${\it colorlinks=true,\;linkcolor=blue,\;filecolor=magenta,\;urlcolor=cyan,}$

Capítulo 3: Límites y Derivadas

James Stewart, 8^a edición

Índice

1.1. (a) ¿Cómo se define el número e?

Respuesta: El número e se define fundamentalmente a través de límites, lo que lo relaciona directamente con el cálculo. Sus definiciones más comunes son:

$$e = \lim_{h \to 0} (1+h)^{1/h}$$

o, de manera equivalente, utilizando una variable diferente para el límite:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

Estas expresiones representan el valor al que se aproxima $(1+x)^{1/x}$ cuando x tiende a cero, o $(1+1/n)^n$ cuando n tiende a infinito. Este número es la base del logaritmo natural y es crucial en el estudio del crecimiento exponencial y las funciones exponenciales.

1.2. (b) Use una calculadora para estimar:

$$\lim_{h\to 0}\frac{2,7^h-1}{h}\quad \text{y}\quad \lim_{h\to 0}\frac{2,8^h-1}{h}.$$

Respuesta: Al evaluar los límites proporcionados, obtenemos las siguientes aproximaciones:

- El límite de $\frac{2,7^h-1}{h}$ cuando h tiende a 0 es aproximadamente 0,99.
- El límite de $\frac{2,8^h-1}{h}$ cuando h tiende a 0 es aproximadamente 1,03.

Conclusión: Basándonos en estas estimaciones, podemos inferir que el valor de e se encuentra entre 2,7 y 2,8. Esto se debe a que el límite de la expresión $\frac{a^h-1}{h}$ cuando h tiende a 0 es igual a $\ln a$ (el logaritmo natural de a). Dado que $\ln e = 1$, y nuestros resultados se aproximan a 1, el valor de a que hace que el límite sea exactamente 1 es e.

Procedimiento Detallado: Para estimar estos límites, evaluamos la expresión $\frac{a^h-1}{h}$ para valores de h muy cercanos a cero.

1. Evaluación para a = 2.7:

• Cuando h = 0.01:

$$\frac{2,7^{0,01}-1}{0.01} \approx \frac{1,010017-1}{0.01} = \frac{0,010017}{0.01} = 1,0017$$

Este valor se aproxima a 1,00.

• Cuando h = 0.001:

$$\frac{2,7^{0,001} - 1}{0,001} \approx \frac{1,000993 - 1}{0,001} = \frac{0,000993}{0,001} = 0,993$$

Este valor se aproxima a 0,99.

- 2. Evaluación para a = 2.8:
 - Cuando h = 0.01:

$$\frac{2,8^{0,01}-1}{0,01} \approx \frac{1,010252-1}{0,01} = \frac{0,010252}{0,01} = 1,0252$$

Este valor se aproxima a 1,03.

- 3. Relación con el logaritmo natural: El límite de la forma lím $_{h\to 0}$ $\frac{a^h-1}{h}$ es, por definición, la derivada de a^x evaluada en x=0, que es $\ln a$.
 - Para a = 2.7: $\ln 2.7 \approx 0.993$, que se redondea a 0.99.
 - Para a = 2.8: $\ln 2.8 \approx 1.030$, que se redondea a 1.03.

2. Ejercicio 3

Derive f(x) = 186,5.

Respuesta: La derivada de la función f(x) = 186.5 es f'(x) = 0.

Procedimiento Detallado: La función f(x) = 186,5 es una función constante. En cálculo, una de las reglas fundamentales de la derivación establece que la derivada de cualquier función constante es siempre cero. Formalmente, si f(x) = c donde c es una constante, entonces la derivada se define como:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Sustituyendo f(x) = 186.5:

$$f'(x) = \lim_{h \to 0} \frac{186.5 - 186.5}{h} = \lim_{h \to 0} \frac{0}{h} = 0$$

Por lo tanto, f'(x) = 0.

3. Ejercicio 5

Derive f(x) = 52x + 2,3.

Respuesta: La derivada de la función f(x) = 52x + 2.3 es f'(x) = 52.

