SISHYA SCHOOL, HOSUR ANNUAL EXAMINATIONS (2024-25)

XI (JEE)

CLASS:	XI (SCIENCE)	TIME:	3 HOURS
SUBJECT:	MATHEMATICS (041)	MAXIMUM MARKS:	80

General Instructions:

- 1. This Question paper contains **five sections** A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
- 2. Section A has 18 MCQs and 02 Assertion-Reason based questions of 1 mark each.
- 3. **Section B** has **5 Very Short Answer (VSA)-type** questions of 2 marks each.
- 4. **Section C** has **6 Short Answer (SA)-type** questions of 3 marks each.
- 5. **Section D** has **4 Long Answer** (**LA**)-**type** questions of 5 marks each.
- 6. **Section E** has **3 case-based** questions of 4 marks each, with sub parts.

Q. No.	Question		М	S	Т
	SECTION A MULTIPLE CHOICE QUESTION Each question carries 1 mark	MULTIPLE CHOICE QUESTIONS			
1.	The solution to the inequality $2x + 8 < 13$, $x \in N$ is (a) $[3, \infty)$ (b) $[1, 2]$ (c) $\{1, 2\}$	(d) {, -1, 0, 1, 2}	1	U	2
	Answer: (c) The number of six digit numbers, the digits of which	are all odd is	1	U	2
2.	(a) 6^5 (b) 5^6 © $5 \cdot 5!$ Answer: (b)	(d) Not possible			
3.	If x , $2y$, $3z$ are in AP, where the distinct numbers x , y , common ratio of the GP is (a) 3 (b) $\frac{1}{3}$ (c) 2	, z are in GP , then the $ (d) \frac{1}{2} $	1	An	3
	Answer: (b)	-	<u> </u>		I

	If $\tan A = \frac{1}{2}$ and $\tan B = \frac{1}{3}$, then the value of $A + B =$.	1	U	2
4.	(a) 45° (b) 60° © 30° (d) 0°			
	Answer: (a)			
_	The degree measure of $\frac{7\pi}{18}$ =	1	U	3
5.	(a) 60° (b) 70° © 100° (d) 80°			
	Answer: (b)			
	The fourth term from the end of the G.P. 3, 6, 12, 24,, 3072 is			
6.	(a) 348 (b) 1536 © 438 (d) 384	1	U	3
	Answer: (d)	ı		
	A die is rolled. Let E be the event "die shows 4" and F be the event "die shows even number", Then, E and F are		**	
7.	(a) mutually exclusive (b) mutually exclusive and exhaustive	1	U	3
	© exhaustive (d) neither mutually exclusive nor exhaustive			
	Answer: (d)	<u> </u>		
	The XOZ-Plane divides the join of (2, 3, 1) and (6, 7, 1) in the ratio	1		2
8.	(a) 3:7 (b) 2:7 © -3:7 (d) -2:7	1	U	2
	Answer: ©	1		
	If $A = \{1, 2, 3\}$ and $B = \{4, 5\}$ then the number of relations from A to B is:			
		1	U	2
9.	(a) 6 (b) 8 (c) 9 (d) 64			
	Answer: (d)			
	The domain of the real valued function $f(x) = \frac{1}{3x-2}$ is			
10.	5. <u>-</u>	1	An	3
	(a) $Q - \left\{\frac{2}{3}\right\}$ (b) $R - \left\{\frac{2}{3}\right\}$ (c) $R - \{2\}$ (d) N			
11.	$sin(-330^{\circ})$ is equal to	1	U	3
11.	one con the equal to		U	٦

