Best Available Copy

AD-759 835

Ms vs mb CHARACTERISTICS OF EARTHQUAKES IN THE EASTERN HIMALAYAN REGIONS

Zoltan A. Der

Teledyne Geotech

Prepared for:

Air Force Technical Applications Center Advanced Research Projects Agency

16 January 1973

DISTRIBUTED BY:

U. S. DEPARTMENT OF COMMERCE 5285 Port Royal Road, Springfield Va. 22151

M_s - m_b CHARACTERISTICS OF EARTHQUAKES IN THE EASTERN HIMALAYAN REGIONS

Z. A. DER SEISMIC OATA LABORATORY

16 JANUARY 1973

Proposed for AIR FORCE TECHNICAL APPLICATIONS CENTER Washington, D.C.

Project VELA UNIFORM

Spensored by
AOVANCED RESEARCH PROJECTS AGENCY
Nuclear Monitoring Research Office
ARPA Order No. 1714

TELEDYNE GEOTECH

ALEXANORIA LABORATORIES

NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. Department of Commerce
Springfield VA 22151

APPROVED FOR PUBLIC RELEASE; DISTRIBETION UNLIMITED.

(Security closeffication of Illia, body of abeliact and in	CONTROL DATA - RAD	od when the everall terms to a learning.
Teledyne Geotech	120	REPORT SECURITY C LASSIFICATION
		Inclassified
Alexandria, Virginia		
	LAYAN REGIONS	S IN THE EASTERN
DESCRIPTIVE NOTES (Type of report and inclusive detec) SCIONTIFIC DAUTHOR(S) (Leet name, first name, initial)		
Der, Zoltan, A.		
16 January 1973	70 YOYAL NO OF PAGE	Th NO OF REPS
• CONTRACT OR GRANT NO. F33657-72-C-0009	S. ORIGINATOR'S REPO	T HUMBRAS)
PROJECT NO VELA T/2706	296	
ARPA Order No. 1714 ARPA Program Code No. 2F-10 AVAILABILITY/LIMITATION NOTICES	SO OTHER REPORT MO(S this report)) (Any other numbers that may be seeighed
SUPPLEMENTARY NOTES	Advanced Rese Nuclear Monit Washington, D	arch Projects Agency oring Rosearch Office
ABSTRACT		
The results of a study of M ₈ vs m ₈ charcegion are given in this report. It is shown have M ₈ vs m ₈ characteristics similar to exprehative to body wave magnitudes, when seen The application of station corrections does points in the M ₈ vs m ₈ plane, and therefore the source of the anomalies. Focal depths of and can also be ruled out as causes of low so f anomalous events correlates with various the distribution of tectonic stress in the ain certain areas of the world can seriously in discriminating between earthquakes and exevents is so difficult that further understamonitoring capability with good azimuthal co	at the reporting stations not change the general di- it is unlikely that station most of the events studio- urface wave magnitudes. If prominent geological features studied. The existence decrease the effectiveness plosions. Detection of the	earthquakes occur which irface wave magnitudes available to this study, stribution and spread of a (or path) effects are ad are shallow or normal ne geographical distribution ires and probably reflects of these anomalous events is of the M. vs. of these anomalous
KEY WORDS		
vs m _b	Se	eismicity

Unclassified
Security Classification

${ m M_{S}}$ vs ${ m m_{b}}$ CHARACTERISTICS OF EARTHQUAKES IN THE EASTERN HIMALAYAN REGIONS

SEISMIC DATA LABORATORY REPORT NO. 296

AFTAC Project No.: VELA T/2706

Project Title: Seismic Data Laboratory

ARPA Order No.: 1714

ARPA Program Code No.: 2F-10

Name of Contractor: TELEDYNE GEOTECH

Contract No.: F33657-72-C-0009

Date of Contract: 01 July 1971

Amount of Contract: \$2,490,314

Contract Expiration Date: 30 June 1973

Project Manager: Robert R. Blandford (703) 836-3882

P. O. Box 334, Alexandria, Virginia 22314

APPROVED FOR FUELIC RELEASE, DISTRIBUTION UNLIMITED.

ABSTRACT

The results of a study of M_s vs m_b characteristics of earthquakes in the Eastern Himalayan region are given in this report. It is shown that in this region some earthquakes occur which have M_s vs m_b characteristics similar to explosions, exhibiting low surface wave magnitudes relative to body wave magnitudes, when seen at the reporting stations available to this study. The application of station corrections does not change the general distribution and spread of points in the $M_{\rm c}$ vs mb plane, and therefore it is unlikely that station (or path) effects are the source of the anomalies. Focal depths of most of the events studied are shallow or normal and can also be ruled out as causes of low surface wave magnitudes. The geographical distribution of anomalous events correlates with various prominent geological features and probably reflects the distribution of tectonic stress in the area studied. The existence of these anomalous events in certain areas of the world can seriously decrease the effectiveness of the M_s vs m_b criterion in discriminating between earthquakes and explosions. Detection of the Rayleigh wave from these events is so difficult that further understanding of their mechanism is dependent on an improved monitoring capability with good azimuthal coverage.

TABLE OF CONTENTS

	Page No.
ABSTRACT	
INTRODUCTION	1
TECHNICAL DISCUSSION	्र
Data	3
Computations	5
Results	7
CONCLUSIONS	18
REFERENCES	19
ACKNOWLEDGEMENTS	22
GEOGRAPHIC SKETCH OF STUDY REGION	Pocket

LIST OF TABLES

Title	Table No.
List of Events	IA
Stations Used	1 B
Magnitude Differences Between Stations	11
Results of Joint Magnitude Determination (JMD) Calculations	111
Event Magnitudes (Marshall and Basham N _s Without Depth Corrections)	IV
Event Magnitudes with Station Corrections (Marshall and Basham M _S Includes Depth Correction Using NOS Depth)	V

LIST OF FIGURES

Figure Title	Figure	No.
Map of the Eastern Himalayan region		
including the area studied.	1	
Tectonic map of area studied.	2	
M_s vs m_b values averaged over the station		
network used. Ms was determined by the		
"Prague" formula.	3	
M_s vs m_b values averaged over the station		
network used. Ms was determined by Marshall		
and Basham's method with depth corrections		
using NOS depth.	4	
M _s vs m _b values averaged over the station		
network used. M _s was determined by von		
Seggern's formula.	5	
Geographical distribution of various M_s vs m_b		
types. Definition of types is determined by		
equations (4), (5), and (6) in text. Prague		
formula was used for M _s .	6	
Geographical distribution of various		
M _s vs m _b types. Definition of types is		
determined by equations (4), (5), and (6)		
in text, Marshall and Basham's method with		
depth corrections using NOS depth was used for M _s .		
5	7	
Geographical distribution of various M _s vs m _b		
types. Definition of types is determined by		
equations (4), (5), and (6) in text. von Segger Formula was used for M .	in's	
· · · · · · · · · · · · · · · · · · ·	Q	

LIST OF FIGURES (Cont'd.)

Figure Title	Figure	No.
Geographical distribution of various		
Ms vs mb types. Definition of type is		
determined by equations (7), (8), and (9)		
in text. Prague formula was used for M _s .	9	
Geographical distribution of various		
M _s vs m _b types. Definition of type is		
determined by equations (7) , (8) , and		
(9) in text. Marshall and Basham's method		
used for M _s .	10	
Geographical distribution of various		
M _s vs m _b types. Definition of type is		
determined by equations (7) , (8) , and (9)		
in text, von Seggern's formula was used		
for N _s .	11	
M_{s} vs m_{b} values corrected for mean station		
magnitude differences prior to averaging.		
Prague formula was used for M _s .	12	
M_{s} vs m_{b} values corrected for mean station		
magnitude differences prior to averaging.		
Marshall and Basham's method with depth		
corrections was used for M_s .	13	
M_{s} vs m_{b} values corrected for mean station		
magnitude differences prior to averaging.		
Marshall and Basham method was used for		
M _s . No depth corrections were applied.	14	

LIST OF FIGURES (Cont'd.)

Figure Title	Figure	No.
Ms computed with the method of Marshall and		
Basham (with depth corrections) plotted with NOS		
mb values. Stippled region shows area occupied		
by explosions in the paper by Marshall and Basham		
(1972), Bars give one standard deviation of the		
mean for selected events. $(\pm \sigma/2)$	15	
Ms vs mb values corrected for mean station		
magnitude differences prior to averaging.		
von Seggern's formula was used for Ms.	16	
Geographical distribution of various M _s vs m _b		
types. Ms vs mb values were corrected for		
mean station magnitude differences prior to		
averaging. Prague formula was used for M_s .	17	
Geographical distribution of various		
M_s vs m_b types. M_s vs m_b values were		
corrected for mean station magnitude		
differences prior to averaging. Marshall		
and Basham's method was used for Ms, with		
depth corrections.	18	
Geographical distribution of various		
M_s vs m_b types. M_s vs m_b values were		
corrected for mean station magnitude		
differences prior to averaging. Marshall		
and Basham's method was used for Ms,		
without depth corrections.	19	

LIST OF FIGURES (Cont'd.)

Figure Title	Figure No.
Geographical distribution of various	
Ms vs mb types. Ms vs m values were	
corrected for mean station magnitude	
differences prior to averaging, von	
Seggern's formula was used for Ms.	20
P wave log A vs log A plots before and	
after the application of station correc-	
tions determined by the joint magnitude	
determination method.	21a,b
Rayleigh wave log A vs log & plots	
before and after the application of	
station corrections determined by the	
joint magnitude determination method.	22a,b
Plot of P wave and Rayleigh wave event	
factors Fb and Fs determined by the joint	
magnitude determination method.	23
Comparison of normal and anomalous event	
seismograms.	24a,b,c,d,c

1 NTRODUCTION

This report describes a study of M_{S} vs m_{b} characteristics of earthquakes in a limited region comprising the eastern Wimalayas, and parts of Assam and Tibet. This study is preliminary and is intended to be continued and expanded in scope.

M_S vs m_b characteristics are generally thought to be one of the most effective seismic discriminants between earthquakes and explosions. Earthquakes, in general, excite long period surface waves much more efficiently than do nuclear explosions. The relative excitation of short-period body waves and long-period surface waves by earthquakes is likely to be determined by the characteristics of the source, especially the stress in the source region (Brune 1968; Wyss and Brune 1968; Wyss 1970a, 1970b; Thatcher 1972; Thatcher and Brune 1971; Hanks 1971.) The location of earthquake regions and their source characteristics are not thought to be determined by the distribution of lithospheric plate boundaries and their relative motion (Isacks, Oliver, and Sykes 1968; LePichon 1968).

It can be expected, therefore, that the source characteristics, in particular, the stress present in the source region will vary considerably, depending on the particular region considered. Recent research has shown that there is a wide variation in the relative amplitude of short-period body waves and long-period surface waves from earthquakes which cannot be explained by differences in propagation paths or radiation patterns

(Thatcher 1972; Thatcher and Brune 1971; Marshall and Basham 1972). Such variations are of considerable interest in the problem of detection and identification of nuclear explosions, since high-stress earthquakes could be mistaken for nuclear explosions. On the other hand, nuclear explosions could be effectively hidden in high-stress regions. From a long range point of view it is also very important to map the distribution of stress, since it contains information about deformational processes currently in progress within the earth.

