Composition of Structural Rules using Adjoints

Harley Eades III

1 The Algebras of Composed Comonads

Suppose (k, ε, δ) is a comonad on a category \mathcal{L} . Then it is well known that it can be decomposed into a the following adjunction:

where $U: \mathcal{L}^k \longrightarrow \mathcal{L}$ is the forgetful functor, $F: \mathcal{L} \longrightarrow \mathcal{L}^k$ is the free functor, and $k = UF: \mathcal{L} \longrightarrow \mathcal{L}$.

Now suppose we have the following adjunctions:

Then they can be composed into the adjunction:

Keep in mind that this gives rise to a comonad $HFGJ: \mathcal{L}_1 \longrightarrow \mathcal{L}_1$.

We are going to use these two facts to compose comonads using adjunctions. Suppose we have the comonads $(k_1, \varepsilon^1, \delta^1)$ and $(k_2, \varepsilon^2, \delta^2)$ both on a category \mathcal{L} with a distributive law dist: $k_2k_1 \longrightarrow k_1k_2$. Thus, making $k_2k_1 : \mathcal{L} \longrightarrow \mathcal{L}$ a comonad. Then we can decompose k_1 into a an adjunction:

Here we know that $k_1 = U_1 F_1 : \mathcal{L} \longrightarrow \mathcal{L}$, but we also know something about k_2 . We can extend it to a comonad on \mathcal{L}^{k_1} .

First, we define the functor $\widetilde{k}_2: \mathcal{L}^{k_1} \longrightarrow \mathcal{L}^{k_1}$ to send objects (A, h_A) to (k_2A, h'_A) , where $h'_A:=k_2A \xrightarrow{k_2h_A} > k_2k_1A \xrightarrow{\text{dist}_A} > k_1k_2A$, and to send morphisms $f:(A, h_A) \longrightarrow (B, h_B)$ to the morphism $k_2f:(k_2A, h'_A) \longrightarrow (k_2B, h'_B)$. We must show that $k_2f:k_2A \longrightarrow k_2B$ is a coalgebra morphism, but the following diagram commutes:

The top diagram commutes because f is a coalgebra morphism and the bottom diagram commutes by naturality of dist. Since the morphism part of \widetilde{k}_2 is defined using the functor k_2 we know \widetilde{k}_2 will respect composition and identities.

We now must show that $\widetilde{k_2}$ is a comonad. The natural transformation $\widetilde{\varepsilon^2}: \widetilde{k_2} \longrightarrow \operatorname{Id}$ has components $\widetilde{\varepsilon^2}_{(A,h_A)} = \varepsilon_A^2: \widetilde{k_2}(A,h_A) \longrightarrow (A,h_A)$. We must show that ε_A^2 is a coalgebra morphism between $\widetilde{k_2}(A,h_A) = (k_2A,k_2h_A;\operatorname{dist}_A)$ and (A,h_A) , but this follows from the following diagram:

The top diagram commutes by naturality of ε^2 and the bottom diagram commutes by the conditions of the distributive law. Naturality for $\widetilde{\varepsilon^2}$ easily follows from the fact that it is defined to be ε_2 .

The natural transformation $\widetilde{\delta}^2 : \widetilde{k_2} \longrightarrow \widetilde{k_2}\widetilde{k_2}$ has components

$$\widetilde{\delta^2}_{(A,h_A)} = \delta_A^2 : \widetilde{k_2}(A,h_A) \longrightarrow \widetilde{k_2}\widetilde{k_2}(A,h_A).$$

Just as above we must show that $\delta_A^2: k_2A \longrightarrow k_2^2A$ is a coalgebra morphism between $\widetilde{k_2}(A,h_A) = (k_2A,k_2h_A;\operatorname{dist}_A)$ and $\widetilde{k_2}\widetilde{k_2}(A,h_A) = (k_2^2A,k^2h_A;k_2\operatorname{dist}_A;\operatorname{dist}_{k_2A})$, but this

follows from the following diagram:

The top diagram commutes by naturality of δ^2 and the bottom diagram commutes by the conditions of the distributive law.

It is now easy to see that $\widetilde{\varepsilon^2}$ and $\widetilde{\delta^2}$ make $\widetilde{k_2}$ a comonad on \mathcal{L}^{k_1} , because the conditions of a comonad will be inherited from the fact that ε^2 and δ^2 define a comonad on \mathcal{L} .

At this point we have arrived at the following situation:

Since we have a comonad $\widetilde{k_2}:\mathcal{L}^{k_1}\longrightarrow\mathcal{L}^{k_1}$ we can form the following adjunction:

The functor $F_2(A, h_A) = (\widetilde{k_2}(A, h_A), \widetilde{\delta^2}_{(A, h_A)})$ is the free functor, and $U_2(A, h_A) = A$ is the forgetful functor. Thus, we can think of $(\mathcal{L}^{k_1})^{k_2}$ as the world with all the structure of \mathcal{L} extended with all of the structure k_1 brings and all the structure k_2 brings. That is, $(\mathcal{L}^{k_1})^{k_2}$ is the algebras of $k_2k_1: \mathcal{L} \longrightarrow \mathcal{L}$.

We can see that the previous two adjunctions compose:

Thus, we have a comonad $U_1U_2F_2F_1: \mathcal{L} \longrightarrow \mathcal{L}$. Chasing an object through this comonad yields the following:

```
\begin{array}{lcl} U_1U_2F_2F_1A & = & U_1U_2F_2(k_1A,\delta_A^1) \\ & = & U_1U_2(\widetilde{k_2}((k_1A,\delta_A^1)),\widetilde{\delta^2}_{(k_1A,\delta_A^1)}) \\ & = & U_1U_2((k_2k_1A,k_2\delta_A^1;\operatorname{dist}_{k_1A}),\widetilde{\delta^2}_{(k_1A,\delta_A^1)}) \\ & = & U_1(k_2k_1A,k_2\delta_A^1;\operatorname{dist}_{k_1A}) \\ & = & k_2k_1A \end{array}
```

Therefore, the above adjunction gives back the composition $k_2k_1: \mathcal{L} \longrightarrow \mathcal{L}$.

Notice that this result only works because we have a distributive law! Otherwise we may not be able to define $\widetilde{k_2}$. However, this result reveals a means that will allow us to abandon distributive laws in favor of adjunctions in the spirit of Benton's LNL models.

2 Combining Structural Rules

The above result tells us something important about combining comonads, that we should be using adjunctions, because they compose.

In this section we show how to model the Lambek Calculus without association or exchange with three comonads, one that adds back in association, one that adds back in exchange, and one the composes the two which will allow both to be used.

References