Discrete Volume Computations for Polyhedra

Matthias Beck San Francisco State University math.sfsu.edu/beck

Graduate Student Meeting Applied Algebra & Combinatorics

Themes

Combinatorial polynomials

Computation (complexity)

Combinatorial structures

Generating functions

Polyhedra

Themes

Motivation I: Birkhoff-von Neumann Polytope

This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Normalized volume of Birkhoff polytope of n X n doubly-stochastic square matrices. If the volume 2 A037302 is v(n), then $a(n) = ((n-1)^2)! * v(n) / n^{(n-1)}$.

1, 1, 3, 352, 4718075, 14666561365176, 17832560768358341943028, 12816077964079346687829905128694016, 7658969897501574748537755050756794492337074203099, 5091038988117504946842559205930853037841762820367901333706255223000 (list; graph; refs; listen; history;

text; internal format) OFFSET

COMMENTS

The Birkhoff polytope is an (n-1)^2-dimensional polytope in n^2-dimensional space; its vertices are the n! permutation matrices. Is a(n) divisible by n^2 for all n>=4? - Dean Hickerson, Nov 27 2002

$$B_n = \left\{ \left(\begin{array}{ccc} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{array} \right) \in \mathbb{R}^{n^2}_{\geq 0} : \quad \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq k \leq n \\ \sum_{k} x_{jk} = 1 \text{ for all } 1 \leq j \leq n \end{array} \right\}$$

Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976] The chromatic number of any planar graph is at most 4.

This theorem had been a conjecture (conceived by Guthrie when trying to color maps) for 124 years.

Birkhoff [1912] says: Try polynomials!

Four-Color Theorem Rephrased For a planar graph G, we have $\chi_G(4) > 0$, that is, 4 is not a root of the polynomial $\chi_G(k)$.

Motivation II: Polynomial Method 101

Theorem [Appel & Haken 1976] The chromatic number of any planar graph is at most 4.

This theorem had been a conjecture (conceived by Guthrie when trying to color maps) for 124 years.

Birkhoff [1912] says: Try polynomials!

Stanley [EC 1] says: Try monomial algebras and generating functions!

Four-Color Theorem Rephrased For a planar graph G, we have $\chi_G(4) > 0$, that is, 4 is not a root of the polynomial $\chi_G(k)$.

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$lacksquare$$
 (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$lacksquare$$
 (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$

$$\blacktriangleright$$
 (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Discrete Volumes

Rational polyhedron $\mathcal{P} \subset \mathbb{R}^d$ – solution set of a system of linear equalities & inequalities with integer coefficients

Goal: understand $\mathcal{P} \cap \mathbb{Z}^d$. . .

$$lacksquare$$
 (count) $\left|\mathcal{P}\cap\mathbb{Z}^d\right|$

$$\blacktriangleright$$
 (volume) $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^d} \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right|$

Ehrhart function
$$L_{\mathcal{P}}(t) := \left| \mathcal{P} \cap \frac{1}{t} \mathbb{Z}^d \right| = \left| t \mathcal{P} \cap \mathbb{Z}^d \right| \text{ for } t \in \mathbb{Z}_{>0}$$

Linear systems are everywhere, and so polyhedra are everywhere.

- Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- ▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- ► Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.

- ► Linear systems are everywhere, and so polyhedra are everywhere.
- ▶ In applications, the volume of the polytope represented by a linear system measures some fundamental data of this system ("average").
- ▶ Polytopes are basic geometric objects, yet even for these basic objects volume computation is hard and there remain many open problems.
- ► Many discrete problems in various mathematical areas are linear problems, thus they ask for the discrete volume of a polytope in disguise.
- Much discrete geometry can be modeled using polynomials and, conversely, many combinatorial polynomials can be modeled geometrically.

