Markov-Ketten mit diskretem Zeitparameter

1. Elementare Eigenschaften von Markov-Ketten

Gegeben sei eine Folge von Zufallsvariablen (X_n) auf dem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit $X_n : \Omega \to S$ wobei S nicht leer, und endlich oder abzählbar unendlich ist.

Definition

Eine $S \times S$ -Matrix $P = (p_{ij})$ heißt stochastische Matrix, falls $p_{ij} \geq 0$ ist und für alle $i \in S$ die Zeilensumme $\sum_{j \in S} p_{ij} = 1$ ist.

Definition

Sei P eine stochastische Matrix. Eine (endliche oder unendliche) Folge X_0, X_1, X_2, \ldots von Swertigen Zufallsvariablen heißt (homogene¹) Markov-Kette mit Übergangsmatrix P, falls für
alle $n \in \mathbb{N}^2$ und für alle Zustände $i_k \in S$ mit

$$P(X_0 = i_0, \dots, X_n = i_n) > 0$$

gilt

$$P(X_{n+1} = i_{n+1} \mid X_0 = i_0, \dots, X_n = i_n) = P(X_{n+1} = i_{n+1} \mid X_n = i_n) := p_{i_n i_{n+1}}.$$

Die p_{ij} heißen Übergangswahrscheinlichkeiten und die Startverteilung ν der Kette ist definiert durch $\nu(i) := P(X_0 = i)$ für $i \in S$.

Bemerkung: Jede Folge von unabhängigen Zufallsvariablen ist eine Markov-Kette.

Satz 1.1 (Eigenschaften von Markov-Ketten)

 (X_n) ist genau dann eine Markov-Kette mit Übergangsmatrix P, falls gilt:

$$P(X_k = i_k, 0 \le k \le n) = P(X_0 = i_0) \prod_{k=0}^{n-1} p_{i_k i_{k+1}} \quad \forall n \in \mathbb{N}_0 \ \forall i_k \in S$$

genau dann wenn gilt:

$$P(X_k = i_k, 1 \le k \le n \mid X_0 = i_0) = \prod_{k=0}^{n-1} p_{i_k i_{k+1}} \quad \forall n \in \mathbb{N}_0 \ \forall i_k \in S \text{ mit } P(X_0 = i_0) > 0$$

¹kurz für zeit-homogen. Die Übergangswahrscheinlichkeiten hängen nicht vom aktuellen Zeitpunkt ab.

²Hier ist $\mathbb{N} = 1, 2, \dots$

genau dann wenn gilt:

$$P(X_k = i_k, m \le k \le m + n) = P(X_m = i_m) \prod_{k=m}^{m+n-1} p_{i_k i_{k+1}} \quad \forall m, n \in \mathbb{N}_0 \ \forall i_k \in S$$

Beweis

Zur ersten Äquivalenz. Sei $A_k := [X_k = i_k], k \in \mathbb{N}_0$.

" \Longrightarrow " Induktion über n: $n = 0 \checkmark$, $n \curvearrowright n + 1$:

$$P(A_0 A_1 \dots A_n A_{n+1}) = P(A_0 \dots A_n) \cdot P(A_{n+1} \mid A_0 \dots A_n)$$

$$= P(A_0 \dots A_n) \cdot p_{i_n i_{n+1}} \qquad \text{(Markov-Eigenschaft)}$$

$$= P(X_0 = i_0) \prod_{k=0}^{n} p_{i_k i_{k+1}} \qquad \text{(I.V.)}$$

,,←="

$$P(A_{n+1} \mid A_0 \dots A_n) = \frac{P(A_0 \dots A_n A_{n+1})}{P(A_0 \dots A_n)}$$

= $p_{i_n i_{n+1}}$ (Vor.)

Die weiteren Äquivalenzen sind ähnlich zu beweisen.

Konstruktion einer Markov-Kette. Seien (Y_n) Zufallsvariablen, unabhängig und identisch verteilt (u.i.v.), in Z. Weiter ist $g: S \times Z \to S$ eine messbare Abbildung. Definiere die Folge (X_n) mit

$$X_0 = c \in S$$
, $X_n = g(X_{n-1}, Y_n)$.

Die so konstruierte Folge (X_n) ist eine Markov-Kette mit Werten in S und Übergangsmatrix $P = (p_{ij})$ mit $p_{ij} = P(g(i, Y_n) = j)$.

Beweis

Die Variablen X_0, \ldots, X_n hängen nur von X_0, Y_1, \ldots, Y_n ab, sind also unabhängig von Y_{n+1} .

$$\begin{split} P(X_{n+1} = i_{n+1} \mid X_k = i_k, 0 \leq k \leq n) &= \frac{P(X_k = i_k, 0 \leq k \leq n + 1)}{P(X_k = i_k, 0 \leq k \leq n)} \\ &= \frac{P(X_k = i_k, 0 \leq k \leq n, g(i_n, Y_{n+1}) = i_{n+1})}{P(X_k = i_k, 0 \leq k \leq n)} \\ &= \frac{P(X_k = i_k, 0 \leq k \leq n) \cdot P(g(i_n, Y_{n+1}) = i_{n+1})}{P(X_k = i_k, 0 \leq k \leq n)} \\ &= P(g(i_n, Y_{n+1}) = i_{n+1}) \\ &= \frac{P(g(i_n, Y_{n+1}) = i_{n+1}) \cdot P(X_n = i_n)}{P(X_n = i_n)} \\ &= \frac{P(g(i_n, Y_{n+1}) = i_{n+1}, X_n = i_n)}{P(X_n = i_n)} \\ &= P(g(i_n, Y_{n+1}) = i_{n+1} \mid X_n = i_n) \\ &= P(X_{n+1} = i_{n+1} \mid X_n = i_n) \end{split}$$

Bemerkung: Umgekehrt kann zu jeder stochastischen Matrix P eine Markov-Kette (X_n) konstruiert werden mit $X_n = g(X_{n-1}, Y_n)$, wobei (Y_n) u.i.v. und o.B.d.A. $Y_n \sim U[0, 1]$.

Beispiel 1.1 (Lagerhaltung)

Sei Y_n die Nachfrage nach einem gelagerten Produkt im Zeitintervall (n-1,n]. (Y_n) sei u.i.v. und $Y_n \in \mathbb{N}_0$. Die Auffüll-Politik sei eine (z,Z)-Politik mit $z \leq Z$, $z,Z \in \mathbb{N}$, die wie folgt funktioniert: Falls der Lagerbestand zur Zeit $n \leq z$ ist, dann fülle auf Z auf, sonst tue nichts.

Sei X_n der Lagerbestand zum Zeitpunkt $n, S = \mathbb{N}_0$. Es gilt

$$X_n = \begin{cases} (Z - Y_n)^+, & X_{n-1} \le z \\ (X_{n-1} - Y_n)^+, & X_{n-1} > z \end{cases}$$

Also ist (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$ und

$$p_{ij} = \begin{cases} P((Z - Y_n)^+ = j), & i \le z \\ P((i - Y_n)^+ = j), & i > z \end{cases}$$

Beispiel 1.2 (Ruinspiel)

Zwei Spieler mit Startkapital $B \in \mathbb{N}$ Euro spielen in Runden um jeweils einen Euro, etwa mit einem Münzwurf. Spieler I gewinnt dabei mit Wahrscheinlichkeit p. Sei $Y_n = 1$, falls Spieler I die n-te Runde gewinnt, und $Y_n = -1$, falls er die n-Runde verliert. Wir nehmen an, dass Y_n u.i.v. ist.

Wir interessieren uns für das Kapital X_n von Spieler I nach der n-ten Runde. Damit ist der Zustandsraum $S = \{0, 1, \dots, 2B\}$.

Es gilt $X_0 = B$ und

$$X_n = \begin{cases} 2B, & X_{n-1} = 2B \\ X_{n-1} + Y_n, & 0 < X_{n-1} < 2B \\ 0, & X_{n-1} = 0. \end{cases}$$

Es folgt aus der Konstruktion direkt dass (X_n) eine Markov-Kette ist mit Übergangsmatrix $P = (p_{ij})$, und $p_{00} = p_{2B,2B} = 1$ sowie

$$p_{ij} = \begin{cases} p, & j = i+1\\ 1-p, & j = i-1 \end{cases} \text{ für } 0 < i < 2B.$$

Beispiel 1.3 (Wartesystem)

Zu jedem Zeitpunkt n = 0, 1, ... können maximal m Kunden bedient werden. Y_n sei die Anzahl der zufällig im Zeitintervall (n - 1, n] eintreffenden Kunden und sei u.i.v.

