AY 2004 Spring Integrated Maritime Domintance in the Littorals

Presentation Purpose

Final Review
by SEA5
of the AY2004 Spring Integrated
Project

Agenda

• Maritime Dominance in the Littorals Brief090)0-	
 Executive Overview		
• Lunch Break1145-1300)	
• Breakout Session at Bullard 100 (Including Temasek Defense System Institute Poster Session)		

Executive Overview

LCDR Quoc Tran

Executive Overview

- Project Overview
- Project Description
- Project Results
- Project Team Organization
- Project Schedule
- Project Effective Need

Project Overview

- Tasked to Develop a System of Systems Conceptual Solution For Maritime Dominance in the Littorals
- Developed a Project Management Plan
- Used a Systems Engineering Design Process
- Analyzed Threats and Defined Littoral Scenarios
- Generated Conceptual SoS Architecture Alternatives
- Used Modeling and Simulation
- Ranked SoS Architecture Alternatives According to Their Maritime Dominance Effectiveness and Cost
- Delivered The Final Recommendation

Project Description

- Execute Tasking from Deputy Chief of Naval Operations (CNO) for Warfare Requirements (OPNAV 7)
- Develop a Conceptual System of Systems (SoS) for Maritime Dominance that Enables SEA BASING and SEA STRIKE in the Littorals
 - Generate Alternatives Using Existing Systems, Current Programs of Record, and Future Systems
 - Recommend Cost Effective Conceptual SoS That Minimizes Risk To Allied Personnel While Accomplishing Objectives
- Deliver Results in a Final Briefing and Technical Report

SoS Focus and Constraints

SoS Architectural Focus

- Combination of both Manned and Unmanned Systems
- Surface, Subsurface, Air and Space Syste
- Employment of Forces From All Services

- Scenario Constraints
 - Land Forces Deployed up to 200 nm Inland
 - Striking/Supporting Maritime Forces Deployed up to 200 nm Offshore
- Timeframe Constraint
 - Concepts of Operations Applicable within 2020 Timeframe
- Cost Being a Necessary Selection Varial

for Maritime Dominance in

- Unmanned Vehicles Complement But **Cannot Replace Manned Platforms**
- Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 **Timeframe**
 - Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
 - Utilizes Distributed Communications with 100nm Physical Platform Distribution
 - Employs Decentralized Command & Control Structure
 - Is Cost Effective Relative to Other Alternatives

Wayne E. Meyer Institute of Sy

Naval Postgra

- **Distributed Communications**
 - Faster Dissemination of Information
 - Minimum Impact on Throughput with Node Failures
- Decentralized Command and Control
 - Shorter Reaction Times
 - Less Network Demand
 - -Single C2 Node Failure Avoidance
 - 100 nm Platform Distribution
 - -Superior Overall Performance

2004 Integrated Project

NPS Community

Faculty Advisors

Prof. W. Solitario-Overall Project Coord

Dr. T. Huynh-Proj. Mgmt, Sys. Design & Analysis Dr. R. Cristi-Communications Dr. D. Kapolka-Sensors Dr. G. Karunasiri-Sensors Dr. I. Kaminer-Land Systems Dr. F. Papoulias-Land Systems LCDR R. Gottfried-Operations Research

Prof. K. Burke-Information Systems

Temasek Defense **Systems Institute Technical Teams**

Berner, Andy USA; Chan, Chee Wai SGP: Cheak, Seck Fai SGP: Chen, Yuan Xin SGP; Cheng, Kah Wai SGP; Cheng, Wee Kiang SGP: Chow. Khin Choong SGP: Gonen, Ofer ISR; Koh, Jin Hou SGP; Lee, Kok Thong SGP; Lim, Kian Guan SGP; Monfore, Ken USA; Mui, Whye Kee SGP; Neo, Melvin SGP; Oh, Khoon Wee SGP; Ong, Chin Siang SGP; Phey, Khee Teik Augustine SGP: Poh, Seng Cheong Telly S/P; Quek, Yew Sing SGP; Seow oke Wei SGP; Tan, Peng Soor

Tay, Chee Bin SGP: Tol

Hwee SGP; Wong, Ch

Raytheon

SGP; Yong, Siow Yin

Technology Resource

SEA5

Integrated Project Lead

LCDR Q. Tran

SEA5 Team

CDR. Dermentzoudis, GRC LT C. Graham. **USA** LT M. Holmes, USA LT R. Julien, USA LT I. Winslow, USA

ENS B. Abbott, USA ENS K. Hartling, USA ENS B. Peterson, **USA**

ENS S. Poitevent, USA

ENS R. Smith, USA ENS M. Tsikalas, USA ENS C. Tubbs, USA

Initial **Study Plan** Periodic **Updates**

Input and Feedbac

Legend

Primary

Internal

External

Operational Requirement

CNO N7 Fleet Commanders (CAPT Kline, Dr. Olwell)

Technical

Requirements

NAVSEA FNMOC NCAA AFCAA

End User Requirements

Community

Air Warfare **Amphibious** Warfare Land Warfare PYSOPS/INTEL Special **Operations** Subsurface Warfare

Surface Warfare

Study

Direction,

SEA5 Technical

Inputs

Contributi

Analysis

Performance

Analyses

Wayné E. Meyer Institute of Systems Enginetakeholders

Naval Postgraduate School, Monterey, CA

Project Schedule

Major Completed Toda Deliverable

Phases Tasks y

Wayne E. Meyer Institute of Systems Engineering

Effective Need

Develop a SoS Solution to Enable SEA BASING and SEA STRIKE by Providing Maritime Dominance in the Littoral Environment Through Cooperative Surveillance, Threat Analysis and Evaluation, Battle Management, and Engagement

SoS Development

ENS Manny Tsikalas

Problem Definition

- Define and Select a Cost Effective System of Systems Architecture Consisting of Sea-Based, Land-Based, and Airborne Sensor and Weapon Systems that Are
 - Both Manned and Unmanned
 - In Existence, in Development, and Future Concepts
 - Networked Via Communication Links and Space Systems to Achieve Success of the Following Littoral Missions with Minimum Risk to Allied Personnel
 - Identification and, If Necessary, Reduction of Hostile Threats to Within Defensive Capability of the Sea Base
 - Enabling Projection of Offensive Capabilities From the Sea Base

SoS Development Process

SoS Development Overview

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

Functional Analysis and Value Systems Design

ENS Cavan Tubbs

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

- SoS Design Requires
 - Identification of Functions to be Performed in Support of Mission Accomplishment
 - Decomposition of Identified Functions
- Four-Level Depth
 Functional
 Decomposition Embodies
 SoS Functionality

Functional Hierarchy

Surveillance Functional Decomposition

Threat Analysis & Evaluation Functional Decomposition

BMC4I Functional Decomposition

Battle Management Means Battle Management, Command, Control, Communications, Computers, and Intelligence (BMC4I)

Engagement Functional Decomposition

Value Systems Design Implementation

Balance System Needs and Functions in Support of SoS Missions of Enabling SEA BASE and SEA STRIKE

MOE – Measure of Effectiveness

MOP – Measure of Performance

Surveillance Function				
Objectives	MOE	MOP		
Detection	Coverage Capability	Average Time to Establish Complete Area Coverage		
		Ratio Area Covered / Total Search Area		
		Coverage Factor (Confidence)		
	Probability of Detection	Average System Probability of Detection		
Tracking	Tracking Capability	Ratio Contact of Interest (COI) Tracked / Total COI		
		Average Number of Visits per COI		

