Math 104 Worksheet 6 UC Berkeley, Summer 2021 Tuesday, July 6

1. Let X be the set of all **bounded** sequences of real numbers. Define the function $d: X \times X \to \mathbb{R}$ by $d((s_n), (t_n)) = \sup\{|t_n - s_n| : n \in \mathbb{N}\}.$

Exercise 1. Verify that $d(s_n), (t_n) < \infty$ for any bounded sequences (s_n) and (t_n) in \mathbb{R} .

Exercise 2. Verify that d satisfies the requirements of a metric, so (X, d) is a metric space.

Exercise 3. (Challenge) Prove that (X, d) is a **complete** metric space.

Hint: Begin with a Cauchy sequence (of sequences) $((s_1^{(n)}, s_2^{(n)}, s_3^{(n)}, \ldots))_{n \in \mathbb{N}}$ in X. Justify that $(s_k^{(n)})$ converges for each k, say to s_k^* . Prove that $((s_1^{(n)}, s_2^{(n)}, s_3^{(n)}, \ldots))_{n \in \mathbb{N}}$ converges to $(s_1^*, s_2^*, s_3^*, \ldots)$.

- **2.** Let (X, d) be a metric space. The following are two equivalent definitions of a **closed** set. Definition 1. A set $E \subseteq X$ is **closed** if every limit point of E is an element of E. Definition 2. A set $E \subseteq X$ is **closed** if E^c is open.
- Exercise 4. Prove that the two definitions of a closed set above are equivalent; that is, show that for $E \subseteq X$, E^c is open if and only if every limit point of E is an element of E.
- \Leftarrow Suppose that every limit point of E is an element of E. Let $x \in E^c$. (Show that x is an interior point of E^c .)

 \Longrightarrow Suppose that E^c is open. Let x be a limit point of E. (Show that $x \in E$ by showing that x is not an interior point of E^c and therefore $x \notin E^c$.)