

EIE3510 Digital Signal Processing-Term Project

Composition and Instrumental Music Generation from Bird Songs

Yang Jiao 118010121

Jifei Zhao 118010437

13 December 2021

Introduction

Motivation

In the AI generation, researchers started exploring the boundary between machine intelligence and artworks by using the machine to generate music. Previous studies mainly focused on deep learning methods, which need massive data.

- We hope to design an explicit and lightweight model with only a tiny amount of unmusical audio input.
- Inspired by nature, we investigate the similarity between the singing of birds and instrumental music.

F

Goal

- 1. Map the bird sounds to a series of notes (Composition)
- 2. Play the melody by mimicking the timbre(音色) of piano (Music Generation)

Framework of whole project :

Stage 1—Bird sounds collection

Dataset :

https://xeno-canto.org/

Spectrogram information

Stage 1 — Noise Reduction

Ideal band-pass filter

- Perfect square wave
- Cutoff frequency: fc1 = 3200 Hz, fc2 =5000 Hz

FIR band-pass filter

- Width of transition band: 100 Hz
- Ripples: [0.01, 0.01, 0.01]
- Cutoff frequency: fc1 = 3200 Hz, fc2 = 5000 Hz
- Kaiser window with M = 986, $\beta = 3.3953$

Stage 1 — Noise Reduction

Comparison between filters

Filtering effect in frequency domain:

 Filtering effect on the basis of SNR and time complexity:

Filter	SNR (dB)	Time complexity	
Ideal band-pass	10.8853	$\mathcal{O}(N\log_2 N)$	
FIR band-pass	10.8257	$\mathcal{O}(N)$	
[P. Scalart, 1996] Wiener estimation	13.2802	/	

Stage 1 — Main frequency extraction

F

Spectrogram analysis

We apply Short-time Fourier transform with:

- window length L=1000 (23 ms Hamming window),
- window moves by R = 500 samples each time.

Original Spectrogram

Spectrogram after FIR BPF

Stage 1 — Notes & beats generation

Notes

Starting from a frequency on the idealized standard piano tuned to A₄ (440 Hz)

Key number can be calculated from

$$Key(n) = \text{round}(12 \log_2 \left(\frac{f_{main}(n)}{440 \text{ Hz}}\right)) + 49 - 8$$

The 49th key on piano

	Key number	MIDI note	Helmholtz name ^[5] ◆	Scientific name ^[5] ◆	Frequency (Hz) (Equal temperament) [6]
	79	99	d♯''''/e♭''''	D♯ ₇ /E♭ ₇	2489.016
	78	98	d''''	D ₇	2349.318
Decrease the	77	97	c♯""/d♭""	C♯ ₇ /D♭ ₇	2217.461
frequency by	76	96	c'''' 4-line octave	C ₇ Double high C	2093.005
an octave	75	95	b'''	B ₆	1975.533
	74	94	a♯′′′/b♭′′′	A♯ ₆ /B♭ ₆	1864.655
	73	93	a'''	A ₆	1760.000

Stage 1 — Notes & beats generation

Beats

- Whole note duration = 1s
- Note usually divided by a factor of powers of two
- Whole note, half note, quarter note, and eighth note are considered
- Mapping rule between number of repetitive frequency levels & standard duration of notes

Number of repetitive frequency levels	Note value	Time duration (s)	
1	Eighth note	0.125	
2	Quarter note	0.25	
3, 4 , 5	Half note	0.5	
6, 7, <mark>8</mark> , 9, 10	Whole note	1	

Tone adjustment and melody synthesis

How is timbre determined for a kind of instrument?

- Envelop: ASDR model
- Superposition of high order harmonics

Idealized ADSR model

Figure 1.22b and Figure 1.23 from [Müller, FMP, Springer 2015]

- Very short attack time
- Decay drastically
- Envelop approximated by an exponential function

- Long attack time for set up
- Long sustain with vibration and tremolo
- Difficult to mimic by an elementary function

Different envelop shapes


```
L = 1;

y = [0, 1, 0.9, 0.15, 0.02, 0.005, 0];

x = [0, 0.3, 0.7, 0.8, 0.9, 0.95, 1];

fs = 44100; Ts = 1 / fs;

t = 0:Ts:L;

env = spline(x*L, y, t);
```

MATLAB code to generate the envelop of violin

High order harmonics

- Added by empirical tuning
- Just an approximate model. Professional music synthesis may sample and analyze the real instrumental sound first
- At fundamental frequency (main frequency) f_c , the signal for one note can be expressed as:

$$y = env(t) \times \left(\cos(2\pi f_c t) + 0.4\cos\left(4\pi f_c t + \frac{2\pi}{3}\right) + 0.15\cos\left(6\pi f_c t + \frac{4\pi}{3}\right)\right)$$

Envelop function

sinusoidal signal at f_c with high order harmonics

Stage 2 — Melody Integration & demo

Melody

 Connect each single note sound together

Demo

- MATLAB APP Designer
- Let's play the sound together!

Q & A

Thanks For Your Attention!