Procedimiento Detallado: Para derivar esta función, aplicamos las reglas de derivación para sumas y para términos individuales:

1. **Derivada del primer término** (52x): Utilizamos la regla de la potencia $\frac{d}{dx}(cx^n) = cnx^{n-1}$, donde c = 52 y n = 1.

$$\frac{d}{dx}(52x) = 52 \cdot 1 \cdot x^{1-1} = 52x^0 = 52 \cdot 1 = 52$$

2. **Derivada del segundo término** (2,3): El término 2,3 es una constante. La derivada de una constante es siempre cero.

$$\frac{d}{dx}(2,3) = 0$$

3. **Suma de las derivadas:** La derivada de una suma de funciones es la suma de sus derivadas:

$$f'(x) = \frac{d}{dx}(52x) + \frac{d}{dx}(2,3) = 52 + 0 = 52$$

Derive $f(x) = 2x^3 - 3x^2 - 4$.

Respuesta: La derivada de la función $f(x) = 2x^3 - 3x^2 - 4$ es $f'(x) = 6x^2 - 6x$.

Procedimiento Detallado: Para derivar esta función polinómica, aplicamos la regla de la potencia y la regla de la suma/resta a cada término individualmente:

1. **Derivada del primer término** ($2x^3$): Aplicamos la regla de la potencia, con c=2 y n=3.

$$\frac{d}{dx}(2x^3) = 2 \cdot 3 \cdot x^{3-1} = 6x^2$$

2. **Derivada del segundo término** ($-3x^2$): Aplicamos la regla de la potencia, con c = -3 y n = 2.

$$\frac{d}{dx}(-3x^2) = -3 \cdot 2 \cdot x^{2-1} = -6x$$

3. Derivada del tercer término (-4): El término -4 es una constante. La derivada de una constante es cero.

$$\frac{d}{dx}(-4) = 0$$

4. Combinación de las derivadas:

$$f'(x) = 6x^2 - 6x - 0 = 6x^2 - 6x$$

5. Ejercicio 9

Derive $g(x) = x^2(1 - 2x)$.

Respuesta: La derivada de la función $g(x) = x^2(1-2x)$ es $g'(x) = 2x - 6x^2$.

Procedimiento Detallado: Para derivar esta función, es más sencillo primero expandir la expresión para convertirla en un polinomio y luego aplicar la regla de la potencia a cada término.

1. Expandir la función g(x): Multiplicamos x^2 por cada término dentro del paréntesis:

$$g(x) = x^2 \cdot 1 - x^2 \cdot 2x = x^2 - 2x^3$$

2. Derivar cada término del polinomio resultante:

■ Derivada de x^2 :

$$\frac{d}{dx}(x^2) = 2x^{2-1} = 2x$$

■ Derivada de $-2x^3$:

$$\frac{d}{dx}(-2x^3) = -2 \cdot 3 \cdot x^{3-1} = -6x^2$$

3. Combinar las derivadas:

$$g'(x) = 2x - 6x^2$$

Ejercicio 11 **6.**

Derive $y = x^{-3}$.

Respuesta: La derivada de la función $y = x^{-3}$ es $\frac{dy}{dx} = -3x^{-4}$. Procedimiento Detallado: Para derivar esta función, aplicamos directamente la regla de la potencia, que establece que si $y = x^n$, entonces $\frac{dy}{dx} = nx^{n-1}$. En este caso, n = -3.

1. Aplicar la regla de la potencia:

$$\frac{dy}{dx} = (-3)x^{-3-1}$$

2. Simplificar el exponente:

$$\frac{dy}{dx} = -3x^{-4}$$

Ejercicio 13 7.

Derive $F(x) = \frac{5}{x^3} = 5x^{-3}$.

Respuesta: La derivada de la función $F(x) = \frac{5}{x^3}$ es $F'(x) = -15x^{-4}$.

Procedimiento Detallado: Primero, reescribimos la función utilizando exponentes negativos para facilitar la aplicación de la regla de la potencia. La función $F(x) = \frac{5}{x^3}$ puede escribirse como $F(x) = 5x^{-3}$. Ahora, aplicamos la regla de la potencia $\frac{d}{dx}(cx^n) = cnx^{n-1}$, donde c = 5 y n = -3.

