

Data Science Journey Using R

Jaynal Abedin
PhD in Data Science

Data Science Journey Using R

- Please write your name in Zoom Profile
- Turn off your audio unless you are talking
- If there is no problem, then we recommend to keep your video on
- Please complete the baseline survey from the link following link:
 - √ https://cfdra.fillout.com/baseline

Data Science, Machine Learning & Artificial Intelligence

- Data Science (DS) produces <u>Actionable Insights</u>
- Machine Learning (ML) produces <u>Predictions</u>
- Artificial Intelligence (AI) produces <u>Actions</u>

Data Science, Machine Learning & Artificial Intelligence

- Data Science (DS) produces <u>Actionable Insights</u>
- Machine Learning (ML) produces <u>Predictions</u>
- Artificial Intelligence (AI) produces <u>Actions</u>

Not everything that fits each definition is a part of that field

Data Science (DS)

- In Data Science (DS), there is a human in the loop
 - ✓ Someone is understanding the insight being produced
 - ✓ Seeing the figures/results and/or benefitting from the conclusions

Data Science (DS)

In Data Science (DS), there is a human in the loop

- ✓ Someone is understanding the insight being produced
- ✓ Seeing the figures/results and/or benefitting from the conclusions

DS Emphasis on

- ✓ Statistical Inference
- ✓ Data visualization
- ✓ Experimental design
- ✓ Domain knowledge
- ✓ Communication

Data Science (DS)

- In Data Science (DS), there is a human in the loop
 - ✓ Someone is understanding the insight being produced
 - ✓ Seeing the figures/results and/or benefitting from the conclusions

DS Emphasis on

- ✓ Statistical Inference
- ✓ Data visualization
- ✓ Experimental design
- ✓ Domain knowledge The goal in DS is to **gain better understanding** of the data
- ✓ Communication

Example: Workshop Registration

The use of data science in designing/refining the contents of this workshop

- The actionable insights
 - ✓ Gain knowledge about self reported R programming proficiency
 - ✓ Extract **expectations** of the participants from the response why they want to take this workshop

Example

Extracted themes

Data Science & Learning: It represents general interest in data science, learning pathways, and career aspirations related to becoming a data scientist

 Research & Application of R: It centers around the application of R in research and statistical analysis, with interest in improving research-related skills

 Programming & Practical Experience: This theme captures the desire to gain hands-on experience with R programming and attend workshops to deepen understanding

Components of Data Science

- Data Collection
- Data Engineering (Data Cleaning and Preparation)
- Data Exploration and Visualization
 - ✓ Data Analysis
 - ✓ Data Visualization
- Statistics and Probability (Machine Learning)
- Big Data Technologies
- Domain Expertise
- Experimentation and Optimization
- Communication and Storytelling
- Ethics and Responsible Al
- Software Engineering

Skills for a Data Scientist

Skills for a Data Scientist

Myth

Data Science is Autonomous Process

Myth

Reality

Data Science is Autonomous Process Requires skilled human oversight throughout the different stages of the process

- ✓ to frame the problem
- ✓ to design and prepare the data
- ✓ to select appropriate algorithms
- ✓ to critically interpret the results
- ✓ to plan the appropriate action based on the results

Without skilled human expertise, a DS project will fail to meet its targets

Myth

 Modern data science software is easy to use, and so data science is easy to do

Myth

 Modern data science software is easy to use, and so data science is easy to do

Reality

- In fact, it has never been easier to do data science badly, "Garbage in Garbage out"
- The ease of use can hide the requirements of
 - ✓ appropriate domain knowledge and the expertise regarding the properties of the data and
 - ✓ the assumptions underpinning the different models/algorithms

"Data mining lets computers do what they do best—dig through lots of data. This, in turn, lets people do what people do best, which is to set up the problem and understand the results" – Gordon Linoff & Michael Berry

Myth

 Projects needs big data and needs to use advanced machine learning (e.g., Deep Learning)

Myth

 Projects needs big data and needs to use advanced machine learning (e.g., Deep Learning)

Reality

- Having more data helps, but having right data is the more important requirement
- It is frequently the case that the real value of a
 DS project is deriving one or more variables that
 provide meaningful insights into a problem
 - ✓ Air Quality Monitoring Device Data
 - ✓ Wearable device data
 - ✓ Motion Tracking Data

Research Questions to High-Quality Data

Question

• What is the proportion of under 5 children suffers from anemia in Bangladesh in 2021?

