# BTS INFORMATIQUE ET RESEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES

Session 2006

# **EPREUVE E.4 Etude d'un système informatisé**

#### COMMANDE AUTOMATISEE DES CENTRALES HYDRAULIQUES DU RHIN

# **Document Réponse (12 pages)**

**B.1.1 Plages horaires =** 

| Heure de<br>début | Heure de fin | Nature de<br>l'éclusée |
|-------------------|--------------|------------------------|
| 00H00             | 07H00        | Rétention              |
| 07H00             | 09H00        | équilibre              |
| 09H00             | 14H00        | Lâcher                 |
| 14H00             | 17H30        | équilibre              |
| 17H30             | 20H30        | Lâcher                 |
| 20H30             |              | équilibre              |
|                   | 00H00        | Rétention              |

| D. 1.2 | valeur | uu mai  | mage –   |        |   | ••••• | <br> | •••• |
|--------|--------|---------|----------|--------|---|-------|------|------|
|        |        |         |          |        |   |       |      |      |
| B.1.3  | Puissa | nce éle | ectrique | Kaplan | = |       | <br> |      |

| B.2.1                                                                              | Répartition choisie<br>Nature combinaison                 | =<br>=      |               |
|------------------------------------------------------------------------------------|-----------------------------------------------------------|-------------|---------------|
| B.2.2                                                                              | Répartition choisie<br>Nature combinaison                 | =<br>=      |               |
| B.2.3                                                                              | Répartition choisie<br>Nature combinaison                 | =<br>=      |               |
| B.2.4                                                                              | Page chargée<br>Répartition choisie<br>Nature combinaison | =<br>=<br>= |               |
| B.3.1                                                                              | Caractéristiques généra                                   | lles :      |               |
|                                                                                    | Avantages                                                 |             | Inconvénients |
|                                                                                    |                                                           |             |               |
| B.4.1 Tableau comparatif des différentes liaisons :<br>Cochez les bonnes réponses. |                                                           |             |               |

| Liaisons | Top           | ologie     |              | Mode       | Dist    | ance     |
|----------|---------------|------------|--------------|------------|---------|----------|
|          | Point à point | Multipoint | Différentiel | Unipolaire | < 100 m | > 1000 m |
| RS-232   |               |            |              |            |         |          |
| RS-422   |               |            |              |            |         |          |
| RS-485   |               |            |              |            |         |          |

| B.4.2 Temps de transmission | = |
|-----------------------------|---|
|-----------------------------|---|

#### C.2.1 Diagramme des Cas d'Utilisation :



## C.3.1 Diagramme de Séquence (scénario de regroupement des plages) :



| C.4.1 Nature synchrone/asynchrone des messages (scénario de régulation du<br>lébit) : |
|---------------------------------------------------------------------------------------|
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
|                                                                                       |
| C.4.2 Signification du message *[en_ordre_de_marche]FixerDebit()                      |
|                                                                                       |
|                                                                                       |
|                                                                                       |

### C.4.3 Numérotation des messages échangés par les objets



# C.5.1 Indication des cardinalités sur Diagramme de Classes



# C.5.2 Diagramme de Classes issu du Diagramme d'Objets



### C.5.3 Nature de la relation entre les classes

|       | Message, Consigne_debit_total et Informations_remontees :                                                                                                                                                                                                                                                                             |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                       |
|       | Cela signifie que (COCHER UNE CASE)  un message est spécialisable soit en une consigne de débit total, soit en une somme d'informations remontées;  une consigne de débit total correspond aux informations remontées;  un message est composé à la fois d'une consigne de débit total et des informations remontées correspondantes. |
| C.5.4 | 4 Une Consigne_débit_total est donc composée (au sens UML) de                                                                                                                                                                                                                                                                         |
| C.5.  | 5 La contrainte <i>{ordonnée}</i> ne serait plus nécessaire si                                                                                                                                                                                                                                                                        |
|       |                                                                                                                                                                                                                                                                                                                                       |

| D.1.1 Déclaration de la classe CKaplan :    |
|---------------------------------------------|
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
|                                             |
| D.1.2 La classe CGroupe est abstraite car : |
| Conséquences :                              |
|                                             |
|                                             |
| D.1.3 Rôle du pointeur this :               |
|                                             |

# D.1.4 Cochez avec une croix les méthodes appelées :

| M/A 1                                   | Méthode(s) exécutée(s)      | Méthode de la            | Méthode de la            |
|-----------------------------------------|-----------------------------|--------------------------|--------------------------|
| Méthode appelée                         |                             | classe<br><b>CGroupe</b> | classe<br><b>CKaplan</b> |
| Constructeur : CGroupe *groupe = new    | w CKaplan(i);               | •                        | •                        |
| Méthode fixeDebit : groupe->fixeDebit(d | lebit);                     |                          |                          |
| Méthode getResultats : groupe->getResu  | ıltats(&debit, &puissance); |                          |                          |