	(a) $\frac{\sqrt{3}}{2}$	(b) $\frac{1}{2}$	(c) $-\frac{1}{2}$	$(d) - \frac{\sqrt{3}}{2}$			
	Answer: (b)						
	The value of $\frac{1}{1}$	$\frac{-tan^215^0}{+tan^215^0}$ is					
12.	$(a)\frac{\sqrt{3}}{2}$	$(b)\frac{2}{\sqrt{3}}$	$(c)\frac{\sqrt{2}}{3}$	$(d)\frac{1}{\sqrt{2}}$	1	App	2
	Answer: (a)						
	x, y, z are in G	P,where x , y a	nd z are non- zero n	umbers if and only if	1	An	3
13.	(a) $x^2 = yz$	(b) $y^2 = xz$	(c) $z^2 = xy$	(d) $xyz = 1$	1	All	3
	Answer: (b)						
	If $tan A = \frac{1}{2} an$	and $tanB = \frac{1}{3}$, the	nen $tan(2A + B)$ is e	qual to	1	11	2
14.	(a) 1	(b) 2	(c) 3	(d) 4	1	U	3
	Answer: (c)						
	_	of the straight	tline passing through	the point (3, 2) and	1	A	2
15.	-	-	y = 5 (c) $x + y =$	1 (d) $x - y = 1$	1	App	3
	Answer: (c)		(0) 11 7	(u)			
	The number of	of terms in the	expansion of $(x + y)$	$(x^6 + (x - y)^6)^6$ is			
16.	(a) 4	(b) 3	(c) 7	(d) 6	1	App	3
	Answer: (a)						
	The conjugate	$e ext{ of } i^{-35} =$			1	U	3
17.	(a) 1	(b) −1	(c) i	(d) - <i>i</i>		U	3
	Answer: (d)					Г	
18.	The common is 16 is	ratio of the G.I	P. of which the ratio o	of the 7 th and the third term	1	An	3
18.	(a) 2	(b) ±2	(c) 4	(d) ±4			
	Answer: (b)						

	ASSERTION-REASON BASED QUESTIONS			
	In the following questions, a statement of assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices. (a) Both A and R are true and R is the correct explanation of A. (b) Both A and R are true but R is not the correct explanation of A. (c) A is true but R is false. (d) A is false but R is true.			
	Assertion (A): $nC_7 = nC_5$, $n = 12$			
19.	Reason (R): $nC_p = nC_q, p = q \text{ or } p + q = n$	1	AN	3
	Answer: (a)			
	Assertion (A): The equation of a straight line parallel to x -axis and passing through the point $(-2, -2)$ is $y = -2$			
20.	Reason (R): A line passing through the origin and having a slope of 45° will always be of the form $y = x$	1	AN	3
	Answer: (b)			
	SECTION B This section comprises of very short answer type questions (VSA) of 2 marks each			
	Let $A = \{1, 2\}$, $B = \{4, 5, 6\}$, $C = \{5, 6\}$. Verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.			
	Solution:			
	$B \cap C = \{5, 6\}$	2		
	$\therefore A \times (B \cap C) = \{(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)\}$			
	$A \times B = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)\}$			
	$A \times C = \{(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)\}$			
21.	$\therefore (A \times B) \cap (A \times C) = \{(1, 5), (1, 6), (2, 5), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6)\}$		AN	4
	$\therefore A \times (B \cap C) = (A \times B) \cap (A \times C)$			
	OR			
	If $f(x) = x + 1$ and $g(x) = [x] - 10x$ where $[\cdot]$ represents the greatest integer function, verify if $f(2x) + 2g(x) = 2f(x) + g(2x)$ when $x = -3.5$			
	Solution:			
	LHS = 8 + 2[(-4 + 35) = 70			
	RHS = 9 + (-7 + 70) = 72. They are not equal.			

22.	A fair coin with 1 marked on one face and 6 on the other and a fair die are both tossed. Find the probability that the sum of numbers that turn up is (i) 3 (ii) 12 Solution: One die has 1 and 6 marked on it and the other has 1, 2, 3, 4, 5, 6 \therefore Sample space = {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} (i) The sum of the given numbers is obtained by the event (1, 2). Number of favourable outcomes = 1 \therefore Probability when the sum of the numbers obtained is $3 = \frac{1}{12}$ (ii) The sum of the given numbers is obtained by the event (6, 6). Here, number of favourable outcomes = 1 \therefore Probability when the sum of the numbers obtained is $12 = \frac{1}{12}$	1	AP	4
23.	Prove that $\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6} = \frac{1}{2}$ Solution: LHS = $\sin\frac{8\pi}{3}\cos\frac{23\pi}{6} + \cos\frac{13\pi}{3}\sin\frac{35\pi}{6}$ = $\sin\left(\frac{8}{3}\times180^{\circ}\right)\cos\left(\frac{23}{6}\times180^{\circ}\right) + \cos\left(\frac{13}{3}\times180^{\circ}\right)\sin\left(\frac{35}{6}\times180^{\circ}\right)$ = $\sin\left(480^{\circ}\right)\cos\left(690^{\circ}\right) + \cos\left(780^{\circ}\right)\sin\left(1050^{\circ}\right)$ = $\sin\left(90^{\circ}\times5 + 30^{\circ}\right)\cos\left(90^{\circ}\times7 + 60^{\circ}\right) + \cos\left(90^{\circ}\times8 + 60^{\circ}\right)\sin\left(90^{\circ}\times11 + 60^{\circ}\right)$ = $\cos\left(30^{\circ}\right)\sin\left(60^{\circ}\right) + \cos\left(60^{\circ}\right)\left[-\cos\left(60^{\circ}\right)\right]$ = $\frac{\sqrt{3}}{2}\times\frac{\sqrt{3}}{2} + \frac{1}{2}\times\left(-\frac{1}{2}\right)$ = $\frac{3}{4} - \frac{1}{4}$ = $\frac{1}{2}$ = RHS Hence proved.	1	Арр	4
24.	Find the number of sides of a polygon having 27 diagonals Solution:	2	Арр	4

