

Solving Dynamic Models with Sparse Grids

Simon Scheidegger simon.scheidegger@unil.ch January 18th, 2019

Cowles Foundation – Yale University

Today's Roadmap

- Reminder Dynamic Programming (DP)
- II. A growth model solved by DP and Sparse Grids
- III. Parallel Sparse Grid Dynamic Programming
- IV. Time Iteration and SGs (applied to the Ramsey Model)

Recall: Infinite-Horizon Dynamic Programming

e.g. Stokey, Lucas & Prescott (1989), Judd (1998), ...

Want to choose an infinite sequence of "controls" $\{u_s\}_{s=0}^{\infty}$ to maximize

$$\sum_{t=0}^{\infty} \beta^t r(x_t, u_t) \quad \text{s.t.} \quad x_{t+1} = g(x_t, u_t) \quad \beta \in (0, 1)$$

(Discrete time) Dynamic programming seeks a **time-invariant policy function** h mapping the state x_t into the control u_t , such that the sequence $\{u_s\}_{s=0}^{\infty}$ generated by iterating

$$u_t = h(x_t)$$
$$x_{t+1} = g(x_t, u_t)$$

starting from an initial condition solves the original problem.

r in the economic context: often a so-called `utility function'.

r concave: reflects the notion "more is better"; marginal benefit tends to zero.

Recall: Infinite-Horizon Dynamic Programming

To find the policy function h, we need to know another function (**`Value Function**') that expresses optimal value of the original problem

$$V(x_0) = \max_{\{u_s\}_{s=0}^{\infty}} \sum_{t=0}^{\infty} \beta^t r(x_t, u_t)$$

 \rightarrow Task: solve jointly for V(x), h(x) that are linked by the **Bellman equation**

$$V(x) = \max_{u} \{ r(x, u) + \beta V[g(x, u)] \}$$
 (A)

 \rightarrow The maximizer of (A) is a policy function h(x) that satisfies

$$V(x) = r[x, h(x)] + \beta V\{g[x, h(x)]\}$$

Value Function Iteration

The solution is approached in the limit as $j \to \infty$ by iterations on at every coordinate of the discretized grid.

x: grid point, describes your system. State-space potentially high-

dimensional.

`old solution'

high-dimensional function, approximated by sparse grid Interpolation method on which we Interpolate.

Use-case for (adaptive) sparse grids

Example: Infinite-Horizon Stochastic DP

If uncertainty is present, previous Bellman equation can be re-written as

$$V\left(x\right) = \max_{u} \{r\left(x,u\right) + \beta E\left[V\left[g\left(x,u,\epsilon\right)\right]|x\right]\}$$
 s.t.

$$x_{t+1} = g\left(x_t, u_t, \epsilon_{t+1}\right)$$

The solution is approached by iterations on

$$V_{j+1}(x) = \max_{u} \{ r(x, u) + \beta E[V_{j}[g(x, u, \epsilon)] | x] \}$$

Note: If we have discrete shocks, we may have to carry around multiple sparse grids that need to be updated!

Growth Model & Dynamic Programming & ASG

To demonstrate the capabilities of sparse grids, we consider an infinite-horizon discrete-time multi-dimensional optimal growth model (see, e.g., Scheidegger & Bilionis (2017), and references therein).

The model has few parameters and is relatively easy to explain, whereas the dimensionality of the problem can be scaled up in a straightforward but meaningful way.

- \rightarrow state-space depends linearly on the number of **D** sectors considered.
- \rightarrow there are D sectors with **capital** $\mathbf{k}_t = (k_{t,1},...,k_{t,D})$

and elastic **labour supply** $\mathbf{l}_t = (l_{t,1},...,l_{t,D})$

Growth model

The production function of sector i at time t is $f(k_{t,i}, l_{t,i})$, for i = 1, ..., D.

Consumption: $\mathbf{c}_t = (c_{t,1}, ..., c_{t,D})$

Investment of the sectors at time t: $\mathbf{I}_t = (I_{t,1}, ..., I_{t,D})$

→ The goal now is to find **optimal consumption** and **labour supply decisions** such that expected total utility over an infinite time horizon is maximized.

Model

$$V_{0}(\mathbf{k}_{0}) = \max_{\mathbf{k}_{t}, \mathbf{I}_{t}, \mathbf{c}_{t}, \mathbf{I}_{t}, \mathbf{\Gamma}_{t}} \left\{ \sum_{t=0}^{\infty} \beta^{t} \cdot u(\mathbf{c}_{t}, \mathbf{I}_{t}) \right\},$$

$$s.t.$$

$$k_{t+1,j} = (1 - \delta) \cdot k_{t,j} + I_{t,j} \qquad j = 1, ..., D$$

$$\Gamma_{t,j} = \frac{\zeta}{2} k_{t,j} \left(\frac{I_{t,j}}{k_{t,j}} - \delta \right)^{2}, \quad j = 1, ..., D$$

$$\sum_{j=1}^{D} (c_{t,j} + I_{t,j} - \delta \cdot k_{t,j}) = \sum_{j=1}^{D} (f(k_{t,j}, l_{t,j}) - \Gamma_{t,j})$$

