4 de diciembre de 2023

Universidad Autónoma del Estado de México

Facultad de Ciencias

Licenciatura en Matemáticas

Teoría de gráficas

Trabajo de investigación: Gráfica Gradial

Profesora:

Berta Zavala Santana

Alumno:

Osmar Dominique Santana Reyes

Semestre: 2023B

Definición 1

Sean G_1 y G_2 gráficas tales que $V(G_1) \cap V(G_2) = \emptyset$. Se define a G_1 græd $\stackrel{\cdot}{L}$ a (VPA) como la **gráfica gradial de** G_1 y G_2 con

$$\begin{split} &V(\textit{G}_1 \text{ gradial VPGS}) \cup V(\textit{G}_2) \quad y \\ &A(\textit{G}_1 \text{ gradial uppg} u \in V(\textit{G}_1), \ v \in V(\textit{G}_2), \ \text{gr}_{\textit{G}_1}(u) + \text{gr}_{\textit{G}_2}(v) = \delta(\textit{G}_1) + \delta(\textit{G}_2), \ v \in V(\textit{G}_1), \ \text{gr}_{\textit{G}_2}(u) + \text{gr}_{\textit{G}_1}(v) = \delta(\textit{G}_2) + \delta(\textit{G}_2) + \delta(\textit{G}_2), \ v \in V(\textit{G}_1), \ \text{gr}_{\textit{G}_2}(u) + \text{gr}_{\textit{G}_1}(v) = \delta(\textit{G}_2) + \delta(\textit{G}_2) + \delta(\textit{G}_2) \end{split}$$

En términos de la definicion anterior, para hallar las aristas de la gráfica gradial, es necesario resolver las siguientes ecuaciones diofantinas:

$$\begin{aligned} & \operatorname{gr}_{G_1}(u) + \operatorname{gr}_{G_2}(v) = \delta(G_1) + \Delta(G_2) \ \ \operatorname{gr}_{G_2}(u') + \operatorname{gr}_{G_1}(v') = \delta(G_2) + \Delta(G_1) \end{aligned}$$

particulares para cada ecuación son: $\operatorname{gr}_{G_1}(u) = \delta(G_1), \operatorname{gr}_{G_2}(v) = \Delta(G_2), \operatorname{gr}_{G_2}(u') = \delta(G_2)$ y $\operatorname{gr}_{G_1}(v') = \Delta(G_1).$

De esta manera, las soluciones para cada ecuación son:

$$\operatorname{gr}_{G_1}(u) = \delta(G_1) + I, \operatorname{gr}_{G_2}(v) = \Delta(G_1) - I, \operatorname{con} I = 0, 1, \dots, \operatorname{máx} \{\Delta(G_1) - \delta(G_1), \Delta(G_2)\}$$
 y

$$\operatorname{gr}_{G_2}(u') = \delta(G_2) + I, \operatorname{gr}_{G_1}(v') = \Delta(G_1) - I, \operatorname{con} I = 0, 1, \dots, \max \{\Delta(G_2) - \delta(G_2), \Delta(G_1)\}$$

Ejemplo 1

Sean G_1 y G_2 gráficas, como se muestra abajo. Para construir la gráfica gradial de G_1 y G_2 , se puede seguir el siguiente procedimiento:

- 1. Obtener el grado máximo y mínimo de cada gráfica. En este caso, $\delta(G_1)=1, \delta(G_2)=2, \Delta(G_1)=2$ y $\Delta(G_2)=4$.
- 2. Elaborar dos tablas donde la primer fila esté conformada por los grados anteriormente obtenidos como se muestra a continuación:

$$\delta(G_1) = 1 \mid \Delta(\mid \Delta(G_1) = 2 \mid \delta(G_2) = 2$$

3. En las columnas de las tablas que corresponden a los grados máximos de cada gráfica, se coloca el número de la celda anterior disminuido en uno.

Mientras que las columnas que corresponden a los grados mínimos se coloca el número de la celda anterior aumentado en uno. Este procedimiento termina hasta que en las columnas del grado mínimo se llegue al grado máximo de la gráfica que corresponda, o en las columnas del grado mínimo se obtenga un cero.

