Title: Multilayer perceptron

URL: https://en.wikipedia.org/wiki/Multilayer_perceptron

PageID: 2266644

Categories: Category:Classification algorithms, Category:Neural network architectures

Source: Wikipedia (CC BY-SA 4.0).

Supervised learning

Unsupervised learning

Semi-supervised learning

Self-supervised learning

Reinforcement learning

Meta-learning

Online learning

Batch learning

Curriculum learning

Rule-based learning

Neuro-symbolic Al

Neuromorphic engineering

Quantum machine learning

Classification

Generative modeling

Regression

Clustering

Dimensionality reduction

Density estimation

Anomaly detection

Data cleaning

AutoML

Association rules

Semantic analysis

Structured prediction

Feature engineering

Feature learning

Learning to rank

Grammar induction

Ontology learning

Multimodal learning

Apprenticeship learning
Decision trees
Ensembles Bagging Boosting Random forest
Bagging
Boosting
Random forest
k -NN
Linear regression
Naive Bayes
Artificial neural networks
Logistic regression
Perceptron
Relevance vector machine (RVM)
Support vector machine (SVM)
BIRCH
CURE
Hierarchical
k -means
Fuzzy
Expectation-maximization (EM)
DBSCAN
OPTICS
Mean shift
Factor analysis
CCA
ICA
LDA
NMF
PCA
PGD
t-SNE
SDL
Graphical models Bayes net Conditional random field Hidden Markov
Bayes net
Conditional random field
Hidden Markov
RANSAC
k -NN

Local outlier factor
Isolation forest
Autoencoder
Deep learning
Feedforward neural network
Recurrent neural network LSTM GRU ESN reservoir computing
LSTM
GRU
ESN
reservoir computing
Boltzmann machine Restricted
Restricted
GAN
Diffusion model
SOM
Convolutional neural network U-Net LeNet AlexNet DeepDream
U-Net
LeNet
AlexNet
DeepDream
Neural field Neural radiance field Physics-informed neural networks
Neural radiance field
Physics-informed neural networks
Transformer Vision
Vision
Mamba
Spiking neural network
Memtransistor
Electrochemical RAM (ECRAM)
Q-learning
Policy gradient
SARSA
Temporal difference (TD)
Multi-agent Self-play
Self-play
Active learning
Crowdsourcing
Human-in-the-loop

Mechanistic interpretability **RLHF** Coefficient of determination Confusion matrix Learning curve **ROC** curve Kernel machines Bias-variance tradeoff Computational learning theory Empirical risk minimization Occam learning **PAC** learning Statistical learning VC theory Topological deep learning **AAAI ECML PKDD NeurIPS ICML ICLR IJCAI** ML **JMLR** Glossary of artificial intelligence List of datasets for machine-learning research List of datasets in computer vision and image processing List of datasets in computer vision and image processing Outline of machine learning In deep learning, a multilayer perceptron (MLP) is a name for a modern feedforward neural network consisting of fully connected neurons with nonlinear activation functions, organized in layers, notable for being able to distinguish data that is not linearly separable . [1] Modern neural networks are trained using backpropagation [2][3][4][5][6] and are colloquially referred to as "vanilla" networks. [7] MLPs grew out of an effort to improve single-layer perceptrons, which could only be applied to linearly separable data. A perceptron traditionally used a Heaviside step function as its nonlinear activation function. However, the backpropagation algorithm requires that modern MLPs use continuous activation functions such as sigmoid or ReLU .[8].

Multilayer perceptrons form the basis of deep learning, [9] and are applicable across a vast set of diverse domains. [10]

Timeline

In 1943, Warren McCulloch and Walter Pitts proposed the binary artificial neuron as a logical model of biological neural networks. [11]

In 1958, Frank Rosenblatt proposed the multilayered perceptron model, consisting of an input layer, a hidden layer with randomized weights that did not learn, and an output layer with learnable connections. [12]

In 1962, Rosenblatt published many variants and experiments on perceptrons in his book Principles of Neurodynamics, including up to 2 trainable layers by "back-propagating errors". [13] However, it was not the backpropagation algorithm, and he did not have a general method for training multiple layers.