TECHNICAL DISCUSSION

Data

The region studied is bounded by latitudes 27°N and 34°N and longitudes 92°E and 100°E, and is shown in Figure 1 along with the stations used. Geographically this region covers the eastern-most part of the Himalaya range and part of the north-south trending mountain ranges which continue southward to Burma. Toward the south, part of Assam is included, and in the north a portion of the Tibetan Plateau. The available geological information is not sufficient to describe the region accurately, as would be desirable. (Gansser 1964; Smirnov 1964.) A tectonic map of the region has been published by the Geologic Institute of the Academy of Sciences of the USSR. The Tibetan portion of the map is based on recent Chinese works in the area. The map is reproduced in Figure 2.

Tapes containing NOS epicentral data have been searched for earthquakes occurring within this region between 1960 and 1971. Approximately one-hundred events were found. Data for 67 events was ordered. Most of the remaining events were not ordered either because NOS did not compute a body wave magnitude, or because their magnitude was less than 4.0. The 67 events are listed in Table IA. Coordinates and elevations for the stations used are given in Table IB. The same table also shows the average distances and azimuths from the center of the region studied to all the stations. Eleven of

the 67 events were not used in the analysis, however, due to lack of or poor quality of data. Two additional events were not analyzed because they were mixed with other events. The total 13 events are indicated by daggers in Table IA. Most of the events have shallow or normal focal depths, and are scattered over all parts of the region but there are the following main areas of seismicity: the Himalayan front, the eastern end of the plain of Assam and mountain ranges trending southeast towards Burma, and a region at the junction of the mountain ranges at around 30°N and 95°E which exhibits swarmlike earthquake activity. There is also a concentration of events around 33°N and 93°E. Figure 1b from Yanshin (1966) shows that 30°N 95°E to be close to a major fault which Lynn Sykes (personal communication) suggests may be the India-Asia continental block suture. The rest of the activity is scattered; there are some possible zones of activity and inactivity which cannot be seen clearly because of the paucity of events. As pointed out by Fitch (1970), the region of Tibet and Western China is very complex and the details of regional plate motions have not been worked out yet. The situation is different for the Himalayas and the crustal block of India. The recognition that India is thrust under the Tibetan plateau predates the notion of plate tectonics by many years. The majority of events used in this study were listed by NOS as shallow or normal depth earthquakes. These depths were presumably determined from travel times and pP phases. Only one earthquake has a depth exceeding 100 km, and only a few are deeper than 50 km. Depth, therefore as we shall see in more detail later, cannot be an explanation for the weak surface waves from some of the events.

For all the events, film chips were obtained from the National Ocean Survey for the following stations: Shillong (SHL), New Delhi (NDI), Kabul (KBL), Quetta (QUE), Lahore (LAH), Poona (POO), and Chiang Mai (CHG). These stations are equipped with the standard WWSSN instrumentation. The period of the LP seismograph pendulum was changed during the year 1965 from 30 seconds to 15 seconds. This improved the detection of short period (10-15 second) surface waves which for some small events are the most prominent. Since most events of interest were small in magnitude, it was decided not to order data for more distant stations.

Unfortunately there is not enough data available to establish regional body wave magnitude formula in the areas studied, as was done by Evernden (1967) for the United States. The complexity of this region makes it likely that several different crustal models would be necessary to explain crustal phases at all stations. The coverage of the stations is not sufficient to establish such models. Attempts to find systematic patterns of P phases at various stations and thus separate them from depth phases yielded no conclusive results. Search for pP phases also did not give consistent results.

Computations

Magnitudes were computed for all events in the sample. Short-period body wave magnitudes (\mathbf{m}_b) were computed with the conventional Gutenberg formula, in the absence of better body wave magnitude formulas for the region. This undoubtedly contributes to the scatter of \mathbf{m}_b values.

To evaluate the network bias in m_b we selected the six out of the original 67 events for which the NOS Earthquake Data Reports show eight or more stations used in the calculation for m_b . For five of the six events we also were able to calculate an m_b value. (Station corrections were calculated and used to remove any station bias with respect to the network, this would not of course remove any network bias.) On the average the NOS magnitudes were larger by 0.2 ± 0.1 m_b (one standard deviation of the mean). This value becomes 0.1 ± 0.15 if stations for which $\Delta > 90^\circ$ or $\Delta < 20^\circ$ are excluded from the NOS magnitude calculations but all other stations reporting magnitudes are included. If our magnitudes were corrected to remove this estimated bias, the earthquakes would look more explosion-like.

llad we used Veith and Clawson's (1972) $\rm m_b$ curve instead of Gutenberg's curve, our network bias would have been reduced by 0.05 $\rm m_b$.

The surface wave magnitudes were computed by three methods, (1) using the (modified) Prague formula:

$$M_{S} = \log (A/T) + 1.66 \log \Delta - 0.18$$
 (1)

where A is the maximum peak-to-peak amplitude in millimicrons, (2) the method introduced by Marshall and Basham (1972) for near distances:

$$M_{S} = \log A + B(T) + C(\Delta)$$
 (2)

where A is the maximum zero-to-peak amplitude in millimicrons, with a depth correction given by the equation

$$\overline{M}_{s} = M_{s} + .008h_{(km)}$$
 (2a)

where h is determined from M_s values taken at different periods, and (3) a formula proposed by von Seggern (1970) for near distances:

$$M_s = 1cg (A/T) + 1.16 log A + 0.74$$
 (3)

where A is the maximum peak-to-peak amplitude of the surface wave train (in millimicrons), T is the wave period, and A is the epicentral distance in degrees. B(T) and $C(\Delta)$ are the period and distance correction factors which are tabulated by Marshall and Basham. In our calculations we used their tables computed for Central Asian surface wave dispersion characteristics. Other equivalent approaches to the regionalization of magnitude calculations with respect to dispersion characteristics were reported by Alewine (1972) and Basham (1971). Of the methods used, only Marshall and Basham's method attempts to correct for depth.

Results

The plots of M_S versus m_b are given in Figures 3, 4 and 5. These magnitudes were computed by averaging the magnitudes at all available stations. Figure 3 shows the surface wave magnitude computed from the Prague formula. Since the stations used are at small epicentral distances for the area studied, this formula tends to give low M_S estimates. Of course if explosions were recorded at the same distance, they also would have low M_S values and the separation would be unaffected. Figures 4 and 5 respectively show the magnitudes computed by the methods

given by Marshall and Basham (1972) with depth corrections, and von Seggern (1970). These formulas were designed to eliminate the dependence of surface wave magnitudes on epicentral distance at short distances (A<25°) and are therefore more applicable to the problem investigated. Trend lines obtained by Marshall and Basham (1972) using data reported by Capon et al. (1967) for $\rm M_S$ vs $\rm m_b$ dependence of earthquakes and explosions in Central Asia are superimposed on all these figures. The magnitudes given are scattered between the two lines, and although most of them are above the explosion lines some of them are fairly close to it. Magnitudes computed by Marshall and Basham's method are the least scattered of all three sets of magnitudes shown.

For all events for which body waves could be detected at any station, surface waves could also be detected at SHL when SHL was operational. In general, for those events for which surface waves could be detected only at SHL, the noise was normal at the other stations, suggesting that the signals truly were small and that the small amplitude at SHL is not the effect only of a radiation pattern.

Table IV shows all the computed magnitudes together with averages.

In order to depict the geographical distribution of the magnitude characteristics, the $\rm M_{_{\rm S}}$ vs $\rm m_{_{\rm D}}$ plane in all cases was subdivided into four parts by the lines

$$M_{S} = M_{b} - 0.5 \tag{4}$$

$$M_s = m_b - I.0 \tag{5}$$

$$M_{s} = M_{b} - 1.5. \tag{6}$$

In order to avoid cluttering the figures, these lines are not shown on the $M_s vs m_h$ plots, but events from the four parts of the M_s vs m_b planes are plotted with different symbols on a map having equal latitude and longitude intervals. Since the region studied is relatively close to the equator, this does not cause a great amount of areal distortion. The squares on the plot indicate events which are the most explosionlike, and fall below the line defined by equation (6), diamond symbols denote events in the next part of the M_S vs m_b plane above this, crosses denote events falling into the next division above, and finally, events which are above the line defined in equation (4) are denoted by vertical straight lines. Figures 24a through 24e show some examples of seismograms which show the obvious differences in the Rayleigh (and Love) wave excitation of events with similar body wave magnitudes. The event on the left in Figures 24a,b,c show large Rayleigh waves and a large Love wave pulse which is absent in the event on the right. S and Love wave excitation is another matter which should be investigated further. However we may say here that for none of the events represented by a square in Figures 6, 7, and 8 could S waves or Love waves greater than the Rayleigh wave be seen.

Figures 6, 7, and 8 show the plots obtained by using various magnitude formulas. Although the classification of some events changes depending on the magnitude formulas used, all plots show essentially the same geographical distribution pattern. For this type of figure a transparent overlay is included in the back pocket to facilitate geographical orientation.

The most striking feature of the map is the high concentration of explosionlike events in an elongated region centered at about 30°N and 95°E. The earthquakes shown in this region occurred mainly in two sequences of events with body wave magnitudes ranging from 4.5 to 5, one of which occurred in June to August 1968, the other in June to September 1969.

Besides this region there are two clear regions which are also characterized by low $\rm M_S$ values relative to $\rm m_b$ values. One is the frontal region of the Himalayas also described by Marshall and Basham (1972), which shows such events intermingled with normal earthquakes. Another event was reported recently in this region, on October 24, 1971 at 28.2N and 87.2E with $\rm m_b$ (NOS) = 5.1 and $\rm M_S \approx 3$ at LASA, NORSAR and CHG. The other occupies the eastern end of Assam and north-south trending mountain ranges which join the Himalayas and extend south towards Burma. The anomalous region at 30°N and 95°E mentioned above is situated at the eastern end of the high mountains belonging to the Himalayas, where the trend of the mountains turns towards the south. And a deep fault terminates against a Granitoid body. (See Figure 2.)

The observed magnitude characteristics are thus seen to be correlated with geological features, probably reflecting distribution of tectonic stress. Other trends may also be present but they are not consistent on the various plots presented here, and the number of events is not sufficient to obtain a clear pattern. The interior region of Tibet seems to be dominated by shallow earthquakes displaying normal earthquake M_S vs m_b characteristics.

