Height-Balanced Trees

- We know from our study of Binary Search Trees (BST) that the average search and insertion time is O(log n)
 - If there are n nodes in the binary tree it will take, on average, log2 n comparisons/probes to find a particular node (or find out that it isn't there)
- However, this is only true if the tree is 'balanced'
 - Such as occurs when the elements are inserted in random order

A Balanced Tree for the Months of the Year

 However, if the elements are inserted in lexicographic order (i.e. in sorted order) then the tree degenerates into a skinny tree

- If we are dealing with a dynamic tree
- Nodes are being inserted and deleted over time
 - For example, directory of files
 - For example, index of university students
- we may need to restructure balance the tree so that we keep it
 - Fat
 - Full
 - Complete

- Adelson-Velskii and Landis in 1962 introduced a binary tree structure that is balanced with respect to the heights of its subtrees
- Insertions (and deletions) are made such that the tree
 - starts off
 - and remains
- Height-Balanced

- Definition of AVL Tree
- An empty tree is height-balanced
- If T is a non-empty binary tree with left and right sub-trees T_1 and T_2 , then
- T is height-balanced iff
 - $-T_1$ and T_2 are height-balanced, and
 - $|height(T_1) height(T_2)| \le 1$

 So, every sub-tree in a height-balanced tree is also height-balanced

Recall: Binary Tree Terminology

The height of T is defined recursively as

0 if T is empty and

1 + $max(height(T_1), height(T_2))$ otherwise, where T_1 and T_2 are the subtrees of the root.

 The height of a tree is the length of a longest chain of descendents

Recall: Binary Tree Terminology

- Height Numbering
 - Number all external nodes 0
 - Number each internal node to be one more than the maximum of the numbers of its children
 - Then the number of the root is the height of T
- The height of a node u in T is the height of the subtree rooted at u

A Balanced Tree for the Months of the Year

A Balanced Tree for the Months of the Year

- Let's construct a height-balanced tree
- Order of insertions:

March, May, November, August, April, January, December, July, February, June, October, September

 Before we do, we need a definition of a balance factor

 Balance Factor BF(T) of a note T in a binary tree is defined to be

$$height(T_1) - height(T_2)$$

where T_1 and T_2 are the left and right subtrees of T

• For any node T in an AVL tree BF(T) = -1, 0, +1

After Insertion

After Rebalancing

MARCH

After Insertion

After Rebalancing

MARCH

After Insertion

After Rebalancing

MARCH

NO REBALANCING NEEDED

MAY

After Insertion

After Rebalancing

MARCH

NO REBALANCING NEEDED

MAY

After Insertion

After Rebalancing

MARCH

$$MAR BF = 0$$

NO REBALANCING NEEDED

MAY

MAR
$$BF = -1$$
MAY $BF = 0$

NO REBALANCING NEEDED

NOVEMBER

After Insertion

After Rebalancing

MARCH

$$MAR BF = 0$$

NO REBALANCING NEEDED

MAY

MAR
$$BF = -1$$
MAY $BF = 0$

NO REBALANCING NEEDED

NOVEMBER

After Insertion

After Rebalancing

MARCH

$$MAR BF = 0$$

NO REBALANCING NEEDED

MAY

MAR
$$BF = -1$$
MAY $BF = 0$

NO REBALANCING NEEDED

NOVEMBER

RR rebalancing

After Insertion

After Rebalancing

AUGUST

After Insertion

After Rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

LL rebalancing

After Insertion

After Rebalancing

JANUARY

After Insertion

After Rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

DECEMBER

After Insertion

After Rebalancing

After Insertion

After Rebalancing

JULY

After Insertion

After Rebalancing

JULY

After Insertion

After Rebalancing

FEBRUARY

After Insertion

After Rebalancing

FEBRUARY

After Insertion

After Rebalancing

FEBRUARY

RL rebalancing

After Insertion

After Rebalancing

JUNE

After Insertion

After Rebalancing

JUNE

After Insertion

After Rebalancing

JUNE

LR rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

After Insertion

After Rebalancing

SEPTEMBER

After Insertion

After Rebalancing

SEPTEMBER

NO REBALANCING NEEDED

- All re-balancing operations are carried out with respect to the closest ancestor of the new node having balance factor +2 or -2
- There are 4 types of re-balancing operations (called rotations)
 - -RR
 - LL (symmetric with RR)
 - RL
 - LR (symmetric with RL)