Model (II)

Convex adjustment cost of sector j: $\Gamma_t = (\Gamma_{t,1}, ..., \Gamma_{t,D})$

Capital depreciation: δ

Discount factor:

Recursive formulation

$$V(\mathbf{k}) = \max_{\mathbf{I},\mathbf{c},\mathbf{l}} \left(u(c,l) + \beta \left\{ V_{next}(k^+) \right\} \right),$$

$$s.t.$$

$$k_j^+ = (1 - \delta) \cdot k_j + I_j \qquad j = 1, ..., D$$

$$\Gamma_j = \frac{\zeta}{2} k_j \left(\frac{I_j}{k_j} - \delta \right)^2, \quad j = 1, ..., D$$

$$\sum_{j=1}^{D} \left(c_j + I_j - \delta \cdot k_j \right) = \sum_{j=1}^{D} \left(f(k_j, l_j) - \Gamma_j \right)$$

where we indicate the next period's variables with a superscript "+". $\mathbf{k} = (k_1, ..., k_D)$ represents the state vector, $\mathbf{l} = (l_1, ..., l_D)$, $\mathbf{c} = (c_1, ..., c_D)$, and $\mathbf{I} = (I_1, ..., I_D)$ are 3D control variables. $\mathbf{k}^+ = (k_1^+, ..., k_D^+)$ is the vector of next period's variables. Today's and tomorrow's states are restricted to the finite range $[\underline{\mathbf{k}}, \overline{\mathbf{k}}]^D$, where the lower edge of the computational domain is given by $\underline{\mathbf{k}} = (\underline{k_1}, ..., \underline{k_D})$, and the upper bound is given by $\overline{\mathbf{k}} = (\overline{k_1}, ..., \overline{k_D})$. Moreover, $\mathbf{c} > 0$ and $\mathbf{l} > 0$ holds component-wise.

Utility function etc.

Productivity:
$$f(k_j, l_j) = A \cdot k_i^{\psi} \cdot l_i^{1-\psi}$$

Utility:
$$u\left(\mathbf{c},\mathbf{l}\right) = \sum_{i=1}^{d} \left[\frac{(c_i/A)^{1-\gamma} - 1}{1-\gamma} - (1-\psi) \frac{l_i^{1+\eta} - 1}{1+\eta} \right]$$

Terminal Value function: $V^{\infty}\left(\mathbf{k}\right)=u\left(f(k,\mathbf{e}),\mathbf{e}\right)/(1-\beta)$

where \mathbf{e} is the unit vector

Parametrization

Value function iteration

$$V(\mathbf{k}) = \max_{\mathbf{I},\mathbf{c},\mathbf{l}} \left(u(c,l) + \beta \left\{ \underbrace{V_{next}(k^+)}_{s.t.} \right\} \right),$$

$$s.t.$$

$$k_j^+ = (1 - \delta) \cdot k_j + I_j \quad , \quad j = 1, ..., D$$

$$\Gamma_j = \frac{\zeta}{2} k_j \left(\frac{I_j}{k_j} - \delta \right)^2, \quad j = 1, ..., D$$

$$\sum_{j=1}^{D} \left(c_j + I_j - \delta \cdot k_j \right) = \sum_{j=1}^{D} \left(f(k_j, l_j) - \Gamma_j \right)$$

State k: sparse grid coordinates

 V_{next} : sparse grid interpolator from the previous iteration step

Solve this optimization problem at every point in the sparse grid!

Attention: Take care of the econ domain/ sparse grid domain

Convergence measures (due to contraction mapping)

Average error:
$$e^s = \frac{1}{N} \sum_{i=1}^N |V^s(\mathbf{x^i}) - V^{s-1}(\mathbf{x^i})|$$

Max. error:
$$a^s = \max_{i=1,N} |V^s(\mathbf{x^i}) - V^{s-1}(\mathbf{x^i})|$$

Setup of Code

Go here: global_solution_yale19/Lecture_2/SparseGridCode/growth_model/serial

```
    cleanup.sh
    ipopt_wrapper.py
    parameters.py

    econ.py
    main.py
    postprocessing.py

    interpolation_iter.py
    nonlinear_solver_initial.py
    TasmanianSG.py

    interpolation.py
    nonlinear_solver_iterate.py
    test_initial_sg.py
```

main.py: driver routine

econ.py: contains production function, utility,...

nonlinear_solver_initial/iterate.py: interface SG ↔ IPOPT (optimizer).

ipopt_wrapper.py: specifies the optimization problem (objective function,...).

interpolation.py: interface value function iteration ↔ sparse grid.

postprocessing.py: auxiliary routines, e.g., to compute the error.

