COMP 3225

Natural Language Processing

Sequence Processing, Transformer and Attention

Stuart E. Middleton

sem03@soton.ac.uk

University of Southampton

Overview

- LSTM
- GRU
- Gated Units, Layers and Networks
- Transformer
- <break discussion point>
- Self-attention
- Transformer for Text Completion Task

LSTM

- Long Short-Term Memory (LSTM)
- Long-distant information is critical to many language apps
 - Information encoded by a single RNN layer tends to be fairly local
 - Information is lost each training step, so encoded memory of tokens far away in sequence degrades pretty quickly
- Vanishing gradients problem
 - Gradients get smaller and smaller as Gradient Decent progresses to deeper stacked layers - they 'vanish'
 - Connection weights are virtually unchanged, so training loss does not converge
- Exploding gradients problem
 - The opposite can also happen, where gradients get larger and larger and the training loss again does not converge
 - In general these problems lead to unstable gradients

LSTM

- Long short-term memory (LSTM)
 - Forgets information no longer relevant (forget gate)
 - Adds new information (input gate sometimes called add gate)
 - Gate = layers \rightarrow logistic activation function σ (value 0..1), followed by a pointwise multiplication to provide a type of binary mark

GRU

- Gated Recurrent Unit (GRU)
 - Merges both long and short term state vectors
 - Simpler (less layers) and often performs as well as LSTM

Gated Units, Layers and Networks

 Stacked RNN, LSTM and GRU layers can be experimented with easily using frameworks like Tensorflow and PyTorch

Transformer

- Even LSTM and GRU's have problems with very long sequences
- Transformer architecture
 - Uses attention layers not sequential RNN layers
 - This architecture has led to many advances in NLP model performance

Output Probabilities

Softmax

Linear

- Attention layers >> compare item to other items to reveal their relevance in the current context
 - Self-attention compares to other elements within same sequence
- Self-attention layer maps input sequences $(x_1,...,x_n)$ to output sequences of the same length $(y_1,...,y_n)$
 - Layer computes for position i the y_i using input $x_1...x_i$ (uses context)
 - Layer computation independent of other layers (parallelizable)

 X_2

 X_3

 X_{Δ}

8

 X_5

 Compare items (embedding vector for a word) in a sequence using dot product using a score function

$$score(x_i, x_j) = x_i \cdot x_j$$
 $\alpha_{ij} = softmax(score(x_i, x_j)) \ \forall j \leq i$ j = all values up to i
 $y_i = \sum_{j \leq i} \alpha_{ij} x_j$

- For seq $x_1..x_3$ we need compute score(x_3,x_1), score(x_3,x_2), score(x_3,x_3)
- Normalize scores using softmax to create a vector of attention weights α
- Compute output by summing inputs in seq $x_1..x_i$ weighted by α
- But ... to allow learning we need trainable weights

Break

- Panopto Quiz discussion point
- How can we provide trainable weights for the attention function?

We don't need to! we have the attention weights α already Use a LSTM layer Use an weight vector Use an weight matrix

$$y_i = \sum_{j \le i} \alpha_{ij} x_j$$

Break

- Panopto Quiz discussion point
- How can we provide trainable weights for the attention function?

We don't need to! we have the attention weights α already >> we need weights to train Use a LSTM layer >> there is no sequence structure in an attention layer Use an weight vector >> No

Use an weight matrix >> Yes, actually several matricies as you will see next

$$y_i = \sum_{j \le i} \alpha_{ij} x_j$$

- Imagine encoder learns a dictionary
 - concept → lexical term == key → query
 'They played chess' >> 'subject' → 'They'; 'verb' → 'played'
 - Concepts are learnt in latent space do not map directly to single words
- Decoder can 'lookup' values for concepts it think go next in seq
- Transformer uses embeddings to provide this dictionary which is then differentiable (for gradient decent)
 - Query Q = matrix $[n_{queries}, d_{keys}]$, where $n_{queries}$ = input seq length
 - Key K = matrix $[n_{keys}, d_{keys}]$, where n_{keys} = number of keys
 - Value V = matrix [n_{kevs}, d_{values}]
 - d_{keys} = dimensions of query and key embedding

$$q_i = W^Q x_i; \quad k_i = W^K x_i; \quad v_i = W^V x_i$$

$$score(x_i, x_j) = \frac{q_i \cdot k_j}{\sqrt{d_k}}$$

$$y_i = \sum_{j \le i} \alpha_{ij} v_j$$

layer output = weighted sum of (attention x value) for each word in seq

Since computation of output q_i can be done independently, we can use matrix multiplication to parallelize training

$$q_i = W^Q x_i; \quad k_i = W^K x_i; \quad v_i = W^V x_i$$

$$Q = W^Q X; \quad K = W^K X; \quad V = W^V X$$

$$SelfAttention(Q, K, V) = softmax\left(\frac{QK^{T}}{\sqrt{d_k}}\right)V$$

- For language modeling we do not want to use sequence information after the current position (that would be cheating)
- We can blank (i.e. give a value of -∞) matrix values after the current position to hide them

Positional embeddings

- The position of words in sequences is important for language problems
- Transformer attention layers do not encode the position of words (unlike RNNs), so it uses an additional positional embedding
- These can be learned during training (e.g. additional position input alongside words) or generated using a positional encoding function (e.g. cosine/sine as per Vaswani 2017 paper)
- Positional embeddings have the same dimensions as word embeddings, so are just summed together to give a position-aware input embedding

- Multi-head Self-attention Layers
 - A self-attention layer is called a head
 - There can be N heads in a model providing a deep learning stack

Transformer for Text Completion Task

- Example using Transformer model for text completion
- Input = sequence of words
- Output = prediction of words to complete sequence
- Transformer architectures have become a 'go to' model for NLP

Required Reading

- LSTM, GRU, Transformer and Self-attention
 - Jurafsky and Martin, Speech and Language Processing, 3rd edition (online)
 >> chapter 9
- Transformer and Self-attention
 - Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly, 2017
 - >> Chapter 16 'attention mechanisms'
- LSTM, GRU (optional)
 - Aurelien Geron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O'Reilly, 2017
 - >> Chapter 15 'handling long sequences'

Questions

Panopto Quiz - 1 minute brainstorm for interactive questions

Please write down in Panopto quiz in **1 minute** two or three questions that you would like to have answered at the next interactive session.

Do it **right now** while its fresh.

Take a screen shot of your questions and **bring them with you** at the interactive session so you have something to ask.