1. Multiplicar el coeficiente por el exponente:

$$5 \cdot (-3) = -15$$

2. Restar 1 al exponente:

$$-3 - 1 = -4$$

3. Combinar los resultados:

$$F'(x) = -15x^{-4}$$

Esta es la forma más simplificada de la derivada. También se puede expresar con un exponente positivo:

$$F'(x) = -\frac{15}{x^4}$$

Ejercicio 15 8.

Derive $R(x) = (3x + 1)^2$.

Respuesta: La derivada de la función $R(x) = (3x+1)^2$ es R'(x) = 18x+6.

Procedimiento Detallado: Existen dos métodos principales para derivar esta función: expandir el binomio o usar la regla de la cadena.

Método 1: Expandir el binomio

1. Expandir R(x): Utilizamos la fórmula $(a+b)^2 = a^2 + 2ab + b^2$.

$$R(x) = (3x)^2 + 2(3x)(1) + 1^2 = 9x^2 + 6x + 1$$

- 2. Derivar el polinomio resultante:
 - $\frac{d}{dx}(9x^2) = 9 \cdot 2x^{2-1} = 18x$
 - $\frac{d}{dx}(6x) = 6 \cdot 1x^{1-1} = 6$
 - $\frac{d}{dx}(1) = 0$
- 3. Combinar las derivadas:

$$R'(x) = 18x + 6 + 0 = 18x + 6$$

Método 2: Usar la Regla de la Cadena La regla de la cadena se aplica a funciones compuestas, de la forma f(g(x)), donde f'(g(x))g'(x).

- 1. Identificar las funciones interna y externa: Sea u = 3x + 1 (función interna). Entonces, $R(x) = u^2$ (función externa).
- 2. Derivar la función externa con respecto a u:

$$\frac{dR}{du} = \frac{d}{du}(u^2) = 2u$$

3. Derivar la función interna con respecto a x:

$$\frac{du}{dx} = \frac{d}{dx}(3x+1) = 3$$

4. Aplicar la regla de la cadena:

$$R'(x) = \frac{dR}{du} \cdot \frac{du}{dx} = 2u \cdot 3$$

5. Sustituir u de nuevo en términos de x:

$$R'(x) = 2(3x+1) \cdot 3 = 6(3x+1)$$

6. Expandir para simplificar:

$$R'(x) = 18x + 6$$

9. Ejercicio 17

Derive $S(p) = \sqrt{p^2 - p} = (p^2 - p)^{1/2}$.

Respuesta: La derivada de la función $S(p) = \sqrt{p^2 - p}$ es $S'(p) = \frac{2p-1}{2\sqrt{p^2 - p}}$.

Procedimiento Detallado: Esta función es una composición, por lo que aplicaremos la regla de la cadena, que establece que si y = f(g(x)) entonces $y' = f'(g(x)) \cdot g'(x)$.

- 1. Identificar las funciones interna y externa:
 - Función interna: Sea $u = p^2 p$.
 - Función externa: Entonces, $S(p) = u^{1/2}$.

2. Derivar la función externa con respecto a u:

$$\frac{dS}{du} = \frac{d}{du}(u^{1/2}) = \frac{1}{2}u^{(1/2)-1} = \frac{1}{2}u^{-1/2}$$

3. Derivar la función interna con respecto a p:

$$\frac{du}{dp} = \frac{d}{dp}(p^2 - p) = 2p - 1$$

4. Aplicar la regla de la cadena:

$$S'(p) = \frac{dS}{du} \cdot \frac{du}{dp} = \left(\frac{1}{2}u^{-1/2}\right) \cdot (2p - 1)$$

5. Sustituir u de nuevo en términos de p y simplificar:

$$S'(p) = \frac{1}{2\sqrt{p^2 - p}} \cdot (2p - 1) = \frac{2p - 1}{2\sqrt{p^2 - p}}$$

10. Ejercicio 19

Derive $y = 3e^x + \frac{4}{\sqrt{x}} = 3e^x + 4x^{-1/2}$.

Respuesta: La derivada de la función $y = 3e^x + \frac{4}{\sqrt{x}}$ es $\frac{dy}{dx} = 3e^x - 2x^{-3/2}$.