Threat Analysis & Evaluation Function

Objectives	MOE	MOP
Identificati on	ID Capability	Ratio COIs Identified / Total COI
	Probability of False ID	Ratio of Incorrect Identifications / Total Identifications
Risk Exposure to Risk	Reduced Exposure	Ratio of Personnel Exposed to Risk / Total Personnel
	to Risk Capability	Ratio of Casualties / Total Personnel

Battle Management Function				
Objectives	MOE	MOP		
Recognized	RMP Capability	Average Time to Establish 80% of RMP		
Maritime Picture		Ratio Correct COI IDs / Total COI		
Maximize	Communicati on Capability	Ratio of Number of Assets Lost Comms / Total Assets		
Communicati	_			
on				

Engagement Function				
Objectives	MOE	MOP		
Destroy/	ole Capability	Average Time to Kill 80% of Targets		
Disable Targets		Ratio Targets Engaged / Total Targets		
Endure Capability	Ratio Friendly Assets Survived / Total Friendly Assets			
		Ratio Enemy Assets Survived / Total Enemy Assets		

Value Systems Design

Architectures

ENS Bryan Peterson

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

- SoS Architecture Overview
- SoS Architecture Assumptions
- SoS Architecture Definition Process
- Functional Embedding
- UV Types and Functions
- Architectures
- Architecture Summary

SoS Architecture Overview

- Ensured Gradual Increase of Unmanned Vehicles with Architectures
 - Manned Only (Architecture 1)
 - Balanced Hybrid (Architecture 2)
 - Primarily Unmanned (Architecture 3)
- Ensured Architecture 1 Consisted of Current Systems Only
- Accounted for 2020 Timeframe Technology
- Named Unmanned Vehicles According to Size and Functions

SoS Architecture Assumptions

- Manned Systems Still Required For Air to Air Combat in 2020 Timeframe
- Carrier-Launched and Recovered Medium-Sized UAVs Exist
 - Number of UAVs Determined by Size and Space Available on Carrier
- Availability of Postulated Systems in 2020 Timeframe
 - DDX, CGX, LCS, etc.

SoS Architectures Definition Process

Functional Embedding Fine Property Functional Embedding

			Platforms												
Functions		8-3	P-3	EA-6B	AH-1	B-2	F-14	F/A-18	JSF	C-2	E-2C	MH-53	09-НЅ	Strike UA\	Surv UAV
Surveillance	Detection	X	X								X	X			X
	Tracking	X	X								X		X		X
Threat Analysis and	ID Targets	X	X				X	X	X		X		X	X	X
Eval	Minimize Risk													X	X
Battle Management	RMP	X	X								X	X	X		X
	Max Comms													X	X
Engagement	Destroy Targets	X	X	X	X	X	X	X	X				X	X	
	Endure Combat			X	X	X	X	X	X					X	

Architecture 1	Common to all Architectures
Architecture 2	Architecture 1 and 2
Architecture 3	Architecture 2 and 3

Unmanned Vehicle Types and Functions

Unmanned Vehicle Type	Sensors/Weapons/Functi ons
Large Surveillance UAV	Air/Surface Search Radar
Medium-Sized Surveillance UAV	TDSI FOPEN Radar, Infrared (IR) Sensor
Medium-Sized Strike UAV	Harpoon, JSOW
Medium-Sized Multi-Mission UAV	TDSI FOPEN Radar, Hellfire
Small Surveillance UAV	IR Sensor
Mine Warfare UUV	Sonar
Anti-Submarine Warfare UUV	Sonar, Torpedo
Unmanned Vehicle Insertion UUV	TDSI Unmanned Insertion Vehicle
Surveillance USV	Surface Search

Surface Search Hellfire

Multi-Mission USV

Common to Architecture 1 and 2 2 DDG 4 E-2 CG 36 F-18 E-8 **ISTARS** 2 SSN

Platforms

Architecture 1

Manned Only

- Current **Systems**
- Carrier Air Wing
- Based Off **Carrier Battle Group**

2 FFG

1 B-2

Architecture 2

Balanced Hybrid

- •Existing Systems
- •Surveillance UAVs and USVs
- Surveillance

Communication s to All **Platforms**

Surveillance to **All Manned Platforms**

2 CGX

2 DDX

Common to All Architectures

4 Multi-Mission **USVs**

14

ISF

UUV

Common to Architecture 2 and

UAVs

2 MIW LCS

2 ASuW LCS

20 Small Surveillance **UAVs**

30 Medium-Sized Surveillance **UAVs**

2 ASW LCS

10 ASW UUV 4 MIW UUV

Architecture 3

Primarily Unmanne

- Future Systems
- Unmanned **Vehicles** Perform Strike, Surveillance Or Multi-

Architecture Composition

		NACYSIS				
MANNED ONLY (ARCH 1)	BALANCED HYBRID (ARCH 2)	PRIMARILY UNMANNED (ARCH 3)				
1 CVN	1 CVN	1 CVN				
10 SH-60	6 SH-60	6 SH-60				
1 E-3 AWACS	1 E-3 AWACS	1 E-3 AWACS				
2 CG	2 CG	2 CGX				
4 DDG	2 DDG	2 DDX				
2 SSN	2 SSN	1 INSERTION UUV				
4 E2-C	4 E2-C	4 MULTI-MISSION USV				
36 F/A-18	24 F/A-18	30 MEDIUM-SIZED STRIKE UAV				
1 E-8 JSTARS	1 E-8 JSTARS	50 MEDIUM-SIZED MULTI-MISSION UAV				
2 P-3	6 LCS	6 LCS				
5 CH-53	4 MIW UUV	4 MIW UUV				
6 MH-53	4 ASW UUV	10 ASW UUV				
14 F-14	18 JSF	14 JSF				
8 S-3	2 LARGE SURVEILLANCE UAVS	8 LARGE SURVEILLANCE UAVS				
5 E/A-6B	70 MEDIUM-SIZED SURVEILLANCE UAVS	30 MEDIUM-SIZED SURVEILLANCE UAVS				
10 AH-1	20 SMALL SURVEILLANCE UAVS	20 SMALL SURVEILLANCE UAVS				
1 B-2	6 F/A-22					
2 B-52	2 MULTI-MISSION MARITIME AIRCRAFT (MMA)					
2 F-117	2 SSGN					
2 FFG	4 SURVEILLANCE USV					
1 MHC	6 F-16					
1 MCM All	Arch1 and A	Arch 2 and 42				

Architecture Summary

- Three Architectures With Progressing Reliance on UVs
 - Architecture 1: Manned Only
 - Architecture 2: Balanced Hybrid
 - Architecture 3: Primarily Unmanned
- Architecture Effectiveness Modeled in Simulative Study Against Test Scenarios

Threats & Scenarios

LT Matt Holmes

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

- Joint Campaign Analysis
- South China Sea Scenario
- Scenario Development Criteria

Tactical Scenarios

CA Referenced US Forces Composition Criteria

- Joint Campaign Analysis as Point of Reference for Scenario Analysis
- Warfare Threats to NESG Pr
 - ASCM
 - ASW
 - MIW
 - ASuW
- JCA®zu®F®nat
 - Officers
 - Baseline Architecture
 - Lanchester Attrition Models
 - Larger Group Broken Into Mission Groups
 - -<u>Estimate of SoS Baseline Architecture Performance vs.</u> Threat_t

