A0B17MTB – Matlab Part #6

Miloslav Čapek

miloslav.capek@fel.cvut.cz

Filip Kozák, Viktor Adler, Pavel Valtr

Department of Electromagnetic Field B2-626, Prague

Learning how to ...

Visualizing in Matlab #1

Debugging

Introduction to visualizing

- we have already got acquainted (marginally) with some of Matlab graphs
 - plot, stem, semilogx, surf, pcolor
- in general, graphical functions in Matlab can be used as
 - <u>higher</u> level
 - access to individual functions, object properties are adjusted by input parameters of the function
 - first approx. 9-10 weeks of the semester
 - <u>lower</u> level
 - calling and working with objects directly
 - knowledge of Matlab handle graphics (OOP) is required
 - opens wide possibilities of visualization customization
- details to be found in help:
 - Matlab \rightarrow Graphics

Selected graphs #1

MATLABILINE PLOTS

MATLAB STEM AND STAIR PLOTS

MATLAB BAR PLOTS

bar (stacked) barh (stack...

MATLAB SCATTER PLOTS

MATLAB PIE CHARTS

MATLAB HISTOGRAMS

6.11.2017 8:44

Selected graphs #2

MATLAB POLAR PLOTS

MATEAB CONTOUR PLOTS

contour

contourf

contour3

MATLAB IMAGE PLOTS

image

imagesc

pcolor

imshow

>> [X,Y] = meshgrid(-3:.125:3);>> Z = sin(X) + cos(Y);

- >> mesh(X,Y,Z);
- \Rightarrow axis([-3 3 -3 3 -2 2]);

MATLAB 3-D SURFACES

contour3

MATLAB VOLUMETRICS

MATLAB VECTOR FIELDS

6.11.2017 8:44

Selected functions for graph modification

Graphs can be customized in many ways, the basic ones are:

function	description
title	title of the graph
grid on, grid off	turns grid on / off
xlim, ylim, zlim	set axes' range
xlabel, ylabel,	label axes
hold on	enables to add another graphical elements while keeping the existing ones
legend	display legend
subplot	open more axes in one figure
text	adds text to graph
gtext, ginput	insert text using mouse, add graph point using mouse
and others	

figure

- figure opens empty figure to plot graphs
 - the function returns object of class Figure

hold on

- function hold on enables to plot multiple curves in one axis, it is possible to disable this feature by typing hold off
- functions plot, plot3, stem and others enable to add optional input parameters (as strings)

```
x = (0:0.1:2*pi) + pi/2;
Dta = -[1 2 3]'*sin(x).^3;
figure;
plot(x, Dta(1,:), 'xr');
hold on;
plot(x, Dta(2,:), 'ob');
plot(x, Dta(3,:), 'dk');
```


LineSpec – customizing graph curves

- what do plot function parameters mean?
 - see >> doc LineSpec
 - the most frequently customized parameters of graph's lines
 - color (can be entered also using matrix [R G B], where R, G, B vary between 0 a 1)
 - marker shape (*Markers*)
 - line style
- big changes since 2014b version!

line color	
'r'	red
'g'	green
'b'	blue
'c'	cyan
'm'	magenta
' y '	yellow
'k'	black
'W'	white

marker	
'+'	plus
101	circle
1 * 1	asterisk
1.1	dot
' X '	x-cross
's'	square
'd'	diamond
1 ^ 1	triangle
and others	>> doc LineSpec

plot(x,f,	'bo-');
plot(x,f,	'g*');

line style	
1 = 1	solid
1 1	dashed
*: *	dot
1=.1	dash-dot
'none'	no line

LineSpec – default setting in 2014b

- colors in given order are used when plotting more lines in one axis
 - this color scheme was changed in 2014b and later versions:
- it is not necessary to set color of each curve separately when using hold on
 - following default color order is used:

```
close all; clear; clc;
x = 0:0.01:pi;
figure;
hold on;
plot(x, 1*sin(x));
plot(x, 2*sin(x));
plot(x, 3*sin(x));
```

```
>> get(groot, 'DefaultAxesColorOrder')
% ans =
                 0.4470
                            0.7410
      0.8500
                 0.3250
                            0.0980
                 0.6940
      0.9290
                            0.1250
      0.4940
                 0.1840
                            0.5560
      0.4660
                 0.6740
                            0.1880
      0.3010
                 0.7450
                            0.9330
      0.6350
                 0.0780
                            0.1840
```


