4. Sea (X, \mathcal{M}, μ) un espacio de medida. Consideremos la siguiente familia de conjuntos:

$$\mathcal{F} = \{A \subset X : \text{ existen } F, G \in \mathcal{M} \text{ tales que } F \subset A \subset G \text{ y } \mu(G \setminus F) = 0\}$$

- (a) Demuestre que \mathcal{F} es una σ -álgebra y que contiene a \mathcal{M} .
- (*b*) Demuestre que si $A \in \mathcal{F}$ y existen $F, G \in \mathcal{M}$ con $F \subset A \subset G$ y $\mu(G \setminus F) = 0$ entonces $\mu(G) = \mu(F)$.
- (c) Demuestre que si $A \in \mathcal{F}$ y existen F_i , $G_i \in \mathcal{M}$, i = 1, 2, con $F_i \subset A \subset G_i$ y $\mu(G_i \setminus F_i) = 0$ entonces $\mu(G_i) = \mu(F_j)$, i = 1, 2, j = 1, 2.
- (d) Para cada $A \in \mathcal{F}$ se define $\overline{\mu}(A) = \mu(G)$ si $F \subset A \subset G$, $F, G \in \mathcal{M}$ y $\mu(G \setminus F) = 0$. Justifique que $\overline{\mu}$ está bien definida y demuestre que $\overline{\mu}$ es una medida completa sobre \mathcal{F} que extiende a μ .
- (a) Veamos que \mathcal{F} es una σ -álgebra.
 - (i) $\emptyset \in \mathcal{F}$, pues $\emptyset \subset X$ y, tomando $F = G = \emptyset$, se tiene que $F \subset \emptyset \subset G$, que $F,G \in \mathcal{M}$ (por ser \mathcal{M} una σ -álgebra) y que $\mu(G \setminus F) = \mu(\emptyset) = 0$ (por ser μ una medida).
 - (ii) Sea $A \in \mathcal{F}$ y veamos que $A^c \in \mathcal{F}$. Como $A \in \mathcal{F}$, existen $F, G \in \mathcal{M}$ tales que $F \subset A \subset G$ y $\mu(G \setminus F) = 0$. Como \mathcal{M} es una σ -álgebra, entonces $F^c, G^c \in \mathcal{M}$. Además, $G^c \subset A^c \subset F^c$, y $\mu(F^c \setminus G^c) = \mu(F^c \cap (G^c)^c) = \mu(F^c \cap G) = \mu(G \setminus F) = 0$, lo que demuestra que $A^c \in \mathcal{F}$.
 - (iii) Sea $\{A_i\}_{i=1}^{\infty}$ una familia numerable de elementos de \mathcal{F} y veamos que $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$. Para cada $i \in \mathbb{N}$, como $A_i \in \mathcal{F}$, existen $F_i, G_i \in \mathcal{M}$ tales que $F_i \subset A_i \subset G_i$ y $\mu(G_i \setminus F_i) = 0$. Por tanto, $\bigcup_{i=1}^{\infty} F_i \subset \bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} G_i$, y como \mathcal{M} es una σ -álgebra y $F_i, G_i \in \mathcal{M}$ para todo $i \in \mathbb{N}$, entonces $\bigcup_{i=1}^{\infty} F_i, \bigcup_{i=1}^{\infty} G_i \in \mathcal{M}$. Además,

$$\mu\left(\bigcup_{i=1}^{\infty}G_{i}\setminus\bigcup_{i=1}^{\infty}F_{i}\right) = \mu\left(\bigcup_{i=1}^{\infty}G_{i}\cap\left(\bigcup_{i=1}^{\infty}F_{i}\right)^{c}\right) = \mu\left(\bigcup_{i=1}^{\infty}G_{i}\cap\bigcap_{i=1}^{\infty}F_{i}^{c}\right)^{(*)} \leq \mu\left(\bigcup_{i=1}^{\infty}(G_{i}\cap F_{i}^{c})\right)$$

$$= \mu\left(\bigcup_{i=1}^{\infty}(G_{i}\setminus F_{i})\right)^{(**)} \leq \sum_{i=1}^{\infty}\mu(G_{i}\setminus F_{i}) = \sum_{i=1}^{\infty}0 = 0,$$

luego $\mu(\bigcup_{i=1}^{\infty}G_i\setminus\bigcup_{i=1}^{\infty}F_i)=0$, y esto prueba que $\bigcup_{i=1}^{\infty}A_i\in\mathcal{F}$. En (*) se ha usado que $\bigcup_{i=1}^{\infty}G_i\cap\bigcap_{i=1}^{\infty}F_i^c\subset\bigcup_{i=1}^{\infty}(G_i\cap F_i^c)$, pues si $x\in\bigcup_{i=1}^{\infty}G_i\cap\bigcap_{i=1}^{\infty}F_i^c$, entonces existe $i_0\in\mathbb{N}$ tal que $x\in G_{i_0}$, y, por tanto, $x\in G_{i_0}\cap F_{i_0}^c$, así que $x\in\bigcup_{i=1}^{\infty}(G_i\cap F_i^c)$.

