Neuron Model

Maria Marinova

he aim of this report is to highlight different cases of neuron modelling. The analysis is largely based on graphs, and the language of implementation is Python.

Q1. Integrate and fire model

Q2. Minimum current for action potential

$$I_e = \frac{V_t - E_l}{R_m} \tag{1}$$

$$I_e = \frac{-40 - (-70)}{10} \tag{2}$$

$$I_e = \frac{30}{10} = 3.0nA \tag{3}$$

Q3. Integrate and fire model with lower than the minimum current

The current is lower that the current needed for a spike, hence no spikes are observed.

he aim of this report is to highlight different Q4. Firing rate as function of the input current

Q5. Interprojection of two neurons

Q6. Integrate and fire model with potassium current

Q7. Hodgkin-Huxley neuron