	We know that to calculate number of diagonals in a polygon we use the			
	formula			
	Number of diagonals = $n \times (n-3)/2$			
	0 (),		0	
	Using the given value we get:	(1 1	00
		لر	"	ر م
	$27 = n \times (n-3)/2$	′ _	D; W	See !
	n(n-3) = 54		\\	M
	$n^2 - 3n = 54$		Je/	
	$n^2 - 3n - 54 = 0$), (/' ^	1
	(n+6)(n-9)=0	1	$\gamma \mathcal{U}$	
	n = -6 or n = 9	>		
		ی	X	/
	Since we are calculating the number of sides it should be positive, therefore the		U	
	number of sides of a polygon having 27 diagonals is 9			
	Find a G.P. for which the sum of the first two terms is -4 and the fifth term			
	is 4 times the third term.			
	Solution:			
	a + ar = -4			
25.	$ar^4 = 4ar^2 \Rightarrow r = \pm 2$		U	4
		1		
	$a = -\frac{4}{3}$ or $a = 4$.			
	m CD 4 8 16 4 0.16			
	The G.P.s are $-\frac{4}{3}$, $-\frac{8}{3}$, $-\frac{16}{3}$ or 4, -8 , 16,	1		
	SECTION C			
	This section comprises of short answer type questions (SA) of 3 marks each			
	This section comprises of short unswer type questions (SA) of 3 marks each			
	Find $(a+b)^4 - (a-b)^4$ and hence evaluate $(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$			
	Solution:			
	Using Binomial Theorem, the expressions, $(a + b)^4$ and $(a - b)^4$, can be expanded as			
26.	$(a+b)^4 = {}^4C_0a^4 + {}^4C_1a^3b + {}^4C_2a^2b^2 + {}^4C_3ab^3 + {}^4C_4b^4$		AP	7
26.		1	AP	
	$(a - b)^4 = {}^4C_0 a^4 - {}^4C_1 a^3 b + {}^4C_2 a^2 b^2 - {}^4C_3 a b^3 + {}^4C_4 b^4$			
	$ \div \left(a + b \right)^4 - \left(a - b \right)^4 = \ ^4C_0 a^4 + \ ^4C_1 a^3 b + \ ^4C_2 a^2b^2 + \ ^4C_3 ab^3 + \ ^4C_4 b^4 $			
	$[^{4}C_{0} a^{4} - {}^{4}C_{1} a^{3}b + {}^{4}C_{2} a^{2}b^{2} - {}^{4}C_{3} ab^{3} + {}^{4}C_{4} b^{4}]$			

