Декция 8 Композиции алгоритмов.

Блуменау М.И.

На основе материалов Кантонистовой Е.О.

PA3ЛОЖЕНИЕ ОШИБКИ (BIAS-VARIANCE DECOMPOSITION

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

- Модель переобучена?
- Модель плохо предсказывает целевую переменную?
- В самих данных много неточностей (шумов)

РАЗЛОЖЕНИЕ ОШИБКИ (BIAS-VARIANCE DECOMPOSITION)

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Bias(a(x)) - средняя ошибка по всем возможным наборам данных — смещение.

Смещение показывает, насколько в среднем модель эхорошо предсказывает целевую переменную:

- √ маленькое смещение хорошее предсказание
- **√** большое смещение плохое предсказание

РАЗЛОЖЕНИЕ ОШИБКИ (BIAS-VARIANCE DECOMPOSITION)

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

• Var(a(x)) - дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных — разброс.

Большой разброс означает, что ошибка очень чувствительна к изменению обучающей выборки, т.е.:

√ большой разброс – сильно переобученная модель

РАЗЛОЖЕНИЕ ОШИБКИ (BIAS-VARIANCE DECOMPOSITION)

Зачастую для улучшения качества модели необходимо понять, из-за чего возникает ошибка в предсказаниях.

Утверждение: ошибку модели a(x) можно представить в виде

$$Err(x) = Bias^{2}(a(x)) + Var(a(x)) + \sigma^{2}$$
.

- Bias(a(x)) средняя ошибка по всем возможным наборам данных смещение.
- Var(a(x)) дисперсия ошибки, т.е. как сильно различается ошибка при обучении на различных наборах данных разброс.
- σ^2 неустранимая ошибка шум.

СМЕЩЕНИЕ И РАЗБРОС

BIAS-VARIANCE TRADEOFF

БУТСТРЭП

Дана выборка X.

Бутстрэп: равномерно возьмем из выборки X l объектов с возвращением (т.е. в новой выборке будут повторяющиеся объекты). Получим выборку X_1 .

ullet Повторяем процедуру N раз, получаем выборки $X_1,\dots,X_N.$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

С помощью бутстрэпа мы получили выборки X_1, \dots, X_N .

- Обучим по каждой из них модель получим базовые алгоритмы $b_1(x), \dots, b_N(x)$.
- Построим новую функцию регрессии:

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

БЭГГИНГ (BOOTSTRAP AGGREGATION)

$$a(x) = \frac{1}{N} \sum_{j=1}^{N} b_j(x)$$

ъ СМЕЩЕНИЕ И РАЗБРОС У БЭГГИНГА

Бэггинг:
$$a_N(x) = \frac{1}{N} \sum_{n=1}^N b_n(x) = \frac{1}{N} \sum_{n=1}^N \widetilde{\mu}(X) (x)$$

(здесь $\tilde{\mu}(X) = \mu(\tilde{X})$ – алгоритм, обученный на подвыборке \tilde{X})

Утверждение:

- 1) **Бэггинг не ухудшает смещенность модели**, т.е. смещение $a_N(x)$ равно смещению одного базового алгоритма.
- 2) Если базовые алгоритмы некоррелированы, то **дисперсия бэггинга** $a_N(x)$ в N раз меньше дисперсии отдельных базовых алгоритмов.

© СЛУЧАЙНЫЙ ЛЕС (RANDOM FOREST)

- Возьмем в качестве базовых алгоритмов для бэггинга **решающие деревья,** т.е. каждое случайное дерево $b_i(x)$ построено по своей подвыборке X_i .
- В каждой вершине дерева будем искать *разбиение не по* всем признакам, а по подмножеству признаков.
- Дерево строится до тех пор, пока в листе не окажется n_{min} объектов.

RANDOM FOREST

Алгоритм 3.1. Random Forest

- 1: для $n = 1, \dots, N$
- 2: Сгенерировать выборку X_n с помощью бутстрэпа
- 3: Построить решающее дерево $b_n(x)$ по выборке X_n :
 - ullet дерево строится, пока в каждом листе не окажется не более n_{\min} объектов
 - при каждом разбиении сначала выбирается m случайных признаков из p, и оптимальное разделение ищется только среди них
- 4: Вернуть композицию $a_N(x) = \frac{1}{N} \sum_{n=1}^{N} b_n(x)$