<u>Code snippet – main.py</u>

```
# Start with Value Function Iteration
# terminal value function
valnew=TasmanianSG.TasmanianSparseGrid()
if (numstart==0):
   valnew=interpol.sparse grid(n agents, iDepth)
   valnew.write("valnew_1." + str(numstart) + ".txt") #write file to disk for restart
# value function during iteration
else:
   valnew.read("valnew 1." + str(numstart) + ".txt") #write file to disk for restart
valold=TasmanianSG.TasmanianSparseGrid()
valold=valnew
for i in range(numstart, numits):
   valnew=TasmanianSG.TasmanianSparseGrid()
   valnew=interpol iter.sparse grid iter(n agents, iDepth, valold)
   valold=TasmanianSG.TasmanianSparseGrid()
   valold=valnew
   valnew.write("valnew 1." + str(i+1) + ".txt")
print "-----"
print " "
print " Computation of a growth model of dimension ", n agents ," finished after ", numits, " steps"
print " "
# compute errors
avg err=post.ls error(n agents, numstart, numits, No samples)
print " "
print " Errors are computed -- see error.txt"
```

<u>Code snippet – parameters.py</u>

```
# Depth of "Classical" Sparse grid
iDepth=2
iOut=1  # how many outputs
which_basis = 1 #linear basis function (2: quadratic local basis)
# control of iterations
numstart = 0 # which is iteration to start (numstart = 0: start from scratch, number=/θ: restart)
numits = 10 # which is the iteration to end
# How many random points for computing the errors
No samples = 1000
# Model Paramters
n agents=2 # number of continuous dimensions of the model
beta=0.8
rho=0.95
zeta=0.5
psi=0.36
gamma=2.0
delta=0.025
eta=1
big A=(1.0-beta)/(psi*beta)
# Ranges For States
range_cube=1 # range of [0..1]^d in 1D
k bar=0.2
k up=3.0
# Ranges for Controls
c bar=le-2
c up=1.0
l bar=le-2
l up=1.0
inv bar=le-2
inv up=1.0
#-----
```

<u>Code snippet – econ.py</u>

```
#utility function u(c,l)
def utility(cons=[], lab=[]):
    sum util=0.0
    n=len(cons)
    for i in range(n):
        nom1=(cons[i]/big_A)**(1.0-gamma) -1.0
        den1=1.0-gamma
        nom2=(1.0-psi)*((lab[i]**(1.0+eta)) -1.0)
        den2=1.0+eta
        sum_util+=(nom1/den1 - nom2/den2)
    util=sum_util
    return util
# output f
def output f(kap=[], lab=[]):
    fun val = big A*(kap**psi)*(lab**(1.0 - psi))
    return fun val
```

<u>Code snippet – ipopt_wrapper.py</u>

```
Objective Function to start VFI (in our case, the value function)
def EV_F(X, k_init, n_agents):
    # Extract Variables
    cons=X[0:n agents]
    lab=X[n_agents:2*n_agents]
    inv=X[2*n agents:3*n agents]
    knext= (1-delta)*k init + inv
    # Compute Value Function
    VT_sum=utility(cons, lab) + beta*V_INFINITY(knext)
    return VT sum
# V infinity
def V INFINITY(k=[]):
    e=np.ones(len(k))
    c=output f(k,e)
    v infinity=utility(c,e)/(1-beta)
    return v infinity
    Objective Function during VFI (note - we need to interpolate on an "old" sprase grid)
def EV F ITER(X, k init, n agents, grid):
    # Extract Variables
    cons=X[0:n agents]
    lab=X[n agents:2*n agents]
    inv=X[2*n agents:3*n agents]
    knext= (1-delta)*k init + inv
    # Compute Value Function
    VT_sum=utility(cons, lab) + beta*grid.evaluate(knext)
    return VT sum
```

Run the Growth model code

- → Model implemented in Python (TASMANIAN)
- → Optimizer used: IPOPT & PYIPOPT (python interface)
- → global solution yale19/Lecture 2/SparseGridCode/growth model/serial growth
- → run with

>python main.py

Recall

On Yale's HPC cluster GRACE (ssh -X NETID@grace.hpc.yale.edu)

>cd ~

>vi .bashrc

→ add the following lines to the .bashrc

module load MPI/OpenMPI/2.1.1-intel15 module load Langs/Python/2.7.15-anaconda module load Libs/MPI4PY

Installed software on "GRACE"

- 1) PYIPOPT (https://github.com/xuy/pyipopt)
- → Python Interface to IPOPT

An example is given here:

- > cd global_solution_yale19/Lecture_2/SparseGridCode/pyipopt_midway/pyipopt/examples > python hs071.py
- 2) TASMANIAN (http://tasmanian.ornl.gov/)

>cd global_solution_yale19/Lecture_2/SparseGridCode/TasmanianSparseGrids/InterfacePython/
>python example.py

