Adaptive Grid Resource Brokering

A. Othman, P Dew, K Djemame and I Gourlay

Informatics Research Lab.

School of Computing

University of Leeds

Introduction

- Grid Resource Brokering is defined as the process of making scheduling decisions involving resources over multiple administrative domains [Sch02]
- The need for Grid Resource Brokering

The Need for Adaptable Grid Resource Brokering

Adaptability

- Adaptability is crucial in the context of the Grid
- An adaptive application can change its architecture and behaviour depending on available resources, optimising itself to its dynamic environment [Fri94].

Adaptability in the Grid

- Adaptation can be implemented in an ad-hoc fashion by embedding adaptability in the applications code
 - Does not work well for global adaptation (e.g. multiinstitutional virtual working environment)
 - Complicates both the application and adaptation code
 - Makes the reuse of adaptation strategies impossible

Proposed Solution

- A Reflective Technique is used to simplify adaptation in the Grid application
 - aims to separate concerns for functional and non-functional behaviour of a program
 - results in some code that is highly reusable and extensible [Bla99]

Adaptability through Reflection

- Isolate the user from the complexities of the system
 - No need to alter his/her code in order to achieve adaptability
- The benefits of using reflection [Bla98, Cou01]:
 - Flexibility to customize policies dynamically to suit run-time environment
 - High-level transparency to applications.

[[Bla98] G. Blair B. and G. Coulson M.. *The Case for Reflective Middleware*. Internal report number MPG-98-38, Distributed Multimedia Research Group. Lancaster University. 1998

Adaptive Resource Broker

Prediction Modelling

$$T_{remaining} = rac{T_{100\%} - \displaystyle\sum_{i=1}^{n-1} T_i F_i}{F_{estimate}}$$

$$F_{estimate} = \overline{F}_n = \frac{1}{n} \sum_{i=1}^n F_i$$

- The fractional CPU usage is measured periodically
- 1 representing 100% CPU usage and 0 corresponding to no CPU usage.
- If *n* samples are taken, then these can be used to predict the remaining time to completion of the job

Prediction Modelling

- Job A uses resource r through adaptive resource broker
- Job B accesses the same resource r Since job B uses some portion of the resource
- Job A takes longer to finish
- The monitor passes information to the Adapter Manager, based on the RTP formula
- The Adapter Manager initiates migration

Experiments

- The experiments address the following questions:
 - When job requirements are not met, are jobs being successfully migrated?
 - Does this result in shorter job execution time, compared to the case when the adaptive middleware is not used?
- Run on Grid-test-bed consisting of 10 machines
 - Pentium IV processor (1.2 GHz) with 256 RAM
 - Linux 2.4
 - Globus 2.2.
 - Communication via a fast LAN Ethernet
- Do not address the issue of job migration times and their effect on the overall job execution time

Experiments cont.

- CPU usage periodically measured
- Experiments run with the assumption that the user knows how long the job would take to run with 100%

Experiments cont.

• Experiment 1

- Job is executed from start to finish
- Remaining job time predicted by the RTP formula during the course of the computation is compared to the actual execution time

• Experiment 2

- Job is executed and during execution, other jobs are submitted to the same resource
- Migration is initiated
- Compared to case where adaptation is not used.

Results of Experiment 1

Results of Experiment 2

Conclusion

- Reflective technique enables application configuration and adaptation based on resource characteristics and user preferences
- Reflective middleware permits run-time mechanisms to automatically decide when and how to adapt the application in reaction to changes in resource conditions
- Future work
 - Run the same experiment in a wide area network, e.g.. White Rose Grid
 - Developing an interactive job, where the user can change the attributes of the job during run time