데이터 분석 비전문가도 활용 가능한 범용성 있는 AI 이상감지 모델 개발

목차

01 팀 구성 및 역할

02 프로젝트 개요

03 프로젝트 수행 및 괴정

04 프로젝트 수행 결 과 팀 구성 및 역할

팀 구성 및 역할

김정민 팀장 20학번 소프트웨어전공 역할: CNN, PPT제작

김남훈 18학번 IT경영 역할 : XGBoost, 시각화

윤종헌 17학번 IT경영 역할 : LSTM, PPT제작

이상헌 18학번 게임공학 역할 : Random Forest, 시각화

이슬인 19학번 전자공학 역할 : LSTM, PPT제작

임규호 16학번 생명화학공학 역할 : XGBoost,

PPT제작

정용규 19학번 컴퓨터공학

역할: RNN, CNN, 시각화

프로젝트 개요

프로젝트 개요

프로젝트 개요 - 목

丑

분석 목표

설비 내 여러 개의 계측 센서의 시계열 데이터(행 : 시간, 열 : 센서의 종류)에 대해,

설비의 정상 / 비정상을 판단하는 분류 문제를 해결

목표 수행을 위한 전략

도메인 지식에 기반한 Feature Engineering 없이, 딥러닝 모델이 데이터에 내재된 특징 직접 추출

이를 통해 분류할 수 있는 분석 프레임워크 구축

데이터 분석 기대효과

도메인 지식이 없는 분석 실무자가 기계학습 기반의 정상 / 비정상 분류 과제 수행 가능

프로젝트 수행 및 과정

프로젝트 수행 및 과정 – Overall

process

< 수행과정 >

프로젝트 수행 및 과정 – 데이터

旦人				
A	В	С	D	E
id	att1	att2	att3	att4
1	-0.79717	-0.66439	-0.37301	0.040815
2	0.804855	0.634629	0.373474	0.038343
3	0.727985	0.111284	-0.49912	-1.06863
4	-0.23444	-0.50216	-0.73249	-0.94613
5	-0.17133	-0.06229	0.235829	0.710396
6	-0.5409	-1.01402	-1.29823	-1.32083
7	-0.33406	-1.00801	-1.55435	-1.92219
8	1.04589	0.611195	0.153108	-0.27967
9	0.825565	0.385282	-0.06242	-0.48098
10	-0.28418	-0.19261	-0.03229	0.172823
11	0.529562	0.695556	0.754557	0.688517
12	-1.07104	-1.10475	-1.0247	-0.81404
13	-0.10945	-0.226	-0.30023	-0.33921
14	-1.34854	-0.72549	-0.08562	0.464571
15	1.429452	1.079359	0.510714	-0.14623
16	2.252085	2.157468	1.848938	1.397509
17	0.453874	0.424807	0.399023	0.359174
18	-0.50796	-0.80718	-0.8914	-0.69334
19	1.66411	1.523809	1.318033	1.056137
20	-1.87791	-1.77482	-1.49303	-1.13564

변수명	설명	데이터 타 입
att(n)	특정 센서의 측정 값	숫자
Target	정상,비정상 상태 값	숫자

- 자동차 운영 체계 내 이상 여부를 판단하기 위해 관련된 500개의 센서로부터 수집된 계측 데이터로 구성
- 데이터 출처 : 미국 포드(Ford) 사에서 주최한 기계학습 대회내 오픈 데이터 셋
- Target 값이 1이면 정상, -1이면 비정상

총 4.921개의 시계열 데이터 구조 3,601 개의 Training 데이터와 1,320 개의 Test 데이터로 구

프로젝트 수행 및 과정 – 데이터 분석

3600 x 500개의 시계열 데이터에서 결측치와 데이터 불균형 문제가 있는지 확인

정상 / 비정상의 비율 & 분포도 비슷

➡ 데이터 불균형 아님 & 결측치 없

프로젝트 수행 및 과정 – 데이터 분석

정상과 비정상의 비율이 비슷하며 양상이 거의 흡사

➡ 각 센서의 **양상이 거의 비슷함**

프로젝트 수행 및 과정 – 데이터 분석

정상 데이터에 비교했을 때

비정상 데이터들은 -1 이하의 값들 비중이 많

프로젝트 수행 및 과정 – 데이터 부선

< 상관관계 분석 >

• 서로 거리가 가까운 센서끼리 유의한 관계가 있다는 것을 발 견함

프로젝트 수행 및 과정 – 데이터 전처리

```
from sklearn.preprocessing import MinMaxScaler

col_list = train.columns.values.tolist()
train.sort_index(ascending=False).reset_index(drop=True)

scaler = MinMaxScaler()
scale_cols = col_list

df_scaled = scaler.fit_transform(train[scale_cols])

df_scaled = pd.DataFrame(df_scaled)

df_scaled.columns = scale_cols

< 데이터 스케일
```

