Computability Theory

Fall 2020

Lecture 12: Incompleteness

Lecturer: Renjie Yang

12.1 Logic and Computability

Propositional Logic

• Propositional variables p, q, r, \dots

• Connectives $\land, \lor, \neg, \rightarrow, \dots$

• Semantics: assignment of truth values

• Procedures for calculating truth values: truth tables

Definition 12.1 A propositional formula φ is valid, written $\models \varphi$, if φ is true under any truth assignment. If Γ is a set of formulas and φ is a formula, φ is a semantic consequence of Γ , written $\Gamma \models \varphi$, if φ is true under any truth assignment that makes every formula in Γ true.

Definition 12.2 A propositional formula φ is provable, written $\vdash \varphi$, if there is a formal derivation of φ . If Γ is a set of formulas and φ is a formula, φ is a deductive consequence of Γ , written $\Gamma \vdash \varphi$, if there is a formal derivation of φ from hypotheses in Γ .

Theorem 12.3 For any formula φ and any set of formulas Γ , $\Gamma \vdash \varphi$ if and only if $\Gamma \models \varphi$.

First-order Logic

- Functions symbols f_0, f_1, \ldots
- Relation symbols R_0, R_1, \ldots
- Constant symbols c_0, c_1, \ldots
- Variables x_0, x_1, \ldots
- Logical symbols $\land, \lor, \rightarrow, \neg, \forall, \exists, =$
- (,)
- Terms, r, s, t, \ldots
- Formulas, $\varphi, \psi, \theta, \dots$
- Substitutions: $\varphi[t/x]$

Definition 12.4 A first-order formula φ is valid, written $\models \varphi$, if φ is satisfied under any model. If Γ is a set of formulas and φ is a formula, φ is a semantic consequence of Γ , written $\Gamma \models \varphi$, if φ is satisfied under any model that satisfies every formula in Γ .

Definition 12.5 A first-order formula φ is provable, written $\vdash \varphi$, if there is a formal derivation of φ . If Γ is a set of formulas and φ is a formula, φ is a deductive consequence of Γ , written $\Gamma \vdash \varphi$, if there is a formal derivation of φ from hypotheses in Γ .

Theorem 12.6 For any formula φ and any set of formulas Γ , $\Gamma \vdash \varphi$ if and only if $\Gamma \models \varphi$.

Deductive system

Axioms:

- Propositional axioms: any instance of a valid propositional formula;
- Axioms involving quantifiers:

```
\forall x \varphi(x) \to \varphi(t)
 \varphi(t) \to \exists x \varphi(x)
 \forall x (\varphi \to \psi(x)) \to (\varphi \to \forall x \psi(x)), x \text{ is not free in } \varphi.
```

• Axioms for equality

```
\forall x(x = x)
\forall x(x = y \rightarrow y = x)
\forall x(x = y \land y = z \rightarrow z = y)
\forall x_0, \dots, x_k, y_0, \dots, y_k(x_0 = y_0 \land \dots \land x_k = y_k \land \varphi(x_0, \dots, x_k) \rightarrow \varphi(y_0, \dots, y_k)).
```

Rules of Inference:

- Modus ponens: from φ and $\varphi \vdash \psi$ conclude ψ
- Generalization: from φ conclude $\forall x \varphi$
- From $\varphi \to \psi$ conclude $\exists x \varphi \to \psi$, if x is not free in ψ .

Note Similar to what we did for the formal theory of Turing machines, we can assign numerical codings for terms, formulas, and proofs or derivations, in such a way that the identification problems of these objects are computable. Similar to the construction of the T predicate, we can show that the corresponding predicates are primitive recursive.