A stochastic growth model

→ Model with stochastic production

$$f(k_i, l_i, \theta_i) = \theta_i A k_i^{\psi} l_i^{1-\psi}$$

- → Here we assume 5 possible values of $\Theta_{i} = \{0.9, 0.95, 1.00, 1.05, 1.10\}$
- \rightarrow for simplicity, we assume $\Pi(*,*) = 1/5$ (no Markov chain)
- → solve

$$V_t(k,\theta) = \max_{c,l,I} u(c,l) + \beta \mathbb{E} \left\{ V_{t+1}(k^+,\theta^+) \mid \theta \right\}$$

<u>Code snippet – main.py</u>

```
import nonlinear solver initial as solver
                                         #solves opt. problems for terminal VF
import nonlinear solver iterate as solviter #solves opt. problems during VFI
from parameters import ₹
                                         #parameters of model
import interpolation as interpol
                                        #interface to sparse grid library/terminal VF
import interpolation iter as interpol iter #interface to sparse grid library/iteration
import test initial sq as initial
import postprocessing as post
                                         #computes the L2 and Linfinity error of the model
import TasmanianSG
                                         #sparse grid library
import numpy as np
# Start with Value Function Iteration
valnew=[]
if (numstart==0):
   valnew=interpol.sparse grid(n agents, iDepth)
   for itheta in range(ntheta):
       valnew[itheta].write("valnew "+str(theta range[itheta])+" " + str(numstart) + ".txt")
else:
   for itheta in range(ntheta):
       valnew.append(TasmanianSG.TasmanianSparseGrid())
       valnew[itheta].read("valnew "+str(theta range[itheta])+" " + str(numstart) + ".txt")
valold=[]
valold=valnew
for i in range(numstart, numits):
   valnew=[]
   valnew=interpol iter.sparse grid iter(n agents, iDepth, valold)
   valold=[]
   valold=valnew
   for itheta in range(ntheta):
       valnew[itheta].write("valnew_"+str(theta_range[itheta])+ " " + str(i+1) + ".txt")
print " Computation of a growth model of dimension ", n agents ," finished after ", numits, " steps"
#______
```

<u>Code snippet – IPOPT_wrapper.py</u>

```
Objective Function during VFI (note - we need to interpolate on an "old" sprase grid)
def EV F ITER(X, k init, theta init, n agents, grid list):
    # Extract Variables
    cons=X[0:n agents]
    lab=X[n agents:2*n agents]
    inv=X[2*n agents:3*n agents]
    knext= (1-delta)*k init + inv
    # Compute E[V(next, theta)]
    exp_v=0.0
    for itheta in range(ntheta):
        theta next=theta range[itheta]
        exp v+=prob(theta init, theta next)*grid list[itheta].evaluate(knext)
    # Compute Value Function
    VT sum=utility(cons, lab) + beta*exp v
    return VT_sum
```

Run the Growth model code

- → Model implemented in Python (TASMANIAN)
- → Optimizer used: IPOPT & PYIPOPT (python interface)
- → global_solution_yale19/Lecture_2/SparseGridCode/growth_model/serial_stochastic
- → run with

>python main.py

"To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic ox" (Skjellum et al. 1999)

"To pull a bigger wagon, it is easier to add more oxen than to grow a gigantic ox" (Skjellum et al. 1999)

Recall: today's HPC systems

- Ever since parallel computers hit the HPC market, there was an intense discussion about what should be an appropriate programming model for them.
- Message passing is required if a parallel computer is of the distributed memory type, i.e. if there is no way for one processor to directly access the address space of another.
- The use of explicit message passing (MP), i.e., communication between processes, is surely the most tedious and complicated but also the most flexible parallelization method.

Overall picture of programming models

A generic parallelization scheme for ASGs

Scheidegger et al. (2018)

- → At every grid point in every state, an optimization problem (or a set of nonlinear equations) needs to be solved.
- → Sizes of the individual adaptive sparse grids may be very different.
- → We need to carefully ensure workload balance.

Strong scaling on "Piz Daint" at CSCS

Scheidegger et al. (2018)

- Test on Cray XC50
- $16 \times 281,077 = 4,497,232$ points.
- 265,336,688 unknowns.
- 70% efficiency on 4,096 nodes.
- Speed-up limitations: few points in lower grid levels.

We focus today on MPI

- Resources are LOCAL (different from shared memory).
- Each process runs in an "isolated" environment. Interactions requires **Messages** to be exchanged.
- Messages can be: instructions, data, synchronization.
- MPI works also on Shared Memory systems.
- Time to exchange messages is much larger than accessing local memory.
- → Massage Passing is a COOPERATIVE Approach, based on 3 operations:
- **SEND** (a message)
- **RECEIVE** (a message)
- SYNCHRONIZE

Detour: MPI and Python

Detour: MPI in Python

Recall: https://github.com/sischei/YaleParallel2018 See https://mpi4py.scipy.org

→ **MPI for Python** supports convenient, pickle-based communication of generic Python object as well as fast, near C-speed, direct array data communication of buffer-provider objects (e.g., NumPy arrays).

