10

Data Projection

数据投影

以鸢尾花数据集为例,二次投影+层层叠加

人生就像骑自行车。为了保持平衡, 你必须不断移动。

Life is like riding a bicycle. To keep your balance, you must keep moving.

—— 阿尔伯特·爱因斯坦 (Albert Einstein) | 理论物理学家 | 1879 ~ 1955

- numpy.linalg.eig() 特征值分解
- seaborn.heatmap() 绘制热图

[↑]○. 从一个矩阵乘法运算说起

有数据的地方,就有矩阵!

有矩阵的地方,就有向量!

有向量的地方,就有几何!

本章承前启后,结合数据、矩阵、向量、几何四个元素总结本书前九章主要内容,并开启本 书下一个重要板块——矩阵分解。

本节和下一节内容会稍微枯燥,请大家耐心读完。之后,本章会用鸢尾花数据集作为例子,给大家展开讲解这两节内容。

正交投影

本章从一个矩阵乘法运算说起:

$$\mathbf{Z} = \mathbf{X}\mathbf{V} \tag{1}$$

X是数据矩阵,形状为 $n \times D$,即 n 行、D 列。大家很清楚,以鸢尾花数据集为例,X 每一行代表一个数据点,每一列代表一个特征。

V是正交矩阵,即满足 $V^TV=VV^T=I$ 。这意味着 $V=[v_1,v_2,...,v_D]$ 是 \mathbb{R}^D 空间的一组规范正交基。

如图 1 所示,几何视角下,矩阵乘积 XV 完成的是 X 向规范正交基 $V = [v_1, v_2, ..., v_D]$ 投影,乘积 Z = XV 代表 X 在新的规范正交基下的坐标。矩阵乘法 Z = XV 也是一个线性映射过程。

图 1. 数据矩阵 X 到 Z 线性变换

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本书前文反复提到,一个矩阵可以看成由一系列行向量或列向量构造得到。下面,我们分别 从这两个视角来分析(1)。

列向量

将 Z 和 V 分别写成各自列向量, (1) 可以展开写成:

$$\begin{bmatrix} z_1 & z_2 & \cdots & z_D \end{bmatrix} = X \begin{bmatrix} v_1 & v_2 & \cdots & v_D \end{bmatrix}$$
$$= \begin{bmatrix} Xv_1 & Xv_2 & \cdots & Xv_D \end{bmatrix}$$
 (2)

(2) 这个视角是数据列向量 (即特征) 之间的转换。(2) 采用的工具是本书第 6 章介绍的分块矩阵乘法。

提取 (2) 等式左右第 j 列,得到 Z 矩阵的第 j 列向量 z_i 的计算式:

$$\mathbf{z}_{i} = \mathbf{X}\mathbf{v}_{i} \tag{3}$$

如图 2 所示, (3) 相当于 $x_1, x_2 ..., x_D$ 通过线性组合得到 z_j , 即:

$$\mathbf{z}_{j} = \underbrace{\begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \end{bmatrix}}_{\mathbf{x}} \begin{bmatrix} v_{1,j} \\ v_{2,j} \\ \vdots \\ v_{D,j} \end{bmatrix} = v_{1,j}\mathbf{x}_{1} + v_{2,j}\mathbf{x}_{2} + \cdots v_{D,j}\mathbf{x}_{D}$$

$$(4)$$

图 2. Z 第 j 列向量 z_i 的计算过程

行向量: 点坐标

数据矩阵 X 的任意行向量 $x^{(i)}$ 代表一个样本点在 \mathbb{R}^D 标准正交基中坐标。将 X 和 Z 写成行向量形式,(1) 可以写作:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\begin{bmatrix} \mathbf{z}^{(1)} \\ \mathbf{z}^{(2)} \\ \vdots \\ \mathbf{z}^{(n)} \end{bmatrix} = \begin{bmatrix} \mathbf{x}^{(1)} \mathbf{V} \\ \mathbf{x}^{(2)} \mathbf{V} \\ \vdots \\ \mathbf{x}^{(n)} \mathbf{V} \end{bmatrix}$$
 (5)

如图 3 所示,(5) 代表每一行样本点之间的转换关系。即, $x^{(i)}$ 投影得到 Z 的第 i 行向量 $z^{(i)}$:

$$\mathbf{z}^{(i)} = \mathbf{x}^{(i)} \mathbf{V} \tag{6}$$

图 3. 每一行数据点之间的转换关系

进一步将 (6) 中 V 写成 [$\nu_1, \nu_2, ..., \nu_D$], (6) 可以展开得到:

$$\begin{bmatrix} z_{i,1} & z_{i,2} & \cdots & z_{i,D} \end{bmatrix} = \mathbf{x}^{(i)} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_D \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}^{(i)} \mathbf{v}_1 & \mathbf{x}^{(i)} \mathbf{v}_2 & \cdots & \mathbf{x}^{(i)} \mathbf{v}_D \end{bmatrix}$$
 (7)

图 4. 每一行数据点向 v_i 投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

取出 (7) 中向量 $z^{(i)}$ 第 i 列元素 $z_{i,i}$,对应的运算为:

$$z_{i,j} = \mathbf{x}^{(i)} \mathbf{v}_{j} \tag{8}$$

图 4 对应 (8) 运算。

从空间视角来看,如图 5 所示,行向量 $\mathbf{x}^{(i)}$ 位于 \mathbb{R}^D 空间,而 $\mathbf{x}^{(i)}$ 正交投影到 \mathbb{R}^D **子空间** (subspace) span(\mathbf{v}_j) 对应的坐标点就是 $z_{i,j}$ 。换句话说, $z_{i,l}$ 是 $\mathbf{x}^{(i)}$ 在 span(\mathbf{v}_j) 的 \mathbf{g} (image)。 $\mathbf{x}^{(i)}$ 在 \mathbb{R}^D 空间是 D 维,在 span(\mathbf{v}_j) 仅是 1 维。图 5 中,从左边 \mathbb{R}^D 空间到右侧 span(\mathbf{v}_j) 投影是个降维过程,数据发生压缩。

图 5. \mathbb{R}^D 空间数据点投影到 $\operatorname{span}(v_i)$

10.2 二次投影 + 层层叠加

本书上一章给出下面这个看似莫明其妙的矩阵乘法:

$$X = XI = XVV^{\mathsf{T}} = X \tag{9}$$

数据矩阵 X 乘以单位阵 I, 结果为 X 其本身! 这个显而易见的等式, 有何意义?

其实,这个看似再简单不过的矩阵运算背后实际藏着"二次投影"和"层层叠加"这两重几何操作!下面,我们就解密这两个几何操作。

层层叠加

将 V 写成 [$v_1, v_2, ..., v_D$],代入 (9) 得到:

$$\boldsymbol{X} = \boldsymbol{X}\boldsymbol{V}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{X} \begin{bmatrix} \boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{1}^{\mathrm{T}} \\ \boldsymbol{v}_{2}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{v}_{D}^{\mathrm{T}} \end{bmatrix} = \underbrace{\boldsymbol{X}\boldsymbol{v}_{1}\boldsymbol{v}_{1}^{\mathrm{T}}}_{\boldsymbol{X}_{1}} + \underbrace{\boldsymbol{X}\boldsymbol{v}_{2}\boldsymbol{v}_{2}^{\mathrm{T}}}_{\boldsymbol{X}_{2}} + \cdots + \underbrace{\boldsymbol{X}\boldsymbol{v}_{D}\boldsymbol{v}_{D}^{\mathrm{T}}}_{\boldsymbol{X}_{D}}$$
(10)

令,

$$\boldsymbol{X}_{i} = \boldsymbol{X}\boldsymbol{v}_{i}\boldsymbol{v}_{i}^{\mathrm{T}} \tag{11}$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 6 所示为上述运算, X_i 的形状和原数据矩阵 X 完全相同。我们称图 6 为二次投影,一会儿解释原因。