$\delta(G_1) = 1$	Ι Δ($\Delta(G_1)=2$	$\delta(G_2)=2$
2	Δ(1	3
۷		0	4

4. Por último, se dibujan los vértices de ambas gráficas y se hacen adyacentes aquellos que tengan el grado indicado en cada fila, en su respectiva gráfica.

$$G_1$$
 gradial.png

Por cómo se definió la gráfica gradial, es claro que ningún par de vértices de cada una de las dos gráficas que la definen son adyacentes entre sí. Esto da lugar a la siguiente proposición.

Proposición 1

Si G_1 y G_2 son gráficas, entonces G_1 gradies bipartita.

Demostración.

Afirmación. $\{V(G_1), V(G_2)\}$ es una partición de $V(G_1)$ gradial.png

- ▶ $V(G_1)$ y $V(G_2)$ son no vacíos, por definición de gráfica.
- ▶ $V(G_1) \cap V(G_2) \neq \emptyset$ por la definición de gráfica gradial.
- ▶ $V(G_1) \cup V(G_2) = V(G_1 \ \text{gradial})$ per Pastefinición de gráfica gradial.

De esta forma, $\{V(G_1),V(G_2)\}$ es una partición de $V(G_1)$ gradial·png

Luego, para $uv \in A(G_1 \boxtimes G)$ sè de que $u \in V(G_1)$ y $v \in V(G_2)$ ó, $v \in V(G_2)$ y $u \in V(G_2)$, por definición de gráfica gradial.

Ya que la gráfica gradial es bipartita se tiene que su número cromático es 2, por lo que hablar de coloración en esta gráfica no es relevante. Por lo tanto, este tema no se tratará.

Proposición 2

Si G_1 y G_2 son gráficas, entonces G_1 gradia G_2 paradial png

Demostración.

Por definición de gráfica gradial, se da que $V(G_1 \boxtimes G_2) = 1 \cdot I^ng$ $V(G_1) \cup V(G_2) = V(G_2) \cup V(G_1) = V(G_2 \boxtimes G_2) = 1 \cdot I^ng$

$$\begin{split} &A(G_1 \boxtimes^{r} G_2^{d}) \triangleq \mathbb{I}\{u \text{Pr} g \ u \in V(G_1), \ v \in V(G_2), \ \operatorname{gr}_{G_1}(u) + \operatorname{gr}_{G_2}(v) = \delta \\ & \{uv \mid u \in V(G_2), \ v \in V(G_1), \ \operatorname{gr}_{G_2}(u) + \operatorname{gr}_{G_1}(v) = \delta \\ &= \{uv \mid u \in V(G_2), \ v \in V(G_1), \ \operatorname{gr}_{G_2}(u) + \operatorname{gr}_{G_1}(v) = \delta \\ & \{uv \mid u \in V(G_1), \ v \in V(G_2), \ \operatorname{gr}_{G_1}(u) + \operatorname{gr}_{G_2}(v) = \delta \\ &= A(G_2 \boxtimes^{r} G_1^{d}) \text{ al.png} \end{split}$$

Por lo tanto, G_1 gradial.png

Ejemplo 2

Sean G_1 y G_2 gráficas, como se muestran abajo, y obteniendo su gráfica gradial.

Si se construye la gráfica G_2 Ereq. in the que cambia es el orden de las columnas de las tablas de arriba, las adyacencias siguen siendo las mismas en cualquiera de las dos gráficas gradiales.

En los próximos enunciados se pueden atribuir propiedades

concretas a las gráficas que definen la gráfica gradial. Debido a la Proposición (??), estas propiedades se le pueden atribuir a las gráficas de forma indistinta.

Observación. Debido a que toda gráfica siempre tiene vértices de grado mínimo o máximo, la gráfica gradial siempre tendrá al menos una arista, cuyos extremos son estos vértices. De esta manera, $A(G_1 \boxtimes^{\text{reg}}) = 10 \text{ pps}$ ra cualesquiera dos gráficas G_1 y G_2 .

