WRF-Hydro GIS Preprocessing Tools

Kevin Sampson, GISP
Associate Scientist
National Center for Atmospheric Research
Boulder, Colorado

Motivation

To provide a complete set of WRF-Hydro routing grids that have been hydrologically processed according to user specifications.

- Fast, efficient method for producing the 'routing stack'.
- Consistent processing methodology between domains, regions, datasets.
- Remove GIS burden from modelers.

WRF-Hydro & ArcGIS

- **Desktop GIS Application Suite**
- Site-licenses available at most US academic institutions
- Ecosystem of compatible hydrology tools
 - Spatial Analyst
 - ArcHydro
 - **TauDEM**
- Extensible using Python API (arcpy)
- Handles everything from projections, to analysis, to mapmaking in one library.

Requirements

- ArcGIS for Desktop
 - Version 10.2.2 (minimum 10.1 SP1)
 - Basic, Standard, or Advanced license levels
 - Spatial Analyst extension required
 - Python 2.7.5, NumPy 1.7.1
 - Installed with ArcGIS Desktop complete installation
- Optional:
 - TauDEM for ArcGIS 10 (x32 or x64) tools v5.1.2
 - http://hydrology.usu.edu/taudem/taudem5/index.html

Python Toolboxes

Python script wrapped to act as an ArcGIS Toolbox

- PYT file is the toolbox script containing multiple toolboxes
 - Functions called from separate script (wrf hydro functions.py)
- Parameter handling and validation

Advantages

Easy to modify
Portable
Many tools organized

WRF-Hydro preprocessor toolbox as viewed from ArcCatalog.

Pre-Processor

ProcessGeogridFile

Inputs

Required:

- WRF GEOGRID file (.nc)
- High-Resolution Elevation
 - Elevation file (Esri GRID, GeoTIFF, etc.)
 - Mosaic Datasets

Parameters:

- Regridding Factor nesting relationship of routing:land grids
- Minimum basin size (in routing grid cells)
- OVROUGHRTFAC constant
- RETDEPRTFAC constsant

Optional:

- Station Locations (.csv)
- Lake Polygons (polygon feature class or .shp)

Input: WRF GEOGRID

The purpose of the GEOGRID file is to define the simulation domain and interpolate various static geographical datasets to the model grid.

- GEOGRID is used in GIS Preprocessor to define the domain's coordinate reference system, extent, resolution, and certain variables:
 - HGT_M (elevation)
 - LU INDEX (landuse)
- Currently supported GEOGRID coordinate systems
 - MAP_PROJ = 1 (Lambert Conformal Conic)
 - MAP_PROJ = 3 (Mercator)
 - MAP_PROJ = 6 (Cylindrical Equidistant but NOT w/ rotated pole)
 - MAP_PROJ = 2 (Polar Stereographic)