Procedimiento Detallado: Primero, reescribimos la función para que todos los términos estén en una forma que permita aplicar fácilmente las reglas de derivación. La expresión $\frac{4}{\sqrt{x}}$ se puede escribir como $4x^{-1/2}$. Así, la función se convierte en $y = 3e^x + 4x^{-1/2}$. Ahora, derivamos cada término por separado:

1. Derivada del primer término $(3e^x)$:

$$\frac{d}{dx}(3e^x) = 3\frac{d}{dx}(e^x) = 3e^x$$

2. Derivada del segundo término $(4x^{-1/2})$:

$$\frac{d}{dx}(4x^{-1/2}) = 4 \cdot \left(-\frac{1}{2}\right)x^{(-1/2)-1} = -2x^{-3/2}$$

3. Combinar las derivadas:

$$\frac{dy}{dx} = 3e^x - 2x^{-3/2}$$

11. Ejercicio 21

Derive $h(x) = (A+B)x^2 + Cx$.

Respuesta: La derivada de la función $h(x) = (A+B)x^2 + Cx$ es h'(x) = 2(A+B)x + C.

Procedimiento Detallado: En esta función, A, B y C se tratan como constantes. Aplicamos la regla de la potencia y la regla de la constante por una función.

1. Derivada del primer término $((A + B)x^2)$:

$$\frac{d}{dx}((A+B)x^{2}) = (A+B) \cdot 2x = 2(A+B)x$$

2. Derivada del segundo término (Cx):

$$\frac{d}{dx}(Cx) = C$$

3. Combinar las derivadas:

$$h'(x) = 2(A+B)x + C$$

12. Ejercicio 23

Derive $y = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$.

Respuesta: La derivada de la función $y = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$ es $\frac{dy}{dx} = -\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4}$. **Procedimiento Detallado:** Primero, reescribimos la función usando exponentes ne-

Procedimiento Detallado: Primero, reescribimos la función usando exponentes negativos para que sea más fácil aplicar la regla de la potencia a cada término:

$$y = x^{-1} + x^{-2} - x^{-3}$$

Ahora, derivamos cada término por separado:

1. Derivada del primer término (x^{-1}) :

$$\frac{d}{dx}(x^{-1}) = (-1)x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$$

2. Derivada del segundo término (x^{-2}) :

$$\frac{d}{dx}(x^{-2}) = (-2)x^{-2-1} = -2x^{-3} = -\frac{2}{x^3}$$

3. Derivada del tercer término $(-x^{-3})$:

$$\frac{d}{dx}(-x^{-3}) = -(-3)x^{-3-1} = 3x^{-4} = \frac{3}{x^4}$$

4. Combinar las derivadas:

$$\frac{dy}{dx} = -\frac{1}{x^2} - \frac{2}{x^3} + \frac{3}{x^4}$$

13. Ejercicio 25

Derive $G(t) = t^{-1/2} - 4t^{1/2} - 6t^{3/2}$.

Respuesta: La derivada de la función $G(t) = t^{-1/2} - 4t^{1/2} - 6t^{3/2}$ es $G'(t) = -\frac{1}{2}t^{-3/2} - 2t^{-1/2} - 9t^{1/2}$.

Procedimiento Detallado: La función ya está en una forma adecuada para la regla de la potencia, por lo que derivamos cada término por separado:

1. Derivada del primer término $(t^{-1/2})$:

$$\frac{d}{dt}(t^{-1/2}) = \left(-\frac{1}{2}\right)t^{-1/2-1} = -\frac{1}{2}t^{-3/2}$$

2. Derivada del segundo término $(-4t^{1/2})$:

$$\frac{d}{dt}(-4t^{1/2}) = -4\left(\frac{1}{2}\right)t^{1/2-1} = -2t^{-1/2}$$

3. Derivada del tercer término $(-6t^{3/2})$:

$$\frac{d}{dt}(-6t^{3/2}) = -6\left(\frac{3}{2}\right)t^{3/2-1} = -9t^{1/2}$$

4. Combinar las derivadas:

$$G'(t) = -\frac{1}{2}t^{-3/2} - 2t^{-1/2} - 9t^{1/2}$$

14. Ejercicio 27

Derive $g(x) = x^{1/3} + x^{1/4}$.

Respuesta: La derivada de la función $g(x) = x^{1/3} + x^{1/4}$ es $g'(x) = \frac{1}{3}x^{-2/3} + \frac{1}{4}x^{-3/4}$.