South China Sea Scenario

- PRC Warship Strafed by Philippines Fighter
- PRC Naval Blockade of Puerta Princessa
 - Historical Rights and Economic Requirements
 - Need to Establish Safety Perimeter Around South China Sea
- PRC Reinforcement of Presence in the Spratly Islands
 - Paved Runways
 - Pier and Maintenance Facilities
 - ADA Batteries and Ballistic Missile Sites.
- PRC Invasion of Kepulauan Natuna (Indonesia)
- PRC Invasion of Palawan After a 30-day Blockade
 - Land, Air, Sea, and Missile Forces Moved to Island

Scenario Criteria

PRC Invasion Force

Aircraft 735

Surface 79

3 SOVREMMENY DDG

1 CV + 30 SU-30

55 DDG, FFG, & PGM

Subsurface 21

5 Type 091/093 SSN 15 Diesel SS (4 Kilo)

MARDIV 1

ARTDIV 1

INFDIV 7*

*3 Additional Reserve (Guangzhou)

No Heavy Armor Division Light Armor Units With MANPADS

- Tactical Littoral Environments
- Scenario Definition Guided By Complexity
 - Mission
 - Enemy Force Structure
 - Level of Hostility

Scenario	Enemy	Conflic t	Escalati on
Benign	Neutral	Unlikel y	Unlikel y
Nominal	Aggressi ve	Mediu m	Low
Stressin , g	Hostile	High	Mediu m

Wayne E. Mey

Naval Postgraduate School, Monterey, CA

Scenario 1 -Benian _

Specific Scenario Elements

Day (-3): PRC Submarines Sweep Sulu

Day (0): PRC Maritime Division

(MARDIV) Secures Capital City

: PRC Naval Forces Blockade

Harbor

Day (1): PRC Reinforces Spratly Isles

SoS Mission Considerations

- Unlimited US Force Movement
- US Tasking: Reconnaissance

(RECCE)

Scenario 2 -Nominal

Hostility Level 2

Specific Scenario Elements

Day (2): PRC Artillery/Inf. FWD Staged
PRC Fortifies Palawan Airport
Pay (2): PRC Naval Forces Mine Harbo

Day (3): PRC Naval Forces Mine Harbor PRC TU-16s Begin Maritime Patrol

Day (12): PRC Reinforces Naval Presence

SoS Mission Considerations

- Restricted US Movement Outside 12 nm
- US Forces Actively Tracked
- US Tasking: RECCE and Targeting

Scenario 3 -

Hostility Level 3

Day (13): PRC MARDIV Fortifies Puerta

Princessa

Day (15): PRC INFDIV Disperse Into

Terrain

PRC Air Corps Commence

Patrols Aggressive

Day (16): SOVREMENNY Steam to North

Rendezvous

Subs Deploy to Surf/Sub-surf

Operating Areas

Day (18), PRC Surface Fleet

SoS Mission Considerations

- Enemy Hostile (Active Patrol Zones)
- Denial of US Assets to Littoral Region

- Quantifying Capability vs. Risk
- Building the Operating Environment
- Identifying Future Threats
- Evaluating SoS Performance with Scenarios

TDSI Integration

ENS Kara Hartling

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration Validation

lequirements

Results

COMMUNICATIONS

Conceptual **Communications** Network

INFORMATION

ASSURANCE Technology Exploitation Study and Limitation **Parameters**

LAND SYSTEMS

Submersible UV Craft Carrier

SENSORS

In Depth Sensor **Study for Operation** in Littorals

OR

Analytical Support Conceptual Modelina

Communications Track

Architecture Needs

- Distributed
- Wireless
- High Data Rates

Comms Outputs

- Developed a Conceptual Inter-platform Communications Network
- Provided Interoperability and Bandwidth Constraints
- Focused on Emerging Technologies such as
 - Mobile *ad hoc* Networking
 - Adaptive Communication Software for Multiplatform System Interoperability (Software Defined Radio)

Information Assurance

Architecture Needs

 Comparative Analysis on Information Security of Manned Versus Unmanned System

Information Assurance Outputs

- Performed Information Security Study on Means of Securing and Authenticating UV Communications
- Defined Inherent Organic Capabilities of UVs That Could Be Exploited
- Defined Ways to Minimize Enemy Exploitation of Captured UVs

Land Systems Track

Architecture Needs

 Link Blue Water Platforms with Littoral Platforms (Long Range UV Insertion)

- Submersible
- Deployed from Surface Platform
- Capable of Deploying and Recovering Mini UVs
- Multi MissionCapable (MIW, ASW)
- Extended Reach into Littorals

Sensors Track

Architecture Needs

- Capability of Detecting and Tracking Land Targets in the Littorals
- Capability of Detecting and Tracking Submerged Threats
- Timely Detection of Contacts

Sensors Outputs

- Performed In-depth Environmental Analysis of Littorals
- Defined Requirements for Sensor Network to Detect Land Based Anti-Access Defensive Systems (FOPEN)
- Determined Means to Maximize Probability of Detection of Submerged Threats
- Developed Approaches to Detect Contacts That Operate on and Above the Sea in a Timely Manner

Operations Research Track

Modeling/Simulation Needs

 Analytical Support for TDSI Tracks

OR Outputs

- Develop Sensor
 Fusion Model
 (Quality Versus
 Quantity of UAVs)
- Determine Optimal Search Patterns for UAVs
- Determine Optimal Number of Comms Nodes for Undersea

Network

TDSI Inputs to Integrated

Wayne E. Meyer Institute of Systems Eng

COMMUNICATION

Conceptual Communications Network

INFORMATION ASSURANCE

Technology Exploitation
Study and Limitation
Parameters

LAND SYSTEMS

Submersible UV Craft Carrier

SENSORS

In Depth Sensor Study for Operation in Littorals

OR

Analytical Support Conceptual Modeling

Elevation 3dB Beam

Cost Analysis

LT Rene Julien

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

Cost Analysis Preview

- Results
- Assumptions
- Methodology
- Process
- Data Collection
- Tools

Cost Estimation Results And Street Cost Estimation

Cost in FY04\$B						
Purchase Cost	0&S*	TOC*				
0	1.53	23				
4.7	1.34	24.3				
10.4	1.13	25.8				
	Purchase Cost	Purchase Cost 0&S* 0 1.53 4.7 1.34				

^{*} Per 1-year Basis

^{**} Per 10-year Basis Including Inflation

Platform Cost Assumptions

- Fiscal Year Estimates
 - Not Available From Open Sources
 - Based on Proprietary Sources
- Future Manned and Unmanned Systems
 Equivalent in Cost to Manned Systems
 - UAV2-1 Cost Equivalent to E-2C
 - F-35 (Joint Strike Fighter) Based on F/A-18F O&S Data
- Current UAV O&S Costs Approximately 10% of Manned Equivalents
 - Based on Air Force Predator O&S Costs

Cost Process Methodology

Cost Estimation Methodology

- All O&S Costs in FY2003 From VAMOSC, AFTOC and OSMIS Databases
- Costs for Future Systems (i.e., UVs and (X) Ships) Estimated Using Analogy Technique
- Derivation of Proposed Future System Unit Cost Using Cost Factors
 - Complexity
 - Miniaturization
 - Productivity Improvement