Teorema 3

Sean G_1 y G_2 gráficas tal que G_1 es r-regular. Si $V' = \{v \in V(G_2) \mid gr(v) = \delta(G_2) \text{ ó } gr(v) = \Delta(G_2)\}$, entonces

- 1. la subgráfica inducida de G_1 $\text{gradipol} \cdot \Psi(\mathfrak{C}_1) \cup V'$ es bipartita completa.
- 2. Todo $v \in V(G_2) \setminus V'$ es aislado.

Demostración.

1. Sea $H = \langle V(G_1) \cup V' \rangle_{G_1 \text{ [grad setions]}}$ que $\{V(G_1), V'\}$ es una partición de $V(G_1) \cup V'$, pues $V' \neq \emptyset, V(G_1) \cap V' \subseteq V(G_1) \cap V(G_2) = \emptyset$ y $V(G_1) \cup V' = V(H)$, por ser inducida.

Después, sea $uv \in A(H)$, por definición de gráfica gradial, $u \in V(G_1)$ y $v \in V' \subseteq V(G_2)$, ó $v \in V(G_1)$ y $v \in V' \subseteq V(G_2)$. Así, H es bipartita.

Ahora, sean $w \in V(G_1)$ y $x \in V'$. Como G_1 es r-regular, se da que $\Delta(G_1) = r = \delta(G_1) = \operatorname{gr}_{G_1}(w)$. Y ya que $x \in V'$ se tiene que w ady $_H x$, puesto que

$$\operatorname{gr}_{G_1}(w) + \operatorname{gr}_{G_2}(x) = r + \Delta(G_2) = \delta(G_1) + \Delta(G_2)$$
 o $\operatorname{gr}_{G_1}(w) + \operatorname{gr}_{G_2}(x) = \delta(G_2) + r = \delta(G_2) + \Delta(G_1)$

(no hay más posibilidades, pues G_1 es r-regular y los vértices de V' son aquellos cuyo grado es

auramragragrig 9

máximo o mínimo).

Por lo tanto, *H* es una gráfica bipartita completa.

2. Sea $v \in V(G_2) \setminus V'$ existen $i, j \in \{1, 2, ..., \Delta(G_2) - 1\}$ tales que $\operatorname{gr}_{G_2}(v) = \delta(G_2) + i = \Delta(G_2) - j$ (i, j son distintos de cero y de $\Delta(G_2)$, pues $v \notin V'$). Sea $u \in V(G_1)$ se da que $\operatorname{gr}_{G_1}(u) = r$, por lo que u no es adyacente a v, ya que de lo contrario, $\operatorname{gr}_{G_1}(u) = \Delta(G_1) - i = r - i$ o $\operatorname{gr}_{G_1}(u) = \delta(G_1) + j = r + j$, lo cual no puede ser. De esta forma, como $\forall v \in V(G_2) \setminus V'$, v no es adyacente a ningún otro vértice, se obtiene que v es un vértice aislado.

Ejemplo 3

Sean G_1 una gráfica 4-regular y G_2 una gráfica, como se muestran a continuación. Construyendo su gráfica gradial:

Como se puede observar, la subgráfica inducida por $V(G_1) \cup \{v_1\}$ de la gráfica gradial es bipartita completa.

En base al ejemplo anterior, es posible deducir que si una gráfica es regular y la otra solo tiene vértices de a lo más dos grados distintos, la gráfica gradial de estas es bipartita completa.

Corolario 4

Sean G_1 y G_2 gráficas. Si G_1 es r-regular y para todo $v \in V(G_2)$ se da que $gr(v) = \delta(G_2)$ ó $gr(v) = \Delta(G_2)$, entonces G_1 gradies bipartita completa.

Demostración.

Ya que $\{v \in V(G_2) \mid \operatorname{gr}_{G_2}(v) = \delta(G_2) \text{ ó } \operatorname{gr}_{G_2}(v) = \Delta(G_2)\} = V(G_2)$, por hipótesis. Por el inciso I del Teorema (??), se tiene que G_1 Erod es biprestita completa.

