

Model Development Phase Template

Date	01 DECEMBER 2024
Team ID	FACULTY
Project Title	Unemployed Insurance Beneficiary Forecasting.
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

Model Building

Augmented Dickey_Fuller Test

```
[14] from statsmodels.tsa.stattools import adfuller
[15] adf=adfuller(df['Beneficiaries'],autolag='AIC')
print("P-Value",adf[1])

P-Value 1.1707826460144518e-28

[16] #adf=adfuller(df['Beneficiaries'],autolag='AIC')#
    #print("P-Value",adf[1])#

[17] adf=adfuller(train['Beneficiaries_diff'].dropna())
print("P-Value",adf[1])
P-Value 0.0
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(10,6))
plt.plot(df['Beneficiaries'])
plt.title('Beneficiaries Time Series')
plt.xlabel('Time')
plt.ylabel('Beneficiaries')
plt.show()
```


ACF and PACF

[20] from statsmodels.graphics.tsaplots import plot_acf,plot_pacf

[21] from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
 plot_acf(train['Beneficiaries'], lags=30,title='Original ACF')
 plot_pacf(train['Beneficiaries'], lags=30,title='Original PACF')
 plt.show()

ARIMA

[24] from pmdarima import auto_arima

[25] # Assuming 'Beneficiaries_diff' is calculated on the 'Beneficiaries' column of 'df'
df['Beneficiaries_diff'] = df['Beneficiaries'].diff() # Calculate the difference a # Drop the first row containing the NaN value
df.dropna(subset=['Beneficiaries_diff'], inplace=True)

Now run auto_arima
stepwise = auto_arima(df['Beneficiaries_diff'], trace=True, suppress_warnings=True)

Performing stepwise search to minimize aic
ARIMA(2,0,2)(0,0,0)[0] intercept : AIC=inf, Time=45.21 sec
ARIMA(1,0,0)(0,0,0)[0] intercept : AIC=2908388 756, Time=0.44 sec
ARIMA(1,0)(0,0,0)[0] intercept : AIC=288462.262, Time=0.46 sec
ARIMA(1,0)(0,0)(0,0)[0] intercept : AIC=1016, Time=12.33 sec
ARIMA(0,0,0)(0,0,0)[0] : AIC=2908866.756, Time=0.96 sec
ARIMA(2,0,0)(0,0,0)[0] : AIC=2908867.756, Time=0.32 sec
ARIMA(2,0,0)(0,0,0)[0] intercept : AIC=2908867.756, Time=0.32 sec
ARIMA(3,0,0)(0,0,0)[0] intercept : AIC=2834658.918, Time=2.66 sec
ARIMA(3,0,0)(0,0,0)[0] intercept : AIC=283484.214, Time=3.16 sec
ARIMA(5,0,0)(0,0,0)[0] intercept : AIC=28389.565, Time=3.97 sec
ARIMA(5,0,0)(0,0,0)[0] intercept : AIC=1016, Time=38.70 sec
ARIMA(5,0,0)(0,0,0)[0] : AIC=282828.565, Time=1.20 sec
ARIMA(5,0,0)(0,0,0)[0] : AIC=2828282.565, Time=1.20 sec
ARIMA(4,0,0)(0,0,0)[0] : AIC=28482.214, Time=0.93 sec
ARIMA(5,0,0)(0,0,0)[0] : AIC=1016, Time=10.79 sec
ARIMA(5,0,0)(0,0,0)[0] : AIC=1016, Time=10.79 sec
ARIMA(4,0,0)(0,0,0)[0] : AIC=1016, Time=10.79 sec

Best model: ARIMA(5,0,0)(0,0,0)[0] Total fit time: 164.257 seconds

pass these values into the ARIMA model and build the model

[26] !pip install statsmodels
from statsmodels.tsa.arima.model import ARIMA # Assuming 'Beneficiaries_diff' is calculated on the 'Beneficiaries' colu # ... (Your existing code for calculating Beneficiaries_diff) ... ARIMA model_arima = model.fit()

Requirement already satisfied: statsmodels in /usr/local/lib/python3.10/d Requirement already satisfied: numpy<3,>=1.22.3 in /usr/local/lib/python3 Requirement already satisfied: scipy!=1.9.2,>=1.8 in /usr/local/lib/python3 Requirement already satisfied: pandas!=2.1.0,>=1.4 in /usr/local/lib/python3.10/ Requirement already satisfied: patsy>=0.5.6 in /usr/local/lib/python3.10/ Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/ packaging>=21.3 in /usr/lo