The least squares lines fitted to $\rm M_S \, vs \, m_b^{}$ values of earthquakes and explosions in different regions of the earth have had slopes varying between 1.0 and 2.0 with most of the reported values being slightly above 1. Since in the previous figures the $\rm M_S \, vs \, m_b^{}$ plane was subdivided with lines having a slope of 1.0, it is necessary to test whether lines with a different slope would change the general picture. Figures 9, 10, and 11 show results obtained when the $\rm M_S \, vs \, m_b^{}$ plane was subdivided with the lines

$$M_s = 1.5 m_b - 3.6$$
 (7)

$$M_s = 1.5 m_b - 3.1$$
 (8)

$$M_{S} = 1.5 m_{b} - 2.6. \tag{9}$$

The symbols were designated as before relative to these new lines. The figures show that although the classification of many events changed, the general pattern is the same. That is, explosionlike events falling into the lowermest regions in the M_s vs m_b plane are still concentrated in the same geographical regions. Therefore, it is concluded that the slope of lines for the given data set does not affect the geographical distribution of various types of events.

The average magnitude calculations presented above are influenced by path and station effects. The station effects cause bias due to incompleteness of data, since a varying number of stations are available for individual events. In order to estimate the station effects

the difference between magnitudes at various stations were averaged. Table II shows mean magnitude differences using Quetta (QUE) as a reference station. The standard deviation of the differences from the mean are also shown. Most differences were estimated using about thirty events, except those involving KBL which involved only about 6-7 events. The table shows that SHL, CHG and KBL tend to give considerably higher $\mathbf{m}_{\mathbf{b}}$ estimates than the rest of the stations, and the same stations tend to give low Mg values. Therefore earthquakes whose $M_{\rm s}$ vs $m_{\rm h}$ values are based on only these stations will appear more explosionlike. M_s corrections for Marshall and Basham's M_e formula are the smallest of the three formulas considered, indicating that this one is the most appropriate for determining M_s for this region. The Prague formula gives too small $M_{\rm e}$ values at short distances, while von Seggern's formula, based on NTS and Western U.S., tends to overcorrect and gives too high M_c values at short distances.

It was decided to define station corrections in such a way that the mean of the corrections is zero, that is, if all stations in the data group are available, the mean magnitude remains unchanged. This method would make corrections for data with incomplete sets of stations but would not change the bias of the network used. The corrections thus defined for $\rm M_{\rm S}$ turn out to be fairly small, but some of the corrections for $\rm m_b$ are large. Nevertheless, the bias introduced by the small network is judged to be small, since over all average $\rm m_b$ values are very close to the NOS values, which are typically based on observations at 3-5 teleseismic stations.

Even if the station magnitude differences between KBL and the rest of the stations were disregarded, which could be justified on the basis of too few observations for this station, the average \mathbf{m}_{b} values would not decrease by more than 0.2 magnitude units.

Table V shows the corrected magnitudes. Marshall and Basham's depth correction has been applied by using the NOS reported depth (33 km for normal events) in formula 2a. Measurement at the different Rayleigh wave periods required to estimate h was often impossible because of the pulse-like character of the close-in Rayleigh waves which were the only ones seen for the anomalous events. The corrections reduce the average standard deviation of \mathbf{m}_{b} at individual stations around the event mean values to one-half of the original value and are thus fairly effective. Figures 12, 13, and 16 are the corresponding \mathbf{M}_{s} vs \mathbf{m}_{b} plots.

Since the Marshall and Basham method uses a depth correction the average M_S value determined by this method is relatively high. However, Marshall and Basham (1972) found that application of the depth correction does not cause a shift in the explosions but only in the earthquakes, thereby increasing the separation between the two populations.

Further light is thrown on the effect of depth on M_s vs m_b by Figure 14 where depth corrections have not been applied, but where the events of greater than 60 km depth have been indicated by squares; and the events of unknown depth by filled upright triangles. We see that there

are many shallow events near the explosion population mean. Of course if by using digital recording the spectral depth estimate could be made, and if, as Marshall and Basham assert, the explosion population does not move and if the anomalous events do move up on the M_s vs m_b plot, then Figure 14 would be much like Figure 13 and show better separation. In Figure 15 the Marshall and Basham $M_{_{\rm S}}$ values are plotted against NOS mh values. This figure may be compared with Figure 13. In Figure 13 there are no events for which $M_s < m_b - 1.5$, although three are very close. Thus use of NOS $\mathbf{m}_{\mathbf{b}}$ values results in events being more anomalous than does use of the SDL m_b values. This is in accord with the bias calculations in the Computations section. As an example of the dangers of using NOS magnitudes, consider the point in the stippled region with $m_b = 5.5$. This m_b value comes from one observation at SHL, a distance of 7.1° . The SDL magnitude, with station corrections, is 4.32. This problem is also present in the work of Landers (1972) where his NOS magnitudes for Tibetan events average 0.25 m_h higher than ours. Because he did not apply depth corrections, his $\mathbf{M}_{\mathbf{S}}$ values are on the average $0.23~{\rm M}_{\rm S}$ lower. Thus his results are about 0.5 magnitude units "more anomalous" than ours.

Figures 17, 18, 19, and 20 show the geographical distribution of various types of events as defined by lines of unit slope described above after corrections have been applied. Although classification of individual events changes somewhat, the general pattern did not. Although in Figure 18 no events with observed Rayleigh

waves remain for which $M_s < m_b - 1.5$, three of them are very close to the line.

Station corrections were also computed by the joint magnitude determination (JMD) method (von Seggern, 1972) using only events recorded by at least three stations. The corrections and the slopes and intercepts of the least squares linear fit to points in the log Δ - log Λ plane are given in Table III. (A is the amplitude of P and Rayleigh waves respectively.) Figures 21a and 21b show plots of log Δ before and after the corrections for P were applied. A visible decrease of scatter results if station corrections are used.

Figures 22a and 22b show a similar plot for Rayleigh wave amplitudes. In this case the decrease of scatter due to the application of corrections is negligible. Figure 23 shows a plot of event factors (Fg for surface waves versus Fb for P waves) which is analogous to the Ms - mh plots. Triangles denote events whose surface waves were recorded at less than three stations, and these events were excluded for the JMD calculations. Since many of these events have anomalously low surface wave amplitudes, and are therefore of prime interest in this study, their relative event factors were computed subsequently using the exponential decay factor and station corrections derived for the more complete data set. It was found that the relative positions and the scatter of events in the F_S - F_b plane is similar to those in the M_s vs m_b plots, and the geographical distribution of explosion and earthquake type events is unaltered.

It is interesting to speculate about the reasons for the explosionlike character of many events of this region. Besides the high stress at the source it is possible that in the surrounding regions, especially in the thick, high-Q crust of Tibet, the propagation of high-frequency P waves is especially effective, and this could cause the $\mathrm{M}_{_{\mathrm{S}}}\,\mathrm{vs}\,\,\mathrm{m}_{_{\mathrm{b}}}$ values to be more explosionlike. This supposition is contradicted, however by the dominant periods of the P waves, which range between 0.5 - 2 seconds with an average around 1.2 seconds, while P waves in regions of high Q show much higher frequencies. (Isacks et al. 1968.) That the anomalous events are indeed earthquakes and not explosions is indicated by the fact that many arrivals on the short period instruments are dilatations. A study of these and other phases is continuing. It will be difficult however to do a truly definitive study until improved stations and arrays are available in the area.

It must also be noted that the maximum Rayleigh wave amplitudes of many small events occurred at very short periods (8 - 15 seconds). For deep events the dominant period should have been larger. The dependence of surface wave excitation on depth is more critical at short periods and better depth determination could improve Ms values. Whether this would change the character of the anomalous events is not clear at this point.

We should emphasize that the depth corrections used in this report were made using NOS depths, not M_S measurements as done by Marshall and Basham. Thus discrimination could only be aided by this technique. We were unable to

measure a sufficient number of periods for any but a few events to determine a depth independent of NOS. Strictly fellowing Marshall and Basham's procedure would have resulted therefore in almost no depth corrections being applied.

CONCLUSIONS

Some earthquakes in the castern Himalaya region exhibit anomalously low $M_{\rm S}$ values relative to $m_{\rm b}$ values. The geographical distribution of such events shows a pattern which correlates with various geological features, the frontal region of Himalayan mountain ranges and the sudden change of the trend of mountain ranges at 30°N and 95°E. Application of station or depth corrections does not change the general geographical pattern of anomalous events. We tentatively conclude that the anomalous $M_{\rm S}$ vs $m_{\rm b}$ character is due to high stresses in the source region. The absolute values of $M_{\rm S}$ and $m_{\rm b}$ are such that they resemble explosions detonated in other regions of the earth.

REFERENCES

- Aki, K., 1966, Generation and propagation of G waves from the Niigata earthquake of June 16, 1964. 2. Estimation of earthquake moments, released energy and stress strain drop from the G wave spectra, Bull. Earthquake Res. Inst., Tokyo University, v. 44, p. 73-88.
- Alwine, R.W., III, 1972, Theoretical and observed distance corrections for Rayleigh-wave magnitude. Seismological Laboratory, California Institute of Technology (unpublished).
- Brune, J.N., 1968, Seismic moment, seismicity and rate of slip along major fault zones, J. Geophys. Res., v. 73, p. 777-784.
- Evernden, T.F., 1967, Magnitude determination at regional and near regional distances in the United States, Bull. Seismol. Soc. Am., v. 57, p. 591-640.
- Fitch, T.J., 1970, Earthquake mechanisms in the Himalayan, Burmese and Andaman regions and continental tectonics in Central Asia, J. Geophys. Res., v. 75, p. 2699-2709.
- Gansser, A., 1964, Geology of the Himalayas, Interscience Publishers, John Wiley and Sons, London.
- Hanks, T.C., 1971, The Kuril Trench-Hokkaido rise system: large shallow earthquakes and simple models of deformation, Geophys. J. R.A.S., v. 23, p. 173-189.
- Isacks, B., Oliver, J. and Sykes, L.R., 1968, Seismology and new global tectonics, J. Geophys. Res., v. 73, p. 5855-5899.

REFERENCES (Cont'd.)

- Landers, T., 1972, Some interesting Central Asian events on the M_s:m_b diagram, Geophys. J.R.A.S., v. 31, p. 329-339.
- LePichon, X., 1968, Sea floor spreading and continental drift, J. Geophys. Res., v. 73, p. 3661-3697.
- Marshall, P.D. and Basham, P.W., 1972, Discrimination between earthquakes and underground explosions employing an improved M_s scale.(Unpublished)
- Massachusetts Institute of Technology, Lincoln Laboratory, Semiannual Technical Summary, Seismic discrimination.
- Smirnov, L., 1964, An introduction to the geological structure of Europe and Asia.
- Thatcher, W. and Brune, T.N., 1971, Seismic study of an ocean ridge earthquake swarm in the Gulf of California, Geophys. J. R.A.S., v. 22, p. 473-450.
- Thatcher, W., 1972, Regional variations of seismic source parameters in the Northern Baja California area, J. Geophys. Res., v. 77, p. 1549-1565.
- Veith, K.F. and Clawson, G.E., 1972, Magnitude from short-period P data, Bull. Seismol. Soc. Am., v. 62, p. 435-452.
- von Seggern, D.H., 1970, Surface wave amplitude- versus distance relation in the western United States, Seismic Data Laboratory Report No. 249, Teledyne Geotech, Alexandria, Virginia.

