

United States Patent and Trademark Office

UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO	
09/468,621	12/21/1999	PIERRE STEVENS	21026.09	3845	
7590 01/27/2005			EXAMINER		
Pierre Stevens			DADA, BEEMNET W		
21047 Escondido Way Boca Raton, FL 33433			ART UNIT	PAPER NUMBER	
ŕ			2135		
			DATE MAILED: 01/27/2005		

Please find below and/or attached an Office communication concerning this application or proceeding.

				 			
Office Action Summary		Applicat	Application No. Applicant(s)				
		09/468,6		STEVENS, PIERRE			
		Examine	er	Art Unit			
			W Dada	2135			
The MAI Period for Reply	LING DATE of this communic	ation appears on th	e cover sheet with the c	orrespondence ad	dress		
THE MAILING I - Extensions of time after SIX (6) MONT - If the period for repl - If NO period for rep - Failure to reply with Any reply received	D STATUTORY PERIOD FO DATE OF THIS COMMUNIO may be available under the provisions o HS from the mailing date of this commu ly specified above is less than thirty (30) ly is specified above, the maximum state in the set or extended period for reply w by the Office later than three months aft adjustment. See 37 CFR 1.704(b).	CATION. f 37 CFR 1.136(a). In no e nication. days, a reply within the statory period will apply and will, by statute, cause the ap	vent, however, may a reply be tin atutory minimum of thirty (30) day will expire SIX (6) MONTHS from plication to become ABANDONE	nely filed s will be considered timel the mailing date of this c D (35 U.S.C. § 133).			
Status							
1)⊠ Responsi	ve to communication(s) filed	on <u>12 July 2004</u> .					
2a) This actio	n is FINAL . 21	o) This action is	non-final.				
•	Since this application is in condition for allowance except for formal matters, prosecution as to the merits is closed in accordance with the practice under <i>Ex parte Quayle</i> , 1935 C.D. 11, 453 O.G. 213.						
Disposition of Cla	ims						
4a) Of the 5) ☐ Claim(s) 6) ☑ Claim(s) 7) ☐ Claim(s)	1-21 is/are pending in the ap above claim(s) is/are is/are allowed. 1-21 is/are rejected. is/are objected to. are subject to restriction	withdrawn from co					
Application Paper	s						
9) The specif	fication is objected to by the	Examiner.					
10)∐ The drawi)☐ The drawing(s) filed on is/are: a)☐ accepted or b)☐ objected to by the Examiner.						
Applicant r	may not request that any object	ion to the drawing(s)	be held in abeyance. See	e 37 CFR 1.85(a).			
·	ent drawing sheet(s) including to or declaration is objected to	·	- · ·				
Priority under 35 l	J.S.C. § 119						
12) Acknowled a) All b) 1. Ce 2. Ce 3. Co app	dgment is made of a claim for Some * c) None of: rtified copies of the priority depies of the copies of the priority depies of the certified copies of the certified copies of the lnternation	ocuments have be ocuments have be f the priority documal Bureau (PCT Ru	en received. en received in Applicati nents have been receive ule 17.2(a)).	on No ed in this National	Stage		
" See the att	ached detailed Office action	for a list of the cer	tified copies not receive	ea.			
Attachment(s)							
1) Notice of Referen	ces Cited (PTO-892)		4) Interview Summary				
	erson's Patent Drawing Review (PT osure Statement(s) (PTO-1449 or F Date		Paper No(s)/Mail Do 5) Notice of Informal F 6) Other:		O-152)		

DETAILED ACTION

1. This office action is in reply to an amendment filed on July 12, 2004. Claims 1, 4, 10-18 and 21 have been amended. Claims 1-21 are pending.

Response to Arguments

2. Applicant's arguments with respect to claims 1-21 have been considered but are moot in view of the new ground(s) of rejection.

Claim Rejections - 35 USC § 103

- 3. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 4. Claims 1-4, 7 and 21 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Patent 5,583,933, in view of Hersh, US Patent 5,386,479 and further in view of Pieterse et al. US Patent 5,714,741 (hereinafter Pieterse)
- 5. As per claim 1, Mark discloses a secure access card (auto-dialer, Abstract) comprising at least one tone generator for generating at least one signal that is variable in at least one

