Intelligent Systems Exercises Block 2 Chapter 3 Classification Trees

Escuela Técnica Superior de Ingeniería Informática Dep. de Sistemas Informáticos i Computación Universitat Politècnica de València

28 de octubre de 2016

Questions

- 1 C (Exam 18th January 2013) About the components involved in a Decision Classification Tree (DCT), which of the following statements is FALSE?
 - A) The queries of the splits are of the form $\mathbf{y} \in B$?, $B \subseteq E$
 - B) The quality of a split is measured by the impurity reduction produced by the split, and the there are different impurity measures such as the entropy impurity or misclassification impurity
 - C) In a DCT, it is desirable that the resubstitution error estimate is 0
 - D) A good class label for a terminal node $t \in \hat{T}$ es: $c^* = \arg \max \hat{P}(c \mid t)$
- 2 A (Exam 18th January 2013) We want to build a classification tree T from a given set of learning samples for a four-class (C=4) classification problem. During the process of building the tree, we obtain three nodes with the following estimated probabilities that each node belongs to a class:

t	$\hat{P}(1 \mid t)$	$\hat{P}(2 \mid t)$	$\hat{P}(3 \mid t)$	$\hat{P}(4 \mid t)$
t_1	2^{-2}	2^{-2}	2^{-2}	2^{-2}
t_2	2^{-1}	2^{-1}	0	0
t_3	2^0	0	0	0

Which node is the most impure according to the entropy concept?

- A) t_1 . $\mathcal{I}(t_1) = -(4 \cdot 2^{-2} \log_2 2^{-2}) = 2$ B) t_2 . $\mathcal{I}(t_2) = -(2 \cdot 2^{-1} \log_2 2^{-1}) = 1$ C) t_3 . $\mathcal{I}(t_3) = -(1 \cdot 2^0 \log_2 2^0) = 0$

- D) There is not a single node that is more impure than the others.
- 3 A (Exam 30th January 2013) Let t be a node in a classification tree with N(t) elements of \mathbb{R}^D , such that $N_c(t)$ elements belong to class c. Show which of the following statements is FALSE:
 - A) A split with minimal entropy H(t) is an optimal split
 - B) t can be considered a terminal node if the impurity reduction obtained with the best split is not large enough; that is, if $\max_{j,r} \Delta \mathcal{I}(j,r,t) < \epsilon$ where $j \in \{1,2,\ldots,D\}$ is a dimension and $r \in \mathbb{R}$ is a threshold of a one-dimension
 - C) A good way to assess the impurity of t is through the entropy, H(t), as the number of bits associated to the decision among the classes represented in t.
 - D) If t is considered a terminal or leaf node, it is recommendable to assign it a class label c^* such that $N_{c^*}(t)/N(t)$ is maximum.
- 4 | C | (Exam 15th January 2014) Consider a classification problem in C classes $c = 1, \ldots, C$ for which we have learnt a classification tree T. Let t be a node whose impurity is given by the entropy, H(t), associated to the conditional (posterior) probability of class c in node $t, P(1 \mid t), \ldots, P(C \mid t)$ will be considered as a totally pure node:

 - A) When classes have the same probability; that is, $P(1 \mid t) = \cdots = P(C \mid t) = \frac{1}{C}$. B) It exists a class c^* whose probability is higher than the rest of classes; that is, $P(c^* \mid t) > P(c \mid t) \ \forall c \neq c^*$. C) It exists a class c^* with probability 1; that is, $P(c^* \mid t) = 1$.

 - D) None of the above.

