Connessione alla propria macchina

- 1. Aprire il client SSH.
- 2. <u>Posizionarsi nella directory di salvataggio del file .pem</u> allegato alla mail
- 3. Tramite il client SSH, utilizza il seguente comando al fine di impostare le autorizzazioni del file della chiave privata in **read only** per l'utente owner.

chmod 400 keyPairName.pem

- 4. Nella finestra del terminale, utilizzare il comando ssh per connettersi all'istanza. Specificare il percorso e il nome del file della chiave privata (.pem), il nome utente per l'istanza e il nome DNS pubblico per l'istanza.
- 5. Utilizzare la username **centos** per la connessione al sistema

Esempio:

ssh -i "keyPairName.pem"
centos@ec2-xx-xxx-xx-x.eu-central-1.compute.amazonaws.com

Per passare all'utente **root** utilizzare il comando "**sudo su -**" [centos@ip-xxx-xx-xx-xxx ~]\$ **sudo su -**

Exercise 1: Managing Files with Shell Expansion and Command substitution

- Creare sotto il path /exam/exercise1 le directory exercise1_directoryX con X compreso tra 1 e 5
- all'interno di /exam/exercise1/exercise1_directoryX creare i files fileY_DATE.txt
 - o con Y compreso tra 1 e 10
 - DATE la data di creazione file nel formato Y-m-d-H:M:S (date +%Y-%m-%d-%H:%M:%S)

Exercise 2: Special file permission

- Creare una directory sotto /exam/exercise2 dove gli utenti che possono accedere al gruppo collaboration potranno condividere files
- Tutti i file creati sotto la directory /exam/exercise2 dovranno essere assegnati automaticamente al gruppo collaboration

Exercise 3: User and Group

- Create due nuovi gruppi students e exam
 - o students con GID 2100
 - o exam con GID 2101
- Creare gli utenti appartenenti al gruppo exam: rossi e morini
 - o l'utente **rossi** avrà le seguenti caratteristiche:
 - **UID** 3100
 - home directory /home/exam/rossi
 - dovrà cambiare password al primo accesso
 - dovrà poter accedere a file e directory appartenenti al gruppo students
 - o l'utente **morini** avrà le seguenti caratteristiche:
 - **UID** 3101
 - dovrà cambiare password al primo accesso e successivamente una volta al mese
 - gruppi secondari users gamers e wheel
 - utilizzare come shell di default sh al posto di bash

Exercise 4: alias command

- Creare i seguenti aliases commands disponibili a tutti gli utenti del sistema:
 - o "Isl"
 - comando: Is -lah
- Creare un alias command disponibile a tutti gli utenti del sistema chiamato "psuser" il quale restituisca la lista di tutti i processi attivi del solo utente che lancia il comando.

Exercise 5: Systemd

- Installare sul vostro sistema il servizio vsftpd
- Il servizio deve essere attivo al boot della macchina

Exercise 6: Bash script

- Create uno script bash sotto /exam/exercise6 chiamato check_arguments.sh con le seguenti caratteristiche:
 - accetti in ingresso un lista di argomenti contenenti una lista di path verso file e/o directory
 - lo script dovrà analizzare la lista di TUTTI gli argomenti passati e se l'argomento passato è:
 - un file stampi la stringa: ArgName is a regular file"
 - una directory stampi la stringa: ArgName is a directory
 - un puntamento a qualcosa di non esistente: ArgName File or Directory not found
 - altrimenti dovrà stampare la stringa: is another type of file
 - se non verrà passato nulla in ingresso allo script stamperà un generico messaggio di errore

example:

bash /exam/exercise6/check_arguments.sh /etc/passwd /etc
/usr/tmp /foo

/etc/passwd is a regular file
/etc is a directory
/usr/tmp is another type of file
/foo File or Directory not found

Exercise 7: Docker

- La directory /exam/exercise7 dovrà contenere i files:
 - o Dockerfile-sidecar
 - o Dockerfile-httpd
 - o sidecar.sh
 - docker-compose.yml
- Dockerfile-sidecar il compito del container sarà quello di scaricare ad intervalli di 1 ora il contenuto del repository GitHub: https://github.com/lcavator/exam3.git
 - o l'immagine di base da utilizzare sarà: cavatortaluca/exam:centos8
 - il contenuto sarà scaricato su directory a piacere all'interno del container in bind con il sistema host sul path: /exam/exercise7/httpd/data
 - dovrete installare il software git come unico prerequisito alla immagine sidecar (yum install -y git)
- **sidecar.sh** sarà lo script bash che avrà in carico l'aggiornamento del repository git ogni ora.
 - il comando per scaricare dal repository GitHub è il seguente:
 - Fase di inizializzazione solo la prima volta:

```
cd /path/inside/container
git init
git remote add origin https://github.com/lcavator/exam3.git
git fetch
```

Comando per aggiornare il contenuto:

git pull origin master

- Dockerfile-httpd il compito del container sarà quello di esporre un server httpd la cui DocumentRoot monterà in bind dal sistema host la directory /exam/exercise7/httpd/data in read only mode (il container non avrà possibilità di scrivere su /exam/exercise7/httpd/data)
 - potete utilizzare l'immagine che volete (se centos8 utilizzate cavatortaluca/exam:centos8)
- **docker-compose.yml** verrà utilizzato per avviare entrambi i servizi in container, ed eventualmente ma non obbligatorio gestirne la build
 - Il container httpd dovrà essere raggiunto dal sistema host su porta 8080
 - N.B per montare in read only mode una directory, passarla al container nel seguente modo

```
volumes:
```

- /path/on/host:/path/inside/container:ro

esempio:

```
# curl localhost:8080
Hello exam3!!!!!!!
```

Question:

 Doveste avviare i container descritti nell'esercizio 7 all'interno di un cluster Kubernetes. Di quali oggetti avreste bisogno sulla base di quanto visto durante il

corso? Se ne dia una breve descrizione e motivazione in questo specifico caso a

parole.