MATH 190-02 HW3

Matthew Mendoza

TOTAL POINTS

33 / 40

QUESTION 1

1 Question 1 9 / 10

- 0 pts Well done!
- 1 pts You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this.
- 6 pts In your solution, you immediately start using the Pythagorean theorem to write $\$\$a^2 + c_1^2 = h^2\$$, and proceeding from there. This problem is proving the Pythagorean theorem, so you cannot use it in the proof. Use similar triangles instead.
- 3 pts I am a little confused by your proof. It's a unclear where you are shifting your triangles to.
 Also, why does it end up in the shape you assert? I think there is probably a proof here, but more explanation and details would be required.
- 3 pts You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this. Also, when you write \$\$(ab) + \frac12 (c^2)\$\$, you should explain how you got that.
- **3 pts** More explanation is needed. Just writing down equations without saying where they come from does not constitute a proof.

Also, you should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this.

- 8 pts You were not supposed to look up a proof, you were supposed to figure it out on your own. Either way, what you wrote could perhaps be the basis of a proof, but you would need to make a much more thorough argument.
- √ 1 pts Say why the purple square is indeed a
 square.
 - 1 pts Say why that is indeed a trapezoid.

QUESTION 2

2 Question 2 8 / 10

- 0 pts Good job!
- **0 pts** You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this. Everything else was good!
- **4 pts** You are on the right track, but you don't finish it by reaching the conclusion.
- **10 pts** It was required that two of your exercises are proofs of the Pythagorean theorem.
- 1 pts State why that is indeed a trapezoid.
- **2 pts** Explain what you are doing. A proof needs more than just a list of equations.
 - 2 pts Say why that first equation that you

wrote down is true.

- **2 pts** Looks like you are on the right track, but more explanation is needed to show your logic.
 - 10 pts Nothing submitted.
- $\sqrt{-2 \text{ pts}}$ State why this is indeed a trapezoid. And don't assume that angle is a right angle, prove it.

QUESTION 3

3 Question 3 6 / 10

- 0 pts Good job!
- 5 pts Parts (b), (c) and (d)?
- **5 pts** You show it only in one case. Prove it in general.
 - 10 pts Nothing submitted.
- \checkmark 4 pts For part (b), use similar triangles.

QUESTION 4

4 Question 4 10 / 10

- √ 0 pts Good job!
 - 5 pts You only showed that 2 divides abc.
- **5 pts** Your proof only works for 3,4,5 and multiples of it. Why do all the other triples work too?
 - 0 pts Impressive!
 - 10 pts Nothing submitted.

Exercises

One proof of the Pythagorean theorem, given by 16th-century Exercise 3.1. Indian mathematician Jyesthadeva, is summarized in the following diagram. Write out a complete proof of the Pythagorean theorem based on this diagram.

We know that an area of a triangle: $\frac{1}{2}b \cdot h$, Square: a^2

1) Total area of the dotted square

(2) In the diagram we have 4 triangles, so its fair to say

$$\Rightarrow 4(rac{1}{2}ab)=2ab$$
 are essentially legs of the right triangle

3) We can equate the two equations by
All the hyp. of all 4 triangles like so... $(a+b)^2 = c^2 + 2ab$

 $(a+b)^2 = C^2 + 2ab$ Now with some algebra ...

 $= a^2 + 2ab + b^2 = c^2 + 2ab$ and now we are left with

a2+b2=c2

1 Question 1 9 / 10

- 0 pts Well done!
- 1 pts You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this.
- 6 pts In your solution, you immediately start using the Pythagorean theorem to write $\$$a^2 + c_1^2 = h^2\$$, and proceeding from there. This problem is proving the Pythagorean theorem, so you cannot use it in the proof. Use similar triangles instead.
- **3 pts** I am a little confused by your proof. It's a unclear where you are shifting your triangles to. Also, why does it end up in the shape you assert? I think there is probably a proof here, but more explanation and details would be required.
- 3 pts You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this. Also, when you write \$\$(ab) + \frac12 (c^2)\$\$, you should explain how you got that.
- **3 pts** More explanation is needed. Just writing down equations without saying where they come from does not constitute a proof.

Also, you should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this.

- 8 pts You were not supposed to look up a proof, you were supposed to figure it out on your own. Either way, what you wrote could perhaps be the basis of a proof, but you would need to make a much more thorough argument.
- $\sqrt{-1}$ pts Say why the purple square is indeed a square.
 - 1 pts Say why that is indeed a trapezoid.

Exercise 3.2. In 1876, U.S. Congressman (and future president) James Garfield discovered a proof of the Pythagorean theorem using the following diagram.

Recall that the area of a trapezoid h

is $\frac{1}{2}(a+b)h$. By writing the area

of a Garfield's diagram in two different ways, write out a complete proof of the Pythagorean theorem.

2 Question 2 8 / 10

- 0 pts Good job!
- **0 pts** You should start by assuming you have a right triangle with sides a, b and c, and then build the figure and proceed. Your proof is incomplete without this. Everything else was good!
 - 4 pts You are on the right track, but you don't finish it by reaching the conclusion.
 - 10 pts It was required that two of your exercises are proofs of the Pythagorean theorem.
 - **1 pts** State why that is indeed a trapezoid.
 - 2 pts Explain what you are doing. A proof needs more than just a list of equations.
 - 2 pts Say why that first equation that you wrote down is true.
 - 2 pts Looks like you are on the right track, but more explanation is needed to show your logic.
 - **10 pts** Nothing submitted.
- $\sqrt{-2 \text{ pts}}$ State why this is indeed a trapezoid. And don't assume that angle is a right angle, prove it.

Exercise 3.3. Many proofs of the Pythagorean theorem make use of similar triangles. One of the simplest of these is the following.

(a) Begin with a right triangle with legs a and b and hypotenuse c.

Adding an altitude (of length h, which in turn divides the hypotenuse into two line segments of lengths c_1 and c_2) gives this:

(b) Prove that $\frac{a}{c} = \frac{c_1}{a}$ and $\frac{b}{c} = \frac{c_2}{b}$.

(c) Cross-multiply each equation and add these equations together. Show that $a^2 + b^2 = c^2$, concluding the proof.

3 Question 3 6 / 10

- 0 pts Good job!
- **5 pts** Parts (b), (c) and (d)?
- **5 pts** You show it only in one case. Prove it in general.
- **10 pts** Nothing submitted.
- \checkmark 4 pts For part (b), use similar triangles.

Hint: It might be helpful to consider these dashed lines:

and now we are left with $a^2+b^2=c^2$

4 Question 4 10 / 10

- ✓ **0** pts Good job!
 - **5 pts** You only showed that 2 divides abc.
 - **5 pts** Your proof only works for 3,4,5 and multiples of it. Why do all the other triples work too?
 - 0 pts Impressive!
 - **10 pts** Nothing submitted.