- 1. (Currently Amended) Fuel cell arrangement with
- a fuel cell stack (12) which encompasses several having a plurality fuel cells (10), [[and]]
- a first (14) and a second end plate (16) which border the fuel cell stack (12) on [[the]] respective ends of the stack, and

eharacterized in that

there is = at least one energy transmission means (18) which transmits a first force to the first end plate (14) in [[the]] a direction [[of]] toward the second end plate (16) and a second force to the second end plate (16) in [[the]] a direction [[of]] toward the first end plate (14), said at least one energy transmission means comprising an elastic means, (20) being involved in the energy transmission.

- 2. (Currently Amended) Fuel cell arrangement as claimed in claim 1, wherein
- the fuel cell stack (12) and the end plates (14, 16) have at least one through opening (22) which extends essentially perpendicular to the end plates,
- wherein, in at least one through hole (22), there is [[one]] <u>an</u> energy transmission element (24) which <u>has an area that projects beyond the upper and lower first and second end plates,</u>
- wherein the energy transmission element (24) has or is connected to a first energy absorption area on the area projecting beyond the first end plate, has a first energy absorption area (26) or is connected to one which is supported directly or indirectly on the first end plate (14), and
- wherein the energy transmission element (24), on the area projecting beyond the second end plate, has <u>or is connected to</u> a second energy absorption area (28, 30) or is connected to one which applies a force to the second end plate (16) by way of the elastic means (20).
 - 3. (Currently Amended) Fuel cell arrangement as claimed in claim 2, wherein
- the energy transmission element (24) has an essentially cylindrical segment (32) which is located partially within the through opening (22),

- wherein the first energy absorption area is made as a cover plate (26) of the cylindrical segment (32) and has a greater radius than the through opening (22) through the first end plate (14), and
- wherein the second energy absorption area is an end ring (28, 30) which surrounds the cylindrical segment (32) and which is connected to the cylindrical segment. (32), and the end ring (28, 30) can be made in several parts.
- 4. (Currently Amended) Fuel cell arrangement as claimed in claim 3, wherein the elastic means are made as comprises a spring (20) which surrounds the cylindrical region and which is supported on the end ring (28, 30) which surrounds the cylindrical segment (32).
- 5. (Original) Fuel cell arrangement as claimed in claim 4, wherein the spring (20) transmits force to the second end plate (16) by its being supported on a movable thrust ring (34) which surrounds the cylindrical segment (32) of the energy transmission element and which is supported on its side facing away from the spring on the second end plate (16).
- 6. (Currently Amended) Fuel cell arrangement as claimed in <u>claim 2</u>, one of claims 2 to 5, wherein the energy transmission element (24) consists is formed, at least predominantly, of electrically insulating material.
- 7. (Currently Amended) Fuel cell arrangement as claimed <u>claim 2</u>, in one of claims 2 to 5, wherein
- the energy transmission element (24) eonsists is formed at least predominantly of metal and
- wherein there are insulation means (36) is provided for insulating the energy transmission element (24) against electrically conductive areas of the fuel cell stack (12) or the end plates (14, 16).

8. (Currently Amended) Fuel cell arrangement as claimed in claim 3, one of claims 3 to 7,

wherein the end ring (28, 30) is axially adjustable so that for varying the force applied by the elastic

means. (20) can be varied.

9. (Currently Amended) Fuel cell arrangement as claimed in claim 1, one of the preceding

elaims, wherein the fuel cell arrangement comprises a housing (38) which has heat insulation (40)

on its inside.

10. (Original) Fuel cell arrangement as claimed in claim 9, wherein the energy transmission

element (24) is elastically connected to the housing (38).

11. (Original) Fuel cell arrangement as claimed in claim 10, wherein the elastic connection

of the energy transmission element (24) to the housing (38) comprises a cup spring (42) which is

connected to the energy transmission element (24) and which is supported on the outside of the

housing (38).

12. (Currently Amended) Fuel cell arrangement as claimed in claim 11, wherein

the end ring (28, 30) is made in two parts and

- wherein the connection of the cup spring (42) to the energy transmission element

(24) takes place by pressing the cup spring (42) being pressed in between the parts of the end ring

(28, 30).

13. (Currently Amended) Fuel cell arrangement as claimed in claim 9, one of claims 9 to

12, wherein the elastic means (20) for transmitting force to the end plates (14, 16) is located outside

the housing (38).

14. (Currently Amended) Fuel cell arrangement as claimed in claim 9, one of claims 9 to

13, wherein [[the]] areas (44) surrounding the fuel cell stack within the housing (38) are filled with

fibrous insulation material.

Page 7

- 15. (Currently Amended) Fuel cell arrangement as claimed in <u>claim 2</u>, one of claims 2 to 14, wherein there are three through openings (22) and three energy transmission elements (24), assigned to these a respective one of the three energy transmission elements being in each of the three through openings.
- 16. Device for mounting a fuel cell arrangement on a housing (38), wherein the fuel cell arrangement comprises:
 - a fuel cell stack having a plurality fuel cells
- <u>a first and a second end plate which border the fuel cell stack on respective ends of the stack, and</u>
- at least one energy transmission means which transmits a first force to the first end plate in a direction toward the second end plate and a second force to the second end plate in a direction toward the first end plate, said at least one energy transmission means comprising an elastic means;

wherein the fuel cell arrangement is connected to the housing (38) by way of an element (24) which is connected to the fuel cell stack (12) using elastic means.