Art Unit: 2135

of tone frequency, time duration of tone, time duration of space between tones, and by amplitude of tone (col 5 In 30-35); tone generator (DTMF encoder/generator, col 8 In 23-34) input means for accepting input from a user (device keys, col 8 In 10-17 and microphone, col 8 In 23-33); and a controller (microprocessor, col 8 In 10-17), electrically coupled to the at least one tone generator (speaker, col 8 In 23-33) and the input means (device keys, col 8 In 10-17 and microphone, col 8 In 23-33), for controlling the at least one tone generator to generate a tone sequence corresponding to the input from the user (DTMF signal, col 5 In 25-57, PIN corresponding to input, col 57 In 1322, and voice transmitted via encoded DTMF, col 50 In 55-63). Mark further discloses at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker col 8, In 34-55) that substantially maximizes audio power output from at least one tone generator (DTMF generator produce tones of nominal frequency, col 24 In 24-40, auto calibration of the auto dialer, col 24 lines 63-67 and col 21 In1-9). However, Mark does not teach a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency. Hersh discloses a tone generator that comprises of a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency (sound generator... transducers selected ... resonant frequency, col 2 In 6-25; see also col 2 In 56-66 and col 4 In 16-44). Mark discloses the importance of accurate and maximum power output from the transducer over a broad frequency range (col 23 In 59 - col 24 In 58). Both Mark and Hersh disclose a tone generator that is used for producing sound over a wide frequency range. Furthermore, Hersh discloses a method of producing maximum audio power output from a tone generator (wide band intense frequency response, col 2 In 625). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Hersh within the system of Mark because it would have increased accuracy through a relatively wide band intense frequency

Art Unit: 2135

response. The combination of Mark and Hersh is silent on the plurality of acoustic transducers being oriented outward of the secure access card for generating tone audio output external to one side of the secure access card. However, it is well known in the art that acoustic transducers in a secure card being oriented outward of the card. For example Pieterse teaches a secure IC card, and a method for transmitting acoustic signals to a remote location [see abstract, col. 2, lines 60-67], including plurality of acoustic transducers being oriented outward of the secure access card for generating audio output external to one side of the secure access card [column 4, lines 4-31 and column 7, lines 16-49]. Therefore it would have been obvious to one having ordinary skill in the art at the time the invention was made to employ the system where plurality of acoustic transducer are oriented outward of a secure card as taught by Pieterse within the combination of Mark and Hersh in order to transmit acoustic signals to remote location.

As per claim 2, Mark discloses a secure access card (auto-dialer, Abstract) wherein the at least one tone generator generates a tone sequence comprising at least one of dual tone multi frequency (DTMF) signals, FSK signals, MSK signals, and multi tone signals (DTMF or other types including FSK, col 1 In 23-36 and col 66 !n 39-45). FSK and MSK are multi tone signals that are used for data transmission, like DTMF signals and are well known in the art. Mark specifically teaches the use of DTMF signals but suggests similar signals also apply. FSK signals, MSK signals and other multi tone signals similar DTMF signals are to be inherent to the invention disclosed by Mark), signals to identify the user as authorized user (information transmitted to the network by a series of encoded DTMF tones and is compared to authenticate the user, col 50 In 55-67 and col 51 In 1-4).

Page 4

Art Unit: 2135

4-31 and column 7, lines 16-49].

7. As per claim 3, Mark discloses at least one tone generator further comprises a controllable amplifier circuit (degree of amplification controlled by microprocessor, col 48 In 33-50), the controller being electrically coupled to the controllable amplifier circuit and to the acoustic transducer to selectively control the controllable amplifier circuit (Lo-band and Hi-band

Page 5

tone signals are amplified separately ...through amplitude control signals, col 19 In 44-56;

degree of amplification controlled by microprocessor, col 13 In 33-50) and the acoustic

transducer to generate the tone sequence corresponding to the input from the user (DTMF

signal, col 50 In 56-63; placement of call with correct PIN, col 57 In 3-23).

- 8. As per claim 4, Mark discloses tone generator generates a tone sequence (DTMF signal, col 50 In 56-63; placement of call with correct PIN, col 57 In 3-23) that is delivered via a communication network interface (telephone, col 5 In 5159) comprising a telephone network interface for a publicly switched telephone network (PSTN) (telephone lines/system, col 5 In 37-50; The auto-dialer is used for placing telephone calls through a publicly switched telephone network. Therefore a communication network interface comprising a telephone network interface for a publicly switched telephone network (PSTN) is to be inherent to the invention of Mark). Furthermore plurality of acoustic transducers being oriented outward of a secure access card for generating audio output external to one side of the secure access card [column 4, lines
- 9. As per claim 7, Mark discloses memory for storing a representation of user input (RAM, col 8 In 10-17; storage of a user's voice file, col 48 In 33-50; PIN numbers and phrases, col 56 In 39-52), and wherein the controller (microprocessor, col 8 In 10-33) is electrically coupled to the memory and to the input means (microphone, col 8 In 34-56) for monitoring the input means