- $5 \mid A \mid$ (Exam 15th January 2014) We have a classification problem in two classes c = 1, 2 for objects represented by means of two-dimensional feature vectors, i.e. $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. We have four training samples: $\mathbf{y_1} = (1, 0.2)^t$, belongs to class 1; and $\mathbf{y_2} = (2,0.2)^t$, $\mathbf{y_3} = (3,0.8)^t$ and $\mathbf{y_4} = (1,0.8)^t$, belong to class 2. We want to build a Decision Classification Tree (DCT) for this problem by using the impurity reduction (in terms of entropy) to measure the quality of a split. In the case of the root node, and assuming we only consider the feature y_1 , which of the following statements is **true**? (Note: log(1/3) = -1.585, log(2/3) = -0.585).
 - A) The best split is $y_1 \leq 1$.
 - B) The best split is $y_1 \leq 2$.
 - C) The best split is $y_1 \leq 3$.
 - D) None of the above.
- 6 C (Exam 15th January 2014) Consider a classification problem in C classes $c=1,\ldots,C$ for which we have learnt a classification tree T. Let t be a terminal node of T with posterior probabilities $\hat{P}(1 \mid t), \ldots, \hat{P}(C \mid t)$. A simple criterion to assign a class label to t is:
 - A) The class with minimum posterior probability.
 - B) The class with posterior probability close to the mean (i.e. $\frac{1}{C}$).
 - C) The class with maximum posterior probability.
 - D) None of the above.
- 7 B (Exam 28th January 2014) Consider a classification problem in two classes, c = 1, 2, for objects represented by means of real-valued two-dimensional feature vectors; that is, $\mathbf{y} = (y_1, y_2) \in \mathbb{R}^2$. Let T be a classification tree for this problem and t a non-terminal node of T. Let B_1 and B_2 represent the minimum and maximum values of the two features for classes 1 and 2, respectively; particularly, B_1 and B_2 represent $[\min y_1, \min y_2] \times [\max y_1, \max y_2]$ for each class, respectively. Let's assume that $B_1 = [1.5, 0.6] \times [2.3, 3.5]$ for class 1 and $B_2 = [2.5, 1.3] \times [3.8, 3.2]$ for class 2. In terms of impurity reduction (measured with the entropy), which is the best split for t?
 - A) $y_1 \leq 3.8$
 - B) $y_1 \le 2.3$

 - C) $y_2 \le 1.3$ D) $y_2 \le 3.5$
- 8 C (January 13, 2015) Let's consider a decision of classification among 4 classes, A, B, C, D, whose probabilities are $P_A = P_B = P_C = P_D$. According to the entropy concept, the impurity of this decision is ...
 - A) $+\infty$
 - B) the minimum possible impurity

 - D) lower than the impurity of a decision where $P_A = P_B \neq P_C = P_D$
- 9 C (January 13, 2015) During the execution of the algorithm DCT (algorithm for learning a Decision Classification Tree), how many recursive calls are made?
 - A) two recursive calls in all cases
 - B) no recursive calls because DCT is an iterative algorithm
 - C) no recursive calls if the node is declared as a terminal node or two calls otherwise
 - D) one recursive call if the node is declared as a terminal node or two calls otherwise
- 10 D (January 2016) Let's assume we apply the Decision Classification Tree (DCT) algorithm for a two-class problem, A and B. The DCT algorithm reaches a node t which includes two data: one sample that belongs to class A and the other belongs to class B. The entropy impurity of t, $\mathcal{I}(t)$, is:
 - A) I(t) < 0.0
 - B) $0.0 \le \mathcal{I}(t) < 0.5$
 - C) $0.5 \le \mathcal{I}(t) < 1.0$
 - $\mathcal{I}(t) = -\hat{P}(A \mid t) \, \log_2 \hat{P}(A \mid t) \, \, \hat{P}(B \mid t) \, \log_2 \hat{P}(B \mid t) = -\frac{1}{2} \log_2 \frac{1}{2} \frac{1}{2} \log_2 \frac{1}{2} = 1$ D) $1.0 \le \mathcal{I}(t)$

Problems

1. (January 26, 2015) In order to learn a classification tree, we have six two-dimensional samples that belong to three classes, A, B and C. The feature vectors of these samples are shown in the figure on the right $(A = \circ, B = \bullet \text{ and } C = \times)$.

After applying some recursive calls of the DCT algorithm (with $\epsilon=0.5$ bits), we obtain the three-node subtree shown in the figure below. This subtree results from an optimal division of the samples into two subsets through the "split" (2,4.0) (that is, $y_2 \leq 4$, where y_2 is the vertical axis). The table below shows the values of some of the parameters obtained during the process of building this subtree.

Node	Split	$P(A \mid t_i)$	$P(B \mid t_i)$	$P(C \mid t_i)$	$P_{t_i}(L)$	$P_{t_i}(R)$	$\mathcal{I}(t_i)$	$\Delta \mathcal{I}(t_1)$
t_1	(2,4)	1/2	1/3	1/6	1/2	1/2	1.459	1.000
t_2	-	1	0	0	_	_	0	_
t_3		0	2/3	1/3				
t_4								
t_5								

- a) Explain how the values $P(A \mid t_1)$, $P(B \mid t_1)$, $P(C \mid t_1)$, $P_{t_1}(R)$ and $\mathcal{I}(t_1)$ of the table are obtained.
- b) Compute the impurity of the node t_3 .
- c) Find the optimal "split" for the node t_3 and fill out the blank cells of the table.
- a) The root node (t_1) represents the six 6 available samples. 3 samples belong to class A, 2 to class B and 1 to class C. Therefore: $P(A \mid t_1) = 3/6 = 1/2$, $P(B \mid t_1) = 2/6 = 1/3$, $P(C \mid t_1) = 1/6$