Sei X_n die Anzahl der zur Zeit n wartenden Kunden, $S = \mathbb{N}_0$. Es gilt $X_0 = c$ und $X_n = (X_{n-1} - m)^+ + Y_n$. Also ist (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$ und $p_{ij} = P(Y_n = j - (i - m)^+), i, j \in \mathbb{N}_0$.

Definition

Sei P eine stochastische $S \times S$ -Matrix. Dann heißen die Elemente $p_{ij}^{(n)}$ von P^n die n-Schritt-Übergangswahrscheinlichkeiten zu P. Wir definieren $P^0 = E$, also $p_{ij}^{(0)} = \delta_{ij}$.

Satz 1.2

Sei (X_n) eine Markov-Kette mit Übergangsmatrix P. Dann gilt:

a)
$$P(X_{n+m} = j \mid X_m = i) = p_{ij}^{(n)}$$
 für alle $i, j \in S, m, n \in \mathbb{N}_0$ mit $P(X_m = i) > 0$.

b)
$$P(X_n = j) = \sum_{i \in S} P(X_0 = i) p_{ij}^{(n)}, j \in S, n \in \mathbb{N}.$$

Beweis

a)

$$P(X_{n+m} = i_{n+m}, X_m = i_m) = \sum_{i_{m+1}, \dots, i_{n+m-1} \in S} P(X_m = i_m) \prod_{k=m}^{m+n-1} p_{i_k i_{k+1}}$$
$$= P(X_m = i_m) p_{i_m i_{m+n}}^{(n)}$$

b)

$$P(X_n = j) = \sum_{i \in S} P(X_n = j, X_0 = i)$$

$$= \sum_{i \in S} P(X_n = j \mid X_0 = i) \cdot P(X_0 = i)$$

$$= \sum_{i \in S} P(X_0 = i) p_{ij}^{(n)}$$

Bemerkung:

i) Wegen $P^{n+m} = P^n \cdot P^m$ gilt:

$$p_{ij}^{(n+m)} = \sum_{k \in S} p_{ik}^{(n)} p_{kj}^{(m)} \text{ für } i, j \in S$$

Dies ist die "Chapman-Kolmogorov-Gleichung".

ii) Ist $X_0 \sim \nu$, so gilt $X_n \sim \nu \cdot P^n$.

Satz 1.3 (Existenzsatz für Markov-Ketten)

Sei ν ein Wahrscheinlichkeitsmaß auf S und P eine stochastische $S \times S$ -Matrix. Sei X_n die n-te Projektion auf $\Omega := S^{\mathbb{N}_0}$, also $X_n : \Omega \to S$, $n \in \mathbb{N}_0$ mit $X_n(\omega) = X_n((i_0, i_1, \ldots)) = i_n$.

Dann existiert ein Wahrscheinlichkeitsmaß P auf $\mathcal{F} = \bigoplus_{n=0}^{\infty} \mathcal{P}(S)$, sodass (X_n) eine Markov-Kette mit Übergangsmatrix P und Startverteilung ν ist, d.h:

•
$$P(X_0 = i_0) = \nu(i_0), i_0 \in S$$

•
$$P(X_{n+1} = j \mid X_n = i) = p_{ij}, i, j \in S, P(X_n = i) > 0.$$

Satz von Ionescu-Tulcea über die Fortsetzung von Maßen und die Existenz zufälliger Folgen.

2. Klassifikation von Zuständen, Rekurrenz und Transienz

In diesem Paragraphen widmen wir uns Fragestellungen wie diesen: Welche Zustände in S werden von der Markov-Kette mit Sicherheit besucht und welche nicht? Wenn sie besucht werden, wie oft?

Definition

Sei (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$.

- a) $i \in S$ führt nach $j \in S$ (kurz $i \leadsto j$), falls es ein $n \in \mathbb{N}$ gibt mit $p_{ij}^{(n)} > 0$.
- b) $i \in S$ kommuniziert mit $j \in S$ (kurz $i \leftrightarrow j$) falls sowohl $i \leadsto j$ als auch $j \leadsto i$ gilt.

Bemerkung: Für $i, j \in S$ sei $i \sim j$ definiert als $(i \leftrightarrow j) \lor (i = j)$. Diese Relation ist eine Äquivalenzrelation auf S, da sie reflexiv, symmetrisch und transitiv ist.

Dies liefert uns eine Partition von S mit den Äquivalenzklassen $K(i) := \{j \in S \mid i \sim j\}$. Die Äquivalenzklasse K(i) enthält i selbst und die mit i kommunizierenden Zustände.

Definition

Sei (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$.

- a) $J \subset S$ heißt abgeschlossen, wenn es keine zwei Zustände $j \in J$ und $i \in S \setminus J$ gibt mit $j \leadsto i$.
- b) Die Markov-Kette (X_n) beziehungsweise die Übergangsmatrix P heißen *irreduzibel*, falls S nur aus einer Klasse besteht, also für alle $i, j \in S, i \neq j$, gilt $i \leftrightarrow j$.

Beispiel 2.1

Skizze, hier ausgelassen

Beispiel 2.2 (Ruinspiel)

Lemma 2.1

 $J \subset S$ ist genau dann abgeschlossen, wenn $(p_{ij}, i, j \in J)$ stochastisch ist.

\mathbf{Beweis}

"⇒": Klar. "←": Es gilt: $(p_{ij}, i, j \in J)$ stochastisch $\iff (p_{ij}^{(n)}, i, j \in J)$ stochastisch für alle $n \in \mathbb{N}$.

Sei (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$. Es sei

$$T_i := \inf\{n \in \mathbb{N} \mid X_n = i\}$$

die (zufällige) Ersteintrittszeit der Markov-Kette in den Zustand i.

Wir setzen dabei inf $\emptyset := \infty$. Weiter sei für $i, j \in S, n \in \mathbb{N}$:

$$f_{ij}^{(n)} := P(T_j = n \mid X_0 = i) = P_i(T_j = n)$$

$$= P(X_n = j, X_\nu \neq j \text{ für } 1 \leq \nu < n \mid X_0 = i)$$

$$f_{ij}^{(0)} := 0$$

Offenbar ist $f_{ij}^{(1)} = p_{ij}$. Weiter definieren wir

$$f_{ij}^* := \sum_{n=0}^{\infty} f_{ij}^{(n)} = \sum_{n=0}^{\infty} P_i(T_j = n) = P_i(T_j < \infty) = P_i(\exists n \in \mathbb{N} : X_n = j) \in [0, 1]$$

Definition

Ein Zustand $i \in S$ heißt rekurrent, falls $f_{ii}^* = 1$ und transient sonst.

Lemma 2.2

Für alle $n \in \mathbb{N}, i, j \in S$ gilt:

$$p_{ij}^{(n)} = \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$$

Beweis (Methode des ersten Besuches)

Unter Verwendung der Formel $P(AB \mid C) = P(B \mid C) \cdot P(A \mid BC)$ für Ereignisse A, B, C zeigen wir:

$$p_{ij}^{(n)} = P_i(X_n = j) = \sum_{k=1}^n P(X_n = j, X_\mu \neq j, 1 \leq \mu < k, X_k = j \mid X_0 = i)$$

$$= \sum_{k=1}^n P_i(X_\mu \neq j, 1 \leq \mu < k, X_k = j) \cdot \underbrace{P(X_n = j \mid X_0 = i, X_\mu \neq j, 1 \leq \mu < k, X_k = j)}_{=P(X_n = j \mid X_k = j)}$$

$$= \sum_{k=1}^n f_{ij}^{(k)} p_{jj}^{(n-k)}$$

Satz 2.3

 $i \in S$ ist rekurrent genau dann, wenn gilt:

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$$

Für $s \in (0,1)$ erhalten wir aus Lemma 2.2:

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} s^n = 1 + \sum_{n=1}^{\infty} p_{ii}^{(n)} s^n = 1 + \sum_{n=1}^{\infty} s^n \sum_{k=1}^n f_{ii}^{(k)} p_{ii}^{(n-k)}$$

$$= 1 + \sum_{n=1}^{\infty} f_{ii}^{(k)} s^k \sum_{n=k}^{\infty} p_{ii}^{(n-k)} s^{n-k}$$

$$= 1 + \sum_{k=1}^{\infty} f_{ii}^{(k)} s^k \sum_{n=0}^{\infty} p_{ii}^{(n)} s^n$$

Abkürzend schreiben wir $F(s) := \sum_{k=1}^{\infty} f_{ii}^{(k)} s^k$ und $P(s) = \sum_{n=0}^{\infty} p_{ii}^{(n)} s^n$, also gilt

$$P(s) = 1 + F(s) \cdot P(s).$$

Nun sei $s \to 1$ (monotone Konvergenz!), und wir erhalten

$$P(1) = 1 + f_{ii}^* \cdot P(1).$$

Es folgt: Ist $f_{ii}^* = 1$, so gilt P(1) = 1 + P(1), also ist $P(1) = \sum_{n=0}^{\infty} p_{ii}^{(n)} = \infty$. Ist ansonsten $f_{ii}^* < 1$, so gilt $P(1) = \frac{1}{1 - f_{ii}^*} < \infty$.

