# Teoria dei Sistemi e Controllo Ottimo e Adattativo (C. I.) Teoria dei Sistemi (Mod. A)

Docente: Giacomo Baggio

Lez. 13 & 14: Raggiungibilità e controllabilità di sistemi a tempo discreto

Corso di Laurea Magistrale in Ingegneria Meccatronica A.A. 2019-2020



## In questa lezione

- ▶ Raggiungibilità e controllabilità: definizioni generali
  - ▶ Raggiungibilità di sistemi lineari a t.d.
    - ▶ Calcolo dell'ingresso di controllo
      - ▶ Sistemi non raggiungibili: forma di Kalman
        - ▶ Test PBH di raggiungibilità
          - ▶ Controllabilità di sistemi lineari a t.d.

# Raggiungibilità e controllabilità

sistema con stato x(t) e ingresso u(t)



**Raggiungibilità** = possibilità di raggiungere un **qualsiasi** stato desiderato  $\bar{x}$  a partire da uno stato  $x_0$  **fissato** agendo su u(t)

**Controllabilità** = possibilità di raggiungere uno stato desiderato  $x_0$  **fissato** a partire da un **qualsiasi** stato  $\bar{x}$  agendo su u(t)

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

# Stati e spazi raggiungibili

sistema con stato x(t) e ingresso u(t)

$$u(t)$$
  $\sum$   $y(t) = x(t)$ 

**Definizione:** Uno stato  $\bar{x}$  si dice raggiungibile dallo stato  $x_0$  al tempo  $\bar{t}$  se esiste un ingresso u(t),  $t_0 < t < \overline{t}$ , tale che  $x(t_0) = x_0$ ,  $x(\overline{t}) = \overline{x}$ .

**Definizione:** L'insieme  $X_R(\bar{t})$  di tutti gli stati raggiungibili dallo stato  $x_0$  al tempo  $\bar{t}$ è detto spazio raggiungibile al tempo  $\overline{t}$ .

(tipicamente: 
$$x_0 = 0$$
,  $t_0 = 0$ )

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 5 / 34

## Esempio introduttivo



$$x_1(t) = v_{C_1}(t), x_2(t) = v_{C_2}(t)$$

Se 
$$C_1 = C_2$$
 e  $x_1(0) = x_2(0)$ :  
 $C_2 \Rightarrow x_1(t) = x_2(t), \forall u(t), \forall t \geq 0$ 

$$\Rightarrow x_1(t) = x_2(t), \forall u(t), \forall t \geq 0$$

$$\Rightarrow X_R(t) = \{x_1 = x_2\}, \ \forall t \geq 0$$

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

## Stati e spazi controllabili

sistema con stato x(t) e ingresso u(t)

$$u(t) \longrightarrow \sum \qquad y(t) = x(t)$$

**Definizione:** Uno stato  $\bar{x}$  si dice controllabile allo stato  $x_0$  al tempo  $\bar{t}$  se esiste un ingresso u(t),  $t_0 \le t \le \overline{t}$ , tale che  $x(t_0) = \overline{x}$  e  $x(\overline{t}) = x_0$ .

**Definizione:** L'insieme  $X_C(\bar{t})$  di tutti gli stati controllabili allo stato  $x_0$  al tempo  $\bar{t}$  è detto spazio controllabile al tempo  $\bar{t}$ .

(tipicamente: 
$$x_0 = 0$$
,  $t_0 = 0$ )

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 7 / 34

# Raggiungibilità e controllabilità: interpretazione grafica



Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

## Raggiungibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = x_0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{T}u_{t}$$

$$\mathcal{R}_T = \begin{bmatrix} G & FG & \cdots & F^{t-1}G \end{bmatrix}$$
  $u_t = \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}$  matrice di raggiungibilità in  $t$  passi

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 9

### Raggiungibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_T u_t$$

$$\mathcal{R}_{\mathcal{T}} = \begin{bmatrix} G & FG & \cdots & F^{t-1}G \end{bmatrix} \qquad u_t = \begin{bmatrix} u(t-1) \\ u(t-2) \\ \vdots \\ u(0) \end{bmatrix}$$
 matrice di raggiungibilità in  $t$  passi

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 10 /

## Raggiungibilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = 0$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x(t) = \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = \mathcal{R}_T u_t$$

Insieme di stati  $\bar{x}$  raggiungibili al tempo t (= in t passi) a partire da x(0) = 0?