	$2(^{4}C_{1}a^{3}b + {^{4}C_{3}ab^{3}}) = 2(4a^{3}b + 4ab^{3})$			
	$= 8ab (a^2 + b^2)$			
	In this, by substituting $a=\sqrt{3}, b=\sqrt{2}$	1		
	$\left(\sqrt{3} + \sqrt{2}\right)^4 - \left(\sqrt{3} - \sqrt{2}\right)^4$			
	$=8\sqrt{3}.\sqrt{2}\left[\left(\sqrt{3}\right)^2+\left(\sqrt{2}\right)^2\right]$	1		
	$= 8\sqrt{6}(3+2) = 40\sqrt{6}$	1		
	Find the equations of the lines that pass through (3, 4), and whose sum of the intercepts on the axes is 14.			
	Solution:			
	Equation of the line in intercept form:			
	$rac{x}{a}+rac{y}{b}=1, ext{where } a+b=14 \implies b=14-a.$			
	Substitute point $(3,4)$:	1		
	$\frac{3}{a} + \frac{4}{14 - a} = 1.$			
	Simplify and eliminate fractions:			
	3(14-a)+4a=a(14-a).	1		
27.	$a^2 - 13a + 42 = 0.$		U	7
	Solve the quadratic equation:			
	$(a-6)(a-7) = 0 \implies a = 6 \text{ or } a = 7.$			
	Equations of the line:	1		
	• For $a=6, b=8$: $4x+3y=24$.			
	• For $a = 7, b = 7$: $x + y = 7$.			
	OR			
	Find the equations of the medians of the triangle, the sides of which are given by the lines $x + y - 6 = 0$, $x - 3y - 2 = 0$ and $5x - 3y + 2 = 0$			
	Solution:			

	Find the vertices of the triangle: Solve the equations pairwise:	1		
	• Intersection of $x+y-6=0$ and $x-3y-2=0$: $A(5,1)$.			
	• Intersection of $x - 3y - 2 = 0$ and $5x - 3y + 2 = 0$: $B(-1, -1)$.			
	• Intersection of $5x-3y+2=0$ and $x+y-6=0$: $C(2,4)$.			
	Find the midpoints of the sides:			
	• Midpoint of BC : $M_1=\left(\frac{-1+2}{2},\frac{-1+4}{2}\right)=\left(\frac{1}{2},\frac{3}{2}\right)$.	1		
	• Midpoint of CA : $M_2=\left(rac{2+5}{2},rac{4+1}{2} ight)=\left(rac{7}{2},rac{5}{2} ight).$			
	• Midpoint of AB : $M_3=\left(rac{5-1}{2},rac{1-1}{2} ight)=(2,0).$			
	Final Equations of the Medians:			
	1. $x + 9y = 14$	1		
	2. $7x - 9y = 2$.	1		
	3. $x=2$.			
	Show that $9^{n+1} - 8n - 9$ is divisible by 64, whenever 'n' is a positive			
	integer.			
	Solution:			
	Consider,			
	$9^{n+1} = (1+8)^{n+1} = {}^{n+1}C_0 + {}^{n+1}C_1(8) + {}^{n+1}C_2(8)^2 + \dots + {}^{n+1}C_{n+1}(8)^{n+1}$			
	= 1 + (n + 1)(8) + 8 ² [$^{n+1}C_2 + ^{n+1}C_3x8 + \dots + ^{n+1}C_{n+1}(8)^{n-1}$]	1		
28.			U	7
	= 9 + 8n + 64[$^{n+1}C_2 + ^{n+1}C_3x8 + \dots + ^{n+1}C_{n+1}(8)^{n-1}$]			
	$\Rightarrow 9^{n+1} - 8n - 9 = 64k,$	1		
	Where $k = {}^{n+1}C_2 + {}^{n+1}C_3x8 + \dots + {}^{n+1}C_{n+1}(8)^{n-1}$ which is a natural number			
	Thus, $9^{n+1} - 8n - 9$ is divisible by 64, whenever n is a positive integer.	1		
	Thus, 5 on 9 is arrisione by 64, whenever it is a positive integer.	1		
	Find the equations of the line which pass through the points (4,5) and make			
29.	equal angles with the lines $5x - 12y + 6 = 0$ and $3x = 4y + 7$.		AP	7
	Solution:			

	7 . 1 . 01 11 . 1	1		
	Let the Slope of line be m Now, slope of other lines are $\frac{3}{4}$, $\frac{12}{5}$	1		
	The Slope is Equally inclined so it must lie between these slopes such that $\frac{3}{4} < m < \frac{12}{5}$	1		
	As it is equally inclined so angle between the line and the two given line must be same $\Rightarrow \theta_1 = \theta_2 \Rightarrow \tan \theta_1 = \tan \theta_2$ $\Rightarrow \frac{\frac{12}{5} - m}{1 + \frac{12}{5}m} = \frac{m - \frac{3}{4}}{1 + \frac{3}{4}m} \Rightarrow 63m^2 - 32m - 63 = 0$ $\Rightarrow m = \frac{32 \pm \sqrt{32^2 + 4 * 63 * 63}}{2 * 63} \Rightarrow m = \frac{-7}{9}, \frac{9}{7}$ Now, Equation of line as it passes through (4, 5) will be Putting the obtained values of m in above Equation we get $9x - 7y = 1$ $7x + 9y = 73$	1		
30.	If $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}, A = \{2, 4, 6, 8\}$ and $B = \{2, 3, 5, 7\}$, prove that $(A - B) \cup (B - A) = (A \cup B) - (A \cap B)$ Solution:	1	U	7
		1		

