmichael.

- 4. Montrer que, si n n'est pas un nombre de Carmichael, alors la probabilité de faux positif sur n avec est_premier_fermat est inférieure ou égale à 1/2. (Indication : Observer que $\{a \in \{1, \dots, n-1\} : a^{n-1} \equiv 1 \mod n\}$ est un sous groupe de $(\mathbb{Z}/_{n\mathbb{Z}})$).
- 5. En ignorant l'influence des nombres de Carmichael, écrire une fonction $est_presque_premier_fermat$ résolvant PREMIER et dont la probabilité de renvoyer oui alors que son entrée est composée est inférieure à 10^{-20} . Justifier la démarche.

2 Test de Miller Rabin

Une variante du test de primalité de Fermat implémenté ci-dessus est le test de primalité de Miller-Rabin. Ce dernier repose sur le résultat R suivant :

Si n est un nombre premier impair tel que $n-1=2^s\times m$ avec m impair alors pour tout $a\in\{1,\ldots,n-1\}$ l'une des deux conditions suivantes est vérifiée :

```
(1) a^m \equiv 1 \mod n
(2) \exists d \in \{0, \dots, s-1\} tel que a^{2^d \times m} \equiv -1 \mod n
```

- 1. Supposons que n est un nombre premier. Donner les racines carrées de 1 dans $\mathbb{Z}/n\mathbb{Z}$.
- 2. En déduire le résultat R.

Un élément $a \in \{1, \dots, n-1\}$ tel que ni (1) ni (2) ne soit vraie s'appelle un témoin de Miller-Rabin pour n. Un élément $a \in \{1, \dots, n-1\}$ tel que (1) ou (2) soit vraie s'appelle un co-témoin de Miller-Rabin pour n. On va montrer que si n est un entier impair composé et que l'on choisit a au hasard dans $\mathbb{Z}/n\mathbb{Z}$, alors on

On va montrer que si n est un entier impair compose et que l'on choisit a au hasard dans $\mathbb{Z}/_{n\mathbb{Z}}$, alors on a au moins une chance sur deux que n ne passe pas le test de Fermat pour a ou que a soit un témoin de Miller Rabin pour n.

- 3. Premier cas : $n=q^e$ avec q premier et $e\in\mathbb{N}^*, e\neq 1$. On pose $t=1+q^{e-1}$
 - (a) Montrer que $t^n \equiv 1 \mod n$.
 - (b) En déduire que n ne passe pas le test de Fermat avec t.
 - (c) Montrer que dans ce cas, pour chaque d tel que n passe le test de Fermat avec d alors n ne passe plus le test de Fermat avec dt et que les dt sont distincts modulo n.
 - (d) Conclure.

- 4. Montrer que pour un nombre impair composé n, il y a au moins un co-témoin de Miller Rabin qui satisfait (1) et un co-témoin de Miller Rabin qui satisfait (2).
- 5. Si on n'est pas dans le premier cas, justifier que n est factorisable en $q \times r$ avec q et r premiers entre-eux et différents de 1.
- 6. Deuxième cas : n = qr. On va montrer qu'il y au moins autant de témoins de Miller Rabin pour n que de co-témoins de Miller Rabin. On considère h le co-témoin de Miller Rabin de n qui satisfait la propriété (2) avec la valeur de d maximale.
 - (a) Justifier l'existence de $t \in \mathbb{Z}/_{n\mathbb{Z}}$ tel que $t \equiv h \mod q$ et $t \equiv 1 \mod r$.
 - (b) Montrer que $t^{2^d \times m} \equiv -1 \mod q$ et $t^{2^d \times m} \equiv 1 \mod r$.
 - (c) En déduire que t est un témoin de Miller Rabin pour n. Fixons cette valeur de t.
 - (d) Montrer que pour chaque co-témoin de Miller Rabin d de n, on obtient un témoin de Miller Rabin différent par la valeur $dt \mod n$.
 - (e) Conclure
- 7. Concevoir un algorithme Monte Carlo à erreur unilatérale déterminant si un entier n est premier avec une bonne probabilité. Justifier votre construction et indiquer la probabilité de faux positif.