Visualizing - legend, grid

```
x = -pi/2:0.1:pi/2;
f1 = \sin(x) + \cos(x);
f2 = \sin(x) - \cos(x);
```

```
plot(x, f1);
hold on;
plot(x, f2, 'r');
```



```
grid on;
legend('f 1(x) = \sin(x) + \cos(x)',...
    'f 2(x) = \sin(x) - \cos(x)',...
    'Location', 'southeast');
```


plot3

- the example below shows plotting a spiral and customizing plotting parameters
 - functions xlabel, ylabel and zlabel are used to label the axes
 - function title is used to display the heading
 - function legend pro characterize the curve

LineSpec – customizing graph curves

450 s

• evaluate following two functions in the interval $x \in \langle -1,1 \rangle$ for 51 values:

$$f_1(x) = \sinh(x), \qquad f_2(x) = \cosh(x)$$

- use the function plot to depict both f_1 and f_2 so that
 - both functions are plotted in the same axis
 - the first function is plotted in blue with □ marker as solid line
 - the other function is plotted in red with ◊ marker and dashed line
 - limit the interval of the *y*-axis to [-1.5, 1.5]
 - add a legend associated to both functions
 - label the axes (x-axis: x, y-axis: f_1 , f_2)
 - apply grid to the graph

LineSpec – customizing graph curves

$$f_1(x) = \sinh(x), \qquad f_2(x) = \cosh(x)$$

%% script evaluates two hyperbolic

functions and plot them

. . .

. .

• • •

• •

• •

. . .

• • •

• • •

• • •

• • •

• • •

• • •

Visualizing - Plot tools

- it is possible to keep on editing the graph by other means
 - save, zoom, pan, rotate, marker, legend

- show plot tools (showplottool)
- all these operations can be carried out using Matlab functions
 - we discuss later (e.g. rotate3d activates figure's rotation tool, view(az,el) adjusts 3D perspective of the graph for given azimuth az and elevation el)

Visualizing – use of NaN values

- NaN values are not depicted in graphs
 - it is quite often needed to distinguish zero values from undefined values
 - plotting using NaN can be utilized in all functions for visualizing

Exercise - sampling

300 s

- plot function $f(x) = x \sin\left(\frac{\pi}{2}(1+20x)\right)$ in the interval $x \in \langle -1; 1 \rangle$ with step 0.2, 0.1 a 0.01
- compare the results!

```
close all; clear; clc;
...
...
...
...
...
...
```


Exercise - rounding

300 s

- plot function tan(x) for $x \in \langle -3/2\pi; 3/2\pi \rangle$ with step $\pi/100$
- limit depicted values by ± 40
- values of the function with absolute value greater than $1 \cdot 10^{10}$ replace by 0
 - use logical indexing
- plot both results and compare them

Function gtext

- function gtext enables placing text in graph
 - the placing is done by selecting a location with the mouse

```
>> plot([-1 1 1 -1], [-1 -1 1 1], ...
'x', 'MarkerSize', 15, 'LineWidth', 2);
>> xlim(3/2*[-1 1]); ylim(3/2*[-1 1]);
```


Function ginput

- function ginput enables selecting points in graph using the mouse
 - we either insert requested number of points (P = ginput(x)) or terminate by pressing Enter

