Space Object Detection and Interception

Final Demo

Muaz Shash, Youssef Elhadad, Damian Pacynko, Marko Ciric Team 36

Danger from Above!

Our (Space) Mission

Our Custom IPs

- 1. Servo Control
- 2. Sensor Data Parser
- 3. Localizer

Servo Control

- Moves laser to point at position specified by localizer
 - Servos use "pan and tilt" configuration, controlled by pwm
- Controller that increases pulse width proportional to desired angle

Servo Control - Calculation

- Need to find the pan and tilt angles.
 - o arctan(x/y) for pan
 - o arctan(z/y) for tilt
- Translate this angle to a pwm pulse width

Servo Control - Initial Design

- Initially wanted to use Xillinx CORDIC IP
- Problems:
 - Large latency
 - Complex
 - Difficult to debug
- Solution:
 - Custom implementation
 - Look up tables

Servo Control - Final Design

- Replace division in arctan argument with reciprocal LUT and multiplication
 - Input is x, output is 1/x inO.16 fixed-point format
 - Multiply int16 with 0.16 fixed-point
- arctan LUT that translates (x/y) argument directly to pulse width counter

Servo Control - Challenges

- Pan/tilt mechanical design
- Manually calculated angles not matching servo rotation

Localizer

- Computes relative X, Y and Z coordinates given an array of distances from sensor parser.
- X = sensor x + distance*sin(sensor_angle)
 - Y = distance*cos(sensor_angle)
 - Z = sensor z

Mk1: Sensor fusion

Average the output given by the 3 minimum sensors.

Mk1: Sensor fusion

Mk2: Time Averaging

Average the output of the localizer over multiple time units

Mk2: Time averaging

Mk3: Nearest Neighbours

 Define sensor fusion based on majority vote and proximity to other sensors.

HDMI Xilinx IP

Button interrupt triggers screen switch between displaying circles on object's location in:

Screen 1: x-z plane and y-z plane

Screen 2: x-y plane

Visualizes results from localization

Computed Complexity

Ultrasonic Rangefinder PMOD	0.5
Custom IP	1.5
HDMI Output	1
Visualize meaningful results with a GUI	0.75
GPIO Servo Control	0.2
Total	3.95

Implementing Trajectory

- Kalman Filter to predict object path
- Inaccurate predictions from IP
- Sensor data too noisy to predict even in a python program
- Shifted to more robust localization

Future Goals

- Develop accurate Trajectory algorithm
- Build robust mechanical package
- Spend more time tuning setup in different orientations and positions for optimal FOV
- Integrate Landing Position tracking

Q&A

Thanks for Listening