图 6. 二次投影

(10) 可以写成:

$$\boldsymbol{X} = \boldsymbol{X}_1 + \boldsymbol{X}_2 + \dots + \boldsymbol{X}_D \tag{12}$$

上式就是"层层叠加"。如图 7 所示,D 个形状完全相同的数据,层层叠加还原原始数据 X。这本质上是矩阵乘法的第二视角。

图 7. 层层叠加

二次投影

下面,我们专门聊聊"二次投影"。

取出 (11) X_i 中第 i 行行向量 $x_i^{(i)}$, $x_i^{(i)}$ 对应的运算为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{x}_{j}^{(i)} = \boldsymbol{x}^{(i)} \boldsymbol{v}_{j} \, \boldsymbol{v}_{j}^{\mathrm{T}} = \boldsymbol{z}_{i,j} \boldsymbol{v}_{j}^{\mathrm{T}} \tag{13}$$

如 (8) 所示,上式中 $z_{i,j}$ 就是 $\mathbf{x}^{(i)}$ 正交投影到子空间 $\mathrm{span}(\mathbf{v}_j)$ 对应的坐标点,这是第一次投影,具体过程如图 5 所示。

而 $z_{i,i}v_{i}^{\mathsf{T}}$ 得到的是 $z_{i,j}$ 在 \mathbb{R}^{D} 的坐标点,这便是第二次投影。

上述两次投影合并,得到所谓"二次投影"。整个二次投影的过程如图 8 所示。可以这样理解, $\mathbf{x}^{(i)} \to z_{i,j}$ 代表"标量投影"; $\mathbf{x}^{(i)} \to \mathbf{x}^{(i)} \mathbf{v}_{j} \mathbf{v}_{j}^{\mathrm{T}}$ 则是"向量投影"。图 8 这个过程显然不可逆,方阵 $\mathbf{v}_{j} \mathbf{v}_{j}^{\mathrm{T}}$ 的 秩为 1,因此不可逆。

lacktriangle 注意,图 8 中 $m{x}^{(i)}$ 和 $m{z}_{i,j} m{v}_j^{\mathsf{T}}$ 都用行向量表达坐标点。这和本书第 23 章要介绍的行空间有直接联系。

图 8. \mathbb{R}^D 空间数据点先投影到 $\operatorname{span}(v_i)$, 再投影回到 \mathbb{R}^D

向量投影: 张量积

将(11)写成张量积的形式:

$$\boldsymbol{X}_{j} = \boldsymbol{X}\boldsymbol{v}_{j} \otimes \boldsymbol{v}_{j} \tag{14}$$

 X_j 就是 X 经过"降维"到子空间 $\operatorname{span}(v_j)$ 后,再投影到 \mathbb{R}^D 中得到的"像"。 X_j 也是 X 在 v_j 上的向量投影。张量积 $v_i \otimes v_j$ 就是我们上一章提到的**投影矩阵** (projection matrix)。

张量积 $\mathbf{v}_{j}\otimes\mathbf{v}_{j}$ 本身完成 "多维 \rightarrow 一维" + "一维 \rightarrow 多维" 这两步映射。很显然,对于非 \mathbf{O} 矩阵 X 来说,

$$\operatorname{rank}\left(\mathbf{v}_{j} \otimes \mathbf{v}_{j}\right) = 1 \quad \Rightarrow \quad \operatorname{rank}\left(\mathbf{X}_{j}\right) = 1 \tag{15}$$

所以,在 \mathbb{R}^D 空间中, X_i 所有数据点在一条通过原点的直线上,直线和 ν_i 平行。也就是说,虽然 X_i 表面上来看在 D 维空间 \mathbb{R}^D 中, X_i 实际上只有 1 个维度, $\mathrm{rank}(X_i) = 1$ 。

利用张量积, (10) 可以写成:

$$X = \underbrace{X v_{1} \otimes v_{1}}_{X_{1}} + \underbrace{X v_{2} \otimes v_{2}}_{X_{2}} + \dots + \underbrace{X v_{D} \otimes v_{D}}_{X_{D}}$$
(16)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

可以这样理解上式,X分别二次投影 (向量投影) 到规范正交基 [$\nu_1, \nu_2, ..., \nu_D$] 每个列向量 ν_j 所代表的子空间 span(ν_j) 中,获得 X_1 、 X_2 ... X_D 。而 X_1 、 X_2 ... X_D 层层叠加还原原始数据 X。

再进一步,根据 $V^TV = I$,我们知道:

$$\boldsymbol{I} = \boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1} + \boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2} + \dots + \boldsymbol{v}_{D} \otimes \boldsymbol{v}_{D}$$
 (17)

也就是说, $v_i \otimes v_i$ 层层叠加得到单位阵 I。

此外, $i \neq j$ 时, $\mathbf{v}_i \otimes \mathbf{v}_i$ 和 $\mathbf{v}_j \otimes \mathbf{v}_j$ 这两个张量积的矩阵乘积为零矩阵 \mathbf{O} :

$$(\boldsymbol{v}_{i} \otimes \boldsymbol{v}_{i}) @ (\boldsymbol{v}_{j} \otimes \boldsymbol{v}_{j}) = \boldsymbol{v}_{i} \boldsymbol{v}_{i}^{\mathrm{T}} \boldsymbol{v}_{j} \boldsymbol{v}_{j}^{\mathrm{T}} = 0 \boldsymbol{v}_{i} \boldsymbol{v}_{j}^{\mathrm{T}} = \boldsymbol{O}$$
 (18)

标准正交基: 便于理解

标准正交基是特殊的规范正交基。为了方便理解,我们用标准正交基 $[e_1, e_2, ..., e_D]$ 替换 (16) 中的 $[v_1, v_2, ..., v_D]$,得到:

$$X = Xe_1 \otimes e_1 + Xe_2 \otimes e_2 + \dots + Xe_n \otimes e_n$$
 (19)

展开(19)中等式右侧第一项得到:

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \boldsymbol{X} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \otimes \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{x}_{2} & \cdots & \boldsymbol{x}_{D} \end{bmatrix} \begin{bmatrix} 1 & & & \\ & 0 & & \\ & & & 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & 0 & \cdots & 0 \end{bmatrix}$$
(20)

 Xe_1 得到的是 X的每一行在 $span(e_1)$ 这个子空间的坐标,即 x_1 。而 $Xe_1 \otimes e_1$ 告诉我们的是 Xe_1 在 D 维空间 \mathbb{R}^D 中坐标值。

因此 (19) 右侧每一项 X_i可以写成:

$$\mathbf{X}_{1} = \mathbf{X} \mathbf{e}_{1} \otimes \mathbf{e}_{1} = \begin{bmatrix} \mathbf{x}_{1} & 0 & \cdots & 0 \end{bmatrix}
\mathbf{X}_{2} = \mathbf{X} \mathbf{e}_{2} \otimes \mathbf{e}_{2} = \begin{bmatrix} 0 & \mathbf{x}_{2} & \cdots & 0 \end{bmatrix}
\vdots
\mathbf{X}_{D} = \mathbf{X} \mathbf{e}_{D} \otimes \mathbf{e}_{D} = \begin{bmatrix} 0 & 0 & \cdots & \mathbf{x}_{D} \end{bmatrix}$$
(21)

也就是说, $Xe_i \otimes e_i$ 仅保留 X 的第 j 列 x_j , 其他位置元素置 0。

因此, (19) 可以写成:

$$\boldsymbol{X} = \left[\begin{array}{ccc} \boldsymbol{x}_1 & 0 & \cdots & 0 \\ & & \\ & & \\ \end{array} \right] + \left[\begin{array}{ccc} 0 & \boldsymbol{x}_2 & \cdots & 0 \\ & & \\ \end{array} \right] + \cdots + \left[\begin{array}{ccc} 0 & 0 & \cdots & \boldsymbol{x}_D \\ & & \\ \end{array} \right]$$
(22)