In 1965, Alexey Grigorevich Ivakhnenko and Valentin Lapa published Group Method of Data Handling . It was one of the first deep learning methods, used to train an eight-layer neural net in 1971. [14] [15] [16]

In 1967, Shun'ichi Amari reported [17] the first multilayered neural network trained by stochastic gradient descent, was able to classify non-linearily separable pattern classes. Amari's student Saito conducted the computer experiments, using a five-layered feedforward network with two learning layers. [16]

Backpropagation was independently developed multiple times in early 1970s. The earliest published instance was Seppo Linnainmaa 's master thesis (1970). [18] [19] [16] Paul Werbos developed it independently in 1971, [20] but had difficulty publishing it until 1982. [21]

In 1986, David E. Rumelhart et al. popularized backpropagation. [22][23]

In 2003, interest in backpropagation networks returned due to the successes of deep learning being applied to language modelling by Yoshua Bengio with co-authors. [24]

In 2021, a very simple NN architecture combining two deep MLPs with skip connections and layer normalizations was designed and called MLP-Mixer; its realizations featuring 19 to 431 millions of parameters were shown to be comparable to vision transformers of similar size on ImageNet and similar image classification tasks. [25]

Mathematical foundations

Activation function

If a multilayer perceptron has a linear activation function in all neurons, that is, a linear function that maps the weighted inputs to the output of each neuron, then linear algebra shows that any number of layers can be reduced to a two-layer input-output model. In MLPs some neurons use a nonlinear activation function that was developed to model the frequency of action potentials, or firing, of biological neurons.

The two historically common activation functions are both sigmoids, and are described by

The first is a hyperbolic tangent that ranges from -1 to 1, while the other is the logistic function , which is similar in shape but ranges from 0 to 1. Here y i {\displaystyle y_{i}} is the output of the i {\displaystyle i} th node (neuron) and v i {\displaystyle v_{i}} is the weighted sum of the input connections. Alternative activation functions have been proposed, including the rectifier and softplus functions. More specialized activation functions include radial basis functions (used in radial basis networks , another class of supervised neural network models).

In recent developments of deep learning the rectified linear unit (ReLU) is more frequently used as one of the possible ways to overcome the numerical problems related to the sigmoids.

Layers

The MLP consists of three or more layers (an input and an output layer with one or more hidden layers) of nonlinearly-activating nodes. Since MLPs are fully connected, each node in one layer

connects with a certain weight w i j {\displaystyle w_{ij}} to every node in the following layer.

Learning

Learning occurs in the perceptron by changing connection weights after each piece of data is processed, based on the amount of error in the output compared to the expected result. This is an example of supervised learning, and is carried out through backpropagation, a generalization of the least mean squares algorithm in the linear perceptron.

We can represent the degree of error in an output node j {\displaystyle j} in the n {\displaystyle n} th data point (training example) by e j (n) = d j (n) – y j (n) {\displaystyle $e_{j}(n)=d_{j}(n)-y_{j}(n)$ }, where d j (n) {\displaystyle $d_{j}(n)$ } is the desired target value for n {\displaystyle n} th data point at node j {\displaystyle j}, and y j (n) {\displaystyle $y_{j}(n)$ } is the value produced by the perceptron at node j {\displaystyle j} when the n {\displaystyle n} th data point is given as an input.

The node weights can then be adjusted based on corrections that minimize the error in the entire output for the n {\displaystyle n} th data point, given by

Using gradient descent, the change in each weight wij {\displaystyle w_{ij}} is

where y i (n) {\displaystyle y_{i}(n)} is the output of the previous neuron i {\displaystyle i} , and η {\displaystyle \eta } is the learning rate , which is selected to ensure that the weights quickly converge to a response, without oscillations. In the previous expression, $\theta \in (n) \theta \neq (n) \theta \neq$

The derivative to be calculated depends on the induced local field $v \in \{\text{displaystyle } v_{j}\}\$, which itself varies. It is easy to prove that for an output node this derivative can be simplified to

where ϕ ' {\displaystyle \phi ^{\prime }} is the derivative of the activation function described above, which itself does not vary. The analysis is more difficult for the change in weights to a hidden node, but it can be shown that the relevant derivative is

This depends on the change in weights of the k {\displaystyle k} th nodes, which represent the output layer. So to change the hidden layer weights, the output layer weights change according to the derivative of the activation function, and so this algorithm represents a backpropagation of the activation function. [26]

References

External links

Weka: Open source data mining software with multilayer perceptron implementation .

Neuroph Studio documentation, implements this algorithm and a few others .