	Define Set Operations:			
	• $A-B=\{x\in A\mid x\notin B\}=\{4,6,8\}.$			
	$ullet \ B-A=\{x\in B\mid x otin A\}=\{3,5,7\}.$			
	• $(A-B) \cup (B-A) = \{4,6,8\} \cup \{3,5,7\} = \{3,4,5,6,7,8\}.$	1		
	Find $A \cup B$ and $A \cap B$:	1		
	• $A \cup B = \{2, 3, 4, 5, 6, 7, 8\}.$			
	$\bullet A\cap B=\{2\}.$			
	Calculate $(A \cup B) - (A \cap B)$:			
	$ullet$ Remove elements of $A\cap B=\{2\}$ from $A\cup B=\{2,3,4,5,6,7,8\}$:			
	$(A \cup B) - (A \cap B) = \{3, 4, 5, 6, 7, 8\}.$			
	$(A-B)\cup (B-A)=(A\cup B)-(A\cap B).$			
	A fruit juice distributor has 500-litre solution of 10% fruit concentrate. He wants to dilute it more by adding a 3% fruit concentrate solution. The customers will accept it only if the final mixture has a concentration between 5% and 8%. The distributor finds that he has four barrels of the 3% concentrate: a 200 litre barrel, a 1000 litre barrel, a 1,500 litre barrel and a 2,000 litre barrel. If he must open only one, which one should he choose so that there is adequate but no excess concentrate? Substantiate your answer through necessary calculations.			
31.	Solution: 500 litres of 10% solution of fruit concentrate: $\frac{10}{100} \times 500$	1	EV	7
	x litres of 3% solution of fruit concentrate: $x \times \frac{3}{100}$ litres			
	Total mixture = $\frac{10}{100} \times 500 + \frac{3}{100} \times x$	1		
	$\frac{5}{100} (500 + x) < \frac{10}{100} \times 500 + \frac{3}{100} \times x < \frac{8}{100} (500 + x)$			
	Solving, we get $200 < x < 1250$	1		
	He must choose the 1,000 litre barrel.	1		
	SECTION D This section comprises of long answer-type questions (LA) of 5 marks each			
	Prove that $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3}\right) + \cos^2 \left(x - \frac{\pi}{3}\right) = \frac{3}{2}$			
32.	Solution:		U	10

L.H.S. = $\frac{1+\cos 2x}{2} + \frac{1+\cos\left(2x + \frac{2\pi}{3}\right)}{2} + \frac{1+\cos\left(2x - \frac{2\pi}{3}\right)}{2}$		
$= \frac{1}{2} \left[3 + \cos 2x + \cos \left(2x + \frac{2\pi}{3} \right) + \cos \left(2x - \frac{2\pi}{3} \right) \right]$	2	
$= \frac{1}{2} \left[3 + \cos 2x + 2\cos 2x \cos \frac{2\pi}{3} \right]$	1	
$= \frac{1}{2} \left[3 + \cos 2x + 2\cos 2x \cos \left(\pi - \frac{\pi}{3} \right) \right]$		
$= \frac{1}{2} \left[3 + \cos 2x - 2\cos 2x \cos \frac{\pi}{3} \right]$	1	
$= \frac{1}{2} [3 + \cos 2x - \cos 2x] = \frac{3}{2} = \text{R.H.S.}$	1	
OR		
Prove that $\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A} = \tan 6A$		
Solution:		
sin 2A + sin 5A + sin 7A + sin 0A		
$\frac{\sin 3A + \sin 5A + \sin 7A + \sin 9A}{\cos 3A + \cos 5A + \cos 7A + \cos 9A}$		
When we rearrange we get,		
$-(\sin 9A + \sin 3A) + (\sin 7A + \sin 5A)$		
$= \frac{(\sin 9A + \sin 3A) + (\sin 7A + \sin 5A)}{(\cos 9A + \cos 3A) + (\cos 7A + \cos 5A)}$		
$= \frac{\left(2\sin\frac{9A + 3A}{2}\cos\frac{9A - 3A}{2}\right) + \left(2\sin\frac{7A + 5A}{2}\cos\frac{7A - 5A}{2}\right)}{\left(2\cos\frac{9A + 3A}{2}\cos\frac{9A - 3A}{2}\right) + \left(2\cos\frac{7A + 5A}{2}\cos\frac{7A - 5A}{2}\right)}$		
$= \frac{\left(2\sin\frac{12A}{2}\cos\frac{6A}{2}\right) + \left(2\sin\frac{12A}{2}\cos\frac{2A}{2}\right)}{\left(2\cos\frac{12A}{2}\cos\frac{6A}{2}\right) + \left(2\cos\frac{12A}{2}\cos\frac{2A}{2}\right)}$	2	
$= \frac{(2\sin 6A\cos 3A) + (2\sin 6A\cos A)}{(2\cos 6A\cos 3A) + (2\cos 6A\cos A)}$	1	
$=\frac{2\sin 6A\left(\cos 3A + \cos A\right)}{2}$		
$2\cos 6A(\cos 3A + \cos A)$		
$=\frac{\sin 6A}{\cos 6A}$		
$=\frac{1}{\cos 6A}$		
=	1	
$=\frac{1}{\cos 6A}$	1	

