TEMA 4: Determinants

1. Definitions

- <u>Definició 2</u>. Denotem per $M_n(\mathbb{R})$ el conjunt de totes les matrius <u>cuadradas</u> de grandària $n \times n$ amb entrades reals. Cridarem **determinant** a una aplicació que assigna a cada matriu A de $M_n(\mathbb{R})$ un únic nombre real denotat |A| o det(A) i que compleix les següents propietats:
 - 1. El determinant de la matriu identitat val 1.
 - 2. Si s'intercanvien dues files de A el determinant canvia de signe, és a dir, $|E_{ij}A|=-|A|$.
 - 3. Si multipliquem una fila de A per un nombre real α , el determinant es multiplica també, en particular, $|E_i(\alpha)A| = \alpha |A|$.
 - 4. Si a una fila de A li sumem un múltiple d'una altra, el determinant no varia, és a dir, $|E_{ij}(\alpha)A| = |A|$.

Per a matrius quadrades de grandària 2×2 , podem definir l'aplicació:.

$$|\cdot|:M_2(\mathbb{R})\to\mathbb{R}$$

$$\left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc.$$

- $A_1 = \begin{pmatrix} -2 & 2 \\ 1 & 0 \end{pmatrix}$. Resulta d'aplicar-li a A l'operació elemental E_{12} (tipus I).
- $A_2 = \begin{pmatrix} 3 & 0 \\ -2 & 2 \end{pmatrix}$. Resulta d'aplicar-li a A l'operació elemental $E_1(3)$ (tipus II).
- $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. Resulta d'aplicar-li a A l'operació elemental $E_{21}(2)$ (tipus III).

Calculem el determinant de cadascuna d'aqueixes matrius:

$$|A| = \begin{vmatrix} 1 & 0 \\ -2 & 2 \end{vmatrix} = 1 \cdot 2 - (-2) \cdot 0 = 2$$

$$|A_1| = \begin{vmatrix} -2 & 2 \\ 1 & 0 \end{vmatrix} = (-2) \cdot 0 - 2 \cdot 1 = -2 = -|A|$$

$$|A_2| = \begin{vmatrix} 3 & 0 \\ -2 & 2 \end{vmatrix} = 3 \cdot 2 - (-2) \cdot 0 = 6 = 3 \cdot |A|$$

$$|A_3| = \begin{vmatrix} 1 & 0 \\ 0 & 2 \end{vmatrix} = 1 \cdot 2 - 0 \cdot 0 = 2 = |A|$$

Per a calcular determinants de matrius de grandària 3×3 , s'usa la denominada **regla de Sarrus**:

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} = aei + dhc + gbf - ceg - fha - dbi$$

*EXEMPLE 2. Calcula el determinant de la matriu
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 2 & 0 \\ 3 & -1 & 1 \end{pmatrix}$$
.

Aplicant la regla de Sarrus obtenim

$$|A| = 1 \cdot 2 \cdot 1 + 2 \cdot (-1) \cdot (-1) + 3 \cdot 0 \cdot 0 - (-1) \cdot 2 \cdot 3 - 0 \cdot (-1) \cdot 1 - 2 \cdot 0 \cdot 1 = 10.$$

2. Propietats dels determinants

• Teorema 1 (Determinant d'una matriu elemental).

- (i) $|E_{ij}| = -1$.
- (ii) $|E_i(\alpha)| = \alpha$, per a tot $\alpha \neq 0$.
- (iii) $|E_{ij}(\alpha)| = 1$.

Per tant, si E és una matriu elemental i A és una matriu quadrada $|E \cdot A| = |E| \cdot |A|$.

- Teorema 2 . Siga A una matriu quadrada de grandària $n \times n$. Llavors:
 - 1. Si A té dues files iguals llavors |A| = 0.
 - 2. Si A té una fila de zeros llavors |A| = 0.
 - 3. Si una fila de la matriu A és suma de múltiples de les altres files llavors |A| = 0.
 - 4. Si A és una matriu triangular llavors $|A| = a_{11} \cdot a_{22} \cdot \ldots \cdot a_{nn}$ (és a dir, el seu determinant és el producte dels elements de la seua diagonal).

En particular aquesta propietat també és certa per a matrius diagonals.