Communication of generic Python objects:

You have to use **all-lowercase methods** (of the Comm class), like send(), recv(), bcast(). Note that isend() is available, but irecv() is not.

Collective calls like scatter(), gather(), allgather(), alltoall() expect/return a sequence of Comm.size elements at the root or all process. They return a single value, a list of Comm.size elements, or None.

Global reduction operations reduce() and allreduce() are naively implemented, the reduction is actually done at the designated root process or all processes.

"Hello World" in Python

Recall: https://github.com/sischei/YaleParallel2018

→ YaleParallel2018/day3/code/MPI4PY

from mpi4py import MPI comm = MPI.COMM WORLD rank = comm.Get rank()

size = MPI.COMM WORLD.Get size()

Run with

> mpirun -np 4 python hello.py

#hello.py

Make MPI available print "hello world from process ", rank, " from total ", size , "processes"

Point-to-Point Communication

Go to YaleParallel2018/day3/code/MPI4PY/pointtopoint.py

MPI Broadcast in Python

Go to YaleParallel2018/day3/code/MPI4PY/bcast.py

Recall VFI – there are many k's

$$V(\mathbf{k}) = \max_{\mathbf{I},\mathbf{c},\mathbf{l}} \left(u(c,l) + \beta \left\{ \underbrace{V_{next}(k^+)}_{s.t.} \right\} \right),$$

$$s.t.$$

$$k_j^+ = (1 - \delta) \cdot k_j + I_j \quad , \quad j = 1, ..., D$$

$$\Gamma_j = \frac{\zeta}{2} k_j \left(\frac{I_j}{k_j} - \delta \right)^2, \quad j = 1, ..., D$$

$$\sum_{j=1}^{D} \left(c_j + I_j - \delta \cdot k_j \right) = \sum_{j=1}^{D} \left(f(k_j, l_j) - \Gamma_j \right)$$

State k: sparse grid coordinates

 V_{next} : sparse grid interpolator from the previous iteration step

Solve this optimization problem at every point in the sparse grid!

!!! All the individual optimization problems are independent !!!

The parallelization scheme (1d SG)

- All newly generated points within a refinement level are independent and have to be distributed equally among different MPI processes.

Parallelization scheme (cont'd)

Parallel DP: Code Snippet – main.py

```
from mpi4pv import MPI
# Start with Value Function Iteration
comm=MPI.COMM WORLD
rank=comm.Get rank()
valold=TasmanianSG.TasmanianSparseGrid()
valnew=TasmanianSG.TasmanianSparseGrid()
                                                                                              MPI present in code
t1=MPI.Wtime()
# terminal value function
if numstart==0:
    valnew=interpol.sparse grid(n agents, iDepth)
    if rank==0:
        valnew.write("valnew 1."+str(numstart)+".txt")
    comm.Barrier()
    if rank!=0:
       valnew.read("valnew 1." + str(numstart) + ".txt")
# value function during iteration
else:
    valnew.read("valnew 1." + str(numstart) + ".txt"
valold=valnew
comm.Barrier()
for i in range(numstart, numits):
    valnew=TasmanianSG.TasmanianSparseGrid()
    valnew=interpol iter.sparse grid iter(n agents, iDepth, valold)
    if rank==0:
        valnew.write("valnew 1." + str(i+1) + ".txt")
    comm.Barrier()
    if rank!=0:
       valnew.read("valnew 1." + str(i+1) + ".txt")
    valold=TasmanianSG.TasmanianSparseGrid()
    valold=valnew/
if rank==0:
 t2=MPI.Wtime()
  print" The total running time was ", (t2-t1), " seconds"
```

<u>Code Snippet – interpolation_iter.py (1)</u>

```
from mpi4py import MPI
def sparse grid iter(n agents, iDepth, valold):
    comm=MPI.COMM WORLD
    rank=comm.Get rank()
    size = comm.Get size()
    grid = TasmanianSG.TasmanianSparseGrid()
    aPoints=0
    iNumPl buf=np.zeros(1, int)
    iNumPl=iNumPl buf[0]
    aVals gathered=0
    if rank==0:
        k range=np.array([k bar, k up])
        ranges=np.empty((n agents, 2))
        for i in range(n agents):
            ranges[i]=k range
        iDim=n agents
        iOut=1
        grid.makeLocalPolynomialGrid(iDim, iOut, iDepth, which basis, "localp")
        grid.setDomainTransform(ranges)
        aPoints=grid.getPoints()
        f=open("grid iter.txt", 'w')
        np.savetxt(f, aPoints, fmt='% 2.5f')
        f.close()
        iNumPl=aPoints.shape[0]
        iNumPl buf[0]=iNumPl
        aVals gathered=np.empty((iNumPl, 1))
    # distribute points among different MPI processes
    comm.Barrier()
    comm.Bcast(iNumPl buf, root=0)
    iNumP1=iNumP1 buf[0]
    nump=iNumP1//size
    r=iNumP1 % size
```