GEOGRID: Projected Coordinate System

Front_Range_geo_em.d02.nc

```
:TITLE = "OUTPUT FROM GEOGRID V3.5.1";
:SIMULATION START DATE = "0000-00-00 00:00:00";
:WEST-EAST GRID DIMENSION = 50; // int
:SOUTH-NORTH GRID DIMENSION = 36; // int
:BOTTOM-TOP GRID DIMENSION = 0; // int
:WEST-EAST PATCH START UNSTAG = 1; // int
:WEST-EAST PATCH END UNSTAG = 49; // int
:WEST-EAST PATCH START STAG = 1; // int
:WEST-EAST PATCH END STAG = 50; // int
:SOUTH-NORTH PATCH START UNSTAG = 1; // int
:SOUTH-NORTH PATCH END UNSTAG = 35; // int
:SOUTH-NORTH PATCH START STAG = 1; // int
:SOUTH-NORTH PATCH END STAG = 36; // int
:GRIDTYPE = "C";
:DX = 1000.0f; // float
:DY = 1000.0f; // float
:DYN OPT = 2; // int
:CEN_LAT = 39.940014f; // float
:CEN LON = -105.42999f; // float
:TRUELAT1 = 30.0f; // float
:TRUELAT2 = 50.0f; // float
:MOAD CEN LAT = 39.940014f; // float
:STAND LON = -105.0f; // float
:POLE LAT = 90.0f; // float
:POLE LON = 0.0f; // float
:corner lats = 39.783337f, 40.093864f, 40.095993f, 3
:corner lons = -105.714264f, -105.71753f, -105.14442
:MAP PROJ = 1; // int
:MMINLU = "USGS";
:NUM LAND CAT = 24; // int
:ISWATER = 16; // int
:ISLAKE = -1; // int
:ISICE = 24; // int
:ISURBAN = 1; // int
:ISOILWATER = 14; // int
:grid id = 1; // int
:parent id = 1; // int
:i_parent_start = 1; // int
:j parent start = 1; // int
:i parent end = 50; // int
:j parent end = 36; // int
:parent grid ratio = 1; // int
:sr x = 1; // int
:sr y = 1; // int
:FLAG MF XY = 1; // int
```

esri PE string

"PROJCS['Lambert_Conformal_Conic',GEOGCS['GCS_Sphere',DATUM['D_Sphere',SPHEROID['Sphere',6370000.0,0.0]],PRIMEM['Greenwich',0.0],UNI T['Degree',0.0174532925199433]],PROJECTION['Lambert_Conformal_Coni c'],PARAMETER['false_easting',0.0],PARAMETER['false_northing',0.0],PARAMETER['central_meridian',105.0],PARAMETER['standard_parallel_1',30.0],PARAMETER['standard_parallel_2',50.0],PARAMETER['latitude_of_origin',39.9400138855],UNI T['Meter',1.0]];-36695400 -29251300 10000;-100000 10000;-100000 10000;0.001;0.001;ISHighPrecision"

geo_em.d01.boulder_creek_1km.prj

Input: Elevation Raster

- Must be an ArcGIS readable raster format
- Must contain valid coordinate reference system
- Must cover entire extent of your GEOGRID domain
- Elevation units must be converted to meters (m)
- Should be hydrologically corrected
 - Not necessary but helps with channel placement, hydro enforcement, etc.
- Supported datasets include, but are not limited to:
 - HydroSHEDS
 - NHDPlus (converted from cm to m)
 - EU-DEM

Input: Elevation Mosaics

Input: Station Location File

FID_	LON	LAT	STATION	Name	HOST	ELEV	DRAIN_AREA_SQMI	DRAIN_AREA_SQKM
1	-103.79889	40.26861	S_PLATTE_at_FT_MORGAN	6759500	USGS	4260	14627	37883.93
2	-108.26556	39.23917	COLO_at_CAMEO	9095500	USGS	4813	8050	20849.5
3	-104.39861	38.24806	ARKANSAS_nr_AVONDALE	7109500	USGS	4509	6327	16386.93
4	-105.88002	37.481392	RIO_GRANDE_nr_ALAMOSA	8223000	USGS	-9999	0	0

FID,LON,LAT,STATION,Name 15,-105.92833,40.08139,Fraser_at_Granby,9033300 18,-105.9,40.12083,COLO_nr_GRANBY,9019500 20,-106.3333,39.8803,Blue_R_blw_Grn_Mtn,9057500

- Create in Xcel, Numbers, Word, etc.
- Direct output of attribute table from shapefile or feature class
- "LON" & "LAT" required
- If present, basins will be delineated using the points provided
 - frxst_basns.nc output file will be created
 - frxst_pts.nc & gw_basns.nc will be populated
- If masked to basins, CHANNELGRID will have values -1, 0, -9999

Input: Regridding Factor

GEOGRID Resolution

Regridding Factor = Routing Resolution

Process: Latitude & Longitude Grids

- Each pixel on the high-resolution grid will have lat/lon calculated
- Project domain grid to WGS84
- Uses \$\$XMAP & \$\$YMAP functions from deprecated arcgisscripting python library.
- Project back to WRF projected coordinate system.