5. $|\alpha \cdot A| = \alpha^n \cdot |A|$, per a qualsevol nombre real α .

6.
$$|A| = |A^t|$$
.

Vegem una sèrie d'exemples on podem comprovar el teorema anterior.

*Exemple 3.

1. Siga la matriu
$$A = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -1 & 2 \\ -2 & 0 & 1 \end{pmatrix}$$
.

$$|A| = (-2) \cdot (-1) \cdot 1 + 0 \cdot 0 \cdot 1 + (-2) \cdot 0 \cdot 2 - 1 \cdot (-1) \cdot (-2) - 2 \cdot 0 \cdot (-2) - 0 \cdot 0 \cdot 1 = 0.$$

2. Siga la matriu
$$A = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
.

$$|A| = (-2) \cdot (-1) \cdot 0 + 0 \cdot 0 \cdot 1 + 0 \cdot 0 \cdot 2 - 1 \cdot (-1) \cdot 0 - 2 \cdot 0 \cdot (-2) - 0 \cdot 0 \cdot 0 = 0.$$

3. Siga la matriu
$$A = \begin{pmatrix} -2 & 0 & 1 \\ 0 & -1 & 2 \\ -2 & -1 & 3 \end{pmatrix}$$
.

$$|A| = (-2) \cdot (-1) \cdot 3 + 0 \cdot (-1) \cdot 1 + (-2) \cdot 0 \cdot 2 - 1 \cdot (-1) \cdot (-2) - 2 \cdot (-1) \cdot (-2) - 0 \cdot 0 \cdot 3 = 0.$$

4. Siga la matriu
$$A = \begin{pmatrix} -2 & 1 & 1 \\ 0 & -1 & 2 \\ 0 & 0 & 3 \end{pmatrix}$$
. (A és una matriu triangular superior)
$$|A| = (-2) \cdot (-1) \cdot 3 + 0 \cdot 0 \cdot 1 + 0 \cdot 1 \cdot 2 - 1 \cdot (-1) \cdot 0 - 2 \cdot 0 \cdot (-2) - 0 \cdot 1 \cdot 3 = 6.$$

5. Siga la matriu
$$A = \begin{pmatrix} -2 & 0 & 1 \\ 1 & -1 & 2 \\ 2 & 1 & 3 \end{pmatrix}$$
. $(|A| = 13)$

$$|2 \cdot A| = \begin{vmatrix} -4 & 0 & 2 \\ 2 & -2 & 4 \\ 4 & 2 & 6 \end{vmatrix} = 104 = 2^3 \cdot 13 = 2^3 \cdot |A|.$$

6. Siga A la matriu de l'apartat 5). Calculem el determinant de la seua matriu transposada:

$$|A^t| = \begin{vmatrix} -2 & 1 & 2 \\ 0 & -1 & 1 \\ 1 & 2 & 3 \end{vmatrix} = (-2) \cdot (-1) \cdot 3 + 0 \cdot 2 \cdot 2 + 1 \cdot 1 \cdot 1 - 2 \cdot (-1) \cdot 1 - 1 \cdot 2 \cdot (-2) - 0 \cdot 1 \cdot 3 = 13.$$

- Teorema 3 . Siga A una matriu quadrada de grandària $n \times n$.
 - 1. Si intercanviem dues columnes de A (operació C_{ij}) el determinant canvia de signe.
 - 2. Si multipliquem una columna de A per un nombre real no nul α (operació $C_i(\alpha)$), el determinant es multiplica també per α .
 - 3. Si a una columna de A li sumem un múltiple d'una altra (operació $C_{ij}(\alpha)$), el determinant no varia.
 - 4. Si dues columnes de A són iguals llavors |A| = 0.
 - 5. Si A té una columna de zeros llavors |A| = 0.
 - 6. Si una columna de A és suma de múltiples de les altres columnes llavors |A| = 0.

• Teorema 4 (Caracterització de matrius invertibles).

Una matriu quadrada A és invertible si i només si $|A| \neq 0$.

• <u>Teorema 5</u> (Binet-Cauchy).

Sean A i B dues matrius quadrades de grandària $n \times n$. Llavors

$$|A \cdot B| = |A| \cdot |B|$$

Nota

Com a conseqüència del Teorema de Binet-Cauchy si A és invertible llavors $|A^{-1}| = \frac{1}{|A|}$.