REFERENCES (Cont'd.)

- von Seggern, D.H., 1972, Joint magnitude determination and analysis of variance for explosion magnitude estimates, Seismic Data Laboratory Report No. 286, Teledyne Geotech, Alexandria, Virgnia.
- Wyss, M. and Brune, J.N., 1968, Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region, J. Geophys. Res., v. 73, p. 4681-4694.
- Wyss, M., 1970a, Observation and interpretation of tectonic strain release mechanisms, Ph.D. Thesis, California Institute of Technology, Pasadena, California.
- Wyss, M., 1970b, Stress estimate for South American shallow and deep earthquakes, J. Geophys. Res., v. 75, p. 1529-1544.
- Yanshin, A.L., 1966, Tectonic map of Asian study region.

ACKNOWLEDGEMENTS

Acknowledgements are due to the National Ocean Survey (NOS) Data Center for supplying the data, Mr. D.H. von Seggern for help in computations using his joint magnitude determination method, Drs. R.R. Blandford and E.A. Flinn for valuable comments and suggestions. Mr. Donald J. Reinbold did most of the amplitude readings for the magnitude calculations.

TABLE 1A List of Events

DATE MO DAY YR	ORIGIN TIME	COORDINA		DEPTH KM	MAG	GEOGRAPHI CAL REGION
	20 5 7.0+	27:0	93.0		6.3	Assam India
05 26 60 09 02 60	20 5 7.0† 13 46 5.0†	28.7	98.3	*	5.7	Tibet
09 02 00	5 20 27.0+	27.6	96.2	81	4.1	India-Burma
09 28 60	5 29 30.0+	32.4	95.8	147	5.2	W. China Assam, India
06 02 63	7 7 57.9	27.8 27.7	95.6 92.1	143	4.9	Assam, India
07 05 63 10 08 63	7 19 15.8 2 51 6.0	28.6	95.1	24	5 4	Assam, India
11 16 63	11 39 37.8	28.1	95.1	3.7	4.7	Assam, India
01 07 64	4 50 37.0	29.8	98.7	46 ★	5.0 4.9	Eastern Tibet Southern Tibet
01 27 64	5 29 27.0 17 55 42.9	29.2 31.8	97.2 93.1	71	5.0	Tibet
06 10 64 09 01 64	13 22 36.6†	27.2	92.3	*	5.7	India-China Bor Reg
10 06 64	2 54 32.7+	30.3	94.6	*	4.5	Tibet India-China Bor Reg
10 21 64	23 9 18.3+	28.1	93.8 92.2	37 69	5.9 4.6	Tibet
11 10 64	17 13 3.9 7 13 23.1	29.8 28.3	96.0	*	4.4	India-China Bor Reg
04 30 65 06 04 65	15 56 56.0	31.7	95.2	A	5.0	Tibet
07 31 65	16 36 53.8	32.7	93.2	A	4.9	Tibet Tibet
07 31 65	17 7 52.6	32.7 32.8	93.1 93.0	*	4.4	Tibet
07 31 65 07 31 65	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.7	93.1	21	4.9	Tibet
08 01 65	14 14 1.7	32.6	93.6	*	5.5	Tibet
08 01 65	20 9 17.9	32.6	93.3	32	5.3	Tibet Tibet
08 02 65	17 49 47.0 8 3 3.2	32.8 29.2	93.3 96.1	* 27	4.8 5.4	India-China Bor Reg
10 06 65 12 09 65	8 3 3.2 20 26 4.0	27.5	92.5	22	5.3	India-China Bor Reg
01 31 66	2 35 5.8	27.9	99.6	*	5.6	Yunnan Prov., China
03 07 66	22 36 3.01	29.2	98.6	17 *	5.2 4.9	Tibet Tibet
03 14 66	4 42 50.0 14 35 5.0	32.4 27.4	97.4 96.5	51	4.8	Burma-India Bor Reg
05 27 66 07 05 66	10 1 22.0	27.5	92.4	77	4.8	India-China Bor Reg
09 11 66	15 55 20.0	27.0	95.8	37	5.0	Burma-India Bor Reg
09 26 66	5 10 58.1	27.5	92.6	*	5.6 4.2	India-China Bor Reg India-China Bor Reg
09 26 66	6 3 48.0 16 56 48.7	27.6 28.4	92.7 94.4	7	5.3	India-China Bor Reg
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 58 4.6	28.4	94.3	24	5.9	India-China Bor Reg
07 07 67	22 56 30.8	27.8	92.2	*	4.9	India-China Bor Reg
08 15 67	9 21 2.3	$\frac{31.1}{77.7}$	93.7 95.1	*	5.7	Tibet Tsinghai Province, China
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 37 54.2 20 34 55.3	$33.7 \\ 30.1$	95.1	4.4	4.8	Tibet
06 30 68	5 4 10.0	30.2	94.8	42	4.8	Tibet
07 01 68	3 11 10.0	30.3	94.5	28	4.3	Tibet Tibet
07 04 68	6 45 58.0	30.3 30.3	94.9	*	5.0	Tibet
07 13 68 07 14 68	6 5 54.2 18 12 41.0	30.3	94.8	22	4.9	Tibet
07 15 68	5 9 5.9	30.3	95.0	22	4.8	Tibet
07 16 68	22 23 7.0	30.3	94.8	40 *	4.8	Tibet Tibet
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18 48 59.0± 20 51 47.9	30.2 30.3	94.9	30	4.9	Tibet
07 25 68	3 34 13.9+	30.2	94.8	*	4.8	Tibet
07 26 68	12 44 3.0	29.4	95.0	*	4.9	India-China Bor Reg Tibet
08 23 68	12 1 16.5	30.3	94.9 95.1	* 56	4.8	Tibet
08 24 68 08 25 68	14 26 7.4 17 55 5.3	30.0 30.4	94.8	19	4.8	Tibet
08 29 68	19 51 24.6	30.2	95.1		5.0	Tibet
09 01 68	5 59 26.6	30.3	94.8	50	5.0	Tibet Tibet
09 03 68	17 45 54.1	30 . 2 33.5	94.8 97.5	53 *	4.9	Tsinghai Province, China
09 04 68	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30.3	94.9	38	4.3	Tibet
09 16 68	17 2 40.0+	28.6	95.7	60	4.7	India-China Bor Reg
06 14 69	3 28 29.6+	31.7	94.6	*	5.3 5.2	Tibet Tibet
08 15 69 11 24 69	7 15 37.0 2 1 9.3	30.2 30.6	95.0 98.9	12	4.6	Tibet
02 08 70	19 7 30.0	31.1	93.5	*	4.5	Tibet
02 19 70	7 10 1.8+	27.4	94.0	18	5.5	Eastern India
05 08 70	11 8 8.4	32.8	95.2 95.6	3.5 *	4.5	Tibet India-China Bor Reg
06 24 70	0 43 1.9	28.9	73.0		, ,	

^{*}Depth constrained to 33 km for NOAA location. +Event not used in analysis due to lack of or poor quality of data.

TABLE IB Stations Used

TO CENTER OF REGION

OF INTEREST	DISTANCE AZIMUTH (An)	590 215 1500 160 1700 270 2500 245 2700 275
	ELEVATION (km)	1600 416 250 210 556 210
	LONGITUDE	91°53'00,0"E 98°58'37,0"E 77°13'00,0"E 74°20'00,0"E 75°51'00,0"E 65°57'00,0"E
	LATITUDE	25°54'00,00"N 18°47'24,0"N 28°41'00,0"N 51°55'00,0"N 18°52'00,0"N 50°11'18,0"N 54°52'27,0"N
	ABBREVIATION	SHL CHG NDI LAH POO QUE KBL
	STATION	Shillong, India Chiang Mai, Thailand New Delhi, India Lahore, Pakistan Poena, India Quetta, Pakistan Kabul, Afganistan

TABLE II

Magnitude Differences Between Stations

	()	1 - QUETTA		
Station	m _b	` 11	M _S Marshall & Basham	M (von Seggern)
CHG603 ND1138 LAH083 POO189 QUE .000	±.014 ±.014 ±.014 ±.050 ±.013	.045 ±.012 .157 ±.017 .303 ±.010	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	175 ±.013 171 ±.016 206 ±.013 258 ±.018 225 ±.011 .000 .128 ±.060

TABLE III

Results of Joint Magnitude Determination (JMD) Calculations

P waves

Slope .247 ± .215 (95% confidence limits)

Intercept 1.537

Corrections

Station	Correction	Number of Events
SIIL	.13	30
CHG	21	43
NDI	03	36
LAH	.33	9
POO	.16	28
QUIE	17	47
KBL	.94	6

Rayleigh waves

Slope $.993 \pm .191$

Intercept 4.549

Corrections

Station	Correction	Number of Events
SHL	.01	34
CHG	01	33
ND I	03	30
LAH	.04	20
P00	.14	23
QUE	06	36
К̀ВL	16	6

Note: Corrections are to be <u>subtracted</u> from the observations (log A/T) corrected for exponential distance dependence.

TABLE IV Event Magnitudes (Marshall and Basham Marth Benth Correction Using NOS Denth)

	M _s n Seggern)	54.5 5.0 1.6 1.6 1.0 1.0 1.0	1.05 4.04 4.04	%I-NI N %O.N4 4 %I-NI N	1814 1 200 200 200 100 100 100 100 100 100 10	3 1 1 8 8 1 1 8 1 8 1 1 8 1 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 8 1 1 - 8 1 1 - 8 1 1 - 8 1 1 - 8 1 1 1 - 8 1 1 1 1	INIOINCI 는 INIOINCI 는 INIOINCI E
	(MARSHALL & BASHAM)	-01 1 0	1 0 5	2 11 4 7	10 0 H 10 H	0 .5 0 T	t~10.01~ 5	∞ ମଦେ ଯ ସ ୦୦
		66 6 1 C	ର ଜୁନ ଅନ୍ତ	는 하다. 9 는 8 수 6 년 - 6 년 - 6 년 - 7 년		11111 11111 11111 11111 11111 11111 1111	വെന്നിന് ന	कार्णिक इ. त चंचचंचे ति च
	Ms (PRAGUE)	8 33.37 5 5.52 5 6 5.46	5 5 69 9 3.79 2 3.74	5.27 0 4.66 4.03 8 4.19 9 4.04	\$8 83.377 5 5 5 92 7 6 9 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9		5. 20 2. 30 3. 30 0 3. 45 7 5. 55	444464 6014464
,	ES mb	4.3	v च च ••• •		्ष्यम् व	20412 4 12120 L	ू इस्त्र न	0.00 0.00 0.00 0.00 0.00 0.00 0.00
S Depth)	E AZIMUTH DEGREES	237 160-2 277-4 282-3	277.8	224.2 159.2 284.4 280.6	229.5 158.2 276.4 281.7	256.7 178.6 271.9 278.8	255.8 170.7 275.2 279.7	190.1 156.4 261.3 274.1
Using NOS	DISTANCE (km)	444.8 1055.1 1804.4 2796.2	1463.9 2461.6	463.2 1155.2 2025.0 2730.5	425.2 1103.6 1751.6 2741.1	819.3 1219.1 2088.5 5053.2	661.9 1166.5 1946.1 2920.3	700-7 1556-4 1565-4 1777-5 2497-5
With Depth Correction	STATION	SHL CHG ND1 QUE	ND1 OUE Average	SHL CHG LAH QUE Average	SHL CHG NP1 QUE Average	SHL CHG ND1 QUE Average	SHL CHG ND1 QUE Average	SHL CHG NDI LAH QUE
Depth	DEPTH (km)	145	55	7,	10	46	10	71
With	ION	95.68	92.1E	95.1E	95.1E	98.71	97. 2E	93.1E
	LOCAT	27.8N	27.7N	28.6N	28.1N	29 . 80 .	29. 2N	31.8N
	SEC	57.9	15.8	0.9	37.8	37.0	27.0	6 2 6
	TIME	r-	19	5.1	39	20	53	10
	HR	t-	7	CI.	11	4	10	17
	REGION	Assam	Assam	Аѕѕаш	Assam	Tibet	Tibet	Tibet
	PATE	06/02/63	07/05/63	10/08/63	11/16/63	01/07/64	01/27/64	. 06/10/64