Quando possiamo raggiungere tutti i possibili stati  $\bar{x} \in \mathbb{R}^n$ ?

Spazio raggiungibile

$$X_R(t) = \text{spazio raggiungibile in } t \text{ passi} = \text{Im}(\mathcal{R}_t)$$

Teorema: Gli spazi raggiungibili soddisfano:

$$X_R(1) \subseteq X_R(2) \subseteq X_R(3) \subseteq \cdots$$

Inoltre, esiste un indice  $k \leq n$  tale che

$$X_R(k) = X_R(j), \forall j \geq k.$$

k = indice di raggiungibilità

$$X_R \triangleq X_R(k) =$$
(massimo) spazio raggiungibile

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 12 /

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

19 11 / 34

# Criterio di raggiungibilità

**Definizione:** Un sistema  $\Sigma$  a t.d. si dice (completamente) raggiungibile in t passi se  $X_R(t) = \mathbb{R}^n$  e (completamente) raggiungibile se  $X_R = \mathbb{R}^n$ .

 $\mathcal{R} \triangleq \mathcal{R}_n = \text{matrice di raggiungibilità del sistema}$ 

$$\Sigma$$
 raggiungibile  $\iff$  Im $(\mathcal{R}) = \mathbb{R}^n \iff$  rank $(\mathcal{R}) = n$ 

$$m = 1$$
:  $\Sigma$  raggiungibile  $\iff$   $\det(\mathcal{R}) = n$ 

$$m > 1$$
:  $\Sigma$  raggiungibile  $\iff$   $\det(\mathcal{R}\mathcal{R}^{\top}) = n$ 

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

#### Esempi

**1.** 
$$x(t+1)=\begin{bmatrix}f_1&0\\1&f_2\end{bmatrix}x(t)+\begin{bmatrix}0\\1\end{bmatrix}u(t),\ f_1,f_2\in\mathbb{R}\Longrightarrow$$
 non raggiungibile

**2.** 
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \text{raggiungibile (in 2 passi)}$$

**3.** 
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$
  $\implies$  raggiungibile (in 2 passi)

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 14 /

## Raggiungibilità ed equivalenza algebrica

$$x(t+1) = Fx(t) + Gu(t)$$
  $\xrightarrow{z=T^{-1}x}$   $z(t+1) = \overline{F}z(t) + \overline{G}u(t)$   $\overline{F} = T^{-1}FT$ ,  $\overline{G} = T^{-1}G$ 

$$\bar{\mathcal{R}} = \begin{bmatrix} \bar{G} & \bar{F}\bar{G} & \cdots & \bar{F}^{n-1}\bar{G} \end{bmatrix} = T^{-1}\mathcal{R}$$

 $rank(\bar{R}) = rank(R) \implies$  cambio di base non modifica la raggiungibilità!!

Inoltre, se  $\Sigma$  raggiungibile:  $\bar{\mathcal{R}}\mathcal{R}^{\top} = \mathcal{T}^{-1}\mathcal{R}\mathcal{R}^{\top} \implies \mathcal{T} = \mathcal{R}\mathcal{R}^{\top}(\bar{\mathcal{R}}\mathcal{R}^{\top})^{-1}$ 

# Calcolo dell'ingresso di controllo

Se  $\Sigma$  è raggiungibile in t passi, come costruire un ingresso  $u_t$  per raggiungere un qualsiasi stato  $\bar{x} \in \mathbb{R}^n$  in t passi?