Debugging #1

- $bug \Rightarrow debugging$
- we distinguish:
 - semantic errors ("logical" or "algorithmic" errors)
 - usually difficult to identify
 - syntax errors ("grammatical" errors)
 - pay attention to the contents of error messages it makes error elimination easier
 - unexpected events (see later)
 - e.g. problem with writing to open file, not enough space on disk etc.
 - rounding errors (everything is calculated as it should but the result is wrong anyway)
 - it is necessary to analyze the algorithm in advance, to determine the dynamics of calculation etc.
- software debugging and testing is an integral part of software development
 - later we will discuss the possibilities of code acceleration using Matlab profile

Debugging #2

- we first focus on semantic and syntax errors in scripts
 - we always test the program using test-case where the result is known
- possible techniques:
 - using functions who, whos, keyboard, disp
 - using debugging tools in Matlab Editor (illustration)

MATLAB Functions

dbclear	Clear breakpoints
dbcont	Resume execution
dbdown	Reverse workspace shift performed by dbup, while in debug mode
dbquit	Quit debug mode
dbstack	Function call stack
dbstatus	List all breakpoints
dbstep	Execute one or more lines from current breakpoint
dbstop	Set breakpoints for debugging
dbtype	List text file with line numbers
dbup	Shift current workspace to workspace of caller, while in debug mode
checkcode	Check MATLAB code files for possible problems
keyboard	Input from keyboard
mlintrpt	Run checkcode for file or folder, reporting results in browser

using Matlab built-in debugging functions

250 s

Debugging

• for the following piece of code:

- use Matlab Editor to:
 - set *Breakpoint* (click on dash next to line number)
 - run the script (F5)
 - check the status of variables (keyboard mode or hover over variable's name with the mouse in Editor)
 - keep on tracing the script
 - what is the difference between *Continue* a *Step* (F10)?

```
Continue Step In

Step Out

Step Out

Trunction Call Stack:

Zadavani1

✓ Quit

Debugging
```


mat(iRow.iCol) = 1;

Advanced debugging

- Conditional Breakpoints
 - serve to suspend the execution of code when a condition is fulfilled
 - sometimes, the set up of the correct condition is not an easy task...
 - easier to find errors in loops
 - code execution can be suspended in a particular loop
 - the condition may be arbitrary evaluable logical expression

```
% code with an error
clear; clc;
N = 100;
mat = magic(2*N);
selection = zeros(N, N);
for iRow = 1:N+2
    selection(iRow, :) = ...
    mat(iRow, iRow:N+iRow-1);
end
```


Selected hints for code readability #1

```
for iRow = 1:N
    mat(iRow,:) = 1;
end % end of ...
```

- use indention of loop's body, indention of code inside conditions (TAB)
 - size of indention can be adjusted in preferences (usually 3 or 4 spaces)
- use "positive" conditions
 - i.e. use isBigger or isSmaller, not isNotBigger (can be confusing)
- complex expressions with logical and relational operators should be evaluated separately → higher readability of code
 - compare:

and

```
isValid = (val > lowLim) & (val < upLim);
isNew = ~ismember(val, valArray);
if isValid & isNew
        % do something
end</pre>
```


Selected hints for code readability #2

- code can be separated with a line to improve clarity
- use two lines for separation of blocks of code
 - alternatively use cells or commented lines %-----etc.
- consider the use of spaces to separate operators (= & |)
 - to improve code readability:

```
(val>lowLim) & (val<upLim) &~ismember(val, valArray)</pre>
```

VS.

```
(val > lowLim) & (val < upLim) & ~ismember(val, valArray)</pre>
```

• in the case of nesting use comments placed after end

Discussed functions

figure, hold	open new figure, enable multiple curves in one axis	•
title, xlim,, xlabel,	heading, axes limits, axes labels	•
legend, grid	legend, grid	•
gtext, ginput	interactive text insertion, interactive input from mouse or cursor	

600 s

- create a script to simulate L roll of the dice
 - what probability distribution do you expect?
 - use histogram to plot the result
 - consider various number of tosses L (from tens to millions)