TABLE IV (Cont'd.)

d						
M _S (von Seggern)	41 10 10 10 10 10 10 10 10 10 10 10 10 10	1010 10 10 10 8.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	01 01 01 01 01 01 01 01 01 01 01 01 01 0	**************************************	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ms (MARSHALL § BASHAM)	#1 0 # 21# 10 E ## # #	7766 10 8 0	60000 6 60000 6 60000 6	######################################	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 + 0 9 15 16 B
M _S (PRAGUE)	5.50	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51 51 51 51 51 51 51 51 51 51 51 51 51 5	1110868 00100101	0000000 00 0000000 00 0000000 00	1 5 10 0 8 5 8 1 10 4 9 3 10 10 1 4 4 4 4 4 4
d P	106 106 108 108 108	4.09 4.16 4.11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15.99 1.65 1.65 1.45 1.45 1.45 1.45	4	100 1 100 G
AZIMUTH DEGREES	185.9 268.8 240.5 277.4	234 275 275 249 281 381	200 200 200 200 200 200 200 200 200 200	1889.5 1588.1 2758.0 275.6 270.6	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	81.80.00 81.00.00 81.80.00
D1STANCE (km)	469.9 1460.3 2257.4 2451.2	508.5 1095.4 1837.1 2501.6 2825.5	752.7 1761.2 2591.0 2696.7	800.6 1644.7 1592.6 1782.5 2489.0 2505.9	1648.1 15648.3 15648.3 1772.4 1772.3 2481.3	110,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
STATION	SHL NDI POO QUE	SHL CHG NDI POO QUE	SHL NDI POO QUE Average	SHL CHG NDI LAH POO QUE	SHL CHG NDI LAH POO QUE	SHL CHG NDI LAH POO QUE
DEPTH (km)	69	10	10	10	10	13
CATION	SN 92.2E	3N 96.0E	7N 95.2E	7N 95, 21:	7N 93.1E	7N 93.1E
LOCATI	29. SN	28.3N	31.7N	52.7 N	S2. 7N	52.7. N. 7.
SEC	10 Q*	23.1	56.0	SS	5.2.6	8°24
TIME	13	13	56	3.6	1-	7
IIR	17	1	15	16	1.4	12
REGION	Tibet	India-China	Tibet	Tibet	Tibet	Tibet
DATE	11/10/64	04/30/65	06/04/65	07/31/65	07/31/65	07/31/65
			274			

TABLE IV (Cont'd.)

N _s (von Seggern)	टाळासळ १८ळ ८ जाग्याच्या च ध्याच्याच्या च	01101401 e	040004 4 0800011 8	0000000 0		PI 약 * I IV 호 PI 약 * I IV IV • • • • • • · · · · · · · · · · · · · ·
Ms (Marshall (Bashaw)	ातिकताताल क क्षेत्रक्ताताल क स्थलक्ष्म च	พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.	0080-6 2 89-808 8 11111111 1	ञ्चलाम्य व चित्रसम्बद्धाः व चित्रसम्बद्धाः व	881 8 0 800 0 1 800 0 1	ादा । इस्तु है। शिक्षांत्री । इस्तु क्रीच्च च
M _s (PRAGUE)	K # 2 9 8 F 6 # C K # 2 9 # C K # 2 9 # C K # 2 9 8 F 6 # C K # 2 9 F 6 # C	0.00.00.00.00.00.00.00.00.00.00.00.00.0	119918819 9591659	# 10 # # # 10 # 10 # 10 # 10 # 10 # 10		लाहरू है के अनुभाग न
E Q	8 s s s s s s s s s s s s s s s s s s s	812 13 # 1 9 1 1 1 9 13 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1-10 00 0 1- 10 01 1 00 10 1- 10 01 01 01	31 11 8 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		10 10 10 10
AZIMUTH DEGREES	11111111111111111111111111111111111111	255 255 255 256 256 256 256 256 256 256	190.4 256.9 258.0 271.4 158.5	2555 2555 2555 2555 2556 2556 2556 2556	0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 =	ताः चडः चळक्रा चळचळ चलला
DISTANCE (km)	808.7 1662.1 1576.6 1765.4 2479.9	796.9 1620.8 1627.1 1820.1 2513.9 2541.6	791.5 2513.5 2490.5 1599.5 1630.9	813.2 1651.5 1604.1 1791.5 2503.0	10 11 18 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	181181
STATION	SHL CHG ND1 LAH PO0 QUE	SHI. CHG NDI LAH POO QUE	SHL CHG NDI LMI POO QUE Average	SHL CHG ND1 LAN POO QUE	SHL CHG ND1 POO QUE	CHG LAH POO QUI Average
DEPTH (km)	10	10 10	10	N.	FG	e 1
LONG	93.0E	93.6E	95.51	95.3E	96.1E	10 01
LOCATION LAT LON	25 00 	32. 6N	32.6N	00 00 00 00 00 00 00 00 00 00 00 00 00	29 2N	100 100 100 100 100 100 100 100 100 100
SEC	** **	1.7	17.9	47.0		G.
TIME	-	4	6.	G:	19	92
Ħ	13	**	20	P.	SO	0
REG10N	Tibe t	Tibet	Tibet	Tibet	India-China	India-China
DATE	07/51/65	08/01/65	08/01/65	08/02/65	10/06/65	12/09/65
			20			

IABLI IV (Cont'd.)

DATE	REGION	=	TIME	SEC	LOCATI	CATION	DEPTH (km)	STATION	DISTANCE (km)	AZ IMUTII DEGREES	e a	M _s (PRAGUE)	Ms (Marshall 6 Basham)	M _s (von Seggern)
01/31/66	Yunnan	**	10	00 •	% 6.	19.66	10	SHI. CHG ThI POO QUII	\$09.5 1010.5 2195.5 2823.4 5178.5	110 11 11 11 11 11 11 11 11 11 11 11 11	5 15 96	ध⊸ठठारा ळ धाराचारा ज चंजाचाचा च	କ୍ରକ୍ଷର ଜ ଅନ୍ୟର୍ଗର ଅନ୍ୟର୍ଗର	annana a Poliana Annocina
03/14/66	Tibet	7	71	50.0	N 10	. 11. 11.	52	SHL CHG NB1 LAH POO QUE	928.1 1515.2 1976.4 2117.7 2810.7	22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 000 000 000 000 000 000 000 000 00	ळळढळाचळ ⊶ ०⊶९००० । १	७० एक २५ ० १८ में सम्बद्धाः स् संस्थानम् स	न्हा किया न का न क्रिक्ट न का न न न न न न न न न
05/27/00	Burma-India	# H	10	0	** ** **	96. SE	1 0	SHL CHG ND1 IAH POO QUE Average	502. 982. 1898. 21998. 25115. 2892.	1100 4 0 11 100 0 100 110 110 110 110 110 110	10 4 4 4 1 10 10 10 10 10 10 10 10 10 10 10 10 1	N484 N N N086 19 %	1915 C 19 E	स्टारा था स संस्थाति । इ.स. संस्थाति । स संस्थाति । स
07/05/66	India-China	10		22.0	No. 1	92, 4E	Ps.	SHI. NDI QUE Average	220.2 1496.4 2495.4	195.6 278.6 282.9	999	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 10 10 10 0 80 01 0 80 01	www w ∞ a w w ∞ a w w w ∞ a w w w
09/30/60	India-China	N	10	S.	%		10	SHL CHG NDI LAH POO QUE	11128212 11128212 11128212 111282 11282 1	2011235 2012301 3011301 301131	01101111111111111111111111111111111111	444101010 4 004000 0 001004 10	4.00.00.00.00.00.00.00.00.00.00.00.00.00	ลายงายเก่า อาเซเมียน สารมาชัย ผู
09/56/66	India-China	•	ŧ0	18. 18.	N. 5. 7.	92.61	C	SHL CHG NDI QUE	2824 1824 1167	12800	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	E	6 1 1 6 11 1 6	61 01 00 0 1 1 1 00 10 10

TABLE IV (Cont'd.)

M _s (von Seggern)	3.58 3.52 3.77 3.56	5.27 2.05 2.05 2.44 4.05 4.05 4.05 8.00	L 12 0 st 12	04040 0 0.800 8 8010 80	ი ს 4 4 ი ი დეგანე. დეგანე. 00 ი 1 ე ი	+08856+ 10 55.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.4.
M _S (MARSHALL § BASHAM)	544.08 6.11 6.03 75.27	44444444444444444444444444444444444444	00000 0000 0000 0000 0000 0000 0000 0000	0 00000 00000 000000000000000000000000	0.000000 0 0.00000 0 0.00000 0 0.000000 0	किर⊏०ॐ न नन्तकळाळ ाठ निचेत्रेच न
M _s (PRAGUE)	0 2003 8	89 88 88 88 88 88 88 88 88 88 88 88 88 8	5.00.00 5.00.00 5.00.00 5.00.00 5.00.00	2.01 3.05 3.01 3.01 5.01	ត្ឋស្រុក្ស ៧ ស្តុសស្គស ២ មិនិក្សាក្ស ក	कार्यकाला वा ८ मळाच्या वा चित्राचित्र च
E C	5.08 4.95 7.19 5.19	5.50 4.87 4.93 4.50	5.20 5.32 4.91 5.14	5.42 3.70 4.27	5.60 5.47 5.08 5.41 4.98	55.05.05.05.05.05.05.05.05.05.05.05.05.0
AZ IMUTH DEGREES	248.8 159.6 280.1 252.0 284.0	219.1 155.4 275.2 285.1 246.9 280.9	275.2 285.2 246.8 280.9	187.3 277.3 287.8 245.2 282.2	1966 157.5 276.6 276.6 279.8	1099 1086 1086 1086 1086 1086 1086 1086 1086
DISTANCE (km)	422.0 965.1 1837.5 2435.1 2835.6	401.0 1161.5 1679.9 1964.4 2360.3	1670.2 1955.0 2351.3 2657.7	249.3 1472.3 1776.0 2135.8 2468.9	638.3 1462.6 1612.5 1841.2 2434.2 2559.4	953.4 1696.6 1789.7 2697.9 2681.1
STATION	SHL CHG ND1 PO0 QUE	SHL CHG CHG NDI LAH POO QUE	NDI LAH POO QUE Average	SHL ND1 LAH POO QUE	SHL CHG NDI LAH POO QUE	SHL CHG NDI POO QUE
рертн (km)	to	7	य हा	10	10	55
CATION	0N 95.8E	1N 94,4E	N 94, 3E	N 92.2E	N 93.7E	N 95.1E
LOC	27.0N	28.1	28.	27.88	31.13	55 . 7N
SEC	20.0	8 4	9.	30.8		54.2
TIME	iù iù	56	ω ιΛ	26	21	37
H	15	16	9	L1	6	ın
REGION	Burma-India	India-China	India-China	India-China	Tibet	Tsinghai
DATE	09/11/66	03/11/67	03/14/67	07/07/67	08/15/67	02/16/68

TABLE IV (Cont'd.)