Art Unit: 2135

for user input and to store a representation of the user input in the memory (store voice identification or biometric information, col 50 ln 22-63) the controller controlling the at least one tone generator to generate a tone sequence corresponding to the stored representation of the user input (information transmitted to the network or facility by a series of encoded tones, col 50 ln 45-55), the tone sequence for delivery via a communication network interface to a secure access server to determine whether the user input identifies the user as an authorized user of secure access function of a system (access control device, col 50 ln 22-63 and col 51 ln 1-5).

Page 6

10. As per claim 21, Mark discloses a secure access card (auto-dialer, Abstract) comprising at least one tone generator for generating at least one tone signal that is variable in at least one of tone frequency, time duration of tone, time duration of space between tones, and by amplitude of tone (col 5 ln 30-35); tone generator (DTMF encoder/generator, col 8 ln 23-34) input means for accepting input from a user (device keys, col 8 ln 10-17 and microphone, col 8 ln 23-33); and a controller (microprocessor, col 8 ln 10-17), electrically coupled to the at least one tone generator (speaker, col 8 ln 23-33) and the input means (device keys, col 8 ln 10-17 and microphone, col 8 ln 23-33), for controlling the at least one tone generator to generate a tone sequence corresponding to the input from the user (DTMF signal, col 5 ln 25-57, PIN corresponding to input, col 57 ln 1322, and voice transmitted via encoded DTMF, col 50 ln 55-63).

Mark further discloses at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker col 8, In 34-55) that substantially maximizes audio power output from at least one tone generator (DTMF generator produce tones of nominal frequency, col 24 In 24-40, auto calibration of the auto dialer, col 24 lines 63-fi7 and col 21 In1-9). However, Mark does not teach at least one audio transducer that is

mechanically tuned to oscillate about its mechanical resonant frequency. Hersh discloses a tone generator that comprises of a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency (sound generator... transducers selected ... resonant frequency, col 2 In 6-25; see also col 2 In 56-66 and col 4 In 16-44). Mark discloses the importance of accurate and maximum power output from the transducer over a broad frequency range (col 23 In 59 - col 24 In 58). Both Mark and Hersh disclose a tone generator that is used for producing sound over a wide frequency range. Furthermore, Hersh disdoses a method of producing maximum audio power output from a tone generator (wide band intense frequency response, col 2 In 625). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Hersh within the system of Mark because it would have increased accuracy by providing a more intense audio signal.

Page 7

The combination of Mark and Hersh is silent on the plurality of acoustic transducers being oriented outward of the secure access card for generating tone audio output external to one side of the secure access card. However, it is well known in the art that acoustic transducers in a secure card being oriented outward of the card. For example Pieterse teaches a secure IC card, and a method for transmitting acoustic signals to a remote location [see abstract, col. 2, lines 60-67], including plurality of acoustic transducers being oriented outward of the secure access card for generating audio output external to one side of the secure access card [column 4, lines 4-31 and column 7, lines 16-49]. Therefore it would have been obvious to one having ordinary skill in the art at the time the invention was made to employ the system where plurality of acoustic transducer are oriented outward of a secure card as taught by Pieterse within the combination of Mark and Hersh in order to transmit acoustic signals to remote location.

Art Unit: 2135

11. Claim 5 is rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Paten 5,583,933, in view of Hersh, US Patent 5,386,479 and further in view of Pieterse US Patent 5,714,741 as applied to claim 1 above, and further in view of Paterno, US Patent 5,636,271.

12. As per claim 5, Mark discloses memory for storing identification information (RAM, col 8 In 10-17; storage of a user's voice file, col 48 In 33-50; PIN numbers and phrases, col 56 In 39-52), and wherein the controller (microprocessor, col 8 In 10-33) is electrically coupled to the to memory and to the input means (microphone, col 8 In 34-56).

The combination of Mark, Hersh and Pieterse does not teach the controller to monitor the input means for user input and to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence for delivery via the communication network interface. However, Paterno et al. discloses an access card that monitors PIN input to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence (DTMF tone representation of PIN, col 1 ln 63-67 and col 2 ln 1-13) for delivery via the communication network interface (telephone; col 1 ln 63-67 and col 2 ln 1-13). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to incorporate the teachings of Paterno et al within the combination of Mark, Hersh and Pieterse because it would have added an extra security to the authentication process of the card and user before the card is used with the access control device of the combination of Mark and Hersh.