Split work among processes

<u>Code Snippet – interpolation_iter.py (2)</u>

```
# distribute points among different MPI processes
comm.Barrier()
comm.Bcast(iNumPl buf, root=0)
iNumPl=iNumPl buf[0]
nump=iNumP1//size
r=iNumP1 % size
if rank<r:
    nump+=1
displs scat=np.empty(size)
sendcounts scat=np.empty(size)
displs gath=np.empty(size)
sendcounts gath=np.empty(size)
for i in range(r):
    displs scat[i]=i*(1+iNumP1//size)*n agents
    sendcounts scat[i]=(1+iNumP1//size)*n agents
    displs gath[i]=i*(1+iNumP1//size)
    sendcounts gath[i]=(1+iNumP1//size)
for i in range(r, size):
    displs scat[i]=(r+i*(iNumP1//size))*n agents
    sendcounts scat[i]=(iNumP1//size)*n agents
    displs gath[i]=r+i*(iNumPl//size)
    sendcounts gath[i]=(iNumP1//size)
local aPoints=np.empty((nump, n agents))
comm.Scatterv([aPoints, sendcounts scat, displs scat, MPI.DOUBLE], local aPoints)
local aVals=np.empty([nump, 1])
file=open("comparison1.txt", 'w')
for iI in range(nump):
    local aVals[iI]=solveriter.iterate(local aPoints[iI], n agents, valold)[0]
    print local aVals[iI], "rank", rank
    v and rank=np.array([[local aVals[iI], rank]])
    to print=np.hstack((local aPoints[iI].reshape(1,n agents), v and rank))
    np.savetxt(file, to print, fmt='%2.16f')
file.close()
comm.Gatherv(local aVals, [aVals gathered, sendcounts gath, displs gath, MPI.DOUBLE])
if rank==0:
    grid.loadNeededPoints(aVals gathered)
return grid
```

Perform "local" work

Collect results

Run the Growth model code in parallel

- → Model implemented in Python (TASMANIAN)
- → Optimizer used: IPOPT & PYIPOPT (python interface)
- → global solution yale19/Lecture 2/SparseGridCode/growth model/mpi growth
- → request multiple cores (n a two core interactive job (srun -n 2 --pty bash))

\$srun -n 2 python main.py

IV. Time Iteration and SGs (applied to the Ramsey Model)

We choose the Ramsey model as our first example because:

- it is the most canonical infinite horizon optimization problem.
- it is very simple (in its basic form).
- its simplicity allows us to focus on the solution method.
- however, it can be extended to include many interesting features.

The deterministic Ramsey Model

$$\max U(\{c_t\}_{t=0}^{\infty}) \quad \text{s.t.} \quad c_t + k_{t+1} \leq \underbrace{f(k_t) + (1-\delta)k_t}_{\equiv \bar{f}(k_t)}$$
$$c_t \geq 0, \ k_{t+1} \geq 0 \ \forall t \in \mathbb{N}_0, \ k_0 \text{ given}$$

Where:

 c_t is consumption at time t

 $U(\{c_t\}_{t=0}^{\infty})$ is utility of the consumption stream $\{c_t\}_{t=0}^{\infty}$

 k_t is the capital stock at time t, and k_0 the initial capital stock

 $f(\cdot)$ is the production function

 $\bar{f}(\cdot)$ is production including non-depreciated capital

 δ is depreciation

Standard Assumptions

Production

Neoclassical Production:

$$f(0) = 0, f \in C^{2}(\mathbb{R}),$$

 $f'(k) > 0, f''(k) < 0,$
 $\lim_{k \to 0} f'(k) = \infty,$
 $\lim_{k \to \infty} f'(k) = 0$

Special Case:

$$f(k) = k^{\alpha}$$

Cobb-Douglas with capital share α and fixed labor supply (normalized or intensive form)

Preferences

Time-separable utility:

$$U(\lbrace t\rbrace_{t=0}^{\infty}) = \sum_{t=0}^{\infty} \beta^t u(c_t)$$

with discount factor $0 < \beta < 1$ and $\lim_{c\to 0} U'(c) = \infty$.

Special Case:

$$u(c_t) = egin{cases} \ln(c_t), \ \gamma = 1 \ rac{c_t^{1-\gamma}}{1-\gamma}, \ \gamma \in \mathbb{R}_+ \setminus \{1\} \end{cases}$$

CRRA utility

The Euler Equation

Due to the above assumptions:

 $c_t \geq 0, \ k_{t+1} \geq 0$ are never binding the budget constraint is always binding: $c_t = \bar{f}(k_t) - k_{t+1}$

Therefore, the Lagrangian of the maximization problem simplifies to:

$$\mathcal{L} = \sum_{t=0}^{\infty} \beta^{t} [u(c_{t}) + \lambda_{t}(\bar{f}(k_{t}) - c_{t} - k_{t+1})]$$

$$\frac{\partial \mathcal{L}}{\partial c_{t}} = 0 \Leftrightarrow u'(c_{t}) = \lambda_{t}; \ \frac{\partial \mathcal{L}}{\partial k_{t+1}} = 0 \Leftrightarrow \lambda_{t} = \beta \lambda_{t+1} \bar{f}'(k_{t+1})$$

Combining, we get the Euler equation(s):

$$u'(\bar{f}(k_t) - k_{t+1}) = \beta \bar{f}'(k_{t+1})u'(\bar{f}(k_{t+1}) - k_{t+2}) \quad \forall t \in \mathbb{N}_0$$

Recursive Equilibrium

Hard to solve for an infinite sequence directly!