 MinMaxScaler를 사용하여 전체 데이터 스케일링 (Ford A)

```
x_train, x_test, y_train, y_test = train_test_split(x_data, y_data, test_size=0.2)
x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train,
test_size=0.2, stratify=y_train,
random_state=1)
```

링>

< 데이터 분 리 >

- 데이터 불균형은 없었지만, 정상과 비정상 데이터의 비율을 맞추기 위해 진행함
- train_test_split 함수와 stratify를 이용해
 원본데이터의 Target비율에 맞춰 데이터를 분리함

프로젝트 수행 및 과정 – 불량 예측 프레 워크

< 시각자료>

프로젝트 수행 및 과정 - 선정한 모뎈

< Extreme Gradient Boosting>

- Boosting 기법을 이용하는 라이브러리
- Regression, Classification 문제를 모두 지원함
- XGBoost는 자체에 과적합 규제 기능으로 강한 내구성 가짐
- 다양한 옵션을 제공, Customizing 용이함
- 병렬 처리로 학습, 분류 속도가 빠름

프로젝트 수행 및 과정 - 선정한 모델

- 주로 이미지나 영상 데이터를 처리할 때 쓰임
- 데이터에서 직접 학습하고 패턴을 사용해 이미지 분류함
- 다양한 옵션을 제공, Customizing 용이함
- 병렬 처리로 학습, 분류 속도가 빠름

프로젝트 수행 및 과정 - 선정한 모델

Forest>

- 대용량 데이터 처리에 효과적
- Classification 및 Regression 문제에 모두 사용 가능
- Overfitting 문제를 회피하여 모델 정확도를 향상시킴
- 정확성, 단순성 및 유연성으로 인해 가장 많이 사용되는 알고리?
- 분류 및 회귀에 사용할 수 있다는 점과 비선형 특성을 결합하면 다양한 데이터 및 상황에 매우 적합함

프로젝트 수행 및 과정 – 모델 선정 이유

→ 종속변수의 시각화를 통한 타겟값 확인

가까운 변수들끼리의 관계 유의

따라서 non-local이 아닌
→ local한 관계를 잘 활용할 수 있
는 모델들 선정

프로젝트 수행 결과

프로젝트 수행 결과 – Best model

selection

 새로운 데이터가 입력될 때마다 여러 개의 서로 다른 모델을 학습시킨 후 최적의 모델을 추론 & 선택

- Classification report, Roc curve,
 Confusion matrix를 통한 검증
- 다양한 데이터를 넣어서 각 모델의 성능 검증

프로젝트 수행 결과 - 모델 검증용 새 데이터 수집

Ford 엔진 상태 분류

센서 측정값에 따른 상태 유형을 분류한 데이터

데이터		설명	데이터 타입
구조	Sensor 1 ~ 500	엔진 관련 요소를 측정한 값	숫자
	독립변수	센서 데이터 1 ~ 500	숫자
변수	종속변수	타겟 값, -1, 1	숫자

프로젝트 수행 결과 – 모델 검증용 새 데이터 수집

Bearing 오작동 분류

센서 측정값에 따른 작동유형을 분류한 데이터

데이터		설명	데이터 타입
구조	Sensor 0 ~ 99	엔진 관련 요소를 측정한 값	숫자
	독립변수	센서 데이터 0 ~ 99	숫자
변수	종속변수	타겟 값, 0, 1, 2, 3	숫자

프로젝트 수행 결과 – 모델 검증 Ford-A

classification report

Random Forest

0.74

Weighted

avg

0.74

	Precision	Recall	f1-score	Support
0	0.74	0.77	0.75	466
1	0.74	0.71	0.72	435
Accuracy			0.74	901
Macro avg	0.74	0.74	0.74	901