M _S (von Seggern)	0.000 0.000	3 3 3 5 5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5	51 G G 51 G G 51 G G	N N N N N N N N N N N N N N N N N N N	8. 80 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	84 1 100 8 84 1 100 8	1010 H 10
Ms (Marshall g basham)	0000000 100000 100000	5 2 2 2 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5	3.03 3.03 3.03 3.03	3.49	010 10 011 1 0 01 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	010 10 10 1011 1 1 1 210 8 44
M _S (PRAGUE)	50.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	3.11 5.20 5.20 5.09	2.79 2.79 2.80	5.21	3.24 3.10 3.17	34 53 34 10 35 71 10 51 51	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a b	5.13 4.5.13 5.24 5.24 4.97	5.95 5.95 5.30 5.30	4.00	4.46	5.20 4.54 4.56	55 112 116 116 116 116 116 116	0 0 10 0 10 10 10 10 10 10 10 10 10 10 1
AZ IMUTH DEGREES	215.0 161.7 277.3 288.2	209.9 160.6 245.4 277.0 288.0	206.8	210.2	207 159.9 268.3 276.8	00000000000000000000000000000000000000	211. i 161. 6 268. 5 276. 9
DISTANCE (km)	593.6 1311.9 2704.5 2494.9	588.0 1531.7 2479.4 2674.5 2464.0	584.0 2644.5	602.4 2682.7	588.4 1348.7 1695.1 2654.0	597.6 1542.2 1712.3 2484.4 2675.1	007.3 1356.0 1731.5
STATION	SHL CHG QUE KBL Average	SHL CHG POO QUE KBL	SHL QUE Average	SHL QUE Average	SHL CHG NDI QUE	SHL CHG NDI POO QUE KBL AVETAGE	SHL CHG NDI QUE
DEPTH (km)	1	ÇI	80	33	53 53	61	C1
LOCATION LAT LONG	30.1N 95.1E	30.2N 94.8E	50,5N 94,5E	30.5N 94.9E	30.3N 94.6E	30,3N 94,8E	50.5N 95.0E
SEC	in in	10.0	10.0	58.0	54.2	• 1 • 0	6.
TIME	4	7	11	45	Ŋ	17	σι
H.	20	ıo	to	9	9	18	ın
REGION	Tibet	Tibet	Tibet	Tibet	Tibet	Tibet	Tibet
DATE	06/28/68		07/01/68	07/04/68	07/13/68	07/14/68	07/15/68
			32				

TABLE IV (Cont'd.)

M _s (von Seggern)	3.71	3.93	5.71	01 01 01 01 01 01 01 01 01 01 01 01 01 0	3,39 3,40	3.70 5.71	5.71
Ms (MARSHALL & BASHAM)	5 1 1 1 8	3,29	8 + 1 + 4 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3,67 3,29 3,48	10 10 • 1 1 10 • 1 1 10	3, 30 5, 30	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Ms (PRAGUE)	5.16 5.16	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	3.13 3.13	3.2. 3.25 2.25 3.25 3.25	61 61 60 1 1 80 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5.16
م	5.03 5.11 5.99 5.99	5.25 5.98 5.99 4.41	1.63 5.09 4.65 5.24 4.90	4.80 5.00 4.90	4.79 4.03 5.90 4.24	4	1
AZ IMUTH DEGREES	209.4 160.7 268.4 276.8	210.2 161.2 268.4 276.9	216.7 271.7 245.4 289.8	210.2	213.6 161.6 277.6	208.9 160.9 268.0 276.6	10112
DISTANCE (km)	597.6 1342.2 1712.3 2673.1	602.4 1339.1 1721.9 2682.7	524.4 1241.7 2458.6 2511.0	602.4 1339.1	584.4 1501.4 2706.0	607.3 1352.7 1712.6 2671.9	603.0 1322.5 1740.9 2703.1
STATION	SHL CHG NDI QUE Average	SHL CHG NDI QUE	SHL CHG POO KBL Average	SHL CHG Average	SHL CHG QUE Average	SHL CHG NDI QUE	SHL CHG NDI QUE
DEPTH (km)	0	0	10	33	2.6	19	55
LOCATION LAT LONG	50.5N 94.8E	30.3N 94.9E	29.4N 95.0E	30.3N 94.9E	30.6N 95.1E	30,4N 94,8E	30,2N 95,1E
SEC	0.	6.7.9	3.0	16.5	4.	10 •	24.0
TIME	10	5.1	7	-	56	ru ru	51
HR	C1	20	12	12	14		19
REGION	Tibet	Tibet	India-China	Tibet	Tibet	Tibet	Tibet
DATE	07/16/68	07/23/68	07/26/68	08/25/68	08/24/68	08/25/68	08/59/68
			33				

TABLE IV (Cont'd.)

M _s (von Seggern)		3,72	4 4 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.50	3.71	F 6 8 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7	8891-557-1 5 101-5-1 11-5-1 11-1-1-1-1
Ms (MARSHALL & BASHAM)	5.62	9 1 1 1 1 9 7	4.07	5.71 3.55 1.1 5.51	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	N44N4N44 N518N130 N118N130	1010440000 4 0000000 0 0000000 0
M _s (PRAGUE)	5 37	3.16	4.02	3.10 3.12 5.11	5.16	944410 4 90511119 90 4	101010-101010 10
d d	4.86 4.88 4.10	4 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.21	5.11 5.11 5.83 4.53	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5.02 4.27 4.76 5.96 5.96	8 + + + + + + + + + + + + + + + + + + +
AZ IMUTH DEGREES	209.4 160.7 276.8	209.9 160.6 268.7 243.4 277.0	174.5	210.2 161.2 245.3 276.9	211.6 161.5 279.6 277.1	179.6 269.7 278.9 277.9 286.8	1194 1286 1286 1286 1286 1286 1386 1386 1386 1386 1386 1386 1386 13
DISTANCE (km)	397.6 1342.2 2675.1	588.0 1331.7 1712.0 2479.4 2674.5	1635.6	602.4 1359.1 2493.0 2682.7	597.8 1525.3 1978.6 2693.6	1307.5 2106.5 2541.4 2856.7 3059.7 2826.8	633.1 1476.1 1595.5 1822.5 2417.7 2540.4
STATION	SHL CHG QUE Average	SHL CHG NDI POO QUE	CHG Average	SHL CHG POO QUE Average	SHL CHG LAH QUE Average	CHG ND1 LAH POO QUE KBL	SHL CHG ND1 LAB P00 P00 P00 NBL KBL
DEPTH (km)	50	92	10 10	8 2	10	12	10
ATION	94.8E	94.8E	97.5E	94.9E	95.0E	98.9E	95.5E
LOCAT) LAT	30.3N	30.2N	35.5W	50.5N	30.2N	30.6N	31.1N
SEC	26.6	54.1	4.0	32.0	57.0	6	30.0
TIME	0)	10	0	1	15	П	1
HR	ru	17	1	ы	r~	C1	19
REGION	Tibet	Tibet	Tsinghai	Tibet	Tibet	Tibet	Tibet
DATE	09/01/68	09/02/68	09/01/68	09/11/68	08/15/69	11/24/69	02/08/70

TABLE IV (Cont'd.)

Σ	(von Seggern)	5.75	5.56	:	:	1	3,75	5,38	3.61	4.62	1.64	1.16	.×.±	4.38	4.59
M.S.	(BASHAN)	5.60	5,43	:	:	;	3.66	5,32	5.50	4.66	1.66	4.34	1.60	4.62	1.5.7
X	(PRAGUE)														
	e ^o	5.24	4.25	5.84	3.76	4.51	3.99	1.66	4.29	5.71	4,32	4.85	1.54	4.39	1.76
NT TAGET	DEGREES	202.7	165,4	259.9	271.6	238.7	271.4	281.8		162.2	275.7	283.4	247.4	280.0	
TOWATOTA	(km)	863.7	1596.5	1778.6	1969.4	2652.5	2691.1	2426.6		1170.5	1792.6	2064.4	2189.9	2772.5	
	STATION	SHL	CHC	NDI	LAH	P00	QUE	KBL	Average	CHG	ION	LAH	P00	QUE	Average
nentu	(km)	25								53					
TTON	TONG	1 95.2E								. 95.6E					
1	AT A	52.8								28.93					
	HR MIN SEC	s 8								1.9					
TIME	MIN	œ								45					
	Ħ	11								0					
	21									China					
	REGION	Tibet								India-					
	DATE	05/08/70 Tibet								06/24/70 India-China 0 45 1.9 28.9N					