- Let's refer to the node inserted as Y
- Let's refer to the nearest ancestor having balance factor +2 or -2 as A

- LL: Y is inserted in the Left subtree of the Left subtree of A
 - LL: the path from A to Y
 - Left subtree then Left subtree
- LR: Y is inserted in the Right subtree of the Left subtree of A
 - LR: the path from A to Y
 - Left subtree then Right subtree

- RR: Y is inserted in the Right subtree of the Right subtree of A
 - RR: the path from A to Y
 - Right subtree then Right subtree
- RL: Y is inserted in the Left subtree of the Right subtree of A
 - LL: the path from A to Y
 - Right subtree then Left subtree

Balanced Subtree

Unbalanced following insertion

Height of B_L inceases to h+1

AVL Trees - LL rotation

Unbalanced following insertion

Rebalanced subtree

Balanced Subtree

Unbalanced following insertion

AVL Trees - RR Rotation

Unbalanced following insertion

Rebalanced subtree

Balanced Subtree

Unbalanced following insertion

AVL Trees - LR rotation (a)

Unbalanced following insertion

AVL Trees - LR rotation (b)

Unbalanced following insertion

AVL Trees - LR rotation (c)

AVL Trees - RL rotation

- To carry out this rebalancing we need to locate A, i.e. to window A
 - A is the nearest ancestor to Y whose balance factor becomes +2 or -2 following insertion
 - Equally, A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion
- We also need to locate F, the parent of A
 - This is where our complex window variable

- Note in pasing that, since A is the nearest ancestor to Y whose balance factor was +1 or -1 before insertion, the balance factor of all other nodes on the part from A to Y must be 0
- When we re-balance the tree, the balance factors change (see diagrams above)
 - But changes only occur in subtree which is being rebalanced