Aquest comportament adequat que existeix amb el determinant d'un producte de matrius no es produeix amb la suma, és a dir, en general $|A + B| \neq |A| + |B|$.

*EXEMPLE 4. Considem les matrius
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 i $B = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

És evident que |A|=1 i |B|=1. D'altra banda A+B és la matriu nul·la i així |A+B|=0. Després, $|A|+|B|\neq |A+B|$.

Una altra propietat important és que el determinant és funció lineal de les seues files (resp. columnes). Vegem el seu significat amb un exemple.

*EXEMPLE 5. Siga la matriu
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -1+1 & 0+3 & 3+2 \\ 2 & 1 & 0 \end{pmatrix}$$
.

Vegem que podem descompondre el determinant de ${\cal A}$ com a suma de dos determinants de la següent manera:

$$\begin{vmatrix} 1 & 0 & 2 \\ -1+1 & 0+3 & 3+2 \\ 2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 2 \\ -1 & 0 & 3 \\ 2 & 1 & 0 \end{vmatrix} + \begin{vmatrix} 1 & 0 & 2 \\ 1 & 3 & 2 \\ 2 & 1 & 0 \end{vmatrix}.$$

$$-17 = -5 - 12$$

Aquesta propietat també es compleix amb les columnes.

3. Càlcul de determinants

3.1. Mètode de Gauss

Donada una matriu quadrada A aquest mètode per a calcular el seu determinant es basa a transformar A en una matriu triangular superior U mitjançant operacions elementals. Tenint en compte l'efecte de les operacions elementals sobre els determinants, |A| serà un múltiple de |U| i aquest últim podrem calcular-ho multiplicant els elements de la diagonal de U (per la propietat (4) del Teorema 2).

Notas

- Segons la definició 2, les operacions de Tipus III no varien el determinant. Per tant, si només fem operacions de Tipus III per arribar a U a tindrem |A| = |U|.
- Cada vegada que permutem dues files (operació de Tipus I) el determinant canviarà de signe.
- Respecte a les operacions de Tipus II, sabem que en multiplicar una fila per un nombre no nul, el nombre queda multiplicant al determinant $(|E_i(k)A| = k|A|)$. Per tant, si volem multiplicar una fila per un nombre no nul k perquè el determinant no canvie tindrem també que dividir per k (és a dir, $|A| = \frac{1}{k}|E_i(k)A|$).

*EXEMPLE 6. Calcula el determinant de la matriu $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ usant el mètode de Gauss.

*EXEMPLE 7. Calcula el determinant de la matriu $\begin{pmatrix} 0 & 3 \\ 2 & 4 \end{pmatrix}$ usant el mètode de Gauss.

$$\left| \begin{array}{cc|c} 0 & 3 & \downarrow \\ 2 & 4 & \stackrel{E_{12}}{=} - \left| \begin{array}{cc|c} 2 & 4 \\ 0 & 3 \end{array} \right| = -6$$

*EXEMPLE 8. Calcula el determinant de la matriu $\begin{pmatrix} 1 & 2 & -1 \\ -2 & 3 & 1 \\ 0 & -1 & 1 \end{pmatrix}$ usant el mètode de Gauss.

3.2. Desenvolupament per una fila o una columna

- **Definició** 3. Donada una matriu quadrada A de grandària $n \times n$,
 - cridarem **menor complementari (i,j)** de A al determinant de la matriu de grandària $(n-1)\times (n-1)$ que resulta de suprimir la fila i i la columna j de A. Ho denotarem per M_{ij} .
 - cridarem adjunt (i,j) (o cofactor (i,j)) de A al valor $A_{ij} = (-1)^{i+j} \cdot M_{ij}$.

