

Cognitive Database: An Apache Spark-Based Al-Enabled Relational Database System

Rajesh Bordawekar
IBM T. J. Watson Research Center
bordaw@us.ibm.com

#AI5SAIS

Outline

- Word Embedding Overview
- Cognitive Database Design
- Cognitive Intelligence (CI) Queries
- Spark Implementation Details
- Case Study: Image and Text Database
- Summary

Word Embedding Overview

- Unsupervised neural network based NLP approach to capture meanings of words based neighborhood context
 - Meaning is captured as collective contributions from words in the neighborhood
- Generates semantic representation of words as lowdimensional vectors (200-300 dimensions)
- Semantic similarity measured using distance metric (e.g., cosine distance) between vectors

Cognitive Database Key Ideas

- Uses dual view of relational data: tables and meaningful text, with all relational entities mapped to text, without loss of information
- Uses word-embedding approach to extract latent information from database tables
- Classical Word embedding model extended to capture constraints of the relational model (e.g., primary keys)
- Enables relational databases to capture and exploit semantic contextual similarities

Cognitive Database Features

- Enables SQL-based information retrieval based on semantic context, rather than, data values
- Unlike analytics databases, does not view database tables as feature and model repositories
- Latent features exposed to users via standard SQL based Cognitive Intelligence (CI) queries
- Users can invoke standard SQL queries using typed relational variables over a semantic model built over untyped strings

Customer Analytics Workload

custID	Date	Merchant	Sta	ite	Cate	egor	у	Items	Amo	ount
custA	9/16	Whole Foods	NY	Fres	h Proc	luce	Ва	ınanas, A	pples	200
custB	10/16	Target	NJ	Stationery Crayons, Pens, Notebooks		60				
custC	10/16	Trader Joes	СТ	Fresh Produce Bananas, Oranges		80				
custD	9/16	Walmart	NY	Stat	ionery	Cra	ayo	ns, Folde	ers	25

Text representation of a table row

Meaning vector for every token

"custD 9/16 Walmart NY Stationery 'Crayons, Folders' 25"

Words similar in meaning closer in vector space

For this relational view, custA is similar to custC custB is similar to custD

Cognitive Intelligence Queries

- Semantic Similarity/Dissimilarities
- Semantic Clustering
- Cognitive OLAP queries
- Inductive Reasoning queries
- Semantic Relational Operations

Can work with externally trained models and over multiple data types.

CI Query Example

```
val result_df = spark.sql(s"""
SELECT VENDOR_NAME,
proximityCust_NameUDF(VENDOR_NAME, '$v')
AS proximityValue FROM Index_view
HAVING proximityValue > 0.5
ORDER BY proximityValue DESC
"""")
```

Cognitive UDF

- Operates on relational variables. Can be sets or sequences
- For each input variable, fetches vectors from the embedding model
- Computes semantic similarity between vectors using nearest neighbor approaches

CI similarity Query: Find similar entities to a given entity (VENDOR_NAME) based on transaction characteristic similarities

Cognitive Database Applications

- Analysis over multi-modal data (Retail, Health, Insurance)
- Entity similarity queries (Customer Analytics, IT Ticket Management, Time-series)
- Cognitive OLAP (Finance, Insurance...)
- Entity Resolution (Master Data Management)
- Analysis of time-series data (IoT, Health)

Cognitive Databases Stages

Training from source database

Why Spark?