Bemerkung: Die im Satz 2.3 auftretende Reihe kann wie folgt interpretiert werden:

$$\sum_{n=0}^{\infty} p_{ii}^{(n)} = \sum_{n=0}^{\infty} E_i[1_{[X_n=i]}] = E_i(\sum_{n=0}^{\infty} 1_{[X_n=i]})$$

Sie bezeichnet also die erwartete Anzahl der Besuche des Zustandes $i \in S$.

Satz 2.4 (Solidaritätsprinzip)

Ist ein Zustand $i \in S$ rekurrent (bzw. transient), so ist jeder Zustand in K(i) rekurrent (bzw. transient).

Beweis

Sei i rekurrent und $j \in K(i)$, $j \neq i$, das heißt es gibt $n, m \in \mathbb{N}$, sodass $p_{ij}^{(m)} \cdot p_{ji}^{(n)} > 0$. Mit der Abschätzung

$$\sum_{k=0}^{\infty} p_{jj}^{(k)} \ge \sum_{k=0}^{\infty} p_{jj}^{(m+n+k)} \ge \sum_{k=0}^{\infty} p_{ji}^{(n)} p_{ii}^{(k)} p_{ij}^{(m)} = p_{ij}^{(m)} p_{ji}^{(n)} \sum_{k=0}^{\infty} p_{ii}^{(k)}$$

und Satz 2.3 ist $\sum_{k=0}^{\infty} p_{jj}^{(k)} = \infty$ und j rekurrent.

Bemerkung: Ist $i \in S$ rekurrent (bzw. transient), so sagen wir K(i) ist rekurrent (bzw. transient).

Ist (X_n) irreduzibel und ein $i \in S$ ist rekurrent (bzw. transient), so sagen wir (X_n) ist rekurrent (bzw. transient).

Beispiel 2.3 (Irrfahrt auf den ganzen Zahlen, "Random Walk")

Es sei $X_n = \sum_{k=1}^n Y_k = X_{n-1} + Y_n$ und $X_0 = 0$, wobei (Y_n) u.i.v. mit

$$P(Y_n = 1) = p = 1 - P(Y_n = -1) = 1 - q, p \in (0, 1)$$

ist $(S = \mathbb{Z})$.

 (X_n) ist nach Konstruktion eine irreduzible Markov-Kette. Ist (X_n) rekurrent oder transient?

Wir wenden Satz 2.3 an und untersuchen o.B.d.A. i = 0. Es gilt für alle $n \in \mathbb{N}_0$:

$$p_{00}^{(2n+1)} = 0$$

$$p_{00}^{(2n)} = p^n q^n \binom{2n}{n} = p^n q^n \frac{(2n)!}{(n!)^2}$$

Mit der Stirling-Formel $(n! \simeq (\frac{n}{e})^n \cdot \sqrt{2\pi n})$ erhält man dann

$$p_{00}^{(2n)} \approx (pq)^n \cdot \frac{(\frac{2n}{e})^{2n} \sqrt{4\pi n}}{(\frac{n}{e})^{2n} 2\pi n} = \frac{(4pq)^n}{\sqrt{\pi n}}.$$

Fall 1 Ist $p=q=\frac{1}{2}$, so ist $p_{00}^{(2n)}\approx\frac{1}{\sqrt{\pi n}}$, also ist $\sum_{n=0}^{\infty}p_{00}^{(2n)}=\infty$ und die Markov-Kette ist rekurrent.

Fall 2 Ist dagegen $p \neq q$, also $pq < \frac{1}{4}$, so ist $\sum_{n=0}^{\infty} p_{00}^{(2n)} \leq c \cdot \sum_{n=0}^{\infty} (4pq)^n < \infty$, also ist die Markov-Kette transient.

Bemerkung: Betrachtet man die symmetrische Irrfahrt auf \mathbb{Z}^d , also $p_{ij} = \frac{1}{2d}$ für ||i-j|| = 1, mit $||\cdot||$ der l^1 -Norm und $i, j \in \mathbb{Z}^d$, so ist die Irrfahrt rekurrent für d = 1, 2 und transient sonst.

Lemma 2.5

Liegen i und j in der selben rekurrenten Klasse, so gilt $f_{ij}^* = f_{ji}^* = 1$.

Lemma 2.6

Für alle $i, j \in S$ gilt: Wenn j transient ist, dann gilt

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} < \infty$$

Insbesondere ist

$$\lim_{n \to \infty} p_{ij}^{(n)} = 0.$$

Summiere die Gleichung in Lemma 2.2 über alle n:

$$\sum_{n=0}^{\infty} p_{ij}^{(n)} = \delta_{ij} + \sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{ij}^{(k)} p_{jj}^{(n-k)}$$

$$= \delta_{ij} + \sum_{k=1}^{\infty} f_{ij}^{(k)} \sum_{n=k}^{\infty} p_{jj}^{(n-k)}$$

$$= \delta_{ij} + f_{ij}^* \sum_{n=0}^{\infty} p_{jj}^{(n)} < \infty$$

$$< \infty \text{ da } j \text{ transient}$$

Satz 2.7

Ist eine Klasse $K \subseteq S$ rekurrent, so ist K abgeschlossen bzw. $(p_{ij}, i, j \in K)$ ist stochastisch.

Beweis

Wir zeigen: Ist $i \in K$ rekurrent und $i \leadsto j$, $i \ne j$, dann gilt $j \leadsto i$ und damit $j \in K$.

Angenommen, $j \rightsquigarrow i$ gelte nicht, also $p_{ji}^{(n)} = 0$ für alle $n \in \mathbb{N}$, und sei $N \in \mathbb{N}$ die kleinste Zahl mit $p_{ij}^{(N)} > 0$. Es gilt nun für alle $n \in \mathbb{N}$

$$P_i(X_N = j, X_n = i) = 0.$$

Denn für n > N gilt: $P_i(X_N = j, X_n = i) = p_{ij}^{(N)} p_{ji}^{(n-N)} = 0$ und für n < N gilt: $P_i(X_N = j, X_n = i) = p_{ii}^{(n)} p_{ij}^{(N-n)} = 0$, da N - n < N.

Also ist $P_i(T_i \le m, X_N = j) = \sum_{n=1}^m P_i(T_i = n, X_N = j) \le \sum_{n=1}^m P_i(X_n = i, X_N = j) = 0$ und damit

$$\sum_{n=1}^{m} f_{ii}^{(n)} = P_i(T_i \le m)$$

$$= P_i(T_i \le m, X_N \ne j)$$

$$\le P_i(X_N \ne j)$$

$$= 1 - P_i(X_N = j) = 1 - p_{ij}^{(N)}.$$

Für $m \to \infty$ folgt dann

$$1 = f_{ii}^* = \sum_{n=1}^{\infty} f_{ii}^{(n)} \le 1 - p_{ij}^{(N)} < 1,$$

was ein Widerspruch ist.

Satz 2.8

Ist die Klasse K endlich und abgeschlossen, so ist K rekurrent.

I. Markov-Ketten mit diskretem Zeitparameter

Beweis

Da $(p_{ij}, i, j \in K)$ stochastisch ist, folgt induktiv, dass $(p_{ij}^{(n)}, i, j \in K)$ stochastisch für alle $n \in \mathbb{N}$ ist. Angenommen, K wäre transient. Sei dann $j \in K$, dann ist nach Lemma 2.6 $p_{ij}^{(n)} \to 0$ für $n \to \infty$ und alle $i \in S$. Für $i \in K$ folgt also: $1 = \sum_{j \in K} p_{ij}^{(n)} \to 0$ für $n \to \infty$. Widerspruch.

Bemerkung: Insbesondere gilt: Ist S endlich und P irreduzibel, so ist die Markov-Kette rekurrent.

Beispiel 2.4 (Irrfahrt mit reflektierenden Grenzen)

Die Irrfahrt ist irreduzibel und rekurrent nach Satz 2.8.