图9所示为上式"二次投影"与"层层叠加"过程。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 9. 标准正交基 $[e_1, e_2, ..., e_D]$ 中二次投影与叠加

回过头再看 (9),我们知道这个运算过程代表先从标准正交基 [e_1 , e_2 , ..., e_D] 到规范正交基 [v_1 , v_2 , ..., v_D] 的投影,然后再投影回到标准正交基 [e_1 , e_2 , ..., e_D]:

其中,V 为正交矩阵,因此 $V^T=V^{-1}$ 。上式还告诉我们,V 是个规范正交基, V^T 也是个规范正交基。从几何角度来看,V 代表在 D 维空间的旋转。通过 V,X 旋转得到 Z; 利用 V^T ,Z 逆向旋转得到 X。

看到这里,有些读者怕是已经晕头转向。下面利用鸢尾花数据集做例子,帮大家更直观理解本节内容。

10.3 二特征数据投影:标准正交基

本节以二特征矩阵为例讲解何谓"二次投影"和"层层叠加"。数据矩阵 $X_{150\times 2}$ 选取鸢尾花数据集前两列——花萼长度、花萼宽度,这样数据矩阵 $X_{150\times 2}$ 的形状为 150×2 。投影的方向为标准正交基 $[e_1,e_2]$ 。

水平方向投影

如图 10 所示, $X_{150 \times 2}$ 向水平方向标量投影,即 $X_{150 \times 2}$ 向 e_1 投影。以图中红点 A 为例,A 的坐标为 (5,2),它在 e_1 方向上的标量投影对应 A 在横轴坐标:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 5 \tag{24}$$

▲ 注意, 5 代表的是 A 在 $span(e_1)$ 空间中的坐标值, 而 $span(e_1)$ 显然为一维空间。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 10. 二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,一次投影

如图 11 热图所示, $X_{150\times2}$ 向 e_1 投影结果为列向量 x_1 ,相当于保留了 $X_{150\times2}$ 第一列数据:

$$\boldsymbol{z}_{1} = \boldsymbol{X}\boldsymbol{e}_{1} = \boldsymbol{x}_{1} \tag{25}$$

图 11. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,一次投影 (标量投影)

大家可能会好奇,既然图 10 中 $X_{150 \times 2}$ 向水平方向投影结果都可以画在图 10 直角坐标系中,在二维空间 $\mathbb{R}^2 = \operatorname{span}(\boldsymbol{e}_1, \boldsymbol{e}_2)$ 中,这些投影点一定有其二维坐标值。

很明显,以 A 为例,A 在横轴投影点 P 在 $\mathbb{R}^2 = \text{span}(\boldsymbol{e}_1, \boldsymbol{e}_2)$ 的坐标值为 (5,0)。这个结果是怎么得到的?

这就用到了本章前文讲到的"二次投影",相当于在 (24) 基础上再次投影。第二次投影相当于 "升维",从一维升到二维。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

以点 A 为例, "二次投影"对应的计算为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{1} \boldsymbol{e}_{1}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 5 & 0 \end{bmatrix}$$
 (26)

上式对应的计算如图 12 所示。

图 12. 二特征数据矩阵 X 向 e_1 投影,二次投影

X 在 e_1 二次投影对应 \mathbb{R}^2 = span(e_1 , e_2) 坐标值为 X_1 :

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} = \boldsymbol{X}\boldsymbol{e}_{1}\boldsymbol{e}_{1}^{\mathrm{T}} = \boldsymbol{X}\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{\theta} \end{bmatrix}$$
(27)

图 13 所示为上述运算对应热图。

很容易判断,(27) 上式中 $e_1 \otimes e_1$ 的行列式值为 0,即 $\det(e_1 \otimes e_1) = 0$ 。也就是说这个映射过程存在降维,映射矩阵 $e_1 \otimes e_1$ 不存在逆,即几何操作不可逆。

▲ 值得注意的是,从 x_1 到 $X_1 = [x_1, 0]$ 这种"升维"只是名义上的维度提高,不代表数据信息增多。显然,上式中 X_1 的秩仍为 1,即 $\mathrm{rank}(X_1)$ 。举个形象点的例子,我们给桌面上马克杯拍了张照片,再把照片平放在桌面上。马克杯本身就是 X_1 ,桌面上的照片就是 X_1 。

图 13. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_1 投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

竖直方向投影

如图 14 所示, $X_{150\times 2}$ 向竖直方向投影,即 $X_{150\times 2}$ 向 e_2 投影。还是以 A 点为例,A (5,2) 在 e_2 方 向上的标量投影为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 2 \tag{28}$$

2 代表的是 A 在 $span(e_2)$ 空间中的坐标值, $span(e_2)$ 同样为一维空间。图 15 为上述运算的热 图。

图 14. 二特征数据矩阵 $X_{150\times 2}$ 向 e_2 方向标量投影,一次投影

图 15. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_2 投影,一次投影

同样利用"二次投影",得到 A 在竖直方向投影点 H 在 $span(e_1, e_2)$ 的坐标值为 (0, 2):

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} = \begin{bmatrix} 5 & 2 \end{bmatrix} \boldsymbol{e}_{2} \boldsymbol{e}_{2}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 2 \end{bmatrix}$$
 (29)

上式对应的计算如图 16 所示。

图 16. 二特征数据矩阵 $X_{150\times 2}$ 向 e_2 方向标量投影,二次投影

 $X_{150\times 2}$ 在 e_2 二次投影得到矩阵 X_2 :

$$\boldsymbol{X}_{2} = \boldsymbol{X}\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} = \boldsymbol{X}\boldsymbol{e}_{2}\boldsymbol{e}_{2}^{\mathrm{T}} = \boldsymbol{X} \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
(30)

上式对应的热图运算为图 17。 X_2 第一列向量为 0,第二列向量为 x_2 。

(30) 中 $\mathbf{e}_2 \otimes \mathbf{e}_2$ 的行列式值为 0,即 $\det(\mathbf{e}_2 \otimes \mathbf{e}_2) = 0$ 。

图 17. 数据热图,二特征数据矩阵 $X_{150\times 2}$ 向 e_2 投影,二次投影

叠加

如图 18 所示,以 A 为例, P (5, 0) 和 H (0, 2) 叠加得到点 A 坐标 (5, 2)。这相当于两个向量合成,即:

或者以行向量来表示,

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$[5 0] + [0 2] = [5 2]$$
 (32)

图 18. 数据叠加还原散点图

如图 19 所示, X_1 和 X_2 叠加还原 $X_{150\times 2}$:

$$X_{150\times2} = X_1 + X_2$$

$$= X \left(\mathbf{e}_1 \otimes \mathbf{e}_1 + X \mathbf{e}_2 \otimes \mathbf{e}_2 \right)$$

$$= X \left(\mathbf{e}_1 \mathbf{e}_1^{\mathrm{T}} + \mathbf{e}_2 \mathbf{e}_2^{\mathrm{T}} \right)$$

$$= X \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right) = XI$$
(33)

图 20 所示为上述运算对应的热图。

图 19. 数据叠加还原 $X_{150\times2}$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 20. 数据热图,叠加还原 $X_{150\times2}$

10.4 二特征数据投影: 规范正交基

本节分析 $X_{150\times 2}$ 在三个不同规范正交基投影情况。

第一个规范正交基

给定如下规范正交基 $V = [v_1, v_2]$:

$$\boldsymbol{V} = \begin{bmatrix} \boldsymbol{v}_1 & \boldsymbol{v}_2 \end{bmatrix} = \begin{bmatrix} \sqrt{3}/2 & -1/2 \\ 1/2 & \sqrt{3}/2 \end{bmatrix}$$
 (34)

