

On transfer learning using a MAC model variant

Vincent Marois, T.S. Jayram, Vincent Albouy, Tomasz Kornuta, Younes Bouhadjar, Ahmet S. Ozcan

{vmarois, jayram, tkornut, byounes, asozcan}@us.ibm.com, {vincent.albouy}@ibm.com

Abstract

- We introduce a variant of the MAC model (Hudson and Manning, ICLR 2018) with a simplified set of equations that achieves comparable accuracy, while training faster
- We evaluate both models on CLEVR and CoGenT, and show that, transfer learning with fine-tuning results in a 15 point increase in accuracy, matching the state of the art.
- We demonstrate that improper fine-tuning can reduce a model's accuracy as well.

The MAC Model [HM18]

Figure 1: The MAC cell [HM18]

- The MAC network is a recurrent model that performs sequential reasoning; at each step the model analyzes the question and shifts the attention over the image
- The core of the model is the MAC cell, supported with an input unit that processes the question and image pair, and output unit which produces the answer.
- The input unit uses an LSTM to process the question and CNN layers to extract a feature map from the image.

Simplified Mac Model (S-MAC)

Our proposed modification to the MAC network is based on two heuristic simplifications:

- First, we observe that, taking the MAC cell equations as a whole, consecutive linear layers (with no activation in-between) can be combined as one linear layer.
- Secondly, we assume that dimension-preserving linear layers are invertible so as to avoid information loss.

MAC S-MAC

Control unit: For both models, the question q is first transformed in each step of the reasoning using a position-aware linear layer depending on i: $q_i = U_i^{[d \times 2d]} q + b_i^{[d]}$.

$$cq_i = W_{cq}^{[d \times 2d]}[c_{i-1}, q_i] + b_{cq}^{[d]}$$
 (c1)

$$cq_i = W_{cq}^{[d \times d]} c_{i-1} + q_i$$
 (c1)

$$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s) + b_{ca}^{[1]}$$
 (c2.1)

$$ca_{is} = W_{ca}^{[1 \times d]}(cq_i \odot \mathbf{cw}_s)$$
 (c2.1)

$$cv_{is} = \operatorname{softmax}(ca_{is})$$
 (c2.2)

$$cv_{is} = \operatorname{softmax}(ca_{is})$$
 (c2.2)

$$\mathbf{c}_i = \sum_s cv_{is} \, \mathbf{cw}_s \tag{c2.3}$$

$$\mathbf{c}_i = \sum_s cv_{is} \, \mathbf{cw}_s \tag{c2.3}$$

Read and write units:

$$I_{ihw} = (W_m^{[d \times d]} \mathbf{m}_{i-1} + b_m^{[d]})$$

$$\odot (W_k^{[d \times d]} \mathbf{k}_{hw} + b_k^{[d]}) \qquad (r1)$$

$$\odot \left(W_k^{[d\times d]}\mathbf{k}_{hw} + b_k^{[d]}\right) \qquad (\mathbf{r}1)$$

$$I'_{ihw} = W_{I'}^{[d \times 2d]}[I_{ihw}, \mathbf{k}_{hw}] + b_{I'}^{[d]} \qquad (r2)$$

$$ra_{ihw} = W_{ra}^{[1 \times d]}(\mathbf{c}_i \odot I'_{ihw}) + b_{ra}^{[1]} \qquad (r3.1)$$

$$r u_{ihw} = v v_{ra} \quad (\mathbf{c}_i \odot r_{ihw}) + v_{ra} \quad (\mathbf{r}3.1)$$

$$r v_{ihw} = \operatorname{softmax}(r a_{ihw}) \quad (\mathbf{r}3.2)$$

$$\mathbf{r}_i = \sum_{s} r v_{ihw} \, \mathbf{k}_{hw} \tag{r3.3}$$

$$\mathbf{m}_{i} = W_{rm}^{[d \times d]}[\mathbf{r}_{i}, \mathbf{m}_{i-1}] + b_{rm}^{[d]}$$
 (w1)

