Plane-Wave Summary

A two-dimensional plane wave may be expressed as

$$f(x,y,t) = Re \left\{ A e^{i(kx+ly-\nu t)} \right\} = Re \left\{ A e^{i\theta} \right\}$$
 (1)

- x, y and t are independent variables (space and time).
- k and l are the x and y wavenumbers (units: m^{-1}).
- \bullet A is the wave amplitude.
- $\theta = kx + ly \nu t$ is the wave phase angle.
- The wave *propagates* normal to lines of constant phase angle.

At any instant in time [t fixed; (x, y) varies]:

Plot of θ as a function of (x,y) for fixed t.

Plot of $Re\{exp(i \theta)\}\$ as a function of (x,y) for fixed t.

- $\theta = kx + ly + C$; θ is a linear function of space.
- θ is constant on lines of kx + ly.
- $e^{i\theta} = e^{i(\theta + 2\pi n)}$, where n is an integer, are lines of constant phase (e.g. highs and lows).
- $\vec{K} = \nabla \theta = \hat{i}k + \hat{j}l$ is the wave vector; $\mathcal{K} = |\vec{K}|$ is the wavenumber.
- $\lambda = \frac{2\pi}{\mathcal{K}}$ is the wavelength: the distance between lines of constant phase.

At any fixed point in space [(x, y) fixed; t varies]:

Plot of θ as a function of t for fixed (x,y).

Plot of $Re\{exp(i \theta)\}\$ as a function of t for fixed (x,y).

- $\theta = C \nu t$; θ is a linear function of time.
- $\nu = -\frac{\partial \theta}{\partial t}$, is called the *frequency*: the rate that lines of constant phase pass a fixed point in space (units: s⁻¹). Note that the figure above indicates $\nu < 0$. This means that for fixed (x, y), such as the point marked "X" on the first figure, θ increases with time; this can only occur if phase lines move toward smaller x and y.
- The wave period is $\frac{2\pi}{\nu}$: length of time between points of constant phase (units: s).
- The phase speed is the propagation speed of constant phase lines in the direction of \vec{K} , $c = \frac{\nu}{\mathcal{K}} = -\frac{1}{|\nabla \theta|} \frac{\partial \theta}{\partial t}$ (units: m s⁻¹).

Special note on θ :

If θ has an imaginary part, $\theta = \theta_r + i\theta_i$, then $e^{i\theta} = e^{i(\theta_r + i\theta_i)} = e^{i\theta_r} e^{-\theta_i} \equiv A^*e^{i\theta_r}$. θ_r is the wave phase angle as interpreted above, and $A^* = Ae^{-\theta_i}$ is a modified amplitude that depends on time and/or space. For example, if the frequency, ν , contributes the imaginary part, then the wave has time-dependent amplitude that grows or decays with time. Such waves are called unstable, to distinguish them from the neutral waves (A constant) that we discussed above.