Event Magnitudes with Station Corrections (Marshall and Basham Mg Includes Depth

	Ms SEGGERN)	essi. t	5 8 6	14 U 15 C 16 C		ercin o	~1 (1¢ 1	cioa⊣n n
	M s (von SE	order n	5.4 9.18 1.09	ा किस्स स	10 0 4 4 4 19 10 10 10 10 10 10 10 10 10 10 10 10 10	ाजनारी जु निन्ने स	10 10 11 10 10	1000000
×	S (MARSHALL & BASHAM)	♡ → IA ← C ♡ ♡ ♡ IA ← I ← 다 다 다 다	5.91 5.89 5.90	ਚਾਨਜ਼ਰ ਨ ਨਿਲਾਨਜ਼ ਨ ਜ਼ਿਜ਼ਜ਼ ਨਿਜ਼ਜ਼ਜ਼	0 35 0 P1 IA 5 1	G Ø t Ø I M M M M t • • • • च च च च	କ୍ରାନ୍ତ୍ର ଜ ଉପ୍ତେଶ୍ନ ଜ କ୍ରାନ୍ତ୍ର ଜ	ठला करा क का ठा ट क संस्थानक
	MS (PRAGUE)	1010 10 1017 10 10 10 10 10 10 10 10 10 10 10 10 10 1	3.66 5.81 5.73	10 4 10 4 4 21 20 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	4 4 4 4 1 3 4 1 1 3 4 1 7 1 7 1 1 3 1 3 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 10 10 10 ••••• ••••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••• •••	ਜ਼ਲਾਲ ਛੜ. ਲ ਜ਼ਲਾਲਹਾਹ ਜ ਜ਼ਰਜ਼ਿਲ੍ਹੇ ਜ਼ਰਜ਼ਿਲ੍ਹੇ
m d an	Q W	4 4 4 9 9 9 9 1 8 1 8 1	5.42 4.90 5.16	4.91 5.19 5.10	5.09	96.05 0.05 0.05 0.05 0.05 0.05	4.96 4.51 4.61	00000 E
os Depth)	STATION	SHL CHG NDI QUE	ND1 QUE Average	SHL CHG LAH QUE Average	SHL CHG NDI QUE	SHL CHG NDI QUE	SHL CHG ND1 QUE Average	SHL CHG NDI LAH QUE
Correction Using NOS Depth)	DEPTH (km)	14.53	10	#2	15	9	10 10	7
orrectio	LONG.	95.61	92.16	95.1E	95.1E	н. 88. 8.	97.2E	93.1E
0	LOCATION LAT LON	27.8N	27.7N	28.6N	28.1N	29.8N	29 - 2N	31.8N
	4E	0, 1, 10,	15.8	0.9	57.8	57.0	27.0	6.0
	TIME HR MIN	1-	7 19	2 51	11 59	7	29	17
	REG10N	Аѕѕаш	Assam	Assam	Assam	Tibet	Tibet	Tibet
	DATE	06/02/65	07/05/63	10/08/63	11/16/63	01/07/64	01/27/64	06/10/64
				1/				

TABLE V (Cont'd.)

M _s (von SEGGERN)	4.16 5.60 4.01 3.92	600 4 6 800 14 0 610 64	0.000 to 0.00	a = & a in + & Q in = + + + i + + + • • • • • • • • • • • • • • • • • • •	മറ സ എംഗിറെ № റെ ഗർ എംഗ്റെ ഒ ഗൾ എൻ എംഗ്	Мо,П⊣им в Поп. Ф. I. В Иотепете
Marshall &	19 6 C C C C C C C C C C C C C C C C C C	4.01 3.73 3.78 6.01 3.96	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5	5 8 H 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	01-01-09 B 51-80-0-9 B 1-1-11-1	ातराळठारार ठ ∞ म्लाताताता ठ च च च च च च च च
M _S (PRAGUE)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	448444 448444 448444 44844444444444444	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	818 0 5 5 H 18 61 9 4 4 18 4 18 4 4 4 4 18 4 18
E Q	0.011 1 0.011 1 0.011 1 0.011 1	1 1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4.52 4.80 4.66	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 NS 4	00 00 00 00 00 00 00 00 00 00 00 00 00
STATION	SHL ND1 P00 QUE Average	SHL CHG ND1 PO0 QUE	SHL NDI POO QUE Average	SHL CHG ND1 LAH POO QUE	SHL CHG ND1 LAH PO0 QUE	SHL CHG NDI LAH POO QUE
DEPTH (km)	6.	10 10	5.5	ro m)	10 10	ត
10N LONG.	92.2E	30.08	95.2E	93.2E	93.18	93.1E
LOCATION LAT LON	29.8 8.8	2 8 • 5 3 N	31.78	32, 7N	32, 7N	32, 78
SEC	6.5	-3.1	56.0	55 55 8	52.6	4 8
TIME	72	15	26	26	t-	7
HR.	17	ric at	15	16	11	12
REGION	Tibet	India-China	Tibet	Tibet	Tibet	Tibet
DATE	11/10/64	04/30/05	06/04/65	07/31/65	07/31/65	07/31/63

TABLE V (Cont'd.)

Ms (von SEGGERN	ठावळारः वित्र १८०० वित्रच्याच्याः चित्रच्याच्याः	C 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 9 7 11 7 0 7 5 8 5 5 5 6 5 5 7 7 7 7 10 7 7	हार्थित्वस्य १८ १८ वर्षे १८ १८ वर्षे संस्थाने स्थान	4.04 5.81 3.81	510 45 5 -10 10 4 -14 4 4
M _S (MARSHALL & BASHAM)	न्यानस्य न प्राप्तास्य न प्राप्तास्य न	សាសស្នា • - • • • • • • • • • • • • • • • • • •	% छार ात — छ छ ार प्रार्ट । ० ० ० । चित्रेचच च च च	(>00,000 un in = 010 + un in that det det	000000000000000000000000000000000000000	गाला छ । गुनिस्ट स सर्वे स
Ms (PRAGUE)	NOSCIGN 9	101010101 10 00880011 0 1011000 10	8618664 18 699899 8 99944 9	6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00	10 (1 & 0. 10 + 10 (- 1 & 10 10 (0 (0) to 10	10 10 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1
e ^c	2 2 2 2 3 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 5 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 1 1 1 1 5 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1	न्छ।ऽनार छ ।ऽक्षित्र न । • • • • •	グ い ひ ひ ロ サ ** ! ・
STATION	SHL CHG ND1 LAH POO QUE	SHL CHG ND1 LAH PO0 QUE	SHL CHG ND1 LAH FOO QUE	SHL CHG ND1 EAH POU QUE	SHI. CHG NBI POO QUE Average	CHG LAH POO QUE Average
DEPTH (km)	10	10 10	ξ. C1	10 10	Si .	21
TON LONG.	93.0E	93.6E	93.3E	93.3E	96.11	92.5E
LOCATION LAT LON	52.8N	32. 6N	52.6N		29.2N	27. SN
SEC	• 1	7.	17.9	0.7.	ri •	0.
TIME	_	7	σ.	G.	19	0
표	6.	7	20	5	ω	20
REGION	Fibet	Tibet	Tibet	Tibet	India-China	India-China 20
PATE	07/31/65	08/01/65	08/01/65	08/02/65	10/06/05	12/09/65

TABLE V (Cont'd.)

DATE	REGION	T W	TIME	SEC	LOCATION LAT LOS	ION LONG.	DEPTH (km)	STATION	e ^c	M _s (PRAGUE)	MS (MARSHALL & BASHAM)	Ms (von SEGGERN)
01/31/66	Yunnan	C4F	55	ν. •	27.9N	39 . 6E	55	SHL CHG NDI POO QUE Average	5.06	EC 604 8 4044 10 10 4044 4	06.39 92.69 92.69 94.69 95.69	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
03/11/66	Tibet	4	<u>.1</u>	20.0	32. 4N	97.4E	10	SHL CHG ND1 LAH POO QUE Average	5. 11. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.	6 # K H S O C C C C C C C C C C C C C C C C C C	न 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1066179 1064 1084 1084 1084 1084 1084 1084 1084 108
05/27/66	Burma-India 14		55	0.0	27. 4N	96.SE	51	SHL CHG CHG NDI LAH POO QUE	989 • 47 9 • • • • • • • • • • • • • • • • • • •	3.088 3.088 3.088 3.098 3.094	6 M S O	118 91 9 6 6 1 9 9 6 9 9 9 9 9 9 9 9 9 9 9
07/05/66	India-China 10	2	ı	22.0	27.5N	92,48	t	SHL NP1 QUE	5.56	3.26 3.01 5.30 5.19	4.07 3.79 3.85 5.90	10 1
09/56/60	India-China	in .	0 1	58.0	N9.7.6	95. 26.	10	SHL CHG NDI LAH POO QUE	6.39 6.08 6.08 6.08 8.91 8.37 8.37	6.000.000.000.0000.0000.0000.0000.0000.0000	44000000 0 -40000000	
09/56/66	India-China	•	ro	18.0	27.5N	92.68		SHL CHG NDI QUE Average	% in o a a a a a a a a a a a a a a a a a a	3.59	6: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6

TABLE V (Cont'd.)

M _S (von SEGGERN)	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5		V 44.0 11	10.01		
MS (MARSHALL & BASHAN)	5.75 4.06 5.71 5.25 5.77	86126666 664264 974444 974444	N N N N N N N N N N N N N N N N N N N		888888 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
M _S (PRAGUE)	5.55. 5.55. 5.75.	9000659 800059 900059 900059	5.11 5.11 5.25 5.26	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2300000 T	24844 5 26444 5 26444 5
Ę	5 . 2 . 2 . 3 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	5.11 5.11 5.13 5.13	2 1 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.69 5.93 4.76	8 1 1 2 4 5 5 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	10101010 T T
STATION	SHL CHG NDI POO QUE Average	SHL CHG NDI LAH POO QUE	NDI LAH POO QUE Average	SHL NDI LAH POO QUE Average	SHL CBG ND1 LAH POO QUE	SHI. CHG NDI POO QUU
DEPTH (km)	to to	10	c) at	12	10	12
LONG.	. 56 . 8.	94. 1E	94.3E	92.2E	93.7E	95.1E
LOCATION LAT LO	27.0N	28. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	8 . 4 . 8 . 4	27.8x	31.1N	N. F. 10
SEC	20.0	% %	9.	30.s	10	10
TIME	r.	26	S	90	5	F-
丟	13	91	9	2	6	in.
REGION	Burma-India	India-China 16	India-China	India-China	Tibet	Tsinghai
DATE	69/11/66	03/11/67	03/14/67	07/01/67	08/15/67	02/16/68

TABLE V (Cont'd.)

DATE	REGION	≝	TIME	SEC	LOCATION LAT LONG	LONG.	DEPTH (Km)	STATION	انع	M _s (PRAGUE)	Msshall 6 Bashan)	M _s (von Seggern)
05/28/68	Tibet	20	34	10 10 10	30.1N	95.1E	ਰ ਹ	SHL CHG QUE KBL Average	5.00 4.00 5.00 5.00 5.00 5.00 5.00 5.00	0 10 10 10 10 10 10 10 10 10 10 10 10 10	10 10 10 10 - • • • • • • • • • • • • • • • • • • •	3 3 3 3 4 4 5 5 4 5 5 4 5 5 5 4 5 5 5 5
06/30/68	Tibet	ın	7	10.0	30. 2N	9 8 E	C)	SHL CHG POO QUE KBL Average	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5.11 5.11 5.11 5.00 0.00	0.000 0.000	N 1010101 N 1010101010101010101010101010
07/01/68	Tibet	IO.	Ξ	10.0	30.3N	94.5E	ς; 80	SIIL QUE Average	3.87 4.41 4.14	3.01 3.01	3.00	ες το ες το ες το
07/04/68	Tibet	9	4 5	58.0	30.3N	94.9E	85 55	SHL QUE Average	4 4 1 0 0 7 0 0	10	3.46 3.46	5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5
07/13/68	Tibet	vo	w	5.	50.5%	94.6E	10	SHL CHG NDI QUE	5.01 4.22 4.95	3.16 3.16 3.11 3.11 3.11	3.57 3.55 3.55 3.46	5.17
07/11/68	Tibet	18	12	41.0	30,5N	94. 8 E	ci	SHL CHG ND1 P00 QUE KBL Average	268891 C	010 440 10 •••••••••••••••••••••••••••••••••••	55. 55. 55. 55. 55. 55. 55. 55. 55. 55.	614 40 5 611 10 5 611 10 5 611 10 5
07/15/68	Tibet	ın	0.	o, •	30.5N	95.0E	21	SHL CHG NDI QUE	8800 P +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	1010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE V (Cont'd.)