The *split* (2,4.0) $(t_2 \le 4)$ divides the tree into two subtrees: one rooting in t_2 , which represents 3 samples such that $y_2 \le 4$, and the other one rooting in t_3 , which represents the other 3 data such that $y_2 > 4$. Then: $P_{t_1}(R) = 3/6 = 1/2$

Finally: $\mathcal{I}(t_1) = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{3}\log_2\frac{1}{3} - \frac{1}{6}\log_2\frac{1}{6} \approx 1.459 \text{ bits}$

- b) $\mathcal{I}(t_3) = 0 \frac{2}{3} \log_2 \frac{2}{3} \frac{1}{3} \log_2 \frac{1}{3} \approx 0.918 \text{ bits}$
- c) The node t_3 represents the vectors $((1,5)^t, B), ((3,5)^t, B), ((5,5)^t, C)$. There are only two possible partitions, one corresponding to the *split* $y_1 \leq 2$ and the other one to the *split* $y_1 \leq 4$. The impurity reductions are:

$$\Delta \mathcal{I}(1,2,t_3) = \mathcal{I}(t_3) - \frac{1}{3}\mathcal{I}(t_4) - \frac{2}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - \frac{2}{3} \cdot 1 = 0.251 \text{ bits}$$

$$\Delta \mathcal{I}(1,4,t_3) = \mathcal{I}(t_3) - \frac{2}{3}\mathcal{I}(t_4) - \frac{1}{3}\mathcal{I}(t_5) \approx 0.918 - 0 - 0 = 0.918 \text{ bits}$$

The highest impurity reduction is for the split (1,4); i.e, $y_1 \leq 4$.

The resulting tree and its parameters are shown below in the figure and table, respectively.

		-/		=/=/	- (-)			
Node	Split	$P(A \mid t_i)$	$P(B \mid t_i)$	$P(C \mid t_i)$	$P_{t_i}(L)$	$P_{t_i}(R)$	$\mathcal{I}(t_i)$	$\Delta \mathcal{I}(t_1)$
t_1	(2,4)	1/2	1/3	1/6	1/2	1/2	1.459	1.000
t_2	_	1	0	0	_	_	0	_
t_3	(1,4)	0	2/3	1/3	2/3	1/3	0.918	0.918
t_4	_	0	1	0	_	_	0	_
t_5	_	0	0	1	_		0	_

2. (1 point) (January 2016) We have the 5 two-dimensional samples shown in the table to learn a classification tree. For each sample, we show its feature vector and the class it belongs to. The first *split* is (2,3); that is, $y_2 \leq 3$; and the second and last split is (1,3); that is, $y_1 \leq 3$.

y_1	2	2	2	4	6
y_2	2	4	6	6	2
c	A	B	B	A	A

a) Represent graphically the classification tree and classify the sample $(4,4)^t$

The sample $(4,4)^t$ goes through the tree until it reaches t_5 . Therefore, the classification hypothesis is class A.

- b) For each non-terminal node, t, calculate:
 - Probability of the classes, $P(c \mid t)$, $c \in \{A, B\}$ $P(A \mid t_1) = 3/5$, $P(B \mid t_1) = 2/5$; $P(A \mid t_3) = 1/3$, $P(B \mid t_3) = 2/3$
 - Probability of choosing the left node and the right node, $P_t(L)$, $P_t(R)$ $P_{t_1}(L) = 2/5$, $P_{t_1}(R) = 3/5$ $P_{t_3}(L) = 2/3$, $P_{t_3}(R) = 1/3$
- c) Calculate the number of bits of the impurity, $\mathcal{I}(t_1)$, of the root node, t_1

$$\mathcal{I}(t_1) = -P(A \mid t_1) \log_2 P(A \mid t_1) - P(B \mid t_1) \log_2 P(B \mid t_1)$$

 $\approx -0.6(-0.737) - 0.4(-1.322) = 0.971 \text{ bits.}$

- d) For each terminal node, t, calculate:
 - Probability of the terminal node, P(t) $P(t_2) = 2/5$, $P(t_4) = 2/5$, $P(t_5) = 1/5$
 - Impurity in bits, $\mathcal{I}(t)$ $\mathcal{I}(t_2) = \mathcal{I}(t_4) = \mathcal{I}(t_5) = 0$ bits.
- e) Estimated resubstitution error (misclassification error) of the tree. Since the three terminal nodes are pure nodes, the estimated resubstitution error is 0.