Corolario 5

Si G_1 y G_2 son gráficas r-regular y s-regular, respectivamente, entonces G_1 græfies bipartita completa.

Demostración.

Debido a que $\operatorname{gr}_{G_2}(v) = s, \forall v \in \operatorname{V}(G_2)$, se da que $\Delta(G_2) = s = \delta(G_2) = \operatorname{gr}_{G_2}(v) \ \forall v \in \operatorname{V}(G_2)$, De esta forma, por el Teorema (??), G_1 gradés bipastita completa.

Observaciones.

- 1. K_n gradies by strita completa $\forall n, m \in \mathbb{N}$, pues K_n y K_m son (n-1)-regular y (m-1)-regular, respectivamente.
- 2. C_n gradies by tita completa $\forall n, m \in \mathbb{N}$, pues C_n y C_m son gráficas 2-regular.

$$\delta(G_1) + \Delta(G_2) = \delta(G_2) + \Delta(G_1)$$
 entonces

$$\begin{split} & \text{A}(\textit{G}_1 \text{ gradial} \{ \text{pas } u \in \text{V}(\textit{G}_1), \ v \in \text{V}(\textit{G}_2), \ \text{gr}_{\textit{G}_1}(u) + \text{gr}_{\textit{G}_2}(v) = \delta(\textit{G}_1) + \delta(\textit{G}_2) \} \\ & = \big\{ uv \mid u \in \text{V}(\textit{G}_2), \ v \in \text{V}(\textit{G}_1), \ \text{gr}_{\textit{G}_2}(u) + \text{gr}_{\textit{G}_1}(v) = \delta(\textit{G}_2) + \delta(\textit{G}_2) + \delta(\textit{G}_2) \big\} \end{split}$$

De esta manera, si hay dos gráficas que cumplan lo anterior solo es necesario seguir el procedimiento del Ejemplo (??), para construir la gráfica de gradial de ambas gráficas, pero con solo una de las dos tablas.

Ejemplo 4

Sean G_1 y G_2 gráficas, como se muestran enseguida. Ya que $\delta(G_1)=2$, $\Delta(G_2)=4$, $\delta(G_2)=2$ y $\Delta(G_1)=4$. Se tiene que $\delta(G_1)+\Delta(G_2)=\delta(G_2)+\Delta(G_1)$. Luego, construyendo su gráfica gradial:

Las tablas tienen los mismos valores en sus respectivas filas, por lo cual solo es necesario hacer una para construir la gráfica gradial.

Teorema 6

Si G_1 y G_2 son gráficas, entonces G_1 gradiat_1 presented in C_1

Demostración.

Por definición de gráfica gradial y del complemento de una gráfica, se da que $V(G_1 \boxtimes \mathbb{F}_2) = \mathbb{F}(G_1) \cup V(G_2) = V(G_1^C) \cup V(G_2^C) = V(G_1^C \boxtimes \mathbb{F}_2) = \mathbb{F}(G_1^C) \cup \mathbb{F}(G_2^C) = \mathbb{F}(G_1^C) = \mathbb{F}(G_1^$

Ahora, sean $p_1 = |V(G_1)|$ y $p_2 = |V(G_2)|$. Como para cada $u \in V(G_1)$ se da que $\operatorname{gr}_{G_1^C}(u) = p_1 - 1 - \operatorname{gr}_{G_1}(u)$, en particular, $\Delta\left(G_1^C\right) = p_1 - 1 - \delta(G_1)$ y $\delta\left(G_1^C\right) = p_1 - 1 - \Delta(G_1)$. De forma análoga, para cada $v \in V(G_2)$ se tiene que $\operatorname{gr}_{G_2^C}(v) = p_2 - 1 - \operatorname{gr}_{G_2}(v)$, en particular, $\Delta\left(G_2^C\right) = p_2 - 1 - \delta(G_2)$ y

Por lo tanto, G_1 gradia G_2 paradial.png

Ejemplo 5

Sean G_1 y G_2 gráficas, como se muestran abajo y construyendo su gráfica gradial:

Ahora, se obtiene la gráfica gradial de sus complementos.

