

Aprendizaje predictivo en Nutrición

Trabajo Fin de Máster

Andrea Morales Garzón

Juan Gómez Romero

María J. Martín Bautista

Contenido

- Introducción
- Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Contenido

- Introducción
- 2 Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Food Computing

- Área de la computación que abarca problemas sobre nutrición
- Suele combinar más de una fuente alimenticia
- La predicción es una de las tareas más relevantes

Fuentes de datos heterogéneas

- Food Computing combina distintas fuentes de datos: nutricionales, de recetas, etc.
- Problemas al trabajar con datos heterogéneos:
 - Difieren en contenido, estructura y origen
 - Requieren tratamiento previo para usarlos de forma agregada

Nuestro problema a resolver

¿Qué queremos hacer?

- Desarrollar una herramienta para combinar información heterogénea
 - Detectar términos comunes a través de sus descripciones textuales

¿Cómo lo resolvemos?

- Comparando representaciones numéricas de las descripciones textuales
 - Modelos predictivos para aprender las representaciones
 - Medidas de distancia para identificar equivalencias
- Mostrando su funcionamiento en un problema real
 - Adaptación de recetas a restricciones (vegetarianas y veganas)

Objetivos

Objetivo principal:

Estudio, diseño e implementación de técnicas predictivas para resolver un problema de fusión y consulta sobre datos textuales

Objetivos específicos:

- Identificar los elementos a los que representan los datos que intervienen en el problema
- Fusionar información heterogénea
- Mostrar la eficacia y el alcance de la herramienta desarrollada

Contenido

- 1 Introducción
- 2 Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Planificación Temporal

Descomposición de los objetivos en actividades

Estimación de costes

- Coste asociado al uso de recursos computacionales
- Costes asociados al personal
 - Estimación de costes por descomposición de actividades

Actividad	Plan	Análisis	Diseño	Desarrollo	Test	Total
Actividad 1	0.4	0.4	1.4	1.1	0.7	4.0
Actividad 1a	0.1	0.0	0.1	0.4	0.0	0.6
Actividad 1b	0.1	0.1	0.5	0.1	0.2	1.0
Actividad 1c	0.1	0.2	0.7	0.4	0.2	1.6
Actividad 1d	0.1	0.1	0.1	0.2	0.3	0.8
Actividad 2	0.4	1.2	0.7	0.35	0.9	3.55
Actividad 2a	0.1	0.4	0.2	0.0	0.2	0.9
Actividad 2b	0.1	0.5	0.2	0.0	0.2	1.0
Actividad 2c	0.1	0.2	0.2	0.25	0.2	0.95
Actividad 2d	0.1	0.1	0.1	0.1	0.3	0.7
Actividad 3	0.3	0.35	1.0	0.95	0.75	3.35
Actividad 3a	0.1	0.1	0.1	0.1	0.1	0.5
Actividad 3b	0.1	0.1	0.2	0.15	0.2	0.75
Actividad 3c	0.0	0.05	0.1	0.1	0.15	0.4
Actividad 3d	0.1	0.1	0.6	0.6	0.3	1.7
Total	1.1	1.95	3.1	2.4	2.35	10.9

Tabla: Estimación de costes en p.m. por descomposición de actividades

Contenido

- 1 Introducción
- 2 Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Arquitectura del sistema

- Entrada: datos heterogéneos
- Salida: consulta sobre los datos ya combinados

Sistema adaptado a Food Computing

- Adaptación de recetas a restricción
 - Se combinan ingredientes de la receta con información nutricional
- Entrada: recetas y base de datos nutricional
- Salida: receta adaptada a la restricción

Módulo de Procesamiento del Lenguaje

Módulo de Procesamiento del Lenguaje

Word Embedding

- Aprendizaje predictivo (recuentos de co-ocurrencia de palabras)
- Representación de palabras en el espacio semántico

- Palabras
- Distancias significativas
- Relaciones significativas
- Espacio multidimensional

1 Creación del corpus para entrenar el modelo

- Colección de recetas obtenidas de webs en inglés
- Usamos las instrucciones de preparación para montar el corpus

Procedencia	Número de recetas
BBC Food Recipe	10,679
Epicurious	20,111
Cookstr	225,602
AllRecipes	10,679
Total de recetas	267,071

Tabla: Corpus de recetas: origen y tamaño

- Creación del corpus para entrenar el modelo
- 2 Preprocesamiento del corpus
 - Tokenizar el texto de preparación de las recetas
 - Realizar un preprocesamiento típico
 - Convertir a minúscula
 - Eliminar signos de puntuación, dígitos y caracteres especiales
 - Eliminar stop words
 - Aplicar lematización
 - Entrenar un modelo de bigramas para detectar palabras compuestas

- Creación del corpus para entrenar el modelo
- Preprocesamiento del corpus
- 3 Entrenamiento del modelo

- Word2vec - CBOW

- Dimensión: 300

- Contexto: 5

- Épocas: 30

Vocabulario: 11288

Experimentación con el modelo

1 Visualización del vocabulario del modelo predictivo

Experimentación con el modelo

- Visualización del vocabulario del modelo predictivo
- 2 La separación espacial es relevante

Módulo de Mapeo

Módulo de Mapeo

Medidas de distancia

Distancia de Jaccard

- Distancia sintáctica
- Intersección entre los conjuntos asociados a las descripciones