Claim 6 is rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US

Art Unit: 2135

Paten 5,583,933, in view of Hersh, US Patent 5,386,479, and further in view of Pieterse US Patent 5,714,741 and further in view of Paterno et al, US Patent 5,636,271 as applied to claim 5 above, and further in view of Fung et al, US Publication 200110052077.

14. As per claim 6, Mark discloses input means comprising at least one of a key input, a voice audio input, and a fingerprint input (capturing and converting voice datableometric data and transferring converted digital data to auto-dialer, col 481n 10-43).

The combination of Mark, Hersh and Pieterse does not teach to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence for delivery via the communication network interface. However, Paterno et al. discloses a access card that monitors PIN input to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence (DTMF tone representation of PIN, col 1 In 63-67 and col 2 In 1-13) for delivery via the communication network interface (telephone; col 1 In 63-67 and col 2 In 1-13). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to incorporate the teachings of Patemo et al within the system of Mark because it would have added an extra security to the authentication process of the card and user before the card is used with the access control device of the combination Mark, Hersh and Pieterse.

Furthermore, the combination of Mark, Hersh, Pieterse and Patemo does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input, including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is

Art Unit: 2135

accessing downloaded content. The signature identification and other forms of identification have the same purpose of authenticating the user of the card. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark, Hersh, Pieterse and Paterno because it would have added another set of data to authenticate the user.

- 15. Claims 8 and 9 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Patent 5,583,933, in view of Hersh, US Patent 5,386,479 and further in view of Pieterse US Patent 5,714,741 as applied to claim 7 above, and further in view of Fung et al, US Publication 200110052077.
- 16. As per claims 8 and 9, Mark discloses input means comprising at least one of a key input, a voice audio input, and a fingerprint input, to capture user input from a user of the secure access card and to store a representation of the user input in the memory (interfacing equipment ...accessing a record or group of records, which contain voice or other biometric details of the user col 55 ln 30-43; supply set of PIN numbers through keypad of telephone, col 57 ln 3-12), the controller controlling the at least one tone generator to generate atone sequence corresponding to the stored representation of the user input for delivery via a communication network interface to a secure access server to determine whether the user input identifies the user as an authorized user of secure access function of a system (information transmitted to the network of facility by a series of encoded DTMF tones, col 50 ln 55-67 and col 51 ln 1-4).

The combination of Mark, Hersh and Pieterse does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system.

Art Unit: 2135

which authorizes user with biometric input, including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark, Hersh and Pieterse because it would have added another set of data to authenticate the user.

- 17. Claims 10-13, and 16-17 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Paten 5,583,933, in view of Hersh, US Patent 5,386,479, and further in view of Pieterse US Patent 5,714,741 and further in view of Fung et al, US Publication 200110052077, and further in view of Maes et al, US Patent 6,016,476.
- 18. As per claim 10, Mark discloses a communication network (telephone system, col 50 In 22-27; network, col 50 In 56-63); a secure application function server, electrically coupled to the communication network, for providing secured access functions to an authorized user across the communication network (access control device granting access to individual seeking access to the system the requested access, col 50 In 45-55); a secure access server (comparator on the access control device, col 50 In 28-63), electrically coupled to the communication network, for determining whether a user across the communication network is an authorized user (compare biometric identification received to a live sample, col 50 In 45-55; place call based on correct PIN, col 57 In 3-23) a network interface for coupling communication signaling between the communication network and the secure access server (telephone and microphone/speaker of access control device, col 50 In); a tone signal processor electrically coupled to the network

Art Unit: 2135

interface for receiving and processing communication signaling from the communication network (DTMF encoder/decoder and microphone/speaker, col 50 In 28-44), the communication signaling comprising at least one tone signal in a tone sequence (encoded DTMF tones, col 50 In 56-63); a database memory for storing authorized user identification information (interfacing equipment ... accessing a record or group of records, which contain voice or other biometric details of the user (col 55 In 3043) including for each authorized user at least one of a personal identification number (PIN), a voice identification information, a fingerprint identification information (biometric data, col 55 In 30-43); a controller (microprocessor, col 50 In 38-55), electrically coupled to the tone signal processor and the database memory, for receiving communication signaling from the communication network (microphone/decoder coupled to microprocessor to receive biometric identification via the input device, col 50 In 28-37), the communication signaling comprising at least one tone signal in a tone sequence representative of user identification information (voice information sent through encoded DTMF tones, col 50 In 56-63). It is noted that the purpose of a secure application/function server is to provide the authorized user the requested application/functions. The access control device, which is disclosed by Mark, grants access to the requested system, functions after authorization of user. Therefore the secure applicationlfunction server is to be inherent to the operation performed by the access device control of Mark's invention.

