ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 30 giugno 2015

Esercizio A

$R_1 = 5 k\Omega$	$R_{11}=750\;\Omega$
$R_3 = 10 \text{ k}\Omega$	$R_{12} = 5.5 \; k\Omega$
$R_4 = 3900 \Omega$	$R_{13} = 1 k\Omega$
$R_5 = 100 \Omega$	$R_{14} = 20 \text{ k}\Omega$
$R_6 = 1 \text{ k}\Omega$	$C_1 = 15 \text{ nF}$
$R_7 = 3 k\Omega$	$C_2 = 47 \text{ nF}$
$R_8 = 10 \text{ k}\Omega$	$C_3 = 680 \text{ pF}$
$R_9 = 76.5 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$
$R_{10} = 6 \text{ k}\Omega$	

 Q_1 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D=k(V_{GS}-V_T)^2$ con k=0.5 mA/V² e $V_T=-1$ V; Q_2 è un transistore BJT BC109B resistivo con $h_{re}=h_{oe}=0$. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₂ in modo che, in condizioni di riposo, la tensione sul collettore di Q₂ sia 7 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₁. (R: R₂ = 4244.34 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , C_3 e C_4 possono essere considerati dei corto circuiti. (R: $V_U/V_i = 2.24$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 2720.6$ Hz; $f_{p1} = 19627.7$ Hz; $f_{z2} = 5079.4$ Hz; $f_{p2} = 4717.5$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 9178.48$ Hz)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \left(\overline{AC} + \overline{D}\right)\left(\overline{BD} + \overline{AC}\right) + \left(\overline{B} + \overline{\overline{D}}\right) + \left(\overline{A + D}\right)$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 500 \Omega$	$R_6 = 500 \Omega$
$R_2 = 1 \text{ k}\Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 2 k\Omega$	C = 100 nF
$R_4 = 2 k\Omega$	$V_{CC} = 6 V$
$R_5 = 10 \text{ k}\Omega$	

Il circuito IC_1 è un NE555 alimentato a $\mathbf{V}_{CC} = \mathbf{6V}$, Q_1 e Q_2 hanno una $R_{on} = 0$ e $V_T = 1V$; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 3956.78 Hz)