M _S (von SEGGERN)	3 . 6 8	5.90 3.62 5.76	8	3 51 51 51 51 51 51 51 51 51 51 51 51 51	5 1 3	5 1 1 1 6 6 7 1 1 1 6 6 7 1 1 1 1 6 6 7 1 1 1 1	8
MS (MARSHALL & BASHAM)	50 10 4 1 1 1 4 5 1 1 1 4	3.58 3.27 5.4 5.43	6 K 6 1 1 1 6 6 1 1 1 4 7 1 1 1 8	5.50 5.20 5.40 5.40		, , , , , , , , , , , , , , , , , , ,	**************************************
M S (PRAGUE)	10 10 * 1 1 1 1 1 1 10 80 80 80 80 80 80 80 80 80 80 80 80 80 8	51. 51. 52. 52. 52. 52. 53. 54. 64. 64. 64. 64. 64. 64. 64. 64. 64. 6	S S S S S S S S S S S S S S S S S S S	5.54 5.51 5.42	5.05	3.37	89 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
E C	4.92 4.10 4.10 4.57	5.06 4.10 4.10	4.58 4.58 4.65	4.81	4.42 4.51 4.19	4444 200 200 200 200 200 200 200 200 200	0000000 00000000 000000000000000000000
STATION	SHL CHG NDI QUE	SHL CHG NDI QUE	SHL CHG POO KBL Average	SHL CHG Average	SHL CHG QUE Average	SHL CHG NDI QUE Average	SHL CHG NDI QUE
DEPTH (km)	0	30	33	33	26	19	10
10N LONG.	94. SE	94.9E	95.0E	94.9E	95.1E	94.8E	95.1E
LOCATION LAT LONG	50.38	30.3N	29. tv	30.3N	30.0N	50.4N	50.2N
SEC	7.0	47.9	3.0	16.3	7.4	το •	24.6
TIME	15	51	4	П	26	5	51
HR	63	50	ina 12	12	14	17	19
REGION	Tibet	Tibet	India-China 12	Tibet	Tibet	Tibet	Tibet
DATE	07/16/68	07/23/68	07/26/68	08/25/68	08/24/68	08/25/68	08/59/68

TABLE V (Cont'd.)

M _S (von SEGGERN)	06:1	69 8	0 2 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.63	3 55 5 69 5 5	ਨੇ ਰਾਲਜ਼ਰਾਨ ਜ ਰਾਜ਼ਾਹਰ ਜ ਰਾਜ਼ਾਹਰ ਜ ਰਾਜ਼ਾਹਰ ਜ	
MS (MARSHALL & BASHAN)	3.59	, (C) ,	4.05	3.69	5. 5. 5. 5.7 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7		10 10 4 4 10 10 4 0 0 0 4 8 0 0 0 10 1 4 10 0 4 10
M _S (PRAGUE)	69.11.10	, 63 , 11 , 11 , 12 , 13 , 14 , 15 , 15 , 15 , 15 , 15 , 15 , 15	80.4	3.5.	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	348104 4 0.033689	
u ^o	69°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	44444 200 200 200 200 200		4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 444 4 620 50 50 50 50 50 50 50 50 50 50 50 50 50	8000000	410.04.4.4.0.0.4.4.0.0.4.4.4.0.0.4.4.4.0.0.4.4.0.0.4.4.0.0.4.4.4.0.0.4
STATION	SHL CHG QUE Average	SHL CHG NDI POO QUE	CHG Average	SHL CHG POO QUE	SHL CHG CHG QUE Average	CHG NDI LAH POO QUE	SHL CHG ND1 LAH PO0 QUE
БЕРТН (км)	20	26	53.3	εΩ 80	;; ;;	12	12
LOCATION	94.8E	94.8E	97.5E	94.9E	95.5E	98.9E	93. SE
LOCA	30.5N	30. 2N	33.5N	30.3N	30.2N	30.6N	51.1N
SEC	26.6	54.1	0.4	32.0	37.0	9.3	30.0
TIME	59	4 5	0	_	15	-	r
H	Ŋ	17	ч	٣	~	61	19
REGION	Tibet	Tibet	Tsinghai	Tibet	Tibet	Tibet	Tibet
DATE	09/01/68	09/03/68	09/04/68	09/11/68	08/15/69	11/24/69	02/08/70

TABLE V (Cont'd.)

			TIME		LOCAT	LION	DEPTH				Ms (MARSHALL &	x .**
DATE	KECTON	Ĭ	Z	SEC	IVI	LONG		STATION	٩		BASHAN	(von SEGGERN)
05/08/70 Tibet	Tibet	=======================================	90	8	32.8N 95.2E	95.2E	35	SHL	18.		3.57	3.72
								CHC	1.06		3.41	50.00
								ION	4.11		:	:
								LAI	4.09		•	3
								200	4.53		:	:
								OUE	1.10		3.65	3.87
								KBL	4.00		3.56	3.65
								Average	4.29	3.40	3.55	3.69
06/24/70	06/24/70 India-China 1 43 1.9	~	43	1.9	28.9N	95.6E	33	CHC	5.52		4.65	4.59
								ION	4.59		4.65	5.58
								K	5.18		4.28	4.35
,								P00	4.76		4.50	4.69
44								QUE	4.80		4.60	4.52
1								Average	4.97		4.53	SS 5 7

Figure 1. Map of the Eastern Himalayan region including the area studied.

- + Late orogenic (Granitoids)
- Main deep faults (Hypothetical)
- www Normal Faults
- Thrusts

Figure 2. Tectonic map of area studied.

Figure 3, $M_{\rm S}$ vs $m_{\rm D}$ values averaged over the station network used, $M_{\rm S}$ was determined by the "Pragne" formula

Figure 4. $\rm M_S \ vs \ m_b$ values averaged over the station network used. $\rm M_S \ was$ determined by Marshall and Basham's method with depth corrections using NOS depth.

Figure 5. $M_S \ vs \ m_{\tilde{b}}$ values averaged over the station network used. M_S was determined by von Seggern's formula.

Figure 6. Ceographical distribution of various $\rm M_S \ vs \ m_b$ types. Definition of types is determined by equations 4, 5, and 6 in text. Prague formula was used for $\rm M_S$.

Figure 7. Geographical distribution of various $\rm M_S \ vs \ m_b$ types. Definition of types is determined by equations 4, 5, and 6 in text. Marshall and Basham method was used for $\rm M_S$.

Figure 8. Geographical distribution of various $\rm M_S \ vs \ m_b$ types. Definition of types is determined by equations 4, 5, and 6 in text. Von Seggern's formula was used for $\rm M_S \ .$

Figure 9. Geographical distribution of various M_S vs m_b types. Definition of type is determined by equations 7, 8, and 9 in text. Prague formula was used for M_S .

Figure 10. Geographical distribution of various $\rm M_S \ vs \ m_b$ types. Definition of type is determined by equations 7, 8, and 9 in text. Marshall and Basham method used for $\rm M_S$.

Figure 11. Geographical distribution of various M_S vs m_b types. Definition of type is determined by equations 7, 8, and 9 in text. Von Seggern's formulas was used for M_S .

Figure 12. $\rm M_S$ vs $\rm m_b$ values corrected for mean station magnitude differences—prior to averaging. Prague formula was used for $\rm M_S$.

Figure 13. M_S vs m_b values corrected for mean station magnitude differences prior to averaging. Marshall and Basham's method with depth corrections was used for M_S .

Figure 14. Mg vs m_b values corrected for mean station mignitude differences prior to overaging. Marshall and hashar method was used for Mg. No depth corrections were applied.

Figure 15. Ms computed with the method of Marshall and Basham (with depth corrections) plotted with NOS mb values. Stippled region shows area occupied by explosions in the paper by Marshall and Basham (1972). Bars give one standard deviation of the mean for selected events. (£ $\sigma/2$)

Figure 16. $\rm M_S \ vs \ m_b$ values corrected for mean station magnitude differences prior to averaging. Von Seggern's formula was used for $\rm M_S$.

Figure 17. Geographical distribution of various $\rm M_S \ vs \ m_b$ types. $\rm M_S \ vs \ m_b$ values were corrected for mean station magnitude differences prior to averaging. Prague formula was used for $\rm M_S$.

Figure 18. Geographical distribution of various $\rm M_S\,vs\,m_b$ types. $\rm M_S\,vs\,m_b$ values were corrected for mean station magnitude differences prior to averaging. Marshall and Basham's method was used for $\rm M_S$, with depth corrections.

Figure 19. Geographical distribution of various $\rm M_S$ vs mb types. $\rm M_S$ vs mb values were corrected for mean station magnitude differences prior to averaging. Marshall and Basham's method was used for $\rm M_S$, without depth corrections.

Figure 20. Geographical distribution of various $\rm M_S \ vs \ m_b$ types. $\rm M_S \ vs \ m_b$ values were corrected for mean station magnitude differences prior to averaging. Von Seggern's formula was used for $\rm M_S *$

Figure 21a. P wave log A vs log Δ plots before and after the application of station corrections determined by the joint magnitude determination method.

Figure 21b. P wave log A vs log Δ plots before and after the application of station corrections determined by the joint magnitude determination method.

Figure 22a. Rayleigh wave log A vs log Δ plots before and after the application of station corrections determined by the joint magnitude determination method.

Figure 22b. Rayleigh wave log A vs log Δ plots before and after the application of station corrections determined by the joint magnitude determination method.

Figure 23. Plot of P wave and Rayleigh wave event factors $\mathbf{F_b}$ and $\mathbf{F_b}$ determined by the joint magnitude determination method.

Figure 24a. Comparison of normal (left) and anomalous event seismograms (right)

71 a

EARTHQUAKE 06/28/1968 20:34:55.3 30.1 N 95.1 E h = 44 km TIBET

Figure 24b. Comparison of normal (left) and anomalous event seismograms (right).

1120-

EARTHQUAKE 06/28/1968 20:34:55.3
30.1 N 95.1 E
h = 44 km
TIBET

Figure 24c. Comparison of normal (left) and anomalous event seismograms (right).

SHL | SHL |

LPZ

EARTHQUAKE 06/30/1968 5:05:10.0 30.2 N 94.8 E h = 42 km TIBET

SPZ

Figure 24d. Comparison of normal (left) and anomalous event seismograms (right).

74 a-

EARTHQUAKE 06/30/1968 5:05:10.0
30.2 N 94.8 E
h = 42 km
TIBET

LR

LPZ

Figure 24c. Comparison of normal (left) and anomalous event seismograms (right).

115 - 11 .