- ⇒ Reduce problem to two periods: 'today' and 'tomorrow'
- \Rightarrow Suppose optimal choice does not depend on t directly, just on k_t
- ⇒ Look for recursive equilibrium with capital k as endogenous state
- \Rightarrow A recursive equilibrium policy function p(k) must satisfy:

$$u'\left(\bar{f}(k)-p(k)\right)=\beta\cdot\bar{f}'(p(k)))\cdot u'\left(\bar{f}(p(k))-p(p(k))\right)$$

Time Iteration (TI): The Idea

(see Judd (1998))

- Start with a guess for the policy function 'tomorrow'
- Find policy 'today' that is optimal given that policy function 'tomorrow'
- Use this policy as new guess and iterate.
- Hope that this procedure converges, i.e. that the policy does (almost) not change any more.
- The final policy (almost) satisfies the Euler equation when used 'today' and 'tomorrow'.
- -Then we have found an (approximate) recursive equilibrium.

Time Iteration Algorithm for the deterministic Ramsey model

- 1) Initial Step (Set grid, initial policy, and error tolerance)
 - a) Set capital grid $K = [K_1 \ K_2 \ \dots \ K_n] \in \mathbb{R}^n_+, \ K_j < K_{j+1} \ \forall \ j$
 - b) Set guess for policy function $p: [K_1, K_n] \rightarrow [K_1, K_n]$
 - c) Set error tolerance for time iteration $\bar{\epsilon} > 0$
- 2) Main Step (Update policy function)
 - a) For all $1 \le j \le n$: Solve Euler equation

$$u'(\bar{f}(k) - k^{+}) - \beta \cdot \bar{f}'(k^{+}) \cdot u'(\bar{f}(k^{+}) - k^{++}) = 0$$

for optimal k^+ given $k = K_j$ and $k^{++} = p(k^+)$. Then, set $K_j^+ = k^+$.

- b) **Approximate** new policy \tilde{p} using the data points $\left\{K_j, K_j^+\right\}_{j=1}^n$.
- 3) Final Step (Check error criterion)
 - a) Calculate error: $\epsilon = \|\tilde{p} p\|_{\infty} / \|p\|_{\infty}$
 - b) Set $p = \tilde{p}$.
 - c) If $\epsilon < \bar{\epsilon}$, then stop and report results; otherwise go to step 1.

Measuring Accuracy: Recall Euler Errors I

We want a policy function that satisfies the Euler equation

$$u'(C(k)) = \beta \cdot \bar{f}'(\bar{f}(k) - C(k)) \cdot u'(C(\bar{f}(k) - C(k)))$$

at all $k \in [k_{min}, k_{max}]$, not only at k^* . We proceed as follows:

Create many points $\{\tilde{k}_i\}_{i=1}^I: \tilde{k}_i \in [k_{min}, k_{max}]$

Compute consumption implied by approximate policy: $\hat{c}_i = \hat{C}(\tilde{k}_i)$.

Compute consumption implied by Euler equation and approximate policy 'tomorrow': $c_i^* = u_c^{-1} \left[\beta \bar{f}'(\bar{f}(\tilde{k}_i) - \hat{c}_i) \cdot u_c \left(\hat{C}(\bar{f}(\tilde{k}_i) - \hat{c}_i) \right) \right]$

The (relative) error that the agent makes 'today' given his choice 'tomorrow' is the Euler error:

$$|E_i| = |rac{\hat{c}_i}{c_i^*} - 1|$$

Measuring Accuracy: Recall Euler Errors II

Choose points $\{\tilde{k}_i\}_{i=1}^I$ either

- randomly (uniformly distributed) in $[k_{min}, k_{max}]$, or
- as a very fine (equidistant) grid on $[k_{min}, k_{max}]$

Later we will also look at Euler errors along a simulation path

'Bounded rationality' interpretation: The Euler error

$$E_i = |\frac{\hat{c}_i}{c_i^*} - 1|$$

is the fraction by which the approximate consumption choice today differs from the optimal one (given the approximate consumption choice tomorrow). For instance, $E_i = 0.05$ means that consumption is 5% too high or too low relative to the optimum

The Stochastic Ramsey Model

$$\max \mathbb{E}_0[U(\{c_t\})]$$
 s.t. $c_t + k_{t+1} \leq \underbrace{a_t f(k_t) + (1-\delta)k_t}_{\equiv \bar{f}(a_t,k_t)},$ $c_t \geq 0, \ k_{t+1} \geq 0 \ orall t \in \mathbb{N}_0$ $\ln a_{t+1} = \rho \ln a_t + \epsilon_{t+1}, \epsilon_{t+1} \sim \mathcal{N}(0,\sigma_a)$ k_0, a_0 given

where the expectation is over the sequence of stocks $\{a_t\}_{t=1}^{\infty}$ given a_0 .