Cost Organizations

- Navy Center for Cost Analysis (NCCA)
- Air Force Cost Analysis Agency (AFCAA)
- US Army Cost and Economic Analysis Center (USACEAC)
- Defense Cost and Research Center (DCARC)
- Tecolote Research (AC Software)

Cost Estimation Tools And Cost Estimation

Microsoft Excel

Advanced Cost
Estimating
Integrated Tools
(ACEIT) from
Tecolote Research

Simulative Study

ENS Bryce Abbott

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

PRAESTANTIA PER SCIENTIAM

Simulative Study Overview

Result

 Quantitative Data Provided to Answer Important Questions

Modeling Framework

Method

- Important Questions and Sensitive Design Variables Identified
- Comprehensive Modeling
 Framework Developed to
 Answer the Important Questions

Simulative Study

- Objective
- Design
- Modeling Framework
- Modeling Tools
- Modeling Output

Simulative Study Objective

- Conduct a Simulative Monte Carlo Analysis to Quantify the Effectiveness of Alternative SoS Architectures by Answering
 - How Much Time Does the SoS Require to Establish the Recognized Maritime Picture?
 - How Well Does the SoS Engage Threats?
 - How Well Does the SoS Protect Personnel From Risk?
 - How Well Does the SoS Endure Combat?

Simulative Study Design Variables

- SoS Architecture
 - Communications Network
 Architecture
 - Command and Control
 - Platform Physical Distribution
- Scenario

Architecture Variable

SoS Architecture Variable

- Manned Only
- Balanced Hybrid
- Primarily Unmann

Unmanned Platform

Manned Only

CNIA Variable

Communications Network Architecture

(CNA)

- Enclave
- Hybrid
- Distributed
 - ▲ Unmanned Platform
 - Line of Communication

C) Variable

Command and Control (C2)

- Centralized
- Decentralized
 - Manned Platform
 - C2 Node
 - ▲ Unmanned Platform
 - Line of Communication

PPD Variable

Platform Physical Distribution (PPD)

- Small
- Medium
- Wide
- Manned Platform
- Unmanned Platform

Scanario Variable

Modeling Framework

Modeling Tools Interface

Lateral Range Detection Curves

ALWSE-

Databa se **Tables**

Time To Detecti on Data

Modeling Output

Quantitative Data Provided to Fulfill Simulative Study Objective

Engineering Physics Models (Excel/SWAT)

ENS Scott Poitevent

Force/Theater
Model (Extend™)

Platform/Combat System Model (ALWSE-MC)

Engineering Physics Based Models (Excel/SWAT)

Excel/SWAT

Sens

- Provide Flexible Tool for Detection Simulation with Sensor/Target Pairs
- Implement Physical Laws for Analytical Application
- Generate P_det vs Range Curves

Excel/SWAT

P_det vs Range

Engineering Analysis Models (Excel/SWAT)

- Engineering Physics Based Modeling Performed to Create Database Tables and Lateral Range Detection Curves for Sensors / Threats Pairs
- Sensor-Target Models
 - Probability of Detection (P_det) vs Range Curves
- Physics Models*
 - Radar Based on Swerling II
 - Acoustic Based on Manning P_det
 - Infrared (IR) Based on Johnson's Criteria

*R. Harney, Combat Systems Sensors Vol. I & II, Naval Postgraduate School 2004, Unpublished Manuscript

Ingineering Model Inputs

- Sensor Parameters
- TDSI FOPEN Radar Performance Parameters
- Specific Enemy Threat Characteristics From Scenario
- Environmental Parameters

RF Input

П		D D47	1/4	Pi =	3.14		Reflect =	0.0100
Ш	$R = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$		Δ	Pt(W) =	100	4		
Ш	∦64 <i>ì</i> ≠	KTBIL (CNR	$\mu \Psi$	Sigma =			Noise Fig. =	1 4
Ш				T =	299.7	4		
П	TA (Rad) =			TBF =				
Ш		300000000		CNR =	0.79	■		
П	Ant Ap =	0.003	1 1	BW =	1.05E+08	4 Þ		
П								
Ш		1 1		•	4 F)		ı	,
Ш		Length (m)		_	Length (m)			
П		ASCM	Detection	Detection	A/C		Detection	
Ш	Diameter			Range (nm)			Range (nm)	
Ш	0.01							
П	0.02		2.3E-01			2.3E-01		
П	0.03	7.1E-06	2.8E-01	1.6E-04	7.1E-06	2.8E-01	1.6E-04	
	0.04	1.3E-05	3.3E-01			3.3E-01		
	0.05	2.0E-05	3.7E-01	2.0E-04	2.0E-05	3.7E-01	2.0E-04	
	0.06	2.8E-05	4.0E-01	2.2E-04	2.8E-05	4.0E-01	2.2E-04	
	0.07	3.8E-05	4.3E-01	2.4E-04	3.8E-05	4.3E-01	2.4E-04	
	0.08	5.0E-05	4.6E-01	2.5E-04	5.0E-05	4.6E-01	2.5E-04	

Engineering Model Outputs

 Threat Signatures (Radar, IR, Acoustic)

 P_det vs. Range for Sensor-target Pairings

EF Band vs ◆ AS-4 ASCM SS-N-12 SS-N-19 SS-N-22 0.80 -*- CSS-C-5 CSS-C-6 ---- SSN-X-26 -- SS-N-2 0.60 CSS-C-2 CSS-C-3 MM.40 RGM-84 0.40 SS-N-25 -CSS-N-4 CSS-C-8 SS-N-27 0.20 40000 45000 50000 55000 65000 Threat Detection Range (m)

Engineering Models -

SWAT

 Shallow Water Acoustics Toolset (SWAT) - NAVSEA

- Inputs
 - Environment
 - Sensor Paramet
 - Target Paramete
- Outputs
 - P det vs. Range

P_det vs Range Output

1000

Platform/Combat System Model (ALWSE-MC)

ENS Scott Poitevent

Modeling Framework

Force/Theater
Model (Extend™)

Platform/Combat System Model (ALWSE-MC)

Engineering Physics Based Models (Excel/SWAT)

ALWSE-MC

- Simulate Tactical Level Employment of Sensors Against Threats
- Make Use of Sensor P_det vs Range Curves in Performance Analysis

	DD/EF	DD/K-Band	DD/X-Band	DD/SPS67	DD/SPS55	DD/B-Band	DD/EF-SH-60-IR
Run #/Col #	1	2	3	4	5	6	7
1	4695	27768	27765	27765	13895	3138	2018
2	27768	10488	8897	27765	25724	5333	2014
3	11576	11171	1320	41541	27768	7634	2015
4	462	22686	9221	13891	25941	4864	2016
5	27768	13896	13892	4427	27768	4615	7732
6	41580	5621	27770	10765	13895	2661	7603
7	27769	3286	3652	27764	2154	7028	2017
8	13891	913	13890	13885	7025	2016	3472
9	13889	13892	3188	13889	55073	7570	2017
10	3883	10277	27767	13173	38561	2015	5531
11	12527	9377	5876	13886	19997	8505	2015
12	13890	41582	13895	13654	25795	3259	2016
13	2282	27768	13892	11743	55389	5652	7177
14	13893	13886	8928	11202	5327	3735	2015
15	6994	12026	13885	27765	41577	6942	2016
16	41578	13782	69204	5355	13885	3632	2016
17	27767	27764	27766	9478	27769	7493	7172
18	13891	2075	20988	13892	24262	6052	5419

