Name:		
	ID:	
]	Profs. Chen & Grochov	w
S	oring 2020, CU-Boulde	er

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm

Advice 1: For every problem in this class, you must justify your answer: show how you arrived at it and why it is correct. If there are assumptions you need to make along the way, state those clearly.

Advice 2: Informal reasoning is typically insufficient for full credit. Instead, write a logical argument, in the style of a mathematical proof.

Instructions for submitting your solutions:

- The solutions should be typed and we cannot accept hand-written solutions. Here's a short intro to LATEX.
- · You should submit your work through the class Canvas page only.
- You may not need a full page for your solutions; pagebreaks are there to help Gradescope automatically find where each problem is. Even if you do not attempt every problem, please submit this template of at least 9 pages (or Gradescope has issues with it).

Quicklinks: 1 2a 2b 2c 2d 3a 3b 3c

 Name (a) one advantage, (b) one disadvantage, and (c) one alternative to worst-case analysis. For (a) and (b) you should use full sentences.

There are many reasonable answers to all of these. Here are some good ones:

- (a) It is often easier to derive a worst-case upper bound than average-case or typicalcase. Worst-case upper bounds give absolute guarantees.
- (b) The worst case may not arise in practice, so a worst-case bound can be far from runtimes in practice. It can be difficult to actually construct a worst-case example, and thus to show that a worst-case bound is tight.
- (c) Average-case, relative to various distributions. Typical-case. Best-case (although best-case isn't usually a good measure of performance). Worst-case analysis on restricted kinds of inputs.

Name:					
		ID:			
	_		 	 	

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

 For each part of this question, put the growth rates in order, from slowest-growing to fastest. That is, if your answer is f₁(n), f₂(n),..., f_k(n), then f_i(n) ≤ O(f_{i+1}(n)) for all i. If two adjacent ones are asymptotically the same (that is, f_i(n) = Θ(f_{i+1}(n))), you must specify this as well.

Justify your answer (show your work). You may assume transitivity: if $f(n) \le O(g(n))$ and $g(n) \le O(h(n))$, then $f(n) \le O(h(n))$, and similarly for little-oh, etc.

(a) Polynomials.

$$n+1$$
 n^4 $1/n$ 1 n^2+2n-4 n^2 \sqrt{n} 10^{100}

Correct order (two functions that are Θ of one another are listed together in {braces}:

$$1/n$$
 $\{1, 10^{100}\}$ \sqrt{n} $n+1$ $\{n^2+2n-4, n^2\}$ n^4

Justification: In all these cases we can use the limit test.

- $\lim_{n\to\infty} \frac{1/n}{1} = \lim_{n\to\infty} 1/n = 0$, so the limit test tells us that 1/n < o(1), and thus $1/n \le O(1)$ but they are not Θ of one another.
- $\lim_{n\to\infty} 10^{100}/1 = 10^{100}$. As this is a nonzero constant, the limit test tells us that $1 = \Theta(10^{100})$.
- $\lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$, so $1 < o(\sqrt{n})$.
- We note that:

$$\lim_{n \to \infty} \frac{n+1}{\sqrt{n}} = \lim_{n \to \infty} \left(\sqrt{n} + \frac{1}{\sqrt{n}} \right)$$
$$= \infty + 0$$
$$= \infty.$$

So $n+1>\omega(\sqrt{n})$ and thus $n+1\geq\Omega(\sqrt{n})$. In particular, $\sqrt{n}\leq O(n+1)$; however, $\sqrt{n}\neq\Theta(n+1)$.

We note that:

$$\begin{split} \lim_{n \to \infty} \frac{n^2 + 2n - 4}{n^2} &= \lim_{n \to \infty} \left(1 + \frac{2}{n} - \frac{4}{n^2} \right) \\ &= 1 + 0 + 0 \\ &= 1, \end{split}$$

Name:		
	ID:	

CSCI 3104, Algorithms Problem Set 2 – Due Thurs Jan 30 11:55pm Profs. Chen & Grochow Spring 2020, CU-Boulder

which is a nonzero constant. So we conclude $n^2 = \Theta(n^2 + 2n - 4)$.

• We have that:

$$\lim_{n \to \infty} \frac{n+1}{n^2} = \lim_{n \to \infty} \left(\frac{1}{n} + \frac{1}{n^2} \right)$$
$$= 0.$$

So we conclude $n + 1 < o(n^2)$.

• $\lim_{n \to \infty} n^2/n^4 = \lim_{n \to \infty} 1/n^2 = 0$, so we conclude $n^2 < o(n^4)$.