最小二乘解

2021年10月19日

1 Ax = b 的最小二乘解

本文的目标是求方程 Ax = b 的最小二乘解, 即找到使得 $||Ax - b||_2$ 最小的 x.

Definition 1. 设 $A \in M_{N \times p}(\mathbb{C})$. 若 $A^{\dagger} \in M_{p \times N}(\mathbb{C})$ 满足

- (i) AA^{\dagger} 和 $A^{\dagger}A$ 均为 Hermite 矩阵(共轭转置等于本身);
- (ii) $AA^{\dagger}A = A$;
- (iii) $A^{\dagger}AA^{\dagger} = A^{\dagger}$.

则称 A^{\dagger} 是 A 的 Moore-Penrose 广义逆.

先交代一些记号. 对任意函数 $f: \mathcal{X} \to \mathbb{R}$, 定义

$$\underset{x}{\operatorname{arg\,min}} \ f(x) := \{ x \in \mathcal{X} : \ f(x) = \underset{t}{\operatorname{min}} \ f(t) \}.$$

下面是本文的主要结论.

Theorem 2. 设 $A \in M_{N \times p}(\mathbb{C}), b \in M_{N \times 1}(\mathbb{C}).$ 则

$$\underset{x}{\operatorname{arg\,min}} \|Ax - b\|_{2} = \{A^{\dagger}b + (I_{p} - A^{\dagger}A)y : y \in M_{p \times 1}(\mathbb{C})\},\$$

其中 A^{\dagger} 是 A 的 Moore-Penrose 广义逆. 此外, $A^{\dagger}b$ 是最小二乘解中 2 范数最小的.

Remark 3. 在 A 比较特殊时, Ax = b 有唯一解.

- (i) 当 *A* 可逆时, Ax = b 有唯一解 $\hat{x} = A^{-1}x$;
- (ii) 当 N > p 且 rank A = p 时, Ax = b 有唯一解 $\hat{x} = (A^*A)^{-1}A^*b$;
- (iii) 当 N < p 且 rank A = N 时, Ax = b 有唯一解 $\hat{x} = A^*(AA^*)^{-1}b$.

2 正交投影算子

Definition 4. 设 \mathcal{X} 是 Banach 空间. 线性映射 $P: \mathcal{X} \to \mathcal{X}$ 若满足

$$P^2 = P$$
.

则称 $P \in \mathcal{X}$ 上的投影算子. 记

$$\mathcal{R}(P) := \{ Px : x \in \mathcal{X} \} \quad \text{ } \exists \quad \mathcal{N}(P) := \{ x \in \mathcal{X} : Px = \theta \}.$$

Proposition 5. 设 \mathcal{H} 是 Hilbert 空间, P 是 \mathcal{H} 上的有界投影算子. 则 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$ 当且仅当 P 是对称算子.

证明. 先证" \Rightarrow ". 设 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$, 则

$$(Px, y) = (Px, Py + (I - P)y) = (Px, Py)$$

= $(Px + (I - P)x, Py) = (x, Py)$.

再证 " \Leftarrow ". 设 P 是对称算子, 则对 $\forall x \in \mathcal{R}(P), \forall y \in \mathcal{N}(P),$ 存在 $z \in \mathcal{H}$ 使得 x = Pz, 因此

$$(x,y) = (Pz,y) = (z, Py) = 0.$$

故 $\mathcal{R}(P)$ ⊂ $[\mathcal{N}(P)]^{\perp}$. 又因为由正交分解有

$$\mathcal{N}(P) \oplus [\mathcal{N}(P)]^{\perp} = \mathcal{H} = \mathcal{N}(P) \oplus \mathcal{R}(P),$$

因此 $\mathcal{R}(P) = [\mathcal{N}(P)]^{\perp}$.

Definition 6. 有界对称投影算子被称为正交投影算子(orthogonal projection).

Lemma 7. 设 \mathcal{X} 是 Banach 空间且 P 是 \mathcal{X} 上的投影算子. 则 $\mathcal{N}(P) = \mathcal{R}(I-P)$.