Time-to-Detect

ALWSE-MC

- Discrete Event Simulation Tool Developed by NAVSEA Panama City, FL
- Integration of Engineering Level Detection Curves Into Tactical Simulation
- Simulation of Vehicle Characteristics,
 Sensor, and Employment for a Variety of Unmanned Systems

 ALWSE-MC

SYSTEMS EVALUATOR

ALWSE-MC Inputs

- P det vs. Range Curves
- Vehicle Parameters
- Threats

Chart

Environment

ALWSE Vehicle Editor

ALWSE P det Input

- •Effective Probability of Detection
- Vehicle Tracks
- Time to Detection
- Area Covered

Covered

100

ALWSE-MC Utilization

- Platform/Combat System Modeling Performed to Incorporate Operational Implementation of Sensors/Threats Pairs and Produce Time to Detection Data
- Monte Carlo Analysis (200 Runs per Sensor/Target Pair)
- ALWSE-MC Simulation Missions
 - Surface (ASuW) Threats: DD, FFG, PGM
 - Anti-submarine (ASW) Threats: Diesel, Mini, Nuclear
 - Air (AW) Threats: Fighter, Bomber
 - Mine (MIW) Threats: Moored/Bottom (25 Each)
 - Land Threats: 50 SAM Launchers
- Use of P_det Curves For Each Sensor/Target Pairing
- Generation of Distributions of Average Detection Time For Sensor-Target Pairings Used As Input Into Extend™

Force/Theater Model (Extend™)

ENS Rob Smith

Force/Theater Model (Extend™)

Force/Theater Model (Extend™)

Platform/Combat System Model (ALWSE-MC)

Engineering Physics Based Models (Excel/SWAT)

Force/Theater Model Overview

- Process Model of Maritime Dominance Concept
- High Level Interactions Between Opposing Forces
- Effects of Changing SoS Force Structure and Architecture Attributes on Outcome

Modeling Tool: Extend TMA

Systems
TME NGINEERING
ANALYSIS

- Discrete-Event Simulation Tool •
- Multi-Layer Simulation
- Object-Oriented Design
- Extensive Libraries of Alterable Icons Representing Simulation Processes
- Integrated Database Utility

Extend Model Design

op-Layer Extend Model

Experiment Design

- Full-Factorial Design With Configurations For All Combinations of Design Variables
 - 3 Scenarios (Benign, Nominal, Stressing)
 - 3 Architectures (Manned Only, Balanced Hybrid, Primarily Unmanned)
 - 3 Communications Network Architectures (Enclave, Hybrid, Distributed)
 - 2 C2 Structures (Centralized, Decentralized)
 - 2 Physical Platform Distributions (Small, Medium, Large)
- Run Matrix (162 Configurations with 50 Monte Carlo Runs Each) 8100 Runs

Inputs

Attributes

- SoS Objects
 - Platform Types
 - Sensor/Weapon Capabilities
 - Sensor Performance
 - Communications Capability
 - Mission Area

Scenario Object Threat Type (ref)

_	Threat 7	Гуреs
---	----------	-------

- Mission Area

- Arrival Times

Mission Area (ref)	Mission
1	Surface
2	Air
3	Subsurface
4	Mine
5	Land

1	DDG				
2	FFG				
3	3 x PGM				
4	MIG-31 (Fighter)				
5	SU-30 (Bomber)				
6	Missile Swarm				
7	Diesel Sub				
8	Nuc Sub				
9	Mini Sub				
10	Mine Field				
11	ASCM Launcher				

Comm Link
802.11
SHF
UHF
VHF
ELF

Process Model Parameters

- Surveillance/Threat Analysis & Eval
 - ALWSE-MC Time To Detect Data
 - Sensor Availability
- Battle Management
 - Weapon Availability
- Communications
 - Network Architecture
 - Link Availability
 - Link Data Rates
- Engagement
 - $P_{SoS}(K)$
 - Time To Engage
 - $P_{\text{enemy}}(K)$

Simulation Outputs – Performance Measures

Config	SoS Arch (1,2,3)	CNA (1,2,3)	C2 (1,2)	PPD (1,2,3)	Scenario / Hostility (1,2,3)	I otal	COIs Detected	COIs Localized &	Enemy Targets Killed	Weapons Fired	Total Personnel	Personnel Exposed to Risk		Total SoS Platforms	SoS Platforms Killed	Time to Max RMP Ratio (hrs)	Ratio I
1	1	1	1	1	1	5	5	5	3	5	9755	0	0	106	0	0.569	1
2	1	1	1	1	2	133	133	133	10	36	9755	129	455	106	3	28.905	1

Recognized Maritime Picture

- Time to Develop RMP

Engagement

- Targets Killed / Targets Engaged
- Targets Killed / Total Targets

Risk to Personnel

- Number of Personnel Exposed to Risk
- Number of Casualties

Combat Endurance

 Number of Surviving SoS Platforms

Simulative Study Design

Architecture Ranking

LT Chad Graham

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

- Data Analysis
- Architecture Ranking Process
- Architecture Ranking Results
- Configuration Ranking Process
- Configuration Ranking Result

Data Analysis

Wayne E. Meyer Institute of Systems Engineering

Engagement Capability Recognized Maritime Picture Capability

Architecture Ranking Process

rchitecture Ranking Summary

- Balanced Hybrid Architecture With Unmanned/Manned Ratio of 1.5:1 is Selected Based on Overall Performance
- UV to Manned Ratio Greater Than 1.5:1

nese Results Are Based on Defined Scenarios With Weights Provided by Primary Stakeholder

 Architecture Ranking is Insensitive to Scenario

X A 7 - 1 - 1 - 1 -

configuration Ranking Proces

Best Configuration

- Balanced Hybrid Unmanned/Manned Architecture (Architecture 2)
- Distributed Communication
- Decentralized Command & Control

Wayne E. Meyer Institute of

Naval Pos

Distributed Communications

- Faster Dissemination of Information
 - Average Message Delay 1/10th Hybrid's & 1/100th Enclave's
- Minimum Impact on Throughput with Node Failures

Decentralized Command and Control

- Faster Dissemination of Command Messages
 - Average Message Delay 1/10th Centralized C2's
- Faster Reaction Times
- Less Network Demand
- Reduced Single C2 Node Workload
- Single C2 Node Failure Avoidance
- Platform Distribution

400 Dl (C D) (1)

Configuration Selection Validation

LT Jeff Winslow

SoS Development

- Functional Analysis
- Value Systems Design
- Architectures
- Threats & Scenarios
- TDSI Integration
- Cost Analysis
- Simulative Study
- Architecture Ranking
- Configuration
 Validation

Selected Configuration Validation

- Comparison of CDF for Timeto-RMP for Best Configuration from 162 Configurations to CDFs for Selected Configurations
- Excellent Agreement between Best-Configuration CDF and CDF for Selected Architecture 2-Best Configuration Thus Validating Chosen Configuration
- Comparison of CDFs for Other MOEs Also Validating Chosen