٧

t

e

History timeline

timeline

Companies

Projects

Parameter Hyperparameter

Hyperparameter

Loss functions

Regression Bias-variance tradeoff Double descent Overfitting

Bias-variance tradeoff	
Double descent	
Overfitting	
Clustering	
Gradient descent SGD Quasi-Newton method Conjugate gradient method	
SGD	
Quasi-Newton method	
Conjugate gradient method	
Backpropagation	
Attention	
Convolution	
Normalization Batchnorm	
Batchnorm	
Activation Softmax Sigmoid Rectifier	
Softmax	
Sigmoid	
Rectifier	
Gating	
Weight initialization	
Regularization	
Datasets Augmentation	
Augmentation	
Prompt engineering	
Reinforcement learning Q-learning SARSA Imitation Policy gradient	
Q-learning	
SARSA	
Imitation	
Policy gradient	
Diffusion	
Latent diffusion model	
Autoregression	
Adversary	
RAG	
Uncanny valley	
RLHF	
Self-supervised learning	
Reflection	
Recursive self-improvement	

Hallucination Word embedding Vibe coding Machine learning In-context learning In-context learning Artificial neural network Deep learning Deep learning Language model Large language model NMT Large language model **NMT** Reasoning language model Model Context Protocol Intelligent agent Artificial human companion Humanity's Last Exam Artificial general intelligence (AGI) AlexNet WaveNet Human image synthesis **HWR** OCR Computer vision Speech synthesis 15.ai ElevenLabs 15.ai ElevenLabs Speech recognition Whisper Whisper Facial recognition AlphaFold Text-to-image models Aurora DALL-E Firefly Flux Ideogram Imagen Midjourney Recraft Stable Diffusion Aurora DALL-E Firefly Flux Ideogram Imagen Midjourney

Recraft
Stable Diffusion
Text-to-video models Dream Machine Runway Gen Hailuo Al Kling Sora Veo
Dream Machine
Runway Gen
Hailuo Al
Kling
Sora
Veo
Music generation Riffusion Suno Al Udio
Riffusion
Suno Al
Udio
Word2vec
Seq2seq
GloVe
BERT
T5
Llama
Chinchilla Al
PaLM
GPT 1 2 3 J ChatGPT 4 4o o1 o3 4.5 4.1 o4-mini 5
1
2
3
J
ChatGPT
4
40
01
03
4.5
4.1
o4-mini
5
Claude
Gemini Gemini (language model) Gemma
Gemini (language model)

Grok
LaMDA
BLOOM
DBRX
Project Debater
IBM Watson
IBM Watsonx
Granite
PanGu- Σ
DeepSeek
Qwen
AlphaGo
AlphaZero
OpenAl Five
Self-driving car
MuZero
Action selection AutoGPT
AutoGPT
Robot control
Alan Turing
Warren Sturgis McCulloch
Walter Pitts
John von Neumann
Claude Shannon
Shun'ichi Amari
Kunihiko Fukushima
Takeo Kanade
Marvin Minsky
John McCarthy
Nathaniel Rochester
Allen Newell
Cliff Shaw
Herbert A. Simon
Oliver Selfridge
Frank Rosenblatt
Bernard Widrow
Joseph Weizenbaum

Gemma

Seymour Papert

Seppo Linnainmaa

Paul Werbos

Geoffrey Hinton

John Hopfield

Jürgen Schmidhuber

Yann LeCun

Yoshua Bengio

Lotfi A. Zadeh

Stephen Grossberg

Alex Graves

James Goodnight

Andrew Ng

Fei-Fei Li

Alex Krizhevsky

Ilya Sutskever

Oriol Vinyals

Quoc V. Le

Ian Goodfellow

Demis Hassabis

David Silver

Andrej Karpathy

Ashish Vaswani

Noam Shazeer

Aidan Gomez

John Schulman

Mustafa Suleyman

Jan Leike

Daniel Kokotajlo

François Chollet

Neural Turing machine

Differentiable neural computer

Transformer Vision transformer (ViT)

Vision transformer (ViT)

Recurrent neural network (RNN)

Long short-term memory (LSTM)

Gated recurrent unit (GRU)

Echo state network

Multilayer perceptron (MLP)

Convolutional neural network (CNN)

Residual neural network (RNN)

Highway network

Mamba

Autoencoder

Variational autoencoder (VAE)

Generative adversarial network (GAN)

Graph neural network (GNN)

Category