从几何变换角度来看,V就是一个旋转矩阵。请大家自行验证 $V^TV = I$ 。此外,很容易计算得到 V的行列式值为 1,即 $\det(V) = 1$ 。也就是说,旋转不改变面积。

 v_1 和 v_2 也相当于是 e_1 和 e_2 的线性组合,即:

$$\mathbf{v}_{1} = \sqrt{3}/2\mathbf{e}_{1} + 1/2\mathbf{e}_{2}$$

$$\mathbf{v}_{2} = -1/2\mathbf{e}_{1} + \sqrt{3}/2\mathbf{e}_{2}$$
(35)

如图 21 所示,同样以点 A (5,2) 为例,A 在 v_1 方向标量投影为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \underbrace{\begin{bmatrix} \sqrt{3}/2 \\ 1/2 \end{bmatrix}}_{r_1} \approx 5.33 \tag{36}$$

也就是说,A 在 $span(v_1)$ 投影点 H 的坐标值为 5.33,对应向量可以写成 5.33 v_1 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 21. 二特征数据矩阵 $X_{150\times 2}$ 向 v_1 投影

通过二次投影获得 H 在 $span(e_1, e_2)$ 坐标值:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{1} \otimes \mathbf{v}_{1} = \begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix} \approx \begin{bmatrix} 4.616 & 2.665 \end{bmatrix}$$
(37)

这就是 H 在图 21 中坐标值。很容易计算,(37) 中 $v_1 \otimes v_1$ 的行列式值为 0,即 $\det(v_1 \otimes v_1) = 0$ 。数据矩阵 $X_{150\times 2}$ 在 v_1 投影 z_1 为:

$$z_{1} = Xv_{1} = \underbrace{\left[x_{1} \quad x_{2}\right]}_{X} \underbrace{\left[\frac{\sqrt{3}/2}{1/2}\right]}_{Y_{2}} \approx 0.866x_{1} + 0.5x_{2}$$
(38)

观察上式发现, z_1 相当于 x_1 和 x_2 的线性组合。请大家关注一下单位, x_1 和 x_2 的单位均为厘米,因此上式线性组合结果的单位还是厘米。

如果, x_1 和 x_2 的分别代表身高、体重数据,单位为米、公斤。这种情况, x_1 和 x_2 线性组合结果的单位就"尴尬"。因此,对于单位不统一的矩阵,可以考虑先通过标准化"去单位"。

 $X_{150\times 2}$ 在 v_1 二次投影结果 X_1 为:

$$\boldsymbol{X}_{1} = \boldsymbol{X}\boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1} = \boldsymbol{X}\boldsymbol{v}_{1}\boldsymbol{v}_{1}^{\mathrm{T}} \approx \left[\underbrace{\boldsymbol{x}_{1} \quad \boldsymbol{x}_{2}}_{\boldsymbol{X}} \right] \begin{bmatrix} 0.750 & 0.433 \\ 0.433 & 0.250 \end{bmatrix} = \begin{bmatrix} 0.750\boldsymbol{x}_{1} + 0.433\boldsymbol{x}_{2} & 0.433\boldsymbol{x}_{1} + 0.250\boldsymbol{x}_{2} \end{bmatrix}$$
(39)

而 X_1 的两个列向量都存在如下倍数关系,因此 X_1 的秩为 1:

$$X_{1} \approx \left[0.866 \times \left(0.866 x_{1} + 0.5 x_{2}\right) \quad 0.5 \times \left(0.866 x_{1} + 0.5 x_{2}\right)\right]$$
 (40)

如图 21 所示, X_1 所有点在一条通过原点的直线上。这条直线等价于 $span(v_1)$ 。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

如图 22 所示,同样以点 A(5,2) 为例, $A 在 v_2$ 方向标量投影结果为:

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \underbrace{\begin{bmatrix} -1/2 \\ \sqrt{3}/2 \end{bmatrix}}_{r_2} \approx -0.7679 \tag{41}$$

即 A 在 $span(v_2)$ 投影点的坐标值为-0.7679,对应向量可以写成 $-0.7679v_2$ 。通过二次投影获得投影点坐标值 (图 22 中 ×):

$$\begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{2} \otimes \mathbf{v}_{2} = \begin{bmatrix} 5 & 2 \end{bmatrix} \mathbf{v}_{2} \mathbf{v}_{2}^{\mathrm{T}} = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ -\sqrt{3}/4 & 3/4 \end{bmatrix} \approx \begin{bmatrix} 0.384 & -0.665 \end{bmatrix}$$
(42)

- (42) 中 $\mathbf{v}_2 \otimes \mathbf{v}_2$ 的行列式值为 0, 即 $\det(\mathbf{v}_2 \otimes \mathbf{v}_2) = 0$ 。
- (37) 和 (42) 之和还原 A 坐标值 (5, 2):

$$\begin{bmatrix} 5 & 2 \end{bmatrix} (\mathbf{v}_1 \otimes \mathbf{v}_1 + \mathbf{v}_2 \otimes \mathbf{v}_2) = \begin{bmatrix} 5 & 2 \end{bmatrix} \begin{bmatrix} 3/4 & \sqrt{3}/4 \\ \sqrt{3}/4 & 1/4 \end{bmatrix} + \begin{bmatrix} 1/4 & -\sqrt{3}/4 \\ -\sqrt{3}/4 & 3/4 \end{bmatrix} = \begin{bmatrix} 5 & 2 \end{bmatrix}$$
(43)

图 22. 二特征数据矩阵 $X_{150\times 2}$ 向 v_2 投影

 $X_{150\times 2}$ 在 v_2 投影 z_2 为:

$$z_2 = Xv_2 = \underbrace{\left[x_1 \quad x_2\right]}_{X} \underbrace{\left[\frac{-1/2}{\sqrt{3}/2}\right]}_{v_2} \approx -0.5x_1 + 0.866x_2$$
 (44)

 z_2 也是 x_1 和 x_2 的线性组合。

 $X_{150\times 2}$ 在 v_2 二次投影 X_2 为:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$\boldsymbol{X}_{2} = \boldsymbol{X}\boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2} = \boldsymbol{X}\boldsymbol{v}_{2}\boldsymbol{v}_{2}^{\mathrm{T}} \approx \begin{bmatrix} \boldsymbol{x}_{1} & \boldsymbol{x}_{2} \\ -0.433 & 0.750 \end{bmatrix} = \begin{bmatrix} 0.250 \boldsymbol{x}_{1} - 0.433 \boldsymbol{x}_{2} & -0.433 \boldsymbol{x}_{1} + 0.750 \boldsymbol{x}_{2} \end{bmatrix} (45)$$

 X_2 的秩也为 1。如图 22 所示, X_2 对应的坐标也在一条通过原点的直线上。

(39) 和 (45) 叠加还原 X:

$$X_{1} + X_{2} = X v_{1} \otimes v_{1} + X v_{2} \otimes v_{2} = X \left\{ \begin{bmatrix} 0.750 & 0.433 \\ 0.433 & 0.250 \end{bmatrix} + \begin{bmatrix} 0.250 & -0.433 \\ -0.433 & 0.750 \end{bmatrix} \right\} = XI = X$$
 (46)

顺便提一嘴,对于 2×2 方阵A和B,A + B行列式值存在如下关系:

$$\det(\mathbf{A} + \mathbf{B}) = \det(\mathbf{A}) + \det(\mathbf{B}) + \operatorname{tr}(\mathbf{A})\operatorname{tr}(\mathbf{B}) - \operatorname{tr}(\mathbf{A}\mathbf{B}) \tag{47}$$