Absorbtionswahrscheinlichkeiten

Sei $(X_n)_{n\in\mathbb{N}}$ eine Markov-Kette mit Zustandsraum S und Übergangsmatrix $P=(p_{ij})$. Aufgrund der bisherigen Ergebnisse können wir S zerlegen in rekurrente Klassen K_1, K_2, \ldots und eine Menge von transienten Zuständen T, also $S=T\cup K_1\cup K_2\cup\ldots$

Es sei $\tau := \inf\{n \ge 0 \mid X_n \notin T\}$ die Austrittszeit aus der Menge der transienten Zustände. Für $i \in T$, $k \in T^c$ interessiert uns $u_{ik} = P_i(X_\tau = k)$, vorausgesetzt $P_i(\tau < \infty) = 1$.

Wir unterteilen $P = (p_{ij})$ in

$$P = \begin{pmatrix} Q & R \\ 0 & \tilde{P} \end{pmatrix}$$

wobei Q die Einschränkung von P auf die transienten Zustände ist, also $Q = (q_{ij}) = (p_{ij}, i, j \in T)$.

Satz 2.9

Für $i \in T$, $j \in T^c$ gilt:

$$u_{ij} = \sum_{k \in T} q_{ik} u_{kj} + p_{ij}.$$

Sei $i \in T$, $j \in T^c$.

$$\begin{split} u_{ij} &= P_i(X_\tau = j) \\ &= \sum_{k \in S} P_i(X_\tau = j, X_1 = k) \\ &= \sum_{k \in T} P_i(X_\tau = j, X_1 = k) + \sum_{k \in T^c} P_i(X_\tau = j, X_1 = k) \\ &= \sum_{k \in T} \sum_{n \geq 2} P_i(\tau = n, X_n = j, X_1 = k) \\ &= \sum_{k \in T} \sum_{n \geq 2} P_i(X_2 \in T, \dots, X_{n-1} \in T, X_n = j, X_1 = k) \\ &= \sum_{k \in T} \sum_{n \geq 2} P_i(X_2 \in T, \dots, X_{n-1} \in T, X_n = j \mid X_1 = k) \cdot P_i(X_1 = k) \\ &= \sum_{k \in T} \sum_{n \geq 2} P_{ik} P_k(X_1 \in T, \dots, X_{n-2} \in T, X_{n-1} = j) \\ &= \sum_{k \in T} \sum_{n \geq 2} p_{ik} P_k(\tau = n - 1, X_\tau = j) \\ &= \sum_{k \in T} p_{ik} P_k(X_\tau = j) \\ &= \sum_{k \in T} p_{ik} u_{kj} \end{split}$$

Da für $i, k \in T$ gilt: $p_{ik} = q_{ik}$, folgt die Behauptung.

Bemerkung: Es sei $U = (u_{ij})_{i \in T, j \in T^c}$. Dann lässt sich Satz 2.9 schrieben als U = QU + R bzw. U - QU = R, also (I - Q)U = R. Falls I - Q invertierbar ist, ist $U = (I - Q)^{-1}R$

3. Stationäre Verteilungen

Sei (X_n) eine Markov-Kette mit Übergangsmatrix P und Startverteilung ν .

Dann ist $X_n \sim \nu \cdot P^n$. Im Allgemeinen hängt diese Verteilung von n ab. Es gibt aber spezielle Verteilungen ν , sodass die mit dieser Verteilung gestartete Kette zu jedem Zeitpunkt n die selbe Verteilung ν besitzt. Man sagt dann, die Kette ist im Gleichgewicht bzw. stationär.

Definition

Eine Abbildung $\nu: S \to \mathbb{R}_{\geq 0}$ heißt $Ma\beta$.

NB: Ein Maß ν definiert ein Maß $\mathcal{P}(S) \to \mathbb{R}_{\geq 0}, A \mapsto \sum_{a \in A} \nu(a)$ im gewöhnlichen Sinne. Falls $\sum_{a \in S} \nu(a) = 1$, so definiert es sogar eine Verteilung.

Definition

Sei (X_n) eine Markov-Kette mit Übergangsmatrix $P = (p_{ij})$. Ein Maß ν heißt invariant für P, falls $\nu \cdot P = \nu$, d.h. falls gilt:

$$\sum_{i \in S} \nu(i) \cdot p_{ij} = \nu(j).$$

Ist ν eine Verteilung und invariant, so nennt man ν auch stationäre Verteilung oder Gleichgewichtsverteilung.

Bemerkung: a) Ist S endlich, so kann jedes (nichtdegenerierte) invariante Maß zu einer stationären Verteilung normiert werden.

b) Ist ν invariant, so gilt $\nu \cdot P^n = \nu$ $(n \in \mathbb{N}_0)$.

Ist ν eine stationäre Verteilung, so gilt

$$P_{\nu}(X_n = j) = \sum_{i \in S} \nu(i) \cdot p_{ij}^{(n)} = \nu(j),$$

d.h. die mit ν gestartete Kette hat zu jedem Zeitpunkt die Verteilung ν .

c) Ist P irreduzibel und $\nu \neq 0$ ein invariantes Maß, so ist $\nu(j) > 0$ für jedes $j \in S$.

Denn: $\nu \neq 0$, also existiert $i_0 \in S$ mit $\nu(i_0) > 0$. Wegen der Irreduzibilität gibt es ferner für jedes $j \in S$ ein $n \in \mathbb{N}_0$ mit $p_{i_0j}^{(n)} > 0$. Zusammen:

$$\nu(j) = \sum_{i \in S} \nu(i) \cdot p_{ij}^{(n)} \ge \nu(i_0) p_{i_0 j}^{(n)} > 0$$

Gibt es immer ein invariantes Maß bzw. eine stationäre Verteilung? Ist es eindeutig?

Im Folgenden sei P irreduzibel. Wir definieren für ein beliebiges $k \in S$ das Maß γ_k wie folgt:

$$\gamma_k(i) := E_k[\sum_{n=1}^{T_k} 1_{[X_n=i]}]$$

Satz 3.1

Sei (X_n) irreduzibel und rekurrent, $k \in S$. Dann gilt:

- a) γ_k ist ein invariantes Maß
- b) $0 < \gamma_k < \infty$
- c) γ_k ist das einzige invariante Maß mit $\gamma_k(k) = 1$ (d.h. γ_k ist eindeutig bis auf Vielfache).

Beweis

a) Zunächst gilt:

$$\gamma_k(i) = E_k[\sum_{n=1}^{T_k} 1_{[X_n = i]}] = E_k[\sum_{n=1}^{\infty} 1_{[X_n = i, n \le T_k]}] = \sum_{n=1}^{\infty} P_k(X_n = i, n \le T_k)$$
$$= \sum_{n=1}^{\infty} \sum_{j \in S, j \ne k} P_k(X_n = i, X_{n-1} = j, n \le T_k)$$

Für $j \neq k$ erhält man

$$P_k(X_n = i, X_{n-1} = j, n \le T_k)$$

$$= P(X_n = i, X_{n-1} = j, X_{n-2} \ne k, \dots, X_1 \ne k, X_0 = k) / P(X_0 = k)$$

$$= P(X_n = i \mid X_{n-1} = j, X_{n-2} \ne k, \dots, X_1 \ne k, X_0 = k) \cdot P_k(X_{n-1} = j, X_{n-2} \ne k, \dots, X_1 \ne k)$$

$$= p_{ji} \cdot P_k(X_{n-1} = j, n \le T_k)$$

Die so erhaltene Identität gilt auch für j = k und es folgt

$$\gamma_k(i) = \sum_{n=1}^{\infty} \sum_{j \in S} P_k(X_n = i, X_{n-1} = j, n \le T_k)$$

$$= \sum_{n=1}^{\infty} \sum_{j \in S} p_{ji} \cdot P_k(X_{n-1} = j, n \le T_k)$$

$$= \sum_{j \in S} p_{ji} \sum_{n=0}^{\infty} P_k(X_n = j, n + 1 \le T_k)$$

$$= \sum_{j \in S} p_{ji} E_k [\sum_{n=0}^{T_k - 1} 1_{[X_n = j]}]$$

$$= \sum_{j \in S} p_{ji} E_k [\sum_{n=1}^{T_k} 1_{[X_n = j]}] = \sum_{j \in S} \gamma_k(j) p_{ji}$$

b) Nach Bemerkung c) oben gilt $\gamma_k > 0$, denn $\gamma_k(k) = 1$. Wegen $\gamma_k = \gamma_k \cdot P^n$ folgt

$$1 = \gamma_k(k) \ge \gamma_k(j) \cdot p_{ik}^{(n)}$$

für jedes $j \in S$. Es gibt allerdings mindestens ein $p_{jk}^{(n)} > 0$, denn die Markov-Kette ist irreduzibel; daran erkennt man $\gamma_k < \infty$.

