Supervised

2019-5-15

```
heart_disease = read_csv("..\\data\\heart.csv") %>%
    mutate(target = ifelse(target==1, 0, 1)) %>%
   mutate(target=as.factor(target)) %>%
   mutate(target=as.factor(ifelse(target==0, "absence", "presence")))
## Parsed with column specification:
## cols(
##
    age = col_double(),
##
     sex = col double(),
##
     cp = col_double(),
    trestbps = col_double(),
##
##
    chol = col_double(),
##
    fbs = col_double(),
    restecg = col_double(),
    thalach = col_double(),
##
##
    exang = col_double(),
##
    oldpeak = col_double(),
##
     slope = col_double(),
##
     ca = col_double(),
    thal = col_double(),
##
##
    target = col_double()
## )
# %>% mutate(target = relevel(target, "absence"))
# %>% arrange(-as.numeric(target))
set.seed(1)
#trRows = createDataPartition(heart_disease$target, p = .75, list = FALSE)
#train = heart_disease[trRows,]
#test = heart_disease[-trRows,]
# heart_disease2 = read_csv("...\\data\\heart.csv") %>%
      mutate(target = ifelse(target==1, 0, 1)) %>%
#
      mutate(target=as.factor(heart_disease$target))
heart_disease = heart_disease %>%
   filter(thal != 0) %>%
   mutate(sex=as.factor(sex),
           cp=as.factor(cp),
           fbs=as.factor(fbs),
           restecg=as.factor(restecg),
           exang=as.factor(exang),
           slope=as.factor(slope),
           thal=as.factor(thal))
model.x <- model.matrix(target~.,heart_disease)[,-1]</pre>
model.y <- heart_disease$target</pre>
# test = test %>%
# mutate(sex=as.factor(sex),
```

```
# cp=as.factor(cp),
# fbs=as.factor(fbs),
# restecg=as.factor(restecg),
# exang=as.factor(exang),
# slope=as.factor(slope),
# thal=as.factor(thal))
# test.x <- model.matrix(target~.,test)[,-1]
# test.y <- test$target</pre>
```

Regularized logistic

```
viridis::scale_color_viridis(discrete = TRUE) +
    scale_shape_manual(values = seq(1,10))

## Scale for 'colour' is already present. Adding another scale for
## 'colour', which will replace the existing scale.

## Scale for 'shape' is already present. Adding another scale for 'shape',
```

which will replace the existing scale.

model.glm\$bestTune

```
## alpha lambda
## 93 0 0.1946867
```

LDA

Naive bayes

Distribution Type → Gaussian → Nonparametric

model.bayes\$bestTune

```
## fL usekernel adjust
## 29 1 TRUE 1.684211
```

Tree

tree.class\$bestTune

cp ## 13 0.003776539

rpart.plot(tree.class\$finalModel)

Bagging

bagging.class\$bestTune

```
## mtry splitrule min.node.size
## 17 18 gini 17
```


Random Forest


```
barplot(sort(ranger::importance(rf.class$finalModel), decreasing = FALSE),
las = 2, horiz = TRUE, cex.names = 0.7,
col = colorRampPalette(colors = c("darkred","white","darkblue"))(18))
```



```
a = predict(rf.class, type="raw")
```

Boosting

```
boost.grid <- expand.grid(n.trees = seq(20, 1700, by = 25),
                          interaction.depth = 2:7,
                          shrinkage = seq(0.01, 0.06, by = 0.005),
                          n.minobsinnode = 1)
set.seed(1)
# Adaboost loss function
boost.class = train(model.x, model.y,
                    tuneGrid = boost.grid,
                    trControl = ctrl,
                    method = "gbm",
                    distribution = "adaboost",
                    metric = "ROC",
                    verbose = FALSE)
ggplot(boost.class, highlight = TRUE) +
   viridis::scale_color_viridis(discrete = TRUE) +
    scale_shape_manual(values = seq(0,10))
```

Scale for 'colour' is already present. Adding another scale for
'colour', which will replace the existing scale.

Scale for 'shape' is already present. Adding another scale for 'shape',
which will replace the existing scale.


```
summary(boost.class$finalModel, las = 2, cBars = 19, cex.names = 0.6)
```



```
##
                 var
                         rel.inf
## oldpeak
            oldpeak 13.25454921
## thal2
              thal2 12.64189418
                  ca 12.45748937
## ca
            thalach 10.27116560
## thalach
## chol
                chol 9.62876235
## age
                 age 8.95061424
## trestbps trestbps 8.20801677
                 cp2 4.29299200
## cp2
## exang1
              exang1 4.10768934
## thal3
              thal3 3.93422601
## sex1
                sex1
                      2.82822808
                 cp3 2.54336672
## cp3
## restecg1 restecg1 2.16062178
## slope1
              slope1
                     1.99785656
## slope2
              slope2
                     1.36531004
                 cp1 1.17180420
## cp1
## fbs1
                fbs1 0.11237993
## restecg2 restecg2 0.07303361
```

centered ICE

Random forest, thalach Random forest, oldpeak 0.100 8.0 0.075 0.6 yhat **hat** 0.050 0.4 0.025 0.000 100 200 150 thalach oldpeak