请大家将 $\mathbf{v}_1 \otimes \mathbf{v}_1$ 和 $\mathbf{v}_2 \otimes \mathbf{v}_2$ 代入上式验证。

第二个规范正交基

给定如下规范正交基 $W = [w_1, w_2]$:

$$\boldsymbol{W} = \begin{bmatrix} \boldsymbol{w}_1 & \boldsymbol{w}_2 \end{bmatrix} = \begin{bmatrix} \sqrt{2}/2 & -\sqrt{2}/2 \\ \sqrt{2}/2 & \sqrt{2}/2 \end{bmatrix}$$
 (48)

图 23 和图 24 所示为二特征数据矩阵 $X_{150\times 2}$ 向 w_1 和 w_2 投影。请按照本节之前分析 V 的逻辑,自行分析数据在 W 中的投影,并计算 W 的行列式值。

图 23. 二特征数据矩阵 X_{150×2} 向 w₁ 投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 24. 二特征数据矩阵 $X_{150\times 2}$ 向 w_2 投影

第三个规范正交基

给定如下规范正交基 $U = [u_1, u_2]$:

$$\boldsymbol{U} = \begin{bmatrix} \boldsymbol{u}_1 & \boldsymbol{u}_2 \end{bmatrix} = \begin{bmatrix} 1/2 & -\sqrt{3}/2 \\ \sqrt{3}/2 & 1/2 \end{bmatrix}$$
 (49)

图 25 和图 26 所示为二特征数据矩阵 $X_{150\times 2}$ 向 u_1 和 u_2 投影。请大家分析数据在 U 中的投影,并计算 U 的行列式值。

图 25. 二特征数据矩阵 $X_{150\times 2}$ 向 u_1 投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 26. 二特征数据矩阵 $X_{150\times 2}$ 向 u_2 投影

旋转角度连续变化

前文提过,在 \mathbb{R}^2 中不同规范正交基之间仅差在旋转角度上。比较图 21 ~ 图 26 这六幅图,当旋转角度连续变化时,投影结果 z_1 和 z_2 也会连续变化。给出如下更具一般性的矩阵 V:

$$V = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
 (50)

其中, θ 代表逆时针旋转角度。Z = XV可以展开写成:

$$\underbrace{\begin{bmatrix} z_1 & z_2 \end{bmatrix}}_{Z} = \underbrace{\begin{bmatrix} x_1 & x_2 \end{bmatrix}}_{X} \underbrace{\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}}_{V} = \underbrace{\begin{bmatrix} \cos \theta x_1 - \sin \theta x_2 & \sin \theta x_1 + \cos \theta x_2 \end{bmatrix}}_{V} \tag{51}$$

对于上式中 z_1 和 z_2 ,我们可以分析它们各自的向量模,也可以计算 z_1 和 z_2 之间的向量夹角余弦值、夹角弧度、角度等。

从统计视角来看, z_1 和 z_2 代表两列数值, 我们可以分析它们各自的均值、方差、标准差, 也可以计算 z_1 和 z_2 的协方差、相关性系数。

而上述这些量值都随着 θ 变化而连续变化。有变化就有最大值、最小值,就有优化问题。本书后续介绍的特征值分解和奇异值分解背后都离不开优化视角。这是本书第 18 章要讨论的话题。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

10.5 四特征数据投影:标准正交基

本章最后两节以四特征数据矩阵为例,扩展前文分析案例。本节先从最简单的标准正交基 [e_1 , e_2 , ..., e_D] 入手。

一次投影: 标量投影

前文提到过,一次投影实际上就是"标量投影"。图 27 (a) 所示为鸢尾花数据集矩阵 X 在 e_1 方向上标量投影的运算热图。

从行向量角度来看, $x^{(i)}e_1 \rightarrow x_{i,1}$ 代表 \mathbb{R}^D 空间坐标值 $x^{(i)}$ 投影到 span(e_1) 这个子空间后,坐标值为 $x_{i,1}$ 。

\Lambda 再次强调,向量空间 span(e_1)维度为 1。 $x_{i,1}$ 是 $x^{(i)}$ 在 span(e_1)的坐标值。

从列向量角度来看, $[x_1, x_2, x_3, x_4]e_1 \rightarrow x_1$,是一个线性组合过程。而 $e_1 = [1, 0, 0, 0]^T$,线性组合结果只保留了鸢尾花数据集第一列 x_1 ,即花萼长度。

请大家按照这个思路分析图 27 (b)、(c)、(d)三幅热图运算。请大家思考,要是想计算鸢尾花花萼长度和花萼宽度之和,用矩阵乘法怎样完成?

图 27. 四特征数据矩阵 $X_{150\times4}$ 分别向 e_1 、 e_2 、 e_3 、 e_4 投影,一次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

二次投影

如前文所述,本章所谓的"二次投影"实际上就是向量投影。如图 28 所示,X 向 e_1 方向向量投影结果就是 X 和 $e_1 \otimes e_1$ 的矩阵乘积。乘积结果是,只保留鸢尾花数据集第一列——花萼长度,其他数据均置 0。请大家按照这个思路自行分析图 29、图 30、图 31。此外,容易计算 $e_1 \otimes e_1$ 、 $e_2 \otimes e_2$ 、 $e_3 \otimes e_3$ 、 $e_4 \otimes e_4$ 的行列式值都为 0。

图 28. 四特征数据矩阵 $X_{150\times4}$ 向 e_1 方向向量投影,二次投影

图 29. 四特征数据矩阵 $X_{150\times 4}$ 向 e_2 方向向量投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载:https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 30. 四特征数据矩阵 $X_{150\times4}$ 向 e_3 方向向量投影,二次投影

图 31. 四特征数据矩阵 $X_{150\times4}$ 向 e_4 方向向量投影,二次投影

向平面投影

本节之前提到的都是向单一方向投影。下面,我们用一个例子说明向某个二维向量空间投影。

如图 32 所示,X 向 $[e_1, e_2]$ 基底张成的向量空间标量投影,这个过程也相当于降维,从 4 维降到 2 维,只保留了鸢尾花花萼长度、花萼宽度两个特征。

本书第 1 章介绍过成对特征散点图,请大家思考如何用矩阵乘法运算获得每幅散点图数据矩阵。

图 32. 四特征数据矩阵 $X_{150\times4}$ 向 $[e_1, e_2]$ 方向标量投影

图 33 所示为 X 向 $[e_1, e_2]$ 基底张成的向量空间向量投影,结果相当于图 28 和图 29 结果"叠加",即 $X_1 + X_2$ 。很明显, $X_1 + X_2$ 并没有还原 X。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 33. 四特征数据矩阵 $X_{150\times4}$ 向 $[e_1, e_2]$ 方向向量投影

层层叠加:还原原始矩阵

本章前文 (12) 告诉我们,数据矩阵 X 在规范正交基 [$v_1, v_2, ..., v_D$] 中每个方向上向量投影层层叠加可以完全还原原始数据。而标准正交基 [$e_1, e_2, ..., e_D$] 可以视作特殊的规范正交基。

观察图 34 得知,要想完整还原 X,需要图 28、图 29、图 30、图 31 四副热图叠加,即 $X = X_1 + X_2 + X_3 + X_4$ 。显然, $X_1 \times X_2 \times X_3 \times X_4$ 这四个矩阵的秩都是 1。