Caso 
$$x_0 = 0$$
: 1.  $\bar{x} = x(t) = \mathcal{R}_t u_t$ 

2. 
$$u_t = \mathcal{R}_t^{\top} \eta_t$$
,  $\eta_t \in \mathbb{R}^{mt} \implies \eta_t = (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \bar{x}$ 

3. 
$$u_t = \mathcal{R}_t^{\top} (\mathcal{R}_t \mathcal{R}_t^{\top})^{-1} \bar{x}$$

Caso 
$$x_0 \neq 0$$
:  $u_t = \mathcal{R}_t^\top (\mathcal{R}_t \mathcal{R}_t^\top)^{-1} (\bar{x} - F^t x_0)$ 

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 15 / 34

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 16 /

# Calcolo dell'ingresso di controllo: osservazioni

1. Ingresso  $u_t$  generalmente non unico! Insieme dei possibili ingressi:

$$\mathcal{U}_t = \{u'_t = u_t + \bar{u}, \ \bar{u} \in \ker(\mathcal{R}_t)\}.$$

**2.** Ingresso  $u_t = ingresso a minima energia:$ 

$$u_t = \arg\min_{u_t' \in \mathcal{U}_t} \|u_t'\|^2$$

**3.** Gramiano di raggiungibilità del sistema in t passi:

$$\mathcal{W}_t = \mathcal{R}_t \mathcal{R}_t^ op = \sum_{k=0}^{t-1} A^{t-1} B B^ op (A^ op)^{t-1}.$$

Autovalori di  $W_t$  quantificano l'energia richiesta per controllare il sistema.

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

### Esempi

$$\mathbf{1.} \ \ x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} u(t)$$

ingressi u'(t) per raggiungere  $\bar{x} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$  da  $x_0 = 0$  in 2 passi?

$$u'(0)=egin{bmatrix}1\\\alpha\end{bmatrix}$$
,  $lpha\in\mathbb{R}$ ,  $u'(1)=egin{bmatrix}1\\0\end{bmatrix}$ .  $u(0)=egin{bmatrix}1\\0\end{bmatrix}$ ,  $u(1)=egin{bmatrix}1\\0\end{bmatrix}$  min. energia

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

## Proprietà importante

**Definizione:** Data una matrice  $F \in \mathbb{R}^{n \times n}$ , uno spazio vettoriale W si dice Finvariante se

$$\forall v \in W \implies Fv \in W.$$

**Proprietà:** Lo spazio raggiungibile  $X_R$  è F-invariante e contiene Im(G).

### Forma canonica di Kalman

 $\Sigma$  non raggiungibile  $\implies$  rank $(\mathcal{R}) = k < n$ 

**Obiettivo:** costruire un cambio di base T in modo da "separare" la parte raggiungibile del sistema da quella non raggiungibile!

$$T = \begin{bmatrix} v_1 & \cdots & v_k & \tilde{v}_1 & \cdots & \tilde{v}_{n-k} \end{bmatrix}, \quad X_R = \operatorname{span} \{v_1, v_2, \dots, v_k\}$$

$$\forall v \in X_R, \ w = Fv \in X_R \implies \underbrace{\begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix}}_{T^{-1}FT} \underbrace{\begin{bmatrix} v_1 \\ 0 \end{bmatrix}}_{v} = \underbrace{\begin{bmatrix} w_1 \\ 0 \end{bmatrix}}_{w}, \ \forall v_1 \implies F_{21} = 0$$

$$\operatorname{Im}(G) \subseteq X_R \implies \underbrace{\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}}_{G_2}, \ G_2 = 0$$

$$\operatorname{Im}(G) \subseteq X_R \implies \underbrace{\begin{bmatrix} G_1 \\ G_2 \end{bmatrix}}_{T=1}, \ G_2 = 0$$

Giacomo Baggio

IMC-TdS-1920: Lez 13 & 14

November 11-12, 2019

Giacomo Baggio

IMC-TdS-1920: Let 13 & 14

November 11-12, 2019

#### Forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

 $x_R(t+1) = F_{11}x_R(t) + F_{12}x_{NR}(t) + G_1u(t)$ : sottosistema raggiungibile

 $x_{NR}(t+1) = F_{22}x_{NR}(t)$ : sottosistema non raggiungibile

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

#### Forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\mathcal{R}_K = T^{-1}\mathcal{R} = \begin{bmatrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