SVM

Warning in train.default(x, y, weights = w, ...): The metric "Accuracy" was ## not in the result set. ROC will be used instead.

```
ggplot(svml.fit, highlight = TRUE)
```


svml.fit\$bestTune

```
## cost
## 3 0.008263406
```

Warning in train.default(x, y, weights = w, \dots): The metric "Accuracy" was ## not in the result set. ROC will be used instead.

```
ggplot(svmr.fit, highlight = TRUE) +
    viridis::scale_color_viridis(discrete = TRUE) +
    scale_shape_manual(values = seq(1,10))
```

```
0.90

0.88

0.88

0.006737947 + 0.013123729 $\iff 0.025561533 = 0.049787068 $\iff 0.09697$\\ \iff 0.009403563 $\iff 0.018315639 $\iff 0.035673993 $\iff 0.069483451 $\iff 0.135338$\\\
```

Neural network

#summary(resamp)

```
0.80

0.81

0.82

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.84

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86

0.86
```

```
##
## Call:
## summary.resamples(object = resamp)
## Models: glm.fit, lda.fit, bayes.fit, boost, rf, bagging, tree, cnnet.fit
## Number of resamples: 10
##
## ROC
##
                  Min.
                          1st Qu.
                                     Median
                                                 Mean
                                                         3rd Qu.
             0.7307692\ 0.8962054\ 0.9330357\ 0.9144756\ 0.9674370\ 0.9915966
## glm.fit
## lda.fit
             0.7548077 0.8642988 0.9322479 0.9052986 0.9567308 0.9621849
## bayes.fit 0.7259615 0.8917411 0.9459438 0.9131545 0.9537815 0.9831933
                                                                              0
## boost
             0.7403846 0.8851759 0.9327731 0.9047229 0.9505495 0.9621849
             0.7067308 0.9040179 0.9441459 0.9144514 0.9569328 0.9831933
                                                                              0
## rf
             0.7451923 0.8497243 0.8906957 0.8780503 0.9231880 0.9663866
                                                                              0
## bagging
                                                                              0
             0.7075893\ 0.8175223\ 0.8361345\ 0.8478325\ 0.8964983\ 0.9735577
## cnnet.fit 0.7211538 0.8816964 0.9291370 0.9091286 0.9684874 0.9873950
##
## Sens
```

```
##
                     1st Qu.
                                Median
                                             Mean
                                                    3rd Qu.
             0.7500 0.812500 0.9099265 0.8830882 0.9411765 1.0000000
## glm.fit
             0.8125 0.875000 0.8823529 0.8959559 0.9402574 1.0000000
## bayes.fit 0.5625 0.765625 0.8786765 0.8393382 0.9402574 0.9411765
                                                                          0
## boost
             0.7500 0.812500 0.8750000 0.8643382 0.9264706 0.9411765
## rf
             0.6875 0.828125 0.9099265 0.8827206 0.9411765 1.0000000
             0.6250 0.812500 0.8180147 0.8216912 0.8805147 0.9411765
## bagging
             0.6875 0.765625 0.8786765 0.8411765 0.9237132 0.9411765
                                                                          0
## tree
  cnnet.fit 0.7500 0.812500 0.9099265 0.8830882 0.9411765 1.0000000
##
##
  Spec
##
                         1st Qu.
                                    Median
                                                        3rd Qu.
                                                                      Max. NA's
                  Min.
                                                 Mean
             0.5384615 0.7321429 0.8214286 0.8027473 0.9065934 0.9285714
## glm.fit
             0.5384615 0.7142857 0.7142857 0.7598901 0.8887363 0.9285714
                                                                              0
## lda.fit
## bayes.fit 0.5384615 0.7321429 0.7857143 0.7956044 0.9230769 0.9285714
                                                                              0
## boost
             0.3846154\ 0.7321429\ 0.7857143\ 0.7653846\ 0.8543956\ 0.9230769
                                                                              0
## rf
             0.3846154 0.6607143 0.7857143 0.7373626 0.8392857 0.9230769
                                                                              0
             0.4615385 0.7142857 0.7857143 0.7516484 0.8310440 0.9230769
                                                                              0
  bagging
             0.5384615 0.7142857 0.7417582 0.7516484 0.7857143 0.9285714
                                                                              0
## tree
## cnnet.fit 0.5384615 0.7321429 0.8214286 0.7956044 0.9065934 0.9285714
                                                                              0
```

bwplot(resamp, metric = "ROC")

Comparing accuracy

Regularized logistic