$\mathcal{N} = 1$ CHIRAL SUPERMULTIPLET

In this section we describe how the $\mathcal{N}=1$ chiral supermultiplet in four dimensions is related to the two dimensional $\beta\gamma$ system.

0.1.

0.1.1. We work on the four manifold \mathbb{R}^4 equipped with the flat metric. We will write Ω^i for the space of smooth *i*-forms on \mathbb{R}^4 . The space of sections of the spinor bundles are denoted by $S_{\pm} = C^{\infty}(\mathbb{R}^4; S_{\pm})$ where S_{\pm} are the defining representations of the two copies of SU(2) in Spin(4). Write dvol = $\mathrm{d} x_1 \cdots \mathrm{d} x_4$ and \star for the Hodge star operator.

We fix an even dimensional real vector space V equipped with a complex structure, denoted by J, and a Hermitian inner product, denoted by h.

0.1.2.

Definition 0.1. The N=1 chiral supermultiplet on \mathbb{R}^4 with values in the complex vector space V equipped with a Hermitian pairing h has space of fields

$$\Phi_{+} = (\varphi_{+}, \psi_{+}, F_{+}) \in \Omega^{0} \otimes V \oplus \mathcal{S}_{+} \otimes V \oplus \Omega^{2} \otimes V$$

$$\Phi_{-} = (\varphi_{-}, \psi_{-}, F_{-}) \in \Omega^{0} \otimes V \oplus \mathcal{S}_{-} \otimes V \oplus \Omega^{2} \otimes V$$

and action functional given by

$$S^{SO}(\varphi, \psi, F) = \int h(\varphi \otimes \Delta \varphi) dvol + \int h(\langle \psi_+, \partial \psi_- \rangle) dvol + \int F^2$$

where $\langle -, - \rangle$ denotes the standard symplectic pairing $S_+ \otimes S_+ \to \mathbb{C}$.

We have written the fields as a pair of superfields, a chiral one Φ_+ and an anti-chiral one Φ_- . It will be useful for our purposes to write the chiral supermultiplet in the BV-BRST formalism. There are no gauge symmetries, so all that this amounts to is the the introduction of the anti-fields to the fields we have already written.

$$\begin{array}{lll} \Phi_+^\vee & = & (\varphi_+^\vee, \psi_+^\vee, F_+^\vee) \in \Omega^4 \otimes V \oplus \mathcal{S}_-' \otimes V \oplus \Omega^2 \otimes V \\ \\ \Phi_-^\vee & = & (\varphi_-^\vee, \psi_-^\vee, F_-^\vee) \in \Omega^4 \otimes V \oplus \mathcal{S}_-' \otimes V \oplus \Omega^2 \otimes V. \end{array}$$

We note that the anti-field to a positive spinor $\psi_+ \in \mathcal{S}_\pm$ is a spinor $\psi_\pm^\vee \in \mathcal{S}_+$ of the same chirality. The prime simply indicates the same underlying spinor bundle except we are viewing it as an anti-field. Using this notation, we can define the classical theory in the BV formalism in a succinct way.

Definition 0.2. The N=1 chiral supermultiplet on \mathbb{R}^4 in the BV formalism is the $\mathbb{Z} \times \mathbb{Z}/2$ graded theory with complex of fields given by

1

The *R*-charge of an anti-field is opposite to that of the corresponding field. Thus, ψ_{\pm}^{\vee} has *R*-charge ∓ 1 and F_{\pm}^{\vee} has *R*-charge ∓ 2 .

We will perform a twist of the free chiral supermultiplet by a fixed constant spinor $Q \in \mathcal{S}_-$. This element acts on the fields $\Phi = (\varphi_+, \psi_+, F)$ as above:

$$Q \cdot (\varphi_+, \psi_+, F) = (0, Q \cdot (d\varphi_+), \langle Q, \partial \psi_+ \rangle).$$

The action of Q on the anti-fields reads is determined by compatibility with the (-1)-shifted symplectic pairing. Explicitly it is

$$Q \cdot (\varphi_+^{\vee}, \psi_+^{\vee}, F) = (\langle Q, \partial \psi_+^{\vee} \rangle, Q \cdot (\star F_+^{\vee}), 0).$$

We have arrived at the following.

Proposition 0.3. The twist of the N=1 free chiral supermultiplet on \mathbb{R}^4 with values in the hermitian vector space V by an element $Q \in \mathcal{S}_-$ is equivalent to the free $\beta \gamma$ system on \mathbb{C}^2 with values in V:

$$(\gamma,\beta)\in\Omega^{0,*}(\mathbb{C}^2;V)\oplus\Omega^{1,*}(\mathbb{C}^2;V^{\vee})[1].$$

The action functional is $S(\gamma, \beta) = \int \langle \beta, \bar{\partial} \gamma \rangle$ where $\langle -, - \rangle$ is the evaluation pairing on V.

0.1.3. We will introduce the following "first-order" reformulation of the chiral supermultiplet that will be convenient for our description of it as a BV theory. Introduce additional scalar fields of the form

$$B \in \Omega^3 \otimes V$$

and define the action

$$S^{FO}(\varphi, B, \psi, F) = \int h(B \wedge d\varphi) - \frac{1}{2} \int h(B \wedge \star B) + \int h(\langle \psi_+, \partial \psi_- \rangle) dvol$$

Lemma 0.4. The theories S^{SO} and S^{FO} are classically equivalent.

Proof. We show that the spaces of solutions to the classical equations of motion are equivalent. The equations of motion for the chiral supermultiplet read

$$\Delta \varphi = 0
\partial \psi = 0
F = 0.$$

Next, consider S^{FO} . The pieces of the action functional involving ψ , F are identical. We use the variation of the scalar field $\varphi \mapsto \varphi + \delta \varphi$ to obtain the equation of motion dB = 0. The variation $B \mapsto B + \delta B$ yields the equation $d\varphi - h^{\vee}(\star B)$. This equation is equivalent to $\star d\varphi = h^{\vee}(B)$. Applying d to this equation and using the equation dB = 0 we obtain $d \star d\varphi = \Delta \varphi = 0$, as desired.

An explicit equivalence at the level of fields can be written as follows. BW: Want $\varphi \mapsto \varphi$, $B \mapsto \star h^{\vee}(d\varphi) + h^{\vee}(F)$.

BW: physics description of susy action

0.1.4. We describe the theory S^{FO} as a classical theory in the BV formalism. The space of fields

1

- Fermion degree $\ \underline{0} \ \Omega^0 \otimes V \xrightarrow{\quad d_+ \ } (\Omega^1 \otimes V)_+$
- Fermion degree $\[\underline{0}\]$ $(\Omega^3 \otimes V)_- \xrightarrow{\quad d\quad} \Omega^4 \otimes V$
- Fermion degree $\underline{1}$ $(S_+ \oplus S_-) \otimes V \xrightarrow{\partial} (S'_- \oplus S'_+) \otimes V$