Introduction to Artificial Intelligence

NCTU - Spring 2020

Before we actually start the course, let's look at some recent developments in "AI":

StyleGAN (nVidia, 2018/12)

Are these real people?

https://petapixel.com/2017/11/07/ai-creates-photo-realistic-faces-people-dont-exist/https://www.thispersondoesnotexist.com/

StyleGAN applied to cats (nVidia, 2019/2)

Are these real cats?

Artificial Intelligence?

First, consider these two subjects / products of AI research:

Robot Mouse vs. Robothespian

- Are they intelligent?
- Which is closer to your original idea of AI?
- What are their goals?
- What are their required skill sets? Which of these skills are considered intelligent?

Goals of Artificial Intelligence

- "Artificial" means "man-made". So, what kind of artificial intelligence do we want to achieve?
- Two dimensions:
 - To be human-like, or to be rational? (After all, human beings are not always rational.)
 - To focus on the process of thinking, or to focus on the behaviors?
- Therefore, four different possible goals of AI:
 - Thinking humanly
 - Acting humanly
 - Thinking rationally
 - Acting rationally

General vs. Narrow Al

General Al:

- Human-like intelligence: Thinking, reasoning, learning, creativity, etc., that are not limited to specific fields.
- A popular topic of science fictions.
- Generalized learning is the key.
- Still out of reach.

Narrow Al.

- Designed for specific tasks.
- Human experts control "what" and "how" to learn.
- The focus of "practical AI".

Acting Humanly: Turing Test

Turing's (1950) "Computing machinery and intelligence":

- "Can machines think?" → "Can machines behave intelligently?"
- Operational test for intelligent behavior: the Imitation Game

- Predicted that by 2000, a machine might have a 30% chance of fooling a lay person for 5 minutes
- Anticipated all major arguments against AI in the following 50 years
- Suggested major components of AI: knowledge, reasoning, language understanding, learning.

Q: How much do you think today's technology can pass the Turing Test?

A Brief History of Al

- 1943 McCulloch & Pitts: Boolean circuit model of brain
- 1950 Turing's "Computing Machinery and Intelligence"
- 1950s Early Al programs: checkers, Logic Theorist, etc.
- 1956 Dartmouth meeting: The term "Artificial Intelligence" adopted
- 1965 Robinson's complete algorithm for logical reasoning (a theorem prover)
- 1966-74 Al discovers computational complexity; neural network research almost disappears; the start of "Al winter"
- 1980-93 Expert systems industry booms and busts
- 1985 Neural networks return to popularity
- 1995 The start of "data science"
- 1997 Deep Blue
- 2009 The "Big Bang" of deep learning with GPU computing
- 2016+ AlphaGo, etc.

About This Course

- Instructor information:
 - Contact: EC709, ext. 56689, wangts@cs.nctu.edu
 - Office hour: 2DX or by appointment
- The main topics:
 - Searching (including some game playing)
 - Logical reasoning
 - Learning
- Textbook:
 - Artificial Intelligence: A Modern Approach (3rd Ed., 2003) by Russell & Norvig.
 - A comprehensive book for good foundations, but a little too old for current developments.
 - We will add some material that cover some more recent topics.

About This Course

- Exams and homework (50%):
 - Two written exams
 - 2~4 quizzes (for review purpose)
- Projects (50%):
 - We expect to have <u>three individual projects</u>. Each will involve programming and experiments with your programs.
 - A group project (up to 3 students per group) on a game agent. There will be a tournament.
 - You need to submit your code and a report for each project you do.

The Concept of "Agents"

An agent is anything that can be viewed as perceiving its environment through sensors and acting upon that environment through actuators

- Human agents:
 - Sensors: eyes, ears, etc.
 - Actuators: hands, legs, mouth, etc.

- Robotic (nonhuman) agents:
 - Sensors: cameras, range finders, etc.
 - Actuators: motors, speakers, etc.

The Concept of "Agents"

Abstractly, an agent is a function from percept histories to actions: $f: P^* \to A$

■ This course is about designing rational agents: For any given class of environments and tasks, we seek the agent (or class of agents) with the best performance.

Example: Vacuum-Cleaner World

- Percepts: location and contents, e.g., [A, Dirty]
- Actions: Left, Right, Suck, NoOp.

Example: A Vacuum-Cleaner Agent

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:

function Reflex-Vacuum-Agent([location,status]) returns an action

if status = Dirty then return Suck

else if location = A then return Right

else if location = B then return Left

Rationality of an Agent

- Example (generalized vacuum-cleaner world): Fixed performance measure evaluates the environment sequence
 - one point per square cleaned up in time T?
 - one point per clean square per time step, minus one per move?
 - penalize for > k dirty squares?
- Given the available percept sequence, a rational agent chooses the action that optimizes the expected value of the performance measure.
- Rational ≠ omniscient (percepts may not supply all relevant information)
- Rational ≠ clairvoyant (action outcomes may not be as expected)
- Therefore, rational ≠ successful, and rational ≠ optimal

PEAS

To design a rational agent, we must specify the following.

Example: An automated taxi

- Performance measure: safety, destination, profits, legality, comfort, ...
- Environment: roads, traffic, pedestrians, weather, ...
- Actuators: steering, accelerator, brake, horn, speaker, display, ...
- Sensors: video, accelerometers, gauges, engine sensors, GPS, ...

PEAS Example

Additional examples: Game-playing agent

- Performance measure:
- **■** Environment:
- Actuators:
- Sensors:

PEAS Example

Additional examples: Interactive route planning

- Performance measure:
- Environment:
- Actuators:
- Sensors:

Environment Types

- Fully observable or partially observable:
- Single agent or multi-agent:
- Deterministic or stochastic: (Is the current state of the environment completely determined by its past states and the agents' actions?)
- Episodic or sequential: (Are future decisions affected by past ones?)
- Static or dynamic: (Does the environment change between actions by the agent?)
- Discrete or continuous:
- Known or unknown: (rules or "laws of physics" known to the agent)

Example Environment Types

Try to characterize the environment types of these games:

A B C D
Observable?
Single-agent?
Deterministic?
Episodic?
Static?
Discrete?
Known?

Agent Types

Four basic types, in order of increasing generality:

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents

All these can be turned into learning agents.

Simple Reflex Agent

Actions are only based on rules.

Model-Based Reflex Agent

The agent keeps track of the "state" of itself and the world. It knows how the state is changed.

Goal-Based Agent

The agent aims to reach a "goal" state. This affects how it selects the action.

Utility-Based Agent

Utility is more general than goals.

Learning Agent

Exploration (not part of all learning agents)