CDF: Cumulative Distribution Function

Effects of Configuration Attributes On RMP

- Significant Effects of Unmanned/Manned Ratio on Time-to-RMP
- Insignificant Effects of Command and Control Structure &

etwork Architecture

Attributes On Communications

THEORS OF COMMUNICATION

Dorformance

• Significant Effects of Unmanned/Manned Ratio, Command & Control and Communication Network Architecture on Communication Performance (Message Delay)

ost Effectiveness Curve

- Balanced Hybrid (Architecture 2) Cost Effective & Cost Efficient
- Manned Only
 (Architecture 1)
 Cost Effective Not
 Cost Efficient
- Primarily
 Unmanned
 (Architecture 3)
 Dominated
 (Neither Effective)

Architecture 2 Recommended Based on Cost & Performance

•Recommended SoS Configuration

- Balanced Hybrid Unmanned/Manned Architecture (Architecture 2)
- Distributed Communication
- Decentralized Command & Control
- 100-nm Platform Distribution
- Recommended Configuration

Validated

- Based On Independent Statistical Analysis
- Involving All MOEs
- Balanced Hybrid Unmanned/

Manned Architecture

Project Conclusion

LCDR Quoc Tran

Project Overview

- <u>Tasked</u> With A Complex Problem of Maritime Dominance in the Littoral
- <u>Developed</u> a Project Management Plan
- <u>Executed</u> The Plan Using Systems Engineering Design Process
- <u>Generated</u> Conceptual SoS Architecture Alternatives
- <u>Used</u> Modeling and Simulation to Assess Architecture Performance
- Ranked SoS Architecture Alternatives

for Maritime Dominance in

- Unmanned Vehicles Complement But **Cannot Replace Manned Platforms**
- Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 **Timeframe**
 - Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
 - Utilizes Distributed Communications with 100nm Physical Platform Distribution
 - Employs Decentralized Command & Control Structure
 - Is Cost Effective Relative to Other Alternatives

Wayne E. Meyer Institute of Sy

Naval Postgra

- **Distributed Communications**
 - Faster Dissemination of Information
 - Minimum Impact on Throughput with Node Failures
- Decentralized Command and Control
 - Shorter Reaction Times
 - Less Network Demand
 - -Single C2 Node Failure Avoidance
 - 100 nm Platform Distribution
 - -Superior Overall Performance

Acknowledgments

- Family and Friends
- Project Advisor Dr. Huynh
- Military Advisor- CAPT Kline
- Supporting Temasek Defense Systems Institute Teams
- Department of Defense Organizations and Defense Industry
- Professors

Questions and Answers

Questions May Be Reserved for the Break Out Session at 1300 in the Bullard Hall Computer Lab (If So

• Report and Presentation Will Be Available After 18 June 2004

http://www.nps.navy.mil/SEA/MaritimeDomi

Backup Slides

Differences in

Architectures

Architecture 1	Architecture 2	Architecture 3
CVN	CVN	CVN
SH-60	SH-60	SH-60
E-3 AWACS	E-3 AWACS	E-3 AWACS
CG	CG	DDX
DDG	DDG	CGX
SSN	SSN	Insertion UUV
E2-C	E2-C	Multi-Mission USV
F/A-18	F/A-18	Strik UAV
E-8 JSTARS	E-8 JSTARS	Medium-Sized Multi-Mission UAV
P-3	LCS	LCS
CH-53	MIW UUV	MIW UUV
MH-53	ASW UUV	ASW UUV
F-14	JSF	JSF
S-3	Large Surveillance UAVs	Large Surveillance UAVs
E/A-6B	Medium-Sized Surveillance UAVs	Medium-Sized Surveillance UAVs
AH-1	Small Surveillance UAVs	Small Surveillance UAVs
B-2	F-16	
B-52	F/A-22	
F-117	Multi-Mission Aircraft	

All Architectures

Arch1 and Arch 2

Arch 2 and Arch 3

TDSI Inputs to Integrated

Underwater UV Network

TDSI Inputs to Integrated

LAND SYSTEMS Surveillance Recommended Sensors of Chapter Gaps Parameters of FOPEN/SAR Center Frequency 440 MHz BW 19.38 MHz Peak Power 1000 W Average Power 19 W Azimuth 3dB Beam Width 19° Elevation 3dB Beam Width 38° Nominal Gain 14 dB Parameters of UV craft carrier Length 11.08 m Width 2.286 m Height 2.238 m Weight <15,000 kg Max Depth 50 m Range 150 nm Average Speed 6 kts Endurance 72 hrs Deployment methods LPD well deck Helo drop Submarine launch

Number/type of UVs carried

5 Golden Eye UAVs 20 iSTAR UAVs 4 REMUS UUVs

6 TALON Robots UGV

- Visibility and Management of Operating and Support Costs (VAMOSC) Database from NCCA
- Air Force Total Ownership Cost (AFTOC)
 Database from AFCAA
- Operating and Support Management Information System (OSMIS) Database from USACEAC
- Jane's Online
- Navy and Air Force Online Fact Files
- Federation of American Scientists (FAS)
- Defense Automated Cost Information System (DACIMS) Database from DCARC

Platform Cost Assumptions

- O&S Costs for USVs and UUVs Not Available
- Total Ownership Costs (TOC) Based on 10 year Service Life

Surveillance Algorithm Annual Surveillance Algorithm

Communications Algorithm

Battle Management Algorithm

Engagement Algorithm

Bounded and Weighted VSD ii Minimize

1. Maritime Dominance

- a. Surveillance (.3)
 - i. Detection (.6 / .18)
 - 1. Coverage Capability (.4 / .072)
- Area

- a. Average Time to Establish Complete Coverage
- b. Ratio Area Covered / Total Search

Area

- c. Coverage Factor (Confidence)
- 2. Probability of Detection (.6 / .108)
 - a. Average System Probability of

Detection

- ii. Tracking (.4 / .12)
 - 1. Tracking Capability (1 / .12)
- a. Ratio Contacts of Interest (COI) tracked / Total COI
 - b. Average Number of Visits per COI
 - b. Threat Analysis and Evaluation (.2)
 - i. Identification (.7 / .14)
 - 1. ID Capability (.6 / .084)
 - a. Ratio COI's ID'd / Total COI
 - 2. Probability of False ID (.4 / .056)
 - a. Ratio of Incorrect ID's / Total ID's

ii. Minimize Risk (.3 / .06)

1. Reduced Exposure to Risk Capability (1 / .06)

Risk / Total

a. Ratio of Personnel Exposed to Personnel

b. Ratio of Casualties / Total

Personnel

- c. Battle Management (.2)
- i. Recognized Maritime Picture (RMP) (.6 / .12)
 - 1. RMP Capability (1 / .12)
 - a. Average Time to Establish 80%

of RMP

b. Ratio Correct COI's ID'd / Total

COI

- ii. Maximize Communication (.4 / .08)
 - 1. Communication Capability (1 / .08)
 - a. Ratio of Number of Assets Lost Communications /

Total Assets

- d. Engagement (.3)
 - i. Destroy / Disable Targets (.4 / .12)
 - 1. Engagement Capability (1 / .12)
 - a. Average Time to Kill 80% of

Targets

b. Ratio of Targets Engaged / Total

Assumptions and Constraints

- Calculations were done by approximating relative sizes of the UAVs to the manned systems they would be replacing.
- The calculations on the number UAVs capable of fitting on a carrier is based off the size of the predator UAV.
- We assumed that it would be possible to fold the wings in 2020 and that they would be capable of launching off and landing onto a carrier