*EXEMPLE 9. Donada la matriu
$$A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 0 & 1 & -2 \end{pmatrix}$$
,

$$M_{11} = \begin{vmatrix} 1 & -2 \\ 1 & -2 \end{vmatrix} = 0 \qquad M_{12} = \begin{vmatrix} 2 & -2 \\ 0 & -2 \end{vmatrix} = -4 \qquad M_{13} = \begin{vmatrix} 2 & 1 \\ 0 & 1 \end{vmatrix} = 2$$

$$M_{21} = \begin{vmatrix} 0 & -1 \\ 1 & -2 \end{vmatrix} = 1 \qquad M_{22} = \begin{vmatrix} 1 & -1 \\ 0 & -2 \end{vmatrix} = -2 \qquad M_{23} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1$$

$$M_{31} = \begin{vmatrix} 0 & -1 \\ 1 & -2 \end{vmatrix} = 1 \qquad M_{32} = \begin{vmatrix} 1 & -1 \\ 2 & -2 \end{vmatrix} = 0 \qquad M_{33} = \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} = 1$$

$$A_{11} = (-1)^{1+1} M_{11} = 0$$
 $A_{12} = (-1)^{1+2} M_{12} = 4$ $A_{13} = (-1)^{1+3} M_{13} = 2$ $A_{21} = (-1)^{2+1} M_{21} = -1$ $A_{22} = (-1)^{2+2} M_{22} = -2$ $A_{23} = (-1)^{2+3} M_{23} = -1$ $A_{31} = (-1)^{3+1} M_{31} = 1$ $A_{32} = (-1)^{3+2} M_{32} = 0$ $A_{33} = (-1)^{3+3} M_{33} = 1$

*EXEMPLE 10. Calcula els adjunts A_{22} i A_{23} de la matriu $A = \begin{pmatrix} 1 & -2 & 3 \\ 4 & 0 & 1 \\ 1 & 3 & 4 \end{pmatrix}$.

• Teorema 6 (Fórmula de Laplace). Siga A una matriu quadrada de grandària $n \times n$. Llavors

1. Desenvolupament del determinant per una fila.

El determinant de A és igual a la suma dels productes dels elements de qualsevol fila (per exemple, la fila k) pels seus respectius adjunts, és a dir:

$$|A| = a_{k1} \cdot A_{k1} + a_{k2} \cdot A_{k2} + \dots + a_{kn} \cdot A_{kn} = \sum_{i=1}^{n} a_{kj} \cdot A_{kj} \quad (desenvolupament \ per \ la \ fila \ k)$$

2. Desenvolupament del determinant per una columna.

El determinant de A és igual a la suma dels productes dels elements de qualsevol columna (per exemple, la columna k) pels seus respectius adjunts, és a dir:

$$|A| = a_{1k} \cdot A_{1k} + a_{2k} \cdot A_{2k} + \ldots + a_{nk} \cdot A_{nk} = \sum_{i=1}^{n} a_{ik} \cdot A_{ik} \quad (desenvolupament \ per \ la \ columna \ k)$$

*EXEMPLE 11. Calcula el determinant de la matriu
$$A = \begin{pmatrix} 1 & 3 & 1 \\ 3 & 5 & 1 \\ 2 & 2 & 1 \end{pmatrix}$$
 usant la fórmula de

Laplace.

Desenvolupament

$$\begin{split} |A| & \stackrel{1^{\text{a}} \text{ columna}}{=} 1 \cdot A_{11} + 3 \cdot A_{21} + 2 \cdot A_{31} = \\ &= 1 \cdot (-1)^{1+1} \cdot \left| \begin{array}{cc} 5 & 1 \\ 2 & 1 \end{array} \right| + 3 \cdot (-1)^{2+1} \cdot \left| \begin{array}{cc} 3 & 1 \\ 2 & 1 \end{array} \right| + 2 \cdot (-1)^{3+1} \cdot \left| \begin{array}{cc} 3 & 1 \\ 5 & 1 \end{array} \right| = \\ &= 1 \cdot 1 \cdot 3 + 3 \cdot (-1) \cdot 1 + 2 \cdot 1 \cdot (-2) = 3 - 3 - 4 = -4. \end{split}$$

*EXEMPLE 12. Calcula el determinant de la matriu
$$A = \begin{pmatrix} 1 & 1 & 2 & 0 \\ -2 & 1 & 3 & 1 \\ 1 & 4 & 0 & -1 \\ -2 & 3 & 0 & 0 \end{pmatrix}$$
.