Distancia Word's Mover

- Distancia semántica
- Coste de viajar de una descripción a la otra

Distancia híbrida

- Distancia sintáctica y semántica
- Combinación ponderada de Jaccard y Word's Mover

Medidas de distancia

Distancia de Jaccard

- Distancia sintáctica
- Intersección entre los conjuntos asociados a las descripciones

Distancia Word's Mover

- Distancia semántica
- Coste de viajar de una descripción a la otra

Distancia híbrida

- Distancia sintáctica y semántica
- Combinación ponderada de Jaccard y Word's Mover

Distancia difusa de Jaccard

- Intersección difusa entre conjuntos (sintáctica)
- Distancia difusa entre documentos
 - Intersección difusa (semántica)
 - Descripciones como un todo (y no elemento a elemento)

Mapeos: experimentación y resultados

Problema de mapeo entre bases de datos: i-Diet y USDA

ID	Description		Food Code	Main Food Description	
290	Apple, raw		396	Onion, mature, raw	
96	Onion, raw		599	Fruit juice, average	
	i-Diet		USDA		

Las medidas difusas mejoran a las clásicas

Medida de distancia	Top 1	Top 2	Top 3	Top 5	Top 10
Distancia Jaccard		20.16			
Word Mover's Distance	30.65	35.55	36.92	40.87	44.82
Distancia híbrida	32.15	37.12	40.19	43.05	47.41
Distancia Jaccard difusa	23.84	29.70	33.37	39.23	45.64
Distancia difusa entre documentos	35.55	40.46	43.46	47.00	53.26

Tabla: Resultados del mapeo (%) con las medidas de distancia

Mapeos: experimentación y resultados

Distancia difusa entre documentos

Alimento a mapear (i-Diet)	Alimento mapeado (USDA)	Mejor mapeo posible (USDA)	
(1) Sausage Bratwurst	Bratwurst	Bratwurst	/
(2) Chicory	Chicory beverage	Chicory beverage	/
(3) Chocolate and cream pudding, Chamburcy	Pie, chocolate cream	Pie, chocolate cream	/
(4) Swett potatoes	Potato, NFS	Sweet potato NFS	X
(5) Cocoa and hazelnut butter, Nocilla, Nutela	Hazelnuts	No matches	X
(6) Sobrasada mallorquina	No matches	No matches	X

Tabla: Resultados obtenidos con la distancia difusa entre documentos

Morales-Garzón, Andrea, et al. A Word Embedding Model for Mapping Food Composition Databases Using Fuzzy Logic International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Springer International Publishing, pp. 635–647, 2020

Tratamiento de datos heterogéneos

Módulo de Consultas Adaptadas

Módulo de Consultas Adaptadas

Adaptación de recetas a restricciones

Datos

- Receta con ingredientes
- Base de datos de composición de alimentos

Procedimiento

- Se combinan los ingredientes de la receta con la información nutricional de la base de datos de alimentos
- 2 Se detectan los ingredientes que no cumplan la restricción
- Se adapta la receta: se cambian los ingredientes restringidos por unos válidos
- Se devuelve la receta adaptada

Contenido

- 1 Introducción
- 2 Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Fuentes de datos

- Colección de recetas
 - Recetas que se pueden adaptar
 - Tiene ingredientes, pasos de preparación, etiquetado de recetas...
 - Hemos añadido datos extra para una mejor experiencia de uso (imágenes y clasificación de recetas)
- Base de datos de composición nutricional (i-Diet)
 - Tiene alimentos con información nutricional
 - Necesaria para consultar si los ingredientes cumplen las restricciones

Interfaz móvil

- Permite visualizar el funcionamiento del sistema
- Prototipo funcional
 - Diseño conceptual: primera iteración en el desarrollo

Interfaz móvil

- Permite visualizar el funcionamiento del sistema
- Prototipo funcional
 - Diseño conceptual: primera iteración en el desarrollo

Interfaz de Programación de Aplicaciones

- API REST
- Operaciones CRUD sobre las recetas
- Conecta el sistema con las fuentes de datos y la interfaz móvil

Demostración de la aplicación

Enlace: https://drive.google.com/file/d/ 1nFgGFtud37NkMOWEgnFR3a-2Ab8KJL6G/view?usp=sharing

Contenido

- 1 Introducción
- 2 Objetivos
- 3 Planificación
- 4 Arquitectura del sistema y experimentación
- 5 Aplicación
- 6 Conclusiones

Conclusiones y trabajo futuro

- Word Embeddings capturan la semántica de datos alimenticios
 - Identifica alimentos equivalentes/sustitutos
 - Abarca marcas comerciales
 - Dificultades: problemas en el vocabulario
 - Ausencia de vocabulario: out-of-vocabulary words
 - Mejoras: calidad y alcance del corpus, modelos predictivos del lenguaje más sofisticados: fasttext, BERT
- Módulo de mapeo es capaz de detectar equivalentes
 - Medidas sintácticas y semánticas
 - Flexible al nivel de detalle en descripciones (medidas difusas)
 - Resultados aproximados cuando no hay correspondencia exacta
 - Mejoras: combinar con otros atributos no textuales
- Consultas adaptadas
 - Potencia del sistema implementado
 - Adaptaciones intuitivas
 - Mejoras: siguientes pasos en el desarrollo de la app

¡Gracias por vuestra atención!

¿Preguntas?

