多目标跟踪

20200625

Related to MOT

Related Work

Related to MOT

方向	研究内容	与多目标追踪区别	研究趋势	数据集
单目标追踪	第一帧给一个bounding box,然后进行跟踪	只有单个目标,目标类别不做 限定,难以区分相似的类内对 象	从"基于Detection的Tracking"思维中摆脱,采用多分支多通道拟合目标的位置、姿态等信息	VOTChallenge
目标检测	输入一张图片,输出目标 的类别信息和位置信息	是多目标追踪问题的输入	从One stage、Two stage的Anchor based到Anchor free	VOC, COCO
基于视频的 检测	输入为视频序列	没有数据关联的过程(没有轨 迹ID)	两种流派 1.基于检测和跟踪的算法 2.基于光流等动态信息	ImageNet VID、 YTO
Re-ID	图像检索的子问题。根据 与被查询图片的相似度, 降序排列	作为目标跟踪中一种非常有效 的外观特征。缺少时空信息和 运动信息	表征学习、度量学习、局部特征、 视频序列、GAN造图、无监督、半 监督。最大难点:domain的变化	Market1501、 DukeMTMC、 CHUK03
MTMCT	多目标多相机追踪	跨摄像头、多视频	基于Re-ID延申的方向	DukeMTMC
姿态追踪	人体姿态估计+人体姿态 追踪	可以引入MOT中,人少时精度 更高,但人多场景性能不好		PoseTrack

1. Unified optimization framework for localization and tracking of multiple targets with multiple cameras (2018)

- Trajectory (轨迹): 一条轨迹对应这一个目标 在一个时间段内的位置序列
- Tracklet (轨迹段):形成Trajectory过程中的 轨迹片段。完整的Trajectory是由属于同一物理 目标的Tracklets构成的。
- ID switch (ID切换): 又称ID sw.。对于同一个目标,由于跟踪算法误判,导致其ID发生切换的次数称为ID sw.。跟踪算法中理想的ID switch应该为0。

Tracking-by-detection

• problems:

data association problem: linking observations from an object.

trajectory estimation problem: predict states (location, velocity, etc.) of each object.

methods:

the separate approach: the tracking problem via data association becomes the main research issue.

the unified approach: these two problems are formulated in a unified optimization framework having trajectory assignment variables as well as trajectory location variables.

papers:

- 1、Brau, E., Guan, J., Simek, K., Del Pero, L., Dawson, C., Barnard, K., 2013. Bayesian 3D tracking from monocular video. Proceedings of the International Conference on Computer Vision (ICCV).
- 2. Andriyenko, A., Schindler, K., Roth, S., 2012. Discrete-continuous optimization for multi_x0002_target tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- 3. Ayazoglu, M., Li, B., Dicle, C., Sznaier, M., 2011. Dynamic subspace-based coordinated multi camera tracking. Proceedings of the International Conference on Computer Vision (ICCV).
- 4、Hofmann, M., Wolf, D., Rigoll, G., 2013. Hypergraphs for joint multi-view reconstruction and multi-object tracking. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
- 5. Byeon, M., Oh, S., Kim, K., Yoo, H.-J., Choi, J., 2015. Efficient spatio-temporal data as_x0002_sociation using multidimensional assignment for multi-camera multi-target tracking. Proceedings of British Machine Vision Conference (BMVC).

Mcmtt

Optimization variables:

1, an assignment (matrix) A

2 trajectory hypothesis (vector) x

$$\mathbf{x} = (\mathbf{x}^s \dots \mathbf{x}^t)^{\mathrm{T}} \in \mathbb{R}^{3(t-s+1)\times 1} \qquad \mathbf{x}^t = (\mathbf{x}^t, \mathbf{y}^t, \mathbf{z}^t).$$

Optimization Formulation

$$G = (V, E) = (D_{11} \cup ... \cup D_{KF}, E),$$

$$\mathbf{d}_{i}^{k,t} \in \mathbf{D}_{kt}$$

• hypergraph:

An example of a hypergraph, with $X=\{v_1,v_2,v_3,v_4,v_5,v_6,v_7\}$ and $E=\{e_1,e_2,e_3,e_4\}=\{\{v_1,v_2,v_3\},\{v_2,v_3\},\{v_3,v_5,v_6\},\{v_4\}\}$.