Process: Pit Filling

Spatial Analyst "Fill" Tool

Process: Stream definition

- Input Parameter: Number of pixels to define stream
 - Yields a minimum 'basin' size
 - Given in pixels (unitless), on the high-resolution grid
 - Affects density of generated channel network

Process: Stream definition

- Use flow accumulation threshold to define channels
- Option: use gaged basins as mask to assign CHANELGRID values
- If reach-based routing is selected, Stream to Feature used to create vector geometry of streams
 - streams.shp shapefile written to output directory

Process: Reach-Based Routing

- CHANNELGRID raster is converted to a shapefile (streams.shp)
- Decomposes line geometry to nodes, and gathers elevation,
 Latitude and Longitude at each node
- Constructs a CSV table with necessary parameters for reachbased routing:
 - Length, Slope, Order, Drop, X/Y, etc.
 - Order-based parameters
 - Writes output file to Route_Link.csv

Process: Stream Order

Stream Order Spatial Analyst tool

• Strahler stream order

Writes output file to str_order.nc

Process: Basin Delineation

- Snap points to streams
- 'Walk' down channel network a specified distance
 - Default = 3 pixel widths
- Delineate basin using 'Watershed' Spatial Analyst tool

 Writes output file to frxst_basns.nc, gw_basns.nc, gw_basns_geogrid.txt

Process: Reservoir Routing

- If option is selected, a polygon shapefile or feature class is required as input.
- Populates LAKEGRID.nc output file
- Assigns lake ID values to pixels where lakes drain into channel.
- Constructs a LAKEPARM. TBL table with necessary parameters for reach-based routing:

Lake area, max elevation, min elevation, base elevation, orifice

elevation

					100 C			1 Has		
LAKEPA	RM.TBL - Not	epad								
File Edit	Format V	ew Help								
1ake 1 2 3 4 5 6	LkArea 2.1 1.67 0.8 1.96 0.32 0.76 0.77	LkMxH WeirC WeirL 1580.1500244140625 2245.47998046875 1736.3599853515625 1594.93994140625 1680.0999755859375 1620.6300048828125 2500.889892578125	Orifico 0.4 0.4 0.4 0.4 0.4 0.4	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.1 0.1 0.1 0.1 0.1 0.1 0.1	Orifice 1.0 1.0 1.0 1.0 1.0 1.0	eE lat long 1572.7766520182292 2174.97998046875 1729.0533447265625 1579.760009765625 1678.6799723307292 1617.3166910807292 2466.8433430989585	elevation 40.07838735248951 39.94656702168859 39.946557221888284 40.02478203007508 39.86509441164564 39.99555565458241 39.96482345350996	-105.22213451160788 -105.36992762464327 -105.2132705086898 -105.19383093144614 -105.14036871356961 -105.20596029412296 -105.49331123501318	1576.4633382161458 2210.22998046875 1732.7066650390625 1587.3499755859375 1679.3899739583333 1618.9733479817708 2483.8666178385415
					72	400				

Outputs

- Set of netCDF, shapefile, CSV, txt (ascii raster), and .TBL files
 - 13-15 netCDF files
 - 1 ASCII Raster (.txt)
 - 0-1 Shapefiles
 - 0-1 .TBL
 - 0-1.CSV
 - 1 .log file

Other Utilities

ExamineOutputs

Extracts .zip output file to individual rasters for viewing in Desktop GIS applications. **ExportGrid** - -ExportGrid

Creates a polygon snapeme demining the domain boundary.

