Abdulmonem Alhajji MATH 080 27 July 2020 Homework #3

67.

A. We don't know of both probabilities are related and we can't add them together, they should be multiplied. And probability shouldn't be more than %100.

B. This sentence is wrong, because hitting a homerun means that the player had a successful hit. These two events are conditioned together. So, the player has to have the same probability of successful hits as homeruns.

82.

A.S={00,0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,2 7,28,29,30,31,32,33,34,35,36}

B.
$$P(red) = 18/38 = 0.47$$

C.
$$P(1^{st}12) = 12/38 = 0.32$$

D.
$$P(even) = 18/38 = 0.47$$

E. No, because the wheel has (00, 0).

F. Even and Odd or Red and Black.

G. No, P(even) = 0.47 and P(1st Dozen) = 0.32

84.

A.
$$P(Red) = P(Black) = 18/38$$
, $P(Red or Black) = P(Red) + P(Black) = 36/38$

B. P(Dozen Groups) = 12/38

C. P(1 from
$$18$$
) = $18/38$

D. P(range of
$$19-36$$
) = $18/38$

E.
$$P(Column bet) = 12/38$$

F.
$$P(Even) = P(Odd) = 18/38$$
; $P(Even or Odd) = P(E) + P(O) = 36/38$

85.

B. 5/8

C.2/3

D. 2/8

E.6/8

F, No, because P(G and E) doesn't = 0.

86.

A.

1 st	1	2	3	1	5	6
roll	1	4	3	4	3	U

2nd						
Roll						
1	(1,1)	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)
2	(2,1)	(2,2)	(2,3)	(2,4)	(2,5)	(2,6)
3	(3,1)	(3,2)	(3,3)	(3,4)	(3,5)	(3,6)
4	(4,1)	(4,2)	(4,3)	(4,4)	(4,5)	(4,6)
5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)
6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)

B.
$$P(A) = 6/36$$

C.
$$P(B) = 21/36$$

D. P(A|B) represents ruling the two dice to have a total of 7 max. $P(A\setminus B) = 7/21$

E. No, because A and B can happen at the same time. P(A and B) = 7/36.

F, Yes, they are. B and A can occur independently, knowing that event A can happen doesn't change the probability that even B can happen.

$$P(A|B) = 7/21$$

$$P(A) = 12/36$$