A recursive equilibrium (capital) policy function p(k, a) must satisfy:

$$u'\left(\bar{f}(k,a)-p(k,a)\right)=\beta\mathbb{E}[\bar{f}'(p(k,a))\cdot u'\left(\bar{f}(p(k,a))-p(p(k,a),a^+)\right)]$$

Time Iteration for Stochastic Ramsey Model

- 1) Initial Step (Set grid, initial policy, and error tolerance)
 - a) Set grid $G = [(K_1, A_1) \ldots (K_n, A_n)] \in \mathbb{R}^{n \times 2}_+$
 - b) Set guess for policy function $p: [K_1, K_n] \times [A_1, A_n] \rightarrow [K_1, K_n]$
 - c) Set error tolerance for time iteration $\bar{\epsilon} > 0$
- 2) Main Step (Update policy function)
 - a) For all $1 \le j \le n$:

Solve Euler equation

$$u'(\bar{f}(k,a)-k^+)-\beta \mathbb{E}[\bar{f}'(k^+,a^+)\cdot u'(\bar{f}(k^+,a^+)-k^{++})]=0$$

for optimal k^+ given $k = K_j$ and $k^{++} = p(k^+, a^+)$. Then, set $K_j^+ = k^+$.

- b) **Approximate** new policy \tilde{p} using the data points $\left\{K_j, K_j^+\right\}_{j=1}^n$.
- 3) Final Step (Check error criterion)
 - a) Calculate error: $\epsilon = \|\tilde{p} p\|_{\infty} / \|p\|_{\infty}$
 - b) Set $p = \tilde{p}$.
 - c) If $\epsilon < \bar{\epsilon}$, then stop and report results; otherwise go to step 1.

Evaluating the Expectation: Recall Quadrature

- Each time we solve the first order conditions, we have to evaluate:

$$\mathbb{E}[\bar{f}'(k^+, a^+) \cdot u'(\bar{f}(k^+, a^+) - p(k^+, a^+))]$$

- To transform the expectation into a sum we use a quadrature method.
- We choose Gauss-Hermite quadrature (see Judd 1998, p.262).
- → Note: Integration always becomes an issue with increasing dim.

Choosing Equation Solver and Function Approximation

To implement policy function iteration, we need to choose:

- → A method for solving equations, namely the Euler equation
- → A method for approximating functions, namely the policy function

We choose for equation solving:

- → fsolve (from Matlab's Optimization Toolbox)
- → for interpolation: sparse grids, in particular spinterp (from Klimke's Sparse Grid Interpolation Toolbox – we want to avoid to introduce more complex optimizers)

Let's look at the code and see how that works ...

Comparing Sparse Grids

We solve the stochastic Ramsey model with different sparse grids:

Grid Type (in spinterp)	Clenshaw-Curtis	Chebyshev
Basis Function	Piecewise Linear	Global Polynomial
Points / Avg EE / Time (sec.)	$13 \ / \ 7 \cdot 10^{-3} \ / \ 6$	$13 \ / \ 7 \cdot 10^{-4} / \ \ 7$
Points / Avg EE / Time (sec.)	145 / 6 · 10 ⁻⁴ / 132	$29 \ / \ 6 \cdot 10^{-5} \ / \ 17$
Points / Avg EE / Time (sec.)	321 / 3 · 10 ⁻⁴ / 389	$65 \ / \ 7 \cdot 10^{-6} \ / \ 45$

- Increasing the number of grid points substantially reduces the Euler errors for both types of grids.
- The global polynomial approximation performs much better in our (smooth) Application.
- For models with kinks (e.g. from occasionally binding constraints) local basis functions are preferable.

<u>SPINTERP</u>

http://www.ians.uni-stuttgart.de/spinterp/

Run Example Code on GRACE

- → Log on to GRACE
- > ssh -X NETID@grace.hpc.yale.edu
- → Load matlab
- > module load Apps/Matlab
- → Start MATLAB without graphical interface
- > matlab -nojvm
- → Go to example and run it.
- > cd global_solution_yale19/Lecture_2/SparseGridCode/Econ_example_ramsey
- > TimeIterationWithSparseGrids
- → Play with settings (basis functions, accuracy, etc...)

INTERACTIVE JOBS ON GRACE:

srun --pty --x11 -p interactive bash

See https://research.computing.yale.edu/support/hpc/user-guide/slurm

