ПРОСТЕЙШИЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Решить ДУ первого порядка: $y' = xe^{-x}$.

Решение. Интегрируем: $y = \int xe^{-x} dx$. Интегрируем по частям:

$$y = \int xe^{-x} dx = \begin{bmatrix} u = x, du = dx \\ e^{-x} dx = dv, v = -e^{-x} \end{bmatrix} = -xe^{-x} + \int e^{-x} dx = -xe^{-x} - e^{-x} + C.$$

Пример 2. Решить ДУ второго порядка: $y'' = \sin x$.

Решение. Интегрируем: $y' = \int \sin x dx = -\cos x + C_1$. Интегрируем повторно: $y = -\int (\cos x + C_1) dx = -\sin x + C_1 x + C_2$.

Пример 3. Найти общее решение ДУ $y''' = \frac{2}{r^3}$.

 $\begin{array}{lll} \textit{Решение}. & \text{Трижды} & \text{интегрируя:} & \textit{y}'' = 2\int x^{-3} dx = -x^{-2} + C_1 \Rightarrow & \textit{y}' = \\ -\int (x^{-2} + C_1) dx = x^{-1} + C_1 x + C_2 & , & \text{получаем} & \text{общее} & \text{решение} & \text{в} & \text{виде} \\ y = \ln \left|x\right| + \frac{C_1}{2} x^2 + C_2 x + C_3 & . \end{array}$

Пример 4. Решить начальную задачу Коши для ДУ второго порядка: y'' = 6x; y(0) = 0, y'(0) = 1.

Решение. Интегрируем: $y'=3x^2+C_1$. Интегрируем повторно: $y=x^3+C_1x+C_2$. Получено общее решение (общий вид всех решений) данного ДУ. Здесь C_1,C_2 - произвольные постоянные, при любых их значениях полученная функция удовлетворяет данному уравнению. Определим значения произвольных постоянных C_1,C_2 , при которых полученная функция удовлетворяет заданным начальным условиям:

$$\begin{cases} 0 = y(0) = 0 + C_1 \cdot 0 + C_2, \\ 1 = y'(0) = 0 + C_1 \end{cases} \Rightarrow \begin{cases} C_2 = 0, \\ C_1 = 1, \end{cases}$$

откуда $y = x^3 + x$ – искомое решение.