Cognitive Database: Spark Execution Flow

Invoking Cognitive Database in Jupyter

Case Study: Application Database with links to images

Picture ID	National Park	Country	Path of JPEG Image
PK_01	Corbett	India	./Img_Folder/Img_01.JPEG
PK_05	Kruger	South Africa	./Img_Folder/Img_05.JPEG
PK_09	Sunderbans	India	./Img_Folder/Img_09.JPEG
PK_11	Serengeti	Tanzania	./Img_Folder/Img_11.JPEG

Internal Training database with features extracted from linked images

Picture Id	Image Id	National Park	Country	Animal Name	Class	Dietary Habit	color
PK_01	Img_01.JPEG	Corbett	India	Elephant	Mammal	Herbivores	Gray
PK_05	Img_05.JPEG	Kruger	South Africa	Rhinoceros	Mammal	Herbivores	Gray
PK_09	Img_09.JPEG	Sunderbans	India	Crocodile	Reptile	Carnivorous	Gray
PK_11	Img_11.JPEG	Serengeti	Tanzania	Lion	Mammal	Carnivorous	Yellow

The above merged data is used as an input to train the word embedding model that generates embeddings of each unique token based on the neighborhood. Each row of the database is viewed as a sentence.

#AI5SAIS 16

<u>CI Semantic Clustering Query:</u> Find all images whose similarity to user chosen images of [lion, vulture, shark] using the attributeSimAvg UDF with similarity score greater than 0.75

SELECT X.imagename, X.classA, X.classB, X.classC, X.classD,

FROM ImageDataTable X

WHERE (X.imagename <> 'n01314663_7147.jpeg') AND (X.imagename <> 'n01323781_13094.jpeg') AND (X.imagename <> 'n01314663_8531.jpeg') AND

(attributeSimAvgUDF('n01314663_7147.jpeg', 'n01323781_13094.jpeg', 'n01314663_8531.jpeg', X.imagename) > 0.75)

Output

X.Imagename	X.classB	X.classC	X.classD
n01604330_12473	bird_of_prey, mammal	new_world_vulture, carnivore	andean_condor, condor, sloth_bear
n01316422_1684	mammal, bird_of_prey	carnivore, eagle	glutton_wolverine, piste_ski_run, downhill_skiing, ern, ski_slope
n01324431_7056	bird_of_prey, mammal	new_world_vulture, carnivore	andean_condor, tayra

n01604330_12473

n01316422_1684

n01324431_7056

<u>CI Analogy Query:</u> Find all images whose classD satisfies the analogy query [reptile: monitor_lizard :: aquatic_vertebrate : ?] using analogyQuery UDF having similarity score greater than 0.5.

SELECT X.imagename, X.classA, X.classB, X.classC, X.classD

FROM ImageDataTable X

WHERE (analogyQuery('reptile','monitor_lizard','aquatic_vertebrate',X.classD,1) > 0.5)

X.Imagename	X.classB	X.classC	X.classD
n02512053_1493	aquatic_vertebrate	spiny_finned_fish	permit, archerfish
n02512053_3292	aquatic_vertebrate	spiny_finned_fish	archerfish, mojarra
n02512053_602	aquatic_vertebrate	spiny_finned_fish	lookdown, permit

<u>CI Query using external knowledge base:</u> Find all images of animals whose classD similarity score to the Concept of "Hypercarnivore" of Wikipedia using proximityAvgForExtKB UDF is greater than 0.5. Exclude images that are already tagged as carnivore, herbivore, omnivore or scavenger.

SELECT X.imagename, X.classA, X.classB, X.classC, X.classD FROM ImageDataTable X WHERE

(proximityAvgAdvForExtKB('CONCEPT_Hypercarnivore', X.classD) > 0.5)

ORDER BY SimScore DESC

#AI5SAIS

Summary

- Novel relational database system that uses word embedding approach to enable semantic queries in SQL
- Spark-based implementation that loads data from a variety of sources and invokes Cognitive Intelligence queries using Spark SQL
- Demonstration of the cognitive database capabilities using a multi-modal (text+image) dataset
- Illustration of seamlessly integrating AI capabilities into relational database ecosystem

References

- Bordawekar and Shmueli, Enabling Cognitive Intelligence Queries in Relational Databases using Low-dimensional Word Embeddings, arXiv:1603.07185, March 2016
- Bordawekar, Bandopadhyay, and Shmueli, Cognitive Database: A Step Towards Endowing Relational Databases with Artificial Intelligence Capabilities, arXiv:1712:07199, December 2017