UV Calculations

Arch 3								Arch 2				
		Wingspan	Length	Area	Total					Wingspan	Length	Area
25	Med Surveillance	40						58	Med Surveillance	40		1000
25	Med Strike	50			37500			14	JSF	30		
25	Med Multi	48							E-2	42	60	2520
14	JSF	30	45	1350				7	Sh-60	15	50	750
4	E-2	42						24	FA 18	29	55	1595
7	Sh-60	15	50	750	5250							
					129130	sq fl						
Current Carrier												
Current Carrier				Area	Total							
0	S-3	39	53									
	F/A-18 E/F	29										
	E-2	42										
	F-14	38										
	EA-6B	30										
	Sh-60	15										
/	311-00	13	30	750	3230							
					131120	sq ft	Approx. Carrier space					
	Ning Fold the win	ıgspan is appı	oxamatly 2	2/3 the size								
Arch 3								Arch 2				
		Wingspan		Area	Total					Wingspan		Area
	Med Surveillance	32							Med Surveillance	30		
	Med Strike	32	27					14	JSF	30		
	Med Multi	32							E-2	42		
	JSF	30							Sh-60	15		
	E-2	42						24	FA 18	29	55	1595
7	Sh-60	15	50	750	5250							
					129270	sq ft						
			26.66667	17.7777778								

V C C C C C C C C C C C C C C C C C C C									
Arch 1	Arch 2	Arch 3							
• 1 CVN	→ 1 CVN	→ 1 CVN							
• 2 CG	→ 2 CG	• 2 CGX							
• 4 DDG	• 2 DDG	• 2 DDX							
• 2 FFG	• 6 LCS • 2 SSN	→ 6 LCS							
• 2 SSN	• 2 SSGN	• 4 Multi-Mission							
• 1 MHC	• 4 USV	USV							
• 1 MCM	• 4 MIW UUV	• 4 MIW UUV							
• 1 LHA	• 4 ASW/ASUW	4 ASW/ASUW UUV							
	UUV	• 1 Long Range UV Insertion Platform							

Changes In Air Assets ANALYSIS

Arch 1

- 4 E2-C
- 10 SH-60-
- 36 F/A-18
- 2 P-3
- 5 CH-53
- 2 MH-53
- 14 F-14
- 8 S-3
- 5 E/A-6B
- 10 AH-1
- 1 E-3 AWACS
- 1 E-8 JSTARS
- 1 B-2
- 2 B-52
- 2 F-117

Arch 2

- 4 E2-C
- 7 SH-60
- 24 F/A-18
- 18 JSF
- 1 E-3 AWACS
- 1 E-8 JSTARS
- 6 F-16
 - 6 F/A-22
- 2 Large Surveillance **UAVs**
- 70 Medium Surveillance UAVs
- 20 Small Surveillance **UAVs**
- 2 Multi-Mission Aircraft (MMA)

Arch 3

- 6 SH-60
- 💃 14 JSF
- 1 E-3 AWACS
- 8 Large Surveillance UAVs
- 30 Medium
 - Surveillance UAVs
- 20 Small
 - Surveillance UAVs
- 30 Medium Strike **UAVs**
- 50 Medium Multi Mission UAVs

Land Forces Estimate in JAOA

Estimate of PRC forces

```
- 3 Infantry Divisions = 45K
```

$$-1$$
 Arty Division $= 15$ K

$$- Total = 60K$$

Estimate of JUMPVISA Coalition forces

$$- 1 MEB = 17K$$

$$-1 \text{ OFB} = 3K$$

$$- Total = 43K$$

IMPACT Table Breakdown

# Hits			
121	Mis	ssion Area I	De
112			
103	1	TBMD	
90	2	AAW	
77	3	Land	
41		Warfare	
36	4	SUW/USW	
21	5	LOC	
6			
3			
0		4.40	

Wayne E. Meyer Institute of Systems Engineering

148

P	roba	abilit	ty of	Kill
Displacem ent	Multiple	Number	Wt Mult	Р9Н)

25000

97,000

9.000

8,500

3.500

204,000

0.85

P(SHMK):

0.0061

0.0054

0.15

0.15

0.365

Probability of Missile Acquire

LPD-17

CVN

CG

DDG

LCS

Totals:

P(MA) =

P(MH) =

Ex-War

CVN

DDG

LCS

P(MA) =

P(MH) =

P(SHMK) =

Multiple = Number =

Wt Mult =

Hits to Kill =

P(H) =

CG

24.57

27.71

2.57

2.43

1.00

58.28571

Probability of Missile Hit: standard measure of missile accuracy

Number of ships in that class that are in the targeting area simultaneously

Number of hits required per class of ship to achieve mission kill
Naval Postgraduate School, Monterey, CA

Probability of Single Hit Missile Hill (per ship class)

6.00

1.00

4.00

9.00

13.00

33

147.43

27.71

10.29

21.86

13.00

220.2857

The number of times that a ship is more likely to be targeted than an LCS positioned near it based on size difference

Likelihood that a particular ship class will be target based on the number of ships in that class that are present

Weighted probability of hit for each ship class based on the numbers of that ship class in the area

0.669261

0.125811

0.046693

0.099222

0.059014

1

ANALYSIS

5

5

2

2

1

15

0.223087

0.041937

0.006226

0.01323

0.003934

0.288413

form of

COA 2.

Game Theory
Calculations:

China is 96%

adopt POA 1;

Weaken US

likely to

POA 1 - Repeated 150-200 missile raids (A/C)

POA 2 - Coordinated raid attacks at key assets

COA 1 - US waits for Chinese first strike

COA 2 - US first strike → reduce Chinese 50%

CHINA

POA 1

US wins; No WFA China wins; Loss 2 losses WFA COA 1 0.02.0 US US wins; China @ US wins; China @ US COA 2 55% 40% 76.78% likely to *Table is viewed from the Chinese perspective use some

Wayne E. Meyer Institute of Systems Engineering

SULT: US is unable to defend vs. ASM threat after

Modeling Tools Description

Higher Level Models Build on

Lower Level Models

Excel/SWAT

- Based on Physical Laws
 - High Fidelity
 - Limited Breadth
- Establishes
 Fundamental
 Physical
 Characteristics for all Other Models

ALWSE-MC

- Implements
 Concepts of
 Operation
 - Less Depth
 - Consideration of "Real World" Effects
 - Application of Tactical Environment
- Provides
 Performance
 Characteristics for
 Higher Level Models

Extend™

- Implements
 Process Algorithms
 to Provide
 - IncreasedBreadth
 - Abstraction
 - Assessment of Multiple Configurations of Variable Parameters
- Produces
 Comprehensive
 and Quantitative
 Results for
 Decision Making

Modeling Outputs

Excel/SWAT

 Engineering Physics Based Modeling Performed to Create Database Tables and Lateral Range Detection Curves for Sensors/Threats Pairs

ALWSE-MC

 Platform/Combat System Modeling Performed to Incorporate Operational Implementation of Sensors/Threats Pairs and Produce Time to Detection Data

ExtendTM

 Force/Theater Modeling Performed to Incorporate Multiple Architectural and Scenario Parameters and Provide the Necessary Outputs to Fulfill the Simulative Study Objectives