图 34. 投影数据矩阵的层层叠加还原数据矩阵 $X_{150\times 4}$

图 35 是张量积层层叠加得到单位矩阵 I, 它是数据还原的另外一个视角:

$$\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1} + \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} + \boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3} + \boldsymbol{e}_{4} \otimes \boldsymbol{e}_{4} = \boldsymbol{I}$$

$$(52)$$

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 35. 张量积的层层叠加还原 4×4单位矩阵

10.6 四维数据投影: 规范正交基

有了上一节内容作为基础,这一节提高难度,我们用一个规范正交基重复上一节所有计算。 大家阅读这一节时,请对比上一节内容。

某个"无数里挑一"的规范正交基

我们恰好找到了一个 4×4 规范正交基V, 具体如下:

$$\mathbf{V} = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \end{bmatrix} = \begin{bmatrix} 0.751 & 0.284 & 0.502 & 0.321 \\ 0.380 & 0.547 & -0.675 & -0.317 \\ 0.513 & -0.709 & -0.059 & -0.481 \\ 0.168 & -0.344 & -0.537 & 0.752 \end{bmatrix}$$
(53)

大家可能好奇我们怎么找到这个V,本章后面会揭晓答案。

图 36 所示为规范正交基 V 乘其转置 V^{T} 得到单位矩阵。大家可以自己试着验算上式是否满足 $VV^{T} = I$,即方阵 V 每一列列向量都是单位向量,且 V 的列向量两两正交。上式,V 仅保留小数点后 3 位, VV^{T} 结果非常接近单位矩阵 I。

从几何角度来看,规范正交基V对应的几何操作是四维空间旋转。

图 36. 规范正交基 V乘其转置得到 4×4 单位矩阵

V中的像

如图 37 所示,以为规范正交基 V 桥梁,矩阵乘法 Z = XV 完成 X 到 Z 的映射。Z 就是 X 在 V 中的像,根据 $Xv_j = z_j$,下面逐一分析矩阵 Z 的列向量。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 37. 四特征数据矩阵 $X_{150\times4}$ 投影到规范正交基 V 得到 Z

第1列向量 🗓

图 38 所示为鸢尾花数据集矩阵 X 在 v1 方向上标量投影的运算热图。

从行向量角度来看, $x^{(i)}v_1 \rightarrow z_{i,1}$ 代表 \mathbb{R}^D 空间坐标值 $x^{(i)}$ 投影到 $\mathrm{span}(v_1)$ 这个子空间后坐标值 变成 $z_{i,1}$ 。

从列向量角度来看, $[x_1, x_2, x_3, x_4]v_1 \rightarrow z_1$, 是一个线性组合过程, 即:

$$\mathbf{z}_{1} = \mathbf{X}\mathbf{v}_{1} = \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3} & \mathbf{x}_{4} \end{bmatrix} \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix} = 0.751\mathbf{x}_{1} + 0.380\mathbf{x}_{2} + 0.513\mathbf{x}_{3} + 0.168\mathbf{x}_{4}$$
 (54)

上式说明,0.7512 倍 x_1 、0.380 倍 x_2 、0.513 倍 x_3 、0.168 倍 x_4 合成得到了向量 z_1 。

图 38. 四特征数据矩阵 $X_{150\times 4}X$ 向 v_1 方向标量投影,一次投影

如图 39 所示, z_1 再乘 v_1^T ,便得到 X_1 。不难理解, X_1 的每一列都是 z_1 乘一个标量系数。也就是说, X_1 的四个列向量之间存在倍数关系,即,

$$X_{1} = z_{1} v_{1}^{T} = z_{1} \begin{bmatrix} 0.751 & 0.380 & 0.513 & 0.168 \end{bmatrix} = \begin{bmatrix} 0.751 z_{1} & 0.380 z_{1} & 0.513 z_{1} & 0.168 z_{1} \end{bmatrix}$$
 (55)

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

显然, X_1 的秩为 1, 即 rank(X_1) = 1。

总结来说,图 38 和图 39 用了两步完成了"二次投影",即向量投影。

图 39. 四特征数据矩阵 $X_{150\times4}$ 乘 v_1 得到 X_1

下面,我们用向量张量积方法完成同样的计算。

首先计算张量积 ν₁ ⊗ ν₁:

$$\mathbf{v}_{1} \otimes \mathbf{v}_{1} = \mathbf{v}_{1} \mathbf{v}_{1}^{\mathrm{T}} = \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix} @ \begin{bmatrix} 0.751 \\ 0.380 \\ 0.513 \\ 0.168 \end{bmatrix}^{\mathrm{T}} = \begin{bmatrix} 0.564 & 0.285 & 0.385 & 0.126 \\ 0.285 & 0.144 & 0.194 & 0.063 \\ 0.385 & 0.194 & 0.263 & 0.086 \\ 0.126 & 0.063 & 0.086 & 0.028 \end{bmatrix}$$
(56)

图 40 所示为上述运算热图。很容易发现,张量积为对称矩阵。请大家自行计算张量积的秩是 否为 1。

▲注意,(56)上式仅仅保留小数点后3位数值。

图 40. 计算张量积 ν₁ ⊗ ν₁

图 41 所示为 X 和张量积 $v_1 \otimes v_1$ 乘积。几何视角来看,X 向 v_1 向量投影得到 X_1 ,即所谓"二次投影"。

请大家特别注意一点,X 和 X_1 在热图上已经非常接近。我们在选取 v_1 时,有特殊的"讲究",这就是为什么在本节开头说 V 是"无数里挑一"的原因。我们将会在本书下一个板块——矩阵分解,和大家深入探讨如何获得这个特殊的 V。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 41. 四特征数据矩阵 $X_{150\times4}$ 向 v_1 方向向量投影,二次投影

第 2 列向量 v₂

图 42 展示获得 z_2 和 X_2 的过程。请大家根据之前分析 v_1 的思路自行分析这两图。

图 42. 四特征数据矩阵 $X_{150\times 4}X$ 向 v_2 投影,一次投影,二次投影

同样,利用张量积完成 $X_{150\times4}$ 向 v_2 二次投影。大家自行计算张量积 $v_2\otimes v_2$ 具体值,按照前文 思路分析图 43。有必要指出一点,对比 X_1 , X_2 热图和 X 相差很大。

图 43. 四特征数据矩阵 $X_{150\times4}$ 向 v_2 投影,二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

第3列向量 ٧3

大家自行分析图44、图45。再次强调,一次投影就是标量投影;二次投影相当于向量投影。

图 44. 四特征数据矩阵 $X_{150\times4}$ 向 v_3 投影,一次投影,二次投影

图 45. 四特征数据矩阵 $X_{150\times4}$ 向 v_3 投影,二次投影

第4列向量 ٧4

大家自行分析图 46、图 47。特别注意比较 X_1 、 X_2 、 X_3 、 X_4 的四副热图差异。

图 46. 四特征数据矩阵 $X_{150\times4}$ 向 ν_4 投影,一次投影和二次投影

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套徽课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 47. 四特征数据矩阵 $X_{150\times4}$ 向 v_4 投影,二次投影

层层叠加

类似前文,我们也从两个视角讨论层层叠加还原原矩阵。

如图 48 所示,数据矩阵 X 在规范正交基 $[v_1, v_2, ..., v_D]$ 中每个方向上向量投影层层叠加完全还原原始数据。

图 48. 层层叠加还原四特征数据矩阵 X150×4

图 48 告诉我们,要想完整还原 X,需要四副热图叠加,即 $X = X_1 + X_2 + X_3 + X_4$ 。我们已经很清楚 X_1 、 X_2 、 X_3 、 X_4 这四个矩阵的秩都是 1。而 X 本身的秩为 4,即 rank(X) = 4。

建议大家仔细对比图 48 中 X、 X_1 、 X_2 、 X_3 、 X_4 这五幅热图色差,它们采用完全相同的色谱。 前文已经提到 X_1 已经非常接近 X_2 。也就是说,我们可以用秩为 1 的 X_1 近似秩为 4 的 X_2 。

如图 49 所示, 这四个张量积层层叠加得到单位矩阵, 即:

$$\boldsymbol{v}_{1} \otimes \boldsymbol{v}_{1} + \boldsymbol{v}_{2} \otimes \boldsymbol{v}_{2} + \boldsymbol{v}_{3} \otimes \boldsymbol{v}_{3} + \boldsymbol{v}_{4} \otimes \boldsymbol{v}_{4} = \boldsymbol{I}$$
 (57)