 $\operatorname{\mathsf{rank}}(\mathcal{R}_{\mathcal{K}}) = \operatorname{\mathsf{rank}}\left(\left[ egin{matrix} G_1 & F_{11}G_1 & \cdots & F_{11}^{n-1}G_1 \end{smallmatrix} 
ight] \right) = k$ 

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 22

### Esempi

**1.** 
$$F = \begin{bmatrix} 2 & 1 & \frac{1}{2} \\ 0 & 2 & 4 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
,  $G = \begin{bmatrix} 0 \\ 1 \\ \hline 0 \end{bmatrix}$   $\Longrightarrow$  sistema in forma di Kalman co  $F_{11} = \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ ,  $G_1 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ 

**2.** 
$$F = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ \hline 0 & 0 & 1 \end{bmatrix}$$
,  $G = \begin{bmatrix} 1 \\ 1 \\ \hline 0 \end{bmatrix}$   $\Longrightarrow$  sistema **non** in forma di Kalman

## Forma canonica di Kalman e matrice di trasferimento

$$F_{K} \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_{K} \triangleq T^{-1}G = \begin{bmatrix} G_{1} \\ 0 \end{bmatrix}, \quad H_{K} \triangleq HT = \begin{bmatrix} H_{1} & H_{2} \end{bmatrix}$$

$$W(z) = H(zI - F)^{-1}G + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} zI - F_{11} & -F_{12} \\ 0 & zI - F_{22} \end{bmatrix}^{-1} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= \begin{bmatrix} H_{1} & H_{2} \end{bmatrix} \begin{bmatrix} (zI - F_{11})^{-1} & \star \\ 0 & (zI - F_{22})^{-1} \end{bmatrix} \begin{bmatrix} G_{1} \\ 0 \end{bmatrix} + J$$

$$= H_{1}(zI - F_{11})^{-1}G_{1} + J$$

W(z) = matrice di trasferimento del sottosistema raggiungibile!!

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 24 / 34

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

2019 23 / 34

## Test di Popov, Belevitch e Hautus (PBH)

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

**Teorema:** Il sistema  $\Sigma$  è raggiungibile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno per ogni  $z \in \mathbb{C}$ . Se il sistema non è raggiungibile, la matrice PBH di raggiungibilità ha rango non pieno per tutti e soli i valori di z che sono autovalori del sottosistema non raggiungibile di  $\Sigma$ .

N.B. La matrice PBH può essere valutata solo per gli z che sono autovalori di F!

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 2

1

#### Test di Jordan

$$\Sigma : z(t+1) = F_J z(t) + G_J u(t), \ z(0) = z_0$$

**Corollario:** Il sistema  $\Sigma$  (in forma di Jordan) è raggiungibile se e solo se per ciascun autovalore  $\lambda_i$  di  $F_j$ , le righe di  $G_J$  in posizione corrispondente alle ultime righe dei miniblocchi di Jordan relativi a  $\lambda_i$  sono linearmente indipendenti.

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019

### Esempi

**1.** 
$$F = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
,  $G = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$   $\implies$  raggiungibile

**2.** 
$$F = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
,  $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$   $\implies$  non raggiungibile

**3.** 
$$F = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
,  $G = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$   $\Longrightarrow$  non raggiungibile

# Controllabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = \bar{x}$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$x_0 = x(t) = F^t x_0 + \sum_{k=0}^{t-1} F^{t-k-1} Gu(k) = F^t x_0 + \mathcal{R}_T u_t$$

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 27 / 34 Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 28 / 3

## Controllabilità di sistemi a tempo discreto: setup

$$x(t+1) = Fx(t) + Gu(t), x(0) = \bar{x}$$

$$u(t) \in \mathbb{R}^m \longrightarrow \sum \qquad x(t) \in \mathbb{R}^n$$

$$0 = x(t) = F^{t}x_{0} + \sum_{k=0}^{t-1} F^{t-k-1}Gu(k) = F^{t}x_{0} + \mathcal{R}_{T}u_{t}$$

Insieme di stati  $\bar{x}$  controllabili al tempo t (= in t passi) allo stato x(t) = 0?