Population

All live children <5 years in Bangladesh in 2021

Parameter(s)

Proportion of <5 children with anemia

Data Requirement(s)

Measure Anemia

- Collaborate with domain expert and define Anemia so that it is measurable
- Decide appropriate measurement scale to measure Anemia
- Plan a strategy to collect Anemia in a way so that it is representative to the study population

Database

- Create a database and define each variable's characteristics before starting data entry
- Create data dictionary to guide data collection and data analysis

Data Dictionary

Name of Variable	Variable Label	Туре	Possible Values	Value Label (if any)
childID	ID of surveyed child	Character of length 9 with a format HxxxCyyyy	H001C0001	
anemia	Status of Anemia	Numeric with single digit	0 or 1	1 = Yes, 0 = No

childID	anemia
H001C0001	1
H002C0001	0
H002C0002	0
H003C0001	1
H004C0002	0
H005C0001	0

- Count 1's in anemia column
- Divide the count of 1's with total number of children surveyed to get the estimated proportion

Question

• What is the proportion of under 5 children suffers from anemia in Bangladesh in 2021?

Additional Question

- What was the difference in proportion of under 5 children suffers from anemia in Bangladesh in 2021 between
 - ✓ Rural Vs Urban
 - ✓ Male Vs Female
 - √ < 2 yeas vs >2 years

Question

What is the proportion of under 5 children suffers from anemia in Bangladesh in 2021?

Additional Question

- What was the difference in proportion of under 5 children suffers from anemia in Bangladesh in 2021 between
 - ✓ Rural Vs Urban
 - ✓ Male Vs Female
 - √ < 2 yeas vs >2 years
- What was the distribution of proportion of under 5 children suffers from anemia in Bangladesh in 2021 between
 - ✓ Administrative divisions
 - ✓ Administrative districts

Extended Data Dictionary

Name of Variable	Variable Label	Туре	Possible Values	Value Label (if any)
childID	ID of surveyed child	Character of length 9 with a format HxxxCyyyy	H001C0001	
anemia	Status of Anemia	Numeric with single digit	0 or 1	1 = Yes, 0 = No

Extended Data Dictionary

Name of Variable	Variable Label	Туре	Possible Values	Value Label (if any)
childID	ID of surveyed child	Character of length 9 with a format HxxxCyyyy	H001C0001	
anemia	Status of Anemia	Numeric with single digit	0 or 1	1 = Yes, 0 = No
division	Divisions			
districts	Districts			
ruralUrban	Rural or Urban			
childSex	Gender of Child			
age	Age of Child in Months			

Objective

 To analyze the impact of workload and biomechanics on injury risk in fast bowlers in Cricket and develop an injury prevention strategy

Refined Objective

• Fast bowlers are prone to stress fractures, hamstring injuries, and lower-back issues due to repetitive high-impact actions. The goal is to identify workload patterns and biomechanical factors that increase injury risk

Data Requirement(s)

Bowling Workload Data (From GPS Trackers & Match Logs)

- ✓ Number of overs bowled per session (training & matches)
- ✓ Total number of deliveries bowled per day/week/month
- ✓ Bowling speed trends (does pace drop with fatigue?)
- ✓ Sprinting between wickets (for all-rounders)

Biomechanical Data (From Motion Capture & Force Plates)

- ✓ Ground reaction force at front-foot landing
- ✓ Hip and shoulder alignment at delivery stride
- ✓ Knee flexion angles and lower back stress
- ✓ Wrist position and release biomechanics

Data Requirement(s)

Injury & Recovery Data (From Medical & Physiotherapy Reports)

- ✓ Type of injuries (stress fractures, muscle strains, ligament damage)
- ✓ Time lost due to injury
- ✓ Fatigue and recovery assessments (sleep, soreness, hydration levels)

Contextual Data

- ✓ Age and bowling style (fast, swing, seam)
- ✓ Pitch conditions (harder pitches put more stress on joints)
- ✓ Match formats (Test, ODI, T20 workload varies significantly)

Data Collection & Storage

- Wearable sensors & GPS trackers measure workload and movement patterns
- High-speed cameras & motion tracking capture biomechanical deviations
- Medical staff & physiotherapists log injury data and recovery timelines
- Coaches monitor match workloads to ensure workload balance

Database & Data Dictionary

Create data dictionary and relate each of the components mentioned above

Group Work

Group Work Task: Data Requirements & Data Dictionary

Choose one task from <u>Group Work Task: Data</u> <u>Requirements & Data Dictionary</u>

Discuss among group members and create a data dictionary and submit into GitHub Repository as a Markdown (.md) file.