Limit of functions and sequences Math 100 Vantage College

Mingfeng Qiu

Oct. 4, 2019

Limit of a function

Definition (Limit of a function)

We say that as x goes to a, the limit of f(x) is L and write

$$\lim_{x \to a} f(x) = L,$$

when the value of f(x) is arbitrarily close to L provided that x is sufficiently close to (but not equal to) a.

Remarks:

- ▶ It has nothing to do with f(a), even if it does NOT exist.
- ▶ Taking the limit as $x \to a$ means that $x \neq a$.
- ▶ $L \in \mathbb{R}$. And neither $+\infty$ nor $-\infty$ is a number.

Special cases of limits

► A special case when the limit DNE:

$$\lim_{x \to a} f(x) = \infty \text{ or } -\infty.$$

Limit at infinity:

$$\lim_{x \to \infty} f(x) = L \text{ or } \lim_{x \to -\infty} f(x) = L.$$

One-sided limits:

$$\lim_{x \to a^{-}} f(x) = L, \quad \lim_{x \to a^{+}} f(x) = L.$$

Computing limits

Assume that $\lim_{x\to a} f(x) = F$ and $\lim_{x\to a} g(x) = G$. $\alpha,\beta\in\mathbb{R}$. Then

- $\blacktriangleright \lim_{x\to a} \frac{f(x)}{g(x)} = \frac{F}{G}$, if $G \neq 0$.
- $ightharpoonup \lim_{x\to a} (f(x))^{1/n} = F^{1/n}$, when the n-th root is well defined.

Computing limits

- ➤ You can freely do the above arithmetics, provided that after doing this the result exists!
- ► These rules also apply to the cases when *f* or *g* goes to infinity, whenever it makes sense.
- Exponentials dominate powers; factorials dominate exponentials.

$$\lim_{x \to \infty} \frac{x^r}{a^x} = 0,$$

$$\lim_{n \to \infty} \frac{a^n}{n!} = 0. \ r > 0, \ a > 1.$$

Useful theorems

Theorem

$$\lim_{x \to a} f(x) = L \iff \lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = L.$$

The RHS says three things:

- ► The left limit exists.
- ► The right limit exists.
- ► And they are equal to each other.

Useful theorems

Theorem (Squeeze theorem)

Let $a \in \mathbb{R}$ and f, g, h be three functions such that

$$f(x) \le g(x) \le h(x),$$

for all x in an interval around a, except possibly at x=a itself. If

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L,$$

then also

$$\lim_{x \to a} g(x) = L.$$

Remarks:

- Again there is no business of f(a), g(a), h(a).
- It also applies to sequences, which are special cases of functions.

Useful theorems

Theorem (Bounded monotone convergence)

 $(a_n)_{n\in\mathbb{N}}$ is a sequence s.t.

- ▶ a_n is increasing. $(a_{n+1} \ge a_n \text{ for all } n \in \mathbb{N}.)$
- ▶ a_n is bounded above. $(a_n < M \text{ for all } n \in \mathbb{N} \text{ and some } M \in \mathbb{R}.)$

Then $(a_n)_{n\in\mathbb{N}}$ converges.