

Contents

Abstracted/Indexed in/Cited in: API Abstracts; Chemical Engineering and Biotechnology Abstracts; Catalysts & Catalysis; Chem Inform; Chemical Abstracts; Current Contents: Engineering; Current Contents: Engineering Index; Current Contents: Physical, Chemical & Earth Sciences; Engineering, Technology & Applied Sciences; Metals Abstracts; Research Alert; SCISEARCH; Science Citation Index; Theoretical Chemical Engineering Abstracts. Also covered in the abstract and citation database Scopus®. Full text available on ScienceDirect®

Low-temperature carbon monoxide and propane total oxidation by nanocrystalline cobalt oxides G. Salek, P. Alphonse, P. Dufour, S. Guillemet-Fritsch and C. Tenailleau (France)	1
Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: Effects of wastewater effluent matrix and catalyst modifications J. Choi, H. Lee, Y. Choi, S. Kim, S. Lee, S. Lee, W. Choi and J. Lee (Republic of Korea)	8
Vertically aligned CdTe nanotube arrays on indium tin oxide for visible-light-driven photoelectrocatalysis X. Wang, G. Li, H. Zhu, J.C. Yu, X. Xiao and Q. Li (China)	17
Core-shell structured γFe ₂ O ₃ @SiO ₂ @AgBr:Ag composite with high magnetic separation efficiency and excellent visible light activity for acid orange 7 degradation B. Tian, T. Wang, R. Dong, S. Bao, F. Yang and J. Zhang (PR China)	22
Long-lived photogenerated charge carriers of 0 0 1-facet-exposed TiO ₂ with enhanced thermal stability as an efficient photocatalyst Y. Luan, L. Jing, J. Wu, M. Xie and Y. Feng (PR China)	29
Effects of nitrogen compounds, aromatics, and aprotic solvents on the oxidative desulfurization (ODS) of light cycle oil over Ti-SBA-15 catalyst KS. Cho and YK. Lee (South Korea).	35
Amphiphilic niobium oxyhydroxide as a hybrid catalyst for sulfur removal from fuel in a biphasic system L.C.A. de Oliveira, N.T. Costa, J.R. Pliego Jr., A.C. Silva, P.P. de Souza and P.S. de O. Patrício (Brazil)	43
Fabrication and photocatalytic properties of cationic and anionic S-doped TiO ₂ nanofibers by electrospinning D. Ma, Y. Xin, M. Gao and J. Wu (China)	49
Elaboration and characterization of sulfated and unsulfated V ₂ O ₅ /TiO ₂ nanotubes catalysts for chlorobenzene total oxidation C. Gannoun, A. Turki, H. Kochkar, R. Delaigle, P. Eloy, A. Ghorbel and E.M. Gaigneaux (Tunisia, Belgium)	58
Pore structure, interface properties and photocatalytic efficiency of hydration/dehydration derived TiO ₂ /CNT composites S.M. Miranda, G.Em. Romanos, V. Likodimos, R.R.N. Marques, E.P. Favvas, F.K. Katsaros, K.L. Stefanopoulos, V.J.P. Vilar, J.L. Faria, P. Falaras and A.M.T. Silva (Portugal, Greece)	65
Enhancement of visible photocatalytic activity via Ag@C ₃ N ₄ core—hell plasmonic composite X. Bai, R. Zong, C. Li, D. Liu, Y. Liu and Y. Zhu (China)	82
An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO ₂ support R.K.P. Purushothaman, J. van Haveren, D.S. van Es, I. Melián-Cabrera, J.D. Meeldijk and H.J. Heeres (The Netherlands)	92
CO ₂ hydrogenation into CH ₄ on NiHNaUSY zeolites I. Graça, L.V. González, M.C. Bacariza, A. Fernandes, C. Henriques, J.M. Lopes and M.F. Ribeiro (Portugal)	101
Chemical deactivation of Fe-BEA as NH ₃ -SCR catalyst—Effect of phosphorous S. Shwan, J. Jansson, L. Olsson and M. Skoglundh (Sweden)	111
Manganese octahedral molecular sieve (OMS-2) catalysts for selective aerobic oxidation of thiols to disulfides S. Dharmarathna, C.K. King'ondu, L. Pahalagedara, CH. Kuo, Y. Zhang and S.L. Suib (USA)	124
Highly active PdCeO _x composite catalysts for low-temperature CO oxidation, prepared by plasma-arc synthesis R.V. Gulyaev, E.M. Slavinskaya, S.A. Novopashin, D.V. Smovzh, A.V. Zaikovskii, D.Yu. Osadchii, O.A. Bulavchenko, S.V. Korenev and A.I. Boronin (Russian Federation)	132

(Contents continued on bm I)

ScienceDirect

Full text of this journal is available, on-line from ScienceDirect. Visit www.sciencedirect.com

0926-3373 (20140405) 147; 1-W