Desenvolupament

$$A| \stackrel{4^{a} \text{ fila}}{=} -2 \cdot A_{41} + 3 \cdot A_{42} + 0 \cdot A_{43} + 0 \cdot A_{44} =$$

$$= -2 \cdot (-1)^{4+1} \cdot \begin{vmatrix} 1 & 2 & 0 \\ 1 & 3 & 1 \\ 4 & 0 & -1 \end{vmatrix} + 3 \cdot (-1)^{4+2} \cdot \begin{vmatrix} 1 & 2 & 0 \\ -2 & 3 & 1 \\ 1 & 0 & -1 \end{vmatrix} =$$

$$= 2 \cdot 7 + 3 \cdot (-5) = -1.$$

Nota

(Combinació dels dos mètodes)

En la pràctica, per a calcular un determinant combinarem els dos mètodes que hem vist. És a dir, triarem una fila o columna (la que més zeros tinga) i mitjançant operacions elementals sobre files o columnes farem zeros en les posicions que queden no nul·les excepte en una. D'aquesta forma, el desenvolupament per aqueixa fila o columna amb la fórmula de Laplace serà molt senzill perquè obtindrem un múltiple d'un determinant d'ordre menor. A més, també podem fer ús de les propietats dels determinants per a facilitar al màxim els càlculs.

4. Aplicacions

4.1. Rang d'una matriu

- $\underline{\mathbf{Definició}}$ 4. Donada una matriu A, cridarem **menor** de A al determinant de qualsevol submatriu quadrada obtinguda eliminant unes quantes files i columnes de A.
- Teorema 7 . Siga A una matriu de grandària $m \times n$. Llavors el rang de A coincideix amb l'ordre del menor no nul de major grandària contingut en A.

*EXEMPLE 13. Calcula el rang de la matriu
$$A = \begin{pmatrix} 0 & 1 & 3 & 2 \\ 1 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 2 \end{pmatrix}$$
.

Calculem primer el menor d'ordre 4 (o siga, el determinant de A):

$$|A| = \left| \begin{array}{ccc|c} 0 & 1 & 3 & 2 \\ 1 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 2 & 2 \end{array} \right| \stackrel{E_{41}(-1)}{\stackrel{\longleftarrow}{=}} \left| \begin{array}{ccc|c} 0 & 1 & 3 & 2 \\ 1 & 2 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -2 & -1 & 0 \end{array} \right| \stackrel{\text{Desenvolupament}}{\stackrel{\longleftarrow}{=}} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & \text{Sarrus} \\ -1 & 0 & 1 & 0 \\ 0 & -2 & -1 \end{array} \right| \stackrel{\longleftarrow}{\stackrel{\longleftarrow}{=}} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & \text{Sarrus} \\ 0 & -2 & -1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left| \begin{array}{ccc|c} 1 & 2 & 0 & 1 \\ 0 & -2 & -1 & 1 \end{array} \right| \stackrel{\longleftarrow}{=} 2 \cdot (-1)^{1+4} \cdot \left$$

$$= (-2) \cdot 0 = 0$$

Com el menor d'ordre 4 és nul, seguim amb el càlcul dels menors d'ordre 3 fins a veure

si existeix algun no nul (i en aqueix cas, tindríem rg(A)=3). Per exemple, anem a calcular primer el menor d'ordre 3 que s'obté en eliminar la fila 1 i la columna 1 de A:

$$\left| \begin{array}{c|c} & \text{Matriu} \\ 2 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 2 \end{array} \right| \stackrel{\text{Matriu}}{=} 2 \cdot 1 \cdot 2 = 4 \neq 0$$

Com hem trobat un menor d'ordre 3 no nul (i el d'ordre 4 era nul) concloem que

$$rg(A) = 3.$$

4.2. Inversa d'una matriu

Ja vam veure en el Teorema 4 que el determinant d'una matriu ens dóna informació sobre la invertibilitat de la matriu. Anem a veure a continuació que a més, en cas de ser invertible, podem calcular la inversa d'una matriu usant determinants.

• <u>Definició 5</u>. Donada una matriu quadrada A de grandària $n \times n$, cridarem **matriu adjunta** de la A matriu les entrades de la qual són els adjunts de A. És a dir, la matriu:

$$adj(A) = \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ A_{31} & A_{32} & \cdots & A_{3n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{pmatrix}$$

*EXEMPLE 14. Si considerem la matriu A de l'exemple 9 la seua matriu adjunta és

$$adj(A) = \begin{pmatrix} 0 & 4 & 2 \\ -1 & -2 & -1 \\ 1 & 0 & 1 \end{pmatrix}.$$

• Teorema 8 . Si A és una matriu quadrada llavors $(adj(A))^t \cdot A = |A| \cdot I$.