		1		
33.	Find the domain and range of the following functions: i) $\sqrt{x^2-8}$ ii) $\frac{2x-1}{x+2}$ Solution: i) Since is a square root function, $ x \geq 2\sqrt{2}$ This means x must be outside the interval $(-2\sqrt{2}, 2\sqrt{2})$, so: $x \leq -2\sqrt{2} \text{or} x \geq 2\sqrt{2}$ Thus, the domain is: $(-\infty, -2\sqrt{2}] \cup [2\sqrt{2}, \infty)$ Range: $y = \sqrt{x^2-8} \therefore y \geq 0$ $x = \sqrt{y^2+8}. \text{ Therefore, } y \geq 0$ ii) Domain: $x \in R - \{-2\}$ Range: $y = \frac{2x-1}{x+2} \Rightarrow x = \frac{2y+1}{2-y}$ $\therefore y \neq 2. \text{ Therefore the range is } R - \{2\}$	1 1 2	AP	10
34.	A group of four friends $\mathbb Z$ Aryan, Bella, Chris, and Dylan $\mathbb Z$ were playing a game of quadrilaterals. From a well shuffled set of coordinates printed on cards, a set of four cards are chosen at random and are found to be $A(1,3,0), B(-5,5,2), C(-9,-1,2)$, and $D(-3,-3,0)$. Now, each one picks up a card with a quadrilateral printed on it from another set of cards placed face down. Aryan gets a card with a trapezium, Bella gets a parallelogram (with unequal diagonals), Chris gets a rectangle and Dylan gets a rhombus. The one that matches with the shape formed by the coordinates wins the round. Who would win the round in this case? Justify your answer with appropriate calculations.		AN	12

	SECTION E This section comprises of 3 case study/passage-based questions of 4 marks each.			
35.	Find x and y, for which the complex numbers $-3 + ix^2y$ and $x^2 + y + 4i$ are conjugate for each other , Given $x, y \in R$.		U	10
	$AC \neq BD$. Therefore the quadrilateral is not a rectangle. Therefore, it is a parallelogram and Bella wins the round.			
	$=\sqrt{(2)^2+(-8)^2+(-2)^2}=\sqrt{4+64+4}=\sqrt{72}$			
	$BD = \sqrt{(-3+5)^2 + (-3-5)^2 + (0-2)^2}$	_		
	Length of BD	2		
	$=\sqrt{(-10)^2+(-4)^2+2^2}=\sqrt{100+16+4}=\sqrt{120}$			
	$AC = \sqrt{(-9-1)^2 + (-1-3)^2 + (2-0)^2}$			
	Length of AC			
	$=\sqrt{(-4)^2+(-6)^2+0^2}=\sqrt{16+36}=\sqrt{52}$			
	$DA = \sqrt{(-3-1)^2 + (-3-3)^2 + (0-0)^2}$			
	$=\sqrt{(-4)^2+(-6)^2+0^2}=\sqrt{16+36}=\sqrt{52}$ Length of DA			
	$BC = \sqrt{(-9+5)^2 + (-1-5)^2 + (2-2)^2}$ $= \sqrt{(-4)^2 + (-6)^2 + 0^2} = \sqrt{16+36} = \sqrt{52}$			
	Length of BC			
	${\mathscr S}$ Since $AB=CD$, one pair of opposite sides is equal.	3		
	$=\sqrt{(-6)^2+2^2+2^2}=\sqrt{36+4+4}=\sqrt{44}$			
	$CD = \sqrt{(-9+3)^2 + (-1+3)^2 + (2-0)^2}$			
	Length of CD			
	$= \sqrt{(-6)^2 + 2^2 + 2^2} = \sqrt{36 + 4 + 4} = \sqrt{44}$			
	$AB = \sqrt{(-5-1)^2 + (5-3)^2 + (2-0)^2}$			
	Length of AB			

