CS 480

Introduction to Artificial Intelligence

October 26th, 2021

Announcements / Reminders

- Programming Assignment #01:
 - due: October 17th October 22th October 24th October 24th,
 11:00 PM CST
- Programming Assignment #02:
 - This week. Topic: CSPs
- Written Assignment #03:
 - This week

Grading TA assignment:

https://docs.google.com/spreadsheets/d/1Cav_GBTGC7fLGzxuBCAUmEuJYPeF-HMLCYvwPbq8Fus/edit?usp=sharing

Programming Assignment 01 Grading

- File naming correct and code comments: [5/100]
- Report comparison / summary: [5/100]
- Greedy Best First Search algorithm: [45/100]
 - has to find an existing path correctly
 - has to report failure for non-existing path correctly
- A* algorithm: [45/100]
 - has to find an existing path correctly
 - has to report failure for non-existing path correctly
- Execution time will not be graded

Plan for Today

Quantifying and dealing with uncertainty

Bayes' Rule: Another Interpretation

Another way to think about Baye's rule: it allows us to update the hypothesis \mathbf{H} in light of some new data/evidence \mathbf{e} .

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(Hypothesis \mid evidence) = \frac{P(evidence \mid Hypothesis) * P(Hypothesis)}{P(evidence)}$$

where:

- P(H) probability of the Hypothesis H being true BEFORE we see new data/evidence e (prior probability)
- P(H | e) probability of the Hypothesis H being true AFTER we see new data/evidence e (posterior probability)
- P(e | H) probability of new data/evidence e being true under the Hypothesis H (likelihood)
- P(e) probability of new data/evidence e being true under ANY hypothesis (normalizing constant)

All possible cases

Cases where Hypothesis H is true P(H)

Cases where Hypothesis H is false $P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true P(e | H)

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H)

$P(\neg H)$

Cases where evidence e is true P(e)

Cases where evidence e is true given Hypothesis H true P(e | H)

Cases where evidence e is true given Hypothesis H false $P(e \mid \neg H)$

All CS 480 Students
Hypothesis H: graduate student

Cases where Hypothesis H is true P(H) = P(grad = true)

Cases where Hypothesis H is false $P(\neg H) = P(grad = false)$

Cases where evidence e is true

$$P(e) = P(female = true)$$

Cases where e true given H true P(e | H)=P(female = true | grad = true)

Cases where e true given H false $P(e \mid \neg H) = P(female = true \mid grad = false)$

Given (made up roster data):

% of G students: P(H)

% of UG students: $P(\neg H)$

%of female students: P(e)

%of female G students: $P(e \mid H)$

%of female UG students: $P(e \mid \neg H)$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false $P(\neg H) = 63 / 81$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true $P(e \mid H) = 6 / 18$

Cases where e true given H false $P(e \mid \neg H) = 7 / 18$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(H) * P(e \mid H) + P(\neg H) * P(e \mid \neg H)}$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H) = 18 / 81

$P(\neg H) = 63 / 81$

Cases where evidence e is true P(e) = 13 / 81

Cases where e true given H true

 $P(e \mid H) = 6 / 18$

Cases where e true given H false

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) = \frac{6 / 18 * 18 / 81}{13 / 81}$$

$$P(H \mid e) = \frac{6/18*18/81}{18/81*6/18+63/81*7/63}$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H) = 18 / 81

$P(\neg H) = 63 / 81$

Cases where evidence e is true

Cases where e true given H true

 $P(e \mid H) = 6 / 18$

Cases where e true given H false

$$P(e \mid \neg H) = 7 / 63$$

Bayes' Rule:

$$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)}$$

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true | Cases where Hypothesis H is false P(H) = 18 / 81

$P(\neg H) = 63 / 81$

Cases where evidence e is true P(e) = 13 / 81

Cases where e true given H true $P(e \mid H) = 6 / 18$

Cases where e true given H false $P(e \mid \neg H) = 7 / 63$

Prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

Posterior probability:

$$P(H \mid e) \approx 0.462$$

Cases where Hypothesis H is true P(H) = 18 / 81

Cases where Hypothesis H is false $P(\neg H) = 63 / 81$

Cases where evidence e is true

$$P(e) = 13 / 81$$

Cases where e true given H true

 $P(e \mid H) = 6 / 18$

Cases where e true given H false $P(e \mid \neg H) = 7 / 63$

Bayes' Rule: Belief/Probability Update

A student approaches the podium. Without looking I create a hypothesis H:

this is a grad student (grad = true)

My belief in H being true is based on prior probability:

$$P(H) = 18 / 81 \approx 0.222$$

I look up and see a female student, which is <u>new data /</u> <u>evidence</u> e (<u>female</u> = <u>true</u>). Bayes' Rule helps me update my <u>belief</u> in H being <u>true</u> with <u>posterior</u> probability:

$$P(H \mid e) = \frac{6 / 18 * 18 / 81}{18 / 81 * 6 / 18 + 63 / 81 * 7 / 63} \approx 0.462$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$	Conditional probabilities
true	true	$P(H \mid e)*P(e)\approx 0.074$	$P(H \mid e) = \frac{P(e \mid H) * P(H)}{P(e)} = \frac{6 / 18 * 18 / 81}{13 / 81} \approx 0.462$
true	false	$P(H \mid \neg e) * P(\neg e) \approx 0.148$	$P(H \mid \neg e) = \frac{P(\neg e \mid H) * P(H)}{P(\neg e)} = \frac{12 / 18 * 18 / 81}{68 / 81} \approx 0.176$
false	true	$P(\neg H \mid e)*P(e)\approx 0.086$	$P(\neg H \mid e) = \frac{P(e \mid \neg H) * P(\neg H)}{P(e)} = \frac{7 / 63 * 63 / 81}{13 / 81} \approx 0.538$
false	false	$P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$	$P(\neg H \mid \neg e) = \frac{P(\neg e \mid \neg H) * P(\neg H)}{P(\neg e)} = \frac{56 / 63 * 63 / 81}{68 / 81} \approx 0.824$
		SUM = 1	

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H \mid e) * P(e) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H \mid \neg e) * P(\neg e) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H \mid e) * P(e) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H \mid \neg e) * P(\neg e) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

If we know the joint probability distribution, we can infer:

- marginal probabilities P(H), $P(\neg H)$, P(e), and $P(\neg e)$
- conditional probabilities $P(H \mid e)$, $P(H \mid \neg e)$, $P(\neg H \mid e)$, and $P(\neg H \mid \neg e)$

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(H):

$$P(H) = P(grad = true) = 0.074 + 0.148 \approx 18 / 81$$

Probability P(H): "sum of all probabilities where H true"

Joint Probability: Marginalization

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Probability P(e):

$$P(e) = P(female = true) = 0.074 + 0.086 \approx 13 / 81$$

Probability P(e): "sum of all probabilities where e true"

Marginal Probability

Marginal probability: the probability of an event occurring $P(\boldsymbol{A})$.

It may be thought of as an unconditional probability.

It is not conditioned on another event.

	e: emale	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)}$$

Joint Probability: Conditionals

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

From product rule:

$$P(H \wedge e) = P(H \mid e) * P(e)$$

we can derive:

$$P(H \mid e) = \frac{P(H \land e)}{P(e)} = \frac{0.074}{0.074 + 0.086} \approx 0.462$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	0.074
true	false	0.148
false	true	0.086
false	false	0.691
		SUM = 1

Joint probabilities calculated using the Product Rule:

$$P(A \wedge B) = P(A \mid B) * P(B)$$

Conditional probabilities calculated using Bayes' Rule:

$$P(A \mid B) = \frac{P(B \mid A) * P(A)}{P(B)}$$

	Toothache		¬Toothache	
Catch —Catch		Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Random variables:

Toothache - Boolean

Cavity - Boolean

Catch (dentist's probe catches tooth) - Boolean

	Toothache		¬Toothache	
	Catch ¬Catch		Catch	¬Catch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Probability P(Cavity ∨ Toothache):

$$P(Cavity = true \lor Toothache = true) =$$

= 0.108 + 0.012 + 0.072 + 0.008 + 0.016 + 0.064
= 0.28

	Toothache		¬Toothache	
Catch —Catch		Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Marginal probability P(Cavity):

$$P(Cavity = true) = 0.108 + 0.012 + 0.072 + 0.008$$

= 0.2

	Toot	hache	$\neg Toot$	thache
	Catch	¬Catch	Catch	¬Catch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Conditional probability P(Cavity | Toothache):

$$P(Cavity = true \mid Toothache = true) =$$

$$= \frac{P(Cavity = true \land Toothache = true)}{P(Toothache = true)} =$$

$$= \frac{0.108 + 0.012}{0.108 + 0.012 + 0.016 + 0.064} = 0.6$$

	Toot	hache	$\neg Toot$	hache
	Catch	¬Catch	Catch	¬Catch
Cavity	0.108	0.012	0.072	0.008
¬Cavity	0.016	0.064	0.144	0.576

Conditional probability $P(\neg Cavity \mid Toothache)$:

$$P(\neg Cavity = true \mid Toothache = true) =$$

$$= \frac{P(\neg Cavity = true \land Toothache = true)}{P(Toothache = true)} =$$

$$= \frac{0.016 + 0.164}{0.108 + 0.012 + 0.016 + 0.064} = 0.4$$

	Toot	hache	¬Toothache		
	Catch ¬Catch		Catch	¬Catch	
Cavity	0.108	0.012	0.072	0.008	
¬Cavity	0.016	0.064	0.144	0.576	

Note that:

$$P(Cavity \mid Toothache) = \frac{P(Cavity \land Toothache)}{P(Toothache)} = 0.6$$

$$P(\neg Cavity \mid Toothache) = \frac{P(\neg Cavity \land Toothache)}{P(Toothache)} = 0.4$$

add up to 1 and the same denominator is involved.

	Toot	hache	$\neg Toot$	¬Toothache		
	Catch	¬Catch	Catch	\neg Catch		
Cavity	0.108	0.012	0.072	0.008		
¬Cavity	0.016	0.064	0.144	0.576		

Note that P() is the distribution, NOT individual probability:

$$P(Cavity \mid Toothache) = \alpha * P(Cavity, Toothache) =$$

$$= \alpha * [P(Cavity, Toothache, Catch) + P(Cavity, Toothache, \neg Catch)] =$$

$$= \alpha * [\langle 0.108, 0.016 \rangle + \langle 0.012, 0.064 \rangle] =$$

$$= \alpha * \langle 0.12, 0.08 \rangle =$$

$$= \langle 0.6, 0.4 \rangle$$

General Inference Procedure

Given:

- a query involving a single variable X (in our example: Cavity),
- a <u>list</u> of evidence variables E (in our example: just Toothache),
- a <u>list</u> of observed values e for E,
- a list of remaining unobserved variables Y (in our example: just Catch),

where X, E, and Y together are a COMPLETE set of variables for the domain, the probability $P(X \mid E)$ can be evaluated as:

$$P(X \mid e) = \alpha * P(X, e) = \alpha * \sum_{y} P(X, e, y)$$

where ys are all possible values for Ys, α - normalization constant.

P(X, e, y) is a subset of probabilities from the joint distribution

Complex Joint Distributions

Consider a complex joint probability distribution involving N random variables P_1 , P_2 , P_3 , ..., P_{N-1} , Pp_N .

	N Random Variables						Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	P_{N}	Probability	
(5	true	true	true		true	true	false	
del	true	true	true		true	false	true	
Mo	true	true	false		false	true	false	
Possible Worlds (Models)				•••				2 ^N values
SSI	false	false	true	•••	true	false	true	
	false	false	true		false	true	true	
2^{N}	false	false	false	•••	false	false	false	

Non-binary / Non-Boolean RVs

Some Random Variables are going to have more than two possible, discrete, values:

- height -> short, average, tall
- size -> S, M, L, XL
- streetLight -> green, orange, red
- vision -> 20/20, 15/15, etc.
- continent -> Africa, Antarctica, Asia, Australia,
 Europe, North America, South America
- Non-binary RVs increase the complexity.

This May Be Impossible to Manage!

			N Rai	ndom Variables			Joint	
	\mathbf{P}_1	P_2	P_3		P_{N-1}	$P_{ m N}$	Probability	
(5	true	true	true		true	true	false	
del	true	true	true		true	false	true	
Mo	true	true	false		false	true	false	
Possible Worlds (Models)			•••	•••	•••			$2^{\mathbb{N}}$ values
SSi	false	false	true		true	false	true	
I Pc	false	false	true		false	true	true	
2^{N}	false	false	false		false	false	false	

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	-Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
'	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
Cloudy		Catch	-Catch	Catch	¬Catch	
Clo	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

Let's introduce another random variable Cloudy representing some weather conditions. It is difficult to imagine the other random variables here (Toothache, Cavity, Catch) being dependent on Cloudy and vice versa.

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
ļ Ģ	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

Let's try to calculate the following probability:

P(Toothache, Catch, Cavity, Cloudy)

using the Product Rule:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy | Toothache, Catch, Cavity) * P(Toothache, Catch, Cavity)

Independent Variable

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
ļ Ģ	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

It's hard to imagine Cloudy influencing other variables, so:

 $P(Cloudy \mid Toothache, Catch, Cavity) = P(Cloudy)$

and then:

$$P(Toothache, Catch, Cavity, Cloudy) =$$

= $P(Cloudy) * P(Toothache, Catch, Cavity)$

Independent Variable / Factoring

		Toot	hache	¬Toothache		
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	
		Toot	hache	¬Too	thache	
Cloudy		Catch	¬Catch	Catch	¬Catch	
	Cavity	0.108	0.012	0.072	0.008	
	¬Cavity	0.016	0.064	0.144	0.576	

It's hard to imagine Cloudy influencing other variables, so:

P(Toothache, Catch, Cavity, Cloudy) == P(Cloudy) * P(Toothache, Catch, Cavity)

This shows that Cloudy is INDEPENDENT of other variables and factoring can be applied.

Factoring / Decomposition

Use Chain Rule To Decompose

		N Ra	ndom Variables			Joint
P_1	\mathbf{P}_2	\mathbf{P}_3		P_{N-1}	\mathbf{P}_{N}	Probability
true	true	true		true	true	false
true	true	true		true	false	true
true	true	false	***	false	true	false
						•••
,,,,,,,,					38.275.5	
		627 T TO 1				ARCTON
false	false	true	***	true	false	true
false	false	true		false	true	true
false	false	false	•••	false	false	false
			▼			
	ı					

Chain Rule

Conditional probabilities can be used to decompose conjunctions using the chain rule. For any propositions f_1, f_2, \ldots, f_n :

$$P(f_1 \wedge f_2 \wedge \ldots \wedge f_n) = \prod_{i=1}^n P(f_i \mid f_1 \wedge \ldots \wedge f_{i-1})$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(grad = true \land female = true) = P(H, e) = P(H \land e) = P(H) * P(e \mid H) \approx 0.074$
true	false	$P(grad = true \land female = false) = P(H, \neg e) = P(H) * P(\neg e \mid H) \approx 0.148$
false	true	$P(grad = false \land female = true) = P(\neg H, e) = P(\neg H) * P(e \mid \neg H) \approx 0.086$
false	false	$P(grad = false \land female = false) = P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge ... \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_{1} \wedge f_{2}) = \prod_{i=1}^{2} P(f_{i} | f_{1} \wedge \dots \wedge f_{i-1})$$

$$P(f_{1} \wedge f_{2}) = P(f_{1}) * P(f_{2} | f_{1})$$

$$so: P(grad \wedge female) = P(H \wedge e) = P(H) * P(e | H)$$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

Joint probabilities calculated using the Chain Rule:

$$P(f_1 \wedge f_2) = \prod_{i=1}^2 P(f_i \mid parents(f_i))$$

 $P(f_1 \wedge f_2) = P(f_1) * P(f_2 \mid parents(f_i))$
so: $P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$

H: grad	e: female	$P(H, e) = P(H \land e)$: $P(grad \land female)$
true	true	$P(H, e) = P(H \land e) = P(H) * P(e \mid H) = 18 / 81 * 6 / 18 \approx 0.074$
true	false	$P(H, \neg e) = P(H) * P(\neg e \mid H) = 18 / 81 * 12 / 18 \approx 0.148$
false	true	$P(\neg H, e) = P(\neg H) * P(e \mid \neg H) = 63 / 81 * 7 / 63 \approx 0.086$
false	false	$P(\neg H, \neg e) = P(\neg H) * P(\neg e \mid \neg H) = 63 / 81 * 56 / 63 \approx 0.691$
		SUM = 1

$$P(H \wedge e) = P(H) * P(e \mid parents(e)) = P(H) * P(e \mid H)$$

H:	¬H:	
grad	–grad	4
18 / 81 ≈ 0.22	63 / 81 ≈ 0.78	

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian (Belief) Network

A Bayesian belief network describes the joint probability distribution for a set of variables.

A Bayesian network is an acyclic, directed graph (DAG), where the nodes are random variables (propositions). There is an edge (arc) from each elements of $\operatorname{parents}(X_i)$ into X_i . Associated with the Bayesian network is a set of conditional probability distributions - the conditional probability of each variable given its parents (which includes the prior probabilities of those variables with no parents).

Consists of:

- a graph (DAG) with nodes corresponding to random variables
- a domain for each random variable
- a set of conditional probability distributions $P(X_i \mid parents(X_i))$

Building Bayesian (Belief) Network

- 1. Order Random Variables (ordering matters!)
- 2. Create network nodes for each Random Variable
- 3. Add edges between parent nodes and children nodes
 - For every node node X_i:
 - lacktriangle choose a minimal set S of parents for X_i
 - for each parent node Y in S add an edge from Y to X_i
- 4. Add Conditional Probability Tables

Make it compact / sparse: choose your Random Variable ordering wisely.

Ordering Matters!

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

Create Vertices / Node / Random Vars

Create Vertices / Node / Random Vars

Add Edges

Add Conditional Probability Tables

H:	¬Н:
grad	−grad
$18 / 81 \approx 0.22$	63 / 81 ≈ 0.78

H: grad	e: female	P(e H)
true	true	6 / 18 ≈ 0.333
true	false	12 / 18 ≈ 0.667
false	true	7 / 63 ≈ 0.111
false	false	56 / 63 ≈ 0.889

Bayesian Network: Car Insurance