Procedimiento Detallado: La función ya está en una forma que permite la aplicación directa de la regla de la potencia. Derivamos cada término por separado:

1. Derivada del primer término $(x^{1/3})$:

$$\frac{d}{dx}(x^{1/3}) = \frac{1}{3}x^{1/3-1} = \frac{1}{3}x^{-2/3}$$

2. Derivada del segundo término $(x^{1/4})$:

$$\frac{d}{dx}(x^{1/4}) = \frac{1}{4}x^{1/4-1} = \frac{1}{4}x^{-3/4}$$

3. Combinar las derivadas:

$$g'(x) = \frac{1}{3}x^{-2/3} + \frac{1}{4}x^{-3/4}$$

15. Ejercicio 29

Derive $h(x) = (x^2 + 1)(x^3 - 1)$.

Respuesta: La derivada de la función $h(x) = (x^2+1)(x^3-1)$ es $h'(x) = 5x^4+3x^2-2x$.

Procedimiento Detallado: Para derivar esta función, podemos usar la regla del producto o expandir la expresión. Aquí se muestra la regla del producto. La regla establece que si h(x) = f(x)g(x), entonces h'(x) = f'(x)g(x) + f(x)g'(x).

1. Identificar las funciones f(x) y g(x):

- $f(x) = x^2 + 1$ y f'(x) = 2x.
- $a(x) = x^3 1 \vee q'(x) = 3x^2$.
- 2. Aplicar la regla del producto:

$$h'(x) = (2x)(x^3 - 1) + (x^2 + 1)(3x^2)$$

3. Simplificar la expresión:

$$h'(x) = 2x^4 - 2x + 3x^4 + 3x^2$$

4. Combinar términos semejantes:

$$h'(x) = 5x^4 + 3x^2 - 2x$$

16. Ejercicio 31

Derive $y = \frac{e^x}{x^2}$.

Respuesta: La derivada de la función $y = \frac{e^x}{x^2}$ es $\frac{dy}{dx} = \frac{x^2 e^x - 2x e^x}{x^4} = \frac{e^x(x-2)}{x^3}$. Procedimiento Detallado: Para esta función, aplicaremos la regla del cociente. La regla establece que si $y = \frac{f(x)}{g(x)}$, entonces $\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$.

- 1. Identificar f(x) y g(x) y sus derivadas:
 - $f(x) = e^x \ \text{y} \ f'(x) = e^x$.
 - $q(x) = x^2 \vee q'(x) = 2x.$
- 2. Aplicar la regla del cociente:

$$\frac{dy}{dx} = \frac{(e^x)(x^2) - (e^x)(2x)}{(x^2)^2}$$

3. Factorizar y simplificar:

$$\frac{dy}{dx} = \frac{x^2e^x - 2xe^x}{x^4} = \frac{xe^x(x-2)}{x^4} = \frac{e^x(x-2)}{x^3}$$

Ejercicio 33 17.

Encontrar la ecuación de la recta tangente a la curva $y = x^4 + 2x^2 + 2$ en el punto (1,5).

Respuesta: La ecuación de la recta tangente a la curva $y = x^4 + 2x^2 + 2$ en el punto (1,5) es y = 8x - 3.

Procedimiento Detallado:

1. Encontrar la derivada de la función: La derivada nos dará la pendiente de la recta tangente en cualquier punto x.

$$\frac{dy}{dx} = \frac{d}{dx}(x^4 + 2x^2 + 2) = 4x^3 + 4x$$

2. Evaluar la derivada en el punto dado para encontrar la pendiente: El punto es (1,5), por lo que evaluamos la derivada en x=1.

$$m_t = \frac{dy}{dx}\Big|_{x=1} = 4(1)^3 + 4(1) = 4 + 4 = 8$$

3. Usar la ecuación punto-pendiente: La ecuación de la recta es $y-y_1=m(x-x_1)$. Sustituimos el punto (1,5) y la pendiente m=8.

$$y - 5 = 8(x - 1)$$

4. Despejar y para obtener la forma pendiente-intersección:

$$y - 5 = 8x - 8$$
$$y = 8x - 8 + 5$$
$$y = 8x - 3$$

18. Ejercicio 35

Encontrar la ecuación de la recta normal a la curva $y = \sqrt{x}$ que es paralela a la recta 2x + y = 1.

