

University of Miskolc

Faculty of Earth Science and Engineering
Institute of Environmental Management
Department of Hydrogeology and Engineering Geology

Department supervisor:
Gábor Nyiri
Dr. Péter Szűcs

Presented by Udomporn TUPBUCHA

TOPICS

- **INTRODUCTION**
- 2. LITERATURE REVIEW
- 3. MATERIALS AND METHODS INVESTIGATION
- 4. SITE DESCRIPTION
- **5.** RESULTS
- 6. CONCLUSION

INTRODUCTION

To increase renewable energy for the balance of the global energy demand and supply without releasing pollution to the environment.

Identify thermal behavior of the seasonal aquifer thermal energy storage (ATES) system.

Process

A three-dimensional groundwater flow simulation program **MODFLOW**, and a heat flow simulation by the multi-species mass transport simulation program *MT3DMS*.

Objective

To analyze through potential geothermal energy of the ATES system for heat production energy supply for the domestic area.

LITERATURE REVIEW

Aquifer thermal energy storage (ATES)

Figure 2; Schematic of geothermal heat pump Image source; https://www.researchgate.net/publication/316919670 (Melissa, 2020).

Figure 1; Principle operation of an ATES doublet system in winter and summer Image source; CHAPTER 7 Seasonal Thermal Energy Storage Technologies for Sustainability (S. Kalaiselvam and R. Parameshwaran, 2014).

SITE DESCRIPTION

2 major types of geothermal reservoirs in HUNGARY

- 1) Porous reservoirs are found between 700 to 1,800 m with temperature between 50 to 75 °C, and consisted of layers of coarse sand and gravel of the clastic basin deposits or called Upper Miocene-Pliocene "Pannonian" basin-fill sequence
 - 2) Karstic thermal reservoirs are found at 2,000 m depth or more. The temperatures can be between 100 to 120 °C. as medium-enthalpy in the group of karstic rocks that are found in almost half of the hilly areas covering one-fifth of Hungary's territory.

Figure 3; Thermal water body and potential reservoirs.

Image source; https://map.mbfsz.gov.hu/ogre_en/ (National Geothermal System (OGRe))

SITE DESCRIPTION

Tiszaújváros.

- ➤ General information
- ➤ Description of the wells

Image source; https://map.mbfsz.gov.hu/ogre_en/ (National Geothermal System (OGRe))

SITE DESCRIPTION

Unit

mBsl.

m.

Bsl.

m

 $^{\circ}C$

 $^{\circ}C$

 $1/m^3$

 $1/m^3$

Figure 5;Location of the four thermal wells

Image source; https://map.mbfsz.gov.hu/ogre_en/ (National Geothermal System (OGRe))

Figure 6; Lithology and well construction of the four thermal wells

MATERIALS AND METHODS INVESTIGATION

Modelling of ATES system

1) Groundwater flow modelling MODFLOW

- using the numerical equation:
 finite difference method (FDM)
- specified head boundaries
- specified flow boundaries
- head-dependent flow

Table 2; Aquifer hydraulic input parameters

Layer	Layer Material Description	Hydraulic properties			
		K (m/d)	Ss	Sy	Porosity
1	Top Soil, Silty clay, Clay, and layer of sand	1.78x10 ⁻⁴	1.2x10 ⁻⁶	0.10	0.18
2	Pebbly coarse-sand	432	1x10 ⁻⁴	0.32	0.36
3	Clayey-Sandy Silt with interbed of Lignite	1.78x10 ⁻³	1.4x10 ⁻⁵	0.18	0.20
4*	Sand, sandstone	43.2	1x10 ⁻⁴	0.27	0.32
5	Clay	8.64x10 ⁻¹⁰	2.4x10 ⁻⁴	0.20	0.20

MATERIALS AND METHODS INVESTIGATION

Modelling of ATES system

Model parameter	Symbol	Value	Unit
Temperature of injecting constant hot water	-	333.15 K (60 °C)	
Effective thermal conductivity of the porous	λь	2.7	W/m/K
media			
Volumetric heat capacity of the water	$\rho_w C_w$	4.19 x10 ⁶	J/(m3/C)
Thermal distribution coefficient	Kd	2.10x10 ⁻⁴	m³/kg
Thermal diffusivity	D _T	1.64x10 ⁻⁶	m ³ /s
Longitudinal dispersivity	αL	0.5	m
Horizontal transverse dispersivity	αтн	0.05	m
Vertical transverse dispersivity	ατν	0.05	m
Dry bulk density	ρь	1961.0	kg/m³
Specific heat capacity of the soil	Cs	880	J/kg/K
Retardation factor	R	2.37	-
Sorption Method	-	Linear Isothermal	
Geothermal gradient;	-	50°C/1000 m	

2) Heat transport modelling MT3DMS

- basic transport package (BTN),
- advection package (ADV),
- dispersion package (DSP),
- sink & source mixing package (SSM),
- chemical reactions package (RCT).