Furthermore, Mark discloses a secure access card (auto-dialer, Abstract) at least one tone generator for generating at least one tone signal that is variable in at least one of tone frequency, time duration of tone, time duration of space between tones, and by amplitude of tone (col 5 In 30-35); input means for accepting input from a user (device keys, col 8 In 10-17 and microphone, col 8 In 23-33); and a controller (microprocessor, col 8 In 10-17), electrically coupled to the at least one tone generator (speaker, col 8 In 23-33) and the input means (device

Art Unit: 2135

keys, col 8 In 10-17 and microphone, col 8 In 23-33), for controlling the at least one tone generator to generate a tone sequence corresponding to the input from the user (DTMF signal, col 5 in 25-57, PIN corresponding to input, col 57 In 13-22, and voice transmitted via encoded DTMF, col 50 In 55-63).

Mark further discloses at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker col 8, In 34-55) that substantially maximizes audio power output from at least one tone generator (DTMF generator produce tones of nominal frequency, col 24 In 24-40, auto calibration of the auto dialer, col 24 lines 63-67 and col 21 In 1-9). However, Mark does not teach a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency. Hersh discloses a tone generator that comprises of a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency (sound generator ._. transducers selected ... resonant frequency, col 2 In 6-25; see also col 2 In 56-66). Mark discloses the importance of accurate and maximum power output from the transducer over a broad frequency range (col 23 In 59 - col 24 In 58). Both Mark and Hersh disclose a tone generator that is used for producing sound over a wide frequency range. Furthermore, Hersh discloses a method of producing maximum audio power output from a tone generator (wide band intense frequency response, col 2 In 6-25). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Hersh within the system of Mark because it would have increased accuracy through a relatively wide band intense frequency response.

The combination of Mark and Hersh is silent on the plurality of acoustic transducers being oriented outward of the secure access card for generating tone audio output external to one side of the secure access card. However, it is well known in the art that acoustic

remote location.

transducers in a secure card being oriented outward of the card. For example Pieterse teaches a secure IC card, and a method for transmitting acoustic signals to a remote location [see abstract, col. 2, lines 60-67], including plurality of acoustic transducers being oriented outward of the secure access card for generating audio output external to one side of the secure access card [column 4, lines 4-31 and column 7, lines 16-49]. Therefore it would have been obvious to one having ordinary skill in the art at the time the invention was made to employ the system

where plurality of acoustic transducer are oriented outward of a secure card as taught by

Pieterse within the combination of Mark and Hersh in order to transmit acoustic signals to

The combination of Mark, Hersh and Pieterse does not teach user identification information for each user stored in the database to include a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input, in cluding~signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark, Herse and Pieterse because it would have added another set of data to authenticate the user.

Furthermore, the combination of Mark, Hersh, Pieterse and Fung et al does not teach comparing the user identification information to the stored authorized user identification information to determine whether the user identification information received from across the communication network corresponds to an authorized user for accessing secured access functions provided by the secure application/function server to an authorized user across the

Page 15

Art Unit: 2135

communication network. However, Maes discloses a central server that processes user input and authenticates user based on information pre-stored on the server (col 7 In 20-35 and col 8 In 12-27). Using the central server to compare and store the authorized user identification information would allow for more memory to store more information on different users, and would add an extra layer of security on top of the security of the access card. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Maes et al within the combination of Mark, Hersh, Pieterse and Fung et al so that the central server, disclosed by Maes et al, can communicate with the auto dialer, disclosed by Mark, because it would have added additional user security to functions accessed by the card.

- 19. As per claim 11, Mark discloses a secure access card (auto-dialer, Abstract) wherein the at least one tone generator generates a tone sequence comprising at least one of dual tone multi frequency (DTMF) signals (DTMF or other types including FSK, col 1 In 23-36 and col 66 In 39-45) and signals to identify the user as authorized user (information transmitted to the network by a series of encoded DTMF tones and is compared to authenticate the user, col 50 In 55-67 and col 51 In 1-4).
- 20. As per claim 12, Mark discloses at least one tone generator further comprises a controllable amplifier circuit (degree of amplification controlled by microprocessor, col 48 In 33-50), the controller being electrically coupled to the controllable amplifier circuit and the acoustic transducer to selectively control the controllable amplifier circuit (Lo-band and Hi-band tone signals are amplified separately... through amplitude control signals, col 19 In 44-56; degree of

Art Unit: 2135

amplification controlled by microprocessor, col 13 In 33-50) and the acoustic transducer to generate the tone sequence corresponding to the input from the user (DTMF signal, col 50 In 56-63; placement of call with correct PIN, col 57 In 3-23).