## D.1.5 Lien entre la classe CPa et la classe CCombinaison:

| class C<br>{<br>private |                |                          | Réponse ici |
|-------------------------|----------------|--------------------------|-------------|
|                         | int<br>CGroupe | nbGroupes;<br>**groupes; |             |
| public:                 |                |                          |             |
| •                       |                | *, int, int *, int);     |             |
| }:                      |                |                          |             |

| D.1.6 Attribut privé (private) :                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Attribut protégé (protected) :                                                                                                             |
| Pourquoi l'attribut typeTurbine doit-il être protected ?                                                                                   |
|                                                                                                                                            |
|                                                                                                                                            |
| ••••••••••••                                                                                                                               |
| D.2.1 Réception de la consigne du PHV : while (1)                                                                                          |
| tMessagePa * message = (tMessagePa *)messagerie.retirer(); //***********************************                                           |
| // Réception message consignes du PHV<br>//***********************************                                                             |
| if ( == PHV)                                                                                                                               |
| { int debitConsigne =                                                                                                                      |
|                                                                                                                                            |
| +;                                                                                                                                         |
| // les paramètres de la méthode sont la consigne globale et le booléen indiquant un début d'éclusée. combinaison.fixeDebit (debitConsigne, |
| );                                                                                                                                         |
| Ligne c = combinaison.demandeCombinaison();<br>repartitDebit(c);                                                                           |
| }<br>//***********************************                                                                                                 |
| //<br>// Réception message de l'opérateur du PA<br>//***********************************                                                   |
| // ne rien mettre ici                                                                                                                      |
| } // fin while                                                                                                                             |
| D.2.2 Taille de la structure =                                                                                                             |
| D.2.3 Instruction donnant la taille =                                                                                                      |
| D.2.4 Version correcte =  Raisons pour lesquelles les autres versions sont incorrectes =                                                   |
|                                                                                                                                            |
|                                                                                                                                            |
|                                                                                                                                            |
|                                                                                                                                            |
|                                                                                                                                            |
|                                                                                                                                            |
| D.2.5 Sémaphore d'exclusion mutuelle =                                                                                                     |

#### D.2.6 Méthode chargePages

```
bool CCombinaison::chargePages (void)
{
                         // fichier des débits unitaires
    ifstream param;
    Ligne
            ligne:
                        // une ligne de combinaison (débits unitaires + puissance)
    int
            debit, nbLignes;
                             // info dans ligne entête de chaque page
            texteDebit, texteNbLignes; // labels dans ligne entête de chaque page
    string
           retcode = true ;
    bool
     table = new Page[nbPages];
     param.open(FICHIERS PAGES);
     //****** Chargement des débits page par page ****************
    while(!param.eof())
                        {
         //******* Chargement info & labels de la ligne entête **********
         param >> texteDebit >> debit >> texteNbLignes >> nbLignes;
         //******* Calcul du numéro de page *********
         int noPage = .....
         //******* Sortie méthode si fin de fichier inopinée *********
         retcode = false;
              break:
         }
         //****** Sortie méthode si les labels ne sont pas DEBITS & LIGNES **********
         retcode = false ;
              break:
         for (int noLigne = 0; noLigne < nbLignes; noLigne++)</pre>
              //*** Récupération des débits groupes dans la ligne en cours *******
              for (int noGroupe=0; noGroupe < NBGROUPES; noGroupe++)</pre>
              //*** Récupération des quotas la ligne en cours *******
              .....
              //*** Récupération de la puissance dans la ligne en cours *******
              .....
              //*** Stockage de la ligne dans la page *******
              table[noPage].push back (ligne);
    return retcode:
}
```

#### D.2.7 Méthode combinaisonAdjacente

```
int CCombinaison::combinaisonAdjacente(int noPage, Ligne ligneCourante)
    // le nombre de lignes est donné par le vecteur
    for (unsigned int noLigne=0; noLigne < .....; noLigne++)</pre>
    {
         int nbAjoutsOuRetraits = 0;
         //*** Balayage des groupes ********
         for (int noGroupe=0; noGroupe < NBGROUPES; noGroupe++)</pre>
              if ( ( ligneCourante.debitGroupe[noGroupe] != 0
                && .....)
               | (.....
                && ......))
                   nbAjoutsOuRetraits++;
         if ( ......) // c est une adjacente
              return noLigne;
    return -1; // Pas de combinaison adjacente disponible
}
```

|        | Dans la configuration présente le réseau Modbus peut-il supporter le pre d'esclaves ? Justifiez votre réponse. |
|--------|----------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
| F 2 1  | Classe d'adresse :                                                                                             |
| L.Z. I | Justification:                                                                                                 |
|        |                                                                                                                |
|        |                                                                                                                |
|        | Maggue récour                                                                                                  |
|        | Masque réseau : Adresse de diffusion :                                                                         |
|        |                                                                                                                |
| E.2.2  | Nombre d'équipements sur net 1 :                                                                               |
|        | Nombre de bits pour l'adresse équipements :                                                                    |
|        | Nombre de bits pour l'adresse sous-réseau :                                                                    |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |
|        |                                                                                                                |