c) Sei λ ein weiteres, invariantes Maß mit $\lambda(k) = 1$. Es gilt also:

$$\begin{split} \lambda(j) &= \sum_{i \in S \backslash \{k\}} \lambda(i) \cdot p_{ij} + 1 \cdot p_{kj} \\ &= \sum_{i \in S \backslash \{k\}} \left(\sum_{l \in S \backslash \{k\}} \lambda(l) \cdot p_{li} + p_{ki} \right) p_{ij} + p_{kj} \\ &= \sum_{i,l \in S \backslash \{k\}} \lambda(l) \cdot p_{li} \cdot p_{ij} + \sum_{i \in S \backslash \{k\}} p_{ki} \cdot p_{ij} + p_{kj} \\ &= \sum_{i,l \in S \backslash \{k\}} \lambda(l) \cdot p_{li} \cdot p_{ij} + P_k(X_2 = j, T_k \ge 2) + P_k(X_1 = j, T_k \ge 1) \end{split}$$

Iterativ erhalten wir für $n \in \mathbb{N}$:

$$\lambda(j) = \sum_{i_0, i_1, \dots, i_n \in S \setminus \{k\}} \lambda(i_n) \prod_{r=1}^n p_{i_r i_{r-1}} p_{i_0 j} + \sum_{r=1}^{n+1} P_k(X_r = j, T_k \ge r)$$

$$\geq \sum_{r=1}^{n+1} P_k(X_r = j, T_k \ge r) = E_k \left[\sum_{r=1}^{\min(n+1, T_k)} 1_{[X_r = j]} \right] \xrightarrow{n \to \infty} \gamma_k(j).$$

Es ist also $\lambda - \gamma_k$ ebenfalls ein invariantes Maß mit $(\lambda - \gamma_k)(k) = 0$; nach Bemerkung c) folgt $\lambda - \gamma_k = 0$, d.h. $\lambda = \gamma_k$.

Bemerkung: a) Ist S endlich und P irreduzibel, so folgt aus Satz 3.1, dass eine stationäre Verteilung existiert.

I. Markov-Ketten mit diskretem Zeitparameter

b) Ist (X_n) irreduzibel und transient, so kann keine stationäre Verteilung existieren, denn:

Angenommen es existiert eine stationäre Verteilung π . Dann ist

$$\pi(j) = \sum_{i \in S} \pi(i) p_{ij}^{(n)}.$$

Für $n \to \infty$ wird daraus (mit majorisierter Konvergenz und der bekannten Eigenschaft transienter Übergangswahrscheinlichkeiten):

$$\pi(j) = \sum_{i \in S} \pi(i) \lim_{n \to \infty} p_{ij}^{(n)}$$
$$= \sum_{i \in S} \pi(i) \cdot 0$$
$$= 0$$

Definition

Für $i \in S$ sei

$$m_{i} := E_{i}[T_{i}] = \sum_{n=1}^{\infty} n \cdot P_{i}(T_{i} = n) + \infty \cdot (1 - f_{ii}^{*})$$
$$= \sum_{n=1}^{\infty} n \cdot f_{ii}^{(n)} + \infty \cdot (1 - f_{ii}^{*})$$

die mittlere Rückkehrzeit des Zustands i.

Bemerkung: Ist j transient, so folgt $m_j = \infty$.

Definition

Ein Zustand $i \in S$ heißt positiv rekurrent, falls $m_i < \infty$ und nullrekurrent, falls i rekurrent und $m_i = \infty$ ist.

Bemerkung: Jeder positiv rekurrente Zustand ist auch rekurrent.

Satz 3.2

Sei (X_n) eine irreduzible Markov-Kette. Die folgenden Aussagen sind äquivalent:

- i) Es existiert eine stationäre Verteilung.
- ii) Es gibt einen positiv rekurrenten Zustand $i \in S$.
- iii) Alle Zustände in S sind positiv rekurrent.

Sind diese Bedingungen erfüllt, so ist die stationäre Verteilung eindeutig und durch

$$\pi(i) = \frac{1}{m_i}$$

gegeben.

(ii) \implies (i) Sei $k \in S$ mit $m_k < \infty$, dann ist (X_n) rekurrent und mit Satz 3.1 ist γ_k ein invariantes Maß. Dann gilt:

$$\sum_{j \in S} \gamma_k(j) = \sum_{j \in S} E_k [\sum_{n=1}^{T_k} 1_{[X_n = j]}]$$

$$= E_k [\sum_{n=1}^{T_k} \sum_{j \in S} 1_{[X_n = j]}]$$

$$= E_k [\sum_{n=1}^{T_k} 1]$$

$$= E_k [T_k] = m_k < \infty$$

also ist γ_k normierbar.

(i) \Longrightarrow (iii) Sei π eine stationäre Verteilung und $k \in S$. Insbesondere sind $\pi(j) > 0$ für alle $j \in S$. Dann ist $\gamma \coloneqq \frac{\pi}{\pi(k)}$ ein invariantes Maß mit $\gamma(k) = 1$. Nach Satz 3.1 c) folgt $\gamma = \gamma_k$. Beachte dass im Beweis von 3.1 c) die Voraussetzung (X_n) rekurrent nicht verwendet wurde. Wie oben ist

$$m_k = \sum_{j \in S} \gamma_k(j) = \frac{1}{\pi(k)} \sum_{j \in S} \pi(j) = \frac{1}{\pi(k)} < \infty.$$

Da $k \in S$ beliebig ist, folgt die Behauptung (iii).

Außerdem ist gezeigt, dass
$$\pi(k) = \frac{1}{m_k}$$
.

Bemerkung: i) Es gilt also die folgende Trichotomie für irreduzible Markov-Ketten, das heißt eine irreduzible Markov-Kette gehört immer zu genau einem der folgenden Fälle:

- Die Markov-Kette ist transient, es gibt keine stationäre Verteilung.
- Die Markov-Kette ist nullrekurrent, insbesondere gilt für alle $i, j \in S$:

$$P_i(T_i < \infty) = 1 \text{ und } E_i[T_i] = \infty$$

und es gibt ein (bis auf Vielfache) eindeutiges invariantes Maß, aber keine stationäre Verteilung.

- Die Markov-Kette ist positiv rekurrent, für alle $i, j \in S$ ist $E_i[T_j] < \infty$ und es gibt eine stationäre Verteilung.
- ii) Ist S endlich und die Markov-Kette irreduzibel, so ist sie automatisch positiv rekurrent.
- iii) Ist π eine stationäre Verteilung, so gilt:

$$\pi(i) = \frac{\gamma_k(i)}{\sum_{j \in S} \gamma_k(j)} = \frac{E_k[\sum_{n=1}^{T_k} 1_{[X_n = i]}]}{E_k[T_k]}.$$

 $\pi(i)$ ist also der durchschnittliche Bruchteil der Zeit, den die Markov-Kette im Zustand i verbringt, während sie einen Zyklus durchläuft.

Beispiel 3.1

Sei $S = \{1, 2\}$. Die Übergangsmatrix P sei gegeben durch

$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}, \quad \alpha, \beta \in (0, 1].$$

Also ist die Markov-Kette irreduzibel und positiv rekurrent. Die stationäre Verteilung ist die Lösung des linearen Gleichungssystems

$$\pi P = \pi$$

unter Berücksichtigung von $\pi \ge 0$ und $\pi(1) + \pi(2) = 1$, also

$$\pi(1) = \frac{\beta}{\alpha + \beta}, \quad \pi(2) = \frac{\alpha}{\alpha + \beta}.$$

Beispiel 3.2 (Irrfahrt)

Siehe Beispiel 2.3: Für $p \neq q$ ist die Markov-Kette transient. Existiert ein invariantes Maß? Ansatz:

$$\gamma(j) = \sum_{i \in \mathbb{Z}} \gamma(i) p_{ij} = \gamma(j+1) \cdot q + \gamma(j-1) \cdot p$$

$$\implies \gamma(j+1) - \gamma(j) = \frac{p}{q}(\gamma(j) - \gamma(j-1))$$

Also: $\gamma_1(j) = 1$ und $\gamma_2(j) = (\frac{p}{q})^j$, $j \in \mathbb{Z}$, sind verschiedene invariante Maße.

Ist $p = q = \frac{1}{2}$, so ist die Markov-Kette rekurrent. Ist sie nullrekurrent oder positiv rekurrent? Es gibt keine stationäre Verteilung (siehe oben), die Markov-Kette ist also nullrekurrent.