RANDOM FOREST — ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

- Если p количество признаков, то при классификации обычно берут $m=[\sqrt{p}]$, а при регрессии $m=[\frac{p}{3}]$ признаков
- При классификации обычно дерево строится, пока в листе не окажется $n_{min}=1$ объект, а при регрессии $n_{min}=5$

OUT-OF-BAG ОШИБКА

 $Err_{oob} =$

$$b = 1 \qquad b = 2 \qquad \cdots \qquad b = B$$
Bootstrap
$$\downarrow \qquad \qquad \downarrow$$
Fit inbag model
$$\downarrow \qquad \qquad \downarrow$$
OOB error
$$\downarrow \qquad \qquad \qquad \downarrow$$
Err₁

$$Err_2 \qquad \cdots \qquad Err_B$$

 $\frac{\operatorname{Err}_1 + \dots + \operatorname{Err}_B}{B} = \frac{1}{B} \sum_{i=1}^{B} \operatorname{Err}_b$

OUT-OF-BAG ОШИБКА

- Каждое дерево в случайном лесе обучается по некоторому подмножеству объектов
- Значит, для каждого объекта есть деревья, которые на этом объекте не обучались.

Out-of-bag ошибка:

$$OOB = \sum_{i=1}^{l} L(y_i, \frac{\sum_{n=1}^{N} [x_i \notin X_n] b_n(x_i)}{\sum_{n=1}^{N} [x_i \notin X_n]})$$

Утверждение. При $N \to \infty$ 00B оценка стремится к leaveone-out оценке.

OOB-SCORE

По графику out-of-bag ошибки можно, например, подбирать количество деревьев в случайном лесе

БУСТИНГ

<u>Идея</u>: строим набор алгоритмов, каждый из которых исправляет ошибку предыдущих.

Решаем задачу регрессии с минимизацией квадратичной ошибки:

$$\frac{1}{2} \sum_{i=1}^{l} (a(x_i) - y_i)^2 \to \min_{a}$$

Ищем алгоритм a(x) в виде суммы N базовых алгоритмов:

$$a(x) = \sum_{n=1}^{N} b_n(x),$$

где базовые алгоритмы $b_n(x)$ принадлежат некоторому семейству A.

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

Ошибка на объекте х:

$$\mathbf{s} = y - b_1(x)$$

Следующий алгоритм должен настраиваться на эту ошибку, т.е. целевая переменная для следующего алгоритма — это вектор ошибок s (а не исходный вектор y)

<u>Шаг 1:</u> Ищем алгоритм $b_1(x)$, минимизирующий ошибку:

$$b_1(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - y_i)^2$$

<u>Шаг 2:</u> Ищем алгоритм $b_2(x)$, настраивающийся на ошибки s первого алгоритма:

$$b_2(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i)^2$$

Следующий алгоритм $b_3(x)$ будем выбирать так, чтобы он минимизировал ошибку предыдущей композиции (т.е. $b_1(x) + b_2(x)$) и т.д.

Каждый следующий алгоритм настраиваем на ошибку предыдущих.

Шаг N: Ошибка:
$$\mathbf{s}_{i}^{(N)} = y_{i} - \sum_{n=1}^{N-1} b_{n}(x_{i}) = y_{i} - a_{N-1}(x_{i})$$

Ищем алгоритм $b_N(x)$:

$$b_N(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} \left(b(x_i) - \mathbf{s}_i^{(N)} \right)^2$$

СМЕЩЕНИЕ И РАЗБРОС БУСТИНГА

- Бустинг целенаправленно уменьшает ошибку, т.е. смещение у него маленькое.
- Алгоритм получается сложным, поэтому разброс может быть большим.

Значит, чтобы не переобучиться, в качестве базовых алгоритмов надо брать неглубокие деревья (глубины 3-6).

ГРАДИЕНТНЫЙ БУСТИНГ

Пусть L(y,z) – произвольная дифференцируемая функция потерь. Строим алгоритм $a_N(x)$ вида

$$a_L(x) = \sum_{n=1}^L \gamma_n b_n(x),$$

где на *N*-м шаге

$$b_{N}(x) = \underset{b \in A}{\operatorname{argmin}} \sum_{i=1}^{s} (b(x_{i}) - s_{i}^{(N)})^{2},$$
 $s_{i}^{(N)} = y_{i} - a_{N-1}(x_{i})?$