Las gráficas gradiales son iguales.

Teorema 7

Sean G_1 y G_2 gráficas. Si para $u, v \in V(G_1)$ existe una uv-trayectoria en G_1 gráficade a existe una uv-trayectoria T en G_1 gráficade a existe una uv-trayectoria v en v existe una v-trayectoria v en v existe una v-trayectoria v-trayec

Demostración.

Sea $T = (u = w_0, w_1, ..., w_n = v)$ una uv-trayectoria en G_1 gradial distinction mínima. Suponiendo que $I(T) \neq 2$, ya que G_1 gradial bipartita con partición $\{V(G_1), V(G_2)\}$, se tiene que I(T) es par, pues de lo contrario, se tendría que $v \in V(G_2)$, lo cual no puede ser. Así, $I(T) \geq 4$, por lo que se puede asegurar que cuanto menos existen $w_1, w_3 \in V(G_2)$ y $w_2 \in V(G_1)$ vértices de T.

siguiente: Como $uw_1 \in A(G_1 \boxtimes^r G_2)$ i se den que $gr_{G_2}(w_1) = \delta(G_2) + i$, luego, ya que $w_1w_2 \in A(G_1 \boxtimes^r G_2)$ i, se presione

Luego, sea $i \in \{0, 1, ..., \Delta(G_1)\}$ tal que $\operatorname{gr}_{G_1}(u) = \Delta(G_1) - i$. Suponiendo, sin pérdida de generalidad, que pasa lo

Teorema 8

Sean G_1 y G_2 gráficas. Si $\delta(G_1)=\delta(G_2)<\Delta(G_1)=\Delta(G_2)$ entonces G_1 gráficas dissenexa.

Demostración.

Sean $u, v \in V(G_1)$ tales que $\operatorname{gr}_{G_1}(u) \neq \operatorname{gr}_{G_1}(v)$ (esto se puede asegurar pues $\delta(G_1) < \Delta(G_1)$, por hipótesis). Suponiendo que existe una uv-trayectoria en G_1 gradipor puede l'??), se tiene que existe una uv-trayectoria T = (u, w, v) en G_1 gradico pres $V(G_2)$.

Luego, sean $i,j \in \{0,1,\ldots,\Delta(G_1)-\delta(G2)\}$ tales que $\operatorname{gr}_{G_1}(u) = \delta(G_1) + i \operatorname{y} \operatorname{gr}_{G_1}(v) = \delta(G_1) + j$. Debido a que $uw, wv \in A(G_1)$ grechi supposiendo, sin pérdida de generalidad que, $\operatorname{gr}_{G_2}(w) = \Delta(G_2) - i \operatorname{y} \operatorname{gr}_{G_2}(w) = \Delta(G_2) - j$, por lo cual, $\Delta(G_2) - i = \Delta(G_2) - j \Longrightarrow i = j$. Así, $\operatorname{gr}_{G_1}(u) = \delta(G_1) + i = \delta(G_1) + j = \operatorname{gr}_{G_1}(v)$, lo cual contradice que u y v tengan distinto grado en G_1 . De esta manera, no existe

una uv-trayectoria en G_1 gredial png Por lo tanto, G_1 gredialline nexa.

En el Ejemplo (??), se visualiza lo del teorema anterior.

Corolario 9

Si G_1 y G_2 son gráficas no regulares tales que $G_1 \cong G_2$, entonces G_1 grades dibennexa.

Demostración.

Ya que $G_1 \cong G_2$ se tiene que $\delta(G_1) = \delta(G_2) < \Delta(G_1) = \Delta(G_2)$, puesto que G_1 y G_2 no son regulares. Así, por el Teorema (??), G_1 Erodès dissenexa.

Definición 2

Sea G una gráfica con $\{gr(u) \mid u \in V(G)\} = \{\delta(G), \delta(G) + 1, \dots, \Delta(G) - 1, \Delta(G)\}$, se dice que G es gradialmente sucesiva.