- The balance factors also change following an insertion which requires no rebalancing
- BF(A) is +1 or -1 before insertion
- Insertion causes height of one of A's subtrees to increase by 1
- Thus, BF(A) must be 0 after insertion (since, in this case, it's not +2 or -2)

```
PROCEDURE AVL_insert(e:elementtype; w:windowtype;
                  T: BINTREE);
  We assume that variables of element type have two *)
(* data fields: the information field and a balance
                                                         * )
  factor
                                                         * )
  Assume also existence of two ADT functions to
                                                         * )
                                                         * )
  examine these fields:
( *
                           Examine_BF(w, T)
                                                         * )
( *
                                                         * )
                           Examine data(w, T)
                                                         * )
   and one to modify the balance factor field
                                                         * )
( *
                           Replace BF(bf, w, T)
var newnode: linktype;
begin
```

```
IF IsEmpty(T) (* special case *)
   THEN
      Insert(e, w, T); (*insert as before *)
      Replace_BF(0, w, T)
   ELSE
      (* Phase 1: locate insertion point
                                                   * )
      (* A keeps track of most recent node with *)
      (* balance factor +1 or -1
                                                   * )
      A := \overline{w}
      WHILE ((NOT IsExternal(w, T)) AND
              (NOT (e.data = Examine Data(w, T))) DO
         IF Examine BF(w, T) <> 0 (* non-zero BF *)
            THEN
               A := w;
```

```
IF (e.data < Examine_Data(w, T) )</pre>
      THEN
         Child(0, w, T)
      ELSE IF (e.data > Examine_Data(w, T) )
         Child(1, w, T)
      ENDIF
   ENDIF
ENDWHILE
(* If not found, then embark on Phase 2: *)
(* insert & rebalance
                                            * )
IF IsExternal(w, T)
   THEN
      Insert(e, w, T); (*insert as before *)
      Replace BF(0, w, T)
ENDIF
```

```
(* adjust balance factors of nodes on path
                                                  * )
                                                  * )
(* from A to parent of newly-inserted node
(* By definition, they will have had BF=0
                                                  * )
                                                  * )
(* and so must now change to +1 or -1
(* Let d = this change,
                                                  * )
(* d = +1 \dots insertion in A's left subtree
                                                  * )
(* d = -1 ... insertion in A's right subtree
                                                  * )
IF (e.data < Examine_Data(A, T) )</pre>
   THEN
      v := A;
      Child(0, v, T)
      B := v;
      d := +1
   ELSE
```

```
ELSE
      v := A; Child(1, v, T)
      B := v;
      d := -1
ENDIF
WHILE ((NOT IsEqual(w, v))) DO
   IF (e.data < Examine_Data(v, T) )</pre>
      THEN
         ReplaceBF(+1, v, T);
         Child(0, v, T) (* height of Left ^ *)
      ELSE
         ReplaceBF(-1, v, T);
         Child(1, v, T) (* height of Right ^ *)
   ENDIF
ENDWHILE
```

```
(* check to see if tree is unbalanced *)
IF (ExamineBF(A, T) = 0)
   THEN
      ReplaceBF(d, A, T) (* still balanced *)
   FLSE
      IF ((ExamineBF(A, T) + d) = 0)
         THEN
            ReplaceBF(0, A, T)(*still balanced*)
         ELSE
            (* Tree is unbalanced
            (* determine rotation type *)
```

```
(* Tree is unbalanced
                           * )
(* determine rotation type *)
IF d = +1
   THEN (* left imbalance *)
      IF ExamineBF(B) = +1
         THEN (* LL Rotation *)
            (* replace left subtree of A *)
            (* with right subtree of B *)
            temp := B; Child(1, temp, T);
            ReplaceChild(0, A, T, temp);
            (* replace right subtree of B with A *)
            ReplaceChild(1, B, T, A);
```

```
(* replace right subtree of B with A *)
  ReplaceChild(1, B, T, A);
  ReplaceBF(0, A, T);
   ReplaceBF(0, B, T);
ELSE (* LR Rotation *)
   C := B; Child(1, C, T);
   C_L := C; Child(0, C_L, T);
   C_R := C; Child(1, C_R, T);
   ReplaceChild(1, B, T, C L);
   ReplaceChild(0, A, T, C_R);
   ReplaceChild(0, C, T, B);
   ReplaceChild(1, C, T, A);
```

```
IF ExamineBF(C) = +1 (* LR(b) *)
   THEN
      ReplaceBF(-1, A, T);
      ReplaceBF(0, B, T);
   ELSE
      IF ExamineBF(C) = -1 (* LR(c) *)
         THEN
            ReplaceBF(+1, B, T);
            ReplaceBF(0, A, T);
                            (* LR(a) *)
         ELSE
            ReplaceBF(0, A, T);
            ReplaceBF(0, B, T);
      ENDIF
ENDIF
```

```
(* B is new root *)
            ReplaceBF(0, C, T);
            B := C
      ENDIF (* LR rotation *)
   ELSE (* right imbalance *)
      (* this is symmetric to left imbalance *)
      (* and is left as an exercise!
ENDIF (* d = +1 *)
```

ENDIF

(* AVL Insert() *)

ENDIF

```
(* the subtree with root B has been
   (* rebalanced and it now replaces
                                          * )
   (* A as the root of the originally
                                         * )
   (* unbalanced tree
                                          * )
   ReplaceTree(A, T, B)
   (* Replace subtree A with B in T
                                           * )
   (* Note: this is a trivial operation
                                           * )
   (* since we are using a complex
                                           * )
   (* window variable
                                           * )
ENDIF
```