ГРАДИЕНТНЫЙ БУСТИНГ

Пусть L(y,z) – произвольная дифференцируемая функция потерь. Строим алгоритм $a_N(x)$ вида

$$a_L(x) = \sum_{n=1}^L \gamma_n b_n(x),$$

где на *N*-м шаге

$$b_N(x) = \underset{b \in A}{\operatorname{argmin}} \sum_{i=1}^{t} \left(b(x_i) - s_i^{(N)} \right)^2$$
,

$$s_{i}^{(N)} = y_{i} - a_{N-1}(x_{i}) \qquad s_{i}^{(N)} = -\frac{\partial L}{\partial z}$$

ГРАДИЕНТНЫЙ БУСТИНГ

Пусть L(y,z) – произвольная дифференцируемая функция потерь. Строим алгоритм $a_N(x)$ вида

$$a_L(x) = \sum_{n=1}^L \gamma_n b_n(x),$$

где на *N*-м шаге

$$b_N(x) = \operatorname*{argmin}_{b \in A} \sum_{i=1}^{s} \left(b(x_i) - s_i^{(N)} \right)^2,$$
 $s_i^{(N)} = -\frac{\partial L}{\partial z}$

Коэффициент γ_N должен минимизировать ошибку:

$$\gamma_{N} = \min_{\gamma \in \mathbb{R}} \sum_{i=1}^{l} L(y_{i}, a_{N-1}(x_{i}) + \gamma_{N} b_{N}(x_{i}))$$

Каждый следующий алгоритм настраиваем на ошибку предыдущих.

<u>Шаг N</u>: Ошибка: $s_i^{(N)} = y_i - \sum_{n=1}^{N-1} b_n(x_i) = y_i - a_{N-1}(x_i)$ Ищем алгоритм $b_N(x)$:

$$b_N(x) = \underset{b \in A}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{l} (b(x_i) - s_i^{(N)})^2$$

Утверждение. Ошибка на N-м шаге — это антиградиент функции потерь по ответу модели, вычисленный в точке ответа уже построенной композиции:

$$s_i^{(N)} = y_i - a_{N-1}(x_i) = -\frac{\partial}{\partial z} \frac{1}{2} (z - y_i)^2 \Big|_{z = a_{N-1}(x_i)}$$

ВЫБОР БАЗОВЫХ АЛГОРИТМОВ

- Что произойдет с предсказанием бустинга, если базовые алгоритмы слишком простые?
- Что будет, если базовые алгоритмы слишком сложные?

БУСТИНГ: ВЫБОР БАЗОВЫХ АЛГОРИТМОВ

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент функции потерь, т.е. градиентный бустинг может свестись к случайному блужданию.
- Если базовые алгоритмы сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получим переобученный алгоритм.

Чаще всего в качестве базовых алгоритмов используют *решающие деревья*.

В таком случае *решающие деревья не должны быть очень маленькими, а также очень глубокими.*Оптимальная глубина — от 3 до 6 (зависит от задачи).

СОКРАЩЕНИЕ ШАГА (РЕГУЛЯРИЗАЦИЯ)

- Если базовые алгоритмы очень простые, то они плохо приближают антиградиент функции потерь, т.е. градиентный бустинг может свестись к случайному блужданию.
- Если базовые алгоритмы сложные, то за несколько шагов бустинг подгонится под обучающую выборку, и получим переобученный алгоритм.

Возможное решение – сокращение шага:

$$a_N(x) = a_{N-1}(x) + \eta \gamma_N b_N(x), \eta \in (0; 1]$$

Чем меньше темп обучения η , тем меньше степень доверия к каждому базовому алгоритму, и тем лучше качество итоговой композиции.

КОЛИЧЕСТВО ИТЕРАЦИЙ БУСТИНГА

Так как на каждом шаге бустинга целенаправленно уменьшается ошибка на тренировочной выборке, то если процесс не остановить, то мы достигнем нулевой ошибки, а значит, переобучимся!

СТОХАСТИЧЕСКИЙ ГРАДИЕНТНЫЙ БУСТИНГ

• Будем обучать базовый алгоритм b_N не по всей выборке X, а по случайной подвыборке $X^k \subset X$.

+: снижается уровень шума в данных

+: вычисления становятся быстрее

Обычно берут
$$|X^k| = \frac{1}{2}|X|$$
.

СМЕЩЕНИЕ И РАЗБРОС БУСТИНГА

- Бустинг целенаправленно уменьшает ошибку, т.е. смещение у него маленькое.
- Алгоритм получается сложным, поэтому разброс может быть большим.

Значит, чтобы не переобучиться, в качестве базовых алгоритмов надо брать неглубокие деревья (глубины 3-6).