AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1 - 16 (Canceled)

Claim 17 (Currently Amended): A semiconductor light-receiving device for a high-speed and large-capacity optical fiber communication system comprising:

- a) a semi-insulating substrate;
- <u>b</u>) a semiconductor layer of a first conduction type that is formed on the semi-insulating substrate;
 - c) a buffer layer of the first conduction type that is formed on the semiconductor layer;
- <u>d</u>) a light absorption layer that is formed on the buffer layer and generates carriers in accordance with incident light;
- e) a semiconductor layer of a second conduction type that is formed on the light absorption layer; and
- <u>f</u>) a high-concentration semiconductor intermediate tunneling layer of the first conduction type that is interposed between the buffer layer and the light absorption layer and has a higher

impurity concentration than the buffer layer, the semiconductor intermediate tunneling layer allowing

electrons to pass therethrough to the buffer layer due to a tunnel effect, wherein said semi-insulating

substrate and layers b) - f) are arranged to form a semiconductor light-receiving device, the high-

concentration semiconductor intermediate tunneling layer and the buffer layer being made of an

identical material.

Claim 18 (Original): The semiconductor light-receiving device as claimed in claim 17,

wherein the impurity concentration of the buffer layer is lower than 1×10^{17} cm⁻³.

Claim 19 (Previously Presented): The semiconductor light-receiving device as claimed in

claim 17, wherein the high-concentration semiconductor intermediate tunneling layer has an impurity

concentration of 2×10^{18} cm⁻³, and a film thickness of 100 nm or smaller.

Claim 20 (Previously Presented): The semiconductor light-receiving device as claimed in

claim 17, further comprising a contact layer of the first conduction type that is interposed between

the semi-insulating substrate and the buffer layer, the contact layer having a high impurity

concentration, with a predetermined potential being supplied to the contact layer through an

electrode connected to the contact layer.

-3-

Claim 21 (Original): The semiconductor light-receiving device as claimed in claim 17,

wherein at least the light absorption layer and the semiconductor layer of the second conduction type

form a mesa structure, with light entering the light absorption layer through a side surface of the light

absorption layer that is exposed in a process of forming the mesa structure.

Claim 22 (Canceled)

Claim 23 (Currently Amended): A semiconductor light-receiving device for a high-speed

and large-capacity optical fiber communication system comprising:

<u>a)</u> a semiconductor substrate of a first conduction type;

b) a buffer layer of the first conduction type that is formed on the semiconductor substrate

and has a lower impurity concentration than the semiconductor substrate;

c) a light absorption layer that is formed on the buffer layer and generates carriers in

accordance with incident light;

d) a semiconductor layer of a second conduction type that is formed on the light absorption

layer; and

e) a high-concentration semiconductor intermediate tunneling layer of the first conduction

type that is interposed between the buffer layer and the light absorption layer and has a higher

impurity concentration than the buffer layer, the semiconductor intermediate tunneling layer allowing

-4-

U.S. Patent Application Serial No. 10/665,204

Amendment filed April 17, 2007

Reply to OA dated January 18, 2007

electrons to pass therethrough to the buffer layer due to a tunnel effect, wherein said semiconductor

substrate and layers b) - e) are arranged to form a semiconductor light-receiving device, the high-

concentration semiconductor intermediate tunneling layer and the buffer layer being made of an

identical material.

Claim 24 (New): The semiconductor light-receiving device as claimed in claim 17, wherein

the identical material is InP.

Claim 25 (New): The semiconductor light-receiving device as claimed in claim 23, wherein

the identical material is InP.

-5-