36.	Case Study 1: Two circular shaped celestial bodies s_1 and s_2 , with same radius of 2 units, were spotted by an astronomer. s_1 had its center on y -axis, touching the x -axis at the origin, while s_2 was located with its centre on x -axis at point A, which is 4 units away from the origin. She observed that both were moving at the same uniform speed. While s_1 took 1 hour to move horizontally form 0 to A, it took twice the time to move from A to B. s_2 moved from A to C in 5 hours. AB is parallel to DE and perpendicular to BC. Answer the following questions, based on the given information.			
	(i) Find the equation of the circle s_2 when its centre is C.	2	AN	3
	Answer: From the given information, AB = 8 and AC = 10. Therefore, BC = 6. The point C is $(12, -6)$. The required equation is $(x - 12)^2 + (y + 6)^2 = 4$			
	(ii) If s_1 moved from B vertically to C with DE as its tangent at C, find its equation at its new position.	2	AN	3
	Answer: At its new position, From the given information, The point C is (12, 6). The <i>y</i> -coordinate of the centre is $-(6-2) = -4$. \therefore Its centre is at the point $(12, -4)$. The required equation is $(x-12)^2 + (y+4)^2 = 4$.			
37.	Case-Study 2: The probability that a girl, preparing for competitive examination will get a State Government service is 0.12; the probability that she will get a Central Government job is 0.25 and the probability that she will get both is 0.07. Based on the information, answer the following questions:			
	(i) What is the probability that she won't get the central government job? Answer: Let S be the event of getting State Government service and C be the event of getting Central Government job.	1	AP	3
	$P(S') = 1 - 0.25 = 0.75$ (ii) Find the probability that she will get at least one of the two jobs. Answer: P (at least one of the two jobs) = $P(S \text{ or } C) = P(S \cup C)$	1	AP	3

	$= P(S) + P(C) - P(S \cup C)$ = 0.12 + 0.25 - 0.07 = 0.30			
	(iii) Find the probability that she will get only one of the two jobs. Solution: P (Only one of the two jobs) = $P(\text{only }S \text{ or only }C)$ = $P(S \cap \overline{C}) + P(\overline{S} \cap C)$ = $\{P(S) - P(S \cap C)\} + \{P(C) - P(S \cap C)\}$ = $\{0.12 - 0.07\} + \{0.25 - 0.07\}$ = 0.23.	2	AN	4
38.	Case Study 3: Riya and her five friends went on a tour to Simla. They stayed in a hotel. There were 4 vacant rooms – A, B, C and D. Out of these, A and B were double rooms which could accommodate two persons each, while C and D could accommodate only one person each. Based on the information, answer the following questions:			
	(i) Find the number of ways in which room A can be filled. Solution: Since A is a double room, the number of ways = ${}^6C_2 = 15$.	1	AP	3
	 (ii) If both the rooms A and B are filled, in how many ways can room C be filled? Solution: Since C is a single room and there are two people remaining, the number of ways = ²C₁ = 2. 	1	AP	3
	 ways = C₁ = 2. (iii) If Riya wanted to stay with a particular friend, find the total number of ways of accommodating the 6 of them. Solution: The remaining four can be accommodated in the following ways: ⁴C₂ × 2! But Riya and her friend can be accommodated in A or B. ∴ the total number of ways = 2 × ⁴C₂ × 2! = 24 	2	АР	4

Declaration: Certified that the question paper does not have questions which have been given in unit tests or other assessments.

Prepared by: A.Pradhap

Reliability by : Guru IIT

Grammar Checked by : Ms. Latha

Signature of the Principal: