

Notexin (1AE7)

- Single-peptide chain
- 119 AAs
- 7 disulfide-bridges
- 4 main helices: αA , αB , αC and αE

SOLVATION

Solvate the protein in an explicit solvent

Introduce the protein in a water box with periodic boundary conditions

Create a ionized version

SIMULATION PARAMETERS

T=600K
time=100ns
frames=1ns
Center=22; 25; 41.
WB size=5 Å
steps= 10000

METHODOLOGY

2 5 3

Two simulations of the wildtype protein with 4 different temperatures: 310K, 400K, 500K, 600K

Selection of the temperature with less native contacts

Comparison between **RMSF** and the secondary structure to identify the most unstable regions

Construction of protein variants using Foldx and choice of the best one.

Run the simulation again with the mutate protein and check the native contacts (Q-value)

TEMPERATURE SELECTION

Temperature [K]	Mean Native Contacts [%]
310	96
400	94
500	89
600	86

^{*}Mean native contacts between the last 10 frames of the simulation

RMSF AND SECONDARY STRUCTURE

FOLDX

LOOP REGION	MUTATION WITH NEGATIVE VALUES	POSSIBLE MUTATIONS
14-18	×	×
23-29	×	×
30-39	×	×
61-74	✓	69 LYS→LEU 69 LYS→MET
85-89	✓	89 LYS→ASP
109-112	✓	112 ASP →TYR

RESULTS

Variant	Energy output	Mean Q-value*	SD Q-value*
WT	-	0,866	0,0149
69 MET	-2,31687	0,823	0,0159
69 LEU	-2,04749	0,817	0,0088
89 ASP	-3.3399	0,821	0,0132
112 TYR	-2,1491	0,849	0,0181
69 MET & 112 TYR	-	0,811	0,0134
69 MET & 89 ASP & 112 TYR	-	0,821	0,0108

^{*}Mean and SD between the last 10 frames of the simulation

RMSD

VARIANT	Average	SD
WT	2,853	1,022
69 MET	2,824	0,913
69 LEU	2,586	0,929
89 ASP	3,391	1,263
112 TYR	2,317	0,711
69 MET & 112 TYR	2,959	1,05
69 MET & 89 ASP & 112 TYR	2,670	0,829

STABILITY

VARIANT	TOTAL ENERGY
WT	15,79
69 MET	9,35
69 LEU	9,62
89 ASP	11,27
112 TYR	11,38
69 MET & 112 TYR	3,80
69 MET & 89 ASP & 112 TYR	-1,10

POSSIBLE IMPROVEMENTS

Increase simulation time or steps

Increase temperature

Different solvation method

Set **numberOfRuns** to higher numbers: optimal or trapped solution

WATER SPHERE

Variant	Mean Q- Value	SD
WT	0,84943363	0,01014880
69 & 89 & 112	0,72172545	0,03017851

Increase simulation steps

From 10 000 to 50 000 steps

VARIANT	Mean Q-value	SD
WT	0,5313	0,00749
69 & 89 & 112	0,6016	0,00748

^{*}Mean and SD between the last 50 frames of the simulation

WT

CONCLUSIONS

Mutate

THANK YOU FOR YOUR ATTENTION

Do you have any questions?

BIBLIOGRAPHY

- Phillips, J., Hardy, D. (2017). NAMD TUTORIAL. Tutorials (uiuc.edu)
- Westerlund, B., Nordlund, P. (1997), Notexin, A presynaptic neurotoxic phospholipase A2 doi: 10.2210/pdb1AE7/pdb

