FUNGSI

4.1. Definisi Fungsi

Fungsi (pemetaan) adalah relasi himpunan A ke himpunan B yang memasangkan setiap anggota himpunan A dengan tepat ke satu anggota pada himpunan B. Jika fungsi itu diberi nama f, maka fungsi tersebut dituliskan dengan lambang:

$$f: A \rightarrow B$$
 (f memetakan A ke B)

Perhatikan gambar berikut.

Apabila fungsi f memetakan anggota $x \in A$ dengan tepat ke satu anggota $y \in B$, maka:

$$f: x \rightarrow y$$
 (y adalah peta dari x oleh f)

Peta dari $x \in A$ oleh fungsi f sering dituliskan sebagai f(x).

Contoh 1:

Diketahui fungsi f(x) = 2x+1 dengan domain $D = \{x \mid 1 \le x \le 3, x \in \mathbb{R} \}$.

Tentukanlah peta dari fungsi f untuk x = 1, x = 2, dan x = 3!

Jawab:

Peta dari f untuk x = 1 : f(1) = 2(1) + 1 = 3Peta dari f untuk x = 2 : f(2) = 2(2) + 1 = 5Peta dari f untuk x = 3 : f(3) = 2(3) + 1 = 7

4.2. Daerah Asal, Daerah Kawan, dan Daerah Hasil

Misalkan f adalah sebuah fungsi yang memetakan setiap anggota himpunan A ke himpunan B ($f: A \rightarrow B$), maka:

- (i) himpunan A disebut daerah asal (domain) fungsi f,
- (ii) himpunan B disebut daerah kawan (kodomain) fungsi f,
- (iii) himpunan semua anggota *B* yang dipasangkan dengan tiap anggota himpunan *A* disebut daerah hasil (range) fungsi *f*.

4.3. Beberapa Macam Fungsi Khusus

Fungsi-fungsi yang termasuk dalam fungsi khusus antara lain:

- a. fungsi konstan: f(x) = k dengan $x \in \mathbb{R}$ dan k adalah sebuah konstanta,
- b. fungsi identitas: f(x) = x untuk semua nilai x dalam daerah asalnya,
- c. fungsi linear: f(x) = ax + b dengan $a, b \in \mathbb{R}$ dan $a \neq 0$,
- d. fungsi kuadrat: $f(x) = ax^2 + bx + c$ dengan $a, b, c \in \mathbb{R}$ dan $a \neq 0$,
- e. fungsi nilai mutlak: f(x) = |x| dengan ketentuan sebagai berikut, Untuk setiap bilangan real x, nilai mutlak x ditentukan dengan aturan:

$$|x| = \begin{cases} x, & \text{jika } x \ge 0 \\ -x, & \text{jika } x < 0 \end{cases}$$

4.4. Fungsi Injektif, Fungsi Surjektif, dan Fungsi Bijektif

4.4.1. Fungsi injektif (fungsi satu-satu)

Fungsi $f:A\to B$ disebut sebagai fungsi injektif (fungsi satu-satu) jika dan hanya jika untuk sebarang $a_1,\ a_2\in A$ dengan $a_1\neq a_2$ berlaku $f(a_1)\neq f(a_2)$. Dengan kata lain, suatu fungsi dikatakan injektif apabila setiap anggota yang berbeda dari daerah asal mempunyai pasangan yang berbeda pula pada daerah kawan.

Perhatikan contoh fungsi injektif pada gambar berikut.

4.4.2. Fungsi surjektif (fungsi pada)

Fungsi $f: A \rightarrow B$ disebut sebagai fungsi surjektif (fungsi pada) jika daerah hasil fungsi f sama dengan himpunan B, atau f(A) = B. Dengan kata lain, suatu fungsi dikatakan surjektif apabila daerah hasilnya adalah daerah kawan.

Perhatikan contoh fungsi surjektif pada gambar berikut.

4.4.3. Fungsi bijektif (korespondensi satu-satu)

Fungsi $f: A \rightarrow B$ disebut sebagai fungsi bijektif (korespondensi satu-satu) jika dan hanya jika fungsi f adalah fungsi injektif dan juga fungsi surjektif. Dalam hal ini, kardinalitas A (daerah asal) haruslah sama dengan kardinalitas B (daerah kawan/hasil).

Perhatikan contoh fungsi bijektif pada gambar berikut.

4.5. Komposisi Fungsi

Misalkan diketahui fungsi-fungsi

 $f: A \to B$ ditentukan dengan f(x),

 $g: B \to C$ ditentukan dengan g(x).

Maka, komposisi dari fungsi f dan g ditentukan oleh fungsi komposisi:

$$(g \circ f)(x) = g(f(x))$$

Misalkan diketahui fungsi-fungsi

 $g: A \rightarrow B$ ditentukan dengan g(x),

 $f: B \to C$ ditentukan dengan f(x).

Maka, komposisi dari fungsi g dan f ditentukan oleh fungsi komposisi:

$$(f \circ g)(x) = f(g(x))$$

Contoh 2:

Diketahui fungsi $f: \mathbb{R} \to \mathbb{R}$ dengan f(x) = 2x + 1 dan fungsi $g: \mathbb{R} \to \mathbb{R}$ dengan $g(x) = x^2 - 2$. Tentukanlah:

a.
$$(g \circ f)(x)$$

c.
$$(f \circ f)(x)$$

b.
$$(g \circ f)(1)$$

d.
$$(f \circ f)(1)$$

Jawab:

a.
$$(g \circ f)(x) = g(f(x)) = g(2x+1) = (2x+1)^2 - 2 = 4x^2 + 4x - 1$$

b.
$$(g \circ f)(1) = 4(1)^2 + 4(1) - 1 = 7$$

c.
$$(f \circ f)(x) = f(f(x)) = f(2x+1) = 2(2x+1)+1 = 4x+3$$

d.
$$(f \circ f)(1) = 4(1) + 3 = 7$$

Contoh 3:

Diketahui fungsi f(x) = 4x - 1 dan fungsi komposisi $(f \circ g)(x) = -2x + 3$. Tentukanlah fungsi g(x)!