Beispiel 3.3 (Geburts- und Todesprozess in diskreter Zeit)

Es sei (X_n) eine Markov-Kette mit $S = \mathbb{N}_0$ und Übergangsmatrix

$$P = \begin{pmatrix} p_{00} & p_{01} & 0 & \cdots & \\ p_{10} & p_{11} & p_{12} & 0 & \cdots & \\ 0 & p_{21} & p_{22} & p_{23} & \ddots & \\ \vdots & 0 & p_{32} & p_{33} & \ddots & \\ \vdots & \ddots & \ddots & \ddots & \ddots & \end{pmatrix}$$

mit $p_{01} > 0$, $p_{i,i+1} > 0$, $p_{i,i-1} > 0$ für alle $i \ge 1$, also ist (X_n) irreduzibel. Wann ist (X_n) positiv rekurrent?

Der Ansatz $\pi P = \pi$ liefert:

$$\pi(0) = p_{00} \cdot \pi(0) + p_{10} \cdot \pi(1)$$

$$\pi(i) = p_{i-1,i} \cdot \pi(i-1) + p_{ii} \cdot \pi(i) + p_{i+1,i} \cdot \pi(i+1)$$

$$\iff p_{i,i-1} \cdot \pi(i) + p_{i,i+1}\pi(i) = p_{i-1,i} \cdot \pi(i-1) + p_{i+1,i} \cdot \pi(i+1)$$

$$\iff p_{i+1,i} \cdot \pi(i+1) - p_{i,i+1} \cdot \pi(i) = p_{i,i-1} \cdot \pi(i) - p_{i-1,i} \cdot \pi(i-1)$$

$$= \dots = p_{10} \cdot \pi(1) - p_{01} \cdot \pi(0)$$

Aus der ersten Gleichung folgt $p_{01} \cdot \pi(0) = p_{10} \cdot \pi(1)$ und damit:

$$p_{i+1,i} \cdot \pi(i+1) - p_{i,i+1} \cdot \pi(i) = 0$$

$$\implies \pi(i+1) = \frac{p_{i,i+1}}{p_{i+1,i}} \pi(i)$$

$$= \dots = \pi(0) \cdot \prod_{k=0}^{i} \frac{p_{k,k+1}}{p_{k+1,k}}.$$

Für $\pi(0) > 0$ erhält man ein invariantes Maß. (X_n) ist positiv rekurrent, falls

$$\sum_{i=1}^{\infty} \prod_{k=0}^{i} \frac{p_{k,k+1}}{p_{k+1,k}} < \infty.$$

Im Spezialfall $p_{k,k+1}=p, p_{k,k-1}=q=1-p, k\geq 1$ und $p_{01}=p, p_{00}=1-p$ gilt

$$(X_n)$$
 ist positiv rekurrent $\iff \sum_{i=1}^{\infty} \left(\frac{p}{q}\right)^{i+1} < \infty \iff p < q.$

4. Konvergenz gegen die stationäre Verteilung

Sei (X_n) eine Markov-Kette mit Übergangsmatrix P. Wir nehmen an, dass (X_n) bzw. P aperiodisch ist, das heißt: Für alle Zustände $i \in S$ gilt:

$$d_i := ggT\{n \in \mathbb{N} \mid p_{ii}^{(n)} > 0\} = 1$$

Lemma 4.1

P ist genau dann irreduzibel und aperiodisch, wenn für alle $i, j \in S$ eine Zahl $n_0 \in \mathbb{N}$ existiert, sodass für alle $n \geq n_0$ gilt: $p_{ij}^{(n)} > 0$.

(ohne Beweis)

Satz 4.2 (Konvergenzsatz)

Es sei (X_n) irreduzibel, aperiodisch und positiv rekurrent mit stationärer Verteilung π . Dann gilt für alle $i, j \in S$:

$$\lim_{n \to \infty} p_{ij}^{(n)} = \pi(j) = \frac{1}{m_j}$$

Beweis

Wir benutzen ein sogenanntes "Kopplungsargument".

(1) Sei (Y_n) eine weitere Markov-Kette, unabhängig von (X_n) mit gleicher Übergangsmatrix und Startverteilung π , also $Y_n \sim \pi$ für alle $n \in \mathbb{N}$. Es sei

$$T := \inf\{n \in \mathbb{N} \mid X_n = Y_n\}$$

die Treffzeit der Markov-Ketten. Wir zeigen zunächst: $P(T < \infty) = 1$.

Offenbar ist $(X_n, Y_n)_{n \in \mathbb{N}_0}$ eine Markov-Kette auf S^2 mit Übergangsmatrix $\hat{P} = (\hat{p}_{(ij)(kl)})$, wobei $\hat{p}_{(ij)(kl)} = p_{ik} \cdot p_{jl}$. Weiter ist $\hat{p}_{(ij)(kl)}^{(n)} = p_{ik}^{(n)} \cdot p_{jl}^{(n)}$ und mit Lemma 4.1: Die Kette (X_n, Y_n) ist irreduzibel und aperiodisch. Man kann nachrechnen:

$$\hat{\pi}(i,j) := \pi(i) \cdot \pi(j)$$

ist eine stationäre Verteilung für (X_n, Y_n) , also ist sie nach Satz 3.2 positiv rekurrent.

Sei $X_0 = i$ und die Startverteilung $\hat{\nu}$ von (X_n, Y_n) gegeben durch $\hat{\nu}(k, l) = \delta_i(k) \cdot \pi(l)$. Für $b \in S$ sei

$$T_{(b,b)} := \inf\{n \in \mathbb{N} \mid (X_n, Y_n) = (b, b)\}.$$

Offenbar ist $T \leq T_{(b,b)}$ und $P_{\hat{\nu}}(T_{(b,b)} < \infty) = 1$. Daraus folgt, dass $P_{\hat{\nu}}(T < \infty) = 1$.

(2) Betrachte $(Z_n)_{n\in\mathbb{N}_0}$ definiert durch

$$Z_n = \begin{cases} X_n, & \text{für } n \le T \\ Y_n, & \text{für } n > T. \end{cases}$$

Es ist (Z_n) eine Markov-Kette mit Übergangsmatrix P und $Z_0 = i$, denn:

Nach Satz 1.1 genügt es zu zeigen, dass

$$\forall n \in \mathbb{N}, i_k \in S : P_{\hat{\nu}}(Z_k = i_k, 0 \le k \le n) = \delta_i(i_0) \prod_{k=0}^{n-1} p_{i_k, i_{k+1}}$$

Es gilt

$$\begin{split} &P_{\hat{\nu}}(Z_k = i_k, \ 0 \le k \le n) \\ &= \sum_{r=0}^n P_{\hat{\nu}}(Z_k = i_k, \ 0 \le k \le n, \ T = r) \\ &\quad + P_{\hat{\nu}}(Z_k = i_k, \ 0 \le k \le n, \ T > n) \\ &= \sum_{r=0}^n \underbrace{P_{\hat{\nu}}(X_k = i_k, \ 0 \le k \le r, \ Y_k = i_k, \ r + 1 \le k \le n, \ Y_0 \ne i_0, \dots, Y_{r-1} \ne i_{r-1}, \ Y_r = i_r)}_{=:\mathbf{I}} \\ &\quad + \underbrace{P_{\hat{\nu}}(X_k = i_k, \ 0 \le k \le n, \ Y_0 \ne i_0, \dots, Y_n \ne i_n)}_{=:\mathbf{II}} \end{split}$$

mit

$$\begin{split} & \mathbf{I} = P_{\hat{\nu}}(X_k = i_k, 0 \leq k \leq r) \cdot P_{\hat{\nu}}(Y_k = i_k, r+1 \leq k \leq n | Y_0 \neq i_0, \dots, Y_{r-1} \neq i_{r-1}, Y_r = i_r) \cdot P_{\hat{\nu}}(Y_0 \neq i_0, \dots, Y_{r-1} \neq i_{r-1}, Y_r = i_r) \\ & = \delta_i(i_0) \cdot \prod_{k=0}^{r-1} p_{i_k, i_{k+1}} \cdot \prod_{k=r}^{n-1} p_{i_k, i_{k+1}} \cdot P_{\hat{\nu}}(Y_0 \neq i_0, \dots, Y_{r-1} \neq i_{r-1}, Y_r = i_r) \\ & = \delta_i(i_0) \cdot \prod_{k=0}^{n-1} p_{i_k, i_{k+1}} \cdot P_{\hat{\nu}}(Y_0 \neq i_0, \dots, Y_{r-1} \neq i_{r-1}, Y_r = i_r), \end{split}$$

$$\mathbf{II} = \dots = \delta_i(i_0) \cdot \prod_{k=0}^{n-1} p_{i_k, i_{k+1}} \cdot P_{\hat{\nu}}(Y_0 \neq i_0, \dots, Y_{n-1} \neq i_{n-1}, Y_n \neq i_n)$$

