EE5802: DSP Lab (Jan – May 2021)

Today's Topic

• BER Analysis of OFDM system with wireless channel.

Recap:

Block diagram of OFDM Tx and Rx with wireless channel

Continuous time system model

Wireless SISO channel

Discrete time system model

Discrete time model

$$y = \underline{h} \circledast \underline{x} + \underline{n}$$

where,

 $\underline{x} = Transmited symbol vector$

 \underline{h} = wireless channel gain or channel coefficient vector

y = Received symbol vector at reciever

 $\underline{n} = AWGN(Adittive\ White\ Gaussian\ Noise)$

Linear Convolution:

- $\underline{x} = [x_0, x_1, \dots, x_{N-1}]$
- $\underline{h} = [h_0, h_1, \dots, h_{L-1}]$
- $y[n] = h_0 x_n + h_1 x_{n-1} + \dots + h_{L-1} x_{n-L+1}$

OFDM:

•
$$\underline{x} = [x_{N-L_{CP}+1}, \dots, x_{N-1}, x_0, x_1, \dots, x_{N-L_{CP}+1}, \dots, x_{N-1}]$$

•
$$\underline{h} = [h_0, h_1, \dots, h_{L-1}]$$

•
$$y[n] = h_0 x_n + h_1 x_{n-1} + \dots + h_{L-1} x_{n-L+1}$$

n=0,
$$y[0] = h_0 x_0 + 0 + \dots + 0 = h_0 x_{N-L_{CP}+1}$$

n=1, $y[1] = h_0 x_1 + h_1 x_0 + 0 + \dots + 0$
 $= h_0 x_{N-L_{CP}+2} + h_1 x_{N-L_{CP}+1}$

n=L-1,
$$y[L-1] = h_0 x_{L-1} + h_1 x_L + \dots + h_{L-1} x_0 + 0 + \dots + 0$$

= $h_0 x_{N-L_{CP}+L} + h_1 x_{N-L_{CP}+L-1} + \dots + h_{L-1} x_{N-L_{CP}+1}$

Circular convolution example:

Output of DFT at receiver:

$$Y_k = H_k \times_k$$
 $Y_0 = H_0 \times_0$
 $Y_1 = H_1 \times_1$
 $Y_1 = H_1 \times_1$
 $Y_1 = H_1 \times_1$
 $Y_2 = H_2 \times_1$

Equalization at receiver:

$$h = \{h_0, h_1, \dots, h_{L-1}\}$$
 $L \times I$
 $L \times I$

Without OFDM:

$$J(1) = h(0)x(1) + h(1)x(0)$$

With OFDM:

$$Y(1) = H(1) \times (1)$$

Observation: with OFDM ISI is reduced

• After Equalization, perform ML detection for each $\widetilde{Y_k}$.