如前文所述,(57) 是数据还原的另外一个视角。本章前文提到 (9),矩阵乘单位矩阵结果为其本身,即 XI = X。而单位矩阵 I 可以按 (57) 分解。这也就是说,张量积层层叠加得到了单位矩阵 I、等价于还原原始数据。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

图 49. 张量积层层累加获得 4×4单位矩阵

Bk4_Ch10_01.py 绘制本章前文大部分热图。

10.7 数据正交化

成对特征散点图

本节再回过头来分析图 37 中数据矩阵 \mathbf{Z} 。本书第 1 章提到,对于多特征 (D > 3) 数据矩阵,成对特征散点图可以帮助我们可视化数据分布。图 50 所示为矩阵 \mathbf{Z} 的成对特征散点图。这幅图中,对角线上的六幅图是每个特征数据分布的直方图,左下角六幅图是二元概率密度估计等高线图。

图 50. Z 成对特征分析图

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

两个格拉姆矩阵

如图 51 所示, Z^{T} 乘 Z 得到 Z 的格拉姆矩阵:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} z_{1}^{\mathsf{T}} \\ z_{2}^{\mathsf{T}} \\ \vdots \\ z_{D}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} z_{1} & z_{2} & \cdots & z_{D} \end{bmatrix} = \begin{bmatrix} z_{1}^{\mathsf{T}}z_{1} & z_{1}^{\mathsf{T}}z_{2} & \cdots & z_{1}^{\mathsf{T}}z_{D} \\ z_{2}^{\mathsf{T}}z_{1} & z_{2}^{\mathsf{T}}z_{2} & \cdots & z_{2}^{\mathsf{T}}z_{D} \\ \vdots & \vdots & \ddots & \vdots \\ z_{D}^{\mathsf{T}}z_{1} & z_{D}^{\mathsf{T}}z_{2} & \cdots & z_{D}^{\mathsf{T}}z_{D} \end{bmatrix}$$
(58)

图 51. 矩阵 Z 的格拉姆矩阵

(58) 写成向量内积形式:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} z_{1} \cdot z_{1} & z_{1} \cdot z_{2} & \cdots & z_{1} \cdot z_{D} \\ z_{2} \cdot z_{1} & z_{2} \cdot z_{2} & \cdots & z_{2} \cdot z_{D} \\ \vdots & \vdots & \ddots & \vdots \\ z_{D} \cdot z_{1} & z_{D} \cdot z_{2} & \cdots & z_{D} \cdot z_{D} \end{bmatrix} = \begin{bmatrix} \langle z_{1}, z_{1} \rangle & \langle z_{1}, z_{2} \rangle & \cdots & \langle z_{1}, z_{D} \rangle \\ \langle z_{2}, z_{1} \rangle & \langle z_{2}, z_{2} \rangle & \cdots & \langle z_{2}, z_{D} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle z_{D}, z_{1} \rangle & \langle z_{D}, z_{2} \rangle & \cdots & \langle z_{D}, z_{D} \rangle \end{bmatrix}$$

$$(59)$$

观察图 51, 发现 ZTZ 恰好是对角方阵, 即:

$$\mathbf{Z}^{\mathsf{T}}\mathbf{Z} = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_D \end{bmatrix} = \boldsymbol{\Lambda}$$

$$(60)$$

这说明, Z的列向量两两正交, 即:

$$\mathbf{z}_{i}^{\mathsf{T}}\mathbf{z}_{j} = \mathbf{z}_{j}^{\mathsf{T}}\mathbf{z}_{i} = \mathbf{z}_{i} \cdot \mathbf{z}_{j} = \mathbf{z}_{j} \cdot \mathbf{z}_{i} = \left\langle \mathbf{z}_{i}, \mathbf{z}_{j} \right\rangle = \left\langle \mathbf{z}_{j}, \mathbf{z}_{i} \right\rangle = 0, \quad i \neq j$$
(61)

对比X的格拉姆矩阵:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$G = X^{\mathsf{T}} X = \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \\ \mathbf{x}_{2}^{\mathsf{T}} \\ \vdots \\ \mathbf{x}_{D}^{\mathsf{T}} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{2} & \cdots & \mathbf{x}_{1}^{\mathsf{T}} \mathbf{x}_{D} \\ \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{2} & \cdots & \mathbf{x}_{2}^{\mathsf{T}} \mathbf{x}_{D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{D}^{\mathsf{T}} \mathbf{x}_{1} & \mathbf{x}_{D}^{\mathsf{T}} \mathbf{x}_{2} & \cdots & \mathbf{x}_{D}^{\mathsf{T}} \mathbf{x}_{D} \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{x}_{1} \cdot \mathbf{x}_{1} & \mathbf{x}_{1} \cdot \mathbf{x}_{2} & \cdots & \mathbf{x}_{1} \cdot \mathbf{x}_{D} \\ \mathbf{x}_{2} \cdot \mathbf{x}_{1} & \mathbf{x}_{2} \cdot \mathbf{x}_{2} & \cdots & \mathbf{x}_{2} \cdot \mathbf{x}_{D} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{D} \cdot \mathbf{x}_{1} & \mathbf{x}_{D} \cdot \mathbf{x}_{2} & \cdots & \mathbf{x}_{D} \cdot \mathbf{x}_{D} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{x}_{1}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{1}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{1}, \mathbf{x}_{D} \rangle \\ \langle \mathbf{x}_{2}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{2}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{2}, \mathbf{x}_{D} \rangle \\ \vdots & \vdots & \ddots & \vdots \\ \langle \mathbf{x}_{D}, \mathbf{x}_{1} \rangle & \langle \mathbf{x}_{D}, \mathbf{x}_{2} \rangle & \cdots & \langle \mathbf{x}_{D}, \mathbf{x}_{D} \rangle \end{bmatrix}$$

$$(62)$$

图 52 所示为计算矩阵 X 的格拉姆矩阵的热图。请大家格外注意一点,图 52 中矩阵 G 的迹,即对角线元素之和,tr(G) = 9539.29。而图 51 中矩阵 Λ 的迹和 G 的迹相同, $tr(G) = tr(\Lambda) = 9539.29$ 。本书后面还会反复提到这一点。

V因 X而生

细细想来,上一节介绍的Z = XV的数据转换很神奇!

还是以鸢尾花数据为例,如图 52 所示,G 中没有一个元素为 0! G 主对角线元素代表 X 的列向量模的平方,G 主对角线以外元素代表 X 两个特定列向量的内积。

如图 51 所示,经过数据转换 $\mathbf{Z} = \mathbf{X}\mathbf{V}$,矩阵 \mathbf{Z} 的格拉姆矩阵为对角方阵 $\mathbf{\Lambda}$ 。 $\mathbf{\Lambda}$ 的主对角线以外元素都为 $\mathbf{0}$ 。也就是说, $i \neq j$ 时, \mathbf{z}_i 和 \mathbf{z}_j 都是行数为 $\mathbf{1}$ 50 的列向量, \mathbf{z}_i 和 \mathbf{z}_j 的向量内积竟然为 $\mathbf{0}$ 。也就是说 $\mathbf{1}$ 50 个成对元素乘积之和为 $\mathbf{0}$! 这种情况在图 $\mathbf{5}$ 1 中竟然发生了 $\mathbf{1}$ 2 次,本质上发生了 $\mathbf{6}$ 次。

对于鸢尾花数据矩阵 X 来说,(53) 中给出的这个 V 真可谓"无数里挑一"!

换句话说, $V \boxtimes X$ 而生!