Tatsächlich gilt also

$$P_{\hat{\nu}}(Z_k = i_k, 0 \le k \le n) = \delta_i(i_0) \cdot \prod_{k=0}^{n-1} p_{i_k, i_{k+1}}$$

(3) Es gilt nun

$$\begin{aligned} p_{i,j}^{(n)} &= P_{\hat{\nu}}(Z_n = j) = P_{\hat{\nu}}(Z_n = j, T \le n) + P_{\hat{\nu}}(Z_n = j, T > n) \\ \pi(j) &= P_{\hat{\nu}}(Y_n = j) = \underbrace{P_{\hat{\nu}}(Y_n = j, T \le n)}_{=P_{\hat{\nu}}(Z_n = j, T \le n)} + P_{\hat{\nu}}(Y_n = j, T > n) \end{aligned}$$

$$\Rightarrow |p_{i,j}^{(n)} - \pi(j)| \le 2 \cdot P_{\hat{\nu}}(\underbrace{T > n}_{\downarrow \{T = \infty\}}) \longrightarrow 0$$

Satz 4.3

Seien $i, j \in S$ Zustände sowie d_j die Periode von j. Dann gilt:

$$\lim_{n \to \infty} p_{i,j}^{(n \cdot d_j + r)} = \frac{d_j}{m_j} \sum_{k=0}^{\infty} f_{i,j}^{(k \cdot d_j + r)} \qquad r = 1, \dots, d_j$$

Speziell:

- a) Ist j transient oder nullrekurrent (d.h. $m_j = \infty$), so gilt $p_{i,j}^{(n)} \longrightarrow 0$
- b) Ist j aperiodisch (d.h. $d_j = 1$), so gilt $p_{i,j}^{(n)} \longrightarrow \frac{1}{m_j} f_{i,j}^*$

5. Markov-Ketten und Martingale

Erinnerung: (X_n) heißt *Martingal*, falls

- a) $E|X_n| < \infty$
- b) $E[X_{n+1}|X_1,...,X_n] = X_n$, bzw.
- b') $E[X_{n+1}|\mathcal{F}_n] = X_n$, wobei $\mathcal{F}_n := \sigma(X_1, \dots, X_n)$ die natürliche Filtration bezeichnet.

Erinnerung: Sei (Ω, \mathcal{F}, P) W-Raum, X Zufallsvariable mit $E|X| < \infty$, $\mathcal{G} \subseteq \mathcal{F}$ Unter- σ -Algebra. $Z := E[X|\mathcal{G}]$ heißt bedingter Erwartungswert von X bzgl. \mathcal{G} , falls

- a) Z ist \mathcal{G} -messbar
- b) $\int_A Z \cdot dP = \int_A X \cdot dP \quad \forall A \in \mathcal{G}$

Sei (X_n) eine Markov-Kette auf dem Zustandsraum S mit Übergangsmatrix P sowie $\mathcal{F}_n := \sigma(X_1, \ldots, X_n)$ die natürliche Filtration. Weiter sei $h: S \to \mathbb{R}$ und $P: (S \to \mathbb{R}) \to (S \to \mathbb{R})$

definiert durch

$$(Ph)(i) := \sum_{j \in S} p_{i,j} \cdot h(j) \quad \forall i \in S$$

NB: "Ph" macht Sinn im Sinne einer "Matrix-Vektor"-Multiplikation.

Lemma 5.1

Sei $h: S \to \mathbb{R}$ eine Funktion mit $||P|h||_{\infty} < \infty$. Dann gilt:

$$(Ph)(X_n) = E[h(X_{n+1})|\mathcal{F}_n]$$

Beweis

Wir prüfen nach, dass $(Ph)(X_n)$ ein bedingter Erwartungswert von $h(X_{n+1})$ bzgl. \mathcal{F}_n ist.

- a) $(Ph)(X_n)$ ist \mathcal{F}_n -messbar, denn X_n ist \mathcal{F}_n -messbar.
- b) Sei $A := \{X_0 = i_0, \dots, X_n = i_n\} \in \mathcal{F}_n$. Dann:

$$\int_{A} (Ph)(X_{n}) \cdot dP = \int 1_{A} \cdot (Ph)(X_{n}) \cdot dP = \int 1_{\{X_{0}=i_{0},\dots,X_{n}=i_{n}\}} (Ph)(i_{n}) \cdot dP$$

$$= (Ph)(i_{n}) \cdot P(A) = \sum_{j \in S} p_{i_{n},j} \cdot h(j) \cdot P(X_{0}=i_{0}) \cdot \prod_{k=0}^{n-1} p_{i_{k},i_{k+1}}$$

$$= \sum_{j \in S} h(j) \cdot P(X_{0}=i_{0},\dots,X_{n}=i_{n},X_{n+1}=j) = \sum_{j \in S} \int_{A \cap \{X_{n+1}=j\}} h(X_{n+1}) \cdot dP$$

$$= \sum_{j \in S} \int_{A} 1_{\{X_{n+1}=j\}} h(X_{n+1}) \cdot dP \stackrel{LDC}{=} \int_{A} h(X_{n+1}) \cdot dP$$

Da jedes $A \in \mathcal{F}_n$ abzählbare Vereinigung solcher "Elementarereignisse" ist, folgt die Behauptung.

Satz und Definition 5.2

Seien P eine Übergangsmatrix auf S und $h: S \to \mathbb{R}$ eine Funktion mit $||P|h|||_{\infty} < \infty$. Gilt dann Ph = h, so nennen wir h harmonisch. Im Fall $Ph \ge h$ bzw. $Ph \le h$ heißt h sub- bzw. superharmonisch.

Ist (X_n) eine Markov-Kette mit Übergangsmatrix P und h [sub-/super-]harmonisch, so ist $(h(X_n))$ ein (\mathcal{F}_n) -[Sub-/Super-]Martingal.

Beweis

Nach Lemma 5.1 gilt

$$E[h(X_{n+1})|\mathcal{F}_n] = Ph(X_n) = h(X_n) + (Ph - h)(X_n)$$

 \sim Behauptung.

Bemerkung: Ist $h: S \to \mathbb{R}$ eine beschränkte Funktion, so wird durch

$$Z_n^h := h(X_n) - \sum_{k=1}^n (E[h(X_k) \mid \mathcal{F}_{k-1}] - h(X_{k-1}))$$
$$= h(X_n) - \sum_{k=1}^n (Ph - h)(X_{k-1})$$

ein Martingal definiert, genannt Levi-Martingal zu (X_n) .

Die Markoveigenschaft lässt sich über Levi-Martingale charakterisieren:

Satz 5.3

Es sei $(X_n)_{n\in\mathbb{N}_0}$ ein stochastischer Prozess mit Werten in S und natürlicher Filtration (\mathcal{F}_n) , d.h. $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$, und P sei eine stochastische Matrix auf S. Ist dann für alle beschränkten $h: S \to \mathbb{R}$ der Prozess

$$Z_n^h := h(X_n) - \sum_{k=1}^n (Ph - h)(X_{k-1})$$

ein (\mathcal{F}_n) -Martingal, so ist X_n eine homogene Markov-Kette mit Übergangsmatrix P.

Beweis

Aus $E[Z_{n+1}^h \mid \mathcal{F}_n] = Z_n^h$ erhält man

$$E[h(X_{n+1}) \mid \mathcal{F}_n] = (Ph)(X_n)$$

bzw.

$$\int_A h(X_{n+1})dP = \int_A (Ph)(X_n)dP \text{ für alle } A \in \mathcal{F}_n$$

Es sei $i_0, i_1, \ldots, i_{n+1} \in S$ und $A := \{X_0 = i_0, \ldots, X_n = i_n\}$ und wir setzen $h := 1_{\{i_{n+1}\}}$. Die linke Seite der letzten Gleichung ergibt dann

$$\int_{A} h(X_{n+1})dP = P(X_0 = i_0, \dots, X_n = i_n, X_{n+1} = i_{n+1})$$

und die rechte Seite ergibt

$$\int_{A} (Ph)(X_n) dP = \int_{\{X_0 = i_0, \dots, X_n = i_n\}} (Ph)(i_n) dP
= \int_{\{X_0 = i_0, \dots, X_n = i_n\}} p_{i_n i_{n+1}} dP
= p_{i_n i_{n+1}} \cdot P(X_0 = i_0, \dots, X_n = i_n).$$

Durch Teilen der rechten Wahrscheinlichkeit erhält man

$$P(X_{n+1} = i_{n+1} \mid X_0 = i_0, \dots, X_n = i_n) = p_{i_n i_{n+1}}.$$

Bemerkung: Es gilt: Ist $(X_n)_{n\in\mathbb{N}_0}$ ein nicht-negatives Supermartingal, so gibt es eine Zufalls-variable X_{∞} mit

$$\lim_{n \to \infty} X_n = X_{\infty} \quad P - \text{f.s.}$$

Beispiel 5.1

Jedem Feld eines schachbrettartigen $N \times N$ -Gitters wird eine von L möglichen Farben zugewiesen. Diese Färbung wird mittels Zufallsexperimenten modifiziert: Eine Zelle wird gleichverteilt gewählt, daraufhin wird einer der vier Nachbarn (modulo N) zufällig gewählt und dessen Farbe dem zuerst gewählten Feld zugewiesen. Offensichtlich ist dies eine Markov-Kette und die monochromen Zustände sind die absorbierenden.