12.2 Representability in Q

Language of Arithmetic

- A constant symbol 0
- Function symbols $+, \times, S$
- A relation symbol <

Non-logical Axioms of Q

1.
$$Sx = Sy \rightarrow x = y$$

$$2. \ 0 \neq Sx$$

3.
$$x \neq 0 \rightarrow \exists u(x = Su)$$

4.
$$x + 0 = x$$

5.
$$x + Sy = S(x + y)$$

6.
$$x \times 0 = x$$

7.
$$x \times Sy = x \times y + x$$

8.
$$x < y \leftrightarrow \exists z (Sz + x = y)$$

Definition 12.7 For each natural number n, define the numeral \overline{n} to be $\underbrace{S \dots S}_{n \text{ times}} x$.

Definition 12.8 A function $f(x_0, ..., x_k)$ from the natural numbers to the natural numbers is said to be representable in Q if there is a formula $\varphi_f(x_0, ..., x_k, y)$ such that whenever $f(n_0, ..., n_k) = m$, Q proves

•
$$\varphi_f(\overline{n_0},\ldots,\overline{n_k},\overline{m})$$

•
$$\forall y (\varphi_f(\overline{n_0}, \dots, \overline{n_k}) \to \overline{m} = y)$$

Theorem 12.9 A function is representable in Q if and only if it is computable.

Proof: For the forward direction, we can code terms, formulas and proofs in such a way that the relation "d is a proof of φ in theory Q" and function "the result of substituting the numeral of n for the code of variable v in the code of formula φ " are computable. Suppose the function f is represented by $\varphi_f(x_0, \ldots, x_k, y)$. Then the algorithm for computing f is:

$$f(n_0,\ldots,n_k) = L(\min_s(K(s) \text{ is a proof of } \varphi(\overline{n_0},\ldots,\overline{n_k},\overline{L(s)}) \text{ in } Q'')).$$

For the other direction, define a set of total functions C as follows: let C be the smallest set of functions containing

- 0
- \bullet S(x)
- \bullet x+y
- \bullet $x \times y$
- $U_i^n(x_1,...,x_n) = x_i, 1 \le i \le n$
- χ=

and closed under composition and unbounded search applied to regular functions. According to the definition of recursive functions, C is the set of recursive or computable functions, or that every computable functions are in C. By the 16 lemmas in Chapter 22 of Epstein's book, every function in C can be represented in Q.

Definition 12.10 A relation $R(x_0, ..., x_k)$ on the natural numbers is represented in Q if there is a formula $\varphi_R(x_0, ..., x_k)$ such that whenever $R(n_0, ..., n_k)$ is true, Q proves $\varphi_R(\overline{n_0}, ..., \overline{n_k})$, and whenever $R(n_0, ..., n_k)$ is false, Q proves $\neg \varphi_R(\overline{n_0}, ..., \overline{n_k})$.

Theorem 12.11 A relation is representable in Q if and only if it is computable.

12.3 The First Incompleteness Theorem

Theorem 12.12 Q is computable enumerable but not decidable.

Definition 12.13 A theory T is ω - consistent if the following holds: if $\exists x \varphi(x)$ is any sentence and T proves $\neg \varphi(\overline{0}, \overline{1}, \ldots)$ then T does not prove $\exists x \varphi(x)$.

Theorem 12.14 Let T be any ω -consistent theory that includes Q. Then T is not decidable.

Lemma 12.15 There is no binary computable relation R(x, y), such that whenever S(y) is a unary computable relation, there is some k such that for every y, S(y) is true if and only if R(k, y) is true.

Theorem 12.16 Let T be any consistent theory that includes Q. Then T is not decidable.

Corollary 12.17 The theory of arithmetic $\{\varphi | \langle \mathbb{N}, 0, S, +, \times, < \rangle \models \varphi \}$ is not decidable.

Definition 12.18 A theory T is said to be computably axiomatizable if it has a computable set of axioms $A: T = \{\varphi | A \vdash \varphi\}$.

Lemma 12.19 Suppose T is computably axiomatizable. Then T is computably enumerable.

Lemma 12.20 Suppose a theory T is complete and computably axiomatizable. Then T is computable.

Theorem 12.21 There is no complete, consistent, computabley axiomatized extension of Q.