Respuesta: La ecuación de la recta normal a la curva $y = \sqrt{x}$ que es paralela a 2x + y = 1 es y = -2x + 3.

Procedimiento Detallado:

1. Encontrar la pendiente de la recta dada: La recta 2x+y=1 se puede reescribir en la forma y=mx+b para encontrar su pendiente.

$$y = -2x + 1$$

La pendiente de esta recta es $m_{paralela} = -2$.

2. Relacionar la pendiente de la recta normal con la de la recta paralela: Como las rectas son paralelas, tienen la misma pendiente. Por lo tanto, la pendiente de la recta normal, m_n , es igual a -2.

$$m_n = -2$$

3. Relacionar la pendiente de la normal con la pendiente de la tangente: La pendiente de la recta normal es el negativo recíproco de la pendiente de la recta tangente, m_t .

$$m_n = -\frac{1}{m_t} \implies m_t = -\frac{1}{m_n} = -\frac{1}{-2} = \frac{1}{2}$$

4. Encontrar la derivada de la curva $y = \sqrt{x}$: La derivada nos dará la pendiente de la recta tangente en cualquier punto x.

$$y = \sqrt{x} = x^{1/2}$$

$$y' = \frac{dy}{dx} = \frac{1}{2}x^{-1/2} = \frac{1}{2\sqrt{x}}$$

5. Igualar la derivada a la pendiente de la tangente y resolver para x:

$$y' = m_t$$

$$\frac{1}{2\sqrt{x}} = \frac{1}{2}$$

$$2\sqrt{x} = 2 \implies \sqrt{x} = 1 \implies x = 1$$

6. Encontrar la coordenada y en la curva: Sustituimos x=1 en la función original $y=\sqrt{x}$.

$$y = \sqrt{1} = 1$$

El punto de tangencia es (1,1).

7. Usar la ecuación punto-pendiente: Con la pendiente de la normal $m_n = -2$ y el punto (1,1), podemos encontrar la ecuación de la recta normal.

$$y - y_1 = m_n(x - x_1)$$

$$y - 1 = -2(x - 1)$$

8. Despejar y para obtener la forma final:

$$y - 1 = -2x + 2$$

$$y = -2x + 3$$

19. Ejercicio 37

Derive $y = (x^2 - 1)^5$.

Respuesta: La derivada de la función $y = (x^2 - 1)^5$ es $y' = 10x(x^2 - 1)^4$.

Procedimiento Detallado: Esta es una función compuesta, por lo que usaremos la regla de la cadena, que establece que $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$.

1. Identificar la función interna (u) y externa:

- Interna: $u = x^2 1$. Su derivada es $\frac{du}{dx} = 2x$.
- Externa: $y = u^5$. Su derivada es $\frac{dy}{du} = 5u^4$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (5u^4) \cdot (2x)$$

3. Sustituir u y simplificar:

$$y' = 5(x^2 - 1)^4 \cdot 2x = 10x(x^2 - 1)^4$$

Ejercicio 39 20.

Derive $y = \sqrt{x^2 + 1}$.

Respuesta: La derivada de la función $y = \sqrt{x^2 + 1}$ es $y' = \frac{x}{\sqrt{x^2 + 1}}$.

Procedimiento Detallado: Reescribimos la función como $y = (x^2+1)^{1/2}$ y aplicamos la regla de la cadena.

- 1. Identificar la función interna (u) y externa:
 - Interna: $u = x^2 + 1$. Su derivada es $\frac{du}{dx} = 2x$.
 - Externa: $y = u^{1/2}$. Su derivada es $\frac{dy}{du} = \frac{1}{2}u^{-1/2}$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = \left(\frac{1}{2}u^{-1/2}\right)(2x)$$

3. Sustituir *u* y simplificar:

$$y' = \frac{1}{2\sqrt{x^2 + 1}} \cdot (2x) = \frac{2x}{2\sqrt{x^2 + 1}} = \frac{x}{\sqrt{x^2 + 1}}$$

21. Ejercicio 41

Derive $y = e^{4x}$.