Formal seien $L, N \in \mathbb{N}$, $L, N \geq 2$. $I := \{1, ..., N\}^2$, $S := \{1, ..., L\}^I = \{f : I \to \{1, ..., L\}\}$. Sei (X_n) die Markov-Kette in S, die die Zustandsfolge angibt.

Wie verhält sich die Folge für $n \to \infty$? Sei $l \in \{1, ..., L\}$ fest und Y_n sei die Anzahl der Felder mit Farbe l (zum Beispiel: blau) im Zustand X_n . Sei (A, B) ein Nachbarpaar im Gitter. Wäre dies die Wahl in einem Zustandsübergang, so gelte: Ist $X_n(A) = X_n(B)$ oder $X_n(A) \neq l, X_n(B) \neq l$, so gilt auch $Y_{n+1} = Y_n$. Ist dagegen $X_n(A) = l$ und $X_n(B) \neq l$, so ist $Y_{n+1} = Y_n - 1$. Ist letztlich $X_n(A) \neq l$ und $X_n(B) = l$, so ist $Y_{n+1} = Y_n + 1$.

Die Wahrscheinlichkeit, erst A, dann B zu wählen ist gleich der Wahrscheinlichkeit, erst B und dann A zu wählen. Damit ist

$$E[Y_{n+1} \mid X_1, \dots, X_n] = Y_n.$$

Sei $\mathcal{F}_n := \sigma(X_0, \dots, X_n)$. Dann ist $(Y_n)_{n \in \mathbb{N}_0}$ ein (\mathcal{F}_n) -Martingal. Nach der Bemerkung folgt: $Y_n \to Y_\infty$ für ein $n \to \infty$ P-fast-sicher. Da (Y_n) ganzzahlig ist, ist $Y_n(\omega)$ konstant ab einem $n \ge n_0(\omega)$. Als Konstanten kommen nur 0 und N^2 in Frage, denn für $k \in \{1, \dots, N^2 - 1\}$ gilt

$$P(Y_{n+j} = k \mid Y_n = \dots = Y_{n+j-1} = k) \le 1 - \frac{1}{N^2 4}$$

$$\implies P(Y_n = \dots = Y_{n+j} = k) \le (1 - \frac{1}{N^2 4})^j$$

$$\implies P(\underbrace{Y_m = k, \forall m \ge n}) = 0$$

$$=:A_n$$

Es gilt $\{\omega \in \Omega \mid \exists n \ \forall m \geq n : Y_m(\omega) = k\} = \bigcup_{n=0}^{\infty} A_n$. Damit ist

$$P(\lim_{n\to\infty} Y_n = k) = P(\exists n \ \forall m \ge n : Y_n = k) \le \sum_{n=0}^{\infty} P(A_n) = 0$$

und wir folgern, dass $P(Y_{\infty} \in \{0, N^2\}) = 1$.

Außerdem gilt noch, da Y_n beschränkt ist:

$$EY_{\infty} = \lim_{n \to \infty} EY_n = EY_0.$$

Damit ist die Wahrscheinlichkeit, dass das Feld irgendwann komplett blau ist, gleich

$$P(Y_{\infty} = N^2) = \frac{1}{N^2} EY_{\infty} = \frac{1}{N^2} EY_0 = \frac{1}{N^2} \# \{ A \in I \mid X_0(A) = l \}.$$

Anwendungen dieses Modells findet man in der Physik (Vielteilchensysteme), in der Biologie (Ausbreitung von Infektionen) oder in der Finanzmathematik (Kreditrisiken).

6. Die starke Markov-Eigenschaft

Gegeben sei eine Markov-Kette $(X_n)_{n\in\mathbb{N}_0}$ mit Zustandsraum S auf dem Wahrscheinlichkeitsraum $(\Omega = S_0^{\mathbb{N}_0}, \mathcal{F} := \bigotimes_{n=0}^{\infty} \mathcal{P}(S), P)$. Beachte, dass die Mengen

$$Z(i_0, i_1, \dots, i_n) := \{i_0\} \times \{i_1\} \times \dots \times \{i_n\} \times S \times S \times \dots$$

für $n \in \mathbb{N}_0$, $i_0, \ldots i_n \in S$ ein durchschnittsstabiles Erzeugendensystem für \mathcal{F} bilden. Weiter sei $(\mathcal{F}_n)_{n \in \mathbb{N}_0}$ mit $\mathcal{F}_n = \sigma(X_0, \ldots, X_n)$ die natürliche Filtration von (X_n) .

 $\tau: \Omega \to \mathbb{N}_0$ sei eine (\mathcal{F}_n) -Stoppzeit, das heißt $\{\tau \leq n\} \in \mathcal{F}_n$ und $P(\tau < \infty) = 1$. Die gestoppte Markov-Kette $X^{\tau} = (X_n^{\tau})_{n \in \mathbb{N}_0}$ ist

$$X_n^{\tau} \coloneqq X_{\min(\tau,n)}$$

für $n \in \mathbb{N}_0$ und $Y = (Y_n)_{n \in \mathbb{N}_0}$ definiert durch

$$Y_n := X_{\tau+n}$$

heißt der Post- τ -Prozess.

Satz 6.1 (Starke Markov-Eigenschaft)

Mit den oben eingeführten Bezeichnungen gilt:

- a) Y ist eine Markov-Kette mit Übergangsmatrix P und Startverteilung ν , wobei $X_{\tau} \backsim \nu$.
- b) X^{τ} und Y sind unter X_{τ} bedingt unabhängig.

a.) Es gilt:

$$\begin{split} &P(Y_0 = i_0, \dots, Y_n = i_n, Y_{n+1} = i_{n+1}) \\ &= \sum_{k=0}^{\infty} P(\tau = k, X_k = i_0, \dots, X_{k+n+1} = i_{n+1}) \\ &= \sum_{k=0}^{\infty} P(X_{k+n+1} = i_{n+1} \mid X_k = i_0, \dots, X_{k+n} = i_n, \tau = k) \cdot P(X_k = i_0, \dots, X_{k+n} = i_n, \tau = k) \\ &= p_{i_n i_{n+1}} \sum_{k=0}^{\infty} P(X_k = i_0, \dots, X_{k+n} = i_n, \tau = k) \\ &= p_{i_n i_{n+1}} P(Y_0 = i_0, \dots, Y_n = i_n) \implies \text{Behauptung.} \end{split}$$

b.) Seien

$$A := Z(i_0, \dots, i_m) = \{i_0\} \times \dots \times \{i_m\} \times S \times S \times \dots$$
$$B := Z(j_0, \dots, j_n),$$

dann gilt:

$$P(X^{\tau} \in A, Y \in B, X_{\tau} = j)$$

$$= \sum_{k=0}^{\infty} P(\tau = k, X_{0 \wedge k} = i_0, \dots, X_{m \wedge k} = i_m, X_k = j_0, \dots, X_{k+n} = j_n, X_k = j)$$

$$= \sum_{k=0}^{\infty} P(X_k = j_0, \dots, X_{k+n} = j_n \mid X_{0 \wedge k} = i_0, \dots, X_{m \wedge k} = i_m, X_k = j, \tau = k)$$

$$\cdot P(X_{0 \wedge k} = i_0, \dots, X_{m \wedge k} = i_m, X_k = j, \tau = k)$$

$$= P(X_0 = j_0, \dots, X_n = j_n \mid X_0 = j) \cdot P(X^{\tau} \in A, X_{\tau} = j)$$

$$= P(Y \in B \mid X_{\tau} = j) \cdot P(X^{\tau} \in A \mid X_{\tau} = j) \cdot P(X_{\tau} = j)$$

Teilen durch $P(X_{\tau} = j) \implies$ Behauptung.