Homework 4

GitHub: https://github.com/pballou/ECGR_4105/tree/master/Homework/homework_4

- 1. Use the cancer dataset to build an SVM classifier to classify the type of cancer.
 - a. From my testing, the number of components that gives the best results is (K = 10). This is using min-max scaler, C (regularization parameter) of 10, and rbf as the kernel.
 - b. Accuracy, precision, and recall over 30 K's.

c. Plot and compare the accuracies for different kernels. In order: rbf, sigmoid, poly, linear.

- d. Compare your results against the logistic regression that you have done in homework 3.
 - i. Homework 3 results:

	precision	recall	f1-score	support
ø	1.00	0.95	0.97	40
1	0.97	1.00	0.99	74
accuracy			0.98	114
macro avg	0.99	0.97	0.98	114
weighted avg	0.98	0.98	0.98	114

ii. Homework 4 results:

	precision	recall	f1-score	support
0.0	1.00	1.00	1.00	40
1.0	1.00	1.00	1.00	74
accuracy			1.00	114
accuracy	4 00			
macro avg	1.00	1.00	1.00	114
weighted avg	1.00	1.00	1.00	114

- While homework 3 was able to predict very well, the SVC that we used in this homework was much more accurate than the logistic regression from homework 3.
- 2. Use SVR model to predict housing price.
 - a. Compare your results against linear regression with regularization loss that you already did in homework1.
 - i. Homework 1 results:

Min max training cost part b: 0.001434780826566402 Min max testing cost part b: 0.0015886939687538653

ii. Homework 4 results:

Train set MSE: 0.006657826026871647 Test set MSE: 0.0073137120497441905 Train set R2 score: 0.7479439736466951 Test set R2 score: 0.7069932866645069

Comparing the results, the linear regression from homework seems to have performed better than the SVR we used in this homework. From what I understand, the SVR should be a better model than linear regression, so I think my results in homework 1 were incorrect for some reason, but I am not sure why. b. From my testing, the number of components that gives the best results is (K = 9). This is using min-max scaler, C (regularization parameter) of 1, and rbf as the kernel.

c. Plot and compare the accuracies for different kernels. In order: rbf, sigmoid, poly, linear.

- As we can see, the rbf kernel performs best. This graph plots the actual Y values from the test set vs the predicted values from the final model.