Respuesta: La derivada de la función $y = e^{4x}$ es $y' = 4e^{4x}$.

Procedimiento Detallado: Esta es una función exponencial compuesta, por lo que se utiliza la regla de la cadena.

- 1. Identificar la función interna (u) y externa:
 - Interna: u = 4x. Su derivada es $\frac{du}{dx} = 4$.
 - Externa: $y = e^u$. Su derivada es $\frac{dy}{du} = e^u$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (e^u) \cdot (4)$$

3. Sustituir *u* y simplificar:

$$y' = 4e^{4x}$$

Ejercicio 43 22.

Derive $y = \frac{1}{(x^2 + x + 1)^3}$.

Respuesta: La derivada de la función $y = \frac{1}{(x^2+x+1)^3}$ es $y' = \frac{-3(2x+1)}{(x^2+x+1)^4}$. **Procedimiento Detallado:** Reescribimos la función como $y = (x^2 + x + 1)^{-3}$ y aplicamos la regla de la cadena.

14

1. Identificar la función interna (u) y externa:

- Interna: $u = x^2 + x + 1$. Su derivada es $\frac{du}{dx} = 2x + 1$.
- Externa: $y = u^{-3}$. Su derivada es $\frac{dy}{du} = -3u^{-4}$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (-3u^{-4})(2x+1)$$

3. Sustituir u y simplificar:

$$y' = -3(x^2 + x + 1)^{-4}(2x + 1) = \frac{-3(2x + 1)}{(x^2 + x + 1)^4}$$

23. Ejercicio 45

Derive $y = \frac{e^x}{x^3}$.

Respuesta: La derivada de la función $y = \frac{e^x}{x^3}$ es $y' = \frac{e^x(x-3)}{x^4}$.

Procedimiento Detallado: Usamos la regla del cociente, que es $\frac{dy}{dx} = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$.

- 1. Identificar f(x) y g(x) y sus derivadas:
 - $f(x) = e^x y f'(x) = e^x$.
 - $q(x) = x^3 y q'(x) = 3x^2.$
- 2. Aplicar la regla del cociente:

$$y' = \frac{(e^x)(x^3) - (e^x)(3x^2)}{(x^3)^2}$$

3. Simplificar la expresión:

$$y' = \frac{x^3 e^x - 3x^2 e^x}{x^6} = \frac{x^2 e^x (x - 3)}{x^6} = \frac{e^x (x - 3)}{x^4}$$

24. Ejercicio 47

Derive $y = \sin(2x)$.

Respuesta: La derivada de la función $y = \sin(2x)$ es $y' = 2\cos(2x)$.

Procedimiento Detallado: Usamos la regla de la cadena, donde la función externa es $\sin u$ y la interna es 2x.

- 1. Identificar la función interna (u) y externa:
 - Interna: u = 2x. Su derivada es $\frac{du}{dx} = 2$.
 - Externa: $y = \sin(u)$. Su derivada es $\frac{dy}{du} = \cos(u)$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(u) \cdot 2$$

3. Sustituir u y simplificar:

$$y' = 2\cos(2x)$$

Derive $y = \cos^3(x)$.

Respuesta: La derivada de la función $y = \cos^3(x)$ es $y' = -3\cos^2(x)\sin(x)$.

Procedimiento Detallado: Reescribimos la función como $y = (\cos(x))^3$ y aplicamos la regla de la cadena.

- 1. Identificar la función interna (u) y externa:
 - Interna: $u = \cos(x)$. Su derivada es $\frac{du}{dx} = -\sin(x)$.
 - Externa: $y = u^3$. Su derivada es $\frac{dy}{du} = 3u^2$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (3u^2) \cdot (-\sin(x))$$

3. Sustituir u y simplificar:

$$y' = 3(\cos(x))^2(-\sin(x)) = -3\cos^2(x)\sin(x)$$

26. Ejercicio 51

Derive $y = e^{\cos x}$.

Respuesta: La derivada de la función $y = e^{\cos x}$ es $y' = -e^{\cos x} \sin x$.

Procedimiento Detallado: Esta es una función compuesta, donde la función interna es el exponente.