$$I_{ihw} = m_{i-1} \odot k_{hw} \tag{r1}$$

$$I'_{ihw} = W_{I'}^{[d \times d]} I_{ihw} + b_{I'}^{[d]} + \mathbf{k}_{hw}$$
 (r2)

$$ra_{ihw} = W_{ra}^{[1 \times d]}(\mathbf{c}_i \odot I'_{ihw}) \tag{r3.1}$$

$$rv_{ihw} = \operatorname{softmax}(ra_{ihw})$$
 (r3.2)

$$\mathbf{r}_i = \sum_{s} r v_{ihw} \, \mathbf{k}_{hw} \tag{r3.3}$$

$$\mathbf{m}_i = W_{rm}^{[d \times 2d]} \mathbf{r}_i + b_{rm}^{[d]} \tag{w1}$$

• Simplifications results in a 10% speed up in training time.

Model	Read Unit	Write Unit	Control Unit
MAC simplified MAC	787,969 263,168	524,800 262,656	525,313 263,168
Reduction by [%]	67%	50%	50%

Table 1: Comparing the number of position-independent parameters between MAC & S-MAC cells.

Links

Figure 2: Documentation.

Figure 3: GitHub repo.

Datasets - CLEVR and CoGenT

The CLEVR task:

- · How many objects are either small cylinders or red things?
- Along with CLEVR, the authors [JHvdM+17] introduced CLEVR-CoGenT
- The goal is to evaluate how well the models can generalize, learn relations and compositional concepts.
- This dataset is generated in the same way as CLEVR, with two conditions, A and B. as shown in Table 2.

Dataset	Cubes	Cylinders	Spheres	
CLEVR	any color	any color	any color	
CLEVR CoGenT A	gray / blue / brown / yellow	red / green / purple / cyan	any color	
CLEVR CoGenT B	red / green / purple / cyan	gray / blue / brown / yellow	any color	

Table 2: Colors/shapes combinations present in CLEVR, CoGenT-A and CoGenT-B datasets.

Transfer Learning - Experiments

CLEVR & CoGenT accuracies for the MAC & S-MAC models:

Model	Training		Fine-tuning		Test		Row	
IVIOGCI	Dataset	Time [h:m]	Acc [%]	Dataset	Acc [%]	Dataset	Acc [%]	
MAC	CLEVR	30:52	96.70	_	_	CLEVR	96.17	(a)
S-MAC	CLEVR	28:30	95.82	_	_	CLEVR	95.29	(b)
	CoGenT-A	28:33	96.09	_	_	CoGenT-A	95.91	(c)
	CLEVR	28:30	95.82	_	_	CoGenT-A	95.47	(d)
						CoGenT-B	95.58	(e)
	CoGenT-A 28		96.09	_	_	CogenT-B	78.71	(f)
		28:33		CoGenT-B	96.85	CoGenT-A	91.24	(g)
						CoGenT-B	94.55	(h)
	CLEVR 28:3	28:30	95.82	CoGenT-B	97.67	CoGenT-A	92.11	(i)
			33.32			CoGenT-B	92.95	(j)

- Our experiments on zero-short learning show that the MAC model has poor performance in line with the other models in the literature.
- With fine-tuning, the MAC model matches state of the art accuracy
- Remains an interesting problem to investigate how we can train it to disentangle the concepts of shape and color.
- Experiments can be reproduced by following the mi-prometheus documentation

MAC drawbacks on CLEVR

• The question reads as: There is a large gray thing that is on the right side of the big gray cylinder left of the large ball that is on the right side if the cyan rubber sphere; what is its shape? Predicted answer: Cylinder - Truth: Cube

References

[HM18] Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine reasoning. International Conference on Learning Representations, 2018.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual reasoning. In Computer Vision and Pattern Recognition (CVPR), 2017 IEEE Conference on, pages 1988–1997. IEEE, 2017.