Ejemplo 6

La gráfica G_1 del Ejemplo (??), es gradialmente sucesiva, porque los grados de sus vértices son 2, 3 y 4, los cuales son números consecutivos.

Observación. Sea G una gráfica. Para cualesquiera $u, v \in V(G)$, se define la relación "u se relaciona con v "si y solo si gr(u) = gr(v).

- ► Ya que $\forall u \in V(G)$, se da que gr(u) = gr(u) se tiene que "u se relaciona con u ".
- ► Si "u se relaciona con v .entonces gr(u) = gr(v) si v solo si v

gr(v) = gr(u), por lo que "v se relaciona con u ".

Si "u se relaciona con v z "v se relaciona con w ", entonces gr(u) = gr(v) y gr(v) = gr(w), por lo cual, gr(u) = gr(w). De esta manera, "u se relaciona con w ".

Por lo tanto, la relación antes definida es de equivalencia, dando lugar a la siguiente definición.

Definición 3

Sea G una gráfica. La **clase** i-**gradial de** G, se define y denota como

$$C_G(i) = \{u \in V(G) \mid gr(u) = i\}$$
 para cada $i = \delta(G), \delta(G) + 1, \dots, \Delta(G)$.

Observaciones.

1. Cuando se hable de cualquier clase *i*-gradial de alguna gráfica, solo se le llamará **clase gradial.**

2. Sean G_1 , G_2 gráficas y $u \in V(G_1)$ tal que $\operatorname{gr}_{G_1}(u) = \delta(G_1) + i = \Delta(G_1) - j$ para algunos $i, j \in \{0, 1, \ldots, \max\{\Delta(G_1) - \delta(G_1), \Delta(G_1)\}\}$. Si u ady G_1 grafingle G_2 de G_3 grafingle G_3 where G_3 is G_4 and G_4 are G_4 and G_4 are G_4 are G_4 are G_4 and G_4 are G_4 are G_4 and G_4 are G_4 are G_4 are G_4 and G_4 are G_4 are G_4 are G_4 and G_4 are G_4 are G_4 and G_4 are G_4

Teorema 10

Sean G_1 y G_2 gráficas, con G_1 gradialmente sucesiva y no regular. Si hay n clases gradiales de G_2 y G_1 tiene más de 2n clases gradiales, entonces G_1 **Eregies** diseenexa.

Demostración.

Caso 1. Si existe $v \in V(G_2)$ tal que v no es advacente a algún $u \in V(G_1)$, entonces G_1 gradiantes.

Caso 1. Si para cada $v \in V(G_2)$ se da que v ady G_1 graph G_2 de la la para algún $u \in V(G_1)$, entonces cada vértice de G_2 es adyacente a los vértices de a lo más G_2 clases gradiales de G_2 . De esta manera, los vértices de G_2 son adyacentes a todos los vértices de hasta G_2 clases gradiales de G_3 , por lo que existe G_3 (G_3), G_3) tal que los vértices de la clase G_3 clases G_3 and G_3 are represented by G_3 .

Por lo tanto, G_1 Erectes directorexa.

(ロ) (個) (量) (量) (量) (型) のQで

Proposición 11

Sean G_1 y G_2 gráficas no regulares. Si hay $\delta(G_1) + \Delta(G_2) = \delta(G_2) + \Delta(G_1)$ y G_1 es gradialmente sucesiva, pero G_2 no lo es, entonces G_1 Eregé es distenaxa.

Demostración.

Como G_2 no es gradialmente sucesiva, existe $i \in \{0, 1, ..., \Delta(G_2)\}$ tal que $C_{G_2}(\Delta(G_2) - i) = \emptyset$. Ya que $\delta(G_1) + \Delta(G_2) = \delta(G_2) + \Delta(G_1)$ se tiene que cualquier vértice de G_1 es adyacente a los vértices de a lo más una clase gradial de G_2 y viceversa. De esta forma, para todo $v \in C_{G_2}(\delta(G_1) + i) \neq \emptyset$, v es un vértice aislado pues en G_2 no existe un vértice de grado $\Delta(G_2) - i$.

Por lo tanto, G_1 grades disconexa.