Así, tenemos que \mathcal{F} es una σ -álgebra, y si $A \in \mathcal{M}$, tomando F = G = A se tiene que $F, G \in \mathcal{M}$, que $F \subset A \subset G$ y que $\mu(G \setminus F) = \mu(\emptyset) = 0$, luego $A \in \mathcal{F}$ y por tanto \mathcal{F} contiene a \mathcal{M} .

- (b) Sea $A \in \mathcal{F}$ y sean $F, G \in \mathcal{M}$ con $F \subset A \subset G$ y $\mu(G \setminus F) = 0$. Distinguimos dos casos:
 - (*i*) Si $\mu(F) < \infty$, entonces $\mu(G \setminus F) = \mu(G) \mu(F)$. Pero $\mu(G \setminus F) = 0$, así que $\mu(G) \mu(F) = 0$, o, equivalentemente, $\mu(G) = \mu(F)$.
 - (ii) Si $\mu(F) = \infty$, entonces, por ser $F \subset G$, se tiene que $\mu(G) = \infty$, luego $\mu(G) = \mu(F)$.
- (c) Sea $A \in \mathcal{F}$ y sean $F_1, F_2, G_1, G_2 \in \mathcal{M}$ tales que $F_i \subset A \subset G_i$ y $\mu(G_i \setminus F_i) = 0$, para cada i = 1, 2. Distinguimos dos casos:
 - (i) Supongamos que $F_2 \subset F_1$. Entonces $F_1^c \subset F_2^c$, luego $G_2 \cap F_1^c \subset G_2 \cap F_2^c$, y, por tanto, $\mu(G_2 \setminus F_1) \leq \mu(G_2 \setminus F_2) = 0$, así que $\mu(G_2 \setminus F_1) = 0$. Como $F_1, G_2 \in \mathcal{M}$, $F_1 \subset A \subset G_2$ y $\mu(G_2 \setminus F_1) = 0$, por el apartado anterior, $\mu(G_2) = \mu(F_1)$. Pero el apartado anterior también permite afirmar que $\mu(G_1) = \mu(F_1)$ y que $\mu(G_2) = \mu(F_2)$, y uniendo las tres igualdades se obtiene $\mu(G_1) = \mu(F_1) = \mu(G_2) = \mu(F_2)$, que es lo que se quería probar.

- (ii) Supongamos que $F_1 \subset F_2$. Entonces $F_2^c \subset F_1^c$, luego $G_1 \cap F_2^c \subset G_1 \cap F_1^c$, y, por tanto, $\mu(G_1 \setminus F_2) \leq \mu(G_1 \setminus F_1) = 0$, así que $\mu(G_1 \setminus F_2) = 0$. Como $F_2, G_1 \in \mathcal{M}$, $F_2 \subset A \subset G_1$ y $\mu(G_1 \setminus F_2) = 0$, por el apartado anterior, $\mu(G_1) = \mu(F_2)$. Pero el apartado anterior también permite afirmar que $\mu(G_1) = \mu(F_1)$ y que $\mu(G_2) = \mu(F_2)$, y uniendo las tres igualdades se obtiene $\mu(G_2) = \mu(F_2) = \mu(G_1) = \mu(F_1)$, que es lo que se quería probar.
- (d) Para justificar que $\overline{\mu}$ está bien definida habría que demostrar que $\overline{\mu}(A)$ solo depende de A y no de G ni de F, es decir, que si $F_1, F_2, G_1, G_2 \in \mathcal{M}$ son tales que $F_i \subset A \subset G_i$ y $\mu(G_i \setminus F_i) = 0$ para cada i = 1, 2, entonces $\mu(G_1) = \mu(G_2)$. Esto ya ha sido probado en el apartado anterior, así que $\overline{\mu}$ está bien definida.

Veamos ahora que $\overline{\mu}$ es una medida sobre \mathcal{F} .