By the iterative solver called generalized conjugate gradient solver (GCG).

MATERIALS AND METHODS TO MODELLING

Model construction

A MODFLOW simulation in GMS is used for the groundwater flow model with model domain extension 2000 x 2000 m² with a 10 x 10 m² cell grids. And 5 horizontal layer with various thickness

Initial condition

The water table and elevation of stratigraphy of layers were interpolated by Kriging method.

The temperature of the model is incresing with the depth respect to geothermal gradient 50°C per 1000 m

Operation conditions

A cyclic mode of the seasonal ATES system using four wells in total is simulated. Injection flow rate 1500 m³/day for 6 months and production flow rate 2000 m³/day for 6 months each year, and the cycle is repeated for 25 years

Model assumptions

- the model domain is a homogenous, isotropic, and confined aquifer;
- if any between the aquifer and the confining bed, fluid exchange is negligible;
- the hydraulic and thermal properties of the wells and aquifers are always constant;

Boundary condition

A flow model, northern and southern borders are assumed as no-flow boundaries.

A transport model, the northern and southern boundaries of the domain are no mass flux

Model Experimental scenarios

- A unique well with double function
- A doublet of wells system

MATERIALS AND METHODS TO MODELLING

Model construction

A MODFLOW simulation in GMS is used for the groundwater flow model with model domain extension 2000 x 2000 m² with a 10 x 10 m² cell grids. And 5 horizontal layer with various thickness

Initial condition

The water table and elevation of stratigraphy of layers were interpolated by Kriging method.

The temperature of the model is incresing with the depth respect to geothermal gradient 50°C per 1000 m

2000_{m} 1180 m Starting Head 99.5 97.0 94.5 nous, 92.0 89.5 the 87.0 ole; Assigned the temperature of the 84.5 of the ambient groundwater based on 82.0 79.5 77.0

- A doublet of wells system

Figure 8; The model grid showing the initial boundary conditions assigned to the model

Boundary condition

A flow model, northern and southern borders are assumed as no-flow boundaries.

A transport model, the northern and southern boundaries of the domain are no mass flux

MATERIALS AND METHODS TO MODELLING

Figure 9: the starting hydraulic head are interpolated from four water well reports, and the modified hydraulic head

RESULT

1) A unique well with double function, which alternates of injection period for 6 months.

And production period for 6 months per year.

Thermal Energy and Recovery Effiency of K-50

Thermal Energy and Recovery Effiency of K-77

RESULT

Figure; Input and output thermal energy and its recovery efficiency annually in ATES system for 25 years of the 1st scenario

The heat transport has a strong influence by a thermal loss due to the different temperatures of the ambient groundwater flow in the ATES system.

The heat transport velocity is 50 m/day

Recovery efficiency values of **K-50**Between 62.57% reducing to 51.79%

Recovery efficiency values of **K-123**Between 80.24% decreasing to 72.08%

Recovery efficiency values of **K-75** continuously improving yearly from 54.20% to 84.30 %

Recovery efficiency values of **K-77**Between 69.11% increasing in 7 years to 73.58% then get lower to 50.14%

Thermal Energy and Recovery Effiency of K-123

Thermal Energy and Recovery Effiency of K-75

RESULT

2) A doublet wells system, K-50 and K-123 are injection well working for injection period for 6 months, and K-75 and K-77 are production well working for 6 months per year.

Observed Temperature vs Time

• K-50 • K-123 • K-77 • K-75 Figure; Timeline of

At K-77 receives mitigating warm water after 1000 days

Figure; Timeline of observed temperature variableness at the four wells in ATES system for 25 years of the 2nd scenario

RESULT

Figure; Input and output thermal energy and its recovery efficiency annually in ATES system for 25 years of the 2nd scenario

Injection wells K-50 and K-123 are in the upstream, production wells K-75 and K-77 are in the downstream.

K-77 receives the mitigating warmwater from the injection wells earlier than K-77 due to the smaller distance.

CONCLUSION AND DISCUSSION

The influence of the thermal behavior in the ATES systems with main 3 parameters

- 1. The location and distance between the injection well and production wells
- 2. The volume of warmwater and its temperature as well as the injection time period
- 3. The hydraulic and thermal parameters

The model confirms that the hydrogeological mechanism in the Tiszaújváros conditions is considerably satisfied with great thermal recovery efficiency overtime.

According to the small-scale differences of the temperature, the model is still able to evaluate the effectiveness of storing and offering a great thermal energy production of ATES systems.

Therefore, there is possible to apply ATES system in shallow depth approximately 500 m if there is a good amount and high temperature of the energy source injection.