Optimization Formulation

$$\min_{\mathbf{A}, \mathcal{X}} \sum_{p=1}^{\mathbf{P}} c(A_p, \mathcal{X}) \tag{8}$$

subject to

$$[A_u]_{k,t} \neq [A_v]_{k,t}, \ \forall \ u \neq v,$$
 s.t. $[A_u]_{k,t}, [A_v]_{k,t} > 0,$ (9)

$$\exists A_u \in \mathbf{A}, \quad \forall i \in \mathbf{I}_{kt} \setminus \{0\}$$
 s.t. $[A_u]_{k,t} = i$, $k = 1, ..., K, t = 1, ..., F$, (10)

$$\mathbf{A} = \{A_1, A_2, ..., A_p\}.$$
 $\left\{\mathbf{x}_{n_1}, ..., \mathbf{x}_{n_p}, ..., \mathbf{x}_{n_p}\right\} \subset \mathcal{X},$

Cost design

cost

$$\tilde{c}(A, \mathbf{x}) = \lambda_{rec} \cdot c_{rec} + \lambda_{mot} \cdot c_{mot} + \lambda_{mid} \cdot c_{mid} + \lambda_{tse} \cdot c_{tse} + \lambda_{tfm} \cdot c_{tfm} + \lambda_{fpt} \cdot c_{fpt},$$
(12)

$$c_{rec}(A, \mathbf{x}) = \sum_{t=s}^{e} \sum_{k \in \mathbf{N}(\mathbf{x}^t)} \frac{\varepsilon_{rec}(A^t, \mathbf{x}^t, k)^2}{|\mathbf{N}(\mathbf{x}^t)|},$$
(13)

$$\varepsilon_{rec}(A^t, \mathbf{x}^t, k) = \begin{cases} dist(\Phi^k(\mathbf{d}_i^{k,t}), \mathbf{x}^t), & \text{if } [A^t]_k = i, \ i > 0, \\ r, & \text{if } [A^t]_k = 0, \ k \in \mathbf{N}(\mathbf{x}^t), \\ 0, & \text{otherwise}, \end{cases}$$
(14)

$$\|\mathbf{x} - \Phi^k(\mathbf{d})\| = \|(x', y', z')^{\mathrm{T}} - (az' + c, bz' + d, z')^{\mathrm{T}}\|$$

$$\frac{x - c}{a} = \frac{y - d}{b} = z$$

Cost design

$$c_{mot}(A, \mathbf{x}) = \alpha_m \cdot \varepsilon_d + (1 - \alpha_m) \cdot \varepsilon_c,$$

$$c_{mid}(A, \mathbf{x}) = \sum_{t=s}^{e} (|\mathbf{N}(\mathbf{x}^t)| - d(A^t)),$$

$$c_{tse}(A, \mathbf{x}) = d(A^s) \cdot e(\mathbf{x}^s) + d(A^e) \cdot e(\mathbf{x}^e)$$

$$c_{tfm}(A) = d(A^s) + d(A^e).$$

Example of a splitting/re-merging

$$M^{I} = \begin{pmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}, \qquad M^{J} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

$$\begin{split} \widetilde{\mathbf{A}}^{(l-1)} &= \{\widetilde{A}_p\}, \quad p = 1, ..., P, \\ \widetilde{\mathbf{A}}^{\mathrm{I}} &= \{M^{\mathrm{I}} \otimes \widetilde{A}_p\} \setminus \{O_{\mathrm{K} \times \mathrm{F}}\}, \\ \widetilde{\mathbf{A}}^{\mathrm{J}} &= \{M^{\mathrm{J}} \otimes \widetilde{A}_p\} \setminus \{O_{\mathrm{K} \times \mathrm{F}}\}, \\ |\widetilde{\mathbf{A}}^{\mathrm{I}}| &= P^{\mathrm{I}}, \quad |\widetilde{\mathbf{A}}^{\mathrm{J}}| &= P^{\mathrm{J}}, \end{split}$$