- (i) $\overline{\mu}(\emptyset) = 0$, pues, tomando $F = G = \emptyset$, se tiene que $F, G \in \mathcal{M}, F \subset \emptyset \subset G$ y $\mu(G \setminus F) = \mu(\emptyset) = 0$, luego, por definición de $\overline{\mu}$, es $\overline{\mu}(\emptyset) = \mu(\emptyset) = 0$, usando una vez más que μ es una medida.
- (ii) Sea $\{A_i\}_{i=1}^{\infty}$ una familia numerable y disjunta de elementos de \mathcal{F} . Para cada $i \in \mathbb{N}$, existen $F_i, G_i \in \mathcal{M}$ con $F_i \subset A_i \subset G_i$ y $\mu(G_i \setminus F_i) = 0$. En el apartado (a) se ha justificado que $\bigcup_{i=1}^{\infty} F_i, \bigcup_{i=1}^{\infty} G_i \in \mathcal{M}$, que $\bigcup_{i=1}^{\infty} F_i \subset \bigcup_{i=1}^{\infty} A_i \subset \bigcup_{i=1}^{\infty} G_i$ y que $\mu(\bigcup_{i=1}^{\infty} G_i \setminus \bigcup_{i=1}^{\infty} F_i) = 0$, luego, por definición de $\overline{\mu}$,

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} G_i\right)$$

Veamos que

$$\mu\left(\bigcup_{i=1}^{\infty} G_i\right) = \sum_{i=1}^{\infty} \mu(G_i) \tag{***}$$

La desigualdad \leq se verifica por ser μ una medida (subaditividad numerable). Por otro lado, como $F_i \subset G_i$ para todo $i \in \mathbb{N}$, entonces $\mu(\bigcup_{i=1}^{\infty} F_i) \leq \mu(\bigcup_{i=1}^{\infty} G_i)$. Ahora bien, si $i, j \in \mathbb{N}, i \neq j$, entonces $F_i \cap F_j = \emptyset$ (si existiese $x \in F_i \cap F_j$, por ser $F_i \subset A$ y $F_j \subset A$, se tendría $x \in A_i \cap A_j = \emptyset$, lo que contradice que $\{A_i\}_{i=1}^{\infty}$ sea una familia disjunta de elementos de \mathcal{F}). Así, por ser μ una medida,

$$\mu\bigg(\bigcup_{i=1}^{\infty} F_i\bigg) = \sum_{i=1}^{\infty} \mu(F_i)$$

Por el apartado anterior,

$$\sum_{i=1}^{\infty} \mu(F_i) = \sum_{i=1}^{\infty} \mu(G_i)$$

En resumen, tenemos que

$$\mu\left(\bigcup_{i=1}^{\infty} G_i\right) \ge \mu\left(\bigcup_{i=1}^{\infty} F_i\right) = \sum_{i=1}^{\infty} \mu(F_i) = \sum_{i=1}^{\infty} \mu(G_i),$$

con lo que queda demostrada la igualdad (***). Usando que $\mu(G_i) = \overline{\mu}(A_i)$ para cada $i \in \mathbb{N}$ (por definición de $\overline{\mu}$), se concluye que

$$\overline{\mu}\left(\bigcup_{i=1}^{\infty} A_i\right) = \mu\left(\bigcup_{i=1}^{\infty} G_i\right) = \sum_{i=1}^{\infty} \mu(G_i) = \sum_{i=1}^{\infty} \overline{\mu}(A_i)$$

Veamos ahora que la medida $\overline{\mu}$ es completa. Sea $N \in \mathcal{F}$ con $\overline{\mu}(N) = 0$ y sea $A \subset N$. Veamos que $A \in \mathcal{F}$. Como se tiene que $N \in \mathcal{F}$, existen $F, G \in \mathcal{M}$ con $F \subset N \subset G$ y $\mu(G \setminus F) = 0$, y

además $\mu(G) = \overline{\mu}(N) = 0$. Por tanto, $\emptyset \subset A \subset G$, donde \emptyset , $G \in \mathcal{M}$ y $\mu(G \setminus \emptyset) = \mu(G) = 0$, lo que demuestra que $A \in \mathcal{F}$.

Por último, veamos que $\overline{\mu}$ extiende a μ , esto es, que si $A \in \mathcal{M}$, entonces $\mu(A) = \overline{\mu}(A)$. En efecto, tomando, F = G = A, se tiene que $F, G \in \mathcal{M}$, que $F \subset A \subset G$ y que $\mu(G \setminus F) = \mu(\emptyset) = 0$, luego, por definición de $\overline{\mu}$, se verifica $\overline{\mu}(A) = \mu(G) = \mu(A)$.