0.74

901

CNN

	Precision	Recall	f1-score	Support
0	0.82	0.80	0.81	681
1	0.79	0.82	0.82	639
Accuracy			0.81	1320
Macro avg	0.81	0.81	0.81	1320
Weighted avg	0.81	0.81	0.81	1320

XGBoost

	Precision	Recall	f1-score	Support
0	0.82	0.80	0.81	368
1	0.79	0.82	0.81	353
Accuracy			0.81	721
Macro avg	0.81	0.81	0.81	721
Weighted avg	0.81	0.81	0.81	721

Random Forest < CNN = XGBoost

프로젝트 수행 결과 – 모델 검증 Ford-A

ROC curve

프로젝트 수행 결과 – 모델 검증 Ford-A

Confusion matrix

Random Forest

CNN

프로젝트 수행 결과 – 모델 검증 Ford-B

classification report

Random Forest

CNN

XGBoost

	Precision	Recall	f1-score	Support
0	0.75	0.81	0.78	467
1	0.78	0.71	0.74	442
Accuracy			0.76	909
Macro avg	0.76	0.76	0.76	909
Weighted avg	0.76	0.76	0.76	909

	Precision	Recall	f1-score	Support
0	0.74	0.97	0.84	681
1	0.95	0.64	0.76	639
Accuracy			0.81	1320
Macro avg	0.84	0.80	0.80	1320
Weighted avg	0.84	0.81	0.80	1320

	Precision	Recall	f1-score	Support
0	0.85	0.82	0.83	393
1	0.80	0.83	0.81	335
Accuracy			0.82	728
Macro avg	0.82	0.82	0.82	728
Weighted avg	0.82	0.82	0.82	728

Random Forest < CNN < XGBoost

프로젝트 수행 결과 – 모델 검증 Ford-B

ROC curve

프로젝트 수행 결과 – 모델 검증 Ford-B

Confusion matrix

Random Forest

CNN

프로젝트 수행 결과 - 모델 검증 Bearing

data

classification report

Random Forest CNN XGBoost

	Precision	Recall	f1-score	Support
0	0.97	1.00	0.98	1269
1	0.89	0.75	0.81	699
2	0.89	0.65	0.75	515
3	0.74	0.91	0.82	1128
Accuracy			0.86	3750
Macro avg	0.87	0.83	0.84	3750
Weighted avg	0.87	0.86	0.86	3750

	Precision	Recall	f1-score	Support
0	1.00	1.00	1.00	978
1	0.91	0.90	0.91	561
2	0.89	0.90	0.89	538
3	0.92	0.91	0.92	923
Accuracy			0.94	3000
Macro avg	0.93	0.93	0.93	3000
Weighted avg	0.94	0.94	0.94	3000

	Precision	Recall	f1-score	Support
0	0.98	1.00	0.99	1024
1	0.85	0.82	0.84	566
2	0.82	0.68	0.74	515
3	0.79	0.87	0.83	895
Accuracy			0.87	3000
Macro avg	0.86	0.84	0.85	3000
Weighted avg	0.87	0.87	0.87	3000

Random Forest < XGBoost < CNN

프로젝트 수행 결과 - 모델 검증 Bearing

data

ROC curve

프로젝트 수행 결과 - 모델 검증 Bearing

data

Confusion matrix

프로젝트 수행 결과 - 범용성 있는 모델 & 모 델선택

1. Ford A, Ford B, Bearing data 이 세가지 데이터로 각 모델을 학습

2. Best Model Selection 과정에서, 평균 정확도가 가장 높은 모델 선택하기로 결정

3. 해당 데이터의 경우,

택

Best Model Selection을 통해 XGBoost 선

느낀점

활용방안

• 스마트팩토리 환경에서 센서 데이터만 수집할 수 있다면 우리의 이상감지 모델을 활용할 수 있다

배운 점

- 딥러닝 모델의 종류의 다양함과 다양한 센서 데이터셋으로 이러한 딥러닝 모델들을 활용하고 비교하는 과정을 거치며 모델에 맞는 데이터셋이 있다는 점
- 모델을 선정하기 위해서는, 충분한 데이터에 대한 이해가 필요함을 느낌

해보고 싶은 것

• 추후에 실제 스마트팩토리 설비에서 추출한 raw 데이터들을 가지고 직접 전처리하고 딥러닝 모델에 넣어서 학습하고 예측을 수행해 현장에 직접적인 솔루션을 제공할 수 있는 경험