☐ STANDALONE_TOOL

 ☐ Some Processing

■ Wilities

ExamineOutputs

Input ZIP File

☐
☐ GEOGRID_STANDALONE.pyt

ExportPRJ

ProcessGeogridFile

🐧 DomainShapefile **ExamineOutputs** ExportGrid

GenerateLatLon

E:\Projects\Gochis\domains\Boulder_Creek\Boulder_Creek_100m_1km_NHDPl1

Cancel

Customization

- Multiple Toolboxes released for different users
 - UCAR Internal toolbox takes advantage of available services
 - Elevation mosaics and vector services (NHDPlus lakes, flowlines)
 - Modular tool structure allows building rapid new toolsets

```
    import arcpy

· import os, sys, math
• import shutil
sys.dont_write_bytecode = True
· import wrf hydro functions
 # Turn functions script and TauDEM script into Project data so it gets copied up to the server directo

    wrfhydro script = r'E:\Projects\Gochis\TOOLS\GEOGRID PREPROCESSOR CURRENT\wrf hydro functions.py'

 class Toolbox(object):
     def __init__(self):
    """Define the toolbox (the name of the toolbox is the name of the
          self.label = "GEOGRID STANDALONE"
         self.alias = ""
         self.description = "This is a standalone processing tool for WRF-HYDRO."
         # List of tool classes associated with this toolbox
         self.tools = [ProcessGeogridFile, ExportGrid, ExamineOutputs, ExportPRJ, GenerateLatLon]
 class ProcessGeogridFile(object):
     def __init__(self):
          """Define the tool (tool name is the name of the class)."""
          self.label = "ProcessGeogridFile"
         self.description = "This tool takes an input WRF Geogrid file in NetCDF format" + \
                             "and uses the HGT M grid and an input high-resolution elevation grid" + \
                             "to produce a high-resolution hydrologically processed output."
          #self.canRunInBackground = False
         self.canRunInBackground = True
         self.category = "Processing"
      def getParameterInfo(self):
           ""Define parameter definitions"""
          # First parameter
         in_nc = arcpy.Parameter(
              displayName="Input Geogrid File",
              name="in nc",
             datatype="File",
              parameterType="Required",
              direction="Input")
          # Second parameter
         in_csv = arcpy.Parameter(
```


Tool Messages

Documentation & Test Data

- Detailed documentation
 - 40 page PDF, and currently being reviewed
 - Describes tool capabilities, requirements, parameters, and GIS methods used in the tool chain.
- Small GEOGRID domains for testing tool functionality
 - Front Range (Lambert Conformal Conic)
 - India (Mercator)
- Expected Output provided for comparison
- Required Elevation files (.tif) provided
- Optional stream gages & lakes provided (Front Range)

Bottlenecks / Constraints

- Project High-Resolution Dataset for large areas
 - Can be avoided by pre-projecting/resampling high res data
- Flow Accumulation
- Not multi-threaded
 - Processes run on one core
 - Potential to use python multiprocessing module to utilize multiple cores.
 - Exception: TauDEM
- arcpy cannot build netCDF files with multiple variables
 - Final step is a shell script to combine all output .nc files

Higher Functionality Tools

- TauDEM Integration
 - D-Infinity flow direction algorithm
 - Flow direction apportionment between multiple downstream cells
 - Peuker-Douglas algorithm for stream definition
 - Thins stream network in low-relief areas
 - TauDEM tools allow multiprocessing
 - Specify number of cores to use for each tool
- Burn DEM using existing hydrography

Wishlist

- Better Esri NetCDF functionality (possibly with 10.3 release)
 - Multi-variable netCDF generation
 - Mosaic Datasets ingesting NetCDF multi-file dataset
- netCDF4 python libraries shipped with ArcGIS (10.3 SP1?)
- Pre-processing Web Processing Service (WPS)
- Utilize additional NHDPlus spatial and tabular data
 - Sink points, burn components, etc.

WRF-Hydro GIS Preprocessing Tools Demo

ksampson@ucar.edu

THANK YOU