A Warm-Up Ehrhart Function

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := |t\mathcal{P} \cap \mathbb{Z}^d|$

Example 1:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2_{\geq 0} : x + y \leq 1 \}$$

A Warm-Up Ehrhart Function

Lattice polytope $\mathcal{P} \subset \mathbb{R}^d$ – convex hull of finitely points in \mathbb{Z}^d

For
$$t \in \mathbb{Z}_{>0}$$
 let $L_{\mathcal{P}}(t) := |t\mathcal{P} \cap \mathbb{Z}^d|$

Example 1:

$$\Delta = \operatorname{conv} \{ (0,0), (1,0), (0,1) \}$$
$$= \{ (x,y) \in \mathbb{R}^2_{\geq 0} : x + y \leq 1 \}$$

Example 2:

 $\square = [0,1]^d$ (the unit cube in \mathbb{R}^d)

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently, $\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$ is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h^*(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the Ehrhart h-vector $h^*(z)$ satisfies $h^*(0) = 1$ and $h^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P})$.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

Equivalently,
$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \geq 1} L_{\mathcal{P}}(t) \, z^t$$
 is rational:

$$\operatorname{Ehr}_{\mathcal{P}}(z) = \frac{h^*(z)}{(1-z)^{\dim \mathcal{P}+1}}$$

where the Ehrhart h-vector $h^*(z)$ satisfies $h^*(0) = 1$ and $h^*(1) = (\dim \mathcal{P})! \operatorname{vol}(\mathcal{P}).$

Seeming dichotomy: $\operatorname{vol}(\mathcal{P}) = \lim_{t \to \infty} \frac{1}{t^{\dim \mathcal{P}}} L_{\mathcal{P}}(t)$ can be computed discretely via a finite amount of data.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h^{*}(z)}{(1 - z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

 $h^*(z)$ is the binomial transform of $L_{\mathcal{P}}(t)$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h^*(z)}{(1-z)^{d+1}}$$

Equivalent descriptions of an Ehrhart polynomial:

$$L_{\mathcal{P}}(t) = c_d t^d + c_{d-1} t^{d-1} + \dots + c_0$$

 \blacktriangleright via roots of $L_{\mathcal{P}}(t)$

Open Problem Classify Ehrhart polynomials.

Two-dimensional Ehrhart Polynomials

Essentially due to Pick (1899) and Scott (1976)

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h^{*}(z)}{(1 - z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}}(t) = h_0^* {t+d \choose d} + h_1^* {t+d-1 \choose d} + \dots + h_d^* {t \choose d}$$

Theorem (Macdonald 1971) $(-1)^d L_{\mathcal{P}}(-t)$ enumerates the interior lattice points in $t\mathcal{P}$. Equivalently,

$$L_{\mathcal{P}^{\circ}}(t) = h_d^*({}^{t+d-1}_d) + h_{d-1}^*({}^{t+d-2}_d) + \dots + h_0^*({}^{t-1}_d)$$

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^t = \frac{h^*(z)}{(1-z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Ehrhart 1962) For any lattice polytope \mathcal{P} , $L_{\mathcal{P}}(t)$ is a polynomial in t of degree $d:=\dim \mathcal{P}$ with leading coefficient $\operatorname{vol} \mathcal{P}$ and constant term 1.

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} L_{\mathcal{P}}(t) z^{t} = \frac{h^{*}(z)}{(1 - z)^{d+1}}$$

$$\longrightarrow L_{\mathcal{P}^{\circ}}(t) = h_d^*\binom{t+d-1}{d} + h_{d-1}^*\binom{t+d-2}{d} + \dots + h_0^*\binom{t-1}{d}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Corollary If $h_{d+1-k}^* > 0$ then $k\mathcal{P}^{\circ}$ contains an integer point.

$$\chi_{K_2}(k) = 2\binom{k}{2} \dots$$

$$k+1 \longrightarrow k+1$$

$$K_2$$

$$k+1 \longrightarrow k+1$$

$$K_2 \longrightarrow k+1$$
(Blass-Sagan)

Similarly, for any given graph G on d nodes, we can write

$$\chi_G(k) = \chi_0^* \binom{k+d}{d} + \chi_1^* \binom{k+d-1}{d} + \dots + \chi_d^* \binom{k}{d}$$

for some (meaningful) nonnegative integers $\chi_0^*, \ldots, \chi_d^*$

Similarly, for any given graph G on d nodes, we can write

$$\chi_G(k) = \chi_0^* \binom{k+d}{d} + \chi_1^* \binom{k+d-1}{d} + \dots + \chi_d^* \binom{k}{d}$$

Half-Open Problem Prove that $\chi_j^* > 0$ for some $0 \le j \le 4$ if G is planar.