图 52. 矩阵 X 的格拉姆矩阵

▲注意,统计视角下,矩阵 Z 的列向量两两内积为 0,不代表两两相关性系数为 0。本系列 丛书《概率统计》将介绍如何通过正交投影获得两两相关性系数为 0 的数据矩阵。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

对角化

将 Z = XV 其代入 (60) 得到:

$$\mathbf{Z}^{\mathrm{T}}\mathbf{Z} = (\mathbf{X}\mathbf{V})^{\mathrm{T}}\mathbf{X}\mathbf{V} = \mathbf{V}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\mathbf{V} = \mathbf{V}^{\mathrm{T}}\mathbf{G}\mathbf{V} = \mathbf{\Lambda}$$
(63)

再进一步,由于 V 为规范正交基,因此 $V^TV = I$,根据 (63) 等式关系,G 可以写成:

$$G = V \Lambda V^{\mathrm{T}} \tag{64}$$

这就是说,如图 53 所示,X 的格拉姆矩阵 G 可以通过某种矩阵分解得到三个矩阵的乘积。其 中. V 为正交矩阵. Λ 为对角方阵。从 G 到 Λ 也是一个方阵**对角化** (diagonalization) 的过程。

图 53. 对 G 矩阵分解

为了获得 (64), 就需要本书下一个板块要介绍的重要线性代数工具——特征值分解 (eigen decomposition)

回看规范正交基 V: 双标图

像 Z 这样具有这种正交性 (orthogonality) 的数据应用场合很多,因此我们再深究一步。

类似(54),我们可以把 z_1 、 z_2 、 z_3 、 z_4 写成如下线性组合:

$$z_{1} = Xv_{1} = 0.751x_{1} + 0.380x_{2} + 0.513x_{3} + 0.168x_{4}$$

$$z_{2} = Xv_{2} = 0.284x_{1} + 0.547x_{2} - 0.709x_{3} - 0.344x_{4}$$

$$z_{3} = Xv_{3} = 0.502x_{1} - 0.675x_{2} - 0.059x_{3} - 0.537x_{4}$$

$$z_{4} = Xv_{4} = 0.321x_{1} - 0.317x_{2} - 0.481x_{3} + 0.752x_{4}$$

$$V = \begin{bmatrix}
0.751 & 0.284 & 0.502 & 0.321 \\
0.380 & 0.547 & -0.675 & -0.317 \\
0.513 & -0.709 & -0.059 & -0.481 \\
0.168 & -0.344 & -0.537 & 0.752
\end{bmatrix}$$
(65)

请大家格外注意(65)各个元素颜色对应关系。

我们给 z_1 、 z_2 、 z_3 、 z_4 取一个新的名字——主成分 (Principal Component, PC)。 z_1 、 z_2 、 z_3 、 z_4 分 别对应 PC₁、PC₂、PC₃、PC₄。显然 PC₁、PC₂、PC₃、PC₄相互垂直。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。 版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

有了 PC_1 、 PC_2 、 PC_3 、 PC_4 ,我们可以绘制图 54 这幅图,图中有 6 幅子图,每幅子图都是一个 **双标图** (biplot)。

我们以图54中浅蓝色阴影背景子图为例介绍如何理解双标图。

在 PC₁-PC₂平面上, x_1 对应坐标点为 (0.751, 0.284), 这意味着 x_1 分别给 z_1 和 z_2 贡献 0.751 x_1 和 0.284 x_1 。同理, 我们可以发现 x_2 分别给 z_1 和 z_2 贡献 0.380 x_2 和 0.547 x_2 。以此类推。

反向来看, x_1 在 PC₁、PC₂、PC₃、PC₄ 方向上的分量分别为 $0.751x_1$ 、 $0.284x_1$ 、 $0.502x_1$ 、 $0.321x_1$, 这四个成分满足:

$$0.751^2 + 0.284^2 + 0.502^2 + 0.321^2 = 1 (66)$$

反向正交投影

由于Z = XV, 且正交矩阵V可逆, X则可以通过Z反推得到, 即:

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。 代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在 B 站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

$$X = \mathbf{Z}\mathbf{V}^{-1} = \mathbf{Z}\mathbf{V}^{\mathrm{T}} \tag{67}$$

图 55 所示为 X 和 Z 相互转化的关系。这幅图告诉我们另外一个重要性质——V 和 V^{T} 都是规范正交基!

图 55. X和 Z 之间关系

将 (67) 展开写:

$$\boldsymbol{X} = \boldsymbol{Z}\boldsymbol{V}^{\mathrm{T}} = \boldsymbol{Z} \begin{bmatrix} \boldsymbol{v}^{(1)} \\ \boldsymbol{v}^{(2)} \\ \vdots \\ \boldsymbol{v}^{(D)} \end{bmatrix}^{\mathrm{T}} = \boldsymbol{Z} \begin{bmatrix} \boldsymbol{v}^{(1)\mathrm{T}} & \boldsymbol{v}^{(2)\mathrm{T}} & \cdots & \boldsymbol{v}^{(D)\mathrm{T}} \end{bmatrix} = \begin{bmatrix} \boldsymbol{Z}\boldsymbol{v}^{(1)\mathrm{T}} & \boldsymbol{Z}\boldsymbol{v}^{(2)\mathrm{T}} & \cdots & \boldsymbol{Z}\boldsymbol{v}^{(D)\mathrm{T}} \end{bmatrix}$$
(68)

 $V^{T} = [v^{(1)T}, v^{(2)T}, ..., v^{(i)T}]$ 也是一个规范正交基。上式代表"反向"正交投影的过程。

取出(68)矩阵 X 第 j 列对应的等式:

$$\boldsymbol{x}_{j} = \boldsymbol{Z}\boldsymbol{v}^{(j)\mathrm{T}} = \begin{bmatrix} \boldsymbol{z}_{1} & \boldsymbol{z}_{2} & \cdots & \boldsymbol{z}_{D} \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_{j,1} \\ \boldsymbol{v}_{j,2} \\ \vdots \\ \boldsymbol{v}_{j,D} \end{bmatrix} = \boldsymbol{v}_{j,1}\boldsymbol{z}_{1} + \boldsymbol{v}_{j,2}\boldsymbol{z}_{2} + \cdots + \boldsymbol{v}_{j,D}\boldsymbol{z}_{D}$$

$$(69)$$

→(69)这一视角在主成分分析中非常重要,我们将会在《数据科学》一书中深入探讨。

本 PDF 文件为作者草稿,发布目的为方便读者在移动终端学习,终稿内容以清华大学出版社纸质出版物为准。版权归清华大学出版社所有,请勿商用,引用请注明出处。

代码及 PDF 文件下载: https://github.com/Visualize-ML

本书配套微课视频均发布在B站——生姜 DrGinger: https://space.bilibili.com/513194466

欢迎大家批评指教,本书专属邮箱: jiang.visualize.ml@gmail.com

本书第 1 章用 Streamlit 制作了一个 App,我们利用 Plotly 可视化鸢尾花数据集的热图、平面散点图、三维散点图、成对特征散点图。本章"照葫芦画瓢"照搬这个 App,采用完全一致的图像可视化转换得到的数据矩阵 \mathbf{Z} 。请大家参考 Streamlit_Bk4_Ch10_01.py。

本章是个分水岭。如果本章前两节内容,你读起来毫无压力,恭喜你,你可以顺利进入本书下一个板块——矩阵分解——的学习。阅读本章时,如果感觉很吃力,请回头重读前9章内容。

大家可能会好奇,本章中神奇的 V 是怎么算出来的? 其实本章代码文件已经给出了答案——特征值分解。这是本书下一个板块要讲的重要内容之一。

有数据的地方,就有矩阵!有矩阵的地方,就有向量!有向量的地方,就有几何!

再加一句,有向量的地方,肯定有空间!

请大家带着这四句话,进入本书下一阶段的学习。