Quando possiamo controllare a zero tutti i possibili stati  $\bar{x} \in \mathbb{R}$ ?

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 29

### Spazio controllabile

 $X_C(t) = \text{spazio controllabile in } t \text{ passi} = \{x \in \mathbb{R}^n : F^t x \in \text{Im}(\mathcal{R}_T)\}$ 

Teorema: Gli spazi di controllabilità soddisfano:

$$X_C(1) \subseteq X_C(2) \subseteq X_C(3) \subseteq \cdots$$

Inoltre, esiste un indice  $k \le n$  tale che

$$X_C(k) = X_C(j), \forall j \geq k.$$

$$X_C \triangleq X_C(k) = \text{(massimo) spazio controllabile}$$

Giacomo Baggio

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 30 /

#### Criterio di controllabilità

**Definizione:** Un sistema  $\Sigma$  a t.d. si dice (completamente) controllabile in t passi se  $X_C(t) = \mathbb{R}^n$  e (completamente) controllabile se  $X_C = \mathbb{R}^n$ .

$$\Sigma$$
 controllabile  $\iff$  Im $(F^n) \subseteq$  Im $(\mathcal{R}_T) = X_R$ 

$$\Sigma$$
 raggiungibile  $(X_R = \mathbb{R}^n) \Rightarrow \Sigma$  controllabile

 $\Sigma$  controllabile  $\not\Rightarrow \Sigma$  raggiungibile !!!

### Esempi

**1.** 
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \text{non raggiungibile } \forall f_1, f_2 \text{ ma controllabile se } f_1 = 0$$

**2.** 
$$x(t+1) = \begin{bmatrix} f_1 & 0 \\ 1 & f_2 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t), f_1, f_2 \in \mathbb{R} \implies \begin{array}{c} \text{raggiungibile e quindi} \\ \text{controllabile} \end{array}$$

**3.** 
$$x(t+1) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
  $\implies$  non raggiungibile ma controllabile (in 2 passi)

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 31 / 34

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019 32 /

#### Controllabilità e forma canonica di Kalman

$$\begin{bmatrix} x_R \\ x_{NR} \end{bmatrix} \triangleq T^{-1}x, \quad F_K \triangleq T^{-1}FT = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix}, \quad G_K \triangleq T^{-1}G = \begin{bmatrix} G_1 \\ 0 \end{bmatrix}$$
$$\begin{bmatrix} x_R(t+1) \\ x_{NR}(t+1) \end{bmatrix} = \begin{bmatrix} F_{11} & F_{12} \\ 0 & F_{22} \end{bmatrix} \begin{bmatrix} x_R(t) \\ x_{NR}(t) \end{bmatrix} + \begin{bmatrix} G_1 \\ 0 \end{bmatrix} u(t)$$

$$x_{NR}(t) = F_{22}^t x_{NR}(0)$$

- 1.  $\Sigma$  controllabile  $\iff \exists \, \overline{t} \, : \, F_{22}^{\overline{t}} = 0 \iff$  autovalori di  $F_{22}$  tutti nulli
- **2.**  $X_R \subseteq X_C$  e  $X_R = X_C$  se  $F_{22}$  invertibile
- **3.**  $\Sigma$  reversibile (F invertibile)  $\Longrightarrow F_{22}$  invertibile  $\Longrightarrow X_R = X_C$

Giacomo Baggio

IMC-TdS-1920: Lez. 13 & 14

November 11-12, 2019

#### Test PBH di controllabilità

$$\Sigma: x(t+1) = Fx(t) + Gu(t)$$

**Teorema:** Il sistema  $\Sigma$  è controllabile se e solo se la matrice PBH di raggiungibilità

$$\begin{bmatrix} zI - F & G \end{bmatrix}$$

ha rango pieno per ogni  $z \in \mathbb{C}$  con  $z \neq 0$ .

**N.B.** La matrice PBH può essere valutata solo per gli  $z \neq 0$  che sono autovalori di F!

Giacomo Baggio IMC-TdS-1920: Lez. 13 & 14 November 11-12, 2019 34 / 34