- 21. As per claim 13, Mark discloses tone generator generates a tone sequence (DTMF signal, col 50 In 56-63; placement of call with correct PIN, col 57 In 3-23) that is delivered via a communication network (telephone system, col 5 In 37-50) comprising a telephone network interface for a publicly switched telephone network (PSTN) (telephone lines/system, col 5 In 37-50; The autodialer is used for placing telephone calls through a publicly switched telephone network. Therefore, a communication network interface comprising a telephone network interface for a publicly switched telephone network (PSTN) is to be inherent to the invention of Mark).
- As per claim 16, Mark discloses memory for storing a representation of user input (RAM, col 8 In 10-17; storage of a user's voice file, col 48 In 33-50; PIN numbers and phrases, col 56 In 39-52), and wherein the controller (microprocessor, col 8 In 10-33) is electrically coupled to the memory and to the input means (microphone, col 8 In 34-56) for monitoring the input means for user input and to store a representation of the user input in the memory (store voice identification or biometric information, col 50 In 22-63) the controller controlling the at least one tone generator to generate a tone sequence corresponding to the stored representation of the user input (information transmitted to the network or facility by a series of encoded tones, col 50 In 45-55), the tone sequence for delivery via a communication network interface to a secure access server to determine whether the user input identifies the user as an authorized user of secure access function of a system (access control device, col 50 In 22-63 and col 51 In 1-5).

Art Unit: 2135

23. As per claim 17, Mark discloses input means comprises at least one of a key input, a voice audio input, and a fingerprint input, to capture user input from a user of the secure access card and to store a representation of the user input in the memory (interfacing equipment ...accessing a record or group of records, which contain voice or other biometric details of the user col 55 ln 30-43; supply set of PIN numbers through keypad of telephone, col 57 ln 3-12), the controller controlling the at least one tone generator to generate a tone sequence corresponding to the stored representation of the user input for delivery via a communication network to a secure access server to determine whether the user input identifies the user as an authorized user of secure access function of a system (information transmitted to the network of facility by a series of encoded DTMF tones, cot 50 ln 55-67 and col 51 ln 1-4).

Page 17

The combination of Mark and Hersh does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input; including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the system of Mark because it would have added another set of data to authenticate the user.

24. Claims 14 and 15 rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Paten 5,583,933, in view of Hersh, US Patent 5,386,479, and further in view of Pieterse US Patent 5,714,741 and further in view of Fung et al, US Publication 200110052077.

Art Unit: 2135

in further view of Maes et al, US Patent 6,016,476 as applied to claim 10 above, and further in view of Paterno et al, US Patent 5,636,271.

25. As per claim 14 Mark discloses memory for storing identification information (RAM, col 8 In 10-17; storage of a user's voice file, col 48 In 33-50; PIN numbers and phrases, col 56 In 39-52), and wherein the controller (microprocessor, col 8 In 10-33) is electrically coupled to the to memory and to the input means (microphone, col 8 In 34-56).

The combination of Mark, Hersh, Pieterse, Fung et al, and Maes et al does not teach the controller to monitor the input means for user input and to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence for delivery via the communication network interface. However, Paterno et al. discloses .an access card that monitors PIN input to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence (DTMF tone representation of PIN, col 1 In 63-67 and col 2 In 1-13) for delivery via the communication network interface (telephone; col 1 In 63-67 and col 2 In 1-13). To have the controller determine if user input matches user information, already stored in the card, would require a reprogramming of the controller. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to incorporate the teachings of Patemo et at within the combination of Mark, Hersh, Pieterse Fung et al, and Maes et al bemuse it would have added an extra security to the authentication process of the card and user before the card is used with the access control device of Mark's invention.

26. As per claim 15, Mark discloses input means comprising of at least one of a key input, a voice audio input, and a fingerprint input, to capture user input from a user of the secure access

Art Unit: 2135

card (capturing and converting voice datalbiometric data and transferring converted digital data to auto-dialer, col 48 In 10-43; supply set of PIN numbers through keypad of telephone, col 57 In 3-12; It is noted that Mark does not disclose the card physically capable of capturing and converting the data digitally. However, Mark discloses a method of capturing the data from a central office and transferring a digital representation of the data to the card. Both are different methods but result in the same outcome of voice and other biometric data being captured and stored in memory on the card).