PSN University (3648, 2752)

Dataset	Method	GT	MT	PT	Rcll	Pren	MOTA	MOTP	IDS	FM
	Proposed	10	100%	0%	96.6%	94.4%	90.1%	85.6%	10	6
PSN-Univ.	Byeon et al. (2015)	10	90%	10%	93.4%	97.4%	89.5%	82.0%	17	16
standing .	Hofmann et al. (2013)	10	90%	10%	93.1%	97.2%	89.7%	81.7%	9	8
	Baseline	10	10%	90%	73.4%	98.5%	67.0%	85.0%	65	68
	Detection (Head)	-	<u>₩</u> 1	-	79.4%	95.1%	-	-	-	-
	Proposed	10	100%	0%	95.1%	93.9%	88.2%	89.1%	12	4
PSN-Univ.	Byeon et al. (2015)	10	100%	0%	93.8%	92.1%	85.0%	87.0%	14	14
siting	Hofmann et al. (2013)	10	100%	0%	92.9%	92.4%	84.5%	88.0%	12	10
	Baseline	10	60%	40%	76.8%	95.4%	68.4%	89.1%	85	85
	Detection (Head)	-	7	-	82.8%	93.1%	-	3. -		-
	Proposed	10	100%	0%	93.0%	84.9%	75.6%	85.4%	21	10
PSN-Univ.	Byeon et al. (2015)	10	90%	10%	90.2%	88.4%	77.2%	84.8%	29	27
sit.&stand.	Hofmann et al. (2013)	10	80%	20%	89.1%	88.8%	77.1%	86.4%	18	19
	Baseline	10	60%	40%	78.1%	95.8%	69.8%	87.4%	120	13
	Detection (Head)	-	-	-	75.1%	90.5%	- A name value	Tales	-	_

Results

2. Features for Multi-Target Multi-Camera Tracking and Re-Identification

loss

$$L_{3} = \left[m + \sum_{x_{p} \in P(a)} w_{p} d(x_{a}, x_{p}) - \sum_{x_{n} \in N(a)} w_{n} d(x_{a}, x_{n}) \right]_{+}$$

$$w_p = \left[x_p == \arg\max_{x \in P(a)} d(x_a, x)\right]$$

$$w_n = \left[x_n == \arg\min_{x \in N(a)} d(x_a, x)\right]$$

Figure 3. Triplet loss weighing schemes.

$$w_p = \frac{e^{d(x_a, x_p)}}{\sum\limits_{x \in P(a)} e^{d(x_a, x)}} \;, \quad w_n = \frac{e^{-d(x_a, x_n)}}{\sum\limits_{x \in N(a)} e^{-d(x_a, x)}}$$

sample

	Multi-Camera Easy			Multi-Camera Hard			Single-Camera Easy				Single-Camera Hard			
(4.2.4)	IDF1	IDP	IDR	IDF1	IDP	IDR	IDF1	IDP	IDR	MOTA	IDF1	IDP	IDR	MOTA
BIPCC [57]	56.2	67.0	48.4	47.3	59.6	39.2	70.1	83.6	60.4	59.4	64.5	81.2	53.5	54.6
lx_b [45]	58.0	72.6	48.2	48.3	60.6	40.2	70.3	88.1	58.5	61.3	64.2	80.4	53.4	53.6
PT_BIPCC [49]	-	-		-	-	-	71.2	84.8	61.4	59.3	65.0	81.8	54.0	54.4
MTMC_CDSC [68]	60.0	68.3	53.5	50.9	63.2	42.6	77.0	87.6	68.6	70.9	65.5	81.4	54.7	59.6
MYTRACKER [72]	64.8	70.8	59.8	47.3	55.6	41.2	80.0	87.5	73.8	77.7	63.4	74.5	55.2	59.0
MTMC_ReID [79] [†]	78.3	82.6	74.3	67.7	78.6	59.4	86.3	91.2	82.0	83.6	77.6	90.1	68.1	69.6
DeepCC	82.0	84.3	79.8	68.5	75.8	62.4	89.2	91.7	86.7	87.5	79.0	87.4	72.0	70.0

结束!