

REAL CONVEX FUNCTIONS

Why

We speak of functions which always bends up.¹

Definition

Suppose $X \subset \mathbf{R}$ is a convex set. A function $f: A \to \mathbf{R}$ is *convex* if

$$f(tx + (1-t)y) \le tf(x) + (1-t)f(y)$$

for all $y \in [0,1]$ and $x,y \in X$ In other words, a real-valued function is a function defined on a convex set of real numbers for which the result of the function on a convex combination of any two points in the domain is smaller than the convex combination of the same length of the value of the function on the endpoints.² A function $f: \mathbf{R} \to \mathbf{R}$ is concave if the function -f is convex.

¹Future editions may expand.

²Future editions will include figures

