Breadth-First Search

Breadth-First Search (BFS)

- A general technique for traversing a graph
- BFS traversal of graphG
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- Complexity: O(n + m)
 for a graph with n
 vertices and m edges
- BFS for other graph problems
 - Find a minimum path between two given vertices
 - Find a simple cycle
- BFS is to graphs what level-order is to binary/general rooted trees

BFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm BFS(G)

Input graph G

Output labeling of the edges and partition of the vertices of *G*

for all $u \in G.vertices()$

u.setLabel(UNEXPLORED)

for all $e \in G.edges()$

e.setLabel(UNEXPLORED)

for all $v \in G.vertices()$

if v.getLabel() = UNEXPLOREDBFS(G, v)

```
Algorithm BFS(G, s)
  L_0 \leftarrow new empty sequence
  L_0.insertBack(s)
  s.setLabel(VISITED)
  i \leftarrow 0
  while \neg L_i empty()
     L_{i+1} \leftarrow new empty sequence
     for all v \in L_i elements()
        for all e \in v.incidentEdges()
          if \ e.getLabel() = UNEXPLORED
             w \leftarrow e.opposite(v)
             if w.getLabel() = UNEXPLORED
                e.setLabel(DISCOVERY)
                w.setLabel(VISITED)
                L_{i+1}.insertBack(w)
             else
                e.setLabel(CROSS)
     i \leftarrow i + 1
```

Example via Queue

Quiz!

- Start vertex: 0
- Traverse order: 0, 1,2, 3, 4, 5, 6, 7

 vertex 0	->	1	->	2				
vertex 1	->	0	->	3	->	4		
 vertex 2	->	0	->	5	->	6		
 vertex 3	->	1	->	7				
vertex 4	->	1	->	7				
 vertex 5	->	2	->	7				
 vertex 6	->	2	->	7				
vertex 7	->	3	->	4	->	5	->	6

Queue contents at each step:

Output	Queue
	<u>0</u>
0	12
1	2 0 3 4
2	3 4 0 5 6
3	45617
4	5 6 7 1 7
5	677 <mark>2</mark> 7
6	$777\frac{2}{27}$
7	$777\overline{3456}$
	, , , <u>, , , , , , , , , , , , , , , , </u>

Another Example via Queue

- Start vertex: 4
- Traverse order: 4, 1,7, 0, 3, 5, 6, 2
- Queue contents at each step:


```
vertex 0 -> 1 -> 2
vertex 1 -> 0 -> 3 -> 4
vertex 2 -> 0 -> 5 -> 6
vertex 3 -> 1 -> 7
vertex 4 -> 1 -> 7
vertex 5 -> 2 -> 7
vertex 6 -> 2 -> 7
vertex 7 -> 3 -> 4 -> 5 -> 6
```

Example

Example (cont.)

Example (cont.)

Properties

Notation

 G_s : connected component of s

Property 1

BFS(G, s) visits all the vertices and edges of G_s

Property 2

The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_s

Property 3

For each vertex v in L_i

- The path of T_s from s to v has i edges
- Every path from s to v in G_s has at least i edges

Analysis

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- \Box BFS runs in O(n+m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- using the template method pattern, we can specialize the BFS traversal of a graph G to solve the following problems in O(n + m) time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

Comparison: DFS vs. BFS

DFS

- Complexity: O(m+n)
- Like preorder for binary trees
- Can be achieved by a stack
- Path finding with low memory
 - Game solution finding, such as maze traversal, 2048, nonograms, etc.

□ BFS

- Complexity: O(m+n)
- Like level-order for binary tress
- Can be achieved by a queue
- Minimum path finding

DFS vs. BFS

Applications	DFS	BFS
Spanning forest, connected components, paths, cycles	J	1
Shortest paths		1
Biconnected components		

DFS vs. BFS (cont.)

Back edge (v, w)

w is an ancestor of v in the tree of discovery edges

Cross edge (v, w)

w is in the same level asv or in the next level

Applications of BFS

- BFS applications
 - Shortest path in a unweighted graph
 - Web crawler
 - Social network
 - Cycle detection
 - Bipartite graph determination
 - Broadcasting in a network
 - Folk-Fulkerson algorithm