Properties of Polynomials

- It sometimes helps to write a polynomial with the terms in descending order.
- The term with the highest degree indicates the degree of the polynomial as well.
- The **leading coefficient** is the coefficient on the term of highest degree.

Circle the leading term then identify the degree and leading coefficient of the following polynomial:

$$4x^3y^2 - 2x^2y + 3z$$

Degree: _____ Leading coefficient: _____

Adding, Subtracting, and Multiplying Polynomials

Use different colors to underline the **like terms** and then add the polynomials together.

$$(3x^2 - x + 2) + (x^2 + 4x - 9) = \underline{\hspace{1cm}}$$

When subtracting polynomials, it is sometimes easier to distribute the negative sign first THEN combine the polynomials.

$$(9r^2 + 6r + 16) - (8r^2 + 7r + 10)$$

(Distribute the negative then color code the like terms!)

$$(9r^2 + 6r + 16) - (\underline{} + \underline{} + \underline{}) = \underline{}$$

When you multiply polynomials, you must distribute like terms:

$$(n^2 + 6n - 2)(n + 4)$$

$$n^{2}(n+4) + 6n(n+4) - 2(n+4) =$$

(Once again, combine like terms to get the final answer!)

Properties of Polynomials

- It sometimes helps to write a polynomial with the terms in descending order.
- The term with the highest degree indicates the degree of the polynomial as well.
- The leading coefficient is the coefficient on the term of highest degree.

Circle the leading term then identify the degree and leading coefficient of the following polynomial:

$$4x^3y^2 - 2x^2y + 3z$$

Degree: _____ Leading coefficient: _____

Adding, Subtracting, and Multiplying Polynomials

Use different colors to underline the **like terms** and then add the polynomials together.

$$(3x^2 - x + 2) + (x^2 + 4x - 9) =$$

When subtracting polynomials, it is sometimes easier to distribute the negative sign first THEN combine the polynomials.

$$(9r^2 + 6r + 16) - (8r^2 + 7r + 10)$$

(Distribute the negative then color code the like terms!)

$$(9r^2 + 6r + 16) - (\underline{\hspace{1cm}} + \underline{\hspace{1cm}} + \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$$

When you multiply polynomials, you must distribute like terms:

$$(n^2 + 6n - 2)(n + 4)$$

$$n^{2}(n+4) + 6n(n+4) - 2(n+4) =$$

(Once again, combine like terms to get the final answer!)

Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	
Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	
Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	
Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	
Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	
Polynomial Division: Long Division	Polynomial Division: Long Division	Polynomial Division: Long Division	

	<u> </u>		
$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	
Setup the Problem	Setup the Problem	Setup the Problem	
$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	$\frac{3x^3 - 5x^2 + 10x - 3}{3x + 1}$ Becomes:	
Setup the Problem	Setup the Problem	Setup the Problem	

$3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3}$ $3x^3$	$ \begin{array}{r} x^2 \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ 3x^3 \end{array} $	$ \begin{array}{r} x^2 \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ 3x^3 \end{array} $	
1st Term	1 st Term	1st Term	
$ \begin{array}{r} x^2 \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ 3x^3 \end{array} $	$ \begin{array}{r} x^2 \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ 3x^3 \end{array} $	$ \begin{array}{r} x^2 \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ 3x^3 \end{array} $	
1 st Term	1 st Term	1 st Term	

$ \begin{array}{r} x^2 - 2x \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ - \underline{(3x^3 + x^2)} \\ -6x^2 + 10x - 3 \\ -6x^2 \end{array} $	$ \begin{array}{r} x^2 - 2x \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ - \underline{(3x^3 + x^2)} \\ -6x^2 + 10x - 3 \\ -6x^2 \end{array} $	$ \begin{array}{r} x^2 - 2x \\ 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\ - \underline{(3x^3 + x^2)} \\ -6x^2 + 10x - 3 \\ -6x^2 \end{array} $
2 nd Term	2 nd Term	2 nd Term

$x^{2} - 2x + 4$ $3x + 1 \overline{\smash)3x^{3} - 5x^{2} + 10x - 3}$ $- \underline{(3x^{3} + x^{2})}$ $-6x^{2} + 10x - 3$ $- \underline{(-6x^{2} - 2x)}$ $12x - 3$ $12x$	$x^{2}-2x+4$ $3x+1 \overline{\smash)3x^{3}-5x^{2}+10x-3}$ $-\underline{(3x^{3}+x^{2})}$ $-6x^{2}+10x-3$ $-\underline{(-6x^{2}-2x)}$ $12x-3$ $12x$	$x^{2} - 2x + 4$ $3x + 1 \overline{\smash)3x^{3} - 5x^{2} + 10x - 3}$ $- \underline{(3x^{3} + x^{2})}$ $-6x^{2} + 10x - 3$ $- \underline{(-6x^{2} - 2x)}$ $12x - 3$ $12x$
3 rd Term	3 rd Term	3 rd Term

$$\begin{array}{r}
x^2 - 2x + 4 \\
3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\
- \underline{(3x^3 + x^2)} \\
- 6x^2 + 10x - 3 \\
- \underline{(-6x^2 - 2x)} \\
12x - 3 \\
- \underline{(12x + 4)} \\
-7
\end{array}$$

$$\begin{array}{r}
 x^2 - 2x + 4 \\
 3x + 1 \overline{\smash)3x^3 - 5x^2 + 10x - 3} \\
 - \underline{(3x^3 + x^2)} \\
 -6x^2 + 10x - 3 \\
 - \underline{(-6x^2 - 2x)} \\
 \hline
 12x - 3 \\
 - \underline{(12x + 4)} \\
 -7
 \end{array}$$

Use the form:

$$q(x) + \frac{r(x)}{b(x)}$$

to write the solution below.

Use the form:

$$q(x) + \frac{r(x)}{b(x)}$$

to write the solution below.

Use the form:

$$q(x) + \frac{r(x)}{b(x)}$$

to write the solution below.

Construct the Answer!

Construct the Answer!

Construct the Answer!

$$\frac{3x^3 - 2x^2 - 7x + 6}{x + 1}$$

$$\frac{3x^3 - 2x^2 - 7x + 6}{x + 1}$$

x^3	x^2	\boldsymbol{x}	#

Use the form $q(x) + \frac{r(x)}{b(x)}$ to construct your answer!

Answer:

$$\frac{5x^3 - 3x^2 - 6}{x - 1}$$

	x^3	x^2	x	#

Use the form $q(x) + \frac{r(x)}{b(x)}$ to construct your answer!

Answer: _____

$$\frac{5x^3 - 3x^2 - 6}{x - 1}$$

<i>x</i> ³	x^2	x	#

Use the form $q(x) + \frac{r(x)}{b(x)}$ to construct your answer!

Answer: _____

Use the form $q(x) + \frac{r(x)}{b(x)}$ to construct your answer!

Answer: _____