Jawab:

$$(f \circ g)(x) = -2x + 3$$

$$f(g(x)) = -2x + 3$$

$$4(g(x)) - 1 = -2x + 3$$

$$4(g(x)) = -2x + 4$$

$$g(x) = \frac{-2x + 4}{4} = -\frac{1}{2}x + 1$$

Catatan penting terkait komposisi fungsi.

- 1. Komposisi fungsi umumnya tidak bersifat komutatif. Ini berarti pada umumnya $(f \circ g)(x) \neq (g \circ f)(x)$.
- 2. Komposisi relasi bersifat asosiatif. Ini berarti $(f \circ (g \circ h))(x) = ((f \circ g) \circ h)(x)$.

3.
$$f^2(x) = (f \circ f)(x)$$
; $f^3(x) = (f \circ f \circ f)(x)$; $f^4(x) = (f \circ f \circ f \circ f)(x)$; dan seterusnya.

4.6. Fungsi Invers

Suatu fungsi $f: A \to B$ mempunyai fungsi invers $f^{-1}: B \to A$ jika dan hanya jika f merupakan fungsi bijektif (fungsi injektif sekaligus juga fungsi surjektif). Berikut adalah pengertian fungsi invers.

Diberikan suatu fungsi f dari himpunan A ke himpunan B, $f = \{(a,b) | a \in A \text{ dan } b \in B\}$. Maka, fungsi inversnya didefinisikan sebagai berikut: $f^{-1} = \{(b,a) | b \in B \text{ dan } a \in A\}$.

Catatan penting terkait fungsi invers.

1. f(x) = y jika dan hanya jika $f^{-1}(y) = x$.

2.
$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$$

 $(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$

3.
$$(f \circ f^{-1})(x) = (f^{-1} \circ f)(x) = x$$
.

Contoh 4:

Tentukanlah fungsi invers dari:

a.
$$f(x) = 3x + 6$$

b.
$$g(x) = x^3 + 5$$

Jawab:

a. Misalkan f(x) = y. Maka,

$$y = 3x + 6 \iff y - 6 = 3x \iff \frac{y - 6}{3} = x \iff \frac{1}{3}y - 2 = x$$

Jadi, $f^{-1}(x) = \frac{1}{3}x - 2$.

b. Misalkan g(x) = y. Maka,

$$y = x^3 + 5 \iff y - 5 = x^3 \iff \sqrt[3]{y - 5} = x$$

Jadi, $g^{-1}(x) = \sqrt[3]{x - 5}$.

Contoh 5:

Fungsi f dan fungsi g masing-masing adalah fungsi bijektif dengan fungsi inversnya adalah $f^{-1}(x) = \frac{1}{x-1}$ dan $g^{-1}(x) = \sqrt{x}$. Hitunglah $(g \circ f)^{-1}(5)$!

Jawab:

Perhatikan bahwa $(g \circ f)^{-1}(x) = (f^{-1} \circ g^{-1})(x)$. Maka,

$$(g \circ f)^{-1}(5) = (f^{-1} \circ g^{-1})(5) = f^{-1}(g^{-1}(5)) = f^{-1}(\sqrt{5}) = \frac{1}{\sqrt{5} - 1} = \frac{1}{4}(\sqrt{5} + 1)$$

LATIHAN SOAL

1. Misalkan $A = \{1, 2, 3, 4\}$. Tentukan apakah setiap relasi di bawah ini merupakan fungsi dari himpunan A ke himpunan A:

a.
$$\{(2,1), (3,4), (4,1), (1,4)\}$$

c.
$$\{(1,1), (1,2), (1,3), (1,4)\}$$

b.
$$\{(1,3), (2,3), (3,3), (4,3)\}$$

d.
$$\{(2,1), (3,2), (4,4)\}$$

- 2. Diberikan himpunan $A = \{0, 1, 2\}$ dan himpunan $B = \{p, q, r\}$. Gambarkan semua diagram panah yang menyatakan fungsi dari himpunan A ke himpunan B!
- 3. Diketahui fungsi $f(x) = x^2 4x + 3$ dengan domain $D = \{x \mid -2 \le x \le 2, x \in \mathbb{R} \}$. Tentukan peta dari fungsi f untuk x = -1/2, x = 0, dan x = 1/2!
- 4. Fungsi *h* pada himpunan bilangan real didefinisikan:

$$h(x) = \begin{cases} 3x - 1 & \text{; saat } x > 3\\ x^2 - 2 & \text{; saat } -2 \le x \le 3\\ 2x + 3 & \text{; saat } x < -2 \end{cases}$$

Hitunglah h(-5) + h(-1) + h(3) + h(7)!

5. Diketahui fungsi $f: \mathbb{R} \to \mathbb{R}$ dengan f(x) = 3x - 5 dan fungsi $g: \mathbb{R} \to \mathbb{R}$ dengan $g(x) = \frac{1}{4x - 3}$; $x \neq \frac{3}{4}$. Tentukanlah:

a.
$$(g \circ f)(x)$$

c.
$$f^{-1}(x) \operatorname{dan} g^{-1}(x)$$

- 6. Jika diketahui $f(x-3) = 9x^2 + 2$, carilah nilai f(5)!
- 7. Diketahui fungsi f dan g dengan $f(x) = 2x^2 x 7$ dan g(x) = 3x 2. Jika diketahui bahwa g(f(a)) = -14, tentukanlah nilai a!