600 s

- create a script to simulate N series of trials, where in each series a coin is tossed M times (the result is either head or tail)
 - generate a matrix of tosses (of size M×N)
 - calculate how many times head was tossed in each of the series (a number between 0 and M)
 - calculate how many times more (or less) the head was tossed than the expected average (given by uniform probability distribution)
 - what probability distribution do you expect?
 - plot resulting deviations of number of heads
 - use function histogram()

• mean and standard deviation of nOnesOverAverage:

$$\mu = \frac{1}{N} \sum_{i} x_{i} \approx 0$$

$$\sigma = \sqrt{\frac{\sum_{i} (\mu - x_{i})^{2}}{N}} = \sqrt{1000} \approx 31.62$$

• to test whether we get similar distribution for directly generated data:

coin toss:

directly generated data:

- use function histfit (Statistics Toolbox) to plot probability density function related to a histogram
 - set the parameter nbins accordingly to properly display histogram of discrete random variable

histfit (nOnesOverAverage, 37);

histfit (nOnesOverAverage, 90);

• use Distribution Fitting Tool (dfittool) to approximate probability distributions of random trials

dfittool(nOnesOverAverage);

600 s

- use Monte Carlo method to estimate the value of π
 - Monte Carlo is a stochastic method using pseudorandom numbers
- The procedure is as follows:
 - (1) generate points (uniformly distributed) in a given rectangle
 - (2) compare how many points there are in the whole rectangle and how many there are inside the circle

$$\frac{S_{o}}{S_{\Box}} = \frac{\pi r^{2}}{(2r)^{2}} = \frac{\pi}{4} \approx \frac{\text{hits}}{\text{shots}}$$

- write the script in the way that the number of points can vary
 - notice the influence of the number of points on accuracy of the solution

Exercise #7- solution

• resulting code (circle radius r = 1):

```
clear; close all; clc;
...
...
...
...
...
...
```

approximation of Ludolph's number - visualization:


```
figure;
semilogx(N, my_pi, 'x--', 'linewidth',2);
xlim([N(1) N(end)]);
hold on; grid on;
xlabel('shots', 'FontSize', 15);
ylabel('approximation of \pi', 'FontSize', 15);
line([N(1) N(end)], [pi pi], 'color', 'r', 'linewidth',2);
```


• visualization of the task:

```
display
         = 1000;
Rdisplay = R(1:display,1);
shotsdisplay = shots(1:display, 1:2);
figure('color','w','pos',[50 50 700 700],...
    'Menubar', 'none');
line([-1 1 1 -1 -1], ...
                                                      0.5
[-1 -1 1 1 -1], 'LineWidth', 2, 'Color', 'b');
hold on;
xlim([-1.5 \ 1.5]); ylim([-1.5 \ 1.5]); box on;
plot(cos(0:0.001:2*pi),sin(0:0.001:2*pi),...
    'LineWidth', 2, 'Color', 'r');
plot(shotsdisplay(Rdisplay < 1, 1),...</pre>
                                                      -0.5
    shotsdisplay (Rdisplay < 1, 2), 'x', ...
    'MarkerSize', 14, 'LineWidth', 2, 'Color', 'r');
plot(shotsdisplay(Rdisplay >= 1, 1),...
    shotsdisplay(Rdisplay >= 1, 2), 'bd',...
    'MarkerSize',12);
                                                       -1.5
                                                                     -0.5
                                                                                                1.5
```

Figure 1

600 s

• Fourier series approximation of a periodic rectangular signal with zero direct component, amplitude A and period T is

$$s(t) = \frac{4A}{\pi} \sum_{k=0}^{\infty} \frac{1}{2k+1} \sin\left(\frac{2\pi t(2k+1)}{T}\right)$$

• plot resulting signal s(t) approximated by one to ten harmonic components in the interval $t \in \langle -1.1; 1.1 \rangle$ s; use A=1 V a T=1 s

Thank you!

ver. 8.1 (6/11/2017) Miloslav Čapek, Pavel Valtr miloslav.capek@fel.cvut.cz

Apart from educational purposes at CTU, this document may be reproduced, stored or transmitted only with the prior permission of the authors.

Document created as part of A0B17MTB course.