Land Systems Unmanned Vehicle Carrier Analysis

- Used ALWSE-MC to evaluate the area coverage by payload of the TDSI Land Systems Unmanned Vehicle Carrier
- 10 nm x 10 nm
- 4 UUV (search speed 3 kts)
- 5 Crawler UGV (search speed 1.3 ft/sec)
- 20 iStar UAV (search speed 30 kts)
- 6 Goldeneye UAV (search speed 30 kts)
- Area split horizontally between water and land
- UUVs conducted ladder search of area, UAVs/UGVs conducted random search patterns

Area Covered

- •Area divided into 25 ft x 25 ft squares
- •Color scheme scaled according to number of times square was visited
- •98.43% area covered in 22 hrs (maximum endurance of

Results

- Significant littoral surveillance capability can be achieved at distance with reduced risk to personnel
- Rapid, Modular Deployment options
- 150 nm operating range of Unmanned Vehicle Carrier
- 98.43% area (10 nm x 10 nm) covered in 22 hrs of operation

Engineering Models -Threat Signature Tool

							<u> </u>							
	nversion Table										_	1		
km/hr	m/s 720	200	Mach 0.6061	km/hr 1,098	m/s 305	Mach 0.92	42	Reflectance : Emissivity =	=	0.0100 4 0.9900		(
	738	205	0.6212	1,096	310			Pi =		3.14		1	3	
	756	210	0.6364	1,134	315	0.95	45	TA Radians =	=	0			1880 . 1	
	774 792	215 220	0.6515	1,152	320 325			Sensor Freq(M) =	3.0E+09 ◀	D			
	792 810	225	0.6667 0.6818	1,170 1,188	325 330									
	828	230	0.6970	1,206	335	1.01	52							
	846	235	0.7121	1,224	340			Reqd CNR		0.69	_			
	864 882	240 245	0.7273 0.7424	1,242 1,260	345 350	1.04		Power (watts Aperture Dia		000E+09	_			
	900	250	0.7576	1,278	355	1.07		Bandwidth (F		.00E+08_◀				
	918	255	0.7727	1,296	360	1.09		Freq (Hz)	3	.00E+09 ◀			Contract of	
	936 954	260 265	0.7879 0.8030	1,314 1,332	365 370	1.10		Noise figure Antenna Ten	nn (K)	1 300 ◀			THE STATE OF THE S	
	972	270	0.8182	1,350	375			Antenna Ten	ip (iv)	300		4000		
	990	275	0.8333	1,368	380	1.15			=					
	1,008 1.026	280 285	0.8485 0.8636	1,386 1,404	385 390	1.16								
	1,044	290	0.8788	1,422	395							- All Marie		
	1,062	295	0.8939	1,440	400	1.21						314		
	1,080	300	0.9091	1,458	405	1.22	73						and the same of th	
					ı								2.27.22	
	Threat Categories					l n .	$\tau P_{\tau} D^4 \sigma$	1/4	Pi =	3.14		Reflect =	0.0100	•
Threat ASCM-1	Length (m) 3.75	Diameter (m) 0.42	Reflectivity 0.1	RCS (m ²) 0.0138474	I <i>R</i> =	1	<u></u>	Pt (W) =	100	1 P	Naisa Fia	1 • •	
ASCM-1		8.9	0.42	0.1	0.0136474	[] 0427	kTBF(CNF	1) []	Sigma = T =	299.7	4	Noise Fig. =	1 1	
ASCM-3		11.6	0.92	0.1	0.0664424	TA (Rad) =	C	\ \	TBF =	299.7	•			
Ambient t	temp (K)	300				, ,	3000000000		CNR =	0.79	4			
			•			Ant Ap =	0.003		BW =	1.05E+08				
22/	sump	ΛŤΙ	inns	•		лилр –	0.003	, ,	DW -	1.032 100	-			
TOO	MITTI	U.	LOTIC	•		,	1)	_		4 b)				
D	roads	·i.	10 10	2DOC	٠ <u>+</u> ا	RCS	Length (m)		1	Length (m)				
D	Tuaus	TC	ie A	shec	<i>,</i>	(m^2)	ASCM \	Detection	Detection		Detection	Detection		
	- A 1	L_		1/0	1	Diameter	7.34	Range (m)	Range (nm	10.00	Range (m)	Range (nm)		
' K	<u>eflect</u>	ιa	nce	1/U.	1 [0.01	7.9E-07		9.0E-0	7.9E-07	1.6E-01	9.0E-05		
•					0.02	3.1E-06				2.3E-01				
()	aive\	r',)	vlind	ler		0.03	7.1E-06				2.8E-01			
Ogive/Cylinder					0.04	1.3E-05				3.3E-01				
S	hips:	\mathbf{D}	isnla	acen	nent	0.05	2.0E-05				3.7E-01			
J.	mps.	ע	12	1001			2.8E-05		2.2E-0		4.0E-01			
D		1_	۸ ۱	l		0.07	3.8E-05	4.3E-01	2.4E-0	3.8E-05	4.3E-01	2.4E-04		

Johnson's Criteria (IR Resolution)
Wayne E. Meyer Institute of Systems Engineering

0.08

5.0E-05

4.6E-01

Raleigh Atmospheric

2.5E-04

2.5E-04

5.0E-05

4.6E-01

Engineering Models -Representative P det Curves

- Acoustic/RADAR/EO-IR Longitudinal Probability of **Detection Curves**
- SA/SS/AS Envelopes Characterized By Unclassified

Physics Models

Concept of Operations 1

- Employment of U Assets
 - Introduce LessCapable/less CostAssets First
 - More AdvancedAssets Follow
- Search Pattern
 - Alternating WaffleSearch

stems Engineering

Concept of Operations 2⁻

- Distributed
 Communications
 - All Platforms Have Communication Capability
- Decentralized Command and Control
 - Performed by Manned Platforms

- Medium Platform Distribution
 - 150 Nautical Mile Distance

Global Weight Sensitivity Analysis BU

•Insensitivity of Global Weights within Measures of Effectiveness

Measures of Effectiveness Were Within Insensitivity Range

Scenario Weight Sensitivity Analysis BU

Insensitivity of Architecture Selection to Scenario Weights

Model Development Processian

- •Allowed Efficient
 Extend™ Model
 Development in
 Compliance with
 Schedule
- Focused and Standardized Programmer/Modeler Efforts
- Coordinated Modeling Efforts With Data Collectors and Post-

yne E. Meyer Institute of

Naval Postgi

Extend Model Design

for Maritime Dominance in

- **•**Unmanned Vehicles Complement But Cannot Replace Manned Platforms
- •Recommended System of Systems Enabling SEA BASING and SEA STRIKE in 200 nm by 200 nm Littoral Operation Area in 2020 Timeframe
 - Consists of Unmanned/Manned Vehicle Ratio of Approximately 1.5 to 1
 - Utilizes Distributed Communications with 100nm Physical Platform Distribution
 - Employs Decentralized Command & Control Structure
 - Is Cost Effective Relative to Other Alternatives

Wayne E. Meyer Institute of Sy

Naval Postgra

- Distributed Communications
 - Faster Dissemination of Information
 - Minimum Impact on Throughput with Node Failures
- Decentralized Command and Control
 - Shorter Reaction Times
 - Less Network Demand
 - -Single C2 Node Failure Avoidance
- 100 nm Platform Distribution
 - -Superior Overall Performance