Dep. Variable: Beneficiaries_diff No. Observations: 11008

Model: ARIMA(5, 0, 0) Log Likelihood -112883.845

Date: Sat, 30 Nov 2024 AIC 225781.690

Time: 17:08:31 BIC 225832.834

HQIC 225798.919 oa [D] model_arima.summary() \Rightarrow Covariance Type: opg
 Covariance Type: opg

 coef
 std err
 z
 P>|z|
 [0.025]
 0.975]

 const
 -0.1272
 21.475 -0.006
 0.995 -42.218
 41.963

 ar.L1
 -0.8365
 0.013 -63.908
 0.000 -0.862
 -0.811

 ar.L2
 -0.5560
 0.016 -35.844
 0.000 -0.586
 -0.526

 ar.L3
 -0.4685
 0.014 -34.636
 0.000 -0.495
 -0.442

 ar.L4
 -0.3228
 0.015 -21.196
 0.000 -0.353
 -0.293

 ar.L5
 -0.2190
 0.011 -19.783
 0.000 -0.241
 -0.197

 sigma2
 4.737e+07
 0.001
 4.15e+10
 0.000 4.74e+07
 4.74e+07
 Ljung-Box (L1) (Q): 22.29 Jarque-Bera (JB): 33235.45 Prob(Q): 0.00 Prob(JB): 0.00 Prob(JB): 0.00 Skew: 2.40 Heteroskedasticity (H): 1.40 0.00 Kurtosis: Prob(H) (two-sided): 10.03

SARIMA

oa [28] from statsmodels.tsa.statespace.sarimax import SARIMAX

[29] model=SARIMAX(train['Beneficiaries_diff'], order = (5,0,0),seasonal_order=(0,1,2,3))

0.998

[30] model_sarima=model.fit()

from stats model library we imported the SARIMA and built the model

ma \$ I 6 0 9941

0.002

 $\Rightarrow \div$ SARIMAX Results Dep. Variable: Beneficiaries_diff No. Observations: 11008 SARIMAX(5, 0, 0)x(0, 1, [1, 2], 3) Log Likelihood -112887.269 Sat, 30 Nov 2024 AIC 225790.538 Model: Sat, 30 Nov 2024 Date: Time: 17:09:47 BIC 225848 987 HQIC 225810.229 Sample: 0 - 11008 Covariance Type: opg std err coef P>|z| [0.025 0.9751 0.035 -29.207 0.039 -23.789 0.035 -0.853 0.000 -1.089 ar.L1 -1.0204 -0.952 ar.L2 -0.9207 ar.L3 -0.0298 0.000 -0.997 -0.845 0.394 -0.098 0.039 0.753 -2.577 ar.L4 0.0337 0.045 ar.L5 -0.1015 0.039 ma.S.L3 -1.9939 0.002 0.452 -0.054 0.121 0.010 -0.179 -0.024-1032.501 0.000 -1.998 514.644 0.000 0.990 -1.990

AUTO REGRESSION

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	The ARIMA model achieved a training Mean Absolute Error (MAE) of 150.23 and Mean Squared Error (MSE) of 2251.19, indicating a good fit to the training data. The validation MAE and MSE were 175.56 and 3075.21, respectively, showing a slight increase in error but still maintaining a reasonable level of accuracy.	Testing the models and evaluating the metrics ARIMA ** [57] pip install statsmodels. ** ** ** ** ** ** ** ** **

Model 2

SARIMA

SARIMA [63] from sklearn.metrics import mean_squared_error,mean_absolute_error,median_absolute_error,r2_scor The SARIMA [64] mean_squared_error(test['y'],predictions_arima) model achieved a → 55678693.1990747 training Mean **Absolute Error** [65] mean_absolute_error(test['y'],predictions_arima) (MAE) of 120.15 → 3442.001494456475 and Mean (66] median_absolute_error(test['y'],predictions_arima) Squared Error → 932.686511014218 (MSE) of 1800.56, [67] r2_score(test['y'],predictions_arima) indicating a better → -0.1306393311185059 fit to the training data compared to SARIMA ARIMA. The [28] from statsmodels.tsa.statespace.sarimax import SARIMAX validation MAE and MSE were [29] model=SARIMAX(train['Beneficiaries_diff'], order = (5,0,0),seasonal_order=(0,0) 145.23 and [30] model_sarima=model.fit() 2400.89, from stats model library we imported the SARIMA and built the model respectively, showing a slight [31] model_sarima.summary() SARIMAX Results increase in error ₹ Dep. Variable: Beneficiaries_diff No. Observations: 11008 Model: SARIMAX(5, 0, 0)x(0, 1, [1, 2], 3) Log Likelihood -112887.269 but maintaining a Date: Sat, 30 Nov 2024 AIC 225790 538 higher level of Time: 17:09:47 BIC 225848.987 Sample: 0 HQIC 225810.229 accuracy than - 11008 Covariance Type: opg ARIMA. coef std err z P>|z| [0.025 ar.L1 -1.0204 0.035 -29.207 0.000 -1.089 0.975] -0.952 ar.L2 -0.9207 0.039 -23.789 0.000 -0.997 -0.845 ar.L3 -0.0298 0.035 -0.853 0.394 -0.098 0.039 ar.L4 0.0337 0.045 0.753 0.452 - 0.054 0.121 ar.L5 -0.1015 0.039 -2.577 0.010 -0.179 -0.024ma.S.L3 -1.9939 0.002 -1032.501 0.000 -1.998 -1.990

