CS202 Computer Organization HW#1

Problem 1.

For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, and i are given and could be considered 32-bit integers as declared in a C program. Use a minimal number of MIPS assembly instructions.

$$f = g + (h - 5);$$

Problem 2.

For the following C statement, what is the corresponding MIPS assembly code? Assume that the variables f, g, h, i, and j are assigned to registers \$s0, \$s1, \$s2, \$s3, and \$s4, respectively. Assume that the base address of the arrays A and B are in registers \$s6 and \$s7, respectively.

$$B[8] = A[i - j];$$

Problem 3. The table below shows 32-bit values of an array stored in memory.

Address	Data
24	2
28	4
32	3
36	6
40	1

- 1) For the memory locations in the table above, write C code to sort the data from lowest to highest, placing the lowest value in the smallest memory location shown in the figure. Assume that the data shown represents the C variable called *Array*, which is an array of type int, and that the first number in the array shown is the first element in the array. Assume that this particular machine is a byte-addressable machine and a word consists of four bytes.
- 2) For the memory locations in the table above, write MIPS code to sort the data from lowest to highest, placing the lowest value in the smallest memory location. Use a minimum number of MIPS instructions. Assume the base address of *Array* is stored in register \$s6.

Problem 4.

Provide the type, assembly language instruction, and binary representation of instruction described by the following MIPS fields (all the numbers are in deximal): op=0, rs=3, rt=2, rd=3, shamt=0, funct=34