3 Moore-Penrose 广义逆的一些性质

Lemma 8. Moore—Penrose 广义逆存在且唯一.

证明. 先证存在性. 用 SVD 分解构造. 严格证明待补.

再证唯一性. 设 $P, Q \in M_{p \times N}(\mathbb{C})$ 满足 Definition 1 中条件, 则

$$AP = AQAP = (AQ)^*(AP)^* = Q^*(APA)^* = Q^*A^* = AQ,$$

从而

$$P = APA = AQA = Q.$$

Lemma 8 证毕. □

Proposition 9. 设 $A \in M_{N \times p}(\mathbb{C})$ 且 $A^{\dagger} \in M_{p \times N}(\mathbb{C})$ 是 A 的 Moore–Penrose 广义逆. 则

- (i) $(A^*)^{\dagger} = (A^{\dagger})^*$;
- (ii) $\mathcal{N}(A) = \mathcal{N}(A^{\dagger}A);$
- (iii) AA^{\dagger} 是正交投影算子且 $\mathcal{R}(AA^{\dagger}) = \mathcal{R}(A)$;
- (iv) $A^{\dagger}A$ 是正交投影算子且 $\mathcal{R}(A^{\dagger}A) = \mathcal{R}(A^*)$.

证明. (i) 和 (ii) 是显然的. 下证 (iii). 容易得到 AA^{\dagger} 是正交投影算子且 $\mathcal{R}(AA^{\dagger}) \subset \mathcal{R}(A)$, 故只需证 $\mathcal{R}(A) \subset \mathcal{R}(AA^{\dagger})$. 事实上, 对任意 $y \in \mathcal{R}(A)$, 存在 $x \in M_{p \times 1}(\mathbb{C})$ 使得 y = Ax, 故

$$y = Ax = AA^{\dagger}Ax = AA^{\dagger}y \in \mathcal{R}(AA^{\dagger}).$$

因此 $\mathcal{R}(A) \subset \mathcal{R}(AA^{\dagger})$, (iv) 证毕.

再证 (iv). 显然 $A^{\dagger}A$ 是正交投影算子, 且由 Definition 1(i) 和本命题的 (iii)知

$$\mathcal{R}(A^{\dagger}A) = \mathcal{R}(A^*(A^{\dagger})^*) = \mathcal{R}(A^*(A^*)^{\dagger}) = \mathcal{R}(A^*),$$

Lemma 10. 设 $A \in M_{N \times p}(\mathbb{C})$ 且 $A^{\dagger} \in M_{p \times N}(\mathbb{C})$ 是 A 的 Moore–Penrose 广义逆. 则

- (i) 当 A 可逆时, $A^{\dagger} = A^{-1}$;
- (ii) 当 N > p 且 rank A = p 时, $A^{\dagger} = (A^*A)^{-1}A^*$;
- (iii) $\stackrel{\text{def}}{=} N$

4 Theorem 2 的证明

Theorem 2 的证明. 对任意 $x \in M_{p \times 1}(\mathbb{C})$, 由 Proposition 9(iii) 知

$$||Ax - b||_2 = ||Ax - AA^{\dagger}b||_2 + ||AA^{\dagger}b - b||_2.$$

因此 Ax=b 的最小二乘解是 $Ax=AA^\dagger b$ 的解. 注意到 $A^\dagger b$ 是 $Ax=AA^\dagger b$ 的一个解, 故 $A^\dagger b+\mathcal{N}(A)$ 是 $Ax=AA^\dagger b$ 的全部解. 又由 Proposition 9(ii)(iii) 和 Lemma 7 知,

$$\mathcal{N}(A) = \mathcal{N}(A^{\dagger}A) = \mathcal{R}(I - A^{\dagger}A) = \{ (I_p - A^{\dagger}A)y : y \in M_{p \times 1}(\mathbb{C}) \}.$$

Theorem 2 证毕.

Remark 3 的证明. 由 Lemma 10 可直接得到.