Ehrhart h^* Positivity Refined

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} |t\mathcal{P} \cap \mathbb{Z}^d| z^t = \frac{h^*(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h^*(z) = a(z) + z b(z)$$

where $a(z) = z^d a(\frac{1}{z})$ and $b(z) = z^{d-1} b(\frac{1}{z})$ with nonnegative coefficients.

Ehrhart h^* Positivity Refined

$$\operatorname{Ehr}_{\mathcal{P}}(z) := 1 + \sum_{t \ge 1} |t\mathcal{P} \cap \mathbb{Z}^d| z^t = \frac{h^*(z)}{(1-z)^{d+1}}$$

Theorem (Stanley 1980) $h_0^*, h_1^*, \ldots, h_d^*$ are nonnegative integers.

Theorem (Betke–McMullen 1985, Stapledon 2009) If $h_d^* > 0$ then

$$h^*(z) = a(z) + z b(z)$$

where $a(z)=z^d\,a(\frac{1}{z})$ and $b(z)=z^{d-1}\,b(\frac{1}{z})$ with nonnegative coefficients.

Open Problem Try to prove the analogous theorem for your favorite combinatorial polynomial with nonnegative coefficients.

More Binomial Transforms

Chromatic polynomial
$$\chi_G(k) = \chi_0^* \binom{k+d}{d} + \chi_1^* \binom{k+d-1}{d} + \dots + \chi_d^* \binom{k}{d}$$

$$\longrightarrow$$
 binomial transform $\chi_G^*(z) := \chi_d^* z^d + \chi_{d-1}^* z^{d-1} + \cdots + \chi_0^*$

Theorem (MB–León 2019+) Let G be a graph on d vertices. Then there exist symmetric polynomials $a_G(z)=z^da_G(\frac{1}{z})$ and $b_G(z)=z^{d-1}b_G(\frac{1}{z})$ with positive integer coefficients such that

$$\chi_G^*(z) = a_G(z) - b_G(z).$$

Moreover, $a_0 \le a_1 \le a_j$ where $1 \le j \le d-1$, and $b_0 \le b_1 \le b_j$ where $1 \le j \le d-2$.

More Binomial Transforms

Chromatic polynomial
$$\chi_G(k) = \chi_0^* \binom{k+d}{d} + \chi_1^* \binom{k+d-1}{d} + \dots + \chi_d^* \binom{k}{d}$$

$$\longrightarrow$$
 binomial transform $\chi_G^*(z) := \chi_d^* z^d + \chi_{d-1}^* z^{d-1} + \cdots + \chi_0^*$

Theorem (MB-León 2019+) Let G be a graph on d vertices. Then there exist symmetric polynomials $a_G(z)=z^da_G(\frac{1}{z})$ and $b_G(z)=z^{d-1}b_G(\frac{1}{z})$ with positive integer coefficients such that

$$\chi_G^*(z) = a_G(z) - b_G(z).$$

Moreover, $a_0 \leq a_1 \leq a_j$ where $1 \leq j \leq d-1$, and $b_0 \leq b_1 \leq b_j$ where 1 < j < d - 2.

Theorem (Hersh–Swartz 2008) $\chi_{d-j}^* \geq \chi_j^*$ for $2 \leq j \leq \frac{d-1}{2}$

Similar results hold for flow polynomials of graphs (Breuer-Dall 2011).

Unimodal & Real-rooted Polynomials

The polynomial $h^*(z) = \sum_{j=0}^d h_j^* z^j$ is unimodal if for some $k \in \{0, 1, \dots, d\}$

$$h_0^* \le h_1^* \le \dots \le h_k^* \ge \dots \ge h_d^*$$

Crucial Example $h^*(z)$ has only real roots

Unimodal & Real-rooted Polynomials

The polynomial $h^*(z) = \sum_{j=0}^d h_j^* z^j$ is unimodal if for some $k \in \{0, 1, \dots, d\}$

$$h_0^* \le h_1^* \le \dots \le h_k^* \ge \dots \ge h_d^*$$

Crucial Example $h^*(z)$ has only real roots

Classic Example $\mathcal{P} = [0,1]^d$ comes with the Eulerian polynomial $h^*(z)$

Theorem (Schepers-Van Langenhoven 2013) $h^*(z)$ is unimodal for lattice parallelepipeds.