- 1. Identificar la función interna (u) y externa:
 - Interna: $u = \cos x$. Su derivada es $\frac{du}{dx} = -\sin x$.
 - **E**xterna: $y = e^u$. Su derivada es $\frac{dy}{du} = e^u$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (e^u)(-\sin x)$$

3. Sustituir u y simplificar:

$$y' = e^{\cos x}(-\sin x) = -e^{\cos x}\sin x$$

27. Ejercicio 53

Derive $y = \ln(x^2 + 1)$.

Respuesta: La derivada de la función $y = \ln(x^2 + 1)$ es $y' = \frac{2x}{x^2 + 1}$.

Procedimiento Detallado: Usamos la regla de la cadena para logaritmos naturales, que establece que si $y = \ln(u)$, entonces $y' = \frac{1}{u} \cdot u'$.

16

1. Identificar la función interna (u):

- Interna: $u = x^2 + 1$. Su derivada es u' = 2x.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{1}{u} \cdot u' = \frac{1}{x^2 + 1} \cdot (2x)$$

3. Simplificar:

$$y' = \frac{2x}{x^2 + 1}$$

Ejercicio 55 28.

Derive $y = x \sin(x)$.

Respuesta: La derivada de la función $y = x \sin(x)$ es $y' = \sin(x) + x \cos(x)$.

Procedimiento Detallado: Usamos la regla del producto, donde f(x) = x y g(x) = $\sin(x)$.

- 1. Identificar las funciones f(x) y g(x) y sus derivadas:
 - f(x) = x y f'(x) = 1.
 - $q(x) = \sin(x) \ v \ q'(x) = \cos(x).$
- 2. Aplicar la regla del producto:

$$y' = f'(x)g(x) + f(x)g'(x) = (1)(\sin x) + (x)(\cos x)$$

3. Simplificar:

$$y' = \sin x + x \cos x$$

Ejercicio 57 29.

x.

Derive $y = \frac{\ln x}{x}$. Respuesta: La derivada de la función $y = \frac{\ln x}{x}$ es $y' = \frac{1 - \ln x}{x^2}$. Procedimiento Detallado: Usamos la regla del cociente, donde $f(x) = \ln x$ y $g(x) = \frac{\ln x}{x}$

1. Identificar las funciones f(x) y g(x) y sus derivadas:

- $f(x) = \ln x \ y \ f'(x) = \frac{1}{\pi}$.
- $a(x) = x \vee a'(x) = 1.$
- 2. Aplicar la regla del cociente:

$$y' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} = \frac{(\frac{1}{x})(x) - (\ln x)(1)}{x^2}$$

3. Simplificar el numerador:

$$y' = \frac{1 - \ln x}{x^2}$$

Derive $y = \sec^2(x)$.

Respuesta: La derivada de la función $y = \sec^2(x)$ es $y' = 2\sec^2(x)\tan(x)$.

Procedimiento Detallado: Reescribimos la función como $y = (\sec(x))^2$ y aplicamos la regla de la cadena.

- 1. Identificar la función interna (u) y externa:
 - Interna: $u = \sec(x)$. Su derivada es $\frac{du}{dx} = \sec(x)\tan(x)$.
 - Externa: $y = u^2$. Su derivada es $\frac{dy}{du} = 2u$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (2u)(\sec x \tan x)$$

3. Sustituir u y simplificar:

$$y' = 2(\sec x)(\sec x \tan x) = 2\sec^2(x)\tan(x)$$

31. Ejercicio 61

Derive $y = e^{x^2 + x + 1}$.

Respuesta: La derivada de la función $y = e^{x^2 + x + 1}$ es $y' = (2x + 1)e^{x^2 + x + 1}$.

Procedimiento Detallado: Usamos la regla de la cadena, donde la función externa es e^u y la interna es el exponente.

- 1. Identificar la función interna (u) y externa:
 - Interna: $u = x^2 + x + 1$. Su derivada es $\frac{du}{dx} = 2x + 1$.
 - Externa: $y = e^u$. Su derivada es $\frac{dy}{du} = e^u$.
- 2. Aplicar la regla de la cadena:

$$y' = \frac{dy}{du} \cdot \frac{du}{dx} = (e^u)(2x+1)$$

3. Sustituir u y simplificar:

$$y' = (2x+1)e^{x^2+x+1}$$