The combination of Mark and Hersh does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input, including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometdc data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark and Hersh because it would have added another set of data to authenticate the user and added extra security to the auto dialer Mark disclosed.

Furthermore, the combination of Mark, Hersh, Pieterse, Fung et al, and Maes et al does not teach the user input being compared to the stored identification information to permit the card to generate the tone sequence for delivery via the communication network interface. However, Paterno et al. discloses a access card that monitors PIN input to determine whether the user input matches the stored identification information to permit the card to generate the tone sequence (DTMF tone representation of PIN, col 1 In 63-67 and col 2 In 1-13) for delivery via the communication network interface (telephone; col 1 In 63-67 and col 2 In 1-13). It would

Art Unit: 2135

have been obvious to one of ordinary skill in the art at the time of the applicant's invention to incorporate the teachings of Paterno et al within the combination of Mark, Hersh, Pieterse, Fung et a, and Maes et all because it would have added an extra security to the authentication process of the card and user before the card is used with the access control device.

- 27. Claim 18 rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Patent 5,583,933, in view of Hersh, US Patent 5,386,479, in view of Pieterse US Patent 5,714,741 and further in view of Maes et al, US Patent 6,016,476.
- 28. As per claim 18, Mark discloses a communication system (telephone system, col 50 In 23-27) comprising the steps of: capturing user input at a secure access card (storage of voice or other biometric information, col 50 In 44-50; It is noted that storing the voice or biometric information on the access card requires a method of capturing such input. Therefore the capturing of user input is inherent to the teachings of Mark); storing a representation of the user input at the secure access card (storage of voice or other biometric information, col 50 In 44-50); acoustically transmitting, by at least one tone generator in the device (col 5 In 30-35), a tone sequence destined for reception across a communication network (encoded DTMF tones, col 50 In 55-63), the tone sequence corresponding to the stored representation of the user input (voice identification information may be transmitted to the network/access control device by a series of encoded DTMF tones, col 50 In 55-63); comprising at least one acoustic transducer (speaker cot 8, In 34-55) that is mechanically tuned to oscillate about its mechanical resonant frequency to substantially maximize audio power output from at least one tone generator (DTMF generator produce tones of nominal frequency, cot 24 In 24-40, auto calibration of the auto dialer, col 24 lines 63-67 and cot 21 In1-9; It is well known in the art that a generator that

Page 21

Application/Control Number: 09/468,621

Art Unit: 2135

produces tones of nominal frequency, intensity, and duration is known to be oscillating at its mechanical resonant frequency); receiving from across the communication network a representation of the to transmitted tone sequence (microphone and DTMF decoder for receiving and decoding encoded DTMF tones, cot 50 In 2836); comparing (compare the voice data to voice sample, col 50 ln 45-55)

Mark further discloses at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker col 8, In 34-55) comprising at least one acoustic transducer (speaker cot 8, In 34-55) that substantially maximizes audio power output from at least one tone generator (DTMF generator produce tones of nominal frequency, col 24 In 24-40, auto calibration of the auto dialer, cot 24 lines 63-67 and cot 21 ln1-9). However, Mark does not teach explicitly teach the at least one transducer being mechanically tuned to oscillate about its mechanical resonant frequency. Hersh discloses a tone generator that comprises of a plurality of acoustic transducers that are mechanically tuned to oscillate about their mechanical resonant frequency (sound generator... transducers selected ... resonant frequency, cot 2 In 6-25; see also col 2 In 56-66). Mark discloses the importance of accurate and maximum power output from the transducer over a broad frequency range (cal 23 In 59 - col 24 In 58). Both Mark and Hersh disclose atone generator that is used for producing sound over a wide frequency range. Furthermore, Hersh discloses a method of producing maximum audio power output from a tone generator (wide band intense frequency response, cof 2 In 6-25). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Hersh within the system of Mark because it would have increased accuracy through a relatively wide band intense frequency response.

The combination of Mark and Hersh is silent on the plurality of acoustic transducers being oriented outward of the secure access card for generating tone audio output external to

Art Unit: 2135

one side of the secure access card. However, it is well known in the art that acoustic transducers in a secure card being oriented outward of the card. For example Pieterse teaches a secure IC card, and a method for transmitting acoustic signals to a remote location [see abstract, col. 2, lines 60-67], including plurality of acoustic transducers being oriented outward of the secure access card for generating audio output external to one side of the secure access card [column 4, lines 4-31 and column 7, lines 16-49]. Therefore it would have been obvious to one having ordinary skill in the art at the time the invention was made to employ the system where plurality of acoustic transducer are oriented outward of a secure card as taught by Pieterse within the combination of Mark and Hersh in order to transmit acoustic signals to remote location.