# E.2.3 Sous Réseaux

| Nom  | Adresse<br>Réseau | Masque | Broadcast | Adresse<br>mini | Adresse<br>maxi |
|------|-------------------|--------|-----------|-----------------|-----------------|
| net1 |                   |        |           |                 |                 |
| net2 |                   |        |           |                 |                 |
| net3 |                   |        |           |                 |                 |

## E.2.4 Plan d'adressage

| Equipement     | Adresse IP | Equipement | Adresse IP |
|----------------|------------|------------|------------|
| Router : eth0  |            |            |            |
| eth1           |            |            |            |
| eth2           |            |            |            |
| PC supervision |            |            |            |
| BULL SPS 5     |            |            |            |
| API-1          |            | API-2      |            |
| API-3          |            | API-4      |            |
| API-5          |            | API-6      |            |
| API-7          |            | API-8      |            |
| API-9          |            | API-10     |            |
| API-11         |            | API-12     |            |

# E.3.1 Remplir les champs contenus dans le tableau du document suivant :

| CHAMP (IP)                                    | VALEUR | CHAMP (TCP)                                    | VALEUR |
|-----------------------------------------------|--------|------------------------------------------------|--------|
| Version :                                     |        | Port Source :                                  |        |
| Type de service :                             |        | Port Destination :                             |        |
| Identification :                              |        | Numéro<br>d'ordre :                            |        |
| Durée de vie :                                |        | Numéro d'accusé de réception :                 |        |
| Protocole :                                   |        | URG:                                           |        |
| Somme de contrôle de l'en-tête :              |        | ACK:                                           |        |
| Adresse source:                               |        | PSH:                                           |        |
| Adresse destination :                         |        | FIN:                                           |        |
| Nombre d'octets que comporte le datagramme IP |        | Somme de contrôle :                            |        |
|                                               |        | Nombre d'octets que comporte le datagramme TCP |        |

### E.3.2 Remplir les champs contenus dans le tableau du document suivant :

| CHAMP          | VALEUR | CHAMP           | VALEUR | CHAMP              | VALEUR |
|----------------|--------|-----------------|--------|--------------------|--------|
| (MODBUS)       |        | (MODBUS)        |        | (MODBUS)           |        |
| Identificateur |        | Unit Identifier |        | Nombre de mots lus |        |
| de transaction |        |                 |        |                    |        |
| Identificateur |        | Code requête    |        | Numéro du mot lu   |        |
| de protocole   |        |                 |        |                    |        |
| Longueur       |        |                 |        |                    |        |

#### F.1.1 Adresse de base de la carte VIPC610:

Cavaliers sur le connecteur E3-E7 :

E7-7 E7-6 E7-5 E7-4 E7-3 E7-2 E7-1

note : ce cavalier n'intervient pas dans le choix de l'adresse de base

E3-7 E3-6 E3-5 E3-4 E3-3 E3-2 E3-1

| F.1.2 | Adresse de base du module "IP-Serial-A" dans l'emplacement A :                                                                                                                                            |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | Adresse de base du module "IP-Serial-B" dans l'emplacement B :                                                                                                                                            |
|       | Adresse des registres :  "IP-Serial-A", Channel A, registre Control :  "IP-Serial-A", Channel A, registre Data :  "IP-Serial-A", Channel B, registre Control :  "IP-Serial-A", Channel B, registre Data : |
|       | Plage d'adresses de l'espace "SHORT I/O" du bus VME vue depuis la carte MVME147 :                                                                                                                         |
| F.2.1 | Prédiviseur de fréquence :                                                                                                                                                                                |

### F.2.2 Time Constant TC = .....

|      | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|------|-------|-------|-------|-------|-------|-------|-------|-------|
| WR12 |       |       |       |       |       |       |       |       |
| WR13 |       |       |       |       |       |       |       |       |

#### F.2.3 Registres WR4 et WR5:

|     | bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|
| WR4 | 0     | 0     | X     | X     |       |       |       |       |
| WR5 | X     |       |       | X     | X     | X     | X     | X     |