En particular, si A és invertible, llavors

$$A^{-1} = \frac{1}{|A|} \cdot (adj(A))^t$$

*EXEMPLE 15. Seguint amb la matriu de l'exemple 9, la seua matriu adjunta l'acabem de calcular en l'exemple 14. Per tant, per a obtenir A^{-1} només ens falta calcular el determinant de A:

$$|A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & -2 \\ 0 & 1 & -2 \end{vmatrix} = -2 - 2 + 2 = -2$$

$$A^{-1} = \frac{1}{|A|} \cdot (adj(A))^t = \frac{1}{-2} \cdot \begin{pmatrix} 0 & 4 & 2 \\ -1 & -2 & -1 \\ 1 & 0 & 1 \end{pmatrix}^t = -\frac{1}{2} \cdot \begin{pmatrix} 0 & -1 & 1 \\ 4 & -2 & 0 \\ 2 & -1 & 1 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & -\frac{1}{2} \\ -2 & 1 & 0 \\ -1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

4.3. Resolució de sistemes: Regla de Cramer

• <u>Teorema 9</u> (Regla de Cramer).

Si A és una matriu <u>invertible</u> de grandària $n \times n$, les components de l'única solució del sistema $A \cdot X = B$ vénen donades per:

$$x_i = \frac{|T_i|}{|A|}$$
, per a tot $i = 1, \dots, n$

on T_i és la matriu que resulta de substituir la columna i de A per la columna de termes independents.

*EXEMPLE 16. Resol el següent sistema d'equacions lineals

$$x+ y+2z = -1$$
$$3y+4z = -5$$
$$2x+5y+6z = -3$$

Per a resoldre-ho pel mètode de Cramer primer hem d'assegurar-nos que la seua matriu de coeficients és invertible. Per a açò és prou comprovar que el seu determinant és no nul:

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 3 & 4 \\ 2 & 5 & 6 \end{vmatrix} = 18 + 8 - 12 - 20 = -6 \neq 0.$$

Per tant, la matriu A és invertible i podem aplicar la regla de Cramer. D'aquesta manera la solució del sistema és:

 $x = \frac{|T_1|}{|A|} = \frac{\begin{vmatrix} 1 & 1 & 2 \\ -5 & 3 & 4 \\ -3 & 5 & 6 \end{vmatrix}}{-6} = \frac{-12}{-6} = 2$

 $y = \frac{|T_2|}{|A|} = \frac{\begin{vmatrix} 1 & -1 & 2 \\ 0 & -5 & 4 \\ 2 & -3 & 6 \end{vmatrix}}{-6} = \frac{-6}{-6} = 1$

 $z = \frac{|T_3|}{|A|} = \frac{\begin{vmatrix} 1 & 1 & -1 \\ 0 & 3 & -5 \\ 2 & 5 & -3 \end{vmatrix}}{-6} = \frac{12}{-6} = -2.$

MÉTODE GENERAL DE RESOLUCIÓ DE SISTEMES AMB LA REGLA DE CRAMER:

Considerem un sistema $A \cdot X = B$, on A té grandària qualsevol i $rg(A) = k = rg(A^*)$. Per a resoldre aquest sistema, podem realitzar els següents passos:

- Triar una submatriu quadrada A_1 de A amb $rg(A_1) = k$ i grandària $k \times k$.
- $\fbox{2}$ Eliminar totes les equacions que no intervenen en A_1 i considerar el sistema resultant (que tindrà les mateixes solucions que l'inicial).
- Triar com a variables del nou sistema les variables corresponents a les columnes de A_1 , passant la resta de variables (si existeixen) a l'altre costat de cada equació i assignant-les paràmetres.
- 4 Resoldre el sistema resultant per la Regla de Cramer (tenint en compte que les expressions que han quedat a la dreta de cada igualtat són els termes independents).

Nota

En la pràctica, aquesta forma de resoldre els sistemes d'equacions sol ser més costosa que la resolució per escalonament ja que per a calcular el rang de A i el rang de A^* a voltes s'han de calcular massa determinants.