Theorem (MB–Jochemko–McCullough 2019) $h^*(z)$ is real rooted for lattice zonotopes.

Unimodal & Real-rooted Polynomials

The polynomial $h^*(z) = \sum_{j=0}^d h_j^* z^j$ is unimodal if for some $k \in \{0, 1, \dots, d\}$

$$h_0^* \le h_1^* \le \dots \le h_k^* \ge \dots \ge h_d^*$$

Crucial Example $h^*(z)$ has only real roots

Conjectures $h^*(z)$ is unimodal/real-rooted for

hypersimplices

order polytopes

- alcoved polytopes
- lattice polytopes with unimodular triangulations
- IDP polytopes (integer decomposition property)

An antimagic labeling of G=(V,E) is an assignment $E\to \mathbb{Z}_{>0}$ such that

- lacktriangle each edge label $1,2,\ldots,|E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

An antimagic labeling of G=(V,E) is an assignment $E\to \mathbb{Z}_{>0}$ such that

- ightharpoonup each edge label $1, 2, \dots, |E|$ is used exactly once;
- ▶ the sum of the labels on all edges incident with a given node is unique.

Conjecture [Hartsfield & Ringel 1990] Every connected graph except K_2 has an antimagic labeling.

- [Alon et al 2004] connected graphs with minimum degree $\geq c \log |V|$
- [Bérczi et al 2017] connected regular graphs
- open for trees

An antimagic labeling of G=(V,E) is an assignment $E\to \mathbb{Z}_{>0}$ such that

- \blacktriangleright each edge label $1, 2, \dots, |E|$ is used exactly once;
- ▶ the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let $A_G^*(k)$ be the number of assignments of positive integers to the edges of G such that

- \blacktriangleright each edge label is in $\{1, 2, \dots, k\}$ and is distinct;
- the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if $A_G^*(|E|) > 0$.

An antimagic labeling of G=(V,E) is an assignment $E\to \mathbb{Z}_{>0}$ such that

- ightharpoonup each edge label $1, 2, \dots, |E|$ is used exactly once;
- the sum of the labels on all edges incident with a given node is unique.

Idea Introduce a counting function: let $A_G^*(k)$ be the number of assignments of positive integers to the edges of G such that

- \blacktriangleright each edge label is in $\{1, 2, \dots, k\}$ and is distinct;
- ▶ the sum of the labels on all edges incident with a given node is unique.

Then G has an antimagic labeling if and only if $A_G^*(|E|) > 0$.

Bad News The counting function $A_G^*(k)$ is in general not a polynomial:

$$A_{C_4}^*(k) = k^4 - \frac{22}{3}k^3 + 17k^2 - \frac{38}{3}k + \begin{cases} 0 & \text{if } k \text{ is even,} \\ 2 & \text{if } k \text{ is odd.} \end{cases}$$

An antimagic labeling of G=(V,E) is an assignment $E\to \mathbb{Z}_{>0}$ such that

- \blacktriangleright each edge label $1, 2, \dots, |E|$ is used exactly once;
- ▶ the sum of the labels on all edges incident with a given node is unique.

New Idea Introduce another counting function: let $A_G(k)$ be the number of assignments of positive integers to the edges of G such that

- \blacktriangleright each edge label is in $\{1, 2, \dots, k\}$;
- the sum of the labels on all edges incident with a given node is unique.

Theorem (MB-Farahmand 2017) $A_G(k)$ is a quasipolynomial in k of period at most 2. If G minus its loops is bipartite then $A_G(k)$ is a polynomial.

Corollary For bipartite graphs, $A_G^*(|E|) > 0$.

One Last Picture: Birkhoff-von Neumann Roots

For more about roots of (Ehrhart) polynomials, see Braun (2008) and Pfeifle (2010).