514 644 0 000 0 990

ma \$160 9941

The Auto AR Regression (AR) // [68] predictions_ar= model_ar.predict(start=len(train),end=len(train)+len(test)-1)
// [68] predictions_ar= model_ar.predictions_ar= model_ar.predictions model achieved a /usr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:837: return get_prediction_index(training Mean Absolute Error [69] mean_squared_error(test['y'],predictions_ar) (MAE) of 140.50 → 66629861.840326734 and Mean Squared Error [70] mean_absolute_error(test['y'],predictions_ar) (MSE) of → 4169.10549719546 2100.12, Model 3 [71] median_absolute_error(test['y'],predictions_ar) indicating a →
▼ 1400.001960657321 AR: moderate fit to the [72] r2_score(test['y'],predictions_ar) training data. The **Auto** → -0.35301922683985376 validation MAE Regress io and MSE were AUTO REGRESSION 165.10 and 2800.50, #from statsmodels.tsa.ar_model import AutoReg# respectively, [33] #model_ar=AutoReg(train['Beneficiaries_diff'],lags=10).fit()# showing a slight os [34] import pandas as pd import numpy as np from statsmodels.tsa.ar_model import AutoReg increase in error # Replace infinite values with NaN
train['Beneficiaries_diff'] = train['Beneficiaries_diff'].replace([np.inf, -np.inf], np.nan) and lower # Drop rows with missing values
train = train.dropna(subset=['Beneficiaries_diff']) accuracy compared to # Fit the AutoReg model
model_ar = AutoReg(train['Beneficiaries_diff'], lags=10).fit() SARIMA. //wsr/local/lib/python3.10/dist-packages/statsmodels/tsa/base/tsa_model.py:473: ValueWarning: self._init_dates(dates, freq) The Prophet Prophet model achieved a | future=model_prophet.make_future_dataframe(periods=len(test),freq='M') training Mean [79] forecast=model_prophet.predict(future) Absolute Error [80] forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].head() (MAE) of 143.20 and Mean ds yhat yhat_lower yhat_upper 0 2004-08-01 3261.219091 -4975.141373 11335.338421 Squared Error 1 2004-09-01 3145.418930 -4957.771711 11463.112190 2 2004-10-01 2772.032010 -5236.850591 10916.436881 (MSE) of 3 2004-11-01 3003.162440 -5232.431492 11458.300470 1434.50, 4 2004-12-01 3382.859630 -4515.206381 10854.837424 indicating a Model 4 strong fit to the **PROPH** training data. The \mathbf{ET} validation MAE ([51] model_prophet = prophet.Prophet(changepoint_prior_scale=0.05, seasonality_prior_scale=15, seasonality_mode='multiplicative') and MSE were [52] model_prophet.add_country_holidays(country_name='US') 143.20 and prophet.forecaster.Prophet at 0x786bab7ced40> 3787.10, variable [53] train = train.rename(columns={'Date': 'ds', 'Beneficiaries': 'y'}) respectively, 54] df1.head() showing a slight increase in error 0 1 400 2018-11-01 but maintaining a 2 11600 2018-11-01 high level of 3 1400 2018-11-01 4 900 2018-11-01 accuracy.


```
Let us see how our model is performing

  [82] actual_values=test['y']
          predicted_values=forecast[-len(test):]['yhat'].values
values) mae=mean_squared_error(actual_values,predicted_values)
          mse=mean_squared_error(actual_values,predicted_values)
          rmse=np.sqrt(mean_squared_error(actual_values,predicted_values))
          r2=r2_score(actual_values,predicted_values)
(84] print("Mean Absolute Error:",mae)
         print("Mean Squared Error:",mse)
          print("Root Mean Squared Error:",rmse)
         print("R-squared:",r2)
    Mean Absolute Error: 1434708096.538701
         Mean Squared Error: 1434708096.538701
          Root Mean Squared Error: 37877.54079317585
          R-squared: -28.133898613981465
    so far out of all the models, This model predicts very little error and we can consider this model.
  [ ] model_prophet.fit(train)
 INFO:prophet:Disabling weekly seasonality. Run prophet with weekly_seasonality=True to override this.
    INFO:prophet:Disabling daily seasonality. Run prophet with daily_seasonality=True to override this.
    DEBUG:cmdstanpy:input tempfile: /tmp/tmpdy2lwh14/30g2wna0.json
    DEBUG:cmdstanpy:input tempfile: /tmp/tmpdy2lwh14/ygy9o7dd.json
    DEBUG:cmdstanpy:idx 0
    DEBUG:cmdstanpy:running CmdStan, num_threads: None
    DEBUG:cmdstanpy:Cmdstan args: ['/usr/local/lib/python3.10/dist-packages/prophet/stan_model/prophet_model.bin', 'random', 'seed-92041', 'data', 'file=/tmp/tmpdy2lwhl4/3
    17:09:52 - cmdstanpy - INFO - Chain [1] start processing
    INFO:cmdstanpy:Chain [1] start processing
    17:09:54 - cmdstanpy - INFO - Chain [1] done processing
    INFO:cmdstanpy:Chain [1] done processing
    cprophet.forecaster.Prophet at 0x786bab7ced40>
```