1 point	1.	Choose the correct statements about MLP MLP can have only 1 hidden layer The first hidden layer contains predictions for your task
		MLP with a linear activation function is better than a linear model We can train MLP with SGD A hidden layer of MLP automatically learns new helpful features for the task
1 point	2.	Apply a chain rule to calculate $\frac{\partial a}{\partial x}$ where $a(x,y)=\sin(xy)\cdot e^x$. Here is an example of the syntax: $\sin(x^*y)^*\exp(x)$ Preview $ \left(y\cos\left(xy\right)+\sin\left(xy\right)\right)e^x $ $\exp(x)^*\left(y^*\cos(y^*x)+\sin(y^*x)\right)$
1 point	3.	Choose the correct statements about backpropagation It is an efficient way to apply a chain rule It is the way to train modern neural networks It is done in one pass You can use non-differentiable loss to train your MLP
1 point	4.	What is the time complexity of backpropagation algorithm w.r.t. number of edges N in the computational graph? $ \bigcirc O(N) $ $ \bigcirc O(N^2) $ $ \bigcirc O(N!) $ $ \bigcirc O(\log(N)) $