The combination of Mark, Hersh and Pieterse does not explicitly teach comparing the received representation of the transmitted tone sequence to pre stored authorized user identification information; and determining whether a match between the representation of the transmitted tone sequence and a pre-stored authorized user identification information identifies the user is of the secure access device as an authorized user of the communication system. However, Maes et al discloses a central server that processes user input and authenticates user based on information pre-stored on the server and determines if the user is an authorized user of the communication system (col 7 In 20-35 and col 8 In 1227). It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Maes et al within the combination of Mark, Hersh and Pieterse so that the central server, disclosed by Maes et al, can communicate with the auto dialer through tone signals, discloses by the combination of Mark and Hersh, because it would have added additional user security to functions accessed by the card.

Art Unit: 2135

29. Claims 19 and 20 are rejected under 35 U.S.C. 103(a) as being unpatentable over Mark, US Patent 5,583,933, in view of Hersh, US Patent 5,386,479 in view of Pieterse, in view of Maes et al, US Patent 6,016,476 as applied to claim 18 above, and further in view of Fung et al, US Publication 200110052077.

As per claim 19, Mark discloses capturing at least one of a key input, a voice audio input, and a fingerprint input, to capture user input from a user of the secure access card (capturing and converting voice datalbiometric data and transferring converted digital data to auto-dialer, col 48 In 10-43; It is noted that Mark does not disclose the card physically capable of capturing and converting the data digitally. However, Mark discloses a method of capturing the data from a central office and transferring a digital representation of the data to the card. Both are different methods but result in the same outcome of voice and other biometric data being captured and stored in memory on the card. Therefore the method of capturing user input is inherent to the invention of Mark).

The combination of Mark, Hersh, Pieterse and Maes et al does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input, including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark, Hersh, Pieterse and Maes et al because it would have added another set of data to authenticate the user.

Art Unit: 2135

30. As per claim 20, Mark discloses a tone sequence (DTMF signal, col 5 In 25-57), comprising of a representation of the captured at least one of a key input, a voice audio input, and a fingerprint input from a user of the secure access card to identify the user thereof (PIN corresponding to input, col 57 In 13-22, and voice transmitted via encoded DTMF, col 50 In 55-63).

The combination of Mark, Hersh, Pieterse and Maes does not teach user the input means comprising of a signature identification method. However Fung et al. discloses an ID system, which authorizes user with biometric input, including signature or other writing (col 5 section 0060). The secure access card uses the signature information of the user as authentication information to authorize the user to use the requested services. Fung et al teaches the use of biometric data, including written signature, to authenticate the user who is accessing downloaded content. It would have been obvious to one of ordinary skill in the art at the time of the applicant's invention to combine the teachings of Fung et al within the combination of Mark, Hersh, Pieterse and Maes because it would have added another set of data to authenticate the user.

Conclusion

31. Applicant's amendment necessitated the new ground(s) of rejection presented in this Office action: Accordingly, **THIS ACTION IS MADE FINAL**. See MPEP § 706.07(a). Applicant is reminded of the extension of time policy as set forth in 37 CFR 1.136(a).

A shortened statutory period for reply to this final action is set to expire THREE

MONTHS from the mailing date of this action. In the event a first reply is filed within TWO

MONTHS of the mailing date of this final action and the advisory action is not mailed until after

Art Unit: 2135

the end of the THREE-MONTH shortened statutory period, then the shortened statutory period will expire on the date the advisory action is mailed, and any extension fee pursuant to 37 CFR 1.136(a) will be calculated from the mailing date of the advisory action. In no event, however, will the statutory period for reply expire later than SIX MONTHS from the date of this final action.

Any inquiry concerning this communication or earlier communications from the examiner should be directed to Beemnet W Dada whose telephone number is (571) 272-3847. The examiner can normally be reached on Monday - Friday (9:00 am - 5:30 pm).

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Kim Y Vu can be reached on (571) 272-3859. The fax phone number for the organization where this application or proceeding is assigned is 703-872-9306.

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free).

Beemnet Dada

January 22, 2005

CUPERVISORY PATENT EXAMINATECHNOLOGY CENTER 21

KIM VU