${\bf Electrocardiogramme}$

Rémi HERNANDEZ Romuald MAKOSSO NOMBO Amandine CAUT Célia BOULTABI

Tuteur: Y.Courdiere

Université de Bordeaux

21 novembre 2017

Table des matières

1	Deu	ıxième partie : programmation dans un cas simplifié	4
	1.1	Schémas numériques pour la résolution	4
		1.1.1 Euler explicite	Ξ.

Chapitre 1

Deuxième partie : programmation dans un cas simplifié

2) Situation où l'on peut calculer des solutions analytiques : dans le cas (a(x) = 1) on a l'équation de la chaleur. De plus avec nos conditions aux bords, ie les dérivées sont nulles, on a deux cas :

$$\cos 1:$$

$$f(x,t)=0$$
 la solution est la fonction u définie par :

$$u(x,t) = \cos(k\pi x)\exp(-k^2\pi^2 t)$$

 $\cos 2$:

$$f(x,t) \neq 0$$

Ici, f(x,t) est à valeurs dans un espace de Hilbert. $f \in L^2$. u sera de la forme :

$$u(x,t) = \int_{-\infty}^{+\infty} E(x-y,t)u_0(y)dy + \int_{-\infty}^{+\infty} \int_0^t E(x-y,t-s)f(y,s)dyds$$
$$E(x,t) = \begin{cases} \frac{1}{\sqrt{4\pi t}} exp(\frac{-x^2}{4t}) & \text{si } t > 0\\ 0 & \text{sit } \le 0 \end{cases}$$

1.1 Schémas numériques pour la résolution

Pour la résolution de cette équation, on utilise un maillage uniforme avec un pas de Δt en temps et Δx en espace.

La dérivée seconde en espace est approchée par :

$$\frac{\partial^2 u}{\partial^2 x} = \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{\Delta x^2}$$
(1.1)

1.1.1 Euler explicite

On approche $\frac{\partial u}{\partial t}(x_i, t_j)$ par :

$$\frac{u(x_i, t_j + 1) - u(x_i, t_j)}{\Delta t} \tag{1.2}$$

On obtient le schéma suivant :

$$\frac{u(x_i, t_j + 1) - u(x_i, t_j)}{\Delta t} - \frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{\Delta x^2} = f(x_i, t_j)$$
(1.3)

Pour la suite on écrira u_i^j à la place de $u(x_i, t_j)$.

Aussi on utilisera la notation : $U^j = \begin{pmatrix} u_1^j \\ u_2^j \\ \vdots \\ u_N^j \end{pmatrix}$

Le schéma s'écrit sous forme matricielle :

$$\frac{U^{j+1} - U^j}{\Delta t} + A_{\Delta x} U^j = F^j \tag{1.4}$$

Avec:

$$A_{\Delta x} = \frac{1}{\Delta x^2} \begin{pmatrix} 2 & -1 & 0 & \dots & \dots & 0 \\ -1 & 2 & -1 & 0 & \dots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & -1 & 2 & -1 \\ 0 & \dots & \dots & 0 & -1 & 2 \end{pmatrix}$$
(1.5)

Et on a
$$F^j = \begin{pmatrix} f(x_1, t_j) \\ f(x_2, t_j) \\ \vdots \\ f(x_N, t_i) \end{pmatrix}$$